Proving Statements on Triangle Congruence

Jonathan R. Bacolod

Sauyo High School

AAS (Angle-Angle-Side) Congruence Theorem

If two angles and a non-included side of one triangle are congruent to the corresponding two angles and a non-included side of another triangle, then the triangles are congruent.

Given: $\overline{OH} \cong \overline{GD}$ $\angle H \cong \angle D$

Prove: $\triangle OFH \cong \triangle GFD$

Given: $\overline{OH} \cong \overline{GD}$ $\angle H \cong \angle D$

Prove: $\triangle OFH \cong \triangle GFD$

Proof:

Statements Reasons

Given: $\overline{OH} \cong \overline{GD}$ $\angle H \cong \angle D$

Prove: $\triangle OFH \cong \triangle GFD$

Statements	Reasons
1. $\overline{OH} \cong \overline{GD}$, $\angle H \cong \angle D$	1. Given

Given: $\overline{OH} \cong \overline{GD}$ $\angle H \cong \angle D$

Prove: $\triangle OFH \cong \triangle GFD$

Statements	Reasons
1. $\overline{OH} \cong \overline{GD}$, $\angle H \cong \angle D$	1. Given
2. ∠OFH ≅ ∠GFD	2. Vert. Angle Thm.

Given: $\overline{OH} \cong \overline{GD}$ $\angle H \cong \angle D$

Prove: $\triangle OFH \cong \triangle GFD$

Statements	Reasons
1. $\overline{OH} \cong \overline{GD}$, $\angle H \cong \angle D$	1. Given
2. ∠OFH ≅ ∠GFD	2. Vert. Angle Thm.
3. $m\angle OFH + m\angle O + m\angle H =$	
180° , $m \angle GFD + m \angle G + m \angle D =$	3. Angle Sum Thm.
180°	

Given: $\overline{OH} \cong \overline{GD}$ $\angle H \cong \angle D$

Prove: $\triangle OFH \cong \triangle GFD$

	0
Statements	Reasons
1. $\overline{OH} \cong \overline{GD}$, $\angle H \cong \angle D$	1. Given
2. ∠OFH ≅ ∠GFD	2. Vert. Angle Thm.
3. m∠OFH + m∠O + m∠H = 180°, m∠GFD + m∠G + m∠D = 180°	3. Angle Sum Thm.
4. m/OFH + m/O + m/H = m/GFD + m/G + m/D	4. Transitive Prop.

Given: $\overline{OH} \cong \overline{GD}$ $\angle H \cong \angle D$

Prove: $\triangle OFH \cong \triangle GFD$

	•
Statements	Reasons
1. $\overline{OH} \cong \overline{GD}$, $\angle H \cong \angle D$	1. Given
2. ∠OFH ≅ ∠GFD	2. Vert. Angle Thm.
3. <i>m</i> ∠ <i>OFH</i> + <i>m</i> ∠ <i>O</i> + <i>m</i> ∠ <i>H</i> = 180°, <i>m</i> ∠ <i>GFD</i> + <i>m</i> ∠ <i>G</i> + <i>m</i> ∠ <i>D</i> = 180°	3. Angle Sum Thm.
4. m/OFH + m/O + m/H = m/GFD + m/G + m/D	4. Transitive Prop.
5. <i>m</i> ∠ <i>O</i> = <i>m</i> ∠ <i>G</i>	5. Subtraction Prop.

Given: $\overline{OH} \cong \overline{GD}$ $\angle H \cong \angle D$

Prove: $\triangle OFH \cong \triangle GFD$

hm.
nm.
p.
Ρ.
ost.

Right Triangle

LL (Leg-Leg) Congruence Theorem

If the legs of one right triangle are congruent respectively to the legs of another right triangle, then the triangles are congruent.

Given: $\overline{QW} \cong \overline{VR}$

Prove: $\triangle QRW \cong \triangle VWR$

Given: $\overline{QW}\cong \overline{VR}$

Prove: $\triangle QRW \cong \triangle VWR$

Q W V

Statements	Reasons

Given: $\overline{QW}\cong \overline{VR}$

Prove: $\triangle QRW \cong \triangle VWR$

Statements	Reasons
1. $\overline{QW} \cong \overline{VR}$	1. Given

Given: $\overline{QW}\cong \overline{VR}$

Prove: $\triangle QRW \cong \triangle VWR$

Statements	Reasons
1. $\overline{QW}\cong\overline{VR}$	1. Given
$2. \overline{WR} \cong \overline{RW}$	2. Reflexive Property

