

FCC TEST REPORT

Test report
On Behalf of
Shenzhen Zidoo Technology Co.,Ltd
For
SMART TV BOX
Model No.: X5

FCC ID: 2AGN7-X5

Prepared for: Shenzhen Zidoo Technology Co.,Ltd

Central Avenue building A m, Unit 12D Xixiang Ave, BaoAn District, Shenzhen.

Prepared By: WST Certification & Testing (HK) Limited

12/F., San Toi Building,137-139 Connaught Road Central,HongKong

Date of Test: Mar. 13, 2016 ~ Mar. 23, 2016

Date of Report: Mar. 23, 2016

Report Number: WST160303019-E

TEST RESULT CERTIFICATION

Applicant's name	Shenzhen Zidoo Technology Co.,Ltd
Address	Central Avenue building A m, Unit 12D Xixiang Ave, BaoAn District, Shenzhen.
Manufacture's Name	Shenzhen Zidoo Technology Co.,Ltd
Address	Central Avenue building A m, Unit 12D Xixiang Ave,BaoAn District,Shenzhen.
Product description	
Trade Mark:	ZIDOO
Product name	SMART TV BOX
Model and/or type reference	
Standards	FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63 10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the WST Certification & Testing (HK) Limited is acknowledged as copyright owner and source of the material. WST Certification & Testing (HK) Limited takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Testing Engineer : (Eric Xie)

Technical Manager : Dora Qin

(Dora Qin)

Authorized Signatory: (Kait Chen)

Table of Contents	Page
1TEST SUMMARY	5
1.1. TEST FACILITY	6
1.2. MEASUREMENT UNCERTAINTY	6
2 GENERAL INFORMATION	7
2.1. General description of EUT	7
2.2. Carrier frequency of channels	8
2.3. Operation of EUT during testing	8
2.4. Description of test setup	9
2.5. Measurement instruments list	10
3 6DB BANDWIDTH MEASUREMENT	12
3.1. Block diagram of test setup	12
3.2. Limit	12
3.3. Block diagram of test setup	12
3.4. Test result	12
4 MAXIMUM PEAK OUTPUT POWER	20
4.1. Block diagram of test setup	20
4.2. Limits	20
4.3. Test procedure	20
4.4. Test result	20
5 POWER SPECTRAL DENSITY TEST	22
5.1. Block diagram of test setup	22
5.2. Limits	22
5.3. Test procedure	22
5.4. Test result	22
6 BAND EDGE COMPLIANCE TEST	30
6.1. Block diagram of test setup	30
6.2. Limits	30
6.3. Test procedure	30
6.4. Test result	30
7 RADIATED SPURIOUS EMISSION TEST	38
7.1. Block diagram of test setup	38

Table of Contents	Page
7.2. Limits	39
7.3. Restricted bands of operation	39
7.4. Test procedure	40
7.5. Test result	40
8 CONDUCTED SPURIOUS EMISSION COMPLIANCE TEST	46
8.1. Block diagram of test setup	46
8.2. Limits	46
8.3. Test procedure	46
8.4. Test Result	46
9 AC POWER LINE CONDUCTED EMISSION	49
9.1. Block diagram of test setup	49
9.2. Limits	49
9.3. Test procedure	49
9.4. Test Result	49
10 ANTENNA REQUIREMENT	51
11 POTOGRAPH OF TEST	52
11.1. Radiated Emission	52
11.2. Conducted Emission	54

1.. TEST SUMMARY

FCC Rules	Description of Test	Result
Section 15.247(a)(2)	6dB Bandwidth Test	Compliant
Section 15.247(e)	Power Spectral Density Test	Compliant
Section 15.247(b)(3)	Maximum Peak Output Power Test	Compliant
Section 15.247(d)	Band Edge Compliance Tes	Compliant
Section 15.247(d)		
Section 15.209)	Radiated Spurious Emission Test	Compliant
Section 15.247(d)	Conducted Spurious Emission Test	Compliant
Section 15.207	AC Power Line Conducted Emission Test	Compliant
Section 15.203	Antenna Requirement	Compliant

1.1. TEST FACILITY

Test Firm : Shenzhen WST Testing Technology Co., Ltd.

