Greedy Algorithm

Greedy Algorithm Scheduling

	Start	End
CIS 675	2	3.25
CIS 412	1	4
CIS 411	3	4
CIS 310	3.5	4.75
CIS 320	4	5.25
CIS 121	4.5	6
CIS 660	5	6.5
CIS 230	7	8

Problem Statement

$$(a_1,...,a_n)$$

 $(s_1,s_2,...,s_n)$
 $(f_1,f_2,...,f_n)$ (sorted) $s_i < f_i$

Find largest subset of activities C={a_i} such that

For any two $a_i, a_j \in C$, such that i < j $\mathbf{f_i} \leq \mathbf{s_j}$

Problem Statement

$$(a_1,...,a_n)$$

 $(s_1,s_2,...,s_n)$
 $(f_1,f_2,...,f_n)$ (sorted) $s_i < f_i$

Find largest subset of activities C={a_i} such that:

For any two $a_i, a_j \in C$, such that i < j $f_i \le s_j$

Best_n= maximal number of activities that can occur before event n

Best_{2n}= maximal number of activities that can occur before event 2n

Solution_{i,j} = maximum number of activities that occur between events i,j

Solution_{i,j} = maximum number of activities that occur between events i,j

Claim:

Exchange Lemma

the first action to finish in e[i,j] is always part of some optimal Solution_{i,j}

Claim: the first action to finish in e[i,j] is always part of some optimal Solution_{i,j} a_1 : will always be part of at least one optimal solution

Claim:

the first action to finish in e[i,j] is always part of some optimal Solution_{i,i}

Claim:

the first action to finish in e[i,j] is always part of some optimal Solutioni,j

Claim:

the first action to finish in e[i,j] is always part of some optimal Solutioni,i

Claim:

the first action to finish in e[i,j] is always part of some optimal Solutioni,j

Claim:

the first action to finish in e[i,j] is always part of some optimal Solutioni,i

Claim: the first action to finish in e[i,j] is always part of some optimal Solution_{i,j}

Proof: Consider SOLUTION_{i,i} and let A* be the first to activity to finish in [i,j]

- 1. If $a^* \in SOLUTION_{i,i}$ then the claim follows.
- 2. Suppose that a^* is not in SOLUTION_{i,i}. Let activity a' be the first activity to finish the solution.

Claim: the first action to finish in e[i,j] is always part of some optimal Solution_{i,j}

Proof: Consider SOLUTION_{i,i} and let a* be the first to activity to finish in [i,j]

- 1. If $a^* \in SOLUTION_{i,j}$ then the claim follows.
- 2. Suppose that a^* is not in SOLUTION_{i,i}. Let activity a' be the first activity to finish the solution.

So, S is optimal too. Therefore lemma follows.

Claim: the first action to finish in e[i,j] is always part of some optimal Solution_{i,j}

Proof: Consider SOLUTION_{i,i} and let a* be the first to activity to finish in [i,j]

- 1. If $a^* \in SOLUTION_{i,j}$ then the claim follows.
- 2. Suppose that a^* is not in SOLUTION_{i,i}. Let activity a' be the first activity to finish the solution.

So, S is optimal too. Therefore lemma follows.

Caching

Cache

Main Memory

Virtual Memory CPU
load r2, addr a
store r4, addr b

Question of problem:

- 1. How can we manage a cache in order to minimize number of cache misses
- 2. Simplify the assumption that we know all memory accesses beforehand
- 3. Cache is fully associative, meaning, you know which data is in which cache address in $\theta(1)$ time.

problem statement

input: K, the size of the cache

d₁, d₂, ..., d_m memory accesses

output: schedule for that cache that minimizes # of cache misses while satisfying requests

cache is fully associative, line size is 1

Belady evict rule

Evict the item from the cache that is accessed farthest in the future.

cache
a
b
c
a b c d a d e a d b a e c e a

Belady evict rule

Evict the item from the cache that is accessed farthest in the future.

Gives optimal solution

How to proof it?

Which lemma we would need?

 S_{ff}

Reduce Lazy Schedule:

Schedule for which of the operation 'evict x for y' Only occurs at a step i, if y=d_i

Let S be a reduced schedule that agrees with S_{ff} on the first j items. There exists a reduced schedule S' that agrees with S_{ff} on the first j+1 items and has the same or fewer #misses as S.

Number of misses (S') ≤ Number of misses (S)

Let S be a reduced schedule that agrees with S_{ff} on the first j items. There exists a reduced schedule S' that agrees with S_{ff} on the first j+1 items and has the same or fewer #misses as S.

