Linear Algebra-A

Assignments - Week 8

Assignments from the Textbook (Hardcover)

Section 3.3: 22,24,27

Section 3.4: 1,2,3,4,5,6,8,13,15,16,17,27,28,30.

Note: #30(a): correction:

$$B = column \ 2 + \frac{1}{2}(column \ 1)$$
 and $C = column \ 3 + \frac{2}{3}(column \ 2)$

Supplementary Problem Set

1. Let
$$\mathbf{A} = \begin{bmatrix} -1 & 1 & 0 \\ 1 & -2 & 1 \\ 1 & -1 & 2 \\ 1 & -1 & -2 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} 2 \\ -2 \\ -1 \\ 3 \end{bmatrix}$.

- a) Explain why Ax = b is inconsistent.
- b) Find the least squares solution to Ax = b.
- c) Split \boldsymbol{b} into a column space component \boldsymbol{b}_c and a left nullspace component \boldsymbol{b}_l , i.e., $\boldsymbol{b} = \boldsymbol{b}_c + \boldsymbol{b}_l$.
- 2. Let v_1, v_2, \dots, v_m be linearly independent vectors in \mathbb{R}^n (n > m), and

$$\boldsymbol{A} = \begin{bmatrix} \boldsymbol{v}_1^T \\ \boldsymbol{v}_2^T \\ \vdots \\ \boldsymbol{v}_m^T \end{bmatrix}.$$

It follows that A is an $m \times n$ matrix with rank m.

Let w_1, w_2, \dots, w_{n-m} be a set of linearly independent vectors in \mathbf{R}^n satisfying $Aw_i = \mathbf{0}, \quad j = 1, 2, \dots, n - m$.

Show that the vectors $v_1, v_2, \dots, v_m, w_1, w_2, \dots, w_{n-m}$ are linearly independent. (Note: This is to say, the basis for the row space $C(A^T)$ and the basis for the nullspace N(A) together form a basis for \mathbb{R}^n .)

3. Let A be an $m \times n$ real matrix and A^T be its transpose. Show that the column spaces of A^TA and A^T are the same, i.e., $C(A^TA) = C(A^T)$.

(Note: This is another way to prove that for the least square method, the normal equation $A^T A x = A^T b$ is always solvable.)

4. Let $\mathbf{0} \neq \mathbf{v} \in \mathbf{R}^n$. Please give a matrix \mathbf{P} such that

$$\begin{cases}
Pv = 0 \\
Px = x, \forall x \in N(v^T)
\end{cases}$$

where $N(v^T)$ is the nullspace of v^T . In addition, please show that

- a) $\mathbf{P}^T = \mathbf{P}$ and $\mathbf{P}^2 = \mathbf{P}$.
- b) Please show that Pb is the projection of b onto the column space of P. The error vector b Pb is orthogonal to the space. In other words, please show that the inner product $(b Pb)^T Pc = 0$.
- 5. Let $\mathbf{A} = \begin{bmatrix} 1 & 1 & 2 & 2 \\ 1 & 2 & 1 & 2 \\ 3 & 5 & 4 & 6 \end{bmatrix}$.

Please give a 4 by 4 orthogonal matrix $\mathbf{Q} = [\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3, \mathbf{q}_4]$, such that $\mathbf{q}_1, \mathbf{q}_2 \in \mathcal{C}(\mathbf{A}^T)$ and $\mathbf{q}_3, \mathbf{q}_4 \in \mathcal{N}(\mathbf{A})$.