REDES DE COMPUTADORAS 2

Clase 2: Conceptos generales – Parte 4

Bibliografía:

Kurose y Ross. Redes de computadoras. Un enfoque descendente. 7ª Edición. Editorial Pearson. Capítulo 1.

Contenidos – Clase 2

- ¿Qué es una red de computadoras?
- ¿Qué es Internet?
- La frontera de la red
- El núcleo de la red
 - Retardos en Redes de Conmutación de Paquetes
 - Estructura de Internet e ISPs
- Capas de protocolos

Contenidos – Clase 2

- ¿Qué es una red de computadoras?
- ¿Qué es Internet?
- La frontera de la red
- El núcleo de la red
 - Retardos en Redes de Conmutación de Paquetes
 - Estructura de Internet e ISPs
- Capas de protocolos

Contenidos – Clase 2

- ¿Qué es una red de computadoras?
- ¿Qué es Internet?
- La frontera de la red
- El núcleo de la red
 - Retardos en Redes de Conmutación de Paquetes
 - Estructura de Internet e ISPs
- Capas de protocolos

¿Cómo se estructuran y estudian las redes de computadoras?

Las redes son complejas!

- Muchos "componentes":
 - hosts
 - routers
 - enlaces de varios medios
 - aplicaciones
 - protocolos
 - hardware, software

Pregunta:

Hay alguna esperanza de organizar la estructura de la red?

O al menos nuestra discusión de la red?

¿Cómo se estructuran y estudian las redes de computadoras?

- "Dividir para conquistar"
- La arquitectura se puede subdividir en capas.
- Capas de la arquitectura de Internet:

Aplicación
Transporte
Red
Enlace de Datos
Física

Ejemplo sistema complejo: Líneas aéreas

pasaje (compra) pasaje (recuperar gasto)

maletas (chequeo) maletas (retiro)

puertas (subida) puerta (bajada)

pista despegue pista de aterrizaje

navegación del avión navegación del avión

Navegación del avión

- Una serie de pasos
- Ojo si usted debe hacer trasbordo, no retira sus maletas y se vuelve a embarcar.

¿Por qué usar capas?

Nos enfrentamos a sistemas complejos:

- Estructura explícita permite la identificación y relación de la partes complejas del sistema
 - modelo de referencia de capas para análisis y discusión
- Modularización facilita mantención, actualización del sistema
 - Cambio de la implementación de la capa de servicio es transparente al resto del sistema
 - Ej: cambio en control en puertas (caso avión) no afecta al resto

Capas en el funcionamiento de una aerolínea

Capas: cada capa implementa una clase de servicio

- a través de acciones internas a esa capa
- depende de servicios provistos por capas inferiores

Capas de protocolos en Internet (modelo TCP/IP)

- Capa de Aplicación.
 - > Es en donde residen las aplicaciones de red y sus plotocolos.
 - Internet: FTP, SMTP, HTTP, Messenger, Skype, etc.
 - Distribuido a lo largo de varios host.
 - Los paquetes de esta capa: mensajes.
- Capa de Transporte.
 - > Transporta los mensajes de la capa de aplicación de host a host para una aplicación específica.
 - Internet: TCP (orientado a conexión) y UDP (servicio sin conexión).
 - Los paquetes de esta capa: segmentos.

Aplicación
Transporte
Red
Enlace
Físico

Capas de protocolos en Internet (modelo TCP/IP)

- Capa de Red.
 - Ruteo de paquetes desde fuente a destino.
 - Internet: IP, protocolos de enrutamiento.
 - Los paquetes de esta capa: datagramas.
- Capa de Enlace.
 - Transferencia de los paquetes de la capa de red entre nodos vecinos.
 - > PPP, Ethernet, Wifi.
 - Los paquetes de esta capa: tramas.
- Capa física.
 - Transferencia de bits individuales por el medio físico.
 - Los protocolos dependen del enlace y del medio de transmisión.

El modelo OSI (Open System Interconnection) incluye capas de Presentación y Sesión adicionales no incluidos en el modelo TCP/IP

Aplicación Transporte Red

Físico

Enlace

Comparación: OSI vs. TCP/IP

TCP/IP

Capa de Aplicación

Capa de Transporte

Capa de Internet

Capa de acceso a la red (NAL)

Modelo OSI

Capa de Aplicación

Capa de Presentación

Capa de Sesión

Capa de Transporte

Capa de Red

Capa de Enlace de Datos

Capa Física

Comparación: OSI vs. TCP/IP

Similitudes:

- Ambos se dividen en capas.
- Ambos tienen capas de aplicación, aunque incluyen servicios distintos.
- Ambos tienen capas de transporte similares.
- Ambos tienen capa de red similar pero con distinto nombre.
- Se supone que la tecnología es de conmutación de paquetes (no de conmutación de circuitos).
- Es importante conocer ambos modelos.

Comparación: OSI vs. TCP/IP

Diferencias:

- TCP/IP combina las funciones de la capa de presentación y de sesión en la capa de aplicación.
- TCP/IP combina la capas de enlace de datos y la capa física del modelo OSI en una sola capa.
- TCP/IP más simple porque tiene menos capas.
- Los protocolos TCP/IP son los estándares en torno a los cuales se desarrolló Internet, de modo que la credibilidad del modelo TCP/IP se debe en gran parte a sus protocolos.
- El modelo OSI es un modelo "más" de referencia, teórico, aunque hay implementaciones.

Dispositivos y Capas

Encapsulamiento

Cada capa define su PDU: Protocol Data Unit

Clasificación de red por cobertura

- LAN: (Local Area Network). Red de cobertura local. Ethernet, Wi-Fi.
- MAN: (Metropolitan Area Network). red de cobertura metropolitana, dentro de una ciudad. MetroEthernet, MPLS, Wi-Max.
- WAN: (Wide Area Network). red de cobertura de área amplia. Geográficamente distribuida. PPP, Frame-Relay, MPLS, HDLC, SONET/SDH.
- SAN: (Storage Area Network). red de almacenamiento. iSCSI, Fibre Channel, ESCON.
- PAN: red de cobertura personal. Red con alcance de escasos metros para conectar dispositivos cercanos a un individuo. Bluetooth, IrDA, USB.