Contents

Part I Thermodynamics, Statistical Mechanical Models and Phase Transitions

1	Ther	nodynamics	5
	1.1	Formulae and Variables	5
	1.2	The Field-Density Representation	8
	1.3	The Thermodynamic Limit	9
	1.4	Particular Response Functions	10
		1.4.1 Magnetic Systems	11
		1.4.2 Fluid Systems	11
2	Stati	tical Mechanics	13
	2.1	Distributions	13
		2.1.1 Quantum Systems	14
		2.1.2 The Connection to Thermodynamics	15
	2.2	Variations of the Probability Function	16
	2.3	Coupling Representations	17
		2.3.1 The Case $n_f = 2$	19
	2.4	Lattice Systems	21
		2.4.1 Site-Variable Models	22
		2.4.2 Edge-Variable Models	22
	2.5	Correlation Functions and Symmetry Properties	23
		2.5.1 A General Hamiltonian	23
		2.5.2 Correlation Functions	24
		2.5.3 Symmetry Properties	26
3	A Su	vey of Models	29
	3.1	Upper and Lower Critical Dimensions	29
	3.2	The Quantum Heisenberg Model	30
		2.2.1 One Dimensional Chains	21

x Contents

	3.3	Classical Vector Models	33
	3.4	The Gaussian and Spherical Models	34
	3.5	Ising Models	36
		3.5.1 The Spin- $\frac{1}{2}$ Ising Model	36
			44
	3.6		45
			45
			53
			54
			55
	3.7	5	57
			58
		3.7.2 An Extended 3-State Potts Model	
		ϵ	59
	3.8		60
		ϵ	61
			72
	3.9		80
		1	83
		3.9.2 The Ising Model Equivalence	85
4	Phas	8 .	89
	4.1	•	89
		1	90
		4.1.2 A Three-Dimensional Phase Space	93
	4.2	· · · · · · · · · · · · · · · · · · ·	94
		•	95
		ε	97
	4.3	E	00
		C 71	00
		4.3.2 First-Order Transitions	
		4.3.3 Effective Exponents	
		6 6	9
		C	10
		4.3.6 Scaling Operators and Dimensions	
			18
		C 1	19
		<u> •</u>	21
	4.4		22
		1	24
		1 1	25
	4.5	e	25
			26
		4.5.2 Approaches to the Critical Point	28

