MAT-150: Linear Algebra EFY 3

Thomas R. Cameron

September 4, 2017

Problem Statement: Let $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}$, and define T(x) = Ax.

- i. Describe the linear transformation T in terms of its action on a vector x.
- ii. Is T one-to-one? Is T onto? Why?
- iii. Is Ax = b consistent? Always, sometimes, never? Explain.

Solution: The action of T on a vector x in \mathbb{R}^2 can be broken up as follows.

$$T(x) \colon \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \to \begin{bmatrix} x_2 \\ x_1 \end{bmatrix} \to \begin{bmatrix} x_2 \\ x_1 \\ x_1 + x_2 \end{bmatrix}$$

Thus, you can see that T first takes the vector x in \mathbb{R}^2 and reflects it about the line $x_2 = x_1$. Then, a third component, equal to $x_1 + x_2$, is appended to the vector.

Since T is a mapping from \mathbb{R}^2 to \mathbb{R}^3 , it is immediately clear that T cannot be onto. Now, consider a vector x in \mathbb{R}^2 , such that T(x) = 0. Then, based on the action of T it is clear that x = 0. Now, let b be a vector in \mathbb{R}^3 and suppose there are two vectors x_1 and x_2 , such that $T(x_1) = b$ and $T(x_2) = b$. Then, it follows that $T(x_1 - x_2) = 0$, and base on our previous observation $x_1 - x_2 = 0 \to x_1 = x_2$. Therefore, T is one-to-one.

The domain of T is \mathbb{R}^2 and the range of T is the plane in \mathbb{R}^3 determined by the equation

$$x_1 + x_2 - x_3 = 0. (1)$$

It follows that the matrix equation Ax = b is *consistent* if and only if the vector b lies in the plane determined by (1).