

Fréchet space

In <u>functional analysis</u> and related areas of <u>mathematics</u>, **Fréchet spaces**, named after <u>Maurice Fréchet</u>, are special <u>topological vector spaces</u>. They are generalizations of <u>Banach spaces</u> (<u>normed vector spaces</u> that are <u>complete</u> with respect to the <u>metric</u> induced by the <u>norm</u>). All <u>Banach</u> and <u>Hilbert spaces</u> are Fréchet spaces. Spaces of <u>infinitely differentiable</u> <u>functions</u> are typical examples of Fréchet spaces, many of which are typically *not* Banach spaces.

A Fréchet space X is defined to be a <u>locally convex metrizable topological vector space</u> (TVS) that is <u>complete as a TVS, [1] meaning that every Cauchy sequence</u> in X converges to some point in X (see footnote for more details). [note 1]

Important note: Not all authors require that a Fréchet space be locally convex (discussed below).

The topology of every Fréchet space is induced by some <u>translation-invariant</u> <u>complete metric</u>. Conversely, if the topology of a locally convex space \boldsymbol{X} is induced by a translation-invariant complete metric then \boldsymbol{X} is a Fréchet space.

<u>Fréchet</u> was the first to use the term "<u>Banach space</u>" and <u>Banach</u> in turn then coined the term "Fréchet space" to mean a <u>complete metrizable topological vector space</u>, without the local convexity requirement (such a space is today often called an "<u>F-space</u>"). The local convexity requirement was added later by <u>Nicolas Bourbaki</u>. It is important to note that a sizable number of authors (e.g. Schaefer) use "F-space" to mean a (locally convex) Fréchet space while others do not require that a "Fréchet space" be locally convex. Moreover, some authors even use "F-space" and "Fréchet space" interchangeably. When reading mathematical literature, it is recommended that a reader always check whether the book's or article's definition of "F-space" and "Fréchet space" requires local convexity.

Definitions

Fréchet spaces can be defined in two equivalent ways: the first employs a <u>translation-invariant</u> <u>metric</u>, the second a countable family of seminorms.

Invariant metric definition

A topological vector space X is a **Fréchet space** if and only if it satisfies the following three properties:

- 1. It is locally convex. [note 2]
- 2. Its topology can be induced by a translation-invariant metric, that is, a metric $d: X \times X \to \mathbb{R}$ such that d(x,y) = d(x+z,y+z) for all $x,y,z \in X$. This means that a subset U of X is open if and only if for every $u \in U$ there exists an r > 0 such that $\{v: d(v,u) < r\}$ is a subset of U.
- 3. Some (or equivalently, every) translation-invariant metric on \boldsymbol{X} inducing the topology of \boldsymbol{X} is complete.

Assuming that the other two conditions are satisfied, this condition is equivalent to X being a complete topological vector space, meaning that X is a complete uniform space when it is endowed with its canonical uniformity (this canonical uniformity is independent of any metric on X and is defined entirely in terms of vector subtraction and X's neighborhoods of the origin; moreover, the uniformity induced by any (topology-defining) translation invariant metric on X is identical to this canonical uniformity).

Note there is no natural notion of distance between two points of a Fréchet space: many different translation-invariant metrics may induce the same topology.

Countable family of seminorms definition

The alternative and somewhat more practical definition is the following: a topological vector space X is a **Fréchet space** if and only if it satisfies the following three properties:

- 1. It is a Hausdorff space.
- 2. Its topology may be induced by a countable family of seminorms $(\|\cdot\|_k)_{k\in\mathbb{N}_0}$. This means that a subset $U\subseteq X$ is open if and only if for every $u\in U$ there exist $K\geq 0$ and r>0 such that $\{v\in X:\|v-u\|_k< r \text{ for all } k\leq K\}$ is a subset of U.
- 3. It is complete with respect to the family of seminorms.

