

Sistema com 1 grau de liberdade - Regime livre (sub-amortecido)

Regime livre:

$$\sum F = 0$$

Condições iniciais:

$$x(t = 0) = X_0$$

$$\dot{x}(t = 0) = V_0$$

Equação de movimento:

$$m\ddot{x}(t) + c\dot{x}(t) + Kx(t) = 0$$

Sistema com 1 grau de liberdade - Regime livre (sub-amortecido)

$$x(t) = Xe^{-\xi\omega_n t} \cos\left(\omega_n \sqrt{1 - \xi^2}t - \phi\right)$$

$$X = \sqrt{X_0^2 + \left(\frac{V_0 + \xi \omega_n X_0}{\omega_n \sqrt{1 - \xi^2}}\right)^2}$$
 Amplitude

$$\phi = \operatorname{tg}^{-1}\left(\frac{V_0 + \xi \omega_n X_0}{X_0 \omega_n \sqrt{1 - \xi^2}}\right)$$
 Ângulo de fase

$$c_c = 2m\omega_n$$
 $\omega_n = \sqrt{\frac{K}{m}}$ $\xi = \frac{c}{c_c} = \frac{c}{2m\omega_n}$

Sistema com 1 grau de liberdade – Regime forçado

Regime forçado:

$$\sum F \neq 0$$

Condições iniciais:

$$x(t = 0) = X_0$$

$$\dot{x}(t = 0) = V_0$$

Equação de movimento:

$$m\ddot{x}(t) + c\dot{x}(t) + Kx(t) = f(t)$$

Regime forçado harmónico:

$$f(t) = Fcos(\omega t)$$

Condições iniciais:

$$x(t = 0) = X_0$$

$$\dot{x}(t = 0) = V_0$$

Equação de movimento:

$$m\ddot{x}(t) + c\dot{x}(t) + Kx(t) = F\cos(\omega t)$$

 ω: frequência angular do carregamento harmónico (excitação harmónica)

Equação de movimento:

$$m\ddot{x}(t) + c\dot{x}(t) + Kx(t) = F\cos(\omega t)$$

Sistema sub-amortecido

A solução da equação de movimento é do tipo:

$$x(t) = x_h(t) + x_p(t)$$

Resposta particular (ou permanente)

Resposta homogénea (ou natural)

Resposta homogénea: (determinada pela resposta natural do sistema)

Resposta particular: (determinada pelo carregamento imposto)

$$m\ddot{x}(t) + c\dot{x}(t) + Kx(t) = 0$$

$$x_h(t) = e^{-\xi\omega_n t} (A_1 \cos(\omega_d t) + A_2 \sin(\omega_d t))$$

$$x_p(t) = B_1 \cos(\omega t) + B_2 \sin(\omega t)$$

$$x_{p}(t) = B_{1}\cos(\omega t) + B_{2}\sin(\omega t)$$

Resposta particular: (determinada pelo carregamento imposto)

$$\dot{x}_{v}(t) = -\omega B_{1} \sin(\omega t) + \omega B_{2} \cos(\omega t)$$

$$\ddot{x}_p(t) = -\omega^2 B_1 \cos(\omega t) - \omega^2 B_2 \sin(\omega t)$$

Equação de movimento:

$$m\ddot{x}(t) + c\dot{x}(t) + Kx(t) = F\cos(\omega t)$$

Resposta do sistema em regime estacionário ($x_h = 0$)

$$m\ddot{x_p}(t) + c\dot{x}_p(t) + Kx_p(t) = F\cos(\omega t)$$

$$[(K - m\omega^2)B_1 + c\omega B_2]\cos(\omega t) +$$

$$[-c\omega B_1 + (K - m\omega^2)B_2]\sin(\omega t) = F\cos(\omega t)$$

$$[(K - m\omega^2)B_1 + c\omega B_2]\cos(\omega t) +$$

$$[-c\omega B_1 + (K - m\omega^2)B_2]\sin(\omega t) = F\cos(\omega t)$$

$$[(K - m\omega^2)B_1 + c\omega B_2]\cos(\omega t) = F\cos(\omega t) \qquad e \qquad [-c\omega B_1 + (K - m\omega^2)B_2]\sin(\omega t) = 0$$