Certificated by FCC, Registration No.: 939433

Address : 1F,No.9 Building,TGK Science & Technology Park,Yangtian Rd.,

NO.72 Bao'an Dist., Shenzhen, Guangdong, China. 518101

Tel : (86)755-33916437 Fax : (86)755-27822175

1.2. MEASUREMENT UNCERTAINTY

Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2 Radiated emission expanded uncertainty(9kHz-30MHz) = 3.08dB, k=2 Radiated emission expanded uncertainty(30MHz-1000MHz) = 4.42dB, k=2 Radiated emission expanded uncertainty(Above 1GHz) = 4.06dB, k=2

2.. GENERAL INFORMATION

2.1. General description of EUT

Equipment	SMART TV BOX
Model Name	X5
Serial No	N/A
FCC ID	2AGN7-X5
Model Difference	N/A
Modulation Type	WIFI:DBPSK,DQPSK,CCK,BPSK,
Antenna Type	Internal Antenna
Antenna Gain	0dBi
WLA Operation frequency	802.11b: 2412-2462MHz 802.11g: 2412-2462MHz 802.11n HT20: 2412-2462MHz 802.11n HT40: 2422-2452MHz
Number of Channels	802.11b/g/n (HT20):11 802.11n (HT40): 7
Data Rate	802.11b: 11, 5.5, 2, 1 Mbps 802.11g: 54, 48, 36, 24, 18, 12, 9, 6 Mbps 802.11n: up to 150Mbps
Modulation Type	CCK, OFDM
Power Source	DC 5V from Adapter
Power Rating	/
Adapter Model	KA23-0502000DES

2.2. Carrier frequency of channels

Channel List for 802.11b/g/n(20 MHz)							
Channel Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz)							
01	2412	04	2427	07	2442	10	2457
02	2417	05	2432	08	2447	11	2462
03	2422	06	2437	09	2452		

	Channel List for 802.11n(40MHz)						
							Frequency (MHz)
03	2422	06	2437	09	2452		
04	2427	07	2442				
05	2432	80	2447				

2.3. Operation of EUT during testing

Operating Mode

The mode is used: 802.11b Transmitting mode

Low Channel: 2412MHz Middle Channel: 2437MHz High Channel: 2462MHz

802.11g Transmitting mode

Low Channel: 2412MHz Middle Channel: 2437MHz High Channel: 2462MHz

802.11n (HT20) Transmitting mode

Low Channel: 2412MHz Middle Channel: 2437MHz High Channel: 2462MHz

802.11n (HT40) Transmitting mode

Low Channel: 2422MHz Middle Channel: 2437MHz High Channel: 2452MHz

Wstlab

Report No.: WST160303019-E 2.4. Description of test setup EUT Adapter **AC Source**

2.5. Measurement instruments list

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	EMI Receiver	Rohde & Schwarz	ESCI	100627	May 19, 2015	1 Year
2.	LISN	SchwarzBeck	NSLK 8126	8126377	May 19, 2015	1 Year
3.	RF Switching Unit	Compliance Direction	RSU-M2	38303	May 19, 2015	1 Year
4.	EMI Test Software ES-K1	Rohde & Schwarz	N/A	N/A	N/A	N/A
5.	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	May 19, 2015	1 Year
6.	Trilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	May 17, 2015	1 Year
7.	Pre-amplifier	Compliance Direction	PAP-0203	22008	May 19, 2015	1 Year
8.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A
9.	EMI Receiver	Rohde & Schwarz	ESCI	100627	May 19, 2015	1 Year
10.	LISN	SchwarzBeck	NSLK 8126	8126377	May 19, 2015	1 Year
11.	RF Switching Unit	Compliance Direction	RSU-M2	38303	May 19, 2015	1 Year
12.	EMI Test Software ES-K1	Rohde & Schwarz	N/A	N/A	N/A	N/A
13.	EMI Receiver	Rohde & Schwarz	ESCI	100627	May 19, 2015	1 Year
14.	EMI Receiver	Rohde & Schwarz	ESCI	100627	May 19, 2015	1 Year
15.	LISN	SchwarzBeck	NSLK 8126	8126377	May 19, 2015	1 Year
16.	RF Switching Unit	Compliance Direction	RSU-M2	38303	May 19, 2015	1 Year
17.	EMI Test Software ES-K1	Rohde & Schwarz	N/A	N/A	N/A	N/A
18.	Programmable AC Power source	SOPH POWER	PAG-1050	630250	May 26, 2015	1 Year
19.	Harmonic and Flicker Analyzer	LAPLACE	AC2000A	272629	May 26, 2015	1 Year
20.	Harmonic and Flicker Test Software AC 2000A	LAPLACE	N/A	N/A	N/A	N/A
21.	ESD Simulators	KIKUSUI	KES4021	LJ003477	May 25, 2015	1 Year
22.	EFT Generator	EMPEK	EFT-4040B	0430928N	May 19, 2015	1 Year
23.	Shielding Room	ChangZhou ZhongYu	JB88	SEL0166	May 19, 2015	1 Year
24.	Signal Generator 9KHz~2.2GHz	R&S	SML02	SEL0143	May 19, 2015	1 Year
25.	Signal Generator 9KHz~1.1GHz	R&S	SML01	SEL0135	May 19, 2015	1 Year
26.	Power Meter	R&S	NRVS	SEL0144	May 19, 2015	1 Year
27.	RF Level Meter		URV35	SEL0137	May 19, 2015	1 Year
28.	Audio Analyzer	R&S	UPL	SEL0136	May 19, 2015	1 Year

