INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO

PROF. DANIEL S. FREITAS

UFSC - CTC - INE

6 - RELAÇÕES DE ORDENAMENTO

- 6.1) Conjuntos parcialmente ordenados (posets)
- 6.2) Extremos de posets
- 6.3) Reticulados
- 6.4) Álgebras Booleanas Finitas

- Algumas relações são usadas para ordenar elementos de conjuntos (alguns ou todos):
 - ordenamos palavras usando xRy, onde x vem antes de y no dicionário
 - fazemos a programação de um projeto com xRy, onde x e y são tarefas tais que x deve ser concluída antes de y começar
- Quando adicionamos todos os pares (x, x), obtemos uma relação que é reflexiva, antissimétrica e transitiva.

- Ordenamento Parcial: relação R sobre um conjunto A que é reflexiva, antissimétrica e transitiva.
 - Reflexividade: $(a, a) \in R, \forall a \in A$
 - Antissimetria: $(a,b) \in R$ e $(b,a) \in R \rightarrow a = b$
 - ullet para $a \neq b$: ou $(a,b) \notin R$ ou $(b,a) \notin R$
 - Transitividade: $(a,b) \in R$ e $(b,c) \in R \rightarrow (a,c) \in R$
- Um conjunto A, junto com seu Ordenamento Parcial R é chamado de **conjunto parcialmente ordenado (poset)**.
 - Denotado por (A, R).

- **Exemplo1**: A relação \leq é um ordenamento parcial sobre o conjunto dos inteiros (assim como \geq).
 - \leq = { $(n_1, n_2) \in Z \times Z \mid n_1$ "é menor ou igual a" n_2 }
 - $a \le a$ para todo inteiro $a \Rightarrow \le \acute{e}$ reflexiva
 - se $a \le b$ e $b \le a$, então a = b \Rightarrow \le é antissimétrica
 - se $a \le b$ e $b \le c$, então $a \le c$ \Rightarrow \le é transitiva
 - conclui-se que \leq é um ordenamento parcial sobre o conjunto dos inteiros e (Z, \leq) é um poset \Box

- **Exemplo2**: A relação de divisibilidade (a R b se e somente se $a \mid b$) é um ordenamento parcial sobre Z^+ .
 - Ela é reflexiva, antissimétrica e transitiva.
 - Conclui-se que $(Z^+, |)$ é um poset.

Exemplo3: A relação de inclusão, (\subseteq) é um ordenamento parcial sobre o conjunto P(S) (= "todos os subconjuntos de S").

$$\subseteq = \{ (S_1, S_2) \in P(S) \times P(S) \mid S_1 \subseteq S_2 \}$$

- Seja $S_1 \in P(S)$:
 - ullet como $S_1\subseteq S_1$, \subseteq é reflexiva

$$S_1 \subseteq S_2$$
 e $S_2 \subseteq S_1 \rightarrow S_1 = S_2$

$$S_1 \subseteq S_2$$
 e $S_2 \subseteq S_3$ \rightarrow $S_1 \subseteq S_3$

• Portanto, $(P(S), \subseteq)$ é um poset.

- **Exemplo4**: Seja W o conjunto de todas as relações de equivalência sobre um conjunto A.
 - W consiste de subconjuntos de $A \times A$
 - ullet Então W é um poset (sob o ordenamento parcial de inclusão)
 - Se R e S são relações de equivalência sobre A, o mesmo pode ser expresso como:
 - $R \subseteq S$ se e somente se $x R y \Rightarrow x S y$ para todo x, y em A
 - Então (W,\subseteq) é um poset.

▶ Exemplo5: A relação < sobre Z^+ não é um ordenamento parcial, pois não é reflexiva. \Box

INVERSAS E DUAIS

- **Exemplo6**: A relação inversa R^{-1} de um ordenamento parcial R sobre um conjunto A também é um ordenamento parcial.
 - ullet Se R é reflexiva, simétrica e transitiva, então:
 - $\triangle \subseteq R$
 - $R \cap R^{-1} \subseteq \Delta$
 - $lap{l}$ $R^2 \subseteq R$
 - $ightharpoonup R^{-1}$ também é um poset, pois, tomando inversas, vêm:

 - $R^{-1} \cap (R^{-1})^{-1} = R^{-1} \cap R \subseteq \Delta$
 - $(R^{-1})^2 \subseteq R^{-1}$
- ▶ Nota: (A, R^{-1}) é o **poset dual** de (A, R).
 - O ordenamento parcial R^{-1} é o **dual** de R.
 - Exemplo de posets duais: (Z, \leq) e (Z, \geq)

Convenção

- O símbolo "≤" vai denotar qualquer relação de ordem parcial.
 - Não apenas as do tipo "menor ou igual".
 - Propriedades ficam mais familiares.
 - Mas, em geral, os posets não terão nada em comum entre si, ou com a relação "≤" usual.
 - Quando necessário, usaremos algo como "≤₁" ou "≤′"
- ullet Sempre usaremos o símbolo \geq para o ordenamento parcial \leq^{-1}
- **▶** A notação a < b significa " $a \le b$, mas $a \ne b$ ".

COMPARABILIDADE

- Quando a e b são elementos do poset (A, \leq) , não é necessário que ocorra sempre $a \leq b$ ou $b \leq a$.
- **Exemplo**: em (Z, |), 2 não está relacionado com 3 e nem 3 com 2.

COMPARABILIDADE

- Os elementos a e b de um poset (A, \leq) são **comparáveis** se ou $a \leq b$ ou $b \leq a$.
 - Se nem $a \le b$ nem $b \le a$, $a \in b$ são ditos incomparáveis.

- **Exemplo**: No poset (Z+, |), 3 e 9 são comparáveis? E 5 e 7?
 - Os inteiros 3 e 9 são comparáveis, pois 3 | 9.
 - Já os inteiros 5 e 7 são incomparáveis, pois 5 / 7 e 7 / 5.

- O adjetivo "parcial" é usado porque pode haver pares de elementos incomparáveis.
- Se todos os elementos em um poset (A, \leq) são comparáveis, o conjunto A é dito totalmente ordenado.
 - E o ordenamento parcial é chamado de ordenamento linear.
 - Neste caso, diz-se também que A é uma cadeia.

ORDENAMENTOS TOTAIS

Exemplo1: O poset (Z, \leq) é totalmente ordenado, pois $a \leq b$ ou $b \leq a$ sempre que a e b são inteiros.

Exemplo2: O poset (Z+,|) não é totalmente ordenado, pois ele contém elementos incomparáveis (por ex., 5 e 7).

TEOREMA (1/3)

■ Teorema: Se (A, \le_1) e (B, \le_2) são posets, então $(A \times B, \le_3)$ também é um poset, com ordenamento parcial definido por:

$$(a,b) \leq_3 (a',b')$$
 se $a \leq_1 a'$ em A e $b \leq_2 b'$ em B

- **Prova**: mostrar que \leq_3 é reflexiva, antissimétrica e transitiva (1/3):
 - ▶ Reflexividade:se $(a,b) \in A \times B$, então $(a,b) \leq_3 (a,b)$, pois $a <_1 a$ em Ae $b <_2 b$ em B

TEOREMA (2/3)

- $\le _3$ é reflexiva, antissimétrica e transitiva (2/3):
 - Antissimetria: suponha que $(a,b) \leq_3 (a',b')$ e que $(a',b') \leq_3 (a,b)$, com $a,a' \in A$ e $b,b' \in B$. Então:
 - ullet em A: $a \leq_1 a'$ e $a' \leq_1 a \Rightarrow a = a'$
 - ullet em B: $b \leq_2 b'$ e $b' \leq_2 b \Rightarrow b = b'$
 - ou seja, $(a,b) \in \leq_3$ e $(b,a) \in \leq_3$ \Rightarrow a=b

TEOREMA (3/3)

- $\le _3$ é reflexiva, antissimétrica e transitiva (2/3):
 - **▶** Transitividade: suponha $(a,b) \leq_3 (a',b')$ e $(a',b') \leq_3 (a'',b'')$.
 - Pela propriedade transitiva da ordem parcial em A:

$$a \leq_1 a'$$
 e $a' \leq_1 a''$ \Rightarrow $a \leq_1 a''$

Pela propriedade transitiva em B:

$$b <_2 b'$$
 e $b' <_2 b''$ \Rightarrow $b <_2 b''$

logo:

$$(a,b) \le_3 (a',b')$$
 e $(a',b') \le_3 (a'',b'')$ \Rightarrow $(a,b) \le_3 (a'',b'')$

• Conclusão: $(A \times B, \leq_3)$ é um poset.

