

AD-A087 075

TENNESSEE UNIV KNOXVILLE DEPT OF PSYCHOLOGY
ESTIMATION OF THE OPERATING CHARACTERISTICS WHEN THE TEST INFOR--ETC(U)
JUN 80 F SAMEJIMA
RR-80-2

F/G 12/1

N00014-77-C-0360

NL

UNCLASSIFIED

1 pg 2
ADA
001772

RESEARCH REPORT 80-2

LEVEL

12
f

ADA 087075

ESTIMATION OF THE OPERATING CHARACTERISTICS
WHEN THE TEST INFORMATION OF THE OLD TEST
IS NOT CONSTANT I: RATIONALE

FUMIKO SAMEJIMA

DEPARTMENT OF PSYCHOLOGY
UNIVERSITY OF TENNESSEE
KNOXVILLE, TENN. 37916

JUNE, 1980

∅

Prepared under the contract number NOOO14-77-C-360,
NR 150-402 with the
Personnel and Training Research Programs
Psychological Sciences Division
Office of Naval Research

Approved for public release; distribution unlimited.
Reproduction in whole or in part is permitted for
any purpose of the United States Government.

DDC FILE COPY

80 7 23 022

ESTIMATION OF THE OPERATING CHARACTERISTICS
WHEN THE TEST INFORMATION OF THE OLD TEST
IS NOT CONSTANT I: RATIONALE

FUMIKO SAMEJIMA

DEPARTMENT OF PSYCHOLOGY
UNIVERSITY OF TENNESSEE
KNOXVILLE, TENN. 37916

JUNE, 1980

Prepared under the contract number N00014-77-C-360,
NR 150-402 with the
Personnel and Training Research Programs
Psychological Sciences Division
Office of Naval Research

Approved for public release; distribution unlimited.
Reproduction in whole or in part is permitted for
any purpose of the United States Government.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE				READ INSTRUCTIONS BEFORE COMPLETING FORM	
1. REPORT NUMBER 9 Research Report 80-2	12. GOVT ACCESSION NO. AD-A087075	3. RECIPIENT'S CATALOG NUMBER			
4. TITLE (and Subtitle) Estimation of the Operating Characteristics when the Test Information of the Old Test is not Constant. I. Rationale	5. TYPE OF REPORT & PERIOD COVERED Technical Report			6. PERFORMING ORG. REPORT NUMBER	
7. AUTHOR/S 10 Mr. Fumiko Samejima	8. CONTRACT OR GRANT NUMBER/s 15 N00014-77-C-0360	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS PE: 61153N PROJ: RR 042-04 TA: RK 042 04 01 WU: RR 042			11. REPORT DATE 11 16 Jun 80
11. CONTROLLING OFFICE NAME AND ADDRESS Personnel and Training Research Programs Office of Naval Research (Code 458) Arlington, VA 22217	12. NUMBER OF PAGES 99			13. SECURITY CLASS. (of this report) Unclassified	
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) 16 RR 042 04	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE				
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. Reproduction in whole or in part is permitted for any purpose of the United States government.	17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 12 105				
18. SUPPLEMENTARY NOTES 14 RR-80-2!					
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Operating Characteristic Estimation Tailored Testing Latent Trait Theory					
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) (Please see reverse side)					

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Many combinations of a method and an approach for estimating the operating characteristics of the graded item responses, without assuming any mathematical forms, have been produced. In these methods, we need a set of items whose characteristics are known, or Old Test, which has a large, constant amount of test information throughout the interval of latent trait of our interest. In the present paper, the rationale is presented to generalize these methods so that they are made applicable when the test information of the Old Test is not constant. Both the transformation-free character of the maximum likelihood estimator and the method of moments for fitting a polynomial as the least squares solution play important roles in this rationale.

S/N 0102-LF-014-6601

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

ESTIMATION OF THE OPERATING CHARACTERISTICS WHEN THE TEST
INFORMATION OF THE OLD TEST IS NOT CONSTANT I: RATIONALE

ABSTRACT

Many combinations of a method and an approach for estimating the operating characteristics of the graded item responses, without assuming any mathematical forms, have been produced. In these methods, we need a set of items whose characteristics are known, or Old Test, which has a large, constant amount of test information throughout the interval of latent trait of our interest. In the present paper, the rationale is presented to generalize these methods so that they are made applicable when the test information of the Old Test is not constant. Both the transformation-free character of the maximum likelihood estimator and the method of moments for fitting a polynomial as the least squares solution play important roles in this rationale.

The research was conducted at the principal investigator's laboratory, 409 Austin Peay Hall, Department of Psychology, University of Tennessee, Knoxville, Tennessee. The computer programming was greatly assisted by Philip S. Livingston. Other people who helped the author for this research working in her laboratory include Paul S. Changas, Dete Furlan, C. I. Bonnie Chen, Robert L. Trestman, and Pamela Welch.

TABLE OF CONTENTS

	Page
I Introduction	1
II Transformation of Latent Trait	5
III Latent Trait Providing a Constant Test Information for a Specific Test	12
IV Basic Data for Estimating the Operating Characteristics	41
V Conditional Moments of the Maximum Likelihood Estimate $\hat{\tau}$ and the Three Methods of Approximating the Conditional Density $\phi(\tau \hat{\tau})$	70
VI Histogram Ratio and Curve Fitting Approaches	76
VII Conditional P.D.F. Approach	78
VIII Bivariate P.D.F. Approach	81
IX Discussion and Conclusions	84
References	85

I Introduction

There have been produced many combinations of a method and an approach for estimating the operating characteristics of graded item responses (Samejima, 1972), which have two distinguishing characteristics such that:

- (1) No prior mathematical forms are assumed for the resulting operating characteristics,

and:

- (2) A relatively small number of subjects, say, several hundred, are needed for the basic data for the estimation.

(cf. Samejima, 1977c, 1977d, 1978a, 1978b, 1978c, 1978d, 1978e, 1978f.)

We can categorize these methods and approaches as follows.

[A] Approaches:

- (i) Histogram Ratio Approach
- (ii) Curve Fitting Approach
- (iii) Conditional P.D.F. Approach
 - (a) Simple Sum Procedure
 - (b) Weighted Sum Procedure
 - (c) Proportioned Sum Procedure
- (iv) Bivariate P.D.F. Approach

[B] Methods:

- (i) Two-Parameter Beta Method
- (ii) Pearson System Method

(iii) Normal Approach Method

It has been found out that all of these combinations of an approach and a method provide us with good estimations of operating characteristics, although each combination has its own merits as well as its relative shortcomings when compared with the other combinations.

These combinations of a method and an approach have also such additional characteristics that:

- (3) We need a set of items whose operating characteristics are known, in order to estimate the operating characteristics of "unknown" items;

and

- (4) Such a set of "known" items, which is called Old Test, must provide us with a substantially large and constant amount of test information for the interval of latent trait of our interest.

A typical situation which possesses these characteristics in itself is the tailored testing situation, where we have an item pool from which an optimal subset of test items is selected and presented to a specific examinee. When we wish to add new items to the item pool, all we need is to use a fixed amount of test information as the criterion for terminating the presentation of new items to every individual subject (cf. 1977a, 1977b). Thus Old Test in this situation is not a single set of test items, but a combination of as many subtests as the number of examinees who provided us with the basic

data for the estimation of the operating characteristics. We notice that, though these features, (3) and (4), are suitable in the tailored testing situation, they will restrict the applicability of the estimation methods in the paper-and-pencil testing situation, where we are forced to use a fixed set of test items.

In some situations, efforts have been put upon the elimination of feature (3) using equivalent items and Constant Information Model, a new family of models, and so forth, so that we shall be able to use the methods without depending upon the Old Test (cf. Samejima, 1979a, 1979b, 1979c). We note, however, that, even if we may have to depend upon the Old Test in estimating the operating characteristics of "new items," the applicability of the methods will be enhanced enormously under any circumstances, if we can eliminate the requirement of the constant test information, which is stated in (4), i.e., if we can use a set of "known" items whose test information function is not constant for the interval of ability of our interest, as Old Test. Fortunately, this expansion of the methods is relatively easy and straight-forward, at least, in theory.

In the present paper, the rationale behind this generalization of the methods will be presented and discussed. In so doing, the transformation-free character of the maximum likelihood estimator (Samejima, 1969) takes an essential role. The method of moments for fitting a polynomial, which proved to be also the least squares solution (Samejima and Livingston, 1979), plays another important role.

The procedures presented in this paper will be applied in the simulation study in the near future, and will be published as separate papers, in order to investigate how the theory works in practice.

II Transformation of Latent Trait

Let θ be the latent trait, or ability, which assumes any real number, such that

$$(2.1) \quad -\infty < \theta < \infty.$$

Let $g (=1,2,\dots,n)$ be an item, and $x_g (=0,1,\dots,m_g)$ be a graded item response (Samejima, 1969, 1972), which is reduced to the binary item response when $m_g = 1$. The operating characteristic of the graded item response is denoted by $P_{x_g}(\theta)$, which is the conditional probability with which the examinee obtains the item score, or provides us with the graded item response, x_g , given ability θ . Two typical examples of this operating characteristic are those in the normal ogive model and in the logistic model, defined on the graded response level (Samejima, 1972). The item response information function, $I_{x_g}(\theta)$, is defined as the negative of the second partial derivative of the natural logarithm of the operating characteristic, such that

$$(2.2) \quad I_{x_g}(\theta) = - \frac{\partial^2}{\partial \theta^2} \log P_{x_g}(\theta),$$

and the item information function is the regression of the item response information function on ability θ , which can be written as

$$(2.3) \quad I_g(\theta) = \sum_{x_g=0}^{m_g} I_{x_g}(\theta) P_{x_g}(\theta).$$

This item information function can be considered as an index of local

accuracy of estimation of θ provided by the item g , if the item response information function assumes a positive value for every item response x_g (Samejima, 1973b), as is the case of the normal ogive and the logistic models on the graded response level (cf. Samejima, 1969, 1972, 1973a).

Let V be the response pattern of the graded item responses, such that

$$(2.4) \quad V = (x_1, x_2, \dots, x_n)' .$$

The operating characteristic of the response pattern V , which is the conditional probability with which the examinee obtains the response pattern V , given θ , and is denoted by $P_V(\theta)$, can be written, in virtue of the assumption of local independence (Lord and Novick, 1968), by the formula

$$(2.5) \quad P_V(\theta) = \prod_{x_g \in V} P_{x_g}(\theta) ,$$

and the response pattern information function, $I_V(\theta)$, is the negative of the second partial derivative of the natural logarithm of the operating characteristic of the response pattern, such that

$$(2.6) \quad I_V(\theta) = - \frac{\partial^2}{\partial \theta^2} \log P_V(\theta) \\ = \sum_{x_g \in V} I_{x_g}(\theta) .$$

The test information function, $I(\theta)$, is defined as the regression of the response pattern information function on ability θ , such that

$$(2.7) \quad I(\theta) = \sum_V I_V(\theta) P_V(\theta) .$$

It has been shown both on the dichotomous and the graded response levels that this test information function can be written as the sum total of the item information functions, such that

$$(2.8) \quad I(\theta) = \sum_{g=1}^n I_g(\theta)$$

(Birnbaum, 1968; Samejima, 1969). We can prove from (2.3) that the item information function is non-negative in nature, regardless of the values of the item response information functions. By virtue of (2.8), therefore, the test information function, $I(\theta)$, is also non-negative in nature, and is used as an index of local accuracy of estimation of ability θ provided by the test. Note, however, that this index is meaningless unless the item response information function assumes a non-negative value for every item response x_g , since, otherwise, the existence of the unique maximum likelihood estimate is not assured for every possible response pattern, as is the case in the three-parameter normal ogive and logistic models (cf. Samejima, 1969, 1972, 1973b).

Let τ be a function of θ , such that

$$(2.9) \quad \tau = \tau(\theta) ,$$

which is strictly increasing in θ . The operating characteristic, $P_{x_g}^*(\tau)$, of the item response x_g defined for the transformed latent trait τ equals the original operating characteristic, $P_{x_g}(\theta)$, which is obvious from its definition as the conditional probability.