Contents xi

		4.5.3	Experimental Variables	129
		4.5.4	The Density and Response Functions	130
		4.5.5	Asymptotic Forms	131
		4.5.6	Critical Exponents and Scaling Laws	132
		4.5.7	Correlation Scaling at a Critical Point	134
	4.6	Tricritio	cal Point	136
	4.7	Scaling	for a Tricritical Point	141
		4.7.1	Scaling Fields for the Tricritical Point	141
		4.7.2	Tricritical Exponents and Scaling Laws	143
	4.8	Correct	ions to Scaling	146
	4.9	Scaling	and Universality	148
	4.10	Finite-S	Size Scaling	152
		4.10.1	The Finite-Size Scaling Field	153
		4.10.2	The Shift and Rounding Exponents	155
		4.10.3	Universality and Finite-Size Scaling	157
	4.11	Conform	mal Invariance	159
		4.11.1	From Scaling to the Conformal Group	159
		4.11.2	Correlation Functions for $d \ge 2$	159
		4.11.3	Universal Amplitudes for $d = 2 \dots \dots$	161
		4.11.4	Schramm–Loewner Evolution	163
n	. TT .	~		
			Approximation Methods	1.60
Par	Phene	omenolo	gical Theory and Landau Expansions	169
		omenolo Classica	gical Theory and Landau Expansions	169
	Phene	omenolo Classica 5.1.1	gical Theory and Landau Expansions	169 171
	Phen 5.1	Classica 5.1.1 5.1.2	gical Theory and Landau Expansions	169 171 174
	Pheno 5.1 5.2	Classica 5.1.1 5.1.2 The Va	gical Theory and Landau Expansions al Methods	169 171 174 175
	Phen 5.1	Classica 5.1.1 5.1.2 The Va Landau	gical Theory and Landau Expansions al Methods A First-Order Transition Metastability n der Waals Equation Expansions with One Order Parameter	169 171 174 175 176
	Phene 5.1 5.2 5.3	Classica 5.1.1 5.1.2 The Va Landau 5.3.1	gical Theory and Landau Expansions al Methods A First-Order Transition Metastability n der Waals Equation Expansions with One Order Parameter The Spin $-\frac{1}{2}$ Ising Model.	169 171 174 175 176 182
	Pheno 5.1 5.2	Classica 5.1.1 5.1.2 The Va Landau 5.3.1 Landau	gical Theory and Landau Expansions al Methods A First-Order Transition Metastability n der Waals Equation Expansions with One Order Parameter The Spin $-\frac{1}{2}$ Ising Model. Expansions with Two Order Parameters.	169 171 174 175 176 182 183
	Phene 5.1 5.2 5.3	Classica 5.1.1 5.1.2 The Va Landau 5.3.1 Landau 5.4.1	gical Theory and Landau Expansions al Methods A First-Order Transition Metastability n der Waals Equation Expansions with One Order Parameter The Spin-½ Ising Model. Expansions with Two Order Parameters The Spin-1 Ising Model.	169 171 174 175 176 182 183 183
	5.1 5.2 5.3 5.4	Classica 5.1.1 5.1.2 The Va Landau 5.3.1 Landau 5.4.1 5.4.2	gical Theory and Landau Expansions al Methods A First-Order Transition Metastability n der Waals Equation Expansions with One Order Parameter The Spin-½ Ising Model. Expansions with Two Order Parameters The Spin-1 Ising Model. The 3-State Potts Model	169 171 174 175 176 182 183 183
	Phene 5.1 5.2 5.3	Classica 5.1.1 5.1.2 The Va Landau 5.3.1 Landau 5.4.1 5.4.2 Landau	gical Theory and Landau Expansions al Methods. A First-Order Transition Metastability n der Waals Equation Expansions with One Order Parameter The Spin-½ Ising Model. Expansions with Two Order Parameters The Spin-1 Ising Model. The 3-State Potts Model Theory for a Tricritical Point	169 171 174 175 176 182 183 183 184 188
	5.1 5.2 5.3 5.4 5.5	omenolo Classica 5.1.1 5.1.2 The Va Landau 5.3.1 Landau 5.4.1 5.4.2 Landau 5.5.1	gical Theory and Landau Expansions al Methods. A First-Order Transition Metastability n der Waals Equation Expansions with One Order Parameter The Spin-½ Ising Model. Expansions with Two Order Parameters The Spin-1 Ising Model. The 3-State Potts Model Theory for a Tricritical Point Tricritical Exponents	169 171 174 175 176 182 183 183 184 188 190
