离散数学

Discrete Mathematics

第一章 集合

宋牟平 <u>songmp@zju.edu.cn</u> 玉泉校区 行政楼 325 助教: 贾宁 18888911516玉泉校区 行政楼 327

上午10时42分

第一章 集合

集合及其表示方法

集合的概念是现代数学中最基本的概念之一。

集合创始人G.Cantor——凡是在我们的感觉或思维中可以明确区分的对象物,把它们看成一个整体,这个整体,我门就称它是集合,其中的"物"就称为该集合的"成员"或"元素"。

集合与元素:一些**确定的、可区分的**事物构成的整体称为**集合**,其中所含的事物称为**元素**。

集合一般用大写字母命名,元素用小写字母。

数学中常见的集合

N 自然数的集合

Z非负整数的集合

■ 整数的集合

Q 有理数的集合

R 实数的集合

C 复数的集合

在日常生活中, 也经常遇到的集合的概念

浙江大学的全体教师 26英文字母 选离散数学课的学生

元素和集合的关系用符号" \in "表示(意大利数学家Peanc引入,是希腊文 \in $\sigma\iota$ (esti)的首字母,意为是),当元素在集合A中时,记

a∈A

读作"a属于A"。当元素不在A时,记

a∉A

读作"<u>a不属于A</u>"。

例 n∈N i∈I x∈R a+jb∈C

上午10时42分

集合有穷举法和描述法两种表示方法

穷举法: 列出集合中的所有元素

例 A={a, b, c, d}

例 选离散数学课学生名单={张三,}

例 中文字符集={一,二,....,王,.....}

常用于必须列出所有元素的场合。

描述法: 用集合中所有元素的共同性质来描述其元素, 而不列出其元素

例 S={s|s是不大于10的正偶数}

例 M={m|m=2ⁱ, i∈Z}

 $\rho = \{(x,y) | x,y \in \mathbb{R}, x^2 + y^2 = 1\}$

描述法的优点是不必列出所有元素,元素可根据条件生成。在很多情形下没有必要,也没有可能列出所有元素。

注意点:

集合中的元素是可区别的,如离散数学书中的所有汉字,相同的汉字虽然多次出现,但在集合中认为是同一个元素。

集合中的元素必须是确定的,例

百货商店里好看的花布

元素在集合中的次序是随意的,如

$${a, b, c, d} = {b, a, d, c}$$

<u>任何确定的、可区别的事物都可以作为元素</u>,因此**某个集合也完全可以 是另一个集合的元素**。

例

$$A = \{a, b, c\}; B = \{\{a, b, c\}, d\}$$

A有4个元素,B有两个元素。

勃论

对"包罗一切的集合"或"由一切集合组成的集合"等类似的术语,会 导致集合论中的勃论。如理发师悖论:

某理发师跟且只跟城里所有不能给自己理发的人理发。

空集

<u>定义1-1</u> 不含有任何元素的集合, 称为**空集**, 记作:

$$\emptyset = \{ \}$$

例 平面上两条平行线的"交点"的集合。

空集合在集合的运算和证明中有重要的作用。空集是唯一的。

集合基数:集合中元素的数目。

 $A = \{a, b, c, d, e\}$

#A = 5

有限集:基数有限;

无限集: 基数无限

基数

上午10时42分

1.2 集合的包含和相等

定义1-2 设有集合A和B,若有A的每一个元素都是B的元素(即若 $a \in A$,必有 $a \in B$),则称A是B的<u>子集</u>,或说A被包含于B中(或B包含A),记作

A⊆B 或 B⊇A

反之,则称A不是B的子集,则记作

A⊈B或 B⊋A

例 $A=\{a,b,c\}, B=\{a,b,c,d\}, C=\{\{a\},b,c,d\}$

A⊆B, 但A⊄C

例 N<u>C</u>I<u>C</u>Q<u>C</u>R

<u>定义1-4</u> **真子集**:设A是B的子集,若B中至少有一个元素不属于A,则A是B的真子集,记

 $A \subset B$

定义1-3 集合相等:集合A与B的所有元素相同,则

A=B

等价定义:设A和B是两个集合,若A \subseteq B,且B \subseteq A,则A=B。等价定义也可描述为: A=B的充要条件是A \subseteq B,且B \subseteq A。等价定义在集合的证明中非常方便。

推论:

- (1) 对于任意集合A,有**Ø⊆A**
- (2) 对于任意集合A,有A⊆A
- ∅和A称为A的平凡子集。
 - (3)对于任意集合A、B、C,若A \subseteq B,且B \subseteq C,则A \subseteq C

证明(1)对于任意集合A,有Ø⊆A

反证法:

设空集Ø不是某集合A的子集,即Ø⊆A,

则必存在元素 $x \in \emptyset$ 而 $x \notin A$,这与空集的定义矛盾,

因此, Ø<u>C</u>A

定理1-1 空集合是唯一的。

证明:假设有两个空集合Ø1和Ø2,因为空集被包含于每一个集合中,因此有,Ø1 \subseteq Ø2,Ø2 \subseteq Ø1,Ø1 = Ø2

浙江大学 信息与电子工程学院 电子系 宋牟平

1.3 幂集

定义1-5 幂集: 由集合A的所有子集作为元素构成的集合称为A的**幂集**, 记作2^A

$$2^A = \{s \mid s \subseteq A\}$$

例 A={a,b,c}

 $2^{A}=\{\emptyset,\{a\},\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\},\{a,b,c\}\}\}$

例 $2^{\varnothing}=\{\emptyset\}$

证明: $: 2^A \in 2^B$,

∴ **2**^A ⊆**B**。 又**A**∈**2**^A,

∴ **A**∈**B** 。

定理1-2 设A是具有基数#A的有限集#(2A) = 2#A,。

幂集的基数: 设#A=n,则#2A=2#A=2n

证明、设#A=n,从n个元素中选取i个不同元素的方法共

有 C. 种, 这里

$$C_{\bullet}^{i} = \frac{n!}{i! (n-i)!}.$$

所以A的不同子集的数目(包括4)为。

$$\#(2^A) = C_n^* + C_n^1 + C_n^2 + \cdots + C_n^n$$

由二项式定理可知,

$$(x+y)^{n} = C_{n}^{0}x^{n} + C_{n}^{1}x^{n-1}y + C_{n}^{2}x^{n-2}y^{2} + \cdots + C_{n}^{n}y^{n}$$

◆ x = y = 1, 便有

$$2^n = C_n^0 + C_n^1 + C_n^2 + \cdots + C_n^n$$

所以 4(24) = 2"。因为 #A=n, 故有 4(24) = 2*4。证完。

子集的一种表示法

当集合 A的元素个数较多时,要毫无遗漏地列出集合 A的所有子集是一件相当困难的事情。现在我们引进一种表示法,按照这种表示法,我们能够毫无遗漏地列出一个有限集合的每一个子集。为此,我们对所给集合的元素规定某种次序,使得某个元素可以称为第一个元素,另一个元素为第二个元素,等等(虽然在

集合A={a,b,c},令a是第一个元素,b是第二个元素,c是第三个元素。则A的各个子集可以表示为:

$$B_{000} = \Phi$$
, $B_{001} = \{c\}$, $B_{010} = \{b\}$, $B_{011} = \{b, c\}$, $B_{100} = \{a\}$

$$B_{101}=\{a, c\}, B_{110}=\{a, b\}, B_{111}=\{a, b, c\}$$

$$2^{A}=\{B_{000}, B_{001}, B_{010}, B_{011}, ..., B_{110}, B_{111}\}$$

1.4 集合的运算

<u>定义1-6</u>**全集**: 若一个集合包含了某个问题中所讨论的一切集合,则称它为该问题的全域集合,或简称为**全集合**,记<math>U。

全集合U不是唯一的,可取一个较为方便的集合为U。

定义1-7 并集:设有集合A、B,则由集合A和B中的所有元素构成的集合称为A与B的并集

$$A \cup B = \{u | u \in A \vec{\boxtimes} u \in B\}$$

<u>定义1-8</u> 交集:设有集合A、B,则由既属于A又属于B的所有元素构成的集合,称为A与B的交集

$$A \cap B = \{u | u \in A \coprod u \in B\}$$

例
$$A=\{1,2,3,4,5\}, B=\{4,5,6,7,8\}$$

 $A \cup B=\{1,2,3,4,5,6,7,8\}; A \cap B=\{4,5\}$

例 $\{1, 2\} \cap \{3, 4\} = \emptyset$

定义1-9 **差集**(相对补集):由属于集合B而不属于集合A的所有元素构成的集合,称为B与A的差集(A关于B的相对补集)

B-A={
$$u|u∈B$$
且 $u∉A$ }

例
$$A=\{1,2,3,4,5\}, B=\{4,5,6,7,8\}$$

$$A-B=\{1,2,3\}, B-A=\{6,7,8\}$$

<u>定义1-10</u> **补集**:集合A关于全集合U的相对补集,称为A的**绝对补集**,简称A的**补集**,记作

$$A'=U-A=\{u\mid u\in U,\ u\not\in A\}=\{u\mid u\not\in A\}$$

$$U'=\emptyset$$
, $\emptyset'=U$

$$A-B=A\cap B'$$

*定义1-11 对称差:设有集合A、B,由属于A但不属于B,以及属于B但不属于A的所有元素组成的集合,称为A与B的对称差,记作

$$A \oplus B = (A-B) \cup (B-A)$$

例
$$A=\{1,2,3,4,5\}, B=\{4,5,6,7,8\}$$

$$A-B=\{1,2,3\}, B-A=\{6,7,8\}$$

$$A \oplus B = \{1,2,3\} \cup \{6,7,8\} = \{1,2,3,6,7,8\}$$

1.5 文氏图

用英国数学家John Venn的名字命名,可以很直观形象地表示集合间的关系,对集合证明和运算提供帮助。

上午10时42分

例子

例 在一个 170 人的斑驳型, 120 个学生会西班牙语, 80 个个学生会法语, 60个学生会英语, 50个学生既会西班牙语又会法语, 25个学生既会西班牙语又会英语, 30个学生既会法语又会英语, 10个学生三种语言全都会, 河有多少学生对这三种语言一种也不会?

