Exercises for Module 1: Proofs

1. Prove De Morgan's Laws for propositions: $\neg(P \land Q) = \neg P \lor \neg Q$ and $\neg(P \lor Q) = \neg P \land \neg Q$ (Hint: use truth tables).

2. If a|b and $a,n\in\mathbb{Z}_{>0}$ (positive integers), then $a\leq b.$

3. If a|b and a|c, then a|(xb+yc), where $x,y\in\mathbb{Z}.$

4. Let $a, b, n \in \mathbb{Z}$. If n does not divide the product ab, then n does not divide a and n does not divide b.

5.	Prove	that	for	all	integers i	n >	1.	$3 (2^{2n}$	-1)

6. Prove the Fundamental Theorem of Arithmetic, that every integer $n \ge 2$ has a unique prime factorization (i.e. prove that the prime factorization from the last proof is unique).

7. Let $A = \{x \in \mathbb{R} : x < 100\}, \ B = \{x \in \mathbb{Z} : |x| \ge 20\}, \ \text{and} \ C = \{y \in \mathbb{N} : y \ \text{is prime}\}.$ Find $A \cap B, \ B^c \cap C, \ B \cup C, \ \text{and} \ (A \cup B)^c.$