MS CLASS XII CHEMISTRY 2019-20

Q.No.	Value points	Marks
	SECTION:A	
1.	Reaction taking place at cathode when the battery is in use:	
	$PbO_2(s) + SO_4^{2-}(aq) + 4H^+(aq) + 2e^- \rightarrow PbSO_4(s) + 2H_2O(l)$	1
2.	2 F	1
3.	$Molarity = \frac{38 \times 1.294 \times 1000}{98 \times 100} = 5.02M$	
4.	It can be recharged after use.	1
5.	At anode: O ₂ (g) At cathode: H ₂ (g)	1/2 1/2
6.	Sodium cyanide.	1
7.	Nucleotide	1
8.	Zwitterion / dipolar ion	1
9.	Condensation	1
10.	Benzaldehyde	1
11.	(c)	1
12.	(b)	1
13.	(b)	1
14.	(a)	1
15.	(b)	1
16.	(c)	1
17.	(a)	1
18.	(d)	1
19.	(d)	1
20.	(d)	1
21	SECTION:B	1
21.	Lone pairs: 2	1
22.	Geometry : Square planar	1
(i)	$Slope = -\frac{E_a}{2.303R}$	1
(ii)	k 1> k2	1
23.	When there is dissociation of solute into ions, in dilute solutions (ignoring interionic attractions) the number of particles increases. As the value of colligative properties depends on the number of particles of the solute, the experimentally observed value of colligative property will be higher than the true value, therefore the experimentally determined (observed) molar mass is always lower than the true value.	1
	For KCl(electrolyte) the experimentally determined molar mass is always	1/2

	lower than the true value when water is used as solvent. Glucose (non-electrolyte) does not show a large variation from the true value.	1/2
24. (a)	CH ₃ -CH(CI)-COOH	1
(b)	C ₆ H ₅ CHO	1
25.	en Pt en Cl trans-[Pt(en) ₂ Cl ₂] ²⁺	1
	IUPAC Name of the entity: Dichloridobis(ethane-1,2-diamine)platinum(IV) ion OR	1
	Bonding in $[CO(NH_3)_6]^{3+}$ d^2sp^3 hybridisation (i) Atomic orbitals of Co (III) ion (1) $\frac{3d}{3d}$	1/2
	d^2sp^3 hybridised orbitals of Co (III) ion Formation of [Co(NH ₃) ₆] ³⁺ $3d$ d^2sp^3 hybrid The property of the section of the s	1/2
	Geometry: Octahedral	1/2
	Diamagnetic	1/2
26.	Vapour phase refining: It is a refining method in which the metal is converted into its volatile compound and collected elsewhere. It is then	1
	decomposed to give pure metal. Example: Mond's Process for refining of Nickel / van Arkel method for refining of Zirconium	1

	Equations involved:	
	$Ni + 4CO \xrightarrow{330-350K} Ni(CO)_4$	1/2
	$Ni(CO)_4 \xrightarrow{450-470K} Ni + 4CO$	1/2
	OR Extraction of gold involves leaching the metal with CN ⁻ Oxidation reaction: 4 Au (s) + 8 CN- (aq.) + 2H ₂ O (aq.) + O ₂ (g) →4[Au(CN) ₂] ⁻ (aq.) + 4 OH ⁻ (aq.)	
	The metal is recovered by displacement method: $2[Au(CN)_2]-(aq.) + Zn(s) \rightarrow 2 Au(s) + [Zn(CN)_4]^{2-}(aq.)$	1/2
	Zinc acts as a reducing agent.	1/2
27.	The following compound will undergo S _N 1 faster:	
	CH ₂ CI	1/2
	Greater the stability of the carbocation, greater will be its ease of formation from the corresponding halide and faster will be the rate of reaction. The benzylic carbocation formed gets stabilised through resonance.	1/2
	$ \bigoplus_{CH_2} \bigoplus_{CH_2} \bigoplus_{CH_2} \bigoplus_{CH_2} \bigoplus_{CH_2} \bigoplus_{(iii)} \bigoplus_{(iii)} \bigoplus_{(iv)} \bigoplus_{CH_2} \bigoplus_{CH_2$	1/2
	$=\begin{bmatrix} CH_2 \\ CH_2 \end{bmatrix}$	
	(v) (vi) CH ₃ CH ₂ CH ₂ Cl forms a 1 ⁰ carbocation, which is less stable than benzylic carbocation.	1/2
	SECTION:C	
28.	$KC1 \rightarrow K^+ + C1^-$ $n = 2$	1/2
	$i = 1 - \alpha + n\alpha$ $i = 1 + \alpha$	1/2 1/2

