均值函数 $\mu_X(t) = E[X(t)]$; 方差函数Var[X(t)]; 联合二维分布 $F_{t_1,t_2}(x_1,x_2)$; 自相关函数 $r_X(t_1,t_2)=\mathrm{E}[X(t_1)X(t_2)]$; 标准自相 关函数: $\rho(v) = \frac{R(v)}{\sigma^2} = \frac{R(v)}{R(0)}$; **协方差函数** $R_X(t_1, t_2) =$ $Cov(X(t_1), X(t_2)) = E\{(X(t_1) - \mu_X(t_1))(X(t_2) - \mu_X(t_2))\}$

严平稳: $\forall t_1, ..., t_n, h \hat{\mathbf{q}} (X(t_1 + h), ..., X(t_n + h))$ 独立同分布于 $(X(t_1),...,X(t_n))$; **宽平稳**: ①所有二阶矩存在②EX(t) = m③ 协方差函数 $R_v(t,s)$ 只与t-s有关

过程: T = {0,1,...}, 序列: T = {0,±1,...}

独立增量过程: 对任意 $t_1 < \cdots < t_n$, $X(t_2) - X(t_1), \ldots, X(t_n) X(t_{n-1})$ 相互独立; 平稳独立增量过程: 进一步有对任意 t_1 和 t_2 有 $X(t_1+h)-X(t_1)$ 独立同分布 $X(t_2+h)-X(t_2)$

其均值函数必为 t 的线性函数

条件期望 $E(X|Y=y) = \sum_{x} x\{X=x|Y=y\}$ 或 $\int x f_{X|Y}(x|y) dx$, 且有 $f(x,y) = f_{X|Y}(x|y) f_Y(y)$. (a). 若 X 和 Y 独 立,则 E(X|Y = y) = EX; (b). 平滑性: EX = $\int E(X|Y = y) dF_Y(y) = E[E(X|Y)]; (c).E[\phi(X,Y)|Y = y] =$ $E[\phi(X,y)|Y=y]$

最佳预报: 基于 Y 对 X 的最佳预报函数 $\phi(y) =$ $\underset{\longrightarrow}{\operatorname{argmin}} E[X - \phi(Y)]^2 \ \overline{\mathcal{I}} = E(X|Y = y) = \mu_X + \frac{\sigma_{XY}}{\sigma_x^2} (y - \mu_Y) \ .$

矩母函数性质 (1). $E[X^n] = g^{(n)}(0)$; (2).独立的X和Y有

矩母函数 $g(t) = E(\exp\{tX\}) = \int \exp\{tx\} dF(x)$

 $g_{X+Y}(t) = g_X(t)g_Y(t)$; 常用特征函数E(exp{itX})代替 **随机和**: X_1, X_2, \dots 独立同分布, N 非负且与 X_i 都独立, 则 $Y = \sum_{i=1}^{N} X_i$ 为随机和. (1). 随机和的矩母函数 $g_Y(t) =$ $E[(g_X(t))^N]$;(2). EY = $E[NE(X)] = EN \cdot EX$; (3). EY² = EN · $VarX + EN^2 \cdot E^2X$; (4). $VarY = EN \cdot VarX + E^2X \cdot VarN$

生成函数/概率生成函数: 离散随机变量 X 的概率生成函数为 $\phi_X(s) = \mathrm{E}(s^X)$,特别地,若 $\mathrm{P}(\mathrm{X} = \mathrm{k}) = p_k, k = 0,1,2 \ldots$,则 $\phi_X(s) = \sum_{k=0}^{\infty} p_k s^k$ (1). $p_0 = \phi_X(0), p_k = \frac{1}{k!} \frac{d^k}{ds^k} \phi_X(s)|_{s=0}$;(2). 若 X,Y 独立, 则 $\phi_{X+Y}(s) = \phi_X(s)\phi_Y(s)$;(3). 随机和的生成函 数 $\phi_Y(s) = E(s^Y) = E\{E[s^Y|N]\} = E\{(\phi_X(s))^N\} =$ $\phi_N(\phi_X(s)).$

收敛性: $\{X_n, n \ge 1\}$ 依概率收敛于 $X_n \lim_{n \to \infty} P(|X_n - X| \ge \varepsilon) =$ 0 ; 几乎必然收敛: $P(\lim (X_n - X) = 0) = 1$; 均方收敛: $\lim_{n\to\infty} E(X_n-X)^2=0$. 均方收敛和几乎必然收敛都蕴含依概率 收敛, 反之不成立; 均方收敛和几乎必然收敛互不包含

强度λ泊松过程 {N(t),t≥0}:(1). N(0) = 0 ;(2).N(t)独立增量 过程;(3).对t > 0, s ≥ 0,增量N(s + t) - N(s) ~ Poi(λt) =

 $e^{-\lambda t} \frac{(\lambda t)^k}{2}$ 另一定义(1). $t_0 = 0 < t_1 < \dots < t_n$, 增量N(t_1) -

 $N(t_0)$, \cdots , $N(t_n) - N(t_{n-1})$ 相互独

立; (2).增量N(t+h) - N(t) 只依赖 \mp h ;(3). h \ 0, P{N(t+h) −

 $N(t) \ge 1$ = $\lambda h + o(h)$:(4), $h \downarrow 0$, $P\{N(t+h) - N(t) \ge 2\}$ = o(h):

泊松过程若干分布: 泊松过程 X_n 是均值为 $\frac{1}{4}$ 的独立同指数分 $\pi(\lambda e^{-\lambda t})$; 时间间隔 X_n ; 到达时间/等待时间 $P\{W_n \leq t\} =$ $\lambda e^{-\lambda t} \frac{(\lambda t)^{n-1}}{(n-1)!}$ (Erlang 分布/Г分布 $\Gamma(n,\lambda)$. **等待时间的联合密度**: 给定 N(t) = n, 则与[0,t]均匀分布抽样 n 个的顺序统计量 U_1,\ldots,U_n 联合密度相同 $f_{W_1,\ldots,W_n|N(t)=n}(w_1,\ldots,w_n|n)=rac{n!}{t^n},0<$

