Regulatory sequence analysis

Matrix-based pattern matching

Jacques van Helden https://orcid.org/0000-0002-8799-8584

Aix-Marseille Université, France Theory and Approaches of Genome Complexity (TAGC)

Institut Français de Bioinformatique (IFB) http://www.france-bioinformatique.fr

Regulatory motif: position-specific scoring matrix (PSSM) Binding motif of the yeast TF Pho4p (TRANSFAC matrix F\$PHO4_01)

Pos	1	2	3	4	5	6	7	8	9	10	11	12
Base												
Α	1	3	2	0	8	0	0	0	0	0	1	2
C	2	2	3	8	0	8	0	0	0	2	0	2
G	1	2	3	0	0	0	8	0	5	4	5	2
T	4	1	0	0	0	0	0	8	3	2	2	2
			V	С	Α	C	G	T	K	В		

Frequency matrix

Pos	1	2	3	4	5	6	7	8	9	10	11	12
A	0.13	0.38	0.25	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.13	0.25
С	0.25	0.25	0.38	1.00	0.00	1.00	0.00	0.00	0.00	0.25	0.00	0.25
G	0.13	0.25	0.38	0.00	0.00	0.00	1.00	0.00	0.63	0.50	0.63	0.25
Т	0.50	0.13	0.00	0.00	0.00	0.00	0.00	1.00	0.38	0.25	0.25	0.25
Sum	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

$$f_{i,j} = \frac{n_{i,j}}{\sum_{i=1}^{A} n_{i,j}}$$

A alphabet size (=4) $n_{i,j}$, occurrences of residue i at position j p_i prior residue probability for residue i $f_{i,j}$ relative frequency of residue i at position j

Pseudo-count correction

Pos	1	2	3	4	5	6	7	8	9	10	11	12
Α	0.15	0.37	0.26	0.04	0.93	0.04	0.04	0.04	0.04	0.04	0.15	0.26
С	0.24	0.24	0.35	0.91	0.02	0.91	0.02	0.02	0.02	0.24	0.02	0.24
G	0.13	0.24	0.35	0.02	0.02	0.02	0.91	0.02	0.58	0.46	0.58	0.24
Т	0.48	0.15	0.04	0.04	0.04	0.04	0.04	0.93	0.37	0.26	0.26	0.26
Sum	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

1st option: identically distributed pseudo-weight

$$f'_{i,j} = \frac{n_{i,j} + k/A}{\sum_{i=1}^{A} n_{i,j} + k}$$

2nd option: pseudo-weight distributed according to residue priors

$$f'_{i,j} = \frac{n_{i,j} + p_i k}{\sum_{i=1}^{A} n_{i,j} + k}$$

A alphabet size (=4) $n_{i,j}$, occurrences of residue i at position j p_i prior residue probability for residue i $f_{i,j}$ relative frequency of residue i at position j k pseudo weight (arbitrary, 1 in this case) $f_{i,j}$ corrected frequency of residue i at position j

Probability of a sequence segment under the matrix model

	Pos	1	2	3	4	5	6	7	8	9	10	11	12
	Α	0.15	0.37	0.26	0.04	0.93	0.04	0.04	0.04	0.04	0.04	0.15	0.26
	С	0.24	0.24	0.35	0.91	0.02	0.91	0.02	0.02	0.02	0.24	0.02	0.24
	G	0.13	0.24	0.35	0.02	0.02	0.02	0.91	0.02	0.58	0.46	0.58	0.24
	Т	0.48	0.15	0.04	0.04	0.04	0.04	0.04	0.93	0.37	0.26	0.26	0.26
Sequ	ence S	Α	Т	G	С	G	Т	Α	Α	Α	G	С	Т

P(res)

P(S|M)

Exercise: estimate the probability of sequence ATGCGTAAAGCT given the motif M

$$P(S \mid M) = \prod_{j=1}^{w} f'_{r_j j}$$

- Let
 - M be a frequency matrix of width w
 - $S = \{r_1, r_2, ..., r_w\}$ be a sequence segment of length w (same length as the matrix)
 - ho r_j is the residue found at position j of the sequence segment S.
- The corrected frequencies F'_{ij} can be used to estimate the probability to observe residue i at position j of the motif described by the matrix
- The probability to generate the sequence segment S under the model described by the matrix M is the product of the frequencies of residues at the corresponding columns of the matrix.

Probability of a sequence segment under the matrix model

	Pos	1	2	3	4	5	6	7	8	9	10	11	12
	Α	0.15	0.37	0.26	0.04	0.93	0.04	0.04	0.04	0.04	0.04	0.15	0.26
Ī	С	0.24	0.24	0.35	0.91	0.02	0.91	0.02	0.02	0.02	0.24	0.02	0.24
Ī	G	0.13	0.24	0.35	0.02	0.02	0.02	0.91	0.02	0.58	0.46	0.58	0.24
Ī	Т	0.48	0.15	0.04	0.04	0.04	0.04	0.04	0.93	0.37	0.26	0.26	0.26
Sequ	ence S	Α	Т	G	С	G	Т	Α	Α	Α	G	С	T
	P(res)	0.15	0.15	0.35	0.91	0.02	0.04	0.04	0.04	0.04	0.46	0.02	0.26
	P(S M)	5.32E-1	3										

$$P(S \mid M) = \prod_{j=1}^{w} f'_{r_j j}$$

- Let
 - f M be a frequency matrix of width w
 - $S = \{r_1, r_2, ..., r_w\}$ be a sequence segment of length w (same length as the matrix)
 - ho r_j is the residue found at position j of the sequence segment S.
- The corrected frequencies F'_{ij} can be used to estimate the probability to observe residue i at position j of the motif described by the matrix
- The probability to generate the sequence segment S under the model described by the matrix M is the product of the frequencies of residues at the corresponding columns of the matrix.

Probability of the highest scoring sequence segment

	Pos	1	2	3	4	5	6	7	8	9	10	11	12
	Α	0.15	0.37	0.26	0.04	0.93	0.04	0.04	0.04	0.04	0.04	0.15	0.26
	С	0.24	0.24	0.35	0.91	0.02	0.91	0.02	0.02	0.02	0.24	0.02	0.24
	G	0.13	0.24	0.35	0.02	0.02	0.02	0.91	0.02	0.58	0.46	0.58	0.24
	Т	0.48	0.15	0.04	0.04	0.04	0.04	0.04	0.93	0.37	0.26	0.26	0.26
Sequ	ence S	T	Α	G	С	Α	С	G	T	G	G	G	Т
	P(res)	0.48	0.37	0.35	0.91	0.93	0.91	0.91	0.93	0.58	0.46	0.58	0.26
	P(S M)	1.59E-0	03									,	w

This segment of sequence is associated to the highest possible probability given the matrix : P(S|M)

Each nucleotide of the sequence corresponds to the residue with the highest probability in the corresponding column of the matrix.

Background probability of a sequence segment – Bernoulli model

	Pos	Prior										_w_	
	A	0.325								P(S)	(B) =	$ p_{r_i} $	
	С	0.175										j=1	
	G	0.175											
	Т	0.325											
au	ence S	Α	Т	G	С	G	Т	Α	Α	Α	G	С	Т

P(res) 0.325 0.325 0.175 0.175 0.175 0.325 0.325 0.325 0.325 0.175 0.175 0.325

- A background model (B) should be defined to estimate the probability of a sequence motif outside of the motif.
- Various possibilities can be envisaged to define the background model
 - Identical and independent distribution (iid): Bernoulli model with equiprobable residues (this should generally be avoided, because most biological sequences are biased towards some residues)
 - Bernoulli model with residue-specific probabilities (p_r)

P(S|B) 6.29E-08

- Markov models (treat dependencies between successive nucleotides)
- Under a Bernoulli model, the probability of a sequence motif S is the probability of the prior frequencies of its residues r_i .

Weight of a sequence segment

Pos	1	2	3	4	5	6	/	8	9	10	11	12
Α	-0.79	0.13	-0.23	-2.20	1.05	-2.20	-2.20	-2.20	-2.20	-2.20	-0.79	-0.23
С	0.32	0.32	0.70	1.65	-2.20	1.65	-2.20	-2.20	-2.20	0.32	-2.20	0.32
G	-0.29	0.32	0.70	-2.20	-2.20	-2.20	1.65	-2.20	1.19	0.97	1.19	0.32
T	0.39	-0.79	-2.20	-2.20	-2.20	-2.20	-2.20	1.05	0.13	-0.23	-0.23	-0.23
residue r	Α	Т	G	С	G	T	Α	Α	Α	G	С	T
W(r)	-0.79	-0.79	0.70	1.65	-2.20	-2.20	-2.20	-2.20	-2.20	0.97	-2.20	-0.23
Weight -	ight -11.67 =SUM[W(r)]						lindor the	a accump	tion of Ba	rnoulli ba	okaround	

