COMP 3011 DESIGN AND ANALYSIS OF ALGORITHMS FALL 2024

Dynamic Programming

LI Bo
Department of Computing
The Hong Kong Polytechnic University

DYNAMIC PROGRAMMING

Algorithmic Paradigms

fancy name for caching intermediate results in a table for later reuse

- > Greedy. Process the input in some order, myopically making irrevocable decisions.
- > Divide-and-conquer. Break up a problem into independent subproblems; solve each subproblem; combine solutions to subproblems to form solution to original problem.
- > Dynamic programming. Break up a problem into a series of overlapping subproblems; combine solutions to smaller subproblems to form solution to large subproblem.

Interval Scheduling Problem

Given a set of jobs $J = \{1, 2, \dots, n\}$

- \triangleright Job j starts at s_j and finishes at $f_j \ge s_j$.
- > Two jobs are compatible if they don't overlap.

Goal: find maximum subset of mutually compatible jobs.

What if different jobs bring different values?

Weighted Interval Scheduling Problem

Given a set of jobs $J = \{1, 2, \dots, n\}$

- \triangleright Job j starts at s_j , finishes at f_j , and has weight $w_j > 0$.
- > Two jobs are compatible if they don't overlap.

Goal: find max-weight subset of mutually compatible jobs.

Earliest finish-time first

- Consider jobs in ascending order of finish time.
- Add job to subset if it is compatible with previously chosen jobs.

Weighted Interval Scheduling Problem

i is rightmost interval that ends before *j* begins

Jobs are in ascending order of finish time: $f_1 \le f_2 \le ... \le f_n$.

Definition.

- $\triangleright p(j) = \text{largest index } i < j \text{ such that job } i \text{ is compatible with } j.$
- \triangleright $OPT(j) = \max$ weight of any subset of mutually compatible jobs for subproblem consisting only of jobs 1, 2, ..., j.

Goal. $OPT(n) = \max$ weight of any subset of mutually compatible jobs.

Case 1. OPT(j) does not select job j.

Must be an optimal solution to problem consisting of remaining jobs 1, 2, ..., j - 1.

Case 2. OPT(j) selects job j.

- \triangleright Collect profit w_i .
- ightharpoonup Can't use jobs $\{p(j) + 1, p(j) + 2, ..., j 1\}$.
- Must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., p(j).

Weighted Interval Scheduling Problem

Case 1. OPT(j) does not select job j.

Must be an optimal solution to problem consisting of remaining jobs 1, 2, ..., j - 1.

Case 2. OPT(j) selects job j.

- \triangleright Collect profit w_j .
- \triangleright Can't use jobs $\{p(j) + 1, p(j) + 2, ..., j 1\}$
- Must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., p(j).

Recursive algorithm COMPUTE-OPT(j)

to compute OPT(j):

How to compute p(j)?

→ binary search!

optimal substructure property

Bellman equation

$$-OPT(j) = \begin{cases} 0 & \text{if } j = 0\\ \max \{OPT(j-1), w_j + OPT(p(j))\} & \text{if } j > 0 \end{cases}$$

Exponential running time!

IF (j=0)

RETURN 0. Case 1 Case 2

ELSE

RETURN max {COMPUTE-OPT(j-1), w_j + COMPUTE-OPT(p[j]) }

Weighted Interval Scheduling Problem

Example:

Memoizing the Recursion

Observation: the recursive algorithm Compute-Opt is really only solving n + 1 different subproblems: Compute-Opt(0), Compute-Opt(1), . . . , Compute-Opt(n).

Technique: store the value of Compute-Opt the first time we compute it and then simply use this precomputed value in place of all future recursive calls.

Memoization

TOP-DOWN($n, s_1, ..., s_n, f_1, ..., f_n, w_1, ..., w_n$)

Sort jobs by finish time and renumber so that $f_1 \le f_2 \le ... \le f_n$. Compute p[1], p[2], ..., p[n] via binary search.

 $M[0] \leftarrow 0.$ global array

RETURN M-COMPUTE-OPT(n).

M-COMPUTE-OPT(j)

IF (M[j] is uninitialized)

 $M[j] \leftarrow \max \{ M\text{-COMPUTE-OPT}(j-1), w_j + M\text{-COMPUTE-OPT}(p[j]) \}.$

RETURN M[j].

Memoizing the Recursion

Theorem. Memoized version of algorithm takes $O(n \log n)$ time.

