Calculus II Integration by parts

Todor Milev

2019

Outline

Integration by Parts

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work.

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0: https://creativecommons.org/licenses/by/3.0/us/and the links therein.

Integration by Parts

Every differentiation rule

Integration by Parts

Every differentiation rule

$$(uv)' = u'v + uv'$$

Product Rule

Integration by Parts

Every differentiation rule corresponds to a differential form rule

$$(uv)' = u'v + uv'$$

 $d(uv) = vdu + udv$

Product Rule Differential Prod. Rule

2019

Integration by Parts

Every differentiation rule corresponds to a differential form rule which in turn corresponds to an integration rule.

$$(uv)' = u'v + uv'$$
 Product Rule $\int d(uv) = \int vdu + \int udv$ Differential Prod. Rule integration of the above

Integration by Parts

Every differentiation rule corresponds to a differential form rule which in turn corresponds to an integration rule.

$$(uv)' = u'v + uv'$$

 $d(uv) = vdu + udv$
 $\int d(uv) = \int vdu + \int udv$
Product Rule
Differential Prod. Rule
integration of the above
 $uv = \int vdu + \int udv$

Product Rule Differential Prod. Rule

Integration by Parts

Every differentiation rule corresponds to a differential form rule which in turn corresponds to an integration rule.

$$(uv)' = u'v + uv'$$

$$d(uv) = vdu + udv$$

$$\int d(uv) = \int vdu + \int udv$$

$$uv = \int vdu + \int udv$$

$$\int udv = uv - \int vdu$$

Product Rule Differential Prod. Rule integration of the above rearrange

Integration by Parts

Every differentiation rule corresponds to a differential form rule which in turn corresponds to an integration rule.

$$(uv)' = u'v + uv'$$

$$d(uv) = vdu + udv$$

$$\int d(uv) = \int vdu + \int udv$$

$$uv = \int vdu + \int udv$$

$$\int udv = uv - \int vdu$$

Product Rule Differential Prod. Rule integration of the above rearrange

Integration by Parts

Every differentiation rule corresponds to a differential form rule which in turn corresponds to an integration rule.

$$(uv)' = u'v + uv'$$

$$d(uv) = vdu + udv$$

$$\int d(uv) = \int vdu + \int udv$$

$$uv = \int vdu + \int udv$$

$$\int udv = uv - \int vdu$$

Product Rule
Differential Prod. Rule
integration of the above
rearrange

Integration by Parts

Every differentiation rule corresponds to a differential form rule which in turn corresponds to an integration rule.

We just proved the following.

Proposition ((Rule of) Integration by Parts)

$$\int u dv = uv - \int v du$$

Integration by parts: strategy for applying

Integration by parts:

$$\int u dv = uv - \int v du.$$

Generally: Choose *u* in this order: **LIPET**

Integration by parts: strategy for applying

Integration by parts:

$$\int u dv = uv - \int v du.$$

Generally: Choose *u* in this order: **LIPET**

Logs, Inverse trig, Polynomial, Exponential, Trig

$$\int x \sin x dx =$$

Integration by parts:
$$\int u dv = uv - \int v du$$
.

$$\int x \sin x dx =$$

$$\sin x dx = d(?)$$

$$\int x \sin x dx =$$

$$\sin x \mathrm{d} x = \mathrm{d} (-\cos x)$$

Integration by parts:
$$\int u dv = uv - \int v du$$
.

$$\int x \sin x dx = \int x d(-\cos x)$$

$$\sin x \mathrm{d} x = \mathrm{d} (-\cos x)$$

Integration by parts:
$$\int u dv = uv - \int v du$$
.

$$\int x \sin x dx = \int x d(-\cos x) \qquad \left| \sin x dx = d(-\cos x) \right|$$
$$= x(-\cos x) - \int (-\cos x) dx$$

Integration by parts:
$$\int u dv = uv - \int v du$$
.

