

산청하이2호 태양광발전소 기술실사 보고서

고객명 산청하이2호 태양광발전소 / 알파자산운용

주소

경상남도 산청군 오부면 중촌리 산61 일원

고객 관리번호 SPW-TR-2006-002

접수일 2020년 05월 28일 (목)

2020년 05월 28일 (목)~ 2020년 05월 29일 (금)

보고서 제출일 2021년 05월 07일 (금)

> 검수자 날짜 2020년 06월 02일 (화)

목차

1	기술실사 개요	5
1.1	실사목적	5
1.2	수행업체 정보	5
2.1	발전소 정보	6
2.2	부지 정보	6
2.2.1	부지의 지적, 경계, 평면사진	6
2.2.2	설치 전경	7
2.2.2.1	계획도	7
2.2.2.2	부지 전경	7
2.3	기상정보	8
2.3.1	기상정보 : 대구 기상대	8
2.3.1.1	관측 기상대 선정(대구 기상대)	8
2.3.1.2	기상대 5년 평균 정보(2015~2019年)	9
2.3.1.3	대구지역 월별 일사량 및 평균기온 그래프 (단위 : MJ/㎡, ℃)	9
2.3.2	기상정보 : 인근발전소(경남 합천 발전소)	10
2.3.2.1	인근발전소(합천 발전소) 2년 평균 정보 (2017~2018年)	10
2.3.3	기상정보 : SolarGIS	
2.3.3.1	SolarGIS	11
2.3.4	일조 시간 및 태양고도, 방위각 검토	11
2.3.5	기상데이터 검토(기상청/SolarGIS/인근발전소)	13
2.4	검토 정보	
2.5	측정장비 정보(준공 후 사용장비)	
2.6	기자재 정보	14
2.6.1	모듈 정보 [Hansol / HS405UD-HH2]	14
2.6.1.1	모듈 사양 [HS405UD-HH2]	15
2.6.1.2	모듈 규격	15
2.6.1.3	모듈 보증	15
2.6.1.4	모듈 시험성적서 및 제품 인증 [KS인2019-00456 / PV115002]	16
2.6.2	인버터 정보 [LS산전 / LSSP-T1000L]	18
2.6.2.1	인버터 사양 [LSSP-T1000L]	
2.6.2.2	 인버터 시험성적서 및 시험결과 [18-006598-01-1]	20
3	설계 및 시공의 적정성 검토_[미회신 자료]	
3.1	구조설계방법 및 적용기준	21
3.2	하 <mark>중설계</mark> 상태	21
3.3	구조 <mark>검토서</mark>	21
,	바고 그 그	0.4
4	발전소 검토	
4.1	Arra <mark>y 전기</mark> 적 특성 및 점검사항	21

4.2	이격거리 설계 검토	22
4.2.1	모듈구성(직·병렬) 검토	23
4.2.1.1	모듈 직렬수 검토(STC 조건)	
4.2.1.2	Array 특성결과에 따른 판단기준	23
4.2.1.3	모듈 직·병렬 구성 검토결과	23
Е	바지라 거드	24
5	발전량 검토 발전시간 분석 결과	24
5.1	말전시간 문식 걸과	24
5.2	에너지 손실량(Loss) 분석	24
6	결론 및 의견	26
U	ac 失 네인	20
7	Appendix(PVsyst,PVplanner)	27

시작하며,

본 보고서는 태양광 발전소 시공 계획 시의 태양광 모듈, 시스템 및 기타 전반적인 발전소 설치계획을 검토하고 결과를 공유함으로써, 성공적으로 발전소가 설치될 수 있도록 하는 것을 목적으로 한다.

검토 결과는 기준에 따라 달리 평가받을 수 있으며, 절대적인 판단 기준이나 법적 분쟁의 해결 수단으로 사용될 수 없다.

Project Technical Team

본 발전소 기술실사 서비스의 담당자는 아래와 같다.

점검자: 박용현 사원, 남구현 사원

보고서 : 박용현 사원

	검수자(Inspected by) / 날짜(Date)	2020.05.28	
	직위(Title)	사원	Park Tomban
	성명(Name)	박용현	(서명 또는 인)
확인	확인자(Confirmed by) / 날짜(Date)	2020.05.29	
복단 (Confirmation)	직위(Title)	대리	Junk
(Commination)	성명(Name)	조재웅	(서명 또는 인)
	승인자(Approved by) / 날짜(Date)	2020.06.01	1
	직위(Title)	팀장	Stant
	성명(Name)	김대중	(세명 또는 인)

1 기술실사 개요

1.1 실사목적

본 기술실사는 산청하이 2호 태양광발전소에 대한 기술자문을 위해 에스파워(취)에 기술실사 의뢰를 바탕으로 진행되었다. 본 태양광발전소는 경상남도 산청군 오부면 중촌리 산61 일원 에 위치하고 있는 산청하이 2호 태양광발전소에 대해 부지실사를 시행함으로써, 계획도면 검토와 현장 답사를 통해 얻은 결과를 토대로 각 발전소의 기술적인 설계, 부지 적합성, 기대 발전량 예측에 이르기까지 전반적인 사항을 검토 및 평가하여 본 발전소에 대해 정확한 판단을 할 수 있도록함을 목표로 한다.