ORDENAMENTOS LEXICOGRÁFICOS

- Uma ordem parcial ≤ definida sobre o produto cartesiano como acima é chamada de ordem parcial produto.
- Sejam os posets (A, \leq_1) e (B, \leq_2) . Define-se a **ordem** lexicográfica (ou "dicionário") sobre $A \times B$, denotada por \prec , como:

$$(a,b) \prec (a',b')$$
 se: $a <_1 a'$ em A ou se: $a = a'$ em A e $b <_2 b'$ em B

"O ordenamento dos elementos na primeira variável domina, exceto no caso de coincidir, quando a atenção passa para a 2a. variável".

ORDENAMENTOS LEXICOGRÁFICOS

• A ordem lexicográfica pode ser estendida para os produtos cartesianos $A_1 \times A_2 \times ... \times A_n$ como:

$$(a_1,a_2,...,a_n)<(a_1',a_2',...,a_n')$$
 se e somente se: $a_1< a_1'$ ou $a_1=a_1'$ e $a_2< a_2'$ ou $a_1=a_1'$, $a_2=a_2'$ e $a_3< a_3'$ ou ... \vdots $a_1=a_1'$, $a_2=a_2'$, ... , $a_{n-1}< a_{n-1}'$ e $a_n\leq a_n'$

"A 1ra coordenada domina, exceto para igualdade, caso em que se considera a 2a coordenada - e assim por diante".

ORDENAMENTOS LEXICOGRÁFICOS

- **Exemplo**: Seja $S = \{a, b, c, ..., z\}$ o alfabeto comum, ordenado da forma usual.
- Então Sⁿ pode ser identificado como o conjunto de todas as palavras de comprimento n.
- Uma ordem lexicográfica sobre S^n tem a propriedade de que, se $w1 \prec w2$, então w1 precederia w2 em uma listagem de dicionário.
- Portanto:
 - livre \(\times \) livro

 - carro
 carta.

- Posets são relações e pode-se sempre desenhar seus dígrafos.
- No entanto, muitas arestas não precisam ser mostradas, já que devem necessariamente estar presentes (dígrafo sempre reflexivo e transitivo).
- Pode-se retirar as arestas que sempre devem estar presentes.
- As estruturas obtidas desta forma são chamadas de Diagramas de Hasse dos posets.

Exemplo1: Considere o dígrafo da ordem parcial, sobre o conjunto $A = \{1, 2, 3, 4\}$, dado por $\leq = \{(a, b) \in A \times A \mid a \leq b\}$:

■ Esta relação é uma ordem parcial ⇒ ≤ é automaticamente reflexiva ⇒ possui vértices em todos os loops ⇒ os loops podem ser omitidos:

■ Esta relação é uma ordem parcial ⇒ ≤ é automaticamente transitiva ⇒ as arestas presentes por causa da transitividade não precisam ser mostradas:

- Ainda, assumindo-se que se desenhe todas as arestas apontadas para cima, pode-se omitir a sua orientação.
- Finalmente, substitui-se os círculos por pontos:

- **Exemplo2**: Seja $A = \{1, 2, 3, 4, 6, 8, 12\}$. A ordem parcial é a de divisibilidade sobre A (ou seja, $a \le b \Leftrightarrow a \mid b$).
 - Desenhe o diagrama de Hasse do poset (A, \leq) .

Posets - Definições

- **೨** Se (A, ≤) é um poset e a, b ∈ A, então:
 - 1. Se $a \leq b$, diz-se que "a **precede** b"
 - 2. Se a < b, diz-se que "a **precede** b **estritamente**"
 - 3. Se $a \ge b$, diz-se que "a **sucede** b"
 - 4. Se a > b, diz-se que "a **sucede** b **estritamente**"
- Seja (A, \leq) um poset e $a, b \in A$. Diz-se que a é um **predecessor** imediato de b e b é um sucessor imediato de a se a < b mas não existe nenhum elemento $c \in A$ tal que a < c < b
 - escreve-se: $a \angle b$

Posets - Definições

- lacksquare Diz-se a < b se $a \le b$ com $a \ne b$.
- Se \leq é uma ordem parcial, então " \geq " denota a relação \leq^{-1}
 - a ordem parcial inversa de ≤

- Outra maneira de construir o Diagrama de Hasse de um poset:
- O Diagrama de Hasse de um poset (A, \leq) é o dígrafo no qual os vértices são elementos de A.
 - Existe aresta de um vértice a para um vértice b sempre que $a \angle b$.

