Exercise 7 & 8 Probability Theory 2020 Autumn

Hanmo Chen 2020214276

December 23, 2020

1 Problem 1

Denote the entries in U as u_{ij} and entries in Y as Y_{ij} , so

$$Y_{ij} = \sum_{r,s} u_{ri} u_{sj} X_{ij} \tag{1}$$

Also we have,

$$Cov(X_{ij}, X_{mn}) = \begin{cases} 2, & i = j = m = n \\ 1, & (i, j) = (m, n) \text{ or } (i, j) = (n, m), i \neq j \\ 0, & \text{otherwise} \end{cases}$$
 (2)

Thus

$$\operatorname{Cov}(Y_{ij}, Y_{mn}) = \operatorname{Cov}\left(\sum_{r,s} u_{ri}u_{sj}X_{ij}, \sum_{p,q} u_{pm}u_{qn}X_{mn}\right)$$

$$= 2\sum_{r=1}^{n} u_{ri}u_{rj}u_{rm}u_{rn} + \sum_{r\neq s} u_{ri}u_{sj}u_{rm}u_{sn} + \sum_{r\neq s} u_{ri}u_{sj}u_{rn}u_{sm}$$

$$= \sum_{r,s} \left[u_{ri}u_{sj}u_{rm}u_{sn} + u_{ri}u_{sj}u_{rn}u_{sm}\right]$$

$$= \left(\sum_{r} u_{ri}u_{rm}\right)\left(\sum_{s} u_{sj}u_{rn}\right) + \left(\sum_{r} u_{ri}u_{rn}\right)\left(\sum_{s} u_{sj}u_{sm}\right)$$

$$(3)$$

Denote the column vectors in U as \mathbf{u}_i , $i = 1, 2, 3, \dots, N$, so $\mathbf{u}_i \cdot \mathbf{u}_j = \sum_r u_{ri} u_{rj} = \delta_{ij}$.

$$Cov(Y_{ij}, Y_{mn}) = \delta_{im}\delta_{jn} + \delta_{jm}\delta_{in} = \begin{cases} 2, & i = j = m = n \\ 1, & (i, j) = (m, n) \text{ or } (i, j) = (n, m), i \neq j \\ 0, & \text{otherwise} \end{cases}$$
 (4)

Because X_{ij} , $j \ge i$ are independent Gaussian variables, so the joint distribution of Y_{ij} is joint Gaussian distribution, which means,

$$Cov(Y_{ij}, Y_{mn}) = 0 \iff Y_{ij}, Y_{mn} \text{ are independent}$$
 (5)

So all the entries on and above the diagonal of Y are independent, and $Y_{ii} \sim N(0,2), i=1,2,3,\cdots,N$ and $Y_{ij} \sim N(0,1), 1 \leq i < j \leq n$. (It is easy to see that $\mathbb{E}[Y_{ij}] = 0$)

2 Problem 2

Notice that

- 1. If $X_n = 1$, then X_{n+1}, X_{n+2}, \cdots are independent of X_1, X_2, \cdots, X_n
- 2. There is at least one 1 in any five-in-a-row X_i s as $\{X_n, X_{n+1}, \cdots, X_{n+4}\}$

So we can split X_1, X_2, \cdot, X_n into a series of epsisodes, each epsisode $L_j = [0, \cdots, 0, 1]$ is consisted of n zeros (n can be 0, 1, 2, 3, 4) and 1 one. And $L_j, j = 1, 2, \cdots, m$ are independent. (For the last epsisode, if it is ended with 0, we can append 1 to its end and let n = n + 1.) Denote the length of each epsisode as l_j , so $\sum_{j=1}^m l_j = n$.

