Une étude sur la validité du modèle à trois facteurs de Fama-French : le marché boursier marocain comme cas d'utilisation.

Stage Mission Al

SALEHI Abderrahmane

Ecole Centrale Casablanca - Wafa Gestion

Juillet, 2024

Outline

- 1 Wafa Gestion : une brève description
- Mission de stage
- 3 Problematique
- 4 Méthodologie
- 5 Modèle à trois facteurs de Fama-French
- 6 Analyse statistique des données
- Résultats et discussion
- Tracking error exanté

Wafa Gestion : une brève description

140
milliards de MAD
d'encours sous gestion

100 OPCVM sous gestion

Figure: Wafa Gestion : Leader de gestion d'actifs au Maroc

Solutions financières sous forme d'OPCVM, gestion de portfeuille, gestion des risques, conseil en investissement...

• Explication des rendements d'un portfeuille

Figure: Explication du processus

Figure: Explication du processus

Figure: Choix du modèle

Motivations du choix du modèle:

- Meilleure explication des rendements : ...en prenant en compte trois sources de risque au lieu d'une seule.
- Inclusion de facteurs supplémentaires : le modèle inclut des facteurs de taille (SMB) et de valeur (HML) qui sont reconnus pour influencer significativement les rendements des actions.
- Réduction des anomalies : FF3F corrige certaines anomalies observées avec le modèle à un facteur (CAPM), comme l'effet taille et l'effet valeur.
- **Application pratique** : permettant une meilleure évaluation des risques et des opportunités d'investissement.
- Large acceptation académique et professionnelle : largement accepté et utilisé dans la recherche académique et par les professionnels de la finance.
- Pertinence pour le marché marocain : l'ajout des facteurs SMB et HML permet une meilleure compréhension des dynamiques locales des rendements.

- Cette étude examine la validité du modèle Fama-French dans le contexte du marché boursier marocain, en utilisant l'indice MASI -MASIR comme référence représentative.
- L'analyse couvre une période de trois ans, d'avril 2021 à avril 2024, en utilisant des données historiques quotidiennes provenant du site de la Bourse de Casablanca.
- Un total de 75 actions cotées sur l'indice MASI ont été soumises à des tests rigoureux pour évaluer l'efficacité du modèle dans l'explication des rendements des actions sur ce marché.
- L'étude utilise diverses méthodes et tests statistiques pour évaluer la validité du modèle, y compris l'analyse de la **Tracking error**
- Contexte financier spécifique : marché boursier marocain , marché émergent.
- Les résultats de cette étude contribuent au discours continu sur les modèles de tarification des actifs et offrent des implications pratiques pour les investisseurs et les praticiens financiers opérant sur le marché boursier marocain.

Problematique

Dans quelle mesure le modèle de Fama-French à trois facteurs est-il applicable et efficace pour estimer les rendements des actions dans le contexte unique de la Bourse de Casablanca ?

Figure: Processus de notre étude

Collecte de données

Récupération des Données Historiques

- Utilisation de la fonction wg_get_history pour extraire les données historiques de prix de chaque action depuis le site de la Bourse de Casablanca.
- Construction de requêtes API pour récupérer les données par lots de 250 enregistrements à la fois, de mai 2021 à mai 2024.
- Extraction des champs pertinents comme les prix de clôture ajustés, les volumes de transactions et les valeurs de capitalisation.
- Calcul des rendements quotidiens et remplissage des dates manquantes pour assurer une série chronologique complète.

Extraction des Ratios Financiers

- Utilisation de la fonction wg_ratios_emetteur pour récupérer des ratios financiers tels que le Price-to-Book (PBR) et le Price-to-Earnings (PER) pour chaque entreprise.
- Extraction des données depuis les sections spécifiques de la page de profil de l'entreprise en utilisant BeautifulSoup pour analyser le contenu HTML.

Extraction des Informations sur les Dividendes

- Utilisation de la fonction wg_dividendes_emetteur pour collecter les données de dividendes depuis les pages des entreprises.
- Analyse des tableaux contenant l'historique des dividendes et organisation des informations dans un DataFrame pandas.

Extraction des Informations Générales sur les Entreprises

- Utilisation de la fonction wg_chiffres_emetteur pour récupérer des informations financières générales sur chaque entreprise, telles que le chiffre d'affaires et les bénéfices.
- Utilisation de BeautifulSoup pour analyser les sections pertinentes des pages de profil des entreprises.