$$W_S = \ln \left(\frac{P(S \mid M)}{P(S \mid B)} \right)$$

- The **weight** of a sequence segment is defined as the logratio between
 - P(S/M), the sequence probability under the model described by the PSSM, and
 - \square P(S/B), the sequence probability under the background model.
- The weight W_s represents the likelihood that segment S is an occurrence of the motif M rather than being issued from the background model B.
- Under Bernoulli assumption, the weight matrix W_{ij} can be used to simplify the computation of segment weights.

Under the assumption of Bernoulli background model, this formula becomes

$$W_{S} = \ln\left(\frac{P(S \mid M)}{P(S \mid B)}\right) = \ln\left(\frac{\prod_{j=1}^{m} f'_{r_{j}j}}{\prod_{j=1}^{w} p_{r_{j}}}\right) = \sum_{j=1}^{w} \ln\left(\frac{f'_{r_{j}j}}{p_{r_{j}}}\right) = \sum_{j=1}^{w} W_{r_{j}j}$$

$$W_{S} \qquad \text{weight of sequence segment } S$$

$$P(S|M) \qquad \text{probability of the sequence segment, given the matrix}$$

40

P(S|M) probability of the sequence segment, given the more P(S|B) probability of the sequence segment, given the background p(S|B) position within the segment and within the matrix p(S|B) prior probability of the sequence segment p(S|B) probability of residue p(S|B) probability of the matrix p(S|B) probability of residue p(S|B) probability of the matrix

Position-weight matrix

Prior	Pos	1	2	3	4	5	6	7	8	9	10	11	12
0.33	A	-0.79	0.13	-0.23	-2.20	1.05	-2.20	-2.20	-2.20	-2.20	-2.20	-0.79	-0.23
0.18	C	0.32	0.32	0.70	1.65	-2.20	1.65	-2.20	-2.20	-2.20	0.32	-2.20	0.32
0.18	G	-0.29	0.32	0.70	-2.20	-2.20	-2.20	1.65	-2.20	1.19	0.97	1.19	0.32
0.33	Т	0.39	-0.79	-2.20	-2.20	-2.20	-2.20	-2.20	1.05	0.13	-0.23	-0.23	-0.23
1	Sum	-0.37	-0.02	-1.02	-4.94	-5.55	-4.94	-4.94	-5.55	-3.08	-1.13	-2.03	0.19

$$W_{i,j} = \ln \left(\frac{f'_{i,j}}{p_i} \right)$$

$$f'_{i,j} = \frac{n_{i,j} + p_i k}{\sum_{i=1}^{A} n_{i,j} + k} \qquad \sum_{i=1}^{A} f'_{i,j} = 1$$

alphabet size (=4)

prior residue probability for residue *i*relative frequency of residue *i* at position *j*pseudo weight (arbitrary, 1 in this case)

corrected frequency of residue *i* at position *j*

10

Scanning a sequence with a weight matrix

• The weight matrix is successively aligned to each position of the sequence, and the score is the sum of weights for the letters aligned at each position (Hertz & Stormo, 1999).

Ex: sequenceGCTGCACGTGGCCC..

Weight matrix

	1	2	3	4	5	6	7	8	9	10	11	12
								-2.2				
С	0.3	0.3	0.7	1.6	-2.2	1.6	-2.2	-2.2	-2.2	0.3	-2.2	0.3
G	-0.3	0.3	0.7	-2.2	-2.2	-2.2	1.6	-2.2	1.2	1.0	1.2	0.3
Т	0.4	-0.8	-2.2	-2.2	-2.2	-2.2	-2.2	1.0	0.1	-0.2	-0.2	-0.2

Scanning

1	SUM	G	С	Т	G	C	A	C	G	Т	G	G	С	С	
	-10.54	-0.3	0.3	-2.2	-2.2	-2.2	-2.2	-2.2	-2.2	0.1	1.0	1.2	0.3		
2		С	Т	G	С	A	С	G	т	G	G	С	С	С	
	7.55	0.3	-0.8	0.7	1.6	1.0	1.6	1.6	1.0	1.2	1.0	-2.2	0.3		

Scanning a sequence with a position-specific scoring matrix

- P(S|M) probability for site S to be generated as an instance of the motif.
- P(S|B) probability for site S to be generated as an instance of the background.
- W weight, i.e. the log ratio of the two above probabilities.
 - A positive weight indicates that a site is more likely to be an instance of the motif than of the background.

