حل التمرين 1

$$E \cdot i \cdot R$$
 عبارة u في لحظة t بدلالة u

t=0 عبارة i_0 عند اللحظة 2

$$E-Ri_0=0\Rightarrow i_0=rac{E}{R}$$
 : يكون $t=0$

$$i_0 = \frac{12}{320 \times 10^3}$$
 , $i_0 = 3.75 \times 10^{-5} A$

 $u(t) + Ri = E \Rightarrow u(t) = E - Ri$

تطبيق عددى:

t نهایة t عندما ینتهی الزمن t إلى t

i=0 ومنه $u\to E$ فإن $t\to \infty$

التعليل: المكثفة مشحونة كليا وعندها لا يمر تيار مستمر في الدارة.

: $u(t) = E\left(1 - e^{-\frac{t}{RC}}\right)$ تبيان أن حل المعادلة التفاضلية من الشكل 4.

$$\frac{du_{(t)}}{dt} = \frac{E}{RC} \cdot e^{-\frac{t}{RC}}$$

$$\frac{du}{dt} + \frac{1}{RC}u - \frac{1}{RC} = \frac{E}{RC}e^{-\frac{t}{RC}} + \frac{1}{RC}\left[E\left(1 - e^{-\frac{t}{RC}}\right)\right] - \frac{E}{RC}$$

$$= \frac{E}{RC}e^{-\frac{t}{RC}} + \frac{E}{RC}e^{-\frac{t}{RC}} - \frac{E}{RC}e^{-\frac{t}{RC}} - \frac{E}{RC}$$

D.E

$$u(t) = E\left(1 - e^{-rac{t}{RC}}
ight)$$
 : أي أن حل المعادلة التفاضلية هو من الشكل

 $\tau=0.3s$. ايجاد قيمة ثابت الزمن au : من البيان نجد au=0.3s

$$RC= au\Rightarrow C=rac{ au}{R}$$
 : C قيمة $C=rac{0.3}{32 imes10^4}$, $C=0.94\mu F$: $C=0.94\mu F$

: $t = \tau$ من أجل u_C 1.

 $u_{C} = 7.5V$: بيانيا –

$$u_C=E\Big(1-e^{-rac{t}{ au}}\Big)$$
 : ایا $u_C=E\Big(1-e^{-1}\Big)$,
$$u_C=0.63E=7.56V$$

7. حساب الطاقة المخزنة في المكثفة عند شحنها:

$$E = \frac{1}{2}.u^2.C$$
 : الدينا
$$E = \frac{1}{2} \times (12)^2 \times 0.94 \times 10^{-6}$$
 : تطبيق عددي :

$$E\approx67,7\times10^{-6}\,j$$

1. أ) كتابة المعادلة التفاضلية للدارة بدلالة q

$$u_C + u_R = E$$

بتطبيق قانون أوم و قانون جمع التوترات:

$$u_C = \frac{q}{C}$$
 $u_R = Ri = R\frac{dq}{dt}$:

$$\frac{q}{C} + R \frac{dq}{dt} = E$$

أى :

لدبنا:

$$\frac{dq}{dt} + \frac{1}{RC}q = \frac{E}{R}$$
 : وبالقسمة على R نحصل على المعادلة

$$au=RC$$
 ثيث ، $q(t)=Q_0igg(1-e^{-rac{t}{RC}}igg)$ كيث ، من أن حل المعادلة التفاضلية من الشكل (ب

$$\frac{dq}{dt} = \frac{Q_0}{RC}e^{-\frac{t}{RC}}$$

$$\frac{Q_0}{RC}e^{-\frac{t}{RC}} + \frac{1}{RC}\left(Q_0\left(1 - e^{-\frac{t}{RC}}\right)\right) = \frac{Q_0}{RC}e^{-\frac{t}{RC}} + \frac{Q_0}{RC}e^{-\frac{t}{RC}}$$

$$= \frac{Q_0}{RC}$$

$$E$$

$$\vdots$$

$$= \frac{Q_0}{RC}$$

2 أ) ثابت الزمن τ:

تعريفه: هو الزمن اللازم لشحن المكثفة بنسبة %63 من قيمتها الأعظمية.

قيمته : من البيان نجد au=0.01s . ب) الزمن 0.05s كافي لتبلغ عملية الشحن 99% من القيمة العظمي .

التبرير:

$$C = \frac{Q_0}{E}$$

3. _ أ) تعيين قيمة سعة المكثفة:

$$C = \frac{6 \times 10^{-7}}{6}$$

$$C = 0.1 \mu F$$

تطبيق عددى:

$$\tau = RC \Rightarrow R = \frac{\tau}{C}$$

ب) مقاومة الناقل الأومى:

$$R = \frac{0.01}{0.1 \times 10^{-6}}$$

$$R = 100k\Omega$$

تطبيق عددى:

ج) شدة التيار في النظام الدائم:

4. الطاقة المخزنة في المكثفة عند نهاية الشحن:

$$E_C = \frac{1}{2}u^2C$$

$$E_C = \frac{1}{2} \times (6)^2 \times 0.1 \times 10^{-6}$$

لدينا:

تطبيق عددي:

 $E_C = 1.8 \times 10^{-6} j$

حل التمرين 3

- 1. شدة التيار الكهربائي المار في الدارة بعد مدة $\Delta t = 15s$ من غلقها :
 - $u_{C}=E$ أن ، $\Delta t=15s$ أن ، بعد المدة من البيان نلاحظ أنه بعد المدة
 - i=0: أي أن المكثفة شحنت كليا و بالتالي المكثفة
 - . $\tau = RC$: τ العبارة الحرفية لثابت الزمن 2
 - _ ثابت الزمن τ له نفس وحدة قياس الزمن لأن :
 - 3. $_{\tau}$ تعیین قیمة $_{\tau}$ بیانیا : من البیان نجد $\tau = 2.2s$
 - $_{-}$ استنتاج السعة (C) للمكثفة $_{-}$
- - تطبيق عددي: $C = 220 \mu F$
 - 4. أ) كتابة عبارة شدة التيار الكهربائي i(t) بدلالة بطارة شدة التيار الكهربائي
 - $i(t) = \frac{dq(t)}{dt}$
 - $u_{C}(t)=rac{q(t)}{C}$: ب كتابة عبارة التوتر $u_{C}(t)=rac{q(t)}{C}$
- $u_C + RC \frac{du_C}{dt} = E$: هي $u_C(t)$ عن عبر عن المعادلة التفاضلية التي تعبر عن
- لدينا: $u_C + u_R = E$
- أى : $u_C + Ri = E$
- $u_C + R \frac{dq}{dt} = E$ $/ dq = Cdu_C$

 $[\tau] = \frac{[u]}{[I]} \times \frac{[I][T]}{[u]} = [T]$

 $C = \frac{\tau}{R}$

 $C = \frac{2,2}{10^4}$

- $u_C + RC \frac{du_C}{dt} = E$ ومنه:
- 5. _ استنتاج العبارة الحرفية للثابت A 深多
 - : فإن ، فإن السابقة السابقة ، فإن يا معادلة التفاضلية السابقة ، فإن يا ما أن $u_{\scriptscriptstyle C}(t) = E \Big(1 e^{-\frac{t}{A}} \Big)$
- $E\left(1-e^{-\frac{t}{A}}\right) + RC \cdot \frac{E}{A} \cdot e^{-\frac{t}{A}} = E / \frac{du_C}{dt} = \frac{E}{A} \cdot e^{-\frac{t}{A}}$
- $E E.e^{-\frac{t}{A}} + RC.\frac{E}{A}.e^{-\frac{t}{A}} = E$ أي :
- $E.e^{-\frac{t}{A}}\left(\frac{RC}{A}-1\right)=0$
- $\frac{RC}{4} 1 = 0$
- المعادلة محققة من أجل:
- A = RCومنه:
- ـ مدلوله الفيزيائي: الزمن اللازم لشحن المكثفة إلى الثلثين تقريبا.

