Government College of Engineering, Amravati (An Autonomous Institute of Government of Maharashtra)

Sixth Semester B. Tech. (Computer Science and Engineering)

Summer - 2016

Course Code: Switching Theory and Logic Design

Course Name: CSU601

Time: 2 Hrs. 30 Min. Max. Marks: 60

Instructions to Candidate

1) All questions are compulsory.

- 2) Assume suitable data wherever necessary and clearly state the assumptions made.
- 3) Diagrams/sketches should be given wherever necessary.
- 4) Use of logarithmic table, drawing instruments and non-programmable calculators is permitted.
- 5) Figures to the right indicate full marks.

1. Solve any two:

- (a) Show type classification available in VHDL and 6m explain scalar data type in brief.
 - (b) Explain case, wait and loop sequential statements 6m in detail with example.
 - (c) Design VHDL code for 9 bit parity generator 6m circuit

2. Solve:

(a) Write short note on:

4m

- i) Explicit visibility with clauses
- ii) Operator overloading

(b)	Write VHDL code for: i) 1bit full adder using dataflow modeling ii) synchronous D-type flip-flop triggered on the rising edge of the clock signal using behavioural modelling	8m
(a)	Solve: Simplify the following Boolean function: $F(A,B,C,D) = \Sigma_m(1,2,4,7,8,11,13,14)$	4m
(b)	Find all the prime implicants for the Boolean functions given and determine which are essential PI $F(A,B,C,D) = \Sigma m(0,1,3,4,5,7,13,15)$, using Tabulation method	6m
(c)	Prove that the compliment of a function is equal to complementing a function using dual method.	2m
(a)	Solve any one: Design BCD to 7 segment LED code convertor.	12m
(b)	(i) Design BCD to Excess-3 code convertor	6m
	(ii) Design VHDL code for 3:8 decoder using Data flow modeling and logic circuit along with its truth table	6m
(a)	Solve Design 3 bit synchronous up counter using J-K flip flop.	
(b)	What are shift register? Explain bi-directional	6 m

3.

5.