Tema 8. Polinomios

8.0. Contenido y documentación

- 8.0. Contenido y documentación
- 8.1. Grupos, anillos y cuerpos
- 8.2. Polinomios
 - 8.2.1. Operaciones con polinomios
- 8.3. División de polinomios
 - 8.3.1. Divisibilidad
 - 8.3.2. Máximo común divisor de dos polinomios
- 8.4. Algoritmo de Euclides
 - 8.4.1. Identidad de Bézout
- 8.5. Evaluación de polinomios
 - 8.5.1. Lema de Bézout
 - 8.5.2. Raíces de polinomios
- 8.6. Teorema fundamental del álgebra
- 8.7. Raíces de polinomio en $\mathbb{Z}[x]$
 - 8.7.1. Multiplicidad de un cero
- 8.8. Polinomios reducibles e irreducibles
 - 8.8.1. Reducibilidad en $\mathbb{Q}[x]$ y en $\mathbb{Z}[x]$
- 8.9. Reducción módulo un primo

H8 Polinomios.pdf

8.1. Grupos, anillos y cuerpos

Definición. Decimos que (G,*) es un **grupo** si * es una operación asociativa en G, existe un elemento neutro en G para * y para todo $a \in G$ existe un elemento inverso $a^{-1} \in G$.

Nota. En tal caso se dice que a es **invertible** en G.

Definición. Decimos que un grupo (G,*) es **conmutativo** o **abelino** si $\forall a,b \in G$ se tiene que a*b=b*a.

Definición. Decimos que $(A, +, \cdot)$ es un **anillo** si (A, +) es un grupo conmutativo, la operación producto escalar (\cdot) es asociativa en A y se satisfacen las leyes distributivas.

Nota. Si además la operación producto escalar (\cdot) es conmutativa, decimos que A es un **anillo conmutativo**; y si además, existe un elemento neutro, decimos que A es un **anillo conmutativo unitario**.

8.2. Polinomios

Definición. Dado un cuerpo K. Definimos un **polinomio** en x con coeficientes en K como una expresión

de la forma
$$p(x) = \sum_{i=0}^n a_i x^i$$
, con $a_i \in K$.

Definición. Dado un polinomio p(x) definido en un cuerpo K. Si $a_n \neq 0$, decimos que el polinomio tiene grado n.

Notación. $\operatorname{gr}(p) = \partial(p) = n$.

Definición. Dado un polinomio p(x) definido en un cuerpo K. Decimos que p es un **polinomio mónico** si $a_n=1$.

Denotamos por K[x] al conjunto de todos los polinomio con coeficiente en K. Decimos que dos polinomios $p(x), q(x) \in K[x]$ son iguales si y solo si $a_i = b_i$ para todo i = 0, 1, ..., n.

8.2.1. Operaciones con polinomios

Dados dos polinomios $p(x), q(x) \in K[x]$, definimos las operaciones suma (+) y producto escalar (·) como:

1.
$$p(x) + q(x) = \sum_{k=0}^{\max\{n,m\}} (a_k + b_k) x^k.$$

2.
$$p(x)q(x)=\sum_{k=0}^{n+m}C_kx^k$$
 , con $C_k=\sum_{i=0}^ka_ib_{k-i}$.

Así, el conjunto $(K[x], +, \cdot)$ es un anillo conmutativo.

Propiedad. Dados dos polinomios $p(x), q(x) \in K[x]$ tenemos que $\operatorname{gr}(p+q) \leq \max\{\operatorname{gr}(p),\operatorname{gr}(q)\}$ y $\operatorname{gr}(pq) \leq \operatorname{gr}(p) + \operatorname{gr}(q)$.

8.3. División de polinomios

Dados dos polinomios $p(x), q(x) \in K[x]$, el **máximo común divisor** de ambos es un polinomio mónico (su coeficiente principal es 1), $d(x) \in K[x]$, que divide a ambos polinomios y tal que cualquier otro divisor común de p(x) y q(x) también divide a d(x).

Teorema (Algoritmo de la División). Sean $p(x), q(x) \in K[x]$ dos polinomios con $q(x) \neq 0$. Entonces, existen otros dos polinomios únicos $c(x), r(x) \in K[x]$, tales que p(x) = c(x)q(x) + r(x), con $\operatorname{gr}(r(x)) < \operatorname{gr}(q(x)) \vee r(x) = 0$.