حل التمرين 4

: $u_{AB} = f(t)$ أيجاد المعادلة التفاضلية للدارة أ

حسب قانون جمع التوترات:

$$u_{AB} + u_{BD} = E$$

$$u_{AB} + Ri = E$$

$$, \qquad i = C. \frac{du_{AB}}{dt}$$

$$u_{\scriptscriptstyle AB} + RC \frac{du_{\scriptscriptstyle AB}}{dt}$$

$$\frac{du_{AB}}{dt} + \frac{1}{RC}u_{AB} = \frac{E}{RC}$$

بالقسمة على RC:

ومنه:

 $u_{AB}=Eigg(1-e^{-rac{t}{ au}}igg)$: ب $u_{AB}=Eigg(1-e^{-rac{t}{ au}}igg)$ التحقق من أن حل المعادلة التفاضلية هو

$$\frac{E}{\tau}e^{-\frac{t}{\tau}} + \frac{1}{RC}\left[E\left(1 - e^{-\frac{t}{\tau}}\right)\right] = \frac{E}{RC}$$

نعوض في المعادلة التفاضلية:

$$e^{-\frac{t}{\tau}} \left(\frac{E}{\tau} - \frac{E}{RC} \right) + \frac{E}{RC} = \frac{E}{RC}$$

وبما أن au = RC ، فإن هذه المساواة محققة ، وبالتالى :

. أو السابقة السابقة
$$u_{AB}=E\bigg(1-e^{-\frac{t}{\tau}}\bigg)$$

- : التمثيل الكيفي لتغير ات يدلالة الزمن المثيل الكيفي التعثير المثيل الكيفي المثير المثين ال
- د) دلالة فاصلة نقطة تقاطع المماس للبيان عند $u_{AB} = E$ المبدأ مع المستقيم

au هو ثابت الزمن

ه) حساب ثابت الزمن لثنائي القطب a)

$$au=RC$$

$$au=10\times 10^3\times 0.5\times 10^{-6} \qquad \text{: acc}$$
 تطبیق عددي :

$$\tau = 5ms$$

 u_{AB} E

: $t_2 = 5\tau$, $t_1 = \tau$ " اللحظات u_{AB} (و : $t_1 = \tau$ في اللحظة u_{AB}

لدبنا :

$$u_{AB} \approx 63V$$

تطبيق عددى:

$$u_{AB} \approx 63V$$

: $t_2 = 5\tau$ في اللحظة u_{AB}

$$u_{AB} \approx 100V$$

 $u_{AB} = E\left(1 - e^{-5}\right)$ $u_{AB} \approx E$

 $u_{AB} = E \left(1 - e^{-\frac{t}{\tau}} \right)$

 $u_{AB} = E(1 - e^{-1})$

 $u_{AB} \approx 0.63E$

2. أ) إيجاد المعادلة التفاضلية:

$$u_{AB} + Ri = 0$$
 , $i = C.\frac{du_{AB}}{dt}$: $i = C.\frac{du_{AB}}{dt}$

$$u_{AB} + RC \frac{du_{AB}}{dt} = 0$$

$$\frac{du_{AB}}{dt} + \frac{1}{RC}u_{AB} = 0$$
 : RC بالقسمة على

$$t o\infty$$
 ، $t_3=5 au$ ، $t_2= au$ ، $t_1=0$ ب من أجل u_{AB} من أجل و $u_{AB}=ae^{lpha.t}+b$: المعادلة التفاضلية السابقة تقبل كحل لها من الشكل $u_{AB}=E.e^{-rac{1}{ au}}$: وأي ، $\alpha=-rac{1}{RC}=-rac{1}{ au}$ ، $b=0$ ، $a=E$: حيث

$$u_{AB} = E.e^{-\frac{1}{\tau}}$$
 : $t_1 = 0$ غن أجل u_{AB}

$$u_{AB} = E.e^{0}$$
 $u_{AB} = E = 100V$

وبنفس الطريقة ، نعوض قيم t المعطاة فنحصل على قيم u_{AB} المدونة في الجدول التالي :

t(s)	0	τ	5τ	∞
$u_{AB}(V)$	100	37	0,67	0

10.5

 $u_{AB} + u_{BD} = 0$

: يتمثيل تغير ات u_{AB} بدلالة الزمن

- 2. تمثيل جهة التيار الكهربائي المار في الدارة على الشكل -1).
 - : u_C u_R u_R u_R u_R u_R u_R u_R u_R

 $u_C + u_R = 0$: حسب قانون جمع التوترات

$$u_C = -u_R$$

بتطبيق قانون جمع التوترات:

$$u_C + u_R = 0 \qquad u_R = Ri = RC \frac{du_C}{dt}$$

$$u_C + RC \frac{du_C}{dt} = 0$$

$$u_R = Rt = RC \frac{dt}{dt}$$

$$\frac{du_C}{dt} + \frac{1}{RC}u_C = 0$$
 : RC بالقسمة على

$$\frac{du_C}{dt} + \frac{1}{RC}u_C = 0$$

 $u_{C} = a \times e^{bt}$: حل المعادلة التفاضلية السابقة من الشكل .5

b = a و a الثابتين a

$$ab \times e^{bt} + \frac{1}{RC}.a \times e^{bt} = 0$$

$$a.e^{bt}\left(b+\frac{1}{RC}\right)=0$$

$$b = -\frac{1}{RC}$$

C

$$b = -\frac{1}{1.5 \times 10^3 \times 1.0 \times 10^{-7}}$$

$$u_C = a = \frac{q}{C}$$

$$a = \frac{0.6 \times 10^{-1}}{100}$$

T. E

$$a = \frac{0.6 \times 10^{-6}}{1.0 \times 10^{-7}}$$

بالتعويض في المعادلة التفاضلية السابقة:

$$b = -\frac{2}{3} \times 10^3$$

t=0 كما أنه في اللحظة

تطبيق عددى:

 u_{C} كتابة العبارة الزمنية للتوتر 6.

7. التأكد من القيم المحسوبة في السؤال 5:

من البيان : - في اللحظة t=0 ، نجد u=6V ، نجد t=0. $\tau = 0.75 \times 0.002 = 1.5 \times 10^{-3}$ البيان $u(\tau) = 0.37 \times 6 = 2.22V$ القيمة $u(\tau) = 0.37 \times 6 = 2.22V$

$$b = -\frac{1}{RC} = -\frac{1}{\tau}$$

$$b = -\frac{1}{1,5 \times 10^{-3}}$$

$$b = -\frac{2}{3} \times 10^3$$

و هي نفس القيمة المحسوبة في السؤال 5 .

- 1. وضع القاطعة لتفريغ المكثفة : الوضع 2 (الشكل -1) .
- 2. u_{AB} بدلالة الزمن : موضحة على الشكل u_{AB} المصول على u_{AB} بدلالة الزمن : موضحة على الشكل u_{AB}) .
 - _ التمثيل الكيفي للبيان: (شكل -2)

(شكل ـ1)

(شكل ـ2)

 $u_C + u_R = 0$: u_R و u_C العلاقة بين

75.5

- $\alpha \frac{du_{(t)}}{dt} + u_{(t)} = 0$: المعادلة التفاضلية أثناء تفريغ المكثفة من الشكل .4
- . (au=RC) أي ثابت الزمن (lpha : يمثل الجداء lpha ، أي ثابت الزمن (lpha
 - $_{-}$ وحدة قياسه : الثانية $_{(s)}$.

 $[\tau] = \frac{[u]}{[I]} \times \frac{[T][I]}{[u]} = [T]$

 $u_{(t)} = Ee^{-t/\alpha}$

 $\ln u_C = at + b$

- ب) اختيار الحل الصحيح للمعادلة:
 - 5. أ) كتابة العبارة البيانية:

ـ التعليل:

- \cdot ايجاد قيمة ثابت الزمن τ وحساب :
 - τ الزمن τ

من العلاقة النظرية لدينا:

و من البيان:

 $\ln u_C = f(t)$ حيث a ميل المنحنى البيانى a

 $\ln u_C = -\frac{1}{2}t + \ln E$ $\ln u_C = a.t + b \qquad (2)$

 $-\frac{1}{\tau} = a$, $a = -\frac{3 \times 0.5}{3 \times 10 \times 10^{-3}} = -50$

 $\tau = 0.02s$

بالمطابقة بين المعادلتين (1) و (2) :

 $-\frac{1}{\pi} = -50$, $\tau = RC \Rightarrow C = \frac{\tau}{R}$

> $C = \frac{0.02}{10 \times 10^3} ,$ $C = 2\mu F$

تطبيق عددي :

ومنه:

ج) إيجاد قيمة E $E \approx 4.48V$

أى :

1. إيجاد المعادلة التفاضلية:

$$u_C+u_R=0$$
 : بتطبيق قانون جمع التوترات
$$u_{C(t)}+Ri_{(t)}=E \hspace{1cm} i_{(t)}=C\frac{du_{C(t)}}{dt} \hspace{1cm}$$
 : ي

$$u_{C(t)}+RCrac{du_{C(t)}}{dt}=E$$
 : ومنه

$$u_{C(t)} + RC \frac{du_{C(t)}}{dt} = E$$
 : ومنه

$$\dfrac{du_{C(t)}}{dt} + \dfrac{1}{RC}u_{C(t)} = \dfrac{E}{RC}$$
 : RC بالقسمة على

: كحل لها كحل $u_{C(t)} = E \left(1 - e^{-\frac{1}{RC}t} \right)$ التحقق من أن المعادلة التفاضلية تقبل العبارة

$$\frac{du_{C(t)}}{dt} = \frac{E}{RC}e^{-\frac{1}{RC}t}$$

$$\frac{E}{RC}.e^{-\frac{1}{RC}.t} + \frac{1}{RC} \left[E \left(1 - e^{-\frac{1}{RC}.t} \right) \right] = \frac{E}{RC} e^{-\frac{1}{RC}.t} + \frac{E}{RC} - \frac{E}{RC} e^{-\frac{1}{RC}.t}$$
 : $= \frac{E}{RC}$

$$u_{C(t)} = E\!\!\left(1 - e^{-rac{1}{RC} t}
ight)$$
 : اومنه المعادلة التفاضلية تقبل كحل لها

$$[RC] = \frac{[u]}{[I]} \times \frac{[T][I]}{[u]} = [T]$$
 : RC . RC . RC . RC . RC . RC .

