PRACA KONTROLNA nr 1 - POZIOM PODSTAWOWY

1. Uprościć następujące wyrażenie, określiwszy uprzednio jego dziedzinę:

$$\frac{1}{\sqrt[6]{a^3b^2} - \sqrt[6]{b^5}} \left(\sqrt[3]{a^2} - \frac{b}{\sqrt[3]{a}} \right) + \frac{1}{\sqrt{a} + \sqrt{b}} : \frac{\sqrt[3]{ab}}{a - b}$$

Obliczyć wartość tego wyrażenia, przyjmując $a = 3 + 2\sqrt{2}$ i $b = 1 + \sqrt{2}$.

- 2. Niech B oznacza dziedzinę funkcji $f(x) = \frac{1}{\sqrt{3+2x-x^2}}$, a $A = \left\{x \in \mathbb{R} : \frac{1}{|x^2-1|} \geqslant 4\right\}$. Wyznaczyć i zaznaczyć na osi liczbowej zbiory $A, B, A \cap B, A \cup B$ oraz $(A \setminus B) \cup (B \setminus A)$.
- 3. Podać wzór funkcji kwadratowej, której wykres jest symetrycznym odbiciem wykresu funkcji $f(x) = x^2 + 2x$ względem: a) prostej x = 1, b) punktu (0,0), c) punktu (1,0). Odpowiedź uzasadnić, przeprowadzając odpowiednie obliczenia. Sporządzić staranne wykresy wszystkich rozważanych funkcji.
- 4. W pewnym ciągu arytmetycznym różnica piętnastego i drugiego wyrazu jest równa 13. Oblicz $a_{30} a_4$ oraz sumę pierwszych dziesięciu wyrazów o numerach nieparzystych, wiedząc, że suma pierwszych dziesięciu wyrazów o numerach parzystych jest równa 125.
- 5. Przekątne trapezu prostokątnego o podstawach 3 i 4 przecinają się pod kątem prostym. Obliczyć obwód i pole trapezu. Sporządzić rysunek.
- 6. Ostrosłup prawidłowy, którego podstawą jest kwadrat o boku a, przecięto płaszczyzną przechodzącą przez wysokość ostrosłupa i przekątną podstawy. Pole otrzymanego przekroju jest równe polu podstawy. Wyznaczyć pole powierzchni całkowitej ostrosłupa oraz cosinus kąta nachylenia ściany bocznej do podstawy.