YAPAY SİNİR AĞLARI

Giriş

Bu proje, Yapay Sinir Ağları ve Multilayer Perceptron fonksiyonu ile Mısır'daki Hepatit-C hastalarından toplanmış veriler göz önünde bulundurularak, veri seti içerisindeki hastaların Hepatit-C hastalığının durumuna göre F0-F4 aralığında sınıflandırmaktadır.

Bu aralıkta F0 sağlıklı bireyi temsil ederken, F4 siroz olmuş hastayı göstermektedir. Kullanılan veri setinde sağlıklı (F0) birey <u>bulunmamaktadır.</u>

Bu veriler baş ağrısı, mide bulantısı, kusma gibi fiziksel belirtilerin yanında kan tahlillerini de içermekte olup cinsiyet, yaş ve vücut kitle indeksi gibi sınıflandırılmış toplam 27 giriş içermektedir.

Python dilinde, bazı hazır kütüphaneler kullanılarak hazırlanmış bu proje de fazla giriş olması, yetersiz hasta verisi ve ilişkisi düşük girişler nedeniyle makine yeterli öğrenme düzeyine ulaşamadığı görülmüştür.

Ortalama %25 oranında doğru tahminde bulunabilen bu proje, epoch değerine, gizli katman ile nöron sayısı değişikliğine ve aktivasyon fonksiyonlarına bağlı olarak %22-30 aralığında doğru tahminlerde bulunduğu görülmüştür.

Tanım

Bu projenin amacı Mısır'daki Hepatit C hastalarından toplanan veriler ile bilgileri girilen hastanın, hastalığının geldiği seviyeleri sınıflandırarak tahmin etmektir.

* Girişler:

- 1. Age (Yaş)
- 2. Gender (Cinsiyet)
- 3. BMI (Vücut Kitle İndeksi)
- 4. Fever (Ateş)
- 5. Nausea/Vomiting (Mide bulantısı/Kusma)
- 6. Headache (Baş ağrısı)
- 7. Diarrhea (İshal)
- 8. Fatigue (Yorgunluk)
- 9. Bone ache (Kemik ağrısı)
- 10. Jaundice (Sarılık)
- 11. Epigastria pain (Karın ağrısı)
- 12. WBC (Beyaz Kan Hücresi)
- 13. RBC (Kırmızı Kan Hücresi)
- 14. HGB (Hemoglobin)
- 15. Platelet (Trombosit)
- 16. AST 1 (Aspartat Aminotransferaz 1 Hafta)
- 17. ALT 1 (Alanin Aminotransferaz 1 Hafta)
- 18. ALT 4 (Alanin Aminotransferaz 4 Hafta)
- 19. ALT 12 (Alanin Aminotransferaz 12 Hafta)
- 20. ALT 24 (Alanin Aminotransferaz 24 Hafta)
- 21. ALT 36 (Alanin Aminotransferaz 36 Hafta)
- 22. ALT 48 (Alanin Aminotransferaz 48 Hafta)
- 23. RNA Base
- 24. RNA 4 (RNA 4. Hafta)
- 25. RNA 12 (RNA 12. Hafta)
- 26. RNA EOT (RNA Tedavi Sonu)
- 27. RNA EF (RNA Uzama Faktörü)

* Çıkışlar:

- 28. Baseline Histological
 - F0: Tümör yok
 - F1: Geçiş Fibroz
 - F2: Az Septum
 - F3: Çok Septum
 - F4: Siroz

Verisetinin Alındığı Adres: https://archive.ics.uci.edu/ml/datasets/

* Projenin Faydası:

Hastalık belirtileri ve kan sonuçları gibi bilgiler vasıtasıyla hastanın Hepatit C'nin hangi evresinde olduğuna dair tahminler yapılarak tedavinin kolaylaştırılması.

Metot

Python ile PyCharm üzerinde Keras kullanarak projeyi geliştirdik.

• Kullanılan Kütüphaneler:

- Keras
 - Models
 - Layers
 - Optimizers
 - Utils
 - Np Utils
- ▶ Sklearn
 - Utils
 - Metrics
 - Preprocessing
 - Linear Model
- ▶ Termcolor
- Numpy
- Matplot
- ▶ Pandas
- ▶ Seaborn
- Itertools

• Kullanılan Algoritma:

Keras, varsayılan olarak Backpropagation algoritmasını kullanır.