RF-Amplifier **BONN Elektronik** BSA1515-25 SEL0157 29. 150KHz~150MH May 19, 2015 1 Year Stripline Test Cell VDE0872 SEL0167 N/A Erika Fiedler 30. N/A TV Test Transmitter R&S SFM SEL0159 May 17, 2015 1 Year 31. TV Generator PAL R&S **SGPF** SEL0138 32. May 19, 2015 1 Year TV Generator Ntsc R&S **SGMF** SEL0140 33. May 19, 2015 1 Year TV Generator SGSF R&S SEL0139 34. May 19, 2015 1 Year Secam TV Test Transmitter R&S SFQ SEL0142 35. May 19, 2015 1 Year 0.3MHz~3300MHz MPEG2 R&S DVG SEL0141 36. Measurement May 19, 2015 1 Year Generator Spectrum Analyzer R&S FSP SEL0177 37. May 19, 2015 1 Year Matching R&S **RAM** SEL0146 N/A 38. N/A **RAM** SEL0148 N/A N/A Matching R&S 39. **Absorbing Clamp** R&S MDS21 SEL0158 May 17, 2015 40. 1 Year Coupling Set Erika Fiedler Rco. Rci. SEL0149 N/A N/A 41. MC, AC, LC Filters N/A SEL0150 Erika Fiedler 42. Sr, LBS N/A N/A N/A Matching Network SEL0151 43. Erika Fiedler MN, X5 Fully Anechoic ChangZhou Jun. 10, 2015 SEL0169 44. 854 1 Year Room ZhongYu 1 Year Signal Generator SEL0068 May 17, 2015 45. R&S SML03 RF-Amplifier **Amplifier** SEL0066 Oct. 24, 2015 46. 250W1000A 1 Year 30M~1GHz Reasearch RF-Amplifier **Amplifier** SEL0065 Oct. 24, 2015 1 Year 47. 60S1G3 0.8~3.0GHz Reasearch Power Meter NRVD R&S SEL0069 May 17, 2015 48. 1 Year Power Sensor R&S May 17, 2015 1 Year SEL0071 49 URV5-Z2 Power Sensor R&S May 17, 2015 SEL0072 50. URV5-Z2 1 Year Software R&S SEL0082 N/A N/A 51. EMC32-S EMC32 Log-periodic **Amplifier** SEL0073 N/A 52. AX5080 N/A Antenna Reasearch Amplifier N/A N/A Antenna Tripod SEL0074 53. TP1000A Reasearch High Gain Horn SEL0075 N/A 54. Amplifier Antenna(0.8-5G AT4002A N/A Reasearch Hz)

3.. 6DB BANDWIDTH MEASUREMENT

3.1. Block diagram of test setup

EUT	Low Loss Cable	Spectrum Analyzer

3.2. Limit

Section 15.247(a)(2): Systems using digital modulation techniques may operate in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz

3.3. Block diagram of test setup

- 3.3.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 3.3.2. Set RBW of spectrum analyzer to 100kHz and VBW to 300kHz
- 3.3.3. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

3.4. Test result

802.11b			
Channel	Frequency (MHz)	6DB Bandwidth(MHz)	Limit(MHz)
Low	2412	10.32	>0.5MHz
Middle	2437	10.32	>0.5MHz
High	2462	10.32	>0.5MHz

