

Probabilistic Model Checking

Marta Kwiatkowska Dave Parker

Oxford University Computing Laboratory

ESSLLI'10 Summer School, Copenhagen, August 2010

Why probability?

- Some systems are inherently probabilistic...
- Randomisation, e.g. in distributed coordination algorithms
 - as a symmetry breaker, in gossip routing to reduce flooding
- Examples: real-world protocols featuring randomisation:
 - Randomised back-off schemes
 - · CSMA protocol, 802.11 Wireless LAN
 - Random choice of waiting time
 - IEEE1394 Firewire (root contention), Bluetooth (device discovery)
 - Random choice over a set of possible addresses
 - · IPv4 Zeroconf dynamic configuration (link-local addressing)
 - Randomised algorithms for anonymity, contract signing, ...

Why probability?

- Some systems are inherently probabilistic...
- Randomisation, e.g. in distributed coordination algorithms
 - as a symmetry breaker, in gossip routing to reduce flooding
- To model uncertainty and performance
 - to quantify rate of failures, express Quality of Service
- Examples:
 - computer networks, embedded systems
 - power management policies
 - nano-scale circuitry: reliability through defect-tolerance

Verifying probabilistic systems

- We are not just interested in correctness
- We want to be able to quantify:
 - security, privacy, trust, anonymity, fairness
 - safety, reliability, performance, dependability
 - resource usage, e.g. battery life
 - and much more...
- Quantitative, as well as qualitative requirements:
 - how reliable is my car's Bluetooth network?
 - how efficient is my phone's power management policy?
 - is my bank's web-service secure?
 - what is the expected long-run percentage of protein X?

Probabilistic model checking

Probabilistic models

we will focus on the red-parts

Part 1

Discrete-time Markov chains

Overview (Part 1)

- Discrete-time Markov chains (DTMCs)
- PCTL: A temporal logic for DTMCs
- PCTL model checking
- LTL model checking
- Costs and rewards

Discrete-time Markov chains

- Discrete-time Markov chains (DTMCs)
 - state-transition systems augmented with probabilities
- States
 - discrete set of states representing possible configurations of the system being modelled
- Transitions
 - transitions between states occur in discrete time-steps
- Probabilities
 - probability of making transitions between states is given by discrete probability distributions

Discrete-time Markov chains

- Formally, a DTMC D is a tuple (S,s_{init},P,L) where:
 - S is a finite set of states ("state space")
 - $-s_{init} \in S$ is the initial state
 - P : S × S → [0,1] is the transition probability matrix where $\Sigma_{s' \in S}$ P(s,s') = 1 for all s ∈ S
 - L : S \rightarrow 2^{AP} is function labelling states with atomic propositions
- Note: no deadlock states
 - i.e. every state has at least one outgoing transition
 - can add self loops to represent final/terminating states

DTMCs: An alternative definition

- Alternative definition: a DTMC is:
 - a family of random variables $\{ X(k) \mid k=0,1,2,... \}$
 - X(k) are observations at discrete time-steps
 - i.e. X(k) is the state of the system at time-step k
- Memorylessness (Markov property)
 - $Pr(X(k)=s_k \mid X(k-1)=s_{k-1}, ..., X(0)=s_0)$ = $Pr(X(k)=s_k \mid X(k-1)=s_{k-1})$
- We consider homogenous DTMCs
 - transition probabilities are independent of time
 - $P(s_{k-1},s_k) = Pr(X(k)=s_k \mid X(k-1)=s_{k-1})$

Probability of taking a path or a set of paths

• Consider a path ω e.g. s_0, s_1, s_2, s_0 . The probability that the system follows this path when executed with the starting state s_0 is denoted by $P_{s0}(\omega)$. Or simply $P(\omega)$ if it is clear which s_0 is meant. It is the product of the probability of each transition in ω .

Example: for the above ω , $P(\omega) = 1 * 0.01 * 1 = 0.01$

For a set of of paths U (starting from s0), the probability that the system's execution follows one of the paths in U, denoted by P(U), is Σ_{ω∈U} P(ω).

Probability of taking a path or a set of paths

Example: consider U = the set of paths that ends in s_2 . Note that U is infinite: U = { 02, 0102, 010102, ... }. But we can calculate P(U).

$$P(U) = 0.5 + 0.52 + 0.53 + \dots = \sum_{k \ge 0} 0.5^{k}$$
$$= 0.5 * \frac{1}{1 - 0.5} = 1$$

Probability Matrix Representation

 $P_{i,k}$ = the value at the i-th row and k-th column. It specifies the probability of taking the transition $s_i \rightarrow s_k$, if we are now at s_i .

For example the circle red value above is $P_{1,2}$, specifying the probability of taking the transition from s_1 to s_2 (check the picture), which is 0.01.

