Bachelor Thesis

Deep Learning for Extraction of Opinion Entities

Yiyi Chen LMU Informatik plus Computerlinguistik

Overview

- Sequence Labeling: assign a label to each token in a sentence
- Data Parsing: deal with overlapping relations
- Experiment: BiLSTM(+CRF), CNN(+CRF)
- **Result**: quantitative & qualitative analysis
 - Evaluation Metrics: Binary/Proportional Overlap
- Conclusion
- Future Work

Sequence labeling

Labels = $\{O, B, H, I, H, B, T, I, T, B, O, I, O\}$.

Opinion entities: Opinion Expression, Opinion Holder, Opinion Target

"Our agency seriously needs equipment for detecting drugs, " he said.

Sequence labeling

Our agency seriously needs equipment for detecting drugs, " he said.

$$B_0$$

Data Parsing

MPQA 2.0 corpus [Quelle: Wiebe, 2015]

Goal: To assign a label to each word, and have as many words labeled as possible.

Partial Overlapping:

The two countries have each accused the other of backing dissidents.

- 1. {"The two countries <u>have each</u>", "<u>have each</u> accused", "the other"}
- 2. {"backing", "dissidents"}

The two countries have each accused the other of backing dissidents.

B H I H I H B O I O I O

Data Parsing

Sub-relations:

... he was willing to consider Saudi Arabia's request on a case-by-case basis...

- 1. {"he", "was willing to", "consider Saudi Arabia's request on a case-by-case basis"}
- 2. {"he", "consider"}
- 3. {"Saudi Arabia", "request on"}

... he was willing to consider Saudi Arabia's request on a case-by-case basis...

Average number of words per opinion entity

Figure 4.1.: Average number of words per opinion entity

Long target entities

- Lower precisions
- Lower recalls

for identifying target entities, especially when we evaluate the results using proportional overlap

Experiment: BiLSTM(+CRF)

- 3 layer BiLSTM
- Hidden units size = 50
- Kernel initializer: random uniform
- Dropout:
 - Fixed word2vec: 0.2
 - o Others: 0.5
- Optimizer: adadelta
- Batch Size: 48
- Embedding size: 300
- CRF: marginal mode

Figure 3.5.: 2-layer BiLSTM + CRF

Experiment: CNN(+CRF)

- 4 CNN layers
- Kernel size (3 or 5)
- Filters = 50
- Dropout rate = 0.5
- Optimizer : adadelta
- Embedding size:
 - Pre-trained word2vec embeddings: 300
 - o Random embeddings: 100
- Weight initializer: Glorot Uniform
- Balanced sample weights
- CRF: marginal mode

Quantitative Analysis

- BiLSTM with trainable
 Word2Vec: strong baseline,
 best quantitative result.
- BiLSTM+CRF is less reliant on pre-trained embeddings, compared to BiLSTM.
- CNN(+CRF) models achieve better performance with trainable Word2Vec embeddings.
- CNN(+CRF) models have much higher recalls and lower precisions.

Binary Overlap M <u>ethod</u>		Opinion Expression			Opinion Target			Opinion Holder		
		Precision	Recall	F1 Score	Precision	Recall	F1 Score	Precision	Recall	F1 Score
BiLSTM	Word2Vec+trainable	75.96	74.62	75.28	26.67	36.38	30.78	67.67	69.14	68.4
	fixed Word2Vec	74.38	71.39	72.85	28.46	41.86	33.88	66.64	65.19	65.91
	random Embedding	67.10	67.33	67.21	17.9	41.86	25.08	60.51	56.59	58.48
BiLSTM+CRF	Word2Vec+trainable	77.70	72.27	74.89	30.29	29.98	30.13	69.79	66.77	68.25
	fixed Word2Vec	75.45	70.45	72.86	26.22	45.89	33.37	68.15	62.67	65.3
	random Embedding	71.39	71.39	71.39	25.9	37.66	30.69	63.27	66.61	64.9
CNN	Word2Vec+trainable	52.18	89.13	65.82	20.15	73.67	31.64	47.25	83.03	60.23
	fixed Word2Vec	42.65	92.30	58.34	15.21	86.65	25.88	43.74	83.74	57.46
	random Embedding	47.93	85.25	61.36	18.17	77.51	29.44	43.46	77.11	55.59
CNN+CRF	Word2Vec+trainable	54.31	87.37	66.98	19.62	84.28	31.83	49.88	78.77	61.08
	fixed Word2Vec	46.52	91.07	61.58	16.22	85.56	27.27	44.21	85.0	58.17
	random Embedding	51.71	80.26	62.9	18.27	77.15	29.54	45.94	73.01	56.39
Proportional Overlap		Opinion Expression		Opinion Target		Opinion Holder				
Method		Precision	Recall	F1 Score	Precision	Recall	F1 Score	Precision	Recall	F1 Score
BiLSTM	Word2Vec+trainable	71.09	67.44	69.2	23.56	29.91	26.36	65.18	64.93	65.05
	fixed Word2Vec	69.17	63.42	66.17	25.65	32.09	28.51	63.25	58.67	60.87
	random Embedding	61.81	59.16	60.46	15.53	32.75	21.07	57.62	51.37	54.32
BiLSTM+CRF	Word2Vec+trainable	74.22	63.76	68.59	28.51	22.26	25.0	67.34	62.85	65.02
	fixed Word2Vec	71.11	62.32	66.43	22.76	36.23	27.96	65.22	57.13	60.91
	random Embedding	64.31	65.17	64.74	18.16	33.19	23.48	58.43	63.62	60.91
CNN	Word2Vec+trainable	41.8	83.26	55.66	18.15	50.04	26.64	43.55	76.64	55.54
	fixed Word2Vec	32.68	87.24	47.55	12.41	69.04	21.04	38.06	76.63	50.86
	random Embedding	36.52	78.18	49.78	15.55	52.93	24.04	39.31	68.94	50.07
CNN+CRF	Word2Vec+trainable	43.18	81.43	56.43	16.05	64.83	25.73	45.21	72.62	55.73
	fixed Word2Vec	36.7	85.25	51.31	13.14	69.33	22.09	38.01	78.03	51.12
	random Embedding	41.18	72.73	52.59	14.76	55.17	23.29	41.59	65.01	50.73

Qualitative Analysis

BiLSTM(+CRF) perform better than CNN(+CRF).

- CNN(+CRF) models have a lot of predictions, but usually inaccurate. → high recall, low precision
- BiLSTM+CRF is less reliant on pre-trained embeddings than BiLSTM models.

Table 5.2.: Output from different models with label annotations.

Qualitative Analysis

- CNN(+CRF) models can identify Out-of-Vocabulary (OOV) words (e.g. Ra'fat al-Bajjali), which are not in Word2Vec.
- BiLSTM(+CRF) models trained on random embeddings also identify OOV words.

Conclusion

- CNN(+CRF) models can capture out-of-vocabulary words, but the outcome is more likely fragmented for long entities.
- BiLSTM(+CRF) models are more suitable for sequence labeling task (better quantitative and qualitative results), and less reliant on pre-trained word-embeddings.

Future Work

- Using CNN to encode character-level information of a word to its character-level representation.
- Assign all out-of-vocabulary words untrained but unique random vectors, rather than a common UNK vector.
- Model the entities in overlapping relations.
 - Have the same sample in multiple times with different labels (reserve sub-relations)

Thank you for your attention and support!

Evaluation Metrics

- (10) a. (relevant) However, Chavez who is known for his ala Fidel Castro left-leaning anti-American philosophy had on a number of occasions rebuffed US requests for more oil exports.
 - b. (retrieved) However, Chavez who is known for his ala fidel castroleft-leaning anti-american philosophy had on a number of occasions rebuffed US requests for more oil exports.
 - c. (overlapped) However, Chavez who is known for his ala Fidel Castro left-leaning anti-American philosophy had on a number of occasions rebuffed US requests for more oil experts.

Binary Overlap	Precision	Recall	F1 Score
Opinion	$\frac{2}{3} = 0.67$	$\frac{2}{3} = 0.67$	0.67
Target	$\frac{1}{2} = 0.5$	$\frac{1}{1} = 1$	0.67
Holder	$\frac{1}{2} = 0.5$	$\frac{1}{2} = 0.5$	0.5
Proportional Overlap	Precision	Recall	F1 Score
Opinion	$\left(\frac{2}{2} + 0 + \frac{1}{1} + 0\right)/3 = 0.67$	$\left(\frac{2}{3} + 0 + \frac{1}{1} + 0\right)/3 = 0.56$	0.61
Target	$(\frac{2}{2} + 0)/2 = 0.5$	$(\frac{2}{6} + 0)/1 = 0.33$	0.40
Holder	$(\frac{1}{1} + 0)/2 = 0.5$	$(\frac{1}{1} + 0)/2 = 0.5$	0.5

Table 4.4.: Evaluation results of (10)

Opinion Entity	relevant	retrieved	overlapped
	is known for (3)	is known (2)	is known (2)
Opinion	ala Fidel Castro left-leaning anti-American (5)	Ø	Ø
	rebuffed (1)	rebuffed (1)	rebuffed (1)
	Ø	requests (1)	Ø
Lanuar	US requests for more oil exports (6)	oil exports (2)	oil exports (2)
target	Ø	ala Fidel Castro left-leaning anti-American (5)	Ø
holder	Chavez (1)	Chavez (1)	Chavez (1)
	his (1)	Ø	Ø
	Ø	US (1)	Ø

Table 4.3.: Evaluating (10). Each expression is an entity. The number in (*) is the number of tokens in an entity. Ø indicates no labeled entity.

BiLSTM with trainable word embeddings

