In [1]:

```
# Step1: Import the required libraries

# linear algebra
import numpy as np
# data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd
# for dimensionality reduction
from sklearn.decomposition import PCA
```

In [2]:

```
# Step2: Read the data from train.csv
df_train = pd.read_csv('train.csv')
df_train.head()
```

Out[2]:

	ID	У	X0	X1	X2	Х3	X4	X5	X6	X8	 X375	X376	X377	X378	X379	X380	X
0	0	130.81	k	٧	at	а	d	u	j	0	 0	0	1	0	0	0	
1	6	88.53	k	t	av	е	d	у	- 1	0	 1	0	0	0	0	0	
2	7	76.26	az	w	n	С	d	х	j	x	 0	0	0	0	0	0	
3	9	80.62	az	t	n	f	d	х	- 1	е	 0	0	0	0	0	0	
4	13	78.02	az	٧	n	f	d	h	d	n	 0	0	0	0	0	0	

5 rows × 378 columns

```
4
```

In [5]:

```
df_test = pd.read_csv('test.csv')
```

In [6]:

```
usable_columns = list(set(df_train.columns) - set(['ID', 'y']))
y_train = df_train['y'].values
id_test = df_test['ID'].values

x_train = df_train[usable_columns]
x_test = df_test[usable_columns]
```

In [7]:

```
# If for any column(s), the variance is equal to zero,
# then you need to remove those variable(s).
# Apply Label encoder

for column in usable_columns:
    cardinality = len(np.unique(x_train[column]))
    if cardinality == 1:
        x_train.drop(column, axis=1) # Column with only one
        # value is useless so we drop it
        x_test.drop(column, axis=1)
    if cardinality > 2: # Column is categorical
        mapper = lambda x: sum([ord(digit) for digit in x])
        x_train[column] = x_train[column].apply(mapper)
        x_test[column] = x_test[column].apply(mapper)
x_train.head()
```

C:\Users\Sumit\AppData\Local\Temp/ipykernel_10904/2608306690.py:13: SettingW
ithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

x_train[column] = x_train[column].apply(mapper)

C:\Users\Sumit\AppData\Local\Temp/ipykernel_10904/2608306690.py:14: SettingW
ithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

x_test[column] = x_test[column].apply(mapper)

Out[7]:

	X183	X51	X151	X182	X10	Х3	X104	X293	X350	X191	 X50	X174	X333	X70	Χć
0	0	0	0	0	0	97	0	0	0	0	 0	0	0	1	
1	0	1	0	0	0	101	0	0	0	0	 0	0	0	1	
2	0	1	0	0	0	99	0	0	1	0	 0	0	0	1	
3	0	0	0	0	0	102	0	0	1	0	 0	1	0	1	
4	0	1	0	0	0	102	0	0	1	0	 0	0	0	1	

5 rows × 376 columns

In [8]:

```
# Perform dimensionality reduction
# Linear dimensionality reduction using Singular Value Decomposition of
# the data to project it to a lower dimensional space.
n_comp = 12
pca = PCA(n_components=n_comp, random_state=420)
pca2_results_train = pca.fit_transform(x_train)
pca2_results_test = pca.transform(x_test)
```

In [13]:

```
# Step11: Training using xgboost
import xgboost as xgb
from sklearn.metrics import r2 score
from sklearn.model_selection import train_test_split
x_train, x_valid, y_train, y_valid = train_test_split(
        pca2_results_train,
        y_train, test_size=0.2,
        random state=4242)
d_train = xgb.DMatrix(x_train, label=y_train)
d_valid = xgb.DMatrix(x_valid, label=y_valid)
#d_test = xgb.DMatrix(x_test)
d_test = xgb.DMatrix(pca2_results_test)
params = \{\}
params['objective'] = 'reg:linear'
params['eta'] = 0.02
params['max_depth'] = 4
def xgb_r2_score(preds, dtrain):
    labels = dtrain.get_label()
    return 'r2', r2_score(labels, preds)
watchlist = [(d_train, 'train'), (d_valid, 'valid')]
clf = xgb.train(params, d_train,
                1000, watchlist, early_stopping_rounds=50,
                feval=xgb_r2_score, maximize=True, verbose_eval=10)
```

```
[19:17:53] WARNING: d:\bld\xgboost-split_1645118015404\work\src\objective
\regression_obj.cu:188: reg:linear is now deprecated in favor of reg:squar
ederror.
[0]
        train-rmse:99.14835
                                 train-r2:-58.35295
                                                         valid-rmse:98.2629
7
        valid-r2:-67.63754
        train-rmse:81.27653
                                 train-r2:-38.88428
                                                         valid-rmse:80.3643
[10]
        valid-r2:-44.91014
3
                                 train-r2:-25.87403
                                                         valid-rmse:65.7733
[20]
        train-rmse:66.71610
        valid-r2:-29.75260
[30]
        train-rmse:54.86956
                                 train-r2:-17.17751
                                                          valid-rmse:53.8896
        valid-r2:-19.64393
3
        train-rmse:45.24492
                                 train-r2:-11.35979
                                                         valid-rmse:44.2199
[40]
        valid-r2:-12.90012
        train-rmse:37.44735
                                 train-r2:-7.46669
                                                         valid-rmse:36.3745
[50]
        valid-r2:-8.40541
6
        train-rmse:31.14759
                                 train-r2:-4.85761
                                                         valid-rmse:30.0207
[60]
        valid-r2:-5.40655
                                 train-r2:-3.10877
                                                         valid-rmse:24.9106
[70]
        train-rmse:26.08677
2
        valid-r2:-3.41114
        train-rmse:22.04666
                                 train-r2:-1.93465
                                                         valid-rmse:20.8324
[80]
        valid-r2:-2.08504
                                 train-r2:-1.14399
                                                         valid-rmse:17.6057
[90]
        train-rmse:18.84413
        valid-r2:-1.20338
2
[100]
        train-rmse:16.34036
                                 train-r2:-0.61211
                                                         valid-rmse:15.0841
        valid-r2:-0.61743
7
[110]
        train-rmse:14.40185
                                 train-r2:-0.25230
                                                          valid-rmse:13.1489
        valid-r2:-0.22903
5
        train-rmse:12.92203
                                 train-r2:-0.00817
                                                         valid-rmse:11.6896
[120]
```

