

SPECIAL SECTION ON ADVANCED ENERGY STORAGE TECHNOLOGIES AND THEIR APPLICATIONS

An Ensemble Learning Approach for Accurate Energy Load Prediction in Residential Buildings

MABROOK AL-RAKHAMI^{©1,2}, (Student Member, IEEE), ABDU GUMAEI^{©3}, (Student Member, IEEE), AHMED ALSANAD², (Member, IEEE), ATIF ALAMRI^{©1}, (Member, IEEE), AND MOHAMMAD MEHEDI HASSAN^{©1,2}, (Senior Member, IEEE)

¹Chair of Pervasive and Mobile Computing (CPMC), Department of Information Systems, College of Computer and Information Sciences, King Saud University, Riyadh 11362, Saudi Arabia

Corresponding author: Mohammad Mehedi Hassan (mmhassan@ksu.edu.sa)

This work was supported by the Deanship of Scientific Research and Research Chair of Pervasive and Mobile Computing at King Saud University.

Experimented and Presented by

Md. Istiak Ahammed

ID: 2024100207

Robot and Smart System Engineering

²Department of Information Systems, King Saud University, Riyadh 11362, Saudi Arabia

³Department of Computer Science, King Saud University, Riyadh 11362, Saudi Arabia

Outlines

- Introduction
- Proposed Ensemble Learning Approach
- XGBoost (eXtreme Gradient Boosting)
- Experimental Design
- Results and Discussion
- Conclusion

Introduction

General Background

- → Energy efficiency in buildings is crucial for environmental and economic benefits.
- → Accurate energy load prediction (Heating and Cooling) helps in designing energy-efficient buildings.
- → Machine learning methods have been increasingly used for this purpose due to their predictive power and efficiency.

Problems

- → Traditional machine learning methods often suffer from overfitting, leading to inaccurate predictions.
- → There is a need for models that can handle high-dimensional data and avoid overfitting while providing accurate predictions.

Introduction

Previous Gap

- → Existing methods lack robustness and fail to generalize well, especially in complex scenarios with high-dimensional data.
- \rightarrow Overfitting is a common problem that undermines the reliability of predictions in traditional models.

Research Objectives

- → Develop an ensemble learning approach using the XGBoost algorithm to improve load prediction accuracy and robustness.
- \rightarrow Conduct extensive experiments to validate the proposed approach against traditional methods.
- → Demonstrate the effectiveness of XGBoost in predicting energy loads in residential buildings, aiming for high accuracy and generalizability.

Proposed Ensemble Learning Approach

Ensemble Learning

XGBoost (eXtreme Gradient Boosting)

- **XGBoost** (eXtreme Gradient Boosting) is a powerful and efficient implementation of the gradient boosting framework and able to adjust its scale when needed.
- Developed by Tianqi Chen, XGBoost is known for its performance and speed

Gradient Boost

Step1 → Start by computing the initial prediction, which is often the mean of the target values

Step 2 Compute Residuals: Calculate the difference between the actual values and the predicted values

Step 3 \rightarrow Train a new model (typically a decision tree) to predict the residuals.

Step 4 Dupdate the initial predictions by adding the predictions of the residuals, multiplied by the learning rate.

The new prediction after first iteration: 173 + learning rate (0.1) x Pred Residual (1.5)

Age	ВМІ	Height	Pred
21	24	174	173
22	26	176	173
23	30	169	173

Actual Height	Pred Height	Residual	Pred Residual
174	173	1	1.5
176	173	3	5
169	173	-4	-1

Final prediction =Base value + (LR x 1st PredRes by RM1) + (LR X 2nd PredRes by RM2)+.... = 173 + (0.1X1.5) + (0.1 X 1.2) +....

XGBoost (eXtreme Gradient Boosting)

XGBoost Algorithm

Step 1: Sort and split each predictor (input variable) to find the best splitting point.

Step 2: Optimize the tree depth by choosing the best splitting descriptor.

Step 3: Repeat steps 1 and 2 until you reach the maximum tree depth.

