Analysis of H->bbμμ **Based on Particle Flow Jet**

Yingyue Zhu

Physics Background

Looking into an exotic decay mode of the 125 GeV Higgs where H->aa->bb $\mu\mu$

$$m_{bb\mu\mu} \le 125 \text{ GeV}$$

 $m_{bb} \le 60 \text{ GeV}$

Physics Background

Major background noises come from

ttbar

Z+ jets

Selection Code

Structure

Jet

Jet Calibration

pT Cut

eta Cut

JetVertexTagger Tool

Jet Cleaning Tool(Calo only)

Jet/Elec Overlap Removal

Jet/ Muon Overlap Removal(2)

Muon

Muon calibration

Type selection

pT cut(7GeV)

Z0&d0 cut

Muon isolation

Electron

ET cut(7GeV)

Likelihood Tool

Electron isolation

Z0&d0

Electron/muon overlap removal

final good jet final good muon

good muon

final good electron

signal

leading jet pT

(15GeV PFlow v. 20GeV Calo)

Cut applied:

Upper right: two muons

Upper left: two muon & >= 2 good jets

leading jet pT

(18GeV PFlow v. 20GeV Calo)

Cut applied:

Upper right: two muons

Upper left: two muon $\& \ge 2 \mod jets$

leading jet pT

(20GeV PFlow v. 20GeV Calo)

Cut applied:

Upper right: two muons

Upper left: two muon $\& \ge 2 \mod jets$

Second jet pT

(15GeV PFlow v. 20GeV Calo)

Cut applied:

Upper right: two muons

Upper left: two muon & >= 2 good jets

Second jet pT

Cut applied: (18GeV PFlow v. 20GeV Calo)

Upper right: two muons

Upper left: two muon & >= 2 good jets

Second jet pT

(20GeV PFlow v. 20GeV Calo)

Cut applied:

Upper right: two muons

Upper left: two muon & >= 2 good jets

Cut applied:

(15GeV PFlow v. 20GeV Calo)

Upper right: two muons

Upper left: two muon & >= 2 good jets

Cut applied:

(18GeV PFlow v. 20GeV Calo)

Upper right: two muons

Upper left: two muon & >= 2 good jets

(20GeV PFlow v. 20GeV Calo)

Cut applied:

Upper right: two muons

Upper left: two muon $\& \ge 2 \mod jets$

Cut Flow Table

Cut	15GeV	18GeV	20GeV	15GeV	18GeV	20GeV
	PFlow	PFlow	PFlow	Calo	Calo	Calo
Total	72114	72114	72114	72114	72114	72114
Pass LUP Trigger	48708	48708	48708		48708	48708
$N_{\mu}=2$	32536	30654	28909		30539	29333
$pT^{\mu 1} > 27, pT^{\mu 2} > 7$	32536	30654	28909		30539	29333
$12 < M_{\mu\mu} < 80$	32484	30603	28859		30479	29333
OS	32273	30399	28661		30233	29047
2 b jets	4799	3867	3124		3854	3430
MET<60	3810	3010	2370		3055	2663
$ M_{bbuu} - M_H < 15$	2823	2375	1919		2467	2186

yield

	15Gev PFlow	18Gev PFlow	20Gev PFlow	15Gev Calo	18Gev Calo	20Gev Calo
yield	370.6	298.7	245.5	287.5	286.1	265.4

$$\gamma = \varepsilon \sigma L$$

$$\varepsilon = \frac{N_{bb\mu\mu}}{N_0}$$

$$\sigma = 0.08 Pb$$

$$L = 100 fb^{-1}$$

$$N_0 = 95433$$

background

Leading jet pT

(15GeV PFlow v. 20GeV Calo)

Cut applied:

Upper right: two muons

Upper left: two muon & >= 2 good jets

Leading Jet pT

(18GeV PFlow v. 20GeV Calo)

Cut applied:

Upper right: two muons

Upper left: two muon $\& \ge 2 \mod jets$

Leading Jet pT

(20GeV PFlow v. 20GeV Calo)

Cut applied:

Upper right: two muons

Upper left: two muon $\& \ge 2 \mod jets$

Second Jet pT

Cut applied:

Upper right: two muons

Upper left: two muon $\& \ge 2 \mod jets$

Second Jet pT

(18GeV PFlow v. 20GeV Calo)

Cut applied:

Upper right: two muons

Upper left: two muon & >= 2 good jets

Second Jet pT

(20GeV PFlow v. 20GeV Calo)

Cut applied:

Upper right: two muons

Upper left: two muon $\& \ge 2 \mod jets$

(15GeV PFlow v. 20GeV Calo)

Cut applied:

Upper right: two muons

Upper left: two muon & >= 2 good jets

(18GeV PFlow v. 20GeV Calo)

Cut applied:

Upper right: two muons

Upper left: two muon & >= 2 good jets

(20GeV PFlow v. 20GeV Calo)

Cut applied:

Upper right: two muons

Upper left: two muon & >= 2 good jets

Cut Flow Table

Cut	15GeV PFlow	18GeV PFlow	20GeV PFlow	15GeV Calo	18GeV Calo	20GeV Calo
Total	1199054	1199054	1199054	1199054	1199054	1199054
Pass LUP Trigger	524854	524854	524854	524854	524854	524854
2 muon(>=1 good jet)						
2 muon(>=2 good jet)						
$N_{\mu}=2$	147999	148675	148786	137829	138959	140782
$pT^{\mu 1} > 27, pT^{\mu 2} > 7$	147999	148675	148786	137829	138959	140782
$12 < M_{\mu\mu} < 80$	70469	70707	70727	65223	65747	66657
OS	66677	66894	66915	61789	62300	63186
	25594	25034	24513	23303	23406	23491
2 b jets						
MET<60	2268	2211	2158	2096	2093	2089
$ M_{bbuu} - M_H < 15$	94	80	64	88	82	78

Backup

Full Sample name of Sample used:

```
/sbahead/atlas/local/chayes/mc15_13TeV.341681.PowhegPy8EG_AZ NLOCTEQ6L1_ggH_H125_a60a60_bbmumu.merge.DAOD_HIGG3D1.e4118_s2608_s2183_r7772_r7676_p2812/
```

```
/sbahead/atlas/dq2/mc15_13TeV/DAOD_HIGG3D1/mc15_13TeV.364100.Sherpa_221_NNPD F30NNLO_Zmumu_MAXHTPTV0_70_CVetoBVeto.merge.DAOD_HIGG3D1.e5271_s2726_r777 2_r7676_p2812
```

/sbahead/atlas/dq2/mc15_13TeV/DAOD_HIGG3D1/mc15_13TeV.364101.Sherpa_221_NNPD F30NNLO_Zmumu_MAXHTPTV0_70_CFilterBVeto.merge.DAOD_HIGG3D1.e5271_s2726_r777 2_r7676_p2812

/sbahead/atlas/dq2/mc15_13TeV/DAOD_HIGG3D1/mc15_13TeV.364102.Sherpa_221_NNPD F30NNLO_Zmumu_MAXHTPTV0_70_BFilter.merge.DAOD_HIGG3D1.e5271_s2726_r7772_r76 76_p2812

/sbahead/atlas/dq2/mc15_13TeV/DAOD_HIGG3D1/mc15_13TeV.364103.Sherpa_221_NNPD F30NNLO_Zmumu_MAXHTPTV70_140_CVetoBVeto.merge.DAOD_HIGG3D1.e5271_s2726_r7 772_r7676_p2812

/sbahead/atlas/dq2/mc15_13TeV/DAOD_HIGG3D1/mc15_13TeV.364104.Sherpa_221_NNPD F30NNLO_Zmumu_MAXHTPTV70_140_CFilterBVeto.merge.DAOD_HIGG3D1.e5271_s2726_r7 772_r7676_p2812

/sbahead/atlas/dq2/mc15_13TeV/DAOD_HIGG3D1/mc15_13TeV.364105.Sherpa_221_NNPD F30NNLO_Zmumu_MAXHTPTV70_140_BFilter.merge.DAOD_HIGG3D1.e5271_s2726_r7772_r7676_p 2812

/sbahead/atlas/dq2/mc15_13TeV/DAOD_HIGG3D1/mc15_13TeV.364106.Sherpa_221_NNPDF30NNLO_Zmumu_MAXHTPTV140_280_CVetoBVeto.merge.DAOD_HIGG3D1.e5271_s2726_r7772_r7676_p2 812

