Κίνηση σε 2 διαστάσεις

- ➡ Η κίνηση στους άξονες Χ και Υ είναι ανεξάρτητη η μια από την άλλη.
- Χωρίζουμε την κίνηση σε 2 άξονες και μελετούμε την κίνηση σε κάθε άξονα ξεχωριστά σα να έχουμε μονοδιάστατη κίνηση

Κίνηση σε 2 διαστάσεις

Διανύσματα θέσης, ταχύτητας και επιτάχυνσης

$$\vec{a}_{av} = \frac{\vec{v}_f - \vec{v}_0}{t_f - t_0}$$

χ-διεύθυνση

$$\vec{v}_{av.x} = \frac{\vec{x}_f - \vec{x}_0}{t_f - t_0}$$

$$\vec{a}_{av} = \frac{\vec{v}_f - \vec{v}_0}{t_f - t_0} \qquad \vec{a}_{av.x} = \frac{\vec{v}_{fx} - \vec{v}_{0x}}{t_f - t_0} \qquad \vec{a}_{av.y} = \frac{\vec{v}_{fy} - \vec{v}_{0y}}{t_f - t_0} \qquad |\vec{a}_{av}| = \sqrt{a_{av.x}^2 + a_{av.y}^2}$$

$$x(t) = x_0 + v_{ox}t + \frac{1}{2}a_xt^2$$

$$v_x(t) = v_{ox} + a_x t$$

$$v_x^2(t) = v_{ox}^2 + 2a_x \Delta x$$

y-διεύθυνση

$$\vec{v}_{av} = \frac{\vec{r}_f - \vec{r}_0}{t_f - t_0} \qquad \qquad \vec{v}_{av.x} = \frac{\vec{x}_f - \vec{x}_0}{t_f - t_0} \qquad \qquad \vec{v}_{av.y} = \frac{\vec{y}_f - \vec{y}_0}{t_f - t_0} \qquad \qquad |\vec{v}_{av}| = \sqrt{v_{av.x}^2 + v_{av.y}^2}$$

$$\vec{a}_{av.y} = \frac{\vec{v}_{fy} - \vec{v}_{0y}}{t_f - t_0}$$

$$\vec{a}_{av.y} = \frac{v_{fy} - v_{0y}}{t_f - t_0}$$

$$x(t) = x_0 + v_{ox}t + \frac{1}{2}a_xt^2$$
 $y(t) = y_0 + v_{oy}t + \frac{1}{2}a_yt^2$

$$v_x(t) = v_{ox} + a_x t \qquad v_y(t) = v_{oy} + a_x t \qquad |\vec{v}| = \sqrt{v_x^2 + v_y^2}$$

$$\upsilon_x^2(t) = \upsilon_{ox}^2 + 2a_x \Delta x \qquad \upsilon_y^2(t) = \upsilon_{oy}^2 + 2a_y \Delta y$$

$$|O_{av}| = \sqrt{O_{av.x} + O_{av.y}}$$

$$\left|\vec{a}_{av}\right| = \sqrt{a_{av.x}^2 + a_{av.y}^2}$$

Κίνηση σε 2 διαστάσεις

Μια μπάλα κυλά σε οριζόντιο δάπεδο με 5m/s. Κατόπιν συναντά κεκλιμένο επίπεδο γωνίας 25°. Μετά από 0.5s η μπάλα έχει ταχύτητα 3m/s.

Ποιό είναι το μέτρο της αλλαγής της ταχύτητας.

x-διεύθυνση $v_{ix} = 5m/s$ $v_{iy} = 0m/s$ $v_{fx} = (3m/s)\cos(25^{\circ})$ $v_{fy} = (3m/s)\sin(25^{\circ})$ $\Delta v_{x} = (3m/s)\cos(25^{\circ}) - 5m/s = -2.28m/s$ $\Delta v_{y} = (3m/s)\sin(25^{\circ}) = 1.27m/s$ $|\Delta v| = \sqrt{\Delta v_{x}^{2} + \Delta v_{y}^{2}} = \sqrt{(-2.28)^{2} + 1.27^{2}} = 2.6m/s$