Step 4: Calculate the prediction score for each tree leaf.

Step 5: Prune (remove) nodes with negative scores.

Step 6: Repeat the entire process for all trees in the model.

Algorithm 1 Training Algorithm of the XGBoost Model

Input: Vectors of energy load predictors (V_n) , number of trees (R);

Output: XGBosst trained model;

- 1. **For each** predictor (v_i) ,
 - 1.1. $v_i \leftarrow \text{Sort}(v_i)$;
 - 1.2. $p_i \leftarrow \text{Split_best } (lowest_gain(v_i));$

// Compute tree depth by optimizing the objective function and choosing the descriptor of the best splitting point

- 2. Tree_depth \leftarrow Optimizes (*ObjTraFunc* \leftarrow *Choose* (*descriptor* (p_i));
- 3. Repeat (1 and 2) until *Tree_depth* == *Max_tree_depth*;
- 4. $Tree_leaves \leftarrow Prediction_score (Tree_depth);$
- 5. Bottom-up_Prune_negative_nodes (*Tree_leaves*);
- 6. Repeat steps (1-5) until cumulative training covers all trees in R;

XGBoost (eXtreme Gradient Boosting)

Mathematical Equation of XGBoost Algorithm

$$\hat{y}_i = \sum_{r=1}^{R} f_r(x_i), f_r \in S$$

Objective Function
$$Obj(\Theta) = \sum_{i}^{n} l(y_i, \hat{y}_i) + \sum_{r}^{R} \Omega(f_r)$$

$$\Omega\left(f\right) = \varphi T + \frac{1}{2}\vartheta \sum_{j=1}^{T} s_{j}^{2}$$
 Regularization Term

$$\hat{y}_i^{(t)} = \sum_{r=1}^R f_r(x_i) = \hat{y}_i^{(t-1)} + f_t(x_i)$$

$$Objective Function \\ Obj \left(\Theta\right) = \sum_{i}^{n} l\left(y_{i}, \hat{y}_{i}\right) + \sum_{r}^{R} \Omega\left(f_{r}\right) \\ Obj(\Theta)^{(t)} = \sum_{i}^{n} l\left(y_{i}, \hat{y}_{i}^{(t-1)} + f_{t}(x_{i})\right) + \Omega\left(f_{t}\right)$$

 $f_r = Independent tree with scores of each leaf$ l = differential be loss function between actual & predicted Ω = regularization term to avoid overfitting

T = leaf count, s = leaf score, φ and $\vartheta = controlling$ constant for regularization

Dataset

Dataset Source: The dataset used is from a simulation of various residential building designs created with Ecotec software, which publicly available. **Number of Samples**: 768 samples

Input Attributes

Name	Unit
Overall height	m
Relative compactness	NA
Wall area	m ²
Surface area	m ²
Roof area	m ²
Glazing area distribution	NA
Glazing area	m ²
Orientation	Direction

Output Responses

Name	Unit
Cooling load (CL)	kW
Heating load (HL)	kW

Performance Metrics

The performance metrics used to evaluate the proposed energy prediction model are statistical measures.

$$\begin{aligned} \text{RMSE} &= \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(y_{i-} \hat{y}_{i}\right)^{2}} \\ \text{R - squared} &= 1 - \frac{\sum_{i=1}^{N} \left(y_{i-} \hat{y}_{i}\right)^{2}}{\sum_{i=1}^{N} \left(y_{i-} \hat{y}_{i}\right)^{2}} \\ MAE &= \frac{1}{N} \sum_{i=1}^{N} \left|y_{i-} \hat{y}_{i}\right| \\ MAPE &= 100\% \times \frac{1}{N} \sum_{i=1}^{N} \frac{\left|y_{i-} \hat{y}_{i}\right|}{y_{i}} \end{aligned}$$

