

Intelligent Systems

Laboratory activity

Predictia performantei academice a studentiilor din invatamantul universitar folosind Machine Learning Tool: Python 2.7.3, Excel

Name:Luca Andrei & Salamon Adrian Group:30241 & 30241 $Email: luka_atat@yahoo.com \& salamon.adrianpaul@gmail.com$

Contents

T	Des	crierea proiectului si setul de date	5
2	Dec	cision Tree	8
	2.1	Decision Tree on our data set	8
	2.2	Experimental results	9
		2.2.1 Full data set	9
		2.2.2 Exclude G1 and G2 from data set	9
		2.2.3 Select only G1 and G2 from data set	9
	2.3	Statistics of the results	10
	2.4	Python code	10
3	Sup	port Vector Machine	11
	3.1	Support Vector Machine on our data set	11
	3.2	Experimental results	11
		3.2.1 Full data set	11
		3.2.2 Exclude G1 and G2 from data set	12
		3.2.3 Select only G1 and G2 from data set	12
	3.3	Statistics of the results	12
	3.4	Python code	13
4	K-N	Nearest Neighbor	14
_	4.1	K-Nearest Neighbor on our data set	14
	4.2	Experimental results	15
		4.2.1 Full data set n_neighbors=3	15^{-3}
		4.2.2 Exclude G1 and G2 from data set n_neighbors=3	15
		4.2.3 Select only G1 and G2 from data set n_neighbors=3	15
		4.2.4 Full data set m =650 n_neighbors=k	15
	4.3	Statistics of the results	16
	4.4	Python code	17
5	Gra	dient Tree Boosting	18
Ū	5.1	Gradient Tree Boosting on our data set	
	5.2	Experimental results	18
	٠	5.2.1 Full data set	18
		5.2.2 Exclude G1 and G2 from data set	18
		5.2.3 Select only G1 and G2 from data set	19
	5.3	Statistics of the results	19
	5.4	Python code	19

6	Neu	ıral Networks	20							
	6.1	Neuronal Networks on our data set	20							
	6.2	Experimental results	20							
		6.2.1 Full data set	20							
		6.2.2 Exclude G1 and G2 from data set	21							
		6.2.3 Select only G1 and G2 from data set	21							
	6.3	Statistics of the results	21							
	6.4	Python code	22							
7	Neu	ral Networks with feature scaling	23							
	7.1	Neural Networks with feature scaling on our data set	23							
	7.2	Experimental results	23							
		7.2.1 Full data set	23							
		7.2.2 Exclude G1 and G2 from data set	23							
		7.2.3 Select only G1 and G2 from data set	24							
	7.3	Statistics of the results	24							
	7.4	Python code	24							
8	AdaBoost ensemble method voting 28									
	8.1	Adaboost on our data set	$\frac{25}{25}$							
	0.1	8.1.1 Voting process								
	8.2	Experimental results	$\frac{-5}{25}$							
	8.3	Statistics of the results	26							
	8.4	Python code	27							
9	Con	clusions	28							
	9.1	Compararea performantei algoritmilor in cazul setului de date intreg	28							
	9.2	Compararea performantei algoritmilor in cazul lipsurilor de date	29							
	9.3	Compararea performantei algoritmilor cu feature selection	30							
	9.4	Final thoughts	30							
10	Apr	pendix	31							
-0		Decision Tree implementation	31							
		Support Vector Machine implementation	32							
		K-Nearest Neighbor implementation	33							
		Gradient Tree Boosting implementation	34							
		Neuronal Network implementation	35							
		Neural Networks with feature scaling implementation	36							
		Neural Networks with feature scaling implementation	37							
		AdaBoost voting implementation	38							
11	Bibl	liografie	40							

Task: Apply the following algorithms/techniques on your own ex-	Available	Your own
ample^1	points	estimation
Data preparation (e.g., outliers, feature selection, missing data)	1	
Decision/Regression Tree	1	
Support Vector Machine	1	
K-Nearest-Neighbour	1	
Multi-Layer Perceptron (ANN)	1	
Convolutional Neural Networks	1	
Recurrent Neural Networks	1	
Inductive Logic Programming	1	
Version Spaces	1	
Ensemble Learning (e.g. Ada Boost, voting)	1	
Showing performance metrics and graphs (split data into training	1	
set, test set and validation set)		
K-means and Bisecting K-means	1	
Hierarchical Clustering	1	
Pattern Mining/Rule Mining (e.g. Apriori)	1	
Sequential Pattern Mining/Sequential Rule Mining	1	
Applying Explainable AI (XAI) techniques on your own example	1	
Taking simple decisions (e.g. decision diagrams, expected utility)	1	
Taking Complex decisions (e.g. Bellman equation, policy iteration)	1	
Reinforcement learning	1	
Other algorithm of your choice	1	
Points	Max=20	$Grade \le 10$

Table 1: Tasks available. Select tasks of your choice such that to obtain the desired grade (10 points equals grade 10). Complete here what tasks have you tackled. To obtain the available points for **each** algorithm you have to: 1. show your python code, 2. tune some parameters, 3. explain what happens, 4. analyse the results.

Descrierea proiectului si setul de date

Setul de date a fost furnizat de UCI Machine Learning Repository. Pe baza acestui set de date vom folosi diverse metode de tip machine learning pentru a prezice performantele studentiilor.

