Estrutura de dados para grafo

SCC 503 - Alg. Estrut. Dados II

Introdução

- Como podemos representar grafos para resolver problemas práticos?
- Qual a melhor representação?
- Precisamos de uma representação diferente para Grafos e Digrafos ?
- E se o grafo tiver arestas com pesos ?
- Como ler arestas e vértices e armazenar em memória ?
- Vamos começar pela última questão.
 - Como

Lendo vértices e arestas de um "arquivo"

Seja o grafo ao lado, representado em um arquivo texto com o seguinte formato:

5 ab ac be cd

се

Lendo vértices e arestas de um "arquivo"

Seja o grafo ao lado, representado em um arquivo texto com o seguinte formato:

8

0 1 45

0 2 20

1 2 30

1 3 45

2 4 25

2 5 100

2 3 100

3 4 75

4 5 90

4675

5 7 15

Lendo vértices e arestas de um "arquivo"

- É bastante improvável que alguém vá querer "digitar" todos vértices e arestas toda vez que for criar um grafo.
- Vamos então escrever um código que leia do arquivo cada um destes valores.
- Como vc faria isso?
 - código exemplo serão deixados na pagina da disciplina

Estrutura de dados

- Será que é preciso de fato diferenciar a estrutura de dados para grafos e digrafos?
 - reveja as definições.
 - Um grafo não direcionado é aquele em que uma resta v-w pode ser vista com um arco não apenas do tipo v-w, como também um arco w-v
- Portanto, as estruturas n\u00e3o precisam ser necessariamente diferentes.
- O que muda é que em um grafo, ao contrário do digrafo, ambos arcos v-w quanto w-v precisarão estar representadas na estrutura.

Estruturas possíveis

- Lista de arcos (ou vértices)
- Lista de adjacências
- Matriz de adjacência
- Matriz de Incidência

Lista de arcos

- crie uma lista (pode ser um vetor ou uma estrutura encadeada) com todos os arcos ou arestas existentes no seu (di)grafo.
- A partir daí crie um TAD com funções do tipo:
 - Graph initGraph(int)
 - void destroyGraph(Graph)
 - insertArc(Arc);
 - searchArc(Arc);
 - removeArc(Arc);
 - Graph copyGraph(Graph);
 - o etc....
- Você acha a lista de arcos uma boa opção??
 - e se o grafo possuísse um vértice sem conexão alguma com outro vértice ???

Lista de adjacência

- Especifica os vértices adjacentes a cada vértice do grafo
- Implementações possíveis
 - o uma implementação em tabela
 - lista ligada (encadeada) de vértices, como ponteiro para uma lista de adjacências (que também pode ser ligada)
 - um vetor de vértices (estático) com ponteiro para uma lista de adjacências (tabém uma lista ligada)

Lista de adjacência

Lista de Adjacência

- Se desejarmos que o vértice e arcos tenham "nomes", devemos pensar numa estrutura para armazenar isso..
- Estrutura ideal para armazenar grafos esparsos...
 - o por que???
 - pense em uma matriz, ao invés de uma estrutura em lista..

Lista de adjacência para um digrafo

- usamos um vetor de vértices (nao ligada) e a lista de adjacência ligada.
- Voce pode agora completar o seu TAD com funções do tipo
 - initGraph, destroyGraph, insertArc(Arc); searchArc(Arc); removeArc(Arc), etc...

V 4 A 5 adj 0 3 / 1 / 2 1 0 / 3 / 3 / 1 / 2 1 / 1 / 2

Lista de adjacência para um grafo

- usamos um vetor de vértices (nao ligada) e a lista de adjacência ligada.
- Voce pode agora completar o seu TAD com funções do tipo
 - o initGraph, destroyGraph, insertArc(Arc); searchArc(Arc); removeArc(Arc), etc...

G Arestas

V 4

A 10

adj

0 3 2 /

1 2 3 /

2 1 0 3 /

3 2 0 1 /

1 1 /

Matriz de Adjacência

- matriz binária de tamanho V x V, tal que cada entrada d_{i.i}
 - \circ 1, se existe $A(v_i, v_i)$
 - o 0. caso contrário
- Pode ser generalizada para multigrafos se ao invés de utilizarmos 0s e 1s indicarmos d_{i,i} = número de arestas entre v_i e v_j
- se o grafo tiver laços, podemos colocar valores na diagonal principal.

Matriz de Adjacência: digrafo

Matriz de Adjacência: grafo

Matriz de Incidência

- baseada na incidência de vértices e arestas, é uma matriz de tamanho V × A, tal que cada entrada c_i,
 - \circ 1 , se a aresta a_i é incidente com o vértice v_i
 - o 0, caso contrário

Matriz de Incidência: digrafo

	a	b	С	d	е	f	g	h
0	1	-1	0	0	0	0	0	1
1	0	0	1	1	1	0	0	0
2	-1	0	-1	0	0	-1	1	-1
3	0	1	0	-1	0	0	-1	0
4	0	0	0	0	-1	1	0	0

Matriz de Incidência: grafo

	a	b	С	d	е	f	g	h
0	1	1	0	0	0	0	0	1
1	0	0	1	1	1	0	0	0
2	1	0	1	0	0	1	1	1
3	0	1	0	1	0	0	1	0
4	0	0	0	0	1	1	0	0

Desempenho Assintótico: notação O()

	Lista de	Lista de	Matriz de
	Arcos	Adjacência	Adjacência
Espaço	n + m	n + m	$n^2 + m$
Verificar arcos incidentes	m	grau(v)	n
Verificar adjacência	m	grau(v)	1
Inserir vértice	1	1	n^2
Inserir arco	1	1	1
Remover vértice	m	grau(v)	n^2
Remover arco	1	1	1