SEQUENCE LISTING

```
<110> Raghuram Kalluri
<120> ANTI-ANGIOGENIC PROTEINS AND FRAGMENTS
 AND METHODS OF USE THEREOF
<130> 1440.1027-016
<150> PCT/US01/00565
<151> 2001-01-08
<150> US 09/543,371
<151> 2000-04-04
<150> US 09/335,224
<151> 1999-06-17
<150> US 60/126,175
<151> 1999-03-25
<150> US 60/089,689
<151> 1998-06-17
<150> US 09/479,118
<151> 2000-01-07
<150> US 09/625,191
<151> 2000-07-21
<160> 58
<170> FastSEQ for Windows Version 4.0
<210> 1
<211> 690
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (1)...(687)
                                                                        48
tct gtt gat cac ggc ttc ctt gtg acc agg cat agt caa aca ata gat
Ser Val Asp His Gly Phe Leu Val Thr Arg His Ser Gln Thr Ile Asp
gac cca cag tgt cct tct ggg acc aaa att ctt tac cac ggg tac tct
                                                                        96
Asp Pro Gln Cys Pro Ser Gly Thr Lys Ile Leu Tyr His Gly Tyr Ser
ttg ctc tac gtg caa ggc aat gaa cgg gcc cat gga cag gac ttg ggc
                                                                       144
Leu Leu Tyr Val Gln Gly Asn Glu Arg Ala His Gly Gln Asp Leu Gly
```

40

35

The first of the first time of

) jenè

2/21

acg Thr	gcc Ala 50	ggc Gly	agc Ser	tgc Cys	ctg Leu	cgc Arg 55	aag Lys	ttc Phe	agc Ser	aca Thr	atg Met 60	ccc Pro	ttc Phe	ctg Leu	ttc Phe	1	.92
tgc Cys 65	aat Asn	att Ile	aac Asn	aac Asn	gtg Val 70	tgc Cys	aac Asn	ttt Phe	gca Ala	tca Ser 75	cga Arg	aat Asn	gac Asp	tac Tyr	tcg Ser 80	2	40
tac Tyr	tgg Trp	ctg Leu	tcc Ser	acc Thr 85	cct Pro	gag Glu	ccc Pro	atg Met	ccc Pro 90	atg Met	tca Ser	atg Met	gca Ala	ccc Pro 95	atc Ile	2	88
acg Thr	gjå aaa	gaa Glu	aac Asn 100	ata Ile	aga Arg	cca Pro	ttt Phe	att Ile 105	agt Ser	agg Arg	tgt Cys	gct Ala	gtg Val 110	tgt Cys	gag Glu	3	36
gcg Ala	cct Pro	gcc Ala 115	atg Met	gtg Val	atg Met	gcc Ala	gtg Val 120	cac His	agc Ser	cag Gln	acc Thr	att Ile 125	cag Gln	atc Ile	cca Pro	3	84
ccg Pro	tgc Cys 130	ccc Pro	agc Ser	gly ggg	tgg Trp	tcc Ser 135	tcg Ser	ctg Leu	tgg Trp	atc Ile	ggc Gly 140	tac Tyr	tct Ser	ttt Phe	gtg Val	4	32
atg Met 145	cac His	acc Thr	agc Ser	gct Ala	ggt Gly 150	gca Ala	gaa Glu	ggc Gly	tct Ser	ggc Gly 155	caa Gln	gcc Ala	ctg Leu	gcg Ala	tcc Ser 160	4	80
ccc Pro	ggc Gly	tcc Ser	tgc Cys	ctg Leu 165	gag Glu	gag Glu	ttt Phe	aga Arg	agt Ser 170	gcg Ala	cca Pro	ttc Phe	atc Ile	gag Glu 175	tgt Cys	5	528
cac His	ggc Gly	cgt Arg	999 Gly 180	acc Thr	tgc Cys	aat Asn	tac Tyr	tac Tyr 185	gca Ala	aac Asn	gct Ala	tac Tyr	agc Ser 190	ttt Phe	tgg Trp	5	576
ctc Leu	gcc Ala	acc Thr 195	ata Ile	gag Glu	agg Arg	agc Ser	gag Glu 200	atg Met	ttc Phe	aag Lys	aag Lys	cct Pro 205	acg Thr	ccg Pro	tcc Ser	6	524
acc Thr	ttg Leu 210	aag Lys	gca Ala	gly ggg	gag Glu	ctg Leu 215	cgc Arg	acg Thr	cac His	gtc Val	agc Ser 220	cgc Arg	tgc Cys	caa Gln	gtc Val	6	572
_	_	aga Arg	_	aca Thr	taa											6	590
<210> 2 <211> 229 <212> PRT <213> Homo sapiens																	
<400	0 > 2	7	77.5 -	0 1-	Dl	Terr	77-7	ωρ~~	7	ui -	e.~	۵l۳	Thr	Tle	Δαν		
1		_		5					10					Ile 15			
Asp	Pro	Gln	Cys 20	Pro	Ser	Gly	Thr	Lys 25	Ile	Leu	Tyr	HIS	Gly	Tyr	ser		

```
Leu Leu Tyr Val Gln Gly Asn Glu Arg Ala His Gly Gln Asp Leu Gly
                            40
       35
Thr Ala Gly Ser Cys Leu Arg Lys Phe Ser Thr Met Pro Phe Leu Phe
                        55
Cys Asn Ile Asn Asn Val Cys Asn Phe Ala Ser Arg Asn Asp Tyr Ser
                                        75
                    70
Tyr Trp Leu Ser Thr Pro Glu Pro Met Pro Met Ser Met Ala Pro Ile
                85
                                    90
Thr Gly Glu Asn Ile Arg Pro Phe Ile Ser Arg Cys Ala Val Cys Glu
                                105
Ala Pro Ala Met Val Met Ala Val His Ser Gln Thr Ile Gln Ile Pro
                                                 125
                            120
Pro Cys Pro Ser Gly Trp Ser Ser Leu Trp Ile Gly Tyr Ser Phe Val
                                             140
                        135
Met His Thr Ser Ala Gly Ala Glu Gly Ser Gly Gln Ala Leu Ala Ser
                                        155
                    150
Pro Gly Ser Cys Leu Glu Glu Phe Arg Ser Ala Pro Phe Ile Glu Cys
                                    170
His Gly Arg Gly Thr Cys Asn Tyr Tyr Ala Asn Ala Tyr Ser Phe Trp
                                185
Leu Ala Thr Ile Glu Arg Ser Glu Met Phe Lys Lys Pro Thr Pro Ser
                                                 205
                            200
Thr Leu Lys Ala Gly Glu Leu Arg Thr His Val Ser Arg Cys Gln Val
Cys Met Arg Arg Thr
225
<210> 3
<211> 27
<212> DNA
<213> Artificial Sequence
<223> pET22b(+) forward oligonucleotide primer for
     Arresten
<400> 3
cgggatcctt ctgttgatca cggcttc
                                                                         27
<210> 4
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> pET22b(+) reverse oligonuceotide primer for
      Arresten
<400> 4
                                                                         27
cccaagcttt gttcttctca tacagac
<210> 5
<211> 684
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
```

