Importing Libraries & Loading Data

```
In [1]:
             import numpy as np
             import pandas as pd
             import matplotlib.pyplot as plt
            df = pd.read_csv('CreditCardDefault.csv')
In [2]:
In [3]:
          H type(df)
            pandas.core.frame.DataFrame
In [4]:
            df.shape
          H
    Out[4]:
             (30000, 25)
            df.head()
In [5]:
          Out[5]:
                ID LIMIT_BAL SEX EDUCATION MARRIAGE AGE PAY_0 PAY_2 PAY_3 PAY_4 ... BI
                        20000
                                                                          2
              0
                 1
                                 2
                                            2
                                                       1
                                                           24
                                                                   2
                                                                                -1
                                                                                       -1 ...
              1
                 2
                       120000
                                 2
                                            2
                                                       2
                                                           26
                                                                   -1
                                                                          2
                                                                                 0
                                                                                        0
                                                                                          ...
              2
                 3
                       90000
                                 2
                                            2
                                                       2
                                                           34
                                                                   0
                                                                          0
                                                                                 0
                                                                                        0
                                            2
              3
                        50000
                                 2
                                                       1
                                                                                 0
                 4
                                                           37
                                                                   0
                                                                          0
```

-1

5 rows × 25 columns

-1

0 ...

In [6]: ► df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 30000 entries, 0 to 29999
Data columns (total 25 columns):

#	Column	Non-Null Count	Dtype				
0	ID	30000 non-null	int64				
1	LIMIT_BAL	30000 non-null	int64				
2	SEX	30000 non-null	int64				
3	EDUCATION	30000 non-null	int64				
4	MARRIAGE	30000 non-null	int64				
5	AGE	30000 non-null	int64				
6		30000 non-null	int64				
7	PAY_2	30000 non-null	int64				
8	PAY_3	30000 non-null	int64				
9	PAY_4	30000 non-null	int64				
10	PAY_5	30000 non-null	int64				
11	PAY_6	30000 non-null	int64				
12	BILL_AMT1	30000 non-null	int64				
13	BILL_AMT2	30000 non-null	int64				
14	BILL_AMT3	30000 non-null	int64				
15	BILL_AMT4	30000 non-null	int64				
16	BILL_AMT5	30000 non-null	int64				
17	BILL_AMT6	30000 non-null	int64				
18	PAY_AMT1	30000 non-null	int64				
19	PAY_AMT2	30000 non-null	int64				
20	PAY_AMT3	30000 non-null	int64				
21	PAY_AMT4	30000 non-null	int64				
22	PAY_AMT5	30000 non-null	int64				
23	PAY_AMT6	30000 non-null	int64				
24	next_month_payment	30000 non-null	int64				
dt.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							

dtypes: int64(25)
memory usage: 5.7 MB

In [7]: ► df.describe()

Out[7]:

	ID	LIMIT_BAL	SEX	EDUCATION	MARRIAGE	AGE
count	30000.000000	30000.000000	30000.000000	30000.000000	30000.000000	30000.000000
mean	15000.500000	167484.322667	1.603733	1.853133	1.551867	35.485500
std	8660.398374	129747.661567	0.489129	0.790349	0.521970	9.217904
min	1.000000	10000.000000	1.000000	0.000000	0.000000	21.000000
25%	7500.750000	50000.000000	1.000000	1.000000	1.000000	28.000000
50%	15000.500000	140000.000000	2.000000	2.000000	2.000000	34.000000
75%	22500.250000	240000.000000	2.000000	2.000000	2.000000	41.000000
max	30000.000000	1000000.000000	2.000000	6.000000	3.000000	79.000000

8 rows × 25 columns

Feature Engineering

```
In [8]:
          X = df.iloc[:,:-1]
             y = pd.DataFrame(df.iloc[:,-1])
 In [9]:
          X.shape, y.shape
    Out[9]: ((30000, 24), (30000, 1))
In [10]:
          ▶ from sklearn.model selection import train test split
             from sklearn.preprocessing import StandardScaler
          In [11]:
In [12]:
          ▶ X train, X test, y train, y test = train test split(X, y, test size=0.30, str
In [13]:

X_train = scaler.fit_transform(X_train)

X_test = scaler.transform(X_test)

In [14]:
         Model Building & Evaluation
In [36]:

    ★ from sklearn.ensemble import AdaBoostClassifier

In [38]:

    ■ | adamodel = AdaBoostClassifier(n_estimators=10, learning_rate=1.0)

In [39]:

    | adamodel.fit(X_train, y_train)
             C:\Users\15516\anaconda3\lib\site-packages\sklearn\utils\validation.py:760:
             DataConversionWarning: A column-vector y was passed when a 1d array was exp
             ected. Please change the shape of y to (n_samples, ), for example using rav
             el().
               y = column_or_1d(y, warn=True)
   Out[39]: AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None, learning_rate=
             1.0,
                                n estimators=10, random state=None)
          y pred = adamodel.predict(X test)
In [40]:
In [41]:
          ▶ | from sklearn.metrics import accuracy score, confusion matrix
```