1. Структурный и кинематический анализ плоского рычажного механизма

1.1. Структурный анализ механизма

Задан плоский рычажный механизм (рисунок 1) со следующими основными размерами: $L_{OA}=0,17~M$, $L_{AB}=0,42~M$, $L_{AC}=0,2~M$, $L_{a}=0~M$, $L_{b}=0,22~M$, $L_{c}=0,28~M$.

Рисунок 1 – Кинематическая схема механизма.

Выделяем начальный механизм и группы Ассура (рисунок 2).

а) начальный механизм I(1;2); б) группа Ассура II(3;4); в) группа Ассура II(5;6).

Рисунок 2 – Начальный механизм и группы Ассура.

					Лист
					6
Изм.	Лист	№ докум.	Подпись	Дата	0

Составляем формулу строения механизма: $I(1,2) \rightarrow II(3,4) \rightarrow II(5,6)$.

Рассматриваемый механизм 2 класса 2-го порядка.

Структурные схемы механизма приведены на рисунке 3.

Первый тип

второй тип

Рисунок 3 – Структурные схемы механизма.

Таблица 1.1 - Таблица звеньев.

No	№	Наименование звена	Vanagran unuwajing anang
Π/Π	звена	Паименование звена	Характер движения звена
1	1	Стойка	Неподвижно
2	2	Кривошип	Вращательное
3	3	Шатун	Сложное плоскопараллельное
4	4	Ползун	Поступательное
5	5	Шатун камень-кулисы	Сложное плоскопараллельное
6	6	Коромысло-кулиса	Вращательно-возвратное

Таблица 1.2 - Таблица кинематических пар.

№ п/п	Обозначение	Номера звеньев, обозначающих пару	Наименование	Класс пары
1	O	1-2	Вращательная	V
2	A	2-3	Вращательная	V
3	В	3-4	Вращательная	V
4	Е	4-1	поступательная	V
5	С	3-5	Вращательная	V
6	D	5-6	поступательная	V
7	F	6-1	Вращательная	V

Механизм рычажный, плоский, шестизвенный. Предназначен для преобразования вращательного движения входного звена 2 в поступательное движение выходного звена 4.

					Лист
					7
Изм.	Лист	№ докум.	Подпись	Дата	

Определение числа степеней свободы механизма по формуле Чебышева.

Число подвижных звеньев K=5

Число кинематических пар 5 класса p₅=7

Число кинематических пар 4 класса р₄=0

Число степеней свободы механизма равно: $W = 3k - 2p_5 = 3.5 - 2.7 = 1$

- 1.2 Кинематический анализ механизма методом планов
- 1.2.1 Построение плана положения

В левой части чертежа строятся планы положений механизма для 4 равноотстоящих положений входного звена. За начальное положение принимаем положение кривошипа при угле $\varphi_2 = 30^\circ$.

Определяем масштабный коэффициент плана положений:

$$\mu_L = \frac{L_{OA}}{OA} = \frac{0.17}{85} = 0.002 \frac{M}{MM},$$

где L_{OA} - действительная длина звена OA, м;

ОА - изображающий ее отрезок на чертеже, мм.

Определяем на чертеже длины остальных звеньев:

$$AB = \frac{L_{AB}}{\mu_L} = \frac{0.42}{0.002} = 210 \text{ MM}, AC = \frac{L_{AC}}{\mu_L} = \frac{0.2}{0.002} = 100 \text{ MM},$$

$$b = \frac{L_b}{\mu_L} = \frac{0.22}{0.002} = 110 \text{ MM}, c = \frac{L_c}{\mu_L} = \frac{0.28}{0.002} = 140 \text{ MM}.$$

Принимаем длину звена FH = 200~ мм , $~L_{FH} = FH \cdot \mu_L = 200 \cdot 0,002 = 0,4~$ м .

1.2.2. Построение планов скоростей

Выполним подробный расчет для положения 4.

Скорость точки А:
$$\vec{\upsilon}_{\scriptscriptstyle A} = \vec{\upsilon}_{\scriptscriptstyle O} + \vec{\upsilon}_{\scriptscriptstyle AO}, \quad \vec{\upsilon}_{\scriptscriptstyle O} = 0, \; \vec{\upsilon}_{\scriptscriptstyle AO} \perp \textit{OA}.$$

$$v_A = \omega_2 \cdot L_{OA} = 12 \cdot 0.17 = 2.04 \text{ m/c}.$$

Определяем масштабный коэффициент планов скоростей:

$$\mu_{v} = \frac{v_{A}}{pa} = \frac{2,04}{102} = 0,02 \quad \frac{M \cdot c^{-1}}{MM},$$

где ра - вектор, изображающий скорость точки А.

