Chemical Mechanism of MECCA

KPP version: 2.2.3_rs3

MECCA version: 4.0

Date: October 22, 2020

Batch file: mafor.bat

Integrator: rosenbrock_posdef

Gas equation file: gas.eqn

Replacement file:

Selected reactions:

 $\mathtt{rL},$ 2% C & & !S && !Cl && !Br && !I && !Hg"

Number of aerosol phases: 0

Number of species in selected mechanism:

Gas phase: 2566

Aqueous phase: 0

All species: 2566

Number of reactions in selected mechanism: Gas phase (Gnnn): 1618

Aqueous phase (Annn): CHenry (Hnnn): CPhotolysis (Jnnn): 324

Aqueous phase photolysis (PHnnn): 0
Heterogeneous (HETnnn): 0

Equilibria (EQnn): 0
Isotope exchange (IEXnnn): 0

Tagging equations (TAGnnn): 0
Dummy (Dnn): 0

Dummy (Dnn): 0
All equations: 1942

Table 1: Gas phase reactions

#	labels	reaction	rate coefficient	reference
G1000	$\operatorname{UpStTrG}$	$O_2 + O(^1D) \to O(^3P) + O_2$	3.3E-11*EXP(55./temp)	Burkholder et al. (2015)
G1001	$\operatorname{UpStTrG}$	$O_2 + O(^3P) \rightarrow O_3$	6.0E-34*((temp/300.)**(-2.4))	Burkholder et al. (2015)
			*cair	
G2100	$\operatorname{UpStTrG}$	$\mathrm{H} + \mathrm{O}_2 o \mathrm{HO}_2$	k_3rd(temp,cair,4.4E-32,1.3,	Burkholder et al. (2015)
			7.5E-11,-0.2,0.6)	
G2104	UpStTrG	$OH + O_3 \rightarrow HO_2 + O_2$	1.7E-12*EXP(-940./temp)	Burkholder et al. (2015)
G2105	UpStTrG	$OH + H_2 \rightarrow H_2O + H$	2.8E-12*EXP(-1800./temp)	Burkholder et al. (2015)
G2107	UpStTrG	$HO_2 + O_3 \rightarrow OH + 2 O_2$	1.E-14*EXP(-490./temp)	Burkholder et al. (2015)
G2109	UpStTrG	$\mathrm{HO_2} + \mathrm{OH} \rightarrow \mathrm{H_2O} + \mathrm{O_2}$	4.8E-11*EXP(250./temp)	Burkholder et al. (2015)
G2110	UpStTrG	$\mathrm{HO_2} + \mathrm{HO_2} \rightarrow \mathrm{H_2O_2} + \mathrm{O_2}$	k_H02_H02	Burkholder et al. $(2015)^*$
G2111	UpStTrG	$\mathrm{H_2O} + \mathrm{O(^1D)} \rightarrow 2 \mathrm{OH}$	1.63E-10*EXP(60./temp)	Burkholder et al. (2015)
G2112	UpStTrG	$H_2O_2 + OH \rightarrow H_2O + HO_2$	1.8E-12	Burkholder et al. (2015)
G2117	UpStTrG	$\mathrm{H_2O} + \mathrm{H_2O} \rightarrow (\mathrm{H_2O})_2$	6.521E-26*temp*EXP(1851.09/temp)	Scribano et al. $(2006)^*$
			*EXP(-5.10485E-3*temp)	
G2118	UpStTrG	$(\mathrm{H_2O})_2 \to \mathrm{H_2O} + \mathrm{H_2O}$	1.E0	see note*
G3101	UpStTrGN	$N_2 + O(^1D) \to O(^3P) + N_2$	2.15E-11*EXP(110./temp)	Burkholder et al. (2015)
G3103	UpStTrGN	$NO + O_3 \rightarrow NO_2 + O_2$	3.0E-12*EXP(-1500./temp)	Burkholder et al. (2015)
G3106	StTrGN	$NO_2 + O_3 \rightarrow NO_3 + O_2$	1.2E-13*EXP(-2450./temp)	Burkholder et al. (2015)
G3108	StTrGN	$\mathrm{NO_3} + \mathrm{NO} \rightarrow 2 \ \mathrm{NO_2}$	1.5E-11*EXP(170./temp)	Burkholder et al. (2015)
G3109	UpStTrGN	$NO_3 + NO_2 \rightarrow N_2O_5$	k_N03_N02	Burkholder et al. $(2015)^*$
G3110	StTrGN	$N_2O_5 \rightarrow NO_2 + NO_3$	k_NO3_NO2/(5.8E-27*EXP(10840./	Burkholder et al. $(2015)^*$
			temp))	
G3200	TrGN	$NO + OH \rightarrow HONO$	k_3rd(temp,cair,7.0E-31,2.6,	Burkholder et al. (2015)
			3.6E-11,0.1,0.6)	
G3201		$NO + HO_2 \rightarrow NO_2 + OH$	3.3E-12*EXP(270./temp)	Burkholder et al. (2015)
G3202	UpStTrGN	$NO_2 + OH \rightarrow HNO_3$	k_3rd(temp,cair,1.8E-30,3.0,	Burkholder et al. (2015)
			2.8E-11,0.,0.6)	
G3203	StTrGN	$\mathrm{NO_2} + \mathrm{HO_2} \rightarrow \mathrm{HNO_4}$	k_N02_H02	Burkholder et al. $(2015)^*$
G3204	TrGN	$NO_3 + HO_2 \rightarrow NO_2 + OH + O_2$	3.5E-12	Burkholder et al. (2015)
G3205	TrGN	$HONO + OH \rightarrow NO_2 + H_2O$	1.8E-11*EXP(-390./temp)	Burkholder et al. (2015)
G3206	StTrGN	$HNO_3 + OH \rightarrow H_2O + NO_3$	k_HNO3_OH	Dulitz et al. $(2018)^*$
G3207	StTrGN	$\mathrm{HNO_4} ightarrow \mathrm{NO_2} + \mathrm{HO_2}$	k_NO2_HO2/(2.1E-27*EXP(10900./	Burkholder et al. $(2015)^*$
			temp))	
G3208	StTrGN	$HNO_4 + OH \rightarrow NO_2 + H_2O$	1.3E-12*EXP(380./temp)	Burkholder et al. (2015)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G3209	TrGN	$NH_3 + OH \rightarrow NH_2 + H_2O$	1.7E-12*EXP(-710./temp)	Kohlmann and Poppe (1999)
G3210	TrGN	$NH_2 + O_3 \rightarrow NH_2O + O_2$	4.3E-12*EXP(-930./temp)	Kohlmann and Poppe (1999)
G3211	TrGN	$\mathrm{NH_2} + \mathrm{HO_2} \rightarrow \mathrm{NH_2O} + \mathrm{OH}$	4.8E-07*EXP(-628./temp)	Kohlmann and Poppe (1999)
			*temp**(-1.32)	
G3212	TrGN	$NH_2 + HO_2 \rightarrow HNO + H_2O$	9.4E-09*EXP(-356./temp)	Kohlmann and Poppe (1999)
			*temp**(-1.12)	
G3213	TrGN	$NH_2 + NO \rightarrow HO_2 + OH + N_2$	1.92E-12*((temp/298.)**(-1.5))	Kohlmann and Poppe (1999)
G3214	TrGN	$NH_2 + NO \rightarrow N_2 + H_2O$	1.41E-11*((temp/298.)**(-1.5))	Kohlmann and Poppe (1999)
G3215	TrGN	$NH_2 + NO_2 \rightarrow N_2O + H_2O$	1.2E-11*((temp/298.)**(-2.0))	Kohlmann and Poppe (1999)
G3216	TrGN	$NH_2 + NO_2 \rightarrow NH_2O + NO$	0.8E-11*((temp/298.)**(-2.0))	Kohlmann and Poppe (1999)
G3217	TrGN	$NH_2O + O_3 \rightarrow NH_2 + O_2$	1.2E-14	Kohlmann and Poppe (1999)
G3218	TrGN	$NH_2O \rightarrow NHOH$	1.3E3	Kohlmann and Poppe (1999)
G3219	TrGN	$\mathrm{HNO} + \mathrm{OH} \rightarrow \mathrm{NO} + \mathrm{H}_2\mathrm{O}$	8.0E-11*EXP(-500./temp)	Kohlmann and Poppe (1999)
G3220	TrGN	$\text{HNO} + \text{NHOH} \rightarrow \text{NH}_2\text{OH} + \text{NO}$	1.66E-12*EXP(-1500./temp)	Kohlmann and Poppe (1999)
G3221	TrGN	$\text{HNO} + \text{NO}_2 \rightarrow \text{HONO} + \text{NO}$	1.0E-12*EXP(-1000./temp)	Kohlmann and Poppe (1999)
G3222	TrGN	$NHOH + OH \rightarrow HNO + H_2O$	1.66E-12	Kohlmann and Poppe (1999)
G3223	TrGN	$NH_2OH + OH \rightarrow NHOH + H_2O$	4.13E-11*EXP(-2138./temp)	Kohlmann and Poppe (1999)
G3224	TrGN	$\text{HNO} + \text{O}_2 \rightarrow \text{HO}_2 + \text{NO}$	3.65E-14*EXP(-4600./temp)	Kohlmann and Poppe (1999)
G4101	StTrG	$CH_4 + OH \rightarrow CH_3 + H_2O$	1.85E-20*EXP(2.82*LOG(temp)	Atkinson (2003)
			-987./temp)	
G4102	$\operatorname{Tr} G$	$\mathrm{CH_3OH} + \mathrm{OH} \rightarrow .85 \; \mathrm{HCHO} + .85 \; \mathrm{HO_2} + .15 \; \mathrm{CH_3O} + \mathrm{H_2O}$	6.38E-18*(temp**2)*EXP(144./temp)	Atkinson et al. (2006)
G4103a	StTrG	$CH_3O_2 + HO_2 \rightarrow CH_3OOH + O_2$	3.8E-13*EXP(780./temp)/(1.+1./	Atkinson et al. (2006)
			498.*EXP(1160./temp))	,
G4103b	StTrG	$CH_3O_2 + HO_2 \rightarrow HCHO + H_2O + O_2$	3.8E-13*EXP(780./temp)/(1.+	Atkinson et al. (2006)
			498.*EXP(-1160./temp))	` ,
G4104a	StTrGN	$CH_3O_2 + NO \rightarrow CH_3O + NO_2$	2.3E-12*EXP(360./temp)*(1beta_	Atkinson et al. (2006),
			CH3NO3)	Butkovskaya et al. (2012),
				Flocke et al. (1998)
G4104b	StTrGN	$\mathrm{CH_3O_2} + \mathrm{NO} \rightarrow \mathrm{CH_3ONO_2}$	2.3E-12*EXP(360./temp)*beta_	Atkinson et al. (2006),
			CH3NO3	Butkovskaya et al. (2012),
				Flocke et al. (1998)*
G4105	TrGN	$\mathrm{CH_3O_2} + \mathrm{NO_3} \rightarrow \mathrm{CH_3O} + \mathrm{NO_2} + \mathrm{O_2}$	1.2E-12	Atkinson et al. (2006)
G4106a	StTrG	$CH_3O_2 \rightarrow CH_3O + .5 O_2$	7.4E-13*EXP(-520./temp)*R02*2.	Atkinson et al. (2006)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G4106b	StTrG	$\text{CH}_3\text{O}_2 \rightarrow .5 \text{ HCHO} + .5 \text{ CH}_3\text{OH} + .5 \text{ O}_2$	(k_CH302-7.4E-13*EXP(-520./temp)) *R02*2.	Atkinson et al. (2006)
G4107	StTrG	$\text{CH}_3\text{OOH} + \text{OH} \rightarrow .6 \text{ CH}_3\text{O}_2 + .4 \text{ HCHO} + .4 \text{ OH} + \text{H}_2\text{O}$	k_CH300H_OH	Wallington et al. (2018)
G4108	StTrG	$\mathrm{HCHO} + \mathrm{OH} \rightarrow \mathrm{CO} + \mathrm{H}_2\mathrm{O} + \mathrm{HO}_2$	9.52E-18*EXP(2.03*LOG(temp) +636./temp)	Sivakumaran et al. (2003)
G4109	TrGN	$\mathrm{HCHO} + \mathrm{NO}_3 \rightarrow \mathrm{HNO}_3 + \mathrm{CO} + \mathrm{HO}_2$	3.4E-13*EXP(-1900./temp)	Burkholder et al. $(2015)^*$
G4110	UpStTrG	$CO + OH \rightarrow H + CO_2$	(1.57E-13+cair*3.54E-33)	McCabe et al. (2001)
G4111	$\operatorname{Tr} G$	$\mathrm{HCOOH} + \mathrm{OH} \rightarrow \mathrm{CO}_2 + \mathrm{HO}_2 + \mathrm{H}_2\mathrm{O}$	2.94E-14*exp(786./temp) +9.85E-13*EXP(-1036./temp)	Paulot et al. (2011)
G4114	StTrGN	$\mathrm{CH_3O_2} + \mathrm{NO_2} \to \mathrm{CH_3O_2NO_2}$	k_NO2_CH3O2	Burkholder et al. (2015)
G4115	StTrGN	$\mathrm{CH_3O_2NO_2} \rightarrow \mathrm{CH_3O_2} + \mathrm{NO_2}$	k_NO2_CH3O2/(9.5E-29*EXP(11234./ temp))	Burkholder et al. (2015)*
G4116	StTrGN	$CH_3O_2NO_2 + OH \rightarrow HCHO + NO_3 + H_2O$	3.00E-14	see note*
G4117	StTrGN	$CH_3ONO_2 + OH \rightarrow H_2O + HCHO + NO_2$	4.0E-13*EXP(-845./temp)	Atkinson et al. (2006)
G4118	StTrG	$\mathrm{CH_{3}O} \rightarrow \mathrm{HO_{2}} + \mathrm{HCHO}$	1.3E-14*exp(-663./temp)*c(ind_02)	Chai et al. (2014)
G4119a	StTrGN	$\mathrm{CH_3O} + \mathrm{NO_2} \to \mathrm{CH_3ONO_2}$	k_3rd_iupac(temp,cair,8.1E-29, 4.5,2.1E-11,0.,0.44)	Atkinson et al. (2006)
G4119b	StTrGN	$CH_3O + NO_2 \rightarrow HCHO + HONO$	9.6E-12*EXP(-1150./temp)	Atkinson et al. (2006)
G4120a	StTrGN	$\mathrm{CH_{3}O} + \mathrm{NO} \rightarrow \mathrm{CH_{3}ONO}$	<pre>k_3rd_iupac(temp,cair,2.6E-29, 2.8,3.3E-11,0.6,REAL(EXP(-temp/ 900.),SP))</pre>	Atkinson et al. (2006)
G4120b	StTrGN	$CH_3O + NO \rightarrow HCHO + HNO$	2.3E-12*(temp/300.)**0.7	Atkinson et al. (2006)
G4121	StTrG	$CH_3O_2 + O_3 \rightarrow CH_3O + 2 O_2$	2.9E-16*exp(-1000./temp)	Burkholder et al. (2015)
G4122	StTrGN	$\mathrm{CH_{3}ONO} + \mathrm{OH} \rightarrow \mathrm{H_{2}O} + \mathrm{HCHO} + \mathrm{NO}$	1.E-10*exp(-1764./temp)	Nielsen et al. (1991)
G4123	StTrG	$\mathrm{HCHO} + \mathrm{HO}_2 \to \mathrm{HOCH}_2\mathrm{O}_2$	9.7E-15*EXP(625./temp)	Atkinson et al. (2006)
G4124	StTrG	$\mathrm{HOCH_2O_2} \rightarrow \mathrm{HCHO} + \mathrm{HO_2}$	2.4E12*EXP(-7000./temp)	Atkinson et al. (2006)
G4125	StTrG	$HOCH_2O_2 + HO_2 \rightarrow .5 \ HOCH_2OOH + .5 \ HCOOH + .2 \ OH + .2 \ HO_2 + .3 \ H_2O + .8 \ O_2$	5.6E-15*EXP(2300./temp)	Atkinson et al. (2006)
G4126	StTrGN	$HOCH_2O_2 + NO \rightarrow NO_2 + HO_2 + HCOOH$	0.7275*2.3E-12*EXP(360./temp)	Atkinson et al. (2006)*
G4127	StTrGN	$HOCH_2O_2 + NO_3 \rightarrow NO_2 + HO_2 + HCOOH$	1.2E-12	see note*
G4129a	StTrG	$HOCH_2O_2 \rightarrow HCOOH + HO_2$	(k_CH302*5.5E-12)**0.5*R02*2.	Atkinson et al. (2006)
G4129b	StTrG	$HOCH_2O_2 \rightarrow .5 HCOOH + .5 HOCH_2OH + .5 O_2$	(k_CH302*5.7E-14*EXP(750./temp)) **0.5*R02*2.	Atkinson et al. (2006)
G4130a	StTrG	$\mathrm{HOCH_2OOH} + \mathrm{OH} \rightarrow \mathrm{HOCH_2O_2} + \mathrm{H_2O}$	k_roohro	Taraborrelli (2010)*
G4130b	StTrG	$HOCH_2OOH + OH \rightarrow HCOOH + H_2O + OH$	k_rohro + k_s*f_sooh*f_soh	Taraborrelli (2010)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G4132	StTrG	$HOCH_2OH + OH \rightarrow HO_2 + HCOOH + H_2O$	2.*k_rohro + k_s*f_soh*f_soh	Taraborrelli (2010)*
G4133	StTrG	$\mathrm{CH_3O_2} + \mathrm{OH} \to \mathrm{CH_3O} + \mathrm{HO_2}$	1.4E-10	Bossolasco et al. (2014)*
G4134	StTrG	$CH_2OO \rightarrow CO + HO_2 + OH$	1.124E+14*EXP(-10000/temp)	see note*
G4135	StTrG	$\mathrm{CH_2OO} + \mathrm{H_2O} \to \mathrm{HOCH_2OOH}$	k_CH200_N02*3.6E-6	Ouyang et al. $(2013)^*$
G4136	StTrG	$CH_2OO + (H_2O)_2 \rightarrow HOCH_2OOH + H_2O$	5.2E-12	Chao et al. (2015), Lewis et al. (2015)*
G4137	StTrGN	$CH_2OO + NO \rightarrow HCHO + NO_2$	6.E-14	Welz et al. $(2012)^*$
G4138	StTrGN	$\mathrm{CH_2OO} + \mathrm{NO_2} \rightarrow \mathrm{HCHO} + \mathrm{NO_3}$	k_CH200_N02	Welz et al. (2012), Stone et al. $(2014)^*$
G4140	StTrG	$\mathrm{CH_2OO} + \mathrm{CO} \rightarrow \mathrm{HCHO} + \mathrm{CO_2}$	3.6E-14	Vereecken et al. (2012)
G4141	StTrG	$CH_2OO + HCOOH \rightarrow 2 HCOOH$	1.E-10	Welz et al. $(2014)^*$
G4142	StTrG	$\mathrm{CH_2OO} + \mathrm{HCHO} \rightarrow 2 \; \mathrm{LCARBON}$	1.7E-12	Stone et al. $(2014)^*$
G4143	StTrG	$\mathrm{CH_2OO} + \mathrm{CH_3OH} \rightarrow 2 \; \mathrm{LCARBON}$	5.E-12	Vereecken et al. $(2012)^*$
G4144	StTrG	$CH_2OO + CH_3O_2 \rightarrow 2 LCARBON$	5.E-12	Vereecken et al. $(2012)^*$
G4145	StTrG	$CH_2OO + HO_2 \rightarrow LCARBON$	5.E-12	Vereecken et al. (2012)
G4146	StTrG	$CH_2OO + O_3 \rightarrow HCHO + 2 O_2$	1.E-12	Vereecken et al. (2014)
G4147	StTrG	$\mathrm{CH_2OO} + \mathrm{CH_2OO} \rightarrow 2 \; \mathrm{HCHO} + \mathrm{O_2}$	6.E-11	Buras et al. (2014)
G4148	StTrGN	$HOCH_2O_2 + NO_2 \rightarrow HOCH_2O_2NO_2$	k_NO2_CH3O2	see note*
G4149	StTrGN	$HOCH_2O_2NO_2 \rightarrow HOCH_2O_2 + NO_2$	k_NO2_CH302/(9.5E-29*EXP(11234./ temp))	Barnes et al. (1985)*
G4150	StTrGN	$HOCH_2O_2NO_2 + OH \rightarrow HCOOH + NO_3 + H_2O$	9.50E-13*EXP(-650./temp)*f_soh	see note*
G4151	StTrG	$\mathrm{CH_3} + \mathrm{O_2} \to \mathrm{CH_3O_2}$	<pre>k_3rd_iupac(temp,cair,7.0E-31, 3.,1.8E-12,-1.1,0.33)</pre>	Atkinson et al. (2006)
G4152	StTrG	$\text{CH}_3 + \text{O}_3 \rightarrow .956 \text{ HCHO} + .956 \text{ H} + .044 \text{ CH}_3\text{O} + \text{O}_2$	5.1E-12*exp(-210./temp)	Albaladejo et al. (2002), Ogryzlo et al. (1981)
G4153	StTrG	${ m CH_3 + O(^3P)} \rightarrow .83 \ { m HCHO} + .83 \ { m H} + .17 \ { m CO} + .17 \ { m H_2} + .17 \ { m H}$	1.3E-10	Atkinson et al. (2006)
G4154	StTrG	$\mathrm{CH_3O} + \mathrm{O_3} \rightarrow \mathrm{CH_3O_2} + \mathrm{O_2}$	2.53E-14	Albaladejo et al. $(2002)^*$
G4155	StTrG	${\rm CH_3O} + {\rm O(^3P)} \rightarrow .75 {\rm ~CH_3} + .75 {\rm ~O_2} + .25 {\rm ~HCHO} + .25 {\rm ~OH}$	2.5E-11	Baulch et al. (2005)
G4156	StTrG	$\mathrm{CH_3O_2} + \mathrm{O(^3P)} \rightarrow \mathrm{CH_3O} + \mathrm{O_2}$	4.3E-11	Zellner et al. (1988)
G4157	StTrG	$\text{HCHO} + \text{O(^3P)} \rightarrow .7 \text{ OH} + .7 \text{ CO} + .3 \text{ H} + .3 \text{ CO}_2 + \text{HO}_2$	-	Burkholder et al. (2015)
G4158	TrG	${\rm CH_2OO^*} \rightarrow .37~{\rm CH_2OO} + .47~{\rm CO} + .47~{\rm H_2O} + .16~{\rm HO_2} + .16~{\rm CO} + .16~{\rm OH}$	KDEC	Atkinson et al. (2006)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G4159	TrGN	$HCN + OH \rightarrow H_2O + CN$	k_3rd(temp,cair,4.28E-33,1.0,	Kleinböhl et al. (2006)
			REAL(4.25E-13*EXP(-1150./temp)	
		4	,SP),1.0,0.8)	
G4160a	TrGN	$HCN + O(^{1}D) \rightarrow O(^{3}P) + HCN$	1.08E-10*EXP(105./temp)	Strekowski et al. (2010)
		7.00.	*0.15*EXP(200/temp)	
G4160b	TrGN	$HCN + O(^{1}D) \rightarrow H + NCO$	1.08E-10*EXP(105./temp)*0.68/2.	Strekowski et al. (2010)*
G4160c	TrGN	$HCN + O(^{1}D) \rightarrow OH + CN$	1.08E-10*EXP(105./temp)*(1(0.68/	Strekowski et al. $(2010)^*$
		11011 0 (27) 11 1100	2.+0.15*EXP(200/temp)))	D 11 11 (2017)
G4161	TrGN	$HCN + O(^{3}P) \rightarrow H + NCO$	1.0E-11*EXP(-4000./temp)	Burkholder et al. (2015)*
G4162	TrGN	$CN + O_2 \to NCO + O(^3P)$	1.2E-11*EXP(210./temp)*0.75	Baulch et al. (2005)
G4163	TrGN	$CN + O_2 \rightarrow CO + NO$	1.2E-11*EXP(210./temp)*0.25	Baulch et al. (2005)
G4164	TrGN	$NCO + O_2 \rightarrow CO_2 + NO$	7.E-15	Becker et al. (2000)*
G42000	TrGC	$C_2H_6 + OH \rightarrow C_2H_5O_2 + H_2O$	1.49E-17*temp*temp*EXP(-499./temp)	Atkinson et al. (2006)
G42001	TrGC	$C_2H_4 + O_3 \rightarrow HCHO + CH_2OO^*$	9.1E-15*EXP(-2580./temp)	Atkinson et al. $(2006)^*$
G42002	TrGC	$C_2H_4 + OH \rightarrow HOCH_2CH_2O_2$	k_3rd_iupac(temp,cair,8.6E-29, 3.1,9.E-12,0.85,0.48)	Atkinson et al. (2006), Rickard and Pascoe (2009)
G42003	TrGC	$C_2H_5O_2 + HO_2 \rightarrow C_2H_5OOH$	7.5E-13*EXP(700./temp)	Burkholder et al. (2015)
G42004a	TrGCN	$C_2H_5O_2 + HO_2 \rightarrow C_2H_3OOH$ $C_2H_5O_2 + NO \rightarrow CH_3CHO + HO_2 + NO_2$	2.55E-12*EXP(380./temp)*(1beta_	Atkinson et al. (2006),
			C2H5NO3)	Butkovskaya et al. (2010)
G42004b	TrGCN	$C_2H_5O_2 + NO \rightarrow C_2H_5ONO_2$	2.55E-12*EXP(380./temp)*beta_ C2H5NO3	Atkinson et al. (2006), Butkovskaya et al. (2010)
G42005	TrGCN	$C_2H_5O_2 + NO_3 \rightarrow CH_3CHO + HO_2 + NO_2$	2.3E-12	Wallington et al. (2018)
G42006	TrGC	$C_2H_5O_2 \rightarrow .8 CH_3CHO + .6 HO_2 + .2 C_2H_5OH$	2.*(7.6E-14*k_CH302)**(.5)*R02	Sander et al. (2018), Atkinson et al. (2006)
G42007a	TrGC	$C_2H_5OOH + OH \rightarrow C_2H_5O_2 + H_2O$	k_roohro	Sander et al. (2018)
G42007b	TrGC	$C_2H_5OOH + OH \rightarrow CH_3CHO + OH$	k_s*f_sooh	Sander et al. (2018)
G42008a	TrGC	$\mathrm{CH_3CHO} + \mathrm{OH} \rightarrow \mathrm{CH_3C(O)} + \mathrm{H_2O}$	4.4E-12*EXP(365./temp)*0.95	Atkinson et al. (2006)
G42008b	TrGC	$CH_3CHO + OH \rightarrow HCOCH_2O_2 + H_2O$	4.4E-12*EXP(365./temp)*0.05	Atkinson et al. (2006)
G42009	TrGCN	$CH_3CHO + NO_3 \rightarrow CH_3C(O) + HNO_3$	KNO3AL	Rickard and Pascoe (2009)
G42010	TrGC	$\text{CH}_3\text{COOH} + \text{OH} \rightarrow \text{CH}_3 + \text{CO}_2 + \text{H}_2\text{O}$	k_CH3CO2H_OH	Atkinson et al. (2006)*
G42011a	TrGC	$\mathrm{CH_3C(O)OO} + \mathrm{HO_2} \rightarrow \mathrm{OH} + \mathrm{CH_3} + \mathrm{CO_2}$	5.20E-13*EXP(980./temp)*1.507*0.61	Groß et al. (2014)
G42011b	TrGC	$\mathrm{CH_3C(O)OO} + \mathrm{HO_2} \rightarrow \mathrm{CH_3C(O)OOH}$	5.20E-13*EXP(980./temp)*1.507*0.23	Groß et al. (2014)
G42011c	TrGC	$\mathrm{CH_3C(O)OO} + \mathrm{HO_2} \rightarrow \mathrm{CH_3COOH} + \mathrm{O_3}$	5.20E-13*EXP(980./temp)*1.507*0.16	Groß et al. (2014)
G42012	TrGCN	$CH_3C(O)OO + NO \rightarrow CH_3 + CO_2 + NO_2$	8.1E-12*EXP(270./temp)	Tyndall et al. (2001a)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G42013	TrGCN	$\mathrm{CH_3C}(\mathrm{O})\mathrm{OO} + \mathrm{NO}_2 \to \mathrm{PAN}$	k_CH3CO3_NO2	Burkholder et al. (2015)*
G42014	TrGCN	$\mathrm{CH_3C}(\mathrm{O})\mathrm{OO} + \mathrm{NO_3} \to \mathrm{CH_3} + \mathrm{NO_2} + \mathrm{CO_2}$	4.E-12	Canosa-Mas et al. (1996)
G42017a	TrGC	$\mathrm{CH_3C}(\mathrm{O})\mathrm{OO} \to \mathrm{CH_3} + \mathrm{CO_2}$	k1_R02RC03*0.9	Sander et al. (2018)
G42017b	TrGC	$\mathrm{CH_3C}(\mathrm{O})\mathrm{OO} \to \mathrm{CH_3COOH}$	k1_R02RC03*0.1	Sander et al. (2018)
G42018	TrGC	$\mathrm{CH_3C}(\mathrm{O})\mathrm{OOH} + \mathrm{OH} \to \mathrm{CH_3C}(\mathrm{O})\mathrm{OO} + \mathrm{H_2O}$	k_roohro	Rickard and Pascoe (2009)*
G42020	TrGCN	$PAN + OH \rightarrow HCHO + CO + NO_2 + H_2O$	3.00E-14	Rickard and Pascoe (2009)
G42021	TrGCN	$PAN \rightarrow CH_3C(O)OO + NO_2$	k_PAN_M	Burkholder et al. $(2015)^*$
G42022a	TrGC	$C_2H_2 + OH \rightarrow GLYOX + OH$	k_3rd(temp,cair,5.5e-30,0.0, 8.3e-13,-2.,0.6)*0.71	Burkholder et al. (2015)*
G42022b	TrGC	$C_2H_2 + OH \rightarrow HCOOH + CO + HO_2$	k_3rd(temp,cair,5.5e-30,0.0, 8.3e-13,-2.,0.6)*0.29	Burkholder et al. $(2015)^*$
G42023a	TrGC	$HOCH_2CHO + OH \rightarrow HOCH_2CO + H_2O$	8.00E-12*0.80	Atkinson et al. (2006)
G42023b	TrGC	$\mathrm{HOCH_2CHO} + \mathrm{OH} \rightarrow \mathrm{HOCHCHO} + \mathrm{H_2O}$	8.00E-12*0.20	Atkinson et al. (2006)
G42024a	TrGC	$HOCH2CO + O_2 \rightarrow HOCH_2CO_3$	5.1E-12*(11./(1+1.85E-18*cair))	Atkinson et al. (2006) , Beyersdorf et al. $(2010)^*$
G42024b	TrGC	$\mathrm{HOCH2CO} + \mathrm{O_2} \rightarrow \mathrm{OH} + \mathrm{HCHO} + \mathrm{CO_2}$	5.1E-12*1./(1+1.85E-18*cair)	Atkinson et al. (2006), Beyersdorf et al. (2010)*
G42025	TrGC	$\mathrm{HOCHCHO} ightarrow \mathrm{GLYOX} + \mathrm{HO}_2$	KDEC	Sander et al. (2018)
G42026	TrGCN	$HOCH_2CHO + NO_3 \rightarrow HOCH_2CO + HNO_3$	KNO3AL	Rickard and Pascoe (2009)
G42027a	TrGC	$HOCH_2CO_3 \rightarrow HCHO + CO_2 + HO_2$	k1_R02RC03*0.9	Sander et al. (2018)
G42027b	TrGC	$HOCH_2CO_3 \rightarrow HOCH_2CO_2H$	k1_R02RC03*0.1	Sander et al. (2018)
G42028a	TrGC	$HOCH_2CO_3 + HO_2 \rightarrow HCHO + HO_2 + OH + CO_2$	KAPHO2*rco3_oh	Sander et al. (2018), Groß et al. (2014)
G42028b	TrGC	$\mathrm{HOCH_2CO_3} + \mathrm{HO_2} \rightarrow \mathrm{HOCH_2CO_3H}$	KAPHO2*rco3_ooh	Sander et al. (2018), Groß et al. (2014)
G42028c	TrGC	$HOCH_2CO_3 + HO_2 \rightarrow HOCH_2CO_2H + O_3$	KAPHO2*rco3_o3	Sander et al. (2018), Groß et al. (2014)
G42029	TrGCN	$HOCH_2CO_3 + NO \rightarrow NO_2 + HO_2 + HCHO + CO_2$	KAPNO	Rickard and Pascoe (2009)
G42030	TrGCN	$HOCH_2CO_3 + NO_2 \rightarrow PHAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G42031	TrGCN	$HOCH_2CO_3 + NO_3 \rightarrow NO_2 + HO_2 + HCHO + CO_2$	KR02N03*1.74	Rickard and Pascoe (2009)
G42032	TrGC	$HOCH_2CO_2H + OH \rightarrow .09 HCHO + .09 CO_2 + .91$	k_co2h+k_s*f_soh*f_co2h	Sander et al. (2018)
		$HCOCO_2H + HO_2 + H_2O$		
G42033a	TrGC	$HOCH_2CO_3H + OH \rightarrow HOCH_2CO_3 + H_2O$	k_roohro	Sander et al. (2018)
G42033b	TrGC	$HOCH_2CO_3H + OH \rightarrow HCOCO_3H + HO_2$	k_s*f_soh*f_co2h	Sander et al. (2018)
G42034	TrGCN	$PHAN \rightarrow HOCH_2CO_3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G42035	TrGCN	$PHAN + OH \rightarrow HCHO + CO + NO_2 + H_2O$	k_s*f_soh*f_cpan+k_rohro	Sander et al. (2018)
G42036	TrGC	$\mathrm{GLYOX} + \mathrm{OH} \rightarrow \mathrm{HCOCO} + \mathrm{H_2O}$	3.1E-12*EXP(340./temp)	Atkinson et al. (2006), Orlando and Tyndall (2001), Lockhart et al. (2013)
G42037	TrGCN	$GLYOX + NO_3 \rightarrow HCOCO + HNO_3$	KNO3AL	Rickard and Pascoe (2009)
G42038a	TrGC	$HCOCO \rightarrow CO + CO + HO_2$	7.E11*EXP(-3160./temp) +5.E-12*c(ind_02)	Orlando and Tyndall (2001), Lockhart et al. (2013), Rickard and Pascoe (2009)
G42037b	TrGC	$HCOCO \rightarrow HCOCO_3$	5.E-12*c(ind_02)*3.2*exp(-550./ temp)	Lockhart et al. (2013), Rickard and Pascoe (2009)
G42037c	TrGC	$\mathrm{HCOCO} \rightarrow \mathrm{OH} + \mathrm{CO} + \mathrm{CO}_2$	5.E-12*c(ind_02) *(13.2*exp(-550./temp))	Lockhart et al. (2013), Rickard and Pascoe (2009)
G42039a	TrGC	$HCOCO_3 \rightarrow CO + HO_2 + CO_2$	k1_R02RC03*0.9	Sander et al. (2018)
G42039b	TrGC	$\mathrm{HCOCO_3} \rightarrow \mathrm{HCOCO_2H}$	k1_R02RC03*0.1	Sander et al. (2018)
G42040	TrGC	$\mathrm{HCOCO_3} + \mathrm{HO_2} \rightarrow \mathrm{HO_2} + \mathrm{CO} + \mathrm{CO_2} + \mathrm{OH}$	KAPHO2	Feierabend et al. (2008), Sander et al. (2018)
G42041	TrGCN	$HCOCO_3 + NO \rightarrow HO_2 + CO + NO_2 + CO_2$	KAPNO	Rickard and Pascoe (2009)
G42042	TrGCN	$HCOCO_3 + NO_3 \rightarrow HO_2 + CO + NO_2 + CO_2$	KR02N03*1.74	Rickard and Pascoe (2009)
G42043	TrGCN	$HCOCO_3 + NO_2 \rightarrow HO_2 + CO + NO_3 + CO_2$	k_CH3CO3_NO2	Orlando and Tyndall (2001), Sander et al. (2018)
G42044	TrGC	$HCOCO_2H + OH \rightarrow CO + HO_2 + CO_2 + H_2O$	k_co2h+k_t*f_o*f_co2h	Sander et al. (2018)
G42045a	TrGC	$HCOCO_3H + OH \rightarrow HCOCO_3 + H_2O$	k_roohro	Sander et al. (2018)
G42045b	TrGC	$HCOCO_3H + OH \rightarrow CO + CO_2 + H_2O + OH$	k_t*f_o*f_co2h	Sander et al. (2018)
G42046	TrGC	$HOCH_2CH_2O_2 \rightarrow .6 \ HOCH_2CH_2O + .2 \ HOCH_2CHO + .2 \ ETHGLY$	2.*(7.8E-14*EXP(1000./temp) *k_CH302)**(.5)*R02	Atkinson et al. (2006), Rickard and Pascoe (2009)
G42047	TrGCN	$\mathrm{HOCH_2CH_2O_2} + \mathrm{NO} \rightarrow .25 \ \mathrm{HO_2} + .5 \ \mathrm{HCHO} + .75 \ \mathrm{HOCH_2CH_2O} + \mathrm{NO_2}$	<pre>KRO2NO*(1alpha_AN(3,1,0,0,0, temp,cair))</pre>	Rickard and Pascoe (2009)*
G42048	TrGCN	$HOCH_2CH_2O_2 + NO \rightarrow ETHOHNO3$	<pre>KRO2NO*alpha_AN(3,1,0,0,0,temp, cair)</pre>	Sander et al. (2018)
G42049a	TrGC	$HOCH_2CH_2O_2 + HO_2 \rightarrow HYETHO2H$	1.53E-13*EXP(1300./temp) *(1rchohch2o2_oh)	Rickard and Pascoe (2009)
G42049b	TrGC	$HOCH_2CH_2O_2 + HO_2 \rightarrow HOCH_2CH_2O + OH$	1.53E-13*EXP(1300./temp) *rchohch2o2_oh	Rickard and Pascoe (2009)
G42050	TrGCN	ETHOHNO3 + OH \rightarrow .93 NO ₃ CH2CHO + .93 HO ₂ + .07 HOCH ₂ CHO + .07 NO ₂ + H ₂ O	k_s*(f_soh*f_ch2ono2+f_ono2*f_ pch2oh)+k_rohro	Sander et al. (2018)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G42051a	TrGC	$\mathrm{HYETHO2H} + \mathrm{OH} \rightarrow \mathrm{HOCH_2CH_2O_2} + \mathrm{H_2O}$	k_roohro	Rickard and Pascoe (2009)*
G42051b	TrGC	$HYETHO2H + OH \rightarrow HOCH_2CHO + OH + H_2O$	k_s*f_sooh*f_pch2oh	Sander et al. (2018)
G42051c	TrGC	$HYETHO2H + OH \rightarrow HOOCH2CHO + HO_2 + H_2O$	k_s*f_soh*f_pch2oh+k_rohro	Sander et al. (2018)
G42052a	TrGC	$HOCH_2CH_2O \rightarrow HO_2 + HOCH_2CHO$	6.00E-14*EXP(-550./temp) *C(ind_02)	Rickard and Pascoe (2009)
G42052b	TrGC	$HOCH_2CH_2O \rightarrow HO_2 + HCHO + HCHO$	9.50E13*EXP(-5988./temp)	Rickard and Pascoe (2009)
G42052b	TrGC	$ETHGLY + OH \rightarrow HOCH_2CHO + HO_2 + H_2O$	2*k_s*f_soh*f_pch2oh+2*k_rohro	Sander et al. (2018)
G42054	TrGC	$\text{HCOCH}_2\text{O}_2 \rightarrow .6 \text{ HCHO} + .6 \text{ CO} + .6 \text{ HO}_2 + .2 \text{ GLYOX}$	k1_R02p0R02	Sander et al. (2018) Sander et al. (2018)
G42054	IIGO	$+ .2 \text{ HOCH}_2\text{CHO}$	k1_k02p0k02	Sander et al. (2018)
G42055a	TrGC	$\text{HCOCH}_2\text{O}_2 + \text{HO}_2 \rightarrow \text{HOOCH}_2\text{CHO}$	KRO2HO2(2)*rcoch2o2_ooh	Sander et al. (2018)
G42055b	TrGC	$\text{HCOCH}_2\text{O}_2 + \text{HO}_2 \rightarrow \text{HCHO} + \text{CO} + \text{HO}_2 + \text{OH}$	KRO2HO2(2)*rcoch2o2_oh	Sander et al. (2018)
G42056a	TrGCN	$\text{HCOCH}_2\text{O}_2 + \text{NO} \rightarrow \text{NO}_2 + \text{HCHO} + \text{CO} + \text{HO}_2$	<pre>KRO2NO*(1alpha_AN(3,1,1,0,0, temp,cair))</pre>	Sander et al. (2018)
G42056b	TrGCN	$\mathrm{HCOCH_2O_2} + \mathrm{NO} \rightarrow \mathrm{NO_3CH2CHO}$	<pre>KRO2NO*alpha_AN(3,1,1,0,0,temp, cair)</pre>	Sander et al. (2018)
G42057	TrGCN	$\text{HCOCH}_2\text{O}_2 + \text{NO}_3 \rightarrow \text{HCHO} + \text{CO} + \text{HO}_2 + \text{NO}_2$	KR02N03	Sander et al. (2018)
G42058a	TrGC	$HOOCH2CHO + OH \rightarrow HCOCH_2O_2$	k_roohro	Sander et al. (2018)
G42058b	TrGC	$HOOCH2CHO + OH \rightarrow HCHO + CO + OH$	0.8*8.E-12	Sander et al. (2018)*
G42058c	TrGC	$HOOCH2CHO + OH \rightarrow GLYOX + OH$	k_s*f_sooh*f_cho	Sander et al. (2018)
G42059	TrGCN	$HOOCH2CHO + NO_3 \rightarrow OH + HCHO + CO + HNO_3$	KNO3AL	Rickard and Pascoe (2009)
G42060	TrGCN	$HOOCH_2CO_3 + NO \rightarrow NO_2 + OH + HCHO + CO_2$	KAPNO	Sander et al. (2018)
G42061	TrGCN	$HOOCH_2CO_3 + NO_3 \rightarrow NO_2 + OH + HCHO + CO_2$	KR02N03*1.74	Sander et al. (2018)
G42062a	TrGC	$\mathrm{HOOCH_2CO_3} + \mathrm{HO_2} \rightarrow 2 \mathrm{OH} + \mathrm{HCHO} + \mathrm{CO_2}$	KAPHO2*rco3_oh	Sander et al. (2018)
G42062b	TrGC	$\mathrm{HOOCH_2CO_3} + \mathrm{HO_2} \rightarrow \mathrm{HOOCH2CO3H}$	KAPHO2*rco3_ooh	Sander et al. (2018)
G42062c	TrGC	$HOOCH_2CO_3 + HO_2 \rightarrow HOOCH2CO2H + O_3$	KAPHO2*rco3_o3	Sander et al. (2018)
G42063a	TrGC	$\mathrm{HOOCH_2CO_3} \rightarrow \mathrm{OH} + \mathrm{HCHO} + \mathrm{CO_2}$	k1_R02RC03*0.9	Sander et al. (2018)
G42063b	TrGC	$HOOCH_2CO_3 \rightarrow HOOCH2CO2H$	k1_R02RC03*0.1	Sander et al. (2018)
G42064a	TrGC	$\mathrm{HOOCH2CO3H} + \mathrm{OH} \rightarrow \mathrm{HOOCH_2CO_3} + \mathrm{H_2O}$	2.*k_roohro	Sander et al. (2018)
G42064b	TrGC	$HOOCH2CO3H + OH \rightarrow HCOCO_3H + OH + H_2O$	k_s*f_sooh*f_co2h	Sander et al. (2018)
G42065	TrGC	$HOOCH2CO2H + OH \rightarrow HCOCO_2H + OH + H_2O$	k_s*f_sooh*f_co2h+k_co2h	Sander et al. (2018)
G42066	TrGC	$CH2CO + OH \rightarrow .6 \text{ HCHO} + .6 \text{ HO}_2 + .6 \text{ CO} + .4$	2.8E-12*exp(510./temp)	Baulch et al. (2005), Sander et al.
	T. C.C	HOOCH2CO2H		(2018)
G42067a	TrGC	$\text{CH3CHOHOOH} + \text{OH} \rightarrow \text{CH}_3\text{COOH} + \text{OH}$	(k_t*f_tooh*f_toh + k_rohro)	Sander et al. (2018)
G42067b	TrGC	$\text{CH3CHOHOOH} + \text{OH} \rightarrow \text{CH3CHOHO2}$	k_roohro	Sander et al. (2018)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G42068	TrGC	$\text{CH3CHOHO2} \rightarrow \text{CH}_3\text{CHO} + \text{HO}_2$	3.46E12*EXP(-12500./(1.98*temp))	Hermans et al. (2005), Sander
				et al. (2018)
G42069	TrGC	$\text{CH}_3\text{CHO} + \text{HO}_2 \rightarrow \text{CH}3\text{CHOHO}2$	3.46E12*EXP(-12500./(1.98*temp))	Hermans et al. (2005), Sander
			/(6.34E26*EXP(-14700./	et al. (2018)
	- C C	0770 0770 770 0770 770 0770 0770 0770	(1.98*temp)))	G 1 (2212)
G42070	TrGC	CH3CHOHO2 + $HO_2 \rightarrow .5$ CH3CHOHOOH + .3	5.6E-15*EXP(2300./temp)	Sander et al. (2018)
G 4 0 0 7 4	TI CC	$CH_3COOH + .2 CH_3 + .2 HCOOH + .2 OH$	14 200 0200	0 1 (2010)
G42071	TrGC	$CH3CHOHO2 \rightarrow CH_3 + HCOOH + OH$	k1_R02s0R02	Sander et al. (2018)
G42072	TrGCN	$CH3CHOHO2 + NO \rightarrow CH_3 + HCOOH + OH + NO_2$	KRO2NO	Sander et al. (2018)
G42073	TrGCN	$C_2H_5ONO_2 + OH \rightarrow CH_3CHO + H_2O + NO_2$	6.7E-13*EXP(-395./temp)	Atkinson et al. (2006)
G42074a	TrGCN	$NO_3CH2CHO + OH \rightarrow GLYOX + NO_2 + H_2O$	k_s*f_ch2ono2*f_cho	Paulot et al. (2009a), Sander
0400741	TI CON	NO CHOCHO - OH - NO CHOCO - H O	1	et al. (2018)*
G42074b	TrGCN	$NO_3CH2CHO + OH \rightarrow NO_3CH2CO_3 + H_2O$	k_t*f_o*f_ch2ono2*3.	Paulot et al. (2009a), Sander
G42075	TrGCN	NO CHOCO + HO + HOHO + NO + CO + OH	KAPHO2	et al. (2018)* Rickard and Pascoe (2009)*
G42075 G42076	TrGCN	$NO_3CH2CO_3 + HO_2 \rightarrow HCHO + NO_2 + CO_2 + OH$ $NO_3CH2CO_3 + NO \rightarrow HCHO + NO_2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
	TrGCN	$NO_3CH2CO_3 + NO \rightarrow HCHO + NO_2 + CO_2 + NO_2$ $NO_3CH2CO_3 + NO_2 \rightarrow NO_3CH2CHO$		Rickard and Pascoe (2009)
G42077 G42078	TrGCN	$NO_3CH2CO_3 + NO_2 \rightarrow NO_3CH2CHO$ $NO_3CH2CO_3 \rightarrow HCHO + NO_2 + CO_2$	k_CH3CO3_NO2 k1_RO2RCO3	Rickard and Pascoe (2009)*
G42078	TrGCN	$NO_3CH2CO_3 \rightarrow HCHO + NO_2 + CO_2$ $NO_3CH2CHO \rightarrow NO_3CH2CO_3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G42079 G42080	StTrGCN	$NO_3CH2CHO \rightarrow NO_3CH2CO_3 + NO_2$ $C_2H_5O_2 + NO_2 \rightarrow C_2H_5O_2NO_2$	k_3rd_iupac(temp,cair,1.3E-29,	Atkinson et al. (2006)
G42000	SULIGON	$C_2\Pi_5G_2 + NG_2 \rightarrow C_2\Pi_5G_2NG_2$	6.2,8.8E-12,0.0,0.31)	Atkinson et al. (2000)
G42081	StTrGCN	$C_2H_5O_2NO_2 \rightarrow C_2H_5O_2 + NO_2$	k_3rd_iupac(temp,cair,	Atkinson et al. (2006)
G-12001	BUILDON	$O_2\Pi_5O_2\PiO_2 - O_2\Pi_5O_2 + \PiO_2$	REAL(4.8E-4*EXP(-9285./temp)	Atkinson et al. (2000)
			,SP),0.0,REAL(8.8E15*EXP(-10440./	
			temp), SP), 0.0, 0.31)	
G42082	StTrGCN	$C_2H_5O_2NO_2 + OH \rightarrow CH_3CHO + NO_3 + H_2O$	9.50E-13*EXP(-650./temp)	Sander et al. (2018)*
G42083a	TrGC	$CH_3C(O) + O_2 \rightarrow CH_3C(O)OO$	5.1E-12*(1 1./(1.+	Atkinson et al. (2006), Beyers-
		030(0) 1 02 1 030(0)00	9.4E-18*cair))	dorf et al. $(2010)^*$
G42083b	TrGC	$CH_3C(O) + O_2 \rightarrow OH + HCHO + CO$	5.1E-12*1./(1.+9.4E-18*cair)	Atkinson et al. (2006), Beyers-
		3-(-) 1 - 2 1 - 1 - 1 - 1		dorf et al. $(2010)^*$
G42084	TrGC	$C_2H_5OH + OH \rightarrow .95 C_2H_5O_2 + .95 HO_2 + .05$	3.0E-12*EXP(20./temp)	Sander et al. (2018), Atkinson
		$HOCH_2CH_2O_2 + H_2O$	•	et al. (2006)
G42085a	TrGCN	$\mathrm{CH_3CN} + \mathrm{OH} \rightarrow \mathrm{NCCH_2O_2} + \mathrm{H_2O}$	8.1E-13*EXP(-1080./temp)*0.40	Atkinson et al. (2006), Tyndall
			-	et al. (2001b)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G42085b	TrGCN	$\mathrm{CH_3CN} + \mathrm{OH} \rightarrow \mathrm{OH} + \mathrm{CH_3C(O)} + \mathrm{NO}$	8.1E-13*EXP(-1080./temp)*(10.40)	Atkinson et al. (2006), Tyndall et al. (2001b)*
G42086a	TrGCN	$CH_3CN + O(^1D) \rightarrow O(^3P) + CH_3CN$	2.54E-10*EXP(-24./temp) *0.0269*EXP(137./temp)	Strekowski et al. (2010)
G42086b	TrGCN	$CH_3CN + O(^1D) \rightarrow 2 H + CO + HCN$	2.54E-10*EXP(-24./temp)*0.16	Strekowski et al. $(2010)^*$
G42086c	TrGCN	$\mathrm{CH_3CN} + \mathrm{O(^1D)} \rightarrow .5 \ \mathrm{CH_3} + .5 \ \mathrm{NCO} + .5 \ \mathrm{NCCH_2O_2} + .5 \ \mathrm{OH}$	2.54E-10*EXP(-24./temp)*(1(0.16+ 0.0269*EXP(137./temp)))	Strekowski et al. (2010)*
G42087	TrGCN	$NCCH_2O_2 + NO \rightarrow HCN + CO_2 + HO_2 + NO_2$	KRO2NO	see note*
G42088	TrGCN	$NCCH_2O_2 + HO_2 \rightarrow HCN + CO_2 + HO_2$	KRO2HO2(2)	see note*
G42089a	TrGC	$\mathrm{CH_{2}CHOH} + \mathrm{OH} \rightarrow \mathrm{HCOOH} + \mathrm{OH} + \mathrm{HCHO}$	k_CH2CHOH_OH_HCOOH	Sander et al. (2018), So et al. $(2014)^*$
G42089b	TrGC	$\mathrm{CH_{2}CHOH} + \mathrm{OH} \rightarrow \mathrm{HOCH_{2}CHO} + \mathrm{HO_{2}}$	k_CH2CHOH_OH_ALD	Sander et al. (2018), So et al. (2014)
G42090	TrGC	$\mathrm{CH_{2}CHOH} + \mathrm{HCOOH} \rightarrow \mathrm{CH_{3}CHO} + \mathrm{HCOOH}$	k_CH2CHOH_HCOOH	Sander et al. (2018) , da Silva $(2010)^*$
G42091	TrGC	$\mathrm{CH_{3}CHO} + \mathrm{HCOOH} \rightarrow \mathrm{CH_{2}CHOH} + \mathrm{HCOOH}$	k_ALD_HCOOH	Sander et al. (2018), da Silva (2010)*
G43000a	TrGC	$C_3H_8 + OH \rightarrow iC_3H_7O_2 + H_2O$	k_s	Sander et al. (2018)
G43000b	TrGC	$C_3H_8 + OH \rightarrow C_3H_7O_2 + H_2O$	2.*k_p	Sander et al. (2018)
G43001a	TrGC	$C_3H_6 + O_3 \rightarrow HCHO + .16 CH3CHOHOOH + .50 OH + .50 HCOCH_2O_2 + .05 CH2CO + .09 CH_3OH + .09 CO + .2 CH_4 + .2 CO_2$	5.5E-15*EXP(-1880./temp)*.57	Atkinson et al. (2006)*
G43001b	TrGC	$C_3H_6 + O_3 \rightarrow CH_3CHO + CH_2OO^*$	5.5E-15*EXP(-1880./temp)*.43	Atkinson et al. $(2006)^*$
G43002	TrGC	$C_3H_6 + OH \rightarrow HYPROPO2$	k_3rd_iupac(temp,cair,8.6E-27, 3.5,3.E-11,1.,0.5)	Atkinson et al. (2006), Rickard and Pascoe (2009)
G43003	TrGCN	$C_3H_6 + NO_3 \rightarrow PRONO3BO2$	4.6E-13*EXP(-1155./temp)	Wallington et al. (2018)
G43004	TrGC	$iC_3H_7O_2 + HO_2 \rightarrow iC_3H_7OOH$	1.9E-13*EXP(1300./temp)	Atkinson (1997)*
G43005a	TrGCN	$iC_3H_7O_2 + NO \rightarrow CH_3COCH_3 + HO_2 + NO_2$	2.7E-12*EXP(360./temp)*(1alpha_AN(3,2,0,0,0,temp,cair))	Wallington et al. (2018)
G43005b	TrGCN	$iC_3H_7O_2 + NO \rightarrow iC_3H_7ONO_2$	2.7E-12*EXP(360./temp)*alpha_ AN(3,2,0,0,0,temp,cair)	Wallington et al. (2018)
G43006	TrGC	$iC_3H_7O_2 \rightarrow .8 CH_3COCH_3 + .2 IPROPOL + .6 HO_2$	2.*(1.6E-12*EXP(-2200./temp) *k_CH302)**(.5)*R02	Rickard and Pascoe (2009), Atkinson et al. (2006)
G43007a	TrGC	$iC_3H_7OOH + OH \rightarrow iC_3H_7O_2 + H_2O$	k_roohro	Sander et al. (2018)
G43007b	TrGC	$iC_3H_7OOH + OH \rightarrow CH_3COCH_3 + H_2O + OH$	k_t*f_tooh	Sander et al. (2018)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G43008	TrGC	$C_3H_7O_2 + HO_2 \rightarrow C_3H_7OOH$	1.9E-13*EXP(1300./temp)	Atkinson (1997)*
G43009a	TrGCN	$\mathrm{C_3H_7O_2} + \mathrm{NO} \rightarrow \mathrm{C_2H_5CHO} + \mathrm{HO_2} + \mathrm{NO_2}$	2.7E-12*EXP(360./temp)*(1alpha_	Wallington et al. (2018)
			AN(3,1,0,0,0,temp,cair))	
G43009b	TrGCN	$C_3H_7O_2 + NO \rightarrow C_3H_7ONO_2$	2.7E-12*EXP(360./temp)*alpha_	Wallington et al. (2018)
			AN(3,1,0,0,0,temp,cair)	
G43010	TrGC	$C_3H_7O_2 \rightarrow .8 CH_3COCH_3 + .2 NPROPOL + .6 HO_2$	2.*(k_CH302*3.E-13)**(.5)*R02	Rickard and Pascoe (2009),
	T. C.C.		(2.22.4.2.2.2.4.2.2.2.4.2.2.4.2.2.4.2.2.4.2.2.2.4.2.2.2.4.2.2.2.4.2	Atkinson et al. (2006)
G43011	TrGC	$CH_3COCH_3 + OH \rightarrow CH_3COCH_2O_2 + H_2O$	(8.8E-12*EXP(-1320./temp)	Atkinson et al. $(2006)^*$
040040	T. C.C.		+1.7E-14*EXP(423./temp))	T 1 11 / 1 (2001) C 1
G43012a	TrGC	$\mathrm{CH_3COCH_2O_2} + \mathrm{HO_2} \rightarrow \mathrm{CH_3COCH_2O_2H}$	8.6E-13*EXP(700./temp)*rcoch2o2_	Tyndall et al. (2001a), Sander
G43012b	TrGC		ooh	et al. (2018) Tyndall et al. (2001a), Sander
G43012b	IIGC	$CH_3COCH_2O_2 + HO_2 \rightarrow OH + CH_3C(O) + HCHO$	8.6E-13*EXP(700./temp)*rcoch2o2_ oh	et al. (2018)
G43013a	TrGCN	$CH_3COCH_2O_2 + NO \rightarrow CH_3C(O) + HCHO + NO_2$	2.9E-12*EXP(300./temp)*(1alpha_	Burkholder et al. (2015)
4400104	11001		AN(4,1,1,0,0,temp,cair))	Burkholder et al. (2019)
G43013b	TrGCN	$CH_3COCH_2O_2 + NO \rightarrow NOA$	2.9E-12*EXP(300./temp)*alpha_	Burkholder et al. (2015)
			AN(4,1,1,0,0,temp,cair)	(
G43014	TrGC	$\text{CH}_3\text{COCH}_2\text{O}_2 \rightarrow .3 \text{ CH}_3\text{C(O)} + .3 \text{ HCHO} + .5 \text{ MGLYOX}$		Orlando and Tyndall (2012)
		$+ .2 \text{ CH}_3 \text{COCH}_2 \text{OH}$	-	,
G43015a	TrGC	$\mathrm{CH_3COCH_2O_2H} + \mathrm{OH} \rightarrow \mathrm{CH_3COCH_2O_2} + \mathrm{H_2O}$	k_roohro	see note*
G43015b	TrGC	$CH_3COCH_2O_2H + OH \rightarrow MGLYOX + OH + H_2O$	k_s*f_sooh*f_co	Sander et al. (2018)
G43016	TrGC	$CH_3COCH_2OH + OH \rightarrow MGLYOX + HO_2 + H_2O$	1.6E-12*EXP(305./temp)	Atkinson et al. (2006)
G43017	TrGC	$MGLYOX + OH \rightarrow .4 CH_3 + .6 CH_3C(O) + 1.4 CO +$	1.9E-12*EXP(575./temp)	Baeza-Romero et al. (2007),
		$\mathrm{H}_2\mathrm{O}$		Atkinson et al. (2006)
G43020	TrGCN	$iC_3H_7ONO_2 + OH \rightarrow CH_3COCH_3 + NO_2$	6.2E-13*EXP(-230./temp)	Wallington et al. (2018)
G43021	TrGCN	$CH_3COCH_2O_2 + NO_3 \rightarrow CH_3C(O) + HCHO + NO_2$	KRO2NO3	Rickard and Pascoe (2009)
G43022	TrGC	$\mathrm{HYPROPO2} \rightarrow \mathrm{CH_3CHO} + \mathrm{HCHO} + \mathrm{HO_2}$	k1_R02s0R02	Rickard and Pascoe (2009)
G43023a	TrGC	$\mathrm{HYPROPO2} + \mathrm{HO_2} \rightarrow \mathrm{HYPROPO2H}$	KRO2HO2(3)*(1rchohch2o2_oh)	Rickard and Pascoe (2009)
G43023b	TrGC	$\mathrm{HYPROPO2} + \mathrm{HO}_2 \rightarrow \mathrm{CH}_3\mathrm{CHO} + \mathrm{HCHO} + \mathrm{HO}_2 + \mathrm{OH}$	KRO2HO2(3)*rchohch2o2_oh	Rickard and Pascoe (2009)
G43024a	TrGCN	$HYPROPO2 + NO \rightarrow CH_3CHO + HCHO + HO_2 + NO_2$	KRO2NO*(1alpha_AN(4,1,0,0,0,	Rickard and Pascoe (2009)
	E CCN	INDDODOS NO PROPOLNOS	temp,cair))	D. 1 1 1 D (2000)
G43024b	TrGCN	$\mathrm{HYPROPO2} + \mathrm{NO} \rightarrow \mathrm{PROPOLNO3}$	<pre>KRO2NO*alpha_AN(4,1,0,0,0,temp,</pre>	Rickard and Pascoe (2009)
040005	The COM	HVDDODO0 + NO - + OH OHO + HOHO + HO - + NO	cair)	Disland and Day (2000)
G43025	TrGCN	$HYPROPO2 + NO_3 \rightarrow CH_3CHO + HCHO + HO_2 + NO_2$	KRO2NO3	Rickard and Pascoe (2009)
G43026a	TrGC	$HYPROPO2H + OH \rightarrow HYPROPO2$	k_roohro	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G43026b	TrGC	$\mathrm{HYPROPO2H} + \mathrm{OH} \rightarrow \mathrm{CH_3COCH_2OH} + \mathrm{OH}$	(k_s*f_soh*f_pch2oh+k_t*f_ tooh*f_pch2oh)	Sander et al. (2018)
G43027	TrGCN	$PRONO3BO2 + HO_2 \rightarrow PR2O2HNO3$	KRO2HO2(3)	Rickard and Pascoe (2009)
G43028	TrGCN	$PRONO3BO2 + NO \rightarrow NOA + HO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G43029	TrGCN	$PRONO3BO2 + NO_3 \rightarrow NOA + HO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)
G43030a	TrGCN	$PR2O2HNO3 + OH \rightarrow PRONO3BO2$	k_roohro	Rickard and Pascoe (2009)
G43030b	TrGCN	$PR2O2HNO3 + OH \rightarrow NOA + OH$	k_t*f_tooh*f_ch2ono2	Sander et al. (2018)
G43031	TrGCN	$MGLYOX + NO_3 \rightarrow CH_3C(O) + CO + HNO_3$	KNO3AL*2.4	Rickard and Pascoe (2009)
G43032	TrGCN	$NOA + OH \rightarrow MGLYOX + NO_2$	(k_s*f_co*f_ono2+k_p*f_co)	Sander et al. (2018)
G43033	TrGC	HOCH2COCHO + OH \rightarrow .8609 HOCH2CO + .8609 CO + .1391 HCOCOCHO + .1391 HO ₂	(1.9E-12*EXP(575./temp)+k_s*f_ soh*f_co)	Sander et al. (2018)
G43034	TrGCN	$HOCH2COCHO + NO_3 \rightarrow HOCH2CO + CO + HNO_3$	KNO3AL*2.4	Sander et al. (2018)
G43035	TrGC	$\mathrm{CH_3COCO_2H} + \mathrm{OH} \rightarrow \mathrm{CH_3C(O)} + \mathrm{H_2O} + \mathrm{CO_2}$	4.9E-14*EXP(276./temp)	Mellouki and Mu (2003), Sander et al. (2018)
G43036	TrGC	${\rm HCOCOCH_2O_2} \rightarrow .6 {\rm HCOCO} + .6 {\rm HCHO} + .2 {\rm HCOCOCHO} + .2 {\rm HOCH2COCHO}$	k1_R02p0R02	Sander et al. (2018)
G43037	TrGCN	$\text{HCOCOCH}_2\text{O}_2 + \text{NO} \rightarrow \text{HCOCO} + \text{HCHO} + \text{NO}_2$	KR02N0	Sander et al. $(2018)^*$
G43038a	TrGC	$\mathrm{HCOCOCH_2O_2} + \mathrm{HO_2} \rightarrow \mathrm{HCOCOCH_2OOH}$	KRO2HO2(3)*rcoch2o2_ooh	Sander et al. (2018)
G43038b	TrGC	$\mathrm{HCOCOCH_2O_2} + \mathrm{HO_2} \rightarrow \mathrm{HCOCO} + \mathrm{HCHO} + \mathrm{OH}$	KRO2HO2(3)*rcoch2o2_oh	Sander et al. (2018)
G43039	TrGCN	$\text{HCOCOCH}_2\text{O}_2 + \text{NO}_3 \rightarrow \text{HCOCO} + \text{HCHO} + \text{NO}_2$	KRO2NO3	Sander et al. (2018)
G43040a	TrGC	$\mathrm{HCOCOCH_2OOH} + \mathrm{OH} \rightarrow \mathrm{HOOCH_2CO_3} + \mathrm{CO} + \mathrm{H_2O}$	k_t*f_co*f_o	Sander et al. $(2018)^*$
G43040b	TrGC	$\mathrm{HCOCOCH_2OOH} + \mathrm{OH} \rightarrow \mathrm{HCOCOCHO} + \mathrm{H_2O} + \mathrm{OH}$	k_s*f_sooh*f_co	Sander et al. $(2018)^*$
G43040c	TrGC	$\mathrm{HCOCOCH_2OOH} + \mathrm{OH} \rightarrow \mathrm{HCOCOCH_2O_2} + \mathrm{H_2O}$	k_roohro	Sander et al. (2018)
G43041	TrGCN	$HCOCOCH_2OOH + NO_3 \rightarrow HOOCH_2CO_3 + CO + HNO_3$	KNO3AL*2.4	Sander et al. (2018)
G43042	TrGC	$\mathrm{HOCH2COCH2O2} \rightarrow \mathrm{HCHO} + \mathrm{HOCH2CO}$	k1_R02p0R02	Sander et al. (2018)
G43043a	TrGC	$HOCH2COCH2O2 + HO_2 \rightarrow HOCH2COCH2OOH$	KRO2HO2(3)*rcoch2o2_ooh	Sander et al. (2018)
G43043b	TrGC	$HOCH2COCH2O2 + HO_2 \rightarrow HCHO + HOCH2CO + OH$	KRO2HO2(3)*rcoch2o2_oh	Sander et al. (2018)
G43044	TrGCN	$HOCH2COCH2O2 + NO \rightarrow HCHO + HOCH2CO + NO_2$	KRO2NO	Sander et al. $(2018)^*$
G43045a	TrGC	$\mathrm{HOCH2COCH2OOH} + \mathrm{OH} \rightarrow \mathrm{HOCH2COCHO} + \mathrm{OH}$	k_s*f_sooh*f_co	Sander et al. (2018)
G43045b	TrGC	$HOCH2COCH2OOH + OH \rightarrow HOCH2COCH2O2$	k_roohro	Sander et al. (2018)
G43045c	TrGC	$HOCH2COCH2OOH + OH \rightarrow HCOCOCH_2OOH + HO_2$	1.60E-12*EXP(305./temp)	Sander et al. $(2018)^*$
G43046	TrGC	$\mathrm{CH3CHCO} + \mathrm{OH} \rightarrow .72\ \mathrm{CO} + .72\ \mathrm{CH_3CHO} + .72\ \mathrm{HO_2} + \\$	7.6E-11	Hatakeyama et al. (1985),
		$.21 \text{ CH}_3\text{COCO}_2\text{H} + .07 \text{ CH}_3\text{CHO} + .07 \text{ HO}_2 + .07 \text{ CO}_2$		Sander et al. (2018)
G43047	TrGCN	$PROPOLNO3 + OH \rightarrow CH_3COCH_2OH + NO_2$	k_t*f_ono2*f_pch2oh+k_s*f_soh*f_ ch2ono2	Sander et al. (2018)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G43048	TrGCN	$\text{CH}_3\text{COCH}_2\text{O}_2 + \text{NO}_2 \rightarrow \text{CH}_3\text{COCH}_2\text{OONO}_2$	2.3E-12*EXP(300./temp)	Tyndall et al. (2001a)*
G43049	TrGCN	$CH_3COCH_2OONO_2 \rightarrow CH_3COCH_2O_2 + NO_2$	1.9E16*EXP(-10830./temp)	Sehested et al. (1998)*
G43050	TrGCN	$CH_3COCH_2OONO_2 + OH \rightarrow MGLYOX + NO_3 + H_2O$	9.50E-13*EXP(-650./temp)*f_co	Sander et al. (2018)*
G43051a	TrGC	$\mathrm{C_3H_7OOH} + \mathrm{OH} \rightarrow \mathrm{C_3H_7O_2} + \mathrm{H_2O}$	k_roohro	Sander et al. (2018)
G43051b	TrGC	$C_3H_7OOH + OH \rightarrow C_2H_5CHO + H_2O + OH$	k_s*f_sooh	Sander et al. (2018)
G43051c	TrGC	$C_3H_7OOH + OH \rightarrow C_2H_5CHO + HO_2 + H_2O$	k_s*f_pch2oh	Sander et al. (2018)*
G43052	TrGC	$C_2H_5CHO + OH \rightarrow C_2H_5CO_3 + H_2O$	4.9E-12*EXP(405./temp)	Atkinson et al. $(2006)^*$
G43053	TrGCN	$C_2H_5CHO + NO_3 \rightarrow C_2H_5CO_3 + HNO_3$	6.3E-15	Atkinson et al. (2006)
G43054a	TrGC	$\mathrm{C_2H_5CO_3} \rightarrow \mathrm{C_2H_5O_2} + \mathrm{CO_2}$	k1_R02RC03*0.9	Sander et al. (2018)
G43054b	TrGC	$\mathrm{C_2H_5CO_3} ightarrow \mathrm{C_2H_5CO_2H}$	k1_R02RC03*0.1	Sander et al. (2018)
G43055a	TrGC	$C_2H_5CO_3 + HO_2 \rightarrow C_2H_5O_2 + CO_2 + OH$	KAPHO2*rco3_oh	Sander et al. (2018), Groß et al. (2014)
G43055b	TrGC	$\mathrm{C_2H_5CO_3} + \mathrm{HO_2} \rightarrow \mathrm{C_2H_5CO_3H}$	KAPHO2*rco3_ooh	(2014) Sander et al. (2018), Groß et al. (2014)
G43055c	TrGC	$C_2H_5CO_3 + HO_2 \rightarrow C_2H_5CO_2H + O_3$	KAPHO2*rco3_o3	Sander et al. (2018), Groß et al. (2014)
G43056	TrGCN	$C_2H_5CO_3 + NO \rightarrow NO_2 + C_2H_5O_2 + CO_2$	KAPNO	Rickard and Pascoe (2009)
G43057	TrGCN	$C_2H_5CO_3 + NO_2 \rightarrow PPN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G43058	TrGCN	$PPN \rightarrow C_2H_5CO_3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G43059	TrGC	$C_2H_5CO_2H + OH \rightarrow CH_3CHO + CO_2 + H_2O$	$k_{co2h+k_p+k_s*f_{co2h}}$	Sander et al. $(2018)^*$
G43060a	TrGC	$C_2H_5CO_3H + OH \rightarrow C_2H_5CO_3 + H_2O$	k_roohro	Sander et al. (2018)
G43060b	TrGC	$C_2H_5CO_3H + OH \rightarrow CH_3CHO + CO_2 + H_2O$	$k_s*f_co2h+k_p$	Sander et al. $(2018)^*$
G43061	TrGCN	$PPN + OH \rightarrow CH_3CHO + CO_2 + NO_2 + H_2O$	k_s*f_cpan+k_p	Sander et al. $(2018)^*$
G43062	TrGC	$CH_3COCO_3H + OH \rightarrow CH_3COCO_3 + H_2O$	k_roohro	Sander et al. (2018)
G43063a	TrGC	$\mathrm{CH_3COCO_3} + \mathrm{HO_2} \rightarrow \mathrm{CH_3C(O)} + \mathrm{CO_2} + \mathrm{OH}$	KAPHO2*rco3_oh	Sander et al. (2018)
G43063b	TrGC	$\text{CH}_3\text{COCO}_3 + \text{HO}_2 \rightarrow \text{CH}_3\text{COCO}_3\text{H}$	KAPHO2*(rco3_ooh+rco3_o3)	Sander et al. (2018)
G43064	TrGCN	$CH_3COCO_3 + NO \rightarrow CH_3C(O) + CO_2 + NO_2$	KAPNO	Sander et al. (2018)
G43065	TrGCN	$CH_3COCO_3 + NO_2 \rightarrow CH_3C(O) + CO_2 + NO_3$	k_CH3CO3_NO2	Sander et al. $(2018)^*$
G43066	TrGCN	$\mathrm{CH_3COCO_3} + \mathrm{NO_3} \rightarrow \mathrm{CH_3C(O)OO} + \mathrm{CO_2} + \mathrm{NO_2}$	KR02N03*1.74	Sander et al. (2018)
G43067	TrGC	$CH_3COCO_3 \rightarrow CH_3C(O)OO + CO_2$	k1_R02RC03	Sander et al. (2018)
G43068	TrGC	$\text{HCOCOCHO} + \text{OH} \rightarrow 3 \text{ CO} + \text{HO}_2$	2.*k_t*f_co*f_o	Sander et al. (2018)
G43069	TrGC	$IPROPOL + OH \rightarrow CH_3COCH_3 + HO_2 + H_2O$	2.6E-12*EXP(200./temp)	Atkinson et al. (2006)
G43070a	TrGC	$NPROPOL + OH \rightarrow C_2H_5CHO + HO_2 + H_2O$	$4.6E-12*EXP(70./temp)*(k_s*f_soh/$	Atkinson et al. (2006), Sander
			(k_p+k_s*f_pch2oh+k_s*f_soh))	et al. (2018)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G43070b	TrGC	$NPROPOL + OH \rightarrow HYPROPO2 + H_2O$	4.6E-12*EXP(70./temp)*((k_p+k_	Atkinson et al. (2006), Sander
			s*f_pch2oh)/(k_p+k_s*f_pch2oh+k_	et al. $(2018)^*$
			s*f_soh))	
G43071a	TrGC	$CH_2CHCH_2OH + OH \rightarrow HCOOH + OH + CH_3CHO$	k_CH2CHOH_OH_HCOOH	Sander et al. (2018) , So et al. $(2014)^*$
G43072	TrGC	$\mathrm{CH_{2}CHCH_{2}OH} + \mathrm{HCOOH} \rightarrow \mathrm{C_{2}H_{5}CHO} + \mathrm{HCOOH}$	k_CH2CH0H_HC00H	Sander et al. (2018), da Silva (2010)*
G43073	TrGC	$C_2H_5CHO + HCOOH \rightarrow CH_2CHCH_2OH + HCOOH$	k_ALD_HCOOH	Sander et al. (2018), da Silva (2010)*
G43074	TrGC	$HCOCOCH_2OOH + OH \rightarrow HCOCO + CO + HO_2 + OH$	k_s*f_sooh*f_co+k_roohro	Sander et al. (2018)*
G43202	TrGTerC	$\text{HCOCH2CHO} + \text{OH} \rightarrow \text{HCOCH2CO3}$	4.29E-11	Rickard and Pascoe (2009)
G43203	TrGTerCN	$\text{HCOCH2CHO} + \text{NO}_3 \rightarrow \text{HCOCH2CO3} + \text{HNO}_3$	2.*KN03AL*2.4	Rickard and Pascoe (2009)
G43204a	TrGTerC	$\text{HCOCH2CO3} \rightarrow \text{HCOCH}_2\text{O}_2 + \text{CO}_2$	k1_R02RC03*0.9	Sander et al. (2018)
G43204b	TrGTerC	$\text{HCOCH2CO3} \rightarrow \text{HCOCH2CO2H}$	k1_R02RC03*0.1	Sander et al. (2018)
G43205	TrGTerCN	$\text{HCOCH2CO3} + \text{NO} \rightarrow \text{HCOCH}_2\text{O}_2 + \text{CO}_2 + \text{NO}_2$	KAPNO	Rickard and Pascoe (2009)
G43206	TrGTerCN	$HCOCH2CO3 + NO_2 \rightarrow C_3PAN2$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G43207a	TrGTerC	$\text{HCOCH2CO3} + \text{HO}_2 \rightarrow \text{HCOCH2CO3H}$	KAPHO2*rco3_ooh	Rickard and Pascoe (2009)
G43207b	TrGTerC	$\text{HCOCH2CO3} + \text{HO}_2 \rightarrow \text{HCOCH2CO2H} + \text{O}_3$	KAPHO2*rco3_o3	Rickard and Pascoe (2009)
G43207c	TrGTerC	$\text{HCOCH2CO3} + \text{HO}_2 \rightarrow \text{HCOCH}_2\text{O}_2 + \text{CO}_2 + \text{OH}$	KAPHO2*rco3_oh	Rickard and Pascoe (2009)
G43210	TrGTerCN	$C_3PAN2 \rightarrow HCOCH2CO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G43211	TrGTerCN	$C_3PAN2 + OH \rightarrow GLYOX + CO + NO_2$	2.10E-11	Rickard and Pascoe (2009)
G43212	TrGTerC	$\text{HCOCH2CO2H} + \text{OH} \rightarrow \text{HCOCH}_2\text{O}_2 + \text{CO}_2$	2.14E-11	Rickard and Pascoe (2009)
G43213a	TrGTerC	$HOC_2H_4CO_3 \rightarrow HOCH_2CH_2O_2 + CO_2$	k1_R02RC03*0.9	Sander et al. (2018)
G43213b	TrGTerC	$HOC_2H_4CO_3 \rightarrow HOC2H4CO2H$	k1_R02RC03*0.1	Sander et al. (2018)
G43214	TrGTerCN	$HOC_2H_4CO_3 + NO \rightarrow HOCH_2CH_2O_2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G43215a	TrGTerC	$HOC_2H_4CO_3 + HO_2 \rightarrow HOC2H4CO3H$	KAPHO2*rco3_ooh	Rickard and Pascoe (2009)
G43215b	TrGTerC	$HOC_2H_4CO_3 + HO_2 \rightarrow HOCH_2CH_2O_2 + CO_2 + OH$	KAPHO2*rco3_oh	Rickard and Pascoe (2009)
G43215c	TrGTerC	$HOC_2H_4CO_3 + HO_2 \rightarrow HOC2H4CO2H + O_3$	KAPHO2*rco3_o3	Rickard and Pascoe (2009)
G43218	TrGTerCN	$HOC_2H_4CO_3 + NO_2 \rightarrow C_3PAN1$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G43219	TrGTerC	$HOC2H4CO2H + OH \rightarrow HOCH_2CH_2O_2 + CO_2$	1.39E-11	Rickard and Pascoe (2009)
G43220	TrGTerC	$HOC2H4CO3H + OH \rightarrow HOC_2H_4CO_3$	1.73E-11	Rickard and Pascoe (2009)
G43221	TrGTerCN	$C_3PAN1 \rightarrow HOC_2H_4CO_3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G43222	TrGTerCN	$C_3PAN1 + OH \rightarrow HOCH_2CHO + CO + NO_2$	4.51E-12	Rickard and Pascoe (2009)
G43223	TrGTerC	$\text{HCOCH2CO3H} + \text{OH} \rightarrow \text{HCOCH}_2\text{O}_2 + \text{CO}_2 + \text{H}_2\text{O}$	2.49E-11	Rickard and Pascoe (2009)*
G43415	TrGAroC	$C3DIALOOH + OH \rightarrow HCOCOCHO + OH$	1.44E-10	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G43418a	TrGAroC	$C3DIALO2 + HO_2 \rightarrow C3DIALOOH$	KRO2HO2(3)*(rco3_ooh+rco3_o3)	Rickard and Pascoe (2009)
G43418b	TrGAroC	$C3DIALO2 + HO_2 \rightarrow GLYOX + CO + HO_2 + OH$	KRO2HO2(3)*rco3_oh	Rickard and Pascoe (2009)
G43419	TrGAroCN	$C3DIALO2 + NO \rightarrow GLYOX + CO + HO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G43420	TrGAroCN	$C3DIALO2 + NO_3 \rightarrow GLYOX + CO + HO_2 + NO_2$	KRO2NO3	Rickard and Pascoe (2009)*
G43421	TrGAroC	$C3DIALO2 \rightarrow GLYOX + CO + HO_2$	k1_R02s0R02	Rickard and Pascoe (2009)*
G43422a	TrGAroC	$\text{HCOCOHCO3} + \text{HO}_2 \rightarrow \text{GLYOX} + \text{CO}_2 + \text{HO}_2 + \text{OH}$	KAPHO2*rco3_oh	Rickard and Pascoe (2009)
G43422b	TrGAroC	$\text{HCOCOHCO3} + \text{HO}_2 \rightarrow \text{HCOCOHCO3H}$	KAPHO2*(rco3_ooh+rco3_o3)	Rickard and Pascoe (2009)
G43424	TrGAroCN	$\text{HCOCOHCO3} + \text{NO} \rightarrow \text{GLYOX} + \text{CO}_2 + \text{HO}_2 + \text{NO}_2$	KAPNO	Rickard and Pascoe (2009)
G43425	TrGAroCN	$\text{HCOCOHCO3} + \text{NO}_2 \rightarrow \text{HCOCOHPAN}$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G43426	TrGAroCN	$HCOCOHCO3 + NO_3 \rightarrow GLYOX + CO_2 + HO_2 + NO_2$	KRO2NO3*1.74	Rickard and Pascoe (2009)
G43427	TrGAroC	$HCOCOHCO3 \rightarrow GLYOX + CO_2 + HO_2$	k1_R02RC03	Rickard and Pascoe (2009)
G43428	TrGAroC	$METACETHO + OH \rightarrow CH_3C(O) + CO_2$	9.82E-11	Rickard and Pascoe (2009)
G43442	TrGAroCN	$\text{HCOCOHPAN} + \text{OH} \rightarrow \text{GLYOX} + \text{CO} + \text{NO}_2$	6.97E-11	Rickard and Pascoe (2009)
G43443	TrGAroCN	$\text{HCOCOHPAN} \rightarrow \text{HCOCOHCO3} + \text{NO}_2$	k_PAN_M	Rickard and Pascoe (2009)
G43444	TrGAroC	$C32OH13CO + OH \rightarrow HCOCOHCO3$	1.36E-10	Rickard and Pascoe (2009)
G43446	TrGAroC	$HCOCOHCO3H + OH \rightarrow HCOCOHCO3$	7.33E-11	Rickard and Pascoe (2009)
G44000	TrGC	$C_4H_{10} + OH \rightarrow LC_4H_9O_2 + H_2O$	2.03E-17*temp*temp*EXP(78./temp)	Atkinson et al. $(2006)^*$
G44001a	TrGC	$LC_4H_9O_2 \rightarrow C_3H_7CHO + HO_2$	(k1_R02pR02*0.1273+k1_	Rickard and Pascoe (2009),
			RO2sRO2*0.8727)*0.1273	Sander et al. (2018)
G44001b	TrGC	$LC_4H_9O_2 \rightarrow .636 \text{ MEK} + .636 \text{ HO}_2 + .364 \text{ CH}_3\text{CHO} +$	(k1_R02pR02*0.1273+k1_	Rickard and Pascoe (2009),
		$.364 \text{ C}_2\text{H}_5\text{O}_2$	RO2sRO2*0.8727)*0.8727	Sander et al. (2018)*
G44002	TrGC	$LC_4H_9O_2 + HO_2 \rightarrow LC_4H_9OOH$	KR02H02(4)	Rickard and Pascoe (2009)
G44003a	TrGCN	$LC_4H_9O_2 + NO \rightarrow NO_2 + C_3H_7CHO + HO_2$	$KRO2NO*(1(0.1273*alpha_AN(4,1,$	Rickard and Pascoe (2009),
			0,0,0,temp,cair)+0.8727*alpha_	Sander et al. (2018)
			AN(4,2,0,0,0,temp,cair)))*0.1273	
G44003b	TrGCN	$LC_4H_9O_2 + NO \rightarrow NO_2 + .636 \text{ MEK} + .636 \text{ HO}_2 + .364$	KRO2NO*(1(0.1273*alpha_AN(4,1,	Rickard and Pascoe (2009),
		$\mathrm{CH_3CHO} + .364 \mathrm{C_2H_5O_2}$	0,0,0,temp,cair)+0.8727*alpha_	Sander et al. (2018)
			AN(4,2,0,0,0,temp,cair)))*0.8727	
G44003c	TrGCN	$LC_4H_9O_2 + NO \rightarrow LC4H9NO3$	KRO2NO*(0.1273*alpha_AN(4,1,0,0,	Rickard and Pascoe (2009)*
			0,temp,cair)+0.8727*alpha_AN(4,	
	_ ~ ~ ~ ~		2,0,0,0,temp,cair))	
G44004a	TrGCN	$LC_4H_9O_2 + NO_3 \rightarrow NO_2 + C_3H_7CHO + HO_2$	KR02N03*0.1273	Rickard and Pascoe (2009),
	E 0 037	10.11.0		Sander et al. (2018)
G44004b	TrGCN	$LC_4H_9O_2 + NO_3 \rightarrow NO_2 + .636 \text{ MEK} + .636 \text{ HO}_2 + .364$	KRO2NO3*0.8727	Rickard and Pascoe (2009),
		$\mathrm{CH_3CHO} + .364 \mathrm{C_2H_5O_2}$		Sander et al. (2018)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G44005a	TrGC	$LC_4H_9OOH + OH \rightarrow LC_4H_9O_2 + H_2O$	k_roohro	Sander et al. (2018)
G44005b	TrGC	$LC_4H_9OOH + OH \rightarrow C_3H_7CHO + H_2O + OH$	$k_s*f_tooh*f_alk*(k_p/(k_p+k_s))$	Sander et al. (2018)
G44005c	TrGC	$LC_4H_9OOH + OH \rightarrow MEK + H_2O + OH$	$k_t*f_tooh*f_alk*(k_s/(k_p+k_s))$	Sander et al. (2018)
G44006a	TrGC	$iC_4H_{10} + OH \rightarrow TC_4H_9O_2 + H_2O$	1.17E-17*temp*temp*EXP(213./temp) *k_t/(3.*k_p+k_t)	Atkinson (2003)
G44006b	TrGC	$iC_4H_{10} + OH \rightarrow IC_4H_9O_2 + H_2O$	1.17E-17*temp*temp*EXP(213./temp) *3.*k_p/(3.*k_p+k_t)	Atkinson (2003)
G44007	TrGC	$TC_4H_9O_2 \rightarrow CH_3COCH_3 + CH_3$	k1_R02tR02	Rickard and Pascoe (2009), Sander et al. (2018)
G44008	TrGC	$TC_4H_9O_2 + HO_2 \rightarrow TC_4H_9OOH$	KRO2HO2(4)	Rickard and Pascoe (2009)
G44009a	TrGCN	$TC_4H_9O_2 + NO \rightarrow NO_2 + CH_3COCH_3 + CH_3$	<pre>KRO2NO*(1alpha_AN(4,3,0,0,0, temp,cair))</pre>	Rickard and Pascoe (2009), Sander et al. (2018)
G44009b	TrGCN	$TC_4H_9O_2 + NO \rightarrow TC4H9NO3$	<pre>KRO2NO*alpha_AN(4,3,0,0,0,temp, cair)</pre>	Rickard and Pascoe (2009)
G44010a	TrGC	$TC_4H_9OOH + OH \rightarrow TC_4H_9O_2 + H_2O$	k_roohro	Sander et al. (2018)
G44010b	TrGC	$TC_4H_9OOH + OH \rightarrow CH_3COCH_3 + HCHO + OH + H_2O$	3.*k_p*f_tch2oh	Sander et al. (2018)*
G44011	TrGCN	$TC4H9NO3 + OH \rightarrow CH_3COCH_3 + HCHO + NO_2 + H_2O$	3.*k_p*f_ch2ono2	Sander et al. $(2018)^*$
G44012	TrGC	$IC_4H_9O_2 \rightarrow IPRCHO$	k1_R02sR02	Rickard and Pascoe (2009), Sander et al. (2018)
G44013	TrGC	$IC_4H_9O_2 + HO_2 \rightarrow IC_4H_9OOH$	KRO2HO2(4)	Rickard and Pascoe (2009)
G44014a	TrGCN	$IC_4H_9O_2 + NO \rightarrow NO_2 + IPRCHO$	<pre>KRO2NO*(1alpha_AN(4,2,0,0,0, temp,cair))</pre>	Rickard and Pascoe (2009), Sander et al. (2018)
G44014b	TrGCN	$IC_4H_9O_2 + NO \rightarrow IC4H9NO3$	<pre>KRO2NO*alpha_AN(4,2,0,0,0,temp, cair)</pre>	Rickard and Pascoe (2009)
G44015a	TrGC	$IC_4H_9OOH + OH \rightarrow IC_4H_9O_2 + H_2O$	k_roohro	Sander et al. (2018)
G44015b	TrGC	$IC_4H_9OOH + OH \rightarrow IPRCHO + OH + H_2O$	k_s*f_sooh+2.*k_s+k_t*f_pch2oh	Sander et al. (2018)*
G44016	TrGCN	$IC4H9NO3 + OH \rightarrow IPRCHO + NO_2 + H_2O$	k_s*f_ono2+2.*k_p+k_t*f_ch2ono2	Sander et al. (2018)*
G44017	TrGC	$\begin{array}{l} {\rm MVK}+{\rm O}_3\rightarrow.87{\rm MGLYOX}+.5481{\rm CO}+.1392{\rm HO}_2\\ +.1392{\rm OH}+.3219{\rm CH}_2{\rm OO}+.13{\rm HCHO}+.04680{\rm OH}\\ +.04680{\rm CO}+.07280{\rm CH}_3{\rm C(O)}+.026{\rm CH}_3{\rm CHO}+.026\\ {\rm CO}_2+.026{\rm HCHO}+.026{\rm HO}_2+.02402{\rm MGLYOX}+.02402{\rm H}_2{\rm O}_2+.00718{\rm CH}_3{\rm COCO}_2{\rm H} \end{array}$	8.5E-16*EXP(-1520./temp)	Sander et al. (2018)
G44018	TrGC	$MVK + OH \rightarrow LHMVKABO2$	2.6E-12*EXP(610./temp)	Sander et al. (2018), Atkinson et al. (2006)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G44019	TrGC	$\text{MEK} + \text{OH} \rightarrow \text{LMEKO2} + \text{H}_2\text{O}$	1.5E-12*EXP(-90./temp)	Atkinson et al. (2006), Sander et al. (2018)*
G44020	TrGC	$LMEKO2 + HO_2 \rightarrow LMEKOOH$	KRO2HO2(4)	Sander et al. (2018)
G44021a	TrGCN	LMEKO2 + NO \rightarrow .62 CH ₃ CHO + .62 CH ₃ C(O) + .38 HCHO + .38 CO ₂ + .38 HOCH ₂ CH ₂ O ₂ + NO ₂	<pre>KRO2NO*(1(.62*alpha_AN(4,2,1, 0,0,temp,cair)+.38*alpha_AN(4,1, 0,1,0,temp,cair)))</pre>	Sander et al. (2018)*
G44021b	TrGCN	$LMEKO2 + NO \rightarrow LMEKNO3$	<pre>KRO2NO*(.62*alpha_AN(4,2,1,0,0, temp,cair)+.38*alpha_AN(4,1,0,1, 0,temp,cair))</pre>	Sander et al. (2018)
G44022a	TrGC	$LMEKOOH + OH \rightarrow LMEKO2 + H_2O$	k_roohro	Sander et al. (2018)
G44022b	TrGC	LMEKOOH + OH \rightarrow .62 BIACET + .38 HCHO + .38 CO ₂ + .38 HOCH ₂ CH ₂ O ₂ + H ₂ O + OH	(.62*k_t*f_tooh*f_co+.38*k_s*f_ sooh)	Sander et al. (2018)
G44023a	TrGCN	$LC4H9NO3 + OH \rightarrow MEK + NO_2 + H_2O$	(k_t*f_ono2*f_alk+k_p*f_alk+k_ s*f_ch2ono2+k_p)*(k_s/(k_p+k_s))	Sander et al. $(2018)^*$
G44023b	TrGCN	$LC4H9NO3 + OH \rightarrow C_3H_7CHO + NO_2 + H_2O$	(k_p+k_s*(1+f_ch2ono2+f_ono2) *f_alk)*(k_p/(k_p+k_s))	Sander et al. $(2018)^*$
G44024	TrGCN	$MPAN + OH \rightarrow CH_3COCH_2OH + CO + NO_2$	3.2E-11	Orlando et al. (2002)
G44025	TrGCN	$MPAN \rightarrow MACO3 + NO_2$	k_PAN_M	see note*
G44026	TrGC	LMEKO2 \rightarrow .538 HCHO + .538 CO ₂ + .459 HOCH ₂ CH ₂ O ₂ + .079 C ₂ H ₅ O ₂ + .462 CH ₃ C(O) + .462 CH ₃ CHO	(.62*k1_R02s0R02+.38*k1_R02p0R02)	Rickard and Pascoe (2009)*
G44027	TrGC	$\mathrm{MACR} + \mathrm{OH} \rightarrow .45 \; \mathrm{MACO3} + .55 \; \mathrm{MACRO2}$	8.E-12*EXP(380./temp)	Orlando et al. (1999b), Sander et al. (2018)
G44028	TrGC	$MACR + O_3 \rightarrow .5481 CO + .1392 HO_2 + .1392 OH + .3219 CH_2OO + .87 MGLYOX + .13 HCHO + .13 OH + .065 HCOCOCH_2O_2 + .065 CO + .065 CH_3C(O)$	1.36E-15*EXP(-2112./temp)	Sander et al. (2018)
G44029	TrGCN	$MACR + NO_3 \rightarrow MACO_3 + HNO_3$	KNO3AL*2.0	Rickard and Pascoe (2009)
G44030a	TrGC	$MACO3 \rightarrow CH_3C(O) + HCHO + CO_2$	k1_R02RC03*0.9	Sander et al. (2018)
G44030b	TrGC	$MACO3 \rightarrow MACO2H$	k1_R02RC03*0.1	Sander et al. (2018)
G44031a	TrGC	$MACO3 + HO_2 \rightarrow MACO2 + OH$	KAPHO2*rco3_oh	Sander et al. (2018)
G44031b	TrGC	$MACO3 + HO_2 \rightarrow MACO3H$	KAPHO2*rco3_ooh	Sander et al. (2018)
G44031c	TrGC	$MACO3 + HO_2 \rightarrow MACO2H + O_3$	KAPHO2*rco3_o3	Sander et al. (2018)
G44032	TrGCN	$MACO3 + NO \rightarrow MACO2 + NO_2$	8.70E-12*EXP(290./temp)	Sander et al. (2018)
G44033	TrGCN	$MACO3 + NO_2 \rightarrow MPAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G44034	TrGCN	$MACO3 + NO_3 \rightarrow MACO2 + NO_2$	KR02N03*1.74	Sander et al. (2018)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G44035	TrGC	$MACRO2 \rightarrow .7 CH_3COCH_2OH + .7 HCHO + .7 HO_2 +$	k1_R02t0R02	Rickard and Pascoe (2009)*
		.3 MACROH		,
G44036a	TrGC	$MACRO2 + HO_2 \rightarrow MACRO + OH$	KRO2HO2(4)*rcoch2o2_oh	Sander et al. (2018)
G44036b	TrGC	$MACRO2 + HO_2 \rightarrow MACROOH$	KRO2HO2(4)*rcoch2o2_ooh	Sander et al. (2018)
G44037a	TrGCN	$MACRO2 + NO \rightarrow MACRO + NO_2$	<pre>KRO2NO*(1alpha_AN(6,3,1,0,0,</pre>	Sander et al. (2018)
			temp,cair))	
G44037b	TrGCN	$MACRO2 + NO \rightarrow MACRNO3$	<pre>KRO2NO*alpha_AN(6,3,1,0,0,temp,</pre>	Sander et al. (2018)
			cair)	
G44038	TrGCN	$MACRO2 + NO_3 \rightarrow MACRO + NO_2$	KRO2NO3	Sander et al. (2018)
G44039a	TrGC	$MACROOH + OH \rightarrow MACRO2$	k_roohro	Sander et al. (2018)
G44039b	TrGC	$MACROOH + OH \rightarrow CO + CH_3COCH_2OH + OH$	k_t*f_o*f_tch2oh*f_alk	Sander et al. (2018)
G44039c	TrGC	$MACROOH + OH \rightarrow CO + MGLYOX + HO_2$	(k_s*f_soh*f_pch2oh + k_rohro)	Sander et al. (2018)
G44040	TrGC	$MACROH + OH \rightarrow CH_3COCH_2OH + CO + HO_2$	k_t*f_o*f_tch2oh*f_alk	Sander et al. (2018)
G44041	TrGC	$\mathrm{MACRO} \rightarrow .885 \ \mathrm{CH_3COCH_2OH} \ + \ .885 \ \mathrm{CO} \ + \ .115$	KDEC	Sander et al. (2018)
		$MGLYOX + .115 HCHO + HO_2$		
G44042	TrGC	$MACO2H + OH \rightarrow CH_3COCH_2OH + HO_2 + CO_2$	$((k_adt+k_adp)*a_co2h+k_co2h)$	Sander et al. (2018)
G44043a	TrGC	$MACO3H + OH \rightarrow CH_3COCH_2OH + CO_2 + OH$	(k_adt+k_adp)*a_co2h	Sander et al. (2018)
G44043b	TrGC	$MACO3H + OH \rightarrow MACO3$	k_roohro	Sander et al. (2018)
G44044	TrGC	$LHMVKABO2 \rightarrow .024 CO2H3CHO + .072 MGLYOX$	(.12*k1_R02p0R02+.88*k1_R02s0R02)	Sander et al. (2018)
		$+ .072 \text{ HO}_2 + .072 \text{ HCHO} + .5280 \text{ CH}_3\text{C(O)} + .5280$		
		$HOCH_2CHO + .176 BIACETOH + .2 HO12CO3C4$		
G44045a	TrGC	$LHMVKABO2 + HO_2 \rightarrow OH + HOCH_2CHO + CH_3C(O)$	KRO2HO2(4)*.88*rcoch2o2_oh	Sander et al. (2018)
G44045b	TrGC	$\rm LHMVKABO2 + HO_2 \rightarrow LHMVKABOOH$	KRO2HO2(4)*(.12+.88*rcoch2o2_ooh)	Sander et al. (2018)
G44046a	TrGCN	$LHMVKABO2 + NO \rightarrow .12 MGLYOX + .12 HO_2 + .88$	$KRO2NO*(1(.12*alpha_AN(6,1,0,$	Sander et al. (2018)
		$HOCH_2CHO + .88 CH_3C(O) + .12 HCHO + NO_2$	1,0,temp,cair)+.88*alpha_AN(6,2,	
	_ 0.0.		1,0,0,temp,cair)))	. (5.5.5)
G44046b	TrGCN	$LHMVKABO2 + NO \rightarrow MVKNO3$	KRO2NO*(.12*alpha_AN(6,1,0,1,0,	Sander et al. $(2018)^*$
			temp, cair) + .88*alpha_AN(6,2,1,0,	
	T C CN	THE BUILDING AND ADMINISTRATION ADMINISTRATION ADMINISTRATION AND ADMINISTRATION ADMINISTRATION ADMINISTRATION ADMINISTRATION AND ADMINISTRATION ADMINISTRATION ADMINISTRATION AND ADMINISTRATION ADMINISTRATION AND ADMINISTR	0,temp,cair))	G 1 (2010)
G44047	TrGCN	LHMVKABO2 + NO ₃ \rightarrow .12 MGLYOX + .12 HO ₂ + .88	KRO2NO3	Sander et al. (2018)
		$HOCH_2CHO + .88 CH_3C(O) + .12 HCHO + .12 HO_2 + .12 $		
	T. C.C	NO ₂		G 1 (2012)
G44048a	TrGC	LHMVKABOOH + OH → LHMVKABO2	k_roohro	Sander et al. (2018)
G44048b	TrGC	LHMVKABOOH + OH \rightarrow .12 CO2H3CHO + .88	(.12*k_s*f_sooh*f_pch2oh+.88*k_	Sander et al. (2018)
		BIACETOH + OH	t*f_tooh*f_pch2oh*f_co)	