 $w_1 < \dots < w_n \le t$; 同时也有 $\mathbb{E}[\sum_{i=1}^n W_i | N(t) = n] =$ $E[\sum_{i=1}^{n} U_{(i)}] = \frac{nt}{2}$ 火车进站那附近的题

非齐次泊松过程: $P\{N(t+h) - N(t) \ge 1\} = \lambda(t)h + o(h)$ 及

 $P\{N(t+h) - N(t) = k\} = \frac{\left(\int_{t}^{t+h} \lambda(u) du\right)^{k} exp\left(-\int_{t}^{t+h} \lambda(u) du\right)}{k!} + \mathbf{x}$

 $\lambda(t) = \frac{f(t)}{1 - F(t)}$

复合泊松过程: $X(t) = \sum_{i=1}^{N(t)} Y_i$, 其中 $Y_i \sim G(y)$, $EY = \mu$, $VarY = τ^2$, 而 N(t) 服从参数 λ 的 Poisson 过程. X(t) 是随机和并且 $E[X(t)] = \lambda \mu t, Var[X(t)] = \lambda (\tau^2 + \mu^2) t$. 若 $Y \equiv 1$ 则退化为普诵泊松讨程

更新过程: 时间间隔不一定是指数分布了. $X_i \sim F(x)$, $W_n =$ $\sum_{i=1}^{n} X_i$, N(t) = max{n: $W_n \le t$ }. 其分布 P{N(t) = n} = $F^{(n)}(t) - F^{(n+1)}(t)$ (这里 $F^{(n)}$ 是 n 重卷积, F(t) 是 X_t 的分布), $m(t) = E[N(t)] = \sum_{n=1}^{\infty} F^{(n)}(t)$. 平均事件次数: $\lim_{t \to \infty} \frac{EN(t)}{t} = \frac{1}{n} = \frac{1}{n}$ $\frac{1}{EX_i}$ (在泊松过程中 $\frac{EN(t)}{t} = \frac{\lambda t}{t} = \lambda = 1/(\frac{1}{\lambda})$ 恒为常数) N(t) 和 W_n 的等价性: $\{N(T) \ge n\} \Leftrightarrow \{W_n \le t\}$, 且有 $P\{W_n \le t\} = F^{(n)}(t)$

Markov 性: $P\{X_{n+1} = j | X_0 = i_0, ..., X_{n-1} = i_{n-1}, X_i = i\} =$ $P\{X_{n+1} = j | X_n = j\}$. 满足此称为离散时间 Markov 链 \uparrow 一步转移概率 $p_{ij}(n)$,与 n 无关时表示平稳转移概率,任意 ij 都与 n 无关则称 markov 链是齐次的

Markov 链一些记号: $P_{i,i}^{(n)} = P\{X_{m+n} = j | X_m = i\}$, 初始 p_i , $(X_0 = i)$, 绝对 $p_i(n)$, $(X_n = i)$

Chapman-Kolmogorov 方程: $P_{ii}^{(n+m)} = \sum_{k=0}^{\infty} P_{ik}^{(n)} P_{ki}^{(m)}$ **互达性**: 存在 $P_{ii}^{(n)} > 0$, 记作 $i \to j$. 互达 $i \leftrightarrow j$. 不可约的 Markov 链所有状态属于同一互达类. (闭集 c 的状态互通称 c 不可约 **周期性**: 使 $P_{ii}^{(n)} > 0$ (或 $f_{ii}^{(n)} > 0$)的所有正整数 n 的最大公 约数称作状态 i 的周期 d(i). $P_{ii}^{(n)}=0$ 则约定周期为 ∞ . d(i) = 1 则称非周期. 只能说明不是周期的倍数回不来 性质: **(1)**. 存在 N, 对所有 n > N 有 $P_{ii}^{(nd(i))} > 0$; **(2)**. 若 $P_{ii}^{(m)} > 0$, 存在 N, 对所有 n > N 有 $P_{ii}^{(m+nd(i))} > 0$; (3). 不 可约非周期有限状态,则 n 充分大有 $P^{(n)}$ 都非零.

互达则周期相同: $i \leftrightarrow j \Rightarrow d(i) = d(j)$.

n 步首达概率记为 $f_{ij}^{(n)}$. $f_{ij}^{(n)} = P\{X_n = j, X_k \neq j, k = j\}$ $1, ..., n-1|X_0=i\} = P\{常返时T_{i=n}|X_0=i\}; f_{ii}^{(0)}=0.$ 记从 I 最终到 j 概率为 $f_{ij} = \sum_{n=1}^{\infty} f_{ij}^{(n)}$

常返: $f_{ii} = 1 \Leftrightarrow \sum_{n=1}^{\infty} P_{ii}^{(n)} = \infty$, 瞬过: 非常返 \Leftrightarrow $\sum_{n=1}^{\infty} p_{ii}^{(n)} = \frac{1}{1-f_{ii}} < \infty$. 证:设返回 i 次数为 k, $\sum_{n=1}^{\infty} p_{ii}^{(n)} =$ $E\{k|X_0=i\}$,几何分布 $EX=\frac{1}{2}$,首次回不来首次成功, $p=1-f_{ii}$ 性质: (1). 直线对称随机游动是(零)常返的, 非对称是瞬过的, 二维对称也是(零)常返的, 三维以上对称都是瞬过的.

