

Algorithms and Data Structures 2 CS 1501

Fall 2022

Sherif Khattab

ksm73@pitt.edu

(Slides are adapted from Dr. Ramirez's and Dr. Farnan's CS1501 slides.)

Announcements

- Upcoming Deadlines
 - Lab 9 and Homework 9: next Monday 11/21 @ 11:59 pm
 - Assignment 3: Monday 11/28 Friday 12/9 @ 11:59 pm
 - Assignment 4: Friday 12/9 @ 11:59 pm

Recap ...

- Greedy algorithms
 - elegant but hardly correct
 - optimal substructure
 - greedy choice property
- Without the greedy choice property
 - have to solve all subproblems
 - can be done recursively
- Memoization
 - still recursive
 - avoid solving the same subproblem twice

Recap ...

- Dynamic Programming
 - avoid solving the same subproblem twice
 - iterative:
 - start with smaller subproblems then larger subproblems, ...
 - sometimes possible to optimize space needed

Recap ...

- Fibonaaci
 - inefficient recursive solution
 - memorization solution
 - dynamic programming
 - with space optimization

Solving Dynamic Programming Problems

- Can you solve the problem using subproblems?
 - What is the first decision to make to solve the problem?
 - What subproblem(s) emerge out of the that first decision?
- Can you make the first decision without having to wait for the solution of the subproblems?
 - If yes, that's a greedy algorithm! Congratulations!

Solving Dynamic Programming Problems

- If you have to wait for subproblem solutions to make the first decision, try the following steps
- start with a recursive solution
- if inefficient, do you have overlapping subproblems?
- identify the unique subproblems
- solve them from smaller to larger
- This is dynamic programming!
- Optimize space if possible

This Lecture

- Dynamic Programming Problems
 - Unbounded Knapsack
 - 0/1 Knapsack
 - Subset Sum
 - Edit Distance
 - Longest Common Subsequence

The unbounded knapsack problem

Given a knapsack that can hold a weight limit L, and a set of n types items that each has a weight (w_i) and value (v_i) , what is the maximum value we can fit in the knapsack if we assume we have unbounded copies of each item?

A greedy algorithm

- Try adding as many copies of highest value per pound item as possible:
 - O Water: 30/6 = 5
 - O Rope: 14/3 = 4.66
 - \bigcirc Flashlight: 16/4 = 4
 - O Moonpie: 9/2 = 4.5
- Highest value per pound item? Water
 - O Can fit 1 with 4 space left over
- Next highest value per pound item? Rope
 - O Can fit 1 with 1 space left over
- No room for anything else
- Total value in the 10 lb knapsack?
 - 0 44
 - Bogus!

But why doesn't the greedy algorithm work for this problem?

The greedy choice property is missing!

Recursive Solution

Overlapping Subproblems!

Bottom-up Solution

weight: 6 3 4 2

value: 30 14 16 9

Size:	0	1	2	3	4	5	6	7	8	9	10
Max val:	0	0	9	14	18	23	30	32	39	44	48

Bottom-up solution

```
K[0] = 0
for (1 = 1; 1 <= L; 1++) {
      int max = 0;
      for (i = 0; i < n; i++) {
             if (w_i \le 1 \&\& v_i + K[1 - w_i]) > max) {
                     \max = v_i + K[1 - w_i];
      K[1] = max;
}
```

The 0/1 knapsack problem

 What if we have a finite set of items that each has a weight and value?

- O Two choices for each item:
 - Goes in the knapsack
 - Is left out
- What would be our first decision?
- What suproblems emerge?

