Tarea 2 | Entorno de desarrollo de hardware

Objetivos

 Familiarizarse con el uso de la herramienta Quartus para agregar puertos de entrada y salida a un sistema dado.

Descripción General

El objetivo de la tarea consiste en agregar dos puertos al sistema inicial suministrado con el *Tutorial de hardware*.

Antes de comenzar el estudiante deberá:

- Tener instalado Quartus.
- Haber realizado previamente el paso 2.2 Trabajando con un sistema real cargado en la placa DEO de la Guía para las herramientas del Laboratorio.
- Haber seguido todos los pasos de la guía del laboratorio *Tutorial de hardware*.

Luego deberá repetir el procedimiento del *Tutorial de hardware* partiendo nuevamente del <u>sistema inicial</u> suministrado con el tutorial. En esta oportunidad, <u>en lugar de los puertos</u> pedidos en el tutorial, se deben agregar los siguientes dos puertos:

- Un puerto de salida que maneje las salidas LEDG[7..0] de la placa, mapeado en la dirección dirout del espacio de salida.
- Un puerto de entrada mapeado en la dirección dirin del espacio de entrada, conectado al XNOR (XOR negado) bit a bit entre las salidas del registro del puerto de salida pedido arriba y la constante MASK. Observar que al leer este puerto de entrada con la instrucción "IN A, (dirin)" debe obtenerse el XNOR bit a bit del último valor escrito en el puerto de salida con la constante mencionada y NO el valor de los switches que no se utilizan en este caso.
- Ambos puertos deben estar decodificados <u>sin fantasmas</u>, es decir, podrán accederse <u>únicamente</u> en las direcciones **dirin** y **dirout** especificadas.

La constante **MASK** y las direcciones **dirout** y **dirin** de los puertos se determinan a partir de la cédula de identidad de cada estudiante como sigue:

Si los dígitos de la cédula de identidad son $\mathbf{d_6}$. $\mathbf{d_5}\mathbf{d_4}\mathbf{d_3}$. $\mathbf{d_2}\mathbf{d_1}\mathbf{d_0}$ (NO se considera el dígito verificador), entonces, **MASK** es el número $0x\mathbf{d_1}\mathbf{d_0}$, **dirout** es el número obtenido haciendo el OR entre la constante 0x80 y el número $0x\mathbf{d_3}\mathbf{d_2}$ (la notación 0x indica números hexadecimales (base 16)) y **dirin** haciendo el OR entre 0x80 y el número $0x\mathbf{d_5}\mathbf{d_4}$.

Por ejemplo: para la cédula de identidad 1.234.567 los valores de las constantes son:

- MASK = $0xd_1d_0 => MASK = 0x67 (0110 0111B)$
- dirout = $0xd_3d_2$ OR $0x80 \Rightarrow$ dirout = 0x45 OR $0x80 \Rightarrow$ dirout = 0xC5 (1100 0101)
- dirin = $0xd_5d_4$ OR $0x80 \Rightarrow$ dirin = 0x23 OR $0x80 \Rightarrow$ dirin = 0xA3 (1010 0011B)

Observar que por la forma en que se obtienen, los valores de **dirout** y **dirin** siempre son mayores o iguales a 0x80 y por lo tanto no hay posibilidad de conflicto con los otros puertos presentes en el sistema suministrado con el tutorial (DFF y Bridged itag uart).

Para verificar si el circuito funciona correctamente se sugiere escribir un programa de prueba que escriba un byte cualquiera conocido (p. ej. 0x55 = 01010101B) en el puerto **dirout**, seguido de una lectura desde el puerto **dirin**, y comprobar que el byte leído coincida con el XNOR bit a bit de **MASK** con el byte escrito (0x67 XNOR 0x55) = 0xCD = 1100 1101B para el ejemplo). Para la corrección se cargará en el FPGA el archivo demo-hw.sof entregado por el estudiante y se verificará con programas de prueba que los puertos estén mapeados en las direcciones correspondientes al número de cédula del estudiante (y solamente en esas direcciones).

Entrega

La entrega consistirá de un archivo comprimido en **formato zip (cualquier otro tipo de archivo no será tenido en cuenta)** con los siguientes archivos del diseño realizado por el estudiante (con estos mismos nombres):

- sistema.bdf
- demo-hw.sof
- demo-hw.qsf

El archivo comprimido debe tener como nombre el número de C.I. (sin puntos ni guiones y **SIN** el dígito verificador) y debe llevar la extensión ".zip". Por ejemplo si el nro. de cédula es 1.234.567-8 el archivo debe llamarse 1234567.zip

El archivo debe subirse a través de la tarea que será creada en la página del curso en la plataforma EVA de facultad. La entrega **vence el día jueves 12 de mayo a la medianoche (23:59 hs)**.