Matematica per le scuole superiori

basics

I	Introduzione	3
1	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	5 5
II	Insiemistica e logica	9
2	Insiemistica 2.1 2.2 Funzioni 2.3 Algebra di insiemi 2.4 Insiemi numerici	11 11 11 12 12
3	Logica 3.1 Argomenti	15
П	I Algebra	17
4	Introduzione all'algebra	19
5	Algebra sui numeri reali 5.1 Operazioni	21 21 22 23 24 25
6	Algebra su \mathbb{R}^n 6.1 Problemi	27 27 28
7	Algebra lineare 7.1 Introduzione	35 35 35 36 38

	7.5 Teorema di Rouché-Capelli	40 40
8	Algebra vettoriale 8.1 Prime definizioni	47 47 49
9	Algebra complessa	53
10	Algebra di insiemi	55
IV	W Geometria analitica	57
11	Introduzione alla geometria analitica	61
12	Spazio euclideo	63
13	Geometria analitica nel piano	65
	13.1 Sistemi di coordinate	66
	13.2 Distanze e angoli	67
	13.3 Curve nel piano	67
	13.5 Coniche	68 71
14	Geometria analitica nello spazio	7 9
17	14.1 Sistemi di coordinate per lo spazio euclideo E^3	
	14.2 Piani nello spazio	80
	14.3 Curve nello spazio	82
	14.4 Rette nello spazio	82
	14.5 Cono circolare retto e coniche	84
V	Precalcolo	85
•		
15	Introduzione al pre-calcolo	89
16	Funzioni reali a variabile reale, $f:\mathbb{R} o\mathbb{R}$	91
	16.1 Grafico di una funzione	
	16.2 Classificazione di funzioni	92
	16.3 Funzioni invertibili e inverse	92 93
17	' Polinomi	95
1/	17.1 Fattorizzazione	95 95
	17.2 Teorema binomiale	96
18	Serie e successioni	97
10	18.1 Successioni di numeri reali	97
	18.2 Serie di numeri reali	98
	18.3 Successioni di funzioni reali	102
	18.4 Serie di funzioni reali	102
	18.5 Successioni di numeri complessi	103
	18.6 Serie di numeri complessi	103
	18.7 Successioni di funzioni complesse 18.8 Serie di funzioni complesse	103 103
	10.0 Solic di fanzioni complesse	103

19			105
			105
	19.2	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	106
	19.3		107 108
			108 108
	19.5	riostatetesi	100
20	Espoi	nenziale e logaritmo	111
	20.1	T T	111
	20.2	Funzione esponenziale e logaritmo di variabile reale	
	20.3	Funzione esponenziale e logaritmo di variabile complessa	
	20.4	Esponenziale e logaritmo - dimostrazioni	112
21	Algel	ora complessa	115
		1	115
	21.3	Altri argomenti/proprietà	
	21.4	Equazioni e disequazioni con i numeri complessi	120
22	10		101
22	runz	ioni multi-variabile	121
	~		
VI	Ca	alcolo 1	23
23	Intro	duzione al calcolo	127
24	Intro	duzione all'analisi	129
		Funzioni reali a variabile reale, $f: \mathbb{R} \to \mathbb{R}$	
		Limiti	
	24.3	Funzioni continue	130
	24.4	1	132
	24.5		134
			135
	24.7		135
	24.8	Note e dimiostrazioni	136
25	Deriv	vate	141
	25.1	Definizione	141
	25.2	Regole di derivazione	141
	25.3	Teoremi	143
	25.4	Derivate fondamentali	144
	25.5		146
	25.6		146
	25.7		148
	25.8	Dimostrazioni	150
26	Integ	rali	151
	26.1		151
	26.2		153
	26.3	8	154
	26.4	6	154
	26.5	Tavola degli integrali indefiniti più comuni	
	26.6	Integrali - Problemi	157
27	Equa	zioni differenziali ordinarie	161

		Prime definizioni	
28	Calco	olo infinitesimale - Problemi	173
29	29.1 29.2	duzione al calcolo multi-variabile Limite di una funzione di più variabili	176
30	30.1	duzione al calcolo vettoriale su spazi euclidei Operatori differenziali in spazi euclidei	
V	II S	tatistica	183
31	Intro	duzione alla statistica	187
VI	III]	Indice	189
32	Indic	ee	191
Pr	oof In	dex	193

Questo libro fa parte del materiale pensato per le scuole superiori, nell'ambito del progetto **basics-books**. E" disponibile in versione in .pdf.

Parte I

CAPITOLO 1

Programma

La presentazione degli argomenti cerca di seguire lo sviluppo storico degli argomenti, provando a cucire un filo tra poche ma fondamentali pubblicazioni.

In particolare, le parti sulla geometria analitica, il precalcolo e il calcolo vanno intese come conseguenti sia dal punto di vista logico sia dal punto di vista storico/cronologico:

- geometria analtica, Cartesio e la *Geometeria*, come introduzione al Discorso sul Metodo
- **precalcolo**, Eulero e l"*Introductio*
- calcolo, come inizialmente formulato da Newton e Leibniz e formalizzato nel secolo successivo

1.1 Indicazioni nazionali per le superiori italiane

«Indicazioni nazionali riguardanti gli obiettivi specifici di apprendimento concernenti le attività e gli insegnamenti compresi nei paini degli studi previsti per i percorsi liceali [...]», Ministero dell'istruzione, dell'universtià e della ricerca, 2010

1.1.1 Linee generali e competenze

- Visione storico-critica delle principali tematiche del pensiero matematico e del contesto filosofico, scientifico e tecnologico
- Attenzione a 3 momenti principali:
 - civiltà greca
 - rivoluzione scientifica del XVII secolo e nascita del calcolo infinitesimale
 - razionalismo illuministico: matematica moderna, approccio matematico ad altri campi (ingegneria, economia, biologia, scienze sociali), progresso scientifico
- 8 gruppi di concetti e metodi (7, visto che 5.,6. possono essere condensati):

Matematica per le scuole superiori

- 1. geometria euclidea
- 2. calcolo algebrico, geometria analitica, funzioni e noziaoni elementari dell'analisi e del calcolo differenziale e integrale
- 3. strumenti utili allo studio dei fenomeni fisici: vettori e ODE
- 4. probabilità e statistica
- 5. concetto e costruzione di modelli matematici
- 6. «
- 7. approccio assiomatico
- 8. induzione matematica

1.1.2 Obiettivi specifici di apprendimento

Primo biennio

Aritmetica e algebra

- dall'aritmetica all'algebra
- · insiemi numerici
- polinomi
- equazioni, disequazioni e sistemi
- introduzione ai vettori

Geometria

- fondamenti di geometria euclidea
 - approccio assiomatico: postulato, assioma, definizione, teorema dimostrazione
 - geometria nel piano:
 - * elementi geometrici fondamentali e costruzioni: angoli e triangoli
 - * trasformazioni: traslazioni, rotazioni, riflessioni

Relazioni e funzioni

- prime definizioni in insiemistica
- funzioni a variabile reale, rapprensentazione grafica di equazioni
 - esempi: primo e secondo grado, 1/x, |x|, definite a tratti

Dati e previsioni

- fondamenti di statistica descrittiva:
 - classificazione eventi: continui/discreti
 - rappresentazione dati
 - valore medio e varianza

Elementi di informatica

- familiarizzazione con strumenti informatici
- concetto di algoritmo

Secondo biennio

Aritmetica e algebra

- circonferenza e cerchio, numero π , trigonometria
- numero e di Nepero
- · numeri complessi

Geometria

- geometria analitica piana:
 - punti e rette
 - coniche **todo** *controllare se previste*

Relazioni e funzioni

- · equazioni polinomiali
- serie; progressioni aritmetiche e geometriche
- funzioni elementari dell'analisi: esponenziale e logaritmo

Dati e previsioni

- distribuzioni di più variabili (2): congiunta, condizionata, marginale,...
- correlazione e dipendenza, regressione
- · formula di Bayes

Quinto anno

Geometria

• geometria euclidea nello spazio

Relazioni e funzioni

- limiti di successioni e funzioni
- · continuità, derivabilità, integrabilità
- · equazioni differenziali

Dati e previsioni

- distribuzioni discrete e continue
- esempi di distribuzione: binomiale, normale, Poisson

1.2 ∆

1.2.1 Impostazione e soluzione dei problemi e calcolo letterale

L'algebra fornisce gli strumenti fondametali del caloclo letterale per un corretto approccio ai problemi. Prima di iniziare a risolvere un problema, questo deve essere impostato correttamente.

L'impostazione ideale di un problema dovrebbe:

- non richiedere altre fasi di impostazione durante la soluzione
- non fare affidamento su valori particolari non necesari

Questo tipo di approccio è pensato per formare la mente all'utilizzo degli strumenti attualmente disponibili. todo

Parte II Insiemistica e logica

CAPITOLO 2

Insiemistica

2.1

2.2 Funzioni

Definition 1.2.1 (Funzione)

Una funzione $f:A\to B$ tra due insiemi A,B è una relazione che associa a ogni elemento dell'insieme A uno e un solo elemento dell'insieme B, cioè

$$\forall a \in A \quad \exists! b = f(a) \in B$$
.

L'insieme A è definito **dominio**; l'insieme B è definito **codominio**; il sottoinsieme degli elementi $b \in B$ per i quali esiste un $a \in A$ t.c. b = f(a) è definito **immagine** della funzione.

Funzione suriettiva. Una funzione è suriettiva se $B = \operatorname{Im}(A)$, cioè per ogni elemento $b \in B$ esiste almeno un elemento $a \in A$ tale che f(a) = b.

Funzione iniettiva. Una funzione è iniettiva se per ogni coppia $a_1,a_2\in A$, con $a_1\neq a_2$, segue che $f(a_1)\neq f(a_2)$.

Funzione biunivoca. Una funzione sia suriettiva sia iniettiva è una funzione biunivoca. Una funzione biunivoca associa a ogni elemento $a \in A$ uno e un solo elemento $b \in B$ e *viceversa*(!).

Una funzione biunivoca è anche invertibile. Data la funzione biunivoca f(a) = b, la funzione inversa è $a = f^{-1}(b)$.

2.3 Algebra di insiemi

2.3.1 Immagine di una funzione

2.3.2 Nucleo di una funzione

2.4 Insiemi numerici

2.4.1 Numeri naturali, N

- Somma
- Moltiplicazione.
- Potenza.

2.4.2 Numeri interi, \mathbb{Z}

- Somma
- Sottrazione
- Moltiplicazione.
- Potenza.
- · Radice.

2.4.3 Numeri razionali, Q

- Somma
- Sottrazione
- Moltiplicazione.
- Divisione.
- Potenza.

$$a^b = \left(\frac{m}{n}\right)^{\frac{p}{q}}$$

2.4.4 Numeri reali, ℝ

- Somma
- Sottrazione
- Moltiplicazione.
- Divisione.
- Potenza.
- · Radice.
- · Logaritmo.

2.4.5 Numeri complessi, ${\mathbb C}$

2.4. Insiemi numerici 13

	nar	-	COLICIA	CIII	AARI	^r
Matematica	uei		Statione	2011		
matomatica	ρυ.	. •	000.0		••••	•

CAPITOLO 3

Logica

3.1 Argomenti ...

Per ora, elenco di concetti linkati

- 3.1.1 Identità
- 3.1.2 Contraddizione
- 3.1.3 Sillogismo

16 Capitolo 3. Logica

Parte III

Algebra

CAPITOLO 4

Introduzione all'algebra

L'algebra si occupa dello studio di:

- quantità/oggetti matematici
- operazioni, espressioni e relazioni tra questi quantità/oggetti matematici,
- **strutture** algebriche, definite come insiemi di quantità matematiche dotati di operazioni che soddisfano delle proprietà fondamentali, dette assiomi.

Argomenti del capitolo

Algebra sui numeri reali, \mathbb{R} .

Algebra sulle n-uple di numeri reali, \mathbb{R}^n .

Algebra lineare.

Algebra vettoriale.

Algebra sui numeri complessi, \mathbb{C} .

Algebra di insiemi.

Approccio

Non vengono approfonditi gli aspetti più astratti della teoria, concentrandosi su un approccio più applicativo. In particolare, ci si concentra:

- gli **oggetti matematici** appartenenti a insiemi numerici (\mathbb{R} , \mathbb{C} ,...) o non numerici, come insiemi, matrici; l'introduzione all'algebra vettoriale richiederà la definizione di una struttura algebrica fondamentale, lo *spazio* vettoriale
- le **operazioni** e le relazioni su questi oggetti matematici e le loro proprietà
- il **calcolo letterale** che permette di *impostare i problemi* nella forma di **equazioni**, **disequazioni**, **sistemi**, senza dover fare affidamento a particolari valori numerici

• i metodi di **soluzione** di questi probelmi algebrici.

CAPITOLO 5

Algebra sui numeri reali

L'algebra sui numeri reali si occupa delle operazioni fondamentali e delle proprietà dei numeri reali, il cui insieme viene indicato con la lettera \mathbb{R} , come anche della risoluzione di equazioni e disequazioni. Dopo la logica e l'insiemistica, l'algebra sui numeri reali è il primo passo in un corso di matematica **todo** *di quale livello?*

Questo capitolo ricorda velocmente le operazioni elementari sui numeri reali introdotte nel capitolo sugli insiemi numerici, per poi introdurre con queste le operazioni di potenza, radice e logaritmo. Si fa affidamento sul calcolo letterale, per introdurre i polinomi e alcune loro proprietà che verranno utilizzate per risolvere i problemi algebrici che coinvolgono gli oggetti matematici introdotti: equazioni e disequazioni di un'incognita.

5.1 Operazioni

Le operazioni elementari sui numeri reali e le loro proprietà sono state introdotte nel capitolo sugli insiemi numerici. Si ricordano le proprietà dell'elevamento a potenza,

$$a^b = c$$

e le condizioni di esistenza di questa operazione sui numeri reali. Dall'operazione di potenza si introducono le operazioni di radice e di logaritmo chei, **sotto le necessarie condizioni**, consentono di scrivere

$$a = \sqrt[b]{c} \qquad , \qquad b = \log_a c \; .$$

5.1.1 Potenze

Nel campo dei numeri reali, l'operazione di potenza, $a^b = c$, è ben definita:

- per $a \ge 0$ per ogni $b \in \mathbb{R}$
- per a < 0 solo per $b \in \mathbb{N}$

todo controllare, rimandare al capitolo sugli insiemi numerici; spostare nel capitolo sugli insiemi numerici?

5.1.2 Radice

Definizione e condizioni.

Proprietà.

5.1.3 Logaritmo

Definizione e condizioni.

Proprietà.

5.2 Polinomi

Scomposizioni elementari.

$$(a+b)^2=a^2+2ab+b^2 \qquad \qquad \text{Quadrato di binomio}$$

$$(a+b)^3=a^3+3a^2b+3ab^2+b^3 \qquad \qquad \text{Cubo di binomio}$$

$$(a+b)^N=\sum_{n=1}^N\binom{N}{n}a^{N-n}b^n \qquad \qquad \text{Potenza di binomio}$$

$$a^2-b^2=(a-b)(a+b) \qquad \qquad \text{Differenza di quadrati}$$

$$a^3-b^3=(a-b)(a^2+ab+b^2) \qquad \qquad \text{Differenza di cubi}$$

$$a^3+b^3=(a+b)(a^2-ab+b^2) \qquad \qquad \text{Somma di cubi}$$

$$a^N-b^N=(a-b)(a^{N-1}+a^{N-2}b+\cdots+b^{N-1}) \qquad \text{Differenza di potenze}$$

$$a^N+b^N=(a+b)(a^{N-1}-a^{N-2}b+\cdots+b^{N-1}) \qquad \text{Somma di potenze dispari}$$

todo altre regole? Ruffini?...

5.2.1 Frazioni algebriche

Una frazione algebrica è il quoziente di due polinomi,

$$\frac{a_n x^n + a_{n-1} x^{n-1} + \dots a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots b_0} \ .$$

Per il *teorema fondamentale dell'algebra*, ogni polinomio può essere scritto come prodotto di polinomi di primo o secondo ordine. Se i polinomi al numeratore e al denominatore della frazione algebrica non hanno fattori in comune, la frazione algebrica viene definita **in forma semplice**.

Example 4.2.1 (Frazioni algebriche semplici e non semplici)

La frazione $\frac{x^2-3x+2}{x^2+1}=\frac{(x-2)(x-1)}{x^2+1}$ è in forma ridotta, mentre la frazione $\frac{x^2-3x+2}{x^2-1}=\frac{(x-2)(x-1)}{(x+1)(x-1)}$ non è in forma ridotta e, per $x\neq 1$ (!), è uguale a $\frac{x-2}{x+1}$.

Una **frazione propria** ha il grado n del numeratore inferiore al grado m del denominatore. Una frazione non propria può essere scritta come un polinomio di grado n-m e una frazione propria

Example 4.2.2 (Frazioni non proprie)

La frazione $\frac{x^2+2x+1}{x-2}$ può essere scritta «completando il quadrato» come

$$\frac{x^2+2x+1}{x-2} = \frac{x^2-4x+4+4x-4+2x+1}{x-2} = \frac{(x-2)^2+6x-3}{x-2} = x-2+3\frac{2x-1}{x-2}\;,$$

con la semplificazione possibile per $x \neq 2$.

Se il denominatore è scomponibile come prodotto di polinomi, allora la frazione algebrica può essere scritta come **somma** di **frazioni parziali**. In alcune applicazioni, come il calcolo degli integrali, può essere conveniente scrivere una frazione come somma di frazioni parziali, poiché risulta più semplice trattare somme di frazioni con numeratore di grado 1 o 2, di frazioni con numeratore di grado qualsiasi.

Example 4.2.3 (Somma di frazioni parziali)

La frazione $\frac{3x}{x^2-1}$ può essere scritta come somma di frazioni parziali $\frac{3x}{x^2-1}=\frac{3}{2}\frac{1}{x-1}+\frac{3}{2}\frac{1}{x+1}$, poiché

$$\frac{3x}{x^2 - 1} = \frac{a}{x + 1} + \frac{b}{x - 1} = \frac{a(x - 1) + b(x + 1)}{x^2 - 1} = \frac{x(a + b) + b - a}{x^2 - 1}$$

$$\begin{cases} a + b = 3 \\ b - a = 0 \end{cases} \rightarrow a = b = \frac{3}{2}.$$

5.3 Problemi con un'incognita

5.3.1 Equazioni

Un'equazione è una relazione di uguaglianza che contiene una o più incognite. L'obiettivo è trovare i valori delle incognite che rendono vera l'uguaglianza.

Equazioni di primo grado

La forma generale di un'equazione di primo grado in un'incognita reale $x \in \mathbb{R}$ è

$$ax + b = 0$$
 $a \neq 0$

dove la condizione sul coefficiente $a \neq 0$ esclude i casi in cui l'equazione degenera a un'uguaglianza tra parametri. Dopo aver escluso i casi in cui l'equazione degenera in un'uguaglianza tra paramteri, con la condizione $a \neq 0$, la soluzione generale dell'equazione lineare esiste, è **unica** ed è

$$x = -\frac{b}{a} \; .$$

Nel caso degenere in cui a=0, si possono distinguere due casi:

- se $b \neq 0$ non esiste nessuna soluzione, poiché l'equazione si riduce alla contraddizione $0 = b \neq 0$ per $\forall x \in \mathbb{R}$
- se b=0 esistono infinite soluzioni, poiché l'equazione si riduce all''identità $0=b\neq 0$ per $\forall x\in\mathbb{R}$

Equazioni di secondo grado

La forma generale di un'equazione di secondo grado in un'incognita reale $x \in \mathbb{R}$ è

$$ax^2 + bx + c = 0 \qquad a \neq 0 ,$$

dove la condizione sul coefficiente $a \neq 0$ esclude i casi in cui l'equazione degenera a un'equazione di *primo grado*. Le soluzioni dell'equazione vengono cercate completando il quadrato,

$$0 = x^2 + \frac{b}{a}x + \frac{b^2}{4a^2} - \frac{b^2}{4a^2} + \frac{c}{a} = \left(x + \frac{b}{2a}\right)^2 - \left(\frac{b^2}{4a^2} - \frac{c}{a}\right).$$

L'equazione viene riscritta come

$$\left(x + \frac{b}{2a}\right)^2 = \frac{b^2}{4a^2} - \frac{c}{a} \,,$$

per mettere in evidenza che l'esistenza delle soluzioni dipende dal valore del **discriminante**, $\frac{\Delta}{(2a)^2} := \frac{b^2 - 4ac}{(2a)^2}$:

- se $\Delta>0$ esistono due soluzioni reali distinte, $x_{1,2}=-\frac{b}{2a}\mp\frac{\sqrt{\Delta}}{2a}\in\mathbb{R}$
- se $\Delta=0$ esistono due soluzioni reali coincidenti, $x_1=x_2=-\frac{b}{2a}\in\mathbb{R}$
- se $\Delta < 0$ non esistono soluzioni reali, poiché la radice quadra di un numero negativo non è definita nel campo dei numeri reali, $\nexists x \in \mathbb{R}$

Equazioni non lineari generali

Mentre esiste una formula generale per le equazioni di terzo grado e di quarto grado, queste risultano spesso di scarsa e scarsissima (nulla?) utilità. Per le equazioni polinomiali, a volte è possibile utilizzare i risultati del *teorema fondamentale dell'algebra* per scrivere il polinomio come prodotto di polinomi di primo e secondo ordine, per i quali è possibile calcolare gli zeri con le formule mostrate nelle sezioni sulle equazioni di primo e secondo grado.

Per equazioni algebriche non lineari che coinvolgono potenze, logaritmi, esponenziali, a parte alcuni casi particolari risolvibili in forma chiusa utilizzando le proprietà di queste operazioni e le soluzioni delle equazioni polinomiali, è necessario affidarsi a metodi di soluzione grafici e/o numerici: **todo**

- m.grafici: soluzione a mano, per guess iniziale di m.numerici
- m.numerici: ...

5.3.2 Disequazioni

Un'equazione è una relazione di disuguaglianza che contiene una o più incognite. L'obiettivo è trovare i valori delle incognite che rendono vera la disuguaglianza.

5.4 Rappresentazione grafica di un'equazione con due incognite

Un'equazione con due incognite x,y è una relazione di uguaglianza che può essere scritta nella forma generale f(x,y)=0. In generale, a ogni equazione di questa forma può essere associata una curva nel piano, qui descritto dalle coordinate cartesiane x,y. Senza nessuna pretesa di completezza - rimandando per quella alla sezione sulla *geometria analitica* - qui ci si limita a discutere la rappresentazione grafica nel piano di alcune equazioni elementari

• y = x, dipendenza lineare (o proporzionale)

- $y = x^2$, dipendenza quadratica
- $y = \frac{1}{x}$, dipendenza inversamente proporzionale
- ... $y = a^x$, $y = \log_a x$...

e delle equazioni ricavabili da queste con una trasformazione affine di incognite, nella forma

$$u=\frac{x-x_0}{a_x} \quad , \quad v=\frac{y-y_0}{a_y} \; , \quad$$

$$x = \alpha_x u + x_0 \quad , \quad y = \alpha_y v + y_0 \; ,$$

corrispondenti alla compsizione di due trasformazioni, in questo ordine:

- 1. la scalatura di un fattore a_x in direzione x e di un fattore a_y in direzione y
- 2. una traslazione x_0 in direzione x e di y_0 in direzione y

todo

- Aggiungere un'imamgine con il procedimento di trasformazione di variabili/incognite (e coordinate)
- · Aggiungere un'immagine su alcune famiglie di curve, al variare dei parametri

Example 4.4.1 (...)

5.5 Problemi con due o più incognite - sistemi di equazioni e disequazioni

Un sistema di equazioni è un insieme di equazioni da risolvere simultaneamente. I sistemi di equazioni (e di disequazioni) consentono di introdurre l''algebra su \mathbb{R}^n , descritta nel capitolo successivo.

Algebra su \mathbb{R}^n

L'algebra in \mathbb{R}^n si occupa delle n-uple $\mathbf{x}=(x_1,\ldots,x_n)\in\mathbb{R}^n$ di n numeri reali e dei problemi che hanno più di un'incongita, come i sistemi di equazioni e di disequazioni. Alle operazioni sui numeri reali che possono essere compiute sulle singole componenti delle n-uple, si aggiungono le operazioni di:

• Addizione di n-uple che produce una n-upla le cui componenti sono le somme delle componenti,

$$\mathbf{a} + \mathbf{b} = (a_1, \dots, a_n) + (b_1, \dots, b_n) = (a_1 + b_1, \dots, a_n + b_n)$$

• Moltiplicazione di una *n*-upla per uno scalare che produce una *n*-upla le cui componenti sono il prodotto delle componenti per lo scalare

$$c \mathbf{a} = c (a_1, \dots, a_n) = (c a_1, \dots, c a_n)$$
.

6.1 Problemi

6.1.1 Forma generale

Sistemi di equazioni. Un sistema di m equazioni in n incognite è un insieme di m equazioni che devono essere soddisfatte simultaneamente,

$$\begin{cases} f_1(x_1,\ldots,x_n)=0\\ \ldots &, \qquad \mathbf{f}(\mathbf{x})=\mathbf{0} \ . \\ f_m(x_1,\ldots,x_n)=0 \end{cases}$$

Le *n*-uple che soddisfano simultaneamente le *m* condizioni sono le soluzioni del problema. In generale, non si può dire nulla sull'esistenza e l'eventuale unicità delle soluzioni del problema. Risultati di esistenza e unicità esistono per i problemi lineari, come descritto nella sezione sull'*algebra lineare* **todo** *collegamento*. *Serve un capitolo sull'algebra lineare*? *Rinominare quello sull'algebra matriciale in algebra lineare*?

Sistemi di disequazioni. Un sistema di m disequazioni in n incognite è un insieme di m disequazioni che devono essere soddisfatte simultaneamente,

$$\begin{cases} g_1(x_1,\ldots,x_n)>0\\ \ldots &, \qquad \mathbf{g}(\mathbf{x})>\mathbf{0} \;. \end{cases}$$

$$g_m(x_1,\ldots,x_n)>0$$

Le n-uple che soddisfano simultaneamente le m condizioni sono le soluzioni del problema. In generale, non si può dire nulla sull'esistenza e l'eventuale unicità delle soluzioni del problema.

Sistemi di equazioni e disequazioni. Un sistema di m_1 equazioni e m_2 disequazioni in n incognite è un insieme di m_1 equazioni e m_2 disequazioni che devono essere soddisfatte simultaneamente,

$$\begin{cases} f_1(x_1,\ldots,x_n)=0\\ \dots\\ f_{m_1}(x_1,\ldots,x_n)=0\\ g_1(x_1,\ldots,x_n)>0\\ \dots\\ g_{m_2}(x_1,\ldots,x_n)>0 \end{cases},\qquad \begin{cases} \mathbf{f}(\mathbf{x})=\mathbf{0}\\ \mathbf{g}(\mathbf{x})>\mathbf{0} \end{cases}$$

Le n-uple che soddisfano simultaneamente le m condizioni sono le soluzioni del problema. In generale, non si può dire nulla sull'esistenza e l'eventuale unicità delle soluzioni del problema.

6.2 Problemi

6.2.1 Sistemi lineari di equazioni

1. Risolvi il sistema:

$$\begin{cases} x + y = 7 \\ 2x - y = 4 \end{cases}$$

2. Risolvi il sistema:

$$\begin{cases} 3x + 4y = 12\\ x - 2y = -1 \end{cases}$$

3. Risolvi il sistema:

$$\begin{cases} 5x - y = 10\\ 2x + 3y = 14 \end{cases}$$

4. Risolvi il sistema:

$$\begin{cases} x + 2y = 5\\ 3x - y = 4 \end{cases}$$

5. Risolvi il sistema:

$$\begin{cases} 2x + 3y = 7\\ 4x - y = 9 \end{cases}$$

6. Risolvi il sistema:

$$\begin{cases} x - y = 1\\ 2x + y = 8 \end{cases}$$

7. Risolvi il sistema:

$$\begin{cases} x+y+z=6\\ 2x-y+z=5\\ x-y-z=-2 \end{cases}$$

8. Risolvi il sistema:

$$\begin{cases} x+y+z=5\\ 2x+2y+2z=10\\ x-y+z=1 \end{cases}$$

9. Verifica che il sistema non abbia soluzioni:

$$\begin{cases} x+y+z=4\\ x-y+z=6\\ 2x+2y+2z=5 \end{cases}$$

10. Risolvi il sistema:

$$\begin{cases} 2x + y + z = 7 \\ x - y + 2z = 3 \\ x + 2y - z = 4 \end{cases}$$

6.2.2 Sistemi lineari di disequazioni

1. Risolvi il sistema:

$$\begin{cases} x + y \le 4 \\ 2x - y > 3 \end{cases}$$

2. Risolvi il sistema:

$$\begin{cases} x - 2y \ge 1\\ 3x + y < 7 \end{cases}$$

3. Risolvi il sistema:

$$\begin{cases} x + y \ge 0 \\ x - y \le 3 \end{cases}$$

4. Risolvi il sistema:

$$\begin{cases} 2x - y < 5\\ x + 3y \ge -4 \end{cases}$$

6.2. Problemi

Matematica per le scuole superiori

5. Risolvi il sistema:

$$\begin{cases} x - y \le 2 \\ x + y > 6 \end{cases}$$

6. Risolvi il sistema:

$$\begin{cases} 4x + y \ge 8 \\ x - y \le 1 \end{cases}$$

6.2.3 Sistemi di equazioni e disequazioni

1. Risolvi il sistema:

$$\begin{cases} x + y = 3 \\ 2x - y \ge 1 \end{cases}$$

2. Risolvi il sistema:

$$\begin{cases} x - y > 0 \\ x + y = 5 \end{cases}$$

3. Risolvi il sistema:

$$\begin{cases} 2x + y \le 6 \\ x - y = 2 \end{cases}$$

6.2.4 Equazioni Quadratiche

1. Risolvi il sistema:

$$\begin{cases} x^2 + y = 4\\ x + y = 3 \end{cases}$$

2. Risolvi il sistema:

$$\begin{cases} y = x^2 + 2x \\ y = -x + 3 \end{cases}$$

3. Risolvi il sistema:

$$\begin{cases} x^2 + y^2 = 25\\ x + y = 7 \end{cases}$$

4. Risolvi il sistema:

$$\begin{cases} x^2 - 4y = 3\\ 2x + y = 5 \end{cases}$$

5. Risolvi il sistema:

$$\begin{cases} y = x^2 - 3x + 2 \\ y = 2x - 1 \end{cases}$$

6.2.5 Disequazioni Quadratiche

1. Risolvi il sistema:

$$\begin{cases} x^2 + y > 4 \\ x + y \le 3 \end{cases}$$

2. Risolvi il sistema:

$$\begin{cases} y > x^2 + 2x \\ y \le -x + 3 \end{cases}$$

3. Risolvi il sistema:

$$\begin{cases} x^2 + y^2 \le 25\\ x + y > 7 \end{cases}$$

4. Risolvi il sistema:

$$\begin{cases} x^2 - 4y > 3\\ 2x + y \le 5 \end{cases}$$

5. Risolvi il sistema:

$$\begin{cases} y \le x^2 - 3x + 2 \\ y \ge 2x - 1 \end{cases}$$

6.2.6 Problemi vari

0. Risolvi il sistema:

$$\begin{cases} \frac{x}{y} + 2 = 3\\ x - \sqrt{y} = 2 \end{cases}$$

1. Risolvi il sistema:

$$\begin{cases} \log(x) + y = 2 \\ x^y = 4 \end{cases}$$

2. Risolvi il sistema:

$$\begin{cases} x^3 + y^2 = 10\\ x - y = 2 \end{cases}$$

3. Risolvi il sistema:

$$\begin{cases} x^2 + y^3 = 9\\ x + \sqrt{y} = 3 \end{cases}$$

4. Risolvi il sistema:

$$\begin{cases} \frac{x}{y} = 2\\ x^2 - y^2 = 16 \end{cases}$$

Matematica per le scuole superiori

5. Risolvi il sistema:

$$\begin{cases} \frac{1}{x} + \frac{1}{y} = 1\\ x - y = 2 \end{cases}$$

6. Risolvi il sistema:

$$\begin{cases} e^x + y = 5\\ x + \ln(y) = 2 \end{cases}$$

7. Risolvi il sistema:

$$\begin{cases} x^3 - y = 8\\ y + \sqrt{x} = 10 \end{cases}$$

8. Risolvi il sistema:

$$\begin{cases} \log(x) + y^2 = 4 \\ x + y = 3 \end{cases}$$

9. Risolvi il sistema:

$$\begin{cases} x^2 - y = 3\\ \frac{x+y}{x-y} = 2 \end{cases}$$

10. Risolvi il sistema:

$$\begin{cases} 2^x + y = 10 \\ x + \log_2(y) = 3 \end{cases}$$

11. Risolvi il sistema:

$$\begin{cases} x^2 + y^2 = 25 \\ x^3 - y = 15 \end{cases}$$

12. Risolvi il sistema:

$$\begin{cases} x + \frac{1}{y} = 4\\ \frac{x}{y} + 2 = 5 \end{cases}$$

13. Risolvi il sistema:

$$\begin{cases} x^4 - y^2 = 16\\ x + y = 6 \end{cases}$$

14. Risolvi il sistema:

$$\begin{cases} \sqrt{x} + y^3 = 10\\ x + \frac{1}{y} = 4 \end{cases}$$

15. Risolvi il sistema:

$$\begin{cases} e^x - y = 2 \\ x + \ln(y) = 1 \end{cases}$$

16. Risolvi il sistema:

$$\begin{cases} \frac{1}{x} + y^2 = 5\\ x^2 + y = 6 \end{cases}$$

17. Risolvi il sistema:

$$\begin{cases} x^2 + y^3 = 12\\ \ln(x) + y = 2 \end{cases}$$

18. Risolvi il sistema:

$$\begin{cases} x + y = 7 \\ x^2 + y^2 = 49 \end{cases}$$

19. Risolvi il sistema:

$$\begin{cases} x - \sqrt{y} = 3\\ x^2 + y = 18 \end{cases}$$

20. Risolvi il sistema:

$$\begin{cases} 3^x + y = 10 \\ x + \log_3(y) = 2 \end{cases}$$

21. Risolvi il sistema:

$$\begin{cases} x^3 + y^2 = 20\\ x + y = 6 \end{cases}$$

22. Risolvi il sistema:

$$\begin{cases} \frac{x}{y} = 3\\ x^2 + y^2 = 25 \end{cases}$$

23. Risolvi il sistema:

$$\begin{cases} x^2 - y = 4\\ x + y^2 = 10 \end{cases}$$

Algebra lineare

In questa sezione vengono presentati gli argomenti dell'algebra lineare che riguardano la soluzione di sistemi di equazioni lineari, per i quali si discutono le condizioni di esistenza e unicità della soluzione e dei quali viene fornita una rappresentazione grafica. Viene introdotto il formalismo matriciale, e le operazioni algebriche elementari sulle matrici; vengono date le definizioni le matrici vengono interpretate come funzioni lineari (applicazioni lineari), e utilizzate per formulare le condizioni di esistenza e unicità delle soluzioni di sistemi lineari (teorema di Rouché-Capelli).

7.1 Introduzione

L'algebra lineare è fondamentale per studiare matrici, sistemi lineari e trasformazioni geometriche. Questo capitolo esplora le matrici, i determinanti e la risoluzione dei sistemi.

7.2 Sistemi lineari e formalismo matriciale

Un sistema di m equazioni lineari in n incognite $\{x_1\}$,

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &= b_1 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n &= b_m \end{cases}$$

può essere riscritto usando il formalismo matriciale come

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ \dots \\ b_m \end{bmatrix} \qquad , \qquad \mathbf{A}\mathbf{x} = \mathbf{b} \; ,$$

avendo raccolto i coefficienti a_{ij} nella matrice $\mathbf{A} \in \mathbb{R}^{m,n}$, una tabela di m righe e n colonne, le incognite x_j nella n-upla $\mathbf{x} \in \mathbb{R}^n$ e i coefficienti b_i nella m-upla $\mathbf{b} \in \mathbb{R}^m$, organizzate in un *vettore colonna*. Il prodotto matrice-vettore colonna $\mathbf{A}\mathbf{x}$ rimane definito dall'equivalenza delle diverse espressioni dello stesso sistema lineare.

7.3 Matrici

Definizione. Una matrice $\mathbf{A} \in \mathbb{R}^{m,n}$ è una tabella 2-dimensionale di numeri reali con m righe e n colonne,

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

7.3.1 Inteprepretazione del contenuto di una matrice

Spesso risulta utile interpetare una matrice $\mathbf{A} \in \mathbb{R}^{m,n}$ come una tabella di n colonne di m-tuple o *vettori colonna*, o come una tabella di m righe di n-tuple o *vettori riga*,

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_{col,1} & \mathbf{a}_{col,2} & \dots & \mathbf{a}_{col,n} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_{row,1}^T \\ \dots \\ \mathbf{a}_{row,m}^T \end{bmatrix}.$$

In seguito si faranno cadere i pedici col e row per motivi di sintesi, usando il simbolo T per intendere un vettore riga, come vettore **trasposto** di un vettore colonna. Nel formalismo matriciale, un vettore colonna con m elementi viene quindi intepretato come una matrice $\in \mathbb{R}^{m,1}$ di m righe e una colonna; viceversa un vettore riga con n elementi una matrice $\in \mathbb{R}^{1,n}$ di una riga e n colonne.

