Roll	No.	_	 _	 	_				_	_	_

M.Sc. INTEGRATED C. B. S. (6th SEM) Pt. RAVISHANKAR SHUKLA UNIVERSITY, RAIPUR MID TERM EXAMINATION, 2021 (Electrodynamics)

(P-601)

Time: Three Hours Maximum Marks: 40

Note: Attempt all Sections as directed.

Section -A (Objective / Multiple Choice Questions)

Note: Choose the correct answer from the options given.

1 mark each

- 1. An accelerated charge will produce
 - a) electric, magnetic, and radiation fields
 - b) electric and magnetic fields
 - c) only magnetic field
 - d) only electric field
- **2.** The value of α for which the vector potential given as $\dot{A} = 2x\hat{i} + \alpha y\hat{j} + z\hat{k}$ will follow the coulomb gauge.
 - a) 3
 - b) -3
 - c) 1
 - d) None of the above
- **3.** Which of the following is the expression for Lorentz force?
 - a) qE
 - b) $q(v \times B)$
 - c) ma + qE
 - d) $qE + q(v \times B)$
- **4.** Which of the following laws do not form a Maxwell equation?
 - a) Planck's law
 - b) Gauss's Law
 - c) Faraday's law
 - d) Ampere's Law
- 5. While driving in winter, through dense fog, one can see rays from headlights emitted

by vehicle reaching towards us is due to...

- a) Scattering of light
- b) Atmospheric refraction
- c) Reflection of light
- d) Dispersion of light

6. In which of the following cases is the mutual induction between the two wire loops zero?

- 7. Which of the following formulas is correct? (multiple answers may be true)
 - a) J=nevd
 - b) $v_d = \frac{\sigma E}{ne}$
 - c) $m_{21} \neq m_{12}$ (in some cases it may be equal but in general it isn't.)
 - d) $\nabla \times B = \Pi_0 J$
- **8.** For electromagnetic radiation E_{\sim} and B_{\sim} fields
 - a) both varies as r-1
 - b) both varies as r-2
 - c) E field varies as r-1 but B field varies as r-2
 - d) E field varies as r-2 but B field varies as r-1
- **9.** The magnetic field associated with the electric field vector $E=E_0\sin(kz-wt)\hat{j}$ is given by
 - a) B= $-\frac{E0}{c}\sin(kz-wt)\hat{i}$

b) B=
$$\frac{E0}{c}$$
sin(kz-wt) \hat{i}
c) B= $\frac{E0}{c}$ sin(kz-wt) \hat{j}
d) B= $\frac{E0}{c}$ sin(kz-wt) \check{k}

- 10. Which one of the following is most essential for observing diffraction of light
 - (a) monochromatic light
 - (b) white light
 - (c) a very narrow slit or obstacle
 - (d) two coherent sources

Section -B

3 mark each

- **1.** Write the expressions for Lorentz ad Coulombs gauges. Hence explain the two conditions.
- **2.** For plane electromagnetic waves propagating in k direction we have that

$$B = \frac{K \times E}{\omega}$$
 show that $E = \frac{-\omega}{k2} (k \times B)$

- **3.** Discuss the physical significance of all Maxwell's equations.
- 4. Discuss Magnetic dipole radiation.
- 5. The electric field component of a plane electromagnetic wave travelling in vaccum is given by vector $E(z,t) = E_0 \cos(kz wt)\hat{\imath}$. Calculate the poynting vector for this wave.

Section- C

Note: Attempt any three questions.

5 marks each

- **1.** Explain the term Multipole moments. Derive an expression for potential at a distant point using multipole expansion for a localized charge distribution in free space.
- 2. Explain the Retarted potential and derive the retarted vector and scalar potential.
- **3.** A circular ring in the xy plane (radius R, centered at the origin) carries a uniform line charge λ . Find the first three terms (n=0,1,2) in the multipole expansion for $V(r,\theta)$.
- **4.** Obtain an expression of electric field of a moving point charge. Discuss electric dipole radiation.

5. Obtain an expr	ession of electric and magnetic field using Jefimenko's equations.	
<u> </u>		