Бустинг Градиентный бустинг над решающими деревьями

Лазара В. И. Козлова Е. Р.

Лекция по машинному обучению

18 октября 2025 г.

Напоминание: бэггинг vs стэкинг vs бустинг

Коротко

- Бэггинг (Bootstrap Aggregating): параллельные независимые модели на бутстрап-подвыборках, усреднение/голосование ⇒ снижение дисперсии.
- **Стэкинг**: мета-модель учится комбинировать ответы базовых моделей.
- Бустинг: последовательно добавляем слабые модели, каждая исправляет ошибки предыдущих ⇒ снижение смещения.

Интуиция бустинга: исправление ошибок

- Модель $F_0(x)$ грубо приближает зависимость.
- Вычисляем ошибки/остатки и обучаем следующую слабую модель $h_1(x)$ предсказывать эти ошибки.
- ullet Новая модель: $F_1(x) = F_0(x) +
 u h_1(x)$, где $u \in (0,1] c$ корость обучения.
- Повторяем M раз: $F_M(x) = F_{M-1}(x) + \nu h_M(x)$.

Градиентный бустинг: оптимизация в пространстве функций

Задача

Дана выборка $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$, хотим минимизировать

$$\mathcal{L}(F) = \sum_{i=1}^{n} \ell(y_i, F(x_i)),$$

где F — искомая функция, а ℓ — выбранная функция потерь.

Идея

Выполняем градиентный спуск по F: на шаге m подбираем слабую модель h_m , хорошо аппроксимирующую *антиградиент* по значениям F на обучающих объектах:

Затем обновляем $F_m(x) = F_{m-1}(x) + \nu \gamma_m h_m(x)$

Бустинг над деревьями: шаг обучения

1. Дано F_{m-1} . Считаем псевдо-остатки (антиградиенты):

$$r_{im} = -\frac{\partial \ell(y_i, z)}{\partial z}\bigg|_{z=F_{m-1}(x_i)}.$$

- 2. Обучаем регрессионное дерево $h_m(x)$ по парам (x_i, r_{im}) .
- 3. Находим оптимальные константы по листам: для каждого листа R_{jm}

$$\gamma_{jm} = \arg\min_{\gamma} \sum_{x_i \in R_{im}} \ell(y_i, F_{m-1}(x_i) + \gamma).$$

4. Обновляем модель:

$$F_m(x) = F_{m-1}(x) + \nu \sum_i \gamma_{jm} 1\{x \in R_{jm}\}.$$

Градиентный бустинг над деревьями: псевдокод

Вход

 $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$, функция потерь $\ell(y, z)$, число итераций M, глубина дерева d, скорость обучения ν .

Алгоритм

- Инициализация: $F_0(x) = \arg\min_c \sum_{i=1}^n \ell(y_i, c)$ (например, среднее для MSE, логит-квантиль для логлосса).
- Для m = 1, ..., M:
 - 1. Вычислить $r_{im} = -\partial \ell(y_i, z)/\partial z \big|_{z=F_{m-1}(x_i)}$.
 - 2. Обучить регрессионное дерево h_m глубины $\leq d$ на $\{(x_i, r_{im})\}$.
 - 3. Для каждого листа R_{jm} найти $\gamma_{jm} = \arg\min_{\gamma} \sum_{x_i \in R_{im}} \ell(y_i, F_{m-1}(x_i) + \gamma)$.
 - 4. Обновить $F_m(x) = F_{m-1}(x) + \nu \sum_i \gamma_{jm} 1\{x \in R_{jm}\}.$

Выбор потерь: регрессия и классификация

Регрессия

- Квадратичная: $\ell(y,z) = \frac{1}{2}(y-z)^2 \Rightarrow r_{im} = y_i F_{m-1}(x_i)$ (классические «остатки»).
- Абсолютная: $\ell(y,z) = |y-z| \Rightarrow r_{im} = \text{sign}(y_i F_{m-1}(x_i))$ (в слабом смысле).

Классификация (бинарная)

логиты F(x), $p(x) = \sigma(F(x))$.

• Логистическая потеря: $y \in \{0, 1\}$,

$$\ell(y,z) = -(y\log\sigma(z) + (1-y)\log(1-\sigma(z))$$

- Псевдо-остатки: $r_{im} = y_i \sigma(F_{m-1}(x_i)).$
- Итог: решение выдаём как $\mathbb{I}\{F_M(x) \geq 0\}$ или по p(x).

Иллюстрация: «слоёный пирог» из деревьев

Kаждое дерево — слабое (мелкое, с малым числом листьев), но сумма даёт сильную модель $_{9/15}$

Регуляризация и борьба с переобучением

- Скорость обучения (shrinkage) $\nu \in (0,1]$: меньше \Rightarrow устойчивее, но нужно больше деревьев.
- Глубина дерева / число листьев: неглубокие деревья (3–8 уровней) \Rightarrow слабые базовые модели.
- Субсемплинг объектов (subsample): обучаем h_m на случайной доле данных (напр., 0.5-0.9).
- Субсемплинг признаков: случайный поднабор признаков на сплите/уровне/дереве.
- Минимальный размер листа, L2-штраф на веса листов, макс. число узлов.
- Ранняя остановка по валидации: мониторим метрику и прекращаем рост M.

Стохастический градиентный бустинг

Идея

На каждом шаге используем случайную подвыборку объектов (и, опционально, признаков).

- Снижает коррелированность базовых деревьев, улучшая обобщающую способность.
- Даёт ускорение и повышает устойчивость к шуму.
- Хорошо комбинируется с малым u и ранней остановкой.

Практика: XGBoost, LightGBM, CatBoost

- XGBoost: точный/приближённый поиск сплитов, регуляризация (L1/L2), колонки по блокам, эффективная параллелизация.
- **LightGBM**: лист-ориентированный рост (*leaf-wise*) с ограничением глубины, гистограммные сплиты, *Gradient-based One-Side Sampling*.
- CatBoost: обработка категориальных признаков порядковыми статистиками, упор на устойчивость к target leakage.

Замечание

Хотя детали реализации различаются, базовая идея — тот же градиентный бустинг над деревьями.

Диагностика: как понять, что мы переобучаемся

- Разрыв между train и valid метриками растёт со временем \Rightarrow остановиться раньше.
- Локальные всплески ошибки при слишком глубоком дереве.
- Слишком малый *subsample* может добавить шум (слишком большой повысит корреляцию базовых моделей).

Сравнение: бустинг vs бэггинг/стэкинг

Бустинг

- Последовательный, корректирует смещение.
- Высокая предсказательная сила «из коробки».
- Чувствителен к шуму/выбросам (важна регуляризация).

Бэггинг/Стэкинг

- Бэггинг параллельный, снижает дисперсию.
- Стэкинг мета-комбинация, требует аккуратной валидации.
- Часто менее чувствительны к отдельным выбросам.

Итоги

- Бустинг последовательное уменьшение смещения путём добавления слабых моделей.
- Градиентный бустинг градиентный спуск в пространстве функций по выбранной потере.
- Деревья удобные слабые модели: быстрые, интерпретируемые на уровне сплитов.
- Ключ регуляризация: шринкаж, ранняя остановка, контроль сложности деревьев и стохастичность.