Basics of Machine Learning

SD 210 - P3 Lecture 2 - Linear classifiers

Florence d'Alché-Buc

Contact: florence.dalche@telecom-paristech.fr, 2A Filière SD, Télécom ParisTech,Université of Paris-Saclay, France

Table of contents

- 1. Introduction
- 2. Perceptron
- 3. Analyse discriminante linéaire
- 4. Algorithme des k-plus-proches voisins
- 5. Evaluation et sélection de modèles (à lire en plus)
- 6. References

Outline

Introduction

Perceptron

Analyse discriminante linéaire

Algorithme des k-plus-proches voisins

Evaluation et sélection de modèles (à lire en plus)

References

Statistical learning: a methodology

- Three main problems to be solved :
 - Representation problem: determine in which representation space the data will be encoded and determine which family of mathematical functions will be used
 - Optimization problem (focus of the course): formulate the learning problem as an optimization problem, develop an optimization algorithm
 - Evaluation problem: provide a performance estimate

Statistical learning for supervised classification

Two main family of approaches:

- 1. Discriminant approaches : just find a classifier which does not estimate the Bayes classifier
- 2. Generative probabilistic approaches that are built to model $h(x) = \hat{P}(Y=1|x)$ using $\hat{p}(x|Y=1)$, $\hat{p}(x|Y=-1)$ and prior probabilities.

Outline

Introduction

Perceptron

Analyse discriminante linéaire

Algorithme des k-plus-proches voisins

Evaluation et sélection de modèles (à lire en plus)

References

Classifieur linéaire

Définition

Supposons $\mathbf{x} \in \mathbb{R}^p$

$$f(\mathbf{x}) = \operatorname{signe}(h(\mathbf{x})) = \operatorname{signe}(\mathbf{w}^T \mathbf{x} + w_0)$$

L'équation : $\mathbf{w}^T \mathbf{x} + w_0 = 0$ définit un hyperplan dans l'espace euclidien \mathbb{R}^p

How to learn a linear classifier?

- Model: perceptron or formal neuron (Rosenblatt 1957, 1959)
- Learning algorithm: formerly, perceptron rule, then (stochastic) gradient descent algorithm for perceptron

A linear classifier: the formal neuron and perceptron

- First model proposed by McCullogh and Pitts (physiologists) in 1943 to model the activity of a neuron
- Input signals represented by a vector x is processed by a neuron whose weighted synapses are linked to the input
- The neuron computes a weighted sum of the components of the signal
- Rosenblatt proposed a learning rule in 1959

Le neurone

Neurone biologique

Neurone artificiel

Neuron network growth over 24 hours

In 2014, the group of Gabriel Popescu at Illinois U. visualized a growing net of stem cell neurons using spatial light interference microscopy (SLIM). Ref: http://light.ece.illinois.edu/wp-content/uploads/2014/03/Mir_SRep_2014.pdf
Video: https://youtu.be/KjKsU 4sOnE

Développement des réseaux de neurones chez l'enfant

Développement des réseaux de connections entre les neurones chez l'enfant.

Re: Museum de Toulouse http://www.museum.toulouse.fr/-/connecte-a-vie-notre-cerveau-le-meilleur-des-reseaux-2-3-

Formal neuron and perceptron

- $h_{perc}(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T \mathbf{x})$
- sign(a) = 1 if $a \ge 0$ and -1 otherwise

Données d'apprentissage:

- $S = \{(x_1, y_1), ..., (x_n, y_n)\}$
- $\mathbf{x}_i \in \mathbb{R}^{p+1}$: the 0^{th} component is fixed to 1.
- $y_i \in \{-1, +1\}$

Algorithme classique du perceptron

Algorithme (pseudo code)