$$[-c\omega B_1 + (K - m\omega^2)B_2]\sin(\omega t) = 0$$

$$B_1 = F \frac{K - m\omega^2}{(K - m\omega^2)^2 + (c\omega)^2}$$
 e $B_2 = F \frac{c\omega}{(K - m\omega^2)^2 + (c\omega)^2}$

$$B_2 = F \frac{c\omega}{(K - m\omega^2)^2 + (c\omega)^2}$$

Assim, a resposta particular $x_p(t) = B_1 \cos(\omega t) + B_2 \sin(\omega t)$ é definida por:

$$x_p(t) = X_S \frac{1}{\sqrt{(1-\beta^2)^2 + (2\xi\beta)^2}} \cos(\omega t - \phi)$$

$$\beta = \frac{\omega}{\omega_n}$$

Razão de frequências

$$X_{S} = \frac{F}{K}$$

Deslocamento estático

$$\beta = \frac{\omega}{\omega_n}$$
 Razão de frequê
$$X_S = \frac{F}{K}$$
 Deslocamento e
$$\phi = \operatorname{tg}^{-1}\left(\frac{2\xi\beta}{1-\beta^2}\right)$$
 Ângulo de fase

$$\beta = \frac{\omega}{\omega_n}$$

- Razão de frequências

$$X_{s} = \frac{F}{K}$$

- Deslocamento estático

$$\beta = \frac{\omega}{\omega_n} - \text{Razão de frequêr}$$

$$X_s = \frac{F}{K} - \text{Deslocamento es}$$

$$\phi = \text{tg}^{-1}\left(\frac{2\xi\beta}{1-\beta^2}\right) - \hat{\text{Angulo de fase}}$$

$$\mu = \frac{1}{\sqrt{(1 - \beta^2)^2 + (2\xi\beta)^2}}$$

: fator de amplificação dinâmica

$$x_p(t) = X_S \frac{1}{\sqrt{(1-\beta^2)^2 + (2\xi\beta)^2}} \cos(\omega t - \phi)$$

$$\beta = \frac{\omega}{\omega_n} \qquad - \text{Razão de frequências}$$

$$X_S = \frac{F}{K} \qquad - \text{Deslocamento estático}$$

$$\phi = \operatorname{tg}^{-1}\left(\frac{2\xi\beta}{1-\beta^2}\right) - \hat{\text{Angulo de fase}}$$

$$\beta = \frac{\omega}{\omega_n}$$

$$X_{S} = \frac{F}{K}$$

$$\phi = tg^{-1} \left(\frac{2\xi \beta}{1 - \beta^2} \right)$$

$$\mu = \frac{1}{\sqrt{(1 - \beta^2)^2 + (2\xi\beta)^2}}$$

: fator de amplificação dinâmica

$$\mu_{MAX} \Rightarrow \min[(1 - \beta^2)^2 + (2\xi\beta)^2] \implies \frac{\partial[(1 - \beta^2)^2 + (2\xi\beta)^2]}{\partial\beta} = 0 \implies \beta = \sqrt{1 - 2\xi^2}$$

$$\mu = 1 \Rightarrow (1 - \beta^2)^2 + (2\xi\beta)^2 = 1$$
 \Rightarrow $1 + \beta^4 - 2\beta^2 + 4\xi^2\beta^2 = 1$ \Rightarrow $\beta = 0$

$$\mu = 0$$
 $\beta = 0$

```
10<sup>1</sup>
10<sup>-1</sup>
 3.5
   3
 2.5
   2
 1.5
   1
 0.5
                          10
                                     15
                                               20
                                                          25
                                                                     30
                                                                                35
```

```
function [x,t] = sdof harm 1(m,k,c,x0,v0)
%% fator de amplificacao dinamica
wn = sqrt(k/m);
cc=2*sqrt(k*m);
qsi=c/cc;
fn=wn/(2*pi);
wd=wn*sqrt(1-qsi^2);
fd=wd/(2*pi);
T=1/fd;
w=linspace(0,10000)*wn/2500;
b=w/wn;
miu=1./sqrt((1-b.^2).^2+(2*qsi.*b).^2);
phi=atan2(2*qsi.*b,(1-b.^2));
figure (1); semilogy (w, miu); hold on
figure(2);plot(w,phi);hold on
>> for c=0:20
sdof harm 1(1,100,c,0,0)
end
```