Compilation des Données des Instruments

- Le script principal commence par configurer une session requests et récupérer les données sur tous les instruments cotés (actions) depuis l'API de la Bourse de Casablanca.
- Filtrage des instruments non-actions et ajout de données supplémentaires, telles que le secteur et la capitalisation, en appliquant la fonction wg_instrument_data à chaque URL d'instrument.

Création d'une dataframe compréhensible

	libellefR	symbol	codeISIN	instrument_url	drupal_internalid	enetteur_url	Secteur	Capitalisation	PBR	PER
0	AFMA	AFM	MA0000012296	/fr/live- market/instruments/AFM	391	/fr/live- market/emetteurs/AFM151215	Assurances	1 227 000 000,00	21,85	20,00
1	AFRIC INDUSTRIES SA	AFI	MA0000012114	/fr/live- market/instruments/AFI	385	/fir/live- market/emetteurs/AFI050112	Bâtiment et Matériaux de Construction	93 280 000,00	2,22	21,91
2	AFRIQUIA GAZ	GAZ	MA0000010951	/fr/live- market/instruments/GAZ	498	/fir/live- market/emetteurs/GAZ030599	Pétrole et Gaz	14 265 625 000,00	4,63	28,56
3	AGMA	AGM	MA0000010944	/fr/live- market/instruments/AGM	491	/fr/live- market/emetteurs/AGM091198	Assurances	1 334 000 000,00	8,73	20,16
4	AKDITAL	AKT	MA0000012585	/fr/tive- market/instruments/AKT	305583	/fr/live-market/emetteurs/AKT	Santé	8 501 868 904,00	4,41	31,76
117	TIMAR	TIM	MA0000011686	/fr/live- market/instruments/TIM	361	/fr/live- market/emetteurs/TIM170707	Transport	198 726 000,00	0,35	4,34
118	TOTALENERGIES MARKETING MAROC	TMA	MA0000012262	/fr/live- market/instruments/TMA	390	/fr/live- market/emetteurs/TMA290515	Pétrole et Gaz	12 615 680 000,00	4,49	206,84
119	UNIMER	UMR	MA0000012023	/fr/live- market/instruments/UMR	503	Mr/live- market/emetteurs/UMR290301	Agroalimentaire et Production	2 022 539 536,00	1,49	
120	WAFA ASSURANCE	WAA	MA0000010928	/fr/live- market/instruments/WAA	488	/fr/live- market/emetteurs/WAA130798	Assurances	15 085 000 000,00	1,52	20,88
121	ZELLIDJA S.A	ZDJ	MA0000010571	/fr/tive- market/instruments/ZDJ	485	/fr/live- market/emetteurs/ZDJ200655	Sociétés de Portefeuilles / Holdings	42 625 694,09	0,80	-
77 rows × 10	columns									

Figure: Dataframe de notre étude

Nettoyage et préparation

- Conversion de toutes les variables de type chaîne en formats numériques pour faciliter les calculs.
- Introduction de la variable Book-to-Market (BTM), calculée comme BTM = $\frac{1}{PBR}$.

Création des portefeuilles

- Création de quatre portefeuilles en utilisant la taille et le ratio BTM :
 - Petite Taille, Haut Ratio BTM (SH)
 - Grande Taille, Haut Ratio BTM (BH)
 - Petite Taille, Bas Ratio BTM (SL)
 - Grande Taille, Bas Ratio BTM (BL)
- Séparation des actions en fonction de la capitalisation médiane et du BTM médian.

- Construction de quatre DataFrames, chacun correspondant à l'un des quatre portefeuilles.
- Calcul des rendements quotidiens pour chaque action dans ces portefeuilles en utilisant la fonction get_history.
- Gestion des valeurs manquantes en utilisant la fonction d'interpolation (peu de valeurs NaN présentes).
- Le rendement quotidien (R_{daily}) pour chaque action a été calculé en utilisant la formule :

$$R_{\mathsf{daily}} = \frac{\mathsf{Prix} \ \mathsf{de} \ \mathsf{Cl\^{o}ture} \ \mathsf{Ajust\'e}_t - \mathsf{Prix} \ \mathsf{de} \ \mathsf{Cl\^{o}ture} \ \mathsf{Ajust\'e}_{t-1}}{\mathsf{Prix} \ \mathsf{de} \ \mathsf{Cl\^{o}ture} \ \mathsf{Ajust\'e}_{t-1}}$$

où Prix de Clôture Ajusté $_t$ est le prix de clôture ajusté au jour t.

