٣-٣ خواص النهايات

إذا كان ك عددًا حقيقيًا، أ ينتمي إلى مجال كل من د (س)، ع (س). وكانت نها د (س)، نها ع (س) موجودتين، فإن: سام أ سام أ

اداكانت سه الا اكانت سه الداكانت سه الداكانت سه الداكانت سه الداكانت سه الداكانت المداكان الم

(w) = i_{0} | i_{0} |

إذا علمت أن نه___ د (س) = ۲، نه__ ع (س) = ۸، فاستخدم خواص النهايات لإيجاد كلّ من:
$$m \to 0$$

$$((w)+3(w))$$

$$((w)+3(w))$$

$$((w)-3(w)-3(w))$$

$$(w) \times (w) \times (w) \times (w) = (w) \times (w)$$

إذا علمت أن نهيا د (س) = ۲، نهيا ع (س) = ۸، فاستخدم خواص النهايات لإيجاد
$$m \to 0$$
 نهي $= 7$ نهي النهايات لإيجاد $= 7$ نهي $= 7$ نهي النهايات لإيجاد $= 7$ نهي النهايات لايجاد $= 7$ نه النهايات

إذا علمت أن نهيا د (س) = ٢، نهيا ع (س) = ٨، فاستخدم خواص النهايات لإيجاد س
$$\rightarrow 0$$

$$\begin{array}{ccc}
 & 3 & (w) \\
 & \omega & \omega & \varepsilon \\
 & \omega & \omega
\end{array}$$

$$\xi = \frac{3(w)}{r} = \frac{3(w)}{(w)} = \frac{3(w)}{(w)} = \frac{3(w)}{(w)}$$

إذا علمت أن نهيا د (س) = ۲، نهيا ع (س) = ۸، فاستخدم خواص النهايات لإيجاد $m \to 0$ س $\to 0$ س $\to 0$ عنها (<(m)) عنها (<(m)) عنها (<(m)) سرجه

$$(w)$$
 إذا كانت نها د (w) $>$ فإن نها $\sqrt[3]{c(w)} = \sqrt[3]{i}$ الما $w \to 1$ $w \to 1$

$$V = \frac{1}{4} \times \frac{1}{4} \times$$

نتائج أخرى لنهايات خاصة:

ج) نها $w^{i} = 1^{i}$ ، حیث ن عدد صحیح موجب. $w \rightarrow 1$

د) نها $\sqrt[4]{m} = \sqrt[6]{1}$ ، حیث ن عدد صحیح موجب، 1 > 0 س $\rightarrow 1$

إذا علمت أن نه_ اهـ (س) = ١٠، نه_ اك (س) = ٨، فاستخدم خواص النهايات لتجد كلًا ممّا يأتي:
$$w \to w$$

$$(m) \times \mathbb{D}(m) \times \mathbb{D}(m)$$

$$(m) \times \mathbb{D}(m) \times \mathbb{D}(m)$$

$$=\frac{1}{2}\sqrt{\cos(\pi)}\times\sin(\pi)$$

$$=\frac{1}{2}\sqrt{\cos(\pi)}\times\sin(\pi)$$

$$=\frac{1}{2}\sqrt{\cos(\pi)}\times\sin(\pi)$$

$$=\frac{1}{2}\sqrt{\cos(\pi)}\times\cos(\pi)$$

$$=\frac{1}{2}\sqrt{\cos(\pi)}\times\cos(\pi)$$

$$=\frac{1}{2}\sqrt{\cos(\pi)}\times\cos(\pi)$$

$$=\frac{1}{2}\sqrt{\cos(\pi)}\times\cos(\pi)$$

(w) =
$$\Gamma$$
 is Γ is Γ

$$\xi - \frac{(w)}{(w)} = -3$$

$$\xi - \frac{(w)}{(w)} = \frac$$

ب إذا علمت أن نهيا م
$$(m) = -7$$
، نهيا $(m) = -7$ ، فأوجِد $m \to -1$ $(m) = -7$ ، فأوجِد نهيا $(m) \to -1$ $(m) \to -1$

$$N - = \begin{pmatrix} (\omega) & \omega \\ \omega & \omega \\ \omega$$

إذا علمت أن نهيا د (س) = ۲,۷، نهيا
$$\frac{\gamma c(m)}{m \rightarrow 1} = \lambda$$
, ۱، نهيا ع (س) موجودة، $\frac{\gamma c(m)}{m \rightarrow 1} = \lambda$

$$\xi_{1} = \frac{v_{1}(xy)}{v_{1}(xy)} = \frac{v_{1}(xy)}{v_{2}(xy)}$$

يبيّن الشكل الآتي جزءًا من منحنى الدالتين د (س)، ع (س):

استخدم الشکل وخواص النهایات لتجد النهایات الآتیة:

(د (س) + ع (س)) = -1 + 0 = 7نه $\rightarrow (c (w) + 3 (w))$ نه $\rightarrow (c (w) + 3 (w))$

$$((w) \times 3(w)) = \frac{3(w)}{(w)} = \frac{3(w)}{(w)} = \frac{1}{(w)} = \frac{1}{(w$$

دالة تربيعية حيث
$$\frac{1}{1000} = \frac{1}{1000} = \frac{1}{1000}$$

$$(*) \quad \text{if } i \text{ is } \frac{3(m)}{m \rightarrow 7} = (*) \text{ is } \frac{3(m)}{m \rightarrow 7} = (*)$$

فأوجِد العبارة الجبرية للدالة ع(س)، وأوجِد قيمة نها ع(س). $m \to 10$

ب ما الفرضيات التي يجب أن تقدمها لتجيب عن الجزئية (أ)؟

يبيّن الشكل الآتي أجزاء من منحنى الدالة ع (س) =
$$\frac{1-m}{9+b}$$
 يبيّن الشكل الآتي أجزاء من منحنى الدالة ع (س) = $\frac{1-m}{9+b}$ يوجد للمنحنى خط تقارب رأسي عند س = -0 , 1، وخط تقارب أفقي عند ص = -7

- أوجِد قيمتَي ت، ف.
- ب احسب نهل $(3(m))^{7}$ مقرّبة $m \to 0$

إلى أقرب منزلتَين عشريتَين.