Tate's Thesis Notes

Nick Pilotti

September 25, 2024

Lemma 2.2.1. " $X(\eta\xi) = 1$, all $\eta \implies k^+\xi \neq k^+ \implies \xi = 0$. Therefore the characters of the form $X(\eta\xi)$ are everywhere dense in the character group."

Let N be the closure of the set $\{X(\eta\xi): \eta \in k^+\}$ in k^+ . Let ψ be a character of k^+/N . Let $\pi: k^+ \to k^+/N$ be the projection map. The pullback $\psi':=\pi^*\psi$ is in k^+ . By Pontryagin duality, there is $\xi \in G$ such that $\psi'(\chi)=\chi(\xi)$ for all $\chi \in k^+$. ψ' is trivial on N, hence $\psi'(X(\eta \cdot))=X(\eta\xi)=1$ for all $\eta \in k^+$, and by Tate's argument $\xi=0$. Hence, $(k^+/N)^{\hat{}}=1$. Applying Pontryagin duality once again, $(k^+/N)^{\hat{}}\cong k^+/N=1$, hence $k^+=N$ (we can only do this because N is closed and therefore k^+/N is locally compact).

"Local compactness implies completeness and therefore closure..."

Let G be a locally compact group and H a locally compact subgroup. We show that H is closed. Pick $x \notin H$. xH is a locally compact space. Therefore, there exists a compact neighborhood $V \subseteq xH$ of x. V does not intersect H. Since G is Hausdorff, V is closed in the topology of G. Hence, H is open. Since H is a subgroup, H is also closed.

Theorem 2.2.2. "For k real we can take $f(\xi) = e^{-\pi |\xi|^2},...$ "

The formula follows from $\hat{f}(\eta) = f(\eta)$ and $f(\xi) = f(-\xi)$. The ladder is obvious. For the former, we compute

$$\hat{f}(\eta) = \int e^{-\pi|\xi|^2 + 2\pi i \eta \xi} d\xi = e^{-\pi|\eta|^2} \int e^{-\pi(\xi - i\eta)^2} d\xi$$
$$= e^{-\pi|\eta|^2} \int e^{-\pi|\xi|^2} d\xi = e^{-\pi|\eta|^2} = f(\eta).$$

"... for k complex, $f(\xi) = e^{-2\pi|\xi|};...$ "

Same as in the real case, the formula follows from $\hat{f}(\eta) = f(\eta)$ and $f(\xi) = f(-\xi)$. Write $\eta = u + iv$ and split into two real integrals;

$$\hat{f}(\eta) = \int e^{-2\pi|\xi| + 2\pi i(\eta\xi + \bar{\eta}\bar{\xi})} d\xi = \int \int e^{-2\pi(x^2 + y^2) + 4\pi i(xu - yv)} 2 \, dx \, dy$$

$$= \left(\int e^{-2\pi x^2 + 4\pi i u x} \sqrt{2} \, dx \right) \left(\int e^{-2\pi y^2 - 4\pi i v y} \sqrt{2} \, dy \right)$$

$$= e^{-2\pi u^2 - 2\pi v^2} \left(\int e^{-2\pi(x - iu)^2} \sqrt{2} \, dx \right) \left(\int e^{-2\pi(y + iv)^2} \sqrt{2} \, dy \right)$$

$$= e^{-2\pi(u^2 + v^2)} \left(\int e^{-2\pi x^2} \sqrt{2} \, dx \right) \left(e^{-2\pi y^2} \sqrt{2} \, dy \right)$$

$$= e^{-2\pi(u^2 + v^2)}$$

"...and for k \mathfrak{p} -adic, $f(\xi)=$ the characteristic function of $\mathfrak{o},...$ "
The Fourier transform of f is

$$\hat{f}(\eta) = \int_{\mathbf{0}} e^{-2\pi i \Lambda(\eta \xi)} d\eta.$$

By lemma 2.2.3, the integrand is a trivial character if $\eta \in \mathfrak{d}^{-1}$ and otherwise the integrand is a nontrivial character on the additive subgroup \mathfrak{o} . In the ladder case, the integral evaluates to zero by the Schur orthgonality relations, since \mathfrak{o} is compact. Hence, \hat{f} is the characteristic function of \mathfrak{d}^{-1} multiplied by $(N\mathfrak{d})^{-1/2}$. The double fourier transform of f is

$$\hat{f}(\xi) = (N\mathfrak{d})^{-1/2} \int_{\mathfrak{d}^{-1}} e^{-2\pi i \Lambda(\xi \eta)} d\xi.$$

