out and We're al impor from from from from from	e also have this flattened layer. This flattened layer will be important as we move from our convolutional layers to our dense layers. Eventually, in order to make some type of prediction, we're going to need to f then have that dense layer connected to that final prediction. Iso going to import this Conv2D and this MaxPooling2D, which will allow us to build out our convolutional layers as well as our pooling layers "t tensorflow as tf tensorflow.keras.datasets import cifar10 tensorflow.keras.preprocessing.image import ImageDataGenerator tensorflow.keras.models import Sequential tensorflow.keras.layers import Dense, Dropout, Activation, Flatten tensorflow.keras.layers import Conv2D, MaxPooling2D "t matplotlib.pyplot as plt
(x_tr print print x_trai 50000 10000 ## Ea x_tra	e data, shuffled and split between train and test sets: rain, y_train), (x_test, y_test) = cifar10.load_data() c('x_train shape:', x_train.shape) c(x_train.shape[0], 'train samples') c(x_test.shape[0], 'test samples') in shape: (50000, 32, 32, 3) train samples test samples ach image is a 32 x 32 x 3 numpy array ain[444].shape
## Le	numbers are from 0-255 for each one of these different colors, red, green, and blue. Set's look at one of the images Sizy_train[444]) Simshow(x_train[444]);
10 - 15 - 20 - 25 - 30 -	5 10 15 20 25 30
from num_c y_tra y_tes # now y_tra	tensorflow.keras import utils as np_utils classes = 10 in = np_utils.to_categorical(y_train, num_classes) st = np_utils.to_categorical(y_test, num_classes) vinstead of classes described by an integer between 0-9 we have a vector with a 1 in the (Pythonic) 9th position in[444] ([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
# As x_tra x_tes x_tra x_tes all of our	
array(<pre>([[[0.23137255, 0.24313726, 0.24705882], [0.16862746, 0.18039216, 0.1764706], [0.19607843, 0.1882353, 0.16862746], , [0.61960787, 0.5176471, 0.42352942], [0.59607846, 0.49019608, 0.4], [0.5803922, 0.4862745, 0.40392157]], [[0.0627451, 0.07843138, 0.07843138], [0.</pre>
	[0.47843137, 0.34117648, 0.22352941]], [[0.09803922, 0.09411765, 0.08235294], [0.0627451, 0.02745098, 0.
	[0.7764706 , 0.6313726 , 0.10196079],, [0.627451 , 0.52156866, 0.27450982], [0.21960784, 0.12156863, 0.02745098], [0.20784314, 0.13333334, 0.07843138]], [[0.7058824 , 0.54509807, 0.3764706], [0.6784314 , 0.48235294, 0.16470589], [0.7294118 , 0.5647059 , 0.11764706],, [0.72156864, 0.5803922 , 0.36862746], [0.38039216, 0.24313726, 0.13333334], [0.3254902 , 0.20784314, 0.13333334]],
	[[0.69411767, 0.5647059 , 0.45490196], [0.65882355, 0.5058824 , 0.36862746], [0.7019608 , 0.5568628 , 0.34117648],, [0.84705883, 0.72156864, 0.54901963], [0.5921569 , 0.4627451 , 0.32941177], [0.48235294, 0.36078432, 0.28235295]]], [[[0.6039216 , 0.69411767, 0.73333335], [0.49411765, 0.5372549 , 0.53333336], [0.4117647 , 0.40784314 , 0.37254903],, [0.35686275, 0.37254903, 0.2784314],
	[0.34117648, 0.3529412 , 0.2784314], [0.30980393, 0.31764707, 0.27450982]], [[0.54901963, 0.627451 , 0.6627451], [0.5686275 , 0.6
	, [0.30980393, 0.32156864, 0.2509804], [0.26666668, 0.27450982, 0.21568628], [0.2627451, 0.27058825, 0.21568628]],, [[0.6862745, 0.654902, 0.6509804], [0.6117647, 0.6039216, 0.627451], [0.6039216, 0.627451, 0.6666667],, [0.16470589, 0.13333334, 0.14117648], [0.23921569, 0.20784314, 0.22352941], [0.3647059, 0.3254902, 0.35686275]],
	[[0.64705884, 0.6039216, 0.5019608], [0.6117647, 0.59607846, 0.50980395], [0.62352943, 0.6313726, 0.5568628],, [0.40392157, 0.3647059, 0.3764706], [0.48235294, 0.44705883, 0.47058824], [0.5137255, 0.4745098, 0.5137255]], [[0.6392157, 0.5803922, 0.47843137], [0.61960787, 0.5803922, 0.47843137], [0.6392157, 0.6117647, 0.52156866],, [0.56078434, 0.52156866, 0.54509807],
	[0.56078434, 0.5254902 , 0.5568628], [0.56078434, 0.52156866, 0.5647059]]], [[1.
