### **Tutorial 3**

Data Vizualization in R.

ggplot2: themes and styles.

Victoria Mironova

Associate Professor, Department of Plant Systems Physiology



### Course structure

### Week 5:

Lecture 1. Principles of figure design.

Quiz 1.

### Week 6:

Tutorial 1. ggplot2: plots and charts.

Quiz 2.

### Week 7:

Tutorial 2. ggplot2: statistics, coordinate system, facets.

Tutorial 3. ggplot2: themes and styles.

**Practice 1.** 

Quiz 3.

### Week 8:

Practice 2. Project.

Practice 3. Project.

Practice 4. Project.

Assignment.

### Course structure

# Learning goals

### Week 5:

Lecture 1. Principles of figure design.

Quiz 1.

### Week 6:

Tutorial 1. ggplot2: plots and charts.

Quiz 2.

### Week 7:

Tutorial 2. ggplot2: statistics, coordinate system, facets.

Tutorial 3. ggplot2: themes and styles.

**Practice 1.** 

Quiz 3.

#### Week 8:

Practice 2. Project.

Practice 3. Project.

Practice 4. Project.

Assignment.

- Understand the basic principles behind effective data visualization
- Create data visualizations in R using ggplot2
- Craft elegant visual presentations of data

## Grammar of graphics



Layers in grammar of graphics

The **Themes Layer** refers to all non-data ink.

- You can change the labels of x or y axis,
- add a plot title,
- modify a legend title and position,
- add text anywhere on the plot,
- change the background color, axis lines, plot lines,
- etc.

## Plan of the tutorial

- Themes principles
- Build-in themes
- Data annotation
- Customized design 1
- Customized design 2

## ?Theme()

There are three types of elements within the themes Layer: text, line, and rectangle.

Any text element can be modified with element\_text()

Any line element can be modified with element\_line()

Any rect element can be modified with element\_rect()

One can also use element\_blank() function to drop the element.

## Build-in themes

For the most part you can probably avoid the theme() function by using built-in themes, unless there is a specific element you want to modify.

```
Code Output
```

```
p ← Death_in_NL %>%
  filter(Age = "Total", CausesOfDeath = "Infections")%>%
  ggplot(mapping = aes(x = Year, y = Deaths, linetype = Sex))+
  geom_path(show.legend = FALSE)

p1 ← p + theme_classic()
  p2 ← p + theme_bw()
  p3 ← p + theme_light()
  p4 ← p + theme_void()
  p5 ← p + theme_cowplot()
  p6 ← p + theme_dark()

plot_grid(p1, p2, p3, p4, p5, p6, ncol = 3, labels = c("theme_classic()", "theme_bw()", "theme_light()", "theme_void()", "theme_void()"
```

## Build-in themes

For the most part you can probably avoid the theme() function by using built-in themes, unless there is a specific element you want to modify.



## Customised theme: change styles of axes texts and



# Customised theme: axes and legend text formatting

```
p ← Death in NL %>%
 filter(Age = "Total", Sex = "Male")%>%
 ggplot(aes(x = Year, v = Deaths, color = CausesOfDeat))
 geom path()+
 scale color discrete()
p1 ← p + theme classic()+
 ggtitle("Total number of deaths from different causes
 labs(x = NULL, v = NULL) +
 theme(legend.title = element blank(),
        axis.text = element text(size = 11),
        legend.text = element text(size = 11))
р
p1
```



## labs: annotate the plot

Good labels are critical for making your plots accessible to a wider audience. Always ensure the axis and legend labels display the full variable name. Use the plot title and subtitle to explain the main findings.



## Scales formatting and transformations

scale\_ family of functions affect how a single observation raw data is 'interpreted' before going on the graph. There are two types of scales: continuous and discrete. scale\_ functions are used to set colors, limits, and transformations.

```
p 		Death_in_NL %>%
  filter(Age = "Total", CausesOfDeath = "Infections")
ggplot(mapping = aes(x = Year, y = Deaths, color = Segeom_path(show.legend = FALSE)

p1 		p + scale_color_brewer(palette = 'Set1')
p2 		p + scale_color_manual(values = c("yellow", "dark p3 		p + scale_y_continuous(position = "right", limits)

plot_grid(p, p1, p2, p3, ncol = 1, labels = c("default' label_x = 0.5, label_y = 1, hjust = 0, vjust
```



# Customised bar plot: example

## Lets customize the bar plot we built on Tutorial 2

```
Death_in_NL%>%
  filter(Age = "Total", Sex = "Male")%>%
  ggplot(aes(x = reorder(CausesOfDeath, -Deaths), y = [
  stat_summary(fun.data = "mean_se", geom = "bar")+
  coord_flip()+
  ggtitle("Causes of Death in NL")
```

#### What I don't like:

- 1. the y axis title is non-sense
- 2. the x axis title is unclear
- 3. the text size on the y axis is too small
- 4. the gray background is annoying
- 5. the columns color is not appealing

Lets address those issues!