$$\int x \sin x dx = \int x d(-\cos x) \qquad \left| \sin x dx = d(-\cos x) \right|$$
$$= x(-\cos x) - \int (-\cos x) dx$$

$$\int x \sin x dx = \int x d(-\cos x) \qquad \left| \sin x dx = d(-\cos x) \right|$$
$$= x(-\cos x) - \int (-\cos x) dx$$
$$= -x \cos x + \int \cos x dx$$

$$\int x \sin x dx = \int x d(-\cos x) \qquad \left| \sin x dx = d(-\cos x) \right|$$

$$= x(-\cos x) - \int (-\cos x) dx$$

$$= -x \cos x + \int \cos x dx$$

$$= -x \cos x + ?$$

$$\int x \sin x dx = \int x d(-\cos x) \qquad \left| \sin x dx = d(-\cos x) \right|$$

$$= x(-\cos x) - \int (-\cos x) dx$$

$$= -x \cos x + \int \cos x dx$$

$$= -x \cos x + \sin x + C$$

$$\int \ln x dx =$$

Integration by parts:
$$\int u dv = uv - \int v du$$
.

$$\int \ln x dx = (\ln x)x - \int x d(\ln x)$$
 integrate by parts

Integration by parts:
$$\int u dv = uv - \int v du$$
.

$$\int \ln x dx = (\ln x)x - \int x d(\ln x) \quad \text{integrate by parts}$$

Integration by parts:
$$\int u dv = uv - \int v du$$
.

$$\int \ln x dx = (\ln x)x - \int x \frac{d(\ln x)}{dx} \quad \text{integrate by parts}$$
$$= x \ln x - \int x \frac{(\ln x)' dx}{dx}$$

$$\int \ln x dx = (\ln x)x - \int x d(\ln x) \quad | \text{ integrate by parts}$$

$$= x \ln x - \int x (\ln x)' dx$$

$$= x \ln x - \int x dx$$

Integration by parts:
$$\int u dv = uv - \int v du$$
.

$$\int \ln x dx = (\ln x)x - \int x d(\ln x) \quad | \text{ integrate by parts}$$

$$= x \ln x - \int x (\ln x)' dx$$

$$= x \ln x - \int x \frac{1}{x} dx$$

$$\int \ln x dx = (\ln x)x - \int x d(\ln x) \quad | \text{ integrate by parts}$$

$$= x \ln x - \int x (\ln x)' dx$$

$$= x \ln x - \int x \frac{1}{x} dx$$

$$= x \ln x - \int dx$$

$$\int \ln x dx = (\ln x)x - \int x d(\ln x) \quad | \text{ integrate by parts}$$

$$= x \ln x - \int x (\ln x)' dx$$

$$= x \ln x - \int x \frac{1}{x} dx$$

$$= x \ln x - \int dx$$

$$= x \ln x - \frac{1}{x} dx$$

$$\int \ln x dx = (\ln x)x - \int x d(\ln x) \quad | \text{ integrate by parts}$$

$$= x \ln x - \int x (\ln x)' dx$$

$$= x \ln x - \int x \frac{1}{x} dx$$

$$= x \ln x - \int dx$$

$$= x \ln x - x + C .$$

$$\int t^2 e^t dt$$

$$\int t^2 e^t dt = \int t^2 d(?)$$

$$\int t^2 e^t dt = \int t^2 d(e^t)$$

Integration by parts:
$$\int u dv = uv - \int v du$$
.

$$\int t^2 e^t dt = \int t^2 d(e^t)$$
= ?

integrate by parts

Example

$$\int t^2 e^t dt = \int t^2 d(e^t)$$
$$= t^2 e^t - \int e^t d(t^2)$$

Example

$$\int t^{2}e^{t}dt = \int t^{2}d(e^{t})$$
$$= t^{2}e^{t} - \int e^{t}d(t^{2})$$

Integration by parts: $\int u d\mathbf{v} = u\mathbf{v} - \int \mathbf{v} du$.

Example

$$\int t^{2}e^{t}dt = \int t^{2}d\left(e^{t}\right)$$
$$= t^{2}e^{t} - \int e^{t}d\left(t^{2}\right)$$