7.3.2 Operazioni

• Somma. La somma è possibile tra due matrici con le stesse dimensioni $A, B \in \mathbb{R}^{m,n}$. La somma di due matrici A, B è la matrice $A + B \in \mathbb{R}^{m,n}$ con componenti

$$(\mathbf{A} + \mathbf{B})_{ij} = a_{ij} + b_{ij} ,$$

o più esplicitamente,

$$\mathbf{A} + \mathbf{B} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ \dots & \dots & \dots & \dots \\ b_{m1} & b_{m2} & \dots & b_{mn} \end{bmatrix} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \dots & a_{1n} + b_{1n} \\ \dots & \dots & \dots & \dots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \dots & a_{mn} + b_{mn} \end{bmatrix}$$

• Moltiplicazione per uno scalare. La moltiplicazione di una matrice $\mathbf{A} \in \mathbb{R}^{m,n}$ per un numero reale $c \in \mathbf{R}$ è la matrice $c\mathbf{A} \in \mathbb{R}^{m,n}$ con componenti

$$(c\mathbf{A})_{ij} = c \, a_{ij}$$

o più esplicitamente,

$$cA = \begin{bmatrix} c \cdot a_{11} & \dots & c \cdot a_{1n} \\ \dots & \dots & \dots \\ c \cdot a_{m1} & \dots & c \cdot a_{mn} \end{bmatrix}$$

• Prodotto di matrici. Il prodotto AB tra matrici è possibile tra due matrici $A \in \mathbb{R}^{m,p}$, $B \in \mathbb{R}^{p,n}$, ed è la matrice $AB \in \mathbb{R}^{m,n}$ con le componenti

$$(\mathbf{A}\mathbf{B})_{ij} = \sum_{k=1}^n a_{in} b_{nj} = \mathbf{a}_i^T \mathbf{b}_j \;.$$

avendo usanto l'interpretazione dei componenti di una matrice in vettori riga e colonna, per esprimere l'elemento ij della matrice **AB** come prodotto matriciale della i-esima riga di **A** con la j-esima colonna di **B**.

Osservazione. Non vale la **proprietà commutativa** per il prodotto di matrici. Per di più, in generale non è possibile formare il prodotto **BA**, se $m \neq n$.

Example 6.3.1 (Non-commutatività del prodotto matriciale)

Date le matrici $\in \mathbb{R}^{2,2}$,

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \qquad , \qquad \mathbf{B} = \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}$$

i prodotti AB e BA valgono

$$\mathbf{AB} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 \cdot 1 + 2 \cdot 1 & 1 \cdot (-1) + 2 \cdot 2 \\ 0 \cdot 1 + 1 \cdot 1 & 0 \cdot (-1) + 1 \cdot 2 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 1 & 2 \end{bmatrix}$$

$$\mathbf{BA} = \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 \cdot 1 - 1 \cdot 0 & 1 \cdot 2 - 1 \cdot 1 \\ 1 \cdot 1 + 2 \cdot 0 & 1 \cdot 2 + 2 \cdot 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 4 \end{bmatrix}$$

Example 6.3.2

todo

Example 6.3.3

todo

7.3.3 Matrice come funzione lineare

Tramite il prodotto matrice vettore (colonna), una matrice $\mathbf{R}^{m,n}$ rappresenta la funzione lineare più generale $f_A : \mathbb{R}^n \to \mathbb{R}^m$, che prende un vettore colonna $\mathbf{x} \in \mathbb{R}^n$ come argomento e restituisce un vettore $\mathbf{y} \in \mathbb{R}^m$,

$$\mathbf{y} = f(\mathbf{x}) = A\mathbf{x}$$
.

Si lasciano dimostrare le proprietà di linearità di questa funzione come esercizio (consiglio: utilizzare le operazioni matriciali)

7.3.4 Immagine e nucleo

Immagine e nucleo sono due insiemi¹ sono due insiemi che caratterizzano le funzioni e quindi possono essere definiti anche per una matrice che rappresenta una funzione lineare.

Il **nucleo** di una matrice $\mathbf{A} \in \mathbb{R}^{m,n}$ è l'insieme dei vettori colonna $\mathbf{x} \in \mathbb{R}^n$ tali che $\mathbf{A}\mathbf{x} = \mathbf{0}_m$,

$$\mathrm{N}(\mathbf{A}) = \{\mathbf{x} \in \mathbb{R}^n \, | \, \mathbf{A}\mathbf{x} = \mathbf{0}_m \}$$
 .

L"immagine di una matrice $\mathbf{A} \in \mathbb{R}^{m,n}$ è l'insieme dei vettori colonna $\mathbf{y} \in \mathbb{R}^m$ per i quali esiste un vettore $\mathbf{x} \in \mathbb{R}^n$ tale che $\mathbf{A}\mathbf{x} = \mathbf{y}$,

$$I(\mathbf{A}) = \{ \mathbf{y} \in \mathbb{R}^m \mid \exists \mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} = \mathbf{y} \} .$$

todo fare riferimento alle definizioni per le funzioni, immagine di una funzione, nucleo di una funzione.

7.3. Matrici 37

¹ Rango e nucleo non sono semplici insiemi, ma hanno qualche proprietà in più che li rende *spazi vettoriali*. Per quello che ci serve qui, possiamo considerarli insiemi.

7.3.5 Determinante

Per una matrice quadrata $\mathbf{A} \in \mathbb{R}^{n,n}$ è possibile definire una grandezza scalare, definita **determinante**, il cui nome dovrebbe farne intuire la rilevanza: essa infatti riassume alcune caratteristiche della matrice e, tra le altre, determina un criterio di esistenza della matrice inversa e un criterio di esistenza e di unicità della soluzione di un sistema lineare, $\mathbf{A}\mathbf{x} = \mathbf{b}$.

La definizione e una discussione completa del determinante di una matrice vanno ben oltre (**todo** *probabilmente*) lo scopo di questo materiale.

todo Rapporto con immagine e nucleo

todo Espressione del determinante per matrici 2x2, 3x3; mettere in evidenza la comparsa del determinante nei metodi di soluzione sotto

7.4 Risoluzione di Sistemi

La soluzione dei sistemi lineari è una delle attività più frequenti nelle applicazioni di matematica, soprattutto negli algoritmi di calcolo numerico; non ci occuperemo qui dei metodi numerici di soluzione dei sistemi lineari, ma si discutono diversi approcci alla soluzione analitica «a manina» di sistemi lineari, utili per il calcolo analitico della soluzione esatta di sistemi lineari di dimensioni sufficientemente ridotte (3, salvo casi eccezionali...).

Come descritto dal *teorema di Rouché-Capelli*, esistono 3 possibili situazioni: il sistema lineare ha 1. una sola soluzione; 2. un numero infinito di soluzioni; 3. nessuna soluzione.

I metodi presentati sono tra di loro equivalenti, intendendo che portano alla stessa soluzione. **todo** *Equivalenti nel caso esista una soluzione unica. Danno le stesse informazioni anche nel caso esistano infinite soluzioni o non esistano soluzioni? Riguardo il rango e/o il nucleo...*

todo Collegamento a soluzione numerica di sistemi lineari, nel \$bbook\$ sull'introduzione alla programmazione e al calcolo numerico

7.4.1 Metodo di sostituzione

Il metodo di sostituzione consiste nell'usare in successione un'equazione per ricavare un'incognita in funzione delle altre incognite, e sostituire l'espressione ricavata nelle altre successioni, per ottenere un sistema lineare con al dimensione ridotta di 1. Si continua così fino a ottenere un'equazione in un'incognita, immediata da risolvere. Successivamente si trovano i valori delle altre incognite in funzione delle incognite già calcolate. Se esiste una soluzione del problema, l'algoritmo descritto permette di calcolare la soluzione. **todo** Altrimenti, in caso di esistenza di infinite soluzioni si arriva a un'identità 0 = 0; in caso di nessuna soluzione si arriva a una contraddizione 1 = 0. **todo** vedi esempi sotto

Example 6.4.1 (Metodo di sostituzione per sistema quadrato determinato)

Si vuole risolvere il sistema

$$\begin{cases} x_1-x_3=1\\ 2x_2+x_3=-1\\ 3x_1+x_2-x_3=4 \end{cases}$$

Applichiamo il metodo di sostituzione, usando la prima equazione per esprimere x_1 in funzione delle altre incognite,

$$\begin{cases} E1: \ x_1-x_3=1 & \to & x_1=x_3+1 \\ E2: \ 2x_2+x_3=-1 \\ E3: \ 3x_1+x_2-x_3=4 \end{cases}$$

si può sostituire l'espressione trovata nelle altre due equazioni per ottenere un sistema di 2 equazioni nelle due incognite $x_2.x_3$, e usare l'equazione E2 per esprimere x_3 in funzione di x_2

$$\begin{cases} E2: \ 2x_2 + x_3 = -1 \\ E3: \ 3(x_3 + 1) + x_2 - x_3 = 4 \end{cases} \qquad \begin{cases} E2: \ 2x_2 + x_3 = -1 \\ E3: \ x_2 + 2x_3 = 1 \end{cases} \qquad \rightarrow \qquad x_3 = -1 - 2x_2 + x_3 = 1$$

e ottenere un'unica equazione lineare E3 per l'unica incognita x_2 , della quale è possibile calcolare il valore,

$$E3: \; x_2 + 2(-1 - 2x_2) = 1 \quad \to \quad x_2 = -1 \; .$$

Una volta trovato il valore $x_2=-1$, si «torna indietro» per calcolare $x_3=-1-2x_2=1$ e $x_1=x_3+1=2$. La soluzione del sistema quindi esiste, è unica ed è $\mathbf{x}=(x_1,x_2,x_3)=(2,-1,1)$.

7.4.2 Metodo di eliminazione di Gauss

Il metodo di eliminazione di Gauss consiste nella combinazione lineare delle equazioni del sistema per ottenere una forma del sistema facilmente risolvibile, tipicamente una matrice dei coefficienti con forma triangolare.

Example 6.4.2 (Metodo di sostituzione per sistema quadrato determinato)

Si vuole risolvere il sistema

$$\begin{cases} x_1 - x_3 = 1 \\ 2x_2 + x_3 = -1 \\ 3x_1 + x_2 - x_3 = 4 \end{cases}$$

con il metodo di eliminazione di Gauss. E" comune (ma non obbligatorio, ognuno è libero di fare quello che gli pare, purché vengano seguiti procedimenti logici) applicare il metodo dopo aver riscritto il sistema con il fomralismo matriciale,

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 2 & 1 \\ 3 & 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix} ,$$

e, sottintendendo il vettore delle incognite,

$$\left[\begin{array}{ccc|c} 1 & 0 & -1 & 1 \\ 0 & 2 & 1 & -1 \\ 3 & 1 & -1 & 4 \end{array}\right] .$$

Vogliamo ottenere una forma triangolare della matrice **A**. La prima e la seconda riga soddisfano già questa struttura, mentre è necessario combinare le righe per annullare i primi 2 elementi della tera riga. Sottraendo la prima riga moltiplicata per 3, viene annullato il primo elemento

$$\left[\begin{array}{ccc|c} 1 & 0 & -1 & 1 \\ 0 & 2 & 1 & -1 \\ 0 & 1 & 2 & 1 \end{array}\right] ,$$

e successivamente sottraendo la seconda riga moltiplicata per $\frac{1}{2}$, viene annullato il secondo elemento,

$$\left[\begin{array}{cc|cc|c} 1 & 0 & -1 & 1 \\ 0 & 2 & 1 & -1 \\ 0 & 0 & \frac{3}{2} & \frac{3}{2} \end{array}\right] \ .$$

Matematica per le scuole superiori

Ottenuta la forma triangolare desiderata, si fa ricomparire il vettore delle incognite

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 2 & 1 \\ 0 & 0 & \frac{3}{2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ \frac{3}{2} \end{bmatrix} \ ,$$

e si risolve il sistema triangolare partendo dall'ultima equazione

$$\frac{3}{2}x_3 = \frac{3}{2} \qquad \to \qquad x_3 = 1$$

a ritroso: questo ordine di soluzione permette di risolvere n equazioni che contengono una sola incognita per volta, dopo aver sostituito il valore delle incognite già trovate,

$$\begin{array}{cccc} 2x_2+x_3=-1 & & \rightarrow & & x_2=-1 \\ x_1-x_3=1 & & \rightarrow & & x_1=2 \end{array}$$

7.4.3 Metodo di Cramer

todo Per quale motivo discuterlo? E" scomodo, non dà grandi informazioni in caso di assenza o numero infinito di soluzioni...

7.5 Teorema di Rouché-Capelli

7.5.1 Interpretazione geometrica

Example 6.5.1 (Sistema quadrato determinato)

Example 6.5.2 (Sistema quadrato indeterminato)

Example 6.5.3 (Sistema quadrato sovradeterminato)

Example 6.5.4 (Sistema indeterminato)

7.6 Problemi

7.6.1 Matrici come funzione lineare

Exercise 6.6.1 (Matrici e scalatura)

Interpretando gli elementi di un vettore colonna $\mathbf{x} \in \mathbb{R}^2$ come le componenti cartesiane del vettore \vec{x} in un piano, la matrice $\mathbf{A} \in \mathbb{R}^{2,2}$

$$\mathbf{A} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} ,$$

rappresenta una scalatura non isotropa (diversa lungo le diverse direzioni) delle componenti dei vettori di un fattore a in direzione x e di un fattore b in direzione y.

- Dimostrare questa frase, calcolando il prodotto \mathbf{Ar} per il vettore colonna generico $\mathbf{r} = \begin{bmatrix} x \\ y \end{bmatrix}$ contenente le componenti cartesiane del vettore \vec{r} nel piano
- Dare una rappresentazione grafica nel piano
- Dimostrare che il determinante della matrice è uguale a ab, $|\mathbf{A}| = ab$
- Dimostrare che la trasformazione inversa \mathbf{A}^{-1} esiste per $a \neq 0 \land b \neq 0$, e vale $\mathbf{A}^{-1} = \begin{bmatrix} \frac{1}{a} & 0 \\ 0 & \frac{1}{b} \end{bmatrix}$
- Discutere il caso in cui a = b, dove la scalatura è isotropa.
- Dimostrare che questa trasformazione rappresenta la riflessione rispetto all'origine nel caso in cui a=b=-1

Exercise 6.6.2 (Matrici e riflessioni)

Interpretando gli elementi di un vettore colonna $\mathbf{x} \in \mathbb{R}^2$ come le componenti cartesiane del vettore \vec{x} in un piano, la matrice $\mathbf{A} \in \mathbb{R}^{2,2}$

$$\mathbf{A} = \begin{bmatrix} 1-2n_x^2 & -2n_xn_y \\ -2n_xn_y & 1-2n_y^2 \end{bmatrix} \,, \label{eq:alpha}$$

rappresenta una riflessione di vettori del piano rispetto a una retta passante per l'origine e perpendicolare al vettore \vec{n} con componenti n_x , n_y , $n_x^2 + n_y^2 = 1$.

- Dimostrare questa frase, calcolando il prodotto \mathbf{Ar} per il vettore colonna generico $\mathbf{r} = \begin{bmatrix} x \\ y \end{bmatrix}$ contenente le componenti cartesiane del vettore \vec{r} nel piano
- Dare una rappresentazione grafica nel piano
- Dimostrare che il determinante della matrice è uguale a -1, $|\mathbf{A}| = -1$
- Dimostrare che la trasformazione inversa A^{-1} esiste ed è uguale alla trasformazione originale, $A^{-1} = A$

Exercise 6.6.3 (Matrici e rotazioni)

Interpretando gli elementi di un vettore colonna $\mathbf{x} \in \mathbb{R}^2$ come le componenti cartesiane del vettore \vec{x} in un piano, la matrice $\mathbf{A} \in \mathbb{R}^{2,2}$

$$\mathbf{A} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} ,$$

rappresenta una rotazione dei vettori attorno all'origine di un angolo θ .

- Dimostrare questa frase, calcolando il prodotto \mathbf{Ar} per il vettore colonna generico $\mathbf{r} = \begin{bmatrix} x \\ y \end{bmatrix}$ contenente le componenti cartesiane del vettore \vec{r} nel piano
- Dare una rappresentazione grafica nel piano
- Dimostrare che il determinante della matrice è uguale a 1, $|\mathbf{A}| = 1$
- Dimostrare che la trasformazione inversa A^{-1} esiste ed è uguale alla trasposta della trasformazione, $A^{-1} = A^{T}$

7.6. Problemi 41

todo Si può sostituire $\cos \theta = a$, $\sin \theta = b$ $\cos a^2 + b^2 = 1$

todo Dipendenza logica di questo esercizio dalle basi di *trigonometria*. Stabilire un ordine consigliato di accesso a questo bbook

Exercise 6.6.4 (Proiezione ortogonale lungo una direzione data)

Interpretando gli elementi di un vettore colonna $\mathbf{x} \in \mathbb{R}^2$ come le componenti cartesiane del vettore \vec{x} in un piano, la matrice $\mathbf{A} \in \mathbb{R}^{2,2}$

$$\mathbf{A} = \mathbf{n}^T \mathbf{n} = \begin{bmatrix} n_x^2 & n_x n_y \\ n_x n_y & n_y^2 \end{bmatrix} \,,$$

rappresenta una proiezione ortogonale dei punti del piano sulla retta passante per l'origine con direzione determinata dal vettore \vec{n} con componenti n_x , n_y , $n_x^2 + n_y^2 = 1$.

- Dimostrare questa frase, calcolando il prodotto \mathbf{Ar} per il vettore colonna generico $\mathbf{r} = \begin{bmatrix} x \\ y \end{bmatrix}$ contenente le componenti cartesiane del vettore \vec{r} nel piano
- Dare una rappresentazione grafica nel piano
- Dimostrare che il determinante della matrice è uguale a 0, $|\mathbf{A}| = 0$
- Dimostrare che l'immagine della trasformazione è formato dai vettori colonna $a\mathbf{n}$
- Dimostrare che il nucleo della trasformazione è formato dai vettori colonna \mathbf{x} per i quali vale $\mathbf{x}^T\mathbf{a}=0$

Exercise 6.6.5 (Proiezione ortogonale nella direzione perpendicolare a una direzione data)

Interpretando gli elementi di un vettore colonna $\mathbf{x} \in \mathbb{R}^2$ come le componenti cartesiane del vettore \vec{x} in un piano, la matrice $\mathbf{A} \in \mathbb{R}^{2,2}$

$$\mathbf{A} = \mathbf{I} - \mathbf{n}^T \mathbf{n} = \begin{bmatrix} 1 - n_x^2 & -n_x n_y \\ -n_x n_y & 1 - n_y^2 \end{bmatrix} \;,$$

rappresenta una proiezione ortogonale dei punti del piano sulla retta passante per l'origine e perpendicolare al vettore \vec{n} con componenti n_x , n_y , $n_x^2 + n_y^2 = 1$.

- Dimostrare questa frase, calcolando il prodotto \mathbf{Ar} per il vettore colonna generico $\mathbf{r} = \begin{bmatrix} x \\ y \end{bmatrix}$ contenente le componenti cartesiane del vettore \vec{r} nel piano
- Dare una rappresentazione grafica nel piano
- Dimostrare che il determinante della matrice è uguale a 0, $|\mathbf{A}| = 0$
- Dimostrare che l'immagine della trasformazione è formato dai vettori colonna ${\bf x}$ per i quali vale ${\bf x}^T{\bf a}=0$
- Dimostrare che il nucleo della trasformazione è formato dai vettori colonna $a\mathbf{n}$

Exercise 6.6.6 (Scomposizione di una matrice - somma di parte simmetrica e antisimmetrica)

Ogni matrice può essere scritta come la somma di una parte simmetrica e una parte antisimmetrica.

Exercise 6.6.7 (Scomposizione di una matrice - ...)

7.6.2 Soluzione di sistemi lineari

Viene chiesto di stabilire se i seguenti problemi hanno soluzione, di calcolare le eventuali soluzioni, fornire una rappresentazione grafica del problema algebrico, e - per sistemi con uguale numero di equazioni ed incognite - calcolare il determinante delle matrici del sistema lineare.

1.

$$\begin{cases} x + y = 4\\ \frac{3}{2}x + y = 5 \end{cases}$$

2.

$$\begin{cases} x - y = 2\\ x + y = -1 \end{cases}$$

3.

$$\begin{cases} x + 2y = 5\\ 2x + 2y = 11 \end{cases}$$

4.

$$\begin{cases} x + y = 3 \\ x - y = 1 \end{cases}$$

5.

$$\begin{cases} x - y + z = 0 \\ 2x - 2y + 2z = 0 \\ -x + y - z = 0 \end{cases}$$

6.

$$\begin{cases} x+y+z=2\\ x+2y+z=4\\ x+y+2z=6 \end{cases}$$

7.

$$\begin{cases} x + y + z = 3 \\ 2x + 2y + z = 8 \end{cases}$$

8.

$$\begin{cases} x + y + z = 7 \\ x + y - z = 3 \end{cases}$$

9.

$$\begin{cases} 3x + 2y = 6 \\ x - y = 1 \end{cases}$$

10.

$$\begin{cases} x + y = 2\\ 3x + 2y = 6 \end{cases}$$

11.

$$\begin{cases} x - y = 1 \\ x - 3y + z = 3 \end{cases}$$

7.6. Problemi

Matematica per le scuole superiori

12.

$$\begin{cases} x + y = 5 \\ 2x - y = 1 \end{cases}$$

13.

$$\begin{cases} x+y=1\\ x+y+z=3\\ 2x+2y+z=4 \end{cases}$$

14.

$$\begin{cases} x + y + z = 5 \\ 2x - 2y + 2z = 10 \\ 3x - y + 3z = -5 \end{cases}$$

15.

$$\begin{cases} x + y = 4 \\ 2x + 2y = 8 \end{cases}$$

16.

$$\begin{cases} x + 2y = 8\\ 3x - 4y = -2 \end{cases}$$

17.

$$\begin{cases} x + y = 3 \\ 2x + 2y = 6 \\ x + 3y = 4 \end{cases}$$

18.

$$\begin{cases} x + y - z = 3 \\ 2x - y + z = 2 \\ -x + y + 2z = 4 \end{cases}$$

19.

$$\begin{cases} x+y+z=6\\ x-y+z=4\\ 2x+y-z=7 \end{cases}$$

20.

$$\begin{cases} x + y + 3z = 6 \\ 2x + 4y + 6z = 12 \\ -x - 2y - 3z = -6 \end{cases}$$

Viene chiesto di ripetere la discussione degli esercizi precedenti, al variare dei parametri nel sistemi.

1.

$$\begin{cases} x + ky = 2 \\ x - 2y = 1 \end{cases}$$

2.

$$\begin{cases} x + y = b \\ ax + y = 2 \end{cases}$$

Matematica per le scuole superiori

3.

$$\begin{cases} x-y+mz=3\\ mx+2y+z=4\\ x+y-z=1 \end{cases}$$

4.

$$\begin{cases} kx + y = 4\\ 2x + ky = 3p \end{cases}$$

5.

$$\begin{cases} px + y = 1\\ 2x + y + z = 2\\ y + qz = p \end{cases}$$

todo Qualche esercizio con disequazioni

basics

08 dic 2024

Matematica	nar	ΙО	CCLIO	Δ	CIID	Δri	nr
Matcillatica	DEI	ıc	Scuoi		SUP	, e i i	

CAPITOLO 8

Algebra vettoriale

- Definizione di spazio vettoriale: struttura algebrica e proprietà delle operazioni
- Definizione di combinazione lineare, vettori linearmente indipendenti
- Definizione di base di uno spazio vettoriale
- Spazio vettoriale euclideo:
 - prodotto scalare e norma
 - base ortonormale
 - definizione del prodotto vettoriale

basics

08 dic 2024

2 min read

8.1 Prime definizioni

8.1.1 Definizione di spazio vettoriale

Uno spazio vettoriale è una struttura algebrica formata da:

- un insieme V, i cui elementi sono chiamati **vettori**
- un campo K (di solito quello dei numeri reali $\mathbb R$ o complessi $\mathbb C$), i cui elementi sono chiamati **scalari**
- due operazioni chiuse rispetto all'insieme V chiamate:
 - somma vettoriale
 - moltiplicazione per uno scalare, che soddisfano determinate proprietà che verranno elencate in seguito.

Un"operazione è chiusa rispetto a un'insieme, se il risultato delle operazioni è un elemento dell'insieme.

Nel seguito del capitolo verranno considerati solo campi vettoriali definiti sui numeri reali, per i quali $K = \mathbb{R}$.

Operazioni sui vettori: definizione di spazio vettoriale

• La somma tra due vettori $\mathbf{v}, \mathbf{w} \in V$ è il vettore

$$\mathbf{v} + \mathbf{w} \in V$$

• La moltiplicazione per uno scalare di un vettore $\mathbf{v} \in V$ per uno scalare $\alpha \in K$ è il vettore

$$\alpha \mathbf{v} \in V$$

Proprietà delle operazioni

• proprietà commutativa della somma

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u} \qquad \forall \mathbf{u}, \mathbf{v} \in V$$

• proprietà associativa della somma

$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w}) \qquad \forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in V$$

· esistenza dell'elemento neutro della somma

$$\exists \mathbf{0}_V \in V \qquad s.t. \qquad \mathbf{u} + \mathbf{0}_V = \mathbf{u} \qquad \forall \mathbf{u} \in V$$

• esistenza dell'elemento inverso della somma

$$\forall \mathbf{u} \in V \; \exists \mathbf{u}' \in V \qquad s.t. \qquad \mathbf{u} + \mathbf{u}' = \mathbf{0}$$

• proprietà associativa del prodotto scalare

$$(\alpha\beta)\mathbf{u} = \alpha(\beta\mathbf{u}) \qquad \forall \alpha, \beta \in K, \ \mathbf{u} \in V$$

• esistenza dell'elemento neutro della moltiplicazione per uno scalare

$$\exists 1 \in K$$
 s.t. $1 \mathbf{u} = \mathbf{u} \quad \forall \mathbf{u} \in V$

• proprietà distributiva della moltiplicazione per uno scalare

$$(\alpha + \beta)\mathbf{u} = \alpha\mathbf{u} + \beta\mathbf{u}$$

$$\alpha(\mathbf{u} + \mathbf{v}) = \alpha \mathbf{u} + \alpha \mathbf{v}$$

Esempi

Esempio 1 - n-upla di numeri reali ordinati. Gli elementi $\mathbf{u}=(u_1,u_2,\ldots,u_N)$ formano uno spazio vettoriale sui numeri reali, con le operazioni di somma e moltiplicazione per uno scalare con la seguenti definizioni:

• somma:

$$\mathbf{u} + \mathbf{v} = (u_1, u_2, \dots, u_N) + (v_1, v_2, \dots, v_N) = (u_1 + v_1, u_2 + v_2, \dots, u_N + v_N)$$

• moltiplicazione per uno scalare:

$$\alpha \mathbf{u} = \alpha(u_1, u_2, \dots, u_N) = (\alpha u_1, \alpha u_2, \dots, \alpha u_N)$$

Esempio 2 - vettori in uno spazio euclideo. Fissato un punto O in uno spazio euclideo (todo riferimenti?), si può associare a ogni punto P nello spazio il segmento orientato \overrightarrow{OP} . L'insieme dei segmenti orientati associati a ogni punto dello spazio forma uno spazio vettoriale con le operazioni di somma e moltiplicazione per uno scalare con le seguenti definizioni:

- somma: tramite il metodo del parallelogramma todo
- moltiplicazione per uno scalare: todo

Esempio 3 - spazio vettoriale delle traslazioni. In uno spazio euclideo, l'insieme delle traslazioni forma uno spazio vettoriale.

todo

Esempio 4 - polinomi di grado minore o uguale a n L'insieme dei polinomi di grado minore o uguale a n,

$$\mathbf{u} = u_n x^n + u_{n-1} x^{n-1} + \dots u_1 x + u_0 ,$$

forma uno spazio vettoriale con le usuali definizioni di somma e moltiplicazione per uno scalare valide per i polinomi.

8.1.2 Base di uno spazio vettoriale

Combinazione lineare. Una combinazione lineare di D vettori $\{\mathbf{u}_i\}_{i=1:D}$ è data dalla somma

$$\alpha_1 \mathbf{u}_1 + \dots + \alpha_D \mathbf{u}_D$$
,

dove i coefficienti scalari α_i vengono definiti coefficienti della combinazione lineare.

Vettori linearmente indipendenti. Un insieme di vettori $\{\mathbf{u}_i\}_{i=1:D}$ è linearmente indipendente se non è possibile esprimere uno di questi vettori in funzione degli altri. Un'altra definizione equivalente definisce un insieme di vettori linearmente indipendente se vale

$$\alpha_1 \mathbf{u}_1 + \dots + \alpha_D \mathbf{u}_D = \mathbf{0} \qquad \rightarrow \qquad \alpha_1 = \dots = \alpha_D = 0$$

cioè una combinazione lineare di questi vettori è uguale al vettore nullo solo se tutti i coefficienti della combinazione lineare sono nulli.

Base di uno spazio vettoriale. In uno spazio vettoriale, ogni vettore può essere rappresentato come una combinazione lineare di un insieme di vettori dello spazio, opportunamente scelti. Il numero minimo di questi vettori è definita come dimensione dello spazio vettoriale.

basics

08 dic 2024

1 min read

8.2 Spazio vettoriale euclideo

Definizione di uno spazio vettoriale euclideo.

todo

8.2.1 Prodotto interno e distanza

Uno spazio vettoriale euclideo può essere equipaggiato con un'operazione bilineare, simmetrica (su campi reali), e semidefinita positiva, definita **prodotto interno**,

$$\cdot: V \times V \to \mathbb{R}$$
,

che permette di definire la norma di un vettore e l'angolo tra due vettori

$$\vec{u} \cdot \vec{v} := |\vec{u}| |\vec{v}| \cos \theta_{\vec{u}\vec{v}}$$
$$|\vec{v}| = \sqrt{\vec{v} \cdot \vec{v}}$$

E" semplice verificare che la definizione del prodotto interno induce la definizione della norma. Infatti, calcolando il prodotto interno tra un vettore \vec{v} e se stesso, l'angolo compreso è l'angolo nullo, $\theta_{\vec{v}\vec{v}}=0$, con $\cos\theta_{\vec{u}\vec{u}}=0$.

8.2.2 Prodotto vettoriale

Per lo spazio euclideo E^3 è possibile definire anche un'operazione bilineare, antisimmetrica, definita **prodotto vettoriale**,

$$\times: V \times V \to V$$
,

in modo tale da avere

$$\vec{u} \times \vec{v} = \hat{k} |\vec{u}| |\vec{v}| \sin \theta_{\vec{u}\vec{v}}$$

con il vettore \hat{k} ortogonale a entrambi i vettori \vec{u} , \vec{v} nella direzione definita dalla regola della mano destra **todo**

- todo. E in E^2 ? A volte è comodo assumere che esista una dimensione aggiuntiva, e che quindi ci si trovi in E^3 . In questo caso, il prodotto vettore di due vettori di E^2 è sempre ortogonale ad esso.
- todo. Il prodotto vettoriale può essere visto come un caso particolare di un'operazione «strana» chiamata prodotto esterno

8.2.3 Base cartesiana

In uno spazio vettoriale euclideo, E^3 , è possibile definire una base carteisana, $\{\hat{x}, \hat{y}, \hat{z}\}$, come un'insieme di vettori di norma unitaria e reciprocamente ortogonali,

$$\hat{x} \cdot \hat{x} = \hat{y} \cdot \hat{y} = \hat{z} \cdot \hat{z} = 1$$
$$\hat{x} \cdot \hat{y} = \hat{y} \cdot \hat{z} = \hat{z} \cdot \hat{x} = 0$$

e usando il prodotto vettore per definire l'orientazione dei 3 vettori,

$$\hat{x} \times \hat{y} = \hat{z}$$
$$\hat{y} \times \hat{z} = \hat{x}$$
$$\hat{z} \times \hat{x} = \hat{y}$$

Un vettore di uno spazio vettoriale può essere sempre scritto come combinazione lineare degli elementi di una base vettoriale,

$$\vec{v} = v_x \hat{x} + v_y \hat{y} + v_z \hat{z} \; . \label{eq:vx}$$

Usando una base cartesiana, è immediato ricavare le coordinate cartesiane di un vettore \vec{v} come il prodotto interno del vettore \vec{v} per i vettori della base,

$$\begin{aligned} v_x &= \hat{x} \cdot \vec{v} \\ v_y &= \hat{y} \cdot \vec{v} \\ v_z &= \hat{z} \cdot \vec{v} \end{aligned}$$

Usando una base cartesiana, si possono scrivere:

• la somma di vettori e la moltiplicazione per uno scalare in componenti,

$$\begin{split} \vec{v} + \vec{w} &= (v_x \hat{x} + v_y \hat{y} + v_z \hat{z}) + (w_x \hat{x} + w_y \hat{y} + w_z \hat{z}) = \\ &= (v_x + w_x) \hat{x} + (v_y + w_y) \hat{y} + (v_z + w_z) \hat{z} \end{split}$$

$$a\vec{v} = a(v_x\hat{x} + v_y\hat{y} + v_z\hat{z}) =$$

$$= (av_x)\hat{x} + (av_y)\hat{y} + (av_z)\hat{z}$$

• il prodotto interno in termini delle componenti cartesiane dei vettori

$$\begin{split} \vec{v}\cdot\vec{w} &= (v_x\hat{x} + v_y\hat{y} + v_z\hat{z})\cdot(w_x\hat{x} + w_y\hat{y} + w_z\hat{z}) = \\ &= v_xw_x + v_yw_y + v_zw_z \end{split}$$

• il prodotto vettoriale, in termini del determinante formale

$$\begin{split} \vec{v} \times \vec{w} &= (v_x \hat{x} + v_y \hat{y} + v_z \hat{z}) \times (w_x \hat{x} + w_y \hat{y} + w_z \hat{z}) = \\ &= (v_y w_z - v_z w_y) \hat{x} + (v_z w_x - v_x w_z) \hat{y} + (v_x w_y - v_y w_x) \hat{z} = \\ &= \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ v_x & v_y & v_z \\ w_x & w_y & w_z \end{vmatrix} \end{split}$$

basics

08 dic 2024

Matamatica	nar	\mathbf{a}	COLICIA	` ^!!	MAPI4	\sim $^{\nu}$
Matematica	vei		SURIUM	- 511	.,	
	ρυ.			,	P	•

CAPITOLO 9

Algebra complessa

La discussione dell" algebra complessa viene rimandata alla sezione del pre-calcolo.

basics

08 dic 2024

Matematica	ner	IΑ	SCHOLE	SHIP	erio	rı

CAP			4	\wedge
\cap \wedge \cap	ITA		- 1	()
CAL	\cup	LU		V

Algebra di insiemi

La discussione dell''algebra di insiemi viene rimandata alla sezione dell''insiemistica.

Matematica	ner	le	scuole	sur	periori
matcination	PCI		Soucic	JUL	

Parte IV Geometria analitica

basics

08 dic 2024

			
Matamat	ICO DOL	בוחוותם בו	superiori

CAPITOLO 11

Introduzione alla geometria analitica

La geometria analitica...

Argomenti del capitolo

 $Spazi\ euclidei$. Viene data una formalizzazione del concetto di spazio euclideo E^d , un modello dello spazio come percepito da noi nella nostra esperienza quotidiana. Negli spazi euclidei è possibile applicare senza troppe complicazioni - e non diremo altro - gli strumenti dell''algebra vettoriale, usati qui per introdurre le coordinate cartesiane, e la misura di distanzee angoli in spazi euclidei.

Geometria nel piano - spazio euclideo 2D, E^2 .

- Sistemi di coordinate
- · Curve nel piano
 - Rette
 - Coniche

Geometria nello spazio euclideo 3D, E^3 .

- Sistemi di coordinate
- Piani nello spazio
- Curve nello spazio
 - Rette
- Coniche come sezione di un cono

...

