## Concepts and Formulas

Conic Section

## Vertical and Horizontal Hyperbola Difference

## Horizontal Hyperbola

( $x^2$  comes first)

 $(y^2 \text{ comes first})$ 

At 
$$(0,0)$$
:  $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ 

General: 
$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$
  
 $a^2 + b^2 = c^2$ 

**Center:** 
$$(h, k)$$
 **Foci:**  $(h \pm c, k)$ 

**Vertices:** 
$$(h \pm a, k)$$
 **Co-Vertices:**  $(h, k \pm b)$ 

Length of Transverse Axis: 2a

Length of Conjugate Axis: 2b

Asymptotes: 
$$y - k = \pm \frac{b}{a}(x - h)$$



At 
$$(0,0)$$
:  $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$ :

General: 
$$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$$
  
 $a^2 + b^2 = c^2$ 

**Vertices:** 
$$(h, k \pm a)$$
 **Co-Vertices:**  $(h \pm b, k)$ 

**Length of Transverse Axis:** 2*a* 

Length of Conjugate Axis: 2b

Asymptotes: 
$$y - k = \pm \frac{a}{b}(x - h)$$



Notes: 
$$b^2$$
 is always after the minus sign;  $a^2+b^2=c^2$ ; Tranverse Axis Length:  $=2a$ ; Conjugate Axis Length  $=2b$ ; Asymptotes are  $y-k=\pm\frac{\sqrt{\text{number under the }y}}{\sqrt{\text{number under the }x}}(-x-h)$ 

= 
$$2b$$
 ; Asymptotes are  $y - k = \pm \frac{\sqrt{\text{number under the } x}}{\sqrt{\text{number under the } x}} (x - h)$