Міністерство освіти і науки України Національний університет «Львівська політехніка» Інститут телекомунікацій, радіоелектроніки та електронної техніки кафедра «Телекомунікацій»

Звіт з лабораторної роботи №1 з дисципліни «Теорія алгоритмів та структур даних»

> Підготував: ст.групи ТР-31 Гейниш Р.Т.

Прийняв: Андрущак В.С.

Тема роботи: Налаштування середовища роботи Python3 та Jupyter Notebook

Мета роботи: налаштувати робоче середовище, вивчити та дослідити основні технічні елементи для дослідження даних та алгоритм

Завдання до виконання

Завдання 1. Налаштувати середовище роботи

Встановлюємо Python3, пакетний менеджер pip (pip3) та VSCode.

Піссля чого встановлюємо jupyter notebook, знайшовши його у вкладці extensions

За допомогою пакетного менеджера pip інсталяціюмо бібліотеки numpy, pandas, matplotlib ввівши pip install <назва бібліотеки>

Перевіряємо правильність налаштування середовища та бібліотек Підключаємо бібліотеки та виводимо у консоль "Hello, world!"

Генеруємо масив з 100 випадкових елементів та візуалізуємо дані

```
> <
        import numpy as np
        import matplotlib.pyplot as plt
        from numpy import random
        x=random.randint(100, size=(100))
        print(x)
        plt.plot(x) # https://www.w3schools.com/python/matplotlib_plotting.asp
        plt.show()
        0.1s
     [29 99 83 95 71 97 93 25
                              7 91 23 99 56 62 48 0 91 77 77 50 85 19 19 5
                         7 38 33 62 43 68 52 37
                                                8 89 93
              86 25 88 11 80 85 48 77 70 45 98 98 62 67 95 20 40 87 22 16 78
        12 99 28 65 86 13 88 68 83 22 82 62 9 75 84 35
                                                          7 39
                                                                0 55 31 65 71
             2 51]
       100
        80
        60
        40
        20
         0
                         20
                                      40
                                                 60
                                                             80
                                                                         100
              0
```

Завдання 2. Дослідження датасету

Підключаємо необхідні бібліотеки та завантажуємо датасет. Прочитавши опис до датасету називаємо відповідно колонки.

Визначаємо розмір датасету

```
info = pd.read_csv(url, names=columns)
print(info.shape)
```

Отримуємо наступне значення у виводі, де 768 - це кількість рядків, а 9 - кількість стовпців:

```
(768, 9))
```

Наступним кроком визначаємо пропущені дані. Для цього проведемо перевірку на пусті значення (NaN) за допо isnull () та виводимо загальну суму NaN значень з кожної колонки

```
print(info.isnull().sum()) #
```

Отримуємо:

```
Times Pregnant
                             0
Plasma Glucose
                             0
Diastolic Blood Pressure
                             0
Skin Thickness
                             0
Serum Insulin
                             0
Body mass
                             0
Diabetes Pedigree
                             0
Age
Class Variable
dtype: int64
```

Отже, даних зі значенням NaN немає. А описі до датасету вказано, що пропущені дані ϵ , перевіряємо колонки, які можуть містити значення "0", але не ϵ логічним, як наприклад колонка Plasma Glucose, що містить дані про

концентрацію глюкози в плазмі через 2 години в оральному тесті на толерантність до глюкози, норма становить зазвичай 140 мг/д

Отримуємо:

· Times Pregnant	111	
Plasma Glucose	5	
Diastolic Blood Pressure	35	
Skin Thickness	227	
Serum Insulin	374	
Body mass	11	
Diabetes Pedigree	0	
Age	0	
Class Variable	500	
dtype: int64		

Здійснюємо обрахунок середнього арифметичного, дисперсії, середнє квадратичне відхилення для кожної із колонок набору даних:

Отримуємо:

Average:			
Times Pregnant	3.845052		
Plasma Glucose	120.894531		
Diastolic Blood Pressure	69.105469		
Skin Thickness	20.536458		
Serum Insulin	79.799479		
Body mass	31.992578		
Diabetes Pedigree	0.471876		
Age	33.240885		
Class Variable	0.348958		
dtype: float64			
Variance:			
Times Pregnant	11.354056		
Plasma Glucose	1022.248314		
Diastolic Blood Pressure	374.647271		
Skin Thickness	254.473245		
Serum Insulin	13281.180078		
Body mass	62.159984		
Diabetes Pedigree	0.109779		
Age	138.303046		
Class Variable	0.227483		
dtype: float64			
Standart Deviation			
Times Pregnant	3.369578		
Plasma Glucose	31.972618		
Diastolic Blood Pressure	19.355807		
Skin Thickness	15.952218		
Serum Insulin	115.244002		
Body mass	7.884160		
Diabetes Pedigree	0.331329		
Age	11.760232		
Class Variable	0.476951		
dtype: float64			

Візуалізємо дані за допомогою гістограм:

Висновки:

Отже, на основі даних можна зробити загальні висновки. Можна помітити, що більшість пацієнтів мають менше ніж 5 вагітностей. Більшість пацієнтів також мають нормальне значення рівня глюкози крові, дані зосереджені в діапазоні від 100 до 150, (середнє значення становить 121.6) Дані про артеріальний тиск показують, що більшість пацієнтів мали тиск від 60 до 80. Розподіл товщини шкіри трицепса може бути корисним показником жирової маси, у більшості цей показник був рівний 20-40 мм.

Середнє значення індексу маси тіла (32.46) перевищує діапазон норми (18.5 до 24.9). Вибірка складалася з людей середній вік яких становить 33.2 роки. 500 людей мали негативний тест на діабет, 268 мали позитивний тест.