

In-Situ Space Resource Utilization

By

Clyde Parrish, NASA/KSC

And The

**AIAA Space Colonization
Technical Committee
Session E01, STAIF 2005**

AIAA Space Colonization
Technical Committee

Introduction

In-Situ Resource Utilization *The Concept*

The production of commodities on other planetary bodies using locally available resources.

The Benefits

By “living off the land” mission mass and costs can be dramatically reduced, enabling self-sufficient missions

AIAA Space Colonization
Technical Committee

Mass Reduction

- Reduces Earth to orbit mass by 20 to 45%
- Estimated 300 MT/yr reduction in Earth logistics

Make what you need there instead of
bringing it all the way from Earth

“Living off the Land”

Cost Reduction

- Reduces number and size of Earth launch vehicles
- Allows reuse of landers

Risk Reduction

- Reduces dependence on Earth supplied logistics
- Enables self-sufficiency
- Provides backup options & flexibility
- Radiation Shielding

In-Situ Resource Utilization

Expands Human Exploration & Presence

- Increase Surface Mobility & extends missions
- Habitat & infrastructure construction
- Propellants, life support, power, etc.

Enables Space Commercialization

- Develops material handling and processing technologies
- Provides infrastructure to support space commercialization
- Earth, Moon, & Earth-Moon space manufacturing, and product/resource development, resupply, & transportation

AIAA Space Colonization
Technical Committee

Low Earth Orbit

High Earth Orbit

Earth-Moon L1

The Moon

Sun-Earth L2

Mars
(and its Moons)

Asteroids

For Now..
Getting Ready

As Early as 2010-2015 the Capability for...

Initial 50-100 day
Class Missions

As Early as 2015-2020 the Capability for...

300-1000 day class Initial
Interplanetary Missions

After 2020+ ...
Sustainable
Campaigns

With Diverse Opportunities to Enable
Continuing Commercial Development of Space

Human/Robotic Exploration and Development of Space

AIAA Space Colonization
Technical Committee

Planetary Resources and Products

Planetary Body	Space Resource	Potential Products
Moon	<u>Atmosphere</u> : Vacuum @ 10^{-9} to 10^{-12} torr <u>Regolith</u> : Pyroxene [CaSiO ₃ , MgSiO ₃ , FeSiO ₃ , Al ₂ SiO ₅ , TiSiO ₄] (50%), Olivine [MgSiO ₄ , Fe ₂ SiO ₄] (15%), Anorthite [CaAl ₂ Si ₂ O ₈] (20%), Ilmenite [FeTiO ₃] (15%) + traces [C <30 ppm, <200 ppm Cl, <400 ppm F, <100 ppm He, <10 ppm Ne, <10 ppm Ar] <u>Potential</u> : H ₂ O in permanently shadowed poles and ³ He on sun exposed surfaces	O ₂ , H ₂ , H ₂ O, Al, Mg, Ti, Fe, Ca, SiO ₂ Bulk regolith (radiation shielding, building material) CaO, Al ₂ O ₃ , MgO, TiO ₂ , Ne, S, F, Cl (misc. reagents) ³ He (potential fusion applications) Surface and orbit solar electric and thermal power Photovoltaic cells
Mars	<u>Atmosphere</u> : CO ₂ (95.5), N ₂ (2.7), Ar (1.6), O ₂ (0.15), CO (0.07), H ₂ O vapor (210 ppm), NO (100 ppm), Ne (2.5 ppm), Kr (0.3 ppm) @ 5.2 to 7.5 torr <u>Regolith</u> : SiO ₂ (43.5), Fe ₂ O ₃ (18.2), SO ₃ (7.3), Al ₂ O ₃ (7.3), MgO (6.0), Cl (0.8), TiO ₂ (0.6), TBD (16.3) <u>Surface/subsurface</u> : deposits of frozen H ₂ O ice and CO ₂	O ₂ , H ₂ , H ₂ O, Fe, Mg, Ti, Si Bulk regolith (radiation shielding, building material) MgO, TiO ₂ , N ₂ , Ar, CO ₂ Solar electric power

AIAA Space Colonization
Technical Committee

Planetary Resources and Products (cont)

