CM311 - Cálculo 1 Honors - 1 sem 2024Prof. Diego Otero Lista de Exercícios 2

Problemas

Mais Limites e Funções Contínuas

1. Calcule os limites abaixo usando, quando necessário, as propriedades de limites laterais e limites infinitos

a)
$$\lim_{x \to 1^-} \frac{|x-1|}{x-1}$$
.

d)
$$\lim_{x\to 3^-} \frac{\sqrt{x^2-6x+9}}{x-3}$$
.

g)
$$\lim_{x \to 0^-} \frac{3}{x^2 - x}$$
.

b)
$$\lim_{x \to 1^+} \frac{|x-1|}{x-1}$$

e)
$$\lim_{x \to 3^{-}} \frac{4}{x-3}$$

h)
$$\lim_{x \to 3^+} \frac{x^2 - 3x}{x^2 - 6x + 9}$$
.

a)
$$\lim_{x \to 1^{-}} \frac{|x-1|}{x-1}$$
.
d) $\lim_{x \to 3^{-}} \frac{\sqrt{x^2 - 6x + 9}}{x-3}$.
g) $\lim_{x \to 0^{-}} \frac{3}{x^2 - x}$.
b) $\lim_{x \to 1^{+}} \frac{|x-1|}{x-1}$.
e) $\lim_{x \to 3^{+}} \frac{4}{x-3}$.
h) $\lim_{x \to 3^{+}} \frac{x^2 - 3x}{x^2 - 6x + 9}$.
c) $\lim_{x \to 1^{+}} \frac{\sqrt{x^2 - 1} + \sqrt{x} - 1}{\sqrt{x-1}}$.
f) $\lim_{x \to 0^{+}} \frac{3}{x^2 - x}$.
i) $\lim_{x \to 0^{+}} \frac{\sin x}{x^3 - x^2}$.

f)
$$\lim_{x \to 0^+} \frac{3}{x^2 - x}$$

i)
$$\lim_{x \to 0^+} \frac{\sin x}{x^3 - x^2}$$

- 2. Suponha f, g definidas em um intervalo aberto I exceto em a, possivelmente. Se $\lim_{x\to a} f(x) = -\infty$ e $\lim_{x\to a} g(x) = L$, onde $L \in \mathbb{R}$, mostre que
 - a) $\lim_{x \to a} (f(x) + g(x)) = -\infty$.
 - b) $\lim_{x \to a} (f(x).g(x)) = -\infty$, se L > 0.
 - c) $\lim_{x \to a} (f(x).g(x)) = +\infty$, se L < 0.
 - d) Se L=0, é possível dizer alguma coisa sobre o limite $\lim_{x\to a}(f(x).g(x))$.
- 3. Suponha f, g definidas em um intervalo aberto I exceto em a, possivelmente. Se $\lim_{x\to a} f(x) = +\infty$ e $\lim_{x\to a} g(x) = -\infty$, mostre que
 - a) $\lim_{x \to a} (f(x).g(x)) = -\infty$.
 - b) É possível dizer alguma coisa sobre o limite $\lim_{x \to a} (f(x) + g(x))$?
 - c) É possível dizer alguma coisa sobre o limite $\lim_{x\to a} \frac{f(x)}{g(x)}$?
- 4. Calcule os limites abaixo usando propriedades de limites e limites já conhecidos:

a)
$$\lim_{x \to 0} \frac{\operatorname{sen}(nx)}{\operatorname{sen}(mx)}$$
.

f)
$$\lim_{x \to 0} \frac{\operatorname{sen}^3 x \operatorname{sen}(\frac{1}{x})}{x^2}.$$

f)
$$\lim_{x \to 0} \frac{\sin^3 x \sin(\frac{1}{x})}{x^2}$$
. k) $\lim_{x \to p} \frac{\operatorname{tg}(x-p)}{x^2 - p^2}$, $p \neq 0$.

b)
$$\lim_{x\to 0} x \cot(3x)$$
.

g)
$$\lim_{x \to 1^+} \frac{\operatorname{sen}(x^3 - 1) \cos(\frac{1}{1 - x})}{\sqrt{x - 1}}$$
. l) $\lim_{x \to p} \frac{\operatorname{sen}(x^2 - p^2)}{x - p}$.

$$\lim_{x \to p} \frac{\operatorname{sen}(x^2 - p^2)}{x - p}.$$

c)
$$\lim_{x \to 0} \frac{\operatorname{sen}(5x) - \operatorname{sen}(3x)}{\operatorname{sen} x}.$$

h)
$$\lim_{x\to 0} x \cdot 2^{\sin(\frac{1}{x})+1} + \frac{4\sin(2x)}{3x}$$
. m) $\lim_{x\to 0} \frac{\sin(\sin(2x))}{x}$.

m)
$$\lim_{x\to 0} \frac{\operatorname{sen}(\operatorname{sen}(2x))}{x}$$

d)
$$\lim_{x \to \frac{\pi}{4}} \frac{\sin x - \cos x}{1 - \lg x}$$

$$i) \lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{2x - \pi}$$

d)
$$\lim_{x \to \frac{\pi}{4}} \frac{\sin x - \cos x}{1 - \lg x}$$
. i) $\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{2x - \pi}$. n) $\lim_{x \to 0} \frac{\sin(x^2 + \frac{1}{x}) - \sin(\frac{1}{x})}{x}$. e) $\lim_{x \to 0} \lg(3x) \csc(6x)$. j) $\lim_{x \to 0} \frac{x - \lg x}{x + \lg x}$. o) $\lim_{x \to 0} \frac{\sin(3x^2 - 5x + 2)}{x^2 + x - 2}$.

e)
$$\lim_{x \to 0} \operatorname{tg}(3x) \operatorname{cossec}(6x)$$
.

$$j) \lim_{x \to 0} \frac{x - \lg x}{x + \lg x}.$$

o)
$$\lim_{x\to 0} \frac{\text{sen}(3x^2 - 5x + 2)}{x^2 + x - 2}$$

5. Calcule os limites abaixo onde p é um ponto no domínio das funções trigonométricas em cada item:

- a) $\lim_{x\to 0} \frac{\sin x \sin p}{x p}$. b) $\lim_{x\to 0} \frac{\operatorname{tg} x \operatorname{tg} p}{x p}$.
- c) $\lim_{x \to 0} \frac{\sec x \sec p}{x p}$.
- 6. Seja f uma função definida em $\mathbb R$ tal que $\lim_{x\to 0}\frac{f(x)}{x}=1$. Calcule os limites abaixo
- a) $\lim_{x \to 0} \frac{f(3x)}{x}$. b) $\lim_{x \to 0} \frac{f(x^2)}{x}$. c) $\lim_{x \to 1} \frac{f(x^2 1)}{x 1}$. d) $\lim_{x \to 0} \frac{f(6x)}{3x}$.
- 7. Seja f definida em \mathbb{R} e $p \in \mathbb{R}$. Sabendo que $\lim_{x \to p} \frac{f(x) f(p)}{x p} = L$, calcule
 - a) $\lim_{h \to 0} \frac{f(p+h) f(p)}{h}$.

c) $\lim_{h\to 0} \frac{f(p+3h)-f(p)}{h}$.

b) $\lim_{h \to 0} \frac{f(p+h) - f(p-h)}{h}$.

- d) $\lim_{h\to 0} \frac{f(p-h)-f(p)}{h}$.
- 8. Seja f definida em um intervalo aberto I exceto em $a \in I$, possivelmente. Suponha que $\lim_{x \to a} f(x) =$ L>0. Prove a Lei de Conservação de Sinal: mostre que existe $\delta>0$ tal que para todo $x\in I$, $0 < |x - a| < \delta$ temos f(x) > 0. Além disso, prove um resultado análogo para L < 0 e discuta o caso L=0.
- 9. Para cada uma das funções abaixo, encontre e classifique os pontos de descontinuidade

a)
$$f(x) = \begin{cases}
\sec(x^2 - 4) + 5, & \text{se } x > 2 \\
\frac{x^2 + x - 6}{x - 2}, & \text{se } x < 2. \\
5, & \text{se } x = 2
\end{cases}$$

b)
$$f(x) = \begin{cases} \frac{|x^2 - 4x + 3|}{|x - 3|}, & \text{se } x \neq 3\\ 1, & \text{se } x = 3 \end{cases}$$

c)
$$f(x) = \frac{1 + (-1)^{\lfloor x \rfloor}}{2} \operatorname{sen}(\pi x).$$

- 10. Suponha que f esteja definida em \mathbb{R} , que satisfaça f(x+y)=f(x)+f(y) para todo $x,y\in\mathbb{R}$ e que f seja contínua em 0. Mostre que f é contínua em todo $p \in \mathbb{R}$.
- 11. Suponha que $|f(x)| \leq |x|$ para todo $x \in \mathbb{R}$. Mostre que f é contínua em 0.
- 12. Dê um exemplo de uma função que é contínua em 0, mas que seja descontínua em todo outro ponto.
- 13. Sabendo que g é contínua em 0, g(0) = 0 e $|f(x)| \leq |g(x)|$ para todo $x \in \mathbb{R}$, mostre que f é contínua em 0.
- 14. Seja f definida em \mathbb{R} e suponha que f é contínua em a com f(a) = 0. Mostre que se $\alpha \neq 0$, então existe um intervalo aberto I contendo o ponto a tal que a função $q(x) \neq 0$ para todo $x \in I$, onde $g(x) = f(x) + \alpha.$
- 15. Faça o que se pede
 - a) Mostre que se f é contínua em a então a função |f| também é contínua em a.
 - b) Sendo f uma função contínua definida em \mathbb{R} , mostre f = g + h, onde g é uma função contínua ímpar e h é uma função contínua par.
 - c) Mostre que se f, g são contínuas, então $\max(f, g)$ também é contínua.
 - d) Mostre que toda função contínua f pode ser escrita como f = g h, onde g, h são funções contínuas não negativas.

16. Um semi-círculo com diâmetro PQ está sobre um triângulo isósceles PQR para formar uma região com formato de sorvete, conforme mostra a figura. Se $A(\theta)$ é a área do semi círculo e $B(\theta)$ é a área do triângulo, encontre $\lim_{\theta \to 0^+} \frac{A(\theta)}{B(\theta)}$.

17. A figura abaixo mostra um arco de círculo com comprimento s e uma corda com comprimento d, ambos subentendidos por um ângulo central θ . Calcule $\lim_{\theta \to 0^+} \frac{\ddot{d}}{d}$

$\mathbf{2}$ Derivadas

1. Calcule a equação da reta tangente ao gráfico de f que passa pelo ponto (a, f(a)) nos casos abaixo

a)
$$f(x) = x^2, a = 2$$
.

c)
$$f(x) = \frac{1}{x}, a = 2.$$

d) $f(x) = \sin x, a = 0.$

b)
$$f(x) = \sqrt{x}, a = 9.$$

d)
$$f(x) = \sin x, a = 0.$$

- 2. Seja $f(x) = x^2 + \frac{1}{x}$. Determine o ponto do gráfico de f em que a reta tangente, neste ponto, seja paralela ao eixo \tilde{x} .
- 3. Dê um exemplo, exibindo o gráfico de uma função f, definida em \mathbb{R} , que satisfaça as condições de cada item abaixo
 - a) f é derivável e f'(1) = 0.
 - b) f é derivável e f'(x) > 0 para todo $x \in \mathbb{R}$.
 - c) f é derivável, f'(x) > 0 para todo $x \in \mathbb{R}$ e f é limitada em \mathbb{R} .
 - d) f é derivável, f'(0) < f'(1).
 - e) f é contínua e f'(1) não existe.
 - f) f é derivável e f'(x) > 0 para x < 1 e f'(x) < 0 para x > 1.
 - g) f é contínua e f'(-1), f'(0) e f'(1) não existem.
- 4. Associe o gráfico de cada função de (a), (b), (c), (d), com o gráfico de sua derivada em I, II, III, IV. Justifique

3

(b)

I

Π

(c)

(d)

Ш

ΙV

- 5. Seja f um função contínua em $\mathbb R$ tal que $|f(x)| \leq |x^3 + x^2|$ para todo $x \in \mathbb R$. A função f é derivável em 0?
- 6. Seja f derivável em $(0,+\infty)$. Calcule em termos de f'(a) o limite $\lim_{x\to a} \frac{f(x)-f(a)}{\sqrt{x}-\sqrt{a}}$, para $a\in$ $(0,+\infty)$.
- 7. Sendo $a \neq 0$, mostre que a reta tangente ao gráfico de $f(x) = \frac{1}{x}$ no ponto x = a não intersecta o gráfico de f, com exceção do ponto $(a, \frac{1}{a})$.
- 8. Sendo f uma função derivável e $c \in \mathbb{R}$, mostre pela definição de derivada que
 - a) Se q(x) = f(x) + c então q'(x) = f'(x).
 - b) Se q(x) = cf(x) então q'(x) = cf'(x).
 - c) Se g(x) = f(x+c) então g'(x) = f'(x+c).
 - d) Se g(x) = f(cx) então g'(x) = cf'(cx).
- 9. Calcule f'(x) e f'(x+3) pela definição, nos seguintes casos abaixo:

a)
$$f(x) = (x+3)^5$$
.

b)
$$f(x+3) = x^5$$
.

c)
$$f(x+3) = (x+5)^7$$
.

- 10. Mostre que a função $g(x) = \begin{cases} 2x+1, & \text{se } x < 1 \\ -x+4 & \text{se } x \ge 1 \end{cases}$ não é derivável em a=1. Esboce o gráfico de
- 11. Seja $g(x) = \begin{cases} x^2 + 2, & \text{se } x < 1 \\ 2x + 1 & \text{se } x \ge 1 \end{cases}$. Mostre que g é derivável em a = 1 e calcule g'(1). Esboce o gráfico de q.
- 12. Seja $f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & \text{se } x \neq 0 \\ 0 & \text{se } x = 0 \end{cases}$. Calcule, caso exista, f'(0).
- 13. Sabendo que para $n \in \mathbb{N}$ temos $(x^n)' = nx^{n-1}$, mostre pela definição de derivada que $(x^{-n})' =$ $-nx^{-n-1}$ para todo $n \in \mathbb{N}$.
- 14. Calcule, pela definição a derivada das funções abaixo

a)
$$f(x) = \frac{1}{x}$$
.

c)
$$f(x) = \csc x$$
.

e)
$$f(x) = \cos^2 x$$
.

b)
$$f(x) = \sec x$$
.

d)
$$f(x) = \cot x$$
.

4

$$f) f(x) = \operatorname{sen}(x^2).$$

- 15. Se f for uma função derivável e g(x) = xf(x), use a definição de derivada para mostrar que g'(x) = xf'(x) + f(x).
- 16. Suponha que f seja uma função que satisfaça $f(x+y)=f(x)+f(y)+x^2y+xy^2$ para todos x,y,ye $\lim_{x\to 0} \frac{f(x)}{x} = 1$. Calcule:
 - a) f(0).

- c) f'(x).
- 17. Suponha que f seja uma função com a propriedade que $|f(x)| \leq x^2$ para todo x. Mostre que f(0) = 0 e f'(0) = 0.
- 18. Seja g uma função derivável em x=a com $g(a)\neq 0$. Mostre pela definição de derivada, que $\left(\frac{1}{q}\right)'(a) = -\frac{g'(p)}{g(p)^2}$. Com isso, conclua a fórmula da derivada do quociente, utilizando a fórmula para a derivada do produto.
- 19. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função derivável no ponto a. Mostre que $f'(a) = \lim_{h \to 0} \frac{f(a+h) f(a-h)}{2h}$. Dê um exemplo em que o limite da expressão anterior exista e é finito, mas f'(a) não existe.
- 20. Prove cada uma das afirmações a seguir:
 - a) A derivada de uma função par, é uma função par.
 - b) A derivada de uma função ímpar, é uma função ímpar.
 - c) A derivada de uma função periódica, é uma função periódica.
- 21. Calcule f' para as funções f abaixo

a)
$$f(x) = x^2 + 3x + 2$$
.

f)
$$f(x) = \frac{1}{2 + \cos x}$$
.

k)
$$f(x) = x^2 + 3x \operatorname{tg} x$$
.

b)
$$f(x) = x^4 + \sin x$$
.

g)
$$f(x) = \frac{x^2 + 3x + 2}{x^4 + x^2 + 1}$$
.

