

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Информатика и системы управления

КАФЕДРА Программное обеспечение ЭВМ и информационные технологии

Лабораторная работа №6

Тема: Построение и программная реализация алгоритмов численного дифференцирования.

Студент: Ивахненко Д. А

Группа: ИУ7-46Б

Оценка (баллы):

Преподаватель: Градов В.М.

Москва

2021 г.

Цель работы

Получение навыков построения алгоритма вычисления производных от сеточных функций.

Задание

Задана табличная (сеточная) функция. Имеется информация, что закономерность, представленная этой таблицей, может быть описана формулой

$$y = \frac{a_0 x}{a_1 + a_2 x}$$

X	у	1	2	3	4	5
1	0.571					
2	0.889					
3	1.091					
4	1.231					
5	1.333					
6	1.412					

Вычислить первые разностные производные от функции и занести их в столбцы (1)-(4) таблицы:

- 1 односторонняя разностная производная,
- 2 центральная разностная производная,
- 3-2-я формула Рунге с использованием односторонней производной,
- 4 введены выравнивающие переменные.
- 5 занести вторую разностную производную.

Исходные данные

Таблипа

Выходные данные

Заполненная таблица с краткими комментариями по поводу использованных формул и их точности

Описание алгоритма

Используя разложение в ряд Тейлора, можно получить левую

$$y'_n = \frac{y_{n+1} - y_n}{h}$$

и правую разностную формулы

$$y'_{n} = \frac{y_{n} - y_{n-1}}{h}$$

Из данных формул можно получить центральную разностную формулу, которая имеет уже второй порядок точности (левая и правая имеют самый низкий – первый порядок)

$$y'_{n} = \frac{y_{n+1} - y_{n-1}}{2h}$$

Приведенные выше формулы имеют погрешность вида $R=\psi(x)h^p$. С помощью преобразований в рядах Тейлора можно получить первую формулу Рунге

$$\psi(x)h^p = \frac{\Phi(h) - \Phi(mh)}{m^p - 1}$$

А отсюда получим вторую формулу Рунге:

$$\Omega = \Phi(h) \frac{\Phi(h) - \Phi(mh)}{m^p - 1}$$

Формулы Рунге справедливы не только для операций дифференцирования, но и для других приближенных вычислений (при условии, что погрешность формул имеет вышеприведенный вид)

Рассмотрим метод, заключающийся в применении выравнивающих переменных. При правильном подборе исходная кривая может быть преобразована в прямую, производная от которой вычисляется точно даже по простым формулам

Итак, пусть задана функция y(x) и введены выравнивающие переменные $\xi = \xi(x)$, $\eta = \eta(y)$. После вычисления производной в новых переменных η'_{ξ} возврат к заданным переменным осуществляется следующим образом

$$y'_{x} = y'_{\eta} \eta'_{\xi} \xi'_{x} = \frac{\eta'_{\xi} \xi'_{x}}{\eta'_{y}}$$

В новых переменных значение производной можно вычислить по любой односторонней формуле.

Исходный код программы

main.py

solve.py

```
astaticmethod
  def second_runge(y: List[float], h: float, p: float) → List[float]:
      for i in range(len(y)):
           y2h.append(0.0 if i < 2 else (y[i] - y[i - 2]) / (2. * h))
      yh = Calculator.left(y, h)
       for i in range(len(y)):
           res.append(None if i < 2
                       Calculator._check_none(yh[i]) +
                                 Calculator._check_none(yh[i]) -
                        Calculator._check_none(y2h[i])
) / (2.0 ** p - 1))
  def aligned_vars(x: List[float], y: List[float]) → List[float]:
      res = []
for i in range(len(y)):
           res.append(None if i = len(y) - 1
                       else
y[i] * y[i] / x[i] / x[i] *
                       Calculator.__left_inter(
    -1. / y[i + 1], -1. / y[i],
    -1. / x[i + 1] - -1. / x[i]
       return res
```