Near Earth Asteroids Aten asteroids Apollo asteroids Amor asteroids	<p><u>Atmosphere:</u> Vacuum @10^{-9} to 10^{-12} torr</p> <p><u>Regolith:</u> Variable depending on type</p> <ul style="list-style-type: none">A - Olivine (or olivine-metal)C, F - Hydrated silicates, carbon, organicsQ - Olivine, pyroxene, metalS - Metal, Olivine, pyroxeneV - Pyroxene, feldspar (basalt) <p>[Note: Metals include: Fe, Ni, Co with traces of Mn, Cr, Ti, Ca, Al]</p>	Use as orbit to orbit transfer station and depot Specific products depend on physical makeup of the particular asteroid O_2 , FeO, MgO, Si, Ni, Co, Mn, Cr, Ti, Ca, Al Zero/micro gravity and vacuum manufactured materials
Phobos (Mars)	<p><u>Atmosphere:</u> Vacuum @10^{-9} to 10^{-12} torr</p> <p><u>Regolith:</u> hydrated silicates, carbon, organics (surface covered in 3' layer of fine powder. Subsurface ice possible)</p>	O_2 , H_2 , H_2O , Si, SiO_2 , hydrocarbon distillates, plastics Zero/micro gravity and vacuum manufactured materials
Demos (Mars)	<p><u>Atmosphere:</u> Vacuum @10^{-9} to 10^{-12} torr</p> <p><u>Regolith:</u> hydrated silicates, carbon, organics; subsurface ice possible</p>	O_2 , H_2 , H_2O , Si, SiO_2 , hydrocarbon distillates, plastics Zero/micro gravity and vacuum manufactured materials
Titan (Saturn)	<p><u>Atmosphere:</u> N_2 (90 to 95%), CH_4 (5 to 10%), H_2 (0.3), and traces of hydrocarbons, water vapor, and nitrides @ 1.5 bar</p> <p><u>Regolith:</u> water ice, silicates, liquid hydrocarbons</p>	N_2 , CH_4 , hydrocarbon distillates, plastics

AIAA Space Colonization
Technical Committee

Lunar Environment Micrometeoroids, Abrasive Soil & High Vacuum

- Equipment will be under constant micrometeoroid bombardment.
 - Thin walled equipment components preferred for their low mass, will need an erosion-resistant coating.
- Lunar soil is extremely abrasive due to the lack of weathering.
 - Problem is increased by the tendency of the soil to carry a significant electrical charge which causes it to stick to everything.
 - Dust will likely have serious effects on humans, electrical systems, and mechanisms.
- Development of materials and cleaning methodologies will be important to any long-term mission.

AIAA Space Colonization
Technical Committee

Lunar Mare Regolith

Ilmenite - 15%

$\text{FeO} \cdot \text{TiO}_2$	98.5%
---------------------------------	-------

Pyroxene - 50%

$\text{CaO} \cdot \text{SiO}_2$	36.7%
$\text{MgO} \cdot \text{SiO}_2$	29.2%
$\text{FeO} \cdot \text{SiO}_2$	17.6%
$\text{Al}_2\text{O}_3 \cdot \text{SiO}_2$	9.6%
$\text{TiO}_2 \cdot \text{SiO}_2$	6.9%

Olivine - 15%

$2\text{MgO} \cdot \text{SiO}_2$	56.6%
$2\text{FeO} \cdot \text{SiO}_2$	42.7%

Anorthite - 20%

$\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot \text{SiO}_2$	97.7%
---	-------

Solar Wind & Polar Ice/H₂

Hydrogen (H ₂)	50 - 150 ppm
Helium (He)	3 - 50 ppm
Helium-3 (³ He)	10 ⁻² ppm
Carbon (C)	100 - 150 ppm
Polar Water (H ₂ O)/H ₂	1 - 10%

Lunar Regolith Processing Options

Hydrogen Reduction
of Ilmenite/glass
Process

Sulfuric Acid
Reduction Process

Methane Reduction
(Carbothermal)
Process

Molten
Electrolysis

Vapor
Pyrolysis
Process

AIAA Space Colonization
Technical Committee

Mars ISRU Studies

- Focus has primarily been on Atmospheric processing.
 - Oxygen, Fuel, Water, Gas Acquisition & Separation
 - Dust may again be a problem
 - DART experiment was designed to study dust removal
 - Looking for flight opportunity on a future lander
- Chemical reactivity of soil needs to be understood.
 - Viking data showed strong soil reaction to warm temperatures and water.
 - Robotic program key to developing a better understanding.
- Spirit and Opportunity evidence for water

**AIAA Space Colonization
Technical Committee**

Carbon Dioxide (CO ₂)	95.5%
Nitrogen (N ₂)	2.7 %
Argon (Ar)	1.6%
Oxygen (O ₂)	0.15%
Water (H ₂ O)	<0.03%

