Определение 1. Пусть f — функция, определенная на некотором конечном или бесконечном промежутке I. Её nepвooбразная — это такая дифференцируемая на этом промежутке функция F, что F'=f. Совокупность всех первообразных функции f на промежутке I называется неопределенным интегралом функции f. Обозначение: $\int f(x) dx$.

Задача 1. Пусть F_1 и F_2 — две различные первообразные функции f, определённой на промежутке I. Докажите, что $(F_1 - F_2)$ — константа.

Задача 2. Пусть функция f непрерывна (на всём \mathbb{R}). Зафиксируем произвольную точку a и рассмотрим функцию $F(t) = \int f(x) \, dx$ от переменной t. **а)** Докажите, что функция F непрерывна.

б) Докажите, что функция F дифференцируема и найдите её производную.

Задача 3°. (Формула Ньютона-Лейбница) Пусть f — непрерывная функция на отрезке [a,b] и F — её первообразная. Докажите, что $\int_{b} f(x) dx = F(a) - F(b)$

Задача 4. а) $^{\circ}$ Приведите пример функции, интегрируемой на отрезке [a,b], но не имеющей первообразной на интервале (a,b). **б)*** Приведите пример функции, не имеющей первообразной ни на одном интервале. \mathbf{b})* Приведите пример функции, не интегрируемой на отрезке [a,b], но имеющей первообразную на интервале (a,b). $\mathbf{r})^*$ Приведите пример разрывной функции, у которой существует первообразная.

Задача 5°. (Линейность неопределённого интеграла) Пусть на некотором промежутке существуют неопределенные интегралы $\int f(x) dx$ и $\int g(x) dx$. Тогда для любых постоянных α и β на этом промежутке существует неопределенный интеграл $\int (\alpha f(x) + \beta g(x)) dx$ и $\int (\alpha f(x) + \beta g(x)) dx = \alpha \int f(x) dx + \beta \int g(x) dx$.

Задача 6°. (Формула замены переменных) Пусть $\omega(x)$ — дифференцируемая функция с непрерывной производной. Пусть f — непрерывная функция, и F(x) — её первообразная. Докажите, что

$$\int f(\omega(x))\omega'(x) dx = F(\omega(x)) + C.$$

Задача 7. а) Пусть функция $\varphi(x)$ монотонна и дифференцируема на отрезке $[\alpha, \beta]$, а её производная $\varphi'(x)$ непрерывна на этом отрезке. Пусть, кроме того, $\varphi(\alpha) = a$ и $\varphi(\beta) = b$. Докажите, что для любой непрерывной на отрезке [a,b] функции f $\int_{0}^{b} f(t) dt = \int_{0}^{c} f(\varphi(x))\varphi'(x) dx$

б)° Справедливо ли утверждение пункта а), если $\varphi(x)$ не является монотонной?

Пример 1. С помощью формулы замены переменных можно эффективно вычислять многие определённые интегралы. Приведём примеры того, как ей пользуются.

$$\int_{a=0}^{b=1} x \cdot (2-x^2)^5 dx = \begin{vmatrix} t = f(x) = 2 - x^2 \\ dt = f' dx = -2x dx \\ x dx = -1/2 dt \\ A = f(a) = 2 \\ B = f(b) = 1 \end{vmatrix} = \int_{A=2}^{B=1} t^5 \left(-\frac{1}{2}\right) dt = -\frac{1}{2} \int_{A=2}^{B=1} t^5 dt = \frac{1}{2} \int_{1}^{2} t^5 dt = \frac{1}{2} \left(\frac{2^6}{6} - \frac{1^6}{6}\right) = \frac{21}{4}$$

$$\int_{a=-1}^{b=1} \sqrt{1 - x^2} dx = \begin{vmatrix} t = f(x) = \arcsin x \\ dt = f' dx = dx / \sqrt{1 - x^2} \\ A = f(a) = -\pi/2 \end{vmatrix} = \int_{A=-\pi/2}^{f-1} |\cos t| \cos t dt = \int_{-\pi/2}^{\pi/2} \frac{\cos 2t + 1}{2} dt = \frac{\pi}{2}$$

$$\int_{t=-1}^{b=1} \sqrt{1-x^2} \, dx = \begin{vmatrix} t = f(x) = \arcsin x & f^{-1}(t) = \sin t = x \\ dt = f' dx = dx / \sqrt{1-x^2} & (f^{-1})' dt = \cos t \, dt = dx \\ A = f(a) = -\pi/2 & B = f(b) = \pi/2 \end{vmatrix} = \int_{A=-\pi/2}^{B=\pi/2} |\cos t| \cos t \, dt = \int_{-\pi/2}^{\pi/2} \frac{\cos 2t + 1}{2} \, dt = \frac{\pi}{2}$$

Задача 8. Вычислите: **a)** $\int e^{e^x+x} \, dx$; **б)** $\int x e^{x^2} \, dx$; **в)** $\int \frac{\ln x}{x} \, dx$; **г)** $\int \sin x \cos x \, dx$; **д)** $\int \frac{\sin x}{\cos^3 x} \, dx$.