	5.1 5.2 5.3 5.4	omenolo Classica 5.1.1 5.1.2 The Va Landau 5.3.1 Landau 5.4.1 5.4.2 Landau 5.5.1 Ginzbur	gical Theory and Landau Expansions al Methods. A First-Order Transition Metastability n der Waals Equation Expansions with One Order Parameter The Spin-½ Ising Model. Expansions with Two Order Parameters The Spin-1 Ising Model. The 3-State Potts Model Theory for a Tricritical Point Tricritical Exponents rg—Landau Theory	169 171 174 175 176 182 183 184 188 190 193
	5.1 5.2 5.3 5.4 5.5	Classica 5.1.1 5.1.2 The Va Landau 5.3.1 Landau 5.4.1 5.4.2 Landau 5.5.1 Ginzbur 5.6.1	gical Theory and Landau Expansions al Methods A First-Order Transition Metastability n der Waals Equation Expansions with One Order Parameter The Spin-½ Ising Model. Expansions with Two Order Parameters The Spin-1 Ising Model. The 3-State Potts Model Theory for a Tricritical Point Tricritical Exponents rg-Landau Theory A Critical Point	169 171 174 175 176 182 183 184 188 190 193
	5.1 5.2 5.3 5.4 5.5	5.1.1 5.1.2 The Va Landau 5.3.1 Landau 5.4.1 5.4.2 Landau 5.5.1 Ginzbur 5.6.1 5.6.2	gical Theory and Landau Expansions al Methods A First-Order Transition Metastability n der Waals Equation Expansions with One Order Parameter The Spin—½ Ising Model. Expansions with Two Order Parameters The Spin-1 Ising Model. The 3-State Potts Model Theory for a Tricritical Point Tricritical Exponents rg—Landau Theory A Critical Point The Gaussian Approximation	169 171 174 175 176 182 183 183 184 188 190 193 193
5	9hene 5.1 5.2 5.3 5.4 5.5 5.6	Classica 5.1.1 5.1.2 The Va Landau 5.3.1 Landau 5.4.1 5.4.2 Landau 5.5.1 Ginzbur 5.6.1 5.6.2 5.6.3	gical Theory and Landau Expansions al Methods A First-Order Transition Metastability n der Waals Equation Expansions with One Order Parameter The Spin-½ Ising Model. Expansions with Two Order Parameters The Spin-1 Ising Model The 3-State Potts Model Theory for a Tricritical Point Tricritical Exponents rg-Landau Theory A Critical Point The Gaussian Approximation Gaussian Critical Exponents	169 171 174 175 176 182 183 184 188 190 193 193 194 197
	Phene 5.1 5.2 5.3 5.4 5.5 5.6 Mean	Classica 5.1.1 5.1.2 The Va Landau 5.3.1 Landau 5.4.1 5.4.2 Landau 5.5.1 Ginzbur 5.6.1 5.6.2 5.6.3	gical Theory and Landau Expansions al Methods A First-Order Transition Metastability n der Waals Equation Expansions with One Order Parameter The Spin-½ Ising Model. Expansions with Two Order Parameters The Spin-1 Ising Model The 3-State Potts Model Theory for a Tricritical Point Tricritical Exponents rg-Landau Theory A Critical Point The Gaussian Approximation Gaussian Critical Exponents	169 171 174 175 176 182 183 184 188 190 193 193 194 197
5	9hene 5.1 5.2 5.3 5.4 5.5 5.6	Classica 5.1.1 5.1.2 The Va Landau 5.3.1 Landau 5.4.1 5.4.2 Landau 5.5.1 Ginzbur 5.6.1 5.6.2 5.6.3	gical Theory and Landau Expansions al Methods A First-Order Transition Metastability n der Waals Equation Expansions with One Order Parameter The Spin-½ Ising Model. Expansions with Two Order Parameters The Spin-1 Ising Model The 3-State Potts Model Theory for a Tricritical Point Tricritical Exponents rg-Landau Theory A Critical Point The Gaussian Approximation Gaussian Critical Exponents	169 171 174 175 176 182 183 184 188 190 193 193 194 197

