PCT/EP200 5 / 0 0 0 2 5 7

BUNDESREPUBLIK DEUTSCHLAND

13.01.05

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

10 2004 002 368.9

Anmeldetag:

15. Januar 2004

Anmelder/Inhaber:

BASF Aktiengesellschaft, 67056 Ludwigshafen/DE

Bezeichnung:

Fungizide Mischen zur Bekämpfung

IPC:

A 01 N, A 01 P

München, den 23. Juni 2004

Deutsches Patent- und Markenamt

Der Präsident
Im Auftrag

Hintermeler

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 28. Juli 2005 (28.07.2005)

PCT

(10) Internationale Veröffentlichungsnummer WO 2005/067714 A1

A01N 43/90 // (51) Internationale Patentklassifikation7: (A01N 43/90, 47:32)

(21) Internationales Aktenzeichen:

PCT/EP2005/000257

(22) Internationales Anmeldedatum:

13. Januar 2005 (13.01.2005)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

(30) Angaben zur Priorität:

Deutsch

10 2004 002 368.9 15. Januar 2004 (15.01.2004) (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme

- von US): BASF Aktiengesellschaft [DE/DE]; 67056 Ludwigshafen (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): TORMO I BLASCO, Jordi [ES/DE]; Carl-Benz-Str.10-3, 69514 Laudenbach (DE). GROTE, Thomas [DE/DE]; Im Höhnhausen 18, 67157 Wachenheim (DE). SCHERER, Maria [DE/DE]; Hermann-Jürgens-Str.30, 76829 Landau-Godramstein (DE). STIERL, Reinhard [DE/DE]; Jahnstr.8, 67251 Freinsheim (DE). STRATHMANN, Siegfried [DE/DE]; Donnersbergstr.9, 67117 Limburgerhof (DE). SCHÖFL, Ulrich [DE/DE]; Erlenstr. 8, 68782 Brühl (DE).

(74) Gemeinsamer Vertreter: BASF Aktiengesellschaft; 67056 Ludwigshafen (DE).

- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: FUNGICIDAL MIXTURES IN ORDER TO COMBAT HARMFUL FUNGI

(54) Bezeichnung: FUNGIZIDE MISCHUNGEN ZUR BEKÄMPFUNG VON SCHADPILZEN

(57) Abstract: The invention relates to fungicidal mixtures which are used to combat harmful fungi, said mixtures comprising the following active components, 1) the triazolopyrimidine derivatives of formula (I), and 2) pencycuron of formula (II), in a synergistically effective amount. The invention also relates to a method which is used to combat rice pathogens with mixtures of compound (I) with compounds (II) and the use of compound (I) with the compounds (II) for the production of said type of mixtures in addition to means comprising said mixtures.

(57) Zusammenfassung: Fungizide Mischungen zur Bekämpfung von Schadpilzen, enthaltend als aktive Komponenten 1) das Triazolopyrimidinderivat der Formel (I), und 2) Pencycuron der Formel (II), in einer synergistisch wirksamen Menge, Verfahren zur Bekämpfung von Reispathogenen mit Mischungen der Verbindung (I) mit den Verbindungen (II) und die Verwendung der Verbindung (I) mit den Verbindungen (II) zur Herstellung derartiger Mischungen sowie Mittel, die diese Mischungen enthalten.

Patentansprüche

- Fungizide Mischungen zur Bekämpfung von Schadpilzen, enthaltend
- 5 1) das Triazolopyrimidinderivat der Formel I,

und

2) das Phenylharnstoffderivat der Formel II,

10

in einer synergistisch wirksamen Menge.

Fungizide Mischungen gemäß Anspruch 1, enthaltend die Verbindung der Formel II in einem Gewichtsverhältnis von 100:1 bis 1:100.