Example

$$\int t^{2}e^{t}dt = \int t^{2}d(e^{t})$$

$$= t^{2}e^{t} - \int e^{t}d(t^{2})$$

$$= t^{2}e^{t} - \int e^{t}dt$$

Example

$$\int t^{2}e^{t}dt = \int t^{2}d(e^{t})$$

$$= t^{2}e^{t} - \int e^{t}d(t^{2})$$

$$= t^{2}e^{t} - \int e^{t}2tdt$$

Example

$$\int t^{2}e^{t}dt = \int t^{2}d(e^{t})$$

$$= t^{2}e^{t} - \int e^{t}d(t^{2})$$

$$= t^{2}e^{t} - \int e^{t}2tdt$$

$$= t^{2}e^{t} - 2\int td(?)$$

Example

$$\int t^{2}e^{t}dt = \int t^{2}d(e^{t})$$

$$= t^{2}e^{t} - \int e^{t}d(t^{2})$$

$$= t^{2}e^{t} - \int e^{t}2tdt$$

$$= t^{2}e^{t} - 2\int td(e^{t})$$

Example

$$\int t^{2}e^{t}dt = \int t^{2}d(e^{t})$$

$$= t^{2}e^{t} - \int e^{t}d(t^{2})$$

$$= t^{2}e^{t} - \int e^{t}2tdt$$

$$= t^{2}e^{t} - 2\int td(e^{t})$$

$$= t^{2}e^{t} - 2$$
?

integrate by parts

Example

$$\int t^{2}e^{t}dt = \int t^{2}d(e^{t})$$

$$= t^{2}e^{t} - \int e^{t}d(t^{2})$$

$$= t^{2}e^{t} - \int e^{t}2tdt$$

$$= t^{2}e^{t} - 2\int td(e^{t})$$

$$= t^{2}e^{t} - 2\left(te^{t} - \int e^{t}dt\right)$$

integrate by parts

Example

$$\int t^{2}e^{t}dt = \int t^{2}d(e^{t})$$

$$= t^{2}e^{t} - \int e^{t}d(t^{2})$$

$$= t^{2}e^{t} - \int e^{t}2tdt$$

$$= t^{2}e^{t} - 2\int td(e^{t})$$

$$= t^{2}e^{t} - 2\left(te^{t} - \int e^{t}dt\right)$$

integrate by parts

Integration by parts: $\int u d\mathbf{v} = u\mathbf{v} - \int \mathbf{v} du$.

Example

$$\int t^{2}e^{t}dt = \int t^{2}d(e^{t})$$

$$= t^{2}e^{t} - \int e^{t}d(t^{2})$$

$$= t^{2}e^{t} - \int e^{t}2tdt$$

$$= t^{2}e^{t} - 2\int td(e^{t})$$

$$= t^{2}e^{t} - 2\left(te^{t} - \int e^{t}dt\right)$$

integrate by parts

Example

$$\int t^{2}e^{t}dt = \int t^{2}d(e^{t})$$

$$= t^{2}e^{t} - \int e^{t}d(t^{2})$$

$$= t^{2}e^{t} - \int e^{t}2tdt$$

$$= t^{2}e^{t} - 2\int td(e^{t})$$

$$= t^{2}e^{t} - 2\left(te^{t} - \int e^{t}dt\right)$$

$$= t^{2}e^{t} - 2te^{t} + 2e^{t} + C$$

integrate by parts

Example

$$\int t^{2}e^{t}dt = \int t^{2}d(e^{t})$$

$$= t^{2}e^{t} - \int e^{t}d(t^{2})$$

$$= t^{2}e^{t} - \int e^{t}2tdt$$

$$= t^{2}e^{t} - 2\int td(e^{t})$$

$$= t^{2}e^{t} - 2\left(te^{t} - \int e^{t}dt\right)$$

$$= t^{2}e^{t} - 2te^{t} + 2e^{t} + C$$

integrate by parts

Integration by parts:
$$\int u dv = uv - \int v du$$
.

$$\int e^x \sin x dx =$$

Integration by parts:
$$\int u dv = uv - \int v du$$
.

$$\int e^{x} \sin x dx = \int \sin x d(?)$$

Integration by parts:
$$\int u dv = uv - \int v du$$
.

$$\int e^{x} \sin x dx = \int \sin x d(e^{x})$$

Integration by parts:
$$\int u dv = uv - \int v du$$
.

$$\int e^{x} \sin x dx = \int \sin x d(e^{x})$$

$$= ?$$

Integration by parts:
$$\int u dv = uv - \int v du$$
.

$$\int e^{x} \sin x dx = \int \sin x d(e^{x})$$

$$= (\sin x)e^{x} - \int e^{x} d(\sin x)$$

Integration by parts:
$$\int u dv = uv - \int v du$$
.

$$\int e^{x} \sin x dx = \int \sin x d(e^{x})$$

$$= (\sin x)e^{x} - \int e^{x} d(\sin x)$$

Integration by parts:
$$\int u d\mathbf{v} = u\mathbf{v} - \int \mathbf{v} du$$
.

$$\int e^{x} \sin x dx = \int \sin x d(e^{x})$$

$$= (\sin x)e^{x} - \int e^{x} d(\sin x)$$

Integration by parts:
$$\int u dv = uv - \int v du$$
.

$$\int e^{x} \sin x dx = \int \sin x d(e^{x})$$

$$= (\sin x)e^{x} - \int e^{x} d(\sin x)$$

$$= e^{x} \sin x - \int e^{x}$$
?