1.2 수행업체 정보

수행업체	에스파워 주식회사
소 재 지	경기도 성남시 분당구 판교역로 241번길 20(삼평동, 미래에셋타워 3층)
대표자	서 동 열
사업자번호	144-81-21231
사업업태	제 조 업
사업종목	특수모듈제조 및 판매업
창 업 일	2014년 01월 02일

S-Power는 국내 최대 규모의 태양광발전소 관리·운영 전문회사입니다. 현재 국내·외 약 330MW의 태양광 발전소를 관리·운영하고 있습니다. 또한, S-Power 해외 법인(미국,일본,칠레 등) 현지 전문 0&M 엔지니어와 S-Power의 업계 최다 경험을 바탕으로 최고의 수익성을 보장하며, 유지관리를 위한 Total Solution을 제공하여 사후가 아닌, 사전관리 서비스를 제공합니다. 모듈제조 경험을 기반으로 한 모듈불량 진단과 A/S가 가능하며 전국 0&M 발전소 데이터를 기반으로 한 발전시간, PR등 Simulation 분석이 가능하고 예상 발전량 추정치 제공이 가능합니다. 단순 발전량 보증이 아닌 추가 발전량을 통한 Profit sharing이 가능하고 다수의 Renovation 사례를 통해 추가 발전수익을 창출에 기여하고 있습니다.

1.3 기술실사 일정

2.1 발전소 정보

고 객 명	산청하이 2호 태양광발전소 / 알파자산운용	
주 소	경상남도 산청군 오부면 중촌리 산61 일원	
설치모델	HS405UD-HH2 (Hansol)	
설치용량	933.12 kWp	
설치수량	2,304 EA	
설치위치	산, 임	
설치형태	Fixed Type	
인 버 터	LSSP-T1000L (LS산전)	N(180°)
직 렬	18 S	W(90°) ← ►E(-90°)
병 렬	128 P	5(0')

2.2 부지 정보

2.2.1 부지의 지적, 경계, 평면사진

주 소	경상남도 산청군 오부면 중촌리 산 61 일원
위 치	35°31′7.9″ N
경 도	127°54′40.8″ E
고 도	404m

2.2.2 설치 전경

2.2.2.1 계획도

2.2.2.2 부지 전경

부지는 산,임으로 전체 <u>경사가 약 10°</u>에 이르며 <u>측량된 공간 내 계획 용량으로 적절히 설계</u>되어야 한다. 부지 외곽 묘지, 민가가 존재하고 있으나 배수로 관리, 토사 유실, 관리 인접로 사용 등에 따른 민원이 발생하지 않도록 관리가 필요하다. 해당부지는 추후 잡초, 풀 등의 음영요소를 사전에 제거하기 위하여 <u>정기적인 제초작업이 필요</u>할 것으로 판단된다.

2.3 기상정보

2.3.1 기상정보 : <u>대구 기상대</u>

2.3.1.1 관측 기상대 선정(대구 기상대)

설치현장으로부터 직선거리 76.1km 떨어진 장소에 대구 기상대가 위치하고 있어 일사량 데이터를 활용 가능하다고 판단되어, 대구 기상대 데이터를 취합해본 결과 인근 발전소와의 데이터가 근사치로 확인되어 76.1km에 위치한 <u>대구 기상</u>대의 05년 일사량을 활용하였다.