 $x_i = Input, y_i = actual output,$ $\hat{y}_i = predicted output,$ $\bar{y}_i = mean of actual output$ from sklearn.metrics import mean_absolute_error,
mean_squared_error, r2_score, mean_absolute_percentage_error

```
# Calculate performance metrics for HL and CL
mae_hl = mean_absolute_error(y_test_hl, y_pred_hl)
rmse_hl = np.sqrt(mean_squared_error(y_test_hl, y_pred_hl))
mape_hl = mean_absolute_percentage_error(y_test_hl, y_pred_hl) * 100
r2_hl = r2_score(y_test_hl, y_pred_hl)
```

```
mae_cl = mean_absolute_error(y_test_cl, y_pred_cl)
rmse_cl = np.sqrt(mean_squared_error(y_test_cl, y_pred_cl))
mape_cl = mean_absolute_percentage_error(y_test_cl, y_pred_cl) * 100
r2_cl = r2_score(y_test_cl, y_pred_cl)
```

Parameter Initialization for XGBoost (Grid Search)

Parameter	Description	Paper's value	Experiment's value
learning_rate	Step size shrinkage used to prevent overfitting	0.1	0.1
gamma	Minimum loss reduction to make a split	0	0
max_depth	Maximum depth of a tree	150	100
n_estimators	Number of boosting rounds	2000	2000
reg_alpha	L1 regularization term on weights	0.01	0.1
reg_lambda	L2 regularization term on weights	0.8	1
subsample	Fraction of samples used for fitting each tree	0.7/0.75 (HL/CL)	0.8
colsample_bytree	Fraction of features used for each tree	0.7	0.7
min_child_weight	Whether to print running messages	1.8	1

Training and Testing

- 10-fold cross-validation has been conducted
- Energy efficiency dataset is divided into 10 folds
- 9 of them are utilized to train the model, and the remaining fold is applied for testing.
- Repeated this step 10 times, each time a different fold from the dataset is used for testing and the remaining 9 folds for training
- Hyper parameters has defined by using Grid
 Search techniques

Training and Testing Code

```
# Load dataset
data = pd.read csv('.../data/ENB2012 data with columns.csv')
# Check for NaN values and replace or drop them
data = data.replace([np.inf, -np.inf], np.nan)
data = data.dropna()
# Define input and output variables
X = data.iloc[:, :-2]
y_hl = data['Heating_Load']
y_cl = data['Cooling_Load']
# Initialize models with best parameters
best params hl = {'colsample bytree': 0.7, 'gamma': 0, 'learning rate': 0.1, 'max depth': 150,
'min_child_weight': 1.8, 'n_estimators': 2000, 'reg_alpha': 0.01, 'reg_lambda': 0.8, 'subsample': 0.7, 'silent':
1, 'nthread': -1}
best_params_cl = \(\colsample_bytree': 0.7, \) 'gamma': 0, 'learning_rate': 0.1, 'max_depth': 150,
'min_child_weight': 1.8, 'n_estimators': 2000, 'reg_alpha': 0.01, 'reg_lambda': 0.8, 'subsample': 0.75, 'silent':
1, 'nthread': -1}
xgb_model_hl = XGBRegressor(**best_params_hl)
xgb_model_cl = XGBRegressor(**best_params_cl)
```

```
# Perform 10-fold cross-validation
kf = KFold(n_splits=10, shuffle=True, random_state=42)
results_hl = []
results_cl = []
actual_vs_predicted_hl = []
actual_vs_predicted_cl = []
fold = 1
for train_index, test_index in kf.split(X):
 X_train, X_test = X.iloc[train_index], X.iloc[test_index]
 y_train_hl, y_test_hl = y_hl.iloc[train_index], y_hl.iloc[test_index]
 y_train_cl, y_test_cl = y_cl.iloc[train_index], y_cl.iloc[test_index]
  # Train the models
  xgb_model_hl.fit(X_train, y_train_hl)
  xgb_model_cl.fit(X_train, y_train_cl)
  # Predict
  y_pred_hl = xgb_model_hl.predict(X_test)
  y_pred_cl = xgb_model_cl.predict(X_test)
  # Collect actual vs predicted values
  actual_vs_predicted_hl.append((y_test_hl, y_pred_hl))
  actual_vs_predicted_cl.append((y_test_cl, y_pred_cl))
 # Calculate performance metrics
  mae_hl = mean_absolute_error(y_test_hl, y_pred_hl)
 rmse_hl = np.sqrt(mean_squared_error(y_test_hl, y_pred_hl))
  mape_hl = mean_absolute_percentage_error(y_test_hl, y_pred_hl) * 100
  r2_hl = r2_score(y_test_hl, y_pred_hl)
 mae cl = mean_absolute_error(y_test_cl, y_pred_cl)
  rmse_cl = np.sqrt(mean_squared_error(y_test_cl, y_pred_cl))
  mape_cl = mean_absolute_percentage_error(y_test_cl, y_pred_cl) * 100
  r2_cl = r2_score(y_test_cl, y_pred_cl)
  results_hl.append([fold, mae_hl, rmse_hl, mape_hl, r2_hl])
  results_cl.append([fold, mae_cl, rmse_cl, mape_cl, r2_cl])
  fold += 1
```

