

Tópicos de Física Moderna 1° Teste (1)

Licenciatura em Engenharia Informática

28 de março de 2012 - 14h30 Duração - 2h00

NOME:	nº:

O teste é constituído por dez questões que valem dois valores cada uma, sendo nove de escolha múltipla. Cada questão de escolha múltipla só é considerada correta se forem selecionadas todas as opções corretas que lhe correspondem. Assinale com uma cruz todas as opções corretas. Se achar conveniente e tiver espaço pode apresentar, junto à questão, um pequeno cálculo que justifique as opções que assinala.

- Q1. Um comboio desloca-se à velocidade de 30m/s, no sentido positivo do eixo dos X. No chão do comboio uma bola rola à velocidade de 10m/s. Determine a velocidade da bola em relação a um observador parado na estação, se o movimento da bola for:
- a) na direção e sentido do movimento do comboio comboio:
- b) na direção perpendicular ao movimento do

$$\vec{\nabla}$$
 $\vec{V} = 144 \hat{i}$ (km/h) $\vec{\nabla} = 11.1 \hat{i}$ (km/h)

$$\boxtimes \vec{v} = 30 \hat{i} - 10 \hat{j} (m/s)$$

$$\boxtimes$$
 v=113.84 km/h

$$\Box$$
 v=72 km/h

$$\boxtimes \vec{v} = 30 \hat{j} + 10 \hat{j} (m/s)$$

$$\boxtimes$$
 $\vec{v} = 40 \hat{i} \text{ (m/s)}$

$$\vec{v} = 30 \hat{i} (\text{m/s})$$

 $\vec{v} = 31.6 \text{ km/h}$

Q2. O tempo de vida médio dos mesões π (piões) no seu referencial próprio é de 2.6×10^{-8} s. Se um feixe destas partículas se estiver a deslocar à velocidade de 0.9 c, antes de se desintegrarem percorrem, em média, medidos no referencial do laboratório, a distância d

$$d = \frac{7.02}{\sqrt{0.19}}$$

$$\Box$$
 d= $\frac{16.1}{\sqrt{0.19}}$

$$\Box$$
 d = 7.02 m

$$\triangle$$
 d = 16.1 m

$$\Box$$
 d = 161 m

- \Box d = 16.1 km
- Q3. Uma nave espacial, que se está a afastar da Terra à velocidade de 0.6c, dispara um míssil paralelamente ao sentido do seu movimento. Se o míssil se desloca à velocidade de 0.4c em relação à nave, a sua velocidade em relação à Terra é:

$$\boxtimes$$
 $V = \frac{C}{1.24}$

$$\times v = 0.806c$$

	V≤C	⊠ V <c< th=""></c<>
	nave espacial viaja à velocidade de 0.8 c em re e uma segunda nave que pretenda ultrapassar a pr	-
X	$1 \ 0.8 \ c < v < c$	\boxtimes v = 0.946 c
	v = 0.2 c	\Box v = 0.995 c
	$0.8 c < v \le c$	\square v = c
positi emiti	núcleo radioativo move-se, no referencial do la iva do eixo dos X, quando emite um fotão γ. do perpendicularmente à direção do movimentencial do laboratório é:	No referencial próprio do núcleo o fotão é
X	l v=c	□ v=cĵ
X	$\vec{v} = (0.8 \text{c}) \hat{i} + (0.6 \text{c}) \hat{j}$	$\vec{v} = (0.6 \text{c}) \hat{i} + (0.8 \text{c}) \hat{j}$
	⊽=cî	
Detei <u>mc.</u>	rmine para que valor de velocidade o momento l	linear de uma partícula de massa \underline{m} é igual a
	$V = \frac{\sqrt{2}}{C}$	\Box v = 0.5 c
X	v = 0.707 c	$ xilde{\nabla} = \frac{\mathbf{c}}{\sqrt{2}} $
	v = 0.85 c	□ v = c
Detei	rmine a energia cinética (K) de uma partícula de 1	massa \underline{m} a deslocar-se à velocidade de $\frac{1}{\sqrt{2}}$ c
	$K = mc^2 \left(\sqrt{2} + 1 \right)$	\Box K = $\sqrt{2}$ mc ²
	$K = \frac{mc^2}{4}$ $K = mc^2 (\sqrt{2} - 1)$	$\square K = \frac{\sqrt{2} \mathrm{mc}^2}{2}$
	4	~
$ \mathbf{X} $	$K = mc^{-}(\sqrt{2} - 1)$	\boxtimes K=0.4142mc ²

Q4.

Q5.

Q6.

Q7.

Q8. As seguintes quatro afirmações são falsas. Escreva-as de novo de forma correta.

1) Os vários tipos de radiação eletromagnética propagam-se no vazio todos com a mesma velocidade e todos com a mesma frequência.

Os vários tipos de radiação eletromagnética propagam-se no vazio todos com a mesma velocidade mas cada um com a sua frequência característa.

2) Quando uma dada radiação incide, segundo a normal, numa interface vidro-água, não há feixe refletido porque toda a radiação é transmitida sem mudar de direção.

Quando uma dada radiação incide, segundo a normal, numa interface vidro-água, parte da radiação é refletida e parte é transmitida, embora uma e outra sem mudarem de direção porque $\theta_i=0$

3) O ângulo crítico para que ocorra reflexão interna total numa interface benzeno-água é de 33.33°

 $(n_{benzeno} = 1.82 e n_{agua} = 1.33)$

O ângulo crítico para que ocorra reflexão interna total numa interface benzeno-água é de 46.95°

4) Uma onda é uma perturbação periódica que se propaga no espaço e no tempo, transportando matéria e energia.

Uma onda é uma perturbação periódica que se propaga no espaço e no tempo, transportando energia mas não transportando matéria.

- **Q9.** A equação de onda $\vec{E}(y,t) = 100 \text{ ser} \left[-2\pi \left(4 \times 10^{14} t 2 \times 10^6 y \right) \right] \hat{k}$ representa uma radiação eletromagnética
- \square polarizada na direção do eixo dos Z e a propagar-se no sentido positivo do eixo dos Y, e em que A = 100 nm; λ = 500 nm; T = 2.5×10⁻¹⁵ s; v = 2.0×10⁸ m/s.
- \boxtimes polarizada na direção do eixo dos Z e a propagar-se no sentido positivo do eixo dos Y, e em que A = 100 V/m; λ = 500 nm; T = 2.5×10^{-15} s; v = 2.0×10^{8} m/s.
- \square polarizada na direção do eixo dos Y e a propagar-se no sentido positivo do eixo dos X, e em que A = 100 nm; λ = 400 nm; f = 4×10¹⁴ Hz; v = c.
- \square polarizada na direção do eixo dos Y e a propagar-se no sentido positivo do eixo dos Z, e em que A = 100 V/m; λ = 500 nm; f = 4×10¹⁴ s⁻¹; v = c/1.5.
- \boxtimes polarizada na direção do eixo dos Z e a propagar-se no sentido positivo do eixo dos Y, e em que A = 100 V/m; λ = 500 nm; f = 4×10¹⁴ s⁻¹; n = 1.5.

 $(A-amplitude; \lambda-comprimento de onda; f-frequência; T-período; v-velocidade de propagação; n-índice de refração)$

Q10. Um feixe de radiação monocromática incide no ponto A, como se mostra na figura. Passa através de um dado material transparente de índice de refração n = 1.80, e atinge uma parede no ponto X. Considerando os parâmetros e as dimensões indicados na figura, a distância OX é: (aconselha-se a não fazer arredondamentos drásticos)

$$\boxtimes$$
 2.1 < \overline{OX} < 2.2 cm

$$\boxtimes \overline{OX} = 2.17 \text{ cm}$$

$$\Box$$
 $\overline{OX} > 2.5 \text{ cm}$

$$\overline{OX} = 2.71 \text{ cm}$$

$$\square$$
 2.7 < \overline{OX} < 2.8 cm