Отчёта по лабораторной работе 8

Команды безусловного и условного переходов в Nasm. Программирование ветвлений

Онвудиве Виктор Чибуике

Содержание

3	Выводы	21
2	Выполнение лабораторной работы	6
1	Цель работы	5

Список иллюстраций

2.1	Файл lab8-1.asm:	7
2.2	Программа lab8-1.asm:	8
2.3	Файл lab8-1.asm:	9
2.4	Программа lab8-1.asm:	10
2.5	Файл lab8-1.asm	11
2.6	Программа lab8-1.asm	12
2.7	Файл lab8-2.asm	13
2.8	Программа lab8-2.asm	14
2.9	Файл листинга lab8-2	15
2.10	ошибка трансляции lab8-2	16
2.11	файл листинга с ошибкой lab8-2	17
2.12	Файл lab8-3.asm	18
2.13	Программа lab8-3.asm	19
2.14	Файл lab8-4.asm	20
2.15	Программа lab8-4.asm	20

Список таблиц

1 Цель работы

Целью работы является изучение команд условного и безусловного переходов. Приобретение навыков написания программ с использованием переходов. Знакомство с назначением и структурой файла листинга.

2 Выполнение лабораторной работы

- 1. Создайте каталог для программам лабораторной работы № 8, перейдите в него и создайте файл lab8-1.asm
- 2. Инструкция jmp в NASM используется для реализации безусловных переходов. Рассмотрим пример программы с использованием инструкции jmp. Введите в файл lab8-1.asm текст программы из листинга 8.1. (рис. [2.1])

```
lab8-1.asm
                                                              Save
                    ~/work/study/2022-2023/Архитектура компьютера/аг...
1 %include 'in_out.asm' ; подключение внешнего файла
 2 SECTION .data
3 msg1: DB 'Сообщение № 1',0
 4 msg2: DB 'Сообщение № 2',0
5 msg3: DB 'Сообщение № 3',0
6 SECTION .text
7 GLOBAL _start
9 _start:
10 jmp _label2
11
12 label1:
13 mov eax, msg1 ; Вывод на экран строки
14 call sprintLF ; 'Сообщение № 1'
16
17 _label2:
18 mov eax, msg2 ; Вывод на экран строки
19 call sprintLF ; 'Сообщение № 2'
20
21
22 _label3:
23 mov eax, msg3 ; Вывод на экран строки
24 call sprintLF ; 'Сообщение № 3'
25
26
27 end:
28 call quit; вызов подпрограммы завершения
```

Рис. 2.1: Файл lab8-1.asm:

Создайте исполняемый файл и запустите его. (рис. [2.2])

```
viktoronvudive@VirtualBox: ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab08$ nasm -f elf lab8-1.asm viktoronvudive@VirtualFox: ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab08$ ld -m elf_1386 -o lab8-1 lab8-1.o viktoronvudive@VirtualBox: ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab08$ ./lab8-1 Cooбщение № 2 Сообщение № 2 Сообщение № 3 viktoronvudive@VirtualBox: ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab08$
```

Рис. 2.2: Программа lab8-1.asm:

Инструкция jmp позволяет осуществлять переходы не только вперед но и назад. Изменим программу таким образом, чтобы она выводила сначала 'Сообщение № 2', потом 'Сообщение № 1' и завершала работу. Для этого в текст программы после вывода сообщения № 2 добавим инструкцию jmp с меткой _label1 (т.е. переход к инструкциям вывода сообщения № 1) и после вывода сообщения № 1 добавим инструкцию jmp с меткой _end (т.е. переход к инструкции call quit). Измените текст программы в соответствии с листингом 8.2. (рис. [2.3], [2.4])

```
lab8-1.asm
             J∓1
  <u>O</u>pen
                    ~/wc /study/2022-2023/Архитектура компьютера/аг...
 1 %include 'in_out.asm' ; подключение внешнего файла
 2 SECTION .data
 3 msg1: DB 'Сообщение № 1',0
 4 msg2: DB 'Сообщение № 2',0
 5 msg3: DB 'Сообщение № 3',0
 6 SECTION .text
 7 GLOBAL _start
 8
 9 start:
10 jmp _label2
11
12 _label1:
13 mov eax, msg1 ; Вывод на экран строки
14 call sprintLF ; 'Сообщение № 1'
15 jmp _end
16
17 _label2:
18 mov eax, msg2 ; Вывод на экран строки
19 call sprintLF ; 'Сообщение № 2'
20 jmp label1
21
22 label3:
23 mov eax, msg3 ; Вывод на экран строки
24 call sprintLF ; 'Сообщение № 3'
25
26
27 end:
28 call quit ; вызов подпрограммы завершения
```

