$\int (4\sin x + 2\cos x)dx$

- $\int \left(\frac{1}{1+x^2} + \frac{2}{\sqrt{1-x^2}}\right) dx$
- 13. Show that the substitutions $u = \sec x$ and $u = \tan x$ produce different values for the integral. Explain why both are correct.

$$\int sec^2x\tan x\,dx$$

 $\int \frac{\cos 3x}{\sqrt{5 + 2\sin 3x}} dx$

25.

The accompanying figure shows five points on the graph of an unknown function f. Devise a strategy for using the known points to approximate the area A under the graph of y = f(x) over the interval [1, 5]. Describe your strategy, and use it to approximate A.

21.

In each part, confirm the stated equality.

(a)
$$1 \cdot 2 + 2 \cdot 3 + \dots + n(n+1) = \frac{1}{3}n(n+1)(n+2)$$

(b)
$$\lim_{n \to +\infty} \sum_{k=1}^{n-1} \left(\frac{9}{n} - \frac{k}{n^2} \right) = \frac{17}{2}$$

(c)
$$\sum_{i=1}^{3} \left(\sum_{j=1}^{2} (i+j) \right) = 21$$

29. Use a calculating utility to find the left endpoint, right endpoint, and midpoint approximations to the area under the curve over the stated interval using n = 10subintervals.

$$y = \ln x; [1,2]$$

53. Evaluate with the FTC.

$$\int_0^2 |2x-3|\,dx$$

33.

Suppose that

$$\int_0^1 f(x) \, dx = \frac{1}{2}, \quad \int_1^2 f(x) \, dx = \frac{1}{4},$$

$$\int_0^3 f(x) \, dx = -1, \quad \int_0^1 g(x) \, dx = 2$$

In each part, use this information to evaluate the given integral, if possible. If there is not enough information to evaluate the integral, then say so.

(a)
$$\int_{0}^{2} f(x) dx$$

(b)
$$\int_{1}^{3} f(x) dx$$

(a)
$$\int_0^2 f(x) dx$$
 (b) $\int_1^3 f(x) dx$ (c) $\int_2^3 5f(x) dx$

(d)
$$\int_{1}^{0} g(x) dx$$

(e)
$$\int_{0}^{1} g(2x) dx$$

(d)
$$\int_{1}^{0} g(x) dx$$
 (e) $\int_{0}^{1} g(2x) dx$ (f) $\int_{0}^{1} [g(x)]^{2} dx$

One of the numbers π , $\pi/2$, $35\pi/128$, $1-\pi$ is the correct value of the integral

$$\int_0^{\pi} \sin^8 x \, dx$$

Use the accompanying graph of $y = \sin^8 x$ and a logical process of elimination to find the correct value. [Do not attempt to evaluate the integral.]

57. Use part 2 of the FTC to find F'(x).

$$F(x) = \int_1^x (t^3 + 1) dt$$

$$\frac{d}{dx} \left[\int_0^x |t - 1| \, dt \right]$$

65. State the two parts of the FTC and explain what is
meant by the statement "Differentiation and
integration are inverse processes."

69.

In each part, determine the values of x for which F(x) is positive, negative, or zero without performing the integration; explain your reasoning.

(a)
$$F(x) = \int_1^x \frac{t^4}{t^2 + 3} dt$$
 (b) $F(x) = \int_{-1}^x \sqrt{4 - t^2} dt$

73. Derive the formulas for the position and velocity functions of a particle that moves with uniformly accelerated motion along a coordinate line.

77. Find the position function of the particle moving along the s-axis.

$$v(t) = 2t - 3$$
; $s(1) = 5$

81. Find the displacement and the distance traveled by the particle moving along the s-axis during the given time interval.

$$v(t) = \frac{1}{2} - \frac{1}{t^2}; 1 \le t \le 3$$

85. Sketch the curve and find the total area between the curve and the given interval on the x-axis.

$$y = x^2 - 1; [0,3]$$

89. A car traveling 60 mph (88 ft/s) along a straight road decelerates at a constant rate of 10 ft/s².	95. $c^1 = dx$
(a) How long will it take until the speed is 45 mph?	$\int_0^1 \frac{dx}{\sqrt{3x+1}}$
(b) How far will the car travel before coming to a stop?	
27	
97. $\int_{0}^{1} \sin^{2}\pi x \cos \pi x dx$	99. $\int_{0}^{1} dx$
$\int_0^\infty \sin^{-n}x \cos nx dx$	$\int_0^1 \frac{dx}{\sqrt{e^x}}$