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G44049a	TrGC	$CO2H3CHO + OH \rightarrow CO2H3CO3$	k_t*f_o*f_alk	Sander et al. (2018)
G44049b	TrGC	$CO2H3CHO + OH \rightarrow CH_3COCOCHO + HO_2 + H_2O$	k_t*f_co*f_toh*f_cho	Sander et al. (2018)
G44050	TrGCN	$CO2H3CHO + NO_3 \rightarrow CO2H3CO3 + HNO_3$	KNO3AL*4.0	Rickard and Pascoe (2009)
G44051	TrGC	$CO2H3CO3 \rightarrow MGLYOX + HO_2 + CO_2$	k1_R02RC03	Sander et al. (2018)
G44052a	TrGC	$CO2H3CO3 + HO_2 \rightarrow OH + MGLYOX + HO_2 + CO_2$	KAPHO2*rco3_oh	Sander et al. (2018)
G44052b	TrGC	$CO2H3CO3 + HO_2 \rightarrow CO2H3CO2H + O_3$	KAPH02*rco3_o3	Sander et al. (2018)
G44052c	TrGC	$CO2H3CO3 + HO_2 \rightarrow CO2H3CO3H$	KAPHO2*rco3_ooh	Sander et al. (2018)
G44053	TrGCN	$CO2H3CO3 + NO \rightarrow MGLYOX + HO_2 + NO_2 + CO_2$	KAPNO	Sander et al. (2018)
G44054	TrGCN	$CO2H3CO3 + NO_3 \rightarrow MGLYOX + HO_2 + NO_2 + CO_2$	KR02N03*1.74	Sander et al. (2018)
G44055a	TrGC	$CO2H3CO3H + OH \rightarrow CO2H3CO3$	k_roohro	Sander et al. (2018)
G44055b	TrGC	$CO2H3CO3H + OH \rightarrow CH_3C(O) + CO + CO_2 + OH$	$(k_t*f_co2h*f_co*f_toh)$	Sander et al. (2018)
G44056	TrGC	$CO2H3CO2H + OH \rightarrow CH3COCOCO2H + HO_2$	$k_t*f_co2h*f_co*f_toh+k_co2h$	Sander et al. (2018)
G44057a	TrGC	$HO12CO3C4 + OH \rightarrow BIACETOH + HO_2$	k_t*f_toh*f_alk*f_co	Sander et al. (2018)
G44057b	TrGC	$HO12CO3C4 + OH \rightarrow CO2H3CHO + HO_2$	k_s*f_soh*f_alk	Sander et al. (2018)
G44058	TrGC	$MACO2 \rightarrow .65 CH_3 + .65 CO + .65 HCHO + .35 OH +$	KDEC	Sander et al. (2018)
		$.35 \text{ CH}_3 \text{COCH}_2 \text{O}_2 + \text{CO}_2$		
G44059	TrGC	$LHMVKABO2 \rightarrow .88 \ MGLYOX + .88 \ HCHO + .12$	KHSD	Sander et al. (2018)
		$HOOCH2CHO + .12 CH_3C(O) + OH$		
G44060	TrGC	$MACRO2 \rightarrow MGLYOX + HCHO + OH$	KHSB	Sander et al. (2018)
G44061a	TrGCN	$MVKNO3 + OH \rightarrow MGLYOX + CO_2 + HO_2 + NO_2 +$	k_s*f_sooh*f_ch2ono2+k_rohro	Sander et al. $(2018)^*$
	_ 0.01-1	$ m H_2O$		
G44061b	TrGCN	$MVKNO3 + OH \rightarrow BIACETOH + NO_2 + H_2O$	k_t*f_ono2*f_co*f_pch2oh	Sander et al. (2018)*
G44062a	TrGCN	$MACRNO3 + OH \rightarrow CH_3COCH_2OH + CO_2 + NO_2 +$	k_t*f_o*f_ch2ono2	Sander et al. $(2018)^*$
	E 0 037	H ₂ O		G 1 (2212)
G44062b	TrGCN	$MACRNO3 + OH \rightarrow MGLYOX + CO + NO_2 + H_2O$	k_rohro+k_s*f_sooh*f_ch2ono2	Sander et al. (2018)*
G44063	TrGC	$MACRO2 \rightarrow CH_3COCH_2OH + OH + CO$	K14HSAL	Sander et al. (2018)
G44064	TrGC	EZCH3CO2CHCHO \rightarrow .9 CH ₃ COCHCO + .1 CH ₃ C(O) +	K15HS24VYNAL	Sander et al. (2018)
	m 00	$.01 \text{ GLYOX} + .18 \text{ CO} + .09 \text{ HO}_2 + \text{OH}$		G 1 (2010)
G44065	TrGC	EZCH3CO2CHCHO + $HO_2 \rightarrow CH_3COOHCHCHO$	KR02H02(4)	Sander et al. (2018)
G44066	TrGCN	EZCH3CO2CHCHO + NO \rightarrow CH ₃ COCHO ₂ CHO + NO ₂	KR02N0	Sander et al. (2018)*
G44067	TrGCN	EZCH3CO2CHCHO + $NO_3 \rightarrow CH_3COCHO_2CHO + NO_2$	kR02N03	Sander et al. (2018)
G44068	TrGC	$EZCH3CO2CHCHO \rightarrow CH_3COCHO_2CHO$	k1_R02s0R02	Sander et al. (2018)
G44069	TrGC	EZCHOCCH3CHO2 → HCOCCH3CO + OH	K15HS24VYNAL	Sander et al. (2018)
G44070	TrGCN	$EZCHOCCH3CHO2 + NO \rightarrow HCOCO_2CH_3CHO + NO_2$	KRO2NO	Sander et al. (2018)*
G44071	TrGC	$EZCHOCCH3CHO2 + HO_2 \rightarrow HCOCCH_3CHOOH$	KR02H02(4)	Sander et al. (2018)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G44072	TrGCN	$EZCHOCCH3CHO2 + NO_3 \rightarrow HCOCO_2CH_3CHO + NO_2$	KR02N03	Sander et al. (2018)
G44073	TrGC	$EZCHOCCH3CHO2 \rightarrow HCOCO_2CH_3CHO$	k1_R02p0R02	Sander et al. (2018)
G44074	TrGC	$CH_3COOHCHCHO \rightarrow CH_3COCHO_2CHO + OH$	KHYDEC	Sander et al. (2018)
G44075	TrGC	$HCOCCH_3CHOOH \rightarrow HCOCO_2CH_3CHO + OH$	KHYDEC	Sander et al. (2018)
G44076	TrGCN	$CH_3COCHO_2CHO + NO \rightarrow CH_3C(O) + GLYOX + NO_2$	KRO2NO	Sander et al. (2018)*
G44077	TrGCN	$\mathrm{CH_3COCHO_2CHO} + \mathrm{NO_3} \rightarrow \mathrm{CH_3C(O)} + \mathrm{GLYOX} + \mathrm{NO_2}$	KR02N03	Sander et al. (2018)
G44078	TrGC	$CH_3COCHO_2CHO + HO_2 \rightarrow CH_3C(O) + GLYOX + OH$	KRO2HO2(4)	Sander et al. $(2018)^*$
G44079	TrGC	$CH_3COCHO_2CHO \rightarrow CH_3C(O) + GLYOX$	k1_R02s0R02	Sander et al. (2018)
G44080	TrGC	$HCOCO_2CH_3CHO \rightarrow MGLYOX + CO + HO_2$	k1_R02t0R02	Sander et al. (2018)
G44081	TrGCN	$\mathrm{HCOCO_2CH_3CHO} + \mathrm{NO} \rightarrow \mathrm{MGLYOX} + \mathrm{CO} + \mathrm{HO_2} + \mathrm{NO_2}$	KRO2NO	Sander et al. $(2018)^*$
G44082	TrGC	$\mathrm{HCOCO_2CH_3CHO} + \mathrm{HO_2} \rightarrow \mathrm{MGLYOX} + \mathrm{CO} + \mathrm{HO_2} + \mathrm{OH}$	KRO2HO2(4)	Sander et al. (2018)*
G44083	TrGCN	$\mathrm{HCOCO_2CH_3CHO} + \mathrm{NO_3} \rightarrow \mathrm{MGLYOX} + \mathrm{CO} + \mathrm{HO_2} + \mathrm{NO_2}$	KR02N03	Sander et al. (2018)
G44084	TrGC	$\mathrm{HCOCCH_{3}CO} + \mathrm{OH} \rightarrow \mathrm{CO} + \mathrm{MGLYOX} + \mathrm{HO}_{2}$	1E-10*a_cho	Hatakeyama et al. (1985), Sander et al. (2018)
G44085	TrGC	$\mathrm{CH_{3}COCHCO} + \mathrm{OH} \rightarrow \mathrm{CO} + \mathrm{MGLYOX} + \mathrm{HO}_{2}$	7.6E-11*a_coch3	Hatakeyama et al. (1985), Sander et al. (2018)*
G44086	TrGCN	LMEKNO3 + OH \rightarrow .62 MGLYOX + .62 HCHO + .62	.62*(k_p*(f_co+f_ch2ono2))	Sander et al. (2018)*
		$HO_2 + .62 NO_2 + .38 CH_3C(O) + .38 NO_3CH2CHO$	+.38*(k_s*f_ch2ono2*f_co)	
G44087	TrGC	$\text{MEPROPENE} + \text{OH} \rightarrow \text{IBUTOLBO2}$	9.4E-12*EXP(505./temp)	Atkinson et al. (2006)
G44088a	TrGC	$MEPROPENE + O_3 \rightarrow CH_3COCH_3 + CH_2OO^*$	2.7E-15*EXP(-1630./temp)*0.33	Atkinson et al. (2006), Sander et al. (2018)
G44088b	TrGC	$MEPROPENE + O_3 \rightarrow CH_3COCH_2O_2 + OH + HCHO$	2.7E-15*EXP(-1630./temp)*0.67	Atkinson et al. (2006), Sander et al. (2018)
G44089	TrGCN	$MEPROPENE + NO_3 \rightarrow CH_3COCH_3 + HCHO + NO_2$	3.4E-13	Atkinson et al. (2006), Sander et al. (2018)*
G44090	TrGC	$IBUTOLBO2 \rightarrow CH_3COCH_3 + HCHO + HO_2$	k1_R02t0R02	Sander et al. (2018)
G44091a	TrGC	$IBUTOLBO2 + HO_2 \rightarrow IBUTOLBOOH$	KRO2HO2(4)*rcoch2o2_ooh	Sander et al. (2018)
G44091b	TrGC	$\begin{array}{l} \mathrm{IBUTOLBO2} + \mathrm{HO_2} \rightarrow \mathrm{CH_3COCH_3} + \mathrm{HCHO} + \mathrm{HO_2} + \\ \mathrm{OH} \end{array}$	KRO2HO2(4)*rcoch2o2_oh	Sander et al. (2018)
G44092a	TrGCN	$\begin{array}{c} \mathrm{IBUTOLBO2} + \mathrm{NO} \rightarrow \mathrm{CH_3COCH_3} + \mathrm{HCHO} + \mathrm{HO_2} + \\ \mathrm{NO_2} \end{array}$	<pre>KRO2NO*(1alpha_AN(5,3,0,0,0, temp,cair))</pre>	Sander et al. (2018)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G44092b	TrGCN	$IBUTOLBO2 + NO \rightarrow IBUTOLBNO3$	KRO2NO*alpha_AN(5,3,0,0,0,temp,	Sander et al. (2018)
			cair)	
G44093	TrGCN	$IBUTOLBO2 + NO_3 \rightarrow CH_3COCH_3 + HCHO + HO_2 +$	KR02N03	Sander et al. (2018)
		NO_2		
G44094a	TrGC	$IBUTOLBOOH + OH \rightarrow IBUTOLBO2$	k_roohro	Sander et al. (2018)
G44094b	TrGC	$IBUTOLBOOH + OH \rightarrow CH_3COCH_3 + HCHO + HO_2$	k_s*f_sooh*f_pch2oh	Sander et al. (2018)
G44095	TrGCN	$IBUTOLBNO3 + OH \rightarrow CH_3COCH_3 + HCHO + HO_2 +$	3.*k_p	Sander et al. (2018)
		NO_2		
G44096	TrGC	$BUT1ENE + OH \rightarrow LBUT1ENO2$	6.6E-12*EXP(465./temp)	Atkinson et al. $(2006)^*$
G44097a	TrGC	BUT1ENE + $O_3 \rightarrow HCHO + .5 C_2H_5CHO + .5 H_2O_2 +$	3.35E-15*EXP(-1745./temp)*.57	Atkinson et al. (2006), Sander
		$.5 \text{ CH}_3\text{CHO} + .5 \text{ CO} + .5 \text{ HO}_2$		et al. (2018)*
G44097b	TrGC	$BUT1ENE + O_3 \rightarrow C_2H_5CHO + CH_2OO^*$	3.35E-15*EXP(-1745./temp)*.43	Atkinson et al. (2006), Sander
	E 6 637			et al. (2018)*
G44098	TrGCN	$BUT1ENE + NO_3 \rightarrow C_2H_5CHO + HCHO + NO_2$	3.2E-13*EXP(-950./temp)	Atkinson et al. (2006), Sander
~	m 00			et al. (2018)*
G44099	TrGC	LBUT1ENO2 \rightarrow C ₂ H ₅ CHO + HCHO + HO ₂	k1_R02s0R02	Sander et al. (2018)
G44100a	TrGC	$LBUT1ENO2 + HO_2 \rightarrow LBUT1ENOOH$	KR02H02(4)*rcoch2o2_ooh	Sander et al. (2018)
G44100b	TrGC	LBUT1ENO2 + $HO_2 \rightarrow C_2H_5CHO + HCHO + HO_2 + OH$	KRO2HO2(4)*rcoch2o2_oh	Sander et al. (2018)
G44101a	TrGCN	$LBUT1ENO2 + NO \rightarrow C_2H_5CHO + HCHO + HO_2 + NO_2$	<pre>KRO2NO*(1alpha_AN(5,2,0,0,0, temp,cair))</pre>	Sander et al. (2018)
G44101b	TrGCN	$LBUT1ENO2 + NO \rightarrow LBUT1ENNO3$	KRO2NO*alpha_AN(5,2,0,0,0,temp,	Sander et al. (2018)
0441010	HGCN	EDUTIENOZ + NO - EDUTIENNOS	cair)	Sander et al. (2018)
G44102	TrGCN	LBUT1ENO2 + NO ₃ \rightarrow C ₂ H ₅ CHO + HCHO + HO ₂ +	KR02N03	Sander et al. (2018)
U44102	110011	NO_2	Mitozinoo	bander et al. (2010)
G44103a	TrGC	$LBUT1ENOOH + OH \rightarrow LBUT1ENO2$	k_roohro	Sander et al. (2018)
G44103b	TrGC	LBUT1ENOOH + OH \rightarrow C ₂ H ₅ CO ₃ + HCHO + HO ₂	k_t*f_tooh*f_pch2oh	Sander et al. (2018)*
G44104	TrGCN	LBUT1ENNO3 + OH \rightarrow C ₂ H ₅ CHO + CO + HO ₂ + NO ₂	k_s*f_soh*f_ch2ono2	Sander et al. (2018)*
G44105	TrGC	CBUT2ENE + OH \rightarrow BUT2OLO2	1.1E-11*EXP(485./temp)	Atkinson et al. (2006)
G44106	TrGC	CBUT2ENE + $O_3 \rightarrow CH_3CHO + .16 CH3CHOHOOH +$	3.2E-15*EXP(-965./temp)	Atkinson et al. (2006), Sander
		$.50 \text{ OH} + .50 \text{ HCOCH}_2\text{O}_2 + .05 \text{ CH2CO} + .09 \text{ CH}_3\text{OH} +$	• • • •	et al. (2018)*
		$.09 \text{ CO} + .2 \text{ CH}_4 + .2 \text{ CO}_2$,
G44107	TrGCN	CBUT2ENE + NO ₃ \rightarrow 2 CH ₃ CHO + NO ₂	3.5E-13	Atkinson et al. (2006), Sander
		• • • • • • • • • • • • • • • • • • •		et al. (2018)*
G44108	TrGC	$TBUT2ENE + OH \rightarrow BUT2OLO2$	1.0E-11*EXP(553./temp)	Atkinson et al. (2006)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G44109	TrGC	TBUT2ENE $+ O_3 \rightarrow CH_3CHO + .16 CH3CHOHOOH +$	6.6E-15*EXP(-1060./temp)	Atkinson et al. (2006), Sander
		$.50 \text{ OH} + .50 \text{ HCOCH}_2\text{O}_2 + .05 \text{ CH2CO} + .09 \text{ CH}_3\text{OH} +$		et al. (2018)
		$.09 \text{ CO} + .2 \text{ CH}_4 + .2 \text{ CO}_2$		
G44110	TrGCN	$TBUT2ENE + NO_3 \rightarrow 2 CH_3CHO + NO_2$	1.78E-12*EXP(-530./temp)	Atkinson et al. (2006), Sander
			+1.28E-14*EXP(570./temp)	et al. (2018)*
G44111	TrGC	$\mathrm{BUT2OLO2} ightarrow \mathrm{C_2H_5CHO} + \mathrm{HCHO} + \mathrm{HO_2}$	k1_R02s0R02	Sander et al. (2018)
G44112a	TrGC	$BUT2OLO2 + HO_2 \rightarrow BUT2OLOOH$	KRO2HO2(4)*rcoch2o2_ooh	Sander et al. (2018)
G44112b	TrGC	$BUT2OLO2 + HO_2 \rightarrow 2 CH_3CHO + HO_2 + OH$	KRO2HO2(4)*rcoch2o2_oh	Sander et al. (2018)
G44113a	TrGCN	$BUT2OLO2 + NO \rightarrow 2 CH_3CHO + HO_2 + NO_2$	KRO2NO*(1alpha_AN(5,2,0,0,0,	Sander et al. (2018)
			temp,cair))	
G44113b	TrGCN	$BUT2OLO2 + NO \rightarrow BUT2OLNO3$	<pre>KRO2NO*alpha_AN(5,2,0,0,0,temp,</pre>	Sander et al. (2018)
			cair)	
G44114	TrGCN	$BUT2OLO2 + NO_3 \rightarrow 2 CH_3CHO + HO_2 + NO_2$	KR02N03	Sander et al. (2018)
G44115a	TrGC	$BUT2OLOOH + OH \rightarrow BUT2OLO2$	k_roohro	Sander et al. (2018)
G44115b	TrGC	$BUT2OLOOH + OH \rightarrow LMEKOOH + HO_2$	k_t*f_toh*f_pch2oh	Sander et al. (2018)
G44115c	TrGC	$BUT2OLOOH + OH \rightarrow BUT2OLO + OH$	k_t*f_tooh*f_pch2oh	Sander et al. (2018)
G44116	TrGCN	$BUT2OLNO3 + OH \rightarrow LMEKNO3 + HO_2$	k_t*f_toh*f_ch2ono2	Sander et al. (2018)
G44117	TrGC	$BUT2OLO + OH \rightarrow BIACET + HO_2$	k_t*f_toh*f_co	Sander et al. (2018)
G44118	TrGC	$IPRCHO + OH \rightarrow IPRCO3 + H_2O$	6.8E-12*EXP(410./temp)	Atkinson et al. (2006)
G44119	TrGCN	$IPRCHO + NO_3 \rightarrow IPRCO_3 + HNO_3$	1.67E-12*EXP(-1460./temp)	Atkinson et al. (2006)
G44120	TrGC	$IPRCO3 \rightarrow iC_3H_7O_2 + CO_2$	k1_RO2RCO3	Rickard and Pascoe (2009)
G44121a	TrGC	$IPRCO3 + HO_2 \rightarrow PERIBUACID$	KAPHO2*rco3_ooh	Rickard and Pascoe (2009),
				Sander et al. (2018)
G44121b	TrGC	$IPRCO3 + HO_2 \rightarrow iC_3H_7O_2 + CO_2 + OH$	KAPHO2*(1-rco3_ooh)	Rickard and Pascoe (2009),
				Sander et al. (2018)
G44122	TrGCN	$IPRCO3 + NO_2 \rightarrow PIPN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G44123	TrGCN	$IPRCO3 + NO \rightarrow iC_3H_7O_2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G44124a	TrGC	$PERIBUACID + OH \rightarrow IPRCO3 + H_2O$	k_roohro	Rickard and Pascoe (2009)
G44124b	TrGC	$PERIBUACID + OH \rightarrow CH_3COCH_3 + H_2O + CO_2$	k_s*f_co2h	Sander et al. $(2018)^*$
G44125	TrGCN	$PIPN \rightarrow IPRCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G44126	TrGCN	$PIPN + OH \rightarrow CH_3COCH_3 + CO_2 + NO_2$	k_s*f_cpan	Sander et al. $(2018)^*$
G44127	TrGC	$MPROPENOL + OH \rightarrow HCOOH + OH + CH_3COCH_3$	k_CH2CHOH_OH_HCOOH	Sander et al. (2018), So et al.
				$(2014)^*$
G44128	TrGC	$\mathrm{MPROPENOL} + \mathrm{HCOOH} \rightarrow \mathrm{IPRCHO} + \mathrm{HCOOH}$	k_CH2CHOH_HCOOH	Sander et al. (2018), da Silva
				$(2010)^*$

