1. Suppose the matrix equation $A\vec{x} = \begin{bmatrix} 3 \\ 2 \\ 7 \end{bmatrix}$ has the general solution

$$\vec{x} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}.$$

- (a) How many rows and how many columns does A have?
- (b) Find null(A).
- (c) Find rank(A).
- (d) Find col(A).
- (e) Find row(A).
- 2. NOT ALL BASES ARE CREATED EQUALLY. Let $\mathcal{X} = \{\vec{x}_1, \vec{x}_2\}$ be a basis for \mathbb{R}^2 consisting of unit vectors. By definition, for any $\vec{v} \in \mathbb{R}^2$, we can find a unique $\alpha_1, \alpha_2 \in \mathbb{R}^2$ so that

$$\vec{v} = \alpha_1 \vec{x}_1 + \alpha_2 \vec{x}_2.$$

We call the quantity $S_{\mathcal{X}}(\vec{v}) = \sqrt{\alpha_1^2 + \alpha_2^2}/\|\vec{v}\|$ the size of the representation of of \vec{v} in the basis \mathcal{X} . For many applications, it is desirable for $S_{\mathcal{X}}$ to be as small as possible. We are going to explore what makes $S_{\mathcal{X}}$ small or large.

(a) Let

$$\vec{a}' = \begin{bmatrix} 5 \\ 5 \end{bmatrix} \qquad \vec{b}' = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$$

and $\vec{a} = \vec{a}'/\|\vec{a}'\|$ and $\vec{b} = \vec{b}'/\|\vec{b}'\|$ and consider the basis $\mathcal{B} = \{\vec{a}, \vec{b}\}$.

Use Matlab/Octave to compute the **average** of $S_{\mathcal{B}}(\vec{v})$ for at least 1000 vectors with random entries in the interval [-1,1]. (Hint: you can use (rand(2,1) - .5)*2 to create a random vector with entries in [-1,1]).

- (b) Let $S = \{\hat{\mathbf{x}}, \hat{\mathbf{y}}\}\$ be the standard basis for \mathbb{R}^2 . Use Matlab/Octave to compute the average of $S_S(\vec{v})$ for at least 1000 vectors with random entries in the interval [-1, 1].
- (c) Consider the basis $Q_{\theta} = \{\hat{\mathbf{x}}, \vec{v}_{\theta}\}$ where $\vec{v}_{\theta} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$ and $\theta \neq n\pi$.

What happens to the average value of $S_{\mathcal{Q}_{\theta}}$ as $\theta \to 0$? Why?

- (d) We're going to numerically explore the space of unit-vector bases for \mathbb{R}^2 . Let $\vec{b}_t = \begin{bmatrix} \cos t \\ \sin t \end{bmatrix}$ and let $\mathcal{B}_{\theta_1,\theta_2} = \{\vec{b}_{\theta_1}, \vec{b}_{\theta_2}\}$ where θ_1, θ_2 are randomly chosen from the interval $[0, 2\pi]$.
 - i. What percentage of random bases for \mathbb{R}^2 satisfy $S_{\mathcal{B}} < 2$?
 - ii. What percentage satisfy $S_{\mathcal{B}} > 10$?
 - iii. What is the smallest that $S_{\mathcal{B}}$ can be?
 - iv. What do bases achieving minimal values for $S_{\mathcal{B}}$ look like?
- (e) Now let's explore bases for \mathbb{R}^3 . For a basis of unit vectors, \mathcal{B} , in \mathbb{R}^3 , we define $S_{\mathcal{B}}$ in the same way. However, choosing a random basis of unit vectors is a little harder in \mathbb{R}^3 . (We cannot just use spherical coordinates and randomly pick ϕ and θ since that would cause most of the vectors to collect at the north and south poles—remember what the volume form looks like for polar coordinates?) However, we can use a trick.

The Matlab/Octave command randn(3,1) will create a random vector with three normally distributed components. If we turn this vector into a unit vector (something like a = randn(3,1); a = a/norm(a)) it will be randomly (and uniformly) distributed on the unit sphere in \mathbb{R}^3 .

Find out what percentage of random bases for \mathbb{R}^3 satisfy $S_{\mathcal{B}} < 2$. Provide a histogram of $S_{\mathcal{B}}$ for random bases for \mathbb{R}^3 . (The Matlab/Octave command hist(v) with give you a histogram if v is a list of numbers.)