quantmod()

DIMAS RAMIREZ LUIS DANIEL

12/6/2021

Un solo activo (una acción)

Media y varianza

Los precios de las accciones son variables aleatorias

En realidad en lo que debemos enfocarnos es en los renidmientos de las acciones.

$$R = \frac{VF - VI}{VI}$$

library(quantmod)

```
## Warning: package 'quantmod' was built under R version 3.6.3
## Loading required package: xts
## Warning: package 'xts' was built under R version 3.6.3
## Loading required package: zoo
## Warning: package 'zoo' was built under R version 3.6.3
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
##
       as.Date, as.Date.numeric
## Loading required package: TTR
## Warning: package 'TTR' was built under R version 3.6.3
## Registered S3 method overwritten by 'quantmod':
##
     as.zoo.data.frame zoo
```

```
#addBBands <- Add Bollinger Bands to current chart
#addMA <- Add Moving Average to chart
#attachSymbols <- Attach and Flush DDB
#chartSeries <- create financial charts, to make technical analysis.
#getQuote <- Download current stock quote
#getSymbols <- load and manage data from multiple sources
#getSymbols.csv
#saverCHart <- save chart to external file</pre>
```

getSymbols("BAC")

```
## 'getSymbols' currently uses auto.assign=TRUE by default, but will
## use auto.assign=FALSE in 0.5-0. You will still be able to use
## 'loadSymbols' to automatically load data. getOption("getSymbols.env")
## and getOption("getSymbols.auto.assign") will still be checked for
## alternate defaults.
##
## This message is shown once per session and may be disabled by setting
## options("getSymbols.warning4.0"=FALSE). See ?getSymbols for details.
##
[1] "BAC"
```

head(BAC)

##		BAC.Open	BAC.High	BAC.Low	BAC.Close	BAC.Volume	BAC.Adjusted
##	2007-01-03	53.40	54.18	52.99	53.33	16028200	40.51454
##	2007-01-04	53.33	53.89	53.05	53.67	13175000	40.77284
##	2007-01-05	53.59	53.59	53.03	53.24	10205000	40.44615
##	2007-01-08	53.46	53.64	52.80	53.45	9685900	40.60569
##	2007-01-09	53.60	53.71	52.97	53.50	12546500	40.64368
##	2007-01-10	53.26	53.70	53.16	53.58	10083900	40.70448

tail(BAC)

```
BAC.Open BAC.High BAC.Low BAC.Close BAC.Volume BAC.Adjusted
                        43.24
                                42.43
                                                                42.88
## 2021-06-08
                42.86
                                         42.88
                                                 41871400
## 2021-06-09
               42.47
                        42.73
                               42.11
                                         42.32
                                                 42366300
                                                                42.32
## 2021-06-10
               42.76
                        42.96
                               41.62
                                         41.69
                                                 40123600
                                                                41.69
## 2021-06-11 41.81
                        41.89
                                41.51
                                         41.86
                                                 31188500
                                                                41.86
                                         41.36
## 2021-06-14
               41.85
                        41.91
                                41.06
                                                 36050700
                                                                41.36
## 2021-06-15
               41.28
                        41.56
                                40.90
                                         41.39
                                                 39241800
                                                                41.39
```

```
plot(C1(BAC), col= 'black')
```


barChart(BAC)

getSymbols("GOOG")

[1] "GOOG"

barChart(GOOG)

candleChart(GOOG, type = "candlesticks", multi.col = TRUE, theme= 'white', subset= 'last 2 months')

chartSeries(GOOG)

Wulfrano

```
getSymbols("AMZN")
```

[1] "AMZN"

head(AMZN)

##		AMZN.Open	AMZN.High	AMZN.Low	AMZN.Close	AMZN.Volume	AMZN.Adjusted
##	2007-01-03	38.68	39.06	38.05	38.70	12405100	38.70
##	2007-01-04	38.59	39.14	38.26	38.90	6318400	38.90
##	2007-01-05	38.72	38.79	37.60	38.37	6619700	38.37
##	2007-01-08	38.22	38.31	37.17	37.50	6783000	37.50
##	2007-01-09	37.60	38.06	37.34	37.78	5703000	37.78
##	2007-01-10	37.49	37.70	37.07	37.15	6527500	37.15

barChart(AMZN)

SACANDO EL RENDIMIENTO

R <- as.numeric(AMZN\$AMZN.Close["2021-06-08"]-as.numeric(AMZN\$AMZN.Close["2007-01-03"]))/as.numeric(AMZR

[1] 83.34393

Rendimientos al cierre

hist(as.numeric(Rd))

Histogram of as.numeric(Rd)

Tenemos los rendimientos de la acción de AMAZON y sabemos que es una variable aleatoria que se distribuye de forma normal

Calcular el rendimiento promedio diario de AMZN

```
AmznRd <- mean(Rd, na.rm = TRUE )

AmznVRd <- var(Rd, na.rm = TRUE )

AmznSDRd <- sd(Rd, na.rm = TRUE )

AmznRd
```

[1] 0.0009342713

```
AmznVRd
```

```
## AMZN.Close 0.0005553116
```

AmznSDRd

[1] 0.02356505

```
AMZNra <- round(((AmznRd+1)^252-1)*100, 2)

AMZNVola <- round((AmznSDRd*252^0.5)*100, 2)

getSymbols("TM")
```

[1] "TM"

barChart(TM\$TM.Close)

Rendimientos al cierre

hist(as.numeric(RdTM))

Histogram of as.numeric(RdTM)


```
tmRd <- mean(RdTM, na.rm = TRUE )
tmVRd <- var(RdTM, na.rm = TRUE )
tmSDRd <- sd(RdTM, na.rm = TRUE )

tmRd

## [1] -4.905227e-05

tmVRd

## TM.Close
## TM.Close
## TM.Close 0.000258893</pre>
```

