

Departamento Académico de Economía Matemáticas III (30651) Segundo Semestre 2015

Profesores Diego Winkelried, Orestes Bueno, Diego Bohorquez y Jorge Cortez

Examen Final SECCIÓN I

1. Modelo de mercado con inventarios (5 ptos)

Considere un mercado donde la cantidad demandada D_t responde al precio del producto, mientras que la cantidad ofertada S_t depende del precio esperado por los productores,

$$D_t = \alpha - \beta P_t$$
 y $S_t = -\gamma + \delta P_t^e$,

donde α , β , γ y δ son constantes positivas. Asimismo, los productores acumulan inventarios según

$$I_t = \phi(P_{t+1}^e - P_t) \,,$$

donde $\phi > 0$, de modo que la condición de equilibrio del mercado es $S_t = D_t + (I_t - I_{t-1})$. Asuma previsión perfecta: $P_t^e = P_t$.

- a) (1 pto) Calcule \bar{P} , \bar{I} y \bar{D} , los valores de estado estacionario del precio, los inventarios y la cantidad demandada.
- b) (2 ptos) Muestre que la trayectoria del precio en este mercado está dada por

$$P(t) = C_1 \lambda^t + C_2 \lambda^{-t} + \bar{P}.$$

donde \bar{P} es el valor de estado estacionario, C_1 y C_2 son constantes arbitrarias y $\lambda > 1$.

c) (2 ptos) Suponga que inicialmente $P(0) = P_0$ e $I(0) = I_0$. Encuentre la trayectoria de I(t) e indique qué condición debe cumplir I_0 para que este sistema sea estable. Muestra las trayectorias de P(t) y de I(t) bajo esta condición. Si gusta, puede expresar sus respuestas en términos de λ .

2. Sistema diferencial (6 ptos)

Considere el sistema diferencial

$$\dot{x} = \alpha_1(x - \gamma y) + \beta,$$

$$\dot{y} = \alpha_2(x - \gamma y),$$

donde $\alpha_2 > 0$, $\gamma > 0$, $\beta > 0$ y $\lambda = \alpha_1 - \alpha_2 \gamma < 0$.

- a) (2 ptos) Encuentre la trayectoria de y(t), analice su estabilidad y encuentre el valor de largo plazo de $\dot{y}(t)$.
- b) (1 pto) Encuentre la trayectoria de x(t), analice su estabilidad y encuentre el valor de largo plazo de $\dot{x}(t)$.
- c) (1 pto) Encuentre la trayectoria de $z(t) = x(t) \gamma y(t)$. Analice su estabilidad.
- d) (2 ptos) A partir del sistema original, deduzca una ecuación diferencial de primer order para $z = x \gamma y$ y muestra que su solución es idéntica a la encontrada en la parte c).