Számítógépes Grafika

Hajder Levente

hajder@inf.elte.hu

Eötvös Loránd Tudományegyetem Informatikai Kar

2017/2018. II. félév

Tartalom

- A fény és anyagok
 - Anyagok
 - Fényforrás modellek
 - Fény-felület kölcsönhatás
 - Fényvisszaverési modellek
 - Buckatérkép
 - Színmodellek

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek Buckatérkép Színmodellek

A fény és anyagok

- A fény elektromágneses hullám
- Az anyagokat olyan színűnek látjuk, amilyen színű fényt visszavernek
 - A visszaverés egyaránt függ az anyag és a megvilágítás "színétől"
- Különböző anyagok különböző módon viselkednek a fénnyel szemben

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek Buckatérkép

Színmodellek

Tartalom

A fény és anyagok

- Anyagok
- Fényforrás modellek
- Fény-felület kölcsönhatás
- Fényvisszaverési modellek
- Buckatérkép
- Színmodellek

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek Buckatérkép Színmodellek

Felületek osztályozása

- Emittáló felületek
 - Fénykibocsátó felületek emittáló anyagnak hívjuk
 - Ezeket hívjuk fényforrásoknak, ilyen a Nap, a lámpa stb.
- Diffúz felületek
 - A diffúz vagy matt felületeket minden irányból nézve ugyanolyan színűnek látjuk
 - Ilyen például a frissen meszelt fal vagy a homok stb.
 - A diffúz felület a beérkező fénysugár energiáját minden irányban azonos intenzitással veri vissza

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek Buckatérkép Színmodellek

Felületek osztályozása

- Spekuláris felületek
 - Tükröző felületek, az ideális fénytörés irányába verik vissza nagyrészt a beérkező fényt
- Átlátszó felületek
 - Ezeken a felületeken áthalad a fény, a beérkező fénysugár energiájának java részét áteresztik

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek Buckatérkép Színmodellek

Felületek osztályozása

- Áttetsző felületek
 - Ezek a beérkező fény nagy részét magukba engedik, de csak kis része lép ki az anyagból
 - Pl. tej, bőr
- Anizotróp felületek
 - A felületet a tengelye körül forgatva, a beeső és visszaverődő szögeket tartva is változik a színe
 - Mint például a CD

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek Buckatérkép Színmodellek

Tartalom

- Anyagok
- Fényforrás modellek
- Fény-felület kölcsönhatás
- Fényvisszaverési modellek
- Buckatérkép
- Színmodellek

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek Buckatérkép Színmodellek

Fényforrás modellek

Fény

A fény elektromágneses hullám

Absztrakt fényforrások

- Ambiens fény
- Irány fényforrás
- Pont fényforrás
- Reflektorfény (spotlight)

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek Buckatérkép Színmodellek

Fényforrás modellek

Fény

A fény elektromágneses hullám

Absztrakt fényforrások

- Ambiens fény
- Irány fényforrás
- Pont fényforrás
- Reflektorfény (spotlight)

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek Buckatérkép Színmodellek

Fényforrás modellek

Ambiens fény

- Fénysugarak minden irányba egyenlő mértékben világítanak
- Távolság az intenzitást nem befolyásolja

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek Buckatérkép Színmodellek

Fényforrás modellek

Irány fényforás

- Fénysugarak párhuzamosak
- Távolsággal a fény intenzitása nem csökken

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek Buckatérkép Színmodellek

Fényforrás modellek

Pont fényforrás

- Egy adott pontból indulnak ki a fénysugarak
- Fizika: a távolság négyzetével fordítottan arányos a fény intenzitás
- Szimulációkban a fakulást (falloff) meg lehet adni skaláris, lineáris, kvadratikus tagokkal

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek Buckatérkép Színmodellek

Fényforrás modellek

Reflektorfény (spotlight)

- Egy adott pontból indulnak ki a fénysugarak
- A fénnyalábot egy kör alapú végtelen gúla határozza meg
- A távolság négyzetével fordítottan arányos a fény intenzitás (valóságban)

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek Buckatérkép Színmodellek

Tartalom

A fény és anyagok

- Anyagok
- Fényforrás modellek
- Fény-felület kölcsönhatás
- Fényvisszaverési modellek
- Buckatérkép
- Színmodellek

