Exposant d'un groupe:

I Le développement

Le but de ce développement est de redémontrer les propriétés classiques sur l'exposant d'un groupe et d'en déduire un résultat sur les sous-groupes de \mathbb{K}^{\times} (\mathbb{K} étant un corps commutatif quelconque).

Dans tout ce développement, on considère un groupe (G,*) de neutre noté e_G .

Lemme 1 : [Berhuy, p.344]

Si G est un groupe d'exposant fini, alors $\exp(G) = \text{PPCM}(\{o(x), x \in G\})$. De plus, si G est fini, on a $\exp(G)$ qui divise $\operatorname{Card}(G)$.

Preuve:

* On suppose que G est d'exposant fini.

Pour tout $m \in \mathbb{Z}$, on a :

$$(\forall x \in G, x^m = e_G) \iff (\forall x \in G, o(x)|m) \iff (\text{PPCM}(\{o(x), x \in G\})|m)$$

Or, puisque G est d'exposant fini, la première équation admet au moins une solution strictement positive et les équivalentes précédentes montrent que la plus petite solution strictement positive est alors $\operatorname{PPCM}(\{o(x), x \in G\})$.

Donc par définition de l'exposant, on a $\exp(G) = PPCM(\{o(x), x \in G\}).$

* Si de plus G est fini, alors Card(G) est solution de l'équation précédente, donc on a exp(G) qui divise Card(G).

Exemple 2: [Berhuy, p.345]

 $\overline{*}$ Si G est cyclique d'ordre n, alors $\exp(G) = n$.

En effet, on a $\exp(G)$ qui divise n par le lemme précédent et d'autre part, G possède un élément d'ordre n (car cyclique), donc n divise $\exp(G)$ (par définition du PPCM). D'où l'égalité $\exp(G) = n$.

- * On a $\exp(D_8)=4$ puisque les ordres des rotations dans D_8 sont 1,2 ou 4 et que l'ordre des symétries dans D_4 est égal à 2.
- $*\exp(\mathfrak{S}_3)=6$ puisque les éléments de \mathfrak{S}_3 sont d'ordre 1,2 ou 3.

Proposition 3: [Berhuy, p.345]

Si G est un groupe abélien d'exposant fini, alors il existe un élément $x \in G$ d'ordre $\exp(G)$.

Preuve:

On suppose que G est un groupe abélien d'exposant fini.

Écrivons $\exp(G)=\mathrm{PPCM}(\{o(x),\ x\in G\})=\prod_{i=1}^r p_i^{m_i}$ (décomposition en facteurs premiers).

Soit $i \in [1; r]$.

Il existe un élément $x_i \in G$ tel que $p_i^{m_i}$ divise $o(x_i)$. En effet, dans le cas contraire, pour tout élément $x \in G$, la plus grande puissance de p_i divisant o(x) serait au plus $p_i^{m_i-1}$. Mais dans ce cas, la puissance de p_i dans la décomposition de $\exp(G)$ serait strictement inférieure à m_i et on aboutit à une contradiction.

Soit $i \in [1; r]$.

On choisit $x_i \in G$ un élément tel que $p_i^{m_i}$ divise $o(x_i)$ et écrivons $o(x_i) = p_i^{m_i} q_i$ (décomposition en facteurs premiers). On a alors $o(x_i^{q_i}) = p_i^{m_i}$ (car p_i et q_i sont premier entre eux) et puisque G est abélien, on a $o(x_1^{q_1}...x_r^{q_r}) = \prod_{i=1}^r p_i^{m_i} = \exp(G)$.

Ainsi, il existe un élément de G d'ordre $\exp(G)$.

Corollaire 4: [Berhuy, p.345]

 $\overline{\text{Si }G}$ est un groupe abélien fini, alors on a l'équivalence :

$$(\exp(G) = \operatorname{Card}(G)) \iff (G \text{ cyclique})$$

Preuve:

On suppose que G est un groupe abélien fini.

- * Si G est cyclique, alors l'exemple précédent montre que l'on a $\exp(G) = \operatorname{Card}(G)$.
- * Réciproquement, supposons que $\exp(G) = \operatorname{Card}(G)$.

Puisque G est fini il est aussi d'exposant fini et comme il est abélien (par hypothèse) on a par la proposition précédente qu'il existe un élément $x \in G$ d'ordre $\exp(G) = \operatorname{Card}(G)$.

Donc on a < $x>\subseteq G$ et $\mathrm{Card}(< x>)=\mathrm{Card}(G),$ d'où G=< x> et le fait que G est cyclique.

On a ainsi démontré l'équivalence voulue.