Рис. 2.3: Файл lab8-1.asm:

```
viktoronvudive@VirtualBox:~/work/study/2022-2023/Архитектура компьютера/arch-pc/ labs/lab08$ nasm -f elf lab8-1.asm viktoronvudive@VirtualBox:~/work/study/2022-2023/Архитектура компьютера/arch-pc/ labs/lab08$ ld -m elf_i386 -o lab8-1 lab8-1.o viktoronvudive@VirtualBox:~/work/study/2022-2023/Архитектура компьютера/arch-pc/ labs/lab08$ ./lab8-1 Сообщение № 2 Сообщение № 2 сообщение № 1 viktoronvudive@VirtualBox:~/work/study/2022-2023/Архитектура компьютера/arch-pc/ labs/lab08$
```

Рис. 2.4: Программа lab8-1.asm:

Измените текст программы добавив или изменив инструкции jmp, чтобы вывод программы был следующим (рис. [2.5], [2.6]):

Сообщение № 3

Сообщение № 2

Сообщение № 1

```
lab8-1.asm
  Open
             ſŦΙ
                                                              Sa
                    ~/work/study/2022-2023/Архитектура компьютера/аг...
 1 %include 'in_out.asm' ; подключение внешнего файла
 2 SECTION .data
 3 msg1: DB 'Сообщение № 1',0
 4 msg2: DB 'Сообщение № 2',0
 5 msg3: DB 'Сообщение № 3',0
 6 SECTION .text
7 GLOBAL _start
9 start:
10 jmp _label3
11
12 label1:
13 mov eax, msg1 ; Вывод на экран строки
14 call sprintLF ; 'Сообщение № 1'
15 jmp end
16
17 _label2:
18 mov eax, msg2 ; Вывод на экран строки
19 call sprintLF ; 'Сообщение № 2'
20 jmp _label1
21
22 _label3:
23 mov eax, msg3 ; Вывод на экран строки
24 call sprintLF ; 'Сообщение № 3'
25 jmp _label2
26
27 end:
28 call quit ; вызов подпрограммы завершения
```

Рис. 2.5: Файл lab8-1.asm

Рис. 2.6: Программа lab8-1.asm

3. Использование инструкции jmp приводит к переходу в любом случае. Однако, часто при написании программ необходимо использовать условные переходы, т.е. переход должен происходить если выполнено какое-либо условие. В качестве примера рассмотрим программу, которая определяет и выводит на экран наибольшую из 3 целочисленных переменных: А,В и С. Значения для А и С задаются в программе, значение В вводиться с клавиатуры. Создайте исполняемый файл и проверьте его работу для разных значений В. (рис. [2.7], [2.8])

```
lab8-2.asm
  Open
                                                          Save
15 call sprint
16; ----- Ввод 'В'
17 mov ecx,B
18 mov edx, 10
19 call sread
20; ----- Преобразование 'В' из символа в число
21 mov eax,B
22 call atoi ; Вызов подпрограммы перевода символа в число
23 mov [B],eax ; запись преобразованного числа в 'В'
24; ----- Записываем 'А' в переменную 'тах'
25 mov ecx,[A]; 'ecx = A'
26 mov [max],ecx; 'max = A'
27; ----- Сравниваем 'А' и 'С' (как символы)
28 стр есх,[С]; Сравниваем 'А' и 'С'
29 jg check_B; если 'A>C', то переход на метку 'check_B',
30 mov ecx,[C]; иначе 'ecx = C'
31 mov [max],ecx; 'max = C'
32; ----- Преобразование 'мах(А,С)' из символа в число
33 check B:
34 mov eax, max
35 call atoi ; Вызов подпрограммы перевода символа в число
36 mov [max],eax ; запись преобразованного числа в `max`
37; ----- Сравниваем 'max(A,C)' и 'B' (как числа)
38 mov ecx, [max]
39 cmp ecx,[B] ; Сравниваем 'max(A,C)' и 'В'
                                                      Ι
40 jg fin ; если 'max(A,C)>B', то переход на 'fin',
41 mov ecx,[B]; иначе 'ecx = B'
42 mov [max],ecx
43; ----- Вывод результата
44 fin:
45 mov eax, msg2
46 call sprint ; Вывод сообщения 'Наибольшее число: '
47 mov eax,[max]
48 call iprintLF ; Вывод 'max(A,B,C)'
49 call quit ; Выход
50
                        Matlah - Tah Width: 0 - Logs Col st
```

Рис. 2.7: Файл lab8-2.asm

Рис. 2.8: Программа lab8-2.asm

4. Обычно nasm создаёт в результате ассемблирования только объектный файл. Получить файл листинга можно, указав ключ -l и задав имя файла листинга в командной строке. Создайте файл листинга для программы из файла lab8-2.asm (рис. [2.9])

