

Chap 02 네트워크_2.2 TCP/IP 4계층 모델

2.2 TCP/IP 4계층 모델

인터넷 프로토콜 스위트

- → 인터넷에서 컴퓨터들이 서로 정보를 주고 받는데 쓰이는 프로토콜의 집합
- → TCP/IP 4계층 모델 or OSI 7계층 모델로 설명 가능

2.2.1 계층 구조 (TCP/IP 계층 중심)

- *특정 계층이 변경되었을 때 다른 계층이 영향을 받지 않도록 설계
 - → 전송 계층이 TCP를 UDP로 변경했다고 해서 인터넷 웹 브라우저를 다시 설치해야 하는 것이 아님 (?)

▼ TCP/IP vs OSI 계층 차이

공통점: 2개의 계층 모두 데이터 통신을 표현한 계층

차이점 :

- OSI 7계층 : 데이터 통신에 필요한 계층과 역할을 정확하게 정의하려고 한 모델
- TCP/IP 4계층: 현재 인터넷에서 사용되는 프로토콜, 실무적이면서 프로토콜 중심으로 단순화된 모델

▼ TCP/IP 4계층

✓ 애플리케이션 계층 (L4)

역할	응용 프로그램이 사용되는 프로토콜 계층이며 웹 서비스, 이메일 등 서비스를 실질적으로 사람들 에게 제공하는 계층
특징	- OSI 7계층의 세션 계층, 표현 계층, 응용 계층에 해당 - TCP/UDP 기반의 응용 프로그램 구현시 사용 - 사용자와 가장 가까운 계층 - 사용자-소프트웨어 간의 소통 담당 - 응용 프로그램들 끼리의 데이터를 교환하기 위한 계층
PDU	데이터, 메세지
예시	파일전송, 이메일, FTP, HTTP, DNS, SMTP
전송 주소	
장비	

*FTP: 장치와 장치간의 파일 전송시 사용되는 표준 통신 프로토콜

*SSH: 보안되지 않은 네트워크에서 네트워크 서비스를 안전하게 운영하기 위한 암호화 네트워크 프로토콜

*HTTP : World Wide Web을 위한 데이터 통신의 기초이자 웹 사이트를 이용하는데 쓰는 프로토콜

*SMTP: 전자 메일 전송을 위한 인터넷 표준 통신 프로토콜

*DNS: 도메인 이름과 IP 주소를 매핑해주는 서버

✓ 전송 계층 (L3)

역할	송신자와 수신자를 연결하는 통신 서비스를 제공하며 연결 지향 데이터 스트림 지원, 신뢰성, 흐름제어를 제공할 수 있으며 애플리케이션과 인터넷 계층 사이의 데이터가 전달될때의 중계 역할 담당
특징	- 통신 노드 간의 데이터 전송 및 흐름에 있어 신뢰성 보장 ⇒ 데이터를 적절한 애플리케이션에 제대로 전달되도록 배분함을 의미 ⇒ End-to-End의 신뢰성 확보
PDU	세그먼트(TCP), 데이터 그램(UDP)
예시	TCP(가상회선 패킷 교환 방식/순서 보장, 연결지향, 신뢰성 구축) UDP(데이터그램 패킷 교환 방식/순서 미보장, 신뢰정x)
전송 주소	Port
장비	게이트웨이

■패킷 교환 방식 (접속 방식 기준 분류)

1. 가상회선 패킷 교환 방식

각 패킷에 가상회선 식별자가 포함되며 모든 패킷을 전송하면 가상회선이 해제되고 패킷들은 전송된 순서대로 도착하는 방식

- 1. 데이터 전송 전 논리적 연결 설정 됨 (=가상 회선) ⇒ 연결 지향형
- 2. 각 패킷에는 가상 회선 식별 번호(VCI) 포함
- 3. 모든 패킷 전송시 가상회선이 해제되고 전송된 순서대로 도착
- 4. 경로를 설정할때 한번만 수행

2. 데이터 그램 패킷 교환 방식

패킷이 독립적으로 이동하며 최적의 경로를 선택하여 가는데, 하나의 메시지에서 분할된 여러 패킷은 서로 다른 경로로 전송될 수 있으며 도착한 순서가 다를 수 있는 방식을 뜻함

- 1. 데이터 전송 전 논리적 연결 설정 $x \rightarrow$ 패킷이 독립적으로 전송
- 2. 패킷을 수신한 라우터는 최적의 경로를 선택해 패킷을 전송하는데 하나의 메시지에서 분할된 여러 패킷은 서로 다른 경로로 전송될 수 있음 ⇒ 비연결 지향형
- 3. 송신 측에서 전송한 순서와 수신 측에 도착한 순서가 다를 수 있음