- Fungizides Mittel, enthaltend einen flüssigen oder festen Trägerstoff und eine Mischung gemäß einem der Ansprüche 1 oder 2.
- 4. Verfahren zur Bekämpfung von Schadpilzen, dadurch gekennzeichnet, dass man die Pilze, deren Lebensraum oder die vor Pilzbefall zu schützenden Pflanzen, den Boden oder Saatgüter mit einer wirksamen Menge der Verbindung I und der Verbindung II gemäß Anspruch 1 behandelt.

- Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass man die Verbindungen I und II gemäß Anspruch 1 gleichzeitig, und zwar gemeinsam oder getrennt, oder nacheinander ausbringt.
- Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass man die Mischung gemäß Ansprüchen 1 oder 2 in einer Menge von 5 g/ha bis 1000 g/ha aufwendet.
 20040013 Ni 15.1.04

- 7. Verfahren nach Ansprüchen 4 bis 6, dadurch gekennzeichnet, dass reispathogene Schadpilze bekämpft werden.
- 5 8. Verfahren nach Ansprüchen 4 und 5, dadurch gekennzeichnet, dass man die Mischung gemäß Ansprüchen 1 oder 2 in einer Menge von 1 bis 300 g/100 kg Saatgut anwendet.
- 9. Saatgut, enthaltend die Mischung gemäß Ansprüchen 1 oder 2 in einer Menge
 10 von 1 bis 300 g/100 kg.
 - 10. Verwendung der Verbindungen I und II gemäß Anspruch 1 zur Herstellung eines zur Bekämpfung von Schadpilzen geeigneten Mittels.

Fungizide Mischungen zur Bekämpfung

Beschreibung

- 5 Die vorliegende Erfindung betrifft fungizide Mischungen zur Bekämpfung von Schadpilzen, enthaltend als aktive Komponenten
 - 1) das Triazolopyrimidinderivat der Formel I,

10 und

2) das Phenylharnstoffderivat der Formel II,

[]

15 in einer synergistisch wirksamen Menge.

Außerdem betrifft die Erfindung ein Verfahren zur Bekämpfung von Reispathogenen mit Mischungen der Verbindung I mit den Verbindungen II und die Verwendung der Verbindung I mit den Verbindungen II zur Herstellung derartiger Mischungen sowie Mittel, die diese Mischungen enthalten.

Die Verbindung I, 5-Chlor-7-(4-methyl-piperidin-1-yl)-6-(2,4,6-trifluor-phenyl)-[1,2,4]tri-azolo[1,5-a]pyrimidin, ihre Herstellung und deren Wirkung gegen Schadpilze ist aus der Literatur bekannt (WO 98/46607).

25

Die Verbindung II, 1-(4-Chlor-benzyl)-1-cyclopentyl-3-phenyl-harnstoff, ihre Herstellung und ihre Wirkung gegen Schadpilze ist ebenfalls aus der Literatur bekannt (Mitt. Biol. Bundesanst. Land-Forstwirtsch., Berlin-Dahlem, Bd. 203, S. 230 (1981); DE 27 32 257; common name Pencycuron).

.

Mischungen von Triazolopyrimidinen mit anderen Wirkstoffen sind aus EP-A 988 790 und US 6 268 371 bekannt.

Die aus EP-A 988 790 bekannten synergistischen Mischungen werden als fungizid wirksam gegen verschiedene Krankheiten von Getreide, Obst und Gemüse, wie z. B. Mehltau an Weizen und Gerste oder Grauschimmel an Äpfeln beschrieben. Die aus US 6 268 371 bekannten Mischungen werden als fungizid wirksam, besonders gegen Reispathogene, beschrieben.

Im Hinblick auf eine wirkungsvolle Bekämpfung von Schadpilzen bei möglichst geringen Aufwandmengen, insbesondere von Reispathogenen, lagen der vorliegenden Erfindungen Mischungen als Aufgabe zugrunde, die bei verringerter Gesamtmenge an ausgebrachten Wirkstoffen eine verbesserte Wirkung gegen Schadpilze zeigen.