- _ مدلوله العملي بالنسبة للدارة: هو مؤشر لمدة النظام الانتقالي أثناء شحن أو تفريغ مكثفة.
 - $_{-}$ اسمه : ثابت الزمن و يرمز له بـ $_{(\tau)}$.
 - 4. حساب قيمة التوتر الكهربائي $u_{C(t)}$ في اللحظات المدونة في الجدول :

$$u_{C(t)} = E\left(1 - e^{-\frac{1}{RC}.t}\right)$$
: لدينا

$$RC = 5 \times 10^{3} \times 1,2 \times 10^{-6}$$
 : $RC = 6 \times 10^{-3} s$

$$u_{C(0)} = 6 \Big(1 - e^0 \Big) \qquad , \qquad \boxed{u_{C(0)} = 0V} \qquad \qquad \vdots \ t = 0 \qquad \text{in } t = 0$$

$$u_C = 6 \left(1 - e^{-\frac{6 \times 10^{-3}}{6 \times 10^{-3}}} \right) = 6 \Big(1 - e^{-1} \Big) \qquad \qquad \vdots \ t = 6ms \qquad \vdots$$

$$u_C \approx 3.8V$$

 $u_{C} \approx 3.8V$ و هكذا بنفس طريقة الحساب ، نحصل على باقي القيم المدونة في الجدول التالي :

t(ms)	0	6	12	18	24
$u_{C(t)}(V)$	0	3,8	5,2	5,7	5,9

D.E

: $u_{C(t)} = f(t)$ لبياني البناني .5

i(t) . العبارة الحرفية للشدة اللحظية للتيار الكهربائي .

$$i(t) = \frac{dq(t)}{dt} = C \frac{du_{C(t)}}{dt}$$

$$i(t) = C \frac{E}{RC} e^{-\frac{1}{RC}t}$$

$$i(t) = \frac{E}{R}e^{-\frac{1}{RC}t}$$

ومنه:

 $t o \infty$ ، t = 0 . اللحظتين $t o \infty$

$$t=0$$
 في اللحظة

 $: t \to \infty$ في اللحظة

 $i(0) = \frac{E}{R}$

i = 0

7 . _ عبارة الطاقة الكهربائية المخزنة في المكثفة :

$$E = \frac{1}{2}.u_{C(t)}^2.C$$

$$u_{C(t)} = E\left(1 - e^{-\frac{1}{RC}t}\right)$$

حيث:

: $(t o \infty)$ عندما عندما ـ

$$\lim_{t \to \infty} u_{C(t)} = \lim_{t \to \infty} E\left(1 - e^{-\frac{1}{RC}t}\right) = E$$

لدينا:

$$E = \frac{1}{2}.E^2.C$$

ومنه:

$$E = \frac{1}{2}.(6)^2 \times 1,2 \times 10^{-6}$$

$$E = 21.6 \times 10^{-6} \, \text{j}$$

تطبيق عددي :

:
$$u_{BD} = u_{(t)} = f(t)$$
 كتابة المعادلة التفاضلية 1.

$$u_{BD} + u_{R} = E$$
 $u_{R} = Ri$ $u_{R} = Ri$ $u_{C} = C \frac{du_{C}}{dt}$ $u_{R} = Ri$ $u_{R} =$

$$u_{(t)} + RC \frac{du_{(t)}}{dt} = E$$
 : ومنه

$$u_{(t)} + RC \frac{du_{(t)}}{dt} = E$$
 : ومنه $\frac{du_{(t)}}{dt} + \frac{1}{RC} u_{(t)} = \frac{E}{RC}$

بالقسمة على RC:

 $u_{(t)}=E+a.e^{-bt}$ باختيار صحيح لـ (ب $u_{(t)}=E+a.e^{-bt}$

$$\frac{du_{(t)}}{dt} = -a.b.e^{-bt}$$

نعوض في المعادلة التفاضلية:

$$-a.b.e^{-bt} + \frac{1}{RC} (E + a.e^{-bt}) = -a.be^{-bt} + \frac{E}{RC} + \frac{a}{RC} e^{-bt}$$
$$= a.e^{-bt} (\frac{1}{RC} - b) + \frac{E}{RC}$$

$$\frac{1}{RC}-b=0$$
 : إذا كان $u_{(t)}=E+a.e^{-bt}$ تقبل المعادلة التفاضلية حل من الشكل $b=\frac{1}{RC}$: أي

: a = -E نبين أن -

$$u_{(0)} = 0 \Rightarrow E + a.e^0 = 0$$

من الشروط الابتدائية ، في اللحظة t=0:

$$\boxed{a = -E \quad : \text{each}}$$

$$\tau = RC$$
 $\tau = 100 \times 10^{3} \times 0.1 \times 10^{-6}$, $\tau = 10ms$

 $_{ au}$ اپجاد قیمة $_{ au}$

تطبيق عددي:

2. إكمال الجدول:

$$u_{BD} = E - E.e^{-\frac{1}{RC}.t} = E\left(1 - e^{-\frac{t}{\tau}}\right)$$

$$u_{BD} = E(1 - e^{0}) = 0$$

 $u_{BD} = E(1 - e^{-1}) \approx 0.63E \approx 3.78V$

$$t=0$$
 في اللحظة

$$u_{BD} = E(1 - e^{-1}) \approx 0.63E \approx 3.78V$$

$$t= au$$
 في اللحظة

$$u_{BD} = E(1 - e^{-5}) \approx 6V$$

$$t = 5\tau$$
 في اللحظة

t(s)	0	τ	5τ
$u_{AB}(V)$	0	3,78	6

.(حفحة
$$u_{BD} = f(t)$$
 .(صفحة .3

: $u_{BD} = f(t)$ رسم البيان

4. تفرغ المكثفة: بوضع البادلة في الوضع 2.
 أين تذهب الطاقة المخزنة في المكثفة ؟

_ تفرغ المكثفة في المقاومة ، و الطاقة المخزنة فيها تصرف على شكل حرارة بفعل جول في أسلاك التوصيل.

ب) القيمة العددية لهذه الطاقة:

$$E = \frac{1}{2}u_{(t)}^2C$$

$$u_{(t)} = E$$

 $E = \frac{1}{2}E^2C$

لدينا:

ومنه:

TO. S

$$E = \frac{1}{2} (6)^2 \times 0.1 \times 10^{-6}$$

تطبيق عددي:

$$E = 1.8 \times 10^{-6} j$$

1. أ) الظاهرة التي تحدث في الدارة: عملية شحن مكثفة.

ب) _ اتجاه التيار في الدارة: موضح بسهم في الشكل -1).

_ التوترات بين طرفي كل عنصر : موضحة بأسهم في الشكل -1).

بدلالة الزمن موضح على الشكل -1).

