Дана автоматная грамматика G = (Vn, Vt, P, S). $Vn = \{S, A, B, F\}$, $Vt = \{a, b, c, d\}$, $P = \{1.S \rightarrow bB 2. S \rightarrow bA 3.A \rightarrow cB 4. B \rightarrow dF 5. B \rightarrow d 6.B \rightarrow cB 7.F \rightarrow bF 8.F \rightarrow d\}$

- 1.(10р.) Построить конечный автомат эквивалентный данной грамматике G.
- 2. (10р.) Определить регулярное выражение для всех слов грамматики.
- 3. (10р.) Для одной допустимой цепочки, построить представление x=uvw, удовлетворяющее свойствам леммы о разрастании.
- 4. (20р.) Если данный конечный автомат является недетерминированный, тогда измените его, построив эквивалентный ему, детерминированный КА.

Fisiere răspuns

P= {

- $1.S \rightarrow bB$
- 2. $S \rightarrow bA$
- $3.A \rightarrow cB$
- 4. $B \rightarrow dF$
- **5.** B→d
- $6.B \rightarrow cB$
- **7.**F→**b**F
- $8.F \rightarrow d$

1. Построить конечный автомат эквивалентный данной грамматике G.

$Vn=\{S, A, B, F\}, Vt=\{a, b, c, d\}, P=\{a, b, c, d\}$	$Vn={S, A, B, F}, Vt={a, b, c, d}, P:$
1.S→bB	$\delta(S,d)=\{B\},$
2. S→bA	$\delta(S,b)=\{A\},$
3.А→сВ	$\delta(A, c)=\{B\},$
4. B→dF	$\delta(B,d)=\{F\},$
5. B→d	$\delta(B, d)=\{V\},$
6.B→cB	$\delta(B, c) = \{B\},$
$ \begin{array}{c} 7.F \rightarrow bF \\ 8.F \rightarrow d \end{array} $	$\delta(F, b)=\{F\}$
0.1 → u }	$\delta(F, d)=\{V\}$

2. Находим регулярное выражение

G= (Vn, Vt, P, S). Vn={S, A, B, F}, Vt={a, b, c, d}, P= {1.S \rightarrow bB 2. S \rightarrow bA 3.A \rightarrow cB 4. B \rightarrow dF 5. B \rightarrow d 6.B \rightarrow cB 7.F \rightarrow bF 8.F \rightarrow d}

3. Для одной допустимой цепочки, построить представление x=uvw, удовлетворяющее свойствам леммы о разрастании.

bccdbd

(S, bccdbd) $|-(A, ccdbd)|-(B, cdbd)|-(B, dbd)|-(F, bd)|-(F, d)|-(F, e) \in AF$

bccdbd

S |- A|- B |- B |- F |- F |- V

Находим первое повторение состояний $z \Rightarrow u = bc$ v = c w = dbd

n -число состояний автомата, n=5

Пусть i=0, тогда u w \in L, => bccccccdbd \in L. i=... 3 ... , => b \in L

4. Если данный конечный автомат является недетерминированный, тогда измените его, построив эквивалентный ему, детерминированный КА.

```
G=(Vn, Vt, P, S). Vn=\{S, A, B, F\}, Vt=\{a, b, c, d\},\
P= {
     \delta(S,d)=\{B\},
     \delta(S,b)=\{A\},
     \delta(A, c)=\{B\},
     \delta(B,d)=\{F\},
     \delta(B, d)=\{V\},
     \delta(B, c)=\{B\},
     \delta(F, b) = \{F\}
      \delta(F, d)=\{V\}
}
     1) Q' = {S}
     \delta(S, a) = []
     \delta(S, b) = [A]
     \delta(S, c) = []
     \delta(S, d) = [B]
     2) Q' = \{S, A, B\}
     \delta(A, a) = []
     \delta(A, b) = []
     \delta(A, c) = [B]
     \delta(A, d) = []
```

3)
$$Q' = \{S, A, B\}$$

$$\delta(B, a) = []$$

$$\delta(B, b) = []$$

$$\delta(B, c) = [B]$$

$$\delta(B, d) = [FV]$$

$$\delta(FV, a) = []$$

$$\delta(FV, b) = [F]$$

$$\delta(FV, c) = []$$

$$\delta(FV, d) = [V]$$

$$\delta(F, a) = []$$

$$\delta(F, b) = [F]$$

$$\delta(F, c) = []$$

$$\delta(F, d) = [V]$$

$$\delta(V, a) = []$$

$$\delta(V, b) = []$$

$$\delta(V, c) = []$$

$$\delta(V, d) = []$$

Автомат

