Actions mécaniques

(Version du 14/04/16)

1 Packages requis

- ifthen: Package permettant une compilation à choix multiple,
- Raf_Notations_Torseurs : Package de mise en forme des torseurs

2 Appel du package

Le package est appelé en début de document par la commande :

\usepackage{Raf_Notations_Actions-Meca}

Par défaut, ce package utilise un certain nombre de notations raccourcies, susceptibles de rentrer en conflit avec d'autre package (mais tellement plus rapide à taper !). De plus, certaines commandes ont été rebaptisée. Ces raccourcis et renommages seront cités ((Raccourci) ou (Renommé)) dans les tableaux suivants. Pour ne pas créer ces raccourcis/renommage, il faut rentre l'option noRaccourci à l'appel du package.

usepackage[noRaccourci]{Raf_Notations_Actions-Meca}

3 Torseur des actions mécanique

Commandes	Rendus	Commentaires
\torseurActionsMeca{S_1}	$m{\mathscr{T}}_{(S_1 o S_2)}$	Torseur de l'action mécanique
{S_2}	(/	de S_1 sur S_2 .
\torseurActionsMeca{S_1}	$igg \left\{oldsymbol{\mathscr{T}}_{(S_1 o S_2)} ight\}$	Torseur de l'action mécanique
{S_2}[braket]		avec accolade (n'importe quel
		argument à la fin autre que
		noBraket)
\torseurActionsMeca[2]	$oldsymbol{\mathcal{T}}^2_{(S_1 o S_2)}$	Torseur de l'action mécanique
{S_1}{S_2}		de S_1 sur S_2 avec un exposant
		pour le différencier d'un autre
		torseur.
\tAM{S_1}{S_2}	${m {\mathscr T}}_{(S_1 o S_2)}$	Raccourci direct de
	(-12)	\torseurActionsMeca. (Rac-
		courci)

4 Forces et résultantes d'actions mécaniques

Commandes	Rendus	Commentaires
\vForce{S_1}{S_2}	$\overrightarrow{F_{(S_1 \to S_2)}}$	Vecteur force de S_1 sur S_2 .
{2}	$\overrightarrow{F_2}$	Vecteur force n°2.
\vForce[P]{S_1}{S_2}	$\overrightarrow{P_{(S_1 \to S_2)}}$	Vecteur force avec changement de lettre.
\vF	\overrightarrow{F}	Raccourci de \vForce[F]{}{}. (Raccourci)
\vF[2]	$ \overrightarrow{F_2} $	Raccourci de \vForce[F]{}{} avec indice. (Raccourci)
\vForceNormale{S_1}{S_2}	$\overrightarrow{F^N}_{(S_1 \to S_2)}$	Force normale de contact de S_1 sur S_2 .
\vFN{S_1}{S_2}	$\overrightarrow{F^N}_{(S_1 \to S_2)}$	Raccourci de \vForceNormale. (Raccourci)
<pre>\vForceTangentielle{S_1} {S_2}</pre>	$F^T_{(S_1 \to S_2)}$	Force tangentielle de contact de S_1 sur S_2 .
\vFT{S_1}{S_2}	$\overrightarrow{F^T}_{(S_1 \to S_2)}$	Raccourci de \vForceTangentielle. (Raccourci)
\resultanteActionsMeca {S_1}{S_2}	$\overrightarrow{\mathscr{R}_{(S_1 o S_2)}}$	Résultante des actions mécaniques.
\resultanteActionsMeca[2] {S_1}{S_2}	$\overrightarrow{\mathscr{R}^2_{(S_1 o S_2)}}$	Résultante des actions mécaniques avec exposant.
\resAM{S_1}{S_2}	$\overrightarrow{\mathscr{R}_{(S_1 o S_2)}}$	Raccourci direct de \resultanteActionsMeca.

5 Moments d'actions mécaniques

Commandes	Rendus	Commentaires
\momentActionsMeca {A}{S_1}{S_2}	$\overrightarrow{\mathcal{M}}_{A_{(S_1 o S_2)}}$	Vecteur moment de l'action de S_1 sur S_2 au point A .
<pre>\momentActionsMeca {A}{\vLie{A}{\vF}}{}</pre>	$\overrightarrow{\mathcal{M}_{A_{\left(A,\overrightarrow{F} ight)}}}$	Vecteur moment associé à un vecteur lié (le 3^{eme} argument est vide).
\momentActionsMeca {A}{S_1}{S_2}	$\overrightarrow{\mathcal{M}_{A_{(S_1 o S_2)}}}$	Vecteur moment de l'action de S_1 sur S_2 au point A .
$\label{locality} $$ \mathbf{A}_{S_1}_{S_2}$$	$\overrightarrow{\mathcal{M}^1_{A_{(S_1 o S_2)}}}$	Vecteur moment de l'action de S_1 sur S_2 au point A avec exposant.
\momAM{A}{S_1}{S_2}	$\overrightarrow{\mathcal{M}_{A_{(S_1 o S_2)}}}$	Raccourci direct de \momentActionsMeca
<pre>\momentRoulement{A} {S_1}{S_2}</pre>	$\overrightarrow{\mathcal{M}_{A(S_1 \to S_2)}^r}$	Moment de roulement.
<pre>\momentPivotement{A} {S_1}{S_2}</pre>	$\overrightarrow{\mathscr{M}_{A(S_1 o S_2)}^p}$	Moment de pivotement.
\Cres	$C_{\rm res}$	Couple résistant
\Cm	$C_{ m m}$	Couple moteur

