PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-315980

(43) Date of publication of application: 09.12.1997

(51)Int.CI.

A61K 31/70 CO7H 15/04 // CO7M 7:00

(21)Application number: 08-129936

(71)Applicant: KIRIN BREWERY CO LTD

(22)Date of filing:

24.05.1996

(72)Inventor: MAKINO MASAHIKO

HIZUKA YASUHIKO

(54) PREVENTING AGENT FOR ONSET AND PROGRESSION SUPPRESSANT FOR AIDS (57)Abstract:

PROBLEM TO BE SOLVED: To prepare the subject agent, comprising an α-glycosylceramide having a specific structure or its salt as an active ingredient and having strong enhancing actions on natural killers or immunopotentiating actions, antimurine retrovirus

actions and high effects. SOLUTION: This preventing agent for the onset and progression suppressant for AIDS comprises an αglycosylceramide of formula I [R1 is H or OH; X is an

integer of 7-25; R2 is a substituent group such as CH2 (CH2)YCH3 or CH= CH(CH2)YCH3 (Y is an integer of 5-17); R4 is H, OH, etc.; R5 is OH, formula II, etc., R7 is OH: R9 is H, CH3, etc., when R3, R6 and R8 are each H and R4 is H or OH; R5 is OH, formula II, etc.; R8 is OH or formula III; R9 is H, CH3, etc., when R3, R6 and R7 are each H] or its salt as an active ingredient. (2S, 3S, 4R)-1-(α-D-Galactopyranosyloxy)-2-hexacosanoylamino-

3.4-octadecanediol is preferred as the α glycosylceramide. The compound is preferably

synthesized according to a method, etc., for using D-lyxose as a starting substance.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平9-315980

(43)公開日 平成9年(1997)12月9日

(51) Int.Cl.6 A61K 31/70 C07H 15/04

C 0 7 M 7:00

酸別記号 庁内整理番号 ADY

FΙ A 6 1 K 31/70 C07H 15/04

技術表示箇所

ADY E

審査請求 未請求 請求項の数6 OL (全 14 頁)

(21)出願番号

(22)出願日

特願平8-129936

平成8年(1996)5月24日

(71)出願人 000253503

麒麟麦酒株式会社

東京都中央区新川二丁目10番1号

(72)発明者 牧野正彦

鹿児島県鹿児島市魚見町126-1

(72)発明者 肥 塚 靖 彦

群馬県高崎市宮原町3番地 麒麟麦酒株式

会社医薬探索研究所内

(74)代理人 弁理士 佐藤 一雄 (外2名)

(54) 【発明の名称】 エイズ発症予防薬および進行抑制薬

(57)【要約】

【課題】 効果の高い抗AID治療薬および予防薬を提 供する。

【解決手段】 次式 (A) で示されるα-グリコシルセ ラミドまたはその塩の少なくとも1種を有効成分として 含んでなる、エイズ発症予防薬もしくは進行抑制薬。

【化1】

$$\begin{array}{c|c} R_{9} & R_{1} \\ \hline R_{7} & OC & (CH_{2}) \times -CH_{3} \\ \hline R_{8} & R_{4} & OH \\ \hline (A) & & \\ \end{array}$$

上記式(A)中、R1~R9は特定の基(好ましくはR 1、R3、R6およびR8がHで、R4、R5およびR 7がOHで、R9がCH2 OHであり、R2が-CH (OH) (CH_2) y CH_3 , -CH (OH) (C H2) Y CH (CH3) 2 または-CH (OH) (CH 2) Y CH (CH3) CH2 CH3 (ここでYは5~1 7のいずれかの整数)) を表し、Xは7~25のいずれ

かの整数である。

【特許請求の範囲】

1

【化1】

[式中、 R_1 はHまたはOHである; Xは $7\sim25$ のいずれかの整数である; R_2 は下記(a) \sim (e)で定義される置換基のいずれかである(ここで、Yは $5\sim17$ のいずれかの整数である)。

- (a) -CH2 (CH2) Y CH3
- (b) -CH (OH) (CH2) Y CH3
- (c) -CH (OH) (CH2) y CH (CH3) 2
- (d) -CH = CH (CH₂) y CH₃
- (e) CH (OH) (CH2) Y CH (CH3) CH 20 2 CH3;およびR3~R9は下記のi)~v)で定義され る置換基である。
- i) R3、R6 およびR8 がHのときR4 はH、OH、NH2、NHCOCH3 または

【化2】

である; R 5 はOH、

ИНСОСН₃

OH OH

または

である; R_7 はOHである; R_9 はH、 CH_3 、 CH_2 OH、または

【化4】

である;

ii) R3、R6 およびR7 がHのときR4 はH、OH、

NH2、NHCOCH3 または

【化5】

または

である; R 5 はOH、

0 【化6】

он он

である; R s はOH、

【化7】

または

である; R9 はH、CH3、CH2 OHまたは

【化8】

である。

iii)R4、R6 およびR7 がHのときR3 はH、OH、NH2、NHCOCH3 または

【化9】

である; R 5 はOH、

または

である; R 8 はOHまたは

【化11】

である; R9 はH、CH3、CH2 OHまたは

【化12】

である:

iv) R4、R5 およびR7 がHのときR3、R6 およびR8 はOHである; R9 はH、CH3 またはCH2 OHである。

v) R3、R5 およびR7 がHのときR4、R6 および R8 はOHである; R9 はH、CH3 またはCH2 OH である。

【請求項2】 α ーグリコシルセラミドのR3、R6 およびR8 がHであり、R4、R5 およびR7 がOHであり、かつR9 がCH2 OHである、請求項1記載のエイズ発症予防薬もしくは進行抑制薬。

【請求項3】αーグリコシルセラミドのR2が置換基(b)、(c)または(e)である、請求項1または2記載のエイズ発症予防薬もしくは進行抑制薬。

【請求項4】 α - グリコシルセラミドの R_1 がHであり、かつ R_2 が置換基(b)である、請求項3記載のエイズ発症予防薬もしくは進行抑制薬。

【請求項 5】 アルキル基におけるメチレンのXが 2 1 ~ 2 5 の整数であり、4 1 2 における1 1 2 1 5 である、請求項 1 記載のエイズ発症予防薬もしくは進行抑制薬。

【請求項 6 】 α ーグリコシルセラミドが(2 S, 3 S, 4 R) ー 1 ー (α ー D ー ガラクトピラノシルオキシ) 2 ーヘキサコサノイルアミノー 3, 4 ー オクタデカンジオールである、請求項 5 記載のエイズ発症予防薬もしくは進行抑制薬。

【発明の詳細な説明】

【0001】 [発明の背景]

【発明の属する技術分野】本発明は、特定の構造を有するスフィンゴ糖脂質を有効成分とする薬剤に関するものであり、更に具体的にはエイズ発症予防薬およびエイズ 進行抑制薬に関するものである。

[0002]

