Mt Washington Daily Temperature

About Dataset

This dataset contains time series data of daily temperature of washington from year 2014 to 2018.

Objective

The objective of this project is to analyse trends in Washington Daily Temperature data and build a forecasting model for the same.

Importing all the required libraries

```
In [1]:
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import warnings
    warnings.filterwarnings('ignore')
```

Data Collection (CSV File)

```
In [2]: df = pd.read_csv("MtWashingtonDailyTemps.csv")
df.head()
```

Out[2]:		DATE	MinTemp	MaxTemp	AvgTemp	AvgWindSpeed	Sunrise	Sunset
	0	12/1/2014	3	36	20	65.1	700	1608
	1	12/2/2014	1	22	12	34.7	702	1607
	2	12/3/2014	8	32	20	53.0	703	1607
	3	12/4/2014	-5	9	2	60.2	704	1607
	4	12/5/2014	6	17	12	30.5	705	1607

Data Preprocessing

Checking for datatypes of columns

```
In [3]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1461 entries, 0 to 1460
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	DATE	1461 non-null	object
1	MinTemp	1461 non-null	int64
2	MaxTemp	1461 non-null	int64
3	AvgTemp	1461 non-null	int64
4	AvgWindSpeed	1461 non-null	float64
5	Sunrise	1461 non-null	int64
6	Sunset	1461 non-null	int64
dtyp	es: float64(1)	, int64(5), obje	ct(1)

memory usage: 80.0+ KB

convert the date column as index.

\sim		-	ГΛΊ	Ι.
U	u	L	14	
_		_	L '.	

	MinTemp	MaxTemp	AvgTemp	AvgWindSpeed	Sunrise	Sunset
DATE						
2014-12-01	3	36	20	65.1	700	1608
2014-12-02	1	22	12	34.7	702	1607
2014-12-03	8	32	20	53.0	703	1607
2014-12-04	-5	9	2	60.2	704	1607
2014-12-05	6	17	12	30.5	705	1607

```
In [5]: df['2018'].AvgTemp.plot(figsize=(10,6))
plt.title('Daily Temperature in 2018')
```

```
Out[5]: Text(0.5, 1.0, 'Daily Temperature in 2018')
```


Dropping unnecessary columns

```
In [8]: df=pd.DataFrame(df["AvgTemp"])
    df.head()
```

Out[8]:

AvgTemp

DATE	
2014-12-01	20
2014-12-02	12
2014-12-03	20
2014-12-04	2
2014-12-05	12

Stationary Check

check the given data is stationary or nonstationary using Augmented Dicky-Fuller Test.

The p-value is greater than 0.05 hence we don't reject null hypothesis. This means our data is non-stationary.

```
In [11]: from statsmodels.tsa.stattools import adfuller
         def adf test(timeseries):
             print ('Results of Dickey-Fuller Test:')
             result = adfuller(timeseries, autolag = 'AIC')
             result = pd.Series(result[0:4], index = ['Test Statistic','p-value','No.
                                                        'Number of Observations Used'])
             print (result)
             if result[1] <= 0.05:</pre>
                 print("Strong evidence against the null hypothesis")
                 print("Reject the null hypothesis")
                 print("Data has no unit root and is stationary")
             else:
                 print("Weak evidence against the null hypothesis")
                 print("Fail to reject the null hypothesis")
                 print("Data has a unit root and is non-stationary")
         adf test(df)
```

```
Results of Dickey-Fuller Test:

Test Statistic -2.255005
p-value 0.186891
No. of Lags Used 19.000000
Number of Observations Used 1441.000000
dtype: float64
Weak evidence against the null hypothesis
Fail to reject the null hypothesis
Data has a unit root and is non-stationary
```

The p-value is greater than 0.05 hence we to differencing the data to making it stationary.

Data Transformation

```
In [12]: df["d1"]=df["AvgTemp"].diff()
df
```

ıt[12]:	AvgTemp	d1
t[12]:	AvgTemp	

DATE		
2014-12-01	20	NaN
2014-12-02	12	-8.0
2014-12-03	20	8.0
2014-12-04	2	-18.0
2014-12-05	12	10.0
2018-11-26	20	-6.0
2018-11-27	15	-5.0
2018-11-28	14	-1.0
2018-11-29	17	3.0
2018-11-30	22	5.0

1461 rows × 2 columns

Drop null values

In [13]: df.dropna(inplace=True)
df

Out[13]:

	AvgTemp	d1
DATE		
2014-12-02	12	-8.0
2014-12-03	20	8.0
2014-12-04	2	-18.0
2014-12-05	12	10.0
2014-12-06	20	8.0
2018-11-26	20	-6.0
2018-11-27	15	-5.0
2018-11-28	14	-1.0
2018-11-29	17	3.0
2018-11-30	22	5.0

1460 rows × 2 columns

```
In [14]: print("Dicky-Fuller Result")
          result1=adfuller(df["d1"])
          result1
          Dicky-Fuller Result
Out[14]: (-12.931121457879936,
           3.6987943076411585e-24,
           18,
           1441,
           {'1%': -3.4348961395618476,
            '5%': -2.863547812296987,
            '10%': -2.5678389447194556},
           9696.198893776458)
In [15]: df2=pd.Series(result1[0:4],index=["Adf test static","P-value","# lags used","
Out[15]: Adf test static -1.293112e+01
                            3.698794e-24
          P-value
          # lags used 1.800000e+01
#Observations 1.441000e+03
          dtype: float64
```

The p-value is lesser than 0.05 hence we reject null hypothesis. This means our data is stationary.

Decompose the time series into trend, seasonal and residual components.

