

CS 4104 APPLIED MACHINE LEARNING

Dr. Hashim Yasin

National University of Computer and Emerging Sciences,

Faisalabad, Pakistan.

DECISION TREE

Problem Setting:

- Set of possible instances
 - each instance in is a feature vector
 - □ e.g., <
- Unknown target function
 - is discrete valued
- □ Set of function hypotheses
 - each hypothesis is a decision tree
 - trees sorts to leaf, which assigns

		X			Υ
Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	€ool	Norma.	Weak	Yes
D=10=	-Rain	—-Mile	Nerma	Weak	Yes
	Sunny	Miia	Nerma	Strong.	Yes
DP112	Overcast	Mild	⊞i igh ⊢−	Strong	Yes —
DF 18 -	Overgast.	. 취 항.	Mound	■ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	V _{ES}
D44	_Ran_	Mild	l High	Strong	No

□ A Decision tree for

<Outlook, Temperature, Humidity, Wind> → PlayTennis?

A Decision tree for

<Outlook, Temperature, Humidity, Wind $> \rightarrow$ PlayTennis?

- □ Each internal node: test one attribute
- Each branch from a node: selects one value for
- Each leaf node: predict

 In general, decision trees represent a disjunction of conjunctions of the attribute values,

Input:

□ Training examples

{ } of unknown target function

Output:

Hypothesis tlbest approximatestarget function

Decision Trees ... Examples

□ Suppose

- where are Boolean variables
- How would you represent the followings:

$$Y = X_1 \quad X_2$$

$$Y = X_1 X_2$$

Decision Trees ... Examples

Suppose

- where are Boolean variables
- □ How would you represent the followings:

$$Y = X_1 \quad X_2$$

$$X_1 \quad 0$$

$$X_2 \quad 0$$

$$1 \quad 0$$

Decision Trees ... Examples

Suppose

- where are Boolean variables
- How would you represent the followings:

Decision Tree Algorithm ... ID3

Iterative Dichotomiser 3 (ID3)

ID3(Examples, Target_attribute, Attributes)

- Create a Root node for the tree
- If all Examples are positive, Return the single-node tree Root, with label = +
- If all Examples are negative, Return the singlenode tree Root, with label = -
- If Attributes is empty, Return the single-node tree
 Root, with label = most common value of
 in Examples

Decision Tree Algorithm ... ID3

Otherwise Begin

- □ A ← the attribute from Attributes that best* classifies Examples
- Assign A as decision attribute for node
- □ For **each value** of A, create new decedent of node
- Sort training examples to leaf nodes
- If training examples are perfectly classified, then
 STOP otherwise iterate over new leaf nodes

Which attribute is the best attribute?

Information Gain measure the effectiveness of an attribute

Entropy characterizes the (im)purity of an arbitrary collection of examples S.# of possible values

of X

Example

- Given a collection S, containing positive and negative examples of some target concept, the entropy of S relative to this Boolean classification is
- is the proportion of positive example in S
- \square is the proportion of negative example in S

- S is a sample of training examples
- p₊ is the proportion of positive examples in S
- p_{_} is the proportion of negative examples in S
- Entropy measures the impurity of S

Entropy is 0 if all members belong to same class
Entropy is 1 when there is equal no. of +ve and -ve examples

Entropy (S) $\equiv -p_+ \log_2 p_+ - p_- \log_2 p_-$

Information Gain

- Information Gain measure the effectiveness of an attribute
- □ It is simply the expected reduction in entropy

Where:

- Values(A) is the set of all possible values for attribute A
- \square S_v is the subset of S for which attribute A has value v.

EXAMPLE

		X			Υ
Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	€ool	Normal	Weak	Yes
D=110===	–Rain₌–	——Mile	Nerma	Weak	Yes
	■Sunny	Mii∄	Nerma	Strong.	Yes
D42.	Overcast	Mile	⊞i igh ⊢	Strong	Yes —
DF 13 -	Overcast.	<u> </u>	Mound	■ \\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Vas —
 D44 —	_Rain_	Mild	l - ligh	Strong	No

Υ Outlook Wind Day Temperature Humidity **PlayTennis** D1 Sunny Hot High Weak No High D2 Sunny Hot Strong No Weak D3 Overcast High Hot Yes High D4 Rain Mild Yes Weak D5 Rain Cool Normal Weak Yes D6 Rain Cool Normal Strong No D7 Strong Overcast Cool Normal Yes D8 Sunny Hiah_ Weak Mild No D9Sunny Cool Norma Weak Yes D=10= Yes –Rain₌ Mile Nerma Weak ■Sunny Mid Nerma Streng Yes. Yes Overcast Mild ■High Strong D#13-V_jag Overcast. 투ot. Marma Wask Rain Mild Strong ligh. No

Example

()

In play_tennis example,

$$Entropy([9+, 5-]) = -(9/14) \log_2(9/14) - (5/14) \log_2(5/14)$$
$$= 0.940$$

Which Attribute?

