PF SISTAS AMOUNT

厦门大学《<u>线性代数</u>》课程期中试卷

学年学期: 171801 主考教师: <u>线性代数表管组</u>A 卷 (√) B 卷

_	、单项选择题 (每	小题2分,共1	4分)		
1.	已知 2n 阶行列式	D的某一列元素	素及其余子式都等于 a	, 则 <i>D</i> =()
	(A) 0	(B) a^2	$(C) -a^2$	(D) na^2	
2.	若 $R(A)=R(B)=r$,	则必有()。		
	(A) <i>A</i> 与 <i>B</i> 等价	`			
	(B) A 与 B 的标准型矩阵相同				
	(C) A 与 B 的行阶梯型矩阵的非零行数相同				
	(D) $A 与 B$ 的所有 $r-1$ 阶子式都不为零				
3.	已知矩阵 A 和 B :	均为对称矩阵,	则以下为对称矩阵,	除了 ()。
	(A) $A-B$	(B) <i>AB</i>	(C) $2A^2 + 3$	A+4E (D)	A^*+B^*
4.	设 A 是可逆矩阵,	将 A 的第 2 行	的 3 倍加到第 1 行得	B, 则 ()。
	(A) 将A*的第2	2列的3倍加到	第1列得到 B*		
	(B) 将 A*的第 2 列的 (-3) 倍加到第 1 列得到 B*				
	(C) 将 A* 的第 1 列的 3 倍加到第 2 列得到 B*				
	(D) 将A*的第	1列的(-3)倍	加到第2列得到 B *		
5.	下列叙述一定正确	角,除了()。		
	(A) 若 $AB = E$,	则 $ A \neq 0$			
	(B) 若A、B、(C均为 n 阶矩阵	$, ABC = E , \square \square A^{-1}C^{-1}$	$B^{-1} = E$	
	(C) 若 A、B 均	为 n 阶不可逆矩	阵,则 AB 必不可逆		
	(D) 若A≠0,贝	$\mathbb{K}(A) \geq 1$			

6. 若 A 为 n 阶可逆矩阵 (n≥2),则(A⁻¹)*= ()。

(A) $|A|A^{-1}$ (B) |A|A (C) $|A^{-1}|A^{-1}$ (D) $|A^{-1}|A$

7. 以下是方阵 A 可逆的等价命题,除了 ()。

(A) A 行满秩

(B) A 的伴随矩阵 A* 存在

(C) A与E等价

(D) 存在矩阵 B, 使 AB=E AB=E

二、填空题(每空格3分,共18分)

3. 设分块矩阵
$$A = \begin{pmatrix} 0 & -E_{n-1} \\ -1 & 0^T \end{pmatrix}$$
,则 $\det A =$ ______.

4.
$$\qquad \qquad$$
 设 $_{A}=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$, $_{B}=\begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 2 \\ 0 & 1 & 3 \end{pmatrix}$ $_{C}=AB^{-1}$, 则矩阵 $_{C}^{-1}$ 中,第 3 行第 2 列的元素

是

5. 设四阶方阵
$$A = \begin{pmatrix} 5 & 2 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 1 & -3 \end{pmatrix}$$
, 则 $A^{-1} =$ _______.

三、计算题(共50分)

2. 计算下列行列式:

$$(1) D = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \\ 3 & 4 & 5 & 1 & 2 \\ 4 & 5 & 1 & 2 & 3 \\ 5 & 1 & 2 & 3 & 4 \end{vmatrix}$$

$$(2) D = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 4 & 9 & 16 \\ 1 & 8 & 27 & 64 \end{vmatrix}$$

3. 设 $A \setminus B \setminus C$ 为 n 阶方阵,|A|=1,|B|=2,计算 $|A^{-1}B^{T}(CB^{-1}+2E)^{T}-[(C^{-1})^{T}A]^{-1}|$ 。

4.
$$\begin{tabular}{ll} \uppi_A = \begin{pmatrix} 0 & 2 & 1 \\ 2 & -1 & -3 \\ -3 & 2 & -5 \end{pmatrix}, \ B = \begin{pmatrix} 1 & 2 & 3/2 \\ -2 & 1 & -3 \end{pmatrix}, \ \begin{tabular}{ll} \uppi_X X \not\in X(3E+A) = 2B. \end{array}$$

5. 设矩阵
$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & -2 & b \\ 2 & 6 & a & 20 \\ 5 & 12 & 3a+5 & 44-2b \end{pmatrix}$$
, 求 $R(A)$ 。

四、证明题 (每小题 6 分, 共 18 分)

1. 设 A, B 都是 $m \times n$ 矩阵, 证明 $A \sim B$ 的充要条件是 R(A) = R(B).

2. 设 $A = \begin{pmatrix} a_{11} & a_{12} & L & a_{1n} \\ a_{21} & a_{22} & L & a_{2n} \\ M & M & L & M \\ a_{n1} & a_{n2} & L & a_{nn} \end{pmatrix}$ 为 n 阶可逆矩阵,并且每行的元素之和均为常数 C,证明

 A^{-1} 的每行元素之和均为 $\frac{1}{C}$.

3. 设 n 阶方阵 A 满足 $A^2-2A-3E=0$, 证明 R(A+2E)+R(A-3E)=n.