Forma Canónica de Jordan

24 de mayo de 2019

1. Forma Canónica de Jordan para Operadores Nilpotentes

Definicion 1.1 (Operadores Lineales Nilpotentes) El operador $T: V \to V$ es nilpotente si $T^p = 0$, para algún $p \in \mathbb{N}$. Además se dice que $k \in \mathbb{N}$, es el índice de nilpotencia de T si:

$$T^{k-1} \neq 0 \wedge T^k = 0$$

Teorema 1 Sea $T:V\to V,\ V$ un $\mathbb C$ espacio vectorial, $\dim V=n,\ T$ nilpotente de índice q. Luego para $v\in V/T^{q-1}v\neq 0$, tenemos:

- 1. El conjunto $\{T^{q-1}v, T^{q-2}v, \dots, Tv, v\}$ es LI.
- 2. $S = \langle \{T^{q-1}v, T^{q-2}v, \dots, Tv, v\} \rangle$ es invariante por T.
- 3. Existe un subespacio U de V, invariante por T/

$$V = S \oplus U$$

Prueba

1.

$$a_{0}v + a_{1}Tv + a_{2}T^{v} + \dots + a_{q-1}T^{q-1}v = 0$$

$$\Rightarrow T^{q-1} \left(a_{0}v + a_{1}Tv + a_{2}T^{v} + \dots + a_{q-1}T^{q-1}v \right) = 0$$

$$a_{0}T^{q-1}v = 0$$

$$a_{0} = 0$$
(1)

De (1)
$$a_1 T v + a_2 T^v + \dots + a_{q-1} T^{q-1} v = 0$$

$$\Rightarrow T^{q-2} \left(a_1 T v + a_2 T^v + \dots + a_{q-1} T^{q-1} v \right) = 0$$

$$a_1 T^{q-1} v = 0$$

$$a_1 = 0$$

De forma similar tenemos:

$$a_0 = a_1 = a_2 = \dots = a_{q-1} = 0$$

$$\therefore \{T^{q-1}v, T^{q-2}v, \dots, Tv, v\}, \quad son \ LI$$

2. Sea $u \in S$

$$\Rightarrow u = \sum_{k=0}^{q-1} a_k T^k v$$

$$\Rightarrow Tu = \sum_{k=0}^{q-1} a_k T^{k+1} v = \sum_{k=0}^{q-2} a_k T^{k+1} v \in S$$

$$\therefore T(S) \subset S$$

3. VER

Corolario 1 Del teorema (1)

$$S = \left\langle \left\{ T^{q-1}v, T^{q-2}v, \dots, Tv, v \right\} \right\rangle$$

$$\Rightarrow \dim(S) = q$$

Luego

$$T(S) = \left\langle \left\{ T^{q-1}v, T^{q-2}v, \dots, T^2v, Tv \right\} \right\rangle$$

$$\Rightarrow \dim T(S) = q - 1$$

$$T^{2}(S) = \left\langle \left\{ T^{q-1}v, T^{q-2}v, \dots, T^{3}v, T^{2}v \right\} \right\rangle$$

$$\Rightarrow \dim T^{2}(S) = q - 2$$

Inductivamente

$$T^{r}(S) = \left\langle \left\{ T^{q-1}v, T^{q-2}v, \dots, T^{r+1}v, T^{r}v \right\} \right\rangle$$

$$\Rightarrow \dim T^{r}(S) = q - r$$

Nota 1 Como $S = S_1$ es invariante por T, podemos definir el operador T sobre S_1 , es decir, $T: S_1 \to S_1$ cuyo indice de nilpotencia es $q_1 = q$. Del teorema (1), $\beta_1 = \{T^{q-1}v, T^{q-2}v, \dots, Tv, v\}$ es base de S_1 . Así

$$[T]_{\beta_1} = [[T(T^{q_1-1}v)], [T(T^{q_1-2}v)], [T(T^{q_1-3}v)], \dots, [T(Tv)], [T(v)]]$$

$$[T]_{\beta_1} = \begin{bmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & 0 & \dots & 0 \end{bmatrix} = [T_{|S1}]_{\beta_1}$$

Además como $U=U_1$ invariante por T, podemos definir T sobre U_1 , $T:U_1 \to U_1$, y volver a aplicar el teorema(1), es decir existe S_2 y U_2 subespacios de U_1 , invariantes por T/

$$U_1 = S_2 \oplus U_2$$

Repitiendo lo anterior pero con $S = S_2, \exists u \in V/T^{q_2-1}u \neq 0$, donde q_2 es el indice de nilpotencia de $T_{|S|} = T$: $S \to S$, asi:

$$\beta_2 = \left\{ T^{q_2 - 1} u, T^{q_2 - 2} u, \dots, Tu, u \right\}$$

$$[T]_{\beta_2} = \begin{bmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & 0 & \dots & 0 \end{bmatrix} = [T_{|S2}]_{\beta_2}$$

Podemos continuar descomponiendo los U_k , por el teorema anterior, hasta obtener:

$$V = S_1 \oplus S_2 \oplus \ldots \oplus S_k$$

De esto $\beta = \bigcup_{i=1}^k \beta_i$ es base de V, donde β_i es base de S_i . Además

$$\begin{bmatrix} \left[T_{|S_1}\right]_{\beta_1} & O & \dots & O \\ O & \left[T_{|S_2}\right]_{\beta_2} & \dots & O \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \dots & \left[T_{|S_k}\right]_{\beta_k} \end{bmatrix}$$

Note que el bloque $\left[T_{|S_k}\right]_{\beta_k}$ es más grande (o igual) que el bloque $\left[T_{|S_m}\right]_{\beta_m}$, para k>m, pues $q_k\geq q_m$.