Matrix search : matching positions

- Matrix-based pattern matching is more sensitive than string-based pattern matching.
- How to choose the threshold?

Matrix search : threshold choice

- The program Patser (G. Hertz) includes an option to automatically select a threshold on the basis of
 - the information content of the matrix
 - the length of the sequence to be scanned
- Another approach is to select the threshold on the basis of scores returned when the matrix is used to scan known binding sites for the factor.

Markov chains and transition matrices

Transition matrix, order 1

Prefix/Suffi	Α	С	G	Т	N(Suffix)
a	0.369	0.163	0.176	0.293	0.323
c	0.329	0.189	0.165	0.317	0.181
g	0.315	0.211	0.188	0.286	0.174
t	0.279	0.177	0.171	0.373	0.322
; P_res	0.323	0.181	0.174	0.322	

Transition matrix, order 2

Prefix/Suffix	Α	С	G	Т	P(Prefix)
aa	0.411	0.150	0.184	0.255	0.119
ac	0.353	0.179	0.170	0.298	0.053
ag	0.339	0.199	0.193	0.269	0.057
at	0.353	0.163	0.160	0.325	0.095
ca	0.344	0.183	0.178	0.295	0.059
cc	0.307	0.198	0.169	0.326	0.034
cg	0.283	0.228	0.193	0.296	0.030
ct	0.246	0.188	0.183	0.383	0.057
ga	0.410	0.142	0.186	0.261	0.055
gc	0.335	0.191	0.179	0.295	0.037
gg	0.323	0.215	0.193	0.270	0.033
gt	0.310	0.154	0.198	0.338	0.050
ta	0.304	0.179	0.157	0.360	0.090
tc	0.316	0.193	0.149	0.342	0.057
tg	0.304	0.210	0.177	0.309	0.055
tt	0.224	0.193	0.163	0.419	0.120
P(Suffix)	0.323	0.181	0.174	0.322	

Ч	ro	Ü	0.0	4
a	0.369	0.163	0.176	0.293
С	0.329	0.189	0.165	0.317
g	0.315	0.211	0.188	0.286
t	0.279	0.177	0.171	0.373
				100
4	ю	ပ	900	4
aa	0.411	0.150	0.184	0.255
ac	0.353	0.179	0.170	0.298
ag	0.339	0.199	0.193	0.269
at	0.353	0.163	0.160	0.325
са	0.344	0.183	0.178	0.295
сс	0.307	0.198	0.169	0.326
cg	0.283	0.228	0.193	0.296
ct	0.246	0.188	0.183	0.383
ga	0.410	0.142	0.186	0.261
gc	0.335	0.191	0.179	0.295
88	0.323	0.215	0.193	0.270
gt	0.310	0.154	0.198	0.338
ta	0.304	0.179	0.157	0.360
tc	0.316	0.193	0.149	0.342
tg	0.304	0.210	0.177	0.309
tt	0.224	0.193	0.163	0.419

Scoring a sequence segment with a Markov model

The example below illustrates the computation of the probability of a short sequence (ATGCGTAAAGCT) with a Markov chain of order 2, estimated from 3nt frequencies on the yeast genome.

pos	P(R W)		wR	S	P(S)
1	P(at)	0.094	at	at	9.42E-02
3	P(g at)	0.161	atG	atg	1.52E-02
4	P(c tg)	0.210	tgC	atgc	3.19E-03
5	P(g gc)	0.180	gcG	atgcg	5.74E-04
6	P(t cg)	0.295	cgT	atgcgt	1.69E-04
7	P(a gt)	0.309	gtA	atgcgta	5.23E-05
8	P(a ta)	0.304	taA	atgcgtaa	1.59E-05
9	P(a aa)	0.409	aaA	atgcgtaaa	6.50E-06
10	P(g aa)	0.184	aaG	atgcgtaaag	1.20E-06
11	P(c ag)	0.200	agC	atgcgtaaagc	2.39E-07
12	P(t gc)	0.294	gcT	atgcgtaaagct	7.04E-08