Thus we can write

$$(2.10) \quad P_{x_g}^*(\tau) = P_{x_g}^*[\tau(\theta)] = P_{x_g}(\theta) .$$

From (2.2) and (2.10), we can write for the item response information function, $I_{x_g}^*(\tau)$, such that

$$(2.11) \quad I_{x_g}^*(\tau) = - \frac{\partial^2}{\partial \tau^2} \log P_{x_g}^*(\tau) \\ = I_{x_g}(\theta) \left[\frac{d\theta}{d\tau} \right]^2 - \frac{\partial}{\partial \theta} \log P_{x_g}(\theta) \cdot \frac{d^2 \theta}{d\tau^2} .$$

From this result, we have for the item information function $I_g^*(\tau)$,

$$(2.12) \quad I_g^*(\tau) = \sum_{x_g=0}^{m_g} I_{x_g}^*(\tau) P_{x_g}^*(\tau) \\ = I_g(\theta) \left[\frac{d\theta}{d\tau} \right]^2 ,$$

since

$$(2.13) \quad \sum_{x_g=0}^{m_g} \frac{\partial}{\partial \theta} P_{x_g}(\theta) = 0 .$$

It can be seen that, with the response pattern V , we obtain similar results, such that

$$(2.14) \quad P_V^*(\tau) = P_V^*[\tau(\theta)] = P_V(\theta)$$

for the operating characteristic, $P_V^*(\tau)$, and

$$(2.15) \quad I_V^*(\tau) = I_V(\theta) \left[\frac{d\theta}{d\tau} \right]^2 - \frac{\partial}{\partial\theta} \log P_V(\theta) \cdot \frac{d^2\theta}{d\tau^2}$$

for the information function, $I_V^*(\tau)$. We can write for the test information function $I^*(\tau)$ either from (2.15) or from (2.12) such that

$$(2.16) \quad I^*(\tau) = I(\theta) \left[\frac{d\theta}{d\tau} \right]^2$$

and, since τ is a strictly increasing function of θ , we have

$$(2.17) \quad [I^*(\tau)]^{1/2} = [I(\theta)]^{1/2} \frac{d\theta}{d\tau} .$$

The maximum likelihood estimate, $\hat{\theta}$, of ability θ , which is based upon the response pattern V , can be obtained by using the operating characteristics $P_V(\theta)$ as the likelihood function. In a similar manner, the corresponding maximum likelihood estimate, $\hat{\tau}$, can be obtained by using $P_V^*(\tau)$ as the likelihood function. By virtue of the transformation-free character of the maximum likelihood estimator, however, this second maximum likelihood estimate can also be obtained by the direct transformation of $\hat{\theta}$, such that

$$(2.18) \quad \hat{\tau} = \tau(\hat{\theta})$$

(cf. Samejima, 1969).

Note that (2.18) has a great deal of practical importance, especially when the transformation, $\tau(\cdot)$, is given by a relatively simple formula. Since in most cases there exists no sufficient statistic for the response pattern V , the maximum likelihood estimate, $\hat{\tau}$, must be obtained through a numerical process, using the basic function $A_{x_g}^*(\tau)$, which is defined by

$$(2.19) \quad A_{x_g}^*(\tau) = \frac{\partial}{\partial \tau} \log P_{x_g}^*(\tau)$$

(cf. Samejima, 1969, 1972). Substituting (2.10) into (2.19), we can write

$$(2.20) \quad A_{x_g}^*(\tau) = \frac{d\theta}{d\tau} \frac{\partial}{\partial \theta} \log P_{x_g}(\theta)$$
$$= \frac{d\theta}{d\tau} A_{x_g}(\theta) ,$$

where $A_{x_g}(\theta)$ is the basic function of the item response x_g defined with respect to θ . Since the derivative, $\frac{d\theta}{d\tau}$, is usually of a complicated form, it is not easy to program the process so that we shall be able to obtain the maximum likelihood estimate $\hat{\tau}$ as the solution to the equation,

$$(2.21) \quad \sum_{x_g \in V} A_{x_g}^*(\tau) = 0 .$$

It is much easier, therefore, to obtain the maximum likelihood $\hat{\theta}$

from the basic function, $A_{x_g}(\theta)$, and then obtain τ through
the formula (2.18).

III Latent Trait Providing a Constant Test Information for a Specific Test

Here we assume that the test information function, $I(\theta)$, of a specific test of our interest is not constant for the interval $[\underline{\theta}, \bar{\theta}]$. We attempt to transform the latent trait θ to τ , in such a way that the resultant test information function, $I^*(\tau)$, be constant for the interval, $[\underline{\tau}, \bar{\tau}]$, where

$$(3.1) \quad \begin{cases} \underline{\tau} = \tau(\underline{\theta}) \\ \bar{\tau} = \tau(\bar{\theta}) \end{cases} .$$

Let C^2 denote this desired, constant amount of test information.

From (2.17) we can write

$$(3.2) \quad \frac{d\tau}{d\theta} = C^{-1} [I(\theta)]^{1/2} .$$

Now we obtain from (3.2) for the transformation of θ to τ

$$(3.3) \quad \tau = C^{-1} \int [I(\theta)]^{1/2} d\theta + d ,$$

where d is an arbitrary constant.

Thus it has been shown that, as far as the square root of test information function is integrable, we can always transform the latent trait θ to another scale, τ , by means of (3.3), in such a way that the resultant test information, $I^*(\tau)$, be constant. A problem arises, however, when $[I(\theta)]^{1/2}$ is not integrable, or its integral

provides us with a highly complicated form, as is usually the case. Perhaps the best practical solution for this problem is the use of the method of moments.

It has been shown by Samejima and Livingston (Samejima and Livingston, 1979) that the polynomial provided by the method of moments to approximate any given function is also its least squares solution, which is an appropriate characteristic for the present purpose. It has also been demonstrated that, in fitting such a polynomial, it is important to find an optimal interval of the independent variable for the computation of the moments in order to obtain a well-fitted function. If we succeed in obtaining such a polynomial, we can write

$$(3.4) \quad [I(\theta)]^{1/2} = \sum_{k=0}^m a_k \theta^k ,$$

where k is the degree of the polynomial. Substituting (3.4) into (3.3), we obtain

$$(3.5) \quad \begin{aligned} \tau &= C^{-1} \sum_{k=0}^m a_k (k+1)^{-1} \theta^{k+1} + d \\ &= \sum_{k=0}^{m+1} a_k^* \theta^k , \end{aligned}$$

where

$$(3.6) \quad a_k^* \begin{cases} = d & k = 0 \\ = (C_k)^{-1} a_{k-1} & k = 1, 2, \dots, m+1 . \end{cases}$$

The transformation of θ to τ can be made, therefore, through a polynomial of degree $(m+1)$, which is quite simple.

For the purpose of illustration, we hypothesize two tests, whose test information functions are not constant. Each of these two tests consists of twenty-five graded test items with $m_g = 2$. Since they are both subsets of the thirty-five test items of Old Test used in the previous studies, we shall call them Subtests 1 and 2, respectively. All these test items follow the normal ogive model, whose operating characteristics are given by

$$(3.7) \quad P_{x_g}(\theta) = [2\pi]^{-1/2} \int_{a_g(\theta-b_{x_g})}^{a_g(\theta-b_{x_g+1})} \exp[-u^2/2] du$$

where $a_g (>0)$ is the item discrimination parameter and b_{x_g} is the item response difficulty parameter, which satisfies

$$(3.8) \quad -\infty = b_0 < b_1 \dots < b_{m_g} < b_{m_g+1} = \infty .$$

These item parameters are shown in Tables 3-1 and 3-2.

The item information function, $I_g(\theta)$, for each item of Subtests 1 and 2 was obtained through (3.7), (2.2) and (2.3), and the two test information functions, $I(\theta)$, were obtained through (2.8). Figures 3-1 and 3-2 present the square roots of the test information functions thus obtained by solid curves, for Subtests 1 and 2, respectively.

Taking $\underline{\theta} = -3.0$ and $\bar{\theta} = 3.0$, the moments about the

TABLE 3-1

Item Discrimination Parameters of the Twenty-Five
Items of Each of Subtests 1 and 2

Item g	a _g	Subtest 1	Subtest 2
1	1.8		x
2	1.9		x
3	2.0		x
4	1.5		x
5	1.6		x
6	1.4	x	x
7	1.9	x	x
8	1.8	x	x
9	1.6	x	x
10	2.0	x	x
11	1.5	x	x
12	1.7	x	x
13	1.5	x	
14	1.4	x	
15	2.0	x	
16	1.6	x	
17	1.8	x	
18	1.7	x	
19	1.9	x	
20	1.7	x	
21	1.5	x	
22	1.8	x	
23	1.4	x	
24	1.9	x	x
25	2.0	x	x
26	1.6	x	x
27	1.7	x	x
28	1.4	x	x
29	1.9	x	x
30	1.6	x	x
31	1.5		x
32	1.7		x
33	1.8		x
34	2.0		x
35	1.4		x

TABLE 3-2

Two Item Difficulty Parameters of Each Item of
Subtests 1 and 2

Item g	b ₁	b ₂	Subtest 1	Subtest 2
1	-4.75	-3.75		x
2	-4.50	-3.50		x
3	-4.25	-3.25		x
4	-4.00	-3.00		x
5	-3.75	-2.75		x
6	-3.50	-2.50	x	x
7	-3.00	-2.00	x	x
8	-3.00	-2.00	x	x
9	-2.75	-1.75	x	x
10	-2.50	-1.50	x	x
11	-2.25	-1.25	x	x
12	-2.00	-1.00	x	x
13	-1.75	-0.75	x	
14	-1.50	-0.50	x	
15	-1.25	-0.25	x	
16	-1.00	0.00	x	
17	-0.75	0.25	x	
18	-0.50	0.50	x	
19	-0.25	0.75	x	
20	0.00	1.00	x	
21	0.25	1.25	x	
22	0.50	1.50	x	
23	0.75	1.75	x	x
24	1.00	2.00	x	x
25	1.25	2.25	x	x
26	1.50	2.50	x	x
27	1.75	2.75	x	x
28	2.00	3.00	x	x
29	2.25	3.25	x	x
30	2.50	3.50	x	x
31	2.75	3.75		x
32	3.00	4.00		x
33	3.25	4.25		x
34	3.50	4.50		x
35	3.75	4.75		x

FIGURE 3-1

Square Root of the Test Information Function, $[I(\theta)]^{1/2}$, (Solid Line) and the Polynomial of Degree 3 (Dotted Line), Which Was Fitted by the Method of Moments with $[-3.0, 3.0]$ As the Interval of θ .

Subtest 1

FIGURE 3-1 (Continued): Subtest 1, Polynomial of Degree 4, $[\underline{\theta}, \bar{\theta}] = [-3.0, 3.0]$.

FIGURE 3-1 (Continued): Subtest 1, Polynomial of Degree 5, $[\underline{\theta}, \bar{\theta}] = [-3.0, 3.0]$.

FIGURE 3-1 (Continued): Subtest 1, Polynomial of Degree 6, $[\underline{\theta}, \bar{\theta}] = [-3.0, 3.0]$.

FIGURE 3-1 (Continued): Subtest 1, Polynomial of Degree 7, $[\underline{\theta}, \bar{\theta}] = [-3, 0, 3.0]$.

FIGURE 3-2

Square Root of the Test Information Function, $[I(\theta)]^{1/2}$, (Solid Line) and the Polynomial of Degree 3 (Dotted Line), Which Was Fitted by the Method of Moments with $[-3.0, 3.0]$ As the Interval of θ .

Subtest 2

FIGURE 3-2 (Continued): Subtest 2, Polynomial of Degree 4, $[\underline{\theta}, \bar{\theta}] = [-3.0, 3.0]$.

FIGURE 3-2 (Continued): Subtest 2, Polynomial of Degree 5, $[\underline{\theta}, \bar{\theta}] = [-3, 0, 3, 0]$.

FIGURE 3-2 (Continued): Subtest 2, Polynomial of Degree 6, $[\underline{\theta}, \bar{\theta}] = [-3.0, 3.0]$.