Integration by parts:
$$\int u dv = uv - \int v du$$
.

$$\int e^{x} \sin x dx = \int \sin x \, d(e^{x})$$

$$= (\sin x)e^{x} - \int e^{x} d(\sin x)$$

$$= e^{x} \sin x - \int e^{x} \cos x dx$$

Integration by parts:
$$\int u dv = uv - \int v du$$
.

$$\int e^{x} \sin x dx = \int \sin x d(e^{x})$$

$$= (\sin x)e^{x} - \int e^{x} d(\sin x)$$

$$= e^{x} \sin x - \int e^{x} \cos x dx$$

$$= e^{x} \sin x - \int \cos x d(?)$$

Integration by parts:
$$\int u dv = uv - \int v du$$
.

$$\int e^{x} \sin x dx = \int \sin x d(e^{x})$$

$$= (\sin x)e^{x} - \int e^{x} d(\sin x)$$

$$= e^{x} \sin x - \int e^{x} \cos x dx$$

$$= e^{x} \sin x - \int \cos x d(e^{x})$$

Integration by parts:
$$\int u dv = uv - \int v du$$
.

$$\int e^{x} \sin x dx = \int \sin x d(e^{x})$$

$$= (\sin x)e^{x} - \int e^{x} d(\sin x)$$

$$= e^{x} \sin x - \int e^{x} \cos x dx$$

$$= e^{x} \sin x - \int \cos x d(e^{x})$$

$$= e^{x} \sin x - \left(?\right)$$

Integration by parts:
$$\int u dv = uv - \int v du$$
.

$$\int e^{x} \sin x dx = \int \sin x \, d(e^{x})$$

$$= (\sin x)e^{x} - \int e^{x} d(\sin x)$$

$$= e^{x} \sin x - \int e^{x} \cos x dx$$

$$= e^{x} \sin x - \int \cos x d(e^{x})$$

$$= e^{x} \sin x - \left((\cos x)e^{x} - \int e^{x} d(\cos x)\right)$$

Integration by parts:
$$\int u dv = uv - \int v du$$
.

$$\int e^{x} \sin x dx = \int \sin x \, d(e^{x})$$

$$= (\sin x)e^{x} - \int e^{x} d(\sin x)$$

$$= e^{x} \sin x - \int e^{x} \cos x dx$$

$$= e^{x} \sin x - \int \cos x d(e^{x})$$

$$= e^{x} \sin x - \left((\cos x)e^{x} - \int e^{x} d(\cos x)\right)$$

Integration by parts:
$$\int u d\mathbf{v} = u\mathbf{v} - \int \mathbf{v} du$$
.

$$\int e^{x} \sin x dx = \int \sin x \, d(e^{x})$$

$$= (\sin x)e^{x} - \int e^{x} d(\sin x)$$

$$= e^{x} \sin x - \int e^{x} \cos x dx$$

$$= e^{x} \sin x - \int \cos x d(e^{x})$$

$$= e^{x} \sin x - \left((\cos x)e^{x} - \int e^{x} d(\cos x)\right)$$

Integration by parts:
$$\int u dv = uv - \int v du$$
.

$$\int e^{x} \sin x dx = \int \sin x \, d(e^{x})$$

$$= (\sin x)e^{x} - \int e^{x} d(\sin x)$$

$$= e^{x} \sin x - \int e^{x} \cos x dx$$

$$= e^{x} \sin x - \int \cos x d(e^{x})$$

$$= e^{x} \sin x - \left((\cos x)e^{x} - \int e^{x} d(\cos x)\right)$$

$$= e^{x} \sin x - \cos x e^{x} + \int e^{x} ?$$

Integration by parts:
$$\int u dv = uv - \int v du$$
.

