Subgradient Method

Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes

- subgradient method
- convergence analysis
- optimal step size when f* is known
- alternating projections
- optimality

Subgradient method

to minimize a nondifferentiable convex function f: choose $\boldsymbol{x}^{(0)}$ and repeat

$$x^{(k)} = x^{(k-1)} - t_k g^{(k-1)}, k = 1, 2, \cdots$$

 $g^{(k-1)}$ is any subgradient of f at $x^{(k-1)}$

step size rules

- fixed step: t_k constant
- fixed length: $t_k \|g^{(k-1)}\|_2$ constant (i.e., $\|x^{(k)} x^{(k-1)}\|_2$ constant)
- diminishing: $t_k \to 0$, $\sum_{k=1}^{\infty} t_k = \infty$

Assumptions

- f has finite optimal value f^* , minimizer x^*
- f is convex, $\operatorname{dom} f = \mathbf{R}^n$
- f is Lipschitz continuous with constant G > 0:

$$|f(x) - f(y)| \le G||x - y||_2 \quad \forall x, y$$

this is equivalent to

$$||g||_2 \le G \quad \forall g \in \partial f(x), \forall x$$

(see next page)

proof

• assume $||g||_2 \le G$ for all subgradients; choose $g_y \in \partial f(y), g_x \in \partial f(x)$:

$$g_x^{\top}(x-y) \ge f(x) - f(y) \ge g_y^{\top}(x-y)$$

by the Cauchy-Schwarz inequality

$$G||x - y||_2 \ge f(x) - f(y) \ge -G||x - y||_2$$

• assume $||g||_2 > G$ for some $g \in \partial f(x)$; take $y = x + g/||g||_2$:

$$f(y) \ge f(x) + g^{\top}(y - x)$$

= $f(x) + ||g||_2$
> $f(x) + G$

Analysis

- the subgradient method is not a descent method
- the key quantity in the analysis is the distance to the optimal set with $x^+ = x^{(i)}$, $x = x^{(i-1)}$, $g = g^{(i-1)}$, $t = t_i$:

$$||x^{+} - x^{*}||_{2}^{2} = ||x - tg - x^{*}||_{2}^{2}$$

$$= ||x - x^{*}||_{2}^{2} - 2tg^{\top}(x - x^{*}) + t^{2}||g||_{2}^{2}$$

$$\leq ||x - x^{*}||_{2}^{2} - 2t(f(x) - f^{*}) + t^{2}||g||_{2}^{2}$$

combine inequalities for $i=1,\cdots,k$, and define $f_{\text{best}}^{(k)}=\min_{0\leq i\leq k}f(x^{(i)})$:

$$2\left(\sum_{i=1}^{k} t_{i}\right) \left(f_{\text{best}}^{(k)} - f^{*}\right) \leq \|x^{(0)} - x^{*}\|_{2}^{2} - \|x^{(k)} - x^{*}\|_{2}^{2} + \sum_{i=1}^{k} t_{i}^{2} \|g^{(i-1)}\|_{2}^{2}$$
$$\leq \|x^{(0)} - x^{*}\|_{2}^{2} + \sum_{i=1}^{k} t_{i}^{2} \|g^{(i-1)}\|_{2}^{2}$$

fixed step size

 $t_i = t$

$$f_{\text{best}}^{(k)} - f^* \le \frac{\|x^{(0)} - x^*\|_2^2}{2kt} + \frac{G^2t}{2}$$

- does not guarantee convergence of $f_{\text{best}}^{(k)}$
- for large $k, f_{\text{best}}^{(k)}$ is approximately $G^2t/2$ -suboptimal

fixed step length $t_i = s/\|g^{(i-1)}\|_2$

$$f_{\text{best}}^{(k)} - f^* \le \frac{G||x^{(0)} - x^*||_2^2}{2ks} + \frac{Gs}{2}$$

- ullet does not guarantee convergence of $f_{
 m best}^{(k)}$
- for large $k, f_{\text{best}}^{(k)}$ is approximately Gs/2-suboptimal

diminishing step size $t_i \to 0$, $\sum_{i=1}^{\infty} t_i = \infty$

$$f_{\text{best}}^{(k)} - f^* \le \frac{\|x^{(0)} - x^*\|_2^2 + G^2 \sum_{i=1}^k t_i^2}{2 \sum_{i=1}^k t_i}$$

can show that $(\sum_{i=1}^k t_i^2)/\sum_{i=1}^k t_i \to 0$; hence, $f_{\text{best}}^{(k)}$ converges to f^*

Example: 1-norm minimization

min
$$||Ax - b||_1$$
 $(A \in \mathbf{R}^{500 \times 100}, b \in \mathbf{R}^{500})$

subgradient is given by A^{\top} sign(Ax - b)

fixed length $t_k = s/||g^{(k-1)}||_2, s = 0.1, 0.01, 0.001$

diminishing step size $t_k = 0.01/\sqrt{k}$, $t_k = 0.01/k$

Optimal step size for fixed number of iterations

from page 6: if $s_i = t_i ||g^{(i-1)}||_2$ and $||x^{(0)} - x^*||_2 \le R$:

$$f_{\text{best}}^{(k)} - f^* \le \frac{R^2 + \sum_{i=1}^k s_i^2}{2\sum_{i=1}^k s_i/G}$$

- for given k, bound is minimized by fixed step length $s_i = s = R/\sqrt{k}$
- resulting bound after k steps is

$$f_{\text{best}}^{(k)} - f^* \le \frac{GR}{\sqrt{k}}$$

• guarantees accuracy $f_{\text{best}}^{(k)} - f^* \le \epsilon$ in $k = O(1/\epsilon^2)$ iterations

