Principled Weight Initialization for Hypernetworks

April 16, 2020

¹ "Principled Weight Initialization for Hypernetworks" by Chang, Flokas, and Lipson

Overview

- Hypernetwork is a model that produces weights for another model (target model)
- Hypernetworks are used in a lot of applications: mutli-task learning, continual learning, weights compression, etc.
- People use traditional initialization strategies (Xavier, He, etc) for hypernetworks
- But these traditional initializations of a hypernetwork lead to a bad initialization of a target model
- Authors fixed initialization for a hypernetwork to make the training more stable

What is a hypernetwork?

- ▶ Imagine we have a target model $f_{\theta}(x)$ which solves the task of interest
- ▶ A hypernetwork H_{ϕ} produces the parameters for each layer I of f_{θ} given an embedding e_{I} : $\theta_{I} = H_{\phi}(e_{I})$.
- ▶ During training we optimze parameters ϕ instead of θ by backpropagating $\Delta\theta$ further to $\Delta\phi$.
- ▶ People usually use very small hypernetworks (1 or 2 hidden layers) since our output is very large
- ▶ For example, for a dense layer of input-output sizes 500×500 , our output layer for H_{ϕ} is 250,000 neurons.

Notation

We will use the following notation:

Einstein summation:

$$\alpha_i \beta^i = \sum_{i=1}^n \alpha_i \beta^i$$

- ▶ Denote by W[t] a weight matrix in t-th layer for the main model
- ▶ Then transformation $y^i = W[t]_j^i x^j + b^i$ means $y^i = W_i^{(t)} x + b^i$, i.e. t_i is the i-th neuron and $W_i^{(t)}$ is the i-th row in the t-th layer's matrix $W^{(t)}$.
- ▶ Hypernetwork H_{ϕ} produces W_{i}^{i} by:

$$W_j^i = H_{jk}^i h(e)^k + \beta_j^i,$$

where e is a layer's embedding, h is the hypernetwork's body, H_j^i, β_j^i are output weights and biases (H is a 3-dimensional tensor).

Xavier fan-in init

Suppose we have a transformation $y^i = W^i_j x^j + b^i$. Xavier init is based on the following assumptions:

- 1. $\forall i, j : W_i^i, x^j, b^i$ are independent from each other.
- 2. $\forall i, j : \mathbb{E}\left[W_i^i\right] = 0$
- 3. $\forall j : \mathbb{E}\left[x^{j}\right] = 0$
- 4. $\forall i : \mathbb{E}\left[b^i\right] = 0$.

If these assumptions hold, then $\mathbb{E}\left[y^i\right]=0$ and:

$$Var[y^i] = d_j Var[W_i^i] Var[x^j]$$

- ▶ The goal of a good initialization is to make $Var[y^i] = Var[x^j]$.
- ▶ This gives us $Var\left[W_j^i\right] = \frac{1}{d_i}$

Fan-out init and Kaiming inits

- ▶ On the previous slide, we tried to have $Var\left[y^{i}\right] = Var\left[x^{j}\right]$ during a forward pass.
- But what if we want a similar property for a backward pass?
- ▶ Since backprop for a linear layer gives $\partial_x \mathcal{L} = \partial_y \mathcal{L} W$ then the similar reasoning leads to $\text{Var}\left[W_i^t\right] = \frac{1}{dt}$. This is a *fan-out* init.
- ▶ Since we want both $\operatorname{Var}\left[W_j^i\right] = \frac{1}{d_j}$ and $\operatorname{Var}\left[W_j^i\right] = \frac{1}{d_i}$, which is impossible, let's just take their harmonic mean and set $\operatorname{Var}\left[W_i^i\right] = \frac{2}{d_i + d_i}$
- ▶ Kaiming inits are very similar, but we consider transformations like $y^i = W^i_j \sigma(x^j) + b^i$ for different non-linearities σ (ReLU, LeakyReLU, tanh, etc), obtaining different initialization schemes.

Modern (ad-hoc) techniques of initializing hypernetworks

Currently, people use the following schemes to initialize their hypernetworks:

- ▶ M1: Xavier or Kaiming inits
- M2: Small random values
- ▶ M3: Kaiming init, but with scaling output layer by 0.1
- ▶ M4: Kaiming init, but with scaling hypernetwork embeddings.

A problem: using these initialization schemes in a hypernetwork produces such weights W[t] in a target network that have bad variances $\text{Var}\left[W_{i}^{i}\right]$, making training difficult and unstable.

Hyperfan-in assumptions

First, authors make the following assumptions:

- ▶ (1-4) Xavier assumptions for all the layers in the hypernet h(e)
 - ▶ This would give us $Var(h(e)^k) = Var(e^l)$
- ▶ (5) ...everything is independent of each other in the output layer
- ▶ (6-8) ...everything has zero mean in the output layer

Hyperfan-in init

Now, we want a transformation $y^i = W_i^i x^j + b^i$ not to change variance:

- i.e, we want $Var[y^i] = Var[x^j]$
- Using derivations similar to Xavier's ones, we can obtain:

$$\operatorname{Var}\left[H_{jk}^{i}\right] = \frac{1}{2\operatorname{d}_{j}\operatorname{d}_{k}\operatorname{Var}\left[e^{m}\right]} \tag{1}$$

- ► This is a hyperfan-in init for hypernetworks.
- If we want to generate biases for a target model as well, we would need to derive init for the corresponding component as well (you check the paper)
- If we want hyperfan-out, this can be done in a similar manner

HyperKaiming inits

- On the previous slide, we had Xavier inits. But what if we care about activation functions?
- ▶ Authors give an derivation for ReLU:

Initialization	Variance Formula	Initialization	Variance Formula
Hyperfan-in	$egin{align*} ext{Var}(H^i_{jk}) &= rac{2^1 ext{ReLU}}{2^1 ext{HBiss} ext{d}_j ext{d}_k ext{Var}(e[1]^m)} \ ext{Var}(G^i_l) &= rac{2^1 ext{ReLU}}{2 ext{d}_l ext{Var}(e[2]^n)} \end{aligned}$	Hyperfan-out	$\begin{split} \text{Var}(H^i_{jk}) &= \frac{2^{1}\text{ReLU}}{d_id_k\text{Var}(e[1]^m)} \\ \text{Var}(G^i_l) &= \max(\frac{2^{1}\text{ReLU}(1-\frac{d_j}{d_l})}{d_l\text{Var}(e[2]^n)}, 0) \end{split}$

▶ For other activations, it should be derivable in a similar manner

Experiments: FeedForward Network on MNIST (1/2)

Figure: MNIST mean activations before training

Figure: MNIST activations evolution

Experiments: FeedForward Network on MNIST (2/2)

Figure: MNIST mean output value of $H_{\phi}(e)$

Figure: MNIST train/test scores

A bunch of final thoughts

- Proper initialization is very important.
- ► The paper rises an important question of initialization for new architectures
- ▶ It is possible to derive Hyperkaiming inits for other non-linearities
- \blacktriangleright Authors' results on ImageNet for a bayesian NN looks suspicious ($\sim\!\!17\%$ Top-5 accuracy for MobileNet after 25 epochs)