ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В.ЛОМОНОСОВА»

МЕХАНИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА ТЕОРИИ ВЕРОЯТНОСТЕЙ

КУРСОВАЯ РАБОТА

Асимптотически оптимальные стратегии в модели рынка с конкуренцией и двумя типами активов

Выполнил студент 4 курса 409 академической группы Асылхузин Тимур Ринатович

Научный руководитель: к.ф.-м.н. **Житлухин Михаил Валентинович**

> Москва 2020

1 Модель

Пусть $(\Omega, \mathcal{F}, \mathsf{P})$ – вероятностное пространство. Пусть $\mathbb{F} = \{\mathcal{F}_t, t \in \mathbb{Z}_+\}$ – фильтрация этого вероятностного пространства, характеризующая общее состояние рынка в моменты времени $t=0,1,\ldots$ Пусть на финансовом рынке есть N активов, выплаты которых пропорциональны вложенной инвестором сумме, и K активов, доходность которых не зависят от вложенной суммы. Каждый актив первого типа характеризуется величиной $X_t^n(\omega)$ – суммарной выплатой средств за временной промежуток (t-1,t], а каждый актив второго типа величиной $Z_t^n(\omega)$ – доходом на единицу вложенных средств за (t-1,t]. Процессы $\{X_t=(X_t^1,\ldots,X_t^N)\}_{t\geq 1}$ и $\{Z_t=(Z_t^1,\ldots,Z_t^K)\}_{t\geq 1}$ согласованы с фильтрацией \mathbb{F} .

В рамках данной работы будем рассматривать ситуацию с двумя инвесторами, капиталы которых в момент времени t обозначаются как Y_t и \widetilde{Y}_t . Суммарный капитал $W_t = Y_t + \widetilde{Y}_t$. Будем предполагать, что начальные капиталы Y_0 и \widetilde{Y}_0 известны заранее, положительны и неслучайны. Положим

$$\Lambda = \{ \lambda \in \mathbb{R}^n : \lambda^1 + \dots + \lambda^N \le 1, \ \forall n \ \lambda^n \ge 0 \},$$

$$M = \{ \mu \in \mathbb{R}^n : \mu^1 + \dots + \mu^K = 1, \ \forall k \ \mu^k \ge 0 \},$$

где Λ – множество всевозможных вариантов распределения первым инвестором собственного капитала по активам первого типа, а M – множество вариантов распределения оставшейся части капитала $(1 - \sum_{n=1}^{N} \lambda^n)$ по активам второго типа (λ и μ – вектора долей). Пусть $\lambda_t(\omega,c): \Omega \times \mathbb{R}_+ \to \Lambda$ и $\mu_t(\omega,c): \Omega \times \mathbb{R}_+ \to M$ – вектор-функции, показывающие как инвестор будет распределять свой капитал в момент времени t-1 при событии ω и суммарном капитале инвесторов c. Дополнительно потребуем, чтобы при любом $t \geq 1$ случайные функции λ_t, μ_t были измеримы относительно σ -алгебры $\mathcal{F}_{t-1} \otimes \mathcal{B}(\mathbb{R}_+)$. Тогда назовём пару $(\lambda(\omega,c),\mu(\omega,c))$ инвестиционной стратегией.

Аналогично определяется инвестиционная стратегия второго инвестора, которую будем обозначать $(\widetilde{\lambda}(\omega,c),\ \widetilde{\mu}(\omega,c))$. В дальнейшем в тех местах, где это не будет приводить к замешательству, зависимость величин от аргументов будем опускать. Для удобства изложения для векторов $a=(a^1,\ldots,a^K),\ b=(b^1,\ldots,b^K)$ введём обозначения

$$|a| = \sum_{k=1}^{K} a^k, \quad a \cdot b = \sum_{k=1}^{K} a^k b^k.$$

При введённых обозначениях в актив первого типа под номером n в момент времени t-1 будет вложена часть капитала $\lambda_t^n Y_{t-1}$, а в актив второго типа под номером k: $(1-|\lambda_t|)\mu_t^k Y_{t-1}$. Но стратегия зависит также и от суммарного капитала инвесторов, поэтому определим последовательности капиталов рекуррентно:

 $t=0:Y_0$ и \widetilde{Y}_0 известны и неслучайны. Тогда $W_0=Y_0+\widetilde{Y}_0$ и

$$\lambda_1(\omega) = \lambda_1(\omega, W_0), \ \widetilde{\lambda}_1(\omega) = \widetilde{\lambda}_1(\omega, W_0), \ \mu_1(\omega) = \mu_1(\omega, W_0), \ \widetilde{\mu}_1(\omega) = \widetilde{\mu}_1(\omega, W_0).$$

Произвольный момент времени t:

$$Y_{t}(\omega) = \sum_{k=1}^{K} (1 - |\lambda_{t}(\omega)|) \mu_{t}^{k}(\omega) Y_{t-1}(\omega) Z_{t}^{k}(\omega) + \sum_{n=1}^{N} \frac{\lambda_{t}^{n}(\omega) Y_{t-1}(\omega)}{\lambda_{t}^{n}(\omega) Y_{t-1}(\omega) + \widetilde{\lambda}_{t}^{n}(\omega) \widetilde{Y}_{t-1}(\omega)} X_{t}^{n}(\omega),$$

$$\widetilde{Y}_{t}(\omega) = \sum_{k=1}^{K} (1 - |\widetilde{\lambda}_{t}(\omega)|) \widetilde{\mu}_{t}^{k}(\omega) \widetilde{Y}_{t-1}(\omega) Z_{t}^{k}(\omega) + \sum_{n=1}^{N} \frac{\widetilde{\lambda}_{t}^{n}(\omega) \widetilde{Y}_{t-1}(\omega)}{\lambda_{t}^{n}(\omega) Y_{t-1}(\omega) + \widetilde{\lambda}_{t}^{n}(\omega) \widetilde{Y}_{t-1}(\omega)} X_{t}^{n}(\omega).$$

Тогда $W_t(\omega) = Y_t(\omega) + \widetilde{Y}_t(\omega)$ и можем найти значения λ, μ для следующего этапа:

$$\lambda_{t+1}(\omega) = \lambda_{t+1}(\omega, W_t(\omega)), \ \mu_{t+1}(\omega) = \mu_{t+1}(\omega, W_t(\omega)).$$

Определение 1. Случайные величины $\lambda_{t+1}(\omega) = \lambda_{t+1}(\omega, W_t(\omega)), \ \mu_{t+1}(\omega) = \mu_{t+1}(\omega, W_t(\omega))$ будем называть *реализациями* стратегии $(\lambda(\omega, c), \mu(\omega, c)).$

В дальнейшем будем работать только с реализациями стратегий, и там, где это не будет вести к неоднозначности, будем опускать зависимость от аргументов.

Определение 2. Для доли инвестора на рынке в момент времени t введём следующее обозначение:

$$r_t = \frac{Y_t}{W_t}.$$

Определение 3. Если для стратегии (λ, μ) первого инвестора при любых начальных капиталов $Y_0, \widetilde{Y}_0 > 0$ и стратегии $(\widetilde{\lambda}(\omega), \widetilde{\mu}(\omega))$ второго инвестора выполняется, что:

- 1) r_t субмартингал, то назовём стратегию (λ, μ) оптимальной,
- 2) $\ln r_t$ субмартингал, то назовём стратегию (λ, μ) логоптимальной.

Утверждение 1. Из логоптимальности стратегии следует оптимальность.

Доказательство. По определению логоптимальной стратегии,

$$E(\ln r_t | \mathcal{F}_{t-1}) \ge \ln r_{t-1} \iff E(\ln \frac{r_t}{r_{t-1}} | \mathcal{F}_{t-1}) \ge 0.$$

Логарифм - вогнутая функция. Применяя неравенство Йенсена для условного математического ожидания, получаем

$$0 \le E(\ln \frac{r_t}{r_{t-1}} | \mathcal{F}_{t-1}) \le \ln E(\frac{r_t}{r_{t-1}} | \mathcal{F}_{t-1}).$$

Взяв экспоненту от правой и левой частей неравенства выше, получаем требуемое условие для оптимальности. \Box

2 Оптимальная стратегия

Далее займёмся поиском логоптимальной стратегии в нашей постановке задачи. Выясняется, что если распределять капитал по активам частями, в некотором смысле пропорциональными их выплатам, то удаётся достичь оптимальности.