Proof.

- \triangleright Sort by finish time: $O(n \log n)$ via Mergesort.
- ightharpoonup Compute p[j] for each $j: O(n \log n)$ via binary search.
- \triangleright M-COMPUTE-OPT(j): each invocation takes O(1) time and either
 - \triangleright (1) returns an initialized value M[j].
 - \triangleright (2) initializes M[j] and makes two recursive calls
- ➤ How many M-Compute-Opt calls?
 - \triangleright *M* has n+1 entries, which are initially empty.
 - Each time the procedure invokes the recurrence, issuing two recursive calls to M-Compute-Opt, it fills in a new entry, and hence increases the number of filled-in entries by 1.
 - \triangleright There can be at most O(n) calls to M-Compute-Opt.
- \triangleright Overall running time of M-COMPUTE-OPT(n) is O(n).

Question:

DP algorithm computes optimal value. How to find optimal solution?

Keep track of an optimal solution in addition to its value

E.g. maintain an additional array S so that S[i] contains an optimal set of intervals among $\{1, 2, ..., i\}$.

Blow up the running time by an additional factor of O(n):

While a position in the M array can be updated in O(1) time, writing down a set in the S array takes O(n) time.

Memoizing the Recursion

To avoid this O(n) blow-up, we do not explicitly maintain S, but rather recover the optimal solution from values saved in the array M after the optimum value has been computed.

```
Job j belongs to an optimal solution for the set of intervals \{1, \ldots, j\} if and only if v_j + OPT(p(j)) \ge OPT(j-1).
```

```
Find-Solution(j)

If j=0 then

Output nothing

Else

If v_j+M[p(j)]\geq M[j-1] then

Output j together with the result of Find-Solution(p(j))

Else

Output the result of Find-Solution(j-1)

Endif

Endif
```

Theorem. Given the array M of the optimal values of the sub-problems, Find-Solution returns an optimal solution in O(n) time.

- Find-Solution calls itself recursively only on strictly smaller values, it makes a total of O(n) recursive calls;
- > It spends constant time per call.

Bottom-up Dynamic Programming

Theorem. The bottom-up version takes $O(n \log n)$ time.

Iterative algorithm to compute OPT(j):

BOTTOM-UP(
$$n, s_1, ..., s_n, f_1, ..., f_n, w_1, ..., w_n$$
)

Sort jobs by finish time and renumber so that $f_1 \le f_2 \le ... \le f_n$.

Compute p[1], p[2], ..., p[n].

$$M[0] \leftarrow 0$$
. previously computed values

FOR
$$j = 1$$
 TO n

$$M[j] \leftarrow \max \{ M[j-1], w_j + M[p[j]] \}.$$

Bottom-up Dynamic Programming

Example:

Index

Algorithmic Paradigms

fancy name for caching intermediate results in a table for later reuse

- > Greedy. Process the input in some order, myopically making irrevocable decisions.
- > Divide-and-conquer. Break up a problem into independent subproblems; solve each subproblem; combine solutions to subproblems to form solution to original problem.
- > Dynamic programming. Break up a problem into a series of overlapping subproblems; combine solutions to smaller subproblems to form solution to large subproblem.

Two More Examples

Max Contiguous Subarray

Given an array x of n integer (positive or negative), find a contiguous subarray whose sum is maximum.

Approach 1. Brute-force algorithm.

- For each i and j: compute $a[i] + a[i+1] + \cdots + a[j]$
- \triangleright Takes $\Theta(n^3)$ time.

Approach 2. Apply "cumulative sum" trick.

➤ Precompute cumulative sums:

$$S[i] = a[0] + a[1] + \dots + a[i].$$

- $ightharpoonup \text{Now } a[i] + a[i+1] + \dots + a[j] = S[j] S[i-1].$
- \triangleright Improves running time $\Theta(n^2)$.

Let $OPT(i) = \max$ sum of any subarray of x whose rightmost index is i.

Goal: $\max_{i} OPT(i)$ take element i together with best subarray ending at index i-1

$$OPT(i) = \begin{cases} x_1, & \text{if } i = 1 \\ \max\{x_i, OPT(i-1) + x_i\}, & \text{if } i > 1 \end{cases}$$
 Bellman equation

Running time: O(n).

Monotonically Increasing Subsequence

 \triangleright Give an efficient algorithm to find the longest monotonically increasing sequence in a sequence of n numbers.

