Лабораторная работа №2 «Дискретное и дискретное во времени преобразования Фурье (ДВПФ, ДПФ)»

Модуль 2. Основные свойства ДПФ.

- Две формы записи ДПФ.
- Свойства ДПФ
- Дискретные экспоненциальные функции (ДЭФ)
- Матричная форма ДПФ

Две формы записи ДПФ.

Две формы записи ДПФ.

Пусть x[k] — последовательность отсчетов сигнала либо длиной в N отсчетов, либо периодическая с периодом N. Тогда прямое и обратное дискретное преобразование Фурье (ДПФ) последовательности x[k] определяется следующим образом

$$X[n] = \sum_{k=0}^{N-1} x[k] \exp\left(-j\frac{2\pi}{N}nk\right),\,$$

$$x[k] = \frac{1}{N} \sum_{n=0}^{N-1} X[n] \exp\left(j \frac{2\pi}{N} nk\right).$$

Примечание. Именно такая запись ДПФ используется в качестве основной в библиотеках Python SciPy, NumPy, в Octave и MATLAB.

Далее в лекции мы будем использовать такую запись ДПФ для последовательностей отсчетов конечной длительности.

Наряду с приведенной парой формул, существует запись ДПФ с нормирующем множителем 1/N в прямом преобразовании:

$$\tilde{X}[n] = \frac{1}{N} \sum_{k=0}^{N-1} x[k] \exp\left(-j\frac{2\pi}{N}nk\right),$$

$$x[k] = \sum_{n=0}^{N-1} \tilde{X}[n] \exp\left(j\frac{2\pi}{N}nk\right).$$

Далее в лекции мы будем использовать такую запись ДПФ для периодических последовательностей отсчетов. Для того, чтобы различать две записи, будем использовать обозначения $\tilde{X}[n]$ и X[n]. Очевидно, что

$$\tilde{X}[n] = \frac{1}{N}X[n].$$

Две формы записи ДПФ.

Пример. Пусть
$$x[k] = \cos\left(2\pi \frac{3}{16}k\right)$$
.

Вычислить 16-точечное ДПФ этой последовательности $\tilde{X}[n]$ по формуле с нормирующим множителем 1/N (N=16) в прямом преобразовании.

Решение.

$$\tilde{X}[n] = \frac{1}{N} \sum_{k=0}^{N-1} \cos(2\pi \frac{3}{16}k) \exp(-j2\pi \frac{n}{N}k) =$$

$$= \frac{1}{16} \sum_{k=0}^{15} \left\{ \frac{1}{2} \exp\left(j2\pi k \left(\frac{3}{16} - \frac{n}{16}\right)\right) + \frac{1}{2} \exp\left(-j2\pi k \left(\frac{3}{16} + \frac{n}{16}\right)\right) \right\}$$

Рассмотрим отдельно сумму вида $\sum\limits_{k=0}^{15} \exp \left(j2\pi k \frac{m}{16}\right)$ при

условии, что m — целое число, не равное нулю и не кратное 16. В таком случае по формуле суммы геометрической прогрессии

$$\sum_{k=0}^{15} \exp\left(j2\pi k \frac{m}{16}\right) = \frac{1 - \exp(j2\pi m)}{1 - \exp(j2\pi m \frac{1}{16})} = 0.$$

В случае когда m либо равно нулю, либо кратно 16, будет

выполняться
$$\sum\limits_{k=0}^{15} \exp\biggl(j2\pi k \, \frac{m}{16}\biggr) = \sum\limits_{k=0}^{15} \mathrm{e}^0 = 16$$
. В итоге на

периоде есть только два ненулевых отсчета ДПФ — $\tilde{X}[3] = 1/2$ и $\tilde{X}[13] = 1/2$.

Свойства ДПФ

Свойства ДПФ

Далее запись вида $x[k]_N$ обозначает $x[k \mod N]$. Символ * обозначает здесь комплексное сопряжение.

