

aNOF: 一种极致低时延方案

华为

刘秦飞

lucas.liuqinfei@huawei.com

目录

- 1. 技术背景
- 2. aNOF方案
- 3. DEMO验证结果

1技术背景 —— 低时延在存储业务竞争力中的重要性

Best Low Latency Data Feed

- IPC Connexus ALPHA
- Iress QuantFEED
- Pico RedlineFeed
- Quincy Data / McKay Brothers Quincy Extreme Data (QED) service
- Refinitiv

Any delay between receiving market data and making a trade could potentially result in millions of dollars in lost revenue and profit.

Enabling Ultra Low Latency Trading in Asia-Pacific

- OLTP领域,尤其在证券高频交易市场(HFT),对于数据写入有着极致低时延(ULL)的诉求。数据中心的数据持久化过程,要求在数据写入主节点后,再将副本写入远端节点(故障域)。因此,单点写入时延影响了数据写入的整体时延。
- 目前,业界已经有rpma等方案实现对远端持久内存的读写,以达到极致低时延的数据传输方案。

主流
云盘
时延

参数	极速型SSD V2 (公测)	极速型SSD		超高IO	通用型SSD V2		通用型SSD		高IO		普通IO (上一代产品)	
单队列访 问时延 ^d	亚室秒级	亚室秒级		1	1		1		1~ 3 5~ 10		5~ 10	
(ms)												
f生能类别	ESSD AutoPL云盘		SSD PL-XZ	E .	ESSD云盘				SSD云盘	高效云盘	普通云盘	
	2000 Autor 224m	fi	盐	PL3	PL2	PL1		PLO	3322xm	III AAA EA MIL		
单路随机写平 均时延				1								
(ms) ,	0.2	C	0.03	0.2	0.2	0.2		0.3~0.5	0.5~2	1~3	5~10	
Block Size=4K												

1 技术背景 —— 使用NOF协议实现低时延存储方案

分布式存储时延 = 网络时延 + 介质时延

NVMe SSD太慢 VS Optane SSD太贵 是否有更实惠高效的方案?

NOF协议是网络存储广泛使用的一种低时延协议,实现了对远端NVMe设备的高性能访问,由于其客户端的CPU开销较低,生态支持比较好,在较多的存储产品中均有应用。

在NOF协议中,时延敏感的小块写一般采用 in-capsule的方式,在提交到NVMe控制器 后需poll到完成信息,才返回client写成功, 此处包含了相对较长的落盘时延。

2 aNOF方案 —— 通过PMEM优化NOF协议

aNOF (Accelerated NVMe-oF) 方案,是在NOF 协议基础之上,使用硬件应答替换软件应答,极大缩短关键时延路径,从而实现了远端写入数据的极致低时延,并借助PMEM设备来保障数据在异常掉电场景下的可靠性。

关键技术:

◆ 使用二层可靠网络优化三层应用

通过PMEM把SSD持久域扩展到Target整板存储空间

2 aNOF方案 —— 协议优化实现极致低时延

▶ 网络交互2次 → 1次

注:

①:一次网络交互时延

②:NVMe SSD落盘时延

(1)(2)(3): 网络交互CPU开销

3 DEMO验证结果

验证环境配置:

Test setup scheme

Test setup configuration

Network						
NICs	kunpeng Integrated NIC					
Operation mode	RoCE					
Host (initiator)						
CPU model	Kunpeng 920-4826					
Number of sockets	2					
SMMU	On					
Prefetchers	Off					
OS	openEuler 22.09					
spdk	22.09					
Target						
CPU model	Kunpeng 920-4826					
Number of sockets	2					
SMMU	On					
Prefetchers	Off					
SSD	3x ES3000 V6 NVMe SSD					
PMEM	BBU PMEM (64G)					
OS	openEuler 22.09					
spdk	22.09					

3 DEMO验证结果

- ➤ 1, aNOF 4k小块写瓶颈时延低于3us(实验室数据,网卡直连)
- ➤ 2, aNOF相比spdk22.09的小块写时延平均降低70%

OpenEuler