Advanced DS

Data Structure and Algorithms

Fall 2024

eduko.spikotech.com

University of Engineering and Technology Lahore Pakistan

Course Reference: CS161 by Stanford

Some data structures for storing objects like [5] (aka, nodes with keys)

(Sorted) arrays:

Linked lists:

- Some basic operations:
 - INSERT, DELETE, SEARCH

Sorted Arrays

- O(n) INSERT/DELETE:
 - First, find the relevant element (we'll see how below), and then move a bunch elements in the array:

• O(log(n)) SEARCH:

eg, insert 4.5

(Not necessarily sorted)

Linked lists

• O(1) INSERT:

eg, search for 1 (and then you could delete it by manipulating pointers).

Motivation for Binary Search Trees

TODAY!

	Sorted Arrays	Linked Lists	(Balanced) Binary Search Trees
Search	O(log(n))	O(n)	O(log(n))
Delete	O(n)	O(n)	O(log(n))
Insert	O(n) Data Structures	O(1)	O(log(n))

Binary tree terminology

Each node has two children.

The left child of 3 is 2

The right child of 3 is 4

The parent of 3 is 5

2 is a descendant of 5

Each node has a pointer to its left child, right child, and parent.

Both children of 1 are NIL. (I won't usually draw them).

The height of this tree is 3. (Max number of edges from the root to a leaf).

From your pre-lecture exercise...

- A BST is a binary tree so that:
 - Every LEFT descendant of a node has key less than that node.
 - Every RIGHT descendant of a node has key larger than that node.
- Example of building a binary search tree:

- A BST is a binary tree so that:
 - Every LEFT descendant of a node has key less than that node.
 - Every RIGHT descendant of a node has key larger than that node.
- Example of building a binary search tree:

- A BST is a binary tree so that:
 - Every LEFT descendant of a node has key less than that node.
 - Every RIGHT descendant of a node has key larger than that node.
- Example of building a binary search tree:

- A BST is a binary tree so that:
 - Every LEFT descendant of a node has key less than that node.
 - Every RIGHT descendant of a node has key larger than that node.
- Example of building a binary search tree:

- A BST is a binary tree so that:
 - Every LEFT descendant of a node has key less than that node.
 - Every RIGHT descendant of a node has key larger than that node.
- Example of building a binary search tree:

Aside: this should look familiar

kinda like QuickSort

Which of these is a BST?

1 minute Think-Pair-Share

- A BST is a binary tree so that:
 - Every LEFT descendant of a node has key less than that node.
 - Every RIGHT descendant of a node has key larger than that node.

- inOrderTraversal(x):
 - if x!= NIL:
 - inOrderTraversal(x.left)
 - print(x.key)
 - inOrderTraversal(x.right)

- inOrderTraversal(x):
 - if x!= NIL:
 - inOrderTraversal(x.left)
 - print(x.key)
 - inOrderTraversal(x.right)

- inOrderTraversal(x):
 - if x!= NIL:
 - inOrderTraversal(x.left)
 - print(x.key)
 - inOrderTraversal(x.right)

- inOrderTraversal(x):
 - if x!= NIL:
 - inOrderTraversal(x.left)
 - print(x.key)
 - inOrderTraversal(x.right)

- inOrderTraversal(x):
 - if x!= NIL:
 - inOrderTraversal(x.left)
 - print(x.key)
 - inOrderTraversal(x.right)

- inOrderTraversal(x):
 - if x!= NIL:
 - inOrderTraversal(x.left)
 - print(x.key)
 - inOrderTraversal(x.right)

- inOrderTraversal(x):
 - if x!= NIL:
 - inOrderTraversal(x.left)
 - print(x.key)
 - inOrderTraversal(x.right)

Output all the elements in sorted order!

- inOrderTraversal(x):
 - if x!= NIL:
 - inOrderTraversal(x.left)
 - print(x.key)
 - inOrderTraversal(x.right)

2 3

Output all the elements in sorted order!