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G44129	TrGC	$\mathrm{IPRCHO} + \mathrm{HCOOH} \to \mathrm{MPROPENOL} + \mathrm{HCOOH}$	k_ALD_HCOOH	Sander et al. (2018), da Silva (2010)*
G44130	TrGC	$BUTENOL + OH \rightarrow HCOOH + OH + C_2H_5CHO$	k_CH2CHOH_OH_HCOOH	Sander et al. (2018), So et al. $(2014)^*$
G44131	TrGC	$BUTENOL + HCOOH \rightarrow C_3H_7CHO + HCOOH$	k_CH2CHOH_HCOOH	Sander et al. (2018), da Silva (2010)*
G44132	TrGC	$C_3H_7CHO + HCOOH \rightarrow BUTENOL + HCOOH$	k_ALD_HCOOH	Sander et al. (2018), da Silva (2010)*
G44133	TrGC	$HVMK + OH \rightarrow HCOOH + OH + MGLYOX$	8.8E-11	Sander et al. (2018), So et al. (2014), Messaadia et al. (2015)*
G44134	TrGC	$\mathrm{HVMK} + \mathrm{HCOOH} \rightarrow \mathrm{CO2C3CHO} + \mathrm{HCOOH}$	k_CH2CHOH_HCOOH	Sander et al. (2018), da Silva (2010)*
G44135	TrGC	$CO2C3CHO + HCOOH \rightarrow HVMK + HCOOH$	k_ALD_HCOOH	Sander et al. (2018), da Silva (2010)*
G44136	TrGC	$\text{HMAC} + \text{OH} \rightarrow \text{HCOOH} + \text{OH} + \text{MGLYOX}$	8.8E-11	Sander et al. (2018), So et al. (2014), Messaadia et al. (2015)*
G44137	TrGC	$\mathrm{HMAC} + \mathrm{HCOOH} \rightarrow \mathrm{IBUTDIAL} + \mathrm{HCOOH}$	k_CH2CHOH_HCOOH	Sander et al. (2018), da Silva (2010)*
G44138	TrGC	$\mathrm{IBUTDIAL} + \mathrm{HCOOH} \rightarrow \mathrm{HMAC} + \mathrm{HCOOH}$	k_ALD_HCOOH	Sander et al. (2018), da Silva (2010)*
G44139	TrGC	$CO2C3CHO + OH \rightarrow CH_3COCH_2O_2 + CO_2 + H_2O$	k_t*f_o*f_alk+k_s*f_cho*f_co	Sander et al. (2018)*
G44140	TrGCN	$CO2C3CHO + NO_3 \rightarrow CH_3COCH_2O_2 + CO_2 + HNO_3$	KNO3AL*4.0	Sander et al. $(2018)^*$
G44141	TrGC	$\begin{array}{l} \mathrm{IBUTDIAL} + \mathrm{OH} \rightarrow \mathrm{CH_3CHO} + \mathrm{CO} + \mathrm{HO_2} + \mathrm{CO_2} + \\ \mathrm{H_2O} \end{array}$	2.*k_t*f_o*f_alk+k_t*f_cho*f_cho	Sander et al. $(2018)^*$
G44142	TrGCN	$\begin{array}{l} \mathrm{IBUTDIAL} + \mathrm{NO_3} \rightarrow \mathrm{CH_3CHO} + \mathrm{CO} + \mathrm{HO_2} + \mathrm{CO_2} + \\ \mathrm{HNO_3} \end{array}$	2.*KNO3AL*4.0	Sander et al. (2018)*
G44200	TrGTerC	$CH_3COCOCH_2O_2 \rightarrow CH_3C(O) + HCHO + CO$	k1_R02p0R02	Rickard and Pascoe (2009)
G44201	TrGTerC	$\text{CH}_3\text{COCOCH}_2\text{O}_2 + \text{HO}_2 \rightarrow \text{CH}_3\text{COCOCH}_2\text{OOH}$	KR02H02(4)	Rickard and Pascoe (2009)
G44202	TrGTerCN	$\mathrm{CH_3COCOCH_2O_2} + \mathrm{NO} \rightarrow \mathrm{CH_3C(O)} + \mathrm{HCHO} + \mathrm{CO} + \mathrm{NO_2}$	KRO2NO	Rickard and Pascoe (2009)*
G44203a	TrGTerC	$\mathrm{CH_{3}COCOCH_{2}OOH} + \mathrm{OH} \rightarrow \mathrm{CH_{3}COCOCHO} + \mathrm{OH}$	k_s*f_co*f_sooh	Rickard and Pascoe (2009)*
G44203b	TrGTerC	$\mathrm{CH_{3}COCOCH_{2}OOH} + \mathrm{OH} \rightarrow \mathrm{CH_{3}COCOCH_{2}O_{2}}$	k_roohro	Rickard and Pascoe (2009)
G44204	TrGTerC	$C44O2 + HO_2 \rightarrow C44OOH$	KRO2HO2(4)	Rickard and Pascoe (2009)
G44205	$\operatorname{TrGTerCN}$	$C44O2 + NO \rightarrow HCOCH2CHO + CO_2 + HO_2 + NO_2$	KR02N0	Rickard and Pascoe (2009)*
G44206	TrGTerC	$C44O2 \rightarrow HCOCH2CHO + CO_2 + HO_2$	k1_R02s0R02	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G44207	TrGTerC	$C44OOH + OH \rightarrow C44O2$	7.46E-11	Rickard and Pascoe (2009)
G44208	TrGTerC	$CHOC3COO2 \rightarrow HCOCH2CO3 + HCHO$	k1_R02p0R02	Rickard and Pascoe (2009)
G44209	TrGTerC	$CHOC3COO2 + HO_2 \rightarrow C413COOOH$	KRO2HO2(4)	Rickard and Pascoe (2009)
G44210	TrGTerCN	$CHOC3COO2 + NO \rightarrow HCOCH2CO3 + HCHO + NO_2$	KR02N0	Rickard and Pascoe (2009)*
G44211	TrGTerC	$C413COOOH + OH \rightarrow CHOC3COO2$	8.33E-11	Rickard and Pascoe (2009)
G44212	TrGTerC	$C4CODIAL + OH \rightarrow C312COCO3$	3.39E-11	Rickard and Pascoe (2009)
G44213	TrGTerCN	$C4CODIAL + NO_3 \rightarrow C312COCO3 + HNO_3$	2.*KNO3AL*4.0	Rickard and Pascoe (2009)
G44214	TrGTerC	$C312COCO3 \rightarrow HCOCOCH_2O_2 + CO_2$	k1_RO2RCO3	Rickard and Pascoe (2009)
G44215a	TrGTerC	$C312COCO3 + HO_2 \rightarrow C312COCO3H$	KAPHO2*rco3_ooh	Rickard and Pascoe (2009)
G44215b	TrGTerC	$C312COCO3 + HO_2 \rightarrow HCOCOCH_2O_2 + CO_2 + OH$	KAPHO2*(1-rco3_ooh)	Rickard and Pascoe (2009)
G44216	TrGTerCN	$C312COCO3 + NO_2 \rightarrow C312COPAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G44217	TrGTerCN	$C312COCO3 + NO \rightarrow HCOCOCH_2O_2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G44218	TrGTerC	$C312COCO3H + OH \rightarrow C312COCO3$	1.63E-11	Rickard and Pascoe (2009)
G44219	TrGTerCN	$C312COPAN \rightarrow C312COCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G44220	TrGTerCN	$C312COPAN + OH \rightarrow HCOCOCHO + CO + NO_2$	1.27E-11	Rickard and Pascoe (2009)
G44221	TrGTerC	$CH_3COCOCHO + OH \rightarrow CH_3C(O) + 2 CO$	8.4E-13*EXP(830./temp)	Sander et al. (2018)*
G44222	TrGTerCN	$CH_3COCOCHO + NO_3 \rightarrow CH_3C(O) + 2 CO + HNO_3$	KNO3AL*4.0	Rickard and Pascoe (2009)
G44223	TrGTerC	$IBUTALOH + OH \rightarrow IPRHOCO3$	1.4E-11	Rickard and Pascoe (2009)
G44224a	TrGTerC	$IPRHOCO3 + HO_2 \rightarrow CH_3COCH_3 + CO_2 + HO_2 + OH$	KAPHO2*rco3_oh	Rickard and Pascoe (2009), Sander et al. (2018)
G44224b	TrGTerC	$\mathrm{IPRHOCO3} + \mathrm{HO_2} \rightarrow \mathrm{IPRHOCO2H} + \mathrm{O_3}$	KAPHO2*rco3_o3	Rickard and Pascoe (2009), Sander et al. (2018)
G44224c	TrGTerC	$IPRHOCO3 + HO_2 \rightarrow IPRHOCO3H$	KAPHO2*rco3_ooh	Rickard and Pascoe (2009), Sander et al. (2018)
G44225	TrGTerCN	$IPRHOCO3 + NO \rightarrow CH_3COCH_3 + CO_2 + HO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G44226	TrGTerCN	$IPRHOCO3 + NO_2 \rightarrow C4PAN5$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G44227	TrGTerCN	$IPRHOCO3 + NO_3 \rightarrow CH_3COCH_3 + CO_2 + HO_2 + NO_2$	KR02N03*1.74	Rickard and Pascoe (2009)
G44228a	TrGTerC	$IPRHOCO3 \rightarrow CH_3COCH_3 + CO_2 + HO_2$	k1_R02RC03*0.7	Rickard and Pascoe (2009)
G44228b	TrGTerC	$IPRHOCO3 \rightarrow IPRHOCO2H$	k1_R02RC03*0.3	Rickard and Pascoe (2009)
G44229	TrGTerC	$IPRHOCO2H + OH \rightarrow CH_3COCH_3 + CO_2 + HO_2 + H_2O$	1.72E-12	Rickard and Pascoe (2009)
G44230	TrGTerC	$OH + IPRHOCO3H \rightarrow IPRHOCO3$	4.80E-12	Rickard and Pascoe (2009)
G44231	TrGTerCN	$C4PAN5 \rightarrow IPRHOCO3 + NO_2$	K_PAN_M	Rickard and Pascoe (2009)
G44232	TrGTerCN	$C4PAN5 + OH \rightarrow CH_3COCH_3 + CO + NO_2$	4.75E-13	Rickard and Pascoe (2009)
G44233a	TrGTerC	$MBOOO \rightarrow IPRHOCO2H$	1.60E-17*C(ind_H20)*(0.08+0.15)	Rickard and Pascoe (2009), Sander et al. (2018)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G44233b	TrGTerC	$MBOOO \rightarrow IBUTALOH + H_2O_2$	1.60E-17*C(ind_H20)*0.77	Rickard and Pascoe (2009),
				Sander et al. (2018)
G44234	TrGTerC	$MBOOO + CO \rightarrow IBUTALOH + CO_2$	1.20E-15	Rickard and Pascoe (2009)
G44235	TrGTerCN	$MBOOO + NO \rightarrow IBUTALOH + NO_2$	1.00E-14	Rickard and Pascoe (2009)
G44236	TrGTerCN	$MBOOO + NO_2 \rightarrow IBUTALOH + NO_3$	1.00E-15	Rickard and Pascoe (2009)
G44400	TrGAroC	$MALANHY + OH \rightarrow MALANHYO2$	1.4E-12	Rickard and Pascoe (2009)
G44401a	TrGAroC	$MALDIALOOH + OH \rightarrow HOCOC4DIAL + OH$	1.22E-10	Rickard and Pascoe (2009)
G44401b	TrGAroC	$MALDIALOOH + OH \rightarrow MALDIALO2$	k_roohro	Rickard and Pascoe (2009)
G44402	TrGAroCN	$NC4DCO2H + OH \rightarrow MALANHY + NO_2$	k_roohro	Rickard and Pascoe $(2009)^*$
G44403	TrGAroC	$CO14O3CO2H + OH \rightarrow HCOCH_2O_2 + 2 CO_2$	2.19E-11	Rickard and Pascoe (2009)
G44404	TrGAroC	$BZFUOOH + OH \rightarrow BZFUO2$	3.68E-11	Rickard and Pascoe (2009)
G44405	TrGAroC	$HOCOC4DIAL + OH \rightarrow CO2C4DIAL + HO_2$	3.67E-11	Rickard and Pascoe (2009)
G44406a	TrGAroC	$MALDIALCO3 + HO_2 \rightarrow MALDALCO2H + O_3$	KAPHO2*rco3_o3	Rickard and Pascoe (2009)
G44406b	TrGAroC	$MALDIALCO3 + HO_2 \rightarrow MALDALCO3H$	KAPHO2*rco3_ooh	Rickard and Pascoe (2009)
G44406c	TrGAroC	$MALDIALCO3 + HO_2 \rightarrow .6 MALANHY + HO_2 + .4$	KAPHO2*rco3_oh	Rickard and Pascoe $(2009)^*$
		$GLYOX + .4 CO + .4 CO_2 + OH$		
G44407	TrGAroCN	$MALDIALCO3 + NO \rightarrow .6 MALANHY + HO_2 + .4$	KAPNO	Rickard and Pascoe $(2009)^*$
		GLYOX + .4 CO + .4 CO2 + NO2		
G44408	TrGAroCN	$\mathrm{MALDIALCO3} + \mathrm{NO}_2 \rightarrow \mathrm{MALDIALPAN}$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G44409	TrGAroCN	MALDIALCO3 + NO ₃ \rightarrow .6 MALANHY + HO ₂ + .4	KR02N03*1.74	Rickard and Pascoe (2009)*
		GLYOX + .4 CO + .4 CO2 + NO2		
G44410	TrGAroC	$MALDIALCO3 \rightarrow .6 MALANHY + HO_2 + .4 GLYOX +$	k1_R02RC03	Rickard and Pascoe $(2009)^*$
		$.4 \text{ CO} + .4 \text{ CO}_2$		
G44411	TrGAroCN	$BZFUONE + NO_3 \rightarrow NBZFUO2$	3.00E-13	Rickard and Pascoe (2009)
G44412	TrGAroC	BZFUONE + $O_3 \rightarrow .3125 \text{ CO14O3CO2H} + .1875$	2.20E-19	see note*
		CO14O3CHO + .1875 H2O2 + .5 CO + .5 CO2 + .5		
	_ ~	$HCOCH_2O_2 + .5 OH$		
G44413	TrGAroC	$BZFUONE + OH \rightarrow BZFUO2$	4.45E-11	Rickard and Pascoe (2009)
G44414	TrGAroCN	$NBZFUOOH + OH \rightarrow NBZFUO2$	6.18E-12	Rickard and Pascoe (2009)
G44415	TrGAroC	$MALDALCO3H + OH \rightarrow MALDIALCO3$	4.00E-11	Rickard and Pascoe (2009)
G44416	TrGAroC	$EPXDLCO2H + OH \rightarrow C3DIALO2 + CO_2$	2.31E-11	Rickard and Pascoe (2009)
G44417a	TrGAroC	$EPXDLCO3 + HO_2 \rightarrow C3DIALO2 + CO_2 + OH$	KAPHO2*rco3_oh	Rickard and Pascoe (2009)
G44417b	TrGAroC	$EPXDLCO3 + HO_2 \rightarrow EPXDLCO2H + O_3$	KAPHO2*rco3_o3	Rickard and Pascoe (2009)
G44417c	TrGAroC	$EPXDLCO3 + HO_2 \rightarrow EPXDLCO3H$	KAPHO2*rco3_ooh	Rickard and Pascoe (2009)
G44418	TrGAroCN	$EPXDLCO3 + NO \rightarrow C3DIALO2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G44419	TrGAroCN	$EPXDLCO3 + NO_2 \rightarrow EPXDLPAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G44420	TrGAroCN	$EPXDLCO3 + NO_3 \rightarrow C3DIALO2 + CO_2 + NO_2$	KRO2NO3*1.74	Rickard and Pascoe (2009)
G44421	TrGAroC	$EPXDLCO3 \rightarrow C3DIALO2 + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)*
G44422	TrGAroC	$MALNHYOHCO + OH \rightarrow CO + CO + CO + CO_2 + HO_2$	5.68E-12	Rickard and Pascoe (2009)
G44423	TrGAroCN	$MALDIAL + NO_3 \rightarrow MALDIALCO3 + HNO_3$	2*KNO3AL*2.0	Rickard and Pascoe (2009)
G44424	TrGAroC	$\begin{array}{l} {\rm MALDIAL} + {\rm O_3} \rightarrow 1.0675 \; {\rm GLYOX} + .125 \; {\rm HCHO} + .1125 \\ {\rm HCOCO_2H} + .0675 \; {\rm H_2O_2} + .82 \; {\rm HO_2} + .57 \; {\rm OH} + 1.265 \\ {\rm CO} + .25 \; {\rm CO_2} \end{array}$	2.00E-18	Rickard and Pascoe (2009)*
G44425	TrGAroC	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.20E-11	Rickard and Pascoe (2009)*
G44426	TrGAroC	$MALANHYOOH + OH \rightarrow MALNHYOHCO + OH$	4.66E-11	Rickard and Pascoe (2009)
G44427	TrGAroCN	$MALDIALPAN + OH \rightarrow GLYOX + CO + CO + NO_2$	3.70E-11	Rickard and Pascoe (2009)
G44428	TrGAroCN	$MALDIALPAN \rightarrow MALDIALCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G44429a	TrGAroC	${\rm MALANHYO2 + HO_2 \rightarrow MALANHYOOH}$	<pre>KR02H02(4)*(1-rcoch2o2_ oh-rchohch2o2_oh)</pre>	Rickard and Pascoe (2009), Sander et al. (2018)
G44429b	TrGAroC	$\mathrm{MALANHYO2} + \mathrm{HO}_2 \rightarrow \mathrm{HCOCOHCO3} + \mathrm{CO}_2 + \mathrm{OH}$	<pre>KRO2HO2(4)*(rcoch2o2_oh+ rchohch2o2_oh)</pre>	Rickard and Pascoe (2009), Sander et al. (2018)
G44430	TrGAroCN	$MALANHYO2 + NO \rightarrow HCOCOHCO3 + CO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G44431	TrGAroCN	$MALANHYO2 + NO_3 \rightarrow HCOCOHCO3 + CO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G44432	TrGAroC	$\mathrm{MALANHYO2} \rightarrow \mathrm{HCOCOHCO3} + \mathrm{CO}_2$	k1_R02s0R02	Rickard and Pascoe (2009)*
G44433	TrGAroC	$EPXDLCO3H + OH \rightarrow EPXDLCO3$	2.62E-11	Rickard and Pascoe (2009)
G44434	TrGAroC	$CO2C4DIAL + OH \rightarrow CO + CO + CO + CO + HO_2$	2.45E-11	Rickard and Pascoe (2009)
G44435a	TrGAroCN	$NBZFUO2 + HO_2 \rightarrow NBZFUOOH$	KRO2HO2(4)*(1-rcoch2o2_oh)	Rickard and Pascoe (2009), Sander et al. (2018)
G44435b	TrGAroCN	NBZFUO2 + HO ₂ \rightarrow .5 CO14O3CHO + .5 NO ₂ + .5 NBZFUONE + .5 HO ₂ + OH	KR02H02(4)*rcoch2o2_oh	Rickard and Pascoe (2009), Sander et al. (2018)
G44436	TrGAroCN	NBZFUO2 + NO \rightarrow .5 CO14O3CHO + .5 NO ₂ + .5 NBZFUONE + .5 HO ₂ + NO ₂	KRO2NO	Rickard and Pascoe (2009)*
G44437	TrGAroCN	NBZFUO2 + NO $_3 \rightarrow .5$ CO14O3CHO + $.5$ NO $_2$ + $.5$ NBZFUONE + $.5$ HO $_2$ + NO $_2$	KR02N03	Rickard and Pascoe (2009)*
G44438	$\operatorname{TrGAroCN}$	NBZFUO2 \rightarrow .5 CO14O3CHO + .5 NO ₂ + .5 NBZFUONE + .5 HO ₂	k1_R02s0R02	Rickard and Pascoe (2009)*
G44439	TrGAroC	$\begin{array}{l} \text{MALDALCO2H} + \text{OH} \rightarrow .6 \text{ MALANHY} + \text{HO}_2 + .4 \\ \text{GLYOX} + .4 \text{ CO} + .4 \text{ CO}_2 \end{array}$	3.70E-11	Rickard and Pascoe (2009)*
G44440	${\rm TrGAroCN}$	$EPXC4DIAL + NO_3 \rightarrow EPXDLCO3 + HNO_3$	2*KNO3AL*4.0	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G44441	TrGAroC	$EPXC4DIAL + OH \rightarrow EPXDLCO3$	4.32E-11	Rickard and Pascoe (2009)
G44442a	TrGAroC	$\mbox{MECOACETO2} + \mbox{HO}_2 \rightarrow \mbox{MECOACEOOH}$	KRO2HO2(4)*(1-rcoch2o2_oh)	Rickard and Pascoe (2009), Sander et al. (2018)
G44442b	TrGAroC	$ \begin{array}{l} \text{MECOACETO2} + \text{HO}_2 \rightarrow \text{CH}_3\text{C(O)OO} + \text{HCHO} + \text{CO}_2 \\ + \text{OH} \end{array} $	KR02H02(4)*rcoch2o2_oh	Rickard and Pascoe (2009), Sander et al. (2018)
G44443	TrGAroCN	$ \begin{array}{l} \text{MECOACETO2} + \text{NO} \rightarrow \text{CH}_3\text{C(O)OO} + \text{HCHO} + \text{CO}_2 \\ + \text{NO}_2 \end{array} $	KRO2NO	Rickard and Pascoe (2009)*
G44444	TrGAroCN	$ \begin{array}{l} \text{MECOACETO2} + \text{NO}_3 \rightarrow \text{CH}_3\text{C(O)OO} + \text{HCHO} + \text{CO}_2 \\ + \text{NO}_2 \end{array} $	KR02N03	Rickard and Pascoe (2009)*
G44445	TrGAroC	$MECOACETO2 \rightarrow CH_3C(O)OO + HCHO + CO_2$	k1_R02p0R02	Rickard and Pascoe (2009)*
G44446	TrGAroCN	$\mathrm{CO14O3CHO} + \mathrm{NO_3} \rightarrow \mathrm{CO} + \mathrm{HCOCH_2O_2} + \mathrm{CO_2} + \mathrm{HNO_3}$	KNO3AL*8.0	Rickard and Pascoe (2009)
G44447	TrGAroC	$CO14O3CHO + OH \rightarrow CO + HCOCH_2O_2 + CO_2$	3.44E-11	Rickard and Pascoe (2009)
G44448	TrGAroCN	$NBZFUONE + OH \rightarrow BZFUCO + NO_2$	1.16E-12	Rickard and Pascoe (2009)
G44449a	TrGAroC	$BZFUO2 + HO_2 \rightarrow BZFUOOH$	<pre>KR02H02(4)*(1-rcoch2o2_ oh-rchohch2o2_oh)</pre>	Rickard and Pascoe (2009), Sander et al. (2018)
G44449b	TrGAroC	$BZFUO2 + HO_2 \rightarrow CO14O3CHO + HO_2 + OH$	<pre>KR02H02(4)*(rcoch2o2_oh+ rchohch2o2_oh)</pre>	Rickard and Pascoe (2009), Sander et al. (2018)
G44450	TrGAroCN	$BZFUO2 + NO \rightarrow CO14O3CHO + HO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G44451	TrGAroCN	$BZFUO2 + NO_3 \rightarrow CO14O3CHO + HO_2 + NO_2$	KRO2NO3	Rickard and Pascoe (2009)*
G44452	TrGAroC	$BZFUO2 \rightarrow CO14O3CHO + HO_2$	k1_R02s0R02	Rickard and Pascoe (2009)*
G44453	TrGAroC	$BZFUCO + OH \rightarrow CO14O3CHO + HO_2$	1.78E-11	Rickard and Pascoe (2009)
G44456a	TrGAroC	$\mathrm{MALDIALO2} + \mathrm{HO_2} \rightarrow \mathrm{MALDIALOOH}$	<pre>KRO2HO2(4)*(1-rcoch2o2_ oh-rchohch2o2_oh)</pre>	Rickard and Pascoe (2009)
G44456b	TrGAroC	$MALDIALO2 + HO_2 \rightarrow GLYOX + GLYOX + HO_2 + OH$	<pre>KR02H02(4)*(rcoch2o2_oh+ rchohch2o2_oh)</pre>	Rickard and Pascoe (2009)
G44457	TrGAroCN	$MALDIALO2 + NO \rightarrow GLYOX + GLYOX + HO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G44458	TrGAroCN	$\begin{array}{l} \text{MALDIALO2} + \text{NO}_3 \rightarrow \text{GLYOX} + \text{GLYOX} + \text{HO}_2 + \\ \text{NO}_2 \end{array}$	KR02N03	Rickard and Pascoe (2009)*
G44459	TrGAroC	$\mathrm{MALDIALO2} \rightarrow \mathrm{GLYOX} + \mathrm{GLYOX} + \mathrm{HO}_2$	k1_R02s0R02	Rickard and Pascoe (2009)*
G44460	TrGAroCN	$EPXDLPAN + OH \rightarrow HCOCOCHO + CO + NO_2$	2.29E-11	Rickard and Pascoe (2009)
G44461	TrGAroCN	$EPXDLPAN \rightarrow EPXDLCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)*
G44462	TrGAroC	$MECOACEOOH + OH \rightarrow MECOACETO2$	3.59E-12	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45000	TrGC	$C_5H_8 + O_3 \rightarrow .3508 \text{ MACR} + .01518 \text{ MACO2H} + .2440$ $MVK + .7085 \text{ HCHO} + .11 \text{ CH}_2\text{OO} + .1275 \text{ C}_3\text{H}_6 + .1575$ $CH_3C(O) + .0510 \text{ CH}_3 + .2625 \text{ HO}_2 + .27 \text{ OH} + .09482$ $H_2O_2 + .255 \text{ CO}_2 + .522 \text{ CO} + .07182 \text{ HCHO} + .03618$ $HCOCH_2O_2 + .01782 \text{ CO} + 0.05408 \text{ LCARBON}$	1.03E-14*EXP(-1995./temp)	Atkinson et al. (2006), Sander et al. (2018)
G45001	TrGC	$C_5H_8 + OH \rightarrow .63 \text{ LISOPAB} + .30 \text{ LISOPCD} + .07 \text{ LISOPEFO2}$	2.7E-11*EXP(390./temp)	Atkinson et al. (2006), Sander et al. (2018)
G45002	TrGCN	$C_5H_8 + NO_3 \rightarrow NISOPO2$	3.0E-12*EXP(-450./temp)	Atkinson et al. (2006)
G45003a	TrGC	$LISOPAB + O_2 \rightarrow LISOPACO2$	5.530E-13	Sander et al. (2018)
G45003b	TrGC	$LISOPAB + O_2 \rightarrow ISOPBO2$	3.E-12	Sander et al. (2018)
G45004a	TrGC	$LISOPCD + O_2 \rightarrow LDISOPACO2$	6.780E-13	Sander et al. (2018)
G45004b	TrGC	$LISOPCD + O_2 \rightarrow ISOPDO2$	3.E-12	Sander et al. (2018)
G45005	TrGC	$LISOPACO2 \rightarrow LISOPAB + O_2$	3.1E12*exp(-7900./temp)*.6+ 7.8E13*exp(-8600./temp)*.4	Sander et al. (2018)
G45006	TrGC	$ISOPBO2 \rightarrow LISOPAB + O_2$	3.7E14*exp(-9570./temp) +4.2E14*exp(-9970./temp)	Sander et al. (2018)
G45007	TrGC	$LDISOPACO2 \rightarrow LISOPCD + O_2$	5.65E12*exp(-8410./temp) *.42+1.4E14*exp(-9110./temp)*.58	Sander et al. (2018)
G45008	TrGC	$ISOPDO2 \rightarrow LISOPCD + O_2$	5.0E14*exp(-10120./temp) +8.25E14*exp(-10220/temp)	Sander et al. (2018)
G45009a	TrGC	$LISOPACO2 \rightarrow C1ODC2O2C4OOH$	K16HSZ14 * 2./3.*(1-fhpal)	Sander et al. (2018)
G45009b	TrGC	$LISOPACO2 \rightarrow LZCODC23DBCOOH + HO_2$	K16HSZ14 * (2./3.*fhpal + 1./3.)	Sander et al. (2018)
G45010a	TrGC	$LDISOPACO2 \rightarrow C1OOHC3O2C4OD$	k16HSZ41 * 2./3.*(1-fhpal)	Sander et al. (2018)
G45010b	TrGC	$LDISOPACO2 \rightarrow LZCODC23DBCOOH + HO_2$	k16HSZ41 * (2./3.*fhpal + 1./3.)	Sander et al. (2018)
G45011	TrGC	$LISOPACO2 \rightarrow .9 \ LISOPACO + .1 \ ISOPAOH$	k1_RO2LISOPACO2	Rickard and Pascoe (2009), Sander et al. (2018)
G45012	TrGC	$LISOPACO2 + HO_2 \rightarrow LISOPACOOH$	KRO2HO2(5)	Rickard and Pascoe (2009)
G45013a	TrGCN	$LISOPACO2 + NO \rightarrow LISOPACO + NO_2$	<pre>KRO2NO*(1alpha_AN(6,1,0,0,0, temp,cair))</pre>	Lockwood et al. (2010), Paulot et al. (2009a), Sander et al. (2018)
G45013b	TrGCN	${\rm LISOPACO2} + {\rm NO} \rightarrow {\rm LISOPACNO3}$	<pre>KRO2NO*alpha_AN(6,1,0,0,0,temp, cair)</pre>	Lockwood et al. (2010), Paulot et al. (2009a), Sander et al. (2018)
G45014	TrGCN	$LISOPACO2 + NO_3 \rightarrow LISOPACO + NO_2$	KRO2NO3	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45015	TrGC	$LDISOPACO2 \rightarrow .9 LISOPACO + .1 ISOPAOH$	k1_RO2LISOPACO2	Rickard and Pascoe (2009),
				Sander et al. (2018)
G45016	TrGC	$LDISOPACO2 + HO_2 \rightarrow LISOPACOOH$	KRO2HO2(5)	Rickard and Pascoe (2009)
G45017a	TrGCN	$LDISOPACO2 + NO \rightarrow LISOPACO + NO_2$	<pre>KRO2NO*(1alpha_AN(6,1,0,0,0,</pre>	Lockwood et al. (2010), Paulot
			temp,cair))	et al. (2009a), Sander et al.
				(2018)
G45017b	TrGCN	$LDISOPACO2 + NO \rightarrow LISOPACNO3$	$KRO2NO*alpha_AN(6,1,0,0,0,temp,$	Lockwood et al. (2010), Paulot
			cair)	et al. (2009a), Sander et al.
				(2018)
G45018	TrGCN	$LDISOPACO2 + NO_3 \rightarrow LISOPACO + NO_2$	KR02N03	Rickard and Pascoe (2009)
G45019a	TrGC	$LISOPACOOH + OH \rightarrow LISOPACO2$	k_roohro	Sander et al. (2018)
G45019b	TrGC	$LISOPACOOH + OH \rightarrow LZCODC23DBCOOH + HO_2$	k_s*f_allyl*f_soh	Sander et al. (2018)
G45019c	TrGC	$LISOPACOOH + OH \rightarrow LHC4ACCHO + OH$	(k_s*f_sooh*f_allyl+ k_rohro)	Sander et al. (2018)
G45019d	TrGC	$LISOPACOOH + OH \rightarrow LIEPOX + OH$	(k_adt+k_ads)*a_ch2oh*a_ch2ooh	Sander et al. (2018)*
G45020	TrGC	$ISOPAOH + OH \rightarrow LHC4ACCHO + HO_2$	(k_adt+k_ads)*a_ch2oh*a_ch2oh+k_	Sander et al. (2018)
			s*f_soh*f_allyl+k_rohro	
G45021	TrGCN	$LISOPACNO3 + OH \rightarrow LISOPACNO3O2$	(k_adt+k_ads)*a_ch2ono2*a_ch2oh	Sander et al. (2018)*
G45022	TrGC	$ISOPBO2 \rightarrow .8 \text{ MVK} + .8 \text{ HCHO} + .8 \text{ HO}_2 + .2 \text{ ISOPBOH}$	k1_RO2ISOPBO2	Rickard and Pascoe (2009)
G45023a	TrGC	$ISOPBO2 + HO_2 \rightarrow ISOPBOOH$	KRO2HO2(5)*(1rchohch2o2_oh)	Sander et al. (2018)
G45023b	TrGC	$ISOPBO2 + HO_2 \rightarrow MVK + HCHO + HO_2 + OH$	KRO2HO2(5)*rchohch2o2_oh	Sander et al. (2018)
G45024a	TrGCN	$ISOPBO2 + NO \rightarrow MVK + HCHO + HO_2 + NO_2$	KRO2NO*(1alpha_AN(6,3,0,0,0,	Lockwood et al. (2010), Sander
	0,00		temp,cair))	et al. (2018)
G45024b	TrGCN	$ISOPBO2 + NO \rightarrow ISOPBNO3$	<pre>KR02N0*alpha_AN(6,3,0,0,0,temp,</pre>	Lockwood et al. (2010), Sander
			cair)	et al. (2018)
G45025	TrGCN	$ISOPBO2 + NO_3 \rightarrow MVK + .75 HCHO + .75 HO_2 + .25$	KRO2NO3	Rickard and Pascoe (2009)
	_ 0.0	$CH_3 + NO_2$		- ()
G45026a	TrGC	$ISOPBOOH + OH \rightarrow LIEPOX + OH$	(k_ads+k_adp)*a_ch2ooh	Paulot et al. (2009b), Sander
	- aa	TOODDOON ON TOODDOO		et al. (2018)
G45026b	TrGC	$ISOPBOOH + OH \rightarrow ISOPBO2$	k_roohro	Sander et al. (2018)
G45026c	TrGC	$ISOPBOOH + OH \rightarrow MGLYOX + HOCH_2CHO$	k_rohro+k_s*f_alk*f_soh	Sander et al. (2018)
G45027	TrGC	ISOPBOOH + $O_3 \rightarrow .1368 \text{ MACROOH} + .1368 \text{ H}_2\text{O}_2 +$	1.E-17	Sander et al. (2018)
		$.2280 \text{ HO}_2 + .4332 \text{ CH}_3 \text{COCH}_2 \text{OH} + .2280 \text{ CO}_2 + .6384$		
		OH + .2052 CO + .57 HCHO + .43 MACROOH + .06880		
		$HO_2 + .06880 \text{ OH} + .2709 \text{ CO} + .1591 \text{ CH}_2\text{OO}$		

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45028	TrGC	$\begin{array}{c} \text{ISOPBOH} + \text{OH} \rightarrow \text{MVK} + .75 \text{ HCHO} + .75 \text{ HO}_2 + .25 \\ \text{CH}_3 \end{array}$	k_s*f_alk*f_soh+(k_adp+k_ads) *a_ch2oh	Sander et al. (2018)
G45029	TrGCN	$ISOPBNO3 + OH \rightarrow ISOPBDNO3O2$	(k_adt+k_adp)*f_ch2ono2	Sander et al. (2018)
G45030	TrGC	$\begin{split} & \text{ISOPDO2} \rightarrow .8 \text{ MACR} + .8 \text{ HCHO} + .8 \text{ HO}_2 + .1 \text{ HCOC5} \\ & + .1 \text{ ISOPDOH} \end{split}$	k1_RO2ISOPDO2	Rickard and Pascoe (2009)
G45031a	TrGC	$ISOPDO2 + HO_2 \rightarrow ISOPDOOH$	<pre>KRO2HO2(5)*(1rchohch2o2_oh)</pre>	Sander et al. (2018)
G45031b	TrGC	$ISOPDO2 + HO_2 \rightarrow MACR + HCHO + HO_2 + OH$	KRO2HO2(5)*rchohch2o2_oh	Sander et al. (2018)
G45032a	TrGCN	$ISOPDO2 + NO \rightarrow MACR + HCHO + HO_2 + NO_2$	<pre>KRO2NO*(1alpha_AN(6,2,0,0,0, temp,cair))</pre>	Lockwood et al. (2010), Sander et al. (2018)
G45032b	TrGCN	$ISOPDO2 + NO \rightarrow ISOPDNO3$	<pre>KRO2NO*alpha_AN(6,2,0,0,0,temp, cair)</pre>	Lockwood et al. (2010), Sander et al. (2018)
G45033	TrGCN	$ISOPDO2 + NO_3 \rightarrow MACR + HCHO + HO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)
G45034a	TrGC	$ISOPDOOH + OH \rightarrow LIEPOX + OH$	(k_adt+k_adp)*a_ch2ooh	Paulot et al. (2009b), Sander et al. (2018)
G45034b	TrGC	$\mathrm{ISOPDOOH} + \mathrm{OH} \rightarrow \mathrm{ISOPDO2}$	k_roohro	Sander et al. (2018)
G45034c	TrGC	$ISOPDOOH + OH \rightarrow HCOC5 + OH$	k_t*f_tooh*f_allyl*f_pch2oh	Sander et al. (2018)
G45034d	TrGC	$ISOPDOOH + OH \rightarrow CH_3COCH_2OH + GLYOX + OH$	k_s*f_pch2oh*f_soh	Sander et al. (2018)
G45035	TrGC	ISOPDOOH + $O_3 \rightarrow 1.393$ OH + BIACETOH + .67 HCHO + .05280 HO ₂ + .2079 CO + .1221 CH ₂ OO	1.E-17	Sander et al. (2018)
G45036	TrGC	ISOPDOH + OH \rightarrow HCOC5 + HO ₂	2.*k_rohro+(k_t*f_toh*f_allyl+k_ s*f_soh)*f_pch2oh+(k_adt+k_adp) *a_ch2oh	Sander et al. (2018)
G45037	TrGCN	$ISOPDNO3 + OH \rightarrow ISOPBDNO3O2$	(k_adp+k_ads)*a_ch2ono2	Sander et al. (2018)*
G45038	TrGCN	$\mbox{NISOPO2} \rightarrow .8 \ \mbox{NC4CHO} + .6 \ \mbox{HO}_2 + .2 \ \mbox{LISOPACNO3}$	k1_RO2LISOPACO2	Rickard and Pascoe (2009)
G45039	TrGCN	$NISOPO2 + HO_2 \rightarrow NISOPOOH$	KRO2HO2(5)	Rickard and Pascoe (2009)
G45040	TrGCN	$NISOPO2 + NO \rightarrow NC4CHO + HO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G45041	TrGCN	$NISOPO2 + NO_3 \rightarrow NC4CHO + HO_2 + NO_2$	KRO2NO3	Rickard and Pascoe (2009)
G45042	TrGCN	$NISOPOOH + OH \rightarrow NC4CHO + OH$	1.03E-10	Rickard and Pascoe (2009)
G45043	TrGCN	$NC4CHO + OH \rightarrow LNISO3$	(k_adt+k_ads)*a_cho*a_ch2ono2	Sander et al. $(2018)^*$
G45044	TrGCN	$\begin{array}{l} {\rm NC4CHO} + {\rm O_3} \rightarrow .27 \ {\rm NOA} + .027 \ {\rm HCOCO_2H} + .0162 \\ {\rm GLYOX} + .0162 \ {\rm H_2O_2} + .1458 \ {\rm HCOCO} + .0405 \ {\rm HCOOH} \\ + .0405 \ {\rm CO} + .8758 \ {\rm OH} + .365 \ {\rm MGLYOX} + .73 \ {\rm NO_2} + \\ 0.7705 \ {\rm HCHO} + .4055 \ {\rm CO_2} + .73 \ {\rm GLYOX} \end{array}$	2.40E-17	Sander et al. (2018)
G45045	TrGCN	$NC4CHO + NO_3 \rightarrow LNISO3 + HNO_3$	KNO3AL*4.25	Rickard and Pascoe (2009)
G45046	TrGCN	$LNISO3 + HO_2 \rightarrow LNISOOH$	0.5*KRO2HO2(5)+0.5*KAPHO2	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45047	TrGCN	LNISO3 + NO \rightarrow NOA + .5 HOCHCHO + .5 CO + .5	0.5*KAPN0+0.5*KR02N0	Rickard and Pascoe (2009)*
		$\mathrm{HO_2} + \mathrm{NO_2} + .5 \mathrm{CO_2}$		
G45048	TrGCN	$LNISO3 + NO_3 \rightarrow NOA + .5 HOCHCHO + .5 CO + .5$	KR02N03*1.37	Rickard and Pascoe (2009)
		$\mathrm{HO_2} + \mathrm{NO_2} + .5 \mathrm{CO_2}$		
G45049	TrGCN	$LNISOOH + OH \rightarrow LNISO3$	2.65E-11	Rickard and Pascoe (2009)
G45050a	TrGC	$LHC4ACCHO + OH \rightarrow LC578O2$	<pre>(k_adtertprim+k_ads)*a_cho*a_ ch2oh</pre>	Sander et al. (2018)
G45050b	TrGC	$LHC4ACCHO + OH \rightarrow LHC4ACCO3$	k_t*f_o	Sander et al. (2018)
G45050c	TrGC	$LHC4ACCHO + OH \rightarrow C4MDIAL + HO_2$	k_s*f_soh*f_allyl	Sander et al. (2018)
G45051	TrGC	LHC4ACCHO + $O_3 \rightarrow .2225$ CH ₃ C(O) + .89 CO + .0171875 HOCH ₂ CO ₂ H + .075625 H ₂ O ₂ + .0171875 HCOCO ₂ H + .2775 CH ₃ COCH ₂ OH + .6675 HO ₂ + .2603125 GLYOX + .2225 HCHO + .89 OH + .2603125 HOCH ₂ CHO + .5 MGLYOX	2.40E-17	Rickard and Pascoe (2009)
G45052	TrGCN	$LHC4ACCHO + NO_3 \rightarrow LHC4ACCO3 + HNO_3$	KNO3AL*4.25	Rickard and Pascoe (2009)
G45053	TrGC	$LC578O2 \rightarrow .25 \text{ CH}_3\text{COCH}_2\text{OH} + .75 \text{ MGLYOX} + .25$ $HOCHCHO + .75 \text{ HOCH}_2\text{CHO} + .75 \text{ HO}_2$	k1_R02t0R02	Rickard and Pascoe (2009)
G45054a	TrGC	$LC578O2 + HO_2 \rightarrow MGLYOX + HOCH_2CHO + OH$	KRO2HO2(5)*rcoch2o2_oh	Rickard and Pascoe (2009)
G45054b	TrGC	$LC578O2 + HO_2 \rightarrow LC578OOH$	KRO2HO2(5)*rcoch2o2_ooh	Rickard and Pascoe (2009)
G45055	TrGCN	$ \begin{array}{l} {\rm LC578O2+NO} \rightarrow .25~{\rm CH_3COCH_2OH} + .75~{\rm MGLYOX} + \\ .25~{\rm HOCHCHO} + .75~{\rm HOCH_2CHO} + .75~{\rm HO_2} + {\rm NO_2} \end{array} $	KRO2NO	Rickard and Pascoe (2009)*
G45056	TrGCN	$LC578O2 + NO_3 \rightarrow .25 CH_3COCH_2OH + .75 MGLYOX + .25 HOCHCHO + .75 HOCH_2CHO + .75 HO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)
G45057	TrGC	$LC578O2 \rightarrow .25 CH_3COCH_2OH + .75 MGLYOX + .25 HOCH_2CHO + .75 HOCH_2CHO + HO_2 + OH$	KHSB	Sander et al. (2018)
G45058a	TrGC	$LC578OOH + OH \rightarrow LC578O2$	k_roohro	Sander et al. (2018)
G45058b	TrGC	$LC578OOH + OH \rightarrow C1ODC2OOHC4OD + HO_2$	<pre>k_t*f_o*f_tch2oh*f_alk+k_t*f_ toh*f_pch2oh*f_pch2oh+k_s*f_ soh*f_pch2oh</pre>	Sander et al. (2018)
G45059a	TrGC	$ \begin{array}{l} LHC4ACCO3 \rightarrow OH + .5 \; MACRO2 + .5 \; LHMVKABO2 \\ + \; CO_2 \end{array} $	k1_R02RC03*0.9	Sander et al. (2018)
G45059b	TrGC	$LHC4ACCO3 \rightarrow LHC4ACCO2H$	k1_R02RC03*0.1	Sander et al. (2018)
G45060a	TrGC	LHC4ACCO3 + HO $_2 \rightarrow 2$ OH + .5 MACRO2 + .5 LHMVKABO2 + CO $_2$	KAPHO2*rco3_oh	Sander et al. (2018)
G45060b	TrGC	$LHC4ACCO3 + HO_2 \rightarrow LHC4ACCO3H$	KAPHO2*rco3_ooh	Sander et al. (2018)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45060c	TrGC	$LHC4ACCO3 + HO_2 \rightarrow LHC4ACCO2H + O_3$	KAPH02*rco3_o3	Sander et al. (2018)
G45061	TrGCN	$ \begin{array}{l} \text{LHC4ACCO3} + \text{NO} \rightarrow .5 \text{ MACRO2} + .5 \text{ LHMVKABO2} \\ + \text{NO}_2 + \text{CO}_2 \end{array} $	KAPNO	Sander et al. (2018)
G45062	TrGCN	$LHC4ACCO3 + NO_2 \rightarrow LC5PAN1719$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G45063	TrGCN	$ \begin{array}{l} \text{LHC4ACCO3} + \text{NO}_3 \rightarrow .5 \text{ MACRO2} + .5 \text{ LHMVKABO2} \\ + \text{NO}_2 + \text{CO}_2 \end{array} $	KR02N03*1.74	Sander et al. (2018)
G45064a	TrGC	LHC4ACCO2H + OH \rightarrow OH + .5 MACRO2 + .5 LHMVKABO2 + CO ₂	2.52E-11	Sander et al. (2018)
G45064b	TrGC	$LHC4ACCO3H + OH \rightarrow LHC4ACCO3$	2.88E-11	Rickard and Pascoe (2009)
G45065	TrGCN	$LC5PAN1719 \rightarrow LHC4ACCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G45066	TrGCN	LC5PAN1719 + OH \rightarrow .5 MACROH + .5 HO12CO3C4 + CO + NO ₂	2.52E-11	Rickard and Pascoe (2009)
G45067	TrGC	$HCOC5 + OH \rightarrow C59O2$	3.81E-11	Rickard and Pascoe (2009)
G45068	TrGC	$\text{HCOC5} + \text{O}_3 \rightarrow \text{BIACETOH} + .335 \text{ H}_2\text{O}_2 + .67 \text{ HCHO} + .2079 \text{ CO} + .1221 \text{ CH}_2\text{OO} + .05280 \text{ OH}$	7.51E-16*EXP(-1521./temp)	Sander et al. (2018)
G45069	TrGC	$C59O2 \rightarrow CH_3COCH_2OH + HOCH2CO$	k1_R02t0R02	Sander et al. (2018)
G45070a	TrGC	$C59O2 + HO_2 \rightarrow OH + CH_3COCH_2OH + HOCH2CO$	KRO2HO2(5)*rcoch2o2_oh	Sander et al. (2018)
G45070b	TrGC	$C59O2 + HO_2 \rightarrow C59OOH$	KRO2HO2(5)*rcoch2o2_ooh	Sander et al. (2018)
G45071	TrGCN	$C59O2 + NO \rightarrow CH_3COCH_2OH + HOCH2CO + NO_2$	KRO2NO	Sander et al. $(2018)^*$
G45072	TrGCN	$C59O2 + NO_3 \rightarrow CH_3COCH_2OH + HOCH2CO + NO_2$	KRO2NO3	Sander et al. (2018)
G45073	TrGC	$C59OOH + OH \rightarrow C59O2$	9.7E-12	Rickard and Pascoe (2009)
G45074	TrGC	$LIEPOX + OH \rightarrow DB1O2 + H_2O$	5.78E-11*EXP(-400./temp) *(1.52/3.+0.98*2./3.)/1.51	Paulot et al. (2009b), Bates et al. (2014), Sander et al. (2018)*
G45075	TrGC	$ISOPBO2 \rightarrow MVK + HCHO + OH$	KHSB	Sander et al. (2018)
G45076	TrGC	$ISOPDO2 \rightarrow MACR + HCHO + OH$	KHSD	Sander et al. (2018)
G45077a	TrGC	LZCODC23DBCOOH + OH \rightarrow .6 C1ODC2O2C4OOH + .4 C1OOHC2O2C4OD	k_adt*a_cho*a_ch2ooh	Sander et al. (2018)
G45077b	TrGC	LZCODC23DBCOOH + OH \rightarrow .6 C1ODC3O2C4OOH + .4 C1OOHC3O2C4OD	k_ads*a_cho*a_ch2ooh	Sander et al. (2018)
G45077c	TrGC	$LZCODC23DBCOOH + OH \rightarrow LZCO3HC23DBCOD$	k_t*f_o*f_alk+k_roohro	Sander et al. (2018)
G45077d	TrGC	$LZCODC23DBCOOH + OH \rightarrow C4MDIAL + OH$	k_s*f_sooh*f_allyl	Sander et al. (2018)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45078	TrGC	$\begin{array}{c} {\rm LZCODC23DBCOOH} \ + \ O_3 \ \rightarrow \ .4672 \ {\rm OH} \ + \ .2336 \\ {\rm HCOCOCH_2O_2} \ + \ .2336 \ {\rm CO} \ + \ .2336 \ {\rm CH_3C(O)} \ + \ .4672 \\ {\rm HOOCH2CHO} \ + \ .1728 \ {\rm MGLYOX} \ + \ .1901 \ {\rm OH} \ + \ .0864 \\ {\rm GLYOX} \ + \ .02765 \ {\rm HOOCH2CHO} \ + \ .02765 \ {\rm H_2O_2} \ + \ .02592 \\ {\rm CH_3OOH} \ + \ .02592 \ {\rm CO_2} \ + \ .01037 \ {\rm HCOCO} \ + \ .01555 \\ {\rm CH_2OO} \ + \ .01555 \ {\rm CO} \ + \ .006908 \ {\rm HOOCH_2CO_3} \ + \ .2628 \ {\rm OH} \\ {\rm + \ .1314 \ MGLYOX} \ + \ .1314 \ {\rm OH} \ + \ .1314 \ {\rm HCOCOCH_2OOH} \\ {\rm + \ .2628 \ GLYOX} \ + \ .0972 \ {\rm CH_3COCH_2O_2H} \ + \ .00972 \\ {\rm HCOCO_2H} \ + \ .005832 \ {\rm GLYOX} \ + \ .005832 \ {\rm H_2O_2} \ + \ .05249 \\ {\rm OH} \ + \ .05249 \ {\rm HCOCO} \ + \ .01458 \ {\rm HCHO} \ + \ .01458 \ {\rm CO_2} \ + \ .01458 \ {\rm HCOOH} \ + \ .01458 \ {\rm CO_2} \ + \ .01458 \ {\rm HCOOH} \ + \ .01458 \ {\rm CO_2} \ + \ .01458 \ {\rm HCOOH} \ + \ .01458 \ {\rm CO_2} \ + \ .01458 \ {\rm HCOOH} \ + \ .01458 \ {\rm CO_2} \ + \ .01458 \ {\rm HCOOH} \ + \ .01458 \ {\rm CO_2} \ + \ .01458 \ {\rm HCOOH} \ + \ .01458 \ {\rm CO_2} \ + \ .01458 \ {\rm HCOOH} \$	2.4E-17	Sander et al. (2018)
G45079	TrGC	$C1OOHC2O2C4OD \rightarrow .78 CH_3COCH_2O_2H + .78$ HOCHCHO + .22 CO2H3CHO + .22 HCHO + .22 OH	k1_R02t0R02	Sander et al. (2018)
G45080	TrGCN	C1OOHC2O2C4OD + NO \rightarrow .78 CH ₃ COCH ₂ O ₂ H + .78 HOCHCHO + .22 CO2H3CHO + .22 HCHO + .22 OH + NO ₂	KRO2NO	Sander et al. (2018)*
G45081a	TrGC	$C1OOHC2O2C4OD + HO_2 \rightarrow C1OOHC2OOHC4OD$	KRO2HO2(5)*rcoch2o2_ooh	Sander et al. (2018)
G45081b	TrGC	${ m C1OOHC2O2C4OD + HO_2 \rightarrow .78~CH_3COCH_2O_2H + .78} \ { m HOCHCHO} + .22~{ m CO2H3CHO} + .22~{ m HCHO} + 1.22~{ m OH}$	KRO2HO2(5)*rcoch2o2_oh	Sander et al. (2018)
G45082	TrGC	$C1OOHC2O2C4OD \rightarrow CH_3COCH_2O_2H + GLYOX + OH$	KHSB	Sander et al. (2018)
G45083	TrGC	$C1ODC2O2C4OOH \rightarrow OH + C1ODC2OOHC4OD$	K15HSDHB	Sander et al. (2018)
G45084a	TrGC	C1OOHC2OOHC4OD + OH \rightarrow C1ODC2OOHC4OD + OH	2.*k_s*f_sooh*f_tch2oh	Sander et al. (2018)
G45084b	TrGC	C1OOHC2OOHC4OD + OH \rightarrow CH ₃ COCH ₂ O ₂ H + 2 CO + 2 HO ₂ + OH	k_t*f_toh*f_pch2oh*f_pch2oh	Sander et al. (2018)
G45084c	TrGC	$C1OOHC2OOHC4OD + OH \rightarrow C1OOHC2O2C4OD$	k_roohro	Sander et al. (2018)
G45085	TrGC	$C1ODC2OOHC4OD + OH \rightarrow CO2H3CHO + CO + H_2O + OH$	k_t*f_o*f_tch2oh+k_t*f_toh*f_ toh*f_cho	Sander et al. (2018)
G45086	TrGC	C1ODC3O2C4OOH \rightarrow MGLYOX + HOOCH2CHO + HO ₂	k1_R02s0R02	Sander et al. (2018)
G45087	TrGCN	C1ODC3O2C4OOH + NO \rightarrow MGLYOX + HOOCH2CHO + HO ₂ + NO ₂	KRO2NO	Sander et al. (2018)
G45088	TrGC	C1ODC3O2C4OOH + $HO_2 \rightarrow .5 CH_3C(O) + .5 CO + .5$ MGLYOX + $.5 HO_2 + HOOCH_2CO_3$	KRO2HO2(5)	Sander et al. (2018)
G45089	TrGC	$C1ODC3O2C4OOH \rightarrow MGLYOX + OH + HOOCH2CHO$	KHSD	Sander et al. (2018)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45090	TrGC	$C1OOHC3O2C4OD \rightarrow .625 MGLYOX + 2 CO + 1.625$	K15HSDHB	Sander et al. (2018)
		$HO_2 + .375 CH_3C(O) + .375 CO_2 + OH$		
G45091	TrGC	$LHC4ACCO3 \rightarrow LZCO3HC23DBCOD + HO_2$	K16HS	Sander et al. (2018)
G45092a	TrGC	$C4MDIAL + OH \rightarrow C1ODC2O2C4OD$	(k_adt+k_ads)*a_cho*a_cho	Sander et al. $(2018)^*$
G45092b	TrGC	$C4MDIAL + OH \rightarrow LZCO3C23DBCOD$	2*k_t*f_o*f_alk	Sander et al. $(2018)^*$
G45093	TrGCN	$C4MDIAL + NO_3 \rightarrow LZCO3C23DBCOD + HNO_3$	KNO3AL*4.25*2.	Sander et al. $(2018)^*$
G45094a	TrGC	C1ODC2O2C4OD + $\mathrm{HO_2} \rightarrow \mathrm{OH} + \mathrm{MGLYOX} + \mathrm{HOCHCHO}$	KRO2HO2(5)*rcoch2o2_oh	Sander et al. (2018)
G45094b	TrGC	$C1ODC2O2C4OD + HO_2 \rightarrow C1ODC2OOHC4OD$	KRO2HO2(5)*rcoch2o2_ooh	Sander et al. (2018)
G45095	TrGCN	C1ODC2O2C4OD + NO \rightarrow NO ₂ + MGLYOX + HOCHCHO	KRO2NO	Sander et al. $(2018)^*$
G45096	TrGC	$C1ODC2O2C4OD \rightarrow MGLYOX + HOCHCHO$	k1_R02t0R02	Sander et al. (2018)
G45097a	TrGC	$C1ODC2OOHC4OD + OH \rightarrow MGLYOX + 2 CO$	$(2.*k_t*f_o*f_tch2oh*f_alk+k_$	Sander et al. (2018)
			t*f_toh*f_cho*f_pch2oh)*.5	
G45097b	TrGC	$C1ODC2OOHC4OD + OH \rightarrow MGLYOX + 2 CO + OH$	(2.*k_t*f_o*f_tch2oh*f_alk+k_ t*f_toh*f_cho*f_pch2oh)*.5	Sander et al. (2018)
G45098	TrGCN	LISOPACNO3O2 + NO \rightarrow .21 NOA + .21 HOCH ₂ CHO + .21 HO ₂ + .49 HO12CO3C4 + .49 HCHO + .49 NO ₂ + .045 MVKNO3 + .045 HCHO + .255 CH ₃ COCH ₂ OH + .255 NO ₃ CH ₂ CHO + .225 H ₂ O ₂ + NO ₂	KRO2NO	Sander et al. (2018)*
G45099	TrGCN	LISOPACNO3O2 \rightarrow .21 NOA + .21 HOCH ₂ CHO + .21 HO ₂ + .49 HO12CO3C4 + .49 HCHO + .49 NO ₂ + .045 MVKNO3 + .045 HCHO + .255 CH ₃ COCH ₂ OH + .255 NO ₃ CH ₂ CHO + .225 H ₂ O ₂	k1_R02t0R02+KR02H02(5)*c(ind_ H02)	Sander et al. (2018)
G45100	TrGCN	ISOPBDNO3O2 + NO \rightarrow .6 CH ₃ COCH ₂ OH + .6 HOCH ₂ CHO + .26 MACRNO3 + .14 MVKNO3 + .4 HCHO + .4 HO ₂ + 1.6 NO ₂	KRO2NO	Sander et al. (2018)*
G45101	TrGCN	$\begin{split} & \text{ISOPBDNO3O2} \rightarrow .6 \text{ CH}_3\text{COCH}_2\text{OH} + .6 \text{ HOCH}_2\text{CHO} \\ & + .26 \text{ MACRNO3} + .14 \text{ MVKNO3} + .4 \text{ HCHO} + .4 \text{ HO}_2 \\ & + .6 \text{ NO}_2 \end{split}$	k1_R02s0R02+KR02H02(5)*c(ind_ H02)	Sander et al. (2018)
G45102	TrGCN	LISOPACNO3 + $O_3 \rightarrow .8704$ OH + $.365$ HO ₂ + $.73$ MGLYOX + $.4325$ NO ₃ CH2CHO + $.135$ CH ₃ COCH ₂ OH + $.0675$ GLYOX + $.4325$ NO ₂ + $.0891$ H ₂ O ₂ + $.135$ NOA + $.0675$ HOCHCHO + $.3866$ HOCH ₂ CHO + $.0405$ CH ₃ OH + $.0405$ CO + $.0054$ HOCH2CO	2.8E-17	Feierabend et al. (2008), Sander et al. (2018)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45103	TrGC	$DB1O2 \rightarrow DB1O2$	k1_R02s0R02	Sander et al. (2018)
G45104a	TrGC	$DB1O2 + HO_2 \rightarrow DB1OOH$	<pre>KR02H02(5)*(1rchohch2o2_oh)</pre>	Sander et al. $(2018)^*$
G45104b	TrGC	$DB1O2 + HO_2 \rightarrow DB1O2 + OH$	KRO2HO2(5)*rchohch2o2_oh	Sander et al. (2018)
G45105a	TrGCN	$DB1O2 + NO \rightarrow DB1O2 + NO_2$	$KRO2NO*(1alpha_AN(7,2,0,0,0,$	Sander et al. (2018)
			temp,cair))	
G45105b	TrGCN	$DB1O2 + NO \rightarrow DB1NO3$	$KRO2NO*alpha_AN(7,2,0,0,0,temp,$	Sander et al. (2018)
			cair)	
G45106	TrGCN	$DB1O2 + NO_3 \rightarrow DB1O2 + NO_2$	KRO2NO3	Sander et al. (2018)
G45107	TrGC	$DB1O2 \rightarrow DB1O2 + OH$	1.E4	Peeters and Nguyen (2012)*
G45108a	TrGC	$DB1O2 \rightarrow DB1O2$	KDEC*0.72	see note*
G45108b	TrGC	$DB1O2 \rightarrow .5 \text{ HVMK} + .5 \text{ HMAC} + \text{HCHO} + \text{HO}_2$	KDEC*0.28	see note*
G45109	TrGC	$DB1O2 \rightarrow .48 CH_3COCH_2OH + .52 HOCH_2CHO + .52$	k1_R02s0R02	Sander et al. (2018)
		$MGLYOX + .48 GLYOX + HO_2$		
G45110a	TrGC	$DB1O2 + HO_2 \rightarrow DB2OOH$	KRO2HO2(5)*(1rchohch2o2_oh)	Sander et al. (2018)
G45110b	TrGC	$DB1O2 + HO_2 \rightarrow .48 CH_3COCH_2OH + .52 HOCH_2CHO$	KRO2HO2(5)*rchohch2o2_oh	Sander et al. (2018)
		$+ .52 \text{ MGLYOX} + .48 \text{ GLYOX} + \text{HO}_2 + \text{OH}$		
G45111	TrGCN	$DB1O2 + NO \rightarrow .48 CH_3COCH_2OH + .52 HOCH_2CHO$	KR02N0	see note*
	E CCN	$+ .52 \text{ MGLYOX} + .48 \text{ GLYOX} + \text{HO}_2 + \text{NO}_2$		G 1 (2010)
G45112	TrGCN	$DB1O2 + NO_3 \rightarrow .48 CH_3COCH_2OH + .52 HOCH_2CHO$	KR02N03	Sander et al. (2018)
0.45440	TI CC	$+ .52 \text{ MGLYOX} + .48 \text{ GLYOX} + \text{HO}_2 + \text{NO}_2$	774 4770 47	0 1 (2010)
G45113	TrGC	$DB1O2 \rightarrow .48 \text{ MACROOH} + .52 \text{ LHMVKABOOH} + CO$	K14HSAL	Sander et al. (2018)
045444	TI CC	+ OH	, ,	C 1 (2010)
G45114a	TrGC	$DB1OOH + OH \rightarrow DB1O2$	k_roohro	Sander et al. (2018)
G45114b	TrGC	$DB1OOH + OH \rightarrow HCOOH + HO_2 + CH_3COCHO_2CHO$	k_adt	Sander et al. (2018)*
G45115	TrGC	$DB1OOH + HCOOH \rightarrow C1ODC2OOHC4OD + HCOOH$	4.67E-26*temp**3.286*EXP(4509./	Sander et al. (2018) , da Silva $(2010)^*$
045116	TrGCN	$DB1NO3 + OH \rightarrow HCOOH + NO_2 + CH_3COCHO_2CHO$	(1.987*temp))	
G45116 G45117	TrGCN	$DB1NO3 + OH \rightarrow HCOOH + NO_2 + CH_3COCHO_2CHO$ $DB2OOH + OH \rightarrow DB1O2$	k_adt k_roohro	Sander et al. (2018)*
G45117 G45118	TrGC	LISOPACOOH + $O_3 \rightarrow 1.3272$ OH + $.36986$ HO ₂ +	4.829E-16	Sander et al. (2018)* Sander et al. (2018)
G45118	IIGC	$0.0432 \text{ H}_2\text{O}_2 + 0.08422 \text{ CO} + 0.2025 \text{ CH}_3\text{OOH} + 0.01215$	4.829E-16	Sander et al. (2018)
		$CH_2OO + .3704 \text{ HCHO} + .00405 \text{ CH}_3OOH + .0405$		
		$CO_2 + .1825 \text{ HOCH2COCH2O2} + .365 \text{ MGLYOX} +$		
		$.3866 \text{ HOOCH2CHO} + .135 \text{ CH}_3\text{COCH}_2\text{OH} + .0675$		
		$\frac{13500 \text{ HOOCH2CHO} + .135 \text{ CH}_3\text{COCH2CH} + .0075}{\text{GLYOX} + .00324 \text{ HCOCO} + .3866 \text{ HOCH}_2\text{CHO} + .135}$		
		$CH_3COCH_2O_2H + .0675 HOCHCHO + .0054 HOCH2CO$		
		O113 OOO112 O211 + .0070 11 OOOOOOO + .0004 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO		

