Computer Science & IT

Discrete Mathematics

Set Theory & Algebra

Lecture No. 21

Topic

Finite Group

Topics to be Covered

Topic

Addition modulo 'm'

m

Topic

Multiplication modulo 'm' ⊗_m

Topic

Order of an element in a group (G,*)

Topic

Subgroup

* A group (G1, *) is Called a Prinite group, if underlying set 'G7' is a finite set. *(If (G,*) is a Pinite group, then number of elements in set G7 defines the order of group 67, order al group 67 can be denoted (by O(a) or |a|.

- Moter (1) of of form a group of order = 1, with binary operation addition.
 - 3 & 13 form a group of order=1, w=1.

 binary oph multiplication

Note: In a finite group af order=1, the only element of the set will be identity element work binary operation

3) {1,-1} form a finite group of order=2 Wirth binary operation multiplication

```
(-inv(1)=1 because inverse of identity element is)
identity element itself
(-1).(-1)=1=e inv(-1)=-1

multiply
```

Note: In a finite group of order=2, every element is

Topic: NOTE

- O foj 18 the only finite group of real numbers Wirt. Operation addition.
- (3) It and I-1,17 are the only two finite
 groups of real numbers wirt operation multiplication

cube voots af unity are

S = 1 $1 + \omega + \omega^2 = 0$

- (i) {1,00,002} will be closed } Wirt. multiplication
- (11) Multiplication is associative inv(w)=w
- (iii) identity=1 E { 1,60,60°}

$$(1)$$
 (1)

(i)+(i)+(i)=0

Topic: Finite Group

Four roots at unity are

- (11) Multiplication is associative
- (iii) 1E f1-1, i,-i) ... identity exists

(iv) inverse:? inv(1)=1 inv(1)=1 inv(1)=-1 inv(1)=-1

Note: - Any set at nth root at unity

Will form a group at order = n'

W.r.t. multiplication

Topic: Addition modulo 'm' \bigoplus_m

Let m' is any fixed positive integer.

for two non-negative integers a & b

$$Q \oplus_{m} b = (Q+b) \mod m = \int (Q+b) \operatorname{if}(Q+b) < m$$

Topic: Multiplication modulo 'm'
$$\otimes_m$$
 let 'm' be any fixed positive integer, for any two non-negative integers a 4 b,

$$a(x)_m b = (a.b) \mod m = \int ab$$
 if $ab < m$

eg.
$$\{0,1,2,3,4\}$$
 is a group wort. $\{0,1,2,3,4\}$ inv(0) = 0
inv(1) = 5-1 = 4
inv(2) = 5-2 = 3
inv(3) = 5-3 = 2
inv(4) = 5-4 = 1

Topic: NOTE

let $A = \{ \infty \mid 1 \leq \infty < n, \text{ and } G(D(x,n) = 1 \}$

Set al all tre integers which are less than 'n' Set all the integers which are Co-prime to 'n'.
Coprime to 'n' and less than 'n' Porma group w.r.t. (X)

In this case every element inv(1) = 1 inv(3) = 3is inverse mv(5) = 5inv(7)=7 necessary in

- + Identity with (+) will be = 0
- · Identity Wirt (X)n Will be = 1

ind inverse of every element a

$$1 \otimes_{15} 1 = 1 = e \implies inv(1) = 1$$
 $2 \otimes_{15} 8 = 1 = e \implies inv(2) = 8$
 $4 \otimes_{15} 4 = 1 = e \implies inv(4) = 4$
 $4 \otimes_{15} 4 = 1 = e \implies inv(4) = 4$
 $4 \otimes_{15} 13 = 1 = e \implies inv(4) = 13$
 $11 \otimes_{15} 11 = 1 = e \implies inv(11) = 11$
 $11 \otimes_{15} 11 = 1 = e \implies inv(12) = 11$
 $11 \otimes_{15} 11 = 1 = e \implies inv(12) = 11$
 $11 \otimes_{15} 11 = 1 = e \implies inv(12) = 11$
 $11 \otimes_{15} 11 = 1 = e \implies inv(12) = 11$

$$11 \times 11 = 1 = 0 \implies \text{inv}(11) = 11$$

$$14 \times 15 = 1 = 0 \implies \text{inv}(14) = 11$$

$$14 \times 15 = 1 = 0 \implies \text{inv}(14) = 14$$

Topic: NOTE

If 'p' is any prime number, then
$$\{1,2,3,4,\ldots(P-1)\}$$
 will from a group wort $(X)_p$.