Изм.	Лист	№ докум.	Подпись	Дата

Строим точку В:
$$\begin{cases} \vec{\upsilon}_{\scriptscriptstyle B} = \vec{\upsilon}_{\scriptscriptstyle A} + \vec{\upsilon}_{\scriptscriptstyle BA} \\ \vec{\upsilon}_{\scriptscriptstyle B} = \vec{\upsilon}_{\scriptscriptstyle E} + \vec{\upsilon}_{\scriptscriptstyle BE} \end{cases}, \quad \begin{cases} \vec{\upsilon}_{\scriptscriptstyle BA} \perp AB \\ \vec{\upsilon}_{\scriptscriptstyle E} = 0, \; \vec{\upsilon}_{\scriptscriptstyle BE} /\!/ x - x \end{cases}$$

Через точку (a) на плане скоростей проводим прямую, перпендикулярную звену AB, а через полюс проводим прямую, параллельную оси (x). На пересечении этих прямых получаем искомую точку (b).

Точку B найдем по теореме подобия:

$$\frac{ab}{ac} = \frac{AB}{AC} \Rightarrow ac = \frac{ab \cdot AC}{AB} = \frac{54,5 \cdot 100}{210} = 26 \text{ MM}$$

Строим точку D:
$$\begin{cases} \vec{v}_{\scriptscriptstyle D} = \vec{v}_{\scriptscriptstyle C} + \vec{v}_{\scriptscriptstyle DC} \\ \vec{v}_{\scriptscriptstyle D} = \vec{v}_{\scriptscriptstyle F} + \vec{v}_{\scriptscriptstyle DF} \end{cases}, \quad \begin{cases} \vec{v}_{\scriptscriptstyle DC} /\!/ FH \\ \vec{v}_{\scriptscriptstyle F} = 0, \; \vec{v}_{\scriptscriptstyle DF} \perp FH \end{cases}$$

Через точку (c) на плане скоростей проводим прямую, параллельную звену FH, а через полюс проводим прямую, перпендикулярную звену FH. На пересечении этих прямых получаем искомую точку (d).

Точку H найдем по теореме подобия:

$$\frac{fd}{fh} = \frac{FD}{FH} \Rightarrow fh = \frac{fd \cdot FH}{FD} = \frac{100,5 \cdot 200}{180,5} = 111,4$$
 мм

Находим скорости точек и центров масс:

$$\upsilon_{B} = pb \cdot \mu_{v} = 107,5 \cdot 0,02 = 2,15 \text{ m/c}$$

$$\upsilon_{C} = pc \cdot \mu_{v} = 101 \cdot 0,02 = 2,02 \text{ m/c}$$

$$\upsilon_{D} = pd \cdot \mu_{v} = 100,5 \cdot 0,02 = 2,01 \text{ m/c}$$

$$\upsilon_{H} = ph \cdot \mu_{v} = 111,5 \cdot 0,02 = 2,23 \text{ m/c}$$

$$\upsilon_{S2} = pS_{2} \cdot \mu_{v} = 51 \cdot 0,02 = 1,02 \text{ m/c}$$

$$\upsilon_{S3} = pS_{3} \cdot \mu_{v} = 101 \cdot 0,02 = 2,02 \text{ m/c}$$

$$\upsilon_{S4} = \upsilon_{B} = 2,15 \text{ m/c}$$

$$\upsilon_{S5} = \upsilon_{C} = 2,02 \text{ m/c}$$

$$\upsilon_{S6} = pS_{6} \cdot \mu_{v} = 56 \cdot 0,02 = 1,12 \text{ m/c}$$

Находим угловые скорости звеньев:

$$\omega_3 = \frac{\upsilon_{AB}}{L_{AB}} = \frac{ab \cdot \mu_{\upsilon}}{L_{AB}} = \frac{54,5 \cdot 0,02}{0,42} = 2,6 \quad pad/c$$

					Лист	ĺ
					0	
1зм.	Лист	№ докум.	Подпись	Дата	9	ĺ

$$\omega_5 = \omega_6 = \frac{\upsilon_H}{L_{FH}} = \frac{2,23}{0,4} = 5,58 \ pad/c$$

Аналогично строим для остальных положений. Все результаты заносим в таблицы.

Таблица 1.3 – результаты замеров, мм.

№ п/п	pb	pc	pd	ph	pS_2	pS_3	pS_4	pS_5	pS_6	ab
1	69,3	75,5	31,5	47	51	74,5	69,3	75,5	23,5	90
2	69	83,5	55	93,5	51	83	69	83,5	47	54,5
3	32,7	62,7	59	64,5	51	61	32,7	62,7	32	90
4	107,5	101	100,5	111,5	51	101	107,5	101	56	54,5

Таблица 1.4 – результаты скоростей.

№	v_c	$\nu_{\scriptscriptstyle B}$	$\nu_{\scriptscriptstyle D}$	$ u_{\scriptscriptstyle H}$	v_{s2}	v_{s_3}	v_{s4}	v_{s_5}	$ u_{s6} $	ω_3	ω_5,ω_6
п/п					м/с						c ⁻¹
1	1,386	1,51	0,63	0,94	1,02	1,49	1,386	1,51	0,47	4,29	2,35
2	1,38	1,67	1,1	1,87	1,02	1,66	1,38	1,67	0,94	2,6	4,68
3	0,654	1,254	1,18	1,29	1,02	1,22	0,654	1,254	0,64	4,29	3,23
4	2,15	2,02	2,01	2,23	1,02	2,02	2,15	2,02	1,12	2,6	5,58

1.2.3. Построение плана ускорений

План ускорений выполняем для положения 4.

