

## Indian Institute of Technology Guwahati

Quiz-1, Even Semester, 2014-15

Time: 50 Minutes MA~102~Mathematics-II Marks: 10

Roll No.: \_\_\_\_\_\_ Name: \_\_\_\_\_ Signature: \_\_\_\_\_

- 1. Let  $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$  be the function defined by  $f(x,y) = \begin{cases} \frac{x}{y} \frac{y}{x} & \text{if } xy \neq 0; \\ 0 & \text{otherwise.} \end{cases}$ 
  - (a) Prove or disprove: f is continuous at (0,0). Answer: Put  $x = r \cos \theta$  and  $y = r \sin \theta$  in |f(x,y) - f(0,0)| then we get  $|\cot \theta - \tan \theta|$  which (for certain  $\theta$ ) does not tend to 0 as  $r \to 0$ . 1 mark for full correct answer. Otherwise, zero.
  - (b) Find all possible directions along which directional derivatives of f at (0,0) exist. Answer: Let V = (u,v) with ||V|| = 1. Then

$$D_V f(0,0) = \lim_{t \to 0} \frac{f(0 + tu, 0 + tv) - f(0,0)}{t}$$

[1]

[1]

- (i) If uv = 0, then  $D_V f(0,0) = 0$ . (Till this, one will get 0.5 marks)
- (ii) If  $uv \neq 0$ , then  $D_V f(0,0) = \lim_{t \to 0} \frac{1}{t} \left( \frac{u}{v} \frac{v}{u} \right)$ . Hence, limit exists iff  $\frac{u}{v} \frac{v}{u} = 0$ . (If one answers only second part, s/he will get only 0.5 marks)

So all possible directions  $(\pm \frac{1}{\sqrt{2}}, \pm \frac{1}{\sqrt{2}}), (\pm 1, 0), (0, \pm 1)$ . Total eight directions.

Roll No.: \_\_\_

[1]

[1]

[1]

2. Let 
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
 be the function defined by  $f(x,y) = \begin{cases} xy \log(x^2 + y^2) & \text{if } x^2 + y^2 \neq 0; \\ 0 & \text{otherwise.} \end{cases}$ 

(Here,  $\log$  is the natural logarithm to the base e.)

(a) Show that 
$$f_x(0,0) = f_y(0,0) = 0$$
.  
Answer:  $f_x(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{0}{h} = 0$  (0.5 marks)  
 $f_y(0,0) = \lim_{k \to 0} \frac{f(0,k) - f(0,0)}{k} = \lim_{k \to 0} \frac{0}{k} = 0$  (0.5 marks)

- (b) Check the differentiability of f at (0,0). Answer: Note that  $e(h,k) = \frac{f(h,k) - f(0,0) - hf_x(0,0) - kf_y(0,0)}{\sqrt{h^2 + k^2}} = \frac{hk \log(h^2 + k^2)}{\sqrt{h^2 + k^2}}$  (0.5 marks) Put  $h = r \cos \theta$ ,  $k = r \sin \theta$ . Then  $|e(h,k)| = |\sin 2\theta \ r \log r| \le r |\log r| \to 0$  as  $r \to 0$ . (0.5 marks)
- (c) Prove that (0,0) is a saddle point of f. (Hint: It is recommended to avoid second derivative test for Part (c))
  Answer: In any neighborhood of (0,0) of radius r, consider 0 < a < min{0.5, r}.</li>
  Note that f(a, a) < 0 = f(0,0) < f(-a,a). Hence, (0,0) is a saddle point for f.</li>
  1 mark for full correct answer. Otherwise, zero. However, strictly following the definition, a meritorious argument will be given 0.5 marks.

[1]

[2]

3. Consider the surface  $z = 3x^2 - y^2$ . Write the equation of the tangent plane, if exists, to the surface at (0,0,0). (Do not write your calculations here.)

Answer: z = 0.

As such calculations are not expected. However, in case someone shows calculations, marks are awarded as follows. Correct calculations with correct answer gets 1 mark. Zero marks will be awarded in each of the cases: (i) wrong calculations with correct answer (ii) correct calculation with wrong answer (iii) multiple answers (iv) anything equivalent to these.

4. Let  $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$  be a function. Suppose  $f \circ g$  is differentiable at t = 0 for all functions  $g: \mathbb{R} \longrightarrow \mathbb{R}^2$  with g(0) = (0,0). Show that directional derivatives of f at (0,0) exist in all directions.

Answer:

Let V = (u, v) with ||V|| = 1. Consider

$$D_V f(0,0) = \lim_{t \to 0} \frac{f(tu, tv) - f(0,0)}{t}$$

Take g(t) = (tu, tv), then

$$D_V f(0,0) = \lim_{t \to 0} \frac{f \circ g(t) - f \circ g(0)}{t}$$

exists as  $f \circ g$  is differentiable at t = 0. Hence,  $D_V f(0,0)$  exists for all V.

1 mark for considering the function q and 1 mark for rest of the correct answer.

[2]

5. Let D be a closed subset of  $\mathbb{R}^2$ . Show that the complement of D in  $\mathbb{R}^2$ , i.e.  $\mathbb{R}^2 \setminus D$ , is an open subset of  $\mathbb{R}^2$ .

Answer:

Write  $O = \mathbb{R}^2 \setminus D$  and assume O is not open. Then there exists  $X_0 \in O$  which is not an interior point of O. That is, for each  $n \in \mathbb{N}$ , there exists  $X_n \in \mathbb{R}^2$  such that

$$||X_n - X_0|| < \frac{1}{n}$$

but  $X_n \notin O$ . It is clear that the sequence  $(X_n)$  converges to  $X_0$ .

Since  $X_n \notin O$ , we have  $X_n \in D$ , for all n. But since D is closed, the limit of  $(X_n)$  is in D. That is,  $X_0 \in D$ ; a contradiction. Hence, O is open.

1 mark for assuming O is not open and constructing a sequence.

1 mark for rest of the correct answer.

