Machine Learning Applications

Klassifikation, Regression, Lineare Modelle und Evaluierung

Lineare Modelle sind statistisches Modelle, bei denen der Erwartungswert einer Variable Y in einer bestimmten ("linearen") Weise von Eingabevariablen X abhängt. Sie versuchen also den Zusammenhang zwischen einer abhängigen Variablen (oder Responsevariablen) Y und einer oder mehreren erklärenden Variablen X_1, \ldots, X_k zu modellieren. In X_1, \ldots, X_n benutzt werden.

Unsere Ziele

Was wollen wir hier kennenlernen?

- Was versteht man unter Klassifikation?
- Was versteht man unter Regression?
- Was sind lineare Modelle?
- Wie bestimmt ich lineare Modelle aus Daten?
- Wie evaluiere ich Modelle auf Daten?

Grundlagen

Sei $X = \{X_1, \dots, X_p\}$ eine Menge von Zufallsvariablen und $Y \neq \emptyset$ eine Menge.

Ein Beispiel (oder Beobachtung) \vec{x} ist ein konkreter p-dimensionaler Vektor über diese Zufallsvariablen.

Eine Menge von n Beispielen $\mathbf{X} = \{\vec{x}_1, ..., \vec{x}_N\}$ können wir dann als $(N \times p)$ -Matrix auffassen:

$$\mathbf{X} = \begin{pmatrix} x_{1,1} & x_{1,2} & \dots & x_{1,p} \\ x_{2,1} & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ x_{N,1} & x_{N,2} & \dots & x_{N,p} \end{pmatrix}$$

Dabei entspricht jede Zeile $\vec{x_i}$ der Matrix **X** einem Beispiel.

Klassifikation und Regression

Beim *überwachten Lernen* (darum geht es hier), ist zusätzlich zu jeder Beobachtung \vec{x} ein *Label* (*Klasse*) y gegeben, d.h. wir haben Beobachtungen $(\vec{x}, y) \in X \times Y$.

Y kann sowohl eine qualitative, als auch eine quantitative Beschreibung von \vec{x} sein.

Für den quantitativen Fall ist z.B. $Y = \mathbb{R}$ und wir versuchen für unbekanntes \vec{x} den Wert y vorherzusagen Regression.

Im Falle qualitativer Beschreibungen ist *Y* eine diskrete Menge und wir nutzen *f* zur Klassifikation.

Lernen auf Trainingsdaten

Wovon gehen wir also aus? Was ist unser Ziel?

Wir suchen die wahre Funktion f : X → Y mit

$$f(\vec{x}) = y \quad \forall \ (\vec{x}, y) \in X \times Y$$

 Wir haben jedoch nur eine Teilmenge der Beobachtungen gegeben (Trainingsdaten)

Klassifikation und Regression

Auf Grundlage der Trainingsdaten suchen wir eine möglichst gute Annäherung \hat{f} an die wahre Funktion f.

Die Funktion \hat{t} bezeichnen wir auch als das gelernte Modell.

Haben wir ein Modell \hat{t} gelernt, so liefert uns dieses Modell mit

$$\hat{y} = \hat{f}\left(\vec{x}\right)$$

für *neue Daten* $\vec{x} \in X$ eine Vorhersage $\hat{y} \in Y$.

Klassifikation und Regression

Im Falle der *Regression* lässt sich so für zuvor unbekannte $\vec{x} \in X$ der Wert

$$\hat{y} = \hat{f}\left(\vec{x}\right)$$

mit $\hat{y} \in \mathbb{R}$ vorhersagen.

Dieses Modell \hat{f} lässt sich auch für die Klassifikation nutzen, bei der z.B. $\hat{y} \in \{-1, +1\}$ vorhergesagt werden sollen:

$$\hat{y} = \begin{cases} +1, & \text{falls } \hat{f}(\vec{x}) \ge \theta \\ -1, & \text{sonst} \end{cases}$$

Hier ist θ ein vorgegebener Schwellwert.

Beispiel

Gegeben seien Gewicht (X_1) und Größe (X_2) einiger Personen und ein Label $y \in \{m, w\}$:

	<i>X</i> ₁	<i>X</i> ₂	Y
<i>X</i> ₁	91	190	m
<i>X</i> ₂	60	170	W
<i>X</i> ₃	41	160	W
:	:	:	:

Beispiel

Es wird nun eine Funktion \hat{t} gesucht, die für neue Daten \vec{x} das Attribut Y (Geschlecht) voraussagt, also

$$\hat{y} = \begin{cases} & \text{m, falls } \hat{t}(x) > \theta \\ & \text{w, sonst} \end{cases}$$

Lineare Modelle

Welche Art von Funktionen sind denkbar?

Lineare Funktionen als einfachste Funktionenklasse:

$$y = f(x) = mx + b$$
 Gerade im \mathbb{R}^2

Allerdings betrachten wir als Beispielraum den \mathbb{R}^p , d.h. wir brauchen eine verallgemeinerte Form:

$$y = f(\vec{x}) = \sum_{i=1}^{p} \beta_i x_i + \beta_0 \quad \text{mit } \beta_0 \in \mathbb{R}, \vec{x}, \vec{\beta} \in \mathbb{R}^p$$
 (1)

Die Funktion f wird also durch $\vec{\beta}$ und β_0 festgelegt und sagt uns für ein gegebenes \vec{x} das entsprechende y voraus

Notation, Vereinbarungen

Bei genauerer Betrachtung von Formel (1) lässt sich $\sum_{i=1}^{p} \beta_i x_i$ als Matrizenmultiplikation oder Skalarprodukt schreiben, also

$$y = \sum_{i=1}^{p} \beta_i x_i + \beta_0 = \vec{x}^T \vec{\beta} + \beta_0 = \left\langle \vec{x}, \vec{\beta} \right\rangle + \beta_0$$

Zur einfacheren Darstellung von f, wird β_0 in den Vektor $\vec{\beta}$ codiert, indem jedes Beispiel $x=(x_1,\ldots,x_p)$ aufgefasst wird als (p+1)-dimensionaler Vektor

$$(x_1,\ldots,x_p)\mapsto (1,x_1,\ldots,x_p)$$

Dies ermöglicht die Darstellung von f als:

$$y = f(\vec{x}) = \sum_{i=0}^{p} \beta_i x_i = \vec{x}^T \vec{\beta} = \langle \vec{x}, \vec{\beta} \rangle$$

Was haben wir nun gemacht?

Wir haben (bei der Beschränkung auf lineare Modelle) nun eine Darstellung für das, was wir *lernen* wollen:

$$y = \hat{f}(\vec{x}) = \vec{x}^T \vec{\beta}$$

Wir haben die Zielfunktion \hat{t} in Abhängigkeit von $\vec{\beta}$ geschrieben und müssen *nur noch* das passende $\vec{\beta}$ finden.

Beispiel: Ein mögliches $\vec{\beta}$

$$f(\vec{x}) = \vec{x}^T \hat{\vec{\beta}} \quad \text{mit } \hat{\vec{\beta}} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{pmatrix} = \begin{pmatrix} 260 \\ 1 \\ 1.2 \end{pmatrix} \theta = 550$$

Es ist nicht garantiert, dass $\vec{\beta}$ immer passt!

Modell-Anpassung

Unsere linearen Modelle sind durch $\vec{\beta}$ parametrisiert, das Lernen eines Modells haben wir also auf die Wahl eines $\vec{\beta}$ abgewälzt.

Das wirft eine Reihe von Fragen auf:

- Was ist ein gutes $\vec{\beta}$?
- Gibt es ein optimales $\vec{\beta}$?
- Welche Möglichkeiten haben wir, unser Modell zu beurteilen?

Eine Möglichkeit: Berechne den Trainingsfehler

$$Err(\vec{\beta}) = \sum_{i=1}^{N} |y_i - \hat{f}(\vec{x}_i)| = \sum_{i=1}^{N} |y_i - x_i^T \vec{\beta}|$$

Modell-Anpassung

Häufig wird als Fehlerfunktion die *quadratische Fehlersumme* (RSS) verwendet:

$$RSS(\vec{\beta}) = \sum_{i=1}^{N} (y_i - \vec{x_i}^T \vec{\beta})^2$$
$$= (\vec{y} - \mathbf{X}\vec{\beta})^T (\vec{y} - \mathbf{X}\vec{\beta})$$

Wir wählen jetzt $\vec{\beta}$ derart, dass der Fehler minimiert wird:

$$\min_{\vec{\beta} \in \mathbb{R}^p} RSS(\vec{\beta}) \tag{2}$$

⇒ Konvexes (="einfaches") Minimierungsproblem!

Minimierung von RSS($\vec{\beta}$)

Um $RSS(\vec{\beta})$ zu minimieren, bilden wir die partielle Ableitung nach $\vec{\beta}$:

$$\frac{\partial RSS(\vec{\beta})}{\partial \beta} = \mathbf{X}^T (\mathbf{y} - \mathbf{X}\vec{\beta})$$

Notwendige Bedingung für die Existenz eines (lokalen) Minimums von RSS ist

$$\frac{\partial RSS(\vec{\beta})}{\partial \beta} = \mathbf{X}^{T}(\mathbf{y} - \mathbf{X}\vec{\beta}) = 0$$

Ist $\mathbf{X}^T\mathbf{X}$ regulär, so erhalten wir

$$\hat{\vec{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} \tag{3}$$

Reguläre Matrix

Wenn es zu einer quadratischen Matrix X eine Matrix X⁻¹ gibt mit

$$XX^{-1} = X^{-1}X = I$$

Einheitsmatrix

$$I = \left(\begin{array}{cccc} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \dots & 0 \\ \vdots & \vdots & \dots & 0 \\ 0 & 0 & \dots & 1 \end{array}\right)$$

dann ist die Matrix X invertierbar oder regulär, sonst singulär.

Optimales $\hat{\vec{\beta}}$?

Mit Hilfe der Minimierung der (quadratischen) Fehlerfunktion RSS auf unseren Trainingsdaten haben wir ein (bzgl. RSS) optimales $\hat{\vec{\beta}}$ gefunden.

Bei einem konvexen Problem ist das lokale auch das globale Minimum. Damit liefert unser Modell Voraussagen \hat{y} für $\vec{x} \in X$:

$$\hat{y} = \hat{f}(\vec{x}) = x^T \hat{\vec{\beta}}$$

Sind wir schon fertig?

- Schön wär's!
- Aber drei Gründe sprechen für weitere Arbeit:
 - 1. Es ist nicht immer so einfach, z.B. dann nicht, wenn wir viele Dimensionen haben (Fluch der hohen Dimension).
 - 2. Vielleicht lassen sich die Beispiele nicht linear trennen!
 - Nur den Fehler zu minimieren reicht nicht aus, wir suchen noch nach weiteren Beschränkungen, die zu besseren Lösungen führen.
- ► Also schauen wir uns den Fehler noch einmal genauer an, stoßen auf Bias und Varianz und merken, dass wir noch keine perfekte Lösung haben.

Fehler

- Bisher haben wir mit BSS die Fehler einfach summiert.
- ▶ Wir wollen aber einbeziehen, wie wahrscheinlich der Fehler ist vielleicht ist er ja ganz unwahrscheinlich! Das machen wir über den Erwartungswert.
- ▶ Wir können sehr unterschiedliche Stichproben als Beispielmenge haben. Der Fehler soll sich auf alle möglichen Trainingsmengen beziehen – nicht nur eine, zufällig günstige!

Zur Erinnerung: Erwartungswert

Erwartungswert

Sei X eine diskrete Zufallsvariable, mit Werten x_1, \dots, x_n und p_i die Wahrscheinlichkeit für x_i . Der Erwartungswert von X ist

$$E(X) = \sum_{i} x_i p_i = \sum_{i} x_i P(X = x_i)$$

Ist *X* eine stetige Zufallsvariable und *f* die zugehörige Wahrscheinlichkeitsdichtefunktion, so ist der Erwartungswert von *X*

$$E(X) = \int_{-\infty}^{\infty} x \, f(x) dx$$

Erwartungswert (Eigenschaften)

Seien X, Y und X_1, \dots, X_n Zufallsvariablen, dann gilt:

▶ Der Erwartungswert ist additiv, d.h. es gilt

$$E\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} E(X_i) \tag{4}$$

▶ Ist Y = kX + d, so gilt für den Erwartungswert

$$E(Y) = E(kX + d) = kE(X) + d$$
(5)

► Sind die Zufallsvariablen X_i stochastisch unabhängig, gilt

$$E\left(\prod_{i=1}^n X_i\right) = \prod_{i=1}^n E(X_i)$$

Varianz und Standardabweichung

Über den Erwartungswert einer Zufallsvariablen X sind mehrere Eigenschaften von X definiert, die helfen, X zu charakterisieren:

Varianz

Sei X eine Zufallsvariable mit $\mu = E(X)$. Die Varianz Var(X) ist definiert als

$$Var(X) := E((X - \mu)^2)$$
.

Die Varianz wird häufig auch mit σ^2 bezeichnet.

Standardabweichung

Die Standardabweichung σ einer Zufallsvariable X ist definiert als

$$\sigma := \sqrt{Var(X)}$$

Varianz und Standardabweichung

Verschiebungssatz

Sei X eine Zufallsvariable, für die Varianz gilt

$$Var(X) = E(X - E(X))^2 = E(X^2) - (E(X))^2$$

Bias

Eine weitere Charakteristik, die häufig zur Beschreibung von erwarteten Fehlern verwendet wird, ist die Verzerrung:

Verzerrung (Bias)

Sei Y eine Zufallsvariable, dann ist die Verzerrung definiert als der erwartete Schätzfehler für Y also wie im Durchschnitt die Schätzungen vom wahren Mittelwert abweichen

$$Bias(\hat{y}) = E(Y - \hat{y}) = E(Y) - \hat{y}$$

Fehler der Regression

- Fehlerfunktion $L(y, \hat{y})$ für gelernte Modelle \hat{f}
 - ▶ absolut $\sum (y_i \hat{y}_i)$
 - quadratisch $\sum (y_i \hat{y}_i)^2$
 - ▶ 0,1-Fehler $\sum \delta_i$, δ = 1, falls $y = \hat{y}$, sonst 0.
- Es geht um Y. Wir unterscheiden
 - das wahre y,
 - das in der Beispielmenge genannte y,
 - das vom Modell vorhergesagte ŷ
- Wir wollen den Erwartungswert des Fehlers minimieren.
- ightharpoonup Wir mitteln über alle möglichen Beispielmengen \mathcal{T} .

Erwartungswert des Fehlers einer Regression minimieren!

Erwarteter quadratischer Vorhersagefehler: Gelernte Funktion $\hat{f}: X \to Y$, der Erwartungswert ihres Fehlers ist:

$$EPE(f) = E(Y - \hat{f}(X))^2$$
 (6)

Optimierungsproblem: Wähle \hat{t} so, dass der erwartete Fehler minimiert wird!

$$\hat{f}(x) = \operatorname{argmin}_{c} E_{Y|X}((Y-c)^{2}|X=x)$$
 (7)

Lösung (Regressionsfunktion): $\hat{f}(x) = E(Y|X = x)$

Bias und Varianz

Zwei Aspekte machen den erwarteten Fehler aus, die Verzerrung (Bias) und die Varianz. Wir wollen den Fehler an einem Testpunkt $x_0 = 0$ angeben und mitteln über allen Trainingsmengen \mathcal{T} .

- Wir gehen davon aus, dass die Angaben in den Daten nicht immer ganz stimmen, so dass es einen Messfehler ϵ gibt, dessen Erwartungswert aber 0 ist.
- Der Bias ist unabhängig vom Beispielsatz und 0 bei einem perfekten Lerner.
- ▶ Die Varianz ist unabhängig vom wahren Wert y und 0 bei einem Lerner, der bei allen Beispielsätzen dasselbe ausgibt.