Open	,	₽	 ~/work/study/2022-202	lab8-2.lst 23/Архитектура	компьютера/аг.	Save			_	×
		lab	8-2.asm			lab8-2.	st			×
8	7			<1>	nextchar:					
9	8	00000003	803800	<1>	cmp	byte [eax	(], 0			
10	9	00000006	7403	<1>	jz	finished				
11	10	80000008	40	<1>	inc	eax				
12	11	00000009	EBF8	<1>	jmp	nextchar				
13	12			<1>						
14	13			<1>	finished:					
15	14	0000000B	29D8	<1>	sub	eax, ebx				
16	15	000000D	5B	<1>	рор	ebx				
17	16	0000000E	C3	<1>	ret					
18	17			<1>						
19	18			<1>						
20	19			<1>	;	spr	int			
21	20					печати сооб				
22	21					данные: то	eax,<	messa	age>	
23	22				sprint:					
24	23	0000000F	52	<1>	push	edx				
25	24	00000010	51	<1>	push	ecx				
26	25	00000011	53	<1>	push	ebx				
27		00000012		<1>	push	eax				
28	27	00000013	E8E8FFFFF	<1>	call	slen				
29	28			<1>						
30		00000018		<1>	MOV	edx, eax				
31		0000001A	58	<1>	pop	eax				
32	31			<1>						
33		0000001B		<1>	mov	ecx, eax				
34			BB01000000	<1>	mov	ebx, 1				
35			B804000000	<1>	mov	eax, 4				
36		00000027	CD80	<1>	int	80h				
37	36			<1>						
38		00000029		<1>	pop	ebx				
39		0000002A		<1>	pop	ecx				
40	39	0000002B	5A	<1>	рор	edx				
Loading	file '	/home/vikt	oronvudive/wor	Plain Text ▼	Tab Width:	8 ▼ Ln	1, Col 1		*	INS

Рис. 2.9: Файл листинга lab8-2

Внимательно ознакомиться с его форматом и содержимым. Подробно объяснить содержимое трёх строк файла листинга по выбору.

строка 51

- 51 номер строки
- 00000033 адрес

- В80А00000 машинный код
- mov eax, 0AH код программы

строка 52

- 52 номер строки
- 00000038 адрес
- 50 машинный код
- push eax-код программы

строка 53

- 53 номер строки
- 00000039 адрес
- 89Е0 машинный код
- mov eax, esp код программы

Откройте файл с программой lab8-2.asm и в любой инструкции с двумя операндами удалить один операнд. Выполните трансляцию с получением файла листинга (рис. [2.10],[2.11])

```
viktoronvudive@VirtualBox:~/work/study/2022-2023/Архитектура компьютера/arcllabs/lab08$ nasm -f elf lab8-2.asm -l lab8-2.lst viktoronvudive@VirtualBox:~/work/squdy/2022-2023/Архитектура компьютера/arcllabs/lab08$ viktoronvudive@VirtualBox:~/work/study/2022-2023/Архитектура компьютера/arcllabs/lab08$ viktoronvudive@VirtualBox:~/work/study/2022-2023/Архитектура компьютера/arcllabs/lab08$ nasm -f elf lab8-2.asm -l lab8-2.lst lab8-2.asm:38: error: invalid combination of opcode and operands viktoronvudive@VirtualBox:~/work/study/2022-2023/Архитектура компьютера/arcllabs/lab08$
```

Рис. 2.10: ошибка трансляции lab8-2

```
lab8-2.lst
                                                            Save
  Open
                 lab8-2.asm
                                                            lab8-2.lst
    'С' (как символы)
                                      I
                                            стр есх,[С]; Сравниваем 'А' и 'С'
203
       28 0000011C 3B0D[39000000]
       29 00000122 7F0C
                                            jg check_B; если 'A>C', то переход
204
   на метку 'check_B',
       30 00000124 8B0D[39000000]
205
                                            mov ecx,[C]; иначе 'ecx = C'
206
       31 0000012A 890D[00000000]
                                            mov [max],ecx; 'max = C'
                                            ; ----- Преобразование
207
   'max(A,C)' из символа в число
208
       33
                                            check_B:
209
       34 00000130 B8[00000000]
                                            mov eax,max
210
       35 00000135 E862FFFFF
                                            call atoi ; Вызов подпрограммы
   перевода символа в число
       36 0000013A A3[00000000]
                                            mov [max],eax ; запись
   преобразованного числа в 'max'
212
       37
                                            ; ----- Сравниваем 'max(A,C)' и
    'В' (как числа)
213
       38
                                            mov ecx
214
       38
                                             error: invalid combination of opcode
   and operands
       39 0000013F 3B0D[0A000000]
                                            cmp ecx,[B] ; Сравниваем 'max(A,C)' и
215
   'B'
       40 00000145 7F0C
                                            jg fin ; если 'max(A,C)>B', то
216
  переход на 'fin',
                                            mov ecx,[B] ; иначе 'ecx = B'
       41 00000147 8B0D[0A000000]
217
       42 0000014D 890D[00000000]
218
                                            mov [max],ecx
219
                                            ; ----- Вывод результата
220
       44
                                            fin:
       45 00000153 B8[13000000]
                                            mov eax, msg2
221
       46 00000158 E8B2FEFFFF
                                            call sprint ; Вывод сообщения
222
    'Наибольшее число: '
223
       47 0000015D A1[00000000]
                                            mov eax,[max]
```