【従来の技術】エイズは、ヒトレトロウイルス(H I

V) の感染により末梢血のCD4細胞が減少することに 特徴がある免疫不全症である。HIV感染者数は増加の 一途をたどっており、1995年度のWHOの報告では 日々の新規感染者数は5000人にものぼり、効果的な 予防および治療法の開発がなされなければ、5年後の2 000年には4000万人以上の感染者の出ることが予 想されており、世界的に大きな社会問題となっている。 このような状況から、HIV感染者の病態解析と新しい 予防、治療法の開発は急務となっており、ワクチンを含 めた抗HIV物質の開発が進められている。現在、核酸 誘導体であるAZT(3'-azido-3'-deoxythymidine,Elw ell, L.P., Ferone, R., Freeman, G.A., Fyfe, J.A., Hill, J. A., Ray, R.H., Richards, C.A., Singer, S.C., Knick, V.B. (1 987) Antimicrob. Agents Chemother., 31,274) 、 DDI (2'-3'-dideoxyinosine) 、 DDC (2'-3'-dideoxycyt idine)が認可されており、ある程度の効果が期待されて いる (Mitsuya, H., Jarrett, R.F., Matsukura, M., DiMarz o, M., Veronese, F., DeViro, A.L., Sarngadharan, M.G., Joh ns, D.G., Deitz, D.S., Broder, S. (1987) Proc. Natl. Acad. S ci.USA,84,2033;Eiseman,J.L.,Yetter,R.A.,Fredrickso n,T.N.,Shapiro,S.G.,MacAuley,C.,Bilello,J.A. (1991) Antiviral Res.,16,307)。しかし、上記の核酸誘導体 は、強い骨髄抑制等の副作用も有することが判明してい る (Bogliolo, G., Lerza, R., Mencoboni, M., Saviane, A., P annacciulli, I. (1988) Exp. Hematol. 16,936; Molina, J. M., Groopman, J.E. (1989) N. Engl. J. Med, 321, 1478)。 さら に、抗腫瘍剤であるadriamycinやキレート剤であるD-pe nicillamine も抗エイズ薬として知られている (Mitoma ya, A.M., Subramanya, K.S., Curry, P.T., Kitchin, R.M. (19 94) Toxicol.Lett,70,171) が、顕著な効果は認められて いない。上記のように、種々のエイズ治療法および予防 法が検討されているが、いずれも感染者の増加抑制を期 待できるほどのものではなく、その効果は限られたもの になっている。以上のことから、より優れた、そして、 より安全性の高いエイズ治療剤および予防剤に対して不 断の希求があるのが現状である。

【0003】 〔発明の概要〕

【発明が解決しようとする課題】本発明は、上記の希求に応えるべく、生体にとってきわめて効果の高い抗エイズ治療薬および予防薬を開発し、HIV感染者の発症の予防薬およびエイズ発症後の症状の進行抑制薬を提供することを目的とする。

[0004]

【課題を解決するための手段】特定のスフィンゴ糖脂質 構造を有するKRN7000は免疫賦活作用、特にナチュラルキラー (natural killer,NK)細胞を活性化することにより、顕著な抗腫瘍作用を発揮する物質である (Kobayashi,E.,Motoki,K.,Uchida,T.,Fukushima,H.,Koezuka,Y.(1995)Oncology Res.7,529)。 NK細胞は抗腫瘍作用のみならず、抗ウイルス作用にも重要な役割を果たす

細胞であることが報告されている (Herberman, R.B., Ort aldo, J.R. (1981) Science, 214, 24)。 しかし、本発明者等 の知る限り、NK細胞の活性化と抗エイズ作用との直接 的な関連性を指摘する報告はまだない。また、NK細胞 活性を増強させ、抗腫瘍活性を有していることが知られ ているサイトカインであるIL-12は、MAIDSに 有効であるという報告はある (Gazzinelli, R.T., Giese, N.A., Morse III.H.C. (1994) J. Exp. Med., 180, 2199) もの の、NK細胞活性を増強させ免疫賦活作用を有する抗腫 瘍剤として利用されているOK432やレンチナン等他 のNK活性化化合物がMAIDSに有効であるという報 告は本発明者らの知る限りない。本発明者等は、後述す るKRN7000等のαーグリコシル結合を有するスフ ィンゴ糖脂質 (αーグリコシルセラミド) の抗エイズウ イルス作用に関して、以下に示す実験(詳細は後記実施 例に記載)により検討を行った。小動物を用いたエイズ 治療薬のためのスクリーニング系として、マウスを用い たAIDSモデルは、HIVの全ゲノムを導入したトラ ンスジェニックマウスと正常マウスとを交配して得られ るF」マウスがAIDS発症モデル動物として期待され ており (Leonard, J.M. et al., (1988) Science, 242, 166 5) 、またSCID (Severe Combined immunodeficienc y) にヒト胎児肝細胞とともにヒト胎児胸腺とヒト胎児 リンパ節を移植したSCID-huマウスのヒト胸腺あ るいはリンパ節に直接HIV-1を注入する (Namikaw a,R.et al.,(1988)Science,242,1684) 、あるいはSC ID-huマウスにHIV-1を静注する (Kaneshima, et al., (1991). Proc. Natl. Acad. Sci. USA, 88, 4523) モデ ルが知られている。さらに、マウスのレトロウイルス感 染症でヒトのAIDSに類似した免疫不全症を発症させ 3 Murine Aquired Immunodeficiency Syndrome (MAI DS)感染マウスを用いる方法、ネコを用いたAIDS モデルとしては、ネコのレトロウイルス感染症でヒトの AIDSに類似した免疫不全症を発症させるFIV感染 ネコを用いる方法(Torten,M.et al.(1991)J.Virol.,6 5,2225)、また、霊長類のモデルとしては、チンパン ジー、ギボンザル、またはマカク属のサルにHIV-1 を感染させる方法 (Alter,H.J.et al.,(1984)Science,2 26,549; Fultz, P.N. et al., (1986) J. Virol., 58,116; Luss o,P. et al., (1988) J. Immunol., 141, 2467; Agy, M.B. et a 40 1.,(1992)Science,257,103) およびアカゲザルにHIV - 2を感染させる方法 (Putkonen, P.et al., (1991) AIDS Res. Hum. Retroviruses, 7, 271; Letvin, N.L. et al., (198 5)Science,230,71) 等が知られている。本発明者等は上 記したような周知の方法の中で、比較的簡便に実験が行 え、しかも、上記のようにヒトのエイズ発症時に認めら れる免疫不全症が認められるという点でヒトのAIDS に類似しているのみならず、B細胞やモノサイト(monoc yte)の増殖に起因するB細胞の急激な活性化や高ガンマ グロブリン血症、さらにB細胞やモノサイト(monocyte)