FIGURE 3-2 (Continued): Subtest 2, Polynomial of Degree 7, $[\underline{\theta}, \bar{\theta}] = [-3.0, 3.0]$

origin, μ_r^* , which are given by

$$(3.9) \quad \mu_r^* = \int_{-\theta}^{\theta} \theta^r [I(\theta)]^{1/2} d\theta, \quad r=0,1,2,3,\dots,m,$$

were computed for each of the two subtests, where $m = 7$. Note that the 0-th moment is the area under the curve of $[I(\theta)]^{1/2}$ for the interval of θ , $[-3.0, 3.0]$, which is adjusted to unity. Since the midpoint of the interval, $[-3.0, 3.0]$, is the origin, these moments are also the moments about the midpoint, which we need in applying the method of moments. These moments turned out to be: 1.00000, 0.00768, 2.73116, -0.00547, 13.83270, -0.10637, 84.67312 and -0.92245 for Subtest 1, and: 1.00000, 0.04742, 3.54786, 0.10420, 19.44401, 0.38678, 123.79663 and 1.83934 for Subtest 2. The polynomials of degrees 3, 4, 5, 6 and 7 were obtained using the method of moments, and these five sets of coefficients are presented in Table 3-3 for Subtest 1, and in Table 3-4 for Subtest 2 (cf. Samejima and Livingston, 1979). These five polynomials are shown by dotted curves in Figures 3-1 and 3-2 for Subtests 1 and 2, respectively.

We can see in these ten graphs of Figures 3-1 and 3-2 that, although the polynomials fit fairly well to the square roots of the test information functions, there still is much to be desired, especially for extreme values of θ . For this reason, the same process was repeated for both Subtests 1 and 2, using a different interval for the method of moments, i.e., $\underline{\theta} = -4.0$ and

TABLE 3-3

Coefficients of the Polynomials of Degrees 3 through 7
Approximating $[I(\theta)]^{1/2}$, Which Were Obtained by the
Method of Moments Using $[-3.0, 3.0]$ and $[-4.0, 4.0]$
As the Interval of θ , Respectively.

Subtest 1

		Interval	
		$[-3.0, 3.0]$	$[-4.0, 4.0]$
0	D	4.90665	4.96268
1	G	0.07842	0.00602
2	R	-0.16475	-0.18690
3	.	-0.01243	0.00021
3			
0	D	4.67066	4.73399
1	G	0.07842	0.00602
2	R	0.09745	-0.04398
3	.	-0.01243	0.00021
4	4	-0.03399	-0.01042
4			
0	D	4.67066	4.73399
1	G	0.17323	0.05956
2	R	0.09745	-0.04398
3	.	-0.06159	-0.01541
4	5	-0.03399	-0.01042
5		0.00492	0.00088
5			
0		4.78242	4.72922
1	D	0.17323	0.05956
2	G	-0.16329	-0.03771
3	R	-0.06159	-0.01541
4	.	0.05290	-0.01160
5	6	0.00492	0.00088
6		-0.00708	0.00005
6			
0		4.78242	4.72922
1		0.26677	0.10599
2	D	-0.16329	-0.03771
3	G	-0.15513	-0.04152
4	R	0.05290	-0.01160
5	.	0.02778	0.00447
6	7	-0.00708	0.00005
7		-0.00157	-0.00014

TABLE 3-4

Coefficients of the Polynomials of Degrees 3 through 7
Approximating $[I(\theta)]^{1/2}$, Which Were Obtained by the
Method of Moments Using $[-3.0, 3.0]$ and $[-4.0, 4.0]$
As the Interval of θ , Respectively.

Subtest 2

		Interval	
		$[-3.0, 3.0]$	$[-4.0, 4.0]$
0	D	2.63641	3.02995
1	G	0.22214	0.10837
2	R	0.25995	0.10841
3	.	-0.03114	-0.00924
4	3		
0	D	2.02466	2.27454
1	G	0.22214	0.10837
2	R	0.93968	0.58054
3	.	-0.03114	-0.00924
4	4	-0.08811	-0.03443
5	3		
0	D	2.02466	2.27454
1	G	0.41951	0.24669
2	R	0.93968	0.58054
3	.	-0.13348	-0.04958
4	5	-0.08811	-0.03443
5	5	0.01023	0.00227
6	6		
0	D	2.02136	2.14813
1	G	0.41951	0.24669
2	R	0.94740	0.74646
3	.	-0.13348	-0.04958
4	6	-0.09071	-0.06554
5	6	0.01023	0.00227
6	6	0.00021	0.00143
7	7		
0	D	2.02136	2.14813
1	G	0.60587	0.37926
2	R	0.94740	0.74646
3	.	-0.31984	-0.12415
4	7	-0.09071	-0.06554
5	7	0.05579	0.01252
6	7	0.00021	0.00143
7	7	-0.00313	-0.00040

$\bar{\theta} = 4.0$. The new set of eight moments about the origin, which were computed through (3.9), proved to be: 1.00000, 0.01082, 4.26091, 0.10885, 35.49275, 1.61607, 367.31471 and 24.05220 for Subtest 1, and: 1.00000, 0.02913, 6.01702, 0.03999, 56.94637, -0.09788, 633.40916 and -3.04930 for Subtest 2. The coefficients of the resultant five polynomials are also presented in Table 3-3 for Subtest 1, and in Table 3-4 for Subtest 2. Figures 3-3 and 3-4 present the new polynomials of degree 3, 4, 5, 6 and 7 by dotted curves, together with the square root of the test information function, which is shown by a solid curve, for Subtests 1 and 2, respectively. We can see a substantial improvement in the fit of polynomials for both subtests, and, especially for Subtest 1, the polynomial whose degree is as low as 4 already provides us with an excellent fit.

FIGURE 3-3

Square Root of the Test Information Function, $[I(\theta)]^{1/2}$, (Solid Line) and the Polynomial of Degree 3 (Dotted Line), Which Was Fitted by the Method of Moments with $[-4.0, 4.0]$ As the Interval of θ .

Subtest 1

FIGURE 3-3 (Continued): Subtest 1, Polynomial of Degree 4, $[\underline{\theta}, \bar{\theta}] = [-4.0, 4.0]$.

FIGURE 3-3 (Continued): Subtest 1, Polynomial of Degree 5, $[\underline{\alpha}, \bar{\beta}] = [-4.0, 4.0]$.

FIGURE 3-3 (Continued): Subtest 1, Polynomial of Degree 6, $[\underline{\theta}, \bar{\theta}] = [-4.0, 4.0]$.

FIGURE 3-3 (Continued): Subtest 1, Polynomial of Degree 7, $[\underline{\theta}, \bar{\theta}] = [-4.0, 4.0]$.

FIGURE 3-4

Square Root of the Test Information Function, $[I(\theta)]^{1/2}$, (Solid Line) and the Polynomial of Degree 3 (Dotted Line), Which Was Fitted by the Method of Moments with $[-4.0, 4.0]$ As the Interval of θ .
Subtest 2

FIGURE 3-4 (Continued): Subtest 2, Polynomial of Degree 4, $[\underline{\theta}, \bar{\theta}] = [-4.0, 4.0]$.

FIGURE 3-4 (Continued): Subtest 2, Polynomial of Degree 5, $[\frac{\theta}{\bar{\theta}}] = [-4.0, 4.0]$.

FIGURE 3-4 (Continued): Subtest 2, Polynomial of Degree 6, $[\underline{\theta}, \bar{\theta}] = [-4.0, 4.0]$.

FIGURE 3-4 (Continued): Subtest 2, Polynomial of Degree 7, $[\underline{\theta}, \bar{\theta}] = [-4.0, 4.0]$

IV Basic Data for Estimating the Operating Characteristics

We must administer both Old Test, whose test information function needs not to be constant, and the set of new items, whose operating characteristics are to be estimated, to, say, several hundred examinees, whom we sampled from an appropriate population, as is the case in the previous studies, in which we used an Old Test whose test information function is constant. Let N denote the number of examinees. It is required that the "known" test items of the Old Test follow a model, or models, which provides us with a unique maximum likelihood estimate for every possible response pattern (cf. Samejima, 1969, 1972).

Next, we must obtain the maximum likelihood estimate, $\hat{\theta}$, of ability θ for every individual examinee from his response pattern V on the Old Test of n items. When there exists a simple sufficient statistic for the response pattern, as in the logistic model on the dichotomous response level, this process is relatively simple and straight forward. That is to say, in the logistic model whose item characteristic function, $P_g(\theta)$, or the operating characteristic for $x_g = 1$ on the dichotomous response level, is given by

$$(4.1) \quad P_g(\theta) = [1 + \exp\{-1.7 a_g (\theta - b_g)\}]^{-1},$$

where a_g and b_g are the discrimination and difficulty parameters, respectively, the maximum likelihood estimate is the solution of θ

to the equation

$$(4.2) \quad t(V) = \sum_{g=1}^n a_g p_g(\theta) ,$$

where $t(V)$ is a simple sufficient statistic for the response pattern V which is given by

$$(4.3) \quad t(V) = \sum_{x_g \in V} a_g x_g$$

(cf. Birnbaum, 1968). When there exists no sufficient statistic for the response pattern, as is the case in most situations, the maximum likelihood estimate must be obtained through a more complicated numerical process, using $\left[\sum_{g=1}^n m_g + n \right]$ basic functions (Samejima, 1969, 1972), $A_{x_g}(\theta)$, which is defined by

$$(4.4) \quad A_{x_g}(\theta) = \frac{\partial}{\partial \theta} p_{x_g}(\theta)$$

for each graded item response x_g . Thus the maximum likelihood estimate is the solution to the equation,

$$(4.5) \quad \sum_{x_g \in V} A_{x_g}(\theta) = 0 ,$$

which can be obtained by the aid of an electronic computer using Newton-Raphson Method.

The third step is to compute the test information function, $I(\theta)$, of the Old Test through (2.2), (2.3) and (2.8), and, once it has been done, its square root, $[I(\theta)]^{1/2}$, must be computed.

Then we calculate the moments of $[I(\theta)]^{1/2}$ about the midpoint of the interval, $[\underline{\theta}, \bar{\theta}]$, and apply the method of moments to obtain the polynomial which approximates $[I(\theta)]^{1/2}$. In so doing, it is important to adjust the endpoints of the interval, $\underline{\theta}$ and $\bar{\theta}$, and the degree of the polynomial m , as was illustrated in the preceding chapter, in order to obtain a good approximation. Thus the $(m+1)$ coefficients, a_k ($k=0,1,2,\dots,m$), in (3.4) have been obtained for the Old Test.

After this has been done, set the desired amount of constant test information, C^2 , for the second test information function, $I^*(\tau)$, which is to be used after the transformation of θ to τ . Since the normal approximation to the conditional distribution of $\hat{\tau}$, given τ , plays an essential role in the estimation methods, this constant amount of test information must be substantially large.

Next, we must obtain the coefficients a_k^* ($k=0,1,2,\dots,m,m+1$) in the transformation of θ to τ , which is given by (3.5). First, determine the value of τ corresponding to the origin of θ , and use this as d in (3.5). If we wish to keep the position of the origin unchanged, then set $d = 0$. Using these two values of C (>0) and d thus obtained, and the coefficients a_k 's of the polynomial approximating $[I(\theta)]^{1/2}$, obtain the coefficients, a_k^* , of the polynomial given by (3.5) from (3.6).

The final step is to obtain the maximum likelihood estimate $\hat{\tau}$, of the transformed latent trait τ , on the Old Test, for each

of the N examinees. We may do this through the equation

$$(4.6) \quad \hat{\tau} = \sum_{k=0}^{m+1} \alpha_k^* \hat{\theta}^k,$$

where $\hat{\theta}$ is the maximum likelihood estimate of θ on the Old Test for each individual examinee, which was obtained earlier. This set of the maximum likelihood estimates $\hat{\tau}$ for the total group of N examinees is the basic data for each estimation process of the operating characteristics of the graded item responses, which is to be presented in a later chapter.

For the purpose of illustration, Figures 4-1 and 4-2 present the relative frequency distributions of $\hat{\theta}$ and $\hat{\tau}$ for the five hundred hypothetical subjects, respectively, which were obtained through Subtest 1. This subtest consists of twenty-five graded test items which follow the normal ogive model, with the

discrimination and difficulty parameters shown in Tables 3-1 and 3-2, respectively, as was introduced in the preceding chapter.