Basic Operations on Probability Matrix

- Multiplying P with itself: Pⁿ
- Multiplying a vector with P: u × P
- Multiplying P with a vector: P × v

Pn

- $P^0 = I$ (identity matrix) $P^{n+1} = P \times P^n$
- $P_{i,k}^n$ is the probability of ending up in state s_k in n-steps, given we start in the state s_i .
- For example, wirth the previous P, let's look at P²:

0	1	0	0		0	1	0	0	?	?	0.01	?
0	0.01	0.01	0.98	~	0	0.01	0.01	0.98	?	?	? ?	?
1	0.01 0	0	0	^	1	0	0	0	?	?	?	?
0	0	0	1		0	0	0	1	?	?	?	?

$$P^{2}_{0,2} = (P \times P)_{0,2}$$

= $P_{0,0}^{*} P_{0,2} + P_{0,1}^{*} P_{1,2} + P_{0,2}^{*} P_{2,2} + P_{0,3}^{*} P_{3,2}$

Probabity distribution of the next state, given the current distribition

- The probability of currently being in various states ("probability distribution" of the current state) can be given by a vector of size K, if K is the number of possible states. E.g. if u = [0,0.5,0.5,0] is the probability distribution of the current state, it says e.g. that there is 0.5 probability that currently we are in the state s₁, but 0 probability that we are in the state s₀.
- The product u × P (we often simply write it as uP) gives a new vector u' of size K, that gives us the probability distribution of the next state.

e.g.
$$u'_1 = u \cdot the green collumn (dot product)$$

= $u_0^* P_{0,1} + u_1^* P_{1,1} + u_2^* P_{2,1} + u_3^* P_{3,1}$

Probabilty vector

- Sometimes we also want to know what the probability to end up in state, say, s₁ or s₂ as the **next** state, if we start in the state s1.
- We can represent "end up in either s_1 or s_2 " with a vector v = [0,1,1,0].
- Let v^t is the *transpose* of v. The product P × v^t gives a w such that w is a (transposed) vector, where w_i is the probability to end up in one of the states specified in v, if we start in s_i.

e.g.
$$w_1$$
 = the green row • v^t (dot product)
= $P_{1.0}^* v_0 + P_{1.1}^* v_1 + P_{1.2}^* v_2 + P_{1.3}^* v_3$

Probability vector

• $\frac{\text{Prob}}{\phi}$ (notice the underscore) is a probility vector e.g. w =

such that the i-th element tells us what the probability that the system would behave as φ if executed in state s_i .

- Example: the above w (blue) happens to be equal to Prob(X(try V fail)).
- This notation Prob will be used later when we discuss model checking of probabilistic-CTL.

Overview (Part 1)

- Discrete-time Markov chains (DTMCs)
- PCTL: A temporal logic for DTMCs
- PCTL model checking
- LTL model checking
- Costs and rewards

PCTL

- Temporal logic for describing properties of DTMCs
 - PCTL = Probabilistic Computation Tree Logic [HJ94]
 - essentially the same as the logic pCTL of [ASB+95]
- Extension of (non-probabilistic) temporal logic CTL
 - key addition is probabilistic operator P
 - quantitative extension of CTL's A and E operators
- Example
 - send → $P_{>0.95}$ [true $U^{\leq 10}$ deliver]
 - "if a message is sent, then the probability of it being delivered within 10 steps is at least 0.95"

PCTL syntax

PCTL syntax:

ψ is true with probability ~p

 $- \varphi ::= true | a | \varphi \wedge \varphi | \neg \varphi | P_{\sim p} [\psi]$

(state formulas)

(path formulas)

- where a is an atomic proposition, used to identify states of interest, $p \in [0,1]$ is a probability, $\sim \in \{<,>,\leq,\geq\}$, $k \in \mathbb{N}$
- A PCTL formula is always a state formula
 - path formulas only occur inside the P operator

PCTL semantics for DTMCs

- PCTL formulas interpreted over states of a DTMC
 - $-s \models \phi$ denotes ϕ is "true in state s" or "satisfied in state s"
- Semantics of (non-probabilistic) state formulas:
 - for a state s of the DTMC (S,s_{init},P,L):

$$-s \models a$$

$$-s \models a \Leftrightarrow a \in L(s)$$

$$-s \models \varphi_1 \land \varphi_2$$

$$-s \models \varphi_1 \land \varphi_2 \Leftrightarrow s \models \varphi_1 \text{ and } s \models \varphi_2$$

$$-s \models \neg \Phi$$

$$-s \models \neg \varphi \Leftrightarrow s \models \varphi \text{ is false}$$

Examples

$$- s_3 = succ$$

$$-s_1 \models try \land \neg fail$$

PCTL semantics for DTMCs

- Semantics of path formulas:
 - for a path $\omega = s_0 s_1 s_2 ...$ in the DTMC:

$$-\omega \models X \varphi \Leftrightarrow s_1 \models \varphi$$

$$- \omega \vDash \varphi_1 \ U^{\leq k} \ \varphi_2 \quad \Leftrightarrow \quad \exists i \leq k \ such \ that \ s_i \vDash \varphi_2 \ and \ \forall j < i, \ s_i \vDash \varphi_1$$

$$-\omega \models \varphi_1 \cup \varphi_2 \quad \Leftrightarrow \exists k \geq 0 \text{ such that } \omega \models \varphi_1 \cup \varphi_2$$

Some examples of satisfying paths:

$$s_1 \rightarrow s_3 \rightarrow s_3 \rightarrow \cdots$$

− ¬fail U succ

$$\{try\} \{try\} \{succ\} \{succ\}$$
 $s_0 \rightarrow s_1 \rightarrow s_1 \rightarrow s_3 \rightarrow s_3 \rightarrow \cdots$

PCTL semantics for DTMCs

- Semantics of the probabilistic operator P
 - informal definition: $s \models P_{\sim p} [\psi]$ means that "the probability, from state s, that ψ is true for an outgoing path satisfies $\sim p$ "
 - example: $s \models P_{<0.25}$ [X fail] \Leftrightarrow "the probability of atomic proposition fail being true in the next state of outgoing paths from s is less than 0.25"
 - formally: $s \models P_{\sim p} [\psi] \Leftrightarrow Prob(s, \psi) \sim p$
 - where: Prob(s, ψ) = Pr_s { $\omega \in Path(s) \mid \omega \models \psi$ }
 - (sets of paths satisfying ψ are always measurable [Var85])

More PCTL...

