Cálculo matricial Estudios de Ingeniería

Juan Gabriel Gomila

Frogames

https://frogames.es

1 de julio de 2017

1 Matrices

- Definiciones generales
- Tipos de matrices
- Operaciones con matrices
- Propiedades
- 2 Operaciones elementales
 - Matrices escalonadas
 - Rango de una matriz
 - Cálculo de la matriz inversa

- 3 Ecuaciones y sistemas lineales
 - Ecuaciones matriciales
 - Sistemas de ecuaciones lineales
 - El método de Gauss
- 4 Determinantes
 - El concepto de determinante
 - Propiedades
 - Matriz adjunta
 - Cálculo de un determinante
 - Aplicaciones de los determinantes

1 Matrices

- Definiciones generales
- Tipos de matrices
- Operaciones con matrices
- Propiedades
- 2 Operaciones elementales
 - Matrices escalonadas
 - Rango de una matriz
 - Cálculo de la matriz inversa

- 3 Ecuaciones y sistemas lineales
 - Ecuaciones matriciales
 - Sistemas de ecuaciones lineales
 - El método de Gauss
- 4 Determinantes
 - El concepto de determinante
 - Propiedades
 - Matriz adjunta
 - Cálculo de un determinante
 - Aplicaciones de los determinantes

¿Qué es una matriz?

Definición de matriz

Sea $(\mathbb{K},+,.)$ un cuerpo conmutativo y $m,n\geq 1$ enteros. Una matriz $m\times n$ sobre \mathbb{K} (o de orden $m\times n$ sobre \mathbb{K}) es una tabla formada por elementos de \mathbb{K} dispuestos en m filas y n columnas de la forma:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \text{ amb } a_{ij} \in \mathbb{K}; i = 1, 2, ..., m; j = 1, 2, ..., n$$

¿Qué es una matriz?

Coeficientes de la matriz

Cada a_{ij} se denomina término, coeficiente o entrada de la matriz A. El primer subíndice, i, indica el número de la fila y el segundo, j, el de la columna que ocupa el término en la matriz.

¿Dónde están las matrices?

Conjunto de matrices

Se denotará por $M_{m\times n}(\mathbb{K})$ el conjunto de todas las matrices de orden $m\times n$ sobre \mathbb{K} . Una matriz cualquiera de $M_{m\times n}(\mathbb{K})$ se denotará indistintamente por A, por $(a_{ij})_{m\times n}$ o simplemente por (a_{ij}) .

Matrices cuadradas

Cuando m=n, el conjunto de todas las matrices de orden $M_{n\times n}$ se denota simplemente por $M_n(\mathbb{K})$ (las matrices que se clasifican como cuadradas se dicen que son de orden n en vez de $n\times n$ como veremos más adelante).

¿Cuándo son dos matrices iguales?

Igualdad de matrices

Dadas dos matrices del mismo orden $m \times n$, $A = (a_{ij})_{m \times n}$ y $B = (b_{ij})_{m \times n}$ son iguales si:

$$a_{ij} = b_{ij} \forall i = 1, ..., m, \ \forall j = 1, ..., n.$$

Matrices

- Definiciones generales
- Tipos de matrices
- Operaciones con matrices
- Propiedades
- 2 Operaciones elementales
 - Matrices escalonadas
 - Rango de una matriz
 - Cálculo de la matriz inversa

- 3 Ecuaciones y sistemas lineales
 - Ecuaciones matriciales
 - Sistemas de ecuaciones lineales
 - El método de Gauss
- 4 Determinantes
 - El concepto de determinante
 - Propiedades
 - Matriz adjunta
 - Cálculo de un determinante
 - Aplicaciones de los determinantes

Tipos de matrices

Matriz fila

Se denomina matriz fila a toda matriz que consta de una única fila:

$$A=(a_{11},a_{12},\cdots,a_{1n})\in M_{1\times n}(\mathbb{K})$$

Tipos de matrices

Matriz columna

Se denomina matriz columna a toda matriz que consta de una única columna:

$$A = egin{pmatrix} a_{11} \ a_{21} \ dots \ a_{m1} \end{pmatrix} \in M_{m imes 1}(\mathbb{K})$$

Tiposs de matrices

Matriu cuadrada

Se denomina matriz cuadrada de orden n a toda matriz que consta de n filas y n columnas

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \in M_n(\mathbb{K})$$

Dentro del ámbito de las matrices cuadradas caben las siguientes definiciones y tipos particulares de matrices:

Diagonal principal

Se denomina diagonal (principal) de una matriz cuadrada A a los elementos a_{ii} con $i = 1, \dots, n$.