A family ${\mathcal P}$ of seminorms on ${m X}$ yields a Hausdorff topology if and only if $^{[2]}$

$$igcap_{\|\cdot\| \in \mathcal{P}} \{x \in X : \|x\| = 0\} = \{0\}.$$

A sequence $(x_n)_{n\in\mathbb{N}}$ in X converges to x in the Fréchet space defined by a family of seminorms if and only if it converges to x with respect to each of the given seminorms.

As webbed Baire spaces

Theorem^[3] (de Wilde 1978)—A <u>topological vector space</u> \boldsymbol{X} is a Fréchet space if and only if it is both a <u>webbed space</u> and a <u>Baire space</u>.

Comparison to Banach spaces

In contrast to <u>Banach spaces</u>, the complete translation-invariant metric need not arise from a norm. The topology of a Fréchet space does, however, arise from both a <u>total paranorm</u> and an <u>F-norm</u> (the *F* stands for Fréchet).

Even though the <u>topological structure</u> of Fréchet spaces is more complicated than that of Banach spaces due to the potential lack of a norm, many important results in functional analysis, like the <u>open mapping</u> theorem, the <u>closed graph theorem</u>, and the <u>Banach–Steinhaus theorem</u>, still hold.

Constructing Fréchet spaces

Recall that a seminorm $\|\cdot\|$ is a function from a vector space X to the real numbers satisfying three properties. For all $x,y\in X$ and all scalars c,

$$\|x\| \ge 0$$
 $\|x + y\| \le \|x\| + \|y\|$ $\|c \cdot x\| = |c| \|x\|$

If $||x|| = 0 \iff x = 0$, then $||\cdot||$ is in fact a norm. However, seminorms are useful in that they enable us to construct Fréchet spaces, as follows:

To construct a Fréchet space, one typically starts with a vector space X and defines a countable family of seminorms $\|\cdot\|_k$ on X with the following two properties:

- if $x \in X$ and $||x||_k = 0$ for all $k \ge 0$, then x = 0;
- if $x_{\bullet} = (x_n)_{n=1}^{\infty}$ is a sequence in X which is <u>Cauchy</u> with respect to each seminorm $\|\cdot\|_k$, then there exists $x \in X$ such that $x_{\bullet} = (x_n)_{n=1}^{\infty}$ converges to x with respect to each seminorm $\|\cdot\|_k$.

Then the topology induced by these seminorms (as explained above) turns X into a Fréchet space; the first property ensures that it is Hausdorff, and the second property ensures that it is complete. A translation-invariant complete metric inducing the same topology on X can then be defined by

$$d(x,y) = \sum_{k=0}^{\infty} 2^{-k} rac{\|x-y\|_k}{1+\|x-y\|_k} \qquad x,y \in X.$$

The function $u\mapsto \frac{u}{1+u}$ maps $[0,\infty)$ monotonically to [0,1), and so the above definition ensures that d(x,y) is "small" if and only if there exists K "large" such that $\|x-y\|_k$ is "small" for $k=0,\ldots,K$.

Examples

From pure functional analysis

- Every Banach space is a Fréchet space, as the norm induces a translation-invariant metric and the space is complete with respect to this metric.
- The space \mathbb{R}^{ω} of all real valued sequences (also denoted $\mathbb{R}^{\mathbb{N}}$) becomes a Fréchet space if we define the k-th seminorm of a sequence to be the <u>absolute value</u> of the k-th element of the sequence. Convergence in this Fréchet space is equivalent to element-wise convergence.

From smooth manifolds

■ The <u>vector space</u> $C^{\infty}([0,1])$ of all infinitely differentiable functions $f:[0,1] \to \mathbb{R}$ becomes a Fréchet space with the seminorms

$$\|f\|_k = \sup\{|f^{(k)}(x)|: x \in [0,1]\}$$

for every non-negative integer k. Here, $f^{(k)}$ denotes the k-th derivative of f, and $f^{(0)} = f$. In this Fréchet space, a sequence $(f_n) \to f$ of functions <u>converges</u> towards the element $f \in C^\infty([0,1])$ if and only if for every non-negative integer $k \ge 0$, the sequence $\left(f_n^{(k)}\right) \to f^{(k)}$ <u>converges uniformly</u>.

lacktriangle The vector space $C^\infty(\mathbb{R})$ of all infinitely differentiable functions $f:\mathbb{R} \to \mathbb{R}$ becomes a Fréchet space with the seminorms

$$\|f\|_{k,n} = \sup\{|f^{(k)}(x)|: x \in [-n,n]\}$$

for all integers $k,n\geq 0$. Then, a sequence of functions $(f_n)\to f$ converges if and only if for every $k,n\geq 0$, the sequences $\left(f_n^{(k)}\right)\to f^{(k)}$ converge compactly.

