Лекция 8

Ilya Yaroshevskiy

5 апреля 2021 г.

Содержание

1	Поверхностный интеграл II рода	1
2	Ряды Фурье 2.1 Пространства L^p	3
	ullet M	
	$\bullet \ \Phi: O \subset \mathbb{R}^2 \to \mathbb{R}^3$	
	• <i>f</i>	
	$ullet$ $f\Phi$	
	$\int_{M/E} df s = \int_{O/\Phi^{-1}(E)} f \circ \Phi \cdot \Phi' u \times \Phi' v du dv$	

Определение. $M\subset \mathbb{R}^3$ — кусочно гладкое двумерное многообразие, если M — конечное объединение

- ullet простых гладких двумерных многообразий M_i
- гладких кривых
- точек

Примечание. Просто так сферу параметризовать не можем, но можем разбить ее на две полусферы и окружность и считать отдельно для каждой из них.

Определение. $E \subset M$ — измеримое, если измеримы все $E \cap M_i$.

$$S(E) := \sum_{i} S(E \cap M_i)$$

$$\int_E f ds := \sum_i \int_{E \cap M_i} f ds$$

1 Поверхностный интеграл II рода

• M — простое гладкое двумерное многообразие в R^3 — поверхность

Определение. Сторона поверхности — непрерывное семейство единичных нормалей к этой поверхности

$$M\subset\mathbb{R}^3$$
 $W:M\to\mathbb{R}^3$ $\forall x\;W(x)$ — нормаль к $M,\,|w(x)|=1,\,w(x)\perp\Phi'u,\Phi'_v$

Примечание. Локльно каждая повехность — двустороннее. В общем случае — 1 или 2 стороны Примечание. График функции z(x,y)

$$\Phi: (x,y) \mapsto \begin{pmatrix} x \\ y \\ z(x,y) \end{pmatrix}$$

$$\Phi'_x = \begin{pmatrix} 1 \\ 0 \\ z'_x \end{pmatrix} \quad \Phi'_y = \begin{pmatrix} 0 \\ 1 \\ z'_y \end{pmatrix}$$

касательные векторы

$$n := \Phi'_x \times \Phi'_y = \begin{pmatrix} -z'_x \\ -z'_y \\ 1 \end{pmatrix}$$

— нормаль

$$n_0 = \pm \left(-\frac{z'_x}{\sqrt{1 + z'_x{}^2 + z'_y{}^2}}, -\frac{z'_y}{\sqrt{\cdots}}, \frac{1}{\sqrt{\cdots}} \right)$$

Примечание. Другой способ задания стороны поверхности

- 1. u, v касательные векторы $u \not | v, (u, v)$ касательный репе́р Если задано непрерывное поле реперов, то они задают сторону $n = u \times v$ (отнормировать)
- 2. Задана петля + указано непрерывное движение

Определение. M — поверхность в \mathbb{R}^3 , n_0 — сторона, γ — контур(петля) в M — ориентированный. Говорят, что сторона поверхности n_0 согласована с ориентацией γ : ($\gamma' \times N_{\text{внутр.}}$) $\parallel n_0$. Т.е. если ориентация γ задает сторону n_0

Определение.

- \bullet M простое двумерное гладкое многообразие
- n_0 сторона M
- $F: M \to \mathbb{R}^3$ векторное поле(непрерывное)

$$\int_{M} \langle F, n_0 \rangle \, ds$$

— интеграл II рода векторного поля F по поверхности M

Примечание. Смена стороны = смена знака

Примечание. Не зависит от параметра

Примечание. F = (P, Q, R) обозначается

$$\iint_{M} P \, dy \, dz + Q \, dz \, dx + R \, dx \, dy$$

Примечание. $\Phi, n = \Phi'_u \times \Phi'_v \leadsto n_0$

$$\int_{M} \langle F, n_{0} \rangle = \int_{O} \left\langle F, \frac{\Phi'_{u} \times \Phi'_{v}}{|\Phi'_{u} \times \Phi'_{v}|} \right\rangle |\Phi'_{u} \times \Phi'_{v}| \, du \, dv =$$

$$\int_{O} \underbrace{\langle F, \Phi'_{u} \times \Phi'_{v} \rangle}_{\text{смешенное произведение}} \, du \, dv \qquad (1)$$

$$\Phi(u, v) = (x(u, v), y(u, v), z(u, v))$$

$$\langle F, \Phi'_{u} \times \Phi'_{v} \rangle = \det \begin{pmatrix} P & x'_{u} & x'_{v} \\ Q & y'_{u} & y'_{v} \\ R & z'_{u} & z'_{v} \end{pmatrix}$$

$$1 = \int_{O} P \cdot \begin{vmatrix} y'_{u} & z'_{v} \\ z'_{u} & z'_{v} \end{vmatrix} + Q \cdot \begin{vmatrix} z'_{u} & z'_{v} \\ x'_{u} & x'_{v} \end{vmatrix} + R \cdot \begin{vmatrix} x'_{u} & x'_{v} \\ y'_{u} & y'_{v} \end{vmatrix} \, du \, dv$$

 Π ример. График z(x,y) над областью G по верхней стороне

$$\iint_{\Gamma_z} R \, dx \, dy = \iint_{\Gamma_z} 0 \, dy \, dz + 0 \, dz \, dy + R(x, y, z) \, dx \, dy \tag{2}$$

$$n_0 = \left(-\frac{z_x'}{\sqrt{1 + {z_x'}^2 + {z_y'}^2}}, -\frac{z_y'}{\sqrt{\cdots}}, \frac{1}{\sqrt{\cdots}} \right)$$

$$2 = \iint_{\Gamma_z} R(x, y, z) \cdot \frac{1}{\sqrt{1 + {z_x'}^2 + {z_y'}^2}} \, ds = \iint_G R(x, y, z(x, y)) \, dx \, dy = \iint_G R \, dx \, dy$$

т.е. этот интеграл II рода равен интегралу по проекции *Следствие* 1.0.1.