$$\int e^{x} \sin x dx = \int \sin x \, d(e^{x})$$

$$= (\sin x)e^{x} - \int e^{x} d(\sin x)$$

$$= e^{x} \sin x - \int e^{x} \cos x dx$$

$$= e^{x} \sin x - \int \cos x d(e^{x})$$

$$= e^{x} \sin x - \left((\cos x)e^{x} - \int e^{x} d(\cos x)\right)$$

$$= e^{x} \sin x - \cos x e^{x} + \int e^{x}?$$

Integration by parts:
$$\int u dv = uv - \int v du$$
.

$$\int e^{x} \sin x dx = \int \sin x \, d(e^{x})$$

$$= (\sin x)e^{x} - \int e^{x} d(\sin x)$$

$$= e^{x} \sin x - \int e^{x} \cos x dx$$

$$= e^{x} \sin x - \int \cos x d(e^{x})$$

$$= e^{x} \sin x - \left((\cos x)e^{x} - \int e^{x} d(\cos x)\right)$$

$$= e^{x} \sin x - \cos x e^{x} + \int e^{x} (-\sin x) dx$$

Integration by parts:
$$\int u dv = uv - \int v du$$
.

$$\int e^{x} \sin x dx = \int \sin x \, d(e^{x})$$

$$= (\sin x)e^{x} - \int e^{x} d(\sin x)$$

$$= e^{x} \sin x - \int e^{x} \cos x dx$$

$$= e^{x} \sin x - \int \cos x d(e^{x})$$

$$= e^{x} \sin x - \left((\cos x)e^{x} - \int e^{x} d(\cos x)\right)$$

$$= e^{x} \sin x - \cos x e^{x} + \int e^{x} (-\sin x) dx$$

$$= e^{x} \sin x - \cos x e^{x} - \int e^{x} \sin x dx$$

Integration by parts:
$$\int u dv = uv - \int v du$$
.

$$\int e^{x} \sin x dx = \int \sin x \, d(e^{x})$$

$$= (\sin x)e^{x} - \int e^{x} d(\sin x)$$

$$= e^{x} \sin x - \int e^{x} \cos x dx$$

$$= e^{x} \sin x - \int \cos x d(e^{x})$$

$$= e^{x} \sin x - \left((\cos x)e^{x} - \int e^{x} d(\cos x)\right)$$

$$= e^{x} \sin x - \cos x e^{x} + \int e^{x} (-\sin x) dx$$

$$= e^{x} \sin x - \cos x e^{x} - \int e^{x} \sin x dx$$

Integration by parts:
$$\int u dv = uv - \int v du$$
.

$$\int e^{x} \sin x dx = e^{x} \sin x - \cos x e^{x} - \int e^{x} \sin x dx$$

Integration by parts:
$$\int u dv = uv - \int v du$$
.

$$\int e^{x} \sin x dx = e^{x} \sin x - \cos x e^{x} - \int e^{x} \sin x dx$$

$$2 \int e^{x} \sin x dx = e^{x} \sin x - \cos x e^{x}$$

Integration by parts:
$$\int u dv = uv - \int v du$$
.

$$\int e^{x} \sin x dx = e^{x} \sin x - \cos x e^{x} - \int e^{x} \sin x dx$$

$$2 \int e^{x} \sin x dx = e^{x} \sin x - \cos x e^{x}$$

$$\int e^{x} \sin x dx = \frac{1}{2} (e^{x} \sin x - \cos x e^{x})$$

Integration by parts:
$$\int u dv = uv - \int v du$$
.

$$\int e^{x} \sin x dx = e^{x} \sin x - \cos x e^{x} - \int e^{x} \sin x dx$$

$$2 \int e^{x} \sin x dx = e^{x} \sin x - \cos x e^{x}$$

$$\int e^{x} \sin x dx = \frac{1}{2} (e^{x} \sin x - \cos x e^{x}) + C$$

Integration by parts: $\int u dv = uv - \int v du$.

$$\int_0^1 \arctan x dx =$$

Integration by parts:
$$\int u dv = uv - \int v du$$
.

$$\int_0^1 \arctan x dx = ?$$

Integration by parts:
$$\int u dv = uv - \int v du$$
.

$$\int_0^1 \arctan x dx = [(\arctan x)x]_{x=0}^{x=1} - \int_0^1 x d(\arctan x)$$

Integration by parts:
$$\int u dv = uv - \int v du$$
.

$$\int_0^1 \arctan x dx = \left[\left(\arctan x \right) x \right]_{x=0}^{x=1} - \int_0^1 x d \left(\arctan x \right)$$

