Andrew Lawson (MUSC and Usher Institute, University of Edinburgh)

Sijian Fan (University of South Carolina)

Brian Neelon (MUSC)

Gerardo Chowell Puente (Georgia State University) Multiscale Spatio-temporal Modeling of Covid-19 case incidence and mortality

Introduction

- During the Covid-19 pandemic many attempts were made to model state or national level time series of case counts or mortality
- To a much lesser extent, some effort was focused on spatial aspects of the pandemic and there are a few example of spatiotemporal modeling at finer spatial scales.
- It is clear that spatial aspects are important in pandemic spread at a variety of scales (both spatial and temporal)
- The idea that super scale modeling could be carried out at same time as fine scale has not been explored and yet multiple scales are a major focus of public health pandemic management.

Multiscale background

- Multiscale modeling: the Covid-19 pandemic has yielded a considerable amount of (since) validated data ...
- This includes data at different spatial scales
- In the US the CDC now provides weekly summary counts for case incidence and mortality at county level for 173 weeks from January 2020 to May 2023.
- These data also include state level case numbers and mortality
 - Both incident and cumulative numbers are available.

Charleston county, SC: 173 week profiles

Greenville and Richland counties

SC state level

Multivariate multiscale ST modeling

- Potentially it is possible to consider joint models at different scales and for different disease outcomes in space-time.
- In essence this is an example MsMVST Bayesian modeling
- In our case we consider the state level and county level as our multiple scales and initially we considered mortality modelling only
- The results reported here are for weekly mortality at the county level in SC (low level) and at the state level (high level)
- There are 46 counties and 1 state in the initial results

Notation

```
y_{k,j}^{DH} death count at the higher level (state)
y_{k,i}^{CH} case count at higher level
y_{i,j}^{DL} death count t lower level
y_{i,j}^{CL} case count at lower level
i = 1, ..., m areas (in this case counties)
j = 1,...T time periods (in this case weeks)
```

Assumptions 1

 We assume that the counts of cases or deaths can be regraded as conditionally independent Poisson distributed

$$y_{k,j}^{DH} \sim Pois(\mu_{k,j}^{DH})$$
 $y_{i,j}^{DL} \sim Pois(\mu_{i,j}^{DL})$

$$y_{i,j}^{DL} \sim Pois(\mu_{i,j}^{DL})$$

$$\log(\mu_{k,j}^{DH}) = \alpha_0^{DH} + \dots$$

$$\log(\mu_{k,j}^{DL}) = \alpha_0^{DL} + \dots$$

Assumptions 2

- Each level has a model and a potential linkage with the other level
- In the simplest model we assume that the high level (H) mean is simply a sum of the low level (L).
- In this case H: state and L: county
- Poisson aggregation assumption initially:

$$log(\mu_{k,j}^H) = log(\sum_{i \in k} \mu_{i,j}^L)$$

More sophisticated models also developed.

Assumptions 3

- General prior distributions
- Zero mean Gaussian prior distributions of regression parameters
- Weakly informative Gamma prior distributions for precisions
- ICAR prior distributions for spatial effects
- ST random effects assumed to have uncorrelated prior distributions

Basic model (mo)

 Sum at H level and dependence on case count at L Level, with Res in space and time at L level

$$log(\mu_{k,j}^H) = log(\sum_{i \in k} \mu_{i,j}^L)$$

$$\begin{aligned} log(\mu_{i,j}^{DL}) &= \alpha_0 + \alpha_1 \log(y_{i,j}^{CL}) + v_i + \lambda_j \\ \alpha_* &\sim N(0, \tau_*^{-1}) \\ v_i &\sim N(0, \tau_v^{-1}) \\ \lambda_j &\sim N(0, \tau_\lambda^{-1}) \end{aligned}$$