2015	1월	2월	3월	4월	5월	6월	7월	8월	9월	10월	11월	12월
일사량	310.8	356.3	566.3	488.7	750.1	534.9	484.2	500.7	455.8	436.4	191.6	224.2
풍속	2.0	2.3	2.2	2.3	2.0	2.3	2.4	1.7	1.8	1.9	1.9	1.9
기온	2.3	3.8	9.2	14.6	21.7	22.9	25.0	26.0	20.6	15.8	11.0	4.5
2016	1월	2월	3월	4월	5월	6월	7월	8월	9월	10월	11월	12월
일사량	265.9	352.1	459.3	507.0	655.5	524.7	516.3	598.4	325.2	304.1	278.1	240.4
풍속	2.1	2.4	2.2	2.5	2.3	2.2	2.0	2.3	1.6	1.7	1.9	2.1
기온	-0.2	3.1	8.8	14.9	20.0	23.4	26.4	27.6	21.9	16.6	8.8	4.0
2017	1월	2월	3월	4월	5월	6월	7월	8월	9월	10월	11월	12월
일사량	301.0	381.1	490.8	575.1	668.1	664.1	475.5	535.6	473.3	339.8	321.6	285.6
풍속	2.5	2.8	2.3	2.3	2.3	2.4	1.9	2.2	1.8	1.8	2.0	2.6
기온	1.1	3.2	7.9	15.7	20.8	23.3	28.0	26.4	21.5	16.2	7.8	0.7
2018	1월	2월	3월	4월	5월	6월	7월	8월	9월	10월	11월	12월
일사량	311.4	356.3	470.4	559.9	569.9	575.5	583.5	544.9	391.1	417.4	290.1	260.6
풍속	2.5	2.5	2.3	2.6	2.4	2.2	2.2	2.4	1.9	1.8	1.3	2.1
기온	-0.9	1.3	9.2	15.0	19.2	23.6	28.2	27.7	21.0	14.3	8.8	2.0
2019	1월	2월	3월	4월	5월	6월	7월	8월	9월	10월	11월	12월
일사량	319.3	345.7	500.7	480.6	702.4	620.6	487.3	515.9	379.3	386.3	291.6	257.6
풍속	2.3	2.1	2.4	2.2	2.1	2.1	1.9	1.9	1.7	1.7	1.7	2.1
기온	1.7	4.0	9.4	13.5	20.7	22.8	25.8	27.4	22.6	16.8	9.8	3.5

2.3.1.2 기상대 5년 평균 정보(2015~2019年)

기상대	1월	2월	3월	4월	5월	6월	7월	8월	9월	10월	11월	12월
일사량	301.7	358.3	497.5	522.3	669.2	584.0	509.4	539.1	404.9	376.8	274.6	253.7
풍속	2.3	2.4	2.3	2.4	2.2	2.2	2.1	2.1	1.8	1.8	1.8	2.2
기온	0.8	3,1	8.9	14.7	20.5	23.2	26.7	27.0	21.5	15.9	9.2	2.9

2.3.1.3 대구지역 월별 일사량 및 평균기온 그래프 (단위 : MJ/㎡, ℃)

2.3.2 기상정보 : 인근발전소(경남 합천 발전소)

2.3.2.1 인근발전소(합천 발전소) 2년 평균 정보 (2017~2018年)

	1월	2월	3월	4월	5월	6월	7월	8월	9월	10월	11월	12월
발전시간	3.50	4.62	4.94	5.35	5.74	5.40	3.85	4.06	4.09	3.14	3.41	3.08
2010	3.50	4.08	4.34	4.97	4.72	4.42	4.47	4.06	3.27	4.08	2.90	2.46
평균												4.10

※ 참고: 해당 발전소는 Tracker&고정가변형 타입의 구조물임

2.3.3 기상정보 : SolarGIS

2.3.3.1 SolarGIS

- * Ghm : 전일사량의 월별 합계[kWh/m²]
- * Ghd[direct]:전일사량의 일일 합계[kWh/m²]
- * Dhd[diffude]:산란일사량의 일일 합계[kWh/m²]
- * T24[temperature] :일일(하루동안)대기 온도[C°]

2.3.4 일조 시간 및 태양고도, 방위각 검토

Date	Sunrise	Sunset	Duration of Sunshine Culmination		Elevation
1/1	7:38	17:11	9:33	12:25	31.39
1/15	7:27	17:10	9:43	12:19	32.83
1/30	7:14	17:17	10:03	12:16	35.89
2/15	6:58	17:31	10:33	12:15	40.55
2/27	6:48	17:45	10:57	12:17	44.74
3/15	6:33	18:08	11:35	12:21	51.24
3/21	6:29	18:16	11:47	12:23	53.61
3/30	6:21	18:30	12:09	12:26	57.16
4/15	6:08	18:51	12:43	12:30	63.25
4/30	5:54	19:09	13:15	12:32	68.42
5/15	5:42	19:23	13:41	12:33	72.75
5/30	5:29	19:32	14:03	12:31	75.94
6/15	5:19	19:36	14:17	12:28	77.83
6/21	5:17	19:36	14:19	12:27	78.10
6/30	5:16	19:33	14:17	12:25	78.04
7/15	5:18	19:27	14:09	12:23	76.72
7/30	5:28	19:17	13:49	12:23	73.99
8/15	5:44	19:07	13:23	12:26	69.77
8/30	6:03	18:56	12:53	12:30	64.88
9/15	6:26	18:45	12:19	12:36	59.00
9/21	6:35	18:40	12:05	12:38	56.69
9/30	6:48	18:33	11:45	12:41	53.19
10/15	7:08	18:21	11:13	12:45	47.42
10/30	7:25	18:06	10:41	12:46	42.02
11/15	7:38	17:49	10:11	12:44	37.08
11/30	7:44	17:33	9:49	12:39	33.62
12/15	7:44	17:19	9:35	12:32	31.63
12/21	7:42	17:15	9:33	12:29	31.30
12/30	7:38	17:11	9:33	12:25	31.34

