圧力センサ搭載ヘルメットを用いた個人識別手法の提案

藤井敦寛(立命館大学),村尾和哉(立命館大学,JST さきがけ)

1 研究の背景と目的

近年販売されている二輪車の一部にはスマートキーシステ ムが導入されている. スマートキーシステムとは、キーをポ ケットなどに入れたままの状態でエンジンを始動することが できるシステムである. しかし、キーを所持しておかなけれ ばならず、紛失や盗難のリスクもある. 本研究では、二輪車 での走行で必須であるヘルメットを用いて本人認証を実現で きれば、既存のキーの問題点を解決できると考えた. 提案手 法は、ヘルメットを装着した際に取得できる、装着者の頭部 形状を用いて個人を識別する. 識別に用いる要素は個人の特 徴が存在し、複製が難しいものが適している. 白川らは虹彩 と目の周辺画像を統合して認証する手法 [1] を提案している が、目の前にカメラを設置する必要があり、ヘルメットに取 り付けると視界を遮るおそれがある. 頭部形状は視界を遮る ことなく取得できる. また, 頭部形状に個人差が存在してお り、かつ複製が難しいため、個人識別に適していると考えら れる.

新島らは導電性高分子電極を用いた帽子型筋電センサの提案 [2] を提案しているが、ウェアラブルデバイスとして被り物を用いている例は、この研究のみであり、ヘルメットが用いられた先行研究は存在しない。

越前らが写真からの指紋復元の脅威とその対策技術 [3] を 提案しているように、指紋認証には複製の恐れがある.しか も、少ない写真などで簡易に複製が可能である.その一方 で、頭部形状の複製は用意ではない.立体形状が正確でない と認証が突破できない.そのため、写真から複製するにはか なりの枚数が必要になると考えられる.また、複製物の大き さは頭部サイズであるため、かなり大掛かりになる.

2 提案手法

2.1 ハードウェア

実装したプロトタイプデバイスを図1に示す. 図1の左 図はプロトタイプデバイスの全体図である. センサ値を正 しく取得するには、センサとヘルメット装着者の頭部が密着 している必要がある. そのため, フルフェイス型の B&B 社 製 BB100 フルフェイスヘルメットを用いた. ヘルメット内 部にはインターリンク エレクトロニクス社製の圧力センサ FSR402, FSR402 ShortTail を取り付けた. 圧力センサは頭 頂部に4個,頭頂部周囲に16個,後頭部に6個,左右チー クパッド部に6個の合計32個を搭載した.各圧力センサは ヘルメット外部に取り付けた 10K Ωの抵抗を配線してある プリント基板を経由して、Arduino MEGA2560 R3のアナ ログ入力ポートに接続した. 図1の右図はヘルメット内部の 様子である.今回用いたヘルメットはフリーサイズであり, また内装の脱着が困難であった. そのため, 頭頂部の内装を 取り外して,新たに厚みのあるウレタンスポンジを取り付け た. 取り付けたウレタンスポンジの中央部に切り込みを入 れ,圧力センサを挿し込んだ.

2.2 識別手法

ユーザはヘルメットを被った状態で2秒静止し,32個の 圧力センサの電圧値を取得する.各センサごとに2秒間の 平均値を計算し32次元のベクトルを作成する.ユーザは最 初に本人のデータとして複数サンプルのデータを登録する.

図 1: 実装したプロトタイプデバイス

識別時は登録データ群と未知のユーザの圧力データのマハラノビス距離を計算する.この距離が閾値未満となった場合本人として認証し、閾値以上となった場合は他人として拒否する.

3 評価

提案手法の有効性を確認するために、被験者 5 名($A\sim E$ 、全員男性、平均年齢 22 歳)にプロトタイプデバイスを着用させ、サンプリングレート約 30Hz でセンサデータを収集した。2 秒間着用して取り外し、再び着用する試行を 1 セットとして合計 10 セット(2 秒 $\times 20$ 回分)を収集した。データ収集は 1 人当たり 1 日最大 4 セットとし、複数日に渡って実施した。センサと頭部のさまざまな位置関係のデータを採取するために、セット間に 30 分以上の休憩時間を設けた。

収集したすべてのデータに対して主成分分析を行い、2次元に圧縮したデータを2次元平面上にプロットした結果を図2に示す。図より、装着位置のずれによって同一被験者のデータ群にばらつきはあるが、被験者のデータ群どうしの重なりが小さいことから、ヘルメット内部に搭載した圧力センサのデータから装着者を識別できると考える。

4 まとめ

本研究では、圧力センサを内部に取り付けたヘルメットを 着用することで頭部の形状を計測し、頭部形状の個人差から 二輪車の所有者本人を識別する手法を提案した.評価実験の 結果より、個人間にデータのばらつきがあり、個人を高精度 で識別できそうであることを確認した.今後は、被験者を増 やしてデータを収集し、実環境で提案手法の評価をする.また、提案手法の利用者のデータ群に差がないときの個人識別 方法を定義する.

参考文献

- [1] 白川功浩, 吉浦裕, 市野将嗣. 虹彩および目の周辺の分割画像を用いた個人認証. 情報処理学会論文誌, Vol. 59, No. 9, pp. 1726-1738, 2018.
- [2] 新島有信, 伊勢崎隆司, 青木良輔, 渡部智樹, 山田智広. 導電性高分子電極を用いた帽子型筋電センサの提案. 電子情報通信学会論文誌 D, Vol. J101-D, No. 10, pp. 1378–1387, 2018.
- [3] 越前功, 大金建夫. 写真からの指紋復元の脅威とその対策技術. 情報処理, Vol. 58, No. 9, pp. 824-829, 2017.

