1 Zadání

Obrázek 1: Blokové schéma zdroje

2 Vybrané integrované obvody

Obrázek 2: Blokové schéma LM25085

Obrázek 3: Blokové schéma LM317

FEKT UREL

1/11

LIST:

LM25085 je regulátor PFET tranzistorů učený do spínaných snižujících měničů s vysokou účinností (buck). Naproti tomu LM317 je notoricky známý integrovaný obvod určený především jako lineární stabilizátor napětí, popřípadě drobnou úpravou okolních součástek a zapojení jako zdroj stabilního proudu.

3 Výpočty hodnot součástek pro LM25085 PFET kontrolér

$$V_{IN} = (18 \div 32) V$$
 $V_{\overline{IN}} = \frac{18 + 32}{2} = 25 V$
 $V_{OUT} = 9 V$
 $I_{OUT} = I_{out_1} + I_{out_2}$
 $I_{OUT} = 2, 4 + 0, 5 \doteq 3 A$
 $F_{SW} = 300 \ kHz$
 $V_{RIPPLE} = 5 \ mV_{pp}$

FEKT UREL

2/11

LIST:

Obrázek 4: Snižující spínaný měnič

Výpočet střídy spínání:

$$D = \frac{V_{OUT}}{V_{IN}} = \frac{t_{ON}}{t_{ON} + t_{OFF}} = t_{ON} \cdot F_S = \begin{cases} \frac{9}{18} &= \underline{0.5} \\ \frac{9}{25} &= \underline{0.36} \\ \frac{9}{32} & \doteq \underline{0.28} \end{cases}$$

Výpočet doby otevření PFETu:

$$t_{ON} = \frac{D}{F_S} = \frac{V_{OUT}}{V_{IN} \cdot F_S} \begin{cases} \frac{9}{18 \cdot 300 \cdot 10^3} & = \underbrace{\frac{1,667 \, \mu s}{18 \cdot 300 \cdot 10^3}} \\ \frac{9}{25 \cdot 300 \cdot 10^3} & = \underbrace{\frac{1,2 \, \mu s}{18 \cdot 300 \cdot 10^3}} \\ \frac{9}{32 \cdot 300 \cdot 10^3} & = \underbrace{\frac{937,5 \, ns}{18 \cdot 300 \cdot 10^3}} \end{cases}$$

Výpočet děliče zpětné vazby: R_{FB1} zvolím 1 $k\Omega$

$$R_{FB2} = \left(\frac{V_{OUT}}{1,25} - 1\right) \cdot R_{FB1} = \left(\frac{9}{1,25} - 1\right) \cdot 10^3 = \underbrace{6,2 \ k\Omega}_{EED}$$

Výpočet výstupního napětí:

$$V_{OUT} = 1,25 \cdot \left(\frac{R_{FB1} + R_{FB2}}{R_{FB1}}\right) = 1,25 \cdot \left(1 + \frac{R_{FB2}}{R_{FB1}}\right) = 1,25 \cdot \left(1 + \frac{6,2}{1}\right) = \underline{9 \ V}$$

Výpočet kondenzátoru zpětné vazby:

$$C_{FF} = \frac{3 \cdot T_{on_{(max)}}}{R_{BF1} \cdot R_{BF2}} = \frac{3 \cdot 1,667 \cdot 10^{-6}}{\frac{1 \cdot 10^{3} \cdot 6,2 \cdot 10^{3}}{1 \cdot 10^{3} + 6,2 \cdot 10^{3}}} = 5,8 \ nF \doteq \underline{\underline{6,8 \ nF}}$$

Velikost rezistoru R_T nastavuje spínací frekvenci: R_T je v $k\Omega$

$$R_T = \frac{V_{OUT} \cdot (V_{IN} - 1, 56)}{1, 45 \cdot 10^{-7} \cdot V_{IN} \cdot F_S} - \frac{t_D \cdot (V_{IN} - 1, 56)}{1, 45 \cdot 10^{-7}} - 1, 4$$

$$R_T = \frac{9 \cdot (25 - 1, 56)}{1, 45 \cdot 10^{-7} \cdot 25 \cdot 300 \cdot 10^3} - \frac{t_D \cdot (25 - 1, 56)}{1, 45 \cdot 10^{-7}} - 1, 4 = 193,016 \ k\Omega \doteq \underline{180 \ k\Omega}$$

FEKT UREL

3/11

LIST:

Výpočet vyhlazovací cívky:

Vzhledem k toleranci nominální hodnoty vyráběných cívek zvolím cívku $\frac{47 \ \mu H}{}$ abych měl rezervu, pokud bude hodnota cívka v dolní části tolerančního pásma.