■ The vector space $C^m(\mathbb{R})$ of all m-times continuously differentiable functions $f: \mathbb{R} \to \mathbb{R}$ becomes a Fréchet space with the seminorms

$$\|f\|_{k,n} = \sup\{|f^{(k)}(x)|: x \in [-n,n]\}$$

for all integers $n \geq 0$ and $k = 0, \ldots, m$.

If M is a <u>compact</u> C^{∞} -<u>manifold</u> and B is a <u>Banach space</u>, then the set $C^{\infty}(M,B)$ of all infinitely-often differentiable functions $f:M\to B$ can be turned into a Fréchet space by using as seminorms the suprema of the norms of all partial derivatives. If M is a (not necessarily compact) C^{∞} -manifold which admits a countable sequence K^n of compact subsets, so that every compact subset of M is contained in at least one K^n , then the spaces $C^m(M,B)$ and $C^{\infty}(M,B)$ are also Fréchet space in a natural manner. As a special case, every smooth finite-dimensional <u>complete manifold</u> M can be made into such a nested union of compact subsets: equip it with a <u>Riemannian metric</u> g which induces a metric d(x,y), choose $x\in M$, and let

$$K_n=\{y\in M: d(x,y)\leq n\}$$
 .

Let X be a compact C^{∞} -manifold and V a vector bundle over X. Let $C^{\infty}(X,V)$ denote the space of smooth sections of V over X. Choose Riemannian metrics g and connections D, which are guaranteed to exist, on the bundles TX and V. If s is a section, denote its j^{th} covariant derivative by $D^j s$. Then

$$\|s\|_n = \sum_{j=0}^n \sup_{x\in M} \left|D^j s
ight|_g$$

(where $|\cdot|_g$ is the norm induced by the Riemannian metric g) is a family of seminorms making $C^{\infty}(M,V)$ into a Fréchet space.

From holomorphicity

• Let H be the space of entire (everywhere <u>holomorphic</u>) functions on the complex plane. Then the family of seminorms

$$|f|_n=\sup\{|f(z)|:|z|\leq n\}$$

makes H into a Fréchet space.

• Let H be the space of entire (everywhere holomorphic) functions of exponential type τ . Then the family of seminorms

$$|f|_n = \sup_{z \in \mathbb{C}} \exp \left[-\left(au + rac{1}{n}
ight) |z|
ight] |f(z)|$$

makes H into a Fréchet space.

Not all vector spaces with complete translation-invariant metrics are Fréchet spaces. An example is the space $L^p([0,1])$ with p < 1. Although this space fails to be locally convex, it is an F-space.

Properties and further notions

If a Fréchet space admits a continuous norm then all of the seminorms used to define it can be replaced with norms by adding this continuous norm to each of them. A Banach space, $C^{\infty}([a,b])$, $C^{\infty}(X,V)$ with X compact, and H all admit norms, while \mathbb{R}^{ω} and $C(\mathbb{R})$ do not.

A closed subspace of a Fréchet space is a Fréchet space. A quotient of a Fréchet space by a closed subspace is a Fréchet space. The direct sum of a finite number of Fréchet spaces is a Fréchet space.

A product of <u>countably many</u> Fréchet spaces is always once again a Fréchet space. However, an arbitrary product of Fréchet spaces will be a Fréchet space if and only if all *except* for at most countably many of them are trivial (that is, have dimension 0). Consequently, a product of uncountably many non-trivial Fréchet spaces can not be a Fréchet space (indeed, such a product is not even metrizable because its origin can not have a countable neighborhood basis). So for example, if $I \neq \emptyset$ is any set and X is any non-trivial Fréchet space (such as $X = \mathbb{R}$ for instance), then the product $X^I = \prod_{i \in I} X$ is a Fréchet space

if and only if I is a countable set.