	$\Delta T_f = iK_f m$	1/2
	$= (1 + 0.92) \mathbf{x} 1.86 \mathbf{x} \frac{0.5 \mathbf{x} 1000}{74.5 \mathbf{x} 100}$	1/2
	$\Delta T_f = 0.24$	1/
	$\Delta T_f = T_f^0 - T_f$	1/2
	$T_f^{'} = -0.24 {}^{0}C$	
29.	$rate = k [A]^x [B]^y$	
	$0.05 = k[0.1]^x[0.1]^y$ (i)	
	$0.10 = k[0.2]^{x}[0.1]^{y} (ii)$	
	$0.05 = k[0.1]^x[0.2]^y$ (iii)	
	$(ii) \div (i)$	
	$\frac{0.10}{0.05} = (2)^x$	
	x=1	
	$(iii) \div (i)$	
	$\frac{0.05}{0.05} = (2)^{y}$	
		1/2
	$y = 0$ $rate = k[A]^{1}[B]^{0}$	72
	It is a first order reaction.	
	$k = \frac{rate}{[A]} = 0.5 s^{-1}$	1/2
		1/2
	$t_{\frac{1}{2}} = \frac{0.693}{k} = \frac{0.693}{0.5}$	
	$t_{\frac{1}{2}} = 1.386 \text{ s}$	1/2
	OR	
	$t_{\frac{1}{2}} = \frac{0.693}{k}$	1/2
		1/2
	$k_2 = \frac{0.693}{25} \qquad 350K$, 2
	$k_1 = \frac{0.693}{50} \qquad 300K$ $\frac{k_2}{k_1} = 2$	1/2
	50	
	$\frac{\kappa_2}{k} = 2$	
	κ_1	
		1,
		1/2

	$\log \frac{k_2}{k_1} = \frac{E_a}{2.303 R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$	1/2
	$\log 2 = \frac{E_a}{2.303 \mathbf{x} 8.314} \left[\frac{350 - 300}{350 \mathbf{x} 300} \right]$	1/2
	Ea = 12.104 kJ / mol.	(1/2 +1/2)
30.		. 172)
(a)	$K_4[Fe(CN)_6]$	1
(b)	$Fe(OH)_3$ is converted into colloidal state by preferential adsorption of Fe^{3+} ions.	1
(c)	Proteins	1
31. (a) (b)	Moist sulphur dioxide behaves as a reducing agent, reduces MnO_4 to Mn^{2+} . $X-X$ bond in interhalogens is weaker than $X-X$ bond in halogensexcept F-F bond.	1
(c)	Due to the ease with which it liberates atoms of nascent oxygen.	1
32.	1-Propoxypropane is formed. Mechanism involved:	1
	Step 1 :Formation of protonated alcohol CH ₃ CH ₂ CH ₂ OH + H ⁺ — H ₂ SO ₄ → CH ₃ CH ₂ CH ₂ — Q ⁺	1/2
	Propan-1-ol Step 2: Nucleophilic attack	
	$CH_{3}CH_{2}CH_{2} - \ddot{O}: + CH_{3} - CH_{2} - CH_{2} - CH_{2} - \ddot{O} + CH_{3}CH_{2}CH_{2} - \ddot{O} - CH_{2}CH_{2}CH_{3}$ $H + CH_{3}CH_{2}CH_{2} - \ddot{O} + CH_{2}CH_{2}CH_{3}$ $H + CH_{3}CH_{2}CH_{2} - \ddot{O} + CH_{2}CH_{2}CH_{3}$ $H + CH_{3}CH_{2}CH_{2} - \ddot{O} + CH_{2}CH_{2}CH_{3}$	1
	Step 3: Deprotonation	1/
	$CH_3CH_2CH_2 - \overset{\circ}{O} - CH_3CH_2CH_2 \longrightarrow CH_3CH_2CH_2 - O - CH_2CH_2CH_3 + H^+$ $I - Propoxypropane$	1/2
33. (a)		
(i)		
	1	1

