Introduction to Online Learning Algorithms

Yoav Freund

January 10, 2006

Outline

Halving Algorithm

Hedge Algorithm

Perceptron

Laplace law of succession

Example trace for Halving Algorithm

	t = 1	<i>t</i> = 2	t = 3	t = 4	<i>t</i> = 5	
expert1	1	1	1	1	-	
expert2	1	0	-	-	-	
expert3	0	-	-	-	-	
expert4	1	0	-	-	-	
expert5	1	0	-	-	-	
expert6	0	-	-	-	-	
expert7	1	1	1	1	0	
expert8	1	1	1	0	-	
alg.	1	0	1	1	0	
outcome	1	1	1	0	0	

Mistake bound for Halving algorithm

- Each time algorithm makes a mistakes, the pool of perfect experts is halved (at least).
- We assume that at least one expert is perfect.
- Number of mistakes is at most log₂ N.
- No stochastic assumptions whatsoever.
- Proof is based on combining a lower and upper bounds on the number of perfect experts.

The hedging problem

- N possible actions
- At each time step t:
 - ▶ Algorithm chooses a distribution \vec{P}^t over actions.
 - ▶ Losses $0 \le \ell_i^t \le 1$ of all actions i = 1, ..., N are revealed.
 - Algorithm suffers expected loss.
- ▶ Goal: minimize total expected loss
- Here we have stochasticity but only in algorithm, not in outcome
- Fits nicely in game theory

Hedging vs. Halving

- Like halving we want to zoom into best action (expert).
- Unlike halving no action is perfect.
- Basic idea reduce probability of lossy actions, but not all the way to zero.
- Modified Goal: minimize difference between expected total loss and minimal total loss of repeating one action.

The Hedge Algorithm

Consider action *i* at time *t*

▶ Total loss:

$$L_i^t = \sum_{s=1}^{t-1} \ell_i^s$$

Weight:

$$W_i^t = e^{-\eta L_i^t}$$

- ▶ $\eta > 0$ is the learning rate parameter. Halving: $\eta = \infty$
- Probability:

$$P_i^t = \frac{W_i^t}{\sum_{i=1}^N W_i^t}$$

Example trace for Hedge Algorithm

$\eta=1$							
,	$ec{W}^1$	$ec{\ell}^{\dagger}$	\vec{W}^2	ℓ^2	\vec{W}^3	$ec{\ell}$ 3	total
expert1	1	.1	.90	.1	0.82	0	.2
expert2	1	.8	.45	.5	0.27	.2	1.5
expert3	1	.3	.74	.2	0.61	.2	.7
expert4	1	.1	.90	.7	0.45	.8	1.6
expert5	1	.9	.41	1	0.15	.8	2.7
expert6	1	0	1	.1	0.91	.2	.3
expert7	1	1	.37	.5	0.22	.4	1.9
expert8	1	.8	.45	.2	0.37	.6	1.6
ola		_		26		20	1.10
alg.		.5		.36		.30	1.16

Bound for Hedge Algorithm

► L^t_{Hedge}: Expected total loss of Hedge algorithm for time 1,2,...,t

$$\forall t, i, \quad L_{\mathsf{Hedge}} \leq \frac{\mathsf{In}\, N + \eta L_i^t}{1 - e^{-\eta}}$$

Which implies

$$\forall t, \quad L_{\mathsf{Hedge}} \leq \min_{i} \left(\frac{\ln N + \eta L_{i}^{t}}{1 - e^{-\eta}} \right)$$

▶ Proof and choice of η : next class.

The Perceptron Problem

- $||\vec{V}|| = 1$
- ► Example = (\vec{X}, y) , $y \in \{-1, +1\}$.
- $\blacktriangleright \ \forall \vec{X}, \ \|\vec{X}\| \leq R.$
- $\forall (\vec{X}, y), \\ y(\vec{X} \cdot \vec{V}) \geq g$

The Perceptron learning algorithm

- An online algorithm. Examples presented one by one.
- start with $\vec{W}_0 = \vec{0}$.
- ▶ If mistake: $(\vec{W}_i \cdot \vec{X}_i)y_i \leq 0$
 - Update $\vec{W}_{i+1} = \vec{W}_i + y_i X_i$.

Example trace for the perceptron algorithm

Bound on number of mistakes

- ► The number of mistakes that the perceptron algorithm can make is at most $\left(\frac{R}{g}\right)^2$.
- ▶ Proof by combining upper and lower bounds on $\|\vec{W}\|$.

Pythagorian Lemma

If $(\vec{W}_i \cdot X_i)y < 0$ then

$$\|\vec{W}_{i+1}\|^2 = \|\vec{W}_i + y_i \vec{X}_i\|^2 \le \|\vec{W}_i\|^2 + \|\vec{X}_i\|^2$$

Upper bound on $\|\vec{W}_i\|$

Proof by induction

- $Claim: \|\vec{W}_i\|^2 \le iR^2$
- ► Base: i = 0, $\|\vec{W}_0\|^2 = 0$
- Induction step (assume for i and prove for i + 1): $\|\vec{W}_{i+1}\|^2 < \|\vec{W}_i\|^2 + \|\vec{X}_i\|^2$

$$\|W_{i+1}\|^2 \le \|W_i\|^2 + \|X_i\|^2$$

 $< \|\vec{W}_i\|^2 + R^2 < (i+1)R^2$

Lower bound on $\|\vec{W}_i\|$

 $\|\vec{W}_i\| \ge \vec{W}_i \cdot \vec{V}$ because $\|\vec{V}\| = 1$.

We prove a lower bound on $\vec{W}_i \cdot \vec{V}$ using induction over i

- ▶ Claim: $\vec{W}_i \cdot \vec{V} \ge ig$
- ▶ Base: $i = 0, \ \vec{W}_0 \cdot \vec{V} = 0$
- ► Induction step (assume for *i* and prove for i + 1):

$$\vec{W}_{i+1} \cdot \vec{V} = \left(\vec{W}_i + \vec{X}_i y_i\right) \vec{V} = \vec{W}_i \cdot \vec{V} + y_i \vec{X}_i \cdot \vec{V}$$

> $iq + q = (i+1)q$

Combining the upper and lower bounds

$$(ig)^2 \leq \|\vec{W}_i\|^2 \leq iR^2$$

Thus:

$$i \leq \left(\frac{R}{g}\right)^2$$

Estimating the bias of a coin

- ▶ We observe n coin flips: H,T,T,H,H,T,H,T,T
- We want to estimate the probability that the next flip will be Head.
- Natural Answer:

$$\frac{\#\mathbf{H}}{n} = \frac{4}{9}$$

What if the estimation has to be done online?

- We observe a bf sequence of coin flips, and have to predict the probability of Head at each step: p₀,H,p₁,T,p₂,...
- ▶ What would be a good value for p₀?
- ightharpoonup For p_1 ?
- ► Laplace Law of succession

$$\frac{\# \mathbf{H} + 1}{n+2}$$

Turns out that a better rule is

$$\frac{\# \mathbf{H} + 1/2}{n+1}$$

Krichevsky and Trofimov, 1981

- ► Why?
- What does "better" mean?

To be continued...

Please

- Register on twiki (follow directions on my home page)
- Follow link from main twiki page to "Online learning course"
- ► Add yourself to the list and the table on ClassParticipants
- ► Go to CoursePlan/LessonNo1 to see slides and to post questions and answers.
- See you on Thursday!