▲ [Far shadings diagram]

1년간 태양 경로이며 지평선(회색면적)과 모듈 수평선(청색면적)은 태양 복사에 대하여 음영 영향이 있을 수 있다. 검정색 점들은 태양시(True Solar Time)를 나타내고, 청색선은 현지시간을 나타낸다.

▲ [Day length and solar zenith angle graph]

1년간 일<mark>조시간</mark>과 태양천정각의 변화이며 현지 일조 시간(태양이 수평면 위에 있을 때의 시간)은 더 높은 지대의 지평 선에 가려<mark>지는</mark> 경우, 천문학적 일조 시간보다 짧아질 수 있다.

** 해당 발전소의 위도, 경도, 고도 정보를 토대로 계산된 남중고도, 일조시간을 토대로 연 <u>평균 일조시간은 약 12시간</u>
30분간의 양호한 일조시간을 가지고 있으며 입사각은 하지78.10°, 동지 31.30°로 모듈 설치각도 15° 는 하절기 효율을 극대화 할 수 있도록 적절히 설계 및 선정되었다고 판단 된다.

남중고도(h)= 90° - 위도(ϕ) + 태양의 적위(δ) (ϕ > δ 인 경우) 90° - 태양의 적위(δ)+위도(ϕ) (δ > ϕ 인 경우)

2.3.5 기상데이터 검토(기상청/SolarGIS/인근발전소)

대구 기상청 해당 발전소 위,경도에 따른 SolarGIS의 수평일사량 등 여<mark>러 관측소</mark>와 관측기관의 일사량 Data를 인근 발전소의 일사량,발전량과 비교하여 가장 근사치의 Data를 얻은 기상청의 <u>일사량 Data를 해당 기술실사 발전량 검토 시</u>선정하였다.

2.4 검토 정보

검 토 자	에스파워(주)
검토인원	박용현 사원, 남구현 사원
검토일시	2020.05.28 (목) ~ 2020.06.01 (월)
검토내용	태양광 발전설비
날 씨	맑음

2.5 측정장비 정보(준공 후 사용장비)

구 분	장 비	비고
적외선 카메라	IR Camera	
기취단 기계기	IR 드론	
센서	포터블 일사량계	
	CLAMP meter	
	I-V Curve checker	
전기적 사양 측정	전력분석기	
	가선 전류계	
	String tester	
음영요소측정	음영요소 측정기기	

2.6 기자재 정보

2.6.1 모듈 정보 [Hansol/HS405UD-HH2]

2.6.1.1 모듈 사양 [HS405UD-HH2]

항목	값	항목	값
Voc(V)	49.3	Isc(A)	10.24
Vmp (V)	41.7	Imp (A)	9.72
Pmax (Wp)	405	NOCT (℃)	42(±3)
Temp. Coeff.Voc (V/℃)	-0.1357	Temp. Coeff.Isc (A/°C)	+0.0040
Temp. Coeff.Pmx (W/℃)	-1.2826		

* Voc (V): 개방전압으로 전기 회로의 임의의 두 단자 사이에 외부적으로는 아무것도 연결되지 않은 상태에서 측정한 저안

* Vmp (V): 최대출력 동작전압으로 임의의 두 단자 사이에 부하가 연결된 상태

에서 측정한 전압

* Pmax (Wp): 태양전지의 최대출력

* Isc (A): 단락전류로 전기 회로의 임의의 단자를 단락 했을 시 흐르는 전류

*Imp(A): 최대출력전류로 전기 회로의 부하가 연결된 상태에서 흐르는 전류

* NOCT (℃): 태양전지 동작온도로 표준기준환경 조건(조사강도 800W/㎡, 풍속 1m/s, 기온 20℃)에서 회로개방 상태인 태양전지의 전지접합이 열적 평형을 이루고 있는 상태의 평균 온도

* Temp. coeff. $Pmx(W/^{\circ}C)$: 최대출력 온도계수 * Temp. coeff. $Isc(A/^{\circ}C)$: 단락전류 온도계수

