

Big Data Processing

L01: Module Introduction

Dr. Ignacio CastineirasDepartment of Computer Science

- 1. Presentation.
- 2. Learning Outcomes.
- 3. Syllabus Week Plan.
- 4. Methodology.
- 5. Evaluation.
- 6. Motivation.

- 1. Presentation.
- 2. Learning Outcomes.
- 3. Syllabus Week Plan.
- 4. Methodology.
- 5. Evaluation.
- 6. Motivation.

Presentation

- Ignacio Castiñeiras.
 - Lecturer at the Department of Computer Science.
 - o Email: <u>Ignacio.Castineiras@cit.ie</u>
 - Office Room: C131
 - Telephone: +353 21 433 5857
- Qualification:
 - o PhD. in Computer Science: 2014.
 - o MEd. in Computer Science: 2011.
 - MSc. in Computer Science: 2009.
 - BSc. in Computer Science: 2007.

Presentation

[2018 -] Cork Institute of Technology **Lecturer** at Dept. Computer Science

Research Group Ríomh

[2015 - 2018] Cork Institute of Technology **Assistant Lecturer** at Dept. Computer Science

Research Group Ríomh

[2014 - 2015] University College Cork **Postdoc** at Insight Centre for Data Analytics

EU FP7 Project GENiC

[2007 - 2014] Complutense University of Madrid **PhD. & MSc.** at Declarative Programming Group

Spanish National Projects FAST & MERIT

Background: Optimisation and decision analytics.
Application of **Constraint Programming** to real-life
Constraint Satisfaction and Optimisation Problems.

Presentation

Research Background

- Constraint satisfaction and optimisation problems:
 - Examples: Manufacturing & service industries:
 - Feasible/optimal allocation/scheduling of company resources.
 - o Challenge: Combinatorial nature.
- Constraint Programming:
 - Subfield of Artificial Intelligence.
 - o High-level declarative problem formulation.
 - Problem solving: Inference process + search on top of it.

Presentation

PhD Research Experience

- Tackle real-life problems with Constraint Programming
 - Employee Timetabling Problem.
 - o Bin Packing Problem.

- Algebraic Object Oriented (Functional) Logic Programming
- C++, Python, SICStus Prolog, Haskell, TOY, etc.
- Implementation of constraint solvers:
 - Adapt object-oriented solver library to a logic programming environment.
 - Extend solver with high-level user defined search strategy specification.

Presentation

Postdoc Research Experience

- GENiC: Globally Optimised Energy Efficient Data Centres.
 - European Union FP7 Programme: http://projectgenic.eu/
 - Green computing.
 - Sustainable DCs.
 - Renewable energy sources.

Presentation

<u>Postdoc Research Experience</u>

- Develop scalable decision support tools:
 Optimise workload allocation of single and distributed DCs
 - Single DC: Reduce power consumption.
 - Geographically Dcs: Reduce overall energy consumption.

Presentation

Lecturer Research Experience

- SMART Electric Buses.
 - Ireland SEAI Programme: <u>https://smartebuses.github.io/web/index.html</u>
 - Green computing.
 - Sustainable Transportation.
 - Renewable energy sources.

Presentation

Ríomh: Intelligent Secure Systems Group.

Research Areas:

- Future Networks & Internet of Things
- Virtualisation Technologies
 - Cloud Computing
 - Network and Information Security
- Data Analytics
 - Machine Learning
 - Optimisation Techniques

Contact us: Donna.Oshea@cit.ie (Head)

- 1. Presentation.
- 2. Learning Outcomes.
- 3. Syllabus Week Plan.
- 4. Methodology.
- 5. Evaluation.
- 6. Motivation.

Learning Outcomes

Module Descriptor:

https://courses.cit.ie/index.cfm/page/module/moduleId/13442

- LO1: Appraise how the velocity, volume and variety of data will impact how data is stored, managed and analysed.
- LO2: Survey the different tools that constitute a big data framework.
- LO3: Process large-scale temporal, geospatial, text and graph datasets using descriptive and analytical tools.
- LO4: Design and develop a real-time streaming algorithm for performing large scale distributed computation.

- 1. Presentation.
- 2. Learning Outcomes.
- 3. Syllabus Week Plan.
- 4. Methodology.
- 5. Evaluation.
- 6. Motivation.

Syllabus Week Plan

Week 1: September 21st - September 27th.

Lectures

- L01. Module Introduction.
- L02. Big Data Motivation.
- L03-04. Distributed Programming.

<u>Lab</u>

Lab01: Sequential-solving Programming Exercise: Minesweeper.

Big Data Mindset.

Introductory example of a Big-Data driven society.

Syllabus Week Plan

Week 2: September 28th – October 4th.

Lectures

- L05. Distributed Programming.
- L06. Spark Core Model of Parallel Computing: RDDs.

<u>Lab</u>

Lab02. Distributed Programming (Lab Demonstration).

Big Data Mindset.

The thinking or mental shift big data requires: Sampling => All data.

Syllabus Week Plan

Week 3: October 5th - October 11th.

Lectures

L07-08. Spark Core Model of Parallel Computing: RDDs.

<u>Lab</u>

Lab03. Databricks: A Tutorial.

Big Data Mindset.

