

OpenSatKit Mission FSW Guide Quick Start

V3.0 May 2021

- 1. System Engineering Introduction
- 2. Apply System Engineering Development Processes
- 3. Apply System Engineering V&V Processes

Introduction (1 of 2)

Spacecraft FSW development phases

Introduction (2 of 2)

- OSK supports integrating and testing cFS community apps, OSK apps, and user mission-specific apps into a functional FSW system that runs within OSK's software-in-the-loop (SIL) environment
- Nothing precludes OSK from being used in later mission lifecycle phases, however, creating the hardware in-the-loop (HIL) interfaces, developing simulators, and migrating ground system artifacts (if COSMOS is not used) are not covered by OSK.
- These efforts are represented by the gray arrows. The green arrow pointing to the processor card is not within the OSK boundaries because porting the cFE to a hardware platform is not directly covered by OSK, however, a cFS community platform list https://github.com/OpenSatKit/cfs-platform-list is maintained by the OSK project and provides links to cFS porting resources.
- OSK is not required to develop cFS apps, however, note the following
 - You will eventually need a ground interface and test script environment
 - You can leave OSK's SimSat environment and develop new apps in a new mission or target or use OSK's Sandbox target

Mission FSW Systems Engineering Steps

- 1. Create an initial app model from OSK's generic spacecraft model using mission concepts of operations, mission requirements, and the spacecraft hardware architecture often in the form of a block diagram
 - Initial goal is to create a "good enough" architecture based on the maturity of the information at hand
 - Designing FSW is a very iterative process with top-down and bottom-up technical and non-technical forces at work
 - Trades are often made throughout the requirements analysis and spacecraft design phases that impact FSW. These forces are both technical and non-technical concerns may also influence decisions that impact the technical design
- Analyze OSK's SimSat mission app model to understand what capabilities exist within OSK
- Work through system engineering topics and app groups to design new apps and understand how to configure cFS community apps
- 4. Work through spacecraft lifecycle to determine the need for
 - Different versions of apps for different test environments
 - Simulation apps that can serve
- Determine how you want to use OSK in the spacecraft lifecycle
 - Create OSK mission target
 - Plan migration to PIL and other environments
- 6. If OSK will be used in a verification role then develop test artifacts as needed
- OSK Making Space for Apps FSW validation should occur in a high-fidelity test environment

FSW System Engineering Process

OSK Generic Spacecraft Model

OSK Generic Spacecraft Model

- Show how generic model can be tailored for different missions. First focus on CubeSats, larger mission can extrapolate.
- Three main tailoring areas
 - Device I/O
 - Closed loop control needs
 - Mission ops
- Examples
 - COTS vs inhouse ADCS
 - Payload control (closed vs open loop) and data management
 - Need for a mission manager app or ACS mode manager type app coupled with autonomy app group to achieve con ops
- In order to work through the steps an example user mission is needed to show how to create a user model and then create a plan for how to migrate from SimSat to the user model needs

System Engineering Topics

- System Engineering topics do not have a one-to-one correlation with app groups
- ConOps, mission requirements, and a hardware block diagram are required inputs
 - This is an iterative process so reapply these inputs
 - Spacecraft lifecycle can be considered a process input and iteratively examined to determine what's needed
- Goal is to manage complexity by working through topics
 - Topics are not 100% orthogonal (non-overlapping)
 - Create a ConOps and show how it impacts different apps groups

SE Topics

- 1. Device I/O
- Close-loop control
- 3. Mission Ops & autonomy
- Data-File management
- Runtime Environment
- 6. FDIR
- 7. Interface & control apps
- 8. Maintenance
- 9. Time
- 10. Parameters and configuration

V&V Topics

- 1. Unit tests
- 2. App functional tests
- B. Integration tests
- System and ops tests

Simple Satellite (SimSat)

Default OSK app configuration is for a fictitious satellite called SimpleSat (SimSat)

