Games with ordinal sequence of moves

John Gowers and James Laird

April 1, 2016

Preliminaries

Our starting point - the Abramsky-Jagadeesan Games Model

Exponentials and the sequoid operator

Coalgebras and the final sequence

Stabilization ordinals for categories of games

Games with ordinal sequences of moves

What we end up with

Brief outline of the construction

Stabilization ordinals

Our starting point - the Abramsky-Jagadeesan Games Model

We start off with a few simple categories of games:

▶ Games with a winning condition:

$$A = (M_A, \lambda_A, b_A, P_A, W_A)$$

The winning condition prevents infinite internal chattering.

Games without a winning condition:

$$A = (M_A, \lambda_A, b_A, P_A)$$

We have no winning condition, so we have to use partial strategies or require that our games be bounded.

▶ We have the tensor product (\otimes) and implication (\multimap) given by interleaving games and a categorical semantics \mathcal{G} where a morphism from A to B is a strategy for $A \multimap B$.

Construction of an exponential for our game model

N is a negative game $(b_N = O)$.

$$!N = (M_N \times \mathbb{N}, \lambda_N \circ \mathsf{pr}_1, O, P_{!N})$$

!N is made up of countably many copies of the game N, indexed by $\mathbb N$ and played in parallel, with the opponent switching games.

!N has the structure of the cofree commutative comonoid generated by N:

$$!N \multimap !N \otimes !N$$

The sequoid operator on games

- ▶ $N \oslash L$ is a weakening of $N \oslash L$ in which the opponent must make the first move in the game N.
- It induces a monoidal category action of G on (a modified version of) itself:

$$L \oslash (M \otimes N) \cong (L \oslash M) \oslash N$$

This is the basis of the definition of a *sequoidal category*.

▶ Then the exponential !N arises as the final coalgebra for the 'sequoid on the left by N' functor $N \oslash _$

$$!N \rightarrow N \oslash !N$$

The final sequence

Let $\mathcal C$ be a category and $\mathcal F\colon \mathcal C\to \mathcal C$ be an endofunctor.

If a final coalgebra for \mathcal{F} exists, then it occurs as $\mathcal{F}^{\alpha}(1)$ for some α and the sequence stabilizes thereafter.

▶ If N is an object in the category $\mathcal G$ of games without a winning condition, then the final sequence for $N \oslash _$ stabilizes by ω .

- ▶ If N is an object in the category $\mathcal G$ of games without a winning condition, then the final sequence for $N \oslash _$ stabilizes by ω .
- ▶ If N is an object in the category $\mathcal W$ of games with a winning condition, then the final sequence for $N \oslash _$ stabilizes by $\omega 2$.

- ▶ If N is an object in the category $\mathcal G$ of games without a winning condition, then the final sequence for $N \oslash _$ stabilizes by ω .
- ▶ If N is an object in the category \mathcal{W} of games with a winning condition, then the final sequence for $N \oslash _$ stabilizes by $\omega 2$.
- If C is a sequoidal category, do the final sequences corresponding to 'sequoid on the left' functors always stabilize by $\omega 2$? (No.)

- ▶ If N is an object in the category $\mathcal G$ of games without a winning condition, then the final sequence for $N \oslash _$ stabilizes by ω .
- ▶ If N is an object in the category \mathcal{W} of games with a winning condition, then the final sequence for $N \oslash _$ stabilizes by $\omega 2$.
- ▶ If C is a sequoidal category, do the final sequences corresponding to 'sequoid on the left' functors always stabilize by ω 2? (No.)
- ▶ Can we replace ω 2 by some other ordinal to give us a recipe for constructing the exponential in any sequoidal category?

Idea of transfinite games

- ▶ For games without a winning condition, we may have a move at time n for every $n \in \omega$.
- ightharpoonup For games with a winning condition, we have things happening at time ω as well.
- We now take things further, and construct a category $\mathcal{G}(\alpha)$ for every ordinal α .
- ▶ We will get $\mathcal{G} \cong \mathcal{G}(\omega)$ and $\mathcal{W} \cong \mathcal{G}(\omega + 1)$.
- There is a connection between the ordinal α and the stabilization ordinals for functors of the form

$$N \oslash _ : \mathcal{G}(\alpha) \to \mathcal{G}(\alpha)$$

A brief outline of the construction of the category of games played over the ordinal α

Fix an ordinal α . We construct a sequoidal category of games of length α by mimicking the Abramsky-Jagadeesan construction:

$$N = (M_N, \lambda_N, \zeta_N, P_N)$$

- $ightharpoonup M_N$ is a set of moves.
- ▶ λ_N : $M_N \to \{O, P\}$ is a function saying which player each move belongs to.
- ▶ P_N is a prefix closed set of ordinal length sequences (plays) that take values in M_N and are indexed by ordinals $< \alpha$
- $ightharpoonup \langle N: P_N \to \{O, P\} \text{ assigns a player to each play.}$

The stabilization ordinal of the category $\mathcal{G}(\alpha)$

- ▶ The behaviour of the stabilization ordinal for functors of the form $N \oslash _$ in the category $\mathcal{G}(\alpha)$ is complicated in general.
- ▶ However, the final sequence for such functors never stabilizes before α .
- ► Therefore, we have constructed sequoidal categories of games with arbitrarily high stabilization ordinals: there is no general recipe for constructing this exponential using only the application of the functor and passing to small limits.