Análise Teórica de Máquinas de Vetores Suporte

Aluna: Paula Cristina Rohr Ertel

Orientador: Luiz Rafael dos Santos

Universidade Federal de Santa Catarina - Campus Blumenau

13 de novembro de 2019

1 Introdução

A Aprendizagem de Máquina (do inglês *Machine Learning*) é o estudo do uso de técnicas computacionais para automaticamente detectar padrões em dados e usá-los para fazer predições e tomar decisões. De acordo com Krulikovski (2017), existem dois tipos de Aprendizagem de Máquina, a aprendizagem supervisionada, em que a partir de um conjunto de dados de entrada e saída a máquina constrói um modelo que deduz a saída para novas entradas, e a não supervisionada, na qual a máquina cria sua própria solução.

O objetivo deste trabalho será desenvolver um estudo teórico de uma técnica supervisionada: as Máquinas de Vetores Suporte (SVM, do inglês Support Vector Machine). Segundo Krulikovski (2017), essa técnica foi desenvolvida por Vladimir Vapnik, Bernhard Boser, Isabelle Guyon e Corrina Cortes, com base na Teoria de Aprendizagem Estatística. Em muitas situações queremos que o nosso algoritmo de aprendizado de máquina preveja uma dentre várias saídas possíveis. Um exemplo, como apresentado por Deisenroth, Faisal e Ong (2019), é o telescópio, o qual identifica se um objeto no céu noturno é uma galáxia, uma estrela ou um planeta . Assim, o objetivo específico será estudar a SVM para o problema de classificação, abordando inicialmente o problema de classificação binária, isto é, quando o conjunto de valores possíveis que a classe de saída pode atingir é binário. Para tanto, neste trabalho denotaremos o conjunto de saída por $\{1, -1\}$. Entretanto, quaisquer dois valores distintos poderiam ser utilizados, como $\{0, 1\}$, $\{True, False\}$, $\{red, blue\}$. Algumas aplicações de SVM em problemas

práticos, citadas por Krulikovski (2017), são o reconhecimento facial, leitura de placas automotivas e detecção de spam.

Palavras-Chave: Aprendizado de Máquina, Máquinas de Vetores Suporte, Métodos de Otimização.

2 Máquinas de Vetores Suporte - Margem Rígida

Considere um conjunto de dados, pertencentes a duas classes distintas, conforme Figura 1 a seguir.

Figura 1: Dados lineares, com margem flexível e não lineares. Fonte: Krulikovski (2017)

Observe que na Figura 1a os dados podem ser classificados corretamente através de uma reta. Já na Figura 1b é possível encontrar uma reta que separa alguns poucos dados, porém incorretamente. E na Figura 1c não é possível classificar os dados como nos casos anteriores. Nestes exemplos temos representados os três casos de SVM: o linear com margem rígida, o linear com margem flexível e o não linear, respectivamente.

Assim, a modelagem do problema de classificação, utilizando a técnica de SVM, consiste em encontrar um hiperplano ótimo que melhor separe os dados de entrada x^i em duas saídas y_i através de uma função de decisão. Matematicamente, temos um problema de programação quadrática, convexa e com restrições, que pode ser formulado como

$$\min_{w,b} \quad f(w,b)$$
s.a.
$$g(w,b) \le 0,$$

com $w \in \mathbb{R}^n$ e $b \in \mathbb{R}$.

Para formular matematicamente o problema de classificação, considere os conjuntos de entrada $\mathcal{X} = \{x^1, \dots, x^m\} \subset \mathbb{R}^n$ e de treinamento $\mathcal{Y} = \{(x^1, y_1), \dots, (x^m, y_m) \mid x^i \in \mathcal{X} \ e \ y_i \in \{-1, 1\}\}$, com a partição

$$\mathcal{X}^+ = \{ x^i \in \mathcal{X} \mid y_i = 1 \} \quad e \quad \mathcal{X}^- = \{ x^i \in \mathcal{X} \mid y_i = -1 \},$$

dos conjuntos formados pelos atributos pertencentes às classes positiva e negativa, respectivamente.