Consider the distribution of l_j , it can only take values in 1, 2, 3, 4, 5,

- $P(l_i = 1) = P(X_1 = 1) = 0.2$
- $P(l_i = 2) = P(X_1 = 0, X_2 = 1) = 0.16$
- $P(l_i = 3) = P(X_1 = 0, X_2 = 0, X_3 = 1) = 0.128$
- $P(l_i = 4) = P(X_1 = 0, X_2 = 0, X_3 = 0, X_4 = 1) = 0.1024$
- $P(l_i = 5) = P(X_1 = 0, X_2 = 0, X_3 = 0, X_4 = 0) = 0.4096$

So

$$\lim_{n \to \infty} \frac{S_n}{n} = \lim_{m \to \infty} \frac{m}{l_1 + l_2 + \dots + l_m} = \lim_{m \to \infty} \frac{1}{\frac{1}{m} \sum_{j=1}^m l_j}$$
 (6)

According to Strong Law of Large Numbers,

$$\frac{1}{m} \sum_{j=1}^{m} l_j \xrightarrow{a.s} E[l_j] = 3.3616 \tag{7}$$

So

$$\lim_{n \to \infty} \frac{S_n}{n} \xrightarrow{a.s} \frac{1}{3.3616} \tag{8}$$

3 Problem 3

3.1 (i)

Suppose the corresponding k of X_n is k_n , i.e. $\sum_{i=1}^{k_n} Y_i = X_n + n$. If $X_n \ge 1$, $\sum_{i=1}^{k_n} Y_i \ge n+1$, so $k_{n+1} = k_n, X_{n+1} = X_n - 1$. If $X_n = 0$, $\sum_{i=1}^{k_n} Y_i = n$, $\sum_{i=1}^{k_{n+1}} Y_i = n + Y_{n+1} \ge n+1$, so $k_{n+1} = k_n, X_{n+1} = Y_{n+1} - 1$.

So given X_n , X_{n+1} is independent of X_{n-1}, \dots, X_1 . $\{X_n\}_{n=1}^{\infty}$ forms a Markov Chain. And the transition probability is,

$$P(X_{n+1} = i | X_n = 0) = p_{i+1}, i = 0, 1, \cdots$$
(9)

$$P(X_{n+1} = i | X_n = j, j \geqslant 1) = \begin{cases} 1, & i = j - 1 \\ 0, & \text{otherwise} \end{cases}$$
 (10)

3.2 (ii)

Notice that $f(n) = P(X_n = 0)$, so $\lim_{n \to \infty} f(n) = \lim_{n \to \infty} P(X_n = 0)$. If we want $\lim_{n \to \infty} f(n)$ exists, the Markov chain must be irreducible, aperiodic and positive recurrent.

It is irreducible obviously. Consider the support set $\mathcal{Y} = \{i: p_i > 0\}$ of Y, if $\inf \mathcal{Y} = N < \infty$, the state space \mathcal{S} of the Markov Chain is finite $\{0,1,\cdots,N\}$. Obviously N can be reached from 0. And because $N-1,N-2,\cdots,0$ can be reached from N, so it is irreducible. If $\inf \mathcal{Y} = \infty$, for any state n, there exists a state m > n, and m can be reached from 0, so n can be reached from 0. In that case, the Markov chain is also irreducible.

For it to be aperiodic, if it comes from 0 to i, it will return to 0 in i steps. So if $\mathcal{Y} = \{i : p_i > 0\}$ is like $\{2, 4, \dots, 2k, \dots\}$ or $\{3, 6, 9, \dots, 3k, \dots, \}$, for certian steps it will not arrive at 0. So the Markov chain is aperiodic if and only if $\gcd(\mathcal{Y}) = 1$

And it is positive recurrent if and only if $\mathbb{E}[T_0] < \infty$. It is easy to see that $P(T_0 = i + 1) = p_i, i \ge 1$, so

$$\mathbb{E}[T_0] = \sum_{i=1}^{\infty} i p_i = \mathbb{E}[Y_1]$$
(11)

So the necessary and sufficient condition for $\lim_{n\to\infty} f(n)$ to exist is $\gcd(\{i+1:p_i>0\})=1$ and $\sum_{i=1}^{\infty} ip_i < \infty$