Usual temporal logic equivalences:

$$-$$
 false $\equiv \neg$ true

$$- \ \varphi_1 \lor \varphi_2 \equiv \neg (\neg \varphi_1 \land \neg \varphi_2)$$

$$- \ \varphi_1 \rightarrow \varphi_2 \equiv \neg \varphi_1 \lor \varphi_2$$

$$- F \Phi \equiv \Diamond \Phi \equiv \text{true } U \Phi$$

$$- G \Phi \equiv \Box \Phi \equiv \neg (F \neg \Phi)$$

– bounded variants: $F^{\leq k}$ φ , $G^{\leq k}$ φ

(disjunction)

(implication)

(eventually, "future")

(always, "globally")

Negation and probabilities

$$- \text{ e.g. } \neg P_{>p} [\varphi_1 U \varphi_2] \equiv P_{\leq p} [\varphi_1 U \varphi_2]$$

$$-$$
 e.g. $P_{>p}$ [$G \varphi$] $\equiv P_{<1-p}$ [$F \neg \varphi$]

Qualitative vs. quantitative properties

- P operator of PCTL can be seen as a quantitative analogue of the CTL operators A (for all) and E (there exists)
- A PCTL property $P_{\sim p}$ [ψ] is...
 - qualitative when p is either 0 or 1
 - quantitative when p is in the range (0,1)
- $P_{>0}$ [F ϕ] is identical to EF ϕ
 - there exists a finite path to a ϕ -state

- $P_{>1}$ [F ϕ] is (similar to but) weaker than AF ϕ
 - e.g. AF "tails" (CTL) \neq $P_{\geq 1}$ [F "tails"] (PCTL)

Quantitative properties

- Consider a PCTL formula P_{¬p} [ψ]
 - if the probability is unknown, how to choose the bound p?
- · When the outermost operator of a PTCL formula is P
 - we allow the form $P_{=?}$ [ψ]
 - "what is the probability that path formula ψ is true?"
- Model checking is no harder: compute the values anyway
- Useful to spot patterns, trends
- Example
 - $-P_{=?}$ [F err/total>0.1]
 - "what is the probability that 10% of the NAND gate outputs are erroneous?"

Some real PCTL examples

- NAND multiplexing system
 - $-P_{=?}$ [F err/total>0.1]
 - "what is the probability that 10% of the NAND gate outputs are erroneous?"
- Bluetooth wireless communication protocol
 - $-P_{=?}$ [$F^{\leq t}$ reply_count=k]
 - "what is the probability that the sender has received k acknowledgements within t clock-ticks?"
- Security: EGL contract signing protocol
 - $P_{=?} [F (pairs_a = 0 \& pairs_b > 0)]$
 - "what is the probability that the party B gains an unfair advantage during the execution of the protocol?"

reliability

periormance

tairness

Overview (Part 1)

- Discrete-time Markov chains (DTMCs)
- PCTL: A temporal logic for DTMCs
- PCTL model checking
- LTL model checking
- Costs and rewards

PCTL model checking for DTMCs

- Algorithm for PCTL model checking [CY88,HJ94,CY95]
 - inputs: DTMC D= (S, s_{init}, P, L) , PCTL formula ϕ
 - output: $Sat(\phi) = \{ s \in S \mid s \models \phi \} = set \text{ of states satisfying } \phi$
- What does it mean for a DTMC D to satisfy a formula φ?
 - sometimes, want to check that $s \models \varphi \lor s \in S$, i.e. $Sat(\varphi) = S$
 - sometimes, just want to know if $s_{init} = \phi$, i.e. if $s_{init} \in Sat(\phi)$
- Sometimes, focus on quantitative results
 - e.g. compute result of P=? [F error]
 - e.g. compute result of P=? [$F^{\leq k}$ error] for $0 \leq k \leq 100$

PCTL model checking for DTMCs

- Basic algorithm proceeds by induction on parse tree of φ
 - example: $\phi = (\neg fail \land try) \rightarrow P_{>0.95}$ [¬fail U succ]
- For the non-probabilistic operators:
 - Sat(true) = S
 - Sat(a) = { s \in S | a \in L(s) }
 - $-\operatorname{Sat}(\neg \Phi) = \operatorname{S} \setminus \operatorname{Sat}(\Phi)$
 - $-\operatorname{Sat}(\varphi_1 \wedge \varphi_2) = \operatorname{Sat}(\varphi_1) \cap \operatorname{Sat}(\varphi_2)$
- For the $P_{\sim p}$ [ψ] operator
 - need to compute the probabilities $Prob(s, \psi)$ for all states $s \in S$
 - focus here on "until" case: $Ψ = Φ_1 U Φ_2$

PCTL next - Example

- Model check: P_{>0.9} [X (¬try ∨ succ)]
 - Sat (\neg try \lor succ) = (S \ Sat(try)) \cup Sat(succ) = ({s₀,s₁,s₂,s₃} \ {s₁}) \cup {s₃} = {s₀,s₂,s₃}
 - Prob(X (\neg try \lor succ)) = P \cdot (\neg try \lor succ) = ...

$$= \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0.01 & 0.01 & 0.98 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0.99 \\ 1 \\ 1 \end{bmatrix}$$

- Results:
 - $Prob(X (\neg try \lor succ)) = [0, 0.99, 1, 1]$
 - Sat($P_{\geq 0.9}$ [X (¬try ∨ succ)]) = {s₁, s₂, s₃}

PCTL until for DTMCs

- Computation of probabilities Prob(s, $\phi_1 \cup \phi_2$) for all $s \in S$
- First, identify all states where the probability is 1 or 0
 - $S^{yes} = Sat(P_{>1} [\varphi_1 U \varphi_2])$
 - $S^{no} = Sat(P_{<0} [\varphi_1 U \varphi_2])$
- Then solve linear equation system for remaining states
- We refer to the first phase as "precomputation"
 - two algorithms: Prob0 (for S^{no}) and Prob1 (for S^{yes})
 - algorithms work on underlying graph (probabilities irrelevant)
- Important for several reasons
 - reduces the set of states for which probabilities must be computed numerically (which is more expensive)
 - gives exact results for the states in Syes and Sno (no round-off)
 - for $P_{-p}[\cdot]$ where p is 0 or 1, no further computation required

PCTL until - Linear equations

• Probabilities Prob(s, $\phi_1 \cup \phi_2$) can now be obtained as the unique solution of the following set of linear equations:

$$Prob(s,\,\varphi_1\,U\,\varphi_2) \ = \ \begin{cases} 1 & \text{if } s\in S^{yes} \\ 0 & \text{if } s\in S^{no} \\ \sum_{s'\in S}P(s,s')\cdot Prob(s',\,\varphi_1\,U\,\varphi_2) & \text{otherwise} \end{cases}$$

- can be reduced to a system in $|S^2|$ unknowns instead of |S| where $S^2 = S \setminus (S^{yes} \cup S^{no})$
- This can be solved with (a variety of) standard techniques
 - direct methods, e.g. Gaussian elimination
 - iterative methods, e.g. Jacobi, Gauss-Seidel, ...
 (preferred in practice due to scalability)

PCTL until – Example

Example: P_{>0.8} [¬a U b]

Precomputation – Prob0

- Prob0 algorithm to compute $S^{no} = Sat(P_{\leq 0} [\varphi_1 \cup \varphi_2])$:
 - first compute Sat($P_{>0}$ [$\varphi_1 \cup \varphi_2$]) \equiv Sat($E[\varphi_1 \cup \varphi_2]$)
 - i.e. find all states which can, with non-zero probability, reach a ϕ_2 -state without leaving ϕ_1 -states
 - i.e. find all states from which there is a finite path through ϕ_1 states to a ϕ_2 -state: simple graph-based computation
 - subtract the resulting set from S

Prob0 algorithm

```
PROB0(Sat(\phi_1), Sat(\phi_2))

1. R := Sat(\phi_2)

2. done := false

3. while (done = false)

4. R' := R \cup \{s \in Sat(\phi_1) \mid \exists s' \in R \cdot P(s, s') > 0\}

5. if (R' = R) then done := true

6. R := R'

7. endwhile

8. return S \setminus R
```

- Note: can be formulated as a least fixed point computation
 - also well suited to computation with binary decision diagrams

PCTL until – Example

• Example: $P_{>0.8}$ [¬a U b]

Precomputation - Prob1

- Prob1 algorithm to compute $S^{yes} = Sat(P_{\geq 1} [\varphi_1 \cup \varphi_2])$:
 - first compute Sat($P_{<1}$ [φ_1 U φ_2]), reusing S^{no}
 - this is equivalent to the set of states which have a non-zero probability of reaching S^{no} , passing only through ϕ_1 -states
 - again, this is a simple graph-based computation
 - subtract the resulting set from S

Prob1 algorithm

```
PROB1(Sat(\phi_1), Sat(\phi_2), S^{no})
```

- 1. $R := S^{no}$
- $2. \quad done := \mathbf{false}$
- 3. while (done = false)
- 4. $R' := R \cup \{s \in (Sat(\phi_1) \setminus Sat(\phi_2)) \mid \exists s' \in R \cdot \mathbf{P}(s, s') > 0\}$
- 5. if (R' = R) then done := true
- 6. R := R'
- 7. endwhile
- 8. return $S \setminus R$

PCTL until – Example

• Example: $P_{>0.8}$ [¬a U b]

PCTL until – Example

- Example: $P_{>0.8}$ [¬a U b]
- Let $x_s = Prob(s, \neg a \cup b)$ Sat($P_{\leq 0} [\neg a \cup b]$)
- Solve:

$$x_4 = x_5 = 1$$

$$x_1 = x_3 = 0$$

$$x_0 = 0.1x_1 + 0.9x_2 = 0.8$$

$$x_2 = 0.1x_2 + 0.1x_3 + 0.3x_5 + 0.5x_4 = 8/9$$

$$\underline{\text{Prob}}(\neg a \ U \ b) = \underline{x} = [0.8, 0, 8/9, 0, 1, 1]$$

note: this Prob-with-underscore is called "probability-vector"