Definição 1. Considere um vetor não nulo $w \in \mathbb{R}^n$ e um escalar $b \in \mathbb{R}$. Um hiperplano com vetor normal w e constante b é um conjunto da forma $\mathcal{H}(w,b) = \{x \in \mathbb{R}^n \mid w^Tx+b=0\}$.

O hiperplano $\mathcal{H}(w,b)$ divide o espaço \mathbb{R}^n em dois semiespaços, dados por

$$S^+ = \{ x \in \mathbb{R}^n \mid w^T x + b \ge 0 \} \quad e \quad S^- = \{ x \in \mathbb{R}^n \mid w^T x + b \le 0 \}.$$

Considere dois conjuntos de dados de treinamento representados no \mathbb{R}^2 como na Figura 2a, em que os pontos em azul representam a classe positiva, e os pontos em vermelho a classe negativa. Perceba na Figura 2b que todos os hiperplanos representados separam corretamente os dados, porém nosso objetivo será encontrar o hiperplano que melhor separa esses dados, o qual está representado na Figura 3a pela cor violeta. Logo, desejamos encontrar o hiperplano que possibilita a maior faixa que não contém nenhum dado, pois caso a faixa seja muito estreita pequenas perturbações no hiperplano ou no conjunto de dados podem resultar uma classificação incorreta.

Definição 2. Dizemos que os conjuntos $\mathcal{X}^+, \mathcal{X}^- \subset \mathbb{R}^n$ são linearmente separáveis quando existem $w \in \mathbb{R}^n$ e $b \in \mathbb{R}$ tais que $w^Tx + b > 0$ para todo $x \in \mathcal{X}^+$ e $w^Tx + b < 0$ para todo $x \in \mathcal{X}^-$. O hiperplano $\mathcal{H}(w,b)$ é chamado hiperplano separador dos conjuntos \mathcal{X}^+ e \mathcal{X}^- .

Lema 1. Suponha que os conjuntos $\mathcal{X}^+, \mathcal{X}^- \subset \mathbb{R}^n$ são finitos e linearmente separáveis, com hiperplano separador $\mathcal{H}(w,b)$. Então, existem $\overline{w} \in \mathbb{R}^n$ e $\overline{b} \in \mathbb{R}$ tais que $\mathcal{H}(w,b)$ pode ser descrito por

$$\bar{w}^T x + \bar{b} = 0.$$

Figura 2: Conjunto de Dados e Hiperplanos. Fonte: Krulikovski (2017)

satisfazendo

$$\bar{w}^T x + \bar{b} \ge 1$$
, para todo $x \in \mathcal{X}^+$, (1)

$$\bar{w}^T x + \bar{b} \le -1$$
, para todo $x \in \mathcal{X}^-$. (2)

Demonstração. Pela Definição 2, temos que existem $w \in \mathbb{R}^n$ e $b \in \mathbb{R}$ tais que

$$w^T x + b > 0$$
, para todo $x \in \mathcal{X}^+$, $w^T x + b < 0$, para todo $x \in \mathcal{X}^-$.

Como $\mathcal{X}^+ \cup \mathcal{X}^-$ é um conjunto finito, podemos definir

$$\gamma \coloneqq \min_{x \in \mathcal{X}^+ \cup \mathcal{X}^-} |w^T x + b| > 0.$$

Portanto, para todo $x \in \mathcal{X}^+ \cup \mathcal{X}^-$, $\gamma \leq |w^T x + b|$ e consequentemente, $\frac{|w^T x + b|}{\gamma} \geq 1$. Assim, para $x \in \mathcal{X}^+$ temos

$$\frac{w^T x + b}{\gamma} = \frac{|w^T x + b|}{\gamma} \ge 1,$$

e para $x \in \mathcal{X}^-$, temos

$$-\frac{w^Tx+b}{\gamma} = \frac{|w^Tx+b|}{\gamma} \leq 1.$$

Figura 3: Hiperplano Ótimo. Fonte: Krulikovski (2017)

Logo, definindo
$$\bar{w} := \frac{w}{\gamma} e \bar{b} := \frac{b}{\gamma}$$
, obtemos as desigualdades (1) e (2).

