# FT II – Exame 2022.3 Resolução

Felipe B. Pinto 61387 – MIEQB

25 de julho de 2024

## Conteúdo

| Questão 1 | 2 | Questão 4 | 11 |
|-----------|---|-----------|----|
| Questão 2 | 5 | Questão 5 | 14 |
| Questão 3 | 8 |           |    |

Um tanque com o topo aberto para a atmosfera contém metanol líquido ( $CH_3OH$ , peso molecular  $32\,\mathrm{g/mol}$ ) no fundo do tanque. O tanque é mantido a  $30\,^{\circ}C$ . O diâmetro do tanque cilíndrico é de  $1.0\,\mathrm{m}$ , a altura total do tanque é de  $3.0\,\mathrm{m}$  e o nível do líquido no fundo do tanque é mantido em  $0.5\,\mathrm{m}$ . O espaço de gás dentro do tanque está estagnado e os vapores de  $CH_3OH$  são imediatamente dispersos assim que saem do tanque.

A  $30\,^\circ\text{C}$ , a pressão de vapor exercida pelo CH $_3$ OH líquido é de  $163\,\text{mmHg}$  e a  $40\,^\circ\text{C}$  a pressão de vapor do CH $_3$ OH é de  $265\,\text{mmHg}$ . O coeficiente de difusão do metanol no ar é  $1.66\,\text{cm}^2/\text{s}$  e varia com a temperatura  $T^{3/2}$ .

Qual é a taxa de emissão de vapor de  $CH_3OH$  do tanque em kg/d quando o tanque está a uma temperatura de  $30\,^{\circ}C$ ? Deduza a equação necessária e as condições fronteira para este problema.

## Resposta

$$Taxa = M_A W = M_A S N_A = M_A \left(\pi d^2/4\right) \left(\frac{c \mathcal{D}_{A,B}}{\Theta \eta_d l} \ln \frac{1 - \Theta y_{A,2}}{1 - \Theta y_{A,1}}\right) =$$

$$= \frac{M_A \pi d^2 \frac{P}{RT} \mathcal{D}_{A,B}}{4 * 1 * 1 * (3.0 - 0.5)} \ln \frac{1 - 1 * 0}{1 - 1 y_{A,1}} \cong$$

$$\cong \frac{32 \pi 1.0^2 \frac{1}{8.206 E^{-5} * (30 + 273.15)} * 1.66 E^{-4}}{4 * (3.0 - 0.5)} \ln \frac{1}{1 - 0.214} \cong$$

$$\cong 161.946 E^{-4} g/s \cong 1.399 \text{ kg/d};$$

Condições de fronteira fluxo:

$$\begin{cases} z_0 = 0.5; & y_{A,0} = P_A^* / P \cong \frac{163}{760.002} \cong 0.214 \\ z_1 = 3.0; & y_{A,1} = 0 \end{cases};$$

$$\eta_{d,\text{plano}} = 1;$$

$$\Theta = 1 + N_B/N_A = 1 + 0/N_A = 1$$

Q1 b.

Se a temperatura do tanque for aumentada para  $40\,^{\circ}$ C, qual é a % de aumento na taxa de emissão para um aumento de  $10\,^{\circ}$ C na temperatura?

