第6章 STC单片机CPU指令系统

何宾 2018.03

ANL A, Rn

■ 该指令将累加器A的内容和寄存器R_n的内容做逻辑与操作,结果 保存在累加器A中。

ANL A,Rn指令的内容

助记符	操作	标志	操作码	字节数	周期数
ANL A,Rn	(PC) ← (PC) + 1 (A) ← (A) ^ (Rn)	N	01011rrr	1	1

注: rrr为寄存器的编号,因此机器码范围是58H~5FH。

【例】假设累加器A中的数据为C3H,寄存器R0的内容为55H,则执行指令:

ANLA, RO

结果: 累加器A中的数据为41H。

计算过程:

11000011

^ 01010101

01000001

【例】执行指令

ANL P1, #01110011B

结果:将端口1的第7位、第3位和第2位清零。

ANL A, direct

■ 该指令将累加器A的内容和直接寻址单元的内容做逻辑与操作, 结果保存在累加器A中。

ANL A, direct指令的内容

	助记符	操作	标志	操作码	字节数	周期数
ANLA	A,direct	$(PC) \leftarrow (PC) + 2$ $(A) \leftarrow (A) \land (direct)$	N	01010101	2	2

ANLA, @Ri

■ 该指令将累加器A的内容和间接寻址单元中的内容做逻辑与操作 ,结果保存在累加器A中。

ANL A,@Ri指令的内容

助记符	操作	标志	操作码	字节数	周期数
ANL A,@Ri	$(PC) \leftarrow (PC) + 1$ $(A) \leftarrow (A) \land ((Ri))$	N	0101011i	1	2

注:i表示RO或者R1。当i=0时,表示RO寄存器;当i=1时,表示R1寄存器。

ANL A, #data

■ 该指令将累加器A的内容和立即数做逻辑与操作,结果保存在 累加器A中。

ANL A,#data指令的内容

助记符	操作	标志	操作码	字节数	周期数
ANL A,#data	(PC) ← (PC) + 2 (A) ← (A) ^ data	N	01010100	2	2

注: 在操作码后面跟着一个字节的立即数。

ANL direct, A

■ 该指令将累加器A的内容和直接寻址单元的内容做逻辑与操作, 结果保存在直接寻址单元中。

ANL direct,A指令的内容

助记符	操作	标志	操作码	字节数	周期数
ANL direct, A	$(PC) \leftarrow (PC) + 2$ $(direct) \leftarrow (direct) \land (A)$	N	01010010	2	3

ANL direct, #data

■ 该指令对立即数和直接寻址单元的内容做逻辑与操作,结果保存 在直接寻址单元中。

ANL direct,#data指令的内容

助记符	操作	标志	操作码	字节数	周期数
ANL direct , #data	(PC) ← (PC) + 3 (direct) ← (direct) ^ data	N	01010011	3	3

注: 在操作码后面跟着一个字节的直接地址和一个字节的立即数。

ORL A,Rn

■ 该指令将累加器A的内容和寄存器Rn中内容做逻辑或操作,结果保存在累加器A中。

ORL A,Rn指令的内容

助记符	操作	标志	操作码	字节数	周期数
ORL A,Rn	$(PC) \leftarrow (PC) + 1$ $(A) \leftarrow (A) \lor (Rn)$	N	01001rrr	1	1

注: rrr为寄存器的编号,因此机器码范围是48H~4FH。

【例】假设累加器A中的数据为C3H,寄存器R0的内容为55H,则执行指令:

ORLA, RO

结果:累加器A中的数据为D7H。

计算过程:

11000011

V 01010101

11010111

【例】执行指令:

ORL P1, #00110010B

结果:将端口1的第5位、第4位和第1位置1。

ORL A, direct

■ 该指令将累加器A的内容和直接寻址单元的内容做逻辑或操作, 结果保存在累加器A中。

ORL A, direct指令的内容

助记符	操作	标志	操作码	字节数	周期数
ORL A, direct	$(PC) \leftarrow (PC) + 2$ $(A) \leftarrow (A) \lor (direct)$	N	01000101	2	2

ORL A, @Ri

■ 该指令将累加器A的内容和间接寻址单元中内容做逻辑或操作, 结果保存在累加器A中。

ORLA,@Ri指令的内容

助记符	操作	标志	操作码	字节数	周期数
ORL A,@Ri	$(PC) \leftarrow (PC) + 1$ $(A) \leftarrow (A) \lor ((Ri))$	N	0100011i	1	2

注:i表示R0或者R1。当i=0时,表示R0寄存器;当i=1时,表示R1寄存器。

ORL A, #data

■ 该指令将累加器A的内容和立即数做逻辑或操作,结果保存在累加器A中。

ORL A,#data指令的内容

助记符	操作	标志	操作码	字节数	周期数
ORL A,#data	$(PC) \leftarrow (PC) + 2$ $(A) \leftarrow (A) \lor data$	N	01000100	2	2