3. 비교

	가상 회선	데이터 그램
사용 상황	정해진 시간 안이나 다량의 데이터를 연속으로 보낼 경우	짧은 메시지의 일시적인 전송
네트워크 내의 한 노드 가 다운 될 경우	그 노드를 지나는 모든 가상회선을 잃게 됨	다른 경로를 새로 설정

■TCP

1.TCP 연결 성립 과정 ⇒ 3Way Handshake

- TCP를 이용한 데이터 통신을 할때 프로세스와 프로세스를 연결하기 위해 가장 먼저 수행되는 과정
- 3Way Handshake 단계 (신뢰성 보장하는 과정)

1단계 [SYN]

- 。 클라이언트가 서버에게 요청 패킷 보냄
- 。 클라이언트는 서버에 클라이언트의 ISN을 담아 SYN 보냄

2단계 [SYN+ACK]

- 。 서버가 클라이언트의 요청을 받아들이는 패킷 보냄
- ∘ 서버는 클라이언트의 SYN 수신, 서버의 ISN과 승인번호로 클라이언트의 'ISN+1' 송신

3단계 [ACK]

- 。 클라이언트는 이를 최종적으로 수락하는 패킷 보냄
- 클라이언트는 서버의 'ISN+1' 값인 승인번호를 담아 ACK를 서버에 송신

2.TCP 연결 해제 과정 ⇒ 4Way Handshake

- TCP가 연결을 해제할 경우 4Way Handshake 과정 발생
- 4Way Handshake 단계

1단계

- 。 클라이언트가 연결을 닫으려고 할 경우 FIN으로 설정된 세그먼트를 보냄
- 클라이언트는 FIN_WAIT_1 상태로 들어가고 서버의 응답을 기다림

2단계

- 서버는 ACK 승인 세그먼트를 클라이언트에게 보내고 CLOSE_WAIT 상태로 들어감
- 。 클라이언트는 세그먼트를 받으면 FIN_WAIT_2 상태로 들어감

3단계

。 서버는 ACK를 보내고 일정 시간 이후 클라이언트에 FIN 세그먼트를 보냄

4단계

0	클라이언트는 TI	ME_WAIT	상태가 5	되고 다시	서버로 ACK를	보내 서버는	CLOSED	상태가	됨
---	-----------	---------	-------	-------	----------	--------	--------	-----	---

_	클라이어트는 작人	1 1 11 /			크리다	100 - 01	ино	ㅣ모든 자원의	ロタタハ	ᅵᅐᆘᄊᆝᄂ
()		1 611/	1 - 1 - 1	= 01 1		171-11	시미그	ーナー ハガニ	1 71701	

*TIME_WAIT 하는 이유

- 지연 패킷이 발생 할 경우 대비 : 데이터 무결성 문제 예방
- 두 장치의 연결 닫힘 유무 확인

✓ 인터넷 계층 (L2)

역할	장치로부터 받은 네트워크 패킷을 IP 주소로 지정된 목적지로 전송하기 위해 사용되는 계층
특징	- 연결성 제공 : 네트워크 상에서 데이터의 전송을 담당 → 서로 다른 네트워크 간의 통신을 가능하게 함 - 패킷을 수신해야 할 상대의 주소를 지정해서 데이터 전달 (비연결형) - 단말을 구분하기 위해 논리적인 주소로 IP 주소 할당, 해당 IP 주소로 네트워크 상의 컴퓨터 식별 - End-to-End 통신 (라우터/라우팅)
PDU	패킷
예시	IP, ARP, RARP, ICMP
전송 주소	IP
장비	라우터

✓ 네트워크 연결(링크) 계층 (L1)

역할	전선, 광섬유, 무선 등으로 실질적인 데이터를 전달하며 장치 간에 신호를 주고 받는 "규칙"을 정 하는 계층
특징	- 물리 계층 / 데이터 링크 계층으로 나뉨 → 물리 계층 : 무선 LAN, 유선 LAN을 통해 0,1로 이루어진 데이터 보내는 계층 → 데이터 링크 계층 : 이더넷 프레임을 통해 에러 확인, 흐름 제어, 접근 제어를 담당하는 계층 - 인터넷 계층과 달리 네트워크 안에서 데이터가 전송됨 - 노드 간의 신뢰성 있는 데이터 전송 담당 - 논리적인 주소가 아닌 물리적인 주소를 참조해 장비간 전송 - 기본적인 에러 검출과 패킷의 프레임화를 담당
PDU	프레임(데이터링크 계층), 비트(물리 계층)
예시	Ethernet
전송 주소	MAC
장비	브릿지, 스위치

