Declare Your Language

Chapter 8: Constraint Resolution II

Hendrik van Antwerpen

IN4303 Compiler Construction TU Delft September 2017

Reading Material

Unification

Baader, F., and W. Snyder
"Unification Theory"
Ch. 8 of Handbook of Automated Deduction
Springer Verlag, Berlin (2001)

Chapter 8

Unification theory

Franz Baader

Wayne Snyder

Second Readers: Paliath Narendran, Manfred Schmidt-Schauss, and Klaus Schulz.

Contents

1	Introduction	41
		41
	1.2 History and applications	42
		44
		44
	v .	44
		46
		53
	,	63
		63
		67
		69
		76
		82
		82
		89
		89
		93
		97
		98
		02
		04
		05
		07
	0	08
	The second control of	11
		13
		15
	6-F-V	24
	niuex a	KI#

HANDBOOK OF AUTOMATED REASONING Edited by Alan Robinson and Andrei Voronkov © Elsevier Science Publishers B.V., 2001

http://www.cs.bu.edu/~snyder/publications/UnifChapter.pdf

Efficient Unification with Union-Find

Complexity of Unification (recap)

Space complexity

- Exponential
- Representation of unifier

$$h(a_1, ..., a_n)$$
, $f(b_0, b_0)$, ..., $f(b_{n-1}, b_{n-1})$, $a_n) == h(f(a_0, a_0), ..., f(a_{n-1}, a_{n-1}), b_1, ..., b_{n-1}, b_n)$

Time complexity

- Exponential
- Recursive calls on terms

Solution

- Union-Find algorithm
- Complexity growth can be considered constant

$$a_1 \rightarrow f(a_0, a_0)$$

 $a_2 \rightarrow f(f(a_0, a_0), f(a_0, a_0))$
 $a_i \rightarrow ... 2^{i+1}-1$ subterms ...
 $b_1 \rightarrow f(a_0, a_0)$
 $b_2 \rightarrow f(f(a_0, a_0), f(a_0, a_0))$
 $b_i \rightarrow ... 2^{i+1}-1$ subterms ...


```
a_1 \rightarrow f(a_0, a_0)
a_2 \rightarrow f(a_1, a_1)
a_i \rightarrow ... 3 \text{ subterms } ...
b_1 \rightarrow f(a_0, a_0)
b_2 \rightarrow f(a_1, a_1)
b_i \rightarrow ... 3 \text{ subterms } ...
```

fully applied

triangular


```
FIND(a):
  b := rep(a)
  if b == a:
     return a
  else
     return FIND(b)
UNION(a1,a2):
  b1 := FIND(a1)
  b2 := FIND(a2)
  LINK(b1,b2)
LINK(a1,a2):
  rep(a1) := a2
```

```
a == b
c == a
U == W
V == U
X == V
X == C
```



```
FIND(a):
  b := rep(a)
  if b == a:
     return a
  else
     b := FIND(b)
     rep(a) := b
     return b
UNION(a1,a2):
  b1 := FIND(a1)
  b2 := FIND(a2)
  LINK(b1,b2)
LINK(a1,a2):
  rep(a1) := a2
```

```
x == b
X == C
x == w
X == V
```


Tree Balancing

```
FIND(a):
  b := rep(a)
  if b == a:
     return a
  else
     b := FIND(b)
     rep(a) := b
     return b
UNION(a1,a2):
  b1 := FIND(a1)
  b2 := FIND(a2)
  LINK(b1,b2)
LINK(a1,a2):
  if size(a2) > size(a1):
     rep(a1) := a2
     size(a2) += size(a1)
  else:
     rep(a2) := a1
     size(a1) += size(a2)
```


$$h(a_1, a_n)$$
, $h(b_0, b_0)$, $h(b_{n-1}, b_{n-1})$, $h(b_{n-1}, a_{n-1})$, $h(b_0, b_0)$, $h(b$

$$h(a_1, a_n)$$
, $h(b_0, b_0)$, $h(b_{n-1}, b_{n-1})$, $h(b_{n-1}, a_{n-1})$, $h(b_0, b_0)$, $h(b$

$$a_n == b_n$$

$$h(a_1, ..., a_n)$$
, $f(b_0, b_0)$, ..., $f(b_{n-1}, b_{n-1})$, $a_n) == h(f(a_0, a_0), ..., f(a_{n-1}, a_{n-1}), b_1, ..., b_{n-1}, b_n)$

