AND Cheat Sheet

1 Vocabulary

Hyperbolic eq.points $\Re\{\lambda\} \neq 0$ Nonhyperbolic problems Equilibria with EV on the imaginary axis.

2 Basics on cont.-time dynamical systems

$$\dot{x} = f(t, x, p), \quad x(t_0) = x_0 \Leftrightarrow \dot{x} = f(x, p), \quad x(0) = x_0$$

2.1 Flow of a system

Solution is the flow $\phi_t(x_0)$

$$x(t; x_0, p) = \phi_t(x_0, p)$$

FLOW AXIOMS

$$\phi_0(x_0, p) = x_0$$

$$\phi_{t_1}[\phi_{t_2}(x_0, p), p] = \phi_{t_1 + t_2}(x_0, p)$$

2.2 Existence and uniqueness

EXISTENCE AND UNIQUENESS OF LOCAL (IN TIME) SOLUTIONS If f(x) is smooth enough, then solutions exist and are unique. No guarantee that they exist forever - only guarantees to exist in a very short time interval around t_0 .

If f is Lipschitz in x and piecewise continuous in t then the IVP has a unique solution $x(t) = \phi(t; t_0)x_0$ over a finite time interval $t \in [t_0 - \tau, t_0 + \tau]$.

Allows for finite-escape times/blow-up (reach infinity in finite time).

2.3 Stability

Def.: An equilibrium point is a state x^* s.t. $f(x^*) = 0$ Def.: An eq.point x^* is stable if for any $\epsilon > 0$ there exists a constant $\delta > 0$ such that

$$\forall x_0 : ||x_0 - x^*|| < \delta \Rightarrow ||x(t) - x^*|| < \epsilon \quad \forall t > 0$$

Attractor

 x^* is attractive if $\lim_{t\to\infty} ||x(t) - x^*|| = 0 \quad \forall x_0 \in \mathcal{S}$ with \mathcal{S} being the domain of attraction.

Eq points may be attractive without being stable (ex. Vinograd's system).

Asymptotic stability

An eq. point x^* is asymptotically stable if it is stable and attractive.

EXPONENTIAL STABILITY

An eq.point x^* is exponentially stable in $\mathcal S$ if it is stable and there are constants $a,\lambda>0$ such that $\forall x_0\in\mathcal S:\|x(t)-x^*\|\leq a\|x_0-x^*\|e^{-\lambda t}$

3 Linear systems

3.1 LTI systems

3.2 LTV systems and Floquet theory

4 Nonlinear flows

4.1 Local Theory

HARTMAN-GROBMAN

The behavior of a nonlinear systems in a vicinity of hyperbolic eq. points is the same as in the linearized system around that point.

Center manifold theorem

$$\frac{dh}{dx_z} [A_z x_z + f_z(x_z, h(x_z))] = A_s h(x_z) + f_s(h(x_z), x_z)$$

$$h(0) = 0, \quad \frac{dh(0)}{dx_z} = 0$$

4.2 Non-local phenomena

5 Bifurcations of vector fields

5.1 Bifurcations of SSs

Transcritical bifurcation

Standard mechanism for change of stability for a fixed point which exists for all values of the parameter.

Ex.: $\dot{x} = rx - x^2$.

Fixed point at $x^*=0$ $\forall r$. For r<0 unstable fixed point at $x^*=r$ and a stable at $x^*=0$. For $r=0^-$ the fixed points unify. For r>0 the origin is unstable and $x^*=r$ becomes stable - **exchange of stabilities**

SADDLE NODE BIFURCATION

Fixed points are created and destroyed. As a parameter is varied, two fixed points move toward each other, collide and mutually annihilate.

Ex: $\dot{x} = r + x^2$.

r < 0: 2 FP (1 stable, 1 unstable),

 $r = 0^-$: half-stable FP,

r > 0: no FP.

In this example the bifurcation occurred at r=0.

5.1.1 Pitchfork bifurcation

Common in physical systems that have (left/right) symmetry. Supercritical pitchfork bifurcation

Ex: $\dot{x}=rx-x^3$. If r<0 the origin is the only fixed point and stable. r=0 the origin is still stable, but weakly, since the linearization vanishes (solutions no longer decay exponentially fast - critical slowing down). For r>0 the origin becomes unstable and two new stable fixed points appear at $x^*=\pm\sqrt{r}$.

SUBCRITICAL PITCHFORK BIFURCATION

Ex: $\dot{x}=rx+x^3$. Only for r<0 two unstable fixed points $x^*=\pm\sqrt{-r}$ and stable origin. For r>0 origin is unstable (finite escape)

5.1.2 Bifurcations of SSs in dim n > 1

transcritical bif: $\dot{x}_1 = rx_1 - x_1^2$ $\dot{x}_2 = \pm x_2$ saddle-node bif: $\dot{x}_1 = r - x_1^2$, $\dot{x}_2 = \pm x_2$ pitchfork bif: $\dot{x}_1 = rx_1 - x_1^3$, $\dot{x}_2 = \pm x_2$

5.2 Bifurcations of trajectories

FLOWS ON THE CIRCLE

Vector field on the circle $\dot{\Theta} = f(\Theta)$, with Θ being a point on the circle. Particle can return to starting place - most basic model of oscillating systems.