Calcul du return quotidien de chaque portefeuille, non cap-pondéré

Figure: Dataframe contenant les returns quotidiens de chaque portefeuille

Modèle à trois facteurs de Fama-French

- Le modèle à trois facteurs de Fama-French est un modèle de valorisation des actifs développé par Eugene Fama et Kenneth French.
- Ce modèle étend le modèle de valorisation des actifs financiers (CAPM) en ajoutant deux facteurs au facteur de risque de marché du CAPM : le risque de taille et le risque de valeur.
- Le modèle vise à fournir une meilleure explication des rendements des portefeuilles diversifiés en incorporant ces facteurs supplémentaires.

Formule du Modèle à Trois Facteurs de Fama-French

$$R_i - R_f = \alpha + \beta_{1i}(R_m - R_f) + \beta_{2i}SMB + \beta_{3i}HML + \epsilon_i$$

Définitions des Variables

- R_i : rendement du portefeuille i.
- R_f : taux sans risque, spécifiquement le rendement quotidien des bons du Trésor à 52 semaines.
- α : intercept, représentant le rendement excédentaire du portefeuille non expliqué par le modèle.
- β_{1i}: sensibilité du rendement du portefeuille au rendement du marché, ou bêta du marché.
- R_m : rendement du portefeuille de marché (indice MASI).
- β_{2i} : sensibilité au facteur de taille (SMB).
- SMB (Small Minus Big): rendement des portefeuilles de petites capitalisations moins le rendement des portefeuilles de grandes capitalisations.
- β_{3i} : sensibilité au facteur de valeur (HML).
- HML (High Minus Low) : rendement des portefeuilles à haut ratio valeur comptable/marché (value) moins le rendement des portefeuilles à faible ratio valeur comptable/marché (growth).

Modèle à trois facteurs de Fama French

Définition des Facteurs SMB et HML

•

$$SMB = \frac{(SH + SL) - (BH + BL)}{3}$$

•

$$\mathsf{HML} = \frac{(\mathsf{SH} + \mathsf{BH}) - (\mathsf{SL} + \mathsf{BL})}{3}$$

Portefeuilles

- SH: portefeuille de petites capitalisations avec des hauts ratios valeur comptable/marché.
- SL: portefeuille de petites capitalisations avec des bas ratios valeur comptable/marché.
- BH : portefeuille de grandes capitalisations avec des hauts ratios valeur comptable/marché.
- BL : portefeuille de grandes capitalisations avec des bas ratios valeur comptable/marché

- Il est crucial d'incorporer les facteurs de taille et de valeur (SMB et HML) dans notre ensemble de données existant.
- Ajouter SMB et HML à notre DataFrame nous permet de capturer le risque spécifique associé aux caractéristiques de taille et de valeur des portefeuilles.
- En calculant ces facteurs en utilisant les formules fournies et en les combinant avec les rendements excédentaires quotidiens de nos portefeuilles (Ri-Rf), nous pouvons construire un modèle plus complet qui prend en compte les sources multidimensionnelles de risque et de rendement sur les marchés actions.
- Nous avons également récupéré les données de l'indice MASI, ce qui nous permet d'intégrer nos observations dans notre modèle.

Voici le DataFrame contenant toutes les données nettoyées et préparées.

	created	R_SH	R_BH	R_SL	R_BL	SMB	HML	R_i	R_f	Ri-Rf	MASI	Rm-Rf
1	2021-05-18	0.001931	0.001543	0.000391	0.010676	-0.003299	-0.002531	0.003635	0.000125	0.003510	-0.0008	-0.000925
2	2021-05-19	-0.000136	-0.002327	0.001609	0.010915	-0.002372	-0.004996	0.002515	0.000125	0.002390	0.0030	0.002875
3	2021-05-20	-0.006196	-0.011038	-0.000045	-0.005028	0.003275	-0.004054	-0.005577	0.000125	-0.005702	-0.0126	-0.012725
4	2021-05-21	-0.003267	0.013373	0.004585	0.007044	-0.006366	-0.000508	0.005434	0.000125	0.005309	0.0077	0.007575
7	2021-05-24	0.000929	0.004326	-0.003998	-0.001627	-0.001923	0.003627	-0.000092	0.000125	-0.000217	-0.0043	-0.004425
1087	2024-05-08	-0.000907	0.002173	0.002423	0.005937	-0.002198	-0.002365	0.002407	0.000125	0.002282	0.0032	0.003075
1088	2024-05-09	0.000491	0.010605	0.000324	-0.001208	-0.002861	0.003994	0.002553	0.000125	0.002428	0.0044	0.004275
1089	2024-05-10	0.004453	0.000067	-0.000162	0.005090	-0.000289	-0.000136	0.002362	0.000125	0.002237	0.0036	0.003475
1092	2024-05-13	-0.005511	0.005827	0.007449	-0.001422	-0.000822	-0.001903	0.001586	0.000125	0.001461	0.0011	0.000975
1093	2024-05-14	-0.008832	0.007747	0.009986	-0.003593	-0.001000	-0.002493	0.001327	0.000125	0.001202	-0.0029	-0.003025