د) إيجاد المعادلة التفاضلية التي يحققها u_c بين طرفي المكثفة :

$$u_C + u_R = E$$
 : حسب قانون جمع التوترات

$$A_{i} + B_{i} - F_{i} = A_{i} + A_{i} = A_{i}$$

$$u_C + Ri = E \qquad i = C \frac{du_C}{dt}$$

$$u_C + RC \frac{du_C}{dt} = E$$

$$\frac{du_C}{dt} + \frac{1}{RC}u_C = \frac{E}{RC}$$

$$u_{C}=A\!\!\left(1-e^{-rac{t}{\tau}}
ight)$$
: التحقق من أن حل المعادلة التفاضلية من الشكل (ه

$$\frac{du_C}{dt} = \frac{A}{\tau}e^{-t/\tau}$$

$$\frac{A}{\tau}e^{-t/\tau} + \frac{1}{RC}\left[A(1 - e^{-t/\tau})\right] = \frac{A}{\tau}e^{-t/\tau} + \frac{A}{RC} - \frac{A}{RC}e^{-t/\tau}$$

$$= \frac{A}{RC}$$

$$= \frac{E}{RC}$$

 $\tau = RC$: \sim

A=E مع $u_C=A\left(1-e^{-rac{t}{\tau}}
ight)$ مع : حل المعادلة التفاضلية من الشكل

$$\ln(E - u_C) = -\frac{1}{\tau}t + \ln E$$

$$u_C = E\left(1 - e^{-\frac{t}{\tau}}\right)$$

$$u_C = E - Ee^{-t/\tau}$$

$$-u_C = -E + Ee^{-t/\tau}$$
 : -1 في

$$1 - 1$$
 نضرب طرفي المعادلة في

$$E - u_C = E - E + Ee^{-t/\tau}$$

$$E$$
: E نضيف إلى طرفي المعادلة

$$E - u_C = Ee^{-t/\tau}$$
 : زي

$$\ln(E-u_C) = \ln E + \ln e^{-t/\tau}$$
 : بأخذ اللو غاريتم النيبيري للطرفين

$$\ln(E - u_C) = -\frac{t}{\tau} + \ln E : \dot{\xi}$$

$$\ln(E - u_C) = -\frac{1}{\tau}t + \ln E$$
 : ومنه

au و au استنتاج من البيان قيمة كل من au و au

$$\ln(E - u_C) = -\frac{1}{\tau}t + \ln E \qquad (1)$$

$$\ln(E - u_C) = at + b \qquad (2)$$

: τ قيمة τ

$$-\frac{1}{\tau} = a \qquad a = \frac{3 \times 0.25}{6 \times 0.125 \times 10^{-3}} = -1000$$

من العلاقتين (1) و (2) لدينا :

$$\tau = 10^{-3} s = 1ms$$

ومنه:

$$\ln E = b = 6 \times 0,25$$

$$ln E = 1,5 \qquad , \qquad E \approx 4,48V$$

E استنتاج قیمه E

$$rac{E_e}{E_{e(ext{max}\,)}}$$
 : حساب النسبة . 3

: $t = \tau$ الطاقة المخزنة في المكثفة عند اللحظة E_a

$$E_e = \frac{1}{2}u_{(\tau)}^2 C$$
 , $u_{(\tau)} = E(1 - e^{-1}) \approx 0.63E$

$$E_e = \frac{1}{2} (0.63E)^2 C$$

: نحسب الطاقة القصوى المخزنة في المكثفة $E_{e(\max)}$

$$E_{e(\max)} = \frac{1}{2}u_{\max}^2 C$$
 , $u_{\max} = E$

$$E_{e(\text{max})} = \frac{1}{2}E^2C$$

ومنه:

$$\frac{E_e}{E_{e(\text{max})}} = \frac{\frac{1}{2}(0.63E)^2 C}{\frac{1}{2}E^2 C} = (0.63)^2$$

: $\frac{E_e}{E_{e(max)}}$ i iiii

75.5

$$\frac{E_e}{E_{e(\text{max})}} \approx 0,40 \approx 40\%$$

ومنه:

الاستنتاج : الطاقة المخزنة في المكثفة عند اللحظة au= au تمثل تقريبا 40% من الطاقة القصوى .

: $\tau' = \frac{\tau}{3}$ التي تربط مع المكثفة C في الدارة ليأخذ ثابت الزمن القيمة C' التي تربط مع المكثفة C'

: السعة المكافئة لـ C و C^{\prime} ، فنكتب $\tau' = RC_{eq}$

$$C_{eq} = \frac{\tau'}{R} = \frac{\tau}{3R} = \frac{RC}{3R} = \frac{C}{3}$$
 (الربط على التسلسل) $\frac{1}{C_{eq}} = \frac{1}{C} + \frac{1}{C'} \Rightarrow \frac{1}{C'} = \frac{1}{C_{eq}} - \frac{1}{C} = \frac{3}{C} - \frac{1}{C} = \frac{2}{C}$: عمنه : $C' = \frac{C}{2}$, $C = \frac{\tau}{R} = \frac{10^{-3}}{100} = 10 \mu F$

$$C' = 5\mu F$$

1. اعتمادا على البيان:

$$au pprox 14ms$$
 : au الزمن au

E = 14.8V : المولد الكهربائي بين طرفي المولد

_ حساب سعة المكثفة:

$$au = RC \Rightarrow C = \frac{ au}{P}$$
: الدينا

$$C = \frac{14 \times 10^{-3}}{500}$$
 , $C = 28 \mu F$: يطبيق عددي

ب) تحديد المدة الزمنية t' لاكتمال عملية شحن المكثفة :

$$u_C = 0.99E$$

$$u_C = 0.99 \times 14.8$$
 , $u_C = 14.65V$:

$$t' \approx 70ms$$
 نقرأ على البيان القيمة الموافقة :

$$t'pprox 5 au$$
 : العلاقة بين t' و t'

: $u_{AB} = u_{C(t)}$ ايجاد المعادلة التفاضلية بدلالة التوتر الكهربائي بين طرفي المكثفة

$$u_{AB} + u_{BD} = E$$
 : بتطبیق قانون جمع التوترات

$$u_{C(t)} + Ri = E$$
 $i = \frac{dq}{dt} = C \frac{du_{C(t)}}{dt}$: في

$$u_{C(t)} + RC \frac{du_{C(t)}}{dt} = E$$

$$\frac{du_{C(t)}}{dt} + \frac{1}{RC}u_{C(t)} = \frac{E}{RC}$$
 : RC بالقسمة على

 $u_{C(t)}=Eig(1-e^{-t/ au}ig)$: نبين أن المعادلة التفاضلية تقبل حلا لها من الشكل

$$\frac{du_{C(t)}}{dt} + \frac{1}{RC}u_{C(t)} - \frac{E}{RC} = 0$$
 : نعوض في المعادلة

$$\frac{du_{C(t)}}{dt} = \frac{E}{\tau} e^{-t/\tau}$$

$$\frac{E}{\tau}e^{-t/\tau} + \frac{1}{RC}\left[E(1 - e^{-t/\tau})\right] - \frac{E}{RC} = \frac{E}{\tau}e^{-t/\tau} + \frac{E}{RC} - \frac{E}{RC}e^{-t/\tau} - \frac{E}{RC} \qquad \vdots \\
= \frac{E}{\tau}e^{-t/\tau} + \frac{E}{\tau} - \frac{E}{\tau}e^{-t/\tau} - \frac{E}{\tau}$$

 $u_{C(t)}=Eig(1-e^{-t/ au}ig)$: ومنه المعادلة التفاضلية تقبل كحل لها

:
$$t_2=5 au$$
 ، $t_1= au$ ، $t_0=0$ المكثفة في المكثفة في المكثفة الكهربائية المخزنة المخزنة والمكثفة في المكثفة في المكثفة الكهربائية المخزنة والمكثفة في المكثفة في المكثفة المكثفة

: $t_0=0$ الطاقة الكهربائية المخزنة $E_{\scriptscriptstyle C}$ في المكثفة في اللحظة

$$E_C = \frac{1}{2} u_{C(0)}^2 C$$
 $u_{C(0)} = E(1 - e^0) = 0$: ندينا

$$E_{C(t_0)} = 0j$$
 : ومنه

: $t_1 = \tau$ الطاقة الكهربائية المخزنة E_C في المكثفة في اللحظة

$$E_C = \frac{1}{2} u_{C(t_1)}^2 C / u_{C(\tau)} = E(1 - e^{-1}) \approx 0,63E \approx 9,32V$$
 : الدينا

$$E_C = \frac{1}{2} (9.32)^2 \times 28 \times 10^{-6}$$
 , $E_{C(t_1)} \approx 1.22 mj$: ومنه

 $t_2=5$ الطاقة الكهربائية المخزنة E_{C} في المكثفة في اللحظة - الطاقة الكهربائية المخزنة

:
$$t_2=5 au$$
 لطاقة الكهربائية المخزنة E_C في المكتفة في اللحظة $E_C=1$ المكتفة في اللحظة $E_C=1$ المكتفة في اللحظة $E_C=1$ المكتفة في المك

$$E_{C(t_2)} = \frac{1}{2} (14,65)^2 \times 28 \times 10^{-6}$$
 , $E_{C(t_2)} \approx 3mj$

 $E_{C}=f(t)$. رسم كيفي لشكل المنحنى $E_{C}=f(t)$

: $u_C = f(t)$ ارسم البيان 1.

