Bayesian Methods

David Rosenberg

New York University

April 27, 2016

Bayesian Statistics: Recap

The Bayesian Method

- Define the model:
 - Choose a probability model or "likelihood model":

$$\{p(\mathfrak{D} \mid \theta) \mid \theta \in \Theta\}.$$

- Choose a distribution $p(\theta)$, called the **prior distribution**.
- **2** After observing \mathcal{D} , compute the **posterior distribution** $p(\theta \mid \mathcal{D})$.
- **3** Choose **action** based on $p(\theta \mid \mathcal{D})$.
 - e.g. $\mathbb{E}[\theta \mid \mathcal{D}]$ as point estimate for θ
 - e.g. interval [a, b], where $p(\theta \in [a, b] \mid \mathcal{D}) = 0.95$

The Posterior Distribution

By Bayes rule, can write the posterior distribution as

$$p(\theta \mid \mathcal{D}) = \frac{p(\mathcal{D} \mid \theta)p(\theta)}{p(\mathcal{D})}.$$

- likelihood: $p(\mathcal{D} \mid \theta)$
- prior: $p(\theta)$
- marginal likelihood: $p(\mathfrak{D})$.
- Note: $p(\mathcal{D})$ is just a normalizing constant for $p(\theta \mid \mathcal{D})$. Can write

$$\underbrace{p(\theta \mid \mathcal{D})}_{\text{posterior}} \propto \underbrace{p(\mathcal{D} \mid \theta)}_{\text{likelihood prior}} \underbrace{p(\theta)}_{\text{prior}}.$$

Summary

• Prior represents belief about θ before observing data \mathcal{D} .

- \bullet Posterior represents the rationally "updated" beliefs after seeing ${\mathfrak D}.$
- All inferences and action-taking are based on posterior distribution.

Bayesian Gaussian Linear Regression

Bayesian Conditional Models

- Input space $\mathfrak{X} = \mathsf{R}^d$ Output space $\mathfrak{Y} = \mathsf{R}$
- Conditional probability model, or likelihood model:

$$\{p(y \mid x, \theta) \mid \theta \in \Theta\}$$

- Conditional here refers to the conditioning on the input x.
 - x's are not governed by our probability model.
 - Everything conditioned on x means "x is known"
- Prior distribution: $p(\theta)$ on $\theta \in \Theta$

Gaussian Regression Model

- Input space $\mathfrak{X} = \mathsf{R}^d$ Output space $\mathfrak{Y} = \mathsf{R}$
- Conditional probability model, or likelihood model:

$$y \mid x, w \sim \mathcal{N}(w^T x, \sigma^2),$$

for some known $\sigma^2 > 0$.

- Parameter space? R^d.
- Data: $\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}$
 - **Notation**: $y = (y_1, ..., y_n)$ and $x = (x_1, ..., x_n)$.
 - Assume y_i 's are **conditionally independent**, given x and w.

Gaussian Likelihood

• The **likelihood** of $w \in \mathbb{R}^d$ for the data \mathfrak{D} is

$$p(y \mid x, w) = \prod_{i=1}^{n} p(y_i \mid x_i, w) \quad \text{by conditional independence.}$$

$$= \prod_{i=1}^{n} \left[\frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(y_i - w^T x_i)^2}{2\sigma^2}\right) \right]$$

You should be to see in your head¹ that the MLE is

$$\begin{aligned} w_{\mathsf{MLE}}^* &= & \arg\max_{w \in \mathbf{R}^d} p(y \mid x, w) \\ &= & \arg\min_{w \in \mathbf{R}^d} \sum_{i=1}^n (y_i - w^T x_i)^2. \end{aligned}$$

 $^{^1\}mathrm{See}\ \mathrm{https://davidrosenberg.github.io/ml2015/docs/8.Lab.glm.pdf}$, slide 5.

