Scalone Układy i Systemy Elektroniczne

Grupa Numer:

7

Czw. 8:00

Autor:

Paweł Michalcewicz

Ćwiczenie numer:

3

Temat:

Projekt Licznika (temat nr 9) Licznik synchroniczny zliczający od 7 do 14 w kodzie Grey'a Data wykonania:

23.01.2025

Data wysłania:

24.01.2025

1. Cel ćwiczenia:

Celem ćwiczenia było zaprojektowanie licznika synchronicznego, który zlicza od 7 do 14 w kodzie Grey'a w środowisku CADENCE Virtuoso. W ramach pracy należało, zgodnie z instrukcją, opracować logikę, później schemat licznika, z wykorzystaniem gotowej biblioteki. W moim przypadku skorzystałem z **przerzutników T**, **bramek NAND** oraz z **INWERTERÓW**. Ostatecznie, projekt obejmuje wykonanie symulacji weryfikujących poprawność działania układu oraz ekstrakcję kluczowych parametrów. Na koniec – wyznaczono parametry czasowe oraz pobór mocy. Cały projekt został wykonany krok po kroku na podstawie instrukcji laboratoryjnej przedmiotu SUiSE.

Wszystkie pliki projektu znajdują się w katalogu:

/home/students/LAB/us0308/projekt_IC_LICZNIK

2. Schemat licznika:

Zrzut Ekranu 1 Schemat ideowy skonstruowany z użyciem bramek NAND oraz INWERTERÓW

3. Testbench:

Zrzut Ekranu 2 Testbench licznika – potrzebny do symulacji

4. Przedlayoutowa symulacja transient:

Zrzut Ekranu 2 Symulacja transient sprawdzająca poprawność działania licznika

Porównanie kodów z kodem Graya

System dziesiętny	Kod binarny	Kod Graya
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	0111
6	0110	0101
7	0111	0100
8	1000	1100
9	1001	1101
10	1010	1111
11	1011	1110
12	1100	1010
13	1101	1011
14	1110	1001
15	1111	1000

Jak widać z załączonej tabeli – wszystkie wartości z symulacji są poprawne w kodzie Greya.

5. Layout:

Zrzut Ekranu 4 Wymiary layoutu

16

Zrzut Ekranu 5 Pomyślne przejście DRC

Zrzut Ekranu 6 Pomyślne przejście LVS

6. Ekstrakcja:

Zrzut Ekranu 7 Pomyślny przebieg ekstrakcji

7. Przebiegi i parametry czasowe:

Rysunek 8 Symulacja transient postlayoutowa – ponowne sprawdzenie poprawności działania

a) Czasy narastania i opadnia

Obliczenia:

Do obliczeń ustawiłem markery na 0.9*1.8=1.62 V oraz 0.1*1.8 =0.18 V, aby odczytać 90% oraz 10% całkowitej wartości amplitudy.

Zrzut Ekranu 9 Czas narastania i opadania Qd

$$t_r$$
 = $t_{90\%}$ - $t_{10\%}$ = 68.175 ns - 67.670 ns = 0.505 ns = **505 ps**

$$t_{\rm f}$$
 = $t_{10\%}$ - $t_{90\%}$ = 63.128 ns – 62.779 ns = 0.349 ns = **349 ps**

Zrzut Ekranu 10 Czas narastania i opadania Qc

$$t_r$$
 = $t_{90\%}$ - $t_{10\%}$ = 63.333 ns - 62.688 ns = 0.645 ns = **645 ps**

$$t_{\rm f}$$
 = $t_{10\%}$ - $t_{90\%}$ = 88.230 ns - 87.802 ns = 0.428 ns = **428 ps**

Zrzut Ekranu 11 Czas narastania i opadania Qb

$$t_r$$
 = $t_{90\%}$ - $t_{10\%}$ = 78.333 ns – 77.687 ns = 0.646 ns = **646 ps**

$$t_{\rm f}$$
 = $t_{10\%}$ - $t_{90\%}$ = 58.222 ns – 57.807 ns = 0.415 ns = **415 ps**

Zrzut Ekranu 12 Czas narastania i opadania Qa

$$t_r$$
 = $t_{90\%}$ - $t_{10\%}$ = 73.292 ns - 72.682 ns = 0.61 ns = **610 ps**

$$t_f$$
 = $t_{10\%}$ - $t_{90\%}$ = 63.199 ns - 62.795 ns = 0.404 ns = **404 ps**

b) Czasy propagacji

Zrzut Ekranu 13 Czas propagacji Qd

$$t_{pLH}$$
 = 67.866 ns – 67.525 ns = 0.341 ns = **341 ps**

$$t_{pHL} = 62.952 \text{ ns} - 62.525 \text{ ns} = 0.427 \text{ ns} = 427 \text{ ps}$$

Zrzut Ekranu 14 Czas propagacji Qc

$$t_{\text{pLH}}$$
 = 62.940 ns – 62.525 ns = 0.414 ns = **415 ps**

$$t_{pHL}$$
 = 88.003 ns - 87.525 ns = 0.478 ns = **478 ps**

Zrzut Ekranu 15 Czas propagacji Qb

$$t_{pLH}$$
 = 77.935 ns – 77.525 ns = 0.41 ns = **410 ps**

$$t_{pHL} = 97.999 \text{ ns} - 97.525 \text{ ns} = 0.474 \text{ ns} = 474 \text{ ps}$$

Zrzut Ekranu 16 Czas propagacji Qa

 t_{pLH} = 72.917 ns - 77.525 ns = 0.392 ns = **392 ps**

 $t_{pHL} = 82.990 \text{ ns} - 82.525 \text{ ns} = 0.465 \text{ ns} = 465 \text{ ps}$

8. Wyznaczanie średniego poboru mocy:

Do obliczeń wykorzystałem kondensator o pojemności 10fF.

Zrzut Ekranu 17 Widok na kalkulator i przebiegi potrzebne do jego wyznaczenia oraz TB w configu

Do obliczeń wykorzystałem kondensatory o pojemności 10fF na każdym wyjściu.

Odczytany wynik: Psr = 2.45 pW