3.3 (iii)

The limis equals to the steady-state probability,

$$\pi_0 = \lim_{n \to \infty} f(n) = \frac{1}{\mathbb{E}[T_0]} = \frac{1}{\mu}$$
(12)

4 Problem 4

4.1 (i)

Denote the function f(n) as $P(X_n > 0, \forall n \ge 1 | X_0 = n)$ So the probability that the chain never returns to zero is f(0) = f(1). When $X_0 = 0$, $X_1 = 1$, and X_2 must be 2. So $f(1) = \frac{4}{5}f(2)$.

Consider f(2),

$$f(2) = P(X_n > 0, \forall n \ge 1 | X_0 = 2)$$

$$= P(X_1 = 1, X_n > 0, \forall n \ge 2 | X_0 = 2) + P(X_1 = 3, X_n > 0, \forall n \ge 2 | X_0 = 2)$$

$$= p_{21}P(X_n > 0, \forall n \ge 1 | X_0 = 1) + p_{23}P(X_n > 0, \forall n \ge 1 | X_0 = 3)$$

$$= \frac{4}{13}f(1) + \frac{9}{13}f(3)$$
(13)

Because $f(2) = \frac{5}{4}f(1)$

$$f(3) - f(2) = \frac{4}{9}(f(2) - f(1)]) = \frac{4}{9} \times \frac{1}{4}f(1) = \frac{1}{9}f(1)$$
(14)

In general, we have

$$f(n+1) - f(n) = \frac{n^2}{((n+1)^2)} (f(n) - f(n-1)) = \frac{1}{(n+1)^2} f(1)$$
(15)

So

$$f(n) = \sum_{i=1}^{n} \frac{1}{i^2} f(1) \tag{16}$$

And note that $f(n) \to 1$ as $n \to \infty$, using the famous lemma

$$\sum_{i=1}^{\infty} \frac{1}{i^2} = \frac{\pi^2}{6} \tag{17}$$

So $f(1) = \frac{6}{\pi^2}$. And the probability that the chain never returns to zero is $\frac{6}{\pi^2}$.

4.2 (ii)

Using the same method, we have

$$f(n) = \sum_{i=1}^{n} \frac{1}{i^{\alpha}} f(1)$$
 (18)

When $\alpha > 1$, $\sum_{i=1}^{n} \frac{1}{i^{\alpha}}$ converges, so 0 < f(1) < 1. The markov chain is transient (because it is irreducible and state 0 is transient).

When $\alpha \leq 1$, $\sum_{i=1}^{n} \frac{1}{i^{\alpha}}$ goes to ∞ , so f(1) = 0. The markov chain is recurrent (because it is irreducible and state 0 is recurrent).

And to determine it is positive recurrent or null recurrent, we assume the stationary distribution is $\pi^* = (\pi_i)_{i=0}^{\infty}$. Obviously we have $\pi_0 = \frac{1}{2^{\alpha}+1}\pi_1$ and for $n \geqslant 1$, we have

$$\pi_n = p_{n-1,n}\pi_{n-1} + p_{n+1,n}\pi_{n+1} \tag{19}$$

Thus we have

$$p_{n+1,n}\pi_{n+1} - p_{n,n+1}\pi_n = p_{n,n-1}\pi_n - p_{n-1,n}\pi_{n-1} = p_{1,0}\pi_1 - \pi_0 = 0$$
(20)

So

$$\pi_{n+1} = \frac{p_{n,n+1}}{p_{n+1,n}} \pi_n = \frac{(n+2)^{\alpha} + (n+1)^{\alpha}}{(n+1)^{\alpha} + n^{\alpha}} \pi_n = ((n+2)^{\alpha} + (n+1)^{\alpha}) \pi_0$$
 (21)

And $\sum_{n=0}^{\infty} \pi_n = 1$

$$\pi_0 \sum_{n=0}^{\infty} (n^{\alpha} + (n+1)^{\alpha}) = 1$$
 (22)

When $\alpha \geqslant -1$, $\sum_{n=0}^{\infty} n^{\alpha}$ goes to ∞ , $\pi_0 = 0$, the Markov chain is null recurrent.

