Spacecraft Communications Systems

Aero 446 – Intro to Space Systems 04/22/09 Jason Anderson

Cal Poly, San Luis Obispo

The Problem

- Data must be transferred between the satellite and the ground station
- How do we do this?

 YOU NEED THIS FOR SPACECRAFT DESIGN!!!!!

The (Down)Link

The (Down)Link

Satellite Computer

The Satellite Computer

- Processing onboard the satellite generates digital data that must be sent to the ground
- Data is stored in a digital format

The Satellite Computer Example

- Assume the satellite computer wants to send one byte of information.
- This byte is the following 8 bits
 - 1000 1001 binary
- Binary can be represented in hexadecimal
 - -1000 = 8
 - -1001 = 9
 - Therefore 10001001 = 0x89

The (Down)Link

The Satellite TNC

- Terminal Node Controller (TNC)
 - 1. Put the data to transmit into a packet
 - 2. Takes digital data and breaks it into bits to transmit

Another Processor!

Why Packets?

- Packets allow for additional routing information to be sent with the data.
 - If you hear this packet send it to Cal Poly
 - This is how the internet works with IP addresses
- Also includes extra data to ensure that if any errors occur during transmission that they are found.

Error Detection: Parity Bit

- Use parity to calculate an extra bit for error detection.
- Count the number of 1's in your data
- If the count is even
 - The parity bit is 0
- If the count is odd
 - The parity bit is 1
- Pre/Append the parity bit to the data

The Satellite TNC Example Packets

- Calculate the parity bit for 10001001
- There are 3 1's in the data
- 3 is odd and therefore the parity bit is 1
- Pre/Append this to the data so now send
 - -**1**10001001**1**

The Satellite TNC Example: Break up

- The TNC with takes 100010011 and
 - Sends 1 to transceiver (Parity bit)
 - Sends 1 to transceiver
 - Sends 0 to transceiver
 - Sends 0 to transceiver
 - Sends 0 to transceiver
 - Sends 1 to transceiver
 - Sends 0 to transceiver
 - Sends 0 to transceiver
 - Sends 1 to transceiver
 - Sends 1 to transceiver (Parity bit)

The (Down)Link

The Satellite Transceiver

- Puts digital data onto the radio frequencies so that it can be transmitted through space
- This process is called Modulation

Analog Modulation

- Notice for amplitude is proportional to the signal for AM
- Notice frequency is proportional to signal for FM
- Use a constant sampling frequency to regain Modulating Signal or Information

Digital Modulation (I)

Phase Shift Keying (PSK)

Frequency Shift Keying (FSK)

Digital Modulation (II)

Quaternary PSK (QPSK)

Amplitude Shift Keying (ASF)

FSK Modulation

- Uses two different tones (frequencies)
- Assign one to represent a digital 0 and the other to represent a digital 1

The Satellite Transceiver Example

- Assign 437.365 MHz to be tone 1
- Assign 437.366 MHz to be tone 2
- For 1100010011
 - Generate tone at 437.366 (Parity Bit)
 - Generate tone at 437.366
 - Generate tone at 437.365
 - Generate tone at 437.365
 - Generate tone at 437.365
 - Generate tone at 437.366
 - Generate tone at 437.365
 - Generate tone at 437.365
 - Generate tone at 437.366
 - Generate tone at 437.366 (Parity Bit)

The (Down)Link

The Satellite Amplifier

 Boosts the radio signal so it can travel all the way back down to earth

The Satellite Amplifier Example

- Boost generated tone at 437.366 (Parity Bit)
- Boost generated tone at 437.366
- Boost generated tone at 437.365
- Boost generated tone at 437.365
- Boost generated tone at 437.365
- Boost generated tone at 437.366
- Boost generated tone at 437.365
- Boost generated tone at 437.365
- Boost generated tone at 437.366
- Boost generated tone at 437.366 (Parity Bit)

The (Down)Link

The Satellite Antenna

- Sends the radio energy down to earth
- If no ADCS, use an omnidirectional antenna
 - Has 0 dBs
- If can point your satellite towards earth can direct the path of RF to have a more powerful beam

What's A dB?

- A db is a unit of referential measure
- dBs is a logarithmic scale
 - 3 dBs is double what it is referenced to
 ie. If you have a 15 dB antenna, it is twice as powerful than a 12 dB antenna
 - 10 dBs is 10 times what it is referenced to
 ie. If you have a 25 dB antenna, it is twice as powerful than a 15 dB antenna

Gain in dBs

Antenna Gain

$$G_{dBi} = 10 \log \left(\frac{\text{Power Gain of Antenna}}{\text{Power from Isotropic Source}} \right)$$

Amplifier Gain

$$G_{amp} = 10 \log \left(\frac{\text{Power Out of Amp}}{\text{Power into Amp}} \right)$$

Power Losses (coaxial cable insertion loss)

$$L_{coax} = 10 \log \left(\frac{P_{out}}{P_{in}} \right)$$

How many times greater is 23 dBs?