- The cFS can be used for many different types of embedded systems. A spacecraft was chosen due to the increased usage of the cFS on CubeSats
- SimSat provides a reference mission to provide context to
 - Illustrate what applications are required and how they are configured and integrated as a system to meet the requirements
 - Demonstrate an example integration test script
 - Demonstrate an operational script
- This does not include
 - Porting SimSat to a new platform
 - Integrating hardware devices
- SimSat is a
 - Low Earth Orbit (LEO) satellite with one nadir-pointing science instrument
 - The instrument has
 - A detector that produces 10 bytes of data per second
 - A power the following sequence: Apply power, wait for instrument initialization (~20s), and command to enable science

SimSat Applications (1 of 4)

SimSat Applications (2 of 4)

- The previous slide shows a cFS "bubble" chart where each app is a bubble and they communicate via messages on the software bus.
 - The blue cFS apps are reusable open source apps that are available on https://github.com/nasa/xx where 'xx' is the abbreviated app name
 - The green OSK apps were written specifically for OSK
 - The external COSMOS and 42 interfaces use UDP and TCP respectively
- Apps are designed to perform a dedicated function with clear interfaces and they operate in groups to achieve higher level mission objectives
- Runtime Environment Apps
 - Kit Command Ingest (KIT_CI) receives CCSDS command packets from COSMOS and sends them on the Software Bus
 - Kit Telemetry Output (KIT_TO) reads CCSDS telemetry packets from the Software Bus and sends them to COSMOS
 - Kit Scheduler (KIT_SCH) contains tables that define when to send messages on the Software Bus
 - Apps can use these messages to perform synchronous activities, e.g. sending their housekeeping status packet

SimSat Applications (3 of 4)

Data/File Management

- File Manager (FM) provides a ground interface for performing common directory and file operations
- Data Storage (DS) reads packets from the software bus and writes them to files according to tabledefined
- **Housekeeping (HK)** creates new telemetry packets from pieces of other telemetry packets. The new packets are written to the SB and can be stored and/or telemetered.
- Trivial File Transfer Protocol (TFTP) transfers files between the flight and ground COSMOS. There's an open source CCSDS File Delivery Protocol (CFDP) app that will be added in a future release.

Autonomy

- Limit Checker (LC) monitors one or more telemetry values and start stored command relative time sequences (RTSs) in response to limit violations
- **Stored Command (SC)** Provides services to execute preloaded, table-defined command sequences at predetermined absolute or relative time intervals

SimSat Applications (4 of 4)

Attitude Determination and Control Apps

- 42 Interface (I42) manages a TCP/IP connection to 42 and transfers actuators/sensor packets to/from 42
- 42 FSW (F42) Implements the "ThreeAxisFsw" attitude control algorithm defined in 42

Maintenance

- Memory Dwell (MD) creates telemetry packets containing contents of memory location specified in dwell tables
- Memory Manager (MM) provides read/write access to memory

Health & Safety

- Checksum (CS) monitors checksums across table-defined static code/data regions and reports errors
- **Health & Safety (HS)** monitors table-defined application check-in and event messages and reporting errors and/or starting a RTS to address the issue

Apply the System Engineering Development Processes

System Engineering Topics

SE Topics

- 1. Device I/O
- 2. Close-loop control
- 3. Mission Ops & autonomy
- 4. Data-File management
- 5. Runtime Environment
- 6. FDIR
- 7. Interface & control apps
- 8. Maintenance
- 9. Time
- 10. Parameters and configuration

V&V Topics

- 1. Unit tests
- 2. App functional tests
- 3. Integration tests
- 4. System and ops tests

- 1. What data must be downlinked to meet mission goals?
- 2. What are the contact frequencies, durations, and data rates?
- 3. What parts of operations need to be automated?
- 4. What level of fault detection, isolation, and recovery (FDIR) is necessary?
- Bottom-up
- 1. What processor card is being used and is a realtime operating system required?
- 2. What device interfaces does the FSW need to manage and how are they connected?
- 3. Make versus buy decisions. Some top-down decisions impact bottom-up design.

