Министерство науки и высшего образования Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)" (МГТУ им. Н.Э. Баумана)

Факультет "Фундаментальные науки" Кафедра "Высшая математика"

ОТЧЁТ по учебной практике за 3 семестр 2020—2021 гг.

Руководитель практики,		Кравченко О.В
ст. преп. кафедры ФН1	(nodnucb)	_ Кравченко О.Б
студент группы ФН1–31		Градов М.О.
	$(nodnuc_{\mathcal{B}})$	

Москва, 2020 г.

Содержание

1	Цели и задачи практики	9		
	1.1 Цели	9		
	1.2 Задачи			
	1.3 Индивидуальное задание			
2	2 Отчёт			
3	Индивидуальное задание	ŀ		
	3.1 Ряды Фурье и интегральное уравнение Вольтерры	٦		
\mathbf{C}	писок литературы	Ć		

1 Цели и задачи практики

1.1 Цели

— развитие компетенций, способствующих успешному освоению материала бакалавриата и необходимых в будущей профессиональной деятельности.

1.2 Задачи

- 1. Знакомство с теорией рядов Фурье, и теорией интегральный уравнений.
- 2. Развитие умения поиска необходимой информации в специальной литературе и других источниках.
- 3. Развитие навыков составления отчётов и презентации результатов.

1.3 Индивидуальное задание

- 1. Изучить способы отображения математической информации в системе вёртски LATEX.
- 2. Изучить возможности системы контроля версий Git.
- 3. Научиться верстать математические тексты, содержащие формулы и графики в системе IATEX. Для этого, выполнить установку свободно распространяемого дистрибутива TeXLive и оболочки TeXStudio.
- 4. Оформить в системе I^AТЕХтиповые расчёты по курсу математического анализа согласно своему варианту.
- 5. Создать аккаунт на онлайн ресурсе GitHub и загрузить исходные tex-файлы и результат компиляции в формате pdf.
- 6. Решить индивидуальное домашнее задание согласно своему варианту, и оформить решение с учётов пп. 1—4.

2 Отчёт

Интегральные уравнения имеют большое прикладное значение, являясь мощным орудием исследования многих задач естествознания и техники: они широко используются в механике, астрономии, физике, во многих задачах химии и биологии. Теория линейных интегральных уравнений представляет собой важный раздел современной математики, имеющий широкие приложения в теории дифференциальных уравнений, математической физике, в задачах естествознания и техники. Отсюда владение методами теории дифференциальных и интегральных уравнений необходимо прикладному математику, при решении задач механики и физики.

3 Индивидуальное задание

3.1 Ряды Фурье и интегральное уравнение Вольтерры.

Задача № 1.

Условие. Разложить в ряд Фурье заданную функцию f(x), построить графики f(x) и суммы ее ряда Фурье. Если не указывается, какой вид разложения в ряд необходимо представить, то требуется разложить функцию либо в общий тригонометрический ряд Фурье, либо следует выбрать оптимальный вид разложения в зависимости от данной функции.

$$f(x) = \cos x, \quad 0 \leqslant x \leqslant \pi$$
 по синусам кратных дуг. (1)

Решение. В общем случае ряд Фурье имеет вид

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx)).$$

Вычислим коэффициенты

$$a_n = 0$$
, где $n = 0, 1, ...$

$$b_n = \frac{2}{T} \left(\int_0^T f(x) \sin \frac{\pi nx}{T} dx \right) \quad T = \pi \quad \Rightarrow \quad b_n = \frac{2}{\pi} \left(\int_0^\pi \cos x \sin nx dx \right).$$

Решим

$$\int \cos x \sin nx \, dx = \int \sin nx \, d\sin x = \sin x \sin nx -$$

$$- \int \sin x \, d\sin nx = \sin nx \sin x - n \int \sin x \cos nx \, dx = \sin x \sin nx + n \int \cos nx \, d\cos x =$$

$$= \sin x \sin nx + n \cos x \cos nx - n \int \cos x \, d\cos nx = \sin x \sin nx + n \cos x \cos nx + n^2 \int \cos x \sin nx \, dx.$$

Имеем

$$(1 - n^2) \cdot \int \cos x \sin nx \, dx = \sin x \sin ns + n \cos x \cos nx \Leftrightarrow \int \cos x \sin nx =$$

$$= \frac{\sin x \sin nx + n \cos x \cos nx}{1 - n^2}.$$

При этом данное выражение не имеет смысла при n=1

$$\int_{0}^{\pi} \cos x \sin x \, dx = \frac{1}{(1-n)^2} \left(\sin x \sin nx + n \cos x \cos nx \right) \Big|_{0}^{\pi} = \frac{1}{1-n^2} \left(\sin \pi \sin n\pi + n \cos \pi \cos n\pi - \sin(0) \sin(0) - n \cos(0) \cos(0) \right) = \frac{1}{1-n^2} \left(-n \cos n\pi - n \right) = \frac{1}{1-n^2} \left((-1)^{n+1} - 1 \right).$$