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45119a	TrGC	$ \begin{array}{l} LZCO3HC23DBCOD + OH \rightarrow .62\ CO2H3CHO + .62\ OH \\ + .62\ CO_2 + .38\ MGLYOX + .38\ HCOCO_3H + .38\ HO_2 \end{array} $	k_adt*a_cho*a_co2h	Sander et al. (2018)
G45119b	TrGC	LZCO3HC23DBCOD + OH \rightarrow .62 CH ₃ COCO ₃ H + 1.24 CO + 1.24 HO ₂ + .38 MGLYOX + .38 HO ₂ + .38 CO + .38 HO ₂ + .38 OH + .38 CO ₂	k_ads*a_cho*a_co2h	Sander et al. (2018)
G45120	TrGC	$LISOPEFO2 \rightarrow LISOPEFO$	k1_R02p0R02	Sander et al. (2018)
G45121a	TrGCN	LISOPEFO2 + NO \rightarrow LISOPEFO + NO ₂	<pre>KRO2NO*(1alpha_AN(6,1,0,0,0, temp,cair))</pre>	Sander et al. (2018)
G45121b	TrGCN	$LISOPEFO2 + NO \rightarrow ISOPDNO3$	<pre>KRO2NO*alpha_AN(6,1,0,0,0,temp, cair)</pre>	Sander et al. $(2018)^*$
G45122a	TrGC	LISOPEFO2 + $\mathrm{HO_2} \rightarrow .7143$ ISOPDOOH + .2857 ISOPBOOH	KRO2HO2(5)*(1rchohch2o2_oh)	Sander et al. (2018)
G45122b	TrGC	$LISOPEFO2 + HO_2 \rightarrow LISOPEFO + OH$	KRO2HO2(5)*rchohch2o2_oh	Sander et al. (2018)
G45123	TrGCN	$LISOPEFO2 + NO_3 \rightarrow LISOPEFO + NO_2$	KRO2NO3	Sander et al. (2018)
G45124	TrGC	LISOPEFO2 \rightarrow .7143 MACR + .2857 MVK + HCHO + OH	0.7143*KHSD+.2857*KHSB	Sander et al. (2018)
G45125	TrGC	LISOPEFO \rightarrow .7143 MACR + .2857 MVK + HCHO + HO ₂	KDEC	Sander et al. (2018)
G45126a	TrGC	LISOPACO \rightarrow 3METHYLFURAN + HO ₂	KDEC*0.37	Sander et al. (2018), Paulot et al. (2009a), Francisco-Marquez et al. (2003)
G45126b	TrGC	$\label{eq:LISOPACO} \text{LISOPACO} \rightarrow .65 \text{ LHC4ACCHO} + .65 \text{ HO}_2 + .35 \text{ DB1O2}$	KDEC*(10.37)	Sander et al. (2018), Paulot et al. (2009a), Francisco-Marquez et al. (2003)
G45127a	TrGC	LISOPACO \rightarrow 3METHYLFURAN + HO ₂	KDEC*0.37	Sander et al. (2018), Paulot et al. (2009a), Francisco-Marquez et al. (2003)
G45127b	TrGC	LISOPACO \rightarrow .65 LHC4ACCHO + .65 HO ₂ + .35 DB1O2	KDEC*(10.37)	Sander et al. (2018), Paulot et al. (2009a), Francisco-Marquez et al. (2003)
G45128	TrGC	3 METHYLFURAN + OH \rightarrow L 3 METHYLFURANO 2	3.2E-11*EXP(310./temp)	Sander et al. $(2018)^*$
G45129	TrGCN	$3METHYLFURAN + NO_3 \rightarrow L3METHYLFURANO2 + NO_2$	1.9E-11	Sander et al. (2018), Atkinson et al. (2006)*
G45130	TrGC	$L3METHYLFURANO2 \rightarrow C4MDIAL + HO_2$	k1_R02s0R02	Sander et al. (2018)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45131	TrGCN	$L3METHYLFURANO2 + NO \rightarrow C4MDIAL + HO_2 +$	KRO2NO	Sander et al. (2018)*
		NO_2		,
G45132	TrGC	$L3METHYLFURANO2 + HO_2 \rightarrow C4MDIAL + HO_2$	KRO2HO2(5)	Sander et al. $(2018)^*$
G45133	TrGC	$LZCO3C23DBCOD \rightarrow .62 EZCH3CO2CHCHO + .38$	k1_R02RC03	Sander et al. (2018)
		$EZCHOCCH3CHO2 + CO_2$		
G45134a	TrGC	LZCO3C23DBCOD + $HO_2 \rightarrow .62$ EZCH3CO2CHCHO +	KAPHO2*rco3_oh	Sander et al. (2018)
		$.38 \text{ EZCHOCCH3CHO2} + \text{CO}_2 + \text{OH}$		
G45134b	TrGC	$LZCO3C23DBCOD + HO_2 \rightarrow LZCO3HC23DBCOD$	KAPHO2*(rco3_ooh+rco3_o3)	Sander et al. $(2018)^*$
G45135	TrGCN	LZCO3C23DBCOD + NO \rightarrow .62 EZCH3CO2CHCHO +	KAPNO	Sander et al. (2018)
		$.38 \text{ EZCHOCCH3CHO2} + \text{CO}_2 + \text{NO}_2$		
G45136	TrGCN	$LZCO3C23DBCOD + NO_2 \rightarrow LZCPANC23DBCOD$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G45137	TrGCN	$LZCO3C23DBCOD + NO_3 \rightarrow .62 EZCH3CO2CHCHO +$	KR02N03*1.74	Sander et al. (2018)
		$.38 \text{ EZCHOCCH3CHO2} + \text{CO}_2 + \text{NO}_2$		
G45138	TrGCN	$LZCPANC23DBCOD \rightarrow LZCO3C23DBCOD + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G45139	TrGCN	$LZCPANC23DBCOD + OH \rightarrow .62 EZCH3CO2CHCHO +$	2.52E-11	Sander et al. $(2018)^*$
		$.38 \text{ EZCHOCCH3CHO2} + \text{CO}_2 + \text{NO}_2$		
G45200	TrGTerC	$C511O2 \rightarrow CH_3C(O) + HCOCH2CHO$	k1_R02s0R02	Rickard and Pascoe (2009)
G45201	TrGTerCN	$C511O2 + NO \rightarrow CH_3C(O) + HCOCH2CHO + NO_2$	KRO2NO	Rickard and Pascoe $(2009)^*$
G45202a	TrGTerC	$C511O2 + HO_2 \rightarrow C511OOH$	KRO2HO2(5)*rcoch2o2_ooh	Rickard and Pascoe (2009),
				Sander et al. (2018)
G45202b	TrGTerC	$C511O2 + HO_2 \rightarrow CH_3C(O) + HCOCH2CHO + OH$	KRO2HO2(5)*rcoch2o2_oh	Rickard and Pascoe (2009),
				Sander et al. (2018)
G45203	TrGTerC	$C511OOH + OH \rightarrow C511O2$	7.49E-11	Rickard and Pascoe (2009)
G45204	TrGTerC	$CO23C4CHO + OH \rightarrow CO23C4CO3$	6.65E-11	Rickard and Pascoe (2009)
G45205	TrGTerCN	$CO23C4CHO + NO_3 \rightarrow CO23C4CO3 + HNO_3$	KNO3AL*5.5	Rickard and Pascoe (2009)
G45206	TrGTerC	$CO23C4CO3 \rightarrow CH_3COCOCH_2O_2 + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)
G45207	TrGTerCN	$CO23C4CO3 + NO \rightarrow CH_3COCOCH_2O_2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)*
G45208	TrGTerCN	$CO23C4CO3 + NO_2 \rightarrow C5PAN9$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G45209a	TrGTerC	$CO23C4CO3 + HO_2 \rightarrow CO23C4CO3H$	KAPHO2*(rco3_ooh+rco3_o3)	Rickard and Pascoe (2009)
G45209b	TrGTerC	$CO23C4CO3 + HO_2 \rightarrow CH_3COCOCH_2O_2 + CO_2 + OH$	KAPHO2*rco3_oh	Rickard and Pascoe (2009)
G45210	TrGTerCN	$C5PAN9 \rightarrow CO23C4CO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G45211	TrGTerCN	$C5PAN9 + OH \rightarrow CH_3COCOCHO + CO + NO_2$	3.12E-13	Rickard and Pascoe (2009)
G45212	TrGTerC	$C512O2 \rightarrow C513O2$	k1_R02pR02	Rickard and Pascoe (2009)
G45213	TrGTerC	$C512O2 + HO_2 \rightarrow C512OOH$	KRO2HO2(5)	Rickard and Pascoe (2009)
G45214	TrGTerCN	$C512O2 + NO \rightarrow C513O2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45215	TrGTerC	$C512OOH + OH \rightarrow CO13C4CHO + OH$	1.01E-10	Rickard and Pascoe (2009)
G45216	TrGTerC	$C513O2 \rightarrow GLYOX + HOC_2H_4CO_3$	k1_R02s0R02	Rickard and Pascoe (2009)
G45217	TrGTerCN	$C513O2 + NO \rightarrow GLYOX + HOC_2H_4CO_3 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G45218a	TrGTerC	$C513O2 + HO_2 \rightarrow C513OOH$	KRO2HO2(5)*rcoch2o2_ooh	Rickard and Pascoe (2009), Sander et al. (2018)
G45218b	TrGTerC	$C513O2 + HO_2 \rightarrow GLYOX + HOC_2H_4CO_3 + OH$	KRO2HO2(5)*rcoch2o2_oh	Rickard and Pascoe (2009), Sander et al. (2018)
G45219	TrGTerC	$CO13C4CHO + OH \rightarrow CHOC3COCO3$	1.33E-10	Rickard and Pascoe (2009)
G45220	TrGTerCN	$CO13C4CHO + NO_3 \rightarrow CHOC3COCO3 + HNO_3$	2.*KNO3AL*5.5	Rickard and Pascoe (2009)
G45221	TrGTerC	$C513OOH + OH \rightarrow C513CO + OH$	9.23E-11	Rickard and Pascoe (2009)
G45222	TrGTerC	$CHOC3COCO3 \rightarrow CHOC3COO2 + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)
G45223	TrGTerC	$CHOC3COCO3 + HO_2 \rightarrow CHOC3COOOH$	KAPHO2	Rickard and Pascoe (2009)
G45224	TrGTerCN	$CHOC3COCO3 + NO_2 \rightarrow CHOC3COPAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G45225	TrGTerCN	$CHOC3COCO3 + NO \rightarrow CHOC3COO2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)*
G45226	TrGTerC	$C513CO + OH \rightarrow HOC_2H_4CO_3 + CO + CO$	2.64E-11	Rickard and Pascoe (2009)
G45227	TrGTerC	$C514O2 + HO_2 \rightarrow C514OOH$	KRO2HO2(5)	Rickard and Pascoe (2009)
G45228a	TrGTerCN	$C514O2 + NO \rightarrow CO13C4CHO + HO_2 + NO_2$	<pre>KRO2NO*(1alpha_AN(7,2,0,1,0, temp,cair))</pre>	Rickard and Pascoe (2009), Sander et al. (2018)
G45228b	TrGTerCN	$C514O2 + NO \rightarrow C514NO3$	KRO2NO*alpha_AN(7,2,0,1,0,temp, cair)	Rickard and Pascoe (2009), Sander et al. (2018)
G45229	TrGTerCN	$C514O2 + NO_3 \rightarrow CO13C4CHO + HO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)
G45230	TrGTerC	$C514O2 \rightarrow CO13C4CHO + HO_2$	k1_R02sR02	Rickard and Pascoe (2009)
G45231	TrGTerC	$C514OOH + OH \rightarrow CO13C4CHO + OH$	1.10E-10	Rickard and Pascoe (2009)
G45232	TrGTerCN	$C514NO3 + OH \rightarrow CO13C4CHO + NO_2$	4.33E-11	Rickard and Pascoe (2009)
G45233	TrGTerC	$CHOC3COOOH + OH \rightarrow CHOC3COCO3$	7.55E-11	Rickard and Pascoe (2009)
G45234	TrGTerCN	$CHOC3COPAN \rightarrow CHOC3COCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G45235	TrGTerCN	$CHOC3COPAN + OH \rightarrow C4CODIAL + CO + NO_2$	7.19E-11	Rickard and Pascoe (2009)
G45236	TrGTerC	$MBO + OH \rightarrow LMBOABO2$	8.1E-12*EXP(610./TEMP)	Rickard and Pascoe (2009), Sander et al. (2018)*
G45237a	TrGTerC	MBO + O ₃ \rightarrow HCHO + .16 CH ₃ COCH ₃ + .16 HO ₂ + .16 CO + .16 OH + .84 MBOOO	1.0E-17*0.57	Rickard and Pascoe (2009), Sander et al. (2018)
G45237b	TrGTerC	MBO + O ₃ \rightarrow IBUTALOH + .63 CO + .37 HOCH ₂ OOH + .16 OH + .16 HO ₂	1.0E-17*0.43	Rickard and Pascoe (2009), Sander et al. (2018)
G45238	TrGTerCN	$MBO + NO_3 \rightarrow LNMBOABO2$	4.6E-14*EXP(-400./TEMP)	Rickard and Pascoe (2009), Sander et al. (2018)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45239	TrGTerC	$LMBOABO2 + HO_2 \rightarrow LMBOABOOH$	KRO2HO2(5)	Rickard and Pascoe (2009),
		-		Sander et al. (2018)
G45240a	TrGTerCN	${\rm LMBOABO2} + {\rm NO} \rightarrow {\rm LMBOABNO3}$	<pre>KRO2NO*(.67*alpha_AN(7,2,0,0,0,</pre>	Rickard and Pascoe (2009),
			temp, cair) $+.33*alpha_AN(7,1,0,0,$	Sander et al. (2018)
			0,temp,cair))	
G45240b	TrGTerCN	$LMBOABO2 + NO \rightarrow HOCH_2CHO + CH_3COCH_3 + HO_2$	KRO2NO*(1(.67*alpha_AN(7,2,0,	Rickard and Pascoe (2009),
		$+ NO_2$	0,0,temp,cair)+.33*alpha_AN(7,1,	Sander et al. (2018)
045040	m om on	IMPOADOS INO IDIENTOU IUGUO I IIO	0,0,0,temp,cair)))*.67	D: 1 1 1 D (2000)
G45240c	TrGTerCN	LMBOABO2 + NO \rightarrow IBUTALOH + HCHO + HO ₂ +	KRO2NO*(1(.67*alpha_AN(7,2,0,	Rickard and Pascoe (2009),
		NO_2	0,0,temp,cair)+.33*alpha_AN(7,1,0,0,0,temp,cair)))*.33	Sander et al. (2018)
G45241a	TrGTerC	$LMBOABO2 \rightarrow HOCH_2CHO + CH_3COCH_3 + HO_2$	k1_R02s0R02*.67	Rickard and Pascoe (2009),
040241a	1101010		K1_10250102+.07	Sander et al. (2018)
G45241b	TrGTerC	$LMBOABO2 \rightarrow IBUTALOH + HCHO + HO_2$	k1_R02p0R02*.33	Rickard and Pascoe (2009),
			•	Sander et al. (2018)
G45242a	TrGTerC	${\rm LMBOABOOH} + {\rm OH} \rightarrow {\rm MBOACO}$	0.67*2.93E-11+.33*2.05E-12	Rickard and Pascoe (2009),
				Sander et al. (2018)
G45242b	TrGTerC	$LMBOABOOH + OH \rightarrow LMBOABO2$	k_roohro	Rickard and Pascoe (2009),
				Sander et al. (2018)
G45243	TrGTerCN	$LMBOABNO3 + OH \rightarrow MBOACO + NO_2$	0.67*1.75E-12+.33*2.69E-12	Rickard and Pascoe (2009),
045044	m am a	MROAGO + OH - MROGOGO + HO	0.705.40	Sander et al. (2018)
G45244	TrGTerC TrGTerC	$MBOACO + OH \rightarrow MBOCOCO + HO_2$ $MBOCOCO + OH \rightarrow CO + IPRHOCO3$	3.79E-12	Rickard and Pascoe (2009)
G45245 G45246	TrGTerCN	$LNMBOABO2 + HO_2 \rightarrow LNMBOABOOH$	1.38E-11 KRO2HO2(5)	Rickard and Pascoe (2009) Rickard and Pascoe (2009),
G43240	HGIEICN	$\text{LNMBOADO2} + \text{HO}_2 \rightarrow \text{LNMBOADOOH}$	KKUZHUZ(5)	Sander et al. (2018)
G45247	TrGTerCN	LNMBOABO2 + NO \rightarrow .65 NO ₃ CH2CHO + .65	KRO2NO	Rickard and Pascoe (2009),
010211	11010101	$CH_3COCH_3 + .65 HO_2 + .35 IBUTALOH + .35 HCHO$		Sander et al. (2018)*
		$+.35 \text{ NO}_2 + \text{NO}_2$		(2020)
G45248	TrGTerCN	LNMBOABO2 + NO $_3$ \rightarrow .65 NO $_3$ CH2CHO + .65	KR02N03	Rickard and Pascoe (2009),
		$\mathrm{CH_{3}COCH_{3}}$ + .65 $\mathrm{HO_{2}}$ + .35 $\mathrm{IBUTALOH}$ + .35 HCHO		Sander et al. (2018)
		$+ .35 \text{ NO}_2 + \text{NO}_2$		
G45249	TrGTerCN	${\rm LNMBOABO2} \rightarrow .65~{\rm NO_3CH2CHO} + .65~{\rm CH_3COCH_3} + \\$	k1_R02s0R02	Rickard and Pascoe (2009),
		$.65 \text{ HO}_2 + .35 \text{ IBUTALOH} + .35 \text{ HCHO} + .35 \text{ NO}_2$		Sander et al. (2018)
G45250a	TrGTerCN	LNMBOABOOH + OH \rightarrow .65 C4MCONO3OH + .35	0.65*4.89E-12+.35*2.52E-12	Rickard and Pascoe (2009),
		NMBOBCO		Sander et al. (2018)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45250b	TrGTerCN	${\rm LNMBOABOOH} + {\rm OH} \rightarrow {\rm LNMBOABO2}$	k_roohro	Rickard and Pascoe (2009), Sander et al. (2018)
G45251	TrGTerCN	$NMBOBCO + OH \rightarrow NC4OHCO3$	4.26E-12	Rickard and Pascoe (2009)
G45252a	TrGTerCN	$NC4OHCO3 + HO_2 \rightarrow IBUTALOH + CO_2 + NO_2 + OH$	KAPHO2*rco3_oh	Rickard and Pascoe (2009), Sander et al. (2018)
G45252b	TrGTerCN	$NC4OHCO3 + HO_2 \rightarrow NC4OHCO3H$	KAPHO2*(rco3_o3+rco3_ooh)	Rickard and Pascoe (2009), Sander et al. (2018)
G45253	TrGTerCN	$NC4OHCO3 + NO \rightarrow IBUTALOH + CO_2 + NO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G45254	TrGTerCN	$NC4OHCO3 + NO_2 \rightarrow NC4OHCPAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G45255	TrGTerCN	$NC4OHCO3 + NO_3 \rightarrow IBUTALOH + CO_2 + NO_2 + NO_2$	KR02N03*1.74	Rickard and Pascoe (2009)
G45256	TrGTerCN	$NC4OHCO3 \rightarrow IBUTALOH + CO_2 + NO_2$	k1_R02RC03	Rickard and Pascoe (2009)
G45257	TrGTerCN	$NC4OHCO3H + OH \rightarrow NC4OHCO3$	4.50E-12	Rickard and Pascoe (2009)
G45258	TrGTerCN	$NC4OHCPAN + OH \rightarrow IBUTALOH + CO + NO_2 + NO_2$	1.27E-12	Rickard and Pascoe (2009)
G45259	TrGTerCN	$NC4OHCPAN \rightarrow NC4OHCO3 + NO_2$	K_PAN_M	Rickard and Pascoe (2009)
G45260	TrGTerCN	$C4MCONO3OH + OH \rightarrow CH_3COCH_3 + HCHO + CO_2 + NO_2$	1.23E-12	Rickard and Pascoe (2009), Sander et al. (2018)
G45400	TrGAroCN	$NC4MDCO2HN + OH \rightarrow MMALANHY + NO_2$	k_roohro	Rickard and Pascoe (2009)*
G45401	TrGAroCN	$C54CO + NO_3 \rightarrow 3 CO + CH_3C(O)OO + HNO_3$	KNO3AL*5.5	Rickard and Pascoe (2009)
G45402	TrGAroC	$C54CO + OH \rightarrow 3 CO + CH_3C(O)OO$	1.72E-11	Rickard and Pascoe (2009)
G45403a	TrGAroCN	$NTLFUO2 + HO_2 \rightarrow NTLFUOOH$	KRO2HO2(5)*(1-rcoch2o2_oh)	Rickard and Pascoe (2009)
G45403b	TrGAroCN	$NTLFUO2 + HO_2 \rightarrow ACCOMECHO + NO_2 + OH$	KRO2HO2(5)*rcoch2o2_oh	Rickard and Pascoe (2009)
G45404	TrGAroCN	$NTLFUO2 + NO \rightarrow ACCOMECHO + NO_2 + NO_2$	KR02N0	Rickard and Pascoe (2009)*
G45405	TrGAroCN	$NTLFUO2 + NO_3 \rightarrow ACCOMECHO + NO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G45406	TrGAroCN	$NTLFUO2 \rightarrow ACCOMECHO + NO_2$	k1_R02t0R02	Rickard and Pascoe (2009)*
G45407	TrGAroC	$C5134CO2OH + OH \rightarrow C54CO + HO_2$	7.48E-11	Rickard and Pascoe (2009)
G45408	TrGAroCN	$C5COO2NO2 + OH \rightarrow MGLYOX + CO + CO + NO_2$	5.43E-11	Rickard and Pascoe (2009)
G45409	TrGAroCN	$C5COO2NO2 \rightarrow C5CO14O2 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)*
G45410	TrGAroC	$C5DIALOOH + OH \rightarrow C5DIALCO + OH$	7.52E-11	Rickard and Pascoe (2009)
G45411a	TrGAroC	$C4CO2DBCO3 + HO_2 \rightarrow C4CO2DCO3H$	KAPHO2*(rco3_ooh+rco3_o3)	Rickard and Pascoe (2009)
G45411b	TrGAroC	$C4CO2DBCO3 + HO_2 \rightarrow HO_2 + CO + HCOCOCHO + CO_2 + OH$	KAPHO2*rco3_oh	Rickard and Pascoe (2009), Sander et al. (2018)
G45412	TrGAroCN	$C4CO2DBCO3 + NO \rightarrow HO_2 + CO + HCOCOCHO + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G45413	$\operatorname{TrGAroCN}$	$C4CO2DBCO3 + NO_2 \rightarrow C4CO2DBPAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45414	TrGAroCN	$C4CO2DBCO3 + NO_3 \rightarrow HO_2 + CO + HCOCOCHO +$	KR02N03*1.74	Rickard and Pascoe (2009)
		$CO_2 + NO_2$		` ,
G45415	TrGAroC	$C4CO2DBCO3 \rightarrow HO_2 + CO + HCOCOCHO + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)
G45416	TrGAroC	${\rm MMALANHY} + {\rm OH} \rightarrow {\rm MMALANHYO2}$	1.50E-12	Rickard and Pascoe (2009)
G45421a	TrGAroC	$MMALANHYO2 + HO_2 \rightarrow MMALNHYOOH$	KRO2HO2(5)*(1-rcoch2o2_	Rickard and Pascoe (2009),
			oh-rchohch2o2_oh)	Sander et al. (2018)
G45421b	TrGAroC	$MMALANHYO2 + HO_2 \rightarrow CO2H3CO3 + CO_2 + OH$	KRO2HO2(5)*(rcoch2o2_oh+	Rickard and Pascoe (2009),
			rchohch2o2_oh)	Sander et al. (2018)
G45422	TrGAroCN	$MMALANHYO2 + NO \rightarrow CO2H3CO3 + CO_2 + NO_2$	KR02N0	Rickard and Pascoe (2009)*
G45423	TrGAroCN	$MMALANHYO2 + NO_3 \rightarrow CO2H3CO3 + CO_2 + NO_2$	KRO2NO3	Rickard and Pascoe (2009)*
G45424	TrGAroC	$MMALANHYO2 \rightarrow CO2H3CO3 + CO_2$	k1_R02t0R02	Rickard and Pascoe (2009)*
G45428	TrGAroCN	$C4CO2DBPAN + OH \rightarrow HCOCOCHO + CO_2 + CO + NO_2$	2.74E-11	Rickard and Pascoe (2009)
G45429	TrGAroCN	$C4CO2DBPAN \rightarrow C4CO2DBCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)*
G45430a	TrGAroC	$C5CO14O2 + HO_2 \rightarrow .83 \text{ MALANHY} + .83 \text{ CH}_3 + .17$	KAPHO2*rco3_oh	Rickard and Pascoe (2009)*
		$MGLYOX + .17 HO_2 + .17 CO + .17 CO_2 + OH$	_	,
G45430b	TrGAroC	$C5CO14O2 + HO_2 \rightarrow C5CO14OH + O_3$	KAPHO2*rco3_o3	Rickard and Pascoe (2009)
G45430c	TrGAroC	$C5CO14O2 + HO_2 \rightarrow C5CO14OOH$	KAPHO2*rco3_ooh	Rickard and Pascoe (2009)
G45431	TrGAroCN	$C5CO14O2 + NO \rightarrow .83 MALANHY + .83 CH_3 + .17$	KAPNO	Rickard and Pascoe (2009)*
		$MGLYOX + .17 HO_2 + .17 CO + .17 CO_2 + NO_2$		
G45432	TrGAroCN	$C5CO14O2 + NO_2 \rightarrow C5COO2NO2$	k_CH3CO3_NO2	Rickard and Pascoe (2009)*
G45433	TrGAroCN	$C5CO14O2 + NO_3 \rightarrow .83 MALANHY + .83 CH_3 + .17$	KR02N03*1.74	Rickard and Pascoe (2009)*
		$MGLYOX + .17 HO_2 + .17 CO + .17 CO_2 + NO_2$		
G45434	TrGAroC	$C5CO14O2 \rightarrow .83 \text{ MALANHY} + .83 \text{ CH}_3 + .17 \text{ MGLYOX}$	k1_R02RC03	Rickard and Pascoe (2009)*
		$+ .17 \text{ HO}_2 + .17 \text{ CO} + .17 \text{ CO}_2$		
G45436	TrGAroC	$C5CO14OH + OH \rightarrow .83 MALANHY + .83 CH_3 + .17$	5.44E-11	Rickard and Pascoe (2009)*
		$MGLYOX + .17 HO_2 + .17 CO + .17 CO_2$		
G45441	TrGAroCN	$C5DICARB + NO_3 \rightarrow C5CO14O2 + HNO_3$	KNO3AL*2.75	Rickard and Pascoe (2009)
G45442	TrGAroC	C5DICARB $+$ O ₃ \rightarrow .5338 GLYOX $+$.063 CH ₃ CHO $+$	2.00E-18	Rickard and Pascoe (2009)
		$.348 \text{ CH}_3\text{C(O)OO} + .918 \text{ CO} + .57 \text{ OH} + .473 \text{ HO}_2 + .473 \text{ CO}_2 + .473 $		
		$.0563 \text{ CH}_3\text{COCO}_2\text{H} + .5338 \text{ MGLYOX} + .676 \text{ H}_2\text{O}_2 + $		
945446	T. C. A. C.	.063 HCHO + .0563 HCOCO ₂ H + .2465 CO ₂	0.07.44	D: 1 1 1 D (2000)
G45443	TrGAroC	C5DICARB + OH \rightarrow .48 C5CO14O2 + .52 C5DICARBO2	6.2E-11	Rickard and Pascoe (2009)
G45444	TrGAroC	MC3ODBCO2H + OH \rightarrow .35 GLYOX + .35 CH ₃ + .35	4.38E-11	Rickard and Pascoe (2009)*
		$CO + .35 CO_2 + .65 MMALANHY + .65 HO_2$		

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45451	TrGAroCN	$TLFUONE + NO_3 \rightarrow NTLFUO2$	1.00E-12	Rickard and Pascoe (2009)
G45452	TrGAroC	TLFUONE + $O_3 \rightarrow .5 \text{ CO} + .5 \text{ OH} + .5 \text{ MECOACETO2}$	8.00E-19	see note*
		+ .3125 C24O3CCO2H + .1875 ACCOMECHO + .1875		
		$\mathrm{H}_{2}\mathrm{O}_{2}$		
G45453	TrGAroC	$TLFUONE + OH \rightarrow TLFUO2$	6.90E-11	Rickard and Pascoe (2009)
G45454a	TrGAroC	$ACCOMECO3 + HO_2 \rightarrow ACCOMECO3H$	KAPHO2*(rco3_ooh+rco3_o3)	Rickard and Pascoe (2009)
G45454b	TrGAroC	$ACCOMECO3 + HO_2 \rightarrow MECOACETO2 + CO_2 + OH$	KAPHO2*rco3_oh	Rickard and Pascoe (2009)
G45455	TrGAroCN	$ACCOMECO3 + NO \rightarrow MECOACETO2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G45456	TrGAroCN	$ACCOMECO3 + NO_2 \rightarrow ACCOMEPAN$	k_CH3CO3_NO2	Rickard and Pascoe $(2009)^*$
G45457	TrGAroCN	$ACCOMECO3 + NO_3 \rightarrow MECOACETO2 + CO_2 + NO_2$	KRO2NO3*1.74	Rickard and Pascoe (2009)
G45458	TrGAroC	$ACCOMECO3 \rightarrow MECOACETO2 + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)
G45459	TrGAroC	$C4CO2DCO3H + OH \rightarrow C4CO2DBCO3$	3.06E-11	Rickard and Pascoe (2009)
G45464	TrGAroCN	$ACCOMECHO + NO_3 \rightarrow ACCOMECO_3 + HNO_3$	KNO3AL*5.5	Rickard and Pascoe (2009)
G45465	TrGAroC	$ACCOMECHO + OH \rightarrow ACCOMECO3$	7.09E-11	Rickard and Pascoe (2009)
G45466	TrGAroC	$MMALNHYOOH + OH \rightarrow MMALANHYO2$	1.69E-11	Rickard and Pascoe (2009)
G45467a	TrGAroC	$C5DICAROOH + OH \rightarrow C5134CO2OH + OH$	1.21E-10	Rickard and Pascoe (2009)
G45467b	TrGAroC	$C5DICAROOH + OH \rightarrow C5DICARBO2$	k_roohro	Rickard and Pascoe (2009)
G45468	TrGAroC	$C24O3CCO2H + OH \rightarrow MECOACETO2 + CO_2$	8.76E-13	Rickard and Pascoe (2009)
G45469	TrGAroCN	$NTLFUOOH + OH \rightarrow NTLFUO2$	4.44E-12	Rickard and Pascoe (2009)
G45470	TrGAroCN	$ACCOMEPAN + OH \rightarrow METACETHO + CO + CO +$	1.00E-14	Rickard and Pascoe (2009)
		NO_2		
G45471	TrGAroCN	$ACCOMEPAN \rightarrow ACCOMECO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G45476a	TrGAroC	$\text{TLFUO2} + \text{HO}_2 \rightarrow \text{TLFUOOH}$	KRO2HO2(5)*(1-rcoch2o2_	Rickard and Pascoe (2009)
			oh-rchohch2o2_oh)	
G45476b	TrGAroC	$TLFUO2 + HO_2 \rightarrow ACCOMECHO + HO_2 + OH$	KRO2HO2(5)*(rcoch2o2_oh+	Rickard and Pascoe (2009)*
			rchohch2o2_oh)	
G45477	TrGAroCN	$TLFUO2 + NO \rightarrow ACCOMECHO + HO_2 + NO_2$	KR02N0	Rickard and Pascoe (2009)*
G45478	TrGAroCN	$TLFUO2 + NO_3 \rightarrow ACCOMECHO + HO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G45479	TrGAroC	$TLFUO2 \rightarrow ACCOMECHO + HO_2$	k1_R02t0R02	Rickard and Pascoe (2009)*
G45480	TrGAroC	$C5CO14OOH + OH \rightarrow C5CO14O2$	3.59E-12	Rickard and Pascoe (2009)
G45483	TrGAroC	$TLFUOOH + OH \rightarrow TLFUO2$	2.53E-11	Rickard and Pascoe (2009)
G45485	TrGAroC	$ACCOMECO3H + OH \rightarrow ACCOMECO3$	3.59E-12	Rickard and Pascoe (2009)
G45486a	TrGAroC	$C5DIALO2 + HO_2 \rightarrow C5DIALOOH$	KRO2HO2(5)*(1-rcoch2o2_oh)	Rickard and Pascoe (2009)
G45486b	TrGAroC	$C5DIALO2 + HO_2 \rightarrow MALDIAL + CO + HO_2 + OH$	KRO2HO2(5)*rcoch2o2_oh	Rickard and Pascoe (2009)*
G45487	${\rm TrGAroCN}$	$C5DIALO2 + NO \rightarrow MALDIAL + CO + HO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G45488	TrGAroCN	$C5DIALO2 + NO_3 \rightarrow MALDIAL + CO + HO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G45489	TrGAroC	$C5DIALO2 \rightarrow MALDIAL + CO + HO_2$	k1_R02s0R02	Rickard and Pascoe (2009)*
G45490a	TrGAroC	$C5DICARBO2 + HO_2 \rightarrow C5DICAROOH$	KRO2HO2(5)*(rco3_ooh+rco3_o3)	Rickard and Pascoe (2009)
G45491b	$\operatorname{TrGAroC}$	C5DICARBO2 + $HO_2 \rightarrow MGLYOX + GLYOX + HO_2 + OH$	KRO2HO2(5)*rco3_oh	Rickard and Pascoe (2009)*
G45492	TrGAroCN	$ \begin{array}{l} {\rm C5DICARBO2 + NO \rightarrow MGLYOX + GLYOX + HO_2 + } \\ {\rm NO_2} \end{array} $	KRO2NO	Rickard and Pascoe (2009)*
G45493	TrGAroCN	$ \begin{array}{l} {\rm C5DICARBO2 + NO_3 \rightarrow MGLYOX + GLYOX + HO_2 + NO_2} \end{array} $	KR02N03	Rickard and Pascoe (2009)*
G45494	TrGAroC	$C5DICARBO2 \rightarrow MGLYOX + GLYOX + HO_2$	k1_R02s0R02	Rickard and Pascoe (2009)*
G46200a	TrGTerC	$\text{CO235C6O2} + \text{HO}_2 \rightarrow \text{CO235C6OOH}$	KRO2HO2(6)*rcoch2o2_ooh	Rickard and Pascoe (2009), Sander et al. (2018)
G46200b	TrGTerC	$\text{CO235C6O2} + \text{HO}_2 \rightarrow \text{CO23C4CO3} + \text{HCHO} + \text{OH}$	KRO2HO2(6)*rcoch2o2_oh	Rickard and Pascoe (2009), Sander et al. (2018)
G46201	TrGTerCN	$CO235C6O2 + NO \rightarrow CO23C4CO3 + HCHO + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G46202	TrGTerC	$CO235C6O2 \rightarrow CO23C4CO3 + HCHO$	k1_R02p0R02	Rickard and Pascoe (2009)
G46203	TrGTerC	$CO235C6OOH + OH \rightarrow CO235C6O2$	1.01E-11	Rickard and Pascoe (2009)
G46204	TrGTerC	$C614O2 \rightarrow CO23C4CHO + HCHO + HO_2$	k1_R02s0R02	Rickard and Pascoe (2009)
G46205a	TrGTerCN	$C614O2 + NO \rightarrow CO23C4CHO + HCHO + HO_2 + NO_2$	<pre>KRO2NO*(1alpha_AN(9,2,0,1,0, temp,cair))</pre>	Rickard and Pascoe (2009)
G46205b	TrGTerCN	$C614O2 + NO \rightarrow C614NO3$	<pre>KRO2NO*alpha_AN(9,2,0,1,0,temp, cair)</pre>	Rickard and Pascoe (2009)
G46206a	TrGTerC	$C614O2 + HO_2 \rightarrow C614OOH$	KRO2HO2(6)*(1rchohch2o2_oh)	Rickard and Pascoe (2009), Sander et al. (2018)
G46206b	TrGTerC	$C614O2 + HO_2 \rightarrow CO23C4CHO + HCHO + HO_2 + OH$	KRO2HO2(6)*rchohch2o2_oh	Rickard and Pascoe (2009), Sander et al. (2018)
G46207	TrGTerCN	$C614NO3 + OH \rightarrow C614CO + NO_2$	7.11E-12	Rickard and Pascoe (2009)
G46208	TrGTerC	$C614OOH + OH \rightarrow C614CO + OH$	8.69E-11	Rickard and Pascoe (2009)
G46209	TrGTerC	$C614CO + OH \rightarrow CO235C5CHO + HO_2$	3.22E-12	Rickard and Pascoe (2009)
G46210	TrGTerC	$CO235C5CHO + OH \rightarrow CO23C4CO3 + CO$	1.33E-11	Rickard and Pascoe (2009)
G46211	TrGTerCN	$CO235C5CHO + NO_3 \rightarrow CO23C4CO3 + CO + HNO_3$	KNO3AL*5.5	Rickard and Pascoe (2009)
G46400	TrGAroC	$PHENOOH + OH \rightarrow PHENO2$	1.16E-10	Rickard and Pascoe (2009)
G46401	TrGAroC	C6CO4DB + OH \rightarrow CO + CO + HO ₂ + CO + HCOCOCHO	7.70E-11	Rickard and Pascoe (2009)
G46402	TrGAroC	$C5CO2DCO3H + OH \rightarrow C5CO2DBCO3$	3.60E-11	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G46403	TrGAroCN	$NDNPHENOOH + OH \rightarrow NDNPHENO2$	k_roohro	Rickard and Pascoe (2009)
G46404a	TrGAroC	$C615CO2O2 + HO_2 \rightarrow C615CO2OOH$	KRO2HO2(6)*(1rcoch2o2_oh)	Rickard and Pascoe (2009)
G46404b	TrGAroC	$C615CO2O2 + HO_2 \rightarrow C5DICARB + CO + HO_2 + OH$	KRO2HO2(6)*rcoch2o2_oh	Rickard and Pascoe (2009)*
G46405	TrGAroCN	$C615CO2O2 + NO \rightarrow C5DICARB + CO + HO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G46406	TrGAroCN	$C615CO2O2 + NO_3 \rightarrow C5DICARB + CO + HO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G46407	TrGAroC	$C615CO2O2 \rightarrow C5DICARB + CO + HO_2$	k1_R02s0R02	Rickard and Pascoe (2009)*
G46408	TrGAroCN	$BZEMUCPAN + OH \rightarrow MALDIAL + CO + CO_2 + NO_2$	4.05E-11	Rickard and Pascoe (2009)
G46409	TrGAroCN	$BZEMUCPAN \rightarrow BZEMUCCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G46410	TrGAroCN	$BZBIPERNO3 + OH \rightarrow BZOBIPEROH + NO_2$	7.30E-11	Rickard and Pascoe (2009)
G46411	TrGAroCN	$HOC6H4NO2 + NO_3 \rightarrow NPHEN1O + HNO_3$	9.00E-14	Rickard and Pascoe (2009)
G46412	TrGAroCN	$HOC6H4NO2 + OH \rightarrow NPHEN1O$	9.00E-13	Rickard and Pascoe (2009)
G46413a	TrGAroCN	$NDNPHENO2 + HO_2 \rightarrow NDNPHENOOH$	KRO2HO2(6)*(1-rchohch2o2_oh)	Rickard and Pascoe (2009)
G46413b	TrGAroCN	$NDNPHENO2 + HO_2 \rightarrow NC4DCO2H + HNO_3 + CO +$	KRO2HO2(6)*rchohch2o2_oh	Rickard and Pascoe (2009)*
		$CO + NO_2 + OH$		
G46414	TrGAroCN	$NDNPHENO2 + NO \rightarrow NC4DCO2H + HNO_3 + CO +$	KRO2NO	Rickard and Pascoe (2009)*
		$CO + NO_2 + NO_2$		
G46415	TrGAroCN	$NDNPHENO2 + NO_3 \rightarrow NC4DCO2H + HNO_3 + CO +$	KR02N03	Rickard and Pascoe (2009)*
		$CO + NO_2 + NO_2$		
G46416	TrGAroCN	$NDNPHENO2 \rightarrow NC4DCO2H + HNO_3 + CO + CO +$	k1_RO2ISOPDO2	Rickard and Pascoe (2009)*
		NO_2		
G46417	TrGAroC	$PBZQCO + OH \rightarrow C5CO2OHCO3$	6.07E-11	Rickard and Pascoe (2009)
G46418	TrGAroCN	$CATECHOL + NO_3 \rightarrow CATEC1O + HNO_3$	9.9E-11	Rickard and Pascoe (2009)*
G46419	TrGAroC	$CATECHOL + O_3 \rightarrow MALDALCO2H + HCOCO_2H +$	9.2E-18	Rickard and Pascoe (2009)
		$\mathrm{HO}_2 + \mathrm{OH}$		
G46420	TrGAroC	$CATECHOL + OH \rightarrow CATEC1O$	1.0E-10	Rickard and Pascoe (2009)
G46421	TrGAroC	$C5COOHCO3H + OH \rightarrow C5CO2OHCO3$	8.01E-11	Rickard and Pascoe (2009)
G46422	TrGAroCN	$NCATECHOL + NO_3 \rightarrow NNCATECO_2$	2.60E-12	Rickard and Pascoe (2009)
G46423	TrGAroCN	$NCATECHOL + OH \rightarrow NCATECO2$	3.47E-12	Rickard and Pascoe (2009)
G46424a	TrGAroC	$C5CO2OHCO3 + HO_2 \rightarrow C5COOHCO3H$	KAPHO2*(rco3_ooh+rco3_o3)	Rickard and Pascoe (2009)
G46424b	TrGAroC	$C5CO2OHCO3 + HO_2 \rightarrow HOCOC4DIAL + HO_2 + CO +$	KAPHO2*rco3_oh	Rickard and Pascoe (2009)
		$CO_2 + OH$		
G46425	TrGAroCN	$C5CO2OHCO3 + NO \rightarrow HOCOC4DIAL + HO_2 + CO +$	KAPNO	Rickard and Pascoe (2009)
		$CO_2 + NO_2$		
G46426	TrGAroCN	$C5CO2OHCO3 + NO_2 \rightarrow C5CO2OHPAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G46427	TrGAroCN	$C5CO2OHCO3 + NO_3 \rightarrow HOCOC4DIAL + HO_2 + CO +$	KRO2NO3*1.74	Rickard and Pascoe (2009)
		$CO_2 + NO_2$		
G46428	TrGAroC	$C5CO2OHCO3 \rightarrow HOCOC4DIAL + HO_2 + CO + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)
G46429	TrGAroCN	$BZEPOXMUC + NO_3 \rightarrow BZEMUCCO3 + HNO_3$	2*KN03AL*2.75	Rickard and Pascoe (2009)
G46430	TrGAroC	$BZEPOXMUC + O_3 \rightarrow EPXC4DIAL + .125 HCHO +$	2.00E-18	Rickard and Pascoe (2009)*
		$.1125 \text{ HCOCO}_2\text{H} + .0675 \text{ GLYOX} + .0675 \text{ H}_2\text{O}_2 + .82$		
		$HO_2 + .57 OH + 1.265 CO + .25 CO_2$		
G46431	TrGAroC	BZEPOXMUC + OH \rightarrow .31 BZEMUCCO3 + .69	6.08E-11	Rickard and Pascoe (2009)
		BZEMUCO2		
G46432a		$NCATECO2 + HO_2 \rightarrow NCATECOOH$	KR02H02(6)*(1-rchohch2o2_oh)	Rickard and Pascoe (2009)
G46432b	TrGAroCN	$NCATECO2 + HO_2 \rightarrow NC4DCO2H + HCOCO_2H + HO_2$	KRO2HO2(6)*rchohch2o2_oh	Rickard and Pascoe (2009)*
G46400	TE CLA CINI	+ OH	WD COMO	D: 1 1 1 D (2000)*
G46433	TrGAroCN	$NCATECO2 + NO \rightarrow NC4DCO2H + HCOCO_2H + HO_2$	KRO2NO	Rickard and Pascoe (2009)*
046424	TrGAroCN	+ NO ₂	INDOMOS	D:-11 1 D (2000)*
G46434	ITGATOON	$NCATECO2 + NO_3 \rightarrow NC4DCO2H + HCOCO_2H + HO_2 + NO_2$	KRO2NO3	Rickard and Pascoe (2009)*
G46435	TrC AroCN	$NCATECO2 \rightarrow NC4DCO2H + HCOCO_2H + HO_2$	k1_RO2ISOPDO2	Rickard and Pascoe (2009)*
G46436		$NOTEOO2 \rightarrow NO4DCO2H + HOOCO2H + HO2$ $NOTEOO2 \rightarrow NO4DCO2H + HO02$	9.00E-13	Rickard and Pascoe (2009)
G46437a		$\begin{array}{c} \text{NPHENOOH} + \text{OH} \rightarrow \text{NPHENOOH} \\ \text{NPHENO2} + \text{HO}_2 \rightarrow \text{NPHENOOH} \end{array}$	KRO2HO2(6)*(1-rchohch2o2_oh)	Rickard and Pascoe (2009)
G46437b		$\begin{array}{c} \text{NPHENO2} + \text{HO}_2 \rightarrow \text{MALDALCO2H} + \text{GLYOX} + \text{NO}_2 \end{array}$	KRO2HO2(6)*rchohch2o2_oh	Rickard and Pascoe (2009)*
0101075	1101110011	+ OH	Mioznoz (o) i chononzoz_on	Telekard and Lascoc (2005)
G46438	TrGAroCN	$NPHENO2 + NO \rightarrow MALDALCO2H + GLYOX + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
		$+ NO_2$		
G46439	TrGAroCN	$NPHENO2 + NO_3 \rightarrow MALDALCO2H + GLYOX + NO_2$	KRO2NO3	Rickard and Pascoe (2009)*
		$+ NO_2$,
G46440	$\operatorname{TrGAroCN}$	$NPHENO2 \rightarrow MALDALCO2H + GLYOX + NO_2$	k1_RO2ISOPDO2	Rickard and Pascoe (2009)*
G46441	TrGAroC	BENZENE + OH \rightarrow .352 BZBIPERO2 + .118	2.3E-12*EXP(-190/TEMP)	Rickard and Pascoe (2009)*
		$BZEPOXMUC + .118 HO_2 + .53 PHENOL + .53 HO_2$		
G46442	TrGAroCN	$C5CO2OHPAN + OH \rightarrow HOCOC4DIAL + CO + CO +$	7.66E-11	Rickard and Pascoe (2009)
		NO_2		
G46443	TrGAroCN		k_PAN_M	Rickard and Pascoe (2009)
G46444	TrGAroCN	$CATEC1O + NO_2 \rightarrow NCATECHOL$	k_C6H50_N02	Rickard and Pascoe (2009), Platz
				et al. (1998)
G46445	TrGAroC	$CATEC1O + O_3 \rightarrow CATEC1O2$	k_C6H5O_O3	Rickard and Pascoe (2009), Tao
				and Li (1999)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G46446	TrGAroC	$BZEMUCCO + OH \rightarrow EPXDLCO3 + GLYOX$	9.20E-11	Rickard and Pascoe (2009)
G46447a	TrGAroCN	$NNCATECO2 + HO_2 \rightarrow NNCATECOOH$	KRO2HO2(6)*(1-rchohch2o2_oh)	Rickard and Pascoe (2009)
G46447b	TrGAroCN	NNCATECO2 + $HO_2 \rightarrow NC4DCO2H + HCOCO_2H + NO_2 + OH$	KRO2HO2(6)*rchohch2o2_oh	Rickard and Pascoe (2009)*
G46448	TrGAroCN	$NNCATECO2 + NO \rightarrow NC4DCO2H + HCOCO_2H + NO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G46449	TrGAroCN	$NNCATECO2 + NO_3 \rightarrow NC4DCO2H + HCOCO_2H + NO_2 + NO_2$	KRO2NO3	Rickard and Pascoe (2009)*
G46450	TrGAroCN	$NNCATECO2 \rightarrow NC4DCO2H + HCOCO_2H + NO_2$	k1_RO2ISOPDO2	Rickard and Pascoe (2009)*
G46451	TrGAroC	$BZEMUCCO2H + OH \rightarrow C5DIALO2 + CO_2$	4.06E-11	Rickard and Pascoe (2009)
G46452	TrGAroCN	$NNCATECOOH + OH \rightarrow NNCATECO2$	k_roohro	Rickard and Pascoe (2009)
G46453	TrGAroCN	$NPHEN1O + NO_2 \rightarrow DNPHEN$	k_C6H5O_NO2	Rickard and Pascoe (2009), Platz et al. (1998)
G46454	TrGAroCN	$NPHEN1O + O_3 \rightarrow NPHEN1O2$	k_C6H5O_O3	Rickard and Pascoe (2009), Tao and Li (1999)
G46455	TrGAroCN	$\text{DNPHEN} + \text{NO}_3 \rightarrow \text{NDNPHENO2}$	2.25E-15	Rickard and Pascoe (2009)
G46456	TrGAroCN	$\text{DNPHEN} + \text{OH} \rightarrow \text{DNPHENO2}$	3.00E-14	Rickard and Pascoe (2009)
G46457	TrGAroCN	PHENOL + NO $_3 \rightarrow .742 \text{ C6H5O} + .742 \text{ HNO}_3 + .258 \text{ NPHENO2}$	3.8E-12	Rickard and Pascoe (2009)*
G46458	TrGAroC	PHENOL + OH \rightarrow .06 C6H5O + .8 CATECHOL + .8 HO ₂ + .14 PHENO2	4.7E-13*EXP(1220/TEMP)	Rickard and Pascoe (2009)*
G46459	TrGAroCN	$PBZQONE + NO_3 \rightarrow NBZQO2$	3.00E-13	Rickard and Pascoe (2009)
G46460	TrGAroC	$PBZQONE + OH \rightarrow PBZQO2$	4.6E-12	Rickard and Pascoe (2009)
G46461a	TrGAroC	$PHENO2 + HO_2 \rightarrow PHENOOH$	<pre>KRO2HO2(6)*(1-rchohch2o2_oh)</pre>	Rickard and Pascoe (2009)
G46461b	TrGAroC	PHENO2 + $HO_2 \rightarrow .71$ MALDALCO2H + .71 GLYOX + .29 PBZQONE + HO_2 + OH	KRO2HO2(6)*rchohch2o2_oh	Rickard and Pascoe (2009)*
G46462	TrGAroCN	PHENO2 + NO \rightarrow .71 MALDALCO2H + .71 GLYOX + .29 PBZQONE + HO ₂ + NO ₂	KRO2NO	Rickard and Pascoe (2009)*
G46463	TrGAroCN	PHENO2 + NO ₃ \rightarrow .71 MALDALCO2H + .71 GLYOX + .29 PBZQONE + HO ₂ + NO ₂	KRO2NO3	Rickard and Pascoe (2009)*
G46464	$\operatorname{TrGAroC}$	$\begin{array}{l} {\rm PHENO2} \rightarrow .71 \ {\rm MALDALCO2H} + .71 \ {\rm GLYOX} + .29 \\ {\rm PBZQONE} + {\rm HO_2} \end{array}$	k1_R02ISOPD02	Rickard and Pascoe (2009)*
G46465	TrGAroC	$C615CO2OOH + OH \rightarrow C6125CO + OH$	9.42E-11	Rickard and Pascoe (2009)
G46466a	TrGAroC	$C5CO2DBCO3 + HO_2 \rightarrow C5CO2DCO3H$	KAPHO2*(rco3_ooh+rco3_o3)	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G46466b	TrGAroC	$C5CO2DBCO3 + HO_2 \rightarrow CH_3C(O) + HCOCOCHO +$	KAPHO2*rco3_oh	Rickard and Pascoe (2009)
		$CO_2 + OH$,
G46467	TrGAroCN	$C5CO2DBCO3 + NO \rightarrow CH_3C(O) + HCOCOCHO + CO_2$	KAPNO	Rickard and Pascoe (2009)
		$+ NO_2$		
G46468	TrGAroCN	$C5CO2DBCO3 + NO_2 \rightarrow C5CO2DBPAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)*
G46469	TrGAroCN	$C5CO2DBCO3 + NO_3 \rightarrow CH_3C(O) + HCOCOCHO +$	KR02N03*1.74	Rickard and Pascoe (2009)
		$\mathrm{CO}_2 + \mathrm{NO}_2$		
G46470	TrGAroC	$C5CO2DBCO3 \rightarrow CH_3C(O) + HCOCOCHO + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)
G46471	TrGAroCN	$NPHEN1O2 + HO_2 \rightarrow NPHEN1OOH$	KRO2HO2(6)	Rickard and Pascoe (2009)
G46472a	TrGAroCN	$NPHEN1O2 + NO \rightarrow NPHEN1O + NO_2$	KRO2NO	Rickard and Pascoe (2009)
G46472b	TrGAroCN	$NPHEN1O2 + NO_2 \rightarrow NPHEN1O + NO_3$	k_C6H5O2_NO2	Jagiella and Zabel $(2007)^*$
G46473	TrGAroCN	$NPHEN1O2 + NO_3 \rightarrow NPHEN1O + NO_2$	KR02N03	Rickard and Pascoe (2009)
G46474	TrGAroCN	$NPHEN1O2 \rightarrow NPHEN1O$	k1_R02sR02	Rickard and Pascoe (2009)
G46475	TrGAroCN	$NPHENOOH + OH \rightarrow NPHENO2$	1.07E-10	Rickard and Pascoe (2009)
G46476	TrGAroCN	$C6H5O + NO_2 \rightarrow HOC6H4NO2$	k_C6H5O_NO2	Rickard and Pascoe (2009), Platz
				et al. (1998)*
G46477	TrGAroC	$C6H5O + O_3 \rightarrow C6H5O2$	k_C6H5O_O3	Rickard and Pascoe (2009), Tao
				and Li (1999)
G46478	TrGAroCN	$NCATECOOH + OH \rightarrow NCATECO2$	k_roohro	Rickard and Pascoe (2009)
G46479	TrGAroC	$PBZQOOH + OH \rightarrow PBZQCO + OH$	1.23E-10	Rickard and Pascoe (2009)
G46480a	TrGAroC	$PBZQO2 + HO_2 \rightarrow PBZQOOH$	KRO2HO2(6)*(1-rchohch2o2_	Rickard and Pascoe (2009)
			oh-rcoch2o2_oh)	
G46480b	TrGAroC	$PBZQO2 + HO_2 \rightarrow C5CO2OHCO3 + OH$	KRO2HO2(6)*(rchohch2o2_oh+	Rickard and Pascoe (2009)*
			rcoch2o2_oh)	
G46481	TrGAroCN	$PBZQO2 + NO \rightarrow C5CO2OHCO3 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G46482	TrGAroCN	$PBZQO2 + NO_3 \rightarrow C5CO2OHCO3 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G46483	TrGAroC	$PBZQO2 \rightarrow C5CO2OHCO3$	k1_R02s0R02	Rickard and Pascoe (2009)*
G46484	TrGAroC	$BZOBIPEROH + OH \rightarrow MALDIALCO3 + GLYOX$	8.16E-11	Rickard and Pascoe (2009)
G46485a	TrGAroCN	$\text{DNPHENO2} + \text{HO}_2 \rightarrow \text{DNPHENOOH}$	<pre>KR02H02(6)*(1-rchohch2o2_oh)</pre>	Rickard and Pascoe (2009)
G46485b	TrGAroCN	$DNPHENO2 + HO_2 \rightarrow NC4DCO2H + HCOCO_2H + NO_2$	KRO2HO2(6)*rchohch2o2_oh	Rickard and Pascoe (2009)*
		+ OH		
G46486	TrGAroCN	$DNPHENO2 + NO \rightarrow NC4DCO2H + HCOCO_2H + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
		$+ NO_2$		
G46487	TrGAroCN	$DNPHENO2 + NO_3 \rightarrow NC4DCO2H + HCOCO_2H + NO_2$	KR02N03	Rickard and Pascoe (2009)*
		$+ NO_2$		

