

Universidade de Minho

## DEPARTAMENTO DE MATEMÁTICA E APLICAÇÕES

## Analise Matemática B

FICHA 6A MIECOM

## Diferenciabilidade, Diferenciais e Derivadas de funções compostas

- 1. Considere a função real definida em  $\mathbf{R}^2$   $f(x,y) = \begin{cases} x+y \text{ se } xy=0\\ 1 \text{ se } xy \neq 0 \end{cases}$ 
  - a) Verifique se existem as derivadas parciais de primeira ordem no ponto (0,0).
  - b) Mostre que f não é contínua em (0,0).
  - c) f é ou não uma função diferenciável?
- **2.**Calcule o diferencial de f(df) da função definida do seguinte modo  $f(x, y, z, t) = 3x 2y^2 z^3 + t$ .
- **3.**Usando diferenciais calcule um valor aproximado de  $\ln (1.01^2 + 0.02^3)$ .
- **4.**Determine o erro máximo cometido no cálculo da área de um rectângulo de 10cm de comprimento e 5cm de largura, sabendo que o erro cometido em cada uma destas medições não ultrapassa 0,1cm.
- **5.** Sendo  $z = txy^2$  em que  $x = t + \ln(y + t^2)$  e  $y = e^t$ , calcule  $\frac{\partial z}{\partial t}$  e  $\frac{dz}{dt}$ .
- **6.** Calcule  $\frac{d^2u}{dt^2}$  para  $u=e^{x-2y}$ , onde  $x=\sin t$  e  $y=t^3$ .
- 7. Seja z = f(x, y), onde  $x = 2v + \ln t$  e  $y = \frac{1}{t}$ . Calcule  $\frac{\partial^2 z}{\partial v^2}$ ,  $\frac{\partial^2 z}{\partial v \partial t}$ ,  $\frac{\partial^2 z}{\partial t^2}$ .
- 8. Considere que a temperatura T num certo líquido depende da profundidade z e do tempo t, através da fórmula  $T=e^{-t}z$ .
  - a) Determine a taxa de variação da temperatura relativamente ao tempo, num ponto que se move no líquido, de modo que no instante t se encontre ao nível de profundidade z = f(t).
  - b) Calcule a taxa de variação de temperatura considerada na alínea anterior quando  $f(t) = e^t$ .