Theoretische Informatik Kapitel 7 – Turing-Berechenbarkeit

Sommersemester 2024

Dozentin: Mareike Mutz im Wechsel mit Prof. Dr. M. Leuschel Prof. Dr. J. Rothe

Turing-Berechenbarkeit

Bisher wurden Turingmaschinen als Akzeptoren definiert.

Nun wollen wir Turingmaschinen als Maschinen zur Berechnung von Funktionen auffassen.

Turing-Berechenbarkeit

Bisher wurden Turingmaschinen als Akzeptoren definiert.

Nun wollen wir Turingmaschinen als Maschinen zur Berechnung von Funktionen auffassen.

Definition

Eine Funktion $f: \mathbb{N}^k \to \mathbb{N}$ heißt *Turing-berechenbar*, falls es eine deterministische Turingmaschine $M = (\Sigma, \Gamma, Z, \delta, z_0, \square, F)$ mit $\Sigma = \{0, 1\}$ für k=1 und $\Sigma = \{0, 1, \#\}$ für k > 1 gibt, so dass für alle $n_1, n_2, \ldots, n_k, m \in \mathbb{N}$: $f(n_1, n_2, \ldots, n_k) = m \iff$

$$\exists z \in F. z_0 \operatorname{bin}(n_1) \# \operatorname{bin}(n_2) \# \cdots \# \operatorname{bin}(n_k) \vdash_M^* z \operatorname{bin}(m)$$

Turing-Berechenbarkeit

Bisher wurden Turingmaschinen als Akzeptoren definiert.

Nun wollen wir Turingmaschinen als Maschinen zur Berechnung von Funktionen auffassen.

Definition

Eine Funktion $f: \mathbb{N}^k \to \mathbb{N}$ heißt *Turing-berechenbar*, falls es eine deterministische Turingmaschine $M = (\Sigma, \Gamma, Z, \delta, z_0, \square, F)$ mit $\Sigma = \{0, 1\}$ für k=1 und $\Sigma = \{0, 1, \#\}$ für k > 1 gibt, so dass für alle $n_1, n_2, \ldots, n_k, m \in \mathbb{N}$: $f(n_1, n_2, \ldots, n_k) = m \iff$

$$\exists z \in F. z_0 \text{bin}(n_1) \# \text{bin}(n_2) \# \cdots \# \text{bin}(n_k) \vdash_M^* z \text{bin}(m)$$

Falls $f(n_1, n_2, ..., n_k)$ nicht definiert ist, läuft M in eine unendliche Schleife oder stoppt in einem Zustand $z \notin F$.

Beispiel: Die (total definierte) *Nachfolgerfunktion* $f : \mathbb{N} \to \mathbb{N}$ mit

$$f: n \rightarrow n+1$$

ist Turing-berechenbar.

Beispiel: Die (total definierte) *Nachfolgerfunktion* $f : \mathbb{N} \to \mathbb{N}$ mit

$$f: n \rightarrow n+1$$

ist Turing-berechenbar.

Eine Turingmaschine, die f berechnet, ist definiert durch

$$\textit{M} = \big(\{0,1\},\{0,1,\square\},\{z_0,z_1,z_2,z_e\},\delta,z_0,\square,\{z_e\}\big),$$

mit der folgenden Liste von Turingbefehlen gemäß δ :

Tabelle: Liste δ der Turingbefehle von M für die Funktion f(n) = n + 1

Z	Bedeutung	Absicht
<i>z</i> ₀	Anfangszustand	gehe bis zum Wortende und wechsle in Zustand z_1
<i>Z</i> ₁	addiere 1	mache eine 0 zu 1 bzw. alle 1en zu 0en
<i>Z</i> ₂	nach links laufen	gehe an den Wortanfang und wechsle in Zustand z_e
Z _e	Endzustand	Akzeptieren

Tabelle: Interpretation der Zustände von M

Für n = 5 ergibt sich:

$$z_0101 \vdash_M 1z_001$$
 $\vdash_M 10z_01$
 $\vdash_M 101z_0\Box$
 $\vdash_M 10z_11$
 $\vdash_M 1z_100$
 $\vdash_M z_2\Box 110$
 $\vdash_M z_e\Box 110$

Für n = 3 ergibt sich:

$$z_0$$
11 \vdash_M 1 z_0 1
 \vdash_M 11 z_0 \Box
 \vdash_M 1 z_1 1
 \vdash_M z_1 10
 \vdash_M z_1 \Box 00
 \vdash_M z_e 100

Beispiel:

• Die (total definierte) Funktion $div_2 : \mathbb{N} \to \mathbb{N}$ mit

$$\operatorname{div}_2(n) = \left\lfloor \frac{n}{2} \right\rfloor$$

ist Turing-berechenbar.