Coloana	Tip	Descriere
School	Valoare binară: 'GP' -Gabriel	Scoala la care este inrolat stu-
	Pereira sau 'MS' -Mousinho da	dentull
	Silveira	
Gen	Valoare binara: F=Feminin sau	genul studentului
	G=Masculin	
Varsta	Valoare numerica din intervalul	Varsta studentului
	[15,22]	
Adresa	Valoare binara: U= Urban sau	Localitatea resedintei studentu-
	R=rural	lui
Famsize	Valoare binara: LE3= cel lumt	Numarul membrilor familiei
	3 membrii sau GT3- cel putin 4	
	membrii	
Pstatu	Valoare binara: T= casatoriti sau	Starea casniciei parintilor
	traiesc impreuna A= necasatoriti	
	sau despartiti	
Medu	Valoare numerică ıntre 0 si 4: 0 -	Educatia mamei
	fără educatie, 1 - scoală primară	
	(4 clase), 2 - gimnaziu (8 clase), 3	
	- liceu (12 clase) sau 4 - ınvtământ	
	superi	
Fedu	Valoare numerică ıntre 0 si 4: 0 -	Educatia tatalui
	fără educatie, 1 - scoală primară	
	(4 clase), 2 - gimnaziu (8 clase), 3	
	- liceu (12 clase) sau 4 - ınvtământ	
	superi	

Mjob	Valoare nominală: 'teacher'	Meseria mamei
v	= profesoară, 'health' =	
	domeniul medical, 'ser-	
	vices'=administrativ, 'at home'	
	= casnică sau 'other' - altele	
Fjob	Valoare nominală: 'teacher'	Meseria tatalui
v	= profesor, 'health' =	
	domeniul medical, 'ser-	
	vices'=administrativ, 'at home'	
	= casnic sau 'other' - altele	
Reason	Valoare nominală: 'home' - scoala	Motivul alegerii scolii
	e aproape de casă, 'reputation' -	
	reputatia scolii, 'course' - prefer-	
	inta topicului, 'other' - altele	
Guardian	Valoare nominală: 'mother' -	Tutela studentului
	mama detine tutela, 'father' -	
	tatăl detine tutela, 'other' - altele	
TravelTime	Valoare numerică intre 1 si 4: 1	timpul de dplasare pana la
	- mai putin de 15 minute, 2 -	scoala
	ıntre 15 si 30 minute, 3 - ıntre 30	
	minute si o oră, 4 - mai mult de o	
	${ m or} reve{a}$	
StudyTime	Valoare numerică ıntre 1 si 4: 1 -	Timpul alocat invatatului pe
·	mai putin de 2 ore, 2 - ıntre 2 si	săptămână
	5 ore, 3 - ıntre 5 si 10 ore, 4 - mai	_
	mult de 10 ore	
Failures	Valoare numerică ıntre 1 si 4: 1	numarul de restante
	- o resanta, 2 - 2 restante, 3 -	
	3 restante, 4 - mai mult de 3	
	restante	
Schoolsup	valoare binara(Yes/No)	Daca studentul primeste medi-
		tatii la scoala
Famsup	valoare binara(Yes/No)	Daca studentul este indrumat
		de membrii familiei
Paid	Valoare binara(Yes/No)	Daca studentul participa la
		meditatii platite
Activities	Valoare binara(Yes/No)	Daca studentul participa la ac-
		l
		tivitati extrascolare
Nursery	Valoare binara(Yes/No)	Daca tudentul are cunostinte de

Higher	Valoare binară (Yes/No)	Daca studentul dorete sa se in-
		roleze in invatamental superior
Internet	Valoare binară (Yes/No)	Daca studentul are acces la in-
		ternet la domiciliu
Romantic	Valoare binară (Yes/No)	Daca studentul este intr-o re-
		latie
Famrel	Valoare numerică (o evaluare)	Calitatea relatiei familiale
	intre 1 si 5 : 1 - minim , 5 - maxim	
Freetime	Valoare numerică (o evalu- are)	Timp liber
	intre 1 si 5 : 1 - minim , 5 - maxim	
Gout	Valoare numerică (o evaluare)	cat de des iese in oras
	intre 1 si 5 : 1 - minim , 5 - maxim	
Dalc	Valoare numerică (o evaluare)	Consumul de alcool afara week-
	intre 1 si 5 : 1 - minim , 5 - maxim	endului
Walc	Valoare numerică (o evaluare)	Consumul de alcool in weekend
	ıntre 1 si 5: 1 - minim, 5 - maxim	
Healt	Valoare numerică (o evaluare)	Starea curenta de sanatare
	ıntre 1 si 5: 1 - minim, 5 - maxim	
Absences	Valoare numerică (o evaluare)	Numarul de absente
	intre 1 si 93	
G1	Valoare numerica cuprinsa in in-	Nota pentru prima evaluare
	tervalul [0,20]	
G2	Valoare numerica cuprinsa in in-	Nota pentru a doua evaluare
	tervalul [0,20]	
G3	Valoare numerica cuprinsa in in-	Nota pentru evaluarea finala
	tervalul [0,20]	