:RC بالقطب الزمن τ الثنائي القطب T

لدينا من البيان:

 $\tau \approx 15,2ms$

ومنه:

أو: طريقة المماس (الموضحة بالرسم على البيان).

- استنتاج قيمة السعة C للمكتّفة :

لدينا:

 $C \approx 1.3 \times 10^{-4} F$

ومنه:

بما أن R لم تتغير فنكتب:

 $\tau = RC$ $C = \frac{\tau}{R} = \frac{15,2 \times 10^{-3}}{120} \quad ,$

 $u(\tau) = 5 \times 0.63 = 3.15V$

 $C = \frac{\tau}{R}.....(1)$

 $C' = \frac{\tau'}{R} \dots (2)$

 $\frac{C'}{C} = \frac{\tau'}{\tau}$

10. &

بقسمة (2) على (1) نجد :

 $C / C \Rightarrow \tau / \succ \tau$

ومنه:

 $(R'\langle 120\Omega):$ من أجل مكثفة سعتها C''=C و C''=C و نتبع نفس الطريقة فنجد :

 $R' \prec R \Rightarrow \tau'' \prec \tau$

: (ب) و (أ) و المعبرين عن $u_{c}(t)$ في الحالتين (أ) و (ب) - رسم المنحنيين

حيث : المنحنى (۱) يمثل الحالة (أ) ($au^{\prime} \succ au$).

و: المنحنى (2) يمثل الحالة (ب) ($\tau'' \prec \tau$).

 $\frac{dq(t)}{dt} + \frac{1}{RC}q(t) = \frac{E}{R}$: أ/ تبيان أن المعادلة التفاضلية المعبرة عن q(t) تعطى بالعبارة: 3.

بتطبيق قانون جمع التوترات:

$$u_R + u_C = E$$

$$Ri + u_C = E \qquad / i = \frac{dq_{(t)}}{dt} \quad , \quad u_C = \frac{q_{(t)}}{C}$$

•

أي :

$$R\frac{dq}{dt} + \frac{q}{C} = E$$

أي :

$$dq_{(t)} + \frac{1}{RC}q_{(t)} = \frac{E}{R}$$
......(1) : جد R نجد نجد المعادلة على المعادلة ال

 $: \beta$ و α و A : بA و الثوابت

$$q(t) = Ae^{\alpha t} + \beta$$

لدينا:

$$\frac{dq_{(t)}}{dt} = A\alpha \cdot e^{\alpha \cdot t}$$

أي :

$$A\alpha \cdot e^{\alpha \cdot t} + \frac{1}{RC} \left(A e^{\alpha \cdot t} + B \right) = \frac{E}{R}$$

وبالتعويض في المعادلة (1)نجد:

$$A\alpha . e^{\alpha . t} + \frac{A}{RC}e^{\alpha . t} + \frac{B}{RC} = \frac{E}{R}$$

أي :

$$A\left(\alpha + \frac{1}{RC}\right)e^{\alpha t} + \left(\frac{B}{RC} - \frac{E}{R}\right) = 0$$

أي :

$$\alpha + \frac{1}{RC} = 0 \quad ,$$

$$\alpha = -\frac{1}{RC} = -\frac{1}{\tau}$$

ومنه:

$$\frac{B}{RC} - \frac{E}{R} = 0 ,$$

$$q(0) = Ae^{\alpha \times 0} + B = 0$$

$$A + B = 0$$

$$B = CE$$

و:

ومن الشرط في اللحظة q(0) = 0 تكون q(0) = 0 نجد :

$$A = -B = -CE$$

ملاحظة:

: فیکون لدینا $q(t) = Ae^{\alpha t} + eta$ فیکون لدینا $q(t) = Ae^{\alpha t}$ خیارة الشحنة

$$q_{(t)} = -CEe^{-t/\tau} + CE$$
 , $q_{(t)} = CE(1 - e^{-t/\tau})$

$$u_{C(t)} = \frac{q_{(t)}}{C}$$
 , $u_{C(t)} = E(1 - e^{-t/\tau})$

و كذلك :

4. أ/ حساب الطاقة الكهربائية المخزنة E_0 في المكثفة :

$$E_C = \frac{1}{2} C u_{C(t)}^2$$

العاقة الكهربائية المخزنة في المكثفة في كل لحظة t هي :

حيث عبارة التوتر بين طرفي المكثفة خلال التفريغ عبارة التوتر عبارة التفريغ

$$E_C = \frac{1}{2}C(Ee^{-t/\tau})^2 = \frac{1}{2}CE^2e^{-2t/\tau}$$

$$E_0 = \frac{1}{2}CE^2$$

ومنه في اللحظة t=0 تكون الطاقة المخزنة في المكثفة هي :

$$E_0 = \frac{1}{2} \times 1.3 \times 10^{-4} \times (5)^2 \quad ,$$

$$E_0 = 1,63 \times 10^{-4} j$$

ت،ع:

 $E = \frac{E_0}{2}$ الذي من أجله تصبح الطاقة المخزنة في المكثفة :

$$E = \frac{1}{2}E_0$$

$$\frac{1}{2}CE^{2}e^{-2t/\tau} = \frac{1}{2}\left(\frac{1}{2}CE^{2}\right)$$

$$e^{-2t/\tau} = \frac{1}{2}$$

$$-2\frac{t}{\tau} = -\ln 2$$

$$t = \frac{\tau}{2} \ln 2$$

$$t = \frac{15,2 \times 10^{-3}}{2} \ln 2 \quad ,$$

$$t = 5,3ms$$

ت،ع:

حل التمرين 12

1. أ/ تمثيل بالأسهم و على الشكل : - جهة التيار الكهربائي المار في الدارة. u_R ، u_C .

: $q=q_{\scriptscriptstyle A}$ التعبير عن $u_{\scriptscriptstyle R}$ و $u_{\scriptscriptstyle R}$ بدلالة شحنة المكثفة

$$u_C = \frac{q_{(t)}}{C}$$

$$u_R = Ri = R \frac{dq_{(t)}}{dt}$$

$$\frac{dq_{(t)}}{dt} + \frac{1}{RC}q_{(t)} = \frac{E}{R}....(1)$$

 $: E \, \cdot \, R \, \cdot \, C$ بدلالة $lpha \, = \, A$ بدلالة ج/

$$q(t)=Aig(1-e^{-lpha.t}ig)$$
 : الدينا $rac{dq_{(t)}}{dt}=Alpha.e^{-lpha.t}$

$$A\alpha.e^{-\alpha.t} + \frac{A}{RC}(1 - e^{-\alpha.t}) = \frac{E}{R}$$
 : باتعویض في المعادلة (1) نجد $A\alpha.e^{-\alpha.t} + \frac{A}{RC} - \frac{A}{RC}e^{-\alpha.t} = \frac{E}{R}$: أي

$$A\left(\alpha - \frac{1}{RC}\right)e^{-\alpha t} + \left(\frac{A}{RC} - \frac{E}{R}\right) = 0$$
 : ني

$$\alpha - \frac{1}{RC} = 0$$
 ,
$$\alpha = \frac{1}{RC}$$
 : ومنه

$$\frac{A}{RC} - \frac{E}{R} = 0 , \qquad \qquad \boxed{A = CE}$$

$$q_{(t)} = CE\left(1 - e^{-\frac{1}{RC}t}\right)$$

د/ استنتاج قیمة E:

$$u_{\scriptscriptstyle R} + u_{\scriptscriptstyle C} = E$$
 دينا : حيث نهاية الشحن تعني الدخول في النظام الدائم، أي التيار الكهربائي لا يمر $(u_{\scriptscriptstyle R}=0)$.

 $u_C = E = 5V$

$$E_C = \frac{1}{2}CE^2$$
 : (C) استنتاج سعة المكثفة

$$C = \frac{2E_C}{E^2} = \frac{2 \times 5 \times 10^{-3}}{(5)^2} , \qquad C = 400 \,\mu\text{F}$$

2. البادلة في الوضع (2) (دارة التفريغ) :

أ/ يحدث تفريغ للمكثفة في الناقل الأومي.

