Lösung der Aufgabe 1

a) Definitionsbereich D = $\{x \mid x \neq 0\}$

Asymptoten: vertikal

$$\underline{x = 0}$$
; schief $(x+7x^2-36)$: $x^2 = x+7-\frac{36}{x^2}$, also $\underline{y = x+7}$

Nullstellen $x^3-7x^2-36=0$ Durch Probieren : $x_1=2$

Polynomdivision: $(x+7x^2-36)$: $(x-2) = x^2+9x+18$; die zugehörige Gleichung hat die Lösungen $x_2 = -$ 3 und $x_3 = -6$

Ableitungen

$$f'(x) = (x+7-\frac{36}{x^2})' = 1 + \frac{72}{x^3}$$

f'(x) = 0 für $x_4 = -\sqrt[3]{72} = 2 \cdot \sqrt[3]{9} = -4,16...$ ist Stelle eines Maximums (aus dem Graphen)

b) $f''(x) = -\frac{216}{x^4} < 0$. Die zweite Ableitung ist für alle $x \in D$ negativ, also ist f überall konkav.

d) Tangentengleichung $y = m \cdot x$

Im Berührungspunkt (x_o/y_o) ist $mx_o = x_o + 7 - \frac{36}{x_o^2}$ und die Steigung m

Lösung der Aufgabe 2

a) Die Projektion g' der Geraden g in die Grundebene hat den Richtungsvektor | 0 | . Der Winkel γ

 $\frac{\begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}}{\sqrt{4+1} \cdot \sqrt{4}} = \frac{2 \cdot \sqrt{5}}{5}, \, \gamma = 26,56...^{\circ}$ zwischen den Richtungsvektoren von g und g' beträgt cos γ =

Die Kugelgleichung erhält man aus dem konstanten Abstand r eines Kugelpunktes P(x/y/z) vom Mittelpunkt M. Hier ist M = (0/0/0) und r = 7, also $\overline{MP}^2 = x^2 + y^2 + z^2 = 49$

Setzt man die Komponenten der Geradengleichung in die Kugelgleichung ein, so erhält man $(5+2t)^2 + 2^2 + (-2+t)^2 = 49$, also $5t^2 + 16t - 16 = 0$, woraus sich $t_1 = 0.8$ und $t_2 = -4$ ergibt; die Schnittpunkte sind $S_1(6.6 / 2 / -1.2)$ und $S_2(-3 / 2 / -6)$.

Einsetzen der Komponenten der Geradengleichung mit allgemeinem p in die Kugelgleichung: $(5+2t)^2 + 2^2 + (p+t)^2 = 49$ ergibt $5t^2 + (2p+20)t + p^2 - 16 = 0$ Gleichung *) Die beiden möglichen Schnittpunkte fallen in einem Berührungspunkt zusammen, wenn diese quadratische Gleichung nur eine Lösung hat, d.h. wenn die Diskriminante der allgemeinen Lösung Null ist : D = $(2p + 20)^2 - 20(p^2 - 20) = -16(p^2 - 5p - 50) = 0$; daraus ergibt sich $p_1 = 10$ und $p_2 = -5$

und daraus die Tangenten t_1 : $\vec{r} = \begin{pmatrix} 5 \\ 2 \\ 40 \end{pmatrix} + t \cdot \begin{pmatrix} 2 \\ 0 \\ 4 \end{pmatrix}$ und t_2 : $\vec{r} = \begin{pmatrix} 5 \\ 2 \\ 10 \end{pmatrix} + t \cdot \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$

d) Tangentialebene durch die Tangente t_1 : $p_1 = 10$ in die quadratische Gleichung *) einsetzen: $5t^2 + 30t + 84 = 0$. Weil D = 0 ist, erhält man t = -4 und den Berührungspunkt B(-3 / 2 / 6) dieser Tangente. Die Gerade durch den Kugelmittelpunkt M und durch B steht senkrecht zur Tangentialebene, also lautet die Gleichung dieser Ebene: 3x - 2y - 67 + const. = 0; weil B auf

Lösung der Aufgabe 3

$$P(A) = 0.4$$
; $P(B) = 0.6$

der Ebene liegt, folgt const. = 49.

a) Binomische Verteilung : P(gleich viele Siege) = $P_6(3) = \binom{6}{3} 0,4^3 0,6^3 = 6 \cdot 0,24^3 = 0,276$ P(Bea gewinnt mehr) = $P_6(0) + P_6(1) + P_2(2) = 0.6^6 + 6 \cdot 0,4 \cdot 0,6^5 + 15 \cdot 0.4^2 \cdot 0,6^3 = 0,544$

b) P(Albin gewinnt) = $0.4^2 + 0.4^3 \cdot 0.6 + 0.4^3 \cdot 0.6^2 + 0.4^2 \cdot 0.6 + 0.4^3 \cdot 0.6^2 = 0.4^2 (1 + 0.5 + 0.24 + 0.288) = 0.340$

c) (Formel von Bayes)