	[1.
	[[0.44313726, 0.47058824, 0.4392157], [0.43529412, 0.4627451, 0.43529412], [0.4117647, 0.4392157, 0.41568628],, [0.28235295, 0.31764707, 0.3137255], [0.28235295, 0.3137255, 0.30980393], [0.28235295, 0.3137255, 0.30980393]], [[0.443529412, 0.4627451, 0.43137255], [[0.40784314, 0.43529412, 0.40784314], [[0.3882353, 0.41568628, 0.38431373],, [[0.26666668, 0.29411766, 0.28627452], [[0.27450982, 0.2980323, 0.29411766]]
	[0.27450982, 0.29803923, 0.29411766], [0.30588236, 0.32941177, 0.32156864]], [[0.41568628, 0.44313726, 0.4117647], [0.3882353, 0.41568628, 0.38431373], [0.37254903, 0.4 , 0.36862746],, [0.30588236, 0.333333334, 0.3254902], [0.30980393, 0.33333334, 0.3254902], [0.3137255, 0.3372549, 0.32941177]]],
	[[[0.13725491, 0.69803923, 0.92156863], [0.15686275, 0.6901961, 0.9372549], [0.16470589, 0.6901961, 0.94509804],, [0.3882353, 0.69411767, 0.85882354], [0.30980393, 0.5764706, 0.77254903], [0.34901962, 0.5803922, 0.7411765]], [[0.22352941, 0.7137255, 0.91764706], [0.17254902, 0.72156864, 0.98039216], [0.19607843, 0.7176471, 0.9411765],, [0.6117647, 0.7137255, 0.78431374], [0.5529412, 0.69411767, 0.80784315],
	[0.45490196, 0.58431375, 0.6862745]], [[0.38431373, 0.77254903, 0.92941177], [0.2509804, 0.7411765, 0.9882353], [0.27058825, 0.7529412, 0.9607843],, [0.7372549, 0.7647059, 0.80784315], [0.4666667, 0.5294118, 0.5764706], [0.23921569, 0.30980393, 0.3529412]], , [[0.28627452, 0.30980393, 0.3019608], [0.20784314, 0.24705882, 0.26666668], [0.21176471, 0.26666668, 0.3137255],
	[0.066666667, 0.15686275, 0.2509804], [0.08235294, 0.14117648, 0.2], [0.12941177, 0.1882353, 0.19215687]], [[0.23921569, 0.26666668, 0.29411766], [0.21568628, 0.27450982, 0.3372549], [0.22352941, 0.30980393, 0.40392157],, [0.09411765, 0.1882353, 0.28235295], [0.096666667, 0.13725491, 0.20784314], [0.02745098, 0.09019608, 0.1254902]], [[0.17254902, 0.21960784, 0.28627452],
	[0.18039216, 0.25882354, 0.34509805], [0.19215687, 0.3019608, 0.4117647],, [0.10588235, 0.20392157, 0.3019608], [0.08235294, 0.16862746, 0.25882354], [0.04705882, 0.12156863, 0.19607843]]], [[[0.7411765, 0.827451, 0.9411765], [0.7294118, 0.8156863, 0.9254902], [0.7254902, 0.8117647, 0.92156863],, [0.6862745, 0.7647059, 0.8784314], [0.6745098, 0.7607843, 0.87058824], [0.6627451, 0.7607843, 0.8027451]],
	[[0.7607843 , 0.8235294 , 0.9372549], [[0.7490196 , 0.8117647 , 0.9254902], [[0.74509805, 0.80784315, 0.92156863],, [[0.6784314 , 0.7529412 , 0.8627451], [[0.67058825, 0.7490196 , 0.85490197], [[0.654902 , 0.74509805, 0.84705883]], [[[0.8156863 , 0.85882354, 0.95686275], [[0.8039216 , 0.84705883, 0.9411765], [[0.8
	[0.6745098 , 0.74509805, 0.84705883], [0.6627451 , 0.7490196 , 0.84313726]],, [[0.8117647 , 0.78039217, 0.70980394], [0.79607844, 0.7647059 , 0.6862745], [0.79607844, 0.76862746, 0.6784314],, [0.5294118 , 0.5176471 , 0.49803922], [0.63529414, 0.61960787, 0.5882353], [0.65882355, 0.6392157 , 0.5921569]], [[0.7764706 , 0.74509805, 0.6666667], [0.7764706 , 0.74509805, 0.6666667], [0.7764706 , 0.70980394, 0.62352943],
