

Practical Machine Learning

Day 8: Mar23 DBDA

Kiran Waghmare

Agenda

- Logistic Regression
- Classification
- Measures for classification
- KNN

@dataaspirant.com

Inputs: X1, X2, X3 II Weights: Q1, Q2, Q3 II Outputs: Happy or Sad

LOGISTIC REGRESSION MODELLING

W1,w2,w3,w4 - Amount of each individual medical problem P(x) - Probability Calculation

Logistic Regression

Amphibians

Reptiles

General Approach for Building Classification Model

Figure 3.3. General framework for building a classification model.

Face Recognition

Training examples of a person

Test images

Classification

The resulting *model* is also called the *hypothesis*.

Given a model space and an optimality criterion, a *model* satisfying this criterion is sought.

After plotting your class distribution you see that you have thousands of negative examples but just

a couple of positives

Performance metrics

Most of the time accuracy will not be enough to assess performance.

•
$$accuracy = \frac{TP + TN}{P + N}$$

Percentage of correctly classified instances.

•
$$sensitivity = \frac{TP}{P}$$

The proportion of positives that are correctly identified as such.

• precision=
$$\frac{TP}{TP+FP}$$

Equivalently, it is the fraction of relevant instances among the selected ones.

$$\mathrm{MCC} = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$$

Matthews correlation coefficient (takes into account imbalance)

Confusion Matrix

Confusion Matrix:

	PREDICTED CLASS		
ACTUAL CLASS		Class=Yes	Class=No
	Class=Yes	а	b
	Class=No	С	d

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Accuracy

	PREDICTED CLASS		
ACTUAL CLASS		Class=Yes	Class=No
	Class=Yes	a (TP)	b (FN)
	Class=No	c (FP)	d (TN)

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Most widely-used metric:

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

$$Precision = rac{TP}{TP + FP}$$

$$Recall = rac{TP}{TP + FN}$$

$$F1\text{-}score = rac{2 imes ext{Precision} imes ext{Recall}}{ ext{Precision} + ext{Recall}}$$

Problem Statement

- Titanic dataset
- **Explore:** How does each feature relate to whether a person survives/alives?
- Do the EDA in more detail than usual and explain the results!
 - Splitting: 80-20, stratify: y, random_state = 0

Preprocessing:

- * Drop decks
- * Fill in the missing value using a simple imputer
- * One hot encoding: sex, alone
- * Ordinal encoding: class
- * Binary encoding: embark town

Model selection:

- * Evaluation metrics used: F1_score
- Logistic Regression