- Nel 1637 Cartesio formalizzò le basi della geometria analitica, o geometria cartesiana, nel libro *Geometria*, introdotto dal suo più famoso *Discorso sul metodo*.
- Il lavoro di Cartesio fornisce strumenti fondamentali usati nella seconda metà del XVII secolo da Newton e Leibniz per sviluppare il *calcolo infinitesimale*, e contemporanemente la meccanica razionale di Newton.
- La geometria analitica si occupa dello studio delle figure geometriche nello spazio tramite l'uso di sistemi di coordinate: la scelta dei sistemi di coordinate può spesso essere arbitaria, spesso guidata da criteri di «comodità»; i risultati sono indipendenti dalla scelta.
- L'utilizzo di un sistema di coordinate per la descrizione dello spazio produce un legame tra la geometria e l'algebra:
 - da un lato, le entità geometriche possono essere rappresentate con funzioni, equazioni e/o disequazioni che coinvolgono le coordinate;
 - dall'altro, ai problemi algebrici si può dare un'interpretazione geometrica;

basics

08 dic 2024

CAPITOLO 12

Spazio euclideo

Approccio storico-applicativo

- *Elementi di Euclide*: formulazione assiomatica della geometria, partendo dalla definizione di concetti primitivi e postulati (5), viene sviluppata la teoria in teoremi e corollari, tramite un procedimento deduttivo.
- Qualitativamente, la geometria di Euclide corrisponde alla concezione quotidiana dello spazio nel quale viviamo.
 Lo spazio euclideo fornisce il modello di spazio per la meccanica di Newton, formulata nel XVII secolo, e che rimane un ottimo modello ampiamente usato tutt'oggi per l'evoluzione di sistemi con dimensioni caratteristiche sufficientemente maggiori della scala atomica, e velocità caratteristiche sufficientemente minori della velocità della luce.
- Una definizione più moderna di uno spazio euclideo si basa sulle traslazioni (**todo** citare Bowen, *Introduction to tensors and vectors*). Sia E un insieme di elementi, definiti **punti**, e V lo *spazio vettoriale delle traslazioni*, E viene definito uno spazio euclideo se esiste una funzione $f: E \times E \to V$ che associa a due punti dell'insieme E uno e un solo vettore traslazione $v \in V$ tale che
 - 1. f(x,y) = f(x,z) + f(z,y) per ogni $x, y, z \in E$
 - 2. per $\forall x \in E, v \in V, \exists ! y \in E \text{ tale che } f(x,y) = v$
- todo Dato uno spazio euclideo, si può usare un punto O chiamato origine, per definire uno spazio vettoriale associando ogni punto P dello spazio euclideo E al vettore traslazione $\vec{v} = P O \in V$ todo differenza tra spazi vettoriali e spazi affini
- Seguendo l'approccio di Cartesio, i punti di uno spazio possono essere rappresentati da un sistema di coordinate (todo coordinate: funzioni scalari definite nello spazio). A volte non si riesce a rappresentare tutto lo spazio con un solo insieme di coordinate, ma servono più carte di coordinate, che si sovrappongano in alcune regioni, per poter ricavare una transizione tra due mappe differenti. Il numero di coordinate necessario e sufficiente a rappresentare tutti i punti dello spazio coincide con la dimensione dello spazio. In questa maniera, ogni punto x in uno spazio n-dimensionale, o in un suo sottoinsieme, può essere identificato dal valore di n funzioni scalari definite nello spazio, definite coordinate.

$$x(q^1,q^2,\dots,q^n)$$
 .

• Tra le infinite scelte possibili di un sistema di coordinate, esistono alcuni sistemi particolari, i sistemi di **coordinate** cartesiane todo definire le coordinate cartesiane associandole alle traslazioni $\{\hat{e}_k\}_{k=1:n}$

Matematica per le scuole superiori

- Tra i sistemi di coordinate cartesiane, i sistemi di **coordinate cartesiane ortonormali** sono associati a traslazioni unitarie in direzioni ortogonali tra di loro. Usando un sistema di coordinate cartesiane ortogonali, è possibile definire uno spazio euclideo come uno spazio in cui sono valide le espressioni:
 - il prodotto interno:

$$\vec{u}\cdot\vec{v}=\sum_k u^k v^k$$

- la norma di un vettore (indotta dal prodotto interno), o della distanza tra due punti che definiscono il vettore \vec{v}

$$|\vec{u}|^2 = \vec{u} \cdot \vec{u} = \sum_k u^k u^k \;,$$

ossia si può usare il teorema di Pitagora per il calcolo delle distanze.

• **todo** cenni a spazi/geometrie non euclidee: esempi, e criteri «avanzati» per la definizione (basati su curvatura, geodesiche,...), e conseguenze,...

basics

08 dic 2024

CAPITOLO 13

Geometria analitica nel piano

La geometria analitica nel piano si occupa della descrizione dello spazio bidimensionale euclideo e delle entità geometriche in esso, grazie all'uso di sistemi di coordinate (q^1, q^2) .

- Sistemi di coordinate, e punti nello spazio. Vengono presentati:
 - alcuni sistemi di coordinate che risulteranno utili nello studio della geometria analitica nel piano,
 - le regole di trasformazione tra sistemi di coordinate
 - le trasformazioni degli enti geometrici; ad esempio: traslazioni, rotazioni, riflessioni,...
- Angoli e distanze. Viene definita la struttura di uno spazio euclideo tramite la definizione degli angoli e delle
 distanze usando sistemi di coordinate cartesiane ortonormali, e le definizioni di prodotto interno (todo e prodotto
 vettoriale?).
- Curve. Vengono definite le curve nel piano, come relazioni tra le coordinate di un sistema di coordinate. todo *l'equazione di una curva rappresenta un tra la geometria e l'algebra tipico della geometria analitica*. Vengono poi studiate alcune curve particolari:

- Rette:

- * equazione
- * posizione relativa punto-retta, distanza punto-retta, posizione relativa retta-retta

- Coniche:

- * introduzione: ...motivazione della loro importanza (gravitazione, ottica,...)
- def, equazioni e caratteristiche con un'oppportuna scelta del sistema di coordinate; successivamente traslazione e rotazione

* ...

13.1 Sistemi di coordinate

13.1.1 Esempi

Sistema di coordinate cartesiane ortonormale. (x,y)

Sistema di coordinate polari. (r, θ) . La legge di trasformazione delle coordinate tra un sistema di coordinate cartesiane ortonormale e un sistema di coordinate polari, con la stessa origine e l'asse x come direzione di riferimento per la misura dell'angolo θ è

$$\begin{cases} x = r\cos\theta\\ y = r\sin\theta \ . \end{cases}$$

todo. Aggiungere immagine

13.1.2 Trasformazione di coordinate

Vengono discusse alcune leggi di trasformazione tra le coordinate di diversi sistemi di coordinate.

Traslazione dell'origine di due sistemi cartesiani con assi allineati.

$$\begin{cases} x' = x - x_{O'} \\ y' = x - y_{O'} \end{cases}$$

Rotazione degli assi di due sistemi cartesiani con stessa origine.

$$\begin{cases} x' = x \cos \theta + y \sin \theta \\ y' = -x \sin \theta + y \cos \theta \end{cases}$$
$$x' = Rx$$

Traslazione dell'origine e rotazione degli assi di due sistemi di coordinate cartesiane.

todo L'ordine delle trasformazioni è importante

$$\begin{split} x \rightarrow T \rightarrow x' \rightarrow R \rightarrow x'' \\ \underline{x'} &= \underline{x} - \underline{x}_{O'} \\ \underline{x''} &= R\underline{x'} = R\left(\underline{x} - \underline{x}_{O'}\right) \\ x \rightarrow R \rightarrow x' \rightarrow T \rightarrow x'' \\ \underline{x'} &= R\underline{x} \\ \underline{x''} &= \underline{x'} - \underline{x'}_{O''} = R\underline{x} - \underline{x'}_{O''} \end{split}$$

Altri esempi di coordinate e trasformazioni di coordinate. todo. come esercizio?

13.2 Distanze e angoli

13.2.1 Distanza tra punti

Usando un sistema di coordinate cartesiane, la distanza tra due punti nel piano viene calcolata usando il teorema di Pitagora

$$d_{12} = |P_2 - P_1| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

In maniera equivalente viene il modulo (o lunghezza) di un vettore $\vec{v}=v_x\hat{x}+v_y\hat{y},$

$$|\vec{v}| = \sqrt{v_x^2 + v_y^2} \ .$$

13.3 Curve nel piano

Una curva nello spazio euclideo E^2 , nel piano, è un luogo dei punti del piano che possono essere identificati da una relazione tra le coordinate di un sistema di coordinate.

Esempi. todo. grafici

13.3.1 Rappresentazioni di una curva

Dato un sistema di coordinate (q^1, q^2) che descrive il piano, una curva γ può essere rappresentata in diverse maniere:

Rappresentazione esplicita.

$$\gamma: q^2 = f(q^1)$$

todo. limiti di questa rappresentazione

Rappresentazione implicita.

$$\gamma: F(q^1, q^2) = 0$$

todo. limiti di questa rappresentazione

Rappresentazione parametrica.

$$\gamma(s): \begin{cases} q^1 = f^1(s) \\ q^2 = f^2(s) \end{cases}$$

todo figura

13.3.2 Appartenenza di un punto a una curva

Dato un sistema di coordinate (q^1,q^2) , un punto P identificato dalle coordinate (q^1_P,q^2_P) appartiene a una curva γ se le sue coordinate soddisfano l'equazione della curva:

- se la curva è definita in forma esplicita, allora $q_P^2 = f(q_P^1)$
- se la curva è definita in forma implicita, allora ${\cal F}(q_P^1,q_P^2)=0$
- se la curva è definita in forma parametrica, allora esiste un valore del parametro $s=s_P$ tale che $q_P^1=f^1(s_P)$ e $q_P^2=f^2(s_P)$

13.3.3 Interesezione di curve

Dato un sistema di coordinate (q^1,q^2) , un punto P è un punto di intersezione di due curve γ_1,γ_2 se le sue coordinate soddisfano sia l'equazione della curva γ_1 , sia l'equazione della curva γ_2

13.3.4 Interpretazione grafica di equazioni, sistemi di equazioni e disequazioni

. . .

13.4 Rette nel piano

Per Euclide, il concetto di retta è un ente geometrico fondamentale della geometria, che rappresenta il percorso «più diretto» tra due punti distinti. Ad esempio, è l'idealizzazione di spessore nullo e di lunghezza infinita, prolungata oltre gli estremi, del segmento che si otterrebbe in un'esperienza comune tendendo un filo di lana tra due punti nello spazio senza ostacoli.

Per trovare l'equazione di una retta, si possono usare delle definizione equivalenti.

13.4.1 Definizioni ed equazione

Definizione. 1 - Passaggio per un punto e direzione. Usando gli strumenti dell'algebra vettoriale in uno spazio euclideo, i punti di una retta passante per un punto P_0 con direzione identificata dal vettore \vec{v} possono essere rappresentati dall''equazione parametrica,

$$P = P_0 + \lambda \vec{v} \; .$$

Questa relazione può essere riscritta usando un sistema di coordinate cartesiane, con vettori della base $\{\hat{x},\hat{y}\}$

$$r: \begin{cases} x_P(\lambda) = x_{P_0} + \lambda \ v_x \\ y_P(\lambda) = y_{P_0} + \lambda \ v_y \ , \end{cases}$$

avendo indicato con (x_P, y_P) le coordinate cartesiane di un punto generico P della retta, con (x_{P_0}, y_{P_0}) le coordinate del punto P_0 e con v_x , v_y le componenti cartesiane del vettore euclide $\vec{v} = v_x \hat{x} + v_y \hat{y}$, riferite al sistema di coorinate cartesiano scelto.

Definizione 2 - Luogo dei punti equidistante da due punti distinti dati. Una retta è il luogo geometrico dei punti P equidistanti da due punti distinti nel piano, P_1 , P_2 ,

$$|P - P_1| = |P - P_2|$$

Usando un sistema di coordinate cartesiane per identificare i punti, $P_1 \equiv (x_1,y_1), P_2 \equiv (x_2,y_2), P \equiv (x,y)$ per calcolare (il quadrato del)le distanze,

$$\begin{split} (x-x_1)^2 + (y-y_1)^2 &= (x-x_2)^2 + (y-y_2)^2 \\ x^2 - 2xx_1 + x_1^2 + y^2 - 2yy_1 + y_1^2 &= x^2 - 2xx_2 + x_2^2 + y^2 - 2yy_2 + y_2^2 \end{split}$$

semplificando i termini x^2 , y^2 , e raccogliendo mettendo in evidenza le coordinate x, y, si ottiene una rappresentazione implicita della retta,

$$2(x_2-x_1)x+2(y_2-y_1)y-x_1^2-y_1^2-x_2^2-y_2^2=0\;,$$

che può essere riscritta in generale nella forma esplicita,

$$ax + by + c = 0,$$

con ovvio significato dei coefficienti a, b, c, e a, b non contemporanemante nulli (altrimenti rimarrebbe l'identità 0 = 0, corrispondente alla condizione $a = x_2 - x_1 = 0$, $b = y_2 - y_1 = 0$, corrispondente ai due punti $P_1 \equiv P_2$ coinvidenti).

Casi particolari: rette paralleli agli assi. Una retta parallela all'asse x ha l'espressione b y + c = 0, con a = 0; una retta parallela all'asse y ha l'espressione a x + c = 0, con b = 0.

Definizione 3 - intercetta con asse y **e pendenza.** Una retta può essere definita tramite il suo punto di intersezione con l'asse y e la sua pendenza, intesa come il rapporto tra le coordinate di due suoi punti, $m := \frac{\Delta y}{\Delta x}$, se la retta non è parallela all'asse y.

Se la retta non è parallela all'asse y rappresenta il grafico di una funzione (todo aggiungere riferimento), il coefficiente $b \neq 0$, e si può esplicitare la coordinata y partendo dall'equazione in forma implicita,

$$y = -\frac{a}{b}x - \frac{c}{b} = mx + q,$$

per ottenere l'equazione della retta in forma esplicita.

13.4.2 Posizioni reciproche

Posizione reciproca di punto e retta

Un punto P o appartiene o non appartiene a una retta r. Se appartiene alla curva, la distanza tra punto e retta è nulla; se non appartiene alla curva, la distanza tra punto e retta è positiva e può essere calcolata come mostrato nella sezione $Distanza\ punto-retta$.

Punto appartenente alla retta. Una retta r passa per un punto P assegnato se le coordinate del punto P soddisfano le equazioni che descrivono la retta.

Posizione reciproca di rette

Due rette nel piano possono essere:

- coincidenti: hanno tutti i punti in comune
- parallele: non hanno nessun punto in comune
- incidenti: si intersecano e la loro intersezione è un punto

Rette coincidenti

Due rette sono coincidenti se hanno un punto in comune e hanno la stessa direzione. In geometria analitica, due rette sono coincidenti se sono rappresentate dalla stessa equazione.

Usando la forma parametrica, due rette sono coincidenti se è possibile scrivere le loro equazioni

$$\begin{split} r_1: \ P_1(\lambda_1) &= P_{1,0} + \lambda_1 \ \vec{v}_1 \\ r_2: \ P_2(\lambda_2) &= P_{2,0} + \lambda_2 \ \vec{v}_2 \end{split}$$

con

$$\begin{cases} P_{1,0} = P_{2,0} & \text{(punto in comune)} \\ \vec{v}_1 \propto \vec{v}_2 & \text{(stessa direzione)} \end{cases}$$

Usando la forma esplicita, due rette coincidenti (non paralleli all'asse y) hanno la stessa intersezione con l'asse y e la stessa pendenza

$$\begin{cases} q_1 = q_2 & \text{(interesezione con asse } y \text{ in comune)} \\ m_1 = m_2 & \text{(stessa pendenza/direzione)} \end{cases}$$

Usando la forma implicita, due rette sono coincienti se i coefficienti di una retta sono multipli dei coefficienti dell'altra retta,

$$r_2: 0 = a_2 x + b_2 y + c_2 = \alpha(a_1 x + b_1 y + c_1),$$

in modo tale da rappresentare la stessa equazione, per $\alpha = 0$.

Rette parallele nel piano

Due rette sono parallele se hanno la stessa direzione. Questa condizione può essere definita usando l'equazione parametrica delle rette,

$$\vec{v}_1 \propto \vec{v}_2$$
,

usando l'equazione in forma implicita,

$$\frac{a_1}{b_1} = \frac{a_2}{b_2} \;, (\operatorname{con} b_i \neq 0...)$$

o usando l'equazione in forma esplicita,

$$m_1 = m_2$$
.

Rette incidenti

Nel piano, se due rette non sono parallele allora sono incidenti, cioè hanno un punto in comune.

Rette incidenti perpendicolari

In geometria euclidea, due rette sono perpendicolari tra di loro se dividono il piano comune nel quale giacciono in 4 angoli retti. Questa condizione può essere definita usando l'equazione delle rette in forma parametrica,

$$\vec{v}_1 \cdot \vec{v}_2 = 0 \; ,$$

ricordandosi le proprietà del prodotto interno in spazi euclidei, e che cos $\frac{\pi}{2} = 0$. Usando l'equazione in forma implicita,

$$a_2 b_1 = -a_1 b_2$$
,

o usando l'equazione in forma esplicita (nel caso le due rette non siano parallele a un asse),

$$m_2 = -\frac{1}{m_1}$$

13.4.3 Distanza punto-retta

La distanza di un punto Q da una retta $r: P(\lambda) = P_0 + \lambda \vec{v}$ può essere calcolato in diverse maniere:

• calcolando il valore minimo della distanza tra il punto Q dato e i punti $P(\lambda)$ della retta

$$\min_{P \in r} |Q - P|$$

• trovando la retta r_{\perp} perpendicolare a r e passante per Q; trovando il punto P^* intersezione tra le due rette r, r_{\perp} , $P^* = r \cap r_{\perp}$; calcolando la distanza punto-punto tra Q e P^*

... **todo** o lasciare come esercizio

• usando il *prodotto vettoriale* tra il vettore \vec{v} e il vettore $Q-P_0$

$$d = \frac{|\vec{v} \times (Q-P)|}{|\vec{v}|} = |Q-P|\sin\theta \; .$$

13.5 Coniche

Le coniche sono curve che possono essere ottenute come intersezione tra un piano e un (doppio) cono circolare retto.

Queste curve compaiono in diversi ambiti della matematica e della fisica. Ad esempio,

- in **ottica**: le coniche hanno proprietà geometriche che risultano utili in **ottica**, e nella trasmissione delle informazioni (le antenne paraboliche si chiamano così, poiché hanno la forma di un paraboloide)
- in **astronomia**: le traiettorie di due corpi isolati soggetti alla mutua interazione gravitazionale sono delle coniche, come mostrato nell'analisi del problema dei due corpi in meccanica classica.

13.5. Coniche 71

Le coniche possono essere definite in maniera implicita, senza fare uso di sistemi di coordinate. Partendo da definizioni implicite equivalenti, e sfruttando l'arbitrarietà nel definire il sistema di coordinate più comodo, vengono ricavate

- prima, le equazioni delle coniche in forma canonica con un'opportuna scelta di sistemi di coordinate
- poi, l'equazione in forma generale di una conica nel piano, ottenuta tramite una trasformazione rigida roto-traslazione della curva o, viceversa, delle coordinate.

Queste curve possono essere definite a partire da un punto F, detto **fuoco**, e una retta d, detta **direttrice** come verrà fatto per ricavare le *equazioni in coordinate polari* delle coniche.

Definizione in termini di eccentricità

Una conica può essere definita come il luogo dei punti P dello spazio per i quali il rapporto tra la distanza dal fuoco e dalla direttrice è costante,

$$e = \frac{\operatorname{dist}(P,F)}{\operatorname{dist}(P,d)} \ .$$

Questo rapporto viene definito eccentricità della conica e il suo valore determina la figura geometrica descritta:

- e < 1, ellisse; il caso particolare della circonferenza con eccentricità nulla, con dist $(P,d) \to \infty$
- e = 1, parabola;
- e > 1, iperbole;

Esistono due fuochi e due direttrici per ogni ellisse e ogni iperbole.

E" possibile definire le coniche anche grazie alla proprietà che caratterizza la distanza dei punti della conica dai fuochi, come verrà fatto per trovare le *equazioni in coordinate cartesiane* delle coniche.

Definizione in termini di distanza dai fuochi

• una circonferenza è il luogo dei punti del piano che hanno distanza costante da un punto C,

$$|P-C|=R$$
,

• un'ellisse è il luogo dei punti del piano che hanno la somma delle distanze da due punti dati, i fuochi F_1 e F_2 , costante,

$$|P - F_1| + |P - F_2| = 2a,$$

 una parabola è il luogo dei punti del piano equidistante da un punto F, il fuoco della parabola, e da una retta d, la direttrice

$$|P - C| = \operatorname{dist}(P, d)$$

un'iperbole è il luogo dei punti del piano che hanno la differenza delle distanze da due punti dati, i fuochi F₁ e F₂, costante.

$$|P - F_1| - |P - F_2| = 2a$$
,

avendo considerato il modulo delle distanze per comprendere entrambi i rami dell'iperbole

13.5.1 Forma canonica in coordinate cartesiane

Circonferenza

Una circonferenza è il luogo dei punti equidistanti da un punto C dato, detto centro della circonferenza. La distanza tra i punti del circonferenza e il centro viene definito raggio della circonferenza.

$$|P - C| = R$$

Usando un sistema di riferimento cartesiano con origine nel centro della circonferenza, l'equazione in coordinate cartesiane della circonferenza è

$$x^2 + y^2 = R^2 .$$

Dimostrazione.

Per ricavare l'equazione di una circonferenza in coordinate cartesiane, si usa la formula per il calcolo della distanza tra punti. Se si sceglie un sistema di coordinate cartesiane con origine in C s.t. $(x_C,y_C)=(0,0)$, la condizione che identifica le coordinate cartesiane (x,y) dei punti di una circonferenza di raggio R centrata in C

$$R^2 = |P - C|^2 = x^2 + y^2 ,$$

cioè

$$x^2 + y^2 = R^2$$
.

Parabola

Una parabola è il luogo dei punti equidistanti da un punto F dato, detto fuoco della parabola, e da una retta d detta direttrice, non passante per F,

$$dist(P, d) = |P - F|$$

Usando un sistema di riferimento cartesiano con origine nel vertice di una parabola e asse y coincidente con il suo asse, l'equazione in coordinate cartesiane della parabola è

$$y = a x^2$$
.

$$con a = \frac{1}{2d}.$$

13.5. Coniche 73

Dimostrazione.

Equazione in coordinate cartesiane. Sia d la distanza del fuoco F dalla retta direttrice d. Per la scelta del sistema di coordinate fatta, il vertice è nell'origine $V \equiv O$, il fuoco ha coordinate $F \equiv \left(0, \frac{d}{2}\right)$, e la retta direttrice ha equazione $r: y = -\frac{d}{2}$. Si usa la formula della distanza tra punti per calcolare la distanza \overline{PF} tra i punti della parabola e il fuoco, mentre la formula della distanza punto-retta nel caso di retta direttrice parallela all'asse x si riduce alla differenza tra le coordinate y del punto e della direttrice,

$$\begin{aligned} \left(\mathrm{dist}(P,d)\right)^2 &= |P-F|^2 \\ \left(y+\frac{d}{2}\right)^2 &= x^2 + \left(y-\frac{d}{2}\right)^2 \\ y^2 + dy + \frac{d^2}{4} &= x^2 + y^2 - dy + \frac{d^2}{4} \end{aligned}$$

e semplificando i termini y^2 , $\frac{d^2}{4}$, si ottiene l'equazione desiderata,

$$y = \frac{1}{2d}x^2 =: a x^2.$$

Ellisse

Una ellisse è il luogo dei punti P la cui somma delle distanze da due punti F_1 , F_2 dati, detti fuochi, è costante (e uguale all'asse maggiore, 2a),

$$|P - F_1| + |P - F_2| = 2a$$
.

Usando un sistema di riferimento cartesiano con origine nel centro dell'ellisse (punto medio tra i due fuochi), e asse x passante per i due fuochi, l'equazione in coordinate cartesiane dell'ellisse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \ .$$

avendo indicato con a, b il semiasse maggiore e minore rispettivamente.

Dimostrazione.

Definite le coordinate dei due fuochi, $F_1 \equiv (-c, 0)$, $F_2 \equiv (c, 0)$, si usa la formula della distanza tra punti per trovare l'equazione richiesta,

$$|P - F_1| = 2a - |P - F_2|$$

$$\sqrt{(x+c)^2 + y^2} = 2a - \sqrt{(x-c)^2 + y^2}$$

sviluppando i quadrati

$$x^2 + 2cx + c^2 + y^2 = 4a^2 - 4a\sqrt{(x-c)^2 + y^2} + x^2 - 2cx + c^2 + y^2$$

semplificando i termini, tenendo il termine con la radice separato dagli altri termini per elevare nuovamente al quadrato,

$$4a\sqrt{(x-c)^2 + y^2} = 4a^2 - 4cx$$

si ottiene,

$$a^{2}x^{2} - 2a^{2}cx + a^{2}c^{2} + a^{2}y^{2} = a^{4} - 2a^{2}cx + c^{2}x^{2}$$
$$(a^{2} - c^{2})x^{2} + a^{2}y^{2} = a^{2}(a^{2} - c^{2})$$

Considerando i punti dell'ellisse sull'asse minore, $B_{\mp} \equiv (0, \mp b)$, è facile dimostrare usando il teorema di Pitagora che $a^2 = b^2 + c^2$. Si può quindi riconoscere il quadrato del semiasse minore nell'equazione dell'ellisse e, nel caso di ellissi non-degeneri, dividere per a^2b^2 per ottenere l'espressione desiderata,

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \ .$$

Iperbole

Una iperbole è il luogo dei punti P la cui differenza delle distanze da due punti F_1 , F_2 dati, detti fuochi, presa in valore assoluto per comprendere entrambi i rami dell'iperbole, è costante (e uguale all'asse maggiore, 2a),

$$||P - F_1| - |P - F_2|| = 2a$$
.

Usando un sistema di riferimento cartesiano con origine nel centro dell'iperbole (punto medio tra i due fuochi), e asse x passante per i due fuochi, l'equazione in coordinate cartesiane dell'ellisse

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
.

avendo indicato con a, b il semiasse maggiore e minore rispettivamente.

Dimostrazione.

Definite le coordinate dei due fuochi, $F_1 \equiv (-c, 0)$, $F_2 \equiv (c, 0)$, si usa la formula della distanza tra punti per trovare l'equazione richiesta. Rimuovendo il modulo e considerando entrambe le possibilità di segno,

$$\begin{aligned} |P - F_1| &= \mp 2a + |P - F_2| \\ \sqrt{(x+c)^2 + y^2} &= \mp 2a + \sqrt{(x-c)^2 + y^2} \end{aligned}$$

sviluppando i quadrati

$$x^2 + 2cx + c^2 + y^2 = 4a^2 \mp 4a\sqrt{(x-c)^2 + y^2} + x^2 - 2cx + c^2 + y^2$$

semplificando i termini, tenendo il termine con la radice separato dagli altri termini per elevare nuovamente al quadrato,

$$\pm 4a\sqrt{(x-c)^2 + y^2} = 4a^2 - 4cx$$

si ottiene,

$$\begin{aligned} a^2x^2 - 2a^2cx + a^2c^2 + a^2y^2 &= a^4 - 2a^2cx + c^2x^2 \\ (a^2 - c^2)x^2 + a^2y^2 &= a^2(a^2 - c^2) \end{aligned}$$

A differenza del caso dell'ellisse, per un'iperbole il termine a^2-c^2 è negativo, e si può quindi scrivere

$$(c^2 - a^2)x^2 - a^2y^2 = a^2(c^2 - a^2)$$
.

Considerando l'andamento asintotico, si trovano le equazioni dei due asintoti,

$$u = \mp \frac{\sqrt{c^2 - a^2}}{a} = \mp \frac{b}{a} ,$$

avendo definito $b^2=c^2-a^2$ il semiasse maggiore. Nel caso di iperboli non-degeneri, si può dividere per a^2b^2 per ottenere l'espressione desiderata,

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \ .$$

13.5. Coniche 75

13.5.2 Forma canonica in coordinate polari

Le coniche possono essere anche caratterizzate dal valore dell'eccentricità,

$$e = \frac{\mathrm{dist}(\mathrm{punto,\,fuoco})}{\mathrm{dist}(\mathrm{punto,\,direttrice})} = \frac{\mathrm{dist}(P,F)}{\mathrm{dst}(P,d)} \;.$$

Questa definizione permette di ricavare facilmente l'equazione delle coniche usando un sistema di coordinate polari, centrato nel fuoco F, e con la direzione di riferimento per la misura dell'angolo θ che punta verso la direttrice. Con questo sistema di coordinate polari,

$$\begin{aligned} \operatorname{dist}(P,F) &= r \\ \operatorname{dist}(P,d) &= |D-r\cos\theta| \end{aligned}$$

l'equazione generale delle coniche diventa

$$e|D - r\cos\theta| = r$$
.

Questa equazione descrive tutte le coniche con eccentricità non nulla, cioè tutte le coniche tranne la circonferenza. La circonferenza si ottiene come limite dell' eccentricità $e \to 0$ e distanza $D \to \infty$, in modo tale da avere eD = R finito.

13.5.3 Equazione generale delle coniche

L'equazione di una conica disposta nel piano in maniera arbitraria rispetto a un sistema di coordinate cartesiane ha l'epsressione

$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0.$$

E" possibile dimostrare questa affermazione tramite una trasformazione rigida generica di roto-traslazione. In particolare, si applicherà prima una rotazione di un angolo theta e poi una traslazione $\vec{v} = x_{1,P}\hat{x}_1 + y_{1,P}\hat{y}_1$.

$$\begin{cases} x_1 = x\cos\theta + y\sin\theta \\ y_1 = -x\sin\theta + y\cos\theta \end{cases}, \qquad \begin{cases} x_2 = x_1 - x_{1,P} \\ y_2 = y_1 - y_{1,P} \end{cases}$$

Diversi tipi di coniche sono caratterizzati da diverse relazioni tra i coefficienti del polinomio di secondo grado, in particolare, dal valore del coefficiente $\Delta := B^2 - 4AC$,

• ellisse: $\Delta < 0$

• parabola: $\Delta = 0$

• iperbole: $\Delta > 0$

Dimostrazione, ellisse e iperbole

Le equazioni in forma canonica di un'ellisse e un'iperbole possono essere scritte come

$$\frac{x_2^2}{a^2} + \gamma \frac{y^2}{b^2} = 1 \qquad \to \qquad 0 = b^2 x_2^2 + \gamma a^2 y_2^2 - a^2 b^2 \;,$$

con $\gamma=1$ per l'ellisse e $\gamma=-1$ per l'iperbole. Introducendo le trasformazioni di coordinate, si può manipolare l'espressione delle coniche

$$\begin{split} 0 &= b^2 (x_1 - x_{1,P})^2 + \gamma a^2 (y_1 - y_{1,P})^2 - a^2 b^2 = \\ &= b^2 (x\cos\theta + y\sin\theta - x_{1,P})^2 + \gamma a^2 (-x\sin\theta + y\cos\theta - y_{1,P})^2 - a^2 b^2 = \\ &= x^2 \left(b^2 \cos^2\theta + \gamma a^2 \sin^2\theta \right) + 2xy \left(b^2 - \gamma a^2 \right) \sin\theta \cos\theta + y^2 \left(b^2 \sin^2\theta + \gamma a^2 \cos^2\theta \right) \\ &+ x \left(-2b^2 x_{1,P} \cos\theta + 2\gamma a^2 y_{1,P} \sin\theta \right) + y \left(-2b^2 x_{1,P} \sin\theta - 2\gamma a^2 y_{1,P} \cos\theta \right) \\ &+ b^2 x_{1,P}^2 + \gamma a^2 y_{1,P}^2 - a^2 b^2 \end{split}$$

per calcolare il discriminante, usando la relazione $\gamma^2=1$, come

$$\begin{split} \frac{\Delta}{4} &= \frac{B^2}{4} - AC = \\ &= \left[\left(b^2 - \gamma a^2 \right) \sin \theta \cos \theta \right]^2 - \left(b^2 \cos^2 \theta + \gamma a^2 \sin^2 \theta \right) \left(b^2 \sin^2 \theta + \gamma a^2 \cos^2 \theta \right) = \\ &= b^4 \sin^2 \theta \cos^2 \theta - 2\gamma a^2 b^2 \sin^2 \theta \cos^2 \theta + a^4 \sin^2 \theta \cos^2 \theta \\ &- b^4 \sin^2 \theta \cos^2 \theta - \gamma a^2 b^2 \left(\sin^4 \theta + \cos^4 \theta \right) - a^4 \sin^2 \theta \cos^2 \theta = \\ &= -\gamma a^2 b^2 \left(\underbrace{\sin^2 \theta + \cos^2 \theta}_{=1} \right)^2 = -\gamma a^2 b^2 \end{split}$$

E quindi

- per un'ellisse, $\gamma=1$ e $\Delta<0$
- per un'iperbole, $\gamma = -1$ e $\Delta > 0$

Dimostrazione, parabola

Introducendo le trasformazioni di coordinate, si può manipolare l'espressione dell'equazione in forma canonica delle parabole

$$\begin{split} 0 &= ax_2^2 - y_2 = \\ &= a(x_1 - x_{1,P})^2 - y_1 + y_{1,P} = \\ &= a(x\cos\theta + y\sin\theta - x_{1,P})^2 - (-x\sin\theta + y\cos\theta) + y_{1,P} = \\ &= x^2\left(a\cos^2\theta\right) + 2xy\left(a\cos\theta\sin\theta\right) + y^2\left(a\sin^2\theta\right) \\ &+ x\left(-2ax_{1,P}\cos\theta + 2\sin\theta\right) + y\left(-2ax_{1,P}\sin\theta - 2\cos\theta\right) \\ &+ x_{1,P}^2 + y_{1,P} \end{split}$$

per poi calcolare il discrimminante,

$$\frac{\Delta}{4} = \frac{B^2}{4} - AC =$$

$$= a^2 \cos^2 \theta \sin^2 \theta - a^2 \cos^2 \theta \sin^2 \theta = 0$$

todo significato

Esercizi

13.5. Coniche 77

Matematica	per	le	scuole	superio

CAPITOLO 14

Geometria analitica nello spazio

14.1 Sistemi di coordinate per lo spazio euclideo E^3

14.1.1 Coordinate cartesiane

Le coordinate cartesiane (x,y,z) di un punto P dello spazio euclideo E^3 permettono di definire il vettore euclideo tra l'origine $O \equiv (0,0,0)$ e il punto P

$$(P-O) = x\,\hat{x} + y\,\hat{y} + z\,\hat{z}\,,$$

usando i vettori della base cartesiana $\{\hat{x}, \hat{y}, \hat{z}\}$

Distanza punto-punto

Usando le coordinate cartesiane, la distanza tra due punti $P\equiv(x_P,y_P,z_P), Q\equiv(x_Q,y_Q,z_Q)$ si può calcolare usando il teorema di Pitagora come

$$|P-Q|^2 = (x_P-x_Q)^2 + (y_P-y_Q)^2 + (z_P-z_Q)^2 \; .$$

14.1.2 Coordinate cilindriche

Dato un sistema di coordinate cartesiane, si può definire un sistema di coordinate cilindriche (R, θ, z) con la stessa origine, asse z coincidente e usando il piano x-y come origine per misurare l'angolo θ attorno all'asse z, tramite la legge di trasformazione delle coordinate

$$\begin{cases} x = R\cos\theta \\ y = R\sin\theta \\ z = z \end{cases}$$

14.1.3 Coordinate sferiche

Dato un sistema cartesiano e scelto un sistema di coordinate cilindriche come appena descritto, si può definire un sistema di coordinate sferiche (r, θ, ϕ) tramite le leggi di trasformazione di coordinate

$$\begin{cases} x = r \sin \phi \cos \theta \\ y = r \sin \phi \sin \theta \\ z = r \cos \phi \end{cases}, \qquad \begin{cases} R = r \sin \phi \\ \theta = \theta \\ z = r \cos \phi \end{cases}$$

14.2 Piani nello spazio

Per Euclide, il concetto di piano è un ente geometrico fondamentale della geometria. In geometria analitica, per trovare l'equazione di un piano si possono usare diverse definizioni equivalenti.

14.2.1 Definizioni ed equazione

Definizione 1 - Passaggio per un punto e direzione normale. Un piano π può essere definito come il luogo dei punti P dello spazio che formano un vettore (P-Q) con un punto dato Q ortogonali a un vettore \vec{n} che indica la direzione normale al piano π . Usando le proprietà del prodotto scalare,

$$(P-Q) \cdot \vec{n} = 0 .$$

Usando un sistema di coordinate cartesiane, si può trovare l'equazione implicita del piano π ,

$$\pi: (x - x_O)n_x + (y - y_O)n_y + (z - z_O)n_z = 0.$$
(14.1)

Osservazione. L'equazione implicita del piano è independente dal modulo del vettore \vec{n} , poiché rappresenterebbe un ininfluente fattore moltiplicativo (diverso da zero) nel termine di sinistra quando uguagliato a zero.