Analyse statistique des données

	R_SH	R_BH	R_SL	R_BL	SMB	HML	Rm-Rf
count	750.000000	750.000000	750.000000	750.000000	750.000000	750.000000	750.000000
mean	0.000169	0.000784	0.000176	0.000501	-0.000313	0.000092	0.000036
std	0.004229	0.007904	0.004871	0.005252	0.003789	0.002742	0.006753
min	-0.021683	-0.038887	-0.018684	-0.028336	-0.020351	-0.008554	-0.041225
25%	-0.002377	-0.003209	-0.003014	-0.002119	-0.002498	-0.001769	-0.003025
50%	0.000233	0.001101	-0.000104	0.000578	-0.000423	0.000061	0.000275
75%	0.002793	0.005001	0.003005	0.003289	0.001912	0.002061	0.003175
max	0.013598	0.047788	0.019026	0.035062	0.018952	0.009946	0.050675
skewness	-0.141243	-0.237379	0.209774	-0.308460	-0.021485	-0.009961	-0.314731

Figure: Statistiques descriptives des données

Analyse statistique des données

- Analyse sur 750 observations quotidiennes des facteurs étudiés.
- Moyenne des rendements positifs pour tous les portefeuilles sauf SMB.
- SMB: sous-performance des petites capitalisations par rapport aux grandes.
- Skewness négative pour tous les portefeuilles sauf SL.
- Distribution des rendements asymétrique à gauche :
 - Pertes plus importantes que les gains.
 - Queue de distribution plus épaisse, indiquant une forte probabilité d'événements extrêmes.
- Importance pour les investisseurs : potentiel de pertes significatives malgré des rendements moyens positifs.

Procédure

- Pour chacun des 4 portefeuilles (SH, BH, SL, BL) :
 - Estimation en utilisant un seul des 3 facteurs (Market, SMB, HML).
 - Estimation en utilisant les 3 facteurs simultanément.
- Objectif : déterminer quel facteur est significatif pour chaque portefeuille.
- Évaluation des modèles avec les métriques suivantes :
 - Coefficient de détermination (R²).
 - Critère d'information d'Akaike (AIC).
 - Significativité globale avec le test de Fisher.
 - Significativité individuelle des facteurs avec les tests de Student.

Portfeuilles	Alpha	Beta	T-stat(alpha)	prob	T-stat (Beta)	prob	R2	AIC	F-stati
SH	3.77*10^(-5)	0.17	0.254	0.799	7.772	0	0.075	-6126	60.41
BH	0.0006	0.7640	2.887	0.004	23.567	0	0.426	-5546	555.4
SL	4.441*10^(-5)	0.1886	0.258	0.796	7.410	0	0.068	-5908	54.91
BL	0.0004	0.5876	2.826	0.005	31.537	0	0.571	-6376	994.6

Figure: Estimation des portefeuilles en utilisant la prime de risque de marché.

Portfeuilles	Alpha	Beta	T-stat(alpha)	prob	T-stat (Beta)	prob	R2	AIC	F-stati
SH	0.0001	0.2461	0.8	0.424	6.182	0	0.049	-6105	1.04*10^(-9)
BH	0.0002	-1,6055	0.842	0.4	-32,969	0	0.592	-5802	6.66*10^(-148)
SL	0.0001	0.2822	0.801	0.424	6.153	0	0.048	-5892	37.85
BL	0.0001	-0,8662	0.679	0.486	-21,888	0	0.390	-6113	1.86*10^(-82)

Figure: Estimation des portefeuilles en utilisant SMB.

Portfeuilles			T-stat(alpha)	prob	T-stat (Beta)	prob	R2	AIC	F-stati
SH	-0,000005865	0.5417	-0,041	0.968	10.263	0	0.123	-6166	105.3
BH	0.0005	1.5739	2.125	0.034	17.830	0	0.298	-5395	317.9
SL	0.0001	-0,6661	0.68	0.497	-11,063	0	0.141	-5969	0
BL	0.0004	-0,2183	2.077	0.038	-3,138	0.002	0.013	-5752	9.845

Figure: Estimation des portefeuilles en utilisant HML.