解 分別用 S, F, E 表示会西班斯语, 法语, 声英语的学生的集合, 于是

#S = 120,

#F = 80.

#E = 60,

 $+ \#(S \cap F) = 50,$

 $\#(S \cap E) = 25,$

 $\#(F\cap E)=30,$

 $+ \#(S \cap F \cap E) = 10.$

由这些数据,我们可以计算出图 1-4 的文氏图 各个区域中的元素个数,

图 1-4

因而得出对三种语言一种也不会的学生人数为5。

1.6 集合成员表

成员表是用表格的方式描述集合的并、交、补运算的定义. 表 1-1 中任一集合 S 所标记的列中,0 表示全集合中的元素 $u \in A$,1 表示 $u \in A$. 利用上述三个基本的成员表可以进而构造出全集合 U 的其他子集的成员表.

A'的成员表	A'	的	成	贞	表	ξ
--------	----	---	---	---	---	---

A	A'
0	1
1	0

 $A \cup B$ 的成员表

A	B	$A \cup B$
0	0	0
0	1	1
1	0	1
1	1	1

 $A \cap B$ 的成员表

A	B	$A \cap B$
0	0	0
0	1	0
1	0	0
1	1	1

例 1-11 试构造集合 $(A \cup B) \cap (B \cup C)'$ 和集合 $A \cap B'$ 的成员表,通过其成员表判断这两个集合之间是否有相等关系或包含关系.

1.7 集合运算的定律

交換律 $A \cup B=B \cup A$; $A \cap B=B \cap A$

结合律 $A \cup (B \cup C) = A \cup (B \cup C)$; $A \cap (B \cap C) = (A \cap B) \cap C$

分配律 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

同一律 $A \cup \emptyset = A$; $A \cap U = A$

互补律 $A \cup A' = U$; $A \cap A' = \emptyset$

对合律 (A')'=A

幂等律 A∪A=A; A∩A=A

零一律 $A \cup U = U$; $A \cap \emptyset = \emptyset$

吸收律 $A \cup (A \cap B) = A$; $A \cap (A \cup B) = A$

德•摩根定律 (A∪B)'=A'∩B'; (A∩B)'=A'∪B'

集合的证明方法

文氏图、定义直接证明、利用集合运算的定律和性质证明

例 摩根定律(A∪B)'= A'∩B'的证明

1) 依据定义直接证明

对任意 $u \in (A \cup B)'$,根据补集的定义有 $u \notin A \cup B$,即 $u \notin A \perp B \cup B$,于是有 $u \in A' \perp B'$,即 $u \in A' \cap B'$ 。由子集的定义可知 $(A \cup B)' \subseteq A' \cap B'$ 。

反之,设 $u \in A' \cap B'$,则 $u \in A' \perp u \in B'$,由补集的定义有 $u \notin A \perp u \notin B$,即 $u \notin A \cup B$,再由补集的定义可知 $u \in (A \cup B)'$ 。故有 $A' \cap B' \subseteq (A \cup B)'$ 。

由集合相等的定义可知(AUB)′= A′∩B′

2) 利用集合运算的定律和性质证明

利用互补律只需证

 $(A \cup B) \cap (A' \cap B') = \emptyset$, $(A \cup B) \cup (A' \cap B') = U$

```
(A \cup B) \cap (A' \cap B') = (A \cap (A' \cap B')) \cup (B \cap (A' \cap B'))
                                = ((A \cap A') \cap B') \cup ((B \cap B') \cap A')
                                = (\varnothing \cap \mathsf{B}') \cup (\varnothing \cap \mathsf{A}')
                                =\emptyset
(A \cup B) \cup (A' \cap B') = (A \cup B \cup A') \cap (A \cup B \cup B')
                                = ((A \cup A') \cup B) \cap (A \cup (B \cup B'))
                                = (U \cup B) \cap (A \cup U)
                                =U\cap U
```

证毕

其它一些有用的性质

- 1) **A**⊆**C**, **B**⊆**C**⇔**AUB** ⊆**C**
- 2) **A**⊆**C**, **A**⊆**B**⇔**A**⊆**B**∩**C**
- 3) A⊆B⇔AUB=B⇔A∩B=A⇔A-B=∅ 证明:
 - a) 设A⊆B,因B⊆B,故AUB⊆B;又B⊆ AUB,所以有AUB=B. 设AUB=B,则AUB⊆B,而A⊆ AUB,故A⊆B。
 - b) 设A⊆B,因A⊆A,故A⊆A∩B;又A∩B⊆A,所以有A∩B=A 设A∩B=A,则A⊂A∩B⊂B,故A⊂B