Então:

- Ao invés de desenhar uma seta de a para b, coloca-se b mais alto do que a e desenha-se uma linha entre eles.
- Fica subentendido que o movimento para cima indica sucessão.
- No diagrama de Hasse existe um caminho orientado de um vértice x para um vértice y se e somente se $x \angle y$.

Exemplo1: Seja $S = \{a, b, c\}$ e seja $A = 2^S$ (o conjunto de todas as partes de S). Desenhe o diagrama de Hasse do poset (A, \subseteq) .

$$A = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}\}$$

Procedimento:

- Eliminar loops
- Eliminar arestas ligadas à transitividade:
 - $(\emptyset, \{a,b\})$
 - $(\emptyset, \{a,c\})$
 - ullet $(\emptyset, \{b, c\})$
 - \bullet $(\emptyset, \{a, b, c\})$
 - $(\{a\}, \{a, b, c\})$
 - $(\{b\},\{a,b,c\})$
 - $(\{c\}, \{a, b, c\})$

- **Exemplo2**: Seja $A = \{1, 2, 3, 4, 6, 8, 9, 12, 18, 24\}$. A ordem parcial é a divisibilidade sobre A (ou seja, $a \le b \Leftrightarrow a \mid b$).
 - Desenhe o diagrama de Hasse do poset (A, \leq) .

Exercícios (1/3)

Exerc1: Determine o diagrama de Hasse do ordenamento parcial que tem o seguinte dígrafo:

Exercícios (2/3)

Exerc2: Descreva os pares ordenados na relação determinada pelo diagrama de Hasse sobre o conjunto $A = \{1, 2, 3, 4\}$, dado abaixo:

Exercícios (3/3)

Exerc3: Determine o diagrama de Hasse da relação sobre o conjunto $A = \{1, 2, 3, 4, 5\}$ cuja matriz é dada por:

OBSERVAÇÕES (1/2)

O diagrama de Hasse de um conjunto linearmente ordenado tem sempre a forma de uma linha:

OBSERVAÇÕES (2/2)

• O diagrama de Hasse de (A, \ge) é o diagrama de Hasse do seu dual (A, \le) de cabeça para baixo:

■ Dado um poset (A, \leq) , às vezes é preciso encontrar uma ordem linear \prec para o conjunto A que seja simplesmente uma extensão da ordem parcial dada:

se $a \leq b$, então (na nova ordem) $a \prec b$

- Exemplo: suponha que um projeto seja composto de 20 tarefas diferentes:
 - Algumas tarefas só podem ser completadas depois que outras tenham sido acabadas.
 - Como encontrar uma ordem para estas tarefas?
- Para modelar este problema, monta-se uma ordem parcial sobre o conjunto de tarefas, de modo que:
 - "a < b" ⇔ "b é uma tarefa que não pode ser iniciada até que a esteja completa"</p>
 - Para produzir uma programação para este projeto, é preciso uma ordem para todas as 20 tarefas que seja compatível com esta ordem parcial.

- Uma ordem linear total < é dita ser compatível com uma ordem parcial < se:</p>
 - $a \prec b$ sempre que $a \leq b$.
- O problema de obter ordens lineares a partir de uma ordem parcial é chamado de ordenamento topológico.

Exemplo: Algumas ordens lineares compatíveis com um poset dado:

Questão: Como encontrar ordenamentos topológicos??

- LEMBRETE: Uma função $f: A \rightarrow B$ é chamada de uma bijeção (correspondência um-para-um) entre A e B se:
 - f é uma função injetora: $f(a) = f(b) \Rightarrow a = b$
 - f é sobrejetora: Ran(f) = B

- Sejam (A, \leq) e (A', \leq') posets e seja $f: A \to A'$ uma bijeção:
 - esta função f é chamada de um **isomorfismo** de (A, \leq) para (A', \leq') se, para quaisquer elementos $a, b \in A$:

$$a \le b \Rightarrow f(a) \le' f(b)$$
.

- Exemplo: Sejam:
 - $A = Z^+$ (inteiros positivos) e seja \leq a ordem usual sobre A.
 - A' = inteiros pares e seja \leq' a ordem usual sobre A'.