の増殖に起因する頑固なリンパ節腫張(Fauci, A.S. (199 3)Science, 262, 1011) が観察されるという点(後記実施 例のMAIDSステージ分類(MAIZ症状の検討)参 照) においても、ヒトのAIDSに類似しているモデル であるMAIDS感染モデル (Gazzinelli, R.T., Giese, N.A., Morse III, H.C. (1994) J. Exp. Med., 180, 2199および Morse, H.C, III, Chattopadhyay, S.K., Makino, M., Fredric kson, T.N., Hugin, A.W., Hartley, J.W. (1992) AIDS, 6, 607) を用いて検討を行った。本発明者等は、KRN70 0 0 に代表される α - グリコシル結合構造を有する特定 のスフィンゴ糖脂質(αーグリコシルセラミド)をMA IDS感染マウスに投与したところ、この化合物がMA IDSの発症および進行を遅らせることを見出した。さ らに、検討した化合物は安全性にも優れていることを見 出した。本発明は、上述のような知見に基づいて完成さ れるに到った。すなわち、本発明は、次式(A)で示さ れるαーグリコシルセラミドまたはその塩の少なくとも 1種を有効成分として含んでなる、エイズ発症予防薬お よびエイズ症状の進行抑制薬に関するものである。

【化13】

(A)

[ただし、式中のR1~R9およびXは、それぞれ後述 する特定の基および特定範囲の整数を表す。〕

【0005】〔発明の具体的な説明〕

【発明の実施の形態】

[式(A)で示される化合物]本発明薬剤で使用される 化合物は、式(A)で示されるαーガラクトセラミド構 造を有する化合物であることは上記したところであり、 上記式(A)中のXおよびR1~R9は下記のように定 義されるものである。 [式中、R1はHまたはOHであ る;Xは7~25のいずれかの整数である;R2は下記 (a)~(e)で定義される置換基のいずれかである (ここで、Yは5~17のいずれかの整数である)。

- (a) -CH₂ (CH₂) y CH₃
- (b) -CH (OH) (CH₂) y CH₃
- (c) -CH (OH) (CH₂) y CH (CH₃)₂
- (d) -CH=CH (CH_2) Y CH_3
- (e) -CH (OH) (CH2) Y CH (CH3) CH 2 CH3;およびR3~R9は下記のi)~v)で定義され る置換基である。
- i) R3、R6 およびR8 がHのときR4 はH、OH、 NH2、NHCOCH3 または

【化14】

OH OH

である; R5 はOH、

または

である; R7 はOHである; R9 はH、CH3、CH2 OH、または

【化16】

である;

ii) R3、R6 およびR7 がHのときR4 はH、OH、 NH2、NHCOCH3 または

【化17】

である; R 5 はOH、

OH OH OH

または

である;R8はOH、

または

である; R9 はH、CH3、CH2 OHまたは

【化20】

である。

iii)R4、R6 およびR7 がHのときR3 はH、OH、 NH2、NHCOCH3 または

【化21】

である; R 5 はOH、

【化22】 OH OH NHCOCH3

он он

である; R s はOHまたは

【化23】

20

である; R9 はH、CH3、CH2 OHまたは

【化24】

である;

iv) R4、R5 およびR7 がHのときR3、R6 およびR8 はOHである; R9 はH、CH3 またはCH2 OHである。

v) R3、R5 およびR7がHのときR4、R6 および R8 はOHである; R9 はH、CH3 またはCH2 OH である。

【0006】本発明において使用される好ましいα-グ リコシルセラミド化合物は、式(A)の糖部分において

R3、R6 およびR8 がHを表し、R4、R5 およびR 7 がOHを表し、R9 がCH2 OHを表す化合物であ り、またセラミド部分においてはR2がOHを有する置 換基(b)、(c) または(e)、特に(b) を表す化 合物である。上記の好ましい化合物において、セラミド 部分のR1がHでありR2が(b)である化合物がより 好ましい。更に、セラミド部分のアルキル基におけるメ チレンのXは、好ましくは11~25の整数、より好ま しくは21~25であり、基R2におけるYは好ましく は9~17の整数、より好ましくは11~15である。 本発明において用いられる α - グルコシルセラミドの中 で、(2S, 3S, 4R) -1-(α-D-ガラクトピラノシルオキシ) -2-ヘキサコサノイルアミノ-3, 4-オクタデカンジオールが特に好ましい化合物であ り、この化合物を以下KRN7000(構造式は図2を 参照されたい)と呼ぶものとする。

【0007】式(A)で示される化合物は、酸付加塩があり得る。本発明で使用される化合物はこれらの付加塩をも包含するものである。酸付加塩を形成すべき酸としては、例えば無機酸、例えば塩酸、硫酸、硝酸、リン酸など、あるいは有機酸、例えば酢酸、プロピオン酸、マレイン酸、オレイン酸、パルミチン酸、クエン酸、コハク酸、酒石酸、フマル酸、グルタミン酸、パントテン酸、ラウリルスルホン酸、メタンスルホン酸およびフタル酸などをあげることができる。なお、酸付加塩を医薬として使用する場合には、酸は薬学上許容されるものでなければならないことは言うまでもない。

【0008】本発明で使用される化合物は、αーグリコ シルセラミドを合成するための合目的的な任意の方法に より製造することができる。上記αーグリコシルセラミ ド化合物は、WO93/5055号、WO94/216 8号、WO94/9020号およびWO94/2414 2号の各公報において一部のものが合成方法と共に記載 されており、その合成方法に準じて調製することができ る。また、好ましい方法として、後記実施例において化 合物KRN7000の合成方法、すなわち、Dーリキソ ースを出発物質としてセラミド部分を合成し、このセラ ミドに糖部分のガラクトースを結合させる方法が例示さ れており(詳細は後記の実施例および図1~2を参照さ れたい)、この方法に準じて目的の化合物を合成するこ とができる。なお、αーグリコシルセラミドの一般的な 合成方法については、例えば、J.Med.Chem.,38,2176(19 95) を参照することができる。

【0009】 [エイズ発症予防薬および進行抑制薬]本発明によるエイズ発症予防薬および進行抑制薬は、式(A)で示される化合物またはその塩の少なくとも1種類を有効成分として含むものであり、HIV感染の前または後に生体に投与することにより、後記実施例の抗MAIS作用の結果に示されるように、エイズ発症の予防および症状の進行抑制おいて高い効果を発揮することが50

できる。本発明薬剤に使用される化合物は、合目的的な 任意の投与経路、具体的には、動物の場合には、腹腔内 投与、皮下投与、静脈または動脈への血管内投与、注射 による局所投与などの方法が可能であり、また、ヒトの 場合には、静脈内投与、動脈内投与、注射による局所投 与、腹腔または胸腔への投与、皮下投与、筋肉内投与、 舌下投与、経皮吸収または直腸内投与により投与するこ とができる。