注: 在操作码后面跟着一个字节的立即数。

ORL direct, A

■ 该指令将直接寻址单元的内容和累加器A中内容做逻辑或操作,结果保存在直接寻址单元中。

ORL direct,A指令的内容

助记符	操作	标志	操作码	字节数	周期数
ORL direct, A	(PC) ← (PC) + 2	N	01000010	7	2
	$(direct) \leftarrow (direct) \lor (A)$	11	01000010	Z	3

ORL direct, #data

■ 该指令将直接寻址单元中内容和立即数做逻辑或操作,结果 保存在直接寻址单元中。

ORL direct,#data指令的内容

助记符	操作	标志	操作码	字节数	周期数
ORL direct , #data	(PC) ← (PC) + 3	N	01000011	3	3
ONE direct , madta	(direct) ← (direct) ∨ data	11	01000011	9	3

注: 在操作码后面跟着一个字节的直接地址和一个字节的立即数。

XRL A,Rn

■ 该指令将累加器A的内容和寄存器Rn的内容做逻辑异或操作, 结果保存在累加器A中。

XRL A, Rn指令的内容

助记符	操作	标志	操作码	字节数	周期数
XRL A,Rn	$(PC) \leftarrow (PC) + 1$ $(A) \leftarrow (A) \oplus (Rn)$	N	01101rrr	1	1

注: rrr为寄存器的编号,因此机器码范围是68H~6FH。

【例】假设累加器A中的数据为C3H,寄存器R0的内容为AAH,则 执行指令:

XRLA, R0

结果: 累加器A中的数据为69H。

计算过程:

11000011

⊕ 10101010

01101001

【例】执行指令:

XRL P1, #00110001B

结果:将端口1的第5位、第4位和第0位取反。

XRL A, direct

■ 该指令将累加器A的内容和直接寻址单元的内容做逻辑异或操作,结果保存在累加器A中。

XRL A, direct指令的内容

助记符	操作	标志	操作码	字节数	周期数
XRL A, direct	$(PC) \leftarrow (PC) + 2$ $(A) \leftarrow (A) \oplus (direct)$	N	01100101	2	2

XRL A,@Ri

■ 该指令将累加器A的内容和间接寻址单元的内容做逻辑异或操作,结果保存在累加器A中。

XRLA,@Ri指令的内容

助记符	操作	标志	操作码	字节数	周期数
XRL A,@Ri	(PC) ← (PC) + 1	N	0110011i	4	2
	$(A) \leftarrow (A) \oplus ((Ri))$			1	Z

注:i表示R0或者R1。当i=0时,表示R0寄存器;当i=1时,表示R1寄存器。

XRL A, #data

■ 该指令将累加器A的内容和一个立即数做逻辑异或操作,结果保存在累加器A中。

XRL A,#data指令的内容

助记符	操作	标志	操作码	字节数	周期数
XRL A,#data	$(PC) \leftarrow (PC) + 2$ $(A) \leftarrow (A) \oplus data$	N	01100100	2	2

注: 在操作码后面跟着一个字节的立即数。

XRL direct, A

■ 该指令将直接寻址单元的内容和累加器ACC的内容做逻辑异或操作,结果保存在直接寻址的单元中。

XRL direct,A指令的内容

助记符	操作	标志	操作码	字节数	周期数
XRL direct, A	$(PC) \leftarrow (PC) + 2$ $(direct) \leftarrow (direct) \oplus (A)$	N	01100010	2	3

XRL direct, #data

■ 该指令将直接寻址的内容和一个立即数做逻辑异或操作,结果保存在直接寻址的单元中。

XRL direct,#data指令的内容

助记符	操作	标志	操作码	字节数	周期数
XRL direct, #data	$(PC) \leftarrow (PC) + 3$ $(direct) \leftarrow (direct) \oplus data$	N	01100011	3	3

注: 在操作码后面跟着一个字节的直接地址和一个字节的立即数。

CLR A

■ 该指令将累加器A中的各位清0,如下表所示。

CLRA指令的内容

助记符	操作	标志	操作码	字节数	周期数
CLR A	(PC) ← (PC) + 1	Ν	11100100	1	1
	(A) ← 0			1	1

【例】假设累加器A中的数据为5CH,则执行指令:

CLRA

结果: (A) =00H

逻辑指令 --取反指令

CPLA

■ 该指令将累加器A按位取反,即:将累加器A各位中,逻辑1变成逻辑0,逻辑0变成逻辑1。

CPLA指令的内容

助记符	操作	标志	操作码	字节数	周期数
CPL A	$(PC) \leftarrow (PC) + 1$ $(A) \leftarrow (A)$	N	11110100	1	1

逻辑指令 --取反指令

【例】假设P1端口的数据为5BH,则执行指令:

CPL P1.1

CPL P1.2

结果:

将P1端口设置为5DH=01011101B