Demgemäss wurden die eingangs definierten Mischungen gefunden. Es wurde außerdem gefunden, dass sich bei gleichzeitiger gemeinsamer oder getrennter Anwendung der Verbindung I und der Verbindung II oder bei Anwendung der Verbindungen I und der Verbindung II nacheinander Schadpilze besser bekämpfen lassen als mit den Einzelverbindungen (synergistische Mischungen).

Die Mischungen der Verbindung I und der Verbindung II bzw. die gleichzeitige gemeinsame oder getrennte Verwendung der Verbindung I und der Verbindung II zeichnen sich aus durch eine hervorragende Wirksamkeit gegen ein breites Spektrum von pflanzenpathogenen Pilzen, insbesondere aus der Klasse der Ascomyceten, Deuteromyceten, Oomyceten und Basidiomyceten. Sie sind zum Teil systemisch wirksam und können im Pflanzenschutz als Blatt- und Bodenfungizide eingesetzt werden.

Besondere Bedeutung haben sie für die Bekämpfung einer Vielzahl von Pilzen an verschiedenen Kulturpflanzen wie Bananen, Baumwolle, Gemüsepflanzen (z.B. Gurken, Bohnen und Kürbisgewächse), Gerste, Gras, Hafer, Kaffee, Kartoffeln, Mais, Obstpflanzen, Roggen, Soja, Tomaten, Wein, Weizen, Zierpflanzen, Zuckerrohr und insbesondere Reis, sowie einer Vielzahl von Samen.

Besondere Bedeutung haben sie für die Bekämpfung von Schadpilzen an Reispflanzen und an deren Saatgut, wie *Bipolaris*- und *Drechslera*-Arten. Insbesondere eignen sie sich zur Bekämpfung des Reisbrandes, der durch *Pyricularia oryzae* verursacht wird. Daneben sind sie auch hochwirksam gegen eine Vielzahl von pflanzenpathogenen Pilzen, wie: *Blumeria graminis* (echter Mehltau) an Getreide, *Erysiphe cichoracearum* und *Sphaerotheca fuliginea* an Kürbisgewächsen, *Podosphaera leucotricha* an Äpfeln, *Uncinula necator* an Reben, *Puccinia*-Arten an Getreide, *Rhizoctonia*-Arten an Baum-

25

35

3

wolle, Reis und Rasen, *Ustilago*-Arten an Getreide und Zuckerrohr, *Venturia inaequalis* an Äpfeln, *Bipolaris*- und *Drechslera*-Arten an Getreide, Reis und Rasen, *Septoria nodorum* an Weizen, *Botrytis cinerea* an Erdbeeren, Gemüse, Zierpflanzen und Reben, *Mycosphaerella*-Arten an Bananen, Erdnüssen und Getreide, *Pseudocercosporella herpotrichoides* an Weizen und Gerste, *Pyricularia oryzae* an Reis, *Phytophthora infestans* an Kartoffeln und Tomaten, *Pseudoperonospora*-Arten an Kürbisgewächsen und Hopfen, *Plasmopara viticola* an Reben, *Alternaria*-Arten an Gemüse und Obst, sowie *Fusarium*- und *Verticillium*-Arten.

10 Sie sind außerdem im Materialschutz (z.B. Holzschutz) anwendbar, beispielsweise gegen *Paecilomyces variotii*.

Die Verbindung I und die Verbindung II können gleichzeitig gemeinsam oder getrennt oder nacheinander aufgebracht werden, wobei die Reihenfolge bei getrennter Applikation im allgemeinen keine Auswirkung auf den Bekämpfungserfolg hat.

Bevorzugt setzt man bei der Bereitstellung der Mischungen die reinen Wirkstoffe I und II ein, denen man je nach Bedarf weitere Wirkstoffe gegen Schadpilze oder andere Schädlinge wie Insekten, Spinntiere oder Nematoden, oder auch herbizide oder wachstumsregulierende Wirkstoffe oder Düngemittel beimischen kann.