 \triangleright Example: given (5,2,8,7,3,1,6,4)

(2,6),

(1,4),

(2,3,6)

$$(s_1, s_2, \cdots, s_{n-1}, s_n)$$

What do we want to know about the first n-1 numbers?

What are the subproblems?

Monotonically Increasing Subsequence

- \triangleright Give an efficient algorithm to find the longest monotonically increasing sequence in a sequence of n numbers.
- \triangleright Example: given (5,2,8,7,3,1,6,4)

$$\langle s_1, s_2, \cdots, s_{n-1}, s_n \rangle$$

What do we want to know about the first n-1 numbers?

Let OPT(i) = the length of the longest sequence ending with the ith character.

Goal: $\max_{i} OPT(i)$

$$OPT(i) = \begin{cases} 0, & if \ i = 0 \\ \max_{0 \le j < i: s[j] < s[i]} \{OPT(j) + 1\}, & if \ i > 1 \end{cases}$$

Running time: $O(n^2)$.

Subset Sum Problem and Knapsack Problem

Subset Sum Problem

Given n items $\{1, \ldots, n\}$, and each has a given nonnegative integral weight w_i (for $i = 1, \ldots, n$). We are also given an integral bound W. We would like to select a subset S of the items so that $\sum_{i \in S} w_i \leq W$ and, subject to this restriction, $\sum_{i \in S} w_i$ is as large as possible.

For Interval Scheduling, we could simply delete each request that conflicted with request *i*.

Greedy Approaches:

Start selecting items as long as the total weight remains below W.

> sort the items by decreasing weight

$$\{W/2 + 1, W/2, W/2\}$$

> sort by increasing weight $\{1, W/2, W/2\}$

Motivated by Weighted Interval Scheduling:

- consider subproblems involving only the first
 i items.
- ightharpoonup OPT(i) = the best possible solution using a subset of the items $\{1, ..., i\}$.
- Case 1. $i \notin OPT$, then OPT(i) = OPT(i-1).
- \triangleright Case 2. $i \in OPT$:
 - for the subset of requests $S \subseteq \{1, ..., i 1\}$ that we will accept, we only have $W w_i$ weight left.
 - ➤ But *OPT*(*i*) does not reflect the remaining weight!

Subset Sum Problem: two variables

For for each i = 0, 1, ..., n and each integer $0 \le w \le W$:

 \triangleright OPT(i, w) = the value of the optimal solution using a subset of the items $\{1, ..., i\}$ with maximum allowed weight w.

$$OPT(i, w) = \max_{S \subseteq \{1, \dots, i\}: \sum_{l \in S} w_l \le w} \sum_{j \in S} w_j$$

 \triangleright OPT(n, W) is the quantity we're looking for.

Case 1. OPT(i, w) does not select item i.

 \triangleright OPT(i, w) selects best of $\{1, 2, ..., i-1\}$ subject to weight limit w.

Case 2. OPT(i, w) selects item i.

- \triangleright Collect w_i .
- \triangleright New weight limit = $w w_i$.
- $\triangleright OPT(i, w)$ selects best of $\{1, 2, ..., i-1\}$ subject to new weight limit.

$$OPT(i, w) = \begin{cases} OPT(i-1, w), & \text{if } w < w_i \\ \max(OPT(i-1, w), w_i + OPT(i-1, w-w_i)), & \text{otherwise} \end{cases}$$

optimal substructure property

Subset Sum Problem

$$OPT(i, w) = \begin{cases} OPT(i-1, w), & \text{if } w < w_i \\ \max \left(OPT(i-1, w), w_i + OPT(i-1, w-w_i) \right), & \text{otherwise} \end{cases}$$

```
Subset-Sum(n, W)
Array M[0...n, 0...W]
Initialize M[0, w] = 0 for each w = 0, 1, ..., W
For i = 1, 2, ..., n
For w = 0, ..., W
Use the above recurrence to compute M[i, w]
Endfor
Endfor
Return M[n, W]
```

- ➤ The leftmost column and bottom row are always 0.
- The entry for OPT(i, w) is computed from the two other entries OPT(i-1, w) and $OPT(i-1, w-w_i)$.

The two-dimensional table of OPT values.

Subset Sum Problem

A sample example:

$$W = 6$$
, items $w_1 = 2$, $w_2 = 2$, $w_3 = 3$

Filling in values for i = 1

Initial values

Filling in values for i = 3

trace back through the array

Theorem.