```
In [16]: from statsmodels.tsa.seasonal import seasonal decompose
         decomposition=seasonal_decompose(df["AvgTemp"],model="additive",period=365)
         #Plotting the observed values:
         observed=decomposition.observed
         plt.figure(figsize=(15,6))
         plt.plot(observed, label="Observed")
         plt.legend()
         #Plotting the trend component
         trend=decomposition.trend
         plt.figure(figsize=(15,6))
         plt.plot(trend, label="Trend")
         plt.legend()
         #Plotting the seasonal component
         seasonal=decomposition.seasonal
         plt.figure(figsize=(15,6))
         plt.plot(seasonal, label="Seasonal")
         plt.legend()
         #Plotting the residual component
         residual=decomposition.resid
         plt.figure(figsize=(15,6))
         plt.plot(residual, label="Residual")
         plt.legend()
```

Out[16]: <matplotlib.legend.Legend at 0x2263eba6d60>


```
In [17]: y=df["AvgTemp"]
Out[17]: DATE
          2014-12-02
                        12
          2014-12-03
                        20
          2014-12-04
                         2
          2014-12-05
                        12
          2014-12-06
                        20
                        . .
          2018-11-26
                        20
          2018-11-27
                        15
          2018-11-28
                        14
          2018-11-29
                        17
          2018-11-30
                        22
          Freq: D, Name: AvgTemp, Length: 1460, dtype: int64
In [18]: |y["2018":]
Out[18]: DATE
          2018-01-01
                       -20
          2018-01-02
                       -15
          2018-01-03
                         0
          2018-01-04
                         3
          2018-01-05
                       -20
          2018-11-26
                        20
          2018-11-27
                        15
          2018-11-28
                        14
          2018-11-29
                        17
          2018-11-30
                        22
          Freq: D, Name: AvgTemp, Length: 334, dtype: int64
```

The Autoregressive Integrated Moving Average (ARIMA) Model:

```
In [19]: from statsmodels.graphics.tsaplots import plot_acf,plot_pacf

plot_acf(df["d1"],lags=50)
 plot_pacf(df["d1"],lags=50)
 plt.xlabel("Lags")
 plt.show()
```


Model Selection

Applying ARIMA model

Model Fitting

```
In [22]: from statsmodels.tsa.arima.model import ARIMA
    arima_model = ARIMA(y, order=(0,1,3),)
    arima_fit = arima_model.fit()
    arima_forecast = arima_fit.forecast(steps=30) # Forecasting 30 steps ahead
```

```
In [23]: mod = ARIMA(y, order=(0,1,3),)
          results1 = mod.fit()
          print(results1.summary().tables[1])
                                     std err
                                                               P>|z|
                                                                           [0.025
                                                                                       0.97
                            coef
          5]
                          0.0083
                                       0.023
                                                   0.362
                                                              0.718
                                                                          -0.036
                                                                                        0.0
          ma.L1
          53
                                       0.019
                         -0.5193
                                                 -27.906
          ma.L2
                                                              0.000
                                                                          -0.556
                                                                                       -0.4
          83
          ma.L3
                         -0.1795
                                       0.022
                                                  -8.120
                                                              0.000
                                                                          -0.223
                                                                                       -0.1
          36
          sigma2
                         50.0353
                                       1.665
                                                  30.043
                                                              0.000
                                                                          46.771
                                                                                       53.3
          00
```

Plotting the Diagnostics Plot

ARIMA Forecast

SARIMAX

```
In [27]: # Applying SARIMA model
from statsmodels.tsa.statespace.sarimax import SARIMAX

model_sarima = auto_arima(y, seasonal=True, stepwise=True, m=7)
    order_sarima = model_sarima.order
    seasonal_order_sarima = model_sarima.seasonal_order
```

Training the SARIMAX Model:

Now we train the SARIMAX model using the optimal values of the hyperparameters that we found using auto-ARIMA.

In [28]: sarima_model = SARIMAX(df["AvgTemp"], order=order_sarima, seasonal_order=seasonal_order=seasonal_fit = sarima_model.fit()
 sarima_forecast = sarima_fit.forecast(steps=30) # Forecasting 30 steps ahead