Pentru reducerea complexitatii am decis sa translatam valoarea lui G3 din valoare intreaga in valoare binara, astfel incat numarul de clase posibile se reduce de la 20 la 2. Notele G1 si G2 au cea mai mare pondere pentru determinarea notei finale G3, dar $\mathbf{G3} \neq \frac{G1+G2}{2}$ $G3 = \begin{cases} 1 & G3 < 12 \\ 0 & G3 \ge 12 \end{cases}$

$$G3 = \begin{cases} 1 & G3 < 12 \\ 0 & G3 \ge 12 \end{cases}$$

Coloana	Tip	Descriere
G1	Valoare numerica cuprinsa in in-	Nota pentru prima evaluare
	tervalul [0,20]	
G2	Valoare numerica cuprinsa in in-	Nota pentru a doua evaluare
	tervalul [0,20]	
G3	Valoare binara(1/0)	Nota pentru evaluarea a studen-
		tului finala $1 = pass 0 = fail$

Table 1.1: Tabelul utilizat pentru feature selection

Decision Tree

2.1 Decision Tree on our data set

Decision Tree este un clasificator de tip arbore. Radacina arborelui reprezinta entitatea entitatea pe care dorim sa o clasificam, ramurile dintre radacina si frunze reprezinta decizii pe care luate de clasificator, iar frunzele sunt rezultatul obtinut in urma clasificarii.

Figure 2.1: Exemplu unui model posibil generat de clasificatorul Decision Tree pentru clasificarea setului de date cu feature selection

2.2 Experimental results

2.2.1 Full data set

	m = 30	m = 100	m = 200	m = 350	m = 650
Accuracy	86.83	89.40	90.12	90.38	90.66
Precision	87.74	89.03	91.43	90.75	90.93

Table 2.1: Full data set

2.2.2 Exclude G1 and G2 from data set

	m = 30	m = 100	m = 200	m = 350	m = 650
Accuracy	56.00	61.14	64.15	63.68	63.88
Precision	57.76	63.40	67.40	66.27	67.27

Table 2.2: Performance after removing G1 and G2 from data set

2.2.3 Select only G1 and G2 from data set

	m = 30	m = 100	m = 200	m = 350	m = 650
Accuracy	90.66	92.00	92.62	93.31	93.69
Precision	92.53	94.72	95.34	97.18	98.43

Table 2.3: Performance after feature selection only G1 and G2

2.3 Statistics of the results

Figure 2.2: Analiza performantei clasificatorului Decision Tree, invatare supervizata, dataset= 80% antrenare si 20% testare

2.4 Python code

See 10.1

Accuracy: 0.9066153846153842 Precision: 0.9093233127090565

Figure 2.3: Acuratetea si precizia pentru setul intreg de date (650 de exemple), invatare supervizata, dataset= 80% antrenare si 20% testare

Support Vector Machine

3.1 Support Vector Machine on our data set

Datorita faptului ca avem doar 2 clase posibile pentru clasificare, Support Vector Machine este cea mai performanta solutie pe care o putem utiliza.

Acest clasificator are ca scop delimitarea datelor celor doua clase printr-o granita astfel incat:

Fie P0 punctul care apartine clasei 0, dar este cel mai aproape de punctele din clasa 1

Fie P1 punctul care apartine clasei 1, dar este cel mai aproape de punctele din clasa 0

Granita definita de SVM trece prin mijlocul distantei dintre P0 si P1 si separa complet punctele din clasa 1 de cele din clasa 0.

Clasificatorul in urma procesului de invatatre instantiaza granita care separa cele 2 clasa ca fiind o functie continua G(p).

In cadrul testarii, se reprezinta fiecare punct din setul de test si se verifica daca acest punct se afla pe partea clasei 1 sau pe partea clasei 0 conform granitei definite in urma procesului de invatare.

3.2 Experimental results

3.2.1 Full data set

	m = 30	m = 100	m = 200	m = 350	m = 650
Accuracy	84.16	89.50	89.95	90.98	91.36
Precision	86.54	90.49	91.72	92.90	93.33

Table 3.1: Full data set

	m = 30	m = 100	m = 200	m = 350	m = 650
Accuracy	60.66	66.65	68.65	70.51	72.11
Precision	56.20	67.85	70.02	71.84	72.68

Table 3.2: Performance after removing G1 and G2 from data set

3.2.2 Exclude G1 and G2 from data set

3.2.3 Select only G1 and G2 from data set

	m = 30	m = 100	m = 200	m = 350	m = 650
Accuracy	88.16	91.00	92.72	93.57	93.83
Precision	87.86	92.57	96.73	97.82	98.35

Table 3.3: Performance after feature selection only G1 and G2

3.3 Statistics of the results

Figure 3.1: Analiza performantei clasificatorului SVM, invatare supervizata, dataset= 80% antrenare si 20% testare

3.4 Python code

See 10.2

Accuracy: 0.9136153846153843 Precision: 0.9333634334909118

Figure 3.2: Acuratetea si precizia pentru setul intreg de date (650 de exemple), invatare supervizata, dataset= 80% antrenare si 20% testare

K-Nearest Neighbor

4.1 K-Nearest Neighbor on our data set

K-Nearest Neighbor este printre primii clasificatori inventati. Acest clasificator reprezinta datele intr-un spatiu multidimensional si foloseste pentru masurarea distantei in exemplul nostru metoda distantei euclidiene.

Pentru majoritatea rezultatelor am utilizat numarul de vecini considerati ca fiind 3, dar am efectuate experimente si cu k=5,7,9,11, fapt care a crescut performantele clasificatorului.

Vom exemplifica functionarea algoritmului in cazut in care efectuam feature selection in cadrul setului de date, asadar vom reprezenta datele intr-un spatiu 2D, fiecare punct avand coordonatele G1 si G2, iar clasa punctului va fi determinata de G3(clasa 0(nepromovat) pentru G3=0 si clasa 1 (promovat) pentru G3=1)

In uruma efectuarii procesului de antrenare clasificatorul va contine un numar relativ egal de puncte care corespund claselor 0 si 1.

