Методические рекомендации по выполнению курсовой работы по дисциплине

«Технологии индустриального программирования»

О курсовой работе

Курсовая работа представляет собой одну из форм семестровой работы студентов в рамках прохождения дисциплины. В данном случае дисциплины «Технологии индустриального программирования».

По итогам выполнения курсовой работы ОБЯЗАТЕЛЬНО необходимо подготовить отчёт, содержащий основные пункты работы (о них позднее), которые будут оформлены в соответствии с правилами оформления работы (приведены в конце рекомендаций).

В качестве темы курсовой работы можно взять разработку любого программного продукта на усмотрение студента. Каждая тема должна быть утверждена в соответствующем порядке защиты тем. Возможно выполнение совместного проекта, но в таком случае каждый студент внутри группы выполняет отдельную полноценную разработку части системы продукта.

В пределах методических рекомендаций предусмотрен выбор категорий тем работ:

- базовый уровень: моделирование и решение квадратных уравнений с заданными коэффициентами и сравнение различных методов решения квадратных уравнений;
- продвинутый уровень: моделирование работы конвейерной системы и промышленного логического контроллера технологического процесса;
- тема по выбору: студент самостоятельно определяет тему работы.

Важно, что при создании продукта значительная основная часть разработки должна быть на языке C++ с использованием принципов объектно-ориентированного программирования.

Части подготовки курсовой работы в разрезе практических занятий:

Практика	Основное содержание практики/ Часть подготовки к курсовой работе
1	Вводное занятие. Система требований. Знакомство с методическими материалами. Объёмы и сроки поставленных задач.
2	Выбор тем курсовых работ, формирование рабочих групп, постановка задач курсовой работы и технического задания на продукт.
3	Теоретическая часть курсовой работы. Обзор существующих продуктов-аналогов или продуктов смежного функционала.
4	Формирование решения, описание решения, алгоритм работы продукта

	(диаграмма процессов). Презентация темы курсовой работы.
5	Определение функциональных частей системы, схема объектов продукта (диаграмма классов). Презентация темы курсовой работы.
6	/Самостоятельная разработка продукта, ответы на возникающие вопросы/
7	/Самостоятельная разработка продукта, ответы на возникающие вопросы/
8	/Самостоятельная разработка продукта, ответы на возникающие вопросы/
9	/Самостоятельная разработка продукта, ответы на возникающие вопросы/
10	/Самостоятельная разработка продукта, ответы на возникающие вопросы/
11	/Самостоятельная разработка продукта, ответы на возникающие вопросы/
12	/Самостоятельная разработка продукта, ответы на возникающие вопросы/
13	/Самостоятельная разработка продукта, ответы на возникающие вопросы/
14	Предпоказ продукта
15	Предпоказ продукта
16	Предпоказ продукта

Балльная система

Во время подготовки в семестре и сдачи курсовой работы будет применена 100-балльная система оценивания. В зависимости от полученных баллов и формата защиты будет выставлена соответствующая оценка по итогам защиты курсового проекта.

Пункты будут оцениваться в своё количество баллов, включая объём выполнения данного пункта по системе 125% - 100% - 75% - 50% - 25% - 0%. Возможность получения 125% возможна при своевременной сдаче каждого из пунктов подготовки курсовой работы.

Важным моментом является то, что получение положительной оценки (выше неудовлетворительно) возможна только в случае разработки РАБОТАЮЩЕГО программного продукта. В остальном, оценка зависит только от раскрытия каждого из пунктов.

Обратите внимание, что полностью готовый проект можно показать впервые и в день сдачи курсовой работы, но в случае неудовлетворительного результата возможность исправить и представить готовый вариант будет уже в момент пересдачи.

Закрытые и проверенные пункты на сдаче проверяться не будут, поэтому одной из выгодных стратегий является сдача пунктов курсовой в рекомендуемые сроки.

Таблица пунктов оценивания и баллов:

№	Описание	Баллы	Сроки для повышенных баллов	Если не выполнить нельзя получить оценку выше	
1	Тема работы	1	Практика 5	неудовл.	
2	Актуальность работы	2	Практика 5	удовл.	
3	Цель работы	1	Практика 5	неудовл.	
4	Задачи работы	3	Практика 5	удовл.	
5	Критерии достижения успеха	10	Практика 5	отлично	
6	Обзор области	10	Практика 5	удовл.	
7	Обзор 3 решений	10	Практика 5	отлично	
8	Схема работы	15	Практика 7	хорошо	
9	Архитектура классов	15	Практика 8	хорошо	
10	Разработка продукта	15	Практика 16	неудовл.	
11	Тестирование	15	Практика 16	неудовл.	
12	Заключение	2	Практика 16	неудовл.	
13	Список литературы	1	Практика 16	удовл.	