Given: $\overline{QW}\cong \overline{VR}$

Prove: $\triangle QRW \cong \triangle VWR$

Statements	Reasons
1. $\overline{QW}\cong\overline{VR}$	1. Given
$2. \overline{WR} \cong \overline{RW}$	2. Reflexive Property
3. $m\angle RWQ = 90^{\circ}, m\angle WRV =$	3. Definition of Right
90°	Angles

Given: $\overline{QW}\cong \overline{VR}$

Prove: $\triangle QRW \cong \triangle VWR$

Statements	Reasons
1. $\overline{QW}\cong\overline{VR}$	1. Given
$2. \overline{WR} \cong \overline{RW}$	2. Reflexive Property
3. <i>m∠RWQ</i> = 90°, <i>m∠WRV</i> =	3. Definition of Right
90°	Angles
$4. \angle RWQ \cong \angle WRV$	4. Definition of
4. ZNVVQ — ZVVKV	Congruent Angles

Given: $\overline{QW}\cong \overline{VR}$

Prove: $\triangle QRW \cong \triangle VWR$

Statements	Reasons
1. $\overline{QW}\cong\overline{VR}$	1. Given
$2. \overline{WR} \cong \overline{RW}$	2. Reflexive Property
3. $m\angle RWQ = 90^{\circ}, m\angle WRV =$	3. Definition of Right
90°	Angles
4. $\angle RWQ \cong \angle WRV$	4. Definition of
	Congruent Angles
	5. SAS Triangle
5. $\triangle QRW \cong \triangle VWR$	Congruence
	Postulate

LA (Leg-Acute Angle) Congruence Theorem

If a leg and an acute angle of one triangle are congruent respectively to a leg and an acute angle of another right triangle, then the triangles are congruent.

Given: \overline{XV} bisects $\angle WXK$ $\overline{XV} \perp \overline{WK}$

Prove: $\triangle WXV \cong \triangle KXV$

Given: \overline{XV} bisects $\angle WXK$ $\overline{XV} \perp \overline{WK}$

Prove: $\triangle WXV \cong \triangle KXV$

Given: \overline{XV} bisects $\angle WXK$ $\overline{XV} \perp \overline{WK}$

Prove: $\triangle WXV \cong \triangle KXV$

Statements	Reasons
1. \overline{XV} bisects $\angle WXK, \overline{XV} \perp \overline{WK}$	1. Given

Given: \overline{XV} bisects $\angle WXK$ $\overline{XV} \perp \overline{WK}$

Prove: $\triangle WXV \cong \triangle KXV$

Statements	Reasons
1. \overline{XV} bisects $\angle WXK, \overline{XV} \perp \overline{WK}$	1. Given
2. ∠ <i>WXV</i> ≅ ∠ <i>KXV</i>	2. Def. of Angle Bisector

Given: \overline{XV} bisects $\angle WXK$ $\overline{XV} \perp \overline{WK}$

Prove: $\triangle WXV \cong \triangle KXV$

Statements	Reasons
1. \overline{XV} bisects $\angle WXK, \overline{XV} \perp \overline{WK}$	1. Given
2. ∠ <i>WXV</i> ≅ ∠ <i>KXV</i>	2. Def. of Angle Bisector
3. ∠XVW,∠XVK are right angles	3. Def. of Perp. Line Segments

Given: \overline{XV} bisects $\angle WXK$ $\overline{XV} \perp \overline{WK}$

Prove: $\triangle WXV \cong \triangle KXV$

Statements	Reasons
1. \overline{XV} bisects $\angle WXK, \overline{XV} \perp \overline{WK}$	1. Given
2. ∠ <i>WXV</i> ≅ ∠ <i>KXV</i>	2. Def. of Angle Bisector
3. ∠XVW,∠XVK are right	3. Def. of Perp. Line
angles	Segments
4. <i>m∠XVW</i> = 90°, <i>m∠XVK</i> =	4. Def. of Right
90°	Angles

Given: \overline{XV} bisects $\angle WXK$ $\overline{XV} \perp \overline{WK}$

Prove: $\triangle WXV \cong \triangle KXV$

	•
Statements	Reasons
1. \overline{XV} bisects $\angle WXK, \overline{XV} \perp \overline{WK}$	1. Given
2. ∠ <i>WXV</i> ≅ ∠ <i>KXV</i>	2. Def. of Angle Bisector
3. ∠XVW,∠XVK are right	3. Def. of Perp. Line
angles	Segments
4. <i>m∠XVW</i> = 90°, <i>m∠XVK</i> =	4. Def. of Right
90°	Angles
5. ∠ <i>XVW</i> ≅ ∠ <i>XVK</i>	5. Def. of Cong. ∠s

