3D Incompressible fluid simulation

Iwan Boksebeld Marijn Suijten

Abstract

Incompressible fluid simulation using MaC grid Based on the paper by Cline¹

¹D. Cline, D. Cardon, and P. K. Egbert, "Fluid flow for the rest of us: Tutorial of the marker and cell method in computer graphics," *Brigham Young University*, 2013

Table of contents

1. Theoretical

2. Implementation

3. Demo

Theoretical

Reduced Navier-Stokes equation

$$\nabla \cdot u = 0$$
$$\frac{\partial u}{\partial t} = -(\nabla \cdot u)u - \nabla p + f_{\text{ext}}$$

Solve the navier-stokes in steps to make the problem easier

MaC grid

Staggered grid: velocities live on mid face Pressure lives in cell centers Used to increase the stability of the simulation

Advection

Firstly advection of velocity through the fluid

$$\frac{\partial u^*}{\partial t} = -(\nabla \cdot u)u$$

Use backwards particle trace Trace particle backwards with a time of -dt

$$u_x^* = u_x.interpolate(pos(u_x) - dt * u(pos(u_x)))$$

External forces

Fairly straightforward Simply add acceleration to the velocity components

Calculate Pressure

Pressure at different points dependent upon the others Thus linear system of equations We solve this iteratively

Interpolation

Simulation uses RK2 trilinear interpolation Trace particle for half the time and determine velocity again Then trace using this velocity for full time

$$v = u(p);$$

 $v2 = u(p + 0.5 * dt * v);$
 $p = p + dt * v2;$

Implementation

Framework

Used practicals as framework
Using libigl as a renderer
Polyvox for creating meshes from fluid grid (marching cubes)

Structure

Using dense grid for small implementation
- Easy to upgrade to hashmap
Functions map to the steps described in ¹

¹D. Cline, D. Cardon, and P. K. Egbert, "Fluid flow for the rest of us: Tutorial of the marker and cell method in computer graphics," *Brigham Young University*, 2013

Rendering

Using voxelization: suboptimal

Demo

Questions?