Mostre que a função $f:A\to A'$ dada por f(a)=2.a é um isomorfismo de (A,\leq) para (A',\leq') .

- **Exemplo (cont.)** ($f: A \rightarrow A'$ é isomorfismo):
 - 1. a função f é uma bijeção, ou seja, f é injetora e sobrejetora:
 - f é injetora pois se f(a) = f(b), então pela definição de f tem-se que 2a = 2b e segue daí que a = b
 - se $c \in A'$, então c é par e sempre pode ser escrito como c=2a para algum $a \in A \ \Rightarrow \ c=f(a) \Rightarrow f$ é sobrejetora
 - logo, f é uma bijeção.
 - 2. f preserva o ordenamento \leq' :
 - se $a, b \in A$, é claro que $a \le b \Leftrightarrow 2a \le 2b$, isto é:

$$a \le b \Leftrightarrow f(a) \le' f(b)$$

Princípio da Correspondência

- **S**eja $f: A \rightarrow A'$ um isomorfismo entre os posets (A, ≤) e (A', ≤').
- $m{ ilde P}$ $B\subseteq A$ e B'=f(B) é o correspondente subconjunto de A'.
- Então, a partir da definição de isomorfismo, vale o resultado geral:

Teorema (Princípio da Correspondência):

- Se os elementos do conjunto B têm uma propriedade qualquer, relacionando-os uns aos outros ou a outros elementos de A;
- e se esta propriedade pode ser definida inteiramente em termos da ordem parcial ≤;
- Então: os elementos de B' devem possuir exatamente a mesma propriedade, definida em termos de \leq' .

Princípio da Correspondência

Exemplo: Seja (A, \leq) um poset com o diagrama de Hasse:

- suponha que exista um isomorfismo f de (A, \leq) para algum outro poset (A', \leq')
- observe que: $d \leq x$, $\forall x \in A$
 - então o elemento correspondente $f(d) \in A'$ deverá satisfazer:

$$f(d) \le' y, \ \forall y \in A'$$

- outro exemplo: note que a e b não são comparáveis em A
 - então f(a) e f(b) não serão comparáveis em A'.

Princípio da Correspondência

- Para um poset finito, um dos objetos que é inteiramente definido em termos do ordenamento parcial é o seu diagrama de Hasse.
- Segue, então, do princípio da correspondência, que 2 posets isomórficos têm os mesmos diagramas de Hasse.
- **Teorema**: Sejam (A, \le) e (A', \le') dois posets finitos, seja $f: A \to A'$ uma bijeção e seja H um diagrama de Hasse de (A, \le) .
 - Então:
 - se f é um isomorfismo e cada designação a de H for trocada por f(a), então H torna-se um diagrama de Hasse de (A', \leq') .
 - Reciprocamente:
 - se H se torna um diagrama de Hasse de (A', \le') sempre que a é substituído por f(a) em H, então f é um isomorfismo.

- **೨** Se $f: A \to B$ é uma bijeção do poset (A, \leq) para o conjunto B, podemos usar a função f para definir uma ordem parcial ≤' sobre B:
 - se b_1 e b_2 estão em B, então existe $a_1 \in A$ tal que $b_1 = f(a_1)$ e $a_2 \in A$ tal que $b_2 = f(a_2)$
 - defina $b_1 \leq' b_2$ em B como significando que $a_1 \leq' a_2$ em A

- Se A e B são finitos, pode-se descrever este processo geometricamente como:
 - construa o diagrama de Hasse para (A, \leq)
 - ullet substitua cada elemento a pelo correspondente f(a) em B
 - o resultado é o diagrama de Hasse da ordem parcial ≤' sobre B

Exemplo: Seja $A = \{1, 2, 3, 6\}$ e seja \leq a relação de divisibilidade " | " cujo diagrama de Hasse é dado por:

- Por outro lado, sejam:

Exemplo (cont.):

- Se $f:A\to A'$ é definida por: $f(1)=\emptyset \ \ , \ \ f(2)=\{a\} \ \ , \ \ f(3)=\{b\} \ \ , \ \ f(6)=\{a,b\}$ é fácil ver que f é uma bijeção.
- Substituindo cada a por f(a) no diagrama de Hasse, obtemos:

- que é o diagrama de Hasse de (A', \leq')
- ullet portanto, f \acute{e} um isomorfismo entre (A, \leq) e (A', \leq')