Approximating Edit Distance

Mahdi Safarnejad

Joint work with Saeed Seddighin and Soheil Ehsani Under the supervision of Dr. Ghodsi and Dr. HajiAghai

Winter Seminar Series / Sharif University of Technology 29 December 2016

Edit Distance

(a.k.a Levenshtein distance)

The smallest number of insertions, deletions, and substitutions that need to be made on one string (S1) to transform it to another one (S2).

Edit Distance: a textbook example

15-5 Edit distance

In order to transform one source string of text x[1..m] to a target string y[1..n], we can perform various transformation operations. Our goal is, given x and y, to produce a series of transformations that change x to y. We use an array z—assumed to be large enough to hold all the characters it will need—to hold the intermediate results. Initially, z is empty, and at termination, we should have z[j] = y[j] for j = 1, 2, ..., n. We maintain current indices i into x and y into y, and the operations are allowed to alter y and these indices. Initially, y is y are required to examine every character in y during the transformation, which means that at the end of the sequence of transformation operations, we must have

Edit Distance: an example

Edit Distance: classic algorithms

* Dynamic Programming - -1970 - O(n2)

$$d_{i,j} = \begin{cases} d_{i-1,j-1}, & \text{if } s_1[i] = s_2[j] \\ 1 + \min\{d_{i-1,j-1}, d_{i,j-1}, d_{i-1,j}\} & \text{if } s_1[i] \neq s_2[j]. \end{cases}$$

Edit Distance: dynamic programming

-	0	Е	X	Е	С	U	Т	1	0	N
0	0	1	2	3	4	5	6	7	8	9
1	1	1	2	3	4	5	6	6	7	8
N	2	2	2	3	4	5	6	7	7	7
Т	3 \	3	3 \	3	4	5	5	6	7	8
Ε	4	3	4	3	4	5	6	6	7	8
N	5	4	4	4	4	5	6	7	7	7
Т	6	5	5	5	5	5	5	6	7	8
ı	7	6	6	6	6	6	6	5	6	7
0	8	7	7	7	7	7	7	6	5	6
N	9	8	8	8	8	8	8	7	6 (5

Edit Distance: classic algorithms

- * Dynamic Programming ~1970 O(n2)
- * Best algorithm -1980 O(n²/log²n)
- * No better algorithm unless SETH fails
 - * [Backurs & Indyk STOC'15]: no truly subquadratic is possible O(n^{2-ε})
 - * [Abboud et. al. STOC'16]: not many log shaving are possible O(n²/log¹ooon)

Edit Distance: approximation algorithms (in truly subquadratic time)

- * \sqrt{n} approximation algorithm (SIAM Journal on Comp. 1998)
- * $n^{3/7}$ approximation algorithm (FOCS'04)
- * $n^{1/3+o(1)}$ approximation algorithm (SODA'o6)
- * $2^{O(\sqrt{\log n})}$ approximation algorithm (STOC'09)
- *O(polylog n) approximation algorithm (FOCS'10)
- * No constant factor approximation algorithm!

Quantum Algorithms

Quantum Algorithms

- * Substantially improve the running time of many algorithmic problems such as
 - * Prime factorization and discrete logarithm problems
 - * Many graph problems (connectivity, single source shortest paths, minimum spanning tree)
 - * Pattern matching (finding a substring in a large string)

* ...

Quantum Algorithms

- * But NO improvement for many classic problems such as
 - * Many fundamental problems: sorting / counting
 - * All problem with a dynamic programming solution!
 - * Edit distance
 - * No exact or constant approximation algorithm in truly subquadratic time!

Main Quantum Technique: The Grover's Search (1996)

- * Element Listing
 - * Input: an array f of length m, which has k ones, and m-k zeroes.f(i) is available via an oracle access.
 - * Output: a list of k indices for which f(i) = 1.
- * The element listing problems can be solved with $O(\sqrt{mk})$ quantum oracle queries (vs. O(m) classical queries).

Our Results and Techniques

Our Results

- * We give the first quantum algorithm for approximating the edit distance within a constant factor in subquadratic time.
- * An $O(n^{1.857})$ quantum algorithm with an approximation factor of 7
- * An $O(n^{1.781})$ quantum algorithm with a (large) **constant** approximation factor

Our Approach

to find a good transformation of S1 into S2

Our Approach: outline

- * I. Define some windows (substrings) on S1 and S2 and restrict ourselves to window-compatible transformations
- * II. Find an approximate of edit distance between windows by using our metric estimation algorithm [the only step using quantum computing]
- * III. Use these distances to find the best windows-compatible transformation, using dynamic programming
- * IV. Show that the best windows-compatible transformation is not far from the best (general) transformation

Windows

$$l=n^{1/7}, \gamma=4/\epsilon\delta, g=l/\gamma$$

What is a windows-compatible transformation?

(a) An example of a window-compatible transformation.

(b) The transformation is not window-compatible since character 5 of the second string is old but doesn't lie in any windows.

What is a windows-compatible transformation?

(c) The transformation is not window-compatible since character 1 of the second string is old but prior to the transformation, it was not placed in any windows.

(d) The transformation is not window-compatible since character 3 of the second string is old but prior to the transformation, it was not placed in the corresponding window.

How good is the best windows-compatible transformation?