【0010】本発明薬剤は、投与方法、投与目的によっ て決まる適当な剤型、具体的には、注射剤、懸濁剤、錠 剤、乳化剤、軟膏剤、顆粒剤、カプセル剤、クリーム剤 等の形態で投与することができる。これらの製剤を製造 するには、製剤上許容される担体あるいは希釈剤等の添 加剤、具体的には、溶剤、可溶化剤、等張化剤、保存 剤、抗酸化剤、賦形剤、結合剤、安定剤等を添加するこ とができる。溶剤としては、例えば水、生理食塩水等 が、可溶化剤としては、例えばエタノール、ポリソルベ ート剤が、賦形剤としては、例えば乳糖、デンプン、結 晶セルロース、マンニトール、マルトース、リン酸水素 カルシウム、軟質無水ケイ酸、炭酸カルシウム等が、結 合剤としては、例えばデンプン、ポリビニルピロリド ン、ヒドロキシプロピルセルロース、エチルセルロー ス、カルボキシメチルセルロース、アラビアゴム等が、 崩壊剤としては、例えばデンプン、カルボキシメチルセ ルロースカルシウム等が、滑沢剤としては、例えばステ アリン酸マグネシウム、タルク、硬化油等が、安定剤と しては、例えば乳糖、マンニトール、マルトース、ポリ ソルベート類、マクロゴール類、ポリオキシエチレン硬 化ヒマシ油等があげられる。また、必要に応じて、グリ セリン、ジメチルアセトアミド、70%乳酸ナトリウ ム、界面活性剤、塩基性物質(例えば、エチレンジアミ ン、エタノールアミン、炭酸ナトリウム、アルギニン、 メグルミン、トリスアミノメタン)を添加することもで きる。これらの成分を用いて、注射剤、錠剤、顆粒剤、 カプセル剤等の剤型に製造することができる。

【0011】本発明薬剤の有効成分の投与量は、個々の 状況を勘案して、連続的または間欠的に投与したときに 総投与量が一定量を越えないように定められる。具体的 な投与量は、投与方法、患者等の状況、例えば年齢、体 重、性別、感受性、食事(食餌)投与時間、併用する薬 剤、患者またはその病気の程度に応じて変化することは 言うまでもなく、また一定の条件のもとにおける適量と 投与回数は、上記指針をもとにして専門医の適量決定試 験によって決定されなければならない。上記有効成分の 活性の発現に必要な投与量は、例えば、静脈内投与の場 合、ヒト成人に対して、1日あたり0.01~10mg 程度である。

[0012]

【実施例】以下は、本発明の実施例を示すものであるが、これによって本発明が限定されるものではない。

[薬理試験:α-グリコシルセラミドのMAIDSに対

下に示す検討を行なった。結果を表1に示す。

【0014】 (3) MAIDS症状の検討

12

する作用] 以下の実験は、牧野らの方法(Makino,M.,Yo 実験2:KRN7000(10, 100, 200, 50 shimatsu,K.,Azuma,M.,Okada,Y.,Hitoshi,Y.,Yagita, H.,Takatsu,K.,Komuro,K.(1995)J.Immunol.,155,974)に 基づいて行った。また、αーグリコシルセラミド化合物 P-BM5 MuLV液投与8週間後にマウスを殺し、の代表例としてKRN7000について検討を行った。 以下に示す検討を行なった。結果を表2に示す。

(1) LP-BM5 MuLV (murine leukemia virus)の調製

LP-BM5 MuLV (Laterjet,R.,Duplan,J.F.(1962)Int.J.Radiat.Biol.,5,339) は、慢性感染SC-1 (clone G6) 細胞と非感染SC-1細胞を共培養することにより得た(Chattopadhyay,S.K.,Morse,H.C.,III Makino,M.,Ruscetti,S.K.,Hartley,J.W.(1989).Proc.Natl.Acad.Sci.USA,86,3862)。エコトロピックウイルスの力価は、SC-1細胞を用いたXCプラーク法で検定した(Cloyd.M.W.et al.,(1980)J.Exp.Med.,151,542)。1ml当たり10^{5.2} -10^{5.6} XCプラーク形成単位(PFU)のウイルスを含むLP-BM5 MuLV液を調製した。

【0013】(2) KRN7000の抗MAIDS作用の検討

C57BL/6マウス(雌、5週令)に上記のLP-BM5 MuLV液0.2mlを腹腔内投与した。

実験1: KRN7000 (100μg/kg) を、LP -BM5 MuLV液投与3日前からマウス屠殺前日ま で、週5回 (月曜日から金曜日) 腹腔内投与した。LP -BM5 MuLV液投与4週間後にマウスを殺し、以 マウスに麻酔を行い末梢血を採取した。その後、屠殺したマウスの脾臓を摘出し、重量を測定後、脾臓細胞を調製して、細胞表面抗原のFACS解析に供した。FACS解析は、蛍光標識したCD11b (Mac-1)、Igκ-chain、IgG、Thy1,2、CD45R(B220)、CD32(IgG FcR)モノクローナル抗体を用いて行ない、MAIDSのステージ分類は、以前に報告されているStaging criteria(Hartley,J.W.,Fredrickson,T.N.,Yetter,R.A.,Makino,M.,Morse III,H.C.,(1989)J.Virol.,63,1223;Makino,M.,Morse III,H.C.,Fredrickson,T.N.,Hartley,J.W.(1990)J.Immuno 1.,144,4347)に従って行った。すなわち、N、変化なし;R、リンパ球の増殖、免疫学的促進が認められるものの、それらはMAIDS(ステージ1:B細胞芽球の増殖を伴った初期MAIDS症状が明確に認められる;

ステージ2:B細胞芽球の持続的な増殖、および休止B

細胞の減少;ステージ3:休止B細胞の消失、およびリ

ンパ系器官へのリンパ芽球の浸潤)に特有のものではな

【0015】結果:

表1 α - グリコシルセラミド (KRN7000) の抗MAIDS作用

い。

	LP-Mu1V	KRN7000 (100 μ g/kg)	脾蔵重量 (mg)	MAIDS の ステージ
マウスー1	_	_	9 0	N
マウスー2	+	_	190	I
マウスー3	+	_	200	1
マウスー4	+	+	190	R
マウスー5	+	+	180	R
マウスー6	+	+	2 2 0	R

表 1 に示すように、LP-BM5MuLVを感染させたマウスは、移植4週間後には、脾蔵重量の顕著な増加が認められ、全例がMAIDSの初期症状であるステージ 1 の段階に達した。これに対し、KRN7000($100\mu g/kg$)を投与したマウスは、脾蔵重量に関して

は、コントロール群と同様、顕著な増加が認められたものの、全例R(リンパ球の増殖)の段階であった。以上の結果は、KRN7000は、MAIDSの発症を遅らせる作用を有することを示す。

[0016]

表2 αーグリコシルセラミド(KRN7000)の抗MAIDS作用

<u> </u>	α –	- <i>0</i>	コンルセフミト	(KKN7	<u>UUU)の抓MA</u> I	105作用	
				KRN7000	脾蔵重量	MAIDS の	
			LP-MulV	$(\mu g/kg)$	(m g)	ステージ	
					<u> </u>		_
マウス	ч —	1	+	0	500	2	
マウス	х —	2	+	0	460	2	
マウス	ζ —	3	+	1 0	390	1	

1	3

マウスー	4	+	1 0	3 7 0	$1\sim 2$
マウスー	5	+	100	3 1 0	1
マウスー	6	+	100	4 2 0	$1 \sim 2$
マウスー	7	+	200	190	R
マウスー	8	+	200	3 7 0	$1 \sim 2$
マウスー	9	+	500	3 7 0	$1\sim 2$
マウスー1	0	+	500	260	1

