FAST National University of Computer and Emerging Sciences, Lahore

Course: EE–117: Applied Physics Session: Fall 2019 Oue Date: 23–Sep–2019 (In Class on Monday) Section (Please circle): B / F Name:	Instrument: Assignment–1 Instructor: Muhammad Shiraz Ahmad Total Points: 100* Roll No.:
*100 points = 90 points for questions and 10 bonus po	ints if you obtain non-zero points in all of the questions.
Note: At the slightest suspicion of cheating, your submin the spaces given below. After due date, 20% marks	ission will be marked zero. Write your answers/solutions per day will be deducted.
Q. 1 (5 points) For What values of a are $\vec{A} = a\hat{i} - 2\hat{j} +$	\hat{k} and $\vec{B}=2a\hat{i}+a\hat{j}-4\hat{k}$ perpendicular?

<i>5</i> pc	points) Find a unit vector parallel to xy–plane and perpen	ndicular to the vector $4i - 3j + k$?
. ((5 points): $2\hat{j} \times (3\hat{i} - 4\hat{k})$ (5 points): $(\hat{i} + 2\hat{j}) \times \hat{k}$ (5 points): $(2\hat{i} - 4\hat{k}) \times (\hat{i} + 2\hat{j})$ (5 points): $(4\hat{i} + \hat{j} - 2\hat{k}) \times (3\hat{i} + \hat{k})$ (5 points): $(2\hat{i} + \hat{j} - \hat{k}) \times (3\hat{i} - 2\hat{j} + 4\hat{k})$	

(nointa) A	sky diver jumps out of a hovering heli	icenter A few seconds leter	another sky diver jumps ou
	fall along the same vertical line. Ignor		
celeration. D	Does the difference in their speeds stay	y the same throughout the fa	II? Does the vertical distan
tween them	stay the same throughout the fall? (N	o Calculation is Required!)	
ween them	stay the same unoughout the fair. (1)	o carearation is required.)	

The	height of the tower is 50.0 m high, and the ball misses the edge of the roof on its way down. Find:
1.	 (b) (5 points): maximum height, (c) (5 points): time at which ball returns to the height from which it was thrown. (d) (5 points): velocity of ball at this instant, and (e) (5 points): velocity and position of ball at t = 5 s.
2.	(10 points) What if tower was 30.0 m tall instead of 50.0 m tall? Which answers in previous part would change? and Why? (No Calculation is Required!)

Q. 6 (30 points) The ball is thrown, straight upward, from the top of a tower with an initial velocity of 20.0 m/s.

Q. 7 (5 points) Determine the magnitude of the acceleration of the two objects and the tension in the lightweight cord, in the configuration shown below:

1	. (3 points) centripetal acceleration,
2	. (1 point) time period,
3	. (3 points) scalar components of velocity vector, acceleration vectors and the angle between x and y components of acceleration.
4	. (3 points) Draw respective diagrams showing displacement vectors, velocity vectors and acceleration vectors.

 ${f Q.~8}$ (10 points) Discuss uniform circular motion to calculate: