

RESUMINDO: ALGORITMO SIMPLEX

• Método / Algoritmo simplex:

• O Simplex é um algoritmo (sequência finita de instruções que termina em um número finito de operações) que faz uso de um ferramental baseado em álgebra linear para determinar, por um método iterativo, a solução ótima de um PPL.

• Princípio do algoritmo:

- Já vimos que a solução ótima de um PPL é um ponto extremo (solução básica viável).
- Em grandes problemas o número de pontos extremos pode ser muito grande.

- 1. Introduzir as variáveis de folga, uma para cada desigualdade;
- 2. Montar um quadro para os cálculos, colocando os coeficientes de todas as variáveis com os respectivos sinais e, na última linha, incluir os coeficientes da função objetivo transformada;
- 3. Estabelecer uma solução básica inicial, usualmente atribuindo valor zero às variáveis originais e achando valores positivos para as variáveis de folga;

- 4. Como próxima variável a entrar na base, escolher a variável não básica que oferece, na última linha, a maior contribuição para o aumento da função objetivo (ou seja, tem o maior valor negativo).
 - Se todas as variáveis que estão fora da base tiverem coeficientes nulos ou positivos nesta linha, a solução atual é ótima.
 - Se alguma dessas variáveis tiver coeficiente nulo, isto significa que ela pode ser introduzida na base sem aumentar o valor da função objetivo.
 - Isso quer dizer que temos uma solução ótima, com o mesmo valor da função objetivo.

- 5. Para escolher a variável que deve deixar a base, deve-se realizar o seguinte procedimento:
 - Dividir os elementos da última coluna pelos correspondentes elementos positivos da coluna da variável que vai entrar na base.
 - Caso não haja elemento nenhum positivo nesta coluna, o processo deve parar, já que a solução seria ilimitada.
 - O menor quociente indica a equação cuja respectiva variável básica deverá ser anulada, tornando-se variável não básica.

- 6. Usando operações válidas com as linhas da matriz, transformar o quadro de cálculos de forma a encontrar a nova solução básica.
 - A coluna da nova variável básica deverá se tornar um vetor identidade, onde o elemento 1 aparece na linha correspondente à variável que está sendo anulada.
- 7. Retornar ao passo 4 para iniciar outra iteração.

QUADRO DO SIMPLEX NOS CASOS ESPECIAIS DA PROGRAMAÇÃO LINEAR

- Algoritmo simplex que inicia a partir de uma solução básica inicial viável, passando, em cada iteração de um vértice para um outro com valor associado da função objetiva não pior que o anterior.
- Um problema de programação linear pode apresentar os seguintes tipos de soluções
 - uma única solução ótima;
 - soluções múltiplas;
 - solução ilimitada e indeterminada.

QUADRO DO SIMPLEX NOS CASOS ESPECIAIS DA PROGRAMAÇÃO LINEAR

QUADRO DO SIMPLEX NOS CASOS ESPECIAIS DA PROGRAMAÇÃO LINEAR

Solução ótima

• O critério de parada foi atendido e se efetuar novas interações o resultado será o mesmo.

Múltiplas Solução

- O critério de parada foi atendido, porém, se efetuar novas interações outras soluções viáveis serão geradas
 - A identificação da ocorrência de Soluções Ótimas múltiplas é feita, no Quadro Ótimo, quando há alguma variável não-básica com 0

Ilimitada

Critério de parada nunca será atendido

Indeterminada

• É possível retirar as variáveis artificiais (folga) do modelo, logo o modelo não tem solução

ATÉ AGORA

- Até agora os modelos são do tipo
 - Max Z
 - Restrições do tipo <=
 - Problemas de minimização??

• ALTERNATIVAS:

• 1. RESOLVER COMO UM PROBLEMA DE MAXIMIZAÇÃO DE - Z

• MIN
$$Z = 2*x1 - 3*x2$$

$$MAX - Z = -2*x1 + 3*x2$$

• S.A.
$$x1 + x2 \le 4$$

 $x1 - x2 \le 6$
 $x1, x2 \Longrightarrow 0$

	X1	X2	X3	X4	
X3	1	1	1	0	4→
X3 X4	1	-1	0	1	6
Z	2	-3 ↓	0	0	0

	X1	X2	X3	X4	
X3	1	1	1	0	4→
X3 X4	1	-1	0	1	6
Z	2	-3↓	0	0	0

	X1	X2	X3	X4	
X3	1	1	1	0	4
X4	2	0	1	1	10
Z	5	0	3	0	12

Solução
$$-$$
 Z=12 Z= $-$ 12

• ALTERNATIVAS:

- 2. MODIFICAR O MÉTODO SIMPLEX
 - o Todas as variáveis não básicas têm coeficientes ≤ 0 na
 - o linha 0?
 - o se sim, então a solução é ótima.
 - o se não: escolher a variável que tem o coeficiente mais positivo para entrar na base.
- MIN Z = 2*x1 3*x2
- S.A. $x1 + x2 \le 4$

$$x1 - x2 \le 6$$

$$x1, x2 => 0$$

	X1	X2	X3	X4	
X3	1	1	1	0	4
X4	1	-1	0	1	6
Z	-2	3 ↓	0	0	0

	X1	X2	X3	X4	
X3	1	1	1	0	4→
X4	1	-1	0	1	6
Z	-2	3 ↓	0	0	0

	X1	X2	X3	X4	
X2	1	1	1	0	4
X4	2	0	1	1	10
Z	-5	0	-3	0	-12

Solução Z=-12

Min
$$Z = -3X_1 - 5X_2$$

s. a:
$$\begin{cases} X_1 & \leq 4 \\ X_2 \leq 6 \\ 3X_1 + 2X_2 \leq 18 \\ X_i \geq 0, \ i = 1, 2 \end{cases}$$