xii Contents

	6.2	A Model for Metamagnetism	212
		6.2.1 The Paramagnetic State	215
		6.2.2 The Antiferromagnetic State	216
		6.2.3 A Neighbourhood of the Critical Curve	217
		6.2.4 The First-Neighbour Antiferromagnet: $\lambda = 0 \dots \dots$	221
		6.2.5 The First-Order Transition	223
		6.2.6 A Neighbourhood of the Tricritical Point	226
7	Clust	ter-Variation Methods	229
•	7.1	Improving Mean-Field Theory	229
	7.2	The KHDeB Hierarchy of Approximations	231
	,	7.2.1 Distribution Numbers	231
		7.2.2 Extensive Quantities	233
		7.2.3 The Hamiltonian and Free Energy	235
		7.2.4 The Entropy	235
		7.2.5 Minimization	237
		7.2.6 Labelling Configurations	238
	7.3	The Bethe-Pair Approximation for the Ising Model	239
	7.4	Reduction to the Mean-Field Approximation	241
	7.5	3-State Potts Model on a Triangular Lattice	243
	7.6	A Lattice Model for Fluid Water	246
	7.0	A Lauree Model for Fluid Water	210
Par	t III	Exact Results	
8	Algel	braic Methods	259
8	Algel 8.1	braic Methods	259 259
8	_	The Thermodynamic Limit	
8	8.1		259
8	8.1 8.2	The Thermodynamic Limit	259 261
8	8.1 8.2	The Thermodynamic Limit	259 261 263
8	8.1 8.2 8.3	The Thermodynamic Limit	259 261 263 269
8	8.1 8.2 8.3	The Thermodynamic Limit	259 261 263 269 271
8	8.1 8.2 8.3	The Thermodynamic Limit. The Infinite-System Approach Lower Bounds for Phase Transitions: The Peierls Method 8.3.1 The Simple Lattice Fluid	259 261 263 269 271 273
9	8.1 8.2 8.3 8.4	The Thermodynamic Limit. The Infinite-System Approach Lower Bounds for Phase Transitions: The Peierls Method 8.3.1 The Simple Lattice Fluid Grand Partition Function Zeros and Phase Transitions 8.4.1 Ruelle's Theorem 8.4.2 The Yang–Lee Circle Theorem	259 261 263 269 271 273 276
	8.1 8.2 8.3 8.4	The Thermodynamic Limit. The Infinite-System Approach Lower Bounds for Phase Transitions: The Peierls Method	259 261 263 269 271 273 276 279
	8.1 8.2 8.3 8.4	The Thermodynamic Limit. The Infinite-System Approach Lower Bounds for Phase Transitions: The Peierls Method	259 261 263 269 271 273 276 279 283 283
	8.1 8.2 8.3 8.4 Tran 9.1	The Thermodynamic Limit. The Infinite-System Approach Lower Bounds for Phase Transitions: The Peierls Method 8.3.1 The Simple Lattice Fluid Grand Partition Function Zeros and Phase Transitions 8.4.1 Ruelle's Theorem 8.4.2 The Yang-Lee Circle Theorem 8.4.3 Systems with Pair Interactions sformation Methods. Related Systems The Wegner Transformation	259 261 263 269 271 273 276 279
	8.1 8.2 8.3 8.4 Tran 9.1	The Thermodynamic Limit. The Infinite-System Approach Lower Bounds for Phase Transitions: The Peierls Method 8.3.1 The Simple Lattice Fluid Grand Partition Function Zeros and Phase Transitions 8.4.1 Ruelle's Theorem 8.4.2 The Yang-Lee Circle Theorem 8.4.3 Systems with Pair Interactions sformation Methods Related Systems The Wegner Transformation 9.2.1 Duality for the \(\nu\)-State Potts Model	259 261 263 269 271 273 276 279 283 283 284 286
	8.1 8.2 8.3 8.4 Tran 9.1	The Thermodynamic Limit. The Infinite-System Approach Lower Bounds for Phase Transitions: The Peierls Method 8.3.1 The Simple Lattice Fluid Grand Partition Function Zeros and Phase Transitions 8.4.1 Ruelle's Theorem 8.4.2 The Yang–Lee Circle Theorem 8.4.3 Systems with Pair Interactions sformation Methods. Related Systems The Wegner Transformation 9.2.1 Duality for the \(\nu\)-State Potts Model 9.2.2 Duality for the Spin-\(\frac{1}{2}\) Ising Model	259 261 263 269 271 273 276 279 283 283 284 286 290
	8.1 8.2 8.3 8.4 Tran 9.1 9.2	The Thermodynamic Limit. The Infinite-System Approach Lower Bounds for Phase Transitions: The Peierls Method 8.3.1 The Simple Lattice Fluid Grand Partition Function Zeros and Phase Transitions 8.4.1 Ruelle's Theorem 8.4.2 The Yang–Lee Circle Theorem 8.4.3 Systems with Pair Interactions sformation Methods. Related Systems The Wegner Transformation. 9.2.1 Duality for the ν-State Potts Model 9.2.2 Duality for the Spin-½ Ising Model 9.2.3 The Weak-Graph Transformation.	259 261 263 269 271 273 276 279 283 284 286 290 291
	8.1 8.2 8.3 8.4 Tran 9.1	The Thermodynamic Limit. The Infinite-System Approach Lower Bounds for Phase Transitions: The Peierls Method 8.3.1 The Simple Lattice Fluid Grand Partition Function Zeros and Phase Transitions 8.4.1 Ruelle's Theorem 8.4.2 The Yang–Lee Circle Theorem 8.4.3 Systems with Pair Interactions sformation Methods. Related Systems The Wegner Transformation 9.2.1 Duality for the \(\nu\)-State Potts Model 9.2.2 Duality for the Spin-\(\frac{1}{2}\) Ising Model 9.2.3 The Weak-Graph Transformation The Regular Square-Lattice Eight-Vertex Model	259 261 263 269 271 273 276 279 283 283 284 286 290
	8.1 8.2 8.3 8.4 Tran 9.1 9.2	The Thermodynamic Limit. The Infinite-System Approach Lower Bounds for Phase Transitions: The Peierls Method 8.3.1 The Simple Lattice Fluid Grand Partition Function Zeros and Phase Transitions 8.4.1 Ruelle's Theorem 8.4.2 The Yang–Lee Circle Theorem 8.4.3 Systems with Pair Interactions sformation Methods. Related Systems The Wegner Transformation 9.2.1 Duality for the \(\nu\)-State Potts Model 9.2.2 Duality for the Spin-\(\frac{1}{2}\) Ising Model 9.2.3 The Weak-Graph Transformation The Regular Square-Lattice Eight-Vertex Model	259 261 263 269 271 273 276 279 283 284 286 290 291 293