Ускорение точки А:
$$\vec{a}_A = \vec{a}_O + \vec{a}_{AO}^n + \vec{a}_{AO}^\tau$$
, $a_{AO}^\tau = 0$, (т.к. $\omega_2 = const$)

Следовательно
$$a_A = a_{AO}^n = \omega_2^2 \cdot L_{AO} = 12^2 \cdot 0,17 = 24,5$$
 м/ c^2

Определяем масштабный коэффициент плана ускорений:

$$\mu_a = \frac{a_A}{\pi a} = \frac{24.5}{122.5} = 0.2 \quad \frac{M \cdot c^{-2}}{MM}$$

Точку В найдем, решив графически систему уравнений:

$$\begin{cases} \vec{a}_B = \vec{a}_A + \vec{a}_{BA}^n + \vec{a}_{BA}^\tau \\ \vec{a}_B = \vec{a}_E + \vec{a}_{BE}^{omh} \end{cases}$$

$$a_{BA}^{n} = \omega_{3}^{2} \cdot L_{BA} = 2.6^{2} \cdot 0.42 = 2.84 \text{ m/c}^{2}, \quad a\vec{n}_{BA} = \frac{a_{BA}^{n}}{\mu_{a}} = \frac{2.84}{0.2} = 14.2 \text{ mm}.$$

Точку B найдем по теореме подобия:

$$\frac{ab}{ac} = \frac{AB}{AC} \Rightarrow ac = \frac{ab \cdot AC}{AB} = \frac{109 \cdot 100}{210} = 52$$
 мм

					Лист
					10
Изм.	Лист	№ докум.	Подпись	Дата	10

Точку D найдем, решив графически систему уравнений:

$$\begin{cases} \vec{a}_{\scriptscriptstyle D} = \vec{a}_{\scriptscriptstyle C} + \vec{a}_{\scriptscriptstyle DC}^{\scriptscriptstyle \kappa op} + \vec{a}_{\scriptscriptstyle DC}^{\scriptscriptstyle c\kappa} \\ \vec{a}_{\scriptscriptstyle D} = \vec{a}_{\scriptscriptstyle F} + \vec{a}_{\scriptscriptstyle DF}^{\scriptscriptstyle n} + \vec{a}_{\scriptscriptstyle DF}^{\scriptscriptstyle \tau} \end{cases}$$

$$a_{DC}^{\kappa op} = 2\omega_5 \cdot \upsilon_{DC} = 2 \cdot 5,58 \cdot 0,24 = 2,68 \text{ m/c}^2, \quad c\vec{k}_{DC} = \frac{a_{DC}^{\kappa op}}{\mu_a} = \frac{2,68}{0,2} = 13,4 \text{ mm}$$

$$a_{DF}^{n} = \omega_{6}^{2} \cdot L_{DF} = 5,58^{2} \cdot 0,361 = 11,24 \text{ m/c}^{2}, \quad f\vec{n}_{DF} = \frac{a_{DF}^{n}}{\mu_{a}} = \frac{11,24}{0,2} = 56,2 \text{ mm}$$

ТочкуH найдем по теореме подобия:

$$\frac{fd}{fh} = \frac{FD}{FH} \Rightarrow fh = \frac{fd \cdot FH}{FD} = \frac{62,5 \cdot 200}{180,5} = 69,3 \text{ мм}$$

Находим ускорения точек и центров масс:

$$a_{R} = \pi b \cdot \mu_{a} = 36.5 \cdot 0.2 = 7.3 \text{ m/c}^{2}$$

$$a_C = \pi c \cdot \mu_a = 74.5 \cdot 0.2 = 14.9 \text{ m/c}^2$$

$$a_D = \pi d \cdot \mu_a = 62.5 \cdot 0.2 = 12.5 \text{ m/c}^2$$

$$a_{S2} = \pi S_2 \cdot \mu_a = 61,25 \cdot 0,2 = 12,25 \text{ m/c}^2$$

$$a_{S3} = \pi S_3 \cdot \mu_a = 72 \cdot 0.2 = 14.4 \text{ m/c}^2$$

$$a_{S5} = a_C = 14.9 \ \text{m/c}^2$$

$$a_{S6} = \pi S_6 \cdot \mu_a = 34.5 \cdot 0.2 = 6.9 \text{ m/c}^2$$

Находим угловые ускорения звеньев:

$$\varepsilon_3 = \frac{a_{BA}^{\tau}}{L_{BA}} = \frac{(n_{BA}b) \cdot \mu_a}{L_{BA}} = \frac{108 \cdot 0.2}{0.42} = 48.57 \ pad/c^2$$

$$\varepsilon_5 = \varepsilon_6 = \frac{a_{DF}^{\tau}}{L_{DF}} = \frac{(n_{DF}d) \cdot \mu_a}{L_{DF}} = \frac{27,5 \cdot 0,2}{0,361} = 15,24 \quad pao/c^2$$

Изм.	Лист	№ докум.	Подпись	Дата