Ποιά είναι η μέση επιτάχυνση

- Ένα θωρηκτό ρίχνει ταυτόχρονα δυο βλήματα εναντίον 2 εχθρικών πλοίων, Α και Β όπως στο παρακάτω σχήμα. Το πλοίο Α είναι σε κοντινότερη απόσταση από ότι το Β. Τα βλήματα εκτοξεύονται με διαφορετικές γωνίες ως προς τον ορίζοντα και άγνωστες ταχύτητες αλλά ακολουθούν τις τροχιές του σχήματος.
- Ποιό από τα 2 εχθρικά πλοία θα χτυπηθεί πρώτο? (εξηγήστε)

(Α) Το πλοίο Α (Β) Το πλοίο Β) (Γ) Ταυτόχρονα (Δ) Αδύνατο να πούμε

Ξέρουμε ότι ο χρόνος πτήσης ενός βλήματος είναι ίσος με το διπλάσιο του χρόνου που χρειάζεται να φθάσει στο μέγιστο ύψος της τροχιάς του, $t_{o\lambda}$ = 2 x t_{av}

Ο χρόνος ανόδου = χρόνο καθόδου (χωρίς αντιστάσεις) και επομένως ο χρόνος που χρειάζεται να «πέσει» ένα ύψος h εξαρτάται από το ύψος από το οποίο πέφτει $h = -gt^2/2 \qquad (θετική η φορά προς τα πάνω)$

Το βλήμα προς το πλοίο Α φθάνει σε μεγαλύτερο ύψος από το βλήμα προς το Β

Άρα το βλήμα που χτυπά το πλοίο Β θα πλήξει πρώτο στο στόχο του

Πολλοί θα απαντούσαν ότι δεν υπάρχουν αρκετά στοιχεία γιατί δεν δίνεται η γωνία βολής ή η ταχύτητα και επομένως δεν μπορεί να βρεθεί η απάντηση.

Θεωρήστε ότι έχετε μια κατακόρυφη βολή μόνο. Θα δούμε ότι ακόμα και αν δεν ξέρουμε την αρχική ταχύτητα αλλά μόνο το μέγιστο ύψος μπορούμε να βρούμε το χρόνο ανόδου:

$$v = v_0 - gt \Rightarrow 0 = v_0 - gt_{\alpha v.} \Rightarrow v_0 = gt_{\alpha v.}$$

$$h = v_0 t - \frac{1}{2}gt^2 \Rightarrow h_{\max} = v_0 t_{\alpha v.} - \frac{1}{2}gt^2_{\alpha v.}$$

$$\Rightarrow t_{\alpha v.} = \sqrt{\frac{2h_{\max}}{g}}$$

Ο χρόνος ανόδου εξαρτάται από το μέγιστο ύψος και όχι από την ταχύτητα

Θεωρήστε δύο βλήματα τα οποία έχουν τις τροχιές του σχήματος.
 Το βλήμα Α (η συνεχής γραμμή) φθάνει σε ύψος 10m και καλύπτει οριζόντια απόσταση 4m πριν χτυπήσει στο έδαφος. Το βλήμα B φθάνει και αυτό σε ύψος 10m και διανύει οριζόντια απόσταση 10m πριν χτυπήσει στο έδαφος.

Πώς συγκρίνονται οι αρχικές κατακόρυφες ταχύτητες (V_{ov}) των 2 βλημάτων

(A)
$$V_{oy}^{A} > V_{oy}^{B}$$
 (B) $V_{oy}^{A} < V_{oy}^{B}$ (Γ) $V_{oy}^{A} = V_{oy}^{B}$

Τα 2 βλήματα στην περίπτωση αυτή έχουν το ίδιο μέγιστο ύψος.