The thinking or mental shift big data requires:
 Causation (Why?) => Correlations (What?)

Syllabus Week Plan

Week 4: October 12th – October 18th.

Lectures

L09-10. Spark Core Model of Parallel Computing: RDDs.

<u>Lab</u>

• Lab04. Spark Core - Introductory Exercises.

Big Data Mindset.

Datification (or the art of extracting data from the most surprising places).

Syllabus Week Plan

Week 5: October 19th - October 25th.

Lectures

- L11. Spark Core Model of Parallel Computing: RDDs.
- L12. Spark SQL.

<u>Lab</u>

Lab05. Spark Core - Advanced Exercises.

Big Data Mindset.

Data Reuse: Data's multiple lives.

Syllabus Week Plan

Week 6: November 2nd - November 8th.

Lectures

• L13-14. Spark SQL.

<u>Lab</u>

Lab06. Spark SQL - Introductory Exercises.

Big Data Mindset.

Data regulations: Data ownership and its accountability.

Syllabus Week Plan

Week 7: November 9th - November 15th.

Lectures

• L15-16. Spark SQL.

<u>Lab</u>

Lab07. Spark SQL - Advanced Exercises.

Big Data Mindset.

The dark side of big data: I know who you are. I guess what would you do.

Syllabus Week Plan

Week 8: November 16th - November 22nd.

Lectures

L17-18. Spark Streaming.

<u>Lab</u>

Lab08. Spark Streaming - Introductory Exercises.

Big Data Mindset.

 Big data industry revolution: Education as a use-case: Get to know students better.

Syllabus Week Plan

Week 9: November 23rd - November 29th.

Lectures

- L19. Spark Streaming.
- L20. Spark Structured Streaming.

<u>Lab</u>

Lab09. Spark Streaming - Advanced Exercises.

Big Data Mindset.

Big data industry revolution: Education as a use-case: Adaptative learning.

Syllabus Week Plan

Week 10: November 30th - December 6th.

Lectures

- L21. Spark Structured Streaming.
- L22. Anatomy of the Execution of a Spark Core Program.

<u>Lab</u>

Lab10. Spark Structured Streaming - Advanced Exercises.

Big Data Mindset.

Big data industry revolution: Education as a use-case: The dark side again.

Syllabus Week Plan

Week 11: December 7th - December 13th.

Lectures

- L23. Anatomy of the Execution of a Spark Core Program.
- L24. Big Data Storage.

<u>Lab</u>

Lab11. Distributed Solving of Minesweeper.

Big Data Mindset.

Big data: What do you think?

Syllabus Week Plan

Week 12: December 14th - December 20th.

Lectures

- L25. Big Data Storage.
- L26. Module Wrap-Up: 24 Ideas for 24 Lectures.

<u>Lab</u>

• Lab12. Big Data Storage (Lab Demonstration).

Big Data Mindset.

Big data: What do you think?

- 1. Presentation.
- 2. Learning Outcomes.
- 3. Syllabus Week Plan.
- 4. Methodology.
- 5. Evaluation.
- 6. Motivation.

Methodology

- 2h lecture (once per week):
 - Concepts explanation.
 - Application via code examples.
 - Put together to extract conclusions.
- 2h lab session (once per week):
 - Reinforce the concepts seen in the lectures.
 - Weekly exercises to practice: Attempt a bunch of exercises for which the solution is provided.

- 1. Presentation.
- 2. Learning Outcomes.
- 3. Syllabus Week Plan.
- 4. Methodology.
- 5. Evaluation.
- 6. Motivation.

Evaluation

Module Descriptor:

https://courses.cit.ie/index.cfm/page/module/moduleId/13442

Assignment 1:

- Use Spark Core and Spark API to perform descriptive analytics of an real-world open source dataset.
- Compare and contrast the efficiency and expressiveness of both approaches.
- Write a report of up to 1,000 words with a novel data analysis exercise proposed by yourself.

Marks: 50

Deadline: Week 8, Sunday 22nd of November

Evaluation

Module Descriptor:

https://courses.cit.ie/index.cfm/page/module/moduleId/13442

Assignment 2:

- Use Spark Streaming and Spark Structured Streaming to perform offline and online analytics of an real-world open source dataset.
- Compare and contrast the efficiency and expressiveness of both approaches.
- Write a report of up to 1,000 words with a novel dataset available in the internet and compare it to our existing one.
- Write a report of up to 1,000 words with a use-case for the Spark libraries on Graphs or on Machine Learning.

Marks: 50

Deadline: Week 10, Sunday 6th of December

- 1. Presentation.
- 2. Learning Outcomes.
- 3. Syllabus Week Plan.
- 4. Methodology.
- 5. Evaluation.
- 6. Motivation.

Motivation

Why is important to study this module?

For any module I teach I usually take some minutes during lecture 1 to justify/motivate why to study the module.

In this case, the motivation has grown so much that it has become part of the indicative content: Big Data Mindset.

But, in a single point: Why to study big data? Because it is transforming our society.

- 1. Presentation.
- 2. Learning Outcomes.
- 3. Syllabus Week Plan.
- 4. Methodology.
- 5. Evaluation.
- 6. Motivation.

Thank you for your attention!