ļu k

W

Ħ

Ŋ

<222> (1) ... (681)

<400																4.0
gtc Val 1	agc Ser	atc Ile	ggc Gly	tac Tyr 5	ctc Leu	ctg Leu	gtg Val	aag Lys	cac His 10	agc Ser	cag Gln	acg Thr	gac Asp	Gln 15	gag Glu	48
ccc Pro	atg Met	tgc Cys	ccg Pro 20	gtg Val	ggc Gly	atg Met	aac Asn	aaa Lys 25	ctc Leu	tgg Trp	agt Ser	gga Gly	tac Tyr 30	agc Ser	ctg Leu	96
ctg Leu	tac Tyr	ttc Phe 35	gag Glu	ggc Gly	cag Gln	gag Glu	aag Lys 40	gcg Ala	cac His	aac Asn	cag Gln	gac Asp 45	ctg Leu	gly aaa	ctg Leu	144
gcg Ala	ggc Gly 50	tcc Ser	tgc Cys	ctg Leu	gcg Ala	cgg Arg 55	ttc Phe	agc Ser	acc Thr	atg Met	ccc Pro 60	ttc Phe	ctg Leu	tac Tyr	tgc Cys	192
aac Asn 65	cct Pro	ggt Gly	gat Asp	gtc Val	tgc Cys 70	tac Tyr	tat Tyr	gcc Ala	agc Ser	cgg Arg 75	aac Asn	gac Asp	aag Lys	tcc Ser	tac Tyr 80	240
tgg Trp	ctc Leu	tct Ser	acc Thr	act Thr 85	gcg Ala	ccg Pro	ctg Leu	ccc Pro	atg Met 90	atg Met	ccc Pro	gtg Val	gcc Ala	gag Glu 95	gac Asp	288
gag Glu	atc Ile	aag Lys	ccc Pro 100	tac Tyr	atc Ile	agc Ser	cgc Arg	tgt Cys 105	tct Ser	gtg Val	tgt Cys	gag Glu	gcc Ala 110	ccg Pro	gcc Ala	336
atc Ile	gcc Ala	atc Ile 115	gcg Ala	gtc Val	cac His	agt Ser	cag Gln 120	gat Asp	gtc Val	tcc Ser	atc Ile	cca Pro 125	cac His	tgc Cys	cca Pro	384
gct Ala	999 Gly 130	tgg Trp	cgg Arg	agt Ser	ttg Leu	tgg Trp 135	atc Ile	gga Gly	tat Tyr	tcc Ser	ttc Phe 140	ctc Leu	atg Met	cac His	acg Thr	432
gcg Ala 145	gcg Ala	gga Gly	gac Asp	gaa Glu	ggc Gly 150	ggt Gly	ggc Gly	caa Gln	tca Ser	ctg Leu 155	gtg Val	tca Ser	ccg Pro	ggc Gly	agc Ser 160	480
tgt Cys	cta Leu	gag Glu	gac Asp	ttc Phe 165	cgc Arg	gcc Ala	aca Thr	cca Pro	ttc Phe 170	atc Ile	gaa Glu	tgc Cys	aat Asn	gga Gly 175	ggc Gly	528
cgc Arg	ggc Gly	acc Thr	tgc Cys 180	cac His	tac Tyr	tac Tyr	gcc Ala	aac Asn 185	aag Lys	tac Tyr	agc Ser	ttc Phe	tgg Trp 190	ctg Leu	acc Thr	576
acc Thr	att Ile	ccc Pro 195	gag Glu	cag Gln	agc Ser	ttc Phe	cag Gln 200	ggc Gly	tcg Ser	ccc Pro	tcc Ser	gcc Ala 205	gac Asp	acg Thr	ctc Leu	624
aag Lys	gcc Ala 210	ggc Gly	ctc Leu	atc Ile	cgc Arg	aca Thr 215	cac His	atc Ile	agc Ser	cgc Arg	tgc Cys 220	cag Gln	gtg Val	tgc Cys	atg Met	672
aag Lys		ctg Leu	tga													684

```
and the state work with the state of the state with the state of the s
```

Canstatin

```
<210> 6
<211> 227
<212> PRT
<213> Homo sapiens
<400> 6
Val Ser Ile Gly Tyr Leu Leu Val Lys His Ser Gln Thr Asp Gln Glu
                                    10
Pro Met Cys Pro Val Gly Met Asn Lys Leu Trp Ser Gly Tyr Ser Leu
                                25
Leu Tyr Phe Glu Gly Gln Glu Lys Ala His Asn Gln Asp Leu Gly Leu
Ala Gly Ser Cys Leu Ala Arg Phe Ser Thr Met Pro Phe Leu Tyr Cys
Asn Pro Gly Asp Val Cys Tyr Tyr Ala Ser Arg Asn Asp Lys Ser Tyr
                    70
Trp Leu Ser Thr Thr Ala Pro Leu Pro Met Met Pro Val Ala Glu Asp
                                    90
                85
Glu Ile Lys Pro Tyr Ile Ser Arg Cys Ser Val Cys Glu Ala Pro Ala
                                105
Ile Ala Ile Ala Val His Ser Gln Asp Val Ser Ile Pro His Cys Pro
                            120
        115
Ala Gly Trp Arg Ser Leu Trp Ile Gly Tyr Ser Phe Leu Met His Thr
                        135
                                            140
Ala Ala Gly Asp Glu Gly Gly Gln Ser Leu Val Ser Pro Gly Ser
                    150
                                        155
Cys Leu Glu Asp Phe Arg Ala Thr Pro Phe Ile Glu Cys Asn Gly Gly
                                    170
                165
Arg Gly Thr Cys His Tyr Tyr Ala Asn Lys Tyr Ser Phe Trp Leu Thr
                                185
            180
Thr Ile Pro Glu Gln Ser Phe Gln Gly Ser Pro Ser Ala Asp Thr Leu
                                                205
                            200
Lys Ala Gly Leu Ile Arg Thr His Ile Ser Arg Cys Gln Val Cys Met
                        215
   210
Lys Asn Leu
225
<210> 7
<211> 27
<212> DNA
<213> Artificial Sequence
<223> pET22b(+) forward oligonucleotide primer for
      Canstatin
cgggatcctg tcagcatcgg ctacctc
<210> 8
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> pET22b(+) reverse oligonucleotide primer for
```

27

< 2 1 1)> 9															
<211> 738 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)(735)																
<400 cca Pro 1	ggt	ttg Leu	aaa Lys	gga Gly 5	aaa Lys	cgt Arg	gga Gly	gac Asp	agt Ser 10	gga Gly	tca Ser	cct Pro	gca Ala	acc Thr 15	tgg Trp	48
														gca Ala		96
cct Pro	tca Ser	tgt Cys 35	cca Pro	gag Glu	ggg ggg	aca Thr	gtg Val 40	cca Pro	ctc Leu	tac Tyr	agt Ser	ggg Gly 45	ttt Phe	tct Ser	ttt Phe	144
ctt Leu	ttt Phe 50	gta Val	caa Gln	gga Gly	aat Asn	caa Gln 55	cga Arg	gcc Ala	cac His	gga Gly	caa Gln 60	gac Asp	ctt Leu	gga Gly	act Thr	192
ctt Leu 65	ggc Gly	agc Ser	tgc Cys	ctg Leu	cag Gln 70	cga Arg	ttt Phe	acc Thr	aca Thr	atg Met 75	cca Pro	ttc Phe	tta Leu	ttc Phe	tgc Cys 80	240
														tca Ser 95		288
														att Ile		336
ggc Gly	aga Arg	gcc Ala 115	ctt Leu	gag Glu	cct Pro	tat Tyr	ata Ile 120	agc Ser	aga Arg	tgc Cys	act Thr	gtt Val 125	tgt Cys	gaa Glu	ggt Gly	384
cct Pro	gcg Ala 130	atc Ile	gcc Ala	ata Ile	gcc Ala	gtt Val 135	cac His	agc Ser	caa Gln	acc Thr	act Thr 140	gac Asp	att Ile	cct Pro	cca Pro	432
														atc Ile		480
ttc Phe	aca Thr	agt Ser	gca Ala	ggt Gly 165	tct Ser	gag Glu	ggc Gly	acc Thr	999 Gly 170	caa Gln	gca Ala	ctg Leu	gcc Ala	tcc Ser 175	cct Pro	528

	180	185		190								
gga aga gga Gly Arg Gly 195	acg tgc aac Thr Cys Asn	tac tat tca Tyr Tyr Ser 200	aat tcc tac Asn Ser Tyr	agt ttc tgg Ser Phe Trp 205	ctg 624 Leu							
gct tca tta Ala Ser Leu 210	aac cca gaa Asn Pro Glu	aga atg ttc Arg Met Phe 215	aga aag cct Arg Lys Pro 220	att cca tca Ile Pro Ser	act 672 Thr							
			ata agt cgc Ile Ser Arg . 235									
atg aag aaa Met Lys Lys	aga cac tga Arg His 245				738							
<210> 10 <211> 245 <212> PRT <213> Homo sapiens												

7/21

<400> 10 Pro Gly Leu Lys Gly Lys Arg Gly Asp Ser Gly Ser Pro Ala Thr Trp 10 Thr Thr Arg Gly Phe Val Phe Thr Arg His Ser Gln Thr Thr Ala Ile 25 Pro Ser Cys Pro Glu Gly Thr Val Pro Leu Tyr Ser Gly Phe Ser Phe 40 Leu Phe Val Gln Gly Asn Gln Arg Ala His Gly Gln Asp Leu Gly Thr 60 Leu Gly Ser Cys Leu Gln Arg Phe Thr Thr Met Pro Phe Leu Phe Cys 75 Asn Val Asn Asp Val Cys Asn Phe Ala Ser Arg Asn Asp Tyr Ser Tyr 90 Trp Leu Ser Thr Pro Ala Leu Met Pro Met Asn Met Ala Pro Ile Thr 105 Gly Arg Ala Leu Glu Pro Tyr Ile Ser Arg Cys Thr Val Cys Glu Gly 120 Pro Ala Ile Ala Ile Ala Val His Ser Gln Thr Thr Asp Ile Pro Pro 135 Cys Pro His Gly Trp Ile Ser Leu Trp Lys Gly Phe Ser Phe Ile Met 155 150 Phe Thr Ser Ala Gly Ser Glu Gly Thr Gly Gln Ala Leu Ala Ser Pro 170 165 Gly Ser Cys Leu Glu Glu Phe Arg Ala Ser Pro Phe Leu Glu Cys His 185 180 Gly Arg Gly Thr Cys Asn Tyr Tyr Ser Asn Ser Tyr Ser Phe Trp Leu 200 Ala Ser Leu Asn Pro Glu Arg Met Phe Arg Lys Pro Ile Pro Ser Thr 220 215 Val Lys Ala Gly Glu Leu Glu Lys Ile Ile Ser Arg Cys Gln Val Cys Met Lys Lys Arg His 245

gen, gent, tren, ren, ren, rivit, tren, at the control of the cont

```
<210> 11
     <211> 27
     <212> DNA
     <213> Artificial Sequence
     <220>
     <223> pET22b(+) forward oligonucleotide primer for
           Tumstatin
     <400> 11
                                                                               27
     cgggatccgg gtttgaaagg aaaacgt
     <210> 12
     <211> 27
     <212> DNA
     <213> Artificial Sequence
     <220>
     <223> pET22b(+) reverse oligonucleotide primer for
           Tumstatin
ļ.
     <400> 12
[]
                                                                               27
     cccaagcttt cagtgtcttt tcttcat
Ľ.
Ų.
     <210> 13
Mi
     <211> 8
H
     <212> PRT
H
     <213> Artificial Sequence
- i
     <220>
Ę
     <223> Additional vector sequence added to protein
hat.
IJ
     <400> 13
     Met Asp Ile Gly Ile Asn Ser Asp
Ti
                      5
ļai.
     <210> 14
     <211> 7
     <212> PRT
     <213> Artificial Sequence
     <223> Additional vector sequence added to protein
     <400> 14
     Lys Leu Ala Ala Leu Glu
     <210> 15
     <211> 28
     <212> DNA
     <213> Artificial Sequence
     <223> pPICZaA forward oligonucleotide primer for
           Arresten
     <400> 15
                                                                               28
     ttcggaattc tctgttgatc acggcttc
     <210> 16
```

```
<211> 35
     <212> DNA
     <213> Artificial Sequence
     <223> pPICZaA reverse oligonucleotide primer for
           Arresten
     <400> 16
                                                                              35
     tgctctagag gtgttcttct catacagact tggca
     <210> 17
     <211> 31
     <212> DNA
     <213> Artificial Sequence
     <223> pPICZaA forward oligonucleotide primer for
           Canstatin
ļ---
     <400> 17
                                                                              31
Ţ.
     ttcggaattc gtcagcatcg gctacctcct g
Ţ,
     <210> 18
W
     <211> 32
M
     <212> DNA
N
     <213> Artificial Sequence
H
===
     <223> pPICZaA reverse oligonucleotide primer for
           Canstatin
1
71)
     <400> 18
                                                                               32
n.
     ggggtacccc caggttcttc atgcacacct gg
ļa.
     <210> 19
     <211> 244
     <212> PRT
     <213> Artificial Sequence
     <223> Tumstatin (amino acids 1-244)
     <400> 19
     Pro Gly Leu Lys Gly Lys Arg Gly Asp Ser Gly Ser Pro Ala Thr Trp
     Thr Thr Arg Gly Phe Val Phe Thr Arg His Ser Gln Thr Thr Ala Ile
     Pro Ser Cys Pro Glu Gly Thr Val Pro Leu Tyr Ser Gly Phe Ser Phe
     Leu Phe Val Gln Gly Asn Gln Arg Ala His Gly Gln Asp Leu Gly Thr
     Leu Gly Ser Cys Leu Gln Arg Phe Thr Thr Met Pro Phe Leu Phe Cys
                                                                   80
     Asn Val Asn Asp Val Cys Asn Phe Ala Ser Arg Asn Asp Tyr Ser Tyr
                                          90
     Trp Leu Ser Thr Pro Ala Leu Met Pro Met Asn Met Ala Pro Ile Thr
                                      105
     Gly Arg Ala Leu Glu Pro Tyr Ile Ser Arg Cys Thr Val Cys Glu Gly
```

٠

ļa.

the same than

the the

ļ.i

æ

Ti)

M

Ţ.)

1

<210> 20

<211> 124

```
120
        115
Pro Ala Ile Ala Ile Ala Val His Ser Gln Thr Thr Asp Ile Pro Pro
                                            140
                        135
Cys Pro His Gly Trp Ile Ser Leu Trp Lys Gly Phe Ser Phe Ile Met
                                        155
                   150
Phe Thr Ser Ala Gly Ser Glu Gly Thr Gly Gln Ala Leu Ala Ser Pro
                                   170
               165
Gly Ser Cys Leu Glu Glu Phe Arg Ala Ser Pro Phe Leu Glu Cys His
           180
                                185
Gly Arg Gly Thr Cys Asn Tyr Tyr Ser Asn Ser Tyr Ser Phe Trp Leu
                           200
                                                205
Ala Ser Leu Asn Pro Glu Arg Met Phe Arg Lys Pro Ile Pro Ser Thr
                       215
                                           220
Val Lys Ala Gly Glu Leu Glu Lys Ile Ile Ser Arg Cys Gln Val Cys
                    230
                                        235
Met Lys Lys Arg
```

```
<212> PRT
<213> Artificial Sequence
<223> Tumstatin 333 (amino acids 2-125 of SEQ ID NO:10)
<400> 20
Gly Leu Lys Gly Lys Arg Gly Asp Ser Gly Ser Pro Ala Thr Trp Thr
                                    10
Thr Arg Gly Phe Val Phe Thr Arg His Ser Gln Thr Thr Ala Ile Pro
                                25
Ser Cys Pro Glu Gly Thr Val Pro Leu Tyr Ser Gly Phe Ser Phe Leu
                            40
Phe Val Gln Gly Asn Gln Arg Ala His Gly Gln Asp Leu Gly Thr Leu
                        55
Gly Ser Cys Leu Gln Arg Phe Thr Thr Met Pro Phe Leu Phe Cys Asn
                                        75
                   70
Val Asn Asp Val Cys Asn Phe Ala Ser Arg Asn Asp Tyr Ser Tyr Trp
                                    90
               85
Leu Ser Thr Pro Ala Leu Met Pro Met Asn Met Ala Pro Ile Thr Gly
                                105
           100
Arg Ala Leu Glu Pro Tyr Ile Ser Arg Cys Thr Val
        115
```

```
<210> 21
<211> 119
<212> PRT
<213> Artificial Sequence
<220>
```

<223> Tumstatin 334 (amino acids 126-244 of SEQ ID NO:10)

<400> 21
Cys Glu Gly Pro Ala Ile Ala Ile Ala Val His Ser Gln Thr Thr Asp
1 5 10 15
Ile Pro Pro Cys Pro His Gly Trp Ile Ser Leu Trp Lys Gly Phe Ser

11/21

```
20
Phe Ile Met Phe Thr Ser Ala Gly Ser Glu Gly Thr Gly Gln Ala Leu
                            40
Ala Ser Pro Gly Ser Cys Leu Glu Glu Phe Arg Ala Ser Pro Phe Leu
                        55
Glu Cys His Gly Arg Gly Thr Cys Asn Tyr Tyr Ser Asn Ser Tyr Ser
                    70
Phe Trp Leu Ala Ser Leu Asn Pro Glu Arg Met Phe Arg Lys Pro Ile
                                    90
Pro Ser Thr Val Lys Ala Gly Glu Leu Glu Lys Ile Ile Ser Arg Cys
                                105
           100
Gln Val Cys Met Lys Lys Arg
        115
<210> 22
<211> 191
<212> PRT
<213> Artificial Sequence
<223> Tum-1 (Tumstatin N53) (amino acids 54-244 of SEQ
      ID NO:10)
<400> 22
Asn Gln Arg Ala His Gly Gln Asp Leu Gly Thr Leu Gly Ser Cys Leu
Gln Arg Phe Thr Thr Met Pro Phe Leu Phe Cys Asn Val Asn Asp Val
                                25
Cys Asn Phe Ala Ser Arg Asn Asp Tyr Ser Tyr Trp Leu Ser Thr Pro
Ala Leu Met Pro Met Asn Met Ala Pro Ile Thr Gly Arg Ala Leu Glu
Pro Tyr Ile Ser Arg Cys Thr Val Cys Glu Gly Pro Ala Ile Ala Ile
                    70
Ala Val His Ser Gln Thr Thr Asp Ile Pro Pro Cys Pro His Gly Trp
Ile Ser Leu Trp Lys Gly Phe Ser Phe Ile Met Phe Thr Ser Ala Gly
                                105
Ser Glu Gly Thr Gly Gln Ala Leu Ala Ser Pro Gly Ser Cys Leu Glu
                            120
Glu Phe Arg Ala Ser Pro Phe Leu Glu Cys His Gly Arg Gly Thr Cys
                        135
                                            140
Asn Tyr Tyr Ser Asn Ser Tyr Ser Phe Trp Leu Ala Ser Leu Asn Pro
                                        155
                    150
Glu Arg Met Phe Arg Lys Pro Ile Pro Ser Thr Val Lys Ala Gly Glu
               165
                                    170
Leu Glu Lys Ile Ile Ser Arg Cys Gln Val Cys Met Lys Lys Arg
            180
<210> 23
<211> 132
<212> PRT
```

<213> Artificial Sequence

<220>

<223> Tum-2 (amino acids 1-132 of SEQ ID NO:10)

```
The street about the street and the street about the stre
```

20

<400> 23 Pro Gly Leu Lys Gly Lys Arg Gly Asp Ser Gly Ser Pro Ala Thr Trp Thr Thr Arg Gly Phe Val Phe Thr Arg His Ser Gln Thr Thr Ala Ile 25 Pro Ser Cys Pro Glu Gly Thr Val Pro Leu Tyr Ser Gly Phe Ser Phe 40 Leu Phe Val Gln Gly Asn Gln Arg Ala His Gly Gln Asp Leu Gly Thr Leu Gly Ser Cys Leu Gln Arg Phe Thr Thr Met Pro Phe Leu Phe Cys 75 70 Asn Val Asn Asp Val Cys Asn Phe Ala Ser Arg Asn Asp Tyr Ser Tyr 90 Trp Leu Ser Thr Pro Ala Leu Met Pro Met Asn Met Ala Pro Ile Thr 105 Gly Arg Ala Leu Glu Pro Tyr Ile Ser Arg Cys Thr Val Cys Glu Gly 120 115 Pro Ala Ile Ala 130 <210> 24 <211> 112 <212> PRT <213> Artificial Sequence <223> Tum-3 (amino acids 133-244 of SEQ ID NO:10) <400> 24 Ile Ala Val His Ser Gln Thr Thr Asp Ile Pro Pro Cys Pro His Gly 10 Trp Ile Ser Leu Trp Lys Gly Phe Ser Phe Ile Met Phe Thr Ser Ala Gly Ser Glu Gly Thr Gly Gln Ala Leu Ala Ser Pro Gly Ser Cys Leu 40 Glu Glu Phe Arg Ala Ser Pro Phe Leu Glu Cys His Gly Arg Gly Thr Cys Asn Tyr Tyr Ser Asn Ser Tyr Ser Phe Trp Leu Ala Ser Leu Asn Pro Glu Arg Met Phe Arg Lys Pro Ile Pro Ser Thr Val Lys Ala Gly 90 Glu Leu Glu Lys Ile Ile Ser Arg Cys Gln Val Cys Met Lys Lys Arg 105 <210> 25 <211> 64 <212> PRT <213> Artificial Sequence <223> Tum-4 (amino acids 181-244 of SEQ ID NO:10) <400> 25 Glu Glu Phe Arg Ala Ser Pro Phe Leu Glu Cys His Gly Arg Gly Thr 10 Cys Asn Tyr Tyr Ser Asn Ser Tyr Ser Phe Trp Leu Ala Ser Leu Asn

Pro Glu Arg Met Phe Arg Lys Pro Ile Pro Ser Thr Val Lys Ala Gly

```
Glu Leu Glu Lys Ile Ile Ser Arg Cys Gln Val Cys Met Lys Lys Arg
     <210> 26
     <211> 79
     <212> PRT
     <213> Artificial Sequence
     <220>
     <223> Tum-5 (amino acids 54-132 of SEQ ID NO:10)
     <400> 26
     Asn Gln Arg Ala His Gly Gln Asp Leu Gly Thr Leu Gly Ser Cys Leu
     Gln Arg Phe Thr Thr Met Pro Phe Leu Phe Cys Asn Val Asn Asp Val
                 20
                                       25
     Cys Asn Phe Ala Ser Arg Asn Asp Tyr Ser Tyr Trp Leu Ser Thr Pro
                                  40
ļa b
     Ala Leu Met Pro Met Asn Met Ala Pro Ile Thr Gly Arg Ala Leu Glu
gaş
kaş
                              55
     Pro Tyr Ile Ser Arg Cys Thr Val Cys Glu Gly Pro Ala Ile Ala
                          70
ųj
711
IJ
     <210> 27
     <211> 20
ļak
     <212> PRT
     <213> Artificial Sequence
þa b
Ħ
     <223> T1 (amino acids 1-20 of SEQ ID NO:10)
11)
-
     <400> 27
     Pro Gly Leu Lys Gly Lys Arg Gly Asp Ser Gly Ser Pro Ala Thr Trp
     Thr Thr Arg Gly
     <210> 28
     <211> 20
     <212> PRT
     <213> Artificial Sequence
     <220>
     <223> T2 (amino acids 54-73 of SEQ ID NO:10)
     Asn Gln Arg Ala His Gly Gln Asp Leu Gly Thr Leu Gly Ser Cys Leu
                                           10
     Gln Arg Phe Thr
                  20
     <210> 29
     <211> 20
```

æ

```
<212> PRT
     <213> Artificial Sequence
     <220>
     <223> T3 (amino acids 69-88 of SEQ ID NO:10)
     <400> 29
     Leu Gln Arg Phe Thr Thr Met Pro Phe Leu Phe Cys Asn Val Asn Asp
     Val Cys Asn Phe
                 20
     <210> 30
     <211> 20
     <212> PRT
     <213> Artificial Sequence
     <223> T4 (amino acids 84-103 of SEQ ID NO:10)
122
<400> 30
     Asp Val Cys Asn Phe Ala Ser Arg Asn Asp Tyr Ser Tyr Trp Leu Ser
D
                                          10
u
     Thr Pro Ala Leu
M
Ti,
N
     <210> 31
ļ.i
     <211> 19
泽
     <212> PRT
---
     <213> Artificial Sequence
Ħ
TI.
     <223> T5 (amino acids 99-117 of SEQ ID NO:10)
ļ.:
Ser Thr Pro Ala Leu Met Pro Met Asn Met Ala Pro Ile Thr Gly Arg
     Ala Leu Glu
     <210> 32
     <211> 19
     <212> PRT
     <213> Artificial Sequence
     <223> T6 (amino acids 114-132 of SEQ ID NO:10)
     <400> 32
     Arg Ala Leu Glu Pro Tyr Ile Ser Arg Cys Thr Val Cys Glu Gly Pro
     Ala Ile Ala
```

```
<211> 88
<212> PRT
<213> Artificial Sequence
<223> Tumstatin-45-132 (amino acids 45-132 of SEQ ID
     NO:10)
<400> 33
Gly Phe Ser Phe Leu Phe Val Gln Gly Asn Gln Arg Ala His Gly Gln
Asp Leu Gly Thr Leu Gly Ser Cys Leu Gln Arg Phe Thr Thr Met Pro
            20
                                25
Phe Leu Phe Cys Asn Val Asn Asp Val Cys Asn Phe Ala Ser Arg Asn
                            40
Asp Tyr Ser Tyr Trp Leu Ser Thr Pro Ala Leu Met Pro Met Asn Met
                                             60
                        55
Ala Pro Ile Thr Gly Arg Ala Leu Glu Pro Tyr Ile Ser Arg Cys Thr
                                        75
                    70
Val Cys Glu Gly Pro Ala Ile Ala
                85
<210> 34
<211> 88
<212> PRT
<213> Artificial Sequence
<223> Tumstatin-5-126-C-A (amino acids 45-132 of SEQ ID
      NO:10; alanine has been substituted for the
      cysteine residue at position 126 of the
      full-length Tumstatin molecule)
<400> 34
Gly Phe Ser Phe Leu Phe Val Gln Gly Asn Gln Arg Ala His Gly Gln
                                     10
Asp Leu Gly Thr Leu Gly Ser Cys Leu Gln Arg Phe Thr Thr Met Pro
                                                     30
                                25
Phe Leu Phe Cys Asn Val Asn Asp Val Cys Asn Phe Ala Ser Arg Asn
                            40
Asp Tyr Ser Tyr Trp Leu Ser Thr Pro Ala Leu Met Pro Met Asn Met
                        55
                                             60
Ala Pro Ile Thr Gly Arg Ala Leu Glu Pro Tyr Ile Ser Arg Cys Thr
                                        75
                    70
Val Ala Glu Gly Pro Ala Ile Ala
<210> 35
<211> 9
<212> PRT
<213> Artificial Sequence
<223> synthetic blocking peptide
<400> 35
Cys Asp Cys Arg Gly Asp Cys Phe Cys
```

U

W

than then all

Œ

g-ah

ļ.:

```
5
      1
     <210> 36
     <211> 5
     <212> PRT
     <213> Artificial Sequence
     <220>
     <223> synthetic blocking peptide
     <400> 36
     Cys Asn Gly Arg Cys
     <210> 37
     <211> 25
     <212> PRT
     <213> Artificial Sequence
ļ.ab
     <220>
<223> T7 (amino acids 74-98 of SEQ ID NO:10)
W
M
     <400> 37
     Thr Met Pro Phe Leu Phe Cys Asn Val Asn Asp Val Cys Asn Phe Ala
M
                      5
#ili
     Ser Arg Asn Asp Tyr Ser Tyr Trp Leu
---
                 20
æ
la l
     <210> 38
Ti,
     <211> 25
Ti,
     <212> PRT
ļa,
     <213> Artificial Sequence
ļsk
     <223> T7-mutant (amino acids 74-98 of SEQ ID NO:10;
           methionine has been substituted for the leucine
           residue at position 78 of the full-length
           Tumstatin molecule, and isoleucine has been
           substituted for valine at position 82, and
           asparagine has been substituted for aspartic acid
           at position 84)
     <400> 38
     Thr Met Pro Phe Met Phe Cys Asn Ile Asn Asn Val Cys Asn Phe Ala
                      5
                                           10
     Ser Arg Asn Asp Tyr Ser Tyr Trp Leu
     <210> 39
     <211> 27
     <212> PRT
     <213> Artificial Sequence
     <220>
     <223> T8 (amino acids 69-95 of SEQ ID NO:10; lysine has
```

been substituted for the leucine residue at position 69 of the full-length Tumstatin molecule)

<210> 40 <211> 27

<211> 27
<212> PRT

<213> Artificial Sequence

<220>

ļaķ

H

Ш

Mar mar ...

Ŧ

ļu

M

W,

ļ,

<223> T8-3 (amino acids 69-95 of SEQ ID NO:10; lysine has been substituted for the leucine residue at position 69 of the full-length Tumstatin molecule, and serine has been substituted for the cysteine residues at positions 80 and 86)

<400> 40

Lys Gln Arg Phe Thr Thr Met Pro Phe Leu Phe Ser Asn Val Asn Asp 1 5 10 15 Val Ser Asn Phe Ala Ser Arg Asn Asp Tyr Ser

20

<210> 41

<211> 19

<212> PRT

<213> Artificial Sequence

<220>

<223> TP3 (amino acids 77-95 of SEQ ID NO:10; lysine has been substituted for the phenylalanine residue at position 77 of the full-length Tumstatin molecule, and cysteine has been substituted for the aspartic acid at position 84)

<400> 41

Lys Leu Phe Cys Asn Val Asn Cys Val Cys Asn Phe Ala Ser Arg Asn 1 5 10 15
Asp Tyr Ser

<210> 42

<211> 27

<212> PRT

<213> Artificial Sequence

<220>

<223> P2 (amino acids 69-95 of SEQ ID NO:10; lysine has been substituted for the leucine residue at position 69 of the full-length Tumstatin molecule, and aspartic acid has been substituted for the cysteine residues at positions 80 and 86)

```
<400> 42
Lys Gln Arg Phe Thr Thr Met Pro Phe Leu Phe Asp Asn Val Asn Asp
                                    10
Val Asp Asn Phe Ala Ser Arg Asn Asp Tyr Ser
            20
<210> 43
<211> 27
<212> PRT
<213> Artificial Sequence
<220>
<223> Scrambled peptide SP1
<400> 43
Ala Asn Met Ser Arg Asn Val Phe Phe Asp Cys Thr Ser Phe Pro Val
                 5
Cys Gln Lys Phe Leu Asn Asp Thr Arg Asn Tyr
<210> 44
<211> 27
<212> PRT
<213> Artificial Sequence
<220>
<223> Scrambled peptide SP2
<400> 44
Thr Phe Asn Cys Val Lys Asn Tyr Gln Arg Leu Asp Phe Thr Ser Arg
Phe Val Met Asp Ser Cys Ala Asn Phe Pro Asn
<210> 45
<211> 14
<212> PRT
<213> rtificial Sequence
<220>
<223> Generic peptide
<223> X at position 1 is a hydrogen or a peptidyl chain
      of 1 to 17 amino acids
<223> X at position 2 is F or K
<223> X at position 5 is C, S or D
<223> X at position 9 is D or C
<223> X at position 11 is C, S or D
<223> X at position 14 is a hydrogen or a peptidyl chain
      of 1 to 12 amino acids
```

h

4

IJ

TI.

H

pai #

Henry of the Street

```
<400> 45
    Xaa Xaa Leu Phe Xaa Asn Val Asn Xaa Val Xaa Asn Phe Xaa
                      5
    <210> 46
     <211> 4
     <212> PRT
     <213> Artificial Sequence
     <220>
     <223> Generic peptide
     <400> 46
    Thr Thr Met Pro
     <210> 47
     <211> 5
     <212> PRT
re-
     <213> Artificial Sequence
-
    <220>
W
     <223> Generic peptide
711
     <400> 47
     Phe Thr Thr Met Pro
H
14
ļ.,i
     <210> 48
     <211> 6
H
     <212> PRT
M
     <213> Artificial Sequence
i ai
     <220>
     <223> Generic peptide
     <400> 48
     Arg Phe Thr Thr Met Pro
     <210> 49
     <211> 7
     <212> PRT
     <213> Artificial Sequence
     <220>
     <223> Generic peptide
     <400> 49
     Gln Arg Phe Thr Thr Met Pro
     1
     <210> 50
     <211> 8
```

```
<212> PRT
     <213> Artificial Sequence
    <220>
     <223> Generic peptide
     <400> 50
     Leu Gln Arg Phe Thr Thr Met Pro
                      5
     <210> 51
     <211> 8
     <212> PRT
     <213> Artificial Sequence
     <220>
     <223> Generic peptide
     <400> 51
ļ.ak
     Lys Gln Arg Phe Thr Thr Met Pro
D
O
W
     <210> 52
141
     <211> 4
TI.
     <212> PRT
71
     <213> Artificial Sequence
ga b
     <220>
泽
     <223> Generic peptide
---
W
     <400> 52
M
     Ala Ser Arg Asn
---
ļ.
     <210> 53
     <211> 5
     <212> PRT
     <213> Artificial Sequence
     <220>
     <223> Generic peptide
     <400> 53
     Ala Ser Arg Asn Asp
     <210> 54
     <211> 6
     <212> PRT
     <213> Artificial Sequence
     <220>
     <223> Generic peptide
     <400> 54
```

```
Ala Ser Arg Asn Asp Tyr
                      5
     <210> 55
     <211> 7
     <212> PRT
     <213> Artificial Sequence
     <220>
     <223> Generic peptide
     <400> 55
    Ala Ser Arg Asn Asp Tyr Ser
                     5
     <210> 56
     <211> 8
     <212> PRT
1-1
     <213> Artificial Sequence
     <223> Generic peptide
Ų.
     <400> 56
[1]
     Ala Ser Arg Asn Asp Tyr Ser Tyr
M
Pak
:5
     <210> 57
hah
     <211> 9
N
     <212> PRT
     <213> Artificial Sequence
ļ.
     <220>
     <223> Generic peptide
     <400> 57
     Ala Ser Arg Asn Asp Tyr Asp Tyr Trp
     <210> 58
     <211> 10
     <212> PRT
     <213> Artificial Sequence
```

<220>

<400> 58

<223> Generic peptide

Ala Ser Arg Asn Asp Tyr Ser Tyr Trp Leu