Demostración.

Si $\operatorname{gr}(p(x)) < \operatorname{gr}(q(x))$, entonces la demostración es trivial, ya que $p(x) = 0 \cdot q(x) + p(x)$, con lo que c(x) = 0 y r(x) = p(x).

De lo contrario, siendo $n=\operatorname{gr}(p(x))$, suponemos que n=0, de forma que $p(x)=a_0$, por lo que $q(x)=b_0\neq 0$. Luego, $p(x)=\frac{a_0}{b_0}\cdot q(x)$. Asumimos que esto se cumple para $\operatorname{gr}(p(x))=n$ y comprobamos qué pasa con $\operatorname{gr}(p(x))=n+1$.

Sea $p(x)=a_{n+1}x^{n+1}+a_nx^n+\ldots+a_1x+a_0$, con $a_{n+1}\neq 0$. y q(x) un polinomio con $\operatorname{gr}(q(x))=m\leq n+1$. Entonces, $p(x)-\frac{a_{n+1}}{b_m}\cdot x^{n+1-m}\cdot q(x)$ es un polinomio con grado menor o igual que n.

Luego, por la hipótesis de inducción, $\exists c_1(x), r_1(x) \in K[x]: p(x) - \dfrac{a_{n+1}}{b_m} \cdot x^{n+1-m} \cdot q(x) = c_1(x) \cdot x^{n+1-m}$

$$q(x)+r_1(x)$$
. Luego, $p(x)=\left(rac{a_{n+1}}{b_m}\cdot x^{n+1}+c_1(x)
ight)\cdot q(x)+r_1(x)$, por lo que $c(x)=rac{a_{n+1}}{b_m}\cdot x^{n+1}+c_1(x)$ y $r(x)=r_1(x)$.

Por otra parte, suponemos que $\exists c_1(x), c_2(x), r_1(x), r_2(x): p(x) = c_1(x) \cdot q(x) + r_1(x) = c_2(x) \cdot q(x)$

```
\begin{array}{l} q(x)+r_2(x). \text{ De esta forma, } (c_1(x)-c_2(x))\cdot q(x)+(r_1(x)-r_2(x))=0.\\ -\operatorname{Si} c_1(x)=c_2(x), \text{ entonces, } r_1(x)=r_2(x) \text{ y ambos polinomios son únicos.}\\ -\operatorname{Si} c_1(x)\neq c_2(x), \text{ entonces, } \operatorname{gr}((c_1(x)-c_2(x))\cdot q(x))=\operatorname{gr}(c_1(x)-c_2(x))+\operatorname{gr}(q(x))\geq \operatorname{gr}(q(x))<\operatorname{gr}(r_1(x)-r_2(x)).\\ -\operatorname{Si} r_1(x)\neq r_2(x), \text{ entonces, no podría darse la resta anterior, por lo que } r_1(x)=r_2(x), \text{ de forma que } \operatorname{gr}(r_1(x)-r_2(x))=0 \text{ y } \operatorname{gr}(q(x))=0, \text{ por lo que } \operatorname{gr}(c_1(x)-c_2(x))=0 \text{ y } c_1(x)=c_2(x); \text{ y ambos polinomios son únicos.} \end{array}
```

8.3.1. Divisibilidad

Definición. Sea A un anillo y dados dos polinomios $p(x), q(x) \in A[x]$. Decimos que q(x) es **divisor** de p(x) si existe un polinomio $c(x) \in A[x]$ tal que p(x) = c(x)q(x).

Proposición. Si
$$r(x)|p(x)$$
 y $r(x)|q(x)$ en $A[x]$, entonces, $r(x)|(p(x)+\lambda q(x))$, $orall \lambda \in A$.

Proposición. Si K es un cuerpo y q(x)|p(x) en K[x], entonces, $\operatorname{gr}(p(x)) \geq \operatorname{gr}(q(x))$.

Proposición. Sea K un cuerpo y $p(x), q(x) \in K[x]$ dos polinomios. Si p(x)q(x)=0, entonces, $p(x)=0 \lor q(x)=0$.

8.3.2. Máximo común divisor de dos polinomios

Proposición. Sea K un cuerpo y $p(x), q(x) \in K[x]$ dos polinomios. Si p(x)|q(x) y q(x)|p(x). Entonces, $\exists c \in K \setminus \{0\}: p(x) = c \cdot q(x)$.

