1. Κανονικές Εκφράσεις για τις: \emptyset , ε, σ

2. Κανόνας της παράθεσης: R₁R₂

- Φεύγουν ε-κινήσεις από τις τελικές του M(R₁) προς την αρχική
- Οι τελικές του $M(R_1)$ γίνονται μη τελικές καταστάσεις.

3. Κανόνας του Αστεριού Kleene: R*

- Προσθέτουμε μία νέα αρχική κατάσταση (που είναι και τελική)
- Με ε-κίνηση πάμε από την νέα αρχική στην προηγούμενη αρχική.
- Με ε-κινήσεις φεύγουμε από τις προηγούμενες τελικές προς την νέα αρχική.
- Οι προηγούμενες τελικές γίνονται μη τελικές καταστάσεις

και για μία συμβολοσειρά(π.χ. 001):

KANONIKEΣ ΓΛΩΣΣΕΣ www.psounis.gr

3. Κανόνας του + : R₁+R₂

- Προσθέτουμε μία νέα αρχική κατάσταση
- Με ε-κινήσεις πηγαίνουμε από την νέα αρχική κατάσταση στις προηγούμενες αρχικές.

Παράδειγμα για τη γλώσσα L=(1+01)*

Εμπειρικά θα εφαρμόζουμε τον αλγόριθμο ως εξής: Θα βάζουμε τις ίδιες καταστάσεις

- Θα βάζουμε την ίδια αρχική και τις ίδιες τελικές.
- Θα παρατηρούμε αν υπάρχει μονοπάτι εκινήσεων από την αρχική σε κάποια τελική οπότε και η αρχική θα γίνεται τελική.
- Θα κατασκευάζουμε στο πρόγειρο ένα πίνακα μετάβασης που για κάθε κατ/ση και σύμβολο θα υπολογίζουμε το **ε-σ-ε** του:
- ε: που πάμε από την κατάσταση χωρίς διάβασμα συμβόλου (προσοχή ότι πάντα μένουμε και στην ίδια κατάσταση χωρίς διάβασμα συμβόλου)
- σ: που πηγαίνουμε από τις καταστάσεις του προηγούμενου βήματος με το σύμβολο που
- ε: που πάμε από τις καταστάσεις του προηγούμενου βήματος χωρίς διάβασμα συμβόλου

Για παράδειγμα στο αυτόματο:

Π.χ. για την κατ/ση Α με 0:

ПРОХЕІРО

Α

Γ

Δ

0

ε:Α,Β,Δ

o:⊗,⊗,B

ε:Β,Δ

ε:Β,Δ

o:⊗,B

ε:Β,Δ

ε:Γ

0:⊗

ε:Δ

o:B

ε:Β,Δ

ε:

- ε: Α,Β,Δ 0:⊗,⊗,B
- ε: Β,Δ

Τυπικά η μετάβαση είναι: .

 $\delta(A, 0) = \varepsilon(\hat{\delta}(\varepsilon(A), 0)) = \varepsilon(\hat{\delta}(A, B, \Delta), 0) =$ $\varepsilon \left(\hat{\delta}(\{A\}, 0) \cup \hat{\delta}(\{B\}, 0) \cup \hat{\delta}(\{\Delta\}, 0) \right) =$ $\varepsilon(\{B\}) = \{B, \Delta\}$

ΚΑΘΑΡΟ:

ΠΑΡΑΔΕΙΓΜΑ: Μετατρέπουμε το ακόλουθο ΜΠΑ-ε στο ισοδύναμο ΜΠΑ:

ε:Α,Β,Δ

1:⊗,⊗,Γ

ε:Γ

ε:Β,Δ

1:⊗,Γ

ε:Γ

ε:Γ

1:A

 $\epsilon{:}\Delta$

1:Г

ε:Γ

ε:Α,Β,Δ

Ο πίνακας μετάβασης που προκύπτει από τον αλγόριθμο μετατροπής είναι:

	0	1
A	$\{B,\Delta\}$	$\{\Gamma\}$
В	{Β,Δ}	$\{\Gamma\}$
Γ	Ø	$\{A,B,\Delta\}$
Δ	{Β,Δ}	$\{\Gamma\}$

ΜΕΤΑΤΡΟΠΗ ΜΠΑ σε ΝΠΑ

Εμπειρικά θα εφαρμόζουμε τον αλγόριθμο ως

Θα κατασκευάζουμε τον πίνακα μετάβασης του νέου ΝΠΑ ως εξής:

- Θα βάζουμε μόνο την αρχική κατάσταση στον νέο πίνακα.
- Όποιες νέες καταστάσεις προκύπτουν θα τις θέτουμε προς μελέτη σε νέες γραμμές του πίνακα μετάβασης του ΝΠΑ.
- Η μελέτη μίας κατάστασης Χ με το σύμβολο σ γίνεται ως εξής:
 - Για κάθε κατάσταση που περιέχεται στο Χ καταγράφουμε το σύνολο των καταστάσεων που πηγαίνουμε με το σ (χρήσιμος ο πίνακας μετάβασης του ΜΠΑ). Τελικώς δίνουμε την ένωση των συνόλων αυτών.
- Ο πίνακας μετάβασης θα σταματά όταν δεν θα υπάρχουν νέες καταστάσεις προς διερεύνηση.
- Θα δίνουμε την σχηματική απεικόνιση του ΝΠΑ
 - Η αρχική κατάσταση είναι η ίδια
 - Οι τελικές καταστάσεις είναι όσες περιέχουν τελική του ΜΠΑ.

KANONIKEΣ ΓΛΩΣΣΕΣ www.psounis.gr

ΠΑΡΑΔΕΙΓΜΑ: Μετατρέπουμε το ακόλουθο ΜΠΑ στο ισοδύναμο ΝΠΑ:

ΠΡΟΧΕΙΡΟ (Πιν. Μεταβ.του ΜΠΑ)

	О	1
A	Ø	{B,Γ}
В	Ø	Ø
Γ	$\{\Gamma\}$	{B}

ΚΑΘΑΡΟ: Εφαρμόζω τον αλγόριθμο μετατροπής ΜΠΑ=>ΝΠΑ

	0	1
{A}	Ø	{Β,Γ}
Ø	Ø	Ø
{B,Γ}	$\{\Gamma\}$	{B}
$\{\Gamma\}$	$\{\Gamma\}$	{B}
{B}	Ø	Ø

