Package 'meteoEVT'

October 13, 2022

Type	Package		
Title	Computation and Visualization of Energetic and Vortical Atmospheric Quantities		
Versi	on 0.1.0		
Date	2022-09-02		
Main	tainer Laura Mack <laum52@zedat.fu-berlin.de></laum52@zedat.fu-berlin.de>		
Desci	ription Energy-Vorticity theory (EVT) is the fundamental theory to describe processes in the atmosphere by combining conserved quantities from hydrodynamics and thermodynamics. The package 'meteoEVT' provides functions to calculate many energetic and vortical quantities, like potential vorticity, Bernoulli function and dynamic state index (DSI) [e.g. Weber and Nevir, 2008, <doi:10.1111 j.1600-0870.2007.00272.x="">], for given gridded data, like ERA5 reanalyses. These quantities can be studied directly or can be used for many applications in meteorology, e.g., the objective identification of atmospheric fronts. For this purpose, separate function are provided that allow the detection of fronts based on the thermic front parameter [Hewson, 1998, <doi:10.1017 s1350482798000553="">], the F diagnostic [Parfitt et al., 2017, <doi:10.1002 2017gl073662="">] and the DSI [Mack et al., 2022, <arxiv:2208.11438>]</arxiv:2208.11438></doi:10.1002></doi:10.1017></doi:10.1111>		
Auth	or Laura Mack [aut, cre]		
Impo	orts grDevices, graphics, purrr, ncdf4		
Licen	se GPL (>= 2)		
URL	https://github.com/noctiluc3nt/meteoEVT		
Enco	ding UTF-8		
Roxy	genNote 7.2.0		
Need	sCompilation no		
Repo	sitory CRAN		
Date/	Publication 2022-09-05 08:30:02 UTC		
R to	opics documented:		
	meteoEVT-package 2 calc_bernoulli 3		

2 meteoEVT-package

ex		27
	scalarprod	26
	rot	
	readin_era5	
	readin_dim	
	jacobian	
	grad	
	frontid	20
	fill_horiz	19
	div	18
	$df_dz \dots \dots \dots \dots \dots \dots \dots \dots \dots $	18
	df_dy	
	$df_dx \dots \dots \dots \dots \dots \dots \dots \dots \dots $	16
	$df_dp \dots \dots \dots \dots \dots \dots \dots \dots \dots $	16
	crossprod	15
	calc_vorticity	14
	calc_theta	13
	calc_tfp	13
	calc_pv	11
	calc_lamb	10
	calc helicity	9
	calc_frontogenesis	8
	calc fdiag	
	calc_enstrophy	
	calc_dsi	4
	calc_density	4

meteoEVT-package

Introduction

Description

Energy-Vorticity theory (EVT) is the fundamental theory to describe processes in the atmosphere by combining conserved quantities from hydrodynamics and thermodynamics. The package 'meteo-EVT' provides functions to calculate many energetic and vortical quantities, like potential vorticity, Bernoulli function and dynamic state index (DSI) (Weber and Nevir, 2008), for given gridded data, like ERA5 reanalyses. These quantities can be studied directly or can be used for many applications in meteorology, e.g., the objective identification of atmospheric fronts. For this purpose, separate function are provided that allow the detection of fronts based on the thermic front parameter (Hewson, 1998), the F diagnostic (Parfitt et al., 2017) and the DSI (Mack et al., 2022).

Details

Phenomenons in the Earth's atmosphere, like tropical hurricanes or extratropical cyclones, can adequately be characterized by a combination of energetic and vortical quantities. These quantities can also be used for a consistent theoretical description of these phenomenons. This package provides functions to calculate Bernoulli function, vorticity, enstrophy, helicity, Lamb vector and potential

calc_bernoulli 3

vorticity based on given gridded data sets. Addiotionally, by using energy-vortex theory an adiabatic, stationary and invisicid basic state of the Earth's atmosphere can be derived, which is itself a solution of the primitive equations. The derivation from this basic state is given by the dynamic state index (DSI), which can be used for the study of, e.g., cyclones and fronts. Recently, the DSI was used to identify atmospheric fronts objectively from reanalysis data and thereby provides an alternative way for front detection. For this purpose, this package provides funtions to calculate the DSI and use it to identify atmospheric fronts. This method can be compared with state-of-the-art front identification methods based on the thermic front parameter or the F diagnostic.