Definizione 2. - Passaggio per un punto e direzioni tangenti. Partendo dalla prima definizione, si possono ricavare le equazioni parametriche del piano. Dato il vettore \vec{n} , si possono trovare due vettori \vec{t}_1 , \vec{t}_2 a esso ortogonali,

$$\vec{t}_1 \cdot \vec{n} = \vec{t}_2 \cdot \vec{n} = 0.$$

Se i due vettori non sono tra di loro allineati, o meglio proporzionali, è possibile descrivere tutti i punti del piano come una loro combinazione lineare

$$\pi: P = Q + \lambda_1 \vec{t}_1 + \lambda_2 \vec{t}_2 .$$

Definizione 3. - Luogo dei punti equidistante da due punti distinti dati. Il luogo dei punti P dello spazio equidistanti da due punti P_1 , P_2 dati è il piano identificato dalla condizione

$$|P - P_1| = |P - P_2|$$
.

Usando un sistema di coordinate cartesiane per identificare i due punti $P_1 \equiv (x_1,y_1,z_1), P_2 \equiv (x_2,y_2,z_2)$, per calcolare (il quadrato del)le distanze,

$$(x-x_1)^2+(y-y_1)^2+(z-z_1)^2=(x-x_2)^2+(y-y_2)^2+(z-z_2)^2\\ x^2-2xx_1+x_1^2+y^2-2yy_1+y_1^2+z^2-2zz_1+z_1^2=x^2-2xx_2+x_2^2+y^2-2yy_2+y_2^2+z^2-2zz_2+z_2^2$$

semplificando i termini x^2, y^2, z^2 e raccogliendo mettendo in evidenza le coordinate x, y, z, si ottiene una rappresentazione implicita della retta,

$$2(x_2 - x_1)x + 2(y_2 - y_1)y + 2(z_2 - z_1)z - x_1^2 - y_1^2 - z_1^2 - x_2^2 - y_2^2 - z_2^2 = 0,$$
 (14.2)

che può essere riscritta in generale nella forma esplicita,

$$a x + b y + c z + d = 0, (14.3)$$

con ovvio significato dei coefficienti a, b, c, d, e a, b, c non contemporanemente nulli (altrimenti rimarrebbe l'identità 0=0, corrispondente alla condizione $a=x_2-x_1=0, b=y_2-y_1=0, c=z_2-z_1=0$ corrispondente ai due punti $P_1\equiv P_2$ coinvidenti).

Osservazione. Confrontando le espressioni (14.2), (14.3) con l'espressione (14.1) della prima definizione, si può riconoscere che il vettore che congiunge i due punti $P_2 - P_1 = (x_2 - x_1)\hat{x} + (y_2 - y_1)\hat{y} + (z_2 - z_1)$ \hat{z} è allineato al vettore \vec{n} e ortogonale al piano π , e al vettore $a\hat{x} + b\hat{y} + c\hat{z}$.

14.2.2 Posizioni reciproche

Posizione reciproca di punto e piano

Un punto P o appartiene o non appartiene a un piano $\pi: \hat{n} \cdot (P-Q) = 0$. Se appartiene al piano, la distanza tra punto e retta è nulla; se non appartiene al piano, la distanza tra punto e piano può essere calcolata usando le proprietà del *prodotto interno in spazi euclidei*,

$$\operatorname{dist}(A,\pi) = |\hat{n} \cdot (A - Q)| = |A - Q| \cos \theta.$$

todo figura

Posizione reciproca di piani

Due piani nello spazio euclideo tridimensionale possono essere:

- coincidenti: hanno tutti i punti in comune
- paralleli: non hanno nessun punto in comune
- incidenti: si intersecano e la loro intersezione definisce una retta

14.3 Curve nello spazio

Dato un sistema di coordinate (q^1, q^2, q^3) curva γ nello spazio può essere descritta in **forma parametrica**, fornendo l'espressione delle coordinate in funzione di un parametro λ ,

$$q^k(\lambda)$$
.

Usando le coordinate cartesiane, i punti della curva sono identificati dalla famiglia di vettori euclidei

$$\gamma: \vec{r}(\lambda) = x(\lambda)\hat{x} + y(\lambda)\hat{y} + z(\lambda)\hat{z}$$
,

al variare del parametro λ .

Una curva può essere anche definita in forma implicita o esplicita, con un sistema di due equazioni che hanno come incognite le tre coordinate,

$$\begin{cases} F(q^1,q^2,q^3) = 0 \\ G(q^1,q^2,q^3) = 0 \end{cases}, \qquad \begin{cases} q^1 = f^1(q_3) \\ q^2 = f^2(q^3) \end{cases}$$

14.4 Rette nello spazio

14.4.1 Definizione ed equazione

Definizione 1 - Passaggio per un punto e direzione tangente. I punti P della retta r passante per il punto P_0 e con direzione \vec{v} possono essere rappresentati dall'**equazione parametrica**,

$$r: P = P_0 + \lambda \vec{v}$$
.

Questa relazione può essere scritta usando un sistema di coordidnate carteisane, con base $\{\hat{x}, \hat{y}, \hat{z}\}\$,

$$\begin{cases} x_P(\lambda) = x_{P_0} + \lambda \, v_x \\ y_P(\lambda) = y_{P_0} + \lambda \, v_y \\ z_P(\lambda) = z_{P_0} + \lambda \, v_z \end{cases}$$

Definizione 2 - Interesezione di due piani incidenti. todo

14.4.2 Posizioni reciproche

Posizione reciproca di punto e retta

Un punto P o appartiene o non appartiene a una retta r.

Distanza punto-retta

Dato un punto A e una retta r, di cui sono noti un punto Q e il vettore \vec{v} , la distanza di A da r può essere calcolata come il valore assoluto della proiezione del vettore A-Q in direzione ortogonale alla direzione della retta, individuata da \vec{v} ,

$$\begin{aligned} \operatorname{dist}(A,r) &= |(A-Q) - \hat{v} \; \hat{v} \cdot (A-Q)| = \\ &= |\hat{v} \times (A-Q)| \end{aligned}$$

avendo usato il vettore unitario $\hat{v} = \frac{\vec{v}}{|\vec{v}|}$ per la proiezione.

Posizione reciproca retta e piano

Una retta r può essere:

- contenuta in un piano π : ha tutti i punti appartenenti al piano
- parallela a un piano π : non ha nessun punto appartenente al piano
- incidente a un piano π : interseca il piano in un solo punto

Posizione reciproca tra rette

Due rette possono essere:

- coincidenti: hanno tutti i punti in comune
- incidenti: si intersecano in un solo punto
- parallele: non hanno nessun punto in comune e hanno la stessa direzione; esiste un piano che contiene entrambe le rette
- sghembe: non hanno nessun punto in comune e hanno direzioni diverse; non esiste nessun piano che contiene entrambe le rette

todo verificare queste condizioni

14.5 Cono circolare retto e coniche

14.5.1 Equazione del cono

Equazioni del (doppio) cono circolare retto, usando un sistema di coordinate cilindriche,

$$r = a z$$
,

per
$$z \in (-\infty, +\infty)$$
, $\theta \in (0, 2\pi)$.

14.5.2 Coniche: intersezione tra cono e piano

Parte V

Precalcolo

basics

08 dic 2024

2 min read

Matematica		

CAPITOLO 15

Introduzione al pre-calcolo

Nel gran calderone del pre-calcolo finiscono qui tutti gli argomenti propedeutici allo studio del calcolo, seguendo quanto fatto da **Eulero** - ovviamente come Eulero, ma peggio - nel 1748 nel suo «**Introductio in analysin infinitorum**», pensato come una raccolta di concetti e metodi di analisi e geometria analitica in preparazione al calcolo differenziale e integrale.

amononomonomonomonomonomon INDEX CAPITUM TOMI PRIMI. CAP. I. De Functionibus in genere, 148. 1 CAP. III. De transformatione Functionum per substitutionem, 36 CAP. IV. De explicatione Functionum per series infinitas, CAP. V. De Functionibus duarum pluriumve variabilium, CAP. VI. De Quantitatibus exponentialibus ac Logarithmis, 69 CAP. VII. De quantitatum exponentialium ac Logarithmorum per feries explicatione, 85 CAP. VIII. De quantitatibus transcendentibus ex Circulo ortis, 93 CAP. IX. De investigatione Factorum trinomialium. CAP. X. De usu Factorum inventorum in definiendis summis Se-128 CAP. XI. De aliis Arcuum atque Sinuum expressionibus CAP. XII. De reali Functionum fractarum evolutione, 161 CAP. XIII. De Seriebus recurrentibus, CAP. XIV. De multiplicatione ac divisione Angulorum, 198 CAP. XV. De Seriebus ex evolutione Factorum ortis, 221 CAP. XVI. De Partitione numerorum, 253 CAP. XVII. De ufu serierum recurrentium in radicibus CAP. XVIII. De fractionibus continuis, 295 INDEX

INDEX CAPITUM TOMISECUNDI. CAP. II. De lineis curvis in genere, 12. CAP. III. De Coordinatarum permutatione, 11. CAP. III. De Linearum curvarum algebraicarum in ordines divisione, 2. CAP. IV. De Linearum cujulque ordinis praccipuis proprietatibus, 2. CAP. V. De Lineis fecundi Ordinis, 4. CAP. VI. De Linearum fecundi ordinis fubdivisione in genera, 65. CAP. VIII. De Linearum fecundi ordinis fubdivisione in genera, 65. CAP. VIII. De Lineis Afymptotis, 38. CAP. VIII. De Lineis Afymptotis, 12. CAP. XII. De Linearum tettii ordinis fubdivisione in species, 114. CAP. X. De praccipuis Linearum tettii ordinis fubdivisione in species, 114. CAP. XII. De Lineis quarti ordinis, 12. CAP. XII. De lineis quarti ordinis, 12. CAP. XII. De fasticionis Linearum Curvarum, 15. CAP. XIII. De fasticionis Linearum Curvarum, 15. CAP. XIV. De curvis una pluribustive Diametris pracditis, 18. CAP. XVII. De curvis una pluribustive Diametris pracditis, 18. CAP. XVII. De inventione Curvarum ex datis Applicatarum proprietatibus, 212. CAP. XVII. De simetricone Curvarum ex aliis proprietatibus, 212. CAP. XVII. De simetricone Curvarum ex aliis proprietatibus, 212. CAP. XVII. De contructione curvarum, 246. CAP. XXII. De interfectione Curvarum ex aliis proprietatibus, 212. CAP. XXII. De contructione expansionum, 247. CAP. XXI. De contructione expansionum, 247. CAP. XXI. De contructione expansionum, 247. CAP. XXI. De contructione expansionum, 248. CAP. XXII. Solutio nonnullorum Problematum ad Circulum pertinoentium, 304.

Argomenti del capitolo

Senza fare uso di nessun concetto di calcolo differenziale o integrale, nel primo volume dell'opera Eulero fornisce alcuni **fondamenti dell'analisi** e delle **serie infinite**; nel secondo volume Eulero applica i risultati del primo volume allo studio delle **curve** e delle **superfici** nel piano e nello spazio.

Funzioni reali a variabile reale, $f : \mathbb{R} \to \mathbb{R}$, *Introductio vol.1 cap.1-3.* todo

Successioni e serie infinite, Introductio vol.1 cap.4. Vengono presentati alcuni risultati di convergenza sulle successioni e le serie infinite. Questi risultati sono utili nella formulazione dei fondamenti dell'analisi (saranno trattati qui? Probabilmente no), nella definizione della funzione esponenziale, e in matematica discreta (come ad esempio nei metodi numerici).

Funzioni a più variabili, Introductio vol.1 cap.5. todo

Funzioni esponenziale con base e e logaritmo naturale, Introductio vol.1 cap.6-7. Viene introdotta la funzione esponenziale e^x . che ricopre un ruolo **fondamentale** nel calcolo, come apprezzabile nei capitoli su derivate, integrali e equazioni differenziali. Viene introdotta anche la sua funzione inversa $\ln x$, definita come il logaritmo con base e.

Funzioni trigonometriche, *Introductio vol.1 cap.8*. Vengono introdotte le funzioni trigonometriche, nell'ambito della geometria dove l'argomento di tali funzioni sono angoli. Viene presentata la relazione fondamentale della trigonometria e le regole per la somma e la differenza, e regole ricavate da queste.

Fattorizzazione di polinomi. todo

Algebra sui numeri complessi. todo

Approccio

- ...funzioni reali, invertibili,...
- ...serie e successioni...non perderci troppo tempo
- ...funzioni a più variabili: compaiono in molti ambiti, come geometria, ottimizzazione,...
- ...esponenziale: sezione utile a capire da dove arrivano tutte le «**proprietà magiche**» della funzione e^x
- ...funzioni trigonometriche: funzioni che compaiono in geometria e in molti altri ambiti (ODE**(!)**,...), essendo intimamente collegate alla funzione esponenziale, come mostrato nella sezione sull'algebra dei numeri complessi con l'identità di Eulero, $e^{ix} = \cos x + i \sin x$.
- ...algebra complessa: i numeri complessi risultano uno strumento matematico fondamentale in molti ambiti; l'uso dei numeri complessi invece della controparte reale, può semplificare spesso gli sviluppi algebrici, fornendo una trattazione sintetica e più omogenea

todo

basics

08 dic 2024

2 min read

CAPITOLO 16

Funzioni reali a variabile reale, $f: \mathbb{R} \to \mathbb{R}$

Le funzioni reali a variabile reale saranno oggetto di studio dettagliato del calcolo infinitesimale.

Definition 15.1 (Funzione a valore reale di variabile reale)

Una funzione a valore reale di una variabile reale è una funzione $f:A\in\mathbb{R}\to\mathbb{R}$ è una funzione che ha come dominio un sottoinsieme A dei numeri reali e condominio \mathbb{R} ,

$$y = f(x)$$
,

con $x \in A \in \mathbb{R}$ e $y \in \mathbb{R}$. E" comune chiamare x argomento della funzione, o la variabile indipendente, e y valore della funzione o variabile dipendente

16.1 Grafico di una funzione

A una funzione y=f(x) può essere associata una rappresentazione grafica, interpretando le variabili x,y come coordinate che descrivono il piano. La rappresentazione comune le interpreta come *coordinate cartesiane*. Una funzione impone una relazione tra le due coordinate e in generale può essere rappresentato come una curva nel piano.

Ricordando che una funzione associa a ogni elemento del dominio uno e un solo elemento del codominio, il grafico di una funzione non può interesecare una retta parallela all'asse y in due punti, cioè non possono esistere due valori y_1, y_2 della funzione per lo stesso valore della variabile indipendente x.

todo esempi

16.2 Classificazione di funzioni

Appoggiandoci alla rappresentazione grafica (**todo**), vengono definite alcune caratteristiche che può avere una funzione. Una funzione $f:A\in\mathbb{R}\to mathbbR$ è definita e ha valori su **insiemi ordinabili**, cioè sui quali si possono stabilire delle relazioni di ordine tra gli elementi, ad esempio tramite le relazioni $<,>,\leq, ge$. Grazie a questa caratteristica, si possono definire funzioni crescenti/decrescenti, monotone, limitate/illimitate; poiché dominio e codominio sono insiemi numerici, allora si possono definire funzioni pari/dispari e periodiche. Infine si discutono le definizioni di funzione reali a valori reali suriettiva, iniettiva e biunivoca, definizioni già introdotte per *funzioni tra insiemi qualsiasi*.

- Crescente, decrescente. Una funzione è:
 - crescente se $f(x_2) > f(x_1)$ per $x_2 > x_1$
 - decrescente se $f(x_2) < f(x_1)$ per $x_2 > x_1$
- Monotona. Una funzione è monotona crescente/decrescente nell'intervallo I, se è crescente/decrescente per ogni
 coppia x₁, x₂ ∈ I
- Limitata, illimitata Una funzione è:
 - limitata superiormente se $\exists M$ t.c. $f(x) < M \ \forall x \in A$
 - limitata inferiormente se $\exists M$ t.c. $f(x) \geq M \ \forall x \in A$
 - illimitata altrimenti
- Pari, dispari Una funzione è definita
 - pari se $f(x) = f(-x) \ \forall x \in A$, e il suo grafico in un piano x-y è simmetrico rispetto all'asse y
 - dispari se $f(x) = -f(-x) \ \forall x \in A$, e il suo grafico in un piano x-y è simmetrico rispetto all'origine
- **Periodica.** Una funzione è definita periodica di periodo T se $f(x) = f(x+T), \ \forall x \in A$.
- Suriettiva, iniettiva, biunivoca. Una funzione è:
 - suriettiva todo
 - iniettiva todo
 - biunivoca todo

16.3 Funzioni invertibili e inverse

Una funzione $f: X \to Y$ è **invertibile** se esiste una funzione $g: Y \to X$ tale che

$$\begin{split} g\left(f(x)\right) &= x, \ \forall x \in X \\ f\left(g(y)\right) &= y, \ \forall y \in Y \end{split}$$

- Una funzione biunivoca è invertibile
- Una funzione monotona è biunivoca
- Una funzione monotona è invertibile (Va" che sillogismo!)

16.4 Problemi

todo

basics

08 dic 2024

1 min read

16.4. Problemi 93

CAPITOLO 17

Polinomi

17.1 Fattorizzazione

todo Fare esempi di applicazione del teorema fondamentale dell'algebra, come soluzione delle ODE lineari omogenee a coffficienti costanti

17.1.1 Teorema fondamentale dell'algebra

Il teorema fondamentale dell'algebra afferma che ogni polinomio in una variabile complessa $z \in \mathbb{C}$ a coefficienti complessi,

$$p_n(z) = a_n z^n + \dots a_1 z + a_0 \;,$$

ammette almeno una radice complessa, o zero. Di conseguenza, lo stesso polinomio di grado n ammette n zeri complessi e può essere fattorizzato come prodotto di monomi

$$p_n(z) = a_n(z-z_1)\dots(z-z_n)\;,$$

essendo z_k , k = 1:n, gli zeri del polinomio.

17.1.2 In campo reale

Ogni polinomio $p_n(x)$ a coefficienti reali può essere fattorizzato nel prodotto di binomi e trinomi a coefficienti reali,

$$\begin{split} p_n(x) &= a_n x^n + a_{n-1} x^{n-1} + \dots a_1 x + a_0 = \\ &= a_n (x - z_1) \dots (x - z_p) (x^2 + b_1 x + c_1) \dots (x^2 + b_q x + c_q) \end{split}$$

 $\operatorname{con} p + 2q = n.$

17.1.3 In campo complesso

Ogni polinomio $p_n(x)$ a coefficienti reali può essere fattorizzato nel prodotto di n binomi coefficienti complessi,

$$p_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots a_1 x + a_0 =$$

= $a_n (x - z_1) \dots (x - z_n)$.

Gli zeri di un polinomio a coefficienti costanti possono essere o reali o complessi coniugati, cioè o $z_k \in \mathbb{R}$ o se $z_k \notin \mathbb{R}$ allora anche z_k^* è uno zero del polinomio.

Esempio

Il polinomio di terzo grado $p(x) = x^3 + 1$ può essere fattorizzato come

$$\begin{split} p(x) &= x^3 + 1 = \left(x - 1\right)\left(x^2 + x + 1\right) = \\ &= \left(x - 1\right)\,\left(x - \left(-\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)\right)\,\left(x - \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)\right) \end{split}$$

Il polinomio ha coefficienti reali. Gli zeri del polinomio sono o reali, come 1, o complessi coiungati come $\left(-\frac{1}{2}+i\frac{\sqrt{3}}{2}\right)^*=-\frac{1}{2}-i\frac{\sqrt{3}}{2}$.

17.2 Teorema binomiale

Con esponente naturale $p \in \mathbb{N}$,

$$(x+y)^p = \sum_{k=0}^p \binom{p}{k} x^k y^{p-k},$$

avendo indicato il coefficente binomiale

$$\binom{p}{k} = \frac{p!}{k!(p-k)!}$$

Con esponente non naturale $p \in \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \dots$ todo

basics

08 dic 2024

4 min read

CAPITOLO 18

Serie e successioni

- successioni numeriche
- · successioni di funzioni
- · serie numeriche
- · serie di funzioni

18.1 Successioni di numeri reali

Definizione. Una successione di numeri reali è una funzione $f: \mathbb{N} \to \mathbb{R}$, che associa ai numeri interi $n \in \mathbb{N}$ un numero reale $a_n = f(n)$.

Limite di una successione. Una successione $\{a_n\}$ ha limite ℓ se per ogni intorno U_ℓ di ℓ esiste un numero naturale $N \in \mathbb{N}$ tale che

$$a_n \in U_\ell , \qquad \forall n > N .$$

todo fare associazione con il limite finito all'infinito per funzioni

Se il limite esiste è unico (**todo** se $\ell \in T$, con T spazio di Hasudorff. Come evitare questa complicazione?). A seconda del limite della successione, una successione è:

- convergente se il limite ℓ esiste ed è finito
- **divergente** se il limite ℓ esiste ed è infinito
- indeterminata se il limite non esiste

18.1.1 Proprietà

Limitatezza. ...

Permanenza del segno. ...

Valori assoluti. ...

Succesioni monotone. Una successione monotona $\{a_n\}$ converge sempre a un limite. Il limite è l'estremo superiore se la successione è monotona crescente, o l'estremo inferiore se la successione è monotona decrescente.

Il limite è finito se e solo se la successione monotona è limitata.

Dimostrazione, qui o in fondo in una sezione di dimostrazioni/esercizi

18.1.2 Operazioni con successioni

elencare operazioni, mettere dimostrazione in una sezione di dimostrazioni/esercizi, nello stile Schaum

18.1.3 Confronto tra successioni

elencare operazioni, mettere dimostrazione in una sezione di dimostrazioni/esercizi, nello stile Schaum

18.1.4 Criteri di convergenza

elencare operazioni, mettere dimostrazione in una sezione di dimostrazioni/esercizi, nello stile Schaum

18.2 Serie di numeri reali

Definizione. Data una successione di elementi $\{a_n\}, a_n \in \mathbb{R}$, la serie associata è la somma infinita

$$\sum_{n=0}^{\infty} a_n .$$

Dato ogni indice k della successione $\{a_n\}$, si definisce la successione delle somme parziali $\{S_k\}$,

$$S_k = \sum_{n=0}^k a_n .$$

Carattere della serie. A seconda del limite della successione delle somme parziali $\lim_{k \to \infty} S_k$, una serie è

- convergente se il limite L esiste ed è finito
- divergente se il limite L esiste ed è infinito
- indeterminata se il limite non esiste

18.2.1 Criteri di convergenza

Una serie può essere:

- · convergente
- · divergente
- · indeterminata

Serie a termini concordi

Si discutono qui le serie a termini non negativi. E" facile generalizzare i criteri alle serie a termini non positivi.

Criterio del confronto. Date A = $\sum_n a_n$, $B = \sum_n b_n$ serie a termini non negativi tali che $a_n \leq b_n$

- se B converge, A converge
- se A diverge, B diverge

Criterio del confronto asintotico. Date A = $\sum_n a_n$, $B = \sum_n b_n$ serie a termini non negativi

- se B è convergente e $\lim_{n\to\infty}\frac{a_n}{b_n}=\ell\in(0,+\infty)$, allora A è convergente
- se B è divergente e $\lim_{n\to\infty}\frac{a_n}{b_n}>0$, allora A è divergente

Criterio del confronto con serie geometrica.

Criterio della radice - Cauchy. Data una serie a termini non negativi $\sum_{n=1}^{+\infty} a_n$ per la quale esiste il limite $\lim_{n\to+\infty} a_n^{\frac{1}{n}}=k$, allora

- per k < 1 la serie converge
- per k > 1 la serie diverge
- per k=1 non è possibile stabilire il carattere della serie

Criterio del rapporto - d'Alembert. Data una serie a termini non negativi $\sum_{n=1}^{+\infty} a_n$ per la quale esiste il limite $\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = k$, allora

- se B è convergente e $\lim_{n \to \infty} \frac{a_n}{b_n} = \ell \in (0, +\infty)$, allora A è convergente
- se B è divergente e $\lim_{n \to \infty} \frac{a_n}{b_n} > 0$, allora A è divergente

Criterio di Raabe.

Criterio dell'integrale.

• ...

Dimostrazioni

Serie a termini discordi

- · Criterio di convergenza assoluta.
- ...

18.2.2 Esempi

Serie armonica, $\sum_{n=1}^{\infty} \frac{1}{n}$.

La serie armonica,

$$\sum_{n=1}^{\infty} \frac{1}{n} \,,$$

è una serie divergente. Non è difficile dimostrare che la serie è sempre crescente e non è limitata superiormente: infatti

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \underbrace{\frac{1}{3} + \frac{1}{4}}_{>\frac{1}{2}} + \underbrace{\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}}_{>\frac{1}{2}} + \dots \; ,$$

la somma dei primi 2^N termini della serie è maggiore di $1+\frac{N}{2}, \sum_{n=1}^{2^N} \frac{1}{n} > 1+\frac{N}{2}.$

Serie geometrica, $\sum_{n=1}^{\infty} a^n$.

$$\sum_{n=0}^{\infty} a^n$$

La serie risulta convergente per |a| < 1. Infatti

$$S_N = \sum_{n=0}^N a^n = 1 + a \sum_{n=0}^N -a^{N+1} = 1 - a^{N+1} + a \, S_N$$

$$S_N = \frac{1 - a^{N+1}}{1 - a} \; .$$

- per |a|<1, $S=\lim_{N\to\infty}=\frac{1}{1-a}$
- per $a \geq 1,$ $S = \lim_{N \to \infty} S_N = +\infty$
- per a < 1, ...

Serie telescopiche, $\sum_{n=1}^{\infty} \left(A_n - A_{n+1}\right)$.

$$\sum_{n=1}^{\infty}a_n=\sum_{n=1}^{\infty}\left(A_n-A_{n+1}\right)=A_1-\lim_{n\to\infty}A_n$$

Serie di Mengoli, $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$.

La serie di Mengoli è un esempio di serie telescopica, con

$$a_n = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

e quindi la serie risulta convergente,

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1 - \lim_{n \to \infty} \frac{1}{n+1} = 1 \; .$$

e di Eulero o di Nepero, $e:=\sum_{n=0}^{\infty} \frac{1}{n!}$.

La serie

$$\sum_{n=0}^{\infty} \frac{1}{n!}$$

converge a un numero irrazionale e, che viene definito il **numero di Eulero o di Nepero**, e il cui valore approssimato è

$$e = 2.718281828$$
"e poi la magia finisce",

cioè le cifre decimali successive non sono periodiche.

Si può dimostrare la convergenza della serie, ad esempio usando il criterio del rapporto di d'Alembert per le serie a termini concordi, dimostrando che il limite

$$\lim_{n\to +\infty} \frac{a_{n+1}}{a_n} = \lim_{x\to +\infty} \frac{n!}{(n+1)!} = \lim_{x\to +\infty} \frac{1}{n+1} = 0 \;,$$

è finito e quindi la serie è convergente.

In particolare, usando la serie geometrica con $a = \frac{1}{2}$,

$$\sum_{n=0}^{+\infty} \left(\frac{1}{2}\right)^n = \frac{1}{1 - \frac{1}{2}} = 2$$

e confrontandola termine a termine con la serie di e,

$$2 = \sum_{n=0}^{+\infty} \left(\frac{1}{2}\right)^n = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$$

$$e := \sum_{n=0}^{+\infty} \frac{1}{n!} = 1 + 1 + \frac{1}{2} + \underbrace{\frac{1}{3!}}_{<\frac{1}{4}} + \underbrace{\frac{1}{5!}}_{<\frac{1}{8}} + \dots < 1 + \sum_{n=0}^{+\infty} \left(\frac{1}{2}\right)^n = 3$$

si può trovare la relazione e < 3.

todo come trovare stime di maggiorazione più restrittive? come trovare approssimazioni di e? Cenni al calcolo del valore numerico? Sì, ma anche no...

18.3 Successioni di funzioni reali

Definizione. Una successione di funzioni tra l'insieme X e l'insieme Y, è una funzione che associa ai numeri interi $n \in \mathbb{N}$ una funzione $f_n : X \to Y$.

Limite di una successione di funzioni. Limite «punto per punto». L'esistenza di un limite (finito?) punto per punto definisice la *convergenza puntuale*.

18.3.1 Convergenza

Convergenza puntuale

todo definizione

Convergenza uniforme

Sia $\{f_n\}_{n\in\mathbb{N}}$ una successione di funzioni $f_n:X\to\mathbb{R}$. La serie converge uniformemente alla funzione f se per ogni $\varepsilon>0$ esiste $N\in\mathbb{N}$ tale che

$$|f_n(x) - f(x)| < e$$
, $\forall x \in X$,

per tutti gli n > N.

Proprietà.

- La convergenza uniforme permette di invertire l'ordine delle operazioni di limite, derivata e integrale con la sommatoria nelle serie di funzioni:
 - data una successione di funzioni derivatbili $f_n(x)$, che convergono uniformemente a f(x) e le cui derivate convergono uniformemente a g(x), allora

$$f'(x) = q(x)$$

– ...

• ..

todo discutere differenze tra i due tipi di convergenza; discutere i limiti della convergenza puntuale; discutere le proprietà

18.4 Serie di funzioni reali

18.4.1 Serie polinomiali

todo fare riferimento alle serie di Taylor e MacLaurin?

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots$$

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots$$

todo valutare le proprietà di convergenza (e specificare gli intervalli di convergenza) di queste funzioni

18.5 Successioni di numeri complessi

todo Fare riferimento ad algebra complessa. La funzione e^z è necessaria a introdurre la rappresentazione polare dei numeri complessi.

18.6 Serie di numeri complessi

todo Fare riferimento ad algebra complessa. La funzione e^z è necessaria a introdurre la rappresentazione polare dei numeri complessi.

18.7 Successioni di funzioni complesse

18.8 Serie di funzioni complesse

Matematica	ner	IΑ	SCHOLE	SHIP	erio	rı

CAPITOLO 19

Trigonometria

19.1 Definizione delle funzioni trigonometriche e relazione fondamentale

19.1.1 Seno e coseno

Facendo riferimento a una circonferenza di raggio R, e scegliendo una semiretta di riferimento come origine per la misura degli angoli, positivi in senso orario, si possono definire le funzioni trigonometriche **seno** e **coseno**,

$$\sin \theta := \frac{\overline{PH}}{R}$$

$$\cos \theta := \frac{\overline{OH}}{R}$$
(19.1)

19.1.2 Relazione fondamentale della trignometria

Usando il teorema di Pitagora è immediato dimostrare la **relazione fondamentale della trigonometria** tra le funzioni seno e coseno di un angolo,

$$\sin^2\theta + \cos^2\theta = 1 \ .$$

Nota sulla notazione. Nell'uso delle funzioni trigonometriche, $\sin^2 x$ indica il quadrato della funzione e non la composizione della funzione con se stessa,

$$\sin^2 x = (\sin x)^2 \neq \sin(\sin x) .$$

19.1.3 Altre funzioni trigonometriche

Tangente.
$$\tan \theta := \frac{\sin \theta}{\cos \theta} = \frac{\overline{PH}}{\overline{OH}}$$

Cosecante, secante, cotangente. Definizioni al limite tra l'inutile e il dannoso,

$$\csc \theta := \frac{1}{\sin \theta}$$
$$\sec \theta := \frac{1}{\cos \theta}$$
$$\cot \theta := \frac{1}{\tan \theta}$$

19.2 Angoli particolari e proprietà

Angoli particolari.

θ	$\cos \theta$	$\sin \theta$	$\tan\theta$
0	1	0	0
$\frac{\pi}{6}$ $\frac{\pi}{4}$ $\frac{\pi}{3}$ $\frac{\pi}{2}$	$\frac{\sqrt{3}}{2}$ $\frac{\sqrt{2}}{2}$ $\frac{1}{2}$	$ \begin{array}{c} \frac{1}{2} \\ \frac{\sqrt{2}}{2} \\ \frac{\sqrt{3}}{2} \\ 1 \end{array} $	$\frac{1}{\sqrt{3}}$ 1 $\sqrt{3}$

Proprietà.

$$\sin(-x) = -\sin x$$

$$\cos(-x) = \cos x$$

$$\sin\left(x + \frac{\pi}{2}\right) = \cos x$$

$$\cos\left(x + \frac{\pi}{2}\right) = -\sin x$$

$$\sin(x + \pi) = -\sin x$$

$$\cos(x + \pi) = -\cos x$$

19.3 Formule di somma e sottrazione

Valgono le seguenti formule per il coseno e il seno della somma e della differenza di angoli,

$$\cos(x \mp y) = \cos x \cos y \pm \sin x \sin y$$

$$\sin(x \mp y) = \sin x \cos y \mp \cos x \sin y$$

Per completezza, come utile esercizio di geometria sulla similitudine dei triangoli, e per familiarizzare con le funzioni armoniche, si fornisce la dimostrazione della formula del coseno della somma.

Dimostrazione di $\cos(x+y) = \cos x \cos y - \sin x \sin y$

Partendo dall'interpretazione geometrica del coseno di $\alpha + \beta$,

$$\cos(\alpha + \beta) = \frac{\overline{OF}}{R}$$

è necessario esprimere la lunghezza del segmento OF come multiplo del raggio R.

Usando la similitudine dei triangoli OFE, OCA, e riconoscendo il coseno dell'angolo α ,

$$\overline{OF} = \frac{\overline{OC}}{\overline{OA}}\overline{OE} = \cos\alpha \ \overline{OE} \ .$$

La lunghezza del segmento OE può essere scritta come differenza della lunghezza di OD e quella di ED; queste ultime due lunghezze possono essere espresse come frazioni del raggio della circonferenza $R = \overline{OB}$, grazie all'uso delle funzioni trigonometriche e alla similitudine dei triangoli $(\overline{ED} = \sin \alpha \, \overline{BE} = \sin \alpha \, \overline{BD} = \sin \alpha \, \overline{OB \sin \beta})$,

$$\begin{split} \overline{OE} &= \overline{OD} - \overline{ED} = \overline{OB}\cos\beta - \overline{OB}\sin\beta \frac{\sin\alpha}{\cos\alpha} = \\ &= R\left(\cos\beta - \overline{OB}\sin\beta \frac{\sin\alpha}{\cos\alpha}\right) \end{split}$$

Sostituendo questa espressione di \overline{OE} nell'espressione di \overline{OF} , si ottiene

$$\overline{OF} = \overline{OB} \left(\cos \alpha \cos \beta - \sin \beta \sin \alpha \right)$$

dalla quale si ottiene la relazione desiderata,

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \beta \sin \alpha.$$

19.4 Werner

$$\cos x \cos y = \frac{1}{2} \left[\cos(x - y) + \cos(x + y) \right]$$

$$\sin x \sin y = \frac{1}{2} \left[\cos(x - y) - \cos(x + y) \right]$$

$$\sin x \cos y = \frac{1}{2} \left[\sin(x - y) + \sin(x + y) \right]$$

Dimostrazione di $\cos x \cos y = \frac{1}{2} \left[\cos(x-y) + \cos(x+y) \right]$

Usando le formule del coseno della somma e della sottrazione di una coppia di angoli,

$$cos(x - y) = cos x cos y + sin x sin y$$
$$cos(x + y) = cos x cos y - sin x sin y$$

sommando termine a termine si ottiene

$$\cos(x-y) + \cos(x+y) = 2\cos x \cos y ,$$

dalla quale risulta evidente la relazione desiderata.

19.5 Prostaferesi

Definendo p=x-y e q=x+y nelle formule di Werner, è immediato ricavare

$$\begin{aligned} \cos p + \cos q &= 2 \cos \left(\frac{p+q}{2}\right) \cos \left(\frac{q-p}{2}\right) \\ \cos p - \cos q &= 2 \sin \left(\frac{p+q}{2}\right) \sin \left(\frac{q-p}{2}\right) \\ \sin p + \sin q &= 2 \sin \left(\frac{p+q}{2}\right) \cos \left(\frac{q-p}{2}\right) \end{aligned}$$

Dimostrazione di $\cos p + \cos q = 2\cos\left(\frac{p+q}{2}\right)\cos\left(\frac{q-p}{2}\right)$

Usando la formula di Werner per il prodotto dei coseni,

$$\cos x \cos y = \frac{1}{2} \left[\cos(x-y) + \cos(x+y) \right]$$

e definendo

$$\begin{cases} x - y = p \\ x + y = q \end{cases} \rightarrow \begin{cases} 2x = p + q \\ 2y = q - p \end{cases} \rightarrow \begin{cases} x = \frac{p+q}{2} \\ y = \frac{q-p}{2} \end{cases}$$

si ottiene

$$\cos\frac{p+q}{2}\cos\frac{q-p}{2} = \frac{1}{2}\left(\cos p + \cos q\right) \; ,$$

dalla quale è evidente la relazione desiderata.

19.5. Prostaferesi

Esponenziale e logaritmo

20.1 Definizioni e proprietà

Nel campo reale, per ogni b > 0,

$$a = b^c \qquad \leftrightarrow \qquad c = \log_b a$$

20.2 Funzione esponenziale e logaritmo di variabile reale

20.2.1 Funzione esponenziale, e^x

Definizione. Per ogni $x \in \mathbb{R}$, è possibile dare due definizioni equivalenti della e^x , che può essere intesa come l'elevamento a potenza della e di Eulero con la variabile indipendente x come esponente.