さらに、KRN7000の用量依存性を検討するため、4種類の用量(10,100,200,500μg/kg)のKRN7000の腹腔内投与を行なった。表2に示すように、LPーMuLVを感染させたマウスは、移植8週間後には、非常に顕著な脾蔵重量の増加(平均480mg)が観察され、全例がMAIDSのステージ2(B細胞芽球の持続的な増殖および休止B細胞の減少)の段階に達した。これに対し、KRN7000を投与した群では、いずれの群でもコントロール群に比べ、明らかな腫蔵重量の増加抑制作用が認められ、しかも、いずれの群でも、MAIDSのステージは2より下であった。この結果は、KRN7000はMAIDSのステージの進行を遅せる作用を有することを示す。

【0017】以上の結果より、KRN7000は、広い 範囲(10~500μg/kg)の用量で、MAIDS の発症および進行を遅らせる作用を有することが判明し た。さらに、KRN7000の10mg/kgをマウス に投与した場合にも、明らかな毒性は認められていな い。ヒトの場合、HIV感染からAIDSの発症まで通 常5~10年の長い年月を要する。一方、今回実験に用 いた、MAIDSの系では、感染からMAIDSの発症 まで、4週間(表1参照)であり、ヒトの場合に比べる と非常に短い。このように急激な発症を招くMAIDS の系に対してさえ、KRN7000は、前述のごとく、 明らかにMAIDSの発症を遅らせることから、発症ま でに長時間を有するヒトのAIDSに対しては、その潜 伏期間中にKRN7000を投与することにより、AI DSの発症をより確実に遅らせることが推察される。さ らに、エイズ発症後に投与した場合、エイズの症状の悪 化を抑制することも期待できる。以上のことから、本発 明で用いられるαーグリコシル結合を有するスフィンゴ 糖脂質 (α-グリコシルセラミド化合物) は、有用なエ 40 イズ発症予防薬、およびエイズ症状の進行抑制薬である ということができる。

【0018】 [化合物の製造例]

αーグリコシルセラミドの製造

以下は、αーグリコシルセラミドの代表例としてKRN 7000の合成例を示すものである(図1および2を参照されたい)。

(1) 化合物 G 1 の合成

D-リキソース (200g、1.33mol) に塩化カルシウムで乾燥したアセトン溶液 (3.0L) に硫酸

(0.5mL)を加え、18時間室温で攪拌した。モレキュラーシーブス4Aの粉末(100g)を加え、反応液を中和後、セライト濾過し、残渣をアセトンで洗浄した。濾液と洗液をあわせて減圧濃縮し、G1の粗生成物を得た。収量240g(95%)。これ以上の精製を行わずに次の工程に用いた。分析用のサンプルは、ヘキサン:アセトン(9:1)を溶出溶媒としてシリカゲルクロマトグラフィーにより精製した。

14

mp 76-78°C; FDMS m/z 191 (M+1) +; 1 H-NMR (500MHz, CDCl3) δ 5. 45 (1H, d, J=1.8Hz), 4.83 (1H, dd, J=3.7, 5.5Hz), 4.64 (1H, d, J=6.1Hz), 4.27-4.30 (1H, m), 3.90-3.99 (2H, m), 1.48 (3H, s), 1.32 (3H, s).

【0019】(2)化合物G2の合成

化合物G1(239g、約1.26mmol)の塩化メチレン溶液(168ml)に、ピリジン(10ml)、塩化トリチル(39.0g)を加え、32℃で4時間攪拌した。エタノール(8ml)を滴下し、室温で2時間攪拌した。飽和塩化アンモニウム水溶液、飽和炭酸水素ナトリウム水溶液、食塩水で洗浄後、減圧濃縮した。残渣は酢酸エチルに溶解し、0℃に冷却して結晶化した。収量501g(D-リキソースより87%)。

mp 1 7 4 - 1 7 6 °C; FDMS m/z 4 3 2 M⁺; ¹ H-NMR (500MHz, CDCl3) δ 7. 21-7. 49 (15H, m), 5. 38 (1H, d, J=2. 4Hz), 4. 75 (1H, dd, J=3. 7, 6. 1Hz), 4. 59 (1H, d, J=6. 1Hz), 4. 35 (1H, m), 3. 43 (1H, dd, J=4. 9, 9. 8Hz), 3. 39 (1H, dd, J=6. 7, 9. 8Hz), 1. 29 (3H, s), 1. 28 (3H, s).

【0020】(3)化合物G3の合成

トリデカントリフェニルホスホニウムブロミド (962 g、1.16mol;1-ブロモトリデカン、トリフェニルホスフィンを4.5時間、140℃に加熱して調製した)のTHF溶液 (1500ml)に、アルゴン雰囲気下、n-ブチルリチウムの2.5Mへキサン溶液(462mL;366mmol)を0℃で滴下した。滴下終了後、15分間攪拌し、化合物G2(250g、579mmol)のTHF溶液(450ml)を滴下した。室

温まで、徐々に温度を上げつつ18時間攪拌した。反応液を減圧濃縮し、残渣にヘキサン:メタノール:水(10:7:3、1000ml)の混液を加え、飽和塩化アンモニウム水溶液で洗浄した。水層はヘキサン(500ml)で抽出し、すべての有機層をあわせて無水硫酸マグネシウムで乾燥後、減圧濃縮し、G3の粗生成物を得た。これ以上の精製を行わずに次の工程に用いた。収量339g(98%)。分析用のサンプルは、ヘキサン:酢酸エチル(9:1)を溶出溶媒としてシリカゲルクロマトグラフィーにより精製した。

FDMS m/z 598M+; 1H-NMR (500 MHz, CDCl3) δ 7. 21-7. 45 (15H, m), 5. 48-5. 59 (2H, m), 4. 91 (0.7 H, t, J=7.3 Hz), 4.44 (0.3H, t, J = 7. 3 H z), 4. 26 (0. 3 H, d d, J = 4.3, 7.3 Hz), 4.21 (0.7 H, dd, J=4. 3, 6. 7Hz), 3. 75 (0. 7H, m), 3. 69 (0. 3H, m), 3. 24 (0. 3H, dd, J=4. 9, 9. 8Hz), 3. 17(0.7H, dd, J=4.9, 9.8Hz), 3.09-3.14 [1H, (3.11, dd, J=4.9, 9. 2 Hz), H1 b E overlapped, 1. 75-2. 03 (2H, m), 1. 49 (3H, s), 1. 39a nd1.38 (3H, each s), 1.21-1. 34 (20H, m), 0. 88 (3H, t, J=6. 7 Hz).