Priors and Posteriors

• Choose a Gaussian **prior distribution** p(w) on \mathbb{R}^d :

$$w \sim \mathcal{N}(0, \Sigma_0)$$

for some **covariance matrix** $\Sigma_0 \succ 0$ (i.e. Σ_0 is spd).

Posterior distribution

$$\begin{split} \rho(w \mid \mathcal{D}) &= p(w \mid x, y) \\ &= p(y \mid x, w) p(w) / p(y) \\ &\propto p(y \mid x, w) p(w) \\ &= \prod_{i=1}^{n} \left[\frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(y_{i} - w^{T} x_{i})^{2}}{2\sigma^{2}}\right) \right] \text{ (likelihood)} \\ &\times |2\pi \Sigma_{0}|^{-1/2} \exp\left(-\frac{1}{2}w^{T} \Sigma_{0}^{-1}w\right) \text{ (prior)} \end{split}$$

What does the posterior give us?

- Likelihood model: $y \mid x, w \sim \mathcal{N}(w^T x, \sigma^2)$
- Prior distribution: $w \sim \mathcal{N}(0, \Sigma_0)$
- Given data, compute **posterior distribution**: $p(w \mid D)$.
- If we knew w, best prediction function (for square loss) is

$$\hat{\mathbf{y}}(\mathbf{x}) = \mathbb{E}\left[\mathbf{y} \mid \mathbf{x}, \mathbf{w}\right] = \mathbf{w}^T \mathbf{x}.$$

- Prior p(w) and posterior $p(w \mid \mathcal{D})$
 - give distributions over prediction functions!

Gaussian Regression Example

Example in 1-Dimension: Setup

- Input space $\mathfrak{X} = [-1,1]$ Output space $\mathfrak{Y} = \mathbb{R}$
- Let's suppose for any x, y is generated as

$$y=w_0+w_1x+\varepsilon,$$

where $\varepsilon \sim \mathcal{N}(0, 0.2^2)$.

• Written another way, the likelihood model is

$$y \mid x, w_0, w_1 \sim \mathcal{N}(w_0 + w_1 x, 0.2^2)$$
.

- What's the parameter space? R^2 .
- Prior distribution: $w = (w_0, w_1) \sim \mathcal{N}(0, \frac{1}{2}I)$

Example in 1-Dimension: Prior Situation

• Prior distribution: $w = (w_0, w_1) \sim \mathcal{N}(0, \frac{1}{2}I)$

- On right, plots of $y(x) = \mathbb{E}[y \mid x, w]$, for randomly chosen $w \sim \mathcal{N}(0, \frac{1}{2}I)$.
 - $y(x) = w_0 + w_1 x$ for random $(w_0, w_1) \sim p(\theta) = \mathcal{N}(0, \frac{1}{2}I)$.

Example in 1-Dimension: 1 Observation

- On left: posterior distribution; white '+' indicates true parameters
- On right: blue circle indicates the training observation

Example in 1-Dimension: 2 and 20 Observations

Bishop's PRML Fig 3.7

Gaussian Regression Continued

Closed Form for Posterior

Model:

$$w \sim \mathcal{N}(0, \Sigma_0)$$

 $y_i \mid x, w \text{ i.i.d. } \mathcal{N}(w^T x_i, \sigma^2)$

- Design matrix X; Response column vector y
- Posterior distribution is a Gaussian distribution:

$$w \mid \mathcal{D} \sim \mathcal{N}(\mu_P, \Sigma_P)$$

$$\mu_P = (X^T X + \sigma^2 \Sigma_0^{-1})^{-1} X^T y$$

$$\Sigma_P = (\sigma^{-2} X^T X + \Sigma_0^{-1})^{-1}$$

• Posterior Variance Σ_P gives us a natural uncertainty measure.