Several important tools of functional analysis which are based on the <u>Baire category theorem</u> remain true in Fréchet spaces; examples are the <u>closed graph theorem</u> and the <u>open mapping theorem</u>. The <u>open mapping theorem</u> implies that if τ and τ_2 are topologies on X that make both (X, τ) and (X, τ_2) into <u>complete metrizable TVSs</u> (such as Fréchet spaces) and if one topology is <u>finer or coarser</u> than the other then they must be equal (that is, if $\tau \subseteq \tau_2$ or $\tau_2 \subseteq \tau$ then $\tau = \tau_2$). [4]

Every <u>bounded</u> linear operator from a Fréchet space into another <u>topological vector space</u> (TVS) is continuous. [5]

There exists a Fréchet space X having a <u>bounded</u> subset B and also a dense vector subspace M such that B is *not* contained in the closure (in X) of any bounded subset of M.

All Fréchet spaces are <u>stereotype spaces</u>. In the theory of stereotype spaces Fréchet spaces are dual objects to <u>Brauner spaces</u>. All <u>metrizable Montel spaces</u> are <u>separable</u>. Fréchet space is a Montel space if and only if each <u>weak-* convergent</u> sequence in its continuous dual converges is <u>strongly</u> convergent. [7]

The <u>strong dual space</u> X_b' of a Fréchet space (and more generally, of any metrizable locally convex space [8]) X is a <u>DF-space</u>. The strong dual of a DF-space is a Fréchet space. The strong dual of a <u>Ptak space</u> every Fréchet space is a Ptak space. The strong bidual (that is, the <u>strong dual space</u> of the strong dual space) of a metrizable locally convex space is a Fréchet space. [11]

Norms and normability

If X is a locally convex space then the topology of X can be a defined by a family of continuous *norms* on X (a **norm** is a positive-definite seminorm) if and only if there exists *at least one* continuous *norm* on X. Even if a Fréchet space has a topology that is defined by a (countable) family of *norms* (all norms are also seminorms), then it may nevertheless still fail to be <u>normable space</u> (meaning that its topology can not be defined by any single norm). The <u>space of all sequences</u> $\mathbb{K}^{\mathbb{N}}$ (with the product topology) is a Fréchet space. There does not exist any Hausdorff <u>locally convex</u> topology on $\mathbb{K}^{\mathbb{N}}$ that is <u>strictly coarser</u> than this product topology. The space $\mathbb{K}^{\mathbb{N}}$ is not <u>normable</u>, which means that its topology can not be defined by any <u>norm</u>. Also, there does not exist <u>any continuous</u> norm on $\mathbb{K}^{\mathbb{N}}$. In fact, as the following theorem shows, whenever X is a Fréchet space on which there does not exist any continuous norm, then this is due entirely to the presence of $\mathbb{K}^{\mathbb{N}}$ as a subspace.

Theorem^[13]—Let X be a Fréchet space over the field \mathbb{K} . Then the following are equivalent:

- 1. X does *not* admit a continuous norm (that is, any continuous seminorm on X can *not* be a norm).
- 2. X contains a vector subspace that is TVS-isomorphic to $\mathbb{K}^{\mathbb{N}}$.
- 3. X contains a complemented vector subspace that is TVS-isomorphic to $\mathbb{K}^{\mathbb{N}}$.

If X is a non-normable Fréchet space on which there exists a continuous norm, then X contains a closed vector subspace that has no topological complement. [14]

A metrizable <u>locally convex</u> space is <u>normable</u> if and only if its <u>strong dual space</u> is a <u>Fréchet–Urysohn</u> locally convex space. In particular, if a locally convex metrizable space X (such as a Fréchet space) is *not* normable (which can only happen if X is infinite dimensional) then its <u>strong dual space</u> X_b' is not a <u>Fréchet–Urysohn space</u> and consequently, this <u>complete</u> Hausdorff locally convex space X_b' is also neither metrizable nor normable.