$$\begin{split} &\frac{\text{Taxa}_{40 \circ \text{C}}}{\text{Taxa}_{30 \circ \text{C}}} - 1 = \frac{\frac{M_A \pi d^2 \frac{P}{RT} \mathscr{D}_{A,B,40 \circ \text{C}}}{4(3.0 - 0.5)} \ln \frac{1}{1 - y_{A,0,40 \circ \text{C}}}}{\frac{M_A \pi d^2 \frac{P}{RT} \mathscr{D}_{A,B,30 \circ \text{C}}}{4(3.0 - 0.5)} \ln \frac{1}{1 - y_{A,0,30 \circ \text{C}}}} - 1 = \\ &= \frac{\frac{\mathscr{D}_{A,B,40 \circ \text{C}}}{40 + 273.15} \ln \frac{1}{1 - y_{A,0,40 \circ \text{C}}}}{\frac{\mathscr{D}_{A,B,30 \circ \text{C}}}{30 + 273.15} \ln \frac{1}{1 - y_{A,0,30 \circ \text{C}}}} - 1 \cong \\ &\cong \frac{\mathscr{D}_{A,B,30 \circ \text{C}} \left(\frac{40 + 273.15}{30 + 273.15}\right)^{3/2}}{\frac{\mathscr{D}_{A,B,30 \circ \text{C}}}{30 + 273.15} \ln \frac{1}{1 - 0.214}} - 1 \cong \\ &\cong \frac{\left(\frac{40 + 273.15}{30 + 273.15}\right)^{1/2} \ln \frac{1}{1 - 0.214}}{\frac{1}{1 - 0.214}} - 1 \cong \\ &\cong \frac{\left(\frac{40 + 273.15}{30 + 273.15}\right)^{1/2} \ln \frac{1}{1 - 0.249}}{\ln \frac{1}{1 - 0.214}} - 1 \cong \\ &\cong 80.519 \%; \end{split}$$

$$\mathscr{D}_{A,B,40^{\circ}\text{C}} = \mathscr{D}_{A,B,30^{\circ}\text{C}} \left( \frac{40 + 273.15}{30 + 273.15} \right)^{3/2};$$

$$y_{A,0,40^{\circ}\text{C}} = P_{A,40^{\circ}\text{C}}^*/P \cong \frac{265}{760.002} \cong 0.349$$

Um reator de leito fluidizado de carvão foi proposto para uma nova fábrica. Se operado a  $1145 \,\mathrm{K}$ , o processo de combustão em ar ( $21 \,\mathrm{M}_{\mathrm{O}_{3}}$  e  $79 \,\mathrm{M}_{\mathrm{N}_{3}}$ ) será limitado pela difusão do  $\mathrm{O}_{2}$ em contracorrente ao CO<sub>2</sub>, formado na superfície da partícula. Suponha que o carvão seja carbono sólido puro com densidade de 1.28 E<sup>3</sup> kg/m<sup>3</sup> e que a partícula seja esférica com um diâmetro inicial de  $1.5 \,\mathrm{E^{-4}}\,\mathrm{m}$  ( $150 \,\mathrm{\mu m}$ ). Sob as condições do processo de combustão, a difusividade do  $O_2$  na mistura gasosa a  $1145 \,\mathrm{K}$  é  $1.3 \,\mathrm{E}^{-4} \,\mathrm{cm}^2/\mathrm{s}$ . A reação na superfície é:  $C_{(s)} + O_{2(g)} \longrightarrow CO_{2(g)}$  Na superfície da partícula de carvão, a reação é muito rápida.

Se for assumido um processo de estado quase estacionário, calcule:

O tempo necessário para reduzir o diâmetro da partícula de carbono para  $5\,\mathrm{E}^{-5}\,\mathrm{m}$  (  $50\,\mathrm{\mu m}$ ). Deduza as equações necessárias e as condições fronteira para este problema.

### Resposta

$$C_{A,S} \frac{\text{dVol}}{\text{d}t} = \left(\frac{\rho_A}{M_A}\right) \frac{\text{d}\pi \, r^3 \, 4/3}{\text{d}t} = \frac{\rho_A}{M_A} \, 4 \, \pi \, r^2 \frac{\text{d}r}{\text{d}t} =$$

$$= -Q_{A,r} = -\frac{P}{RT} \, \mathscr{D}_{A,B} \, 4 \, \pi \, r \, y_{A,0} \implies$$

$$\implies \int_{R_0}^{R_1} r \, \text{d}r = (R_1^2 - R_0^2)/2 =$$

$$= \int_0^t \left(-\frac{P}{RT} \, \frac{M_A}{\rho_A} \, \mathscr{D}_{A,B} \, y_{A,0}\right) \, \text{d}t = \left(-\frac{P}{RT} \, \frac{M_A}{\rho_A} \, \mathscr{D}_{A,B} \, y_{A,0}\right) \int_0^t \, \text{d}t =$$

$$= \left(-\frac{P}{RT} \, \frac{M_A}{\rho_A} \, \mathscr{D}_{A,B} \, y_{A,0}\right) t \implies$$