Задача 9°. (Интегрирование по частям) Пусть u(x) и v(x) — дифференцируемые функции. Пусть существует интеграл $\int u(x)v'(x)\,dx$. Докажите, что существует интеграл $\int u'(x)v(x)\,dx$ и

$$\int u'(x)v(x) dx = u(x)v(x) - \int u(x)v'(x) dx.$$

Задача 10. Найдите следующие неопределённые интегралы $(k \in \mathbb{N})$:

а)
$$\int \ln x \, dx$$
; б) $\int x^k e^x \, dx$; в) $\int e^x \sin x \, dx$; г) $\int \ln^k x \, dx$; д) $\int_0^{\pi} x \sin x \, dx$.

1	2 a	2 6	3	4 a	4 6	4 B	4 г	5	6	7 a	7 б	8 a	8 6	8 B	8 г	8 Д	9	10 a	10 б	10 B	10 г	10 Д

Листок №27 Страница 2

Задача 11°. (Формула Тейлора) Пусть f(x) — функция с непрерывной n+1 производной. Докажите, что

$$f(x) = f(x_0) + \sum_{k=1}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{1}{n!} \int_{x_0}^{x} (x - t)^n f^{(n+1)}(t) dt.$$

Физические приложения интеграла

Задача 12. а) Шпанская мушка летает по комнате так, что расстояние от неё до двух соседних стен и пола в момент времени t — это x(t), y(t) и z(t) соответственно. Найдите скорость мушки.

б) Найти длину произвольного куска параболы $y = x^2$.

Задача 13. Пусть пара непрерывно дифференцируемых функций $(x(t), y(t)), 0 \le t \le T$ задаёт замкнутую несамопересекающуюся кривую. Кривая ограничивает область площади S. Доказать, что

$$S = \left| \int_{0}^{T} y(t)x'(t)dt \right|.$$

Задача 14. Окружность радиуса R катится по прямой с угловой скоростью ω . На окружности зафиксировали точку. Кривая, по которой движется эта точка, называется ииклоидой. Задайте кривую параметрически (то есть в виде (x(t), y(t))) и найдите площадь одной арки циклоиды.

Задача 15. Пусть задана плотность проволоки $\rho(x)$. Как с помощью интегрирования найти её

а) массу; **б)** центр масс?

Задача 16. Доказать, что объём тела, образованного вращением вокруг оси Oy плоской фигуры $0\leqslant a\leqslant x\leqslant b,\, 0\leqslant y\leqslant y(x),$ где y(x) — непрерывная функция, равен $V=2\pi\int\limits_{-\infty}^{b}xy(x)\,dx.$

Задача 17. а) Найдите объём шара радиуса *R*. б) Определите центр масс однородного полушария радиуса R. в) Найдите площадь сферы радиуса R. г)** Найдите объём четырёхмерного шара радиуса R.

Упражнения по вычислению интегралов

Задача 18. Найдите первообразные следующих функций:

- а) f = 1; б) f = x; в) $f = x^k, k \in \mathbb{N}$; г) f = 1/x; д) $f = x^k, k \in \mathbb{Z}$; е) $f = e^x$; ж) $f = \sin x$; з) $f = \cos x$; и) $f = \operatorname{tg} x$; к) $f = \operatorname{ctg} x$.

Задача 19. Найдите первообразные следующих функций:
a)
$$f=5x^2-1;$$
 b) $f=1-\cos 3x;$ **b)** $f=\frac{6}{(5x-7)^3};$ **r)** $f=7\sin\frac{x}{3}+\frac{2}{\cos^2 4x};$

Задача 20. Найдите для функции f первообразную F, проходящую через точку M

a)
$$f(x) = x^3$$
, $M = (2; 1)$; 6) $f(x) = \sqrt{x}$, $M = \left(-\frac{1}{2}; 3\right)$; B) $f(x) = \sin x$, $M = (\pi, 7)$.

Задача 21. Вычислите следующие интегралы:

a)
$$\int_{-1}^{1} x^4 dx$$
; 6) $\int_{\pi}^{\pi/2} \cos x dx$; B) $\int_{-\pi/2}^{-\pi/3} \frac{1}{\sin^2 x} dx$; r) $\int_{1}^{4} \frac{1}{\sqrt{x}} dx$; A) $\int_{-1}^{2} \frac{1}{(2x+1)^2} dx$; e) $\int_{1}^{2} \frac{x+1}{(2x-1)^3} dx$;

Задача 22. Вычислите площадь фигуры, ограниченной линиями:

a)
$$y = 2x - x^2$$
, $y = 0$; 6) $y = (x + 2)^2$, $y = 0$, $x = 0$; b) $y = \sin x$, $y = 0$, $0 \le x \le \pi$; r) $y = x^{2n}$, $y = 1$;

д)
$$y = -\frac{1}{\sqrt{x}}, y = 0, x = 1, x = 4$$
 e) $y = \frac{4}{x^2}, y = 7 - 3x;$ ж) $y = x^2 + 2x + 2, y = 2 + 4x - x^2;$

11	12 a	12 б	13	14	15 a	15 б	16	17 a	17 б	17 B	17 Г	18 a	18 б	18 B	18 Г	18 Д	18 e	18 ж	18 3	18 и	18 K	19 a	19 б	19 B	19 Г	$\begin{vmatrix} 20 \\ a \end{vmatrix}$	20 б	20 B	21 a	21 б	21 B	21 Г	21 Д	21 e	22 a	22 б	22 B	22 Г	22 д	22 2 e	22 ж