LI 308: Computational Models of Sound Change

Day 4: Phonetic change in a population setting

James Kirby & Morgan Sonderegger 30 July, 2015

Introduction

- Change at the population level is often claimed to be based in phonetic variation at the individual level (e.g. Ohala, 1993)
- One source¹ of variation: production bias (e.g., coarticulation)

WGmc	Pre-OHG	OHG (NHD)
*gasti	gesti	gest (<i>Gäste</i>)
*lambir	Iembir	lemb (<i>Lämme</i>)
*fasti	festi	fest (<i>fest</i>)

Primary umlaut in West Germanic (after Iverson and Salmons, 2006).

¹ (But certainly not the only one! also group membership, cognitive endowment...)

From individuals to populations

 '...the initiation of such sound changes is accomplished by the phonetic mechanism just described; their spread, however, is done by social means, e.g., borrowing, imitation, etc.' (Ohala, 1981:184)

From individuals to populations

- '...the initiation of such sound changes is accomplished by the phonetic mechanism just described; their spread, however, is done by social means, e.g., borrowing, imitation, etc.' (Ohala, 1981:184)
- 'I will try to show how a change in the pronunciation norm of a given word occurs in at least one speaker; what happens to this changed norm after that will involve different mechanisms and ones not properly part of sound change.' (Ohala, 1989:175)

 Change in individuals is a necessary but not sufficient condition for change at the population level

 "Accumulation-of-error" approaches often criticized for this very reason (e.g. Baker, 2008)

 For one thing, existence of a bias does not mean change is inevitable: default is stability! (Weinrich et al., 1968; cf. Kiparsky's "non-phonologization problem")

- Thus, an adequate account of actuation must explain:
 - 1. Stability of limited coarticulation in the population;
 - 2. Stability of full coarticulation in the population;
 - 3. Change from stable limited to full coarticulation.

Continuous vs. discrete

 Most computational work on language evolution has focused on learning discrete parameters (Niyogi & Berwick, 1995; Griffiths & Kalish, 2007; S. Kirby et al., 2007...)

(Griffiths & Kalish, 2007)

 However, phonetic learning also involves continuous parameters (Maye et al., 2002; Clayards et al., 2008; Feldman et al., 2013...)

Bias and population structure

- Change in individuals is a necessary but not sufficient condition for change at the population level
- Both learning and population structure are important
 - ▶ Different assumptions about learning \rightarrow different outcomes (Kirby, 2002; Zuidema, 2003; Brighton et al., 2005; Kirby et al., 2007)
 - Most modelers assume fixed population structure (e.g. diffusion chains) but dynamics for arbitrary populations are in general nonlinear (Niyogi & Berwick 1995; Dediu, 2009; Smith, 2009)
- What role do these play in the continuous learning case?

- Today: framework in which stability and change at the population level is possible be assuming both
 - a force promoting contrast maintenance, to keep separate phonetic categories stable; and,
 - 2. an external force, such as a production bias, which induces change (cf. Pierrehumbert, 2001; Wedel, 2006).

Kirby & Sonderegger (2015)

- Then: some new questions
 - Does using production bias as the external force have a unique dynamics?
 - 2. If not, will *any* kind of external force produce the same behaviour at the population level?

• Our example scenario: phonologization of coarticulation

WGmc	Pre-OHG	OHG (NHD)
*gasti	gesti	gest (<i>Gäste</i>)
*lambir	Iembir	lemb (<i>Lämme</i>)
*fasti	festi	fest (<i>fest</i>)

Our example scenario: phonologization of coarticulation

WGmc	Pre-OHG	OHG (NHD)
*gasti	gesti	gest (<i>Gäste</i>)
*lambir	lembir	lemb (<i>Lämme</i>)
*fasti	festi	fest (<i>fest</i>)

 Simple models, iterated over generations ⇒ potentially unintuitive outcomes

• Lexicon: $\{V_1, V_2, V_{12}\}$, where V_{12} represents V_1 in the coarticulation-inducing context of V_2

 Task: learn a contextual variant c: how much /a/ is produced like /i/ in the context of /i/ (/a_i/)

 Data: F1 values for /a_i/ tokens, potentially subject to production bias λ (assuming fixed /a/, /i/)

Learner's prior: (strength of) categoricity bias (CB)

• Population structure: Single teacher (m = 1)

• Population structure: Multiple teachers (m = 2)

• Population structure: Multiple teachers (m = M)

 Outcome: distribution of C in the population at time t (E[C^t], Var(C^t))