- definizione come limite della successione di funzioni $\left(1+\frac{x}{n}\right)^n$

$$e^x := \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n$$

• definizione come limite della serie di funzioni con elementi $\frac{x^n}{n!}$,

$$e^x := \lim_{n \to \infty} \sum_{k=0}^n \frac{x^n}{n!}$$

Si può dimostrare che

- la serie è convergente per ogni $x \in \mathbb{R}$ finito
- le due definizioni sono equivalenti

• le definizioni della funzione e^x giustificano la notazione e^x questa funzione poiché soddisfa le *proprietà delle* potenze (con stessa base, e):

$$e^{0} = 1$$

$$e^{1} = e$$

$$e^{x+y} = e^{x} e^{y}$$

• la derivata della funzione e^x è e^x , ed è una delle derivate fondamentali del calcolo differenziale,

$$\frac{d}{dx}e^x = e^x .$$

20.2.2 Funzione logaritmo naturale, $\ln x$

Definizione. Poiché la funzione e^x è monotona crescente, $e^x : \mathbb{R} \to (0, +\infty)$, esiste la sua *funzione inversa* con dominio $(0, +\infty)$ e immagine \mathbb{R} . La funzione inversa della funzione esponenziale con base e viene definita **logaritmo naturale**.

20.3 Funzione esponenziale e logaritmo di variabile complessa

todo Fare riferimento ad algebra complessa. La funzione e^z è necessaria a introdurre la rappresentazione polare dei numeri complessi.

20.4 Esponenziale e logaritmo - dimostrazioni

Convergenza della serie di funzioni $\sum_{n=0}^{\infty} rac{x^n}{n!}$ in ogni intervallo limitato

Per dimostrare la convergenza uniforme di $\sum_{k=0}^{\infty} \frac{x^k}{k!}$ a e^x in ogni intervallo limitato |x| < M, è richiesto di dimostrare che per ogni $\varepsilon > 0$ esiste $N \in \mathbb{N}$ tale che

$$|e^x - S_n(x)| < \varepsilon$$
, $\forall |x| < M$

per tutti gli n > N. Bisogna quindi dimostrare che

$$\left| \sum_{k=n+1}^{\infty} \frac{x^k}{k!} \right| < \varepsilon .$$

Definendo $\tilde{M} = \max\{1, M\}$

$$\left| \sum_{k=n+1}^{\infty} \frac{x^k}{k!} \right| < \sum_{k=n+1}^{\infty} \frac{\tilde{M}^k}{k!}$$

e scegliendo $k > 2\tilde{M}$, in maniera da poter scrivere

$$\frac{\tilde{M}^k}{k!} = \frac{\tilde{M}^{2\tilde{M}}}{(2\tilde{M})!} \frac{\tilde{M}}{2\tilde{M}+1} \dots \frac{\tilde{M}}{k} < \frac{\tilde{M}^{2\tilde{M}}}{(2\tilde{M})!} 2^{-(k-\tilde{M})} = \frac{(2\tilde{M})^{2\tilde{M}}}{(2\tilde{M})!} 2^{-k}$$

e quindi

$$\sum_{k=n+1}^{\infty} \frac{\tilde{M}}{k!} < \sum_{k=n+1}^{\infty} \frac{(2\tilde{M})^{2\tilde{M}}}{(2\tilde{M})!} 2^{-k} = \frac{(2\tilde{M})^{2\tilde{M}}}{(2\tilde{M})!} 2^{-n}$$

avendo usato
$$\sum_{k=n+1}^{\infty} 2^{-k} = 2^{-n-1} \sum_{k=0}^{\infty} 2^{-k} = 2^{-n-1} \cdot 2 = 2^{-n}.$$

Scegliendo $N>\log_2\left(\frac{1}{arepsilon}\frac{(2\tilde{M})^{2\tilde{M}}}{(2\tilde{M})!)}\right)$, per ogni n>N si ha

$$\left|\sum_{k=n+1}^{\infty}\frac{x^k}{k!}\right|<\frac{(2\tilde{M})^{2\tilde{M}}}{(2\tilde{M})!}2^{-n}<\frac{(2\tilde{M})^{2\tilde{M}}}{(2\tilde{M})!}2^{-N}<\varepsilon\;.$$

Equivalenza delle due definizioni

todo

Giustificazione della notazione e^x

Per evitare la forma indeterminata nel termine 0^0 , si calcola qui il limite per $x \to 0$ (**todo** motivare la validità di questa operazione/interpretazione della funzione e^x)

$$e^0 := \lim_{x \to 0} e^x = \lim_{x \to 0} \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + \lim_{x \to 0} \sum_{n=1}^{\infty} \frac{x^n}{n!} = 1.$$

Ricordando la definizione della e di Eulero, è immediato verificare che il valore della serie di funzioni per x=1 coincide con il valore di e

$$e^1 = \sum_{n=0}^{\infty} \frac{x^n}{n!} \Big|_{x=1} = \sum_{n=0}^{\infty} \frac{1}{n!} = e$$
.

La serie che definisce la esponenziale soddisfa la proprietà delle potenze $e^x e^y = e^{x+y}$,

$$e^{x} e^{y} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} \sum_{m=0}^{\infty} \frac{y^{m}}{m!} =$$

$$= \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{y^{m}}{m!} \frac{x^{n}}{n!} =$$

$$= \sum_{p=0}^{\infty} \sum_{m=0}^{p} \frac{y^{m} x^{p-m}}{m!(p-m!)} =$$

$$= \sum_{p=0}^{\infty} \frac{1}{p!} \underbrace{\sum_{m=0}^{p} \frac{p!}{m!(p-m)!} y^{m} x^{p-m}}_{(x+y)^{p}} =$$

$$= \sum_{p=0}^{\infty} \frac{(x+y)^{p}}{p!} =$$

$$= e^{x+y},$$

avendo usato il teorema binomiale.

basics

08 dic 2024

3 min read

CAPITOLO 21

Algebra complessa

In questa sezione viene introdotto l'insieme dei numeri complessi e le operazioni su di essi che permettono di definire l'algebra complessa.

I numeri reali sono sottoinsieme dei numeri complessi, $\mathbb{R} \subset \mathbb{C}$. La definizione di operazioni e funzioni, come l'esponenziale, sui numeri complessi viene data come **estensione ai numeri complessi** delle definizioni note sui numeri reali.

I numeri complessi risultano utili in molti ambiti della matematica e della scienza, dalla fisica all'ingegneria:

- teorema fondamentale dell'algebra
- rappresentazione efficace delle funzioni trigonometriche, grazie all'identità di Eulero
- · soluzione di equazioni differenziali
- ..

21.1 Definizioni

I numeri complessi estendono il campo dei numeri reali, $\mathbb{R} \subset \mathbb{C}$. Viene inizialmente definita l'**unità immaginaria**, i, come la radice quadra di -1,

$$i := \sqrt{-1}$$
.

L'insieme dei numeri complessi, indicato con \mathbb{C} , è l'insieme di quei numeri che possono essere scritti come

$$z = x + iy ,$$

 $con x, y \in \mathbb{R}$.

21.1.1 Operazioni: somma e moltiplicazione

I numeri complessi formano la struttura algebrica di **campo** con le operazioni di somma e prodotto. Dati due numeri complessi $z_1 = x_1 + iy_1$, $z_2 = x_2 + iy_2$, vengono definiti

• la somma

$$z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2)$$

• il prodotto,

$$\begin{split} z_1 \, z_2 &= (x_1 + i y_1)(x_2 + i y_2) = \\ &= x_1 \, x_2 - y_1 \, y_2 + i (x_1 \, y_2 + x_2 \, y_1) \end{split}$$

• elevamento a potenza con esponente intero, $n \in \mathbb{N}$,

$$z^n = \underbrace{z \cdot z \cdot \dots \cdot z}_{n \text{volte}}$$

• elevamento a potenza con esponente reale **todo** ...

21.1.2 Esponenziale complesso e formula di Eulero

Estendendo la definizione di funzione esponenziale e^x ai numeri complessi, si può scrivere

$$e^z = \sum_{n=0}^{+\infty} \frac{z^n}{n!} = \lim_{n \to +\infty} \left(1 + \frac{z}{n}\right)^n$$

Dimostrazione dell'equivalenza delle due definizioni

Formula di Eulero

Per esponenti reali, vale

$$e^{ix} = \cos x + i \sin x$$

Dimostrazione usando la definizione come serie

L'identità di Eulero può essere dimostrata (**todo** *bisogna verificare la convergenza (uniforme) delle serie?*) confrontando le serie polinomiali (di Taylor) delle funzioni $\cos x$, $\sin x$ definite sui numeri reali, $x \in \mathbb{R}$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots$$
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots$$

con la serie che definisce l'esponenziale complesso,

$$e^z = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \frac{z^4}{4!} + \frac{z^5}{5!} + \dots$$

valutata in $z = ix \in \mathbb{C}$

$$\begin{split} e^{ix} &= 1 + ix + \frac{(ix)^2}{2!} + \frac{(ix)^3}{3!} + \frac{(ix)^4}{4!} + \frac{(ix)^5}{5!} + \dots = \\ &= 1 - \frac{x^2}{2!} + \frac{x^4}{4!} \dots + i \left[x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots \right] = \\ &= \cos x + i \sin x \; . \end{split}$$

Dimostrazione usando la definizione come limite della successione

todo

$$a_n = \left(1 + \frac{z}{n}\right)^n = \left(1 + \frac{x}{n} + i\frac{y}{n}\right)^n$$

Il modulo di a_n tende a e^x

$$r_n = \sqrt{\left(1 + \frac{x}{n}\right)^2 + \left(\frac{y}{n}\right)^2}$$

$$nr_n = \sqrt{(n+x)^2 + y^2}$$

l'argomento tende a θ

$$\tan \theta_n = \frac{\frac{y}{n}}{1 + \frac{x}{n}} = \frac{y}{x + n}$$

$$\sin \theta_n = \frac{y}{n r_n}$$

$$\cos \theta_n = \frac{x + n}{n r_n}$$

Usando la formula di de Moivre

$$(\cos x + i\sin x)^n = \cos(nx) + i\sin(nx)$$

si può scrivere

$$\begin{aligned} a_n &= \left(1 + \frac{x}{n} + i\frac{y}{n}\right)^n = \\ &= \left(r_n \cos \theta_n + ir_n \sin \theta\right)^n = \\ &= r_n^n \cdot \left[\cos(n\theta_n) + i\sin(n\theta_n)\right] \end{aligned}$$

Per $n \to \infty$

$$\begin{split} \theta_n \sim \tan \theta_n &= \frac{y}{x+n} \sim \frac{y}{n} \\ n\theta_n \sim y \\ r_n^n &= \left[\left(1 + \frac{x}{n}\right)^2 + \left(\frac{y}{n}\right)^2 \right]^{\frac{n}{2}} = \\ &= \left(1 + \frac{x}{n}\right)^n \left[1 + \left(\frac{y}{n+x}\right)^2 \right]^{\frac{n}{2}} = \end{split}$$

Il primo fattore è asintotico a e^x ,

$$\left(1 + \frac{x}{n}\right)^n \sim e^x \ .$$

21.1. Definizioni 117

Il secondo fattore, con il «completamento della definizione di esponenziale», può essere riscritto come

$$\left[1 + \left(\frac{y}{n+x}\right)^2\right]^{\frac{n}{2}} = \left\{ \left[1 + \left(\frac{y}{n+x}\right)^2\right]^{\left(\frac{n+x}{y}\right)^2} \right\}^{\frac{ny^2}{2(n+x)^2}} \sim e^0 = 1.$$

Il termine r_n^n tende quindi a e^x .

Il limite dei termini a_n della successione che definisce l'esponenziale complesso può quindi essere scritto come

$$e^z = e^x \left(\cos y + i \sin y\right) ,$$

Si trova quindi l'identità di Eulero usando la proprietà delle potenze estesa ai numeri complessi,

$$e^z = e^{x+iy} = e^x e^{iy} = e^x (\cos y + i \sin y) \to e^{iy} = \cos y + i \sin y$$
.

todo ...

21.1.3 Rappresentazione nel piano complesso

Ogni numero complesso $z \subset \mathbb{C}$ può essere associato a un punto del piano complesso \mathbb{C} ; l'uso di coordinate cartesiane o polari per la descrizione dei punti del piano \mathbb{R}^2 suggerisce due tipi di rappresentazioni per un numero complesso:

 la rappresentazione cartesiana associa l'asse delle ascisse alla parte reale x e l'asse delle ordinate alla parte immaginaria y,

$$z = x + iy$$

• la **rappresentazione polare**; usando la legge di trasformazione tra coordinate polari (r, θ) e coordinate cartesiante (x, y)

$$\begin{cases} x = r\cos\theta \\ y = r\sin\theta \end{cases}$$

e la formula di Eulero, $e^{i\theta} = \cos\theta + i\theta$, è possibile scrivere un numero complesso in forma polare,

$$z = x + iy = r\cos\theta + ir\sin\theta = r(\cos\theta + i\sin\theta) = re^{i\theta}$$
.

Nota: Le due rappresentazioni non sono equivalenti. Mentre la rappresentazione cartesiana permette di creare una relazione biunivoca tra i numeri complessi $z=x+i\ y$ e i punti nel piano $(x,\ y)$, la rappresentazione polare assegna infiniti numeri complessi, seppur di uguale valore $r\ e^{i\theta}=r\ e^{i(\theta+n\ 2\pi)}$, con $n\in\mathbb{Z}$ allo stesso punto nello spazio.

21.2 Operazioni con i numeri complessi

• somma

$$z_1+z_2=(x_1+x_2)+i(y_1+y_2)\\$$

· prodotto

$$z_1 \; z_2 = r_1 \, r_2 e^{i(\theta_1 + \theta_2)}$$

· complesso coniugato

$$z^* = x - iy = re^{-i\theta}$$

· valore assoluto

$$|z| = \sqrt{x^2 + y^2} = r = \sqrt{z^* z}$$

• potenza ed esponenziale

$$\begin{split} z^a &= \left(re^{i\theta}\right)^a = r^a e^{ia\theta} \\ a^{iy} &= \left(e^{\ln a}\right)^{iy} = e^{iy\ln a} = \cos(y\ln a) + i\sin(y\ln a) \\ a^z &= a^{x+iy} = a^x a^{iy} = a^x \left(\cos(y\ln a) + i\sin(y\ln a)\right) \\ z^w &= \left(re^{i\theta}\right)^{(u+iv)} = r^{u+iv} e^{i\theta(u+iv)} = r^u e^{-\theta v} e^{i(v\ln r + \theta u)} \end{split}$$

todo discutere il caso di potenze intere, potenze razionali, potenze irrazionali,... con grafico

• logaritmo, con base reale positiva, a > 0

$$\log_a z = \log_a \left(r \, e^{i(\theta + n \, 2\pi)} \right) = \log_a r + \log_a e^{i(\theta + n \, 2\pi)} = \log_a r + i \, \frac{1}{\ln a} \, \left(\theta + n \, 2\pi \right)$$

avendo usato le proprietà dei logaritmi

$$\begin{split} \log(ab) &= \log a + \log b \\ \log_a b &= \frac{\log_c b}{\log_c a} \end{split}$$

21.3 Altri argomenti/proprietà

$$\begin{split} \operatorname{re}\{z\} &= \frac{1}{2}\left(z+z^*\right)\\ \operatorname{im}\{z\} &= \frac{1}{2}\left(z-z^*\right)\\ e^{i\alpha}e^{i\beta} &= e^{i(\alpha+\beta)}\\ \left(e^{i\alpha}\right)^n &= e^{in\alpha} \end{split}$$

21.3.1 Formula di de Moivre

$$(\cos x + i\sin x)^n = \cos(nx) + i\sin(nx) , \quad n \in \mathbb{Z}$$

Dimostrazione per induzione

Per $n \in \mathbb{N}$, si procede per induzione **todo** aggiungere i capitoli sulla logica? E un riferimento ad essi? Per n=1 la formula di de Moivre si riduce a un'identità. Supponiamo quindi che sia valida per un intero n>1 e verifichiamo se questo implica che sia valida anche per n+1

$$\begin{split} (\cos x + i \sin x)^{n+1} &= (\cos x + i \sin x)^n \left(\cos x + i \sin x\right) = \\ &= (\cos(nx) + i \sin(nx)) \left(\cos x + i \sin x\right) = \\ &= \cos(nx) \cos x - \sin(nx) \sin x + i \left(\cos(nx) \sin x + \sin(nx) \cos x\right) = \\ &= \cos((n+1)x) + i \sin((n+1)x) \;. \end{split}$$

Per n=0, la formula di de Moivre si riduce all'identità $1\equiv 1$.

Per $m:=-n\in\mathbb{N}$, la formula di de Moivre può essere verificata usando la formula di de Moivre per m>0 e razionalizzando la frazione,

$$\begin{aligned} (\cos x + i \sin x)^n &= \frac{1}{(\cos x + i \sin x)^m} = \\ &= \frac{1}{(\cos(mx) + i \sin(mx))} = \\ &= \underbrace{\frac{\cos(mx) - i \sin(mx)}{\cos^2(mx) + \sin^2(mx)}}_{=1} = \cos(mx) - i \sin(mx) = \cos(nx) + i \sin(nx) \;. \end{aligned}$$

21.3.2 Teorema fondamentale dell'algebra

Ogni polinomio a coefficienti reali (**todo** o anche complessi) di grado n, $p_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots a_1 x + a_0$ può essere fattorizzato come prodotto di n binomi

$$p_n(x) = a_n(x-z_1)(x-z_2)\dots(x-z_n)$$
,

e i numeri $z_k \in \mathbb{C}, \, k=1:n,$ sono chiamati **zeri** del polinomio.

Come diretta conseguenza, ogni equazione polinomiale di grado $n, p_n(x) = 0$, ammette n soluzioni complesse coincidenti con gli zeri z_k del polinomio $p_n(x)$.

21.4 Equazioni e disequazioni con i numeri complessi

Le equazioni e le disequazioni con i numeri complessi possono essere ricondotti a problemi che coinvolgono una coppia di variabili reali, tipicamente le componenti reale e immaginaria, o il modulo e l'argomento, che descrivono il piano dei numeri complessi.

todo

basics

08 dic 2024

0 min read

CAPITOLO 22

Funzioni multi-variabile

Parte VI

Calcolo

basics

08 dic 2024

4 min read

Matematica	ner le	SCHOLE	SUIDERIOR

Introduzione al calcolo

Il calcolo si occupa della variazione continua di grandezze matematiche che possono essere rappresentate come funzioni di variabili indipendenti.

Argomenti del capitolo

In questa sezione vengono inizialmente introdotti i concetti fondamentali dell'analisi per le funzioni reali di una variabile reale, $f: \mathbb{R} \to \mathbb{R}$ e successivamente vengono estesi al calcolo per funzioni reali di più variabili $f: \mathbb{R}^n \to \mathbb{R}$ e al calcolo vettoriale su spazi euclidei per campi $f: E^n \to V$.

Introduzione all'analisi. Viene richiamato il concetto di **funzione** di variabile reale a valore reale, $f:D\in\mathbb{R}\to\mathbb{R}$, e la sua rappresentazione grafica in un piano cartesiano. Viene introdotto il concetto di **limite** per funzioni reali e viene usato per definire le **funzioni continue**. Vengono quindi presentati alcuni teoremi sulle funzioni continue e sui limiti che ne permettono il calcolo. Vengono presentate le forme indeterminate al finito e all'infinito, e calcolati i *limiti fondamentali*.

Calcolo differenziale. Usando i concetti di limite della sezione precedente, viene introdotto il concetto di **derivata** di una funzione reale, e viene data una sua interpretazione geometrica, legata alla retta tangente al grafico della funzione. Seguono alcune proprietà e teoremi sulle derivate che permettono di valutare le *derivate fondamentali* e combinare questi risultati per il calcolo della derivata di una funzione qualsiasi. Infine viene introdotto il concetto di derivate di ordine superiore, e vengono mostrate alcune applicazioni: ricerca di punti di estremo locale e di flesso nello studio di funzione, ottimizzazione, approssimazione locale tramite sviluppi in serie polinomiali

Calcolo integrale. Viene data la definizione di **integrale di Riemann** e una sua interpretazione geometrica, legata all'area sottesa dal grafico della funzione. Seguono alcune proprietà degli integrali che permettono di definire l'integrale definito e indefinito, e la primitiva di una funzione. Viene presentato il **teorema fondamentale del calcolo infinitesimale**, che permette di riconoscere l'operazione di integrazione come inversa dell'integrazione. Usando questo risultato, vengono valutati gli *integrali fondamentali*; poche regole di integrazione permettono poi di calcolare l'integrale di funzioni generiche. Infine vengono mostrate alcune applicazioni: ... **todo**

Equazioni differenziali ordinarie. todo

Introduzione al calcolo multi-variabile.

Introduzione al calcolo vettoriale su spazi euclidei.

Dipendenze

Breve storia dello sviluppo del calcolo

Gli strumenti matematici del calcolo vengono sviluppati e formalizzati tra la fine del XVII secolo e il XIX secolo, come strumenti necessari alla costruzione delle teorie fisiche della meccanica razionale di Newton prima, e della meccanica dei mezzi continui (fluidi e solidi) poi.

Newton introduce i concetti fondamentali calcolo differenziale e integrale delle funzioni di una variabile, qui chiamato calcolo infinitesimale, necessari allo sviluppo della meccanica: nella meccanica di Newton, il moto di un sistema meccanico è descritto dai suoi gradi di libertà in funzione della variabile tempo, e le equazioni che ne governano il moto sono equazioni differenziali ordinarie. Il lavoro di Newton, e il lavoro contemporaneo di Leibniz, parte dalla *geometria analitica*, che permette di associare una curva a una funzione, e sviluppa la risposta ad alcuni problemi riguardanti la geometria delle curve, come il calcolo della tangente a una curva, la ricerca dei minimi e dei massimi di una funzione o il calcolo delle aree.

I risultati del calcolo differenziale e integrale vengono connessi tra di loro dal **teorema fondamentale del calcolo** (**todo** aggiungere riferimento).

A Eulero si deve una prima raccolta degli strumenti utili a un'introduzione al calcolo, come discusso nel capitolo sul *precalcolo*.

Al lavoro di Johann e Jakob Bernoulli e ancora Eulero si deve l'ideazione del calcolo delle variazioni (**todo** *aggiungere una sezione?*), ampiamente sviluppato da **Lagrange** nella sua riformulazione geometrica della meccanica.

Nel corso del XVIII e del XIX secolo, il calcolo infinitesimale si sviluppo come lo strumento matematico indispensabile nei problemi di fisica: Lagrange introduce il concetto di potenziale in meccanica, mentre Green sviluppa gli strumenti del calcolo infinitesimale per funzioni di più variabili (teorema di Green, estensione del rotore allo spazio 3-dimensionale, metodo della funzione di Green) nel suo «Saggio sull'Applicazione della Analisi Matematica alle Teorie dell'Elettricità e del Magnetismo» del 1828, testo «in anticipo di 30 anni rispetto al suo tempo» secondo Einstein, ma rimasto a lungo trascurato.

Nel XIX secolo Gauss contribuì allo sviluppo del calcolo multivariabile applicato allo studio delle curve e delle superfici, e alla teoria matematica dell'elettromagnetismo.

Nel XIX secolo il calcolo infinitesimale si impose come strumento matematico fondamentale in diversi ambiti:

- meccanica dei solidi e dei fluidi:
- diffusione del calore per conduzione
- · elettromagnetismo

Cauchy diede importanti contributi allo sviluppo del calcolo complesso, successivamente sviluppato da Riemann.

Cauchy contribuì inoltre alla definizione rigorosa dei fondamenti del calcolo, portata avanti da Weierstrass nella seconda metà del XIX secolo con la definizione di limite e continuità di una funzione.

Introduzione all'analisi

In questa sezione viene richiamato il concetto di funzione introdotto nella sezione *precalcolo*. Viene introdotto il concetto di *limite* e definito in termini topologici (intervalli, punti di accumulazione, insiemi aperti e chiusi,...). Il concetto di limite viene utilizzato per dare una definizione di funzione continua. Vengono poi presentati alcuni teoremi e proprietà di limiti e funzioni continue.

24.1 Funzioni reali a variabile reale, $f: \mathbb{R} \to \mathbb{R}$

Per un'introduzione alle funzioni reali fa variabili reali si rimanda al capitolo dedicato nella sezione precalcolo.

24.2 Limiti

24.2.1 Cenni di topologia per il calcolo

todo Punto di accumulazione e punto isolato, intorno, insiemi aperti e chiusi, limsup/liminf, max/min,... E" necessario? Il minimo indispensabile

24.2.2 Definizione di limite

Limite finito al finito

$$\forall \varepsilon>0 \quad \exists U_{x_0,\delta} \quad t.c. \quad |f(x)-L|<\varepsilon \quad \forall x\in U_{x_0,\delta}\backslash \{x_0\}$$

dove la condizione sull'intorno di un punto x_0 al finito per funzioni reali può essere riscritta come $0 < |x - x_0| < \delta$ per un intorno simmetrico del punto x_0 .

Limite infinito al finito

$$\forall M>0 \quad \exists U_{x_0,\delta} \quad t.c. \quad |f(x)|>M \quad \forall x\in U_{x_0,\delta}\backslash\{x_0\}$$

dove la condizione sull'intorno di un punto x_0 al finito per funzioni reali può essere riscritta come $0<|x-x_0|<\delta$ per un intorno simmetrico del punto x_0 . Se f(x)>M allora il limite tende a $+\infty$, se f(x)<-M allora il limite tende a $-\infty$.

Limite finito all'infinito

$$\forall \varepsilon > 0 \quad \exists U_{\mp\infty.R} \quad t.c. \quad |f(x) - L| < \varepsilon \quad \forall x \in U_{\mp\infty.R}$$

dove la condizione sull'intorno di un punto all'infinito per funzioni reali può essere riscritta come x < R per un intorno di $-\infty$ o x > R per un intorno di $+\infty$.

Limite infinito all'infinito

$$\forall M > 0 \quad \exists U_{\mp\infty,R} \quad t.c. \quad |f(x)| > M \quad \forall x \in U_{\mp\infty,R}$$

dove la condizione sull'intorno di un punto all'infinito per funzioni reali può essere riscritta come x < R per un intorno di $-\infty$ o x > R per un intorno di $+\infty$. Se f(x) > M allora il limite tende a $+\infty$, se f(x) < -M allora il limite tende a $-\infty$.

24.3 Funzioni continue

24.3.1 Definizione

Una funzione reale $f:D\in\mathbb{R}\to\mathbb{R}$ è continua in un punto $x_0\in D$ se la funzione è definita nel punto, se esiste il limite della fuzione e coincide con il valore della funzione

$$\lim_{x\to x_0} f(x) = f(x_0) \;.$$

Una funzione reale è continua in un dominio todo o insieme? se è continua in ogni punto del dominio.

24.3.2 Teoremi

Teorema di Weierstrass

Theorem (Teorema di Weierstrass)

Data una funzione reale continua $f:[a,b]\to\mathbb{R}$ definita sull'intervallo chiuso [a,b], la funzione f(x) ammette un punto di massimo assoluto e un punto di minimo assoluto nell'intevallo [a,b].

todo Dimostrazione? Discussione più intuitiva? Figura?

Teorema della permanenza del segno

Theorem (Teorema della permanenza del segno)

Data una funzione continua $f:D\to\mathbb{R}$ continua, e un punto $x_0\in D$ (todo o punto di accumulazione?). Se $f(x_0)>0$ allora $\exists U_{x_0}$ t.c. f(x)>0 per $\forall x\in U_{x_0}\cap D$.

todo Non è necessario che la funzione sia continua in x_0 , ma è sufficiente che esista il limite della funzione $\lim_{x\to x_0} f(x) = \ell$, con x_0 punto di accumulazione di X.

Dimostrazione

Sia f(x) una funzione continua in x_0 con $f(x_0) = \ell > 0$. Poiché f è continua nel punto x_0 , esiste il limite $\lim_{x \to x_0} f(x) = \ell > 0$, e quindi

$$\forall \varepsilon>0 \quad \exists \delta>0 \quad \text{t.c.} |f(x)-\ell|<\varepsilon \quad \forall x\in U_{\delta_{x_0}}=[x_0-\delta,x+\delta]\cap D.$$

Scegliendo $\varepsilon=\ell$, si ottiene $|f(x)-\ell|<\ell$ per i valori di $x\in U_{x_0}$ e quindi la dimostrazione della tesi, $0< f(x)<2\ell$.

Teorema degli zeri

Theorem (Teorema degli zeri)

Data una funzione $f:[a,b]\to\mathbb{R}$ continua, con f(a) e f(b) discordi, f(a)f(b)<0. Allora esiste un valore $x\in(a,b)$ tale che f(x)=0.

Dimostrazione

todo

- · per assurdo?
- con metodo di bisezione? serve teorema di conservazione delle disuguaglianze per le successioni

$$a_n < b_n \quad \to \quad \lim_{n \to +\infty} a_n \leq \lim_{n \to +\infty} b_n$$

Teorema dei valori intermedi

Theorem (Teorema dei valori intermedi)

Data una funzione $f:[a,b] \to \mathbb{R}$ continua, allora f(x) assume tutti i valori compresi tra f(a) e f(b), cioè (assumendo f(a) < f(b)) per $\forall y \in (f(a),f(b)) \ x_0 \in (a,b)$ t.c.. $f(x_0) = y$.

Dimostrazione

Sia f(a) < f(b) e y_0 un valore compreso $f(a) < y_0 < f(b)$. Si definisce la funzione $g(x) = f(x) - y_0$, che verifica le ipotesi del teorema degli zeri,

$$\begin{split} g(a) &= f(a) - y_0 < 0 \\ g(b) &= f(b) - y_0 > 0 \; , \end{split}$$

e che quindi $\exists x_0 \in (a,b)$ t.c $g(x_0) = 0$ o equivalentemente $f(x_0) = y_0$. Da qui dimostrata la tesi che per ogni $y_0 \in (a,b)$ esiste un x_0 che sia l'argomento della funzione f, che dia $f(x_0) = y_0$.

24.3. Funzioni continue 131

24.4 Operazioni e teoremi sui limiti

Vengono elencate alcune regole per compiere operazioni con i limiti. La *dimostrazione* delle regole è disponibile a fine capitolo.

24.4.1 Operazioni coi limiti

Dato un numero reale $c \in \mathbb{R}$ e i limiti $\lim_{x \to x_0} f(x) = F$, $\lim_{x \to x_0} g(x) = G$ allora valgono le seguenti regole

$$\begin{split} &\lim_{x\to x_0} \left(c\cdot f(x)\right) = c\,F\\ &\lim_{x\to x_0} \left(f(x)\mp g(x)\right) = F\mp G\\ &\lim_{x\to x_0} \left(f(x)\cdot g(x)\right) = F\cdot G\\ &\lim_{x\to x_0} \frac{f(x)}{g(x)} = \frac{F}{G}\quad,\quad \text{se } G\neq 0 \end{split}$$

... **todo** *regole con esponenti*

Alcune delle operazioni elencate qui sopra per limiti finiti possono essere *estese al caso di limiti infiniti*; in altri casi, nascono delle forme *indeterminate*.

Limiti infiniti e infinitesimi

Valgono le seguenti regole

$$\begin{array}{ll} f(x) \to \mp \infty \;,\; c > 0 & : \; \lim_{x \to x_0} \; c \cdot f(x) = \mp \infty \\ f(x) \to \mp \infty \;,\; c < 0 & : \; \lim_{x \to x_0} \; c \cdot f(x) = \pm \infty \\ f(x) \to \mp \infty \;,\; G \; \text{finito} & : \; \lim_{x \to x_0} (f(x) + g(x)) = \mp \infty \\ f(x) \to \mp \infty \;,\; G \; \text{finito}, g(x) \neq 0 & : \; \lim_{x \to x_0} \frac{g(x)}{f(x)} = 0^{\mp \text{sign}\{G\}} \\ f(x) \to 0^{\mp} \;,\; G \; \text{finito}, g(x) \neq 0 & : \; \lim_{x \to x_0} \frac{g(x)}{f(x)} = \mp \text{sign}\{G\} \cdot \infty \\ f(x) \to \mp \infty \;,\; g(x) \neq 0 & : \; \lim_{x \to x_0} g(x) \cdot f(x) = \mp \text{sign}\{G\} \cdot \infty \\ \dots ** \text{todo} ** * \text{regole con esponenti} * \end{array}$$

riassumibili con un po" di libertà nella notazione come

$$\begin{split} c \cdot \mp \infty &= \mp \mathrm{sign}\{c\} \cdot \infty \;, \quad \mathrm{se} \; c \neq 0 \\ c \mp \infty &= \mp \infty \\ + \infty + \infty &= + \infty \\ - \infty - \infty &= - \infty \\ + \infty \cdot \mp \infty &= \mp \infty \\ \frac{c}{\mp \infty} &= 0^{\mp \mathrm{sign}\{c\}} \;, \quad \mathrm{se} \; c \neq 0 \\ \dots ** \mathrm{todo} ** *\mathrm{regole} \; \mathrm{con} \; \mathrm{esponenti} * \end{split}$$

Nota: Si prega di notare come sono stati esclusi alcuni casi riguardanti valori o funzioni identicamente uguali a 0. Nel caso in cui g(x) = 0, ad esempio

$$q(x) f(x) \equiv 0 \qquad \rightarrow \qquad \lim q(x) f(x) = 0$$

poiché la funzione g(x)f(x) è identicamente uguale a zero: non c'è nulla da variare per studiarne il limite: il valore è zero per ogni x e basta.

Forme indeterminate

Risultano indeterminate le seguenti 7 forme,

$$+\infty-\infty$$
 , $0\cdot\mp\infty$, $\frac{\mp\infty}{\mp\infty}$, $\frac{0}{0}$, 1^{∞} , 0^{0} , ∞^{0}

avendo interpretato gli infiniti, gli zeri e gli uni come funzioni che tendono a quei valori,

$$0 \sim \lim f(x) = 0$$
 , $1 \sim \lim f(x) = 1$, $\infty \sim \lim f(x) = \infty$,

senza esserne identicamente uguali.

Oss. Invece non sono forme indeterminate $0^{+\infty} \to 0$ e $0^{-\infty} \to \infty$.

Vengono ora introdotti alcuni risultati necessari per manipolare le forme indeterminate, e poter confrontare infiniti e infinitesimi.

24.4.2 Teorema del confronto

Theorem (Teorema del confronto)

Siano $f, g, h: X \in \mathbb{R} \to \mathbb{R}$, e dato un punto di accumulazione x_0 per X. Se

$$\lim_{x\to x_0} f(x) = \lim_{x\to x_0} h(x) = \ell \;,$$

ed esiste un intorno U di x_0 tale che

$$f(x) \leq g(x) \leq h(x) \quad \forall x \in U \cap X \backslash \{x_0\} \;,$$

allora

$$\lim_{x\to x_0}g(x)=\ell\;.$$

Dimostrazione

Dalla definizione dei limiti di f(x), g(x)

$$|f(x) - \ell| < \varepsilon_f \qquad \rightarrow \qquad \ell - \varepsilon_f < f(x) < \ell + \varepsilon_f$$

$$|h(x) - \ell| < \varepsilon_h \qquad \rightarrow \qquad \ell - \varepsilon_h < h(x) < \ell + \varepsilon_h$$

todo curare i particolari sull'intorno.

Definendo $\varepsilon_g = \max\{\varepsilon_f, \varepsilon_h\}$ in U todo $\mathit{curare}\ i\ \mathit{dettagli}$, usando le ipotesi del problema si può scrivere

$$\ell - \varepsilon_q \leq \ell - \varepsilon_f < f(x) \leq g(x) \leq h(x) < \ell + \varepsilon_h \leq \ell + \varepsilon_q$$

e quindi per $\forall \varepsilon_g > 0$, $\exists U_{x_0,\delta}$ tale che $|g(x) - \ell| < \varepsilon_g$ per $\forall x \in U_{x_0,\delta} \setminus \{x_0\}$, cioè $\lim_{x \to x_0} g(x) = \ell$ todo Dimostrazione? Discussione più intuitiva? Figura?

24.4.3 Teorema di de l'Hopital

Il teorema di de l'Hopital (o di Bernoulli, **todo** *dire due parole sulla storia? Bernoulli precettore di de l'Hopital, ricava il risultato...*) è un teorema utile per il calcolo dei limiti delle forme indeterminate $\frac{0}{0}$ e $\frac{\infty}{\infty}$. Poiché il teorema coinvolge il concetto di derivata, si rimanda alla sezione del *teorema di de l'Hopital* nel capitolo sulle *derivate*.