	(a) Original table				(b) Experimental table				
Fold Number	MAE (kW)	RMSE (kW)	MAPE (%)	R-squared	Fold Number	MAE (kW)	RMSE (kW)	MAPE (%)	R-squared
1	0.1773	0.2697	0.9952	0.9993	1	0.194106	0.27829	0.93398	0.999294
2	0.1261	0.1605	0.6682	0.9997	2	0.198931	0.262215	0.952896	0.999302
3	0.1486	0.1904	0.7957	0.9996	3	0.161475	0.29834	0.793821	0.99907
4	0.1669	0.2328	0.8667	0.9994	4	0.192752	0.269674	1.016883	0.999317
5	0.1514	0.2136	0.8054	0.9996	5	0.206243	0.419884	1.188685	0.998307
6	0.1626	0.3968	0.9503	0.9987	6	0.164589	0.230978	0.781186	0.999518
7	0.1989	0.3295	1.0868	0.9989	7	0.206469	0.327119	0.858542	0.998983
8	0.1594	0.2176	0.7148	0.9995	8	0.191862	0.301785	0.976863	0.999112
9	0.1806	0.2318	0.911	0.9995	9	0.166564	0.213396	0.880673	0.999546
10	0.1818	0.249	0.8669	0.9994	10	0.19486	0.305161	1.008449	0.99876
Avg.	0.165	0.249	0.866	0.9994	Avg.	0.187785	0.290684	0.939198	0.999121
Std.	0.01574	0.04970	0.09606	0.00024	Std.	0.017081	0.057111	0.120527	0.000373

TABLE 2. Results of performance metrics for energy predicting of HL.

	(a) Original table				I	(b) Ex	perimenta	l table	
Fold Number	MAE (kW)	RMSE (kW)	MAPE (%)	R-squared	Fold Number	MAE (kW)	RMSE (kW)	MAPE (%)	R-squared
1	0.321	0.4747	1.2408	0.9974	1	0.353798	0.537199	1.309914	0.997079
2	0.3254	0.4877	1.2957	0.9974	2	0.297095	0.423075	1.140242	0.997927
3	0.2702	0.3844	1.2204	0.9979	3	0.319763	0.500917	1.221975	0.997052
4	0.2987	0.4139	1.2248	0.9983	4	0.352545	0.496526	1.470156	0.997224
5	0.3006	0.4765	1.1471	0.997	5	0.374662	0.600763	1.393107	0.996307
6	0.3112	0.5418	1.109	0.9968	6	0.40214	0.573561	1.566273	0.996597
7	0.3005	0.4876	1.1448	0.9976	7	0.4109	0.589612	1.507326	0.996185
8	0.2829	0.4053	1.1116	0.9981	8	0.32727	0.482912	1.166158	0.997382
9	0.2022	0.2627	0.8574	0.9992	9	0.301474	0.39535	1.219702	0.998242
10	0.3725	0.525	1.3304	0.9972	10	0.270597	0.426214	1.079473	0.997528
Avg.	0.299	0.446	1.168	0.9980	Avg.	0.341025	0.502613	1.307433	0.997152
Std.	0.02805	0.06351	0.09422	0.00055	Std.	0.046116	0.07267	0.168542	0.000663

TABLE 3. Results of performance metrics for energy predicting of CL.