The <u>strong dual space</u> of a Fréchet space (and more generally, of <u>bornological spaces</u> such as metrizable TVSs) is always a <u>complete TVS</u> and so like any complete TVS, it is <u>normable</u> if and only if its topology can be induced by a <u>complete norm</u> (that is, if and only if it can be made into a <u>Banach space</u> that has the same topology). If X is a Fréchet space then X is <u>normable</u> if (and only if) there exists a complete <u>norm</u> on its continuous dual space X' such that the norm induced topology on X' is <u>finer</u> than the weak-* topology. Consequently, if a Fréchet space is *not* normable (which can only happen if it is infinite dimensional) then neither is its strong dual space.

Anderson-Kadec theorem

Anderson–Kadec theorem—Every infinite-dimensional, separable real Fréchet space is homeomorphic to $\mathbb{R}^{\mathbb{N}}$, the Cartesian product of countably many copies of the real line \mathbb{R} .

Note that the homeomorphism described in the Anderson–Kadec theorem is *not* necessarily linear.

<u>Eidelheit</u> theorem—A Fréchet space is either isomorphic to a Banach space, or has a quotient space isomorphic to $\mathbb{R}^{\mathbb{N}}$.

Differentiation of functions

If X and Y are Fréchet spaces, then the space L(X,Y) consisting of all <u>continuous linear maps</u> from X to Y is *not* a Fréchet space in any natural manner. This is a major difference between the theory of Banach spaces and that of Fréchet spaces and necessitates a different definition for continuous differentiability of functions defined on Fréchet spaces, the Gateaux derivative:

Suppose U is an open subset of a Fréchet space $X, P: U \to Y$ is a function valued in a Fréchet space $Y, x \in U$ and $h \in X$. The map P is **differentiable at** x **in the direction** h if the limit

$$D(P)(x)(h) = \lim_{t o 0} \, rac{1}{t} \left(P(x+th) - P(x)
ight)$$

exists. The map $m{P}$ is said to be **continuously differentiable** in $m{U}$ if the map

$$D(P): U \times X \rightarrow Y$$

is continuous. Since the <u>product</u> of Fréchet spaces is again a Fréchet space, we can then try to differentiate D(P) and define the higher derivatives of P in this fashion.

The derivative operator $P: C^{\infty}([0,1]) \to C^{\infty}([0,1])$ defined by P(f) = f' is itself infinitely differentiable. The first derivative is given by

$$D(P)(f)(h) = h'$$

for any two elements $f,h\in C^\infty([0,1])$. This is a major advantage of the Fréchet space $C^\infty([0,1])$ over the Banach space $C^k([0,1])$ for finite k.

If P:U o Y is a continuously differentiable function, then the $\operatorname{\underline{differential}}$ equation

$$x'(t)=P(x(t)),\quad x(0)=x_0\in U$$

need not have any solutions, and even if does, the solutions need not be unique. This is in stark contrast to the situation in Banach spaces.

In general, the <u>inverse function theorem</u> is not true in Fréchet spaces, although a partial substitute is the Nash–Moser theorem.

Fréchet manifolds and Lie groups

One may define **Fréchet manifolds** as spaces that "locally look like" Fréchet spaces (just like ordinary manifolds are defined as spaces that locally look like <u>Euclidean space</u> \mathbb{R}^n), and one can then extend the concept of <u>Lie group</u> to these manifolds. This is useful because for a given (ordinary) compact C^{∞} manifold M, the set of all C^{∞} <u>diffeomorphisms</u> $f: M \to M$ forms a generalized Lie group in this sense, and this Lie group captures the symmetries of M. Some of the relations between <u>Lie algebras</u> and Lie groups remain valid in this setting.