4) $A-B=A \Leftrightarrow A \cap B=\emptyset$

设A-B=A,则A∩B=(A-B)∩B=(A∩B')∩B= A∩(B'∩B)=A∩∅=∅

设A∩B=∅,则

 $A=A\cap (BU\ B')=(A\cap B)U(A\cap B')=\varnothing U(A\cap B')=A\cap B'=A-B$

1.8 分划

在日常生活常中,人们常遇到对人员分组、对物品分类等问题,这些分组和分类的问题在集合中抽象为分划问题。

定义1-12 分划:设π= $\{A_i\}_{i\in K}$ 是集合A的某些<u>非空子</u>集的集合,如果集合A的每一个元素<u>在且在</u>其中某一个子集 A_i 中,则称集合π是集合A的一个分划, A_i 称为该分划的一个分划块。即

$$\pi = \{A_i\}_{i \in K}$$

(1)
$$(A_i \cap A_j) = \emptyset$$

$$(2) \quad \bigcup_{i=K} A_i = A$$

例 设A={1, 2, 3}, 则

$$\pi_1 = \{\{1\}, \{2\}, \{3\}\}, \pi_2 = \{\{1\}, \{2, 3\}\}, \pi_3 = \{\{1, 2\}, \{3\}\},$$

$$\pi_4 = \{\{1, 3\}, \{2\}\}, \pi_5 = \{\{1, 3, 2\}\}$$
 都是A的分划。

显然分划不唯一,如何分,根据需要和条件。

细分的概念:对集合A进行了一次分划后,还可以再进行二次分划,将一次分划块细分为更小的块。例如图书馆对书籍的分类。

定义1-13: 设 $\bar{\pi} = \{\overline{A}_i\}_{i \in K}$ 和 $\pi = \{A_j\}_{j \in K}$ 是集合的两个分划,<u>如果 $\bar{\pi}$ 的</u> 每一个 \bar{A}_i 都是 π 中的某个 A_j 的子集,则称分划 $\bar{\pi}$ 是分划 π 的一个细分。若 $\bar{\pi}$ 中至少有一个 \bar{A}_i 为 π 中某个 A_i 的真子集,则称 $\bar{\pi}$ 是 π 的一个真细分。

例子中的 π_1 、 π_2 、 π_3 、 π_4 都是 π_5 的真细分, π_1 是 π_2 、 π_3 是 π_4 的真细分。 π_1 无法在细分,称为**最细分**, π_5 称为**最粗分**,即不进行分划。

例 设A={1, 2, 3}, 则

 $\pi_1 = \{\{1\}, \{2\}, \{3\}\}, \pi_2 = \{\{1\}, \{2, 3\}\}, \pi_3 = \{\{1, 2\}, \{3\}\},$

 $\pi_4 = \{\{1, 3\}, \{2\}\}, \pi_5 = \{\{1, 3, 2\}\}$ 都是A的分划。

*1.9 集合的标准形式

设 A_1 , A_2 ,…, A_r 是全集合 U 的一组子集,对 \varnothing ,U, A_1 , A_2 ,…, A_r 有限次地施加"'"、" \bigcup "、" \cap "运算,所得到的集合称为是由 A_1 , A_2 ,…, A_r 所产生的集合.

由 A_1 , A_2 , …, A_r 所产生的集合,可以利用集合的运算定律将其变形化为标准形式. (A \cap B \cap C) \cup (A' \cap B \cap C)

集合的标准形式可分为最小集标准形式和最大集标准形式. 最小集标准形式 是将集合表示成 A_1 , A_2 , ..., A_r 的不同最小集的并; 最大集标准形式是将集合表示成 A_1 , A_2 , ..., A_r 的不同最大集的交. (AUBUC) \cap (A'UBUC)

(2) 求最大集标准形式.

 $(A \cap B') \cup (A' \cap (B \cup C'))$

- $= ((A \cap B') \cup A') \cap ((A \cap B') \cup (B \cup C'))$
- $= (A \cup A') \cap (B' \cup A') \cap (A \cup B \cup C') \cap (B' \cup B \cup C')$
- $=(A' \cup B') \cap (A \cup B \cup C')$
- $= (A' \cup B') \cup (C \cap C') \cap (A \cup B \cup C')$
- $=(A' \cup B' \cup C) \cap (A' \cup B' \cup C') \cap (A \cup B \cup C').$
- 例 1-14 利用集合的成员表求出例 1-13 中集合的标准形式.
- **解** (1) 构造集合 $(A \cap B') \cup (A' \cap (B \cup C'))$ 的成员表,见表 1-3.