* Temp. coeff. Voc(V/℃): 개방전압 온도계수

2.6.1.2 모듈 규격

구분	모델명
모델명	HS405UD-HH2
셀타입	단결정
전지크기	156.75mm * 26.49mm(25.94mm)
배열	144 cell
모듈규격	2,018mm * 1010mm * 40mm (프레임 포함)
중량	23kg
최대하중	풍 2400Pa / 설 5400Pa

2.6.1.3 모듈 보증

항 목	내 용
제품보증(제조사)	10년 제품 보증
출력보증(제조사)	Linear 출력보증 25년

2.6.1.4 모듈 시험성적서 및 제품 인증 [KS인2019-00456 / PV115002]

시 험 성 적 서(인증심사용)

시험의뢰일자: 2019년 10월 23일 접수번호: KS인2019-00456

의 뢰 인 기관 명: 한솔테크닉스(주)

소재지 (전화번호): 충청북도 청주시 흥덕구 옥산면 과학산업1로 140 TEL: 043-219-3266

성 명: 박현순

1. 표 준 명 : KS C 8561 결정질 실리콘 태양광발전 모듈(성능)

2. 종류ㆍ등급 또는 호칭 : 결정질 태양전지 모듈

3. 시험·검사수량: n=6

4. 시 형 기 간: 2019.10.23 ~ 2019.10.29

5. 합격 여부 판정 : 합격

「산업표준화법 시행규칙」 별표 9 제2호 마목에 따라 붙임과 같이 시험성적서를 송부합니다.

붙 임: 시험결과 1부

2019 년 10월 31일

한국기계전기전자시험연구

제 ġ. 최초인증일 : 2015년 12월 30일 PV0115002

품 중 서 제

1. 제 조 업 체 명 : 한솔테크닉스㈜

2. 대 표 자 성 명 : 박현순

3. 공 장 소 재 지 : 충북 청주시 홍덕구 옥산면 과학산업1로 140 한솔테크닉스 오창공장

4. 인 중 제 품

가. 표 준 명 : 결정질 태양전지 모듈

나. 표준번호: KS C 8561 다. 종류등급호칭 또는 모델 :

- HS405UD-HH2 외 215개

(인증제품 모델의 특징, 업체 정보의 변경 이력은 부속서 2 및 3을 따름)

산업표준화법 제17조 제1항에 따른 인중심사를 한 결과 한국산업 표준 (KS)과 인중심사기준에 적합하므로, 산업표준화법 제15조 및 같은 법 시행규칙 제10조 제1항에 따라 위와 같이 한국산업표준(KS)에 적합함을 인중합니다.

2015년 12월 30일

(정기심사 기한일: ~ 2021.12.28)

한국에너지공단 부설

신 재 생 에 너 지 센 터 소 장

ㅇ 인중서 사용처 : 제출용

ㅇ 출력(다운로드) 일자 : 2019-11-26 11:14:40

출력자 병(담당자) : 나영지책임 부속서 1 : KS인증기업 관련 세부정보 1부

부속서 2 : KS인증제품 모델별 특징 및 변경이력 1부

부속서 3 : KS인증 기업 정보 변경 이력 1부 부속서 4 : KS모델 인증 리스트 1부. 끝.

2.6.2 인버터 정보 [LS산전 / LSSP-T1000L]

2.6.2.1 인버터 사양 [LSSP-T1000L]

	구분	LSSP-T1000L	비고
	상수	3상	
시스템구성	출력 연계방식	MPPT	
	설계 방식	Transformerless	
	최대허용입력전압 (V)	1,000	
입력사항	입력전압 범위	550 ~ 1,000	
B 7.10	MPPT (Vdc)	460 ~ 850	
	최대입력 DC 전류 (A)	1,220	
	최대연속 출력전력 (kW)	2,016	
출력사항	정격 출력전압 (V)	315	
27.10	정격 출력전류 (A)	1,000	
	정격 출력주파수 (Hz)	50/60	
	냉각방식	강제 공냉식	
	최대 효율 (%)	>99	
	European 효율 (%)	>98.7	
	역률	>0.97	
시스템 사양	동작 온도범위 (℃)	-35 ~ 50	
11— = 110	Electronics 보호등급	IP54	옥외형
	외형사이즈(mm)	2,800 * 2,240 * 1,100	W * H * D
중량 및 기타	중량 (kg)	3,000	
00 2 17	보호기능	사양서 참조	

IGBT 병렬운전을 통한 안전성이 강화된 제품으로서 입,출력 과전압, 과전류 보호기능이 탑재되어 있고 단독 운전 방지 (Anti-Islanding) 및 MPPT(Max Power Point Tracking)기능이 있으며 계통의 전압, 전류, 주파수 이상 시 Insulation 기능이 있는 계통연계형 인버터이다. 사업계획서 상의 인버터 설계용량 이상이고, 인버터에 연결된 모듈의 설치용량은 인버터의 설치용량 105% 이내로 적정한 용량으로 설치되어 있는 상태이다. 인버터에 연계되는 <u>DC전력(태양광모듈용량의 합계)은 933.12kW로 인버터 용량인 1000.0kW 범위 이내로 적정</u>하다고 판단된다.