- Which attribute should be selected for root node in play-tennis example?
 - Outlook
 - Temperature
 - Humidity
 - Wind

Information Gain (WIND)

Suppose in <u>play-tennis</u> example, the attribute WIND which have values Weak and Strong, the information gain is:

Information Gain (WIND)

 Suppose in <u>play-tennis</u> example, the attribute WIND which have values Weak and Strong, the *information gain* is:

$$Values(Wind) = Weak, Strong$$

 $S = [9+, 5-]$

```
S_{Weak} \leftarrow [6+,2-]
S_{Strong} \leftarrow [3+,3-]
S_{Veak} = S_{Veak} 
S_{Veak} = S_{Veak}
```

Information Gain

 $S_{Weak} \leftarrow [6 + 2 -]$

 $S_{Strong} \leftarrow [3\pm, \underline{3\pm}]$

Information Gain

Values(Wird) - Weck Strong

$$S_{Weak} \leftarrow [6 \pm 2 -]$$

 $S_{Strong} \leftarrow [3+,3=]$

)

Information Gain (WIND)

$$Values(Wind) = Weak, Strong$$

 $S = [9+, 5-]$

$$S_{Weak} \leftarrow [6+,2-]$$
 $S_{Strong} \leftarrow [3+,3-]$

$$\frac{|S_v|}{|S_v|} \underbrace{Entropy(S_v)}_{v \in \{Weak, Strong\}} \underbrace{|S_v|}_{|S_v|} \underbrace{|S_v|}_$$

Information Gain (HUMIDITY)

Information Gain

Which attribute is the best classifier?

Humidity provide greater information gain than wind

Information Gain

Which attribute is the best classifier?

$$Gain(S, Outlook) = 0.246$$

$$Gain(S, Humidity) = 0.151$$

$$Gain(S, Wind) = 0.048$$

$$Gain(S, Temperature) = 0.029$$

Temperature Humidity

Υ

PlayTennis

Wind

Outlook

Day

Dr. Hashim Yasin

Applied Machine Learning (CS4104)

 $S_{sunny} = \{\text{D1,D2,D8,D9,D11}\}$

{D1, D2, ..., D14}

[9+,5-]

Outlook

{D1,D2,D8,D9,D11}

{D3,D7,D12,D13} [4+,0-]

Overcast

{D4,D5,D6,D10,D14}

Rain

[2+,3-]

Sunny

[3+,2-]

?

?

$S_{sunny} =$: {D1	,D2,I	D8,D	9,D1	1}
---------------	-------	-------	------	------	----

Day	Outlook	Temp.	Humidity	Wind	Decision
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes

Dr. Hashim Yasin

Applied Machine Learning (CS4104)

Day	Outlook	Temp.	Humidity	Wind	Decision
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
8	Sunny	Mild	High	Weak	No

9
11

Sunny Cool Normal Weak Yes

Sunny Mild Normal Strong Yes

(

35

Information Gain

Into	rmati	ion (70	In

Day	Outlook	Temp.	Humidity	Wind	Decision
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes

37

-	_	
Inform	ation	Cain
	IGHOH	Gain

Day	Outlook	Temp.	Humidity	Wind	Decision
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes

) – – – –

)

) – – –

Dr. Hashim Yasin

38

Applied Machine Learning (CS4104)

Information Gain

Day	Outlook	Temp.	Humidity	Wind	Decision
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes

$$\begin{bmatrix} -() & -() \end{bmatrix}$$

{D1, D2, ..., D14}

[9+,5-]

Outlook

Overcast

{D1,D2,D8,D9,D11}

{D3,D7,D12,D13}

{D4,D5,D6,D10,D14} [3+,2-]

Rain

[2+,3-]

?

Yes

[4+.0-]

?

 $S_{sunny} = \{D1,D2,D8,D9,D11\}$

Sunny

Dr. Hashim Yasin

Acknowledgement

Tom Mitchel, Russel & Norvig, Andrew Ng, Alpydin & Ch. Eick.