Die Verbindung I und die Verbindung II werden üblicherweise in einem Gewichtsverhältnis von 100:1 bis 1:100, vorzugsweise 20:1 bis 1:20, insbesondere 10:1 bis 1:10 angewandt.

Die Aufwandmengen der erfindungsgemäßen Mischungen liegen je nach Art der Verbindung und des gewünschten Effekts bei 5 g/ha bis 1000 g/ha, vorzugsweise 50 bis 900 g/ha, insbesondere 50 bis 750 g/ha.

Die Aufwandmengen für die Verbindung I liegen entsprechend in der Regel bei 1 bis 1000 g/ha, vorzugsweise 10 bis 900 g/ha, insbesondere 20 bis 750 g/ha.

Die Aufwandmengen für Verbindung II liegen entsprechend in der Regel bei 1 bis 500 g/ha, vorzugsweise 10 bis 300 g/ha, insbesondere 20 bis 200 g/ha.

Bei der Saatgutbehandlung werden im allgemeinen Aufwandmengen an Mischung von 1 bis 300 g/100 kg Saatgut, vorzugsweise 1 bis 100 g/100 kg, insbesondere 5 bis 50 g/100 kg verwendet.

10

20

25

.

Bei der Bekämpfung für Reispflanzen pathogener Schadpilze erfolgt die getrennte oder gemeinsame Applikation der Verbindungen I und II oder der Mischungen aus den Verbindungen I und II durch Besprühen oder Bestäuben der Samen, der Sämlinge, der Pflanzen oder der Böden vor oder nach der Aussaat der Pflanzen oder vor oder nach dem Auflaufen der Pflanzen. Bevorzugt erfolgt die Applikation der Verbindungen gemeinsam oder getrennt durch Granulatapplikation oder Bestäuben der Böden.

Die erfindungsgemäßen Mischungen, bzw. die Verbindungen I und II können in die üblichen Formulierungen überführt werden, z.B. Lösungen, Emulsionen, Suspensionen, Stäube, Pulver, Pasten und Granulate. Die Anwendungsform richtet sich nach dem jeweiligen Verwendungszweck; sie soll in jedem Fall eine feine und gleichmäßige Verteilung der erfindungsgemäßen Verbindung gewährleisten.

Die Formulierungen werden in bekannter Weise hergestellt, z.B. durch Verstrecken des Wirkstoffs mit Lösungsmitteln und/oder Trägerstoffen, gewünschtenfalls unter Verwendung von Emulgiermitteln und Dispergiermitteln. Als Lösungsmittel / Hilfsstoffe kommen dafür im wesentlichen in Betracht:

- Wasser, aromatische Lösungsmittel (z.B. Solvesso Produkte, Xylol), Paraffine (z.B. Erdölfraktionen), Alkohole (z.B. Methanol, Butanol, Pentanol, Benzylalkohol), Ketone (z.B. Cyclohexanon, gamma-Butryolacton), Pyrrolidone (NMP, NOP), Acetate (Glykoldiacetat), Glykole, Dimethylfettsäureamide, Fettsäuren und Fettsäureester. Grundsätzlich können auch Lösungsmittelgemische verwendet werden,

Trägerstoffe wie natürliche Gesteinsmehle (z.B. Kaoline, Tonerden, Talkum, Kreide) und synthetische Gesteinsmehle (z.B. hochdisperse Kieselsäure, Silikate); Emulgiermittel wie nichtionogene und anionische Emulgatoren (z.B. Polyoxyethylen-Fettalkohol-Ether, Alkylsulfonate und Arylsulfonate) und Dispergiermittel wie Lignin-Sulfitablaugen und Methylcellulose.

