

## MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: B5-M101/B5M101 Mathematics ~IA UPID: 001004

Time Allotted: 3 Hours

Full Marks:70

The Figures in the margin indicate full marks. Candidate are required to give their answers in their own words as far as practicable

## Group-A (Very Short Answer Type Question)

| 1 Δι        | SSSMOR        | any ten of the following:                                                                                                                                           | $[1 \times 10 = 10]$ |
|-------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 1. 7        | - (I)         | The radius of curvature of the parabola y <sup>2</sup> = 4x at its vertex is                                                                                        |                      |
|             | _(11)         | If f(x) satisfies the conditions of Rolle's theorem in [a,b], then we get a point on the curve in which the                                                         | he tangent is        |
|             | _1/           | parallel to                                                                                                                                                         |                      |
|             | _ (111)       | If A is an idempotent matrix, then I-A is                                                                                                                           |                      |
|             | <b>∕</b> (IV) |                                                                                                                                                                     | nel T is             |
|             |               | (a) $(0,0,0)$ (b) $y - axts(c) y - axts(d) z - axts$                                                                                                                |                      |
|             | (V)           | If 4 is an eigen value of the matrix A then the eigen value of the matrix A+kl is                                                                                   |                      |
|             | <b>/</b> (∨I) | A function of x and y possessing continuous partial derivatives of the first and second orders is called function if it satisfies                                   | da harmonic          |
|             |               | (a) Homogeneous equation (b) Laplace equation (c) Lagrange's equation (d) none of these                                                                             |                      |
|             | ∕ (VII)       | If Rolle's theorem is applied for the function $f(x)=x(x^2-1)$ in [0,1], then $c=$                                                                                  |                      |
| y <b>.</b>  | _ (VIII)      | [100 101 102]                                                                                                                                                       |                      |
|             |               | The value of 105 106 107 is                                                                                                                                         |                      |
|             |               | 110 111 112 <br>                                                                                                                                                    |                      |
|             | _ (IX)        | $(\alpha)^2$ $(b)^0$ $(c)^{405}$ $(d)^{-1}$                                                                                                                         |                      |
|             | _ (1/1        | The eigen value of $A = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$ is                                                                                            |                      |
|             |               | (a)2.4  (b)0.4  (c)0.2  (d)0.0                                                                                                                                      |                      |
|             | / (x)         | The eigen values of the matrix $\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ are                                                                                 |                      |
|             |               | (a) $-1,-2$ (b) $1,2$ (c) $3,1$ (d) $-3,-1$                                                                                                                         |                      |
|             |               | (a)-1,-2 (b)1,2 (c)3,1 (d)-3,-1<br>$\Gamma(m)\Gamma(1-m) = (a)\frac{2\pi}{\sin \pi} (b)\frac{3\pi}{\sin m\tau} (c)\frac{\pi}{\sin m\tau} (d) \text{ none of these}$ |                      |
|             | (XII)         | If $\lim_{x\to 0} \frac{\alpha e^x - b}{x} = 2$ , then                                                                                                              |                      |
|             |               | (a)a = 2; b = 2 $(b)a = 1; b = 1$ $(c)a = 0; b = 1$ $(d)$ none of these                                                                                             | - M<br>- M           |
|             |               | Group-B (Short Answer Type Question)                                                                                                                                |                      |
|             |               | Answer any three of the following:                                                                                                                                  | [5 x 3 = 15]         |
| 2.          | Shov          | w that intersection of two subspaces of a vector space V, is a subspace.                                                                                            | [5]                  |
| _3.         |               | ermine k so that the set S is linearly dependent in R <sup>3</sup> ={ (1,2,1), (k,3,1), (2,k,0)}                                                                    | [5]                  |
| 4.          | Defir         | ne a basis set of a vector space $V^3$ . Show that the set of vectors $\{(1,-2,3), (2,3,-1), (-1,3,2)\}$ forms a                                                    | [5]                  |
|             |               | s of the vector space V <sup>3</sup> over the field of real numbers.                                                                                                |                      |
| <b>-</b> 5. |               | ne linearly dependence and independence of vectors. Prove that a set of vectors containing null vector arrays the searly dependent.                                 | or [5]               |
| <b>-</b> 6. | Shov          | w that W = $\{(x,y,z) \in \mathbb{R}^3 / x + y \neq z = 0\}$ is a subspace of $\mathbb{R}^3$ . Find also a basis of W.                                              | [5]                  |

