15.083J/6.859J Integer Optimization

Lecture 4: Methods to enhance formulations II

1 Outline

SLIDE 1

- Independence set systems and Matroids
- Strength of valid inequalities
- Nonlinear formulations

2 Independence set systems

2.1 Definition

SLIDE 2

- N finite set, \mathcal{I} collection of subsets of N.
- (N, \mathcal{I}) is an independence system if:
 - (a) $\emptyset \in \mathcal{I}$;
 - (b) if $A \subseteq B$ and $B \in \mathcal{I}$, then $A \in \mathcal{I}$.
- Combinatorial structures that exhibit hereditary properties

2.2 Examples

SLIDE 3

- Node disjoint paths; $G=(V,E), \mathcal{I}_1$ collection of node disjoint paths in G. (E,\mathcal{I}_1) is IS. Why?
- Acyclic subgraphs. \mathcal{I}_2 collection of acyclic subgraphs (forests) in G=(V,E). (E,\mathcal{I}_2) is IS. Why?
- Linear independence; A matrix; N index set of columns of A; \mathcal{I}_3 collection of linearly independent columns of A. (N, \mathcal{I}_3) is IS. Why?
- Feasible solutions to packing problems. $S = \{x \in \{0,1\}^n \mid Ax \leq b\}, A \geq 0, N = \{1,2,\ldots,n\}$. For $x \in S$, $A(x) = \{i \mid x_i = 1\}$. $\mathcal{I}_4 = \cup_{x \in S} A(x)$. (N,\mathcal{I}_4) is IS. Why?

2.3 Rank Slide 4

- (N, \mathcal{I}) independence system
- An independent set of maximal cardinality contained in $T \subseteq N$ is called a basis of T. The maximum cardinality of a basis of T, denoted by r(T), is called the rank of T.
- $S \subseteq T$; |A| = r(T). $A \cap S$ and $A \cap (T \setminus S)$ are independent sets contained in S and $T \setminus S$
- $r(S) + r(T \setminus S) \ge |A \cap S| + |A \cap (T \setminus S)| = |A| = r(T)$.

2.4 Matroids Slide 5

- (N, \mathcal{I}) is a matroid if: Every maximal independent set contained in F has the same cardinality r(F) for all $F \subset N$.
- (E, \mathcal{I}_1) (node disjoint paths in G). Is (E, \mathcal{I}_1) a matroid?
- $F = \{(1,2), (2,3), (2,4), (4,5), (4,6)\}$. Maximal independent sets in $F: \{(1,2), (2,4), (4,5)\}$ and $\{(1,2), (2,3), (4,5), (4,6)\}$.
- Is (E, \mathcal{I}_2) of forests a matroid?
- (N, \mathcal{I}_3) of linearly independent columns of A is a matroid. $T \subset N$ index of columns of A, $A_T = [A_j]_{j \in T}$. $r(T) = \operatorname{rank}(A_T)$.
- Is (N, \mathcal{I}_4) of feasible solutions to packing problems a matroid?

2.5 Valid Inequalities

SLIDE 6

• $C \subseteq N$ a circuit in (N, \mathcal{I}) .

maximize
$$c'x$$

subject to $\sum_{i \in C} x_i \le |C| - 1$ for all $C \in \mathcal{C}$
 $x \in \{0,1\}^n$.

- Rank inequality $\sum_{i \in T} x_i \le r(T)$
- BW contains conditions for rank inequalities to be facet defining. For matroids, rank inequalities completely characterize convex hull.

3 Strength of valid inequalities

SLIDE 7

- ullet S set of integer feasible vectors.
- $P_i = \{x \in \Re^n_+ \mid A_i x \geq b_i\}, i = 1, 2, A_i, b_i \geq 0$; covering type polyhedra.
- The **strength** of P_1 with respect to P_2 denoted by $t(P_1, P_2)$ is the minimum value of $\alpha > 0$ such that $\alpha P_1 \subset P_2$.
- $P_1 = \{x \in \mathcal{R} \mid x \ge 0\}, P_2 = \{x \in \mathcal{R} \mid x \ge 1\}.$ Strength?

