Announcements

- Homework
 - HW9 is graded
 - HW10 due tonight!
 - I'll grade HW10 tomorrow
- Exam 2
 - Don't forget Exam 2 is Monday!
 - In-class portion similar to Exam 1
 - Also a small take-home portion due on Wednesday
 - I'm working on objectives for you to study from
 - I'll be around a portion of Sunday if you have questions

A solid cylinder has uniform magnetization $\vec{\mathbf{M}}$ throughout the volume in the x direction as shown. What is the magnitude of the total magnetic dipole moment of the cylinder?

- A. $\pi R^2 LM$
- B. $2\pi RLM$
- C. $2\pi RM$
- D. $\pi R^2 M$

A solid cylinder has uniform magnetization $\vec{\mathbf{M}}$ throughout the volume in the x direction as shown. What is the magnitude of the total magnetic dipole moment of the cylinder?

A.
$$\pi R^2 LM$$

B.
$$2\pi RLM$$

C.
$$2\pi RM$$

D.
$$\pi R^2 M$$

A solid cylinder has uniform magnetization $\vec{\mathbf{M}}$ throughout the volume in the z direction as shown. Where do bound currents show up?

- A. All surfaces, but not volume
- B. Volume only, not on surface
- C. Top/bottom surface only
- D. Side (curved) surface only

A solid cylinder has uniform magnetization $\vec{\mathbf{M}}$ throughout the volume in the z direction as shown. Where do bound currents show up?

- A. All surfaces, but not volume
- B. Volume only, not on surface
- C. Top/bottom surface only
- D. Side (curved) surface only

METTE UNIVERSITY ELECTROMAGNETIC

A solid cylinder has uniform magnetization $\vec{\mathbf{M}}$ throughout its volume in the $\hat{\boldsymbol{\phi}}$ direction as shown. In what direction does the bound surface current flow on the curved sides?

- A. There is no bound surface current
- B. The current flows in the $+\hat{\phi}$ direction
- C. The current flows in the $+\hat{z}$ direction
- D. The current flows in the $-\hat{z}$ direction

METTE UNIVERSITY ELECTROMAGNETICS A solid cylinder has uniform magnetization $\vec{\mathbf{M}}$ throughout its volume in the $\hat{\phi}$ direction as shown. In what direction does the bound surface current flow on the curved sides?

- A. There is no bound surface current
- B. The current flows in the $+\hat{\phi}$ direction
- C. The current flows in the $+\hat{z}$ direction
- D. The current flows in the $-\hat{z}$ direction

A sphere has uniform magnetization $\vec{\mathbf{M}}$ in the $+\mathbf{\hat{z}}$ direction. What formula is correct to describe the bound surface current about the sphere?

- A. $M \sin \theta \hat{\boldsymbol{\theta}}$
- B. $M \sin \theta \hat{\phi}$
- C. $M\cos\phi\hat{\boldsymbol{\theta}}$
- D. $M\cos\phi\hat{\phi}$

A sphere has uniform magnetization $\vec{\mathbf{M}}$ in the $+\hat{\mathbf{z}}$ direction. What formula is correct to describe the bound surface current about the sphere?

- A. $M \sin \theta \hat{\boldsymbol{\theta}}$
- B. $M\sin\theta\hat{\phi}$
- C. $M\cos\phi\hat{\boldsymbol{\theta}}$
- D. $M\cos\phi\hat{\phi}$

Predict the results of the following experiment.

A paramagnetic bar and a diamagnetic bar are pushed inside of a solenoid.

- A. The paramagnet is pushed out, the diamagnet sucked further in
- B. The diamagnet is pushed out, the paramagnet sucked further in
- C. Both are sucked further in, but with different force
- D. Both are pushed out, but with different force

Predict the results of the following experiment.

A paramagnetic bar and a diamagnetic bar are pushed inside of a solenoid.

- A. The paramagnet is pushed out, the diamagnet sucked further in
- B. The diamagnet is pushed out, the paramagnet sucked further in
- C. Both are sucked further in, but with different force
- D. Both are pushed out, but with different force

A very long aluminum (paramagnetic) rod carries a uniformly distributed current ${\mathcal I}$ along the $+\hat{z}$ direction. What is the direction of the bound volume current?

$$A. +\hat{z}$$

B.
$$-\hat{z}$$
C. $+\hat{\phi}$

).
$$-\hat{\phi}$$

A very long aluminum (paramagnetic) rod carries a uniformly distributed current ${\mathcal I}$ along the $+\hat{z}$ direction. What is the direction of the bound volume current?

$$A. +\hat{z}$$

B.
$$-\hat{z}$$
C. $+\hat{\phi}$

).
$$-\hat{\phi}$$