Curso: Engenharia de Produção

Projetos em Engenharia

Prof. Clayton J A Silva, MSc clayton.silva@professores.ibmec.edu.br

Os modelos

modelos qualitativos

modelos quantitativos matemáticos e estatísticos

modelos computacionais

modelos físicos

Modelos matemáticos e estatísticos

Modelos quantitativos:
expressam grandezas e as
unidades de medida
relacionadas com o problema

Contexto

Avaliação de desempenho: o sistema estará ou está funcionando de acordo com o esperado?

Controle de processos: operações de realimentação nas quais uma medida é usada para manter o processo dentro de condições específicas

Contagem: manter um registro do uso ou fluxo de uma determinada quantidade

Pesquisa: experimentos e realizadas medições pra sustentar hipóteses teóricas.

Projeto: testar novos produtos e processos.

Dimensão

Variável física usada para descrever ou especificar a natureza de uma quantidade mensurável.

Contém: o valor **numérico** e a **unidade** de comparação.

dimensões de base X dimensões derivadas

Grandezas de base

Grandeza de base	Símbolo	Unidade de base	Símbolo
comprimento	nto l, h, r, x metro		m
massa	m	quilograma	kg
tempo, duração	t	segundo	S
corrente elétrica	I, i	ampere	A
temperatura termodinâmica	T	kelvin	K
quantidade de substância	n	mol	mol
intensidade luminosa	$I_{ m v}$	candela	cd

Unidades de base

metro, m

Quilograma, kg

segundo, s

ampere, A

kelvin, K

mol, mol

candela, cd

Grandezas derivadas

Grandeza derivada	Símbolo	Unidade derivada	Símbolo	
área	A	metro quadrado	m ²	
volume	V	metro cúbico	m ³	
velocidade	υ	metro por segundo	m/s	
aceleração	а	metro por segundo ao quadrado	m/s ²	
número de ondas	σ, ῦ	inverso do metro	m ⁻¹	
massa específica	ρ	quilograma por metro cúbico	kg/m³	
densidade superficial	$\rho_{\scriptscriptstyle A}$	quilograma por metro quadrado	kg/m ²	
volume específico	υ	metro cúbico por quilograma	m³/kg	
densidade de corrente	j	ampere por metro quadrado	A/m ²	
campo magnético	Н	ampere por metro	A/m	
concentração	c	mol por metro cúbico	mol/m³	
concentração de massa	ρ, γ	quilograma por metro cúbico	kg/m³	
luminância	$L_{ m v}$	candela por metro quadrado	cd/m ²	
índice de refração	n	um	1	
permeabilidade relativa	μ_r	um	1	

Grandeza derivada	Nome da unidade derivada	Símbolo da unidade	Expressão em termos de outras unidades
angulo plano	radiano	rad	m/m = 1
angulo sólido	esterradiano	sr	$m^2/m^2 = 1$
frequência	hertz	Hz	S ⁻¹
força	newton	N	m kg s ⁻²
pressão, tensão	pascal	Pa	$N/m^2 = m^{-1} kg s^{-2}$
energia, trabalho, quantidade de calor	joule	J	$N m = m^2 kg s^{-2}$
potência, fluxo de energia	watt	W	$J/s = m^2 kg s^{-3}$
carga elétrica, quantidade de eletricidade	coulomb	C	s A
diferença de potencial elétrico	volt	V	$W/A = m^2 kg s^{-3} A^{-1}$
capacitância	farad	F	$C/V = m^{-2} kg^{-1} s^4 A^2$
resistência elétrica	ohm	Ω	$V/A = m^2 kg s^{-3} A^{-2}$
condutância elétrica	siemens	S	$A/V = m^{-2} kg^{-1} s^3 A^2$
fluxo de indução magnética	weber	Wb	$V s = m^2 kg s^{-2} A^{-1}$
indução magnética	tesla	T	$Wb/m^2 = kg s^{-2} A^{-1}$
indutância	henry	H	$Wb/A = m^2 kg s^{-2} A^{-2}$
temperatura Celsius	grau Celsius	°C	K
fluxo luminoso	lumen	lm	cd sr = cd
iluminância	lux	lx	$lm/m^2 = m^{-2} cd$
atividade de um radionuclídio	becquerel	Bq	s ⁻¹
dose absorvida, energia específica (comunicada), kerma	gray	Gy	$J/kg = m^2 s^{-2}$
equivalente de dose, equivalente de dose ambiente	sievert	Sv	$J/kg = m^2 s^{-2}$
atividade catalítica	katal	kat	s ⁻¹ mol

Grandezas derivadas com nomes especiais

Consistência dimensional

Os modelos matemáticos dos sistemas físicos são usualmente representados matematicamente por uma equação do tipo

alguma dimensão = relação de outras dimensões

a consistência dimensional requer que ambos os lados da equação possuam a mesma dimensão

Unidades SI

 O SI é o único sistema de unidades que é reconhecido universalmente, de modo que proporciona uma vantagem distinta quando se estabelece um diálogo internacional.

BIPM: https://www.bipm.org/en/about-us/

Unidades não-SI

Grandeza	Unidade	Símbolo	Relação com o SI
tempo	minuto	min	$1 \min = 60 s$
	hora	h	1 h = 3600 s
	dia	d	1 d = 86400 s
volume	litro	L ou 1	$1 L = 1 dm^3$
massa	tonelada	t	1 t = 1000 kg
energia	elétronvolt	eV	$1 \text{ eV} \approx 1,602 \text{ x } 10^{-19} \text{ J}$
pressão	bar	bar	1 bar = 100 kPa
	milímetro de mercúrio	mmHg	1 mmHg ≈133,3 Pa
comprimento	angstrom ²	Å	$1 \text{ Å} = 10^{-10} \text{ m}$
	milha náutica	M	1 M = 1852 m
força	dina	dyn	$1 \text{ dyn} = 10^{-5} \text{ N}$
energia	erg	erg	$1 \text{ erg} = 10^{-7} \text{ J}$

Múltiplos e submúltiplos

Fator	Nome	Símbolo	Fator	Nome	Símbolo
10 ¹	deca	da	10-1	deci	d
10^{2}	hecto	h	10-2	centi	С
10^{3}	quilo	k	10-3	mili	m
10^{6}	mega	M	10-6	micro	μ
10 ⁹	giga	G	10-9	nano	n
1012	tera	T	10-12	pico	p
1015	peta	P	10-15	femto	f
10 ¹⁸	exa	Е	10-18	atto	a
10^{21}	zetta	Z	10-21	zepto	Z
10 ²⁴	yotta	Y	10-24	yocto	y

Aplicações de dimensões e unidades a problemas de engenharia

- Tratam de várias dimensões. Algumas delas utilizam unidades de base e unidades derivadas, além de outras unidades especiais.
- Atenção especial à verificação da consistência dimensional
- Modelagem computacional dos problemas
- Algumas poucas outras unidades não SI são utilizadas em alguns problemas.

Aplicações de dimensões e unidades a problemas de engenharia

- Os problemas precisam ser preliminarmente formulados: o modelo quantitativo.
- Variável: representação simbólica de informações, que pode assumir um valor numérico pertencente a um conjunto definido.

IBMEC.BR

- f)/IBMEC
- in IBMEC
- @IBMEC_OFICIAL
- @@IBMEC