Основным результатом работы является следующая теорема.

Теорема 2. Инвестиционная стратегия (λ, μ) , реализации которой задаются формулами

$$\lambda_t = E(\frac{X_t^n}{\zeta_t \mu_t \cdot Z_t + |X_t|} | \mathcal{F}_{t-1}), \quad \mu_t = \frac{a_t}{|a_t|},$$

 $\epsilon \partial e \zeta_t = |a_t| W_{t-1},$

$$a_{t} = \underset{a}{\operatorname{argmax}} \left\{ E_{t-1} \ln\left(\frac{a \cdot Z_{t} + \frac{|X_{t}|}{W_{t-1}}}{|Z_{t}| + \frac{|X_{t}|}{W_{t-1}}}\right) - |a| \mid |a| \le 1, \ a^{k} \ge 0, \ k = \overline{1, K} \right\},\,$$

является логоптимальной.

Следующий раздел посвящён доказательству этой теоремы.

3 Доказательство оптимальности

Сначала докажем несколько вспомогательных утверждений, которые понадобятся в ходе доказательства.

Лемма 3. (Дискретное неравенство Йенсена) Пусть функция f(x) является выпуклой на некотором множестве \mathcal{X} и числа q_1, q_2, \ldots, q_n таковы, что

$$q_1, q_2, \dots, q_n > 0 \ u \ q_1 + q_2 + \dots + q_n = 1.$$

Тогда каковы бы ни были числа x_1, x_2, \ldots, x_n из множества \mathcal{X} , выполняется неравенство:

$$f\left(\sum_{i=1}^{n} q_i x_i\right) \le \sum_{i=1}^{n} q_i f(x_i).$$

Для вогнутой функции, соответственно, выполняется неравенство в другую сторону.

Лемма 4. Для любого a > 0 выполняется:

$$\ln a \ge 1 - \frac{1}{a}.$$

Доказательство. Рассмотрим производные функций $f(a) = \ln a$ и $g(a) = 1 - \frac{1}{a}$:

$$f'(a) = \frac{1}{a}, \quad g'(a) = \frac{1}{a^2}.$$

В точке a=1 значения функций, как и значения производных, в точности совпадают. При a>1: f'(a)>g'(a). При a<1: f'(a)< g'(a). То есть при движении направо функция f растёт быстрее g, а при движении влево убывает медленнее. Следовательно на всём промежутке $(0;+\infty)$ значение функции f не меньше значения функции g.

Лемма 5. Пусть $\alpha, \beta \in \mathbb{R}^N_+$ – два вектора, т.ч. $|\alpha|, |\beta| \leq 1$ и для любого п выполняется: если $\beta^n = 0$, то и $\alpha^n = 0$. Тогда

$$\alpha \cdot (\ln \alpha - \ln \beta) \ge \frac{\|\alpha - \beta\|^2}{4} + |\alpha| - |\beta|,$$

где при $\alpha^n = 0$ положим $\alpha^n (\ln \alpha^n - \ln \beta^n) = 0$.

Доказательство. Используя, что $\ln x \le 2(\sqrt{x}-1)$ для любого x>0, мы получим

$$\alpha \cdot (\ln \alpha - \ln \beta) = -\sum_{n:\alpha^n \neq 0} \alpha^n \ln(\beta^n / \alpha^n) \ge 2 \sum_n (\alpha^n - \sqrt{\alpha^n \beta^n}) =$$

$$= \sum_n (\sqrt{\alpha^n} - \sqrt{\beta^n}) + |\alpha| - |\beta|.$$

Далее, используя неравенство $(\sqrt{x} - \sqrt{y})^2 \ge (x - y)^2/4$, которое справедливо для любых $x, y \in [0, 1]$, получаем требуемое утверждение.