Результаты работы

X	Y	1	2	3	4	5
1	0.571	-	-	-	0.409	-
2	0.889	0.318	0.260	-	0.247	-0.116
3	1.091	0.202	0.171	0.144	0.166	-0.062
4	1.231	0.140	0.121	0.109	0.118	-0.038
5	1.333	0.102	0.091	0.083	0.090	-0.023
6	1.412	0.079	-	0.068	-	-

- 1. Используем левостороннюю формулу, в точке x = 1 производная не определена. **Точность** O(h).
- 2. Используем центральную формулу, в точках x = 1 и x = 6 производная не определена. **Точность** $O(h^2)$.
- 3. Используем вторую формулу Рунге на основе левой разностной производной. Поскольку формула Рунге повышает точность на один порядок, а левая разностная формула обеспечивает первый порядок точности, то в итоге получаем **точность** $O(h^2)$.
- 4. Используем выравнивающие переменные. Исходя из того, что значения производной близки по значению к производным, вычисленным через центральную формулу и формулу Рунге, можно предположить в данном конкретном случае схожую точность $\approx O(h^2)$.
- **5.** Используем разностную формулу второй производной. **Точность** $O(h^2)$.

Ответы на контрольные вопросы

1. Получить формулу порядка точности $O(h^2)$ для первой разностной производной y_N в крайнем правом узле x_N

$$y_{N-1} = y_N - hy'_n + \frac{h^2}{2!}y''_N - \frac{h^3}{3!}y'''_N \dots$$
$$y_{N-2} = y_N - 2hy'_n + \frac{4h^2}{2!}y''_N - \frac{8h^3}{3!}y'''_N \dots$$

Откуда:

$$y_N' = \frac{3y_N - 4y_{N-1} + y_{N-2}}{2h} + \frac{h^2}{3}y_N'''$$
$$y_N' = \frac{3y_N - 4y_{N-1} + y_{N-2}}{2h} + O(h^2)$$

2. Получить формулу порядка точности $O(h^2)$ для второй разностной производной $y_0^{\prime\prime}$ в крайнем левом узле x_0 .

$$y_1 = y_0 + hy_0' + \frac{h^2}{2!}y_0'' - \frac{h^3}{3!}y_0''' \dots$$
$$y_2 = y_0 + 2hy_0' + \frac{4h^2}{2!}y_0'' - \frac{8h^3}{3!}y_0''' \dots$$

Откуда

$$4y_1 - y_2 = 4y_0 - y_0 + 2hy_0' + O(h^2)$$
$$y_0' = \frac{-3y_0 + 4y_1 - y_2}{2h} + O(h^2)$$
$$y_0'' = \frac{-y_3 + 4y_2 - 5y_1 + 2y_0}{h^2} + O(h^2)$$

3. Используя вторую формулу Рунге, дать вывод выражения (9) из Лекции №7 для первой производной y_0' в левом крайнем узле.

$$y_0' = \frac{-3y_0 + 4y_1 - y_2}{2h} + O(h^2)$$

$$\Omega = \Phi(h) + \frac{\Phi(h) - \Phi(mh)}{m^p - 1} + O(h^{p+1}) =$$

$$= \frac{y_{n+1} - y_n}{h} + \frac{\frac{y_{n+1} - y_n}{h} - \frac{y_{n+2} - y_n}{2h}}{2^1 - 1} + O(h^2) =$$

$$= \frac{-3y_n + 4y_{n+1} - y_{n+2}}{2h} + O(h^2)$$

$$y_0' = \frac{-3y_0 + 4y_1 - y_2}{2h} + O(h^2)$$

4. Любым способом из Лекций №7, 8 получить формулу порядка точности $O(h^3)$ для первой разностной производной y_0' в крайнем левом узле x_0 .

$$y_1=y_0+hy_0'+\frac{h^2}{2!}y_0''+\frac{h^3}{3!}y_0'''\dots$$

$$y_2=y_0+2hy_0'+\frac{4h^2}{2!}y_0''+\frac{8h^3}{3!}y_0'''\dots$$

$$y_3=y_0+3hy_0'+\frac{9h^2}{2!}y_0''+\frac{27h^3}{3!}y_0'''\dots$$
 Откуда
$$y'=\frac{y_3+27y_1-28y_0}{30h}+O(h^3)$$