Nonlinear classification: Support Vector Machines COW&MP. Dolní lomná

Tomáš Kalvoda tomas.kalvoda@fit.cvut.cz

KAM FIT ČVUT

May 24, 2013

Classification problem (2 classes)

Linear classification

Classification problem (2 classes)

Applications of SVM (90s, [Vapnik, 1979])

Isolated handwritten digit recognition.

Object recognition.

Speaker identification.

Face detection in images.

Setup

We are given some initial data and their classes:

$$\{(x_i, y_i) : i = 1, 2, \dots, \ell\},\$$

where $x_i \in \mathbb{R}^d$, $y_i \in \{-1, 1\}$ for any $i = 1, 2, \dots, \ell$.

• Our task: For $x \in \mathbb{R}^d$ decide whether it belongs to y=1 or y=-1 class.

Linear SVM

Assumptions:
$$\exists w \in \mathbb{R}^d, \ b \in \mathbb{R}: \quad w \cdot x_i + b > 0, \ y_i = 1$$

$$w \cdot x_i + b < 0, \ y_i = -1.$$

Linear SVM

Equivalently:
$$\exists w \in \mathbb{R}^d, \ b \in \mathbb{R}: \quad w \cdot x_i + b \geqslant 1, \ y_i = 1$$

$$w \cdot x_i + b \leqslant -1, \ y_i = -1.$$

Linear SVM

Equivalently:
$$\exists w \in \mathbb{R}^d, \ b \in \mathbb{R}: \quad w \cdot x_i + b \geqslant 1, \ y_i = 1$$

$$w \cdot x_i + b \leqslant -1, \ y_i = -1.$$

Basic idea of the SVM

Support vectors...

 \dots are those training points x_i that lie on hyperplanes H_+ or H_- .

Goal:

Maximize the margin (gap) between H_+ and H_- .

Primal problem: Summary for the linear separable case

Training data

We are given $\ell \in \mathbb{N}$ samples

$$\{(x_i, y_i) \in \mathbb{R}^d \times \{-1, 1\} : i = 1, 2, \dots, \ell\}.$$

Primal problem: Summary for the linear separable case

Training data

We are given $\ell \in \mathbb{N}$ samples

$$\{(x_i, y_i) \in \mathbb{R}^d \times \{-1, 1\} : i = 1, 2, \dots, \ell\}.$$

Our task

Minimize

$$f: \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}, \quad f(w, b) := \frac{1}{2} \|w\|^2$$

subject to ℓ linear inequality constraints

$$g_i(w, b) := y_i(w \cdot x_i + b) - 1 \ge 0, \quad i = 1, 2, \dots, \ell.$$

Primal problem: Summary for the linear separable case

Training data

We are given $\ell \in \mathbb{N}$ samples

$$\{(x_i, y_i) \in \mathbb{R}^d \times \{-1, 1\} : i = 1, 2, \dots, \ell\}.$$

Our task

Minimize

$$f: \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}, \quad f(w, b) := \frac{1}{2} \|w\|^2$$

subject to ℓ linear inequality constraints

$$g_i(w, b) := y_i(w \cdot x_i + b) - 1 \ge 0, \quad i = 1, 2, \dots, \ell.$$

Classification

If w_* and b_* solve the problem above then the class of $x \in \mathbb{R}^d$ is given by $\mathrm{sign}(w_* \cdot x + b_*).$

Lagrange formulation

Minimize
$$f: \mathbb{R}^n \to \mathbb{R}$$
 subject to $g_i(z) \ge 0$, $g_i: \mathbb{R}^n \to \mathbb{R}$, $1 \le i \le \ell$.

Karush-Kuhn-Tucker (KKT) Conditions

Let
$$\mathcal{L}(z;\lambda) := f(z) - \lambda^T g(z), \quad z \in \mathbb{R}^n, \ \lambda \in \mathbb{R}^n.$$

$$\nabla_z \mathcal{L}(z;\lambda) = 0,$$
 $g(z) \ge 0,$ $\lambda \ge 0,$ $\lambda_i g_i(z) = 0$ $i = 1, 2, \dots, \ell.$

ľ

In our case

Lagrangian for our particular case is given by

$$\mathscr{L}(w, b; \lambda) = \frac{1}{2} ||w||^2 - \sum_{i=1}^{\ell} \lambda_i y_i (w \cdot x_i + b) + \sum_{i=1}^{\ell} \lambda_i.$$

and KKT conditions are

$$w - \sum_{i=1}^{\ell} \lambda_i y_i x_i = 0, \qquad \sum_{i=1}^{\ell} \lambda_i y_i = 0,$$

$$y_i (w \cdot x_i + b) - 1 \ge 0, \qquad \lambda \ge 0,$$

$$\lambda_i (y_i (w \cdot x_i + b) - 1) = 0.$$

Note: Quadratic programming problem

Objective function is quadratic and convex, constraints are linear.

