

Computer Science Fundamentals

Channel Coding – Reed-Solomon Codes

Technische Hochschule Rosenheim Winter 2021/22 Prof. Dr. Jochen Schmidt

2-D Barcodes

- Many different variants
- Typical:
 - dots/lines of different widths
 - gaps in between \rightarrow high contrast for reading (e.g., with laser scanner or camera)

Aztec-Code

DataMatrix-Code

MaxiCode

QR-Code

Aztec Code

- Developed 1995, standardized in ISO/IEC 24778
- Usage: Online-tickets
 - German/Swiss/Austrian/... railways
 - many airlines
- Encodes 12 3000 characters
- Reed-Solomon code for error correction
 - still decodable in case of destruction of up to 25%
- Center: Marking with orientation marks

DataMatrix Code

- Developed 1980s, standardized in ISO/IEC 16022
- Usage:
 - Labeling of products with laser (permanent)
 - German/Swiss Post (clearing without stamp)
- Encodes up to approx. 3000 characters
- in the past: CRC code
- now: Reed-Solomon code
- rectangular border for finding the code and timing of the reader

STAMPIT A00000CEE1

0,55 EUR 01.01.08

Maxicode

- 1989, standardized in ISO/IEC 16023
- Usage: UPS for parcel data
- Encodes 93 characters
 - up to 8 codes can be combined (→ 744 characters)
- Reed-Solomon code for error correction
- Marking in the center
- Hexagonal dots

QR Code

- QR = Quick Response
- 1994, originally developed for automotive sector
- Standardized in ISO/IEC 18004
- Usage:
 - originally industrial applications
 - now widespread use for smartphone apps
- encodes approx. 1800 7000 characters
 - depending on the mode (only numbers, Latin letters, whole bytes, ...)
 - and the desired robustness against errors
 - with more data: can be divided into up to 16 individual codes
- Reed-Solomon code for error correction
 - depending on the code, 7% 30% of the data can be reconstructed
 - the more robust the less user data can be stored

QR Code – Structure

© Bobmath, QR Code Structure Example 3, CC BY-SA 3.0

Design QR codes like this one ...

... work only because of good error correction mechanisms

 \rightarrow Reed-Solomon codes

Reed-Solomon Codes (RS)

- Irving S. Reed and Gustave Solomon, 1960
- Properties:
 - Detection and correction of
 - random multiple errors
 - burst errors
 - erasures (= missing data)
 - non-binary code
 - e.g., used on ASCII characters directly
 - is of course converted to binary for the actual transfer
 - linear cyclic block code
- Usage, e.g.,
 - QR codes, audio CD, DVD, Blu-ray, RAID 6, satellite communication, ...

RS – Idea

- Interpret message as coefficients of a polynomial over a finite field
- Encoding: evaluate polynomial at n different positions
- Decoding: by interpolation
- Construction of code RS(q, m, n)
 - Choose finite field \mathbb{F}_q with $q=p^l$ elements as alphabet, p prime, $l \in \{1,2,3,...\}$
 - for reasons of simplicity, we will only consider l=1:
 - with q elements = calculations modulo q (only if q is prime)
 - coefficients can only take the values 0, 1, ..., q 1
 - for l>1 the elements of the field are polynomials with coefficients from \mathbb{F}_p and degree < l
 - Message (block of m symbols) $\pmb{a}=(a_0,a_1,\dots,a_{m-1})$ interpreted as polynomial over \mathbb{F}_q :

$$P(x) = a_0 + a_1 x + a_2 x^2 + a_{m-1} x^{m-1}$$

- Choose n pairwise distinct elements $(n \ge m)$ u_0 , u_1 , ..., $u_{n-1} \in \mathbb{F}_q$
 - This is where we will evaluate the polynomial (i.e., the "x" values)

RS – Encoding

- Evaluate P(x) at the n positions $u_0, u_1, ..., u_{n-1}$
 - best to use Horner's method or discrete Fourier-Transform (DFT) as Fast Fourier-Transform (FFT)
- Code word $c = (P(u_0), P(u_1), ..., P(u_{n-1}))$

Example: RS(q, m, n) with q = 5, m = 3, n = 5

• Encode message a = (1, 2, 3)

 \rightarrow polynomial: $P(x) = 1 + 2x + 3x^2$

- Evaluate P(x) at n=5 positions
 - more are not possible anyway, since the field \mathbb{F}_5 has only 5 elements

$$P(0) = 1 + 0 + 0$$
 = 1 (mod 5)
 $P(1) = 1 + 2 + 3 = 6$ = 1 (mod 5)
 $P(2) = 1 + 4 + 12 = 17$ = 2 (mod 5)
 $P(3) = 1 + 6 + 27 = 34$ = 4 (mod 5)
 $P(4) = 1 + 8 + 48 = 47$ = 2 (mod 5)