Определение 4. *Соответствие* $\varphi : X \to Y$ из множества X в множество Y сопоставляет каждому значению $x \in X$ подмножество $\varphi(x) \subset Y$.

Определение 5. Селектором из соответствия $\varphi: S \to X$ между двумя множествами назовём функцию $f: S \to X$ такую, что $f(s) \in \varphi(s)$ для каждого $s \in S$.

Теорема 6. (Об измеримом селекторе) Пусть (Ω, \mathcal{F}) – измеримое пространство, L – сепарабельное метрическое пространство. Функция $f(\omega, l): \Omega \times L \to \mathbb{R}$ такова, что при любом фиксированном ω она непрерывна по l и при любом фиксированном l измерима по ω (является функцией Каратеодори). Также заданы

$$m(\omega) = \max_{l \in L} f(\omega, l),$$

$$\mu(\omega) = \{l \in L : f(\omega, l) = m(\omega)\}.$$

Тогда функция m измерима и существует измеримый селектор $l^*(\omega)$ из соответствия μ .

Теперь приступим к доказательству основной теоремы.

Доказательство. Чтобы облегчить изложение, введём вспомогательные обозначения:

$$F_t^n = \frac{\lambda_t^n}{\lambda_t^n r_{t-1} + \widetilde{\lambda}_t^n (1 - r_{t-1})}, \quad \widetilde{F}_t^n = \frac{\widetilde{\lambda}_t^n}{\lambda_t^n r_{t-1} + \widetilde{\lambda}_t^n (1 - r_{t-1})}.$$

Тогда уравнение последовательности капитала первого инвестора перепишется в виде

$$Y_t = Y_{t-1} \left((1 - |\lambda_t|) \mu_t \cdot Z_t + \frac{F_t \cdot X_t}{W_{t-1}} \right).$$

Для того, чтобы явно выразить отношение r_t/r_{t-1} , распишем несколько промежуточных этапов:

$$W_{t} = Y_{t} + \widetilde{Y}_{t} = Y_{t-1} \left((1 - |\lambda_{t}|)\mu_{t} \cdot Z_{t} + \frac{F_{t} \cdot X_{t}}{W_{t-1}} \right) + \widetilde{Y}_{t-1} \left((1 - |\widetilde{\lambda}_{t}|)\widetilde{\mu}_{t} \cdot Z_{t} + \frac{\widetilde{F}_{t} \cdot X_{t}}{W_{t-1}} \right) =$$

$$= r_{t-1}W_{t-1}(1 - |\lambda_{t}|)\mu_{t} \cdot Z_{t} + (1 - r_{t-1})W_{t-1}(1 - |\widetilde{\lambda}_{t}|)\widetilde{\mu}_{t} \cdot Z_{t} + r_{t-1}F_{t} \cdot X_{t} + (1 - r_{t-1})\widetilde{F}_{t} \cdot X_{t} =$$

$$= W_{t-1} \left(r_{t-1}(1 - |\lambda_{t}|)\mu_{t} \cdot Z_{t} + (1 - r_{t-1})(1 - |\widetilde{\lambda}_{t}|)\widetilde{\mu}_{t} \cdot Z_{t} + \frac{r_{t-1}F_{t} \cdot X_{t}}{W_{t-1}} + \frac{(1 - r_{t-1})\widetilde{F}_{t} \cdot X_{t}}{W_{t-1}} \right) =$$

$$= W_{t-1} \left((r_{t-1}(1 - |\lambda_{t}|)\mu_{t} + (1 - r_{t-1})(1 - |\widetilde{\lambda}_{t}|)\widetilde{\mu}_{t}) \cdot Z_{t} + \frac{|X_{t}|}{W_{t-1}} \right),$$

