У статті розглядаються проблеми виявлення помилок при розробці складних систем керування. Пропонується в якості опорної моделі при верифікації програмної системи використовувати модель на основі управляючих мереж Петрі

Ключові слова: паралельні процеси, системи керування, модель програмної системи, управляючі мережі Петрі

0_____0

В статье рассматриваются проблемы выявления ошибок при разработке сложных систем управления. Предлагается в качестве опорной модели при верификации программной системы использовать модель на основе управляющих сетей Петри

Ключевые слова: параллельные процессы, системы управления, модель программной системы, управляющие сети Петри

The problems of detecting errors in the design of complex control systems. Offered as a reference model for verification of a software system using a model based on control of Petri nets

Keywords: concurrent processes, control systems, the model of a software system that control Petri net

УДК 519.179, 004.451.24,004.942

МОДИФИЦИРОВАННЫЕ СЕТИ ПЕТРИ ДЛЯ ФОРМИРОВАНИЯ ПАРАЛЛЕЛЬНЫХ ПРОЦЕССОВ В СИСТЕМАХ УПРАВЛЕНИЯ

В.В. Кузьмук

Доктор технических наук, профессор, заведующий кафедрой*

Контактный тел.: 050-352-38-12 E-mail: valeriy_kuzmuk@ukr.net

О.А. Супруненко

Кандидат технических наук, доцент* Контактный тел.: 066-187-99-50

E-mail: ra-oks@mail.ru

*Кафедра программного обеспечения

автоматизированных систем

Черкасский национальный университет имени Богдана Хмельницкого

бульв. Шевченко, 79, корп. №3, ауд. 275, г. Черкассы, Украина, 18006

1. Введение

При проектировании и реализации сложной системы управления, возникают задачи выбора средств отображения и имитации её модели, формирования и отладки рабочего кода. При этом нужно учитывать, что подавляющее большинство систем управления относится к разряду параллельных или распределённых систем, сложность тестирования которых экспоненциально возрастает с увеличением числа параллельных потоков и их элементов.

Среди возможных вариантов решения этих задач наборы функциональных уравнений, временные диаграммы, таблицы или матрицы состояний, графовые методы и др. [1]. Для верификации программных систем (ПС) в наше время получил широкое распространение метод Model Checking [2]. Его преимуществами являются: более полная проверка выполнения требований спецификаций, производимая на модели ПС; применение средств верификации на ранних этапах проектирования, на которых время и стоимость исправления ошибок минимальны; возможность авто-

матизации процесса верификации, что позволяет применять ее в процессе разработки больших по объёму и сложных по структуре систем. Но основной проблемой в применении данного метода является построение абстрактной модели, на которой и выполняется верификация.

Анализ методов и алгоритмических средств для построения моделей ПС показывает [1], что процесс решения включает в себя построение алгоритма, оперирующего с интересующими исследователя данными и реализуемого в компьютерной системе, а также сопутствующего алгоритма «пошагового обхода» построенной модели, дающего детальную информацию о протекающих параллельных процессах в исследуемой модели. Эффективность исследуемой системы управления является максимальной, когда алгоритмические средства, положенные в основу ее построения, совпадают с алгоритмическими средствами, лежащими в основе построения её моделей.

Основными требованиями к средствам моделирования подобных систем являются адекватность и простота аналитического описания, наглядность ото-

бражения и алгоритмическая надёжность [1]. Данным требованиям в полной мере отвечает аппарат сетей Петри (Petri Netze), разработанный немецким математиком Карлом-Адамом Петри [3] на основе абстрактных конечных автоматов. Он предназначался для моделирования параллельных асинхронных процессов, что позволяет отображать в модели различные аспекты, связанные с построением и функционированием исследуемых систем.

2. Выделение проблемы и постановка задачи

Параллельные процессы в моделях управляющих систем всегда являются частично-зависимыми и относятся к классу асинхронных. Они отображаются в алгоритмах, реализуемых на конкретных языках программирования, и не лишены разного рода ошибок. При формировании таких алгоритмов для систем управления, реализующих множество потоков параллельных управляющих сигналов на разветвлённой топологии системы управления, необходимо согласовать определённые сигналы параллельных потоков управления друг с другом. При моделировании данных систем существует ряд проблем [2], связанных с реализацией, верификацией и тестированием алгоритмических моделей. В частности они характеризуются наличием скрытых ошибок, которые возникают в исключительных ситуациях. Такие ситуации обусловлены определённым набором данных и временными характеристиками параллельных процессов, порядком их взаимодействия. Эти ситуации не воспроизводятся и их почти невозможно выявить на этапе тестирования. Потому наиболее реальным инструментом их выявления является верификация.

Выбирая средство моделирования и верификации сложных систем управления, необходимо обеспечить автоматизированную проверку алгоритма формирования управляющих сигналов в статике и в динамике (в режиме имитации). Кроме того, нужно подвергнуть анализу и данные, которые непосредственно относятся к условиям формирования конкретного управляющего сигнала.

Для решения данной проблемы предлагается использовать аппарат сетей Петри, получивший широкое применение для моделирования параллельных процессов, а также для анализа параллельных моделей [4-6].

3. Анализ средства решения задачи

На сегодняшний день существует множество интерпретаций и модификаций сетей Петри. Не все они, к сожалению, построены на классической теории, сформулированной К.-А. Петри [3], что не позволяет использовать единый аналитический аппарат для их анализа. В книге [1] рассмотрены интерпретации и модификации сетей Петри, построенные на классической теории. При решении задачи моделирования сложных разветвлённых систем управления теория сетей Петри предоставляет наглядный инструментарий, состоящий из 4-х базовых элементов: вершин мест (О), вершин переходов (I), направленных дуг и меток

(рис. 1). Граф Петри является двудольным несовместным графом, что не позволяет непосредственно соединять однотипные вершины друг с другом. Например, вершину места р₂ на рис. 1 нельзя непосредственно соединить с вершиной места р₃, что соответствует невозможности соединения двух условий без выполнения определённого действия, связанного с каждым их них. Размещение меток в местах переходов позволяет «оживить» модель и проследить её функционирование в режиме имитации.

Рис. 1. Переход с положительной и запрещающей дугой

Дополнительным элементом, облегчающим построение и восприятие модели, является запрещающая (inhibit) дуга, которая изображается ребром с крупной точкой на конце. Она позволяет сработать переходу t_i (рис. 1) тогда, когда вершина места p_2 не размечена. Применение таких дуг позволяет упростить модель (рис. 2,6-в).

Рис. 2. Варианты модели движения поездов по линии Московского метрополитена

На рис. 2,а построена модель МПСУ движением поездов на линии метрополитена без контроля перемещения поездов, что не позволяет обеспечить без-

опасность движения. На рис. 2,6 представлена модель МПСУ с контролем безопасности перемещения поездов на каждой из 8-и станций, а на рис. 3,в — такая же модель, построенная с использованием запрещающих дуг. Прибытие поезда на следующую станцию p_{e+1} (например, p_3) соответствует одновременному появлению меток в местах p_{c-i} (р10) и p_{e+1} (p_3). Задержка какоголибо поезда на одной из станций должна приостановить движение всех остальных поездов.

Наиболее адаптированными среди модификаций сетей Петри для моделирования и верификации систем управления являются управляющие сети Петри, в которых управляющие сигналы в параллельных ветвях отображаются метками по правилам безопасных сетей Петри – в каждой вершине допускается присутствие не более одной метки. В данной модификации сетей вершины переходов и вершины мест, предназначенные для согласования в параллельных ветвях управляющего алгоритма, снабжены специальными функциями управления, которые позволяют обеспечить однозначность описания управляющих алгоритмов в узлах модели [1].

Для проверки параллельной модели на наличие критических свойств используются статические и динамические свойства [1] графов Петри. Статические свойства позволяют на этапе построения модели проверять логические цепочки типа «условие-действие-условие» и логику согласования взаимодействий ветвей параллельных частично-зависимых процессов на графе модели. Динамические свойства направлены на проверку живости (безизбыточности), бесконфликтности (непротиворечивости) и безопасности осуществления последовательностей действий алгоритма в процессе компьютерного эксперимента с моделью [1, 7].

4. Пример моделирования управляющей системы

На рис. З представлена сеть Петри, для моделирования задачи нахождения значений функций $\sin \beta$ и $\cos \beta$ за минимальное время. Входной вершиной модели является вершина перехода t_0 , из которой поступают сигналы для активизации двух параллельных алгоритмов на процессорах МЛА и МПА. В зависимости от объёма вычислений в основном алгоритме а или b в вершинах мест p_3 и p_4 выбирается путь к макропереходу $\tau_{\rm B}$ — сокращённый или через структуру дополнительного алгоритма a^1 (b^1). Алгоритм, который отработает быстрее, передаст результаты в вершину макроперехода $\tau_{\rm B}$, в которой будет ожидаться результат работы второго алгоритма, после чего общий результат АВ будет выдан в окно интерфейса.

При построении модели и проведении компьютерного эксперимента сеть Петри позволяет отобразить структуру алгоритма, проследить динамику процесса и исключить часть конфликтных ситуаций, связанных с возникновением ошибок. Данный аппарат позволяет отслеживать и скрытые ошибки, что расширяет возможности проверки надёжности программ, используемых в системах управления. Если при реализации системы управления возможно использовать несколько алгоритмов, различающихся по времени исполнения, алгоритмической надёжности и другим

параметрам, построение моделей данного перечня алгоритмов и имитация на графе Петри позволяет получить значения параметров, позволяющих выбрать оптимальный для заданных условий алгоритм реализации системы.