JI.

Wolfe dual problem

The problem (P)

Minimize $f: \mathbb{R}^n \to \mathbb{R}$ subject to $g_i(z) \geqslant 0$, where f and $-g_i$ are convex functions.

Wolfe dual problem

The problem (P)

Minimize $f: \mathbb{R}^n \to \mathbb{R}$ subject to $g_i(z) \geqslant 0$, where f and $-g_i$ are convex functions.

Wolfe dual

Maximize $\mathscr{L}(z;\lambda)$ with respect to $z,\lambda\in\mathbb{R}^n$ subject to conditions

$$\nabla_{\!\!z} \mathscr{L}(z;\lambda) = 0 \quad \text{and} \quad \lambda \geqslant 0.$$

Wolfe dual problem

The problem (P)

Minimize $f: \mathbb{R}^n \to \mathbb{R}$ subject to $g_i(z) \geqslant 0$, where f and $-g_i$ are convex functions.

Wolfe dual

Maximize $\mathscr{L}(z;\lambda)$ with respect to $z,\lambda\in\mathbb{R}^n$ subject to conditions

$$\nabla_{\!\!z}\mathscr{L}(z;\lambda)=0$$
 and $\lambda\geqslant 0$.

- If $z_* \in \mathbb{R}^n$ solves (P), then it solves the Wolfe dual problem with some $\lambda_* \in \mathbb{R}^n$.
- Fivery local solution x_* to a convex programming problem is a global solution.

ŀ

Wolfe dual: Our problem

Wolfe dual

Maximize

$$\mathscr{L}(w, b; \lambda) = \frac{1}{2} ||w||^2 - \sum_{i=1}^{\ell} \lambda_i y_i (w \cdot x_i + b) + \sum_{i=1}^{\ell} \lambda_i$$

with respect to $w \in \mathbb{R}^d$, $b \in \mathbb{R}$, and $\lambda \in \mathbb{R}^d$ subject to

$$w = \sum_{i=1}^{\ell} \lambda_i y_i x_i, \quad \sum_{i=1}^{\ell} \lambda_i y_i = 0, \quad \text{and} \quad \lambda \geqslant 0.$$

Wolfe dual: Our problem

Wolfe dual

Maximize

$$\mathscr{L}(w,b;\lambda) = \sum_{i=1}^{\ell} \lambda_i - \frac{1}{2} \sum_{i,j=1}^{\ell} \lambda_i \lambda_j y_i y_j x_i \cdot x_j$$

with respect to $w \in \mathbb{R}^d$, $b \in \mathbb{R}$, and $\lambda \in \mathbb{R}^d$ subject to

$$\left(w = \sum_{i=1}^{\ell} \lambda_i y_i x_i\right), \quad \sum_{i=1}^{\ell} \lambda_i y_i = 0, \quad \text{and} \quad \lambda \geqslant 0.$$

Illustration

Illustration

What to do if linear separation is not possible?

• We wish to map our data $x_i \in \mathbb{R}^d$ to some – real – Hilbert space \mathscr{H} with inner product $\langle \cdot, \cdot \rangle$,

$$\Phi: \mathbb{R}^d \to \mathscr{H}.$$

• Wolfe dual problem involves only inner products $x_i \cdot x_j$ in \mathbb{R}^d .

What to do if linear separation is not possible?

• We wish to map our data $x_i \in \mathbb{R}^d$ to some – real – Hilbert space \mathscr{H} with inner product $\langle \cdot, \cdot \rangle$,

$$\Phi: \mathbb{R}^d \to \mathscr{H}.$$

- Wolfe dual problem involves only inner products $x_i \cdot x_j$ in \mathbb{R}^d .
- Instead of those products we will have to compute expressions of the form

$$K(x_i, x_j) := \langle \Phi(x_i), \Phi(x_j) \rangle, \quad K : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}.$$

What to do if linear separation is not possible?

• We wish to map our data $x_i \in \mathbb{R}^d$ to some – real – Hilbert space \mathscr{H} with inner product $\langle \cdot, \cdot \rangle$,

$$\Phi: \mathbb{R}^d \to \mathscr{H}$$
.