Primary Process Technologies

- Sabatier Reactor (SR)
- Zirconia Solid Oxide Electrolysis (ZE)
- Water Electrolysis (WE)
- Reverse Water Gas Shift (RWGS) Reactor
- Methanol Reactor (MR)

Consumable Option	Production Option*
O ₂ Only	- ZE - RWGS & WE
O ₂ & H ₂ O	- RWGS & WE
O ₂ /Methane (CH ₄)	- SR, WE, & ZE - SR, RWGS, & ZE - SR & ZE
O ₂ /Methanol (CH ₃ OH)	- ZE & MR - RWGS, WE, & MR
O ₂ /Hydrogen (H ₂)	- WE
O ₂ /Carbon Monoxide (CO)	- ZE - RWGS & WE

*Bold denotes preferred option at this time

Mars ISRU Chemical Processes

Zirconia Solid Oxide Electrolysis (ZE)

Sabatier Catalytic Reactor (SR)

Water Electrolysis (WE)

Reverse Water Gas Shift (RWGS)

Methane Conversion to Hydrogen

Fuel Production from CO/CO₂ & H₂ (MR)

Fuel Production from CO₂ & CH₄

AIAA Space Colonization
Technical Committee

Lunar Ice?

- Lunar Prospector and Clementine detected elevated levels of Hydrogen at the Poles.
- One possible conclusion is that there is Water Ice in the permanently shaded areas of polar craters.
 - Hotly debated issue
 - “Ground-truth” is the best way to resolve the debate
- Lockheed Martin Astronautics and the Colorado School of Mines Technology Study.
 - Goal is to define the technologies needed for a small robotic system to explore Lunar “Cold Traps”
 - Part of the study will create an icy regolith simulant to characterize mechanical properties
- **Space Transportation Architectures and Refueling for Lunar and Interplanetary Travel and Exploration Report, Colorado School of Mines, KSC, Florida Institute of Technology, Northern Canadian Center for Advanced Technology, Global Aerospace Corp, and JSC**

AIAA Space Colonization
Technical Committee

ISRU-Products

- **Propulsion**
 - Ascent vehicles
 - Extended Mobility Vehicles
 - Planes, Hoppers
- **Energy Production and Storage**
 - Fuel Cell Reactants
 - Solar Cell Production
- **Raw Materials**
 - Metals
 - Building Materials
 - Plastics

AIAA Space Colonization
Technical Committee

ISRU Processes

- **Sabatier/Water Electrolysis (SWE)**
 $\text{CO}_2 + 4\text{H}_2 \Rightarrow 2\text{H}_2\text{O} + \text{CH}_4 + \text{Energy}$
 $2\text{H}_2\text{O} + \text{Energy} \Rightarrow 2\text{H}_2 + \text{O}_2$
- **Solid-Oxide Electrolysis**
 $2\text{CO}_2 + \text{Energy} \Rightarrow \text{O}_2 + 2\text{CO}$
- **Reverse-Water-Gas-Shift**
 $\text{CO}_2 + \text{H}_2 + \text{Energy} \Rightarrow \text{CO} + \text{H}_2\text{O}$
- **Carbothermal Process Produces Oxygen, Si, Fe from Lunar Regolith**
- **Higher Hydrocarbon Production**

AIAA Space Colonization Technical Committee

NEO Resource Commercialization

Propellants can come straight from water for return trip

Resource & prospecting information

Raw & processed materials for in-space manufacturing

Near Earth Asteroids

- Metal alloys in reduced forms for easy processing
- 30% of NEO's are dormant comets or have significant amounts of water
- 10% NEO's have lower round trip DV than the moon

Earth Orbit Operations

Vision of Future Space Exploration & Commercialization

Self-Sufficient Mars Settlements

Phobos / Deimos

Mars Orbit

Mars

Consumable production for surface, aerial, and Mars orbit/moon transportation

Assessable water, and in-situ resources for critical consumables & infrastructure/ habitat expansion

Earth-Moon Libration Points

Acts as staging & depot point

Jupiter
(H₂, D₂, ³He, CH₄)

Europa

(Ice, H₂SO₄)

Saturn

Titan

(N₂/CH₄, Ice, HCs)

Neptune

(CH₄, H₂, D₂, ³He)

Triton

(Ice, N₂/CH₄)

Solar System resources can be used for chemical, nuclear thermal, & fusion propulsion concepts