References

- Weber, T. and Névir, P. (2008). Storm tracks and cyclone development using the theoretical concept of the Dynamic State Index (DSI). Tellus A, 60(1):1–10, doi:10.1111/j.1600-0870.2007.00272.x.
- Parfitt, R., Czaja, A., and Seo, H. (2017). A simple diagnostic for the detection of atmospheric fronts. Geophys. Res. Lett., 44:4351–4358, doi:10.1002/2017GL073662.
- Hewson, T. D. (1998). Objective fronts. Meteorol. Appl., 5:37–65, doi:10.1017/S1350482798000553.
- Mack, L., Rudolph, A. and Névir, P. (2022). Identifying atmospheric fronts based on diabatic processes using the dynamic state index (DSI), arXiv:2208.11438.

calc_bernoulli	Bernoulli function		
----------------	--------------------	--	--

Description

Calculates the Bernoulli function, i.e. total energy density, as sum of potential, kinetic and thermal energy density

Usage

```
calc_bernoulli(t_fld, u_fld, v_fld, w_fld, phi_fld)
```

Arguments

t_fld	temperature field [K]
u_fld	zonal velocity field [m/s]
v_fld	meridional velocity field [m/s]
w_fld	vertical velocity field [m/s]
phi_fld	geopotential height [gpm]

Value

Bernoulli function field [m^2/s^2]

4 calc_dsi

Examples

```
myfile=system.file("extdata", "era5_storm-zeynep.nc", package = "meteoEVT")
data = readin_era5(myfile)
bernoulli=calc_bernoulli(data$temp,data$u,data$v,data$v,data$z)
```

calc_density

Density

Description

Calculates the density of an ideal fluid

Usage

```
calc_density(t_fld, lev_p)
```

Arguments

t_fld temperature field [K]

lev_p vector containing pressure levels [Pa]

Value

```
density [kg/m<sup>3</sup>]
```

Examples

```
myfile=system.file("extdata", "era5_storm-zeynep.nc", package = "meteoEVT")
data = readin_era5(myfile)
density=calc_density(data$temp,data$lev)
```

calc_dsi

Dynamic State Index (DSI)

Description

Calculates the dynamic state index DSI

calc_dsi 5

Usage

```
calc_dsi(
  t_fld,
  u_fld,
  v_fld,
  w_fld,
  phi_fld,
  lev_p,
  lat = NULL,
  dx = 0.25,
  dy = 0.25,
  zvort_only = FALSE,
  relative = FALSE,
  pv_fld = NULL,
  mode = "lonlat"
)
```

Arguments

t_fld	temperature field [K]
u_fld	zonal velocity field [m/s]
v_fld	meridional velocity field [m/s]
w_fld	vertical velocity field [m/s]
phi_fld	geopotential height [gpm]
lev_p	vector containing pressure levels [Pa]
lat	vector containing latitude
dx	x resolution in the corresponding unit (e.g. 0.25 degree for ERA5 with mode='lonlat' or e.g. 1000 m in cartesian coordinates with mode='cartesian')
dy	y resolution in the corresponding unit (e.g. 0.25 degree for ERA5 with mode='lonlat' or e.g. 1000 m in cartesian coordinates with mode='cartesian')
zvort_only	logical, TRUE: if only the vertical vorticity (zvort) should be calculated, FALSE: for the whole vorticity vector, default: FALSE
relative	logical, TRUE: only relative vorticity, FALSE: whole (absolute) vorticity, default: FALSE
pv_fld	optional pv field (if e.g., PV is directly taken from ERA5 and not calculated separately)
mode	use 'lonlat' if the data is given on a lon-lat-grid or 'cartesian' if the data is given on an equidistant cartesian grid

Value

```
dynamic state index [K^2*m^4/(kg^2*s^3)]
```

6 calc_enstrophy

Examples

```
myfile=system.file("extdata", "era5_storm-zeynep.nc", package = "meteoEVT")
data = readin_era5(myfile)
dsi=calc_dsi(data$temp,data$u,data$v,data$w,data$z,lev_p=data$lev,lat=data$lat)
```

calc_enstrophy

Enstrophy density

Description

Calculates the enstrophy density (vorticity squared) either in 2d or 3d

Usage

```
calc_enstrophy(
  u_fld,
  v_fld,
  w_fld = NULL,
  lev_p,
  lat = NULL,
  dx = 0.25,
  dy = 0.25,
  zvort_only = TRUE,
  relative = TRUE,
  zvort_fld = NULL,
  mode = "lonlat"
)
```