802.11g								
Channel	Frequency (MHz)	6DB Bandwidth(MHz)	Limit(MHz)					
Low	2412	16.60	>0.5MHz					
Middle	2437	16.60	>0.5MHz					
High	2462	16.60	>0.5MHz					

802.11n (HT20) Channel Frequency (MHz) **6DB Bandwidth(MHz)** Limit(MHz) 17.76 Low 2412 >0.5MHz Middle 2437 17.76 >0.5MHz High 2462 17.76 >0.5MHz

802.11n (HT40)			
Channel	Frequency (MHz)	6DB Bandwidth(MHz)	Limit(MHz)
Low	2422	36.56	>0.5MHz
Middle	2437	36.56	>0.5MHz
High	2452	36.56	>0.5MHz

The spectrum analyzer plots are attached as below.

802.11b Channel Low 2412MHz

802.11b Channel Middle 2437MHz

802.11b Channel High 2462MHz

802.11g Channel Low 2412MHz

802.11g Channel Middle 2437MHz

802.11g Channel High 2462MHz

802.11n(HT20) Channel Low 2412MHz

802.11n(HT20) Channel Middle 2437MHz

802.11n(HT20) Channel High 2462MHz

802.11n(HT40) Channel Low 2422MHz

802.11n(HT40) Channel Middle 2437MHz

4.. MAXIMUM PEAK OUTPUT POWER

4.1. Block diagram of test setup

4.2. Limits

Section 15.247(b)(3): For systems using digital modulation in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands: 1 Watt.

4.3. Test procedure

- a. The transmitter output was connected to the spectrum analyzer through a low
- b. Set RBW of spectrum analyzer to 1MHz and VBW to 3MHz
- c. Measurement the maximum peak output power.

4.4. Test result

Pass

802.11b_1Mbps			
Channel	Frequency	Peak output power	Limit
	(MHz)	(dBm)	(dBm)
Low	2412	7.82	30
Middle	2437	7.61	30
High	2462	6.76	30

802.11g_6Mbps			
Channel	Frequency	Peak output power	Limit
	(MHz)	(dBm)	(dBm)
Low	2412	7.12	30
Middle	2437	6.19	30
High	2462	6.27	30

802.11n (HT20) _6.5Mbps			
Channel	Frequency	Peak output power	Limit
	(MHz)	(dBm)	(dBm)
Low	2412	7.12	30
Middle	2437	6.89	30
High	2462	6.65	30

802.11n (HT40) _136.5Mb	pps		
Channel	Frequency	Peak output power	Limit
	(MHz)	(dBm)	(dBm)
Low	2422	4.07	30
Middle	2437	4.95	30
High	2452	5.03	30

5.. POWER SPECTRAL DENSITY TEST

5.1. Block diagram of test setup

5.2. Limits

According to 15.247(a)(1)(iii), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

5.3. Test procedure

According to the KDB 558074 D01 V03r02, such specifications require that the same method as used to determine the conducted output power shall also be used to determine the power spectral density. The test method of power spectral density as below:

- a. Set instrument center frequency to DTS channel center frequency.
- b. Set span to at least 1.5 times the OBW.
- c. Set RBW to: 3 kHz \leq RBW \leq 100 kHz.
- d. Set VBW $\geq 3 \times RBW$.
- e. Detector = power averaging (RMS) or sample detector (when RMS not available)
- f. Ensure that the number of measurement points in the sweep $\geq 2 x \text{ span/RBW}$.
- g. Sweep time = auto couple.
- h. Use the peak marker function to determine the maximum amplitude level.
- i. Use the peak marker function to determine the maximum amplitude level.
- j. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span in order to meet the minimum measurement point requirement as the RBW is reduced).

5.4. Test result

Pass

802.11b			
Channel	Frequency	Power Spectral Density	Limit
	(MHz)	(dBm)	(dBm)
Low	2412	-18.77	8
Middle	2437	-19.25	8
High	2462	-18.04	8

₩stlab

802.11g			
Channel	Frequency	Power Spectral Density	Limit
	(MHz)	(dBm)	(dBm)
Low	2412	-22.83	8
Middle	2437	-23.37	8
High	2462	-23.86	8

802.11n(HT20)			
Channel	Frequency	Power Spectral Density	Limit
	(MHz)	(dBm)	(dBm)
Low	2412	-24.60	8
Middle	2437	-25.36	8
High	2462	-25.25	8

802.11n(40M)			
Channel	Frequency	Power Spectral Density	Limit
	(MHz)	(dBm)	(dBm)
Low	2422	-28.28	8
Middle	2437	-29.62	8
High	2452	-28.90	8

The spectrum analyzer plots are attached as below.