Solar array production & power beaming

Processed regolith for in-space manufacturing

Lunar Resource Utilization & Commercialization

Solar wind volatile extraction

Lunar Orbit

Refurbish, refuel, & reuse landers

Propellants can come straight from Lunar water or from processing plant

Electro-magnetic launch of consumables to Earth-Lunar staging point

Outpost Expansion, Lunar Settlement, & Tourism

Lunar regolith, concrete, bricks, and metals can be used for radiation shielding and infrastructure and habitat construction

Earth-Space Commercialization

Propellants, consumables, & processed regolith & NEO materials to support Earth orbit manufacturing and Lunar-Earth Transportation

AIAA Space Colonization
Technical Committee

Lunar Missions

Products

- Water From Poles
 - Other Volatiles
- Oxygen from Regolith
- Metals and Silicates
- Helium-3

Early Bases

- Water, Oxygen, Reactants
- Propellants

Conceptual Lunar Mining Operation

AIAA Space Colonization
Technical Committee

Mars Missions

Available Resources

- Carbon Dioxide from Martian Atmosphere
- Buffer Gasses; N₂, Ar
- Water from Regolith

Benefiting Missions

- Sample Return
- Extended Mobility Systems
- Depot-Based Missions

AIAA Space Colonization
Technical Committee

The Future

- Extended Human and Robotic Exploration
- Self-Sufficient Colonies
- True Space Economy

100-Person Mars Base Concept

AIAA Space Colonization
Technical Committee

Source of Buffer Gases

AIAA Space Colonization
Technical Committee

Capability Assessment Structure

WL

Mission Requirement

Capabilities Needed to Meet Requirement

Technologies Required to Deliver Capability

RWGS Oxygen Production

JW

AIAA Space Colonization
Technical Committee

ISRU Research, Technology, & Mission Integration Roadmap JS

In-Situ Resource Excavation & Separation

- Regolith Excavation
- Thermal/Microwave Extraction
- H₂O Separation
- CO₂ & N₂ Separation

Resource Processing

- Carbothermal Regolith Processing
- CO/CO₂ Processing to Fuel
- H₂O Electrolysis
- Microchannel Chemical/Thermal Processing

Consumable Storage & Distribution

- Cryocoolers
- Light Weight Tanks
- Disconnects/pumps

In-Situ Manufacturing

- Solar cell production
- Metallic part fab
- Polymer part fab.

Provides Information on Resources & Engineering Data for ISRU

Prospector Flt. Exp.
(Missions of opportunity)

Provides Water & Gases For Power, Propulsion, Life Support & Science

Provides O₂ & Reactants Power, Propulsion, Life Support & Science

Provides Logistics Reduction & Infrastructure Growth

Manufacturing Demo on ISS

[Si, Al, etc.]

Solar Cell Manufacturing Demo

AIAA Space Colonization
Technical Committee

Robotic Precursors & Tele- robotic Science

- Short trips from habitat or lander
- Lots of start/stops for science
- Lander or habitat resupplies Fuel Cell (FC) reactants when rover returns with samples

EVA Astronaut w/ Robotic Assistant

- Short trips (4 to 10 hrs)
- Rover carries equipment & supplies power
- Resupply EVA O₂ & FC reactants from Rover to extend EVA or emergency

Surface Exploration Infrastructure Concept JS

- Power-rich environment enables new science**
- Modular hardware & common consumables for reduced logistics, and increased flexibility & safety**
- Initial ISRU plant on Lander or Habitat produces consumables for EVA and rover life support & power initially**
- Infrastructure is easily expandable from simple robotic lander and rover to full human presence**

EVA Astronauts w/ Pressurized or Un- Pressurized Rovers

- Short trips from habitat
- 8 to 10 hrs
- Lots of start/stops for science
- Resupply EVA O₂ & FC reactants from Rover to extend EVA or emergency

- Long trips from habitat
- 1 to 5 days
- EVA's only for pre-screened science
- Rover stores EVA O₂ and power consumables – recharged before each EVA

Consumable Production

- Initial ISRU plant on Habitat Lander
 - Propellant tanks used for FC reactant & ELCSS backup storage
- Crew Lander reused with ISRU Propellant

AIAA Space Colonization Technical Committee

Supporting Research & Tech.

