Post-Fire Debris Flow Likelihood Prediction

Graduate Students:

Alejandro Hohmann **B**hanu Muvva

Chunxia Tong

Faculty Advisors:

Dr. Daniel Roten Dr. Ilkay Altintas

Jacobs School of Engineering

June 2023

Project Abstract

Debris Flows are a distinct type of landslide that suddenly occur without warning. They are fast-moving channels of water and soil that carry large natural objects like boulders and trees, or human-made objects including cars. In the American West, Debris Flows have directly caused death and property damage. Debris Flows often occur after rain events and the burn scars left behind by wildfires increase their likelihood. Given the increasing frequency of extreme weather events, it is critical to predict Debris Flows and take precautionary action before they occur. This project builds upon prior research of predicting Debris Flows using additional geological features and more advanced machine learning techniques. The project also includes an intuitive interface for decision makers to access these probability estimates.

Pine Gulch Fire burn scar, Colorado, USA

75mm rain triggered this debris flow

Project Team

Alejandro Hohmann
Data Scientist

Bhanu Muvva
Data Engineer

Chunxia Tong Data Analyst

Dr. Daniel Roten
Computational Scientist

Dr. Ilkay Altintas
Chief Data Science Officer

O2

13

Problem Statement & Data Pipeline & Proposed Solution Feature Development

4 Model Perform

06

ML Model Model Performance User Interface
Development Comparison

A

Prior Work Staley et al. (2016)

Staley Exploratory Data Analysis

- 1,550 observations across 716 sites in 7 states
 - ~20% of observations with a debris flow
 - Drainage areas ranging from 0.2 8 km²
 - History of wildfire in each area between years 2000 - 2012
 - Rain events between years 2000 2014
 - Rain gauges up to 4 km from DF sites
 - Collected by USGS, NOAA, local gov't
 - Rain has highest correlation with DF response

Logistic Regression Trained on SoCal

Staley Features (4 total)

- 15-minute rainfall accumulation
 - multiplied by subsequent features
- Proportion of watershed with slope > 23°
- Difference Normalized Burn Ratio
 - Change in landscape from pre-fire to post-fire
- Soil Erodibility Factor

Briefly Defining Model Metrics

(Accuracy	Overall proportion correctly classified
	Precision	Proportion of <u>positively classified</u> that are actually correct
	Recall	Proportion of <u>actual positives</u> that are correctly classified (true positive rate)
	F1 Score	Harmonic mean between Precision and Recall
	AUC	~True Positive Rate vs False Positive Rate at varying classification thresholds

ST16 Model Performance Summary

Test Set Performance (IMW)	Logistic Regression (Staley)				
Accuracy	0.6258				
Precision	0.3544				
Recall	0.7671				
F1	0.4848				
AUC	0.7178				

Problem Statement & Proposed Solution

Problem

Training on SoCal inserts bias into predictive model

Imbalanced class, 20%
observations with DF, means a
model that always predicts
NO-FLOW would be correct 80% of
the time

Decision Makers need fast and accessible predictions; typically don't have the capacity to calculate Logistic Regression outputs

Proposed Solution

Implement random splitting between training and testing sets

Train models with additional features and architectures to achieve better performance

Build an intuitive user interface that is publicly accessible

Data Pipeline & Feature Development

Post-Fire Debris Flow Prediction Pipeline

Feature Development

Staley model started with four features (three with cross product of rain)

■USGS

• 6 new features were added from publicly available USGS, FBFM40 & FEMA databases

GeoPandas

- 1) Add site ids and clean data
- 2) Extract contributing region (LANDFIRE)
- 3) Extract rock type
- 4) Randomize storm data
- 5) Query geological age
- 6) Query FEMA county landslide risk **FEMA**
- 7) Calculate time between fire and DF
- 8) Consolidate certain features & universal split
 - E.g. multiple rock features become
 "Dominant rock type"
 - Consistent Train-Test split for all models

