INTRODUÇÃO A CONCEITOS DE COMPUTAÇÃO

Sistema Operacional

SUMÁRIO

- > Papel do Sistema Operacional
- > Gerenciamento de Memória
- > Gerenciamento de Processo

Softwares de sistemas:

Programas que gerenciam um sistema computacional e interagem com hardware

- Há uma complexidade considerável nos sistemas de computadores modernos.
- Demanda a gerência de diversos dispositivos.

 Sistema operacional: software de sistema que gerencia recursos computacionais e fornece uma interface para interação com o sistema

Aplicativos

Programas de Sistema

Hardware

Dois papéis principais:

- Máquina estendida (top-down)
- Gerenciador de recursos (bottom-up)

Dois papéis principais:

 Máquina estendida (top-down): viabilizar tarefas de baixo nível para o usuário.

Dois papéis principais:

 Gerenciador de recursos (bottom-up) : Gerenciar dispositivos que compõem o computador.

Ciclo de Busca-Execução

RAM

Endereço	Conteúdo	
0	10110111	
1	00100110	
2	10000100	
3	10100100	
4	10000101	
5	01101010	
6	00110101	
7	01000101	

Gerenciamentos de Memória, de Processos e de CPU

- Multiprogramação: A técnica de manter múltiplos programas em memória principal ao mesmo tempo, competindo pela CPU
- Gerenciamento de memória: O ato de manter registro de como e onde programas são carregados em memória principal

Gerenciamentos de Memória, de Processos e de CPU

- Processo: a representação dinâmica de um programa durante execução
- Gerenciamento de processo: o ato de manter registro de informação para processos ativos
- Escalonamento de CPU: ato de determinar qual processo em memória terá acesso à CPU, de modo que ele possa executar

Tempo compartilhado

- Tempo compartilhado: um sistema no qual tempo de CPU é compartilhado entre múltiplos usuários interativos ao mesmo tempo
- Máquina virtual: a ilusão criada por um sistema de tempo compartilhado de que cada usuário possui uma máquina dedicada

- Registrar onde e como um programa reside em memória.
- Converter endereços lógicos de programas em endereços reais de memória.

Endereço	Conteúdo		
0	10110111		
1	00100110		
2	10000100		
3	10100100		
4	10000101		
5	01101010		
6	00110101		
7	01000101		

- Endereço lógico: referência a um valor armazenado, relativa ao programa que faz a referência.
- Endereço físico: endereço real no dispositivo de memória principal.
- Ligação de endereço: o mapeamento de um endereço lógico em um endereço físico.

Endereço	Conteúdo	
0	10110111	
1	00100110	
2	10000100	
3	10100100	
4	10000101	
5	01101010	
6	00110101	
7	01000101	

Gerenciamento de memória contígua única: a abordagem de gerenciamento de memória na qual um programa é carregado em uma área contígua de memória.

Endereço	Conteúdo	
0	10110111	
1	001110	
2	100100	
3	101100	
:	:	
2 ⁿ -3	011010	
2 ⁿ -2	001101	
2 ⁿ -1	010 101	

Gerenciamento de memória Endereço Conteúdo contígua única: a abordagem de gerenciamento de memória Sistema na qual um programa é **Operacional** carregado em uma área contígua de memória 100...100 m 101...100 m+1 **Programa Aplicativo** m—L m+L 011...010 001...101 2ⁿ-1 010...101

Gerenciamento de memória particionada: há mais de um programa aplicativo em memória ao mesmo tempo, compartilhando espaço em memória e tempo de CPU.

- Técnica de partição fixa: a memória é dividida em um número específico de partições nas quais os programas são carregados.
- Técnica de partição dinâmica: a memória é dividida em partições necessárias para acomodar programas.

 Registrador base: mantém o endereço de início da partição corrente.

m

 Registrador de limites: mantém o tamanho da partição corrente.

Processo 3

tam

Técnica de memória paginada: processos são divididos em páginas de tamanho fixo e carregados em quadros de memória.

Quadro: tamanho fixo de memória principal que guarda uma página de processo.

Página: tamanho fixo de um processo que é armazenado em um quadro de memória

Tabela de mapeamento de páginas (TMP): registro de relacionamentos página/quadro usada pelo sistema operacional.

m (páginas, deslocamento)

m tam
deslocamento páginas

tam

TMP - Processo 1

Página	Quadro	
0	12	
1	7	
2	22	
3	13	

(1, 125)

1024

TMP - Processo 2

Página	Quadro		
0	13		
1	0		

7.293

Memória

Quadro	Conteúdo
0	Processo 2/Página 2
÷	
7	Processo 1/ Página 1
:	
12	Processo 1/Página 0
13	Processo 1/Página 3
ŧ	:
21	Processo 2 / Página 1
22	Processo 1 / Página 2
÷	
M	_

- Processos CPU-bound (orientados à CPU): processos que utilizam muito o processador.
- Processos I/O-bound (orientados à E/S): processos que realizam muito E/S;

Execução interrompida para aguardar evento

Executando

Processo pronto para a executar
Processo em execução é interrompido

Esperando

Pronto

Evento ocorre e processo aguarda escalonamento na CPU

Escalonamento de CPU: determinar qual processo no estado pronto deve ser movido para o estado executando.

- Não preemptivo: o processo correntemente em execução cede a CPU voluntariamente.
- Preemptivo: o sistema operacional decide favorecer outro processo, interrompendo o processo em execução.

Tempo de retorno: tempo decorrido entre a chegada do processo ao estado pronto e sua conclusão final

Primeiro a Chegar, Primeiro Atendido

Processo	P1	P2	P3	P4	P5
Tempo de serviço	100	250	70	20	130

Tempo médio de resposta: (100+170+300+550+570)/5=338

Menor Trabalho Primeiro

Processo	P1	P2	P3	P4	P5
Tempo de serviço	100	250	70	20	130

Tempo médio de resposta: (20+90+190+320+570)/5=238

Round Robin - Intervalo tempo 50

Processo	P1	P2	P3	P4	P5
Tempo de serviço	100	250	70	20	130

Round Robin - Intervalo tempo 50

P1-270

P4-170

P3-340

P5-470

P2-570

CPU

Processo	P1	P2	P3	P4	P5
Tempo de serviço	100	250	70	20	130

Tempo médio de resposta: (170+270+340+470+570)/5=364

Pronto Executando

utando Tempo

P5 P3 P2

P2 P5 P3

P2 P5

P5 P2

P2 P5

P2

270+50=320

320+20=340

340+50=390

390+50=440

440+30=470

470+100=570

INTRODUÇÃO A CONCEITOS DE COMPUTAÇÃO

Sistema Operacional