Lecture 19

Part 4 Analysis of Variance

ECON2843 1 / 26

Two-way ANOVA

ECON2843 2 / 26

Two-way ANOVA

- In a two-way ANOVA, we have:
 - ▶ One continuous response variable *Y*.
 - ➤ Two categorical variables (factors), each with a potentially different number of categories (levels).
 - Each factor must still have at least two levels.
- For a two-way ANOVA, a particular combination of levels from the two factors is called a **treatment** and represents a population.

ECON2843 3 / 26

Treatment

- ▶ Suppose our two factors, denoted A and B, have three levels (A_1, A_2, A_3) and two levels (B_1, B_2) , respectively.
- ▶ There are $3 \times 2 = 6$ treatments, as shown below:

Treatment	Levels	
1	A_1	B_1
2	A_1	B_2
3	A_2	B_1
4	A_2	B_2
5	A_3	B_1
6	A_3	B_2

ECON2843 4 / 26

Terminology

- ▶ A complete factorial experiment is one where sample data is collected for every possible combination of levels of the two factors. That is, we have data for all treatments.
- A complete factorial experiment is **balanced** if the number of observations collected for each treatment (also called **replicates**) is the same.
- ▶ In the example on the previous slide, if we collected, e.g., five replicates for each of the six treatments, we would have a balanced two-way ANOVA.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ り へ ○

ECON2843 5 / 26

Assumptions

- We must also make some assumptions when performing a two-way ANOVA:
- 1. The levels of both factors are fixed beforehand.
- 2. The response variable is normally distributed with constant variance in each treatment.
- 3. Samples are independent.

ECON2843 6 / 26

Two-way ANOVA

- ▶ A two-way ANOVA allows us to ask and answer more interesting questions than a one-way ANOVA.
- ▶ Letting *A* and *B* again denote our two factors, we can use a two-way ANOVA to answer:
 - ▶ Does the mean response change for different levels of factor A?
 - ▶ Does the mean response change for different levels of factor B?
 - ▶ Do the factors A and B interact?

ECON2843 7 / 26

- Suppose we want to analyze new graduate salaries, based on qualification and industry.
- ➤ Some sample mean starting salaries of graduates with and without the Chartered Financial Analyst (CFA) credential, in the finance, retail and hospitality industries, are shown over.

ECON2843 8 / 26

Industry	Sce	nario 1	Scenario 2		
	CFA	No CFA	CFA	No CFA	
Finance	90K	60K	66K	60K	
Retail	50K	52K	60K	52K	
Hospitality	60K	65K	72K	65K	

▶ Potential interactions are easiest to identify by graphing the sample means.

◆□▶◆□▶◆壹▶◆壹▶ 壹 める◆

ECON2843 9 / 26

ECON2843 10 / 26

- ▶ In scenario 1, the impact of having a CFA is most pronounced in the finance industry.
- ▶ In scenario 2, the impact of having a CFA is the same regardless of industry.
- We say that two factors interact when the effect of one factor on the response variable is altered by the level of the other factor.
- ➤ So there is an interaction between qualification and industry in scenario 1 but not in scenario 2.

◆ロト ◆個ト ◆ 恵ト ◆恵ト ・恵 ・ 釣へで

ECON2843 11 / 26

Interaction Hypotheses

▶ With a two-way ANOVA we can test whether an interaction exists between the factors:

 H_0 : There is *no interaction* between the factors.

 H_1 : There is an interaction between the factors.

➤ The interaction hypotheses should be tested first, before testing the *main effects hypotheses*.

ECON2843 12 / 26

Main Effects Hypotheses

▶ With a two-way ANOVA we can test the importance of each individual factor:

 ${\cal H}_0$: The population means at different levels of the factor are all equal.

 H_1 : At least two of the population means differ.

▶ If an interaction exists, the results of the main effects hypotheses should be interpreted carefully.

◆□▶◆□▶◆■▶◆■▶ ● 900

ECON2843 13 / 26

Sums of Squares

- ▶ Suppose our two factors, denoted A and B, have a and b levels, respectively, and we sample r replicates in each treatment (i.e., $n = a \times b \times r$).
- ▶ We can calculate a sum of squares for factor A (SS_A), for factor B (SS_B), for the interaction (SS_{AB}), for the error (SSE) and also for the total (SS(Total)).

4□ > 4□ > 4 = > 4 = > = 90

ECON2843 14 / 26

Sums of Squares

▶ The sums of squares satisfy the following identity:

$$SS(Total) = SS_A + SS_B + SS_{AB} + SSE$$

- ▶ The SS(Total) again measures the total variation that exists in the data.
- ▶ The SS_A , SS_B and SS_{AB} measure how much variation can be explained by each particular source.
- ▶ The SSE measures the left-over, unexplained variation.

◆ロト ◆問 ▶ ◆ 恵 ▶ ◆ 恵 ● 夕 Q ②

ECON2843 15 / 26

Test Statistics

- ▶ To test the interaction and main effects hypotheses, we need to see how big the SS_{AB} , SS_{A} and SS_{B} are, compared to the SSE.
- ▶ Again convert the sums of squares to mean squares, so that we can calculate *F*-statistics.
- ➤ The appropriate degrees of freedom, the mean squares and the *F*-statistics are listed in the ANOVA table shown next.