How many times greater is 23 dBs?

$$23 = 10 + 10 + 3$$

How many times greater is 23 dBs?

$$23 = 10 + 10 + 3$$

= 10 times * 10 times * 2 times

How many times greater is 23 dBs?

$$23 = 10 + 10 + 3$$

- = 10 times * 10 times * 2 times
- = 200 times greater

The Satellite Antenna Example

 Points the modulated RF signal containing the binary data 1000100011 to the ground

The (Down)Link

The Ground Antenna

- Ground antennas have more pointing capability and therefore are higher gain.
- Can increase the gain on the ground to make up for poor antennas in space

Antenna Beam Pattern

Fig. 9.12 Antenna pattern. (Copyright AIAA, reproduced with permission; Ref. 5, p. 439.)

Antenna Characteristics

Configuration	Peak gain, dBi	Beam width, deg	Pattern
Half-wave dipole	1.64		+ +
Planar array			
	$10\log\left(\frac{A}{\lambda^2}\right) + 8$		
Turnstile			*10
\rightarrow	0.6		
Horn			
	$20\log\left(\frac{D}{\lambda}\right) + 7$ (Typically 5 to 20 dBi)	$\frac{72\lambda}{D}$	
Bi-cone			
()	$5 \log \left(\frac{D}{\lambda}\right) + 3.5$ (Typically 5 dBi)	Typically 45 × 360	+
Helix			
	$10 \log \left(\frac{D^2 L}{\lambda^3}\right) + 20.2$ (Typically 5 to 20 dBi)	$\frac{16.6}{\sqrt{D^2 L/\lambda^3}}$	*
Parabola	*		
(agi	$20 \log(\bar{f}) + 20 \log(D) + 17.8$ (Typically 10 to 65 dBi)	$\frac{65.3\lambda}{D}$	*
.agı	≈12 <i>dBi</i>		

Antenna Design

Fig. 9.13 Parabolic antenna feed systems. (Spacecraft Systems Engineering, Fortescue and Stark, copyright John Wiley and Sons, Ltd., 1995, reproduced with permission.)

The Ground Antenna Example

 Receives the modulated packetized data from the satellite's antenna

The (Down)Link

The Ground Preamp

- Boosts all the radio signals coming in from the satellite
- Similar to the boost that occurs on the satellite's amplifier

The Ground Preamp Example

 Takes the radio signal sent from the satellite and boosts the signal for later processing

The (Down)Link

The Ground Radio

 Since all radio frequencies hit the antenna, the radio selects the part of the spectrum to listen to.

UNITED

STATES FREQUENCY ALLOCATIONS

THE RADIO SPECTRUM

Early Radio Bands

Band	Name	Frequency
VLF	Very Low	3-30 kHz
LF	Low	30-300 kHz
MF	Medium	300-3000 kHz
HF	High	3-30 MHz
VHF	Very High	30-300 MHz
UHF	Ultra High	300-3000 MHz
SHF	Super High	3-30 GHz
EHF	Extremely High	30-300 GHz

The Electromagnetic Spectrum

www.yorku.ca/eye/spectrum.gif

The Ground Radio Example

 Listens to the 437.365 MHz to receive the satellite signal

The (Down)Link

The Ground TNC

- 1. Demodulation
 - Converts the modulated data received back into digital data
- 2. Depacketization
 - Removes the data from the parity packet and verifies that the checksum is correct.

The Ground TNC Example Step 1

- Demodulation
 - Takes in the radio signal and decodes it to receive the following digital packet
 - **-1**10001001**1**

The Ground TNC Example Step 2

- Depacketization
 - Verify that the two parity bits match (both at 1 in this case)
 - Recalculate parity on the original data and make sure that it makes the parity bits
 - 10001001 again gives a parity of 1 which matches
 - If different, then a bit error occurred in the transmission and the data must be resent.

The (Down)Link

The Ground Computer

- Collects the satellite data for analysis
- Data is typically store in a log file which is timestamped
- Can also be stored in a database for easier access to data

The Ground Computer Example

 The ground computer successfully receives the transmitted byte 10001001 from the TNC!

The (Up)Link

Additional Considerations

- Dopper Effect
- Software TNCs

Considerations: Doppler Effect

- A shift in apparent frequency due to relative motion of transmitting or receiving object
- Can be used to measure the velocity of a spacecraft

Considerations: Software TNC

- Can do demodulation in software by listening to your sound card
- More configurable and allows for exotic modulation schemes

Questions