Since \mathfrak{d}^{-1} is a fractional ideal which contains \mathfrak{o} , we have $\mathfrak{d}^{-1} = \alpha^{-1}\mathfrak{o}$ for some $\alpha \in \mathfrak{o}$. Note that $\mathfrak{d} = \alpha\mathfrak{o}$, so $|\alpha| = (N\mathfrak{d})^{-1}$. Hence,

$$\hat{f}(\xi) = (N\mathfrak{d})^{-1/2} \int_{\alpha^{-1}\mathfrak{d}} e^{-2\pi i \Lambda(\xi \alpha^{-1} \alpha \eta)} d\xi.$$

By lemma 2.2.5.,

$$\hat{f}(\xi) = (N\mathfrak{d})^{1/2} \int_{\mathfrak{o}} e^{-2\pi\Lambda(\xi\alpha^{-1}\eta)} d\xi.$$

By lemma 2.2.3., the integrand is a trivial character if $\alpha^{-1}\eta \in \mathfrak{d}^{-1} = \alpha^{-1}\mathfrak{o}$ or equivalently $\eta \in \mathfrak{o}$ and otherwise the integrand is a nontrivial character on

the additive subgroup \mathfrak{o} . Hence, $\hat{f}(\xi)$ is the characteristic function of \mathfrak{o} . We have $\hat{f}(\xi) = f(\xi) = f(-\xi)$, which completes the computation.

Lemma 2.4.1. "Using the fact that the integral is absolutely convergent for s near 0 to make estimates, it is a routine matter to show that the function has a derivative for s near 0. The derivative can in fact be computed by 'differentiating under the integral sign'."

By theorem 2.3.1., $c(\alpha) = \tilde{c}(\tilde{\alpha})|\alpha|^t$ where \tilde{c} is a character of u and t is a complex number. We assume that $\tau = \text{Re}(t) > 0$. fix $0 < \sigma < \tau$ and suppose $|s| \le \sigma$. Then,

$$|f(\alpha)c(\alpha)|\alpha|^s| = |f(\alpha)||\alpha|^{\tau + \operatorname{Re}(s)} \le |f(\alpha)|(|\alpha|^{\tau - \sigma} + |\alpha|^{\tau + \sigma}) \in L^1(k^*)$$

by \mathfrak{z}_2 . Hence, the derivative for s near 0 may be computed by differentiating under the integral sign;

$$\frac{\mathrm{d}}{\mathrm{d}s} \int f(\alpha)c(\alpha)|\alpha|^s \,\mathrm{d}\alpha = \int f(\alpha)c(\alpha)\log(\alpha)|\alpha|^s \,\mathrm{d}\alpha.$$

Lemma 2.4.3. Errata: Line 2. The final step expression should be $c(-1)\rho(c)\rho(\hat{c})\zeta(f,c)$.

2.5 Computation of $\rho(c)$ by Special ζ -functions

k Real

We check the identities

$$\hat{\xi}(\xi) = f(\xi) \text{ and } \hat{f}_{\pm}(\xi) = i f_{\pm}(\xi)$$

The first was already proved in theorem 2.2.2. We prove the second;

$$\hat{f}_{\pm}(\xi) = \int \eta e^{-\pi\eta^2 + 2\pi i \xi \eta} d\eta = e^{-\pi\xi^2} \int \eta e^{-\pi(\eta - i \xi)^2} d\eta$$

$$= e^{-\pi\xi^2} \int (\eta + i \xi) e^{-\pi\eta^2} d\eta = e^{-\pi\xi^2} \left[\int \eta e^{-\pi\eta^2} d\eta + i \xi \int e^{-\pi\eta^2} d\eta \right]$$

$$= i \xi e^{-\pi\xi^2} = i f_{\pm}(\xi)$$

Explicit Expressions for $\rho(c)$:

"... the second form follows from elementary Γ -functions identities."

