Learning Objectives

- After this segment, students will be able to
 - List 2 algorithms for shortest path queries
 - Compare those two algorithms

Shortest Path Algorithms

- Iterate
 - Expand most promising descent node
 - Dijkstra's: try closest descendent to self
 - A*: try closest descendent to both destination and self
 - Update current best path to each node, if a better path is found
- Till destination node is expanded

Dijkstra's Algorithm

Shortest Path Algorithms

- Iterate
 - Expand most promising node
 - Dijkstra's: try closest descendent to self
 - A*: try closest descendent to both destination and self
 - · Update current best path to each node, if a better path is found
- Till destination node is expanded

- Correct assuming
 - Sub-path optimality
 - Fixed, positive and additive edge costs
 - A*: underestimate function

