BAYESIAN RANDOM SEMANTIC DATA AUGMENTATION FOR MEDICAL IMAGE CLASSIFICATION

PAPER BY YAOYAO ZHU, XIUDING CAI, XUEYAO WANG AND YU YAO

PRESENTATION BY DIONYSIOS RIGATOS

MOTIVATION

- Data Augmentation (DA) is a critical regularization technique in Biomedical Image CV tasks
 - Reduces overfitting
 - Increases dataset diversity
 - Medical image have different modalities (i.e. CT scans, MRI, X-RAY)
- Drawbacks with current DA approaches:
 - Image Transformation-Based methods are too simple
 - Automatic methods are too simple
 - Generative methods but are computationally expensive
- Proposed solution:
 - An efficient, plug-and-play semantic augmentation method.

HOW? – SEMANTIC AUGMENTATION

- Addition of semantic magnitude to the original feature...
 - Treated as a random variable, distribution estimated with a variational Bayesian.
 - Randomly sampled from the distribution.

HOW? – SEMANTIC AUGMENTATION

- Addition of semantic magnitude to the original feature...
 - Treated as a random variable, distribution estimated with a variational Bayesian.
 - Randomly sampled from the distribution.

- ... in a randomly selected semantic direction.
 - Shifting features along these directions yields new sample features with:
 - Identical class identities.
 - Different semantic context.

HOW? – SEMANTIC AUGMENTATION

$$\tilde{\mathbf{a}} = \mathbf{a} + \mathbb{I}_{\mathbf{a} \neq 0} \mathbf{d}_{\lambda} \odot \mathbf{m}$$

Multiplication

$$\tilde{\mathbf{a}} = \mathbf{a} + \mathbb{I}_{\mathbf{a} \neq 0} \mathbf{d}_{\lambda} \odot \mathbf{m}$$

• m refers to the semantic magnitude

$$\tilde{\mathbf{a}} = \mathbf{a} + \mathbb{I}_{\mathbf{a} \neq 0} \mathbf{d}_{\lambda} \odot \mathbf{m}$$

- m refers to the semantic magnitude
- \mathbf{d}_{λ} refers to the semantic directions

$$\tilde{\mathbf{a}} = \mathbf{a} + \mathbb{I}_{\mathbf{a} \neq 0} \mathbf{d}_{\lambda} \odot \mathbf{m}$$

- m refers to the semantic magnitude
- \mathbf{d}_{λ} refers to the semantic directions
- is an indicator function

APPROACH – SEMANTIC MAGNITUDE DISTRIBUTION

$$\tilde{\mathbf{a}} = \mathbf{a} + \mathbb{I}_{\mathbf{a} \neq 0} \mathbf{d}_{\lambda} \odot \mathbf{m}$$

- m refers to the semantic magnitude
- We need to estimate the magnitude distribution
- Use model $q_{\phi_{\mathbf{m}}}(\mathbf{m}|\mathbf{a})$ approximate true distribution $p(\mathbf{m}|\mathbf{a})$
- Optimization with Kullback-Leibler divergence

$$\tilde{\phi}_{\mathbf{m}} = \underset{\phi_{\mathbf{m}}}{\operatorname{arg\,max}} D_{KL}(q_{\phi_{\mathbf{m}}}(\mathbf{m}|\mathbf{a})||p(\mathbf{m}|\mathbf{a})).$$

Which expands to:

$$D_{KL}(q_{\phi_{\mathbf{m}}}(\mathbf{m}|\mathbf{a})||p(\mathbf{m}|\mathbf{a})) = \mathrm{KL}(q_{\phi_{\mathbf{m}}}(\mathbf{m}|\mathbf{a})||p(\mathbf{m})) - \mathbb{E}_{\mathbf{m} \sim q_{\phi_{\mathbf{m}}}(\mathbf{m}|\mathbf{a})}(\log p(\mathbf{a}|\mathbf{m}))$$

APPROACH - LOSS FUNCTION

$$D_{KL}(q_{\phi_{\mathbf{m}}}(\mathbf{m}|\mathbf{a})||p(\mathbf{m}|\mathbf{a})) = KL(q_{\phi_{\mathbf{m}}}(\mathbf{m}|\mathbf{a})||p(\mathbf{m})) - \mathbb{E}_{\mathbf{m} \sim q_{\phi_{\mathbf{m}}}(\mathbf{m}|\mathbf{a})}(\log p(\mathbf{a}|\mathbf{m})).$$

- Second term is learned using a reconstruction network.
- BRSDA Loss Function:

$$\mathcal{L}_{brsda}(\phi_{\mathbf{m}}, \phi_{\mathbf{a}}; \mathbf{a}) = -\mathrm{KL}(q_{\phi_{\mathbf{m}}}(\mathbf{m}|\mathbf{a})||p(\mathbf{m})) + \mathbb{E}_{\mathbf{m} \sim q_{\phi_{\mathbf{m}}}(\mathbf{m}|\mathbf{a})}(\log p_{\phi_{\mathbf{a}}}(a|m)).$$

- Computed using reparameterization trick
- Total network loss

$$\mathcal{L} = \mathcal{L}_{task}^{\mathbf{a}} + \alpha (\mathcal{L}_{brsda} + \mathcal{L}_{task}^{\tilde{\mathbf{a}}}).$$

EVALUATION

Dataset	AUC%		ACC%		Modality
	Baseline	BRSDA	Baseline	BRSDA	Modanty
BreastMNIST [26]	89.62	$\mathbf{92.13_{(2.51)}}$	84.62	$87.82_{(3.21)}$	Breast Ultrasound
RetinaMNIST [26]	71.69	$\mathbf{72.60_{(0.91)}}$	45.00	$\bf 52.50_{(7.50)}$	Fundus Camera
LUNG [20]	87.48	$\mathbf{89.05_{(1.58)}}$	77.31	$\mathbf{78.72_{(1.42)}}$	X-Ray
BTMRI [18]	99.81	$\mathbf{99.93_{(0.12)}}$	97.64	$97.48_{(-0.15)}$	MRI
CATAR [1]	97.98	$\mathbf{98.88_{(0.90)}}$	89.26	$\bf 92.56_{(3.31)}$	Camera
OrganMNIST3D [26]	99.35	$\mathbf{99.38_{(0.04)}}$	89.02	$89.51_{(0.49)}$	CT
NoduleMNIST3D [26]	89.65	$\mathbf{91.31_{(1.66)}}$	87.42	$85.81_{(-1.61)}$	CT
AdernalMNIST3D $[26]$	88.60	$\bf 89.13_{(0.54)}$	71.81	$\mathbf{83.89_{(12.08)}}$	Shape from CT
FractureMNIST3D [26]	74.09	$\bf 77.17_{(3.09)}$	52.50	$52.50_{(0.00)}$	CT
VesselMNIST3D [26]	95.79	$96.47_{(0.68)}$	94.50	$94.50_{(0.00)}$	Shape from MRI
SynapseMNIST3D $[26]$	71.18	$\mathbf{76.06_{(4.89)}}$	75.00	$\mathbf{76.99_{(1.99)}}$	Electron Microscope

FOR LESS THAN 4% EXTRA TRAINING TIME...

THANK YOU

PRESENTATION BY DIONYSIOS RIGATOS