The values of $\hat{\theta}$ were obtained by using the basic function defined by (4.4) for each item score x_g , and as the solution to the equation (4.5). The transformation of $\hat{\theta}$ to $\hat{\tau}$ was made through (4.6) with $m = 7$, in which the coefficients, α_k^* 's, were based on the coefficients α_k 's obtained by the method of moments with $\underline{e} = -4.0$ and $\bar{\theta} = 4.0$, and $C = 4.5$. These coefficients, α_k^* 's, are shown in Table 3-3. As we can see in these two figures, the frequency distribution of $\hat{\tau}$ turned out to be more rectangular

FIGURE 4-1

Relative Frequency Distribution of $\hat{\theta}$, Which Was Obtained for the Five Hundred Hypothetical Examinees on Subtest 1, with 0.25 as the Subinterval Width, Together with the Polynomial of Degree 3 Obtained by the Method of Moments to Approximate the Density Function of $\hat{\theta}$.

FIGURE 4-1 (Continued): Subtest 1, $\hat{\theta}$, Polynomial of Degree 4.

FIGURE 4-1 (Continued): Subtest 1, $\hat{\theta}$, Polynomial of Degree 5.

FIGURE 4-1 (Continued): Subtest 1, θ , Polynomial of Degree 6.

FIGURE 4-1 (Continued): Subtest 1, $\hat{\theta}$, Polynomial of Degree 7.

FIGURE 4-2

Relative Frequency Distribution of \hat{t} , Which Was Obtained for the Five Hundred Hypothetical Examinees on Subtest 1, with 0.25 as the Subinterval Width, Together with the Polynomial of Degree 3 Obtained by the Method of Moments to Approximate the Density Function of \hat{t} .

FIGURE 4-2 (Continued): Subtest 1, \hat{t} , Polynomial of Degree 4.

FIGURE 4-2 (Continued): Subtest 1, \hat{t} , Polynomial of Degree 5.

FIGURE 4-2 (Continued): Subtest 1, \hat{t} , Polynomial of Degree 6.

FIGURE 4-2 (Continued): Subtest 1, \hat{t} , Polynomial of Degree 7.

than that of $\hat{\theta}$, although they are similar in shape. To make the difference between the two frequency distributions more visible, five polynomials of degrees 3, 4, 5, 6 and 7 were obtained by the method of moments to approximate each of the density functions of $\hat{\theta}$ and $\hat{\tau}$, and were drawn by solid lines in the five graphs of each of Figures 4-1 and 4-2, along with the corresponding frequency distribution. We note that, except for the polynomial of degree 3 in each figure, the four approximated density functions are very similar to one another, and they are closer to a rectangle for $\hat{\tau}$ than those for $\hat{\theta}$. Since the method of moments was applied for a set of observations, instead of some empirical function, the 0-th through seventh moments about the origin were computed directly from the observations, and they turned out to be 1.00000, -0.00472, 2.19052, -0.04378, 9.17620, -0.52428, 48.47210 and -4.96487 for $\hat{\theta}$, and 1.00000, 0.00479, 2.12231, -0.02483, 8.51515, -0.35195, 42.31180 and -2.77758 for $\hat{\tau}$. The interval of $\hat{\theta}$ used for the method of moments is [-2.9843, 2.9904] and that of $\hat{\tau}$ is [-3.0479, 2.8681]. The coefficients of these ten polynomials are presented in Table 4-1.

Figures 4-3 and 4-4 present corresponding frequency distributions and the polynomials of degrees 3, 4, 5, 6 and 7 obtained through Subtest 2, respectively. This subtest also consists of twenty-five graded test items following the normal ogive model, but ten of the items are different from those which are used in

TABLE 4-1

Coefficients of the Two Sets of Polynomials of Degrees 3 Through 7, Which Were Obtained by the Method of Moments to Approximate the Density Functions of $\hat{\theta}$ and $\hat{\tau}$. Respectively. The Maximum Likelihood Estimation Is Based on Subtest 1.

		Coefficient for $\hat{\theta}$	Coefficient for $\hat{\tau}$
0	D	0.22252	0.21204
1	G	0.00090	-0.00092
2	R	-0.01854	-0.01463
3	.	-0.00023	0.00016
3	3		
0	D	0.19916	0.18470
1	G	0.00074	-0.00198
2	R	0.00765	0.01688
3	.	-0.00019	0.00044
4	4	-0.00342	-0.00424
4	4		
0	D	0.19918	0.18487
1	G	-0.00609	-0.01220
2	R	0.00761	0.01661
3	.	0.00339	0.00594
4	5	-0.00342	-0.00419
5	5	-0.00036	-0.00057
5	5		
0	D	0.18920	0.18183
1	G	-0.00623	-0.01244
2	R	0.03108	0.02397
3	.	0.00348	0.00611
4	6	-0.01131	-0.00674
5	6	-0.00037	-0.00059
6	6	0.00065	0.00022
6	6		
0	D	0.18922	0.18198
1	G	-0.01305	-0.02135
2	R	0.03102	0.02351
3	.	0.01036	0.01535
4	7	-0.01128	-0.00654
5	7	-0.00207	-0.00294
6	7	0.00065	0.00020
7	7	0.00012	0.00017

FIGURE 4-3

Relative Frequency Distribution of $\hat{\theta}$, Which Was Obtained for the Five Hundred Hypothetical Examinees on Subtest 2, with 0.25 as the Subinterval Width, Together with the Polynomial of Degree 3 Obtained by the Method of Moments to Approximate the Density Function of $\hat{\theta}$.

FIGURE 4-3 (Continued): Subtest 2, $\hat{\theta}$, Polynomial of Degree 4.

FIGURE 4-3 (Continued): Subtest 2, $\hat{\theta}$, Polynomial of Degree 5.

FIGURE 4-3 (Continued): Subtest 2, $\hat{\theta}$, Polynomial of Degree 6.

FIGURE 4-3 (Continued): Subtest 2, $\hat{\theta}$, Polynomial of Degree 7.

FIGURE 4-4

Relative Frequency Distribution of \hat{t} , Which Was Obtained for the Five Hundred Hypothetical Examinees on Subtest 2, with 0.25 as the Subinterval Width, Together with the Polynomial of Degree 3 Obtained by the Method of Moments to Approximate the Density Function of \hat{t} .

FIGURE 4-4 (Continued): Subtest 2, \hat{t} , Polynomial of Degree 4.

FIGURE 4-4 (Continued): Subtest 2, \hat{t} , Polynomial of Degree 5.

FIGURE 4-4 (Continued): Subtest 2, \hat{t} , Polynomial of Degree 6.

FIGURE 4-4 (Continued): Subtest 2, $\hat{\tau}$, Polynomial of Degree 7.

Subtest 1, as is shown in Tables 3-1 and 3-2. Just as in the case of Subtest 1, the transformation of $\hat{\theta}$ to $\hat{\tau}$ was made through (4.6) with $m = 7$, and the interval used for obtaining the coefficients a_k 's in the method of moments is $[-4.0, 4.0]$. The coefficients a_k^* 's thus obtained are shown in Table 3-4. The amount of the constant test information for τ is different, however, and we used $C = 3.5$ instead of $C = 4.5$.

It is noted that the two frequency distributions of $\hat{\theta}$, which were obtained through Subtests 1 and 2, respectively, are substantially different from each other, and so is the case with those of $\hat{\tau}$. Although the latter is reasonable because of the difference in the two transformations of $\hat{\theta}$ to $\hat{\tau}$, the two frequency distributions of $\hat{\theta}$ should not be so different since they are both the estimates of the same θ for the same group of five hundred examinees. If we focus our attention on the polynomials approximating the density function of $\hat{\theta}$, however, we notice that the two sets of polynomials of degree 4 or greater are almost identical.

In each of Figures 4-3 and 4-4, the approximated polynomials are very similar, except for the one with degree 3, as was the case with those obtained through Subtest 1. These approximated density functions are steeper for $\hat{\tau}$ than for $\hat{\theta}$, and the difference is greater than in the case of Subtest 1. The 0-th through seventh moments about the origin for $\hat{\theta}$ are 1.00000, 0.00694, 2.31594, 0.07941, 9.95147, 0.41052, 52.81177 and 2.12395, and those for $\hat{\tau}$ are 1.00000,

0.06363, 1.48640, 0.41654, 5.19558, 2.54982, 24.35844 and 16.73911.

The interval of $\hat{\theta}$ used in the method of moments is [-2.9290, 2.9625], and that of $\hat{\tau}$ is [-2.9315, 2.9160]. The coefficients of these polynomials are presented in Table 4-2.

TABLE 4-2

Coefficients of the Two Sets of Polynomials of Degrees 3 Through 7, Which Were Obtained by the Method of Moments to Approximate the Density Functions of $\hat{\theta}$ and $\hat{\tau}$, Respectively. The Maximum Likelihood Estimation Is Based on Subtest 2.

		Coefficient for $\hat{\theta}$	Coefficient for $\hat{\tau}$
0	D	0.22600	0.27318
1	G	-0.00098	-0.00149
2	R	-0.01935	-0.03584
3	.	0.00057	0.00102
0	D	0.19975	0.29301
1	G	0.00445	-0.00185
2	R	0.01073	-0.05903
3	.	-0.00089	0.00112
4	4	-0.00404	0.00317
0	D	0.19932	0.29291
1	G	-0.00026	-0.01481
2	R	0.01141	-0.05887
3	.	0.00164	0.00819
4	5	-0.00415	0.00314
5		-0.00026	-0.00074
0	D	0.19785	0.29859
1	G	0.00039	-0.01503
2	R	0.01496	-0.07282
3	.	0.00120	0.00834
4	6	-0.00538	0.00803
5		-0.00021	-0.00076
6		0.00010	-0.00042
0	D	0.19707	0.29845
1	G	-0.00813	-0.03297
2	R	0.01737	-0.07238
3	.	0.01000	0.02724
4	7	-0.00639	0.00784
5		-0.00244	-0.00563
6		0.00020	-0.00040
7		0.00016	0.00035

V Conditional Moments of the Maximum Likelihood Estimate $\hat{\tau}$ and the Three Methods of Approximating the Conditional Density $\phi(\tau|\hat{\tau})$

Let λ be an estimator of τ , and η be the error of estimation. We assume that the conditional distribution of η , given τ , is normal, with 0 and σ as the two parameters, and λ is given by the simple sum of τ and η , such that

$$(5.1) \quad \lambda = \tau + \eta .$$

We obtain for the first four conditional moments of τ about the origin, given λ ,

$$(5.2) \quad E(\tau|\lambda) = \lambda + \sigma^2 \frac{d}{d\lambda} \log g(\lambda) ,$$

$$(5.3) \quad E(\tau^2|\lambda) = \lambda^2 + 2\lambda\sigma^2 \frac{d}{d\lambda} \log g(\lambda) + \sigma^4 [\frac{d^2}{d\lambda^2} \log g(\lambda) + \{\frac{d}{d\lambda} \log g(\lambda)\}^2] + \sigma^2 ,$$

$$(5.4) \quad E(\tau^3|\lambda) = \sigma^6 [\frac{d^3}{d\lambda^3} \log g(\lambda)] ,$$

and

$$(5.5) \quad E(\tau^4|\lambda) = \sigma^4 [3 + 6\sigma^2 \{\frac{d^2}{d\lambda^2} \log g(\lambda)\} + 3\sigma^4 \{\frac{d^2}{d\lambda^2} \log g(\lambda)\}^2 + \sigma^4 \{\frac{d^4}{d\lambda^4} \log g(\lambda)\}] ,$$

where $g(\lambda)$ is the marginal density function of λ .