- Continue = 1
- Fixer T nombre maximal d'itérations
- $w_0 = 0$
- k = 0
- ϵ << 1
- TANT QUE (continue $> \epsilon$) ou (nk < T) FAIRE
 - Pour i=1 à n
 - k = k + 1
 - Si $y_i \neq sign(\mathbf{w}^T\mathbf{x}_i)$, alors je corrige: $\mathbf{w}(k+1) = \mathbf{w}(k) + y_i.\mathbf{x}_i$
 - Sinon pas de correction
 - CONT = $\|\mathbf{w}(k+1) \mathbf{w}(k)\|$

Correction effectuée par le perceptron

Inteprétation en terme de "loss function":

$$\ell(y, \mathbf{w}^T x) = \max(0, -y \mathbf{w}^T \mathbf{x}))$$

Convergence de l'algorithme du perceptron

L'algorithme converge si les données sont exactement linéairement séparables.

Théorème de convergence

Supposons qu'il existe un paramètre \mathbf{w}^* tel que $\|\mathbf{w}^*\|=1$, et $\gamma>0$ tels que pour tout $i=1,\ldots n$:

$$y_i(\mathbf{x}_i^T\mathbf{w}^*) \geq \gamma$$

et qu'il existe R > 0: $\|\mathbf{x}_i\| \le R$,

Alors l'algorithme du perceptron converge en au plus $\frac{R^2}{\gamma^2}$ itérations.

Preuve 1/2

- $\mathbf{w}(0) = 0$
- Supposons que la k-ieme erreur est faite sur l'exemple d'indice t, nous avons:

$$\mathbf{w}(k+1)^{T}\mathbf{w}^{*} = (\mathbf{w}(k) + y_{t}\mathbf{x}_{t})^{T}\mathbf{w}^{*}$$

$$= \mathbf{w}(k)^{T}\mathbf{w}^{*} + y_{t}\mathbf{x}_{t}^{T}\mathbf{w}^{*}$$

$$\geq \mathbf{w}(k)^{T}\mathbf{w}^{*} + \gamma$$

Par récurrence sur $k: \mathbf{w}(k+1)^T \mathbf{w}^* \geq k \gamma$ (Par Cauchy-Schwartz: $\|\mathbf{w}(k+1)^T \mathbf{w}^*\| \leq \|\mathbf{w}(k+1)\| \|\mathbf{w}^*\| \leq \|\mathbf{w}(k+1)\|$) donc : $\|\mathbf{w}(k+1)\| \geq \|\mathbf{w}(k+1)^T \mathbf{w}^*\| \geq k \gamma$

Preuve 2/2

On dérive ensuite une majoration pour $\|\mathbf{w}(k+1)\|$:

$$\|\mathbf{w}(k+1)\|^{2} = \|\mathbf{w}(k) + y_{t}\mathbf{x}_{t}\|^{2}$$
$$= \|\mathbf{w}(k)\|^{2} + y_{t}^{2}\|\mathbf{x}_{t}\|^{2} + 2y_{t}\mathbf{x}_{t}^{T}\mathbf{w}(k)$$

le terme de correction $2y_t\mathbf{x}_t^T\mathbf{w}(k)$ est par définition négatif donc:

$$\|\mathbf{w}(k+1)\|^2 \le \|\mathbf{w}(k)\|^2 + R^2$$

Par récurrence sur k, on a :

$$\|\mathbf{w}(k+1)\|^2 \le kR^2$$

Au final, en prenant les deux inégalités:

on a :
$$k^2\gamma^2 \le \|w(k+1)\|^2 \le kR^2$$
 donc : $k \le \frac{R^2}{\gamma^2}$

Si k est borné par $\frac{R^2}{\gamma^2}$, cela veut dire qu'en au plus $\frac{R^2}{\gamma^2}$ itérations, on n'a plus de corrections à faire.