6 models: 3×2

6 models: 3×2

$\mathcal{A}_{\mathsf{complex}}$

Today: focus on $A_{complex}$

$A_{complex}$: quadratic polynomial

- a: 'flatness' of prior
- λ : mean of bias distribution
- ω : variance of bias distribution
- nGens: number of generations
- nExamples: # training examples
- nLearners: # of learners per gen
- teachers: M ('single', 'some', 'all')
 nTeachers: # of teachers (when
- teachers=='some')

Evolution of $Var[C^t]$: strong prior, **weak** bias

For sufficiently strong prior: stable contextual variation

Evolution of $Var[C^t]$: strong prior, **strong** bias

For sufficiently strong bias: rapid change to stable umlaut

Evolution of $E[C^t]$, S_{single}

- Single teacher: stable only when $\lambda = 0$ or very strong prior
- Intermediate distributions of C^t often reflect bimodal distribution (i.e., individuals stable at endpoints)

Evolution of $E[C^t]$, S_{multiple}

- Multiple teachers: bifurcation for given prior strength (a) once λ crosses some critical value
- Required $\lambda \propto a$

 Questions: how do assumptions about transmission bias, categoricity bias, and population structure translate into population-level dynamics of a continuous parameter?

 Questions: how do assumptions about transmission bias, categoricity bias, and population structure translate into population-level dynamics of a continuous parameter?

• First goal: stability

- Questions: how do assumptions about transmission bias, categoricity bias, and population structure translate into population-level dynamics of a continuous parameter?
- First goal: stability
- Stability is possible even in the presence of bias: transmission bias doesn't entail overapplication (cf. WLH, Baker 2008)

 Second goal: change, or rather: how does stability give way to change?

- Second goal: change, or rather: how does stability give way to change?
 - Bifurcations only observed with complex prior enforcing categoricity (cf. Komarova et al., Nigoyi, etc.)
 - Population structure important in that $m = 1 \neq m > 1$ (cf. Griffiths, S. Kirby, et al.)

- Second goal: change, or rather: how does stability give way to change?
 - Bifurcations only observed with complex prior enforcing categoricity (cf. Komarova et al., Nigoyi, etc.)
 - Population structure important in that $m = 1 \neq m > 1$ (cf. Griffiths, S. Kirby, et al.)
- Q: for what ranges of parameter settings are these conclusions valid?

Extensions

 Production bias is the external force most commonly invoked in models of sound change

Extensions

- Production bias is the external force most commonly invoked in models of sound change
- ... but clearly not behind all changes: many other factors invoked by (socio)phon(eticians), e.g.
 - Contact (between subpopulations)
 - Social weight (of variants, speakers, groups)
 - Interaction (convergence, divergence)

Extensions

- Production bias is the external force most commonly invoked in models of sound change
- ... but clearly not behind all changes: many other factors invoked by (socio)phon(eticians), e.g.
 - Contact (between subpopulations)
 - Social weight (of variants, speakers, groups)
 - Interaction (convergence, divergence)
- Next set of questions:
 - Does using production bias as the external force have a unique dynamics?
 - 2. If not, will *any* kind of external force produce the same behaviour at the population level?

$\mathcal{A}_{\mathsf{simple}}$: $au \sim \mathcal{N}(\mathbf{0}, au^2)$

- Assume learner has prior with variance τ , takes MAP estimate of \hat{c}
- μ always moves to stable value, regardless of population structure (m)

$\mathcal{A}_{\mathsf{simple}}$: $au \sim \mathcal{N}(\mathbf{0}, au^2)$

- Assume learner has prior with variance τ , takes MAP estimate of \hat{c}
- Variance rapidly stabilizes (although final value depends on m)

Evolution of π_t under $\mathcal{A}_{\text{simple}}$, $c_0 \sim N$, $\tau = 10$

 A_{simple} can't model any change (Goal 3)

 Pop. structure impacts rate but not qualitative outcome

Evolution of π_t under $\mathcal{A}_{\text{simple}}$, $c_0 \sim N$, $\tau = 10$

 A_{simple} can't model any change (Goal 3) Pop. structure impacts rate but not qualitative outcome

No threshold in system params gives change to stable umlaut

Evolution of π_t under $\mathcal{A}_{\text{simple}}$, $c_0 \sim N$, $\tau = 10$

A_{simple} can't model any change (Goal 3)

 Population structure impacts rate but not outcome

Prior needs to encode some kind of category preference.