Рис. 2.11: файл листинга с ошибкой lab8-2

5. Напишите программу нахождения наименьшей из 3 целочисленных переменных а,b и с. Значения переменных выбрать из табл. 8.5 в соответствии с вариантом, полученным при выполнении лабораторной работы № 7. Создайте исполняемый файл и проверьте его работу (рис. [2.12],[2.13])

для варианта 14 - 81, 22, 72

```
lab8-3.asm
   Open
        ▼ 1
                                                               Save
                     ~/work/study/2022-2023/Архитектура компьютера/аг...
       call alol
35
       mov [B],eax
36
37
       mov eax, msgC
38
       call sprint
39
       mov ecx,C
40
       mov edx,80
41
       call sread
       mov eax,C
42
       call atoi
43
44
       mov [C],eax
45;_
                     __algorithm_
46
47
       mov ecx,[A];ecx = A
48
       mov [min],ecx;min = A
                                    I
49
50
       cmp ecx, [B]; A&B
       jl check_C ; if a<b: goto check_C
51
52
       mov ecx, [B]
53
       mov [min], ecx ;else min = B
54
55 check_C:
56
       cmp ecx, [C]
57
       jl finish
58
       mov ecx,[C]
59
       mov [min],ecx
60
61 finish:
62
       mov eax,answer
63
       call sprint
64
65
       mov eax, [min]
66
       call iprintLF
67
68
       call quit
69
70
```

Рис. 2.12: Файл lab8-3.asm

```
viktoronvudive@VirtualBox:~/work/study/2022-2023/Архитект
labs/lab08$ nasm -f elf lab8-3.asm
viktoronvudive@VirtualBox:~/work/study/2022-2023/Архитект
labs/lab08$ ld -m elf_i386 -o lab8-3 lab8-3.o
viktoronvudive@VirtualBox:~/work/study/2022-2023/Архитект
labs/lab08$ ./lab8-3
Input A: 32
Input B: 6
Input C: 54
Smallest: 6
viktoronvudive@VirtualBox:~/work/study/2022-2023/Apxитект
```

Рис. 2.13: Программа lab8-3.asm

6. Напишите программу, которая для введенных с клавиатуры значений х и а вычисляет значение заданной функции f(x) и выводит результат вычислений. Вид функции f(x) выбрать из таблицы 8.6 вариантов заданий в соответствии с вариантом, полученным при выполнении лабораторной работы № 7. Создайте исполняемый файл и проверьте его работу для значений X и а из 8.6. (рис. [2.14],[2.15])

для варианта 15

$$\begin{cases} a + 10, x < a \\ x + 10, x \ge a \end{cases}$$

```
31
       mov [X],eax
32;
                      algorithm
33
34
       mov ebx, [X]
35
       mov edx, [A]
36
       cmp ebx, edx
37
       jb first
38
       jmp second
39
40 first:
41
       mov eax,[A]
42
       add eax,10
43
       call iprintLF
                               Ī
44
       call quit
45 second:
46
       mov eax,[X]
47
       add eax,10
       call iprintLF
48
       call quit
49
50
```

Рис. 2.14: Файл lab8-4.asm

```
viktoronvudive@VirtualBox:~/work/study/2022-2023/Архитектура компьютера/агсh-рс/
labs/lab08$ nasm -f elf lab8-4.asm
viktoronvudive@VirtualBox:~/work/study/2022-2023/Архитектура компьютера/arch-pc/
labs/lab08$ ld -m elf_i386 -o lab8-4 lab8-4.o
viktoronvudive@VirtualBox:~/work/study/2022-2023/Архитектура компьютера/arch-pc/
labs/lab08$ ./lab8-4
Input A: 3
Input X: 2
13
viktoronvudive@VirtualBox:~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab08$ ./lab8-4
labs/lab08$ ./lab8-4
Input A: 2
Input X: 4
14
viktoronvudive@VirtualBox:~/work/study/2022-2023/Архитектура компьютера/arch-pc/
labs/lab08$
```

Рис. 2.15: Программа lab8-4.asm

3 Выводы

Изучили команды условного и безусловного переходов, познакомились с фалом листинга.