RETWOILS

NETWORKS AND INTERACTIONS

Mahsa Ehsanifard

O genecan693

Network

- Biological systems are often represented as networks.
- Networks are complex sets of binary interactions or relations between different entities.
- Every biological entity has interactions with other biological entities.
- The purpose:
 - Systems biology aims to understand biological entities at the systemic levels
 - Analyzing the relationships not only as individual components,
 - but also as interacting systems and their properties

Mahsa Ehsanifard

genecan693

Graph Theory

- the study of graphs,
 mathematical structures used to
 model pairwise relations between
 objects.
- A graph is made up of vertices, nodes, or points which are connected by edges, arcs, or lines.

Graph Types; edge properties

- NODES -> Represent different entities: proteins or genes
- EDGES -> Convey information about the links between the nodes

Network Edges Types

- Undirected edges
 - Is found in Protein-Protein Interaction networks (PPINs)
 - The relationship between the nodes is a simple connection
 - Without a given 'flow' implied, since the evidence behind the relationship only tells us that A binds B.

- In metabolic or gene regulation networks
- There is a clear flow of signal implied
- The network can be organized hierarchically.

Mahsa Ehsanifard

genecan693

Weighted edges

- Directed or undirected edges can also have weight or a quantitative value associated with them.
- Used to describe concepts such as:

reliability of an interaction

a gene quantitative expression change than another

how closely related two genes are in terms of sequence similarity

Undirected edges

Directed edges

Weighted edges

Mahsa Ehsanifard

O genecan693

Biological networks

 Modeling: make the connections and interactions as a biological model.

Some of the most common types of biological networks

1. Protein-protein interaction networks
(PPI)

```
nodes = proteins
```

edges = physical / functional interactions

2. Metabolic networks

- modeling of cellular metabolisms.

nodes = proteins and enzymes

edges = metabolism / metabolic interaction

3. Genetic interaction networks

Represent the functional interactions between pairs of genes in an organism

- Nodes = Genes
- Edges = Genetic interactions
- are useful for understanding the relation between genotype and phenotype

Mahsa Ehsanifard

genecan693

4. Gene / Transcriptional Regulatory networks

- Gene regulatory network (signed network)
- Regulatory interactions inter genes
- Nodes = genes or proteins
- Edges = activator / inhibitor interactions

5. Cell signalling networks

cellular signalling pathways

(signed network)

nodes = proteins

edges = inhibitor / activator connections

6. Disease Gene Networks

- Each node corresponds to a distinct disorder, colored based on the disorder class.
- The size of each node is proportional to the number of genes in the corresponding disorder.
- The link thickness is proportional to the number of genes shared by the disorders connected by the link.

Types of graphs

The differences between different types of graphs depends on what can go in Edges.

Mahsa Ehsanifard

genecan693

1. Directed graphs (signed)

- Digraph: each element of edge is an ordered pair.
- As <u>arrows</u> from a source, head, or initial vertex to a sink, tail, or terminal vertex.
 - Each of these two vertices is called an endpoint of the edge.

2. Undirected graphs

- Each edge is a two-element subset of node.
- Neighbors = two nodes which are linked by one edge
- The <u>multi-edges</u> are especially important for networks in which two <u>elements</u> can be linked by more than one connection.

- PPI networks

Mahsa Ehsanifard

genecan693

Categories

- Relational networks
 - The relationships between nodes without any direction.
 - Generally undirected (non-causal relationships).
 - Nodes are all the same "type".
 - No signs on edges.

EXAMPLE: protein A is a dimerization part of protein B

Correlation networks

- undirected (non-causal)
- Nodes are the same "type".
- Edges can have signs.

EXAMPLE: the changes of A expression can change B expression

Regulatory networks

- directed networks (causal relationships)
- can have variant "types" of nodes
- Edges can have signs.

EXAMPLE: TF A regulates Gene B

Degree

 The nodes of a graph can be characterized by the number of edges that they have.

the number of other nodes to which they are adjacent.

In directed networks:

- in-degree => the number of directed edges that point toward the node.
- out-degree => the number of directed edges that start at the node.

"Scale free" networks

- A network without a typical degree (or typical scale).
- The continuously decreasing degree distribution indicates that low-degree nodes have the highest frequencies.

meaning: probability of attendance of low-degree nodes is high.

There is a lot of nodes with low degree,

a few of them interacted with each other

There is a few nodes with high degree, interacted with a lot of nodes.

Comparison between the degree distribution of scale-free networks (circles) and random graphs (squares) having the same number of nodes and edges

- The bell shaped = degree distribution of random graphs peaks at the average degree and decreases fast for both smaller and larger degrees.

indicating that these graphs are statistically homogeneous

- The degree distribution of the scale-free network appears as a straight line on a logarithmic plot.

Every sub-networks of whole network

has the scale-free structure.

• **Hub nodes** = Those few nodes which are connected to many nodes.

Most of biological networks