N –точечные ДПФ $ ilde{X}[n]$ и $ ilde{Y}[n]$		N–точечное ДПФ $X[n]$ и $Y[n]$		
(с нормирующим множителем $1/N$ в прямом преобразовании)		(без нормирующего множителя $1/\sqrt{N}$ в прямом		
			преобразовании)	
$\tilde{X}[n] = \frac{1}{N} \sum_{k=0}^{N-1} x[k] \exp\left(-j\frac{2\pi}{N}nk\right),$		$X[n] = \sum_{k=0}^{N-1} x[k] \exp\left(-j\frac{2\pi}{N}nk\right),$		
$x[k] = \sum_{n=0}^{N-1} \tilde{X}[n] \exp\left(j\frac{2\pi}{N}nk\right).$		$x[k] = \frac{1}{N} \sum_{n=0}^{N-1} X[n] \exp\left(j\frac{2\pi}{N}nk\right).$		
	<i>N</i> −точечные ДП	ert Ф $ ilde{X}[n]$ и $ ilde{Y}[n]$	N–точечное ДПФ $X[n]$ и $Y[n]$	
Сигналы $x[k]$ и $y[k]$	(с нормирующим м	ножителем $1/\sqrt{N}$ в	(без нормирующего множителя	
	прямом преоб	бразовании)	$1/\sqrt{N}$ в прямом преобразовании)	
Линейность				
$\alpha x[k] + \beta y[k], \ \alpha, \beta \in \mathbb{C}$	$\alpha \tilde{X}[n] +$	$\beta \tilde{Y}[n]$	$\alpha X[n] + \beta Y[n]$	
Единичный импульс				
$x[k] = 1[k] = \begin{cases} 1, k = 0, \\ 0, k \neq 0. \end{cases}$	$ ilde{X}[n]$:	$\equiv \frac{1}{N}$	$X[n] \equiv 1$ $\uparrow_{X[n]}$	
$ \begin{array}{c} 1[k] \\ 0 \\ -2-1 \ 0 \ 1 \ 2 \end{array} $	$ \begin{array}{c} 1 \\ N \end{array} $ $ \begin{array}{c} X[n] \\ 0 \\ 0 \\ 1 \\ 2 \\ 3 \end{array} $	$N=4$ $ \begin{array}{c} n \\ \end{array} $	$ \begin{array}{c c} 1 & & & N=4 \\ 0 & & & & \\ \hline 0 & 1 & 2 & 3 \end{array} $	

Свойства ДПФ

Сигналы $x[k]$ и $y[k]$	N –точечные ДПФ $ ilde{X}[n]$ и $ ilde{Y}[n]$	N–точечное ДПФ $X[n]$ и $Y[n]$		
Теорема запаздывания				
$x[k-m]_N$	$\tilde{X}[n]\exp\left(-j\frac{2\pi}{N}nm\right)$	$X[n]\exp\left(-j\frac{2\pi}{N}nm\right)$		
	Теорема смещения			
$x[k]\exp\left(\pm j\frac{2\pi}{N}n_0k\right), n_0 \in \mathbb{Z}$	$\tilde{X}[n \mp n_0]_N$	$X[n \mp n_0]_N$		
	Симметрия			
$x^*[k]$	${ ilde X}^*[N-n]_N,$	$X^*[N-n]_N$,		
$x[N-k]_N$	$\tilde{X}[N-n]_N$	$X[N-n]_N$		
$x[k] = x^*[k]$	$\tilde{X}[n] = \tilde{X}^*[N-n]_N$	$X[n] = X^*[N-n]_N$		
действительная последовательность				
$x[k] = -x^*[k]$	$\tilde{X}[n] = -\tilde{X}^*[N-n]_N$	$X[n] = -X^*[N-n]_N$		
мнимая последовательность				
Теорема о свертке (во временной области)				
$\sum_{m=0}^{N-1} x[m] y[k-m]_{N}$	$N\widetilde{X}[n]\widetilde{Y}[n]$	X[n]Y[n]		
Произведение сигналов (теорема о свертке в частотной области)				
x[k]y[k]	$\sum_{m=0}^{N-1} \tilde{X}[m]\tilde{Y}[n-m]_{N}$	$\frac{1}{N} \sum_{m=0}^{N-1} X[m] Y[n-m]_{N}$		

