Corrections to be noted in Volume 66 of the JOURNAL OF RESEARCH of the National Bureau of Standards—D. Radio Propagation

Page	Column	Line	. Now reads in part	Should read
8	1	eq. 12	$\frac{\left[1 - \left(\frac{\cos \theta_1}{\cos \theta_2}\right)^2\right] + \sin^2 \theta_1 \left[1 - \left(\frac{k_1 \cos \theta_1}{k_2 \cos \theta_2}\right)^2\right]^2}{\left[1 - \left(\frac{\cos \theta_1}{\cos \theta_2}\right)^2\right] - \sin^2 \theta_1 \left[1 + \left(\frac{k_1 \cos \theta_1}{k_2 \cos \theta_2}\right)^2\right]^2}.$	$\frac{\left[1 - \left(\frac{\cos\theta_1}{\cos\theta_2}\right)^2\right] + \sin^2\theta_1 \left[1 - \left(\frac{k_1\cos\theta_1}{k_2\cos\theta_2}\right)^2\right]^2}{\left[1 + \left(\frac{\cos\theta_1}{\cos\theta_2}\right)^2\right] - \sin^2\theta_1 \left[1 - \left(\frac{k_1\cos\theta_1}{k_2\cos\theta_2}\right)^2\right]^2}$
11	2	${17.\ldots \choose 21.\ldots}$	$Z_{ga} = dZ_i = -$ $-\frac{i\omega\mu d}{2\pi} \frac{d}{2\pi a}.$	$Z_{ga} = dZ_i - rac{i\omega\mu d}{2\pi} \ln rac{d}{2\pi a}$
16	2	eq. 8	$+rac{I_{m{\delta}}(m{z}_1)I_1(m{z}_1)}{1-I_1(2m{z}_1)}\dots$	$+\frac{2I_{\delta}(\pmb{z})I_1(\pmb{z}_1)}{1-I_1(2\pmb{z}_1)}\cdot$
17	1	eq. 11	$+rac{CI_{\delta}^{2}(z_{1})}{1-CI_{\delta}(2z_{1})}\cdot \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$+rac{2CI_{oldsymbol{\delta}}^{2}(z_{1})}{1-CI_{oldsymbol{\delta}}(2z_{1})}.$
1,	2	last	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ccc} $
18	$\begin{vmatrix} 1 & \cdots & \\ 2 & \cdots & \end{vmatrix}$	eq. 29		
	11	last	$\begin{vmatrix} z \\ \delta z = 0$	$ \delta z ^{-1}=0$
19		eq. 30		
	1	eq. 31		$\log k\delta + i \frac{\pi}{2} +$
		eq. 32	$I_0(0) = -\frac{1}{\sqrt{\frac{\epsilon}{\mu} \log rka}} [1 + 0(1)]. \dots$	$I_0(0) = \frac{-\pi}{\sqrt{rac{\mu}{\epsilon}} \log \Gamma ka} [1 + o(1)].$
20	2	eq. 46		$\log k\delta + i \frac{\pi}{2} +$
21	1	eq. 48		$\log k\delta + i \frac{\pi}{2}$
25			of X	of jX
26	2	2 from bottom	-37÷38 mm	237÷38 mm.
28	2	. 32	after internal reflection there	after internal reflection (and as far as the length of the internal path P_i is concerned) there
39		last	. 10=	. $C_{10}=$
51			$ \cdot \left \begin{array}{cc} \left(\frac{3}{2} & {\scriptscriptstyle 1}\right)^{1/3} & \end{array} \right. $	
108			$\mathbf{a} = \mathbf{a}e^{-ik_0RPQ}/R_{PQ}.$	
109	2	. eq. 32	$\left \begin{array}{c} \int V_3 g \ldots \ldots \end{array} \right $	$\int_{V_3} g$
177 190 194		15	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	[Wait, 1958]

Corrections to be noted in Volume 66 of the JOURNAL OF RESEARCH of the National Bureau of Standards—D. Radio Propagation—Continued

Page	Column	Line	Now reads in part	Should read
		7	$ \begin{bmatrix} \frac{1}{k^2} \frac{\partial^2 A_z}{\partial z^{12}} & & & & \\ & & & & & \\ \frac{\partial^2}{\partial z^{12}} & & & & & \\ \end{bmatrix} $	$\left[\frac{1}{k^2} \frac{\partial^2 A_z}{\partial z'^2}\right]$
202		1	$\frac{\partial^2}{\partial z^{12}}$	$\frac{\partial^2}{\partial z'^2}$
		12	$\frac{\partial^2}{\partial z^{12}}$	$\frac{\partial^2}{\partial z'^2}$
206 207	$egin{pmatrix} 1,\ldots, \\ 1,\ldots, \\ 2,\ldots, \end{pmatrix}$	Last 3eq. 5	$+\sin\theta\sin\theta_1\cos\theta_1, \dots P^n(\cos\theta). \dots (\cos\theta)2(r \ge a). \dots$	$+\sin \theta \sin \theta_1 \cos \pi_1,$ $P_n^1(\cos \theta)$ $(\cos \theta)(r \ge a).$
226	2	5 from	Trexler, J. I.,	Trexler, J. H.,
236 273	1 2	Last	$G=BK$ $K=2/\Lambda$	$K\!=\!2\pi/\Lambda$
274	1	eq. 3	$\delta p = p_0 rac{4\pi}{\lambda^2} . \ . \ . \ . \ . \ . \ . \ . \ . \ .$	$\delta p = p_0 rac{4\pi}{\Lambda^2}$
2	1	eq. 4	$\delta p \!=\! p_0 ho^2 rac{\pi}{16} rac{l^4}{H} \ldots $	$\delta p = p_0 ho^2 rac{\pi}{16} rac{l^4}{H^2}$
			$\delta N \sim 10^{-2} N$. dN . $d\rho = dN/2\alpha^2$.	
277	1	34	$ ho = \int_0^{\sigma} rac{dN}{2lpha^2} e^{j2Kz} \; . \ g = \delta N/e . \ . \ .$	$ ho = \int_0^s rac{dn}{2lpha^2} \; e^{i2Kz}$
		2 from bottom.	$g = \delta N/e$	$g \!=\! \delta n/e$
		last	$ ho = rac{\delta N}{e} rac{\lambda}{\delta \pi lpha^3} \cdot \ldots$	$ ho\!=\!rac{\delta n}{e}rac{\lambda}{\delta\pilpha^3}\!\cdot$
278	1		$rac{\lambda^2}{lpha^6 D},$	
297	2	Table 1, col. 5, line 3.	51.7° N	71.7° N
340		5	(2 to 7) and	
361		10	$\left(-\frac{\pi}{2}+\epsilon\right)$	$-\Big(rac{\pi}{2}\!+\!\epsilon\Big)$
			Figure 3 is upside down. F_m	f_m
537		eq. A40	$Z_{ m t} = \left[egin{array}{c} rac{\hat{I}_v^{\prime}(\gamma_1 r)}{\hat{I}_v(\gamma_1 r)} ight]_{r=a_1} \ & a_2 ext{ and } a_1 ext{ should be interchanged everywhere} \end{array} ight.$	$Z_{\mathrm{t}} \! = \! \left[egin{array}{c} \! rac{\hat{I}_{v}^{ \prime}(\gamma_{2} r)}{\hat{I}_{v}^{ \prime}(\gamma_{1} r)} ight]_{r=a_{2}} \!$

Corrections to be noted in Volume 66 of the JOURNAL OF RESEARCH of the National Bureau of Standards—D. Radio Propagation—Continued

Page	Column	Line	Now reads in part	Should read	
552	,	31	$P_p P_a$	$P_ u \!\!<\!\! P_a. \ \left[rac{\epsilon_2}{\epsilon_1}rac{g_1^2}{lpha}\!\!-\!\!rac{\epsilon_3}{\epsilon_1}g_1 ight]$	
561			$\begin{bmatrix} \frac{\epsilon_2}{\epsilon_1} \frac{g_1^{\tau}}{\alpha} - \frac{\epsilon_3}{\epsilon_1} g_2 \end{bmatrix}$ $Y_t = \frac{2\pi 1}{\left[\int_{\theta_0}^{\pi - \theta_0} E_{\theta} d\theta \right]^2}$		
562 563	1 2		$P_k(\cos\theta)$ e^{-2uz_0}		
564	1	eq. 6	$\Delta Z = \frac{\Delta E_z ds}{J_0} \bigg]_{\substack{z \to z_0 \\ \rho \to 0}} \dots \dots \dots$	$\Delta Z = rac{-\Delta E_z ds}{J_0} igg]_{\substack{z ightarrow z_0 \ ho ightarrow 0}}$	
567	2,	eq. 40	The factor $e^{-u(z+z_0)}$ is missing in the integrand.		
593	1		Fernmeldetechnische		
611	2		idential dipole	magnetic dipole	
632		eq. 79	$N=\dots$	n=	
Vol.					
66D5	Back cover	13	Enchancement	Enhancement	
666		eq. 10	$0,\ldots$ $=\stackrel{ ightarrow}{(1_{z'}} \mp \stackrel{ ightarrow}{i} 1_{y'} k_i \ldots$	$\begin{vmatrix} \cdot ^2, & \rightarrow \\ \rightarrow & \rightarrow \\ = (1_{z'} \mp i 1_{y'}) k_i \end{vmatrix}$	
669		eq. 19	$ik_1^2 \cos \psi_1^2 \ ik_2^2 \cos \psi_2 \ ik_3^2 \cos \psi_3 \ ik_4^2 \cos \psi_4$	$ \begin{vmatrix} ik_1^2 \cos^2 \psi_1 & ik_2^2 \cos^2 \psi_2 & -ik_3^2 \cos^2 \psi_3 \\ -ik_4^2 \cos^2 \psi_4 & \end{vmatrix} $	
681	Abstract	12	occurrence of fadeout	occurrence of fadeouts	
689	1		10-db fadeout		
725	2		$A = A_0 ex$,		
732	1		from (2)	from (3)	