Statistics week 5

Expected Value

- Expectation or expected value of a random variable X is its mean, the average value.
- We know that X can take different values with different probabilities. For this reason, its average value is not just the average of all its values. Rather, it is a weighted average.

Expectation, discrete case

$$\mu = \mathbf{E}(X) = \sum_x x P(x)$$

Example-Expected value

- ▶ If you roll a 6 sided die, each side has a probability of 1/6 for landing.
- The Expected value is given as:

$$egin{aligned} \left(rac{1}{6} imes 1
ight) + \left(rac{1}{6} imes 2
ight) + \left(rac{1}{6} imes 3
ight) \ &+ \left(rac{1}{6} imes 4
ight) + \left(rac{1}{6} imes 5
ight) + \left(rac{1}{6} imes 6
ight) = 3.5 \end{aligned}$$

Expectation of function

$$\mathbf{E}\{g(X)\} = \sum_{x} g(x) P(x)$$

Properties of Expectation

```
\mathbf{E}(aX + bY + c) = a\mathbf{E}(X) + b\mathbf{E}(Y) + c
In particular,
\mathbf{E}(X + Y) = \mathbf{E}(X) + \mathbf{E}(Y)
\mathbf{E}(aX) = a\mathbf{E}(X)
\mathbf{E}(c) = c
For independent X and Y,
\mathbf{E}(XY) = \mathbf{E}(X)\mathbf{E}(Y)
```

Inter quartile range

- ► The interquartile range (IQR) is a measure of the spread of the data.
- The IQR may also be called the midspread, middle 50%.
- It is defined as the difference between the 75th and 25th percentiles of the data.
- $IQR = Q_3 Q_1$

Inter quartile range: In terms of CDF (for continuous function)

 \blacktriangleright A random variable X has density f_X , where f_X is a non-negative function, if:

$$\Pr[a \le X \le b] = \int_{a}^{b} f_X(x) dx$$

where the right-hand side represents the probability that the random variable X takes on a value less than or equal to x.

 \blacktriangleright Hence, if F_X is the cdf of X, then:

$$F_X(x) = \int_{-\infty}^x f_X(u) du$$

and (if f_X is continuous at x)

$$f_X(x) = \frac{d}{dx} F_X(x)$$

► Then $Q_1 = F_X(x) = 0.25$, and $Q_3 = F_X(x) = 0.75$

Inter quartile range: In terms of CDF (for discrete function)

Consider a signal having L discrete levels $X_0, X_1, \dots X_{L-1}$. The probability distribution function (pdf) for k^{th} level is defined as:

$$p(k) = n(k) / \sum_{k=0}^{L-1} n(k)$$

where, $k \in [0, L-1]$, n(k) is signal of k^{th} level.

The cdf can be defined as:

$$c(k) = \sum_{q=0}^{k} p(q)$$

where, c(k) is the cdf at the kth level. Note that c(L-1) will always be unity.

► Then $Q_1 = c(x) = 0.25$, and $Q_3 = c(x) = 0.75$

Covariance

- Covariance is a measure of how much two random variables vary together.
- It's similar to variance, but where variance tells you how a single variable varies, covariance tells you how two variables vary together.
- \triangleright Covariance between two random variables x and y can be calculated using the following formula (for population):

$$cov(x,y) = \frac{\sum_{i=1}^{n} (x_i - \mu_x) (y_i - \mu_y)}{n}$$

For a sample covariance, the formula is slightly adjusted:

$$cov(x,y) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n-1}$$

Pearson correlation coefficient

- In statistics, the Pearson correlation coefficient (ρ) is a measure of linear correlation between two sets of data.
- It is the ratio between the covariance of two variables and the product of their standard deviations.
- ► It is essentially a normalised measurement of the covariance, such that the result always has a value between -1 and 1.
- ► The measure can only reflect a linear correlation of variables, and ignores many other types of relationship or correlation.
- As a simple example, one would expect the age and height of a sample of teenagers from a high school to have a Pearson correlation coefficient significantly greater than 0, but less than 1 (as 1 would represent an unrealistically perfect correlation).

▶ Given a pair of random variables (x, y), The formula for ρ is:

$$\rho(x,y) = \frac{cov(x,y)}{\sigma_x \sigma_y}$$

where, cov is the covariance, σ_x is the standard deviation of x, σ_y is the standard deviation of y.

For sample,

$$\rho_{S}(x,y) = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} \sqrt{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}}$$

Skewness

Pearson's first skewness coefficient (mode skewness):

$$\gamma_{mode} = \frac{Mean - Mode}{SD}$$

▶ Pearson's second skewness coefficient (median skewness):

$$\gamma_{median} = \frac{3(Mean - Mode)}{SD}$$

Bowley's measure of skewness (Quartile based skewness):

$$\gamma_{quartile} = \frac{(Q_3 - Q_2) - (Q_2 - Q_1)}{Q_3 - Q_1}$$

Moment coefficient of skewness of a population (biased estimator):

$$\gamma = \frac{1}{n} \frac{\sum (x - \mu)^3}{\sigma^3}$$

 \blacktriangleright Moment coefficient of skewness of n-sample (unbiased estimator):

$$\gamma = \frac{n}{(n-1)(n-2)} \frac{\sum (x - \bar{x})^3}{s_n^3}$$

Visualisation

Example (mode skewness)

Calculate Karl Pearson coefficient of skewness of the following data set (S = 1.7).

Value (x)	1	2	3	4	5	6	7
Frequency (f)	2	3	4	4	6	4	2

Solution

mean =
$$\overline{x}$$
 = $\frac{\sum_{i=1}^{n} f_i x_i}{\sum_{i}^{n} f_i}$
= $\frac{1 \times 2 + 2 \times 3 + \dots + 7 \times 2}{25}$
= $\frac{104}{25}$
= 4.16
mode = 5
 S_{kp} = $\frac{\text{mean-mode}}{\text{standard deviation}}$
= $\frac{4.16 - 5}{1.7} = -0.4941$

Since $S_{kp} < 0$ distribution is skewed left.

How to visualise skewness

What sign actually means: $-1 \le S_{kp} \le 1$.

 $S_{kp} = 0 \Rightarrow$ distribution is symmetrical about mean.

 $S_{kp} > 0 \Rightarrow$ distribution is skewed to the right.

 S_{kp} < 0 \Rightarrow distribution is skewed to the left.

Kurtosis

- Kurtosis is a measure of the tailedness of a distribution.
- ► Tailedness is how often outliers occur.
- Excess kurtosis is the tailedness of a distribution relative to a normal distribution.
 - Distributions with medium kurtosis (medium tails) are mesokurtic.
 - ► Kurtosis=3.
 - Distributions with low kurtosis (thin tails) are platykurtic.
 - Kurtosis<3.</p>
 - Distributions with high kurtosis (fat tails) are leptokurtic.
 - ► Kurtosis>3.
- Kurtosis can vary from 1 to ∞.

Kurtosis

Kurtosis of a population (biased estimator):

$$\frac{1}{n} \left(\frac{\sum (x - \mu)^4}{\sigma^4} \right)$$

Excess kurtosis:

$$\frac{1}{n} \left(\frac{\sum (x - \mu)^4}{\sigma^4} \right) - 3$$

Note: -3 is added to make the value of mesokurtic (reference normal distribution) = 0.

Kurtosis of a n-sample (unbiased estimator):

$$\frac{n(n+1)}{(n-1)(n-2)(n-3)} \left(\frac{\sum (x-\bar{x})^4}{s_n^4} \right) - \frac{3(n-1)^2}{(n-2)(n-3)}$$

	Category					
	Mesokurtic	Platykurtic	Leptokurtic			
Tailedness	Medium-tailed	Thin-tailed	Fat-tailed			
Outlier frequency	Medium	Low	High			
Kurtosis	Moderate (3)	Low (< 3)	High (> 3)			
Excess kurtosis	0	Negative	Positive			

Moments (of statistical distribution)

- ▶ The shape of any distribution can be described by 'moments':
- ✓ The 0th moment is a reference point. In statistics it assumed as zero origin.
- ✓ The 1st moment is the center of mass of a probability distribution. Also known as mean, which indicates the central tendency of a distribution.
- ✓ The 2nd moment deals with spread of a distribution. Also known as variance, which indicates the width or deviation.
- ✓ The 3rd moment deals with relation of the two tails of a distribution. Also known as skewness, which indicates any asymmetric 'leaning' to either left or right.
- ✓ The 4th moment deals with the combined size of the tails relative to whole distribution. Also known as Kurtosis, which indicates the 'fatness' of the outer tails.

Monte Carlo Method

- Monte Carlo method, also known as the Monte Carlo simulation or a multiple probability simulation, is a mathematical technique, which is used to estimate the possible outcomes of an uncertain event.
- Monte Carlo Simulations have assessed the impact of risk in many real-life scenarios, such as in robotics, drug development, stock prices, sales forecasting, etc.
- Monte Carlo method allows decision-makers to see the impact of individual inputs on a given outcome, and correlation allows them to understand relationships between any input variables.

- Regardless of what tool you use, Monte Carlo techniques involves three basic steps:
 - ▶ Set up a predictive model, identifying both the dependent variable to be predicted and the independent variables (also known as the input, risk or predictor variables) that will drive the prediction.
 - Specify probability distributions of the independent variables. Use historical data and/or the analyst's subjective judgment to define a range of likely values and assign probability weights for each.
 - ▶ Run simulations repeatedly, generating random values of the independent variables. Do this until enough results are gathered to make up a representative sample of the near infinite number of possible combinations.

Lab task: Fair six-sided die: MATLAB mobile

- num_trials = 1000;
- trials = randi(6, [1 num_trials]);
- figure(1);
- plot(cumsum(trials)./(1:num_trials), 'r-');
- hold on;
- plot([1 num_trials], [3.5 3.5], 'color', [0 0.5 0]);
- title('average dice value against number of rolls');
- xlabel('trials');
- ylabel('mean value');
- legend('average', 'y=3.5');

- % Specify number of trials.
- % Now grab all the dice rolls.
- % Assign specific figure.
- % Cumulative sum of trial results divided by index gives the average.
- % Let's put a green reference line at 3.5.

Try the same program for different number of trials (e.g. 10, 700, 10000 etc.) and comment on findings.

Lab task: π: MATLAB mobile

```
    N = 1000;  %Specify number of points
    r = 1;  %Circle radius
    n = 0;  % Successful event counter
    x = 2*rand(1,N)-1;  % N samples between -1 and 1
    y = 2*rand(1,N)-1;
    for i = 1:N
    if ((x(i)^2+y(i)^2)<=r^2)</li>
    n = n+1;
    end
```


pi_pred = 4*n/N

end

From where this formula is coming?

Try the same program for different number of trials (e.g. 10, 700, 10000 etc.) and comment on findings.

Any Questions?