- \triangleright The DP Algorithm correctly computes the optimal value of the problem, and runs in O(nW) time.
- Given a table M of the optimal values of the subproblems, the optimal set S can be found in O(n) time.

Knapsack Problem

Pack knapsack so as to maximize total value of items taken.

- \triangleright There are *n* items: item *i* provides value $v_i > 0$ and weighs $w_i > 0$.
- ➤ Value of a subset of items = sum of values of individual items.
- \triangleright Knapsack has weight limit of W.
- > All values and weights are integral.

- \triangleright The subset $\{1, 2, 5\}$ has value \$35 (and weight 10).
- \triangleright The subset $\{3,4\}$ has value \$40 (and weight 11).

Greedy Algorithms:

- For Greedy-by-value: repeatedly add item with maximum v_i .
- Greedy-by-weight: repeatedly add item with minimum w_i .
- For Greedy-by-ratio: repeatedly add item with maximum ratio v_i/w_i .

W = 100
$v_1 = 51$, $w_1 = 100$
$v_2 = 50$, $w_2 = 50$
$v_3 = 50$, $w_3 = 50$

\$18 5 kg	
\$6 2 kg	
\$1 1 kg	

i	v_i	w_i		
1	\$1	1 kg		
2	\$6	2 kg		
3	\$18	5 kg		
4	\$22	6 kg		
5	\$28	7 kg		

Dynamic programming: two variables

Let OPT(i, w) = optimal value of knapsack problem with items 1, ..., i, subject to weight limit w.

Goal: Computing OPT(n, W).

Case 1. OPT(i, w) does not select item i.

 \triangleright OPT(i, w) selects best of $\{1, 2, ..., i-1\}$ subject to weight limit w.

Case 2. OPT(i, w) selects item i.

- \triangleright Collect value v_i .
- \triangleright New weight limit = $w w_i$.
- \triangleright *OPT*(*i*, *w*) selects best of {1, 2, ..., *i*-1} subject to new weight limit.

optimal substructure property

$$OPT(i, w) = \begin{cases} 0 & \text{if } i = 0 \\ OPT(i-1, w) & \text{if } w_i > w \\ \max \{ OPT(i-1, w), \ v_i + OPT(i-1, w-w_i) \} & \text{otherwise} \end{cases}$$

Dynamic programming: two variables

$$OPT(i, w) = \begin{cases} 0 & \text{if } i = 0 \\ OPT(i-1, w) & \text{if } w_i > w \\ \max \{ OPT(i-1, w), \ v_i + OPT(i-1, w-w_i) \} & \text{otherwise} \end{cases}$$

KNAPSACK
$$(n, W, w_1, ..., w_n, v_1, ..., v_n)$$

For
$$w = 0$$
 to W

$$M[0, w] \leftarrow 0.$$

For i = 1 to n

IF
$$(w_i > w)$$
 $M[i, w] \leftarrow M[i-1, w]$.

ELSE

FOR
$$w = 0$$
 TO W

IF $(w_i > w)$ $M[i, w] \leftarrow M[i-1, w]$.

$$M[i, w] \leftarrow \max \{ M[i-1, w], v_i + M[i-1, w - w_i] \}.$$

previously computed values

RETURN M[n, W].

i	v_i	w_i	
1	\$1	1 kg	
2	\$6	2 kg	
3	\$18	5 kg	
4	\$22	6 kg	
5	\$28	7 kg	
	W = 11	subs	et of

items $1, \ldots, i$

{ }	0	0	0	0	0	0	0	0	0	0	0	0
{1}	0	1	1	1	1	1	1	1	1	1	1	1
{ 1, 2 }	T 0 ←		6	7	7	7	7	7	7	7	7	7
{ 1, 2, 3 }	0	1	6	7	7	- 18 ←	19	24	25	25	25	25
{ 1, 2, 3, 4 }	0	1	6	7	7	18	22	24	28	29	29	-40
{ 1, 2, 3, 4, 5 }	0	1	6	7	7	18	22	28	29	34	35	40
	0	1	2	3	4	5	6	7	8	9	10	11

Theorem.

weight limit w

- \triangleright The DP algorithm solves the knapsack problem with n items and maximum weight W in $\Theta(nW)$ time and $\Theta(nW)$ space.
- \triangleright After computing optimal values, can trace back to find solution: OPT(i, w) takes item i iff M[i, w] > 0M[i-1,w].