

Touch-Tone Recognition

EE301 Final Project April 26, 2010 MHP 101

Norman Chung Rocky Mark Juan Hieu Nguyen Alexander Nobles
Bryce Toth

A 1970's era AT&T "Touch-Tone" telephone

Agenda

- Introduction and History
- Applications and Future
- Project Description
- Relation to EE301
- Individual Contributions

- Technical Results and Problems Encountered
- Demonstration
- Conclusion
- Bibliography
- Questions?

Introduction to DTMF

- 4 x 4 grid, one frequency for each row and column
- Unique two-tone signal for each digit
- Switching station decodes signal with 8 bandpass filters

History of DTMF

- Pre-'60s: Manual switching, pulse dialing
 - Pulse dialing payphone abuse
- DTMF frequencies chosen to avoid harmonics, modulation problems

Applications and Future of DTMF

- Current Application: Telephone Technology & Communication
- Improvements: Better filtering to deal with noise
- Future: Battle with digital technology
 - Requires a more widespread application and improvements in design

Project Description

- 5 main parts:
 - DTMF generation
 - Parse DTMF signal
 - Filters
 - Scoring function
 - Decode/return string

Relation to EE301

Input signal "2 4 8" represented as impulse response in time domain

Relation to EE301

Applying filter to detect the input signal by eight bandpass filters

Individual Contributions

What Bryce worked on...

DTMF Dial Function: function that creates the tone from a combination of 2 tones corresponding to the input element

	16603Hz	16811Hz	17011Hz	17203Hz	17401Hz	17609Hz	17807Hz	18013Hz	18211Hz
8009Hz	1	2	3	A	J	s	a	j	s
8209Hz	4	5	6	В	ĸ	T	b	k	ŧ
8419Hz	7	8	9	с	L	U	c	1	u
8609Hz	1	0	-	D	м	v	d	m	v
8803Hz	@	&	^	E	N	W	е	n	w
9001Hz	*	\$	£	F	0	x	f	0	x
9203Hz	{		}	G	P	¥	g	р	Y
9403Hz	(-)	н	Q	z	h	q	z
9601Hz	-	;	_	I	R	ι	i	r	1

What Norman worked on...

Input signal "2 4 8" represented as frequency response in frequency domain

What Rocky worked on...

Matlab Coding

dtmfcut.m

Adding Noise

- White Gaussian Noise
- FFT

Noise Reduction

- FDATool
- wdencmp

What Hieu worked on...

Creating the GUI

- Made project easy to integrate together, test/debug, and demonstrate
- Writing the code...

dtmfscore.m

 Making sense of the DTMF signal

What Alex worked on...

- Fourier series Matlab function
- dtmfdesign.m
- Goertzel Algorithm

Technical Results

Without Noise

With Noise

Problems

Inexperience with Matlab

Extending DTMF to entire alpha-numeric

alphabet

Analyze Raw Signal with Audio Device

White Noise Filtering

Project Demonstration

Conclusion

Bibliography

- http://members.fortunecity.com/stefaldo/project/project_dtmf.html
- http://en.wikipedia.org/wiki/Dual-tone_multi-frequency_signaling
- http://www.lumenvox.com/resources/whitePapers/dtmfSpeech.aspx
- http://www.mathworks.com/matlabcentral/

Questions?

