SOLUCIONES DEL EXAMEN DE MATEMÁTICA DISCRETA II 21 DE JULIO DE 2005.

Ejercicio 1

- (1) $n \equiv -3 \mod(n+3)$, $\Rightarrow n^3 \equiv -27 \mod(n+3)$, $\Rightarrow 3n^3 11n + 48 \equiv -81 + 33 + 48 \equiv 0 \mod(n+3)$, de donde se deduce que $3n^3 11n + 48$ es múltiplo de n+3 como se quería demostrar.
- (2) Sea $h = mcd(a, b) \ge 1$. h divide a a y divide a b, luego h divide a cualquier múltiplo bc de b, y como divide a a, divide también a la diferencia bc a. Tenemos entonces que h es un divisor común de b y de bc a. Luego divide al mcd(bc a, b). (i)

Sea $k = mcd(bc - a, b) \ge 1$. k divide a bc - a y divide a b; luego k divide a cualquier múltiplo bc de b, y como divide a bc - a, divide también a la diferencia bc - (bc - a) = a. Tenemos entonces que k es un divisor común de b y de a. Luego divide al mcd(a, b). (ii)

- De (i) y (ii) se deduce que h y k son enteros ≥ 1 tales que uno divide al otro y recíprocamente. Entonces h=k como queríamos demostrar.
 - (3) Sea $a = 3n^3 11n$. Como $n \ge 2$ se tiene $a \ge 3 \cdot 2^3 11 \cdot 2 = 2$.

Sea $b = n + 3 \ge 5$. Sea c entero positivo tal que bc - a = 48. Debemos probar que existe tal c. En efecto, queremos que $(n + 3)c = a + 48 = 3n^3 - 11n + 48$, o lo que es equivalente

$$c = \frac{3n^3 - 11n + 48}{n+3}$$

El numerador es igual a $a+48 \ge 50$ y el denominador es mayor o igual que 5. Luego c es mayor que 0. Por la parte 1) el numerador es múltiplo entero del denominador, entonces c es entero.

Por la parte 2) se tiene

$$mcd(a,b) = mcd(bc - a,b)$$
 (iii)

para todos a, b y c enteros no nulos, en particular para a, b y c los enteros positivos elegidos antes en función de n. Sustituyendo en (iii) las expresiones $a = 3n^3 - 11n$, b = n + 3 y bc - a = 48 se deduce $mcd(3n^3 - 11n, n + 3) = mcd(48, n + 3)$ como se quería demostrar.

(4) Descomponiendo en factores primos: $48 = 2^4 \cdot 3$. Luego, los divisores positivos de 48 son 1, 2, 4, 8, 16, 3, 6, 12, 24 y 48.

$$(3n^3 - 11n)/(n+3)$$
 es entero si y solo si $3n^3 - 11n$ es múltiplo entero de $n+3$. (iv)

Por la parte 1 se tiene que $3n^3 - 11n + 48$ es siempre múltiplo entero de n + 3. Entonces restando esta condición y la (iv) deducimos que

 $(3n^3 - 11n)/(n+3)$ es entero si y solo si 48 es múltiplo de (n+3), o lo que es equivalente, n+3 es divisor de 48 (v).

Por otro lado, sabiendo que n es natural, se tiene que $(3n^3 - 11n)/(n+3)$ es no negativo. Por lo tanto, cuando es entero, es natural.

De (v) deducimos que los valores naturales de n buscados son aquellos que sumados a 3 dan como resultado alguno de los divisores positivos de 48, o sea n = 1, 5, 13, 0, 3, 9, 21 y 45.

Ejercicio 2.

(1) El producto de clases de congruencia mod12 se define como la clase de congruencia [n][m] = [nm]. Esta operación es cerrada en U_{12} pues si mcd(n, 12) = 1 y mcd(m, 12) = 1 entonces mcd(nm, 12) = 1. Luego el resto r de dividir nm entre 12 también cumple mcd(r, 12) = 1, de donde $[nm] = [r] \in U_{12}$.

La propiedad asociativa se cumple porque el producto de clases de congruencia en Z_{12} es asociativo (enunciado en el teórico). Luego lo es en particular restringido al subconjunto U_{12} .

El neutro [1] mod12 del producto en Z_{12} pertenece a U_{12} porque mcd(1,12)=1.

Finalmente resta probar que todo $[n] \in Z_{12}$ tiene un inverso en Z_{12} . Sea n tal que mcd(n, 12) = 1 Por la propiedad de combinación lineal del máximo común divisor, se tiene que existen a y b enteros tales que na + 12b = 1. Entonces también se cumple mcd(a, 12) = 1 y $[a] \in U_{12}$. Además $[na + 12b] = [1] \mod 12$, luego $[n][a] + [12][b] = [1] \mod 12$. En $Z_{12} : [12][b] = [0][b] = [0]$ y [n][a] + [0] = [n][a]. Luego obtuvimos $[a] \in U_{12}$ tal que [n][a] = [1], o sea existe inverso de [n] en U_{12} como queríamos demostrar.

(2)

$$U_{12} = \{[1], [5], [7], [11]\} \subset Z_{12}$$

Para construir la tabla de operación efectuamos los productos entre dos elementos cualesquiera de U_{12} . Si uno de los factores es [1], el resultado es el otro factor. Con eso completamos la primera fila y la primera columna de la tabla (A) que está más abajo. Además el producto es conmutativo, así que llenando los espacios de la tabla en la diagonal principal y por encima de ella, se completa por simetría abajo de la diagonal. Operando con el producto de las clases de congruencia módulo 12, se tiene:

$$[5][5] = [25] = [1], [5][7] = [35] = [11], [5][11] = [55] = [7],$$

 $[7][7] = [49] = [1], [7][11] = [77] = [5], [11][11] = [121] = [1]$

Luego la tabla es:

$$(A) \begin{array}{c|cccc} & (U_{12}, \cdot) & [1] & [5] & [7] & [11] \\ \hline & [1] & [1] & [5] & [7] & [11] \\ [5] & [5] & [1] & [11] & [7] \\ \hline & [7] & [7] & [11] & [1] & [5] \\ [11] & [11] & [7] & [5] & [1] \\ \end{array}$$

(3) Sea $G = \{e, a, b, c\}$ un grupo, con cuatro elementos (o sea todos diferentes entre sí), donde e es el neutro y tal que $a^2 = e$, $b^2 = e$, $c^2 = e$. Construyamos la tabla de operación del grupo. Como e es el neutro ex = xe = x para todo $x \in G$. Con ello se completa la primera fila y la primera columna de la tabla (B) que está más abajo. Ahora completemos la segunda fila: aa = e por hipótesis. $ab \neq a$ porque de lo contrario, por la propiedad cancelativa, tendríamos b = e lo que es absurdo. $ab \neq e$ porque de lo contrario tendríamos ab = aa y por la propiedad cancelativa, deduciríamos ab = a lo que es absurdo. Finalmente $ab \neq b$ porque de lo contrario por la propiedad cancelativa tendríamos a = e lo que es absurdo. Por lo tanto la única posibilidad que resta es ab = c. Análogamente obtenemos

$$ac = b$$
, $ba = c$, $bc = a$, $ca = b$, $cb = a$

lo que permite completar la siguiente tabla:

Sea $\varphi: U_{12} \mapsto G$ la aplicación biunívoca tal que

$$\varphi([1]) = e, \ \varphi([5]) = a, \ \varphi([7]) = b, \ \varphi([11]) = c$$

Se observa, comparando las tablas (A) y (B) que al elemento de U_{12} que está en la fila [i], columna [j] de la tabla (A) (es decir al elemento $[i] \cdot [j] \in U_{12}$) le corresponde por φ el elemento de G en la tabla (B) que está en la fila $\varphi([i])$, columna $\varphi([j])$, (es decir el elemento $\varphi([i]) \cdot \varphi([j])$). Por lo tanto

$$\varphi([i] \cdot [j]) = \varphi([i]) \cdot \varphi([j])$$

concluyendo que φ es un homomorfismo de grupos. Como además φ es biyectivo por construcción, se tiene que es un isomorfismo. Luego U_{12} y G son grupos isomorfos como queríamos demostrar.

Ejercicio 3

(1) Sea $\varphi: G \mapsto G$ definida por $\varphi(g) = g^m$ para todo $g \in G$. Sabiendo que G es abeliando se tiene $(g_1g_2)^m = g_1^m g_2^m$. Luego:

$$\varphi(g_1g_2) = (g_1g_2)^m = g_1^m g_2^m = \varphi(g_1)\varphi(g_2)$$

lo que prueba que φ es un homomorfismo del grupo G en sí mismo. Ahora probemos que es inyectivo y sobreyectivo.

 $Ker\varphi=\{g\in G:g^m=e\}$. Si un elemento $g\in G$ cumple $g^m=e$ entonces m es múltiplo del orden de g. Pero por el teorema de Lagrange el orden de g divide a |G|=n. Entonces el orden de g es un divisor común de g es g. Por hipótesis mcd(n,m)=1, de donde se deduce que el orden de g es 1. Entonces g=e. Hemos probado que todo elemento g del núcleo de g es igual a g. Entonces g=g0 y por el teorema visto en el teórico g1 es inyectiva.

Ahora probemos que φ es sobreyectiva, o sea demostremos que el grupo G' imagen de G por φ coincide con todo G. Sabemos que G' está contenido en G. Por el primer teorema de los homomorfismos $G/Ker\varphi$ es isomorfo a G'. Entonces tienen la misma cantidad de elementos:

$$|G'| = \left| \frac{G}{Ker\varphi} \right| = \frac{|G|}{|Ker\varphi|} = \frac{|G|}{1} = |G|$$

Luego G' es un subconjunto de G que tiene la misma cantidad (finita n) de elementos que G. Entonces G' = G y φ es sobreyectivo.

Como φ es un homomorfismo biyectivo, es un isomorfismo como queríamos demostrar.

(2) Por la parte anterior tenemos que $\varphi: G \mapsto G$ definida por $\varphi(g) = g^m$ es biyectiva. Entonces es invertible, es decir, para todo $a \in G$ existe (y es único) un $g \in G$ tal que $g^m = a$. Esto prueba que para todo $a \in G$ existe (y es única) una solución x = g de la ecuación $x^m = a$ como queríamos probar.

Ejercicio 4.

(1) Si f y g pertenecen a N_1 entonces f(1) = 0, g(1) = 0. Luego (f+g)(1) = f(1) + g(1) = 0 + 0 = 0 y se cumple que $f + g \in N_1$. Además -f(1) = -0 = 0 y se cumple $-f \in N_1$. Lo anterior prueba que $(N_1, +)$ es un subgrupo de (A, +). Ahora probemos que para toda $f \in N_1$ y para toda $h \in A$ el producto $hf \in N_1$. Como el producto es funciones es conmutativo esto implica también $fh \in N_1$. Si $f \in N_1$ entonces f(1) = 0, luego (hf)(1) = h(1)f(1) = h(1)0 = 0, de donde $hf \in N_1$, terminando de probar que N_1 es un ideal de A.

Si f y g pertenecen a N_2 entonces f(1) = f(2) = 0, g(1) = g(2) = 0. Luego (f+g)(1) = f(1) + g(1) = 0 + 0 = 0 y (f+g)(2) = f(2) + g(2) = 0 + 0 = 0. Por lo tanto $f+g \in N_2$. Además -f(1) = -0 = 0 y -f(2) = -0 = 0. Entonces se cumple $-f \in N_2$. Lo anterior prueba que $(N_2, +)$ es un subgrupo de (A, +). Ahora probemos que para toda $f \in N_2$ y para toda $h \in A$ el producto $hf \in N_2$. Como el producto es funciones es conmutativo esto implica también $fh \in N_2$. Si $f \in N_2$ entonces f(1) = f(2) = 0, luego (hf)(1) = h(1)f(1) = h(1)0 = 0 y (hf)(2) = h(2)f(2) = h(2)0 = 0, de donde $hf \in N_2$, terminando de probar que N_2 es un ideal de A.

(2) Sea $\Phi: A \mapsto \mathbb{R}$ definida por $\Phi(f) = f(1)$. Se cumple:

$$\Phi(f+g) = (f+g)(1) = f(1) + g(1) = \Phi(f) + \Phi(g)$$

$$\Phi(fg) = (fg)(1) = f(1)g(1) = \Phi(f)\Phi(g)$$

Luego Φ es un homomorfismo de anillos.

Además Φ es sobreyectiva pues dado $a \in \mathbb{R}$ sea la función f = a constante. Se cumple $\Phi(f) = f(1) = a$. Todo número real a es imagen por Φ de alguna función $f \in A$.

Hallemos el núcleo de Φ : $Ker\Phi = \{f \in A : f(1) = 0\} = N_1$. Por el primer teorema de los homomorfismos de anillos $A/Ker\Phi = A/N_1$ es isomorfo a \mathbb{R} como queríamos demostrar.

- (3) N_1 es un ideal maximal porque el anillo cociente A/N_1 es un cuerpo, ya que por la parte anterior es isomorfo al cuerpo de los reales. Se aplica el siguiente teorema visto en el teórico:
 - (*) Un ideal N de un anillo A es maximal si y solo si el anillo cociente A/N es un cuerpo.
- (4) N_2 es un ideal de N_1 porque $N_2 \subset N_1 \subset A$, N_2 es un ideal de A y N_1 es un subanillo de A (por ser un ideal).

Sea $\phi: N_1 \mapsto \mathbb{R}$ la aplicación $\phi(f) = f(2)$. Análogamente a lo demostrado en la parte 2, ϕ es un homomorfismo de anillos. Es sobreyectivo porque dado $a \in \mathbb{R}$ la función f(x) = a(x-1) cumple f(1) = 0, f(2) = a, entonces, para todo $a \in \mathbb{R}$ existe alguna función $f \in N_1$ tal que $\phi(f) = a$. Hallemos el núcleo de ϕ : $Ker\phi = \{f \in N_1 : f(2) = 0\} = \{f \in A : f(1) = 0, f(2) = 0\} = N_2$. Por el primer teorema de los homomorfismos de anillos se tiene $N_1/Ker\phi = N_1/N_2$ es isomorfo a \mathbb{R} . Como \mathbb{R} es un cuerpo, por el teorema (*) enunciado en la parte 3) se cumple que N_2 es un ideal maximal de N_1 como queríamos demostrar.

Por otra parte N_2 no es un ideal maximal de A porque existe el ideal N_1 tal que $N_2 \subset N_1 \subset A$ y N_1 no es ni A ni N_2 . (En efecto la función f(x) = (x - 1) está en N_1 y no está en N_2 , lo que prueba que N_1 no es N_2 ; y la función g(x) = 5 constante está en A y no está en N_1 , lo que prueba que N_1 no es A).