• Code word c = (1, 1, 2, 4, 2)

RS – Decoding – Erasure

- RS(q, m, n) tolerates up to n m erasures
 - Erasure:
 - Part of the code was not received or could not be read
 - Positions of failures are known
 - ullet so, we assume that at least m data points of the code word were received
- Polynomial P(x) has degree m-1
 - from m data points we can reconstruct P(x)
 - and therefore, the original message message (= coefficients of P(x))
 - → Lagrange interpolation

RS – Decoding – Erasure – Lagrange Interpolation

- Given: at least m data points $(u_i, P(u_i))$
 - ullet to simplify notation: Assume that the first m have been received

• Let
$$g_i(x) = \prod_{j=0, j \neq i}^{m-1} (x - u_j), i = 0, ..., m-1$$

- It holds: $g_i(u_j) = 0, j \neq i$
- We obtain P(x) from

$$P(x) = \sum_{i=0}^{m-1} \frac{P(u_i)}{g_i(u_i)} g_i(x)$$

- RS(q, m, n) with q = 5, m = 3, n = 5 as before
- P(x) was evaluated at the positions $u_i = 0, 1, 2, 3, 4$
- Sent code word was c = (1, 1, 2, 4, 2)
 - the last two values were erased \rightarrow received: $(1, 1, 2, \varepsilon, \varepsilon)$
- Determine polynomials $g_i(x)$:

$$g_0(x) = (x-1)(x-2) = x^2 - 3x + 2 = x^2 + 2x + 2$$

 $g_1(x) = x(x-2) = x^2 - 2x = x^2 + 3x$
 $g_2(x) = x(x-1) = x^2 - x = x^2 + 4x$

$$P(x) = \sum_{i=0}^{m-1} \frac{P(u_i)}{g_i(u_i)} g_i(x)$$

mod 5!

Evaluate the $g_i(u_i)$ at $u_i = 0, 1, 2$

$$g_0(x) = x^2 + 2x + 2$$

 $g_0(0) = 2$

$$g_1(x) = x^2 + 3x$$

 $g_1(1) = 1 + 3 = 4$

$$g_2(x) = x^2 + 4x$$

 $g_2(2) = 4 + 8 = 12 = 2$

$$P(x) = \sum_{i=0}^{m-1} \frac{P(u_i)}{g_i(u_i)} g_i(x)$$

- Determinate multiplicative inverses $g_i^{-1}(u_i)$
 - they always exist because we have a field
 - use, e.g., extended Euclidean algorithm

$$g_0(0) = 2 \longrightarrow g_0^{-1}(0) = 3$$
 (Test: $2 \cdot 3 = 6 = 1$)
 $g_1(1) = 4 \longrightarrow g_1^{-1}(1) = 4$ (Test: $4 \cdot 4 = 16 = 1$)
 $g_2(2) = 2 \longrightarrow g_2^{-1}(2) = 3$ (Test: $2 \cdot 3 = 6 = 1$)

• Product $P(u_i)g_i^{-1}(u_i)$

$$P(0)g_0^{-1}(0) = 1 \cdot 3 = 3$$

 $P(1)g_1^{-1}(1) = 1 \cdot 4 = 4$
 $P(2)g_2^{-1}(2) = 2 \cdot 3 = 6 = 1 \pmod{5}$

 $(1,1,2,\varepsilon,\varepsilon)$

$$P(x) = \sum_{i=0}^{m-1} \frac{P(u_i)}{g_i(u_i)} g_i(x)$$

Plug-in everything:

$$P(x) = \sum_{i=0}^{2} \frac{P(u_i)}{g_i(u_i)} g_i(x) = 3g_0(x) + 4g_1(x) + 1g_2(x)$$

$$= 3(x^2 + 2x + 2) + 4(x^2 + 3x) + (x^2 + 4x)$$

$$= 8x^2 + 22x + 6$$

$$= 3x^2 + 2x + 1$$

$$= 1 + 2x + 3x^2$$

 \rightarrow original message was (1, 2, 3)

RS – Decoding – Error Correction

- RS(q, m, n) has a Hamming distance of n m + 1
- therefore, (n-m)/2 errors can be corrected

Proof: For $n \ge m$ two polynomials can only have the same value at m-1 positions

- otherwise, they would be identical (and the messages too)
- the values of the polynomials therefore differ at n-m+1 positions (= minimal distance between code words)

RS – Decoding – Error Correction

Take two polynomials with yet unknown coefficients:

•
$$f(x) = f_0 + f_1 x + f_2 x^2 + \cdots$$
 of degree $\left[\frac{n-m}{2}\right]$

•
$$g(x) = g_0 + g_1 x + g_2 x^2 + \cdots$$
 of degree $\left[\frac{n-m}{2}\right] + m - 1$