Als oberflächenaktive Stoffe kommen Alkali-, Erdalkali-, Ammoniumsalze von Ligninsulfonsäure, Naphthalinsulfonsäure, Phenolsulfonsäure, Dibutylnaphthalinsulfonsäure, Alkylarylsulfonate, Alkylsulfonate, Fettalkoholsulfate, Fettsäuren und sulfatierte Fettalkoholglykolether zum Einsatz, ferner Kondensationsprodukte von sulfoniertem Naphthalin und Naphthalinderivaten mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphtalinsulfonsäure mit Phenol und Formaldehyd, Polyoxyethylenoctylphenolether, ethoxyliertes Isooctylphenol, Octylphenol, Nonylphenol, Alkylphenolpolyglykolether, Tributylphenylpolyglykolether, Tristerylphenylpolyglykolether, Alkylarylpolyetheralkohole, Alkohol- und Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether, ethoxyliertes Polyoxypropylen, Laurylalkoholpolyglykoletheracetal, Sorbitester, Ligninsulfitablaugen und Methylcellulose in Betracht.

25

5

Zur Herstellung von direkt versprühbaren Lösungen, Emulsionen, Pasten oder Öldispersionen kommen Mineralölfraktionen von mittlerem bis hohem Siedepunkt, wie Kerosin oder Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z.B. Toluol, Xylol, Paraffin, Tetrahydronaphthalin, alkylierte Naphthaline oder deren Derivate, Methanol, Ethanol, Propanol, Butanol, Cyclohexanol, Cyclohexanon, Isophoron, stark polare Lösungsmittel, z.B. Dimethylsulfoxid, N-Methylpyrrolidon oder Wasser in Betracht.

Pulver-, Streu- und Stäubmittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.

Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate, können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind z.B. Mineralerden, wie Kieselgele, Silikate, Talkum, Kaolin, Attaclay, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie z.B. Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte, wie Getreidemehl, Baumrinden-, Holz- und Nussschalenmehl, Cellulosepulver und andere feste Trägerstoffe.

Die Formulierungen enthalten im allgemeinen zwischen 0,01 und 95 Gew.-%, vorzugsweise zwischen 0,1 und 90 Gew.-% der Wirkstoffe. Die Wirkstoffe werden dabei in einer Reinheit von 90% bis 100%, vorzugsweise 95% bis 100% (nach NMR-Spektrum) eingesetzt.

Beispiele für Formulierungen sind: 1. Produkte zur Verdünnung in Wasser

- A) Wasserlösliche Konzentrate (SL)
 10 Gew.-Teile der Wirkstoffe werden in Wasser oder einem wasserlöslichen Lösungsmittel gelöst. Alternativ werden Netzmittel oder andere Hilfsmittel zugefügt. Bei der Verdünnung in Wasser löst sich der Wirkstoff.
- B) Dispergierbare Konzentrate (DC)
 20 Gew.-Teile der Wirkstoffe werden in Cyclohexanon unter Zusatz eines Dispergier mittels z.B. Polyvinylpyrrolidon gelöst. Bei Verdünnung in Wasser ergibt sich eine Dispersion.
 - C) Emulgierbare Konzentrate (EC)15 Gew.-Teile der Wirkstoffe werden in Xylol unter Zusatz von Ca-Dodecylbenzol-

F

sulfonat und Ricinusölethoxylat (jeweils 5 %) gelöst. Bei der Verdünnung in Wasser ergibt sich eine Emulsion.