Number of misses (S') ≤ Number of misses (S)

Optimal schedule

$$S_0^*$$

 S_{ff}

 S_0^* agrees with S_{ff} on first i=0

Let S be a reduced schedule that agrees with S_{ff} on the first j items. There exists a reduced schedule S' that agrees with S_{ff} on the first j+1 items and has the same or fewer #misses as S.

Number of misses (S') ≤ Number of misses (S)

Optimal schedule

$$S_0^*$$
 S_1 S_{ff}

 S_1 agrees with S_{ff} on first i=1 S_0^* agrees with S_{ff} on first i=0

misses $(S_1) \le$ # misses (S_1^*)

Let S be a reduced schedule that agrees with $S_{\rm ff}$ on the first j items. There exists a reduced schedule S' that agrees with $S_{\rm ff}$ on the first j+1 items and has the same or fewer #misses as S.

Number of misses (S') ≤ Number of misses (S)

Optimal schedule

$$S_0^*$$

 S_1

 S_2

 S_{ff}

 S_2 agrees with S_{ff} on first i=2

 S_1 agrees with S_{ff} on first i=1

 S_0^* agrees with S_{ff} on first i=0

misses $(S_2) \le$ # misses (S_2^*)

Let S be a reduced schedule that agrees with $S_{\rm ff}$ on the first j items. There exists a reduced schedule S' that agrees with $S_{\rm ff}$ on the first j+1 items and has the same or fewer #misses as S.

Number of misses (S') ≤ Number of misses (S)

Optimal schedule

$$S_0^*$$

$$S_1$$

$$S_2$$

$$S_{ff-1}$$
 S_{ff}

$$S_2$$
 agrees with S_{ff} on first i=2

$$S_1$$
 agrees with S_{ff} on first i=1

$$S_0^*$$
 agrees with S_{ff} on first i=0

misses
$$(S_2) \le$$
 # misses (S_2^*)

Exchange Lemma: Proof

Let S be a reduced schedule that agrees with $S_{\rm ff}$ on the first j items. There exists a reduced schedule S' that agrees with $S_{\rm ff}$ on the first j+1 items and has the same or fewer #misses as S.

Proof: Since S agrees with S_{ff} on the first j operations, then the state of the cache at operation j+1 will be the same. Let d Be the addresses accessed at the operation j+1.

State of the cache after j operations under the two schedules

Proof of lemma

State of the cache after j operations under the two schedules

Easy Case 1: $d \in \text{cache}$. Then S' = S Because both S and S_{ff} issue 'nop' operation

Easy Case 1: d ∉ cache. But, both S, S', S_{ff} 'evict e for d' or 'evict f for d'

Proof of lemma

State of the cache after j operations under the two schedules

Easy Case 1: $d \in \text{cache}$. Then S' = S Because both S and S_{ff} issue 'nop' operation

Easy Case 1: d ∉ cache. But, both S, S', S_{ff} 'evict e for d' or 'evict f for d'

Exchange Lemma:

Let S be a reduced schedule that agrees with $S_{\rm ff}$ on the first j items. There exists a reduced schedule S' that agrees with $S_{\rm ff}$ on the first j+1 items and has the same or fewer #misses as S.

Proof of lemma

State of the cache after j operations under the two schedules

Case 3: d ∉ cache.

We need to construct a schedule S' that satisfy:

- 1. agrees with Sff on j+1 step
- 2. has same number of misses as S, up to j+1 step.

S ef S_{ff} ef

Let access t be the first operation in S after j+1 that involves either e or f

Either, t=e

t=f

t is something else

s df s'ed

Let access t be the first operation in S after j+1 that involves either e or f

Either, t=e

t=f

t is something else

Let access t be the first operation in S after j+1 that involves either e or f

Either, t=e

S must load e. 'Evict x for e'

S' can issue the operation:

'Evict x for f'

As a result S' and S will have the same state of The cache and same # of misses.

S df S'ed

Let access t be the first operation in S after j+1 that involves either e or f

Either, t=f

Can not happen!!!! Why?

 S_{ff} uses the farthest in the future rule. So, e would have been evicted in S_{ff} , not f.

Let access t be the first operation in S after j+1 that involves either e or f

Same state of cache. Same # of misses!!!!

So what we have shown?

Let S be a reduced sched that agrees with S_{ff} on the first j items. There exists a reduced sched **S'** that agrees with S_{ff} on the first j+1 items and has the same or fewer #misses as S.