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G46488	TrGAroCN	$DNPHENO2 \rightarrow NC4DCO2H + HCOCO_2H + NO_2$	k1_RO2ISOPDO2	Rickard and Pascoe (2009)*
G46489	TrGAroC	$BZBIPEROOH + OH \rightarrow BZOBIPEROH + OH$	9.77E-11	Rickard and Pascoe (2009)
G46490a	TrGAroC	$BZEMUCO2 + HO_2 \rightarrow BZEMUCOOH$	KRO2HO2(6)	Rickard and Pascoe (2009)
G46490b	TrGAroC	BZEMUCO2 + HO ₂ \rightarrow .5 EPXC4DIAL + .5 GLYOX + .5 HO ₂ + .5 C3DIALO2 + .5 C32OH13CO + OH	KRO2HO2(6)	Rickard and Pascoe (2009)*
G46491a	TrGAroCN	$BZEMUCO2 + NO \rightarrow BZEMUCNO3$	<pre>KRO2NO*alpha_AN(10,2,0,1,0, temp,cair)</pre>	Rickard and Pascoe (2009)
G46491b	TrGAroCN	BZEMUCO2 + NO \rightarrow .5 EPXC4DIAL + .5 GLYOX + .5 HO ₂ + .5 C3DIALO2 + .5 C32OH13CO + NO ₂	<pre>KRO2NO*(1alpha_AN(10,2,0,1,0, temp,cair))</pre>	Rickard and Pascoe (2009)*
G46492	TrGAroCN	BZEMUCO2 + NO ₃ \rightarrow .5 EPXC4DIAL + .5 GLYOX + .5 HO ₂ + .5 C3DIALO2 + .5 C32OH13CO + NO ₂	KRO2NO3	Rickard and Pascoe (2009)*
G46493	TrGAroC	BZEMUCO2 \rightarrow .5 EPXC4DIAL + .5 GLYOX + .5 HO ₂ + .5 C3DIALO2 + .5 C32OH13CO	k1_R02s0R02	Rickard and Pascoe (2009)*
G46494	TrGAroCN	C5CO2DBPAN + OH \rightarrow HCOCOCHO + CH ₃ CHO + CO ₂ + NO ₂	3.28E-11	Rickard and Pascoe (2009)
G46495	TrGAroCN	$C5CO2DBPAN \rightarrow C5CO2DBCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G46496	TrGAroCN	$NBZQOOH + OH \rightarrow NBZQO2$	6.68E-11	Rickard and Pascoe (2009)
G46497	TrGAroC	$CATEC1OOH + OH \rightarrow CATEC1O2$	k_roohro	Rickard and Pascoe (2009)
G46498	TrGAroC	$C6125CO + OH \rightarrow C5CO14O2 + CO$	6.45E-11	Rickard and Pascoe (2009)
G46499a	TrGAroCN	$NBZQO2 + HO_2 \rightarrow NBZQOOH$	KRO2HO2(6)*(1-rcoch2o2_oh)	Rickard and Pascoe (2009)
G46499b	TrGAroCN	$NBZQO2 + HO_2 \rightarrow C6CO4DB + NO_2 + OH$	KRO2HO2(6)*rcoch2o2_oh	Rickard and Pascoe (2009)*
G46500	TrGAroCN	$NBZQO2 + NO \rightarrow C6CO4DB + NO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G46501	TrGAroCN	$NBZQO2 + NO_3 \rightarrow C6CO4DB + NO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G46502	TrGAroCN	$NBZQO2 \rightarrow C6CO4DB + NO_2$	k1_R02s0R02	Rickard and Pascoe (2009)*
G46503	TrGAroCN	$DNPHENOOH + OH \rightarrow DNPHENO2$	k_roohro	Rickard and Pascoe (2009)
G46504	TrGAroC	$CATEC1O2 + HO_2 \rightarrow CATEC1OOH$	KRO2HO2(6)	Rickard and Pascoe (2009)
G46505a	TrGAroCN	$CATEC1O2 + NO \rightarrow CATEC1O + NO_2$	KRO2NO	Rickard and Pascoe (2009)
G46505b	TrGAroCN	$CATEC1O2 + NO_2 \rightarrow CATEC1O + NO_3$	K_C6H502_N02	Jagiella and Zabel (2007)*
G46506	TrGAroCN	$CATEC1O2 + NO_3 \rightarrow CATEC1O + NO_2$	KR02N03	Rickard and Pascoe (2009)
G46507	TrGAroC	$CATEC1O2 \rightarrow CATEC1O$	k1_R02s0R02	Rickard and Pascoe (2009)
G46508	TrGAroC	$BZEMUCCO3H + OH \rightarrow BZEMUCCO3$	4.37E-11	Rickard and Pascoe (2009)
G46509	TrGAroC	$C6H5OOH + OH \rightarrow C6H5O2$	3.60E-12	Rickard and Pascoe (2009)
G46510	TrGAroC	$BZEMUCOOH + OH \rightarrow BZEMUCCO + OH$	1.31E-10	Rickard and Pascoe (2009)
G46511a	TrGAroC	$BZEMUCCO3 + HO_2 \rightarrow BZEMUCCO2H + O_3$	KAPH02*rco3_o3	Rickard and Pascoe (2009)
G46511b	TrGAroC	$\rm BZEMUCCO3 + HO_2 \rightarrow BZEMUCCO3H$	KAPHO2*rco3_ooh	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G46511c	TrGAroC	$BZEMUCCO3 + HO_2 \rightarrow C5DIALO2 + CO_2 + OH$	KAPHO2*rco3_oh	Rickard and Pascoe (2009)
G46512	TrGAroCN	$BZEMUCCO3 + NO \rightarrow C5DIALO2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G46513	TrGAroCN	$BZEMUCCO3 + NO_2 \rightarrow BZEMUCPAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G46514	TrGAroCN	$BZEMUCCO3 + NO_3 \rightarrow C5DIALO2 + CO_2 + NO_2$	KR02N03*1.74	Rickard and Pascoe (2009)
G46515	TrGAroC	$BZEMUCCO3 \rightarrow C5DIALO2 + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)*
G46516	TrGAroC	$C6H5O2 + HO_2 \rightarrow C6H5OOH$	KRO2HO2(6)	Rickard and Pascoe (2009)
G46517a	TrGAroCN	$C6H5O2 + NO \rightarrow C6H5O + NO_2$	KRO2NO	Rickard and Pascoe (2009)
G46517b	TrGAroCN	$C6H5O2 + NO_2 \rightarrow C6H5O + NO_3$	K_C6H5O2_NO2	Jagiella and Zabel (2007)*
G46518	TrGAroCN	$C6H5O2 + NO_3 \rightarrow C6H5O + NO_2$	KR02N03	Rickard and Pascoe (2009)
G46519	TrGAroC	$C6H5O2 \rightarrow C6H5O$	k1_R02sR02	Rickard and Pascoe (2009)
G46521	TrGAroCN	$BZEMUCNO3 + OH \rightarrow BZEMUCCO + NO_2$	4.38E-11	Rickard and Pascoe (2009)
G46522a	TrGAroC	$BZBIPERO2 + HO_2 \rightarrow BZBIPEROOH$	<pre>KRO2HO2(6)*(1rbipero2_oh)</pre>	Rickard and Pascoe (2009)
G46522b	TrGAroC	BZBIPERO2 + $HO_2 \rightarrow OH + GLYOX + HO_2 + .5$ BZFUONE + $.5$ BZFUONE	KRO2HO2(6)*rbipero2_oh	Rickard and Pascoe (2009), Birdsall et al. (2010)*
G46523a	TrGAroCN	$BZBIPERO2 + NO \rightarrow BZBIPERNO3$	<pre>KRO2NO*alpha_AN(9,2,0,0,1,temp, cair)</pre>	Rickard and Pascoe (2009)
G46523b	TrGAroCN	BZBIPERO2 + NO \rightarrow NO ₂ + GLYOX + HO ₂ + .5 BZFUONE + .5 BZFUONE	<pre>KRO2NO*(1alpha_AN(9,2,0,0,1, temp,cair))</pre>	Rickard and Pascoe (2009)*
G46524	$\operatorname{TrGAroCN}$	BZBIPERO2 + NO $_3$ \rightarrow NO $_2$ + GLYOX + HO $_2$ + .5 BZFUONE + .5 BZFUONE	KR02N03	Rickard and Pascoe $(2009)^*$
G46525	TrGAroC	$BZBIPERO2 \rightarrow GLYOX + HO_2 + BZFUONE$	k1_R02s0R02	Rickard and Pascoe (2009)*
G47200	TrGTerCN	$CO235C6CHO + NO_3 \rightarrow CO235C6CO3 + HNO_3$	KNO3AL*5.5	Rickard and Pascoe (2009)
G47201	TrGTerC	$CO235C6CHO + OH \rightarrow CO235C6CO3$	6.70E-11	Rickard and Pascoe (2009)
G47202a	TrGTerC	$CO235C6CO3 + HO_2 \rightarrow C235C6CO3H$	KAPHO2*(rco3_ooh+rco3_o3)	Rickard and Pascoe (2009)
G47202b	TrGTerC	$CO235C6CO3 + HO_2 \rightarrow CO235C6O2 + CO_2 + OH$	KAPHO2*rco3_oh	Rickard and Pascoe (2009)
G47203	TrGTerCN	$CO235C6CO3 + NO \rightarrow CO235C6O2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G47204	TrGTerCN	$CO235C6CO3 + NO_2 \rightarrow C7PAN3$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G47205	TrGTerC	$CO235C6CO3 \rightarrow CO235C6O2 + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)
G47206	TrGTerC	$C235C6CO3H + OH \rightarrow CO235C6CO3$	4.75E-12	Rickard and Pascoe (2009)
G47207	TrGTerCN	$C7PAN3 + OH \rightarrow CO235C5CHO + CO + NO_2$	8.83E-13	Rickard and Pascoe (2009)
G47208	TrGTerCN	$C7PAN3 \rightarrow CO235C6CO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G47209a	TrGTerC	$C716O2 + HO_2 \rightarrow C716OOH$	KR02H02(7)*rcoch2o2_ooh	Rickard and Pascoe (2009), Sander et al. (2018)
G47209b	TrGTerC	$C716O2 + HO_2 \rightarrow CO13C4CHO + CH_3C(O) + OH$	KR02H02(7)*rcoch2o2_oh	Rickard and Pascoe (2009), Sander et al. (2018)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G47210	TrGTerCN	$C716O2 + NO \rightarrow CO13C4CHO + CH_3C(O) + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G47211	TrGTerC	$C716O2 \rightarrow CO13C4CHO + CH_3C(O)$	k1_R02s0R02	Rickard and Pascoe (2009)
G47212	TrGTerC	$C716OOH + OH \rightarrow CO235C6CHO + OH$	1.20E-10	Rickard and Pascoe (2009)
G47213	TrGTerC	$C721O2 + HO_2 \rightarrow C721OOH$	KRO2HO2(7)	Rickard and Pascoe (2009)
G47214	TrGTerCN	$C721O2 + NO \rightarrow C722O2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G47215	TrGTerC	$C721O2 \rightarrow C722O2$	k1_R02pR02	Rickard and Pascoe (2009)
G47216	TrGTerC	$C721OOH + OH \rightarrow C721O2$	1.27E-11	Rickard and Pascoe (2009)
G47217	TrGTerC	$C722O2 + HO_2 \rightarrow C722OOH$	KRO2HO2(7)	Rickard and Pascoe (2009)
G47218	TrGTerCN	$C722O2 + NO \rightarrow CH_3COCH_3 + C44O2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G47219	TrGTerC	$C722O2 \rightarrow CH_3COCH_3 + C44O2$	k1_R02tR02	Rickard and Pascoe (2009)
G47220	TrGTerC	$C722OOH + OH \rightarrow C722O2$	3.31E-11	Rickard and Pascoe (2009)
G47221	TrGTerC	$ROO6R3O2 \rightarrow ROO6R5O2$	5.68E10*EXP(-8745./TEMP)	Vereecken and Peeters (2012)
G47222	TrGTerCN	$ROO6R3O2 + NO \rightarrow ROO6R3O + NO_2$	KRO2NO	Vereecken and Peeters (2012)*
G47223	TrGTerC	$ROO6R3O2 + HO_2 \rightarrow 7 LCARBON$	KRO2HO2(7)	Vereecken and Peeters (2012)*
G47224	TrGTerC	$ROO6R3O2 \rightarrow ROO6R3O$	k1_R02sR02	Vereecken and Peeters (2012)
G47225	TrGTerC	$ROO6R3O \rightarrow 7 LCARBON + HO_2$	5.7E10*EXP(-2949./TEMP)	Vereecken and Peeters $(2012)^*$
G47226	TrGTerC	$ROO6R5O2 \rightarrow 7 LCARBON + OH$	9.17E10*EXP(-8706./TEMP)	Vereecken and Peeters $(2012)^*$
G47400	TrGAroC	TOLUENE + OH \rightarrow .07 C6H5CH2O2 + .18 CRESOL + .18 HO ₂ + .65 TLBIPERO2 + .10 TLEPOXMUC + .10 HO ₂	1.8E-12*EXP(340/TEMP)	Rickard and Pascoe (2009)*
G47401	TrGAroC	$C6H5CH2O2 + HO_2 \rightarrow C6H5CH2OOH$	1.5E-13*EXP(1310/TEMP)	Rickard and Pascoe (2009)
G47402a	TrGAroCN	$C6H5CH2O2 + NO \rightarrow C6H5CH2NO3$	<pre>KRO2NO*alpha_AN(7,1,0,0,0,temp, cair)</pre>	Rickard and Pascoe (2009)*
G47402b	TrGAroCN	$C6H5CH2O2 + NO \rightarrow BENZAL + HO_2 + NO_2$	<pre>KRO2NO*(1alpha_AN(7,1,0,0,0, temp,cair))</pre>	Rickard and Pascoe (2009)*
G47403	TrGAroCN	$C6H5CH2O2 + NO_3 \rightarrow BENZAL + HO_2 + NO_2$	KRO2NO3	Rickard and Pascoe (2009)*
G47404	TrGAroC	$C6H5CH2O2 \rightarrow BENZAL + HO_2$	2.*(k_CH302*2.4E-14*EXP(1620./ TEMP))**0.5*R02	Rickard and Pascoe (2009)*
G47405	TrGAroCN	CRESOL + NO ₃ \rightarrow .103 CRESO2 + .103 HNO ₃ + .506 NCRESO2 + .391 TOL1O + .391 HNO ₃	1.4E-11	Rickard and Pascoe (2009)*
G47406	TrGAroC	CRESOL + OH \rightarrow .2 CRESO2 + .727 MCATECHOL + .727 HO ₂ + .073 TOL1O	4.65E-11	Rickard and Pascoe (2009)*
G47407a	TrGAroC	${\rm TLBIPERO2} + {\rm HO_2} \rightarrow {\rm TLBIPEROOH}$	<pre>KRO2HO2(7)*(1rbipero2_oh)</pre>	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G47407b	TrGAroC	TLBIPERO2 + $HO_2 \rightarrow OH + .6$ GLYOX + $.4$ MGLYOX + $HO_2 + .2$ C4MDIAL + $.2$ C5DICARB + $.2$ TLFUONE + $.2$ BZFUONE + $.2$ MALDIAL	KRO2HO2(7)*rbipero2_oh	Rickard and Pascoe (2009), Birdsall et al. (2010)*
G47408a	TrGAroCN	TLBIPERO2 + NO \rightarrow NO ₂ + .6 GLYOX + .4 MGLYOX + HO ₂ + .2 C4MDIAL + .2 C5DICARB + .2 TLFUONE + .2 BZFUONE + .2 MALDIAL	<pre>KR02N0*(1alpha_AN(11,2,0,0,1, temp,cair))</pre>	Rickard and Pascoe (2009)*
G47408b	TrGAroCN	TLBIPERO2 + NO \rightarrow TLBIPERNO3	<pre>KRO2NO*alpha_AN(11,2,0,0,1, temp,cair)</pre>	Rickard and Pascoe (2009)*
G47409	TrGAroCN	TLBIPERO2 + NO $_3$ \rightarrow NO $_2$ + .6 GLYOX + .4 MGLYOX + HO $_2$ + .2 C4MDIAL + .2 C5DICARB + .2 TLFUONE + .2 BZFUONE + .2 MALDIAL	KRO2NO3	Rickard and Pascoe (2009)*
G47410	TrGAroC	TLBIPERO2 \rightarrow .6 GLYOX + .4 MGLYOX + HO ₂ + .2 C4MDIAL + .2 C5DICARB + .2 TLFUONE + .2 BZFUONE + .2 MALDIAL	k1_R02s0R02	Rickard and Pascoe (2009)*
G47411	TrGAroCN	$TLEPOXMUC + NO_3 \rightarrow TLEMUCCO3 + HNO_3$	KNO3AL*2.75	Rickard and Pascoe (2009)
G47412	TrGAroC	TLEPOXMUC + $O_3 \rightarrow EPXC4DIAL + .125 CH_3CHO + .695 CH_3C(O) + .57 CO + .57 OH + .125 HO_2 + .1125 CH_3COCO_2H + .0675 MGLYOX + .0675 H_2O_2 + .25 CO_2$	5.00E-18	Rickard and Pascoe (2009)*
G47413	TrGAroC	TLEPOXMUC + OH \rightarrow .31 TLEMUCCO3 + .69 TLEMUCO2	7.99E-11	Rickard and Pascoe (2009)*
G47414	TrGAroC	$C6H5CH2OOH + OH \rightarrow BENZAL + OH$	2.05E-11	Rickard and Pascoe (2009)
G47415	TrGAroCN	$C6H5CH2NO3 + OH \rightarrow BENZAL + NO_2$	6.03E-12	Rickard and Pascoe (2009)
G47416	TrGAroCN	$BENZAL + NO_3 \rightarrow C6H5CO3 + HNO_3$	2.40E-15	Rickard and Pascoe (2009)
G47417	TrGAroC	$BENZAL + OH \rightarrow C6H5CO3$	5.9E-12*EXP(225/TEMP)	Rickard and Pascoe (2009)
G47418a	TrGAroC	$CRESO2 + HO_2 \rightarrow CRESOOH$	<pre>KRO2HO2(7)*(1-rchohch2o2_oh)</pre>	Rickard and Pascoe (2009)
G47418b	TrGAroC	CRESO2 + HO ₂ \rightarrow .68 C5CO14OH + .68 GLYOX + HO ₂ + .32 PTLQONE + OH	KRO2HO2(7)*rchohch2o2_oh	Rickard and Pascoe (2009)*
G47419	TrGAroCN	CRESO2 + NO \rightarrow .68 C5CO14OH + .68 GLYOX + HO ₂ + .32 PTLQONE + NO ₂	KRO2NO	Rickard and Pascoe (2009)*
G47420	TrGAroCN	CRESO2 + NO ₃ \rightarrow .68 C5CO14OH + .68 GLYOX + HO ₂ + .32 PTLQONE + NO ₂	KR02N03	Rickard and Pascoe (2009)*
G47421	$\operatorname{TrGAroC}$	CRESO2 \rightarrow .68 C5CO14OH + .68 GLYOX + HO ₂ + .32 PTLQONE	k1_R02ISOPD02	Rickard and Pascoe (2009)*
G47422a	TrGAroCN	$NCRESO2 + HO_2 \rightarrow NCRESOOH$	KRO2HO2(7)*(1-rchohch2o2_oh)	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G47422b	TrGAroCN	$NCRESO2 + HO_2 \rightarrow C5CO14OH + GLYOX + NO_2 + OH$	KRO2HO2(7)*rchohch2o2_oh	Rickard and Pascoe (2009)*
G47423	TrGAroCN	$NCRESO2 + NO \rightarrow C5CO14OH + GLYOX + NO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G47424	TrGAroCN	$NCRESO2 + NO_3 \rightarrow C5CO14OH + GLYOX + NO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G47425	TrGAroCN	$NCRESO2 \rightarrow C5CO14OH + GLYOX + NO_2$	k1_RO2ISOPDO2	Rickard and Pascoe (2009)*
G47426	TrGAroCN	$\rm TOL1O + NO_2 \rightarrow TOL1OHNO2$	k_C6H5O_NO2	Rickard and Pascoe (2009), Platz et al. (1998)*
G47427	TrGAroC	$TOL1O + O_3 \rightarrow OXYL1O2$	k_C6H5O_O3	Rickard and Pascoe (2009), Tao and Li (1999)
G47428	TrGAroCN	$MCATECHOL + NO_3 \rightarrow MCATEC1O + HNO_3$	1.7E-10*1.0	Rickard and Pascoe (2009)
G47429	TrGAroC	$MCATECHOL + O_3 \rightarrow MC3ODBCO2H + HCOCO_2H + HO_2 + OH$	2.8E-17	Rickard and Pascoe (2009)*
G47430	TrGAroC	$MCATECHOL + OH \rightarrow MCATEC1O$	2.0E-10*1.0	Rickard and Pascoe (2009)
G47431	TrGAroC	$TLBIPEROOH + OH \rightarrow TLOBIPEROH + OH$	9.64E-11	Rickard and Pascoe (2009)
G47432	TrGAroCN	$TLBIPERNO3 + OH \rightarrow TLOBIPEROH + NO_2$	7.16E-11	Rickard and Pascoe (2009)
G47433	TrGAroC	TLOBIPEROH + OH \rightarrow C5CO14O2 + GLYOX	7.99E-11	Rickard and Pascoe (2009)
G47434a	TrGAroC	$TLEMUCCO3 + HO_2 \rightarrow C615CO2O2 + CO_2 + OH$	KAPHO2*rco3_oh	Rickard and Pascoe (2009)
G47434b	TrGAroC	$TLEMUCCO3 + HO_2 \rightarrow TLEMUCCO2H + O_3$	KAPH02*rco3_o3	Rickard and Pascoe (2009)
G47434c	TrGAroC	$TLEMUCCO3 + HO_2 \rightarrow TLEMUCCO3H$	KAPHO2*rco3_ooh	Rickard and Pascoe (2009)
G47435	TrGAroCN	$TLEMUCCO3 + NO \rightarrow C615CO2O2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G47436	TrGAroCN	$TLEMUCCO3 + NO_2 \rightarrow TLEMUCPAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)*
G47437	TrGAroCN	$TLEMUCCO3 + NO_3 \rightarrow C615CO2O2 + CO_2 + NO_2$	KR02N03*1.74	Rickard and Pascoe (2009)
G47438	TrGAroC	$TLEMUCCO3 \rightarrow C615CO2O2 + CO_2$	k1_RO2RCO3	Rickard and Pascoe (2009)*
G47439a	TrGAroC	${\rm TLEMUCO2} + {\rm HO_2} \rightarrow {\rm TLEMUCOOH}$	<pre>KRO2HO2(7)*(1-rchohch2o2_ oh-rcoch2o2_oh)</pre>	Rickard and Pascoe (2009)
G47439b	TrGAroC	TLEMUCO2 + $HO_2 \rightarrow .5$ C3DIALO2 + $.5$ CO2H3CHO + $.5$ EPXC4DIAL + $.5$ MGLYOX + $.5$ HO ₂ + OH	<pre>KRO2HO2(7)*(rchohch2o2_oh+ rcoch2o2_oh)</pre>	Rickard and Pascoe (2009)*
G47440a	TrGAroCN	$TLEMUCO2 + NO \rightarrow TLEMUCNO3$	<pre>KRO2NO*alpha_AN(11,2,1,0,0, temp,cair)</pre>	Rickard and Pascoe (2009)
G47440b	TrGAroCN	TLEMUCO2 + NO \rightarrow .5 C3DIALO2 + .5 CO2H3CHO + .5 EPXC4DIAL + .5 MGLYOX + .5 HO ₂ + NO ₂	<pre>KRO2NO*(1alpha_AN(11,2,1,0,0, temp,cair))</pre>	Rickard and Pascoe (2009)*
G47441	TrGAroCN	TLEMUCO2 + NO $_3 \rightarrow .5$ C3DIALO2 + $.5$ CO2H3CHO + $.5$ EPXC4DIAL + $.5$ MGLYOX + $.5$ HO $_2$ + NO $_2$	KRO2NO3	Rickard and Pascoe (2009)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G47442	TrGAroC	$TLEMUCO2 \rightarrow .5 C3DIALO2 + .5 CO2H3CHO + .5$	k1_R02s0R02	Rickard and Pascoe (2009)*
		$EPXC4DIAL + .5 MGLYOX + .5 HO_2$		
G47443a	TrGAroC	$C6H5CO3 + HO_2 \rightarrow C6H5CO3H$	1.1E-11*EXP(364./temp)*0.65	Roth et al. (2010)
G47443b	TrGAroC	$C6H5CO3 + HO_2 \rightarrow C6H5O2 + CO_2 + OH$	1.1E-11*EXP(364./temp)*0.20	Roth et al. (2010)
G47443c	TrGAroC	$C6H5CO3 + HO_2 \rightarrow PHCOOH + O_3$	1.1E-11*EXP(364./temp)*0.15	Roth et al. (2010)
G47444	TrGAroCN	$C6H5CO3 + NO \rightarrow C6H5O2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G47445	TrGAroCN	$C6H5CO3 + NO_2 \rightarrow PBZN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)*
G47446	TrGAroCN	$C6H5CO3 + NO_3 \rightarrow C6H5O2 + CO_2 + NO_2$	KR02N03*1.74	Rickard and Pascoe (2009)
G47447	TrGAroC	$C6H5CO3 \rightarrow C6H5O2 + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)*
G47448	TrGAroC	$CRESOOH + OH \rightarrow CRESO2$	1.15E-10	Rickard and Pascoe (2009)
G47449	TrGAroCN	$NCRESOOH + OH \rightarrow NCRESO2$	1.07E-10	Rickard and Pascoe (2009)
G47450	TrGAroCN	$TOL1OHNO2 + NO_3 \rightarrow NCRES1O + HNO_3$	3.13E-13*1.0	Rickard and Pascoe (2009)
G47451	TrGAroCN	$TOL1OHNO2 + OH \rightarrow NCRES1O$	2.8E-12	Rickard and Pascoe (2009)
G47452	TrGAroC	$OXYL1O2 + HO_2 \rightarrow OXYL1OOH$	KRO2HO2(7)	Rickard and Pascoe (2009)
G47453	TrGAroCN	$OXYL1O2 + NO \rightarrow TOL1O + NO_2$	KRO2NO	Rickard and Pascoe (2009)
G47454	TrGAroCN	$OXYL1O2 + NO_2 \rightarrow TOL1O + NO_3$	K_C6H5O2_NO2	Jagiella and Zabel $(2007)^*$
G47455	TrGAroCN	$OXYL1O2 + NO_3 \rightarrow TOL1O + NO_2$	KR02N03	Rickard and Pascoe (2009)
G47456	TrGAroC	$OXYL1O2 \rightarrow TOL1O$	k1_R02sR02	Rickard and Pascoe (2009)
G47457	TrGAroCN	$MCATEC1O + NO_2 \rightarrow MNCATECH$	k_C6H5O_NO2	Rickard and Pascoe (2009), Platz
				et al. (1998)
G47458	TrGAroC	$MCATEC1O + O_3 \rightarrow MCATEC1O2$	k_C6H5O_O3	Rickard and Pascoe (2009), Tao
				and Li (1999)
G47459	TrGAroC	$TLEMUCCO2H + OH \rightarrow C615CO2O2 + CO_2$	5.98E-11	Rickard and Pascoe (2009)
G47460	TrGAroC	$TLEMUCCO3H + OH \rightarrow TLEMUCCO3$	6.29E-11	Rickard and Pascoe (2009)
G47461	TrGAroCN	$TLEMUCPAN + OH \rightarrow C5DICARB + CO + CO_2 + NO_2$	5.96E-11	Rickard and Pascoe (2009)
G47462	TrGAroCN	$TLEMUCPAN \rightarrow TLEMUCCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G47463	TrGAroC	$TLEMUCOOH + OH \rightarrow TLEMUCCO + OH$	7.04E-11	Rickard and Pascoe (2009)
G47464	TrGAroCN	$TLEMUCNO3 + OH \rightarrow TLEMUCCO + NO_2$	3.06E-11	Rickard and Pascoe (2009)
G47465	TrGAroC	$TLEMUCCO + OH \rightarrow CH_3C(O) + EPXC4DIAL + CO$	4.06E-11	Rickard and Pascoe (2009)
G47466	TrGAroC	$C6H5CO3H + OH \rightarrow C6H5CO3$	4.66E-12	Rickard and Pascoe (2009)
G47467	TrGAroC	$PHCOOH + OH \rightarrow C6H5O2 + CO_2$	1.10E-12	Rickard and Pascoe (2009)
G47468	TrGAroCN	$PBZN + OH \rightarrow C6H5OOH + CO + NO_2$	1.06E-12	Rickard and Pascoe (2009)
G47469	TrGAroCN	$PBZN \rightarrow C6H5CO3 + NO_2$	k_PAN_M*0.67	Rickard and Pascoe (2009)
G47470	TrGAroCN	$PTLQONE + NO_3 \rightarrow NPTLQO2$	1.00E-12	Rickard and Pascoe (2009)
G47471	TrGAroC	$PTLQONE + OH \rightarrow PTLQO2$	2.3E-11	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G47472	TrGAroCN	$NCRES1O + NO_2 \rightarrow DNCRES$	k_C6H5O_NO2	Rickard and Pascoe (2009), Platz et al. (1998)
G47473	TrGAroCN	$NCRES1O + O_3 \rightarrow NCRES1O2$	k_C6H5O_O3	Rickard and Pascoe (2009), Tao and Li (1999)
G47474	TrGAroC	$OXYL1OOH + OH \rightarrow OXYL1O2$	4.65E-11	Rickard and Pascoe (2009)
G47475	TrGAroCN	$MNCATECH + NO_3 \rightarrow MNNCATECO_2$	5.03E-12	Rickard and Pascoe (2009)
G47476	TrGAroCN	$MNCATECH + OH \rightarrow MNCATECO2$	6.83E-12	Rickard and Pascoe (2009)
G47477	TrGAroC	$MCATEC1O2 + HO_2 \rightarrow MCATEC1OOH$	KRO2HO2(7)	Rickard and Pascoe (2009)
G47478	TrGAroCN	$MCATEC1O2 + NO \rightarrow MCATEC1O + NO_2$	KRO2NO	Rickard and Pascoe (2009)
G47479	TrGAroCN	$MCATEC1O2 + NO_2 \rightarrow MCATEC1O + NO_3$	K_C6H5O2_NO2	Jagiella and Zabel $(2007)^*$
G47480	TrGAroCN	$MCATEC1O2 + NO_3 \rightarrow MCATEC1O + NO_2$	KR02N03	Rickard and Pascoe (2009)
G47481	TrGAroC	$MCATEC1O2 \rightarrow MCATEC1O$	k1_R02s0R02	Rickard and Pascoe (2009)
G47482a	TrGAroCN	$NPTLQO2 + HO_2 \rightarrow NPTLQOOH$	KRO2HO2(7)*(1-rcoch2o2_oh)	Rickard and Pascoe (2009)
G47482b	TrGAroCN	$NPTLQO2 + HO_2 \rightarrow C7CO4DB + NO_2 + OH$	KRO2HO2(7)*rcoch2o2_oh	Rickard and Pascoe (2009)*
G47483	TrGAroCN	$NPTLQO2 + NO \rightarrow C7CO4DB + NO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G47484	TrGAroCN	$NPTLQO2 + NO_3 \rightarrow C7CO4DB + NO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G47485	TrGAroCN	$NPTLQO2 \rightarrow C7CO4DB + NO_2$	k1_R02s0R02	Rickard and Pascoe (2009)*
G47486a	TrGAroC	$\mathrm{PTLQO2} + \mathrm{HO_2} \rightarrow \mathrm{PTLQOOH}$	<pre>KR02H02(7)*(1-rchohch2o2_ oh-rcoch2o2_oh)</pre>	Rickard and Pascoe (2009)
G47486b	TrGAroC	$\mathrm{PTLQO2} + \mathrm{HO_2} \rightarrow \mathrm{C6CO2OHCO3} + \mathrm{OH}$	<pre>KRO2HO2(7)*(rchohch2o2_oh+ rcoch2o2_oh)</pre>	Rickard and Pascoe $(2009)^*$
G47487	TrGAroCN	$PTLQO2 + NO \rightarrow C6CO2OHCO3 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G47488	TrGAroCN	$PTLQO2 + NO_3 \rightarrow C6CO2OHCO3 + NO_2$	KR02N03	Rickard and Pascoe (2009)*
G47489	TrGAroC	$PTLQO2 \rightarrow C6CO2OHCO3$	k1_R02s0R02	Rickard and Pascoe (2009)*
G47490	TrGAroCN	$DNCRES + NO_3 \rightarrow NDNCRESO2$	7.83E-15	Rickard and Pascoe (2009)
G47491	TrGAroCN	$\text{DNCRES} + \text{OH} \rightarrow \text{DNCRESO2}$	5.10E-14	Rickard and Pascoe (2009)
G47492	TrGAroCN	$NCRES1O2 + HO_2 \rightarrow NCRES1OOH$	KRO2HO2(7)	Rickard and Pascoe (2009)
G47493	TrGAroCN	$NCRES1O2 + NO \rightarrow NCRES1O + NO_2$	KRO2NO	Rickard and Pascoe (2009)
G47494	TrGAroCN	$NCRES1O2 + NO_2 \rightarrow NCRES1O + NO_3$	K_C6H5O2_NO2	Jagiella and Zabel $(2007)^*$
G47495	TrGAroCN	$NCRES1O2 + NO_3 \rightarrow NCRES1O + NO_2$	KR02N03	Rickard and Pascoe (2009)
G47496	TrGAroCN	$NCRES1O2 \rightarrow NCRES1O$	k1_R02sR02	Rickard and Pascoe (2009)
G47497a	TrGAroCN	$MNNCATECO2 + HO_2 \rightarrow MNNCATCOOH$	<pre>KRO2HO2(7)*(1-rchohch2o2_oh)</pre>	Rickard and Pascoe (2009)
G47497b	TrGAroCN	$\begin{array}{l} {\rm MNNCATECO2 + HO_2 \rightarrow NC4MDCO2HN + HCOCO_2H} \\ + {\rm NO_2 + OH} \end{array}$	KRO2HO2(7)*rchohch2o2_oh	Rickard and Pascoe (2009)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G47498	TrGAroCN	$MNNCATECO2 + NO \rightarrow NC4MDCO2HN + HCOCO_2H$	KRO2NO	Rickard and Pascoe (2009)*
		$+ NO_2 + NO_2$		` ,
G47499	TrGAroCN	$MNNCATECO2 + NO_3 \rightarrow NC4MDCO2HN + HCOCO_2H$	KR02N03	Rickard and Pascoe (2009)*
		$+ NO_2 + NO_2$		
G47500	TrGAroCN	$MNNCATECO2 \rightarrow NC4MDCO2HN + HCOCO_2H + NO_2$	k1_R02ISOPD02	Rickard and Pascoe (2009)
G47501a	TrGAroCN	$MNCATECO2 + HO_2 \rightarrow MNCATECOOH$	<pre>KRO2HO2(7)*(1-rchohch2o2_oh)</pre>	Rickard and Pascoe (2009)
G47501b	TrGAroCN	$MNCATECO2 + HO_2 \rightarrow NC4MDCO2HN + HCOCO_2H$	KRO2HO2(7)*rchohch2o2_oh	Rickard and Pascoe (2009)*
		$+ HO_2 + OH$		
G47502	TrGAroCN	$MNCATECO2 + NO \rightarrow NC4MDCO2HN + HCOCO_2H +$	KRO2NO	Rickard and Pascoe $(2009)^*$
		$\mathrm{HO_2} + \mathrm{NO_2}$		
G47503	TrGAroCN	$MNCATECO2 + NO_3 \rightarrow NC4MDCO2HN + HCOCO_2H$	KRO2NO3	Rickard and Pascoe $(2009)^*$
		$+ HO_2 + NO_2$		
G47504	TrGAroCN	$MNCATECO2 \rightarrow NC4MDCO2HN + HCOCO_2H + HO_2$	k1_RO2ISOPDO2	Rickard and Pascoe $(2009)^*$
G47505	TrGAroC	$MCATEC1OOH + OH \rightarrow MCATEC1O2$	2.05E-10	Rickard and Pascoe (2009)
G47506	TrGAroCN	$NPTLQOOH + OH \rightarrow NPTLQO2$	8.56E-11	Rickard and Pascoe (2009)
G47507	TrGAroC	$PTLQOOH + OH \rightarrow PTLQCO + OH$	1.42E-10	Rickard and Pascoe (2009)
G47508	TrGAroC	$PTLQCO + OH \rightarrow C6CO2OHCO3$	7.95E-11	Rickard and Pascoe (2009)
G47509a	TrGAroCN	$NDNCRESO2 + HO_2 \rightarrow NDNCRESOOH$	KRO2HO2(7)*(1-rchohch2o2_oh)	Rickard and Pascoe (2009)
G47509b	TrGAroCN	$NDNCRESO2 + HO_2 \rightarrow NC4MDCO2HN + HNO_3 + 2$	KRO2HO2(7)*rchohch2o2_oh	Rickard and Pascoe $(2009)^*$
		$CO + NO_2 + OH$		
G47510	TrGAroCN	$NDNCRESO2 + NO \rightarrow NC4MDCO2HN + HNO_3 + 2 CO$	KRO2NO	Rickard and Pascoe $(2009)^*$
		$+ NO_2 + NO_2$		
G47511	TrGAroCN	$NDNCRESO2 + NO_3 \rightarrow NC4MDCO2HN + HNO_3 + 2$	KRO2NO3	Rickard and Pascoe $(2009)^*$
		$CO + NO_2 + NO_2$		
G47512	TrGAroCN	$NDNCRESO2 \rightarrow NC4MDCO2HN + HNO_3 + 2CO + NO_2$	k1_RO2ISOPDO2	Rickard and Pascoe (2009)*
G47513a	TrGAroCN	$DNCRESO2 + HO_2 \rightarrow DNCRESOOH$	KRO2HO2(7)*(1-rchohch2o2_oh)	Rickard and Pascoe (2009)
G47513b	TrGAroCN	$DNCRESO2 + HO_2 \rightarrow NC4MDCO2HN + HCOCO_2H +$	KRO2HO2(7)*rchohch2o2_oh	Rickard and Pascoe $(2009)^*$
		$NO_2 + OH$		
G47514	TrGAroCN	$DNCRESO2 + NO \rightarrow NC4MDCO2HN + HCOCO_2H +$	KRO2NO	Rickard and Pascoe $(2009)^*$
	E G 1 G 2	$NO_2 + NO_2$		D. 1 . 1 . D. (2222)
G47515	TrGAroCN	$DNCRESO2 + NO_3 \rightarrow NC4MDCO2HN + HCOCO_2H +$	KR02N03	Rickard and Pascoe (2009)*
		$NO_2 + NO_2$		
G47516		$DNCRESO2 \rightarrow NC4MDCO2HN + HCOCO_2H + NO_2$	k1_RO2ISOPDO2	Rickard and Pascoe (2009)*
G47517	TrGAroCN	$NCRES1OOH + OH \rightarrow NCRES1O2$	1.53E-12	Rickard and Pascoe (2009)
G47518	TrGAroCN	$MNNCATCOOH + OH \rightarrow MNNCATECO2$	k_roohro	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G47519	TrGAroCN	$MNCATECOOH + OH \rightarrow MNCATECO2$	k_roohro	Rickard and Pascoe (2009)
G47520	TrGAroC	$C7CO4DB + OH \rightarrow CO + CO + CH_3C(O) +$	9.58E-11	Rickard and Pascoe (2009)
		НСОСОСНО		
G47521a	TrGAroC	$C6CO2OHCO3 + HO_2 \rightarrow C5134CO2OH + HO_2 + CO +$	KAPHO2*rco3_oh	Rickard and Pascoe (2009)
0.475041	TD CIA C	$CO_2 + OH$	WARRIOO . (D: 1 1 1 D (2000)
G47521b	TrGAroC	$C6CO2OHCO3 + HO_2 \rightarrow C6COOHCO3H$	KAPHO2*(rco3_ooh+rco3_o3)	Rickard and Pascoe (2009)
G47522	TrGAroCN	$C6CO2OHCO3 + NO \rightarrow C5134CO2OH + HO_2 + CO + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G47523	TrGAroCN	$C6CO2OHCO3 + NO_2 \rightarrow C6CO2OHPAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G47524	TrGAroCN	$C6CO2OHCO3 + NO_3 \rightarrow C5134CO2OH + HO_2 + CO +$	KR02N03*1.74	Rickard and Pascoe (2009)
		$CO_2 + NO_2$,
G47525	TrGAroC	$C6CO2OHCO3 \rightarrow C5134CO2OH + HO_2 + CO + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)
G47526	TrGAroCN	$NDNCRESOOH + OH \rightarrow NDNCRESO2$	k_roohro	Rickard and Pascoe (2009)
G47527	TrGAroCN	$\mathrm{DNCRESOOH} + \mathrm{OH} \rightarrow \mathrm{DNCRESO2}$	k_roohro	Rickard and Pascoe (2009)
G47528	TrGAroC	$C6COOHCO3H + OH \rightarrow C6CO2OHCO3$	9.29E-11	Rickard and Pascoe (2009)
G47529	TrGAroCN	$C6CO2OHPAN + OH \rightarrow C5134CO2OH + CO + CO +$	8.96E-11	Rickard and Pascoe (2009)
		NO_2		
G47530	TrGAroCN	$C6CO2OHPAN \rightarrow C6CO2OHCO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G48200	TrGTerC	$C85O2 \rightarrow C86O2$	k1_R02tR02	Rickard and Pascoe (2009)
G48201	TrGTerC	$C85O2 + HO_2 \rightarrow C85OOH$	KRO2HO2(8)	Rickard and Pascoe (2009)
G48202	TrGTerCN	$C85O2 + NO \rightarrow C86O2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G48203	TrGTerC	$C85OOH + OH \rightarrow C85O2$	1.29E-11	Rickard and Pascoe (2009)
G48204	TrGTerC	$C86O2 \rightarrow C511O2 + CH_3COCH_3$	k1_R02tR02	Rickard and Pascoe (2009)
G48205	TrGTerCN	$C86O2 + NO \rightarrow C511O2 + CH_3COCH_3 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G48206	TrGTerC	$C86O2 + HO_2 \rightarrow C86OOH$	KRO2HO2(8)	Rickard and Pascoe (2009)
G48207	TrGTerC	$C86OOH + OH \rightarrow C86O2$	3.45E-11	Rickard and Pascoe (2009)
G48208	TrGTerC	$C811O2 \rightarrow C812O2$	k1_R02pR02	Rickard and Pascoe (2009)
G48209	TrGTerC	$C811O2 + HO_2 \rightarrow 8 LCARBON$	KRO2HO2(8)	Rickard and Pascoe (2009)
G48210	TrGTerCN	$C811O2 + NO \rightarrow C812O2 + NO_2$	KRO2NO	Rickard and Pascoe $(2009)^*$
G48211	TrGTerC	$C812O2 \rightarrow C813O2$	k1_R02t0R02	Rickard and Pascoe (2009)
G48212	TrGTerCN	$C812O2 + NO \rightarrow C813O2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G48213	TrGTerC	$C812O2 + HO_2 \rightarrow C812OOH$	KRO2HO2(8)	Rickard and Pascoe (2009)
G48214	TrGTerC	$C812OOH + OH \rightarrow C812O2$	1.09E-11	Rickard and Pascoe (2009)
G48215	TrGTerC	$C813O2 \rightarrow CH_3COCH_3 + C512O2$	k1_R02tR02	Rickard and Pascoe (2009)
G48216	TrGTerCN	$C813O2 + NO \rightarrow CH_3COCH_3 + C512O2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G48217	TrGTerC	$C813O2 + HO_2 \rightarrow C813OOH$	KRO2HO2(8)	Rickard and Pascoe (2009)
G48218	TrGTerC	$C813OOH + OH \rightarrow C813O2$	1.86E-11	Rickard and Pascoe (2009)
G48219	TrGTerCN	$C721CHO + NO_3 \rightarrow C721CO3 + HNO_3$	KNO3AL*8.5	Rickard and Pascoe (2009)
G48220	TrGTerC	$C721CHO + OH \rightarrow C721CO3$	2.63E-11	Rickard and Pascoe (2009)
G48221a	TrGTerC	$C721CO3 + HO_2 \rightarrow C721CO3H$	KAPHO2*rco3_ooh	Rickard and Pascoe (2009)
G48221b	TrGTerC	$C721CO3 + HO_2 \rightarrow C721O2 + CO_2 + OH$	KAPHO2*rco3_oh	Rickard and Pascoe (2009)
G48221c	TrGTerC	$C721CO3 + HO_2 \rightarrow NORPINIC + O_3$	KAPHO2*rco3_o3	Rickard and Pascoe (2009)
G48222	TrGTerCN	$C721CO3 + NO \rightarrow C721O2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)*
G48223	TrGTerCN	$C721CO3 + NO_2 \rightarrow C721PAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G48224	TrGTerCN	$C721CO3 + NO_3 \rightarrow C721O2 + CO_2 + NO_2$	KR02N03*1.74	Rickard and Pascoe (2009)
G48225	TrGTerC	$C721CO3 \rightarrow C721O2 + CO_2$	k1_R02RC03*0.9	Sander et al. (2018)
G48226	TrGTerC	$C721CO3 \rightarrow NORPINIC$	k1_R02RC03*0.1	Sander et al. (2018)
G48227	TrGTerC	$C721CO3H + OH \rightarrow C721CO3$	9.65E-12	Rickard and Pascoe (2009)
G48228	TrGTerC	$NORPINIC + OH \rightarrow C721O2 + CO_2$	6.57E-12	Rickard and Pascoe (2009)
G48229	TrGTerCN	$C721PAN + OH \rightarrow C721OOH + CO + NO_2$	2.96E-12	Rickard and Pascoe (2009)
G48230	TrGTerCN	$C721PAN \rightarrow C721CO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G48231	TrGTerC	$C8BC + OH \rightarrow C8BCO2$	3.04E-12	Rickard and Pascoe (2009)
G48232	TrGTerC	$C8BCO2 + HO_2 \rightarrow C8BCOOH$	KRO2HO2(8)	Rickard and Pascoe (2009)
G48233a	TrGTerCN	$C8BCO2 + NO \rightarrow C89O2 + NO_2$	<pre>KRO2NO*(1alpha_AN(8,2,0,0,0, temp,cair))</pre>	Rickard and Pascoe (2009)
G48233b	TrGTerCN	$C8BCO2 + NO \rightarrow C8BCNO3$	<pre>KRO2NO*alpha_AN(8,2,0,0,0,temp, cair)</pre>	Rickard and Pascoe (2009)
G48234	TrGTerC	$C8BCO2 \rightarrow C89O2$	k1_R02sR02	Rickard and Pascoe (2009)
G48235	TrGTerC	$C8BCOOH + OH \rightarrow C8BCCO + OH$	1.62E-11	Rickard and Pascoe (2009)
G48236	TrGTerCN	$C8BCNO3 + OH \rightarrow C8BCCO + NO_2$	1.84E-12	Rickard and Pascoe (2009)
G48237	TrGTerC	$C8BCCO + OH \rightarrow C89O2$	3.94E-12	Rickard and Pascoe (2009)
G48238	TrGTerC	$C89O2 + HO_2 \rightarrow C89OOH$	KRO2HO2(8)	Rickard and Pascoe (2009)
G48239a	TrGTerCN	$\mathrm{C89O2} + \mathrm{NO} \rightarrow \mathrm{C810O2} + \mathrm{NO}_2$	<pre>KRO2NO*(1alpha_AN(7,2,0,0,0, temp,cair))</pre>	Rickard and Pascoe (2009)
G48239b	TrGTerCN	$C89O2 + NO \rightarrow C89NO3$	<pre>KRO2NO*alpha_AN(7,2,0,0,0,temp, cair)</pre>	Rickard and Pascoe (2009)
G48240	$\operatorname{TrGTerCN}$	$C89O2 + NO_3 \rightarrow C810O2 + NO_2$	KRO2NO3	Rickard and Pascoe (2009)
G48241	TrGTerC	$C89O2 \rightarrow C810O2$	k1_R02tR02	Rickard and Pascoe (2009)
G48242	TrGTerC	$C89OOH + OH \rightarrow C89O2$	3.61E-11	Rickard and Pascoe (2009)
G48243	$\operatorname{TrGTerCN}$	$C89NO3 + OH \rightarrow CH_3COCH_3 + CO13C4CHO + NO_2$	2.56E-11	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G48244	TrGTerC	$C810O2 + HO_2 \rightarrow C810OOH$	KRO2HO2(8)	Rickard and Pascoe (2009)
G48245a	TrGTerCN	$C810O2 + NO \rightarrow CH_3COCH_3 + C514O2 + NO_2$	<pre>KRO2NO*(1alpha_AN(10,3,0,0,0,</pre>	Rickard and Pascoe (2009)
			temp,cair))	
G48245b	TrGTerCN	$C810O2 + NO \rightarrow C810NO3$	$KRO2NO*alpha_AN(10,3,0,0,0,$	Rickard and Pascoe (2009)
			temp,cair)	
G48246	TrGTerCN	$C810O2 + NO_3 \rightarrow CH_3COCH_3 + C514O2 + NO_2$	KRO2NO3	Rickard and Pascoe (2009)
G48247	TrGTerC	$C810O2 \rightarrow CH_3COCH_3 + C514O2$	k1_R02tR02	Rickard and Pascoe (2009)
G48248	TrGTerC	$C810OOH + OH \rightarrow C810O2$	8.35E-11	Rickard and Pascoe (2009)
G48249	TrGTerCN	$C810NO3 + OH \rightarrow CH_3COCH_3 + CO13C4CHO + NO_2$	4.96E-11	Rickard and Pascoe (2009)
G48400a	TrGAroC	$LXYL + OH \rightarrow TLEPOXMUC + HO_2 + LCARBON$	0.401E-11	Rickard and Pascoe (2009)*
G48400b	TrGAroC	$LXYL + OH \rightarrow C6H5CH2O2 + LCARBON$	0.101E-11	Rickard and Pascoe $(2009)^*$
G48400c	TrGAroC	$LXYL + OH \rightarrow CRESOL + LCARBON$	0.261E-11	Rickard and Pascoe (2009)*
G48400d	TrGAroC	$LXYL + OH \rightarrow TLBIPERO2 + HO_2 + LCARBON$	0.932E-11	Rickard and Pascoe (2009)*
G48401	TrGAroCN	$LXYL + NO_3 \rightarrow C6H5CH2O2 + HNO_3 + LCARBON$	3.9E-16	Rickard and Pascoe (2009)*
G48402	TrGAroC	$EBENZ + OH \rightarrow .10 \text{ TLEPOXMUC} + .07 \text{ C6H5CH2O2} +$	7.00E-12	Rickard and Pascoe (2009)*
		$.18 \text{ CRESOL} + .65 \text{ TLBIPERO2} + .28 \text{ HO}_2 + \text{LCARBON}$		
G48403	TrGAroCN	$EBENZ + NO_3 \rightarrow C6H5CH2O2 + HNO_3 + LCARBON$	1.20E-16	Rickard and Pascoe (2009)*
G48404	TrGAroCN	$STYRENE + NO_3 \rightarrow NSTYRENO2$	1.50E-12	Rickard and Pascoe (2009)
G48405	TrGAroC	STYRENE $+ O_3 \rightarrow .545 \text{ HCHO} + .1 \text{ BENZENE} + .28$	1.70E-17	Rickard and Pascoe (2009)*
		$C6H5O2 + .56 CO + .36 OH + .28 HO_2 + .075 PHCOOH$		
		$+ .545 \text{ BENZAL} + .09 \text{ H}_2\text{O}_2 + .075 \text{ HCOOH} + .2 \text{ CO}_2$		
G48406	TrGAroC	$STYRENE + OH \rightarrow STYRENO2$	5.80E-11	Rickard and Pascoe (2009)
G48407	TrGAroCN	$NSTYRENO2 + HO_2 \rightarrow NSTYRENOOH$	KRO2HO2(8)	Rickard and Pascoe (2009)
G48408	TrGAroCN	$NSTYRENO2 + NO \rightarrow NO_2 + NO_2 + HCHO + BENZAL$	KRO2NO	Rickard and Pascoe (2009)*
G48409	TrGAroCN	$NSTYRENO2 + NO_3 \rightarrow NO_2 + NO_2 + HCHO +$	KR02N03	Rickard and Pascoe (2009)*
		BENZAL		
G48410	TrGAroCN	$NSTYRENO2 \rightarrow NO_2 + HCHO + BENZAL$	k1_R02sR02	Rickard and Pascoe (2009)*
G48411	TrGAroCN	$NSTYRENOOH + OH \rightarrow NSTYRENO2$	6.16E-11	Rickard and Pascoe (2009)
G48412a	TrGAroC	$STYRENO2 + HO_2 \rightarrow STYRENOOH$	KRO2HO2(8)*(1-rchohch2o2_oh)	Rickard and Pascoe (2009)
G48412b	TrGAroC	$STYRENO2 + HO_2 \rightarrow HO_2 + OH + HCHO + BENZAL$	KRO2HO2(8)*rchohch2o2_oh	Rickard and Pascoe (2009)*
G48413	TrGAroCN	$STYRENO2 + NO \rightarrow NO_2 + HO_2 + HCHO + BENZAL$	KRO2NO	Rickard and Pascoe (2009)*
G48414	TrGAroCN	$STYRENO2 + NO_3 \rightarrow NO_2 + HO_2 + HCHO + BENZAL$	KRO2NO3	Rickard and Pascoe (2009)*
G48415	TrGAroC	$STYRENO2 \rightarrow HO_2 + HCHO + BENZAL$	k1_R02sR02	Rickard and Pascoe (2009)*
G48416	TrGAroC	$STYRENOOH + OH \rightarrow STYRENO2$	6.16E-11	Rickard and Pascoe (2009)
G49200	TrGTerC	$C96O2 \rightarrow C97O2$	k1_R02pR02	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G49201	TrGTerC	$C96O2 + HO_2 \rightarrow C96OOH$	KRO2HO2(9)	Rickard and Pascoe (2009)
G49202a	TrGTerCN	$C96O2 + NO \rightarrow C97O2 + NO_2$	<pre>KRO2NO*(1alpha_AN(10,1,0,0,0,</pre>	Rickard and Pascoe (2009)
			temp,cair))	
G49202b	TrGTerCN	$C96O2 + NO \rightarrow C96NO3$	KRO2NO*alpha_AN(10,1,0,0,0,	Rickard and Pascoe (2009)
			temp,cair)	
G49203	TrGTerCN	$C96NO3 + OH \rightarrow NORPINAL + NO_2$	2.88E-12	Rickard and Pascoe (2009)
G49204a	TrGTerC	$C96OOH + OH \rightarrow C96O2$	k_roohro	Rickard and Pascoe (2009)
G49205b	TrGTerC	$C96OOH + OH \rightarrow NORPINAL + OH$	1.30E-11	Rickard and Pascoe (2009)
G49206	TrGTerC	$C97O2 \rightarrow C98O2$	k1_R02tR02	Rickard and Pascoe (2009)
G49207	TrGTerCN	$C97O2 + NO \rightarrow C98O2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G49208a	TrGTerC	$C97O2 + HO_2 \rightarrow C97OOH$	KRO2HO2(9)*rcoch2o2_ooh	Rickard and Pascoe (2009),
				Sander et al. (2018)
G49208b	TrGTerC	$C97O2 + HO_2 \rightarrow C98O2 + OH$	KRO2HO2(9)*rcoch2o2_oh	Rickard and Pascoe (2009),
				Sander et al. (2018)
G49209	TrGTerC	$C97OOH + OH \rightarrow C97O2$	1.05E-11	Rickard and Pascoe (2009)
G49210	TrGTerC	$C98O2 \rightarrow C614O2 + CH_3COCH_3$	k1_R02tR02	Rickard and Pascoe (2009)
G49211a	TrGTerCN	$C98O2 + NO \rightarrow C614O2 + CH_3COCH_3 + NO_2$	$KRO2NO*(1alpha_AN(12,3,0,0,0,$	Rickard and Pascoe (2009)
			temp,cair))	
G49211b	TrGTerCN	$C98O2 + NO \rightarrow 9 LCARBON + LNITROGEN$	$KRO2NO*alpha_AN(12,3,0,0,0,$	Rickard and Pascoe (2009)
			temp,cair)	
G49212	TrGTerC	$C98O2 + HO_2 \rightarrow C98OOH$	KR02H02(9)	Rickard and Pascoe (2009)
G49213	TrGTerC	$C98OOH + OH \rightarrow C98O2$	2.05E-11	Rickard and Pascoe (2009)
G49214	TrGTerC	$NORPINAL + OH \rightarrow C85CO3$	2.64E-11	Rickard and Pascoe (2009)
G49215	TrGTerCN	$NORPINAL + NO_3 \rightarrow C85CO3 + HNO_3$	KNO3AL*8.5	Rickard and Pascoe (2009)
G49216	TrGTerC	$C85CO3 \rightarrow C85O2 + CO_2$	k1_R02RC03	Rickard and Pascoe (2009)
G49217	TrGTerCN	$C85CO3 + NO \rightarrow C85O2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G49218	TrGTerCN	$C85CO3 + NO_2 \rightarrow C9PAN2$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G49219a	TrGTerC	$C85CO3 + HO_2 \rightarrow C85CO3H$	KAPHO2*(rco3_ooh+rco3_o3)	Rickard and Pascoe (2009)
G49219b	TrGTerC	$C85CO3 + HO_2 \rightarrow C85O2 + CO_2 + OH$	KAPHO2*rco3_oh	Rickard and Pascoe (2009)
G49220	TrGTerCN	$C9PAN2 \rightarrow C85CO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G49221	TrGTerCN	$C9PAN2 + OH \rightarrow C85OOH + CO + NO_2$	6.60E-12	Rickard and Pascoe (2009)
G49222	TrGTerC	$C85CO3H + OH \rightarrow C85CO3$	1.02E-11	Rickard and Pascoe (2009)
G49223a	TrGTerC	$C89CO3 \rightarrow .8 C811CO3 + .2 C89O2 + .2 CO_2$	k1_R02RC03*0.9	Sander et al. (2018)
G49223b	TrGTerC	$C89CO3 \rightarrow C89CO2H$	k1_R02RC03*0.1	Sander et al. (2018)
G49224a	TrGTerC	$C89CO3 + HO_2 \rightarrow C89CO3H$	KAPHO2*rco3_ooh	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G49224b	TrGTerC	$C89CO3 + HO_2 \rightarrow C89CO2H + O_3$ KAPHO2*rco3_o3 Rickard		Rickard and Pascoe (2009)
G49224c	TrGTerC	C89CO3 + HO₂ → .80 C811CO3 + .20 C89O2 + .2 CO₂ KAPHO2*rco3_oh Rickard and I + OH		Rickard and Pascoe (2009)
G49225	TrGTerCN	$C89CO3 + NO_2 \rightarrow C89PAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G49226	TrGTerCN	C89CO3 + NO \rightarrow .8 C811CO3 + .2 C89O2 + .2 CO ₂ + NO ₂	KAPNO	Rickard and Pascoe (2009)
G49227	TrGTerC	$\mathrm{C89CO2H} + \mathrm{OH} \rightarrow .8 \ \mathrm{C811CO3} + .2 \ \mathrm{C89O2} + .2 \ \mathrm{CO}_2$	2.69E-11	Rickard and Pascoe (2009)
G49228	TrGTerC	$C89CO3H + OH \rightarrow C89CO3$	3.00E-11	Rickard and Pascoe (2009)
G49229	TrGTerCN	$C89PAN \rightarrow C89CO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)
G49230	TrGTerCN	$C89PAN + OH \rightarrow CH_3COCH_3 + CO13C4CHO + CO + NO_2$	2.52E-11	Rickard and Pascoe (2009)
G49231a	TrGTerC	$C811CO3 \rightarrow C811O2 + CO_2$	k1_R02RC03*0.9	Sander et al. (2018)
G49231b	TrGTerC	$C811CO3 \rightarrow PINIC$	k1_R02RC03*0.1	Sander et al. (2018)
G49232a	TrGTerC	$C811CO3 + HO_2 \rightarrow C811CO3H$	KAPHO2*rco3_ooh	Rickard and Pascoe (2009)
G49232b	TrGTerC	$C811CO3 + HO_2 \rightarrow PINIC + O_3$	KAPHO2*rco3_o3	Rickard and Pascoe (2009)
G49232c	TrGTerC	$C811CO3 + HO_2 \rightarrow C811O2 + CO_2 + OH$	KAPHO2*rco3_oh	Rickard and Pascoe (2009)
G49233	TrGTerCN	$C811CO3 + NO \rightarrow C811O2 + CO_2 + NO_2$	KAPNO	Rickard and Pascoe (2009)
G49234	TrGTerCN	$C811CO3 + NO_2 \rightarrow C811PAN$	k_CH3CO3_NO2	Rickard and Pascoe (2009)
G49235	TrGTerC	$PINIC + OH \rightarrow C811O2 + CO_2$	7.29E-12	Rickard and Pascoe (2009)
G49236	TrGTerC	$NOPINONE + OH \rightarrow NOPINDO2$	1.55E-11	Capouet et al. (2008), Rickard and Pascoe (2009)
G49237a	TrGTerC	$NOPINDO2 + HO_2 \rightarrow NOPINDOOH$	KRO2HO2(9)*rcoch2o2_ooh	Rickard and Pascoe (2009), Sander et al. (2018)
G49237b	TrGTerC	$NOPINDO2 + HO_2 \rightarrow C89CO3 + OH$	KRO2HO2(9)*rcoch2o2_oh	Rickard and Pascoe (2009), Sander et al. (2018)
G49238	TrGTerCN	$NOPINDO2 + NO \rightarrow C89CO3 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G49239	TrGTerC	$NOPINDO2 \rightarrow C89CO3$	k1_R02p0R02	Rickard and Pascoe (2009)
G49240	TrGTerC	$NOPINDOOH \rightarrow NOPINDCO$	2.63E-11	Rickard and Pascoe (2009)
G49241	TrGTerC	$NOPINDCO + OH \rightarrow C89CO3$	3.07E-12	Rickard and Pascoe (2009)
G49242	TrGTerC	$NOPINOO \rightarrow NOPINONE + H_2O_2$	6.00E-18*c(ind_H20)	Rickard and Pascoe (2009)
G49243	TrGTerC	$NOPINOO + CO \rightarrow NOPINONE + CO_2$	1.2E-15	Rickard and Pascoe (2009)
G49244	TrGTerCN	$NOPINOO + NO \rightarrow NOPINONE + NO_2$	1.E-14	Rickard and Pascoe (2009)
G49245	TrGTerCN	$NOPINOO + NO_2 \rightarrow NOPINONE + NO_3$	1.E-15	Rickard and Pascoe (2009)
G49246	TrGTerC	NORPINENOL + OH \rightarrow HCOOH + OH + C86O2	k_CH2CHOH_OH_HCOOH	Sander et al. (2018) , So et al. $(2014)^*$

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference	
G49247	TrGTerC	$NORPINENOL + HCOOH \rightarrow NORPINAL + HCOOH$	k_CH2CH0H_HC00H	Sander et al. (2018), da Silva (2010)*	
G49248	TrGTerC	$NORPINAL + HCOOH \rightarrow NORPINENOL + HCOOH$	k_ALD_HCOOH	Sander et al. (2018), da Silva (2010)*	
G49249	TrGTerC	$C811CO3H + OH \rightarrow C811CO3$	1.04E-11	Rickard and Pascoe (2009)	
G49250	TrGTerCN	$C811PAN \rightarrow C811CO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)	
G49251	TrGTerCN	$C811PAN + OH \rightarrow C721CHO + CO + NO_2$	6.77E-12	Rickard and Pascoe (2009)	
G49400a	TrGAroC	$LTMB + OH \rightarrow TLEPOXMUC + HO_2 + 2 LCARBON$	0.827E-11	Rickard and Pascoe (2009)*	
G49400b	TrGAroC	$LTMB + OH \rightarrow C6H5CH2O2 + 2 LCARBON$	0.189E-11	Rickard and Pascoe (2009)*	
G49400c	TrGAroC	$LTMB + OH \rightarrow CRESOL + 2 LCARBON$	0.141E-11	Rickard and Pascoe (2009)*	
G49400d	TrGAroC	$LTMB + OH \rightarrow TLBIPERO2 + HO_2 + 2 LCARBON$	2.917E-11	Rickard and Pascoe (2009)*	
G49401	TrGAroCN	$LTMB + NO_3 \rightarrow C6H5CH2O2 + HNO_3 + 2 LCARBON$	1.52E-15	Rickard and Pascoe (2009)*	
G40200	TrGTerC	APINENE + OH \rightarrow .75 LAPINABO2 + .15 MENTHEN6ONE + .15 HO ₂ + .10 ROO6R1O2	1.2E-11*EXP(440./TEMP)	Atkinson et al. (2006)*	
G40201a	TrGTerCN	$LAPINABO2 + NO \rightarrow PINAL + HO_2 + NO_2$	<pre>KRO2NO*(1(.65*alpha_AN(11,3,0, 0,0,temp,cair)+.35*alpha_AN(11, 2,0,0,0,temp,cair)))</pre>	Rickard and Pascoe (2009), Sander et al. (2018)	
G40201b	TrGTerCN	${\rm LAPINABO2 + NO \rightarrow LAPINABNO3}$	<pre>KRO2NO*(.65*alpha_AN(11,3,0,0,0, temp,cair)+.35*alpha_AN(11,2,0, 0,0,temp,cair))</pre>	Rickard and Pascoe (2009), Sander et al. (2018)	
G40202a	TrGTerC	${\rm LAPINABO2} + {\rm HO_2} \rightarrow {\rm LAPINABOOH}$	KRO2HO2(10)*(1rchohch2o2_oh)	Rickard and Pascoe (2009), Sander et al. (2018)	
G40202b	TrGTerC	$LAPINABO2 + HO_2 \rightarrow PINAL + HO_2 + OH$	KRO2HO2(10)*rchohch2o2_oh	Rickard and Pascoe (2009), Sander et al. (2018)	
G40203	TrGTerC	$\rm LAPINABO2 \rightarrow PINAL + HO_2$	RO2*(0.65*k1_RO2tORO2+.35*k1_ RO2sORO2)	Rickard and Pascoe (2009)*	
G40204	TrGTerC	${\rm LAPINABOOH+OH} \rightarrow .35\;{\rm LAPINABO2+.65\;C96CO3}$	2.77E-11	Rickard and Pascoe (2009)*	
G40205	TrGTerCN	$LAPINABNO3 + OH \rightarrow .35 PINAL + .65 C96CO3 + NO_2$	4.29E-12	Rickard and Pascoe (2009)*	
G40206	TrGTerC	$MENTHEN6ONE + OH \rightarrow OHMENTHEN6ONEO2$	6.46E-11	Vereecken et al. (2007)*	
G40207	TrGTerCN	OHMENTHEN6ONEO2 + NO \rightarrow 2OHMENTHEN6ONE + HO ₂ + NO ₂	KRO2NO	Vereecken et al. $(2007)^*$	
G40208	TrGTerC	OHMENTHEN6ONEO2 + $HO_2 \rightarrow 2OHMENTHEN6ONE$	KRO2HO2(10)	Vereecken et al. (2007)	
G40209	TrGTerC	$OHMENTHEN6ONEO2 \rightarrow 2OHMENTHEN6ONE + HO_2$	k1_R02t0R02	Vereecken et al. (2007)	
G40210	TrGTerC	$2OHMENTHEN6ONE + OH \rightarrow 10 LCARBON$	1E-11	Vereecken et al. (2007)	
G40211	TrGTerC	$PINAL + OH \rightarrow .772 C96CO3 + .228 PINALO2$	5.2E-12*EXP(600./TEMP)	Wallington et al. $(2018)^*$	

