Laboratorio di Fisica 1 R2: Misura costante elastica di una molla

Riccardo Bergamaschi, Elia Graiani, Simone Moglia04/10/2023-11/10/2023

Sommario

Il gruppo di lavoro ha misurato la costante elastica di una molla con due metodi distinti.

1 Materiali utilizzati e strumenti di misura

Abbiamo misurato la densità di quattro campioni solidi: un parallelepipedo, una sfera e due cilindri. Di seguito gli strumenti di misura utilizzati:

Nome	Soglia	Portata	Sensibilità
Micrometro ad asta filettata	0.01 mm	25.00 mm	$0.01~\mathrm{mm}$
Calibro ventesimale	$0.05~\mathrm{mm}$	150.00 mm	$0.05~\mathrm{mm}$
Bilancia di precisione	0.01 g	2000.00 g	0.01 g

2 Esperimento e procedimento di misura

Per ogni campione:

- 1. Abbiamo misurato la massa m con la bilancia di precisione.
- 2. Abbiamo misurato tre volte le distanze necessarie al calcolo del suo volume, tenendo come valore migliore quello più vicino alla media delle misure e come incertezza la sensibilità degli strumenti utilizzati. Quando possibile, abbiamo utilizzato il micrometro; altrimenti, il calibro ventesimale.
- 3. Abbiamo calcolato il volume V (e la sua incertezza) con la formula adeguata:
 - Parallelepipedo:

$$V_{
m best} = x_{
m best} y_{
m best} z_{
m best}$$

$$\frac{\delta V}{V_{
m best}} = \frac{\delta x}{x_{
m best}} + \frac{\delta y}{y_{
m best}} + \frac{\delta z}{z_{
m best}}$$

• Cilindri:

$$V_{\rm best} = \pi \left(\frac{d_{\rm best}}{2}\right)^2 h_{\rm best}$$

$$\frac{\delta V}{V_{\rm best}} = 2 \cdot \frac{\delta d}{d_{\rm best}} + \frac{\delta h}{h_{\rm best}}$$

• Sfera:

$$V_{\mathrm{best}} = \frac{4\pi}{3} \left(\frac{d_{\mathrm{best}}}{2}\right)^3$$

$$\frac{\delta V}{V_{\mathrm{best}}} = 3 \cdot \frac{\delta d}{d_{\mathrm{best}}}$$

4. Sempre tenendo conto delle incertezze, troviamo la densità ρ (e il relativo errore) del campione:

$$\rho = \frac{m}{V} \qquad \qquad \frac{\delta \rho}{\rho_{\rm best}} = \frac{\delta m}{m_{\rm best}} + \frac{\delta V}{V_{\rm best}}$$

5. Infine, abbiamo cercato di capire di che materiale fosse composto il campione, confrontando il valore di ρ misurato con le misure indicate in letteratura ($\rho_{\rm lett.}$). Per valutare numericamente la consistenza del risultato ottenuto con il valore atteso, abbiamo calcolato il seguente valore (numero puro):

$$\varepsilon = \frac{|\rho_{\rm best} - (\rho_{\rm lett.})_{\rm best}|}{\delta \rho + \delta \rho_{\rm lett.}}$$

Allora ρ è consistente con $\rho_{\text{lett.}}$ se e solo se $\varepsilon \leq 1$.

3 Dati raccolti e conclusioni

Di seguito sono riportate tutte le misure effettuate direttamente, così come quelle calcolate come descritto.

Parallelepipedo	x (mm)	y (mm)	z (mm)
Misura 1	39.90 ± 0.05	64.60 ± 0.05	5.01 ± 0.01
Misura 2	39.90 ± 0.05	64.40 ± 0.05	4.99 ± 0.01
Misura 3	39.90 ± 0.05	64.40 ± 0.05	4.98 ± 0.01
Misura tenuta	39.90 ± 0.05	64.40 ± 0.05	4.99 ± 0.01

Cilindro 1	h (mm)	d (mm)
Misura 1	24.83 ± 0.01	27.95 ± 0.05
Misura 2	24.82 ± 0.01	28.05 ± 0.05
Misura 3	24.83 ± 0.01	28.00 ± 0.05
Misura tenuta	24.83 ± 0.01	28.00 ± 0.05

Sfera	d (mm)
Misura 1	20.63 ± 0.01
Misura 2	20.63 ± 0.01
Misura 3	20.64 ± 0.01
Misura tenuta	20.63 ± 0.01

Cilindro 2	h (mm)	d (mm)
Misura 1	77.75 ± 0.05	6.97 ± 0.01
Misura 2	77.80 ± 0.05	6.97 ± 0.01
Misura 3	77.80 ± 0.05	6.98 ± 0.01
Misura tenuta	77.80 ± 0.05	6.97 ± 0.01

	Campione	m (g)	$V (\rm cm^3)$	$\rho (\mathrm{g/cm^3})$
İ	Parallelepipedo	107.40 ± 0.01	12.87 ± 0.05	8.34 ± 0.03
	Cilindro 1	41.21 ± 0.01	15.29 ± 0.06	2.695 ± 0.011
	Sfera	35.81 ± 0.01	4.597 ± 0.007	7.789 ± 0.014
	Cilindro 2	8.00 ± 0.01	2.97 ± 0.01	2.695 ± 0.013

Campione	$\rho \left(\mathrm{g/cm^3} \right)$	Materiale	$\rho_{\rm lett.}~({\rm g/cm^3})$	ε
Parallelepipedo	8.34 ± 0.03	Ottone giallo (high brass)	8.47 ± 0.01	2.5
Cilindro 1	2.695 ± 0.011	Lega di Al laminato 3003	2.73 ± 0.01	1.7
Sfera	7.789 ± 0.014	Acciaio	7.8 ± 0.1	0.1
Cilindro 2	2.695 ± 0.013	Lega di Al laminato 3003	2.73 ± 0.01	1.5

L'inconsistenza non trascurabile tra ρ (le nostre misure) e $\rho_{\rm lett.}$ è dovuta principalmente al fatto che si tratta di leghe; probabilmente, i nostri campioni presentavano concentrazioni diverse dei vari elementi.