u_fld	zonal velocity field [m/s]
v_fld	meridional velocity field [m/s]
w_fld	vertical velocity field [m/s]
lev_p	vector containing pressure levels [Pa]
lat	vector containing latitude
dx	x resolution in the corresponding unit (e.g. 0.25 degree for ERA5 with mode='lonlat' or e.g. 1000 m in cartesian coordinates with mode='cartesian')
dy	y resolution in the corresponding unit (e.g. 0.25 degree for ERA5 with mode='lonlat' or e.g. 1000 m in cartesian coordinates with mode='cartesian')
zvort_only	logical, TRUE: if only 2d enstrophy (based on z-vorticity) should be calculated, FALSE: for 3d enstrophy (based on 3d vorticity), default: TRUE
relative	logical, TRUE: only relative vorticity, FALSE: whole (absolute) vorticity should be used for calculation of enstrophy, default: TRUE

calc_fdiag 7

zvort_fld optional zvort field (if e.g., zvort is directly taken from ERA5 and not calculated

separately)

mode use 'lonlat' if the data is given on a lon-lat-grid or 'cartesian' if the data is given

on an equidistant cartesian grid

Value

```
enstrophy density field [1/s^2]
```

Examples

```
myfile=system.file("extdata", "era5_storm-zeynep.nc", package = "meteoEVT")
data = readin_era5(myfile)
#3d enstropy
ens3d=calc_enstrophy(data$u,data$v,data$w,data$lev,lat=data$lat)
#2d enstropy as scalar
ens2d=calc_enstrophy(data$u,data$v,lev_p=data$lev,lat=data$lat,zvort_only=TRUE)
```

calc_fdiag

F diagnostic

Description

Calculates the F diagnostic

Usage

```
calc_fdiag(
    t_fld,
    u_fld,
    v_fld,
    lev_p,
    lat = NULL,
    dx = 0.25,
    dy = 0.25,
    mode = "lonlat"
)
```

t_fld	temperature field [K]
u_fld	zonal velocity field [m/s]
v_fld	meridional velocity field [m/s]
w_fld	vertical velocity field [m/s]
lev_p	vector containing pressure levels [Pa]

8 calc_frontogenesis

lat	only for lonlat mode: vector containing latitude
dx	x resolution in the corresponding unit (e.g. 0.25 degree for ERA5 with mode='lonlat' or e.g. 1000 m in cartesian coordinates with mode='cartesian')
dy	y resolution in the corresponding unit (e.g. 0.25 degree for ERA5 with mode='lonlat' or e.g. 1000 m in cartesian coordinates with mode='cartesian')
mode	the horizontal coordinate system, options are lonlat for a longitude-latitude-grid (default), or cartesian for an equidistant cartesian grid

Value

F diagnostic (dimensionless)

Examples

```
myfile=system.file("extdata", "era5_storm-zeynep.nc", package = "meteoEVT")
data = readin_era5(myfile)
fdiag=calc_fdiag(data$temp,data$u,data$v,data$w,data$lev,data$lat)
```

calc_frontogenesis

Petterssen Frontogenesis Function

Description

Calculates the Petterssen frontogenesis function based on the potential temperature

Usage

```
calc_frontogenesis(
  t_fld,
  u_fld,
  v_fld,
  w_fld,
  lev_p,
  mode = "lonlat",
  lat = NULL,
  dx = 0.25,
  dy = 0.25
)
```

t_fld	temperature field [K]
u_fld	zonal velocity field [m/s]
v_fld	meridional velocity field [m/s]
w_fld	vertical velocity field [m/s]
lev_p	vector containing pressure levels [Pa]

calc_helicity 9

mode	the coordinate system, options are lonlat for a longitude-latitude-grid (default), or cartesian for an equidistant cartesian grid
lat	only for lonlat mode: vector containing latitude
dx	x resolution in the corresponding unit (e.g. 0.25 degree for ERA5 with mode='lonlat' or e.g. 1000 m in cartesian coordinates with mode='cartesian')
dy	y resolution in the corresponding unit (e.g. 0.25 degree for ERA5 with mode='lonlat' or e.g. 1000 m in cartesian coordinates with mode='cartesian')

Value

Petterssen Frontogenesis Function

Description

Calculates the helicity density (scalar product of wind vector and vorticity vector) either for the whole vector (3d) or only for the vertical component (updraft helicity)

Usage

```
calc_helicity(
  u_fld,
  v_fld,
  w_fld,
  lev_p,
  lat = NULL,
  dx = 0.25,
  dy = 0.25,
  vert_only = FALSE,
  relative = TRUE,
  zvort_fld = NULL,
  mode = "lonlat"
)
```

```
u_fld zonal velocity field [m/s]
v_fld meridional velocity field [m/s]
w_fld vertical velocity field [m/s]
lev_p vector containing pressure levels [Pa]
lat vector containing latitude
dx x resolution in the corresponding unit (e.g. 0.25 degree for ERA5 with mode='lonlat' or e.g. 1000 m in cartesian coordinates with mode='cartesian')
```