Demostración.

Si p(x)=0, entonces q(x)=0 y al contrario, por lo que la conclusión es trivial. Si $p(x),q(x)\neq 0$, entonces, $\exists c(x),d(x)\in K[x]$ tales que p(x)=c(x)q(x) y q(x)=d(x)p(x). Por lo que $p(x)=c(x)q(x)=c(x)d(x)p(x)\Rightarrow p(x)(1-c(x)d(x))=0$. Como $p(x)\neq 0$, entonces $1-c(x)d(x)=0\Rightarrow c(x)d(x)=1$, por lo que c(x) y d(x) son invertibles en K[x]. Luego, $c(x),d(x)\neq 0$. \square

Lema. Sea K un cuerpo y $p(x), q(x), c(x), r(x) \in K[x]$ cuatro polinomios tales que p(x) = c(x)q(x) + r(x). Entonces, $\operatorname{mcd}(p(x), q(x)) = \operatorname{mcd}(q(x), r(x))$, suponiendo que ambos sean mónicos.

Demostración.

Sean $d(x) = \operatorname{mcd}(p(x), q(x))$ y $e(x) = \operatorname{mcd}(q(x), r(x))$. Entonces, d(x)|p(x) y d(x)|q(x), deforma que d(x)|(p(x) - c(x)q(x)) = r(x). Luego, $d(x)|\operatorname{mcd}(q(x), r(x)) = e(x)$. Por otra parte, e(x)|q(x) y e(x)|r(x), deforma que e(x)|(c(x)q(x) - r(x)) = p(x). Luego, $e(x)|\operatorname{mcd}(p(x), q(x)) = d(x)$. Como d(x)|e(x) y e(x)|d(x), se tiene que $d(x) = e(x) \Leftrightarrow \operatorname{mcd}(p(x), q(x)) = \operatorname{mcd}(q(x), r(x))$. \square

8.4. Algoritmo de Euclides

Al igual que con los números enteros, podemos usar el Algoritmo de Euclides para encontrar el $\operatorname{mcd}(p(x),q(x))$, para cualquier $p(x),q(x)\in K[x]$.

Caso general.

Suponemos cuatro polinomios $p(x), q(x), c_0(x), r_1(x) \in K[x]$ tales que $p(x) = c_0(x)q(x) + r_1(x)$, $\operatorname{con} 0 < \operatorname{gr}(r_1(x)) < \operatorname{gr}(q(x)).$

- Si $r_1(x) = 0$, entonces q(x)|p(x), por lo que $\operatorname{mcd}(p(x), q(x)) = q(x)$.
- Si $r_1(x) \neq 0$, entonces $\operatorname{mcd}(p(x), q(x)) = \operatorname{mcd}(q(x), r_1(x))$. Así, podemos decir que q(x) = $c_1(x)r_1(x) + r_2(x)$, con $0 \le \operatorname{gr}(r_2(x)) \le \operatorname{gr}(r_1(x))$ y volver a empezar.

8.4.1. Identidad de Bézout

Teorema (Identidad de Bézout). Sean $p(x), q(x), c(x), d(x) \in K[x] \setminus \{0\}$ cuatro polinomios tales que $d(x) = \operatorname{mcd}(p(x), q(x))$ y d(x)|c(x). Entonces, $\exists a(x), b(x) \in K[x]: c(x) = a(x)p(x) + b(x)q(x).$

Sean $p(x),q(x),c(x)\in K[x]$ tres polinomios, $d(x)=\mathrm{mcd}\;(p(x),q(x))$ y $(a_0(x),b_0(x))\in K[x]$ imes

K[x] una solución particular de la ecuación diofántica a(x)p(x)+b(x)q(x)=c(x). Entonces, cualquier solución de la misma es de la forma $(a(x),b(x))=\begin{cases} a(x)=a_0(x)+rac{q(x)}{d(x)}m(x) \\ b(x)=b_0(x)-rac{p(x)}{d(x)}m(x) \end{cases}, m(x)\in \mathbb{R}$

K[x].

Definición. Dados dos polinomios $p(x), q(x) \in K[x]$. Decimos que son **coprimos** si $\operatorname{mcd}(p(x),q(x))=1$, es decir, si ningún polinomio de grado >1 divide simultáneamente a ambos polinomios.