802.11b Channel Low 2412MHz

802.11b Channel Middle 2437MHz

802.11b Channel High 2462MHz

802.11g Channel Low 2412MHz

802.11g Channel Middle 2437MHz

802.11g Channel High 2462MHz

802.11n(HT20M) Channel Low 2412MHz

802.11n (HT20) Channel Middle 2437MHz

802.11n(HT20) Channel High 2462MHz

802.11n(HT40) Channel Low 2422MHz

802.11n (HT40) Middle High 2437MHz

802.11n (20M) Channel High 2452MHz

6.. BAND EDGE COMPLIANCE TEST

6.1. Block diagram of test setup

6.2. Limits

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

6.3. Test procedure

Conducted Band Edge:

- a. The transmitter output was connected to the spectrum analyzer via a low loss cable.
- b. Set RBW of spectrum analyzer to 100kHz and VBW to 300kHz.

Radiate Band Edge:

- a. The EUT is placed on a turntable, which is 0.8m above the ground plane and worked at highest radiated power.
- b. The turntable was rotated for 360 degrees to determine the position of maximum emission level.
- c. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- d. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission: RBW=1MHz, VBW=1MHz
- e. The band edges was measured and recorded.

6.4. Test result

Pass

802.11b			
Channel	Frequency	Result of Band Edge	Limit
	(MHz)	(dBc)	(dBc)
Low	2412	44.61	>20dBc
High	2462	52.87	> 20dBc

802.11g			
Channel	Frequency	Result of Band Edge	Limit
	(MHz)	(dBc)	(dBc)
Low	2412	34.95	>20dBc
High	2462	40.66	> 20dBc

802.11n (20MHz)			
Channel	Frequency	Result of Band Edge	Limit
	(MHz)	(dBc)	(dBc)
Low	2412	36.25	>20dBc
High	2462	41.87	> 20dBc

802.11n (40MHz)			
Channel	Frequency	Result of Band Edge	Limit
	(MHz)	(dBc)	(dBc)
Low	2422	31.15	>20dBc
High	2452	37.70	> 20dBc

802.11b Channel Low 2412MHz

802.11b Channel High 2462MHz

802.11g Channel Low 2412MHz

802.11g Channel High 2462MHz

802.11n(20M) Channel Low 2412MHz

802.11n(20M) Channel High 2462MHz

802.11n(HT40) Channel Low 2422MHz

802.11n(HT40) Channel High 2452MHz

Radiated Band Edge Result

802.11b -Lowest Bandedge Vertical(Worst case)

Voltiodi(VVolst odso)									
Frequency	Polarity	Reading	Correct Factor	Result Limited	Margin	Remark			
(MHz)		(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(Detector)		
2390.00	V	58.54	-3.54	55.00	74.00	-19.00	PK		
2390.00	V	45.55	-3.54	42.01	54.00	-11.99	AV		
2400.00	V	50.72	-3.51	47.21	Delta=48.79dBc		AV		
2412.00	V	99.48	-3.48	96.00			AV		

Report No.: WST160303019-E

802.11b - Highest Bandedge

vertical(vvorst case)									
Frequency (MHz)	Polarity	Reading	Correct Factor	Result	Limited	Margin	Remark		
		(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(Detector)		
2470.77	V	98.26	-3.35	94.91	/	/	PK		
2470.91	V	89.79	-3.35	86.44	/	/	AV		
2483.50	V	Delta=43.07dBc		51.84	74.00	-22.16	PK		
2483.50	V			43.37	54.00	-10.63	AV		

802.11g -Lowest Bandedge

Vertical(Worst case)

randam(rrandr dada)									
Frequency	Polarity	Reading	Correct Factor	Result	Limited	Margin	Remark		
(MHz)		(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(Detector)		
2390.00	V	60.64	-3.54	57.10	74.00	-16.90	PK		
2390.00	V	48.77	-3.54	45.23	54.00	-8.77	AV		
2400.00	V	48.83	-3.51	45.32	Delta=48.64dBc		AV		
2412.00	V	97.44	-3.48	93.96			AV		

