Lab #6: The pumping lemma

Exercise 1

Prove that the language L on $\Sigma = \{a, b\}$ defined by

$$L = \{ w \in \Sigma^* \mid |w|_a < |w|_b \}$$

is not regular

Exercise 2

Prove that the language L on $\Sigma = \{a, b\}$ defined by

$$L = \{ w \in \Sigma^* \mid w = (ab)^n a^k \ n > k, k \ge 0 \}$$

is not regular

Exercise 3

Prove that the language L on $\Sigma = \{a, b, c\}$ defined by

$$L=\{w\in\Sigma^*\mid w=a^nb^kc^{n+k}\;n\geq0,k\geq0\}$$

is not regular

Exercise 4

Prove that the language L on $\Sigma = \{a, b\}$ defined by

$$L = \{w \in \Sigma^* \mid \exists u \in \Sigma^*, \ w = uu^R\}$$

is not regular

Exercise 5

The language L on $\Sigma = \{a, b, c\}$ is defined as follow:

- $L_1 = \{a^{2i}b^jc^j \mid i \ge 1, j \ge 0\}$
- $L_2 = b^*c^*$
- $L = L_1 \bigcup L_2$

Prove that:

- \bullet the language L verify the Pumping Lemma
- \bullet the language L is not regular

What can we conclude about the Pumping Lemma?

Exercise 6

Given L_1 and L_2 the following languages:

- $L_1 = \{a^i \mid i \text{ is a perfect square }\}$
- $L_2 = \{w \in \{a, b, c\}^* \mid |w|_a + |w|_b \text{ is a perfect square}\}$

Show that neither L_1 nor L_2 are rational.

Exercise 7

We proved in class that the language $L=\{w\in\{0,1\}^*\mid w=0^n1^n,\ n\geq 0\}$ was not regular. Prove that the language

$$L' = \{ w \in \{0, 1\}^* \mid w = 0^n 1^m, \ n \neq m \}$$

is not regular.