常返时: 对常返状态 i 定义 $T_i = min\{n \ge 1: X_n = i\}$ 为首次 返回状态 i 的时刻; 记 $\mu_i = ET_i = \sum_{n=1}^{\infty} n f_{ii}^{(n)}$ 为返回的期望 步数. 零常返: $\mu_i = \infty$, 正常返: $\mu_i < \infty$. 遍历态: 正常返且非

 $p_{ii}^{(n)}$ 和 $f_{ii}^{(n)}$ 关系: ① $p_{ii}^{(n)} = \sum_{k=1}^{n} f_{ii}^{(k)} p_{ii}^{(n-k)}$ $2f_{ii}^{(n)} = p_{ii}^{(n)} - \sum_{k=1}^{n-1} f_{ii}^{(k)} p_{ii}^{(n-k)}, (\not\vdash p_{ii}^{(0)} = 1)$ ①证明: $p_{ij}^{(n)} = P(X_n = j | X_0 = i) =$ $\sum_{k=1}^{n} P(X_n = j, T_i = k | X_0 = i) =$ $\sum_{k=1}^{n} P(X_n = j | T_j = k, X_0 = i) P(T_j = k | X_0 = i),$ 后一项是 $f_{ij}^{(k)}$ 若 $i \rightarrow j$, j 常返则 $\sum_{n=1}^{\infty} p_{ij}^{(n)} = \infty$ 瞬过则 $< \infty$ (CK+左下①证

若 j 瞬过或零常返, $\forall i$, $\lim_{n \to \infty} p_{ij}^{(n)} = 0$ (左下①+k:[1,m]+[m,∞] 有限状态 Markov 至少有一个正常返(不然极限行和是 0 不是 1 若i ↔ j, 同为常/非常返, 正/零常返, 周期相同 状态空间分解: 状态空间 | 可以唯一分解成互不相交的 | 和 C_i

(1)D 由全体非常返组成 (2) 每个 C_i 是常返态组成的不可约闭

集 (3) C_i 中的状态同类(全正/零常返),周期相同且任意 $f_{ij}=1$ 称 Ci 为基本常返闭集

随机矩阵·元素非负行和为1

a.M 链有一个零常返则必有无限多个零常返 b.有限状态 m 链 不可能有零常返也不可能全是非常返 c.不可约有限 m 链必为

Markov 链的基本极限定理: (a). 若状态 i 是瞬过或零常返的, ⇔ $\lim P_{ii}^{(n)} = 0$; (b) 若状态 i 是周期为 d 的常返状态, ⇔ $\lim_{n\to\infty} P_{ii}^{(nd)} = \frac{d}{u}$; (c)当状态 i 是非周期的正常返状态(遍历), ⇔ $\lim P_{ii}^{(n)} = \frac{1}{n}$

Markov 链的平稳分布: $\{\pi_i, i \geq 0\}$ 满足 $\pi_i = \sum_{i=0}^{\infty} \pi_i P_{ij}$. 性质 (1). 若一个不可约 Markov 链中所有状态都是遍历的, 则 $\lim P_{ii}^{(n)} = \pi_i$ 存在且 $\pi = \{\pi_i, j \ge 0\}$ 为平稳分布; 反之, 若不 可约 Markov 链只存在一个平稳分布, 且所有状态都是遍历的, 那么该平稳分布 $\{\pi_i\}$ 就是这 Markov 链的极限分布. $\{\frac{1}{n}\}$ 若不可约马氏链无正常返,则不存在平稳分布 齐次不可约遍历·极限唯一日极限是平稳· 齐次不可约正堂设 平稳唯一;一般齐次:无平稳⇔无正常返不可约闭集,唯一平 稳⇔只一个正常返不可约闭集,多个平稳⇔两个及以上 分支过程: $\{X_n, n \ge 0\}$ 中 X_n 为第 n 代后裔大小, $X_{n+1} =$

 $\sum_{i=1}^{X_n} Z_i$. 若记 $P(Z_1 = k) = p_k, EZ_1 = \mu, VarZ_1 = \sigma^2, \text{ } || P_{ii} = \sigma^2$ $P\{\sum_{k=1}^{i} Z_k = j\}$. 再由 $EX_{n+1} = EX_n EZ_1, VarX_{n+1} =$ $EX_nVarZ_1 + VarX_n(EZ_1)^2$, 可以迭代出 $EX_{n+1} =$

$$\mu^{n+1}, \operatorname{VarX}_{n+1} = \begin{cases} \sigma^2 \mu^n \frac{1-\mu^{n+1}}{1-\mu}, \mu \neq 1\\ (n+1)\sigma^2, \mu = 1 \end{cases}$$

群体消亡概率 π 是方程 $\phi(s) = \sum_{i=0}^{\infty} p_i s^i = s$ 的最小正解, 其中 $p_i = P(X_1 = j)$.; $\pi = 1$ 当且仅当 $\mu = EZ_1 \le 1$, 连续时间 Markov 链: 泊松过程, 纯生过程为一例. 满足 $P{X(t+s) = i|X(s) = i, X(x) = x(u), 0 \le u < s} = P{X(t+s) = x(u), 0 \le u < s}$ j|X(s) = i}. 平稳转移概率的连续时间 Markov 链: $P\{X(t+s)=j|X(s)=i\}$ 是与 s 无关的. **联合分布**: $P\{X(t_n)=i\}$ $i_n, ..., X(0) = i_0$ } = $P_{i_{n-1}, i_n}(t_n - t_{n-1}) ... P_{i_0, i_1}(t_1) p_{i_0}$; Chapman-Kolmogrov 方程 $P_{ii}(t + \tau) = \sum_{k} P_{ik}(\tau) P_{ki}(t)$. 另外还要满足保 证不能刚到状态就离 去. $\lim_{t\to 0} P\{X(t+\tau) = i | X(t) = i\} = \lim_{t\to 0} P_{ii}(\tau) = 1.$

过程在 i **逗留时间** 服从参数为 v_i 的指数分布. 从 i 到 j 的转 移率 $q_{ij} = v_i P_{ij}$

纯生过程,生灭过程,

3.23 一连续时间 Markov 链有 0 和 1 两个状态, 在状态 0 和 1 的逗留时间服从参数 为 λ > 0 及 μ > 0 的指数分布。试求在时刻 0 从状态 0 起始, 1 时刻后过程处于状态 0 的概率 Pm(t)