When $\alpha < -1$, $\sum_{n=0}^{\infty} n^{\alpha}$ converges, $0 < \pi_0 < 1$, the Markov chain is positive recurrent. And $\pi_0 = \frac{1}{2\zeta(-\alpha)}$, where $\zeta(s) = \sum_{i=1}^{\infty} \frac{1}{n^s}$ is the Riemann function.

In summary,

- When $\alpha > 1$, the Markov chain is transient.
- When $-1 \leqslant \alpha \leqslant 1$, the Markov chain is null recurrent.
- When $\alpha < 1$, the Markov chain is positive recurrent.

5 Problem 5

Denote the function f(n) as $P(X_n > 0, \forall n \ge 1 | X_0 = n)$. The probability that the Markov chain never returns to zero is f(1). Also we have f(2) = pf(3), f(1) = pf(3) + (1-p)f(2). So $f(2) = \frac{1}{2-p}f(1), f(3) = \frac{1}{(2-p)p}f(1)$. And for $n \ge 2$,

$$\begin{cases}
f(2n-1) = pf(2n+1) + (1-p)f(2n) \\
f(2n) = pf(2n+1) + (1-p)f(2n-2)
\end{cases}$$
(23)

$$\begin{cases}
f(2n) = \frac{1}{2-p}((1-p)f(2n-2) + f(2n-1)) \\
f(2n+1) = \frac{1}{(2-p)p}(f(2n-1) - (1-p)^2 f(2n-2))
\end{cases}$$
(24)

Solving the equation $f(2n+1) + \lambda f(2n) = C(f(2n-1) + \lambda f(2n-2))$, we have $\lambda = -1$ and $\frac{-(1-p)^2}{p}$. Thus,

$$\begin{cases}
f(2n+1) - f(2n) = \frac{(1-p)}{(2-p)p} (f(2n-1) - f(2n-2)) = \left[\frac{(1-p)}{(2-p)p}\right]^n f(1) \\
f(2n+1) - \frac{(1-p)^2}{p} f(2n) = f(2n-1) - \frac{(1-p)^2}{p} f(2n-2) = f(1)
\end{cases}$$
(25)

When $\frac{(1-p)}{(2-p)p} > 1, p < \frac{3-\sqrt{5}}{2}, f(1)$ must be 0. So the chain is recurrent.

When $\frac{(1-p)}{(2-p)p} = 1, p = \frac{3-\sqrt{5}}{2}, f(2n+1) - f(2n) = f(1)$. Using equation (23), we have f(2n+1) = f(2n-1) + (1-p)f(1), because 1-p > 0, f(1) must be zero and the chain is recurrent.

And when $\frac{(1-p)}{(2-p)p} < 1, p > \frac{3-\sqrt{5}}{2}, f(1) = 1 - \frac{(1-p)^2}{p} > 0$, the chain is transient.

To determine whether it is positive or null recurrent, we assume the stationary distribution is $\pi^* = (\pi_i)_{i=0}^{\infty}$.

So $\pi_0 = (1 - p)\pi_2, \pi_1 = \pi_0$. For $n \ge 1$,

$$\begin{cases}
\pi_{2n+1} = p\pi_{2n-1} + p\pi_{2n} \\
\pi_{2n} = (1-p)\pi_{2n-1} + (1-p)\pi_{2n+2}
\end{cases}$$
(26)

Solving the equation $\pi_{2n+1} + \lambda \pi_{2n+2} = C(\pi_{2n-1} + \lambda \pi_{2n}), \ \lambda = -(1-p) \text{ or } -\frac{p}{1-p}.$

