https://bit.ly/2JL5r0W

Kyoto University

統計的モデリング基礎⑥ ~正則化と事後確率最大化~

鹿島久嗣 (情報学科 計算機科学コース)

DEPARTMENT OF INTELLIGENCE SCIENCE AND TECHNOLOGY

重回帰の復習:

最小二乗法による定式化

• 重回帰モデル: $y = \mathbf{\beta}^\mathsf{T} \mathbf{x}$

• パラメータ: $\boldsymbol{\beta} = (\beta_1, \beta_2, ..., \beta_m, \alpha)^{\mathsf{T}}$

• 独立変数: $\mathbf{x} = (x_1, x_2, ..., x_m, 1)^{\mathsf{T}}$

最後の次元は 切片部分に相当

■ データ:

• 計画行列: $X = (\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, ..., \mathbf{x}^{(n)})^{\mathsf{T}}$

• 従属変数: $\mathbf{y} = (y^{(1)}, y^{(2)}, ..., y^{(n)})^{\mathsf{T}}$

■目的関数: $\ell(\beta) = \sum_{i=1}^{n} (y^{(i)} - \beta^{\mathsf{T}} \mathbf{x}^{(i)})^2 = \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_2^2$

Kyata Universit

重回帰モデルの解:

解析解が得られる

- ■目的関数: $L(\boldsymbol{\beta}) = \|\mathbf{y} \boldsymbol{X}\boldsymbol{\beta}\|_2^2 = (\mathbf{y} \boldsymbol{X}\boldsymbol{\beta})^{\mathsf{T}}(\mathbf{y} \boldsymbol{X}\boldsymbol{\beta})$
- $\mathbf{\beta}^* = \operatorname{argmin}_{\mathbf{\beta}} L(\mathbf{\beta}) = (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y}$
- ただし、解が存在するためにはX[™]Xが正則である必要
 - モデルの次元数mよりもデータ数nが大きい場合はおおむね成立
- 正則化:正則でない場合にはX^TXの対角成分に正の定数λ > 0を加えて正則にする
 - 新たな解: $\beta^* = \operatorname{argmin}_{\beta} L(\beta) = (X^{\mathsf{T}}X + \lambda I)^{-1}X^{\mathsf{T}}y$
 - 目的関数に戻ると: $L(\boldsymbol{\beta}) = \|\mathbf{y} \boldsymbol{X}\boldsymbol{\beta}\|_2^2 + \lambda \|\boldsymbol{\beta}\|_2^2$

パラメータのノルムに関する ペナルティ項

3

データへの過適合:

データへの過剰な適合は将来のデータへの予測力を損なう

- 先ほどは、正則化を計算を安定させるために導入した
- データへの過適合:
 - 汎化:予測を目的とする場合、我々の真の目的は将来のデータ への予測力が高いモデルを得ること
 - 手持ちのデータへのモデルの過剰な適合は、将来の予測力を損なう可能性がある
- 例えば、データ数nが次元数mより小さいとき、重回帰の解は一意 に定まらない
 - 任意の数の解が存在し、どれが良いのかわからない

4

KYOTO UNIVERSITY

オッカムの剃刀:

できるだけ"単純な"なモデルを採用せよ

- ▼データに同程度適合している無数のモデルのうち、 どれが最も"良い"モデルだろうか
- オッカムの剃刀:単純なモデルを採用せよ
 - 「ある事柄を説明するためには、必要以上に多くを仮定するべき でない」
- 単純さを何で測るか?
 - 例えば、モデルに含まれる独立変数の数
 - 自由度調整済決定係数、AIC、BICなどの情報量基準

5 Kyoto University

0-ノルムを用いた正則化:

パラメータ中の非零成分の数を減らす

- 0-ノルム制約を入れた回帰問題:

 $\beta^* = \operatorname{argmin}_{\beta} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_2^2 \text{ s.t. } \|\boldsymbol{\beta}\|_0 \leq \eta$