Contents xiii

	9.4	The Sta	ar-Triangle Transformation	304		
		9.4.1	The <i>v</i> -State Potts Model	306		
		9.4.2	The Spin- $\frac{1}{2}$ Ising Model	307		
10	Edge	-Decorat	ted Ising Models	311		
	10.1	Primary	y and Secondary Sites	311		
	10.2	Super-I	Exchange or Bond-Dilution	312		
		10.2.1	Critical Properties and Exponent Renormalization	314		
	10.3	A Ferri	magnet	319		
		10.3.1	The Zero-Field Axis	320		
		10.3.2	Non-Zero Field	322		
	10.4	A Com	peting-Interaction Magnetic Model	324		
	10.5		tion with Orientable Molecules	326		
	10.6	A Deco	orated Lattice Fluid	332		
		10.6.1	Case I: A Single Vapour/Liquid Transition	335		
		10.6.2	Case II: A Water-Like Model	337		
		10.6.3	Case III: Maxithermal, Critical Double			
			and Cuspoidal Points	339		
11	Tran	sfer Mat	trices: Incipient Phase Transitions	345		
	11.1	The Tra	ansfer Matrix Formulation	345		
		11.1.1	The Eigen Problem	346		
		11.1.2	The Partition Function	347		
		11.1.3	Correlation Functions and Lengths	348		
	11.2	Incipie	nt Phase Transitions	353		
	11.3	Using S	Symmetry Properties	354		
		11.3.1	Block-Diagonalization of the Transfer Matrix	355		
		11.3.2	Applications	359		
	11.4	Analysi	is in the Complex Plane: The Wood Method	367		
		11.4.1	Evolution of Partition Function Zeros	367		
		11.4.2	Connection Curves and Cross-Block Curves	369		
		11.4.3	The Spin- $\frac{1}{2}$ Square-Lattice Ising Model	372		
		11.4.4	Critical Points and Exponents	376		
12	Transfer Matrices: Exactly Solved Models					
	12.1	A Gene	eral Eight-Vertex Model	381		
		12.1.1	A Generalized Star-Triangle Transformation	382		
		12.1.2	The Solution to the GST Transformation			
			and the Elliptic Variable Formulation	383		
		12.1.3	Z-Invariance	387		
		12.1.4	Edge Variables and Matrix Formulation	391		
		12.1.5	Square-Lattice Models	393		