表 1-3

\overline{A}	В	С	B'	$A \cap B'$	A'	C'	$B \bigcup C'$	$A'\cap (B\bigcup C')$	$(A \cap B') \cup (A' \cap (B \cup C'))$
0	0	0	1	0	1	1	1	1	1
0	0	1	1	0	1	Ο	0	0	0
0	1	0	0	0	1	1	1	1	1
0	1	1	0	0	1	Ο	1	1	1
1	0	0	1	1	0	1	1	0	1
1	0	1	1	1	0	0	0	0	1
1	1	0	0	0	0	1	1	0	0
1	1	1	0	0	0	0	1	0	0

- (2) 分别找出 $(A \cap B') \cup (A' \cap (B \cup C'))$ 所标记的列中 1 所有的行和 0 所在的行.
 - 1 所在的行是 000,010,011,100,101;
 - 0 所在的行是 001,110,111.
- (3) 根据 $(A \cap B') \cup (A' \cap (B \cup C'))$ 所标记的列中 1 所在的行,直接写出该集合的最小集标准形式.

 $(A \cap B') \cup (A' \cap (B \cup C'))$

- $=M_{000} \bigcup M_{010} \bigcup M_{011} \bigcup M_{100} \bigcup M_{101}$
- $= (A' \cap B' \cap C') \cup (A' \cap B \cap C') \cup (A' \cap B \cap C) \cup (A \cap B' \cap C') \cup (A \cap B' \cap C).$

根据 $(A \cap B') \cup (A' \cap (B \cup C'))$ 所标记的列中 0 所在的行,直接写出该集合的最大集标准形式.

 $(A \cap B') \cup (A' \cap (B \cup C'))$

- $=\overline{M}_{001}\cap\overline{M}_{110}\cap\overline{M}_{111}$
- $= (A \cup B \cup C') \cap (A' \cup B' \cup C) \cap (A' \cup B' \cup C').$

作业

2, 6, 14(2)(4), 16(1)(2), 20, 22(2), 24, 25

第一章小结

1. 集合及有关概念、集合的表示法

- •集合、元素、集合的基数;
- •集合的两种表示方法——列举法和描述法;
- •两个特殊的集合——全集合和空集;
- · 子集、包含集和幂集;
- 分划和细分;
- •集合的最小集标准形式和最大集标准形式.

2. 集合间的关系

- •集合间的包含关系 $B\subseteq A$;
- •集合间的真包含关系 $B \subset A$;
- •集合间的相等关系 A=B;
- •集合间的互补关系 B'=A.

3. 集合的运算

- •集合的<u>并运</u>算 $A \cup B$;
- •集合的交运算 $A \cap B$;
- •集合的<u>补运</u>算——相对补运算(B-A)、绝对补运算(A'=U-A),A'简称为A的补集;
 - •集合运算的定律.
 - 4. 对集合间的关系和运算进行分析和论证的工具
 - 文氏图——直观、形象,可作为描述和分析的工具;
 - •成员表——根据运算的定义严格构造出来的,可作为证明的工具.

例题讲解

例 1-1 设全集合是整数集 Z,试用列举法表示下列集合.

(1)
$$A = \{x \mid x^2 - 16 = 0 \text{ gi } x^4 = 1\};$$

(2)
$$B = \{x \mid x^2 - 10x - 24 < 0 \, \underline{1} - 5 \leqslant x \leqslant 6\}.$$

图 1-1

解 (1) 满足 $x^2-16=0$ 即 $x^2=16$ 的 x 有两个整数 $x_1=4$ 和 $x_2=-4$. 满足 $x^4=1$ 的 x 也有两个整数 $x_3=1$ 和 $x_4=-1$. 因此

$$A = \{4, -4, 1, -1\}.$$

(2) 令 $y=x^2-10x-24=(x-5)^2-49$,显然,当 x=-2 和 x=12 时,y=0,当 x=5 时,y 有极小值—49. 函数图形如图 1-1 所示. 因为 B 是全集合 Z 的子集,所以当

$$x = -1, 0, 1, 2, \dots, 11 \text{ if } y < 0.$$

但x的这些取值中,只有8个数满足不等式 $-5 \le x \le 6$,因此

$$B = \{-1, 0, 1, 2, 3, 4, 5, 6\}.$$

例 1-2 设 $A = \{a,b,\{c\},\{a\},\{a,b\}\},$ 试指出下列论断是否正确.

(1) $a \in A$;

(2) $\{a\} \in A$;

(3) $\{a\}\subseteq A$;

(4) $\varnothing \in A$;

(5) $\emptyset \subseteq A$;

(6) $b \in A$;

 $(7) \{b\} \in A;$

(8) $\{b\}\subseteq A$;

(9) $\{a,b\} \in A$;

(10) $\{a,b\}\subseteq A$;

(11) $c \in A$;

 $(12) \{c\} \in A;$

(13) $\{c\}\subseteq A$;

(14) $\{a,b,c\}\subseteq A$.