Definición. Dado un polinomio $p(x) \in K[x]$ con gr(p(x)). Decimos que es **irreducible** si sus únicos divisores son k y kp(x), con $k \in K$. Es decir, si no puede escribirse como producto de dos polinomios de grado estrictamente menor.

8.5. Evaluación de polinomios

Definición. Sea A un anillo y $p(x) \in A[x]$ un polinomio de la forma $p(x) = c_0 + c_1 x + ... + c_n x^n$. Definimos la **función polinómica** p asociada al polinomio p(x) como p:A o A, con $p(a)=c_0+$ $c_1a+...+c_na^n$, para $a\in A$.

8.5.1. Lema de Bézout

Lema de Bézout. Sea K un cuerpo, $a \in K$ y $p(x) \in K[x]$. Entonces, (x - x)a)|p(x) si y solo si p(a)=0.

Demostración.

Por el algoritmo de la división en K[x], sabemos que p(x)=c(x)(x-a)+b, con $b\in A$. \Rightarrow) Si (x-a)|p(x), entonces b=0, por lo que p(x)=c(x)(x-a). Así, la función polinómica evaluada en a es $p(a) = c(a) \cdot (a - a) = c(a) \cdot 0 = 0$.

$$\Leftarrow$$
) Si $p(a)=0$, entonces $p(a)=c(a)\cdot(a-a)+b=b=0$, por lo que $p(x)=c(x)(x-a)$ y $(x-a)|p(x)$. \Box

8.5.2. Raíces de polinomios

Definición. Dado un polinomio $p(x) \in A[x]$ y un valor $a \in A$ tales que p(a) = 0. Decimos que x = a es una **raíz** del polinomio p(x).

Definición. Dado un polinomio $p(x) \in A[x]$ y un valor $a \in A$ tales que a es raíz de p(x). Decimos que x=a es una raíz de **multiplicidad** n, con $n \geq 1$, si $(x-a)^n|p(x)$, pero $(x-a)^{n+1} \not\mid p(x)$.

Teorema. Sea K un cuerpo y $p(x) \in K[x]$ un polinomio tal que $\operatorname{gr}(p(x)) = n \geq 1$. Entonces, p(x) tiene, como mucho, n raíces en K, contando las multiplicidades de cada una.

Demostración.

Para n=1, la afirmación es cierta, ya que si $\operatorname{gr}(p(x))=1$, entonces $\exists a,b\in K: p(x)=ax+b$, por lo que existe una raíz $x=-\frac{b}{a}\in K$ tal que $p\left(-\frac{b}{a}\right)=0$.

Ahora suponemos que todo polinomio $q(x) \in K[x]$ con $\operatorname{gr}(q(x)) = n$ tiene, a lo sumo, n raíces en K. Sea $p(x) \in K[x]$ un polinomio con $\operatorname{gr}(p(x)) = n+1$, entonces:

- Si p(x) no tiene raíces en K, la afirmación es trivialmente cierta.
- Si existe un valor $a \in K$ tal que p(a) = 0, entonces, por el Lema de Bézout, podemos expresar p(x) como p(x) = (x-a)q(x), con $q(x) \in K[x]$. De esta forma, $\operatorname{gr}(q(x)) = \operatorname{gr}(p(x)) 1 = (n+1) 1 = n$, dando como resultado la hipótesis de inducción. \square

Corolario 1. Sea K un cuerpo y $p(x)\in K[x]$ un polinomio con $\operatorname{gr}(p(x))=n\geq 0$. Si $\exists a_1,a_2,...,a_m\in K$ distintos entre sí, tales que m>n y $p(a_1)=p(a_2)=...=p(a_m)=0$. Entonces $p\equiv 0$

Demostración.

Por el teorema anterior, si $n \geq 1$, entonces el número de raíces de p(x) en K es $\leq n < m \leq$ que el número de raíces de p(x). Por lo tanto, si n=0, entonces $p(x)=c \in K$, y si $p(a_1)=0$, entonce c=0. \square

Corolario 2. Sean K un cuerpo y $p(x), q(x) \in K[x]$ dos polinomios tales que $|K|>\max\{\operatorname{gr}(p(x)),\operatorname{gr}(q(x))\}$, y $p(a)=q(a), \forall a\in K$. Entonces, $p(x)\equiv q(x)$.