Výpočet vyhlazovacího kondenzátoru:

$$C_{OUT} = \frac{0.2 \cdot I_{OUT}}{8 \cdot F_S \cdot V_{RIPPLE}} = \frac{0.2 \cdot 3}{8 \cdot 300 \cdot 10^3 \cdot 5 \cdot 10^{-3}} = 50 \ \mu F \doteq \underbrace{\underline{68 \ \mu F}}_{}$$

Vzhledem k tomu, že tento kondenzátor je na výstupu spínaného měniče kde se výstupní napětí pohybuje okolo 9 V, tak tento kondenzátor by měl být dimenzován minimálně na 16 V pro jistotu na 20 V.

Výpočet vstupního kondenzátoru:

$$C_{IN} + C_{BYP} = \frac{I_{OUT} \cdot t_{ON_{(max)}}}{\Delta V} = \frac{3 \cdot 1,667 \cdot 10^{-6}}{0,5} \doteq \underline{10 \ \mu F}$$

 C_{BYP} zvolím podle doporučení datashe
etu jako 1 μF a C_{IN} zvolím jako 10 μF na 50 V, protože vstupní napětí může být až 32 V.

Výpočet zvlnění proudu:

$$\Delta I = \frac{t_{ON_{(min)}} \cdot \left(V_{IN_{(max)}} - V_{OUT}\right)}{L_1} = \frac{937, 5 \cdot 10^{-9} \cdot (32 - 9)}{47 \cdot 10^{-6}} \doteq \underline{459 \ mA}$$

Velikost minimální hodnoty proudové limitace:

$$I_{CL_{(min)}} = I_{OUT} + \frac{\Delta I}{2} = 3 + \frac{0,459}{2} \doteq \underline{3,25 \ A}$$

Výpočet minimálního proudového limitu se započítanou chybou offsetu komparátoru:

Výpočet rezistoru R_{ADJ} :

$$R_{ADJ} = \frac{I_{CL_{(min)_{offset}}} \cdot R_{SEN}}{I_{ADJ_{const}}} = \frac{4,15 \cdot 10 \cdot 10^{-3}}{32 \cdot 10^{-6}} = 1297 \ \varOmega \doteq \underbrace{1,5 \ k\Omega}_{}$$

 $C_{ADJ}=1\ nF$ hodnota podle doporučení v datashe
etu, filtruje šum s ADJ pinu, zabraňuje nechtěnému sepnutí komparátoru.

Velikost rezistoru R_{SEN} výrobce doporučuje 10 $m\Omega$, výkonová ztráta na rezistoru je:

$$P_{R_{SEN}} = I_{CL_{(min)}}^2 \cdot R_{SEN} = 3,25^2 \cdot 10 \cdot 10^{-3} \doteq \underline{106 \ mW}$$

Podle toho je důležité zvolit pouzdro, které snese takovéto zatížení. Vypočítané zatížení by snesl rezistor v pouzdru 0805, který vydrží 125 mW či pouzdro 1206 které vydrží do 250 mW, pro jistotu, ale volím pouzdro 1210, které vydrží výkon až 500 mW tím zajistím že součástka nebude na pokraji svých možností a bude mít dostatečnou životnost.

Hodnota kondenzátoru C_{VCC} je dle doporučení datasheetu 470 nF.

FEKT UREL

4/11

LIST:

4 Výpočty hodnot součástek pro lineární stabilizátor s LM317

Výpočet zpětnovazebního děliče:

$$R_2 = \frac{V_o - V_{REF}}{V_{REF}} + I_{ADJ} = \frac{4, 5 - 1, 25}{\frac{1, 25}{R_1} + 50 \cdot 10^{-6}}$$

K výpočtu nejpřesnější kombinace rezistorů R_1 a R_2 jsem napsal skript LM317.py, který vypočítá pro řady $E3 \div E192$ nejvhodnější kombinace rezistorů. Výsledek skriptu pro $V_o = 4,5~V$ je uveden v tabulce.