【0021】(4)化合物G4の合成 化合物G3(338g、約565mmol)の塩化メチ

レン溶液 (1500ml) にピリジン (500ml) を 加え、塩化メタンスルホニル(49m1、633mmo 1)を滴下し、31℃で24時間攪拌した。エタノール (40ml)を滴下し、室温で1時間攪拌した。減圧濃 縮後、残渣にヘキサン:メタノール:水(10:7: 3、1000ml)の混液を加え、分液した。水層はへ キサン(200ml)で3回抽出し、すべての有機層を あわせて無水硫酸マグネシウムで乾燥後、減圧濃縮し、 G4の粗生成物を得た。これ以上の精製を行わずに次の 工程に用いた。収量363g(95%)。分析用のサン プルは、ヘキサン:酢酸エチル(9:1)を溶出溶媒と してシリカゲルクロマトグラフィーにより精製した。 FDMS m/z 676M+; 1 H-NMR (500 MHz, CDC13) δ 7. 21-7. 47 (15H, m), 5.41 (0.7H, ddd, J=5.5, 9. 2, 11. OHz), 5. 32 (0. 7H, bt, J=11.0Hz), 5.22(0.3H, bdd, J=9. 2, 15. 0Hz), 5. 02 (0. 3H, dt, $J_t = 7.3 Hz$, $J_d = 15.0 Hz$), 4.8 (0.7H, ddd, J=3.1, 5.5, 7.9H)z), 4.73 (0.7H, dd, J=5.5, 9.8 Hz), 4. 64-4. 67 (0. 3H, m), 4. 6 1 (0. 3H, dd, J=5. 5, 9. 2Hz), 4. 48 (0. 7H, dd, J=5. 5, 7. 9Hz), 4. 22 (0. 3H, dd, J=5. 5, 9. 2Hz), 3. 55 (0. 3H, dd, J=2. 4, 11. 6Hz), 3. 45 (0. 7H, dd, J=3. 2, 11. 0Hz), 3. 06-3. 12 [4H, (3. 12, s), (3. 11, s), (3. 09, dd, J=3. 1, 11. 0Hz)], 1. 66-1. 82 (2H, m), 1. 47 and 1. 46 (3H, eachs), 1. 39 (3H, s), 1. 13-1. 35 (20H, m), 0. 88 (3H, t, J=6. 8Hz).

16

化合物G 4 (362g、約536mmol)の塩化メチレン溶液(1500ml)にメタノール(350ml)を加え、これに濃塩酸(200ml)を滴下し、5h室温で攪拌した。反応液に炭酸水素ナトリウムを加えて中和後、濾過した。濾液を減圧濃縮し、残渣に酢酸エチルを加え、食塩水で洗浄した。水層は酢酸エチルで抽出し、すべての有機層をあわせて無水硫酸マグネシウムで乾燥後、減圧濃縮した。ヘキサンより結晶化した。収量161g(G2より70%)。

【0022】(5)化合物G5の合成

 $mp66-67^{\circ}C$; FDMS m/z 377 (M-H $_{2}$ O) + ; $_{1}$ H-NMR (500MHz, CDCl₃+ $D_2 O) \delta 5.86 (0.3H, dt, J_t = 7.3H)$ z, $J_d = 14.7Hz$), 5.77 (0.7H, d t, $J_t = 7.3$, $J_d = 10.4 Hz$), 5.55 (0.3H, br. dd, J=7.3, 14.7H)z), 5. 49 (0. 7H, bt, J = 9.8Hz), 4. 91-4. 97 (1H, m), 4. 51 (0. 7 H, bt, J=9.8Hz), 4.11 (0.3H, b t, J = 7. 3 H z), 3. 94-4. 03 (2 H, m), 3. 67-3. 73 [1H, (3. 70, dd, J = 3. 1, 6. 7 Hz), (3. 69, dd, J =3. 1, 7. 3Hz)], 3. 20and 3. 19 (3 H, each s), 2. 05-2. 22 (2H, m), 1. 22-1. 43 (20H, m), 0. 88 (3H, t, J=6.7Hz).

【0023】(6)化合物G6の合成

化合物G 5 (160g、405mmol)のTHF溶液 (780ml)に5%パラジウムー硫酸バリウム(16g)を加え、反応容器を水素ガスで置換後、室温にて20時間攪拌した。反応液をセライト濾過後、クロロホルム:メタノールの混液(1:1)で洗浄した。濾液と洗液をあわせ、減圧濃縮した。残渣は酢酸エチルより結晶化した。収量146g(91%)。

[α] 23 D + 1 2° (c 1, CHCl 3 / MeOH= 1:1); mp 1 2 4·-1 2 6°C; FDMS m/z 3 9 7 (M+1) +; ¹ H-NMR (500MHz, CDCl 3 / CD3 OD=1:1) δ 4. 9 3 - 4. 9 6 (1 H, m, H2), 3. 9 1 (1 H, d d, J=6.

7, 12. 2Hz), 3. 85 (1H, dd, J=4. 9, 12. 2Hz), 3. 54-3. 60 (1H, m), 3. 50 (1H, dd, J=1. 8, 8. 5H z), 3. 19 (3H, s), 1. 75-1. 83 (1 H, m), 1. 53-1. 62 (1H, m), 1. 21 -1. 45 (24H, m), 0. 89 (3H, t, J= 6. 7Hz)

【0024】(7)化合物G7の合成

化合物G 6 (1 4 5 g、3 6 5 mm o 1)のDMF溶液(1000ml)にアジ化ナトリウム(4 7 g、730 mm o 1)を加え、95℃で4時間攪拌した。反応液を濃縮し、残渣に酢酸エチル(450ml)を加え、水洗した。水層は酢酸エチルで再抽出した。すべての有機層をあわせて食塩水で洗浄後、無水硫酸マグネシウムで乾燥、減圧濃縮し、G 7 の粗生成物を得た。収量122g(97%)。これ以上の精製を行わずに次の工程に用いた。収量126g(95%)。分析用のサンプルは、ヘキサン:酢酸エチル(9:1)を溶出溶媒としてシリカゲルクロマトグラフィーにより精製した。

[α] 23 p + 16.5° (c0.5, CHCl3-MeOH, 1:1); mp92-93°C; FDMS m/z 344 (M+1) +; ¹ H-NMR (500MHz, CD3OD) δ 3.91 (1H, dd, J=3.7, 11.6Hz), 3.75 (1H, dd, J=7.9, 11.6Hz), 3.49-3.61 (3H, m), 1.50-1.71 (2H, m), 1.22-1.46 (24H, m), 0.90 (3H, t, J=6.7Hz)。 【0025】(8) 化合物G8の合成

化合物G7(121g、約352mmol)の塩化メチレン溶液(750ml)にピリジン(250ml)、塩化トリチル(124g、445mmol)を加え、室温で16時間攪拌した。エタノール(30ml)を滴下し、室温で30分間攪拌した後、飽和炭酸水素ナトリウム水溶液、飽和塩化アンモニウム水溶液、食塩水で洗浄後、無水硫酸マグネシウムで乾燥、減圧濃縮した。残渣は、ヘキサン:酢酸エチル(10:1)を溶出溶媒としてシリカゲルクロマトグラフィーにより精製した。収量34.4g(G6より52%)。