■ あるいは 0-ノルムをペナルティ項として導入:

 $\mathbf{\beta}^* = \operatorname{argmin}_{\mathbf{\beta}} \|\mathbf{y} - \mathbf{X}\mathbf{\beta}\|_2^2 + \lambda \|\mathbf{\beta}\|_0$

- ηとλは一対一対応している
- ただし、この問題は凸最適化問題でない

5 Kyoto Universit

0-ノルムの代替:

- 2-ノルム正則化は凸最適化になる
- 0-ノルム $\|\mathbf{\beta}\|_0$ の代わりに 2-ノルム $\|\mathbf{\beta}\|_2^2$ を用いる

- リッジ回帰: $L(\boldsymbol{\beta}) = \|\mathbf{y} \boldsymbol{X}\boldsymbol{\beta}\|_2^2 + \lambda \|\boldsymbol{\beta}\|_2^2$ 点 いっこう
 - 0-ノルム正則化の緩和版として捉えることができる:

$$L(\boldsymbol{\beta}) = \|\mathbf{y} - \boldsymbol{X}\boldsymbol{\beta}\|_{2}^{2} + \lambda \|\boldsymbol{\beta}\|_{0}$$

$$\parallel \boldsymbol{\beta} \parallel_{0}$$

Kyoto University

0-ノルムの代替:

- 1-ノルムは疎な解を導く
- さらに、1-ノルム $\|oldsymbol{\beta}\|_1 = |eta_1| + |eta_2| + \cdots + |eta_D|$ も利用可能

- ラッソ: $L(\boldsymbol{\beta}) = \|\mathbf{y} X\boldsymbol{\beta}\|_2^2 + \lambda \|\boldsymbol{\beta}\|_1$
 - 凸最適化だが、解析解はもたない
- 1-ノルムを用いると疎な解になる(**β***の多くの要素が1になる)

Kyoto Universit

回帰のベイズ統計的解釈:

事後確率最大化推定

- 線形回帰モデルの推定は最尤推定として解釈できた
- 正則化のもとでの回帰モデルの推定はベイズ統計の枠組みで解釈できる
 - 事前分布・事後分布の導入
 - 事後確率最大化(MAP)推定
 - リッジ回帰 = MAP推定

9 Kyoto University

線形回帰モデルの最尤推定:

線形回帰の確率モデルの最尤推定 = 最小二乗法

- 線形回帰モデルに対応する確率モデル
 - 確率密度関数: $f(y^{(i)} \mid \mathbf{x}^{(i)}) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(y^{(i)} \boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}^{(i)})^2}{2\sigma^2}\right)$
- 対数尤度: $L(\boldsymbol{\beta}) = \sum_{i=1}^{n} \log f(y^{(i)} \mid \mathbf{x}^{(i)})$ = $-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y^{(i)} - \boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}^{(i)})^2 + \text{const.}$
- 対数尤度をβについて最大化すること(最尤推定)二乗誤差をβについて最小化すること(最小二乗法)

10 Kyoto University

ベイズ的統計モデリングの考え方:

尤度の代わりに事後分布を考える

- ■最尤推定(MLE)では尤度を最大化するパラメータβを求めた: $P(\mathbf{y} \mid \mathbf{X}, \boldsymbol{\beta}) = \prod_{i=1}^{n} f(y^{(i)} | \mathbf{x}^{(i)}, \boldsymbol{\beta})$
 - これは、パラメータが与えられたもとでデータが再現される条件付 確率: $P(\vec{y} - A \mid \mathcal{N} = A \mid \mathcal$
 - ※ 回帰の場合はXが定数として与えられ、vのみが確率変数と思っている
- ベイズ的なモデリングの考え方では、事後分布を考える: $P(\mathcal{N} \ni \mathsf{X} - \mathsf{P} \mid \vec{\mathsf{r}} - \mathsf{P}) = P(\mathbf{\beta} \mid X, \mathbf{y})$
 - 事後分布はパラメータを確率変数と考える