Recursive solution

```
int knapSack(int[] wt, int[] val, int L, int n) {
   if (n == 0 || L == 0) { return 0 };
   //try placing the n-1 item
   if (wt[n-1] > L) {
       return knapSack(wt, val, L, n-1)
   }
   else {
       return max( val[n-1] + knapSack(wt, val, L-wt[n-1], n-1),
                            knapSack(wt, val, L, n-1)
                           );
```


Subproblems

• What are the unique subproblems?

i∖l	0	1	2	3	4	5	6	7	8	9	10	
0												
1								(r	<i>([i][l]</i> is max) v	alue v	when	
2					-			a	re ava	ilable		
3									nly / lk ne kna			
4												

i∖l	0	1	2	3	4	5	6	7	8	9	10				
0	0	0	0	0	0	0	0	0	0	0	0				
1	0							(r	<i>[i][l]</i> is max) v	value v	when				
2	0				-			a	re ava	ilable		5			
3	0							only / lbs remain in the knapsack							
4	0														

i∖l	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0					
2	0										
3	0										
4	0										

i∖l	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	30	30	30	30	30
2	0										
3	0										
4	0										

i\l	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	30	30	30	30	30
2	0	0	0								
3	0										
4	0										

i\l	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	30	30	30	30	30
2	0	0	0	14	14	14	30	30	30	44	44
3	0										
4	0										

i\l	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	30	30	30	30	30
2	0	0	0	14	14	14	30	30	30	44	44
3	0	0	0	0	16						
4	0										

i\l	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	30	30	30	30	30
2	0	0	0	14	14	14	30	30	30	44	44
3	0	0	0	0	16	16	30	30	30	44	46
4	0										

i\l	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	30	30	30	30	30
2	0	0	0	14	14	14	30	30	30	44	44
3	0	0	0	0	16	16	30	30	30	44	46
4	0	0									

i\l	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	30	30	30	30	30
2	0	0	0	14	14	14	30	30	30	44	44
3	0	0	0	0	16	16	30	30	30	44	46
4	0	0	9	9	16	16	30	30	39	44	46

```
int knapSack(int wt[], int val[], int L, int n) {
   int[][] K = new int[n+1][L+1];
   for (int i = 0; i <= n; i++) {
       for (int l = 0; l <= L; l++) {
           if (i==0 | | 1==0) \{ K[i][1] = 0 \};
           //try to add item i-1
           else if (wt[i-1] > 1){K[i][1] = K[i-1][1]};
           else {
              K[i][1] = max(val[i-1] + K[i-1][1-wt[i-1]],
                                         K[i-1][1]);
   return K[n][L];
```

Subset sum

• Given a set of non-negative integers S and a value k, is there a subset of S that sums to exactly k?

Subset sum calls

Subset sum recursive solution

```
boolean SSS(int set[], int sum, int n) {
   if (sum == 0)
         return true;
   if (sum != 0 \&\& n == 0)
         return false;
   //try adding item n-1
   if (set[n-1] > sum)
          return SSS(set, sum, n-1);
   return SSS(set, sum, n-1)
         || SSS(set, sum-set[n-1], n-1);
}
```

What would a dynamic programming table look like?

Subset sum bottom-up dynamic programming

```
boolean SSS(int set[], int sum, int n) {
    boolean[][] subset = new boolean[sum+1][n+1];
    for (int i = 0; i <= n; i++) subset[0][i] = true;
    for (int i = 1; i \le sum; i++) subset[i][0] = false;
   for (int i = 1; i <= sum; i++) {
      for (int j = 1; j <= n; j++) {
             subset[i][j] = subset[i][j-1];
             //try adding item j-1
             if (i >= set[j-1])
                    subset[i][j] ||= subset[i - set[j-1]][j-1];
   return subset[sum][n];
```

Edit Distance

- Given a string S of length n
- Given a string T of length m
- We want to find the minimum number of character changes to convert one to the other
 - called Levenshtein Distance (LD)
- Consider changes to be one of the following:
 - Change a character in a string to a different char
 - Delete a character from one string
 - Insert a character into one string

For example:

```
LD("WEASEL", "SEASHELL") = 3
```

- Why? Consider "WEASEL":
 - Change the W in position 1 to an S
 - Add an H in position 5
 - Add an L in position 8
- Result is SEASHELL
 - We could also do the changes from the point of view of SEASHELL if we prefer
- How can we determine this?
 - We can define it in a recursive way initially
 - Then we will use dynamic programming to improve the run-time

