ENGR-233 MOCK FINAL EXAM

Problem 1. Find the equation of the plane passing through the points A(1,3,-2), B(3,-4,1), C(-1,2,1).

Answer: 9x + 6y + 8z - 11 = 0.

Problem 2. A planet of mass m moves around a star of mass M. The planet orbit is assumed to be a circle, the star being at its center.

(a) Suppose the orbit radius is R. Find the period of the planet (the duration of its "year").

Answer: The period $T = \frac{2\pi R^{3/2}}{G^{1/2}M^{1/2}}$.

(b) Suppose the speed of the planet is v. Find the radius R of the orbit.

Answer: $R = \frac{GM}{v^2}$.

(Hint: The force acting on the planet $\mathbf{F} = -GmM \frac{\mathbf{r}}{||\mathbf{r}||^3}$ where \mathbf{r} is the vector connecting the star and the planet, and G is the gravity constant; the planet acceleration is defined by the 2-d Newton's Law $\mathbf{F} = m\mathbf{r}''$.)

Problem 3. (a) Find the divergence of the field $\mathbf{F} = (x^2 - y^2)\mathbf{i} + xyz\mathbf{j} + (z^2 - x^2)\mathbf{k}$ at the point (1, 2, 3).

Answer: div F(1, 2, 3) = 11.

(b) Find the curvature of the curve defined by the parametric equations $x = e^t \cos t$, $y = e^t \sin t$, $z = e^t \cot (1,0,1)$.

Answer: The point (1,0,1) corresponds to the value of parameter t=0; the curvature at this point, $\kappa(0) = \sqrt{2}/3$.

Problem 4. Consider the plane velocity field

$$\mathbf{u} = \left(\frac{y}{(x-1)^2 + y^2} + \frac{y}{(x+1)^2 + y^2}\right)\mathbf{i} - \left(\frac{x-1}{(x-1)^2 + y^2} + \frac{x+1}{(x+1)^2 + y^2}\right)\mathbf{j}.$$

(a) Find div \mathbf{u} ;

Answer: Outside the points (-1,0) and (1,0), $div \mathbf{u} = 0$.

(b) Find curl **u**.

Answer: Outside the same points, $\operatorname{curl} \mathbf{u} = 0$.

Problem 5. Find $\int_C \sin y dx + \cos x dy$ where C is a union of the line segments from (0,0) to $(0,\pi/2)$ and from $(0,\pi/2)$ to $(\pi/2,\pi/2)$.

1

Answer: $\int_{C} \sin y dx + \cos x dy = \pi.$

Problem 6. (a) Find $\int_C x^2 y^2 ds$ where C is the line $x = 2\cos t, y = 2\sin t, \ 0 \le t \le \pi/3$.

Answer: $4\pi/3 + \sqrt{3}/2$ (Sorry, there was a misprint in the contour: it is $x = 2\cos t, y = 2\sin t$, and not $x = 2\cos t, y = \sin t$ as it was printed.)

(b) Find the flux of the field $\mathbf{F} = (x^2 - y^2)\mathbf{i} + (y^2 - z^2)\mathbf{j} + (z^2 - x^2)\mathbf{k}$ through the surface of the sphere $x^2 + y^2 + z^2 = 4$ (use the Divergence Theorem).

Answer: The flux is zero.

Problem 7. (a) Find $\oint_C \mathbf{F} \cdot ds$ if $\mathbf{F} = e^x \cos y \mathbf{i} - e^x \sin y \mathbf{j}$, and C is the circle $x^2 + (y - \pi)^2 = \pi^2$.

Answer: $\oint_C \mathbf{F} \cdot ds = 0;$

(b) Find the work done by the force $\mathbf{F} = y\mathbf{i} - x\mathbf{j}$ along the circle $(x-1)^2 + y^2 = 1$ (use the Green's Theorem).

Answer: The work is equal to zero.

Problem 8. Evaluate $\iiint_R xyzdV$ where R is a polyhedron bounded by the planes $x=0,\ y=0,\ z=0,\ x+y+z=1.$

Answer: $\iiint_R xyzdV = 5/16 - 11/30 + 1/18 \approx 0.00139.$

Problem 9. (a) For the vector field $\mathbf{u} = \frac{x\mathbf{i} + y\mathbf{j} + z\mathbf{k}}{(x^2 + y^2 + z^2)^{3/2}}$, find div \mathbf{u} .

Answer: For $x^2 + y^2 + z^2 > 0$, div **u** = 0.

(b) For the same field, find $\iint_S \mathbf{u} \cdot \mathbf{n} ds$ where S is the sphere $x^2 + y^2 + z^2 = 1$, and **n** is the unit outer normal vector to S.

Answer: $\iint_{S} \mathbf{u} \cdot \mathbf{n} ds = 4\pi.$

(c) Explain why the results of (a) and (b) don't contradict the Divergence Theorem.

Answer: The field **u** is not bounded near the origin x = y = z = 0, and therefore, the Divergence Theorem is not applicable.

Problem 10. Using cylindrical coordinates, find the volume of the body of revolution formed by rotation of the disk $(x-1)^2 + z^2 < 1$ around the z-axis (draw a picture).

Answer: $V = 2\pi^2$.