Modern Computer Architectures

ET4074 - 2018/2019

Lab sessions & deadlines

Nov. 27	Lab 1 Kick-off
Dec. 4	Lab question session
Dec. 11	Assignment 1 submission deadline (40% grade) Lab 2 Kick-off
Dec. 12	Lab question session
Dec. 19	Lab question session
Jan. 9	Lab question session
Jan. 21	Assignment 2 submission deadline (60% grade)

Lab Grade = 40% Assignment 1 + 60% Assignment 2

Assignment 2 details

Given:

- 4 C-coded applications (common domain) as workload for each group
- Parametrizable VLIW (VEX) processor
- FPGA synthesis and functional verification tools

Goal:

Determine VLIW uni/multi-processor architecture, optimal for all applications in terms of performance, area utilization and energy consumption.
 3 Scenarios (Designs): embedded low power

high performance environment performance-area-energy compromise

Method:

Design Space Exploration (DSE) by changing the architecture configuration parameters.

Architecture configuration parameters

Issue width = n

File: *configuration.rvex* # of VLIW cores [cores] CONFIG Issue Width and # of Mult e.g., (1010) – issue width 4, 2 multipliers (1100) - issue width 4, 2 multipliers - issue width 2, 2 multipliers **ICache** Instruction cache size [Bytes] **DCache** Data cache size [Bytes] **STOPBIT** The minimum number of operations encoded in a VLIW instruction.

VLIW instruction: Slot 1 Slot 2 • • • Slot n-1 Slot n

Restrictions:

- Only slot 1 (first slot) can execute lw; sw; prefetch operations
- Only slot n (last slot) can execute
 branch and jump operations
- Issue width n should be a power of two

e.g.: issue width = 4; without STOPBIT

;; ALU ALU NOP NOP ;;
issue width = 4; STOPBIT = 2

;; ALU ALU

one bit indicating the end of the current VLIW instruction

Instead of encoding 4 operations, out of which two are just mask bits (NOPs), a better way is to use a single bit at the end of the second operation indicating the end of the current instruction and thus to encode only the first 2 operations.

Architecture configuration parameters

STOPBIT

	70:	15	80	a 8	00	stw	
Instr. 1	74:	43	00	aa	c0	cmpge	е
	78:	60	00	00	00	nop	
	7c:	60	00	00	00	nop	;;
	80:	62	aa	a 8	10	add	
	84:	60	00	00	00	nop	
Instr. 2	88:	60	00	00	00	nop	
	8c:	62	aa	a8	10	add	;;
	←→	lacksquare					
Address			Enc	odin	g		

lucatur 4	70:	15	80	a8	00	stw	
Instr. 1	74:	43	00	aa	c <mark>2</mark>	cmpge	;;
lucatur 2	78:	62	aa	a 8	10	add	
Instr. 2	7c:	62	aa	a 8	1 <mark>2</mark>	add	;;
	80:	1a	82	66	30	sub	
	84:	80	00	06	b4	limmh	
Instr. 3	88:	60	00	00	00	nop	
	8c:	22	03	db	02	call	;;

Issue Width = 4; Without STOPBIT Fixed-length instruction encoding

Issue Width = 4; STOPBIT = 2

Variable-length instruction encoding

Software configuration parameters

App. 4

Applications to cores mapping:

File: config.compile; main-core*.c

Correctness of operation

<u>Timing errors during FPGA synthesis:</u>

(design too complex for FPGA and cannot satisfy the targeted clock frequency)

File: timing.txt

All timing constraints were met.

Applications execution errors when running on the FPGA:

File: run*-core*.log

Performance estimation

File: *performance.txt*

Total cycle counts:

Run 1: 4244425 cycles
Run 2: 4244471 cycles
Run 3: 4244440 cycles

Average: 4244445 cycles

Useful performance statistics:

File: run*-core*.log

IACC	# instruction cache accesses
IMISS	# instruction cache misses
DRACC	# data cache read accesses
DRMISS	# data cache read misses
DWACC	# data cache write accesses
DWMISS	# data cache write misses

CYC	Total # of cycles
STALL	Total # of stall cycles
BUN	Total # of instructions executed
SYL	Total # of operations executed
NOP	Total # of NOPs executed

Energy estimation

File: *energy.txt*

```
Dynamic energy (idle power is subtracted from it):
Run 1: 1.67 mj
Run 2: 1.81 mj
Run 3: 1.91 mj
Average: 1.80 mJ
```


RAMB18E1 FIFO18E1 RAMB36E1 DSP48E1

FPGA & Floorplan

One Configurable	Logic Block	(CLB)
------------------	-------------	-------

2
8
16
2
256
128

Resources in one CLB

11

Area estimation

File: area.txt

Area estimates for individual FPGA components

A _{1_Slice}	0.5 · A _{1_CLB}
A _{1_RAMB36E1}	2.4 · A _{1_CLB}
A _{1_RAMB18E1}	1.2 · A _{1_CLB}
A _{1_DSP48E1}	0.7 · A _{1_CLB}

Total Area for Assignment 2:

$$A \cong (\# \text{ occupied slices}) * A_{1_Slice} + (\# \text{ RAMB36E1}) * A_{1_RAMB36E1} + (\# \text{ RAMB18E1}) * A_{1_RAMB18E1} + (\# \text{ DSP48E1}) * A_{1_DSP48E1}$$

Report

- Max. 5-page
- Method of searching the design space.
- Justify configuration choices behind the 3 designs
 - High performance
 - Embedded low power
 - Energy-area-performance compromise
- Discuss which design of the three is best suited for the 4 applications domain and why.
- Follow requirements from course guide pdf.

Submission requirements

- Max. 5-page report pdf
- Archive generated by make pack command
- Submit by e-mail

- Naming convention:
 - ET4074_2018_A2_report_group#.pdf
 - ET4074_2018_A2_src_group#.tgz