$$Sat(P_{>0.8} [\neg a \cup b]) = \{ s_2, s_4, s_5 \}$$

 $S^{no} =$

$$S^{yes} = Sat(P_{\geq 1} [\neg a U b])$$

PCTL bounded until for DTMCs

- Computation of probabilities for PCTL U≤k operator
 - $\; Sat(P_{\sim p}[\; \varphi_1 \; U^{\leq k} \; \varphi_2 \;]) = \{ \; s \in S \mid Prob(s, \, \varphi_1 \; U^{\leq k} \; \varphi_2) \sim p \; \}$
 - need to compute $Prob(s, \phi_1 \cup U^{\leq k}, \phi_2)$ for all $s \in S$
- First identify (some) states where probability is trivially 1/0
 - $S^{yes} = Sat(\phi_2)$
 - $S^{no} = S \setminus (Sat(\phi_1) \cup Sat(\phi_2))$

then calculate

$$S$$
? = $S \setminus (S^{yes} \cup S^{no})$

PCTL bounded until for DTMCs

- Simultaneous computation of vector $\underline{Prob}(\phi_1 \cup \bigcup_{k \in \mathbb{Z}} \phi_k)$
 - i.e. probabilities Prob(s, $\phi_1 \cup U^{\leq k} \phi_2$) for all $s \in S$
- Iteratively define in terms of matrices and vectors
 - define matrix P' as follows: P'(s,s') = P(s,s') if $s \in S^?$, P'(s,s') = 1 if $s \in S^{yes}$ and s=s', P'(s,s') = 0 otherwise
 - $\underline{\mathsf{Prob}}(\varphi_1 \mathsf{U}^{\leq 0} \varphi_2) = \underline{\varphi}_2$
 - $\underline{\mathsf{Prob}}(\varphi_1 \ \mathsf{U}^{\leq k} \ \varphi_2) = \mathbf{P'} \cdot \underline{\mathsf{Prob}}(\varphi_1 \ \mathsf{U}^{\leq k-1} \ \varphi_2)$
 - requires k matrix-vector multiplications
- Note that we could express this in terms of matrix powers
 - $-\operatorname{\underline{Prob}}(\varphi_1\ U^{\leq k}\ \varphi_2)=(P')^k\cdot\underline{\varphi}_2$ and compute $(P')^k$ in $\log_2 k$ steps
 - but this is actually inefficient: (P')k is much less sparse than P'

PCTL bounded until - Example

- Model check: $P_{>0.98}$ [$F^{\leq 2}$ succ] $\equiv P_{>0.98}$ [true $U^{\leq 2}$ succ]
 - Sat (true) = $S = \{s_0, s_1, s_2, s_3\}$, Sat(succ) = $\{s_3\}$
 - $S^{yes} = \{s_3\}, S^{no} = \emptyset, S^? = \{s_0, s_1, s_2\}, P' = P$
 - <u>Prob</u>(true U≤0 succ) = <u>succ</u> = [0, 0, 0, 1]

$$\frac{\text{Prob}(\text{true O's Succ}) = \underbrace{\frac{\text{Succ}}{0} = \begin{bmatrix} 0, 0, 0, 1 \end{bmatrix}}{\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0.01 & 0.01 & 0.98 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}} \cdot \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0.98 \\ 0 \\ 1 \end{bmatrix}$$

$$\underline{\text{Prob}}(\text{true } \ \mathsf{U}^{\leq 2} \ \mathsf{succ}) \ = \ \mathsf{P'} \cdot \underline{\text{Prob}}(\text{true } \ \mathsf{U}^{\leq 1} \ \mathsf{succ}) \ = \ \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0.01 & 0.01 & 0.98 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0.98 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0.98 \\ 0.9898 \\ 0 \\ 1 \end{bmatrix}$$

- Sat(
$$P_{>0.98}$$
 [$F^{\leq 2}$ succ]) = { s_1, s_3 }

The construction of P' for bounded Until

0	1	0	0
0	0.01	0.01	0.98
1	0	0	0
0	0	0	1

The probability matric P of the DTMC on the left.

- Consider as an example to check whether the DTMC satisfies P_{>0.99}[
 try ∨ ¬fail U^{≤2} succ].
 - Calculate first the probability vector Prob[try ∨ ¬fail U≤2 succ].
 - 2. From there you can calculate the set Sat(P_{>0.99}[try ∨ ¬fail U≤2 succ]).
 - 3. If the initial state s_0 is in the blue Sat-set then the property $P_{>0.99}[$ try \vee \neg fail $U^{\leq 2}$ succ holds on the DTMC.

The construction of P' for bounded Until

0	1	0	0
0	0.01	0.01	0.98
1	0	0	0
0	0	0	1

The probability matric P of the DTMC on the left.

- To calculate the probability vector Prob[try ∨ ¬fail U^{≤2} succ], we would like to use the matrix P above, however it will also "contain" transitions that cause you to break the green-property. So the idea is to use a "modified" matrix P'.
- We pre-calculate first the S^{yes} = Sat(succ) = {s3}. On all states in S^{yes}, you have the green property immediately (in 0 step).
- We pre-calculate S^{no}, we take S^{no} = Sat(¬ (try ∨ ¬fail) ∧ ¬ succ) = { s2 }.
 Executions starting from S^{no} won't satisfy your green-property above,

The construction of P' for bounded Until

- 1. We remove outgoing arrows from the states in S^{no} and S^{yes}.
- 2. We keep all arrows that go out from states which are **not** in S^{no} nor S^{yes}.
- We add a self-loop s → s with probability 1 for any state s in S^{yes}.

