NPTEL MOOC, JAN-FEB 2015 Week 6, Module 4

DESIGN AND ANALYSIS OF ALGORITHMS

Greedy algorithms: Minimizing lateness

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE http://www.cmi.ac.in/~madhavan

Minimizing lateness

- * A single resource, n request to use this resource
- * Request i requires time t(i) to complete and has a deadline d(i)
- * All requests will be scheduled
 - * Request j starts at s(j) and ends at f(j) = s(j) + t(j)
 - * If f(j) > d(j), request j is late by l(j) = d(j) f(j)

Goal: Minimize maximum lateness

* Minimize the maximum value of I(j) over all j

Greedy strategies

Greedy Strategy 1

* Choose jobs in increasing order of length — t(j)

Counterexample

* Two jobs

$$*t(1) = 1, d(1) = 100$$

$$*t(2) = 10, d(2) = 10$$

Greedy strategies

Greedy Strategy 2

* Choose job with smaller slack times, d(j) - t(j), first

Counterexample

* Two jobs

$$*t(1) = 1, d(1) = 2$$

$$*t(2) = 10, d(2) = 10$$

Greedy strategies

Greedy Strategy 3

- * Choose job with earliest deadline d(j) first
- * This strategy is correct
- * How do we prove it?

Correctness

- * Assume all jobs are sorted by deadline
 - * Renumber so that $d(1) \le d(2) \le ... \le d(n)$
- * Schedule is simple: 1, 2, ..., n
 - * Job 1 starts at s(1) = 0 and ends at f(1) = t(1)
 - * Job 2 starts at s(2) = f(1) and ends at f(2) = s(2)+t(2)
 - *

Correctness ...

- * Our schedule has no gaps idle time
 - * The resource is continuously in use from s(1) to f(n)

Claim:

There is an optimum schedule with no idle time

* Shifting jobs earlier to remove idle time can only reduce lateness

Exchange argument

- * Suppose O is some other optimal schedule
- * Transform O step by step until it becomes identical to the schedule A found by the greedy algorithm

Inversions

- * A schedule O has an inversion if i appears before j in O but d(j) < d(i)
- * By construction, the greedy solution has no inversions

Inversions...

Claim: Any two schedules with no inversions and no idle time produce the same lateness

- * No inversions, no idle time means the only difference can be in order of jobs with same deadline
- * Any reordering of jobs with the same deadline produces the same lateness

Optimality...

Claim: There is an optimal schedule with no inversions and no idle time.

- * Let O be an optimal solution with no idle time
- * (A) If O has an inversion, then there is a pair of jobs i and j such that j is scheduled immediately after i and d(j) < d(i)
 - * Find the first point where deadline decreases

Optimality

- * (B) After swapping i and j we get a solution with one less inversion
 - * Obvious
- * (C) After swapping i and j we get a solution whose maximum lateness is no larger than that of O
 - * Not so obvious

Optimality....

- * (C) After swapping i and j we get a solution whose maximum lateness is no larger than that of O
 - * Recall that d(j) < d(i)
 - * Lateness of i after swap cannot be more than lateness of j before swap

Optimality ...

Claim: There is an optimal schedule with no inversions and no idle time.

- * From (C) we can remove each adjacent inversion without increasing lateness
- * At most n(n-1)/2 inversions in O to begin with
- * Repeatedly remove adjacent inversions to get an optimal schedule with no inversions, no idle time

Implementation, complexity

- * Sort jobs by deadline O(n log n)
- * Read off schedule in same order O(n)
- * Overall O(n log n)