	Experiment	Ethanal	Propanone	
	1.Tollens Test:		•	
	Warm the organic	A bright silver mirror	No silver mirror is	
	compound with	is produced	formed.	
	freshly prepared			
	ammonical silver			
	nitrate			
	solution(Tollen's			
	reagent).			
	2.Fehlings Test:			1
	Heat the organic	A reddish bown	No precipitate is	
	compound with	precipitate is	obtained	
(ii)	Fehling's reagent.	obtained.		
	Any one test			
		1		
	Experiment	Pentan-2-one	Pentan-3-one	
	IodoformTest:			
	The organic	A yellow precipitate	No yellow precipitate	
	compound is heated	is obtained.	is obtained.	
	with iodine in			
	presence of sodium			
(b)	hydroxide solution.			
	3,4-Dinitrobenzoic acid The carbon atom of the electrophilic than carbon	<benzoic acid<4-="" nitrol<="" p=""> OR carbonyl group of benzal n atom of the carbonyl group is reduced in active than ethanal. CH = OH</benzoic>	ldehyde is less oup present in ethanal.	1 1 1
34.				1
(a)	negative bacteria.		Gram-positive and Gram-	1
	e.g. Chloramphenicol.	.1.		1/2
(1-)	any other suitable examp	pie.		
(b)	Analgesics:			

	Reduce or abolish pain without causing impairement of consciousness,	
	mental confusion, incoordination or paralysis or some other disturbances of nervous system.	
	e.g. Aspirin / paracetamol etc.	1
	any other suitable example.	
		1/2
2.5	SECTION:D	
35. (a)	$E \rightarrow 2H^{+} \rightarrow H \rightarrow E^{2+}$	
(a)	$Fe + 2H^+ \rightarrow H_2 + Fe^{2+}$	
	$E_{cell} = E_{cell}^{0} - \frac{2.303RT}{nF} \log \frac{Fe^{2+}}{[H^{+}]^{2}}$	1
	$E_{cell}^{0}\!=\!E_{H^{+}/H_{2}}^{0}-E_{Fe^{2+}/Fe}^{0}$	
	= 0 - (-0.44) = 0.44V	1/2
	$0.1745 = 0.44 - \frac{0.0591}{2} \log \frac{[0.1]}{[x]^2}$	/ 2
	$\frac{0.1743 - 0.444 - \frac{1}{2} \log \frac{1}{[x]^2}}{2}$	1/2
	Log x = -5	
	$Log[H^+] = -5$ $[H^+] = 10^{-5}$	1/2
		/ 2
(b)	The mass of copper and silver deposited at the cathode will be different.	1
	The amount of different substances deposited by the same quantity of	1
	electricity passing through the electrolytic solution are directly proportional to their chemical equivalents.	1
	to their enormous equivalents.	
	OR	
(a)	$\Lambda^{o}(CH_{3}COOH) = \lambda^{o}_{H^{+}} + \lambda^{o}_{CH_{3}COO^{-}}$	1/2
	$\Lambda \left(CH_{3}COOII \right) = \lambda_{H^{+}} + \lambda_{CH_{3}COO^{-}}$	
	$= 349.6 + 40.9 = 390.5 \text{ S cm}^2 \text{ mol}^{-1}$	1/2
		1/2
	$\Lambda_m = \frac{\kappa \times 1000}{c}$	/2
	$\Lambda_m = \frac{8.0 \times 10^{-5} S cm^{-1} \times 1000 cm^3 L^{-1}}{0.0024 mol L^{-1}} = 33.33 S cm^2 mol^{-1}$	1/2
	$\Lambda_m = \frac{1}{0.0024 mol L^{-1}} = 33.333 cm^{-1} mol$	
	$\alpha = \frac{\Lambda_m}{\Lambda_m}$	1/2
	$lpha=rac{\Lambda_m}{\Lambda_m^o}$	/ 2
	$\alpha = \frac{33.33 \ S \ cm^2 \ mol^{-1}}{390.5 \ S \ cm^2 \ mol^{-1}} = 0.085$	
	$\alpha - \frac{\alpha}{390.5 \ S \ cm^2 \ mol^{-1}} - 0.065$	1/2
(b)	Electrolyte B is a strong electrolyte.	1
(3)	Limiting molar conductivity increases only to a smaller extent for a strong	1/2
	electrolyte, as on dilution the interionic interactions are overcome.	
	Limiting molar conductivity increases to alarger extent for a weak	
	Limiting molar conductivity increases to alarger extent for a weak electrolyte, as on dilution the degree of dissociation increases, therefore the	1/2