Limitations du perceptron

Non séparabilité linéaire:

- 1. Données presque "linéairement séparables": quelques "outliers" dans les données, qu'il vaut mieux éviter d'apprendre à classer : la règle du perceptron ne converge pas
- 2. Données séparables mais avec une frontière non linéaire : la règle du perceptron ne converge pas
- 3. NB : on cumule en général les deux difficultés

Limites d'un perceptron 1

Exemple 1 de données non séparables:

Outliers dans les données : mieux vaut éviter de les

Limites d'un perceptron 2

Exemple 2 : des données non séparables linéairement mais il existe une frontière non linéaire:

- Premier problème : XOR problem
- Un perceptron seul ne peut implémenter une fonction XOR, ni aucun des deux autres problèmes ci-dessus
- Solution :
 - Soit on rajoute une couche de neurones avant le neurone de sortie perceptron multi-couches (algorithme d'apprentissage par rétro-propagation du gradient), Werbos 1974, Le Cun 1985, Rumelhart et al. 1986.
 - Soit on transforme les données en les plongeant dans un espace où elles sont linéairement séparables (see Practical session)

Apprendre un perceptron(vue plus générale)

Remplacer la fonction signe par une sigmoide différentiable

•
$$sigm(x) = \frac{1}{1 + exp(-\frac{1}{2}x)}$$

- Définir une fonction de perte différentiable
 - $\ell_i(\mathbf{w}) = (y_i sigm(\mathbf{w}^T x_i))^2$
 - $L(\mathbf{w}) = \sum_{i} \ell_{i}(\mathbf{w})$

Apprendre un perceptron (vue plus générale)

Algorithme d'apprentissage du perceptron par gradient local stochastique

```
\begin{aligned} &\mathsf{STOP} = \mathsf{faux} \\ &\epsilon; \; \mathsf{nblter}; \; j = 0; \, t = 0 \\ &\mathsf{Initialiser} \; \mathbf{w}_0 \\ &\mathsf{Jusqu'à} \; \mathsf{ce} \; \mathsf{que} \; \mathsf{STOP} \; \mathsf{soit} \; \mathsf{vrai}   \end{aligned}
```

- 1. Pour j = 1 jusqu'à n:
 - Tirer uniformément un indice i parmi $\{1,\ldots,n\}$
 - $\mathbf{w}^{\mathsf{t}+1} = \mathbf{w}^{\mathsf{t}} \eta
 abla_{\mathsf{w}} \ell_{\mathsf{i}}(\mathsf{w})$
 - $t \rightarrow t+1$
- 2. STOP = $(L(||\mathbf{w}(t) \mathbf{w}(t-1)|| < \epsilon)$ et $(nblter \le nbMax)$

Perceptron

- Early stopping: arrêter avant de sur-apprendre (nblter petit)
- Eviter le sur-apprentissage : contrôler la norme du vecteur w pendant l'apprentissage
 - La fonction de perte devient : $L(\mathbf{w}) = \sum_{i} \ell_{i}(\mathbf{w}) + \lambda ||\mathbf{w}||^{2}$
 - La mise à jour locale devient : $\mathbf{w}^{t+1} = \mathbf{w}^t(1-2\lambda) \eta \nabla_{\mathbf{w}} \ell_i(\mathbf{w})$

Passer au non linéaire

- Définir $\phi: \mathcal{X} \to \mathcal{F}$ une fonction non linéaire de re-description (en anglais *feature map*)
- Empiler les couches de neurones, chaque couche de neurone étant vue comme une redescription des entrées

Réseau de neurones formels (perceptron multi-couches)

Outline

Introduction

Perceptron

Analyse discriminante linéaire

Algorithme des k-plus-proches voisins

Evaluation et sélection de modèles (à lire en plus)

References

Analyse Discriminante Linéaire (en anglais, LDA) : 2 classes

La plus simple des approches génératrices !

 $ICI: \mathcal{X} = \mathbb{R}^p$

LDA

- 1. p(x|Y=+1) and p(x|Y=-1), densités supposées gaussiennes de matrice de covariance égales
- 2. P(Y = +1) = 1 P(Y = -1) supposés connus

$$h_{LDA}(x)=1$$
 if $\log\left(rac{P(Y=+1|x)}{P(Y=-1|x)}
ight)\geq 0$, -1, sinon

Analyse discriminante linéaire : 2 classes

Question: quelle est la forme géométrique de la frontière de décision définie par le classifieur LDA ?