Actual and predicted energy values of heating load

(a) Original figure

(b) Experimental figure

Actual and predicted energy values of cooling load

(a) Original figure

(b) Experimental figure

FIGURE 7. The relation between R-Squared and MAE values for HL in 30 times run

FIGURE 9. The relation between R-Squared and MAE values for CL in 30 times run

FIGURE 8. The relation between RMSE and MAPE values for HL in 30 times run

FIGURE 10. The relation between RMSE and MAPE values for CL in 30 times run

FIGURE 11. Comparison results of R-Squared between training and testing set for HL in the 30-times run of 10-cross validation.

FIGURE 12. Comparison results of R-Squared between training and testing set for CL in the 30-times run of 10-cross validation.

Heating	Load
1 100111	

Ref	Model	MAE (kW)	RMSE (Kw)	MAPE (%)	R- squared
Tasnas and Xifara (2012)	Random forest	0.51	-	2.2	-
Chen and Cao (2014)	Ensemble model	0.34	0.46	-	0.998
Chou and Bui (2014)	Ensemble model	0.236	0.35	1.1	0.999
Castelli et al. (2015)	Genetic model	0.38	-	0.43	-
Duarte et al. (2017)	Neural network	0.315	0.22	1.4	0.998
Goliatt et al. (2018)	Gaussian process	0.251	0.38	1.3	0.999
Proposed by authors	XGBoost ensemble	0.175	0.265	0.913	0.9993
My experimental results	XGBoost ensemble	0.187	0.291	0.939	0.9991

Cooling Load

Model	MAE (kW)	RMSE (Kw)	MAPE (%)	R- squared
Random forest	1.42	-	4.6	-
Ensemble model	0.68	0.97	-	0.99
Ensemble model	0.89	1.57	3.5	0.986
Genetic model	0.97	-	3.4	-
Neural netwrok	0.565	0.84	2.3	0.991
Gaussian process	0.448	0.67	1.8	0.998
XGBoost ensemble	0.307	0.461	1.197	0.998
XGBoost ensemble	0.341	0.502	1.307	0.997
	Random forest Ensemble model Ensemble model Genetic model Neural netwrok Gaussian process XGBoost ensemble XGBoost	Random forest 1.42 Ensemble model 0.68 Ensemble model 0.89 Genetic model 0.97 Neural netwrok 0.565 Gaussian process XGBoost ensemble 0.307	Random forest 1.42 - Ensemble model 0.68 0.97 Ensemble model 0.89 1.57 Genetic model 0.97 - Neural netwrok 0.565 0.84 Gaussian process 0.448 0.67 XGBoost ensemble 0.341 0.502	Model (kW) (Kw) (%) Random forest 1.42 - 4.6 Ensemble model 0.68 0.97 - Ensemble model 0.89 1.57 3.5 Genetic model 0.97 - 3.4 Neural netwrok 0.565 0.84 2.3 Gaussian process 0.448 0.67 1.8 XGBoost ensemble 0.307 0.461 1.197

Conclusion

Robust Model & Experimental Results

- ✓ Developed an ensemble learning approach using the XGBoost algorithm
- ✓ Achieved lower mean square error (MSE) and higher accuracy compared to state-of-the-art approaches
- Demonstrated stability in predictions across different test runs
- ✓ Effectively mitigated overfitting issues, providing reliable predictions for heating load (HL) and cooling load (CL)

Implication & Future Works

- ✓ XGBoost can be a valuable addition for predicting building energy loads
- ✓ Helps building engineers make informed decisions to design energy-efficient buildings
- ✓ Further improve the model by integrating more diverse datasets and refining feature selection techniques
- ✓ Investigate the model's performance in realworld scenarios and its adaptability to different climatic conditions