

Theoretical Problems

Numerical analysis 2022

Author: Wenchong Huang (EbolaEmperor)

Institute: School of Mathematical Science, Zhejiang University

Date: September 20th, 2022

Chapter 1 Solving Nonlinear Equations

Problem 1.1 Consider the bisection method starting with the initial interval [1.5, 3.5]. In the following questions "the interval" refers to the bisection interval whose width changes across different loops.

- What is the width of the interval at the nth step?
- \bullet What is the maximum possible distance between the root r and the midpoint of the interval?

Solution Note that the interval's width is multipled by $\frac{1}{2}$ at each step, and the initial width is 2, hence the width after the nth step is $\frac{1}{2n-1}$.

The maximum distance is not grater than 1 obviously.

Since the loop terminated when $|f(c)| < \varepsilon$, we could construct an increasing function f whose root is $1.5 + \delta$, and $|f(x)| < \varepsilon$ everywhere, hence the bisection loop will terminate at first step, the distance between midpoint and root is $1 - \delta$. Let $\delta \to 0^+$, we know the distance could be infynitely close to 1.

Problem 1.2 In using the bisection algorithm with its initial interval as $[a_0, b_0]$ with $a_0 > 0$, we want to determine the root with its relative error no grater than ε . Prove that this goal of accuracy is guaranteed by the following choice of the number of steps,

$$n \ge \frac{\log(b_0 - a_0) - \log \varepsilon - \log a_0}{\log 2} - 1$$

Solution Suppose the root is $r \geq a_0$. The relative error **after** the nth step is

$$\frac{|r - c_n|}{|r|} \tag{1.1}$$

The following inequations hold

$$\frac{|r - c_n|}{|r|} \le \frac{\frac{1}{2}(b_n - a_n)}{r} \le \frac{\frac{1}{2}(b_n - a_n)}{a_0} = \frac{b_0 - a_0}{a_0 2^{n+1}}$$
(1.2)

Hence when (1.1) holds, we have

$$(n+1)\log 2 \ge \log(b_0 - a_0) - \log \varepsilon - \log a_0$$

$$\implies \log 2^{n+1} \ge \log \left(\frac{b_0 - a_0}{\varepsilon a_0}\right)$$

$$\implies 2^{n+1} \ge \frac{b_0 - a_0}{\varepsilon a_0} \implies \frac{b_0 - a_0}{a_0 2^{n+1}} \le \varepsilon$$

Hence the conclution is proved by (1.2).

Problem 1.3 Perform four iterations of Newton's method for the polynomial equation $p(x) = 4x^3 - 2x^2 + 3 = 0$ with the starting point $x_0 = -1$. Use a hand calculator and organize results of the iterations in a table. **Solution** *Firstly we derivate* p(x)

$$p'(x) = 12x^2 - 4x$$

The results are shown as the following table.

n	x_n	$p(x_n)$	$p'(x_n)$	$x_n - \frac{f(x_n)}{f'(x_n)}$
0	-1	-3	16	-0.8125
1	-0.8125	-0.46582	11.1719	-0.770804
2	-0.770804	-0.0201359	10.2129	-0.768832
3	-0.768832	-3.98011e-05	10.1686	-0.768828
4	-0.768828			

Problem 1.4 Consider a variation of Newton's method in which only the derivative at x_0 is used,

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_0)} \tag{1.3}$$

Find C and s such that

$$e_{n+1} = Ce_n^s$$

where e_n is the error of Newton's method at step n, s is a constant, and C may depend on x_n , the given function f and its derivatives.

Solution Assume the root is r, then $e_n = x_n - r$. Let g(x) = f(r + x). By (1.3), we derive

$$e_{n+1} = e_n - \frac{g(e_n)}{g'(e_0)} = \left(1 - \frac{g(e_n)}{e_n g'(e_0)}\right) e_n$$

Let $C(n) = 1 - \frac{g(e_n)}{e_n g'(e_0)}$ and s = 1, we got $e_{n+1} = C(n)e_n$, and

$$\lim_{n \to \infty} C(n) = 1 - \frac{g'(0)}{g'(e_0)} = 1 - \frac{f'(r)}{f'(x_0)}$$

Problem 1.5 Within $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, will the iteration $x_{n+1} = \tan^{-1} x_n$ converge?

Solution As we all know that $0 < \tan^{-1} x < x \ (x > 0)$, so if $x_0 > 0$, we derive

$$0 < x_{n+1} = \tan^{-1} x_n < x_n$$

And sequence $\{x_n\}$ has lower bound 0, so $\{x_n\}$ is convergent by monotinic sequence theorem.