- We want to calculate D[n, m] where n is the length of S and m is the length of T
 - From this point of view we want to determine the distance from S to T
 - If we reverse the arguments, we get the (same) distance from T to S (but the edits may be different)

```
If n = 0 // BASE CASES

return m (m appends will create T from S)

else if m = 0

return n (n deletes will create T from S)

else

Consider character n of S and character m of T
```

Now we have some possibilities

- If characters match
 - return D[n-1, m-1]
 - Result is the same as the strings with the last character removed (since it matches)
 - Recursively solve the same problem with both strings one character smaller
- If characters do not match -- more poss. here
 - We could have a mismatch at that char:
 - return D[n-1, m-1] + 1
 - Example:
 - S = ----X
 - Change X to Y, then recursively solve the same problem but with both strings one character smaller

- S could have an **extra** character
 - o return D[n-1, m] + 1
 - Example:
 - \blacksquare S = -----XY
 - $\mathbf{T} = ----\mathbf{X}$
 - Delete Y, then recursively solve the same problem, with S one char smaller but with T the same size
- S could be missing a character there
 - return D[n, m-1] + 1
 - Example:
 - \blacksquare S = ----Y
 - $\blacksquare T = -----YX$
 - Add X onto S, then recursively solve the same problem with S the original size and T one char smaller

- Unfortunately, we don't know which of these is correct until we try them all!
- So to solve this problem we must try them all and choose the one that gives the minimum result
 - O This yields 3 recursive calls for each original call (in which a mismatch occurs) and thus can give a worst-case run-time of Theta(3ⁿ)
- How can we do this more efficiently?
 - Let's build a table of all possible values for n and m using a twodimensional array
 - Basically we are calculating the same D[][] values but from the bottom up rather than from the top down

- For each new cell D[i, j] when we have a mismatch we are taking the minimum of the cells
 - \circ D[i-1, j] + 1
 - Append a char to S
 - \circ D[i, j-1] + 1
 - Delete a char from S
 - D[i-1, j-1] + 1
 - Change char at this point in S if necessary
- For each new cell D[i, j] = D[i-1, j-1] if we have a match

- At the end the value in the bottom right corner is our edit distance
- Example:
 - We are starting with PROTEIN
 - We want to generate ROTTEN
 - Note the initialization of the first row and column
 - Let's fill in the remaining squares

	Р	R	0	Т	Е	I	N
R							
0							
Т							
Т							
Е							
N							

	Р	R	0	Т	Е	I	N
R	1	1	2	3	4	5	6
0	2	2	1	2	3	4	5
Т	3	3	2	1	2	3	4
Т	4	4	3	2	2	3	4
Е	5	5	4	3	2	3	4
N	6	6	5	4	3	3	3

- Why is this cool?
 - Run-time is Theta(MN)
 - As opposed to the 3ⁿ of the recursive version
 - Unlike the pseudo-polynomial subset sum and knapsack solutions, this solution does not have any anomalous worst-case scenarios
 - There is a price, which is the space required for the matrix
 - Optimized versions can reduce this from Theta(MN) space to Theta(M+N) space

Longest Common Subsequence

• Given two sequences, return the longest common subsequence

```
A Q S R J K V B IQ B W F J V I T U
```

 We'll consider a relaxation of the problem and only look for the length of the longest common subsequence

LCS dynamic programming example

x = A Q S R J B I					y = Q B I J T U T				
i\j	0	Q	В	I	J	Т	U	Т	
0									
Α									
Q									
S									
R									
J									
В									
1									

LCS dynamic programming solution

```
int LCSLength(String x, String y) {
   int[][] m = new int[x.length + 1][y.length + 1];
   for (int i=0; i <= x.length; i++) {
            for (int j=0; j <= y.length; j++) {
                  if (i == 0 | | j == 0) m[i][j] = 0;
                  if (x.charAt(i) == y.charAt(j))
                        m[i][j] = m[i-1][j-1] + 1;
                  else
                        m[i][j] = max(m[i][j-1], m[i-1][j]);
   return m[x.length][y.length];
```

Change making problem

Consider a currency with n different denominations of coins d_1 , d_2 , ..., d_n . What is the minimum number of coins needed to make up a given value k?

We will see a dynamic programming algorithm in the recitations