Given: \overline{XV} bisects $\angle WXK$ $\overline{XV} \perp \overline{WK}$

Prove: $\triangle WXV \cong \triangle KXV$

	V
Statements	Reasons
1. \overline{XV} bisects $\angle WXK, \overline{XV} \perp \overline{WK}$	1. Given
2. /WXV ≅ /KXV	2. Def. of Angle
$Z. \angle VV \wedge V = \angle K \wedge V$	Bisector
3. ∠XVW,∠XVK are right	3. Def. of Perp. Line
angles	Segments
4. <i>m∠XVW</i> = 90°, <i>m∠XVK</i> =	4. Def. of Right
90°	Angles
5. ∠ <i>XVW</i> ≅ ∠ <i>XVK</i>	5. Def. of Cong. ∠s
6. $\overline{XV} \cong \overline{XV}$	6. Reflexive Property

Given: \overline{XV} bisects $\angle WXK$ $\overline{XV} \perp \overline{WK}$

Prove: $\triangle WXV \cong \triangle KXV$

Statements	Reasons
	1. Given
2. ∠ <i>WXV</i> ≅ ∠ <i>KXV</i>	2. Def. of Angle Bisector
3. ∠XVW,∠XVK are right	3. Def. of Perp. Line
angles	Segments
4. <i>m∠XVW</i> = 90°, <i>m∠XVK</i> =	4. Def. of Right
90°	Angles
5. ∠ <i>XVW</i> ≅ ∠ <i>XVK</i>	5. Def. of Cong. ∠s
6. $\overline{XV} \cong \overline{XV}$	6. Reflexive Property
7. $\triangle WXV \cong \triangle KXV$	7. ASA Post.

HyL (Hypotenuse-Leg) Congruence Theorem

If the hypotenuse and a leg of one right triangle are congruent respectively to the hypotenuse and a leg of another right triangle, then the triangles are congruent.

Isosceles Triangle

A triangle is isosceles if two of its sides are congruent. The congruent sides are its legs; the third side is the base; the angles opposite the congruent sides are the base angles; and the angle included by the legs is the vertex angle.

Isosceles Triangle Theorem

If two sides of a triangle are congruent, then the angles opposite these sides are congruent.

Given: ΔXWK is an isosceles triangle $\overline{XV} \perp \overline{WK}$

Prove: $\triangle WXV \cong \triangle KXV$

Given: $\triangle XWK$ is an isosceles triangle $\overline{XV} \perp \overline{WK}$

Prove: $\triangle WXV \cong \triangle KXV$

Given: $\triangle XWK$ is an isosceles triangle $\overline{XV} \perp \overline{WK}$

Prove: $\triangle WXV \cong \triangle KXV$

Statements	Reasons
1. $\overline{XV} \perp \overline{WK}$	1. Given

Given: $\triangle XWK$ is an isosceles triangle $\overline{XV} \perp \overline{WK}$

Prove: $\triangle WXV \cong \triangle KXV$

Statements	Reasons
1. $\overline{XV} \perp \overline{WK}$	1. Given
2. ∠XVW,∠XVK are right	2. Def. of Perp. Line
angles	Segments

Given: $\triangle XWK$ is an isosceles triangle $\overline{XV} \perp \overline{WK}$

Prove: $\triangle WXV \cong \triangle KXV$

Statements	Reasons
1. $\overline{XV} \perp \overline{WK}$	1. Given
2. ∠XVW,∠XVK are right	2. Def. of Perp. Line
angles	Segments
3. <i>m∠XVW</i> = 90°, <i>m∠XVK</i> =	3. Def. of Right
90°	Angles

Given: $\triangle XWK$ is an isosceles triangle $\overline{XV} \perp \overline{WK}$

Prove: $\triangle WXV \cong \triangle KXV$

Statements	Reasons
1. $\overline{XV} \perp \overline{WK}$	1. Given
2. ∠XVW,∠XVK are right	2. Def. of Perp. Line
angles	Segments
3. <i>m∠XVW</i> = 90°, <i>m∠XVK</i> =	3. Def. of Right
90°	Angles
4. ∠ <i>XVW</i> ≅ ∠ <i>XVK</i>	4. Def. of Cong. ∠s

Given: $\triangle XWK$ is an isosceles triangle $\overline{XV} \perp \overline{WK}$

