eGaN® FET DATASHEET EPC2067

EPC2067 – Enhancement Mode Power Transistor

 V_{DS} , 40 V $Max R_{DS(on)}$, 1.55 $m\Omega$ I_D, 69 A

Gallium Nitride's exceptionally high electron mobility and low temperature coefficient allows very low R_{DS(on)}, while its lateral device structure and majority carrier diode provide exceptionally low Q_G and zero Q_{RR}. The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

	Maximum Ratings				
	PARAMETER	VALUE	UNIT		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Drain-to-Source Voltage (Continuous)	40	V		
V _{DS}	Drain-to-Source Voltage (up to 10,000 5 ms pulses at 150°C)	48	V		
	Continuous (T _A = 25°C)	69	_		
I _D	Pulsed (25°C, $T_{PULSE} = 300 \mu s$)	409	A		
	Gate-to-Source Voltage	6	V		
V_{GS}	Gate-to-Source Voltage	-4	V		
TJ	Operating Temperature	-40 to 150	°C		
T _{STG}	Storage Temperature	-40 to 150			

	Thermal Characteristics				
	PARAMETER	TYP	UNIT		
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	0.4			
$R_{\theta JB}$	Thermal Resistance, Junction-to-Board	1.4	°C/W		
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1)	48			

Note 1: $R_{\theta JA}$ is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. $See \ https://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf \ \ for \ details.$

EPC2067 eGaN® FETs are supplied only in passivated die form with solder bars. Die Size: 2.85 x 3.25 mm

Applications

- High frequency DC-DC Converters
- BLDC Motor Drives
- · Sync Rectification for AC-DC and DC-DC

Benefits

- · High Power Density
- High Efficiency
- · No Reverse Recovery
- Ultra Low Q₆
- · Small Footprint
- · High Frequency Capability

	Static Characteristics ($T_J = 25^{\circ}$ C unless otherwise stated)					
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
BV_DSS	Drain-to-Source Voltage	$V_{GS} = 0 \text{ V, I}_{D} = 1.1 \text{ mA}$	40			V
I _{DSS}	Drain-Source Leakage	$V_{GS} = 0 \text{ V}, V_{DS} = 32 \text{ V}$		0.01	0.9	
	Gate-to-Source Forward Leakage	$V_{GS} = 5 V$		0.002	4	mA
I_{GSS}	Gate-to-Source Forward Leakage#	$V_{GS} = 5 \text{ V}, T_J = 125^{\circ}\text{C}$		0.2	9	
	Gate-to-Source Reverse Leakage	$V_{GS} = -4 V$		0.01	1	
$V_{GS(TH)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 18 \text{ mA}$	0.7	1	2.5	V
R _{DS(on)}	Drain-Source On Resistance	$V_{GS} = 5 \text{ V, } I_D = 37 \text{ A}$		1.3	1.55	mΩ
V _{SD}	Source-Drain Forward Voltage	$I_S = 0.5 \text{ A, V}_{GS} = 0 \text{ V}$		1.2		V

[#] Defined by design. Not subject to production test.

EPC2067 eGaN® FET DATASHEET

	Dynamic Characteristics (T _J =	= 25°C unless otherwise stated)				
	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
C_{ISS}	Input Capacitance#			2178	3267	
C_{RSS}	Reverse Transfer Capacitance	$V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V}$		24		
Coss	Output Capacitance#			1071	1607	рF
C _{OSS(ER)}	Effective Output Capacitance, Energy Related (Note 2)	V 040 20 V V 0 V		1597		
C _{OSS(TR)}	Effective Output Capacitance, Time Related (Note 3)	$V_{DS} = 0 \text{ to } 20 \text{ V}, V_{GS} = 0 \text{ V}$		1860		
R_{G}	Gate Resistance			0.4		Ω
Q_{G}	Total Gate Charge [#]	$V_{DS} = 20 \text{ V}, V_{GS} = 5 \text{ V}, I_D = 37 \text{ A}$		17.1	22.3	
Q_{GS}	Gate-to-Source Charge			5.3		
Q_{GD}	Gate-to-Drain Charge	$V_{DS} = 20 \text{ V, } I_D = 37 \text{ A}$		2		
Q _{G(TH)}	Gate Charge at Threshold			4.2		nC
Q _{OSS}	Output Charge#	$V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V}$		37	56	
Q _{RR}	Source-Drain Recovery Charge			0		

