¿QUE ES EL ANALISIS DE SENSIBILIDAD?

Es una metodología que se aplica sobre los resultados óptimos obtenidos con el método simplex principalmente y busca determinar como afectan al problema original los cambios en algunos de sus parámetros.

¿PARA QUE SIRVE EL ANALISIS DE SENSIBILIDAD?

Para realizar cambios en los parámetros de la formulación primal del problema y obtener nuevas soluciones optimas.

Determinar cual es el rango de variación de los parámetros del problema de modo que la nueva solución continúe siendo óptima

EXPLICAR BREVEMENTE ¿QUÉ TIPOS DE CAMBIOS DE PARAMETROS PUEDEN UTILIZARSE EN EL ANALISIS DE SENSIBILIDAD?

Principalmente se tienen los siguientes tipos de cambios:

- a) Cambios en el vector b_i de recurso limitado.
- b) Cambios en el vector de beneficios C_i , el cual puede ser para una variable básica y para una no básica.
- c) Cambios en los coeficientes de la matriz de coeficientes tecnológicos (variables básicas y no básicas)
- d) Adición de una nueva restricción
- e) Adición de una nueva variable

¿DE QUE MANERA AYUDA EN EL PROCESO DE TOMA DE DECISIONES EL ANALISIS DE SENSIBILIDAD?

Determinar cual es la mejor alternativa que se puede obtener en base a la experimentación de cambios de los parámetros, es decir en base a cambios realizados se puede determinar cual de todos los cambios es el mas conveniente para la organización.

FORMA GENERAL DE LA TABLA ÓPTIMA

La forma de la tabla óptima es la siguiente:

CAMBIOS EN EL VECTOR DE RECURSO LIMITADO

Paso 1. Contar con el problema original, el cual está expresado en la siguiente forma general reducida:

F.O MAX
$$Z = CX$$

$$S.A \quad AX \leq b \quad \forall x_i \geq 0$$

Paso 2. Obtener la tabla óptima

<u>Paso 3</u>. Formular el nuevo problema de la siguiente forma:

F.O MAX
$$Z = CX$$

S.A $AX \le b + \Delta b$
 $\forall x_i \ge 0$

Paso 4. Calcular los valores del vector $\widehat{X}_{\scriptscriptstyle B}$ y $\, Z^{\,*}\,$ utilizando las siguientes fórmulas:

$$\widehat{X}_B = B^{-1}(b + \Delta b)$$

$$Z^* = C_B \widehat{X}_B$$

CAMBIOS EN EL VECTOR DE RECURSO LIMITADO

Paso 5

Si todos los valores de \widehat{X}_B son mayores a 0, entonces la nueva solución se considera óptima y se termina el proceso de análisis. Se compara con la solución óptima de la tabla y se emiten conclusiones en base a la comparación.

Si algún valor de \widehat{X}_B es menor a cero, entonces la nueva solución no es factible y se deben llevar todos los resultados, tanto los nuevos valores de \widehat{X}_B como Z^* , al lado derecho de la tabla óptima, luego se debe aplicar el <u>método dual simplex</u>, hasta llegar a obtener una nueva solución óptima.

F.O MAX
$$z \neq 5x_1 + 3x_2$$
 C
$$S.A \quad 3x_1 + 5x_2 \leq 15$$

$$5x_1 + 2x_2 \leq 10$$

$$\forall x_i \geq 0$$

La tabla óptima para el problema original es la siguiente:

		Z	\boldsymbol{x}_1	x_2	h_1	h_2	LD
	Ζ	1	0	0	5/19	¹⁶ / ₁₉	235/ ₁₉
Variables	X2	0	0	1	5/19	- 3/ ₁₉	⁴⁵ / ₁₉
de base	X1	0	1	0	- 2/ ₁₉ /	1 5/19	²⁰ / ₁₉
						B^{-1}	•

a)
$$\Delta b = \begin{bmatrix} -10 \\ -5 \end{bmatrix}$$

La nueva formulación será:

$$F.O \qquad MAX \qquad z = 5x_1 + 3x_2$$
 S.A
$$3x_1 + 5x_2 \le 5$$
 Los nuevos lados derechos después de la suma.
$$5x_1 + 2x_2 \le 5$$
 Variable 0

