# Clustering II

- Agglomerative hierarchical clustering: iteratively merging the closest pair of points/clusters
  - Given: an n-by-n matrix D of all pairwise distances (e.g., Euclidean) between n data points
  - Let  $d_{ij}$  be the minimum of D, i.e.,  $x_i$  and  $x_j$  are the two closest data points
  - Merge  $x_i$  and  $x_j$  into a new cluster x', compute distances of all other points to x' (see next slide), and compute a new (n-1)-by-(n-1) distance matrix D'
  - Iterate until only a single cluster is left
  - Output a dendrogram (see Slide 3)
- Advantage: no need to choose number of clusters in advance
  - can obtain any number of clusters from dendrogram
- Disadvantage: doesn't scale well
  - time complexity  $O(n^3)$  to  $O(n^2 \log n)$
- Clusters only apply to given data

# Linkage

- Distance between clusters can be calculated as:
  - the minimum distance between pairs from each cluster (single linkage)
  - the maximum distance between pairs from each cluster (complete linkage)
  - the average distance between pairs from each cluster (average linkage)
  - the distance between the centroids of each cluster (centroid linkage)
- Try 'help linkage' in Matlab!

## Dendrogram

- Tree where each internal node corresponds to a pair of clusters merged in an iteration
  - the height of each node indicates distance between clusters
  - tree can be cut at desired number of clusters



## **Silhouettes**

- a(x) is average distance to points in own cluster
- b(x) is average distance to points in nearest cluster
- $s(x) = b(x)-a(x)/\max(a(x),b(x))$ ; should be large
- Silhouette plots s(x) for each x, grouped by cluster



**Figure 8.18.** (**left**) 20 data points, generated by uniform random sampling. (**middle**) The dendrogram generated from complete linkage. The cluster structure suggested by the dendrogram is mostly spurious as it cannot be observed in the data. (**right**) The rapidly decreasing silhouette values in each cluster confirm the absence of a strong cluster structure. Point 18 has a negative silhouette value as it is on average closer to the green points than to the other **red** points.

## Gaussian mixture models

- Approach to clustering where each cluster is modelled as a multivariate normal distribution with its own mean and covariance matrix
- Would be easy if we knew from which Gaussian each data point came, but then it would be a supervised classification problem
  - maximum-likelihood estimation of means and covariances
- New idea: treat cluster membership as continuous hidden variable
  - K-means is special case: 0-1 cluster membership
  - solved by a very general algorithm called Expectation-Maximisation (EM) — here introduced by example only

#### Reminder: ML estimation

- Suppose a students got an A, b got a B, c got a C and d got a D (with a, b, c, d known). Suppose we also know that P(A)=1/2,  $P(B)=\mu$ ,  $P(C)=2\mu$ , and thus  $P(D)=1/2-3\mu$ . What is  $\mu$ ?
  - can be solved by maximum likelihood estimation:

$$P(a,b,c,d \mid \mu) \propto (1/2)^a \mu^b (2\mu)^c (1/2 - 3\mu)^d$$
, hence  $\log P(a,b,c,d \mid \mu) = l + a \log 1/2 + b \log \mu + c \log 2\mu + d \log (1/2 - 3\mu)$  Taking the derivative wrt.  $\mu$  and setting to 0 yields

$$\frac{b}{\mu} + \frac{2c}{2\mu} - \frac{3d}{1/2 - 3\mu} = 0$$
, which gives  $\mu = \frac{b + c}{6(b + c + d)}$ 

| Α  | В | С  | D  | μ=1/10 |  |
|----|---|----|----|--------|--|
| 15 | 5 | 10 | 10 | μ-1710 |  |

## Example with missing information

- Suppose h=a+b students got an A or a B, c got a C and d got a D (with h, c, d known). Suppose we also know that P(A)=1/2,  $P(B)=\mu$ ,  $P(C)=2\mu$ , and thus  $P(D)=1/2-3\mu$ . What is  $\mu$ ?
  - if we knew μ (which we do not), we could compute the expected value of a and b:

$$\frac{a}{b} = \frac{1/2}{\mu}$$

$$a + b = h$$
  $a = \frac{1/2}{1/2 + \mu} h \text{ and } b = \frac{\mu}{1/2 + \mu} h$ 

- if we knew the expected value of *a* and *b* (which we do not), we could compute the maximum likelihood estimate of μ (see previous slide)
- So: let's iterate Expectation and Maximisation ->
   EM algorithm

## **EM** calculations

- Define
  - $\mu(t)$ : estimate of  $\mu$  after the  $t^{th}$  iteration
  - b(t): estimate of b after the  $t^{th}$  iteration
- E-step:  $b(t) = E[b \mid \mu(t)] = \frac{\mu(t)}{1/2 + \mu(t)}h$
- M-step:  $\mu(t+1) = \underset{\mu}{\operatorname{arg\,max}} P(a(t), b(t), c, d \mid \mu) = \frac{b(t) + c}{6(b(t) + c + d)}$