$$\mu = \frac{1}{\sqrt{(1 - \beta^2)^2 + (2\xi\beta)^2}}$$

: fator de amplificação dinâmica

para
$$\beta = \sqrt{1 - 2\xi^2}$$
 (μ_{MAX})

$$\mu = \frac{1}{\sqrt{(1 - 1 - 2\xi^2)^2 + \left(2\xi\sqrt{1 - 2\xi^2}\right)^2}} \Rightarrow \quad \mu = \frac{1}{2\xi\sqrt{1 - \xi^2}} \qquad \Longrightarrow \quad \xi = 0 \Rightarrow \mu = \infty$$

$$\phi = \operatorname{tg}^{-1}\left(\frac{2\xi\beta}{1-\beta^2}\right)$$

: ângulo de fase

$$\beta < 1 \Rightarrow \omega < \omega_n \qquad \phi \in [0, \frac{\pi}{2}] \qquad \{\xi = 0 \Rightarrow \phi = 0\}$$

$$\beta = 1 \Rightarrow \omega = \omega_n \qquad \phi = \frac{\pi}{2}$$

$$\beta > 1 \Rightarrow \omega > \omega_n \qquad \phi \in [\frac{\pi}{2}, \pi] \qquad \{\xi = 0 \Rightarrow \phi = \pi\}$$

Driven Mechanical Oscillator

MIT Physics Lecture Demonstration Group

Resposta do sistema SDOF

$$X_S = \frac{F}{K}$$
 : deslocamento estático

$$\mu = \frac{1}{\sqrt{(1-\beta^2)^2 + (2\xi\beta)^2}}$$
 : fator de amplificação dinâmica

Resposta do sistema SDOF para $\beta = 1$

$$x(t) = e^{-\xi \omega_n t} [A_1 \cos \omega_d t + A_2 \sin \omega_d t] + X_s \mu \cos(\omega t - \phi)$$

$$\beta = 1 \Rightarrow \mu = \frac{1}{2\xi} \left[\begin{array}{c} \\ \\ \end{array} \right] \qquad x(t) = e^{-\xi \omega_n t} \left[A_1 \cos \omega_d t + A_2 \sin \omega_d t \right] + \frac{X_s}{2\xi} \cos(\omega t - \phi)$$

Considerando condições iniciais nulas $(X_0 = 0 \text{ e } V_0 = 0)$

$$A_1 = 0$$
 $A_2 = -\frac{X_S}{2\xi} \frac{\omega}{\omega_d} = -\frac{X_S}{2\xi} \frac{\omega}{\omega_n \sqrt{1 - \xi^2}} = -\frac{X_S}{2\xi} \frac{\beta}{\sqrt{1 - \xi^2}} = -\frac{X_S}{2\xi \sqrt{1 - \xi^2}}$

$$x(t) = e^{-\xi \omega_n t} \left[-X_s \frac{1}{2\xi \sqrt{1 - \xi^2}} \sin \omega_d t \right] + \frac{X_s}{2\xi} \sin(\omega t)$$

$$\beta = 1 \Rightarrow \phi = \frac{\pi}{2}$$

$$\beta = 1 \Rightarrow \phi = \frac{\pi}{2}$$

Resposta do sistema SDOF para $\xi = 0$

$$x(t) = [A_1 \cos \omega_d t + A_2 \sin \omega_d t] + X_s \mu \cos(\omega t - \phi)$$

$$\xi = 0 \Rightarrow \mu = \frac{1}{\sqrt{(1 - \beta^2)^2}} = \frac{1}{|1 - \beta^2|}$$

