Математический анализ 1. Лекции 3 – 4. Приложение 1. Доказательства некоторых утверждений

Утверждение. $\lim_{n\to\infty} a_n = c$ тогда и только тогда, когда $a_n = c + b_n$, где b есть бесконечно малая последовательность. В частности, последовательность a бесконечно малая тогда и только тогда, когда ее предел равен нулю.

Доказательство. Пусть $\lim_{n\to\infty}a_n=c$ и ε есть произвольное положительное число. Тогда существует такой номер N, что для всех $n\geqslant N$ выполнено неравенство $|a_n-c|<\varepsilon$. Значит, последовательность $b_n=a_n-c$ бесконечно малая. Остается заметить, что $a_n=c+(a_n-c)=c+b_n$.

Пусть, наоборот, $a_n=c+b_n$, где b есть бесконечно малая последовательность. Тогда существует такой номер N, что для всех $n\geqslant N$ выполнено неравенство $|b_n|<\varepsilon$, т.е. $|a_n-c|<\varepsilon$. Имеем $\lim_{n\to\infty}a_n=c$ по определению.

Утверждение. Пусть a — ограниченная последовательность, а b — бесконечно малая последовательность. Тогда $\lim_{n \to \infty} a_n b_n$ существует и равен нулю.

Доказательство. Пусть C есть такое (положительное) число, что $|a_n| < C$ для всех $n \in \mathbb{N}$. Пусть ε есть произвольное положительное число. Поскольку b есть бесконечно малая последовательность, для каждого положительного числа ε' существует такое число N, что $|b_n| < \varepsilon'$ для всех $n \geqslant N$. Выберем такое число N для $\varepsilon' = \frac{\varepsilon}{C}$. Тогда для всех $n \geqslant N$ имеем

$$|a_n b_n| = |a_n| \cdot |b_n| < C \cdot \frac{\varepsilon}{C}.$$

Следовательно, $\lim_{n\to\infty} a_n b_n = 0$ по определению.

Утверждение. Пусть даны последовательности a,b,c, причем для всех $n\in\mathbb{N}$ выполнено $a_n\leqslant b_n\leqslant c_n$. Пусть еще существуют пределы $\lim_{n\to\infty}a_n$ и $\lim_{n\to\infty}c_n$ и, кроме того, $\lim_{n\to\infty}a_n=\lim_{n\to\infty}c_n$. Тогда существует $\lim_{n\to\infty}b_n$, причем $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=\lim_{n\to\infty}c_n$ (лемма "о двух полицейских").

Доказательство. Пусть $\lim_{n\to\infty}a_n=\lim_{n\to\infty}c_n=l.$ Пусть ε есть произвольное положительное число. Тогда существуют такие числа N_1 и N_2 , что

$$l - \varepsilon < a_n < l + \varepsilon$$

для всех $n \geqslant N_1$ и

$$l - \varepsilon < b_n < l + \varepsilon$$

для всех $n \geqslant N_2$.

Тогда для всех $n\geqslant N_3=\max\{N_1,N_2\}$

$$1 - \varepsilon < a_n \leqslant b_n \leqslant c_n < l + \varepsilon.$$

Значит, $\lim_{n\to\infty}b_n=l$.

 $egin{aligned} {\sf Утверждение}. \ {\sf Пусть}\ a>1,\ {\sf a}\ k\in\mathbb{N}.\ {\sf Тогда}\ \lim_{n o\infty}rac{n^k}{a^n}=0. \end{aligned}$

Доказательство. Пусть $\alpha=a-1$. Тогда $\alpha>0$ и $a=1+\alpha$. Из формулы бинома Ньютона имеем, что при n>k

$$a^{n} = (1+\alpha)^{n} > C_{n}^{k+1} \alpha^{k+1}$$
.

Пусть n > 2k. Тогда

$$C_n^{k+1} = \frac{n(n-1)\dots(n-k)}{(k+1)!} > \frac{n}{(k+1)!} \cdot \left(\frac{n}{2}\right)^k.$$

Отсюда при n>2k

$$0 < \frac{n^k}{a^n} < \frac{2^k(k+1)!}{\alpha^{k+1}} \cdot \frac{1}{n}.$$

Применяем лемму о двух полицейских.

 ${\sf Teopema}$ о пределе суммы. Пусть существуют пределы $\lim_{n o \infty} a_n$ и

$$\lim_{n o \infty} b_n$$
. Тогда существует предел $\lim_{n o \infty} (a_n + b_n)$, причем

$$\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n$$

Доказательство. Вначале докажем, что сумма двух бесконечно малых последовательностей вновь является бесконечно малой. Пусть последовательности a'_n и b'_n бесконечно малые, ε есть произвольное положительное число. Тогда существуют такие числа N_1 и N_2 , что $|a'_n|<\frac{\varepsilon}{2}$ для всех $n\geqslant N_1$, а $|b'_n|<\frac{\varepsilon}{2}$ для всех $n\geqslant N_2$. Положим $N=\max\{N_1,N_2\}$. Тогда для всех $n\geqslant N$ выполнено

$$|a'_n + b'_n| \leqslant |a'_n| + |b'_n| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Значит, последовательность $a_n' + b_n'$ бесконечно малая.

Пусть теперь $\lim_{n\to\infty}a_n=c$ и $\lim_{n\to\infty}b_n=d$. Тогда по свойству (G) имеем: $a_n=c+a'_n$ и $b_n=d+b'_n$ для некоторых бесконечно малых последовательностей a' и b'. Тогда

$$a_n + b_n = (c+d) + (a'_n + b'_n)$$

По доказанному выше последовательность $a'_n+b'_n$ бесконечно малая. Значит, по свойству предела $\lim_{n\to\infty}(a_n+b_n)=c+d.$

Теорема о пределе произведения. Пусть существуют пределы $\lim_{n\to\infty}a_n$ и $\lim_{n\to\infty}b_n$. Тогда существует предел $\lim_{n\to\infty}(a_nb_n)$, причем

$$\lim_{n \to \infty} (a_n \cdot b_n) = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n$$

Доказательство. Пусть $\lim_{n \to \infty} a_n = c$ и $\lim_{n \to \infty} b_n = d$. Тогда по свойству предела имеем: $a_n = c + a'_n$ и $b_n = d + b'_n$ для некоторых бесконечно малых последовательностей a' и b'. Значит,

$$a_n b_n = cd + cb'_n + da'_n + a'_n b'_n.$$

По свойствам пределов последовательности cb_n' , da_n' бесконечно малые. Последовательность $(a_n'b_n')$ тоже бесконечно малая (это несложно доказать, применяя свойства 3 и 8 пределов последовательностей). Значит, по теореме о сумме пределов последовательность $cb_n' + da_n' + a_n'b_n'$ бесконечно малая, и, следовательно, по свойству предела

$$\lim_{n \to \infty} (a_n b_n) = cd.$$

Теорема о пределе частного. Пусть существуют пределы $\lim_{n \to \infty} a_n$ и

$$\lim_{n o\infty}b_n
eq 0$$
. Тогда существует предел $\lim_{n o\infty}\left(rac{a_n}{b_n}
ight)$, причем

$$\lim_{n \to \infty} \left(\frac{a_n}{b_n} \right) = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}.$$

Доказательство. См. Тер-Крикоров А.М., Шабунин М.И. – Курс математического анализа — Издательство "Физматлит"— 2001, глава II, параграф 5, раздел 3.

Замена переменных под знаком предела. Пусть

- 1) существует $\lim_{x \to b} f(x) = c$;
- 2) существует $\lim_{y\to c} g(y) = d$;
- 3) $f(x) \neq c$ в некоторой (проколотой) окрестности точки b.

Тогда существует $\lim_{x \to b} g(f(x))$, причем $\lim_{x \to b} g(f(x)) = \lim_{y \to c} g(y) = d$. Доказательство. Поскольку $\lim_{x \to c} g(y) = d$, для каждой окрестности O

точки d существует проколотая окрестность U° точки c, для которой

$$\{g(y): y \in U^{\circ}\} \subseteq O.$$

Поскольку $\lim_{x \to b} f(x) = c$, для окрестности $U = U^\circ \cup \{c\}$ существует проколотая окрестность V° точки b, для которой

$$\{f(x): x \in V^{\circ}\} \subseteq U.$$

Поскольку $f(x) \neq c$ в некоторой (проколотой) окрестности W° точки b, имеем

$$\{f(x): x \in V^{\circ} \cap W^{\circ}\} \subseteq U^{\circ}.$$

Тогда

$$\{g(f(x)): x \in V^{\circ} \cap W^{\circ}\} \subseteq O,$$

что и доказывает утверждение.