BRDF

- Legyen Lⁱⁿ egy adott irányból a felület egy pontjára beérkező, L pedig az onnan visszavert fény intenzitása
- Jelölje I a fényforrás felé mutató egységvektort, v a nézőpont felé mutató egységvektort, n pedig a felületi normálist az adott pontban. A θ legyen az n és I által bezárt szög
- Ekkor a kétirányú visszaverődéses eloszlási függvény, BRDF (bi-directional reflection distribution function) a következő:

$$f_r(\mathbf{I}, \mathbf{v}) = \frac{L}{L^{in} \cos \theta}$$

Jelölések

- $oldsymbol{\mathbf{v}}:=\omega$ a nézeti irány, azaz a szem/kamera fele mutató vektor
- $\mathbf{I} := -\omega'$ a megvilágító, a fényt "adó" pont fele mutató vektor, ekkor a beesési irány $-\mathbf{I} (= \omega')$
- n a felületi normális
- v, l, n egységvektorok
- θ a l és a n által bezárt szög

Helmholtz-törvény

- Helmholtz-féle szimmetria: a fénysugár megfordítható
- Azaz: $f_r(\omega', \omega) = f_r(\omega, \omega')$
- Ez két dologért is jó:
 - Garantálja, hogy végsősoron a radiancia csökken.
 - Nézhetjük "visszafelé" a sugarakat.

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek Buckatérkép Színmodellek

Ideális visszaverődés

Visszaverődési törvény

A beesési irány $(-\mathbf{I})$, a felületi normális (\mathbf{n}) , és a kilépési irány (\mathbf{r}) egy síkban van, valamint a beesési szög (θ) megegyezik a visszaverődési szöggel (θ') .

Ideális visszaverődés

Az ideális tükör csak az r tükörirányba ver vissza.

0

$$f_r(\mathbf{x}, \mathbf{v}, \mathbf{l}) = k_r \frac{\delta(\mathbf{r} - \mathbf{v})}{\cos \theta}$$

- δ a Dirac-delta függvény, ami egy általánosított függvény, amely minden nemnulla paraméterre nullát ad, de a valós számok felett vett integrálja 1.
- A k_r visszaverődési együttható a Fresnel-együttható. Ez függ az anyag törésmutatójából, és az elektromos vezetési képességéből származik.
- A Fresnel-együttható a visszavert és beeső energia hányadát fejezi ki.

Visszaverődési irány

- Általános esetben, egy v beeső vektorból a visszaverődési- vagy tükörirány:
- \bullet $\mathbf{v}_r = \mathbf{v} 2\mathbf{n}(\mathbf{n} \cdot \mathbf{v})$
- Mivel $\cos \theta = -\mathbf{n} \cdot \mathbf{v}$
- Mindez csak akkor igaz, ha n és v vektorok egységnyi hosszúak!
- Általános esetben:

$$\mathbf{v}_r = \mathbf{v} + 2\mathbf{n}\cos\theta$$

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek Buckatérkép Színmodellek

Ideális törés

Snellius-Descartes törvény

A beesési irány (-I), a felületi normális (**n**), és a törési irány (**t**) egy síkban van, valamint $\eta = \frac{\sin \theta}{\sin \theta'}$, ahol η az anyagok relatív törésmutatója.

Néhány törésmutató

- Vákuum 1.0
- Levegő 1.0003
- Víz 1.3333
- Üveg 1.5
- Gyémánt 2.417

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek Buckatérkép Színmodellek

Ideális törés

Snellius-Descartes törvény

A beesési irány (-I), a felületi normális (**n**), és a törési irány (**t**) egy síkban van, valamint $\eta = \frac{\sin \theta}{\sin \theta'}$, ahol η az anyagok relatív törésmutatója.

Néhány törésmutató

- Vákuum 1.0
- Levegő 1.0003
- Víz 1.3333
- Üveg 1.5
- Gyémánt 2.417

Ideális törés

- Jelölje t az ideális törési irányt.
- Az ideális tükörhöz hasonlóan kapjuk:

$$f_r(\mathbf{x}, \mathbf{v}, \mathbf{I}) = k_t \frac{\delta(\mathbf{t} - \mathbf{v})}{\cos \theta}$$

Ideális törés

- Jelölje t az ideális törési irányt.
- Az ideális tükörhöz hasonlóan kapjuk:

$$f_r(\mathbf{x}, \mathbf{v}, \mathbf{I}) = k_t \frac{\delta(\mathbf{t} - \mathbf{v})}{\cos \theta}$$

Anyagok Fényforrás modellek **Fény-felület kölcsönhatás** Fényvisszaverési modellek Buckatérkép Színmodellek

Törési irány

- Snellius-Descartes törvény: $\eta = \frac{\sin \alpha}{\sin \beta}$
- $\mathbf{v}_t = \mathbf{n}_{\perp} \sin \beta \mathbf{n} \cos \beta$
- $\mathbf{n}_{\perp} = \frac{\mathbf{v} + \mathbf{n} \cos \alpha}{\sin \alpha}$
- $ullet \mathbf{v}_t = rac{\mathbf{v}}{\eta} + \mathbf{n} \left(rac{\cos lpha}{\eta} \cos eta
 ight)$
- $\bullet \cos \beta = \sqrt{1 \sin^2 \beta} = \sqrt{1 \frac{\sin^2 \alpha}{\eta^2}}$

$$\mathbf{v}_t = rac{\mathbf{v}}{\eta} + \mathbf{n} \left(rac{\cos lpha}{\eta} - \sqrt{1 - rac{\sin^2 lpha}{\eta^2}}
ight)$$