Modular, organized, reproducible python code

Name	Last commit message
ipynb_checkpoints	dash app
DS_Store	folder reorg
01_add_site_ids.ipynb	prep notebooks finalized
02_extract_contributing_region.ipynb	dash app
03_extract_rock_type.ipynb	dash app
04_randomize_storm_data.ipynb	prep notebooks finalized
① 05_geological_age.ipynb	dash app
06_landslide_risk.ipynb	prep notebooks finalized
07_fire_interval.ipynb	prep notebooks finalized
08_feature_consolidation_and_split.ipynb	dash app
The README.md	folder reorg

Data Dictionary

Data-Dictionary

Feature name	Description							
Fire Name	Name of wildfire							
Year	fear of wildfire occurrence							
Fire_ID	Abbreviation of fire name							
Fire_SegID	Concatenated fire abbreviation and unique segment ID generated during processing							
Database	Database type: "Training" indicates data used to calibrate model equation, "Test" indicates data used to test model performance							
State	State in which wildfire occurred							
UTM_Zone	UTM zone containing majority of wildfire area							
UTM_X	UTM X coordinate (Easting, in meters from zone origin)							
UTM_Y	UTM Y coordinate (Northing, in meters from zone origin)							
Response	Field-verified hydrologic response. 0 = no debris flow. 1 = debris flow							
StormDate	Date of storm that produced the debris-flow response (in YYYY-MM-DD format)							
GaugeDist_m	Distance (in meters) from rain gauge to documented response location							
StormStart	Date and time (24-hour format, GMT) that storm began (in YYYY-MM-DD HH:MM format)							
StormEnd	Date and time (24-hour format, GMT) that storm ended (in YYYY-MM-DD HH:MM format)							
StormDur_H	Total duration of storm, in hours							
StormAccum_mm	Total rainfall accumulation of storm, in millimeters							
StormAvgI_mm/h	Average storm intensity, in milllimeters per hour							
Peak_I15_mm/h,Peak_I30_mm/h,Peak_I60_mm/h	Peak 15-minute,30-minute, 45 minute rainfall intensity of storm, in millimeters per hour respectively							
ContributingArea_km2	Contributing area of observation location, in square kilometers							
PropHM23	Proportion of watershed burned at high or moderate severity and with gradients in excess of 23 degrees							
dNBR/1000	Average differenced normalized burn ratio (dNBR) of watershed, divided by 1000							
KF	Average KF-Factor (erodibility index of the fine fragments of the soil) of the watershed							
Acc015_mm, Acc030_mm, Acc045_mm	Peak 15-minute, 30 minute, 60 minute rainfall accumulation of storm, in millimeters respectively							
NB, GR, GS, SH, TU, TL	FBFM40 fuel category /Vegetation type in catchment area - grassland/ grassland shrubs, shrubs, timber							
Fine Fuel Load	FBFM40 Fuel characterstic							
SAV	FBFM40 Fuel characterstic							
Packing Ratio	FBFM40 Fuel characterstic							
Extinction moisture content	FBFM40 Fuel characterstic							
Igneous, Metamorphic, Sedimentary, Unconsolicated	Rock Category							
dom	Dominant FBFM40 Fuel sub-category							
domrt	Dominant rock type							
LNDS_RISKS, LNDS_RISKR	Landslide Risk score for country from FEMA							
fire_interval	Time between the events (wildfire and rain-storm)							

Neural Network

Hyperparameter Tuning & Model Selection

Created
Sequential NN
classes with
varying hidden
layers

Trained models with all features to extract feature importance

GridSearch for best combination of features and hyperparameters

Evaluate models, balancing performance metrics

Shapely Additive Explanations (SHAP) values for ranking Up to 1,000 combinations per run Priority on maximizing Recall and AUC