$$a_n == b_n$$
 $f(a_{n-1}, a_{n-1}) == f(b_{n-1}, b_{n-1})$

$$h(a_1, ..., a_n)$$
, $f(b_0, b_0)$, ..., $f(b_{n-1}, b_{n-1})$, $a_n) == h(f(a_0, a_0), ..., f(a_{n-1}, a_{n-1}), b_1, ..., b_{n-1}, b_n)$

$$h(a_1, a_n)$$
, $h(b_0, b_0)$, $h(b_{n-1}, b_{n-1})$, $h(b_{n-1}, a_{n-1})$, $h(b_0, b_0)$, $h(b$

$$a_n == b_n$$
 $f(a_{n-1}, a_{n-1}) == f(b_{n-1}, b_{n-1})$
 $a_{n-1} == b_{n-1}$
 $a_{n-1} == b_{n-1}$
 $a_{n-2}, a_{n-2} == f(b_{n-2}, b_{n-2})$

$$h(a_1, a_n)$$
, $h(b_0, b_0)$, $h(b_{n-1}, b_{n-1})$, $h(b_{n-1}, a_{n-1})$, $h(b_0, b_0)$, $h(b$

$$h(a_1, a_n)$$
, $h(b_0, b_0)$, $h(b_{n-1}, b_{n-1})$, $h(b_{n-1}, a_{n-1})$, $h(b_0, b_0)$, $h(b$

$$h(a_1, ..., a_n)$$
, $f(b_0, b_0)$, ..., $f(b_{n-1}, b_{n-1})$, $a_n) = h(f(a_0, a_0), ..., f(a_{n-1}, a_{n-1}), b_1, ..., b_{n-1}, b_n)$

$$a_{n} == b_{n}$$
 $f(a_{n-1}, a_{n-1}) == f(b_{n-1}, b_{n-1})$
 $a_{n-1} == b_{n-1}$
 $a_{n-1} == b_{n-1}$
 $f(a_{n-2}, a_{n-2}) == f(b_{n-2}, b_{n-2})$
 \vdots
 $a_{1} == b_{1}$
 $a_{1} == b_{1}$
 $f(a_{0}, a_{0}) == f(b_{0}, b_{0})$

$$h(a_1, a_n)$$
, $h(b_0, b_0)$, $h(b_{n-1}, b_{n-1})$, $h(b_{n-1}, a_{n-1})$, $h(b_0, b_0)$, $h(b$

$$h(a_1, a_n)$$
, $h(b_0, b_0)$, $h(b_{n-1}, b_{n-1})$, $h(b_{n-1}, a_{n-1})$, $h(b_0, b_0)$, $h(b$

$$a_{n} == b_{n}$$
 $f(a_{n-1}, a_{n-1}) == f(b_{n-1}, b_{n-1})$
 $a_{n-1} == b_{n-1}$
 $a_{n-1} == b_{n-1}$
 $f(a_{n-2}, a_{n-2}) == f(b_{n-2}, b_{n-2})$
 \vdots
 $a_{1} == b_{1}$
 $a_{1} == b_{1}$
 $f(a_{0}, a_{0}) == f(b_{0}, b_{0})$
 $a_{0} == b_{0}$
 $a_{0} == b_{0}$

$$h(a_1, a_n)$$
, $h(b_0, b_0)$, $h(b_{n-1}, b_{n-1})$, $h(b_{n-1}, a_{n-1})$, $h(b_0, b_0)$, $h(b$

$$a_{n} == b_{n}$$
 $f(a_{n-1}, a_{n-1}) == f(b_{n-1}, b_{n-1})$
 $a_{n-1} == b_{n-1}$
 $a_{n-1} == b_{n-1}$
 $f(a_{n-2}, a_{n-2}) == f(b_{n-2}, b_{n-2})$
 \vdots
 $a_{1} == b_{1}$
 $a_{1} == b_{1}$
 $a_{1} == b_{1}$
 $a_{1} == b_{1}$
 $a_{2} == b_{3}$
 $a_{3} == b_{4}$

$$h(a_1, a_n)$$
, $h(b_0, b_0)$, $h(b_{n-1}, b_{n-1})$, $h(b_{n-1}, a_{n-1})$, $h(b_0, b_0)$, $h(b$

$$a_{n} == b_{n}$$
 $f(a_{n-1}, a_{n-1}) == f(b_{n-1}, b_{n-1})$
 $a_{n-1} == b_{n-1}$ $a_{n-1} == b_{n-1}$
 $f(a_{n-2}, a_{n-2}) == f(b_{n-2}, b_{n-2})$
 \vdots
 $a_{1} == b_{1}$ $a_{1} == b_{1}$
 $f(a_{0}, a_{0}) == f(b_{0}, b_{0})$
 $a_{0} == b_{0}$ $a_{0} == b_{0}$

