Multi-scanner Harmonization of Paired Neuroimaging Data via Structure Preserving Embedding Learning

Mahbaneh Eshaghzadeh Torbati¹, Dana L. Tudorascu¹, Davneet S. Minhas¹, Pauline Maillard², Charles S. DeCarli², Seong Jae Hwang¹

¹University of Pittsburgh, ²University of California, Davis

Background

- > Combining datasets from multiple sites/scanners has been becoming increasingly more prevalent in modern neuroimaging studies.
- ➤ Problem: Despite benefits from growth in sample size by combining datasets, substantial variability associated with site/scanner-related effects exists which may inadvertently bias down-stream analyses (Figure 1).
- Harmonization is the task of removing scanner effects directly from imagederived measures (imagelevel harmonization) or the images (image-level harmonization).

Figure 1. Example of scanner effects.

Contributions

In this work, we:

- I. introduce the first paired multi-scanner data on four different scanners.
- II. propose a multi-scanner deep harmonization framework called MISPEL (Multi-scanner Image harmonization via Structure Preserving Embedding Learning).

Paired Multi-scanner Dataset

- Acquisition: 18 subjects scanned on 4 different scanners with short delay (**Figure 2**).
- > Preprocessing:
 - I. Non-linear registration to a T1-Weighted image atlas [1].
- II. Spatial intensity inhomogeneity correction.
- III. Skull stripping.
- IV. Scaling.

These preprocessed images are referred to as RAW images and are input images for harmonization.

Figure 2. Paired multi-scanner dataset.

Method: MISPEL

> MISPEL: an image-level harmonization to preserve the structure of images.

Notations and loss functions:

Data: *N* axial slices (combined across all subjects) from each of *M* scanners.

Variables:

- *i, j*: Scanner and slice index, respectively
- *l*: Embedding's component index
- T_1 , T_2 : Max iteration for Steps 1 and 2
- X_i^j : Axial slice j from scanner i
- $Z_{i,l}^{j}$: Latent embedding l of $X_{i,l}^{j}$
- Z_i^j : L Latent embedding of X_i^j
- p: index for elements in Z_{ij}^{j}
- \bar{X}_{i}^{j} : Harmonized X_{i}^{j}

Networks:

- Enc_i : Encoder U-Net for $\mathbf{Z}_i^j \leftarrow Enc_i(X_i^j)$
- Dec_i : Decoder linear map for $\bar{X}_i^j \leftarrow Dec_i(\mathbf{Z}_i^j)$

Loss functions:

- $\mathcal{L}_{recon}(X_{i=1:M}^j, \bar{X}_{i=1:M}^j) = \sum_{i=1}^M MAE(X_i^j, \bar{X}_i^j)$
- $\mathcal{L}_{coup}(Z_{1,l}^{i},...,Z_{M,l}^{i}) = \frac{1}{LP} \sum_{l=1}^{L} \sum_{p=1}^{P} var(Z_{1,l}^{i}(p),...,Z_{M,l}^{i}(p))$
- $\mathcal{L}_{harm}(\bar{X}_{i=1:M}^{j}) = \frac{2}{M(M-1)} \sum_{i=1}^{M} \sum_{k=i+1}^{M} MAE(\bar{X}_{i}^{j}, \bar{X}_{k}^{j})$
- $\mathcal{L}_{Step 1} = \lambda_1 \mathcal{L}_{recon} + \lambda_2 \mathcal{L}_{coup}$
- $\mathcal{L}_{Step 2} = \lambda_3 \mathcal{L}_{recon} + \lambda_4 \mathcal{L}_{harm}$

> MISPEL Training Algorithm:

14: **for** each slice j **do**15: **for** each scanner i **do**16: $\mathbf{Z}_{i}^{j} \leftarrow Enc_{i}(X_{i}^{j})$

 $\overline{X}_i^j \leftarrow Dec_i(\boldsymbol{Z}_i^j)$ end for

19: Update only $Dec_{i=1:M}$ using $\mathcal{L}_{Step~2}$

21: end for22: end procedure

22: **end procedure** (end Step 2)

Results 1: Image Similarity

- Experiment: Comparing the similarity of RAW and MISPEL-harmonized images within pairwise combinations of scanners, using the structural similarity index measure (SSIM).
- The scanner effects were partially removed by images getting more similar (increased SSIMs) after the MISPEL harmonization (Table 1).

	Methods	SSIM Between Scanners					
		GE-Philips	GE-Prisma	GE-Trio	Philips- Prisma	Philips-Trio	Prisma-Trio
	RAW	0.75 (0.04)	0.78 (0.04)	0.78 (0.05)	0.81 (0.03)	0.81 (0.03)	0.87 (0.04)
	MISPEL	0.84 (0.04)	0.85 (0.04)	0.86 (0.05)	0.87 (0.03)	0.87 (0.03)	0.91 (0.03)

Table 1. Mean (standard deviation) of SSIMs within pairwise combinations of scanners.

Results 2: Volumetric Similarity

Experiment: Studying scanner effects and MISPEL harmonization on volumes of gray matter (GM) and white matter (WM) tissue types extracted by FSL FAST segmentation [2].

Scanner effects appeared as dissimilarity of

Figure 3. GM volumes.

Figure 4. WM volumes.

distributions of both tissues across scanners. Harmonization happened as distributions got more similar to each other (**Figures 3 and 4**).

Conclusions

- Scanner effects exist in our in-house paired multi-scanner dataset.
- ➤ MISPEL succeeded in harmonization of our data evaluated on image and volumetric similarity.

Acknowledgments

This work was supported by the following NIH/NIA grants: R01 AG063752 (D.L. Tudorascu), P30 AG10129 and UH3 NS100608 (C. DeCarli), and the University of Pittsburgh Alzheimer's Disease Research Center Grant P30 AG066468 (S. Hwang).

Reference:

[1] Kenichi Oishi, et al. Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping: application to normal elderly and alzheimer's disease participants. Neuroimage, 2009.

[2] Y Zhang, et all. Segmentation of brain MR images through a hidden markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging, 2001.

Mahbaneh Eshaghzadeh Torbati | mae82@pitt.edu Dana L. Tudorascu | dlt30@pitt.edu Davneet S. Minhas | minhasd@upmc.edu Davneet S. Minhas | minhasd@upmc.edu Davneet S. DeCarli | cdecarli@ucdavis.edu Seong Jae Hwang | sjh95@pitt.edu