

Master of Science in BIOENGINEERING

2-year program - 120 ECTS

Students must choose at least 12 ECTS in one of the orientations A to E, at least 3 credits in domain F and max. 6 credits in domain G.

Students can also opt for a 30 ECTS Minor. Minors recommended with this Master:

- Biocomputing
- Biomedical Technologies
- Biotechnology
- Management, Technology, Entrepreneurship
- Neuroprosthetics

This program includes an 8-week compulsory internship in industry.

	Orientation	Credits
General bioengineering		12
Analysis and Modelling of Locomotion		3
Biomicroscopy I		3
Fundamentals of Neuroengineering		4
Materials Science		3
Principles and Applications of Systems Biology		3
Stem Cell Biology and Technology		3

Orientations and options							
Regenerative Medicine	A						
Biomechanical Engineering		В					
Systems Bioengineering			С				
Nanoscale bioengineering				D			
Biophotonics and bioimaging					Е		
Law, Organization and Economics in LST						F	
Scientific Thinking							G
Advanced Analysis I, II							
Advanced Bioengineering Methods Laboratory				D			
Artificial Organs and Systems							
Biomaterials	Α	В					
Biomechanics of the Cardiovascular System		В					
Biomechanics of the Musculoskeletal System		В					
Biomedical Optics		_					
BioMEMS	Α						
Biomicroscopy II	A				Е		
Biomolecular Structure and Mechanics	11		С	D	L		
Biophysics I, II			U	ע			
Brain Computer interaction							
Chemical Biology - Tools and Methods				D			
Computational Motor Control		В		ע			
Data Analysis and Model Classification		ь					
· · · · · · · · · · · · · · · · · · ·				D			
Diffraction Methods in Structural Biology			0	D	г		
Dynamical System Theory for engineers			С		Е	г	
Economics of innovation in the biomedical industry						F	
Flexible bioelectronics					Б		
Fundamentals of Biomedical Imaging					Е		
Fundamentals of Biophotonics				_	Е		
Fundamentals of biosensors and electronic biochips			_	D			
Genomics and Bioinformatics	A		С		_		
Image Processing I, II					Е	_	
Introduction au droit et à l'éthique en STV						F	
Lab Immersion II							
Lab Immersion III							
Lab methods: Animal Experimentation							
Lab methods: Bioactive compounds screening							
Lab methods: Biosafety						F	
Lab methods: Flow Cytometry							
Lab methods: Histology							
Lab methods: Proteomics							
Mécanique des structures							
Multidisciplinary organization of medtechs/biotechs						F	
Nanobiotechnology and biophysics							
Numerical methods in biomechanics		В					
Pharmacology and Pharmacokinetics							
Semester project in Bioengineering							
Scientific project design in Synthetic Biology (iGEM)							G
Scientific project design in Drug Discovery							G
Scientific literature analysis in Bioengineering							G
Scientific literature analysis in Computational							G
molecular biology							ч
Scientific project design in Regenerative Medicine							G
and Diagnostics		г.					
Sensors in medical instrumentation	A	В					
Sensorimotor Neuroprosthetics		В			_		
Signal Processing for Functional Brain Imaging					Е		
Single cell genomics							
Statistical population genetics							
Statistical Physics of Biomacromolecules			С	D			
Tissue Engineering	Α						
Understanding statistics and experimental design							

Lab immersion or Industrial internship				8
Lab Immersion I				8
Industrial internship in bioengineering				8