(k) للبادلة (2) ثم (1) ثم الموافق للوضعين البادلة (2)

$$au_1=RC$$
 : (1) الوضع
$$au_2=\left(R+R'\right)C=2RC$$
 : (2) الوضع
$$au_2=2 au_1$$
 : (2) ومنه :

($au_2 = 376ms$ و $au_1 = 188ms$) أي أن ثابت الزمن لدارة التفريغ ضعف ثابت الزمن لدارة الشحن. ($au_2 = 376ms$ و $au_3 = 376ms$

: E حساب 1

$$u_{BA} = u_{BM} + u_{MA} / u_{BA} = E$$

لدينا: بتطبيق قانون جمع التوترات

 $E = u_{BM} + u_{MA}$

أى :

 $u_{\rm\scriptscriptstyle BM}=2V$, $u_{\rm\scriptscriptstyle MA}=7V$: يكون (النظام الدائم) يكون (عند لحظة الوصول إلى النظام E = 2 + 7 = 9V

E = 9V

: R -- 2

 $u_{BM} = L \frac{di}{dt} + ri$

لدينا:

 $u_{\scriptscriptstyle MA}=Ri$

و:

$$u_{BM} = ri = 2V.....(1) \qquad \frac{di}{dt} = 0$$

في النظام الدائم يكون:

 $u_{MA} = Ri = 7V.....(2)$

$$\frac{u_{MA}}{u_{BM}} = \frac{Ri}{ri} = \frac{7}{2}$$

$$R = \frac{7}{2}r = \frac{7}{2} \times 10$$
 ,

$$R = 35\Omega$$

ومنه:

ـ حساب L : لدينا :

$$u_{MA} = Ri$$

أى :

$$\frac{du_{MA}}{dt} = R\frac{di}{dt}$$

t=0 عند اللحظة) عند المنحنى (البيان الأول) عند اللحظة حيث حيث ميل مماس المنحنى

 $R\frac{di}{dt} = \frac{3.5 \times 2}{2 \times 10^{-3}} = 3.5 \times 10^{3}$

t=0 أي عند هذه اللحظة

$$\frac{di}{dt} = \frac{3.5 \times 10^3}{R} = \frac{3.5 \times 10^3}{35} = 100$$

أى :

 $u_{MA} = L \frac{di}{dt} = 9V$

من جهة أخرى (البيان الثاني) وعند نفس اللحظة t=0 :

$$L = \frac{9}{\left(\frac{di}{dt}\right)} = \frac{9}{100} \quad ,$$

L = 0.09H

ومنه:

: r, E, L, R يا بدلالة : r, E, Lبتطبيق قانون جمع التوترات:

 $u_{BM} + u_{MA} = u_{BA}$

 $L\frac{di}{dt} + ri + Ri = E$

أي :

 $\frac{di}{dt} + \left(\frac{R+r}{L}\right)i = \frac{E}{L}$

أي :

وهي معادلة تفاضلية من الرتبة الأولى بالنسبة ل $_i$ حلها من الشكل:

源等

$$i_{(t)} = \frac{E}{R+r} \left(1 - e^{-\frac{R+r}{L}.t} \right)$$

$$i = \left(\frac{9}{35+10}\right) \left(1 - e^{-\frac{(35+10)}{0.09} \times 0.003}\right)$$

$$i = 0, 2\left(1 - e^{-\frac{3}{2}}\right)$$
, $i \approx 0,155A$

: t = 3ms air liter i san i air i

أي :

$$t=3m_S$$
 . حساب الطاقة المخزنة في الوشيعة عند نفس اللحظة السابقة

$$E_{L} = \frac{1}{2}Li^{2}$$

$$E_{L} = \frac{1}{2} \times 0.09 \times (0.155)^{2} ,$$

$$E_L \approx 1,1 \times 10^{-3} j$$

ت،ع:

لدينا :

$$\tau = \frac{L}{R+r} = \frac{0.09}{35+10} ,$$

$$\tau = 0.002s = 2ms$$

حل التمرين 14

1. تمثيل مخطط الدارة:

2. - كتابة العبارة الحرفية لشدة التيار المار بالدارة في النظام الدائم: بتطبيق قانون جمع التوترات :

$$u_R + u_L = E$$
 : discrete :

$$Ri + L\frac{di}{dt} + ri = E$$
 : أي

$$RI + rI = E / \frac{di}{dt} = 0$$

في النظام الدائم:

$$I = \frac{E}{R + r}$$

ومنه:

$$I = 4 \times 0.06$$

汉多

 $\tau = \frac{L}{R+r}$

 $L = a.\tau$

$$I = 0,24A$$

ـ حساب قيمته العددية:

من البيان (شكل -1) نجد:

: r - Luna -

$$I = \frac{E}{R+r}$$

$$r = \frac{E}{I} - R = \frac{12}{0.24} - 35 \quad ,$$

$$r = 15\Omega$$

نجد :

L ايجاد من البيان قيمة ثابت الزمن τ و حساب L:

$$\tau = 20ms$$

لدينا من البيان:

: L - L - L - L - L

لدبنا

$$L = 1H$$

ومنه:

4. أ/ كتابة العبارة البيانية:

ومنه العبارة البيانية:

: حيث
$$a$$
 يمثل معامل توجيه البيان

$$L = 50\tau$$

 $a = \frac{4 \times 0.2}{8 \times 2 \times 10^{-3}} = 50$

 $L = (R + r).\tau = (35 + 15) \times 20 \times 10^{-3}$,

 $L \cdot r \cdot R$ بدلالة τ بدلالة بالتعبير عن

ـ ثابت الزمن من الدراسة النظرية هو:

ج/ هل نتائج هذه الظاهرة تتفق مع المعطيات ؟

$$R + r = \frac{L}{\tau}$$

من العلاقة النظرية لدينا:

ومن البيان نأخذ نقطة كيفية، ولتكن M حيث:

$$M\left(\tau = 12 \, ms \, , L = 0.6 \, H \, \right)$$

$$R+r=rac{3 imes0.2}{6 imes2 imes10^{-3}}=50\Omega$$
 : فنستنتج أن

R+r المقدار التي سمحت بإيجاد قيمة المقدار R+r

حل التمرين 15

1. كيفية ربط الدارة الكهربائية بمدخلي جهاز راسم الاهتزاز المهبطي: - مبينة على مخطط الدارة الكهربائية.

2. الدارة في حالة النظام الدائم:

 (u_{BA}) أ إيجاد قيمة التوتر الكهربائي من البيان:

 (u_{CR}) التوتر الكهربائي (بيجاد قيمة التوتر الكهربائي

بتطبيق قانون جمع التوترات:

أي :

ومنه:

 $u_{CR} = 12 - 10 = 2V$

 $u_{CB} + u_{BA} = E$

 $u_{CB} = E - u_{BA}$

$$\begin{split} u_{BA} &= RI_0 \\ I_0 &= \frac{u_{BA}}{R} = \frac{10}{10} = 1A \quad \text{,} \end{split}$$

الشك*ل* (1)

$$u_{CB}=2V$$

ج/ إيجاد قيمة الشدة العظمى للتيار المار في الدارة:

ومنه: $I_0 = 1A$

3. أ/ استنتاج قيمة (au) ثابت الزمن المميز للدارة : au pprox 2ms : نجد (شکل -2) نجد بالاعتماد على البيان (شکل -2

ب/ إيجاد قيمة مقاومة و ذاتية الوشيعة:

لدينا:

ومنه: $r = 2\Omega$

$$u_{CB} = rI_0 \quad / u_{CB} = 2V$$

$$r = \frac{u_{CB}}{I_0} = \frac{2}{1} = 2\Omega ,$$

$$\tau = \frac{L}{R+r}$$

$$L = \tau(R+r)$$

$$L = 2 \times 10^{-3} \times (10+2)$$

$$L = 24mH$$

لدينا:

ومنه:

ت،ع:

4. حساب الطاقة الأعظمية المخزنة في الوشيعة:

$$E_L = \frac{1}{2}LI_0^2$$

$$E_L = \frac{1}{2} \times 24 \times 10^{-3} \times (1)^2 ,$$

$$E_L = 12mj$$

ت،ع:

لدينا :

D.E

حل التمرين 16

- 1. كتابة عبارة التوتر الكهربائي الذي يظهر في المدخل Y_B بدلالة شدة التيار : بتطبيق قانون أوم :
- $u_{R}=RI_{0}$ $\left\langle u_{R}=3V\right\rangle$ (من البيان) $I_{0}=\frac{u_{R}}{R}=\frac{3}{50} \ ,$

$$(I_0)$$
 العددية المعددية التيار المار بالدارة عند النظام الدائم عند النظام الدائم عند النظام الدائم :

$$I_0 = 0.06A$$
 : ومنه

 $:L,r,R,i,rac{di}{dt}$ التعبير عن E بدلالة.