Integration by parts:
$$\int u d\mathbf{v} = u\mathbf{v} - \int \mathbf{v} du$$
.

$$\int_0^1 \arctan x dx = [(\arctan x)x]_{x=0}^{x=1} - \int_0^1 x d(\arctan x)$$

Integration by parts:
$$\int u dv = uv - \int v du$$
.

$$\int_0^1 \arctan x dx = \left[\left(\arctan x \right) x \right]_{x=0}^{x=1} - \int_0^1 x d \left(\arctan x \right)$$
$$= 1 \cdot \arctan 1 - 0 \cdot \arctan 0 - \int_{x=0}^{x=1} x ?$$

Integration by parts:
$$\int u dv = uv - \int v du$$
.

$$\int_{0}^{1} \arctan x dx = [(\arctan x)x]_{x=0}^{x=1} - \int_{0}^{1} x d(\arctan x)$$

$$= 1 \cdot \arctan 1 - 0 \cdot \arctan 0 - \int_{x=0}^{x=1} x?$$

Integration by parts:
$$\int u dv = uv - \int v du$$
.

$$\int_0^1 \arctan x dx = [(\arctan x)x]_{x=0}^{x=1} - \int_0^1 x d(\arctan x)$$

$$= 1 \cdot \arctan 1 - 0 \cdot \arctan 0 - \int_{x=0}^{x=1} x?$$

Integration by parts:
$$\int u dv = uv - \int v du$$
.

$$\int_{0}^{1} \arctan x dx = [(\arctan x)x]_{x=0}^{x=1} - \int_{0}^{1} x d(\arctan x)$$

$$= 1 \cdot \arctan 1 - 0 \cdot \arctan 0 - \int_{x=0}^{x=1} x \frac{1}{1+x^{2}} dx$$

Integration by parts:
$$\int u dv = uv - \int v du$$
.

$$\int_{0}^{1} \arctan x dx = [(\arctan x)x]_{x=0}^{x=1} - \int_{0}^{1} x d(\arctan x)$$

$$= 1 \cdot \arctan 1 - 0 \cdot \arctan 0 - \int_{x=0}^{x=1} x \frac{1}{1+x^{2}} dx$$

$$= ? - \int_{x=0}^{x=1} \frac{1}{1+x^{2}} d?$$

Integration by parts:
$$\int u dv = uv - \int v du$$
.

$$\int_{0}^{1} \arctan x dx = [(\arctan x)x]_{x=0}^{x=1} - \int_{0}^{1} x d(\arctan x)$$

$$= 1 \cdot \arctan 1 - 0 \cdot \arctan 0 - \int_{x=0}^{x=1} x \frac{1}{1+x^{2}} dx$$

$$= \frac{\pi}{4} - \int_{x=0}^{x=1} \frac{1}{1+x^{2}} d\left(\mathbf{?}\right)$$

Integration by parts:
$$\int u dv = uv - \int v du$$
.

$$\int_{0}^{1} \arctan x dx = [(\arctan x)x]_{x=0}^{x=1} - \int_{0}^{1} x d(\arctan x)$$

$$= 1 \cdot \arctan 1 - 0 \cdot \arctan 0 - \int_{x=0}^{x=1} x \frac{1}{1+x^{2}} dx$$

$$= \frac{\pi}{4} - \int_{x=0}^{x=1} \frac{1}{1+x^{2}} d\left(\frac{?}{x}\right)$$

Integration by parts:
$$\int u dv = uv - \int v du$$
.

$$\int_{0}^{1} \arctan x dx = [(\arctan x)x]_{x=0}^{x=1} - \int_{0}^{1} x d(\arctan x)$$

$$= 1 \cdot \arctan 1 - 0 \cdot \arctan 0 - \int_{x=0}^{x=1} x \frac{1}{1+x^{2}} dx$$

$$= \frac{\pi}{4} - \int_{x=0}^{x=1} \frac{1}{1+x^{2}} d\left(\frac{x^{2}}{2}\right)$$

Integration by parts:
$$\int u dv = uv - \int v du$$
.