Для повышения баллов, заработанных в семестре необходимо отвечать на защите в день представления курсовой работы. При этом НАБРАННЫЕ БАЛЛЫ НЕ ЯВЛЯЮТСЯ ГАРАНТИЕЙ ПОЛУЧЕНИЯ ОЦЕНКИ, в случае, если не удастся ответить на вопросы по работе, что может говорить о возможной попытке сдать не свою работу, либо прочих махинациях, противоречащих Уставу Университета.

Диапазон	Предварительная оценка
от 90 и выше	отлично
от 75 до 90	хорошо
от 60 и выше	удовлетворительно
до 60	неудовлетворительно

Необходимые пункты

Курсовая работа должна содержать следующие пункты и их разновидности:

- 1. Введение:
 - 1.1. Тема работы.
 - 1.2. Актуальность работы.
 - 1.2. Цель работы.
 - 1.3. Задачи работы.
 - 1.4. Критерии достижения успеха.
- 2. Теоретическая часть:
 - 2.1. Обзор области разработки.
 - 2.2. Обзор существующих продуктов.
- 3. Технологическая часть:
 - 3.1. Схема работы системы.
 - 3.2. Архитектура классов продукта.
- 4. Практическая часть:
 - 4.1. Разработка продукта.
 - 4.2. Тестирование.
- 5. Заключение.
- 6. Список литературы.
- 7. Приложения.

Каждый из пунктов будет рассмотрен далее более подробно в разрезе подготовки конкретной темы работы.

Введение

В введение следует раскрыть предпосылки к разработке продукта, то есть основную идею, раскрыть актуальность работы, поставить цель работы, определить задачи и критерии достижения успеха.

Задачи для каждой курсовой работы должны соответствовать конечной цели, которую можно сформулировать по шаблону:

Цель работы - разработка программного продукта «Название продукта» на языке C++.

Задачи:

- 1. Провести библиографический обзор источников по теме работы.
- 2. Выделить от 3 существующих решений, соответствующих поставленной задаче, либо близких по смыслу. Выделить плюсы и минусы каждого из них.
- 3. Составить алгоритм работы программного продукта в виде ... (например, диаграммы процессов).
- 4. Составить иерархию объектов системы в виде ... (например, диаграммы классов).
- 5. Разработать программный продукт на языке С++.
- 6. Протестировать работу продукта.

7. Составить отчёт по выполненной работе в соответствии с требованиями и защитить его.

Важно отметить, что важным фактором при оценке курсовой работы будет являться макет технического задания на продукт, который должен быть подготовлен и представлен в упрощённом виде с помощью соответствующей таблицы критериев, состоящей из 10 основных пунктов.

Например:

No	Критерий	Значение		
1	Вариативность входных параметров	от -2143967 до +2143967		
10	Время работы	Не более 0,5 с		

Такая таблица позволит не только объективно оценить выполненный проект, но и послужит в качестве основы для проведения тестирования продукта и самоконтроля выполнения его пунктов.

Данный пункт можно сдать предварительно не позднее 5 практического занятия для получения дополнительных повышенных баллов, либо сдать до сдачи курсовой для предварительной проверки.

Оценка пунктов	Срок			
до 125%	не позднее 5 практического занятия			
до 100%	не позднее дня сдачи курсовой работы			

Презентацию тем курсовых работ необходимо предоставить к пятому практическому занятию (либо в соответствии с таблицей задержек), к которым необходимо в виде презентации представить следующие пункты:

- цель курсовой работы;
- задачи курсовой работы;
- техническое задание в виде таблицы из 10 пунктов;
- краткий теоретический обзор темы работы.

Типовые темы курсовых работ

Как было указано ранее, в качестве темы курсовой работы можно взять базовый уровень работы: моделирование и решение квадратных уравнений с заданными коэффициентами и сравнение различных методов решения квадратных уравнений. Таблица с типовыми вариантами в конце методических рекомендаций.

Продвинутый вариант работы: моделирование работы конвейерной системы и промышленного логического контроллера технологического процесса. Таблица с типовыми вариантами в конце методических рекомендаций.

Теоретическая часть

Теоретическая база для курсовой работы представляет собой первую главу курсовой, в которой рассматривается, как область внедрения продукта, так и существующие продукты аналоги.

Для библиографического обзора необходимо рассмотреть область внедрения продукта и вкратце рассказать о ней (не менее 2 страниц). Необходимо представить краткий обзор 3 существующих продуктов, решающих такую же задачу, либо похожую. Выделить плюсы и минусы каждого решения и сравнить их между собой.

Технологическая часть. Схема работы

Технологической части работы будут посвящены 3 и 4 практическое занятие. Можно воспользоваться как примерами далее, так и самостоятельно описать систему и алгоритм её работы.