Cg.
$$(1,2,3,4,5,6)$$
 form a group word (x) $(x$

g: which of the following is/are false. {1,2,3,4,5} form a group writ. (X)
20063=0 intolosed hence can not be a group. {1,2,3,4,5} form a group Wit. (+) 6 1(+) 5=0 in not closed, hence can not be a group {1,5} form a group w.r.t. (X)

Closed & is associative didentity=1 inv(3)=1 & inv(5)=5

{1,3,5} form a group w-r.t. (X)

{1,3,5} (Four) (fohre (d) 3885=7: not closed hence not a group.

{0, 1, 2, 3, 4} form a group w.o.t. \$\int(0)\$

inv(0) does not exist wort. \$\int(0)\$ finv(0) does not exist w.o.t. \$\int(0)\$

for any in

Topic: Order of an element in a group (G,*)

- * Let (G1, *) is a group.
- * for an element $a \in G_1$ the order of element a' is the least positive integer n' such that (a) = e (identity)

+ Order al element 'a' is densted by O(a).

eg: find order af every element af group. $\{1,-1\}$ wert multiplication $\{O(G)=2\}$ $tan not be{(1)} = 1 = e io O(1) = 1$ $r(a)^n$, nmust $(-1)^1 = -1 \neq e$ -1.-1 = e 7

$$(\omega)^2 = \omega^2 \neq e$$

$$(\omega)^3 = \omega^3 = 1 = 0 \Rightarrow (\omega)^3 = 3$$

$$(\omega^2)^2 = \omega^4 = \omega + e$$
 $(\omega^2)^2 = \omega^4 = \omega + e$

$$(\omega^2)^2 = \omega^4 = \omega^4 = 0$$
 : $O(\omega^2) = 3$

eg: find order of every element of group.

$$\{1,-1, j,-j\}$$
 w.r.t. Multiplication

 $\{0(5i)=4\}$
 $\{1,-1, j,-j\}$ w.r.t. Multiplication

 $\{0(5i)=4\}$
 $\{-1,-1, j,-j\}$ w.r.t. Multiplication

 $\{0(5i)=4\}$
 $\{-1,-1, j,-j\}$ w.r.t. Multiplication

 $\{0(5i)=4\}$
 $\{-1,-1, j,-j\}$ (-i)=-i

 $\{-1,-1, j,-j\}$ (-i)=

(-i)' = -i $(-j)^2 = j^2 = -1$ $(-1)_3 = -(1)_3 = -1_5 i$ =-(-1.i)(-j)=+j4 j2 j2 =-1.-1=1=e

eg: find order at every element at group.