SimSat App Screens

Each functional application group screen uses the following layout

Complete interface to each app

- All commands
- All telemetry packets
- "Display Table" Dump, transfer and display table in COSMOS Table Manager
- "Display File" Issue app's command to create a file, then transfer and display binary file in COSMOS Table Manager

Functional screens combine commands and telemetry from one or more apps that work together to perform a related tasks. Launch videos, demos (predefined screen sequences) and tutorials (slides and/or scripts)

App Interactive Resources (1 of 2)

- 1. Launch Data/File Management Screen from OSK main screen
- 2. Access FM commands, telemetry, tables, files and users guide.

App Interactive Resources (2 of 2)

App System Scripting Resources

4# This script configures SimSat to illustrate

5# as a system to meet mission operational ob

8 # grouped screen.

6# very simple. The descriptions in this script are kept to a hi 7# more details can be found in the tutorials in each simsat fun

Ops Example use the **COSMOS Script Runner**

Tune, Verify, & Validate

Performance Monitor Tool

Commands					
Set Fi	lter Mask	Se	et Trigge	ег Ма	isk
Start D	ata Collect	St	op Data	Coll	ect
Ge	et File	Lau	nch Ana	lysis	Tool
Status State	0 Mode	0 Tr	igger Co	ount	0
Masks					
Filter	00000000	00000000	000000	000	00000000
Trigger	00000000	00000000	000000	000	00000000
Log Stats					
Start	0	E	ind [0
Count	0	Remaining to	Write		0
File Transfer					
Pu	ıt File		Get F	ile	
PUT_FILE_COUN	IT: 0	GET_FILE_C	OUNT:		0
Ground Working	Directory				
Flight Working [)irectory				
T tigric Working E	heccory				

- Capture FSW performance data using screen
- Download file and <Launch Analysis Tool>

SimSat Integration Script

- Runs test script using Script Runner
- Issues Noop command to every application and verifies telemetry response

Functional Test Scripts

SimSat Operation Script Example

Running with 42 Simulator

UNDER CONSTRUCTION

Needs updates since v2.4

Merge with apply systems engineering processes

Starting the Simulation

- Select < *Run 42 Sim* > which will start the 42 simulator in a new terminal window.
- The 42 configuration files used in the simulation are located in directory *OpenSatKit/42/OSK*
- The simulation takes a while to initialize

Preparing 42 Simulation

□ CFS_KIT SIM	_42_SCREEN			
	42 Sir	nulation		
Run 42 Sim	Reco	nnect 42	Disc	connect 42
Set Whl Tgt Mom	Manag	Manage Ctrl Tbl		ig SunValid
142		F42		
Cmd Valid	0	Cmd V	alid	0
Cmd Error	0	Cmd E	ггог	0
42 Connected	FALSE	Contro	ol Exec Cnt	0
42 Cycles	0	Sun Va	alid	0
Sensor Pkts	0	OVR S	un Valid	SE_42_SIM
Actuator Pkts	0			
Attitude Control				
Att Err X	Att Err Y	Att	Err Z	
0.000000	0.0000		0.000000	Plot
Wheel 1 Cmd	Wheel 2 Cm	d Whe	el 3 Cmd	
0.000000	0.0000	00	0.000000	Plot
Momentum Control				
Mom Err X	Mom Err Y	Мог	n Err Z	
0.000000	0.0000	00	0.000000	Plot
MTB 1 Cmd	MTB 2 Cmd	МТВ	3 Cmd	
0.000000	0.0000		0.000000	Plot
Whl 1 Tgt Mom	Whl 2 Tgt Moi		Tgt Mom	
0.000000	0.0000	00	0.000000	Plot
SA Gimbal Comman	ds			
SA Gimbal				
0.000000	Plot			
		_		

- From the kit main page on the previous slide select <42 Simulator> and the screen to the left will appear.
- The 2nd row of buttons allow you to change the behavior of the control algorithms running in the FSW and are described on the next slides
- Before running the sim you will open some additional windows that will be used for your class exercise
 - Manage Control Table
 - Plot Attitude Errors