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference	
G40212	TrGTerCN	$PINAL + NO_3 \rightarrow C96CO3 + HNO_3$	2.0E-14	Wallington et al. (2018)*	
G40213a	TrGTerC	$C96CO3 \rightarrow C96O2 + CO_2$	k1_R02RC03*0.9	Rickard and Pascoe (2009)	
G40213b	TrGTerC	$C96CO3 \rightarrow PINONIC$	k1_R02RC03*0.1	Rickard and Pascoe (2009)	
G40214a	TrGTerC	$C96CO3 + HO_2 \rightarrow PERPINONIC$	KAPHO2*rco3_ooh	Rickard and Pascoe (2009)	
G40214b	TrGTerC	$C96CO3 + HO_2 \rightarrow PINONIC + O_3$	KAPHO2*rco3_o3	Rickard and Pascoe (2009)	
G40214c	TrGTerC	$C96CO3 + HO_2 \rightarrow C96O2 + OH + CO_2$	KAPHO2*rco3_oh	Rickard and Pascoe (2009)	
G40215	TrGTerCN	$C96CO3 + NO_2 \rightarrow C10PAN2$	k_CH3CO3_NO2	Rickard and Pascoe (2009)	
G40216	TrGTerCN	$C96CO3 + NO \rightarrow C96O2 + NO_2 + CO_2$	KAPNO	Rickard and Pascoe (2009)	
G40217	TrGTerCN	$C96CO3 + NO_3 \rightarrow C96O2 + NO_2 + CO_2$	KR02N03*1.74	Rickard and Pascoe (2009)	
G40218	TrGTerCN	$C10PAN2 \rightarrow C96CO3 + NO_2$	k_PAN_M	Rickard and Pascoe (2009)	
G40219	TrGTerCN	$C10PAN2 + OH \rightarrow NORPINAL + CO + NO_2$	3.66E-12	Rickard and Pascoe (2009)	
G40220	TrGTerC	$PINONIC + OH \rightarrow C96O2 + CO_2$	6.65E-12	Rickard and Pascoe (2009)	
G40221	TrGTerC	$PERPINONIC + OH \rightarrow C96CO3$	9.73E-12	Rickard and Pascoe (2009)	
G40222	TrGTerC	$PINALO2 + HO_2 \rightarrow PINALOOH$	KRO2HO2(10)	Rickard and Pascoe (2009)	
G40223a	TrGTerCN	$PINALO2 + NO \rightarrow C106O2 + NO_2$	$KRO2NO*(1alpha_AN(12,3,0,1,0,$	Rickard and Pascoe (2009),	
			temp,cair))	Sander et al. (2018)	
G40223b	TrGTerCN	$PINALO2 + NO \rightarrow PINALNO3$	$KRO2NO*alpha_AN(12,3,0,1,0,$	Rickard and Pascoe (2009),	
			temp,cair)	Sander et al. (2018)	
G40224	TrGTerC	$PINALO2 \rightarrow C106O2$	k1_R02tR02	Rickard and Pascoe (2009)	
G40225	TrGTerC	$PINALOOH + OH \rightarrow PINALO2$	2.75E-11	Rickard and Pascoe (2009)	
G40226	TrGTerCN	$\begin{array}{l} \text{PINALNO3} \ + \ \text{OH} \ \rightarrow \ \text{CO235C6CHO} \ + \ \text{CH}_3\text{COCH}_3 \ + \\ \text{NO}_2 \end{array}$	$C6CHO + CH_3COCH_3 + 2.25E-11$ Rickard and Pascoe (2009)		
G40227	TrGTerC	$C106O2 + HO_2 \rightarrow C106OOH$	KRO2HO2(10)	Rickard and Pascoe (2009)	
G40228a	TrGTerCN	$C106O2 + NO \rightarrow C716O2 + CH_3COCH_3 + NO_2$	KRO2NO*0.875*(1alpha_AN(13,3,0,	Rickard and Pascoe (2009),	
			0,0,temp,cair))	Sander et al. (2018)	
G40228b	TrGTerCN	$C106O2 + NO \rightarrow C106NO3$	KRO2NO*0.875*alpha_AN(13,3,0,0,	Rickard and Pascoe (2009),	
			0,temp,cair)	Sander et al. (2018)	
G40229	TrGTerC	$C106O2 \rightarrow C716O2 + CH_3COCH_3$	k1_R02tR02	Rickard and Pascoe (2009)	
G40230	TrGTerC	$C106OOH + OH \rightarrow C106O2$	8.01E-11	Rickard and Pascoe (2009)	
G40231	TrGTerCN	$C106NO3 + OH \rightarrow CO235C6CHO + CH_3COCH_3 + NO_2$	7.03E-11	Rickard and Pascoe (2009)	
G40232	TrGTerC	APINENE + $O_3 \rightarrow .09$ APINBOO + .08 PINONIC +	8.05E-16*EXP(-640./TEMP)	Wallington et al. $(2018)^*$	
		$.77 \text{ OH} + .33 \text{ NORPINAL} + .33 \text{ CO} + .33 \text{ HO}_2 + .06$			
		APINAOO + .44 C109O2			
G40233	$\operatorname{TrGTerC}$	$APINAOO \rightarrow PINAL + H_2O_2$	1.00E-17*c(ind_H20)	Rickard and Pascoe (2009)	
G40234	$\operatorname{TrGTerC}$	$APINAOO + CO \rightarrow PINAL + CO_2$	1.20E-15	Rickard and Pascoe (2009)	

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G40235	TrGTerCN	$APINAOO + NO \rightarrow PINAL + NO_2$	1.00E-14	Rickard and Pascoe (2009)
G40236	TrGTerCN	$APINAOO + NO_2 \rightarrow PINAL + NO_3$	1.00E-15	Rickard and Pascoe (2009)
G40237a	TrGTerC	$APINBOO \rightarrow PINONIC$	1.00E-17*c(ind_H20)*(0.08+0.15)	Rickard and Pascoe (2009)
G40237b	TrGTerC	$APINBOO \rightarrow PINAL + H_2O_2$	1.00E-17*c(ind_H20)*0.77	Rickard and Pascoe (2009)
G40238	TrGTerC	$APINBOO + CO \rightarrow PINAL + CO_2$	1.20E-15	Rickard and Pascoe (2009)
G40239	TrGTerCN	$APINBOO + NO \rightarrow PINAL + NO_2$	1.00E-14	Rickard and Pascoe (2009)
G40240	TrGTerCN	$\mathrm{APINBOO} + \mathrm{NO}_2 \rightarrow \mathrm{PINAL} + \mathrm{NO}_3$	1.00E-15	Rickard and Pascoe (2009)
G40241	TrGTerC	$C109O2 \rightarrow C89CO3 + HCHO$	k1_R02p0R02	Rickard and Pascoe (2009)
G40242	TrGTerCN	$C109O2 + NO \rightarrow C89CO3 + HCHO + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G40243a	TrGTerC	$C109O2 + HO_2 \rightarrow C109OOH$	KRO2HO2(10)*rcoch2o2_ooh	Rickard and Pascoe (2009), Sander et al. (2018)
G40243b	TrGTerC	$C109O2 + HO_2 \rightarrow C89CO3 + HCHO + OH$	KRO2HO2(10)*rcoch2o2_oh	Rickard and Pascoe (2009), Sander et al. (2018)
G40244	TrGTerC	$C109OOH + OH \rightarrow C109CO + OH$	5.47E-11	Rickard and Pascoe (2009)
G40245	TrGTerC	$C109CO + OH \rightarrow C89CO3 + CO$	5.47E-11	Rickard and Pascoe (2009)
G40246	TrGTerCN	APINENE + $NO_3 \rightarrow LNAPINABO2$	1.2E-12*EXP(490./temp)	Wallington et al. (2018)*
G40247	TrGTerCN	$LNAPINABO2 \rightarrow PINAL + NO_2$	(0.65*k1_R02tR02 + 0.35*k1_ R02sR02)	Rickard and Pascoe (2009)
G40248	TrGTerCN	$LNAPINABO2 + NO \rightarrow PINAL + NO_2 + NO_2$	KRO2NO	Rickard and Pascoe (2009)*
G40249	TrGTerCN	$LNAPINABO2 + HO_2 \rightarrow LNAPINABOOH$	KRO2HO2(10)	Rickard and Pascoe (2009)
G40250	TrGTerCN	$LNAPINABO2 + NO_3 \rightarrow PINAL + NO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)
G40251	TrGTerCN	$LNAPINABOOH + OH \rightarrow LNAPINABO2$	(.65*6.87E-12+.35*1.23E-11)	Rickard and Pascoe (2009)
G40252a	TrGTerC	$BPINENE + OH \rightarrow BPINAO2$	1.47E-11*EXP(467./TEMP) *(0.8326*0.3+0.068)/(0.8326+0.068)	Gill and Hites (2002)*
G40252b	TrGTerC	BPINENE + OH \rightarrow ROO6R1O2	1.47E-11*EXP(467./TEMP) *0.8326*0.7/(0.8326+0.068)	Gill and Hites (2002)*
G40253a	TrGTerC	$\rm BPINAO2 + HO_2 \rightarrow BPINAOOH$	KRO2HO2(10)*rcoch2o2_ooh	Rickard and Pascoe (2009), Sander et al. (2018)
G40253b	$\operatorname{TrGTerC}$	${\rm BPINAO2} + {\rm HO_2} \rightarrow {\rm NOPINONE} + {\rm HCHO} + {\rm HO_2} + {\rm OH}$	KRO2HO2(10)*rcoch2o2_oh	Rickard and Pascoe (2009), Sander et al. (2018)
G40254a	TrGTerCN	${\rm BPINAO2 + NO \rightarrow NOPINONE + HCHO + HO_2 + NO_2}$	<pre>KRO2NO*(1alpha_AN(11,3,0,0,0, temp,cair))</pre>	Rickard and Pascoe (2009), Sander et al. (2018)
G40254b	$\operatorname{TrGTerCN}$	$\rm BPINAO2 + NO \rightarrow BPINANO3$	KRO2NO*alpha_AN(11,3,0,0,0, temp,cair)	Rickard and Pascoe (2009), Sander et al. (2018)
G40255	TrGTerC	$BPINAO2 \rightarrow NOPINONE + HCHO + HO_2$	k1_RO2tORO2	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#			reference	
G40256	TrGTerC	${\rm BPINAOOH} + {\rm OH} \rightarrow {\rm BPINAO2} \hspace{1cm} {\rm 1.33E\text{-}11} \hspace{1cm} {\rm Rickard} \ {\rm and} \ {\rm I}$		Rickard and Pascoe (2009)
G40257	TrGTerCN	$BPINANO3 + OH \rightarrow NOPINONE + HCHO + NO_2$	4.70E-12	Rickard and Pascoe (2009)
G40258a	TrGTerCN	$ROO6R1O2 + NO \rightarrow ROO6R3O2 + CH_3COCH_3 + NO_2$	<pre>KRO2NO*(1alpha_AN(13,3,0,0,0, temp,cair))</pre>	Vereecken and Peeters (2012)
G40258b	TrGTerCN	$ROO6R1O2 + NO \rightarrow ROO6R1NO3$	<pre>KRO2NO*alpha_AN(13,3,0,0,0, temp,cair)</pre>	Vereecken and Peeters (2012)
G40259	TrGTerC	$ROO6R1O2 + HO_2 \rightarrow 10 LCARBON$	KRO2HO2(10)	Vereecken and Peeters (2012)*
G40260	TrGTerC	$ROO6R1O2 \rightarrow ROO6R3O2 + CH_3COCH_3$	k1_R02t0R02	Vereecken and Peeters (2012)
G40261a	TrGTerCN	$RO6R1O2 + NO \rightarrow RO6R3O2 + NO_2$	<pre>KRO2NO*(1alpha_AN(12,3,0,0,0, temp,cair))</pre>	Vereecken and Peeters (2012)
G40261b	TrGTerCN	$RO6R1O2 + NO \rightarrow RO6R1NO3$	<pre>KRO2NO*alpha_AN(12,3,0,0,0, temp,cair)</pre>	Vereecken and Peeters (2012)
G40262	TrGTerC	$RO6R1O2 + HO_2 \rightarrow 10 LCARBON$	KRO2HO2(10)	Vereecken and Peeters (2012)*
G40263	TrGTerC	$RO6R1O2 \rightarrow RO6R3O2$	k1_R02s0R02	Vereecken and Peeters (2012)
G40264a	TrGTerCN	$RO6R3O2 + NO \rightarrow 9 LCARBON + HCHO + HO_2 + NO_2$	<pre>KRO2NO*(1alpha_AN(12,3,0,0,0, temp,cair))</pre>	Vereecken and Peeters (2012)
G40264b	TrGTerCN	$RO6R3O2 + NO \rightarrow 10 LCARBON + LNITROGEN$	<pre>KRO2NO*alpha_AN(12,3,0,0,0, temp,cair)</pre>	Vereecken and Peeters (2012)
G40265	TrGTerC	$RO6R3O2 + HO_2 \rightarrow 10 LCARBON$	KRO2HO2(10)	Vereecken and Peeters (2012)
G40266	TrGTerC	$RO6R3O2 \rightarrow 9 LCARBON + HCHO + HO_2$	k1_R02sR02	Vereecken and Peeters (2012)*
G40267a	TrGTerC	BPINENE + $O_3 \rightarrow NOPINONE + .63 CO + .37 CH_2OO + .16 OH + .16 HO_2$	1.35E-15*EXP(-1270./TEMP) *.051/(1027)	Wallington et al. $(2018)^*$
G40267b	TrGTerC	BPINENE + $O_3 \rightarrow NOPINOO + CO_2$	1.35E-15*EXP(-1270./TEMP) *.368/(1027)	Nguyen et al. (2009), Wallington et al. (2018)
G40267c	$\operatorname{TrGTerC}$	BPINENE + $O_3 \rightarrow NOPINDO2 + CO_2 + OH$	1.35E-15*EXP(-1270./TEMP) *.283/(1027)	Nguyen et al. (2009), Wallington et al. (2018)
G40267d	TrGTerC	BPINENE + $O_3 \rightarrow C8BC + 2 CO_2$	1.35E-15*EXP(-1270./TEMP) *(.104+.167)/(1027)	Nguyen et al. (2009), Wallington et al. (2018)
G40268	TrGTerCN	$BPINENE + NO_3 \rightarrow LNBPINABO2$	2.51E-12	Wallington et al. (2018)*
G40269	TrGTerCN	$LNBPINABO2 + HO_2 \rightarrow LNBPINABOOH$	KRO2HO2(10)	Rickard and Pascoe (2009)
G40270	TrGTerCN	LNBPINABO2 + NO \rightarrow NOPINONE + HCHO + NO ₂ + NO ₂	KRO2NO	Rickard and Pascoe (2009)*
G40271	TrGTerCN	LNBPINABO2 + $NO_3 \rightarrow NOPINONE + HCHO + NO_2 + NO_2$	KR02N03	Rickard and Pascoe (2009)
G40272a	$\operatorname{TrGTerCN}$	$LNBPINABO2 \rightarrow NOPINONE + HCHO + NO_2$	k1_R02tR02*0.7	Rickard and Pascoe (2009)

Table 1: Gas phase reactions (... continued)

#	labels reaction rate coefficient refer		reference	
G40272b	TrGTerCN	$LNBPINABO2 \rightarrow BPINANO3 \hspace{1cm} k1_RO2tRO2*0.3 \hspace{1cm} Rickard \hspace{1cm} and \hspace{1cm} F$		Rickard and Pascoe (2009)
G40273	TrGTerCN	LNBPINABOOH + OH \rightarrow LNBPINABO2 9.58E-12 Rickard a		Rickard and Pascoe (2009)
G40274	TrGTerCN	$ROO6R1NO3 + OH \rightarrow ROO6R3O2 + CH_3COCH_3 + NO_2$	9.16E-13	Vereecken and Peeters (2012), Gill and Hites (2002)*
G40275	TrGTerCN	$RO6R1NO3 + OH \rightarrow 9 LCARBON + HCHO + HO_2 + NO_2$	9.16E-13	Vereecken and Peeters (2012), Gill and Hites (2002)
G40276	TrGTerC	$PINEOL + OH \rightarrow HCOOH + OH + NORPINAL$	k_CH2CHOH_OH_HCOOH	Sander et al. (2018) , So et al. $(2014)^*$
G40277	TrGTerC	$PINEOL + HCOOH \rightarrow PINAL + HCOOH$	k_CH2CH0H_HC00H	Sander et al. (2018), da Silva (2010)*
G40278	TrGTerC	$PINAL + HCOOH \rightarrow PINEOL + HCOOH$	k_ALD_HCOOH	Sander et al. (2018), da Silva (2010)*
G40279a	TrGC	$CARENE + OH \rightarrow LAPINABO2$	8.8E-11*(.50+.25)	Atkinson and Arey (2003)
G40279b	TrGC	$CARENE + OH \rightarrow MENTHEN6ONE + HO_2$	8.8E-11*.25*.60	Atkinson and Arey (2003)
G40279c	TrGC	$CARENE + OH \rightarrow ROO6R1O2$	8.8E-11*.25*.40	Atkinson and Arey (2003)
G40280a	TrGC	$CARENE + O_3 \rightarrow APINBOO$	3.7E-17*.50*.18	Atkinson and Arey (2003)
G40280b	TrGC	$CARENE + O_3 \rightarrow PINONIC$	3.7E-17*.50*.16	Atkinson and Arey (2003)
G40280c	TrGC	$CARENE + O_3 \rightarrow OH + NORPINAL + CO + HO_2$	3.7E-17*.50*.66	Atkinson and Arey (2003)
G40280d	TrGC	$CARENE + O_3 \rightarrow APINAOO$	3.7E-17*.50*.12	Atkinson and Arey (2003)
G40280e	TrGC	$CARENE + O_3 \rightarrow OH + C109O2$	3.7E-17*.50*(.22+.66)	Atkinson and Arey (2003)
G40281	TrGCN	$CARENE + NO_3 \rightarrow LNAPINABO2$	9.1E-12	Atkinson and Arey (2003)
G40282a	TrGTerC	SABINENE + OH \rightarrow BPINAO2	1.47E-11*EXP(467./TEMP) *(0.8326*0.3+0.068)/(0.8326+0.068)	Gill and Hites (2002)*
G40282b	TrGTerC	SABINENE + OH \rightarrow ROO6R1O2	1.47E-11*EXP(467./TEMP) *0.8326*0.7/(0.8326+0.068)	Vereecken and Peeters (2012), Gill and Hites (2002)*
G40283a	TrGTerC	SABINENE + $O_3 \rightarrow NOPINONE + .63 CO + .37$ HOCH ₂ OOH + .16 OH + .16 HO ₂	1.35E-15*EXP(-1270./TEMP) *.051/(1027)	Wallington et al. (2018)*
G40283b	$\operatorname{TrGTerC}$	SABINENE + $O_3 \rightarrow NOPINOO + CO_2$	1.35E-15*EXP(-1270./TEMP) *.368/(1027)	Nguyen et al. (2009), Wallington et al. (2018)
G40283c	TrGTerC	SABINENE + $O_3 \rightarrow NOPINDO2 + CO_2 + OH$	1.35E-15*EXP(-1270./TEMP) *.283/(1027)	Nguyen et al. (2009), Wallington et al. (2018)
G40283d	$\operatorname{TrGTerC}$	SABINENE + $O_3 \rightarrow C8BC + 2 CO_2$	1.35E-15*EXP(-1270./TEMP) *(.104+.167)/(1027)	Nguyen et al. (2009), Wallington et al. (2018)
G40284	TrGTerCN	SABINENE + $NO_3 \rightarrow LNBPINABO2$	2.51E-12	Wallington et al. (2018)*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G40285a	TrGTerC	$CAMPHENE + OH \rightarrow BPINAO2$	1.47E-11*EXP(467./TEMP)	Gill and Hites (2002)*
			*(0.8326*0.3+0.068)/(0.8326+0.068)	
G40285b	TrGTerC	$CAMPHENE + OH \rightarrow ROO6R1O2$	1.47E-11*EXP(467./TEMP)	Vereecken and Peeters (2012),
			*0.8326*0.7/(0.8326+0.068)	Gill and Hites $(2002)^*$
G40286a	TrGTerC	CAMPHENE + $O_3 \rightarrow NOPINONE + .63 CO + .37$	1.35E-15*EXP(-1270./TEMP)	Wallington et al. $(2018)^*$
		HOCH2OOH + .16 OH + .16 HO2	*.051/(1027)	
G40286b	TrGTerC	$CAMPHENE + O_3 \rightarrow NOPINOO + CO_2$	1.35E-15*EXP(-1270./TEMP)	Nguyen et al. (2009), Wallington
			*.368/(1027)	et al. (2018)
G40286c	TrGTerC	$CAMPHENE + O_3 \rightarrow NOPINDO2 + CO_2 + OH$	1.35E-15*EXP(-1270./TEMP)	Nguyen et al. (2009), Wallington
			*.283/(1027)	et al. (2018)
G40286d	TrGTerC	$CAMPHENE + O_3 \rightarrow C8BC + 2 CO_2$	1.35E-15*EXP(-1270./TEMP)	Nguyen et al. (2009), Wallington
			*(.104+.167)/(1027)	et al. (2018)
G40287	TrGTerCN	$CAMPHENE + NO_3 \rightarrow LNBPINABO2$	2.51E-12	Wallington et al. $(2018)^*$
G40400	TrGAroC	$LHAROM + OH \rightarrow .14 TLEPOXMUC + .03 C6H5CH2O2$	5.67E-11	Rickard and Pascoe (2009)*
		$+ .04 \text{ CRESOL} + .79 \text{ TLBIPERO2} + .18 \text{ HO}_2 + 4$		
		LCARBON		
G40401	TrGAroCN	$LHAROM + NO_3 \rightarrow C6H5CH2O2 + HNO_3 + 4$	2.60E-15	Rickard and Pascoe (2009)*
		LCARBON		

General notes

Three-body reactions

Rate coefficients for three-body reactions are defined via the function $k_3rd(T, M, k_0^{300}, n, k_{\inf}^{300}, m, f_c)$. In the code, the temperature T is called temp and the concentration of "air molecules" M is called cair. Using the auxiliary variables $k_0(T)$, $k_{\inf}(T)$, and k_{ratio} , k_3rd is defined as:

$$k_0(T) = k_0^{300} \times \left(\frac{300 \text{K}}{T}\right)^n \tag{1}$$

$$k_{\rm inf}(T) = k_{\rm inf}^{300} \times \left(\frac{300 \text{K}}{T}\right)^m$$
 (2)

$$k_{\text{ratio}} = \frac{k_0(T)M}{k_{\text{inf}}(T)} \tag{3}$$

k_3rd =
$$\frac{k_0(T)M}{1 + k_{\text{ratio}}} \times f_c^{\left(\frac{1}{1 + (\log_{10}(k_{\text{ratio}}))^2}\right)}$$
(4)

A similar function, called k_3rd_iupac here, is used by Wallington et al. (2018) for three-body reactions. It has the same function parameters as k_3rd and it is defined as:

$$k_0(T) = k_0^{300} \times \left(\frac{300 \text{K}}{T}\right)^n$$
 (5)

$$k_{\rm inf}(T) = k_{\rm inf}^{300} \times \left(\frac{300 \text{K}}{T}\right)^m$$
 (6)

$$k_{\text{ratio}} = \frac{k_0(T)M}{k_{\text{inf}}(T)} \tag{7}$$

$$N = 0.75 - 1.27 \times \log_{10}(f_{\rm c}) \tag{8}$$

$$\texttt{k_3rd_iupac} = \frac{k_0(T)M}{1 + k_{\mathrm{ratio}}} \times f_{\mathrm{c}}^{\left(\frac{1}{1 + (\log_{10}(k_{\mathrm{ratio}})/N)^2}\right)}(9)$$

Structure-Activity Relationships (SAR)

Some unmeasured rate coefficients are estimated with structure-activity relationships, using the following parameters and substituent factors:

k for H-abstraction by OH in ${\rm cm^{-3}s^{-1}}$		
k_p	$4.49 \times 10^{-18} \times (T/K)^2 \exp(-320 K/T)$	
k_s	$4.50 \times 10^{-18} \times (T/K)^2 \exp(253 K/T)$	
k_t	$2.12\times 10^{-18}\times (T/{\rm K})^2\exp(696{\rm K}/T)$	
k_rohro	$2.1 \times 10^{-18} \times (T/\mathrm{K})^2 \exp(-85\mathrm{K}/T)$	
k_co2h	$0.7 \times k_{\mathrm{CH_3CO_2H+OH}}$	
k_roohro	$0.6 \times k_{\mathrm{CH_3OOH+OH}}$	
f_alk	1.23	
f_soh	3.44	
f_toh	2.68	
f_sooh	8.	
f_tooh	8.	
f_ono2	0.04	
f_ch2ono2	0.20	
f_cpan	0.25	
f_allyl	3.6	
f_cho	0.55	
f_co2h	1.67	
f_co	0.73	
f_o	8.15	
f_pch2oh	1.29	
f_tch2oh	0.53	

k for OH-addition to double bonds in cm ⁻³ s ⁻¹		
k_adp	$4.5 \times 10^{-12} \times (T/300 \mathrm{K})^{-0.85}$	
k_ads	$1/4 \times (1.1 \times 10^{-11} \times \exp(485 \mathrm{K}/T) +$	
	$1.0 \times 10^{-11} \times \exp(553 \mathrm{K}/T))$	
k_adt	$1.922 \times 10^{-11} \times \exp(450 \mathrm{K/T}) - k_{\mathrm{ads}}$	
k_adsecprim	3.0×10^{-11}	
$k_adtertprim$	5.7×10^{-11}	
a_pan	0.56	
a_cho	0.31	
a_coch3	0.76	
a_ch2oh	1.7	
a_ch2ooh	1.7	
a_coh	2.2	
a_cooh	2.2	
a_co2h	0.25	
a_ch2ono2	0.64	

RO₂ self and cross reactions

The self and cross reactions of organic peroxy radicals are treated according to the permutation reaction formalism as implemented in the MCM (Rickard and Pascoe, 2009), as decribed by Jenkin et al. (1997). Every organic peroxy radical reacts in a pseudo-first-order reaction with a rate constant that is expressed as $k^{\rm 1st} = 2 \times \sqrt{k_{\rm self} \times k_{\rm CH302}} \times [{\rm RO_2}]$ where $k_{\rm self} =$ second-order rate coefficient of the self reaction of the organic peroxy radical, k_CH302 = second-order rate coefficient of the self reaction of CH₃O₂, and [RO₂] = sum of the concentrations of all organic peroxy radicals.

Specific notes

G2110: The rate coefficient is: k_HO2_HO2 = (3.0E-13*EXP(460./temp)+2.1E-33*EXP(920./temp) *cair)*(1.+1.4E-21*EXP(2200./temp)*C(ind_H20)).

G2117: Converted to Kc [molec-1 cm3]= Kp*R*T/NA, where R is 82.05736 [cm3atmK1mol1].

G2118: Assuming fast equilibrium.

G3109: The rate coefficient is: $k_N03_N02 = k_3$ 3rd(temp, cair, 2.4E-30, 3.0, 1.6E-12, -0.1, 0.6).

G3110: The rate coefficient is defined as backward reaction divided by equilibrium constant.

G3203: The rate coefficient is: $k_N02_H02 = k_3rd(temp, cair, 1.9E-31, 3.4, 4.0E-12, 0.3, 0.6)$.

G3206: The rate coefficient is: k_HNO3_OH = 1.32E-14 * EXP(527/temp) + 1 / (1 / (7.39E-32 * EXP(453/temp)*cair) + 1 / (9.73E-17 * EXP(1910/temp)))

G3207: The rate coefficient is defined as backward reaction divided by equilibrium constant.

G4104b: Methyl nitrate yield according to Banic et al. (2003) but reduced by a factor of 10 according to the upper limit derived from measurements by Munger et al. (1999).

G4109: Same temperature dependence as for rate equal to that of $CH_3O_2NO_2$. $CH_3CHO+NO_3$ assumed.

G4115: The rate coefficient is defined as backward reaction divided by equilibrium constant.

G4116: Same value as for PAN + OH.

 $\tt G4126:$ Same as for G4104 but scaled to match the recommeded value at 298K.

G4127: Same as for CH3O2 + NO3 in G4105.

G4130a: SAR for H-abstraction by OH.

G4130b: SAR for H-abstraction by OH.

G4132: SAR for H-abstraction by OH.

G4133: Lower limit of the rate constant. Products uncertain but $\mathrm{CH_3OH}$ can be excluded because of a likely high energy barrier (L. Vereecken, pers. comm.). $\mathrm{CH_2OO}$ production cannot be excluded.

G4134: Estimate based on the decomposition lifetime of 3 s (Olzmann et al., 1997) and a 20 kcal/mol energy barrier (Vereecken and Francisco, 2012).

G4135: Rate constant for $CH_2OO + NO_2$ (G4138) multiplied by the factor from Ouyang et al. (2013).

G4136: Average of two measurements.

G4137: Upper limit.

G4138: Average of 7.E-12 and 1.5E-12.

G4141: HOOCH₂OCHO forms and then decomposes to formic anhydride (Gruzdev et al., 1993) which hydrolyses in the humid atmosphere (Conn et al., 1942).

G4142: High-pressure limit.

G4143: Generic estimate for reaction with alcohols.

G4144: Generic estimate for reaction with RO₂.

G4148: Same value as for $NO_2+CH_3O_2$.

G4149: Barnes et al. (1985) estimated a decomposition rate equal to that of ${\rm CH_3O_2NO_2}$.

G4150: Value for $CH_3O_2NO_2 + OH$, H-abstraction enhanced by the HO-group by f_soh.

G4154: Products assumed to be $CH_3O_2 + O_2$ (could also be $HCHO + O_2 + OH$).

G4160b: Half of the H-yield is attributed to fast secondary chemistry.

 ${\tt G4160c:}$ The NH + CO channel is also significant but neglected here.

G4161: No studies below 450 K and only the major channel is considered.

G4164: Upper limit. Dominant pathway under atmospheric conditions.

G42001: The product distribution is from Rickard and Pascoe (2009), after substitution of the energized Criegee intermediate, $\mathrm{CH_2OO}$, by its decomposition products and reaction of the stabilized CI with the water dimer.

G42010: Only major channel considered as the end products are essentially the same.

G42013: The rate coefficient is: $k_CH3CO3_NO2 = k_3Td(temp, cair, 9.7E-29, 5.6, 9.3E-12, 1.5, 0.6)$.

G42018: The rate coefficient is the same as for the CH_3 channel in G4107 ($CH_3OOH+OH$).

G42021: The rate coefficient is $k_PAN_M = k_CH3CO3_N02/9.0E-29*EXP(-14000./temp)$, i.e. the rate coefficient is defined as backward reaction divided by equilibrium constant.

G42022a: Quantum yields and products are from Glowacki et al. (2012).

G42022b: Quantum yields and products are from Glowacki et al. (2012).

G42024a: Rate constant is the high-pressure limit as recommended by Atkinson et al. (2006).

G42024b: Rate constant is the high-pressure limit as recommended by Atkinson et al. (2006).

G42047: Orlando et al. (1998) estimated that about 25% of the $\rm HOCH_2CH_2O$ in this reaction is produced with sufficient excess energy that it decomposes promptly. The decomposition products are 2 HCHO + $\rm HO_2$.

G42051a: Same as for the $\mathrm{CH_3O_2}$ channel in G4107: $\mathrm{CH_3OOH}{+}\mathrm{OH}.$

analogous H of HOCH₂CHO.

G42074a: Factor of 3 to match the estimate of k = 1.E-11 molec/cm3/s by Paulot et al. (2009a).

G42074b: Factor of 3 to match the estimate of k = 1.E-11 molec/cm3/s by Paulot et al. (2009a).

G42075: NO₃CH₂CO₂H and NO₃CH₂CO₃H neglected.

G42078: NO₃CH₂CO₂H neglected.

G42082: Same rate constant as for PAN + OH.

G42083a: Rate constant is the high-pressure limit as recommended by Atkinson et al. (2006).

G42083b: Rate constant is the high-pressure limit as recommended by Atkinson et al. (2006).

G42085a: Uncertainties on the kinetics at pressures < 0.1 bar.

G42085b: Channel proposed by Hynes and Wine 1991, OH + HCHO + HOCN, could not be confirmed by Tyndall et al. (2001b). There is no alternative mechanism at the moment. Products assumed to be OH + CH3CO3 + NO

G42086b: Assuming HCN is from channel 2h, HCO \pm H + HCN. HCO is replaced by H + CO.

G42086c: Assuming exothermic channels 2b and 2d are equally important.

G42087: HCOCN is produced but replaced here by its likely oxidation products (HCN + CO₂) as studied by Tyndall et al. (2001b). The rate constant for a typical $RO_2 + NO$ reaction is used.

G42088: NCCH₂OOH is produced but replaced here by its likely oxidation products (HCN + CO₂) as studied by Tyndall et al. (2001b). The rate constant for a typical $RO_2 + HO_2$ reaction is used.

G42089a: The minor channel with k=5.2E-12 is combined with the major one producing HCOOH.

G42058b: The aldehydic H is assumed to be like the G42090: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

> G42091: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

> G43001a: Branching ratios according to Rickard et al. (1999).

> G43001b: Branching ratios according to Rickard et al. (1999).

> G43004: The value for the generic $RO_2 + HO_2$ reaction from Atkinson (1997) is used here.

> G43008: The value for the generic $RO_2 + HO_2$ reaction from Atkinson (1997) is used here.

> G43011: Strong positive deviation of k below 240 K compared to the expression recommended by JPL (Burkholder et al., 2015).

> G43015a: The same value as for G4107 ($CH_3OOH +$ OH) is used, multiplied by the branching ratio of the CH_3O_2 channel.

> G43028: Alkyl nitrate formation neglected. (also not considered in MCM).

> G43037: Alkyl nitrate formation neglected. (also not considered in MCM).

> Rate coefficient estimated with SAR G43040a: Taraborrelli, 2010).

> G43040b: Rate coefficient estimated with SAR (Taraborrelli, 2010).

G43044: Alkyl nitrate formation neglected.

G43045c: Rate coefficient assumed to equal to the one of hydroxyacetone (ACETOL) for this channel.

G43048: Using the high-pressure limit.

G43049: The pressure fall-off between 1000 and 100 mbar is only 3% (Kirchner et al., 1999).

G43050: Value for CH₃O₂NO₂ + OH, H-abstraction enhanced by the CH₃CO-group by f₋co.

G43051c: Products approximated with C₂H₅CHO + HO_2 .

G43052: Only major H-abstraction channel considered.

G43059: Products approximated with the major endproduct CH_3CHO .

G43060b: Products approximated with the major endproduct CH_3CHO .

G43061: Products approximated with the likely endproduct CH_3CHO .

G43065: As for HCOCO₃.

G43070a: Branching ratios estimated with SAR for Habstraction rate constants by OH.

G43070b: Branching ratios estimated with SAR for Habstraction rate constants by OH.

G43071a: Only this channel considered as the intermediate radical is likely more stable than CHCH(OH)₂.

G43072: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G43073: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G43074: HCOCOCHO would be produced but undergoes fast photolysis (faster than MGLYOX) and is substituted with its products.

G43223: Products simplified

G43419: KDEC C3DIALO \rightarrow GLYOX + CO + HO2

G43420: KDEC C3DIALO \rightarrow GLYOX + CO + HO2

G43421: Permutation reaction (minor channels removed).

G44000: The $LC_4H_9O_2$ composition ($nC_4H_9O_2$: $sC_4H_9O_2$ ratio) is assumed to be equal to the ratio of the production rates at 298K: $k_p/(k_p+k_s) = 0.1273$ and $k_s/(k_p+k_s) = 0.8727.$

G44001b: sC₄H₉O₂ products are substituted with 0.636 $MEK + HO_2$ and $0.364 CH_3CHO + C_2H_5O_2$ at 1 bar and 298 K.

G44003c: The alkyl nitrate yield is the weighted average yield for the two isomers forming from nC₄H₉O₂ and $sC_4H_9O_2$.

G44010b: H-abstraction from primary C and substitution of the resulting peroxy radical with its products from the reaction with NO.

G44011: H-abstraction from primary C and substitution of the resulting peroxy radical with its products from the reaction with NO.

G44015b: Products assumed to be only from Habstraction from a secondary C bearing the -OOH group.

Products assumed to be only from H-G44016: abstraction from a secondary C bearing the -ONO₂ group.

G44018: LHMVKABO2 is 0.12 HMVKAO2 + 0.88HMVKBO2.

G44019: LMEKO2 represents 0.62 MEKBO2 + 0.38MEKAO2.

G44021a: The products of MEKAO are substituted with $HCHO + CO_2 + HOCH_2CH_2O_2$.

G44023a: Products from H-abstraction from the tertiary carbon bearing the ONO₂ group.

G44023b: Products from H-abstraction from the secondary carbon bearing the ONO₂ group.

G44025: Same value as for PAN.

G44026: Products as in G4415. Only the main channels for each isomer are considered. Weighted average for the isomers.

hydroxy RO_2 .

G44046b: Using value for secondary nitrate (88% of to-

G44061a: Using value for secondary nitrate (88% of to-

G44061b: Using value for secondary nitrate (88% of to-

G44062a: Simplified products.

G44062b: Simplified products.

G44066: Alkyl nitrate formation neglected.

G44070: Alkyl nitrate formation neglected.

G44076: Alkyl nitrate formation neglected.

G44078: Other channel neglected.

G44081: Alkyl nitrate formation neglected.

G44082: Other channel neglected.

G44085: k for CH₃CHCO from Hatakeyama et al. (1985) adjusted.

G44086: Simplified product distribution.

G44089: The nitrated RO₂ is replaced by its products upon reaction with NO.

G44096: Both LBUT1ENO2 isomers mostly C₂H₅CHO.

G44097a: Branching ratios according to Rickard et al. (1999). CH₃CHO₂CHO is replaced with its major products $CH_3CHO + CO + HO_2$.

G44097b: Branching ratios according to Rickard et al. (1999).

G44098: The nitrated RO₂ is replaced by its products upon reaction with NO.

G44103b: MEKCOH replaced by its major oxidation products.

G44035: Rate constant replaced with the one of beta G44104: Carbonyl nitrate replaced by its major oxidation products.

G44106: CH3CHOOA products as from $C_3H_6 + O_3$ reaction.

G44107: The nitrated RO₂ is replaced by its products upon reaction with NO.

G44110: The nitrated RO₂ is replaced by its products upon reaction with NO.

G44124b: Skipping intermediate steps mostly leading to acetone.

G44126: Skipping intermediate steps mostly leading to acetone.

G44127: Only this channel considered as the intermediate radical is likely more stable than $CHCH(OH)_2$.

G44128: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G44129: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G44130: Only this channel considered as the intermediate radical is likely more stable than CHCH(OH)₂.

G44131: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G44132: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G44133: Only this channel considered as the intermediate radical is likely more stable than $CHCH(OH)_2$.

G44134: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G44135: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G44136: Only this channel considered as the intermediate radical is likely more stable than CHCH(OH)₂.

G44137: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G44138: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G44139: Simplified oxidation.

G44140: Simplified oxidation.

G44141: Simplified oxidation.

G44142: Simplified oxidation.

G44202: Alkyl nitrate formation neglected.

Rate coefficient estimated with SAR G44203a: (Taraborrelli, 2010).

G44205: Alkyl nitrate formation neglected.

G44210: Alkyl nitrate formation neglected.

G44221: Same k as for MGLYOX + OH (Tyndall et al., 1995).

G44402: KDEC NC4DCO2 \rightarrow MALANHY + NO2

G44406c: KDEC MALDIALCO2 \rightarrow 0.6 MALANHY +

HO2 + 0.4 GLYOX + 0.4 CO + 0.4 CO2

G44407: KDEC MALDIALCO2 \rightarrow 0.6 MALANHY + HO2 + 0.4 GLYOX + 0.4 CO + 0.4 CO2

G44409: KDEC MALDIALCO2 \rightarrow 0.6 MALANHY + HO2 + 0.4 GLYOX + 0.4 CO + 0.4 CO2

G44410: KDEC MALDIALCO2 \rightarrow 0.6 MALANHY + HO2 + 0.4 GLYOX + 0.4 CO + 0.4 CO2

G44412: KDEC BZFUONOOA \rightarrow 0.5 BZFUONOO + 0.5 CO + 0.5 CO2 + 0.5 HCOCH2O2 + 0.5 OHand BZFUONOO $\rightarrow 0.625$ CO14O3CO2H + 0.375 CO14O3CHO + 0.375 H2O2

G44421: Only major channel.

G44424: KDEC: GLYOOA \rightarrow 0.125 HCHO + 0.18 GLYOO + 0.82 HO2 + 0.57 OH + 1.265 CO + $0.25~\mathrm{CO2}$ and H2O substitution GLYOO $\rightarrow 0.625$ HCOCO2H + 0.375 GLYOX + 0.375 H2O2

G44425: Merged equations.

G44430: KDEC MALANHYO \rightarrow HCOCOHCO3

G44431: KDEC MALANHYO → HCOCOHCO3

HCOCOHCO3

G44436: KDEC NBZFUO $\rightarrow 0.5$ CO14O3CHO + 0.5NO2 + 0.5 NBZFUONE + 0.5 HO2

G44437: KDEC NBZFUO $\rightarrow 0.5$ CO14O3CHO + 0.5NO2 + 0.5 NBZFUONE + 0.5 HO2

G44438: KDEC NBZFUO $\rightarrow 0.5$ CO14O3CHO + 0.5NO2 + 0.5 NBZFUONE + 0.5 HO2 and RO2 Only major channel.

G44439: KDEC MALDIALCO2 \rightarrow 0.6 MALANHY + HO2 + 0.4 GLYOX + 0.4 CO + 0.4 CO2

G44443: KDEC MECOACETO \rightarrow CH3CO3 + HCHO

G44444: KDEC MECOACETO → CH3CO3 + HCHO

G44445: KDEC MECOACETO \rightarrow CH3CO3 + HCHO

G44450: KDEC BZFUO \rightarrow CO14O3CHO + HO2

G44451: KDEC BZFUO \rightarrow CO14O3CHO + HO2

G44452: KDEC BZFUO \rightarrow CO14O3CHO + HO2. Only major channel.

G44457: KDEC MALDIALO \rightarrow GLYOX + GLYOX +

G44458: KDEC MALDIALO \rightarrow GLYOX + GLYOX +

G44459: KDEC MALDIALO \rightarrow GLYOX + GLYOX + HO2. Only major channel.

G44461: KBPAN \rightarrow k_PAN_M

G45019d: Delta-1 and delta-2 LIEPOX are not considered and replaced by beta-LIEPOX formed by ISOP-BOOH and ISOPDOOH.

G45021: SAR estimate within uncertainty range of the experimentally determined rate constant by Solberg et al. (1997), 1.1E-11.

G44432: Only major channel. KDEC MALANHYO → G45037: SAR estimate within uncertainty range of the experimentally determined rate constant by Solberg et al. (1997), 4.2E-11.

G45040: Alkyl nitrate formation neglected.

G45043: Old MCM rate constant 4.16E-11.

G45047: Alkyl nitrate formation neglected.

G45055: Alkyl nitrate formation neglected.

G45071: Alkyl nitrate formation neglected.

G45074: Formic acid production consistent with results of Bates et al. (2014). Here, the high yields of formic acid and hydroxycarbonyls at low NO from oxidation of cis-beta-LIEPOX (the most abundant isomer) are approximated with the production of DB1O which undergo both the Dibble double H-transfer to DB2O2 and HOCH2 elimination yielding HVMK and HMAC (ketovinyl alcohol potentially arising from decomposition of the alkoxy radical resulting from the ring opening after H-abstraction). The rate constant is from Paulot et al. (2009b) and adjusted based on Bates et al. (2014) that determined the single rate constants for the cis- and trans- beta isomer.

G45080: Alkyl nitrate formation neglected.

G45092a: C4MDIAL = CM4DIAL in MCM only fromaromatics.

G45092b: Only one acyl peroxy radical considered.

G45093: Two aldehydic sites reacting with NO₃ but only one isomer product considered.

G45095: Alkyl nitrate formation neglected.

G45098: Alkyl nitrate formation neglected.

G45100: Alkyl nitrate formation neglected.

G45104a: DB1OOH is a hydroperoxide bearing a vinyl alcohol moiety that upon reaction with OH yields HCOOH (Davis et al., 1998).

G45107: OH production here is to take into account the hydroperoxidic function formed by the shift of the enolic hydrogen and not present in DB2O2. This approximation leads to spurious HO₂ production.

G45108a: Consistent with the results of Bates et al. (2014).

G45108b: Consistent with the results of Bates et al. (2014). Assuming that the enol alkoxy radical partly decomposes yielding a substitute vinyl alcohol.

G45111: Alkyl nitrate formation neglected.

G45114b: Here, formic acid is mechanistically produced by the OH-addition to the vinyl alcohol which, upon RO₂-to-RO conversion (skipped here), yields the HOCHOH fragment which in turn reacts with O₂ forming HCOOH + HO₂. Along CH₃COCHOOHCHO should be produced but not in the mechanism. Only CH₃COCHO₂CHO. The rate constant is consistent with predictions by Ganzeveld et al. (2006) for ENOL. OH-addition to the OH-bearing carbon is considered the dominant channel as it is already for the ENOL (Ganzeveld et al., 2006).

G45115: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006). The product should be C1ODC3OOHC4OD but it is neglected in the mechanism.

G45116: As for DB1OOH + OH.

G45117: Additional sinks for DB2OOH are neglected.

G45121b: Nitrate assumed to be major isomer that is mostly similar to products of ISOPDO2-chemistry.

G45128: Rate constant by Liljegren and Stevens (2013). A lumped RO_2 that upon conversion to RO yields 100% 2-methyl-butenedial (C4MDIAL) although Aschmann et al. (2014) quantified a 38% yield of the Z/E mixture.

 $\tt G45129:$ As for 3METHYLFURAN + OH but with additional NO2 production for mass conservation.

G45131: Alkyl nitrate formation neglected.

G45132: Hydroperoxide formation neglected.

G45134b: ZCO2HC23DBCOD formation is neglected. However, it is produced in MCM and in aromatic-related reactions under the name of MC3ODBCO2H.

G45139: LZCPANC23DBCOD is assumed to react like LC5PAN1719.

G45201: Alkyl nitrate formation neglected.

G45207: Alkyl nitrate formation neglected.

G45214: Alkyl nitrate formation neglected.

G45217: Alkyl nitrate formation neglected.

G45225: Alkyl nitrate formation neglected.

G45247: Alkyl nitrate formation neglected.

G45400: KDEC NC4MDCO2 \rightarrow MMALANHY + NO2

G45404: KDEC NTLFUO \rightarrow ACCOMECHO + NO2

G45405: KDEC NTLFUO \rightarrow ACCOMECHO + NO2

G45406: KDEC NTLFUO \rightarrow ACCOMECHO

G45409: KBPAN \rightarrow k_PAN_M(renaming)

G45413: KFPAN \rightarrow k_CH3CO3_NO2 (renaming)

G45422: KDEC MMALANHYO \rightarrow CO2H3CO3

G45423: KDEC MMALANHYO→CO2H3CO3

G45424: KDEC MMALANHYO \rightarrow CO2H3CO3 and Only major channel.

G45429: KBPAN \rightarrow k_PAN_M (renamed)

G45430a: KDEC C5CO14CO2 \rightarrow 0.83 MALANHY + 0.83 CH3 + 0.17 MGLYOX + 0.17 HO2 + 0.17 CO + 0.17 CO2

G45431: KDEC C5CO14CO2 \rightarrow 0.83 MALANHY + 0.83 CH3 + 0.17 MGLYOX + 0.17 HO2 + 0.17 CO + 0.17 CO2

G45432: KFPAN \rightarrow k_CH3CO3_NO2 (renaming)

G45433: KDEC C5CO14CO2 \rightarrow 0.83 MALANHY + 0.83 CH3 + 0.17 MGLYOX + 0.17 HO2 + 0.17 CO + 0.17 CO2

G45434: KDEC C5CO14CO2 \to 0.83 MALANHY + 0.83 CH3 + 0.17 MGLYOX + 0.17 HO2 + 0.17 CO + 0.17 CO2 and only major channel.

G45436: KDEC C5CO14CO2 \rightarrow 0.83 MALANHY + 0.83 CH3 + 0.17 MGLYOX + 0.17 HO2 + 0.17 CO + 0.17 CO2

G45444: KDEC MC3CODBCO2 \rightarrow 0.35 GLYOX + 0.35 CH3 + 0.35 CO + 0.35 CO2 + 0.65 MMALANHY + 0.65 HO2

G45452: KDEC TLFUONOOA \rightarrow 0.5 CO + 0.5 OH + 0.5 MECOACETO2 + 0.5 TLFUONOO and H2O subs TLFUONOO \rightarrow 0.625 C24O3CCO2H + 0.375 ACCOMECHO + 0.375 H2O2

G45456: KFPAN \rightarrow k_CH3CO3_NO2 (renaming)

G45476b: KDEC NTLFUO \rightarrow ACCOMECHO + NO2 and reactions with KRO2HO2.

G45477: KDEC NTLFUO \rightarrow ACCOMECHO + NO2

G45478: KDEC NTLFUO \rightarrow ACCOMECHO + NO2

G45479: KDEC NTLFUO \rightarrow ACCOMECHO + NO2

G45486b: KDEC C5DIALO \rightarrow MALDIAL + CO + HO2 and reactions with KRO2HO2.

G45487: KDEC C5DIALO \rightarrow MALDIAL

G45488: KDEC C5DIALO \rightarrow MALDIAL

G45489: KDEC C5DIALO →MALDIAL

G45491b: Reactions with KRO2HO2.

G45492: MGLYOX + GLYOX + HO2 from KDEC sub- G46434: stitution

G45493: MGLYOX + GLYOX + HO2 from KDEC sub- G46435: stitution

G45494: Permutation reaction (minor channels removed).

G46201: Alkyl nitrate formation neglected.

G46404b: Reactions with KRO2HO2 and KDEC $C615CO2O \rightarrow C5DICARB + CO + HO2.$

G46405: KDEC C615CO2O \rightarrow C5DICARB + CO + HO2

G46406: KDEC C615CO2O \rightarrow C5DICARB + CO + HO2

G46407: Only major channel.

G46413b: Reactions with KRO2HO2 and KDEC ND- $NPHENO \rightarrow NC4DCO2H + HNO3 + CO + CO +$ NO2.

G46414: KDEC NDNPHENO \rightarrow NC4DCO2H + HNO3 + CO + CO + NO2

G46415: KDEC NDNPHENO \rightarrow NC4DCO2H + HNO3 + CO + CO + NO2

G46416: KDEC NDNPHENO \rightarrow NC4DCO2H + HNO3 + CO + CO + NO2

G46418: KDEC CATECOOA \rightarrow MALDALCO2H +HCOCO2H + HO2 + OH

G46426: KFPAN \rightarrow k_CH3CO3_NO2

G46430: KDEC GLYOOA \rightarrow .125 HCHO + .18 GLYOO + .82 HO2 + .57 OH + 1.265 CO

G46432b: Reactions with KRO2HO2 and KDEC $NCATECO \rightarrow NC4DCO2H + HCOCO2H + HO2$

HCOCO2H + HO2

KDEC NCATECO \rightarrow NC4DCO2H + G46468: KFPAN \rightarrow k_CH3CO3_NO2 HCOCO2H + HO2

 $KDEC NCATECO \rightarrow NC4DCO2H +$ HCOCO2H + HO2

G46437b: Reactions with KRO2HO2 and KDEC $NPHENO \rightarrow MALDALCO2H + GLYOX + NO2$

G46438: KDEC NPHENO \rightarrow MALDALCO2H + GLYOX + NO2

G46439: KDEC NPHENO \rightarrow MALDALCO2H + GLYOX + NO2

G46440: KDEC NPHENO \rightarrow MALDALCO2H + GLYOX + NO2

G46441: Merged equations.

G46447b: reactions with KRO2HO2 and KDEC $NNCATECO \rightarrow NC4DCO2H + HCOCO2H + NO2$

G46448: KDEC NNCATECO \rightarrow NC4DCO2H + HCOCO2H + NO2

G46449: KDEC NNCATECO \rightarrow NC4DCO2H + HCOCO2H + NO2

G46450: KDEC NNCATECO \rightarrow NC4DCO2H +HCOCO2H + NO2

G46457: Merged equations.

G46458: Merged equations.

G46461b: Reactions with KRO2HO2 and KDEC PHENO \rightarrow 0.71 MALDALCO2H + 0.71 GLYOX + 0.29 PBZQONE + HO2

G46462: KDEC PHENO $\rightarrow 0.71$ MALDALCO2H + 0.71 GLYOX + 0.29 PBZQONE + HO2

G46463: KDEC PHENO $\rightarrow 0.71$ MALDALCO2H + 0.71 GLYOX + 0.29 PBZQONE + HO2

G46464: KDEC PHENO $\rightarrow 0.71$ MALDALCO2H + G46433: KDEC NCATECO \rightarrow NC4DCO2H + 0.71 GLYOX + 0.29 PBZQONE + HO2 and Only major channel.

G46472b: new channel

G46476: HOC6H4NO2 is a nitro-phenol

G46480b: Reactions with KRO2HO2 and KDEC PBZQO →C5CO2OHCO3

G46481: KDEC PBZQO →C5CO2OHCO3

G46482: KDEC PBZQO →C5CO2OHCO3

G46483: KDEC PBZQO \rightarrow C5CO2OHCO3 and Only major channel.

G46485b: Reactions with KRO2HO2 and KDEC $DNPHENO \rightarrow NC4DCO2H + HCOCO2H + NO2$

G46486: KDEC DNPHENO \rightarrow NC4DCO2H + HCOCO2H + NO2

G46487: KDEC DNPHENO \rightarrow NC4DCO2H + HCOCO2H + NO2

G46488: $KDEC DNPHENO \rightarrow NC4DCO2H +$ HCOCO2H + NO2

G46490b: Reactions with KRO2HO2 and KDEC BZE- $MUCO \rightarrow 0.5 EPXC4DIAL + 0.5 GLYOX + 0.5 HO2$ + 0.5 C3DIALO2 + 0.5 C32OH13CO.

G46491b: KDEC BZEMUCO $\rightarrow 0.5$ EPXC4DIAL + 0.5 GLYOX + 0.5 HO2 + 0.5 C3DIALO2 + 0.5C32OH13CO.

G46492: KDEC BZEMUCO $\rightarrow 0.5$ EPXC4DIAL + 0.5 GLYOX + 0.5 HO2 + 0.5 C3DIALO2 + 0.5C32OH13CO

G46493: KDEC BZEMUCO \rightarrow 0.5 EPXC4DIAL + 0.5 GLYOX + 0.5 HO2 + 0.5 C3DIALO2 + 0.5C32OH13CO and Only major channel.

G46499b: Reactions with KRO2HO2 and KDEC $NBZQO \rightarrow C6CO4DB + NO2.$

G46500: KDEC NBZQO \rightarrow C6CO4DB + NO2

G46501: KDEC NBZQO \rightarrow C6CO4DB + NO2

G46502: KDEC NBZQO \rightarrow C6CO4DB + NO2

G46505b: New channel.

G46515: Only major channel.

G46517b: New channel.

(Birdsall et al., 2010).

G46523b: KDEC BZBIPERO \rightarrow GLYOX + HO2 + 0.5 BZFUONE + 0.5 BZFUONE

G46524: KDEC BZBIPERO \rightarrow GLYOX + HO2 + 0.5 BZFUONE + 0.5 BZFUONE

G46525: KDEC BZBIPERO \rightarrow GLYOX + HO2 + 0.5 BZFUONE + 0.5 BZFUONE and Only major channel.

G47210: Alkyl nitrate formation neglected.

G47214: Alkyl nitrate formation neglected.

G47218: Alkyl nitrate formation neglected.

G47222: Alkyl nitrate formation neglected.

G47223: ROO6R3OOH produced but no sink for it.

G47225: ROO6R4P produced but no sink for it.

G47226: ROO6R5P produced but no sink for it

G47400: Merged.

G47402a: KROPRIM*O2 fast reaction C6H5CH2O = BENZAL + HO2.

G47402b: KROPRIM*O2 fast reaction C6H5CH2O = BENZAL + HO2.

G47403: KROPRIM*O2 fast reaction C6H5CH2O = BENZAL + HO2.

G47404: KROPRIM*O2 fast reaction C6H5CH2O = BENZAL + HO2. C6H5CH2OH replaced by its oxidation product BENZAL.

G47405: Merged.

G47406: Merged.

G47407b: According to Birdsall et al. (2010), the branching ratio rbipero2_oh is set to 0.4 in order to take into account the OH-recycling and summed yield of butendial and methylbutendial.

G46522b: In analogy to TLBIPERO2 from toluene G47408a: KDEC TLBIPERO $\rightarrow 0.6$ GLYOX + 0.4MGLYOX + HO2 + 0.2 C4MDIAL + 0.2 C5DICARB+ 0.2 TLFUONE + 0.2 BZFUONE + 0.2 MALDIAL

> G47408b: KDEC TLBIPERO $\rightarrow 0.6$ GLYOX + 0.4 MGLYOX + HO2 + 0.2 ZCODC23DB COD + 0.2C5DICARB + 0.2 TLFUONE + 0.2 BZFUONE + 0.2MALDIAL

> G47409: KDEC TLBIPERO $\rightarrow 0.6$ GLYOX + 0.4 MGLYOX + HO2 + 0.2 ZCODC23DB COD + 0.2C5DICARB + 0.2 TLFUONE + 0.2 BZFUONE + 0.2MALDIAL

> G47410: Only major channel and KDEC TLBIPERO \rightarrow 0.6 GLYOX + 0.4 MGLYOX + HO2 + 0.2 ZCODC23DB COD + 0.2 C5DICARB + 0.2 TL-FUONE + 0.2 BZFUONE + 0.2 MALDIAL

> G47412: KDEC MGLOOB $\rightarrow 0.125$ CH3CHO + 0.695CH3CO + 0.57 CO + 0.57 OH + 0.125 HO2 + 0.18MGLOO + 0.25 CO2

G47413: Merged.

G47418b: Reactions with KRO2HO2 and KDEC $CRESO \rightarrow 0.68 C5CO14OH + 0.68 GLYOX + HO2$ + 0.32 PTLQONE.

G47419: KDEC CRESO $\rightarrow 0.68$ C5CO14OH + 0.68 GLYOX + HO2 + 0.32 PTLQONE

G47420: KDEC CRESO $\rightarrow 0.68$ C5CO14OH + 0.68 GLYOX + HO2 + 0.32 PTLQONE

G47421: KDEC CRESO $\rightarrow 0.68$ C5CO14OH + 0.68 GLYOX + HO2 + 0.32 PTLQONE and Only major channel.

G47422b: Reactions with KRO2HO2 and KDEC $NCRESO \rightarrow C5CO14OH + GLYOX + NO2$

G47423: KDEC NCRESO \rightarrow C5CO14OH + GLYOX + NO2

G47424: KDEC NCRESO \rightarrow C5CO14OH + GLYOX + NO2

G47425: KDEC NCRESO \rightarrow C5CO14OH + GLYOX + NO2 and Only major channel.

G47426: TOL1OHNO2 is a nitro-phenol

G47429: KDEC MCATECOOA \rightarrow MC3ODBCO2H +HCOCO2H + HO2 + OH

G47436: KFPAN →k_CH3CO3_NO2

G47438: Only major channel.

G47439b: Reactions with KRO2HO2 and KDEC TLEMUCO $\rightarrow 0.5$ C3DIALO2 + 0.5 CO2H3CHO + 0.5 EPXC4DIAL + 0.5 MGLYOX + 0.5 HO2

G47440b: KDEC TLEMUCO $\rightarrow 0.5$ C3DIALO2 + 0.5 CO2H3CHO + 0.5 EPXC4DIAL + 0.5 MGLYOX + 0.5HO2

G47441: KDEC TLEMUCO $\rightarrow 0.5$ C3DIALO2 + 0.5 CO2H3CHO + 0.5 EPXC4DIAL + 0.5 MGLYOX + $0.5~\mathrm{HO2}$

G47442: KDEC TLEMUCO \rightarrow 0.5 C3DIALO2 + 0.5 CO2H3CHO + 0.5 EPXC4DIAL + 0.5 MGLYOX + 0.5 HO2 and Only major channel.