By virtue of the fact that $I^*(\tau) = C^2$ and that the asymptotic conditional distribution of the maximum likelihood estimate $\hat{\tau}$, given τ , is the normal distribution with τ and $[I^*(\tau)]^{-1/2}$ as the

parameters (Samejima, 1975), we can write for the first four conditional moments of τ about the origin, given $\hat{\tau}$,

$$(5.6) \quad E(\tau|\hat{\tau}) = \hat{\tau} + C^{-2} \frac{d}{d\hat{\tau}} \log g(\hat{\tau}),$$

$$(5.7) \quad E(\tau^2|\hat{\tau}) = \hat{\tau}^2 + 2\hat{\tau}C^{-2} \frac{d}{d\hat{\tau}} \log g(\hat{\tau}) + C^{-4} [\frac{d^2}{d\hat{\tau}^2} \log g(\hat{\tau}) + \{\frac{d}{d\hat{\tau}} \log g(\hat{\tau})\}^2] + C^{-2},$$

$$(5.8) \quad E(\tau^3|\hat{\tau}) = C^{-6} [\frac{d^3}{d\hat{\tau}^3} \log g(\hat{\tau})],$$

$$(5.9) \quad E(\tau^4|\hat{\tau}) = C^{-4} [3 + 6C^{-2} \{\frac{d^2}{d\hat{\tau}^2} \log g(\hat{\tau})\} + 3C^{-4} \{\frac{d^2}{d\hat{\tau}^2} \log g(\hat{\tau})\}^2 + C^{-4} \{\frac{d^4}{d\hat{\tau}^4} \log g(\hat{\tau})\}],$$

where $g(\hat{\tau})$ is the marginal density function of $\hat{\tau}$.

The formulas (5.6) through (5.9) imply that, since the set of N maximum likelihood estimates, $\hat{\tau}$, is available as our basic data, these conditional moments can solely be estimated from $g(\hat{\tau})$, provided that we can approximate this marginal density function by fitting an appropriate four-time differentiable function to the set of $N \hat{\tau}$'s. This has been done in the previous studies using θ instead of τ , by adopting a polynomial of degree 3 or 4, which was obtained by the method of moments.

After these conditional moments have been obtained, which are functions of $\hat{\tau}$, we can fit some appropriate function for the conditional density function of τ , given $\hat{\tau}$. In the Normal Approach Method, only the first two conditional moments are used,

and the normal density function is fitted for the conditional distribution with $E(\tau|\hat{\tau})$ and $[E(\tau^2|\hat{\tau}) - \{E(\tau|\hat{\tau})\}^2]^{1/2}$ as the parameters. For simplicity, let μ'_1 be the first conditional moment of τ about the origin, and μ_2 be the second conditional moment of τ about the mean, given $\hat{\tau}$, respectively. Thus the approximated conditional density function, $\hat{\phi}(\tau|\hat{\tau})$, in the Normal Approach Method is given by

$$(5.10) \quad \hat{\phi}(\tau|\hat{\tau}) = (2\pi\mu_2)^{-1/2} \exp[-(\tau-\mu'_1)^2/(2\mu_2)] .$$

In the Pearson-System Method, all of the above four conditional moments are used. For simplicity, let μ_3 and μ_4 denote the third and fourth conditional moments of τ about the mean, given $\hat{\tau}$, adding to the symbols, μ'_1 and μ_2 . Pearson's criterion κ (Elderton and Johnson, 1969; Johnson and Kotz, 1970) is defined by

$$(5.11) \quad \kappa = \beta_1(\beta_2+3)^2[4(2\beta_2-3\beta_1-6)(4\beta_2-3\beta_1)]^{-1} ,$$

where β_1 and β_2 are given by

$$(5.12) \quad \beta_1 = \mu_3^2 \mu_2^{-3}$$

and

$$(5.13) \quad \beta_2 = \mu_4 \mu_2^{-2} .$$

Depending upon the value of κ , one of the Pearson type distributions is assigned as the approximation to the conditional distribution of τ , given $\hat{\tau}$. For different values of $\hat{\tau}$, therefore, possibly different

types of Pearson distributions are assigned, and we have varieties of different types of density functions for $\hat{\phi}(\tau|\hat{\tau})$. If, for instance, $\kappa < 0$, then the distribution assigned is the Beta distribution, whose density function is given by the formula

$$(5.14) \quad \hat{\phi}(\tau|\hat{\tau}) = [B(p_{\hat{\tau}}, q_{\hat{\tau}})]^{-1} (\tau - a_{\hat{\tau}})^{p_{\hat{\tau}}-1} (b_{\hat{\tau}} - \tau)^{q_{\hat{\tau}}-1} (b_{\hat{\tau}} - a_{\hat{\tau}})^{-(p_{\hat{\tau}} + q_{\hat{\tau}} - 1)} ,$$

in which the four parameters, $p_{\hat{\tau}}$, $q_{\hat{\tau}}$, $a_{\hat{\tau}}$, and $b_{\hat{\tau}}$, are estimated from the four conditional moments, such that

$$(5.15) \quad p_{\hat{\tau}}, q_{\hat{\tau}} = (r/2)[1 \pm (r+2)\{\beta_1[\beta_1(r+2)^2 + 16(r+1)]^{-1}\}^{1/2}] ,$$

$$(5.16) \quad b_{\hat{\tau}} - a_{\hat{\tau}} = \mu_2^{1/2} [\beta_1(r+2)^2 + 16(r+1)]^{1/2}/2 ,$$

$$(5.17) \quad \hat{a}_{\hat{\tau}} = \mu'_1 - \hat{p}_{\hat{\tau}}(b_{\hat{\tau}} - \hat{a}_{\hat{\tau}})/r ,$$

and

$$(5.18) \quad \hat{b}_{\hat{\tau}} = \mu'_1 + q_{\hat{\tau}}(\hat{b}_{\hat{\tau}} - \hat{a}_{\hat{\tau}})/r ,$$

where r is defined as

$$(5.19) \quad r = 6(\beta_2 - \beta_1 - 1)(6 + 3\beta_1 - 2\beta_2)^{-1} .$$

If $\kappa = 0$, which results from $\beta_1 = 0$ and $\beta_2 < 3$, the distribution is a special case of Beta distribution in which the density function is symmetric, and two parameters, $p_{\hat{\tau}}$ and $q_{\hat{\tau}}$, are equal, such that

$$(5.20) \quad \hat{p}_{\hat{\tau}} = \hat{q}_{\hat{\tau}} = r/2 .$$

If $\kappa = 0$, which is resultant from $\beta_1 = 0$ and $\beta_2 = 3$, then the normal distribution is assigned, whose density function is given by (5.10). If $\kappa > 1$, then the distribution is of Pearson's Type VI, and, if $0 < \kappa < 1$, then the distribution is of Pearson's Type IV, and so forth.

The advantage of Pearson-System Method over the other two methods is that it makes full use of the four estimated conditional moments of τ , given $\hat{\tau}$, without restricting the conditional distributions to a single type. It has its disadvantage, however, since in some cases the estimation of the higher conditional moments is fairly inaccurate for some range of $\hat{\tau}$, and also the estimation of the parameters of some Pearson type distributions is difficult.

In the Two-Parameter Beta Method, the Beta distribution is adopted for the conditional distribution of τ , given $\hat{\tau}$, whose density function is given by (5.14). Two parameters, $a_{\hat{\tau}}$ and $b_{\hat{\tau}}$, are preassigned for each $\hat{\tau}$ in some appropriate method, and the other two parameters, $p_{\hat{\tau}}$ and $q_{\hat{\tau}}$, are estimated by

$$(5.21) \quad \hat{p}_{\hat{\tau}} = M_1^2(1-M_1)M_2^{-1} - M_1$$

and

$$(5.22) \quad \hat{q}_{\hat{\tau}} = M_1(1-M_1)^2M_2^{-1} - (1-M_1) ,$$

where

$$(5.23) \quad M_1 = (\mu'_1 - a_{\hat{\tau}})(b_{\hat{\tau}} - a_{\hat{\tau}})^{-1}$$

and

$$(5.24) \quad M_2 = \mu_2 (b_{\tau}^{\wedge} - a_{\tau}^{\wedge})^{-2}$$

This method has an advantage over the Normal Approach Method in the sense that, unlike the normal density function, the Beta density function provides us with varieties of different curves depending upon the values of the parameters. Its disadvantage is, however, that we have an additional work of finding an appropriate finite interval, $[a_{\tau}^{\wedge}, b_{\tau}^{\wedge}]$.

VI Histogram Ratio and Curve Fitting Approaches

The two approaches discussed here, as well as Conditional P.D.F. Approach, make full use of the approximated density function, $\hat{g}(\hat{\tau})$, which is obtained on the entire set of $N \hat{\tau}$'s. The conditional moments of τ , given $\hat{\tau}$, are obtained by (5.6) through (5.9), using this approximated density function for $g(\tau)$.

We calibrate a certain number of τ for each of the $N \hat{\tau}$'s, through the Monte Carlo method, in accordance with the approximated conditional density function of τ , given $\hat{\tau}$. This approximated density function, $\hat{\phi}(\tau|\hat{\tau})$, can be a normal density function, a Beta density function, or one of the Pearson System density functions, depending upon which of the three methods, i.e., Normal Approach Method, Two-Parameter Beta Method and Pearson-System Method, we choose. Let $\tilde{\tau}$ denote these calibrated τ 's, and v be the number of $\tilde{\tau}$'s calibrated for each $\hat{\tau}_i$ of examinee i . Thus we obtain (vxN) $\tilde{\tau}$'s in total. We classify these $\tilde{\tau}$'s into (m_h+1) item score groups, where h is a new test item whose operating characteristics are to be estimated, depending upon the item score x_h ($=0,1,\dots,m_h$) the specific examinee obtained for item h . Then each $\tilde{\tau}$ is transformed to $\tilde{\theta}$, through

$$(6.1) \quad \theta = \tau^{-1}[\tau(\theta)] .$$

When $\tau(\cdot)$ is given by the polynomial given by (3.5), for example, this process can easily be performed by Newton-Raphson Method.

In the Histogram Ratio Approach, these $(v \times N)$ $\hat{\theta}$'s are categorized into intervals of small, equal widths. The ratio of the frequency of $\hat{\theta}$'s, which belong to examinees whose item score to item h is x_h , to the total frequency, in each subinterval of v , provides us with the estimated operating characteristic, $\hat{P}_{x_h}(\theta)$. Let $H_{x_h}(\hat{\theta}_{\epsilon s})$ denote the frequency of $\hat{\theta}$'s, which belong to the item score group x_h , for the subinterval s , whose midpoint is θ_s . Then we can write

$$(6.2) \quad \hat{P}_{x_h}(\theta_s) = H_{x_h}(\hat{\theta}_{\epsilon s}) \left[\sum_{j=0}^{m_h} H_j(\hat{\theta}_{\epsilon s}) \right]^{-1}, \quad x_h = 0, 1, \dots, m_h.$$

In order to obtain a smooth curve for this estimated operating characteristic, it is advisable to use a fairly large number for v , and a small width for the subinterval s of θ .

In the Curve Fitting Approach, a polynomial of a certain degree is fitted by the method of moments, to the subset of $\tilde{\theta}$'s for each item score group x_h . Then the ratio of the resultant polynomial to the sum of $(m_h + 1)$ such polynomials is taken, and this ratio provides us with the estimated operating characteristic of the item response x_h . Let $n_{x_h}(\theta)$ be such a polynomial for the item score group x_h . We obtain for the estimated operating characteristic, $\hat{P}_{x_h}(\theta)$, such that

$$(6.3) \quad \hat{P}_{x_h}(\theta) = n_{x_h}(\theta) \left[\sum_{j=0}^{m_h} n_j(\theta) \right]^{-1}, \quad x_h = 0, 1, \dots, m_h.$$

VII Conditional P.D.F. Approach

In this approach, we specify the exact function of the approximated conditional density, $\hat{\phi}(\tau|\hat{\tau})$, using the parameters estimated from the approximated density function $\hat{g}(\hat{\tau})$, (cf. Chapter 5). Again, this approximation to the conditional density function, $\hat{\phi}(\tau|\hat{\tau})$, can be a normal density function, a Beta density function, or one of the Pearson System density functions, depending upon which one of the Normal Approach Method, the Two-Parameter Beta Method, and the Pearson-System Method we choose.