Sensitivity / selectivity tradeoff

- The sequence is scanned with the matrix, and a score is assigned to each position.
- The highest score reflects the highest probability of having a functional site.
- How to define the threshold? There is a tradeoff:
 - □ high selectivity ⇔ low sensitivity
 - high confidence in the predicted sites, but many real sites are missed
 - □ low selectivity ⇔ high sensitivity the real sites are drawn in a see of false positive

Discrimination power of a matrix

Reasonably discriminant

Exercise: impact of the P-value threshold on matrix scan results

- Open a connection to RSAT (<u>http://www.rsat.eu/</u>)
- Menu "Pattern matching", tool "matrix scan (full options)"
- Click on DEMO2 to load the test case
 - Even skipped upstream sequences (5kb upstream of start codon)
 - Background model calibrated on Drosophila upstream sequences

Impact of site P-value threshold on CRER detection

Negative control: CRERs in random sequences

Matching a sequence with a library of patterns

Match a sequence with a library of patterns

- Goal : given a sequence, find matches for any known regulatory site
 - □ → identify transcription factors that could regulate the gene
- Strategy: apply systematically pattern search with all patterns stored in the library
- Problem: how to set the threshold for the different patterns?
- Warning : generates many false positive

Transfac Matsearch result - PHO5 upstream region

SE 4 503 (1 01)	- 、		
			l
· · · · · · · · · · · · · · · · · · ·			TATCtc
·			tcaCACGtggga
561 (-)	1.000	0.982	tccCACGtgtga
634 (+)	1.000	0.972	TATCaa
543 (-)	1.000	0.967	TATCga
676 (-)	1.000	0.945	TATCcc
31 (-)	1.000	0.937	TATCag
452 (+)	1.000	0.935	tagCACGttttc
666 (-)	0.961	0.929	tatCCCAaatgggtat
202 (+)	1.000	0.926	tGATGtcagt
323 (-)	1.000	0.922	gaCTTCcaa
536 (+)	0.837	0.902	aaaTGAATcg
292 (-)	1.000	0.889	atttgcgCATTcttgttga
205 (+)	0.887	0.885	tgtcagtccccACGC
727 (+)	1.000	0.882	tGATGttttg
210 (-)	1.000	0.881	gctattagcgtGGGac
	0.826	0.880	ggCATCcaa
	1.000	0.879	ggtCACGtttct
	1.000	0.875	tgaaTTGTcg
· · · · · · · · · · · · · · · · · · ·	0.882	0.862	ttaTGATTct
	1.000	0.860	ctttttCTTTgtctgcac
	0.783	0.859	ggCGTCctg
			atatttCTTTgtgcagac
· · · · · · · · · · · · · · · · · · ·		0.855	atgCCAAaaaaagtaa
	141 (+) 561 (+) 561 (-) 634 (+) 543 (-) 676 (-) 31 (-) 452 (+) 666 (-) 202 (+) 323 (-) 536 (+) 292 (-) 205 (+)	561 (+) 1.000 561 (-) 1.000 634 (+) 1.000 543 (-) 1.000 676 (-) 1.000 31 (-) 1.000 452 (+) 1.000 666 (-) 0.961 202 (+) 1.000 323 (-) 1.000 536 (+) 0.837 292 (-) 1.000 205 (+) 0.887 727 (+) 1.000 210 (-) 1.000 69 (+) 0.826 90 (-) 1.000 696 (+) 1.000 589 (+) 0.882 415 (+) 1.000 249 (-) 0.783 425 (-) 1.000	141 (+) 1.000 0.995 561 (+) 1.000 0.990 561 (-) 1.000 0.982 634 (+) 1.000 0.972 543 (-) 1.000 0.967 676 (-) 1.000 0.945 31 (-) 1.000 0.937 452 (+) 1.000 0.935 666 (-) 0.961 0.929 202 (+) 1.000 0.926 323 (-) 1.000 0.922 536 (+) 0.837 0.902 292 (-) 1.000 0.889 205 (+) 0.887 0.885 727 (+) 1.000 0.882 210 (-) 1.000 0.881 69 (+) 0.826 0.880 90 (-) 1.000 0.875 589 (+) 0.882 0.862 415 (+) 1.000 0.860 249 (-) 0.783 0.859 425 (-) 1.000 0.859

