Lista 2

Luís Felipe Ramos Ferreira

lframos.lf@gmail.com

• (4.5.1)

- R(3)

Inicialmente, note que a seguinte 2-coloração do K_5 não possui uma clique de tamanho 3 monocromática, portanto R(3) > 5.

Figure 1: K_5 2-colorido

No entanto, sabemos pelo fato 4.0.1 do livro que o toda 2-coloração do K_6 possui um triângulo monocromático, logo R(3)=6. A prova funciona da seguinte forma: seja v um vértice de K_6 . Pelo princípio

da casa dos pombos, das 5 arestas incidentes a v, ao menos 3 possuem a mesma cor. Vamos dizer que é a cor 1. Sejam x,y,z vizinhos de v com a aresta com cor 1. Se qualquer uma das arestas xy,xz,yz for da cor 1, temos um triângulo de cor 1. Caso contrário, o triângulo formado pelos vértices x,y,z é monocromático na outra cor, chamemos ela de 2. Logo, toda 2-coloração do K_6 possui um triângulo monocromático.

-R(3,4)

Inicialmente, vamos notar que R(3,4) é maior que 8, e isso pode ser notado pela 2-coloração do K_8 abaixo em que não existe uma clique de tamanho 3 vermelha e nem uma clique de tamanho 4 azul (Na imagem, o primeiro grafo tem apenas as arestas vermelhas e o segundo seri ao complemento do primeiro grafo, em que as arestas são azuis).

Figure 2: K_8 2-colorido

Vamos provar agora que $R(3,4) \leq 10$, em particular, mostrar que para um grafo completo de 10 vértices sempre teremos um triângulo vermelho ou uma clique de tamanho 4 azul. Depois, com uma pequena variação, mostraremos que $R(3,4) \leq 9$, o que conclui a prova. Seja A um vértice qualquer de um K_{10} 2-colorido com vermelho e azul. A possui nove vizinhos e das arestas que o conectam a seus vizinhos, sabemos que ao menos 6 são azuis ou ao menos 4 são vermelhas (isso porque no total precisamos ter 9 arestas, uma para cada vizinho). Suponhamos o caso em que A possui 4 arestas vermelhas o conectando a seus vizinhos. Se existir uma aresta vermelha entre esses vizinhos, então existe um triângulo vermelho no grafo. Caso contrário, todas as arestas entre os 4 vértices são azuis, logo existe uma clique de tamanho 4 de cor azul. Seja agora o caso em que Apossui 6 arestas de cor azul o conectando a seus vizinhos. Sabemos que R(3,3) = 6, logo, entre esses vizinhos, há um triângulo vermelhor ou azul. Se for vermelho, já perdemos, se for azul, note que ele forma uma clique de tamanho 4 azul junto com A. Logo, 10 é um limite superior para R(3,4).

Consideremos agora o caso do K_9 . Note que os argumentos usados anteriormente servem da mesma maneira, exceto pelo caso em que, para todo vértice A, exista exatamente 5 arestas azuis e 3 vermelhas saindo dele. Nesse caso, para cada vértice teremos três arestas vermelhas, e como são 9 vértices, temos 3*9=27. Como cada arestas é contada duas vezes, precisamos dividir por dois, obtendo assim um número $\frac{27}{2}$ (não inteiro) de arestas, o que é um absurdo. Logo, $R(3,4) \leq 9$

- R(4,4)

Sabemos pelo lema 4.1.3 do livro que, para todo $s, t \ge 2$, temos:

$$R(s,t) \le R(s-1,t) + R(s,t-1)$$

Logo, temos que $R(4,4) \leq R(3,4) + R(4,3) = 2*R(3,4) = 2*9 = 18$. Mostramos no exercício anterior que R(3,4) = 9. No entanto, vamos mostrar que existe uma 2-coloração de K_{17} tal que não existe uma clique de tamanho 4 nem vermelha nem azul, mostrando assim que R(4,4) = 18. A imagem abaixo, retirada deste site, apresenta tal grafo e sua coloração.

