1 动态规划方法

## 1 动态规划方法

1

1. 设某工厂自国外进口一部精密机器,由机器制造厂至出口港有三个港口可供选择,而进口港又有三个可供选择,进口后可经由两个城市到达目的地,其间的运输成本如下图中所标的数字,试求运费最低的路线?



解;设阶段变量:k=1, 2, 3, 4 依次表示 4 个阶段选路的过程,第 1 阶段从 A 出发到  $B_1$ 、 $B_2$  或  $B_3$ ;第 2 阶段从  $B_1$ 、 $B_3$  或  $B_3$  出发到  $C_1$ 、 $C_2$  或  $C_3$ ;第 3 阶段从  $C_1$ 、 $C_2$  或  $C_3$  出发到  $D_1$  或  $D_2$ ;第 4 阶段从  $D_1$  或  $D_2$  出发到  $D_2$ 

状态变量:  $s_k$  表示 k 阶段初可能的位置; 决策  $x_k$  表示 k 阶段初可能选择的路线; 阶段指标  $v_k$  表示 k 阶段与所选择的路段相应的路长; 指标函数表示  $v_{k4}$  至 4 阶段的总路长;

递推公式:  $f_k = min(u_k + f_{k+1})k=4,3,2,1$ ;  $f_5 = 0$ .

| k | $s_k$ | $x_k$ | $v_k$ | $v_{k+1} + v_k + f_{k+1}$ | $f_k$ | $x_k$      |
|---|-------|-------|-------|---------------------------|-------|------------|
| 4 | $D_1$ | E     | 30    | 30+0                      | 30    | E          |
|   | $D_2$ | E     | 40    | 40+0                      | 40    | E          |
| 3 | $C_1$ | $D_1$ | 10    | 30+10                     | 40    | $D_1$      |
|   |       | $D_2$ | 40    | 40+40                     |       |            |
|   | $C_2$ | $D_1$ | 60    | 30+60                     | 70    | $D_2$      |
|   |       | $D_2$ | 30    | 30+40                     |       |            |
|   | $C_3$ | $D_1$ | 30    | 30+30                     | 60    | $D_1$      |
|   |       | $D_2$ | 30    | 30+40                     |       |            |
| 2 | $B_1$ | $C_1$ | 70    | 70+40                     | 110   | $C_1,C_2$  |
|   |       | $C_2$ | 40    | 40+70                     |       |            |
|   |       | $C_3$ | 60    | 60+60                     |       |            |
|   | $B_2$ | $C_1$ | 30    | 30+40                     | 70    | $C_1$      |
|   |       | $C_2$ | 20    | 20+70                     |       |            |
|   |       | $C_3$ | 40    | 40+60                     |       |            |
|   | $B_3$ | $C_1$ | 40    | 40+40                     | 80    | $C_1,C_2$  |
|   |       | $C_2$ | 10    | 10+70                     |       |            |
|   |       | $C_3$ | 50    | 50+60                     |       |            |
| 1 | A     | $B_1$ | 20    | 20+110                    | 110   | $B_2, B_3$ |
|   |       | $B_2$ | 40    | 40+70                     |       |            |
|   |       | $B_3$ | 30    | 30+80                     |       |            |

由表中计算结果可以看出运费最低的路线为: $AB_2C_1D_1E$  或  $AB_3C_1D_1E$  或  $AB_3C_2D_2E$  . 最低运费为 110.

2 图论方法 3

## 2 图论方法

2. 用 Kruskal 算法求下图的最小生成树,并计算其权:



解: (1) 选取权最小的连杆 BD;

- (2) 选取除 BD 外最小权的连杆 BF;
- (3) 选取除 BD、BF 外最小权并不含圈的连杆 BC;
- (4) 选取除 BD、BF、BC 外最小权并不含圈的连杆 AB;
- (5) 选取除 BD、BF、BC、AB 外最小权并不含圈的连杆 FE; 由此得到最小生成树,总权数 w = 5 + 6 + 7 + 10 + 10 = 38.