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek Buckatérkép Színmodellek

Tartalom

A fény és anyagok

- Anyagok
- Fényforrás modellek
- Fény-felület kölcsönhatás
- Fényvisszaverési modellek
- Buckatérkép
- Színmodellek

Lambert-törvény

- Optikailag durva, diffúz felületek leírására jó.
- Feltételezés: a visszavert fénymennyiség nem függ a nézeti iránytól.
- Helmholtz-törvényt miatt akkor a bejövő iránytól sem függhet, azaz konstans:

$$f_r(\mathbf{x}, \mathbf{v}, \mathbf{l}) = k_d$$

Spekuláris visszaverődés - Phong modell

- A tükörirányban intenzíven visszaverő, de attól távolodva gyorsan elhaló "csillanás" adható meg vele.
- Legyen φ az r tükörirány és a v nézeti irány által bezárt szög.
- Ekkor $\cos \phi = \mathbf{r} \cdot \mathbf{v}$
- Olyan függvényt keresünk, ami $\phi = 0$ -ra nagy, de gyorsan elhal.

0

$$f_r(\mathbf{x}, \mathbf{v}, \mathbf{l}) = k_s \frac{\cos^n \phi}{\cos \theta}$$

Nem szimmetrikus!

Spekuláris visszaverődés - Phong modell

n = 25

$$n = 50$$

Spekuláris visszaverődés - Phong-Blinn modell

 Legyen h a nézeti irány és a megvilágító pont fele mutató vektorok felezővektora.

$$h = \frac{v + l}{\|v + l\|}$$

- Legyen δ a **h** és az **n** normálvektor által bezárt szög.
- Ekkor $\cos \delta = \mathbf{h} \cdot \mathbf{n}$

•

$$f_r(\mathbf{x}, \mathbf{v}, \mathbf{I}) = k_s \frac{\cos^n \delta}{\cos \theta}$$

 Nagyon hasonló az egyszerű Phong modellhez, kicsit gyorsabban számítható.

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek Buckatérkép Színmodellek

Spektrális képszintézis

- Különböző hullámhosszú fény máshogy viselkedik a felületeken.
- Színérzet a látható tartományban levő elektromágneses hullámok integrálja a három érzékelőnek megfelelően.
- Fényjelenségeket minden hullámhosszon külön kellene nézni.
 - Rendkívül számításigényes.
 - R,G,B komonensekkel jól közelíthetjük.

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek Buckatérkép Színmodellek

Tartalom

A fény és anyagok

- Anyagok
- Fényforrás modellek
- Fény-felület kölcsönhatás
- Fényvisszaverési modellek
- Buckatérkép
- Színmodellek

Érdes felületek képzése

- Érdes felületek rengeteg poligonnal (háromszöghálóval) képezhetők.
 - Modell bonyolult, nehéz módosítani.
 - Renderelést lassítja.
- Trükk: egyszerű modellhez finom sűrű normálvektormezőt adunk meg

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek Buckatérkép Színmodellek

Érdes felületek képzése

- Durva pozíció + finom normálvektorok jó közelítés, ha
 - a felület nagyjából folytonos
 - mélységingadozás kicsi a felületen
- Mélység megadás képként: buckatérkép (bump map)
 - Textúraleképzéshez hasonlóan, képként szokás megadni
 - Buckatérkép leírhatja a mélységváltozást vagy a normálvektorokat (3D: 3 színkomponens).

Esettanulmány: narancs

• Példa (eredeti modell, buckatérkép, új modell):

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek Buckatérkép Színmodellek

Tartalom

A fény és anyagok

- Anyagok
- Fényforrás modellek
- Fény-felület kölcsönhatás
- Fényvisszaverési modellek
- Buckatérkép
- Színmodellek

Anyagok Fényforrás modellek Fény-felület kölcsönhatás Fényvisszaverési modellek Buckatérkép Színmodellek

Színmodellek

- Fény: elektromágneses hullám
- Emberi szem által látható fény: alapszínek keveréséből
- Alapszínek: szivárvány színei

Színmodellek

- Monitor színmodellje: RGB
- Majdnem az összes látható szín kikeverhető

Színmodellek

- "Emberibb" színmodell: HSL (HSB,HSV)
- Három komponens: hue (színárnyalat), saturation (telítettség), lightness (fényesség)