Для обеспечения качественной, эффективной и, самое главное, наглядной передачи основных процессов, за счёт которых работает тот или иной программный продукт, прибегают к различного рода интерпретациям и описаниям происходящих процессов. Одни могут быть более формализованы, чем другие, но каждый способ отображения обладает своими ключевыми особенностями, о которых не следует забывать при проектировании и разработке программных продуктов.

Основные способы (подходы) к отображению процессов в системе:

- текстовый (словесный), когда с помощью языка описывается работа системы;
- графический, когда схема работы и процессы описываются с помощью графической интерпретации данных процессов (от формализованных по типу BPMN, IDF и прочих до абстрактных систем на усмотрение автора);
- знаковый, как ответвление от графического, где каждый процесс и/или его особенность отображаются в строгом соответствии с некоторой системой отображения.

Зачастую комбинируют несколько способов одновременно для того, чтобы сохранить возможность отображения отдельных аспектов продукта. Например, словесное описание, предусмотренное ГОСТом на техническое задание охватывает огромное количество аспектов разработки и особенностей программного продукта, которые зачастую нельзя отобразить с помощью одного изображения.

В рамках работы в данном семестре мы с вами будем пользоваться комбинированным способом, сочетая словесное описание, графическое (для отображения фактического расположения частей системы) и диаграмму состояний (формата, близкого к конечным автоматам).

Практические задания данного занятия можно выполнять по одной из трёх основных траекторий:

- 1. Задание общего варианта, которое соответствует базовому уровню выполнения задания на курсовую работу.
- 2. Задание общего варианта, которое соответствует продвинутому уровню выполнения задания на курсовую работу.
- 3. Задание по собственному варианту.

В качестве основного автоматизируемого процесса будет выступать технологический процесс автоматической маркировки товара, которая обеспечивается работой промышленного логического контроллера.

Итак, в одном из отделов технологического производства располагается автоматическая установка, которая представляет из себя конвейерную ленту с электроприводом (Q0), в начале ленты располагается контейнер с заготовками, заслонка которого открывается при помощи привода (Q1), о наличии заготовок в контейнере сообщает датчик (I1). О том, что заготовка дошла до края ленты сообщает датчик (I0). В конце ленты располагается контейнер для маркированных заготовок, с крышкой на электроприводе (Q2) и датчиком наполнения (I2). В середине ленты располагается автоматический станок печати (опускается оттиск и печать остаётся на заготовке) с приводом (Q3), перед местом печати на ленте располагается датчик приближения заготовки (I3) на достаточном расстоянии, чтобы успел опуститься оттиск за время движения товара, а скорости достаточно, чтобы ленту не нужно было останавливать. Схематическое изображение установки показано на рисунке:

Дополнительно есть пульт оператора, который содержит кнопку старта (I4), экстренной остановки (I5), лампочка, сигнализирующая о том, что заготовки закончились (Q6) и что контейнер для пропечатанных заготовок полон (Q7), а также об аварийном состоянии (Q8).

Система работает следующим образом:

- 1. Оператор нажимает кнопку старта. Запускается лента.
- 2. а) Контейнер с заготовками пустой. Вызов сигнала и остановка ленты.

- б) Контейнер с заготовками не пустой. Открывается контейнер.
- 3. Заготовка едет по ленте, но ещё не достигла датчика печати.
- 4. Заготовка достигла датчика печати. Печать опускается.
- 5. Деталь продолжает движение по ленте.
- 6. Деталь достигла конца ленты. Открывается крышка контейнера для готовых заготовок.
 - 7. а) Контейнер стал заполнен. Останавливаем процесс.
 - б) Контейнер не заполнен. Продолжаем процесс в шаг 2.
- 8. В любой момент, когда нажата кнопка остановки, процесс должен быть остановлен.
 - 9. При переходе в неизвестные состояния процесс должен быть остановлен.

Данное описание системы было комбинацией графического способа и словесного описания процессов. Далее рассмотрим диаграмму состояний для него же.

Одним из способов представления процессов программного продукта, помимо привычных блок-схем, могут выступать диаграммы процессов различного вида, в том числе диаграммы состояний объектов, которыми мы и будем пользоваться в нашей разработке. В конечном счёте, нам дается комбинация входных сигналов, по которой необходимо сформировать комбинацию выходных (управляющих) сигналов.

Рассмотрим таблицу состояний в соответствии с шагами:

		DIIIVI I G	ОЗПІЦУ			00011	SCICIB.		ar arriir	•			
Шаг	Ι0	I1	I2	I3	I4	I5	Q0	Q1	Q2	Q3	Q6	Q7	Q8
1	0	X	0	0	1	0	1	0	0	0	0	0	0
2a	0	0	0	0	0	0	0	0	0	0	1	0	1
26	0	1	0	0	0	0	1	1	0	0	0	0	0
3	0	X	0	0	0	0	1	0	0	0	0	0	0
4	0	X	0	1	0	0	1	0	0	1	0	0	0
5	0	X	0	0	0	0	1	0	0	0	0	0	0
6	1	X	0	0	0	0	1	0	1	0	0	0	0
7a	0	X	1	0	0	0	0	0	0	0	0	1	1
7б	0	X	0	0	0	0	1	0	0	0	0	0	0
8	X	X	X	X	X	1	0	0	0	0	0	0	0
9	?	?	?	?	?	?	0	0	0	0	0	0	1

В данной таблице X означает, что неважно, в каком состоянии находится конкретный элемент системы (датчик).

