Experimentation for Improvement

© Kevin Dunn, 2015 http://learnche.org/

Design and Analysis of Experiments

Copyright, sharing, and attribution notice

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 Unported License. To view a copy of this license, please visit http://creativecommons.org/licenses/by-sa/4.0/

This license allows you:

- ▶ to share to copy, distribute and transmit the work, including print it
- ▶ to adapt but you must distribute the new result under the same or similar license to this one
- ► commercialize you <u>are allowed</u> to use this work for commercial purposes
- attribution but you must attribute the work as follows:
 - "Portions of this work are the copyright of Kevin Dunn", or
 - "This work is the copyright of Kevin Dunn"

(when used without modification)

pick a design that meets the objective

- ► If you are just starting out, avoid eliminating factors to simply get a full factorial.
- ▶ Use the experimental evidence to eliminate factors.

- ► Remember: these are experimental building blocks. The experiments you run first can be extended on later.
- ▶ In the next example, we show how factors are eliminated, *based on evidence*.

[Flickr: rahego]

An example to demonstrate a saturated fractional factorial analyis

We have 7 factors: \mathbf{A} , \mathbf{B} , \mathbf{C} , \mathbf{D} , \mathbf{E} , \mathbf{F} , and \mathbf{G} .

The fewest number of experiments is: 8 runs

Creating the standard order table for the fractional factorial

Experiment	Α	В	C	D = AB	E = AC	F = BC	G = ABC
1	_	_	_	+	+	+	_
2	+	_	_	_	_	+	+
3	_	+	_	_	+	_	+
4	+	+	_	+	_	_	_
5	_	_	+	+	_	_	+
6	+	_	+	_	+	_	_
7	_	+	+	_	_	+	_
8	+	+	+	+	+	+	+
7.	-4		\dashv		2^{k-p}		

with p=4

Creating the standard order table for the fractional factorial

Experiment	Α	В	C	D = AB	E = AC	F = BC	G = ABC	y
1	_	_	_	+	+	+	_	
2	+	_	_	_	_	+	+	
3	_	+	_	_	+	_	+	
4	+	+	_	+	_	_	_	
5	_	_	+	+	_	_	+	
6	+	_	+	_	+	_	_	
7	_	+	+	_	_	+	_	
8	+	+	+	+	+	+	+	
	'							

with p=4

Let's follow the recommended approach shown earlier in the video

- 1. Read the generators from the trade off table
 - ightharpoonup D = AB and E = AC and F = BC and G = ABC
- 2. Rearrange the generators as $I = \dots$
 - ► I = ABD and I = ACE and I = BCF and I = ABCG
- 3. Form the defining relationship taking all combinations of the words: I = ...

$$(ABD)(ACE) = BCDE(ABD)(BCF) = ACDF(ABD)(ACE)(BCF) = DEF$$

- 4. Ensure the defining relationship has 2^p words
 - p = 4, so we have 16 words.
- 5. Use the defining relationship to compute the aliasing pattern
- 6. Ensure the aliasing is acceptable

Check the alias patterns by using the defining relationship

$$A = BD = CE = FG = BCG = CDF = BEF = DEG = ABCF = ABEG = ...$$

= $ACDG = ADEF = ABDCE = ABDFG = ACEFG = BCDEFG$

B = AD = CF = EG + other higher order interactions

C = AE = BF = DG

D = AB = CG = EF

E = AC = BG = DF

F = BC = AG = DE

G = CD = BE = AF

Finally! You get to do the experiments and record the outcome value

Experiment	Α	В	C	D = AB	E = AC	F = BC	G = ABC	y
1	_	_	_	+	+	+	_	320
2	+	_	_	_	_	+	+	276
3	_	+	_	_	+	_	+	306
4	+	+	_	+	_	_	_	290
5	_	_	+	+	_	_	+	272
6	+	_	+	_	+	_	_	274
7	_	+	+	_	_	+	_	290
8	+	+	+	+	+	+	+	255

The reduced model: only has four main effect factors

Experiment	Α	C	Ε	G	В	D	F	y
1	_	_	+	_	_	+	+	320
2	+	_	_	+	_	_	+	276
3	_	_	+	+	+	_	_	306
4	+	_	_	_	+	+	_	290
5	_	+	_	+	_	+	_	272
6	+	+	+	_	_	_	_	274
7	_	+	_	_	+	_	+	290
8	+	+	+	+	+	+	+	255

Those that are more math oriented: please verify that each column is uncorrelated with the others. So rebuilding the model implies the factor estimates are the same.

Other fractional factorial designs: Plackett-Burman designs

Plackett-Burman designs exists in multiples of 4:

- ▶ 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, ...
- Main effects are confounded with two-factor interactions, but in a complicated way.
- Such designs are most usefully created by software, unlike the fractional factorial designs shown in this section.
- e.g. a Placket-Burman design in 20 runs, can screen for 19 factors!

Definitive Screening Designs: a type of optimal design

Optimal designs

- There are several desirable mathematical criteria that can be optimal.
- We won't go into the details, but factorial designs often meet these optimal criteria.
- ▶ Interested in the details? Search for:
 - D-optimal designs it is the most common optimal design

Definitive screening designs

- ► Factors can be at 3 levels (not 2!)
- Small number of runs
- ► Main effects and 2-factor interactions **are not** aliased a great advantage.

D-Optimal Fractions of Three-Level Factorial Designs

T. J. Mitchell and C. K. Bayne
Union Carbide Corporation
Nuclear Division
Oak Ridge, TN 37830

D-optimal fractions of three-level factorial designs for p factors are effects models ($2 \le p \le 4$) and quadratic response surface models ($2 \le p \le 4$) and quadratic response surface models ($2 \le p \le 4$) and a duces D-optimal balanced array designs. The design perspectives for the

[http://www.jstor.org/discover/10.2307/1267635]

A Class of Three-Level Designs for Definitive Screening in the Presence of Second-Order Effects

BRADLEY JONES

CHRISTOPHER J. NACHTSHEIM

 $Carlson\ School\ of\ Management,\ University\ of\ Minnesota,\ Minneapolis,\ MN\ 55455$

[http://yint.org/dsdesign]

Practice, fail, start over, and persist

- ▶ There are case studies in the course textbook
- ▶ There are other textbooks, listed on the course website
- Create your own datasets
 - biscuits
 - coffee
 - growing plants, or
 - many of the experiments suggested in the course forums