In the Simple Sum Procedure, these specified, approximated conditional density functions are categorized into the (m_h+1) item score groups for a new item h , whose operating characteristics are to be estimated, depending upon the item score x_h ($=0,1,2,\dots,m_h$) that each examinee has obtained. By virtue of (2.10), the transformation of τ to θ is made through (6.1), and the estimated operating characteristic, $\hat{P}_{x_h}(\theta)$, is given by

$$(7.1) \quad \hat{P}_{x_h}(\theta) = \sum_{i \in x_h} \hat{\phi}(\tau|\hat{\tau}_i) \left[\sum_{i=1}^N \hat{\phi}(\tau|\hat{\tau}_i) \right]^{-1}, \quad x_h = 0,1,\dots,m_h,$$

where i denotes an individual examinee and $\hat{\tau}_i$ is the maximum likelihood estimate of τ for the individual i .

In the Weighted Sum Procedure, the estimated operating characteristic, $\hat{P}_{x_h}(\theta)$, of the item response x_h can be written as

$$(7.2) \quad \hat{P}_{x_h} = \sum_{i \in x_h} w(\hat{\tau}_i) \hat{\phi}(\tau|\hat{\tau}_i) \left[\sum_{i=1}^N w(\hat{\tau}_i) \hat{\phi}(\tau|\hat{\tau}_i) \right]^{-1}, \\ x_h = 0,1,\dots,m_h,$$

where $w(\hat{\tau}_i)$ is an appropriate weight assigned to the maximum likelihood estimate $\hat{\tau}$ for the individual examinee i . Simple Sum Procedure can be considered, therefore, as a special case of the Weighted Sum Procedure, in which $w(\hat{\tau}_i) = 1$ for all the individual examinees. Another example of such a weight, $w(\hat{\tau}_i)$, is the area under the approximated density function, $\hat{g}(\hat{\tau})$, for the interval of $\hat{\tau}$ which starts from the midway between $\hat{\tau}_i$ and the lower adjacent $\hat{\tau}_i$ and ends with the midway between $\hat{\tau}_i$ and the upper adjacent $\hat{\tau}_i$. The transformation of τ to θ in (7.2) can be made through (6.1), as in the Simple Sum Procedure.

We have a somewhat different rationale behind the Proportioned Sum Procedure. Let $p(i \in x_h)$ be the probability with which examinee i belongs to the item score group x_h . We can write for the estimated operating characteristic, $\hat{P}_{x_h}(\theta)$, of the item response x_h to a new item h

$$(7.3) \quad \hat{P}_{x_h}(\theta) = \sum_{i=1}^N \hat{p}(i \in x_h) \hat{\phi}(\tau | \hat{\tau}_i) \left[\sum_{i=1}^N \hat{\phi}(\tau | \hat{\tau}_i) \right]^{-1},$$

$$x_h = 0, 1, \dots, m_h$$

where $\hat{p}(i \in x_h)$ is the estimate of the probability $p(i \in x_h)$, which satisfies

$$(7.4) \quad \sum_{\substack{x_h=0 \\ x_h=0}}^{m_h} \hat{p}(i \in x_h) = \sum_{\substack{x_h=0 \\ x_h=0}}^{m_h} p(i \in x_h) = 1.$$

One example of this proportional weight, $\hat{p}(i \in x_h)$, is the proportion of examinees who belong to the item score group x_h within a specified

interval of $\hat{\tau}$ for which $\hat{\tau}_i$ is the midpoint. The transformation of τ to θ in (7.3) is, again, made through (6.1).

VIII Bivariate P.D.F. Approach

In contrast to the other three approaches, Bivariate P.D.F. Approach makes use of the estimated bivariate density function, rather than the estimated conditional density function, $\hat{\phi}(\tau|\hat{\tau})$. Let $\xi(\hat{\tau}, \tau)$ denote the bivariate density function of $\hat{\tau}$ and τ . We can write

$$(8.1) \quad \xi(\hat{\tau}, \tau) = \phi(\tau|\hat{\tau}) g(\hat{\tau}).$$

We classify the set of $N \hat{\tau}_i$'s into (m_h+1) item score categories, depending upon the item score x_h ($=0, 1, \dots, m_h$) the examinee i obtained for a new test item h , for which the operating characteristics are to be estimated.

The method of moments is applied for each of these (m_h+1) subsets of $\hat{\tau}$, and the density function, $g_{x_h}(\hat{\tau})$, is estimated for each subgroup. The conditional moments of τ , given $\hat{\tau}$, are also obtained for separate subgroups, using the formulas (5.6) through (5.9). Based on these estimated conditional moments, the parameters of a specific density function, which is adopted for $\phi(\tau|\hat{\tau})$, are obtained for each subgroup x_h . The choice of $\hat{\phi}(\tau|\hat{\tau})$ depends upon which of the three methods, i.e., Normal Approach Method, Two-Parameter Beta Method and Pearson-System Method, is taken. The bivariate density function of $\hat{\tau}$ and τ is obtained from (8.1) for each of the (m_h+1) subgroups. Let $\hat{\xi}_{x_h}(\hat{\tau}, \tau)$ denote the estimated bivariate density function of $\hat{\tau}$ and τ for the subgroup

x_h . The estimated operating characteristic, $\hat{P}_{x_h}(\theta)$, is given by

$$(8.2) \quad \hat{P}_{x_h}(\theta) = \int_{-\infty}^{\infty} \hat{\xi}_{x_h}(\hat{\tau}, \tau) d\hat{\tau} \left[\sum_{j=0}^{m_h} \int_{-\infty}^{\infty} \hat{\xi}_j(\hat{\tau}, \tau) d\hat{\tau} \right]^{-1}, \quad x_h = 0, 1, \dots, m_h.$$

The transformation of τ to θ in (8.2) is again made through (6.1).

There is a somewhat different approach which also belongs to the Bivariate P.D.F. Approach (Samejima, 1977c), which is called Normal Approximation Method. In this method, the estimation of the density function, $g(\hat{\tau})$, is not necessary. We approximate $\hat{\xi}_{x_h}(\hat{\tau}, \tau)$, bivariate density function of $\hat{\tau}$ and τ for each item score group x_h , by a bivariate normal density function (e.g., Anderson, 1958), whose parameters are estimated from our observations. The regression of τ on $\hat{\tau}$ is estimated by the least squares method, which provides us with

$$(8.3) \quad \hat{E}(\tau | \hat{\tau}) = [1 - C^{-2} \{Var.(\hat{\tau})\}^{-1}] \hat{\tau} + C^{-2} [Var.(\hat{\tau})]^{-1} E(\hat{\tau}),$$

where $E(\hat{\tau})$ and $Var.(\hat{\tau})$ denote the expectation and the variance of $\hat{\tau}$ for the subgroup x_h . The conditional variance of τ , given $\hat{\tau}$, is obtained by

$$(8.4) \quad Var.(\tau | \hat{\tau}) = C^{-2} [1 - C^{-2} \{Var.(\hat{\tau})\}^{-1}].$$

The estimated operating characteristic, $\hat{P}_{x_h}(\theta)$, can be obtained either through the Monte Carlo Calibration of $\hat{\tau}$ and the procedure similar to the Histogram Ratio Approach or the Curve Fitting Approach, or by the ratio of the integral of the bivariate density function for

the subgroup x_h to the sum of the (m_h+1) integrals of the estimated bivariate density functions, as shown in (8.2).

IX Discussion and Conclusions

The rationale behind the methods and approaches for estimating the operating characteristics of the graded item responses when the test information function of the Old Test is not constant, and the outline of their procedures, are presented. It has been shown that the generalization of our old methods and approaches to the above situation is relatively simple and straightforward, at least, in theory. Since the elimination of the restriction of the constant amount of test information will provide us with a great deal of benefit in the applicability of the methods and approaches, especially in the paper-and-pencil situation, this generalization of the methods and approaches may make a great deal of contribution to researchers in psychometrics and applied psychological measurement.

We need carefully designed simulation studies, however, before using these methods and approaches for empirical data, and to observe how these procedures work. It is anticipated that, for the range of θ where the test information function, $I(\theta)$, of the Old Test assumes low values, the estimation of the operating characteristics is less accurate, compared with the one which is based upon the Old Test having a constant amount of test information. It may be especially so for both lower and higher extreme values of θ when the test information function is of bell shape, as it is for Subtest 1, which was introduced in earlier chapters. Comparison of the results using different types of test information functions, as those of Subtests 1 and 2 in the present paper, will be meaningful.

REFERENCES

- [1] Anderson, T. W. An Introduction to Multivariate Statistical Analysis. New York: Wiley, 1958.
- [2] Birnbaum, A. Some latent trait models and their use in inferring an Examinee's Ability. In F. M. Lord & M. R. Novick. (Eds.), Statistical theories of mental test scores. Reading, Mass.: Addison-Wesley, 1968.
- [3] Elderton, W. P. and N. L. Johnson. Systems of frequency curves. Cambridge University Press, 1969.
- [4] Johnson, N. L. and S. Kotz. Continuous univariate distributions - I and II. Houghton Mifflin, 1970.
- [5] Lord, F. M. and M. R. Novick. Statistical theories of mental test scores. Reading, Mass.: Addison-Wesley, 1968.
- [6] Samejima, F. Estimation of latent ability using a response pattern of graded scores. Psychometrika Monograph, No. 17, 1969.
- [7] Samejima, F. A general model for free-response data. Psychometrika Monograph, No. 18, 1972
- [8] Samejima, F. Homogeneous case of the continuous response model. Psychometrika, 1973, 38, 203-219(a).
- [9] Samejima, F. A comment on Birnbaum's three-parameter logistic model in the latent theory. Psychometrika, 1973, 38, 221-233(b).
- [10] Samejima, F. Graded response model of the latent trait theory and tailored testing. Proceedings of the First Conference on Computerized Adaptive Testing, 1975, Civil Service Commission and Office of Naval Research, 1975, pages 5-17.
- [11] Samejima, F. A use of the information function in tailored testing. Applied Psychological Measurement, 1, 1977, pages 233-247(a).
- [12] Samejima, F. Applications of graded response models: The promise of the future. Proceedings on the Conference on Computerized Adaptative Testing. Office of Naval Research and the Air Force Office of Scientific Research with the cooperation of the Department of Psychology, University of Minnesota, 1977, Minneapolis, Minnesota(b).

REFERENCES (Continued)

- [13] Samejima, F. A method of estimating item characteristic functions using the maximum likelihood estimate of ability. Psychometrika, 42, 1977, pages 163-191(c).
- [14] Samejima, F. Estimation of the operating characteristics of item response categories I: Introduction to the Two-Parameter Beta Method. Office of Naval Research, Research Report 77-1, 1977d.
- [15] Samejima, F. Estimation of the operating characteristics of item response categories II: Further development of the Two-Parameter Beta Method. Office of Naval Research, Research Report 78-1, 1978a.
- [16] Samejima, F. Estimation of the operating characteristics of item response categories III: The Normal Approach Method and the Pearson System Method. Office of Naval Research, Research Report 78-2, 1978b.
- [17] Samejima, F. Estimation of the operating characteristics of item response categories IV: Comparison of the different methods. Office of Naval Research, Research Report 78-3, 1978c.
- [18] Samejima, F. Estimation of the operating characteristics of item response categories V: Weighted Sum Procedure in the Conditional P.D.F. Approach. Office of Naval Research, Research Report 78-4, 1978d.
- [19] Samejima, F. Estimation of the operating characteristics of item response categories VI: Proportioned Sum Procedure in the conditional P.D.F. Approach. Office of Naval Research, Research Report 78-5, 1978e.
- [20] Samejima, F. Estimation of the operating characteristics of item response categories VII: Bivariate P.D.F. Approach with Normal Approach Method. Office of Naval Research, Research Report 78-6, 1978f.
- [21] Samejima, F. Constant information model: A new, promising item characteristic function. Office of Naval Research, Research Report 79-1, 1979a.

REFERENCES (Continued)

- [22] Samejima, F. Convergence of the conditional distribution of the maximum likelihood estimate, given latent trait, to the asymptotic normality: Observations made through the constant information model. Office of Naval Research, Research Report 79-3, 1979b.
- [23] Samejima, F. A new family of models for the multiple-choice item. Office of Naval Research, Research Report 79-4, 1979c.
- [24] Samejima, F. and P. Livingston. Method of moments as the least squares solution for fitting a polynomial. Office of Naval Research, Research Report 79-2, 1979.

DISTRIBUTION LIST

Navy

- 1 Dr. Jack R. Borsting
Provost & Academic Dean
U.S. Naval Postgraduate School
Monterey, CA 93940
- 1 Dr. Robert Breaux
Code N-711
NAVTRAEEQUIPCEN
Orlando, FL 32813
- 1 COMNAVMILPERSONSCOM (N-6C)
Dept. of Navy
Washington, DC 20370
- 1 Dr. Larry Dean, LT, MSC, USN
Psychology Department
Naval Submarine Medical Research Lab
Naval Submarine Base
Groton, CT 06340
- 1 Dr. Richard Elster
Department of Administrative Sciences
Naval Postgraduate School
Monterey, CA 93940
- 1 DR. PAT FEDERICO
NAVY PERSONNEL R&D CENTER
SAN DIEGO, CA 92152
- 1 Mr. Paul Foley
Navy Personnel R&D Center
San Diego, CA 92152
- 1 Dr. John Ford
Navy Personnel R&D Center
San Diego, CA 92152
- 1 Dr. Patrick R. Harrison
Psychology Course Director
LEADERSHIP & LAW DEPT. (7b)
DIV. OF PROFESSIONAL DEVELOPMENT
U.S. NAVAL ACADEMY
ANNAPOLIS, MD 21402
- 1 Dr. Norman J. Kerr
Chief of Naval Technical Training
Naval Air Station Memphis (75)
Millington, TN 38054

Navy

- 1 Dr. William L. Maloy
Principal Civilian Advisor for
Education and Training
Naval Training Command, Code 00A
Pensacola, FL 32508
- 1 Dr. Kneale Marshall
Scientific Advisor to DCNO(MPT)
OP01T
Washington DC 20370
- 1 CAPT Richard L. Martin, USN
Prospective Commanding Officer
USS Carl Vinson (CVN-70)
Newport News Shipbuilding and Drydock Co
Newport News, VA 23607
- 1 Dr. James McBride
Navy Personnel R&D Center
San Diego, CA 92152
- 1 Dr. George Moeller
Head, Human Factors Dept.
Naval Submarine Medical Research Lab
Groton, CN 06340
- 1 Library
Naval Health Research Center
P. O. Box 85122
San Diego, CA 92138
- 1 Naval Medical R&D Command
Code 44
National Naval Medical Center
Bethesda, MD 20014
- 1 Dr. Ted M. I. Yellen
Technical Information Office, Code 201
NAVY PERSONNEL R&D CENTER
SAN DIEGO, CA 92152
- 1 Library, Code P201L
Navy Personnel R&D Center
San Diego, CA 92152
- 1 Technical Director
Navy Personnel R&D Center
San Diego, CA 92152

Navy

6 Commanding Officer
Naval Research Laboratory
Code 2627
Washington, DC 20390

1 Psychologist
ONR Branch Office
Bldg 114, Section D
666 Summer Street
Boston, MA 02210

1 Psychologist
ONR Branch Office
536 S. Clark Street
Chicago, IL 60605

1 Office of Naval Research
Code 437
800 N. Quincy Street
Arlington, VA 22217

5 Personnel & Training Research Programs
(Code 458)
Office of Naval Research
Arlington, VA 22217

1 Psychologist
ONR Branch Office
1030 East Green Street
Pasadena, CA 91101

1 Office of the Chief of Naval Operations
Research, Development, and Studies Branch
(OP-102)
Washington, DC 20350

1 Captain Donald F. Parker, USN
Commanding Officer
Navy Personnel R&D Center
San Diego, CA 92152

1 LT Frank C. Petho, MSC, USN (Pi.D)
Code L51
Naval Aerospace Medical Research Laboratory
Pensacola, FL 32508

Navy

1 Director, Research & Analysis Division
Plans and Policy Department
Navy Recruiting Command
4015 Wilson Boulevard
Arlington, VA 22203

1 Dr. Bernard Rimland (03B)
Navy Personnel R&D Center
San Diego, CA 92152

1 Mr. Arnold Rubenstein
Naval Personnel Support Technology
Naval Material Command (08T244)
Room 1044, Crystal Plaza #5
2221 Jefferson Davis Highway
Arlington, VA 20360

1 Dr. Worth Scanland
Chief of Naval Education and Training
Code N-5
NAS, Pensacola, FL 32508

1 Dr. Robert G. Smith
Office of Chief of Naval Operations
OP-987H
Washington, DC 20350

1 Dr. Alfred F. Smode
Training Analysis & Evaluation Group
(TAEG)
Dept. of the Navy
Orlando, FL 32813

1 Dr. Richard Sorensen
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. Ronald Weitzman
Code 54 WZ
Department of Administrative Sciences
U. S. Naval Postgraduate School
Monterey, CA 93740

1 Dr. Robert Wisher
Code 309
Navy Personnel R&D Center
San Diego, CA 92152

Navy

- 1 DR. MARTIN F. WISKOFF
NAVY PERSONNEL R& D CENTER
SAN DIEGO, CA 92152
- 1 Mr John H. Wolfe
Code P310
U. S. Navy Personnel Research and
Development Center
San Diego, CA 92152

Army

- 1 Technical Director
U. S. Army Research Institute for the
Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333
- 1 HQ USAREUE & 7th Army
ODCSOPS
USAAREUE Director of GED
APO New York 09403
- 1 Col Gary W. Bloedorn
US Army TRADOC Systems Analysis Activity
Attn: ATAA-TH
WSMR, NM 88002
- 1 DR. RALPH DUSEK
U.S. ARMY RESEARCH INSTITUTE
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333
- 1 Dr. Myron Fischl
U.S. Army Research Institute for the
Social and Behavioral Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333
- 1 Dr. Milton S. Katz
Training Technical Area
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333
- 1 Dr. Harold F. O'Neil, Jr.
Attn: PERI-OK
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333
- 1 LTC Michael Plummer
Chief, Leadership & Organizational
Effectiveness Division
Office of the Deputy Chief of Staff
for Personnel
Dept. of the Army
Pentagon, Washington DC 20301

AD-A087 075

TENNESSEE UNIV KNOXVILLE DEPT OF PSYCHOLOGY
ESTIMATION OF THE OPERATING CHARACTERISTICS WHEN THE TEST INFOR--ETC(U)
JUN 80 F SAMEJIMA

N00014-77-C-0360

NL

UNCLASSIFIED

RR-80-2

24F2
AD 4
G-17%

END
DATE FILMED
JUN 80
DTIC

Army

- 1 DR. JAMES L. RANEY
U.S. ARMY RESEARCH INSTITUTE
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333
- 1 Mr. Robert Ross
U.S. Army Research Institute for the
Social and Behavioral Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333
- 1 Dr. Robert Sasmor
U. S. Army Research Institute for the
Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333
- 1 Commandant
US Army Institute of Administration
Attn: Dr. Sherrill
FT Benjamin Harrison, IN 46256
- 1 Dr. Frederick Steinheiser
U. S. Army Reserch Institute
5001 Eisenhower Avenue
Alexandria, VA 22333
- 1 Dr. Joseph Ward
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Air Force

- 1 Air Force Human Resources Lab
AFHRL/MPD
Brooks AFB, TX 78235
- 1 U.S. Air Force Office of Scientific
Research
Life Sciences Directorate, NL
Bolling Air Force Base
Washington, DC 20332
- 1 Air University Library
AUL/LSE 76/443
Maxwell AFB, AL 36112
- 1 Dr. Earl A. Alluisi
HQ, AFHRL (AFSC)
Brooks AFB, TX 78235
- 1 Dr. Genevieve Haddad
Program Manager
Life Sciences Directorate
AFOSR
Bolling AFB, DC 20332
- 1 Research and Measurment Division
Research Branch, AFMPC/MPCYPR
Randolph AFB, TX 78148
- 1 Dr. Malcolm Ree
AFHRL/MP
Brooks AFB, TX 78235
- 1 Dr. Marty Rockway (AFHRL/IT)
Lowry AFB
Colorado 80230
- 1 Dr. Frank Schufletowski
U.S. Air Force
ATC/XPTD
Randolph AFB, TX 78148
- 1 Jack A. Thorpe, Maj., USAF
Naval War College
Providence, RI 02846
- 1 Dr. Joe Ward, Jr.
AFHRL/MPMD
Brooks AFB, TX 78235

Marines

- 1 Dr. H. William Greenup
Education Advisor (E031)
Education Center, MCDEC
Quantico, VA 22134
- 1 Major Howard Langdon
Headquarters, Marine Corps
OTII 31
Arlington Annex
Columbia Pike at Arlington Ridge Rd.
Arlington, VA 20380
- 1 Director, Office of Manpower Utilization
HQ, Marine Corps (MPU)
BCB, Bldg. 2009
Quantico, VA 22134
- 1 Headquarters, U. S. Marine Corps
Code MPI-20
Washington, DC 20380
- 1 Special Assistant for Marine
Corps Matters
Code 100M
Office of Naval Research
800 N. Quincy St.
Arlington, VA 22217
- 1 Major Michael L. Patrow, USMC
Headquarters, Marine Corps
(Code MPI-20)
Washington, DC 20380
- 1 DR. A.L. SLAFKOSKY
SCIENTIFIC ADVISOR (CODE RD-1)
HQ, U.S. MARINE CORPS
WASHINGTON, DC 20380

CoastGuard

- 1 Chief, Psychological Reserch Branch
U. S. Coast Guard (G-P-1/2/TP42)
Washington, DC 20593
- 1 Mr. Thomas A. Warm
U. S. Coast Guard Institute
P. O. Substation 18
Oklahoma City, OK 73169

Other DoD

- 12 Defense Documentation Center
Cameron Station, Bldg. 5
Alexandria, VA 22314
Attn: TC
- 1 Dr. Dexter Fletcher
ADVANCED RESEARCH PROJECTS AGENCY
1400 WILSON BLVD.
ARLINGTON, VA 22209
- 1 Dr. William Graham
Testing Directorate
MEPCOM/MEPCT-P
Ft. Sheridan, IL 60037
- 1 Director, Research and Data
OASD(MRA&L)
3B919, The Pentagon
Washington, DC 20301
- 1 Military Assistant for Training and
Personnel Technology
Office of the Under Secretary of Defense
for Research & Engineering
Room 3D129, The Pentagon
Washington, DC 20301
- 1 MAJOR Wayne Sellman, USAF
Office of the Assistant Secretary
of Defense (MRA&L)
3B930 The Pentagon
Washington, DC 20301

Civil Govt

- 1 Dr. Susan Chipman
Learning and Development
National Institute of Education
1200 19th Street NW
Washington, DC 20208
- 1 Dr. Lorraine D. Eyde
Personnel R&D Center
Office of Personnel Management of USA
1900 EStreet NW
Washington, D.C. 20415
- 1 Dr. Jerry Lehnus
REGIONAL PSYCHOLOGIST
U.S. Office of Personnel Management
230 S. DEARBORN STREET
CHICAGO, IL 60604
- 1 Dr. Andrew R. Molnar
Science Education Dev.
and Research
National Science Foundation
Washington, DC 20550
- 1 Personnel R&D Center
Office of Personnel Managment
1900 E Street NW
Washington, DC 20415
- 1 Dr. H. Wallace Sinaiko
Program Director
Manpower Research and Advisory Services
Smithsonian Institution
801 North Pitt Street
Alexandria, VA 22314
- 1 Dr. Vern W. Urry
Personnel R&D Center
Office of Personnel Management
1900 E Street NW
Washington, DC 20415
- 1 Dr. Joseph L. Young, Director
Memory & Cognitive Processes
National Science Foundation
Washington, DC 20550

Non Govt

- 1 Dr. Erling B. Andersen
Department of Statistics
Studiestraede 6
1455 Copenhagen
DENMARK
- 1 1 psychological research unit
Dept. of Defense (Army Office)
Campbell Park Offices
Canberra ACT 2600, Australia
- 1 Dr. Jackson Beatty
Department of Psychology
University of California
Los Angeles, CA 90024
- 1 Dr. Isaac Bejar
Educational Testing Service
Princeton, NJ 08450
- 1 Dr. John Bergan
School of Education
University of Arizona
Tuscon AZ 85721
- 1 Dr. Werner Birke
DezWPs im Streitkraefteamt
Postfach 20 50 03
D-5300 Bonn 2
WEST GERMANY
- 1 Dr. R. Darrel Bock
Department of Education
University of Chicago
Chicago, IL 60637
- 1 Dr. Nicholas A. Bond
Dept. of Psychology
Sacramento State College
600 Jay Street
Sacramento, CA 95819
- 1 Dr. Robert Brennan
American College Testing Programs
P. O. Box 168
Iowa City, IA 52240

Non Govt

- 1 DR. C. VICTOR BUNDERSON
WICAT INC.
UNIVERSITY PLAZA, SUITE 10
1160 SO. STATE ST.
OREM, UT 84057
- 1 Dr. Anthony Cancelli
School of Education
University of Arizona
Tuscon, AZ 85721
- 1 Dr. John B. Carroll
Psychometric Lab
Univ. of No. Carolina
Davie Hall 013A
Chapel Hill, NC 27514
- 1 Charles Myers Library
Livingstone House
Livingstone Road
Stratford
London E15 2LJ
ENGLAND
- 1 Dr. Kenneth E. Clark
College of Arts & Sciences
University of Rochester
River Campus Station
Rochester, NY 14627
- 1 Dr. Norman Cliff
Dept. of Psychology
Univ. of So. California
University Park
Los Angeles, CA 90007
- 1 Dr. William E. Coffman
Director, Iowa Testing Programs
334 Lindquist Center
University of Iowa
Iowa City, IA 52242
- 1 Dr. Meredith P. Crawford
American Psychological Association
1200 17th Street, N.W.
Washington, DC 20036

Non Govt

- 1 Dr. Hans Crombag
Education Research Center
University of Leyden
Boerhaavelaan 2
2334 EN Leyden
The NETHERLANDS
- 1 Director
Behavioural Sciences Division
Defence & Civil Institute of
Environmental Medicine
Post Office Box 2000
Downsview, Ontario M3M 3B9
CANADA
- 1 LCOL J. C. Eggenberger
DIRECTORATE OF PERSONNEL APPLIED RESEARCH
NATIONAL DEFENCE HQ
101 COLONEL BY DRIVE
OTTAWA, CANADA K1A 0K2
- 1 ERIC Facility-Acquisitions
4833 Rugby Avenue
Bethesda, MD 20014
- 1 Dr. Leonard Feldt
Lindquist Center for Measurement
University of Iowa
Iowa City, IA 52242
- 1 Dr. Richard L. Ferguson
The American College Testing Program
P.O. Box 168
Iowa City, IA 52240
- 1 Dr. Victor Fields
Dept. of Psychology
Montgomery College
Rockville, MD 20850
- 1 Univ. Prof. Dr. Gerhard Fischer
Liebiggasse 5/3
A 1010 Vienna
AUSTRIA
- 1 Professor Donald Fitzgerald
University of New England
Armidale, New South Wales 2351
AUSTRALIA

Non Govt

- 1 Dr. John R. Frederiksen
Bolt Beranek & Newman
50 Moulton Street
Cambridge, MA 02138
- 1 DR. ROBERT GLASER
LRDC
UNIVERSITY OF PITTSBURGH
3939 O'HARA STREET
PITTSBURGH, PA 15213
- 1 DR. JAMES G. GREENO
LRDC
UNIVERSITY OF PITTSBURGH
3939 O'HARA STREET
PITTSBURGH, PA 15213
- 1 Dr. Ron Hambleton
School of Education
University of Massachusetts
Amherst, MA 01002
- 1 Dr. Chester Harris
School of Education
University of California
Santa Barbara, CA 93105
- 1 Dr. Frederick Hayes-Roth
The Rand Corporation
1700 Main Street
Santa Monica, CA 90406
- 1 Dr. Lloyd Humphreys
Department of Psychology
University of Illinois
Champaign, IL 61820
- 1 Library
HumRRO/Western Division
27857 Berwick Drive
Carmel, CA 93921
- 1 Dr. Steven Hunka
Department of Education
University of Alberta
Edmonton, Alberta
CANADA

- | Non Govt | Non Govt |
|--|---|
| 1 Dr. Earl Hunt
Dept. of Psychology
University of Washington
Seattle, WA 98105 | 1 Dr. Charles Lewis
Faculteit Sociale Wetenschappen
Rijksuniversiteit Groningen
Oude Boteringestraat
Groningen
NETHERLANDS |
| 1 Dr. Huynh Huynh
College of Education
University of South Carolina
Columbia, SC 29208 | 1 Dr. Robert Linn
College of Education
University of Illinois
Urbana, IL 61801 |
| 1 Dr. Douglas H. Jones
Rm T-255
Educational Testing Service
Princeton, NJ 08450 | 1 Dr. Frederick M. Lord
Educational Testing Service
Princeton, NJ 08540 |
| 3 Journal Supplement Abstract Service
American Psychological Association
1200 17th Street N.W.
Washington, DC 20036 | 1 Dr. James Lumsden
Department of Psychology
University of Western Australia
Nedlands W.A. 6009
AUSTRALIA |
| 1 Professor John A. Keats
University of Newcastle
AUSTRALIA 2308 | 1 Dr. Gary Marco
Educational Testing Service
Princeton, NJ 08450 |
| 1 Dr. Stephen Kosslyn
Harvard University
Department of Psychology
33 Kirkland Street
Cambridge, MA 02138 | 1 Dr. Scott Maxwell
Department of Psychology
University of Houston
Houston, TX 77004 |
| 1 Mr. Marlin Kroger
1117 Via Goleta
Palos Verdes Estates, CA 90274 | 1 Dr. Samuel T. Mayo
Loyola University of Chicago
820 North Michigan Avenue
Chicago, IL 60611 |
| 1 Dr. Alan Lesgold
Learning R&D Center
University of Pittsburgh
Pittsburgh, PA 15260 | 1 Professor Jason Millman
Department of Education
Stone Hall
Cornell University
Ithaca, NY 14853 |
| 1 Dr. Michael Levine
210 Education Building
University of Illinois
Champaign, IL 61820 | 1 Dr. Melvin R. Novick
356 Lindquist Center for Measurement
University of Iowa
Iowa City, IA 52242 |

Non Govt

- 1 Dr. Jesse Orlansky
Institute for Defense Analyses
400 Army Navy Drive
Arlington, VA 22202
- 1 Dr. James A. Paulson
Portland State University
P.O. Box 751
Portland, OR 97207
- 1 MR. LUIGI PETRULLO
2431 N. EDGEWOOD STREET
ARLINGTON, VA 22207
- 1 DR. DIANE M. RAMSEY-KLEE
R-K RESEARCH & SYSTEM DESIGN
3947 RIDGEMONT DRIVE
MALIBU, CA 90265
- 1 MINRAT M. L. RAUCH
BUNDESMINISTERIUM DER VERTEIDIGUNG
POSTFACH 1328
D-53 BUNN 1, GERMANY
- 1 Dr. Mark D. Reckase
Educational Psychology Dept.
University of Missouri-Columbia
4 Hill Hall
Columbia, MO 65211
- 1 Dr. Andrew M. Rose
American Institutes for Research
1055 Thomas Jefferson St. NW
Washington, DC 20007
- 1 Dr. Leonard L. Rosenbaum, Chairman
Department of Psychology
Montgomery College
Rockville, MD 20850
- 1 Dr. Lawrence Rudner
103 Elm Avenue
Takoma Park, MD 20012
- 1 Dr. J. Ryan
Department of Education
University of South Carolina
Columbia, SC 29208

Non Govt

- 1 DR. WALTER SCHNEIDER
DEPT. OF PSYCHOLOGY
UNIVERSITY OF ILLINOIS
CHAMPAIGN, IL 61820
- 1 DR. ROBERT J. SEIDEL
INSTRUCTIONAL TECHNOLOGY GROUP
HUMRRO
300 N. WASHINGTON ST.
ALEXANDRIA, VA 22314
- 1 Dr. Kazuo Shigemasu
University of Tohoku
Department of Educational Psychology
Kawauchi, Sendai 980
JAPAN
- 1 Dr. Edwin Shirkey
Department of Psychology
University of Central Florida
Orlando, FL 32816
- 1 Dr. Robert Smith
Department of Computer Science
Rutgers University
New Brunswick, NJ 08903
- 1 Dr. Richard Snow
School of Education
Stanford University
Stanford, CA 94305
- 1 Dr. Kathryn T. Spoehr
Department of Psychology
Brown University
Providence, RI 02912
- 1 Dr. Robert Sternberg
Dept. of Psychology
Yale University
Box 11A, Yale Station
New Haven, CT 06520
- 1 Dr. David Stone
ED 236
SUNY, Albany
Albany, NY 12222

Non Govt

- 1 Dr. PATRICK SUPPES
INSTITUTE FOR MATHEMATICAL STUDIES IN
THE SOCIAL SCIENCES
STANFORD UNIVERSITY
STANFORD, CA 94305
- 1 Dr. Hariharan Swaminathan
Laboratory of Psychometric and
Evaluation Research
School of Education
University of Massachusetts
Amherst, MA 01003
- 1 Dr. Brad Sympson
Psychometric Research Group
Educational Testing Service
Princeton, NJ 08541
- 1 Dr. Kikumi Tatsuoka
Computer Based Education Research
Laboratory
252 Engineering Research Laboratory
University of Illinois
Urbana, IL 61801
- 1 Dr. David Thissen
Department of Psychology
University of Kansas
Lawrence, KS 66044
- 1 Dr. Douglas Towne
Univ. of So. California
Behavioral Technology Labs
1845 S. Elena Ave.
Redondo Beach, CA 90277
- 1 Dr. J. Uhlancer
Perceptronics, Inc.
6271 Variel Avenue
Woodland Hills, CA 91364
- 1 Dr. Howard Wainer
Bureau of Social SCience Research
1990 M Street, N. W.
Washington, DC 20036

Non Govt

- 1 Dr. Phyllis Weaver
Graduate School of Education
Harvard University
200 Larsen Hall, Appian Way
Cambridge, MA 02138
- 1 Dr. David J. Weiss
N660 Elliott Hall
University of Minnesota
75 E. River Road
Minneapolis, MN 55455
- 1 DR. SUSAN E. WHITELY
PSYCHOLOGY DEPARTMENT
UNIVERSITY OF KANSAS
LAWRENCE, KANSAS 66044
- 1 Dr. Wolfgang Wildgrube
Streitkraefteamt
Box 20 50 03
D-5300 Bonn 2
WEST GERMANY
- 1 Dr. J. Arthur Woodward
Department of Psychology
University of California
Los Angeles, CA 90024

Navy

- 1 Dr. Donald Calder
Office of Naval Research
325 Hinman Research Building
Atlanta, GA 30332

Army

- 1 Dr. Randall M. Chambers, Ph.D.
U.S. Army Research Institute
for the Behavioral and Social
Sciences
Fort Sill Field Unit
P. O. Box 3066
Fort Sill, OK 73503

Non Govt

- 1 Dr. Bert F. Green
Department of Psychology
The John's Hopkins University
Charles at 34th Street
Baltimore, MD 21218
- 1 Dr. Ron Hambleton
School of Education
University of Massachusetts
Amherst, Mass. 01002
- 1 Dr. William W. Turnbull
Educational Testing Service
Princeton, NJ 08540

Non Govt

- 1 Mr. Isaac I. Bejar
Department of Psychology
Elliott Hall
75 East River Road
Minneapolis, Minnesota 55455

- 1 Mr. George Woods
1106 Newport Ave.
Victoria, B. C.
V8S 5E4 Canada

- 1 Dr. P. Mengal
Faculte' de Psychologie
et des Sciences de l'Education
Universite' de Geneve
3 fl. de l'Universite
1201 Geneva SWITZERLAND

- 1 Dr. Wim J. van der Linden
Vakgroep Onderwijskunde
Postbus 217
7500 EA Enschede
The Netherlands

- 1 Dr. Lowell Schipper
Department of Psychology
Bowling Green State University
Bowling Green, Ohio 43403

- 1 Dr. Lutz Hornke
University Duesseldorf
Erz. Wiss.
D-4000 Duesseldorf
WEST GERMANY

- 1 Dr. Wolfgang Buchtala
8346 Simbach Inn
Postfach 1306
Industriestrasse 1
WEST GERMANY