Demostración.

Consideramos el polinomio $r(x) = p(x) - q(x) \in K[x]$.

- Si $r(x) \equiv 0$, se demuestra trivialmente.
- Si $r(x)\not\equiv 0$, entonces, r(x) se anula en |K| valores de K y $|K|>\operatorname{gr}(r(x))$. Por el corolario anterior, $r(x)\equiv 0$. \square

Corolario 3. Sea K un cuerpo y $p(x)\in K[x]$ un polinomio de grado $n\geq 1$, expresado como $\sum_{k=0}^n a_k x^k$. Si $c_1,c_2,...,c_n\in K$ son las n raíces de p(x). Entonces, $p(x)=a_n\cdot (x-c_1)\cdot (x-c_2)\cdot ...\cdot (x-c_n)$.

Demotración.

Sea $q(x)=a_n\cdot(x-c_1)\cdot(x-c_2)\cdot...\cdot(x-c_n)$. Entonces, $q(x)\in K[x]$ y $\operatorname{gr}(q(x))=n$. Sea $r(x)=p(x)-q(x)\in K[x]$, de forma que $\operatorname{gr}(r(x))\leq n-1$ y $r(c_k)=p(c_k)-q(c_k)=0$, para k=1,2,...,n. Por el corolario anterior, $p(x)\equiv q(x)$. \square

8.6. Teorema fundamental del álgebra

Teorema Fundamental del Álgebra. Todo polinomio $p(x)\in\mathbb{C}[x]$ no constante tiene, al menos, una raíz en \mathbb{C} .

Corolario. Todo polinomio $p(x)\in\mathbb{C}[x]$ de grado $n\geq 1$ tiene exactamente n raíces $z_1,z_2,...,z_n\in\mathbb{C}$ (contando multiplicidades) y, por consiguiente, puede factorizarse como $p(x)=a_n\prod_{k=1}^n(x-z_k)$.

Demostración.

Si
$$\operatorname{gr}(p(x))=n=1$$
, entonces, $p(x)=a_1x+a_0$, con $a_0,a_1\in\mathbb{C}$. Así, $p(x)=a_1\left(x-\frac{x_0}{x_1}\right)$, con lo que $z_1=\frac{a_0}{a_1}$.

Por otra parte, sea $p(x)\in\mathbb{C}[x]$ un polinomio con $\operatorname{gr}(p(x))=n+1$. Entonces, por el Teorema Fundamental del Álgebra, $\exists z_{n+1}\in\mathbb{C}$ tal que $p(z_{n+1})=0$. Por el Lema de Bézout, $(x-z_{n+1})|p(x)$, de forma que podemos decir que $p(x)=(x-z_{n+1})q(x)$, con $q(x)\in\mathbb{C}[x]$. Así, $\operatorname{gr}(q(x))=\operatorname{gr}(p(x))-1=(n+1)-1=n$. Por hipótesis de inducción, tenemos que q(x) tiene n raíces en \mathbb{C} que, junto con z_{n+1} , son las n+1 raíces de p(x). \square

Proposición. Sea $p(x)\in\mathbb{R}[x]$ un polinomio y $z\in\mathbb{C}$ una raíz de p(x). Entonces, el complementario de z,\overline{z} , también lo es.

Demostración.

Sea
$$p(x)=\sum_{i=0}^n a_ix^i$$
 un polinomio, con $a_i\in\mathbb{R}$ para todo i . Partieno de que $0=p(z)=a_nz^n+\ldots+a_1z+a_0$, tenemos que $0=\overline{0}=\overline{a_nz^n+\ldots+a_1z+a_0}=\overline{a_nz^n}+\ldots+\overline{a_1\overline{z}}+\overline{a_0}=a_n\overline{z^n}+\ldots+a_1\overline{z}+a_0=a_n\overline{z}^n+\ldots+a_1\overline{z}+a_0=p(\overline{z}).$

8.7. Raíces de polinomio en $\mathbb{Z}[x]$

Teorema. Sea $p(x)\in\mathbb{Z}[x]$ un polinomio y $\dfrac{p}{q}\in\mathbb{Q}$ una raíz de p(x) con $p,q\in\mathbb{Z}$ y $\mathrm{mcd}\ (p,q)=1.$ Entonces, $p|a_0$ y $q|a_n$.