, , , , , , , , , , , ,			g
	valid-r2:0.02862 train-rmse:11.81350	train-r2:0.15738	valid-rmse:10.6155
0	valid-r2:0.19894		Valla 1 m3c. 10.0133
	train-rmse:10.98284 ::0.31055	train-r2:0.27172	valid-rmse:9.84830
	train-rmse:10.37527	train-r2:0.35007	valid-rmse:9.31465
valid-r2	2:0.38324		
	train-rmse:9.93136 ::0.43054	train-r2:0.40449	valid-rmse:8.95036
	train-rmse:9.59197	train-r2:0.44450	valid-rmse:8.71045
	2:0.46066		1.1 0.55240
	train-rmse:9.34686 ::0.47996	train-r2:0.47252	valid-rmse:8.55318
[190]	train-rmse:9.15743	train-r2:0.49369	valid-rmse:8.44958
	::0.49248 train-rmse:9.01297	train-r2:0.50954	valid-rmse:8.38462
	2:0.50026	Claim 12.0.30334	Valla 1 m3c.0.30402
	train-rmse:8.90998 ::0.50540	train-r2:0.52068	valid-rmse:8.34134
	train-rmse:8.83071	train-r2:0.52917	valid-rmse:8.32256
	2:0.50763		
	train-rmse:8.76606 ::0.50908	train-r2:0.53604	valid-rmse:8.31029
[240]	train-rmse:8.72189	train-r2:0.54070	valid-rmse:8.30562
	::0.50963 train-rmse:8.68375	train-r2:0.54471	valid-rmse:8.30231
	2:0.51002	(i dili-1 2.0.)44/1	Valid-Timse.0.30231
	train-rmse:8.64870	train-r2:0.54838	valid-rmse:8.29922
	::0.51038 train-rmse:8.61395	train-r2:0.55200	valid-rmse:8.29619
valid-r2	2:0.51074		
	train-rmse:8.58595 ::0.51052	train-r2:0.55491	valid-rmse:8.29806
[290]	train-rmse:8.55738	train-r2:0.55787	valid-rmse:8.29592
	::0.51077 train-rmse:8.53586	train-r2:0.56009	valid-rmse:8.29735
	2:0.51060	CI a111-1 2.0.30009	Valiu-1 IIISE. 8. 29733
	train-rmse:8.51569	train-r2:0.56216	valid-rmse:8.29896
	::0.51041 train-rmse:8.48662	train-r2:0.56515	valid-rmse:8.29763
valid-r2	2:0.51057		
	train-rmse:8.46170 ::0.51123	train-r2:0.56770	valid-rmse:8.29202
[340]	train-rmse:8.43840	train-r2:0.57008	valid-rmse:8.29166
	::0.51128 train-rmse:8.41204	train-r2:0.57276	valid-rmse:8.29100
	2:0.51135	Ci alii-i 2.0.3/2/0	Valid-1 iiise. 8.29100
	train-rmse:8.38977	train-r2:0.57502	valid-rmse:8.28751
	::0.51176 train-rmse:8.36800	train-r2:0.57722	valid-rmse:8.28999
valid-r2	2:0.51147		
	train-rmse:8.34389 ::0.51153	train-r2:0.57965	valid-rmse:8.28952
[390]	train-rmse:8.31818	train-r2:0.58224	valid-rmse:8.28946
	::0.51153 train-rmse:8.28785	train-r2:0.58528	valid-rmse:8.28059
	2:0.51258	CI GIII-I 2.0.JOJ20	valtu-i IIISC. 0. 20039
	train-rmse:8.26540	train-r2:0.58752	valid-rmse:8.27831
	::0.51285 train-rmse:8.24268	train-r2:0.58979	valid-rmse:8.27517
	2:0.51322		

```
train-r2:0.59237
                                                        valid-rmse:8.27563
[430]
       train-rmse:8.21670
valid-r2:0.51316
                                train-r2:0.59515
                                                        valid-rmse:8.27617
[440]
       train-rmse:8.18860
valid-r2:0.51310
                                                        valid-rmse:8.27586
[450]
      train-rmse:8.16267
                                train-r2:0.59771
valid-r2:0.51314
[460]
      train-rmse:8.13848
                                train-r2:0.60009
                                                        valid-rmse:8.27684
valid-r2:0.51302
[470]
       train-rmse:8.11594
                                train-r2:0.60231
                                                        valid-rmse:8.27722
valid-r2:0.51297
[472]
      train-rmse:8.11375
                                train-r2:0.60252
                                                        valid-rmse:8.27739
valid-r2:0.51296
```

In [14]:

```
p_test = clf.predict(d_test)

sub = pd.DataFrame()
sub['ID'] = id_test
sub['y'] = p_test
sub.to_csv('xgb.csv', index=False)

sub.head()
```

Out[14]:

	ID	у
0	1	83.168739
1	2	97.533386
2	3	83.400864
3	4	77.144096
4	5	112.598930

In [12]:

In []:

localhost:8888/notebooks/Mercedes-Benz Greener Manufacturing.ipynb