2.6.2.2 인버터 시험성적서 및 시험결과 [18-006598-01-1]

시험성적서

성적서 번호 : 18-006598-01-1

페이지 (1)/(총 14) Page of Pages

1. 의 뢰 자 (Client)

기 관 명 (Name) : 엘에스산전(주)

소 (Address) : 경기도 안양시 동안구 엘에스로 127(호계동)

의뢰일자 (Date of Receipt): 2018. 01. 30.

2. 시험성적서의 용도 (Use of Report): 일반성능 확인용

3. 시험대상품목/물질/시료명 (Test Sample)

제 품 명 (Description): 태양광 발전용 인버터 (계통연계형)

제작회사 (Manufacturer) : SUNGROW

모 델 명 (Model Name): LSSP-T1000L / 1000 kW

제조번호 (Serial Number): A1803084277

기 타 (Remark):

4. 시험기간 (Date of Test): 2018년 03월 19일 ~ 2018년 03월 22일

5. 시험규격/방법 (Test Standard/Method): KS C 8565:2016 및 의뢰자 제시 방법

6. 시험환경 (Testing Environment)

온도 (Temperature): (21.5 ± 3.5) ℃. 습도 (Humidity): (42 ± 3)% R.H.

7. 시험결과 (Test Results): 별첨결과 참조 (Refer to the attached results)

비고(Note): 1.이 성적서는 의뢰자가 제출한 시료에 대한 시험결과이며, (The test results contained apply only to the test sample(s) supplied by the client)

우리 원의 사건 등의 없이 본성적서의 전부 혹은 일부를 복사를 할 수 없습니다.
(This test report shall not be reproduced in full or in part without approval of the KTL in advance.)

작성자(Tested by) 01

기술책임자(Technical Manager)

Affirmation

성 명(Name): 이귀한

(Signature) 성 명(Name): 모성희

(Signature)

2018. 03. 27.

한국산업기술시험원장

경기도 안산시 상록구 해안로 723(723, Haean-ro, Sangnok-gu, Ansan-si, Gyeonggi-do, KOREA) Tel.031-500-2527 Fax. 031-500-2511

3 설계 및 시공의 적정성 검토_[미회신 자료]

3.1 구조설계방법 및 적용기준

설계방법	-
적용법령	-
적용규칙	
적용기준	-
적용시방	-
참고기준	-

3.2 하중설계 상태

풍하중	-	-	-	-		
3 13	-	-	-	-		
적설하중	-					
1210	-		-			

3.3 구조검토서

4 발전소 검토

[준공 후 재검토 예정]

4.1 Array 전기적 특성 및 점검사항

[준공 후 재검토 예정]

4.2 이격거리 설계 검토

어레이 설치 상태(경사)								
모듈	W (mm)	1010	설치 형태	세로	태양	25		
사이즈	H (mm)	2018	단 수	2	입사각(°)	25		
지면 높이	h (mm)	1228						

h: 지면에서의 높이

어레이 간 최소 이격거리							
	구분 태양 입사각(°)						
-	<u></u>	22	23	24	25	26	
	13	3140	3178	3214	3246	3276	
	14	3293	3323	3351	3377	3400	
	15	3445	3466	3487	3505	3522	
각도(*)	16	3594	3607	3620	3632	3643	
	17	3741	3747	3752	3757	3761	
	18	3886	3884	3882	3880	3878	
	19	4029	4019	4009	4001	3992	

어레이 간 실측 이격거리 적합성 검토								
구분	설치 각도 (°)	이격거리 (mm)	음영길이 (mm)	적합여부	모듈 하단에 발생하는 음영 길이 (mm)			
	13.0	4470	3246	적합	-1193			
	14.0	4470	3377	적합	-1061			
Α	15.0	4470	3505	적합	-932			
'	16.0	4470	3632	적합	-806			
	17.0	4470	3757	적합	-682			

모듈각도는 15°이며, 태양입사각은 25°, 부지각도는 7°이다. 어레이 간 이격거리는 도면상 4,470mm로 상기와 같이 최소 이격거리인 3,505mm 이상으로 이격거리 설계는 적합한 것으로 판단되며, 착공 진행 시 지면에서의 높이를 고려한 시공이 이루어져 음영간섭에 의한 발전량 손실을 최소화 할 수 있다..