$$h(a_1, a_n)$$
, $h(b_0, b_0)$, ..., $f(b_{n-1}, b_{n-1})$, $a_n) = h(f(a_0, a_0), ..., f(a_{n-1}, a_{n-1}), b_1, ..., b_{n-1}, b_n)$

$$a_{n} == b_{n}$$
 $f(a_{n-1}, a_{n-1}) == f(b_{n-1}, b_{n-1})$
 $a_{n-1} == b_{n-1}$ $a_{n-1} == b_{n-1}$
 $f(a_{n-2}, a_{n-2}) == f(b_{n-2}, b_{n-2})$
 \vdots
 $a_{1} == b_{1}$ $a_{1} == b_{1}$
 $f(a_{0}, a_{0}) == f(b_{0}, b_{0})$
 $a_{0} == b_{0}$ $a_{0} == b_{0}$

$$h(a_1, a_n)$$
, $h(b_0, b_0)$, $h(b_{n-1}, b_{n-1})$, $h(b_{n-1}, a_{n-1})$, $h(b_0, b_0)$, $h(b$

How about occurrence checks?

$$h(a_1, a_n)$$
, $h(b_0, b_0)$, $h(b_{n-1}, b_{n-1})$, $h(b_{n-1}, a_{n-1})$, $h(b_0, b_0)$, $h(b$

$$a_{n} == b_{n}$$
 $f(a_{n-1}, a_{n-1}) == f(b_{n-1}, b_{n-1})$
 $a_{n-1} == b_{n-1}$ $a_{n-1} == b_{n-1}$
 $f(a_{n-2}, a_{n-2}) == f(b_{n-2}, b_{n-2})$
 \vdots
 $a_{1} == b_{1}$ $a_{1} == b_{1}$
 $f(a_{0}, a_{0}) == f(b_{0}, b_{0})$
 $a_{0} == b_{0}$ $a_{0} == b_{0}$

How about occurrence checks? Postpone!

Union-Find

Main idea

- Represent unifier as graph
- One variable represent equivalence class
- Replace substitution by union & find operations
- Testing equality becomes testing node identity

Optimizations

- Path compression make recurring lookups fast
- Tree balancing keeps paths short

Complexity

- Linear in space and almost linear in time (technically inverse Ackermann)
- Easy to extract triangular unifier from graph
- Postpone occurrence checks to prevent traversing (potentially) large terms

Martelli, Montanari. An Efficient Unification Algorithm. TOPLAS, 1982

Error Reporting

Reporting Type Errors

Type errors

- Types are supposed to prevent us from making mistakes
- Error messages are supposed to help us fix mistakes
- This does not always work out so well
 - Wrong error location
 - Unclear error message
 - Not always clear where inferred types come from
- Users expect concise, informative messages, at the right place

