Etude de fonctions ln

Etude de fonctions ln

Problèmes sur le logarithme népérien

PROBLÈME 1

Partie A

Soit *g* la fonction définie par : $g(x) = 2x - 2 - x \ln(x)$

- 1. Étudier les variations de *g* puis dresser son tableau de variations.
- 2. Montrer que l'équation g(x) = 0 admet deux solutions α et β telles que : $\alpha \in]0$, e[et $\beta \in]e$, $+\infty[$.

Préciser la valeur exacte de α et établir que 4, 5 < β < 5.

3. En déduire le signe de g(x) suivant les valeurs de x.

Partie B

On considère la fonction f définie sur]0, $+\infty[$ par :

$$\begin{cases} f(x) = \frac{(\ln(x))^2}{x - 1} & \text{si } x \neq 1 \\ f(1) = 0 \end{cases}$$

- 1. (a) Étudier la continuité de f en 1.
 - (b) Étudier la dérivabilité de f en 1.
- 2. (a) Montrer que pour $x \ne 1$ et x > 0: $f'(x) = \frac{\ln(x)}{x(x-1)^2} \times g(x)$.
 - (b) Dresser le tableau de variations de f.
- 3. Montrer que $f(\beta) = \frac{4(\beta 1)}{\beta^2}$.
- 4. Donner une équation de la tangente à la courbe $\mathscr C$ de f au point d'abscisse 1.
- 5. Soit h la restriction de f à l'intervalle]0, 1].
 - (a) Montrer que h admet une bijection réciproque h^{-1} puis établir le tableau de variation de h^{-1} .
- 6. Tracer $\mathscr C$ et celle de h^{-1} dans le même repère.

PROBLÈME 2

On considère la fonction *f* définie par :

$$f(x) = \begin{cases} \frac{x \ln(x)}{x+1} & \text{si } x > 0\\ \ln(1-x) & \text{si } x \le 0 \end{cases}$$

Partie A

- 1. Montrer que $D_f = \mathbb{R}$ et calculer les limites de f aux bornes de D_f .
 - (a) Étudier la continuité de f en 0.

2 Etude de fonctions ln

- (b) Étudier la dérivabilité de f en 0. Interpréter graphiquement les résultats obtenus.
- 2. Étudier les branches infinies de \mathscr{C}_f

Partie B

- 1. Soit $h(x) = \ln(x) + x + 1$
 - (a) Dresser le tableau de variations de h.
 - (b) Montrer que l'équation h(x) = 0 admet une unique solution α et montrer que $0,27 < \alpha < 0,28$.
 - (c) En déduire le signe de h(x).
- 2. (a) Montrer que $f'(x) = \frac{h(x)}{(x+1)^2}$ pour x > 0 en déduire le signe de f'(x).
 - (b) Calculer f'(x) pour x < 0
 - (c) Montrer que $f(\alpha) = -\alpha$. Établir le tableau de variations de f.
 - (d) Tracer la courbe \mathcal{C}_f dans un RON.

Partie C

Soit *g* la restriction de la fonction *f* à l'intervalle $I = [\alpha, +\infty[$.

- 1. Montrer que g réalise une bijection de *I* vers un intervalle *J* à déterminer.
- 2. Déterminer une équation de la tangente à $\mathscr{C}_{g^{-1}}$ au point d'abscisse 0.
- 3. Tracer $\mathscr{C}_{g^{-1}}$ dans le repère précèdent.