QCM n° 6

Échauffement n°1 Calculer $\int_{-\infty}^{\infty} (1+t)e^{-t} dt$.

Échauffement n°2 Calculer $\int_0^1 \frac{e^{2t}}{1+e^t} dt$.

Échauffement n°3 Résoudre sur \mathbb{R} l'équation différentielle $y' + 2xy = e^{-x^2}$.

Question n°1 Soit $a, b \in \mathbb{C}$.

- $\square \operatorname{Re}(a+b) = \operatorname{Re}(a) + \operatorname{Re}(b)$
- \square Im(ab) = Im(a) Im(b)
- $\Box |a+b| = |a| + |b|$
- $\square |ab| = |a|.|b|$
- $\Box \ \overline{ab} = \bar{a}.\bar{b}$
- $\Box \ \overline{a-b} = \bar{a} \bar{b}$

Question n°2 Soit $P = X^2 - X + 1$.

- \square P a deux racines distinctes, complexes et conjuguées.
- \square Le produit de ces deux racines vaut 1.
- \square La somme de ces deux racines vaut -1.

Calculez ces deux racines sans utiliser le discriminant.

Soit $Q = X^2 - iX - 1$.

- \square Q a deux racines distinctes, complexes et conjuguées.
- \square Le produit de ces deux racines vaut -1.
- \square La somme de ces deux racines vaut i.

Trouvez une relation entre les racines de Q et celles de P et en déduire les racines de Q, tout cela sans utiliser le discrimant.

Question n°3 Soit a et b deux réels non nuls tels que $a \leq b$. Alors

- $\square \ a^{-1} \geqslant b^{-1}$
- $\Box a^2 \leq b^2$.
- \square pour tout réel $c, ac \leq bc$.
- $\Box \ \min(|a|,|b|) \leqslant \sqrt{a^2 + b^2} \leqslant |a| + |b| \leqslant \sqrt{2}\sqrt{a^2 + b^2} \leqslant 2\max(|a|,|b|)$

Question n°4 Parmi les fonctions suivantes, repérez celles qui sont de la forme $t \mapsto K \times \varphi(t) \times f'(\varphi(t))$, où φ et f sont deux fonctions de classe \mathscr{C}^1 et $K \in \mathbb{R}$.

- $\Box \ t \mapsto \frac{\ln t}{t} \ ;$
- $\Box t \mapsto \frac{\ln t}{\sqrt{t}}$;
- $\Box t \mapsto t \ln(t)$;

- $\Box t \mapsto \operatorname{ch}(t)$;
- $\Box t \mapsto \cos(t) \sin^3(t) ;$ $\Box t \mapsto \frac{t}{\sqrt{1+t}}.$

Question n°5 Soit (\mathscr{E}) : $y' + 2y = e^x$.

- \square L'ensemble des solutions de l'équation homogène est $\{Ke^{-2x}, K \in \mathbb{R}\}.$
- $\square \ x \mapsto \frac{1}{2} \mathrm{e}^{\,x} \text{ est une solution particulière de } (\mathscr{E}).$
- $\square x \mapsto \frac{1}{3}e^x + \frac{2}{3}e^{-2x} \text{ est la seule solution de } (\mathscr{E}) \text{ qui vaut } 1 \text{ en } 0.$
- \square Si f est une solution de (\mathscr{E}) qui s'annule, alors c'est la fonction nulle.

Question n°6 Soit (\mathscr{E}) : y'' + 2y = 0.

- \square Le polynôme caractéristique de (&) est $X^2+2.$
- \square (\mathscr{E}) n'a pas de solution réelle.

Question n°7

- \square Une suite strictement croissante tend vers $+\infty$;
- \square Une suite strictement croissante et minorée par 0 tend vers $+\infty$;
- \square Une suite d'entiers strictement croissante tend vers $+\infty$;
- \Box Une suite d'entiers strictement croissante et minorée par 0 tend vers $+\infty$;
- \square Une suite majorée et strictement croissante tend vers $+\infty$;
- \square Une suite non majorée et strictement croissante tend vers $+\infty$.