# TD 1: Propagation d'un signal

## Ex1: Signal sans fondamental

On considère le signal  $s(t) = 10\sin(80\pi t) + 5\sin(120\pi t + 0, 6\pi)$  où le temps est exprimé en secondes. Quelle est la fréquence de s(t)?

### Ex2: Spectre d'un produit de fonctions sinusoïdales

On considère le signal :  $s(t) = A\cos(2\pi f_1 t)\cos(2\pi f_2 t + \varphi)$  où A et  $\varphi$  sont des constantes.

- 1. En utilisant la relation  $\cos(a)\cos(b) = \frac{1}{2}(\cos(a+b) + \cos(a-b))$  déterminer les fréquences contenues dans s(t). Représenter son spectre d'amplitude et de phase.
- **2.** Examiner le cas où  $f_1 = f_2$ .

## Ex3: Relation entre fréquence et longueur d'onde

- 1. Calculer la longueur d'onde de l'onde électromagnétique qui existe dans un four microndes sachant que sa fréquence est f=2,45 GHz et que la célérité des ondes électromagnétiques est  $c=3.10^8$  m.s<sup>-1</sup>. Est-elle de l'ordre du micromètre?
- 2. La vitesse du son dans l'air dépend de la température T selon la formule  $c = \sqrt{\gamma RT/M_{\rm air}}$  où  $\gamma = 1,4,~R = 8,314~{\rm J.K^{-1}.mol^{-1}}$  et  $M_{\rm air} = 29.10^{-3}~{\rm kg.mol^{-1}}$ . Calculer la fréquence d'un son de longueur d'onde  $\lambda = 78$  cm lorsque la température vaut  $T_1 = 290~{\rm K}$ , puis  $T_2 = 300~{\rm K}$ . Le changement de hauteur du son dû au changement de température est-il de plus d'un demi-ton? Un demi-ton correspond à une variation relative de fréquence égale à  $2^{1/12} 1$ .

#### Ex4: Cuve à ondes

La figure représente la surface d'une cuve à onde éclairée en éclairage stroboscopique. L'onde est engendrée par un vibreur de fréquence f=18 Hz. L'image est claire là où la surface de l'eau est convexe, foncée là où elle est concave.



- 1. En mesurant sur la figure, déterminer la longueur d'onde.
- 2. En déduire la célérité de l'onde.
- 3. On suppose l'onde sinusoïdale, d'amplitude A constante et de phase initiale nulle en
- O. Ecrire le signal s(x,t) pour x>0 et pour x<0.
- 4. Expliquer pourquoi A n'est pas, en fait, constante.

## Ex5: Ondes progressives sinusoïdales

- 1. Donner la période, la fréquence, la pulsation, la longueur d'onde, le nombre d'onde et le module du vecteur d'onde, de l'onde  $s(x,t) = 5\sin(2,4.10^3\pi t 7\pi x + 0,7\pi)$  où x et t sont exprimés respectivement en mètres et en secondes. Quelle est sa vitesse de propagation?
- **2.** Une onde sinusoïdale se propage dans la direction de l'axe (Ox) dans le sens positif avec la célérité c. L'expression du signal de l'onde au point d'abscisse  $x_1$  est  $s_1(x_1,t) = A\cos(\omega t)$ . Déterminer l'expression de  $s_1(x,t)$ . Représenter  $s_1(x,0)$  en fonction de x.
- 3. Une onde sinusoïdale se propage dans la direction de l'axe (Ox) dans le sens négatif avec la célérité c. On donne  $s_2(O,t) = A\sin(\omega t)$ . Déterminer l'expression de  $s_2(x,t)$ . Représenter graphiquement  $s_2(\lambda/4,t)$  et  $s_2(\lambda/2,t)$  en fonction de t.

# Ex6: Propagation d'un signal périodique

Une onde se propage dans le sens positif (Ox) à la célérité c. En x=0 son signal est périodique de fréquence  $f_s$  et s'écrit :  $s(0,t)=f(t)=\sum_{n=1}^{\infty}A_n\cos(2\pi nf_st+\varphi_n)$ .

- 1. Quelle est la longueur d'onde associée au fondamental du signal f(t)? À son harmonique de rang n? Quelle est la période spatiale de l'onde?
- **2.** Montrer que le signal reçu en  $x_0$  s'écrit :  $s(x_0,t) = \sum_{n=1}^{\infty} A'_n \cos(2\pi n f_s t + \varphi'_n)$  et exprimer les  $A'_n$  et  $\varphi'_n$  en fonction de  $x_0$ .

## Ex7: Onde longitudinale sur un ressort

L'onde de compression-dilatation le long d'un ressort est une onde longitudinale analogue à une onde sonore. Lors du passage de cette onde chaque spire bouge dans la direction de l'axe (Ox), axe parallèle au ressort. Un signal associé à l'onde est le déplacement s(x,t) de la spire qui est située à l'abscisse x en l'absence d'onde : cette spire passe ainsi de la position x qu'elle occupe au repos à la position x + s(x,t) (voir figure).



- 1. On appelle a l'espacement entre deux spires consécutives dans l'état de repos. Lors du passage de l'onde, la distance entre les spires situées au repos en  $x_i = ia$  et  $x_{i+1} = (i+1)a$  devient  $d_i$ . Exprimer  $d_i$  en fonction de a,  $s(x_i, t)$  et  $s(x_{i+1}, t)$ .
- 2.

On suppose que  $s(x,t) = A\cos(\omega t - kx + \varphi)$ . On pose  $\phi = \omega t + \varphi$ . En utilisant une relation de trigonométrie, montrer que :  $d_i = a + 2A\sin\left(\frac{ka}{2}\right)\sin\left(\phi - kx_i\frac{ka}{2}\right)$ .

- **3.** On suppose que ka << 1. cette hypothèse correspond-elle bien à la figure ci-dessus? Montrer que, lors du passage de l'onde, la distance entre deux spires consécutives situées au repos au voisinage de x devient :  $d(x,t) \approx a(1+kA\sin(\omega t kx + \varphi))$ .
- **4.** La figure donne l'allure du ressort à t=0. En déduire  $\varphi$ . Où se trouvent, sur la figure, spires dont le déplacement est nul?