■유선 LAN (IEEE802.3)

유선 LAN을 이루는 이터넷은 IEEE802.3이라는 프로토콜을 따르며 전이중화 통신 사용

1. 전이중화 통신

양쪽 장치가 동시에 송수신 할 수 있는 방식 송신로와 수신로를 나눠서 데이터 주고 받음

- → 현대의 고속 이더넷은 이 방식을 기반으로 통신
- *이더넷은 LAN(근거리 통신망) 구축을 위해 장치를 연결하는 데 널리 사용되는 네트워킹 프로토콜

2. CSMA/CD (반이중화 통신)

데이터를 보낸 후 충돌이 발생할 경우 일정 시간 이후 재전송하는 방식 수신로와 송신로를 각각 두지 않고 한 경로를 기반으로 데이터 보냄 → 데이터 보낼 때 충돌에 대해 대비해야 함

■유선 LAN을 이루는 케이블

1. 트위스트 페어 케이블

구리선 2개씩 꼬아서 묶은 케이블 케이블 → UTP 케이블(실드 처리x) / STP 케이블(실드 처리o)

2. 광섬유 케이블

광섬유로 만든 케이블 레이저를 이용해서 통신 → 정거리 및 고속 통신 가능

■무선 LAN (IEEE802.11)

수신 송신에 같은 채널 사용 → 반이중화 통신 사용

1. 반이중화 통신

장치가 신호를 수신하기 전에 수신하기 시작하면 응답하기 전에 전송 완료될때까지 기다림 둘 이상의 장치가 동시에 전송하면 충돌 발생 → 메시지 손실 or 왜곡 → 충돌방시 시스템 필요

2. CSMA/CA

반이중화 통신 중 하나

장치에서 데이터를 보내기 전에 일련의 과정을 기반으로 사전에 가능한 충돌을 방지하는 방식

■무선 LAN을 이루는 주파수

무선 신호 전달 방식을 이용하여 2대 이상의 장치를 연결하는 기술

주파수: 2.4GHz 대역 or 5GHz 대역 2개 중 선택

1. 와이파이

- 전자기기들이 무선 LAN 신호에 연결할 수 있게 하는 기술
- 무선 접속 장치(AP) = 공유기 필요 → 유선 LAN에 흐르는 신호를 무선 LAN 신호로 변환
 - → 신호가 닿는 범위 내에서 무선 인터넷 사용 가능
- 무선 LAN을 이용한 기술 : 와이파이/지그비/블루투스 등등

2. BSS

- Basic Service Set = 기본 서비스 집합
- 단순 공유기를 통해 네트워크에 접속x, 동일 BSS내에 있는 AP들과 장치들이 서로 통신이 가능한 구조
- 근거리 무선 통신 제공
- 하나의 AP만을 기반으로 구축 → 사용자가 한 곳에서 다른 곳으로 자유롭게 이동해 네트워크 접속 불가능

3. ESS

- Extended Service Set = 하나 이상의 연결된 BSS 그룹
- 장거리 무선 통신 제공
- BSS보다 많은 가용성, 이동성 지원
- 사용자는 한 장소에서 다른 장소로 이동하며 중단 없이 네트워크 연결 가능

■이더넷 프레임

데이터 링크 계층은 이더넷 프레임을 통해 전달받은 데이터의 에러를 검출하고 캡슐화하여 아래의 구조를 가짐

캡슐화 과정

상위 계층의 헤더와 하위 계층의 데이터 부분에 포함시키고 해당 계층의 헤더를 삽입하는 과정

- 1. 데이터는 세그먼트 또는 데이터그램화되며 TCP(L4)가 붙여짐
- 2. 인터넷 계층으로 가면서 IP(L3) 헤더가 붙여지면서 패킷화 됨
- 3. 링크 계층으로 전달되면서 프레임 헤더와 프레임 트레일러가 붙어 프레임화 됨

비캡슐화 과정

하위 계층에서 상위 계층으로 가며 각 계층의 헤더 부분을 제거하는 과정

캡슐화된 데이터를 받으면 링크계층에서부터 타고 올라오면서 프레임화된 데이터 → 패킷화 → 세크먼트/데이터그램화 → 메시지화

이후 최종적으로 사용자에게 애플리케이션의 PDU인 메세지로 전달

2.2.2 PDU

PDU(Protocol Data Unit)

- = 네트워크의 어떠한 계층에서 계층으로 데이터가 전달될 때 한 덩어리의 단위
- = 헤더(제어 관련 정보들 포함) + 페이로드(데이터)
- *계층마다 부르는 명칭 다름