Assignment 5, ttk4215

Rendell Cale

13th October

Problem 4.9

Using the same setup as in Assignment 4, which was

$$\theta = \begin{bmatrix} m \\ \beta \\ k \end{bmatrix}$$

$$\phi = \frac{\begin{bmatrix} s^2 \\ s \\ s \end{bmatrix}}{s^2 + \lambda_1 s + \lambda_2} y$$

$$z = \frac{u}{s^2 + \lambda_1 s + \lambda_2}$$

For both d and e, I tried all three least square algorithms. I didn't change the design parameters much between each version this might not be a fair comparison. For all the given plots, I've used $\alpha=1,\ \beta=1$ (forgetting factor), $\rho_0=100,\ \rho_1=10,\ P_0=\rho_0 I,$ and $R_0=1.$

d

With constant
$$\theta^* = \begin{bmatrix} 20\\0.1\\5 \end{bmatrix}$$
, we get the following plots.

Figure 1: Problem 4.9 d: Pure Least-squares

Figure 2: Problem 4.9 d: Least-squares with covariance resetting

Figure 3: Problem 4.9 d: Least-squares with forgetting

 \mathbf{e}

With θ^* time varying as given in the text, we get the following plots.

Figure 4: Problem 4.9 e: Pure Least-squares

Figure 5: Problem 4.9 e: Least-squares with covariance resetting

Figure 6: Problem 4.9 e: Least-squares with forgetting

Problem 4.10

a

Spring is stretched out a distance $d=y_1-y_2$. Hooks law gives that the force from the spring is $F_k=kd=k(y_1-y_2)$. Damping is proportional to speed of mass $F_d=\beta \dot{y_2}$. Newtons law then gives

$$m\ddot{y_2} = -F_d + F_k = -\beta \dot{y_2} + k(y_1 - y_2),$$

which is equivalent to

$$k(y_1 - y_2) = m\ddot{y_2} + \beta \dot{y_2}.$$

u applies a force to the spring, and balancing that force with the spring force we get

$$F_k = u \Leftrightarrow k(y_1 - y_2) = u.$$

b

Writing the equations in Laplace form.

$$s^2 m y_2 + s\beta y_2 = u$$

$$k(y_1 - y_2) = u$$

We want to estimate $\theta^* = \begin{bmatrix} m \\ \beta \\ k \end{bmatrix}$. By writing

$$\phi = \frac{\begin{bmatrix} s^2 y_2 \\ s y_2 \\ y_1 - y_2 \end{bmatrix}}{\Lambda(s)}$$

where $\Lambda(s)$ is Hurwitz, we get

$$z = \theta^{*^{T}} \phi = \frac{s^{2} m y_{2} + s \beta y_{2}}{\Lambda(s)} + \frac{k(y_{1} - y_{2})}{\Lambda(s)} = \frac{u}{\Lambda(s)} + \frac{u}{\Lambda(s)} = \frac{2u}{\Lambda(s)}$$

So using $z,\,\phi,$ and θ as above, we have written the system in linear parametric form

Now we can apply any of the standard on-line estimators, for instance SPR-Lyapunov design with W(s) = 1.

Estimation model: $\hat{z} = \theta^T \phi$

Normalized estimation error: $\epsilon = \frac{z - \hat{z}}{m^2}$

Adaptive law: $\dot{\theta} = \Gamma \epsilon \phi$

Design parameters: $m^2 = 1 + n_s^2$ such that $\frac{\phi}{m} \in \mathcal{L}_{\infty}$, $\Lambda(s) = s^2 + \lambda_1 s + \lambda_2$ with $\lambda_1, \lambda_2 > 0$.