1)
$$f(x) = \frac{x + \sqrt[4]{x}}{x^2 + 3}$$
.

c)
$$f(x) = x^4 \operatorname{sen} x$$
.

d)
$$f(x) = \frac{1}{x+1}$$
.

g)
$$f(x) = \frac{x^2 + 3x + 2}{x^4 + x^2 + 1}$$
.
h) $f(x) = \frac{2 - \sin x}{2 - \cos x}$.
i) $f(x) = \frac{x + \sqrt[4]{x}}{x^2 + 3}$
m) $f(x) = \frac{x^2 + 1}{\sec x}$.
i) $f(x) = \frac{x \cos x}{1 + x^2}$.
n) $f(x) = \frac{x}{\cos x}$

m)
$$f(x) = \frac{x^2 + 1}{\sec x}$$
.

$$f(x) = \frac{1}{x+1}.$$

i)
$$f(x) = \frac{x \sin x}{1 + x^2}$$
.

$$f(x) = \frac{x}{\operatorname{cossec} x}.$$

e)
$$f(x) = \frac{x}{x-1}$$
.

j)
$$f(x) = \sqrt{x} \sec x$$

o)
$$f(x) = \operatorname{tg} x - \operatorname{cotg} x$$
.

- 22. Sejam f_1, f_2, \ldots, f_n funções com derivadas f'_1, f'_2, \ldots, f'_n . Encontre uma regra para calcular a derivada de $g(x) = f_1(x), f_2(x), \dots, f_n(x)$. Nos pontos x em que as funções f_1, f_2, \dots, f_n não se anulam, mostre que $\frac{g'(x)}{g(x)} = \frac{f_1'(x)}{f_1(x)} \frac{f_2'(x)}{f_2(x)} \dots \frac{f_n'(x)}{f_n(x)}$
- 23. Duas funções f, g possuem primeiras e segundas derivadas em 0 e satisfazem as condições abaixo. Faça o que se pede:

$$f(0) = \frac{2}{g(0)}, \quad f'(0) = 2g'(0) = 4g(0), \quad g''(0) = 5f''(0) = 6f(0) = 3.$$

- a) Sendo $h(x) = \frac{f(x)}{g(x)}$, calcule h'(0).
- b) Sendo $k(x) = f(x)g(x) \operatorname{sen} x$, calcule k'(0).
- c) Calcule $\lim_{x\to 0} \frac{g'(x)}{f'(x)}$.
- 24. Seja f uma função e suponha que f'(a) exista. Decida se as afirmações abaixo são verdadeiras ou falsas.

a)
$$f'(a) = \lim_{h \to a} \frac{f(h) - f(a)}{h - a}$$
.

c)
$$f'(a) = \lim_{t \to 0} \frac{f(a+2t) - f(a)}{t}$$
.

b)
$$f'(a) = \lim_{h \to 0} \frac{f(a - f(a - h))}{h}$$
.

d)
$$f'(a) = \lim_{t \to 0} \frac{f(a+2t) - f(a+t)}{2t}$$
.

25. Suponha que ao invés da definição usual de derivada, definimos uma "outra derivada", denotada por f^* dada por

$$f^*(x) = \lim_{h \to 0} \frac{f^2(x+h) - f^2(x)}{h},$$

onde $f^2(x) = f(x).f(x) = (f(x))^2$. Faça o que se pede:

- a) Derive fórmulas da soma, diferença, produto e quociente para calcular essa "outra derivada".
- b) Expresse $f^*(x)$ em termos de f'(x).
- c) Para quais funções f temos $f^*(x) = f'(x)$?