 $P_{00}(t+h) = \sum P_{0k}(t)P_{k0}(h)$ $= P_{00}(1 - \lambda h + o(h)) + (1 - P_{10}(t))(\mu h + o(h))$

 $P_{00}(t + h) - P_{00}(t) = -(\lambda + \mu)P_{00}(t) + \mu + \frac{o(h)}{h}$

 $\Leftrightarrow h \rightarrow 0$, M $P'_{00}(r) = -(\lambda + \mu)P_{00}(r) + \mu$ 而 Pio(0) = 1. 解微分方程得

 $P_{00}(t) = \frac{\lambda}{\lambda + \mu} e^{-(\lambda + \mu)t} + \frac{\mu}{\lambda + \mu}$

严平稳不一定有二阶矩而不必是宽平稳;**宽平稳**由于其有限维 联合分布不满足严平稳定义而不一定是严平稳。但严平稳+二 阶矩存在则为宽平稳

高斯过程: $G = \{G(t), -\infty < t < \infty\}$,对任一 $k \in \mathbb{Z}^+, t_1 \le t_2 \le \cdots \le t_k$,若 $(G(t_1), G(t_2), \ldots, G(t_k))$ 的联合分布为 k 维正态分布,则称 G 为高斯过程. **高斯过程严平稳和宽平稳一致**,因为它完全由均值和协方差矩阵确定.

平稳白噪声序列: $\mathrm{EX}_{\mathrm{n}}=0$, $\mathrm{EX}_{n}^{2}=\sigma^{2}$, $\mathrm{EX}_{n}^{2}=\sigma^{2}$, $\mathrm{EX}_{m}X_{n}=\sigma^{2}$

 $0(m \neq n)$, 协方差函数只和 m-n 有关 **三角多项式过程**: 设 A 和 B 同分布, 均值 0, 方差 σ^2 , A 和 B 不相关Cov(A,B)=EAB=0, $\omega\in[0,\pi]$. $X_t=Acos\omega t+$ $Bsin\omega t$. 则 $X=\{X_t:-\infty < t < \infty\}$ 是宽平稳过程. $EX_{t+r}X_t=\sigma^2cost\omega$

推广三角多项式过程: $X_t = \sum_{k=0}^m A_k cos \omega_k t + B_k sin \omega_k t$. 则 $EX_{t+\tau} X_t = \sum_{k=0}^m \sigma_k^2 cos \tau \omega_k$. 也是宽平稳过程. 推广到连续频率: $R(\tau) = \sigma^2 \int_0^\pi cos \tau \omega dF(\omega)$, 若 $F(\omega)$ 是均匀分布且 τ 取整值 $0.1,\cdots$, 那么 $R(\tau) = \sigma^2 \int_0^\pi \frac{1}{\pi} cos \tau \omega d\omega = \begin{cases} \sigma^2, \tau = 0 \\ 0, \tau \neq 0 \end{cases}$ 滑动平均序列: $\{\epsilon_n, n = 0, \pm 1, \pm 2, \ldots\}$ 为一列不相关的有相同 均值加和方差 σ^2 的随机变量。 $a_i \in R$, $X_n = a_1 \epsilon_n + a_2 \epsilon_{n-1} + \cdots + a_k \epsilon_{n-k+1}, n = 0, \pm 1, \ldots$ 则有 $EX_n = m(a_1 + \cdots + a_k)$,记 $\xi_j = \epsilon_j - m$, $R(n + \tau, n) = E(a_1 \xi_n + a_2 \xi_{n+\tau-1} + \cdots + a_k \xi_{n-k+1})$ ($a_1 \xi_{n+\tau} + a_2 \xi_{n+\tau-1} + \cdots a_k \xi_{n+\tau-k+1}$) = $\{\sigma^2 (a_k a_{k-\tau} + \cdots + a_{\tau+1} a_1), 0 \leq \tau \leq k - 1\}$ 仅与 τ 有关. 若取 $a_j = 0, \tau \geq k$

 $\frac{1}{\sqrt{k}}, j=1,\dots,k, \text{ } \text{ } \mathbb{A} \|\mathbf{R}(|\tau|) = \begin{cases} \sigma^2(1-\frac{|\tau|}{k}), |\tau| \leq k-1 \\ 0, |\tau| \geq k \end{cases}$

随机电报信号: $X = \{X(t), t \geq 0, P(X(t) = I) = P(X(t) = -I) = \frac{1}{2}$. 而在[$t, t + \tau$]内正负号变化次数 $N \sim Poi(\lambda) = \frac{e^{-\lambda \tau}(\lambda \tau)^k}{k!}, \lambda > 0$.则有 $EX(t + \tau)X(t) = I^2 e^{-2\lambda|\tau|}$

周期平稳过程: $X(t + \kappa) = X(t)$, 这使得 $R(\tau + \kappa) = R(\tau)$

复平稳过程: 注意协方差函数 E(X(t)-m) $\overline{(X(s)-m)}$

估计均值和协方差函数: $\hat{m}_n = \frac{1}{n} \big(X_1(t) + \cdots + X_n(t) \big), \hat{R}_n =$

 $\frac{1}{n}\sum_{k=1}^{n}(X_k(t+\tau)-\widehat{m}_n)(X_k(t)-\widehat{m}_n)$

均值遍历性: $ar{X}=\lim_{T o\infty}\frac{1}{2T}\int_{-T}^TX(t)dt=_{L_2}$ m 或 $ar{X}=\lim_{T o\infty}\frac{1}{2T}\sum_{k=-N}^NX(k)=_{L_2}$ m. 这里是均方收敛 $\mathbf{E}\left(\frac{1}{2T}\int_{-T}^TX(t)dt-m\right)^2 o 0$ $(T o\infty)$

协方差遍历性: TODO.

随机过程遍历性:均值和协方差都有遍历性.

