Instructor: Gilbert Ritschard

Assignment 11 Mining event sequences I

1. The **biofam** data was created from time stamped event data. Table 1 describes how the states were defined in terms of event occurrences.

State	LHome	Marriage	Childbirth	Divorce
P	no	no	no	no
L	yes	no	no	no
M	no	yes	yes/no	no
LM	yes	yes	no	no
\mathbf{C}	no	no	yes	no
LC	yes	no	yes	no
LMC	yes	yes	yes	no
D	yes/no	yes	yes/no	yes

Table 1: Biofam state definition in terms of events

Using seqecreate, transform the biofam.seq state sequence object considered in the previous assignments into an event sequence object with five events: P (Starting leaving with parents), L (leaving home), M (Getting married), C (Childbirth), D (Getting divorced).

- 2. Plot the event sequences by sex. What is the main difference between men and women.
- 3. Plot the event sequences by the birth cohorts defined in Assignment 10 (Before end of word war II versus after end of WW-II). Represent non-embeddable sequence patterns and color only those with a support of at least 15%. Comment differences between the two cohorts.
- 4. Find the most frequent subsequences (minimum support of 10%) with at least 2 events. Among those who left home and got married, what is the proportion who did it the same year? Plot the 10 most frequent subsequences.
- 5. Display and plot the 10 subsequences which best discriminate (a) women from men, and (b) birth cohorts.