[1] 0.01609015

```
pnorm(0, tmRd, tmSDRd)
```

[1] 0.5012162

```
length(tmRd[tmRd <= 0])/length(tmRd)</pre>
```

[1] 1

```
tmRA <- round(((tmRd+1)^252-1)*100, 2)
tmVola <- round((tmSDRd*252^0.5)*100, 2)</pre>
```

Lunes 14-Junio-2021

Para calcular la probabilidad de una variable aleatoria discreta

Recordad que el valor esperado o esperanza matemática no es más que la media o μ

$$E(\bar{x}_i) = \sum \bar{x}_i P(x_i)$$

$$R_i = \frac{Precio_f - Precio_i}{Precio_i}$$

Recuerda que con las acciones trabajamos con su rendimiento.

$$R_{i} = N(\mu, \sigma^{2})$$

$$E(R_{i}) = \sum_{i} R_{i} \quad P(R_{i}) = \frac{\sum_{i} R_{i}}{n}$$

$$\sigma^{2} = Var(R_{i}) = E(R_{i} - E(R_{i}))^{2} = \frac{\sum_{i=1}^{N} (R_{i} - \mu)^{2}}{N}$$

$$VOLATILIDAD = \sigma = \sqrt{Var(R_i)}$$

W está definido como el capital inicial de mi portafolio.

Suponiendo que mi portafolio esta consitituido por la acción A y B. El valor esperado del rendimiento de mi portafolio queda definido como : R_p

$$E(R_n) = E[w * E(R_B) + (1 - w)E(R_B)]$$

La volatilidad del portafolio es tambíen conocido como el riesgo del portafolio

$$COV(x, y) = \sum X_i Y_i P()$$

Factor de correlación [-1,1]

$$\gamma_{x,y} = \frac{COV(x_i, y_i)}{\sigma_{xi}\sigma_{yi}}$$

PIDE QUE TE EXPLIQUE ESTO RODOLFO

Analizando dos activos, CEMEX y BIMBO

```
tickers <- c("CEMEXCPO.MX", "BIMBOA.MX")
getSymbols(tickers)

## Warning: CEMEXCPO.MX contains missing values. Some functions will not work
## if objects contain missing values in the middle of the series. Consider using
## na.omit(), na.approx(), na.fill(), etc to remove or replace them.

## Warning: BIMBOA.MX contains missing values. Some functions will not work if
## objects contain missing values in the middle of the series. Consider using</pre>
```

[1] "CEMEXCPO.MX" "BIMBOA.MX"

names (BIMBOA.MX)

```
## [1] "BIMBOA.MX.Open" "BIMBOA.MX.High" "BIMBOA.MX.Low"
## [4] "BIMBOA.MX.Close" "BIMBOA.MX.Volume" "BIMBOA.MX.Adjusted"
```

na.omit(), na.approx(), na.fill(), etc to remove or replace them.

barChart(BIMBOA.MX\$BIMBOA.MX.Close)

Cálculo de rendimientos

 $R_b \leftarrow diff(BIMBOA.MX\$BIMBOA.MX.Close)/BIMBOA.MX\$BIMBOA.MX.Close["2007-01-02/2021-06-10"] \\ barChart(R_b)$

 $R_c \leftarrow diff(CEMEXCPO.MX\$CEMEXCPO.MX.Close)/CEMEXCPO.MX\$CEMEXCPO.MX.Close["2007-01-02/2021-06-10"] \\ barChart(R_c)$

Considerar una ventana de tresa años

```
R_b3 <- R_b["2018-06-10/2021_06-10"]

## Warning in as_numeric(MM): NAs introducidos por coerción

## Warning in as_numeric(MM): NAs introducidos por coerción

R_c3 <- R_c["2018-06-10/2021_06-10"]

## Warning in as_numeric(MM): NAs introducidos por coerción

## Warning in as_numeric(MM): NAs introducidos por coerción</pre>
```

Valor esperado

```
ERB <- mean(R_b3)
ERC <- mean(R_c3)</pre>
ERB
```

```
## [1] 8.085803e-05

ERC

## [1] 2.514264e-05

#¿porque los promedios son tan pequeños?
```

Varianzas y covarianzas

```
VRB <- var(R_b3) #vairanza de Bimbo
VRC <- var(R_c3) #varianza de Cemex
cov_BC <- cov(R_b3, R_c3) #covarianza de bimbo y cemex
```

Valor esperado del portafolio con w=0.5

plot(vola_p, ER_p) #que te explique bien la gráfica

```
w <- seq(0,1, by=0.01)
ER_p <- w*ERB+(1-w)*ERC</pre>
```

Cálculo de la varianza del portafolio y de su riesgo (Volatilidad = desviación estándar)

```
VRp <- w^2*VRB+(1-w)^2*VRC+2*w*(1-w)*cov_BC #pedirle a Rudy bien esta formula

## Warning in w^2 * VRB: Recycling array of length 1 in vector-array arithmetic is deprecated.

## Warning in (1 - w)^2 * VRC: Recycling array of length 1 in vector-array arithmetic is deprecated.

## Use c() or as.vector() instead.

## Warning in 2 * w * (1 - w) * cov_BC: Recycling array of length 1 in vector-array arithmetic is depre

## Use c() or as.vector() instead.</pre>

vola_p <- VRp^0.5
```


Valor esperado del portafolio

$$E(R_P) = WE(R_A) + (1 - W)E(R_B)$$

Varianza del portafolio

$$\sigma_P^2 = W^2 \sigma_A^2 + (1 - W)^2 \sigma_B^2 + 2W(1 - W)\gamma_{A,B}$$

¿Esta formula esta bien?