Demostración.

Por hipótesis, $a_0+a_1\frac{p}{q}+...+a_n\left(\frac{p}{q}\right)^n=0$. Entonces, multiplicando por q^n , obtenemos $a_0q^n+a_1pq^{n-1}+...+a_np^n=0$. Luego, $p|(a_1pq^{n-1}+...+a_np^n)$, por lo que $p|a_0q^n$ y $p|a_0$. Por otra parte, $q|(a_0q^n+...+a_{n-1}p^{n-1}q)$, por lo que $q|a_np^n$ y $q|a_n$. \square

8.7.1. Multiplicidad de un cero

Lema. Sea $p(x) \in \mathbb{C}[x]$ un polinomio y $a \in \mathbb{C}$ un cero de p(x) de orden $n \geq 1$. Entonces, a es un cero de p'(x) de orden n-1.

Demostraión.

Por hipótesis, $p(x)=(x-a)^nq(x)$, con $q(x)\in\mathbb{C}[x]$ y $q(a)\neq 0$. Podemos derivar p(x) de forma que $p'(x)=n(x-a)^{n-1}q(x)+(x-a)^nq'(x)=(x-a)^{n-1}(nq(x)+(x-a)q'(x))$. Si definimos el polinomio r(x) como r(x)=nq(x)+(x-a)q'(x), vemos que $r(a)=nq(a)\neq 0$, ya que $n,q(a)\neq 0$. Por lo tanto, $(x-a)^{n-1}|p'(x)$, pero $(x-a)^n\not\mid p'(x)$, es decir, a es un cero de multiplicidad n-1 de p'(x). \square

8.8. Polinomios reducibles e irreducibles

Definición. Sea A un anillo conmutativo y unitario, y $p(x) \in A[x]$ un polinomio distinto de un elemento invertible de A[x]. Decimos que p(x) es un **polinomio reducible** si $\exists q(x), r(x) \in A[x]$ tales que $p(x) \equiv q(x)r(x)$ y ninguno de los polinomios q(x), r(x) es invertible en A[x].

Definición. Sea A un anillo conmutativo y unitario, y $p(x) \in A[x]$ un polinomio distinto de un elemento invertible de A[x]. Decimos que p(x) es un **polinomio irreducible** si dados dos polinomios $q(x), r(x) \in A[x]$ tales que p(x) = q(x)r(x) esto implica que alguno de los dos sea invertible en A[x].

Proposición. Sea K un cuerpo y $p(x)\in K[x]$ un polinomio con $\operatorname{gr}(p(x))\in\{2,3\}$. Entonces, p(x) es reducible en K[x] si y solo si p(x) tiene una raíz en K

Demostración.

Proposición. Sea $p(x) \in \mathbb{R}[x]$ un polinomio no constante. Si p(x) es irreducible en $\mathbb{R}[x]$, entonces, $\operatorname{gr}(p(x)) \in \{1,2\}$.

Además, si ${
m gr}(p(x))=2$, de forma que $p(x)=ax^2+bx+c$, con $a\neq 0$. Entonces, $\Delta=b^2-4ac<0$.

8.8.1. Reducibilidad en $\mathbb{Q}[x]$ y en $\mathbb{Z}[x]$

Definición. Dado un polinomio $p(x) \in \mathbb{Z}[x]$ de la forma $p(x) = a_n x^n + ... + a_1 x + a_0$, con $a_n \neq 0$. Definimos el **contenido de** p(x) como el número $C(p(x)) = \text{mcd } (a_0, a_1, ..., a_n)$.

Definición. Dado un polinomio $p(x) \in \mathbb{Z}[x]$. Decimos que p(x) es **primitivo** si $\mathrm{C}(p(x)) = 1$.

Observaciones.

- 1. Todo polinomio $p(x) \in \mathbb{Z}[x]$ puede escribirse como $p(x) = \mathrm{C}(p(x))q(x)$, con q(x) primitivo.
- 2. Si $p(x) \in \mathbb{Z}[x]$ es primitivo y $p(x) \neq 1, -1$, entonces, $\operatorname{gr}(p(x)) \geq 1$.

Lema de Gauss. El producto de dos polinomios primitivos también es primitivo.

Demostración.