 $[\alpha]^{24}$ p + 1 1. 9° (c 0. 9, CHC l 3), FDMS m/z 585M+; H-NMR (500MHz, CDC l 3+D2O) δ 7. 24-7. 61 (15H, m), 3. 62-3. 66 (2H, m), 3. 51-3. 57 (2H, m), 3. 42 (1H, dd, J=6. 0, 10. 4Hz), 1. 23-1. 56 (26H, m), 0. 88 (3H, t, J=6. 7Hz)。 【0026】 (9) 化合物G 9の合成

化合物G8 (33.5g、57.3mmol)のDMF 溶液(300ml)に60%水素化ナトリウム(5.5 g、NaHとして約138mmol)を加え、室温で4 0分間攪拌した。反応液を0℃に冷却し、臭化ベンジル (15ml、120mmol)を滴下した。室温まで徐々に温度をあげながら18時間攪拌した。反応液に氷水(100ml)を加えて、反応を停止した後、酢酸エチルを用いて抽出した。抽出液は食塩水で3回洗浄し、すべての有機層をあわせて無水硫酸マグネシウムで乾燥後、減圧濃縮し、G9の粗生成物を得た。これ以上の精製を行わずに次の工程に用いた。収量42.2g(96%)。分析用のサンプルは、ヘキサン:酢酸エチル(100:1)を溶出溶媒としてシリカゲルクロマトグラフィーにより精製した。

[α] ²⁴ D + 9. 8° (c 1. 0, CHC l 3), FD MS m/z 738 (M-N₂) + ; ¹ H-NMR (500MHz, CDC l 3) δ 7. 07-7. 48 (25H, m), 4. 57 (1H, d, J=11. 6Hz), 4. 41 (2H, s), 3. 73-3. 79 (1H, m), 3. 46-3. 56 (2H, m), 3. 37 (1H, dd, J=8. 6, 10. 4Hz), 1. 20-1. 64 (26H, m), 0. 88 (3H, t, J=6. 7Hz).

【0027】 (10) 化合物G10およびG11の合成 化合物G9(41.2g、約54mmol)の1-プロ パノール溶液 (250ml) にメタノール (30ml) を加え、更に5%パラジウム炭素(4.1g)、蟻酸ア ンモニウム (27.1g、4.3mol) を加えた。室 温で16時間攪拌後、酢酸エチルで希釈し、セライト濾 過した。濾液を減圧濃縮し、酢酸エチルで溶解後、飽和 炭酸水素ナトリウム水溶液、食塩水で3回洗浄し、すべ ての有機層をあわせて無水硫酸マグネシウムで乾燥後、 減圧濃縮し、G10の粗生成物を得た。収量38.9g (98%)。得られたG10は、これ以上の精製を行わ ずに次の工程に用いた。化合物G10の塩化メチレン溶 液(300m1)に、ヘキサコサン酸(22.4g、5 6. 5mmol)、WSC塩酸塩(12. 6g、64. 6 mm o 1) を加え、2 時間加熱還流した。室温まで冷 却後、減圧濃縮した。残渣に酢酸エチル (500ml) を加え、0. 5 M塩酸水溶液、食塩水、飽和炭酸水素ナ トリウム水溶液、更に食塩水で洗浄した。すべての有機 層をあわせて無水硫酸マグネシウムで乾燥後、減圧濃縮 し、G11の粗生成物を得た。収量53.2g(88 %)。得られたG11は、これ以上の精製を行わずに次 の工程に用いた。分析用のサンプルは、ヘキサン:酢酸 エチル(100:1)を溶出溶媒としてシリカゲルクロ マトグラフィーにより精製した。

[α] ²⁴ $_D$ + 5. 3° (c 0. 4, CHCl 3); FD MS m/z 1118M+; ¹ H-NMR (500M Hz, CDCl 3) δ 7. 20-7. 38 (25H, m), 5. 57 (1H, d, J=9. 1Hz), 4. 8 0 (1H, d, J=11. 6Hz), 4. 48-4. 5 0 (3H, m), 4. 24-4. 32 (1H, m),

3. 83 (1 H, d d, J = 3. 0, 6. 7 Hz), 3. 43-3. 51 (2 H, m, H1a), 3. 29 (1 H, d d, J = 4. 3, 9. 8 Hz), 1. 92 (2 H, t, J = 7. 3 Hz), 1. 28-1. 60 (7 2 H, m), 0. 88 (6 H, t, J = 6. 7 Hz).

【0028】(11)化合物G12の合成

化合物G11(52.2g、約47mmo1)の塩化メチレン溶液(180ml)にメタノール(36ml)を加え、次いで10%塩酸メタノール溶液(3.0ml)を滴下し、室温で2時間攪拌した。反応液は粉状の炭酸水素ナトリウム(18g)で中和し、セライト濾過した。残渣は塩化メチレンで洗浄した。濾液と洗液をあわせ、食塩水で洗浄し、有機層を無水硫酸マグネシウムで乾燥後、減圧濃縮した。残渣をアセトンに加熱溶解し、0℃に冷却して沈殿化により精製した。収量38.6g(G9より77%)。

[α] ²⁴ $_{D}$ - 29. 7° (c0. 7, CHCl3); m p 75-76. 5°C; FDMS m/z 876 M*; ¹ H-NMR (500MHz, CDCl3) δ 7. 30-7. 47 (10H, m), 6. 03 (1H, d, J=7. 9Hz), 4. 72 (1H, d, J=11. 6Hz), 4. 61 (1H, d, J=11. 6Hz), 4. 61 (1H, d, J=11. 6Hz), 4. 45 (1H, d, J=11. 6Hz), 4. 45 (1H, m), 4. 00 (1H, dt, Jt=4. 3, Jd=7. 3Hz), 3. 67-3. 72 (2H, m), 3. 61 (1H, ddd, J=4. 3, 8. 6, 11. 6Hz), 1. 94-2. 05 (2H, m), 1. 15-1. 69 (72H, m), 0. 88 (6H, t, J=6. 1Hz) $_{\circ}$

【0029】 (12) 化合物G13の合成

1) 2, 3, 4, 6ーテトラーOーベンジルーDーガラクトピラノシルアセテート(79.8g)をトルエン(160ml)およびイソプロピルエーテル(520ml)の混液に溶解し、 $-10\sim0$ ℃に冷却した。これに、2.0等量のHBrを含むイソプロピルエーテル溶液を加えた(2.8mmol/ml、約100ml)。 $-10\sim0$ ℃で約90分間攪拌後、反応液に5%炭酸水素ナトリウム水溶液を注ぎ、攪拌して過剰のHBrを中和した。全量を分液ロートに移して分液後、水層を廃棄し、10%塩化ナトリウム水溶液で2回洗浄した。減圧濃縮して2,3,4,6ーテトラーOーベンジルー α -Dーガラクトピラノシルブロミド(GalBr)のシロップを得た。