Свойства ДПФ

Равенство Парсеваля		
x[k], y[k]	$\frac{1}{N} \sum_{k=0}^{N-1} x[k] y^*[k] = \sum_{n=0}^{N-1} \tilde{X}[n] \tilde{Y}^*[n],$ $\frac{1}{N} \sum_{k=0}^{N-1} x[k] ^2 = \sum_{n=0}^{N-1} \tilde{X}[n] ^2.$	$\sum_{k=0}^{N-1} x[k] y^*[k] = \frac{1}{N} \sum_{n=0}^{N-1} X[n] Y^*[n],$ $\sum_{k=0}^{N-1} x[k] ^2 = \frac{1}{N} \sum_{n=0}^{N-1} X[n] ^2.$

Пример. Циклический сдвиг последовательности.

Пусть X[n] — восьмиточечное ДПФ последовательности $x[k] = \{0.1 \ 0.2 \ 0.3 \ 0.4 \ 0.5 \ 0.6 \ 0.7 \ 0.8\}$

изображенной на графике. Изобразить последовательность y[k], ДПФ которой имеет вид

$$Y[n] = \exp\left(-j\frac{2\pi}{8}mn\right)X[n]$$

для m = 3, m = 4, m = 5.

Решение.

Воспользуемся теоремой запаздывания для ДПФ:

Если
$$x[k] \stackrel{DFT}{\longleftrightarrow} X[n]$$
, то

$$x[k-m]_N \stackrel{DFT}{\longleftrightarrow} X[n] \exp\left(-j\frac{2\pi}{N}nm\right).$$

Тогда последовательность y[k] получается путем циклического сдвига x[k] на m отсчетов вправо (для положительных m):

$$y[k] = x[k-m]_N = x[(k-m) \mod N].$$

Дискретные экспоненциальные функции

Пример. Симметрия ДПФ.

Пусть дана последовательность $x[k] = \cos(2\pi k 0, 2)$, k = 0,1,2,...,15. Эта последовательность не является периодом для $\cos(2\pi k 0, 2)$. Частота косинусоиды $v_{\cos} = 0, 2$ не совпадает с частотами отсчетов ДПФ $v_n = n/N$, N = 16. Максимально близкий отсчет к частоте $v_{\cos} = 0, 2$ — это n = 3 ($v_3 = 0,1875$). ДПФ этой последовательности представлено на рисунке.

Для действительной последовательности $x[k] = x^*[k]$ $x[k] \leftrightarrow X^*[N-n]_N$. Это означает, что $X[n] = X^*[N-n]_N$. Например, $X[3] = X^*[13]$.В данном случае мы наблюдаем симметрию действительной части и модуля и антисимметрию мнимой части и фазы коэффициентов ДПФ относительно отсчета с номером n = N/2 = 8.

Дискретные экспоненциальные функции (ДЭФ)

Функции ДЭФ определяются следующим образом:

$$\varphi_n[k] = W_N^{nk} = \exp\left(j\frac{2\pi}{N}nk\right).$$

Здесь n и k — целые числа, n, k = 0, 1, ..., N-1, т. е. число функций в системе равно числу отсчетов каждой функции. Система ДЭФ является ортонормированной и полной в пространстве $\mathbf{l}_2^{\mathbf{N}}$.

Основные свойства ДЭФ.

- 1. ДЭФ являются комплекснозначными функциями.
- 2. Матрица $\left\|W_N^{nk}\right\|$ является симметричной.

Дискретные экспоненциальные функции

- 3. Система ДЭФ периодична с периодом N по обеим переменным.
- 4. Система ДЭФ ортогональна:

$$\sum_{k=0}^{N-1} \varphi_n[k] \varphi_m^*[k] = \sum_{k=0}^{N-1} W_N^{nk} W_N^{-mk} = \begin{cases} N, & n=m, \\ 0, & n \neq m. \end{cases}$$

5. Система ДЭФ мультипликативная:

$$W_N^{nk} W_N^{mk} = W_N^{lk},$$

где $l = (n+m)_{\bmod N}$, т. е. индексы суммируются по модулю N .

