Projeto 1: Estatística – Efeito Stroop Nanodegree Analista de Dados

Autor: Nikolas Thorun

Questões para investigação:

1) Qual é a nossa variável independente? Qual é a nossa variável dependente?

A variável independente é a condição de congruência(se as palavras são congruentes com as cores ou não). A variável dependente é o tempo de resposta do indivíduo, pois varia de acordo com a condição de congruência.

2) Qual seria um conjunto apropriado de hipóteses para essa tarefa? Que tipo de teste estatístico você espera executar? Justifique suas escolhas.

O tempo médio de resposta dos indivíduos aos dois testes é muito diferente? Ou seja, dado um determinado nível alfa, rejeitaremos o nulo ou não? O teste estatístico esperado para executar esta tarefa seria um teste t com variáveis dependentes. O teste t serve para apontar o quão diferentes duas amostras são e utilizaremos o teste com variáveis dependentes pois queremos medir a diferença dos parâmetros pessoais depois de uma intervenção (a introdução de um teste com palavras incongruentes com as cores). Como queremos saber se as amostras são diferentes uma da outra, o teste t será bicaudal, pois o valor da estatística t poderá ser muito positivo ou muito negativo.

3) Reporte alguma estatística descritiva em relação a esse conjunto de dados. Inclua, pelo menos, uma medida de tendência central de pelo menos uma medida de variabilidade.

Como mostra a figura abaixo, temos como tendência central a média, a mediana e a moda. Como temos valores únicos, os dados foram ajuntados em uma tabela de frequências na qual os dados são inseridos a partir de suas unidades. Como medidas de variabilidades, temos a amplitude(range), a amplitude interquartil(IQR), e o desvio padrão.

Congruent Média →	14,051	Incongruent Média → 22,016
22,328 Mediana →	14,357	$35,255 \text{ Mediana} \rightarrow 21,0175$
19,71 Moda →	12	$34,288 \operatorname{Moda} \rightarrow 17 \text{ "e" } 20$
18,495		26,282
18,2		25,139
16,929		24,572
16,791 Range →	13,698	$24,524 \text{Range} \rightarrow 19,568$
16,004 Q1 →	11,344	$23,894 Q1 \rightarrow 18,644$
15,298 Q3 →	16,791	$22,803 Q3 \rightarrow 24,524$
15,073 IQR →	5,447	$22,158 IQR \rightarrow 5,88$
14,692 SD →	3,559	$22,058 SD \rightarrow 4,797$
14,669		21,214
14,48		21,157
14,233		20,878
12,944		20,762
12,369		20,429
12,238		20,33
12,13		19,278
12,079		18,741
11,344		18,644
10,639		17,96
9,564		17,51
9,401		17,425
8,987		17,394
8,63		15,687

Tempo	Fre	quência	Tempo	Frequência
·	8	2	15	
	9	2	16	0
	10	1	17	4
	11	1	18	2
	12	5	19	1
	13	0	20	4
	14	4	21	. 2
	15	2	22	3
	16	3	23	1
	17	0	24	. 2
	18	2	25	1
	19	1	26	1
	20	0	27	0
	21	0	28	0
	22	1	29	0
			30	0
			31	. 0
			32	0
			33	0
			34	1
			35	1

⁴⁾ Forneça uma ou duas visualizações que mostre a distribuição da amostra de dados. Escreva uma ou duas sentenças sobre o que você observou do gráfico ou gráficos.

Analisando os gráficos de frequência, podemos perceber que ambos tem uma tendência à distribuição normal, porém o tamanho das amostras é pequeno para mostrar isso claramente. Analisando as amplitudes amostrais, tendemos a achar que o gráfico do teste incongruente é muito mais espalhado, porém, os valores da amplitude interquartil são bastante próximos, pelo fato do teste incongruente apresentar *outliers*.

5) Agora desempenhe o teste estatístico e reporte seus resultados. Qual seu nível de confiança e o valor estatístico crítico? Você rejeitou a hipótese nula ou falhou ao tentar rejeitá-la? Encontre uma conclusão em relação ao experimento da tarefa. Os resultados estão de acordo com suas expectativas?

Para este teste t temos duas hipóteses:

H0: As duas amostras não terão diferenças substanciais

H1: As duas amostras serão substancialmente diferentes

O intervalo de confiança desejado é de 99,5%, ou seja, nível alfa = 0,005.

Para achar o valor da estatística t, precisamos das médias amostrais, do desvio padrão da diferença das amostras(S) e o tamanho das amostras(n). Como estamos lidando com amostras, temos que inferir o desvio padrão da população utilizando a correção de Bessel, por isso a variância será dividida por 23(n-1). As médias amostrais estão no quadro da questão 3.

Congruent	Incongruent	D	D-M	(D-M)^2	SS →	544,330
12,07	-	-7,199	0,766	0,586		23,667
16,79	1 18,741	-1,95	6,015	36,178	S →	4,865
9,56	4 21,214	-11,65	-3,685	13,581		
8,6	3 15,687	-7,057	0,908	0,824	estatística T →	-8,021
14,66	9 22,803	-8,134	-0,169	0,029		
12,23	8 20,878	-8,64	-0,675	0,456		
14,69	2 24,572	-9,88	-1,915	3,668		
8,98	7 17,394	-8,407	-0,442	0,196		
9,40	1 20,762	-11,361	-3,396	11,534		
14,4	8 26,282	-11,802	-3,837	14,724		
22,32	8 24,524	-2,196	5,769	33,279		
15,29	8 18,644	-3,346	4,619	21,333		
15,07	3 17,51	-2,437	5,528	30,556		
16,92	9 20,33	-3,401	4,564	20,828		
18,	2 35,255	-17,055	-9,090	82,632		
12,1	3 22,158	-10,028	-2,063	4,257		
18,49	5 25,139	-6,644	1,321	1,744		
10,63	9 20,429	-9,79	-1,825	3,331		
11,34	4 17,425	-6,081	1,884	3,549		
12,36	9 34,288	-21,919	-13,954	194,720		
12,94	4 23,894	-10,95	-2,985	8,911		
14,23	3 17,96	-3,727	4,238	17,959		
19,7	1 22,058	-2,348	5,617	31,548		
16,00	4 21,157	-5,153	2,812	7,906		

Temos que o valor da estatística t é -8,021. Como escolhemos o nível alfa igual a 0,005 e o teste é bicaudal, na tabela T procuramos na coluna 0,0025 com 23 graus de liberdade, já que o tamanho da amostra é 24. O valor de t crítico encontrado é 3,091.

Como o valor da estatística t encontrado está dentro da região crítica, abaixo de -t, nós rejeitamos a hipótese nula, já que provamos que as duas amostras são substancialmente diferentes. O resultado já era esperado, já que o experimento foi realizado por este autor e o resultado mostrou uma diferença considerável entre os tempos dos dois testes(mais de 7 segundos). No início do projeto vimos que a média do teste incongruente é bem próxima do último valor do teste congruente(22,328), confirmando a informação de que os tempos do teste incongruente são bem maiores que o do teste congruente.