Considerando condições iniciais nulas $(X_0 = 0 \text{ e } V_0 = 0)$

$$x(t) = \left[-\frac{X_s}{|1 - \beta^2|} \cos\phi \cdot \cos\omega_n t \right] + \frac{X_s}{|1 - \beta^2|} \cos(\omega t - \phi)$$

$$\beta < 1 \Rightarrow \phi = 0$$

 $\beta < 1 \Rightarrow \omega < \omega_n \Rightarrow \cos(\omega) > \cos(\omega_n)$

$$\beta > 1 \Rightarrow \phi = \pi$$

 $\beta > 1 \Rightarrow \omega > \omega_n \Rightarrow \cos(\omega) < \cos(\omega_n)$

$$x(t) = -\frac{X_s}{|1 - \beta^2|} [\cos \omega_n t - \cos \omega t]$$

$$x(t) = +\frac{X_s}{|1 - \beta^2|} [\cos \omega_n t - \cos \omega t]$$

$$\beta < 1 \Rightarrow \phi = 0$$

 $\beta < 1 \Rightarrow \omega < \omega_n \Rightarrow \cos(\omega) > \cos(\omega_n)$

$$x(t) = -\frac{X_s}{|1 - \beta^2|} [\cos \omega_n t - \cos \omega t]$$

$$\beta > 1 \Rightarrow \phi = \pi$$

 $\beta > 1 \Rightarrow \omega > \omega_n \Rightarrow \cos(\omega) < \cos(\omega_n)$

$$x(t) = +\frac{X_s}{|1 - \beta^2|} [\cos \omega_n t - \cos \omega t]$$

$$\beta < 1 \Rightarrow \phi = 0$$

 $\beta < 1 \Rightarrow \omega < \omega_n \Rightarrow \cos(\omega) > \cos(\omega_n)$

$$x(t) = -\frac{X_s}{|1 - \beta^2|} [\cos \omega_n t - \cos \omega t]$$

$$\beta > 1 \Rightarrow \phi = \pi$$

 $\beta > 1 \Rightarrow \omega > \omega_n \Rightarrow \cos(\omega) < \cos(\omega_n)$

$$x(t) = +\frac{X_S}{|1 - \beta^2|} [\cos \omega_n t - \cos \omega t]$$

Resposta do sistema SDOF para $\beta = 1$ e $\xi = 0$

$$x(t) = \left[-\frac{X_S}{|1 - \beta^2|} \cos\phi \cdot \cos\omega_n t \right] + \frac{X_S}{|1 - \beta^2|} \cos(\omega t - \phi)$$

Consideremos o limite $\beta \rightarrow 1 \Rightarrow \omega \rightarrow \omega_n$

$$x(t) = \frac{g(x)}{f(x)} \qquad \lim_{\omega \to \omega_n} \frac{g(x)}{f(x)} = \lim_{\omega \to \omega_n} \frac{dg(x)/d\omega}{df(x)/d\omega} = \frac{1}{2} X_s \omega_n t \sin(\omega_n t)$$
Regra de L'Hopitále

<u>Transmissibilidade de força</u>

Força transmitida à base

$$f_T(t) = K x(t) + c\dot{x}(t)$$

A resposta homogénea do sistema é dada por:

$$x(t) = X(\omega)\cos(\omega t - \phi)$$

onde

$$X(\omega) = X_{s}\mu$$

$$\phi = tg^{-1} \left(\frac{2\xi\beta}{1-\beta^{2}}\right)$$

$$X_{s} = \frac{F}{K}$$

$$\mu = \frac{1}{\sqrt{(1-\beta^{2})^{2} + (2\xi\beta)^{2}}}$$

<u>Transmissibilidade de força</u>

<u>Transmissibilidade de força</u>

$$f_{T}(t) = F \cdot \frac{\sqrt{1 + (2\xi\beta)^{2}}}{\sqrt{(1 - \beta^{2})^{2} + (2\xi\beta)^{2}}} \cos(\omega t - \varphi)$$

$$T_{F}$$

Força transmitida à base

$$f_T(t) = K x(t) + c\dot{x}(t)$$

A resposta permanente do sistema é dada por:

$$\begin{split} x(t) &= X(\omega) \cos(\omega t - \phi) \\ f_T(t) &= K x(t) + c\dot{x}(t) \\ &= K.X(\omega) \cos(\omega t - \phi) - c.X(\omega) \omega \sin(\omega t - \phi) \\ &= \sqrt{K^2 + (\omega c)^2}.X(\omega) \cos(\omega t - \phi - \gamma) \\ \gamma &= tg^{-1} \left(\frac{\omega c}{K}\right) = tg^{-1}(2\xi\beta) \\ &= \sqrt{\left(\frac{K}{K}\right)^2 + \left(\frac{c\omega}{K}\right)^2}.\frac{F}{K} \frac{1}{\sqrt{(1-\beta^2)^2 + (2\xi\beta)^2}} \cos(\omega t - \phi) \end{split}$$


```
function [x,t] = sdof_harmFT(m,k,c)
wn=sqrt(k/m);
cc=2*sqrt(k*m);
qsi=c/cc;
fn=wn/(2*pi);
disp(['wn:', num2str(wn), ' rad/s']);
disp(['Cc:',num2str(cc),' N/m.s']);
disp(['Qsi:',num2str(qsi)]);
w=linspace(0,3*wn, 10000);
b=w/wn;
disp(['beta:',num2str(b)]);
TF=sqrt((1+(2*qsi.*b).^2))./sqrt(((1-
b.^2).^2+(2*qsi.*b).^2));
figure(1);
semilogy(w,TF); hold on
```

Movimento harmónico da base

Deslocamento da massa (absoluto) x(t)

Deslocamento da base (absoluto) y(t)

Deslocamento relativo da massa z(t) = x(t) - y(t)

Equação de movimento:

$$m\ddot{x}(t) + c(\dot{x}(t) - \dot{y}(t)) + K(x(t) - y(t)) = 0$$

$$m\ddot{x}(t) + c\dot{x}(t) + Kx(t) = c\dot{y}(t) + Ky(t)$$

Considerando o movimento harmónico da base:

$$y(t) = Y\cos(\omega t)$$
$$\dot{y}(t) = -\omega Y\sin(\omega t)$$

Equação de movimento pode ser escrita como:

$$m\ddot{x}(t) + c\dot{x}(t) + Kx(t) = f'(t)$$

Movimento harmónico da base

Deslocamento da massa (absoluto) x(t)

Deslocamento da base (absoluto) y(t)

Deslocamento relativo da massa z(t) = x(t) - y(t)

Equação de movimento pode ser escrita como:

$$m\ddot{x}(t) + c\dot{x}(t) + Kx(t) = f'(t)$$

$$f'(t) = \sqrt{K^2 + (c\omega)^2} Y \cos(\omega t - \gamma)$$

$$\gamma = tg^{-1} \left(\frac{c\omega}{K}\right) = tg^{-1}(2\xi\beta)$$

Sabendo que a resposta permanente do sistema é dado por:

$$x_p(t) = \frac{F'}{K} \frac{1}{\sqrt{(1 - \beta^2)^2 + (2\xi\beta)^2}} \cos(\omega t - \phi)$$

Movimento harmónico da base

Deslocamento da massa (absoluto) x(t)

Deslocamento da base (absoluto) y(t)

Deslocamento relativo da massa z(t) = x(t) - y(t)

Sabendo que a resposta permanente do sistema é dado por:

$$x_p(t) = \frac{F'}{K} \frac{1}{\sqrt{(1 - \beta^2)^2 + (2\xi\beta)^2}} \cos(\omega t - \phi)$$

onde: $\frac{f'(t) = \sqrt{K^2 + (c\omega)^2} Y cos(\omega t - \gamma)}{K}$ $\frac{F'}{K} = \frac{\sqrt{K^2 + (c\omega)^2}}{K} \cdot Y = \sqrt{1 + (2\xi\beta)^2} \cdot Y$

$$\frac{F'}{K} = \frac{\sqrt{K^2 + (c\omega)^2}}{K} \cdot Y = \sqrt{1 + (2\xi\beta)^2} \cdot Y$$