6 Densité d'effort

Commandes	Rendus	Commentaires
\vContrainte{X}{\vn}	$\overrightarrow{T}(X,\overrightarrow{\pi})$	Vecteur contrainte de normale \overrightarrow{n} , au point X .
{\vn}	$\overrightarrow{T}(\overrightarrow{n})$	Idem sans le point.
\vContrainte[\sigma]{X} {\vn}	$\overrightarrow{\sigma}(X,\overrightarrow{n})$	Idem avec changement de notation.
\vForceRepartie{S_1}{S_2}	$\overrightarrow{f_{P(S_1 \to S_2)}}$	Force de contact "répartie" sur une surface, entre (S_1) et (S_2) (par défaut au point P).
\vForceRepartie{S_1}{S_2} [X]	$\overrightarrow{f_{X(S_1 \to S_2)}}$	Idem en précisant le point.
\vForceRepartie[\sigma] {S_1}{S_2}	$\overrightarrow{\sigma_{P(S_1 \to S_2)}}$	Idem en changeant le symbole.
\vFRep{S_1}{S_2}	$\overrightarrow{f_{P(S_1 \to S_2)}}$	Raccourci direct de \vForceRepartie.
\vFRep{S_1}{S_2}[P]	$\overrightarrow{f_{P(S_1 \to S_2)}}$	Raccourci direct de \vForceRepartie en précisant le point.
\vFRep[\sigma]{S_1}{S_2}	$\overrightarrow{\sigma_{P(S_1 \to S_2)}}$	Raccourci direct de \vForceRepartie en précisant changeant le symbole.
\vdF	$\overrightarrow{dF_P}$	Petite force, issue de la pression (contrainte) appliquée sur une surface dS infinitésimale, centrée sur P .
\vdF[X]	$\overrightarrow{dF_X}$	Idem, appliqué en un autre point X .
\vdM{0}	$\overrightarrow{dM_P(O)}$	Petit moment autour de O , issu de la pression (contrainte) appliquée sur une surface dS infinitésimale, centrée sur P .
\vdM[X]{0}	$\overrightarrow{dM_X(O)}$	Idem, appliqué en un autre point X .
$\label{eq:contrainteNormale} $$\contrainteNormale{S_1}$ $$\{S_2\}$$	$\overrightarrow{n_{P(S_1 \to S_2)}}$	Contrainte normale de contact entre (S_1) et (S_2) (par défaut au point P).
\vContrainteNormale{S_1} {S_2}[X]	$\overrightarrow{n_{X(S_1 \to S_2)}}$	Idem avec changement de point.
\vCN{S_1}{S_2}	$\overrightarrow{n_P(\tilde{b}_1 \to S_2)}$	Raccourci direct de \vContrainteNormale. (Raccourci)
\vCN{S_1}{S_2}[X]	$\overrightarrow{n_{X(S_1 \to S_2)}}$	Idem avec changement de point. (Raccourci)

Commandes	Rendus	Commentaires
\vContrainteTangentielle	$\overrightarrow{t_{P(S_1 \to S_2)}}$	Contrainte tangentielle de con-
{S_1}{S_2}		tact entre (S_1) et (S_2) (par
	,	défaut au point P).
\vContrainteTangentielle	$\overrightarrow{t_{X(S_1 \to S_2)}}$	Idem avec changement de
${S_1}{S_2}[X]$		point.
\vCT{S_1}{S_2}	$\overrightarrow{t_{P(S_1 \to S_2)}}$	Raccourci direct de
		\vContrainteTangentielle.
		(Raccourci)
\vCT{S_1}{S_2}[X]	$\overrightarrow{t_{X(S_1 \to S_2)}}$	Idem avec changement de
		point. (Raccourci)

7 Tribologie

Commandes	Rendus	Commentaires
\coefficientFrottement	f	Coefficient de frottement
\coefFr	f	Raccourci de
		\coefficientFrottement
\fFrot	$\mid f \mid$	Raccourci de
		\coefficientFrottement
\angleFrottement	φ	Angle de frottement
\aFr	φ	Raccourci de
		\angleFrottement (Rac-
		courci)
\coefficientAdherence	f^*	Coefficient d'adhérence
\coefAdh	f^*	Raccourci de
		\coefiicientAdherence
\fAdh	f^*	Raccourci de
		\coefiicientAdherence
\coefResPivotement	δ	Coefficient de résistance au
		pivotement
\coefResRoulement	η	Coefficient de résistance au
		roulement

8 Hyper/Isostatisme

Commandes	Rendus	Commentaires
\inconnuesStatiques	N_s	Nombre d'inconnues statiques
-		total
\inconnuesStatiques[i]	n_{s_i}	Nombre d'inconnues statiques
		pour la liaison i
\iS	N_s	Raccourci de
		\inconnuesStatiques (Rac-
		courci)
\inconnuesCinematiques	N_c	Nombre d'inconnues
		cinématiques total
\inconnuesCinematiques[i]	n_{c_i}	Nombre d'inconnues
		cinématiques pour la liai-
		son i
\iC	N_c	Raccourci de
		\inconnuesCinematiques
		(Raccourci)
\nCyclomatique	γ	Nombre de boucles cycloma-
		tiques

9 Autre...

Commandes	Rendus	Commentaires
\vConstanteGravite	\overrightarrow{g}	Vecteur constante de gravité
\vg	\overrightarrow{g}	Raccourci de
		\vConstanteGravite (Rac-
		courci)