Starbucks

Statistical Learning Project

Alberto Calabrese Eleonora Mesaglio Greta d'Amore Grelli

What is Starbucks?

Global coffeehouse chain known for its specialty coffee drinks, teas, and pastries.

Founded in Seattle in 1971

Noted for its **customer-centric approach** and ethically sourced coffee beans.

Content

1. Introduction & Data

Objective of the analysis | Data

- Gain a comprehensive understanding of the data;
- Build models for accurate predictions and classifications.

Dataset

Data preprocessing | Correlation Analysis

Problems with the data & data preprocessing

Correlation Analysis

3. Data Visualization

Histograms | Boxplot | Scatterplot

Histograms Calories

Boxplot

Scatterplot

Relation between Calories and Sodium

Relation between Calories and Protein

Protein (g)

Fiber (g)

Relation between Calories and Sugars

Relation between Calories and Fiber

Regression Analysis | Classification Analysis

Linear Regression

Simple and Multiple

Linear Regression Backward selection | Multicollinearity

Lasso and Ridge

Regression

	R^2	MSE
Lasso Regression	0.9975	0.0024
Ridge Regression	0.9941	0.0066

Cross Validation

Lasso Regression Model

Training Set 80%

Test Set 20%

Predicted vs Actual Calories

Actual Calories

	Accuracy	MSE	R^2
Lasso regression model	0.997	0.0026	0.997

Logistic Regression

New Categorical Variable: Calories content

Greater than median: High quantity of calories Lower than median: Low quantity of calories

Logistic Regression

Logistic Regression

	AIC	BIC	R^2	Residual Deviance	Null Deviance
Multiple linear regression	69.42	121.75	0.88	39.42	335.48

Linear Discriminant

Analysis

Classification of beverage categories

Accuracy

80%

5. Conclusions

Conclusions | Potential implementations

Conclusions

Lasso Regression Model Accuracy 99.7%

Useful to predict the amount of calories in a beverage

Logistic Regression Model Accuracy 91%

Useful to classify a beverage as calorie-dense or calorie-light

Potential Implementations

- Propose our model to companies developing new beverages, allowing them to predict calorie content based on other variables.
- Especially useful in the US, where **obesity** is a major issue, this tool can make a significant difference!

THANKS! Any questions?

Alberto Calabrese Eleonora Mesaglio Greta d'Amore Grelli