Power/Thermal/Chemical Technology

- Vacuum Vapor Deposition
- CO₂ & N₂ Separation
- High Pressure H₂O Electrolysis
- CO₂ Electrolysis
- Hydrocarbon Reformers
- Microchannel Heat Exchangers
- Microchannel Reactors
- Microchannel H₂O Separators
- Hydrocarbon Fuel Processors

Flow for In-Situ Resource Utilization

Self-Sufficient Space Systems

In-Situ Manufacturing

- Metallic Parts Mfg
- Polymer Parts Mfg
- Ceramic Parts Mfg
- Supporting Processes Systems
- Locally Integrated Sys. Components
- Locally Manufactured Energy Systems

System-Level Tech. Demos

Lunar/Planetary Exploration Demos

- ISS Manufacturing TFD (2012)
- Solar Array TFD (2015)

Resource Excavation & Separation

- Regolith Excavation
- Material Transport
- Electro/Thermal Separation
- Atmosphere/Volatile Collection & Separation
- Physical/Mechanical Separation
- Electromagnetic / Electrostatic

Resource Processing and Refining

- Mineral & O₂ Extraction
- Water-CO₂ Processing
- Ceramic & Glass Production
- Concrete & Brick Production
- Hydrocarbon & Plastic Production
- In-Situ Bio Support
- In-Situ Bio Processing

Surface Construction

- Surface Prep (Materials Moving & Conditioning)
- Excavation & Tunneling
- Structure/Habitat Fabrication
- Launch & Landing Site Construction

Consumable Storage & Distribution

- ISRU Cryogenic Fluid Liquefaction, Storage, and Distribution
- Life Support & Gas Consumables Cache
- Processing Reagent and Non-Cryogenic Storage and Distribution
- Hazard Detection and Suppression
- Distribution Systems

AIAA Space Colonization
Technical Committee

ISRU Mars Demonstration Concept

GRC

- Mars In-situ Propellant Rocket (MIPR)
 - Fly autonomously on Mars, manufacturing CO/O₂ from the atmosphere between each flight
 - Explores the Martian surface under rocket power, carrying a suite of science instruments over a range of hundreds of meters per hop
- Engine System: develop and demonstrate self-pressurization, natural engine throttle-down capability
- Power system: solar arrays and self-righting system
- Conceptual design analysis and trades: range and frequency of hops as function of dry weight, production plant, power

AIAA Space Colonization
Technical Committee

ISRU Production Technologies - Solid Oxide Fuel Cell Research (SOFC)

- Modified tape cast processing technique developed to fabricate SOFC with functionally graded and engineered pore structure
- Thin membrane allows for higher oxygen ion flux
- Porous support structures are impregnated with active electrocatalyst for CO₂ electrolysis and O₂ production
- Porous zirconia support allows wider range of electrocatalyst materials to be used
- Graded Pore Catalyst Support and Columnar Pore Catalyst Support fabricated with patent-pending NASA modified tape casting process. No pore formers or lamination required

AIAA Space Colonization
Technical Committee

ISRU Production Technologies

- Increase life of SOFC electrodes by investigating and characterizing the performance and long-term degradation of electrode materials
- Use Mixed-Ionic-Electronic-Conductor to increase the three-phase boundary area
- Fuel Reforming (Aero program)
 - Chemistry is different but processes are similar
 - Need help defining/exploiting synergy here

Fig. 2. Active region for CO_2 reduction: a) porous platinum. b) a porous mixed-conductor.

AIAA Space Colonization
Technical Committee

Space Power for ISRU - Solar

- **Chemical-based thin film deposition**
- **Ultra Lightweight Thin Film Solar Cell Arrays > 1 kW/kg**
 - Directly onto metallized space-qualified Kapton™ substrates
 - Low-temperature chemical Vapor Deposition
 - Electrochemical Deposition
 - Chemical Bath Deposition
- **GRC Milestones (Goal: 20% dual-junction CIS-based thin-film cell)**
 - Demonstrated 9% AMO Cu(In,Ga)S₂ thin-film “top” cell
 - Demonstrated 12% AMO Cu(In,Ga)Se₂ thin-film “bottom” cell
- **Far Term - Humans on Mars using thin film PV on thin polymer membrane enabling small packaging volume, low mass**
 - 1000-Day Surface mission, operate ISRU plant and support crew
 - 5000 m², 100 kW class array
 - Auto-deploy tent structures, 4.5 m high x 100 m long