A partir deste Lema temos que $\mathcal{H}^+ := \{x \in \mathbb{R}^n \mid w^T x + b \geq 1\}$ e $\mathcal{H}^- := \{x \in \mathbb{R}^n \mid w^T x + b \leq -1\}$ são os hiperplanos que definem a faixa que separa os conjuntos \mathcal{X}^+ e \mathcal{X}^- .

Proposição 1. A projeção ortogonal de um vetor $\bar{x} \in \mathbb{R}^n$ sobre um hiperplano afim $\mathcal{H}(w,b)$, é dada por

$$\operatorname{proj}_{\mathcal{H}}(\bar{x}) = \bar{x} - \frac{w^T \bar{x} + b}{w^T w} w.$$

Além disso, a $\operatorname{proj}_{\mathcal{H}}(\bar{x})$ satisfaz a menor distância.

Demonstração. Sejam $w \in \mathbb{R}^n$ o vetor normal ao hiperplano $\mathcal{H}(w,b)$, $\bar{z} \in \mathcal{H}(w,b)$ e x^* a projeção ortogonal de \bar{x} sobre $\mathcal{H}(w,b)$. Assim, temos que

$$w^T(x^* - \bar{z}) = 0 \tag{3}$$

e

$$\bar{x} - x^* = \lambda w \Longrightarrow x^* = \bar{x} - \lambda w.$$
 (4)

Substituindo (4) em (3), obtemos

$$0 = w^{T}(\bar{x} - \lambda w - \bar{z})$$
$$= w^{T}\bar{x} - \lambda w^{T}w - w^{T}\bar{z}.$$

Resolvendo para λ , temos

$$\lambda = \frac{w^T \bar{x} - w^T \bar{z}}{w^T w} = \frac{w^T \bar{x} - b}{w^T w}.$$

Portanto,

$$x^* = \bar{x} - \frac{w^T \bar{x} - b}{w^T w} w.$$

Ademais, vamos provar que

$$\|\bar{x} - x^*\|_2 \le \|\bar{x} - x\|_2$$

para todo $x \in \mathcal{H}(w, b)$.

De fato, tomando $u = \bar{x} - x^*$ e $v = x^* - x$ observe que

$$u^{T}v = (\bar{x} - (\bar{x} + \lambda w)^{T}(x^{*} - x))$$

$$= -\lambda w^{T}(x^{*} - x)$$

$$= \lambda(-w^{T}x^{*} + w^{T}x)$$

$$= \lambda(b - b)$$

$$= 0.$$

Assim, temos

$$||u+v||^2 = ||u||^2 + 2u^Tv + ||v||^2 = ||u||^2 + ||v||^2,$$

ou seja,

$$\|\bar{x} - x\|^2 = \|\bar{x} - x^*\|^2 + \|x^* - x\|^2.$$

Utilizando a Proposição 1 podemos demonstrar o Lema seguinte, o qual estabelece a largura da faixa entre os hiperplanos separadores \mathcal{H}^+ e \mathcal{H}^- .

Lema 2. A distância entre os hiperplanos \mathcal{H}^+ e \mathcal{H}^- é dada por $d = \frac{2}{\|w\|}$.

Demonstração. Considere um ponto arbitrário $\bar{x} \in \mathcal{H}^+$ e seja $x^* \in \mathcal{H}^-$ a projeção ortogonal de \bar{x} sobre \mathcal{H}^- . Usando a Proposição 1, temos

$$x^* = \text{proj}_{\mathcal{H}}(\bar{x}) = \bar{x} - \frac{w^T \bar{x} + b + 1}{\|w\|^2} w.$$

Como a proj $_{\mathcal{H}}(\bar{x})$ satisfaz a menor distância e \mathcal{H}^+ é paralelo a \mathcal{H}^- , temos que

$$d(\mathcal{H}^+, \mathcal{H}^-) = \|\bar{x} - x^*\| = \frac{|w^T \bar{x} + b + 1|}{\|w\|^2} \|w\| = \frac{|w^T \bar{x} + b + 1|}{\|w\|},$$