The identities are

$$\Gamma(s)\Gamma(1-s) = \frac{\pi}{\sin \pi s}$$
 and $2^{2s-1}\Gamma(s)\Gamma(s+1/2) = \pi^{1/2}\Gamma(2s)$

The second formula can be written as

$$\Gamma\left(\frac{s}{2}\right) = \frac{2^{1-s}\pi^{1/2}\Gamma(s)}{\Gamma(\frac{s+1}{2})}$$

Hence,

$$\rho(||^{s}) = \frac{\pi^{-\frac{s}{2}}\Gamma(\frac{s}{2})}{\pi^{-\frac{1-s}{2}}\Gamma(\frac{1-s}{2})} = \frac{2^{1-s}\pi^{\frac{1-s}{2}}\Gamma(s)}{\pi^{-\frac{1-s}{2}}\Gamma(\frac{s+1}{2})\Gamma(\frac{1-s}{2})}$$

$$= \frac{2^{1-s}\pi^{1-s}\Gamma(s)}{\Gamma(\frac{s+1}{2})\Gamma(1-\frac{s+1}{2})} = 2^{1-s}\pi^{-s}\sin\left(\frac{\pi(s+1)}{2}\right)\Gamma(s)$$

$$= 2^{1-s}\pi^{-s}\cos\left(\frac{\pi}{2} - \frac{\pi(s+1)}{2}\right)\Gamma(s)$$

$$= 2^{1-s}\pi^{-s}\cos\left(\frac{\pi s}{2}\right)\Gamma(s).$$

For $\rho(\pm ||^s)$, we use

$$\Gamma\left(\frac{s+1}{2}\right) = \frac{2^{1-s}\pi^{1/2}\Gamma(s)}{\Gamma(\frac{s}{2})}$$

Hence,

$$\rho(\pm||^s) = -i\frac{\pi^{-\frac{s+1}{2}}\Gamma(\frac{s+1}{2})}{\pi^{-\frac{(1-s)+1}{2}}\Gamma(\frac{(1-s)+1}{2})} = -i\frac{2^{1-s}\pi^{-s/2}\Gamma(s)}{\pi^{-\frac{(1-s)+1}{2}}\Gamma(\frac{s}{2})\Gamma(\frac{(1-s)+1}{2})}$$
$$= -i\frac{2^{1-s}\pi^{1-s}\Gamma(s)}{\Gamma(\frac{s}{2})\Gamma(1-\frac{s}{2})} = -i2^{1-s}\pi^{-s}\sin\left(\frac{\pi s}{2}\right)\Gamma(s)$$

Errata: In the first form of $\rho(\pm||^s)$, the minus sign out front is missing.

k Complex

Errata: In the first equation on page 319, the first plus sign should be a minus.

Errata (?): In the expressions for $\zeta(f_n, c_n||^s)$, the exponent of 2π should be $(1-s)-\frac{|n|}{2}$. This term cancels out, so the expression for $\rho(c_n||^s)$ is still correct.

k p-adic

Root numbers and Gauss sums. In the case of \mathbb{Q}_p , the roots numbers are the "signed" part of a Gauss sum. For each $n \geq 1$, there is a ring homomorphism $\mathbb{Q}_p \to \mathbb{Z}/p^n\mathbb{Z}$ given by reduction modulo p^n . Restricting to the group of units u, this gives group homomorphism $u \to (\mathbb{Z}/p^n)^{\times}$. The kernel is $(1+p^n\mathbb{Z}_p)$, so we have an isomorphism $u/(1+p^n\mathbb{Z}_p) \cong (\mathbb{Z}/p^n)^{\times}$. Hence, a character on u with conductor n is lifted from a character on $(\mathbb{Z}/p^n)^{\times}$. Conversely, if χ is a Dirichlet character with conductor p^n , then χ defines a character on u with conductor n.

Suppose that c is a character on \mathbb{Z}_p^{\times} and χ its corresponding Dirichlet character. Tate's formula for the roots number of c gives

$$\rho_0(c) = p^{-n/2} \sum_{\substack{\epsilon \bmod p^n \\ (\epsilon, p^n) = 1}} \chi(\epsilon) e^{2\pi i \epsilon/p^n}$$

which is a Gauss sum times $p^{-n/2}$. Since we know the root number lies on the unit circle, this is the "signed" part of the Gauss sum and $p^{n/2}$ is the modulus of the Gauss sum. Therefore, the root numbers are a generalization of Gauss sums.