Figure 3: K_{17} arestas vermelhas

Figure 4: K_{17} arestas azuis

• (4.5.2)

$-R(K_3,C_4)$

Inicialmente, note que $R(K_3,C_4)>6$, uma vez que a 2-coloração do K_6 abaixo não contêm K_3 vermelho nem C_4 azul. Isso pois as arestas azuis formam um $2K_3$ e as arestas vermelhas foram um bipartido $K_{3,3}$.

Figure 5: K_6 2-colorido

Seja agora um K_7 2-colorido. Como R(3)=6, sabemos que deve existir nessa 2-coloração ou um K_3 vermelho ou um azul. Se for vermlho acabamos, então vamos assumir que é azul. Sejam $W=\{w_1,w_2,w_3\}$ os vértices desse K_3 azul e $V=\{v_1,v_2,v_3,v_4\}$ os vértices que sobraram no K_7 . Se V formar uma clique azul, temos um C_4 azul e acabamos. Logo vamos assumir que existe uma arestas vermelha

entre vértices de V. Sem perda de generalidade, vamos assumir que é entre v_1 e v_2 . Note também que para qualquer $v \in V$, se ele possuir duas ou mais arestas azuis indo para W, teríamos um C_4 azul formado por $\{v, w_1, w_2, w_3\}$, então assumimos que existe no máximo uma aresta azul dessa forma, o que implica em ao menos duas arestas vermelhas dessa forma. Note, no entanto, que v_1 e v_2 compartilham um vizinho $w \in W$ de tal modo que v_1w e v_2w são vermelhas, pelo princípio a casa dos pombos. Como v_1v_2 é vermlha, temos um K_3 vermelho. Logo, $R(K_3, C_4) = 7$, como queríamos demonstrar.

$- R(K_3, C_5)$

Primeiramente, vamos mostrar que $R(K_3, C_5) > 8$ ao mostrar uma 2-coloração de um K_8 tal que não existe um K_3 vermelho e nem um C_5 azul. Tal grafo esta na imagem abaixo. Note que as arestas azuis formam 2 K_4 , logo é impossível ter um C_5 azul. Como as arestas vermelhas formam um grafo bipartido, não há como existir um $K_3 = C_3$ vermelho.

Figure 6: K_8 2-colorido

Seja agora um K_9 com uma 2-coloração. Vamos lembrar que R(3,4)=9, como demonstramos no exercício anterior. Logo, como se trata de um K_9 , se não existisse um K_4 azul teríamos um K_3 vermelho e acabamos. Logo, vamos assumir agora que existe um K_4 azul na coloração. Sejam w_i para todo $i \in \{1,2,3,4\}$ os vértices nesse K_4 e v_j para todo $j \in \{1,2,3,4,5\}$ os outros vértices do grafo. Se todas as arestas entre qualquer dois vértices v_a e v_b for azul, temos um C_5 azul e acabamos, logo vamos assumir que existe ao menos uma aresta vermelha entre um v_a e um v_b . Vamos assumir sem perda de generalidade que se tratam de v_1 e v_2 .

Note também que se existirem duas arestas azuis saindo de algum v_j indo para o conjunto $\{w_1, w_2, w_3, w_4\}$, então existe um C_5 azul, logo podemos assumir a partir de agora que existem no máximo uma aresta azul nesse sentido, o que implica em existirem ao menos 3 arestas vermelhas nesse sentido. No entanto, isso quer dizer que v_1 e v_2 possuem um vizinho em comum w_i de modo que v_1w_i e v_2w_i são vermelhas. Como v_1v_2 também é vermelha, achamos um triângulo vermelho. Logo, $R(K_3, C_5) \leq 9$, o que implica, com o que sabemos de antes, em $R(K_3, C_5) = 9$, como queríamos demonstrar.

- (4.5.3)
- (4.5.4)
- (4.5.5)
- (4.5.6)
- (4.5.7)
- (4.5.8) OPCIONAL
- (4.5.9)
- (4.5.10)