Title

D. Zack Garza

Monday 10th August, 2020

Contents

1	Field	ds and Galois Theory	1
	1.1	* Fall 2016 #5	1
		* Fall 2013 #7	
		Spring 2020 #3	
	1.4	Spring 2020 #4	1
	1.5	Fall 2019 #4 ⋈	ç

1 Fields and Galois Theory

1.1 * Fall 2016 #5

How many monic irreducible polynomials over \mathbb{F}_p of prime degree ℓ are there? Justify your answer.

1.2 * Fall 2013 #7

Let $F = \mathbb{F}_2$ and let \overline{F} denote its algebraic closure.

- a. Show that \overline{F} is not a finite extension of F.
- b. Suppose that $\alpha \in \overline{F}$ satisfies $\alpha^{17} = 1$ and $\alpha \neq 1$. Show that $F(\alpha)/F$ has degree 8.

1.3 Spring 2020 #3

Let E be an extension field of F and $\alpha \in E$ be algebraic of odd degree over F.

- a. Show that $F(\alpha) = F(\alpha^2)$.
- b. Prove that α^{2020} is algebraic of odd degree over F.

1.4 Spring 2020 #4

Let
$$f(x) = x^4 - 2 \in \mathbb{Q}[x]$$
.

a. Define what it means for a finite extension field E of a field F to be a Galois extension.

- b. Determine the Galois group $\operatorname{Gal}(E/\mathbb{Q})$ for the polynomial f(x), and justify your answer carefully.
- c. Exhibit a subfield K in (b) such that $\mathbb{Q} \leq K \leq E$ with K not a Galois extension over \mathbb{Q} . Explain.

1.5 Fall 2019 #4 ⋈

Let F be a finite field with q elements.

Let n be a positive integer relatively prime to q and let ω be a primitive nth root of unity in an extension field of F.

Let $E = F[\omega]$ and let k = [E : F].

- (a) Prove that n divides $q^k 1$.
- (b) Let m be the order of q in $\mathbb{Z}/n\mathbb{Z}^{\times}$. Prove that m divides k.
- (c) Prove that m = k.