Коммутирующие слова над алфавитом $\{A, B\}$ являются степенями общего слова

Алфавит $\Sigma = \{A, B\}$. Словом называется конечная последовательность символов из Σ . Конкатенация слов u, v обозначается uv, пустое слово $-\varepsilon$, длина слова w-|w|.

Определение 1 (Степень слова). Для слова w и числа $k \in \mathbb{N}$ положим

$$w^0 = \varepsilon, \qquad w^{k+1} = w \, w^k.$$

Лемма 2 (Аддитивность показателя). Для любых $m, n \in \mathbb{N}$ и любого слова w верно

$$w^{m+n} = w^m w^n.$$

Доказательство. Индукция по m.

- База m = 0: $w^{0+n} = w^n = \varepsilon w^n = w^0 w^n$.
- Переход $m \mapsto m+1$:

$$w^{(m+1)+n} = w^{m+1+n} = w w^{m+n} \stackrel{\text{MII}}{=} w (w^m w^n) = (w w^m) w^n = w^{m+1} w^n.$$

Лемма 3 (Равноразложимость конкатенации). Для любых слов l_1, l_2, l_3, l_4 из Σ^* из равенства

$$l_1 l_2 = l_3 l_4$$

следует, что существует слово s такое, что либо

$$l_1 = l_3 s \ u \ l_4 = s l_2,$$
 либо $l_3 = l_1 s \ u \ l_2 = s l_4.$

Доказательство. Индукция по длине $|l_3|$.

- База $|l_3|=0$: тогда $l_3=\varepsilon$ и из $l_1l_2=\varepsilon l_4$ следует $l_1l_2=l_4$. Берём $s=l_1$ и получаем $l_3=\varepsilon$ и $l_4=l_1l_2=sl_2$, то есть выполняется вторая альтернатива с $l_3=l_1s$ тривиально (так как $\varepsilon=\varepsilon s$).
- Переход. Пусть $l_3=au$, где $a\in \Sigma,\,u\in \Sigma^*$. Рассмотрим два случая по l_1 .
 - Если $l_1 = \varepsilon$, то из $l_1 l_2 = l_3 l_4$ имеем $l_2 = (au) l_4$. Берём s = au. Тогда $l_1 = \varepsilon$ и $l_2 = s l_4$, то есть выполняется вторая альтернатива с $l_3 = l_1 s$ (так как $l_3 = \varepsilon \cdot s = s$).

– Если $l_1 = bv$ с $b \in \Sigma$, $v \in \Sigma^*$, то из

$$l_1l_2 = b(vl_2) = l_3l_4 = a(ul_4)$$

равенство первых символов даёт a=b, а равенство хвостов даёт $vl_2=ul_4$. По индукционной гипотезе для u и равенства $vl_2=ul_4$ существует s такое, что либо (A) v=us и $l_4=sl_2$, либо (Б) u=vs и $l_2=sl_4$.

- * (A) Тогда $l_1 = bv = b(us) = (bu)s = l_3s$, а $l_4 = sl_2$, то есть первая альтернатива.
- * (Б) Тогда $l_3 = au = a(vs) = (av)s = l_1s$, а $l_2 = sl_4$, то есть вторая альтернатива.

Теорема 4 (Коммутирующие слова — степени общего корня). *Пусть* $x, y \in \Sigma^*$ таковы, что xy = yx. Тогда существуют слово $\omega \in \Sigma^*$ и числа $k_1, k_2 \in \mathbb{N}$, для которых $x = \omega^{k_1}$ и $y = \omega^{k_2}$.

Доказательство по индукции по сумме длин n = |x| + |y| (индукция по хорошо-основанной мере).

 $\it E$ аза. Если x=arepsilon, берём $\omega=y,\,k_1=0,\,k_2=1$. Если y=arepsilon, берём $\omega=x,\,k_1=1,\,k_2=0$. В обоих случаях утверждение тривиально.

Переход. Пусть $x \neq \varepsilon$ и $y \neq \varepsilon$, и выполнено xy = yx. Применим лемму 3 к равенству xy = yx: существует слово t такое, что либо

$$(I)$$
 $x = yt$ и $y = ty$, либо (II) $y = xt$ и $x = tx$.

Рассмотрим случай (I); случай (II) симметричен.

Из x = yt и y = ty следует, что t и y коммутируют:

$$ty = yt$$
.

Причём сумма длин новой пары (t, y) строго меньше исходной:

$$|t| + |y| = |x| < |x| + |y| = n,$$

так как x = yt и $y \neq \varepsilon$. По индукционному предположению существуют слово ω и числа $k_1, k_2 \in \mathbb{N}$, такие что

$$t = \omega^{k_1}, \qquad y = \omega^{k_2}.$$

Тогда

$$x = yt = \omega^{k_2} \omega^{k_1} = \omega^{k_2 + k_1}$$

по лемме 2. Следовательно, x и y являются степенями одного и того же слова $\omega.$

В симметричном случае (II) из y=xt и x=tx получаем коммутативность t и x, применяем индукционное предположение к паре (t,x) и получаем $x=\omega^{k_2}$ и $y=\omega^{k_2+k_1}$ для некоторого ω и $k_1,k_2\in\mathbb{N}$.