More than 50 models trained and evaluated

Subset of model with performance metrics

	hidden_size	lr	dropout_rate	epochs	model_class	grid_search_metric	train_loss	val_loss	train_accuracy	test_accuracy	test_precision	test_recall	test_f1_score	test_auc
ThreeLayer_500_epochs_optimized_roc_auc_score	250	0.0100000	0.0500000	500	ThreeLayer	roc_auc_score	0.0203263	1.8640250	0.9916107	0.8856089	0.7222222	0.7090909	0.7155963	0.9226852
TwoLayer_250_epochs_optimized_roc_auc_score	250	0.0100000	0.2000000	250	TwoLayer	roc_auc_score	0.1100651	0.7525712	0.9505034	0.8745387	0.7142857	0.6363636	0.6730769	0.9216751
TwoLayer_750_epochs_optimized_roc_auc_score	100	0.0100000	0.2000000	750	TwoLayer	roc_auc_score	0.0325475	0.8078681	0.9899329	0.8597786	0.6666667	0.6181818	0.6415094	0.9136364
TwoLayer_100_epochs_optimized_roc_auc_score	500	0.0100000	0.0500000	100	TwoLayer	roc_auc_score	0.1446602	0.7158454	0.9395973	0.8671587	0.6792453	0.6545455	0.6666667	0.9128788
ThreeLayer_750_epochs_optimized_roc_auc_score	100	0.0100000	0.2000000	750	ThreeLayer	roc_auc_score	0.0170232	1.2795470	0.9932886	0.8671587	0.6938776	0.6181818	0.6538462	0.9114057
OneLayer_750_epochs_optimized_roc_auc_score	250	0.0100000	0.1500000	750	OneLayer	roc_auc_score	0.1220149	0.4372137	0.9521812	0.8708487	0.7083333	0.6181818	0.6601942	0.9092593
OneLayer_500_epochs_optimized_roc_auc_score	250	0.0100000	0.2000000	500	OneLayer	roc_auc_score	0.1050764	0.5184278	0.9614094	0.8450185	0.6274510	0.5818182	0.6037736	0.9002525
ThreeLayer_250_epochs_optimized_roc_auc_score	100	0.0100000	0.1500000	250	ThreeLayer	roc_auc_score	0.0420898	1.1421973	0.9890940	0.8523985	0.6470588	0.6000000	0.6226415	0.8961279
ThreeLayer_250_epochs_optimized_f1_score	250	0.0100000	0.0500000	250	ThreeLayer	f1_score	0.0193442	2.1054745	0.9949664	0.8597786	0.6666667	0.6181818	0.6415094	0.8960017
TwoLayer_500_epochs_optimized_roc_auc_score	500	0.0100000	0.1000000	500	TwoLayer	roc_auc_score	0.0189185	2.0523396	0.9924497	0.8634686	0.6800000	0.6181818	0.6476190	0.8946970
OneLayer_250_epochs_optimized_roc_auc_score	500	0.0100000	0.1500000	250	OneLayer	roc_auc_score	0.1099459	0.5147722	0.9597315	0.8450185	0.6274510	0.5818182	0.6037736	0.8926768
TwoLayer_1000_epochs_optimized_f1_score	250	0.0100000	0.1000000	1000	TwoLayer	f1_score	0.0077226	3.2219794	0.9949664	0.8708487	0.6851852	0.6727273	0.6788991	0.8899411
OneLayer_100_epochs_optimized_roc_auc_score	500	0.0100000	0.0500000	100	OneLayer	roc_auc_score	0.1607866	0.4363066	0.9362416	0.8560886	0.6428571	0.6545455	0.6486486	0.8849327
TwoLayer_750_epochs_optimized_recall_score	100	0.0100000	0.0500000	750	TwoLayer	recall_score	0.0117989	2.1628008	0.9949664	0.8634686	0.6451613	0.7272727	0.6837607	0.8841751
ThreeLayer_100_epochs_optimized_f1_score	250	0.0100000	0.1000000	100	ThreeLayer	f1_score	0.0958066	0.7082357	0.9588926	0.8376384	0.6037736	0.5818182	0.5925926	0.8696128
TwoLayer_500_epochs_optimized_recall_score	10	0.0001000	0.1500000	500	TwoLayer	recall_score	0.5179337	0.4779459	0.7911074	0.7970480	0.5000000	0.0545455	0.0983607	0.7951178
ThreeLayer_1000_epochs_optimized_recall_score	10	0.0001000	0.2000000	1000	ThreeLayer	recall_score	0.4655180	0.4563868	0.7860738	0.7970480	0.0000000	0.0000000	0.0000000	0.7950337
OneLayer_1000_epochs_optimized_recall_score	10	0.0001000	0.2000000	1000	OneLayer	recall_score	0.4948710	0.5049611	0.7734899	0.7453875	0.2083333	0.0909091	0.1265823	0.7292088
TwoLayer_250_epochs_optimized_recall_score	10	0.0001000	0.0500000	250	TwoLayer	recall_score	0.5069298	0.4701360	0.7860738	0.7970480	0.0000000	0.0000000	0.0000000	0.7229377

Fully Connected Neural Network Architecture

Architecture

Initialization:

Activation

Output

Function:

Sigmoid

Xavier Uniform

Function: ReLu

Weight

A

Training

LR: 0.01

Parameters

Dropout: 0.20

Epochs: 250

Loss Function:

Binary Cross

Entropy

Feature Subset

Rain: rain in mm/h

Fire Interval: time since wildfire

SuscFrac: fraction of watershed covered by burn susceptible vegetation types

SAV: Avg Surface Area to Volume across fuel categories

KF: Fine Fragment Soil Erodibility of watershed

Prophm23: Proportion of watershed with slope > 23°

SedUn: fraction of watershed covered by sedimentary and unconsolidated rocks

Tuned Model Comparison

Model Comparison Performance Metrics

	<u>Test</u> Set Performance	Logistic Regression (SoCal)	Logistic Regression (Random-Split)	Neural Network (Random-Split)
•	Accuracy	0.6258	0.8007	0.8745
	Precision	0.3544	0.5200	0.7143
	Recall	0.7671	0.2364	0.6264
	F1	0.4848	0.3250	0.6731
	AUC	0.7178	0.8476	0.9217

Model Comparison AUC (ROC)

ST16 -SoCal ST16 -Random Split

FC NN -Random Split

Model Comparison Probability Curve

Visualization app Development & Deployment

- Dash is an open-source framework for building data visualization interfaces.
- Three technologies constitute the core of Dash: Flask, React.js, Plotly.js
- App developed in python and is hosted on Amazon EC2
- Server used is a t2.xlarge with Ubuntu OS, 4 Cores and 32 GB RAM.
- Once the instance is up and running, below are main steps for getting the app run
- SSH into the server and clone the Git repo
- Repo has all the libraries required to create a virtual environment (requirements.txt) file and the code base
- Install the libraries and then run the dash app
- Dash app will be rendered on port 8050 of the EC2 server
- This app can now be accessed from EC2 IP & Port 8050.

Conclusion

Conclusion

- Using new features and models developed as part of this project, we developed a model that works better at scale with greater predictive power of Debris Flows
- The User Interface is a demo of what can be a great visualization tool for decision makers for swift action when rain events are in the forecast

References

References

2018.

- Staley et al (2016) https://pubs.er.usgs.gov/publication/ofr20161106
- https://landfire.gov/fbfm40.php
- https://mrdata.usgs.gov/geology/state/
- [4] https://www.usgs.gov/3d-elevation-program
- https://prdtnm.s3.amazonaws.com/StagedProducts/Elevation/13/TIFF/current/n35w119/USGS_13_n35w119.ti
- [6] https://nwschat.weather.gov/lsr/#LOX,MTR,EKA,SGX,STO,REV,HNX,MFR,VEF/202301040800/202301080759/11 Daniel Roten, Jessica Block, Daniel Crawl, Jenny Lee and Ilkay Altintas, Machine Learning for Improved Post-fire
- Likelihood Prediction, IEEE Big Data 2022 December 17-20, Osaka, Japan. Efthymios I. Nikolopoulos, Elisa Destro, Md Abul Ehsan Bhuiyan, Marco Borga, and Emmanouil N. Anagnostou, E predictive models for post-fire debris flow occurrence in the western United States, Natural Hazards and Earth System
 - Team's Github Repository https://github.com/gojandrooo/DSE-Capstone [9]