Подвиды генерации изображений

Image2Image translation

Paired and Unpaired Image to Image Translation

- Paired Training data- yi corresponding to each xi is given
- Unpaired data- No information provided as to which xi corresponds to which y

Cyclic Model

- G maps X to Y
- F is inverse mapping from Y to X
- DX and DY are discriminators

Adversarial Loss

$$G: X \to Y$$
 $G^* = \arg \min_{G} \max_{D_Y} \mathcal{L}_{GAN}(G, D_Y, X, Y)$
 $F: Y \to X$
 $F^* = \arg \min_{F} \max_{D_X} \mathcal{L}_{GAN}(F, D_X, Y, X)$

where,

 $\mathcal{L}_{GAN}(G, D_Y, X, Y) = \mathbb{E}_{y \sim p_{data}(y)}[\log D_Y(y)]$
 $+ \mathbb{E}_{x \sim p_{data}(x)}[\log(1 - D_Y(G(x))]$

Cycle Loss

- Forward Cycle Consistency $x \to G(x) \to F(G(x)) \approx x$
- Backward Cycle Consistency

$$y \to F(y) \to G(F(y)) \approx y$$

Cycle Consistency Loss

$$\mathcal{L}_{\text{cyc}}(G, F) = \mathbb{E}_{x \sim p_{\text{data}}(x)} [\|F(G(x)) - x\|_1]$$
$$+ \mathbb{E}_{y \sim p_{\text{data}}(y)} [\|G(F(y)) - y\|_1]$$

Objective Function

$$L(G, F, D_x, D_y) = L_{GAN}(G, D_y, X, Y) + L_{GAN}(F, D_x, X, Y) + \lambda L_{cyc}(G, F)$$

where, λ controls relative importance of the two objective functions

The objective is to solve-

$$G^*, F^* = \arg\min_{F,G} \max_{D_X,D_Y} \mathcal{L}(G, F, D_X, D_Y).$$

· For implementation purpose we use-

$$\mathcal{L}_{LSGAN}(G, D_Y, X, Y) = \mathbb{E}_{y \sim p_{data}(y)}[(D_Y(y) - 1)^2] + \mathbb{E}_{x \sim p_{data}(x)}[D_Y(G(x))^2]$$

 Srivastava et al. - Learning from simulated and unsupervised images through adversarial training.

▶ Photo ↔ Label

$horse \leftrightarrow zebra$

Style Transfer

Season Transfer

Face Swap

Autoencoders

Deep Face Lab: face extraction

Deep Face Lab: training

- учим общий Encoder и Inter, два Decoder'а работают в разных доменах
- есть проблема с переносом атрибутов (цветопередачи куда делаем пересадку)

Deep Face Lab: training

- вводим 2 разных Inter'a, InterAB на вход получает оба латента
- общий декодер

Deep Face Lab: conversion

Deep Face Lab

Плюсы

 хорошее качество переноса

Минусы

- нужно учить под конкретную модель
- нужно много фото модели (от 100 и больше)

FaceShifter

- 1. Двухстадийный pipeline:
 - а. AEI-Net заменяет id y target на source, сохраняет atr target
 - b. HEAR-Net шлифует результат пересадки
- 2. Придумали Adaptive Attentional Denormalization Generator, с использованием attention

FaceShifter: Adaptive Embedding Integration Network

FaceShifter: Heuristic Error Acknowledging Refinement

Network

FaceShifter: Heuristic Error Acknowledging Refinement Network

SimSwap

SimSwap

Плюсы

- одна модель на всех
- простая архитектура

Минусы

- нестабильно переносит id

Smooth-Swap

Smooth-Swap: main idea

Inpainting and super-resolution

MAT

GPEN

SWIN

MAT: Mask-Aware Transformer for Large Hole Image Inpainting

МАТ: архитектура

GAN Prior Embedded Network for Blind Face Restoration in the Wild

GPEN

- pre-train the GAN prior network using a dataset of HQ face images following the training strategies of StyleGAN
- fine-tune the whole network using a set of synthesized LQ-HQ face image pairs
- the adversarial loss, the content los, feature matching loss

$$I^{d} = ((I \otimes \mathbf{k}) \downarrow_{s} + \mathbf{n}_{\sigma})_{JPEG_{q}}, \tag{4}$$

where I, k, n_{σ} , I^d are respectively the input face image, the blur kernel, the Gaussian noise with standard deviation σ and the degraded image. \otimes , \downarrow_s , $JPEG_q$ respectively denote the two-dimensional convolution, the standard s-fold downsampler and the JPEG compression operator with a quality factor q.

Восстановление видео

Короткий отрезок видео с измененной персоной, сниженным разрешением, и с наложенной маской.

Задача: восстановить закрашенные фрагменты, увеличить разрешение, получить указанную персону (Анжелину Длжоли)

Метрика: покадровый и средний по всем кадрам SSIM и PSNR

Inpainting: MAT, GPEN, SwinIr

Face Swap: SimSwap, Face Shifter