1 Let G be a compact Lie group. Show that G admits a bi-invariant metric, i.e., both right and left translations are isometries. *Hint:* Fix a left invariant metric g_L and a volume form $\omega - \sigma^1 \wedge \cdots \wedge \sigma^n$ where σ^i are left invariant 1-forms. Then define g as the average over right translations:

$$g(v, w) = \frac{1}{\int \omega} \int g_L(DR_x(v), DR_x(w))\omega.$$

2 Consider the upper-half plane

$$\mathbb{R}^{2}_{+} = \{ (x, y) \in \mathbb{R}^{2} \mid y > 0 \}$$

with the hyperbolic metric

$$\frac{dx^2 + dy^2}{y^2}.$$

Show that the vertical line segment between (0,1) and (0,2) is the shortest path between these points.

- 3 Consider \mathbb{R}^2_+ with the hyperbolic metric as above. Let $v_0=(0,1)$ be a tangent vector at the point (0,1) of \mathbb{R}^2_+ . Let v(t) be the parallel transport of v_0 along the curve $x=t,\ y=1$. Show that v(t) makes an angle t with the direction of the y-axis, measured in the clockwise sense.
- 4 For any $p \in (M,g)$ and orthonormal basis e_1, \ldots, e_n for T_pM , show that there is an orthonormal frame E_1, \ldots, E_n in a neighborhood of p such that $E_i = e_i$ and $(\nabla E_i)|_p = 0$. Hint: Fix an orthonormal frame \overline{E}_i near $p \in M$ with $\overline{E}_i(p) = e_i$. If we define $E_i = \alpha_i^j \overline{E}_j$, where $[\alpha_i^j(x)] \in SO(n)$ and $\alpha_i^j(p) = \delta_i^j$, then this will yield the desired frame provided that the $D_{e_k}\alpha_i^j$ are appropriately prescribed.
- 5 For any point p in a Riemannian manifold (M, g), show that there exist coordinates x^1, \ldots, x^n near p such that $\partial_i = e_i$ and $\nabla \partial_i = 0$ at p.
- 6 Petersen, Chapter 2, Exercise 10 (e) on p. 57
- 7 Petersen, Chapter 2, Exercise 11 on p. 58
- 8 Petersen, Chapter 2, Exercise 13 on p. 58