6. Ряд Фурье по этой системе

$$x[k] = \sum_{n=0}^{N-1} \tilde{X}[n]W_N^{nk}$$
,

где коэффициенты Фурье

$$\tilde{X}[n] = \frac{1}{N} \sum_{n=0}^{N-1} x[k] W_N^{-nk}.$$

Эти два соотношения определяют пару (прямое и обратное) дискретного преобразования Фурье (ДПФ).

Пример. Вычислить 16-точечное ДПФ для периодической последовательности

$$x[k] = \cos\left(2\pi \frac{3}{16}k\right).$$

Обратное ДПФ:

$$x[k] = \sum_{n=0}^{N-1} \tilde{X}[n] \exp(j2\pi k \frac{n}{16}) = \frac{1}{2} e^{j2\pi k \frac{3}{16}} + \frac{1}{2} e^{-j2\pi k \frac{3}{16}}$$
$$x[k] = \frac{1}{2} e^{j2\pi k \frac{3}{16}} + \frac{1}{2} e^{j2\pi k \frac{7}{16}}$$

Отсюда

$$\tilde{X}[n] = \begin{cases} \frac{1}{2}, & n = \pm 3 + 16m, m \in \mathbb{Z}, \\ 0, & n \neq \pm 3 + 16m, m \in \mathbb{Z}. \end{cases}$$

Значения ДПФ на основном периоде (n = 0, 1, ..., N-1)

n	3, 13	0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15
$ ilde{X}[n]$	0,5	0

Матричная форма ДПФ

Матричная форма ДПФ

Введем в рассмотрение квадратную матрицу $[W]_N$ порядка N с элементами

$$W_N^{nk} = \exp(-j\frac{2\pi}{N}nk), \quad n, k \in \{0, 1, 2, ..., N-1, \}$$

так, что номер строки совпадает с номером дискретной экспоненциальной функции, а номер столбца совпадает с номером отсчета функций. При этом произведение $n \cdot k$ обычно берется по модулю N, т. е.

$$W_N^{nk} = W_N^{nk \mod N}.$$

Например, nk=17, тогда $nk\mod 8=1$. Эти свойства матрицы ДПФ следуют из N-периодичности функции $W_N^{n\,k}$ по обоим аргументам. Для случая N=8 матрица ДПФ имеет вид

$$\begin{bmatrix} W \end{bmatrix}_8 = \begin{bmatrix} W_8^0 & W_8^0 \\ 1 & W_8^0 & W_8^1 & W_8^2 & W_8^3 & W_8^4 & W_8^5 & W_8^6 & W_8^7 \\ 2 & W_8^0 & W_8^2 & W_8^4 & W_8^6 & W_8^8 & W_8^{10} & W_8^{12} & W_8^{14} \\ 4 & W_8^0 & W_8^3 & W_8^6 & W_8^9 & W_8^{12} & W_8^{15} & W_8^{18} & W_8^{21} \\ 4 & W_8^0 & W_8^4 & W_8^8 & W_8^{12} & W_8^{16} & W_8^{20} & W_8^{24} & W_8^{28} \\ 5 & W_8^0 & W_8^5 & W_8^{10} & W_8^{15} & W_8^{20} & W_8^{25} & W_8^{30} & W_8^{35} \\ 6 & W_8^0 & W_8^6 & W_8^{12} & W_8^{18} & W_8^{24} & W_8^{30} & W_8^{36} & W_8^{42} \\ 7 & W_8^0 & W_8^7 & W_8^{14} & W_8^{21} & W_8^{28} & W_8^{35} & W_8^{42} & W_8^{49} \end{bmatrix}$$

Эта же матрица с минимальными фазами будет

$$\begin{bmatrix} W \end{bmatrix}_{8} = \begin{bmatrix} W_{8}^{0} & W$$

$$X[n] = \sum_{k=0}^{N-1} x[k] \exp\left(-j\frac{2\pi}{N}nk\right),$$
$$x[k] = \frac{1}{N} \sum_{n=0}^{N-1} X[n] \exp\left(j\frac{2\pi}{N}nk\right).$$