так как $(r_{t-1}F_t + (1-r_{t-1})\widetilde{F}_t) \cdot X_t = 1 \cdot X_t = |X_t|$. Тогда

$$\frac{r_t}{r_{t-1}} = \frac{Y_t}{Y_{t-1}} \cdot \frac{W_{t-1}}{W_t} = \frac{(1 - |\lambda_t|)W_{t-1}\mu_t \cdot Z_t + F_t \cdot X_t}{(r_{t-1}(1 - |\lambda_t|)\mu_t W_{t-1} + (1 - r_{t-1})(1 - |\widetilde{\lambda}_t|)\widetilde{\mu}_t W_{t-1}) \cdot Z_t + |X_t|} = \frac{\zeta_t \mu_t \cdot Z_t + F_t \cdot X_t}{r_{t-1}\zeta_t \mu_t \cdot Z_t + (1 - r_{t-1})\widetilde{\zeta}_t \widetilde{\mu}_t \cdot Z_t + |X_t|},$$

где
$$\zeta_t = (1 - |\lambda_t|)W_{t-1}, \ \widetilde{\zeta}_t = (1 - |\widetilde{\lambda}_t|)W_{t-1}.$$

Следовательно,

$$\ln \frac{r_t}{r_{t-1}} = \ln \frac{\zeta_t \mu_t \cdot Z_t + F_t \cdot X_t}{r_{t-1} \zeta_t \mu_t \cdot Z_t + (1 - r_{t-1}) \widetilde{\zeta}_t \widetilde{\mu}_t \cdot Z_t + |X_t|} =$$

$$= \ln \left(\frac{\zeta_t \mu_t \cdot Z_t + F_t \cdot X_t}{\zeta_t \mu_t \cdot Z_t + |X_t|} \right) + \ln \left(\frac{\zeta_t \mu_t \cdot Z_t + |X_t|}{r_{t-1} \zeta_t \mu_t \cdot Z_t + (1 - r_{t-1}) \widetilde{\zeta}_t \widetilde{\mu}_t \cdot Z_t + |X_t|} \right).$$

По Лемме 3:

$$\ln\left(\frac{\zeta_t\mu_t \cdot Z_t + F_t \cdot X_t}{\zeta_t\mu_t \cdot Z_t + |X_t|}\right) = \ln\left(\frac{\zeta_t\mu_t \cdot Z_t}{\zeta_t\mu_t \cdot Z_t + |X_t|} \cdot 1 + \sum_{n=1}^N \frac{X_t^n}{\zeta_t\mu_t \cdot Z_t + |X_t|} \cdot F_t^n\right) \ge$$

$$\ge \frac{\zeta_t\mu_t \cdot Z_t}{\zeta_t\mu_t \cdot Z_t + |X_t|} \cdot \ln 1 + \sum_{n=1}^N \frac{X_t^n}{\zeta_t\mu_t \cdot Z_t + |X_t|} \cdot \ln F_t^n = \frac{X_t \cdot \ln F_t}{\zeta_t\mu_t \cdot Z_t + |X_t|}.$$

По Лемме 4:

$$\ln\left(\frac{\zeta_t\mu_t\cdot Z_t + |X_t|}{r_{t-1}\zeta_t\mu_t\cdot Z_t + (1-r_{t-1})\widetilde{\zeta}_t\widetilde{\mu}_t\cdot Z_t + |X_t|}\right) \ge \frac{(1-r_{t-1})(\zeta_t\mu_t - \widetilde{\zeta}_t\widetilde{\mu}_t)\cdot Z_t}{\zeta_t\mu_t\cdot Z_t + |X_t|}.$$

Используя неравенство выше, для логарифма отношения долей получаем:

$$\ln \frac{r_t}{r_{t-1}} \ge \frac{\ln F_t \cdot X_t}{\zeta_t \mu_t \cdot Z_t + |X_t|} + \frac{(1 - r_{t-1})(\zeta_t \mu_t - \widetilde{\zeta}_t \widetilde{\mu}_t) \cdot Z_t}{\zeta_t \mu_t \cdot Z_t + |X_t|}.$$
 (1)

Попробуем взять доли капитала для первого типа активов как

$$\lambda_t^n = E(\frac{X_t^n}{\zeta_t \mu_t \cdot Z_t + |X_t|} | \mathcal{F}_{t-1}).$$

В дальнейшем для сокращения записи будем использовать $E_t = E(\cdot | \mathcal{F}_t)$.

