MATHEMATICAL FOUNDATION FOR COMPUTER SCIENCE

Prepared by: Er. Ankit Kharel

Nepal college of information technology

FINITE STATE AUTOMATA

- Sequential Circuits and Finite state Machine
- Finite State Automata
- Non-deterministic Finite State Automata
- Language and Grammars
- Language and Automata
- Regular Expression

GENERATING GRAMMAR FOR THE LANGUAGE:

I. First write the Regular Expression for the language.

Some Basic Rules:

a* A→aA/∈

Q. Write the Grammar that generates string having Following Properties:

- a) String of exactly length two
 R.E. = (a+b)(a+b)
 S→AA
 - $A \rightarrow a/b$
- b) String of at most length 2 R.E. = $(a+b+\in)(a+b+\in)$ $S \rightarrow AA$ $A \rightarrow a/b/\in$
- c) Starts with a

 R.E. = $a (a+b)^*$ S $\rightarrow aA$ $A \rightarrow aA/bA/\in$
- c) Ends with ba

 R.E. = $(a+b)^*ba$ S $\rightarrow Aba$ A $\rightarrow aA/bA/\in$

- d) Stats with a and ends with b

 R.E. = $a(a+b)^*b$ S $\rightarrow aAb$ $A \rightarrow aA/bA/ \in$
- e) Starts and ends with same symbol
 R.E. = a(a+b)*a + b(a+b)*b
 S→aAa/bAb/a/b
 A→aA/bA/∈
- f) Starts and ends with different symbol
 R.E. = a(a+b)*b + b(a+b)*a
 S→aAb/bAa
 A→aA/bA/∈
- c) Ends with ba

 R.E. = (a+b)*ba
 S→Aba
 A→aA/bA/∈

Q.Write the Context Free Grammar that generates Palindrome strong over $\sum (a, b)$

 $S \rightarrow \in /a/b$

S→aSa/bSb

Properties of regular language;

- I. If L and M are regular languages, then $L \cup M(\textbf{UNION})$ is a regular language. Let L and M be the languages of regular expressions R and S, respectively. Then R+S is a regular expression whose language is L U M.
- 2. If L is regular languages, then L* (Kleen Closure) is a regular language.

 Let L the languages of regular expressions R. Then R* is a regular expression whose language is L*
- 3. If L and M are regular languages, then L.M(Concatenation) is a regular language. Let L and M be the languages of regular expressions R and S, respectively. Then R.S is a regular expression whose language is L.M.
- 4. If L is a regular language over Σ , then \overline{L} (Complement) is also a regular language. Construct a DFA for L. This can be transformed into a DFA for \overline{L} by making all accepting states non-accepting and vice versa.
- 5. If L and M are regular languages, then L \cap M(Intersection) is a regular language. RE₁ = a(a*) and RE₂ = (aa)*
 So, L₁ = { a,aa, aaa, aaaa,} (Strings of all possible lengths excluding Null)
 L₂ = { ϵ , aa, aaaa, aaaaaa,......} (Strings of even length including Null)
 L₁ \cap L₂ = { aa, aaaa, aaaaaa,......} (Strings of even length excluding Null)
 RE (L₁ \cap L₂) = aa(aa)* which is a regular expression itself.

Properties of regular language;

- 6. If L and M are regular, then so is L M(**Difference**). Proof: $M N = M \cap \overline{N}$
- 7. If L is regular, then so is L^R (Reversal). Let, $L = \{01, 10, 11, 10\}$ RE (L) = 01 + 10 + 11 + 10 $L^R = \{10, 01, 11, 01\}$ RE (L^R) = 01 + 10 + 11 + 10 which is regular