802.11g –Highest Bandedge Vertical(Worst case)

Vortidat(VVolst daso)									
Frequency (MHz)	Polarity	Reading	Correct Factor	Result Limited	Margin	Remark			
(IVITIZ)		(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(Detector)		
2472.22	V	97.24	-3.34	93.90	/	/	PK		
2472.55	V	86.33	-3.35	82.98	/	/	AV		
2483.50	V	Delta=42.67dBc		51.23	74.00	-22.77	PK		
2483.50	V			40.31	54.00	-13.69	AV		

802.11n HT20 -Lowest Bandedge

Vertical(Worst case)

vertical(vvoist case)									
Frequency	Polarity	Reading	Correct Factor	Result	Limited	Margin	Remark		
(MHz)		(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(Detector)		
2390.00	V	60.27	-3.54	56.73	74.00	-17.27	PK		
2390.00	V	49.59	-3.54	46.05	54.00	-7.95	AV		
2400.00	V	47.64	-3.51	44.13	Delta=50.08dBc		AV		
2412.00	V	97.69	-3.48	94.21			AV		

802.11n HT20 –Highest Bandedge Vertical(Worst case)

vertical(worst case)									
Frequency (MHz)	Polarity	Reading	Correct Factor	Result	Limited	Margin	Remark		
		(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(Detector)		
2473.11	V	97.88	-3.35	94.53	/	/	PK		
2470.95	V	88.05	-3.33	84.72	/	/	AV		
2483.50	V	Delta=39.89dBc		54.64	74.00	-19.36	PK		
2483.50	V			44.83	54.00	-9.17	AV		

802.11n HT40 -Lowest Bandedge Vertical(Worst case)

Frequency	Polarity	Reading	Correct Factor	Result	Limited	Margin	Remark
(MHz)		(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(Detector)
2390.00	V	62.21	-3.54	58.67	74.00	-15.33	PK
2390.00	V	49.44	-3.54	45.90	54.00	-8.10	AV
2400.00	V	51.16	-3.51	47.65	Delta=44	1 24dPa	AV
2420.32	V	95.35	-3.46	91.89	Della=44	+.Z4uDC	AV

802.11n HT40 –Highest Bandedge

vertical(vvorst	case)						
Frequency	Polarity	Reading	Correct Factor	Result	Limited	Margin	Remark
(MHz)		(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(Detector)
2452.87	V	92.51	-3.39	89.12	/	/	PK
2452.33	V	81.89	-3.38	78.51	/	/	AV
2483.50	V	Delta=42	2.75dPa	46.37	74.00	-27.63	PK
2483.50	V	Della-42	2.7 Subc	35.76	54.00	-18.24	AV

7.. RADIATED SPURIOUS EMISSION TEST

- 7.1. Block diagram of test setup
- (1) Radiated Emission Test-Up Frequency Below 30MHz

(2) Radiated Emission Test-Up Frequency 30MHz~1GHz

(3) Radiated Emission Test-Up Frequency Above 1GHz

7.2. Limits

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

7.3. Restricted bands of operation

FCC Part 15.205 Restricted bands of operation

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495 - 0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			
ITT-41 F-1 1 1000	41-1 4-1-4- 4 1 4 -1-11	1-0 400 0 510	•

¹Until February 1, 1999, this restricted band shall be 0.490-0.510 ²Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

7.4. Test procedure

- 1, Below 1GHz measurement the EUT is placed on turntable which is 0.8m above ground plane. And above 1GHz measurement EUT was placed on low permittivity and low tangent turn table which is 1.5m above ground plane.
- 2, Support equipment, if needed, was placed as per ANSI C63.10
- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4, If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

Note:

For battery operated equipment, the equipment tests shall be performed using a new battery.