xiv Contents

	12.2	Square-Lattice Ising Models	394
		12.2.1 The Modified Checkerboard Ising Model	399
		12.2.2 Properties of the Transfer Matrices	403
		12.2.3 The Reduction to Regular Ising Models	407
		12.2.4 Transfer Matrix Eigenvectors	409
		12.2.5 Notational Changes	410
		12.2.6 Transfer Matrix Eigenvalues	412
		12.2.7 The Standard Model	421
	12.3	The Square-Lattice Eight-Vertex Model	431
		12.3.1 The Low-Temperature Zone $\mathcal{R}_L(I)$	431
		12.3.2 The Low-Temperature Zone $\mathcal{R}_L(III)$	433
		12.3.3 The Transfer Matrix	434
		12.3.4 Analysis in Terms of Pauli Matrices	437
		12.3.5 Analysis of the Transfer Matrix	442
		12.3.6 The VQ Equation	447
		12.3.7 The Free Energy and Magnetization	475
		12.3.8 Critical Behaviour	478
		12.3.9 The Coupling Form and the Ising Model Limit	482
		12.3.10 The Six-Vertex Model	485
		12.3.11 The Eight-Vertex Model and Universality	491
	ъ.		40.5
13		er Models	495
	13.1	The Dimer Partition Function	495
	13.2	Superposition Polynomials and Pfaffians	496
		13.2.1 The Square-Lattice Case	500
	12.2	13.2.2 The Honeycomb-Lattice Case	504
	13.3	Vertex and Ising Model Equivalences	510
		13.3.1 The Five-Vertex Model	510
	10.4	13.3.2 The Honeycomb-Lattice Anisotropic Ising Model	512
	13.4	K-Type and O-Type Transitions	514
Par	t IV	Series and Renormalization Group Methods	
		-	
14	Series	s Expansions	521
	14.1	The Task and the Methods	521
	14.2	Moment Expansions	524
		14.2.1 At Low Temperatures	525
		14.2.2 At High Temperatures	530
		14.2.3 Duality for Graphs	534
	14.3	Cumulant Expansions	536
		14.3.1 The Low-Temperature Case	539
		14.3.2 The High-Temperature Case	539
	14.4	The Finite-Cluster Method	540

Contents xv

	14.5	The Finite-Lattice Method	543
		14.5.1 Block-Formation and Accuracy	544
		14.5.2 Constructing Block Partition Functions	548
		14.5.3 Calculating the Series	551
	14.6	The Analysis of Series: Second-Order Transitions	555
		14.6.1 Late-Term Analysis	556
		14.6.2 The Ratio Method	557
		14.6.3 Padé Approximants	559
		14.6.4 Differential and Algebraic Approximants	562
	14.7	The Analysis of Series: First-Order Transitions	565
15	Real-S	Space Renormalization Group Theory	567
	15.1	The Basic Elements of the Renormalization Group	567
	15.2	RG Transformations and Weight Functions	570
	15.3	Fixed Points and the Linear Renormalization Group	574
	15.4	Free Energy and Densities	577
	15.5	Decimation for the Ising Model	579
		15.5.1 In One Dimension	579
		15.5.2 In Two Dimensions	585
	15.6	The Kosterlitz–Thouless Transition	588
	15.7	Upper-Bound and Lower-Bound Approximations	594
		15.7.1 An Upper-Bound Method	595
		15.7.2 A Lower-Bound Method	599
	15.8	Finite-Lattice Approximations	603
	15.9	Variational Approximations	607
	15.10	Phenomenological Renormalization	609
		15.10.1 The Square-Lattice Ising Model	611
		15.10.2 Other Models	613
		15.10.3 More Than One Coupling	614
	15.11	Other Renormalization Group Methods	615
Par	t V N	Mathematical Appendices	
16	Grapl	ns and Lattices	619
	16.1	Graphs	619
		16.1.1 Introduction	619
		16.1.2 The Cyclomatic Number	621
		16.1.3 Triangulation of Graphs	622
		16.1.4 Oriented Graphs	622
		16.1.5 The Dual Graph	623
	16.2	Lattices	624
		16.2.1 Types of Regular Lattices	624
		16.2.2 Lattice Transformations	628
	16.3	Rapidity Graphs and Lattices	633