بتطبيق قانون جمع التوترات:

أي :

$$E = (R+r)i + L\frac{di}{dt}$$
....(1)

- - ـ حساب المقاومة الداخلية r للوشيعة :

$$\begin{aligned} u_{\scriptscriptstyle R} + u_{\scriptscriptstyle L} &= E \\ Ri + L \frac{di}{dt} + ri &= E \end{aligned}$$

$$E = (R + r)I_0 \qquad / \qquad \frac{di}{dt} = 0$$

 $r = \frac{E}{I} - R$ $r = \frac{3.8}{0.06} - 50$,

 $r \approx 13,3\Omega$

ت،ع:

ومنه:

ـ حساب ذاتية الوشيعة:

 $L = (R + r) \tau$

 $au \approx 17ms$: حيث قيمة au من البيان هي تقريبا

 $L = (50 + 13,3) \times 17 \times 10^{-3}$

ومنه:

 $L \approx 1H$

حل التمرين 17

: i(t) كتابة المعادلة التفاضلية للدارة بدلالة

بتطبيق قانون أوم و قانون جمع التوترات:

$$u_1 + u_2 = E$$

$$Ri + L\frac{di}{dt} + ri = E$$

$$L\frac{di}{dt} + (R+r)i = E$$

أي :

$$\frac{di}{dt} + \frac{(R+r)}{L}i = \frac{E}{L}....(1)$$

ومنه:

L = 0.5H: أ/ تبيان أن

$$\frac{di}{dt} = -\frac{(R+r)}{L}i + \frac{E}{L}....(2)$$

$$\frac{di}{dt} = \frac{E}{L}$$

$$\frac{di}{dt} = 12$$

$$\frac{E}{L} = 12$$

$$L = \frac{E}{12} = \frac{6}{12}$$
 ,

$$\frac{di}{dt} + \frac{(R+r)}{L}i = \frac{E}{L}....(1)$$

$$i=0$$
 غند

ومن المنحنى، عند
$$i = 0$$
، لدينا :

وهن المتحتى؛ علت
$$t=0$$
 تديت .

$$L = 0.5H$$

ب/ إيجاد قيمة المقاومة ٢ للوشيعة:

: ومنه
$$\frac{di}{dt}=f(t)$$
 يمثل ميل المنحنى (2) في العلاقة $a=-\frac{(R+r)}{L}$ ومنه

$$-\left(\frac{R+r}{L}\right) = a \qquad a = -\frac{12-3}{(4,5-0)\times 10^{-2}} = -200$$

$$r = -aL - R = -(-200)\times 0,5-90 \quad r = -100$$

$$r = -aL - R = -(-200)\times 0,5-90 \quad r = -100$$

: التعبير بدلالة R ، E عن الشدة I_p عن الشدة و R ، E النظام الدائم عندما يصل النظام الدائم

$$\frac{di}{dt} + \frac{(R+r)}{L}i = \frac{E}{L}$$
$$\frac{(R+r)}{L}I_{p} = \frac{E}{L}$$

لدينا

عند النظام الدائم:

$$I_p = \frac{E}{R+r}$$

ومنه:

 $r \cdot R \cdot L$ بدلالة عبارة عبارة عبارة 4.

$$i(t) = I_{P} \left(1 - e^{-t/\tau} \right)$$

$$\frac{di}{dt} = \frac{I_{P}}{\tau} e^{-t/\tau}$$

ىي . أي :

$$\frac{I_p}{\tau}e^{-t/\tau} + \frac{(R+r)}{L}I_p(1-e^{-t/\tau}) = \frac{E}{L}$$

بالتعويض في المعادلة (1):

$$\frac{I_p}{\tau(R+r)}e^{-t/\tau} + \frac{I_p}{L}(1-e^{-t/\tau}) = \frac{E}{L(R+r)}$$

(R+r) بقسمة طرفي المعادلة على

$$\frac{I_p}{\tau(R+r)}e^{-t/\tau} + \frac{I_p}{L}\left(1 - e^{-t/\tau}\right) = \frac{I_p}{L}$$

أي :

$$\frac{1}{\tau(R+r)}e^{-t/\tau} + \frac{1}{L}(1 - e^{-t/\tau}) = \frac{1}{L}$$

 $:I_{P}$ على المعادلة على بقسمة طرفي

$$\frac{L}{\tau(R+r)}e^{-t/\tau} + (1 - e^{-t/\tau}) = 1$$

L بضرب طرفي المعادلة في

$$\frac{L}{\tau(R+r)}=1 \quad ,$$

$$\tau = \frac{L}{R+r}$$

ومنه:

$$\tau = \frac{0.5}{90 + 10} ,$$

$$\tau = 5ms$$

ـ حساب قيمته:

حل التمرين 18

1. إيجاد المعادلة التفاضلية التي تعطي شدة التيار الكهربائي في الدارة : بتطبيق قانون أوم و قانون جمع التوترات :

$$u_R + u_L = E$$

$$Ri + L\frac{di}{dt} + ri = E$$

$$L\frac{di}{dt} + (R+r)i = E$$

$$\frac{di}{dt} + \frac{(R+r)}{L}i = \frac{E}{L}....(1)$$

ومنه:

أي :

- 2. ـ سلوك الوشيعة في النظام الدائم : سلوك ناقل أومي
- $I_0 = \frac{E}{R+r}$: عبارة شدة التيار الكهربائي I_0 الذي يجتاز الدارة

$$\frac{A}{\tau}e^{-t/\tau} + \frac{(R+r)}{L} \cdot A(1 - e^{-t/\tau}) = \frac{E}{L}$$

$$\frac{A}{\tau}e^{-t/\tau} + \frac{A(R+r)}{L} - \frac{A(R+r)}{L}e^{-t/\tau} = \frac{E}{L}$$

$$\left(\frac{A}{\tau} - \frac{A(R+r)}{L}\right)e^{-t/\tau} + \left(\frac{A(R+r)}{L} - \frac{E}{L}\right) = 0$$

$$\left(\frac{A}{\tau} - \frac{A(R+r)}{L}\right) = 0 ,$$

$$\left(\frac{A(R+r)}{L} - \frac{E}{L}\right) = 0 ,$$

: فإن (1) فإن العلاقة
$$i=Aigl(1-e^{-t/ au}igr)$$
 فإن المعادلة التفاضلية

ب طبر
$$(1)$$
 المحدث (1) المحدث (1) المحدث (1) المحدث (1) المحدث (1) المحدث (1)

$$\tau = \frac{L}{R+r}$$

$$A = \frac{E}{R+r}$$

ب/ استنتاج عبارة التوتر الكهربائي $u_{{\scriptscriptstyle BC}}$ بين طرفي الوشيعة :

$$i = A \left(1 - e^{-t/ au}
ight)$$
 : دينا

$$i = \frac{E}{R+r} \left(1 - e^{-\frac{R+r}{L}.t} \right)$$
: $i = \frac{E}{R+r} \left(1 - e^{-\frac{R+r}{L}.t} \right)$

$$\begin{split} u_{BC} &= L\frac{di}{dt} + ri = L\bigg(\frac{E}{L}e^{-\frac{R+r}{L}t}\bigg) + \frac{rE}{R+r}\bigg(1 - e^{-\frac{R+r}{L}t}\bigg) \\ u_{BC} &= Ee^{-\frac{R+r}{L}t} + \frac{rE}{R+r} - \frac{rE}{R+r}e^{-\frac{R+r}{L}t} \end{split}$$

$$u_{BC} = Ee^{-\frac{R+r}{L}t} + \frac{r}{R+r}E\left(1 - e^{-\frac{R+r}{L}t}\right)$$

: النظام الدائم الكهربائي $u_{\rm\scriptscriptstyle BC}$ في النظام الدائم 4.

$$u_{BC} = ri$$
 $i = I_0 = \frac{E}{R+r}$
 $u_{BC} = \frac{rE}{R+r} = \frac{10 \times 12}{110 + 10}$,

$$u_{BC} = 1V$$

في النظام الدائم:

ومنه:

: $u_{RC} = f(t)$ ب/رسم كيفي لشكل البيان

أى :

1. كتابة عبارة كل من:

التوتر الكهربائي بين طرفي الناقل الأومى
$$R$$
:

2. إيجاد المعادلة التفاضلية للتيار الكهربائي i(t) المار في الدارة:

$$u_R + u_b = E$$

 $u_b = L \frac{di}{dt} + ri$

 $u_{P} = Ri$

$$Ri + L\frac{di}{dt} + ri = E$$

$$L\frac{di}{dt} + (R+r)i = E$$

$$\frac{di}{dt} + \frac{(R+r)}{L}i = \frac{E}{L}....(1)$$

 $i(t) = \frac{E}{R+r} \left(1 - e^{-\frac{(R+r)}{L}t} \right)$: تبيان أن المعادلة التفاضلية السابقة تقبل حلا من الشكل : 3

$$\frac{di}{dt} = \frac{E}{L} e^{-\frac{R+r}{L}t}$$
 : الدينا

بالتعويض في (1) نجد:

$$\frac{E}{L}e^{-\frac{R+r}{L}t}+\frac{\left(R+r\right)}{L}\cdot\frac{E}{R+r}\left(1-e^{-\frac{\left(R+r\right)}{L}t}\right)=\frac{E}{L}e^{-\frac{R+r}{L}t}+\frac{E}{L}-\frac{E}{L}e^{-\frac{R+r}{L}t}=\frac{E}{L}$$
 ومنه المعادلة التفاضلية السابقة تقبل $i(t)=\frac{E}{R+r}\left(1-e^{-\frac{\left(R+r\right)}{L}t}\right)$ حلا لها.