Оценим первое слагаемое в (1). Используя предсказуемость процесса F_t и лемму 5 получаем

$$E_{t-1} \frac{\ln F_t \cdot X_t}{\zeta_t \mu_t \cdot Z_t + |X_t|} = \lambda_t \cdot \ln F_t = \sum_{n=1}^N \lambda_t^n \ln \frac{\lambda_t^n}{\lambda_t^n r_{t-1} + \widetilde{\lambda}_t^n (1 - r_{t-1})} \ge \frac{1}{4} (1 - r_{t-1})^2 ||\lambda_t - \widetilde{\lambda}_t||^2 + (1 - r_{t-1}) (|\lambda_t| - |\widetilde{\lambda}_t|).$$

Для необходимой нам оценки достаточно доказать, что для второго слагаемого в выражении (1) выполняется:

$$E_{t-1} \frac{(\zeta_t \mu_t - \widetilde{\zeta}_t \widetilde{\mu}_t) \cdot Z_t}{\zeta_t \mu_t \cdot Z_t + |X_t|} \ge -(|\lambda_t| - |\widetilde{\lambda}_t|) = \frac{\zeta_t - \widetilde{\zeta}_t}{W_{t-1}}.$$

Введём обозначения:

$$a_t = \frac{\zeta_t}{W_{t-1}} \mu_t, \quad \widetilde{a}_t = \frac{\widetilde{\zeta}_t}{W_{t-1}} \widetilde{\mu}_t, \quad V_t = \frac{|X_t|}{W_{t-1}}.$$

Здесь $|a_t| \le 1$, $|\widetilde{a}_t| \le 1$. Тогда предыдущее неравенство эквивалентно следующему:

$$E_{t-1}\frac{(a_t - \widetilde{a}_t) \cdot Z_t}{a_t \cdot Z_t + V_t} \ge |a_t| - |\widetilde{a}_t|.$$

Для дальнейших вычислений временно опустим индекс t. В силу предсказуемости процессов a и \widetilde{a} имеем

$$E_{t-1}\frac{(a-\widetilde{a})\cdot Z}{a\cdot Z+V} \ge |a|-|\widetilde{a}| \iff a\cdot \left(E_{t-1}\frac{Z}{a\cdot Z+V}-1\right)+\widetilde{a}\cdot \left(1-E_{t-1}\frac{Z}{a\cdot Z+V}\right) \ge 0.$$

Для выполнения этого неравенства достаточно найти \mathcal{F}_{t-1} -измеримый процесс a, такой что для каждого k выполняется:

$$E_{t-1}\frac{Z^k}{a\cdot Z+V}=1$$
 или $(E_{t-1}\frac{Z^k}{a\cdot Z+V}<1$ и $a^k=0).$ (2)

Рассмотрим задачу

$$\begin{cases}
E_{t-1}\ln(a\cdot Z+V)-|a| & \longrightarrow \max_{a}, \\
|a| \le 1; \quad a^{k} \ge 0, \quad k=1,\ldots,K.
\end{cases}$$
(3)

Распишем ожидание из первого выражения

$$(E_{t-1}\ln(a\cdot Z+V))(\omega) = \int_{\mathbb{R}^K\times\mathbb{R}_+} \ln(\sum_{k=1}^K a^k z^k + v) P_t(\omega, dz, dv),$$

