Pendulum - DC Motor Simscape

Model

https://github.com/simorxb/pendulum-dc-motor-simscape

© Simone Bertoni 2024 - simonebertonilab.com

Pendulum

Ball radius -> r=0.02~mRod length -> l=0.3~mRod diameter -> d=0.003~mJoint damping coefficient -> k=0.03~NmsDensity (Steel) -> $\rho=7750~\frac{kg}{m^3}$ Gravity -> $g=9.81\frac{m}{s^2}$

DC Motor - Model

Mechanical - Newton's second law for rotational motion:

$$J\dot{\omega} + b\omega = au, \; au = k_t i$$

Electrical:

$$L rac{di}{dt} + Ri = V - k_e \omega$$

Isolate the highest level derivatives to facilitate modelling:

$$\dot{\omega}=rac{k_t i - b \omega}{J}$$

$$\frac{di}{dt} = \frac{V - k_e \omega - Ri}{L}$$

Include angular position:

$$\dot{ heta} = \omega$$

© Simone Bertoni 2024 - simonebertonilab.com

DC Motor - Parameters

Referring to the datasheet of a real DC motor (C23-L33-W10) from Moog (https://www.moog.com/content/dam/moog/literature/MCG/moc23series.pdf) we can derive our parameters:

Torque sensitivity (k_t) = 0.0187 Nm/A

Back EMF (k_e) = 0.0191 V/(rad/s)

Terminal resistance (R) = 0.6 Ohm

Terminal inductance (L) = 35 mH = 0.035 H

Damping factor (b) = 0.001 Nm/KRPM = 0.0000095 Nm/(rad/s)

Assuming that we are spinning a disc of radius 5 cm and mass 0.1 kg, we have:

$$J=0.5mr^2=0.000125\ kgm^2$$

Simscape Model

New elements

Rotational Multibody Interface: to connect DC motor torque/speed to multibody revolute joint.

Gear Box: to "amplify" DC Motor torque.

© Simone Bertoni 2024 - simonebertonilab.com

Simscape Multibody Mechanics Explorer

Simulation Result

Simulation Result

Matlab Code Initialization

```
%% Init params - Pendulum
   % Joint damping coefficient
    k = 0.03;
6 % Rod Length
   1 = 0.3;
   % Rod diameter
   d = 0.003;
   % Ball radius
    r = 0.02;
15 % Rod and ball density (kg/m^3) - Steel
16 rho = 7750;
   %% Init params - DC Motor
20 % Motor inertia
   J = 2.2e-10;
   %Motor damping coefficient
   b = 0.0000095;
   % Torque sensitivity
    kt = 0.0187;
   % Resistance
    R = 0.6;
32 % Inductance
    L = 0.35/1000;
   % Back EMF
    ke = 0.0191;
```

Matlab Code Plot Results

```
theta = out.logsout.get('theta').Values.Data;
   t_theta = out.logsout.get('theta').Values.Time;
 5 omega = out.logsout.get('omega').Values.Data;
6 t_omega = out.logsout.get('omega').Values.Time;
 7 omega_motor = out.logsout.get('omega_motor').Values.Data;
8 t_omega_motor = out.logsout.get('omega_motor').Values.Time;
 9 voltage = out.logsout.get('voltage').Values.Data;
10 t_voltage = out.logsout.get('voltage').Values.Time;
current = out.logsout.get('current').Values.Data;
12 t_current = out.logsout.get('current').Values.Time;
15 figure;
18 subplot(2, 1, 1);
19 plot(t_theta, theta, 'LineWidth', 2);
20 ylabel('\theta (deg)');
21 set(gca, 'FontSize', 12);
22 title('Angular position');
23 grid on;
26 subplot(2, 1, 2);
27 plot(t_omega, omega, 'LineWidth', 2);
28 hold on;
29 plot(t_omega_motor, omega_motor, 'LineWidth', 2);
30 hold off;
31 ylabel('\omega (rad/s)');
32 xlabel('Time (s)');
33 legend({ 'Pendulum', 'Motor'}, 'FontSize', 12);
34 set(gca, 'FontSize', 12);
35 title('Angular speed');
36 grid on;
39 figure;
42 subplot(2, 1, 1);
43 plot(t_voltage, voltage, 'LineWidth', 2);
44 ylabel('Voltage (V)');
45 set(gca, 'FontSize', 12);
46 title('Voltage input');
47 grid on;
50 subplot(2, 1, 2);
51 plot(t_current, current, 'LineWidth', 2);
52 hold off;
53 ylabel('Current (A)');
54 xlabel('Time (s)');
55 title('Current');
56 set(gca, 'FontSize', 12);
57 grid on;
```

PID Controller Course

https://simonebertonilab.com

Understand the control theory

★★★★★ April 28, 2024

I think the most important thing is to understand the meaning behind the mathematical formula. I guess this is the mission of Simone in this course and from my point of view he fully achivied this target. I hope to see in the future other courses (e.g advanced controls) structered in the same way with the same passion and examples.

Thank you Simone. **Show less**

Emidio Verified

Very helpful and practical

Yoav Golan

I enjoyed this course very much. I learned a lot of practical knowledge in a short time. Simone is very clear and teaches well, thank you! In the future, I would be very interested if Simone added a course with more subjects, such as cascading controllers, rate limiting, and how the controllers look in actual code. Thanks again!

Intuitive and Practical

Ranya Badawi

Simone's explanation of PID control was very intuitive. This is a great starter course to gain a fundamental understanding and some practical knowledge of PID controllers. I highly recommend it. For future topics, I'd be interested in frequency response, transfer functions, Bode plots (including phase/gain margin), Nyquist plots, and stability.

Very good sharing of experience

Romy Domingo Bompart Ballache

I have background in control system for power electronics, I see every lesson very useful.

Great course

★★★★★ April 15, 2024

Right to the point, easy to follow and very practical. I missed the zero/pole placement and phase margin analysis. It would also be interesting if you could provide other plants examples. Anyway, a great course to help designing and tuning a PID controller.

Leonardo Starling Verified

A different way to learn PID!

★★★★★ *May 31, 2023*

The teacher explains PID in a clear way adding his experience there where formulas alone cannot do much. Furthermore, each topic covered is included in a practical example to better fix ideas.

Michele De Palma