Résultats: Estimation des portefeuilles en utilisant la prime de risque de marché.

- Significativité individuelle :
 - Toutes les probabilités des t-statistiques pour le facteur Beta sont inférieures à 5%.
 - La prime de risque de marché est significative pour tous les portefeuilles.
- Significativité globale :
 - Tous les F-statistiques sont supérieurs à leurs valeurs critiques au niveau de 5%.
- Coefficient de détermination (R^2) :
 - R² moyen de 0,285 pour les quatre portefeuilles.
 - La qualité de la régression est imparfaite.
- Critère d'information d'Akaike (AIC) :
 - L'AIC varie entre -6380 et -5500.
 - Indique une qualité prédictive variable mais raisonnable.

Résultats : Estimation des portefeuilles en utilisant SMB

- Significativité individuelle (test de Student) :
 - Toutes les probabilités des t-statistiques pour le facteur Beta sont inférieures à 5%.
 - La prime de risque de marché est significative pour tous les portefeuilles.
- Significativité globale (test de Fisher) :
 - Tous les F-statistiques sont supérieurs à leurs valeurs critiques au niveau de 5%.
- Coefficient de détermination (R²) :
 - R² moyen de 0,285 pour les quatre portefeuilles.
 - Qualité de la régression imparfaite.
- Critère d'information d'Akaike (AIC) :
 - L'AIC varie entre -6380 et -5500.
 - Indique une qualité prédictive raisonnable.

Résultats pour le facteur HML

- Portefeuille SH :
 - Alpha non significatif (p = 0.968)
 - Beta significatif (p = 0)
 - R² de 12.3%
- Portefeuille BH :
 - Alpha significatif positif (p = 0.034)
 - Beta très significatif (p = 0)
 - R² de 29.8%
- Portefeuille SL :
 - Alpha non significatif (p = 0.497)
 - Beta négatif significatif (p = 0)
 - R² de 14.1%
- Portefeuille BL :
 - Alpha significatif positif (p = 0.038)
 - Beta négatif significatif (p = 0.002)
 - R² de 1.3%

Conclusion des Modèles à Un Seul Facteur

Limitations et Prochaine Étape

- Les modèles à un seul facteur (HML, PRM ou SMB) montrent une puissance explicative limitée.
- R² relativement bas pour tous les portefeuilles, indiquant que d'autres facteurs influencent les rendements des portefeuilles.
- Pour améliorer la compréhension et la puissance explicative du modèle, nous utiliserons le modèle à trois facteurs de Fama-French.
- Le modèle à trois facteurs inclut la prime de risque de marché, SMB et HML, fournissant un cadre plus complet pour expliquer la variabilité des rendements des portefeuilles.

			BETA				
Portfeuilles	Alpha	SMB	HML	Rm	-Rf	T-stat (Alpha)	prob
SH	0.0002	0.9186	0.8570	0.4295		2.316	0.021
ВН	0.0003	-0,9234	0.9879 0.40		64 1	1.836	0.067 0.067
SL	0.0003	0.5766	-0,5121	0.4064		1.836	
BL 0.0002		-0,5814	0.4295		2.316	0.021	
T-s	tat(Beta)		Prob				

	T-stat(Beta)			Prob				
SMB	HML	Rm-Rf	SMB	HML	Rm-Rf	R2	AIC	F-stati
25.773	21.356	22.796	0	0	0	0.564	-6686	321.9
-18,471	17,552	15,381	0	0	0	0.755	-6179	0
11.535	-9,1	0.026	0	0	0	0.354	-6179	0
-16,311	-16,024	22.796	0	0	0	0.717	-6686	0

Figure: Estimation des portefeuilles en utilisant Fama French à 3 facteurs

Résultats : Estimation des portefeuilles en utilisant Fama French à 3 facteurs

- Les trois facteurs de Fama et French montrent des t-statistiques élevées avec des probabilités inférieures à 5%, indiquant leur significativité simultanée dans l'explication des rendements excédentaires.
- Le test de Fisher pour le portefeuille SH rejette l'hypothèse nulle d'insignifiance simultanée des coefficients (F-statistique sup à 2.63), renforçant la qualité prédictive du modèle.
- Les autres F-statistiques sont nuls pour les autres portefeuilles, suggérant un pouvoir explicatif potentiellement limité avec le modèle actuel en raison de caractéristiques spécifiques non capturées par les facteurs.
- Les valeurs de \mathbb{R}^2 sont élevées (au-dessus de 0.5), avec une moyenne de 0.597.