Managing Control Table

	E42 Cont	ral Tabla		
	F42 Cont	roi i abie		
Get Current Valu	es Load Scre	een Values	Rest	ore Defaults
PD Gain Paramete	_			
	Г	_		
W		Z		
and the same				
Wheel Target Mon	nentum Limits			
Lower		Upper		
_		Upper		
		Upper		
_		Upper		
Lower		Upper	Z	
Lower Moment of Inertia		Upper	Z	
Lower Moment of Inertia		Upper	Z	
Lower Moment of Inertia		Upper	Z	
Lower Moment of Inertia		Upper Y-Axis		-Axis
Lower Moment of Inertia	Y		Z	-Axis 0.098000

- Selecting *Manage Control Table* on the 42 Sim screen produces the screen to the left.
- Select < *Get Current Values* > and it will populate the screen with the current control table values. This takes a little time because it is transferring a file from flight to ground
- Edit the screen as desired and click <*Load Screen Values*> to replace the current control table values
- The defaults can be restored by clicking < Restore Defaults>

OSK - Making Space for Apps

Mission FSW Quick Start Guide v3.0 Page 30

Plot Attitude Errors

• Selecting <Plot> button next to the attitude errors produces the screen below

Additional Configuration Options

- The kit includes two additional configuration options that can be manipulated
 - 1. Wheel target Momentum
 - 2. Sun Valid Configuration

Configure Sun Valid

- Selecting *<Config SunValid>* to override the current sun valid flag
- The plot below shows gimbal command

- The linear portion had a valid sun and the bend occurred when the SunValid was overridden to false.

Sim Termination

- 1. Click *Disconnect* 42> to end a 42 simulation that is running with the FSW
- 2. To terminate the flight software click on the terminal window with the FSW messages and then enter ctrl-c
- 3. Each of the cosmos windows will need to be closed individually. If you close the COSMOS TlmViewer window first it prompt you to close all of the telemetry screens at once.

Demos

Screen-based Demos: FM Example (1 of 2)

Each demo follows a common user screen configuration

Screen-based Demos: FM Example (2 of 2)

OSK - Making Space for Apps

Mission FSW Quick Start Guide v3.0 Page 37

Application Functional Screens

File Management

- <List to Packet> commands File Manage (FM)
 - To send a directory listing
 - The command uses a directory listing alphabetical "offset" to determine which file to start with in the listing
- OSK uses the verbs *list* and *send* to indicate information is sent in a telemetry packet.
- Write is used when information is written to a file

- <List to Packet> commands File Manage (FM)
 - To send a directory listing
 - The command uses a directory listing alphabetical "offset" to determine which file to start with in the listing

Table Management

	Table M	/lanagement				
ble Management						
Load Table	Table Validate Activate			tivate		
Abort Load	Du	ımp Table	Displ	ay Table		
ble Registry		Table Registry Lis	sting 🔻			
Display Registry Write Regis	try to File	NAME:				
ble Manager Housekeeping		SIZE:	(
Cmd Valid Cnt	0	CRITICAL:				
Cmd Error Cnt	0	TABLE_LOADED	ONCE:			
Last Updated Table						
Last File Loaded				LOAD_PENDING: DUMP_ONLY:		
Last File Dumped	ast File Dumped			DBL BUFFERED:		
Last Table Loaded		LAST_UPD_TIME_SECONDS:				
		FILE_CREATE_T	_			
		LAST FILE LOA	_			
		OWNER APP N				
		0111121211121				
le Transfer						
Put File			Get File			
PUT_FILE_COUNT:		O GET_FILE_COU	NT:			
Ground Working Directory						
Flight Working Directory						
ragic working birectory						
ght Event Messages						

- Load a new FSW table
 - <*Put File*> transfers file from ground to flight
 - <Load Table> into table buffer
 - <*Validate*> table via app validation function
 - <*Activate*> new table
- *Display Registry* sends a table's registry information in a telemetry packet
- Dump and display FSW table
 Dump Table> to onboard file
 Get File> transfers file from flight to ground
 Display Table> launches COSMOS Table
 Manager to view file. Requires binary file definition.