AIAA Space Colonization
Technical Committee

Space Power for ISRU - Nuclear

- Jupiter Icy-Moons Orbiter (JIMO)
 - Phase A studies investigating applications of JIMO class reactors for surface power applications in addition to Nuclear Electric Propulsion (NEP) missions
 - A range of reactor power is required depending on energy conversion selected (dynamic vs. static) and mission requirements
- GRC, as part of a larger agency team, is conducting architectural studies & systems analysis for reactor based power systems for both surface power and in-space NEP transportation systems
- GRC is responsible for system trades, systems analysis, architectural studies requirements development and supporting technology development for:
 - Reactor to energy conversion interface
 - Energy conversion systems
 - Heat rejection systems
 - High power management and distribution systems
 - Interface/requirements for power to ISRU

AIAA Space Colonization
Technical Committee

ISRU Technology Development Alternative Oxygen Production

- **Molten Carbonate Cell**
 - Lower Power and Temperature than Zirconia-based electrolysis.
- **Ionic Liquids (Low TRL)**
 - “Room Temperature” Liquid that will allow the electrolysis of dissolved Carbon Dioxide
 - Low temperature solution to the CO₂ electrolysis problem.
 - Small lab demonstration completed, more work needed to synthesize a stable Ionic Liquid.

Molten Carbonate Test Cell

AIAA Space Colonization
Technical Committee

Gas Separation Immobilized Liquid Membrane

- KSC Invention that will allow the creation of highly selective gas separation membranes.
- Early work suggests that a 10,000 to 1 selectivity of CO_2 vs. O_2 can be obtained.
- Diagram shows a microcapsule and a group of microcapsules on a porous membrane.
- Applications in Habitat and EVA air revitalization and ISRU process gas separation

AIAA Space Colonization
Technical Committee

Self-Healing Wire Insulation

- Kapton wire breaks are common on all aerospace vehicles
- KSC has a development program underway in partnership with the FAA and US Air Force to develop Self-Healing Wire Insulation
- Leverages off of the work we've done in microencapsulation for Halon replacement and membrane separation.
- Early years of the program will yield an insulation repair kit where the tech will only have to apply the repair material over the breach and initiate cure manually.

AIAA Space Colonization
Technical Committee

Electrostatic Radiation Shielding

- Proposed lightweight solution to the space radiation problem, self-inflating charged spheres create an electrostatic field that repels charged radiation.
- Eliminates the secondary radiation caused by passive shields.
- Reliable, achievable electrostatic generator technology used to charge the spheres.
- Current research is on momentum transfer and power requirements.
- To be published in 2004 IEEE Aerospace Conference Proceedings

Protons and ions repelled: Electrons repelled:

AIAA Space Colonization
Technical Committee

Collapsible Cryogenic Storage Tanks

- Dedicated storage tank for in-situ produced propellants or consumables.
 - NOT a flight tank
- Very efficient packaging for launch
- Tested to date for LOX compatibility and temperatures

Tank Bladder

Demonstration of Completed Tank Expandability

AIAA Space Colonization
Technical Committee

Liquid Oxygen Transport/Sensor Research

- Both capacitive and inductive liquid oxygen sensors have been demonstrated to measure density, total mass, and bubbles.
- Two non-mechanical methods for pumping LOX have been demonstrated using magnetic fields, a pulsed solenoid method and a thermal gradient approach.
- These devices allow LOX to be transported and monitored with no moving parts, just coils, plates, and electronics.
- Currently we are extending our capacitive sensor work to operate in the high pressure LOX tanks at SSFC.
- We have six publications and one patent in this area.

AIAA Space Colonization
Technical Committee

SRU Sessions Moon & Mars

- Session E04. Space Resource Utilization on Mars
 - Spiral Development of a Deep Drill for Planetary Exploration Leveraging Terrestrial Mining
 - Effect of Temperature on Membrane Separation of Gases from the Martian Atmosphere
 - *In-Situ* Resource Utilization Robotic Precursor Missions for Human Exploration of Mars
 - Microchannel Reactors for ISRU Applications

SRU Sessions Moon & Mars

- Session E07. Space Resource Utilization on the Moon
 - Solar Thermal Power System for Lunar ISRU Processes
 - Validation of the Bucket Wheel Excavator Design As a Primary Lunar Regolith Mining Mechanism
 - Carbon Reduction for Oxygen Production
 - Granular Materials and the Risk They Pose for Success on the Moon and Mars

AIAA Space Colonization
Technical Committee

Acknowledgments

- Jerry Sanders, Johnson Space Center
- Jonathan Whitlow, Florida Institute of Technology
- Bill Larson, Kennedy Space Center
- Scott Baird, Johnson Space Center
- Diane Linne, Glenn Research Center
- Robert Wegeng, NASA HQ