ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΥΣΗΣ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ ΜΑΘΗΜΑ: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ – 9° ΕΞΑΜΗΝΟ

Εργασία 5

(Προθεσμία: Δευτέρα 13 Δεκεμβρίου 2021)

IRIS Data Set με Γραμμικούς Ταξινομητές

Το IRIS data set (http://en.wikipedia.org/wiki/Iris_flower_data_set) περιέχει μετρήσεις της μορφής: (μήκος σέπαλου, πλάτος σέπαλου, μήκος πετάλου, πλάτος πετάλου) σε cm για 150 φυτά iris (είδος κρίνου, αγριόκρινο). Από αυτά τα 150 φυτά, τα 50 είναι Iris Setosa ($ω_1$), τα 50 είναι Iris Versicolour ($ω_2$) και τα υπόλοιπα 50 είναι Iris Virginica ($ω_3$). Γνωρίζουμε ότι μόνο η μία (Iris Setosa) από τις άλλες δυο κλάσεις είναι γραμμικά διαχωρίσιμη.

- **A.** Να βρεθεί ένας γραμμικός ταξινομητής που να χωρίζει την Iris Setosa από τις άλλες 2 κατηγορίες με το batch **perceptron**, και με το **batch relaxation with margin**.
- **B**. Να βρεθεί ένας γραμμικός ταξινομητής που να χωρίζει την Iris Setosa (ω₁) από τις άλλες 2 κατηγορίες (ω₂, ω₃) χρησιμοποιώντας την μέθοδο των ελαχίστων τετραγώνων με χρήση του ψευδοαντιστρόφου, καθώς και με την επαναληπτική μέθοδο LMS (Windrow-Hopf).
- C. Να βρεθεί ένας γραμμικός ταξινομητής που να χωρίζει την Iris Versicolour (ω₂) από την Iris Virginica (ω₃) χρησιμοποιώντας την μέθοδο των ελαχίστων τετραγώνων με χρήση του ψευδοαντιστρόφου (LS) καθώς και με την επαναληπτική μέθοδο του Ho-Kashyap (αλγόριθμος 9).
- D. Να βρείτε τους γραμμικούς ταξινομητές και των τριών κατηγοριών και των 3 κατηγοριών χρησιμοποιώντας την μέθοδο των ελαχίστων τετραγώνων με χρήση του ψευδοαντιστρόφου (LS) και όλα τα χαρακτηριστικά (1,2,3,4)
- Ε. Επαναλάβατε το D για τους χώρους (1,2,3) και (2,3,4) (1=μήκος σέπαλου, 2=πλάτος σέπαλου, 3=μήκος πετάλου,4= πλάτος πετάλου) και δείξτε τα υπερεπίπεδα διαχωρισμού στον χώρο που έγετε καλύτερα αποτελέσματα.
- **F**. Προσπαθήστε να βρείτε τους γραμμικούς ταξινομητές και των τριών κατηγοριών, γρησιμοποιώντας την δομή Kesler.

Σχολιάστε τα αποτελέσματά σας (να δώσετε και τα αρχεία λογισμικού που χρησιμοποιήσατε).

Ξάνθη, 03/12/2021

(ΣΥΝΕΧΕΙΑ σελίδες 2 ως 6)

Τρισδιάστατη προβολή των κλάσεων.

Fisher's Iris Data				
Sepal Length	Sepal Width	Petal Length	Petal Width	Είδος 🖼
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.0	3.6	1.4	0.2	setosa
5.4	3.9	1.7	0.4	setosa
4.6	3.4	1.4	0.3	setosa
5.0	3.4	1.5	0.2	setosa
4.4	2.9	1.4	0.2	setosa
4.9	3.1	1.5	0.1	setosa
5.4	3.7	1.5	0.2	setosa
4.8	3.4	1.6	0.2	setosa
4.8	3.0	1.4	0.1	setosa
4.3	3.0	1.1	0.1	setosa
5.8	4.0	1.2	0.2	setosa
5.7	4.4	1.5	0.4	setosa
5.4	3.9	1.3	0.4	setosa
5.1	3.5	1.4	0.3	setosa
5.7	3.8	1.7	0.3	setosa
5.1	3.8	1.5	0.3	setosa
5.4	3.4	1.7	0.2	setosa
5.1	3.7	1.5	0.4	setosa
4.6	3.6	1.0	0.2	setosa
5.1	3.3	1.7	0.5	setosa
4.8	3.4	1.9	0.2	setosa
5.0	3.0	1.6	0.2	setosa
5.0	3.4	1.6	0.4	setosa
5.2	3.5	1.5	0.2	setosa
5.2	3.4	1.4	0.2	setosa
4.7	3.2	1.6	0.2	setosa
4.8	3.1	1.6	0.2	setosa
5.4	3.4	1.5	0.4	setosa
5.2	4.1	1.5	0.1	setosa
5.5	4.2	1.4	0.2	setosa
4.9	3.1	1.5	0.2	setosa
5.0	3.2	1.2	0.2	setosa
5.5	3.5	1.3	0.2	setosa
4.9	3.6	1.4	0.1	setosa
4.4	3.0	1.3	0.2	setosa
5.1	3.4	1.5	0.2	setosa
5.0	3.5	1.3	0.3	setosa
4.5	2.3	1.3	0.3	setosa

