

Examen Physique: Thermodynamique (1h30)

indicatif. Réponses exclusivemer	Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif. Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.					
Exercice 1. Questions de cours (5 points – pas de questions plusieurs réponses sont à cocher.	points négatifs pour le QCM). Pour certaines					
 Un ballon de baudruche rempli d'air à 20°C est p a. Le volume du ballon va augmenter b. Le volume du ballon va diminuer 	olongé dans de l'eau à 5°C. On peut dire que : c. La température de l'air augmente d. La température de l'air diminue					
2. Lors d'un cycle thermodynamique $\Delta U=0$ car :						
a. C'est une hypothèse de la thermodynamiqueb. L'état initial et l'état final sont identiques	 c. C'est une approximation pratique pour la modélisation d. Aucune des réponses précédentes 					
3. Lors d'une transformation isochore, le transfert the	hermique Q est égal à :					
a. W bW	c. ΔU d. $-\Delta U$					
 4. Dans le cas d'une pompe à chaleur, l'énergie utile a. Le travail b. Le transfert thermique vers la source chaude 	e est : c. Le transfert thermique vers la source froide d. Cela dépend de la pompe à chaleur					
5. Le transfert thermique ayant lieu sans déplacemen	it de matière et dû à une différence de température					

entre deux endroits d'un même objet :

a. La conduction c. Le rayonnement

d. La subduction b. La convection

On plonge un bloc de fer de masse m_{fer} de 1kg à une température initiale T_{fer} de 1100°C dans une masse m_{eau} de 1kg d'eau à l'état liquide à la température initiale T_{eau} de 0°C. Le tout est enfermé dans une enceinte parfaitement calorifugée, c'est-à-dire, ne permettant aucun transfert thermique avec l'extérieur. La pression extérieure reste constante telle que $P_{ext} = 1$ bar. On fera l'hypothèse que la température finale est $T_f = 100$ C et qu'une partie de l'eau est vaporisée, que nous noterons m_{vap} .

<u>Informations</u>: (Attention, certaines informations sont inutiles à la résolution du problème)

	Température de fusion T_{fus} (°C)	Température de vaporisation T_{vap} (°C)	Enthalpie massique de fusion $\Delta h_{fus} \; ({ m kJ/kg})$	Enthalpie massique de vaporisation $\Delta h_{vap}~({ m kJ/kg})$	Capacité thermique massique c_p (kJ.kg ⁻¹ .K ⁻¹)
Eau	0	100	300	2000	4
Fer	1535	2750	200	5000	0,5

Lors de vos réponses aux questions, utiliser les notations des grandeurs telles qu'elles sont définies dans l'énoncé.

1. Donner l'expression littérale de ΔH_1 , la variation d'enthalpie de l'eau au cours de l'expérience due

à la variation de la température de celle-ci. Réaliser l'application numérique. (1 pt)
2. Donner l'expression littérale de ΔH_2 , la variation d'enthalpie de l'eau au cours de l'expérience due au changement d'état de celle-ci. (1 pt)
3. Sous quel état est le fer au début de l'expérience ? Donner l'expression littérale de ΔH_3 , la variation d'enthalpie du fer au cours de l'expérience. Réaliser l'application numérique. $(1,5 \text{ pts})$

4.	(1 pt)
5.	Donner l'expression littérale de la quantité d'eau vaporisée puis réaliser l'application numérique. (2 pts)

$\underline{\text{Exercice 3:}}$ Cycle thermodynamique (8,5 pts)

Une mole de gaz parfait contenue dans un cylindre décrit de manière quasi statique et mécaniquement réversible le cycle ABCA décrit ci-contre.

- L'évolution BC a lieu à la pression $P_B = 5,0$ bars.

<u>Informations:</u>

- La constante des gaz parfaits : R $\approx 8,314 \, J. \, K^{-1} mol^{-1}$
- $1 \text{ m}^3 = 1000 \text{ L}$

• $ln(5) \approx 1.5$; $ln(1/5) \approx -1.5$

• $1 \text{ bar} = 10^5 \text{ Pa}$

• $8,314 \times 3 \approx 25$

1. Rappeler l'équation des gaz parfaits. (0,5 pt)

2. Donner la nature de chacune des transformations AB, BC et CA. (1,5pts)

3. Donner les valeurs en litre des volumes V_A , V_B et V_C en justifiant les valeurs obtenues par un calcul ou l'utilisation du diagramme (P,V). (3 pts)

4.	Donner les expressions littérales des travaux W_{AB} , W_{BC} et W_{CA} puis réaliser les applications numériques. (3 pts)

5. Som	mer les trava	ux et les trai	nsferts ther	miques échan	igés pendant	un cycle th	ermodynan
et c	ommenter le i	résultat. (1pt))				

Les valeurs des transferts thermiques valent :

 $\bullet \quad Q_{AB} = \text{-}3,75 \text{ kJ}$