Prove: $\triangle WXV \cong \triangle KXV$

Statements	Reasons
1. $\overline{XV} \perp \overline{WK}$	1. Given
2. ∠XVW,∠XVK are right	2. Def. of Perp. Line
angles	Segments
3. <i>m∠XVW</i> = 90°, <i>m∠XVK</i> =	3. Def. of Right
90°	Angles
4. ∠XVW ≅ ∠XVK	4. Def. of Cong. ∠s
5. $\overline{XW} \cong \overline{XK}$	5. Def. of Isosceles
$0. \ \lambda VV \equiv \lambda \Lambda$	Triangle

Given: $\triangle XWK$ is an isosceles triangle $\overline{XV} \perp \overline{WK}$

Prove: $\triangle WXV \cong \triangle KXV$

Statements	Reasons
1. $\overline{XV} \perp \overline{WK}$	1. Given
2. ∠XVW,∠XVK are right	2. Def. of Perp. Line
angles	Segments
3. <i>m∠XVW</i> = 90°, <i>m∠XVK</i> =	3. Def. of Right
90°	Angles
4. ∠ <i>XVW</i> ≅ ∠ <i>XVK</i>	4. Def. of Cong. ∠s
$5. \ \overline{XW} \cong \overline{XK}$	5. Def. of Isosceles
	Triangle
6. ∠ <i>W</i> ≅ ∠ <i>K</i>	6. Isosceles Triangle
	Theorem

Given: $\triangle XWK$ is an isosceles triangle $\overline{XV} \perp \overline{WK}$

Prove: $\triangle WXV \cong \triangle KXV$

Statements	Reasons
1. $\overline{XV} \perp \overline{WK}$	1. Given
2. ∠XVW,∠XVK are right	2. Def. of Perp. Line
angles	Segments
3. <i>m∠XVW</i> = 90°, <i>m∠XVK</i> =	3. Def. of Right
90°	Angles
4. ∠ <i>XVW</i> ≅ ∠ <i>XVK</i>	4. Def. of Cong. ∠s
5. $\overline{XW} \cong \overline{XK}$	5. Def. of Isosceles
	Triangle
6. ∠ <i>W</i> ≅ ∠ <i>K</i>	6. Isosceles Triangle
	Theorem
7. $\triangle WXV \cong \triangle KXV$	7. AAS Cong. Thm.

HyA (Hypotenuse-Angle) Congruence Theorem

If the hypotenuse and an acute angle of one right triangle are congruent respectively to the hypotenuse and an acute angle of another right triangle, then the triangles are congruent.

Given: $\angle R$ and $\angle D$ are right angles

 $\angle DQS \cong \angle RSQ$

Prove: $\triangle DQS \cong \triangle RSQ$

Given: $\angle R$ and $\angle D$ are right angles

 $\angle DQS \cong \angle RSQ$

Prove: $\triangle DQS \cong \triangle RSQ$

Given: $\angle R$ and $\angle D$ are right angles

 $\angle DQS \cong \angle RSQ$

Prove: $\triangle DQS \cong \triangle RSQ$

Statements	Reasons
1. $\angle DQS \cong \angle RSQ$	1. Given

Given: $\angle R$ and $\angle D$ are right angles

 $\angle DQS \cong \angle RSQ$

Prove: $\triangle DQS \cong \triangle RSQ$

Given: $\angle R$ and $\angle D$ are right angles

 $\angle DQS \cong \angle RSQ$

Prove: $\triangle DQS \cong \triangle RSQ$

Given: $\angle R$ and $\angle D$ are right angles

 $\angle DQS \cong \angle RSQ$

Prove: $\triangle DQS \cong \triangle RSQ$

Given: $\angle R$ and $\angle D$ are right angles

 $/DQS \cong /RSQ$

Prove: $\triangle DQS \cong \triangle RSQ$

Given: $\angle R$ and $\angle D$ are right angles

 $\angle DQS \cong \angle RSQ$

Prove: $\triangle DQS \cong \triangle RSQ$

Statements	Reasons
1. ∠DQS ≅ ∠RSQ	1. Given
2. $\angle R$ and $\angle D$ are right angles	2. Given
3. <i>m</i> ∠ <i>R</i> = 90°, <i>m</i> ∠ <i>D</i> = 90°	3. Def. of Right Angles
4. ∠R ≅ ∠D	4. Def. of Cong. ∠s
$5. \ \overline{QS} \cong \overline{SQ}$	5. Reflexive Property
6. $\triangle DQS \cong \triangle RSQ$	6. AAS Triangle Congruence Theorem

Thank you for watching.