Notations et définitions

- $\mu_+ \in \mathbb{R}^p$, $\mu_- \in \mathbb{R}^p$
- Σ: matrice symétrique définie positive

i

$$p(x|Y=+1) = \frac{1}{2\pi^{p/2}|\Sigma|^{1/2}} \exp(-\frac{1}{2}(x-\mu_+)^T \Sigma^{-1}(x-\mu_+)) \quad (1)$$

•
$$P(Y = +1) = p_1$$

$$p(x|Y=-1) = \frac{1}{2\pi^{p/2}|\Sigma|^{1/2}} \exp(-\frac{1}{2}(x-\mu_{-})^{T}\Sigma^{-1}(x-\mu_{-}))$$
 (2)

•
$$P(Y=-1)=1-p_1$$

Réponse

Formule de Bayes:

$$P(Y=i|x) = \frac{p(x|Y=i)P(Y=i)}{p(x)}$$

Puis, on cherche à définir la frontière de décision induite par le classifieur LDA:

Analyse Discriminante Linéaire

$$\begin{split} \log\left(\frac{P(Y=+1|x)}{P(Y=-1|x)}\right) &= 0\\ \text{soit } \log\left(\frac{p(x|Y=1)P(Y=1)}{p(x|Y=-1)P(Y=-1)}\right) &= 0 \end{split}$$

$$\begin{split} \log(\frac{\rho_1}{1-\rho_1}) + \log(\frac{1}{(2\pi)^{\frac{\rho}{2}}|\Sigma|^{\frac{1}{2}}}) - \frac{1}{2}(x-\mu_+)^T \Sigma^{-1}(x-\mu_+) - \log(\frac{1}{(2\pi)^{\frac{\rho}{2}}|\Sigma|^{\frac{1}{2}}}) + \frac{1}{2}(x-\mu_-)^T \Sigma^{-1}(x-\mu_-) = 0 \\ \times^T \Sigma^{-1}(\mu_+ - \mu_-) + \log(\frac{\rho_1}{1-\rho_1}) - \frac{1}{2}(\mu_+ - \mu_-)^T \Sigma^{-1}(\mu_+ - \mu_-) = 0 \end{split}$$

Analyse Discriminante Linéaire

Le cas de deux classes aux matrices de covariances identiques

Estimation des paramètres (LDA)

Maximum de vraisemblance pour chaque sous-échantillon correspondant à une classe.

On se rappelle que la moyenne empirique (resp. la covariance empirique) est exactement l'estimateur de l'espérance par Maximum de vraisemblance.

Estimation des paramètres (LDA)

- Prendre les estimations empiriques définies à partir des données
- $S_+ = \{(x_i, y_i) \in S, \text{ s.t } y_i = 1\}$
- $S_- = \{(x_i, y_i) \in S, \text{ s.t } y_i = -1\}$

$$\hat{\mu_{+}} = \frac{1}{|S_{+}|} \sum_{x_{i} \in S_{+}} x_{i}$$

$$\hat{\mu_{-}} = \frac{1}{|S_{-}|} \sum_{x_{i} \in S_{-}} x_{i}$$

$$\hat{\Sigma} = \frac{1}{2} \left(\frac{1}{|S_{+}|} \sum_{x_{i} \in S_{+}} (x_{i} - \hat{\mu}_{+})(x_{i} - \hat{\mu}_{+})^{T} + \frac{1}{|S_{-}|} \sum_{x_{i} \in S_{-}} (x_{i} - \hat{\mu}_{-})(x_{i} - \hat{\mu}_{-})^{T} \right)$$

Calculs pour LDA

- 1. Transformer les données (sphere the data) selon la covariance commune diagonalisée:
 - $\widehat{\Sigma} = UDU^T$
 - $X^* = D^{-1/2}U^TX$
- 2. Les données de chaque classe ont pour covariance l'identité: simplification de la fonction f_{LDA} avec covariance = identité
- 3. Alors, pour prédire la classe d'un nouveau point, l'associer au "centre" de la classe la plus proche modulo l'effet des *a priori*.

