Chapter 3

Numerical Sequences and Series

3.1 Notes

11/8:

 \bullet Any bounded sequence in \mathbb{R}^k has a convergent subsequence.

3.2 Chapter 3: Numerical Sequences and Series

From Rudin (1976).

11/7: • Convergence of sequences is relative.

- For example, the sequence 1/n for $n=1,2,\ldots$ converges in \mathbb{R} , but not in $(0,\infty)$.

- Range (of $\{p_n\}$): The set of all points p_n .
 - This definition squares nicely with the formal definition of a sequence as a function p defined on $\mathbb N$
- Theorem 3.6a: If $\{p_n\}$ is a sequence in a compact metric space X, then some subsequence of $\{p_n\}$ converges to a point of X.
- Theorem 3.7: The subsequential limits of a sequence $\{p_n\}$ in a metric space X form a closed subset of X.
- **Diameter** (of E): The supremum of the set

$$S = \{d(p,q) : p, q \in E\}$$

where E is a nonempty subset of a metric space X. Denoted by $\operatorname{diam} E$.

- Theorem 3.10:
 - (a) If \overline{E} is the closure of a set E in a metric space X, then

$$\dim \bar{E} = \dim E$$

- (b) If K_n is a sequence of compact sets in X such that $K_n \supset K_{n+1}$ (n = 1, 2, 3, ...) and if $\lim_{n\to\infty} \operatorname{diam} K_n = 0$, then $\bigcap_{1}^{\infty} K_n$ consists of exactly one point.
- Complete (metric space): A metric space in which every Cauchy sequence converges.
- All compact metric spaces and all Euclidean spaces are complete.
 - The metric space $(\mathbb{Q}, |x-y|)$ is not complete.

- Monotonically increasing (sequence $\{s_n\}$): A sequence $\{s_n\}$ of real numbers such that $s_n \leq s_{n+1}$ for each $n \in \mathbb{N}$.
- Monotonically decreasing (sequence $\{s_n\}$): A sequence $\{s_n\}$ of real numbers such that $s_n \geq s_{n+1}$ for each $n \in \mathbb{N}$.
- Monotonic sequences: The class of all sequences that are either monotonically increasing or monotonically decreasing.
- Upper limit (of $\{s_n\}$): The supremum of the set E of all subsequential limits of $\{s_n\}$. Denoted by s^* , $\limsup_{n\to\infty} s_n$.
- Lower limit (of $\{s_n\}$): The infimum of the set E of all subsequential limits of $\{s_n\}$. Denoted by s_* , $\lim \inf_{n\to\infty} s_n$.
- Theorem 3.17: Let $\{s_n\}$ be a sequence of real numbers. Then s^* has (and is the only number to have both of) the following two properties.
 - (a) $s^* \in E$.
 - (b) If $x > s^*$, then there is an integer N such that $n \ge N$ implies $s_n < x$.

An analogous result holds for s_* .