Sean $p(x),q(x)\in\mathbb{Z}[x]$ dos polinomios primitivos tales que $p(x)=\sum_{i=0}^n a_ix^i$ y $q(x)=\sum_{i=0}^m a_jx^j$, de

forma que
$$p(x)q(x)=\sum_{k=0}^{n+m}c_kx^k.$$
 Sabemos que $c_k=a_0b_k+a_1b_{k-1}+...+a_kb_0.$

Suponemos que p(x)q(x) no es primitivo, de forma que C(p(x)q(x)) es un naturale mayor que 1 y, por tanto, divisible por un primo p.

Sea r el mayor índice tal que $p \not | a_r$ y s el menor índice tal que $p \not | b_s$. Entonces, $p|c_{r+s}=(a_0b_{r+s}+...+a_{r-1}b_{s+1}+a_rb_s+a_{r+1}b_{s-1}+...+a_{m+n}b_0)$, de forma que $p|a_rb_s\Rightarrow p|a_r\vee p|b_s$. Luego, llegamos a una contadicción y p(x)q(x) es primitivo. \square

Corolario. Sean $p(x), q(x) \in K[x]$ dos polinomios. Entonces, $\mathrm{C}(p(x)q(x)) = \mathrm{C}(p(x))\mathrm{C}(q(x))$.

Demostración.

Vemos que $p(x)=\mathrm{C}(p(x))p_1(x)$ y $q(x)=\mathrm{C}(q(x))q_1(x)$, con $p_1(x),q_1(x)\in K[x]$ primitivos, de forma que, por el Lema de Gauss, $p_1(x)q_1(x)$ es primitivo.

Vemos también que $p(x)q(x) = C(p(x))C(q(x))p_1(x)q_1(x)$, de forma que $C(p(x)q(x)) = C(p(x))C(q(x))C(p_1(x)q_1(x)) = C(p(x))C(q(x))$. \square

Proposición. Sean $p(x), q(x) \in \mathbb{Z}[x]$ dos polinomios con p(x) primitivo y p(x)|q(x) en $\mathbb{Q}[x]$. Entonces, p(x)|q(x) en $\mathbb{Z}[x]$.

Demostración.

Supongamos que q(x)=p(x)r(x), con $r(x)\in\mathbb{Q}[x]$. Por lo visto anteriormente, $r(x)=rac{1}{q}r_1(x)$, con

```
q\in\mathbb{Z} y r_1(x)\in\mathbb{Z}[x]. Entonces, q\cdot q(x)=q\cdot p(x)r(x)=p(x)r_1(x).
Generalizando el Lema de Gauss, vemos que q\mathrm{C}(q(x))=\mathrm{C}(q\cdot q(x))=\mathrm{C}(p(x)r_1(x))=
\mathrm{C}(p(x))\mathrm{C}(r_1(x))=\mathrm{C}(r_1(x)), por lo que q|\mathrm{C}(r_1(x)) y r_1(x)\in\mathbb{Z}[x]. \Box
```

Teorema de Gauss. Sea $p(x) \in \mathbb{Z}[x]$ un polinomio primitivo. Entonces, p(x) es irreducible en $\mathbb{Q}[x]$ si y solo si p(x) es irreducible en $\mathbb{Z}[x]$.

Demostración.

 \Rightarrow) Suponemos que p(x) es reducible en $\mathbb{Q}[x]$. Entonces, $\exists q(x), r(x) \in \mathbb{Q}[x]$ tales que p(x) = xq(x)r(x) con ninguno de los polinomios constantes.

Podemos decir que $q(x)=rac{1}{q}q_1(x)$, con $q_1(x)\in\mathbb{Z}[x]$ primitivo y $q\in\mathbb{Z}$. Entonces, $q\cdot p(x)=q(q(x)r(x))=q\left(rac{1}{q}q_1(x)r(x)
ight)=q_1(x)r(x)$, por lo que $q_1(x)|p(x)$ en $\mathbb{Q}[x]$. Por la proposición enterior, $q_1(x)|p(x)$ en $\mathbb{Z}[x]$ y p(x) es irreducible en $\mathbb{Z}[x]$.