Conclusion

- Le modèle à trois facteurs de Fama et French explique environ 60% des variations des rendements excédentaires quotidiens des actions marocaines.
- La régression montre une qualité modérée, indiquant que le modèle à trois facteurs est bien adapté aux données marocaines.

Étude des Diagnostics Résiduels

- **Test de Jarque-Bera** : Teste l'asymétrie et l'aplatissement des résidus pour évaluer s'ils suivent une distribution normale.
- Probabilité (proba(JB)) : Si la probabilité est inférieure à un niveau de signification (par exemple, 0.05), cela indique que les résidus ne suivent pas une distribution normale.
- Test Omnibus : Teste la normalité globale des résidus.
- **Probabilité (proba(omnibus)) :** Similaire au test de Jarque-Bera, si la probabilité est inférieure à un niveau de signification (par exemple, 0.05), cela suggère une non-normalité.
- Asymétrie : Mesure l'asymétrie des résidus. Idéalement, elle devrait être proche de zéro pour la normalité.
- **Kurtosis :** Mesure la lourdeur des queues de distribution. Pour la normalité, elle devrait être autour de 3.
- Statistique de Durbin-Watson: Teste l'autocorrélation des résidus. Si la statistique est autour de 2, cela suggère aucune autocorrélation. Des valeurs significativement inférieures ou supérieures à 2 indiquent une autocorrélation positive ou négative, respectivement.

Étude des Diagnostics Résiduels

Portfeuilles	Omnibus	Prob(Omnibus)	Skew	Kurtosis	Durbin-Watson	Jarque-Bera	Prob(JB)
SH	3,897	0,144	0,003	3,383	1,42	4,587	0,101
BH	43,985	0	0,273	4,842	1,657	115,399	0
SL	31,74	0	0,419	3,76	1,276	40,033	0
BL	142,15	0	0,649	8,5	1,696	997,836	0

Figure: Estimation des portefeuilles en utilisant la prime de risque de marché.

Portfeuilles	Omnibus	Prob(Omnibus)	Skew	Kurtosis	Durbin-Watson	Jarque-Bera	Prob(JB)
SH	49,275	0	-0,293	5,029	1,371	139,356	0
BH	30,195	0	-0,18	4,447	1,281	69,438	0
SL	28,739	0	-0,04	4,555	1,157	75,753	0
BL	33,533	0	-0,152	4,65	1,284	87,993	0

Figure: Estimation des portefeuilles en utilisant SMB.

Portfeuilles	Omnibus	Prob(Omnibus)	Skew	Kurtosis	Durbin-Watson	Jarque-Bera	Prob(JB)
SH	15,926	0	-0,097	3,933	1,283	28,399	0
BH	93,564	0	-0,333	7,316	1,263	595,968	0
SL	32,49	0	-0,06	4,714	1,143	92,262	0
BL	132,367	0	-0,347	10,289	1,31	1675,521	0

Figure: Estimation des portefeuilles en utilisant HML.

Résultats et discussion

Prime Risque de Marché (PRM), SMB, HML:

- Tous les tests de Jarque-Bera et Omnibus montrent des probabilités inférieures à 5%, rejetant l'hypothèse nulle de distribution normale des résidus.
- L'asymétrie n'est proche de zéro que pour quelques portefeuilles, indiquant une asymétrie des résidus pour les autres portefeuilles.
- La kurtosis est autour de 3 uniquement pour SH et SL, suggérant des queues lourdes dans les résidus pour ces portefeuilles.
- Les statistiques de Durbin-Watson sont toutes inférieures à 2, indiquant une autocorrélation positive des résidus pour tous les portefeuilles.

Résultats et discussion

Conclusion:

Pour les modèles basés sur un seul facteur, nous concluons que l'hypothèse de normalité n'est pas vérifiée, avec une autocorrélation positive des résidus pour tous les portefeuilles, des résidus asymétriques et des queues lourdes.

Etude du diagnostic résiduel FF3F

Portfe	uilles	Omnibus	Prob(Omnibus)	Skew	Kurtosis	Durbin-Watson	Jarque-Bera	Prob(JB)
SH	i	64,021	0	0,225	5,986	1,546	284,873	0
BH	1	12,239	0,002	0,115	3,738	1,434	18,677	10^(-5)
SL		12,239	0,002	0,115	3,738	1,434	18,677	10^(-5)
BL		64,021	0	0,225	5,986	1,546	284,873	0

Figure: Estimation des portfeuilles en utilisant FF3F

Etude du diagnostic résiduel FF3F

- Toutes les probabilités des tests de Jarque-Bera et Omnibus sont inférieures à 5%, rejetant ainsi l'hypothèse nulle selon laquelle les résidus suivent une distribution normale.
- La skewness n'est pas très proche de zéro, indiquant une asymétrie des résidus.
- De même, la kurtosis n'est pas autour de 3 sauf pour BH et SL, suggérant des queues lourdes dans les résidus.
- Pour tous les portefeuilles, les statistiques de Durbin-Watson sont inférieures à 2, variant de 1.4 à 1.6. Ces statistiques suggèrent une autocorrélation positive des résidus pour tous les portefeuilles.