Optimal step size when f^* is known

right-hand side in first inequality of page 6 is minimized by

$$t_i = \frac{f(x^{(i-1)}) - f^*}{\|g^{(i-1)}\|_2^2}$$

optimized bound is

$$\frac{f(x^{(i-1)}) - f^*}{\|g^{(i-1)}\|_2^2} \le \|x^{(i-1)} - x^*\|_2^2 - \|x^{(i)} - x^*\|_2^2$$

applying recursively (with $||x^{(0)} - x^*||_2 \le R$ and $||g^{(i)}||_2 \le G$) gives

$$f_{\text{best}}^{(k)} - f^* \le \frac{GR}{\sqrt{k}}$$

Exercise: find point in intersection of convex sets

to find a point in the intersection of m closed convex sets $C_1,...,C_m$,

$$\min f(x) = \max\{d_1(x), \cdots, d_m(x)\}\$$

where $d_j(x) = \inf_{y \in C_j} ||x - y||_2$ is Euclidean distance of x to C_j

- $f^* = 0$ if the intersection is nonempty
- (from p. 4-18): $g \in \partial f(\hat{x})$ if $g \in \partial d_j(\hat{x})$ and C_j is farthest set from \hat{x}
- (from p. 4-23) subgradient $g \in \partial d_j(\hat{x})$ from projection $P_j(\hat{x})$ on C_j :

$$g = 0 \text{ (if } \hat{x} \in C_j), \quad g = \frac{1}{d(\hat{x}, C_j)} (\hat{x} - P_j(\hat{x})) \text{ (if } \hat{x} \notin C_j)$$

note that $||g||_2 = 1$ if $\hat{x} \notin C_i$

subgradient method with optimal step size

- optimal step size for $f^* = 0$ and $||g^{(i-1)}||_2 = 1$ is $t_i = f(x^{(i-1)})$.
- at iteration k, find farthest set C_j (with $f(x^{(k-1)}) = d_j(x^{(k-1)})$); take

$$x^{(k)} = x^{(k-1)} - \frac{f(x^{(k-1)})}{d_j(x^{(k-1)})} (x^{(k-1)} - P_j(x^{(k-1)}))$$
$$= P_j(x^{(k-1)})$$

- a version of the *alternating projections* algorithm
- at each step, project the current point onto the farthest set
- for m = 2, projections alternate onto one set, then the other

Example: Positive semidefinite matrix completion

some entries of $X \in \mathbf{S}^n$ fixed; find values for others so $X \succeq 0$

- $C_1 = \mathbf{S}_+^n$, C_2 is (affine) set in \mathbf{S}^n with specified fixed entries
- ullet projection onto C_1 by eigenvalue decomposition, truncation

$$P_1(X) = \sum_{i=1}^n \max\{0, \lambda_i\} q_i q_i^{\top} \quad \text{if } X = \sum_{i=1}^n \lambda_i q_i q_i^{\top}$$

 projection of X onto C₂ by re-setting specified entries to fixed values

 100×100 matrix missing 71% entries

Optimality of the subgradient method

can the $f_{\mathrm{best}}^{(k)} - f^* \leq \frac{GR}{\sqrt{k}}$ bound on page 11 be improved?

problem class

- f is convex, with a minimizer x^*
- we know a starting point $x^{(0)}$ with $||x^{(0)} x^*|| 2 \le R$
- we know the Lipschitz constant G of f on $\{x|||x-x^{(0)}||_2 \le R\}$
- f is defined by an oracle: given x, oracle returns f(x) and a subgradient

algorithm class: k iterations of any method that chooses $x^{(i)}$ in

$$x^{(0)} + \operatorname{span}\{g^{(0)}, g^{(1)}, \cdots, g^{(i-1)}\}\$$

test problem and oracle

$$f(x) = \max_{i=1,\dots,k} x_i + \frac{1}{2} ||x||_2^2, \quad x^{(0)} = 0$$

- solution: $x^* = -\frac{1}{k}(\underbrace{1, \cdots, 1}_{k}, \underbrace{0, \cdots, 0}_{n-k})$ and $f^* = -\frac{1}{2k}$
- $R = ||x^{(0)} x^*||_2 = \frac{1}{\sqrt{k}}$ and $G = 1 + \frac{1}{\sqrt{k}}$
- oracle returns subgradient $e_{\hat{j}} + x$ where $\hat{j} = \min\{j | x_j = \max_{i=1,...,k} x_i\}$

iteration: for $i=0,\cdots,k-1$, entries $x_{i+1}^{(i)},\cdots,x_k^{(i)}$ are zero

$$f_{\text{best}}^{(k)} - f^* = \min_{i < k} f(x^{(i)}) - f^* \ge -f^* = \frac{GR}{2(1 + \sqrt{k})}$$

conclusion: $O(1/\sqrt{k})$ bound cannot be improved

Summary: subgradient method

- handles general nondifferentiable convex problem
- often leads to very simple algorithms
- convergence can be very slow
- no good stopping criterion
- theoretical complexity: $O(1/\epsilon^2)$ iterations to find ϵ -suboptimal point
- an 'optimal' 1st-order method: $O(1/\epsilon^2)$ bound cannot be improved

References

- S. Boyd, lecture notes and slides for EE364b, Convex Optimization II
- B. T. Polyak, *Introduction to Optimization* (1987), section 1.4 \mathcal{S} 3.2.1 with the example on page 16 of this lecture