Type errors = Unsatisfiable constraints

- Constraint satisfaction is a binary property
- Language designers want to influence error messages

```
1. let
2. function f(x) =
3. x + 1
4. in
5. (f "Hello!") * 2
```

```
ty_1 == FUN(ty_2, ty_3)
1. let
                               ty_2 == INT()
2. function f(x) =
                               ty_3 == INT()
3. x + 1
                               ty_1 == FUN(ty_4, ty_5)
4. in
                              ty_4 == STRING()
5. (f "Hello!") * 2
                               ty_5 == INT()
```

```
[function f(x)]
                                ty_1 == FUN(ty_2, ty_3)
1. let
                                ty_2 == INT()
                                                                                       [x]
2. function f(x) =
                                                                                   [_ + _]
                                ty_3 == INT()
3. x + 1
                                                                                    [f _]
                                ty_1 == FUN(ty_4, ty_5)
4. in
                               ty<sub>4</sub> == STRING()
                                                                               ["Hello!"]
5. (f "Hello!") * 2
                                ty_5 == INT()
                                                                                   [_ * 2]
```

```
ty_1 == FUN(ty_2, ty_3) [function f(x)]

ty_2 == INT() [x]

ty_3 == INT() [-+ _]

ty_1 == FUN(ty_4, ty_5) [f _]

ty_4 == STRING() ["Hello!"]

ty_5 == INT() [_ * 2]
```

```
ty1 == FUN(ty2, ty3)
ty1 == FUN(ty4, ty5)
ty2 == INT()
ty3 == INT()
ty5 == INT()
ty4 == STRING()
```



```
ty_1 == FUN(ty_2, ty_3) [function f(x)]

ty_2 == INT() [x]

ty_3 == INT() [_ + _]

ty_1 == FUN(ty_4, ty_5) [f _]

ty_4 == STRING() ["Hello!"]

ty_5 == INT() [_ * 2]
```

```
ty1 == FUN(ty2, ty3)
ty1 == FUN(ty4, ty5)

ty2 == INT()
ty3 == INT()

ty5 == INT()

ty4 == STRING()
```



```
ty_1 == FUN(ty_2, ty_3) [function f(x)]

ty_2 == INT() [x]

ty_3 == INT() [__ + _]

ty_1 == FUN(ty_4, ty_5) [f _]

ty_4 == STRING() ["Hello!"]

ty_5 == INT() [__ * 2]
```

```
ty1 == FUN(ty2, ty3)
ty1 == FUN(ty4, ty5)

ty2 == INT()
ty3 == INT()

ty5 == INT()

ty4 == STRING()
```



```
ty_1 == FUN(ty_2, ty_3) [function f(x)]

ty_2 == INT() [x]

ty_3 == INT() [__ + _]

ty_1 == FUN(ty_4, ty_5) [f__]

ty_4 == STRING() ["Hello!"]

ty_5 == INT() [__ * 2]
```

```
ty1 == FUN(ty2, ty3)
ty1 == FUN(ty4, ty5)

ty2 == INT()
ty3 == INT()

ty5 == INT()

ty4 == STRING()
```

```
ty1 == FUN(ty2, ty3)
ty3 == INT()
ty4 == STRING()
ty5 == INT()
ty2 == INT()
ty1 == FUN(ty4, ty5)
```

```
ty_1 == FUN(ty_2, ty_3) [function f(x)]

ty_2 == INT() [x]

ty_3 == INT() [__ + _]

ty_1 == FUN(ty_4, ty_5) [f__]

ty_4 == STRING() ["Hello!"]

ty_5 == INT() [__ * 2]
```

```
ty1 == FUN(ty2, ty3)
ty1 == FUN(ty4, ty5)

ty2 == INT()
ty3 == INT()

ty5 == INT()

ty4 == STRING()
```

```
ty1 == FUN(ty2, ty3)

ty3 == INT()

ty4 == STRING()

ty5 == INT()

ty2 == INT()

ty1 == FUN(ty4, ty5)
```

```
1. let
2. function f(x) =
3. x + 1
4. in
5. (f "Hello!") * 2
```

```
ty_1 == FUN(ty_2, ty_3) [function f(x)]

ty_2 == INT() [x]