Corrections

- Après mon travail initial sur le modèle à trois facteurs de Fama-French, mon superviseur de stage m'a informé que la méthode utilisée était correcte, mais comportait plusieurs limitations à corriger.
- Dans le code original, le calcul des rendements journaliers du portefeuille était effectué en moyennant les rendements de chaque actif de manière égale.
- Pour chaque jour j, le rendement pondéré par la capitalisation R_p est calculé en utilisant la formule :

$$R_{p} = \frac{\sum_{i=1}^{n} (R_{i,j} \cdot C_{i,j})}{\sum_{i=1}^{n} C_{i,j}}$$

- Où $R_{i,j}$ est le rendement journalier de l'actif i au jour j, et $C_{i,j}$ est la capitalisation boursière de l'actif i au jour j.
- Cela garantit que les rendements sont pondérés en fonction de l'importance de marché de chaque actif.

Corrections

- Sur les conseils de mon superviseur, nous avons remplacé l'indice MASI par l'indice MASI Rentabilité(MASIR) pour cette analyse.
 L'indice MASI Rentabilité inclut les dividendes dans son calcul, offrant ainsi une mesure plus complète des rendements totaux, comprenant à la fois les plus-values et les revenus de dividendes.
- Cours de clôture remplacé par cours ajusté.

Après analyse par les même metrics, nous avons trouvé que :

- Fama French est le meilleur modèle expliquant les 4 portefeuilles.
- Les tests de Jarque-Bera et Omnibus ont des probabilités inférieures à 5%, rejetant l'hypothèse de normalité des résidus.
- Les graphes Q-Q montrent une déviation notable de la ligne droite, indiquant une déviation de la distribution normale.
- La skewness n'est pas proche de zéro, indiquant une asymétrie des résidus.
- La kurtosis est autour de 3, suggérant des queues épaisses dans les résidus.
- Les statistiques de Durbin-Watson sont inférieures à 2, variant entre 1.1 et 1.8, suggérant une autocorrélation positive des résidus.
- Conclusion: Les résidus ne respectent pas les hypothèses de normalité, d'asymétrie et présentent une autocorrélation positive.

Figure: Resiudals vs fitted plot

Figure: Q-Q plot

Figure: Regression plot

Tracking error exanté

- Le tracking error ex-ante mesure la divergence prédite entre les rendements du portefeuille et ceux de l'indice de référence.
- Il est crucial pour les gestionnaires de portefeuille visant à répliquer ou suivre de près un indice de référence.
- Le tracking error ex-ante aide à comprendre le risque potentiel et la constance de la performance par rapport à l'indice.
- La formule du tracking error ex-ante est donnée par :

Tracking Error =
$$\sqrt{w^T Cw}$$

- w est le vecteur des poids excédentaires par rapport à l'indice de référence.
- *C* est la matrice de covariance prévue des rendements.

Tracking error exanté utilisant FF3F

- Le modèle Fama-French offre une compréhension approfondie des sources de rendement, au-delà du risque de marché.
- Il est un outil efficace pour évaluer et gérer le tracking error.
- Étape 1 : Déterminer les Expositions aux Facteurs (Bêtas)
- Étape 2 : Construire la Matrice de Covariance
 - Utiliser des données historiques pour estimer la matrice de covariance
 C des rendements des facteurs Fama-French.
 - Exemple de matrice de covariance :

$$C = \begin{bmatrix} \sigma_{MKT}^2 & \sigma_{MKT,SMB} & \sigma_{MKT,HML} \\ \sigma_{MKT,SMB} & \sigma_{SMB}^2 & \sigma_{SMB,HML} \\ \sigma_{MKT,HML} & \sigma_{SMB,HML} & \sigma_{HML}^2 \end{bmatrix}$$

Tracking error exanté utilisant FF3F

• Étape 3 : Calculer les Poids Excédentaires

- Déterminer les poids excédentaires du portefeuille par rapport à l'indice de référence.
- $w = w_p w_b$

• Étape 4 : Calculer le Tracking Error

 Utiliser les poids excédentaires et la matrice de covariance pour calculer le tracking error ex-ante :

Tracking Error =
$$\sqrt{w^T Cw}$$

• Cette méthode capture un spectre plus large des risques systématiques, offrant une évaluation plus précise du tracking error.