For $x_0 < 0$, $\{-x_n\}$ is convergent by the discussion above, hence $\{x_n\}$ is convergent.

For $x_0 = 0$, clearly $x_n = 0$ $(\forall n)$.

Problem 1.6 Let p > 1. What is the value of the following continued fraction?

$$x = \frac{1}{p + \frac{1}{p + \frac{1}{p + \dots}}}$$

Prove that the sequence of values converges.

Solution We construct a sequence by $x_1 = \frac{1}{p}$ and $x_{n+1} = \frac{1}{p+x_n}$ $(n \ge 1)$, then $x = \lim_{n \to \infty} x_n$ if it exists.

Consider function $g(x) = \frac{1}{p+x}$, clearly $g(x) \in [0,1]$ for all $x \in [0,1]$. And

$$\lambda = \max_{x \in [0,1]} |g'(x)| = \max_{x \in [0,1]} -\frac{1}{(x+p)^2} = \frac{1}{p^2} < 1$$

Hence g is a contraction in [0,1], and consider equation

$$x = g(x) = \frac{1}{p+x}$$

the roots are $\frac{-p\pm\sqrt{p^2+4}}{2}$, hence g has unique fixed-point $\alpha=\frac{-p+\sqrt{p^2+4}}{2}$ in [0,1].

Recall that $x_1 = \frac{1}{p} \in [0, 1]$, and $x_{n+1} = g(x_n)$. By Theorem 1.38, $\{x_n\}$ converges and $x = \lim_{n \to \infty} x_n = \alpha$.

Problem 1.7 What happens in problem 1.2 if $a_0 < 0 < b_0$? Derive an inequality of the number of steps similar to that in problem 1.2. In this case, is the relative error still an appropriate measure?

Solution In this problem we let the absolutely error $|r - c_n| < \delta$, we derive

$$|r - c_n| \le \frac{1}{2}(b_n - a_n) = \frac{b_0 - a_0}{2^{n+1}}$$
 (1.4)

It is sufficient to let $\frac{b_0-a_0}{2^{n+1}}<\delta$, hence $n\geq \frac{\log(b_0-a_0)-\log\delta}{\log 2}-1$.

We can't use relative error since r might be zero.

Chapter 2 Polynomial Interpolation

Problem 2.1 For $f \in C^2[x_0, x_1]$ and $x \in (x_0, x_1)$, linear interpolation of f at x_0 and x_1 yields

$$f(x) - p_1(f;x) = \frac{f''(\xi(x))}{2}(x - x_0)(x - x_1)$$
(2.1)

Consider the case $f(x) = \frac{1}{x}$, $x_0 = 1$, $x_1 = 2$.

- Determine $\xi(x)$ explicity.
- Extend the domain of ξ continuously from (x_0, x_1) to $[x_0, x_1]$. Find $\max \xi(x)$, $\min \xi(x)$ and $\max f''(\xi(x))$.

Solution

1. The Lagrange's formula yields

$$p_1(f;x) = \frac{(x-2)}{(1-2)} + \frac{1}{2} \times \frac{(x-1)}{(2-1)} = -\frac{1}{2}x + \frac{3}{2}$$

Substitute it to (2.1), with $f''(x) = 2x^{-3}$, yield

$$\frac{1}{x} + \frac{1}{2}x - \frac{3}{2} = (x-1)(x-2)\xi^{-3}(x)$$

The result follows from it:

$$\xi(x) = \sqrt[3]{2x}$$

2. $\xi(x)$ is increasing in [1, 2], hence

$$\max \xi(x) = \xi(2) = \sqrt[3]{4}, \qquad \min \xi(x) = \xi(1) = \sqrt[3]{2}$$

Also

$$f''(\xi(x)) = 2\left(\sqrt[3]{2x}\right)^{-3} = \frac{1}{x}$$

is decreasing in [1, 2], hence

$$\max f''(\xi(x)) = f''(\xi(1)) = 1$$

Problem 2.2 Let \mathbb{P}_m^+ be the set of all polynomials of degree $\leq m$ that are non-negative on the real line,

$$\mathbb{P}_m^+ = \{ p : p \in \mathbb{P}_m, \ \forall x \in \mathbb{R}, \ p(x) \ge 0 \}$$

Find $p \in \mathbb{P}_{2n}^+$ such that $p(x_i) = f_i$ for i = 0, 1, ..., n where $f_i \ge 0$ and x_i are distinct points on \mathbb{R} . Solution Let $q(x) \in \mathbb{P}_n$ be the unique interpolation polynomial satisfies

$$q(x_i) = \sqrt{f_i}, \qquad i = 0, 1, ..., n$$

Let $p(x) = q^2(x)$, then $p(x) \in \mathbb{P}_{2n}^+$ and

$$p(x_i) = q^2(x_i) = f_i,$$
 $i = 0, 1, ..., n$

Hence p(x) is what we need. The Lagrange's interpolation formula yields:

$$p(x) = \left(\sum_{i=0}^{n} \sqrt{f_i} \prod_{j=0, j \neq i}^{n} \frac{x - x_j}{x_i - x_j}\right)^2$$

Problem 2.3 Cnosider $f(x) = e^x$.

