Authentication

Prof. Dr. Helene Dörksen

helene.doerksen@th-owl.de

We need to know about

Linear Classifiers, e.g.

- support-vector-machine
- LDA

Principles of feature extraction = combining the existing feature set into a smaller set of new, more informative features

Lecture 9:

Combinatorial Refinement of Feature Weighting for Linear Classification

Outline

- Introduction
- Related Work:
 - Dimensionality Reduction
 - Multiple Learners
- Combinatorial Refinement (ComRef) Approach for Classification
- Generalization Ability of ComRef
- Conclusion and Outlook

Automized Container Terminals in Harbour of Hamburg (Germany)

A Cyber-physical system (CPS) is a system of collaborating elements

Applications:

- Automotive
- Manufacturing
- Transportation
- Healthcare
- ...

CPS work context-specific, adaptive, partly autonomous, automized, multi-functional and multi-sensory

→ high degree of complexity

Basis for **good generalisation** of a classifier ¹⁾:

- Simple models (Occam's razor principle)
- Regularisation (e.g. large classification margin like SVM)

¹⁾ I. Guyon, S. Gunn, M. Nikravesh, and L. A. Zadeh, Feature Extraction: Foundations and Applications (Studies in Fuzziness and Soft Computing). Secaucus and NJ and USA: Springer-Verlag New York, Inc, 2006.

Primary basics for **good generalisation** 1) of a classifier:

- Simple models (Occam's razor principle)
- Regularisation (e.g. large classification margin like SVM)

Secondary basics (methods) might be **good for generalisation** ¹⁾ of a classifier:

- Dimensionality Reduction
- Multiple Classifiers
- **..**.

¹⁾ E. Alpaydın, Introduction to Machine Learning, 2nd ed. Cambridge: The MIT Press, 2010.

Introduction Summary

Automized Container Terminals in Harbour of Hamburg (Germany)

Implementation System

Actions are based on classifiers

Basics for **good generalisation of classifier**:

- Simple models (Occam's razor principle)
- Regularisation (e.g. large classification margin like SVM)

Methods:

- Dimensionality Reduction
- Multiple Classifiers

Related Work: Dimensionality Reduction 1)

DR (or **feature selection**) = Selecting subsets of most useful features and ignoring the rest

- Principal Component Analysis (PCA)
- Linear Discriminant Analysis (LDA)
- Factor Analysis (FA)

– ...

¹⁾ E. Alpaydın, Introduction to Machine Learning, 2nd ed. Cambridge: The MIT Press, 2010.

Related Work: Multiple Classifiers 1)

- Bag-of-Classifiers
- Bag-of-Features
- Ensemble Learners
- **–** ...

Classifiers complement each other to obtain higher accuracy of decision

¹⁾ L.I. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms. Wiley-Interscience, 2004.

Workflow for classifier training:

- Consider suitable classification techniques
- Perform generalisation test(s) to evaluate the accuracies (and their standard deviations) of classification rule
- Choose the technique with highest generalisation ability as final classifier

Measurements (Features) in \mathbb{R}^d

Classification Rule:

$$x \in T^+$$
 if $h(x) \ge 0$
 $x \in T^-$ if $h(x) < 0$

All features are equally relevant for the classification boundary calculation:

$$h(x) = a_1x_1 + a_2x_2 + \dots + a_ix_i + a_{i+1}x_{i+1} + \dots + a_dx_d + c_h$$

Principles of the feature extraction 1):

- a helpful feature may be less relevant by itself;
- combination of individually irrelevant features may become relevant

¹⁾ I. Guyon, S. Gunn, M. Nikravesh, and L. A. Zadeh, Feature Extraction: Foundations and Applications (Studies in Fuzziness and Soft Computing). Secaucus and NJ and USA: Springer-Verlag New York, Inc, 2006.

$$h(x) = a_1x_1 + a_2x_2 + \dots + a_i x_i + a_{i+1}x_{i+1} + \dots + a_d x_d + c_h$$
summands: a_ix_i

fusion of summands:
$$\sum_{j \in I} a_j x_j$$

Idea:

- a helpful summand may be less relevant by itself
- a fusion of individually irrelevant summands may become relevant

$$h(x) = \underbrace{a_1x_1 + a_2x_2 + \dots + a_i x_i}_{\text{fusion of summands}} + \underbrace{a_{i+1}x_{i+1} + \dots + a_d x_d}_{\text{fusion of summands}} + c_h \qquad (I)$$

$$\underbrace{\sum_{j=1}^{i} a_j x_j}_{\text{fusion of summands}} + \underbrace{\sum_{j=i+1}^{d} a_j x_j}_{\text{fusion of summands}}$$

$$\underbrace{\sum_{j=i+1}^{d} a_j x_j}_{\text{fusion of summands}} + \underbrace{\sum_{j=i+1}^{d} a_j x_j}_{\text{fusion of summands}}$$

$$\underbrace{\sum_{j=i+1}^{d} a_j x_j}_{\text{fusion of summands}} + \underbrace{\sum_{j=i+1}^{d} a_j x_j$$

Dimensionality Reduction: d summands \rightarrow 2 summands, but classification rules of (I) and (II) are equivalent!

SVM for classes ☐ and ☐ of SEEDS ¹):

$$h(x) = \sum_{i=1}^{d} a_i x_i + c_h \quad (d = 7)$$

Dimensionality Reduction by $I_1 = \{1, 2, 3, 7\}$ and $I_2 = \{4, 5, 6\}$

Dimensionality Reduction by $I_1 = \{4, 7\}$ and $I_2 = \{1, 2, 3, 5, 6\}$

classification rate of *h* for both reductions: **95**. **71**%

classification rate of g: 96.43%

classification rate of g: 97.85%

Combination of classifiers:

Multiple Classifier: initial (linear) classifier h + refinement (linear) classifier g)

We are able to improve accuracy without increasing complexity!

Short summary:

- By fusions of summands **Dimensionality Reductions** are possible
- Combinations of classifiers: Multiple Classifier = initial classifier + refinement classifier, are possible
- Improvement of accuracy without increasing complexity is possible

ComRef Workflow Example:

- Choose initial classifier h
- 2. Reduce the dimensionality by fusions of summands of *h*
- 3. Choose refinement classifier/classifiers g for reduced spaces
- 4. Select fusion of summands with highest performance resp. *g*

Fusions of summands lead to dimensionality reductions down to spaces:

$$d-1 \leftarrow I_1$$
 consists of 2 summands, I_2 is rest; complexity of calculation $O(d^2)^{(1)}$

$$d-2 \atop d-3 \atop \vdots \atop 3$$
combinatorial task
$$I_1 \text{ is complementary to } I_2; \atop \text{complexity of calculation } O(2^d)^{(1)}$$

¹⁾ H. Dörksen and V. Lohweg, "Combinatorial Refinement of Feature Weighting for Linear Classification," in 19th IEEE Int. Conf. on Emerging Technologies and Factory Automation (ETFA 2014), 2014.

Generalisation Ability of Comref

Motor Drive Diagnosis: motors as CPS which are networked

e.g. one motor with **53190** measurement-attributes for **72** features

72 features lead to 100% accuracy by linear SVM

but:

- 9 features (of 72) leading to $\sim 100\%$ (99.9933%) accuracy by linear SVM (without **ComRef**) are found
- 5 features (of 72) leading to 100% accuracy by linear SVM (with ComRef) are found

Conclusion and Outlook

- ✓ In reduced space improvement of accuracy is possible without increasing complexity
- ✓ Combination of classifiers (multiple classifier: initial classifier refinement classifier) is possible
- ✓ Many examples are found for which ComRef improves the accuracies
- ✓ ComRef did not dis-improve accuracies of no one of tested examples

- ightarrow Combinatorial task for spaces of dimensions d-2,...,3 has to be solved as efficient as possible
- → Problem of **selection of fusion of summands** with highest refinement classification accuracy has to be solved efficiently

Summary

Combinatorial Refinement (ComRef) Approach for Classification

- → is able to improve accuracy without increasing complexity!
- → is based on principles of:
 - Dimensionality Reduction
 - Multiple Learners

improvement

Automized Container Terminals in Harbour of Hamburg (Germany)

Homework: Exercises and Labs

for the next week prepare practical exercises and labs from **Exercises Lec 9** (you will find it in the download area)

Online-Exercises coming now

Exercises Lec 8 will be discussed