7.5.	Test result
	Pass

Test mode: 802.11b For Below 30MHz

Freq.(MHz)	Reading (dBuV/m) (QP)	Factor(dB) Corr.	Result (dBuV/m)	Limit (dBuV/m)	Margin(dB)
/	/	/	/	/	/

Test mode: 802.11b For 30MHz-1000MHz

Test mode: 802.11b For 1GHz-25GHz

CH low Horizontal

Vertical

CH Middle

Horizontal

Vertical

CH High

Horizontal

Vertical

Note: "802.11b" mode is worst mode

8.. CONDUCTED SPURIOUS EMISSION COMPLIANCE TEST

8.1. Block diagram of test setup

EUT	Low Loss Cable	Spectrum Analyzer
-----	----------------	-------------------

8.2. Limits

Se Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

8.3. Test procedure

- a. The transmitter output was connected to the spectrum analyzer via a low loss cable.
- b. Set RBW of spectrum analyzer to 100kHz and VBW to 300kHz.
- c. The Conducted Spurious Emission was measured and recorded.

8.4. Test Result

Pass

The spectrum analyzer plots are attached as below.

The worst test mode: 802.11b TX 802.11b Channel Low 2412MHz

Wstlab

TX 802.11b Channel Middle 2437MHz

TX 802.11b Channel High 2462MHz

Page 49 of 54 Report No.: WST160303019-E

9.. AC POWER LINE CONDUCTED EMISSION

9.1. Block diagram of test setup

9.2. Limits

Conducted Emission Measurement Limits According to Section 15.207(a)

and detect Elimeter in edecire in entre Elimite / teseraing to Geotien Teleor (a)				
Frequency	Limits (dBμV)			
MHz	Quasi-peak Level	Average Level		
0.15 ~ 0.50	66 ~ 56*	56 ~ 46*		
0.50 ~ 5.00	56	46		
5.00 ~ 30.00	60	50		

^{*} Decreases with the logarithm of the frequency.

9.3. Test procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.10: 2013 on Conducted Emission Measurement.

The bandwidth of test receiver (R & S ESPI) is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

9.4. Test Result **PASS**

Limit: (CE)FCC PART 15 class B_QP Mode: ON Note:

Wstlab

Power: AC 120V/50Hz Humidity: 50 %

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHZ	dBu√	dB	dBuV	dBuV	dB	Detector	Comment
1	0.2450	52.27	0.00	52.27	61.92	-9.65	QP	
2	0.2450	36.33	0.00	36.33	51.92	-15.59	AVG	
3	0.3450	48.52	0.00	48.52	59.08	-10.56	QP	
4	0.3450	28.65	0.00	28.65	49.08	-20.43	AVG	
5	0.4850	46.43	0.00	46.43	56.25	-9.82	QP	
6	0.4850	28.19	0.00	28.19	46.25	-18.06	AVG	
7 *	0.7600	47.79	0.00	47.79	56.00	-8.21	QP	
8	0.7600	25.06	0.00	25.06	46.00	-20,94	AVG	
9	1.3300	45.29	0.00	45.29	56.00	-10.71	QP	
10	1.3300	25.06	0.00	25.06	46.00	-20.94	AVG	
11	4.5200	41.71	0.00	41.71	56.00	-14.29	QP	
12	4.5200	22.19	0.00	22.19	46.00	-23.81	AVG	

Limit: (CE)FCC PART 15 class B_QP Mode; ON Note:

Phase. N	remperature.	20	
Power: AC 120V/60Hz	Humidity:	60 %	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.2400	50.61	0.00	50.61	62.10	-11.49	QP	
2		0.2400	33.95	0.00	33.95	52.10	-18.15	AVG	
3		0.3900	45.57	0.00	45.57	58.06	-12.49	QP	
4		0.3900	22.91	0.00	22.91	48.06	-25.15	AVG	
5	*	0.4800	45.82	0.00	45.82	56.34	-10.52	QP	
6		0.4800	24.71	0.00	24.71	46.34	-21.63	AVG	
7		0.6850	45.19	0.00	45.19	56.00	-10.81	QP	
8		0.6850	25.88	0.00	25.88	46.00	-20.12	AVG	
9		1.8200	41.21	0.00	41.21	56.00	-14.79	QP	
10		1.8200	20.19	0.00	20.19	46.00	-25.81	AVG	
11		8.9500	39.29	0.00	39.29	60.00	-20.71	QP	
12		8.9500	22,18	0.00	22.18	50.00	-27.82	AVG	

10.. ANTENNA REQUIREMENT

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. Antenna is fixed by enclosure, can not be changed except take apart the product.

<u>Antenna</u>

11.. POTOGRAPH OF TEST

11.1. Radiated Emission

11.2. Conducted Emission

