Assume that pairs of free throws are independent of each other and that our probabilities of success remain constant for all trials.

Let the random variable Y_1 represent the number of successful 2nd free throw shots in a sample of n_1 free throw pairs, where the 1st free throw shot was unsuccessful, drawn from a large population.

Based on our assumptions, Y_1 can be closely modelled by a binomial distribution with the following probability function:

$$P(Y_1 = y_1; \theta_1) = \binom{n_1}{y_1} \theta_1^{y_1} (1 - \theta_1)^{n_1 - y_1}$$
 for $y_1 = 0, 1, ..., n_1$ and $0 \le \theta_1 \le 1$

where θ_1 represents the probability of making the 2nd free throw shot after missing the 1st free throw shot.

Suppose we observed y_1 successful 2nd free throws after missing the 1st free throw from a sample of size n_1 . The likelihood function for θ_1 based on this data is

$$L(\theta_1) = P(y_1 \text{ 2nd free throws were made; } \theta_1)$$

$$= \binom{n_1}{y_1} \theta_1^{y_1} (1 - \theta_1)^{n_1 - y_1}$$

$$\propto \theta_1^{y_1} (1 - \theta_1)^{n_1 - y_1}$$

$$\propto \ln[\theta_1^{y_1} (1 - \theta_1)^{n_1 - y_1}]$$

$$= \ln(\theta_1^{y_1}) + \ln[(1 - \theta_1)^{n_1 - y_1}]$$

$$= y_1 \ln(\theta_1) + (n_1 - y_1) \ln(1 - \theta_1)$$

$$\frac{d}{d\theta_1}(y_1 \ln(\theta_1) + (n_1 - y_1) \ln(1 - \theta_1)) = y_1 \frac{d}{d\theta_1}(\ln(\theta_1)) + (n_1 - y_1) \frac{d}{d\theta_1}(\ln(1 - \theta_1))$$

$$= \frac{y_1}{\theta_1} - \frac{n_1 - y_1}{1 - \theta_1}$$

$$= \frac{y_1 - n_1 \theta_1}{\theta_1(1 - \theta_1)}$$

We maximize our likelihood function by setting the derivative, $\frac{y_1-n_1\theta_1}{\theta_1(1-\theta_1)}$, equal to zero and solving for θ_1 :

$$0 = \frac{y_1 - n_1 \theta_1}{\theta_1 (1 - \theta_1)} \implies \frac{y_1}{\theta_1 (1 - \theta_1)} = \frac{n_1 \theta_1}{\theta_1 (1 - \theta_1)} \implies y_1 = n_1 \theta_1 \implies \theta_1 = \frac{y_1}{n_1}$$

Therefore, the maximum likelihood estimate for θ_1 is $\hat{\theta}_1 = \frac{y_1}{n_1}$.

As an example, our observed data for LeBron James is $y_1 = 730$ and $n_1 = 951$, giving us $\hat{\theta}_1 = \frac{730}{951} \approx 0.7676$.

Defining Y_2 as the number of successfull 2nd free throw shots in a sample of n_2 free throw pairs where the 1st free throw shot was successful, and applying the same process, we get $\hat{\theta}_2 = \frac{1871}{2389} \approx 0.7832$, where θ_2 is defined as the probability of making the 2nd free throw shot after making the 1st free throw shot.

We would like to see if the difference between θ_1 and θ_2 is statistically significant at the 0.05 level.

Our null hypothesis is $H_O: \theta_1 = \theta_2$, and the alternative hypothesis is $H_A: \theta_1 \neq \theta_2$.

From the National Institute of Standards and Technology (www.itl.nist.gov/div898/handbook/prc/section3/prc33.htm), we have that

$$Z = \frac{\tilde{\theta}_1 - \tilde{\theta}_2}{\sqrt{\tilde{\theta}(1 - \tilde{\theta})(\frac{1}{n_1} + \frac{1}{n_2})}} \sim G(0, 1), \text{ where } \tilde{\theta} = \frac{n_1\tilde{\theta}_1 + n_2\tilde{\theta}_2}{n_1 + n_2}$$

.

Our test statistic is D = |Z|, and our observed value of D is $d \approx 0.9777$.

Our approximate p-value based on the Gaussian approximation is

p-value =
$$P(D \ge d; H_O)$$

= $P\left(\frac{|\tilde{\theta}_1 - \tilde{\theta}_2|}{\sqrt{\tilde{\theta}(1 - \tilde{\theta})(\frac{1}{n_1} + \frac{1}{n_2})}} \ge 0.9777\right)$
 $\approx P(|Z| \ge 0.9777)$
= $2[1 - P(Z \le 0.9777)]$
 $\approx 2(1 - 0.8359)$
= 0.3282

Since our p-value is greater than 0.05, we conclude that there is insufficient evidence to reject the null hypothesis for LeBron James.

We can repeat this process for each player with a large enough sample size using python.