Ξέρουμε ότι:
$$v_{fy}^2 - v_{0y}^2 = 2a\Delta s = -2g\Delta s$$
 $(a = -g)$

Στην περίπτωση της κατακόρυφης συνιστώσας της κίνησης έχουμε ότι όταν τα βλήματα φθάσουν στο μέγιστο ύψος $v_{\rm fy} = 0 \, {\rm m/s}$

Η μετατόπιση
$$\Delta s = y_{\text{max}} - y_0 = h_{\text{max}}$$

Επομένως και για τα 2 βλήματα θα ισχύει:

$$-v_{0y}^2 = -2gh_{\text{max}} \Rightarrow v_{0y}^2 = 2gh_{\text{max}} \Rightarrow v_{0y} = \sqrt{2gh_{\text{max}}}$$

5° Quiz

Γράψτε σε μια σελίδα το όνομά σας και τον αριθμό ταυτότητάς σας

Έτοιμοι;

Μπάλα σε καρότσι σε κεκλιμένο επίπεδο

Μπάλα εκτοξεύεται προς τα επάνω σε ορθή γωνία μέσα από καρότσι που αφήνεται να γλυστρήσει προς τη βάση κεκλιμένου επιπέδου. Η μπάλα μετά πέφτει.

Ξαναπέφτει μέσα στο καρότσι?

Α' Μέθοδος

Θεωρούμε το σύστημα συντεταγμένων του οποίου οι άξονες είναι ένας παράλληλος προς το κεκλιμένο επίπεδο και κάθετος σ' αυτό.

Αναλύουμε το διάνυσμα της επιτάχυνσης της βαρύτητας **g** σε 2 συνιστώσες ως προς τους 2 άξονες x΄ και y΄.

Η μπάλα και το καρότσι ξεκινούν με ταχύτητα \mathbf{v}_{χ} =0 στη διεύθυνση χ΄και δέχονται την ίδια επιτάχυνση \mathbf{g} sinθ στην χ΄ διεύθυνση

$$x'_{\kappa\alpha\rho} = x_0 + \frac{1}{2}g\sin\theta \ t^2$$

$$y'_{\kappa\alpha\rho} = 0$$

$$x'_{\mu\pi} = x_0 + \frac{1}{2}g\sin\theta \ t^2$$

$$y'_{\mu\pi} = 0$$

Ίδια και άρα η μπάλα πέφτει ξανά στο καρότσι

Μπάλα-καρότσι – Β΄ Μέθοδος

Οι συντεταγμένες της μπάλας δίνονται από

$$x(t) = (\upsilon \sin \theta)t \quad y(t) = (\upsilon \cos \theta)t - \frac{1}{2}gt^2$$

Η μπάλα χτυπά ξανά στο επίπεδο τη χρονική στιγμή

$$\tan \theta = \frac{-y(t)}{x(t)} \Rightarrow -\tan \theta = \frac{(\upsilon \cos \theta)t - \frac{1}{2}gt^2}{(\upsilon \sin \theta)t} \Rightarrow -\frac{\sin \theta}{\cos \theta} = \frac{\cos \theta}{\sin \theta} - \frac{gt}{2\upsilon \sin \theta}$$

$$\Rightarrow \frac{\cos\theta}{\sin\theta} + \frac{\sin\theta}{\cos\theta} = \frac{gt}{2v\sin\theta} \Rightarrow \frac{1}{\sin\theta\cos\theta} = \frac{gt}{2v\sin\theta} \Rightarrow t = \frac{2v}{g\cos\theta}$$
 (1)

Την στιγμή επαφής της με το επίπεδο έχει οριζόντια μετατόπιση x(t):

$$x(t) = (\upsilon \sin \theta) \left(\frac{2\upsilon}{g\cos \theta}\right) = \frac{2\upsilon^2}{g} \tan \theta \quad \text{που αντιστοιχεί στη θέση:} \qquad x' = \frac{x(t)}{\cos \theta} = \frac{2\upsilon^2 \sin \theta}{g\cos^2 \theta}$$

Το καρότσι κινείται στο κεκλιμένο επίπεδο εξαιτίας της g_x :

$$d = \frac{1}{2}(g\sin\theta)t^2 = \frac{1}{2}(g\sin\theta)\left(\frac{2v}{g\cos\theta}\right)^2 \Rightarrow d = \frac{2v^2\sin\theta}{g\cos^2\theta}$$
 Ακριβώς ίδιες

Παράδειγμα οριζόντιας βολής

Βλήμα βάλλεται με ταχύτητα $\vec{v}_0 = v_0 \hat{x}$ από την ταράτσα ενός κτιρίου ύψους h και πρέπει να περάσει μέσα από την τρύπα πού βρίσκεται σε ύψος d από το x=0 και απόσταση x_s από y=0.

