Marwadi Chandarana Group	Marwadi University Faculty of Engineering and Technology Department of Information and Communication Technology
Subject: DAA (01CT0512)	Aim: Implementing the Searching Algorithms and understanding the time and space complexities
Lab-2	Enrolment No : 92301733046

Programming Language: Python

1) Linear search:

- > Theory:
 - **How It Works:**
 - Start from the first element.
 - Compare each element with the target.
 - Stop when you find it or reach the end.

> Code:

```
#LInear Search Algorithm
```

```
def linear_search(arr, target):
    if(target in arr):
        return arr.index(target)
    else:
        return -1

arr=[1, 2, 3, 4, 5]
    target=3
    result=linear_search(arr, target)
    if result!=-1:
        print(f"Target {target} found at index: {result}")
    else:
        print(f"Target {target} not found in the array")
```

> output:

```
PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL PORTS

PS D:\DAA> python -u "d:\DAA\linear-search.py"
Target 3 found at index: 2

PS D:\DAA>
```

- ➤ Time Complexity:
 - I. Worst time complexity:O(n)

Marwadi Chandarana Group NAAC University Marwadi Chandarana Group	Marwadi University Faculty of Engineering and Technology Department of Information and Communication Technology
Subject: DAA (01CT0512)	Aim: Implementing the Searching Algorithms and understanding the time and space complexities
Lab-2	Enrolment No : 92301733046

- If the target is not present or is the last element, we must check every element once.n = length of the array.
- II. Best case time complexity: O(1)
 - If the target is at the **first index**, we find it immediately.
- > Space Complexity: O(1)
 Justification:
 - No extra data structures or recursive calls are used.

2) Binary Search:

- ➤ Theory:
 - Binary search is a fast and intelligent search technique used to find an item in a sorted list.
 - It works by repeatedly dividing the search range in half and eliminating the part that doesn't contain the target.
 - Rather than going through every item one by one, binary search tries to zero in on the answer quickly cutting the search space in half with every step.
- Code:

```
def binary_search(arr, target):
  if len(arr) == 0:
     return 0
  mid = len(arr)// 2
  if mid==1:
     return arr[mid]
  if arr[mid]==target:
     return mid
  elif arr[mid]>target:
     return binary search(arr[:mid], target)
  elif arr[mid]<target:</pre>
     return binary search(arr[mid+1:], target)
  else:
     return -1
arr=[1,2,3,4,5,6,7]
target = 3
print(binary search(arr, target))
```

Marwadi Chandarana Group	Marwadi University Faculty of Engineering and Technology Department of Information and Communication Technology
Subject: DAA (01CT0512)	Aim: Implementing the Searching Algorithms and understanding the time and space complexities
Lab-2	Enrolment No : 92301733046

> output:

➤ Time Complexity: O(log n)

Justification:

- Each recursive call cuts the array in half.
- Suppose the array has n elements:
 - o First call \rightarrow size n
 - \circ Next \rightarrow size n/2
 - Then \rightarrow n/4, n/8, ... until size becomes 1.
 - \circ So the number of steps is roughly $\log_2(n)$.
- Worst case time complexity: O(log n)
 - At each recursive step, the array is divided into half → just like cutting a book in half to find a page faster.
 - Even in the worst case (when the element is at the very end or not in the list), the function performs at most log₂(n) steps before concluding.
 - So, for $n = 8 \rightarrow \max \text{ steps} \approx 3 \text{ (since } 2^3 = 8)$
- > Space Complexity: O(log n)

Justification:

- You're using slicing like arr[:mid] and arr[mid+1:] in every recursive call.
- This creates a new array copy each time, which takes space.
- Also, recursion uses call stack memory.
- Both slicing and recursion depth go up to $\log n \rightarrow \text{hence}$, space = $O(\log n)$.