Матричная форма ДПФ

$$[W]_{8} = \begin{bmatrix} W_{8}^{0} & W_{8}^{0} \\ 1 & W_{8}^{0} & W_{8}^{1} & W_{8}^{2} & W_{8}^{3} & W_{8}^{4} & W_{8}^{5} & W_{8}^{6} & W_{8}^{7} \\ 2 & W_{8}^{0} & W_{8}^{2} & W_{8}^{4} & W_{8}^{6} & W_{8}^{0} & W_{8}^{2} & W_{8}^{4} & W_{8}^{6} \\ 2 & W_{8}^{0} & W_{8}^{2} & W_{8}^{4} & W_{8}^{6} & W_{8}^{0} & W_{8}^{2} & W_{8}^{4} & W_{8}^{6} \\ 4 & W_{8}^{0} & W_{8}^{4} & W_{8}^{0} & W_{8}^{4} & W_{8}^{0} & W_{8}^{4} & W_{8}^{0} & W_{8}^{4} \\ 5 & W_{8}^{0} & W_{8}^{5} & W_{8}^{2} & W_{8}^{7} & W_{8}^{4} & W_{8}^{1} & W_{8}^{6} & W_{8}^{3} \\ 7 & W_{8}^{0} & W_{8}^{6} & W_{8}^{4} & W_{8}^{2} & W_{8}^{0} & W_{8}^{6} & W_{8}^{4} & W_{8}^{2} \\ 7 & W_{8}^{0} & W_{8}^{7} & W_{8}^{6} & W_{8}^{5} & W_{8}^{4} & W_{8}^{3} & W_{8}^{2} & W_{8}^{1} \end{bmatrix}$$

Через множители W_N^{nk} пара ДПФ записывается в виде

$$X[n] = \sum_{k=0}^{N-1} x[k] W_N^{nk},$$

$$x[k] = \frac{1}{N} \sum_{n=0}^{N-1} X[n] W_N^{-nk}.$$

Пусть \vec{X} и \vec{x} – N-мерные вектор-столбцы:

$$\vec{X} = \begin{bmatrix} X[0] \\ X[1] \\ \vdots \\ X[N-1] \end{bmatrix}, \quad \vec{x} = \begin{bmatrix} x[0] \\ x[1] \\ \vdots \\ x[N-1] \end{bmatrix}.$$

Тогда в матричной форме пара ДПФ (с нормирующим множителем в обратном преобразовании) имеет вид $\vec{X} = [W]_N \ \vec{x}$ – прямое ДПФ,

$$\vec{x} = \left[W_N^{}\right]^{-1} \vec{X}$$
 — обратное ДПФ.

Чтобы найти обратную матрицу $\left[W_N^{}\right]^{-1}$, достаточно заметить, что

$$\frac{1}{N} [W_N]^* [W_N] = I_N,$$

где I_N — единичная матрица размером $N \times N$. В итоге получаем, что $\left[W_N\right]^{-1} = \frac{1}{N} \left[W_N\right]^*$,

т.е. для нахождения обратной матрицы достаточно выполнить комплексное сопряжение для $\left[W_{N}\right]$ и нормировать результат на N .

Матричная форма ДПФ

В таблице ниже приведены стандартные функции для работы с ДПФ и БПФ в MATLAB и библиотеках Python.

	Python (SciPy, NumPy)	MATLAB
Матрица $\left[W ight]_N$	scipy.linalg.dft(n,	dftmtx(n)
из матричной	scale)	
формы ДПФ		
Вычисление	scipy.fft.fft(x)	fft(x)
прямого ДПФ		
по алгоритму	np.fft.fft(x)	
БПФ		
Вычисление	scipy.fft.ifft(x)	ifft(x)
обратного ДПФ		
по алгоритму	np.fft.ifft(x)	
БПФ		
Сдвиг	scipy.fft.fftshift	fftshift
коэффициентов	66. 66. 1.46.	
ДПФ на	np.fft.fftshift	
половину		
периода		

Вычисление	scipy.fft.next_fast_len	нет аналога
следующего		
значения N ,		
для которого		
вычисления по		
алгоритму БПФ		
эффективны		