Sales Prediction by using LSTM

Shidi Yang

1. Exploratory Data Analysis

- Features:
 - WEEK
 - YEAR
 - INVDT
 - MCAT
 - SUBCAT
 - MRP_VALUE
 - NETSALE_VALUE
 - TAX_VALUE
 - PRODUCT
 - SHOP

- Label:
 - SALES_QTY

Based on requirements, our goals use data from Jan 2019 to predict the sales_qty per product per shop for Sep 2019.

In this case, we can take SALES_QTY as a label, and our features are from the rest.

First, I load the dataset into data frame so that i can have a close look. Because it contains a time feature, so I use INVDT as the index, and sort the dataset by this index.

This first thing I may curious about the dataset is, how does that dataset arranged? how does the data been recorded? what's the "primary key" for this dataset? so I group the dataset by using . . . Is it recorded per week per shop per product

2.1 Find Outliers

 MRP_VALUE, NETSALE_VALUE, TAX_VALUE can't be negative

• Could it be 0?

SALE_QTY > 500 are outliers

Per day per product per shop has more than 500 sale_qty are outliers

2.2 Taking Care of Missing Data

- df.isnull()
- df.isna()

- Splitting the dataset into Training and Test set
- Selecting features
 - Removed WEEK, YEAR features
- Feature Scaling
 - Normalisation

$$X_{\text{new}} = \frac{X_i - \min(X)}{\max(x) - \min(X)}$$

 Comparing with Standardisation, Normalisation is recommended when using RNN, especially we are using sigmoid function as an activation function in output layer

- Splitting Features and Labels
- Creating a data structure with 7 time-steps and 1 output
 - Predict the SALE_QTY at t(7) by using the features (MCAT, SUBCAT, MRP_VALUE, TAX VALUE, PRODUCT, SHOP) from the current day + SALE_QTY from t(0)-t(6)

```
t(8) Features t(1) SALE_QTY t(8) SALE_QTY
t(8) Features t(2) SALE_QTY t(8) SALE_QTY
t(8) Features t(3) SALE_QTY t(8) SALE_QTY
t(8) Features t(4) SALE_QTY t(8) SALE_QTY
t(8) Features t(5) SALE_QTY t(8) SALE_QTY
t(8) Features t(6) SALE_QTY t(8) SALE_QTY
t(8) Features t(7) SALE_QTY t(8) SALE_QTY
```


- Stacked LSTM with some dropout regularization to prevent overfitting
- Compiled the network by using Adam
 - Adam is always an safe choice that can update the relevant weights

Root Mean Squared Error (RMSE)

$$RMSE = \sqrt{\overline{(f - o)^2}}$$

Results

	Results
RMSE on Normalized Data	0.00121652174852868
RMSE on SALE_QTY per INVDT per SHOP per PRODUCT	45.3717820284871
RMSE on SALE_QTY per PRODUCT	334.672403266212
RMSE on SALE_QTY per SUBCAT	2061.53524983232
RMSE on SALE_QTY per MCAT	3319.30269544219

Improvements

- One-hot Categorical Data
 - Product, Shop
 - Use One-hot encoder to encode PRODUCT and SHOP columns
 - Then the features will be increased to 521
- Try different parameter
 - time-step: 30, 60
 - neurons
 - optimizer: RMSprop
 - recommended by Keras