Another important example of a Fréchet Lie group is the loop group of a compact Lie group G, the smooth (C^{∞}) mappings $\gamma: S^1 \to G$, multiplied pointwise by $(\gamma_1 \gamma_2)(t) = \gamma_1(t) \gamma_2(t)$. [16][17]

Generalizations

If we drop the requirement for the space to be locally convex, we obtain <u>F-spaces</u>: vector spaces with complete translation-invariant metrics.

LF-spaces are countable inductive limits of Fréchet spaces.

See also

- Banach space Normed vector space that is complete
- Brauner space
- Complete metric space Metric geometry
- Complete topological vector space Structure in functional analysis
- F-space Topological vector space with a complete translation-invariant metric
- Fréchet lattice Topological vector lattice
- Graded Fréchet space Generalization of the inverse function theorem
- Hilbert space Type of vector space in math
- Locally convex topological vector space Vector space with a topology defined by convex open sets
- Metrizable topological vector space A topological vector space whose topology can be defined by a metric
- Surjection of Fréchet spaces Characterization of surjectivity
- Tame Fréchet space Generalization of the inverse function theorem
- Topological vector space Vector space with a notion of nearness

Notes

1. Here "Cauchy" means Cauchy with respect to the <u>canonical uniformity</u> that every <u>TVS</u> possess. That is, a sequence $x_{\bullet} = (x_m)_{m=1}^{\infty}$ in a TVS X is Cauchy if and only if for all neighborhoods U of the origin in $X, x_m - x_n \in U$ whenever m and n are sufficiently large. Note that this definition of a Cauchy sequence does not depend on any particular metric and does not even require that X be metrizable.

2. Some authors do not include local convexity as part of the definition of a Fréchet space.

Citations

- 1. Narici & Beckenstein 2011, p. 93.
- 2. Conway 1990, Chapter 4.
- 3. Narici & Beckenstein 2011, p. 472.
- 4. Trèves 2006, pp. 166–173.
- 5. Trèves 2006, p. 142.
- 6. Wilansky 2013, p. 57.
- 7. Schaefer & Wolff 1999, pp. 194-195.
- 8. Schaefer & Wolff 1999, p. 154.
- 9. Gabriyelyan, S.S. "On topological spaces and topological groups with certain local countable networks (https://arxiv.org/pdf/1412.1497.pdf) (2014)
- 10. Schaefer & Wolff 1999, p. 196.
- 11. Schaefer & Wolff 1999, pp. 154-155.
- 12. Jarchow 1981, p. 130.
- 13. Jarchow 1981, pp. 129-130.
- 14. Schaefer & Wolff 1999, pp. 190-202.
- 15. "The dual of a Fréchet space" (https://math.stackexchange.com/a/112852/239329). 24 February 2012. Retrieved 26 April 2021.
- 16. Sergeev 2010
- 17. Pressley & Segal 1986

References

- "Fréchet space" (https://www.encyclopediaofmath.org/index.php?title=Fréchet_space),
 Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- Berberian, Sterling K. (1974). Lectures in Functional Analysis and Operator Theory.
 Graduate Texts in Mathematics. Vol. 15. New York: Springer. ISBN 978-0-387-90081-0.
 OCLC 878109401 (https://search.worldcat.org/oclc/878109401).
- Bourbaki, Nicolas (1987) [1981]. Topological Vector Spaces: Chapters 1–5. Éléments de mathématique. Translated by Eggleston, H.G.; Madan, S. Berlin New York: Springer-Verlag. ISBN 3-540-13627-4. OCLC 17499190 (https://search.worldcat.org/oclc/17499190).
- Conway, John (1990). A course in functional analysis. Graduate Texts in Mathematics.
 Vol. 96 (2nd ed.). New York: Springer-Verlag. ISBN 978-0-387-97245-9. OCLC 21195908 (https://search.worldcat.org/oclc/21195908).
- Edwards, Robert E. (1995). Functional Analysis: Theory and Applications. New York: Dover Publications. ISBN 978-0-486-68143-6. OCLC 30593138 (https://search.worldcat.org/oclc/3 0593138).
- Grothendieck, Alexander (1973). Topological Vector Spaces (https://archive.org/details/topologicalvecto0000grot). Translated by Chaljub, Orlando. New York: Gordon and Breach Science Publishers. ISBN 978-0-677-30020-7. OCLC 886098 (https://search.worldcat.org/oclc/886098).
- Jarchow, Hans (1981). *Locally convex spaces*. Stuttgart: B.G. Teubner. ISBN <u>978-3-519-02224-4</u>. OCLC 8210342 (https://search.worldcat.org/oclc/8210342).

