Lab 4

Data Compression

- Reduces the number of bits required to represent a signal
- Exploits redundancies in a signal, i.e., statistical correlations
 - Can't compress noise!

Two types

Lossless

- Can reconstruct the original signal from the compressed bistream
 - ✓ Banking data, emails, etc.

Lossy

- Cannot perfectly reconstruct the original signal
 - ✓ Audio, video

Compression Techniques

Lossless

Huffman coding, arithmetic coding, Lempel-Ziv, etc.

Lossy

 Resolution reduction, quantization, predictive coding, transform coding

Sub-band Audio Coding

Warmup: Audio equalizer

Warmup: spectrum analyzer

The DFT as a Filter Bank

The length-N DFT viewed as a bandpass filter bank

Observations / Extensions

- The impulse responses, sinusoids, implement bandpass filters
- The filter responses could be longer than length N
 - Aliasing cancellation on reconstruction must be considered

Step 1: "Analyze" spectrum into sub-bands with a filter bank

Step 3: Quantize sub-bands

- But, are all sub-bands equally important?
 - ✓ NO
 - Some carry more power
 - Some are more perceptually significant

So we first need Step 2 on the next slide!

- Step 2: Allocate bits to sub-bands
 - How should we choose to allocate bits?
 - ✓ Minimize error power?
 - ✓ Minimize perceptability?

Uniform quantizer reminder

- All values between two decision levels are mapped to the same reconstruction level
 - Fewer bits means a coarser representation of the signal

- Step 3: Allocate bits to sub-bands
 - We have at least two choices when allocating bits
 - ✓ Minimize error power
 - May be appropriate if subsequent signal processing steps will be required later for other purposes
 - » Think studio processing, not consumer listening
 - ✓ Minimize perceptibility
 - If the goal is to listen to the music, perceptual coding is justified and offers significant gains
 - » Consumer listening

Human Auditory Sensitivity (HAS) as a function of frequency

Audio masking

Sensitivity depends on power of nearby signals

To allocate bits we estimate the spectrum and take into account HAS sensitivity, including masking effects

- Step 4: Huffman coding
 - Lossless coding to further reduce the bitrate

Huffman coding

- Allocate fewer bits to the most probable symbols
 - The theoretically optimal codeword length

$$l(x) = \log_2\left(\frac{1}{p(x)}\right)$$

 The expected value of the number of bits per symbol when the theoretical limit is achieved is the entropy

$$H(X) = \sum_{x} p(x) \log_2 \left(\frac{1}{p(x)}\right)$$

MP3 is a perceptual audio coder

Utilizes analysis / synthesis

- Hybrid system
 - ✓ First a 32 bank subband analysis
 - ✓ Each subband is then further analyzed into 18 frequency channels using an MDCT
 - Think of MDCT as like the DFT

Psycho-acoustic model

Psycho-acoustic model

- Determines amount of noise that can be allowed in each analysis sub-band
- Usually driven by a separate frequency analyzer (DFT)
- Temporal masking and stereo considerations are exploited

Analysis and perceptual model

Front-end analysis and perceptual model components

Quantization and Coding

- Uses a power-law non-linear quantizer
 - Larger sound intensity values are quantized more coarsely
- Different subbands are quantized with different quantizer step sizes ("scalefactors")
 - Goal is to drive quantization noise just below threshold of perception
- Quantizer outputs are Huffman encoded
 - Optimum Huffman table is adaptively selected depending on local music statistics
 - Different tables for different frequency bands

MP3 entire encoder

Iterative approach to subband quantization and coding

CU Boulder