- * If edit(S₁, S₂) $\leq \delta n$, there exists a window-compatible transformation of S₁ into S₂ with at most $3\delta n + n/\gamma + 2l$ operations.
- * Proof idea: substitution and intact links / construct windows / shift constructed windows to actual windows

How do we find the best windows-compatible transformation?

- * Using dynamic programming
 - * Time complexity: O(n+|W₁||W₂|)
 - * If we have all edit distances between windows
- * How can we find all edit distances between windows?

Metric Estimation

Metric Estimation

- * For any set of **m** strings like M, <M, edit> forms a metric system
- * We give two approximation algorithms:

	Approximation Factor	Query Complexity	Time Complexity
Algorithm I	$3+\epsilon$	$\tilde{O}(m^{5/3} poly(1/\epsilon))$	$O(m^2 poly(1/\epsilon))$
Algorithm II	$O(1/\epsilon)$	$\tilde{O}(m^{3/2+\epsilon} poly(1/\epsilon))$	$O(m^2 poly(1/\epsilon))$

Metric Estimation: Algorithm I

- * The first idea: discretize the problem
- * The second idea: solving for a single threshold as a graph
- * The third idea: low degree and high degree vertices

Metric Estimation: Algorithm I (cont.)

- * The first idea: discretize the problem
 - * Intervals of the form $[x, (1 + \epsilon/3)x]$
 - * $\{(I + \epsilon/3)^{k-1}, (I + \epsilon/3)^k\}$
 - * $\log_{1+\epsilon/3} U = \tilde{O}(\operatorname{poly}(1/\epsilon))$ disjoint intervals
 - * Add a (1+E/3) term to the approximation factor

Metric Estimation: Algorithm I (cont.)

- * The second idea: threshold
 - * Given a threshold t, find all pairs (p_i,p_j) such that $d(p_i,p_j) \le t$
 - * With some false positives d(p_i,p_j)≤3t
 - * A term of 3 to approximation factor
 - * No false negative

Metric Estimation: Algorithm I (cont.)

- * The third idea
 - * For low degree (<m^{1/3}) vertices, find all neighbors via the Grover's search, then remove it
 - * For high degree (≥m¹/3) vertices, find all neighbors N(v,t), then find all neighbors with threshold 2t, N(v,2t)
 - * Connect the two sets, all of the neighbors of N(v,t) is in N(v,2t), and they're not far away.
 - * Remove v and N(v,t)

Metric Estimation: Algorithm I Analysis

- * Amortized analysis (query complexity)
 - * For low degree ($< m^{1/3}$) vertices, we spend $O(\sqrt{m}.m^{1/3})=O(m^{2/3})$ for 1 vertex
 - * For high degree (≥m¹/3) vertices, we spend O(m) for at least O(m¹/3) vertices, or O(m²/3) for 1 vertex
- * O(m^{5/3}) for a fixed threshold
- * O(m^{5/3}poly(1/€)) for Algorithm 1 (which is truly subquadratic)

Edit Distance

Edit Distance

- * Compute the edit distance of S₁ and S₂
- * We use Algorithm I and Algorithm II as a subroutine

	Approximation	Time and Query Complexity
Algorithm III	$7+\epsilon$	$\tilde{O}(n^{2-1/7}\operatorname{poly}(1/\epsilon))$ $= O(n^{1.857})$
Algorithm IV	$O(1/\epsilon)^{O(\log 1/\epsilon)}$	$\tilde{O}(n^{2-(5-\sqrt{17})/4+\epsilon} \text{poly}(1/\epsilon))$ $= O(n^{1.781})$

Edit Distance: δ-bounded edit distance

- * Solve the δ-bounded edit distance
- * Guarantee: edit(S1, S2) $\leq \delta(|S1| + |S2|)$
 - * For $\delta \le n^{-1/14}$ we run an exact algorithm of $O(n+d^2)=O(n^{2-1/7})$
 - * So we can assume $\delta > n^{-1/14}$
- * Note: δ does not affect the approximation factor, it affects the time, so we tune the parameters with δ !

Edit Distance: Algorithm III

- * For a $\delta > n^{-1/14}$
- * Construct some windows of S₁ and S₂ where the number of windows and the size of them are o(n)
- * Solve the metric estimation problem for this windows using Algorithm I and the classical dynamic programming as the distance oracle
- * Find the best windows-compatible transformation

Algorithm III

Metric Estimation: Algorithm II

- * Approximation factor O(1/€)
- * Query Complexity O^r(m^{3/2+ε} poly(1/ε))
- * Time Complexity O⁻(m²poly(1/€))
- * Idea: handle high degree vertices with a hitting set (random sampling) and solve them recursively

Algorithm IV: Bootstraping

Edit Distance (recall)

	Approximation	Time and Query Complexity		
Algorithm III	$7+\epsilon$	$\tilde{O}(n^{2-1/7}\operatorname{poly}(1/\epsilon))$ $= O(n^{1.857})$		
Algorithm IV	$O(1/\epsilon)^{O(\log 1/\epsilon)}$	$\tilde{O}(n^{2-(5-\sqrt{17})/4+\epsilon} \text{poly}(1/\epsilon))$ $= O(n^{1.781})$		

Any question?

Thank you for your time