## Customised bar plot

- 1. the y axis title is non-sense
- 2. the x axis title is unclear
- 3. the text size on the y axis is too small
- 4. the gray background is annoying
- 5. the columns color is not appealing

```
Death_in_NL%>%
  filter(Age = "Total", Sex = "Male")%>%
  ggplot(aes(x = reorder(CausesOfDeath, -Deaths), y = [
  stat_summary(fun.data = "mean_se", geom = "bar")+
  coord_flip()+
  labs(y = NULL, x = NULL)+
  ggtitle("Number of deceased men per year in NL (1996))
```



## Customised bar plot

- 1. the y axis title is non-sense
- 2. the x axis title is unclear
- 3. the text size on the y axis is too small
- 4. the gray background is annoying
- 5. the columns color is not appealing



## Customised bar plot

- 1. the y axis title is non-sense
- 2. the x axis title is unclear
- 3. the text size on the y axis is too small
- 4. the gray background is annoying
- 5. the columns color is not appealing

You can pick the color here, or here



## Customised bar plot: add annotation

One can add additional elements and annotations



## Customised bar plot: facets



## Customised bar plot: facets

```
Death in NL%>%
 filter(Age = "Total")%>%
  ggplot(aes(x = reorder(CausesOfDeath, -Deaths), y = [
  stat summary(fun.data = "mean se", geom = "bar", show
 coord flip()+
 labs(v = NULL, x = NULL) +
 scale_fill_manual(values = c("#fed99b", "#99d8c9"))+
 theme classic()+
 theme(axis.text = element text(size = 12),
       title = element text(size = 14),
        strip.background = element blank(),
        strip.text = element text(size = 14))+
 ggtitle("Number of deceased per year in NL (1996 - 26
 facet wrap(~Sex)
```



# Customised strip chart

## Vizualizations to explore the data

Lets zoom in to the top2 causes of death in NL and explore if the gender-related differences are significant or not



## Showing individual observations on the plot

Lets plot individual observations instead of the bar plot using <code>geom\_jitter</code>. This will requires some adjustments of the code.

Are the differences significant?



## Showing individual observations on the plot

Would be better having some statistical estimates on the top of the individual observations.

```
Death in NL%>%
 filter(Age = "Total", CausesOfDeath = c("Neoplasms'
 ggplot(aes(x = Sex, y = Deaths, fill = Sex))+
 geom jitter(show.legend = FALSE, alpha = 0.7, shape =
 stat_summary(fun.data = "mean_se", show.legend = FALS
 scale_color_manual(values = c("#ef8a62", "#67a9cf"))+
 theme classic()+
 labs(x = NULL, y = "Number of deceased per year in Nl
 theme(axis.text = element_text(size = 12),
       title = element text(size = 14),
       strip.background = element blank(),
       strip.text = element text(size = 14),
       strip.placement = "outside")+
 facet_wrap(~CausesOfDeath, strip.position = "bottom")
```



Are the differences significant?

```
## Female
## Male 2.130499e-09
```

## Showing significance levels

```
Death in NL%>%
 filter(Age = "Total", CausesOfDeath = c("Neoplasms'
  ggplot(aes(x = Sex, y = Deaths, fill = Sex))+
 geom jitter(show.legend = FALSE, alpha = 0.7, shape =
  stat summary(fun.data = "mean se", show.legend = FALS
  scale color manual(values = c("#ef8a62", "#67a9cf"))+
 theme classic()+
 labs(x = NULL, y = "Number of deceased per year in NL")
 theme(axis.text = element text(size = 12),
       title = element text(size = 14),
        strip.background = element blank(),
        strip.text = element text(size = 14),
        strip.placement = "outside")+
 facet wrap(~CausesOfDeath, strip.position = "bottom")
 geom_line(data = tibble(x = c(1,2), y= c(26000, 26000)
           aes(x=x, y = y), inherit.aes = FALSE)+
 geom text(data = tibble(x = c(1.5), y= c(26100)),
           aes(x=x, y = y, label = "**"), inherit.aes
```



## Vizualizing statistical data using ggpubr package

The ggpubr package provides some easy-to-use functions for creating and customizing 'ggplot2'- based publication ready plots.

```
library(ggpubr)
Death in NL%>%
 filter(Age = "Total", CausesOfDeath = c("Neoplasms'
  ggboxplot(x = "Sex", y = "Deaths",
                color = "Sex", palette =c("#00AFBB", "#
                add = "jitter", shape = "Sex")+
 facet_wrap(~CausesOfDeath)+
  stat compare means(label = "p.format", label.x = 1.5)
  labs(x = NULL, y = "Number of deceased men per year i
 theme(axis.text = element text(size = 12),
        title = element text(size = 14),
        strip.background = element blank(),
        strip.text = element text(size = 14))+
  rremove("legend")
```



### Your turn

### Part 1.

Using the Death\_in\_NL dataset, build the following two visualizations:

- 1) What is the age profile of the number of deaths from external causes (not a disease) in NL? Is there any difference between men and women?
- 2) How has the number of perinatal deaths in the Netherlands changed over time? You will need this information to complete the quiz in the brightspace.

#### Part 2.

• Adjust the style and design of the plot making it visually appealing.

You will need these skills to finalize your project next week.