GOF: Joint models

Combined high and low level models

Model DIC	Total	DIC3	Total	PWAIC	Total	WAIC	Total

m0	23670	23741	221.1	23764
m1	23822	23868	296.9	23918
m2	23275	23292	283.3	23340
m3	23828	23872	301.2	23922
m4	23831	23873	301.2	23924
m5	23299	23319	283.2	23367
m6	23988	21828	1041.4	22234
m7	23273	23303	273.0	23350
m8	23286	23278	277.0	23325
m9	23953	21810	1040.1	22218
m10	23316	23311	286.4	23361

GOF: separate models

Combined high and low level models

Model DIC DIC3 PWAIC WAIC m023670 23741 221.1 23764 23824 23870 298.1 23919 m123567 23490 389.2 23593 m_2 m324132 24085 421.4 24191 24118 24074 417.5 24179 m4 m_5 23580 23504 383.7 23604 24489 21977 1130.8 22449 m623292 23309 279.1 23357 m723258 23278 278.3 23327 m825370 22462 1631.6 23276 m9 23593 23481 388.0 23583 m10

Model choice

- DIC3 and WAIC seem to detect similar models and appear to be reliable
- DIC uses the variance(Dev) penalty and is conservative and also leads to different choice compared to DIC₃ and WAIC
- M6 is favored for separate models
- M9 is favored for joint models

M9 (joint model)

• State level:

$$log(\mu_{k,j}^{DH}) = log(\sum_{i \in k} \mu_{i,j}^{DL}) + \lambda_{j}$$
$$\lambda_{j} \sim N(0, \tau_{\lambda}^{-1})$$

County level:

$$\begin{split} &log(\mu_{i,j}^{DL}) = \alpha_0 + \alpha_1 \log(y_{i,j}^{CL}) + \alpha_2 \log(y_{i,j-1}^{DL}) + \alpha_3 \log(\sum_{l \leq j} y_{i,l}^{CL}) + \psi_{i,j} + u_i + v_i + \lambda_j \\ &\psi_{i,j} \sim N(0,\tau_{\psi}^{-1}) \\ &u_i \sim ICAR(\tau_u^{-1}) \\ &\alpha_* \sim N(0,\tau_*^{-1}); v_i \sim N(0,\tau_v^{-1}); \lambda_j \sim N(0,\tau_{\lambda}^{-1}) \end{split}$$

M6 (separate model)

• State level:

$$log(\mu_{k,j}^{DH}) = \alpha_0 + \alpha_1 log(y_j^{CH}) + \alpha_2 log(y_{j-1}^{DH})$$

County level:

$$\begin{split} &log(\mu_{i,j}^{DL}) = \alpha_0 + \alpha_1 log(y_{i,j}^{CL}) + \alpha_2 log(y_{i,j-1}^{DL}) + \alpha_3 log(\sum_{l \leq j} y_{i,l}^{CL}) + \psi_{i,j} + u_i + v_i + \lambda_j \\ &\psi_{i,j} \sim N(0,\tau_{\psi}^{-1}) \\ &u_i \sim ICAR(\tau_u^{-1}) \\ &\alpha_* \sim N(0,\tau_*^{-1}); v_i \sim N(0,\tau_{\psi}^{-1}); \lambda_j \sim N(0,\tau_{\lambda}^{-1}) \end{split}$$

M6s: high level profile

M9: high level profile

Spatial effects: m9

Conclusions

- We have attempted to model the multiple levls of risk which mus arise during a infectious disease outbreak.
- Our example is Covid-19 in a single US state.
- However, we can easily extend the analysis to other states and multiple states to allow spatial modeling of the state level responses.
- The computational burden increases considerably and we are considering now strategies where approximate inference can be achieved in reasonable time scales for decision making.

Additional Conclusions

- The models display relative good fit to the time series at the high level, at least.
- Our ability to model the duration of the pandemic could be enhanced if time varying covariates were available.
- Viral load variation and vaccination coverage could be very important in both case event and mortality modeling.
- Extensions to joint modeling of deaths and case events across scales (both space and time) would be a clear possibility
- This can lead to MsMVST modeling

Thank you!