Econ 139 Lecture 20 Notes

Andrei Caprau, Addison Weil, Leona Chung April 09 2019

1 CCAPM

$$\max_{C} U(C_0) + \delta \mathbb{E}[U(C_{\theta})]$$

s.t.
$$C_0 = W_0 - P_x a$$
 (to consumption),

 $C_{\theta} = W_{\theta} + aX_{\theta}, \theta = 1, ..., N(t_1 \text{ consumption but multiple } \theta \text{ states})$

$$\max_{a} U(W_0 - P_x a) + \delta \mathbb{E}[U(W_\theta + aX_\theta)]$$

$$P_x = \mathbb{E}_{\pi}[m_{\theta}x_{\theta}]$$

$$m_{\theta} = \frac{\delta U'(C_{\theta})}{U'(C_{0})}$$

$$q_{\theta} = \frac{\pi \theta \delta U'(C_{\theta})}{U'(C_{0})}$$

$$m_{\theta} = \frac{q_{\theta}}{\pi_{\theta}}$$

$$P_x = \mathbb{E}_{\pi}[m_{\theta}x_{\theta}] = \mathbb{E}_{\pi}\left[\frac{q_{\theta}}{\pi_{\theta}}x_{\theta}\right] = \sum_{\theta=1}^{N} \pi_{\theta}\left(\frac{q_{\theta}}{\pi_{\theta}}x_{\theta}\right) = \sum_{\theta=1}^{N} q_{\theta}x_{\theta}$$

(pricing AD asset in different states)

$$\mathbb{E}_{\pi}[m_{\theta}(1+r_{\theta})] = 1, \mathbb{E}_{\pi}[m_{\theta}(1+r_{f})] = 1, \mathbb{E}_{\pi}[m_{\theta}] = \frac{1}{1+r_{f}}$$

$$\sum_{\theta=1}^{N} \pi_{\theta} m_{\theta} = \sum_{\theta=1}^{N} \pi_{\theta} \left(\frac{q_{\theta}}{\pi_{\theta}}\right) = \sum_{\theta=1}^{N} q_{\theta} = \frac{1}{1 + r_f}$$

$$(\sum_{q=1}^{N} q_{\theta}: \text{ if I own all AD security, I earn the } r_f \text{ at t=1.})$$

$$P_{x} = \frac{\sum_{\theta=1}^{N} q_{\theta} x_{\theta}}{\sum_{\theta=1}^{N} q_{\theta}} \sum_{\theta=1}^{N} q_{\theta} = \frac{1}{1 + r_{f}} \left(\sum_{\theta=1}^{N} \left(\frac{q_{\theta}}{\sum_{\theta=1}^{N} q_{\theta}} \right) x_{\theta} \right)$$

$$\text{define } \pi_{\theta}^{RN} = \frac{q_{\theta}}{\sum_{\theta=1}^{N} q_{\theta}} \text{ (RN - risk neutral)}$$

$$\sum_{\theta=1}^{N} \pi_{\theta}^{RN} = \sum_{\theta=1}^{N} \frac{q_{\theta}}{\sum_{\theta=1}^{N} q_{\theta}} = 1$$

$$q_{\theta} > 0 \implies \pi_{\theta}^{RN} > 0$$

$$P_{x} = \frac{1}{1 + r_{f}} \sum_{\theta=1}^{N} \pi_{\theta}^{RN} x_{\theta}$$

$$P_{x} = \frac{1}{1 + r_{f}} \mathbb{E}_{\pi}^{RN} [x_{\theta}]$$

$$\mathbb{E}[m_{\theta}(1+r_{\theta})] = 1$$

since
$$Cov(x, y) = \mathbb{E}(x, y) - \mathbb{E}(x)\mathbb{E}(y)$$
,

$$\mathbb{E}(x,y) = \mathbb{E}(x)\mathbb{E}(y) + Cov(x,y),$$

$$\mathbb{E}[m_{\theta}(1+r_{\theta})] = \mathbb{E}[m_{\theta}]\mathbb{E}[1+r_{\theta}] + Cov(m_{\theta}, r_{\theta})$$