10 calc_lamb

dy	y resolution in the corresponding unit (e.g. 0.25 degree for ERA5 with mode='lonlat' or e.g. 1000 m in cartesian coordinates with mode='cartesian')
vert_only	logical, TRUE: if only the updraft helicity w*zeta (based on z-vorticity) should be calculated, FALSE: for 3d helicity (based on 3d vorticity), default: FALSE
relative	logical, TRUE: only relative vorticity, FALSE: whole (absolute) vorticity should be used for calculation of enstrophy, default: TRUE
zvort_fld	optional zvort field (if e.g., zvort is directly taken from ERA5 and not calculated separately)
mode	use 'lonlat' if the data is given on a lon-lat-grid or 'cartesian' if the data is given on an equidistant cartesian grid

Value

helicity density field [m/s^2]

Examples

```
myfile=system.file("extdata", "era5_storm-zeynep.nc", package = "meteoEVT")
data = readin_era5(myfile)
#3d helicity
hel=calc_helicity(data$u,data$v,data$w,data$lev,lat=data$lat)
#updraft helicity
up_hel=calc_helicity(data$u,data$v,data$w,data$lev,lat=data$lat,vert_only=TRUE)
```

calc_lamb

Lamb vector (sometimes called vortex energy)

Description

Calculates the Lamb vector (cross product of wind vector and vorticity vector)

```
calc_lamb(
    u_fld,
    v_fld,
    w_fld,
    lev_p,
    lat = NULL,
    dx = 0.25,
    dy = 0.25,
    relative = TRUE,
    zvort_fld = NULL,
    mode = "lonlat"
)
```

calc_pv 11

Arguments

u_fld	zonal velocity field [m/s]
v_fld	meridional velocity field [m/s]
w_fld	vertical velocity field [m/s]
lev_p	vector containing pressure levels [Pa]
lat	vector containing latitude
dx	x resolution in the corresponding unit (e.g. 0.25 degree for ERA5 with mode='lonlat' or e.g. 1000 m in cartesian coordinates with mode='cartesian')
dy	y resolution in the corresponding unit (e.g. 0.25 degree for ERA5 with mode='lonlat' or e.g. 1000 m in cartesian coordinates with mode='cartesian')
relative	logical, TRUE: only relative vorticity, FALSE: whole (absolute) vorticity should be used for calculation of enstrophy, default: TRUE
zvort_fld	optional zvort field (if e.g., zvort is directly taken from ERA5 and not calculated separately)
mode	use 'lonlat' if the data is given on a lon-lat-grid or 'cartesian' if the data is given on an equidistant cartesian grid

Value

lamb vector [m/s^2]

Examples

```
myfile=system.file("extdata", "era5_storm-zeynep.nc", package = "meteoEVT")
data = readin_era5(myfile)
lamb=calc_lamb(data$u,data$v,data$w,data$lev,lat=data$lat)
```

calc_pv

Potential Vorticity (PV)

Description

Calculates the potential vorticity

```
calc_pv(
    t_fld,
    u_fld,
    v_fld,
    w_fld,
    lev_p,
    lat = NULL,
    dx = 0.25,
```

12 calc_pv

```
dy = 0.25,
zvort_only = FALSE,
relative = FALSE,
zvort_fld = NULL,
mode = "lonlat"
)
```

Arguments

t_fld	temperature field [K]
u_fld	zonal velocity field [m/s]
v_fld	meridional velocity field [m/s]
w_fld	vertical velocity field [m/s]
lev_p	vector containing pressure levels [Pa]
lat	vector containing latitude
dx	x resolution in the corresponding unit (e.g. 0.25 degree for ERA5 with mode='lonlat' or e.g. 1000 m in cartesian coordinates with mode='cartesian')
dy	y resolution in the corresponding unit (e.g. 0.25 degree for ERA5 with mode='lonlat' or e.g. 1000 m in cartesian coordinates with mode='cartesian')
zvort_only	logical, TRUE: if only the vertical vorticity (zvort) should be calculated, FALSE: for the whole vorticity vector, default: FALSE
relative	logical, TRUE: only relative vorticity, FALSE: whole (absolute) vorticity, default: FALSE
zvort_fld	optional zvort field (if e.g., zvort is directly taken from ERA5 and not calculated separately)
mode	use 'lonlat' if the data is given on a lon-lat-grid or 'cartesian' if the data is given on an equidistant cartesian grid

Value

```
potential vorticity field [K*m^2/(kg*s)]
```

Examples

```
myfile=system.file("extdata", "era5_storm-zeynep.nc", package = "meteoEVT")
data = readin_era5(myfile)
#PV based on all three components
pv=calc_pv(data$temp,data$u,data$v,data$w,data$lev,lat=data$lat)
#PV only based on vertical component
pv_vert=calc_pv(data$temp,data$u,data$v,data$w,lev_p=data$lev,lat=data$lat,zvort_only=TRUE)
```

calc_tfp 13

calc_tfp	Thermic Front Parameter (TFP)

Description

Calculates the thermic front parameter based on the potential temperature

Usage

```
calc_tfp(t_fld, lev_p, lat = NULL, dx = 0.25, dy = 0.25, mode = "lonlat")
```

Arguments

t_fld	temperature field [K]
lev_p	vector containing pressure levels [Pa]
lat	only for lonlat mode: vector containing latitude
dx	x resolution in the corresponding unit (e.g. 0.25 degree for ERA5 with mode='lonlat' or e.g. 1000 m in cartesian coordinates with mode='cartesian')
dy	y resolution in the corresponding unit (e.g. 0.25 degree for ERA5 with mode='lonlat' or e.g. 1000 m in cartesian coordinates with mode='cartesian')
mode	the horizontal coordinate system, options are 'lonlat' for a longitude-latitude- grid (default), or 'cartesian' for an equidistant cartesian grid

Value

thermic front parameter [K/m^2]

Examples

```
myfile=system.file("extdata", "era5_storm-zeynep.nc", package = "meteoEVT")
data = readin_era5(myfile)
tfp=calc_tfp(data$temp,data$lev,data$lat)
```

|--|

Description

Calculates the potential temperature

```
calc_theta(t_fld, lev_p)
```

14 calc_vorticity

Arguments

```
t_fld temperature field [K]
lev_p vector containing pressure levels [Pa]
```

Value

```
density [kg/m<sup>3</sup>]
```

Examples

```
myfile=system.file("extdata", "era5_storm-zeynep.nc", package = "meteoEVT")
data = readin_era5(myfile)
theta=calc_theta(data$temp,data$lev)
```

calc_vorticity

Vorticity

Description

Calculates the vorticity

Usage

```
calc_vorticity(
  u_fld,
  v_fld,
  w_fld,
  lev_p,
  lat = NULL,
  dx = 0.25,
  dy = 0.25,
  zvort_only = FALSE,
  relative = FALSE,
  zvort_fld = NULL,
  mode = "lonlat"
)
```

```
u_fld zonal velocity field [m/s]
v_fld meridional velocity field [m/s]
w_fld vertical velocity field [m/s]
lev_p vector containing pressure levels [Pa]
lat vector containing latitude
dx x resolution in the corresponding unit (e.g. 0.25 degree for ERA5 with mode='lonlat' or e.g. 1000 m in cartesian coordinates with mode='cartesian')
```

crossprod 15

dy	y resolution in the corresponding unit (e.g. 0.25 degree for ERA5 with mode='lonlat' or e.g. 1000 m in cartesian coordinates with mode='cartesian')
zvort_only	logical, TRUE: if only the vertical vorticity (zvort) should be calculated, FALSE: for the whole vorticity vector, default: FALSE
relative	logical, TRUE: only relative vorticity, FALSE: whole (absolute) vorticity, default: FALSE
zvort_fld	optional zvort field (if e.g., zvort is directly taken from ERA5 and not calculated separately)
mode	use 'lonlat' if the data is given on a lon-lat-grid or 'cartesian' if the data is given on an equidistant cartesian grid

Value

vorticity field [1/s]

Examples

```
myfile=system.file("extdata", "era5_storm-zeynep.nc", package = "meteoEVT")
data = readin_era5(myfile)
#3d vorticity
xi=calc_vorticity(data$u,data$v,data$w,data$lev,lat=data$lat)
#z-vorticity as scalar
zeta=calc_vorticity(data$u,data$v,data$w,data$lev,lat=data$lat,zvort_only=TRUE)
```

crossprod	cross product	

Description

Calculates the cross product of two given 3d vector fields

Usage

```
crossprod(fld1, fld2)
```

Arguments

f1d1 field 1 with dimensions (lon,lat,p,3) f1d2 field 2 with dimensions (lon,lat,p,3)

Value

field containing the cross product

 df_dx

df_dp	df_dp
u i_up	a <u>յ_</u> ap

Description

Calculates the p derivative (pressure system) using central differences

Usage

```
df_dp(fld, plev = 5000)
```

Arguments

fld field with dimensions (lon,lat,p)

plev a scalar containing the p resolution (if equidistant) or a vector containing pres-

sure levels in Pa (for non-equidistant)

Value

field containing the partial derivative w.r.t. p

Examples

```
myfile=system.file("extdata", "era5_storm-zeynep.nc", package = "meteoEVT")
data = readin_era5(myfile)
theta=calc_theta(data$temp,data$lev)
dtheta_dp=df_dp(theta)
```

 df_dx

 df_dx

Description

Calculates the x derivative using central differences (for lonlat-grid or cartesian grid)

Usage

```
df_dx(fld, lat = NULL, dx = 0.25, mode = "lonlat")
```

Arguments

fld	field with dimensions (lon,lat,p)
lat	only for lonlat mode: vector containing latitude
dx	x resolution in the corresponding unit (e.g. 0.25 degree for ERA5 with mode='lonlat' or e.g. 1000 m in cartesian coordinates with mode='cartesian')
mode	the coordinate system, options are lonlat for a longitude-latitude-grid (default),

or cartesian for an equidistant cartesian grid

 df_dy

Value

field containing the partial derivative w.r.t. x

Examples

```
myfile=system.file("extdata", "era5_storm-zeynep.nc", package = "meteoEVT")
data = readin_era5(myfile)
theta=calc_theta(data$temp,data$lev)
dtheta_dx=df_dx(theta,data$lat)
```

df_dy

 df_dy

Description

Calculates the y derivative using central differences

Usage

```
df_dy(fld, dy = 0.25, mode = "lonlat")
```

Arguments

fld	with dimensions (lon,lat,p)
dy	y resolution in the corresponding unit (e.g. 0.25 degree for ERA5 with mode='lonlat' or e.g. 1000 m in cartesian coordinates with mode='cartesian')
mode	the coordinate system, options are lonlat for a longitude-latitude-grid (default)

the coordinate system, options are lonlat for a longitude-latitude-grid (default),

or cartesian for an equidistant cartesian grid

Value

field containing the partial derivative w.r.t. y

Examples

```
myfile=system.file("extdata", "era5_storm-zeynep.nc", package = "meteoEVT")
data = readin_era5(myfile)
theta=calc_theta(data$temp,data$lev)
dtheta_dy=df_dy(theta,dy=0.25)
```

18 div

 df_dz

 df_dz

Description

Calculates the z derivative

Usage

```
df_dz(fld, rho, plev = 5000)
```

Arguments

fld field with dimensions (lon,lat,p)

rho field with dimensions (lon,lat,p) for density or a scalar rho (for constant density)

plev a scalar containing the p resolution (if equidistant) or a vector containing pres-

sure levels in Pa (for non-equidistant)

Value

field containing the partial derivative w.r.t. z

div

divergence

Description

Calculates the divergence of a vector field

```
div(
   fld,
   lat = NULL,
   d = 3,
   system = "p",
   rho = NULL,
   dx = 0.25,
   dy = 0.25,
   plev = 5000,
   mode = "lonlat"
)
```

fill_horiz

Arguments

fld	field with dimensions (lon,lat,p,d)
lat	<pre>vector containing latitude (only for mode='lonlat')</pre>
d	scalar for dimension (use d=2 for horizontal gradient and d=3 for 3d-gradient)
syster	for type of coordinate system (use 'p' for pressure system and 'z' for height system)
rho	field with dimensions (lon,lat,p) for density or a scalar rho (for constant density)
dx	x resolution in the corresponding unit (e.g. 0.25 degree for ERA5 with mode='lonlat' or e.g. 1000 m in cartesian coordinates with mode='cartesian')
dy	y resolution in the corresponding unit (e.g. 0.25 degree for ERA5 with mode='lonlat' or e.g. 1000 m in cartesian coordinates with mode='cartesian')
plev	a scalar containing the p resolution (if equidistant) or a vector containing pressure levels in Pa (for non-equidistant)
mode	the coordinate system, options are lonlat for a longitude-latitude-grid (default), or cartesian for an equidistant cartesian grid

Value

field containing the divergence of fld

fill_horiz Plotting a xy domain with custom boundaries, colour paletts and optional world map	fill_horiz	
---	------------	--

Description

Plotting a xy domain with custom boundaries, colour paletts and optional world map

```
fill_horiz(
    x,
    y,
    fld,
    levels = 1:100,
    main = "",
    worldmap = TRUE,
    legend_loc = "topright",
    legend_title = "",
    legend_only = FALSE,
    Lab = NULL,
    ...
)
```

20 frontid

Arguments

array containing x-axis values (e.g. longitude) Х array containing y-axis values (e.g. latitude) У fld field (which should be plotted) with dimensions (x,y)levels levels for colour bar main character containing main title of the plot worldmap should the world map contours be plotted (default TRUE) legend_loc location of legend legend_title character containing legend title legend_only logical TRUE only legend should be pltted, or FALSE everything should be plotted (default)

lab palette from type colorRampPalette

... additional graphic parameters

Value

no return

Lab

frontid

Front Identification und Statistics

Description

Calculates frontal zones based on a chosen method (TFP, F diagnostic, DSI) and provides statistics of the distribution of meteorological quantities inside the determined frontak zones.

```
frontid(
  t_fld,
  u_fld = NULL,
  v_fld = NULL,
  w_fld = NULL,
  phi_fld = NULL,
  lev_p,
  lat = NULL,
  method = "tfp",
  threshold = 2 * 10^-10,
  dx = 0.25,
  dy = 0.25,
  fronts_only = FALSE,
  mode = "lonlat"
)
```

frontid 21

Arguments

t_fld	temperature field [K]
u_fld	zonal velocity field [m/s]
v_fld	meridional velocity field [m/s]
w_fld	vertical velocity field [m/s]
phi_fld	geopotential height [gpm]
lev_p	vector containing pressure levels [Pa]
lat	only for lonlat mode: vector containing latitude
method	character containing the method, use 'tfp' for TFP method, 'f' for F diagnostic and 'dsi' for DSI method
threshold	scalar containing a suitable threshold (e.g., 2*10^-10 for TFP method, 1 or for F diagnostic, 10^-16 for DSI method)
dx	x resolution in the corresponding unit (e.g. 0.25 degree for ERA5 with mode='lonlat or e.g. 1000 m in cartesian coordinates with mode='cartesian')
dy	y resolution in the corresponding unit (e.g. 0.25 degree for ERA5 with mode='lonlat or e.g. 1000 m in cartesian coordinates with mode='cartesian')
fronts_only	if you only want to calculate the frontal regions and not their properties (default FALSE)
mode	the horizontal coordinate system, options are lonlat for a longitude-latitude-grid (default), or cartesian for an equidistant cartesian grid

Value

list containing the used method and used threshold, field with logicals containing the detected frontal zones and numerics of temperature, u-wind, v-wind, w-wind, geopotential, vorticity, PV and DSI inside the determined frontal zones

Examples

```
myfile=system.file("extdata", "era5_storm-zeynep.nc", package = "meteoEVT")
data = readin_era5(myfile)

#front identification using the thermic front parameter (example without front statistic)
tfp_fronts=frontid(data$temp,lev_p=data$lev,lat=data$lat,fronts_only=TRUE)

#front identification using F diagnostic (example with front statistic)
f_fronts=frontid(data$temp,data$u,data$v,data$w,data$z,lev_p=data$lev,lat=data$lat,method='f',threshold=2,fronts_only=FALSE)

#front identification using the dynamic state index (example with statistic)
dsi_fronts=frontid(data$temp,data$u,data$v,data$w,data$z,lev_p=data$lev,lat=data$lat,method='dsi',threshold=4*10^-16,fronts_only=FALSE)
```

22 grad

grad gradient of a scalar field

Description

Calculates the gradient

Usage

```
grad(
   fld,
   lat = NULL,
   d = 3,
   system = "p",
   rho = NULL,
   dx = 0.25,
   dy = 0.25,
   plev = 5000,
   mode = "lonlat"
)
```

Arguments

fld		field with dimensions (lon,lat,p)	
lat		vector containing latitude	
d		scalar for dimension (use d=2 for horizontal gradient and d=3 for 3d-gradient)	
sys	tem	for type of coordinate system (use 'p' for pressure system and 'z' for height system)	
rho		field with dimensions (lon,lat,p) for density or a scalar rho (for constant density)	
dx		x resolution in the corresponding unit (e.g. 0.25 degree for ERA5 with mode='lonlat' or e.g. 1000 m in cartesian coordinates with mode='cartesian')	
dy		y resolution in the corresponding unit (e.g. 0.25 degree for ERA5 with mode='lonlat' or e.g. 1000 m in cartesian coordinates with mode='cartesian')	
ple	V	a scalar containing the p resolution (if equidistant) or a vector containing pressure levels in Pa (for non-equidistant)	
mod	е	the coordinate system, options are lonlat for a longitude-latitude-grid (default), or cartesian for an equidistant cartesian grid	

Value

field containing the gradient with dimension (lon,lat,p,d)

jacobian 23

Examples

```
myfile=system.file("extdata", "era5_storm-zeynep.nc", package = "meteoEVT")
data = readin_era5(myfile)
theta=calc_theta(data$temp,data$lev)
theta_grad=grad(theta,data$lat)
```

jacobian

Jacobian matrix and determinant

Description

Calculates the Jacobian matrix and Jacobian determinant for 2 or 3 given scalar fields

Usage

```
jacobian(
  fld1,
  fld2,
  fld3 = NULL,
  lat = NULL,
  d = 3,
  system = "p",
  rho = NULL,
  dx = 0.25,
  dy = 0.25,
  plev = 5000,
  mode = "lonlat"
)
```

fld1	field 1 with dimensions (lon,lat,p)
fld2	field 2 with dimensions (lon,lat,p)
fld3	field 3 with dimensions (lon,lat,p)
lat	vector containing latitude
d	scalar for dimension (use d=2 for 2 input fields and d=3 for 3 inpt fields)
system	for type of coordinate system (use 'p' for pressure system and 'z' for height system)
rho	field with dimensions (lon,lat,p) for density or a scalar rho (for constant density)
dx	x resolution in the corresponding unit (e.g. 0.25 degree for ERA5 with mode='lonlat' or e.g. 1000 m in cartesian coordinates with mode='cartesian')
dy	y resolution in the corresponding unit (e.g. 0.25 degree for ERA5 with mode='lonlat' or e.g. 1000 m in cartesian coordinates with mode='cartesian')
plev	a scalar containing the p resolution (if equidistant) or a vector containing pressure levels in Pa (for non-equidistant)
mode	the coordinate system, options are lonlat for a longitude-latitude-grid (default), or cartesian for an equidistant cartesian grid

24 readin_era5

Value

list containing Jacobian matrix and determinant

readin_dim

read in dimensions

Description

: reads dimensions of ERA5 data

Usage

```
readin_dim(filename)
```

Arguments

filename

name of file to read in

Value

no return

Examples

```
myfile=system.file("extdata", "era5_storm-zeynep.nc", package = "meteoEVT")
data_dims = readin_dim(myfile)
```

readin_era5

read in ERA5 data

Description

: reads ERA5 data

Usage

```
readin_era5(filename)
```

Arguments

filename

name of file to read in

Value

no return

rot 25

Examples

```
myfile=system.file("extdata", "era5_storm-zeynep.nc", package = "meteoEVT")
data = readin_era5(myfile)
```

rot

rotation

Description

Calculates the rotation of a vector field

Usage

```
rot(
   fld,
   lat = NULL,
   d = 3,
   system = "p",
   rho = NULL,
   dx = 0.25,
   dy = 0.25,
   plev = 5000,
   mode = "lonlat"
)
```

Arguments

fld	with dimensions (lon,lat,p,d)	
lat	vector containing latitude	
d	scalar for dimension (use d=2 for horizontal gradient and d=3 for 3d-gradient)	
system	for type of coordinate system (use 'p' for pressure system and 'z' for height system)	
rho	field with dimensions (lon,lat,p) for density or a scalar rho (for constant density)	
dx	x resolution in the corresponding unit (e.g. 0.25 degree for ERA5 with mode='lonlat' or e.g. 1000 m in cartesian coordinates with mode='cartesian')	
dy	y resolution in the corresponding unit (e.g. 0.25 degree for ERA5 with mode='lonlat' or e.g. 1000 m in cartesian coordinates with mode='cartesian')	
plev	a scalar containing the p resolution (if equidistant) or a vector containing pressure levels in Pa (for non-equidistant)	
mode	the coordinate system, options are lonlat for a longitude-latitude-grid (default), or cartesian for an equidistant cartesian grid	

Value

field containing the divergence of fld

26 scalarprod

scalarprod	scalar product	

Description

Calculates the scalar product of two given fields

Usage

```
scalarprod(fld1, fld2)
```

Arguments

f1d1 field 1 with dimensions (lon,lat,p,d) f1d2 field 2 with dimensions (lon,lat,p,d)

Value

field of the scalar product with dimensions (lon,lat,p)

Index

```
calc\_bernoulli, 3
calc\_density, 4
calc\_dsi, 4
calc_enstrophy, 6
calc_fdiag, 7
{\tt calc\_frontogenesis}, 8
calc_helicity, 9
calc\_lamb, 10
calc_pv, 11
calc_tfp, 13
calc_theta, 13
calc\_vorticity, 14
crossprod, 15
df_dp, 16
df_dx, 16
df_dy, 17
df_dz, 18
div, 18
fill_horiz, 19
frontid, 20
grad, 22
jacobian, 23
{\tt meteoEVT-package}, \\ 2
readin_dim, 24
readin_era5, 24
rot, 25
scalarprod, 26
```