Calculando los valores del vector $X_{\scriptscriptstyle R}$ se tiene lo siguiente:

$$\hat{X}_B = B^{-1}(b + \Delta b)$$

$$\hat{X}_B = \begin{bmatrix} \frac{5}{19} & -\frac{3}{19} \\ -\frac{2}{19} & \frac{5}{19} \end{bmatrix} \begin{bmatrix} 5 \\ 5 \end{bmatrix}$$

$$\hat{X}_B = \begin{bmatrix} \frac{10}{19} \\ \frac{15}{19} \end{bmatrix}$$

El valor de Z*:

$$Z^* = C_B \hat{X}_B$$

$$Z^* = \begin{bmatrix} 3 & 5 \end{bmatrix} \begin{bmatrix} 10/19 \\ 15/19 \end{bmatrix}$$

$$Z^* = 105/19$$

Como todos los valores de \hat{X}_B son mayores a 0, entonces la nueva solución se considera óptima.

SOLUCION ÓPTIMA FACTIBLE

$$Z^* = \frac{105}{19}$$

$$x_1^* = \frac{15}{19}$$

$$x_2^* = \frac{10}{19}$$

Interpretación del resultado

Si se comparan la solución inicial y la nueva solución se puede decir: que el beneficio de 12.4 unidades monetarias se reduce en la nueva solución a 5.5 unidades monetarias, lo cual implica que existe una disminución del 56%, lo cual para la empresa o entidad analizada no le convendría.

CAMBIOS EN EL VECTOR DE COSTOS PARA VARIABLE BASICA

Paso 1. Contar con el problema original, el cual está expresado de la siguiente forma:

F.O MAX
$$Z = CX$$

S.A $AX \le b$
 $\forall x_i \ge 0$

Paso 2. Obtener la tabla óptima, en la cual se determinaran las secciones que corresponden a los valores de C_BB^{-1} .

Paso 3. Formular el nuevo problema de la siguiente forma:

F.O MAX
$$Z = (C_j + \Delta C_j)X$$

S.A $AX \le b$

 $\forall x_i \geq 0$

Solamente se afectará a uno de los valores, y el valor que debe ser afectado debe ser una variable de base.

CAMBIOS EN EL VECTOR DE COSTOS PARA VARIABLE BASICA

Paso 4. Calcular el nuevo valor para la fila de z que pertenece a la columna j utilizando la siguiente fórmula:

$$\hat{z}_j - \hat{c}_j = C_B B^{-1} A_j - (c_j + \Delta c_j)$$
 (Se debe calcular el lado derecho de esta expresión)

donde:

 $c_j = \text{Costo de la columna } j \text{ del vector de costos totales } (C).$

Ambos valores se extraer de la formulación original.

 $A_{j} = \text{Columna } j \text{ de la matriz de coeficientes tecnológicos } (A).$

<u>Paso 5</u>. Luego llevar el valor obtenido y reemplazar en la tabla óptima proporcionada por el paso 2, solamente en la columna que se quiere analizar, finalmente aplicar el <u>método simplex</u> si es necesario, o simplemente corregir la columna del pivote.

EJEMPLO VECTOR COSTOS VARIABLE BASICA

F.O MAX
$$z = 5x_1 + 3x_2$$
 C

$$3x_1 + 5x_2 \le 15$$

$$5x_1 + 2x_2 \le 10$$

$$\forall x_i \ge 0$$

La tabla óptima para el problema original es la siguiente:

 C_BB^{-1}

#						
		Z	x_1	x_2	h_1 h_2 LD	
	Z	1	0	0	5/19 16/19 235/19	1
	X2	0	0	1	5/19 - 3/19 45/19	
	X ₁	0	1	0	- 2/ ₁₉ / 5/ ₁₉ 20/ ₁₉	

EJEMPLO VECTOR COSTOS VARIABLE BASICA

a)
$$\Delta C_2 = -2$$

La nueva formulación será:

$$F.O$$
 MAX $z=5x_1$ Solamente afecta a la segunda columna.
$$S.A \quad 3x_1+5x_2 \leq 15$$

$$5x_1+2x_2 \leq 10$$

$$\forall x_i \geq 0$$

Calculando el nuevo valor para la segunda columna de z, se tiene lo siguiente:

$$\hat{z}_{2} - \hat{c}_{2} = C_{B}B^{-1}A_{2} - (c_{2} + \Delta c_{2})$$

$$\hat{z}_{2} - \hat{c}_{2} = \begin{pmatrix} 3 & 5 \end{pmatrix} \begin{pmatrix} \frac{5}{19} & -\frac{3}{19} \\ -\frac{2}{19} & \frac{5}{19} \end{pmatrix} \begin{pmatrix} 5 \\ 2 \end{pmatrix} - (3 + (-2))$$