Backup

/sbahead/atlas/dq2/mc15_13TeV/DAOD_HIGG3D1/mc15_13TeV.364107.Sherpa_221_NNPDF30NNLO_Zmumu_M AXHTPTV140_280_CFilterBVeto.merge.DAOD_HIGG3D1.e5271_s2726_r7772_r7676_p2812 /sbahead/atlas/dq2/mc15_13TeV/DAOD_HIGG3D1/mc15_13TeV.364108.Sherpa_221_NNPDF30NNLO_Zmumu_M AXHTPTV140_280_BFilter.merge.DAOD_HIGG3D1/mc15_13TeV.364109.Sherpa_221_NNPDF30NNLO_Zmumu_M AXHTPTV280_500_CVetoBVeto.merge.DAOD_HIGG3D1/mc15_13TeV.364109.Sherpa_221_NNPDF30NNLO_Zmumu_M AXHTPTV280_500_CVetoBVeto.merge.DAOD_HIGG3D1/mc15_13TeV.364110.Sherpa_221_NNPDF30NNLO_Zmumu_M AXHTPTV280_500_CFilterBVeto.merge.DAOD_HIGG3D1/mc15_13TeV.364111.Sherpa_221_NNPDF30NNLO_Zmumu_M AXHTPTV280_500_BFilter.merge.DAOD_HIGG3D1/mc15_13TeV.364111.Sherpa_221_NNPDF30NNLO_Zmumu_M AXHTPTV280_500_BFilter.merge.DAOD_HIGG3D1/mc15_13TeV.364111.Sherpa_221_NNPDF30NNLO_Zmumu_M AXHTPTV280_500_BFilter.merge.DAOD_HIGG3D1/mc15_13TeV.364112.Sherpa_221_NNPDF30NNLO_Zmumu_M AXHTPTV500_1000.merge.DAOD_HIGG3D1.e5271_s2726_r7772_r7676_p2812 /sbahead/atlas/dq2/mc15_13TeV/DAOD_HIGG3D1/mc15_13TeV.364112.Sherpa_221_NNPDF30NNLO_Zmumu_M AXHTPTV500_1000.merge.DAOD_HIGG3D1.e5271_s2726_r7772_r7676_p2812 /sbahead/atlas/dq2/mc15_13TeV/DAOD_HIGG3D1/mc15_13TeV.364113.Sherpa_221_NNPDF30NNLO_Zmumu_M AXHTPTV500_1000.merge.DAOD_HIGG3D1.e5271_s2726_r7772_r7676_p2812 /sbahead/atlas/dq2/mc15_13TeV/DAOD_HIGG3D1/mc15_13TeV.364113.Sherpa_221_NNPDF30NNLO_Zmumu_M AXHTPTV500_1000.merge.DAOD_HIGG3D1.e5271_s2726_r7772_r7676_p2812 /sbahead/atlas/dq2/mc15_13TeV/DAOD_HIGG3D1/mc15_13TeV.364113.Sherpa_221_NNPDF30NNLO_Zmumu_M AXHTPTV500_1000.merge.DAOD_HIGG3D1.e5271_s2726_r7772_r7676_p2812 /sbahead/atlas/dq2/mc15_13TeV/DAOD_HIGG3D1/mc15_13TeV.364113.Sherpa_221_NNPDF30NNLO_Zmumu_M AXHTPTV500_1000.merge.DAOD_HIGG3D1/mc15_13TeV.364113.Sherpa_221_NNPDF30NNLO_Zmumu_M AXHTPTV500_1000.merge.DAOD_HIGG3D1/mc15_13TeV.364113.Sherpa_221_NNPDF30NNLO_Zmumu_M AXHTPTV500_1000.merge.DAOD_HIGG3D1/mc15_13TeV.364113.Sherpa_221_NNPDF30NNLO_Zmumu_M AXHTPTV500_1000.merge.DAOD_HIGG3D1/mc15_13TeV.364113.Sherpa_221_NNPDF30NNLO_Zmumu_M AXHTPTV500_1000.

AXHTPTV1000 E CMS.merge.DAOD HIGG3D1.e5271 s2726 r7772 r7676 p2812