

# Modelagem Molecular Aplicada à Descoberta de Fármacos

# XVIII Encontro Acadêmico de Modelagem Computacional

Prof. MSc. Ana Luiza Martins Karl

# 1. Introdução

A **modelagem molecular** é uma ferramenta indispensável no desenvolvimento de novos fármacos, permitindo identificar e avaliar compostos promissores de maneira eficiente e racional. Este minicurso aborda os conceitos fundamentais e as etapas iniciais desse processo, com foco no método de **docking molecular**.

O **docking molecular** é uma técnica computacional que simula as interações entre duas moléculas, como proteínas e ligantes, permitindo explorar o reconhecimento molecular em nível detalhado. Essa abordagem ajuda a prever quais compostos químicos têm maior potencial de se ligar a um alvo terapêutico de forma eficaz.

O objetivo deste material é oferecer uma introdução teórica e prática às técnicas de modelagem molecular, destacando sua aplicação na descoberta e no desenho de novos fármacos.

#### Estrutura do minicurso:

- 1. **Introdução Geral:** Visão inicial sobre o papel da modelagem molecular no desenvolvimento de fármacos.
- 2. **Identificação de Alvos Terapêuticos:** Critérios para a seleção de biomoléculas relevantes no contexto de doenças.
- 3. **Modelagem de Biomoléculas:** Métodos para obtenção de modelos tridimensionais dos alvos terapêuticos.
- 4. **Preparação das Estruturas:** Ajustes e otimizações necessários para análises computacionais.
- 5. **Docking Molecular e Triagem Virtual:** Simulação de interações moleculares e seleção de compostos candidatos.

# 2. Identificação de Alvos

A escolha do **alvo terapêutico** é o primeiro passo no desenvolvimento de fármacos. Esse alvo é uma **biomolécula** envolvida no processo biológico que se deseja modificar ou inibir.

Geralmente, os alvos terapêuticos incluem **proteínas, enzimas ou receptores** que desempenham funções essenciais no organismo e podem ser modulados por medicamentos. Em alguns casos, outras biomoléculas, como **RNAs** e **DNAs**, também podem servir como alvos.

## Passos práticos para seleção de alvos:

- Compreender o processo biológico de interesse: Identificar as biomoléculas associadas ao mecanismo da doença.
- Consultar bases de dados confiáveis: Use ferramentas como UniProt ou GeneCards para buscar informações detalhadas sobre biomoléculas associadas ao processo biológico em questão.
- Definir critérios de seleção:
  - O alvo é específico para a doença?
  - Existe uma estrutura experimental disponível?
  - O alvo foi validado experimentalmente?
  - Em quais condições biológicas o alvo é expresso?

#### Exemplo prático:

No desenvolvimento de medicamentos contra doenças infecciosas, enzimas cruciais para a sobrevivência do patógeno, como as **proteases virais**, são frequentemente escolhidas como alvos terapêuticos. Avaliar o ciclo de vida do patógeno pode ajudar a identificar moléculas essenciais para sua replicação ou sobrevivência.

# 3. Obtenção de Modelos Estruturais de Biomoléculas

Após selecionar o alvo terapêutico, é necessário obter um **modelo estrutural tridimensional** da biomolécula. Esse modelo é fundamental para entender como a molécula interage com seus ligantes e para guiar o processo de descoberta de fármacos.

### Estratégias para obter modelos estruturais:

#### 1. Métodos experimentais:

 Técnicas como difração de raios-X, RMN ou criomicroscopia eletrônica fornecem dados experimentais sobre as estruturas tridimensionais das proteínas.

#### 2. Métodos computacionais:

 Quando a estrutura experimental n\u00e3o est\u00e1 dispon\u00edvel, ferramentas como AlphaFold, Modeller e SwissModel podem prever a estrutura com base na sequ\u00e0ncia prim\u00e1ria da prote\u00edna.

# Dica prática:

Prefira estruturas experimentais sempre que possível, pois elas são mais precisas. Se utilizar métodos computacionais, avalie a qualidade do modelo gerado com ferramentas como **ProCheck** ou **MolProbity** e, se necessário, realize experimentos de minimização para otimização.

## Exemplo prático:

Acesse o banco de dados **PDB** e explore a estrutura 1HXW, que corresponde à HIV-1 protease em complexo com o inibidor ritonavir. Analise as informações experimentais disponíveis na página web e visualize o modelo utilizando ferramentas como **PyMOL** ou **Chimera**.

# 4. Preparação das Estruturas

Antes de utilizar modelos estruturais em experimentos como docking molecular ou dinâmica molecular, é indispensável realizar sua **preparação**. Essa etapa assegura que a estrutura está otimizada e pronta para interagir de maneira confiável com outras moléculas.

# Principais etapas da preparação:

#### 1. Correção e otimização:

 Complete cadeias laterais ausentes, adicione hidrogênios e resolva inconsistências estruturais. Ferramentas úteis incluem PrepWizard e Chimera.

#### 2. Determinação dos estados de protonação:

 Ajuste os estados de protonação das moléculas ao pH fisiológico usando ferramentas como PropKa.

#### 3. Minimização de energia:

 Reduza tensões estruturais com programas como GROMACS, AMBER ou CHARMM.