解 (1)、(2)、(3)、(5)、(6)、(8)、(9)、(10)、(12)正确;

(4)、(7)、(11)、(13)、(14)错误.

例 1-3 对于任意集合 A,B 和 C,下述论断是否正确?请说明理由.

(3) 若 $A \subseteq B$, $B \in C$, 则 $A \in C$; (4) 若 $A \subseteq B$, $B \in C$, 则 $A \subseteq C$.

(1)正确. 解

因为 $B \subseteq C$,所以集合 B 的每一个元素也是集合 C 的元素,由 $A \in B$ 知 A 是 B 的 一个元素,因此 A 也是 C 的一个元素,故 $A \in C$.

(2)错误.

举反例如下:设 $A = \{a\}, B = \{\{a\}, b\}, C = \{\{a\}, b, \{d\}\}\}$.显然 $A \in B, B \subseteq C$,但 $A \subseteq C$. 因为 $a \in A$,但 $a \in C$.

(3)和(4)都是错误的.

举反例如下:设 $A = \{a\}, B = \{a,b\}, C = \{\{a,b\}, d\}$. 显然 $A \subseteq B, B \in C$,但 $A \in A \subseteq B$ C. 因为集合 C 中没有元素 $\{a\}$. 又 $A \subseteq C$,因为集合 A 中的元素 a 不是集合 C 的 元素.

 $\mathbf{M} \mathbf{1-4}$ 列出下列集合的全部子集.

- (1) $A = \{a, \{b\}\}$;
- (2) $B = \{\emptyset\}$;
- (3) $C = \emptyset$.

中只有两个元素,故A再没有其他的子集.

由上可知,A 有四个子集: \emptyset , $\{a\}$, $\{\{b\}\}$ 和 $\{a,\{b\}\}$.

(2) 与上同样的道理, \emptyset 是 B 的子集,此外由于 B 中仅有一个元素 \emptyset ,因此 B 仅有的另一个子集是 $\{\emptyset\}$,即 B 自己.

由上可知,B有两个子集: \emptyset 和{ \emptyset }.

(3) \emptyset 是任何集合的子集,因此 \emptyset 也是 \emptyset 的子集,即 \emptyset 是 C的子集.因为 C中 没有元素,所以 C 不可能有其他的子集,故 C 只有一个子集: \emptyset .

由真子集的定义,对于任意集合 A,除了 A 自身不是 A 的真子集外,其他子集 均是 A 的真子集. 因此以下结论成立.

A 有三个真子集: \emptyset , $\{a\}$ 和 $\{\{b\}\}$.

B 有一个真子集: \emptyset .

C 没有真子集.

集合 A 的幂集是以 A 的所有子集为元素组成的集合. 因此只要子集的概念清 $_{\perp_{\Gamma_{10}}}$ 时,将 A 的所有子集列出来,便可得到 A 的幂集,A 的幂集记作 2^{A} 或 P(A).

例 1-5 求下列集合的幂集.

- (1) $A = \{a, \{b\}, \{a,b\}\};$
- (2) $B = \{ \emptyset, \{\emptyset\} \}.$

解 (1) $2^A = \{\emptyset, \{a\}, \{\{b\}\}, \{\{a,b\}\}, \{a,\{b\}\}, \{a,\{a,b\}\}\}, \{\{a,b\}\}\}, \{a,\{b\}\}, \{a,b\}\}\}$;

(2) $2^B = \{ \emptyset, \{ \emptyset \}, \{ \{ \emptyset \} \}, \{ \emptyset, \{ \emptyset \} \} \}.$

例 1-6 设 $A = \{i | i = 2k, k \in N\}, B = \{i | i = 2^k, k \in N\}, C = \{2, 4, 6, 8, \cdots\},$ 试用符号"二"、"二"和"="恰当地连结这些集合. 这里 N 表示正整数集.

解 由集合 A 中元素的定义条件可知, $A = \{i \mid i \text{ 是正偶数}\}$,所以 A = C. 由集合 B 中元素的定义条件, $B = \{2,4,8,16,32,\cdots\}$ 是部分正偶数的集合,所以 $B \subseteq A$. 因为 $6 \in B$, $10 \in B$, \cdots ,所以 B 是 A 的真子集,因此又有 $B \subseteq A$. 于是也有 $B \subseteq C$, $B \subseteq C$.

例 1-7 设 $A = \{2,3,\{2,3\},\emptyset\},$ 求下列集合.

- (1) $A \{2,3\}$;
- (2) $\{\{2,3\}\}-A$;
- (3) $A \emptyset$;
- (4) $A \{\emptyset\}$.

