15949 U.S. PTO

1/19

BEST AVAILABLE COPY

F/G. 1.

LXR agonist: Cpd B, C FXR agonist: Cpd E, F

FIG. 2.

F16. 3.

3/19

+

F/G. 5.

COMPOUND C

COMPOUND B

COMPOUND A

ص ت	190	285	380	475	6/19	665	760	855	950	1045
	ACAGAGGGTCTCTGAGCTCCCTGGAGCAAGGTTCGGTCACGGGCACAGAGGCTCGGCACAGCTTAGGTGTCCTGCATGTGTCCTACAGCGTCTCAGCGTCTCAGCGTCTACAGCGTCTCTACAGCGTCTACAGCGTCTCTACAGCGTCTCTACAGCGTCTCTACAGCGTCTACAGCGTCTCTACAGCGTCTACAGAGCTCTACAGCGTCTACAGCGTCTACAGCGTCTACAGCGTCTACAGCGTCTACAGCGTCTACAGAGCTCTACAGCGTCTACAGCGTCTACAGCGTCTACAGCGTCTACAGCGTCTACAGCGTCTACAGAGCTCTACAGAGCTTACAGAGCTTACAGAGCTTACAGAGCTTACAGAGCTTACAGAGCTTACAGAGCTTACAGAGCTTACAGAGCTTACAGAGCTTACAGAGCTTACAGAGCTTACAGAGCTTACAGAGAGCTTACAGAGCTTACAGAGCTTACAGAGCTTACAGAGCTTACAGAGCTTACAGAGCTTACAGAGAGAG	:AACCGTGTCGGGCCTTGGTGGAACATCATGCCAGCAGAAGTGGGACAGGCAAATCCTCAAAGATGTCTCCTTGTACATCGAGAGTGG	GATTATGTGCATCTTAGGCAGCTCAGGGAAGACCACGCTGCTGGACGCCATCTCCGGGAGGCTGCGGCGCACTGGGACCCTGGAAG	AGGTGTTTGTGAATGGCTGCGAGCTGCAGGACCAGTTCCAAGACTGCTTCTCCTACGTCCTGCAGAGCGACGTTTTTCTGAGCAGCCTC EVFVNGC CELRRDQFODCFO	'GTGCGCGAGACGTTGCGATACACAGCGATGCTGGCCCTCTGCCGCGGACTTCTACAACAAGAAGGTAGAGGCAGTCATGACAGA V R E T L R Y T A M L A L C R S S A D F Y N K K V E A V M T E	'GAGCCTGAGCCACGTGGCGACCAAATGATTGGGGGGAAATTTCCAGTGGCGAGCGGCGCCCGAGTTTCCATCGCAGCCC , S L S H V A D Q M I G S Y N F G G I S S G E R R R V S I A A	TCCTTCAGGACCCCAAGGTCATGATGATGAGCCAACCACAGGACTGGACTGCATGACTGCAAATCAAATTGTCCTTCTCTTGGCTGAG L L Q D P K V M M L D E P T T G L D C M T A N Q I V L L L A E	GCTCGCAGGGACCGAATTGTGATTGTCACCATCCACCACGCTCTGAGCTCTTCCAACACTTCGACAAAATTGCCATCCTGACTTACGG A R R D R I V I V T I H Q P R S E L F Q H F D K I A I L T Y G	GTTGGTGTTCTGTGGCACCCCAGAGGAGATGCTTGGCTTCTTCAATAACTGTGGTTACCCCTGTCCTGAACATTCCAATCCCTTTGATTTTT:	TGGACTTGACATCAGTGGACACCCAAAGCAGAGGGGAAATAGAAACGTACAAGCGAGTACAGGATGCTGGAATGTGCCTTCAAGGAATCT M D L T S V D T Q S R E R E I E T Y K R V O M L E C A F K F S

1140 ATCTATCACAAAATTCTGGAGAACATTGAAAGAGCACGATACCTGAAAACCTTACCCATGGTTCCTTTCAAAACAAAGATCCT. Ω \Box X E \simeq ᇤ Д Σ Д Н EH \bowtie Н Ы X Ø 22 ſΞÌ Z

1235 GATCA CTCGTTCAGAATCT \vdash α $\mathbf{\Sigma}$ >K Ø \simeq \mathbf{z} α \mathbf{z} α \propto α \bowtie G

1330 CAGCTTGTG \gt 'AT(GGGGCT G GCAGGACCGCGT 召 \bigcirc >CTTCTCCGCGTCCAGAACAACACGCTAAAGGGCGCTGT K Ü \bowtie Н Ez z Ø α Н Н CATTTTCTAC >ہتا 9

1425 GTGAATCTGTTTCCCATGCTGAGAGCCGTCAGCGACCAGGAGTCAGGATGGCCTGTATCA G Ø S ы Ø S >K 召 Н Σ Дι بتا Z >GCT(K CAAT \mathbf{z} GCCACCCATACACCGGCATGCT Ø

520 99 CIC TGGACT 3 GTGTGTTAT \mathcal{O} >GCAGT ഗ GTGCTACACGTCCTCCCTTCAGCGTCATCGCCACGGTCATTTTCA بتا Н K \triangleright S Ĺτι Д \vdash 工 CGCCTAC K Σ Ø 3

ىم **7/19** 61 -GCTGCTTGGT G CTGCTGCTCTTTTGGCCCCCTCACTTAATTGGAGAATTTCTAACACTTGT \vdash Н ш ы G \Box 工 Δ Ø \Box Ы ⋖ ď S GGATATTTCT ᄺ >4 G GAAGTTGCCAGATT GTATC

0 171(GAAACATACAAGA \mathbf{z} α TTTAT ш GCATCTCTGGGCTGCTTATTGGATCTGGA' Ü S G 口 Н G ഗ S GCTCA ႕ GGC K GTCAACAGTATAGT S \mathbf{z} \gt \mathbf{z} Ø

805 CTGAACTTCA Ŀ Z TTTACATTCCAAAAATACTGTTGTGAGATTCTCGTGGTCAATGAGTTTTACGGC G ш Z 口 屲 \mathcal{O} \circ \succ \bowtie Ø GGGTTAT G \simeq വ

900 'ACA BCCC \mathcal{O} H GAAAAC \times ш GCGCCATCACCCAAGGGGTCCAGTTCATCGA Ĺщ Ø \gt G Ø Е Ø \mathcal{O} CCGATGT Σ Д AAATCAC 工 Z щ Σ EH \mathbf{z} GTGGTGGA G G

995 CTGAT L I AAAGTCAGGGACTAC \succ \Box α \gt CATCTTATATGGGTTTATCCCAGCTCTGGTCATCCTAGGAATAGTGATTTTT Ĺτι Н > \vdash G Н >Н ø Д Ŀı AGATTCACGGCAAACTTCCT z

2090 α

FIG. 7B

CTGCGACCCTTGTGTGTCTTGTGTGTGTGTGGGGGGGGGG	TGGACATTGTGACTGAACTGGTCCAATAATAATAATAATAATAATTAAT		
--	---	--	--

285	GCCACCGCCCCGGAGCCTCACGCCATCCTCCTACAGCGTCAGCCACCGCGTGAGGCCCTGGTGGGACATCACATCTTG 285 A T A P E P H S L G I L H A S Y S V S H R V R P W W D I T S C
190	TGTTGGCCATGGGTGACCTCTTTTGACCCCCGGAGGGTCCATGGGTCTCCAAGTAAACAGAGGCTCCCAGAGCTCCCTGGAGGGGGGCT 190 M G D L S S L T P G G S M G L Q V N R G S Q S S L E G A
95	abelbeachechecheche (Activited Cace Geget Tee Canacte Gange Canaca Gege Gege Cace Canada Tite Caca Gange Tite G