36.		
	$(A) \qquad \qquad (B) \qquad \qquad (C)$	
	$\begin{array}{c} \text{CONH}_2 \\ \hline \\ \hline \\ \Delta, \text{KOH(aq)} \end{array} \begin{array}{c} \text{NH}_2 \\ \hline \\ \hline \\ 0^0 \text{C} \end{array}$	
	Br_2 H_2O \triangle CH_3CH_2OH NH_2 Br	
	+ CH ₃ CHO + N ₂ + HCl	
	(E) (D)	5
	$(1/2 \times 5)$ marks for structure and $\frac{1}{2} \times 5$ for writing equations)	
(a)	OR	
(a) (i)	$\begin{array}{c c} NH_2 & N_2^+Cl^- \\ \hline NaNO_2 + HCl & HBF_4 \\ \hline 0^0 C & Heat \end{array}$	1
(ii)	CONH ₂ CH ₂ NH ₂ LiAlH ₄	1
(iii)	\triangle ,ether	1
	$CH_{3}CH_{2}NH_{2} \xrightarrow{C_{2}H_{5}Cl} \begin{array}{c} H \\ C_{2}H_{5}-N-C_{2}H_{5} \end{array} \xrightarrow{C_{2}H_{5}Cl} C_{2}H_{5} -N-C_{2}H_{5}$ $C_{2}H_{5}-N-C_{2}H_{5}$ $C_{2}H_{5}$	
(b)		1/2 1/2
(i)	A: CH ₃ CH ₂ CONH ₂	
(ii)	B: CH ₃ CH ₂ NH ₂	1/2 1/2

	A: CH ₃ CH ₂ CH ₂ NH ₂ B:CH ₃ CH ₂ CH ₂ OH	
37.		(1/2x
(a)	$A = FeCr2O4 \qquad B = Na2CrO4 \qquad C = Na2Cr2O7$ D = K2Cr2O7	2)
(b)		
(i)	5f, 6d and 7s levels in actinoids are of comparable energies.	1
(ii)	This is due to poorer shielding by 5f electrons in actinoids as compared to shielding by 4f electrons in lanthanoids.	1
(iii)	In actinoids, 5f electrons are more effectively shielded from the nuclear charge than the 4f electrons of the corresponding lanthanoids. Since the outer electrons are less firmly held, they are available for bonding in the actinoids.	1
	OR	
(a)		
(i)	MnO_4^{2-} ions disproportionate in acidic medium to give Permanganate ions and Manganese(IV) oxide.	1/2
	$3MnO_4^{2-} + 4H^+ \rightarrow 2MnO_4^- + MnO_2 + 2H_2O$	1/2
(ii)	Lanthanum sulphide if formed.	1/2
	$2La + 3S \xrightarrow{heat} La_2S_3$	1/2
(1-)	(Deduct overall ½ mark if equation not balanced/ statements not written)	
(b)		
(i)	Copper has high enthalpy of atomisation and low enthalpy of hydration. Since the high energy to transform Cu(s) to Cu ²⁺ (aq) is not balanced by hydration enthalpy, therefore $E^o(M^{2+}/M)$ value for copper is positive(+0.34 V).	1
(ii)	Cr^{2+} is reducing as its configuration changes from d^4 to d^3 , the latter having more stable half filled t_{2g} level. On the other hand, the change from Mn^{3+} to Mn^{2+} results in extra stable d^5 configuration.	1

(iii)	This is due to the increasing stability of the species of lower oxidation state to which they are reduced.	1