$$\hat{z}_{2} - \hat{c}_{2} = \begin{pmatrix} \frac{5}{19} & \frac{16}{19} \end{pmatrix} \begin{pmatrix} 5 \\ 2 \end{pmatrix} - 1$$

$$\hat{z}_{2} - \hat{c}_{2} = 2$$

EJEMPLO VECTOR COSTOS VARIABLE BASICA

	Z	<i>x</i> ₁	x_2	h_1	h_2	L[)	
Z	1	0	2	5/19	16/19	235	/19	
X2	0	0	1	5/19	- 3/ ₁₉	45	/ ₁₉ ◀	Corregir pivote
X ₁	0	1	0	- ² / ₁₉	5/ ₁₉	20	/ ₁₉	
	Z	x_1	x_2	h_1	h_2	L)	Como existe negativo en la fila de
Z	1	0	0	- 5/ ₁₉	²² / ₁₉	145	5/ ₁₉	z, y la formulación es del tipo
X2	0	0	1	(5/19)	$-3/_{19}$	45/	19	maximizar, entonces se aplica el método simplex.
Х1	0	1	0	- ² / ₁₉	5/19	20/	19	metodo simplex.
Z	1	0	1	0	1	10		
h ₁	0	0	19/5	1	-3/5	9		
X ₁	0	1	2/ ₅	0	1/5	2		

SOLUCION ÓPTIMA FACTIBLE

$$z^* = 10$$

$$x_1^* = 2$$

$$x_2^* = 0$$

Para verificar que la solución es correcta reemplazar en la formulación del nuevo problema.

Interpretación del resultado

Si se comparan la solución inicial y la nueva solución se puede decir: que el beneficio de 12.4 unidades monetarias sufre una disminución a 10 unidades monetarias, por tanto si se reduce el precio de venta del segundo recurso, se disminuye el beneficio en un 19.4%, lo cual genera pérdidas para la empresa. Por tanto esta alternativa resulta perjudicial e inconveniente para la empresa.

CAMBIOS EN EL VECTOR DE COSTOS PARA VARIABLE NO BÁSICA

Se ejecutan todos los pasos del 1 al 4 de la misma forma que en el caso de la variable básica.

$$\hat{z}_j - \hat{c}_j = C_B B^{-1} A_j - (c_j + \Delta c_j)$$

Una vez que se tiene el resultado del nuevo valor de la fila de z para la columna "j", se debe realizar lo siguiente:

Si el valor es negativo = llevar a la tabla y aplicar MÉTODO SIMPLEX.

Si el valor es positivo, no se tiene una nueva solución, es decir la solución se MANTIENE.

EJEMPLO: CAMBIO VECTOR DE COSTOS PARA VARIABLE NO BÁSICA

F.O MAX
$$z = 3x_1 + 5x_2$$

S.A $x_1 \le 4$
 $3x_1 + 2x_2 \le 18$
 $\forall x_i \ge 0$

La tabla óptima para el problema original es la siguiente:

	Z	x_1	x_2	h_1	h_2	LD
Z	1	9/2	0	0	5/2	45
h ₁	0	1	0	1	0	4
X 2	0	3/2	1	0 /	1/2	9
				i	B ⁻¹	

EJEMPLO: CAMBIO VECTOR DE COSTOS PARA VARIABLE NO BÁSICA

La nueva formulación será:

F.O MAX $z = 8x_1 + 5x_2$ $x_1 \leq 4$ $3x_1 + 2x_2 \leq 18$ $\forall x_i \geq 0$

La primera variable es afectada por el cambio.