So

$$\begin{cases}
\pi_{2n+1} - (1-p)\pi_{2n+2} = \pi_{2n-1} - (1-p)\pi_{2n} = 0 \\
\pi_{2n+1} - \frac{p}{1-p}\pi_{2n+2} = \frac{p(2-p)}{1-p}(\pi_{2n-1} - \frac{p}{1-p}\pi_{2n}) = \left[\frac{p(2-p)}{1-p}\right]^n (\pi_1 - \frac{p}{1-p}\pi_2)
\end{cases} (27)$$

So

$$\frac{p^2 - 3p + 1}{1 - p} \pi_{2n+2} = \left[\frac{p(2-p)}{1-p} \right]^n \frac{p^2 - 3p + 1}{1-p} \pi_2$$
 (28)

When $p = \frac{3-\sqrt{5}}{2}$, $p^2 - 3p + 1 = 0$, in equation (26) we have that $\pi_{2n+1} = (1-p)\pi_{2n} = \pi_{2n-1}$, by $\sum_{n=0}^{\infty} \pi_n = 1$ we have $\pi_0 = 0$, the Markov chain is null recurrent.

When $p < \frac{3-\sqrt{5}}{2}, \frac{p(2-p)}{1-p} < 1$,

$$\pi_{2n+2} = \left[\frac{p(2-p)}{1-p} \right]^n \pi_2 \tag{29}$$

$$\sum_{n=0}^{\infty} \pi_n = (1-p)\pi_2 + (2-p)\pi_2 \sum_{n=0}^{\infty} \left[\frac{p(2-p)}{1-p} \right]^n = \frac{(1-p)^2(3-p)}{p^2 - 3p + 1} \pi_2 = 1$$
 (30)

In summary,

- When $p > \frac{3-\sqrt{5}}{2}$, the Markov chain is transient.
- When $p = \frac{3-\sqrt{5}}{2}$, the Markov chain is null recurrent.
- When $p < \frac{3-\sqrt{5}}{2}$, the Markov chain is positive recurrent. And the stationary distribution is,

$$\begin{cases}
\pi_0 = \frac{p^2 - 3p + 1}{(1 - p)(3 - p)} \\
\pi_{2n} = \left[\frac{p(2 - p)}{1 - p}\right]^{n - 1} \frac{p^2 - 3p + 1}{(1 - p)^2(3 - p)}, n \geqslant 1 \\
\pi_{2n - 1} = \left[\frac{p(2 - p)}{1 - p}\right]^{n - 1} \frac{p^2 - 3p + 1}{(1 - p)(3 - p)}, n \geqslant 1
\end{cases}$$
(31)

6 Problem 6

6.1 (i)

Define $M_n = \max(|X_n|, |Y_n|), m_n = \min(|X_n|, |Y_n|)$, we can sort (X_n, Y_n) into different states by (M_n, m_n) ,

•
$$S_0 = \{M_n = m_n = 0\} = \{(0,0)\}$$

•
$$S_1 = \{m_n = 0, M_n = 1\} = \{(0, 1), (1, 0), (0, -1), (-1, 0)\}$$

•
$$S_2 = \{m_n = 0, M_n = 2\} = \{(0, 2), (2, 0), (0, -2), (-2, 0)\}$$

•
$$S_3 = \{m_n = 1, M_n = 1\} = \{(1, 1), (1, -1), (-1, 1), (-1, -1)\}$$

•
$$S_4 = \{m_n = 1, M_n = 2\} = \{(2, 1), (1, 2), (2, -1), (-1, 2), (-2, 1), (-1, 2), (-2, -1), (-1, -2)\}$$

•
$$S_5 = \{m_n = 2, M_n = 2\} = \{(2, -2), (-2, 2), (2, 2), (-2, -2)\}$$

•
$$S_6 = \{M_n = 3\}$$

And we have an absorbing markov chain as follow.