$$\implies t = -\frac{RT}{P} \, \frac{\rho_A}{M_A} \, \frac{(R_1^2 - R_0^2)/2}{\mathscr{D}_{A,B} \, y_{A,0}} \cong$$

$$\cong -\frac{8.206 \, \text{E}^{-5} * 1145}{1} \, \frac{1.28 \, \text{E}^6}{12} \, \frac{((0.5 \, \text{E}^{-4}/2)^2 - (1.5 \, \text{E}^{-4}/2)^2)/2}{1.3 \, \text{E}^{-8} * 0.21} \cong$$

$$\cong 9177.600 \, \text{s} \cong 2 \, \text{h} \, 32.960 \, \text{min}$$

Velocidade do fluxo

$$Q_{A,r} = S N_{A,z} = -S \frac{c \mathcal{D}_{A,B}}{1 - \Theta y_A} \frac{dy_A}{dz} = -\frac{S \frac{P}{RT} \mathcal{D}_{A,B}}{1 - 0 * y_A} \frac{dy_A}{dz} \Longrightarrow$$

$$\Longrightarrow \int_{\infty}^{r} \frac{Q_{A,r}}{S} dr = Q_{A,r} \int_{\infty}^{r} \frac{dr}{4 \pi r^2} = -\frac{Q_{A,r}}{4 \pi} (r^{-1} - 0) =$$

$$= \int_{y_{A,0}}^{0} -\frac{P}{RT} \mathcal{D}_{A,B} dy_A = -\frac{P}{RT} \mathcal{D}_{A,B} \int_{y_{A,0}}^{0} dy_A = -\frac{P}{RT} \mathcal{D}_{A,B} y_{A,0} \Longrightarrow$$

$$\Longrightarrow Q_{A,r} = \frac{P}{RT} \mathcal{D}_{A,B} 4 \pi r y_{A,0};$$

$$\Theta = 1 + N_{CO_2}/N_{O_2} = 1 + (-N_{O_2})/N_{O_2} = 0;$$

Condições de fronteira fluxo:

$$\begin{cases} r_0 \to \infty; & y_{A,0} = 0.21 \\ r_1 = r; & y_{A,1} \cong 0 \quad \text{(Reação instantanea)} \end{cases};$$

Condições de fronteira combustão:

$$\begin{cases} t_0 = 0; & r_0 = R_0 = 1.5 \,\mathrm{E}^{-4} \\ t_1 = t; & r_1 = R_1 = 0.5 \,\mathrm{E}^{-4} \end{cases}$$

Q2 b.

Explique por que razão temos neste caso difusão com reacção química heterogénea.

## Resposta

Temos uma reação heterogenia pois ela se da apenas na interfaçe entre o carvão e o gás ao seu redor, a existencia de multiplas fazes e localização da reação caracteriza como reação heterogenia.

Um tanque de água profundo tem  $O_2$  dissolvido com uma concentração uniforme  $1\,\mathrm{g/L}$ . Se a concentração de  $O_2$  for subitamente elevada à superfície para  $10\,\mathrm{g/L}$ , calcule:

Dados:

$$\frac{C_{A,s}-C_{A}}{C_{A,s}-C_{A,0}}=\mathrm{erf}\,\xi;\ \xi=\frac{z}{\sqrt{4\,D\,t}};\ J_{A}^{*}=-\mathscr{D}\,\frac{\partial C_{A}}{\partial z}=\sqrt{\mathscr{D}/\pi\,t}\,\exp\left(-z^{2}/4\,\mathscr{D}\,t\right)\left(C_{A,s}-C_{A,0}\right)$$

Em que

- $C_A$  é a concentração de  $O_2$  a uma distância (z) da superfície num determinado instante (t)
- $C_{A,0}$  é a concentração inicial
- $C_{A,s}$  é a concentração na superfície
- 20 o coeficiente de difusão.