Modelo original

Modelo na forma padrão

$$Min Z = -3X_1 - 5X_2$$

$$Min Z = -3X_1 - 5X_2 \qquad \Leftrightarrow \qquad Min Z = -3X_1 - 5X_2$$

s. a:
$$\begin{cases} X_1 & \leq 4 \\ X_2 \leq 6 \\ 3X_1 + 2X_2 \leq 18 \\ X_i \geq 0, \ i = 1, 2 \end{cases}$$

s. a:
$$\begin{cases} X_1 & \leq 4 \\ X_2 \leq 6 \\ 3X_1 + 2X_2 \leq 18 \\ X_i \geq 0, \ i = 1, 2 \end{cases} \text{ s. a: } \begin{cases} X_1 & +X_3 & = 4 \\ X_2 & +X_4 & = 6 \\ 3X_1 + 2X_2 & +X_5 = 18 \\ X_i \geq 0, \ i = 1, 5 \end{cases}$$

VB	\mathbf{X}_{1}	\mathbf{X}_{2}	\mathbf{X}_{3}	\mathbf{X}_{4}	X_5	b
X_3	1	0	1	0	0	4
X_4	0	1	0	1	0	6
X ₅	3	2	0	0	1	18
-Z	-3	-5	0	0	0	0
X_3	1	0	1	0	0	4
\mathbf{X}_{2}	0	1	0	1	0	6
X ₅	3	0	0	-2	1	6
- Z	-3	0	0	5	0	30
X ₃ *	0	0	1	2/3	-1/3	2
X ₂ *	0	1	0	1	0	6
X ₁ *	1	0	0	-2/3	1/3	2
-Z*	0	0	0	3	1	36

Quadro 1: Entra X₂ Sai X₄

Quadro 2: Entra X₁ Sai X₅

Quadro 3 (ótimo)

Min
$$Z = -X_1 - 2X_2$$

S. a:
$$\begin{cases} X_1 & \leq 3 \\ X_2 \leq 4 \\ X_1 + 2X_2 \leq 9 \\ X_i \geq 0, i = 1, 2 \end{cases}$$

Modelo original ⇔ Modelo na forma padrão

$$Min Z = -X_1 - 2X_2 \qquad \Leftrightarrow \qquad Min Z = -X_1 - 2X_2$$

$$Min Z = -X_1 - 2X_2$$

S. a:
$$\begin{cases} X_1 & \leq 3 \\ X_2 \leq 4 \\ X_1 + 2X_2 \leq 9 \\ X_i \geq 0, i = 1, 2 \end{cases}$$

S. a:
$$\begin{cases} X_1 & \leq 3 \\ X_2 \leq 4 \\ X_1 + 2X_2 \leq 9 \\ X_i \geq 0, i = 1, 2 \end{cases}$$
S. a:
$$\begin{cases} X_1 & +X_3 & = 3 \\ X_2 & +X_4 & = 4 \\ X_1 + 2X_2 & +X_5 = 9 \\ X_i \geq 0, i = 1, 5 \end{cases}$$

VB	\mathbf{X}_{1}	\mathbf{X}_2	X_3	$\mathbf{X_4}$	X ₅	b
X_3	1	0	1	0	0	3
X_4	0	1	0	1	0	4
X_5	1	2	0	0	1	9
- Z	-1	-2	0	0	0	0
X_3	1	0	1	0	0	3
\mathbf{X}_2	0	1	0	1	0	4
X ₅	1	0	0	-2	1	1
- Z	-1	0	0	2	0	8
X ₃ *	0	0	1	2	-1	2
X_2*	0	1	0	1	0	4
X_1*	1	2	0	-2	1	1
-Z*	0	0	0	0	0	9
X ₄ *	0	0	1/2	1	-1/2	1
X_2*	0	1	-1/2	0	1/2	3
X_1*	1	0	1	0	0	3
Z *	0	0	0	0	1	9

Quadro 1: Entra X2 e Sai X4

Quadro 2: Entra X_1 e Sai X_5

MÉTODO SIMPLEX – RESUMO

- Nos modelos resolvidos até agora pelos simplex, as restrições são do tipo <= com os termos da direita positivos.
 - O acréscimo das variáveis de folga fornece neste caso uma solução básica inicial
- E para
- Restrição do tipo >=
- Restrição do tipo =
- o ??

MÉTODO SIMPLEX

- Restrição do tipo >=
 - Introduzir uma variável de excesso (com sinal negativo) e uma variável artificial (com sinal positivo) no lado esquerdo da igualdade
- Restrição do tipo =
 - Cria variável artificial

sinal	variável de folga	variável artificial
<u> </u>	+	
≥	_	+
=		+

ATIVIDADE

- Implementação simplex
- Grupo: 3 pessoas
- Utilizar GitHub (sabatine2) ou BitBucket
- o Linguagem de programação: Livre
- Plataforma: Web
 - Deve ficar disponível online.
- o Interface Gráfica: Simples
- o Padrão de projeto: Livre

ATIVIDADE

- Regras
 - Permitir resolver um modelo de programação linear com objetivo de maximizar ou minimizar.
 - Sem número fixo de variáveis de decisão.
 - Sem número fixo de restrição.
 - Apresentar solução final como um relatório de resultado.
 - Deve possibilitar a demonstração da solução passo-a-passo.
 - Tratar modelos com solução impossíveis ou ilimitadas.

ATIVIDADE

Entrega

• Programação

- Dia 28/09 entrega das atividades inicias.
- Dia 05/10 entrega dos canvas/mvp do projeto com cronograma.
- Documentação
 - Na wiki do controle de versão.