4.2.1 모듈구성(직·병렬) 검토

4.2.1.1 모듈 직렬수 검토(STC 조건)

1) 모듈의 최저 직렬수 = $\frac{PCS \, 0$ 력전압 변동범위 최저값 $PCS \, 0$ 모듈 최대출력 동작전압 $PCS \, 0$ 모듈의 최대 직렬수 = $\frac{PCS \, 0$ 력전압 변동범위 최고값 $PCS \, 0$ 모듈 개방전압 $PCS \, 0$ 모듈 $PCS \, 0$ 구듈 가방전압 $PCS \, 0$ 모듈 $PCS \, 0$ 구들 가방전압

4.2.1.2 Array 특성결과에 따른 판단기준

1) Voc측정 판단 기준

예시 Temperature Coefficient of Voc -0.275%/°C

모듈 온도 **-20℃인 경우**: 모듈 온도 -20℃ - STC25℃ = -45℃값을 위 식에 계산 - 0.275% X -45 = 12.375%로 모듈 1장당 개방전압 49.0V X (1+0.12375) = 55.4008 V 18직렬 시 **997.21V** 전압측정

2) Imp측정 판단 기준

모듈 온도 25℃기준 1000W/m³시 9.72A로 온도 변화에 의한 전류값의 변화는 적음. 일사량의 경향으로 그 값을 판단.

※ 상기 계산식은 구름에 의한 음영이 없는 경우에 판단되는 일반 계산식임을 참조.

4.2.1.3 모듈 직·병렬 구성 검토결과

검토결과 : 양호

■ 어레이 설계	■ 어레이 설계 (인버터 1대 기준)									
구분	직렬	병렬	수량	총 용량	MPPT	전압		최대입력전압(2)		
⊤ट	72	82	T8	5 5 5	(1	L)	Voc 기준	최저온도적용	최고온도적용	Imp 기준
단위	EA	EA	EA	W	١	/		V		Α
인버터사양	18	128	1	933	460	850		1000		2440
	12	192	2304	933,120	500.4	500.4	591.6	647.9	519.2	1866.2
	13	177	2301	931,905	542.1	542.1	640.9	701.9	562.5	1720.4
	14	164	2296	929,880	583.8	583.8	690.2	755.9	605.7	1594.1
	15	153	2295	929,475	625.5	625.5	739.5	809.9	649.0	1487.2
	16	144	2304	933,120	667.2	667.2	788.8	863.9	692.3	1399.7
	17	135	2295	929,475	708.9	708.9	838.1	917.9	735.5	1312.2
조정 값	18	128	2304	933,120	750.6	750.6	887.4	971.9	778.8	1244.2
T.9 W	19	121	2299	931,095	792.3	792.3	936.7	1025.9	822.0	1176.1
	20	115	2300	931,500	834.0	834.0	986.0	1079.9	865.3	1117.8
	21	109	2289	927,045	875.7	875.7	1035.3	1133.9	908.6	1059.5
	22	104	2288	926,640	917.4	917.4	1084.6	1187.9	951.8	1010.9
	23	100	2300	931,500	959.1	959.1	1133.9	1241.8	995.1	972.0
	24	96	2304	933,120	1000.8	1000.8	1183.2	1295.8	1038.4	933.1
	25	92	2300	931,500	1042.5	1042.5	1232.5	1349.8	1081.6	894.2

5 발전량 검토

5.1 발전시간 분석 결과

일사량 기준은 국내 <u>대구기상청 5년 평균 일사량인 1,470.0kW/㎡</u>을 적용했다. 일사량이 보장되는 기준으로 발전소 관리에 관심을 갖고 <u>정기적인 예방점검이 진행된다면 기대 발전량이 나올 것으로 예상된다.</u>

구분	수평면 일사량(kW/m²)	Performance Ratio (%)	발전시간(h)	연 발전량(MWh/year)
P50 값	1,470.0	83.43	3.68	1,253

- ▶ P75 = 발전량(1,236,969 kWh), 발전시간(3.63h)
- ▶ P90 = 발전량(1,222,717 kWh), 발전시간(3.59h)
- PVsyst 6.8.1 ver