	[0.7647059 , 0.74509805, 0.67058825], [0.7687059 , 0.6745098 , 0.5745098 , 0.5764706],, [0.69803923, 0.67058825, 0.627451], [0.6862745 , 0.6627451 , 0.6117647], [0.6862745 , 0.6627451 , 0.6039216]], [[0.7764706 , 0.7411765 , 0.6784314], [0.7411765 , 0.70980394, 0.63529414], [0.69803923, 0.6666667 , 0.58431375],, [0.7647059 , 0.72156864, 0.6627451], [0.76862746, 0.7411765 , 0.67058825], [0.7647059 , 0.74509805, 0.67058825]]],
	[[[0.8980392 , 0.8980392 , 0.9372549], [0.9254902 , 0.92941177, 0.96862745], [0.91764706, 0.9254902 , 0.96862745], , [0.8509804 , 0.85882354, 0.9137255], [0.8666667 , 0.8745098 , 0.91764706], [0.87058824, 0.8745098 , 0.9137255]], [[0.87058824, 0.8666667 , 0.8980392], [0.9372549 , 0.9372549 , 0.9764706], [0.9137255 , 0.91764706, 0.9647059], , [0.8745098 , 0.8745098 , 0.9254902],
	[0.8901961 , 0.89411765, 0.933333334], [0.8235294 , 0.827451 , 0.8627451]], [[0.8352941 , 0.80784315, 0.827451], [0.91764706, 0.9098039 , 0.9372549], [0.90588236, 0.9137255 , 0.95686275],, [0.8627451 , 0.8627451 , 0.9098039], [0.8627451 , 0.85882354, 0.9098039], [0.7921569 , 0.79607844, 0.84313726]], , [[0.5882353 , 0.56078434, 0.5294118],
	[0.54901963, 0.5294118 , 0.49803922], [0.5176471 , 0.49803922, 0.47058824],, [0.8784314 , 0.87058824, 0.85490197], [0.9019608 , 0.89411765, 0.88235295], [0.94509804, 0.94509804, 0.93333334]], [[0.5372549 , 0.5176471 , 0.49411765], [0.50980395, 0.49803922, 0.47058824], [0.49019608, 0.4745098 , 0.4509804],, [0.70980394, 0.7058824 , 0.69803923], [0.7921569 , 0.7882353 , 0.7764706], [0.83137256, 0.827451 , 0.8117647]],
y_tra array([[0.47843137, 0.46666667, 0.44705883], [0.4627451 , 0.45490196, 0.43137255], [0.47058824, 0.45490196, 0.43529412], , [0.7019608 , 0.69411767, 0.6784314], [0.6431373 , 0.6332157 , 0.6392157 , 0.6313726]]]], dtype=float32) ain ([[0., 0., 0.,, 0., 0., 0.], [0., 0., 0.,, 0., 0., 1.], [0., 0., 0.,, 0., 0., 1.],
• Pre	[0, 0, 0, 0, 0, 0, 1], [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0]], dtype=float32) As Layers for CNNs eviously we built Neural Networks using primarily the Dense, Activation and Dropout Layers. The we will describe how to use some of the CNN-specific layers provided by Keras
keras kerne: bias_c A few pa • fi • ke • st	.layers.convolutional.Conv2D(filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1), activation=None, use_bias=Tru l_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=No constraint=None, **kwargs) arameters explained: .lters: the number of filter used per location. In other words, the depth of the output. ernel_size: an (x,y) tuple giving the height and width of the kernel to be used crides: and (x,y) tuple giving the stride in each dimension. Default is (1,1) aput_shape: required only for the first layer
MaxP keras	Pooling2D .layers.pooling.MaxPooling2D(pool_size=(2, 2), strides=None, padding='valid', data_format=None) pol_size: the (x,y) size of the grid to be pooled. crides: Assumed to be the pool_size unless otherwise specified
First Below w	cnn cnn convolutional layers and fully connected layers. CNN ve will build our first CNN. For demonstration purposes (so that it will train quickly) it is not very deep and has relatively few parameters. We use strides of 2 in the first two convolutional layers which quickly red ions of the output. After a MaxPooling layer, we flatten, and then have a single fully connected layer before our final classification layer.