				1
4.4	3.2	1.3	0.2	setosa
5.0	3.5	1.6	0.6	setosa
5.1	3.8	1.9	0.4	setosa
4.8	3.0	1.4	0.3	setosa
5.1	3.8	1.6	0.2	setosa
4.6	3.2	1.4	0.2	setosa
5.3	3.7	1.5	0.2	setosa
5.0	3.3	1.4	0.2	setosa
7.0	3.2	4.7	1.4	versicolor
6.4	3.2	4.5	1.5	versicolor
6.9	3.1	4.9	1.5	versicolor
5.5	2.3	4.0	1.3	versicolor
6.5	2.8	4.6	1.5	versicolor
5.7	2.8	4.5	1.3	versicolor
6.3	3.3	4.7	1.6	versicolor
4.9	2.4	3.3	1.0	versicolor
6.6	2.9	4.6	1.3	versicolor
5.2	2.7	3.9	1.4	versicolor
5.0	2.0	3.5	1.0	versicolor
5.9	3.0	4.2		<u> </u>
			1.5	versicolor
6.0	2.2	4.0	1.0	versicolor
6.1	2.9	4.7	1.4	versicolor
5.6	2.9	3.6	1.3	versicolor
6.7	3.1	4.4	1.4	versicolor
5.6	3.0	4.5	1.5	versicolor
5.8	2.7	4.1	1.0	versicolor
6.2	2.2	4.5	1.5	versicolor
5.6	2.5	3.9	1.1	versicolor
5.9	3.2	4.8	1.8	versicolor
6.1	2.8	4.0	1.3	versicolor
6.3	2.5	4.9	1.5	versicolor
6.1	2.8	4.7	1.2	versicolor
6.4	2.9	4.3	1.3	versicolor
6.6	3.0	4.4	1.4	versicolor
6.8	2.8	4.8	1.4	versicolor
6.7	3.0	5.0	1.7	versicolor
6.0	2.9	4.5	1.5	versicolor
5.7	2.6	3.5	1.0	versicolor
5.5	2.4	3.8	1.1	versicolor
5.5	2.4	3.7	1.0	versicolor
5.8	2.7	3.9	1.2	versicolor
6.0	2.7	5.1	1.6	versicolor
5.4	3.0	4.5	1.5	versicolor
6.0	3.4	4.5	1.6	versicolor
6.7	3.1	4.7	1.5	versicolor
6.3	2.3	4.4	1.3	versicolor
5.6	3.0	4.1	1.3	versicolor
5.5	2.5	4.0	1.3	versicolor
5.5	2.6	4.4	1.2	versicolor
1	1 =	I ···	1	

6.1	3.0	4.6	1.4	versicolor
5.8	2.6	4.0	1.2	versicolor
5.0	2.3	3.3	1.0	versicolor
5.6	2.7	4.2	1.3	versicolor
5.7	3.0	4.2	1.2	versicolor
5.7	2.9	4.2	1.3	versicolor
6.2	2.9	4.3	1.3	versicolor
5.1	2.5	3.0	1.1	versicolor
5.7	2.8	4.1	1.3	versicolor
6.3	3.3	6.0	2.5	virginica
5.8	2.7	5.1	1.9	virginica
7.1	3.0	5.9	2.1	virginica
6.3	2.9	5.6	1.8	virginica
6.5	3.0	5.8	2.2	virginica
7.6	3.0	6.6	2.1	virginica
4.9	2.5	4.5	1.7	virginica
7.3	2.9	6.3	1.8	virginica
6.7	2.5	5.8	1.8	virginica
				I
7.2	3.6	6.1	2.5	virginica
6.5	3.2	5.1	2.0	virginica
6.4	2.7	5.3	1.9	virginica
6.8	3.0	5.5	2.1	virginica
5.7	2.5	5.0	2.0	virginica
5.8	2.8	5.1	2.4	virginica
6.4	3.2	5.3	2.3	virginica
6.5	3.0	5.5	1.8	virginica
7.7	3.8	6.7	2.2	virginica
7.7	2.6	6.9	2.3	virginica
6.0	2.2	5.0	1.5	virginica
6.9	3.2	5.7	2.3	virginica
5.6	2.8	4.9	2.0	virginica
7.7	2.8	6.7	2.0	virginica
6.3	2.7	4.9	1.8	virginica
6.7	3.3	5.7	2.1	virginica
7.2	3.2	6.0	1.8	virginica
6.2	2.8	4.8	1.8	virginica
6.1	3.0	4.9	1.8	virginica
6.4	2.8	5.6	2.1	virginica
7.2	3.0	5.8	1.6	virginica
7.4	2.8	6.1	1.9	virginica
7.9	3.8	6.4	2.0	virginica
6.4	2.8	5.6	2.2	virginica
6.3	2.8	5.1	1.5	virginica
6.1	2.6	5.6	1.4	virginica
7.7	3.0	6.1	2.3	virginica
6.3	3.4	5.6	2.4	virginica
6.4	3.1	5.5	1.8	virginica
6.0	3.0	4.8	1.8	virginica
6.9	3.1	5.4	2.1	virginica

6.7	3.1	5.6	2.4	virginica
6.9	3.1	5.1	2.3	virginica
5.8	2.7	5.1	1.9	virginica
6.8	3.2	5.9	2.3	virginica
6.7	3.3	5.7	2.5	virginica
6.7	3.0	5.2	2.3	virginica
6.3	2.5	5.0	1.9	virginica
6.5	3.0	5.2	2.0	virginica
6.2	3.4	5.4	2.3	virginica
5.9	3.0	5.1	1.8	virginica