since
$$\mathbb{E}[m_{\theta}] = \frac{1}{1 + r_f}$$
,

$$\mathbb{E}[m_{\theta}(1+r_{\theta})] = \frac{1}{1+r_f} \mathbb{E}[1+r_{\theta}] + Cov(m_{\theta}, r_{\theta})$$
$$\frac{1}{1+r_f} \mathbb{E}[1+r_{\theta}] + Cov(m_{\theta}, r_{\theta}) = 1$$
$$\mathbb{E}[1+r_{\theta}] + (1+r_f)Cov(m_{\theta}, r_{\theta}) = 1 + r_f$$

$$\mathbb{E}[r_{\theta}] - r_f = -(1 + r_f)Cov(m_{\theta}, r_{\theta})$$

$$\mathbb{E}[r_{\theta}] = r_f - (1 + r_f)Cov(m_{\theta}, r_{\theta})$$

$$\mathbb{E}[r_{\theta}] = r_f - (1 + r_f)Cov(\frac{\delta U'(C_0)}{U'(C_0)}, r_{\theta})$$

$$\mathbb{E}[r_{\theta}] = r_f - (1 + r_f)(\frac{\delta}{U'(C_0)})Cov(U'(C_{\theta}), r_{\theta})$$

here $(1+r_f)(\frac{\delta}{U'(C_0)})Cov(U'(C_\theta), r_\theta)$ is the risk adjustment,

since $(1+r_f)$ is positive, $(\frac{\delta}{U'(C_0)})$ is positive, $Cov(U'(C_\theta), r_\theta)$ is negative,

the entire risk adjustment is positive, consumption is more risky

$$\begin{split} \mathbb{E}[r_{\theta}] &= r_f - \frac{Cov(m_{\theta}, r_{\theta})}{\mathbb{E}[m_{\theta}]} \\ \mathbb{E}[r_{\theta}] &= r_f + (\frac{Cov(-m_{\theta}, r_{\theta})}{Var[m_{\theta}]})(\frac{Var[m_{\theta}]}{\mathbb{E}[m_{\theta}]}) \\ & \text{(this is the CCAPM Relationship)} \\ (\frac{Cov(-m_{\theta}, r_{\theta})}{Var[m_{\theta}]}) \text{ is } B_{r,m} \text{ which is the quantity of risk,} \\ & (\frac{Var[m_{\theta}]}{\mathbb{E}[m_{\theta}]}) \text{ is } \lambda_{r,m} \text{ which is the price of risk} \end{split}$$

Hansen-Jagannathan Bound

- upper bound for the Sharpe ratio of all assets in the economy
- gives us a way to empirically test CCAPM model

$$\mathbb{E}[m_{\theta}]\mathbb{E}[1+r_{\theta}] + \mathbb{C}(m_{\theta}, r_{\theta}) = 1$$

$$\mathbb{E}[m_{\theta}]\mathbb{E}[1+r_{\theta}] + \rho_{m,r}\sigma_{m}\sigma_{r} = 1$$

$$\frac{1}{1+r_{f}}\mathbb{E}[1+r_{\theta}] - 1 = -\rho_{m,r}\sigma_{m}\sigma_{r}$$

$$\mathbb{E}[1+r_{\theta}] - (1+r_{f}) = -\rho_{m,r}\sigma_{m}\sigma_{r}(1+r_{f})$$

$$\mathbb{E}[r_{\theta}] - r_{f} = -\rho_{m,r}\sigma_{r}\frac{\sigma_{m}}{\mathbb{E}[m_{\theta}]}$$

$$\left|\frac{\mathbb{E}[r_{\theta}] - r_{f}}{\sigma_{r}}\right| = \left|-\rho_{m,r}\right|\frac{\sigma_{m}}{\mathbb{E}[m_{\theta}]}$$

$$\left|\frac{\mathbb{E}[r_{\theta}] - r_{f}}{\sigma_{r}}\right| \leq \frac{\sigma_{m}}{\mathbb{E}[m_{\theta}]}$$

