KAP. 6 FYSIKK I VÆSKER OG GASSER

Medium		Parametre	· · · · · · · · · · · · · · · · · · ·	Tilstandsligning
Vasker		p:massetetthet p:trylk		pV = Konstant
gasser	> , , , , , , , ,	T: temperatur		· · · · · · · · · · · · · · · · · · ·
		Vi: Volum i i		

Aggregatt: Istand / fase

Fast stoff: Atomer/molekyler er pakket tett Sammer med "fast plass"

Væske: Har fortsøtt vekselvirkninger mellom atomer/molekyler, men ikke sterke nok til å holde dem i fast posisjon/gitter struktur.

H₂O

- Har (tilnormet) fast volum, men kan endre form.

~ vekselvickning

- Kan (nester) the presses

Sammer.

Gass: Atomere/molekylere er ikke bundet sammen, men farer fritt omkring.

- Kan presses sammen.

Overgang fra en aggregattilstand til en annen Kalles faseovergang.

Eksempel

Trykk påvirker også aggregattilstanden.

F. eks. gass under høyt trykk har væskeform.

När man rister en primus med propon/butan gass, hører man at det er væske inni. Når man åpner ventilen slippes innholdet Ut i form av gass.

6.1 Massetetthet

Definisjon

Massetettheten p til et stoff er forholdet mellom massen m og volumet V

$$\rho = \frac{m}{\sqrt{m}}$$

P (gresk bokstav, rho)

Enhet: $[p] = \frac{[m]}{[v]} = \frac{kg}{m^3}$

Kan også bruke:

 $\frac{kq}{dm^3} = \frac{kq}{l} = \frac{kq}{(0,1m)^3} = \frac{kq}{0,001 \, m^3 \cdot 1000} = 1000 \, \frac{kq}{m^3}$

Eksempel

Vann ved $OC: p = 1000 \frac{kg}{m^3} = 1 \frac{kg}{dm^3} = 1 \frac{kg}{l}$

Luft ved $OC: p = 1,29 \frac{kg}{m^3} = 1,29.10^3 L = 1,29 \frac{g}{L}$

Gull ved O'C: p=19320 kg = 19 kg

Eksempel

a) Hva er masser til lufter i rommet?

$$\bigvee_{i} \sum_{j} p_{ij} = \sum_{i} \frac{m}{\chi^{i}} \sum_{j} \frac{m}{m} \sum_{i} \frac{m}{m}$$

$$m = \rho \cdot V = \rho \cdot A \cdot h = 1,24 \frac{kg}{m^3} \cdot 9,6m^2 \cdot 2,40m$$

 $m = 29 \frac{kg}{m^3} \cdot m$

$$M = 29 \text{ kg}$$

$$m = 23.10^3 \text{ kg} = 23 \text{ tonn}$$

$$V = A \cdot l = \pi r^2 l$$

$$= \pi \cdot (0,25.10^{-3})^2 \cdot 100m$$

$$r = \frac{d}{2} = 0,25 mm$$

$$r = 0.25.10^{-3} \text{ m}$$

$$V = 1,96 \cdot 10^{-5} \,\mathrm{m}^3$$

$$m = \rho V = 950 \frac{kg}{m^3} \cdot 1,96 \cdot 10^{-5} m^3$$

= 1,865 \cdot 10^{-2} kg

$$m = 19g$$

6.2 Trykk

Definisjon

Når en kraft F virker vinkelrett på en flate med areal A, er trykket p på flaten kraft per areal:

P = A

SI enhet:
$$[p] = \frac{[F]}{[A]} = \frac{N}{m^2} = Pa$$

Vanlig p

Pascal

engelsh: pressure

Blaise Pascal (1623-62)

Trylik er en skalarstørrelse. Trykk fra en gass Virker i alle retninge. Mot en overflake virker trykket Vinkelrett på flaten

Andre enhete:

1 ps: ~ 6845 Pa L> pound per square inch

1 torr = mm Hg = 0,133 kPa =
$$\frac{1}{760}$$
 atm
kvikksøk

1 atm = 101 kPa 2-atmosfære

Eksempel Trykk fra A4 ark på bord.

$$m = 5.1g$$
 , $A = 21 cm \cdot 29.7 cm$
 $A = 0.06237 m^2$

$$F = G = m \cdot g = 5,1.10^{-3} kg \cdot 9,81 \frac{m}{52} = 0,05003 N$$

$$P = \frac{F}{A} = \frac{0,05003 \text{ N}}{0,06237 \text{ m}^2} = 0,80 \frac{N}{\text{m}^2} = 0,80 \text{ Pa}$$
|: let trybb

Lufttrykh

Tenk på Video: air pressure can.

Lutterykk ved jordoverflater er:

po = 1 atm = 101 kPa 21 bar

Trykhet minker med Ca. 1,3 kPa per 100 m Vi stiger.

- For lite oksygen ved ekstreme høyder Temperaturen synker
- Dotte i orese
- Vann får lavere kokepunkt

Væshe trykk

Vosker er i ro, inger bevegelse belyr at

$$\sum_{i} F = 0$$

- Betyr at trybbet må Være det samme i alle punkt med lik høyde
- Hva er tryliket ved dybden h?

h = dybde

A = areal/tuerrsn:tt au væslæsøylen

Fo = trylele fra atmosfæren på væskesæylen

F = trykk fra underside på væskesøyle

6 = tyngder av væskespyler

Vi vil fine p.

Van : 10 : ZF = 0

 $F - F_0 - 6 = 0$ => $F = F_0 + 6$

 $pA = p_0A + mg \leftarrow m = pV = pA \cdot h$

PA = PA + PA hg 1. 1

 $p = p_0 + pgh$

Hydrostatish trykh

| en væske i ro er det hydrostatiske
trykket p i dybden h gitt ved

p = po + pgh

po: lufttrykk

p: væsketetthet