Zadanie 1:

W łącze obsługiwane przez protokół PPP (MTU=296) wysyłany jest pakiet IP z nagłówkiem bez pola opcji (nagłówek ma 20 B) i polem danych o dług. 1000 B. Przedstawić na rysunku i w standardowym zapisie powstałe fragmenty przy założeniu, że wszystkie oprócz ostatniego mają maksymalną długość.

	•	JB) Dane fragm	
	·	•	лтu=296 в
Niep	rzekraczaln	a długość fragmer	ntu łącznie z nagł. IP = 296 B
Niep	rzekraczaln	a długość pola dar	nych fragmentu = 276 B
Maks	symalna dłu	igość pola danych	fragmentu = 272 (276 nie jest całkowitą wielokrotnością 8)
Liczb	a fragment	ów = \[1000 / 272 \]] = 4
Ilustr	acja fragm	entacji:	
Cały	pakiet:		
	N. IP (20)	Dane (1000 I	В)
		Dane (272 B)	
1 f:			
			Dane (272 B)
2 f:			
			N. IP Dane (272 B)
3 f:			
			N. IP Dane (184 B)
4 f:			

Równanie, z którego wyliczamy długość pola danych ostatniego fragmentu:

184 = 1000 **-** 3*272

Powyższe fragmenty zapisane w standardowej notacji:

(długość_pola_danych_w_B @ offset_w_B MF/LF)

272 @ 0 MF

272 @ 272 MF

272 @ 544 MF

184 @ 816 LF

Zadanie 2

Wypisać zawartość pola Offset trzeciego fragmentu z Zad. 1

W polu Offset będzie liczba 544/8 = 68 zapisana na 13 bitach

Zamiana liczby 68 na postać binarną:

68

 $2^6 = 64, 68 - 64 = 4$

 $2^2 = 4, 4 - 4 = 0$

 $(68)_{10} = (1000100)_2$

Pole Offset 3 fragmentu: 000001000100 (sześć wiodących zer jest uzupełnieniem do 13 bitów)

Zadanie 3

W łącze telekomunikacyjne obsługiwane przez protokół X.25 (MTU = 576) wysyłany jest segment TCP z 20-bajtowym nagłówkiem i polem danych o dług. 2100 B. Segment ten znajduje się w pakiecie IP z 20-bajtowym nagłówkiem. Przedstawić na rysunku i w standardowym zapisie powstałe fragmenty przy założeniu, że wszystkie oprócz ostatniego mają maksymalną długość.

Za nagłówkiem TCP jest 2100 B

Za nagłówkiem IP jest 2120 B

Pole danych całego (niepofragmentowanego) pakietu ma 2120 B (tyle bajtów jest za nagł. IP)

Nieprzekraczalna długość fragmentu (razem z nagł. IP i TCP): 576 B

Nieprzekraczalna długość pola danych fragmentu: 556 B (nagł. IP ma 20 B)

Maksymalna długość pola danych fragmentu: 552 B (556 nie dzieli się bez reszty przez 8)

Liczba fragmentów = $\lceil 2120 / 552 \rceil = 4$

Ilustracja fragmentacji:

Cały pakiet:

równanie, z którego wyliczamy długość pola danych ostatniego fragmentu:

$$464 = 2120 - 3*552$$

Zapis powyższych fragmentów w standardowej notacji:

552 @ 0 MF

552 @ 552 MF

552 @ 1104 MF

464 @ 1656 LF

Budowa nagłówka IPv4 (1 kreska to 1 bit)					
	Typ Usł. -	Dł. całk. -			
Ident.		Fl. Offset - 0			
		Sum. Kontr. Nagł. -			
Źródłowy IP					
Docelowy IP					
	alne (max 40 B)				
	ny, a router wys	etu zmniejsza wartość TTL o jeden i sprawdza czy TTL=0. Jeśli tak, to pakiet syła do jego nadawcy komunikat ICMP o przekroczeniu czasu życia pakietu			
Polecenie tra	aceroute (Linux) albo tracert (Windows)			

2. Generuje porcje pakietów (w Linuksie są to domyślnie datagramy UDP z wysokim portem docelowym, czyli większym od 2¹⁵ = 32768) z tą samą początkową wartością TTL, począwszy od 1. Uwaga: polecenie traceroute –I systemu Linux generuje komunikaty ICMP "echo request" zamiast datagramów UDP.

1. Wykorzystuje pole TTL nagłówka IP

- 3. Domyślnie traceroute wysyła po 3 pakiety z tym samym TTL. W systemie Linux można to zmienić opcją –q (traceroute -q5 wysyła po 5 pakietów z tym samym TTL)
- 4. Pakiet z TTL=k nie przechodzi przez k-ty router na trasie, który odsyła komunikat o przekroczeniu czasu życia pakietu (TTL exceeded), czyli o wyzerowaniu pola TTL na tym routerze. Komunikat jest odsyłany z tego interfejsu routera, przez który pakiet do routera wpłynął, więc traceroute wypisuje adresy tych interfejsów, przez które pakiet wpływał do kolejnych routerów na swojej trasie.
- 5. Jeśli traceroute wysyła datagramy UDP, to komputer docelowy odsyła komunikat o niedziałającej aplikacji ang. destination unreachable, port unreachable (z dużym prawdopodobieństwem na tzw. "wysokim porcie" nie działa serwer żadnej aplikacji). W przypadku użycia opcji –I komputer docelowy odsyła komunikaty "echo reply".
- 6. Czasy podawane przez traceroute są czasami RTT (ang. round trip time) do i od kolejnych routerów, oraz do i od komp. docelowego.
- 7. Polecenie traceroute pokazuje tylko trasę "tam", nie pokazuje trasy powrotnej. Uwaga: trasa powrotne może być inna niż trasa "tam".

Przykład działania traceroute systemu Linux:

output z polecenia traceroute tvp.pl wydanego 16.11.2021 na komputerze o adresie 213.135.45.21:

- 1 voices-student.wsisiz.edu.pl (213.135.45.254) 0.090 ms 0.079 ms 0.059 ms
- 2 sex-power.wsisiz.edu.pl (213.135.44.130) 0.539 ms 0.511 ms 0.478 ms
- 3 tvp.thinx.pl (212.91.0.71) 1.941 ms 2.411 ms 2.721 ms
- 4 v3.tvp.pl (195.245.213.250) 1.095 ms 1.068 ms 1.020 ms

"Szczątkowa" mapa środowiska sieciowego utworzona z powyższych danych:

 \Box -|.45.21 (1 sieć) .45.254|- \otimes -|? (2 sieć) .44.130|- \otimes -|? (3 sieć) .0.71|- \otimes -|? (4 sieć) .213.250|- \Box

Znaczenie symboli:

symbol	znaczenie
□-	host z interfejsem sieciowym
-⊗-	router z dwoma interfejsami
(k sieć)	k-ta sieć na trasie pakietu
?	nieznany adres IP interfejsu