UK road traffic prediction

Elizabeta Budini Student ID: 19147099

Module: Advance Data Science - CMP7161

Birmingham City University Date: 12/05/2020

Table of contents:

- 1. Abstract
- 2. Dataset description
- 3. Problem to be addressed
- 4. Pre-processing, cleaning, visualization
- 5. Models description
- 6. Results
- 7. Conclusion and future work

1. Abstract

This study will analyse a traffic dataset from the UK government to predict
the level of traffic on roads. The control of traffic has many benefits both for
the government and for citizens: it can forecast traffic jams and help on
building solutions against pollution.

2. Dataset description

- The dataset is been published by the Department for Transport (UK) and can be found here: https://data.gov.uk/dataset/208c0e7b-353f-4e2d-8b7a-1a7118467acc/gb-road-traffic-counts
- It contains traffic level (in vehicle miles travelled*) for different vehicle types, roads and regions from 1993 to 2018.
- 14 columns and 1580 observations

*VMT: Combination of number of vehicles in a road and travelled distance

3. Problem to be addressed

 Find a suitable ML model to predict traffic volume for all vehicle types (in billion vehicle miles) based on different features such as year, region, road category, link length, etc.

 Different techniques will be used (Linear regression, SVR, Random forest regressor)

Index	year	region_id	name	ons_code	road_category_id	rtal_link_length_kr	al_link_length_mi	pedal_cycles	/heeled_motor_ve	cars_and_taxis	uses_and_coache
1250	2014	1	South West	E12000009	2	0	Θ	0	0	Θ	0
1256	2014	2	East Midlands	E12000004	2	Θ	Θ	0	0	Θ	0
1262	2014	3	Scotland	S92000003	2	Θ	Θ	0	0	Θ	0
1268	2014	4	Wales	W92000004	2	Θ	Θ	0	0	Θ	0
1280	2014	6	London	E12000007	2	Θ	Θ	0	0	Θ	0
1281	2014	6	London	E12000007	3	Θ	θ	0	Θ	θ	0
1286	2014	7	East of England	E12000006	2	Θ	θ	0	Θ	θ	0
1316	2015	1	South West	E12000009	2	Θ	θ	0	0	Θ	0
1322	2015	2	East Midlands	E12000004	2	Θ	Θ	0	0	Θ	0
1328	2015	3	Scotland	S92000003	2	0	Θ	0	0	Θ	0
1334	2015	4	Wales	W92000004	2	0	Θ	0	0	Θ	0
1346	2015	6	London	E12000007	2	0	Θ	0	0	Θ	0
1347	2015	6	London	E12000007	3	0	Θ	0	0	Θ	0
1252	2015	7	East of	F12000006	2	0	О	О	0	0	0

4. Pre-processing, cleaning, visualization

- There are no missing values but some road have 0 as length value
- Region name is a categorical feature that should be encoded, but it has the same information as region id column.

4. Pre-processing, cleaning, visualization

- Summarize data statistical info using describe()
- Visualize data to analyse the distribution of the features and relationships between them

5. Models description (Linear Regression)

- Approach 1: apply Linear Regression with linearly correlated features to predict all_vehicles
- Approach 2: apply Linear Regression with all features to predict all_vehicles – use RANSAC

Correlation with target variable							
all_motor_vehicles	1.000000						
cars_and_taxis	0.997343						
vans	0.967801						
<pre>two_wheeled_motor_vehicles</pre>	0.762308						
buses_and_coaches	0.742106						
lorries	0.549614						
pedal_cycles	0.527216						
total_link_length_miles	0.418928						
total_link_length_km	0.418928						
<pre>road_category_id</pre>	0.199224						
year	0.083343						
region_id	-0.059570						

Connolation with tanget vanishle

5. Models description (Linear Regression)

 The r2 score when considering as input linearly correlated variables (different vehicle types) is higher (99%) than the same approach with other features (20%)

5. Models description (Random Forest regression)

- Approach 1: Random forest with non-linear input features (test-train and cross-validation) and model tuning
- Approach 2: Create synthetic features to improve accuracy

HI Tramesynthetic - Datarrame — — — — — —									\sim
Index	year	road_category_id	total_link_length_miles	all_motor_vehicles	SMA_5	min	max	std	*
0	1993	1	1950.64	41.5724	45.6714	41.5724	50.4692	3.6203	
1	1994	1	1969.69	43.145	45.6714	41.5724	50.4692	3.6203	
2	1995	1	1986.59	45.0765	45.6714	41.5724	50.4692	3.6203	
3	1996	1	2021.21	48.094	45.6714	41.5724	50.4692	3.6203	
4	1997	1	2071.12	50.4692	45.6714	41.5724	50.4692	3.6203	
5	1998	1	2098.01	52.7053	47.898	43.145	52.7053	3.88302	
6	1999	1	2115.44	54.0118	50.0714	45.0765	54.0118	3.58752	

5. Models description (Random Forest regression)

Use GridSearchCV, RandomizedGridSearch and Bayesian optimization to tune model hyperparameters

X

Create synthetic features to improve accuracy

5. Models description (Random forest Regression)

- The r2 score when considering model tuning is higher.
- Overall random forest has a high accuracy score with non-linear related features (99%)

5. Models description (Support Vector Regression)

 Approach 1: apply SVR with GridSearchCV tuning

5. Models description (Support Vector Regression)

- GridSearchCV tuning makes SVR model too complex, to reduce execution time only one hyperparameter is tuned
- SVR accuracy score is around 67%

models - DataFrame

Index	Model name	Accuracy	Error	Execution time
0	Random forest	0.9977	0.0969	8.6893
1	SVR	0.6721	1.3146	2.5670
2	Linear regression	0.1807	2.6557	0.0050

6. Results

- Mean absolute error, r2 score and execution time are compared to evaluate the best approach for each model proposed
- Linear regression is very efficient but not the best to model non-linear features.
- Random forest with model tuning achieves an excellent score in modelling non-linear features with a good execution time.

7. Conclusion and future work

- By comparing all the approaches analysed in this study, Random forest regression is recommended for modelling traffic data.
- Future work could include a Bayesian optimization for random forest instead of GridSearchCV, to better the performance in terms of execution time and control the model complexity.