xvi Contents

	16.4	Lattice	Graphs	637
		16.4.1	Augmented Graphs and the Whitney Polynomial	638
		16.4.2	Hopping Matrices and the Canonical	
			Flux Distribution	638
		16.4.3	Embeddings and Topologies	639
		16.4.4	Lattice Constants	640
		16.4.5	Partially-Ordered Sequences of Graphs	
			and the T Matrix	644
		16.4.6	Generating the Partially-Ordered Sequence	647
		16.4.7	Incorporating Sublattices	651
		16.4.8	The Guggenheim-McGlashan Approach	654
		16.4.9	Further Results	656
17	Algel	ora		659
	17.1	Catastro	ophe Theory	659
		17.1.1	Equivalence and Determinancy	659
		17.1.2	Critical Points, Codimension and Unfoldings	662
		17.1.3	Symmetry Considerations	668
	17.2	Matrix	Algebra	670
		17.2.1	Diagonalizability	671
		17.2.2	Commutativity	672
		17.2.3	Reducibility	673
		17.2.4	Theorems of Perron and Frobenius	673
		17.2.5	Direct Products and Traces	675
		17.2.6	Defective Matrices	675
		17.2.7	Groups of Matrices	676
	17.3	Groups	and Representations	676
		17.3.1	Representations	678
		17.3.2	Permutation Representations	
			and Equivalence Classes	682
		17.3.3	Block Diagonalization Within an Equivalence Class	684
		17.3.4	Symmetry Groups	687
	17.4	The Co	onformal Group	691
	17.5		Transformations in the Complex Plane	693
	17.6		aic Functions	695
	17.7	Determ	inants of Cyclic Matrices	700
18	Analy	ysis		703
	18.1		Transforms in d Dimensions	703
		18.1.1	Discrete Finite Lattices	703
		18.1.2	A Continuous Finite Volume	705
		18.1.3	A Continuous Infinite Volume	707
		18.1.4	Integrals Involving Bessel Functions	708
		18.1.5	Lattice Green's Functions	710

Contents xvii

18.2	Doubly	-Periodic and Quasi-Periodic Functions	711
18.3	Elliptic	Integrals and Functions	714
	18.3.1	Elliptic Integrals	714
	18.3.2	Jacobi Theta Functions	717
	18.3.3	Jacobi Elliptic Functions	720
	18.3.4	Transformations in the Elliptic Modulus	724
	18.3.5	The Modified Amplitude Function	726
	18.3.6	Nome Series	727
	18.3.7	Special Results and Functions for Chap. 12	728
	18.3.8	Baxter's Modified Theta Functions	731
18.4	The Po	tts Delta Function	737
	18.4.1	The $\mu = 0$ Case	740
	18.4.2	The $\mu \neq 0$ Case	742
18.5	Padé, I	Differential and Algebraic Approximants	743
	18.5.1	Padé Approximants	743
	18.5.2	Dlog Padé Approximants	748
	18.5.3	Differential Approximants	750
	18.5.4	Algebraic Approximants	754
Reference	s and A	uthor Index	757
Index			783

http://www.springer.com/978-94-017-9429-9

Equilibrium Statistical Mechanics of Lattice Models Lavis, D.

2015, XVII, 793 p. 101 illus., Hardcover

ISBN: 978-94-017-9429-9