5.2 에너지 손실량(Loss) 분석

	에너지변환 단계	에너지 출력[kWh/ <i>m</i> ²]	에너지 손실 및 변환율[%]
1	수평면 일사량	1470.0	
2	경사면 일사량	1609.7	9.5%
3	경사면 일사량 <pv loss<="" syst의="" td="" 시="" 임계값=""><td>1608.5</td><td>-0.1%</td></pv>	1608.5	-0.1%
4	Far shading loss (예: 산, 산맥)	1579.6	-1.8%
5	Near shading loss	1579.3	0.0%
6	모듈 Glass의 산란,반사율 loss	1530.0	-3.1%
	모듈 표면의 퇴적물로 인한 loss	1514.7	-1.0%
7	전체 발전소 모듈의 Cell 총 넓이 4,696 m^2	1514.7	→ 7,112,944 [kWh/kWp]
8	태양광 모듈 효율	1,414,765	19.89%
9	일사량 변화에 따른 모듈 출력 loss	1,387,743	-1.9%
10	온도 변화에 따른 모듈 출력 loss	1,354,159	-2.4%
11	모듈 시험성적서에 따른 허용 오차 loss	1,347,388	-0.5%
12	모듈의 최초 발전시, 성능 저하 loss	1,320,441	-2.0%
13	모듈 간, 어레이 간 전압, 전류의 차이로 인한 loss	1,305,916	-1.1%
14	DC 측 케이블 전압 강하 loss	1,291,159	-1.1%
15	인버터 효율에 따른 loss	1,274,632	-1.3%
16	인버터 정격전력 초과 loss	1,274,632	0.0%

17	인버터 최대입력전류 초과 loss	1,274,632	0.0%
18	인버터 정격전압범위 초과 loss	1,274,632	0.0%
19	인버터 동작에 Power 부족으로 인한 loss	1,274,377	0.0%
20	인버터 최소동작전압보다 낮은 전압으로 인한 loss	1,274,377	0.0%
21	보조 기계(팬,기타)	1,274,377	0.0%
22	발전소의 비가동률	1,260,996	-1.1%
23	AC 측 케이블 전압강하 loss	1,257,844	-0.3%
24	외부 변압기에 따른 loss	1,251,554	-0.5%

▶ 일사량 손실량 : -95.0 kWh/m², -6.0% 수준 (경사일사량 기준)

발전량 손실량: -163,210 kWh, -12.2% 수준

발전소 인근 지역 기상청/해당 발전소 위도 경도에 따른 SolarGIS의 수평일사량 등 여러 관측소의 일사량을 비교 후, 인근 발전소의 발전시간과 비교하였을 때, 가장 근사치인 기상대(5년 평균) 일사량 값을 선택하여, 그에 따른 모듈의 설치 각도, 방위각 등을 고려한 경사면 일사량이 산출되었다. 또한 PV Planner 및 Suneye를 통한 발전소 기준 수평선으로 산 혹은 산맥으로 인한 Far Shading을 적용시켰으며, 내부적으로 국내 기준 모듈의 오염이 심해지는 항구 근처, 적설량이 심한 강원도 지역의 경우 Soiling 2%로 고려하고 있으며, 기타 외 지역은 1%로 통상적인 Loss를 가지고 있다. DC,AC 케이블 전압 강하율은 케이블의 길이 및 두께를 고려하여 계산 되었으며, 전기사업법 시행규칙 18조(저압수전 2%, 고압수전 3%)의 기준과 모듈,인버터,책임분계선까지의 케이블 거리를 고려하여 DC 1.2% AC 0.3%로 총 손실율을 1.5%로 검토하였다. 그 외, 모듈 및 인버터의 제조사별 Glass 반사율, 온도계수, 최대효율, 유로 효율 등의 다양한 변수에 따라 Loss를 산정하였다. 또한, 분기 1회 매년 4회 점검을 기준으로 불가항력적 발전정지시간 등을 고려하여 발전소 점검 시최소 비가동일수는 3.65일(1%)로 산정하였다.

6 결론 및 의견

본 발전소에 대한 기술실사 결과를 간략히 정리하면 다음과 같다.

- I. 모듈 직·병렬 검토 결과, 인버터 사양에 명시된 최대입력전류 허용범위에 포함되어 설계 및 설치가 적합하게 된 것으로 확인되었다.
- II. 또한 계획부지 인근의 수목음영으로 인한 발전량 손실이 예상되며, 벌목 등 음영요소 제거를 통해 발전량 손실을 최소화 할 것을 권장한다.
- III. 설계와 시공 상태에 따른 발전량 추정에는 Solar GIS, PVsyst, 인근 발전소의 관리운영 데이터를 종합하여 분석하였으며 특별한 문제가 발생하지 않는다면 발전량 달성에 큰 문제는 없을 것으로 판단된다. 기대 발전량 예측을 위해 PVsyst 6.8.1ver. 사용했으며, 손실율은 폐사의 O&M 경험 데이터를 적용하면 <u>기대 발전량</u>은 P50에서 연 1,253 MWh (3.68h)이다.

7 Appendix(PVsyst,PVplanner)

Sancheonghi 2ho .PVplant PVsyst	1부	Sancheonghi 2ho .PVplanner	1부
Report	' 	Sancheoligiii Zilo .F v plannei	'-