And the corresponding transition matrix is

$$P = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{4} & 0 & \frac{1}{4} & \frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{4} & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{4} \\ 0 & \frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{4} & \frac{1}{4} & 0 & \frac{1}{4} & \frac{1}{4} \\ 0 & 0 & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{Q} & \mathbf{R} \\ \mathbf{0} & 1 \end{bmatrix}$$
(32)

So the expectation of absorbing time is,

$$(I - Q)^{-1} \cdot 1 = (\frac{135}{13}, \frac{122}{13}, \frac{80}{13}, \frac{17}{2}, \frac{73}{13}, \frac{99}{26})$$
 (33)

$$\mathbb{E}[T] = \frac{135}{13}.$$

To find $\mathbb{P}(X_T = 3, Y_T = 0)$, first notice that $\mathbb{P}(X_T = 3, Y_T = 0) = \mathbb{P}(X_T = 0, Y_T = 3) = \mathbb{P}(X_T = -3, Y_T = 0) = \mathbb{P}(X_T = 0, Y_T = -3) = \frac{1}{4}\mathbb{P}(M_T = 3, m_T = 0)$. Then we can divide $S_6 = \{M_n = 3\}$ into 3 states which are also absorbing,

•
$$S_6^{(0)} = \{M_n = 3, m_n = 0\}$$

•
$$S_6^{(1)} = \{M_n = 3, m_n = 1\}$$

•
$$S_6^{(2)} = \{M_n = 3, m_n = 2\}$$

Thus the corresponding matrix R is,

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \frac{1}{4} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & \frac{1}{2} \end{bmatrix}$$

$$(34)$$

The absorbing probability is,

$$(\boldsymbol{I} - \boldsymbol{Q})^{-1} \cdot \boldsymbol{R} = \begin{bmatrix} \frac{4}{13} & \frac{6}{13} & \frac{3}{13} \\ \frac{4}{13} & \frac{6}{13} & \frac{3}{13} \\ \frac{1}{26} & \frac{1}{13} & \frac{26}{13} \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ \frac{5}{26} & \frac{7}{13} & \frac{7}{26} \\ \frac{5}{52} & \frac{7}{26} & \frac{33}{52} \end{bmatrix}$$
 (35)

So
$$\mathbb{P}(X_T = 3, Y_T = 0) = \frac{1}{4} \times \frac{4}{13} = \frac{1}{13}$$

6.2 (ii)

Using the same method in (i), define the states as follow,

•
$$S_0 = \{|X_n| + |Y_n| = 0\}$$

•
$$S_1 = \{|X_n| + |Y_n| = 1\}$$

•
$$S_2 = \{|X_n| + |Y_n| = 2, ||X_n| - |Y_n|| = 2\}$$

•
$$S_3 = \{|X_n| + |Y_n| = 2, ||X_n| - |Y_n|| = 0\}$$

•
$$S_4 = \{|X_n| + |Y_n| = 3\}$$

And we have an absorbing markov chain as follow.

We define the expectation of steps from S_i to reach S_3 as f_i , i = 0, 1, 2.

$$\begin{cases}
f_0 = f_1 + 1 \\
f_1 = 0.25f_0 + 0.25f_2 + 0.5f_3 + 1 \\
f_2 = 0.25f_1 + 1 \\
f_3 = 0.5f_1 + 1
\end{cases}$$
(36)

Solving the equation we have $\mathbb{E}[T] = f_0 = \frac{39}{7}$. (It is equivalent to $(I - Q)^{-1} \cdot 1$.)