Transfac Matsearch result - random sequence (mkv 5)

```
Inspecting sequence random mkv5 [?] (1 - 817):
 F$NIT2 01
                            176 (+)
                                       1.000
                                               1.000
                                                       TATCta
                                       1.000
 F$NIT2 01
                            656 (+)
                                               1.000
                                                       TATCta
 F$NIT2 01
                                               0.995
                            275 (+)
                                      1.000
                                                       TATCtc
                            455 (+)
                                               0.995
 F$NIT2 01
                                      1.000
                                                       TATCtc
 F$NIT2 01
                            298 (-)
                                      1.000
                                               0.980
                                                       TATCtt
 F$MATA1 01
                            506 (-)
                                     1.000
                                               0.980
                                                       tGATGtatgt
 F$ABF C
                             84 (+)
                                      0.991
                                               0.973
                                                       aatcattcttqACGT
 F$MIG1 01
                            264 (-)
                                      1.000
                                               0.958
                                                       qaqataaaactGGGGtt
                                               0.947
 F$NIT2 01
                            701 (+)
                                      1.000
                                                       TATCqt
 F$NIT2 01
                            802 (-)
                                      1.000
                                               0.947
                                                       TATCqt
 F$ABF1 01
                             81 (+)
                                      0.976
                                               0.944
                                                       gtaaatcattcttgACGTtttt
 F$MAT1MC 02
                            665 (-)
                                      1.000
                                               0.918
                                                       cctaTTGTqa
 F$NIT2 01
                            280 (-)
                                      1.000
                                               0.915
                                                       TATCcq
                                                       tccccatCATTctaacagt
 F$ABAA 01
                             42 (+)
                                      1.000
                                               0.902
 F$PACC 01
                            331 (-)
                                      1.000
                                               0.897
                                                       acqaGCCAaqaaaaqtt
                            201 (+)
                                               0.883
 F$ABAA 01
                                      1.000
                                                       accataqCATTctqqatct
 F$MAT1MC 02
                            442 (-)
                                      1.000
                                               0.882
                                                       tataTTGTat
 F$ABF C
                            638 (-)
                                      0.991
                                               0.882
                                                       agtcaaatgaaACGT
                                                       tttctttaaacACGG
 F$ABF C
                            609 (-)
                                      0.949
                                               0.874
 F$MATA1 01
                            558 (-)
                                      1.000
                                               0.868
                                                       tGATGqaaqa
 F$HSF 03
                                               0.859
                            713 (-)
                                      1.000
                                                       AGAAttgaaatttt
 F$MAT1MC 02
                            134 (-)
                                      1.000
                                               0.858
                                                       cacaTTGTqt
 F$ABAA 01
                                       1.000
                                               0.856
                                                       agtaaatCATTcttgacgt
                             80 (+)
 F$HAP234 01
                            332 (-)
                                       1.000
                                               0.851
                                                       acqaqCCAAqaaaaqt
```

Transfac Matsearch result - random sequence (iid)

Inspecting sequence random	n iid [?] (1 -	- 817):		
F\$NIT2_01	534 (-)	1.000	1.000	TATCta
F\$NIT2_01	294 (+)	1.000	0.995	TATCtc
F\$NIT2_01	634 (-)	1.000	0.972	TATCaa
F\$NIT2_01	216 (-)	1.000	0.965	TATCtg
F\$STUAP_01	808 (-)	1.000	0.959	attCGCGtct
F\$NIT2_01	24 (+)	1.000	0.952	TATCat
F\$NIT2_01	343 (+)	1.000	0.952	TATCat
F\$NIT2_01	413 (-)	1.000	0.952	TATCat
F\$STUAP_01	441 (+)	1.000	0.930	aagCGCGcct
F\$NIT2_01	244 (-)	1.000	0.930	TATCct
F\$STUAP_01	808 (+)	1.000	0.926	agaCGCGaat
f\$GCR1_01	499 (+)	1.000	0.922	gaCTTCcta
F\$PACC_01	647 (-)	1.000	0.920	ctccGCCAggcactgaa
F\$NIT2_01	475 (+)	1.000	0.915	TATCcg
f\$ABF_C	235 (-)	0.949	0.904	tatcctgcaacACGG
F\$PHO4_01	246 (-)	1.000	0.882	gctCACGttatc
f\$GCR1_01	763 (-)	1.000	0.866	acCTTCcgc
F\$STUAP_01	441 (-)	1.000	0.859	aggCGCGctt
F\$MIG1_01	371 (+)	1.000	0.857	accgaaacagtGGGGtt
F\$MAT1MC_02	375 (-)	0.769	0.855	cccaCTGTtt