Paper discussion

Meeting Fundamental neuromodulation

4th September 2019

Stijn Michielse PhD

GitHub

- ► Git = version control system
- Sharing code
- Repositories
- Contribution and collaboration
- ► Transparency of research

Mascot; octacat

Why GitHub?

- Documentation of research
- ► Markdown; write code → create manuscript
- Track changes, version control
- Compatibility between platforms

Voting

Paper 2: Neuroimaging and neuromodulation: complementary approaches for identifying the neuronal correlates of tinnitus

Neuroimaging and neuromodulation: complementary approaches for identifying the neuronal correlates of tinnitus

Berthold Langguth^{1,2}*, Martin Schecklmann^{1,2}, Astrid Lehner^{1,2}, Michael Landgrebe^{1,2}, Timm Benjamin Poeppl^{1,2}, Peter Michal Kreuzer^{1,2}, Winfried Schlee³, Nathan Weisz⁴, Sven Vanneste⁵ and Dirk De Ridder⁵

- ▶ Published in 2012 by a research group located in Regensburg, Germany
- 42 citations
- Review paper on Neuroimaging and Neuromodulation in tinnitus
- ► Tinnitus = perception of noise or ringing in the ears
- ► Causes; age related (presbycusis), exposure to loud noise, neuroma
- Origin in the auditory nerve or related pathway

Cochlear nerve

- Origin; vestibulocochlear nerve (8th cranial nerve)
- ▶ 30,000 nerve fibers
- ► Transsection of the nerve → tinnitus preserved
- Central auditory system

Functional pathways involved in tinnitus

- Dorsolateral prefrontal cortex
- Orbitofrontal cortex
- Anterior cingulate
- Subgenual cingulate
- Posterior cingulate
- Parietal cortex
- Amygdala
- Hippocampus
- Parahippocampus
- Cerebellum

- Fairly broad and unspecific
- Correlational approach
 - No causality
- Attention, memory, emotion

Auditory pathways

- PET studies
 - Increased blood flow in auditory structures
 - ▶ In unilateral tinnitus → contralateral activation affected
 - In lateral tinnitus \rightarrow increased activation in left hemisphere (hallucinations?)
- MEG and EEG
 - ► Temporal cortex → reduction of alpha activity
 - increase of slow wave and gamma activity
 - ► Auditory evoked potentials → inconclusive
 - Altered somatosensory input

Tinnitus research

- Are findings related to tinnitus (state) or a predisposition for developing tinnitus (trait)?
- Compensatory mechanism in place? Result of auditory deprivation?
- Longitudinal studies to compare pre-post tinnitus
- Limited reliability of animal behavioral assessment in tinnitus
- Limited sensitivity for assessing auditory dysfunction in humans
- Not controlled for hearing loss

Neuromodulation

- Single session repetitive Transcranial Magnetic Stimulation
 - ▶ 11 studies, N=313 patients
 - ▶ Temporal or temporoparietal stimulation
 - Sham controlled studies
 - Transient effect on the tinnitus percept in 50% of the patients
- Repeated sessions of repetitive Transcranial Magnetic Stimulation
 - ▶ 21 studies, N=741 patients
 - ▶ 10 RCT's, n=234 patients
 - ► Temporal or temporoparietal stimulation
 - Low-frequency rTMS in trains of 1200-2000 pulses over 5-10 days
 - Overall significant reduction of tinnitus complaints (loudness, annoyance or both)
 - Which paradigm or stimulation target is unclear...

Neuronal correlates

- ▶ PET, SPECT, MEG, rsfMRI and EEG studies
- Limited amount of studies...
- Positive response related to the secondary auditory cortex bilateral
- Tinnitus reduction correlates with decrease of gamma and increase of alpha activity
- rTMS modulates thalamocortical activity
- Fundamental understanding of tinnitus

Transcranial Direct Current Stimulation

Two studies, N=27 patients

Left temporoparietal cortex stimulation

Effect of anodal tDCS → increased cortical excitability

More research is needed

Epidural Stimulation

- Modify neuronal activation in the auditory cortex
 - ▶ Based on a study in 43 patients and repeated in smaller samples
 - ► fMRI based targets
 - ▶ Burst stimulation more efficient than tonic stimulation
 - Decreased tinnitus loudness of 51%

- Deep Brain Stimulation
 - Deeper brain structures
 - ► Network effect

Non-auditory brain areas

- Synchronously connected
- Awareness and salience brain networks
 - ► Inferior parietal cortex
 - Dorsolateral prefrontal cortex
 - Anterior cingulate cortex
 - Anterior insula
 - Posterior cingulate cortex
- ► Functional connection; auditory cortex → network of higher order areas
- Distress; anterior cingulate cortex, anterior insula and amygdala (pain network)
- Memory of phantom percept; hippocampus

Brain networks

Primary auditory cortex

Anterior/posterior cingulate, precuneus, parietal, frontal

Anterior cingulate Anterior insula Amygdala

Auditory cortex Attention Network Distress Network Memory Network

Hippocampus, amygdala, parahippocampus

Modulation of non-auditory areas

- rTMS effects single session
 - Based on studies by a co-author
 - Right dorsolateral prefrontal cortex
 - Auditory attention/processing/memory
 - Dorsal part of the anterior cingulate cortex
 - ▶ Reduced tinnitus intensity by 34% and distress by 26%
 - Ventrolateral prefrontal and Parietal cortex
 - One study by a co-author
 - ▶ Some effects were reported (reduced perception by 22%)
- Repeated sessions
 - ▶ Left dorsolateral prefrontal and temporal cortex combined
 - ► Tinnitus suppression after 3 months

Non-auditory brain areas (2)

- transcranial Direct Current Stimulation
- Target = dorsolateral prefrontal cortex
 - ► Tinnitus suppression in 30% of the participants
- Pathophysiological distinct forms of tinnitus
 - Interindividual variability
- Preliminary studies

Direct electric stimulation

- Epidural electrodes
 - Dorsolateral prefrontal cortex (n=1)
 - Localization based on fMRI
 - Tinnitus reduced by 67%
- Deep Brain Stimulation
 - Very focal
 - No published reports for the treatment of tinnitus
 - ▶ Side effect of treatment for movement disorders
 - Stimulation of thalamus and caudate may provide relief

Limitations

- ▶ Distinct forms of tinnitus → pathophysiological difference
- More precision medicine, per individual required
- Reliable assessment of tinnitus symptoms
- Limited resolution and sensitivity of imaging techniques
- Sample sizes; fairly small
- Many reported studies were by the authors of the review paper
 - Self fulfilling prophecy

Conclusions

- Auditory cortex + a large network of brain regions showed structural and functional alterations in tinnitus
- Attention, distress and memory networks are involved
- Brain stimulation is complementary to neuroimaging
 - Aim for focal modulation of areas highlighted by functional imaging
- Changes in tinnitus reduction of worsening can reveal information about the neuronal changes
- Specific aspects of tinnitus need to be investigated
 - → distress, depression and loudness