適历性定理: 考虑对时间的均值=过程的均值 R 是协方差 均值適历性定理: (1). **离散**: 平稳序列 $\{X_n, n=0,\pm 1,...\}$ 有適历性的充分必要条件是 $\lim_{N\to\infty}\frac{1}{N}\sum_{\tau=0}^{N-1}R(\tau)=0$; (2). 连续: $X=\{X(t),-\infty< t<\infty\}$, 充要条件 $\lim_{T\to\infty}\frac{1}{\tau}\int_0^{2T}\left(1-\frac{\tau}{2T}\right)R(\tau)d\tau=0$ 均值適历性定理推论: (1).若 $\int_{-\infty}^{\infty}|R(\tau)|d\tau<\infty$, 则均值遍历性成立.

方差遍历性.

平稳过程的协方差函数: 性质: (1). $R(-\tau) = R(\tau)$, (2). $|R(\tau)| \le R(0)$,(3). 非负定性 $\sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m R(t_n - t_m) \ge 0$.

(4). 均方导数 $\lim_{h\to 0} E \left| \frac{X(t+h)-X(t)}{h} - Y(t) \right|^2 = 0$, 则 $Y = \{Y(t)\}$ 为过程X在 t 点的均方导数,简称导数,记为X'(T) 或 $\frac{dX(t)}{dt}$. 均方导数存在的充要条件是 $\lim_{h\to 0,k\to 0} \frac{R(0)-R(h)-R(k)+R(h-k)}{hk}$; (5). 平稳过

程 n 阶导数的协方差函数Cov $\left(X^{(n)}(t), X^{(n)}(t+\tau)\right) = (-1)^n R^{(2n)}(\tau).$

. , , ,

常见信号协方差函数: 1. **振幅调制波** $Z(t) = Y(t)e^{j\lambda_0 t}, t \in R$. 其

中 Y(t)是零均值实平稳过程. 则R_Z(τ) = $R_Y(\tau)e^{j\lambda_0\tau}$ 实数形式 地振幅调制波:X(t) = Y(t) $\cos(\omega t + \Theta)$, $t \in R$, 其中随机相位 $\Theta \sim U(0,2\pi)$ 独立于Y(t). 当 EY(t) = 0, R_X(τ) = $R_Y(\tau)\frac{1}{2\pi}\int_0^{2\pi}\cos(\omega t + \Theta)\cos(\omega(t+\tau) + \Theta)\,d\Theta = \frac{1}{2}R_Y(\tau)\cos\omega\tau$. **2.频率调制波**: 只讨论程 Y 对应的相位调制信号. X(t) = $\cos Y(t)$, $t \in R$. 设 Y 为零均值高斯过程, 令C = $\sqrt{R_Y(0)}$,则 $g_Y(s) = Eexp\{sY(t)\} = \exp\{\frac{c^2s^2}{2}\}$. 从而均值函数 EX(t) = $E^{\frac{1}{2}}(\exp\{jY(t)\} + \exp\{-jY(t)\}) = \frac{\pi}{\pi \wedge g(j)} = \exp\{-\frac{R_Y(0)}{2}\}$. 协方差函数R_X(τ) = EX(t)X(t+ τ) - (EX(t))² = $e^{-R_Y(0)}(\cosh(R_Y(\tau)) - 1)$, 近似公式: 由-R''_Y(0) = $E(Y'(0))^2 > 0$ 知R_Y(τ) ≈ $R_Y(0) - \frac{k^2}{2}\tau^2$, R_X(τ) ≈ $\exp\{-R_Y(0) + R_Y(\tau)\} = \exp\{-\frac{1}{2}k^2\tau^2$). 3.平方检波: Y 为零均值平稳高斯过程, X(t) = Y²(t), $t \in R$. 则

 $R_X(\tau)=2R_Y^2(\tau).$ **傅里叶展开**: 周期 2T 的函数, $x(t)=\sum_{n=-\infty}^\infty A(n)e^{-jn\omega t}$, 其中

傳里叶展开: 周期 2T 的函数 $x(t) = \sum_{n=-\infty}^{\infty} A(n)e^{-jn\omega t}$, 其中 $\omega = \frac{\pi}{T}$, $A(n) = \frac{1}{2T}\int_{-T}^{T} x(t)e^{jn\omega t}dt$. $\frac{1}{2}A(0)$ 为直流分量,|A(1)|为 基波 ω 的振幅, |A(n)|为 ω 的振幅. Parsval 等式给出 x(t)的功率 为 $\frac{1}{2T}\int_{-T}^{T} x^2(t)dt = \sum_{n=-\infty}^{\infty} |A(n)|^2$. 角频率: $\omega_n = n\omega$, 线频率 $\lambda = \frac{n}{2T}$.

能量型信号: 非周期总能量有限 $(\int_{-\infty}^{\infty}x^2(t)dt < \infty)$ 则有频谱 $(F(\omega) = \int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt)$. Parsval 等式仍然成立 $\int_{-\infty}^{\infty}x^2(t)dt = \frac{1}{2\pi}\int_{-\infty}^{\infty}|F(\omega)|^2d\omega$.

功率型信号: 平均功率非无限P = $\lim_{T\to \infty}\frac{1}{2T}\int_{-T}^Tx^2(t)dt < \infty$ 利用傅里叶变换给出功率谱表达式: $\diamondsuit x_T(t) = \begin{cases} x(t), |t| \leq T \\ 0, |t| > T \end{cases}$ 则F(ω , T) = $\int_{-\infty}^\infty x_T(t)e^{-j\omega t}dt$, 若功率谱密度S(ω) = $\lim_{T\to \infty}\frac{1}{2T}|F(\omega,T)|^2$ 存在,则平均功率谱表达式 $\lim_{T\to \infty}\frac{1}{2T}\int_{-\infty}^\infty x_T^2(t)dt = \frac{1}{2\pi}\lim_{T\to \infty}\int_{-\infty}^\infty \frac{1}{2T}|F(\omega,T)|^2d\omega = \frac{1}{2\pi}\int_{-\infty}^\infty S(\omega)d\omega$