Memory Management

- Memory Manager (MM) and Memory Dwell (MD) apps are typically used for inflight maintenance.
- MM commands allow direct access to any memory location
- MD generates telemetry packets that contain the contents of table-specified memory locations
 - Only 1 dwell table telemetry packet is defined
 - < Jam Dwell Table > allows the dwell table to be loaded without using the table load service
- The FSW can easily be corrupted using memory manager
- The memory management demo is a good place to start since it demonstrates MM and MD using safe memory locations

Recorder Management

	Recorder l	Management			
ta Storage App Statu	s				
Enable/Disable	Dest F	ile 14 Info	Dest	File 58 Info	
Cmd Valid Cnt	0 Cmd Erro	r Cnt	0 State	2	(
t Destination File Con	figuration				
Enable/Disable	Seque	nce Count	File	name Type	
File Path Name	File B	ase Name	File	File Extension	
Max File Size	Max	File Age	Clos	se 1/All Files	
Tbl Load Count		0 Tbl Access Er	r Cnt		(
File Write Valid Cnt		File Write Inv	alid Cnt		(
Hdr Update Valid Cnt		0 Hdr Update Ir	nvalid Cnt		(
t Packet Filter Config	uration	_			5
Dest File	Add Message	Algorith	hm	Filter Type	
Tbl Load Cnt		Tbl Access Er	r Cnt		(
Pkt Discard Cnt		O Pkt Ignored C	int		(
Pkt Filtered Cnt		O Pkt Stored Cr	nt		(
Packet Filter File					
e Transfer					
Put F	ile		Get File	2	
PUT_FILE_COUNT:		GET_FILE_CO	UNT:		C
Ground Working Direct	tory				
Flight Working Directo	гу				

OSK – Making Space for Apps

Mission FSW Quick Start Guide v3.0 Page 42

Autonomy Management

CFS_KIT AUT	оиому_м	IGMT_S	CREEN				
	Autono	my Ma	ınagemer	nt			
Stored Command(SC)	App - Relat	ive Time	e Sequence	s(RTS)			
Start RTS	Stop R	RTS	Enable	RTS	Disa	ble RTS	
Start Group	Stop Gr	oup	Enable C	Гоир	Disab	le Group	
Cmd Valid Cnt		0	Cmd Error	Cnt		0	
RTS Status RTS EXECUT DISABL		000 0		00 00	000		
Active Cnt 0		Err Cnt RTS Num			D Cnt	000000	
Limit Checker(LC) App		: AP State	Set AP	,		0000	1
Set App State		p State	Set AP	State 0	Set AP	Prem Off	
Cmd Valid Cnt			O Cmd Erro			0	
Watch Points(WP)	ction Poin						n.
Watch Points (2-b	its per WP)	0 0 (0 0 0 0	0 0 0			9
Action Point (4-bi	ts per AP)		0 0 0 0	0 0			
PASS RTS EXE Cnt		0	RTS EXE Cnl	t [0	
WPs in Use		0	WP MSG Mo	on Cnt		0	
Active APs		0	AP Sample (Cnt		0	
Flight Event Messages							

OSK – Making Space for Apps

Mission FSW Quick Start Guide v3.0 Page 43

Application Management

GO CFS_KIT APP_N	MGMT_SCREEN			
	Арр Ма	nagement		
	Executive Service S	Status		
App Summary	Cmd Ctr	0	md Err Ctr	0
App/Task Registry	Registered Apps	0 R	egistered Tasks	0
Enable App Events				
Disable App Events	App Info			
Add KIT_TO Msg	Name		Entry Point	←
Start App	Main Task Name		Main Task ID	0
	APP ID		Priority	0
Stop App	Туре	0	# Child Tasks	0
Reload App	File Name		Exception	0
Get App Info	Code Size		Data Size	0
Create App Tool	BSS Size	0	Stack Size	0
ile Transfer		1		1
	File		Get File	
PUT_FILE_COUNT:		GET_FILE_COL	JNT:	0
Ground Working Direct	огу			
Flight Working Director	гу			- [hul
Flight Event Messages				

• < *Get App Info* > commands cFE executive services to send a telemetry packet with the command-specified app

• < App/Task Registry > commands cFE executive services to write app or task information to a file that can be transferred to ground via a < Get File >