1. MI fogalma

Határidő szept 18, 23:59 Pont 12 Kérdések 12

Elérhető szept 7, 00:00 - szept 18, 23:59 12 nap Időkorlát Nincs

Engedélyezett próbálkozások Korlátlan

Instrukciók

Az első előadásra támaszkodó ellenőrző kérdések.

Kvíz kitöltése újra

Próbálkozások naplója

	Próbálkozás	ldő	Eredmény
MEGTARTOTT	2. próbálkozás	4 perc	12 az összesen elérhető 12 pontból
LEGUTOLSÓ	2. próbálkozás	4 perc	12 az összesen elérhető 12 pontból
	1. próbálkozás	64 perc	10 az összesen elérhető 12 pontból

① A helyes válaszok el vannak rejtve.

Ezen próbálkozás eredménye: 12 az összesen elérhető 12 pontból

Beadva ekkor: szept 18, 23:56

Ez a próbálkozás ennyi időt vett igénybe: 4 perc

1. kérdés	1 / 1 pont
Az alábbiak közül melyik NEM utal a mesterséges intellig szoftverben?	encia jelenlétére egy
A megoldandó feladatnak hatalmas a problématere.	
A szoftverbe különleges technológiák vannak beépítve.	
A szoftver optimális megoldást talál a kitűzött problémáho	DZ.

1 of 6 19/09/2020, 00:00

A szoftver	viselkedése	intelligens	jegyeket mutat.	

2. kérdés Mire utal egy algoritmussal kapcsolatban a kombinatorikus robbanás fogalma? Az algoritmus NP-teljes. Az ilyen algoritmus nagyságrendekkel több megoldást tud előállítani adott időegység alatt. Az algoritmus kezelhetetlenül nagy memóriát igényel és/vagy a futási ideje óriási. Az algoritmus végtelen ciklusba tud kerülni.

3. kérdés Mit várunk el egy útkereső algoritmustól? Azt, hogy egy irányított gráfban egy adott csúcsból kiinduló megadott csúcsok valamelyikébe érkező irányított utat találjon meg. Azt, hogy megadja egy irányított gráfban egy adott csúcsból kiinduló összes többi csúcsba vezető valamelyik utat.

2 of 6 19/09/2020, 00:00

Azt, hogy megadja egy irányított gráfban egy adott csúcsból kiinduló összes többi csúcsba vezető optimális költségű utat.

4. kérdés	1 / 1 pont
Hogyan definiáljuk az optimális költség fogalmát?	
Egy csúcsból egy másik csúcsba vezető utak költségeinek minimum	ıa.
Egy csúcsból csúcsok halmazába vezető utak költségeinek infínuma	Э.
☐ Egy csúcsból egy másik csúcsba vezető utak költségeinek infínuma	
Egy csúcsból csúcsok halmazába vezető utak költségeinek minimur	na.

5. kérdés	1 / 1 pont
Mely állítások igazak az alábbiak közül?	
☐ A Turing kritérium és a kínai szoba elmélet egyaránt az erős MI hí erősítik.	vők érveit
☐ A Turing kritérium az MI szkeptikusok érveit erősíti	
☑ A kínai szoba elmélet az MI szkeptikusok érveit erősíti.	
☑ A Turing kritérium cáfolataként született meg a kínai szoba elm	élet.

6. kérdés 1/1 pont Mikor nevezhetünk egy feladatot útkeresési problémának?

3 of 6 19/09/2020, 00:00

	or, ha a feladat olyan állapottér modellel rendelkezik, amelyben a st egy műveletsorozat írja le.
☑ Amikor a	feladat problématerének elemei ugyanazon csúcsból kiinduló
	isladat problematerement sterrier agyanazon boacobor minadio
irányított	

7. kérdés Hogyan nyerhető ki egy útkeresési probléma megoldásakor kapott útból a feladat megoldása? ✓ Sokszor az út élei mutatják a feladat megoldásához szükséges lépéseket. ✓ Néha az út végpontja szimbolizálja a feladat egy megoldását. ☐ Az út csúcsai a feladat különböző megoldásai. ☐ Az út élei a feladat különböző megoldásait szimbolizálják.

8. kérdés	1 / 1 pont
Mely állítások igazak egy δ -gráfra?	
Csúcsaiba véges sok irányított él fut be.	
☑ Csúcsaiból véges sok irányított él indul ki.	

4 of 6

11. kérdés	1 / 1 pont
optimális megoldás megtalálása	
☑ megszerzett ismeret tárolása	
☑ természetes nyelvű kommunikáció	
☑ automatikus következtetés	
Az alábbiak közül melyek tartoznak a Turing kritériumok l	közé?
10. kérdés	1 / 1 pont
□ alkalmazandó heurisztikákat	
☑ reprezentációs gráfot	
☑ startcsúcsot	
□ megoldási utakat	
Egy útkeresési feladat gráfreprezentációjához meg kell a	dni a
9. kérdés	1 / 1 pont
- Vegleich son saussa lenet.	
✓ Végtelen sok csúcsa lehet.	

5 of 6

sa párba: mely fogalmak kapcso	olhatók egymáshoz!
hatalmas problématér	kombinatorikus robbanás
kínai szoba elmélet	MI szkeptikusok
útkeresési feladat	probléma modell
heurisztika	intuíció

12. kérdés	1 / 1 pont
Egy hiperút egy bejárása	
□ kört nem tartalmazhat	
☑ a hiperút összes hiperélét legalább egyszer érinti.	
□ nem lehet végtelen hosszú	
☑ a hiperút egy hiperélét legfeljebb annyiszor érinti, ahány közönséges út vezet a hiperútban a hiperút kezdőcsúcsából a hiperél kezdőcsúcsá	-

Kvízeredmény: **12** az összesen elérhető 12 pontból

6 of 6