Pentru fiecare entitate din setul de test se va reprezenta proiectia acesteia in spatiul definit in urma procesului de invatare. Se vor calcula primele k cele mai mici dinstante dintre data de test si modelul obtinut in urma procesului de invatare. Clasa care obtine numarul mai mare de vecini apropiati din cele k distante ii este asignata punctului testat.

Exemplu:

k=3

TP= punctul de test

CP= punct care apartine clasei de promovare

CNP= punct care apartine clasei de nepromovare

TP are vecinii cei mai apropiati CNP,CP, CP = TP va fi clasificat ca fiind

CP(promovat)

TP are vecinii cei mai apropiati CNP, CP, CNP = TP va fi clasificat ca fiind CNP(nepromovat)

4.2 Experimental results

4.2.1 Full data set n_neighbors=3

	m = 30	m = 100	m = 200	m = 350	m = 650
Accuracy	85.49	86.04	86.85	87.27	87.48
Precision	83.41	85.17	85.78	86.50	86.63

Table 4.1: Full data set

4.2.2 Exclude G1 and G2 from data set n_neighbors=3

	m = 30	m = 100	m = 200	m = 350	m = 650
Accuracy	58.83	63.32	63.89	64.03	63.04
Precision	59.64	62.87	62.11	63.27	63.80

Table 4.2: Performance after removing G1 and G2 from data set

4.2.3 Select only G1 and G2 from data set n_neighbors=3

	m = 30	m = 100	m = 200	m = 350	m = 650
Accuracy	90.49	91.65	91.77	91.69	92.02
Precision	93.41	93.88	93.50	93.22	93.76

Table 4.3: Performance after feature selection only G1 and G2

4.2.4 Full data set m =650 n_neighbors=k

	k = 3	k=5	k=7	k=9	k=11
Accuracy	88.06	88.56	89.44	89.45	90.58
Precision	87.82	88.27	89.01	88.94	90.51

Table 4.4: Full data set

Figure 4.1: Evolutia acuratetei in functie de k
, invatare supervizata, dataset=80%antrenare s
i20%testare

4.3 Statistics of the results

Figure 4.2: Analiza perfomantei clasificatorului KNN with k=3, invatare supervizata, dataset= 80% antrenare si 20% testare

4.4 Python code

See 10.3

Accuracy: 0.8748461538461538 <u>Precision: 0.8663681022496806</u>

Figure 4.3: Acuratetea si precizia pentru setul intreg de date (650 de exemple), invatare supervizata, dataset= 80% antrenare si 20% testare K=3

Gradient Tree Boosting

5.1 Gradient Tree Boosting on our data set

Acest clasificator imbunatateste clasificatorul prezentat in capitolul 2(Decision Tree).

Clasificatorul Gradient Tree Boosting are ca scop imbunatatirea performantei clasificatorului Decision Tree. In cadrul acestei metode sunt creati mai multi arbori de decizie, dar spre deosebire de algoritmul random forest, se foloseste doar arborele care returneaza cele mai bune rezultate. Implementarea si exemplele sunt similare cu cele descrise in capitolul Decision Tree.

Se poate observa ca rezultatele acestui clasificator sunt afectate nesemnificativ de feature selection.

5.2 Experimental results

5.2.1 Full data set

	m = 30	m = 100	m = 200	m = 350	m = 650
Accuracy	88.33	91.05	91.24	91.29	92.95
Precision	89.06	91.97	93.38	94.18	94.28

Table 5.1: Full data set

5.2.2 Exclude G1 and G2 from data set

	m = 30	m = 100	m = 200	m = 350	m = 650
Accuracy	56.33	66.09	66.89	68.29	69.08
Precision	62.61	66.00	67.93	69.16	69.77

Table 5.2: Performance after removing G1 and G2 from data set

5.2.3 Select only G1 and G2 from data set

	m = 30	m = 100	m = 200	m = 350	m = 650
Accuracy	91.66	91.45	92.59	93.09	93.36
Precision	92.66	93.80	95.50	96.94	98.50

Table 5.3: Performance after feature selection only G1 and G2

5.3 Statistics of the results

Figure 5.1: Analiza performantei clasificatorului gradient boosting tree, invatare supervizata, dataset= 80% antrenare si 20% testare

5.4 Python code

See 10.4

Accuracy: 0.9295384615384609 Precision: 0.9428513755386608

Figure 5.2: Acuratetea si precizia pentru setul intreg de date (650 de exemple), invatare supervizata, dataset= 80% antrenare si 20% testare

Neural Networks

6.1 Neuronal Networks on our data set

Pentru implementarea retelei neuronale am decis sa folosim 10 straturi de neuroni complet conectati. Fiecare dintre acesti neuroni analizeaza o parte din datele de intrale si se calibreaza pentru obtinerea clasificarii rezultatului obtinul la examenul final.

Daca in cadrul procesului de invatare rezultatul obtinut de reteaua neuronala este gresit se declanseaza o serie de schimbari a ponderilor care au indicat raspunsul eronat. In consecinta ponderile care au semnalat raspunsul gresit scad, iar cele care ar fi semnalat un raspuns corect cresc.

De exemplu, ponderile neuronilor care semnaleaza ca studentul nu ar promova examenul final analizeaza campurile "FJob", "MJob", "studytime", "scholarship" si "nursery" vor scadea in timp ce celelalte vor creste.