24.5 Confronto di infiniti e infinitesimi

Il confronto di funzioni che tendono a zero $f(x), g(x) \to 0$, o di funzioni che tendono all'infinito $f(x), g(x) \to \infty$ permette di definire degli *ordini di infinitesimi o di infiniti* **todo** *definire meglio*, a seconda del valore del limite $\frac{f(x)}{g(x)} = \ell$,

- se $\ell = 0$, si può dire che f(x) è un infinitesimo di ordine superiore, o un infinito di ordine inferiore, rispetto a g(x) e si può indicare con la notazione di o piccolo f(x) = o (g(x))
- se ℓ finito diverso da zero, si può dire che f(x) è un infinitesimo, o un infinito, dello stesso ordine di g(x) e si può indicare con la notazione di o grande f(x) = O(g(x))
- se ℓ è infinito, si può dire che f(x) è un infinitesimo di ordine inferiore, o un infinito di ordine superiore, rispetto a g(x); viceversa g(x) è un infinitesimo di ordine superiore, o un infinito di ordine inferiore, rispetto a f(x) e si può indicare con la notazione di o piccolo g(x) = o (f(x))
- se $\ell=1$, si dice che f(x) e g(x) sono **asintoticamente equivalenti**, o in breve **asintotici**, $f(x)\sim g(x)$ in un intorno del punto dove viene calcolato il limite.

24.5.1 Calcolo dei limiti con sostituzione degli infinitesimi o degli infiniti

Se $h(x) \sim af(x), k(x) \sim bg(x)$ per $x \to x_0$, e il rapporto $\frac{a}{b}$ non è indeterminato, allora

$$\lim_{x \to x_0} \frac{h(x)}{k(x)} = \frac{a}{b} \lim_{x \to x_0} \frac{f(x)}{g(x)}$$

todo esempi

• confronto di polinomi

– per
$$x\to 0,$$
 $\frac{a_nx^n+\cdots+a_0}{b_mx^m+\cdots+b_0}=\frac{a_0}{b_0}$

- per
$$x \to \infty$$
, $\frac{a_n x^n + \dots + a_0}{b_m x^m + \dots + b_0} \sim \frac{a_n}{b_m} x^{n-m}$

- per $x \to 0$, $x \sim \sin x \sim \tan x$; esempi...
- molto comodo, ma bisogna prestare attenzione che non avvengano semplificazioni dei termini dominanti in occasione di addizioni e sottrazioni, come ad esempio nel calcolo di

$$\lim_{x \to 0} \frac{x - \sin x}{x^2} \quad \text{oppure} \quad \lim_{x \to 0} \frac{x - \sin x}{x^3}$$

Come mostrato nel capitolo sulle derivate, nella sezione sulle espansioni in *serie polinomali di Taylor e MacLaurin*, la serie polinomiale (25.9) della funzione seno produce un'approssimazione $\sin x = x - \frac{x^3}{3!} + O(x^5)$; quindi il numeratore delle due frazioni ha un termine dominante di terzo grado,

$$x - \sin x = x - \left(x - \frac{x}{3!} + O(x^5)\right) = \frac{x}{3!} + O(x^5) \sim \frac{1}{6}x^3$$
,

che viene utilizzato nel calcolo dei limiti desiderati

$$\lim_{x \to 0} \frac{x - \sin x}{x^2} = \lim_{x \to 0} \frac{\frac{1}{6}x^3 + O(x^5)}{x^2} = 0$$

$$\lim_{x \to 0} \frac{x - \sin x}{x^3} = \lim_{x \to 0} \frac{\frac{1}{6}x^3 + O(x^5)}{x^3} = \frac{1}{6}$$

24.6 Limiti fondamentali

Questa sezione contiene alcuni limiti fondamentali. Questi limiti possono essere considerati fondamentali come sinonimo di *«minimo da ricordare»* per poter calcolare limiti più generali utilizzando le *operazioni* e i *teoremi* sui limiti, e calcolare le *derivate fondamentali*. Un elenco minimo di limiti fondamentali è:

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$$

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x = e$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x}{1 + x} = 1$$

$$\lim_{x \to 0} \frac{\ln(1 + x)}{x} = 1$$

$$\lim_{x \to 0} \frac{(1 + x)^a - 1}{x} = a$$

La dimostrazione dei limiti fondamentali è disponibilie a fine capitolo.

24.7 Introduzione all'analisi - Problemi

24.7.1 Funzioni

· dominio, grafico, dalla geometria

24.7.2 Limiti

- · calcolo limiti con definizione
- · calcolo limiti
- calcolo limiti con forme indeterminate fondamentali

24.7.3 Funzioni continue

• continuità e discontinuità

24.8 Note e dimiostrazioni

24.8.1 Funzioni reali a variabile reale, $f: \mathbb{R} \to \mathbb{R}$

24.8.2 Limiti

24.8.3 Funzioni continue, $f \in C^0$

24.8.4 Operazioni e teoremi sui limiti

 $\lim_{x\to x_0} cf(x)$

$$\begin{split} L &= \lim_{x \to x_0} f(x) \\ \forall \varepsilon > 0 \quad \exists U_{x_0, \delta} \quad t.c. \quad |f(x) - L| < \varepsilon \quad \forall U_{x_0, \delta} \backslash \{x_0\} \\ |f(x) - L| < \varepsilon \quad \to \quad L - \varepsilon < f(x) < L + \varepsilon \\ c &\geq 0: \quad cL - c\varepsilon \leq cf(x) \leq cL + c\varepsilon \\ c &< 0: \quad cL - c\varepsilon > cf(x) > cL + c\varepsilon \\ c &\geq 0: \quad \forall \tilde{\varepsilon} = c\varepsilon > 0 \qquad \exists U_{x_0, \delta} \quad t.c. \quad |cf(x) - cL| < \tilde{\varepsilon} \quad \forall U_{x_0, \delta} \backslash \{x_0\} \\ c &< 0: \quad \forall \tilde{\varepsilon} = -c\varepsilon > 0 \qquad \exists U_{x_0, \delta} \quad t.c. \quad |cf(x) - cL| < \tilde{\varepsilon} \quad \forall U_{x_0, \delta} \backslash \{x_0\} \\ \lim_{x \to x_0} cf(x) &= cL \end{split}$$

 $\lim_{x\to x_0} f(x) \pm g(x)$

$$\begin{split} |f(x) - F| &< \varepsilon &\to & F - \varepsilon_f < f(x) < F + \varepsilon_f \\ |g(x) - G| &< \varepsilon &\to & G - \varepsilon_g < g(x) < G + \varepsilon_g \\ F + G - \varepsilon_f - \varepsilon_g &< f(x) + g(x) < F + G + \varepsilon_f + \varepsilon_g \end{split}$$

Con il segno meno, giocare con i modulli per avere $\tilde{\varepsilon} > 0$.

 $\lim_{x \to x_0} f(x) \cdot g(x)$

$$\begin{split} |f(x) - F| &< \varepsilon_f & \to & F - \varepsilon_f < f(x) < F + \varepsilon_f \\ |g(x) - G| &< \varepsilon_g & \to & G - \varepsilon_g < g(x) < G + \varepsilon_g \end{split}$$

Nell'ipotesi che $f(x) \cdot g(x) > 0$ (concordi, serve teorema permanenza segno?)

$$\begin{split} |f(x)g(x)-FG| &= |f(x)g(x)-f(x)G+f(x)G-FG| = \\ &= |f(x)(g(x)-G)+(f(x)-F)G| = \\ &\leq |f(x)||g(x)-G|+|f(x)-F||G| = \\ &\leq (|F|+\varepsilon_f)\varepsilon_g+\varepsilon_f|G| = \\ &= \underbrace{|F|\varepsilon_g+|G|\varepsilon_f+\varepsilon_f\varepsilon_g}_{\varepsilon} \end{split}$$

avendo usato $|g(x)-G|<\varepsilon,$ e la disuguaglianza triangolare

$$|f(x)| = |f(x) - F + F| \le |f(x) - F| + |F| \le \varepsilon_f + |F|$$

$$|g(x)|>\frac{|\lim_{x\to x_0}g(x)|}{2}=\frac{|G|}{2} \text{ for } x\in U_{x_0,\delta}$$

Si vuole dimostrare che esiste un intorno per il quale $|g| > \frac{|G|}{2}$

$$|g - G| < \varepsilon$$

Se esiste il limite G, allora per $\forall \varepsilon>0 \quad \exists \delta>0 \quad |g(x)-G|<\varepsilon$ Tra tutti i valori di ε , si sceglie $\frac{|G|}{2}>0$

$$-\frac{|G|}{2} < g - G < \frac{|G|}{2}$$

Si distinguono i due casi:

- $0 \le G = |G|$ implica $\frac{|G|}{2} < g < \frac{3}{2}|G|$; prendendo il modulo di quantità positive $\frac{|G|}{2} < |g| < \frac{3}{2}|G|$
- 0 > G = -|G| implica $-\frac{3}{2}|G| < g < -\frac{1}{2}|G|$; prendendo il modulo di quantità positive $\frac{|G|}{2} < |g| < \frac{3}{2}|G|$

Si è quindi dimostrato che se esiste il limite G, scegliendo $\varepsilon = \frac{|G|}{2}$, allora esiste un intorno di x_0 nel quale il valore assoluto della funzione è limitato,

$$\frac{|G|}{2} < |g(x)| < \frac{3}{2}|G| \;,$$

per tutti i valori di $x \in U_{x_0,\delta}$.

 $\lim_{x\to x_0} f(x)/g(x)$

$$\begin{split} |f(x) - F| < \varepsilon_f & \rightarrow & F - \varepsilon_f < f(x) < F + \varepsilon_f \\ |g(x) - G| < \varepsilon_q & \rightarrow & G - \varepsilon_q < g(x) < G + \varepsilon_q \end{split}$$

Nell'ipotesi che $f(x) \cdot g(x) > 0$ (concordi, serve teorema permanenza segno?)

$$\begin{split} |f(x)/g(x) - F/G| &= \left| \frac{f}{g} - \frac{F}{g} + \frac{F}{g} - \frac{F}{G} \right| = \\ &= \left| \frac{f}{g} - \frac{F}{g} + \frac{F}{G} \frac{g}{G} - \frac{F}{G} \right| = \\ &= \left| \frac{f}{g} - \frac{F}{g} + \frac{F}{G} \left(\frac{g}{G} - 1 \right) \right| = \\ &\leq \left| \frac{1}{g} \right| |f - F| + \left| \frac{1}{G} \right| \left| \frac{F}{G} \right| |g - G| = \\ &\leq \left| \frac{1}{g} \right| \varepsilon_f + \left| \frac{1}{G} \right| \left| \frac{F}{G} \right| \varepsilon_g = \\ &\leq 2 \left| \frac{1}{G} \right| \varepsilon_f + \left| \frac{1}{G} \right| \left| \frac{F}{G} \right| \varepsilon_g \end{split}$$

24.8.5 Contronto di infiniti e infinitesimi

24.8.6 Limiti fondamentali

Vengono qui dimostrati i limiti fondamentali.

Dimostrazione di $\lim_{x\to 0} \frac{\sin x}{x} = 1$

Usando il teorema del confronto per le funzioni $\sin x \le x \le \tan x$ (**todo** *dimostrare con l'area delle figure geometriche $\frac{1}{2}\sin x \le \frac{1}{2}x \le \frac{1}{2}\tan x$), si può scrivere per $x \ne 0$

$$1 \le \frac{x}{\sin x} \le \frac{\tan x}{\sin x} = \frac{1}{\cos x}.$$

Il limite per $x \to 0$ delle due funzioni estreme vale 1, quindi

$$\lim_{x \to 0} \frac{x}{\sin x} = 1 \ .$$

Dimostrazione di $\lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{1}{2}$

Usando la formula $\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha$, si può scrivere $1 - \cos x = 2\sin^2 \frac{x}{2}$. Si può quindi riscrivere il limite cercato come

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{2 \sin^2 \frac{x}{2}}{x^2} = \lim_{x \to 0} \frac{1}{2} \frac{\sin^2 \frac{x}{2}}{\left(\frac{x}{2}\right)^2} = \frac{1}{2} \underbrace{\lim_{x \to 0} \left(\frac{\sin \frac{x}{2}}{\frac{x}{2}}\right)^2}_{-1} = \frac{1}{2} \; .$$

Dimostrazione di $\lim_{x\to 0} \frac{e^x-1}{x}=1$

Usando le notazioni di «o piccolo» e «o grande» per il confronto tra infinitesimi, si dimostra il limite desiderato,

$$\lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{x \to 0} \frac{\sum_{k=0}^{+\infty} \frac{x^k}{k!} - 1}{x} = \lim_{x \to 0} \frac{1 + x + o(x) - 1}{x} = \lim_{x \to 0} \left(1 + O(x)\right) = 1 \; .$$

Dimostrazione di $\lim_{x\to 0} \frac{e^x}{1+x} = 1$

Usando le notazioni di «o piccolo» e «o grande» per il confronto tra infinitesimi, si dimostra il limite desiderato,

$$\lim_{x \to 0} \frac{e^x}{1+x} = \lim_{x \to 0} \frac{\sum_{k=0}^{+\infty} \frac{x^k}{k!}}{1+x} = \lim_{x \to 0} \frac{1+x+o(x)}{1+x} = \lim_{x \to 0} \left(1+\frac{o(x)}{1+x}\right) = 1 \; .$$

Dimostrazione di $\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$

Dimostrazione 1. Usando i risultati sui limiti che coinvolgono l'esponenziale, e definendo una nuova variabile $y = e^x - 1$, così da avere $x = \ln(y+1)$, con $y \to 0$ quando $x \to 0$, segue la dimostrazione,

$$\lim_{y \to 0} \frac{\ln(1+y)}{y} = \lim_{x \to 0} \frac{x}{e^x - 1} = 1 \ .$$

Dimostrazione 2. Usando il teorema del confronto con la relazione (todo dimostrare!)

$$\frac{x-1}{x} \le \ln x \le x-1 \;,$$

che può essere riscritta, usando il cambio di variabile $x \to x+1$ e dividendo per x (ipotizzata positiva; se negativa cambia il verso delle disuguaglianze, ma non il risultato) tutti e 3 i termini, come

$$\frac{1}{x+1} \le \frac{\ln(x+1)}{x} \le 1.$$

Per $x \to 0$ le due funzioni estremanti tendono a 1 e di conseguenza $\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$.

Dimostrazione di $\lim_{x\to 0} \frac{(1+x)^a-1}{x}=a$

Usando i risultati che coinvolgono l'esponenziale, dopo aver riscritto $(1+x)^a=e^{a\ln(1+x)}$,

$$\lim_{x \to 0} \frac{(1+x)^a - 1}{x} = \lim_{x \to 0} \frac{e^{a\ln(1+x)} - 1}{a\ln(1+x)} \frac{a\ln(1+x)}{x} = a \underbrace{\lim_{y \to 0} \frac{e^y - 1}{y}}_{=1} \underbrace{\lim_{x \to 0} \frac{\ln(1+x)}{x}}_{=1} = a \; ,$$

avendo definito la variabile $y = a \ln(1+x)$, che tende a zero quando $x \to 0$. **todo** prestare attenzione alle operazioni fatte, e fare riferimento alle operazioni con i limiti, e successivamente all'uso di infinitesimi e asintotici nel calcolo dei limiti.

Matematica	nar	ΙО	CCLIO	Δ	CIID	Ari	nr
Matcillatica	DEI	ıc	Scuoi		SUP	, e i i	

Derivate

25.1 Definizione

Rapporto incrementale. Il rapporto incrementale di una funzione reale nel punto x viene definito come il rapporto tra la differenza dei valori della funzione e la differenza del valore della variabile indipendente

$$R[f(\cdot), x, a] := \frac{f(x+a) - f(x)}{a} . \tag{25.1}$$

Derivata. La derivata di una funzione reale in un punto x viene definita come il limite del rapporto incrementale, per l'incremento della variabile indipendente che tende a zero,

$$f'(x) = \frac{df}{dx}(x) := \lim_{a \to 0} \frac{f(x+a) - f(x)}{a} \ . \tag{25.2}$$

todo In generale, la derivata di una funzione reale è un'altra funzione reale.

25.2 Regole di derivazione

Usando la definizione (25.2) di derivata e le proprietà dei limiti, è possibile dimostrare le seguenti proprietà

• linearità

$$(a f(x) + b g(x))' = a f'(x) + b g'(x)$$
(25.3)

• derivata del prodotto di funzioni

$$(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)$$
 (25.4)

• derivata del rapporto di funzioni

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)} \tag{25.5}$$

· derivata della funzione composta

$$\frac{d}{dx}f(g(x)) = \frac{df}{dy}\Big|_{y=g(x)} \frac{dg}{dx}\Big|_{x}$$
 (25.6)

• derivata della funzione inversa, y = f(x), $x = f^{-1}(y)$

$$\left. \frac{df^{-1}}{dy} \right|_{y=f(x)} = \frac{1}{\left. \frac{dy}{dx} \right|_{x}} \,. \tag{25.7}$$

Dimostrazione della linearità dell'operazione di derivazione

todo

Dimostrazione della regola del prodotto

todo

Dimostrazione della regola del quoziente

todo

Dimostrazione della regola della funzione composta

todo

Dimostrazione della regola della funzione inversa

Si usa la regola (25.6) di derivazione della funzione composta applicata alla relazione

$$x=f^{-1}\left(f(x)\right)$$

che caratterizza la funzione inversa f^{-1} . Derivando entrambi i termini della relazione rispetto alla variabile indipendente x si ottiene

$$1 = \frac{df^{-1}}{dy}\bigg|_{y=f(x)} \frac{df(x)}{dx} \;,$$

dalla quale segue immediatamente la regola di derivazione della funzione inversa

$$\left.\frac{df^{-1}}{dy}\right|_{y=f(x)} = \frac{1}{\left.\frac{dy}{dx}\right|_x} \; .$$

25.3 Teoremi

Theorem 24.3.1 (Teorema di Fermat)

Data la funzione $f:(a,b)\to\mathbb{R}$ derivabile nel punto di estremo locale $x_0\in(a,b)$, allora $f'(x_0)=0$.

Dimostrazione

Sia x_0 un punto di minimo locale della funzione f(x) derivabile in x_0 . La definizione di minimo locale permette di scrivere

$$\exists \delta > 0: \ xin(x_0 - \delta, x_0 + \delta) \cap (a,b) \quad \to \quad f(x_0) \leq f(x) \ .$$

Quindi si possono scrivere le seguenti relazioni

$$\frac{f(x_0+h)-f(x_0)}{h} \geq 0 \qquad \forall h \in (0,\delta)$$

$$\frac{f(x_0+h)-f(x_0)}{h} \leq 0 \qquad \forall h \in (-\delta,0)$$

Il limite per $h \to 0$ di queste due relazioni esiste ed è $f'(x_0)$ in entrambi i casi, essendo la derivata il limite del rapporto incrementale. Le due espressioni a sinistra dei segni di disuguaglianza possono essere considerate funzioni continue della variabile h, il cui limite esiste per $h \to 0$. Usando il teorema della permanenza del segno, si può concludere che

$$\begin{cases} f'(x_0) \ge 0\\ f'(x_0) \le 0 \end{cases}$$

e da queste la dimostrazione della tesi del problema, $f'(x_0)$.

Theorem 24.3.2 (Teorema di Rolle)

Data la funzione $f:[a,b]\to\mathbb{R}$ continua e derivabile in ogni punto dell'intervallo (a,b) con f(a)=f(b), allora esiste un valore $c\in(a,b)$ in cui f'(c)=0.

Dimostrazione

Per il teorema di Weierstrass, la funzione f ha un massimo M e un minimo m assoluti nell'intervallo [a,b]. Si distinguono due casi:

- massimo e minimo sono nei punti estremi dell'intervallo. Allora la funzione è costante, e la derivata è nulla in ogni punto $c \in (a,b)$
- i punti di massimo e di minimo sono interni all'intervallo. In questo caso, per il teorema di Fermat i punti c di minimo o massimo verificano la condizione f'(c) = 0.

Theorem 24.3.3 (Teorema di Cauchy)

Date le funzioni $f,g:[a,b]\to\mathbb{R}$ continue in [a,b] e derivabili in (a,b), allora esiste almeno un punto $c\in(a,b)$ tale che

$$[q(b) - q(a)] f'(c) = [f(b) - f(a)] q'(c)$$
.

25.3. Teoremi 143

Dimostrazione

Si applica il teorema di Rolle alla funzione

$$h(x) = [g(b) - g(a)] \ f(x) - [f(b) - f(a)] \ g(x)$$

continua in [a, b], derivabile in (a, b) e con h(a) = g(b) f(a) - f(b) g(a) = h(b).

Theorem 24.3.4 (Theorema di Lagrange)

Data la funzione $f,g:[a,b]\to\mathbb{R}$ continua in [a,b] e derivabile in (a,b), allora esiste un valore $c\in(a,b)$ tale che

$$f(b) - f(a) = (b-a)f'(c) \; .$$

Dimostrazione

Si applica il teorema di Cauhcy scegliendo la funzione g(x) = x.

Theorem 24.3.5 (Teorema di de l'Hopital)

Siano $f(x), g(x) : [a, b] \to \mathbb{R}$ funzioni reali di variabile reale continue in [a, b] e derivabili in $(a, b) \setminus \{x_0\}$.

$$\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = 0 \qquad \text{oppure} \quad \lim_{x\to x_0} |f(x)| = \lim_{x\to x_0} |g(x)| = \infty$$

Se esiste

$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = \ell \quad \text{finito}$$

allora

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \ell \ .$$

todo Controllare l'enunciato

Dimostrazione

Forma indeterminata $\frac{0}{0}$. Usando il teorema di Cauchy e il teorema di Rolle **todo**

Forma indeterminata $\frac{\infty}{\infty}$. Usando il teorema di Cauchy e il teorema di Lagrange todo

Oss. Il teorema di de l'Hopital può essere applicato anche in successione, più di una volta, fermandosi al primo rapporto di derivate dello stesso ordine che non produce una forma indeterminata.

25.4 Derivate fondamentali

Usando i *limiti fondamentali*, vengono calcolate le derivate fondamentali, che a loro volta permettono il calcolo degli *integrali fondamentali*. Le derivate fondamentali e la loro combinazione con le *regole di derivazione* permettono la derivazione

di funzioni generiche. Le derivate fondamentali sono:

$$\begin{split} f(x) &= x^n & f'(x) = nx^{n-1} \\ f(x) &= e^x & f'(x) = e^x \\ f(x) &= \ln x & f'(x) = \frac{1}{x} \\ f(x) &= \sin x & f'(x) = \cos x \\ f(x) &= \cos x & f'(x) = -\sin x \end{split} \tag{25.8}$$

Dimostrazione di $(x^n)'$

Usando la formula binomiale $(x + \varepsilon)^n = x^n + nx^{n-1}\varepsilon + f(\varepsilon^2, \varepsilon^3, \dots),$

$$\begin{split} \frac{d}{dx}x^n &= \lim_{\varepsilon \to 0} \frac{(x+\varepsilon)^n - x^n}{\varepsilon} = \\ &= \lim_{\varepsilon \to 0} \frac{x^n + nx^{n-1}\varepsilon + o(\varepsilon) - x^n}{\varepsilon} = \\ &= \lim_{\varepsilon \to 0} \left(nx^{n-1} + O(\varepsilon) \right) = \\ &= nx^{n-1} \,. \end{split}$$

Dimostrazione di $(e^x)'$

Usando le proprietà della funzione esponenziale e il limite $e^{\varepsilon}-1\sim \varepsilon$ per $\varepsilon\to 0$

$$\begin{split} \frac{d}{dx}e^x &= \lim_{\varepsilon \to 0} \frac{e^{x+\varepsilon} - e^x}{\varepsilon} = \\ &= \lim_{\varepsilon \to 0} \frac{e^x \left(e^\varepsilon - 1\right)}{\varepsilon} = \\ &= e^x \lim_{\varepsilon \to 0} \frac{\varepsilon + o(\varepsilon)}{\varepsilon} = \\ &= e^x \lim_{\varepsilon \to 0} \left(1 + O(\varepsilon)\right) = \\ &= e^x \;. \end{split}$$

Dimostrazione di $(\ln x)'$

Usando le proprietà della funzione logaritmo naturale e il limite $\ln(1+\varepsilon)\sim\varepsilon$ per $\varepsilon\to0$, per x>0

$$\begin{split} \frac{d}{dx} \ln x &= \lim_{\varepsilon \to 0} \frac{\ln(x+\varepsilon) - \ln x}{\varepsilon} = \\ &= \lim_{\varepsilon \to 0} \frac{\ln\left(1 + \frac{\varepsilon}{x}\right)}{\varepsilon} = \\ &= \lim_{\varepsilon \to 0} \frac{\frac{\varepsilon}{x} + o(\varepsilon)}{\varepsilon} = \\ &= \lim_{\varepsilon \to 0} \left(\frac{1}{x} + O(\varepsilon)\right) = \\ &= \frac{1}{x} \,. \end{split}$$

Dimostrazione di $(\sin x)'$

Usando le formule di somma delle funzioni armoniche, **todo** ref, e gli infinitesimi delle funzioni $\sin \varepsilon \sim \varepsilon$, $\cos \varepsilon \sim 1 - \frac{\varepsilon^2}{2}$ per $\varepsilon \to 0$,

$$\begin{split} \frac{d}{dx}\sin(x) &= \lim_{\varepsilon \to 0} \frac{\sin(x+\varepsilon) - \sin x}{\varepsilon} = \\ &= \lim_{\varepsilon \to 0} \frac{\sin x \cos \varepsilon + \cos x \sin \varepsilon - \sin x}{\varepsilon} = \\ &= \lim_{\varepsilon \to 0} \frac{\sin x \left(1 - \frac{\varepsilon^2}{2}\right) + \varepsilon \cos x - \sin x}{\varepsilon} = \\ &= \lim_{\varepsilon \to 0} \left(\cos x + O(\varepsilon)\right) = \\ &= \cos x \;. \end{split}$$

Dimostrazione di $(\cos x)'$

Usando le formule di somma delle funzioni armoniche, **todo** ref, e gli infinitesimi delle funzioni $\sin \varepsilon \sim \varepsilon$, $\cos \varepsilon \sim 1 - \frac{\varepsilon^2}{2}$ per $\varepsilon \to 0$,

$$\begin{split} \frac{d}{dx}\cos(x) &= \lim_{\varepsilon \to 0} \frac{\cos(x+\varepsilon) - \cos x}{\varepsilon} = \\ &= \lim_{\varepsilon \to 0} \frac{\cos x \cos \varepsilon - \sin x \sin \varepsilon - \sin x}{\varepsilon} = \\ &= \lim_{\varepsilon \to 0} \frac{\cos x \left(1 - \frac{\varepsilon^2}{2}\right) - \varepsilon \sin x - \cos x}{\varepsilon} = \\ &= \lim_{\varepsilon \to 0} \left(-\sin x + O(\varepsilon)\right) = \\ &= -\sin x \;. \end{split}$$

25.5 Derivate di ordine superiore

Nel calcolo delle derivate di ordine superiore non c'è nulla di speciale: una volta che si è in grado di calcolare la derivata di una funzione reale, la derivata di ordine n viene calcolata applicando n volte l'operatore derivata alla funzione.

25.6 Applicazioni

25.6.1 Espansioni in serie di Taylor e MacLaurin

Le espansioni in serie di Taylor e di MacLaurin sono serie polinomiali che forniscono un"**approssimazione locale** di una funzione, *valida nell'intorno* (**todo** valutare questa espressione) di un punto.

La serie di Taylor della funzione f(x) in un intervallo centrato in x_0 è la serie

$$\begin{split} T[f(x);x_0] &= \sum_{n=0}^{\infty} \frac{f^{(n)(x_0)}}{n!} (x-x_0)^n = \\ &= f(x_0) + f'(x_0)(x-x_0) + \frac{f''(x_0)^2}{2!} (x-x_0)^2 + \dots \; . \end{split}$$

La serie di MacLaurin è la serie di Taylor centrata in $x_0 = 0$.

La serie di Taylor troncata al n-esimo termine fornisce un'approssimazione locale della funzione f(x) di ordine n, nel senso definito dal seguente teorema.

Theorem 24.6.1 (Approssimazione locale)

$$\lim_{x\to x_0}\frac{f(x)-T[f(x);x_0]}{x^n}=f^{(n)}(x_0)\;,$$

$$f(x)=T[f(x);x_0]+o(x^n)\quad\text{ per }\quad x\to x_0$$

Dimostrazione

Usando il teorema di de l'Hopital, fino a quando il rapporto non è una forma indeterminata

$$\begin{split} \lim_{x \to x_0} \frac{f(x) - T[f(x); x_0]}{x^n} &= \lim_{x \to x_0} \frac{f(x) - f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n}{x^n} = (\mathbf{H}) = \\ &= \lim_{x \to x_0} \frac{f'(x) - f'(x_0) + \frac{f''(x_0)}{1!}(x - x_0) + \dots \frac{f^{(n)}(x_0)}{(n - 1)!}(x - x_0)^{n - 1}}{n \, x^{n - 1}} = (\mathbf{H}) = \\ &= \lim_{x \to x_0} \frac{f''(x) - f''(x_0) + \dots \frac{f^{(n)}(x_0)}{(n - 2)!}(x - x_0)^{n - 2}}{n \, (n - 1) \, x^{n - 1}} = (\mathbf{H}) = \\ &= \dots \\ &= \lim_{x \to x_0} \frac{f^{(n)}(x) - f^{(n)}(x_0)}{n!} = 0 \;, \end{split}$$

si dimostra che il numeratore è un infinitesimo del denominatore. Usando la notazione dell"*»o piccolo»* per gli infinitesimi si può quindi scrivere l'approssimazione locale come:

$$f(x)-T[f(x),x_0]=o\left((x-x_0)^n\right)\;,$$

o in maniera equivalente $f(x) = T[f(x), x_0] + o((x - x_0)^n)$.\$

Esempi

La serie di MacLaurin per le funzioni interessate nei *limiti notevoli* forniscono approssimazioni locali di ordine maggiore per $x \to 0$,

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + o(x^5)$$

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} + o(x^6)$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + o(x^3)$$

$$(1+x)^a = 1 + ax + a(a-1)\frac{x^2}{2} + o(x^2)$$

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + o(x^5)$$
(25.9)

25.6. Applicazioni 147

todo Dimostrare la convergenza delle serie. Convergenza puntuale, convergenza uniforme (in un insieme di convergenza, di solito centrato in un punto e le cui dimensioni sono definite da un raggio di convergenza)

Rivisitazione limiti notevoli $\operatorname{Per} x \to 0$

$$\begin{aligned} \sin x &= x + o(x) \\ 1 - \cos x &= \frac{1}{2}x^2 + o(x^3) \\ e^x - 1 &= x + o(x) \\ \ln(1+x) &= x + o(x) \\ (1+x)^a - 1 &= ax + o(x) \end{aligned}$$

Identità di Eulero. Usando l'espansione in serie di Taylor per l'esponenziale complesso e^{ix} , si ottiene

$$\begin{split} e^{ix} &= 1 + ix + \frac{(ix)^2}{2!} + \frac{(ix)^3}{3!} + \frac{(ix)^4}{4!} + \frac{x^5}{5!} + o(x^5) = \\ &= \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!}\right) + i\left(x - \frac{x^3}{3!} + \frac{x^5}{5!}\right) + o(x^5) = \\ &= \cos x + i\sin x \;. \end{split}$$

25.6.2 Studio di funzione

25.6.3 Ottimizzazione

25.7 Derivate - Problemi

25.7.1 Calcolo derivate

• derivate fondamentali, regole di derivazione

Exercise 24.7.1

25.7.2 Calcolo di limiti con la regola di de l'Hopital

• forme indeterminate $\frac{f(x)}{g(x)}$

25.7.3 Problemi di geometria

• rette tangenti alle curve

25.7.4 Studio di funzione

• dominio, limiti, massimi e minimi di una funzione, punti di flesso

25.7.5 Problemi di ottimizzazione

Exercise 24.7.2

Si chiede di trovare i punti di minimo e massimo, locali e assoluti, e disegnare il grafico delle funzioni delle seguenti funzioni all'interno del dominio indicato

0.
$$f(x) = x^2 - \frac{1}{2}x^3$$
 , $x \in [-1, 2]$ R

$$\mathbf{1}.\,f(x) = \frac{x}{\cos x + 1} \quad , \quad x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \quad \mathbf{R}$$

$$\label{eq:force_eq} \dots f(x) = \sin xx \quad , \quad x \in \mathbf{R}$$
 todo

Exercise 24.7.3 (Problemi di geometria)

Si chiede di determinare il dominio e la quantità richiesta in funzione della quantità indipendente; si trovino poi i punti di minimo e massimo, locali e assoluti, e disegnare il grafico delle funzioni delle seguenti funzioni all'interno del loro dominio. In particolare

- 1. Data la famiglia di rettangoli di perimetro noto p, si chiede di studiare l'area A in funzione della lunghezza di un lato x, A(x).
- 2. Data la famiglia di triangoli rettangoli di area data A, si chiede di studiare il perimetro p in funzione della lunghezza di un suo cateto
- 3. Data la regione di piano chiusa delimitata tra la parabola $y = -x^2 + 1$ e l'asse x, si chiede di studiare l'area del rettangolo inscritto in fuzione della semi-lunghezza del lato parallelo all'asse x
- 4. Data la regione di piano chiusa delimitata tra la parabola $y=-x^2+1$ e l'asse x, si chiede di studiare l'area triangolo isoscele con vertice nell'origine degli assi e la base parallela all'asse x
- 5. Data una sfera di raggio R, si chiede di studiare il volume e la superficie di un cilindro retto iscritto nella sfera.

Exercise 24.7.4 (Problemi di economia)

todo

25.7.6 Approssimazioni locali di funzioni

• serie di Taylor? Esercizi su formule di errore di metodi numerici?

25.7.7 Metodo di Newton

25.8 Dimostrazioni

Integrali

26.1 Definizioni

Somma di Riemann. Data una funzione continua $f:[a,b] \to \mathbb{R}$ e $P=\{x_0,x_1,\dots x_n|a=x_0 < x_1 < \dots < x_n=b\}$ partizione dell'intervallo [a,b], la somma di Riemann viene definita come

$$\sigma_P = \sum_{k=1}^n f(\xi_k) (x_k - x_{k-1}) \; , \tag{26.1} \label{eq:delta_P}$$

 $\operatorname{con}\xi_k\in[x_{k-1},x_k].$

Integrale di Riemann. Sia $\Delta x = \max_k (x_k - x_{k-1})$, l'integrale definito di Riemann è il limite per $\Delta x \to 0$ della somma di Riemann σ

$$\int_{a}^{b} f(x) dx = \lim_{\Delta x \to 0} \sigma_{P}. \tag{26.2}$$

Osservazione. Dato l'intervallo [a,b], per $\Delta x \to 0$ il numero di intervalli della partizione tende all'infinito, $n \to \infty$.

26.1.1 Interpretazione geometrica

L'integrale definito

$$\int_{a}^{b} f(x) \, dx \,,$$

corrisponde al valore dell'area con segno tra il grafico della funzione y=f(x) e l'asse x, per valori di $x\in [a,b]$. Se la funzione è positiva in un intervallo, il contributo dell'integrale sull'intervallo è positivo; se la funzione è negativa in un intervallo, il contributo dell'integrale sull'intervallo è negativo.

26.1.2 Integrale definito

Proprietà dell'integrale definito

Dalla definizione (26.2) dell'integrale di Riemann seguono immediatamente le seguenti proprietà:

• linearità dell'integrale definito

$$\int_{a}^{b} (\alpha f(x) + \beta g(x)) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx, \qquad (26.3)$$

· additività sull'intervallo

$$\int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx = \int_{a}^{c} f(x) dx, \qquad (26.4)$$

• valore assoluto dell'integrale è minore dell'integrale del valore assoluto

$$\left| \int_{a}^{b} f(x) \, dx \right| \le \int_{a}^{b} |f(x)| \, dx \,, \tag{26.5}$$

· scambio degli estremi di integrazione

$$\int_{x=a}^{b} f(x)dx = -\int_{x=b}^{a} f(x) dx$$
 (26.6)

26.1.3 Integrale indefinito

Usando la proprietà (26.4) di additività sull'intervallo dell'integrale definito,

$$\int_{a}^{x} f(t) dt = \int_{a}^{b} f(t) dt + \int_{b}^{x} f(t) dt,$$

si osserva che i due integrali con estremo superiore x e diverso estremo inferiore differiscono solo per una quantità indipendente da x, $\int_a^b f(t) \ dt$. Data la funzione f(x) e il valore a come paramtetro, si definisce una funzione di x

$$F(x;a) := \int_{a}^{x} f(t) dt.$$
 (26.7)

Usando questa definizione, è immediato dimostrare che l'integrale definito $\int_a^b f(t) dt$ è uguale alla differenza della funzione $F(\cdot;b)$ calcolata nei due estremi,

$$\begin{split} \int_{a}^{b} f(t) \; dt &= \int_{c}^{b} f(t) dt + \int_{a}^{c} f(t) dt = \\ &= \int_{c}^{b} f(t) dt - \int_{c}^{a} f(t) dt = \\ &= F(b; c) - F(a; c) \; , \end{split}$$

e che questo risultato è indipendente dal valore c, usato come parametro nella definizione della funzione F.

