Solar Energy Forecasting

By: Matt Carr

Project Overview

Problem:

- Conventional energy sources are harmful to environment
- Renewable sources are intermittent and difficult to integrate into current grid

Source: U.S. Energy Information Administration, *Monthly Energy Review*, Table 7.2a, March 2020 and *Electric Power Monthly*, February 2020, preliminary data for 2019

https://www.eia.gov/energyexplained/electricity/electricity-in-the-us.php

Data

- Gathering
 - Energy → University of Illinois Solar Farm Dashboard
 - Weather → NOAA Local Climatological Data
- Prep
 - Aggregate to hourly time index
 - Combine energy and weather data
- Result
 - Hourly data from January 30, 2018 to July 20, 2020

Energy Fluctuation

Weather Dependence

Solution

Create a model that can predict solar energy production in advance

Modeling

- Data Prep
 - Three hour lag between energy and weather data
 - Filtered for times between 5am and 8pm
- Data Split
 - Training: 75% ~ 11,000
 - Testing: 25% ~ 3,500
- Metric
 - o RMSE

Example

Weather at 1pm

Energy production at 4pm

Baseline Model

Day: October 19, 2019

Base Features

RMSE: 5030

Best Model

Day: October 19, 2019

Base Features and Time

RMSE: 2297

Next Steps

- Include solar radiation data
- Include weather forecasts
- Time series modeling
- 1-6 hour forecast

Stretch Goals

Deploy as flask/dash app

Contact Info

Email: mhcarr17@gmail.com

Github: github.com/mattcarr17

LinkedIn: linkedin.com/in/matthewhcarr

Project Repo: github.com/mattcarr17/solar_energy_prediction