Prove by induction that

$$\forall t \in \mathbb{R}, \qquad f[t, t+1, ..., t+n] = \frac{(e-1)^n}{n!} e^t$$
 (2.2)

• From Corollary 2.22 we know

$$\exists \xi \in (0, n) \text{ s.t. } f[0, 1, ..., n] = \frac{1}{n!} f^{(n)}(\xi)$$
 (2.3)

Determine ξ from the above two equations. Is ξ located to the left or to the right of the midpoint n/2.

Solution

1. The Lagrange's formuula yields

$$p(f;x) = \sum_{k=0}^{n} e^{t+k} \prod_{j=0, j \neq k}^{n} \frac{x - x_j}{x_k - x_j} = e^t \sum_{k=0}^{n} e^k \frac{(-1)^{n-k} \prod_{j=0, j \neq k}^{n} x - x_j}{k!(n-k)!}$$

Hence

$$f[t, t+1, ..., t+n] = e^t \sum_{k=0}^n \frac{(-1)^{n-k} e^k}{k!(n-k)!} = \frac{e^t}{n!} \sum_{k=0}^n \binom{n}{k} (-1)^{n-k} e^k = \frac{(e-1)^n}{n!} e^t$$

2. Let t = 0 in (2.2) and yield

$$f[0,1,...,n] = \frac{(e-1)^n}{n!}$$

Substitute it to (2.3), with $f^{(n)}(x) = e^x$, yield

$$\frac{(e-1)^n}{n!} = \frac{e^{\xi}}{n!}$$

The result follows from it:

$$\xi = n \ln(e - 1) > \frac{n}{2}$$

Hence ξ is located to the right of the midpoint.

Problem 2.4 Consider f(0) = 5, f(1) = 3, f(3) = 5, f(4) = 12.

- Use the Newton's formula to obtain $p_3(f;x)$;
- The data suggests that f has a minimum in $x \in (1,3)$. Find an approximate value for the location x_{\min} of the minimum.

Solution

1. The result follows from Newton's interpolation formula:

$$p_3(f;x) = 5 - 2x + x(x-1) + \frac{1}{4}x(x-1)(x-3)$$

Transform it into the canonical form:

$$p_3(f;x) = \frac{1}{4}x^3 - \frac{9}{4}x + 5$$

2. Firstly, calculate the derivative of $p_3(f;x)$:

$$p_3'(f;x) = \frac{3}{4}x^2 - \frac{9}{4}$$

The first-order necessary condition $p_3'(f;x) = 0$ yields that

$$x_{extreame} = \pm \sqrt{3}$$

In $x \in (1,3)$, the extreame point might be $x^* = \sqrt{3}$. The second-order condition shows that

$$p_3''(f;x^*) = \frac{3}{2}x^* = \frac{3\sqrt{3}}{2} > 0$$

Hence x^* is the minimum, and $x_{min} = \sqrt{3} \approx 1.73205$.

Problem 2.5 Consider $f(x) = x^7$.

• Compute f[0, 1, 1, 1, 2, 2].

• We knnw that this devided difference is expressible in terms of the 5th derivative of f evaluated at some $\xi \in (0,2)$. Determine ξ .

Solution

1. Solve the Hermite's interpolation with a difference table. The result of Newton's form follows:

$$p(x) = x + 6x(x-1) + 15x(x-1)^{2} + 42x(x-1)^{3} + 30x(x-1)^{3}(x-2)$$

Hence

$$f[0, 1, 1, 1, 2, 2] = 30$$

2. The 5th derivate of f is

$$f^{(5)}(x) = 2520x^2$$

Then $f^{(5)}(x) = f[0, 1, 1, 1, 2, 2]$ yields

$$2520\xi^2 = 30$$
 \Longrightarrow $\xi = \sqrt{\frac{1}{84}} = \frac{1}{2\sqrt{21}} \approx 0.1091 \in (0, 2)$

Problem 2.6 f is a function on [0,3] for which one knows that

$$f(0) = 1$$
, $f(1) = 2$, $f'(1) = -1$, $f(3) = f'(3) = 0$

- Estimate f(2) using Hermite's interpolation.
- Estimate the maximum possible error of the above answer if one konws, in addition, that $f \in \mathcal{C}^5[0,3]$ and $|f^{(5)}(x)| \leq M$ on [0,3]. Express the answer in terms of M.