ty_3 == INT() [_ + _]

ty_1 == FUN(ty_4, ty_5) [f _]

ty_4 == STRING() ["Hello!"]

ty_5 == INT() [_ * 2]
```

```
ty1 == FUN(ty2, ty3)
ty1 == FUN(ty4, ty5)

ty2 == INT()
ty3 == INT()

ty5 == INT()

ty4 == STRING()
```

```
ty1 == FUN(ty2, ty3)

ty3 == INT()

ty4 == STRING()

ty5 == INT()

ty2 == INT()

ty1 == FUN(ty4, ty5)
```

```
ty_1 == FUN(ty_2, ty_3) [function f(x)]

ty_2 == INT() [x]

ty_3 == INT() [_ + _]

ty_1 == FUN(ty_4, ty_5) [f _]

ty_4 == STRING() ["Hello!"]

ty_5 == INT() [_ * 2]
```

```
ty1 == FUN(ty2, ty3)
ty1 == FUN(ty4, ty5)

ty2 == INT()
ty3 == INT()

ty5 == INT()

ty4 == STRING()
```

```
ty1 == FUN(ty2, ty3)
ty3 == INT()
ty4 == STRING()
ty5 == INT()
ty2 == INT()
ty1 == FUN(ty4, ty5)
```

```
ty1 == FUN(ty4, ty5)
ty4 == STRING()
ty5 == INT()
ty2 == INT()
ty1 == FUN(ty2, ty3)
ty3 == INT()
```

```
ty_1 == FUN(ty_2, ty_3) [function f(x)]

ty_2 == INT() [x]

ty_3 == INT() [_ + _]

ty_1 == FUN(ty_4, ty_5) [f _]

ty_4 == STRING() ["Hello!"]

ty_5 == INT() [_ * 2]
```

```
ty1 == FUN(ty2, ty3)
ty1 == FUN(ty4, ty5)

ty2 == INT()
ty3 == INT()

ty5 == INT()

ty4 == STRING()
```

```
ty1 == FUN(ty2, ty3)
ty3 == INT()
ty4 == STRING()
ty5 == INT()
ty2 == INT()
ty1 == FUN(ty4, ty5)
```

```
1. let
2.  function f(x) =
3.  x + 1
4. in
5.  (f "Hello!") * 2
```

```
ty_1 == FUN(ty_2, ty_3) [function f(x)]

ty_2 == INT() [x]

ty_3 == INT() [- + _]

ty_1 == FUN(ty_4, ty_5) [f _]

ty_4 == STRING() ["Hello!"]

ty_5 == INT() [_ * 2]
```

```
ty1 == FUN(ty2, ty3)
ty1 == FUN(ty4, ty5)

ty2 == INT()
ty3 == INT()

ty5 == INT()

ty4 == STRING()
```

```
ty1 == FUN(ty2, ty3)
ty3 == INT()
ty4 == STRING()
ty5 == INT()
ty2 == INT()
ty1 == FUN(ty4, ty5)
```

```
ty1 == FUN(ty4, ty5)
ty4 == STRING()
ty5 == INT()
ty2 == INT()
ty1 == FUN(ty2, ty3)
ty3 == INT()
```

```
ty_1 == FUN(ty_2, ty_3) [function f(x)]

ty_2 == INT() [x]

ty_3 == INT() [_ + _]

ty_1 == FUN(ty_4, ty_5) [f _]

ty_4 == STRING() ["Hello!"]

ty_5 == INT() [_ * 2]
```

```
ty1 == FUN(ty2, ty3)
ty1 == FUN(ty4, ty5)

ty2 == INT()
ty3 == INT()

ty5 == INT()

ty4 == STRING()
```

```
ty1 == FUN(ty2, ty3)
ty3 == INT()
ty4 == STRING()
ty5 == INT()
ty2 == INT()
ty1 == FUN(ty4, ty5)
```

```
1. let
2. function f(x) =
3. x + 1
4. in
5. (f "Hello!") * 2
```

```
ty_1 == FUN(ty_2, ty_3)
                                                     [function f(x)]
ty_2 == INT()
                                                                     LX
ty_3 == INT()
                                                                \begin{bmatrix} - + - \end{bmatrix}
ty_1 == FUN(ty_4, ty_5)
                                                                  [f _]
ty<sub>4</sub> == STRING()
                                                           ["Hello!"]
                                                                [_ * 2]
ty_5 == INT()
```

```
ty_1 == FUN(ty_2, ty_3)
ty_1 == FUN(ty_4, ty_5)
ty_2 == INT()
ty_3 == INT()
ty_5 == INT()
```

```
ty_1 == FUN(ty_2, ty_3)
 ty_3 == INT()
 ty<sub>4</sub> == STRING()
 ty_5 == INT()
ty_2 == INT()
ty_1 == FUN(ty_4, ty_5)
ty_3 == INT()
```

```
ty_1 == FUN(ty_4, ty_5)
ty<sub>4</sub> == STRING()
ty_5 == INT()
ty_2 == INT()
ty_1 == FUN(ty_2, ty_3)
```