$$\int_{0}^{1} \arctan x dx = [(\arctan x)x]_{x=0}^{x=1} - \int_{0}^{1} x d(\arctan x)$$

$$= 1 \cdot \arctan 1 - 0 \cdot \arctan 0 - \int_{x=0}^{x=1} x \frac{1}{1+x^{2}} dx$$

$$= \frac{\pi}{4} - \int_{x=0}^{x=1} \frac{1}{1+x^{2}} d\left(\frac{x^{2}}{2}\right)$$

$$= \frac{\pi}{4} - \frac{1}{2} \int_{x=0}^{x=1} \frac{1}{1+x^{2}} d(-x^{2})$$

Integration by parts:
$$\int u dv = uv - \int v du$$
.

$$\int_{0}^{1} \arctan x dx = [(\arctan x)x]_{x=0}^{x=1} - \int_{0}^{1} x d(\arctan x)$$

$$= 1 \cdot \arctan 1 - 0 \cdot \arctan 0 - \int_{x=0}^{x=1} x \frac{1}{1+x^{2}} dx$$

$$= \frac{\pi}{4} - \int_{x=0}^{x=1} \frac{1}{1+x^{2}} d\left(\frac{x^{2}}{2}\right)$$

$$= \frac{\pi}{4} - \frac{1}{2} \int_{x=0}^{x=1} \frac{1}{1+x^{2}} d(1+x^{2})$$

Integration by parts:
$$\int u dv = uv - \int v du$$
.

Set
$$w = 1 + x^2$$
.

$$\int_0^1 \arctan x dx = [(\arctan x)x]_{x=0}^{x=1} - \int_0^1 x d(\arctan x)$$

$$= 1 \cdot \arctan 1 - 0 \cdot \arctan 0 - \int_{x=0}^{x=1} x \frac{1}{1+x^2} dx$$

$$= \frac{\pi}{4} - \int_{x=0}^{x=1} \frac{1}{1+x^2} d\left(\frac{x^2}{2}\right)$$

$$= \frac{\pi}{4} - \frac{1}{2} \int_{x=0}^{x=1} \frac{1}{1+x^2} d(1+x^2)$$

Integration by parts:
$$\int u dv = uv - \int v du$$
.

Set
$$w = 1 + x^2$$
.

$$\int_0^1 \arctan x dx = [(\arctan x)x]_{x=0}^{x=1} - \int_0^1 x d(\arctan x)$$

$$= 1 \cdot \arctan 1 - 0 \cdot \arctan 0 - \int_{x=0}^{x=1} x \frac{1}{1+x^2} dx$$

$$= \frac{\pi}{4} - \int_{x=0}^{x=1} \frac{1}{1+x^2} d\left(\frac{x^2}{2}\right)$$

$$= \frac{\pi}{4} - \frac{1}{2} \int_{x=0}^{x=1} \frac{1}{1+x^2} d(1+x^2)$$

$$= \frac{\pi}{4} - \frac{1}{2} \int_{x=0}^{x=1} \frac{1}{w} dw$$

Integration by parts:
$$\int u dv = uv - \int v du$$
.

Set
$$w = 1 + x^2$$
.

$$\int_0^1 \arctan x dx = [(\arctan x)x]_{x=0}^{x=1} - \int_0^1 x d(\arctan x)$$

$$= 1 \cdot \arctan 1 - 0 \cdot \arctan 0 - \int_{x=0}^{x=1} x \frac{1}{1+x^2} dx$$

$$= \frac{\pi}{4} - \int_{x=0}^{x=1} \frac{1}{1+x^2} d\left(\frac{x^2}{2}\right)$$

$$= \frac{\pi}{4} - \frac{1}{2} \int_{x=0}^{x=1} \frac{1}{1+x^2} d(1+x^2)$$

$$= \frac{\pi}{4} - \frac{1}{2} \int_{x=0}^{x=1} \frac{1}{w} dw = \frac{\pi}{4} - \frac{1}{2} [\ln |w|]_{x=0}^{x=1}$$

Integration by parts:
$$\int u dv = uv - \int v du$$
.