Calculando el nuevo valor para la primera columna de z, se tiene lo siguiente:

$$\hat{z}_1 - \hat{c}_1 = C_B B^{-1} A_1 - (c_1 + \Delta c_1)$$

$$\hat{z}_1 - \hat{c}_1 = \begin{pmatrix} 0 & 5 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1/2 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix} - (3+5)$$

$$\hat{z}_1 - \hat{c}_1 = \begin{pmatrix} 0 & 5/2 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix} - 8$$

$$\hat{z}_1 - \hat{c}_1 = 15/2 - 6 = -1/2$$

EJEMPLO: CAMBIO VECTOR DE COSTOS PARA VARIABLE NO BÁSICA

	Z	x_1	x_2	h_1	h_2	LD	θ
Z	1	- 1/2	0	0	5/2	45	
h ₁	0	1	0	1	0	4	4
X 2	0	3/2	1	0	1/2	9	6
Z	1	0	0	1/2	5/2	47	
X 1	0	1	0	1	0	4	
X 2	0	0	1	- ³ / ₂	1/2	3	

Interpretación del resultado

Si el beneficio de la primera variable aumenta, se tendría un incremento en los beneficios de 45 a 47 u.m. lo cual significa que se aumenta un **4.44%** en los ingresos y para la empresa resulta una alternativa positiva y conveniente, además que se genera una diversificación en la producción de sus productos.

CAMBIOS EN EL VECTOR DE COSTOS PARA VARIABLE NO BASICA

Paso 1. Contar con el problema original, el cual está expresado de la siguiente forma:

F.O MAX
$$Z = CX$$

S.A $AX \le b$
 $\forall x_i \ge 0$

Paso 2. Obtener la tabla óptima, en la cual se determinaran las secciones que corresponden a los valores de C_BB^{-1} .

Paso 3. Formular el nuevo problema de la siguiente forma:

F.O MAX
$$Z = (C_j + \Delta C_j)X$$

S.A $AX \le b$
 $\forall x_i \ge 0$

El cambio se realiza para una variable que no haya ingresado a la tabla óptima

CAMBIOS EN EL VECTOR DE COSTOS PARA VARIABLE NO BASICA

Paso 4. Calcular el nuevo valor para la fila de Z que pertenece a la columna j utilizando la siguiente fórmula:

$$\hat{z}_j - \hat{c}_j = C_B B^{-1} A_j - (c_j + \Delta c_j)$$
 (Se debe calcular el lado derecho de esta expresión)

Paso 5. Verificar:

- Si el resultado del paso 4 es positivo o cero, entonces los resultados de la tabla óptima no cambian y se mantienen los mismos.
- Si el resultado es negativo se debe llevar a la tabla óptima y se debe aplicar el método simplex.

EJEMPLO VECTOR COSTOS VARIABLE NO BASICA

F.O MAX
$$z = 3x_1 + 5x_2$$

S.A $-2x_1 \le 4$
 $3x_1 + 2x_2 \le 18$
 $\forall x_i \ge 0$

La tabla óptima para el problema original es la siguiente:

	Z	x_1	x_2	h_1	h_2	LD
Z	1	9/2	0	0	5/2	45
h ₁	0	-2	0	1	0	4
X2	0	3/2	1	0	1/2	9

Realizar el análisis para: $\Delta C_1 = 10$

EJEMPLO VECTOR COSTOS VARIABLE NO BASICA

F.O MAX
$$z = (13x_1) + 5x_2$$

 $S.A$

$$-2x_1 \leq 4$$

$$3x_1 + 2x_2 \leq 18$$

$$\forall x_i \geq 0$$

Calculando el nuevo valor para la primera columna de z, se tiene lo siguiente:

$$\hat{z}_1 - \hat{c}_1 = C_B B^{-1} A_1 - (c_1 + \Delta c_1)$$

$$\hat{z}_1 - \hat{c}_1 = \begin{pmatrix} 0 & 5/2 \end{pmatrix} \begin{pmatrix} -2 \\ 3 \end{pmatrix} - 13$$

$$\hat{z}_1 - \hat{c}_1 = -11/2$$

EJEMPLO VECTOR COSTOS VARIABLE NO BASICA

	Z	x_1	x_2	h_1	h_2	LD
Z	1	-11/2	0	0	5/2	45
h ₁	0	-2	0	1	0	4
X2	0	3/2	1	0	1/2	9
Z	1	0	11/3	0	13/3	78
h ₁	0	0	3/2	1	2/3	16
X ₁	0	1	2/3	0	1/3	6

SOLUCION ÓPTIMA FACTIBLE

$$z^* = 78$$
$$x_1^* = 6$$
$$x_2^* = 0$$

Interpretación del resultado

Si se comparan la solución inicial y la nueva solución se puede decir: que el beneficio aumenta en un **73,33%**, y se cambia la producción del segundo producto al primer producto, en función a esto se puede decir que cambiar el beneficio de la primera variable influye significativamente en los ingresos de la empresa, por tanto este cambio sería conveniente para la entidad.