- Wolfe dual problem involves only inner products $x_i \cdot x_i$ in \mathbb{R}^d .
- Instead of those products we will have to compute expressions of the form

$$K(x_i, x_j) := \langle \Phi(x_i), \Phi(x_j) \rangle, \quad K : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}.$$

▶ N.B.:

$$K(u,v) = K(v,u), \qquad u,v \in \mathbb{R}^d$$

$$\sum_{i=1}^n c_i c_j K(u_i,u_j) = \left\| \sum_{i=1}^n c_i \Phi(u_i) \right\|^2 \geqslant 0, \quad n \in \mathbb{N}, \ u_i \in \mathbb{R}^d, \ c \in \mathbb{R}^n.$$

Kernel

Definition

Any $K: X \times X \to \mathbb{R}$ such that

- K(x,y) = K(y,x) for any $x,y \in X$,
- K is positive definite, i.e. for any $n \ge 1$, $x_1, \ldots, x_n \in X$ and any $c_1, \ldots, c_n \in \mathbb{R}$

$$\sum_{i,j=1}^{n} c_i c_j K(x_i, x_j) \geqslant 0.$$

is called *kernel* on $X \times X$.

Application to SVM [Boser, Guyon and Vapnik, 1992].

On the other hand...

• ... one can start with a kernel $K: X \times X \to \mathbb{R}$ and ask whether there is a Hilbert space \mathscr{H} and $\Phi: X \to \mathscr{H}$ such that

$$K(x, y) = \langle \Phi(x), \Phi(y) \rangle, \quad x, y \in X.$$

In this case it would be possible to use K only.

▶ The answer to that question is positive.

RKHS

Theorem

Let X be a separable metric space and $K: X \times X \to \mathbb{R}$ a continuous kernel on $X \times X$. Then there is a separable Hilbert space \mathscr{H} of functions on X and mapping $\Phi: X \to \ell^2 \simeq \mathscr{H}$ such that

$$K(u, v) = \langle \Phi(u), \Phi(v) \rangle_{\ell^2}, \quad u, v \in X.$$

Note

 \mathscr{H} is the Reproducing kernel Hilbert space (RKHS) associated with K. This terminology is due to the property

$$f(x) = \langle K_x, f \rangle, \quad x \in X, f \in \mathcal{H},$$

where $K_x = K(x, \cdot)$.

• $V := \operatorname{span}_{\mathbb{R}} \{ K_x : x \in X \}$, recall $K_x(y) = K(x, y)$.

- $V := \operatorname{span}_{\mathbb{R}} \{ K_x : x \in X \}, \text{ recall } K_x(y) = K(x, y).$
- ullet For $f,g\in V$, $f=\sum_{i=1}^n c_i K_{x_i}$, $g=\sum_{j=1}^m d_j K_{y_j}$ set

$$\langle f, g \rangle := \sum_{i,j} c_i d_j K(x_i, x_j) = \sum_i c_i g(x_i) = \sum_j d_j f(x_j).$$

 $\langle\cdot,\cdot\rangle$ does not depend on the representation of f and g, is bilinear, symmetric and $\langle f,f\rangle\geqslant 0$ for any $f\in V$.

- $V := \operatorname{span}_{\mathbb{R}} \{ K_x : x \in X \}, \text{ recall } K_x(y) = K(x, y).$
- ullet For $f,g\in V$, $f=\sum_{i=1}^n c_i K_{x_i}$, $g=\sum_{j=1}^m d_j K_{y_j}$ set

$$\langle f, g \rangle := \sum_{i,j} c_i d_j K(x_i, x_j) = \sum_i c_i g(x_i) = \sum_j d_j f(x_j).$$

 $\langle\cdot,\cdot\rangle$ does not depend on the representation of f and g, is bilinear, symmetric and $\langle f,f\rangle\geqslant 0$ for any $f\in V$.

• $\langle \cdot, \cdot \rangle$ has the reproducing property,

$$\langle f, K_x \rangle = \sum_{i=1}^{1} 1 \cdot f(x) = f(x), \quad f \in V, x \in X.$$

- $V := \operatorname{span}_{\mathbb{R}} \{ K_x : x \in X \}, \text{ recall } K_x(y) = K(x, y).$
- ightharpoonup For $f,g\in V$, $f=\sum_{i=1}^n c_iK_{x_i}$, $g=\sum_{j=1}^m d_jK_{y_j}$ set

$$\langle f, g \rangle := \sum_{i,j} c_i d_j K(x_i, x_j) = \sum_i c_i g(x_i) = \sum_j d_j f(x_j).$$

 $\langle\cdot,\cdot\rangle$ does not depend on the representation of f and g, is bilinear, symmetric and $\langle f,f\rangle\geqslant 0$ for any $f\in V$.