Order of constraint solving is relevant!

Conflict Sets

```
ty_1 == FUN(ty_2, ty_3) [function f(x)]

ty_2 == INT() [x + _]

ty_3 == INT() [_- + _]

ty_1 == FUN(ty_4, ty_5) [f__]

ty_4 == STRING() ["Hello!"]

ty_5 == INT() [_- * 2]
```

```
ty1 == FUN(ty2, ty3)
ty2 == INT()
ty3 == INT()
ty1 == FUN(ty4, ty5)
ty4 == STRING()
ty5 == INT()
```


Conflict Sets

```
    1. let
    2. function f(x) =
    3. x + 1
    4. in
    5. (f "Hello!") * 2
```

```
ty_1 == FUN(ty_2, ty_3) [function f(x)]

ty_2 == INT() [x + _]

ty_3 == INT() [_ + _]

ty_1 == FUN(ty_4, ty_5) [f _]

ty_4 == STRING() ["Hello!"]

ty_5 == INT() [_ * 2]
```

```
ty1 == FUN(ty2, ty3)
ty2 == INT()
ty3 == INT()
ty1 == FUN(ty4, ty5)
ty4 == STRING()
ty5 == INT()
```


$$ty_1 == FUN(ty_2, ty_3)$$

```
ty_1 == FUN(ty_2, ty_3) [function f(x)]

ty_2 == INT() [x + _]

ty_3 == INT() [__ + _]

ty_1 == FUN(ty_4, ty_5) [f _]

ty_4 == STRING() ["Hello!"]

ty_5 == INT() [__ * 2]
```

```
ty1 == FUN(ty2, ty3)
ty2 == INT()
ty3 == INT()
ty1 == FUN(ty4, ty5)
ty4 == STRING()
ty5 == INT()
```



```
ty_1 == FUN(ty_2, ty_3) [function f(x)]

ty_2 == INT() [x + _]

ty_3 == INT() [__ + _]

ty_1 == FUN(ty_4, ty_5) [f _]

ty_4 == STRING() ["Hello!"]

ty_5 == INT() [__ * 2]
```

```
ty1 == FUN(ty2, ty3)
ty2 == INT()
ty3 == INT()
ty1 == FUN(ty4, ty5)
ty4 == STRING()
ty5 == INT()
```



```
    1. let
    2. function f(x) =
    3. x + 1
    4. in
    5. (f "Hello!") * 2
```

```
ty_1 == FUN(ty_2, ty_3) [function f(x)]

ty_2 == INT() [x + _]

ty_3 == INT() [__ + _]

ty_1 == FUN(ty_4, ty_5) [f _]

ty_4 == STRING() ["Hello!"]

ty_5 == INT() [__ * 2]
```

```
ty1 == FUN(ty2, ty3)
ty2 == INT()
ty3 == INT()
ty1 == FUN(ty4, ty5)
ty4 == STRING()
ty5 == INT()
```



```
ty_1 == FUN(ty_2, ty_3) [function f(x)]

ty_2 == INT() [x + _]

ty_3 == INT() [_ + _]

ty_1 == FUN(ty_4, ty_5) [f _]

ty_4 == STRING() ["Hello!"]

ty_5 == INT() [_ * 2]
```

```
ty1 == FUN(ty2, ty3)
ty2 == INT()
ty3 == INT()
ty1 == FUN(ty4, ty5)
ty4 == STRING()
ty5 == INT()
```



```
ty1 == FUN(ty2, ty3)
ty2 == INT()

ty1 == FUN(ty4, ty5)
ty4 == STRING()
```

```
ty_1 == FUN(ty_2, ty_3) [function f(x)]

ty_2 == INT() [x + _]

ty_3 == INT() [_ + _]

ty_1 == FUN(ty_4, ty_5) [f _]

ty_4 == STRING() ["Hello!"]

ty_5 == INT() [_ * 2]
```

```
ty1 == FUN(ty2, ty3)
ty2 == INT()
ty3 == INT()
ty1 == FUN(ty4, ty5)
ty4 == STRING()
ty5 == INT()
```



```
ty1 == FUN(ty2, ty3)
ty2 == INT()

ty1 == FUN(ty4, ty5)
ty4 == STRING()
```

```
ty_1 == FUN(ty_2, ty_3) [function f(x)]

ty_2 == INT() [x + _]

ty_3 == INT() [__ + _]

ty_1 == FUN(ty_4, ty_5) [f _]

ty_4 == STRING() ["Hello!"]

ty_5 == INT() [__ * 2]
```

```
ty1 == FUN(ty2, ty3)
ty2 == INT()
ty3 == INT()
ty1 == FUN(ty4, ty5)
ty4 == STRING()
ty5 == INT()
```



```
ty1 == FUN(ty2, ty3)
ty2 == INT()

ty1 == FUN(ty4, ty5)
ty4 == STRING()
```

A conflict set is an inconsistent subset of the constraint set

Conflict Sets and Errors

Conflict Sets

- Sets of constraint that are inconsistent together
- Multiple conflict sets might appear in one constraint set
- Conflict sets can intersect

How to find conflict sets?

- Find minimal sets that are in conflict
 - Combinatorial explosion (Min-SAT)
- Approximate conflict sets during constraint solving
 - Conflict set may be too large

Where to report errors?

- Report the conflicting program slice (using all conflicting constraints)
- Report on a few constraints in the conflict set
 - ▶ Remove constraints until inconsistency disappears
 - ▶ Use heuristics to efficiently select constraints

There is not always a best place to report the error!

```
ty_1 == FUN(ty_2, ty_3)
                                                                                                              INT()
ty_2 == INT()
                                                                                                ty<sub>3</sub>
ty_3 == INT()
ty_1 == FUN(ty_4, ty_5)
                                                              FUN(ty<sub>2</sub>, ty<sub>3</sub>)
ty<sub>4</sub> == STRING()
                                                                                                              INT()
                                                                                                ty_2
ty_5 == INT()
                                                                      ty_1
                                                                                                            STRING()
                                                                                                ty<sub>4</sub>
                                                                                                              INT()
                                                               FUN(ty_4, ty_5)
                                                                                                ty_5
```

```
ty1 == FUN(ty2, ty3)
ty2 == INT()
ty3 == INT()
ty1 == FUN(ty4, ty5)
ty4 == STRING()
ty5 == INT()
```