Tracking error exanté utilisant FF3F - Méthodologie

Construction du Portefeuille :

- Composer un portefeuille de 10 actions avec une allocation spécifique.
- Exemple: Allouer plus de poids aux actions Small (S) pour observer les variations des bêtas.

• Calcul de la Matrice de Covariance C :

• Utiliser des données historiques pour estimer C.

Vectorisation des Poids du Portefeuille w :

- Représenter les poids à travers les trois bêtas.
- Calculer les poids pour chaque facteur par la valeur absolue :

$$\begin{split} w_{MKT} &= \frac{\beta_{MKT}}{\beta_{MKT} + \beta_{SMB} + \beta_{HML}}, \quad w_{SMB} = \frac{\beta_{SMB}}{\beta_{MKT} + \beta_{SMB} + \beta_{HML}}, \\ w_{HML} &= \frac{\beta_{HML}}{\beta_{MKT} + \beta_{SMB} + \beta_{HML}} \end{split}$$

Calcul du Tracking Error

Résultats Tracking error

	libelleFR	symbol	codeISIN	instrument_url	drupal_internalid	emetteur_url	Secteur	Capitalisation	PBR
0	IMMORENTE INVEST	IMO	MA0000012387	/fr/live-market/instruments/IMO	388	/fr/live-market/emetteurs/IMO110518	Sociétés de placement immobilier	8.340482e+08	1.23 5
1	ENNAKL	NKL	MA0000011942	/fr/live-market/instruments/NKL	381	/fr/live- market/emetteurs/NAKL130710	Distributeurs	1.056000e+09	1.14
2	SAMIR	SAM	MA0000010803	/fr/live- market/instruments/SAM	492	/fr/live-market/emetteurs/SAM190396	Pétrole et Gaz	1.520777e+09	0.41
3	DISWAY	DWY	MA0000011637	/fr/live- market/instruments/DWY	536	/fr/live-market/emetteurs/MAR280207	Matériels, Logiciels et Services Informatiques	1.314376e+09	1.83
4	SNEP	SNP	MA0000011728	/fr/live-market/instruments/SNP	367	/fr/live-market/emetteurs/SNP071107	Chimie	1.223760e+09	1.64
5	ALUMINIUM DU MAROC	ALM	MA0000010936	/fr/live-market/instruments/ALM	490	/fr/live-market/emetteurs/ALM271098	Bâtiment et Matériaux de Construction	7.031246e+08	2.38
6	S.M MONETIQUE	S2M	MA0000012106	/fr/live-market/instruments/S2M	386	/fr/live-market/emetteurs/S2M271211	Matériels, Logiciels et Services Informatiques	1.436958e+08	2.02
7	COLORADO	COL	MA0000011934	/fr/live-market/instruments/COL	530	/fr/live-market/emetteurs/COL271006	Bâtiment et Matériaux de Construction	8.537499e+08	2.30
8	DIAC SALAF	DIS	MA0000010639	/fr/live-market/instruments/DIS	466	/fr/live-market/emetteurs/DIS010662	Sociétés de financement et Autres Activités Fi	2.765186e+07	NaN
9	AGMA	AGM	MA0000010944	/fr/live- market/instruments/ΔGM	491	/fr/live-market/emetteurs/AGM091198	Assurances	1.365000e+09	8.73

Figure: Portefeuille de 10 actions choisies aléatoirement

Tracking Error = $0.0024906926163459787 \approx 0.25\%$

Bibiliograpghy

 Fama and French Three Factor Model Definition: Formula and Interpretation.

```
https://www.investopedia.com/terms/f/famaandfrenchthreefactormodel.asp
```

- 2. Modèle Fama-French à trois facteurs. https://fr.wikipedia.org/wiki/Mod%C3%A8le-Fama-French% C3%A0-trois-facteurs
- 3. A Comparative Study of the Fama-French Three Factor and the Carhart Four Factor Models: Empirical Evidence from Morocco, Samir Aguenao.
- 4. The Empirical Explanatory Power of CAPM and the Fama and French Three-Five Factor Models in the Moroccan Stock Exchange, Safaa Benfeddoul.
- 5. Ex-Ante Tracking Error: Active Strategies and the Size of the Covariance Matrix.

https://quant.stackexchange.com/questions/35720/ex-ante-tracking-error-active-strategies