解 (1) $A - \{2,3\} = \{\{2,3\},\emptyset\}$;

- (2) $\{\{2,3\}\} A = \emptyset$;
- (3) $A \varnothing = A$;
- (4) $A \{\emptyset\} = \{2,3,\{2,3\}\}.$

集合的差运算可转化为集合的交运算和补运算来表达.

例 1-8 设 $A \setminus B$ 是任意两个集合,试证明

$$A - B = A \cap B'. \tag{1-1}$$

分析 根据两集合相等的定义,若能证明 $A-B\subseteq A\cap B'$ 且 $A\cap B'\subseteq A-B$,则 $A-B=A\cap B'$ 便成立.

证 设 $u \in A - B$,则 $u \in A$ 且 $u \in B$,即 $u \in A$ 且 $u \in B'$,因此 $u \in A \cap B'$,故 $A - B \subseteq A \cap B'$.

反之,设 $u \in A \cap B'$,则 $u \in A$ 且 $u \in B'$,即 $u \in A$ 且 $u \in B$,由差集的定义 $u \in A$ -B,因此 $A \cap B' \subseteq A - B$.

由上证得 $A-B=A\cap B'$.

例 1-9 设 A,B,C 为任意集合,试证明

$$A \cap (B-C) = (A \cap B) - (A \cap C)$$
.

$$\mathbf{i}\mathbf{E} \qquad A \cap (B - C) = A \cap (B \cap C') \tag{1-1}$$

 $=A\cap B\cap C'$,

结合律

$$=(A \cap B) \cap (A' \cup C')$$

德摩根定律

$$=(A \cap B \cap A') \cup (A \cap B \cap C')$$

分配律

$$=\emptyset \cup (A \cap B \cap C')$$

 $=\emptyset \cup (A \cap B \cap C')$ 交换律、结合律、互补律

$$=A\cap B\cap C'$$
,

同一律

$$A \cap (B-C) = (A \cap B) - (A \cap C).$$

例 1-10 某学校举行运动会,有 100 m 短跑、掷铅球和跳高三个项目. 二年级 170 人,已知有 25 人三个项目都参加了,有 62 人至少参加了两个项目. 若该年级 参加比赛的总人次是 200 人次,试问有多少人没有参加任何项目?

解 (1) 用集合的概念描述上述问题.

设全集合U为二年级170人的集合 $,A_1$ 为参加100 m 短跑的学生集合 $,A_2$ 为参加掷铅球的学生集合 $,A_3$ 为参加跳高的学生集合.

(2) 用文氏图(图 1-2)表示各个集合.

由题设条件和文氏图可知有关集合的基数:

#
$$U=170(人)$$
,
$H=\#(A_1 \cap A_2 \cap A_3)=25(人)$,
$(E \cup H \cup F \cup G)=62(人)$.

(3) 计算.

$$(E \cup F \cup G) = \# (E \cup H \cup F \cup G) - \# H = 62 - 25 = 37(人)$$
,
 $25 \times 3 = 75(人次)$,
 $37 \times 2 = 74(人次)$,
 $200 - (75 + 74) = 51(人次)$,
 $\# B + \# C + \# D = 51(人)$,
 $\# ((A_1 \cup A_2 \cup A_3)') = \# U - \# (A_1 \cup A_2 \cup A_3)$

因此

于是

$$((A_1 \cup A_2 \cup A_3)') = #U - #(A_1 \cup A_2 \cup A_3)$$

= $170 - (51 + 62) = 57()$,

故该年级有57人没有参加任何项目.

例 1-12 设 $A = \{2,3,5,8,9,16,22,25,27,35\}$,按照 A 中元素是奇数或偶数来区分,可将 A 中元素分划为两块:

$$B_1 = \{3,5,9,25,27,35\};$$

 $B_2 = \{2,8,16,22\}.$

因此 $\Pi_1 = \{B_1, B_2\}$ 是集合A的一个分划.

按照 A 中元素能被 2 整除、被 3 整除或被 5 整除来区分,又可将 A 中元素分划为三块:

$$A_2 = \{2, 8, 16, 22\};$$

 $A_3 = \{3, 9, 27\};$
 $A_5 = \{5, 25, 35\}.$

因此 $\Pi_2 = \{A_2, A_3, A_5\}$ 也是集合 A 的一个分划.

若按照 A 中元素能被 2 整除、被 3 整除或被 4 整除来区分,可得到 A 的如下几个非空子集:

$$A_2 = \{2,8,16,22\};$$

 $A_3 = \{3,9,27\};$
 $A_4 = \{8,16\}.$

可令 $S = \{A_2, A_3, A_4\}$,但 S 不是 A 的分划. 原因之一是 A_2 与 A_4 有公共元素;原因之二是有些元素,如 5,25,35 不在任何子集中.

