QUANTUM ALGORITHMS FINAL EXAM

PROF. MATTHEW MOORE

Due: 2021-05-11 at 10:00

Instructions
• You may make use of any non-human assistance — any book, the web (but do not ask for help online), etc. Solutions must be self-contained.
• Solutions given with little or no justification may receive little or no credit.
• Solutions will be graded based on correctness, quality, and presentation. Turn in something that you are proud of.
• There are 3 problems. Submit only 2 for grading.
"I pledge on my honor that I have neither given nor received unauthorized aid on this assignment."
Signature:

1. Let \mathbb{G} be a finite Abelian group such that

$$\mathbb{G}\cong\prod_{i=1}^k\mathbb{Z}/m_i\mathbb{Z}$$

by the Fundamental Theorem of Finitely Generated Abelian Groups. Regard elements $g \in G$ as tuples $g = (g_i) \in \prod \mathbb{Z}/m_i\mathbb{Z}$. Recall that the Quantum Fourier Transform for \mathbb{G} was

$$\mathcal{F}_{\mathbb{G}} \coloneqq \frac{1}{\sqrt{|\mathbb{G}|}} \sum_{g,h \in G} \mu(g,h) |g\rangle \langle h|$$

where
$$\mu(g,h) \coloneqq \prod_{i=1}^k \omega_{m_i}^{g_i h_i}, \qquad \qquad \omega_{m_i} \coloneqq \exp(2\pi i/m_i).$$
 Show that $\mathcal{F}_{\mathbb{G}} = \bigotimes_{i=1}^k \mathcal{F}_{\mathbb{Z}/m_i\mathbb{Z}}.$

Show that
$$\mathcal{F}_{\mathbb{G}} = \bigotimes_{i=1}^k \mathcal{F}_{\mathbb{Z}/m_i\mathbb{Z}}$$
.

2. Recall that the Kronecker product of $matrices\ A$ and B is defined

$$A * B := \begin{pmatrix} a_{11}B & \cdots & a_{1n}B \\ \vdots & & \vdots \\ a_{m1}B & \cdots & a_{mn}B \end{pmatrix}, \qquad A = (a_{ij}),$$

and that given a linear operator $C: \mathbb{T} \to \mathbb{U}$, we denote the matrix of C relative to some specified ordered bases for \mathbb{T} and \mathbb{U} as [C].

Let $\mathbb{V}, \mathbb{W}, \mathbb{X}, \mathbb{Y}$ be vector spaces with respective ordered bases

$$\mathcal{V} = \{ |v_1\rangle, |v_2\rangle \},$$

$$\mathcal{X} = \{ |x_1\rangle, |x_2\rangle, |x_3\rangle \},$$

$$\mathcal{Y} = \{ |y_1\rangle, |y_2\rangle, |y_2\rangle \}.$$

$$\mathcal{Y} = \{ |y_1\rangle, |y_2\rangle \}.$$

Define linear operators $D: \mathbb{V} \to \mathbb{W}$ and $E: \mathbb{X} \to \mathbb{Y}$ by

$$D |v_1\rangle = |w_1\rangle + |w_2\rangle + |w_3\rangle, \qquad E |x_1\rangle = |y_1\rangle - |y_2\rangle,$$

$$D |v_2\rangle = 2 |w_2\rangle - |w_3\rangle, \qquad E |x_2\rangle = 2 |y_2\rangle,$$

$$E |x_3\rangle = |y_1\rangle + |y_2\rangle.$$

Show that $[D] * [E] = [D \otimes E]$, where the bases for $\mathbb{V} \otimes \mathbb{X}$ and $\mathbb{W} \otimes \mathbb{Y}$ are the usual lexicographically ordered bases. You may do this by direct calculation if you wish.

- **3.** Given a group \mathbb{G} , recall that the discrete logarithm problem takes as input elements $a, b \in G$ such that $b^s = a$, and outputs the number s. Recall that the quantum solution to the discrete logarithm problem involves running the eigenvalue estimation circuit in series using the operators U_b and U_a^{\dagger} .
- (i) Show that the state in the circuit before passing through the two inverse Quantum Fourier Transform blocks is proportional to

$$\sum_{x,y\in\{0,1\}^n}\left|x,y,b^xa^{-y}\right\rangle.$$

(ii) Carefully show that the state after passing through the two inverse Quantum Fourier Transform blocks but before measurement is proportional to

$$\sum_{\substack{z,w \in \{0,1\}^n \\ \text{sub-}k = 0}} |z,w\rangle \otimes \sum_{k=1}^m \exp(-2\pi i(kw)/2^n) |b^k\rangle,$$

where m is the period/order of b in \mathbb{G} . [Hint: use $b^s = a$.]

(iii) Conclude that measuring the top two registers of the circuit produces pairs $|u,v\rangle$ such that $b^u a^{-v} = 1$. Explain how to use such pairs to find s.