Data una funzione f(x), le due funzioni $F(x; a_1)$, $F(x; a_2)$ differiscono solo di un termine che dipende dai parametri a_1 , a_2 ma non dalla variabile indipendente x. La famiglia di funzioni F(x; a) ottenuta per ogni valore di a definisce quindi una funzione F(x) a meno di una costante additiva, la **funzione primitiva** della funzione f(x).

L''integrale indefinito di una funzione f(x) viene definito come,

$$\int_{-\infty}^{x} f(t) dt = F(x) + C ,$$

dove la costante additiva C tiene conto dell'arbitrarietà appena discussa.

26.2 Teoremi

Theorem 25.2.1 (Teorema della media)

Sia $f:[a,b]\in\mathbb{R}\to\mathbb{R}$ una funzione continua su [a,b], allora esiste $c\in[a,b]$ tale che

$$\int_{a}^{b} f(x)dx = (b-a)f(c)$$

Dimostrazione

todo

Theorem 25.2.2 (Teorema fondamentale del calcolo infinitesimale)

$$\frac{d}{dx} \int_{a}^{x} f(y)dy = f(x)$$

Dimostrazione

Dim. Usando la definizione di derivata, le proprietà dell'integrale definito e il teorema della media,

$$\begin{split} \frac{d}{dx} \int_a^x f(y) dy &= \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \Big[\int_a^{x+\varepsilon} f(y) dy - \int_a^x f(y) dy \Big] = \\ &= \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \Big[\int_x^{x+\varepsilon} f(y) dy \Big] = \\ &= \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \varepsilon f(\xi) = \qquad \xi \in [x, x+\varepsilon] \\ &= \lim_{\varepsilon \to 0} f(\xi) = f(x). \end{split}$$

Theorem 25.2.3 (Derivata su dominio dipendente dalla variabile indipendente)

Sia $x \in D$, e gli estremi di integrazione a(x), b(x) todo Caratteristiche?

$$\frac{d}{dx} \int_{a(x)}^{b(x)} f(y) \, dy = -a'(x) \, f(a(x)) + b'(x) f(b(x))$$

26.2. Teoremi 153

Dimostrazione

$$\begin{split} \frac{d}{dx} \int_{a(x)}^{b(x)} f(y) dy &= \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left[\int_{a(x+\varepsilon)}^{b(x+\varepsilon)} f(y) dy - \int_{a(x)}^{b(x)} f(y) dy \right] = \\ &= \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left[\int_{a(x)}^{b(x)} f(y) dy - \int_{a(x)}^{a(x+\varepsilon)} f(y) dy + \int_{b(x)}^{b(x+\varepsilon)} f(y) dy - \int_{a(x)}^{b(x)} f(y) dy \right] = \\ &= \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left[- \int_{a(x)}^{a(x+\varepsilon)} f(y) dy + \int_{b(x)}^{b(x+\varepsilon)} f(y) dy \right] = \\ &= \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left[- (a(x+\varepsilon) - a(x))f(\alpha) + (b(x+\varepsilon) - b(x))f(\beta) \right] = \quad \alpha \in [a(x), a(x+\varepsilon)] , \quad \beta \in [b(x), b(x+\varepsilon)] \\ &= \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left[- (\varepsilon a'(x) + o(\varepsilon))f(\alpha) + (\varepsilon b'(x) + o(\varepsilon))f(\beta) \right] = \\ &= \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left[- \varepsilon a'(x) f(\alpha) + \varepsilon b'(x) f(\beta) \right] = \\ &= \lim_{\varepsilon \to 0} \left[- a'(x) f(\alpha) + b'(x) f(\beta) \right] = \\ &= -a'(x) f(a(x)) + b'(x) f(b(x)) . \end{split}$$

26.3 Integrali fondamentali

Una volta dimostrato il *teorema fondamentale del calcolo infinitesimale*, questo risultato può essere usato per valutare gli integrali fondamentali come l'operazione inversa alla derivazione applicata alle *derivate fondamentali*

$$\int x^n dx = \frac{1}{n}x^{n+1} + C \qquad (n \neq 0, n \neq -1)$$

$$\int e^x dx = e^x + C$$

$$\int \frac{1}{x} dx = \ln x + C$$

$$\int \cos x dx = \sin x + C$$

$$\int \sin x dx = -\cos x + C$$

26.4 Regole di integrazione

26.4.1 Integrazione per parti

La regola di integrazione per parti viene ottenuta integrando la regola di derivazione del prodotto (25.4). Siano F(x), G(x) le primitive delle funzioni f(x), g(x), e quindi vale F'(x) = f(x), G'(x) = g(x). La regola di derivazione del prodotto F(x)G(x) viene scritta come

$$(F(x)G(x))' = F'(x)G(x) + F(x)G'(x) =$$

= $f(x)G(x) + F(x)g(x)$

Isolando il termine f(x)G(x) e integrando, si ottiene

$$\int f(x)G(x)dx = \int (F(x)G(x))'dx - \int F(x)g(x)dx =$$

$$= F(x)G(x) - \int F(x)g(x)dx.$$

26.4.2 Frazioni parziali

todo E" una regola valida per funzioni integrande che possono essere scritte come il rapporto di due polinomi, $f(x) = \frac{N(x)}{D(x)}$, e segue direttamente dalla possibilità di scomporre il polinomio a denominatore in polinomi di primo e secondo grado, grazie al *teorema fondamentale dell'algebra*, e scrivere il rapporto come somma di frazioni.

26.4.3 Integrazione con sostituzione

La regola di integrazione per parti viene ottenuta dalla regola di derivazione della funzione composta (25.6). Sia $\widetilde{F}(x)$ la funzione composta $\widetilde{F}(x) = F(y(x))$ e siano definite le derivate

$$\tilde{f}(x) = \frac{d}{dx}\tilde{F}(x)$$
 , $f(y) = \frac{d}{dy}F(y)$

per la regola di derivazione della funzione composta,

$$\widetilde{f}(x) := \frac{d}{dx}\widetilde{F}(x) = \frac{d}{dx}F(y(x)) = \frac{dF}{dy}(y(x))\frac{dy}{dx}(x) =: f(y(x))y'(x)\;.$$

Usando il teorema del calcolo infinitesimale

todo...

Sostituzioni utili.

• funzioni trigonometriche todo quando le funzioni iperboliche?

$$\begin{array}{cccc} \sqrt{a^2 + x^2} & \rightarrow & x = a \tan \theta \\ \sqrt{a^2 - x^2} & \rightarrow & x = a \sin \theta \\ \sqrt{x^2 - a^2} & \rightarrow & x = a \sec \theta \end{array}$$

• radici

$$\begin{array}{ll} \sqrt[n]{ax+b} & \to & ax+b=z^n \\ \sqrt{a+bx+x^2} & \to & a+bx+x^2=(z-x)^2 \\ \sqrt{a+bx-x^2} = \sqrt{(\alpha+x)(\beta-x)} & \to & a+bx-x^2=(\alpha+x)^2z^2 \end{array}$$

• $z = \tan(\frac{x}{2})$, quando compaiono funzioni trigonometriche per trasformare l'integranda in una funzione razionale. Usando la definizione della tangente

$$z = \tan\left(\frac{x}{2}\right) = \frac{\sin\left(\frac{x}{2}\right)}{\cos\left(\frac{x}{2}\right)}$$

si può riscrivere la relazione fondamentale della trigonometria

$$1 = \cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} = (1 + z^2)\cos^2 \frac{x}{2}.$$

Usando le regole per valutare le funzioni trigonometriche di una somma, si può riscrivere $\cos x$ in termini di z

$$\cos x = \cos\left(\frac{x}{2} + \frac{x}{2}\right) = 2\cos^2\frac{x}{2} - 1 = 2\frac{1}{1+z^2} - 1 = \frac{1-z^2}{1+z^2} ,$$

e todo ...

$$\sin x = \frac{2z}{1+z^2}$$

$$\tan x = \frac{2z}{1-z^2}$$

26.5 Tavola degli integrali indefiniti più comuni

In questa sezione vengono elencati alcuni tra gli integrali più comuni, la cui valutazione viene lasciata come esercizio, a volte svolto

$$\int dx = x + C$$

$$\int x^a dx = \frac{1}{a+1} x^{a+1} + C \qquad \text{per } a \neq -1$$

$$\int \frac{1}{x} dx = \ln|x| + C \qquad \text{per } a \neq -1$$

$$\int \frac{1}{1+x^2} dx = \operatorname{atan} x + C$$

$$\int \ln x \, dx = x \, \ln x - x + C$$

$$\int \log_b x \, dx = x \, \log_b x - x \log_b e + C$$

$$\int e^{ax} \, dx = \frac{e^{ax}}{a} + C$$

$$\int a^x \, dx = \frac{a^x}{\ln a} + C$$

$$\int \sin x \, dx = -\cos x + C$$

$$\int \tan x \, dx = \dots + C$$

$$\int \sinh x \, dx = \cosh x + C$$

$$\int \tanh x \, dx = \dots + C$$

26.6 Integrali - Problemi

26.6.1 Calcolo integrali indefiniti

Exercise 25.6.1

Si chiede di calcolare i seguenti integrali indefiniti

$$\mathbf{0.} \int x^2 e^x \, dx \qquad \mathbf{R:}$$

1.
$$\int x^3 e^{x^3} dx$$
 R:

2.
$$\int x \ln x \, dx$$
 R:

3.
$$\int x \cos x \, dx$$
 R:

4.
$$\int x^3 \cos 2x \, dx \quad R:$$

5.
$$\int x^2 \ln x \, dx$$
 R:

6.
$$\int x^2 \sin x \, dx \qquad \mathbf{R}:$$

7.
$$\int x \operatorname{atan} x \, dx$$
 R:

8.
$$\int \frac{\ln x}{x^2} dx$$
 R:

9.
$$\int \sin 3x \, dx$$
 R:

$$\mathbf{0.} \int \sin 3x \sin 2x \, dx \qquad \mathbf{R:}$$

1.
$$\int \cos x \sin 2x \, dx$$
 R

$$2. \int \sqrt{1 - \sin x} \, dx \qquad \mathbf{R}$$

3.
$$\int \sqrt{x^2 + 1} \, dx$$
 R:

4.
$$\int \sqrt{x^2 - 3} \, dx$$
 R:

$$5. \int \frac{1}{x^2 \sqrt{9 + x^2}} dx \qquad \mathbf{R}$$

$$6. \int \frac{1}{x^2 \sqrt{9 - x^2}} \, dx \qquad \mathbf{R}$$

7.
$$\int \frac{x}{\sqrt{x^2 - 4}} dx$$
 R

8.
$$\int \frac{1}{\sqrt{1-\cos 2x}} dx$$
 R:

9.
$$\int \sqrt{4-9x^2} \, dx$$
 R:

Matematica per le scuole superiori

$$\int \frac{\cos^2 x}{\sin^3 x} dx$$

$$\mathbf{0.} \int \frac{\cos^2 x}{\sin^3 x} dx \qquad \mathbf{R:}$$

$$\mathbf{0.} \int \frac{1}{(4+x^2)^3} dx \qquad \mathbf{R:}$$

0.
$$\int \frac{1}{\sqrt{x^2 - 2x + 3}} dx$$
 R:

26.6.2 Integrali definiti

Exercise 25.6.2

todo

Integrali impropri

Exercise 25.6.3

Si chiede di:

- 1. dimostrare che $\int_1^{+\infty} \frac{1}{x^p} \, dx$ converge per p>1 e diverge a $+\infty$ per $p\leq 1$.
- 2. dimostrare che $\lim_{t\to 0^+}\int_t^1 \frac{1}{x^p}\,dx$ converge per p<1 e diverge a $+\infty$ per $p\geq 1$.
- 3. dimostrare che $\int_t^1 e^{ax} \, dx$ converge per $a \dots$ e diverge per $a \dots$

Exercise 25.6.4

Si chiede di discutere e valutare i seguenti integrali impropri

1.
$$\int_{x=0}^{+\infty} \frac{1}{x^2 + 9} dx$$
 R:

$$2. \int_{x=0}^{+\infty} e^{-x} \cos x \, dx$$
 R:

3.
$$\int_{x=2}^{+\infty} \frac{1}{2-x} dx$$
 R:

4.
$$\int_{x=0}^{3} \frac{1}{\sqrt{|x-2|}} dx$$
 R:

4.
$$\int_{x=0}^{3} \frac{1}{x-2} dx$$
 R:

4.
$$\int_{x=0}^{3} \frac{1}{(x-2)^2} dx$$
 R:

5.
$$\int_{x=0}^{\pi/2} \frac{\sin x}{\sqrt{1-\cos x}} dx$$
 R:

6.
$$\int dx$$
 R: **todo**

7.
$$\int dx$$

26.6.3 Problemi di geometria

Area di superfici e lunghezza di curve

Exercise 25.6.5

Calcolare l'area della superficie chiusa tra la parabola $y=-x^2+1$ e l'asse x.

Exercise 25.6.6

Calcolare l'area della superficie chiusa tra la parabola $y=-x^2+1$ e la parabola $y=x^2-2x$.

Exercise 25.6.7

Calcolare la lunghezza del ramo di parabola $y = x^2 - 2x + 1$ tra $x \in [0, 2]$.

Volumi e superficie di solidi di rotazione

Exercise 25.6.8

Calcolare il volume e la superficie del solido generato dalla rotazione del ramo di parabola $y=2\,x^2,\,x\in[0,2]$ attorno all'asse y

Exercise 25.6.9

Calcolare il volume e la superficie del solido generato dalla rotazione del ramo di parabola $y=2\,x^2,\,x\in[0,2]$ attorno all'asse x.

Exercise 25.6.10

Calcolare il volume e la superficie di un cilindro di altezza h e base di raggio r.

Exercise 25.6.11

Calcolare il volume e la superficie di un cono retto di altezza h e base di raggio r.

Exercise 25.6.12

Calcolare il volume e la superficie di un tronco di cono retto ottenuto dalla rivoluzione attorno all'asse x del segmento y = x + 2, per x = [1, 4].

Exercise 25.6.13

Calcolare il volume e la superficie della sfera generata dalla rivoluzione della semicirconferenza centrata nell'origine di raggio R, $x^2 + y^2 = R^2$.

Exercise 25.6.14

Calcolare il volume e la superficie della calotta sferica sfera generata dalla rivoluzione dell'arco di circonferenza centrata nell'origine di raggio R, $y = \sqrt{R^2 - x^2}$, con x = [-R, a], a < R.

Exercise 25.6.15

Calcolare il volume e la superficie di un toro generato dalla rivoluzione del cerchio $x^2+(y-r_0)^2=r_1^2$, with $r_0\geq r_1$, attorno all'asse x.

basics

08 dic 2024

13 min read

Equazioni differenziali ordinarie

Le equazioni differenziali ordinarie, spesso abbreviate con l'acronimo **ODE** dall'inglese *Ordinary Differential Equations*, sono equazioni che coinvolgono una funzione di una variabile e le sue derivate.

Motivazione. Le ODE sono un argomento fondamentale da comprendere, poiché esse compaiono e governano la risposta di molti sistemi in vari ambiti della matematica, della fisica e delle scienze in generale, dell'ingegneria e dell'economia. Così, ad esempio sono ODE:

- le equazioni del moto in dinamica
- le equazioni della statica in meccanica delle strutture
- le equazioni che descrivono l'andamento della temperatura attraverso un mezzo, in condizioni stazionarie
- le equazioni che descrivono l'evoluzione di una popolazione di prede e di predatori (es. modello di Lotka-Volterra)

e in generale, in tutti le equazioni che governano processi in cui il valore di una funzione incognita in un istante di tempo o in un punto dello spazio spazio dipende dal suo valore negli istanti di tempo o nei punti dello spazio «vicini».

Approccio. Mentre le motivazioni date dovrebbero essere sufficienti a convincere dell'importanza e della necessità di un'introduzione alle ODE, una trattazione completa dell'argomento richiede strumenti matematici più avanzati di quelli disponibili a uno studente delle scuole superiori (e spesso anche di molti studenti universitari). Si cercherà quindi di trattare l'argomento nella maniera più rigorosa possibile per fornire gli strumenti necessari per (semplici) applicazioni nelle quali compaiono le ODE, mentre si chiederà qualche atto di fede nell'accettare alcuni risultati. Per completezza, in corrispondenza di questi atti di fede, verrà messo a disposizione un collegamento a una trattazione più completa dell'argomento.

Contenuti. Il capitolo è diviso come segue: dopo aver fornito le prime definizioni, si introduce una classificazione delle equazioni differenziali ordinarie, prestando massima attenzione alle equazioni differenziali lineari a coefficienti costanti: per questo particolare tipo di ODE, è possibile trovare un metodo generale di soluzione. Dopo aver mostrato alcuni esempi, viene presentato il metodo di soluzione, e applicato successivamente alla risoluzione degli esempi dati: la soluzione degli esempi è pensata per fare pratica con la tecnica risolutiva e permette di indagare alcuni fenomeni fisici come quello della risonanza todo aggiungere riferimento alla soluzione del sistema massa-molla-smorzatore. Infine, viene presentata un'altra categoria di ODE, per la quale esiste - almeno formalmente - una tecnica risolutiva: la tecnica di separazione delle variabili per le equazioni differenziali a variabili separabili.

27.1 Prime definizioni

Un"**equazione differenziale ordinaria** è un'equazione che coinvolge una funzione reale, incognita, di una variabile reale e le sue derivate. Formalmente una ODE può essere scritta come

$$F\left(y^{(n)}(x),\ldots y'(x),y(x),x\right)=0\quad,\qquad x\in D=[x_0,x_1]$$

Un problema differenziale **ben definito**, in generale è definito da una **ODE**, per valori della variabile indipendente x all'interno di un dominio dato, $x \in D$, e da alcune **condizioni al contorno** del dominio che consentano di determinare una soluzione del problema senza arbitrarietà. Come regola generale, affinché un problema sia definito sono necessarie n condizioni sulla funzione incognita o sulle sue derivate. Si possono definire alcuni problemi:

- problemi differenziali ai valori iniziali (o di Cauchy), se le n condizioni coinvolgono il valore della funzione e
 delle sue prime n 1 derivate all'estremo inferiore del dominio; un esempio tipico di problemi di Cauchy sono i
 problemi diretti in meccanica classica, dove l'evoluzione di un sistema è governata da equazioni differenziali del
 secondo ordine nella posizione, e può essere determinata dalle forze agenti su di esso, una volta nota la posizione
 (valore della funzione incognita) e della velocità (valore della derivata prima della funzione incognita) all'istante
 iniziale dell'intervallo di interesse
- · problemi differenziali con condizioni al contorno

Il **grado** di una ODE è l'ordine massimo della derivata che compare nell'equazione. In generale, la soluzione di una ODE di grado n è il risultato di n operazioni di integrazione che producono n costanti arbitrarie.

27.2 Classificazione, esempi e tecniche risolutive

27.2.1 Equazioni lineari a coefficienti costanti

Definizione

Una ODE lineare a coefficienti costanti di ordine n è un'equazione differenziale che mette in relazione la combinazione lineare della funzione incognita y(x) e delle sue prime n derivate con una funzione nota f(x),

$$a_n y^{(n)}(x) + \dots + a_1 y'(x) + a_0 y(x) = f(x)$$
.

Se la funzione f(x) è la funzione identicamente nulla $f(x) \equiv 0$, l'equazione è un'equazione omogenea.

Esempi

In questa sezione vengono presentati alcuni esempi di equazioni differenziali ordinarie, ottenute partendo da alcune leggi della fisica. Successivamente nel capitolo verrà presentata la *soluzione* di alcuni problemi differenziali descritti in questi esempi.

Temperatura di un corpo, soggetto a convezione

Temperatura di un corpo, soggetto a convezione. L'equazione che governa l'evoluzione della temperatura T(t) di un sistema, sufficientemente piccolo da poter essere considerato a temperatura uniforme nello spazio, soggetto alla trasmissione del calore per convezione sulla sua superficie in un ambiente a temperatura $T^e(t)$ nota è l'equazione differenziale ordinaria del primo ordine,

$$m C \dot{T}(t) + h T(t) = h T_e(t) ,$$

con le opportune condizioni iniziali. Questa equazione può essere ricavata dal principio della termodinamica, per il quale la variazione di energia termica E di un sistema non sottoposta a lavoro delle forze è uguale al flusso di calore «entrante» nel sistema, \dot{Q}^e ,

$$\dot{E} = \dot{Q}^e$$
.

scrivendo l'energia termica come il prodotto della massa m, del calore specifico c e della temperatura T del sistema, e il flusso di calore per convezione con la *formula di Newton*, $\dot{Q} = h(T_e - T)$.

Sistema massa-molla-smorzatore

Sistema massa-molla-smorzatore. L'equazione che governa la dinamica di un sistema massa-molla-smorzatore con un corpo di massa m che si muove lungo una direzione x, vincolato a terra da una molla di costante elastica k e da uno smorzatore lineare con coefficiente c, soggetto a una forzante esterna $f^e(t)$ nota è l'equazione differenziale ordinaria del secondo ordine,

$$m\ddot{x}(t) + c\dot{x}(t) + kx(t) = f^{e}(t),$$

con le opportune condizioni iniziali. Questa equazione può essere ricavata dal secondo principio della dinamica di Newton lungo la direzione \boldsymbol{x}

$$\dot{\vec{Q}} = \vec{R}^e = \vec{F}^k + \vec{f}^c + \vec{f}^e(t) \; , \label{eq:quantum_potential}$$

scrivendo la quantità di moto del sistema lungo x come $Q_x=m\dot{x}(t)$ e assumendo che la molla e lo smorzatore esercitino una forza sul corpo $f^k=-k\,x,\,f^c=-c\,\dot{x}$ rispettivamente.

Distribuzione stazionaria di temperatura. La distribuzione stazionaria di temperatura in un corpo, senza sorgenti di calore al suo interno, è governata dall'equazione differenziale ordinaria del secondo ordine,

$$(kT'(x))' = 0,$$

Circuito RLC. todo

Circuito RLC. todo

Caduta di un grave - 1: senza resistenza

Caduta di un grave - 1: senza resistenza. L'equazione che governa la caduta di un corpo di massa m soggetto alla gravità g lungo la verticale nei pressi della superficie terrestre è l'equazione differenziale ordinaria del secondo ordine

$$m\ddot{z} = -mg$$
,

con le opportune condizioni iniziali. Questa equazione può essere ricavata dal secondo principio della dinamica di Newton per un corpo di massa m soggetto unicamente al suo peso $\vec{F}^{peso} = -m g \hat{z}$,

$$\dot{\vec{Q}} = \vec{F}^{peso} \; ,$$

e scegliendo la coordinata z allineata alla verticale e diretta verso l'alto.

Caduta di un grave - 2: con resistenza lineare nella velocità

Caduta di un grave - 2: con resistenza lineare nella velocità. Se la caduta del grave è influenzata dalla resistenza aerodinamica dovuta all'interazione con l'aria rispetto alla quale si muove, e se questa interazione può essere rappresentata da una forza lineare rispetto alla velocità, $\vec{D} = -c\vec{r}$, il secondo principio della dinamica fornisce l'equazione del moto,

$$\dot{\vec{Q}} = \vec{F}^{peso} + \vec{D} ,$$

che può essere proiettata lungo la verticale per dare l'equazione differenziale ordinaria del secondo ordine,

$$m\ddot{z} + c\dot{z} = m g$$
.

Caduta di un grave - 3: con resistenza quadratica nella velocità

Caduta di un grave - 3: con resistenza quadratica nella velocità Se la caduta del grave è influenzata dalla resistenza aerodinamica dovuta all'interazione con l'aria rispetto alla quale si muove, e se questa interazione può essere rappresentata da una forza lineare rispetto alla velocità, $\vec{D} = -\frac{1}{2} \rho S c_D |\vec{r}| \dot{\vec{r}}$, il secondo principio della dinamica fornisce l'equazione del moto,

$$\dot{\vec{Q}} = \vec{F}^{peso} + \vec{D} \;,$$

che può essere proiettata lungo la verticale per dare l'equazione differenziale ordinaria del secondo ordine,

$$m\ddot{z} + \frac{1}{2}\rho Sc_D |\dot{z}|\dot{z} = m\,g\;.$$

Moto parabolico di un grave - 1: senza resistenza

Moto parabolico di un grave - 1: senza resistenza. Il moto parabolico nei pressi della superficie terrestre è un moto piano governato da un'equazione del moto ricavata dal secondo principio della dinamica,

$$\dot{\vec{Q}} = \vec{R}^e \; .$$

Una scelta conveniente del sistema di coordinate per descrivere il moto piano consiste nella scelta di coordinate cartesiane (x, y), con l'asse y rivolto verso l'alto e l'asse x orizzontale e nel piano del moto. Scegliendo un sistema di coordinate cartesiane, la posizione di un punto può essere scritta usando i due vettori unitari (uniformi nello spazio, e quindi costanti todo spiegarsi peggio)

$$P(t) - O = x_P(t)\hat{x} + y_P(t)\hat{y} .$$

Calcolando le derivate nel tempo della posizione si trovano le espressioni della velocità e dell'accelerazione del punto P

$$\begin{split} \vec{v}_P(t) &= v_{x,P}(t)\hat{x} + v_{y,P}(t)\hat{y} = \dot{\vec{r}}_P(t) = \dot{x}_P(t)\hat{x} + \dot{y}_P(t)\hat{y} \\ \vec{a}_P(t) &= a_{x,P}(t)\hat{x} + a_{y,P}(t)\hat{y} = \ddot{\vec{r}}_P(t) = \ddot{x}_P(t)\hat{x} + \ddot{y}_P(t)\hat{y} \end{split}$$

Il secondo principio della dinamica diventa quindi

$$m(\ddot{x}_P(t)\hat{x} + \ddot{y}_P(t)\hat{y}) = -m\,g\hat{y}\;,$$

avendo usato l'espressione della forza peso $\vec{F}^{peso} = -m\,g\hat{y}$. Proiettando l'equazione vettoriale lungo le due direzioni cartesiane, si ottiene un sistema di due equazioni differenziali del secondo ordine

$$\begin{cases} m\ddot{x}_P = 0 \\ m\ddot{y}_P = -m\,g \end{cases}$$

In questo caso, le due equazioni differenziali del sistema sono indipendenti tra di loro e il problema differenziale può essere risolto senza difficoltà aggiuntive, una volta che vengono date le condizioni (iniziali, per problema diretto) necessarie.

Moto parabolico di un grave - 2: con resistenza lineare nella velocità

Deformazione a torsione di una trave

Deformazione a torsione di una trave. La rotazione delle sezioni di una trave di lunghezza L soggetta a torsione con un momento torcente distribuito m(x) è governata dall'equazione di equilibrio indefinito,

$$M'_z(z) = m(x)$$
,

con una legge costitutiva che leghi la rotazione $\theta(z)$ di una sezione al momento torcente interno $M_z(z)$, e le opportune condizioni al contorno. Nel caso di trave elastica lineare, la legge costitutiva stabilisce la relazione $M_z(z) = GJ\theta'(z)$. Nel caso di trave incastrata nell'estremo identificato dalla coordinata z=0 e di momento torcente M^e applicato nell'estremo identificato dalla coordinata z=L, la deformazione a torsione della trave è determinata dal problema differenziale

$$\begin{cases} (GJ\theta'(z))' = m(z) & z \in [0,L] \\ \theta(0) = 0 \\ GJ\theta'(L) = M^e \end{cases}$$

Deformazione a flessione di una trave

Deformazione a flessione di una trave. La deformazione a flessione di una trave elastica lineare è governata dall'equazione w''''(z) = f(z)... **todo**

Soluzione generale

La soluzione di un'equazione differenziale lineare a coefficienti costanti può essere scritta come somma di una soluzione $y_o(x)$ dell'equazione omogenea associata e di una soluzione particolare $y_o(x)$ dell'equazione,

$$y(x) = y_o(x) + y_p(x)$$

Soluzione dell'equazione omogenea

Un'equazione differenziale omogenea è un problema lineare, e quindi la somma di due soluzioni è anch'essa una soluzione. La soluzione generale dell'equazione omogenea di ordine n può essere scritta come combinazione lineare di n sue soluzioni particolari *indipendenti* (qualitativamente, cioè che non contengono le stesse informazioni ripetute).

Sfruttando le proprietà dell'esponenziale, la soluzione generale dell'equazione omogenea viene cercata come combinazione lineare di soluzioni che hanno un'espressione $y_o(x)=e^{sx}$. Sostituendo nell'equazione differenziale omogenea, si ottiene un'equazione algebrica polinomiale in s

$$\begin{split} 0 &= a_n y^{(n)}(x) + \dots a_1 y'(x) + a_0 y(x) = \\ &= (a_n \, s^n + \dots a_1 \, s + a_0) \underbrace{e^{sx}}_{\neq 0} \,, \end{split}$$

poiché la funzione esponenziale non è mai nulla. Il teorema fondamentale dell'algebra garantisce che il polinomio con coefficienti reali $a_n x^n + \dots a_1 x + a_0$ ha n zeri reali o complessi coniugati.

• Se il polinomio $a_n \, s^n + \dots \, a_1 s + a_0$ non ha zeri s_k multipli, allora la soluzione generale dell'equazione omogenea è

$$y_o(x)=C_1\,e^{s_1x}+\cdots+C_n\,e^{s_nx}$$

Nel caso di zeri complessi coniugati, anche le rispettive costanti di integrazione saranno complesse coniugate, $C_- = C_+^*$, per avere come soluzione una funzione reale

$$\begin{split} C_+e^{sx} + C_-e^{s^*x} &= (A+iB)e^{(\sigma+i\omega)x} + (A-iB)e^{(\sigma-i\omega)x} = \\ &= (A+iB)e^{\sigma x}\left(\cos(\omega x) + i\sin(\omega x)\right) + (A-iB)e^{\sigma x}\left(\cos(\omega x) - i\sin(\omega x)\right) = \\ &= 2\left(A\cos(\omega x) - B\sin(\omega x)\right) e^{\sigma x} \end{split}$$

 Se il polinomio ha zeri multipli, le soluzioni esponenziali in corrispondenza degli zeri multipli non sarebbero linearmente indipendenti. In generale, in corrispondenza di uno zero s_p con molteplicità p le soluzioni indipendenti sono

$$e^{s_p x}$$
, $x e^{s_p x}$, ..., $x^{p-1} e^{s_p x}$.

Radici multiple - «Dimostrazione»

Un'equazione differenziale lineare a coefficienti costanti omogenea può essere riscritta come

$$\begin{split} 0 &= a_n y^{(n)}(x) + \dots a_1 y'(x) + a_0 y(x) = \\ &= a_n \left(-s_1 + \frac{d}{dx} \right) \dots \left(-s_n + \frac{d}{dx} \right) y(x) \;, \end{split}$$

dove i fattori possono essere commutabili, per la linearità. Nel caso di radici non multiple, l'unico modo affinché l'equazione sia soddisfatta è che l'azione di uno degli *operatori* $\left(-s_k+\frac{d}{dx}\right)$ su y(x) dia risultato nullo, cioè

$$0 = \left(-s_k + \frac{d}{dx}\right)y(x) = -s_k\,y(x) + y'(x)\;.$$

Nel caso in cui una radice sia multipla e abbia molteplicità p, le p soluzioni indipendenti associate a questa radice sono quelle per le quali

$$0 = \left(-s_k + \frac{d}{dx}\right)^p y(x) \ .$$

Esempio con p=2. Ad esempio esiste una radice s con molteplicità p=2 i due «binomi» relativi a questa radice producono l'equazione differenziale,

$$0 = \left(-s + \frac{d}{dx}\right)\left(-s + \frac{d}{dx}\right)y(x).$$

Affinché questa equazione sia soddisfatta, la funzione y(x) deve essere tale da soddisfare una delle due condizioni

$$-sy(x) + y'(x) = 0$$
$$-sy(x) + y'(x) = A e^{sx}$$

La prima condizione ha una soluzione generale

$$-su(x) + u'(x) = 0$$
 \rightarrow $u(t) = Ce^{sx}$

mentre la seconda condizione permette di trovare la soluzione desiderata come combinazione lineare delle p=2 desiderate,

$$\begin{split} -sy(x) + y'(x) &= A\,e^{sx} \\ e^{-sx} \left(-sy(x) + y'(x) \right) &= A \\ \frac{d}{dx} \left(e^{-sx} \, y(x) \right) &= A \\ \int \frac{d}{dx} \left(e^{-sx} y(x) \right) &= A\,x + B \\ e^{-sx} y(x) &= A\,x + C \qquad \to \qquad y(x) = A\,x\,e^{sx} + B\,e^{sx} \;, \end{split}$$

avendo inizialmente moltiplicato entrambi lati dell'equazione per il termine mai nullo $e^{sx} \neq 0$, successivamente riconoscito con la formula del prodotto la derivata $\frac{d}{dx}\left(e^{-sx}y(x)\right) = -se^{sx}y(x) + s^{sx}y'(x)$, e integrato ricordandosi delle costanti di integrazione necessarie a ottenere l'espressione più generale possibile, senza perdere pezzi in giro.

Molteplicità p. Il caso di radici mulitple con molteplicità generale può essere ricavato ricorsivamente, seguendo quanto fatto per il caso p = 2. Questa dimostrazione viene lasciata come esercizio.

Soluzione particolare dell'equazione completa

Come regola generale, la ricerca della soluzione particolare dell'equazione completa è guidata dall'espressione della forzante. Ad esempio:

- con forzanti polinomiali si cerca una soluzione particolare polinomiale
- con forzanti esponenziali si cerca una soluzione particolare esponenziale
- con forzanti armoniche si cerca una soluzione particolare armonica

Nel caso in cui la soluzione particolare abbia la forma di una delle soluzioni della soluzione particolare, si adotta la stessa tecnica adottata nel caso di zeri multipli.

Soluzione degli esempi

In questa sezione vengono risolti alcuni problemi governati dalle equazioni differenziali presentate in precedenza come *esempi* di equazioni differenziali ordinarie lineari a coefficienti costanti, applicando il *metodo di soluzione generale* per questo tipo di equazioni.

Esempio - Temperatura di un corpo, soggetto a convezione.

L'equazione ordinaria del primo ordine

$$mx\dot{T}(t) + hT(t) = hT^{e}(t)$$
 , $t \ge 0$

rappresenta un bilancio di energia interna e governa la temperatura T(t) di un corpo di massa m, e capacità termica c soggetto a convezione con coefficiente h con un ambiente a temperatura $T^e(t)$. Tutti i parametri del sistema e la temperatura iniziale del corpo $T(0)=T_0$ sono noti. Si vuole determinare l'evoluzione della temperatura T(t) del corpo, in risposta a diversi andamenti della temperatura dell'ambiente esterno. L'equazione è un'equazione ordinaria lineare del primo ordine a coefficienti costanti. La soluzione dell'equazione può essere scritta come somma della soluzione generale dell'equazione omogenea $T_o(t)$ e di una soluzione particolare dell'equazione completa, $T_p(t)$

$$T(t) = T_o(t) + T_p(t) .$$

Equazione omogenea. L'equazione omogenea,

$$mc\dot{T}_o + hT_o = 0 \qquad \rightarrow \qquad T_o(t) = Ce^{-\frac{h}{mc}t} \; , \label{eq:continuous}$$

è indipendente dalla forzante esterna, qui rappresentata dalla temperatura dell'ambiente $T_e(t)$.

Temperatura costante, T^e . La soluzione particolare dell'equazione con una forzante costante è una soluzione costante, $T_p(t) = T_e$. La soluzione generale ha quindi l'espressione

$$T(t) = T_e + Ce^{-\frac{h}{mc}t} ,$$

e la costante di integrazione C viene determinata con la condizione iniziale

$$T_0 = T(0) = T_e + Ce^{-\frac{h}{mc}t}\Big|_{t=0} = T_e + C$$
 \rightarrow $C = T_0 - T_e$.

La soluzione del problema è quindi

$$T(t) = T_e + (T_0 - T_e)e^{-\frac{ht}{mc}}$$
.

Temperatura crescente linearmente, $T^e(t) = T_a + Gt$. Con una forzante polinomiale di grado 1 nella variabile indipendente t, si cerca una soluzione particolare polinomiale dello stesso ordine, $T_p(t) = a + bt$. I coefficienti a, b vengono calcolati inserendo questa espressione nell'equazione differenziale,

$$mcb + h(a + bt) = h(T_a + Gt)$$
,

e uguagliando i termini dello stesso ordine nella variabile indipendente,

$$\begin{cases} t: hb = hG \\ 1: mcb + ha = hT_a \end{cases} \rightarrow \begin{cases} b = G \\ a = T_a - \frac{mc}{h}G \end{cases}.$$

La soluzione generale assume la forma

$$T(t) = T_a - \frac{mc}{h}G + Gt + Ce^{-\frac{ht}{mc}},$$

e la costante di integrazione C viene calcolata con la condizione iniziale

$$T_0 = T(0) = T_a - \frac{mc}{h}G + C \qquad \rightarrow \qquad C = T_0 - T_a + \frac{mc}{h}G \; . \label{eq:total_total_total}$$

La soluzione del problema è quindi

$$T(t) = T_a + Gt - \frac{mc}{h}G + \left(T_0 - T_a + \frac{mc}{h}G\right)e^{-\frac{ht}{mc}}\;. \label{eq:total_total_total}$$

- La somma dei primi 3 termini è la soluzione della particolare, l'ultimo termine è la soluzione dell'equazione omogenea;
- la soluzione dell'equazione omogenea tende a zero per $t \to \infty$.
- per $t \to \infty$, c'è una differenza costante tra la temperatura dell'ambiente $T^e(t) = T_a + Gt$ e la temperatura T(t) del corpo, $T(t) T^e(t) = -\frac{mc}{h}G$.