Resultando:

$$x_p(t) = Y \frac{\sqrt{1 + (2\xi\beta)^2}}{\sqrt{(1 - \beta^2)^2 + (2\xi\beta)^2}} \cos(\omega t - \gamma - \phi)$$

Movimento harmónico da base

Deslocamento da massa (absoluto) x(t)

Deslocamento da base (absoluto) y(t)

Deslocamento relativo da massa z(t) = x(t) - y(t)

$$x(t) = Y \frac{\sqrt{1 + (2\xi\beta)^2}}{\sqrt{(1 - \beta^2)^2 + (2\xi\beta)^2}} \cos(\omega t - \gamma - \phi)$$

$$x_p(t) = X_T(\omega) \cos(\omega t - \varphi) \qquad \varphi = tg^{-1} \left[\frac{2\xi \beta^3}{(1 - \beta^2) + (2\xi \beta)^2} \right]$$

Movimento harmónico da base

Deslocamento da massa (absoluto) x(t)

Deslocamento da base (absoluto) y(t)

Deslocamento relativo da massa z(t) = x(t) - y(t)

$$x(t) = Y \frac{\sqrt{1 + (2\xi\beta)^2}}{\sqrt{(1 - \beta^2)^2 + (2\xi\beta)^2}} \cos(\omega t - \varphi)$$

<u>Transmissibilidade de deslocamento ABSOLUTO</u>

$$T_{RA} = \frac{X_T(\omega)}{Y} = \frac{\sqrt{1 + (2\xi\beta)^2}}{\sqrt{(1 - \beta^2)^2 + (2\xi\beta)^2}}$$

10⁴

Movimento harmónico da base

Deslocamento da massa (absoluto) x(t)Deslocamento da base (absoluto) y(t)

Deslocamento relativo da massa z(t) = x(t) - y(t)

<u>Transmissibilidade de deslocamento ABSOLUTO</u>

Movimento harmónico da base

$$T_{RR} = \frac{Z_T(\omega)}{Y} = \frac{\beta^2}{\sqrt{(1-\beta^2)^2 + (2\xi\beta)^2}}$$

Deslocamento da massa (absoluto) x(t)Deslocamento da base (absoluto) y(t)Deslocamento relativo da massa z(t) = x(t) - y(t)

<u>Transmissibilidade de deslocamento RELATIVO</u>

$$x(t) = z(t) + y(t)$$

Equação de movimento:

$$m\ddot{x}(t) + c\dot{z}(t) + Kz(t) = 0$$

$$m\ddot{z}(t) + m\ddot{y}(t) + c\dot{z}(t) + Kz(t) = 0$$

$$m\ddot{z}(t) + c\dot{z}(t) + Kz(t) = -m\ddot{y}(t)$$

$$y(t) = Y\cos(\omega t)$$

$$\dot{y}(t) = -\omega Y\sin(\omega t)$$

$$\dot{y}(t) = -\omega^2 Y\cos(\omega t)$$

$$m\ddot{z}(t) + c\dot{z}(t) + Kz(t) = m\omega^2 Y\cos(\omega t)$$

$$z(t) = \frac{Y}{K}\omega^2 m \frac{1}{\sqrt{(1-\beta^2)^2 + (2\xi\beta)^2}}\cos(\omega t - \phi)$$

Movimento harmónico da base

x(t) z(t) z(t) y(t)

<u>Transmissibilidade de deslocamento RELATIVO</u>

Acelerómetro piezoelétrico

Movimento harmónica da base

Acelerómetro piezoelétrico

Equação de movimento:

$$m\ddot{x}(t) + c\dot{z}(t) + Kz(t) = 0$$

$$m\ddot{z}(t) + m\ddot{y}(t) + c\dot{z}(t) + Kz(t) = 0$$

$$m\ddot{z}(t) + c\dot{z}(t) + Kz(t) = -m\ddot{y}(t)$$
 $\ddot{y}(t) = A_y cos(\omega t)$

$$m\ddot{z}(t) + c\dot{z}(t) + Kz(t) = -A_y \cdot m \cdot cos(\omega t)$$

$$z(t) = -\frac{A_{y} \cdot m}{K} \frac{1}{\sqrt{(1 - \beta^{2})^{2} + (2\xi\beta)^{2}}} \cos(\omega t - \phi)$$

