

Determining Possible Fragments Based On Experimental Restrictions

FIG. 1A

Determining the Schema Disruption Profile for a Structure

FIG. 1B

1 2 3 4 5 6 7 8 9 10 11 12

FIG. 2

卷之三

FIG. 3

FIG. 4A

FIG. 4B

FIG. 4C

FIG. 4D

FIG. 5

FIG. 6

10016668-122602

(A)

All possible recombinants
prepared by crossover
at positions 1 and 2

(B)

These can be prepared by
assembly of synthetic
fragments containing the
crossover positions

Requires fragments
(plus end primers):

FIG. 7

4004662 - 1980

Extension of synthetic
fragments against a
parent template strand
and gap repair

heteroduplex recombination
(remove parent homoduplexes)

library of recombinants
with crossovers in regions
of non-identity

FIG. 8

(B)

Reassemble fragments in a pool, by PCR with 1+ 6

FIG. 9

(A)

Prepare crossover primers designed to have crossovers at designated positions (2 primers for each position).

(B)

Fragment parent genes and PCR reassemble in the presence of the crossover primers to promote recombination at designated positions

FIG. 10

U.S. PAT. & T. OFF. SER. NO. 2,000,000

FIG. 11

Recombinant search algorithm

1. Align parent sequences with template structure

2. Determine all possible crossover points according to sequence identity algorithm

3. Calculate coupling matrix

4. Pick start parent at random and copy to offspring until a possible cut point is reached

5. Pick random number, if less than p , copy random new parent until next cut point is reached.

6. Determine crossover disruption of offspring gene

FIG. 12

1001636 " 102604

FIG. 13

DIRECTED EVOLUTION ALGORITHM

FIG. 14

F D E D F E D E D F E D

FIG. 15

FIG. 16

FOOTNOTE: 89937003

Experimental Data:

	wt	wt-insert	1	2
Tm(dC)	52	55.2	n.d.	54.3
Tm(dC)	49.5	53.3	44.5	52.5
t _{1/2}	12.1	2586	-	87.5
t _{1/2}	53	138	4	308

(B)

Calculations:

	All schema		Fragments		Z-score	
	av	stdev	1	2	1	2
Ec	19.260	4.090	10.770	8.124	-2.076	-2.723
Ec*	0.006	0.002	0.014	0.005	4.838	-0.857

FIG. 17

FIG. 18

The contact map shows residues that are distant (black) and residues that are close (white). If a given segment, , folds an above average number of residues into a given sphere size, then it is compact.

FIG. 19

200 190 180 170 160 150 140 130 120 110

(A)

(B)

FIG. 20

1003668 - 102604

FIG. 21

FIG. 22

- (1) Pick a sphere size (21 angstroms, like Go-Gilbert) and a disruption threshold; (2) Scan protein using segments at least the average number of residues for that sphere size or greater (e.g., >15 for 21 angstrom sphere); 3) Check the disruption of all the compact fragments identified in step 2. If the fragment has a disruption above a threshold value, keep it; otherwise, throw it out; 4) If the compact unit is disruptive, increment the schema disruption measure for all of the residues in the fragment by one. This indicates that crossovers within the fragment are disfavored.

FIG. 23

1 0 0 1 1 6 6 5 6 1 0 2 5 0 1

FIG. 24

FIG. 25

FIG. 26

FIG. 27A

FIG. 27B

FIG. 28

Schema Disruption

FIG. 29

Schema Disruption

4.00 3.96 3.92 3.88 3.84 3.80 3.76 3.72 3.68 3.64 3.60 3.56 3.52 3.48 3.44 3.40 3.36 3.32 3.28 3.24 3.20 3.16 3.12 3.08 3.04 3.00 2.96 2.92 2.88 2.84 2.80 2.76 2.72 2.68 2.64 2.60 2.56 2.52 2.48 2.44 2.40 2.36 2.32 2.28 2.24 2.20 2.16 2.12 2.08 2.04 2.00 1.96 1.92 1.88 1.84 1.80 1.76 1.72 1.68 1.64 1.60 1.56 1.52 1.48 1.44 1.40 1.36 1.32 1.28 1.24 1.20 1.16 1.12 1.08 1.04 1.00 0.96 0.92 0.88 0.84 0.80 0.76 0.72 0.68 0.64 0.60 0.56 0.52 0.48 0.44 0.40 0.36 0.32 0.28 0.24 0.20 0.16 0.12 0.08 0.04 0.00

FIG. 30

FIG. 31A

FIG. 31B

FIG. 32

FIG. 33

FIG. 34