Dekomposition in Bias und Varianz

Wir nehmen für unser Modell an, dass $Y = f(x) + \epsilon$ und $E(\epsilon) = 0$.

$$\begin{split} EPE(x_0) &= & E_{Y,\mathcal{T}}((Y - \hat{y_0})^2 | x_0) \\ &= & E_Y((Y - f(x_0))^2 | x_0) + & \sigma^2 \textit{Rauschen} \\ &= & E_{\mathcal{T}}((f(x_0) - E_{\mathcal{T}}(\hat{y_0}))^2 | x_0) + & \textit{Bias}^2 \\ &= & E_{\mathcal{T}}((E_{\mathcal{T}}(\hat{y_0}) - \hat{y_0})^2 | x_0) & \textit{Varianz} \end{split}$$

Wie das?!

Haupttrick: kreatives Einfügen von Termen, +a-a, die nichts ändern, aber Umformungen erlauben. Wir leiten das hier aber nicht her.

Bias und Varianz bei linearen Modellen

Das lineare Modell wird an die Daten angepasst durch

$$\hat{f}_D(\vec{x}) = \hat{\beta}^T \vec{x}$$

Der Fehler ist dann für ein beliebiges \vec{x} :

$$Err(\vec{x_0}) = E[(Y - \hat{f}_{\rho}(\vec{x_0}))^2 | X = \vec{x_0}]$$
 (8)

$$= \sigma_{\epsilon}^2 + Var(\hat{f}_{\rho}(\vec{x_0})) + \left[f(\vec{x_0}) - E\hat{f}_{\rho}(\vec{x_0})\right]^2$$
 (9)

Die Anpassung des linearen Modells geht über alle N Beispiele und gewichtet alle p Merkmale (s. (3)).

Diese Varianz ist von x_i zu x_i verschieden. Im Mittel über allen $\vec{x_i}$ ist $Var(\hat{f}_D) = (p/N)\sigma_{\epsilon}^2$.

Zusammenhang zwischen Anzahl der Beispiele, der Attribute und erwartetem Fehler

Modellkomplexität (p, N) und Varianz der Schätzungen bei unterschiedlichen Trainingsmengen hängen bei linearen Modellen direkt zusammen. Gemittelt über alle x_i ist der Trainingsfehler linearer Modelle:

$$\frac{1}{N}\sum_{i=1}^{N}Err(x_i) = \sigma_{\epsilon}^2 + \frac{p}{N}\sigma_{\epsilon}^2 + \frac{1}{N}\sum_{i=1}^{N}\left[f(\vec{x_i}) - E\hat{f}(\vec{x_i})\right]^2$$
(10)

Wir haben also wieder das Rauschen, die Varianz, die die Schwankungen der Schätzungen angibt, und den Bias, der sich auf die Differenz von Schätzung und Wahrheit bezieht (in-sample error).

Fluch der hohen Dimension bei linearen Modellen

- Leider mussten wir annehmen, dass das Modell genau passt, um den erwarteten Fehler klein zu halten.
- Wir wissen aber nicht, welche Art von Funktion gut zu unseren Daten passt! Modellselektion ist schwierig!
- Das Modell muss immer komplizierter werden, je mehr Dimensionen es gibt.
- ▶ Bei linearen Modellen entspricht die Komplexität des Modells direkt p, denn β hat so viele Komponenten wie p bzw. p + 1.

Lineare Modelle

Die grünen und roten Datenpunkte werden durch eine Ebene getrennt.

Figure 2.1: A classification example in two dimensions. The classes are coded as a binary variable— GREN = 0, RED = 1—and then fit by linear regression. The line is the decision boundary defined by $x^T \hat{\beta} = 0.5$. The red shaded region denotes that part of input space classified as RED, while the green region is classified as GREN.

Was wissen Sie jetzt?

- Sie haben theoretisch lineare Modelle für Klassifikation und Regression kennengelernt.
- Sie kennen das Optimierungsproblem der kleinsten Quadrate RSS (Gleichung 2) für lineare Modelle (Gleichung 3).
- Sie kennen den erwarteten Fehler EPE bei linearen Modellen (Gleichung 6).
- Sie kennen den Fluch der hohen Dimension bei linearen Modellen: Komplexität und Varianz hängen an der Dimension! Der Bias kann sehr hoch sein, wenn die Beispiele tatsächlich nicht linear separierbar sind.