6.2 Experimental results

6.2.1 Full data set

	m = 30	m = 100	m = 200	m = 350	m = 650
Accuracy	81.50	84.39	84.45	85.38	86.95
Precision	78.36	84.93	85.93	86.67	87.48

Table 6.1: Full data set

6.2.2 Exclude G1 and G2 from data set

	m = 30	m = 100	m = 200	m = 350	m = 650
Accuracy	58.00	63.15	65.25	66.47	67.20
Precision	58.98	66.95	67.54	68.66	69.13

Table 6.2: Performance after removing G1 and G2 from data set

6.2.3 Select only G1 and G2 from data set

	m = 30	m = 100	m = 200	m = 350	m = 650
Accuracy	88.66	92.15	92.37	93.05	93.12
Precision	89.06	94.49	94.99	95.93	96.98

Table 6.3: Performance after feature selection only G1 and G2

6.3 Statistics of the results

Figure 6.1: Analiza performantei retelei neuronale, invatare supervizata, dataset= 80% antrenare si 20% testare

6.4 Python code

See 10.5

Accuracy: 0.8695714285714286 Precision: 0.874815544791731

Figure 6.2: Acuratetea si precizia pentru setul intreg de date (650 de exemple), invatare supervizata, dataset= 80% antrenare si 20% testare

Neural Networks with feature scaling

7.1 Neural Networks with feature scaling on our data set

Feature scaling este o metoda des folosita in cadrul clasificatorilor pentru a elimina caracteristicile care cele mai putin relevante in desemnarea rezultatului. Comparativ cu exemplul retelei neuronale prezentate anterior putem observa ca performanta acestui clasificator a crescut in toate cele 3 cazuri considerate, diferenta dintre acuratetea obtinuta din setul intreg de date si setul care utilizeaza feature selection este mai mica (comparativ cu reteaua neuronala prezentata anterior), iar timpul de rulare a fost mai scazut. Proprietatile cele mai putin relevante au fost: "Job-ul mamei", "Job-ul tatalui" si "travel time"

7.2 Experimental results

7.2.1 Full data set

	m = 30	m = 100	m = 200	m = 350	m = 650
Accuracy	81.66	85.24	86.39	86.67	87.48
Precision	82.63	85.73	87.25	88.56	86.63

Table 7.1: Full data set

7.2.2 Exclude G1 and G2 from data set

	m = 30	m = 100	m = 200	m = 350	m = 650
Accuracy	61.50	66.55	66.82	66.87	66.92
Precision	64.34	70.80	68.56	69.48	68.62

Table 7.2: Performance after removing G1 and G2 from data set,

7.2.3 Select only G1 and G2 from data set

	m = 30	m = 100	m = 200	m = 350	m = 650
Accuracy	92.83	92.82	92.48	92.64	93.57
Precision	98.52	97.86	98.37	98.22	98.30

Table 7.3: Performance after feature selection only G1 and G2

7.3 Statistics of the results

Figure 7.1: Analiza rezultatelor Retelei neuronale with feature scaling, invatare supervizata, dataset= 80% antrenare si 20% testare

7.4 Python code

See 10.7

Accuracy: 0.8748461538461538 Precision: 0.8663681022496806

Figure 7.2: Acuratetea si precizia pentru setul intreg de date (650 de exemple), invatare supervizata, dataset= 80% antrenare si 20% testare

AdaBoost ensemble method voting

In acest capitol vom experimenta tehnica ensemble method prin procesul de votare din cadrul unui clasificator de tip AdaBoost

8.1 Adaboost on our data set

Setul de date este divizat in mai multe blocuri de lungime egala. Primul bloc este folosit ca bloc de testare, iar restul sunt blocuri de antrenare.

8.1.1 Voting process

Pentru asamblare clasificatorului am decis sa folosim clasificatorii "Logistic Regression", "Random Forest" si "Naive Bayes".

Cei trei clasificatori se antreneaza cu intreg setul de date pentru a lua decizii independente.

In cadrul setului datelor de testare fiecare dintre cei 3 clasificatori clasifica datele de test, iar decizia finala a clasificatorului adaBoost este clasificarea care a obtinut cel mai mare numar de voturi.

Din figura 8.1 se poate observa ca acuratetea algoritmului este apropiata de cel mai performant clasificator, dar nu o depaseste deoarece numarul cazurilor in care doi clasificatori gresesc este considerabil. In concluzie am observat ca in cadrul acestei metode daca decizia gresita castiga votul majoritar aceasta va fi returnata de clasificatorul adaBoost, chiar daca o componenta a clasificat corect data de test.

8.2 Experimental results

Acestea sunt valorie obtinute prin rularea algoritmului AdaBoost prin varierea numarului de blocuri in care este impartit setul de date.

Pentru kfolds=2 setul de date este impartit in 50% date de andrenare si 50% date de testare.

