CS370: Interpolation

Graham Cooper

January 11th, 2017

See figure 2.1

$$y = p(x)$$

We want to find a function p, such that the curve is 'nice' (where nice is piecewise polynomial or polynomial)

Given:

$$(x_1, y_1), (x_2, y_2)..., (x_n, y_n)$$
 n points $x_1 < x_2 < ... < x_n$

Find a polynomial P(x) of degree < n In general:

$$p(x) = c_1 + c_2 x + c_3 x^2 + \dots + c_n x^{n-1}$$
$$p(x_1) = y_1$$
$$p(x_2) = y_2$$
$$\dots$$
$$p(x_n) = y_n$$

n unknowns, n equations (linear)

Example:

$$\overline{(-1,1),(1,1)},(2,5),(4,1)$$

See figure 2.2

$$p(x) = c_1 + c_2 x + c_3 x^2 + c_4 x^3$$

$$p(-1) = c_1 - c_2 + c_3 - c_4 = 1$$

$$p(1) = c_1 + c_2 + c_3 + c_4 = 1$$

$$p(2) = c_1 + 2c_2 + 4c_3 + 8c_4 = 5$$

$$p(4) = c_1 + 4c_2 + 16c_3 + 64c_4 = 1$$

Now we are just writing out the solution...

$$p(x) = c_1 + c_2 x + c_3 x^2 + c_4 x^3$$

$$= 1 + b_2(x - 1) + b_3(x - 1)^2 + b_4(x - 1)^3$$

$$= L_1(x) + L_2(x) + 5L_3(x) + L_4(x)$$

$$L_1(x) = \frac{(x - 1)(x - 2)(x - 4)}{-30}$$

$$L_2(x) = \frac{(x + 1)(x - 2)(x - 4)}{6}$$

$$L_3(x) = \frac{(x + 1)(x - 1)(x - 4)}{-6}$$

$$L_4(x) = \frac{(x + 1)(x - 1)(x - 2)}{30}$$

I think we are writing it out this way so that we can easily plug in the vlues and get the correct points?? Question:

- 1. Does an interpolating polynomial always exist?
- 2. If (1) is true then is the answer always unique?

$$p(x) = c_1 + c_2 x + \dots c_n x^{n-1}$$

$$p(x_1) = c_1 + c_2 x_1 + \dots c_n x_1^{n-1}$$

$$p(x_2) = c_1 + c_2 x_2 + \dots c_n x_2^{n-1}$$

$$\dots$$

$$p(x_n) = c_1 + c_2 x_n + \dots c_n x_n^{n-1}$$

$$\begin{cases} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ \dots & \dots & \dots & \dots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{cases} \begin{cases} c_1 \\ c_2 \\ \dots \\ c_n \end{cases} = \begin{cases} y_1 \\ y_2 \\ \dots \\ y_n \end{cases}$$

The first matrix is the vandermonde (V) matrix.

V is invertable, $V \times \overrightarrow{c} = \overrightarrow{y}$

det
$$V \neq 0$$
 and det $V = \pi(x_i - x_j) \neq 0$ for $i < j$

Remember what a determinate is, remember what invertible is, but we will never be asked to do it.

$$p(x) = q_1(x)(x - x_1) + y_1$$

$$p(x) = q_2(x)(x - x_2) + y_2$$
...
$$p(x) = q_n(x)(x - x_n) + y_n$$

Lagrange Polynomial

$$(x_1, y_1), (x_2, y_2)...(x_n, y_n)$$
$$p(x) = y_1 L_1(x) + y_2 L_2(x) + ... + y_n L_n(x)$$

 $L_i(x_i) = 1, L_i(x_j) = 0$ for $i \neq j$ and $deg(L_i) = n - 1$ Lets construct L_1 using the above

$$L_1(x) = \frac{(x - x_2)(x - x_3)...(x - x_n)}{(x_1 - x_2)(x_1 - x_3)...(x_1 - x_n)}$$
$$L_i(x) = \frac{(x - x_1)...(x - x_{i-1})(x - x_{i+1})...(x - x_n)}{(x_i - x_1)...(x_i - x_{i-1})...(x_i - x_n)}$$

$$L_i(x_i) = 1$$
 and $L_j(x_j) = 0$ where $j \neq i$

For A1 Q3 (January 13th) - figuring out the solution to the recurrence - and using the answer to help

$$??[I_n] \leftarrow I_{n-1} \leftarrow I_{n-2} \leftarrow \dots \leftarrow I_0$$

$$\sqrt{\hat{I}_n} \leftarrow \hat{I}_{n-1} \leftarrow \dots \leftarrow \hat{I}_1 \leftarrow \hat{I}_0$$

$$e_n \leftarrow e_{n-1} \leftarrow \dots \leftarrow e_1 \leftarrow e_0$$

$$e_n = (-\alpha)^n e_0$$

$$I_n? = formula(I_0) =$$

Using p?