Рис. 3. Управляющая сеть для решения задачи определения $\sin\beta$ и $\cos\beta$ с минимальными временными затратами

5. Выводы

Управляющие сети могут быть использованы для алгоритмического описания широкого круга задач и моделирования параллельных частично-зависимых алгоритмов управления. Точное описание и классификация основных свойств Управляющих сетей позволяют, во-первых, предложить методику анализа и синтеза моделей и, во-вторых, сформулировать алгоритмы поиска и устранения критических свойств в сетях.

Сравнение Управляющих сетей с другими алгоритмическими методами [1] показывает их значительное преимущество при описании сложных взаимозависимых параллельных процессов не только перед граф-схемами алгоритмов и графами автоматов, но и другими известными интерпретациями сетей. Они позволяют достаточно эффективно моделировать самонастраивающиеся алгоритмы, уточняющие свою структуру в зависимости от текущего состояния системы.

Аппарат управляющих сетей Петри позволяет моделировать параллельные процессы, которые дополнительно могут реагировать на управляющие сигналы внешних систем и отображать не только реализацию «причинностных» связей между одновременно протекающими параллельными процессами, а и в процессе имитации проверять возможности функционирования исследуемой системы на разные «нагрузочные» режимы взаимодействия с внешними объектами.

Литература

- 1. Кузьмук В.В., Супруненко О.О. Модифицированные сети Петри и устройства моделирования параллельных процессов: Монография. К.: Маклаут, 2010. 260 с.
- 2. Карпов Ю.Г. Model Checking. Верификация параллельных и распределённых программных систем. СПб.: БХВ-Петербург, 2010. 560 с.
- 3. Petri C.A. Kommunikatoin mit Automaten. Bonn: Institut fr Instrumentelle Mathematik, 1962. 89 S.
- 4. W. Reisig. Petrinetze. Vieveg+Teubner Verlag, Wiesbaden GmBH, 2010, 247S.
- 5. Бройнль Томас. Паралельне програмування: Початковий курс: / Пер. з нім. В.А. Святного. К.: Вища школа, 1997. 358 с.
- 6. Касьянов В.Н., Евстигнеев В.А. Графы в программировании: обработка, визуализация, применение. СПб: БВХ Петербург, 2003. 1104 с.
- 7. Супруненко О.О., Онищенко Б.О. Стандартизація проектів впровадження інформаційних комп'ютерних систем та технологій в медицину. // Восточно-европейский журнал передовых технологий. − 2010. − № 5/2 (47). − С. 42-45.

Запропоновано математичний опис системи штучного мікроклімату. Враховано нелінійність масообмінних процесів підготовки повітря. Може використовуватися спеціалістами із автоматизації для аналізу та настройки параметрів системи керування промислових кондиціонерів

Ключові слова: модель, динамічна система, штучний мікроклімат

Предложено математическое описание системы искусственного микроклимата. Учтена нелинейность массообменных процессов подготовки воздуха. Может использоваться специалистами по автоматизации для анализа и настройки систем управления промышленных кондиционеров

Ключевые слова: модель, динамическая система, искусственный микроклимат

The mathematical description of system of an artificial microclimate is offered. A nonlinearity mass-transfer process of preparation of air is considered. It can be used by experts from automation for the analysis and tuning of control systems of industrial conditioners

Key words: model, dynamic system, artificial microclimate

УДК 681.5.015.8:519

СТРУКТУРНЕ МОДЕЛЮВАННЯ СИСТЕМИ КЕРУВАННЯ ДЛЯ ШТУЧНОГО МІКРОКЛІМАТУ

I.M. Голінко

Кандидат технічних наук, доцент Кафедра автоматизації теплоенергетичних процесів Національний технічний університет України "Київський політехнічний інститут"

пр. Перемоги 38, м. Київ, Україна, 03056 Контактный тел.: (044) 332-21-89 E-mail: igor.golinko@conislab.net

А.П. Ладанюк

Доктор технічних наук, професор, завідуючий кафедрою Кафедра автоматизації та комп'ютерно-інтегрованих технологій

Національний університет харчових технологій вул. Володимирська, 68, м. Київ, Україна, 01033 Контактный тел.: (044) 289-52-83 E-mail: Ladanyuk@nuft.kiev.ua

Вступ

Сьогодні практично неможливо уявити сучасні технології без систем штучного мікроклімату (СШМ). Спектр СШМ дуже різноманітний - від побутових кондиціонерів до систем мікроклімату (МК) промислових приміщень харчової, фармацевтичної, радіоелектрон-

ної промисловостей із високими вимогами не тільки до стабільності температури та вологості, а низки інших параметрів повітря. Однією із важливих характеристик СШМ є питоме енергоспоживання. З цих причин розробники інтенсифікують процеси тепло- та масопередачі обладнання та вдосконалюють методи керування кондиціонерами.