Remarque 5: [Berhuy, p.346]

L'exemple de \mathfrak{S}_3 montre que les deux résultats précédents sont faux si G n'est pas supposé abélien. En effet, on avait $\exp(\mathfrak{S}_3) = \operatorname{Card}(\mathfrak{S}_3) = 6$ alors que \mathfrak{S}_3 ne contient pas d'élément d'ordre 6 et n'est pas cyclique (par la classification des petits groupes).

Théorème 6: [Berhuy, p.346]

Soit K un corps commutatif quelconque.

Tout sous-groupe fini de \mathbb{K}^{\times} est cyclique.

Preuve:

Soit G un sous-groupe fini de \mathbb{K}^{\times} .

On a que G est abélien et on note $e = \exp(G)$.

Ainsi, pour tout $x \in G$, $x^e = 1_{\mathbb{K}}$ et puisque le polynôme $X^e - 1_{\mathbb{K}} \in \mathbb{K}[X]$ est de degré e, il possède au plus e racines dans \mathbb{K} .

D'autre part, d'après la proposition précédente, il existe un élément $x_0 \in G$ d'ordre e. Et puisque $< x_0 > \subseteq G$ et que $\operatorname{Card}(G) \leq e$, on en déduit finalement que $\operatorname{Card}(G) = e$ et donc que $G = < x_0 >$.

Ainsi, tout sous-groupe fini de \mathbb{K}^{\times} est cyclique.

Remarque 7: [Berhuy, p.346]

* En particulier, on en déduit que tout sous-groupe de \mathbb{F}_q^{\times} est cyclique (avec $q=p^n$ où p est un nombre premier et n un entier naturel non nul) puisque \mathbb{F}_q est un corps. * Si p est un nombre premier, on a alors que $(\mathbb{Z}/p\mathbb{Z})^{\times}$ est cyclique car les $\mathbb{Z}/p\mathbb{Z}$ sont des corps et puisqu'ils sont finis donc on peut appliquer le théorème précédent avec le groupe $(\mathbb{Z}/p\mathbb{Z})^{\times}$ tout entier.

II Remarques sur le développement

II.1 Résultat(s) utilisé(s)

On a utilisé ici la notion d'exposant dont on rappelle la définition :

Définition 8 : Groupe d'exposant fini [Berhuy, p.344] :

On dit que G est **d'exposant fini** lorsqu'il existe un entier $n \in \mathbb{N}^*$ tel que pour tout $x \in G$, $x^n = e_G$. Dans ce cas, on appelle **exposant de** G le plus petit entier $n \in \mathbb{N}^*$ vérifiant cette propriété et on le note $\exp(G)$.

On rappelle également quelques résultats sur l'ordre d'un élément dans un groupe :

Proposition 9: [Berhuy, p.151]

Si G est d'ordre $n \in \mathbb{N}^*$, alors pour tout $x \in G$, $x^n = e_G$.

Corollaire 10: [Berhuy, p.151]

Soit $x \in G$.

- * Pour tout $d \in \mathbb{N}^*$, l'élément x^d est d'ordre fini et on a : $o\left(x^d\right) = \frac{o(x)}{\operatorname{PGCD}(d,o(x))}$. En particulier :
- Si d divise o(x), alors $o\left(x^d\right) = \frac{o(x)}{d}$.
- Si d et o(x) sont premiers entre eux, alors $o(x^d) = o(x)$.

Proposition 11: [Berhuy, p.151]

Soient $x, y \in G$ d'ordre fini.

Si x et y commutent, alors xy est d'ordre fini.

De plus, on a les propriétés suivantes :

- Si $\langle x \rangle \cap \langle y \rangle = e_G$, alors o(xy) = PPCM(o(x), o(y)).
- Si o(x) et o(y) sont premiers entre eux, alors o(xy) = o(x)o(y).

II.2 Pour aller plus loin...

Il existe des groupes infinis dont les éléments sont tous d'ordre fini (\mathbb{Q}/\mathbb{Z} par exemple) mais sans qu'il soit d'exposant fini.

De même, un groupe d'exposant fini n'est pas forcément fini comme le montre l'exemple de $(\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}}$. Cependant, on a une réciproque partielle avec le théorème de Burnside :

Théorème 12 : Théorème de Burnside [Francinou, p.353] :

Soit H un sous-groupe de $GL_n(\mathbb{C})$.

Si H est d'exposant fini, alors il est fini.

II.3 Recasages

Recasages: 104 - 142.

III Bibliographie

- Grégory Berhuy, Algèbre : le grand combat.
- Serge Francinou, Exercices de mathématiques, Oraux X-ENS, Algèbre 2.