Using P' for bounded Until

We now use P' to iteratively calcualte Prob[try ∨ ¬fail U≤2 succ]

0.98

- From S^{yes} you know that Prob[try ∨ ¬fail U^{≤0} succ] = 0
 0
- Prob[try $\lor \neg$ fail $U^{\le 1}$ succ] = P' $\times \begin{vmatrix} 0 \\ 0 \\ 1 \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \\ 0 \\ 1 \end{vmatrix}$

Prob[try
$$\vee \neg$$
 fail $\mathbf{U}^{\leq 2}$ succ] = P' $\times \begin{bmatrix} 0.98 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0.9898 \\ 0 \\ 1 \end{bmatrix}$

So, does the property hold?

- We have calculated Prob[try $\vee \neg$ fail $U^{\leq 2}$ succ] = [0.98, 0.9898, 0, 1]
- So, the set Sat(P_{>0.99}[try ∨ ¬fail U^{≤2} succ]) = {s₃}
- So we conclude that the DTMC does not satisfy the claimed property P_{>0.99}[try ∨ ¬fail U≤2 succ].

PCTL model checking – Summary

- Computation of set Sat(Φ) for DTMC D and PCTL formula Φ
 - recursive descent of parse tree
 - combination of graph algorithms, numerical computation
- Probabilistic operator P:
 - $X \Phi$: one matrix-vector multiplication, $O(|S|^2)$
 - $-\Phi_1 \cup \mathbb{I}^{\leq k} \Phi_2$: k matrix-vector multiplications, $O(k|S|^2)$
 - $-\Phi_1 \cup \Phi_2$: linear equation system, at most |S| variables, $O(|S|^3)$
- Complexity:
 - linear in |Φ| and polynomial in |S|

Overview (Part 1)

- Discrete-time Markov chains (DTMCs)
- PCTL: A temporal logic for DTMCs
- PCTL model checking
- LTL model checking
- Costs and rewards

Limitations of PCTL

- · PCTL, although useful in practice, has limited expressivity
 - essentially: probability of reaching states in X, passing only through states in Y (and within k time-steps)
- More expressive logics can be used, for example:
 - LTL [Pnu77] (non-probabilistic) linear-time temporal logic
 - PCTL* [ASB+95,BdA95] which subsumes both PCTL and LTL
 - both allow path operators to be combined
 - (in PCTL, P_{p} [...] always contains a single temporal operator)
- Another direction: extend DTMCs with costs and rewards...

LTL – Linear temporal logic

- LTL syntax (path formulae only)
 - $\psi ::= true | a | \psi \wedge \psi | \neg \psi | X \psi | \psi U \psi$
 - where $a \in AP$ is an atomic proposition
 - usual equivalences hold: $F \varphi \equiv \text{true } U \varphi$, $G \varphi \equiv \neg (F \neg \varphi)$
- LTL semantics (for a path ω)

```
-\omega \models true always
```

$$-\omega \models a \Leftrightarrow a \in L(\omega(0))$$

$$- \omega \vDash \psi_1 \wedge \psi_2 \qquad \Leftrightarrow \quad \omega \vDash \psi_1 \text{ and } \omega \vDash \psi_2$$

$$- \ \omega \vDash \neg \psi \qquad \qquad \Leftrightarrow \ \ \omega \not \vDash \psi$$

$$-\omega \models X \psi \Leftrightarrow \omega[1...] \models \psi$$

$$- \ \omega \vDash \psi_1 \ U \ \psi_2 \qquad \Leftrightarrow \ \exists k \geq 0 \ \text{s.t.} \ \omega[k...] \vDash \psi_2 \ \land \forall i < k \ \omega[i...] \vDash \psi_1$$

where $\omega(i)$ is i^{th} state of ω , and $\omega[i...]$ is suffix starting at $\omega(i)$

LTL examples

- (F tmp_fail₁) ∧ (F tmp_fail₂)
 - "both servers suffer temporary failures at some point"
- GF ready
 - "the server always eventually returns to a ready-state"
- FG error
 - "an irrecoverable error occurs"
- G (req \rightarrow X ack)
 - "requests are always immediately acknowledged"

LTL for DTMCs

- Same idea as PCTL: probabilities of sets of path formulae
 - for a state s of a DTMC and an LTL formula ψ :
 - $-\operatorname{Prob}(s, \psi) = \operatorname{Pr}_s \{ \omega \in \operatorname{Path}(s) \mid \omega \vDash \psi \}$
 - all such path sets are measurable [Var85]
- A (probabilistic) LTL specification often comprises an LTL (path) formula and a probability bound
 - e.g. $P_{\geq 1}$ [GF ready] "with probability 1, the server always eventually returns to a ready-state"
 - e.g. P_{<0.01} [FG error] "with probability at most 0.01, an irrecoverable error occurs"
- PCTL* subsumes both LTL and PCTL
 - e.g. $P_{>0.5}$ [GF crit₁] \wedge $P_{>0.5}$ [GF crit₂]

Fundamental property of DTMCs

- Strongly connected component (SCC)
 - maximally strongly connected set of states
- Bottom strongly connected component (BSCC)
 - SCC T from which no state outside T is reachable from T
- Fundamental property of DTMCs:
 - "with probability 1, a BSCC will be reached and all of its states visited infinitely often"

- Formally:
 - Pr_s { ω ∈ Path(s) | ∃ i≥0, ∃ BSCC T such that

 \forall j \geq i ω (i) \in T and

 \forall s' \in T $\omega(k) = s'$ for infinitely many k $\} = 1$

LTL model checking for DTMCs

- LTL model checking for DTMCs relies on:
 - computing probability of reaching a set of "accepting" BSCCs

- e.g. for two simple LTL formulae: GF a ("always eventually a"),

FG a ("eventually always a") we have:

- Prob(s, GF a) = Prob(s, $F T_{GFa}$)
 - where T_{GFa} = union of all BSCCs containing some state satisfying a
- Prob(s, FG a) = Prob(s, F T_{FGa})
 - where T_{FGa} = union of all BSCCs containing only a-states
- To extend this idea to arbitrary LTL formula, we use ω -automata...