Таким образом, имея диаграмму состояний можно планировать комбинации элементов так, чтобы не возникали сопутствующие ошибки процессов и контролировать отдельные их параметры.

Для базового уровня:

Сравним между собой вычисление корней квадратного уравнения двумя разными способами, рассмотрев при этом отдельные случаи для различных коэффициентов квадратных уравнений. В общем случае уравнение второй степени можно записать в виде $Ax^2+Bx+C=0$. В зависимости от значений коэффициентов можно выделить различные модификации данного уравнения:

		$\mathbf{B} = 0$	B != 0			
A = 0	0 = 0 (1)	C = 0 (3)	Bx + C = 0 (5)	Bx = 0 (7)		
A != 0	$Ax^2 = 0$ (2)	$Ax^2 + C = 0$ (4)	$Ax^2 + Bx + C = 0$ (6)	$Ax^2 + Bx = 0$ (8)		
	C = 0	(C!=0	C = 0		

- (1) уравнение, верно при любом х;
- (2) уравнение, имеет единственный корень x = 0;
- (3) уравнение, которое не имеет корней и является неверным;
- (4) уравнение, которое имеет корни sqrt(-C/A) и -sqrt(-C/A), если они существуют, то есть если -C/A>=0;
- (5) уравнение с единственным корнем -С/В;
- (6) классическое квадратное уравнение;
- (7) уравнение, имеет единственный корень x = 0;
- (8) уравнение, у которого левая часть раскладывается в вид x*(Ax+B)=0, то есть всего есть 2 корня: x = 0 и x = -B/A.

В соответствии с вариантом создаются 8 уравнений, каждое из которых решается соответствующим заданному уравнению способом и методом подбора. Результаты решения сравниваются между собой и производятся соответствующие выводы.

Графической интерпретации для заданного примера нет, так как оно представляется в виде соответствующей матрицы возможных коэффициентов, а последовательность действий достаточно описывается словесным алгоритмом.

Технологическая часть. Архитектура классов

Так или иначе, вне зависимости от конечной реализации, диаграмма классов представляет собой графически, либо словесно описанную схему системы взаимодействия классов и способов такого взаимодействия. Так как, фактически, классы представляют собой отдельные абстрактные структуры, которые позволяют раскрыть и/или описать реальное взаимодействие подобных объектов. Рассмотрим это далее на примерах.

Важно, что для каждого класса необходимо написать таблицу классов с описанием их свойств и методов.

Возьмём в качестве примера ту же установку по маркированию заготовок. Фактически, мы можем наблюдать несколько проявлений различного рода объектов:

- аналоговые датчики;
- аналоговые элементы управления;
- контроллер;
- интерфейс оператора;
- контейнеры с продуктами.

Если каждый из данных родов объектов мы будем рассматривать, как отдельные классы, то их взаимодействие, фактически, и вид такого взаимодействия и позволит описать соответствующую диаграмму классов. Изобразим эту схему на рисунке:

Для примера базового уровня характерно наличие 8 классов под каждый из возможных видов уравнения. При этом есть интерфейс инициализации значений каждого из уравнений, а также получения значения корней такого уровня, если они существуют.

Практическая часть

В практической части достаточно привести несколько примеров реализации отдельных пунктов программного продукта с описанием технологических его технологических частей.

Для тестирования необходимо подготовить **журнал испытаний программы** (таблица из 4 столбцов и 10 строк) на 10 испытаний, из которых: 6 испытаний стандартной работы, 2 испытания краевых значений (проверка пределов работы программы) и 2 испытания внеформатных значений (ошибок).

Заключение

В заключении необходимо сделать вывод о работе над продуктом, его результатах, а также привести систему критериев по их достижимости.

Список литературы

В конце работы необходимо указать список использованных источников, на который необходимо ссылаться в теоретической части и по ходу работы. Если какие-то фрагменты взяты из литературы, то необходимо указывать в конце скобки [1] с номером источника в списке. НЕ ДОПУСКАЕТСЯ ПРЯМОГО ЦИТИРОВАНИЯ, но можно перефразировать, донося основную мысль источника.

Приложение

В приложении следует привести листинг программы (скриншот полного кода программы по отдельным файлам).

Требования к оформлению

Требования к оформлению располагаются в файле