Parte I: Capítulo 2

2.2 Distancia de Cuello de Botella y Teorema de Isometría

(Bottleneck distance and the Isometry Theorem)

2.3 Corolario: Teoremas de Estabilidad

(Corolary: Stability Theorems)

2.4 Módulos de Persistencia de tipo localmente finito

(Persistence modules of locally finite type)

Eduardo Velázquez

14 de septiembre de 2023

2.2 Distancia de Cuello de Botella y Teorema de Isometría

Motivación: Definir una distancia entre códigos de barras.

▶ Sea I = (a, b] y $\delta > 0$, denotaremos

$$I^{-\delta} := (a - \delta, b + \delta].$$

lacktriangle Sea ${\cal B}$ un código de barras y arepsilon>0,

 $\mathcal{B}_arepsilon$: el conjunto de barras de longitud mayor a arepsilon .

▶ Sean X, Y multiconjuntos, y $X' \subset X$, $Y' \subset Y$. Un apareamiento es una biyección $\mu: X' \to Y'$ y decimos que X' y Y' están apareados.

Definición 2.2.1

Un δ -apareamiento entre dos códigos de barras $\mathcal B$ y $\mathcal C$ es un apareamiento $\mu:\mathcal B\to\mathcal C$ tal que:

- $ightharpoonup \mathcal{B}_{2\delta} \subset \operatorname{coim} \mu$,
- $ightharpoonup \mathcal{C}_{2\delta} \subset \operatorname{im} \mu$,
- ▶ Si $\mu(I) \Rightarrow I \subset J^{-\delta}$ y $J \subset I^{-\delta}$.

Ejercicio 2.2.2 Sean \mathcal{B} , \mathcal{C} , \mathcal{D} códigos de barras tales que \mathcal{B} y \mathcal{C} están δ —apareados y, \mathcal{C} y \mathcal{D} están γ —apareados. Entonces, \mathcal{B} y \mathcal{D} están $(\delta + \gamma)$ —apareados.

Definición 2.2.3

La distancia *cuello de botella*, $d_{bot}(\mathcal{B},\mathcal{C})$, entre dos códigos de barras \mathcal{B} y \mathcal{C} , se define como el mínimo entre todas las δ para las que existe un δ -apareamiento entre \mathcal{B} y \mathcal{C} .

Ejercicio 2.2.4 Sean \mathcal{B} , \mathcal{C} , \mathcal{D} códigos de barras δ —apareados con δ finita \Leftrightarrow tienen el mismo número de barras infinitas.

Corolario 2.2.5

 d_{bot} es una distancia en el espacio de códigos de barras con el mismo número de barras infinitas.

Ejemplo 2.2.6

Considere los módulos de persistencia $\mathbb{F}(a,b]$ y $\mathbb{F}(c,d]$, y los correspondientes códigos de barras $\mathcal{B}\{(a,b]\}$ y $\mathcal{C}\{(c,d]\}$. Entonces, existe

- \circ Un δ_1- apareamiento vacío entre ellos con $\delta_1=\max\left(rac{b-a}{2},rac{d-c}{2}
 ight)$ (las longitudes de los intervalos $<2\delta_1$), ó existe
- \circ Un δ_2 —apareamiento con $\delta_2=$ máx (|a-c|,|b-d|).

Entonces,
$$d_{bot}(\mathcal{B}, \mathcal{C}) = min(\delta_1, \delta_2)$$
.

Teorema de Isometría

Teorema 2.2.8

Sean V y W módulos de persistencia, el mapeo $V\mapsto \mathcal{B}(V)$ es una isometría, es decir,

$$d_{int}(V, W) = d_{bot}(\mathcal{B}(V), \mathcal{B}(W))$$
.

(Demostración en el Capítulo 3).

Observación: En caso de que $\mathcal{B}(\mathcal{V})$ y $\mathcal{B}(W)$ no tengan el mismo número de barras infinitas, tanto $d_{int}(V,W)$ y $d_{bot}(\mathcal{B}(V),\mathcal{B}(W))$ son infinitas por definición.

Ejercicios finales de Sec. 2.2

Ejercicio 2.2.7 Sean I y J dos intervalos δ —apareados. Muestre que los correspondientes módulos $\mathbb{F}(I)$ y $\mathbb{F}(J)$ están δ —entrelazados.

2.3 Corolarios de Estabilidad (del *Teorema de Isometrías*)

Teorema de Isometrías: $d_{int}(V,W) = d_{bot}(\mathcal{B}(V),\mathcal{B}(W)).$

$$d_{int}\left(V(f),V(g)\right)\leq ||f-g||.$$

Teorema 2.3.1

Sean f, g dos funciones de Morse en una variedad cerrada. Entonces

$$d_{bot}\left(\mathcal{B}(f),\mathcal{B}(g)\right)\leq\left|\left|f-g\right|\right|.$$

2.3 Corolarios de Estabilidadl (del *Teorema de Isometrías*)

Teorema de Isometrías:
$$d_{int}(V,W) = d_{bot}(\mathcal{B}(V),\mathcal{B}(W)).$$

Teorema 1.5.4:
$$d_{GH}\left(\left(X,\rho\right),\left(Y,r\right)\right)\geq\frac{1}{2}d_{int}\left(V\left(X,\rho\right),W\left(Y,r\right)\right).$$

Teorema 2.3.2

Sean (X, ρ) y (Y, r) dos espacios métricos finitos. Entonces

$$d_{bot}((X,\rho),(Y,r)) \leq d_{GH}((X,\rho),(Y,r))$$
.