Set
$$w = 1 + x^2$$
.

$$\int_0^1 \arctan x dx = \left[(\arctan x) x \right]_{x=0}^{x=1} - \int_0^1 x d \left(\arctan x \right) \\
= 1 \cdot \arctan 1 - 0 \cdot \arctan 0 - \int_{x=0}^{x=1} x \frac{1}{1+x^2} dx \\
= \frac{\pi}{4} - \int_{x=0}^{x=1} \frac{1}{1+x^2} d \left(\frac{x^2}{2} \right) \\
= \frac{\pi}{4} - \frac{1}{2} \int_{x=0}^{x=1} \frac{1}{1+x^2} d(1+x^2) \\
= \frac{\pi}{4} - \frac{1}{2} \int_{x=0}^{x=1} \frac{1}{w} dw = \frac{\pi}{4} - \frac{1}{2} \left[\ln |\mathbf{w}| \right]_{x=0}^{x=1} \\
= \frac{\pi}{4} - \frac{1}{2} \left[\ln \left(1 + x^2 \right) \right]_{x=0}^{x=1}$$

Integration by parts:
$$\int u dv = uv - \int v du$$
.

Set
$$w = 1 + x^2$$
.

$$\int_0^1 \arctan x dx = \left[(\arctan x) x \right]_{x=0}^{x=1} - \int_0^1 x d \left(\arctan x \right) \\
= 1 \cdot \arctan 1 - 0 \cdot \arctan 0 - \int_{x=0}^{x=1} x \frac{1}{1+x^2} dx \\
= \frac{\pi}{4} - \int_{x=0}^{x=1} \frac{1}{1+x^2} d \left(\frac{x^2}{2} \right) \\
= \frac{\pi}{4} - \frac{1}{2} \int_{x=0}^{x=1} \frac{1}{1+x^2} d(1+x^2) \\
= \frac{\pi}{4} - \frac{1}{2} \int_{x=0}^{x=1} \frac{1}{w} dw = \frac{\pi}{4} - \frac{1}{2} \left[\ln |w| \right]_{x=0}^{x=1} \\
= \frac{\pi}{4} - \frac{1}{2} \left[\ln \left(1 + x^2 \right) \right]_{x=0}^{x=1} \\
= \frac{\pi}{4} - \frac{1}{2} (\ln 2 - \ln 1)$$

Integration by parts:
$$\int u dv = uv - \int v du$$
.

Set
$$w = 1 + x^2$$
.

$$\int_0^1 \arctan x dx = \left[(\arctan x) x \right]_{x=0}^{x=1} - \int_0^1 x d \left(\arctan x \right) \\
= 1 \cdot \arctan 1 - 0 \cdot \arctan 0 - \int_{x=0}^{x=1} x \frac{1}{1+x^2} dx \\
= \frac{\pi}{4} - \int_{x=0}^{x=1} \frac{1}{1+x^2} d \left(\frac{x^2}{2} \right) \\
= \frac{\pi}{4} - \frac{1}{2} \int_{x=0}^{x=1} \frac{1}{1+x^2} d(1+x^2) \\
= \frac{\pi}{4} - \frac{1}{2} \int_{x=0}^{x=1} \frac{1}{w} dw = \frac{\pi}{4} - \frac{1}{2} \left[\ln|w| \right]_{x=0}^{x=1} \\
= \frac{\pi}{4} - \frac{1}{2} \left[\ln \left(1 + x^2 \right) \right]_{x=0}^{x=1} \\
= \frac{\pi}{4} - \frac{1}{2} (\ln 2 - \ln 1)$$

Integration by parts:
$$\int u dv = uv - \int v du$$
.

Set
$$w = 1 + x^2$$
.

$$\int_0^1 \arctan x dx = \left[(\arctan x) x \right]_{x=0}^{x=1} - \int_0^1 x d \left(\arctan x \right) \\
= 1 \cdot \arctan 1 - 0 \cdot \arctan 0 - \int_{x=0}^{x=1} x \frac{1}{1+x^2} dx \\
= \frac{\pi}{4} - \int_{x=0}^{x=1} \frac{1}{1+x^2} d \left(\frac{x^2}{2} \right) \\
= \frac{\pi}{4} - \frac{1}{2} \int_{x=0}^{x=1} \frac{1}{1+x^2} d(1+x^2) \\
= \frac{\pi}{4} - \frac{1}{2} \int_{x=0}^{x=1} \frac{1}{w} dw = \frac{\pi}{4} - \frac{1}{2} \left[\ln |w| \right]_{x=0}^{x=1} \\
= \frac{\pi}{4} - \frac{1}{2} \left[\ln \left(1 + x^2 \right) \right]_{x=0}^{x=1} \\
= \frac{\pi}{4} - \frac{1}{2} (\ln 2 - \ln 1) = \frac{\pi}{4} - \frac{1}{2} \ln 2 .$$