平稳过程的功率谱密度: 依然有 $F(\omega,T) = \int_{-T}^{T} X(t)e^{-j\omega t}dt$ 和 $\frac{1}{2T}\int_{-T}^{T} X^2(t)dt = \frac{1}{2\pi}\int_{-\infty}^{\infty} \frac{1}{2T}|F(\omega,T)|^2d\omega$,

则×的功率谱密度 $S(\omega)=\lim_{T\to\infty}E\,rac{1}{2T}|F(\omega,T)|^2$,平均功率 $\lim_{T\to\infty}E(rac{1}{2T}\int_{-T}^TX^2(t)dt),\;\;\mathrm{假定EX}(t)=0则可交换顺序得到平均$ 功率的谱表达式: $\lim_{T\to\infty}rac{1}{2T}\int_{-T}^TEX^2(t)dt=R(0)=rac{1}{2\pi}\int_{-\infty}^\infty S(\omega)d\omega$ 半谱密度: $G(\omega)=\begin{cases}2S(\omega),\omega\geq0\\0,\omega<0\end{cases}$

Wiener-Khintchine 公式: 假定 $\mathrm{EX}(t) = 0, \int R(\tau) d\tau < \infty$ 则 $\mathrm{S}(\omega) = \int \mathrm{R}(\tau) \mathrm{e}^{-j\omega \tau} d\tau, \ \mathrm{R}(\tau) = \frac{1}{2\pi} \int S(\omega) \mathrm{e}^{j\omega \tau} d\omega; \ \overline{\mathrm{m}}$ $\mathrm{R}(\tau), \mathrm{S}(\omega)$ 都是偶函数,可以写成 $\mathrm{S}(\omega) =$

 $2\int_0^\infty R(\tau)cos\omega au d au$, $R(\tau)=\frac{1}{\pi}\int_0^\infty S(\omega)cos\omega au d\omega$; **离散平稳序列** (不同于平稳过程): $S(\omega)=\sum_{r=-\infty}^\infty e^{-j\omega au}R(\tau)$, $R(\tau)=\frac{1}{2\pi}\int_{-\pi}^\pi S(\omega)\cos\omega au d\omega$. 若EX(t) = m,则S(ω), $r(\tau)$ 构成一对傅里叶变换($R(\tau)$ 换成 $r(\tau)$ 就行, $r(\tau)$ 是自相关函数)

有理谱密度: $S(\omega) = \frac{P(\omega)}{Q(\omega)}$,而谱密度是 ω 的非负实值偶函数,故 $S(\omega) = s_0 \frac{\omega^{2n} + a_{2n-2}\omega^{2n-2} + \cdots + a_2\omega^2 + a_0}{\omega^{2m} + b_{2m-2}\omega^{2m-2} + \cdots + b_2\omega^2 + b_0}$. $S(\omega)$ 应在 $[0,\infty)$ 可积,从而 $Q(\omega)$ 不能有实根,分母多项式次数至少比分子高 2, $s_0 >$

广义下: 利用 $\int \delta(\tau-\tau_0)f(\tau)d\tau=f(\tau_0),\ \ f$ 1. $F[\delta(\tau)]=1,F^{-1}[1]=\delta(\tau);$ 2. $R(\tau)=\frac{1}{2\pi}\int a\cos\omega\tau_0e^{j\omega\tau}d\omega=\frac{a}{4\pi}[\int e^{j\omega(\tau+\tau_0)}d\omega+\int e^{j\omega(\tau-\tau_0)}d\omega=\frac{a}{2}(\delta(\tau+\tau_0)+\delta(\tau-\tau_0)d\omega);$ 白噪声(谱密度为常数 S_0), $R(\tau)=\frac{1}{2\pi}\int S_0e^{j\omega\tau}d\omega=S_0\delta(\tau),$ 是理想化数学模型,平均功率无穷是不可能做到的.对平稳序列 $R(\tau)=\frac{1}{2\pi}\int_{-\pi}^{\pi}S_0\cos\omega\tau\,d\omega=\begin{cases}S_0,\tau=0\\0,\tau=\pm1,\pm2,...$ 平稳序列的预报.

常用随机变量的分布与矩母函数				
离散概率分布	P(X = x)	矩母函數	EX	Var(X)
二項分布 $B(n,p)$,	$\binom{n}{x}p^x(1-p)^{n-x}$,	$(p\mathrm{e}^t + (1-p))^n$	np	np(1-p)
$0 \leqslant p \leqslant 1$	$x = 0, 1, \cdots, n$			
Poisson 分布 $, \lambda > 0$	$\mathrm{e}^{-\lambda}\frac{\lambda^x}{x!}, x=1,2,\cdots$	$\exp\{\lambda(\mathrm{e}^t-1)\}$	λ	λ
几何分布, 0 ≤ p ≤ 1	$p(1-p)^{x-1}$,	$\frac{pe^t}{1 - (1 - p)e^t}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
	$x = 1, 2, \cdots$			
负二项分布	$\binom{x-1}{r-1}p^r(1-p)^{x-r}$,	$\left(\frac{pe^t}{1-(1-p)e^t}\right)^r$	r p	$\frac{r(1-p)}{p^2}$
参数为 r,p	$x = r, r + 1, \cdots$			
连续概率分布	f(x)	g(t)	EX	Var X
均匀分布 U(a,b)	$\frac{1}{b-a}, a < x < b$	$\frac{e^{ta} - e^{tb}}{t(a-b)}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
指敷分布, λ > 0	$\lambda e^{-\lambda x}, x \geqslant 0$	$\frac{\lambda}{\lambda - t}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Γ 分布 $\Gamma(n, \lambda), \lambda > 0$	$\frac{\lambda e^{-\lambda x}(\lambda x)^{n-1}}{(n-1)!}, x \geqslant 0$	$\left(\frac{\lambda}{\lambda - t}\right)^n$	$\frac{n}{\lambda}$	$\frac{n}{\lambda^2}$
正态分布 $N(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi\sigma}}e^{-(\pi-u)^2/2\sigma^2}$	$\exp\left\{\mu t + \frac{\sigma^2 t^2}{2}\right\}$	μ	σ^2
Beta 分布 B(a, b),	$cx^{a-1}(1-x)^{b-1}, 0 < x < 1$		$\frac{a}{a+b}$	$\frac{ab}{(a+b)^2(a+b+1)}$
a > 0, b > 0	$c = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}$			

