Комментарии и советы по выполнению работы Lab3 2

1. ВОПРОС: «В лабораторной работе требуется в качестве выхода модуля указать двумерный массив (7 разрядов десятков и 7 разрядов единиц). Как я понял сделать это на Verilog невозможно (в SystemVerilog такая возможность есть). Будет ли критично заменить двумерный массив на обычный вектор. Так как в любом случае при назначении портов мы сможем указать разряды вектора. Или возможно есть способ сделать это на Verilog? (output [6:0] hex_int [1:0])»

ОТВЕТ: Да, нужно указать как два вектора. Например, так, как показано ниже.

```
module Lab3_2 #(parameter div = 4) (
      input CLK,
      input RST,
 4
      input ENA,
 5
      input DIR,
 6
      output [6:0]HEX_1
      output [6:0]HEX_0);
 8
      wire int_rst;
9
10
      wire int_ena;
11
      wire int_dir;
      wire cout;
13
      wire cnt_ena;
14
      wire [5:0]cnt_val;
      wire [6:0]int_hex_1;
15
      wire [6:0]int_hex_0;
17
18
      SYNCin SYNCin_RST (
19
          .CLK (CLK
                               ),
          .D_in (RST
20
21
          .D_out(int_rst
22
      SYNCin SYNCin_ENA (
24
          .CLK (CLK
                               ),
25
          .D_in (ENA
26
          .D_out(int_ena
27
          );
      SYNCin_DIR (
29
          .CLK (CLK
                               ),
          .D_in (DIR
30
31
          .D_out(int_dir )
      );
CNT_DIV #(div) CNT_DIV_inst (
          .CLK
                  (CLK
34
                   (int_rst
35
          .RST
                  (int_ena
36
          .ENA
                               ),
37
          .C_out(cout
38
          );
39
      assign cnt_ena = int_ena & cout;
      CNT #(6'd23) CNT_inst (
40
41
          .CLK
                       (CLK
42
          .RST
                       (int_rst
43
          . ENA
                       (cnt_ena
                       (int_dir
44
          . DTR
45
          .CNT out
                       (cnt val
46
          );
             CODER_inst (
47
      CODER
48
          .address (cnt_val
49
          .clock (CLK
                   ({int_hex_1,int_hex_0} )
          .q
51
          );
      SYNCout #(14) SYNCout_inst (
52
          .CLK
                       (CLK
54
                       (int_rst
          .RST
          . ENA
                       (int ena
56
          .D_in
                  ({int_hex_1,int_hex_0} ),
57
          .D_out ({HEX_1, HEX_0}
58
      endmodule
```

2. ВОПРОС: «Также возникли проблемы с создание hex файла для ROM-1 компонента. В целом я разобрался с Intel hex форматом, но возникло чувство, что он должен был быть приложен к работе. Найти простой способ генератора формата не удалось, а расчет контрольной суммы для 32 значений оказался достаточно трудоемким занятием.»

ОТВЕТ: Таблицу (на все 64 значения — разрядность счетчика 6 бит) легко построить в Exel (либо написать формирование текстовой таблицы на Python или Си или....). Пример таблицы в Exel приведен ниже (делается минут за 5 путем ручного копирования, если данные рассматривать как два вектора по 7 бит в каждом.)

Du De	ckropa no 7	0711 1	э кальдом.,
адрес			данные
0			1000001000000
1			10000001111001
2			1000000100100
3			1000000110000
4			1000000011001
5			1000000010010
6			10000000000010
7			10000001111000
8			10000000000000
9			1000000010000
10			11110011000000
11			111100111111001
12			11110010100100
13			11110010110000
14			11110010011001
15			11110010010010
16			11110010000010
17			111100111111000
18			11110010000000
19			11110010010000
20			01001001000000
21			01001001111001
22			01001000100100
23			01001000110000
24			01001000011001
25			01001000010010
26			01001000000010
27			01001001111000
28			01001000000000
29			01001000010000
30			01001001000000
31			01001001111001
32			01001000100100
33			01001000110000
34			01001000011001
35			01001000010010
36			01001000000010
37			01001001111000
38			01001000000000
39			01001000010000
40			00110011000000
41			00110011111001
42			00110010100100
43			00110010110000
44			00110010011001
45			00110010010010
46			00110010000010
47			00110011111000
48			00110010000000
49			00110010010000
50			00100101000000
51			00100101111001
52			00100100100100
53			00100100110000
54 55			00100100011001
55			00100100010010
56			00100100000010
57			00100101111000
58			00100100000000
59 60			00100100010000
60			00000101000000
61			00000101111001
62 62			00000100100100
63			00000100110000

С НЕХ форматом файла разбираться было не нужно. Достаточно создать НЕХ (MIF) файл в пакете Quartus: **File=>New=>Memory Initialization File** (HEX или MIF на данном этапе можно выбрать любой).

Затем задаем число слов 64, разрядность слова 14:

Затем выделяем все ячейки данных в exel таблице.

Щелкаем правой клавишей в нулевой ячейке нашей таблицы (HEX или MIF) и выбираем команду Paste

Все данные будут перенесены.

Далее сохраняем наш HEX (MIF) файл с расширением .hex и получаем искомый файл в формате hex

	Lab3 2 ROM.hex
-1	
1	:0200000020409E
2	:02000100207964
3 4	:020002002024B8
5	:020003002030AB
6	:020004002019C1 :020005002012C7
7	:020005002012C7
8	:020000002002b0
9	:02000700207831 :020008002000D6
10	:02000000200000 :020009002010C5
11	:020003002010C3
12	:02000N003CC0F0BE
13	:020000003CF302
14	:02000D003CB005
15	:02000E003C991B
16	:02000F003C9221
17	:020010003C8230
18	:020011003CF8B9
19	:020012003C8030
20	:020013003C901F
21	:02001400124098
22	:0200150012795E
23	:020016001224B2
24	:020017001230A5
25	:020018001219BB
26	:020019001212C1
27	:02001A001202D0
28	:02001B00127859
29	:02001C001200D0
30	:02001D001210BF
31	:02001E0012408E
32	:02001F00127954
33	:020020001224A8
34	:0200210012309B
35	:020022001219B1
36	:020023001212B7
37	:020024001202C6
38	:0200250012784F
39	:020026001200C6
40	:020027001210B5
41	:020028000CC00A
42	:020029000CF9D0
43	:02002A000CA424
44 45	:02002B000CB017 :02002C000C992D
45	:02002C000C992D
47	:02002D000C9233
48	:02002E000C8242
49	:020031000C18CB
50	:020030000C0042
51	:02003100003031
52	:02003200054005
53	:02003300037343 :0200340009249D
54	:02003500093090
55	:020036000919A6
56	:020037000912AC
57	:020038000902BB
58	:02003900097844
59	:02003A000900BB
60	:02003B000910AA
61	:02003C00014081
62	:02003D00017947
63	:02003E0001249B
64	:02003F0001308E
65	:00000001FF

3. ПОДСКАЗКА: Перед полной компиляцией проекта (db_Lab3_2) установите опцию:

Assignment=>Device=>Device and Pin Option => Configuration