- D) Emulsionen (EW, EO)
- 40 Gew.-Teile der Wirkstoffe werden in Xylol unter Zusatz von Ca-Dodecylbenzolsulfonat und Ricinusölethoxylat (jeweils 5 %) gelöst. Diese Mischung wird mittels einer Emulgiermaschine (Ultraturax) in Wasser eingebracht und zu einer homogenen Emulsion gebracht. Bei der Verdünnung in Wasser ergibt sich eine Emulsion.
- E) Suspensionen (SC, OD) 20 Gew.-Teile der Wirkstoffe werden unter Zusatz von Dispergier- und Netzmitteln und Wasser oder einem organischen Lösungsmittel in einer Rührwerkskugelmühle zu einer feinen Wirkstoffsuspension zerkleinert. Bei der Verdünnung in Wasser ergibt sich eine stabile Suspension des Wirkstoffs.
 - F) Wasserdispergierbare und wasserlösliche Granulate (WG, SG) 50 Gew.-Teile der Wirkstoffe werden unter Zusatz von Dispergier- und Netzmitteln fein gemahlen und mittels technischer Geräte (z.B. Extrusion, Sprühturm, Wirbelschicht) als wasserdispergierbare oder wasserlösliche Granulate hergestellt. Bei der Verdünnung in Wasser ergibt sich eine stabile Dispersion oder Lösung des Wirkstoffs.
 - G) Wasserdispergierbare und wasserlösliche Pulver (WP, SP)
 75 Gew.-Teile der Wirkstoffe werden unter Zusatz von Dispergier- und Netzmitteln sowie Kieselsäuregel in einer Rotor-Strator Mühle vermahlen. Bei der Verdünnung in Wasser ergibt sich eine stabile Dispersion oder Lösung des Wirkstoffs.
 - Produkte für die Direktapplikation

- H) Stäube (DP)
- 5 Gew.Teile der Wirkstoffe werden fein gemahlen und mit 95 % feinteiligem Kaolin innig vermischt. Man erhält dadurch ein Stäubmittel.
- Granulate (GR, FG, GG, MG)
 Gew-Teile der Wirkstoffe werden fein gemahlen und mit 95.5 % Trägerstoffe verbunden. Gängige Verfahren sind dabei die Extrusion, die Sprühtrocknung oder die Wirbelschicht. Man erhält dadurch ein Granulat für die Direktapplikation.
- J) ULV- Lösungen (UL)
 10 Gew.-Teile der Wirkstoffe werden in einem organischen Lösungsmittel z.B. Xylol
 gelöst. Dadurch erhält man ein Produkt für die Direktapplikation.

35

7

Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder den daraus bereiteten Anwendungsformen, z.B. in Form von direkt versprüharen Lösungen, Pulvern, Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubmitteln, Streumitteln, Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder Gießen angewendet werden. Die Anwendungsformen richten sich ganz nach den Verwendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten.

Wässrige Anwendungsformen können aus Emulsionskonzentraten, Pasten oder netzbaren Pulvern (Spritzpulver, Öldispersionen) durch Zusatz von Wasser bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die Substanzen als solche oder in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emulgiermitttel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.

Die Wirkstoffkonzentrationen in den anwendungsfertigen Zubereitungen können in größeren Bereichen variiert werden. Im allgemeinen liegen sie zwischen 0,0001 und 10%, vorzugsweise zwischen 0,01 und 1%.

Die Wirkstoffe können auch mit gutem Erfolg im Ultra-Low-Volume-Verfahren (ULV) verwendet werden, wobei es möglich ist, Formulierungen mit mehr als 95 Gew.-% Wirkstoff oder sogar den Wirkstoff ohne Zusätze auszubringen.

Zu den Wirkstoffen können Öle verschiedenen Typs, Netzmittel, Adjuvants, Herbizide, Fungizide, andere Schädlingsbekämpfungsmittel, Bakterizide, gegebenenfalls auch erst unmittelbar vor der Anwendung (Tankmix), zugesetzt werden. Diese Mittel können zu den erfindungsgemäßen Mitteln zugemischt werden, was üblicherweise im Gewichtsverhältnis von 1:10 bis 10:1 erfolgt.

Die Verbindungen I und II, bzw. die Mischungen oder die entsprechenden Formulierungen werden angewendet, indem man die Schadpilze, die von ihnen freizuhaltenden Pflanzen, Samen, Böden, Flächen, Materialien oder Räume mit einer fungizid wirksamen Menge der Mischung, bzw. der Verbindungen I und II bei getrennter Ausbringung, behandelt. Die Anwendung kann vor oder nach dem Befall durch die Schadpilze erfolgen.