Also we can split S_4 into two sub states,

•
$$S_4^{(0)} = \{|X_n| + |Y_n| = 3, ||X_n| - |Y_n|| = 3\}$$

•
$$S_4^{(1)} = \{|X_n| + |Y_n| = 3, ||X_n| - |Y_n|| = 1\}$$

And the corresponding matrix R is

$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0.25 & 0.5 \\ 0 & 0.5 \end{bmatrix}$$

$$(37)$$

The absorbing probability is,

$$(\mathbf{I} - \mathbf{Q})^{-1} \cdot \mathbf{R} = \begin{bmatrix} \frac{1}{7} & \frac{6}{7} \\ \frac{1}{2} & \frac{6}{7} \\ \frac{1}{2} & \frac{5}{7} \\ \frac{1}{14} & \frac{13}{14} \end{bmatrix}$$
(38)

So $P(X_T = 3, Y_T = 0) = \frac{1}{4}P(|X_T| + |Y_T| = 3, ||X_T| - |Y_T|| = 3) = \frac{1}{28}$.

6.3 (iii)

Define the expectation steps from $(X_n = x, Y_n = y)$ to first arrive at the boundary as f(x, y).

$$\begin{cases}
f(-2,y) = f(x,2) = f(x,-2) = 0 \\
f(x,y) = \frac{1}{4} [f(x-1,y) + f(x+1,y) + f(x,y-1) + f(x,y+1)] + 1
\end{cases}$$
(39)

According to symmetry we have f(x, -1) = f(x, 1).

Define $g_i = f(i, 0), h_i = f(i, -1) = f(i, 1)$. We have

$$\begin{cases}
g_{-2} = h_{-2} = 0 \\
g_i = 0.5h_i + 0.25g_{i-1} + 0.25g_{i+1} + 1 \\
h_i = 0.25h_{i-1} + 0.25h_{i+1} + 0.25g_i + 1
\end{cases}$$
(40)

Because $\lim_{n\to\infty} g_{n+1} - g_n = 0$, we have $\lim_{n\to\infty} g_n = 8$, $\lim_{n\to\infty} h_n = 6$. Denote $\alpha_i = g_i - 8$, $\beta_i = h_i - 6$.

$$\alpha_i + \sqrt{2}\beta_i = \frac{4 + \sqrt{2}}{14}(\alpha_{i-1} + \sqrt{2}\beta_{i-1}) + \frac{4 + \sqrt{2}}{14}(\alpha_{i+1} + \sqrt{2}\beta_{i+1})$$
(41)

$$\alpha_i - \sqrt{2}\beta_i = \frac{4 - \sqrt{2}}{14}(\alpha_{i-1} - \sqrt{2}\beta_{i-1}) + \frac{4 - \sqrt{2}}{14}(\alpha_{i+1} - \sqrt{2}\beta_{i+1})$$
(42)

We have

$$\alpha_n + \sqrt{2}\beta_i = A_1\lambda_1^n + A_2\lambda_2^n \alpha_n - \sqrt{2}\beta_i = B_1\mu_1^n + A_2\mu_2^n$$
(43)

where $\lambda_{1,2} = \frac{1}{2}(4 - \sqrt{2} \pm \sqrt{14 - 8\sqrt{2}}), \mu_{1,2} = \frac{1}{2}(4 + \sqrt{2} \pm \sqrt{14 + 8\sqrt{2}})$. Because $\lim_{n \to \infty} \beta_n = 0$, we have $A_1 = B_1 = 0$, thus

$$\alpha_n = \frac{1}{2} \left(A \lambda^n + B \mu^n \right)$$

$$\beta_n = \frac{1}{2\sqrt{2}} \left(A \lambda^n - B \mu^n \right)$$
(44)

where $\lambda = \frac{1}{2}(4 - \sqrt{2} - \sqrt{14 - 8\sqrt{2}}), \mu = \frac{1}{2}(4 + \sqrt{2} - \sqrt{14 + 8\sqrt{2}}).$

And $\alpha_{-2} = g_{-2} - 8 = -8, \beta_{-2} = h_{-2} - 6 = -6$, we have $A = -\lambda^2(8 + 6\sqrt{2}), B = \mu^2(6\sqrt{2} - 8)$.