 Consider paths between non-variable terms


```
ty1 == FUN(ty2, ty3)
ty2 == INT()
ty3 == INT()
ty1 == FUN(ty4, ty5)
ty4 == STRING()
ty5 == INT()
```


 Consider paths between non-variable terms


```
ty1 == FUN(ty2, ty3)
ty2 == INT()
ty3 == INT()
ty1 == FUN(ty4, ty5)
ty4 == STRING()
ty5 == INT()
```


- Consider paths between non-variable terms
- Trust edges involved in many correct paths


```
ty1 == FUN(ty2, ty3)
ty2 == INT()
ty3 == INT()
ty1 == FUN(ty4, ty5)
ty4 == STRING()
```

 $ty_5 == INT()$

- Consider paths between non-variable terms
- Trust edges involved in many correct paths


```
ty_1 == FUN(ty_2, ty_3)
```

 $ty_2 == INT()$

 $ty_3 == INT()$

 $ty_1 == FUN(ty_4, ty_5)$

ty₄ == STRING()

 $ty_5 == INT()$

- Consider paths between non-variable terms
- Trust edges involved in many correct paths
- Suspect edges involved in many wrong paths


```
ty_1 == FUN(ty_2, ty_3)
```

 $ty_2 == INT()$

 $ty_3 == INT()$

 $ty_1 == FUN(ty_4, ty_5)$

ty₄ == STRING()

 $ty_5 == INT()$

- Consider paths between non-variable terms
- Trust edges involved in many correct paths
- Suspect edges involved in many wrong paths
- Restricts constraint langauge and solver implementation


```
1. ty<sub>1</sub> == FUN(ty<sub>2</sub>, ty<sub>3</sub>)
2. ty<sub>2</sub> == INT()
3. ty<sub>3</sub> == INT()
4. ty<sub>1</sub> == FUN(ty<sub>4</sub>, ty<sub>5</sub>)
5. ty<sub>4</sub> == STRING()
6. ty<sub>5</sub> == INT()
```

```
1. ty<sub>1</sub> == FUN(ty<sub>2</sub>, ty<sub>3</sub>)
2. ty<sub>2</sub> == INT()
3. ty<sub>3</sub> == INT()
4. ty<sub>1</sub> == FUN(ty<sub>4</sub>, ty<sub>5</sub>)
5. ty<sub>4</sub> == STRING()
6. ty<sub>5</sub> == INT()
```

```
1. ty<sub>1</sub> == FUN(ty<sub>2</sub>, ty<sub>3</sub>)
2. ty<sub>2</sub> == INT()
3. ty<sub>3</sub> == INT()
4. ty<sub>1</sub> == FUN(ty<sub>4</sub>, ty<sub>5</sub>)
5. ty<sub>4</sub> == STRING()
6. ty<sub>5</sub> == INT()
```

- Track constraints during unification

```
1. ty<sub>1</sub> == FUN(ty<sub>2</sub>, ty<sub>3</sub>)
2. ty<sub>2</sub> == INT()
3. ty<sub>3</sub> == INT()
4. ty<sub>1</sub> == FUN(ty<sub>4</sub>, ty<sub>5</sub>)
5. ty<sub>4</sub> == STRING()
6. ty<sub>5</sub> == INT()
```

- Track constraints during unification

```
1. ty<sub>1</sub> == FUN(ty<sub>2</sub>, ty<sub>3</sub>)
2. ty<sub>2</sub> == INT()
3. ty<sub>3</sub> == INT()
4. ty<sub>1</sub> == FUN(ty<sub>4</sub>, ty<sub>5</sub>)
5. ty<sub>4</sub> == STRING()
6. ty<sub>5</sub> == INT()

Ty<sub>1</sub> FUN(ty<sub>2</sub>, ty<sub>3</sub>)

ty<sub>4</sub> ty<sub>2</sub> INT()
```

- Track constraints during unification

```
1. ty_1 == FUN(ty_2, ty_3)

2. ty_2 == INT()

3. ty_3 == INT()

4. ty_1 == FUN(ty_4, ty_5)

5. ty_4 == STRING()

6. ty_5 == INT()

ty_1 == FUN(ty_2, ty_3)
ty_4 == ty_2 == ty_2 == ty_3 = ty_3 = ty_4 = ty_2 = ty_3 = ty_3 = ty_3 = ty_4 = ty_3 = ty_4 = ty_3 = ty_4 = ty_3 = ty_4 = ty_3 = ty_
```