Lemma 4.2.2. "...the inversion formula holds." Why is the counting measure on k dual to the measure which gives $V \mod k$ volume 1? If we let $\varphi \equiv 1$ on $V \mod k$, we see that its Fourier transform is the charactertic function of 0 by the Schur orthgonality relations. Hence,

$$\hat{\varphi}(-\mathfrak{X}) = \sum_{\xi \in k} \hat{\varphi}(\xi) e^{2\pi i \Lambda} = \hat{\varphi}(0) e^0 = 1 = \varphi(\mathfrak{X}).$$

This is easily generalized to any compact abelian group. The counting measure on its character group is always dual to measure which gives G volume 1

Theorem 4.2.1. How is this equivalent to geometric Riemann-Roch theorem?

k in the large!

Riemann zeta function. In the case $k = \mathbb{Q}$ and c = 1 we get the (completed) Riemann zeta function. We pick $f_{\infty}(t) = e^{-\pi t^2}$ and f_p to be the characteristic function of \mathbb{Z}_p for each prime p. We showed above that each

local function is its own Fourier transform, so in this case $\hat{f} = f$. The zeta function is

$$\zeta(f, ||^s) = \int f(\mathfrak{a}) |\mathfrak{a}|^s d\mathfrak{a}$$
$$= \left(\int_{\mathbb{R}^\times} e^{-\pi t^2} |t|^s dt \right) \left(\prod_{p \nmid \infty} \int_{\mathbb{Z}_p} |\alpha|^s d\alpha \right).$$

At the Archimedean place, the integral is

$$2\int_0^\infty e^{-\pi t^2} t^s \, \frac{dt}{t} = \pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right).$$

At the finite places, we evaluate by summing over each annulus $p^v u$ with u the group of units in \mathbb{Z}_p . Since $d\alpha$ is a multiplicative Haar measure, $\int_{p^v u} d\alpha = \int_u d\alpha = 1$. We have,

$$\int_{\mathbb{Z}_p} |\alpha|^s \, d\alpha = \sum_{v=0}^{\infty} \int_{p^v u} |\alpha|^s \, d\alpha = \sum_{v=0}^{\infty} p^{-vs} = \frac{1}{1 - p^{-s}}.$$

Hence,

$$\zeta(f,||^s) = \pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \prod_p \frac{1}{1 - p^{-s}}$$

and the functional equation

$$\zeta(f, ||^s) = \zeta(\hat{f}, ||^{1-s})$$

is the usual functional equation for the Riemann zeta function.

This is often written in the form

$$\zeta(s) = 2^s \pi^{s-1} \sin\left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s)$$
$$= \frac{\pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2})}{\pi^{-\frac{s}{2}} \Gamma(\frac{s}{2})} \zeta(1-s)$$

where ζ is the usual (non-completed) Riemann zeta function. The factor out front is simply the inverse of the local factor for \mathbb{R} .

Characters on \mathbb{Q}. Remaining in the case $k = \mathbb{Q}$ but allowing c to be non-trivial, we get the (completed) Dirichlet L-functions. Recall from above that

each equivalence class of quasi-characters on a p-adic field \mathbb{Z}_p with conductor $n \geq 0$ is represented by Dirichlet character with conductor p^n . Equivalence classes of characters on \mathbb{R} are represented by the characters $\operatorname{sgn}(x)^{\epsilon}$ with ϵ an equivalence class of \mathbb{Z} mod 2. Let $c(\mathfrak{a})$ be a general character of the ideles. Let S be a finite set which contains the Archimedean prime and all primes where c_p is ramified. S' will denote $S \setminus \{\infty\}$. $c(\mathfrak{a})$ is of the form

$$c(\mathfrak{a}) = \prod_{p \in S} \tilde{c}_p(\tilde{a}_p) \cdot \prod_{p \in S} |a|_p^{it_p} \cdot \chi(\varphi_S(\mathfrak{a}))$$