Non-uniform oscillator

 $\dot{\Theta} = \omega - a \sin \Theta$ with mean ω and amplitude a.

Uniform oscillator p = 0: $\dot{\Theta} = \omega$ and $\omega = \text{const.}$ with solution $\Theta(t) = \omega t + \Theta_0$. Phase Θ changes uniformly.

For $0 there is a non uniform oscillation, because the velocity depends on the angle. For <math>p = \omega$ a SS appears at $\Theta = \pi/2$ attracting the flow from one side and repelling the other side. For $p > \omega$ there are two SSs (1 repulsor, 1 attractor).

For $p \lesssim \omega$ there exists a saddle-note ghost. Time to pass through the bottleneck via local rescaling around the bottleneck: $\dot{x} = r + x^2$ where $0 < r = \frac{2(\omega - a)}{a} \ll 1$ is proportional to the distance of the bif. $T \approx \int_{-\infty}^{\infty} \frac{dx}{r + x^2} = \frac{\pi}{\sqrt{r}}$

5.2.1 Andronov-Hopf bifurcation (2D)

No SSs appear/disappear. Rather the behaviour changes qualitatively for small variations, e.g. decaying oscillation vs. increasing oscillation with limiting amplitude after the bifurcation.

Can occur in phase spaces of any dimension $n \geq 2$.

SUPERCRITICAL HOPF BIFURCATION

Decay rate dependent on control parameter p. Decay becomes slower and slower and finally changes to a growth at a critical p_c (equilibrium becomes unstable). In many cases there results a limit cycle about the former SS. In phase plane: Stable spiral becomes unstable spiral surrounded by a small nearly elliptical limit cycle. Example:

$$\dot{r} = pr - r^3$$

$$\dot{\Theta} = \omega + br^2$$

with control parameter $p,\,\omega$ frequency and b as dependence of frequency on amplitude. Stable spiral for p<0 in origin r=0 and sense of rotation depends on ω . For p=0 the origin is very weakly stable. For p>0 there is an unstable spiral at the origin and a stable limit cycle at $r=\sqrt{p}$.

EV analysis via cartesian coordinates $x_1 = r\cos\Theta$, $x_2 = r\sin\Theta$ yields $\dot{x}_1 = px_1 - \omega x_2$, $\dot{x}_2 = \omega x_1 + px_2$ with the Jacobian $J = \begin{bmatrix} p & -\omega \\ \omega & p \end{bmatrix}$ and $\lambda_{1,2} = p \pm i\omega$. EVs cross the

imaginary axis from left to right as p increases from - to +. **Rules of thumb:** Size of limit cycle grows from 0 proportionally to $\sqrt{p-p_c}$. Frequency of limit cycle $\omega \approx \Im\{\lambda\}$ evaluated at $p=p_c$.

Subcritical Hopf bifurcation (More Dangerous) Stable origin surrounded by unstable limit cycle which collapses at p=0 leading to a repulsive spiral with no saving limit cycle around. Example:

$$\dot{r} = pr + r^3$$

$$\dot{\Theta} = \omega + br^2$$

Cubic term is destabilizing yielding a stable origin and a unstable unstable limit cycle at $r = -\sqrt{-p}$ only existing for p < 0. Unstable for $p \ge 0$ (weakly at p = 0).

DEGENERATE HOPF BIFURCATION

Conj. complex EV pass through the imaginary axis, but do not isolated periodic orbits (limit cycle). Linear system example:

$$\dot{x}_1 = px_1 - x_2$$

$$\dot{x}_2 = x_1 + px_2$$

Nonlinear example, inverted pendulum with Coulomb friction $\ddot{\Theta} + \rho \dot{\Theta} + k \sin \Theta = 0$. For p < 0 stable spiral, a center (no limit cycles) for p = 0 (band of closed orbits) and unstable spiral for p > 0.

5.2.2 Bifurcation of limit cycles

INFINITE PERIOD BIFURCATION Example:

$$\dot{r} = r - r^2$$

$$\dot{\Theta} = p - \Theta^2$$

Two radial equilibrium solutions r=0 and r=1 (attractive). For p<0 no angular eq.point exists so that the limit cycle r=1 is a unique attractor, attracting trajectories from unstable origin. For p=0 a SS at $(r,\Theta)=(1,0)$ appears similar to a saddle point with radial attraction $(x_1\text{-direction})$ and angular saddle behaviour - the time through the bottleneck of p<0 becomes infinite for p=0. For p>0 there are two SSs at $(1,\sqrt{p})$ (attractor) and $(1,-\sqrt{p})$ (repulsor) - looks like pagman.

Saddle-node bifurcation of cycles

Copyright © 2014 Major Ring Ding D
ong feat. Jingjong Ba-Dingdong