- Khaleelulla, S. M. (1982). Counterexamples in Topological Vector Spaces. <u>Lecture Notes in Mathematics</u>. Vol. 936. Berlin, Heidelberg, New York: <u>Springer-Verlag</u>. <u>ISBN</u> <u>978-3-540-11565-6</u>. OCLC 8588370 (https://search.worldcat.org/oclc/8588370).
- Köthe, Gottfried (1983) [1969]. Topological Vector Spaces I. Grundlehren der mathematischen Wissenschaften. Vol. 159. Translated by Garling, D.J.H. New York: Springer Science & Business Media. ISBN 978-3-642-64988-2. MR 0248498 (https://mathscinet.ams.org/mathscinet-getitem?mr=0248498). OCLC 840293704 (https://search.worldcat.org/oclc/840293704).
- Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666.
 OCLC 144216834 (https://search.worldcat.org/oclc/144216834).
- Pressley, Andrew; Segal, Graeme (1986). Loop groups (https://books.google.com/books?id= MbFBXyuxLKgC). Oxford Mathematical Monographs. Oxford Science Publications. New York: Oxford University Press. ISBN 0-19-853535-X. MR 0900587 (https://mathscinet.ams.org/mathscinet-getitem?mr=0900587).
- Robertson, Alex P.; Robertson, Wendy J. (1980). *Topological Vector Spaces*. <u>Cambridge Tracts in Mathematics</u>. Vol. 53. Cambridge England: <u>Cambridge University Press</u>.
 ISBN 978-0-521-29882-7. OCLC 589250 (https://search.worldcat.org/oclc/589250).
- Rudin, Walter (1991). *Functional Analysis* (https://archive.org/details/functionalanalys00rud i). International Series in Pure and Applied Mathematics. Vol. 8 (Second ed.). New York, NY: McGraw-Hill Science/Engineering/Math. ISBN 978-0-07-054236-5. OCLC 21163277 (https://search.worldcat.org/oclc/21163277).
- Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135 (https://search.worldcat.org/oclc/840278135).
- Sergeev, Armen (2010). <u>Kähler Geometry of Loop Spaces</u> (http://www.worldscientific.com/w orldscibooks/10.1142/e023). Mathematical Society of Japan Memoirs. Vol. 23. <u>World Scientific Publishing</u>. doi:10.1142/e023 (https://doi.org/10.1142%2Fe023). ISBN 978-4-931469-60-0.
- Adasch, Norbert; Ernst, Bruno; Keim, Dieter (1978). Topological Vector Spaces: The Theory Without Convexity Conditions. Lecture Notes in Mathematics. Vol. 639. Berlin New York: Springer-Verlag. ISBN 978-3-540-08662-8. OCLC 297140003 (https://search.worldcat.org/oclc/297140003).
- Swartz, Charles (1992). *An introduction to Functional Analysis*. New York: M. Dekker. ISBN 978-0-8247-8643-4. OCLC 24909067 (https://search.worldcat.org/oclc/24909067).
- <u>Trèves, François</u> (2006) [1967]. *Topological Vector Spaces, Distributions and Kernels*. Mineola, N.Y.: Dover Publications. <u>ISBN</u> <u>978-0-486-45352-1</u>. <u>OCLC</u> <u>853623322</u> (https://sear.ch.worldcat.org/oclc/853623322).
- Wilansky, Albert (2013). Modern Methods in Topological Vector Spaces. Mineola, New York: Dover Publications, Inc. ISBN 978-0-486-49353-4. OCLC 849801114 (https://search.worldc at.org/oclc/849801114).

Retrieved from "https://en.wikipedia.org/w/index.php?title=Fréchet_space&oldid=1302742702"