Master systèmes biologiques et concepts physiques

Biophysique du neurone

Jacques Bourg

jacques.bourg@cnrs.fr

Post-doctorant, laboratoire de dynamique corticale et intégration multisensorielle.

Quatrième partie: la conduction dans les câbles cellulaires

- La conduction passive.
 - La conduction active.

La conduction passive

Nous appellons conduction passive la propagation spatio-temporelle de la différence de potentiel le long de la membrane.

La conduction passive

Comme pour les autres ondes, une différence de potentiel se propage sans qu'il y ait de déplacement de matière (de charges).

Paramètres biophysiques qui déterminent la conduction passive

canaux ioniques de fuite.

Paramètres biophysiques qui déterminent la conduction passive

l'axe de la dendrite/axone.

Paramètres biophysiques qui déterminent la conduction passive

extracellulaire. Cette isolation provoque un stockage de charges de part et d'autre de la membrane.

Utilisation d'unités normalisées par le diamètre/l'aire de la section!

L'équation des câbles

$$\frac{\partial^2 V}{\partial x^2} = \tau \frac{\partial V}{\partial t} + \frac{V}{\lambda^2} \qquad \qquad \tau = c_m . r_i \qquad \lambda^2 = \frac{r_m}{r_i}$$

L'équation des câbles

En régime permanent:

$$\frac{\partial^2 V}{\partial x^2} = \tau \frac{\partial V}{\partial t} + \frac{V}{\lambda^2}$$

$$\lambda^2 = \frac{r_m}{r_i}$$

$$V_{(x)} = V_{(x=0)}.e^{-\frac{x}{\lambda}}$$

L'équation des câbles

La conduction saltatoire

Grâce aux cellules de Schwann (myeline) la conduction est beaucoup plus rapide: 80-120 m/s contre 0.5-2.0 m/s. Seul les vertébrés (excepté les agnathes, sans machoire) ont des fibres myélinisées.

La conduction saltatoire, principe **passif** de propagation, la myélinisation

La conduction saltatoire principe **passif** de propagation, la myélinisation

La conduction saltatoire -principe passif de propagation- la myélinisation

La conduction saltatoire -principe passif de propagation- la myélinisation

$$C = arepsilon_0 arepsilon_{ ext{r}} \cdot rac{A}{d}$$

L'épaisseur de la membrane augmente, et donc sa capacitance diminue.

La conduction saltatoire -principe passif de propagation- la myélinisation

La capacitance diminue.

On peut, avec moins de charges, atteindre un certain niveau de dépolarisation.

La conduction active

Propagation unidirectionnelle du potentiel d'action grâce aux canaux ioniques voltage dépendants et à leur **inactivation** (dans le cas du sodium).

La conduction saltatoire: conduction passive et **active**

Entre deux Noeuds de Ranvier le potentiel se propage passivement. L'amplitude du potentiel d'action décroit selon l'équation des câbles, mais le signal est **regeneré** lorsque apparaissent de nouveaux canaux ioniques voltage-dépendants.