分布概率: (1).顺序统计量:
$$\mathbf{F}_{X(r)}(x) = \sum_{j=r}^n \binom{n}{j} [F_X(x)]^j [1-F_X(x)]^{n-j}$$
; $f_{X(r)} = r\binom{n}{r} f_X(x) [F_X(x)]^{r-1} [1-F_X(x)]^{n-t}$; $\mathbf{F}_{X(n)}(x) = P(\max\{...\} < x) = [F_X(x)]^n$; $\mathbf{F}_{X(1)} = 1-[1-F_X(x)]^n$; (2). 多元正态: $\mathbf{f}_X(x_1,...,x_k) = \frac{1}{\sqrt{(2\pi)^k |\Sigma|}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$; (3).二元正态: $\mathbf{f}(x,y) = (2\pi\sigma_1\sigma_2\sqrt{1-\rho^2})^{-1} \exp[-\frac{1}{2(1-\rho^2)}(\frac{(x-\mu_1)^2}{\sigma_1^2} - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(x-\mu_2)^2}{\sigma_2^2}$

Gamma 函数
$$\Gamma(\mathbf{x}) = \int_0^{+\infty} t^{x-1} e^{-t} dt$$
 , $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$, $\Gamma(\mathbf{x}+1) = \mathbf{x}\Gamma(\mathbf{x})$; Beta 函数 $\mathrm{B}(\mathrm{P},\mathrm{Q}) = \int_0^1 x^{P-1} (1-x)^{Q-1} dx = \frac{\Gamma(\mathrm{P})\Gamma(\mathrm{Q})}{\Gamma(\mathrm{P}+\mathrm{Q})}$

三角函数相关:
$$\frac{1}{2} + \cos x + \dots + \cos nx = \frac{\sin\left(n + \frac{1}{2}\right)x}{2\sin\left(\frac{x}{2}\right)}$$
; $\sin x + \frac{\sin\left(n + \frac{1}{2}\right)x}{2\sin\left(\frac{x}{2}\right)}$

$$\sin 2x + \dots + \sin nx = \frac{\sin \frac{n+1}{2}x}{\sin \frac{x}{2}} \sin \frac{nx}{2}$$

和差化积: $\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$; $\sin \alpha - \sin \beta = 2 \cos \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$; $\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$; $\cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$; 积化和差: $\sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha - \beta)]$; $\cos \alpha \sin \beta = \frac{1}{2} [\sin(\alpha + \beta) - \sin(\alpha - \beta)]$; $\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha + \beta) + \cos(\alpha - \beta)]$; $\sin \alpha \sin \beta = -\frac{1}{2} [\cos(\alpha + \beta) - \cos(\alpha - \beta)]$;

积分式: $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$, $\int_{-\infty}^{\infty} e^{-j\omega\tau} d\tau = 2\pi\delta(\omega)$

留数定理: $\oint f(z)dz = 2\pi j \sum_{k=1}^n Res[f(z), z_k]$, 若 $\mathbf{f} = \frac{\mathbf{g}}{(\mathbf{z} - \mathbf{z}_0)^m}$, g

是解析函数,则Res $[f(z),z_k]=rac{g^{(m-1)}(z_0)}{(m-1)!}$,若 R(x) 无实零点,

 $\int_{-\infty}^{\infty} e^{j\omega x} R(x) dx = 2\pi j \sum_{k} Res[e^{j|\omega|z} R(z), z_{k}]$

留数计算: Res[f(z),a] = $\frac{1}{(m-1)!} \lim_{z \to a} \frac{d^{m-1}}{dz^{m-1}} [(z-a)^m f(z)]$,特别

傅里叶变换: $F[e^{-k|\tau|}] = \frac{2k}{k^2 + \omega^2}$; $F[-\frac{k}{2}|\tau|] = \frac{k}{\omega^2}$

切比雪夫不等式: $P\{|X-\mu| \geq \epsilon\} \leq \frac{\sigma^2}{\epsilon^2}$ 其中 $EX = \mu, VarX = \sigma^2$

 $\text{Stirling:n!} \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \text{, } \lim_{n \to \infty} \frac{n!}{\sqrt{2\pi n} \left(\frac{n}{e}\right)^n} = 1 \text{, } \lim_{n \to \infty} \frac{e^n n!}{n^n \sqrt{n}} = \sqrt{2\pi}$

```
R_X(s,t) = Cov(X(t), X(s))
= Cov(X(s) - X(t) + X(t) - X(0), X(t) - X(0))
= Cov(X(t) - X(0), X(t) - X(0)) (独立増量)
= \lambda t (s \ge t)
```

1.8

1.11

2.5

2.7 N(t) 是强度为 λ 的 Possion 过程. 给定 N(t)=n. 试求第 r 个事件 $(r\leqslant n)$ 发生的 时刻 W_r 的条件根率密度 $f_{W_r[N(t)=n}(w_r[n])$. 解:

 $f_{W_r|N(t)=n}(w_r|n) \cdot \Delta w_r$

- $= P\{N(w_r) N(0) = r 1, N(w_r + \Delta w_r) N(w_r) = 1 | N(t) = n\}$
- $= P\{N(w_r) N(0) = r 1\} \cdot P\{N(w_r + \Delta w_r) N(w_r) = 1\}$
- $P\{N(t)-N(w_r+\Delta w_r)=n-r\}/P\{N(t)=n\}$

$$=\frac{(\lambda w_r)^{r-1}}{(r-1)!}e^{-\lambda w_r}\cdot (\lambda \Delta w_r+o(\Delta w_r))\cdot \frac{(\lambda (r-w_r-\Delta w_r))^{n-r}}{(n-r)!}e^{-\lambda (r-w_r-\Delta w_r)} \left/ \left[\frac{(\lambda t)^n}{n!}e^{\lambda t}\right] \right.$$