Ποια είναι η ν₀

Μπορούμε να χρησιμοποιήσουμε τις παραπάνω συνθήκες για να φτιάξουμε μια μονοχρωματική δέσμη ατόμων π.χ. άτομα με ίδια ταχύτητα ν₀

Αρχικές συνθήκες:
$$\vec{v}_0 = v_0 \hat{x}$$
 $y_0 = h$ $x_0 = 0$

Βρίσκουμε το χρόνο t όταν το βλήμα βρίσκεται σε θέση $x_{βλημ} = x_s$

$$x_{\beta}(t) = v_{0}t \implies t = \frac{x_{\beta}}{v_{0}} = \frac{x_{s}}{v_{0}}$$

Τη στιγμή αυτή το ύψος του βλήματος πρέπει να είναι ίσο με το ύψος στο οποίο βρίσκεται η τρύπα

$$y_{\beta}(t) = d = h - \frac{1}{2}gt^{2} = h - \frac{1}{2}g\left(\frac{x_{s}}{v_{0}}\right)^{2} \Rightarrow (h - d) = \frac{1}{2}g\left(\frac{x_{s}}{v_{0}}\right)^{2} \Rightarrow \frac{2(h - d)}{g} = \left(\frac{x_{s}}{v_{0}}\right)^{2}$$

$$\Rightarrow v_{0} = x_{s}\sqrt{\frac{g}{2(h - d)}} \qquad \text{As exertiagoums merginal periods and and the expension of the$$

Σκιέρ: Αλμα με σκί

Σκιέρ αφήνει την πλαγιά με v_i =11m/s και γωνία θ_1 =23° ως προς τον ορίζοντα και μετά προσγειώνεται στην πλαγία που έχει κλίση θ_2 =55°.

Πού και πότε προσγειώνεται

Λύση

Διαλέγουμε πρώτα ένα σύστημα συντεταγμένων και αναλύουμε την ν_i

 $(0,0) \qquad x \qquad 0_1 \qquad v_1 \qquad 0_2 \qquad 0_2 \qquad 0_3 \qquad 0_4 \qquad 0_4 \qquad 0_5 \qquad 0_5$

Ο χρόνος που κινείται η σκιέρ στο x-άξονα είναι ίδιος με αυτό στο y-άξονα:

$$x_{\Sigma} = (v_i \cos \theta_1)t \Rightarrow t = \frac{x_{\Sigma}}{v_i \cos \theta_1}$$
 (1)

Στο σημείο προσγείωσης οι συντεταγμένες της τροχιάς της σκιέρ (x_{Σ},y_{Σ}) και οι συντεταγμένες του σημείου της πλαγιάς $(x_{\pi\lambda},y_{\pi\lambda})$ είναι ίδιες:

$$x_{\Sigma} = x_{\pi\lambda} \equiv x$$
 $y_{\Sigma} = y_{\pi\lambda} \equiv y$ (2)

Από τη κλίση της πλαγιάς έχουμε

$$y_{\pi\lambda} = x_{\pi\lambda} \tan \theta_2 \qquad (3)$$

Η εξίσωση θέσης της σκιέρ στην y-διεύθυνση δίνει (από 1 & 2 & 3)

$$y_{\Sigma} = v_{i_{y}} t - \frac{1}{2} g t^{2} = \frac{x_{i} \sin \theta_{1} x}{x_{i} \cos \theta_{1}} - \frac{1}{2} g \frac{x^{2}}{v_{i}^{2} \cos^{2} \theta_{1}} = x \tan \theta_{2} = \tan \theta_{1} - \frac{1}{2} g \frac{x}{v_{i}^{2} \cos^{2} \theta_{1}}$$

Λύνουμε την τελευταία ως προς x και αντικαθιστούμε στην (3) για y