 $_{r}$ أ/ حساب المقاومة $_{r}$ للوشيعة:

$$I_0=rac{E}{R+r}$$
 \int $I_0=0.5A$ (من البيان) $r=rac{E}{I_0}-R=rac{6}{0.5}-10$, $r=2\Omega$

و منه :

في النظام الدائم:

- عساب قيمة τ ثابت الزمن

t=0 اللحظة و اللحظة على البيان (شكل -2) نحسب قيمة au : - باستعمال ميل المماس في اللحظة

$$0,63I_0$$
 : أي من I_0 من أي أو مريقة النسبة المئوية أو المؤوية المؤوية أو المؤوية أو

فنجد : $\tau = 10ms$

م استنتاج قيمة L ذاتية الوشيعة:

$$\tau = \frac{L}{R+r}$$

$$L = (R+r)\tau = (10+2) \times 10 \times 10^{-3}$$

$$L = 0,12H$$

ومنه:

5. حساب قيمة الطاقة الكهربائية المخزنة في الوشيعة في حالة النظام الدائم:

$$E_b = \frac{1}{2}LI_0^2$$
 $I_0 = 0.5A$
 $E_b = \frac{1}{2} \times 0.12 \times (0.5)^2$,

$$E_b = 1.5 \times 10^{-2} j$$

ومنه:

حل التمرين 20

في النظام الدائم:

$$I_0 = 4.8 \times 0.05 = 24A$$

1. أ/ ـ استنتاج قيمة شدة التيار الكهربائي في النظام الدائم:

 $_{-}$ استنتاج قيمة ثابت الزمن $_{ au}$ للدارة :

بالاعتماد على البيان (شكل -2) نحسب قيمة au

t=0 المماسُ في اللحظة - باستعمال ميل المماسُ

.($0.63I_0 = 0.63 \times 0.24 \approx 0.15$) $0.63I_0$: أي أي أي أي أي أي أو النسبة المئوية (63%) من أو النسبة المئوية النسبة المئوية (63%) أو النسبة المؤوية (63%) أو ا

$$\tau = 10ms$$

من البيان نجد:

ب/ حساب كل من المقاومة r و الذاتية L للوشيعة :

لدينا في النظام الدائم:

$$I_0 = \frac{E}{R+r}$$
 $I_0 = 0.24A$
 $r = \frac{E}{I_0} - R = \frac{6}{0.24} - 17.5$,

$$r = 7,5\Omega$$

$$L = (R+r).\tau = (17.5+7.5) \times 10 \times 10^{-3}$$
,

$$L = 0.25H$$

$$\frac{di}{dt} + \frac{i}{\tau} = \frac{I_0}{\tau}$$
: أ/ إثبات أن .2

بتطبيق قانون جمع التوترات:

$$u_R + u_b = E$$

$$Ri + L\frac{di}{dt} + ri = E$$

$$L\frac{di}{dt} + (R+r)i = E$$

$$\frac{di}{dt} + \frac{(R+r)}{L}i = \frac{E}{L}$$

$$\frac{di}{dt} + \frac{1}{\left(\frac{L}{R+r}\right)}i = \frac{E}{\left(R+r\right)} \cdot \frac{\left(R+r\right)}{L}$$

$$\frac{di}{dt} + \frac{1}{\tau}i = I_0.\frac{1}{\tau}.....(1)$$

أي :

نقسم طرفي المعادلة على L نجد:

نجعلها بالشكل:

حيث :
$$\frac{L}{R+r}$$
 و $\frac{L}{R+r}$ في النظام الدائم

 $i=I_0ig(1-e^{-t/ au}ig)$: برا تبيان أن حل المعادلة هو من الشكل

$$\frac{di}{dt} = \frac{I_0}{\tau} e^{-t/\tau}$$

لدينا:

بالتعويض في المعادلة التفاضلية (1) نجد:

$$\frac{I_0}{\tau}e^{-t/\tau} + \frac{1}{\tau}I_0(1 - e^{-t/\tau}) = \frac{I_0}{\tau}e^{-t/\tau} + \frac{I_0}{\tau} - \frac{I_0}{\tau}e^{-t/\tau} = \frac{I_0}{\tau}$$

 $i=I_{0}\left(1-e^{-t/ au}
ight)$: المعادلة التفاضلية تقبل كحل لها

 $L = h(\tau)$ البيان (3. أا رسم البيان

ب/ كتابة معادلة البيان:

معادلة البيان هي من الشكل:

ومنه:

$$L = a.\tau / a = \frac{(5-1) \times 0.1}{(5-1) \times 4 \times 10^{-3}} = 25$$

$$L = 25\tau$$

r استنتاج قيمة مقاومة الوشيعة r

لدينا: _ من العلاقة النظرية

و ـ من معادلة البيان

نستنتج:

 $r = 7,5\Omega$

و هي توافق القيمة المحسوبة في (1- ب).

حل التمرين 21

- جهة مرور التيار الكهربائي.
- جهة السهم الذي يمثل التوتر الكهربائي بين طرفي الوشيعة.
 - جهة السهم الذي يمثل التوتر الكهربائي بين طرفي المولد. على مخطط الدارة
- 2. أ/ إيجاد المعادلة التفاضلية التي تعطى الشدة اللحظية i(t) للتيار الكهربائي المار في الدارة:

بتطبيق قانون جمع التوترات:

$$u_{AB} = E$$

$$L\frac{di}{dt} + ri = E$$

 $L = (R + r)\tau$

 $R+r=25 \qquad ,$

 $L = 25\tau$

أى :

$$\frac{di}{dt} + \frac{r}{L}i = \frac{E}{L}...(1)$$

ومنه:

 $i(t)=I_0\left(1-e^{-rac{r}{L}t}
ight)$: من الشكل المعادلة التفاضلية (1) تقبل حلا من الشكل

 $\frac{di}{dt} = I_0 \frac{r}{I} e^{-\frac{r}{L}t}$

لدبنا

بالتعويض في (1) نجد:

$$I_0 \frac{r}{L} e^{-\frac{r}{L}} + \frac{r}{L} I_0 \left(1 - e^{-\frac{r}{L}t} \right) = I_0 \frac{r}{L} e^{-\frac{r}{L}t} + I_0 \frac{r}{L} - I_0 \frac{r}{L} e^{-\frac{r}{L}t} = I_0 \frac{r}{L} = \frac{E}{L}$$

 $I_0 = \frac{E}{r}$ (الشدة العظمى للتيار الكهربائي المار في الدارة)

حيث :

 $i(t)=I_0\left(1-e^{-\frac{r}{L}t}\right)$: ومنه المعادلة التفاضلية (1) تقبل حلا من الشكل

3. حساب قيم المقادير الكهربائية التالية:

بمطابقة المعادلتين (2) و (3)

أ/ الشدة العظمى (I_0) للتيار الكهربائى المار في الدارة:

$$i(t) = I_0 \left(1 - e^{-\frac{r}{L}t}\right) \dots (2)$$

$$i(t) = 0.45(1 - e^{-10t})....(3)$$

$$I_0 = 0,45A$$

(r) المقاومة المقاومة المقاومة

$$I_0 = \frac{E}{r}$$

$$r = \frac{E}{I_0} = \frac{4.5}{0.45} ,$$

$$r = 10\Omega$$

لدينا:

ومنه:

: للذاتية (L) للوشيعة

$$\frac{r}{L} = 10$$

$$L = \frac{r}{10} = \frac{10}{10} \quad ,$$

$$L = 1H$$

ومنه:

د/ ثابت الزمن
$$(au)$$
 المميز للدارة :

$$\tau = \frac{L}{r}$$

$$\tau = \frac{1}{10} \quad ,$$

$$\tau = 0.1s$$

لدينا:

4. إيجاد قيمة الطاقة المخزنة في الوشيعة في حالة النظام الدائم:

$$E = rac{1}{2} L I_0^2 / I_0 = 0,45 A$$
 (النظام الدائم)

لدينا :

$$E = \frac{1}{2} \times 1 \times (0,45)^2$$
,

$$E \approx 0.1j$$

ومنه:

