1. Let the wavefunction $\Psi(x,t)$ be a solution to the time-dependent Schrödinger equation when the potential energy is given by V(x). What is the solution to the Shrödinger equation if we now consider a potential of $V(x) + V_0$ where V_0 is a real positive constant.

2. A particle is observed in a quantum state described by the wavefunction

$$\Psi(x,t) = A \exp\left(-a\left(\frac{mx^2}{\hbar} + it\right)\right),\,$$

where A and a are real positive constants.

(a) Normalize Ψ .

As shown in Griffiths, if Ψ is normalized at any time t it is normalized at all times t. We will normalize Ψ at t=0.

$$1 = \int_{-\infty}^{\infty} \Psi(x, t = 0) dx$$

$$= \int_{-\infty}^{\infty} A \exp\left(\frac{-amx^2}{\hbar}\right) dx$$

$$= A \int_{-\infty}^{\infty} \exp\left(\frac{-amx^2}{\hbar}\right) dx$$

$$= A \sqrt{\frac{\pi}{\left(\frac{am}{\hbar}\right)}}$$

$$= A \sqrt{\frac{\pi\hbar}{am}}.$$

Thus, $A = \sqrt{am/(\pi\hbar)}$.

(b) What is the potential V(x) that this particle finds itself within? Ψ is, by definition, a solution to the Schrödinger equation. Thus,

$$i\hbar\frac{\partial\Psi}{\partial t} = -\frac{\hbar^2}{2m}\frac{\partial^2\Psi}{\partial x^2} + V\Psi.$$

Arranging for the potential energy function V we get

$$V = \frac{1}{\Psi} \left(i\hbar \frac{\partial \Psi}{\partial t} + \frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} \right).$$

To make these partial derivatives less threatening we can begin by writing Ψ in the form $\Psi = A\psi(x)\phi(t)$.¹ The A component is simply A as solved for above during normalization. The exponential term in Ψ can be separated into an x-dependent and t-dependent component;

$$\exp\left(\frac{-amx^2}{\hbar} - ait\right) = \exp\left(-\frac{amx^2}{\hbar}\right) \exp\left(-ait\right),$$

which become ψ and ϕ respectively. We know

$$\phi(t) = \exp\left(-\frac{iEt}{\hbar}\right) = \exp\left(-ait\right),$$

thus $a=E/\hbar$. We can now write V in a more approachable way with ordinary derivatives:

$$V = \frac{1}{A\psi\phi} \left(i\hbar A\psi \frac{\mathrm{d}\phi}{\mathrm{d}t} + \frac{\hbar^2}{2m} A\phi \frac{\mathrm{d}^2\psi}{\mathrm{d}x^2} \right).$$

The ordinary derivatives are

$$\frac{d\psi}{dt} = \frac{d}{dt} \left[\exp(-ait) \right]$$
$$= -ai \exp(-ait)$$
$$= -ai\psi,$$

and

$$\frac{\mathrm{d}^2 \phi}{\mathrm{d}x^2} = \frac{\mathrm{d}^2}{\mathrm{d}x^2} \left[\exp\left(-\frac{amx^2}{\hbar}\right) \right]$$
$$= -\frac{2amx}{\hbar} \exp\left(-\frac{amx^2}{\hbar}\right)$$
$$= -\frac{2amx}{\hbar} \psi.$$

¹Since separable equations are the only ones we know how to deal with Ψ must be separable!

(c) Determine the expectation values $\langle x \rangle, \, \langle x^2 \rangle, \, \langle p \rangle, \, \langle p^2 \rangle.$ i.

$$\langle x \rangle = \int_{-\infty}^{\infty} x |\psi| \, \mathrm{d}x$$

- (d) Determine the standard deviations for position, σ_x , and momentum, σ_p .
- (e) Are your values for σ_x and σ_p consistent with the uncertainty principle?

3. An electron is trapped in a harmonic quadratic potential. Suppose the expectation value for its position is given by $\langle x \rangle = \frac{a}{2} \sin(\omega t)$. Here, a is a real constant with units of length and ω is an angular frequency. What, if anything, can be concluded about the electron's momentum?