Analyse Discriminante Quadratique

Cas de matrices de covariance différentes. Le terme quadratique en x reste dans l'équation.

Outline

Introduction

Perceptron

Analyse discriminante linéaire

Algorithme des k-plus-proches voisins

Evaluation et sélection de modèles (à lire en plus)

References

Deuxième exemple

Le classifieur des k-plus-proches voisins:

Régression par K-plus-proches voisins

K-PPV (en anglais K-Nearest neighbors: K-NN)

$$\hat{f}_{KNN}(x) = \frac{1}{L} \sum_{\ell=1}^{K} y_{(\ell)}$$

avec:

- Soit K un entier strictement positif.
- Soit d une métrique définie sur ×
- $S = \{(x_i, y_i), i = 1, ..., n\}$
- Pour une donnée x, on définit la permutation d'indices (\cdot) dans $\{1, \ldots, n\}$ telle que:
 - $d(x, x_{(1)}) \leq d(x, x_{(1)}) \ldots \leq d(x, x_{(n)})$
- $S_x^K = \{x_{(1)}, \dots, x_{(K)}\}$: K premiers voisins de x

Le paramètre de lissage K

Comment choisir K? K: trop petit : la fonction f est trop sensible aux données : large variance

 $\mathsf{K}:\mathsf{trop}\ \mathsf{large}:\mathsf{la}\ \mathsf{fonction}\ f\ \mathsf{devient}\ \mathsf{trop}\ \mathsf{peu}\ \mathsf{sensible}\ \mathsf{aux}\ \mathsf{donn\acute{e}es}:\mathsf{biais}$ important

Fig 2.2, 2.3 of HTF01

Book

of Hastie, Tibshirani and Friedman (The elements of statistical learning, Springer) Question: Tracer la frontière de décision lorsque K=50

Décomposition biais-variance

On suppose: $Y = f(X) + \epsilon$ avec ϵ centré et de variance σ_{ϵ}^2 . x est fixé.

$$\begin{split} \mathbb{E}_{S,Y}[(Y-\hat{f}(x))^2] &= \mathbb{E}_{S,Y}[Y^2+\hat{f}(x)-2Y\hat{f}(x)] \\ &= \mathbb{E}[Y^2] + \mathbb{E}_S[\hat{f}(x)^2] - 2\mathbb{E}_S[Y\hat{f}] \\ &= VarY + \mathbb{E}[Y]^2 + Va\hat{r}(x) + \mathbb{E}_S[\hat{f}]^2 - 2\mathbb{E}[f(x) + \epsilon]\mathbb{E}_S[\hat{f}(x)] \\ &= \sigma_{\epsilon}^2 + \mathbb{E}[f(x) + \epsilon]^2 + \mathbb{E}_S[\hat{f}]^2 - 2\mathbb{E}_S[f(x)]\mathbb{E}_S[\hat{f}(x)] + Va\hat{r}(x) \\ &= \sigma_{\epsilon}^2 + \mathbb{E}_S[\hat{f}(x) - f(x)]^2 + Va\hat{r}f(x) \\ &= \sigma_{\epsilon}^2 + \mathbb{B}iais^2 + variance \end{split}$$

Terme incompressible : bruit des données

Biais au carré: mesure à quel point \hat{f} est loin de la cible

Variance de $\hat{f}(x)$: mesure à quel point $\hat{f}(x)$ est sensible aux données

Dilemne Biais variance

Dilemne Biais variance et risque structurel

complexité de la famille de fonctions

Biais variance - Vision empirique

Soit M datasets S_1, \ldots, S_M de même taille n. Apprenons pour chacun d'entre eux, une fonction \hat{f} sous différentes contrainte de complexité (ici nombre degré de libertés n/K). On a tracé sur cette figure la courbe des erreurs en apprentissage (bleue) et des erreurs en test (rouge) pour chacune

des fonctions construites:

Book of Hastie, Tibshirani and Friedman (The elements of statistical learning, Springer)

Décomposition biais-variance des k-plus-proches voisins

Posons x_0 . L'aléa vient de l'échantillon utilisé pour apprendre \hat{f} et de Y. On peut montrer que:

$$E_{S,Y}[(Y - \hat{f}(x_0))^2] = \sigma_{\epsilon}^2 + (f(x_0) - \frac{1}{K} \sum_{\ell=1}^K f(x_{(\ell)})^2 + \frac{\sigma_{\epsilon}}{K})^2$$

K contrôle le terme de variance : plus grande est la valeur de K, plus la variance décroit; mais K contrôle aussi le biais, plus petite est la valeur de K, plus petit est le biais : nous sommes en plein *dilemne biais-variance*.

Erreur de test en fonction de $\frac{n}{K}$

Book of Hastie,

Tibshirani and Friedman (The elements of statistical learning, Springer)

Questions

- Quelle est la force de cette méthode ?
- Quelle est sa faiblesse ?

Outline

Introduction

Perceptron

Analyse discriminante linéaire

Algorithme des k-plus-proches voisins

Evaluation et sélection de modèles (à lire en plus)

References

- Définir
 - l'espace de représentation des données

- Définir
 - l'espace de représentation des données
 - la classe des fonctions de classification binaire considérées

- Définir
 - l'espace de représentation des données
 - la classe des fonctions de classification binaire considérées
 - la fonction de coût à minimiser pour obtenir le meilleur classifieur dans cette classe

- Définir
 - l'espace de représentation des données
 - la classe des fonctions de classification binaire considérées
 - la fonction de coût à minimiser pour obtenir le meilleur classifieur dans cette classe
 - l'algorithme de minimisation de cette fonction de coût

- Définir
 - l'espace de représentation des données
 - la classe des fonctions de classification binaire considérées
 - la fonction de coût à minimiser pour obtenir le meilleur classifieur dans cette classe
 - l'algorithme de minimisation de cette fonction de coût
 - une méthode de sélection de modèle pour définir les hyperparamètres

- Définir
 - l'espace de représentation des données
 - la classe des fonctions de classification binaire considérées
 - la fonction de coût à minimiser pour obtenir le meilleur classifieur dans cette classe
 - l'algorithme de minimisation de cette fonction de coût
 - une méthode de sélection de modèle pour définir les hyperparamètres
 - une méthode d'évaluation des performances

Sélection ou évaluation de modèle ?

- Estimer les performances de différents modèles afin de choisir le meilleur : sélection de modèle
- Ayant choisi un modèle, estimer son erreur en généralisation (le vrai risque) : évaluation de modèle

Aujourd'hui, nous nous concentrons sur ces deux questions.

Premier exemple

Un classifier linéaire dans le plan:

$$h(x) = \operatorname{signe}(\beta_1 x_1 + \beta_2 x_2 + \beta_0)$$
(3)

Apprendre h_{β} en minimisant: $\sum_{i=1}^{n} L(y_i, h(x_i)) + \lambda \|\beta\|_2^2$ OU $\sum_{i=1}^{n} L(y_i, h(x_i)) + \lambda \|\beta\|_1$ Quelle valeur de λ choisir ?

Premier exemple

- 1. Quelle valeur de λ choisir ? Algorithme de sélection $\,\tilde{\lambda}\,$
- 2. Une fois que $\tilde{\lambda}$ est choisi, j'applique mon algorithme d'apprentissage et j'obtiens $\hat{h}_{\tilde{\lambda}}$: comment évaluer ses performances ?

Deuxième exemple

Le classifieur des k-plus-proches voisins: classifier paresseux : pas besoin d'algorithme d'apprentissage ! J'ai besoin des données dites d'apprentissage, d'une métrique et de la valeur de k.

