

External Sorting

Why Sort?

- A classic problem in computer science!
- Data requested in sorted order
 - e.g., find students in increasing *gpa* order
- ❖ Sorting is first step in *bulk loading* B+ tree index.
- Sorting useful for eliminating duplicate copies in a collection of records (Why?)
- Sort-merge join algorithm involves sorting.
- * Problem: sort 1Gb of data with 1Mb of RAM.
 - why not virtual memory?

2-Way Sort: Requires 3 Buffers

- Pass 1: Read a page, sort it, write it.
 - only one buffer page is used
- **❖** Pass 2, 3, ..., etc.:
 - three buffer pages used.

- Each pass we read + write each page in file.
- ❖ N pages in the file => the number of passes = $\lceil \log_2 N \rceil + 1$
- * So toal cost is:

$$2N(\lceil \log_2 N \rceil + 1)$$

* <u>Idea:</u> Divide and conquer: sort subfiles and merge

General External Merge Sort

- □ More than 3 buffer pages. How can we utilize them?
- ❖ To sort a file with N pages using B buffer pages:
 - Pass 0: use *B* buffer pages. Produce $\lceil N/B \rceil$ sorted runs of *B* pages each.
 - Pass 2, ..., etc.: merge *B-1* runs.

Cost of External Merge Sort

- ❖ Number of passes: $1 + \lceil \log_{B-1} \lceil N / B \rceil \rceil$
- ❖ Cost = 2N * (# of passes)
- ❖ E.g., with 5 buffer pages, to sort 108 page file:
 - Pass 0: $\lceil 108 / 5 \rceil = 22$ sorted runs of 5 pages each (last run is only 3 pages)
 - Pass 1: [22 / 4] = 6 sorted runs of 20 pages each (last run is only 8 pages)
 - Pass 2: 2 sorted runs, 80 pages and 28 pages
 - Pass 3: Sorted file of 108 pages

Number of Passes of External Sort

N	B=3	B=5	B=9	B=17	B=129	B=257
100	7	4	3	2	1	1
1,000	10	5	4	3	2	2
10,000	13	7	5	4	2	2
100,000	17	9	6	5	3	3
1,000,000	20	10	7	5	3	3
10,000,000	23	12	8	6	4	3
100,000,000	26	14	9	7	4	4
1,000,000,000	30	15	10	8	5	4

A Typical Case

- ❖ If have B memory pages, a file of M pages, and M < B*B</p>
 - then cost of sort is 4M
- Pass 0: create runs of B pages long
- ❖ Pass 1: create runs of B*(B-1) pages long
 - if M < B*B, then we are done
- Cost of Pass 0: 2M
- Cost of Pass 1: 2M