Homework 11

- 1. Let U, V be finite dimensional vector spaces. Let $T: U \to V$. Consider the induced transformation $\widetilde{T} = Bil(T) : Bil(V) \to Bil(U)$.
 - (a) Prove that if $b \in S^2(V)$ then $\widetilde{T}(b)$ is symmetric, namely $\widetilde{T}(b) \in S^2(U)$. Conclude that \widetilde{T} yields a linear transformation $S^2(T): S^2(V) \to S^2(U)$.
 - (b) Prove that if $b \in A^2(V)$ then $\widetilde{T}(b)$ is anti-symmetric, namely $\widetilde{T}(b) \in A^2(U)$. Conclude that \widetilde{T} yields a linear transformation $A^2(T):A^2(V) \to A^2(U)$.
- 2. Let V be a vector space, dim V = n. Let $\{v_1, ..., v_n\}$ be a basis for V and $\{v_1^*, ..., v_n^*\}$ the corresponding dual basis.
 - (a) Prove that $B_1 = \{v_i^* \otimes v_j^* : 1 \leq i, j \leq n\}$ is a basis f Bil(V).
 - (b) Prove that $B_{2}=\left\{v_{i}^{*}\otimes v_{j}^{*}+v_{j}^{*}\otimes v_{i}^{*}:1\leq i\leq j\leq n\right\}$ is a basis $S^{2}\left(V\right)$. Explain why it consists of $n\cdot\left(n+1\right)/2$ vectors.
 - (c) Prove that $B_3 = \left\{ v_i^* \otimes v_j^* v_j^* \otimes v_i^* : 1 \leq i < j \leq n \right\}$ is a basis $A^2(V)$. Explain why it consists of $n \cdot (n-1)/2$ vectors.
- 3. Let V be a vector space, $\dim V = n$. Let $\{v_1, ..., v_n\}$ be a basis for V and $\{v_1^*, ..., v_n^*\}$ the corresponding dual basis. Consider a bilinear form $b \in Bil(V)$. Consider its expression as a linear combination of the elements of the basis B_1 (from question 1): $b = \sum_{i,j=1}^n x_{i,j} v_i^* \otimes v_j^*$. Prove that

$$x_{i,j} = b\left(v_i, v_j\right).$$

- 4. Let V be a vector space, dim V = n. Let $(v_1, ..., v_n)$ be an ordered basis for V and $(v_1^*, ..., v_n^*)$ the corresponding dual basis. Let $T: V \to V$ be a linear transformation presented by a matrix $M = (a_{ij})$ with respect to the basis $(v_1, ..., v_n)$.
 - (a) Consider $\widetilde{T} = Bil(T) : Bil(V) \to Bil(V)$. Consider the basis B_1 with the lexicographic order. Compute the matrix \widetilde{M} of \widetilde{T} with respect to this basis. Compute $tr(\widetilde{M})$.
 - (b) Consider $\widetilde{T} = S^2(T) : S^2(V) \to S^2(V)$. Consider the basis B_2 with the lexicographic order. Compute the matrix \widetilde{M} of \widetilde{T} with respect to this basis. Compute $tr(\widetilde{M})$.
 - (c) Consider $\widetilde{T} = A^2(T) : A^2(V) \to A^2(V)$. Consider the basis B_3 with the lexicographic order. Compute the matrix \widetilde{M} of \widetilde{T} with respect to this basis. Compute $tr(\widetilde{M})$.

- (d) Prove that if $\dim V = 2$ then $A^{2}(T) = \det(M) Id$. Conclude that the determinant does not depend on the choice of a basis.
- 5. Consider the composition

$$U \xrightarrow{T} V \xrightarrow{S} W.$$

- (a) Prove that $Bil(S \circ T) = Bil(T) \circ Bil(S)$.
- (b) Prove that $S^{2}(S \circ T) = S^{2}(T) \circ S^{2}(S)$.
- (c) Prove that $A^{2}(S \circ T) = A^{2}(T) \circ A^{2}(S)$.
- (d) Conclude that in case dim V=2 and $T,S:V\to V$ then $\det(S\circ T)=\det(S)\det(T)$.
- 6. Consider the composition $U \xrightarrow{T} V \xrightarrow{S} W$. Prove that $(S \circ T)^* = T^* \circ S^*$.
- 7. Consider the map $b: F^n \times F^n \to F$, given by $b(\overrightarrow{x}, \overrightarrow{y}) = \sum_{i=1}^n x_i y_i$.
 - (a) Prove that b is a bilinear form.
 - (b) Prove that b is symmetric.
 - (c) Prove that b is non-degenerate.
- 8. Consider the map $b: F^n \times F^n \to F$, given by $b(\overrightarrow{x}, \overrightarrow{y}) = \sum_{i=1}^n (x_i y_{n+i} x_{n+i} y_i)$.
 - (a) Prove that b is bilinear.
 - (b) Prove that b is anti-symmetric.
 - (c) Prove that b is non-degenerate.
- 9. Prove that any bilinear from b on F^n can be written as $b(\overrightarrow{x}, \overrightarrow{y}) = \sum_{i,j=1}^n b_{ij}x_iy_j$, for some $b_{ij} \in F$. Prove that b is symmetric iff $b_{ij} = b_{ji}$, for every i, j = 1, ..., n. Prove that b is anti-symmetric iff $b_{ij} = -b_{ji}$, for every i, j = 1, ..., n.