## 5x model model ## An model model	<pre>1_1 = Sequential() 25 convolution with 2x2 stride and 32 filters 1_1.add(Conv2D(32, (5, 5), strides = (2,2), padding='same',</pre>
model model model model model model model model	<pre>A2 max pooling reduces to 3 x 3 x 32</pre>
Layer ===== conv2 activ conv2	: "sequential_1" r (type)
dropo flatt dense activ dropo dense	Dut_2 (Dropout) (None, 3, 3, 32) 0 ten_1 (Flatten) (None, 288) 0 e_2 (Dense) (None, 512) 147968 vation_6 (Activation) (None, 512) 0 out_3 (Dropout) (None, 512) 0 e_3 (Dense) (None, 10) 5130 vation_7 (Activation) (None, 10) 0
Total Traina Non-tr We still from batch	params: 181,162 able params: 0 have 181K parameters, even though this is a "small" model. tensorflow.keras import optimizers n_size = 32 itiate RMSprop optimizer
# Let model	<pre>tf.keras.optimizers.RMSprop(lr=0.0005, decay=1e-6) t's train the model using RMSprop L_1.compile(loss='categorical_crossentropy',</pre>
Epoch 1563/1 Epoch 1563/1 Epoch 1563/1 Epoch 1563/1 Epoch 1563/1 Epoch	r(RMSprop, self)init(name, **kwargs) 1/15 1563 [====================================
Epoch 1563/1 Epoch 1563/1 Epoch 1563/1 Epoch 1563/1 Epoch 1563/1 Epoch	1563 ===================================
Epoch 1563/1 <keras model</keras 	1563 [====================================
Conv ->	[1.9124896e-05, 8.7166364e-07, 1.9910648e-02,, 2.1665717e-02, 2.7145765e-07, 1.5294592e-05], [3.0577293e-01, 5.7187412e-02, 1.2445054e-01,, 8.7521486e-02, 3.0119848e-02, 2.4947308e-02], [1.4049045e-05, 2.6132105e-07, 1.0127943e-03,, 9.8453426e-01, 4.7254613e-08, 4.5032530e-06]], dtype=float32) vious model had the structure: • Conv -> MaxPool -> (Flatten) -> Dense -> Final Classification appropriate activation functions and dropouts)
CorUse1. How2. Train	ild a more complicated model with the following pattern: nv -> Conv -> MaxPool -> Conv -> Conv -> MaxPool -> (Flatten) -> Dense -> Final Classification e strides of 1 for all convolutional layers. w many parameters does your model have? How does that compare to the previous model? in it for 5 epochs. What do you notice about the training time, loss and accuracy numbers (on both the training and validation sets)? different structures and run times, and see how accurate your model can be.
from model model model model model	tensorflow.keras.models import Sequential L_2 = Sequential() L_2.add(Conv2D(32, (3, 3), padding='same',
model	L_2.add(Conv2D(64, (3, 3), padding='same')) L_2.add(Activation('relu')) L_2.add(Conv2D(64, (3, 3))) L_2.add(Activation('relu')) L_2.add(MaxPooling2D(pool_size=(2, 2))) L_2.add(Dropout(0.25)) L_2.add(Platten()) L_2.add(Dense(512)) L_2.add(Activation('relu')) L_2.add(Activation('relu')) L_2.add(Dropout(0.5)) L_2.add(Dense(oum_classes))
## Ch model: Model: Layer ===== conv2	L_2.add(Activation('softmax')) neck number of parameters L_2.summary() : "sequential_3" r (type)
conv2 activ max_p 2D) dropo conv2 activ	Particular (Activation) (None, 32, 32, 32) 0 Particular (Activation) (None, 30, 30, 32) 9248 Particular (MaxPooling (None, 15, 15, 32) 0 Particular (Dropout) (None, 15, 15, 32) 0 Particular (Conv2D) (None, 15, 15, 64) 18496 Particular (Activation) (None, 15, 15, 64) 0 Particular (Conv2D) (None, 15, 15, 64) 0 Particular (Conv2D) (None, 13, 13, 64) 36928
activ max_p 2D) dropo flatt dense	2d_11 (Conv2D) (None, 13, 13, 64) 36928 vation_17 (Activation) (None, 13, 13, 64) 0 cooling2d_5 (MaxPooling (None, 6, 6, 64) 0 cout_8 (Dropout) (None, 6, 6, 64) 0 ten_3 (Flatten) (None, 2304) 0 e_6 (Dense) (None, 512) 1180160 vation_18 (Activation) (None, 512) 0
dropo dense activ ===== Total Traina Non-tr	Dut_9 (Dropout) (None, 512) 0 e_7 (Dense) (None, 10) 5130 vation_19 (Activation) (None, 10) 0 e_arams: 1,250,858 able params: 1,250,858 rainable params: 0 etitate RMSprop optimizer
<pre>model</pre>	<pre>2 = tf.keras.optimizers.RMSprop(lr=0.0005) 2's train the model using RMSprop 1_2.compile(loss='categorical_crossentropy',</pre>
Epoch 1563/1 Epoch 1563/1 Epoch 1563/1 Epoch	1/5 1563 [====================================