3.1 Characterization

3.1.1 Theorem

SLIDE 8

- $\alpha P_1 \subset P_2$ if and only if for all $c \geq 0$, $Z_2 \leq \alpha Z_1$, where $Z_i = \min c'x$: $x \in P_i$.
- Proof If $\alpha P_1 \subset P_2$, then $Z_2 \leq \alpha Z_1$ for all $c \geq 0$.
- For converse, assume $Z_2 \leq \alpha Z_1$, for all $c \geq 0$, and there exists $x_0 \in \alpha P_1$, but $x_0 \notin P_2$.
- By the separating hyperplane theorem, there exists c: $c'x_0 < c'x$ for all $x \in P_2$, i.e., $c'x_0 < Z_2$.
- $\boldsymbol{x}_0 \in \alpha P_1$, $\boldsymbol{x}_0 = \alpha \boldsymbol{y}_0$, $\boldsymbol{y}_0 \in P_1$. $Z_1 \leq \boldsymbol{c}' \boldsymbol{y}_0$, i.e., $\alpha Z_1 \leq \boldsymbol{c}' \boldsymbol{x}_0$, and thus $\alpha Z_1 < Z_2$. Contradiction.
- $t(P_1, P_2) = \sup_{\boldsymbol{c} \geq \boldsymbol{0}} \frac{Z_2}{Z_1}$.

3.1.2 Computation

SLIDE 9

 $P_i = \{ \boldsymbol{x} \in \Re^n_+ \mid \boldsymbol{a}_i' \boldsymbol{x} \geq b_i, i = 1, \dots, m \}, \text{ and } \boldsymbol{a}_i \geq \boldsymbol{0}, b_i \geq 0 \text{ for all } i = 1, \dots, m.$ Then,

$$t(P_1, P_2) = \max_{i=1,\dots,m} \frac{b_i}{d_i},$$

where $d_i = \min \ a'_i x: x \in P_1$. (If $d_i = 0$, then $t(P_1, P_2)$ is defined to be $+\infty$.

3.2 Strength of an inequality

SLIDE 10

- The strength of $f'x \ge g$, $f \ge 0$, g > 0 with respect to $P = \{x \in \mathbb{R}^n_+ \mid Ax \ge b\}$ of covering type is defined as g/d, where $d = \min_{x \in P} f'x$.
- By strong duality,

$$\begin{aligned} d &= \max \quad \boldsymbol{b'p} \\ \text{s.t.} \quad \boldsymbol{A'p} &\leq \boldsymbol{f} \\ \boldsymbol{p} &\geq \boldsymbol{0}. \end{aligned}$$

• \overline{p} feasible dual solution. $b'\overline{p} \leq d$. Then, the strength of inequality $f'x \geq g$ with respect to P is at most $g/(b'\overline{p})$.

4 Nonlinear formulations

SLIDE 11

$$Z_{IP} = \min \quad \sum_{j=1}^{n} c_j x_j$$
 s.t. $\sum_{j=1}^{n} \boldsymbol{A}_j x_j = \boldsymbol{b}$ $x_i \in \{0, 1\}.$

4.1 SDP relaxation

SLIDE 12

- Multiply each constraint by x_i : $\sum_{j=1}^{n} A_j x_j x_i = bx_i$.
- Introduce $z_{ij} = x_i x_j$.

$$z_{ii} = x_i^2 = x_i \qquad \forall i = 1, ..., n.$$

$$x_i x_j \ge 0 \iff z_{ij} \ge 0 \qquad \forall i, j; i \ne j.$$

$$x_i (1 - x_j) \ge 0 \iff z_{ij} \le z_{ii} \qquad \forall i, j, i \ne j.$$

$$(1 - x_i)(1 - x_j) \ge 0 \iff z_{ii} + z_{jj} - z_{ij} \le 1 \quad \forall i, j, i \ne j.$$

• Matrix $\mathbf{Z} = xx'$ is positive semidefinite, $\mathbf{Z} \succeq \mathbf{0}$, i.e., for $u \in \mathbb{R}^n$,

$$\mathbf{u}'\mathbf{Z}\mathbf{u} = ||\mathbf{u}'\mathbf{x}||^2 > 0.$$

4.2 SDP relaxation

SLIDE 13

$$Z_{SD} = \min \quad \sum_{j=1}^{n} c_{j} z_{jj}$$
 s.t. $\sum_{j=1}^{n} A_{j} z_{ij} - b z_{ii} = 0$, $i = 1, \dots, n$, $\sum_{j=1}^{n} A_{j} z_{jj} = b$, $0 \le z_{ij} \le z_{ii}$, $i, j = 1, \dots, n, i \ne j$, $0 \le z_{ij} \le z_{jj}$, $i, j = 1, \dots, n, i \ne j$, $0 \le z_{ii} \le 1$, $j = 1, \dots, n, i \ne j$, $z_{ii} + z_{jj} - z_{ij} \le 1$ $z_{ij} = 1, \dots, n, z_{ij} \ne j$, $z_{ij} \ge 0$. $z_{LP} \le Z_{SD} \le Z_{IP}$. Why?