2.4 Módulos de Persistencia de tipo localmente finito

Definición Módulos de Persistencia localmente finitos

orall s $s \leq t \leq r, \ \pi_{s,r} = \pi_{t,r} \circ \pi_{s,t} \ .$

 $orall \ t \in \mathbb{R}$ y cualquier $s \leq t$ suf. cerca, $\pi_{s,t}$ es un isomorfismo.

El conjunto de puntos espectrales es un subconjunto de \mathbb{R} cerrado, discreto y acotado por abajo (no necesariamente finito).

Definición *Módulos de Persistencia* finitos

- (1) persistencia
- (3) semicont.
 - $\forall t \in \mathbb{R}$ existe una vecindad U de t tal que $\pi_{s,r}$ es un isomorfismo $\forall s < r \in U$.
- $\exists \, s_ \in \mathbb{R}, \, \mathsf{tal} \, \mathsf{que} \, \, V_s = 0$ para todo $s_ \leq s$.

Códigos de Barras de tipo <u>localmente</u> finito

- Son una colección contable de barras de la forma $(a, b], -\infty \le a < b \le +\infty$ con multiplicidad, tal que:
 - $\forall c \in \mathbb{R}$ existe una vecindad de c que intersecta sólo un número finito de barras con multiplicidad.
 - ► Los puntos reales de las barras forman un subconjunto de R cerrado, discreto y acotado por abajo.

Observaciones:

- Se permite un número finito de barras de la forma $(-\infty, +\infty), (-\infty, b].$
- ► Los teoremas de *Forma Normal* y de *Isometría* pueden extenderse a este tipo de barras.

Ejemplo 2.4.1 - Demuestra el Teorema de Forma Normal para barras de tipo localmente finito (sketch)

Sean

- \triangleright (V, π) módulo de persistencia de tipo localmente finito.
- $ilde{i} \geq 0$, a_i puntos espectrales.
- $\triangleright V^i$ espacio vectorial asociado a $(a_{i-1}, a_i]$.
- ▶ Totaldim_k $(V) := \sum_{a_i \le k} \dim V^i$, $k \in \mathbb{N}$.

Definamos W^0 un subódulo de V por $W^0_t = im(\pi_{-\infty,t})$ donde $\pi_{-\infty,t}$ es $\pi_{-s,t}$ p.a. s suficientemente grande. Sea \mathcal{B}^0 el código de barras de W^0 consiste en rayos de la forma $(-\infty,b)$ para alguna $-\infty < b \leq \infty$.

$$W^0 \subset W^1 \subset \cdots \subset W^j \subset \cdots$$

Usando el Lema 2.1.10,

$$W^j=W^{j-1}igoplus \mathbb{F}(c_j,d_j],\quad c_j>-\infty.$$

- ▶ Dada $k \in \mathbb{N}$, Totaldim_k(W^j) aumenta conforme j aumente hasta el límite Totaldim_k(V).
- $ightharpoonup W^j$ estabiliza en $(-\infty, k]$ para j suficientemente grande.
- Con esta construcción,

$$\mathcal{B}=\mathcal{B}^0 \oplus igoplus_j \mathbb{F}(c_j,d_j]$$
 por tanto, $V=igoplus_{I\in\mathcal{B}} \mathbb{F}(I)$. \square

Distancia de Cuello de Botella para barras de tipo localmente finito

(Sin cambio)

- La distancia cuello de botella, $d_{bot}(\mathcal{B}, \mathcal{C})$, entre dos códigos de barras \mathcal{B} y \mathcal{C} de tipo localmente finito, se define como el mínimo entre todas las δ para las que existe un δ -apareamiento entre \mathcal{B} y \mathcal{C} .
- ► Se dice que dos códigos de barras son *equivalentes* si su distancia cuello de botella entre ellos es finita.

Ejemplo - 2.4.2

Sea (M,g) una variedad Riemanniana cerrada, y $a \in \mathbb{R}$. Sea $\Lambda^a M$ el espacio de lazos suaves $\gamma: \mathbb{S}^1 \to M$ cuya longitud es menor a e^a . Para una métrica genérica g, la homología $H_* \left(\Lambda^a M, \mathbb{F} \right)$ con coeficientes en \mathbb{F} forma un módulo de persistencia de tipo localmente finito que denoteremos como V(M,g). Notemos que para cualquier métrica g' en M existe c tal que

$$c^{-1}g \leq g' \leq cg \; ,$$

y la distancia de entrelazamiento entre los módulos V(M,g) y V(M,g') es menor o igual a $\frac{1}{2}\log(c)$.

Se sigue que la clase de equivalencia de los códigos de barra de V(M,g) es invariante bajo difeomorfismos de la variedad.

(Weinberger, Found. Comput. Math. 19, 2019)