- Comment choisir la valeur de K ?
- Ayant choisi \tilde{K} , comment estimer l'erreur en généralisation de ce K-NN ?

Validation croisée 1

Nota Bene : \mathcal{S} ensemble de données dédié à la construction du modèle En aucun cas, l'ensemble de TEST !

Diviser les données \mathcal{S} , réservés à la validation, en B parties de même taille et disjointes $S_{b=1},\ldots,D_{b=B}$ avec $|D_b|=n/B$. Les données sont réparties par tirage uniforme sans remise.

Validation croisée

- 1. Pour $b \in \{1, ..., B\}$:
 - Entrainer le modèle issu de paramètre λ sur toutes les données sauf D_b pour obtenir un estimateur $\hat{h}_{\lambda,n}^b$
 - Calculer sur les données restantes D_b (test) le risque empirique

$$R_{n,b}(\lambda) = \frac{1}{n/B} \sum_{j \in D_b} L(x_j, y_j, \hat{h}_{\lambda,n}^b)$$

2. Calculer le risque empirique moyen de λ (dit 'de cross-validation')

$$R_{n,CV}^{B}(\lambda) = \frac{1}{B} \sum_{b=1}^{k} R_{n,b}(\lambda)$$

Trouver λ

Répéter cette procédure sur tous les $\lambda \in \Lambda$ considérés (ou sur une grille sur λ est un paramètre continu) et choisir

$$\hat{\lambda}_{n,B} = \arg\min_{\lambda \in \Lambda} R_{n,CV}(\lambda). \tag{4}$$

Sélection Erreur d'apprentissage / Erreur de test

On sélectionne sur \mathcal{S}_{val} On apprend sur \mathcal{S}_{app} en utilisant $\tilde{\lambda}$ On teste sur \mathcal{S}_{test}

 ${\rm Err}_{CV,val}$ nous dit à quel type d'erreur en généralisation nous attendre en apprenant sur un ensemble de taille $n_{val}-n_{val}/B.$ ${\rm Err}_{\mathcal{S}_{app}}$ nous dit à quel point le classifieur a bien réussi à approcher les données d'apprentissage ${\rm Err}_{\mathcal{S}_{test}}$ nous dit à quel point le classifieur a bien réussi à approcher les données (nouvelles) de test

Sélection Erreur d'apprentissage / Erreur de test

Dans de nombreux articles : $\mathcal{S}_{\textit{val}} = \mathcal{S}_{\textit{app}}$

On sélectionne le modèle (la valeur de λ) sur \mathcal{S}_{app} par validation croisée On apprend sur \mathcal{S}_{app} en utilisant $\tilde{\lambda}$ obtenu de la validation croisée On teste sur \mathcal{S}_{test}

 ${\rm Err}_{CV,val}$ nous dit à quel type d'erreur en généralisation nous attendre en apprenant sur un ensemble de taille $n_{val}-n_{val}/B$. ${\rm Err}_{\mathcal{S}_{app}}$ nous dit à quel point le classifieur a bien réussi à approcher les données d'apprentissage ${\rm Err}_{\mathcal{S}_{test}}$ nous dit à quel point le classifieur a bien réussi à approcher les données (nouvelles) de test

Outline

Introduction

Perceptron

Analyse discriminante linéaire

Algorithme des k-plus-proches voisins

Evaluation et sélection de modèles (à lire en plus)

References

References

- Formal neuron / Perceptron
 - Léon Bottou: http: //cilvr.cs.nyu.edu/diglib/lsml/bottou-sgd-tricks-2012.pdf
- Performance evaluation / model selection
 - Chapter 4 and 7 of Elements of statistical learning, Hastie, Tlbshirani and Friedman.
 - A.-L. Boulesteix, Ten rules for reducing overoptimistic reporting in methodological computational research, http://journals.plos.org/ploscompbiol/article/file?id=10. 1371/journal.pcbi.1004191&type=printable