УЧЕБНА ПРОГРАМА ЗА ОТРАСЛОВА ПРОФЕСИОНАЛНА ПОДГОТОВКА

no

БАЗИОТ ДАННИ

УЧЕБНА ПРАКТИКА ПО: БАЗИ ОТ ДАННИ

ПРОФЕСИОНАЛНО НАПРАВЛЕНИЕ: 481 "КОМПЮТЪРНИ НАУКИ"

ПРОФЕСИИ: 481010 "ПРОГРАМИСТ"
481020 "СИСТЕМЕН ПРОГРАМИСТ"
481030 "ПРИЛОЖЕН ПРОГРАМИСТ"

София, 2017 година

І. ОБЩО ПРЕДСТАВЯНЕ НА УЧЕБНАТА ПРОГРАМА

Учебната програма по "Бази от данни" е предназначена за специалности:

- 4810101 "Програмно осигуряване"
- 4810201 "Системно програмиране"
- 4810301 "Приложно програмиране"

Учебното съдържание в програмата е структурирано в седем раздела, които дават възможност на учениците да получат знания, умения и компетентности за работа с релационни бази от данни.

I. ЦЕЛИ НА ОБУЧЕНИЕТО ПО ПРЕДМЕТА

Обучението по предмета има за цел учениците да придобият професионални компетентности за моделиране на бази от данни, работа със стандартни инструменти в релационните бази от данни, работа със скаларни и агрегиращи функции и езика SQL.

II. УЧЕБНО СЪДЪРЖАНИЕ

- 1. Учебното съдържание е структурирано в раздели и теми. За всеки раздел в програмата е определен минимален брой учебни часове. Учителят разпределя броя учебни часове за нови знания, упражнения и оценяване, при спазване изискванията за минимален брой часове по раздели.
- 2. Разликата между броя на учебните часове в учебния план и общия минимален брой, предвиден в учебната програма определя резерва часове. Те се разпределят по теми в началото на учебната година от учителя.

3. Раздели:

No	Наименование на разделите	Минима лен брой часове теория	Минима лен брой часове практик а
1.	Въведение в базите от данни	4	4
2.	Моделиране на релационни бази от данни	4	4
3.	Заявки за извличане и промяна на данни	4	4

4.	Сложни заявки за извличане на данни	4	4
5.	Съединения на таблици	4	4
6.	Агрегация и групиране на данни	4	4
7.	Скаларни функции, работа с дати, транзакции	4	4
	Общ минимален брой часове	28	28
	Резерв часове	8	8
	Общ брой часове	36	36

ΙΙΙ. ΤΕΜΑΤИЧΕΗ ΠΛΑΗ

Раздел 1. Въведение в базите данни

- 1. Предназначение на базите от данни, създаване на бази от данни. Практическо въведение с примери: бази, таблици, записи, колони, типове данни, работа с визуални инструменти за управление на бази от данни
- 2. Език за дефиниране на данни (DDL) създаване на таблици и типове данни (CREATE, DROP и ALTER)
- 3. Практически задачи: създаване на бази от данни с таблици без връзки между тях (потребители, градове, оценки на ученици от предмети)
- 4. Практически задачи: Прости SELECT заявки върху създадените таблици

Раздел 2. Моделиране на релационни бази от данни

- 1. Релационнен модел и типове връзки: едно към едно (one-to-one), едно към много (one-to-many) и много към много (many-to-many)
- 2. Ограничения (check, not null, default), ключове (primary / unique / foreign) и колони с автоматична номерация (identity / autoincrement).
 - 3. Нормализация (първа, втора и трета нормална форма)
- 4. Практически задачи: създаване на сложни бази от данни с таблици с връзки между тях (например телефонен указател потребители, контакти, телефони; фирма потребители, потребителски групи, задачи, отчетени часове)