P(1.Spiel Albingewinnt) =
$$\frac{P(1.Spiel \land Albingewinnt)}{P(Albin gewinnt)} = \frac{0.4^2(1+0.24+0.144)}{0.4^2(1+0.6+0.24+0.288)} = 0.340$$

d) Anzahl Spiele 2 3 4 5 Wahrscheinlichkeit 0,52 0,24 0,1248 0,1152 Erwartungswert $\mu = 2,8352$ Dauer: 56,7 Minuten

Lösung der Aufgabe 4

a) $f_1(x) = x + e^{-x} - 1$; Asymptote ist y = x + 1, da e^{-x} für wachsendes x verschwindet $f'(x) = 1 - e^{-x}$; f'(x) = 0 für x = 0

y2-1-1 0 1 2 3 4

c) $f_a'(x) = a - e^{-x}$; $f_a''(x) = e^{-x}$ Man erhält die Extremalstelle bei $x = -\ln a$ und $f''(-\ln a) = 1 > 0$, also ein Minimum; die y-Koordinate ist $y = -a \ln a + a - 1$

d) Das Gleichungssystem aus c) $x = -\ln a$ $\Rightarrow a = e^{-x}$ $y = -a \ln a + a - 1$ liefert die Gleichung $y = (x+1) \cdot e^{-x} - 1$

Lösung der Aufgabe 5

a) Für n = 1 gilt : $a + aq = a \cdot \frac{q^1 - 1}{q - 1}$; falls für n die Behauptung richtig ist, so folgt für die Summe mit dem nächsten Summanden $a \cdot q^n$:

 $a+aq+...+aq^{n-1}+aq^n=a\cdot\frac{q^n-1}{q-1}+aq^n=a\cdot\frac{q^n-1+q^{n+1}-q^n}{1-q}=a\cdot\frac{q^{n+1}-1}{1-q} \ .$ Die Behauptung gilt dann also auch für die Summe mit dem nächsten Summanden, unabhängig von n.

b) Die Ebene sx + s^{-0,5}y + z = 1 hat den Normalenvektor $\begin{pmatrix} s \\ s^{-\frac{1}{2}} \\ 1 \end{pmatrix}$; die Normale n durch den Ursprung (0 / 0 / 0) schneidet die Ebene : s · $(0+t\cdot s)$ + s^{-0,5} · $(0+t\cdot s^{-0,5})$ + 1 - 1 = 0. Man erhält durch Umformen

die Gleichung $t_o \cdot (s^2 - \frac{1}{s} + 1) = 1$ oder $t_o = \frac{1}{s^2 - \frac{1}{s} + 1}$. Setzt man diesen Wert von t_o in die

Gleichung der Normalen n : $\vec{r} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} s \\ s^{-\frac{1}{2}} \\ 1 \end{pmatrix}$ ein, so erhält man den Fusspunkt des Lotes von O

auf die Ebene, welcher extremalen Abstand vom Ursprung haben muss; dies ist dann der Fall, wenn der Wert t_o (Streckfaktor des Richtungsvektors der Normalen) oder (was einfacher zu rechnen ist) sein Reziprokwert $\frac{1}{t}$ extremal ist :

 $f(s) = s^2 + \frac{1}{s} + 1$ extremal, d.h. $\frac{df}{ds} = 2s - \frac{1}{s^2} = 0$; man erhält den Wert $s = \sqrt[3]{\frac{1}{2}}$. Da die zweite

Ableitung 2 + $\frac{2}{s^3}$ von f an dieser Stelle positiv ist, hat der Reziprokwert von t_o ein Minimum, der Wert t_o also ein Maximum. Der Abstand ist maximal.

c) Man erhält im Dreieck OMB $r^2 = (r-2)^2 + 4^2$ r = 5 und M(0 / -3) Die Kreisgleichung lautet : $x^2 + (y + 3)^2 = 25$

oder $y = +\sqrt{25 - x^2} - 3$ (Meridian, Funktionsgleichung der Kurve oberhalb der x-Achse)

Rotationsvolumen:

$$V = \pi \cdot \int_{-4}^{4} y^{2} dx = 2\pi \int_{0}^{4} (34 - x^{2} - 6\sqrt{25 - x^{2}}) dx = \text{(nach Formelsammlung)}$$
$$= 2\pi \left[34x - \frac{x^{3}}{3} \cdot \sqrt{25 - x^{2}} + \frac{25}{2} \arcsin \frac{x}{5} \right] \quad = 57,30...$$