An Evaluation of Serverless Data Processing Frameworks

Presented at: Sixth International Workshop on Serverless Computing (WoSC6) 2020

Sebastian Werner, Richard Girke, Jörn Kuhlenkamp

Wednesday, December 2, 2020

Information Systems Engineering TU Berlin - Germany

Motivation

- Serverless is a new cloud execution model offering auto-scaling and a pay-as-you-go cost model[1]
- High elasticity and the flexible cost model is a goof fit for ad-hoc data processing needs and exploratory data analysis [2]
- Several FaaS-based serverless data processing frameworks exist, but data analysts, and system researchers are unaware how these frameworks compare

Research Question:

How can data analysts assess the quality of serverless based frameworks for ad-hoc data processing?

Contributions:

- A structured overview of existing serverless data processing frameworks
- A qualitative architectural comparison of existing serverless data processing frameworks
- An experimental comparison of publicly available serverless data processing frameworks and AWS EMR

Multi-vocal Literature Review

Q1: What serverless data processing tools exist in research and industry?

Q2: What use-cases and purposes for serverless data processing are investigated?

Results:

- Most target "Batch Data Analytics"
- Most development in 2018 and 2019

Architectural Overview

- All use a driver program for job orchestration and monitoring
- Most use object stores for intermediate data
- AWS most targeted platform for data processing

Frameworks

- 55% have available source code for independent testing
- 66% offer Map-Reduce Programming Model
- 18% use high-level abstractions like Apache Spark

Framework Name	Source Available	Programming Model
PyWren	Yes	Map ²
IBM PyWren	Yes	Map-Reduce
gg	Yes	Map ²
Flint	No	Map-Reduce
Lambada	No	Map-Reduce
Starling	No	Map-Reduce
Corral	Yes	Map-Reduce
Quoble ¹	Yes	Map-Reduce
Crucial	No	N.A.

^{3:} http://dask.org

Frameworks

- 63%⁴ have available source code for independent testing
- 54% offer Map-Reduce Programming Model
- 18% use high-level abstractions like Apache Spark

Framework Name	Source Available	Programming Model	
PyWren	Yes	Map ²	
IBM PyWren	Yes	Map-Reduce	
gg	Yes	Map ²	
Flint	No	Map-Reduce	
Lambada	No	Map-Reduce	
Starling	No	Map-Reduce	
Corral	Yes	Map-Reduce	
Quoble ¹	Yes	Map-Reduce	
Crucial	No	N.A.	
WuKong	Yes	Dask ³	
Marla	Yes	Map-Reduce	

^{1:} Quoble - Spark on Lambda 2: Map like processing abstraction, or single stage parallel execution

^{3: &}lt;a href="http://dask.org">http://dask.org 4: at the time of writing the paper we did not discover WuKong and Marla

Experiment Design

We selected, Quoble, Corral and PyWren on AWS Lambda and Apache Spark on AWS EMR. We selected the TPC-H benchmark for the comparison, specifically TPC-H Q1 and Q6.

Cost and Performance Results

Framework	TPC-H Query	S3 Ops.	QphH [#]	СрН [\$]	Mean RT [s]	Mean Cost [μ \$]
Quoble	1	15000	58	4.30	62	1840
	6	3000	80	1.20	45	1250
Corral	1	470	49	0.10	73	77
	6	410	143	0.20	23	75
PyWren 6	1	205	51	0.10	70	72
	6	191	52	0.10	69	75
EMR	1	36	40	1.90	91	18700
	6	32	40	1.90	90	18700

Maturity and Developer Experience

Framework	Setup/Deployment Time [h]	Query Implementation Time [min]	Commits [#]	Last Commit [year]
Quoble	20	5	8	2017
Corral	3	15	82	2019
PyWren	2	15	51	2018
EMR (Spark 2.6)	1/2	5	3659	2020

Conclusion

- Only a few frameworks are publicly available
- AWS is the data processing infrastructure of choice
- Serverless computing well suited for adhoc query processing

Future Work

- Driver implementation and intermediate storage strongly influence performance and cost
- Extended experiment design

Paper:

https://www.serverlesscomputing.org/wosc6/#p4

Contact

sw@ise.tu-berlin.de

ik@ise.tu-berlin.de

rg@tu-berlin.de

ISE

www.ise.tu-berlin.de

https://www.ise.tu-berlin.de/youtube

https://ise-smile.github.io/

Questions?

References

- [1] J. Kuhlenkamp, S. Werner and S. Tai, "The Ifs and Buts of Less is More: A Serverless Computing Reality Check," 2020 IEEE International Conference on Cloud Engineering (IC2E), Sydney, Australia, 2020, pp. 154-161, doi: 10.1109/IC2E48712.2020.00023.
- [2] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht. 2017. Occupy the cloud: distributed computing for the 99%. Proceedings of the 2017 Symposium on Cloud Computing. Association for Computing Machinery, New York, NY, USA, 445–451. DOI:https://doi.org/10.1145/3127479.3128601