где $P_t(\omega, dz, dv)$ — регулярная версия совместного распределения (Z, V) при условии \mathcal{F}_{t-1} . Тогда, если взглянуть на это выражение как на функцию от a при фиксированном ω , мы получим обыкновенный интеграл Лебега. Интеграл от непрерывной по a функции сам является непрерывной функцией по a. Ограничения на a в (3) образуют компакт, следовательно, по теореме Вейерштрасса существует максимум функции на компакте. Взяв аргумент, на котором достигается максимум и объединив результаты по всем ω , получаем необходимую нам функцию, которую назовём a^* . Описанная только что ситуация полностью удовлетворяет условию теоремы 6: благодаря регулярности условного распределения, максимизируемая функция является функцией Каратеодори (измерима относительно \mathcal{F}_{t-1}), пространство \mathbb{R}^K сепарабельно, а множество $\{a \in \mathbb{R}^K : |a| \leq 1; a^k \geq 0, k = 1, \ldots, K\}$ компактно. Существование функции $m(\omega)$ тоже доказано. Следовательно, существует измеримая относительно \mathcal{F}_{t-1} функция a^* , максимизирующая задачу (3).

Будем считать, что $|Z| \le 1, V \le 1$ п.н. Если это не так, то могут возникнуть проблемы с существованием ожидания в (3). В общем случае вычтем из максимизируемого выражения $E_{t-1} \ln(|Z| + V)$. На задачу максимизации это не повлияет, потому что нет зависимости от a, зато выражение под знаком математического ожидания будет ограничено сверху единицей.

Теперь посмотрим на задачу (3) с другой стороны. Это гладкая задача вариационного исчисления с ограничениями типа равенств и неравенств, и a^* доставляет её максимум. Ограничений типа равенств в нашем случае нет, ограничения типа неравенств перепишем как:

$$|a| - 1 \le 0,$$

$$-a^k \le 0.$$

Тогда функция Лагранжа для этой задачи выглядит следующим образом:

$$L(a) = -l^{0}(E_{t-1}\ln(a \cdot Z + V) - |a|) + \sum_{k} l^{k}(-a^{k}) + u(|a| - 1),$$

где (l^0,\dots,l^k,u) – множители Лагранжа.

По теореме о необходимых условиях максимума первого порядка существуют множители Лагранжа, такие что:

1)
$$\nabla L(a^*) = 0$$
,
2) $l^k \ge 0$, $k = \overline{1, K}$,
3) $u \ge 0$,
4) $l^k a^{*k} = 0$, $k = \overline{1, K}$,
5) $u(|a^*| - 1) = 0$. (4)

Производная по Фреше в случае функции нескольких переменных является просто градиентом, а множитель l^0 благодаря отсутствию ограничений типа равенств считаем равным единице.

Распишем первое условие:

$$\frac{\partial L}{\partial a^k}\Big|_{a^*} = -E_{t-1} \frac{Z^k}{a^* \cdot Z + V} + 1 - l^k + u = 0, \ k = \overline{1, K}.$$
 (5)

Заметим, что в данной задаче $|a^*| < 1$, то есть неравенство строгое. Предположим противное: $|a^*| = 1$. Рассмотрим функцию

$$f(\alpha) = E_{t-1} \ln(\alpha a^* \cdot Z + V) - \alpha, \ \alpha \in [0, 1].$$

Тогда её производная равняется

$$f'(\alpha) = E_{t-1} \frac{a^* \cdot Z}{\alpha a^* \cdot Z + V} - 1 = E_{t-1} \frac{a^* \cdot Z}{\alpha a^* \cdot Z + V} - |a^*|.$$

Если P(V>0)>0, то f'(1)<0, что невозможно в силу того, что a^* - экстремум этой функции по a. Следовательно, $|a^*|<1$, и из (4) следует, что u=0, и уравнение (5) превращается в

$$E_{t-1}\frac{Z^k}{a^* \cdot Z + V} = 1 - l^k, \ k = \overline{1, K},$$

причём если $l^k > 0$, то $a^{*k} = 0$, что также следует из (4).

Тем самым, найден процесс a^* , который удовлетворяет условию (2), то есть при $a_t = a^*$ стратегия будет логоптимальной. Остаётся только от a_t перейти обратно к μ_t . Из равенства $a_t = \frac{\zeta_t}{W_{t-1}} \mu_t$ и $|\mu_t| = 1$ получаем $\zeta_t = |a_t| W_{t-1}$, следовательно,

$$\mu_t = \frac{a_t}{|a_t|}.$$

Доказательство завершено.