• $\langle \cdot, \cdot \rangle$ has the reproducing property,

$$\langle f, K_x \rangle = \sum_{i=1}^{1} 1 \cdot f(x) = f(x), \quad f \in V, x \in X.$$

Since

$$f(x)^2 = \langle f, K_x \rangle^2 \leqslant \langle f, f \rangle \cdot \langle K_x, K_x \rangle = \|f\|^2 \cdot K(x, x), \quad x \in X,$$
 we conclude that if $\|f\| = 0$ then $f(x) = 0$ for any $x \in X$.

 ${\color{red} \blacktriangleright}$ The pair $(V,\langle\cdot,\cdot\rangle)$ forms a real pre-Hilbert space.

• The pair $(V, \langle \cdot, \cdot \rangle)$ forms a real pre-Hilbert space.

• Let \mathscr{H} be the completion of $(V, \langle \cdot, \cdot \rangle)$.

▶ The pair $(V, \langle \cdot, \cdot \rangle)$ forms a real pre-Hilbert space.

• Let \mathscr{H} be the completion of $(V, \langle \cdot, \cdot \rangle)$.

Note that if $\{f_n\}_{n=1}^{\infty}$ is a Cauchy sequence in V then $\{f_n(x)\}_{n=1}^{\infty}$ is a Cauchy sequence in $\mathbb R$ for any $x\in\mathbb R$. Indeed, recall the inequality

$$(f_n(x) - f_m(x))^2 \le ||f_n - f_m||^2 \cdot K(x, x).$$

So \mathcal{H} consists of a larger class of real valued functions on X.

• The pair $(V, \langle \cdot, \cdot \rangle)$ forms a real pre-Hilbert space.

• Let \mathscr{H} be the completion of $(V, \langle \cdot, \cdot \rangle)$.

Note that if $\{f_n\}_{n=1}^{\infty}$ is a Cauchy sequence in V then $\{f_n(x)\}_{n=1}^{\infty}$ is a Cauchy sequence in $\mathbb R$ for any $x\in\mathbb R$. Indeed, recall the inequality

$$(f_n(x) - f_m(x))^2 \le ||f_n - f_m||^2 \cdot K(x, x).$$

So ${\mathscr H}$ consists of a larger class of real valued functions on X.

lacktriangleright ${\mathscr H}$ has the reproducing property and is separable.

▶ Let $\{\phi_i\}_i$ be an orthonormal basis of \mathcal{H} . For any $x \in X$ we have the Fourier expansion of $K_x \in V \subset \mathcal{H}$

$$K_x = \sum_i \langle \phi_i, K_x \rangle \phi_i.$$

For any $y \in X$ we obtain

$$K(x,y) = K_x(y) = \sum_i \phi_i(x)\phi_i(y).$$

So
$$\Phi: X \to l^2(\mathbb{N}, \mathbb{R})$$
, $\Phi(x) := \{\phi_i(x)\}_i$

Problem to be maximized

Wolfe dual with the Kernel

Maximize

$$\sum_{i=1}^{\ell} \lambda_i - \frac{1}{2} \sum_{i,j=1}^{\ell} \lambda_i \lambda_j y_i y_j K(x_i, x_j)$$

with respect to $\lambda \geqslant 0$ subject to $\sum_{i=1}^{\ell} \lambda_i y_i = 0$.

Classificator

Compute the sign of

$$w \cdot x + b = \sum_{x_i \text{ is s.v.}} \lambda_i y_i x_i \cdot x + b \leftrightarrow \sum_{x_i \text{ is s.v.}} \lambda_i y_i K(x_i, x) + b,$$

where

$$b = \frac{1}{y_i} - w \cdot x_i = y_i - \sum_{i=1}^{n} \lambda_j y_j x_j \cdot x_i \leftrightarrow y_i - \sum_{i=1}^{n} \lambda_j y_j K(x_j, x_i).$$

Results for "radial basis kernel"

$$K(u,v) = \exp\left(-\|u-v\|^2/(2\sigma^2)\right), \quad u,v \in \mathbb{R}^d.$$

Thank you for your attention.

