Übungsblatt 1: Ringe, Ringhomomorphismen, Ideale

In den folgenden Übungen sind alle Ringe mit Eins.

Übung 1.1. Seien R ein Ring und $f: X \to Y$ eine Abbildung zwischen Mengen X und Y. Die Menge von Abbildungen von X auf R wird als Ab(X,R) bezeichnet. Beweisen Sie, dass die Abbildung

$$f^*: \operatorname{Ab}(Y,\mathbb{R}) \to \operatorname{Ab}(X,\mathbb{R})$$

 $\phi \mapsto \phi \circ f$

ein Ringhomomorphismus ist.

Übung 1.2. (wird benotet, 5 Punkten) Bestimmen Sie alle Ringhomormorphismen

- (i) von \mathbb{Z} auf \mathbb{Z} ;
- (ii) von \mathbb{R} auf \mathbb{Z} ;
- (iii) von \mathbb{C} auf \mathbb{R} ;
- (iv) von \mathbb{R} auf \mathbb{R} ;
- (v) von $\mathbb{Z}/n\mathbb{Z}$ auf $\mathbb{Z}/m\mathbb{Z}$ mit n, m positive Zahlen.

Übung 1.3. Sei I eine Menge, und sei für jeden $i \in I$ ein Ring R_i .

(i) Definieren Sie eine Ringstruktur auf die Produktmenge

$$P = \prod_{i \in I} R_i,$$

so dass jede Projektion $p_i: P \to R_i$ ein Ringhomomorphismus ist.

(ii) Beweisen Sie die folgende Eigenschaft von dieser Produktringstruktur: Für jedes Ring A und jede Familie von Ringhomomorphismen $f_i:A\to R_i$, gibt es ein einziges Ringhomomorphismus $f:A\to P$, so dass es $f_i=p_i\circ f$ für jeden $i\in I$ gilt.

Übung 1.4. Sei R ein kommutativer Ring, und $a, b \in R$ so dass das Ideal (a) + (b) ein Hauptideal ist. Beweisen Sie, dass $(a) \cap (b)$ auch ein Hauptideal ist.

Übung 1.5. Sei R ein kommutativer Ring, dessen jedes echte Ideal ein Primideal ist. Beweisen Sie, dass R entweder der Nullring oder ein Körper ist.