Pentru kfolds=5 avem cazul standard de 80% date de antrenare si 20% date de testare

kfolds	2	3	5	6	10
Logistic Regression Ac-	87.98	91.24	91.24	91.69	91.24
curacy					
Random Forest Accuracy	90.91	91.84	91.97	92.05	92.15
Naive Bayes Accuracy	90.45	91.22	91.73	91.93	91.85
Ensemble (AdaBoost)	90.14	91.84	92.46	92.57	92.00
Accuracy					

Table 8.1: Performance after feature selection only G1 and G2

8.3 Statistics of the results

Figure 8.1: Analiza rezultatelor clasificatorului AdaBoost

8.4 Python code

See 10.8

```
Accuracy: 0.9124 (+/- 0.04) [Logistic Regression]
Accuracy: 0.9215 (+/- 0.03) [Random Forest]
Accuracy: 0.9185 (+/- 0.03) [Naive Bayes]
Accuracy: 0.9200 (+/- 0.03) [Ensemble]
```

Figure 8.2: Acuratetea si precizia pentru setul intreg de date (650 de exemple), invatare supervizata, dataset= 80% antrenare si 20% testare

Conclusions

9.1 Compararea performantei algoritmilor in cazul setului de date intreg

Accuracy on full data set

Figure 9.1: Analiza rezultatelor invatare supervizata, dataset= 80% antrenare si 20% testare

9.2 Compararea performantei algoritmilor in cazul lipsurilor de date

Figure 9.2: Analiza rezultatelor invatare supervizata, dataset= 80% antrenare si 20% testare

9.3 Compararea performantei algoritmilor cu feature selection

Figure 9.3: Analiza rezultatelor: invatare supervizata, dataset= 80% antrenare si 20% testare

9.4 Final thoughts

Graficele obtinute sugereaza faptul ca Support Vector Machine (SVM) ofera cea mai buna predictie a promovarii examenului final (G3 cel putin 12). In figura 9.1 s-a observat cum Decions Trees with gradient Boosting reusea sa surclaseze SVM-ul pe datele preluate in forma bruta, cu toate acestea prin feature selection SVM-ul reuseste sa obtina nu doar o predictie mai buna, ci chiar cea mai buna acuratete din toate cazurile.

Appendix

10.1 Decision Tree implementation

```
1 import os
2 import subprocess
3 import pandas as pd
4 import numpy as np
6 from sklearn import tree
7 from sklearn.tree import DecisionTreeClassifier, export_graphviz
8 from sklearn.preprocessing import LabelEncoder
9 from sklearn.metrics import accuracy_score, precision_score
10 from sklearn.utils import shuffle
12 NUMBER_OF_ITERATIONS = 100
13 NUMBER_OF_EXAMPLES = 650
15 def evaluate():
16
    accuracy = 0
17
    precision = 0
18
    for i in range(0, NUMBER_OF_ITERATIONS):
20
      # input_file = "student_grades.csv" this line reads the file that
21
     contains only the grades set
      input_file = "student_dataset.csv" # this line reads the file that
     contains all the features
      clf = tree.DecisionTreeClassifier()
      le = LabelEncoder()
      data = pd.read_csv(input_file, header = 0)
26
      data = shuffle(data)
27
      data = data[0:NUMBER_OF_EXAMPLES]
      data = data.apply(le.fit_transform)
30
      delim = int(len(data) * 0.8)
31
      # 80% training data
      data_train = data[0:delim]
33
      # 20% test data
34
      data_test = data[delim:len(data)]
35
      x_train = data_train[data_train.columns.drop('G3')]
37
      y_train = data_train['G3']
      x_test = data_test[data_test.columns.drop('G3')]
39
      y_test = data_test['G3']
```

```
clf.fit(x_train, y_train)

redicted = clf.predict(x_test)

accuracy += accuracy_score(y_test, predicted)
precision += precision_score(y_test, predicted)

print "Accuracy:", accuracy / NUMBER_OF_ITERATIONS
print "Precision:", precision / NUMBER_OF_ITERATIONS

evaluate()
```

Listing 10.1: Decision Tree implementation

10.2 Support Vector Machine implementation

```
1 import os
2 import subprocess
3 import pandas as pd
4 import numpy as np
6 from sklearn import svm
7 from sklearn.preprocessing import LabelEncoder
8 from sklearn.metrics import accuracy_score, precision_score
9 from sklearn.utils import shuffle
  NUMBER_OF_ITERATIONS = 100
12 NUMBER_OF_EXAMPLES = 650
13
def evaluate():
    accuracy = 0
16
    precision = 0
17
18
    for i in range(0, NUMBER_OF_ITERATIONS):
      # input_file = "student_grades.csv" this line reads the file that
20
     contains only the grades set
      input_file = "student_dataset.csv" # this line reads the file that
21
     contains all the features
      clf = svm.SVC()
      le = LabelEncoder()
23
      data = pd.read_csv(input_file, header = 0)
      data = shuffle(data)
26
27
      data = data[0:NUMBER_OF_EXAMPLES]
      data = data.apply(le.fit_transform)
      delim = int(len(data) * 0.8)
30
      # 80% training data
31
      data_train = data[0:delim]
      # 20% test data
33
      data_test = data[delim:len(data)]
34
35
      x_train = data_train[data_train.columns.drop('G3')]
      y_train = data_train['G3']
37
      x_test = data_test[data_test.columns.drop('G3')]
38
      y_test = data_test['G3']
39
      clf.fit(x_train, y_train)
41
```

```
predicted = clf.predict(x_test)

accuracy += accuracy_score(y_test, predicted)
precision += precision_score(y_test, predicted)

print "Accuracy:", accuracy / NUMBER_OF_ITERATIONS
print "Precision:", precision / NUMBER_OF_ITERATIONS

evaluate()
```