řada	$R_{ extbf{1}}\left[\Omega ight]$	$R_{f 2}\left[\Omega ight]$	$V_o\left[V ight]$
E3	100	220	4,0110
E6	680	1500	4,0824
E12	470	1200	4,5015
E24	510	1300	4,5013
E48	953	2370	4,4771
E96	562	1430	4,5021
E192	229	590	4,5000

Tabulka č. 1: Hodnoty zpětnovazebného děliče pro LM317

Výpočet výstupního napětí:

$$V_o = V_{REF} \cdot \left(1 + \frac{R_2}{R_1}\right) + I_{ADJ} \cdot R_2 = 1,25 \cdot \left(1 + \frac{590}{229}\right) + 50 \cdot 10^{-6} \cdot 590 \doteq \underbrace{4,5 \ V}_{ADJ}$$

Vstupní a výstupní kondenzátor mají hodnotu podle doporučení datasheetu a to: $C_i=100~nF$ a $C_o=1~\mu F$. Na C_o je možné ještě paralelně přiletovat C_{BYPASS} v pouzdru 0805 pro přemostění vysokofrekvenčního rušení. Kondenzátor pro stabilizaci napěťové reference má také hodnotu dle doporučení výrobce $C_{ADJ}=10~\mu F$.

FEKT UREL LIST: 5/11

5 Výpočty chlazení a výkonových ztrát

Výpočet výkonové ztráty na LM317:

$$P_{LM317} = (V_i - V_o) \cdot I_o = (9 - 4, 5) \cdot 0, 5 = 2,25 \text{ W}$$

Výpočet výkonové ztráty na schottkyho diodě:

$$P_D = V_F \cdot I_{OUT} \cdot (1 - D_{(min)}) = 3 \cdot 0,455 \cdot (1 - 0,28) = 962 \text{ mW}$$

Výpočet výkonové ztráty na PFETu:

$$P_{PFET} = V_{IN_{(max)}} \cdot (Q_G \cdot F_S + I_{IN}) = 32 \cdot (24 \cdot 10^{-9} \cdot 300 \cdot 10^3 + 1, 3 \cdot 10^{-3}) = \underline{272 \ mW}$$

Výpočet celkového tepelného odporu chlazení LM317:

$$R_{thsys_{(LM317)}} = \frac{\vartheta_{j_{(max)}} - \vartheta_a}{P_{LM317}} = \frac{150 - 80}{2,25} \doteq \underline{32 \ KW^{-1}}$$

Výpočet celkového tepelného odporu chlazení schottkyho diody:

$$R_{thsys_{(D)}} = \frac{\vartheta_{j_{(max)}} - \vartheta_a}{P_D} = \frac{150 - 80}{0,962} \doteq \frac{73 \ KW^{-1}}{1000}$$

Výpočet celkového tepelného odporu chlazení PFETu:

$$R_{thsys_{(PFET)}} = \frac{\vartheta_{j_{(max)}} - \vartheta_a}{P_{PFET}} = \frac{175 - 80}{0,272} \doteq \underline{345 \ KW^{-1}}$$

Plocha pokovené části desky (mm²)

Obrázek 6: Graf závislosti tepelného odporu plošného spoje na jeho ploše

Z grafů vyplývá, že shottkyho diodu a PFET nebude problém uchladit plošným spojem, pro LM317 ale vychází plocha mědi na můj vkus příliš veliká cca $7 cm \cdot 7 cm$ a tak zvolím klasické chlazení hliníkovým profilem. Vybral jsem chladič s tepelným odporem $11 \ KW^{-1}$, takže teplota křemíkového čipu LM317 by měla být nižší, než teplota maximální na kterou jsem počítal celkový tepelný odpor.

FEKT UREL

6/11

LIST:

6 Realizace napájecího zdroje

Obrázek 7: Plošný spoj vrstva součástek

Obrázek 8: Plošný spoj vrstva mědi

Obrázek 9: Osazovací výkres

FEKT UREL LIST: 7/11

```
        0
        xxx
        <td
```

Drill Map:

× 0.60mm / 0.024" (83 holes)

0.1.00mm / 0.039" (9 holes)

3.00mm / 0.118" (2 holes)

Obrázek 10: Vrtací plán prokovené díry

 \times 3.00mm / 0.118" (4 holes) (not plated)