See Rasmussen and Williams' Gaussian Processes for Machine Learning, Ch 2.1. http://www.gaussianprocess.org/gpml/chapters/RW2.pdf

Closed Form for Posterior

Posterior distribution is a Gaussian distribution:

$$\begin{array}{rcl} w \mid \mathcal{D} & \sim & \mathcal{N}(\mu_P, \Sigma_P) \\ \mu_P & = & \left(X^T X + \sigma^2 \Sigma_0^{-1} \right)^{-1} X^T y \\ \Sigma_P & = & \left(\sigma^{-2} X^T X + \Sigma_0^{-1} \right)^{-1} \end{array}$$

The MAP estimator and the posterior mean are given by

$$\mu_P = \left(X^T X + \sigma^2 \Sigma_0^{-1}\right)^{-1} X^T y$$

• For the prior variance $\Sigma_0 = \frac{\sigma^2}{\lambda} I$, we get

$$\mu_P = \left(X^T X + \lambda I\right)^{-1} X^T y,$$

which is of course the ridge regression solution.

Posterior Mean and Posterior Mode (MAP)

• Posterior density for $\Sigma_0 = \frac{\sigma^2}{\lambda}I$:

$$p(w \mid \mathcal{D}) \propto \underbrace{\exp\left(-\frac{\lambda}{2\sigma^2} \|w\|^2\right)}_{\text{prior}} \underbrace{\prod_{i=1}^n \exp\left(-\frac{(y_i - w^T x_i)^2}{2\sigma^2}\right)}_{\text{likelihood}}$$

To find MAP, sufficient to minimize the negative log posterior:

$$\begin{split} \hat{w}_{\mathsf{MAP}} &= \underset{w \in \mathbf{R}^d}{\mathsf{arg\,min}} \left[-\log p(w \mid \mathcal{D}) \right] \\ &= \underset{w \in \mathbf{R}^d}{\mathsf{arg\,min}} \underbrace{\sum_{i=1}^n (y_i - w^T x_i)^2 + \underbrace{\lambda \|w\|^2}_{\mathsf{log-prior}} \\ &= \underbrace{\mathsf{log-likelihood}} \end{split}$$

• Which is the ridge regression objective.

Predictive Distribution

- Given a new input point x_{new} , how to predict y_{new} ?
- Predictive distribution

$$p(y_{\text{new}} \mid x_{\text{new}}, \mathcal{D}) = \int p(y_{\text{new}} \mid x_{\text{new}}, \theta, \mathcal{D}) p(\theta \mid \mathcal{D}) d\theta$$
$$= \int p(y_{\text{new}} \mid x_{\text{new}}, \theta) p(\theta \mid \mathcal{D}) d\theta$$

• For Gaussian regression, predictive distribution has closed form.

Closed Form for Predictive Distribution

Model:

$$w \sim \mathcal{N}(0, \Sigma_0)$$

 $y_i \mid x, w \text{ i.i.d. } \mathcal{N}(w^T x_i, \sigma^2)$

Predictive Distribution

$$p(y_{\text{new}} | x_{\text{new}}, \mathcal{D}) = \int p(y_{\text{new}} | x_{\text{new}}, w) p(w | \mathcal{D}) d\theta.$$

- \bullet Averages over prediction for each $\theta,$ weighted by posterior distribution.
- Closed form:

$$y_{\text{new}} \mid x_{\text{new}}, \mathcal{D} \sim \mathcal{N}(\eta_{\text{new}}, \sigma_{\text{new}})$$

$$\mu_{\text{new}} = \mu_{\text{P}}^{T} x_{\text{new}}$$

$$\sigma_{\text{new}} = \underbrace{x_{\text{new}}^{T} \Sigma_{\text{P}} x_{\text{new}}}_{\text{from variance in } \theta} + \underbrace{\sigma^{2}}_{\text{inherent variance in } y}$$

Predictive Distributions

 With predictive distributions, can give mean prediction with error bands:

Rasmussen and Williams' Gaussian Processes for Machine Learning, Fig.2.1(b)