Listing 10.2: Support Vector Machine implementation

10.3 K-Nearest Neighbor implementation

```
1 import os
2 import subprocess
3 import pandas as pd
4 import numpy as np
6 from sklearn.preprocessing import LabelEncoder
7 from sklearn.neighbors import KNeighborsClassifier
8 from sklearn.metrics import accuracy_score, precision_score
9 from sklearn.utils import shuffle
11 NUMBER_OF_ITERATIONS = 100
12 NUMBER_OF_EXAMPLES = 650
13
  def evaluate():
14
    accuracy = 0
    precision = 0
17
18
19
    for i in range(0, NUMBER_OF_ITERATIONS):
      # input_file = "student_grades.csv" this line reads the file that
21
     contains only the grades set
      input_file = "student_dataset.csv" # this line reads the file that
22
     contains all the features
23
      clf = KNeighborsClassifier(n_neighbors=3)
24
      le = LabelEncoder()
      data = pd.read_csv(input_file, header = 0)
27
      data = shuffle(data)
28
      data = data[0:NUMBER_OF_EXAMPLES]
      data = data.apply(le.fit_transform)
31
      delim = int(len(data) * 0.8)
32
      # 80% training data
      data_train = data[0:delim]
34
      # 20% test data
35
      data_test = data[delim:len(data)]
36
38
      x_train = data_train[data_train.columns.drop('G3')]
39
      y_train = data_train['G3']
40
      x_test = data_test[data_test.columns.drop('G3')]
41
      y_test = data_test['G3']
```

```
clf.fit(x_train, y_train)
44
45
      predicted = clf.predict(x_test)
46
47
      accuracy += accuracy_score(y_test, predicted)
48
      precision += precision_score(y_test, predicted)
49
50
    print "Accuracy:", accuracy / NUMBER_OF_ITERATIONS
51
    print "Precision:", precision / NUMBER_OF_ITERATIONS
53
55 evaluate()
```

Listing 10.3: K-Nearest Neighbor implementation

10.4 Gradient Tree Boosting implementation

```
1 import os
2 import subprocess
3 import pandas as pd
4 import numpy as np
6 from sklearn import tree
7 from sklearn.tree import DecisionTreeClassifier, export_graphviz
8 from sklearn.preprocessing import LabelEncoder
9 from sklearn.metrics import accuracy_score, precision_score
10 from sklearn.utils import shuffle
12 from sklearn.datasets import make_hastie_10_2
13 from sklearn.ensemble import GradientBoostingClassifier
15 NUMBER_OF_ITERATIONS = 100
16 NUMBER_OF_EXAMPLES = 650
18
  def evaluate():
19
    accuracy = 0
20
    precision = 0
21
23
    for i in range(0, NUMBER_OF_ITERATIONS):
24
      #input_file = "student_grades.csv" this line reads the file that
     contains only the grades set
      input_file = "student_dataset.csv" # this line reads the file that
     contains all the features
      clf = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0,
     max_depth=5, random_state=0)
      le = LabelEncoder()
28
      data = pd.read_csv(input_file, header = 0)
      data = shuffle(data)
31
32
      data = data[0:NUMBER_OF_EXAMPLES]
33
      data = data.apply(le.fit_transform)
      delim = int(len(data) * 0.8)
35
      # 80% training data
36
      data_train = data[0:delim]
37
      # 20% test data
      data_test = data[delim:len(data)]
```

```
x_train = data_train[data_train.columns.drop('G3')]
41
      y_train = data_train['G3']
42
      x_test = data_test[data_test.columns.drop('G3')]
43
      y_test = data_test['G3']
      clf.fit(x_train, y_train)
46
47
      predicted = clf.predict(x_test)
      accuracy += accuracy_score(y_test, predicted)
50
      precision += precision_score(y_test, predicted)
51
52
53
    print "Accuracy:", accuracy / NUMBER_OF_ITERATIONS
54
    print "Precision:", precision / NUMBER_OF_ITERATIONS
55
58 evaluate()
```

Listing 10.4: Gradient Tree Boosting implementation

10.5 Neuronal Network implementation

```
1 import os
2 import subprocess
3 import pandas as pd
4 import numpy as np
6 from sklearn.preprocessing import LabelEncoder
7 from sklearn.neural_network import MLPClassifier
8 from sklearn.preprocessing import StandardScaler
9 from sklearn.metrics import accuracy_score, precision_score
10 from sklearn.utils import shuffle
12 NUMBER_OF_ITERATIONS = 100
13 NUMBER_OF_EXAMPLES = 650
14
15 def evaluate():
    accuracy = 0
17
    precision = 0
18
19
    for i in range(0, NUMBER_OF_ITERATIONS):
21
      # input_file = "student_grades.csv" this line reads the file that
     contains only the grades set
      input_file = "student_dataset.csv" # this line reads the file that
     contains all the features
      clf = MLPClassifier(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(10,
24
     10), random_state=1)
      le = LabelEncoder()
25
26
      data = pd.read_csv(input_file, header = 0)
27
      data = shuffle(data)
29
      data = data[0:NUMBER_OF_EXAMPLES]
30
      data = data.apply(le.fit_transform)
31
      delim = int(len(data) * 0.8)
      # 80% training data
```

```
data_train = data[0:delim]
      # 20% test data
      data_test = data[delim:len(data)]
36
37
      x_train = data_train[data_train.columns.drop('G3')]
      y_train = data_train['G3']
39
      x_test = data_test[data_test.columns.drop('G3')]
40
      y_test = data_test['G3']
41
      clf.fit(x_train, y_train)
44
      predicted = clf.predict(x_test)
45
      accuracy += accuracy_score(y_test, predicted)
47
      precision += precision_score(y_test, predicted)
48
49
51
    print "Accuracy:", accuracy / NUMBER_OF_ITERATIONS
    print "Precision:", precision / NUMBER_OF_ITERATIONS
54 evaluate()
```