2) 化合物G12(60.0g、68.6mmol)、 テトラヘキシルアンモニウムプロミド(89.4g、2 06mmol)、モレキュラーシーブス4A(60g) のトルエン溶液(420ml)に、DMF(140m 1)次いで、GalBr(約137mmol)のトルエ ン溶液(250ml)を加え、室温で72時間攪拌した。反応液にメタノール(12ml)を加え、2時間攪拌した。セライト濾過後、飽和炭酸水素ナトリウム水溶液、食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧濃縮した。残渣にアセトニトリルを加え、2時間攪拌し、沈殿を得た。得られた沈殿を減圧乾燥し、乾燥粉体を得た。これをヘキサン:酢酸エチル(8:1)を溶出溶媒としてシリカゲルクロマトグラフィーにより精製した。収量70.9g(74%)。

[α] ²⁴ D + 1 8. 8° (c 0. 9, CHC l 3); m p 7 4 - 7 5°C; FDMS m/z 1399 (M+1) +; ¹ H - NMR (500 MHz, CDC l 3) δ 7. 21 - 7. 37 (30 H, m), 6. 12 (1 H, d, J=9. 0 Hz), 4. 91 (1 H, d, J=11. 6 Hz), 4. 84 (1 H, d, J=3. 7 Hz), 4. 72 - 4. 80 (4 H, m), 4. 35 - 4. 65 (7 H, m), 4. 12 - 4. 18 (1 H, m), 3. 99 - 4. 05 (2 H, m), 3. 84 - 3. 93 (4 H, m), 3. 73 (1 H, dd, J=3. 7, 11. 0 Hz), 3. 47 - 3. 51 (2 H, m), 3. 42 (1 H, dd, J=6. 1, 9. 1 Hz), 1. 87 - 1. 99 (2 H, m), 1. 18 - 1. 70 (72 H, m), 0. 88 (6 H, t, J=7. 4 Hz).

【0030】(13) 化合物KRN7000の合成化合物G13(60.0g、42.9mmol)をエタノール(960ml)に加えて懸濁させ、これに20%水酸化パラジウム(6.0g)のエタノール懸濁液を加えた。更に水素源となる4ーメチルシクロへキセン(120ml、93.5mmol)を加え、4時間加熱還流した後、濾過し、触媒を除いた。残渣は加温したエタノールで洗浄した。濾液を室温放置することによって得た白色沈殿を濾過、減圧乾燥した。得られた粉体をエタノール:水(92:8、3.5L)に懸濁し、攪拌しながら加熱溶解後、室温放置することによって再度沈殿化した。沈殿液を濾過し、濾取したケーキを減圧乾燥し、白色粉末を得た。収量35.0g(95%)。

[α] 23 D + 4 3. 6° (c 1. 0, pyridine); m p 1 8 9. 5 - 1 9 0. 5°C; negative FABMS m/z 8 5 7 (M-H) -; IR (c m-1, KBr) 3 3 0 0, 2 9 3 0, 2 8 5 0, 1 6 4 0, 1 5 4 0, 1 4 7 0, 1 0 7 0; H-NMR (5 0 0 MHz, C 5 D 5 N) δ 8. 4 7 (1 H, d, J = 8. 5 Hz), 5. 5 8 (1 H, d, J = 3. 7 Hz), 5. 2 7 (1 H, m), 4. 6 3 - 4. 7 0 (2 H, m), 4. 5 6 (1 H, m), 4. 5 2 (1 H, t, J = 6. 1 Hz), 4. 3 7 - 4. 4 7 (4 H, m), 4. 3 3 (2 H, m), 2. 4 5 (2 H, t, J = 7. 3 Hz), 2. 2 5 - 2. 3 4 (1 H, m), 1. 8 7 - 1. 9 7 (2 H, m), 1. 7 8 - 1. 8 5 (2 H, m), 1. 6 2

-1. 72 (1H, m), 1. 26-1. 45 (66 H, m), 0.88 (6H, t, J = 6.7 Hz), 13 C-NMR (125MHz, C5D5N) δ 173.2 (s), 101. 5 (d), 76. 7 (d), 73. 0 (d), 72.5 (d), 71.6 (d), 71.0 (d), 70.3 (d), 68.7 (t), 62.7

(t), 51. 4 (d), 36. 8 (t), 34. 4

(t), 30.03(t), 30.00(t), 29. 93 (t), 29.87 (t), 29.81 (t), 2 9. 76 (t), 29. 6 (t), 26. 5 (t), 2 6. 4 (t), 22. 9 (t), 14. 3 (q). 【0031】 [エイズ発症予防薬および進行抑制薬の配

(t), 32.1 (t), 30.4 (t), 30.2

22

合例]

製剤例1 (注射剤)

1	KRN7000	1 m g
2	ポリソルベート	100mg
3	注射用蒸留水	適量
	計	1 m l

上記の処方に従って、3に1、2を溶解し、無菌濾過後 バイアルあるいはアンプルに充填し注射剤とする。また は、上記注射剤を輸液(生理食塩液、あるいはブドウ糖 輸液) と混合し点滴静注剤とする。

製剤例2 (注射剤)

1	KRN7000	200μ g
2	ポリソルベート	5 m g
3	注射用蒸留水	適量
	計	1 m l

バイアルあるいはアンプルに充填し注射剤とする。また

上記の処方に従って、3に1、2を溶解し、無菌濾過後 20 は、上記注射剤を輸液(生理食塩液、あるいはブドウ糖 輸液)と混合し点滴静注剤とする。

製剤例3 (錠剤)

1	KRN7000	1 m g
2	乳糖	80 m g
3	トウモロコシデンプン	30mg
4	ヒドロキシプロピルセルロース	3 m g
5	ステアリン酸マグネシウム	1 m g
	-1	-

115mg

上記の処方に従って1~4を混合、造粒し、打錠用顆粒 とする。この顆粒に5を加え均一な粉体として打錠機に 30 て圧縮成形して錠剤とする。

[0032]

【発明の効果】本発明によるエイズ発症予防薬および進 行抑制薬に使用される化合物は、αーグリコシル結合を 有するスフィンゴ糖脂質であり、強いNK細胞活性増強 作用もしくは免疫賦活作用を有すると共に抗MAIS作 用が強く、HIV感染の前または後に生体に投与するこ とにより、エイズ発症の予防およびエイズ症状の進行抑 制において高い効果を発揮することができる。

【図面の簡単な説明】

【図1】本発明で使用するα-グリコシルセラミド化合 物の代表例(KRN7000)の合成反応経路を示す説 明図である。反応経路中、pyrはピリジン、BrPP h3 (CH2) 12 CH3 はトリデカントリフェニルホス ホニウムブロミド、n-BuLiはn-ブチルリチウ ム、MsClは塩化メタンスルホニル、BnBrは臭化 ベンジル、1-PrOHはプロピルアルコールを表す。 【図2】図1に続く合成反応経路を示す説明図である。 反応経路中、WSC-HClは1-エチル-3-(3' -ジメチルアミノプロピル) -カルボジイミド・塩酸 塩、MS4Aはモレキュラーシーブス4A、Hex4N 40 B r はテトラヘキシルアンモニウムブロミドである。

【図1】

【図2】

KRN7000