Two example calculations with h=20, c=d=10 and different initial guesses for  $\mu(0)$ :

| t | $\mu(t)$ | b(t)  |
|---|----------|-------|
| 0 | 0        | 0     |
| 1 | 0.0833   | 2.857 |
| 2 | 0.0937   | 3.158 |
| 3 | 0.0947   | 3.185 |
| 4 | 0.0948   | 3.187 |
| 5 | 0.0948   | 3.187 |
| 6 | 0.0948   | 3.187 |

| t | $\mu(t)$ | b(t)  |
|---|----------|-------|
| 0 | 1/6      | 5     |
| 1 | 0.1      | 3.333 |
| 2 | 0.0952   | 3.2   |
| 3 | 0.0944   | 3.177 |
| 4 | 0.0948   | 3.187 |
| 5 | 0.0948   | 3.187 |
| 6 | 0.0948   | 3.187 |

## 1-D Gaussian mixtures



- $\mu_1$ =55,  $\mu_2$ =65,  $\sigma_1$ = $\sigma_2$ =3
- some overlap between clusters



- $\mu_1$ =55,  $\mu_2$ =65,  $\sigma_1$ = $\sigma_2$ =4
- more overlap between clusters

#### EM for 1-D Gaussian mixtures

- Given: data  $x_i$  ( $1 \le i \le n$ ) drawn from K normal distributions with unknown means and equal variance
  - means that variance doesn't influence the outcome and can be set to 1
- Obtain: estimates of the means  $\mu_1$  ...  $\mu_K$
- Approach: introduce **hidden variables**  $z_{ij}$  indicating the likelihood that  $x_i$  came from the j-th Gaussian
- Algorithm: Expectation-Maximisation!
  - E-step: for each data point  $x_i$  and each j  $z_{ij}(t) = E[z_{ij} \mid x_i, \mu_j(t)] \propto e^{-(x_i \mu_j(t))^2/2}$ , normalised such that  $\sum_{i=1}^{K} z_{ij}(t) = 1$
  - M-step: for each j, estimate mean as weighted average

$$\mu_{j}(t+1) = \underset{\mu}{\operatorname{arg\,max}} p(x_{1} \dots x_{n}, z_{1j} \dots z_{nj} \mid \mu) = \dots = \sum_{i=1}^{n} z_{ij}(t)x_{i} / \sum_{j=1}^{n} z_{ij}(t)$$

# 1-D Gmm example



| Xi              | 55.6951 | 56.0631 | 56.5929 | 58.8639 | 61.0000 | 61.4035 | 62.2644 | 63.3310 | 64.9595 | 67.2668 |         |         |
|-----------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Z <sub>i1</sub> | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.0000  | $\mu_1$ | 40      |
| Z <sub>i2</sub> | 1.0000  | 1.0000  | 1.0000  | 1.0000  | 1.0000  | 1.0000  | 1.0000  | 1.0000  | 1.0000  | 1.0000  | $\mu_2$ | 70      |
| Z <sub>i1</sub> | 1.0000  | 1.0000  | 0.9997  | 0.0372  | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.0000  | $\mu_1$ | 55.6951 |
| $z_{i2}$        | 0.0000  | 0.0000  | 0.0003  | 0.9628  | 1.0000  | 1.0000  | 1.0000  | 1.0000  | 1.0000  | 1.0000  | $\mu_2$ | 60.7440 |
| Z <sub>i1</sub> | 1.0000  | 1.0000  | 1.0000  | 0.9794  | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.0000  | $\mu_1$ | 56.1507 |
| $z_{i2}$        | 0.0000  | 0.0000  | 0.0000  | 0.0206  | 1.0000  | 1.0000  | 1.0000  | 1.0000  | 1.0000  | 1.0000  | $\mu_2$ | 62.7474 |
| Z <sub>i1</sub> | 1.0000  | 1.0000  | 1.0000  | 0.9996  | 0.0023  | 0.0002  | 0.0000  | 0.0000  | 0.0000  | 0.0000  | $\mu_1$ | 56.7931 |
| $z_{i2}$        | 0.0000  | 0.0000  | 0.0000  | 0.0004  | 0.9977  | 0.9998  | 1.0000  | 1.0000  | 1.0000  | 1.0000  | $\mu_2$ | 63.3554 |
| Z <sub>i1</sub> | 1.0000  | 1.0000  | 1.0000  | 0.9997  | 0.0025  | 0.0002  | 0.0000  | 0.0000  | 0.0000  | 0.0000  | $\mu_1$ | 56.8062 |
| Z <sub>i2</sub> | 0.0000  | 0.0000  | 0.0000  | 0.0003  | 0.9975  | 0.9998  | 1.0000  | 1.0000  | 1.0000  | 1.0000  | $\mu_2$ | 63.3716 |

## **Discussion**

- If the Gaussians have equal variance, Gaussian mixture models are very similar to K-means
  - main difference: 'soft' cluster membership
- But GMMs are more general: can also estimate covariances
- The usual caveats apply: local maxima, dependence on initial configuration, etc.
- Expectation-Maximisation is a very general technique for estimating hidden variables