Example:

Prob(s₀, GF a)

= $Prob(s_0, F T_{GFa})$

= $Prob(s_0, F\{s_3, s_2, s_5\})$

= 2/3 + 1/6 = 5/6

Deterministic Rabin automata

- ω-automata represent sets of infinite words
 - e.g. Buchi automata, Rabin automata, ...
 - for probabilistic model checking, need deterministic automata
 - so we use deterministic Rabin automata (DRAs)
- A deterministic Rabin automaton is a tuple (Q, Σ , δ , q₀, Acc):
 - Q is a finite set of states, $q_0 \in Q$ is an initial state
 - Σ is an alphabet, $\delta: \mathbb{Q} \times \Sigma \to \mathbb{Q}$ is a transition function
 - Acc = { (L_i, K_i) $\}_{i=1..k} \subseteq 2^Q \times 2^Q$ is an acceptance condition
- A run of a word on a DRA is accepting iff:
 - for some pair (L_i, K_i) , the states in L_i are visited finitely often and (some of) the states in K_i are visited infinitely often

- or in LTL:
$$\bigvee_{1 \le i \le k} (FG \neg L_i \land GF K_i)$$

LTL & DRAs

- Example: DRA for FG a
 - acceptance condition is $Acc = \{ (\{q_0\}, \{q_1\}) \}$

- Can convert any LTL formula ψ on atomic propositions AP
 - into an equivalent DRA A_{ω} over alphabet 2^{AP}
 - i.e. ω ⊨ ψ ⇔ trace(ω) ∈ L(A_ω) for any path ω
 - can potentially incur a double exponential blow-up
 (but, in practice, this does not occur and ψ is small anyway)
- LTL model checking for DTMCs the basic idea
 - construct product of DTMC D and DRA A_{ψ}
 - compute Prob^D(s, ψ) on product DTMC D \otimes A

Buchi vs Rabin

 Consider the LTL property ◊□a. This can be described by this Buchi automaton, wirth {1} as the accepting state:

Notice that this Buchi is non-deterministic. As such, we can use it for model checking on a probabilistic model such as DTMC.

 We can however represent the property with a deterministic Rabin automaton, with the pair ({0}, {1}) as its accepting condition.

Product DTMC for a DRA

- The product DTMC D ⊗ A for:
 - for DTMC $D = (S, s_{init}, P, L)$ and
 - and (total) DRA $A = (Q, \Sigma, \delta, q_0, \{(L_i, K_i)\}_{i=1..k})$
 - is the DTMC ($S \times Q$, (s_{init}, q_{init}), P', L') where:

$$\begin{split} &q_{init} = \delta(q_0, L(s_{init})) \\ &P'((s_1, q_1), (s_2, q_2)) = \begin{cases} P(s_1, s_2) & \text{if } q_2 = \delta(q_1, L(s_2)) \\ 0 & \text{otherwise} \end{cases} \\ &I_i \in L'(s, q) & \text{if } q \in L_i \text{ and } k_i \in L'(s, q) & \text{if } q \in K_i \end{cases} \end{split}$$

- Note:
 - D

 A can be seen as unfolding of D where q for each state
 (s,q) records state of automata A for path fragment so far
 - since A is deterministic, D ⊗ A is a DTMC
 - each path in D has a corresponding (unique) path in D ⊗ A
 - the probabilities of paths in D are preserved in D ⊗ A

Product DTMC for a DRA

For DTMC D and DRA A

$$Prob^{D}(s, A) = Prob^{D \otimes A}((s,q_s), \bigvee_{1 \leq i \leq k} (FG \neg I_i \land GF k_i)$$

- where $q_s = \delta(q_0, L(s))$
- Hence:

$$Prob^{D}(s, A) = Prob^{D\otimes A}((s,q_s), F T_{Acc})$$

- where T_{Acc} is the union of all accepting BSCCs in D \otimes A
- an accepting BSCC T of D \otimes A is such that, for some $1 \le i \le k$, no states in T satisfy I_i and some state in T satisfies k_i
- Reduces to computing BSCCs and reachability probabilities
 - so overall complexity for LTL is doubly exponential in $|\psi|$, polynomial in |M|; but can be reduced to singly exponential

Example: LTL for DTMCs

• Compute Prob(s_0 , $G \neg b \land GF$ a) for DTMC D:

DTMC D

DRA A_{ψ} for $\psi = G \neg b \wedge GF$ a

Example: LTL for DTMCs

DTMC D

DRA A_{ψ} for $\psi = G \neg b \wedge GF$ a

Product DTMC D ⊗ A_w

Example: LTL for DTMCs

DTMC D

DRA A_{ψ} for $\psi = G \neg b \wedge GF$ a

Product DTMC D ⊗ A_w

Overview (Part 1)

- Discrete-time Markov chains (DTMCs)
- PCTL: A temporal logic for DTMCs
- PCTL model checking
- LTL model checking
- Costs and rewards

Costs and rewards

- We augment DTMCs with rewards (or, conversely, costs)
 - real-valued quantities assigned to states and/or transitions
 - these can have a wide range of possible interpretations

Some examples:

 elapsed time, power consumption, size of message queue, number of messages successfully delivered, net profit, ...