Figure 1: Typical Output Characteristics at 25°C

Figure 3: R_{DS(on)} vs. V_{GS} for Various Drain Currents

Figure 4: $R_{DS(on)}$ vs. V_{GS} for Various Temperatures

[#] Defined by design. Not subject to production test. Note 2: $C_{OSS(ER)}$ is a fixed capacitance that gives the same stored energy as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS}. Note 3: $C_{OSS(TR)}$ is a fixed capacitance that gives the same charging time as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS}.

eGaN® FET DATASHEET **EPC2067**

100

Figure 5b: Capacitance (Log Scale) 10000 Capacitance (pF)

10

 $\mathsf{C}_{\mathsf{OSS}} = \mathsf{C}_{\mathsf{GD}} + \mathsf{C}_{\mathsf{SD}}$ $C_{\text{ISS}} = C_{\text{GD}} + C_{\text{GS}}$ $C_{RSS} = C_{GD}$

30

40

20

V_{DS} – Drain-to-Source Voltage (V)

25°C

• 125°C $V_{GS} = 0 V$

20

2.5

V_{SD} – Source-to-Drain Voltage (V)

2.0

3.0

25

30

35

Q_{0SS} – Output charge (nC)

12

350

100 Source-to-Drain Current (A) 100 Source-to-Drain (A) 100 So

50 0

0

0.5

1.0

0.18

0.00

40

EPC — POWER CONVERSION TECHNOLOGY LEADER |

EPC-CO.COM

©2021

eGaN® FET DATASHEET EPC2067

Figure 10: Normalized Threshold Voltage vs. Temperature

Figure 11: Transient Thermal Response Curves

Figure 12: Safe Operating Area

eGaN® FET DATASHEET EPC2067

TAPE AND REEL CONFIGURATION

8 mm pitch, 12 mm wide tape on 7" reel

	Dimension (mm)		
EPC2067 (Note 1)	Target	MIN	MAX
a	12.00	11.90	12.30
b	1.75	1.65	1.85
(Note 2)	5.50	5.45	5.55
d	4.00	3.90	4.10
е	8.00	7.90	8.10
f (Note 2)	2.00	1.95	2.05
g	1.50	1.50	1.60
h	1.00	0.95	1.05
i	1.27		

Note 1: MSL 1 (moisture sensitivity level 1) classified according to IPC/ JEDEC industry standard.

Note 2: Pocket position is relative to the sprocket hole measured as true position of the pocket, not the pocket hole.

DIE MARKINGS

Dove	Laser Markings			
Part Number	Part # Marking Line 1	Lot_Date Code Marking Line 2	Lot_Date Code Marking Line 3	
EPC2067	2067	YYYY	ZZZZ	

DIE OUTLINESolder Bump View

	Micrometers			
DIM	MIN	MAX		
Α	2820	2850	2880	
В	3220	3250	3280	
c		1805		
d		400		
e		200		
f		1195		

Pad 1 is Gate;

Pads 2,5,6,9,10,13,14 are Source; Pads 3,4,7,8,11,12 are Drain

Side View

eGaN® FET DATASHEET EPC2067

RECOMMENDED LAND PATTERN

(units in μ m)

Land pattern is solder mask defined Solder mask is 10 µm smaller per side than bump

Pad 1 is Gate; Pads 2,5,6,9,10,13, 14 are Source; Pads 3,4,7,8,11,12,

are Drain

DIM	Micrometers
Α	2850
В	3250
C	1805
d	400
e1	180
f1	1175

RECOMMENDED STENCIL DRAWING

(units in μ m)

DIM	Micrometers
A	2850
В	3250
c	1805
d	400
e1	180
f1	1175

Recommended stencil should be 4 mil (100 μm) thick, , laser cut stainless steel, opening per drawing.

The corner has a radius of R60.

Intended for use with SAC305 Type 4 solder, reference 88.5% metals content.

Additional assembly resources available at https://epc-co.com/epc/DesignSupport/AssemblyBasics.aspx

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

 $eGaN^{\ast}$ is a registered trademark of Efficient Power Conversion Corporation.

 ${\sf EPC\ Patent\ Listing: epc-co.com/epc/AboutEPC/Patents.aspx}$

Information subject to change without notice. Revised October, 2021