4.3 Stable set

SLIDE 14

$$Z_{IP} = \max \sum_{i=1}^{n} w_{i}x_{i}$$
s.t. $x_{i} + x_{j} \leq 1$, $\forall \{i, j\} \in E$,
$$x_{i} \in \{0, 1\}, \qquad i \in V.$$

$$Z_{SD} = \max \sum_{i=1}^{n} w_{i}z_{ii}$$
s.t. $z_{ij} = 0$, $\forall \{i, j\} \in E$,
$$z_{ii} + z_{jj} \leq 1$$
, $\forall \{i, j\} \in E$,
$$z_{ik} + z_{kj} \leq z_{kk}, \qquad \forall \{i, j\} \in E$$
,
$$z_{ii} + z_{jj} + z_{kk} \leq 1 + z_{ik} + z_{jk}, \quad \forall \{i, j\} \in E$$
,
$$z_{ii} + z_{jj} + z_{kk} \leq 1 + z_{ik} + z_{jk}, \quad \forall \{i, j\} \in E$$
,
$$z_{ij} \geq 0$$
.

4.4 Max-Cut

SLIDE 15

$$\max \sum_{\{i,j\} \in E} w_{ij}(x_i + x_j - 2x_i x_j)$$
s.t. $x_s = 1, \quad x_t = 0,$

$$x_i \in \{0, 1\}, \qquad \forall i \in V$$

$$Z_{SD} = \max \sum_{\{i,j\} \in E} w_{ij}(z_{ii} + z_{jj} - 2z_{ij})$$
s.t. $z_{ss} = 1, \quad z_{tt} = 0, \quad z_{st} = 0$

$$\mathbf{Z} \succeq \mathbf{0}.$$

Also

$$0 \le z_{ii} \le 1$$
, $z_{ij} \le z_{ii}$, $z_{ij} \le z_{jj}$, $z_{ii} + z_{jj} - z_{ij} \le 1$.

4.5 Scheduling

SLIDE 16

- Jobs $J = \{1, \ldots, n\}$ and m machines.
- p_{ij} processing time of job j on machine i.
- Completion time C_j . Objective: assign jobs to machines, and schedule each machine to minimize $\sum_{j \in J} w_j C_j$.
- If jobs j and k are assigned to machine i, then job j is scheduled before job k on machine i, denoted by $j \prec_i k$ if and only if

$$\frac{w_k}{p_{ik}} > \frac{w_j}{p_{ij}}$$

4.5.1 Formulation

SLIDE 17

- x_{ij} is one, if job j is assigned to machine i, and zero, otherwise.
- $C_j = \sum_{i=1}^m x_{ij} \left(p_{ij} + \sum_{k \prec_i j} x_{ik} p_{ik} \right)$,

•

minimize
$$\sum_{j \in J} w_j \sum_{i=1}^m x_{ij} \left(p_{ij} + \sum_{k \prec_i j} x_{ik} p_{ik} \right)$$
subject to
$$\sum_{i=1}^m x_{ij} = 1, \quad \forall j \in J$$
$$x_{ij} \in \{0, 1\}.$$

 $\bullet \ c_{ij} = w_j p_{ij},$

$$d_{(ij),(hk)} = \left\{ \begin{array}{ll} 0, & \text{if } i \neq h \text{ or } j = k, \\ w_j p_{ik} & \text{if } i = h \text{ and } k \prec_i j, \\ w_k p_{ij} & \text{if } i = h \text{ and } j \prec_i k, \end{array} \right.$$

 $\bullet \ \ x_{ij}^2 = x_{ij}:$

$$Z_{\text{CP}} = \min \quad \frac{1}{2} \boldsymbol{c}' \boldsymbol{x} + \frac{1}{2} \boldsymbol{x}' \left(\boldsymbol{D} + \text{diag}(\boldsymbol{c}) \right) \boldsymbol{x}$$
 s.t.
$$\sum_{i=1}^{m} x_{ij} = 1, \qquad \forall j \in J$$

$$0 \leq x_{ij} \leq 1.$$

15.083J / 6.859J Integer Programming and Combinatorial Optimization Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.