Teorema 2 (Estructura de la matriz de un Operador Lineal) Sea $T: V \to V$, dimV = n, un operador lineal nilpotente de índice q, entonces:

1.
$$\exists q_1 = q, q_2, q_3, \dots, q_r \in \mathbb{N} / q_1 \ge q_2 \ge q_3 \ge \dots \ge q_r$$

2. HERE SEE, WHAT HAPPEN WITH ALIGN ENVIROMENT

3.

$$T^{q_1}v_1 = T^{q_2}v_2 = \dots = T^{q_r}v_r = 0$$

Ejemplo 1 Hallar la forma canónica de Jordan de la matriz nilpotente.

$$\begin{pmatrix}
0 & 1 & 0 & -1 \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1 \\
-1 & 0 & 1 & 0
\end{pmatrix}$$

Solución

Sea $V = \mathbb{R}^{4 \times 1}$, definiendo $T : V \to V$ como:

$$T: V \to V$$
$$X \mapsto TX = AX$$

Luego $[T]_{\beta} = A$, β base canónica de $\mathbb{R}^{4\times 1}$ Hallando el indice de nilpotencia de T(que es igual a hallar el indice de nilpotencia de A)

$$A^{2} = \begin{bmatrix} 2 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 \\ 2 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \qquad A^{3} = 0$$

Por lo tanto el indice de nilpotencia es
$$q_1=q=3$$
. Hallando $v_1\in\mathbb{R}^{4\times 1}/T^{q_1-1}v_1\neq 0$
Tomando $v_1=\begin{bmatrix}0\\1\\1\\1\end{bmatrix}$, tenemos $T^{q_1-1}v_1=T^2v_1=A^2v_1=\begin{bmatrix}-2\\0\\-2\\0\end{bmatrix}\neq 0$

Asi

$$S_{1} = \left\langle \left\{ T^{2}v_{1}, Tv_{1}, v_{1} \right\} \right\rangle$$

$$= \left\langle \left\{ \begin{bmatrix} -2\\0\\-2\\0 \end{bmatrix}, \begin{bmatrix} 0\\-1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix} \right\} \right\rangle$$

Luego por teorema(1), $\exists U_1 \subset V = \mathbb{R}^{4\times 1}$ subspacio invariante por T/

$$\mathbb{R}^{4\times 1} = V = S_1 \oplus U_1$$

Por lo que dim $U_1 = 1$, asi $S_2 = U_1$, con índice de nilpotencia $q_2 = 1$. Hallando $v_2 \in V/T^{q_2}v_2 = 0$

Resolviendo
$$Av = 0$$
, tenemos $v = t \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + s \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$

Tomando
$$v_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$
, pues $\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} \in S_1$

Finalmente $\beta = \{T^2v_1, Tv_1, v_1, v_2\}$ es una base para V y

$$[T]_{\beta} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

2. Forma Canónica de Jordan (general)

Teorema 3 sea $T:V \to V$ un operador lineal, $\dim V = n$. Entonces $\exists \ U,W \subset V$ subspacios invariantes por T/

- 1. $V = U \oplus W$
- 2. $T_{|U}: U \to U$ es nilpotente y $T_{|W}: W \to W$ es inversible.

Demostración

- Casos triviales
 - T inversible, simplemente tomamos W = V y $U = \emptyset$.
 - T nilpotente, tomamos W = 0 y U = V.
- \blacksquare Si T no es inversible.

$$\Rightarrow N(T) \neq 0 \Rightarrow N(T^p) \neq 0, \quad p \in \mathbb{N}$$

Por otro lado se cumple:

$$N(I) \subseteq N(T) \subseteq N(T^2) \subseteq \ldots \subseteq N(T^q) \subseteq N(T^{q+1}) \subseteq \ldots \subseteq V$$

 $V \supseteq Im(I) \supseteq Im(T) \supseteq Im(T^2) \supseteq \ldots \supseteq Im(T^q) \supseteq Im(T^{q+1}) \supseteq \ldots$

Sea $q \in \mathbb{N}$ el menor que cumple $N(T^q) = N(T^{q+1})$

Sea afirma que

$$N(T^q) = N(T^{q+k}), \quad \forall k \in \mathbb{N}$$
 (2)

Primero demostrando

$$N(T^{q+1}) = N(T^{q+2})$$

- (⊂) Directo
- (\supseteq) Sea $u \in N(T^{q+2})$

$$T^{q+2}u = 0$$

$$T^{q+1}(Tu) = 0$$

$$Tu \in N(T^{q+1}) = N(T^q)$$

$$T^q(Tu) = 0$$

$$T^{q+1}u = 0$$

$$\Rightarrow u \in N(T^{q+1})$$

Probando (2) por inducción matemática.