G47445: KFPAN \rightarrow k_CH3CO3_NO2

G47447: Only major channel.

G47454: New channel.

G47479: New channel.

G47482b: Reactions with KRO2HO2 and KDEC $NPTLQO \rightarrow C7CO4DB + NO2$

G47483: KDEC NPTLQO \rightarrow C7CO4DB + NO2

G47484: KDEC NPTLQO \rightarrow C7CO4DB + NO2

G47485: KDEC NPTLOO \rightarrow C7CO4DB + NO2

G47486b: Reactions with KRO2HO2 and KDEC $PTLQO \rightarrow C6CO2OHCO3$

G47487: KDEC PTLQO \rightarrow C6CO2OHCO3

G47488: KDEC PTLQO \rightarrow C6CO2OHCO3

G47489: Only major channel. KDEC PTLQO \rightarrow C6CO2OHCO3.

G47494: New channel.

G47497b: Reactions with KRO2HO2 and KDEC MN- $NCATECO \rightarrow NC4MDCO2H + HCOCO2H + NO2$

G47498: KDEC MNNCATECO \rightarrow NC4MDCO2H + HCOCO2H + NO2

G47499: KDEC MNNCATECO \rightarrow NC4MDCO2H + HCOCO2H + NO2

G47501b: Reactions with KRO2HO2 and KDEC MN- $CATECO \rightarrow NC4MDCO2H + HCOCO2H + HO2$

G47502: KDEC MNCATECO \rightarrow NC4MDCO2H + HCOCO2H + HO2

G47503: KDEC MNCATECO \rightarrow NC4MDCO2H + HCOCO2H + HO2

G47504: KDEC MNCATECO \rightarrow NC4MDCO2H + HCOCO2H + HO2

G47509b: Reactions with KRO2HO2 and KDEC ND- $NCRESO \rightarrow NC4MDCO2H + HNO3 + CO + CO +$ NO2

G47510: KDEC NDNCRESO \rightarrow NC4MDCO2H +HNO3 + CO + CO + NO2

G47511: KDEC NDNCRESO \rightarrow NC4MDCO2H + HNO3 + CO + CO + NO2

G47512: KDEC NDNCRESO \rightarrow NC4MDCO2H + HNO3 + CO + CO + NO2

G47513b: Reactions with KRO2HO2 and KDEC $DNCRESO \rightarrow NC4MDCO2H + HCOCO2H + NO2$

G47514: KDEC DNCRESO \rightarrow NC4MDCO2H +HCOCO2H + NO2

HCOCO2H + NO2

G47516: KDEC DNCRESO \rightarrow NC4MDCO2H +HCOCO2H + NO2

G48202: Alkyl nitrate formation neglected.

G48205: Alkyl nitrate formation neglected.

G48210: Alkyl nitrate formation neglected.

G48212: Alkyl nitrate formation neglected.

G48216: Alkyl nitrate formation neglected.

G48222: Alkyl nitrate formation neglected.

G48400a: Same products as for toluene. ing a 1:1:1 proportion in xylenes emissions the analogous toluene product is produced with a rate constant equal to (1.36E-11*0.24 + 2.31E-11*0.29 + 1.43E11*0.155)/3, where k and coefficients are for the single isomers ortho, meta and para from MCM.

G48400b: Same products as for toluene. Assuming a 1:1:1 proportion in xylenes emissions the analogous toluene product is produced with a rate constant equal to (1.36E-11*0.05 + 2.31E-11*0.04 + 1.43E-11*0.10)/3where k and coefficients are for the single isomers ortho, meta and para from MCM.

G48400c: Same products as for toluene. Assuming a 1:1:1 proportion in xylenes emissions the analogous toluene product is produced with a rate constant equal to (1.36E-11*0.16 + 2.31E-11*0.17 + 1.43E-11*0.12)/3, where k and coefficients are for the single isomers ortho, meta and para from MCM.

G48400d: Same products as for toluene. Assuming a 1:1:1 proportion in xylenes emissions the analogous toluene product is produced with a rate constant equal to (1.36E-11*0.55 + 2.31E-11*0.50 + 1.43E-1.43E)11*0.625)/3, where k and coefficients are for the single isomers ortho, meta and para from MCM.

G47515: KDEC DNCRESO \rightarrow NC4MDCO2H + G48401: Same products as for toluene. The rate constant is the average of m, p, o k=(4.10E-16+2.60E-16-2.60E-16-2.16+5.00E-16)/3 = 3.9E-16.

G48402: merged under same rate constant

G48403: Same products as for toluene

G48405: KDEC CH2OOB $\rightarrow 0.24$ CH2OO + 0.40 CO + 0.36 HO2 + 0.36 CO + 0.36 OH and H2O + PH $CHOO \rightarrow 0.625 \ PHCOOH + 0.375 \ BENZAL + 0.375$ H2O2 + 0.2 CO2

G48408: KDEC NSTYRENEO \rightarrow NO2 + HCHO + BENZAL

G48409: KDEC NSTYRENEO \rightarrow NO2 + HCHO + BENZAL

G48410: KDEC NSTYRENEO \rightarrow NO2 + HCHO + BENZAL

G48412b: KDEC STYRENO \rightarrow HO2 + HCHO + BEN-ZAL and reactions with KRO2HO2.

G48413: KDEC STYRENO \rightarrow HO2 + HCHO + BEN-ZAL

G48414: KDEC STYRENO \rightarrow HO2 + HCHO + BEN-ZAL

G48415: KDEC STYRENO \rightarrow HO2 + HCHO + BEN-ZAL

G49207: Alkyl nitrate formation neglected.

G49238: Alkyl nitrate formation neglected.

Only this channel considered as the intermediate radical is likely more stable than CHCH(OH)₂.Instead of the (lacking) carbonyl a product of further degradation is assumed.

G49247: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G49248: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G49400a: Same products as for toluene. Assuming a 1:1:1 proportion in xylenes emissions the analogous toluene product is produced with a rate constant equal to $(3.27\text{E}-11^*0.21+3.25\text{E}-11^*0.30+5.67\text{E}-11^*0.14)/3$, where k and coefficients are for the single isomers 1,2,3-, 1,3,4- and 1,3,5- from MCM.

G49400b: Same products as for toluene. Assuming a 1:1:1 proportion in xylenes emissions the analogous toluene product is produced with a rate constant equal to $(3.27\text{E}-11^*0.06+3.25\text{E}-11^*0.06+5.67\text{E}-11^*0.03)/3$, where k and coefficients are for the single isomers 1,2,3-, 1,3,4- and 1,3,5- from MCM.

G49400c: Same products as for toluene. Assuming a 1:1:1 proportion in xylenes emissions the analogous toluene product is produced with a rate constant equal to (3.27E-11*0.03+3.25E-11*0.03+5.67E-11*.04)/3, where k and coefficients are for the single isomers 1,2,3-, 1,3,4- and 1,3,5- from MCM.

G49400d: Same products as for toluene. Assuming a 1:1:1 proportion in xylenes emissions the analogous toluene product is produced with a rate constant equal to $(3.27\text{E}-11^*0.70+3.25\text{E}-11^*0.61+5.67\text{E}-11^*0.79)/3$, where k and coefficients are for the single isomers 1,2,3-, 1,3,4- and 1,3,5- from MCM.

G49401: Same products as for toluene. The rate constant is the average of m, p, o k=(1.90+1.80+0.88)E-15/3=1.52E-15.

G40200: Products from Vereecken et al. (2007). LAP-INABO2 = 0.65 APINAO2 + 0.35 APINBO2

G40203: Weighted average for isomers A and B, k = 0.33*9.20E-14+0.67*8.80E-13.

G40204: Weighted average for isomers A and B, k = 0.35*1.83E-11+0.65*3.28E-11.

G40205: Weighted average for isomers A and B, k = 0.35*5.50E-12+0.65*3.64E-12.

G40206: SAR-estimated rate constant, (kads+kadt)*acoch3 = 6.46E-11 where kads = 3.0E-11, kadt = 5.5E-11, acoch3 = 0.76

G40207: Alkyl nitrate formation neglected.

G40211: Products from Rickard and Pascoe (2009).

G40212: Products from Rickard and Pascoe (2009).

G40232: Products from Capouet et al. (2008).

G40242: Alkyl nitrate formation neglected.

G40246: Products from Rickard and Pascoe (2009).

G40248: Alkyl nitrate formation neglected.

G40252a: Products from Vereecken and Peeters (2012).

G40252b: Products from Vereecken and Peeters (2012).

G40259: ROO6R1OOH is produced but no sink for it.

 $\tt G40262: RO6R1OOH$ is produced but no sink for it.

G40266: Rate constant modified according to MCM protocol.

G40267a: Products from Nguyen et al. (2009).

G40268: Products from Rickard and Pascoe (2009).

G40270: Alkyl nitrate neglected.

G40274: As for RO6R1NO3 in G4085.

G40276: Only this channel considered as the intermediate radical is likely more stable than $CHCH(OH)_2$.

G40277: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G40278: Theoretical keto-enol tautomerization catalyzed by formic acid (Grenfell et al., 2006).

G40282a: Products from Vereecken and Peeters (2012).

G40282b: Products from Vereecken and Peeters (2012).

G40283a: Products from Nguyen et al. (2009).

G40284: Products from Rickard and Pascoe (2009).

G40285a: Products from Vereecken and Peeters (2012).

G40285b: Products from Vereecken and Peeters (2012).

G40286a: Products from Nguyen et al. (2009).

G40287: Products from Rickard and Pascoe (2009).

 $\tt G40400:$ DIET35TOL(from MCM) as representative of higher aromatics

G40401: Same products as for toluene.

Table 2: Photolysis reactions

#	labels	reaction	rate coefficient	reference
J (gas)				
J1000a	UpStTrGJ	$O_2 + h\nu \to O(^3P) + O(^3P)$	jx(ip_02)	Sander et al. (2014)
J1001a	UpStTrGJ	$O_3 + h\nu \rightarrow O(^1D) + O_2$	jx(ip_01D)	Sander et al. (2014)
J1001b	UpStTrGJ	$O_3 + h\nu \rightarrow O(^3P) + O_2$	jx(ip_03P)	Sander et al. (2014)
J2101	UpStTrGJ	$\mathrm{H_2O_2} + \mathrm{h}\nu \rightarrow 2 \mathrm{OH}$	jx(ip_H2O2)	Sander et al. (2014)
J3101	UpStTrGJN	$NO_2 + h\nu \rightarrow NO + O(^3P)$	jx(ip_NO2)	Sander et al. (2014)
J3103a	UpStTrGJN	$NO_3 + h\nu \rightarrow NO_2 + O(^3P)$	jx(ip_N020)	Sander et al. (2014)
J3103b	UpStTrGJN	$NO_3 + h\nu \rightarrow NO + O_2$	jx(ip_N002)	Sander et al. (2014)
J3104	StTrGJN	$N_2O_5 + h\nu \rightarrow NO_2 + NO_3$	jx(ip_N2O5)	Sander et al. (2014)
J3200	TrGJN	$\mathrm{HONO} + \mathrm{h}\nu \rightarrow \mathrm{NO} + \mathrm{OH}$	jx(ip_HONO)	Sander et al. (2014)
J3201	StTrGJN	$HNO_3 + h\nu \rightarrow NO_2 + OH$	jx(ip_HNO3)	Sander et al. (2014)
J3202	StTrGJN	$\mathrm{HNO_4} + \mathrm{h}\nu \rightarrow .667 \ \mathrm{NO_2} + .667 \ \mathrm{HO_2} + .333 \ \mathrm{NO_3} + .333 \ \mathrm{OH}$	jx(ip_HNO4)	Sander et al. (2014)
J41000	StTrGJ	$CH_3OOH + h\nu \rightarrow CH_3O + OH$	jx(ip_CH300H)	Sander et al. (2014)
J41001a	StTrGJ	$\mathrm{HCHO} + \mathrm{h}\nu \rightarrow \mathrm{H}_2 + \mathrm{CO}$	jx(ip_COH2)	Sander et al. (2014)
J41001b	StTrGJ	$\mathrm{HCHO} + \mathrm{h}\nu \rightarrow \mathrm{H} + \mathrm{CO} + \mathrm{HO}_2$	<pre>jx(ip_CHOH)</pre>	Sander et al. (2014)
J41004	StTrGJN	$\mathrm{CH_3ONO} + \mathrm{h}\nu \rightarrow \mathrm{CH_3O} + \mathrm{NO}$	jx(ip_CH30N0)	Sander et al. (2014)
J41005	StTrGJN	$\mathrm{CH_3ONO_2} + \mathrm{h}\nu \rightarrow \mathrm{CH_3O} + \mathrm{NO_2}$	jx(ip_CH3NO3)	Sander et al. (2014)
J41006	StTrGJN	$CH_3O_2NO_2 + h\nu \rightarrow .667 NO_2 + .667 CH_3O_2 + .333 NO_3 + .333$	jx(ip_CH302N02)	Sander et al. $(2014)^*$
		$\mathrm{CH_{3}O}$		
J41007	StTrGJ	$HOCH_2OOH + h\nu \rightarrow HCOOH + OH + HO_2$	jx(ip_CH300H)	Sander et al. (2014)
J41008	StTrGJ	$CH_3O_2 + h\nu \rightarrow HCHO + OH$	jx(ip_CH302)	Sander et al. (2014)
J41009	StTrGJ	$\mathrm{HCOOH} + \mathrm{h}\nu \rightarrow \mathrm{CO} + \mathrm{HO}_2 + \mathrm{OH}$	jx(ip_HCOOH)	Sander et al. (2014)
J41010	StTrGJN	$HOCH_2O_2NO_2 + h\nu \rightarrow .667 NO_2 + .667 HOCH_2O_2 + .333 NO_3$	jx(ip_CH3O2NO2)	Sander et al. (2014)
		$+ .333 \text{ HCOOH} + .333 \text{ HO}_2$		
J42000	TrGJC	$C_2H_5OOH + h\nu \rightarrow CH_3CHO + HO_2 + OH$	jx(ip_CH3OOH)	von Kuhlmann (2001)
J42001a	TrGJC	$CH_3CHO + h\nu \rightarrow CH_3 + HO_2 + CO$	jx(ip_CH3CHO)	Sander et al. (2014)
J42001b	TrGJC	$\mathrm{CH_{3}CHO} + \mathrm{h}\nu \rightarrow \mathrm{CH_{2}CHOH}$	<pre>jx(ip_CH3CH02VINY)</pre>	Clubb et al. (2012)
J42002	TrGJC	$\mathrm{CH_3C}(\mathrm{O})\mathrm{OOH} + \mathrm{h}\nu \rightarrow \mathrm{CH_3} + \mathrm{OH} + \mathrm{CO_2}$	jx(ip_CH3CO3H)	Sander et al. (2014)
J42004	TrGJCN	$PAN + h\nu \rightarrow .7 CH_3C(O) + .7 NO_2 + .3 CH_3 + .3 CO_2 + .3$	jx(ip_PAN)	Sander et al. $(2014)^*$
		NO_3		
J42005a	TrGJC	$HOCH_2CHO + h\nu \rightarrow HCHO + 2 HO_2 + CO$	jx(ip_HOCH2CH0)*0.83	Sander et al. $(2014)^*$
J42005b	TrGJC	$HOCH_2CHO + h\nu \rightarrow OH + HCOCH_2O_2$	jx(ip_HOCH2CH0)*0.07	Sander et al. $(2014)^*$
J42005c	TrGJC	$HOCH_2CHO + h\nu \rightarrow CH_3OH + CO$	jx(ip_HOCH2CH0)*0.10	Sander et al. $(2014)^*$
J42006	TrGJC	$HOCH_2CO_3H + h\nu \rightarrow HCHO + HO_2 + OH + CO_2$	jx(ip_CH300H)	Rickard and Pascoe (2009)

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J42007	TrGJCN	PHAN + h ν → .7 HOCH2CO + .7 NO ₂ + .3 HCHO + .3 HO ₂ + .3 CO ₂ + .3 NO ₃	jx(ip_PAN)	see note*
J42008	TrGJC	$+ .3 CO_2 + .3 NO_3$ $GLYOX + h\nu \rightarrow 2 CO + 2 HO_2$	jx(ip_GLYOX)	Sander et al. (2014)
J42009	TrGJC	$HCOCO_2H + h\nu \rightarrow 2 HO_2 + CO + CO_2$	jx(ip_MGLYOX)	Rickard and Pascoe (2009)
J42010	TrGJC	$HCOCO_3H + h\nu \rightarrow HO_2 + CO + OH + CO_2$	jx(ip_CH300H)+jx(ip_H0CH2CH0)	Rickard and Pascoe (2009)
J42011	TrGJC	$HYETHO2H + h\nu \rightarrow HOCH_2CH_2O + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J42012	TrGJCN	ETHOHNO3 + $h\nu \rightarrow HO_2 + 2 \text{ HCHO} + NO_2$	j_IC3H7NO3	Rickard and Pascoe (2009)
J42013	TrGJC	$\text{HOOCH2CO3H} + \text{h}\nu \rightarrow \text{OH} + \text{HCHO} + \text{CO}_2 + \text{OH}$	2*jx(ip_CH300H)	Sander et al. (2018)
J42014	TrGC	$\text{HOOCH2CO2H} + \text{h}\nu \rightarrow \text{OH} + \text{HCHO} + \text{HO}_2 + \text{CO}_2$	jx(ip_CH300H)	Sander et al. (2018)
J42015	TrGC	CH2CO + $h\nu \rightarrow .4 \text{ CO}_2 + .8 \text{ H} + .34 \text{ CO} + .34 \text{ OH} + .34 \text{ HO}_2 + .16 \text{ HCHO} + .16 \text{ O}(^3\text{P}) + .1 \text{ HCOOH} + \text{CO}$	j_ketene* 0.36	Sander et al. (2018)
J42016	TrGC	$\text{CH3CHOHOOH} + \text{h}\nu \rightarrow \text{CH}_3 + \text{HCOOH} + \text{OH}$	jx(ip_CH300H)	Sander et al. (2018)
J42017	TrGJCN	$NO_3CH2CHO + h\nu \rightarrow HO_2 + CO + HCHO + NO_2$	(jx(ip_C2H5NO3)+jx(ip_CH3CHO)) *(jx(ip_NOA)+1E-10)/(0.59*j_ IC3H7NO3+jx(ip_CH3COCH3)+1E-10)	Sander et al. (2018)*
J42018	TrGJC	$\mathrm{HOOCH2CHO} + \mathrm{h}\nu \rightarrow \mathrm{OH} + \mathrm{HCHO} + \mathrm{CO} + \mathrm{HO}_2$	<pre>jx(ip_CH300H)+jx(ip_H0CH2CH0)</pre>	Sander et al. (2018)
J42019	TrGJCN	$C_2H_5ONO_2 + h\nu \rightarrow CH_3CHO + HO_2 + NO_2$	jx(ip_C2H5NO3)	Sander et al. (2018)
J42020	TrGJCN	NO ₃ CH2CHO + h $\nu \rightarrow$.7 NO ₃ CH2CO ₃ + .7 NO ₂ + .3 HCHO + .3 NO ₂ + .3 CO ₂ + .3 NO ₃	jx(ip_PAN)	Sander et al. (2018)*
J42021	StTrGJCN	$C_2H_5O_2NO_2 + h\nu \rightarrow .667 NO_2 + .667 C_2H_5O_2 + .333 NO_3 + .333 CH_3CHO + .333 HO_2$	jx(ip_CH302N02)	Sander et al. (2018)*
J43000	TrGJC	$iC_3H_7OOH + h\nu \rightarrow CH_3COCH_3 + HO_2 + OH$	jx(ip_CH300H)	von Kuhlmann (2001)
J43001	TrGJC	$CH_3COCH_3 + h\nu \rightarrow CH_3C(O) + CH_3$	jx(ip_CH3COCH3)	Sander et al. (2014)
J43002	TrGJC	CH ₃ COCH ₂ OH + h $\nu \rightarrow$.5 CH ₃ C(O) + .5 HCHO + .5 HO ₂ + .5 HOCH2CO + .5 CH ₃	j_ACETOL	Sander et al. (2014)*
J43003	TrGJC	$MGLYOX + h\nu \rightarrow CH_3C(O) + CO + HO_2$	jx(ip_MGLYOX)	Sander et al. (2014)
J43004	TrGJC	$CH_3COCH_2O_2H + h\nu \rightarrow CH_3C(O) + HCHO + OH$	jx(ip_CH300H)+j_ACETOL	Rickard and Pascoe (2009)
J43005	TrGJC	$HOCH2COCH2OOH + h\nu \rightarrow HOCH2CO + HCHO + OH$	jx(ip_CH300H)+j_ACETOL	Sander et al. (2018)
J43006	TrGJCN	$iC_3H_7ONO_2 + h\nu \rightarrow CH_3COCH_3 + NO_2 + HO_2$	j_IC3H7NO3	von Kuhlmann et al. (2003)*
J43007	TrGJCN	$NOA + h\nu \rightarrow CH_3C(O) + HCHO + NO_2$	jx(ip_NOA)	Barnes et al. (1993)
J43009	TrGJC	$HYPROPO2H + h\nu \rightarrow CH_3CHO + HCHO + HO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J43010	TrGJCN	$PR2O2HNO3 + h\nu \rightarrow NOA + HO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J43011	TrGJC	$\mathrm{HOCH2COCHO} + \mathrm{h}\nu \rightarrow \mathrm{HOCH2CO} + \mathrm{CO} + \mathrm{HO}_2$	jx(ip_MGLYOX)	Rickard and Pascoe (2009)
J43012	TrGJC	$\mathrm{HCOCOCH_{2}OOH} + \mathrm{h}\nu \rightarrow \mathrm{HCOCO} + \mathrm{HCHO} + \mathrm{OH}$	jx(ip_CH300H)+j_ACETOL	Sander et al. (2018)

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J43013	TrGJC	$\mathrm{HCOCOCH_2OOH} + \mathrm{h}\nu \rightarrow \mathrm{HOOCH_2CO_3} + \mathrm{CO} + \mathrm{HO_2}$	jx(ip_MGLYOX)	Sander et al. (2018)
J43014	TrGJTerC	$\text{HCOCH2CHO} + \text{h}\nu \rightarrow \text{HCOCH}_2\text{O}_2 + \text{HO}_2 + \text{CO}$	jx(ip_HOCH2CHO)*2.	Rickard and Pascoe (2009)
J43015	TrGJTerC	$\text{HCOCH2CO2H} + \text{h}\nu \rightarrow \text{HCOCH}_2\text{O}_2 + \text{CO}_2 + \text{HO}_2$	jx(ip_HOCH2CHO)	Rickard and Pascoe (2009)
J43016	TrGJTerC	$HOC2H4CO3H + h\nu \rightarrow HOCH_2CH_2O_2 + CO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J43017	TrGJC	$\mathrm{HCOCOCHO} + \mathrm{h}\nu \rightarrow \mathrm{HCOCO} + \mathrm{HO}_2 + \mathrm{CO}$	2.*jx(ip_MGLYOX)	Sander et al. (2018)
J43018	TrGJC	${\rm CH_3COCO_2H} + {\rm h}\nu \rightarrow .32~{\rm CH_3CHO} + .16~{\rm CH_2CHOH} + .54~{\rm CO_2} + .38~{\rm CH_3C(O)} + .38~{\rm HO_2} + .38~{\rm CO_2} + .07~{\rm CH_3COOH} + .07~{\rm CO} + .05~{\rm CH_3C(O)} + .05~{\rm CO} + .05~{\rm OH}$	jx(IP_CH3COCO2H)	Sander et al. (2018)*
J43019	TrGC	$CH_3COCO_3H + h\nu \rightarrow CH_3C(O) + OH + CO_2$	<pre>jx(IP_MGLYOX)+jx(ip_CH300H)</pre>	Sander et al. (2018)
J43020	TrGC	$CH3CHCO + h\nu \rightarrow C_2H_4 + CO$	j_ketene*0.36*2.	Sander et al. (2018)
J43021	TrGCN	$PROPOLNO3 + h\nu \rightarrow HOCH_2CHO + HCHO + HO_2 + NO_2$	j_IC3H7NO3	Sander et al. (2018)
J43022	TrGCN	$CH_3COCH_2OONO_2 + h\nu \rightarrow CH_3C(O) + HCHO + NO_3$	jx(ip_CH302N02)+jx(ip_CH3COCH3)	Sander et al. (2018)
J43023	TrGJC	$C_3H_7OOH + h\nu \rightarrow C_2H_5CHO + HO_2 + OH$	jx(ip_CH300H)	von Kuhlmann (2001)
J43024	TrGJCN	$C_3H_7ONO_2 + h\nu \rightarrow C_2H_5CHO + NO_2 + HO_2$	0.59*j_IC3H7NO3	see note*
J43025a	TrGJC	$\mathrm{C_2H_5CHO} + \mathrm{h}\nu \rightarrow \mathrm{C_2H_5O_2} + \mathrm{HO_2} + \mathrm{CO}$	jx(ip_C2H5CHO2HCO)	see note*
J43025b	TrGJC	$C_2H_5CHO + h\nu \rightarrow CH_2CHCH_2OH$	jx(ip_C2H5CHO2ENOL)	Andrews et al. (2012) , Sander et al. $(2018)^*$
J43026	TrGJCN	PPN + $h\nu \rightarrow .7 \text{ C}_2\text{H}_5\text{CO}_3 + .7 \text{ NO}_2 + .3 \text{ C}_2\text{H}_5\text{O}_2 + .3 \text{ CO}_2 + .3 \text{ NO}_3$	<pre>jx(ip_PAN)</pre>	Sander et al. (2014)
J43027	TrGJC	$C_2H_5CO_3H + h\nu \rightarrow C_2H_5O_2 + CO_2 + OH$	jx(ip_CH300H)	von Kuhlmann (2001)
J43028a	TrGJC	$\text{HCOCOCH}_2\text{OOH} + \text{h}\nu \rightarrow \text{HOOCH}_2\text{CO}_3 + \text{CO} + \text{HO}_2$	jx(ip_MGLYOX)	Sander et al. (2018)
J43028b	TrGJC	$\mathrm{HCOCOCH_2OOH} + \mathrm{h}\nu \rightarrow \mathrm{HCOCO} + \mathrm{HCHO} + \mathrm{OH}$	jx(ip_HOCH2CH0)+jx(ip_CH3OOH)	Sander et al. (2018)
J43200	TrGJTerC	$\text{HCOCH2CO3H} + \text{h}\nu \rightarrow \text{HCOCH}_2\text{O}_2 + \text{CO}_2 + \text{OH}$	jx(ip_HOCH2CH0)+jx(ip_CH3OOH)	Rickard and Pascoe (2009)
J43400	TrGJAroC	C3DIALOOH + $h\nu \rightarrow GLYOX + CO + HO_2 + OH$	jx(ip_HOCH2CH0)*2+jx(ip_CH300H)	Rickard and Pascoe (2009)*
J43401	TrGJAroC	$C32OH13CO + h\nu \rightarrow GLYOX + HO_2 + HO_2 + CO$	jx(ip_HOCH2CH0)*2	Rickard and Pascoe (2009)
J43402	TrGJAroC	$\text{HCOCOHCO3H} + \text{h}\nu \rightarrow \text{GLYOX} + \text{HO}_2 + \text{CO}_2 + \text{OH}$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J44000a	TrGJC	$LC_4H_9OOH + h\nu \rightarrow OH + C_3H_7CHO + HO_2$	jx(ip_CH300H)*(k_p/(k_p+k_s))	Rickard and Pascoe (2009), Sander et al. (2018)
J44000b	TrGJC	$LC_4H_9OOH + h\nu \rightarrow OH + .636 \text{ MEK} + .636 \text{ HO}_2 + .364 $ $CH_3CHO + .364 \text{ C}_2H_5O_2$	jx(ip_CH300H)*(k_s/(k_p+k_s))	Rickard and Pascoe (2009), Sander et al. (2018)
J44001	TrGJC	MVK + h $\nu \rightarrow$.5 C ₃ H ₆ + .5 CH ₃ C(O) + .5 HCHO + CO + .5 HO ₂	<pre>jx(ip_MVK)</pre>	Sander et al. (2014)

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J44002	TrGJC	$MEK + h\nu \rightarrow CH_3C(O) + C_2H_5O_2$	0.42*jx(ip_CHOH)	von Kuhlmann et al. (2003)
J44003	TrGJC	LMEKOOH + $h\nu \rightarrow .62 \text{ CH}_3\text{C(O)} + .62 \text{ CH}_3\text{CHO} + .38 \text{ HCHO} + .38 \text{ CO}_2 + .38 \text{ HOCH}_2\text{CH}_2\text{O}_2 + \text{OH}$	jx(ip_CH300H)+0.42*jx(ip_CH0H)	Sander et al. (2018)
J44004	TrGJC	$\mathrm{BIACET} + \mathrm{h}\nu \to 2 \mathrm{~CH_3C(O)}$	2.15*jx(ip_MGLYOX)	see note*
J44005a	TrGJCN	$LC4H9NO3 + h\nu \rightarrow NO_2 + C_3H_7CHO + HO_2$	j_IC3H7NO3*(k_p/(k_p+k_s))	see note*
J44005b	TrGJCN	$LC4H9NO3 + h\nu \rightarrow NO_2 + MEK + HO_2$	j_IC3H7NO3*(k_s/(k_p+k_s))	see note*
J44006	TrGJCN	$\mathrm{MPAN} + \mathrm{h}\nu \rightarrow .7 \; \mathrm{MACO3} + .7 \; \mathrm{NO}_2 + .3 \; \mathrm{MACO2} + .3 \; \mathrm{NO}_3$	jx(ip_PAN)	see note*
J44007a	TrGJC	$CO2H3CO3H + h\nu \rightarrow MGLYOX + HO_2 + OH + CO_2$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J44007b	TrGJC	$CO2H3CO3H + h\nu \rightarrow CH_3C(O) + HO_2 + HCOCO_3H$	j_ACETOL	Rickard and Pascoe (2009)
J44008	TrGJC	MACR + h $\nu \rightarrow$.5 MACO3 + .5 CH ₃ C(O) + .5 HCHO + .5 CO + HO ₂	<pre>jx(ip_MACR)</pre>	Sander et al. (2014)
J44009	TrGJC	$MACROOH + h\nu \rightarrow MACRO + OH$	<pre>jx(ip_CH300H)+2.77*jx(ip_ HOCH2CH0)</pre>	Sander et al. (2018)*
J44010	TrGJC	$MACROH + h\nu \rightarrow CH_3COCH_2OH + CO + HO_2 + HO_2$	2.77*jx(ip_HOCH2CH0)	see note*
J44011	TrGJC	$MACO3H + h\nu \rightarrow MACO2 + OH$	jx(ip_CH300H)	Sander et al. (2018)
J44012	TrGJC	LHMVKABOOH + h $\nu \rightarrow$.12 MGLYOX + .12 HO $_2$ + .88 CH $_3$ C(O) + .88 HOCH $_2$ CHO + .12 HCHO + OH	jx(ip_CH300H)+j_ACETOL	Sander et al. (2018)
J44013	TrGJC	$CO2H3CHO + h\nu \rightarrow MGLYOX + CO + HO_2 + HO_2$	jx(ip_HOCH2CHO)+j_ACETOL	Sander et al. (2018)
J44014	TrGJC	$\text{HO}12\text{CO}3\text{C}4 + \text{h}\nu \rightarrow \text{CH}_3\text{C}(\text{O}) + \text{HOCH}_2\text{CHO} + \text{HO}_2$	j_ACETOL	Rickard and Pascoe (2009)
J44015	TrGJC	$BIACETOH + h\nu \rightarrow CH_3C(O) + HOCH2CO$	2.15*jx(ip_MGLYOX)	see note*
J44016	TrGC	HCOCCH ₃ CO + h ν \rightarrow .5 OH + .5 CH ₃ CHO + CO + .5 CH ₃ CHCO + .5 CO	j_KETENE	Sander et al. (2018)
J44017a	TrGC	CH ₃ COCHCO + h $\nu \rightarrow$.0192 CH ₃ COCO ₂ H + .1848 H ₂ O ₂ + .2208 MGLYOX + .36 OH + .36 CO + .56 CH ₃ C(O) + .2 CH ₃ CHO + .2 CO ₂ + .2 HCHO + .2 HO ₂ + CO	j_KETENE*0.5	Sander et al. (2018),Rickard and Pascoe (2009)*
J44017b	TrGC	$CH_3COCHCO + h\nu \rightarrow CH3CHCO + CO$	j_KETENE*0.5	Sander et al. (2018)
J44018a	TrGJC	$\mathrm{CH_3COCOCHO} + \mathrm{h}\nu \rightarrow \mathrm{CH_3C(O)} + 2~\mathrm{CO} + \mathrm{HO_2}$	<pre>jx(ip_MGLYOX)</pre>	Sander et al. (2018)
J44018b	TrGJC	$CH_3COCOCHO + h\nu \rightarrow HCOCO + CH_3C(O)$	2.15*jx(ip_MGLYOX)	Sander et al. (2018)
J44019	TrGJC	$CH3COCOCO2H + h\nu \rightarrow CH_3C(O) + CO + CO_2 + HO_2$	3.15*jx(ip_MGLYOX)	Sander et al. (2018)
J44020a	TrGJTerC	$CH_3COCOCH_2OOH + h\nu \rightarrow CH_3C(O) + OH + HCHO + CO$	jx(ip_CH300H)+j_ACETOL	Rickard and Pascoe (2009)
J44020b	TrGJTerC	$CH_3COCOCH_2OOH + h\nu \rightarrow CH_3C(O) + HCOCO$	2.15*jx(ip_MGLYOX)	Rickard and Pascoe (2009)
J44021	TrGJTerC	$C44OOH + h\nu \rightarrow HCOCH2CHO + CO_2 + HO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J44022	TrGJTerC	C413COOOH + $h\nu \rightarrow HCOCH2CO3 + HCHO + OH$	jx(ip_CH300H)+jx(ip_HOCH2CH0) +j_ACETOL	Rickard and Pascoe (2009)

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J44023a	TrGJTerC	$C4CODIAL + h\nu \rightarrow HCOCOCH_2O_2 + HO_2 + CO$	jx(ip_HOCH2CHO)	Rickard and Pascoe (2009)
J44023b	TrGJTerC	$C4CODIAL + h\nu \rightarrow HCOCH2CO3 + HO_2 + CO$	<pre>jx(ip_MGLYOX)</pre>	Rickard and Pascoe (2009)
J44024	TrGJTerC	$C312COCO3H + h\nu \rightarrow HCOCOCH_2O_2 + CO_2 + OH$	<pre>jx(ip_CH300H)+jx(ip_MGLYOX)</pre>	Rickard and Pascoe (2009)
J44025	TrGJCN	LMEKNO3 + $h\nu \rightarrow .62 \text{ CH}_3\text{C(O)} + .62 \text{ CH}_3\text{CHO} + .38 \text{ HCHO}$	jx(ip_MEKNO3)	Barnes et al. (1993) ,
		$+ .38 \text{ CO}_2 + .38 \text{ HOCH}_2\text{CH}_2\text{O}_2 + \text{NO}_2$		Sander et al. $(2018)^*$
J44026	TrGJCN	$MVKNO3 + h\nu \rightarrow CH_3C(O) + HOCH_2CHO + NO_2$	<pre>jx(ip_MEKNO3)</pre>	Barnes et al. (1993),
7.4.4.0.07	TI O LON	MACDNOS - 1 - CHI COCHI OH - CO - HO - NO	(0.04.: TG0UTN00.: (: GU0GU0))	Sander et al. (2018)*
J44027	TrGJCN	$MACRNO3 + h\nu \rightarrow CH_3COCH_2OH + CO + HO_2 + NO_2$	(2.84*j_IC3H7N03+jx(ip_CH3CH0))	Müller et al. (2014),
			(jx(ip_MEKNO3)+1E-10)/(j_	Sander et al. $(2018)^$
144000	m a lan	TOURONO 1 1 OUL COOR 1 OUL 1 NO	IC3H7NO3+0.42*jx(ip_CHOH)+1E-10)	C 1 4 1 (2010)
J44028	TrGJCN	$TC4H9NO3 + h\nu \rightarrow CH_3COCH_3 + CH_3 + NO_2$	2.84*j_IC3H7N03	Sander et al. (2018)
J44029	TrGJC	$TC_4H_9OOH + h\nu \rightarrow CH_3COCH_3 + CH_3 + OH$	jx(ip_CH300H)	Sander et al. (2018)
J44030	TrGJCN	IBUTOLBNO3 + $h\nu \rightarrow CH_3COCH_3 + HCHO + HO_2 + NO_2$	2.84*j_IC3H7NO3	Sander et al. (2018)
J44031	TrGJC	IBUTOLBOOH + $h\nu \rightarrow CH_3COCH_3 + HCHO + HO_2 + OH$	jx(ip_CH300H)	Sander et al. (2018)
J44032	TrGJC	LBUT1ENOOH + $h\nu \rightarrow C_2H_5CHO + HCHO + HO_2 + OH$	jx(ip_CH300H)	Sander et al. (2018)
J44033	TrGJCN	LBUT1ENNO3 + $h\nu \rightarrow C_2H_5CHO + HCHO + HO_2 + NO_2$	j_IC3H7NO3	Sander et al. (2018)
J44034	TrGJC	BUT2OLOOH + $h\nu \rightarrow 2$ CH ₃ CHO + HO ₂ + OH	jx(ip_CH300H)	Sander et al. (2018)
J44035	TrGJCN	BUT2OLNO3 + $h\nu \rightarrow 2$ CH ₃ CHO + HO_2 + NO_2	j_IC3H7NO3	Sander et al. (2018)
J44036	TrGJC	BUT2OLO + $h\nu \rightarrow CH_3C(O) + HOCH2CO$	j_ACETOL	Sander et al. (2018)
J44037a	TrGJC	$C_3H_7CHO + h\nu \rightarrow C_3H_7O_2 + CO + HO_2$	jx(ip_C3H7CH02HCO)	Sander et al. (2018)
J44037b	TrGJC	$C_3H_7CHO + h\nu \rightarrow C_2H_4 + CH_2CHOH$	jx(ip_C3H7CHO2VINY)	Sander et al. (2018)*
J44038	TrGJC	$IPRCHO + h\nu \rightarrow iC_3H_7O_2 + CO + HO_2$	jx(ip_IPRCHO2HCO)	Sander et al. (2018)
J44039	TrGJCN	$IC4H9NO3 + h\nu \rightarrow IPRCHO + NO_2$	j_IC3H7NO3	Sander et al. (2018)
J44040	TrGJC	$IC_4H_9OOH + h\nu \rightarrow IPRCHO + HO_2 + OH$	jx(ip_CH300H)	Sander et al. (2018)
J44041	TrGJC	$PERIBUACID + h\nu \rightarrow iC_3H_7O_2 + CO_2 + OH$	jx(ip_CH300H)	Sander et al. (2018)
J44042	TrGJCN	PIPN + h $\nu \rightarrow$.7 IPRCO3 + .7 NO ₂ + .3 iC ₃ H ₇ O ₂ + .3 CO ₂ + .3 NO ₃	jx(ip_PAN)	Sander et al. (2018), Sander et al. (2014)
J44043	TrGJC	$HVMK + h\nu \rightarrow MGLYOX + CO + 2 OH$	jx(ip_PeDIONE24)	Sander et al. (2018),
			3 - 12	Nakanishi et al. (1977),
				Messaadia et al. (2015),
				Yoon et al. (1999)*
J44044	TrGJC	$\mathrm{HMAC} + \mathrm{h}\nu \rightarrow \mathrm{HCOCCH_3CO} + 2 \mathrm{OH}$	<pre>jx(ip_PeDIONE24)</pre>	Sander et al. (2018),
				Nakanishi et al. (1977),
				Messaadia et al. (2015),
				Yoon et al. $(1999)^*$

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J44045a	TrGJC	$CO2C3CHO + h\nu \rightarrow CH_3COCH_2O_2 + HO_2 + CO$	jx(ip_C2H5CHO2HCO)	Rickard and Pascoe (2009)
J44045b	TrGJC	$CO2C3CHO + h\nu \rightarrow HVMK$	jx(ip_C2H5CH02EN0L)	Andrews et al. (2012), Sander et al. (2018)
J44046a	TrGJC	$IBUTDIAL + h\nu \rightarrow CH_3CHO + CO + HO_2 + CO_2 + H_2O$	jx(ip_C2H5CHO2HCO)*2.	see note*
J44046b	TrGJC	$IBUTDIAL + h\nu \rightarrow HMAC$	jx(ip_C2H5CH02EN0L)*2.	Andrews et al. (2012), Sander et al. (2018)
J44200	TrGJTerC	$IBUTALOH + h\nu \rightarrow CH_3COCH_3 + HO_2 + HO_2 + CO$	j_ACETOL	Rickard and Pascoe (2009)
J44201	TrGJTerC	$IPRHOCO3H + h\nu \rightarrow CH_3COCH_3 + HO_2 + CO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J44400a	TrGJAroC	$MALDIALOOH + h\nu \rightarrow C32OH13CO + CO + OH + HO_2$	jx(ip_HOCH2CHO)*2	Rickard and Pascoe (2009)
J44400b	TrGJAroC	$MALDIALOOH + h\nu \rightarrow GLYOX + GLYOX + HO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J44401	TrGJAroC	$BZFUOOH + h\nu \rightarrow CO14O3CHO + HO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J44402	TrGJAroC	$HOCOC4DIAL + h\nu \rightarrow HCOCOHCO3 + HO_2 + CO$	<pre>jx(ip_MGLYOX)+jx(ip_HOCH2CH0)</pre>	Rickard and Pascoe (2009)
J44403	TrGJAroCN	NBZFUOOH + h ν \rightarrow .5 CO14O3CHO + .5 NO ₂ + .5 NBZFUONE + .5 HO ₂ + OH	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J44404a	TrGJAroC	$MALDALCO3H + h\nu \rightarrow HCOCO_3H + HO_2 + CO + HO_2 + CO$	jx(ip_MACR)	Rickard and Pascoe (2009)
J44404b	TrGJAroC	MALDALCO3H + h $\nu \rightarrow$.6 MALANHY + HO ₂ + .4 GLYOX + .4 CO + .4 CO ₂ + OH	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J44405	TrGJAroC	$EPXDLCO2H + h\nu \rightarrow C3DIALO2 + CO_2 + HO_2$	2.77*jx(ip_HOCH2CH0)	Rickard and Pascoe (2009)
J44406	TrGJAroC	$MALDIAL + h\nu \rightarrow .4 BZFUONE + .6 MALDIALCO3 + .6 HO_2$	jx(ip_NO2)*0.14	Rickard and Pascoe (2009)
J44407	TrGJAroC	$MALANHYOOH + h\nu \rightarrow HCOCOHCO3 + CO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J44408	TrGJAroC	EPXDLCO3H + $h\nu \rightarrow C3DIALO2 + OH + CO_2$	<pre>jx(ip_CH300H)+2.77*jx(ip_ HOCH2CH0)</pre>	Rickard and Pascoe (2009)
J44409	TrGJAroC	$CO2C4DIAL + h\nu \rightarrow CO + CO + HO_2 + HO_2 + CO + CO$	jx(ip_MGLYOX)*2	Rickard and Pascoe (2009)
J44410	TrGJAroC	$MALDALCO2H + h\nu \rightarrow HCOCO_2H + HO_2 + CO + HO_2 + CO$	jx(ip_MACR)	Rickard and Pascoe (2009)
J44411	TrGJAroC	$EPXC4DIAL + h\nu \rightarrow C3DIALO2 + CO + HO_2$	2.77*jx(ip_HOCH2CH0)*2	Rickard and Pascoe (2009)
J44412	TrGJAroC	$CO14O3CHO + h\nu \rightarrow HO_2 + CO + HCOCH_2O_2 + CO_2$	<pre>jx(ip_MGLYOX)</pre>	Rickard and Pascoe (2009)
J44414	TrGJAroC	$MECOACEOOH + h\nu \rightarrow CH_3C(O) + HCHO + CO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J45002	TrGJC	$LISOPACOOH + h\nu \rightarrow LISOPACO + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J45003	TrGJCN	$LISOPACNO3 + h\nu \rightarrow LISOPACO + NO_2$	0.59*j_IC3H7NO3	see note*
J45004	TrGJC	ISOPBOOH + $h\nu \rightarrow MVK + HCHO + HO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J45005	TrGJCN	$ISOPBNO3 + h\nu \rightarrow MVK + HCHO + HO_2 + NO_2$	2.84*j_IC3H7NO3	see note*

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J45006	TrGJC	$ISOPDOOH + h\nu \rightarrow MACR + HCHO + HO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J45007	TrGJCN	ISOPDNO3 + $h\nu \rightarrow MACR + HCHO + HO_2 + NO_2$	j_IC3H7NO3	see note*
J45008	TrGJCN	$NISOPOOH + h\nu \rightarrow NC4CHO + HO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J45009	TrGJCN	$NC4CHO + h\nu \rightarrow LHC4ACCO3 + NO_2$	(.59*j_IC3H7NO3+jx(ip_MACR)) *(jx(ip_MEKNO3)+1E-10)/(j_ IC3H7NO3+0.42*jx(ip_CHOH)+1E-10)	Müller et al. (2014), Sander et al. (2018)*
J45010	TrGJCN	LNISOOH + h $\nu \rightarrow$ NOA + OH + .5 HOCHCHO + .5 CO + .5 HO ₂ + .5 CO ₂	jx(ip_CH300H)	Taraborrelli et al. (2009), Sander et al. (2018)
J45011	TrGJC	LHC4ACCHO + h ν \rightarrow .5 LHC4ACCO3 + .5 HO ₂ + .5 CO + .5 OH + .25 MACRO2 + .25 LHMVKABO2	<pre>jx(ip_MACR)</pre>	Sander et al. (2018)
J45012	TrGJC	LC578OOH + h $\nu \to .25$ CH ₃ COCH ₂ OH + .75 MGLYOX + .25 HOCHCHO + .75 HOCH ₂ CHO + .75 HO ₂ + OH	jx(ip_CH300H)+ 2.77*jx(ip_ HOCH2CH0)	Sander et al. (2018)
J45013	TrGJC	LHC4ACCO3H + h ν \rightarrow OH + .5 MACRO2 + .5 LHMVKABO2 + OH + CO ₂	j_HPALD	Sander et al. (2018)
J45014	TrGJCN	LC5PAN1719 + h ν \rightarrow .7 LHC4ACCO3 + .7 NO ₂ + .15 MACRO2 + .15 LHMVKABO2 + .3 CO ₂ + .3 NO ₃	jx(ip_PAN)	Sander et al. (2018)
J45015	TrGJC	$\rm HCOC5 + h\nu \rightarrow .65~CH_3 + .65~CO + .65~HCHO + .35~OH + .35~CH_3COCH_2O_2 + HOCH2CO$	0.5*jx(ip_MVK)	Sander et al. $(2018)^*$
J45016	TrGJC	$C59OOH + h\nu \rightarrow CH_3COCH_2OH + HOCH2CO + OH$	j_ACETOL+jx(ip_CH300H)	Sander et al. (2018)
J45017	TrGJTerC	$C511OOH + h\nu \rightarrow CH_3C(O) + HCOCH2CHO + OH$	<pre>jx(ip_CH300H)+jx(ip_H0CH2CH0)</pre>	Rickard and Pascoe (2009)
J45018a	TrGJTerC	$CO23C4CHO + h\nu \rightarrow CH_3COCOCH_2O_2 + HO_2 + CO$	jx(ip_HOCH2CHO)	Rickard and Pascoe (2009)
J45018b	TrGJTerC	$CO23C4CHO + h\nu \rightarrow CH_3C(O) + HCOCH2CO3$	2.15*jx(ip_MGLYOX)	Rickard and Pascoe (2009)
J45019	TrGJTerC	$CO23C4CO3H + h\nu \rightarrow CH_3COCOCH_2O_2 + CO_2 + OH$	<pre>jx(ip_CH300H)+jx(ip_H0CH2CH0)</pre>	Rickard and Pascoe (2009)
J45020	TrGJTerC	$C512OOH + h\nu \rightarrow C513O2 + OH$	<pre>jx(ip_CH300H)+jx(ip_H0CH2CH0)</pre>	Rickard and Pascoe (2009)
J45021	TrGJTerC	$CO13C4CHO + h\nu \rightarrow CHOC3COO2 + CO + HO_2$	jx(ip_HOCH2CH0)*2.	Rickard and Pascoe (2009)
J45022	TrGJTerC	$C513OOH + h\nu \rightarrow GLYOX + HOC_2H_4CO_3 + OH$	<pre>jx(ip_CH300H)+jx(ip_H0CH2CH0)</pre>	Rickard and Pascoe (2009)
J45023	TrGJTerC	$C513CO + h\nu \rightarrow HOC_2H_4CO_3 + HO_2 + CO + CO$	<pre>jx(ip_MGLYOX)+2.15*jx(ip_MGLYOX)</pre>	Rickard and Pascoe (2009)
J45024	TrGJTerC	$C514OOH + h\nu \rightarrow CO13C4CHO + HO_2 + OH$	$jx(ip_CH300H)+jx(ip_HOCH2CH0)*2.$	Rickard and Pascoe (2009)
J45025	TrGJTerCN	$C514NO3 + h\nu \rightarrow CO13C4CHO + HO_2 + NO_2$	j_IC3H7NO3+jx(ip_HOCH2CH0)*2.	Rickard and Pascoe (2009)
J45026a	TrGJC	LZCODC23DBCOOH + $h\nu \rightarrow OH + CO + HVMK + OH$	j_HPALD*0.6*0.5	Sander et al. (2018), Jenkin et al. (2015), Peeters et al. (2014)
J45026b	TrGJC	LZCODC23DBCOOH + h ν \rightarrow OH + CO + CH $_3$ C(O) + HOCH $_2$ CHO	j_HPALD*0.6*0.5	Sander et al. (2018), Jenkin et al. (2015), Peeters et al. (2014)

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J45026c	TrGJC	LZCODC23DBCOOH + $h\nu \rightarrow OH + CO + HMAC + OH$	j_HPALD*0.4*0.5	Sander et al. (2018), Jenkin et al. (2015), Peeters et al. (2014)
J45026d	TrGJC	LZCODC23DBCOOH + h ν \rightarrow OH + CO + CO + CH ₃ COCH ₂ OH + HO ₂	j_HPALD*0.4*0.5	Sander et al. (2018), Jenkin et al. (2015), Peeters et al. (2014)
J45027	TrGJC	LZCO3HC23DBCOD + h $\nu \rightarrow$.62 EZCH3CO2CHCHO + .38 EZCHOCCH3CHO2 + OH + CO2	j_HPALD	Sander et al. (2018)
J45028a	TrGJC	C1OOHC2OOHC4OD + $h\nu \rightarrow CH_3COCH_2O_2H + OH + 2 CO + HO_2$	2.77*jx(IP_HOCH2CHO)	Sander et al. (2018)
J45028b	TrGJC	C1OOHC2OOHC4OD + h $\nu \rightarrow$.5 CH3COCH2O2H + .5 HOCHCHO + .5 CO2H3CHO + .5 HCHO + 1.5 OH	2.*jx(IP_CH300H)	Sander et al. (2018)
J45029	TrGC	$DB1OOH + h\nu \rightarrow DB1O2 + OH$	jx(IP_CH300H)	Sander et al. (2018)
J45030	TrGC	DB2OOH + $h\nu \rightarrow .48$ CH3COCH2OH + $.52$ HOCH2CHO + $.52$ MGLYOX + $.48$ GLYOX + HO_2 + OH	jx(ip_CH300H)	Sander et al. (2018)
J45031a	TrGJC	C1ODC2OOHC4OD + $h\nu \rightarrow MGLYOX + HOCHCHO + OH$	jx(ip_CH300H)	Sander et al. (2018)
J45031b	TrGJC	$C1ODC2OOHC4OD + h\nu \rightarrow CO2H3CHO + CO + HO_2 + OH$	2.*2.77*jx(IP_HOCH2CH0)	Sander et al. (2018)
J45032	TrGJC	C4MDIAL + $h\nu \rightarrow .5$ CH ₃ COCHCO + $.5$ HCOCCH ₃ CO + CO + HO ₂ + OH	jx(ip_NO2)*0.1*0.5	Sander et al. $(2018)^*$
J45033	TrGCN	$\mathrm{DB1NO3} + \mathrm{h}\nu \rightarrow \mathrm{DB1O2} + \mathrm{NO}_2$	j_IC3H7NO3	Sander et al. (2018)
J45034	TrGJTerC	$CHOC3COOOH + h\nu \rightarrow CHOC3COO2 + CO_2 + OH$	jx(ip_CH300H)+jx(ip_H0CH2CH0) +j_ACETOL	Rickard and Pascoe (2009)
J45200a	$\operatorname{TrGJTerC}$	LMBOABOOH + h $\nu \rightarrow$ HOCH ₂ CHO + CH ₃ COCH ₃ + HO ₂ + OH	jx(ip_CH300H)*.67	Rickard and Pascoe (2009), Sander et al. (2018)
J45200b	TrGJTerC	LMBOABOOH + h $\nu \rightarrow$ IBUTALOH + HCHO + HO ₂ + OH	jx(ip_CH300H)*.33	Rickard and Pascoe (2009), Sander et al. (2018)
J45201	TrGJTerC	$MBOACO + h\nu \rightarrow HCHO + HO_2 + IPRHOCO3$	j_ACETOL	Rickard and Pascoe (2009)
J45202	TrGJTerC	$MBOCOCO + h\nu \rightarrow CO + HO_2 + IPRHOCO3$	jx(ip_MGLYOX)	Rickard and Pascoe (2009)
J45203a	TrGJTerCN	LNMBOABOOH + $h\nu \rightarrow NO_3CH2CHO + CH_3COCH_3 + HO_2 + OH$	jx(ip_CH300H)*.65	Rickard and Pascoe (2009), Sander et al. (2018)

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J45203b	TrGJTerCN	LNMBOABOOH + $h\nu \rightarrow IBUTALOH + HCHO + NO_2 + OH$	jx(ip_CH300H)*.35	Rickard and Pascoe (2009), Sander et al. (2018)
J45204	TrGJTerCN	$NC4OHCO3H + h\nu \rightarrow IBUTALOH + CO_2 + NO_2 + OH$	<pre>jx(ip_CH300H)</pre>	Rickard and Pascoe (2009)
J45400	TrGJAroC	$C54CO + h\nu \rightarrow HO_2 + CO + CO + CO + CH_3C(O)$	<pre>jx(ip_MGLYOX)+2.15*jx(ip_MGLYOX) *2</pre>	Rickard and Pascoe (2009)
J45401	TrGJAroC	C5134CO2OH + $h\nu \rightarrow CH_3COCOCHO + HO_2 + CO + HO_2$	<pre>jx(ip_HOCH2CH0)+2.15*jx(ip_ MGLYOX)</pre>	Rickard and Pascoe (2009)
J45402	TrGJAroC	C5DIALOOH + $h\nu \rightarrow MALDIAL + CO + HO_2 + OH$	<pre>jx(ip_CH300H)+jx(ip_MACR)</pre>	Rickard and Pascoe (2009)*
J45406	TrGJAroC	$C5CO14OH + h\nu \rightarrow CH_3C(O) + HCOCO_2H + HO_2 + CO$	jx(ip_MVK)	Rickard and Pascoe (2009)
J45407	TrGJAroC	C5DICARB + $h\nu \rightarrow .6$ C5CO14O2 + $.6$ HO ₂ + $.4$ TLFUONE	jx(ip_NO2)*0.2	Rickard and Pascoe (2009)*
J45408	TrGJAroC	MC3ODBCO2H + h $\nu \rightarrow$ CH ₃ COCO ₂ H + HO ₂ + CO + HO ₂ + CO	<pre>jx(ip_MACR)</pre>	Rickard and Pascoe (2009)
J45409	TrGJAroC	$ACCOMECHO + h\nu \rightarrow MECOACETO2 + HO_2 + CO$	jx(ip_HOCH2CHO)	Rickard and Pascoe (2009)
J45410	TrGJAroC	$\label{eq:malnhyooh} \text{MMALNHYOOH} + \text{h}\nu \rightarrow \text{CO2H3CO3} + \text{CO}_2 + \text{OH}$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J45411	TrGJAroC	C5DICAROOH + $h\nu \rightarrow MGLYOX + GLYOX + HO_2 + OH$	<pre>jx(ip_CH300H)+jx(ip_H0CH2CH0) +j_ACETOL</pre>	Rickard and Pascoe (2009)*
J45412	TrGJAroCN	$NTLFUOOH + h\nu \rightarrow ACCOMECHO + NO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J45414	TrGJAroC	C5CO14OOH + h $\nu \to .83$ MALANHY + .83 CH ₃ + .17 MGLYOX + .17 HO ₂ + .17 CO + .17 CO ₂ + OH	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J45415	TrGJAroC	TLFUOOH + $h\nu \rightarrow ACCOMECHO + HO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J45417	TrGJAroC	$ACCOMECO3H + h\nu \rightarrow MECOACETO2 + CO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J45418	TrGJAroC	$C5DIALCO + h\nu \rightarrow MALDIALCO3 + CO + HO_2$	<pre>jx(ip_MGLYOX)+jx(ip_MACR)</pre>	Rickard and Pascoe (2009)
J46200	TrGJTerCN	$C614NO3 + h\nu \rightarrow CO23C4CHO + HCHO + HO_2 + NO_2$	2.15*jx(ip_MGLYOX)	Rickard and Pascoe (2009)
J46201	TrGJTerC	$C614OOH + h\nu \rightarrow CO23C4CHO + HCHO + HO_2 + OH$	<pre>jx(ip_CH300H)+2.15*jx(ip_MGLYOX)</pre>	Rickard and Pascoe (2009)
J46202	TrGJTerC	$CO235C5CHO + h\nu \rightarrow CO23C4CO3 + CO + HO_2$	<pre>jx(ip_MGLYOX)</pre>	Rickard and Pascoe (2009)
J46203	TrGJTerC	$CO235C6OOH + h\nu \rightarrow CO23C4CO3 + HCHO + OH$	$jx(ip_CH300H)+2.15*jx(ip_MGLYOX)$	Rickard and Pascoe (2009)
J46400	TrGJAroC	PHENOOH + h $\nu \rightarrow$.71 MALDALCO2H + .71 GLYOX + .29 PBZQONE + HO ₂ + OH	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J46401	TrGJAroC	$C6CO4DB + h\nu \rightarrow C4CO2DBCO3 + HO_2 + CO$	jx(ip_MGLYOX)*2	Rickard and Pascoe (2009)

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J46402	TrGJAroC	$C5CO2DCO3H + h\nu \rightarrow CH_3C(O) + HCOCOCHO + CO_2 + OH$	<pre>jx(ip_CH300H)+jx(ip_MGLYOX)</pre>	Rickard and Pascoe (2009)
J46403	TrGJAroCN	NDNPHENOOH + h $\nu \rightarrow$ NC4DCO2H + HNO ₃ + CO + CO + NO ₂ + OH	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J46404	TrGJAroCN	BZBIPERNO3 + h ν \rightarrow GLYOX + HO ₂ + .5 BZFUONE + .5 BZFUONE + NO ₂	j_IC3H7NO3	Rickard and Pascoe (2009)*
J46405	TrGJAroCN	$HOC6H4NO2 + h\nu \rightarrow HONO + CPDKETENE$	jx(ip_HOC6H4NO2)	Chen et al. $(2011)^*$
J46406	TrGJAroC	CPDKETENE + $h\nu \rightarrow CO_2 + CO + 2 HO_2 + MALDIAL$	j_KETENE	see note*
J46407	TrGJAroC	C5COOHCO3H + h ν \rightarrow HOCOC4DIAL + HO ₂ + CO + CO ₂ + OH	jx(ip_CH300H)	Rickard and Pascoe (2009)
J46408	TrGJAroC	BZEPOXMUC + h $\nu \rightarrow .5$ C5DIALO2 + 1.5 HO ₂ + 1.5 CO + .5 MALDIAL	4.E3*jx(ip_MVK)*0.1	Rickard and Pascoe (2009)
J46409	TrGJAroCN	$NPHEN1OOH + h\nu \rightarrow NPHEN1O + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J46410	TrGJAroC	$BZEMUCCO + h\nu \rightarrow HCOCOHCO3 + C3DIALO2$	jx(ip_HOCH2CHO)*2+j_ACETOL	Rickard and Pascoe (2009)
J46411	TrGJAroC	$BZEMUCCO2H + h\nu \rightarrow C5DIALO2 + CO_2 + HO_2$	<pre>jx(ip_MACR)</pre>	Rickard and Pascoe (2009)
J46412	TrGJAroCN	NNCATECOOH + h $\nu \rightarrow$ NC4DCO2H + HCOCO ₂ H + NO ₂ + OH	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J46413	TrGJAroC	$C615CO2OOH + h\nu \rightarrow C5DICARB + CO + HO_2 + OH$	<pre>jx(ip_MVK)+jx(ip_CH300H)</pre>	Rickard and Pascoe (2009)
J46414	TrGJAroCN	$NPHENOOH + h\nu \rightarrow MALDALCO2H + GLYOX + OH + NO_2$	j_IC3H7NO3 + jx(ip_CH3OOH)	Rickard and Pascoe (2009)
J46415	TrGJAroCN	$NCATECOOH + h\nu \rightarrow NC4DCO2H + HCOCO_2H + HO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J46416	TrGJAroC	$PBZQOOH + h\nu \rightarrow C5CO2OHCO3 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J46417	TrGJAroC	$BZOBIPEROH + h\nu \rightarrow MALDIALCO3 + GLYOX + HO_2$	j_ACETOL	Rickard and Pascoe (2009)
J46418	TrGJAroC	BZBIPEROOH + h $\nu \rightarrow$ GLYOX + HO ₂ + .5 BZFUONE + .5 BZFUONE + OH	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J46419	TrGJAroCN	$NBZQOOH + h\nu \rightarrow C6CO4DB + NO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J46420	TrGJAroC	$CATEC1OOH + h\nu \rightarrow CATEC1O + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J46421	TrGJAroC	$C6125CO + h\nu \rightarrow C5CO14O2 + CO + HO_2$	<pre>jx(ip_MGLYOX)+jx(ip_MVK)</pre>	Rickard and Pascoe (2009)
J46422	TrGJAroCN	DNPHENOOH + $h\nu \rightarrow NC4DCO2H + HCOCO_2H + NO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J46423	TrGJAroC	$BZEMUCCO3H + h\nu \rightarrow C5DIALO2 + CO_2 + OH$	<pre>jx(ip_CH300H)+jx(ip_MACR)</pre>	Rickard and Pascoe (2009)
J46424	TrGJAroC	$C6H5OOH + h\nu \rightarrow C6H5O + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J46425	TrGJAroC	BZEMUCOOH + h $\nu \rightarrow$.5 EPXC4DIAL + .5 GLYOX + .5 HO ₂ + .5 C3DIALO2 + .5 C32OH13CO + OH	jx(ip_CH300H)+jx(ip_HOCH2CH0)*2	Rickard and Pascoe (2009)*