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \in M_n(\mathbb{K})$$

Matriz diagonal

Una matriz diagonal es aquella en la cual $a_{ij}=0$ siempre que $i \neq j$

$$A=egin{pmatrix} a_{11}&0&\cdots&0\ 0&a_{22}&\cdots&0\ dots&dots&\ddots&dots\ 0&0&\cdots&a_{nn} \end{pmatrix}\in M_n(\mathbb{K})$$

Matriz escalar

Una matriz escalar es una matriz diagonal en la cual $a_{ii}=\lambda$, $\forall i=1,\cdots,n$

$$A = \begin{pmatrix} \lambda & 0 & \cdots & 0 \\ 0 & \lambda & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda \end{pmatrix} \in M_n(\mathbb{K})$$

Matriz identidad

Se denomina matriz unidad o matriz identidad de orden n, y se denota como l_n a la matriz escalar en la cual todos los elementos de la diagonal son unos.

$$I_n = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} \in M_n(\mathbb{K})$$

Matriz triangular superior

Se denomina matriz triangular superior a toda matriz en la cual $a_{ij} = 0$, $\forall i > j$. Es decir, todos los elementos situados por debajo de la diagonal principal son nulos.

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix} \in M_n(\mathbb{K})$$

Matriz triangular inferior

Se denomina matriz triangular inferior a toda matriz en la cual $a_{ij} = 0$, $\forall i < j$. Es decir, todos los elementos situados por encima de la diagonal principal son nulos.

$$A = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \in M_n(\mathbb{K})$$

Cas general

Para matrices en general (no necesariamente cuadradas) se mantendrá la denominación de matriz triangular superior cuando $a_{ij}=0 \ \forall \ i>j$. Más adelante se estudiaán en profundidad unos tipos especiales de estas matrices (las matrices escalonadas) que tendrán una importancia determinante en nuestros estudios.

Caso general

Las matrices triangulares superiores, si no son cuadradas, se corresponden con los siguientes casos dependiendo de si m < n o n < m respectivamente:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1m} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2m} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{mm} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{mn} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$

Matriz nula

Se denota como O a la matriu nula, matriz con todos sus coeficientes nulos.

$$A=egin{pmatrix} 0&0&\cdots&0\0&0&\cdots&0\ dots&dots&\ddots&dots\0&0&\cdots&0 \end{pmatrix}\in M_n(\mathbb{K})$$

1 Matrices

- Definiciones generales
- Tipos de matrices
- Operaciones con matrices
- Propiedades
- 2 Operaciones elementales
 - Matrices escalonadas
 - Rango de una matriz
 - Cálculo de la matriz inversa

- 3 Ecuaciones y sistemas lineales
 - Ecuaciones matriciales
 - Sistemas de ecuaciones lineales
 - El método de Gauss
- 4 Determinantes
 - El concepto de determinante
 - Propiedades
 - Matriz adjunta
 - Cálculo de un determinante
 - Aplicaciones de los determinantes

Suma de matrices

La suma de dos matrices A y B solo es posible si ambas son del mismo orden $m \times n$, entonces se suman término a término. Es decir, dadas $A = (a_{ij})_{m \times n}$ y $B = (b_{ij})_{m \times n} \in M_{m \times n}(\mathbb{K})$, se define la suma de A y B como la matriz:

$$C = (c_{ij})_{m \times n}$$
 on $c_{ij} = a_{ij} + b_{ij}$,

$$\forall i = 1, \cdots, m, \forall j = 1, \cdots, n$$

Producto por un escalar

Sea $a \in \mathbb{K}$ y $A = (a_{ij})_{m \times n} \in M_{m \times n}(\mathbb{K})$, se define el producto aA como una nueva matriz de orden $m \times n$ dada por:

$$aA = (a \cdot a_{ij})_{m \times n}$$

Producto de matrices

Para poder realizar el producto de una matriz A por una matriz B, el número de columnas de A ha de coincidir con el número de filas de B, entonces cada entrada ij de la matriz producto se obtiene multiplicando la fila i de A por la columna j de B.

Concretamente, si $A \in M_{m \times n}(\mathbb{K})$ y $B \in M_{n \times p}(\mathbb{K})$, el producto AB es una matriz $C \in M_{m \times p}(\mathbb{K})$ definida como:

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & a_{i3} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1j} & \cdots & b_{1p} \\ b_{21} & b_{22} & \cdots & b_{2j} & \cdots & b_{2p} \\ b_{31} & b_{32} & \cdots & b_{3j} & \cdots & b_{3p} \\ \vdots & \vdots & & \vdots & & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nj} & \cdots & b_{np} \end{pmatrix} = (c_{ij})$$

con
$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + a_{i3}b_{3j} + \cdots + a_{in}b_{nj} = \sum_{k=1}^{n} a_{ik}b_{kj}$$
. Nótese que $A_{m \times n} \cdot B_{n \times p} = C_{m \times p}$.