- k = 1 Cumple
- Suponiendo valido para $k(N(T^q) = N(T^{q+k}))$
- Para k+1, debemos probar $N(T^q) = N(T^{q+k+1})$
 - (⊆) Directo
 - (\supseteq) Sea $u \in N(T^{q+k+1})$

$$T^{q+k+1}u = 0$$

$$T^{q+k}(Tu) = 0$$

$$Tu \in N(T^{q+k}) = N(T^q)$$

$$T^q(Tu) = T^{q+1}u = 0$$

$$u \in N(T^{q+1}) = N(T^q)$$

Ahora tomamos $U = N(T^q) \wedge W = Im(T^q) = T^qV$

 \bullet *U* invariante por *T*

$$T(U) \subseteq N(T^{q+1}) = N(T^q) = U$$

• W invariante por T Sea $u \in W = T^qV$

$$\Rightarrow \exists v \in V/T^q v = u$$

$$\Rightarrow Tu = T(T^q v) = T^q(Tu) \in T^q V = W$$

$$\therefore T(W) \subseteq W$$

Afirmamos que la suma U+W es suma directa, pues si $v \in U \cap W$, entonces:

$$\Rightarrow v \in N(T^q) \quad \land \quad v \in T^q V = W$$

$$\Rightarrow T^q v = 0 \quad \land \quad \exists w \in V/v = T^q w$$

$$T^{2q} w = T^q v = 0$$

$$\Rightarrow w \in N(T^{2q}) = N(T^q)$$

$$\Rightarrow T^q w = 0 = v$$

Por el teorema de la dimensión en $T^q: V \to V$, tenemos:

$$\dim V = \dim T^q V + \dim N(T^q) = \dim(T^q V \oplus N(T^q)) = \dim(U \oplus W)$$

Por lo que $V = T^q V \oplus N(T^q) = U \oplus W$.

Finalmente probemos que $T_{|U}:U\to U$ es nilpotente y $T_{|W}:W\to W$ es inversible.

• $T_{|U}: U \to U$ nilpotente. Como $q \in \mathbb{N}$, es el mínimo tal que $N(T^q) = N(T^{q+1})$ Entonces $N(T^{q-1}) \neq 0$, pues si $N(T^{q-1}) = 0$ implicaria que $N(T^q) = 0$. Para probar esto supongamos que $N(T^q) \neq 0$.

$$\exists v \in N(T^q), v \neq 0 / T^q v = 0$$

$$T^{q-1}(Tv) = 0$$

$$Tv \in N(T^{q-1}) = \{0\}$$

$$Tv = 0$$

$$v \in N(T) \subseteq N(T^{q-1})$$

$$v \in N(T^{q-1})$$

Contradice que $N(T^{q-1}) = 0$, por lo que $N(T^q) = 0$

$$\Rightarrow N(T^{q-1}) = N(T^q) \tag{3}$$

Pero (3), contradice la minimalidad de $q \in \mathbb{N}$

$$\therefore N(T^{q-1}) \neq 0$$

Así tenemos $T^q v = 0$, $\forall v \in U \land \exists u \in U / T^{q-1} u \neq 0$

$$\Rightarrow T_{|U}^{q-1} \neq 0 \quad \land \quad T_{|U}^{q} = 0$$

 $T_{|U}$ es nilpotente de indice q.

• $T_{|W}: W \to W$ inversible. Sea $v \in N(T_{|W}) \subseteq W = T^qV$

$$\Rightarrow Tv = 0$$

$$pero \ v \in T^q(V)$$

$$\Rightarrow \exists u \in V / \quad T^q u = v$$

$$T^{q+1}u = 0$$

$$\Rightarrow u \in N(T^{q+1}) = N(T^q)$$

$$\Rightarrow T^q u = 0 = v$$

Por lo que $N(T_{|W}) = 0$, asi $T_{|W}$ es inversible.

Teorema 4 (Unicidad de la decomposicion de T) La descompocisión de T es una nilpotente y en una inversible es única.

Prueba(pendiente)

Teorema 5 (Forma Canónica de Jordan) Sea V un \mathbb{C} espacio vectorial, $\dim V = n, T: V \to V$ un operador lineal $y \ \lambda_1, \lambda_2, \ldots, \lambda_k \in \wedge(T)$ $y \ n_1, n_2, \ldots, n_k$ las multiplicidades algebraicas de los valores propios(respectivamenete), entonces:

Existen subespacios V_1, V_2, \dots, v_k invariantes por T $(T(V_i) \subseteq V_i)$ /

- 1. $V = V_1 \oplus V_2 \oplus \ldots \oplus V_k$
- 2. dim $V_i n_i$, i = 1 k
- 3. El operador $T \lambda_i I : V_i \to V_i$ es nilpotenete, i = 1 k.