- inOrderTraversal(x):
 - if x!= NIL:
 - inOrderTraversal(x.left)
 - print(x.key)
 - inOrderTraversal(x.right)

2 3 4

Output all the elements in sorted order!

- inOrderTraversal(x):
 - if x!= NIL:
 - inOrderTraversal(x.left)
 - print(x.key)
 - inOrderTraversal(x.right)

2 3 4

- inOrderTraversal(x):
 - if x!= NIL:
 - inOrderTraversal(x.left)
 - print(x.key)
 - inOrderTraversal(x.right)

- inOrderTraversal(x):
 - if x!= NIL:
 - inOrderTraversal(x.left)
 - print(x.key)
 - inOrderTraversal(x.right)

- inOrderTraversal(x):
 - if x!= NIL:
 - inOrderTraversal(x.left)
 - print(x.key)
 - inOrderTraversal(x.right)

Tree Minimum and Tree Maximum

TREE-MINIMUM (x)

- 1 while $x.left \neq NIL$
- 2 x = x.left
- 3 return x

TREE-MAXIMUM(x)

- 1 **while** $x.right \neq NIL$
- 2 x = x.right
- 3 return x

Tree Successor

```
TREE-SUCCESSOR (x)
   if x.right \neq NIL
       return TREE-MINIMUM (x.right)
  y = x.p
   while y \neq NIL and x == y.right
       x = y
       y = y.p
   return y
```


Tree Predecessor

Back to the goal

Fast SEARCH/INSERT/DELETE

Can we do these?

SEARCH in a Binary Search Tree

O(length of longest path) = O(height)

definition by example

```
TREE-SEARCH(x, k)
   if x == NIL or k == x.key
                                               4.5
        return x
                                               nient
   if k < x. key
        return TREE-SEARCH(x.left, k)
    else return Tree-Search(x.right, k)
                              Write pseudocode
                               (or actual code) to
                               implement this!
 How long does this take?
```

Ollie the over-achieving ostrich

INSERT in a Binary Search Tree

EXAMPLE: Insert 4.5

- INSERT(key):
 - x = SEARCH(key)
 - **Insert** a new node with desired key at x...

INSERT in a Binary Search Tree

EXAMPLE: Insert 4.5

- INSERT(key):
 - x = SEARCH(key)
 - **if** key > x.key:
 - Make a new node with the correct key, and put it as the right child of x.
 - **if** key < x.key:
 - Make a new node with the correct key, and put it as the left child of x.
 - **if** x.key == key:
 - return

DELETE in a Binary Search Tree

EXAMPLE: Delete 2

- DELETE(key):
 - x = SEARCH(key)
 - **if** x.key == key:
 -delete x....

DELETE in a Binary Search Tree several cases (by example) say we want to delete 3

Case 1: if 3 is a leaf, just delete it.

Write pseudocode for all of these!

Case 2: if 3 has just one child, move that up.

DELETE in a Binary Search Tree

Case 3: if 3 has two children, replace 3 with it's immediate successor. (aka, next biggest thing after 3)

- Does this maintain the BST property?
 - Yes.
- How do we find the immediate successor?
 - SEARCH for 3 in the subtree under 3.right
- How do we remove it when we find it?
 - If [3.1] has 0 or 1 children, do one of the previous cases.
- What if [3.1] has two children?
 - It doesn't.

How long do these operations take?

- SEARCH is the big one.
 - Everything else just calls SEARCH and then does some small O(1)-time operation.

Data Structures and Algorithms

How long does search take?

1 minute think; 1 minute pair+share

Lucky the lackadaisical lemur.

Plucky the Pedantic Penguin

Search might take time O(n).

What to do?

- Goal: Fast SEARCH/INSERT/DELETE
- All these things take time O(height)
- And the height might be big!!! 😊

- Idea 0:
 - Keep track of how deep the tree is getting.
 - If it gets too tall, re-do everything from scratch.
 - At least Ω(n) every so often....