Solution

1. The Hermite's interpolation gives that

$$p(x) = 1 + x - 2x(x - 1) + \frac{2}{3}x(x - 1)^2 - \frac{5}{36}x(x - 1)^2(x - 3)$$

Hence, estimate f(2) as

$$f(2) \approx p(2) = \frac{11}{18} \approx 0.611111$$

2. Theorem 2.35 gives that

$$f(x) - p(x) = \frac{f^{(5)}(\xi)}{120}x(x-1)^2(x-3)^2$$

The result follows directly:

$$|f(2) - p(2)| = \left| \frac{f^{(5)}(\xi)}{60} \right| \le \frac{M}{60}$$

Problem 2.7 Define foward difference by

$$\Delta f(x) = f(x+h) - f(x), \qquad \Delta^{k+1} f(x) = \Delta \Delta^k f(x) = \Delta^k f(x+h) - \Delta^k f(x)$$

and backward difference by

$$\nabla f(x) = f(x) - f(x-h), \qquad \nabla^{k+1} f(x) = \nabla \nabla^k f(x) = \nabla^k f(x) - \nabla^k f(x-h)$$

Prove

$$\Delta^k f(x) = k! h^k f[x_0, x_1, ..., x_k]$$
(2.4)

$$\nabla^k f(x) = k! h^k f[x_0, x_{-1}, ..., x_{-k}]$$
(2.5)

where $x_j = x + jh$.

Solution The Lagrange's interpolation formula yields

$$f[x_0, x_1, ..., x_k] = \sum_{i=0}^k f(x_i) \frac{1}{\prod_{j=1, j \neq i}^k (x_i - x_j)} = \sum_{i=0}^k \frac{(-1)^{k-i} f(x+ih)}{h^k i! (k-i)!}$$

It yields an equivalent form of (2.4):

$$\Delta^k f(x) = k! h^k f[x_0, x_1, ..., x_k] = \sum_{i=0}^k \binom{k}{i} (-1)^{k-i} f(x+ih)$$
 (2.6)

Now prove (2.6) by an induction. For k = 1, it could be verified directly:

$$\binom{1}{0}(-1)^{1-0}f(x) + \binom{1}{1}(-1)^{1-1}f(x+h) = f(x+h) - f(x) = \Delta f(x)$$

Suppose (2.6) holds for some $k \geq 1$, then

$$\begin{split} \Delta^{k+1}f(x) &= \Delta\left(\sum_{i=0}^k \binom{k}{i}(-1)^{k-i}f(x+ih)\right) \\ &= \sum_{i=0}^k \binom{k}{i}(-1)^{k-i}f(x+(i+1)h) - \sum_{i=0}^k \binom{k}{i}(-1)^{k-i}f(x+ih) \\ &= f(x+(k+1)h) - (-1)^k f(x) + \sum_{i=1}^k \left(\binom{k}{i-1}(-1)^{k+1-i}f(x+ih) - \binom{k}{i}(-1)^{k-i}f(x+ih)\right) \\ &= f(x+(k+1)h) + (-1)^{k+1}f(x) + \sum_{i=1}^k (-1)^{k+1-i}f(x+ih) \left(\binom{k}{i-1} + \binom{k}{i}\right) \\ &= f(x+(k+1)h) + (-1)^{k+1}f(x) + \sum_{i=1}^k \binom{k+1}{i}(-1)^{k+1-i}f(x+ih) \\ &= \sum_{i=0}^{k+1} \binom{k+1}{i}(-1)^{k+1-i}f(x+ih) \end{split}$$

It shows that (2.6) holds for (k + 1). Hence (2.4) is proved by induction. Now we prove that

$$\Delta^k f(x) = \nabla^k f(x + kh) \tag{2.7}$$

by an induction. For k = 1, it could be verified directly:

$$\Delta f(x) = f(x+h) - f(x) = \nabla f(x+h)$$

Suppose (2.7) holds for some $k \geq 1$, then

$$\Delta^{k+1}f(x) = \Delta\left(\Delta^k f(x)\right) = \Delta\left(\nabla^k f(x+kh)\right) = \nabla^k f(x+(k+1)h) - \nabla^k f(x+kh)$$
$$= \nabla\left(\nabla^k f(x+(k+1)h)\right) = \nabla^{k+1} f(x+(k+1)h)$$

Hence (2.7) is proved by induction. Finally, (2.5) follows immediately from (2.4),(2.7) and Corollary 2.15.