where for $p \in S'$ the \tilde{c}_p are ramified characters with conductor $n_p \geq 1$ on $\mathbb{Z}_p^{\times}/(1+p^{n_p}\mathbb{Z}_p) \cong (\mathbb{Z}/p^{n_p}\mathbb{Z})^{\times}$, t_p are real numbers, and χ is a character on the subgroup of nonzero rational numbers which are in \mathbb{Z}_p^{\times} for each $p \in S'$. The map φ_S takes \mathfrak{a} to its ideal in \mathbb{Q} and removes the primes in S' from its factorization. Let $n = \prod_{p \in S'} p_p^n$. For an idele \mathfrak{a} , let $\tilde{\mathfrak{a}} = \prod_{p \in S'} \tilde{a}_p$ and define $\psi(\tilde{\mathfrak{a}}) = \prod_{p \in S'} \tilde{c}_p(\tilde{a}_p)$. ψ is a character on the group $\prod_{p \in S'} \mathbb{Z}_p^{\times}/(1+p^n\mathbb{Z}_p) \cong \prod_{p \in S'} (\mathbb{Z}/n_p\mathbb{Z})^{\times} \cong \mathbb{Z}/n\mathbb{Z}^{\times}$. Hence, ψ is associated to a Dirichlet character with conductor n.

We are only considering characters where c(x) = 1 for all $x \in \mathbb{Q}^{\times}$. A great deal of simplication occurs because \mathbb{Q} has class number 1. For $p \in S'$ we have

$$1 = c(p^k) = p^{ik(t_{\infty} - t_p)}$$

for all $k \in \mathbb{Z}$. Hence, the t_p are all equal for $p \in S$. Since we are only concerned with equivalence classes of characters, we may suppose that $t_p = 0$ for all $p \in S$. We have $\tilde{c}_{\infty}(\tilde{a}_{\infty}) = \operatorname{sgn}(a_{\infty})^{\epsilon}$ for ϵ and equivalence class of \mathbb{Z} mod 2. Plugging in -1 gives

$$1 = c(-1) = (-1)^{\epsilon} \psi(-1)$$

Thus, ϵ is determined by the sign of the character $\psi(-1)$. Our formula for $c(\mathfrak{a})$ simplifies to

$$c(\mathfrak{a}) = \operatorname{sgn}(a_{\infty})^{\epsilon} \psi(\tilde{a}) \chi(\varphi_S(\mathfrak{a})).$$

Finally, since \mathbb{Q} has class number 1, χ is determined by its values $\chi(\varphi_S(x))$ for $x \in \mathbb{Q}^{\times}$. These are just

$$\chi(\varphi_S(x)) = \operatorname{sgn}(x)^{\epsilon} \overline{\psi}(\tilde{x})$$

Dirichlet L-functions. With $c(\mathfrak{a})$ selected as in the remaining paragraph, pick $f_{\infty}(t) = e^{-\pi t^2}$ if $\epsilon \equiv 0$ and $f_{\infty}(t) = te^{-\pi t^2}$ if $\epsilon \equiv 1$. For $p \in S'$,

pick f_p to be the characteristic function of $p^{-n_p}\mathbb{Z}_p$. For $p \notin S$, pick f_p to be the characteristic function of \mathbb{Z}_p . The zeta function of f is

$$\zeta(f,c||^s) = \int f(\mathfrak{a})|\mathfrak{a}|^s d\mathfrak{a}$$

$$\left(\int_{\mathbb{R}^{\times}} \operatorname{sgn}(t)^{\epsilon} e^{-\pi t^{2}} |t|^{s} dt\right) \left(\prod_{p \in S'} \int_{p^{-n_{p}} \mathbb{Z}_{p}} \tilde{c}_{p}(\tilde{\alpha}) |\alpha|^{s} d\alpha\right) \left(\prod_{p \notin S} \int_{\mathbb{Z}_{p}} |\alpha|^{s+it_{p}} d\alpha\right)$$