Obrázek 11: Vrtací plán neprokovené díry

Tabulka č. 2: BOM rozpiska materiálu

ref	hodnota	footprint	cena	link	datasheet
C1	100n	0805	1,0000	standatd 10%	
C2	10u/20V	Tantal_SizeB	12,4510	http://cz.farnell.com/kemet/t491b106k020at/cap-tant-10uf-20v-case-b/dp/1457437	http://www.farnell.com/datasheets/2121504.pdf
C3	1u	0805	20,0000	standatd 10%	
C4	10u/50V	Tantal_SizeD	62,3920	http://cz.farnell.com/kemet/t491d106k050at/cap-tant-10uf-50v-case-d/dp/1692396RL	http://www.farnell.com/datasheets/2122222.pdf
C5	1u	0805	20,0000	standatd 10%	
C6	1n	0805	1,0000	standatd 10%	
	470n	0805	1,0000	standatd 10%	
C8	6n8	0805		standatd 10%	
C9	68u/20V	Tantal_SizeD	40,8580	http://cz.farnell.com/kemet/t491d686k020at/cap-tant-68uf-20v-case-d/dp/2283592RL	http://www.farnell.com/datasheets/2121528.pdf
D1	BYG10D-E3/TR	DO-214AC	6,4320	http://cz.farnell.com/vishay/byg10d-e3-tr/diode-standard-1-5-a-do-214/dp/1612314	http://www.farnell.com/datasheets/2046084.pdf
D2	BYG10D-E3/TR	DO-214AC	6,4320	http://cz.farnell.com/vishay/byg10d-e3-tr/diode-standard-1-5-a-do-214/dp/1612314	http://www.farnell.com/datasheets/2046084.pdf
D3	STPS20M100S	TO-263	64,8760	http://cz.farnell.com/stmicroelectronics/stps20m100sg-tr/diode-schottky-20a-100v-d2pak/dp/2325907	http://www.farnell.com/datasheets/1716357.pdf
L1	47u	Choke_SMD_12x12mm_h6mm		http://cz.farnell.com/bourns/srp1265a-470m/inductor-shielded-47uh-20-6-5a/dp/2434080	http://www.farnell.com/datasheets/2059704.pdf
P1	MA522-500M02	TerminalBlock_Pheonix_MKDS1.5-2pol			http://www.farnell.com/datasheets/2059704.pdf
P2	MA522-500M02	TerminalBlock_Pheonix_MKDS1.5-2pol	7,0440	http://cz.farnell.com/multicomp/ma522-500m02/terminal-block-wire-to-brd-2pos/dp/2396252	http://www.farnell.com/datasheets/1706879.pdf
P3	MA522-500M02	TerminalBlock_Pheonix_MKDS1.5-2pol	7,0440	http://cz.farnell.com/multicomp/ma522-500m02/terminal-block-wire-to-brd-2pos/dp/2396252	http://www.farnell.com/datasheets/1706879.pdf
Q1	FDD5614P	TO-252	12,9200	http://cz.farnell.com/fairchild-semiconductor/fdd5614p/mosfet-p-60v-15a-d-pak/dp/9846131	http://www.farnell.com/datasheets/1706879.pdf
R1	510R	0805	2,0000	standatd 1%	
R2	1k3	0805	2,0000	standatd 1%	
R3	180k	0805	2,0000	standatd 1%	
R4	R01	1210	8,0000	standatd 1%	
R5	1k5	0805	2,0000	standatd 1%	
R6	6k2	0805	2,0000	standatd 1%	
R7	1k	0805	2,0000	standatd 1%	
	LM317KCS	TO-220		http://cz.farnell.com/texas-instruments/lm317kcs/v-reg-37vin-1-5a-0-1-adj-3to220/dp/2144307?ost=LM31	
	LM25085MYE	MSOP		http://cz.farnell.com/texas-instruments/lm25085mye/ic-sw-buck-controller-42v-8msoic/dp/1689555	http://cz.farnell.com/texas-instruments/lm25085mye/ic-sw-buck-controller-42v-8msoic/dp/1689555
	chladič	na TO-220		http://cz.farnell.com/fischer-elektronik/sk-104-38-1-sts/heatsink-to220/dp/1892327	http://www.farnell.com/datasheets/1332085.pdf
Celková ce	na:	·	473,6990		·

Obrázek 12: Schéma zapojení napájecího zdroje

Obrázek 13: Plošný pohled na stranu součástek bez součástek

Obrázek 14: Plošný spoj pohled na stranu součástek

Obrázek 15: Plošný spoj pohled na stranu spojů

Obrázek 16: Napájecí zdroj pohled ze strany

 ${\rm FEKT~UREL}$

11/11

LIST:

Obrázek 17: Napájecí zdroj pohled zepředu

Obrázek 18: Napájecí zdroj pohled zezadu

Gerber soubory jsou generovány na POOL servis gatema.