| a    | $\operatorname{erf}(a)$ | a    | $\operatorname{erf}(a)$ | a    | erf(a)  |
|------|-------------------------|------|-------------------------|------|---------|
| 0.0  | 0.0                     | 0.48 | 0.50275                 | 0.96 | 0.82542 |
| 0.04 | 0.04511                 | 0.52 | 0.53790                 | 1.00 | 0.84270 |
| 0.08 | 0.09008                 | 0.56 | 0.57162                 | 1.10 | 0.88021 |
| 0.12 | 0.13476                 | 0.60 | 0.60386                 | 1.20 | 0.91031 |
| 0.16 | 0.17901                 | 0.64 | 0.63459                 | 1.30 | 0.93401 |
| 0.20 | 0.22270                 | 0.68 | 0.66378                 | 1.40 | 0.95229 |
| 0.24 | 0.26570                 | 0.72 | 0.69143                 | 1.50 | 0.96611 |
| 0.28 | 6.30788                 | 0.76 | 0.71754                 | 1.60 | 0.97635 |
| 0.32 | 0.34913                 | 0.80 | 0.7421                  | 1.70 | 0.98379 |
| 0.36 | 0.38933                 | 0.84 | 0.76514                 | 1.80 | 0.98909 |
| 0.40 | 0.42839                 | 0.88 | 0.78669                 | 2.00 | 0.99532 |
| 0.44 | 0.46622                 | 0.92 | 0.80677                 | 3.24 | 0.99999 |

Tabela 1: Error function values. For negative a, erf(a) is negative

$$\operatorname{erf}(|a|) = 1 - \left(1 + 0.2784 \; |a| + 0.2314 \; |a|^2 + 0.0781 \; |a|^4 \right)^{-4}$$

A concentração de O<sub>2</sub> a 1 mm de profundidade ao fim de 2 horas?

$$\frac{C_{A,s} - C_{A}}{C_{A,s} - C_{A,0}} = \operatorname{erf} \xi \implies$$

$$\implies C_{A} = C_{A,s} - (C_{A,s} - C_{A,0}) \operatorname{erf} \xi \cong 10 - (10 - 1) \cdot 0.208 \cong$$

$$\cong 8.129 \operatorname{mol/m}^{3};$$

erf 
$$\xi = \text{erf}\left(\frac{z}{\sqrt{4 \, \mathcal{D} \, t}}\right) = \text{erf}\left(\frac{1 \, \text{E}^{-3}}{\sqrt{4 * 1 \, \text{E}^{-9} * (2 * 3600)}}\right) \cong$$
  
 $\cong \text{erf}\left(0.186\right) \cong 1 - \left(1 + 0.2784 * (0.186) + 0.2314 * (0.186)^2 + 0.0781 * (0.186)^4\right)^{-4} \cong 0.208$ 

Q3 b.

O fluxo de O<sub>2</sub> na superfície do tanque para esse tempo?

$$J_A = \sqrt{\frac{\mathscr{D}}{\pi t}} \left( C_{A,s} - C_{A,0} \right) = \sqrt{\frac{1 \,\mathrm{E}^{-9}}{\pi \left( 2 * 3600 \right)}} \left( 10 - 1 \right) \cong 1.892 \,\mathrm{E}^{-6}$$

Ar seco (  $300\,\mathrm{K}$  e  $1.013\,\mathrm{E}^5\,\mathrm{Pa}$ ) circula a uma velocidade de  $1.5\,\mathrm{m/s}$ , num tubo com  $6\,\mathrm{m}$  de comprimento e  $0.15\,\mathrm{m}$  de diâmetro. A superfície interior do tubo está revestida com um material absorvente (com razão diâmetro/rugosidade,  $d/\varepsilon$ , de 10.000) que está saturado com água.

#### Dados:

- Difusividade da água em ar ( $300 \,\mathrm{K}$ ):  $2.6 \,\mathrm{E}^{-5} \,\mathrm{m}^2/\mathrm{s}$
- Viscosidade cinemática do ar (  $300\,\mathrm{K}$ ):  $1.569\,\mathrm{E^{-5}}\,\mathrm{m^2}\,\mathrm{s}$
- Pressão de vapor da água a (300 K) = 17.5 mmHg
- Constante do gases:  $R = 8.206 \,\mathrm{E}^{-2} \,\mathrm{L} \cdot \mathrm{atm/mol} \cdot \mathrm{K}$
- Factor de atrito  $f = 7.91 \,\mathrm{E}^{-3} \,Re^{0.12}$

$$Re = \frac{\rho \, d \, v}{\mu};$$
  $Sc = \frac{\mu}{\rho \, \mathcal{D}_{A,B}};$   $Sh = \frac{k_c \, d}{\mathcal{D}_{A,B}};$   $\ln \frac{C_{A,s} - C_{A,0}}{C_{A,s} - C_{A,L}} = \frac{4 \, L}{d} \, \frac{k_C}{v}$ 