m)
Ū	
CCG)
GCT	
CAG	
GCT(
GAAC	7.0
AG	O
CCI	Н
CAT	Н
GTG(U
AT	Σ
ATC	Н
CAG	Ŏ
966(Ŋ
AGC	ω
GAGZ	口
GTG(\wedge
AC	\succ
ΤĞ	Н
CCT	ഗ
TCT	\triangleright
ATG'	Ω
AAAG	云
\mathbb{T}^{C}	Ţ
TCC	H
AGA	 Q
$\tilde{\Omega}$	
CAGG	<u>~</u>
GAC	₽
ຼິ	M
GCAGI	Ø
GCAC	Ø
\mathcal{L}	~~

380	3/19	475	
3GA	, D	AG	ы
SCGG	••	3666	K
CTC		3600	~
AGG	70	TGC	П
CTC	(0	30,00	Ø
SAAC	r D	3660	K
rage	. 7	3600	ტ
CTTGTACGTGGAGAGCGGCCAGATCATGTGCATCCTAGGAAGCTCAGGCTCCGGGA		AACC	RAGTFLGEVYVNGRALRRE
3CA.	7)	3TG2	>
rGT(<u>.</u>	rATC	>-1
ICA.		3TG.	>
4GA	الا	3AG(ſΞÌ
3.00%	· ŋ	366(ტ
3CG(.v	CTG(ы
AGA(ī	ITC	Ē
TGG	>	ACC	H
ACG	×	GGG	G
TGT.	- 1	GCG	Ø
CCT	מ	CGC	\propto
TCT	>	GĞG	Ŋ
ATG	ב	CTG	ы
AAG 7	ረ	AGG	22
TCA 1	-	GGG	ഗ
DDH F	⊣	ICC	ഗ
AGA	X	ATG	Σ
9 9 9	ረ	225	Ø
CCA F	4	GAC	Ω
GGA W	≩	CIG	H
AGT	K	CTG	H
GCAGCAGTGGACCAGGCAGATCCTCAAAGATGTCTCC	0 > >	CCACGCTGCTGGACGCCATGTCCGGGAGGCTGGGGCGCGGGGACCTTCCTGGGGGGGG	T T L L D A M S G R L G
5. ,	,	ည	∺

570	,
C)	A
CTG	<u> </u>
CGCTGCTGGC	<u> </u>
300	A
ACCG	E-
CTACA	>-
A.	Ξ
TGC	Н
ACGCTG	۲
AGA	ГŦ
GCG	公
SCCTCACCGTGCGCGAGA	>
ACC(⊱
CTC	니
AGC	ഗ
4GC2	ഗ
TGZ	Ц
CCTGCTG	口
ACCC	₽
SACA	Ω
AGCG	ഗ
CAG	O
CTG(口
GTC(>
TACG	×
TCC	ഗ
TTC	Ľц
TGC	U
GAC	Ω
CAG	Ø
TTC	ഥ

665))
	()
TTG	
3,A	
Ă	<u>~</u>
AC	О
CAG	A
TGG	>
CCATGTGGCA	H
Ğ	ഗ
E.	ы
$^{\circ}$	W
CTGA	Н
AG	Ы
GGCAG	Ą
Ϋ́	Σ
GTC	>
AGGCC	K
GAG	⊡
GTGG	>
AA(又
SAAG	又
CCAG	Ø
TT	Гц
CTCC	ഗ
0990	Ŋ
TCC	Д
CAA	Z
CGG	U
CCG	ĸ
522	X

760	
CGCCGGGTCTCCATCGCAGCCCAGCTGCTCCAGGATCCTAAGGTCATGCTGTTTGATGAG	THE V S OF THE CONTRACT S A SE
GGGTGAGCGGCGCCGG	T C E K K C S I
ACAGCTTGGGGGGGCATTTCCA	X S I C C I S X

⁸⁵⁵ ACCACAGGCCTGGACTGCATGACTGCTAATCAGATTGTCGTCCTCCTGGTGGAACTGGCTCGCAGGAACCGAATTGTGGTTCTCACCATTCA 工 Н Ж \mathbf{z} α α ø

950

Ø

Д

 \vdash

Ü

 \circ

口

ſτĴ

G

S

Ø

 \succeq

Q

딦

GAACATTCAAACCCTTTTGACTTCTATATGGACCTGACGTCAGTGGATACCCAAAGCAAGGAA

GCCCCGTTCTGAGCTTTTTCAGCTCTTTGACAAATTGCCATCCTGAGCTTCGGAGAGCTGATTTTCTGTGGCACGCCAGCGGAAAT

1140

ATTGAAAGAAT

CATAAAACTTTGAAGAAT

GAAATAGAAACCTCCAAGAGAGTCCAGATGATAGAATCTGCCTACAAGAAATCAGCAATTTGT

S

 \vdash

 \Box

 Σ

L

Ω

ш

Д

ഗ

工

CCTTGT \mathcal{O}

CTTCAATGACTGCGGTTAC

Д

 α

 \simeq

Н

₽

 \bowtie

工

O

Ø

ഗ

×

Ø

Ø

Ш

Σ

Ø

 α

 \bowtie

되

1235

 \vdash

 α

Н

П

G

ᅱ

 \bowtie

ഗ

G

ഗ

 \searrow

公

ш

Д

Σ

Д

工

 \mathbf{z}

1330 GCGGGTCCGA TITCTICT ш GGCAGTGATTACGCGTCTCCTTCAGAATCTGATCATGGGTTTGTTCCTCCT Гц Н G Σ Н Н Z O \dashv α ⊱ >K \vdash

ACACCTGAAAACGTTACCAATGGTTCCTTTCAAAACCAAAGATTCTCCTGGAGTTTTCTCTAAACTGGGTGTTCTCTGAGGAGAGTGACAA

□ 9/19 CCTTTACCAGTTTGTGGGCGCCACCCCGTACACAGGCATGCTGAACGCTGTGAA \gt Ø \Box Σ G E \succ Д Ø Ø Ø GTAGGTCT G CCGC α

1520 CGICC > K CTACCAGAAGTGGCAGATGATGCTGGCCTAT ď Н Σ Σ O 3 又 O GTCAGCGACCAGGAGAGTCAGGACGGCCT Ö Ø ഗ Ø S ď 召 لتا

S 161 CAGCAGTGTGTGCTACTGGACGCTGGGCTTACATCCTGAGGTTGCCCGATTTGGATATTTTCT ഗ ⋖ [1] Д 工 G \vdash Ę 3 S Ĺτι Σ

GTAGTGGC ഗ Z CTTGTGCTACTTGGTATCGTCCAAAATCCAAATATA Н Z Д \mathbf{z} Ø G П CTAACT CACTTAATTGGTGAA [L] G 二 Ø

180 TATTTTACAT E CAGAAACATACAAGAAATGCCCATTCCTTTTAAAATCATCAGT \times Д Д Σ 딦 O Z α GGATCTGGATTCCT G S Н GCTGTCCATTGCGGGGGTGCT \mathcal{O} K

GAGTTCTACGGACTGAATTTCACTTGTGGCAGCTCAAATGTTTCTGTGACAACT ഗ ഗ S G O [1] GTAGTCAAT Z ഗ 又

10/19

GCTGCCGACTGTGCATGACTGCTCTGAACGTCTGAAATGAGAGTGCCATGTATTTCTTTGACAGGACATCTCAAGTCTTTAACCATTA CTCCATTTGTGCCTCTTGGATCCAAGCAGGCCTTGAATGCAATGGAAGTGGTTTATAGTCCCTTGCTCTTACAACTTGCAGGGACATGTGGT "TTGGAAATTGTGACTGAGCGGACCCAAGAATGTAAATAATATTCATAAACCTATGGG

2090

'TCCAGCTĊTTGTCATCCTAGGAATAGTTGTTTTCAAAATAAGGGATCATCTCATTAGCAGGTAGTGAAAGCCATGGCTGGGAAAATGGAAGT

 α

Ü

TGTGCCTTCACTCAAGGAATTCAATTCATTGAGAAACCTGCCCAGGTGCAACATCTAGATTCACAATGAACTTTCTGATTTTGTATTCATT

1995

Н

Σ

ĸ

K

G

Д

[L]

2185

2280

2340

F/G. 8C.

79	159 160	239	319 320	399 400	479	229 6 / 	639 640	651 652
TAPEP-HSIG ILHASYSVSH RVRPWWDITS CROOMTROIL KDVSLYVESG	LRREQFODCF SYVLOSDTLL SSLTVRETTH YTALLAIRRG	RVSIAAQLLQ DPKVMLFDEP TTGLDCMTAN QIVVLIVELA	MIDFFWDCGY PCPEHSNPFD FYMDLTSVDT QSKEREIETS	DSPGVESKIG VLLRRVTRNL VRNKLAVITR ILQNLIMGLE	NLFFVLRAVS DQESQDGLYQ KWQMMLAYAL HVLPFSVVAT 4	LLGIVQNPNI VNSVVALLSI AGVIVGSGFL RNIQEMPIPF 5	CAFTQGIQFI EKTCPGATSR FTWNFLILYS FIPALVILGI	30
IGTEARHSIG VLHVSYSVSN RVGPWWNIKS COOKWDROIL KDVSLYIESG	LRREQFODCF SYVLOSDVFL SSLTVRETIR YTAMLALCRS	RVSIAAQLLQ DPKVMMLDEP TTGLDCMTAN QIVILLAELA	MIGEFWNCGY PCPEHSNPFD FYMDLTSVDT QSREREIETY	DPPGMEGKIG VLLRRVTRNL MRNKQAVIMR LVQNLIMGLE	NLFFWLRAVS DQESQDGLYH KWQMLLAYVL HVLPFSVIAT 4	LLGIVQNPNI VNSTVALLSI SGTLITGSGFI RNIQEMPIPL 5	CAHTQGWQFI EKTCPGATSR FTANFLILYG FIPALVILGI	
TAPEP-H	LGEVYVNGRA	LGGISTGERR	ELIFCGTPAE	TLPMVPFKTK	TPYTGMLNAV	HLIGEFLTLV	SNVSVTTNPM	
TGTEARH	EGEVFVNGCE	FGGISSGERR	ELVFCGTPEE	TLPMVPFKTK	TPYTGMLNAV	HLIGEFLTLV	SNTSMLNHPM	
MGDLSSLTPG GSMGLQVNRG SQSSLEGAPA	QIMCILGSSG SGKTTLLDAM SGRLGRAGTE	NPGSFOKKVE AVMAELSLSH VADRLIGNYS	RRNRIVVLTI HOPRSELFOL FDKIAILSFG	KRVOMLESAY KKSATCHKIL KNIERMKHLK	ILIFFVLRVRS NVLKGARODR VGLLYQFVGA	MIFSSVCYWT LGIHPEVARF GYFSAALLAP	KILGYFTFQK YGSEILVVNE FYGLNFTCGS	VVEKIRDHLI SR
MGELPFLSPE GARGPHINRG SLSSLEQGSV	QIMCILGSSG SGKTTLLDAI SGRLRRTGTL	SADFYNKKVE AVMTELSLSH VADOMIGSYN	RRDRIVIVTI HOPRSELFOH FDKIAILTYG	KRVOMLECAF KESDIYHKIL ENIEBARYLK	LIFYLLRVQN NTLKGANQDR VGLLYQLVGA	VIFSSVCYWT LGIYPEVARF GYFSAALLAP		VIEKVROYLI SR
G.pro	G.pro	G.pro	G.pro	G.pro	G.pro G.pro	G.pro G.pro	G.pro G.pro	G.pro G.pro

F/G. 9.

12/19

Reference Number: 6711 Stanford RH Panel: TNG4 Lowest LDD Reported: 5 Chromosome Value: 0

Results for HT

Submitted

SHGCNAME CHROM# LOD_SCORE DIST.(cRs)

1 SHGC-36672 2 7.52 35

2 SHGC-8189 2 6.53 44

3 SHGC-699 2 6.03 48

The number of markers searched was 32440

FIG. 10.

F16. //.

Small Intestine

Ileum

Cecum

Ascending

Colon

Transverse

Colon

Colon

Colon

Rectum

shuxuz ii 7_{estis} UDD/ds S. Intestine Prostate 78d 1/enO CO/07 S. Muscle elneoppld Pancreas BUN7 79_{N!7} Kidney Kidney Brain

F16. 12

FIG. 13.

16/19

F16 14A.

CTGCCT	TGCCAC	GCAGTG	GCTGGA	SCTTCTC		CACGGG 61/	TGCTAA	TTTGACA	3AACATT 	SAATCTG
AGGTGGAGCAGGCAGGCCAGTCTGCCACGGGCTCCCCAACTGAAGCCACTCTGGGGAGGGTCCGGCCACCAGAAATTTGCCCAGCTTTGCTGCCT 	GGCCATGGGTGACCTCTCTTTGACCCCCGGAGGGTCCATGGGTCTCCAAGTAAACAGAGGCTCCCAGAGCTCCCTGGAGGGGGGCTCCTGCAC	CCCGGAGCCTCACAGCCTGGGCATCCTCCATGCCTCCTACAGCGTCAGCCACGCGTGAGGCCCTGGTGGGGACATCACATCTTGCCGGCAGCAGCAGTG	CAGGCAGATCCTCAAAGATGTCTCCTTGTACGTGGAGAGCGGGCAGATCATGTGCATCCTAGGAAGCTCAGGCTCCGGGAAAACCACGCTGCTGGA	CATGTCCGGGAGGCTGGGGCGCGCGGGGACCTTCCTGGGGGGGG	CGTCCTGCAGAGCGACACCCTGCTGAGCAGCCTCACCGTGCGCGAGACGCTGCACTACACCGCGCTGCTGGCCATCCGCCGCGCGGCAATCCCGGCTC	CCAGAAGAAGTGGAGGCCGTCATGGCAGAGCTGAGTCTGAGCCATGTGGGCAGACCGACTGATTGGCAACTACAGCTTGGGGGGGG	.GCGGCGCCGGGTCTCCATCGCAGCCCAGCTGCTCCAGGATCCTAAGGTCATGCTGTTTGATGAGCCAACCACAGGCCTGGACTGCATGACTGCTAA	GATTGTCGTCCTCCTGGTGGAACTGGCTCGCAGGAACCCGAATTGTGGTTCTCACCATTCACCAGCCCCGTTCTGAGCTTTTTCAGCTCTTTTGACA	TIGCCATCCTGAGCTTCGGAGAGCTGATTTTCTGTGGCACGCCGGAAATGCTTGATTTCTTCAATGACTGCGGTTACCCTTGTCCTGAACATT.	accettttgacttetata <mark>t</mark> ggacetgacgtcagtggatacecaaagcaaggaacgggaatagaaacetecaagagagtecagatgatagaatetg exon 7
AGGTGGAGCAGGCAGTCTGCCACGGGCTCCC	GGCCATGGGTGACCTCTCATCTTTGACCCCCGGAGG	CCCGGAGCCTCACAGCCTGGGCATCCTCCATGCCTCC	CAGGCAGATCCTCAAAGATGTCTCCTTGTACGTGGA	CATGTCCGGGAGGCTGGGGCGCGCGGGGACCTTCCT	CGTCCTGCAGAGCGACACCCTGCTGAGCAGCCTCAC	CCAGAAGAAGGTGGAGGCCGTCATGGCAGAGCTGAG	GCGGCGCCGGGTCTCCATCGCAGCCCAGCTGCTCCA	GATTGTCGTCCTCCTGGTGGAACTGGCTCGCAGGAA	TTGCCATCCTGAGCTTCGGAGAGCTGATTTTCTGTGG	ACCCTTTTGACTTCTATATGGACCTGACGTCAGTGG

AATGGAAGTGAAGCTGCCGACTGTGACTGCTCTGAACGTCTGAAATGAGAGTGCCATGTATTTCTTTC
TTTTGTATTCATTTATTCCAGCTCTTGTCATCCTAGGAATAGTTGTTTTCAAAATAAGGGATCATCTCATTAGCAGGTAGTGAAAGCCATGGCTGG
CTGTGACAACTAATCCAATGTGTGCCTTCACTCAAGGAATTCATTC
AAATCATCAGTTATTTTACATTCCAAAAATATTGCAGTGAGATTCTTGTAGTCAATGAGTTCTACGACTGAATTACAGACTGAATTAAAAAAAA
EXON 10EXON 11
GGCAGATGATGCTGGCCTATGCACTGCACGTCCTCCCCTTCAGCGTTGTTGCCACCATGATTTTCAGCAGTGTGTGT
GCGCCACCCCGTACACAGGCATGCTGAACGCTGTGAATCTGTTTCCCGTGCTGCGGAGCTGTCAGCGACCAGGAGAGTCAGGACGGCCTCTACCAGA
TCATGGGTTTGTTCCTCCTTTTCTTCGTTCTGCGGGTCCGAAGCAATGTGCTAAAGGGTGCTATCCAGGACCGCGTAGGTCTCCTTTACCAGTTTG
CTGGAGTTTTCTCTAAACTGGGTGTTCTCCTGAGGAGTGACAAGAAACTTGGTGAGAAATAAGCTGGCAGTGATTACGCGTCTCCTTCAGAATC EXON 8

FIG. 14B. (2 OF 3)

19/19

	ATTTGTGCCTCTTTGGA	TCCAAGCAGGCCTTGAATGCA/	ATGGAAGTGGTTTATAGTCCCT	-caliaaaaciccattrigreccrctrifgatccaagcaggcctrgaargcaarggaagtggrtratagtccctrgctctacaactrgcagggacarg
		t 	EXON I3	
STTATTTGGAAAT	3TTATTTGGAAATTGTGACTGAGCGGACCCAAGAAT	Caagaatgtaaatatattcataaacctatgg	[AAACCTATGGG	
 	EXON 13-			
SON NUMBER	EXON SIZE	5' SPLICING SITE	3' SPLICING SITE	INTRON SIZE
⊣ (GCGTCAGqtaaqqcaq	-600hn
7 (124	cctttaaagCCACCGC	AGCTCAGgtaagcttg	~ 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5
m ·	137	gccccgcagGCTCCGG	CCTGCAGatagacaca	74hn
4	103	ctcctgcagAGCGACA	AAGGTGGatacacc	7 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
. ب	129	tgcaggtggAGGCCGT	GATCCTAGtaagtagc	2.7. √ 43. C ~
O	140	tgctggcagAGGTCAT	TTTTCAGGTAAAAAT	U.Y. 1 V.Y. 1 V.Y. 1
7	130	totatopactopator	いのいいのいにいって、こうにはいるいののでものできません。	2,000
α	-		ilviAiAgtaagtttt	~0.5kb
o (٠ ١	aacttttagTGGACCT	TCCTGAGgtaagaggc	100bp
, ע		tgttttcagGAGAGTG	AATCTGTgtaagtgcc	
), 10	139	catccccagTTCCCGT	GCTACTGqtqaqqtt	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
- T :		cttttctagGACGCTG	TCCTCAGataagatat	
12	113	tttcttaagAAACATA	ACTIGIGATAAATT	
£ 1 4		ccttgacagGCAGCTC		
TOTAL			÷	470 BC~
NIC SEQUENCES	S IN CAPITAL LETTER	ER		Z 2

FIG. 14B.(3 0F 3)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.