Equity Premium Puzzle

• assume power utility

$$u(c) = \frac{c^{1-\gamma}}{1-\gamma}$$

• assume consumption growth rate

$$Cg = ln\left(\frac{c_{t+1}}{c_t}\right)$$

is normally distributed

$$Cg \sim N(\mu_{Cg}, \sigma_{Cg}^2)$$

• under this assumption

$$\frac{\sigma_m}{\mathbb{E}[m_\theta]} \approx \gamma \sigma_{Cg}$$

- between 1995 and 2005 in the United States
 - 1. real stock returns averaged 9% with a standard deviation of 16%
 - 2. real return on Treasury bills was 1%
 - 3. aggregate consumption growth rate had mean and st. dev of of 1%

$$S = \frac{0.09 - 0.01}{0.16} = 0.5$$

$$\frac{\sigma_m}{\mathbb{E}[m_{\theta}]} \approx \gamma \sigma_{Cg} = 0.01 \gamma \implies 0.5 \le 0.01 \gamma$$

For this to hold, risk aversion coefficient would have to be at least 50 (unreasonable). To illustrate how high this number is, consider a gamble that pays 100,000 with probability 0.5, and 50,000 w.p. 0.5. The following show the certainty equivalents for various gammas.

γ	2	3	50
CE	66,667	63,246	50,712

Arrow-Debreu Pricing II

	AD1	AD2	AD3	Asset 1	Asset X
State 1	1	0	0	3	X_1
State 2	0	1	0	2	X_2
State 3	0	0	1	1	X_3
Р	q_1	q_2	q_3	$3q_1 + 2q_2 + q_3$	$q_1 X_1 + q_2 X_2 + q_3 X_3$

Let's look at a market:

	Asset 1	Asset 2	AD1	AD2
State 1	3	5	1	0
State 2	1	5	0	1
P	2	4	0.6	0.2

Create AD1

Pays off 1 in state 1 and 0 in state 2.

$$3a_1 + 5a_2 = 1$$

$$a_1 + 5a_2 = 0$$

 $a_1 = 0.5$ and $a_2 = -0.1$

Buy 0.5 share of a_1 and short 0.1 share of a_2 .

Price of portfolio is $0.5 \times 2 - 0.1 \times 4 = 0.6$

Create AD2

Pays off 1 in state 1 and 0 in state 2.

$$3a_1 + 5a_2 = 0$$

$$a_1 + 5a_2 = 1$$

 $a_1 = -0.5$ and $a_2 = 0.3$

Short 0.5 share of a_1 and buy 0.3 share of a_2 .

Price of portfolio is $0.3 \times 4 - 0.5 \times 2 = 0.2$

This is a complete market because you can construct AD securities as portfolios of assets.

More assets than states example:

	Asset 1	Asset 2	Asset 3
State 1	3	5	4
State 2	1	5	3
Р	2	4	3

Let
$$P = \begin{pmatrix} 2 \\ 4 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 3 \end{pmatrix}^T$$

Price of AD security $q = \begin{pmatrix} q_1 \\ q_2 \end{pmatrix} = \begin{pmatrix} q_1 \\ q_2 \end{pmatrix}^T$
Payoff matrix $X = \begin{pmatrix} 3 & 5 & 4 \\ 1 & 5 & 3 \end{pmatrix}$

$$P = X^T q$$

$$P = \begin{pmatrix} 3 & 1 \\ 5 & 5 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} q_1 \\ q_2 \end{pmatrix}$$

$$= \begin{pmatrix} 3q_1 + q_2 \\ 5q_1 + 5q_2 \\ 4q_1 + 3q_3 \end{pmatrix} = \begin{pmatrix} P_1 \\ P_2 \\ P_3 \end{pmatrix}$$

Starting with $P = X^T q$ and multiplying both sides by X:

$$XP = XX^{T}q$$
$$q = (XX^{T})^{-1}XP$$

If this equation can be solved, the market is complete.