- \bullet $V \subset \mathbb{R}^3$
- $M = \partial V$ гладкая двумерная поверхность
- n_0 внешняя нормаль

$$\lambda_3 V = \iint_{\partial V} z \, dx \, dy = \frac{1}{3} \iint_{\partial V} x \, dy \, dz + y \, dz \, dx + z \, dx \, dy$$

Cледствие 1.0.2. Ω — гладкая кривая в \mathbb{R}^2 , M (— цилиндр над Ω) = $\Omega \times [z_0, z_1]$ Тогда (сторона M любая) $\int_M R\,dx\,dy=0$

2 Ряды Фурье

2.1 Пространства L^p

Свойство 1.

- (X,\mathfrak{A},μ)
- $f: X \to \mathbb{C}$ x = f(x) = u(x) + iv(x) $u = \Re f, \ v = \Im f$
- ullet f измеримая, если u u v измеримые
- \bullet f-суммируемая, u u v-суммирумые
- $f cymupyemas: \int_E f = \int_E u + \int_E v$

Свойство 2 (Неравенство Гёльдера).

- p, q > 1 $\frac{1}{p} + \frac{1}{q} = 1$
- (X,\mathfrak{A},μ)
- \bullet E измеримое
- $f, q: E \to \mathbb{C}$ измеримые

Tог ∂a

$$\int_{E} |fg| d\mu \le \left(\int_{E} |f|^{p}\right)^{\frac{1}{p}} \left(\int_{E} |g|^{q}\right)^{\frac{1}{q}}$$

Свойство 3 (Неравенство Минковского). Те-же условия что и в Неравенстве Гельдера

$$\left(\int_E |f+g|^p\right)^{\frac{1}{p}} \leq \left(\int_E |f|^p\right)^{\frac{1}{p}} + \left(\int_E |g|^p\right)^{\frac{1}{p}}$$

Примечание. При p = 1 неравенство тоже верно

Свойство 4.

Определение. L^p , $1 \le p \le +\infty$

• (X,\mathfrak{A},μ)

 \bullet $E \subset X$ — измеримое

$$\mathcal{L}^p(E,\mu) := \left\{ f: \text{ почти везде } E \to \mathbb{R}(\mathbb{C}) \Big| f - \text{измеримая}, \int_E |f|^p \, d\mu < +\infty \right\}$$

— это линейное пространство (по неравенству Минковского)

 $f,g\in\mathcal{L}^p(E,\mu): f\sim g$ f=h почти везде. $\mathcal{L}^p/_N=L^p(E,\mu)$ — линейной пространство. Задаем норму $\|f\|_{L^p(E,\mu)}=\left(\int_E|f|^p\right)^{\frac{1}{p}}$

Свойство 5.

- $L^{\infty}(E,\mu)$
- (X,\mathfrak{A},μ)
- \bullet E измеримое
- ullet f nочти вез ∂e $E
 ightarrow \overline{\mathbb{R}}$ измеримая

$$\operatorname{ess\,sup}_{x\in E}f=\inf\{A\in\overline{R}\Big|f\leq A\ \textit{почти везде}\}$$

Свойство 6. ess $\sup f \leq \sup f$

Свойство 7. $f \leq \operatorname{ess\,sup} f$ почти везде

Доказательство. $B = \operatorname{ess\,sup} f$

Тогда

Свойство 8. f-cyмм, $\operatorname{ess\,sup}_{E}|g|<+\infty$

Tог ∂a

$$\left| \int_{E} fg \right| \le \operatorname{ess\,sup} |g| \cdot \int_{E} |f|$$

Доказательство.

$$\left| \int_E fg \right| \leq \int_E |fg| \leq \int_E \operatorname{ess\,sup} |g| \cdot |f|$$

Примечание. $L^{\infty}(E,\mu)=\{f:$ п.в. $E\to\overline{\mathbb{R}}(\overline{\mathbb{C}}),$ изм., ess $\sup|f|<+\infty\}/_{\sim}$. Эквивалентные функции отождествленны — это нормированное пространство

$$||f||_{L^{\infty}(E,\mu)} := \operatorname{ess\,sup}_{E} |f| = ||f||_{\infty}$$

Примечание. В новых обозначениях. Неравенство Гельдера:

$$||fg||_1 \le ||f||_p \cdot ||g||_q$$

Здесь можно брать $p=1,\ q=+\infty$

Примечание. $f \in L^p \Rightarrow f$ — почти везде конечны. $1 \le p \le +\infty \Rightarrow$ можно считать f — задана всюду на E, и всюду конечна