Temperatura con andamento periodico, $T^e(t) = T_a + \Delta T \sin(\Omega t)$. Data una forzante somma di un termine costante e di un termine armonico, si cerca una soluzione particolare come somma di un termine costante e delle funzioni armoniche di seno e coseno, $T_p(t) = a + b \cos(\Omega t) + c \sin(\Omega t)$. I coefficienti a,b,c vengono calcolati inserendo questa espressione nell'equazione differenziale,

$$mc\Omega\left(-b\sin(\Omega t)+c\cos(\Omega t)\right)+h\left(a+b\cos(\Omega t)+c\sin(\Omega t)\right)=h\left(T_a+\Delta T\sin(\Omega t)\right)\;,$$

e uguagliando i termini omogenei nella variabile indipendente t,

$$\begin{cases} \cos\Omega t &: & mc\Omega c + hb = 0 \\ \sin\Omega t &: & -mc\Omega b + hc = h\Delta T \\ 1 &: & ha = hT_a \end{cases} \rightarrow \begin{cases} a = T_a \\ b = -\frac{mc\Omega}{(mc\Omega)^2 + h^2} h\Delta T \\ c = \frac{h}{(mc\Omega)^2 + h^2} h\Delta T \end{cases}$$

La soluzione generale assume la forma

$$T(t) = T_a + b\cos(\Omega t) + c\sin(\Omega t) + Ce^{-\frac{ht}{mc}} \; , \label{eq:total_total}$$

e la costante di integrazione C viene calcolata con la condizione iniziale

$$T_0 = T(0) = T_a + b + C$$
 \rightarrow $C = T_0 - T_a - b$.

La soluzione del problema è quindi

$$\begin{split} T(t) &= T_a + b \cos(\Omega t) + c \sin(\Omega t) + (T_0 - T_a - b) e^{-\frac{ht}{mc}} = \\ &= T_a - \frac{\frac{mc\Omega}{h}}{\left(\frac{mc\Omega}{h}\right)^2 + 1} \Delta T \cos(\Omega t) + \frac{1}{\left(\frac{mc\Omega}{h}\right)^2 + 1} \Delta T \sin(\Omega t) + \left(T_0 - T_a + \frac{\frac{mc\Omega}{h}}{\left(\frac{mc\Omega}{h}\right)^2 + 1}\right) e^{-\frac{ht}{mc}} = \\ &= T_a + \Delta T \sin\left(\Omega t - \varphi\right) + \left(T_0 - T_a + \frac{\frac{mc\Omega}{h}}{\left(\frac{mc\Omega}{h}\right)^2 + 1}\right) e^{-\frac{ht}{mc}} \;, \end{split}$$

e può essere espressa in termini di un ritardo di fase φ , rispetto alla temperatura dell'ambiente esterno T_e

$$\cos\varphi = \frac{1}{\left(\frac{mc\Omega}{h}\right)^2 + 1} \qquad , \qquad \sin\varphi = \frac{\frac{mc\Omega}{h}}{\left(\frac{mc\Omega}{h}\right)^2 + 1}$$

L'equazione

Esempio - Sistema massa-molla-smorzatore

todo definire il sistema adimensionale e verificare la risposta in funzione del coefficiente di smorzamento del sistema; definire smorzamento critico, e sistemi sovra- e sotto-smorzati; indagare il fenomeno della **risonanza**

L'equazione

$$m\ddot{x} + c\dot{x} + kx = f^e(t) ,$$

compare in molte applicazioni con coefficienti m,c,k associati a grandezze positive: in questo caso, l'equazione può essere riscritta introducendo la **frequenza naturale** $\omega_n:=\sqrt{\frac{k}{m}}$ e il **coefficiente di smorzamento** $\xi:=\frac{c}{2m}\frac{1}{\omega_n}=\frac{c}{2\sqrt{mk}}$,

$$\ddot{x} + 2\xi\omega_n\dot{x} + \omega_n^2 x = \frac{f^e(t)}{m}.$$

Equazione omogenea. Si distinguono quindi 3 possibili casi per la soluzione dell'equazione omogenea,

$$\ddot{x} + 2\xi\omega_n\dot{x} + \omega_n^2x = 0 \; ,$$

$$s^2 + 2\xi\omega_n + \omega_n^2 = 0 \qquad \rightarrow \qquad s_{1,2} = -\xi\omega_n \mp \omega_n \sqrt{\xi^2 - 1}$$

1. soluzione sotto-smorzata, $0 \le \xi < 1$: la soluzione è oscillante, smorzata se $\xi > 0$,

$$s_{1,2} = -\xi \omega_n \mp j \omega_n \sqrt{1 - \xi^2} = -\sigma \mp j \omega \qquad \rightarrow \qquad x(t) = e^{-\sigma t} \left[A \cos(\omega t) + B \sin(\omega t) \right]$$

2. soluzione con smorzamento critico, $\xi=1$: è il caso limite tra le soluzioni oscillanti sotto-smorzate e le soluzioni oscillanti sovra-smorzate.

$$s_1 = s_2 = -\omega_n$$
 \rightarrow $x(t) = Ae^{-\omega_n t} + Bt e^{-\omega_n t}$

3. soluzione sovra-smorzata, $\xi > 1$: la soluzione decade senza oscillazioni,

$$0 > s_{1,2} = -\xi \omega \mp \omega_n \sqrt{\xi^2 - 1} \in \mathbb{R}$$
 \rightarrow $x(t) = Ae^{s_1 t} + Be^{s_2 t}$

Moto libero - forzante nulla, $f^e = 0$

Forzante costante, f^e

Forzante armonica, $f^e(t) = f_0 + \Delta f \sin(\Omega t)$

Sistema del secondo ordine sotto-smorzato, con forzante armonica

Si vuole studiare la soluzione dell'equazione del secondo ordine

$$\ddot{x} + 2\xi\omega_n\dot{x} + \omega_n^2 x = \frac{f^e(t)}{m} ,$$

soggetta alla forzante armonica $f^e(t) = F \sin \Omega t$, al variare della frequenza Ω della forzante. Si cerca una soluzione particolare dell'equazione completa nella forma $x(t) = a \cos(\Omega t) + b \sin(\Omega t)$. Inserendo questa espressione nell'equazione,

$$-\Omega^2(a\cos\Omega t + b\sin\Omega t) + 2\xi\omega_n\Omega(-a\sin\Omega t + b\cos\Omega t) + \omega_n^2(a\cos\Omega t + b\sin\Omega t) = \frac{F}{m}\sin\Omega t\;,$$

si calcolano i coefficienti a, b uguagliando i termini omogenei

$$\begin{cases} \cos(\Omega t) &: (-\Omega^2 + \omega_n^2)a + 2\xi\omega_n\Omega b = 0 \\ \sin(\Omega t) &: -2\xi\omega_n\Omega a + (-\Omega^2 + \omega_n^2)b = \frac{F}{m} \end{cases} \rightarrow \begin{cases} a = \frac{-2\xi\omega_n\Omega}{(-\Omega^2 + \omega_n^2)^2 + (2\xi\omega_n\Omega)^2} \frac{F}{m} \\ b = \frac{-\Omega^2 + \omega_n^2}{(-\Omega^2 + \omega_n^2)^2 + (2\xi\omega_n\Omega)^2} \frac{F}{m} \end{cases}.$$

I coefficienti a,b possono essere riscritti in funzione di un **ritardo di fase** $\varphi(\Omega)$ e diun **guadagno** $G(\Omega) = \frac{1}{\sqrt{(-\Omega^2 + \omega_\pi^2)^2 + (2\xi\omega_\pi\Omega)^2}}$

$$\begin{cases} a = -\sin\varphi(\Omega) \, G(\Omega) \, \frac{F}{m} \\ b = \cos\varphi(\Omega) \, G(\Omega) \, \frac{F}{m} \; . \end{cases}$$

così da ricavare la soluzione

$$x_p(t) = \frac{F}{m} \, G(\Omega) \, \left[\sin(\Omega t) \cos \varphi - \cos(\Omega t) \sin \varphi(\Omega) \right] = \frac{F}{m} \, G(\Omega) \, \sin(\Omega t - \varphi(\Omega)) \; .$$

Sia il guadagno sia il ritardo di fase dipendono dalla frequenza della forzante, Ω .

Studio di funzione di $G(\Omega)$. La derivata del guadagno rispetto alla frequenza della forzante vale,

$$G'(\Omega) = -\frac{1}{2} \frac{-2\Omega(-\Omega^2 + \omega_n^2) + 2(2\xi\omega_n)^2\Omega}{\left[(-\Omega^2 + \omega_n^2)^2 + (2\xi\omega_n\Omega)^2\right]^{\frac{3}{2}}} \; .$$

La derivata si annulla per $\Omega=0$ e - quando esiste, cioè per valori di smorzamento «sufficientemente ridotti», $\xi\leq\frac{1}{2}$ - per la frequenza di risonanza $\Omega=\Omega_f$,

$$\Omega_f^2 = \omega_n^2 - 4(\xi\omega_n)^2 = \omega_n^2 \left(1 - 4\xi^2\right)$$
 .

Nel caso in cui esista una risonanza, la massima ampiezza della risposta è

$$\begin{split} G(\Omega_f) &= \frac{1}{\sqrt{(-\Omega_f^2 + \omega_n^2)^2 + (2\xi\omega_n\Omega_f)^2}} = \\ &= \frac{1}{\sqrt{(4\xi^2\omega_n^2)^2 + 4\xi^2\omega_n^4(1-4\xi^2)}} = \frac{1}{2\xi\omega_n^2} \;. \end{split}$$

Esempio - Circuito RLC. todo

Esempio - Caduta di un grave - 1: senza resistenza

Esempio - Caduta di un grave - 2: con resistenza lineare nella velocità

Esempio - Caduta di un grave - 3: con resistenza quadratica nella velocità

Esempio - Moto parabolico di un grave - 1: senza resistenza

Esempio - Moto parabolico di un grave - 2: con resistenza lineare nella velocità

Esempio - Deformazione a torsione di una trave

Trave incastrata a un estremo, carico distribuito uniforme in apertura e concentrato all'altro estremo

Trave incastrata in entrambi gli estremi e con carico distribuito uniforme in apertura

Trave incastrata in un estremo e con carico distribuito triangolare in apertura

Esempio - Deformazione a flessione di una trave

Trave incastrata a un estremo, carico distribuito uniforme in apertura e all'altro estremo, sia con forza sia con momento flettente concentrato

Trave incastrata in entrambi gli estremi e con carico distribuito uniforme in apertura

Trave incastrata in un estremo e vincolata con un pattino all'altro estremo

27.2.2 Equazioni differenziali a variabili separabili: tecnica di soluzione di separazione delle variabili

$$\frac{dy}{dx} = f(y(x)) \ g(x)$$

può essere riscritta formalmente come

$$\frac{dy}{f(y)} = g(x) \; dx$$

e integrata con le opportune condizioni

$$\tilde{F}(y(x)) - \tilde{F}(y(x_0)) = G(x) - G(x_0)$$

Esempi

Equazione logistica

$$\begin{split} \frac{dp}{dt} &= ap\left(1 - \frac{p}{b}\right) \\ \frac{dp}{p\left(1 - \frac{p}{b}\right)} &= adt \\ \left(\frac{1}{p} - \frac{1}{p - b}\right) dp &= adt \\ \int_{p_0}^{p(t)} \left(\frac{1}{p} - \frac{1}{p - b}\right) dp &= \int_{t_0}^t a \, dt \end{split}$$

$$\begin{split} \ln\left|\frac{p(t)}{p(t)-b}\right| &= at + C\\ \left|\frac{p(t)}{p(t)-b}\right| &= e^{a\,t+C} = K\,e^{at}\\ p(t) &= -\frac{b\,e^{at}}{1-K\,e^{at}} = \frac{b}{K-e^{-at}} \end{split}$$

Equazioni nella forma $y'(x) = y^n(x)$

$$y'(x) = y^n$$

$$y^{-n} dy = dx$$

$$n = 0: \quad y(x) = x + C$$

$$n = 1: \quad \ln y(x) = x + C$$

$$\cdots: \quad \frac{1}{1-n} y^{-n+1}(x) = x + C$$

CAPITOLO 28

Calcolo infinitesimale - Problemi

todo Raccogliere qualche esercizio della maturità

				
Matematica	nar	PINIDS	CIID	Ariari
Matchiatica	PCI	 Scuoic	JUP	

Introduzione al calcolo multi-variabile

I concetti di limite, derivata e integrale introdotti per le funzioni reali di variabile reale, $f:D\subset\mathbb{R}\to\mathbb{R}$ nella sezione del calcolo infinitesimale, vengono qui estesi alle funzoni a valore reale di più variabili, $f:D\subset\mathbb{R}^n\to\mathbb{R}$.

Gli strumenti del calcolo multi-variabile vengono successivamente utilizzati per il calcolo vettoriale.

Le funzioni e il calcolo multi-variabile trovano la loro applicazione in molti ambiti, tra i quali:

- la formulazione di Gibbs della termodinamica classica todo link
- l'ottimizzazione todo *link* e le molte applicazioni che coinvolgono un'ottimizzazione di funzioni continue e differenziabili come:
 - l'approssimazione con metodi di massima somiglianza, MLE, che prevedono la minimizzazione di una funzione di errore
 - la programmazione ottima
 - il controllo ottimo

_ ...

basics

08 dic 2024

1 min read

29.1 Limite di una funzione di più variabili

Si considera una funzione f a valori reali di due variabili reali $x,y,\mathbf{x}:=(x,y)\in\mathbb{R}^2, f(x,y):\ D\in\mathbb{R}^2\to\mathbb{R}.$

Il limite al finito per $(x,y) \to (x_0,y_0)$ della funzione a più variabili f(x,y), se esiste ed è unico, è il valore al quale tende la funzione f(x,y) all'avvicinarsi di $(x,y) \to (x_0,y_0)$, in maniera indipendente dal modo di avvicinarvisi.

Più precisamente, il limite finito al finito di una funzione di più variabili

$$\ell = \lim_{(x,y) \rightarrow (x_0,y_0)} f(x,y) = \lim_{\mathbf{x} \rightarrow \mathbf{x}_0} f(x,y)$$

viene definito come quel valore ℓ che soddisfa la seguente condizione

per
$$\forall \varepsilon > 0 \quad \exists \delta_{\varepsilon} \quad \text{t.c.} \quad |f(x,y) - \ell| < \varepsilon \quad \text{per } \forall (x,y) \quad 0 < ||\mathbf{x} - \mathbf{x}_0|| < \delta_{\varepsilon}$$

avendo usato una norma per le n-uple di numeri reali appartenenti a \mathbb{R}^n , per definire un'intorno di x_0 .

todo Esempi in cui il limite esiste e il limite non esiste

basics

08 dic 2024

1 min read

29.2 Derivate di funzioni di più variabili

29.2.1 Derivate parziali

Data una funzione di più variabili $(x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, la derivata parziale rispetto alla variabile x_1 , se esiste, è la derivata della funzione calcolata tenendo costanti tutte le altre variabili,

$$\frac{\partial f}{\partial x_1}(x_1,x_2,\ldots,x_n):=\lim_{h_1\to 0}\frac{f(x_1+h_1,x_2,\ldots,x_n)-f(x_1,x_2,\ldots,x_n)}{h_1}$$

La definizione analoga vale per la derivata parziale rispetto a qualsiasi altra variabile indipendente.

Ricordando il significato di infinitesimo $o(h_1)$, $\lim_{h_1\to 0}\frac{o(h_1)}{h_1}=0$, dovrebbe essere semplice convincersi che la definizione di derivata parziale rispetto a x_1 implica

$$f(x_1 + h_1, \dots, x_n) - f(x_1, \dots, x_n) = h_1 \frac{\partial f}{\partial x_1}(x_1, \dots, x_n) + o(h_1) \ . \tag{29.1}$$

Si può «verificare» questa relazione inserendola nella definizione di derivata parziale e verificando che si ottiene un'identità.

29.2.2 Incremento di una funzione

Dati gli incrementi h_i delle variabili indipendenti x_i , l'incremento della funzione partendo dalla n-pla $\mathbb X$ dopo l'incremento delle variabili è

$$\Delta f(\mathbf{x}, \mathbf{h}) = f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x}) .$$

29.2.3 Differenziale

Il differenziale df di una funzione di più variabili a valore reale in corrispondenza della n-pla $\mathbf{x}=(x_1,x_2,\dots,x_n)$ e dell'incremento delle variabili indipendenti $\mathbf{h}=(h_1,h_2,\dots,h_n)$ può essere definito come

$$df(\mathbf{x},\mathbf{h}) = \frac{\partial f}{\partial x_1}(\mathbf{x})\,h_1 + \frac{\partial f}{\partial x_2}(\mathbf{x})\,h_2 + \dots \frac{\partial f}{\partial x_n}(\mathbf{x})\,h_n\;.$$

Il differenziale di una funzione rappresenta al primo ordine l'incremento della funzione rispetto all'incremento delle variabili indipendenti,

$$\Delta f(\mathbf{x}, \mathbf{h}) = df(\mathbf{x}, \mathbf{h}) + o(||\mathbf{h}||) .$$

Dimostrazione per una funzione di due variabili, $f(x_1, x_2)$

Usando la relazione (29.1) si può scrivere

$$\begin{split} f(x_1+h_1,x_2+h_2) &= f(x_1+h_1,x_2) + h_2 \, \partial_2 f(x_1+h_1,x_2) + o(h_2) = \\ &= f(x_1,x_2) + h_1 \, \partial_1 f(x_1,x_2) + o(h_1) \\ &\quad + h_2 \left[\partial_2 f(x_1,x_2) + h_1 \, \partial_1 \partial_2 f(x_1,x_2) + o(h_1) \right] + o(h_2) = \\ &= f(x_1,x_2) + h_1 \, \partial_1 f(x_1,x_2) + h_2 \, \partial_2 f(x_1,x_2) + o(h_1) + o(h_2) + o(h_1 \, h_2) \end{split}$$

Scegliendo una norma per l'incremento h, si può scrivere (todo sempre? Per ogni norma?)

$$f(x_1+h_1,x_2+h_2)=f(x_1,x_2)+h_1\,\partial_1 f(x_1,x_2)+h_2\,\partial_2 f(x_1,x_2)+o(||\mathbf{h}||)$$

e quindi ottenere la relazione desiderata

$$\begin{split} \Delta f(\mathbf{x}, \mathbf{h}) &= f(x_1 + h_1, x_2 + h_2) - f(x_1, x_2) = \\ &= h_1 \, \partial_1 f(x_1, x_2) + h_2 \, \partial_2 f(x_1, x_2) + o(||\mathbf{h}||) = \\ &= df(\mathbf{x}, \mathbf{h}) + o(||\mathbf{h}||) \; . \end{split}$$

Nota: Norma infinito La norma infinito di una n-pla apprtenente a \mathbb{R}^n è definita come il valore assoluto del valore massimo

$$||\mathbf{h}||_{\infty} = \max_{i} |h_i|$$
.

Nota: Norma-2 La norma-2 di una n-pla appartenente a \mathbb{R}^n è definita come la radice della somma dei quadrati delle componenti

$$||\mathbf{h}||_2 = \sqrt{h_1^2 + \dots h_n^2}$$
.

29.3 Integrali su domini multi-dimensionali

29.3.1 Definizioni

Somma di Riemann. Data una funzione continua e limitata $f:\Omega\subset\mathbb{R}^n\to\mathbb{R}$ e $\{\Omega_k\}$ una partizione del dominio Ω , una somma di Riemann viene definita come

$$\sigma = \sum_k f(\mathbf{x}_k) \mu(\Omega_k) \;,$$

essendo $\mathbf{x}_k \in \Omega_k$ e $\mu(\cdot)$ una misura dei sottoinsiemi di \mathbb{R}^n .

Integrale di Riemann. Sia $\Delta\Omega:=\max_k\mu(\Omega_k)$, l'integrale definito di Riemann è definito come il limite per $\Delta\Omega\to 0$ della somma di Riemann σ ,

$$\int_{\mathbf{x}\in\Omega}f(\mathbf{x})d\mathbf{x}:=\lim_{\Delta\Omega\to0}\sigma\;.$$

Interpretazione geometrica

Proprietà dell'integrale definito

- 29.3.2 Teoremi
- 29.3.3 Regole di integrazione
- 29.3.4 Esempi

CAPITOLO 30

Introduzione al calcolo vettoriale su spazi euclidei

Integrali:

- calcolo di lunghezze, aree e volumi
- calcolo di proprietà fisiche di un sistema:
 - massa, centro di massa, momenti di inerzia
- calcolo di integrali particolari:
 - integrale di volume
 - flusso attraverso una superficie
 - integrale lungo una curva e circuitazione

Operatori differenziali:

- · derivata direzionale
- gradiente
- · divergenza
- rotore

30.1 Operatori differenziali in spazi euclidei

Usando un sistema di coordinate cartesiane, un punto P nello spazio può essere identificato dal vettore euclideo tra l'origine O del sistema delle coordinate e il punto P,

$$P - O = \vec{r}_P = x \,\hat{x} + y \,\hat{y} + z \,\hat{z} = P(x, y, z)$$
.

30.1.1 Derivata direzionale

$$\begin{split} f(P) &= f\left(P(x,y,z)\right) = F(x,y,z) \\ f(P+\alpha \vec{v}) &= f\left((x+\alpha v_x)\hat{x} + (y+\alpha v_y)\hat{y} + (z+\alpha v_z)\hat{z}\right) = F(x+\alpha v_x,y+\alpha v_y,z+\alpha v_z) \\ f(P+\alpha \vec{v}) - f(P) &= F(x+\alpha v_x,y+\alpha v_y,z+\alpha v_z) - F(x,y,z) = \\ &= \alpha v_x \, \partial_x F(x,y,z) + \alpha v_y \, \partial_y F(x,y,z) + \alpha v_z \, \partial_z F(x,y,z) + o(|\alpha|) = \\ &= \alpha v_x \, \partial_x f(P) + \alpha v_y \, \partial_y f(P) + \alpha v_z \, \partial_z f(P) + o(|\alpha|) = \\ &= \alpha \vec{v} \cdot \nabla f(P) + o(|\alpha|) \;, \end{split}$$

avendo introdotto il vettore formale **nabla**, ∇ , per definire l'operatore **gradiente** usando il sistema di coordinate carteisane,

$$\nabla f(P) = \hat{x} \, \partial_x f(P) + \hat{y} \, \partial_u f(P) + \hat{z} \, \partial_z f(P) \; . \label{eq:definition}$$

30.1.2 Gradiente

Definizione, todo

Proprietà. Il gradiente di un campo scalare indica la direzione locale di massima crescita del campo.

Dimostrazione.

La derivata direzionale della funzione f nel punto P in direzione \hat{t} è definita come il prodotto scalare tra il versore \hat{t} e il gradiente della funzione calcolato nel punto P

$$\hat{t} \cdot \nabla f(P)$$
.

Ricordando la definizione di *prodotto interno in uno spazio euclideo*, è possibile dimostrare che tra tutti i possibili vettori \hat{t} l'incremento della funzione è massimo in direzione del gradiente,

$$\max_{\hat{t}} \hat{t} \cdot \nabla f(P) = \max_{\hat{t}} |\underbrace{\hat{t}}_{=1} | |\nabla f(P)| \cos \theta_{\hat{t}} = \max_{\theta_{\hat{t}}} |\nabla f(P)| \cos \theta_{\hat{t}} = |\nabla f(P)| \;,$$

quando l'angolo tra il versore \hat{t} e il gradiente $\nabla f(P)$ è nullo, $\theta_{\hat{t}}=0$.

30.1.3 Divergenza

La divergenza di un campo vettoriale $\vec{f}(P)$ nello spazio 3-dimensionale è un campo scalare che può essere interpretato come la densità volumetrica del flusso del campo vettoriale. Usando un sistema di coordinate cartesiane, la divergenza di un campo vettoriale può essere scritta formalmente come il prodotto interno tra il vettore formale nabla e il campo vettoriale,

$$\nabla \cdot \vec{f} = \partial_x f_x + \partial_y f_y + \partial_z f_z$$

Divergenza come densità volumetrica del flusso. Dimostrazione con un cubetto elementare

Usando le coordinate cartesiane si calcola il flusso del campo vettoriale attraverso la superficie di un cubetto elementare centrato nel punto P, **todo**

$$\begin{split} &\Phi_{\partial\Delta V(P)}\left(\vec{f}\right) = \Delta y \Delta z \hat{x} \cdot \vec{f} \left(P + \hat{x} \frac{\Delta x}{2}\right) - \Delta y \Delta z \hat{x} \cdot \vec{f} \left(P - \hat{x} \frac{\Delta x}{2}\right) + \cdots = \\ &= \Delta y \Delta z \left[f_x \left(P + \hat{x} \frac{\Delta x}{2}\right) f_x \left(P - \hat{x} \frac{\Delta x}{2}\right)\right] + \cdots = \\ &= \Delta y \Delta z \left[f_x(P) + \frac{\Delta x}{2} \,\partial_x \,f(P) - f_x(P) + \frac{\Delta x}{2} \,\partial_x \,f(P) + o(\Delta x)\right] + \cdots = \\ &= \Delta x \Delta y \Delta z \,\partial_x \,f_x(P) + o(\Delta V) + \cdots = \\ &= \Delta V \left[\partial_x \,f_x(P) + \partial_y \,f_y(P) + \partial_z \,f_z(P)\right] + o(\Delta V) = \\ &= \Delta V \,\nabla \cdot \vec{f}(P) + o(\Delta V) \;. \end{split}$$

Divergenza come densità volumetrica del flusso. Dimostrazione con un tetraedro elementare

Usando le coordinate cartesiane si calcola il flusso del campo vettoriale attraverso la superficie di un cubetto elementare centrato nel punto P, **todo**

$$\begin{split} &\Phi_{\partial\Delta V(P)}\left(\vec{f}\right) = -\Delta S_x \hat{x} \cdot \vec{f} \left(P + \hat{y} \frac{\Delta y}{3} + \hat{z} \frac{\Delta z}{3}\right) - \Delta S_y \hat{y} \cdot \vec{f} \left(P + \hat{z} \frac{\Delta z}{3} + \hat{x} \frac{\Delta x}{3}\right) \\ &- \Delta S_z \hat{z} \cdot \vec{f} \left(P + \hat{x} \frac{\Delta x}{3} + \hat{y} \frac{\Delta y}{3}\right) + \Delta S \hat{n} \cdot \vec{f} \left(P + \hat{x} \frac{\Delta x}{3} + \hat{y} \frac{\Delta y}{3} + \hat{z} \frac{\Delta z}{3}\right) + o(\Delta V) = \\ &= -\Delta S_x \left(f_x + \frac{\Delta y}{3} \partial_y f_x + \frac{\Delta_z}{3} \partial_z f_x\right) - \Delta S_y \left(f_y + \frac{\Delta z}{3} \partial_z f_y + \frac{\Delta_x}{3} \partial_x f_y\right) + \\ &- \Delta S_z \left(f_z + \frac{\Delta x}{3} \partial_x f_z + \frac{\Delta y}{3} \partial_y f_z\right) + \Delta S_z \sum_{k \in \{x,y,z\}} \left[n_k \left(f_k(P) + \frac{\Delta x}{3} \partial_x f_k + n_y \frac{\Delta y}{3} \partial_y f_k + n_z \frac{\Delta z}{3} \partial_z f_k\right)\right] + \cdots + \\ &= -\Delta S_x \left(f_x + \frac{\Delta y}{3} \partial_y f_x + \frac{\Delta_z}{3} \partial_z f_x\right) - \Delta S_y \left(f_y + \frac{\Delta z}{3} \partial_z f_y + \frac{\Delta_x}{3} \partial_x f_y\right) + \\ &- \Delta S_z \left(f_z + \frac{\Delta x}{3} \partial_x f_z + \frac{\Delta y}{3} \partial_y f_z\right) + \sum_{k \in \{x,y,z\}} \Delta S_k \left(f_k(P) + \frac{\Delta x}{3} \partial_x f_k + n_y \frac{\Delta y}{3} \partial_y f_k + n_z \frac{\Delta_z}{3} \partial_z f_k\right) + \cdots + o(\Delta x) \left(\frac{1}{3} \Delta S_x \Delta x \partial_x f_x + \frac{1}{3} \Delta S_y \Delta y \partial_y f_y + \frac{1}{3} \Delta S_z \Delta z \partial_z f_z\right) = \\ &= \Delta V \left[\partial_x f_x(P) + \partial_y f_y(P) + \partial_z f_z(P)\right] + o(\Delta V) \,. \end{split}$$

30.1.4 Rotore

Il rotore di un campo vettoriale $\vec{f}(P)$ nello spazio 3-dimensionale è un campo vettoriale che può essere interpretato come la densità di superficie di circuitazione. Usando un sistema di coordinate cartesiane, il rotore di un campo vettoriale può essere scritto formalmente come il prodotto vettoriale tra il vettore formale nabla e il campo vettoriale,

$$\begin{split} \nabla \times \vec{f} &= \hat{x} \left(\partial_y f_z - \partial_z f_y \right) + \\ &+ \hat{y} \left(\partial_z f_x - \partial_x f_z \right) + \\ &+ \hat{z} \left(\partial_x f_y - \partial_y f_x \right) = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ \partial_x & \partial_y & \partial_z \\ f_x & f_y & f_z \end{vmatrix} \,. \end{split}$$

Rotore come densità di circuitazione. Dimostrazione

Usando le coordinate cartesiane si calcola la circuitazione del campo vettoriale \vec{f} sui lati della faccia maggiore di un tetraedro con spigoli coincidenti con gli assi e di lunghezza Δx , Δy , Δz ,

$$\begin{split} \Gamma_{\partial\Delta V(P)}\left(\vec{f}\right) &= \vec{f} \left(P - \frac{\Delta z}{3} \hat{z} + \frac{\Delta y}{6} \hat{y} + \frac{\Delta x}{6} \hat{x}\right) \cdot \left(-\hat{x}\Delta x + \hat{y}\Delta y\right) + \\ &+ \vec{f} \left(P - \frac{\Delta x}{3} \hat{x} + \frac{\Delta z}{6} \hat{z} + \frac{\Delta y}{6} \hat{y}\right) \cdot \left(-\hat{y}\Delta y + \hat{z}\Delta z\right) + \\ &+ \vec{f} \left(P - \frac{\Delta y}{3} \hat{y} + \frac{\Delta x}{6} \hat{x} + \frac{\Delta z}{6} \hat{z}\right) \cdot \left(-\hat{z}\Delta z + \hat{x}\Delta x\right) = \\ &= -\Delta x \left(f_x - \frac{\Delta z}{3} \partial_z f_x + \frac{\Delta y}{6} \partial_y f_x + \frac{\Delta x}{6} \partial_x f_x\right) + \Delta y \left(f_y - \frac{\Delta z}{3} \partial_z f_y + \frac{\Delta y}{6} \partial_y f_y + \frac{\Delta x}{6} \partial_x f_y\right) \\ &- \Delta y \left(f_y - \frac{\Delta x}{3} \partial_x f_y + \frac{\Delta z}{6} \partial_z f_y + \frac{\Delta y}{6} \partial_y f_y\right) + \Delta z \left(f_z - \frac{\Delta x}{3} \partial_x f_z + \frac{\Delta z}{6} \partial_z f_z + \frac{\Delta y}{6} \partial_y f_z\right) \\ &- \Delta z \left(f_z - \frac{\Delta y}{3} \partial_y f_z + \frac{\Delta x}{6} \partial_x f_z + \frac{\Delta z}{6} \partial_z f_z\right) + \Delta x \left(f_x - \frac{\Delta y}{3} \partial_y f_x + \frac{\Delta x}{6} \partial_x f_x + \frac{\Delta z}{6} \partial_z f_x\right) = \\ &= \frac{1}{2} \Delta x \Delta y \left(\partial_x f_y - \partial_y f_x\right) + \frac{1}{2} \Delta y \Delta z \left(\partial_y f_z - \partial_z f_y\right) + \frac{1}{2} \Delta z \Delta x \left(\partial_z f_x - \partial_x f_z\right) = \\ &= \Delta S_z \left(\nabla \times \vec{f}\right)_z + \Delta S_x \left(\nabla \times \vec{f}\right)_x + \Delta S_y \left(\nabla \times \vec{f}\right)_y = \\ &= \Delta S \left(n_z \left(\nabla \times \vec{f}\right)_z n_x \left(\nabla \times \vec{f}\right)_x n_y \left(\nabla \times \vec{f}\right)_y\right) = \\ &= \Delta S \hat{n} \cdot \nabla \times \vec{f}(P) + o(\Delta S) \; . \end{split}$$

30.2 Integrali in spazi euclidei

Parte VII

Statistica

basics

08 dic 2024

0 min read

Matematica per le scuole superiori		

CAPITOLO 31

Introduzione alla statistica

Approcci. Statistica descrittiva o inferenziale

Contenuti.

- Calcolo combinatorio
- Variabili casuali
- Processi casuali

Applicazioni.

- · Verifica delle ipotesi
- Stima
- •
- Nell'ambito del machine learning:
 - SL: regressione/classificazione
 - UL: clustering, riduzione dimensionale,...
 - RL: ottimizzazione/controllo

• ...

Parte VIII

Indice

			20
CAP	$IT \cap I$	\cap	3/

Indice

192 Capitolo 32. Indice

Proof Index

integrals:thm:fund:reynolds definition-0 (ch/precalculus/real-functions), 91 (ch/infinitesimal calculus/integrals), 153 example-0 set-fun-def example-0 (ch/algebra/real-algebra), 22 set-fun-def (ch/set), 11 example-1 thm:infinitesimalexample-1 (ch/algebra/real-algebra), 22 calculus:continuousfun:thms:comparison example-2 thm:infinitesimal-calculus:continuousexample-2 (ch/algebra/real-algebra), 23 fun:thms:comparison (ch/infinitesimal_calculus/analysis), ?? example-3 example-3 (ch/algebra/real-algebra), 25 thm:infinitesimalcalculus:continuousexample-4 fun:thms:intermediate example-4 (ch/algebra/linear-algebra), 39 thm:infinitesimal-calculus:continuousfun:thms:intermediate example-5 (ch/infinitesimal_calculus/analysis), ?? example-5 (ch/algebra/linear-algebra), 40 thm:infinitesimalexample-6 calculus:continuous-fun:thms:sign example-6 (ch/algebra/linear-algebra), 40 thm:infinitesimal-calculus:continuousfun:thms:sign example-7 (ch/infinitesimal_calculus/analysis), ?? example-7 (ch/algebra/linear-algebra), 40 thm:infinitesimalcalculus:continuousexample-8 fun:thms:weierstrass example-8 (ch/algebra/linear-algebra), 40 thm:infinitesimal-calculus:continuousfun:thms:weierstrass integrals:thm:avg (ch/infinitesimal_calculus/analysis), ?? integrals:thm:avg (ch/infinitesimal_calculus/integrals), 153

thm:infinitesimal-

calculus:continuous-fun:thms:zeros

fun:thms:zeros

thm:infinitesimal-calculus:continuous-

(ch/infinitesimal calculus/analysis), ??

integrals:thm:fund:reynolds

definition-0

integrals:thm:fund

integrals:thm:fund

(ch/infinitesimal_calculus/integrals), 153

thm:infinitesimalcalculus:derivatives:taylor

thm:infinitesimalcalculus:derivatives:taylor (ch/infinitesimal_calculus/derivatives), 147

thm:infinitesimalcalculus:derivatives:thm:cauchy

thm:infinitesimalcalculus:derivatives:thm:cauchy (ch/infinitesimal_calculus/derivatives), 143

thm:infinitesimalcalculus:derivatives:thm:fermat

thm:infinitesimalcalculus:derivatives:thm:fermat (ch/infinitesimal_calculus/derivatives), 143

thm:infinitesimalcalculus:derivatives:thm:hopital

thm:infinitesimalcalculus:derivatives:thm:hopital (ch/infinitesimal_calculus/derivatives), 144

thm:infinitesimal-calculus:derivatives:thm:lagrange

thm:infinitesimalcalculus:derivatives:thm:rolle

thm:infinitesimalcalculus:derivatives:thm:rolle (ch/infinitesimal_calculus/derivatives), 143

194 Proof Index