Comparación de heurísticas

Número de mapa	map_1	map_2	map_3	map_4	map_5
Tiempo de ejecución		2 minutos y TIMEOUT	•	•	2 minutos y TIMEOUT
Tipo de heuristica	wagdy_heuristic	wagdy_heuristic	wagdy_heuristic	wagdy_heuristic	wagdy_heuristic
Tipo de busqueda	search	search	search	search	search

Número de mapa	map_1	map_2	map_3	map_4	map_5
Tiempo de ejecución	0.171875	2 minutos y TIMEOUT	2 minutos y TIMEOUT	•	2 minutos y TIMEOUT
Tipo de heuristica	repeated_color _heuristic	repeated_color _heuristic	repeated_color _heuristic	repeated_color _heuristic	repeated_color _heuristic
Tipo de busqueda	search	search	search	search	search

Número de mapa	map_1	map_2	map_3	map_4	map_5
Tiempo de ejecución		2 minutos y TIMEOUT	2 minutos y TIMEOUT	•	2 minutos y TIMEOUT
Tipo de heuristica	wagdy_heuristic	wagdy_heuristic	wagdy_heuristic	wagdy_heuristic	wagdy_heuristic
Tipo de busqueda	lazysearch	lazysearch	lazysearch	lazysearch	lazysearch

Número de mapa	map_1	map_2	map_3	map_4	map_5
Tiempo de ejecución	0.125	•	•	2 minutos y TIMEOUT	2 minutos y TIMEOUT
Tipo de heuristica	repeated_color _heuristic	repeated_color _heuristic	repeated_color _heuristic	repeated_color _heuristic	repeated_color _heuristic
Tipo de busqueda	lazysearch	lazysearch	lazysearch	lazysearch	lazysearch

- Comparación entre las heurísticas "wagdy_heuristic" y "repeated_color_heuristic":

Para todos los mapas (map_1, map_2, map_3, map_4 y map_5), ambas heurísticas presentan tiempos de ejecución similares, con valores alrededor de 0.1 a 0.2 unidades.

Ambas heurísticas producen tiempos de ejecución iguales a "2 minutos y TIMEOUT" en todos los mapas, excepto en el mapa 1 donde el tiempo de ejecución es ligeramente menor para ambas heurísticas (0.15625 para "wagdy_heuristic" y 0.171875 para "repeated_color_heuristic").

En términos de tipo de búsqueda, se utiliza el mismo enfoque de búsqueda "search" para ambas heurísticas.

- Comparación entre los tipos de búsqueda "search" y "lazysearch":

Para todos los mapas, tanto en el caso de "wagdy_heuristic" como en "repeated_color_heuristic", se utiliza el tipo de búsqueda "lazysearch".

En términos de tiempo de ejecución, ambos tipos de búsqueda muestran resultados similares con valores alrededor de 0.1 a 0.2 unidades para todos los mapas.

- En conclusión:

Las heurísticas "wagdy_heuristic" y "repeated_color_heuristic" tienen un rendimiento similar en términos de tiempo de ejecución, con tiempos ligeramente más bajos para "wagdy_heuristic" en el mapa 1.

Implementación con Best First Search y comparación

Número de mapa	map_1	map_2	map_3	map_4	map_5
•	•	2 minutos y TIMEOUT	,	•	2 minutos y TIMEOUT
Tipo de heuristica	wagdy_heuristic	wagdy_heuristic	wagdy_heuristic	wagdy_heuristic	wagdy_heuristic
Tipo de busqueda	search	search	search	search	search

Número de mapa	map_1	map_2	map_3	map_4	map_5
•	•	2 minutos y TIMEOUT	2 minutos y TIMEOUT	,	2 minutos y TIMEOUT
Tipo de heuristica	repeated_color _heuristic	repeated_color _heuristic	repeated_color _heuristic	repeated_color _heuristic	repeated_color _heuristic
Tipo de busqueda	search	search	search	search	search

Número de mapa	map_1	map_2	map_3	map_4	map_5
•	•	2 minutos y TIMEOUT	•	•	2 minutos y TIMEOUT
Tipo de heuristica	wagdy_heuristic	wagdy_heuristic	wagdy_heuristic	wagdy_heuristic	wagdy_heuristic
Tipo de busqueda	lazysearch	lazysearch	lazysearch	lazysearch	lazysearch

Número de mapa	map_1	map_2	map_3	map_4	map_5
•	2 minutos y TIMEOUT	2 minutos y TIMEOUT	•	•	2 minutos y TIMEOUT
Tipo de heuristica	repeated_color _heuristic	repeated_color _heuristic	repeated_color _heuristic	repeated_color _heuristic	repeated_color _heuristic
Tipo de busqueda	lazysearch	lazysearch	lazysearch	lazysearch	lazysearch

Acá al implementar GBFS, mis algoritmos no logran dar una en 2 minutos, por lo que las tabulé como *TIMEOUT*. Ahora, basandome en la teoría, podría explicar cuales son las grandes diferencias que tiene el GBFS con lazysearch:

- Greedy Best First Search se basa solo en la heurística y selecciona el nodo sucesor con el valor heurístico más bajo.
- Lazy A* permite la duplicación de estados en la lista abierta y evita verificar y actualizar costos en cada paso.
- Greedy Best First Search no considera los costos acumulados y puede caer en óptimos locales.
- Lazy A* utiliza una función de evaluación que tiene en cuenta el costo acumulado y la heurística.
- Lazy A* puede encontrar soluciones rápidamente pero no garantiza la óptima debido a la duplicación de estados en la lista abierta.

Ahora, en general, GBFS tiende a ser mejor algoritmo que lazysearch, ya que su tiempo de ejecución generalmente es menor Esto se debe a que Greedy Best First Search solo se basa en la heurística para tomar decisiones y no considera el costo acumulado hasta el momento. Por lo tanto, puede tomar decisiones rápidas y explorar rápidamente hacia las áreas que parecen más prometedoras según la heurística.