Costs? or rewards?

- mathematically, no distinction between rewards and costs
- when interpreted, we assume that it is desirable to minimise costs and to maximise rewards
- we will consistently use the terminology "rewards" regardless

Reward-based properties

- Properties of DTMCs augmented with rewards
 - allow a wide range of quantitative measures of the system
 - basic notion: expected value of rewards
 - formal property specifications will be in an extension of PCTL
- More precisely, we use two distinct classes of property...
- Instantaneous properties
 - the expected value of the reward at some time point
- Cumulative properties
 - the expected cumulated reward over some period

DTMC reward structures

- For a DTMC (S, s_{init} , **P**,L), a reward structure is a pair (ρ , ι)
 - $-\underline{\rho}: S \to \mathbb{R}_{>0}$ is the state reward function (vector)
 - $-\iota: S \times S \to \mathbb{R}_{>0}$ is the transition reward function (matrix)
- Example (for use with instantaneous properties)
 - "size of message queue": $\underline{\rho}$ maps each state to the number of jobs in the queue in that state, ι is not used
- Examples (for use with cumulative properties)
 - "time-steps": $\underline{\rho}$ returns 1 for all states and ι is zero (equivalently, $\underline{\rho}$ is zero and ι returns 1 for all transitions)
 - "number of messages lost": $\underline{\rho}$ is zero and ι maps transitions corresponding to a message loss to 1
 - "power consumption": $\underline{\rho}$ is defined as the per-time-step energy consumption in each state and ι as the energy cost of each transition

PCTL and rewards

- Extend PCTL to incorporate reward-based properties
 - add an R operator, which is similar to the existing P operator

- where $r \in \mathbb{R}_{\geq 0}$, ~ ∈ {<,>,≤,≥}, $k \in \mathbb{N}$
- R_{~r} [·] means "the expected value of · satisfies ~r"

Types of reward formulas

- Instantaneous: R_{~r} [I^{=k}]
 - "the expected value of the state reward at time-step k is ~r"
 - e.g. "the expected queue size after exactly 90 seconds"
- Cumulative: $R_{\sim r}$ [$C^{\leq k}$]
 - "the expected reward cumulated up to time-step k is ~r"
 - e.g. "the expected power consumption over one hour"
- Reachability: R_{~r} [F φ]
 - "the expected reward cumulated before reaching a state satisfying φ is ~r"
 - e.g. "the expected time for the algorithm to terminate"

Reward formula semantics

- Formal semantics of the three reward operators
 - based on random variables over (infinite) paths
- Recall:

$$-s \models P_{\sim p} [\psi] \Leftrightarrow Pr_s \{ \omega \in Path(s) \mid \omega \models \psi \} \sim p$$

For a state s in the DTMC:

$$-s \models R_{\sim r} [I^{=k}] \Leftrightarrow Exp(s, X_{l=k}) \sim r$$

$$-s \models R_{\sim r} [C^{\leq k}] \Leftrightarrow Exp(s, X_{C\leq k}) \sim r$$

$$- s \models R_{\sim r} [F \Phi] \Leftrightarrow Exp(s, X_{F\Phi}) \sim r$$

where: Exp(s, X) denotes the expectation of the random variable

X : Path(s) $\rightarrow \mathbb{R}_{>0}$ with respect to the probability measure Pr_s

Reward formula semantics

- Definition of random variables:
 - for an infinite path $\omega = s_0 s_1 s_2 ...$

$$X_{l=k}(\omega) = \rho(s_k)$$

$$X_{C \le k}(\omega) = \begin{cases} 0 & \text{if } k = 0 \\ \sum_{i=0}^{k-1} \underline{\rho}(s_i) + \iota(s_i, s_{i+1}) & \text{otherwise} \end{cases}$$

$$X_{F\varphi}(\omega) = \begin{cases} 0 & \text{if } s_0 \in Sat(\varphi) \\ \infty & \text{if } s_i \notin Sat(\varphi) \text{ for all } i \ge 0 \end{cases}$$
$$\sum_{i=0}^{k_{\varphi}-1} \underline{\rho}(s_i) + \iota(s_i, s_{i+1}) & \text{otherwise}$$

- where $k_{\varphi} = min\{ j \mid s_j \models \varphi \}$

Model checking reward properties

- Instantaneous: $R_{r} [I^{=k}]$
- Cumulative: $R_{r} [C^{\leq t}]$
 - variant of the method for computing bounded until probabilities
 - solution of recursive equations
- Reachability: R_{~r} [F φ]
 - similar to computing until probabilities
 - precomputation phase (identify infinite reward states)
 - then reduces to solving a system of linear equation
- For more details, see e.g. [KNP07a]

Summary

- Probabilistic model checking
 - automated quantitative verification of stochastic systems
 - to model randomisation, failures, ...
- Discrete-time Markov chains (DTMCs)
 - state transition systems + discrete probabilistic choice
 - probability space over paths through a DTMC
- Property specifications
 - probabilistic extensions of temporal logic, e.g. PCTL, LTL
 - also: expected value of costs/rewards
- Model checking algorithms
 - combination of graph-based algorithms, numerical computation, automata constructions
- Tomorrow: Markov decision processes (MDPs)