Beispiel:

• Die (total definierte) Funktion $\text{div}_2: \mathbb{N} \to \mathbb{N}$ mit

$$\operatorname{div}_2(n) = \left\lfloor \frac{n}{2} \right\rfloor$$

ist Turing-berechenbar.

• Idee: Falls $n \ge 2$, letzte Ziffer in bin(n) löschen.

Beispiel:

 \bullet Die (total definierte) Funktion $\text{div}_2:\mathbb{N}\to\mathbb{N}$ mit

$$\operatorname{div}_2(n) = \left\lfloor \frac{n}{2} \right\rfloor$$

ist Turing-berechenbar.

- Idee: Falls $n \ge 2$, letzte Ziffer in bin(n) löschen.
- Für n = 0 ist nichts zu tun, für n = 1 muss eine 0 aufs Band geschrieben werden.

Eine Turingmaschine, die div₂ berechnet, ist definiert durch

$$\textit{M} = (\{0,1\},\{0,1,\square\},\{z_0,z_1,z_2,z_3,z_4,z_5,z_e\},\delta,z_0,\square,\{z_e\}),$$

mit dieser Liste der Turingbefehle gemäß der Überführungsfunktion δ :

$$(z_{0},0)\mapsto(z_{e},0,N) \hspace{0.2cm} (z_{1},0)\mapsto(z_{3},0,R) \ (z_{0},1)\mapsto(z_{1},1,R) \hspace{0.2cm} (z_{1},1)\mapsto(z_{3},1,R) \hspace{0.2cm} (z_{2},1)\mapsto(z_{e},0,N) \ (z_{1},\square)\mapsto(z_{2},\square,L) \hspace{0.2cm} (z_{3},0)\mapsto(z_{3},0,R) \hspace{0.2cm} (z_{4},0)\mapsto(z_{5},\square,L) \hspace{0.2cm} (z_{5},0)\mapsto(z_{5},0,L) \ (z_{3},1)\mapsto(z_{3},1,R) \hspace{0.2cm} (z_{4},1)\mapsto(z_{5},\square,L) \hspace{0.2cm} (z_{5},1)\mapsto(z_{5},1,L) \ (z_{5},\square)\mapsto(z_{6},\square,R) \end{array}$$

Tabelle: Liste δ der Turingbefehle von M für die Funktion div $_2 = \lfloor \frac{n}{2} \rfloor$

Z	Bedeutung	Absicht
<i>z</i> ₀	Anfangszustand	falls Eingabe = 0, dann wechsle in z_e ,
		sonst in z ₁
<i>Z</i> ₁	Eingabe = 1 testen	falls Eingabe = 1 (Symbol=□), dann wechsle
		in z_2 , sonst z_3
<i>Z</i> ₂	Eingabe 1 zu 0 machen	(hier konnte nichts gelöscht werden)
<i>Z</i> ₃	nach rechts laufen	Wortende suchen und in z ₄ wechseln
<i>Z</i> ₄	letztes Zeichen löschen	letztes Zeichen durch □ ersetzen und
		in z ₅ wechseln
<i>Z</i> ₅	nach links laufen	Wortanfang suchen und in z_e wechseln
Ze	Endzustand	Akzeptieren

• Für n = 0 ergibt sich:

$$z_00 \vdash_M z_e0$$

• Für n = 0 ergibt sich:

$$z_00 \vdash_M z_e0$$

• Für n = 1 ergibt sich:

$$z_01 \vdash_M 1z_1 \square$$

 $\vdash_M z_21$
 $\vdash_M z_e0$

• Für n = 2 ergibt sich:

$$z_010$$
 \vdash_M $1z_10\Box$
 \vdash_M $10z_3\Box$
 \vdash_M $1z_40$
 \vdash_M $z_51\Box$
 \vdash_M $z_5\Box1$
 \vdash_M z_e1

• Für n = 5 ergibt sich:

$$z_0101$$
 \vdash_M $1z_101$
 \vdash_M $10z_31$
 \vdash_M $101z_3\Box$
 \vdash_M $10z_41$
 \vdash_M $1z_50\Box$
 \vdash_M $z_5\Box 10$
 \vdash_M $z_e\Box 10$

Turing-Berechenbarkeit für Wortfunktionen

Definition

Eine Funktion $f: \Sigma^* \to \Sigma^*$ heißt *Turing-berechenbar*, falls es eine deterministische Turingmaschine

$$M = (\Sigma, \Gamma, Z, \delta, z_0, \square, F)$$

gibt, so dass für alle $x, y \in \Sigma^*$:

$$f(x) = y \iff \exists z \in F.z_0x \vdash_M^* zy$$

Falls f(x) nicht definiert ist, dann läuft M in eine unendliche Schleife oder stoppt in einem Zustand $z \notin F$.