Listing 10.5: Neuronal Network implementation

10.6 Neural Networks with feature scaling implementation

```
1 import os
2 import subprocess
3 import pandas as pd
4 import numpy as np
6 from sklearn.preprocessing import LabelEncoder
7 from sklearn.neural_network import MLPClassifier
8 from sklearn.preprocessing import StandardScaler
9 from sklearn.metrics import accuracy_score, precision_score
10 from sklearn.utils import shuffle
12 NUMBER_OF_ITERATIONS = 100
13 NUMBER_OF_EXAMPLES = 650
14
def evaluate():
16
    accuracy = 0
17
    precision = 0
18
20
    for i in range(0, NUMBER_OF_ITERATIONS):
21
     # input_file = "student_grades.csv" this line reads the file that
     contains only the grades set
      input_file = "student_dataset.csv" # this line reads the file that
23
     contains all the features
      clf = MLPClassifier(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(10,
     10), random_state=1)
      le = LabelEncoder()
      scaler = StandardScaler()
26
      data = pd.read_csv(input_file, header = 0)
28
      data = shuffle(data)
29
```

```
data = data[0:NUMBER_OF_EXAMPLES]
      data = data.apply(le.fit_transform)
32
      delim = int(len(data) * 0.8)
33
      # 80% training data
      data_train = data[0:delim]
      # 20% test data
36
      data_test = data[delim:len(data)]
37
      x_train = data_train[data_train.columns.drop('G3')]
      y_train = data_train['G3']
      x_test = data_test[data_test.columns.drop('G3')]
40
      y_test = data_test['G3']
41
      scaler.fit(x_train)
43
      x_train = scaler.transform(x_train)
44
      x_test = scaler.transform(x_test)
      clf.fit(x_train, y_train)
      predicted = clf.predict(x_test)
47
48
      clf.fit(x_train, y_train)
49
      predicted = clf.predict(x_test)
51
      accuracy += accuracy_score(y_test, predicted)
      precision += precision_score(y_test, predicted)
56
    print "Accuracy:", accuracy / NUMBER_OF_ITERATIONS
57
    print "Precision:", precision / NUMBER_OF_ITERATIONS
60 evaluate()
```

Listing 10.6: Neural Networks with feature scaling implementation

10.7 Neural Networks with feature scaling implementation

```
1 import os
2 import subprocess
3 import pandas as pd
4 import numpy as np
6 from sklearn.preprocessing import LabelEncoder
7 from sklearn.neural_network import MLPClassifier
8 from sklearn.preprocessing import StandardScaler
9 from sklearn.metrics import accuracy_score, precision_score
10 from sklearn.utils import shuffle
12 NUMBER_OF_ITERATIONS = 100
13 NUMBER_OF_EXAMPLES = 650
 def evaluate():
15
16
    accuracy = 0
17
    precision = 0
18
19
    for i in range(0, NUMBER_OF_ITERATIONS):
21
      # input_file = "student_grades.csv" this line reads the file that
```

```
contains only the grades set
      input_file = "student_dataset.csv" # this line reads the file that
     contains all the features
      clf = MLPClassifier(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(10,
24
     10), random_state=1)
      le = LabelEncoder()
      scaler = StandardScaler()
26
      data = pd.read_csv(input_file, header = 0)
      data = shuffle(data)
      data = data[0:NUMBER_OF_EXAMPLES]
31
      data = data.apply(le.fit_transform)
      delim = int(len(data) * 0.8)
33
      # 80% training data
34
      data_train = data[0:delim]
      # 20% test data
      data_test = data[delim:len(data)]
37
      x_train = data_train[data_train.columns.drop('G3')]
38
      y_train = data_train['G3']
30
      x_test = data_test[data_test.columns.drop('G3')]
      y_test = data_test['G3']
41
      scaler.fit(x_train)
43
44
      x_train = scaler.transform(x_train)
      x_test = scaler.transform(x_test)
45
      clf.fit(x_train, y_train)
46
      predicted = clf.predict(x_test)
47
      clf.fit(x_train, y_train)
49
      predicted = clf.predict(x_test)
      accuracy += accuracy_score(y_test, predicted)
      precision += precision_score(y_test, predicted)
54
    print "Accuracy:", accuracy / NUMBER_OF_ITERATIONS
57
    print "Precision:", precision / NUMBER_OF_ITERATIONS
58
60 evaluate()
```

Listing 10.7: Neural Networks with feature scaling implementation

10.8 AdaBoost voting implementation

```
import os
import subprocess
import pandas as pd
import numpy as np

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import VotingClassifier
input_file = "student_grades.csv"
```

Bibliografie

- 1. https://archive.ics.uci.edu/ml/datasets/student+performance
- 2. http://scikit-learn.org/stable/
- 3. Artificial Intelligence: A Modern Approach
- 4. /wiki/Decision_t $ree/wiki/Support_vector_machine$
- 5. /wiki/K-nearest_neighbors_algorithm/wiki/Gradient_boosting
- 6. /wiki/Artificial_neural_network/wiki/Feature_scaling
- 7. /wiki/AdaBoost
- 8. C.M. Bishop, "Pattern Recognition and Machine Learning", Springer, 2006

Intelligent Systems Group

