

Description

The VSM8P06 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge .This device is well suited for high current load applications.

General Features

V_{DS} =-60V,I_D =-8A

 $R_{DS(ON)}$ <60m Ω @ V_{GS} =-10V

 $R_{DS(ON)}$ <80m Ω @ V_{GS} =-4.5V

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation

Application

- High side switch for full bridge converter
- DC/DC converter for LCD display

SOP-8

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM8P06-S8	VSM8P06	SOP-8	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	-60	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	-8	А	
Drain Current-Continuous(T _C =100°ℂ)	I _D (100℃)	-5.7	Α	
Pulsed Drain Current	I _{DM}	-32	А	
Maximum Power Dissipation	P _D	3.0	W	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 150	$^{\circ}$ C	

Thermal Characteristic

Thermal Resistance, Junction to Ambient ^(Note 2)	P	12	°C/W
Thermal Resistance, Junction-to-Ambient (1988-2)	R _{θJA}	42	C/VV

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics			•			•
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =-250μA	-60	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-60V,V _{GS} =0V	-	-	-1	μA
Gate-Body Leakage Current	I _{GSS}	V_{GS} =±20 V , V_{DS} =0 V	-	-	±100	nA
On Characteristics (Note 3)			•			•
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=-250\mu A$	-1	-1.5	-2.2	V
Drain-Source On-State Resistance	_	V _{GS} =-10V, I _D =-5A	-	49	60	mΩ
	R _{DS(ON)}	V _{GS} =-4.5V, I _D =-5A	-	58	80	mΩ
Forward Transconductance	g FS	V_{DS} =-5 V , I_{D} =-5 A	-	10	-	S
Dynamic Characteristics (Note4)			•			•
Input Capacitance	C _{lss}	\/ 20\/\/ 0\/	-	1630.7	-	PF
Output Capacitance	Coss	V_{DS} =-30V, V_{GS} =0V,	-	90.6	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	77.3	-	PF
Switching Characteristics (Note 4)				'		
Turn-on Delay Time	t _{d(on)}	V_{DD} =-30V, R_L =1.5 Ω , V_{GS} =-10V, R_G =3 Ω	-	11	-	nS
Turn-on Rise Time	t _r		-	14	-	nS
Turn-Off Delay Time	t _{d(off)}		-	33	-	nS
Turn-Off Fall Time	t _f		-	13	-	nS
Total Gate Charge	Qg	V 201 5A	-	37.6		nC
Gate-Source Charge	Q_{gs}	V _{DS} =-30,I _D =-5A,	-	4.3		nC
Gate-Drain Charge	Q_{gd}	V _{GS} =-10V	-	7.2		nC
Drain-Source Diode Characteristics			•			•
Diode Forward Voltage (Note 3)	V_{SD}	V_{GS} =0 V , I_{S} =-5 A	-		-1.2	V
Diode Forward Current (Note 2)	Is		-	-	-8	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF =- 5A	-	35		nS
Reverse Recovery Charge	Qrr	$di/dt = -100A/\mu s^{(Note3)}$	-	38		nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production

Test Circuit

1) E_{AS} Test Circuit

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Vds Drain-Source Voltage (V)

Figure 2 Transfer Characteristics

Figure 3 Rdson-Drain Current

Figure 4 Rdson-Junction Temperature

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 BV_{DSS} vs Junction Temperature

Figure 8 Safe Operation Area

Figure 10 V_{GS(th)} vs Junction Temperatur

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance