credit-score-classification

August 22, 2023

1 About Dataset

This dataset contains information about a sample of over 100 people across the world. The data includes the following informations:

Age: The age of the person in years.

Gender: The gender of the person (male or female).

Income: The annual income of the person in US dollars.

Education: The highest level of education completed by the person.

Marital Status: The marital status of the person (single, married, divorced, or widowed).

Number of Children: The number of children the person has.

Home Ownership: Whether the person owns their home or rents it.

Credit Score: The credit score of the person, which is a measure of their creditworthiness.

1.1 Source and link

Source: Kaggle

Link: https://www.kaggle.com/datasets/sujithmandala/credit-score-classification-dataset

Author: Bao Thai

2 Credit Score Classification

2.1 Import needed libraries and packages

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, accuracy_score,u

classification_report
from sklearn.linear_model import LogisticRegression
```

```
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.naive_bayes import GaussianNB
from xgboost import XGBClassifier
```

2.2 Loading Dataset

F07			a 1	-			
[2]:		Age	Gender	${\tt Income}$	Education	Marital Status	\
	0	25	Female	50000	Bachelor's Degree	Single	
	1	30	Male	100000	Master's Degree	Married	
	2	35	Female	75000	Doctorate	Married	
	3	40	Male	125000	High School Diploma	Single	
	4	45	Female	100000	Bachelor's Degree	Married	
	5	50	Male	150000	Master's Degree	Married	
	6	26	Female	40000	Associate's Degree	Single	
	7	31	Male	60000	Bachelor's Degree	Single	
	8	36	Female	80000	Master's Degree	Married	
	9	41	Male	105000	Doctorate	Single	

	Number	of	Children	Home	Ownership	Credit	Score
0			0		Rented		High
1			2		Owned		High
2			1		Owned		High
3			0		Owned		High
4			3		Owned		High
5			0		Owned		High
6			0		Rented	r A	verage
7			0		Rented	r A	verage
8			2		Owned		High
9			0		Owned		High

2.3 Explore Data

```
[16]: df_original.shape
[16]: (164, 8)
```

[17]: df_original.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 164 entries, 0 to 163
Data columns (total 8 columns):

Column	Non-Null Count	Dtype
Age	164 non-null	int64
Gender	164 non-null	object
Income	164 non-null	int64
Education	164 non-null	object
Marital Status	164 non-null	object
Number of Children	164 non-null	int64
Home Ownership	164 non-null	object
Credit Score	164 non-null	object
	Age Gender Income Education Marital Status Number of Children Home Ownership	Age 164 non-null Gender 164 non-null Income 164 non-null Education 164 non-null Marital Status 164 non-null Number of Children 164 non-null Home Ownership 164 non-null

dtypes: int64(3), object(5) memory usage: 10.4+ KB

[18]: df_original.isna().sum()

[18]: Age 0 Gender 0 Income 0 Education 0 Marital Status 0 Number of Children 0 Home Ownership 0 Credit Score 0 dtype: int64

[19]: df_original.describe()

[19]: Income Number of Children Age count 164.000000 164.000000 164.000000 mean 37.975610 83765.243902 0.652439 std 8.477289 32457.306728 0.883346 min 25.000000 25000.000000 0.000000 25% 30.750000 57500.000000 0.000000 50% 37.000000 83750.000000 0.000000 75% 45.000000 105000.000000 1.000000 53.000000 162500.000000 3.000000 max

[20]: df_original.corr()

C:\Users\Admin\AppData\Local\Temp\ipykernel_10520\2946492221.py:1:
FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning.

df original.corr()

```
[20]: Age Income Number of Children
Age 1.000000 0.699464 0.055390
Income 0.699464 1.000000 0.084547
Number of Children 0.055390 0.084547 1.000000
```

```
[29]: sns.heatmap(df_original.corr(), annot = True, cmap = 'coolwarm')
plt.title('Correlation between variables')
```

C:\Users\Admin\AppData\Local\Temp\ipykernel_10520\434348305.py:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning.

sns.heatmap(df_original.corr(), annot = True, cmap = 'coolwarm')

[29]: Text(0.5, 1.0, 'Correlation between variables')

Heatmap shows that there is a high positive correlation between Age and Income

```
[40]: sns.histplot(df_original, x = df_original['Age'], kde = True)
plt.title('Distribution of Age')
plt.xlabel('Age')
```

```
plt.ylabel('Distribution')
plt.show()
```



```
[54]: sns.histplot(df_original, x = df_original['Income'], kde = True)
    plt.title('Distribution of Income')
    plt.xlabel('Income')
    plt.ylabel('Distribution')
    plt.show()
```



```
[94]: Education = df_original['Education'].value_counts()
       Education
[94]: Bachelor's Degree
                              42
      Master's Degree
                              36
      Doctorate
                              31
      High School Diploma
                              30
       Associate's Degree
      Name: Education, dtype: int64
[101]: sns.barplot(x = Education.index, y = Education)
       plt.title('Value counts of Education')
       plt.xlabel('Education')
       plt.ylabel('Counts')
       plt.xticks(rotation = 40)
[101]: (array([0, 1, 2, 3, 4]),
        [Text(0, 0, "Bachelor's Degree"),
        Text(1, 0, "Master's Degree"),
        Text(2, 0, 'Doctorate'),
```

```
Text(3, 0, 'High School Diploma'),
Text(4, 0, "Associate's Degree")])
```



```
[86]:
        Gender
                          Education Count
      0 Female
                  Bachelor's Degree
                                        30
      1 Female
                          Doctorate
                                        25
      2 Female High School Diploma
                                        15
                 Associate's Degree
      3 Female
                                        10
      4 Female
                    Master's Degree
                                         6
      5
          Male
                    Master's Degree
                                        30
```

```
7
           Male High School Diploma
                                          15
                    Bachelor's Degree
            Male
       8
                                           12
            Male
                            Doctorate
                                           6
       9
[104]: sns.barplot(x = Edu_by_Gender['Gender'], y = Edu_by_Gender['Count'], hue = ___

    Gender['Education'])

       plt.title('Education by Gender')
       plt.xlabel('Gender')
       plt.ylabel('Counts')
       plt.show()
```

15

Associate's Degree

6

Male


```
[110]: df_original['Marital Status'].value_counts()
```

[110]: Married 87 Single 77

Name: Marital Status, dtype: int64

Value counts of Marital Status


```
[123]: sns.pairplot(data = df_original)
plt.show()
```

C:\Users\Admin\Lib\site-packages\seaborn\axisgrid.py:118: UserWarning: The
figure layout has changed to tight
 self._figure.tight_layout(*args, **kwargs)

2.5 Label Encoding

```
[4]: le = LabelEncoder()
    df_original['Gender'] = le.fit_transform(df_original['Gender'])
    df_original['Education'] = le.fit_transform(df_original['Education'])
    df_original['Marital Status'] = le.fit_transform(df_original['Marital Status'])
    df_original['Home Ownership'] = le.fit_transform (df_original['Home Ownership'])
    df_original['Credit Score'] = le.fit_transform(df_original['Credit Score'])
    df_original.head()
```

```
[4]: Age Gender Income Education Marital Status Number of Children \ 0 \ 25 \ 0 \ 50000 \ 1 \ 1 \ 0
```

1	30	1	100000	4	0	2
2	35	0	75000	2	0	1
3	40	1	125000	3	1	0
4	45	0	100000	1	0	3

	Home	Ownership	Credit	${\tt Score}$
0		1		1
1		0		1
2		0		1
3		0		1
4		0		1

I pick out 5 categorical columns to label encoder: Gender, Education, Marital Status, Home Ownership, Credit Score.

2.6 Correlation after encoder

```
[27]: df_original.corr()
sns.heatmap(df_original.corr(), cmap = 'coolwarm', annot = True)
plt.title('Correlation all features')
plt.show
```

[27]: <function matplotlib.pyplot.show(close=None, block=None)>

[20]: sns.pairplot(df_original)

C:\Users\Admin\Lib\site-packages\seaborn\axisgrid.py:118: UserWarning: The
figure layout has changed to tight
 self._figure.tight_layout(*args, **kwargs)

[20]: <seaborn.axisgrid.PairGrid at 0x19655860dd0>

[21]:	df_original.corr()

[21]:		Age	Gender	Income	Education	Marital Status	\
	Age	1.000000	0.235343	0.699464	0.170254	-0.517723	
	Gender	0.235343	1.000000	0.495738	0.248671	0.278362	
	Income	0.699464	0.495738	1.000000	0.369449	-0.471004	
	Education	0.170254	0.248671	0.369449	1.000000	-0.067797	
	Marital Status	-0.517723	0.278362	-0.471004	-0.067797	1.000000	
	Number of Children	0.055390	-0.442139	0.084547	0.047311	-0.696984	
	Home Ownership	-0.713803	-0.031519	-0.704928	-0.397043	0.708374	
	Credit Score	0.205362	-0.247729	0.083698	0.334424	-0.205756	

Number of Children Home Ownership Credit Score

Age	0.055390	-0.713803	0.205362
Gender	-0.442139	-0.031519	-0.247729
Income	0.084547	-0.704928	0.083698
Education	0.047311	-0.397043	0.334424
Marital Status	-0.696984	0.708374	-0.205756
Number of Children	1.000000	-0.497129	0.136517
Home Ownership	-0.497129	1.000000	-0.293384
Credit Score	0.136517	-0.293384	1.000000

We can see the slightly positive correlation between Education and Credit Score

2.7 Analyzing on target column values 'Credit Score'

Percentage of value in Credit Score

Credit Score

There is a significant imbalance between 3 unique values in column Credit Score. I need to address this issue by 3 methods later. I will try 3 methods to find out which is the good method for this dataset

2.7.1 Method 1: Undersampling

```
undersample_count_1 = under_count_1.sample(undersample_size, random_state = 1)
 [6]: print('Credit 0: ',undersample_count_0.shape)
       print('Credit 1: ',undersample_count_1.shape)
       print('Credit 2: ',under_count_2.shape)
      Credit 0: (15, 8)
      Credit 1: (15, 8)
      Credit 2: (15, 8)
 [7]: under_df = pd.concat([undersample_count_0, undersample_count_1, under_count_2],__
       ⇔axis = 0, ignore_index = True)
       under_df.shape
 [7]: (45, 8)
 [7]: under_df.isna().sum()
 [7]: Age
                             0
      Gender
                             0
       Income
                             0
       Education
      Marital Status
       Number of Children
                             0
      Home Ownership
                             0
       Credit Score
      dtype: int64
[125]: sns.barplot(x = under_df['Credit Score'].unique(), y = under_df['Credit Score'].
       ⇔value_counts())
       plt.title('Values in Credit Score')
       plt.xlabel('Credit Score Segmentation')
       plt.ylabel('Counts of value')
       plt.show()
```


2.7.2 Method 2: Oversampling

```
[8]: df_original['Credit Score'].value_counts()
[8]: 1
          113
     0
           36
     2
           15
    Name: Credit Score, dtype: int64
[9]: over_count_0 = df_original[df_original['Credit Score'] == 0]
     over_count_1 = df_original[df_original['Credit Score'] == 1]
     over_count_2 = df_original[df_original['Credit Score'] == 2]
     oversample_size = 113
     oversample_count_0 = over_count_0.sample(oversample_size, random_state = 0,__
      →replace = True)
     oversample_count_2 = over_count_2.sample(oversample_size, random_state = 2,__
      →replace = True)
```

```
[10]: print('Credit 0: ',oversample_count_0.shape)
      print('Credit 1: ',over_count_1.shape)
       print('Credit 2: ',oversample_count_2.shape)
      Credit 0: (113, 8)
      Credit 1: (113, 8)
      Credit 2: (113, 8)
[11]: over_df = pd.concat([oversample_count_0, over_count_1, oversample_count_2],__
       ⇔axis = 0, ignore_index = True)
       over_df.shape
[11]: (339, 8)
[12]: over_df.isna().sum()
                             0
[12]: Age
      Gender
                             0
       Income
      Education
      Marital Status
                             0
      Number of Children
                             0
      Home Ownership
                             0
      Credit Score
                             0
       dtype: int64
[139]: sns.barplot(x = over_df['Credit Score'].unique(), y = over_df['Credit Score'].
       ⇔value_counts())
       plt.title('Values in Credit Score')
       plt.xlabel('Credit Score Segmentation')
       plt.ylabel('Counts of value')
       plt.show()
```


2.7.3 Method 3: SMOTE

[notice] A new release of pip available: 22.3.1 -> 23.2.1
[notice] To update, run: python.exe -m pip install --upgrade pip

Requirement already satisfied: imblearn in c:\users\admin\lib\site-packages (0.0)

Requirement already satisfied: imbalanced-learn in c:\users\admin\lib\site-packages (from imblearn) (0.11.0)

```
(from imbalanced-learn->imblearn) (1.24.2)
      Requirement already satisfied: scipy>=1.5.0 in c:\users\admin\lib\site-packages
      (from imbalanced-learn->imblearn) (1.11.1)
      Requirement already satisfied: scikit-learn>=1.0.2 in c:\users\admin\lib\site-
      packages (from imbalanced-learn->imblearn) (1.3.0)
      Requirement already satisfied: joblib>=1.1.1 in c:\users\admin\lib\site-packages
      (from imbalanced-learn->imblearn) (1.3.2)
      Requirement already satisfied: threadpoolctl>=2.0.0 in c:\users\admin\lib\site-
      packages (from imbalanced-learn->imblearn) (3.2.0)
[14]: sm = SMOTE(sampling_strategy = 'all', random_state = 3)
       X = df_original.drop('Credit Score', axis = 1)
       y = df_original['Credit Score']
       X_sm, y_sm = sm.fit_resample(X, y)
       sm_df = pd.DataFrame(X_sm, columns = df_original.columns)
       sm_df['Credit Score'] = y_sm
       sm_df.shape
[14]: (339, 8)
[13]: sm_df.isna().sum()
                             0
[13]: Age
       Gender
                             0
       Income
                             0
       Education
       Marital Status
       Number of Children
                             0
      Home Ownership
                             0
       Credit Score
                             0
       dtype: int64
[163]: | sns.barplot(x = sm_df['Credit Score'].unique(), y = sm_df['Credit Score'].
       ⇔value_counts())
       plt.title('Values in Credit Score')
       plt.xlabel('Credit Score Segmentation')
       plt.ylabel('Counts of value')
       plt.show()
```

Requirement already satisfied: numpy>=1.17.3 in c:\users\admin\lib\site-packages

2.8 Preprocessing model machine learning

2.8.1 For Method 1: Undersampling

```
[16]: sc = StandardScaler()
    X_train_under = sc.fit_transform(X_train_under)
    X_test_under = sc.transform(X_test_under)
```

2.8.2 For Method 2: Oversampling

```
[17]: X_over = over_df.drop(['Credit Score'], axis = 1)
y_over = over_df['Credit Score']
X_train_over, X_test_over, y_train_over, y_test_over = train_test_split(X_over, u)
y_over, test_size = 0.2, random_state = 10)
```

```
[18]: sc = StandardScaler()
    X_train_over = sc.fit_transform(X_train_over)
    X_test_over = sc.transform(X_test_over)
```

2.8.3 For Method 3: SMOTE

```
[19]: X_sm = sm_df.drop(['Credit Score'], axis = 1)
y_sm = sm_df['Credit Score']
X_train_sm, X_test_sm, y_train_sm, y_test_sm = train_test_split(X_sm, y_sm,__
otest_size = 0.2, random_state = 10)
```

```
[20]: sc = StandardScaler()
X_train_sm = sc.fit_transform(X_train_sm)
X_test_sm = sc.transform(X_test_sm)
```

2.9 Building model run on 3 methods

```
[27]: lr = LogisticRegression()
  dtc = DecisionTreeClassifier()
  rfc = RandomForestClassifier()
  gbc = GradientBoostingClassifier()
  knn = KNeighborsClassifier()
  svc = SVC()
  gnb = GaussianNB()
  xgb = XGBClassifier()
```

```
[29]: models = [lr, dtc, rfc, gbc, knn, svc, gnb, xgb]
```

2.9.1 Method 1: Undersampling

```
[51]: for model in models:
    model.fit(X_train_under, y_train_under)
    y_pred_under = model.predict(X_test_under)
    Classfication_rp = classification_report(y_test_under, y_pred_under)
    print('----')
    print(type(model).__name__)
    print(Classification_rp)
    print(confusion_matrix(y_test_under, y_pred_under))
```

LogisticRegression

	precision	recall	f1-score	support
0	0.96	1.00	0.98	27
1	1.00	0.95	0.97	19
2	1.00	1.00	1.00	22

accuracy macro avg weighted avg	0.99 0.99	0.98 0.99	0.99 0.98 0.99	68 68 68
[[2 0 0] [0 3 0] [0 0 4]]				
DecisionTreeC	lassifier			
	precision	recall	f1-score	support
0	0.96	1.00	0.98	27
1	1.00	0.95	0.97	19
2	1.00	1.00	1.00	22
accuracy			0.99	68
macro avg	0.99	0.98	0.98	68
weighted avg	0.99	0.99	0.99	68
weighted avg	0.99	0.99	0.33	00
[[2 0 0] [1 2 0] [0 0 4]]				
RandomForestC			0.4	_
	precision	recall	f1-score	support
0	0.96	1.00	0.98	27
1	1.00	0.95	0.97	19
2	1.00	1.00	1.00	22
accuracy			0.99	68
macro avg	0.99	0.98	0.98	68
weighted avg	0.99	0.99	0.99	68
[[2 0 0]				
[0 3 0]				
[0 0 4]]				
GradientBoost	-		£1	
	precision	recall	f1-score	support
0	0.96	1.00	0.98	27
1	1.00	0.95	0.97	19
2	1.00	1.00	1.00	22
	1.00			
	1.00			
accuracy macro avg	0.99	0.98	0.99 0.98	68 68

weighted avg	0.99	0.99	0.99	68
[[2 0 0] [1 2 0] [0 0 4]]				
KNeighborsCla	ssifier			
0-00	precision	recall	f1-score	support
0	0.96	1.00	0.98	27
1	1.00	0.95	0.97	19
2	1.00	1.00	1.00	22
_	1.00	1.00	1.00	22
accuracy			0.99	68
macro avg	0.99	0.98	0.98	68
weighted avg	0.99	0.99	0.99	68
[[2 0 0] [0 3 0]				
[0 0 4]]				
SVC				
	precision	recall	f1-score	support
0	0.96	1.00	0.98	27
1	1.00	0.95	0.97	19
2	1.00	1.00	1.00	22
accuracy			0.99	68
macro avg	0.99	0.98	0.98	68
weighted avg	0.99	0.99	0.99	68
[[1 0 1]				
[0 3 0]				
[0 0 4]]				
GaussianNB				
	precision	recall	f1-score	support
0	0.96	1.00	0.98	27
1	1.00	0.95	0.97	19
2	1.00	1.00	1.00	22
accuracy			0.99	68
macro aug		0 00	0 00	
macro avg	0.99	0.98	0.98	68
weighted avg	0.99 0.99	0.98	0.98	68

```
[1 2 0]
[0 0 4]]
XGBClassifier
            precision recall f1-score support
         0
                0.96
                        1.00
                                  0.98
                                             27
                1.00
                        0.95
                                  0.97
                                             19
                1.00
                        1.00
                                  1.00
                                             22
                                  0.99
                                             68
   accuracy
  macro avg
                0.99 0.98
                                  0.98
                                             68
weighted avg
                0.99
                         0.99
                                  0.99
                                             68
[[2 0 0]
[0 3 0]
[0 0 4]]
```

For this undersampling method, we see all models give good outcomes.

2.9.2 Method 2: Oversampling

```
[52]: for model in models:
    model.fit(X_train_over, y_train_over)
    y_pred_over = model.predict(X_test_over)
    Classification_rp = classification_report(y_test_over, y_pred_over)
    print('-----')
    print(type(model).__name__)
    print(Classification_rp)
    print(confusion_matrix(y_test_over, y_pred_over))
```

-		_	
1 O a.	ieti	CKAGT	ression
LUE.	エシレエ	CILERI	- GDDTOI

Hogibulenegie	precision	recall	f1-score	support
0 1	0.86 0.96	0.95 0.89	0.90 0.93	19 28
2	1.00	1.00	1.00	21
accuracy macro avg weighted avg	0.94 0.94	0.95 0.94	0.94 0.94 0.94	68 68 68
[[18 1 0] [3 25 0] [0 0 21]]				

DecisionTreeClassifier

	precision	recall	f1-score	support
0	0.90	1.00	0.95	19
1	1.00	0.93	0.96	28
2	1.00	1.00	1.00	20
2	1.00	1.00	1.00	21
accuracy			0.97	68
macro avg	0.97	0.98	0.97	68
weighted avg	0.97	0.97	0.97	68
[[19 0 0] [2 26 0] [0 0 21]]				
RandomForestC	lassifier			
	precision	recall	f1-score	support
0	0.90	1.00	0.95	19
1	1.00	0.93	0.96	28
2	1.00	1.00	1.00	21
accuracy			0.97	68
macro avg	0.97	0.98	0.97	68
weighted avg	0.97	0.97	0.97	68
[[19 0 0] [2 26 0] [0 0 21]]				
GradientBoost	ingClassifie	r		
			f1-score	support
0	0.86	1.00	0.93	19
1	1.00	0.89	0.94	28
2	1.00	1.00	1.00	21
accuracy			0.96	68
macro avg	0.95	0.96	0.96	68
weighted avg	0.96	0.96	0.96	68
[[19 0 0] [3 25 0] [0 0 21]]				
KNeighborsClassifier				
	precision	recall	f1-score	support
0	0.86	0.95	0.90	19

1	0.96	0.89	0.93	28
2	1.00	1.00	1.00	21
accuracy macro avg weighted avg	0.94 0.94	0.95 0.94	0.94 0.94 0.94	68 68 68
[[18 1 0] [3 25 0] [0 0 21]]				
SVC				
	precision	recall	f1-score	support
0	0.89	0.84	0.86	19
1	0.96	0.93	0.95	28
2	0.91	1.00	0.95	21
accuracy			0.93	68
macro avg	0.92	0.92		68
weighted avg	0.93	0.93		68
[[16 1 2] [2 26 0] [0 0 21]]				
GaussianNB				
	precision	recall	f1-score	support
0	0.92	0.58	0.71	19
1	0.96	0.93	0.95	28
2	0.72	1.00	0.84	21
accuracy			0.85	68
macro avg	0.87	0.84	0.83	68
weighted avg	0.88	0.85	0.85	68
[[11 1 7] [1 26 1] [0 0 21]]				
XGBClassifier				
	precision	recall	f1-score	support
0	0.95	1.00	0.97	19
1	1.00	0.96	0.98	28
2	1.00	1.00	1.00	21

```
0.99
                                                    68
    accuracy
                   0.98
                             0.99
                                        0.99
                                                    68
  macro avg
                             0.99
                                        0.99
weighted avg
                   0.99
                                                    68
[[19 0 0]
[ 1 27 0]
[ 0 0 21]]
```

With Oversampling method, although models can give out good outcomes, we clearly see that the outcomes are not as good as in comparision with Undersampling method. In this sample method, XG Boost Classifier is the best performance model.

2.9.3 Method 3: SMOTE

```
for model in models:
    model.fit(X_train_sm, y_train_sm)
    y_pred_sm = model.predict(X_test_sm)
    Classification_rp = classification_report(y_test_sm, y_pred_sm)
    print('-----')
    print(type(model).__name__)
    print(Classification_rp)
    print(confusion_matrix(y_test_sm, y_pred_sm))
```

LogisticRegression

	precision	recall	f1-score	support
0	0.96 1.00	0.96 0.95	0.96 0.97	27 19
2	0.96	1.00	0.98	22
accuracy	0.07	0.07	0.97	68
macro avg weighted avg	0.97 0.97	0.97 0.97	0.97 0.97	68 68
[[26 0 1] [1 18 0] [0 0 22]]				

DecisionTreeClassifier

support	f1-score	recall	precision	
27	0.98	1.00	0.96	0
19	0.97	0.95	1.00	1
22	1.00	1.00	1.00	2
60	0.00			
68	0.99			accuracy
68	0.98	0.98	0.99	macro avg

weighted avg	0.99	0.99	0.99	68
[[27 0 0] [1 18 0] [0 0 22]]				
RandomForestC	lassifier			
	precision	recall	f1-score	support
0	0.96	1.00	0.98	27
1	1.00	0.95	0.97	19
2	1.00	1.00	1.00	22
accuracy			0.99	68
macro avg	0.99	0.98	0.98	68
weighted avg	0.99	0.99	0.99	68
[[27 0 0] [1 18 0] [0 0 22]]				
GradientBoost	ingClassifie	r		
	precision	recall	f1-score	support
0	1.00	0.93	0.96	27
1	0.90	1.00	0.95	19
2	1.00	1.00	1.00	22
accuracy			0.97	68
macro avg	0.97	0.98	0.97	68
weighted avg	0.97	0.97	0.97	68
[[25 2 0] [0 19 0] [0 0 22]]				
KNeighborsCla	ssifier			
	precision	recall	f1-score	support
0	0.96	1.00	0.98	27
1	1.00	0.95	0.97	19
2	1.00	1.00	1.00	22
accuracy			0.99	68
macro avg	0.99	0.98	0.98	68
weighted avg	0.99	0.99	0.99	68
[[27 0 0]				

[1 18 0] [0 0 22]]

SVC				
	precision	recall	f1-score	support
0	0.96	0.93	0.94	27
1	1.00	0.95	0.97	19
2	0.92	1.00		22
_	0.02	1.00	0.00	22
accuracy			0.96	68
macro avg	0.96	0.96	0.96	68
weighted avg	0.96	0.96	0.96	68
[[25 0 2] [1 18 0] [0 0 22]]				
GaussianNB				
	precision	recall	f1-score	support
0	0.93	0.52	0.67	27
1	1.00	0.95	0.97	19
2	0.63	1.00	0.77	22
accuracy			0.79	68
macro avg	0.85	0.82	0.80	68
weighted avg	0.85	0.79	0.79	68
[[14 0 13] [1 18 0] [0 0 22]]				
XGBClassifier				
	precision	recall	f1-score	support
0	1.00	1.00	1.00	27
1	1.00	1.00	1.00	19
2	1.00	1.00	1.00	22
20017201			1.00	68
accuracy	1 00	1 00		
macro avg	1.00	1.00	1.00	68
weighted avg	1.00	1.00	1.00	68
[[27 0 0] [0 19 0] [0 0 22]]				

In SMOTE method, all models give very good results, possibly on par with method Undersampling. Particularly, the XGB model across the three methods consistently gives the best outcomes among the models, and in this method, XGB achieves the best performance in all three runs.

2.10 In Conclusion

This is really an interesting project that I have done. After analyzing, I give the following two conclusions: - About the method of handling imbalanced data: I recommend choosing the SMOTE method - About the machine learning model: I recommend choosing the XG Boost Classifier model

Thank you for reading my personal project

Author: Bao Thai