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J46427	TrGJAroCN	$BZEMUCNO3 + h\nu \rightarrow EPXC4DIAL + NO_2 + GLYOX + HO_2$	2.77*jx(ip_HOCH2CHO)	Rickard and Pascoe (2009)
J46428	TrGJAroCN	$DNPHEN + h\nu \rightarrow HONO + NCPDKETENE$	jx(ip_HOC6H4NO2)	Sander et al. (2018)
J46429	TrGJAroCN	$NCPDKETENE + h\nu \rightarrow CO_2 + CO + 2 HO_2 + NC4DCO2H$	j_KETENE	see note*
J47200	TrGJTerC	$CO235C6CHO + h\nu \rightarrow CHOC3COCO3 + CH_3C(O)$	2.15*jx(ip_MGLYOX)	Rickard and Pascoe (2009)
J47201	TrGJTerC	$C235C6CO3H + h\nu \rightarrow CO235C6O2 + CO_2 + OH$	<pre>jx(ip_CH300H)+2.15*jx(ip_MGLYOX)</pre>	Rickard and Pascoe (2009)
J47202	TrGJTerC	$C716OOH + h\nu \rightarrow CO13C4CHO + CH_3C(O) + OH$	<pre>jx(ip_CH300H)+jx(ip_H0CH2CH0)</pre>	Rickard and Pascoe (2009)
J47203	TrGJTerC	$C721OOH + h\nu \rightarrow C722O2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J47204	TrGJTerC	$C722OOH + h\nu \rightarrow CH_3COCH_3 + C44O2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J47400	TrGJAroC	TLEPOXMUC + h $\nu \rightarrow .5$ C615CO2O2 + HO ₂ + CO + .5 EPXC4DIAL + .5 CH ₃ C(O)	4.E3*jx(ip_MVK)*0.1	Rickard and Pascoe (2009)
J47401	TrGJAroC	C6H5CH2OOH + $h\nu \rightarrow BENZAL + HO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J47402	TrGJAroCN	$C6H5CH2NO3 + h\nu \rightarrow BENZAL + HO_2 + NO_2$	0.59*j_IC3H7NO3	Rickard and Pascoe (2009)*
J47403	TrGJAroC	$BENZAL + h\nu \rightarrow HO_2 + CO + C6H5O2$	<pre>jx(ip_BENZAL)</pre>	Wallington et al. (2018)
J47404	$\operatorname{TrGJAroC}$	TLBIPEROOH + $h\nu \rightarrow$.6 GLYOX + .4 MGLYOX + HO_2 + .2 C4MDIAL + .2 C5DICARB + .2 TLFUONE + .2 BZFUONE + .2 MALDIAL + OH	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J47405	TrGJAroCN	TLBIPERNO3 + $h\nu \rightarrow$.6 GLYOX + .4 MGLYOX + HO_2 + .2 C4MDIAL + .2 C5DICARB + .2 TLFUONE + .2 BZFUONE + .2 MALDIAL + NO_2	j_IC3H7NO3	Rickard and Pascoe (2009)*
J47406	TrGJAroC	TLOBIPEROH + $h\nu \rightarrow C5CO14O2 + GLYOX + HO_2$	j_ACETOL	Rickard and Pascoe (2009)
J47407	TrGJAroC	CRESOOH + h $\nu \rightarrow$.68 C5CO14OH + .68 GLYOX + HO ₂ + .32 PTLQONE + OH	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J47408a	TrGJAroCN	NCRESOOH + h $\nu \rightarrow$.68 C5CO14OH + .68 GLYOX + HO ₂ + .32 PTLQONE + OH + NO ₂	j_IC3H7NO3	Rickard and Pascoe (2009)*
J47408b	TrGJAroCN	$NCRESOOH + h\nu \rightarrow C5CO14OH + GLYOX + NO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J47409	TrGJAroCN	$TOL1OHNO2 + h\nu \rightarrow HONO + MCPDKETENE$	jx(ip_HOPh3Me2NO2)	see note*
J47410	TrGJAroC	TLEMUCCO2H + $h\nu \rightarrow C615CO2O2 + CO_2 + HO_2$	jx(ip_MACR)	Rickard and Pascoe (2009)
J47411	TrGJAroC	TLEMUCCO3H + $h\nu \rightarrow C615CO2O2 + CO_2 + OH$	<pre>jx(ip_CH300H)+jx(ip_MACR)</pre>	Rickard and Pascoe (2009)
J47412	TrGJAroC	TLEMUCOOH + h $\nu \rightarrow$.5 C3DIALO2 + .5 CO2H3CHO + .5 EPXC4DIAL + .5 MGLYOX + .5 HO ₂ + OH	<pre>jx(ip_CH300H)+2.77*jx(ip_ HOCH2CH0)+j_ACETOL</pre>	Rickard and Pascoe (2009)*
J47413	TrGJAroCN	TLEMUCNO3 + $h\nu \rightarrow EPXC4DIAL + NO_2 + CH_3C(O) + CO + HO_2$	2.77*jx(ip_HOCH2CHO)+j_ACETOL	Rickard and Pascoe (2009)

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J47414	TrGJAroC	TLEMUCCO + $h\nu \rightarrow CH_3C(O)$ + EPXC4DIAL + CO + HO_2	2.77*jx(ip_HOCH2CH0)+2.15*jx(ip_ MGLYOX)	Rickard and Pascoe (2009)
J47415	TrGJAroC	$C6H5CO3H + h\nu \rightarrow C6H5O2 + CO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J47416	TrGJAroC	$OXYL1OOH + h\nu \rightarrow TOL1O + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J47417	TrGJAroCN	$MNCATECH + h\nu \rightarrow HONO + MCPDKETENE$	jx(ip_HOPh3Me2NO2)	see note*
J47418	TrGJAroC	$MCPDKETENE + h\nu \rightarrow CO_2 + CO + 2 HO_2 + C4MDIAL$	j_KETENE	see note*
J47419	TrGJAroCN	$DNCRES + h\nu \rightarrow HONO + MNCPDKETENE$	jx(ip_HOPh3Me2NO2)	see note*
J47420	TrGJAroCN	MNCPDKETENE + h ν \rightarrow CO $_2$ + CO + 2 HO $_2$ + NC4MDCO2HN	j_KETENE	see note*
J47421	TrGJAroC	$MCATEC1OOH + h\nu \rightarrow MCATEC1O + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J47422	TrGJAroCN	$NPTLQOOH + h\nu \rightarrow C7CO4DB + NO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J47423	$\operatorname{TrGJAroC}$	$PTLQOOH + h\nu \rightarrow C6CO2OHCO3 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J47424	TrGJAroCN	$NCRES1OOH + h\nu \rightarrow NCRES1O + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J47425	TrGJAroCN	MNNCATCOOH + $h\nu \rightarrow NC4MDCO2HN + HCOCO_2H + NO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J47426	TrGJAroCN	MNCATECOOH + $h\nu \rightarrow NC4MDCO2HN + HCOCO_2H + HO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J47427	TrGJAroC	$C7CO4DB + h\nu \rightarrow C5CO2DBCO3 + HO_2 + CO$	jx(ip_MGLYOX)*2	Rickard and Pascoe (2009)
J47428	TrGJAroCN	NDNCRESOOH + $h\nu \rightarrow NC4MDCO2HN + HNO_3 + CO + CO + NO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J47429	TrGJAroCN	DNCRESOOH + h $\nu \rightarrow$ NC4MDCO2HN + HCOCO ₂ H + NO ₂ + OH	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J47430	TrGJAroC	C6COOHCO3H + h ν \rightarrow C5134CO2OH + HO ₂ + CO + CO ₂ + OH	jx(ip_CH300H)	Rickard and Pascoe (2009)
J48200	TrGJTerC	$C86OOH + h\nu \rightarrow C511O2 + CH_3COCH_3 + OH$	<pre>jx(ip_CH300H)+ jx(ip_HOCH2CH0)</pre>	Rickard and Pascoe (2009)
J48201	TrGJTerC	$C812OOH + h\nu \rightarrow C813O2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J48202	TrGJTerC	$C813OOH + h\nu \rightarrow CH_3COCH_3 + C512O2 + OH$	jx(ip_CH300H)+jx(ip_MGLYOX)	Rickard and Pascoe (2009)
J48203	TrGJTerC	$C721CHO + h\nu \rightarrow C721O2 + CO + HO_2$	jx(ip_HOCH2CHO)	Rickard and Pascoe (2009)
J48204	TrGJTerC	$C721CO3H + h\nu \rightarrow C721O2 + CO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J48205	TrGJTerC	$C8BCOOH + h\nu \rightarrow C89O2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J48206	TrGJTerC	$C89OOH + h\nu \rightarrow C810O2 + OH$	jx(ip_CH300H)+jx(ip_H0CH2CH0)	Rickard and Pascoe (2009)
J48207	TrGJTerCN	$C89NO3 + h\nu \rightarrow C810O2 + NO_2$	<pre>jx(ip_CH300H)+jx(ip_H0CH2CH0)</pre>	Rickard and Pascoe (2009)
J48208	TrGJTerC	$C810OOH + h\nu \rightarrow CH_3COCH_3 + C514O2 + OH$	<pre>jx(ip_CH300H)+jx(ip_H0CH2CH0)</pre>	Rickard and Pascoe (2009)

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J48209	TrGJTerCN	$C810NO3 + h\nu \rightarrow CH_3COCH_3 + C514O2 + NO_2$	2.84*j_IC3H7NO3+jx(ip_HOCH2CHO)	Rickard and Pascoe (2009)
J48210	TrGJTerCN	$C8BCNO3 + h\nu \rightarrow C89O2 + NO_2$	j_IC3H7NO3	Rickard and Pascoe (2009)
J48211	TrGJTerC	$C85OOH + h\nu \rightarrow C86O2 + OH$	jx(ip_CH3OOH)+j_ACETOL	Rickard and Pascoe (2009)
J48400	TrGJAroC	$STYRENOOH + h\nu \rightarrow HO_2 + HCHO + BENZAL + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)*
J49200	TrGJTerC	$C96OOH + h\nu \rightarrow C97O2 + OH$	jx(ip_CH300H)+j_ACETOL	Rickard and Pascoe (2009)
J49201	TrGJTerC	$C97OOH + h\nu \rightarrow C98O2 + OH$	jx(ip_CH300H)+j_ACETOL	Rickard and Pascoe (2009)
J49202	TrGJTerC	$C98OOH + h\nu \rightarrow C614O2 + CH_3COCH_3 + OH$	(jx(ip_CH300H)+2.15*jx(ip_ MGLYOX))	Rickard and Pascoe (2009)
J49203a	TrGJTerC	$NORPINAL + h\nu \rightarrow C85O2 + CO + HO_2$	jx(ip_PINAL2HCO)	Rickard and Pascoe (2009), Sander et al. (2018)
J49203b	TrGJTerC	$NORPINAL + h\nu \rightarrow NORPINENOL$	<pre>jx(ip_PINAL2ENOL)</pre>	Sander et al. (2018), Andrews et al. (2012)
J49204	TrGJTerC	$C85CO3H + h\nu \rightarrow C85O2 + CO_2 + OH$	jx(ip_CH3OOH)+j_ACETOL	Rickard and Pascoe (2009)
J49205	TrGJTerC	$C89CO2H + h\nu \rightarrow .8 \ C811CO3 + .2 \ C89O2 + .2 \ CO_2 + HO_2$	jx(ip_HOCH2CHO)	Rickard and Pascoe (2009)
J49206	TrGJTerC	$C89CO3H + h\nu \rightarrow .8 \ C811CO3 + .2 \ C89O2 + .2 \ CO_2 + OH$	<pre>jx(ip_CH300H)+jx(ip_H0CH2CH0)</pre>	Rickard and Pascoe (2009)
J49207	TrGJTerC	$C811CO3H + h\nu \rightarrow C811O2 + CO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J49208	TrGJTerC	$NOPINDOOH + h\nu \rightarrow C89CO3 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J40200	TrGJTerC	$LAPINABOOH + h\nu \rightarrow PINAL + HO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J40201	TrGJTerC	$MENTHEN6ONE + h\nu \rightarrow RO6R1O2 + OH$	jx(ip_CH300H)	Vereecken et al. (2007)
J40202	TrGJTerC	$2OHMENTHEN6ONE + h\nu \rightarrow 10 LCARBON + OH$	jx(ip_CH300H)	Vereecken et al. (2007)
J40203a	TrGJTerC	$PINAL + h\nu \rightarrow C96O2 + CO + HO_2$	jx(ip_PINAL2HCO)	Rickard and Pascoe (2009)
J40203b	TrGJTerC	$PINAL + h\nu \rightarrow PINEOL$	<pre>jx(ip_PINAL2ENOL)</pre>	Sander et al. (2018), Andrews et al. (2012)*
J40204	TrGJTerC	PERPINONIC + $h\nu \rightarrow C96O2 + CO_2 + OH$	jx(ip_CH3OOH)+j_ACETOL	Rickard and Pascoe (2009)
J40205	TrGJTerC	$PINALOOH + h\nu \rightarrow C106O2 + OH$	jx(ip_CH300H)+jx(ip_H0CH2CH0)	Rickard and Pascoe (2009)
J40206	TrGJTerCN	$PINALNO3 + h\nu \rightarrow C106O2 + NO_2$	j_IC3H7NO3+jx(ip_HOCH2CHO)	Rickard and Pascoe (2009)
J40207	TrGJTerC	$C106OOH + h\nu \rightarrow C716O2 + CH_3COCH_3 + OH$	jx(ip_CH300H)+jx(ip_H0CH2CH0)	Rickard and Pascoe (2009)
J40208	TrGJTerCN	$C106NO3 + h\nu \rightarrow C716O2 + CH_3COCH_3 + NO_2$	j_IC3H7NO3+ jx(ip_HOCH2CHO)	Rickard and Pascoe (2009)
J40209	TrGJTerC	$C109OOH + h\nu \rightarrow C89CO3 + HCHO + OH$	jx(ip_CH300H)+jx(ip_H0CH2CH0)	Rickard and Pascoe (2009)
J40210	TrGJTerC	$C109CO + h\nu \rightarrow C89CO3 + CO + HO_2$	<pre>jx(ip_MGLYOX)+jx(ip_HOCH2CH0)</pre>	Rickard and Pascoe (2009)
J40211	TrGJTerCN	$LNAPINABOOH + h\nu \rightarrow PINAL + NO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J40212	TrGJTerC	$BPINAOOH + h\nu \rightarrow NOPINONE + HCHO + HO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J40213	TrGJTerCN	LNBPINABOOH + $h\nu \rightarrow NOPINONE + HCHO + NO_2 + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J40214	TrGJTerCN	$ROO6R1NO3 + h\nu \rightarrow ROO6R3O2 + CH_3COCH_3 + NO_2$	2.84*j_IC3H7NO3+jx(ip_CH3OOH)	Sander et al. (2018)
J40215	TrGJTerCN	$RO6R1NO3 + h\nu \rightarrow 9 LCARBON + HCHO + HO_2 + NO_2$	2.84*j_IC3H7NO3	Sander et al. (2018)
PH (aqueous)				

General notes

j-values are calculated with an external module (e.g., JVAL) and then supplied to the MECCA chemistry.

Values that originate from the Master Chemical Mechanism (MCM) by Rickard and Pascoe (2009) are translated according in the following way:

 $j(11) \rightarrow jx(ip_COH2)$

 $j(12) \rightarrow jx(ip_CHOH)$

 $j(15) \rightarrow jx(ip_HOCH2CHO)$

 $j(18) \rightarrow jx(ip_MACR)$

 $j(22) \rightarrow jx(ip_ACETOL)$

 $j(23)+j(24) \rightarrow jx(ip_MVK)$

 $j(31)+j(32)+j(33) \rightarrow jx(ip_GLYOX)$

 $j(34) \rightarrow jx(ip_MGLYOX)$

 $j(41) \rightarrow jx(ip_CH300H)$

 $j(53) \rightarrow j(isopropyl nitrate)$

 $j(54) \rightarrow j(isopropyl nitrate)$

 $j(55) \rightarrow j(isopropyl nitrate)$

 $j(56)+j(57) \rightarrow jx(ip_NOA)$

Specific notes

J41006: product distribution as for HNO4

J42004: Quantum yields from Burkholder et al. (2015).

J42005a: Quantum yields from Burkholder et al. (2015).

J42005b: (2015).

J42005c: Quantum vields from Burkholder et al. (2015).

J42007: It is assumed that J(PHAN) is the same as J(PAN).

J42017: Enhancement of i according to Müller et al. (2014).

J42020: It is assumed that j(NO₃CH2CHO) is the same as j(PAN).

J42021: In analogy to what is assumed for CH₃O₂NO₂ photolysis as in (Sander et al., 2014).

J43002: Following von Kuhlmann et al. (2003), we use $j(CH_3COCH_2OH) = 0.11*jx(ip_CHOH)$. As an additional factor, the quantum yield of 0.65 is taken from Orlando et al. (1999a).

J43006: Following von Kuhlmann et al. (2003), we use $J(iC_3H_7ONO_2) = 3.7*jx(ip_PAN).$

J43018: One third of the acetaldehyde channel is considered to be CH2CHOH according to Hjorth (2002) EUPHORE Report.

Assuming $J(C_3H_7ONO_2) = 0.59 \times$ J43024: J(iC₃H₇ONO₂), consistent with the photolysis rate coefficients used in the MCM (Rickard and Pascoe, 2009).

J43025a: Photolysis frequencies very similar to the ones of CH_3CHO .

Quantum yields from Burkholder et al. J43025b: Photolysis frequencies very similar to the ones of CH_3CHO .

J43400: KDEC C3DIALO \rightarrow GLYOX + CO + HO2

J44004: It is assumed that J(BIACET) is 2.15 times larger than J(MGLYOX), consistent with the photolysis rate coefficients used in the MCM (Rickard and Pascoe, 2009).

J44005a: It is assumed that J(LC4H9NO3) is the same as $J(iC_3H_7ONO_2)$.

J44005b: It is assumed that J(LC4H9NO3) is the same as $J(iC_3H_7ONO_2)$.

J44006: It is assumed that J(MPAN) is the same as J(PAN).

J44009: It is assumed that J(MACROOH) is 2.77 times larger than J(HOCH₂CHO), consistent with the photolysis rate coefficients used in the MCM (Rickard and Pascoe, 2009).

J44010: It is assumed that J(MACROH) is 2.77 times larger than J(HOCH₂CHO), consistent with the photolysis rate coefficients used in the MCM (Rickard and Pascoe, 2009).

J44015: It is assumed that J(BIACETOH) is 2.15 times larger than J(MGLYOX), consistent with the photolysis rate coefficients used in the MCM (Rickard and Pascoe, 2009).

J44017a: CO-channel yielding CH₃COCH which upon reaction with O₂ produces an excited Criegee Intermediate assumed to be similar to MGLOOA in MCM.

MGLOOA is produced also in other reactions and is substituted by its decomposition products. Furthermore, the stabilized Criegge Intermediate is assumed to solely react with water.

J44025: J values only for the secondary nitrate.

J44026: Like for LMEKNO3 photolysis

J44027: 2.84*J_IC3H7NO3 like for other tertiary alkyl nitrates (see J4505). Enhancement of J according to Müller et al. (2014).

J44037b: Channel which produces just vinvl alcohol and not a larger enol via keto-enol phototautomerization.

J44043: The resulting vinyl peroxy radical is assumed to mostly form with HO₂ a labile hydroperoxide (see ketene formation). The products are further simplified.

J44044: 1.5-H-shift for the resulting vinyl peroxy radical assumed to be dominant.

J44046a: Simplified oxidation.

J44400b: KDEC MALDIALO \rightarrow GLYOX + GLYOX J45412: KDEC NTLFUO \rightarrow ACCOMECHO + NO2 + HO2

J44401: KDEC BZFUO \rightarrow CO14O3CHO + HO2

J44403: KDEC NBZFUO $\rightarrow 0.5$ CO14O3CHO + 0.5NO2 + 0.5 NBZFUONE + 0.5 HO2

J44404b: KDEC MALDIALCO2 \rightarrow 0.6 MALANHY + HO2 + 0.4 GLYOX + 0.4 CO

J44407: KDEC MALANHYO → HCOCOHCO3

J44414: KDEC MECOACETO \rightarrow CH3CO3 + HCHO

J45003: It is assumed that $J(LISOPACNO3) = 0.59 \times$ J(iC₃H₇ONO₂), consistent with the photolysis rate coefficients used in the MCM (Rickard and Pascoe, 2009).

J45005: It is assumed that $J(ISOPBNO3) = 2.84 \times$ J(iC₃H₇ONO₂), consistent with the photolysis rate coefficients used in the MCM (Rickard and Pascoe, 2009). J45007: It is assumed that J(ISOPDNO3) is the same as $J(iC_3H_7ONO_2)$.

J45009: 0.59*J_IC3H7NO3 like for other primary alkyl nitrates (see J4503). Enhancement of J according to Müller et al. (2014).

J45015: Consistent with the MCM (Rickard and Pascoe, 2009), we assume that J(HCOC5) is half as large as J(MVK). With exeption of HOCH2CO the products of MACO2 decomposition without CO₂.

J45032: approximation with 4-oxo-pentenal photolysis combining results of Thüner et al(2004) and Xiang et al(2007)

J45402: KDEC C5DIALO \rightarrow MALDIAL + CO + HO2 J45407: KDEC TLFUONE $\rightarrow 0.6$ C5CO14O2 + 0.6 HO2 + 0.4 TLFUONE

J45410: KDEC MMALANHYO \rightarrow CO2H3CO3

J45411: KDEC C5DICARBO \rightarrow MGLYOX + GLYOX + HO2

J45414: KDEC C5CO14CO2 \rightarrow 0.83 MALANHY + 0.83 CH3 + .17 MGLYOX + .17 HO2 + .17 CO + .17CO2

J45415: KDEC TLFUO \rightarrow ACCOMECHO + HO2

J46400: KDEC PHENO \rightarrow 0.71 MALDALCO2H + 0.71 GLYOX + 0.29 PBZQONE + HO2

J46403: KDEC NDNPHENO \rightarrow NC4DCO2H + HNO3 + CO + CO + NO2

J46404: KDEC BZBIPERO \rightarrow GLYOX + HO2 + 0.5 BZFUONE + 0.5 BZFUONE

J46405: new channel created for nitrophenol decomposition

J46406: new channel created for nitrophenol decompo-

KDEC NNCATECO → NC4DCO2H + J46412: HCOCO2H + NO2

J46415: $KDEC NCATECO \rightarrow NC4DCO2H +$ HCOCO2H + HO2

J46416: KDEC PBZQO \rightarrow C5CO2OHCO3

J46418: KDEC BZBIPERO \rightarrow GLYOX + HO2 + 0.5 BZFUONE + 0.5 BZFUONE

J46419: KDEC NBZQO \rightarrow C6CO4DB + NO2

KDEC DNPHENO → NC4DCO2H + J46422: HCOCO2H + NO2

J46425: KDEC BZEMUCO $\rightarrow 0.5$ EPXC4DIAL + .5 GLYOX + .5 HO2 + .5 C3DIALO2 + .5 C32OH13CO

J46429: new channel

J47401: KROPRIM*O2 fast reaction C6H5CH2O = BENZAL + HO2

J47402: KROPRIM*O2 fast reaction C6H5CH2O = BENZAL + HO2

J47404: KDEC TLBIPERO $\rightarrow 0.6$ GLYOX + 0.4 MG-LYOX + HO2 + 0.2 C4MDIAL + 0.2 C5DICARB +0.2 TLFUONE + 0.2 BZFUONE + 0.2 MALDIAL

J47405: KDEC TLBIPERO $\rightarrow 0.6$ GLYOX + 0.4 MG-LYOX + HO2 + 0.2 C4MDIAL + 0.2 C5DICARB +0.2 TLFUONE + 0.2 BZFUONE + 0.2 MALDIAL

J47407: KDEC CRESO $\rightarrow 0.68$ C5CO14OH + 0.68 GLYOX + HO2 + 0.32 PTLQONE

J47408a: KDEC CRESO $\rightarrow 0.68$ C5CO14OH + 0.68 GLYOX + HO2 + 0.32 PTLQONE

J47408b: KDEC NCRESO \rightarrow C5CO14OH + GLYOX + NO2

J47409: Using J for 3-methyl-2-nitrophenol.

J47412: KDEC TLEMUCO $\rightarrow 0.5$ C3DIALO2 + 0.5 CO2H3CHO + 0.5 EPXC4DIAL + 0.5 MGLYOX + 0.5HO2

J47417: Using J for 3-methyl-2-nitrophenol.

147	412.	now	channe	٦1
J414	1 10.	new	спание	-71

J47419: Using J for 3-methyl-2-nitrophenol.

J47420: new channel

J47422: KDEC NPTLQO \rightarrow C7CO4DB + NO2

J47423: KDEC PTLQO \rightarrow C6CO2OHCO3

HCOCO2H + NO2

HCOCO2H + HO2

J47428: KDEC NDNCRESO \rightarrow NC4MDCO2H +

HNO3 + CO + CO + NO2

J47425: KDEC MNNCATECO \rightarrow NC4MDCO2H + J47429: KDEC DNCRESO \rightarrow NC4MDCO2H + HCOCO2H + NO2

J47426: KDEC MNCATECO \rightarrow NC4MDCO2H + J48400: KDEC STYRENO \rightarrow HO2 + HCHO + BEN-ZAL

> J40203b: Substituted vinyl alcohol in analogy to CH₃CHO photolysis.

Table 3: Reversible (Henry's law) equilibria and irreversible ("heterogenous") uptake

# labels reaction	rate coefficient	reference	

General notes

The forward (k_exf) and backward (k_exb) rate coefficients are calculated insubmecca_aero_calc_k_ex in the file routine messy_mecca_aero.f90 using accommodation coefficients and Henry's law constants from chemprop (see chemprop.pdf).

subsequent reaction with H₂O, Cl⁻, and Br⁻ in H3201, H6300, H6301, H6302, H7300, H7301, H7302, H7601, and H7602, we define:

$$k_{\rm exf}({\rm X}) {=} \frac{k_{\rm mt}({\rm X}) \times {\rm LWC}}{[{\rm H_2O}] + 5 \times 10^2 [{\rm Cl^-}] + 3 \times 10^5 [{\rm Br^-}]}$$

Here, $k_{\rm mt} = {\rm mass}$ transfer coefficient, and LWC = liquid water content of the aerosol. The total uptake rate For uptake of X (X = N_2O_5 , ClNO₃, or BrNO₃) and of X is only determined by $k_{\rm mt}$. The factors only affect

the branching between hydrolysis and the halide reactions. The factor 5×10^2 was chosen such that the chloride reaction dominates over hydrolysis at about [Cl⁻] > 0.1 M (see Fig. 3 in Behnke et al. (1997)), i.e. when the ratio $[H_2O]/[Cl^-]$ is less than 5×10^2 . The ratio $5\times10^2/3\times10^5$ was chosen such that the reactions with chloride and bromide are roughly equal for sea water composition (Behnke et al., 1994). These ratios were measured for uptake of N_2O_5 . Here, they are also used for $ClNO_3$ and $BrNO_3$.

Table 4: Heterogeneous reactions

# labels reaction	rate coefficient	reference

General notes

Heterogeneous reaction rates are calculated with an external module (e.g., MECCA_KHET) and then supplied to the MECCA chemistry (see www.messy-interface.org for details)

Table 5: Acid-base and other equilibria $\,$

# labels reaction	$K_0[M^{m-n}]$	$-\Delta H/R[K]$	reference	

Specific notes

Table 6: Aqueous phase reactions

# labels reaction	$k_0 \ [M^{1-n}s^{-1}]$	$-E_a/R[K]$	reference	

Specific notes

References

- Albaladejo, J., Jiménez, E., Notario, A., Cabañas, B., and Martínez, E.: CH_3O yield in the $CH_3 + O_3$ reaction using the LP/LIF technique at room temperature, J. Phys. Chem. A, 106, 2512–2519, doi: 10.1021/jp012249o, 2002.
- Andrews, D. U., Heazlewood, B. R., Maccarone, A. T., Conroy, T., Payne, R. J., Jordan, M. J. T., and Kable, S. H.: Photo-tautomerization of acetaldehyde to vinyl alcohol: a potential route to tropospheric acids, Science, 337, 1203–1206, doi:10.1126/science. 1220712, 2012.
- Aschmann, S. M., Nishino, N., Arey, J., and Atkinson, R.: Products of the OH radical-initiated reactions of furan, 2- and 3-methylfuran, and 2,3- and 2,5-dimethylfuran in the presence of NO, J. Phys. Chem. A, 118, 457–466, doi:10.1021/jp410345k, 2014.
- Atkinson, R.: Gas-phase tropospheric chemistry of volatile organic compounds: 1. Alkanes and alkenes, J. Phys. Chem. Ref. Data, 26, 215–290, doi:10.1063/1.556012, 1997.
- Atkinson, R.: Kinetics of the gas-phase reactions of OH radicals with alkanes and cycloalkanes, Atmos. Chem. Phys., 3, 2233–2307, doi:10.5194/ACP-3-2233-2003, 2003.
- Atkinson, R. and Arey, J.: Atmospheric degradation of volatile organic compounds, Chem. Rev., 103, 4605–4638, doi:10.1021/cr0206420, 2003.
- Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and IUPAC Subcommittee: Evaluated kinetic and photochemical data for atmospheric

- chemistry: Volume II gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625–4055, doi:10.5194/ACP-6-3625-2006, 2006.
- Baeza-Romero, M. T., Glowacki, D. R., Blitz, M. A., Heard, D., Pilling, M. J., Rickard, A. R., and Seakins, P. W.: A combined experimental and theoretical study of the reaction between methylglyoxal and OH/OD radical: OH regeneration, Phys. Chem. Chem. Phys., 9, 4114–4128, doi:10.1039/b702916k, 2007.
- Banic, C. M., Beauchamp, S. T., Tordon, R. J., Schroeder, W. H., Steffen, A., Anlauf, K. A., and Wong, H. K. T.: Vertical distribution of gaseous elemental mercury in Canada, J. Geophys. Res., 108D, 4264, doi:10.1029/2002JD002116, 2003.
- Barnes, I., Becker, K. H., Fink, E. H., Reimer, A., Zabel, F., and Niki, H.: FTIR spectroscopic study of the gas-phase reaction of HO₂ with H₂CO, Chem. Phys. Lett., 115, 1–8, doi:10.1016/0009-2614(85) 80091-9, 1985.
- Barnes, I., Becker, K. H., and Zhu, T.: Near UV absorption-spectra and photolysis products of difunctional organic nitrates possible importance as $\rm NO_x$ reservoirs, J. Atmos. Chem., 17, 353–373, doi: $10.1007/\rm BF00696854$, 1993.
- Bates, K. H., Crounse, J. D., St. Clair, J. M., Bennett, N. B., Nguyen, T. B., Seinfeld, J. H., Stoltz, B. M., and Wennberg, P. O.: Gas phase production and loss of isoprene epoxydiols, J. Phys. Chem. A, 118, 1237– 1246, doi:10.1021/jp4107958, 2014.
- Baulch, D. L., Bowman, C. T., Cobos, C. J., Cox, R. A.,
 Just, T., Kerr, J. A., Pilling, M. J., Stocker, D., Troe,
 J., Tsang, W., Walker, R. W., and Warnatz, J.: Evaluated kinetic data for combustion modeling: Supple-

- ment II, J. Phys. Chem. Ref. Data, 34, 757–1397, doi:10.1063/1.1748524, 2005.
- Becker, K. H., Kurtenbach, R., Schmidt, F., and Wiesen, P.: Kinetics of the NCO radical reacting with atoms and selected molecules, Combust. Flame, 120, 570–577, doi:10.1016/S0010-2180(99)00108-X, 2000.
- Behnke, W., Scheer, V., and Zetzsch, C.: Production of BrNO₂, Br₂ and ClNO₂ from the reaction between sea spray aerosol and N₂O₅, J. Aerosol Sci., 25, S277–S278, doi:10.1016/0021-8502(94)90369-7, 1994.
- Behnke, W., George, C., Scheer, V., and Zetzsch, C.: Production and decay of ClNO₂ from the reaction of gaseous N₂O₅ with NaCl solution: Bulk and aerosol experiments, J. Geophys. Res., 102D, 3795–3804, doi: 10.1029/96JD03057, 1997.
- Beyersdorf, A. J., Blake, D. R., Swanson, A., Meinardi, S., Rowland, F. S., and Davis, D.: Abundances and variability of tropospheric volatile organic compounds at the South Pole and other Antarctic locations, Atmos. Environ., 44, 4565–4574, doi:10.1016/ j.atmosenv.2010.08.025, 2010.
- Birdsall, A. W., Andreoni, J. F., and Elrod, M. J.: Investigation of the role of bicyclic peroxy radicals in the oxidation mechanism of toluene, J. Phys. Chem. A, 114, 10655–10663, doi:10.1021/jp105467e, 2010.
- Bossolasco, A., Faragó, E. P., Schoemaecker, C., and Fittschen, C.: Rate constant of the reaction between CH₃O₂ and OH radicals, Chem. Phys. Lett., 593, 7–13, doi:10.1016/j.cplett.2013.12.052, 2014.
- Buras, Z. J., Elsamra, R. M. I., and Green, W. H.: Direct determination of the simplest Criegee intermediate (CH₂OO) self reaction rate, J. Phys. Chem. Lett., 5, 2224–2228, doi:10.1021/jz5008406, 2014.

- Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., and Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 18, JPL Publication 15-10, Jet Propulsion Laboratory, Pasadena, http://jpldataeval.jpl.nasa.gov, 2015.
- Butkovskaya, N., Kukui, A., and Le Bras, G.: Pressure and temperature dependence of ethyl nitrate formation in the $\rm C_2H_5O_2 + NO$ reaction, J. Phys. Chem. A, 114, 956–964, doi:10.1021/jp910003a, 2010.
- Butkovskaya, N., Kukui, A., and Le Bras, G.: Pressure and temperature dependence of methyl nitrate formation in the $\mathrm{CH_3O_2} + \mathrm{NO}$ reaction, J. Phys. Chem. A, 116, 5972–5980, doi:10.1021/jp210710d, 2012.
- Canosa-Mas, C. E., King, M. D., Lopez, R., Percival, C. J., Wayne, R. P., Shallcross, D. E., Pyle, J. A., and Daele, V.: Is the reaction between CH₃(O)O₂ and NO₃ important in the night-time troposphere?, J. Chem. Soc. Faraday Trans., 92, 2211–2222, doi: 10.1039/FT9969202211, 1996.
- Capouet, M., Müller, J.-F., Ceulemans, K., Compernolle, S., Vereecken, L., and Peeters, J.: Modeling aerosol formation in alpha-pinene photo-oxidation experiments, J. Geophys. Res., 113D, doi:10.1029/2007JD008995, 2008.
- Chai, J., Hu, H., Dibble, T. S., Tyndall, G. S., and Orlando, J. J.: Rate constants and kinetic isotope effects for methoxy radical reacting with NO₂ and O₂, J. Phys. Chem. A, 118, 3552–3563, doi:10.1021/jp501205d, 2014.
- Chao, W., Hsieh, J.-T., Chang, C.-H., and Lin, J. J.-M.: Direct kinetic measurement of the reaction of the simplest Criegee intermediate with water vapor,

- Science, 347, 751–754, doi:10.1126/science.1261549, Feierabend, K. J., Zhu, L., Talukdar, R. K., and 2015.

 Burkholder, J. B.: Rate coefficients for the OH
- Chen, J., Wenger, J. C., and Venables, D. S.: Near-ultraviolet absorption cross sections of nitrophenols and their potential influence on tropospheric oxidation capacity, J. Phys. Chem. A, 115, 12235–12242, doi:10.1021/jp206929r, 2011.
- Clubb, A. E., Jordan, M. J. T., Kable, S. H., and Osborn, D. L.: Phototautomerization of acetaldehyde to vinyl alcohol: a primary process in UV-irradiated acetaldehyde from 295 to 335 nm, J. Phys. Chem. Lett., 3, 3522–3526, doi:10.1021/jz301701x, 2012.
- Conn, J. B., Kistiakowsky, G. B., Roberts, R. M., and Smith, E. A.: Heats of organic reactions. XIII. Heats of hydrolysis of some acid anhydrides, Journal of the American Chemical Society, 64, 1747–1752, doi: 10.1021/ja01260a001, 1942.
- da Silva, G.: Carboxylic acid catalyzed keto-enol tautomerizations in the gas phase, Angew. Chem., 122, 7685–7687, doi:10.1002/ange.201003530, 2010.
- Davis, D., Chen, G., Kasibhatla, P., Jefferson, A., Tanner, D., Eisele, F., Lenschow, D., Neff, W., and Berresheim, H.: DMS oxidation in the Antarctic marine boundary layer: Comparison of model simulations and field observations of DMS, DMSO, DMSO₂, H₂SO₄(g), MSA(g), and MSA(p), J. Geophys. Res., 103D, 1657–1678, doi:10.1029/97JD03452, 1998.
- Dulitz, K., Amedro, D., Dillon, T. J., Pozzer, A., and Crowley, J. N.: Temperature (208–318 K) and pressure (18–696 Torr) dependent rate coefficients for the reaction between OH and HNO₃, Atmos. Chem. Phys., 18, 2381–2394, doi:10.5194/acp-18-2381-2018, 2018.

- Feierabend, K. J., Zhu, L., Talukdar, R. K., and Burkholder, J. B.: Rate coefficients for the OH + HC(O)C(O)H (glyoxal) raction between 210 and 390 K, J. Phys. Chem. A, 112, 73–82, doi:10.1021/JP0768571, 2008.
- Flocke, F., Atlas, E., Madronich, S., Schauffler, S. M., Aikin, K., Margitan, J. J., and Bui, T. P.: Observations of methyl nitrate in the lower stratosphere during STRAT: implications for its gas phase production mechanisms, Geophys. Res. Lett., 25, 1891–1894, doi: 10.1029/98GL01417, 1998.
- Francisco-Marquez, M., Alvarez-Idaboy, J. R., Galano, A., and Vivier-Bunge, A.: Theoretical study of the initial reaction between OH and isoprene in tropospheric conditions, Phys. Chem. Chem. Phys., 5, 1392–1399, doi:10.1039/B211185C, 2003.
- Ganzeveld, L., Klemm, O., Rappenglück, B., and Valverde-Canossa, J.: Evaluation of meteorological parameters over a coniferous forest in a single-column chemistry-climate model, Atmos. Environ., 40, S21–S27, doi:10.1016/J.ATMOSENV.2006.01.061, 2006.
- Gill, K. J. and Hites, R. A.: Rate constants for the gas-phase reactions of the hydroxyl radical with isoprene, α and β -pinene, and limonene as a function of temperature, J. Phys. Chem. A, 106, 2538–2544, doi:10.1021/jp013532q, 2002.
- Glowacki, D. R., Lockhart, J., Blitz, M. A., Klippenstein, S. J., Pilling, M. J., Robertson, S. H., and Seakins, P. W.: Interception of excited vibrational quantum states by O₂ in atmospheric association reactions, Science, 337, 1066–1069, doi:10.1126/science. 1224106, 2012.
- Grenfell, J. L., Lehmann, R., Mieth, P., Langematz, U., and Steil, B.: Chemical reaction pathways affect-

- ing stratospheric and mesospheric ozone, J. Geophys. Kirchner, F., Mayer-Figge, A., Zabel, F., and Res., 111D, doi:10.1029/2004JD005713, 2006. Becker, K. H.: Thermal stability of peroxyni-
- Groß, C. B. M., Dillon, T. J., Schuster, G., Lelieveld, J., and Crowley, J. N.: Direct kinetic study of OH and O_3 formation in the reaction of $CH_3C(O)O_2$ with HO_2 , J. Phys. Chem. A, 1, 974–985, doi:10.1021/jp412380z, 2014.
- Gruzdev, A. N., Elokhov, A. S., Makarov, O. V., and Mokhov, I. I.: Some recent results of Russian measurements of surface ozone in Antarctica. A meteorological interpretation, Tellus, 45B, 99–105, doi: 10.3402/TELLUSB.V45I2.15584, 1993.
- Hatakeyama, S., Honda, S., and Akimoto, H.: Rate constants and mechanism for reactions of ketenes with OH radicals in air at 299 ± 2 K, Bull. Chem. Soc. Jpn., $58,\,2157-2162,\,$ doi:10.1246/BCSJ. $58.2157,\,$ 1985.
- Hermans, I., Müller, J.-F., Nguyen, T. L., Jacobs, P. A., and Peeters, J.: Kinetics of α -hydroxy-alkylperoxyl radicals in oxidation processes. HO₂--initiated oxidation of ketones/aldehydes near the tropopause, J. Phys. Chem. A, 109, 4303–4311, doi:10.1021/jp044080v, 2005.
- Jagiella, S. and Zabel, F.: Reaction of phenylperoxy radicals with NO_2 at 298 K, Phys. Chem. Chem. Phys., 9, 5036–5051, doi:10.1039/B705193J, 2007.
- Jenkin, M., Saunders, S. M., and Pilling, M. J.: The tropospheric degradation of volatile organic compounds: A protocol for mechanism development, Atmos. Environ., 31, 81–104, doi:10.1016/ S1352-2310(96)00105-7, 1997.
- Jenkin, M. E., Young, J. C., and Rickard, A. R.: The MCM v3.3.1 degradation scheme for isoprene, Atmos. Chem. Phys., 15, 11433-11459, doi:10.5194/ acp-15-11433-2015, 2015.

- Kirchner, F., Mayer-Figge, A., Zabel, F., and Becker, K. H.: Thermal stability of peroxynitrates, Int. J. Chem. Kinetics, 31, 127–144, doi:10.1002/(SICI)1097-4601(1999)31:2\langle127:: AID-KIN6\langle3.0.CO;2-L, 1999.
- Kleinböhl, A., Toon, G. C., Sen, B., Blavier, J.-F. L., Weisenstein, D. K., Strekowski, R. S., Nicovich, J. M., Wine, P. H., and Wennberg, P. O.: On the stratospheric chemistry of hydrogen cyanide, Geophys. Res. Lett., 33, doi:10.1029/2006GL026015, 2006.
- Kohlmann, J.-P. and Poppe, D.: The tropospheric gasphase degradation of NH_3 and its impact on the formation of N_2O and NO_x , J. Atmos. Chem., 32, 397–415, doi:10.1023/A:1006162910279, 1999.
- Lewis, T. R., Blitz, M. A., Heard, D. E., and Seakins, P. W.: Direct evidence for a substantive reaction between the Criegee intermediate, CH₂OO, and the water vapour dimer, Phys. Chem. Chem. Phys., 17, 4859–4863, doi:10.1039/C4CP04750H, 2015.
- Liljegren, J. A. and Stevens, P. S.: Measurements of the kinetics of the reaction of OH radicals with 3methylfuran at low pressure, Int. J. Chem. Kinetics, 45, 787–794, doi:10.1002/KIN.20814, 2013.
- Lockhart, J., Blitz, M., Heard, D., Seakins, P., and Shannon, R.: Kinetic study of the OH + glyoxal reaction: experimental evidence and quantification of direct OH recycling, J. Phys. Chem. A, 117, 11 027– 11 037, doi:10.1021/jp4076806, 2013.
- Lockwood, A. L., Shepson, P. B., Fiddler, M. N., and Alaghmand, M.: Isoprene nitrates: preparation, separation, identification, yields, and atmospheric chemistry, Atmos. Chem. Phys., 10, 6169–6178, doi: 10.5194/acp-10-6169-2010, 2010.

- McCabe, D. C., Gierczak, T., Talukdar, R. K., and Ravishankara, A. R.: Kinetics of the reaction OH + CO under atmospheric conditions, Geophys. Res. Lett., 28, 3135–3138, doi:10.1029/2000GL012719, 2001.
- Mellouki, A. and Mu, Y.: On the atmospheric degradation of pyruvic acid in the gas phase, J. Photochem. Photobiol. A: Chem., 157, doi:10.1016/S1010-6030(03)00070-4, 2003.
- Messaadia, L., Dib, G. E., Ferhati, A., and Chakir, A.: UV-visible spectra and gas-phase rate coefficients for the reaction of 2,3-pentanedione and 2,4-pentanedione with OH radicals, Chem. Phys. Lett., 626, 73–79, doi:10.1016/j.cplett.2015.02.032, 2015.
- Müller, J.-F., Peeters, J., and Stavrakou, T.: Fast photolysis of carbonyl nitrates from isoprene, Atmos. Chem. Phys., 14, 2497–2508, doi:10.5194/acp-14-2497-2014, 2014.
- Munger, J. W., Jacob, D. J., Fan, S.-M., Colman, A. S., and Dibb, J. E.: Concentrations and snowatmosphere fluxes of reactive nitrogen at Summit, Greenland, J. Geophys. Res., 104D, 13721–13734, doi:10.1029/1999JD900192, 1999.
- Nakanishi, H., Morita, H., and Nagakura, S.: Electronic structures and spectra of the keto and enol forms of acetylacetone, Bull. Chem. Soc. Jpn., 50, 2255–2261, doi:10.1246/bcsj.50.2255, 1977.
- Nguyen, T. L., Peeters, J., and Vereecken, L.: Theoretical study of the gas-phase ozonolysis of β -pinene (C₁₀H₁₆), Phys. Chem. Chem. Phys., 11, 5643–5656, doi:10.1039/b822984h, 2009.
- Nielsen, O. J., Sidebottom, H. W., Donlon, M., and Treacy, J.: Rate constants for the gas-phase reactions of OH radicals and Cl atoms with *n*-alkyl nitrites at

- atmospheric pressure and 298 K, Int. J. Chem. Kinetics, 23, 1095–1109, doi:10.1002/kin.550231204, 1991.
- Ogryzlo, E. A., Paltenghi, R., and Bayes, K. D.: The rate of reaction of methyl radicals with ozone, Int. J. Chem. Kinetics, 13, 667–675, doi:10.1002/kin. 550130707, 1981.
- Olzmann, M., Kraka, E., Cremer, D., Gutbrod, R., and Andersson, S.: Energetics, kinetics, and product distributions of the reactions of ozone with ethene and 2,3-dimethyl-2-butene, J. Phys. Chem. A, 101, 9421–9429, doi:10.1021/JP971663E, 1997.
- Orlando, J. J. and Tyndall, G. S.: The atmospheric chemistry of the HC(O)CO radical, Int. J. Chem. Kinetics, 33, 149–156, doi:10.1002/1097-4601(200103) $33:3\langle149::AID-KIN1008\rangle3.0.CO;2-1, 2001.$
- Orlando, J. J. and Tyndall, G. S.: Laboratory studies of organic peroxy radical chemistry: an overview with emphasis on recent issues of atmospheric significance, Chem. Soc. Rev., 41, 6294–6317, doi:10.1039/C2CS35166H, 2012.
- Orlando, J. J., Tyndall, G. S., Bilde, M., Ferronato, C., Wallington, T. J., Vereecken, L., and Peeters, J.: Laboratory and theoretical study of the oxy radicals in the OH- and Cl-initiated oxidation of ethene, J. Phys. Chem. A, 102, 8116–8123, doi: 10.1021/JP981937D, 1998.
- Orlando, J. J., Tyndall, G. S., Fracheboud, J. M., Estupinan, E. G., Haberkorn, S., and Zimmer, A.: The rate and mechanism of the gas-phase oxidation of hydroxyacetone, Atmos. Environ., 33, 1621–1629, doi: 10.1016/S1352-2310(98)00386-0, 1999a.
- Orlando, J. J., Tyndall, G. S., and Paulson, S. E.: Mechanism of the OH-initiated oxidation of

- methacrolein, Geophys. Res. Lett., 26, 2191–2194, doi:10.1029/1999GL900453, 1999b.
- Orlando, J. J., Tyndall, G. S., Bertman, S. B., Chen, W., and Burkholder, J. B.: Rate coefficient for the reaction of OH with CH₂=C(CH₃)C(O)OONO₂ (MPAN), Atmos. Environ., 36, 1895–1900, doi:10. 1016/S1352-2310(02)00090-0, 2002.
- Ouyang, B., McLeod, M. W., Jones, R. L., and Bloss, W. J.: NO₃ radical production from the reaction between the Criegee intermediate CH₂OO and NO₂, Phys. Chem. Chem. Phys., 15, 17 070–17 075, doi: 10.1039/c3cp53024h, 2013.
- Paulot, F., Crounse, J. D., Kjaergaard, H. G., Kroll, J. H., Seinfeld, J. H., and Wennberg, P. O.: Isoprene photooxidation: new insights into the production of acids and organic nitrates, Atmos. Chem. Phys., 9, 1479–1501, doi:10.5194/ACP-9-1479-2009, 2009a.
- Paulot, F., Crounse, J. D., Kjaergaard, H. G., Kürten,
 A., St. Clair, J. M., Seinfeld, J. H., and Wennberg,
 P. O.: Unexpected epoxide formation in the gasphase photooxidation of isoprene, Science, 325, doi: 10.1126/science.1172910, 2009b.
- Paulot, F., Wunch, D., Crounse, J. D., Toon, G. C., Millet, D. B., DeCarlo, P. F., Vigouroux, C., Deutscher, N. M., González Abad, G., Notholt, J., Warneke, T., Hannigan, J. W., Warneke, C., de Gouw, J. A., Dunlea, E. J., De Mazière, M., Griffith, D. W. T., Bernath, P., Jimenez, J. L., and Wennberg, P. O.: Importance of secondary sources in the atmospheric budgets of formic and acetic acids, Atmos. Chem. Phys., 11, 1989–2013, doi:10.5194/acp-11-1989-2011, 2011.
- Peeters, J. and Nguyen, T. L.: Unusually fast 1,6-H shifts of enolic hydrogens in peroxy radicals: formation of the first-generation C₂ and C₃ carbonyls in the

- oxidation of isoprene, J. Phys. Chem. A, 116, 6134–6141, doi:10.1021/jp211447q, 2012.
- Peeters, J., Müller, J.-F., Stavrakou, T., and Nguyen, V. S.: Hydroxyl radical recycling in isoprene oxidation driven by hydrogen bonding and hydrogen tunneling: the upgraded LIM1 mechanism, J. Phys. Chem. A, 118, 8625–8643, doi:10.1021/jp5033146, 2014.
- Platz, J., Nielsen, O. J., Wallington, T. J., Ball, J. C., Hurley, M. D., Straccia, A. M., Schneider, W. F., and Sehested, J.: Atmospheric chemistry of the phenoxy radical, $C_6H_5O(\cdot)$: UV spectrum and kinetics of its reaction with NO, NO₂, and O₂, J. Phys. Chem. A, 102, 7964–7974, doi:10.1021/jp9822211, 1998.
- Rickard, A. and Pascoe, S.: The Master Chemical Mechanism (MCM), http://mcm.leeds.ac.uk, 2009.
- Rickard, A. R., Johnson, D., McGill, C. D., and Marston, G.: OH yields in the gas-phase reactions of ozone with alkenes, J. Phys. Chem. A, 103, 7656– 7664, doi:10.1021/JP9916992, 1999.
- Roth, E., Chakir, A., and Ferhati, A.: Study of a benzoylperoxy radical in the gas phase: ultraviolet spectrum and $C_6H_5C(O)O_2 + HO_2$ reaction between 295 and 357 K, J. Phys. Chem. A, 114, 10367–10379, doi:10.1021/jp1021467, 2010.
- Sander, R., Jöckel, P., Kirner, O., Kunert, A. T., Landgraf, J., and Pozzer, A.: The photolysis module JVAL-14, compatible with the MESSy standard, and the JVal PreProcessor (JVPP), Geosci. Model Dev., 7, 2653–2662, doi:10.5194/GMD-7-2653-2014, 2014.
- Sander, R., Baumgaertner, A., Cabrera-Perez, D., Frank, F., Grooß, J.-U., Gromov, S., Harder, H., Huijnen, V., Jöckel, P., Karydis, V. A., Niemeyer, K.,

- Pozzer, A., Riede, H., Schultz, M., Taraborrelli, D., and Tauer, S.: The atmospheric chemistry box model CAABA/MECCA-4.0gmdd, Geosci. Model Dev. Discuss., doi:10.5194/gmd-2018-201, 2018.
- Scribano, Y., Goldman, N., Saykally, R. J., and Leforestier, C.: Water dimers in the atmosphere III: Equilibrium constant from a flexible potential, J. Phys. Chem. A, 110, 5411–5419, doi:10.1021/jp056759k, 2006.
- Sehested, J., Christensen, L. K., Nielsen, O. J., Bilde, M., Wallington, T. J., Schneider, W. F., Orlando, J. J., and Tyndall, G. S.: Atmospheric chemistry of acetone: Kinetic study of the ${\rm CH_3C(O)CH_2O_2+NO/NO_2}$ reactions and decomposition of ${\rm CH_3C(O)CH_2O_2NO_2}$, Int. J. Chem. Kinetics, 30, 475–489, doi:10.1002/(SICI)1097-4601(1998) 30:7 \langle 475::AID-KIN4 \rangle 3.0.CO;2-P, 1998.
- Sivakumaran, V., Hölscher, D., Dillon, T. J., and Crowley, J. N.: Reaction between OH and HCHO: temperature dependent rate coefficients (202-399 K) and product pathways (298 K), Phys. Chem. Chem. Phys., 5, 4821–4827, doi:10.1039/B306859E, 2003.
- So, S., Wille, U., and da Silva, G.: Atmospheric chemistry of enols: a theoretical study of the vinyl alcohol + OH + O₂ reaction mechanism, Environ. Sci. Technol., 48, 6694–6701, doi:10.1021/es500319q, 2014.
- Solberg, S., Stordal, F., and Hov, Ø.: Tropospheric ozone at high latitudes in clean and polluted air masses, a climatological study, J. Atmos. Chem., 28, 111–123, doi:10.1023/A:1005766612853, 1997.
- Stone, D., Blitz, M., Daubney, L., Howes, N. U. M., and Seakins, P.: Kinetics of CH₂OO reactions with SO₂, NO₂, NO, H₂O and CH₃CHO as a function of

- pressure, Phys. Chem. Chem. Phys., 16, 1139–1149, doi:10.1039/c3cp54391a, 2014.
- Strekowski, R. S., Nicovich, J. M., and Wine, P. H.: Kinetic and mechanistic study of the Reactions of $O(^1D_2)$ with HCN and CH₃CN, Chem. Phys. Chem., 11, 3942–3955, doi:10.1002/cphc.201000550, 2010.
- Tao, Z. and Li, Z.: A kinetics study on reactions of C_6H_5O with C_6H_5O and O_3 at 298 K, Int. J. Chem. Kinetics, 31, 65–72, doi:10.1002/(SICI)1097-4601(1999)31:1 $\langle 65::$ AID-KIN8 $\rangle 3.0.CO$;2-J, 1999.
- Taraborrelli, D.: Isoprene oxidation and its impacts on the atmospheric composition, Ph.D. thesis, Johannes Gutenberg-Universität, Mainz, Germany, http:// d-nb.info/1003538770/34, 2010.
- Taraborrelli, D., Lawrence, M. G., Butler, T. M., Sander, R., and Lelieveld, J.: Mainz Isoprene Mechanism 2 (MIM2): an isoprene oxidation mechanism for regional and global atmospheric modelling, Atmos. Chem. Phys., 9, 2751–2777, doi:10.5194/ACP-9-2751-2009, 2009.
- Tyndall, G. S., Staffelbach, T. A., Orlando, J. J., and Calvert, J. G.: Rate coefficients for the reactions of OH radicals with methylglyoxal and acetaldehyde, Int. J. Chem. Kinetics, 27, 1009–1020, doi: 10.1002/KIN.550271006, 1995.
- Tyndall, G. S., Cox, R. A., Granier, C., Lesclaux, R., Moortgat, G. K., Pilling, M. J., Ravishankara, A. R., and Wallington, T. J.: The atmospheric chemistry of small organic peroxy radicals, J. Geophys. Res., 106D, 12157–12182, doi:10.1029/2000JD900746, 2001a.
- Tyndall, G. S., Orlando, J. J., Wallington, T. J., and Hurley, M. D.: Products of the chlorine-atom-

- and hydroxyl-radical-initiated oxidation of CH_3CN_1 . J. Phys. Chem. A, 105, 5380–5384, doi:10.1021/jp004318p, 2001b.
- Vereecken, L. and Francisco, J. S.: Theoretical studies of atmospheric reaction mechanisms in the troposphere, Chem. Soc. Rev., 41, 6259–6293, doi:10.1039/c2cs35070j, 2012.
- Vereecken, L. and Peeters, J.: A theoretical study of the OH-initiated gas-phase oxidation mechanism of β-pinene (C₁₀H₁₆): first generation products, Phys. Chem. Chem. Phys., 14, 3802–3815, doi:10.1039/ c2cp23711c, 2012.
- Vereecken, L., Müller, J.-F., and Peeters, J.: Low-volatility poly-oxygenates in the OH-initiated at-mospheric oxidation of α -pinene: impact of non-traditional peroxyl radical chemistry, Phys. Chem. Chem. Phys., 9, 5241–5248, doi:10.1039/b708023a, 2007.
- Vereecken, L., Harder, H., and Novelli, A.: The reaction of Criegee intermediates with NO, RO₂, and SO₂, and their fate in the atmosphere, Phys. Chem. Chem. Phys., 14, 14682–14695, doi:10.1039/c2cp42300f, 2012.
- Vereecken, L., Harder, H., and Novelli, A.: The reactions of Criegee intermediates with alkenes, ozone, and carbonyl oxides, Phys. Chem. Chem. Phys., 16, 4039–4049, doi:10.1039/c3cp54514h, 2014.
- von Kuhlmann, R.: Tropospheric photochemistry of ozone, its precursors and the hydroxyl radical: A 3D-modeling study considering non-methane hydrocarbons, Ph.D. thesis, Johannes Gutenberg-Universität, Mainz, Germany, 2001.
- von Kuhlmann, R., Lawrence, M. G., Crutzen, P. J., and Rasch, P. J.: A model for studies of tropospheric

ozone and nonmethane hydrocarbons: Model description and ozone results, J. Geophys. Res., 108D, 4294, doi:10.1029/2002JD002893, 2003.

Wallington, T. J., Ammann, M., Cox, R. A., Crowley, J. N., Herrmann, H., Jenkin, M. E., McNeill, V., Mellouki, A., Rossi, M. J., and Troe, J.: IUPAC Task group on atmospheric chemical kinetic data evaluation: Evaluated kinetic data, http://iupac.pole-ether.fr, 2018.

Welz, O., Savee, J. D., Osborn, D. L., Vasu, S. S., Percival, C. J., Shallcross, D. E., and Taatjes, C. A.:

Direct kinetic measurements of Criegee intermediate (CH₂OO) formed by reaction of CH₂I with O_2 , Science, 335, 204–207, doi:10.1126/science.1213229, 2012.

Welz, O., Eskola, A. J., Sheps, L., Rotavera, B., Savee,
J. D., Scheer, A. M., Osborn, D. L., Lowe, D.,
Booth, A. M., Xiao, P., Khan, M. A. H., Percival,
C. J., Shallcross, D. E., and Taatjes, C. A.: Rate
coefficients of C1 and C2 Criegee intermediate reactions with formic and acetic acid near the collision limit: Direct kinetics measurements and atmo-

spheric implications, Angew. Chem., 126, 4635–4638, doi:10.1002/ange.201400964, 2014.

Yoon, M.-C., Choi, Y. S., and Kim, S. K.: The OH production from the $\pi-\pi^*$ transition of acetylacetone, Chem. Phys. Lett., 300, 207–212, doi:10.1016/S0009-2614(98)01373-6, 1999.

Zellner, R., Hartmann, D., Karthäuser, J., Rhäsa, D., and Weibring, G.: A laser photolysis/LIF study of the reactions of ${\rm O(^3P)}$ atoms with CH₃ and CH₃O₂ radicals, J. Chem. Soc. Faraday Trans. 2, 84, 549–568, doi:10.1039/f29888400549, 1988.