Category-Theoretic Reconstruction of Schemes from Categories of Reduced Schemes

Oberwolfach Workshop - Homotopic and Geometric Galois Theory 2021

Tomoki Yuji, RIMS Kyoto University

2021年3月8日

Let **U** and **V** be Grothendieck universes such that $\mathbf{U} \in \mathbf{V}$. Let S be a **U**-small scheme. In the following, we shall use the term "scheme" to refer to a **U**-small scheme. Let ϕ/S be a (**V**-small) set of properties of S-schemes. We shall write

$$Sch_{\phi/S}$$

for the full subcategory of the (V-small) category of S-schemes $\mathsf{Sch}_{/S}$ determined by the objects $X \in \mathsf{Sch}_{\blacklozenge/S}$ that satisfy every property of \blacklozenge/S . In [YJ], we shall mainly be concerned with the properties

of S-schemes, i.e., "reduced", "quasi-compact over S", "quasi-separated over S", and "separated over S". If $\phi/S =$ \emptyset , then we simply write $Sch_{/S}$ for $Sch_{\phi/S}$. In [YJ], we consider the problem of reconstructing the scheme S from the intrinsic structure of the abstract category $Sch_{\phi/S}$. In [Mzk04], Mochizuki gave a solution to this problem in the case where S is locally Noetherian, and ϕ/S = "locally of finite type over S". In [vDdB19], van Dobben de Bruyn gave a solution to this problem in the case where S is arbitrary scheme, and $\phi/S = \emptyset$. The techniques applied in [vDdB19] make essential use of the existence of non-reduced schemes in $Sch_{/S}$. By contrast, in [YJ], we focus on the problem of reconstructing the scheme S from categories of S-schemes that only contain reduced Sschemes, hence rely on techniques that differ essentially from the techniques applied in [vDdB19].

If X,Y are objects of a (**V**-small) category \mathcal{C} , then we shall write $\mathrm{Isom}(X,Y)$ for the set of isomorphisms from X to Y. By a slight abuse of notation, we shall also regard this set as a discrete category. If \mathcal{C},\mathcal{D} are (**V**-small) categories, then we shall write $\mathrm{Isom}(\mathcal{C},\mathcal{D})$ for the (**V**-small) category of equivalences $\mathcal{C} \xrightarrow{\sim} \mathcal{D}$ and natural isomorphisms. If \mathcal{C} is a (**V**-small) category, and X is an object of \mathcal{C} , then we shall write $\mathcal{C}_{/X}$ for the slice category of objects and morphisms equipped with a structure morphism to X. If $f: X \to Y$ is a morphism in a (**V**-small) category \mathcal{C} which is closed under fiber products, then we shall write $f^*: \mathcal{C}_{/Y} \to \mathcal{C}_{/X}$ for the functor induced by the operation of base-change, via f, from X to Y. The main result in [YJ] is the following:

Main Theorem.

- Let S be a normal locally Noetherian (U-small) schemes,
 ♦ ⊂ {red, qcpt, qsep, sep} a [possibly empty] subset. Then the following may be constructed category-theoretically from Sch_{♦/S} by means of algorithms that are independent of the choice of the subset ♦ ⊂ {red, qcpt, qsep, sep}:
 - (a) for each object T of Sch_{♦/S}, a (V-small) scheme
 T_V and an isomorphism of (V-small) schemes φ_T:
 T → T_V (where we note that a U-small scheme is, in particular, V-small), and
 - (b) for each morphism $f: T_1 \to T_2$ of $\mathsf{Sch}_{\blacklozenge/S}$, a morphism of (**V**-small) schemes $f_{\mathbf{V}}: T_{1,\mathbf{V}} \to T_{2,\mathbf{V}}$ such that $\varphi_{T_2} \circ f = f_{\mathbf{V}} \circ \varphi_{T_1}$.
- 2. Let S,T be normal locally Noetherian (U-small) schemes, $\blacklozenge, \lozenge \subset \{\text{red}, \text{qcpt}, \text{qsep}, \text{sep}\}\ [possibly\ empty]$ subsets such that $\{\text{qsep}, \text{sep}\} \not\subset \blacklozenge, \{\text{qsep}, \text{sep}\} \not\subset \lozenge$. If the (V-small) categories $\mathsf{Sch}_{\blacklozenge/S}$, $\mathsf{Sch}_{\lozenge/T}$ are equivalent, then $\blacklozenge = \lozenge$.
- 3. Let S,T be (U-small) disjoint unions of quasiseparated normal integral (U-small) schemes, ♦ ⊂ {red, qcpt, qsep, sep} a [possibly empty] subset. Then the natural functor

$$\operatorname{Isom}(S,T) \to \operatorname{\mathbf{Isom}}(\operatorname{\mathsf{Sch}}_{\blacklozenge/T},\operatorname{\mathsf{Sch}}_{\blacklozenge/S})$$
$$f \mapsto f^*$$

is an equivalence of (V-small) categories.

References

- [Mzk04] S. Mochizuki, Categorical representation of locally Noetherian log schemes. Adv. Math. 188 (2004), no.1, 222–246.
- [vDdB19] R. van Dobben de Bruyn, Automorphisms of Categories of Schemes. Preprint, arXiv:1906.00921.
- [YJ] T. Yuji, Category-Theoretic Reconstruction of Schemes from Categories of Reduced Schemes. Preprint.