Backpropagation, Çok Katmanlı Perceptron (Yapay Sinir Ağları) eğitimi için denetimli bir öğrenme algoritmasıdır.

Backpropagation algoritması, delta kuralı veya gradyan iniş olarak adlandırılan bir teknik kullanarak ağırlık alanındaki hata fonksiyonunun minimum değerini arar. Hata fonksiyonunu en aza indiren ağırlıkların öğrenme problemine bir çözüm olduğu düşünülmektedir.

• Kullanılan Aktivasyon Fonksiyonu:

ROC Grafiği Hata Grafiği Confusion Matrix

√ Gizli Katmandaki Değişiklikler ve Sonuçları

Gizli katmanların sayısını azalttıkça, accuracy'nin azalması ve loss değerinin artmasının yanında programın tahmin yeteneği de zayıfladı. Genel olarak hep aynı tahminlerde bulundu. Fakat gizli katman miktarını arttırdıkça program farklı tahminlerde de bulunmaya başladı.

Gizli katmanlardaki nöron sayısında yapılan değişikliklerde ise nöron sayısı azaldıkça accuracy oranı azaldı. Loss oranı aşırı etkilenmemekle beraber nöron sayısı azaldıkça az miktarda arttı.

Bunların dışında nöron ve gizli katman sayısı azaldıkça programın çalışma hızı artmaktadır.

Gizli katmanda yapılan bütün değişiklikleri ve sonuçlarını raporun sonunda görebilirsiniz.

✓ Öğrenme Oranındaki Değişiklikler ve Sonuçları

Denenen öğrenme oranları: 0.01, 0.005, 0.001, 0.0001

En İyi Sonuç: 0.01 - Sonuçlar her seferinde farklı olsa da en yüksek başarı yüzdesi ve accuracy bu öğrenme oranında görülmüştür. 0.6074 accuracy, %28 başarı yüzdesi.

En Stabil Sonuç: 0.0001 - Yapılan denemelerde loss, accuracy ve başarı yüzdesi hemen hemen sabit kaldı.

✓ Momentum Katsayısındaki Değişiklikler ve Sonuçları

SGD Optimizer'ı genel olarak çok kötü sonuçlar verdiği için kendi içinde bir kıyaslama yapacak olursak;

Denenen momentum katsayıları: 0.90, 0.70, 0.50, 0.15, 0.05

En İyi Sonuç: 0.50 momentum katsayısı diğerlerine göre nispeten yüksek başarı yüzdesi vermesinin yanında diğer SGD sonuçlarına oranla stabil sonuçlar da verdi.

En Stabil Sonuç: 0.05 momentum katsayısı ile sağlandı. loss, accuracy ve başarı yüzdesi büyük oranda değişmedi.

Öğrenme hızı ve momentum ile ilgili bazı özellikler aşağıdaki gibidir;

- Öğrenme hızı yüksek tutuyor olmam veriden çok etkileniyorum demektir.
- Öğrenme hızı yüksek olması salınıma neden olacaktır. Buna karşı küçük olması da küçük adımlarla ilerleyeceğinden öğrenimin çok uzun sürmesine neden olacaktır.
- Öğrenme hızı için en uygun çözüm başlangıçta öğrenme hızı yüksek tutmak, gittikçe azaltmaktır.
- Öğrenme hızı başlangıçta çok küçük olması, lokal optimum değere takılarak, global optimum değere hiç ulaşılamamasına neden olabilir.
- Öğrenme hızı değeri genelde varsayılan değer olarak 0.01 kullanılmakta belli bir epoch'dan sonra 0.001'e düşürülmektedir.
- Schoastic gredient descent(SGD) momentum ile kullanıldığında hızı artırmakta, salınımları azaltmaktadır.
- Genelde kullanılan momentum beta katsayısı 0.9'dur. Uygun parametre aralığı ise 0.8-0.99'dur.

Kaynakça

- $\bigstar \ \text{https://archive.ics.uci.edu/ml/datasets/Hepatitis+C+Virus+} \% 28 \text{HCV} \% 29 + \text{for+Egyptian+patients}$
- ★ https://devhunteryz.wordpress.com/2018/06/20/geri-yayilimbackpropagation/
- ★ https://medium.com/deep-learning-turkiye/derin-ogrenme-uygulamalarinda-en-sik-kullanilan-hiper-parametreler-ece8e9125c4