Devoir maison 4.

À rendre le lundi 22 novembre 2021

Exercice

Le but de cet exercice est de calculer, par deux méthodes différentes :

$$I = \int_{1}^{2} x \sin\left(\ln x\right) \, \mathrm{d}x$$

1°) Première méthode

Calculer I sans utiliser les nombres complexes, en commençant par un changement de variable bien choisi.

2°) Deuxième méthode

Rappel: les résultats sur les combinaisons linéaires de fonctions dérivables s'étendent aux fonctions à valeurs complexes, en particulier: Si une fonction à valeurs complexes φ est dérivable sur un intervalle I et si $\lambda \in \mathbb{C}$, alors $\lambda \varphi$ est dérivable sur I et $(\lambda \varphi)' = \lambda \varphi'$.

Soit $\alpha \in \mathbb{C}$ fixé. Pour tout $x \in \mathbb{R}_+^*$, on définit :

$$x^{\alpha} = e^{\alpha \ln x}$$

On note alors f_{α} la fonction définie sur \mathbb{R}_{+}^{*} par :

$$\begin{array}{cccc}
f_{\alpha}: & \mathbb{R}_{+}^{*} & \to & \mathbb{C} \\
 & x & \mapsto & x^{\alpha}
\end{array}$$

a) Montrer que f_{α} est dérivable sur \mathbb{R}_{+}^{*} et que pour tout $x \in \mathbb{R}_{+}^{*}$,

$$f'_{\alpha}(x) = \alpha x^{\alpha - 1}.$$

- b) On suppose $\alpha \neq -1$. Déterminer une primitive de f_{α} sur \mathbb{R}_{+}^{*} .
- c) Écrire x^{α} sous forme algébrique pour tout $x \in \mathbb{R}_{+}^{*}$. En déduire une valeur de α telle que :

$$\forall x \in \mathbb{R}_+^*, \quad x \sin(\ln x) = \operatorname{Im}(x^{\alpha}).$$

d) Déduire des questions précédentes la valeur de I.