ECON2843 16 / 26

ANOVA Table

Source	Sum of squares	Degrees of freedom	Mean squares	F-statistic
Factor A	SS_A	a-1	$MS_A = \frac{SS_A}{a-1}$	$F_A = \frac{MS_A}{MSE}$
$Factor\ B$	SS_B	b-1	$MS_B = \frac{SS_B}{b-1}$	$F_B = \frac{MS_B}{MSE}$
Interaction	SS_{AB}	(a-1)(b-1)	$MS_{AB} = \frac{SS_{AB}}{(a-1)(b-1)}$	$F_{AB} = \frac{MS_{AB}}{MSE}$
Error	SSE	n-ab	$MSE = \frac{SSE}{n - ab}$	
Total	SS(Total)	n-1		

ECON2843 17 / 26

ANOVA Table - Summary

- ▶ Degrees of freedom:
 - ▶ For a factor it is equal to the number of levels minus one.
 - ► For the interaction it is equal to the product of the degrees of freedom of the two factors.
 - All the degrees of freedom (excluding the total) will sum to n-1.
- ► *F*-statistic:
 - ▶ Mean squares are calculated by dividing the sum of squares by the degrees of freedom.
 - ▶ All *F*-statistics use the *MSE* in the denominator.

ECON2843 18 / 26

Decision Rule

- ▶ We need to compare each F-statistic to an appropriate F-distribution.
- ➤ All hypotheses (interaction and main effects) are one-tailed, and we reject H₀ if the F-statistic is too large.
- ▶ At a significance level of α , we reject H_0 if $F > F_{\alpha,df,n-ab}$, where df is the source degrees of freedom and $F_{\alpha,df,n-ab}$ is the critical value that cuts off $100\alpha\%$ in the upper tail of an F-distribution with df numerator degrees of freedom and n-ab denominator degrees of freedom.

◆ロト ◆個ト ◆屋ト ◆屋ト ■ りへ○

ECON2843 19 / 26

Airlines Rating Example

- ▶ Recall the previous example where twenty passengers, from each of three airlines, rated their experience on a 0 to 100 scale.
- Suppose that for each airline, half of the twenty passengers traveled in business class, while the remaining half traveled in economy class.
- We want to know:
 - ▶ Does perceived quality vary between airlines?
 - Does perceived quality vary between traveling class?
 - ▶ Does traveling class alter the differences between airlines in terms of perceived quality?

ECON2843 20 / 26

ANOVA Table

Source	Sum of squares	Deg. of freedom	Mean squares	F-statistic	p-value
Airline	3446.80	2	1723.40	14.60	0.0000
Class	6060.15	1	6060.15	51.34	0.0000
Interaction	130.00	2	65.00	0.55	0.5798
Error	6374.30	54	118.04		
Total	16011.25	59			

ECON2843 21 / 26

Hypotheses:

 H_0 : Airline and class do not interact.

 H_1 : Airline and class interact.

- ► From the output, we see that the F-statistic is 0.55 with a p-value of 0.5798.
- ▶ Since the 0.5798 > 0.05, we fail to reject H_0 and we conclude that there is no interaction between airline and traveling class.

ECON2843 22 / 26

Main Effects

► Hypotheses:

 H_0 : Pop. mean ratings are equal between airlines.

 H_1 : Pop. mean ratings differ between airlines.

- ► From the output, we see that the *F*-statistic is 14.60 with a *p*-value of 0.0000.
- Since the 0.0000 < 0.05, we reject H_0 and we conclude that perceived quality varies between airlines.

ECON2843 23 / 26

Main Effects

► Hypotheses:

 H_0 : Pop. mean ratings are equal between class.

 H_1 : Pop. mean ratings differ between class.

- ► From the output, we see that the *F*-statistic is 51.34 with a *p*-value of 0.0000.
- Since the 0.0000 < 0.05, we reject H_0 and we conclude that perceived quality varies between travelling class.

ECON2843 24 / 26

Airline Ratings ANOVA Tables

-					
Source	Source	Sum of	Deg. of	Mean	F-statistic
	Jource	squares	freedom	squares	1 -statistic
	Airline	3446.8	2	1723.4	7.8184
One-way	Error	12564.45	57	220.4289	
ANOVA	Total	16011.25	59		
	Airline	3446.80	2	1723.40	14.60
T	Class	6060.15	1	6060.15	51.34
Two-way ANOVA	Interaction	130.00	2	65.00	0.55
	Error	6374.30	54	118.04	
	Total	16011.25	59		

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ・ かくで

ECON2843 25 / 26

One-way and Two-way ANOVA

- Suppose we perform both a one-way ANOVA and a two-way ANOVA, using a balanced design, on the same data with a factor in common.
 - ▶ The SS(Total) will be the same for both.
 - ► The SST in the one-way ANOVA will be the same as the sum of squares for the corresponding factor in the two-way ANOVA.
 - The two-way ANOVA accounts for more variation than the one-way ANOVA.
 - ► This means that for the two-way ANOVA, there is less unexplained variation so the SSE will be smaller than for the one-way ANOVA.

| 4 日 ト 4 回 ト 4 直 ト 4 直 ・ 夕 Q C・

ECON2843 26 / 26