e como $\bar{x} \in \mathcal{H}^+$, $w^T \bar{x} + b = 1$ implica

$$w^T \bar{x} = 1 - b,$$

concluindo que

$$d(\mathcal{H}^+, \mathcal{H}^-) = \frac{2}{\|w\|}.$$

3 Formulação do Problema de Classificação

Portanto, encontrar o hiperplano que melhor separa os dados implica maximizar a largura da margem, isto é, maximizar $d=\frac{2}{\|w\|}$. Isso equivale a minimizar seu inverso $\frac{1}{2}\|w\|$ ou ainda minimizar $\frac{1}{2}\|w\|^2$. De fato, seja $w^*=\arg\max\frac{2}{\|w\|}$. Então, para todo $w\in\mathbb{R}^n$,

$$\frac{2}{\|w^*\|} \ge \frac{2}{\|w\|} \Longrightarrow \|w\| \ge \|w^*\|,$$

 $\log_0, w^* = \arg\min \|w\|.$

Além disso, como ||.|| é não negativa, temos que

$$||w|| \ge ||w^*|| \Longrightarrow ||w||^2 \ge ||w^*||^2 \Longrightarrow \frac{1}{2} ||w||^2 \ge \frac{1}{2} ||w^*||^2.$$

Portanto,

$$\arg\max\frac{2}{\|w\|} = \arg\min\frac{1}{2}\|w\|^2.$$

Ademais, como a faixa deve separar os dados das duas classes, as seguintes restrições

devem ser satisfeitas

$$w^T x + b \ge 1$$
, para todo $x \in \mathcal{X}^+$, $w^T x + b \le -1$, para todo $x \in \mathcal{X}^-$.

Considerando que $\mathcal{X}^+ = \{x^i \in \mathcal{X} \mid y_i = 1\}$ e $\mathcal{X}^- = \{x^i \in \mathcal{X} \mid y_i = -1\}$, podemos reescrever as restrições acima de uma forma mais compacta

$$y_i(w^T x^i + b) \ge 1, \quad i = 1, \dots, m.$$

Portanto, o problema de encontrar o hiperplano ótimo pode ser formulado da seguinte maneira

$$\min_{w,b} \quad \frac{1}{2} ||w||^2
\text{s.a.} \quad y_i(w^T x^i + b) \ge 1, \quad i = 1, \dots, m,$$
(5)

onde $w \in \mathbb{R}^n$ e $b \in \mathbb{R}$.

O problema (5) possui função objetivo

$$f(w,b) = \frac{1}{2} ||w||^2$$

convexa, e restrições lineares

$$g_i(w, b) = 1 - y_i(w^T x^i + b) \le 0, \quad i = 1, \dots, m,$$

em que a função $g: \mathbb{R}^{n+1} \to \mathbb{R}^m$ pode ser escrita da forma

$$g(w,b) = e - (YX^Tw + by) \le 0,$$

em que $e = \text{ones}(m), Y = \text{diag}(y_i), X = \text{diag}(x^i), y^T = [y_i \dots y_m], w \in \mathbb{R}^n \in b \in \mathbb{R}.$

4 Projetos Futuros

Para resolver o problema proposto é preciso estudar a teoria de otimização com restrições e a teoria de dualidade, em particular a relacionada ao problema de programação quadrática com restrições lineares. Até o momento já foi realizada uma revisão dos principais conceitos da Álgebra Linear e do Cálculo de várias variáveis relacionados com o assunto, assim como, o estudo teórico das condições de otimalidade para problemas

de otimização restrita. Portanto, para dar continuidade ao projeto pretende-se avançar o estudo para os problemas de otimização irrestrita, e sobre as teorias de dualidade e programação quadrática. Por fim, pretendemos realizar uma pequena implementação computacional da técnica de Máquinas de Vetores Suporte a um problema de classificação. Para tanto, utilizaremos a linguagem de programação Julia, sobre a qual também será preciso estudar e se aperfeiçoar.

Referências

DEISENROTH, Peter; FAISAL, A. Aldo; ONG, Cheng Soon. Mathematics for Machine Learning. Boston: Cambridge University Press, 2019.

KRULIKOVSKI, Evelin Heringer Manoel. **Análise Teórica de Máquinas de Vetores Suporte e Aplicação a Classificação de Caracteres**. 2017. Dissertação de Mestrado em Matemática — Universidade Federal do Paraná.