Frequency range: 0.3 – 6000 Hz

Temperature: -54 – 121 C

Weight: 4.8 gram

Sensitivity: 10 mV/ms^-2

Residual Noise Level in Spec Freq Range (rms) ±: 350 µg

Maximum Operational Level (peak): 70 g

Electrical conector: 10-32 UNF

Mounting: Integral Stud

Accessory Included: OptionalAO 1419

Clip/Stud/Screw included: Clip

Output: CCLD

Unigain: No

Triaxial: No

TEDS: No

<u>Unit:</u> mV

Resonance frequency: 18 kHz

Maximum Shock Level (± peak): 5000 g

PE 4507

PIEZOELECTRIC CCLD ACCELEROMETER, 1MV/G, SIDE CONNECTOR, 1 SLOT, EXCL. CABLE

Designed for modal analysis measurements.

Specifications – CCLD Accelerometer Type 4507 Family (side connector)

Type Number			4507-B	4507-B-003	4507-B-004	4507-B-001	4507-B-002	4507-B-005	4507-B-006
General				,					
Weight		gram	4.8	4.9	4.6	4.8	4.8	4.6	4.6
		OZ	0.17	0.17	0.16	0.17	0.17	0.16	0.16
Voltage Sensitivity		mV/ms ⁻²	10 ± 5%		1 ± 5%	100 ± 10%		50 ± 5%	
(at 159.2 Hz, 4 mA sup	ply current)	mV/g	98 ± 5%		9.8 ± 5%	980 ± 10%		490 ± 5%	
Francisco Panca	Amplitude (±10%)	Hz	0.3 to 6000			0.1 to 6000	0.4 to 6000		0.2 to 6000
Frequency Range	Phase (±5°)	П	2 to 5000			0.5 to 5000	2 to 5000		1 to 5000
Mounted Resonance Frequency		kHz	18		18	18		18	
Max. Transverse Sensitivity (at 30 Hz, 100 ms-2)		%	<5			<5	<5		<5
Transverse Resonance Frequency		kHz	>18			>18	>18		>18
Max Operational Continuous Sinusoidal Acceleration (± peak)		kms ⁻²	0.7		7	0.07		0.14	
		g	70			700	7		14
TEDS			Yes			Yes	Yes		Yes
Electrical									
Bias Voltage (at full temp. and curr. range)		V	13 ±1		13 ±1	13 ± 2		13 ±2	
Power Supply	Constant current	mA	2 to 20		2 to 20	2 to 20		2 to 20	
	Unloaded supply voltage	V	24 to 30*		24 to 30*	24 to 30*		24 to 30*	
Output Impedance		Ω	30		30	30		30	
Start-up time (to final bias ±10%)		S	<5		< 50	<5		<5	
Residual Noise (inherent rms broadband noise in		μV	<35		<8	<150		<80	
the specified frequency	y range)	μg	<350		<800	<150		<160	
	10 Hz	mms ⁻² /√Hz	0.15 (15)		0.25 (25)	0.08 (8)		0.08 (8)	
Noise (spectral)	100 Hz	(μg/√Hz)	0.035 (3.5)			0.06 (6)	0.02 (2)		0.02 (2)
	1000 Hz	,	0.02 (2)			0.035 (3.5)	0.01 (1)		0.01 (1)
Environmental									
Operating Temperature Range		°C	-54 to +121		-54 to +121	-54 to +100		-54 to +100	
		°F	-65 to +250		-65 to +250	-65 to +212		-65 to +212	
Temperature Coefficient of Sensitivity		%/°C	0.09		0.09	0.	18	0.18	
Tomporature Transient Sensitivity		ms ⁻² /°C	0.2			0.2	Ω	.2	0.2

