Отчет по численному исследованию базовых разностных схем.

Шерстобитов Андрей, задача 02

Для построения приближенного решения задачи

$$y'(x) + Ay(x) = 0, y(0) = 1, x \in [0, 1], A > 0$$

С известным точным решением $y(x) = e^{-Ax}$ найдем порядок аппроксимации и проверим lpha-устойчивость схем:

1.
$$\frac{y_{k+1}-y_k}{h} + Ay_k = 0, y_0 = 1$$

$$\left| y'(x_k) + Ay(x_k) - \frac{y(x_k + h) - y(x_k)}{h} - Ay(x_k) \right| = \left| y'(x_k) - \frac{hy'(x_k) + \frac{h^2}{2}y''(\xi)}{h} \right| = \left| \frac{h}{2}y''(\xi) \right| = \underline{\underline{\mathcal{O}}}(h^1)$$

Разностная схема имеет первый порядок аппроксимации.

$$\frac{y_{k+1} - y_k}{h} = 0 \Rightarrow P(\mu) = \mu - 1 \Rightarrow \mu = 1$$

Схема α -устойчива

2.
$$\frac{y_{k+1}-y_k}{h} + Ay_{k+1} = 0, y_0 = 1$$

$$\left| y'(x_k) + Ay(x_k) - \frac{y(x_k + h) - y(x_k)}{h} - Ay(x_k + h) \right| =$$

$$\left| y'(x_k) - \frac{hy'(x_k) + \frac{h^2}{2}y''(\xi)}{h} - Ay'(\eta)h \right| = \left| \frac{h}{2}y''(\xi) - Ay'(\eta)h \right| = \underline{\underline{\mathcal{O}}}(h^1)$$

Разностная схема имеет первый порядок аппроксимации.

Схема α -устойчива (см. схему 1).

3.
$$\frac{y_{k+1}-y_k}{h} + A\frac{y_{k+1}+y_k}{2} = 0, y_0 = 1$$

$$\left| y'(x_k) + Ay(x_k) - \frac{y(x_k + h) - y(x_k)}{h} - A \frac{y(x_k + h) + y(x_k)}{2} \right| = \left| \frac{2h(y'(x_k) + Ay(x_k)) - 2(y(x_k + h) - y(x_k)) - Ah(y(x_k + h) + y(x_k))}{2h} \right| = \left| \frac{2h(y'(x_k) + Ay(x_k)) - 2(y'(x_k)h + y''(x_k)\frac{h^2}{2} + \underline{\mathcal{Q}}(h^3)) - Ah(2y(x_k) + y'(x_k)h + \underline{\mathcal{Q}}(h^2))}{2h} \right| = \frac{2h(y'(x_k) + Ay(x_k)) - 2(y'(x_k)h + y''(x_k)\frac{h^2}{2} + \underline{\mathcal{Q}}(h^3)) - Ah(2y(x_k) + y'(x_k)h + \underline{\mathcal{Q}}(h^2))}{2h} \right| = \frac{2h(y'(x_k) + Ay(x_k)) - 2(y'(x_k)h + y''(x_k)\frac{h^2}{2} + \underline{\mathcal{Q}}(h^3)) - Ah(2y(x_k) + y'(x_k)h + \underline{\mathcal{Q}}(h^2))}{2h}$$

$$\left| \frac{-y''(x_k)h^2 + \underline{\mathcal{Q}}(h^3) - Ay'(x_k)h^2 + \underline{\mathcal{Q}}(h^3)}{2h} \right| = \left| \frac{-h \underbrace{(y'(x) + Ay(x))' = 0}}{2} + \underline{\underline{\mathcal{Q}}(h^2)} \right| = \underline{\underline{\mathcal{Q}}(h^2)}$$

Разностная схема имеет второй порядок аппроксимации.

Схема α -устойчива (см. схему 1).

4.
$$\frac{y_{k+1}-y_{k-1}}{2h} + Ay_k = 0, y_0 = 1, y_1 = 1 - Ah$$

(а) Проверим схему

$$\left| y'(x_k) + Ay(x_k) - \frac{y(x_k + h) - y(x_k - h)}{2h} - Ay(x_k) \right| =$$

$$\left| \left| y(x_k \pm h) = y(x_k) \pm y'(x_k)h + y''(x_k) \frac{h^2}{2} \pm y'''(x_k) \frac{h^3}{6} + \underline{\mathcal{Q}}(h^4) \right| =$$

$$\left| \frac{2hy'(x_k) - 2hy'(x_k) + \underline{\mathcal{Q}}(h^3)}{2h} \right| = \underline{\mathcal{Q}}(h^2)$$

(b) Проверим краевое условие

$$|y(h) - y_1| = |\overbrace{y(0)}^{=1} + y'(0)h + \underline{\underline{\mathcal{O}}}(h^2) - 1 + Ah| = |h\overbrace{(y'(0) + Ay(0))}^{=0} + \underline{\underline{\mathcal{O}}}(h^2)| = \underline{\underline{\mathcal{O}}}(h^2)$$

Разностная схема имеет второй порядок аппроксимации.

$$\frac{y_{k+1} - y_{k-1}}{2h} = 0 \Rightarrow P(\mu) = \mu^2 - 1 \Rightarrow \mu = \pm 1$$

Схема α -устойчива.