两边除以 Δw_r 并令 $\Delta w_r \rightarrow 0$ 得

 $f_{W_r|N(t) \to n}(w_r|n) = \frac{n!}{(r-1)!(n-r)!} \frac{(w_r)^{n-1}(t-w_r)^{n-r}}{t^n}$

提示:对非负随机变量 $ET = \int_0^\infty P(T > t) dt$ 解:令 $W_n = \sum_{t=1}^n Y_t$

法一:

$$\begin{split} P(T>t) &= P\{X(t) \leqslant \alpha\} \\ &= P\{\sum_{k=1}^{N(t)} Y_k \leqslant \alpha\} \\ &= \sum_{n=0}^{\infty} P\left\{\sum_{k=1}^{N(t)} Y_k \leqslant \alpha | N(t) = n\right\} \cdot P\{N(t) = n\} \\ &= \sum_{n=0}^{\infty} P\left\{\sum_{k=1}^{N(t)} Y_k \leqslant \alpha | N(t) = n\right\} \cdot P\{N(t) = n\} \\ &= \sum_{n=0}^{\infty} P\{W_n \leqslant \alpha\} \cdot P\{N(t) = n\} \end{split}$$

求和式中当 n=0 时认为 $P\{W_n \leq \alpha | N(t) = n\} = 1$

 $Y_k \sim \exp(\mu)$, $W_n = \sum_{k=1}^n Y_k \sim \Gamma(n, \mu)$

$$\begin{split} & :: P(W_n \leqslant \alpha) = \frac{\mu^n}{(n-1)!} \int_0^\alpha r^{n-1} e^{-\mu t} \, ds \quad (n\geqslant 1) \\ & P(N(t) = n) = \frac{(\lambda t)^n}{n!} e^{-\lambda t} \\ & :: P(T>t) = e^{-\lambda t} + e^{-\lambda t} \sum_{n=1}^\infty \frac{(\lambda \mu t)^n}{n!(n-1)!} \int_0^\alpha s^{n-1} e^{-\mu t} \, ds \\ & :: ET = \int_0^{\infty n} P(T>t) \, dt \\ & = \frac{1}{\lambda} + \sum_{n=1}^\infty \frac{(\lambda \mu)^n}{n!(n-1)!} \int_0^{+\infty} r^n e^{-\lambda t} \, dt \int_0^\alpha r^{n-1} e^{-\mu t} \, ds \\ & = \frac{1}{\lambda} + \frac{1}{\lambda} \sum_{n=1}^\infty \frac{\mu^n (n-1)!}{n!(n-1)!} \int_0^\pi s^{n-1} e^{-\mu t} \, ds \\ & = \frac{1}{\lambda} + \frac{1}{\lambda} \int_0^\alpha \left[\sum_{n=1}^\infty \frac{(\mu s)^{n-1} e^{-\mu t}}{(n-1)!} \right] d(\mu s) \\ & = \frac{1}{\lambda} + \frac{1}{\lambda} \int_0^\alpha \left[\sum_{n=1}^\infty \frac{(\mu s)^{n-1} e^{-\mu t}}{(n-1)!} \right] d(\mu s) \end{split}$$

从结果看,若 A 越大 (系统所受冲击越频繁),μ 越小 (每次冲击所造成的平均损害越 大)、α 越小 (系统所能承受的的损害极限越小),则系统平均寿命越短,且当 α 等于 0 时系统的平均寿命即为第一次冲击到来的平均时间,符合常以。

- 3.15 考虑一有限状态的 Markov 链. 试证明
- (a) 至少有一个状态是常返的,
- (b) 任何常返状态必定是正常返的

证:(a)反设所有状态均为瞬过或零常返(加强结论),则对∀i∈5.有

$$\lim_{n\to+\infty}P_{ii}^{(n)}=0 \qquad \quad (*)$$

考虑 $P_{ij}^{(n)} = \sum_{k=1}^{+\infty} f_{ij}^{(k)} P_{jj}^{(k-1)}$, 则有

$$\sum_{k=1}^{I} f_{ij}^{(k)} P_{ij}^{(n-k)} \leq P_{ij}^{(n)} \leq \sum_{k=1}^{I} f_{ij}^{(k)} P_{ij}^{(n-k)} + \sum_{k=I}^{+\infty} f_{ij}^{(k)} \quad (**)$$

固定 ℓ, 令 n → +∞, 则由 (*) 得

$$0 \leqslant \lim_{e \to +\infty} P_{ij}^{(e)} \leqslant 0 + \sum_{i=i}^{+\infty} f_{ij}^{(k)}$$
 (***)

在 (***) 中令 $\ell \rightarrow +\infty$, 由于 $\sum_{k=1}^{+\infty} f_{ij}^{(k)} \leq 1$ 收敛

$$\lim_{n\to+\infty} P_{ij}^{(n)} = 0 \qquad (*4)$$

若此有限状态 M.C. 有 N 个状态,则

$$\sum_{j=1}^{N} P_{ij}^{(n)} = 1 \quad (*5)$$

- (*5) 中令 n→+∞,由 (*4) 得 0 = 1, 矛盾
- · 至少有一个状态是 (正) 常返的
- (b) 若存在零常返状态 i,可构造 $C(i)=\{ji\mapsto j\},$ 则 C(i) 为原 M.C. 的一不可约子 M.C. 有限状态),于是 C(i) 中所有状态均为零常返,与有限状态 M.C. 至少有一个正常返状态考估。 : 任何常返状态均为正常返

33