# Terramentas úteis:

- Visualização:
  - PyMOL, Chimera, VMD.
- Preparação:
  - PrepWizard, AutoDockTools, PropKa.
- Minimização:
  - GROMACS, AMBER, CHARMM.

#### **▲** Atenção:

A qualidade da estrutura preparada impacta diretamente os resultados experimentais. Inspecione a estrutura visualmente para evitar erros que possam comprometer os experimentos.

# 5. Docking Molecular e Triagem Virtual de Compostos

O docking molecular é uma técnica computacional que auxilia na compreensão dos mecanismos de reconhecimento molecular entre um alvo biológico e uma molécula ligante. Neste curso, o foco será nas abordagens de docking proteína-ligante, onde o alvo biológico é uma proteína associada a um processo biológico de interesse, enquanto o ligante é geralmente uma pequena molécula química. Essa técnica é amplamente empregada em estudos de descoberta e desenho de fármacos, mas também pode ser aplicada para investigar interações entre proteínas, proteínas e ácidos nucleicos, nanopartículas, entre outras.

O docking proteína-ligante simula computacionalmente a interação entre uma proteína e moléculas ligantes, como potenciais candidatos a fármacos. Seu principal objetivo é prever a geometria, a orientação e a energia de ligação entre essas moléculas, fornecendo informações detalhadas sobre como o ligante interage com o alvo terapêutico.

Essa técnica é amplamente utilizada na química medicinal, pois permite analisar os detalhes da ligação proteína-ligante. Com base nesse entendimento, é possível projetar ou modificar quimicamente os ligantes para otimizar sua interação com o alvo, tornando-os mais eficazes e seletivos.

Historicamente, o docking molecular foi inspirado na teoria do reconhecimento "chave-fechadura", proposta por Emil Fischer em 1894. Nessa analogia, a proteína é representada como uma fechadura, enquanto o substrato natural da enzima é a chave. Apenas a chave correta pode ativar a função da enzima, assim como apenas uma interação específica pode catalisar uma reação.

No contexto do desenho de fármacos, essa teoria possibilita o desenvolvimento de "chaves falsas" (fármacos), que se ligam à enzima de forma específica e impedem seu funcionamento, interrompendo processos biológicos associados.

# **Triagem Virtual de Compostos**

Um dos usos mais conhecidos da técnica de docking molecular são os experimentos de triagem virtual, em que um grande número de ligantes é testado virtualmente contra um alvo molecular para identificar candidatos promissores. Nessa abordagem, cada composto é submetido a dockings individuais com o alvo e, em seguida, ranqueado com base na energia de

interação. Os compostos com as melhores energias de ligação são selecionados como candidatos prioritários.

A triagem virtual permite testar de forma eficiente e rápida um grande número de ligantes previamente desenhados, reduzindo significativamente o tempo e os custos em comparação com triagens experimentais realizadas em laboratório. Essa estratégia é especialmente valiosa em projetos de descoberta de fármacos e no desenvolvimento de novos compostos bioativos.

# Vantagens do Docking Molecular

- Eficiência: Permite analisar rapidamente milhares de compostos.
- Custo-benefício: Reduz a necessidade de experimentos laboratoriais iniciais.
- Previsão de interações: Ajuda a identificar sítios de ligação no alvo biológico e a compreender interações moleculares críticas.

# Limitações

- Qualidade do modelo: Os resultados dependem da precisão do modelo estrutural e da preparação das estruturas.
- Flexibilidade limitada: Nem todos os programas lidam bem com a flexibilidade do receptor ou do ligante.
- Resultados dependentes do software: Diferenças entre algoritmos podem levar a resultados variados.

# Validação do Sistema: Redocking

Antes de realizar a triagem virtual, é essencial validar o sistema por meio de experimentos de re-docking. Nesse processo, um ligante co-cristalizado é removido da estrutura do receptor e redocado, e o resultado é comparado com a conformação experimental observada.

- Objetivo do re-docking: Verificar se o software de docking pode reproduzir corretamente a posição e a orientação do ligante co-cristalizado. Uma boa reprodução indica que o sistema e os parâmetros são confiáveis.
- Critérios de avaliação: Use métricas como o RMSD (Root Mean Square Deviation) para medir a similaridade entre o ligante experimental e o redocado. Um RMSD inferior a 2 Å é considerado aceitável.

### Dica prática

Realize o re-docking para cada novo sistema antes de iniciar a triagem virtual. Isso garante que o protocolo está corretamente configurado, reduzindo a chance de identificar falsos positivos.

# Ferramentas para Docking Molecular e Triagem Virtual

- Softwares de docking:
  - DockThor (gratuito, online e desenvolvido no Brasil)
  - AutoDock Vina (gratuito)
  - SwissDock (gratuito e online)
  - GOLD (licença paga)
  - Schrödinger Glide (licença paga)
- Bases de dados de compostos:
  - ZINC
  - PubChem
  - ChEMBL

O docking molecular é uma poderosa ferramenta no desenvolvimento de fármacos. Quando combinado com validações e estudos complementares, como a dinâmica molecular, fornece uma abordagem confiável e eficiente para identificar candidatos promissores, reduzindo significativamente o tempo e o custo do processo de descoberta de medicamentos.

# Links que podem te ajudar:

- Tutorial do Chimera
- Pymol para uso educacional
- Wiki para comandos no Pymol
- Portal DockThor para docking proteina-ligante
- AutoDock Vina