5.
$$\frac{1.5y_k - 2y_{k-1} + 0.5y_{k-2}}{h} + Ay_k = 0, y_0 = 1, y_1 = 1 - Ah.$$

(а) Проверим аппроксимацию схемы

$$\left| y'(x_k) - \frac{1.5y(x_k) - 2y(x_k - h) + 0.5y(x_k - 2h)}{h} \right| =$$

$$\left| y'(x_k) - \frac{-2\left[-hy'(x_k) + \frac{h^2}{2}y''(x_k) + \underline{\mathcal{Q}}(h^3) \right] + \frac{1}{2}\left[-2hy'(x_k) + 2h^2y''(x_k) + \underline{\mathcal{Q}}(h^3) \right]}{h} \right| =$$

$$\left| -2\left[\frac{h^2}{2}y''(x_k) + \underline{\mathcal{Q}}(h^2) \right] + \frac{1}{2}\left[2h^2y''(x_k) + \underline{\mathcal{Q}}(h^2) \right] \right| = \underline{\mathcal{Q}}(h^2)$$

(b) Аппроксимация краевого условия $\mathcal{O}(h^2)$ (см. схему 4)

Разностная схема имеет второй порядок аппроксимации.

$$\frac{1.5y_k - 2y_{k-1} + 0.5y_{k-2}}{h} = 0 \Rightarrow P(\mu) = 1.5\mu^2 - 2\mu + 0.5 \Rightarrow \mu_1 = 1; \mu_2 = \frac{1}{3}$$

Схема α -устойчива.

6.
$$\frac{-0.5y_{k+2} + 2y_{k+1} - 1.5y_k}{h} + Ay_k = 0, y_0 = 1, y_1 = 1 - Ah.$$

(а) Проверим аппроксимацию схемы

$$\left| y'(x_k) - \frac{-0.5y(x_k + 2h) + 2y(x_k + h) - 1.5y(x_k)}{h} \right| =$$

$$\left| y'(x_k) - \frac{-\frac{1}{2} \left[2hy'(x_k) + 2h^2y''(x_k) + \underline{\mathcal{Q}}(h^3) \right] + 2 \left[hy'(x_k) + \frac{h^2}{2}y''(x_k) + \underline{\mathcal{Q}}(h^3) \right]}{h} \right| =$$

$$\left| y'(x_k) - \frac{-\left[hy'(x_k) + h^2y''(x_k) + \underline{\mathcal{Q}}(h^3) \right] + \left[2hy'(x_k) + h^2y''(x_k) + \underline{\mathcal{Q}}(h^3) \right]}{h} \right| =$$

$$\left| y'(x_k) + \left[y'(x_k) + hy''(x_k) + \underline{\mathcal{Q}}(h^2) \right] - \left[2y'(x_k) + hy''(x_k) + \underline{\mathcal{Q}}(h^2) \right] \right| = \underline{\mathcal{Q}}(h^2)$$

(b) Аппроксимация краевого условия $\underline{\mathcal{O}}(h^2)$ (см. схему 4)

Разностная схема имеет второй порядок аппроксимации.

$$\frac{-0.5y_{k+2} + 2y_{k+1} - 1.5y_k}{h} = 0 \Rightarrow P(\mu) = -0.5\mu^2 + 2\mu - 1.5 \Rightarrow \mu_1 = 1; \mu_2 = 3$$

Схема **не** α -устойчива.

Результаты программы

$N_{\bar{0}}$	E1	E2	E3	E6	m	A
1	1.920100e-02	1.847100e-03	1.840164e-04	1.839504e-07	1	1
1	$0.000000\mathrm{e}{+00}$	1.920100e-02	1.847100e-03	1.839403e-06	1	10
1	$9.043821\mathrm{e}{+19}$	$2.656140\mathrm{e}{+95}$	$0.0000000\mathrm{e}{+00}$	$0.000000\mathrm{e}{+00}$	1	1000
2	1.766385 e-02	1.831771e-03	1.838631e-04	1.839699e-07	1	1
2	1.321206 e-01	1.766385 e-02	1.831771e-03	1.839387e-06	1	10
2	$0.000000\mathrm{e}{+00}$	$0.0000000\mathrm{e}{+00}$	$0.0000000\mathrm{e}{+00}$	$0.000000\mathrm{e}{+00}$	1	1000
3	3.068988e-04	3.065695 e-06	3.065658e-08	5.842771e-12	2	1
3	3.454611e-02	3.068988e-04	3.065695 e-06	4.302614e-12	2	10
3	9.607843 e-01	$0.0000000\mathrm{e}{+00}$	$0.0000000\mathrm{e}{+00}$	$0.000000\mathrm{e}{+00}$	2	1000
4	1.000000e-01	1.000000e-02	1.000000e-03	1.000000e-06	2	1
4	$0.000000\mathrm{e}{+00}$	$5.375719\mathrm{e}{+01}$	5.505286 e - 01	1.000000e-05	2	10
4	$5.070070\mathrm{e}{+22}$	$7.321840\mathrm{e}{+129}$	$0.0000000\mathrm{e}{+00}$	\inf	2	1000
5	$1.839902\mathrm{e}{+02}$	$4.460325\mathrm{e}{+25}$	\inf	\inf	2	1
5	$0.000000\mathrm{e}{+00}$	$7.383011\mathrm{e}{+25}$	\inf	\inf	2	10
5	$5.019147\mathrm{e}{+04}$	$1.936319\mathrm{e}{+30}$	$0.0000000\mathrm{e}{+00}$	\inf	2	1000
6	$1.679148\mathrm{e}{+02}$	$1.758994\mathrm{e}{+43}$	\inf	\inf	2	1
6	$0.000000\mathrm{e}{+00}$	$2.455656\mathrm{e}{+46}$	\inf	\inf	2	10
6	$3.468003\mathrm{e}{+12}$	$4.839576\mathrm{e}{+81}$	$0.0000000\mathrm{e}{+00}$	\inf	2	1000