Analogia de Chilton-Colburn:

$$\frac{k_c}{v} Sc^{2/3} = \frac{f}{2};$$
  $C_{A,s} = C^* \wedge v$ : Velocidade

Determine:

### A concentração de agua à saída do tubo

### Resposta

$$\ln \frac{C_{A,s} - C_{A,0}}{C_{A,s} - C_{A,L}} = \frac{4 k_C L}{d v} \Longrightarrow$$

$$\Longrightarrow C_{A,L} = C_{A,s} \left( 1 - \frac{1 - \frac{C_{A,0}}{C_{A,s}}}{\exp\left(\frac{4 k_C L}{d v}\right)} \right) = \frac{P_A^*}{RT} \left( 1 - \frac{1 - \frac{0}{C_{A,s}}}{\exp\left(\frac{4 k_C L}{d v}\right)} \right) =$$

$$= \frac{P_A^*}{RT} \left( 1 - \exp\left(\frac{-4 k_C L}{d v}\right) \right) \cong$$

$$\cong \frac{(17.5/760.002)}{8.206 E^{-5} * 300} \left( 1 - \exp\left(\frac{-4 * 26.197 E^{-3} * 6}{0.15 * 1.5}\right) \right) \cong$$

$$\cong 0.878 \, \text{mol/m}^3;$$

$$k_C = \frac{f \, v}{2 \, Sc^{2/3}} = \frac{(7.91 \, \mathrm{E}^{-3} \, Re^{0.12}) \, v}{2 \, \left(\frac{\mu}{\rho \, \mathcal{D}_{A,B}}\right)^{2/3}} = \frac{7.91 \, \mathrm{E}^{-3} \, \left(\frac{\rho \, d \, v}{\mu}\right)^{0.12} \, v}{2 \, \left(\frac{\mu}{\rho \, \mathcal{D}_{A,B}}\right)^{2/3}} = \frac{7.91 \, \mathrm{E}^{-3} \, \left(\frac{1 \pm 0.15 \pm 1.5}{1.569 \, \mathrm{E}^{-5}}\right)^{0.12} \, 1.5}{2 \, \left(\frac{1.569 \, \mathrm{E}^{-5}}{1 \pm 2.6 \, \mathrm{E}^{-5}}\right)^{2/3}} \cong$$

 $\cong 26.197 \,\mathrm{E}^{-3}$ 

## Q4 b.

A velocidade de transferencia de agua em kg/h

$$W = C_{A,L} v S \cong 0.878 * 1.5 * \pi (0.15)^2 / 4 \cong 2.328 E^{-2} \text{ mol/s} \cong 1.508 \text{ kg/h}$$

Pretende-se remover  $SO_2$  de uma mistura gasosa constituída por  $SO_2$  e ar por absorção utilizando água. A constante de Henry é 1.5 atm. A coluna usada opera a  $15\,^{\circ}$ C e 3 atm. Num dado ponto da coluna a % molar de  $SO_2$  na fase gasosa é 20% e na fase líquida é 1%. Sabendo que os coeficiente individuais de transferência de massa são  $k_y = 5.6\,\mathrm{E}^{-4}\,\mathrm{mol/s}\,\mathrm{m}^2$  e  $k_x = 5.6\,\mathrm{E}^{-3}\,\mathrm{mol/s}\,\mathrm{m}^2$ .

Determine

## Q5 a.

As composições interfaciais

## Q5 b.

A % da resistencia total respeitante a cada uma das fases

## Q5 c.

O coeficiente global de trasnferencia de massa  $K_x$ 



# Q5 d. O fluxo de SO<sub>2</sub>

05 e.

O valor do fluxo quando usar soluções de NaOH com a concentração crítica de NaOH. Comente