$$10, 1, 2, 3$$
 | With the $\{0(x) = y\} \{(2)^{1} = 2$
 $10, 1, 2, 3$ | With the $\{0(x) = y\} \{(2)^{1} = 2$
 $10, 1, 2, 3$ | With the $\{0(x) = y\} \{(2)^{1} = 2$
 $10, 1, 2, 3$ | With the $\{0(x) = y\} \{(2)^{1} = 2$
 $10, 1, 2, 3$ | With the $\{0(x) = y\} \{(2)^{1} = 2$
 $10, 1, 2, 3$ | With the $\{0(x) = y\} \{(2)^{1} = 2$
 $10, 1, 2, 3$ | With the $\{0(x) = y\} \{(2)^{1} = 2$
 $10, 1, 2, 3$ | With the $\{0(x) = y\} \{(2)^{1} = 2$
 $10, 1, 2, 3$ | With the $\{0(x) = y\} \{(2)^{1} = 2$
 $10, 1, 2, 3$ | With the $\{0(x) = y\} \{(2)^{1} = 2$
 $10, 1, 2, 3$ | With the $\{0(x) = y\} \{(2)^{1} = 2$
 $10, 1, 2, 3$ | With the $\{0(x) = y\} \{(2)^{1} = 2$
 $10, 1, 2, 3$ | With the $\{0(x) = y\} \{(2)^{1} = 2$
 $10, 1, 2, 3$ | With the $\{0(x) = y\} \{(2)^{1} = 2$
 $10, 1, 2, 3$ | With the $\{0(x) = y\} \{(2)^{1} = 2$
 $10, 1, 2, 3$ | With the $\{0(x) = y\} \{(2)^{1} = 2$
 $10, 1, 2, 3$ | With the $\{0(x) = y\} \{(2)^{1} = 2$
 $10, 1, 2, 3$ | With the $\{0(x) = y\} \{(2)^{1} = 2$
 $10, 1, 2, 3$ | With the $\{0(x) = y\} \{(2)^{1} = 2$
 $10, 1, 2, 3$ | With the $\{0(x) = y\} \{(2)^{1} = 2$
 $10, 1, 2, 3$ | With the $\{0(x) = y\} \{(2)^{1} = 2$
 $10, 1, 2, 3$ | With the $\{0(x) = y\} \{(2)^{1} = 2$
 $10, 1, 2, 3$ | With the $\{0(x) = y\} \{(2)^{1} = 2$
 $10, 1, 2, 3$ | With the $\{0(x) = y\} \{(2)^{1} = 2$
 $10, 1, 2, 3$ | With the $\{0(x) = y\} \{(2)^{1} = 2$
 $10, 1, 2, 3$ | With the $\{0(x) = y\} \{(2)^{1} = 2$
 $10, 1, 2, 3$ | With the $\{0(x) = y\} \{(2)^{1} = 2$
 $10, 1, 2, 3$ | With the $\{0(x) = y\} \{(2)^{1} = 2$
 $10, 1, 2, 3$ | With the $\{0(x) = y\} \{(2)^{1} = 2$
 $10, 1, 2, 3$ | With the $\{0(x) = y\} \{(2)^{1} = 2$
 $10, 1, 2, 3$ | With the $\{0(x) = y\} \{(2)^{1} = 2$
 $10, 1, 2, 3$ | With the $\{0(x) = y\} \{(2)^{1} = 2$
 $10, 1, 2, 3$ | With the $\{0(x) = y\} \{(2)^{1} = 2$
 $10, 1, 2, 3$ | With the $\{0(x) = y\} \{(2)^{1} = 2$
 $10, 1, 2, 3$ | With the $\{0(x) = y\} \{(2)^{1} = 2$
 $10, 1, 2, 3$ | With the $\{0, 1\} = 2$
 $10, 1, 2, 3$ | With the $\{0, 1\} = 2$
 $10, 1, 2, 3$ | With the $\{0, 1\} = 2$
 $10, 1, 2, 3$ | With the $\{0, 1\} = 2$
 $10, 1, 2, 3$ | With the

$$(2)^{1}-2$$

$$(2)^{2}=4$$

$$(2)^3 = 3$$

$$(2)^{4}=1=e$$
 $(0(2)=4$

$$\ln v(2) = 3$$

 $0(3) = 0(2) = 9$

$$(4)^{\frac{1}{2}} = 4$$
 $(4)^{\frac{2}{2}} = 1 = e$
 $\therefore |O(4)^{\frac{2}{2}}|$

p.w. find order af every element af the group {0,1,2,3,4} wirt (+)5

and
$$O(1) = O(2) = O(3) = O(4) = O(67) = 5$$

Prim No.

Topic: Order of an element in a group (G,*)

- 1) Order af identity element af the group is always 1.
- 2) Order af an element af the group is less than or equal to the order af the group.
- (3) for an element o' \int order af an element 18 $O(a) = O(a^{-1})$ Same as order af its inverse f

Topic: Properties w.r.t. Finite Group


```
Order al any element al the group
divides the order at the
for an element a E Group
if O(a) = 2, then
a' is invense a itself.
 j.e. if O(a)=2, then a==q1
```

O(identity) = 1 O(a) = O(o), tae (1

2 mins Summary

Topic

Addition modulo 'm' \bigoplus_m

Topic

Multiplication modulo 'm' ⊗_m

Topic

Order of an element in a group (G,*)

Topic

Subgroup

THANK - YOU