ASSIGNMENT 1

COMP3323: Advanced database systems

Answer 1.

Relation r has 50000 tuples 25 tuples of r fit in one block

Relation s has 6000 tuples 60 tuples of s fit in one block

System has a memory of M = 100 blocks.

i)

a) Nested-loop join:

$$Cost = \frac{50000}{25} + 50000(\frac{6000}{60})$$

= 5,002,000

b) Block nested-loop join:

$$Cost = \frac{50000}{25} + \left(\frac{50000}{25} \div (100 - 2)\right) \left(\frac{6000}{60}\right)$$
$$= 4.100$$

c) Merge-Join (external sorting has been already performed):

$$Cost = \frac{50000}{25} + \left(\frac{6000}{60}\right)$$
$$= 2,100$$

d) Hash-Join:

$$Cost = 3 * \left(\frac{50000}{25} + \left(\frac{6000}{60}\right)\right)$$
$$= 6.300$$

ii) Number of bytes for header is 16. Sibling pointer, record-id pointer, key value pointers are 12. Block size is 4096 bytes.

$$= \left[\frac{4096 - 96 - 12}{12 + 12} \right]$$

= 166

Total is 167 as 166 + 1

First Case is S as outer relation

Height of B+ tree on r.B =
$$1 + log_{167}(50000/166) = 3$$

= $100 + 3*(6000) + 30000$
= 48.100

Second Case is R as outer relation

Height of B+ tree on s.B =
$$1 + log_{167}(6000/166) = 2$$

= $2000 + 2*(50000) + 30000$
= $132,000$

As the cost is bigger for Second case than First case, minimum cost is 48,100.

Answer 2.

a)

Going bottom up in the query plan.

The cost of file scan (assuming linear scan) for $\sigma_{71 \le R.a \le 80} = \frac{1000}{10} = 100$

The cost of file scan (assuming linear scan) for $\sigma_{S.b < 5} = \frac{10000}{10} = 1000$

Knowing that the records are uniformly distributed, The cost of writing to
$$T_1 = \frac{80-71+1}{200-1+1}*\frac{1000}{10} = 5$$

The cost of writing to
$$T_2 = \frac{1}{10-1+1} * \frac{10000}{10} = 100$$

The cost of block nested loop join = 505

Hence, the total cost of block accessed is 1710.

b) c is common attribute for R or S.

If we assume every tuple/record in R produces $R \bowtie S$, then the output size is: $=\frac{50*1000}{10}=5,000$

As V(c, R) and V(c, S) are the same (denominator in the previous equation), the output size is 5,000.

Answer 3

Trying out random inputs, number of tuples we get:

Input 5 25

Estimated result equi-width histogram: 2831.2

- Estimated result equi-depth histogram: 2825.1315789473683
- o Real result: 2623

Input 5 5

- o Estimated result equi-width histogram: 45.0
- o Estimated result equi-depth histogram: 66.47368421052632
- o Real result: 45

<u>Input 24 58</u>

- o Estimated result equi-width histogram: 6970.2
- o Estimated result using the equi-depth histogram: 6630.75
- Real result: 7118

<u>Input 75 79</u>

- Estimated result equi-width histogram: 72.5
- o Estimated result equi-depth histogram: 225.53571428571428
- o Real result: 49

Input 39 45

- o Estimated result equi-width histogram: 1412.4
- Estimated result equi-depth histogram: 1443.4285714285713
- o Real result: 1440

Input 79 79

- o Estimated result equi-width histogram: 14.5
- o Estimated result equi-depth histogram: 45.107142857142854
- o Real result: 12

From comparing both histogram's result, it can be concluded that **equi-width is closer to the real result** than equi-depth most of the time. This is because data distribution is highly skewed eg. 24 to 58 (nearly half the range of values) have 7,118 tuples (nearly 70% of the tuples).