- Track constraints during unification

```
1. ty<sub>1</sub> == FUN(ty<sub>2</sub>, ty<sub>3</sub>)
2. ty<sub>2</sub> == INT()
3. ty<sub>3</sub> == INT()
4. ty<sub>1</sub> == FUN(ty<sub>4</sub>, ty<sub>5</sub>)
5. ty<sub>4</sub> == STRING()
6. ty<sub>5</sub> == INT()

ty<sub>4</sub>

ty<sub>5</sub>
```

- Track constraints during unification

 $FIND(ty_4) = INT()$ because of $\{1,2,4\}$

ty₂ INT()

 $ty_3 \mid \dots \mid INT()$

 $ty_1 \longrightarrow FUN(ty_2, ty_3)$

```
1. ty<sub>1</sub> == FUN(ty<sub>2</sub>, ty<sub>3</sub>)
2. ty<sub>2</sub> == INT()
3. ty<sub>3</sub> == INT()
4. ty<sub>1</sub> == FUN(ty<sub>4</sub>, ty<sub>5</sub>)
5. ty<sub>4</sub> == STRING()
6. ty<sub>5</sub> == INT()
```


- Track constraints during unification

FIND(ty₄) = INT() because of $\{1,2,4\}$ constraint 5 gives conflict set $\{1,2,4,5\}$

```
1. ty<sub>1</sub> == FUN(ty<sub>2</sub>, ty<sub>3</sub>)
2. ty<sub>2</sub> == INT()
3. ty<sub>3</sub> == INT()
```

- 4. $ty_1 == FUN(ty_4, ty_5)$
- 5. $ty_4 == STRING()$
- 6. $ty_5 == INT()$

- Track constraints during unification
- Conflict set may be an over-approximation

FIND(ty₄) = INT() because of $\{1,2,4\}$ constraint 5 gives conflict set $\{1,2,4,5\}$

```
1. ty_1 == FUN(ty_2, ty_3)
```

2. $ty_2 == INT()$

 $3. ty_3 == INT()$

4. $ty_1 == FUN(ty_4, ty_5)$

5. $ty_4 == STRING()$

6. $ty_5 == INT()$

- Track constraints during unification
- Conflict set may be an over-approximation
- Iteratively drop constraints until inconsistency is gone

FIND(ty₄) = INT() because of $\{1,2,4\}$ constraint 5 gives conflict set $\{1,2,4,5\}$

```
1. ty_1 == FUN(ty_2, ty_3)
```

2. $ty_2 == INT()$

 $3. ty_3 == INT()$

4. $ty_1 == FUN(ty_4, ty_5)$

5. $ty_4 == STRING()$

6. $ty_5 == INT()$

- Track constraints during unification
- Conflict set may be an over-approximation
- Iteratively drop constraints until inconsistency is gone
- Solver is used as an oracle,
 no requirements on its
 implementation

FIND(ty₄) = INT() because of $\{1,2,4\}$ constraint 5 gives conflict set $\{1,2,4,5\}$

Which constraint is to blame?

Error reporting from conflict sets

- Select constraints that are likely causes
- Few error messages is usually preferred over many
- Avoid combinatorial explosion by using heuristics

Language independent heuristics

- Select constraints shared between multiple conflict sets
- Select constraints coming from smaller program fragments
 - Function definition type comes from the (larger) body expression
 - Function use type comes from the (smaller) use expression

Language specific heuristics

- Select constraint based on weights assigned in specification
 - Assign more weight to constraints from definitions, than constraints from use
- Select constraints with explicit error messages
 - Avoids reporting on implicit equalities that arise during constraint generation

More Aspects

Requirements on the solver

- Report (approximated) conflict sets
 - Conflict sets should be over-approximations
 - The closer to the minimal conflict set, the better
- Fast failure is important
 - Solver is called repeatedly with smaller constraint sets

How to report errors?

- Reporting '<long function type> expected, but got <long but slightly different function type>' can be improved
- Can we report that first argument is different, or that number of arguments is different?

Exercises

Conclusion

Summary

Unification with Union-Find

- Represent unifier as a graph
- Testing term equality becomes testing node identity
- Really fast with path compression and tree balancing

Error Reporting

- Selecting constraints to report errors on
- Use conflict sets to find cause of inconsistencies
- Report on
 - all conflicting constraints (program slice)
 - subset of constraints that removes inconsistency
- Use heuristics to select constraints to blame