$$g_0 = \alpha_0 + 8 = \frac{1}{2}(A+B) + 8 = 3\sqrt{2}(\mu^2 - \lambda^2) - 4(\mu^2 + \lambda^2) + 8 = 10\sqrt{7 + \sqrt{17}} - 8\sqrt{14 - 2\sqrt{17}} - 8 = 6.1617$$
(45)

To solve $P(X_T = 0, Y_T = 0)$, similarly we need to find $(\mathbf{I} - \mathbf{Q})^{-1} \cdot \mathbf{R}$. However, since the Markov chain is infinite, we can define p(x, y) as $P(X_T = 0, Y_T = 0 | X_0 = x, Y_0 = y)$ and solve the following equation,

$$\begin{cases}
p(-2,0) = 1 \\
p(-2,-1) = p(-2,1) = p(x,2) = p(x,-2) = 0 \\
p(x,y) = \frac{1}{4} [p(x-1,y) + p(x+1,y) + p(x,y-1) + p(x,y+1)]
\end{cases}$$
(46)

Follows the same step, we have $P(X_T = -2, Y_T = 0) = p(0, 0) = \frac{1}{2}(\lambda^2 + \mu^2) = 16 - \sqrt{2(95 + 7\sqrt{17})} = 0.1304$.

$6.4 \quad (iv)$

7 Problem 7

7.1 (i)

First, for a random variable $X, \mathbb{E}[X] = 0$ and there exists some constant α , such that $\mathbb{E}[e^{tx}] \leq e^{\alpha^2 t^2/2}$, then X is sub-Gaussian, and we have that

$$\mathbb{P}(X \geqslant \lambda) = P(e^{tX} \geqslant e^{t\lambda}) \leqslant \frac{E[e^{tX}]}{e^{t\lambda}} \leqslant e^{\alpha^2 t^2 / 2 - t\lambda}$$
(47)

Let $t = \frac{\lambda}{\alpha}$, we have

$$\mathbb{P}(X \geqslant \lambda) \leqslant e^{-\frac{\lambda^2}{2\alpha^2}} \tag{48}$$

$$\mathbb{P}(|X| \geqslant \lambda) \leqslant 2e^{-\frac{\lambda^2}{2\alpha^2}} \tag{49}$$

For X_i , we have $\mathbb{E}[\exp(tX_i)] = \frac{1}{2}(e^t + e^{-t}) \leqslant \exp(t^2/2)$. When $\sum_{i=1}^{\infty} a_i^2 = S < \infty$,

$$\mathbb{E}[\exp(\sum_{i=1}^{\infty} a_i X_i t)] = \prod_{i=1}^{\infty} \mathbb{E}[\exp(t a_i X_i)] \leqslant \prod_{i=1}^{\infty} \exp(t^2 a_i^2) = e^{St^2}$$
(50)

Denote $X = \sum_{i=1}^{\infty} a_i X_i$,

$$\mathbb{P}(|X| \geqslant \lambda) \leqslant 2e^{-\frac{\lambda^2}{S}} \tag{51}$$

Thus we have X converges almost surely, i.e $\mathbb{P}(|X| \leq \infty) = \mathbb{P}(|\sum_{i=1}^{\infty} a_i X_i| < \infty) = 1$.

7.2 (ii)

By the corollary of Kolmogorov three-series theorem, given independent variables X_1, X_2, \cdots, X_n ,

$$\mathbb{P}\left(\sum_{k=1}^{\infty} X_k \text{ converges }\right) = 0 \text{ or } 1$$
 (52)

And because $\mathbb{E}[(\sum_{i=1}^{\infty} a_i X_i)^2] = \sum_{i=1}^{\infty} a_i^2 = \infty$, $\mathbb{P}(|\sum_{i=1}^{\infty} a_i X_i| = \infty) > 0$, thus

$$\mathbb{P}\left(\left|\sum_{i=1}^{\infty} a_i X_i\right| < \infty\right) = 0 \tag{53}$$