??
$$p_n \leftarrow p_{n-1}p_{n-2}, p_{n-2}p_{n-3}, ..., p_1, p_0$$

 $p_n = as^n + bt^n$ and a, b depend on p_0, p_1

$$\checkmark \hat{p_n} \leftarrow \hat{p_{n-1}} \hat{p_{n-2}} ..., \hat{p_1} \hat{p_0}$$

This line but with hats (I got lazy) $p_n = as^n + bt^n$ and a, b depend on p_0, p_1 solve for e_n

Recall from Jan 11th: (regoing over the start of this page)

Lagrange Form (again)

For $x_1, x_2, ...x_n$ distinct, construct $L_1(x), L_2(x)...L_n(x)$ Satisfying:

- 1. $L_i(x)$ has degree n-1
- 2. $L_i(x_i) = 1$
- 3. $L_i(x_j) = 0 \text{ if } i \neq j$

How do we construct this:

$$L_1(x) = \frac{(x - x_2)(x - x_3)...(x - x_n)}{(x_1 - x_2)(x_1 - x_3)...(x_1 - x_n)}$$

We divide like this in order to get an equation that satisfies that if we plug in x_1 we will end up getting 1 as required, otherwise we will be getting a 0. This is actually pretty cool. Neat!

$$L_{i}(x) = \frac{(x - x_{1})...(x - x_{i-1})(x - x_{i+1})...(x - x_{n})}{(x_{i} - x_{1})...(x_{i} - x_{i-1})(x_{i} - x_{i+1})...(x_{i} - x_{n})}$$

$$p(x) = y_{1}L_{1}(x) + y_{2}L_{2}(x) + ... + y_{n}L_{n}(x)$$

$$p(x_{1}) = y_{1}1 + y_{2}0 + ... + y_{n}0 = y_{1}$$
...
$$p(x_{n}) = y_{1}0 + y_{2}0 + ... + y_{n}1 = y_{n}$$

A question that he often has asked on midterms (and is almost 100% going to add it to ours):

Given: x_1, x_2, x_3x_4 as -1, 1, 2, 117, 412

Form $p(x) = L_1(x) + L_2(x) + L_3(x) + L_4(x)$

Write $p(x) = c_1 + c_2 x + c_3 x^2 + c_4 x^3$

Draw the graph!

Solve for the 4 numbers, and find what is y at each of the 4 points?

Then we find out that f(x) = 1 for each

Therefore the solution is p(x) = 1

Cubic Hermite Interpolation

Another type of interpolation

Given: (x_L, y_L) more on the left side and (x_R, y_R) on the right side, S_L slope of the left side, and S_R the slope of the right side

$$p(x)$$
 has degree at most 3 since we have 4 uknowns $p(x_L) = y_L$, $p(x_R) = y_R$, $p'(x_L)S_L$, $p'(x_R) = S_R$

$$p(x) = c_1 + c_2(x - x_L) + c_3(x - x_L)^2 + c_4(x - x_L)^3 \ p'(x) = c_2 + 2c_3(x - x_L) + 3c_4(x - x_L)^2 \ p(x_L) = y_L \implies c_1 \ p'(x_L) = S_L \implies c_2 \ p(x_R) = y_R \implies c_1 + c_2\Delta x + c_3\Delta x^2 + c_4\Delta x^3 = y_R \ p'(x_R) = S_R \implies c_2 + 2c_3\Delta x + 3c_4\Delta x^2 = S_R$$
 where $\Delta x = x_R - x_L$

$$\begin{cases} 1 & 0 & 0 & 0 & | Y_L \\ 0 & 1 & 0 & 0 & | S_L \\ 1 & \Delta x & \Delta x^2 & \Delta x^3 & | Y_R \\ 0 & 1 & 2\Delta x & 3\Delta x^2 & | S_L \end{cases}$$
becomes
$$\begin{cases} 1 & 0 & 0 & 0 & | Y_L \\ 0 & 1 & 0 & 0 & | S_L \\ 0 & 1 & 0 & 0 & | \frac{3Y_R' - 2S_L - S_R}{\Delta x} \\ 0 & 0 & 0 & 1 & | \frac{S_R + S_L - 2y_L'}{\Delta x^2} \end{cases}$$

$$c_1 = y_L$$

$$c_2 = S_L$$

$$c_3 = \frac{3Y_R' - 2S_L - S_R}{\Delta x}$$

$$c_4 = \frac{S_R + S_L - 2y_L'}{\Delta x^2}$$

Sub into p(x)

$$p(x) = 3 - (x - 1) + 3(x - 1)^{2} - (x - 1)^{3}$$