Отдельно для n=1

$$\int_{0}^{\pi} \cos x \sin x \, dx = \int_{0}^{\pi} \sin x \, d \sin x = \frac{1}{2} \sin^{2} x \Big|_{0}^{\pi} = 0$$

Тогда получаем

$$b_n = \frac{2}{\pi} \cdot \frac{n}{1-n^2} \left((-1)^{n+1} - 1 \right)$$
 при $n \geq 2$ и $b_n = 0$ при $n = 1 (n \in \mathbb{N})$

График функции S(x) имеет следующий вид

Ответ:

$$f(x) = \sum_{n=2}^{\infty} \left[\frac{2}{\pi} \cdot \frac{n}{1 - n^2} \left((-1)^{n+1} - 1 \right) \sin nx \right] = \frac{2}{\pi} \cdot \sum_{n=2}^{\infty} \left[\frac{n}{1 - n^2} \left((-1)^{n+1} - 1 \right) \sin nx \right].$$

Задача № 2.

Условие. Для заданной графически функции y(x) построить ряд Фурье в комплексной форме, изобразить график суммы построенного ряда

$$f(x) = \begin{cases} \cos x, & 0 \leqslant x \leqslant \frac{\pi}{2}, \\ 0, & \frac{\pi}{2} \leqslant x \leqslant \pi. \end{cases}$$

Решение.

Ряд Фурье в комплексной форме имеет следующий вид

$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{i\omega nx}, \quad c_n = \frac{1}{T} \int_a^b f(x) e^{-i\omega nx} dx, \ \omega = \frac{2\pi}{T}.$$

В нашем примере $a=0,b=\pi,T=\pi,\omega=2,$ найдем коэффицинеты $c_n,$ $n=0,\pm 1,\pm 2,\ldots$

$$c_{n} = \frac{1}{\pi} \left(\int_{0}^{\pi} f(x)e^{-2inx} dx \right) = \frac{1}{\pi} \left(\int_{0}^{\frac{\pi}{2}} \cos x e^{-2inx} dx \right) + \frac{1}{\pi} \left(\int_{\frac{\pi}{2}}^{\pi} 0 \cdot e^{-2inx} dx \right) = \frac{1}{\pi} \left(\int_{0}^{\frac{\pi}{2}} \cos x e^{-2inx} dx \right).$$

Решим

$$\begin{split} & \int \cos x e^{-2inx} dx = -\frac{1}{2in} \left(\int \cos x de^{-2inx} \right) = -\frac{1}{2in} \left(\int \cos x e^{-2inx} \right) + \frac{1}{2in} \left(\int e^{-2inx} d\cos x \right) = \\ & = -\frac{1}{2in} \left(\int \cos x e^{-2inx} \right) - \frac{1}{2in} \left(\int e^{-2inx} d\sin x \right) = -\frac{1}{2in} \left(\int \cos x e^{-2inx} \right) - \frac{1}{4n^2} \left(\int \sin x de^{-2inx} \right) = \\ & = -\frac{1}{2in} \left(\cos x e^{-2inx} \right) - \frac{1}{4n^2} \left(\sin x e^{-2inx} \right) + \frac{1}{4n^2} \left(\int e^{-2inx} \cos x dx \right). \end{split}$$

Имеем

$$\int \cos x e^{-2inx} dx = -\frac{1}{2in} \left(\cos x e^{-2inx}\right) - \frac{1}{4n^2} \left(\sin x e^{-2inx}\right) + \frac{1}{4n^2} \left(\int e^{-2inx} \cos x dx\right) \Leftrightarrow$$

$$\Leftrightarrow \int \cos x e^{-2inx} dx = \frac{2in\cos x e^{-2inx} - \sin x e^{-2inx}}{4n^2} = \frac{e^{-2inx} (2in\cos x - \sin x)}{4n^2 - 1}.$$

Данный интеграл не определен при $4n^2-1=0 \Leftrightarrow n=\pm \frac{1}{2} \notin \mathbb{Z}$. Таким образом,

$$\int_{0}^{\frac{\pi}{2}} \cos x e^{-2inx} dx = \frac{e^{-2inx}(2in\cos x - \sin x)}{4n^2 - 1} = -\frac{e^{-i\pi x} + 2in}{4n^2 - 1}$$

На основании теоремы Дирихле построими график:

Ответ:

$$f(x) = \sum_{n = -\infty}^{\infty} \left[-\frac{1}{\pi} \cdot \frac{e^{-i\pi n} + 2in}{4n^2 - 1} e^{2inx} \right] = -\frac{1}{\pi} \sum_{n = -\infty}^{\infty} \left[-\frac{e^{-i\pi n} + 2in}{4n^2 - 1} e^{2inx} \right];$$

при этом f(x) для x вида $\pi n, n \in \mathbb{Z}$ равно $\frac{1}{2}$.

Задача № 3.

Условие.

Найти резольвенту для интегрального уравнения Вольтерры со следующим ядром

$$K(x,t) = x^{\frac{1}{8}}t^{\frac{1}{4}}.$$

Решение.

$$K_1(x,t) = x^{\frac{1}{8}} t^{\frac{1}{4}},$$

$$K_2(x,t) = \int_{t}^{x} x^{\frac{1}{8}} s^{\frac{1}{4}} \cdot s^{\frac{1}{8}} t^{\frac{1}{4}} = x^{\frac{1}{8}} t^{\frac{1}{4}} \int_{t}^{x} s^{\frac{3}{8}} ds = \frac{8}{11} x^{\frac{1}{8}} t^{\frac{1}{4}} \left(x^{\frac{11}{8}} - t^{\frac{11}{8}} \right) = \frac{8}{11} K_1(x,t) \left(x^{\frac{11}{8}} - t^{\frac{11}{8}} \right),$$

$$K_3(x,t) = \int\limits_t^x K(x,s)K_2(s,t)ds = \int\limits_t^x K(x,s) \cdot \frac{8}{11}K_1(s,t) \left(x^{\frac{11}{8}} - t^{\frac{11}{8}}\right) ds =$$

$$= \frac{8}{11} \int\limits_t^x s^{\frac{11}{8}}K(x,s)K_1(s,t) ds - -\frac{8}{11} \int\limits_t^x t^{\frac{11}{8}}K(x,s)K_1(s,t) ds =$$

$$= \frac{8}{11} \int\limits_t^x s^{\frac{11}{8}}K(x,s)K_1(s,t) ds - \frac{8}{11}t^{\frac{11}{8}}K_2(x,t).$$
Решим
$$\int\limits_t^x s^{\frac{8}{11}}K(x,s)K_1(s,t) ds = \int\limits_t^x s^{\frac{8}{11}}x^{\frac{1}{4}}s^{\frac{1}{8}}t^{\frac{1}{4}} ds = K_1(x,t) \int\limits_t^x s^{\frac{14}{8}} ds = K_1(x,t) \frac{s^{22/8}}{22/8} =$$

$$= K_1(x,t) : \frac{8}{22}(x^{22/8} - t^{22/8})$$
Значит: $K_3(x,t) = \frac{8}{11} \cdot \frac{8}{22}K_1(x,t)(x^{22/8} - t^{22/8}) - \frac{8}{11}t^{11/8}K_2(x,t).$

Аналогичными вычислениями показывается, что

$$K_4(x,t) = \frac{8}{11} \cdot \frac{8}{22} \cdot \frac{8}{33} K_1(x,t) (x^{33/8} - t^{33/8}) - \frac{8}{22} \cdot \frac{8}{22} t^{11/8} K_2(x,t) - \frac{8}{11} t^{\frac{11}{8}} K_3(x,t)$$

$$K_5(x,t) = \frac{8}{11} \cdot \frac{8}{22} \cdot \frac{8}{33} \cdot \frac{8}{44} K_1(x,t) (x^{44/8} - t^{44/8}) - \frac{8}{11} \cdot \frac{8}{22} \cdot \frac{8}{33} t^{33/8} K_2(x,t) - \frac{8}{11} \cdot \frac{8}{22} K_3(x,t) - \frac{8}{11} \cdot t^{\frac{11}{8}} K_1(x,t)$$

Легко видеть, что

$$K_{j}(x,t) = \frac{8^{j-1}}{\prod_{n=1}^{j-k} 11n} K_{1}(x,t) \left(x^{\frac{11(j-1)}{8}} - t^{\frac{11(j-1)}{8}} \right) - \sum_{k=2}^{j-1} \left[K_{k}(x,t) t^{\frac{11(j-k)}{8}} \cdot \frac{8^{j-k}}{\prod_{n=1}^{j-k} 11n} \right]$$

Теперь можно получить

$$R(x,t,\lambda) = \sum_{p=1}^{\infty} \lambda^{p-1} K_p(x,t).$$

Список литературы

- [1] Львовский С.М. Набор и вёрстка в системе I^AT_EX, 2003.
- [2] Краснов М.Л., Киселев А.И., Макаренко Г.И. Интегральные уравнения. М.: Наука, 1976.
- [3] Васильева А. Б., Тихонов Н. А. Интегральные уравнения. 2-е изд., стереотип. М: ФИЗМАТЛИТ, 2002.