分划 Π_1 有两个分划块,分划 Π_2 有三个分划块. 容易发现 $A_2 \subseteq B_2$, $A_3 \subseteq B_1$, $A_5 \subseteq B_1$,即 Π_2 的每一个分划块都是 Π_1 的某一个分划块的子集. 因此 Π_2 是 Π_1 的细分. 如图所示,图 1-3 表示 Π_1 将 A 分划成两块,图 1-4 表示 Π_2 将 A 分划成三块. 图 1-4 可由在图 1-3 的基础上加一根分划线(图中用虚线表示)的方法,将 Π_1 中的一个分划块分成两个分划块而得到.

例 1-15 给定正整数集 N 的下列子集:

$$A = \{2,5,8,9,11\};$$

 $B = \{i | i^3 < 100\};$
 $C = \{i | i$ 可被 3 整除且 $i \le 30\}.$

求下列集合.

(1)
$$(A \cup B) \cap C$$
;

(2) $A \cup (B \cap C)$;

(3)
$$B-(A \cup C)$$
;

(4) $(A' \cap B) \cup C$.

解 因为

$$A = \{2,5,8,9,11\};$$

$$B = \{1, 2, 3, 4\};$$

$$C = \{3,6,9,12,15,18,21,24,27,30\},\$$

所以

(1)
$$(A \cup B) \cap C = \{1, 2, 3, 4, 5, 8, 9, 11\} \cap C = \{3, 9\};$$

(2)
$$A \cup (B \cap C) = A \cup \{3\} = \{2,3,5,8,9,11\};$$

(3)
$$B-(A \cup C) = B-\{2,3,5,6,8,9,11,12,15,18,21,24,27,30\} = \{1,4\}.$$

(4) 因为
$$A' = \{1,3,4,6,7,10\} \cup \{12,13,14,\cdots\}$$
,所以

$$(A' \cap B) \cup C = \{1,3,4\} \cup C = \{1,3,4,6,9,12,15,18,21,24,27,30\}.$$

例 1-16 试定义两个集合 A,B,使得 $A \in B$ 且 $A \subseteq B$.

解 定义 $A = \{a\}, B = \{\{a\}, a\}, 则有 A \in B 且 A \subseteq B$.

例 1-19 设 A,B 是任意的集合,试证明当且仅当 $A\subseteq B$ 时, $2^A\subseteq 2^B$.

证 设 $A \subseteq B$ 且 $S \in 2^A$,则 $S \subseteq A$,因为 $A \subseteq B$,所以 $S \subseteq B$,因此 $S \in 2^B$,故 $2^A \subseteq 2^B$. 反之,设 $2^A \subseteq 2^B$ 且 $u \in A$,则 $\{u\} \subseteq A$,因此 $\{u\} \in 2^A$,由 $2^A \subseteq 2^B$,所以 $\{u\} \in 2^B$,因此 $\{u\} \subseteq B$,于是 $u \in B$. 故 $A \subseteq B$.

例 1-21 试证明对任意集合 A,B,C,等式(A-B) \bigcup (A-C)=A 成立的充要条件是 $A \cap B \cap C = \emptyset$.

证 先证必要性.

设
$$(A-B) \cup (A-C) = A$$
,因为
$$(A-B) \cup (A-C) = (A \cap B') \cup (A \cap C') = A \cap (B' \cup C')$$

$$=A \cap (B \cap C)' = A - (B \cap C),$$

所以

$$A - (B \cap C) = A$$
.

于是对任意的 $x \in A$,必有 $x \in A - (B \cap C)$,因而必有 $x \notin B \cap C$. 故 $A \cap (B \cap C) = \emptyset$.

再证充分性.

设 $A \cap B \cap C = \emptyset$,则对任意 $x \in A$,必有 $x \notin B \cap C$,即 $x \in (B \cap C)'$,因此 $A \subseteq (B \cap C)'$.于是

$$(A-B) \cup (A-C) = A \cap (B \cap C)' = A.$$

例 1-23 设有集合 A,B,且 $A \cap B = A,$ 求联合方程组

$$\begin{cases} x \cup A = B; \\ x \cap A = \emptyset \end{cases}$$

的解,并证明此解是唯一的.

解 由
$$A \cap B = A$$
 可知 $A \cup B = B$. 令 $x = B - A$,因为 $(B - A) \cup A = (B \cap A') \cup A = (B \cup A) \cap (A' \cup A)$ $= (B \cup A) \cap U = A \cup B = B$, $(B - A) \cap A = (B \cap A') \cap A = \emptyset$,

所以集合 B-A 是联立方程组的解.

$$x_1 \cup A = x_2 \cup A$$
, $x_1 \cap A = x_2 \cap A$.
于是 $x_1 = x_1 \cap (x_1 \cup A) = x_1 \cap (x_2 \cup A) = (x_1 \cap x_2) \cup (x_1 \cap A)$
 $= (x_1 \cap x_2) \cup (x_2 \cap A) = x_2 \cap (x_1 \cup A) = x_2 \cap (x_2 \cup A) = x_2$.

故 B-A 是联立方程组唯一的解.