Group-C (Long Answer Type Question)

|      |     | Answer any three of the following:                                                                                                                                                               | $[15 \times 3 = 45]$ |
|------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 7.   | (a) |                                                                                                                                                                                                  | [5]                  |
|      |     | Prove that $\int_{0}^{1} \frac{\log (1-x)}{1+x^2} dx = \frac{\pi}{8} \log 2$                                                                                                                     | [5]                  |
|      | (b) | Find the volume of the solid generated by revolving the ellipse $\frac{x^2}{a^2} - \frac{y^2}{b^2} - 1$ ( $a > b$ ) about the major axis                                                         | [3]                  |
|      | (c) | Show that $\Gamma(n+1) = n\Gamma(n), n > 0$                                                                                                                                                      | [5]                  |
| 8.   | (a) | Use mean value theorem, show that $0 < \frac{1}{\lambda} \log \frac{e^{\lambda} - 1}{\lambda} < 1$ , for x>0.                                                                                    | [5]                  |
|      |     |                                                                                                                                                                                                  | [5]                  |
|      | (c) | Evaluate $\lim_{x \to \infty} \frac{\tan x - x}{x - \sin x}$                                                                                                                                     | [5]                  |
| -9.  | (a) | Show that $\begin{vmatrix} 1 - a^2 - b^2 & 2ab & -2b \\ 2ab & 1 - a^2 - b^2 & 2a \\ 2b & -2a & 1 - a^2 - b^2 \end{vmatrix} = (1 - a^2 - b^2)^{\frac{1}{2}}$                                      | [5]                  |
|      | (b) | Expand by Laplace's method, to show that $\begin{vmatrix} 0 & a & b & c \\ -a & 0 & d & e \\ -\dot{b} & -\dot{d} & 0 & f \end{vmatrix} = (af - be - cd)^{\frac{1}{2}}$                           | [5]                  |
|      | (c) | Given, $x - 4y - 2z = 1$ ; $2x - 7y - 5z = 2k$ ; $4x - ay - 10z = 2k - 1$<br>Find for what values of $k$ and $\alpha$ , the system has (i)unique solution (ii) no solution (iii) many solutions. | [5]                  |
| -10  | (a) | Show that an orthogonal set of non-null vectors in an inner product space is independent.                                                                                                        | [5]                  |
|      | (b) | Show that $A=\{(5,0,0), (0,3,0), (0,0,1)\}$ is an orthogonal set of $R^3$ . Express $r=(2,1,4)$ as a line combination of the vectors of A.                                                       | ear [5]              |
|      | (c) | Use Gram-Schmidt process to convert the basis $\{(1,2,-2), (2,0,1),(1,1,0)\}$ of $\mathbb{R}^3$ into an orthogobasis and then to an orthonormal basis.                                           | nal [5]              |
| -11. | (a) | Determine the eigen vectors of $A = \begin{pmatrix} 5 & 4 \\ 1 & 2 \end{pmatrix}$ and then diagonalise with the help of basis eigen vectors.                                                     | [5]                  |
|      | (b) | Use Gram Schmidt process to obtain an orthonormal basis of the subspace of the Euclidean space R*                                                                                                | [5]                  |
|      |     | with standard inner product generated by the linearly independent set $\{(1,1,0,1),(1,1,0,0),(0,1,0,1)\}$                                                                                        | [5]                  |
|      | (c) | Find a basis of a real vector space R <sup>3</sup> containing the vectors (1,1,2) and (3,5,2)                                                                                                    | [5]                  |
|      |     |                                                                                                                                                                                                  |                      |

\*\*\* END OF PAPER \*\*\*