 \Leftarrow) Suponemos que $p(x) \in \mathbb{Z}[x]$ es primitivo y reducible en $\mathbb{Z}[x]$. Entonces, $\exists q(x), r(x) \in \mathbb{Z}[x]$ tales que p(x) = q(x)r(x) con ninguno de los dos invertibles en $\mathbb{Z}[x]$. Como p(x) es primitivo, sabemos que $1=\mathrm{C}(p(x))=\mathrm{C}(q(x))\mathrm{C}(r(x))$, por lo que $\mathrm{C}(q(x))=\mathrm{C}(r(x))=1$. Como además, $q(x),r(x)
ot\equiv 0$ ± 1 , sabemos que $\operatorname{gr}(q(x)), \operatorname{gr}(r(x)) \geq 1$. Puesto que en $\mathbb{Q}[x]$ también tenemos la factorización p(x)=q(x)r(x), se sigue que p(x) es reducible en $\mathbb{Q}[x]$. \square

Teorema (criterio de Eisenstein). Sea $p(x) \in \mathbb{Z}[x]$ un polinomio primitivo se de la forma $p(x)=a_nx^n+...+a_1x+a_0$ y p un número primo tal que $p|a_0,a_1,...,a_{n-1}$, pero $p\not\mid a_n$ y $p^2\not\mid a_0$. Entonces, p(x) es irreducible en

Debido a la hipótesis del Teorema, p(x) es primitivo. Por el Teorema de Gauss, se concluye que p(x)también es irreducible en $\mathbb{Q}[x]$.

Demotración.

Suponemos que existen dos polinomios $q(x), r(x) \in \mathbb{Z}[x]$ no constantes tales que p(x) = q(x)r(x).

Podemos expresar los polinomios anteriores como $p(x)=\sum_{i=0}^n a_i x^i,\, q(x)=\sum_{j=0}^m b_j x^j$ y $r(x)=\sum_{j=0}^m a_j x^j$

$$\sum_{k=0}^s c_k x^k$$
 , con $m+r=n$ y $m,r\geq 1$.

Si p(x) es primitivo, entonces, q(x), r(x) también lo son. Por lo que $\exists p$ primo tal que $p|b_0,b_1,...,b_{m-1}$, pero $p \nmid b_m$. Por hipótesis, $p|a_j$ y $a_j = b_0c_j + ... + b_jc_0$, de forma que $p|b_jc_0$ y $p|c_0$, ya que $p \nmid b_j$. Luego, $p^2|b_0c_0=a_0$, llegando a una contradicción. \Box

Lema. Sea A un anillo conmutativo y unitario, $p(x) \in A[x]$ un polinomio y $a \in$ A un valor. Entonces, p(x) es irreducible en A[x] si y solo si p(x-a) es irreducible en A[x].

8.9. Reducción módulo un primo

Definición. Dad un polinomio $q(x)\in\mathbb{Z}[x]$ y un primo p. Definimos el polinomio $\overline{q}(x)\in\mathbb{Z}_p[x]$ como aquel cuyos coeficientes son los de q(x) reducidos a módulo p. Nota. Todo polinomio $q(x)\in\mathbb{Z}[x]$ que es mónico, es primitivo.

Proposición. Sea $q(x)\in\mathbb{Z}[x]$ un polinomio primitivo y $\overline{q}(x)\in\mathbb{Z}_p[x]$, con p primo, el polinomio correspondiente con los coeficientes reducidos a módulo p. Si $\operatorname{gr}(\overline{q}(x))=\operatorname{gr}(q(x))$ y $\overline{q}(x)$ es irreducible en $\mathbb{Z}_p[x]$, entoces, q(x) es ireeducible en $\mathbb{Q}[x]$.

Demotración.

Suponemos que q(x) es reducible en $\mathbb{Q}[x]$. Por el Teorema de Gauss, q(x) es reducible en $\mathbb{Z}[x]$, por lo que existen dos polinomios $p_1(x), p_2(x) \in \mathbb{Z}[x]$ distintos de ± 1 tale que $q(x) = p_1(x)p_2(x)$. Reduciendo los coeficientes a módulo p, obtenemos que $\overline{q}(x) = \overline{p_1}(x)\overline{p_2}(x)$, con $\operatorname{gr}(\overline{q}(x)) \leq \operatorname{gr}(\overline{p_1}(x)) + \operatorname{gr}(\overline{p_2}(x))$, luego, $\overline{p_1}(x)$ y $\overline{p_2}(x)$ no son constantes. Por tanto, $\overline{q}(x)$ es reducible en $\mathbb{Z}_p[x]$. \square