MODULE-4-Probability Theory

Q.No	Questions																
1.	a)	The Random Variable X has the following probability mass function, find (i) k (ii) P(X<3)															
		(iii) P(3 <x≤5) (iv)="" th="" variance<=""></x≤5)>															
			Χ	0	1		2	3	4	4	5						
			P(X)	K	3K	į	5K	7K	9	K	11K						
	b)	A random variable (X=	•			_			•			tions	s. Fi	nd	(i) k	(ii) þ	o(x<6)
		(iii) p(x>6) (iv) Mean and	i) p(x>6) (iv) Mean and also find the probability distribution														
		х () 1	2	3	4	ļ.	5		6		7					
		\ /) K	2k			3k	k		$2k^2$		$'k^2$ -					
2.	a)	Find 'k' such that the fol		•			•		nts a	finit	e pr	obab	ility	dist	ribut	ion. I	Hence
		find (i)mean (ii) $p(x \le 1)$ (iii) $p(x > 1)$ (iv) $p(-1 < x \le 2)$															
		<u> </u>	,	-3	2	1	0		1	2	3						
			`	-5	-2	-1	U		1	2	3						
		ŀ	P(x)	k	2k	3k	4k	(3k	2k	k						
	b)	A random variable (X=x) has the following probability function for various values of x. Find										Find					
	,	(i)k (ii) p(x<1) (iii) p(x>-1)				0 1			•								
										Τ.							
			Х	-2	-1	- 0		1	2		3						
			P(x) 0.	1 k	0	.2	2k	0.	3 I	(
_																	
3.	a)	Find the mean and varia		_							C 1 ·		··l .		1.	- 1- *1*1	11
	b)	3% of the product produ		•											•		•
		first defective occurs (iv) variance.	in tr	ie (i)	5	item	ins	spec	tea	(11)	TITST	TIVE	e ins	spec	πea	(111)	mean
4.	a)	What is the probability t	hat t	ha m	arkat	ing r	nro	can	tativ	n m	uct c	alact	t (i) n	nor		n 6 n	aonla
٠.	aj	•				_	•						٠,			•	•
		(ii) six people, before he finds one who attended the last home? c.d.f of a Geometric R V with 1-p=0.8.								• ••••							
	b)																
	,	it would be destroyed or	_					•							•		-
5.	a)	Derive mean and variand															
	b)	2% of the fuses manufac															
		box containing 200 fuse			ntair	ıs (i)	No	def	ectiv	e fu	se (i	i) 3	or m	ore	defe	ctive	fuses
		(iii) atleast one defective															
6.	a)	The probability that an i										-					
		probability that out of 2	,000	indiv	iduai	(ı) alı	mos	t 2 ((II) ex	xacti	y 2 (III) m	nore	tna	n 2 v	vill ge	et bad
	h۱	reaction In a certain factory turni	na 01	ıt roz	or bl	ndo t	hore	o ic	a cm	م الد	roba	hili+	v of 1	/=	no foi	cany	hlado
	D)	to be defective. The blace	_							•			•	-		•	
		the approximate number															
		defective blades in a con		-			_			J-010		- (''')	5.10	40		(111	.,
7.	a)	A certain screw making r								e tw	o de	efect	ive o	ut o	of 10	0 and	d pack
	,	them in boxes of 500. Fir		•					_								•
		one defective.		-		-					•					-	

	b) The number of industrial injuries per working week in a particular factory is known to follow a Poisson distribution with mean 0.5. Find the probability that
	(a) in a particular week there will be:
	(i) less than 2 accidents,
	(ii) more than 2 accidents;
	(b) in a three week period there will be no accidents.
8.	a) The number of misprints on a page of the <i>Daily Mercury</i> has a Poisson distribution with mean 1.2. Find the probability that the number of errors (i)on page four is 2 (ii) on page three is less than 3.
	b) A shop sells a particular make of video recorder. Assuming that the weekly demand for the video recorder is a Poisson variable with mean 3, find the probability that the shop sells
	(i) at least 3 in a week,
	(ii) at most 7 in a week,
	(iii) more than 20 in a month (4 weeks).
9.	 a) The number of runs scored by Ali in an innings of a cricket match is distributed according to a Poisson distribution with mean 4.5. Find the probability that he will score: (i) exactly 4 in his next innings;
	(ii) at least three in his next innings;
	(iii) at least six in total in his next two innings.
	b) The number of parasites on fish hatched in the same season and living in the same pond follows a Poisson distribution with mean 3.6. Find, giving your answers to 3 decimal places, the probability that a fish selected at random will have
	(a) 4 or less parasites, (b) exactly 2 parasites.
10.	a) The number of bacteria in one millilitre of a liquid is known to follow a Poisson distribution with mean 3. Find the probability that a 1 ml sample will contain no bacteria. If 100 samples are taken, find the probability that at most ten will contain no bacteria.
	b) A van hire firm has twelve vehicles available and has found that demand follows a Poisson distribution with mean 9.5. In a month of 25 working days, on how many days would you expect:
	(a) demand to exceed supply;
	(b) all vehicles to be idle;
	(c) it to be possible to service 3 of the vans?
11.	a) Wireless sets are manufactured with 25 soldered joints each. On the average 1 joint in 500 is defective. How many sets can be expected to be free from defective joints in a consignment of 10,000 sets.
	b) A continuous random variable has the following density function $P(x) = \begin{cases} kx^2, -3 \le x \le 3 \\ 0 & elsewhere \end{cases}$
	Evaluate (i) k, (ii) $P(1 \le x \le 2)$, (iii) $P(x \le 2)$, (iv) $P(x>1)$.
12.	a) A continuous random variable has the density function $f(x) = \frac{k}{1+x^2}$, $-\infty < x < \infty$.
	Determine (i) k, (ii) $P(x > 0)$, $(iii)P(0 < x < 1)$.
	b) The probability density function of continuous random variable is given by $(x) = ke^{- x }$,
	$-\infty < x < \infty$. Prove that $k = 1/2$ and also find mean and variance.