- Construct a new polynomial from these: p(x,y) = yf(x) + g(x)
- Determine the coefficients of p(x, y) such that $p(u_i, y_i) = 0$, where $y_i = P(u_i)$ is the received (erroneous) code word
- The originally sent message results from the coefficients of the polynomial

$$-\frac{g(x)}{f(x)}$$

- RS(q, m, n) with q = 5, m = 3, n = 5 as before
 - (n-m)/2 = (5-3)/2 = 1 error can be corrected
- P(x) was evaluated at the positions $u_i = 0, 1, 2, 3, 4$
- Sent code word was c = (1, 1, 2, 4, 2)
 - one position incorrect \rightarrow received: (1, 1, 0, 4, 2)
- Polynomials:

•
$$f(x) = f_0 + f_1 x$$
 of degree $\left[\frac{n-m}{2}\right] = 1$
• $g(x) = g_0 + g_1 x + g_2 x^2 + g_3 x^3$ of degree $\left[\frac{n-m}{2}\right] + m - 1 = 3$

result:

$$p(x,y) = yf(x) + g(x) = f_0y + f_1xy + g_0 + g_1x + g_2x^2 + g_3x^3$$

- $p(x,y) = yf(x) + g(x) = f_0y + f_1xy + g_0 + g_1x + g_2x^2 + g_3x^3$
- received code word: $(1, 1, 0, 4, 2) \rightarrow \text{data points } (u_i, y_i)$: (0,1), (1,1), (2,0), (3,4), (4,2)
- Plug-in $p(u_i, y_i)$ and set to zero \longrightarrow (homogenous) linear system of equations:

$$f_0 + g_0 = 0$$
 \longrightarrow $g_0 = -f_0 = 4f_0$
 $f_0 + f_1 + g_0 + g_1 + g_2 + g_3 = 0$ plug-in to remaining equations + reduce mod 5 $4f_0 + 12f_1 + g_0 + 3g_1 + 9g_2 + 27g_3 = 0$ $2f_0 + 8f_1 + g_0 + 4g_1 + 16g_2 + 64g_3 = 0$

Caution: All calculations mod 5!

After plugging-in:

$$f_1 + g_1 + g_2 + g_3 = 0$$

$$4f_0 + 2g_1 + 4g_2 + 3g_3 = 0$$

$$3f_0 + 2f_1 + 3g_1 + 4g_2 + 2g_3 = 0$$

$$f_0 + 3f_1 + 4g_1 + g_2 + 4g_3 = 0$$

- Solve the system of equations
 - e.g., using Gaussian elimination
 - 5 unknowns, 4 equations \rightarrow one unknown can be chosen freely (\neq 0)
 - note: finite field, inverses regarding multiplication: $1 \leftrightarrow 1$, $2 \leftrightarrow 3$, $3 \leftrightarrow 2$, $4 \leftrightarrow 4$
- Result (with $g_2 = 1$): $f_0 = 2$, $f_1 = 4$, $g_0 = 3$, $g_1 = 2$, $g_2 = 1$, $g_3 = 3$

- Polynomials:
 - $f(x) = f_0 + f_1 x = 2 + 4x$
 - $g(x) = g_0 + g_1 x + g_2 x^2 + g_3 x^3 = 3 + 2x + x^2 + 3x^3$
- Calculate $\frac{g(x)}{f(x)}$

$$(3x^{3} + x^{2} + 2x + 3) : (4x + 2) = 2x^{2} + 3x + 4$$

$$- \underbrace{(3x^{3} + 4x^{2})}_{(2x^{2} + 2x + 3)}$$

$$- \underbrace{(2x^{2} + 2x + 3)}_{(x + 3)}$$

$$- \underbrace{(x + 3)}_{-(x + 3)}$$

- Message = $-\frac{g(x)}{f(x)}$ = $-(2x^2 + 3x + 4) = 3x^2 + 2x + 1$
 - \rightarrow originally sent: (1, 2, 3)

RS – Notes

- Decoding in practice
 - with faster (and more complicated) methods, which typically:
 - locate error positions first,
 - treat these as erasures
 - reconstruct message
 - e.g., Berlekamp–Massey algorithm
- Examples for RS-Codes
 - Audio CD: two interleaved RS-Codes
 - CIRC: Cross-Interleaved Reed-Solomon Coding
 - Two RS codes over finite field with $2^8 = 256$ elements ($\rightarrow 1$ byte)
 - uses so-called shortened RS codes with resulting code lengths of 28 and 32 bytes
 - Burst errors up to 4000 bits (approx. 2.5mm scratch) can be corrected exactly, i.e., without any loss
 - Errors = erasures
 - DVD/Blu-ray: similar to audio CD, but longer codes
 - QR: code over finite field with $2^8 = 256$ elements ($\rightarrow 1$ byte)
 - unreadable parts of the code = erasures