The t_p are real numbers defined by $\chi(\varphi_S(\mathfrak{a})) = \prod_{p \notin S} |a_p|^{it_p}$, since we recall that $c_p(\mathfrak{a})$ is an unramified character for $p \notin S$. The integral at the Archimedean place is either

$$\pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}\right)$$

or

$$\pi^{-\frac{s+1}{2}}\Gamma\bigg(\frac{s+1}{2}\bigg)$$

according to whether $\epsilon=0$ or $\epsilon=1$. We can write both conditions together as

$$\pi^{-\frac{s+\epsilon}{2}}\Gamma\left(\frac{s+\epsilon}{2}\right)$$

The local factors $p \in S'$ are computed by Tate in section 2.5 to be

$$p^{n_p s} \tau(\tilde{c}_p) \int_{1+p^{n_p} \mathbb{Z}_p} d\alpha = \frac{p^{n_p s} \tau(\tilde{c}_p)}{p^{n_p} - p^{n_p - 1}}$$

where τ denotes the Gauss sum, according to our observation above. The group of units \mathbb{Z}_p^{\times} has measure 1 in the multiplicative Haar measure and $\mathbb{Z}_p^{\times}/(1+p^{n_p}\mathbb{Z}_p)\cong\mathbb{Z}_p^{\times}$ has cardinality $p^{n_p}-p^{n_p-1}$, from which we get the measure of $1+p^{n_p}\mathbb{Z}_p$ (in the functional equation these terms will cancel out, since they do not depend on s). Finally, the factors at $p \notin S$ are

$$\frac{1}{1 - p^{-s + it_p}}.$$

Their product is the Dirichlet L-function associated to $\overline{\chi}$;

$$\prod_{p \notin S} \frac{1}{1 - p^{-s + it_p}} = \sum_{n=1}^{\infty} \frac{\overline{\chi}(n)}{n^s}.$$

This can be seen by writing

$$\prod_{p \notin S} \frac{1}{1 - p^{-s + it_p}} = \prod_{p \notin S} \sum_{v = 0}^{\infty} p^{ivt_p} p^{-vs} = \sum_{\substack{n = 1 \\ p \nmid n, \forall p \in S'}}^{\infty} \left(\prod_{p \notin S} |n|_p^{-it_p} \right) n^{-s} = \sum_{n = 1}^{\infty} \frac{\overline{\chi}(n)}{n^s}$$

Recall we extend χ to \mathbb{Z} by writing $\chi(n) = 0$ if $p \nmid n$ for some $p \in S'$. Now it is clear that $p^{it_p} = \overline{\chi(p)}$. The product of the local factors for $p \in S'$ is

$$\prod_{p \in S'} \frac{p^{n_p s} \tau(\tilde{c}_p)}{p^{n_p} - p^{n_p - 1}} = \frac{n^s \tau(\tilde{c}_p)}{C}$$

where C is a constant not depending on s. A formula for C is

$$\sum_{k=0}^{|S'|} \sum_{p_1,\dots,p_k \in S'} (-1)^k \frac{n}{p_1 \dots p_k}$$

although I don't think this is important.

Putting all of this together, the zeta function is

$$\zeta(f,\chi||^s) = C\pi^{-\frac{s+\epsilon}{2}}\Gamma\left(\frac{s+\epsilon}{2}\right)n^{s+1}(-1)^{\epsilon}\tau(\overline{\chi})\prod_{p\nmid n}\frac{1}{1-\chi(p)p^{-s}}$$

The zeta function of the Fourier transform is the same (replacing s with 1-s and χ with $\overline{\chi}$) except when $p \in S'$ where the local factors are

$$\frac{p^{n_p}}{p^{n_p} - p^{n_p - 1}}$$

and the real place you must multiply by i^{ϵ} . The zeta function of the transform is

$$\zeta(\hat{f},\chi||^s) = Ci^{\epsilon} \pi^{-\frac{(1-s)+\epsilon}{2}} \Gamma\left(\frac{(1-s)+\epsilon}{2}\right) n \prod_{p\nmid n} \frac{1}{1-\overline{\chi}(p)p^{-(1-s)}}$$

Now, letting $L(s,\chi)$ be the usual Dirichlet zeta function, the functional equation is

$$L(s,\chi) = (-i)^{\epsilon} \tau(\chi) n^{-s} \frac{\pi^{-\frac{(1-s)+\epsilon}{2}} \Gamma(\frac{(1-s)+\epsilon}{2})}{\pi^{-\frac{s+\epsilon}{2}} \Gamma(\frac{s+\epsilon}{2})} L(1-s,\overline{\chi})$$

$$=\frac{\tau(\chi)}{i^{\epsilon}\sqrt{n}}n^{1/2-s}2^{s}\pi^{s-1}\sin\left(\frac{\pi}{2}(s+\epsilon)\right)\Gamma(1-s)L(1-s,\overline{\chi})$$