Technische Universität Berlin

Fakultät II – Institut für Mathematik D. Hömberg, M. Karow, J. Suris WS 09/10 15. Februar 2010

Februar – Klausur (Verständnisteil) Analysis II für Ingenieure

Name:	Vorna	me:				
MatrNr.:	Studi	engang	:			
Neben einem handbeschriebenen A4 zugelassen.	Blatt r	nit No	tizen s	ind ke	ine Hil	fsmittel
Die Lösungen sind in Reinschrift auf schriebene Klausuren können nicht ge			_	ben. M	Iit Blei	stift ge-
Dieser Teil der Klausur umfasst die Ver Rechenaufwand mit den Kenntnissen a wenn nichts anderes gesagt ist, immer	aus der	Vorles	ung lö	sbar se	ein. Gel	
Die Bearbeitungszeit beträgt eine Stu	ınde.					
Die Gesamtklausur ist mit 40 von 80 beiden Teile der Klausur mindestens 1				*		
Korrektur						
	1	2	3	4	5	Σ

1. Aufgabe

9 Punkte

Gegeben seien das Vektorfeld

$$\vec{F}: \mathbb{R}^2 \to \mathbb{R}^2, \quad \vec{F}(x,y) = \begin{bmatrix} xe^{x^2} + y \\ y^5 + x \end{bmatrix}$$

und die Kurve $\vec{c}:[0,3]\to\mathbb{R}^2$ definiert durch

$$\vec{c}(t) = \left\{ \begin{array}{ll} \begin{bmatrix} t \\ t^2 \end{bmatrix} & \text{falls } 0 \leq t < 1 \,, \\ \begin{bmatrix} 2-t \\ 1 \end{bmatrix} & \text{falls } 1 \leq t < 2 \,, \\ \begin{bmatrix} 0 \\ 3-t \end{bmatrix} & \text{falls } 2 \leq t \leq 3 \,. \end{array} \right.$$

- (a) Skizzieren Sie \vec{c} .
- (b) Bestimmen Sie den Wert des Kurvenintegrals $\int_{\vec{c}} \vec{F} \cdot d\vec{s}$.

2. Aufgabe 8 Punkte

Gegeben sei der Zylinder $Z=\{(x,y,z)\in\mathbb{R}^3\,|\,x^2+y^2\leq 4,0\leq z\leq 3\}$ und das Vektorfeld

$$\vec{v}: \mathbb{R}^3 \to \mathbb{R}^3$$
, $\vec{v}(x, y, z) = \begin{bmatrix} -3xy^2 \\ y^3 - (x-2)y \\ xz \end{bmatrix}$.

- (a) Bestimmen Sie den Wert des Flußintegrals $\iint\limits_{\partial Z}\vec{v}\cdot d\vec{O}$. Verwenden Sie dabei einen geeigneten Integralsatz.
- (b) Geben Sie den nach außen weisenden Einheitsnormalenvektor jeweils in den Punkten $P_1 = (0, 0, 0), P_2 = (\sqrt{2}, \sqrt{2}, 2)$ und $P_3 = (1, -1, 3)$ an.

3. Aufgabe 8 Punkte

Sind die folgenden Aussagen **immer** wahr? Geben Sie zusätzlich zu Ihrer Antwort immer eine **ausführliche** Begründung oder ein Gegenbeispiel an. Für Antworten ohne Begründung gibt es keine Punkte.

- a) $D \subset \mathbb{R}^2$ sei die offene Einheitskreisscheibe mit Mittelpunkt (0,0). Dann ist die Menge $D \setminus \{(x,y) \in \mathbb{R}^2 \mid 0 \le x \le y\}$ nicht konvex.
- b) Für eine zweimal stetig differenzierbare Funktion $f: \mathbb{R}^3 \to \mathbb{R}$ gelte grad $_{\vec{x}_0} f = \vec{0}$ und det $f''(\vec{x}_0) < 0$. Dann hat f in \vec{x}_0 kein lokales Extremum.
- c) $f: \mathbb{R}^2 \to \mathbb{R}$ sei differenzierbar. Es gelte $\operatorname{grad}_{(x,y)} f \neq \vec{0}$ und $\frac{\partial f}{\partial \vec{u}} = \frac{\partial f}{\partial \vec{v}} = 0$ für zwei Vektoren $\vec{u}, \ \vec{v} \in \mathbb{R}^2$ mit $\|\vec{u}\| = \|\vec{v}\| = 1$. Dann gilt $\vec{u} = \pm \vec{v}$.

d) Sei D der Einheitswürfel im \mathbb{R}^3 . Dann ist der Fluß der Rotation eines stetig differenzierbaren Vektorfeldes $\vec{v}:\mathbb{R}^3\to\mathbb{R}^3$ durch die Randfläche ∂D gleich Null.

4. Aufgabe 9 Punkte

Gegeben seien $\vec{a} = \begin{bmatrix} 4 \\ -2 \end{bmatrix}$ und die Funktion

$$f: D \to \mathbb{R}, \quad f(\vec{x}) = |\vec{x} - \vec{a}|^2,$$

wobei $D = \{(x, y) \in \mathbb{R}^2 \mid -3 \le x \le 3, -3 \le y \le 3\}.$

- (i) Zeigen Sie, dass f (mind.) ein globales Minimum und Maximum auf D besitzt.
- (ii) Begründen Sie, warum f keine lokale Extremwerte im Inneren von D besitzt.
- (iii) Skizzieren Sie die Niveaulinien von f.
- (iv) Bestimmen Sie das globale Maximum/Minimum von f auf D.

5. Aufgabe 6 Punkte

Sei

$$\phi_{2010}(x) = 1 + \sum_{k=1}^{2010} \frac{(-1)^k}{(k+1)^2} \sin(2kx)$$

das 2010-te Fourierpolynom einer π -periodischen Funktion $f: \mathbb{R} \to \mathbb{R}$.

- (i) Bestimmen Sie $\int_0^{\pi} f(x) \sin(6x) dx$.
- (ii) Ist f gerade, ungerade oder keines von beiden?