13.	a) The probability density function $f(x)$ of continuous random variable is given by $P(x) = 0$
13.	
	$\begin{cases} kx(1-x), 0 \le x \le 1 \\ 0 & otherwise \end{cases}$ Determine k, $P(0 < x < 1/3)$.
	b) Derive mean and S.D for the Exponential Distribution.
14.	a) In a certain town the duration of a shower is exponentially distributed with mean 5min. what
	is the probability that the shower will last for (i) 10min or more (ii) less than 10min
	(iii) between 10 to 12min.
	b) The life of a compressor manufactured by a company is known to be 200 months on an
	average following an exponential distribution. Find the probability that the life of a
	compressor of that company is (i) < 200 months, (ii) between 100 months and 25 years.
15.	a) Studies of a single-machine-tool system showed that the time the machine operates before breaking
	down is exponentially distributed with a mean 10 hours. 1. Determine the failure rate and the
	reliability. 2. Find the probability that the machine operates for at least 12 hours before breaking
	down. 3. If the machine has already been operating 8 hours, what is the probability that it will last another 4 hours?
	b) The sale per day in a shop is exponentially distributed with an average sale amounting to
	Rs.100 and net profit is 8%. Find the probability that the net profit exceeds Rs. 30 on a day.
16.	a) Derive mean and variance for normal distribution.
10.	b) In examination 7% of students score less than 35% marks and 89% of students score less than
	60% marks, Find the mean and standard deviation, if the marks are normally distributed. It is
	given that if p (z) = $\frac{1}{\sqrt{2\pi}} \int_0^z e^{-z^2/2} dz$ then p (1.2263) = 0.39 p(1.4757) = 0.43.
17	V27/
17.	a) In a normal distribution, 7% of the items are under 35 and 89% are under 63. Determine the mean and variance of the distribution.
	b) Suppose the weights of 800 male students are normally distributed with mean 140 pounds
	and S.D 10 pounds. Find the number of students whose weight are (i) between 138 and 148
	pounds (ii) more than 152 pounds.
18.	a) A sales tax officer has reported that the average sales of the 500 business that he has to deal
	with during a year is Rs.36,000 with a standard deviation of 10,000. Assuming that the sales in
	these business are normally distributed, find (i) the number of business as the sales of which
	are Rs. 40,000. (ii) the percentage of business the sales of which are likely to range between
	Rs.30,000 and Rs. 40,000.
	b) A manufacturer knows from experience that the resistance of resistors he produces is normal
	with mean 100 ohms and SD 2 ohms. What percentage of resistors will have resistance
	between 98 ohms and 102 ohms?
19.	a) A sample of 100 dry battery cells tested to find the length of life produced by a company and
	following results are recorded: mean life is 12 hrs, SD is 3 hrs. Assuming data to be normally
	distributed, find the expected life of a dry cell. (i) have more than 15 hrs (ii) between 10 and
	14 hrs.[P(0.667)=0.2486,P(1)=0.3413].
	b) The mean weight of 1,000 students during medical examination was found to be 70kg and
	S.D weight 6kg. Assume that the weight are normally distributed, find the number of students
	having weight (i) less than 65kg (ii) more than 75kg (iii) between 65kg to
20.	75kg.[P(0.83)=0.2967]
20.	a) Given that the mean height of students in a class is 158cms with SD of 20cms. Find how many students heights lie between 150cms and 170cms, if there are 100 students in the class.
	b) Suppose 2% of the people on the average are left handed. Find (i) the probability of finding 3
	or more left handed (ii) the probability of finding ≤ 1 left handed.
	or more lest handed (ii) the probability of initiality \$\infty\$ lest handed.

MCQ

Question	Question
Number	
1.	The mean of the Geometric distribution is
	(a) Pq (b) np (c) \sqrt{np} (d) $\frac{q}{p}$
2.	If the mean of the poisson distribution is m, then S.D of this distribution is
	(a) m^2 (b) \sqrt{m} (c) m (d) none of these The S D of the Geometric distribution is
3.	The S D of the Geometric distribution is
	(a) \sqrt{npq} (b) \sqrt{np} (c) $\frac{\sqrt{q}}{p}$ (d) pq
4.	The mean and variance of a poisson distributions are
	(a) same (b) 0 (c)different (d) none of these
5.	The mean of the poisson distribution is
	(a) m (b) \sqrt{m} (c) np (d) none of these The mean of the exponential distribution is
6.	The mean of the exponential distribution is
	$(a) \frac{1}{\alpha} \qquad (b) \frac{1}{\alpha^2} \qquad (c) \frac{1}{\sqrt{\alpha}} \qquad (d) \propto$ The S.D of the exponential distribution is
7.	The S.D of the exponential distribution is
	The p.d. f of a continuous random variable is $f(x) = \frac{k}{\chi^3}$, $5 \le x \le 10$; 0 elsewhere,
8.	
	then the value of k is
	(a)1 (b) 50 (c) 200/3 (d) 200
9.	The marks obtained by the students were found normally distributed with mean 75 and
	variance 100, the percentage of students who scored more than 75 marks is
	(a) 70% (b) 50% (c) 25% (d) 65%
10.	The variance of poisson distribution with parameter $\lambda = 2$ is
	(a)4 (b) 2 (c) 0 (d) 1
11.	The area under the whole normal curve is
	(a) 1 (b) 0.5 (c) -0.5 (d) 0