KYOTO UNIVERSITY

事後分布:

事後分布 ∝ 尤度 × 事前分布

■事後分布:

- $P(\vec{r}-\vec{9}) = \sum_{\substack{N \ni x-y}} P(\vec{r}-\vec{9} \mid N \ni x-\vec{9}) P(N \ni x-\vec{9})$
- 対数事後分布:

事後確率最大化(MAP)推定:

事後確率を最大化するパラメータを採用

■ 対数事後分布:

$$\log P(パラメータ | データ)$$
= log $P(データ | パラメータ) + \log P(パラメータ) + const.$

- ■事後確率最大化(Maximum a posteriori; MAP)推定
 - 事後確率を最大化するパラメータを採用する: パラメータ $^* = \operatorname{argmax}_{\mathcal{N} \supset \mathsf{X} \mathsf{Y}} \log P(\mathcal{N} \supset \mathsf{X} \mathsf{Y})$
 - 最尤推定では log P(データ | パラメータ) の項のみ考える
 - 追加の項として事前分布の項: log P(パラメータ)

13 Kyoto University

事後確率最大化としてのリッジ回帰:

正規分布を事前分布とした事後確率最大化

• 対数事後分布:

 $\log P(\mathcal{N} \ni \mathsf{J} - \mathcal{P} \mid \tilde{\mathcal{T}} - \mathcal{P})$

= $\log P(\vec{\tau} - \beta \mid \mathcal{N} \ni \mathcal{N} - \beta) + \log P(\mathcal{N} \ni \mathcal{N} - \beta) + \text{const.}$

■ リッジ回帰:

対数尤度

対数事前分布

$$\boldsymbol{\beta}^* = \operatorname{argmin}_{\boldsymbol{\beta}} \frac{1}{2\sigma^2} \sum_{i=1}^n (y^{(i)} - \boldsymbol{\beta}^\mathsf{T} \mathbf{x}^{(i)})^2 + \frac{1}{2\sigma'^2} \|\boldsymbol{\beta}\|_2^2$$

ightharpoonup対数尤度: $\sum_{i=1}^{n} \log \frac{1}{\sqrt{2\pi}\sigma'} \exp \left(-\frac{\left(y^{(i)} - \boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}^{(i)}\right)^{2}}{2{\sigma'}^{2}}\right)$

◆事前分布: $P(\beta) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{\beta^{\mathsf{T}}\beta}{2\sigma^2}\right)$

4 Kyoto Universit

事後確率最大化としてのラッソ:

ラプラス分布を事前分布として利用

- ■事前分布を正規分布にすると2-ノルム正則化
- ラプラス分布:1-ノルム正則化に対応する事前分布

$$P(\boldsymbol{\beta}) = \frac{1}{2\phi} \exp\left(-\frac{|\boldsymbol{\beta}|}{\phi}\right)$$

15 Kyoto University

ベイズ予測:

推定のばらつきを考慮した予測

■ MAP推定では事後分布が最大となるパラメータを点推定する

$$\widehat{\boldsymbol{\beta}} = \operatorname{argmax}_{\boldsymbol{\beta}} P(\boldsymbol{\beta} \mid \boldsymbol{X}, \mathbf{y})$$

■ ベイズ予測では事後分布そのものを用いて予測する

$$P(y \mid \mathbf{x}) = \int_{\beta} P(y \mid \mathbf{x}, \boldsymbol{\beta}) P(\boldsymbol{\beta} \mid \boldsymbol{X}, \mathbf{y}) \, \mathrm{d}\boldsymbol{\beta}$$

- あらゆるパラメータにおけるモデルの予測を事後確率で重みづけて 予測する
- 最適化問題を解いてパラメータを点推定するのでなく「全部」使う

16 Kyoto University