Performances des codes LDPC TP TS345

Romain Tajan

1 Performances de l'algorithme de propagation de croyances (BP)

Dans cette section, on étudie Les performances de l'algorithme de propagation de croyances (BP) pour différents codes.

1.1 Performances de BP pour le code (6,3)

Travail 1 Après avoir extrait la matrice H contenue dans DEBUG_6_3.alist, faire un inventaire des propriétés de cette matrice pour le décodage BP

- cette matrice est-elle régulière/irrégulière?
- donner les polynômes des degrés
- dessiner le graphe de Tanner associé à H.

Travail 2 Implémenter l'algorithme de propagation de croyances sur canal BEC. Tracer sur une même courbe, les taux d'effacements binaires pour le code décrit dans le fichier DEBUG_6_3.alist pour 1, 2, 3, 4 et 5 itérations. **Commenter votre résultat**. Pour ces tracés, considérer des probabilités d'effacements de p=0.1 à p=1 avec un pas 0.05 (on ajustera ces paramètres au besoin). **Coup de pouce** : se servir du travail précédent afin de justifier vos courbes.

2 Étude des performances de l'algorithme BP et lien avec l'évolution de densité

Le but de cette section est d'étudier les performances d'ensemble des codes LDPC(n, λ , ρ). Pour le décodage, nous reprendrons le décodeur BP de la section précédente. Il s'agit donc ici de développer les fonctionnalités suivantes :

- écrire un premier algorithme permettant de tirer aléatoirement des codes LDPCs dans l'ensemble LDPC (n, λ, ρ) ;
- Comparer les performances de décodage des codes tirés aléatoirements

Afin de répondre au premier item, on cherche à générer une matrice H aléatoirement dans l'ensemble $LDPC(n, \lambda(X), \rho(X))$, où $\lambda(X)$ et $\rho(X)$ sont les polynômes des degrés.

Algorithme 1 Un algorithme pour générer des matrices H aléatoirement.

```
Require: n \geq 0, m \geq 0, \lambda(X), \rho(X)
          1: Calculer L, P
                              \triangleright L est un vecteur de taille n, L_j est le degré du nœud de variable x_j.
                              \triangleright P est un vecteur de taille m, P_i est le degré du nœud de parité c_i.
Ensure: H
                                                                                                                                                                                                                                                                                                \triangleright Matrice de parité taille m \times n de polynômes \lambda(X), \rho(X)
         2: H \leftarrow zeros(m, n)
         3: for j \in [0, n-1] do
                                                          for i \in [0, L_j - 1] do
                                                                                 \mathcal{P} \leftarrow \{i \in [0, m-1] | H_{i,j} = 0\}
\mathcal{P} \leftarrow \{i \in [0, m-1] | H_{i,j} = 0\}
\mathcal{P} \leftarrow \mathcal{P} - \{i \in \mathcal{P} | \sum_{j} H_{i,j} = P_{i}\}
m \leftarrow \min_{i \in \mathcal{P}} \sum_{j} H_{i,j}
\Rightarrow \text{Trouver le plus petit degré des noeuds dans } \mathcal{P}
                                                                                 \mathcal{P} \leftarrow \left\{ i \in \mathcal{P} | \sum_{j} H_{i,j} = m \right\} \qquad \text{$\triangleright$ Irouver le plus petit degré des noeuds dans $\mathcal{P}$} \mathcal{P} \leftarrow \left\{ i \in \mathcal{P} | \sum_{j} H_{i,j} = m \right\} \qquad \text{$\triangleright$ Ne garder que les noeuds de $\mathcal{P}$ de plus petit degré} i \leftarrow Uniform(\mathcal{P}) \qquad \qquad \text{$\triangleright$ Choisir au hasard une valeur dans $\mathcal{P}$} H_{i,j} \leftarrow 1 \qquad \qquad \text{$\wedge$ A souther } \qquad \text{$\wedge
         7:
         8:
         9:
    10:
  11:
                                                          end for
 12: end for
```

3 Amélioration de l'algorithme de construction des matrices H

- écrire un algorithme permettant de calculer la maille du graphe de Tanner d'un code LDPC de matrice de parité H;
- Adapter l'algorithme de la section précédente afin de construire un graphe de plus grande maille;

4 Calcul du seuil de décodage BP par évolution de densité

— écrire un algoritme réalisant l'évolution de densité et permettant de calculer p_{BP} , probabilité d'effacement du canal en dessous de laquelle un décodage parfait existe;