Die fungizide Wirkung der Verbindung und der Mischungen lässt sich durch folgende Versuche zeigen:

Die Wirkstoffe wurden getrennt oder gemeinsam als eine Stammlösung aufbereitet mit 0,25 Gew.-% Wirkstoff in Aceton oder DMSO. Dieser Lösung wurde 1 Gew.-% Emulgator Uniperol® EL (Netzmittel mit Emulgier- und Dispergierwirkung auf der Basis ethoxylierter Alkylphenole) zugesetzt und entsprechend der gewünschten Konzentration mit Wasser verdünnt.

10 Anwendungsbeispiel - Protektive Wirksamkeit gegen Reisbrand verursacht durch Pyricularia oryzae

Die Auswertung erfolgt durch Feststellung der befallenen Blattflächen in Prozent. Diese Prozent-Werte wurden in Wirkungsgrade umgerechnet.

Der Wirkungsgrad (W) wird nach der Formel von Abbot wie folgt berechnet:

25

20

$$W = (1 - \alpha/\beta) \cdot 100$$

- α entspricht dem Pilzbefall der behandelten Pflanzen in % und
- β entspricht dem Pilzbefall der unbehandelten (Kontroll-) Pflanzen in %

Bei einem Wirkungsgrad von 0 entspricht der Befall der behandelten Pflanzen demjenigen der unbehandelten Kontrollpflanzen; bei einem Wirkungsgrad von 100 weisen die behandelten Pflanzen keinen Befall auf.

35

Die zu erwartenden Wirkungsgrade der Wirkstoffmischungen werden nach der Colby Formel [R.S. Colby, Weeds 15, 20-22 (1967)] ermittelt und mit den beobachteten Wirkungsgraden verglichen.

Colby Formel:

10

$$E = x + y - x \cdot y/100$$

- zu erwartender Wirkungsgrad, ausgedrückt in % der unbehandelten Kontrolle, beim Einsatz der Mischung aus den Wirkstoffen A und B in den Konzentrationen a und b
 - x der Wirkungsgrad, ausgedrückt in % der unbehandelten Kontrolle, beim Einsatz des Wirkstoffs A in der Konzentration a
 - y der Wirkungsgrad, ausgedrückt in % der unbehandelten Kontrolle, beim Einsatz des Wirkstoffs B in der Konzentration b

Tabelle A - Einzelwirkstoffe

Beispiel	Wirkstoff	Wirkstoffkonzentration in der Spritzbrühe [ppm]	
1	Kontrolle (unbehandelt)	-	(86 % Befall)
2		4	31
		16	0
3	II (Pencycuron)	1	0

Tabelle B – erfindungsgemäße Mischungen

Beispiel	Wirkstoffmischung Konzentration Mischungsverhältnis	beobachteter Wirkungsgrad	berechneter Wirkungsgrad*)
4	I + II 4 + 1 ppm 4:1	65	31
5	+ 4 + 16 ppm 1:4	77	31

*) berechneter Wirkungsgrad nach der Colby-Formel

Aus den Ergebnissen der Versuche geht hervor, dass die erfindungsgemäßen Mischungen gegen Reisbrand durch einen starken Synergismus erheblich besser wirksam sind, als mit der Colby-Formel vorausberechnet.

Fungizide Mischungen zur Bekämpfung von Schadpilzen

Zusammenfassung

- Fungizide Mischungen zur Bekämpfung von Schadpilzen, enthaltend als aktive Komponenten
 - 1) das Triazolopyrimidinderivat der Formel I,

und

2) das Phenylharnstoffderivat der Formel II,

in einer synergistisch wirksamen Menge, Verfahren zur Bekämpfung von Reispathogenen mit Mischungen der Verbindung I mit den Verbindungen II und die Verwendung der Verbindung I mit den Verbindungen II zur Herstellung derartiger Mischungen sowie Mittel, die diese Mischungen enthalten.