```
In [29]: mod = SARIMAX(y,order=(0,1,3),seasonal_order=(0, 1, 1, 12),)
    results = mod.fit()
    print(results.summary().tables[1])
```

========	========	=======				======
==	coef	std err	Z	P> z	[0.025	0.97
5]	coei	sta en	2	17 2	[0.025	0.57
ma.L1	0.0120	0.023	0.517	0.605	-0.034	0.0
58						
ma.L2	-0.5183	0.019	-27.483	0.000	-0.555	-0.4
81						
ma.L3	-0.1815	0.023	-7.909	0.000	-0.226	-0.1
37						
ma.S.L12	-0.9998	1.068	-0.937	0.349	-3.092	1.0
92						
sigma2	50.0101	53.288	0.938	0.348	-54.433	154.4
53	30.0202	33.200	0.550	0.5.0	3	23
==						
==						

In [30]: results.plot_diagnostics(figsize=(16, 8))
plt.show()


```
In [33]: y_forecasted = pred.predicted_mean
y_truth = y['2018-09-01':]
mse = ((y_forecasted - y_truth) ** 2).mean()
```

Model Evaluation

```
In [34]: print('The Mean Squared Error (MSE) of our forecasts is {}'.format(round(mse, print('The Root Mean Squared Error (RMSE) of our forecasts is {}'.format(round)
```

The Mean Squared Error (MSE) of our forecasts is 56.9
The Root Mean Squared Error (RMSE) of our forecasts is 7.54

LSTM

LSTM networks are well-suited to classifying, processing and making predictions based on time series data, since there can be lags of unknown duration between important events in a time series.

```
Mt Washington Daily Temperature Project - Jupyter Notebook
In [35]: from sklearn.preprocessing import MinMaxScaler
         from sklearn.metrics import mean squared error
         from tensorflow.keras.models import Sequential
         from tensorflow.keras.layers import LSTM, Dense
         # Convert the DataFrame to a NumPy array
         data = df['AvgTemp'].values
         data = data.reshape(-1, 1) # Convert to a 2D array (required for MinMaxScale
In [36]: # Normalize the data
         scaler = MinMaxScaler(feature_range=(0, 1))
         data = scaler.fit transform(data)
In [37]: # Split the data into training and testing sets
         train size = int(len(data) * 0.8) #multiplying by 8 because the data is split
         #80% data will be the training data
         #20% data will be the testing data
         train= data[:train size]
         test= data[train size:]
In [38]: # Create sequences and labels for the LSTM model
         def create sequences(data, seq length):
             X, y = [], []
             for i in range(len(data) - seq length):
                 X.append(data[i:i + seq_length])
                 y.append(data[i + seq length])
             return np.array(X), np.array(y)
In [39]: seq length = 7 # Length of input sequence
         X train, y train = create sequences(train, seq length)
         X_test, y_test = create_sequences(test, seq_length)
In [40]: # Reshape the data for LSTM input (samples, time steps, features)
         X train = X train.reshape(X_train.shape[0], seq_length, 1)
```

X_test = X_test.reshape(X_test.shape[0], seq_length, 1)

```
In [41]: # Build the LSTM model
     model = Sequential()
     model.add(LSTM(50, input shape=(seq length, 1)))
     #Here, seg length represents the length of each input sequence, and 1 indicate
     model.add(Dense(1))
     model.compile(loss='mean_squared_error', optimizer='adam')
     # Train the model
     model.fit(X train, y train, epochs=100, batch size=1)
     # Make predictions on the test set
     y pred = model.predict(X test)
     Epoch 78/100
     Epoch 79/100
     Epoch 80/100
     Epoch 81/100
     Epoch 82/100
     Epoch 83/100
     Epoch 84/100
     Epoch 85/100
     Epoch 86/100
     Enach 97/100
In [42]: # Inverse transform the predictions and actual values to the original scale
     y_pred_inv = scaler.inverse_transform(y_pred)
     y test inv = scaler.inverse transform(y test)
In [43]: # Calculate RMSE for LSTM
     rmse lstm = np.sqrt(mean squared error(y test inv, y pred inv))
     print(f"LSTM RMSE: {rmse_lstm}")
     LSTM RMSE: 6.343664131321569
```

Forecasting

```
In [44]: # Plot the forecasts
    plt.figure(figsize=(10, 6))
    plt.plot(df.index[train_size+seq_length:], y_test_inv, label='Actual', color=
        plt.plot(df.index[train_size+seq_length:], y_pred_inv, label='LSTM Forecast',
        plt.xlabel('Date')
    plt.ylabel('Temp')
    plt.title('Forecasting on AvgTemp using LSTM')
    plt.legend()
    plt.grid(True)
    plt.show()
```



```
In [45]: print("RMSE for SARIMAX Model : 7.54")
print("RMSE for LSTM Model : 6.34")
```

RMSE for SARIMAX Model : 7.54 RMSE for LSTM Model : 6.34

LSTM model perform well on this time series dataset.

```
In [ ]:
```