Раздел 3. Заявки за извличане и промяна на данни

- 1. Извличане на данни, филтри по колони, филтри по редове, концепция и начин на строеж на резултат от заявка (result sets), командата SELECT, клаузата WHERE и логически оператори (AND / OR)
- 2. Практически задачи: извличане на данни от готова база от данни телефонен указател, фирма
- 3. Език за модификация на данни (DML): командите INSERT, UPDATE и DELETE
- 4. Практически задачи: въвеждане, промяна и изтриване на данни (телефонен указател / фирма)

Раздел 4. Сложни заявки за извличане на данни

- 1. Вложени SQL заявки, псевдоними и оператори за множества (ALL, ANY, EXISTS, IN)
 - 2. Практически задачи: вложени SQL заявки
- 3. Сортиране на резултати (ORDER BY), странициращи заявки (LIMIT), заявка към резултат от друга заявка (result sets)
- 4. Практически задачи: извличане на данни за групи от потребители (задачи дадени на потребители от конкретна група), изпълнение на заявки, включващи данни от няколко таблици

Раздел 5. Съединения на таблици (JOIN)

- 1. Декартово произведение на таблици и съединения с WHERE
- 2. Практически задачи: извличане на данни от няколко таблици
 - 3. Заявки с JOIN клауза (INNER, LEFT, RIGHT, FULL, CROSS)
- 4. Практически задачи: заявки с JOIN клаузи, търсене на дублиращи се записи в таблица

Раздел 6. Агрегация и групиране на данни

- 1. Агрегиращи функции (AVG, MIN, MAX, SUM, COUNT)
- 2. Практически задачи: агрегиращи функции
- 3. Групиране на данни (GROUP BY) и филтър в групите (HAVING)
- 4. Практически задачи: групиране на данни (заявки с разбивка по периоди, извличане на хората работили под определени часове на седмица, извличане на средния брой отчетени часове, извличане на средния брой поети задачи по служител и по група)

Раздел 7. Скаларни функции, работа с дати, транзакции

1. Скаларни функции и работа с gamu (CAST, ISNULL, DATEPART, DAY, MONTH, YEAR, GETDATE, DATEADD)

- 2. Практически задачи: разбивка на дата в няколко колони (месец, година, ден), изчисляване на броя дни до дата
 - 3. Практически задачи: работа с функции и дати
 - 4. Транзакции и нива на изолация

IV. ОЧАКВАНИ РЕЗУЛТАТИ ОТ ОБУЧЕНИЕТО - ЗНАНИЯ, УМЕНИЯ И КОМПЕТЕНТНОСТИ

В края на обучението по учебния предмет ученикът придобива следните компетентности:

- Познава концепцията на таблица, колона, ред, ключ и ограничение в релационните бази от данни
- Моделира структурата на релационни бази от данни, създава таблици и връзки между тях
- Използва езикът SQL, създава заявки за извличане на данни, за добавяне, обновяване и изтриване на редове от таблици
- Използва скаларни и агрегиращи функции и транзакции

V. АВТОРСКИ КОЛЕКТИВ

Програмата е разработена от:

- 1. д-р Никола Вълчанов, Програмиста, ФМИ към ПУ, Пловдив
- 2. д-р Светлин Наков, СофтУни, София

Програмата е обсъдена, коригирана и оформена от експертна група към Национална програма "Обучение за ИТ кариера" към МОН с представители на БАСКОМ, БАИТ, ИКТ клъстер и Българска аутсорсинг асоциация в състав:

- 1. д-р Стела Стефанова, ТУЕС към ТУ, София
- 2. Любомир Чорбаджиев, ТУЕС към ТУ, София
- 3. Радослав Георгиев, HackSoft, HackBulgaria, София
- 4. Веселина Карапеева, ОМГ "Акад. К. Попов", Пловдив
- 5. Ангел Георгиев, СофтУни, София
- 6. Ивайло Бъчваров, HackSoft, HackBulgaria, София
- 7. Мирослав Миронов, Мусала Софт, София
- 8. Владимир Начев, ЕРАМ, София
- 9. Димитър Димитров, БАИТ, София

VI. AUTFPATYPA

1. Beaulieu A., Learning SQL: Master SQL Fundamentals, O'Reilly Media; 2nd edition (2009)