16. Write the equation of the graph presented below in the form $f(x) = ax^2 + bx + c$, assuming a = 1 or a = -1. Then, choose the intervals that a, b, and c belong to.

 $a = \boxed{}$

b =

 $c = \bigcap_{i=1}^{n} c_i$

- A. $a \in [-1.9, -0.2], b \in [7, 11], \text{ and } c \in [-15, -13]$
- B. $a \in [-1.9, -0.2], b \in [-10, -7], \text{ and } c \in [-24, -15]$
- C. $a \in [-2, 0], b \in [-10, -7], \text{ and } c \in [-15, -13]$
- D. $a \in [-1.9, -0.2], b \in [7, 11], \text{ and } c \in [-24, -15]$
- E. $a \in [0.6, 1.1], b \in [-10, -7], \text{ and } c \in [-15, -13]$
- 17. Graph the equation $f(x) = (x 4)^2 19$.

Α.

С.

D.

Ε.

18. Factor the quadratic below. Then, choose the intervals that contain the constants in the form (ax + b)(cx + d); $b \le d$.

- A. $a \in [14.5, 17], b \in [-3.5, -2], c \in [3, 5], and <math>d \in [-4.5, -2.5]$
- B. $a \in [0.5, 2], b \in [-3.5, -2], c \in [62.5, 65], and <math>d \in [-4.5, -2.5]$
- C. $a \in [7, 9.5], b \in [-3.5, -2], c \in [7.5, 8.5], and <math>d \in [-4.5, -2.5]$
- D. $a \in [0.5, 2], b \in [2, 4], c \in [62.5, 65], and <math>d \in [2.5, 3.5]$
- E. $a \in [2.5, 5], b \in [-3.5, -2], c \in [15, 17], and <math>d \in [-4.5, -2.5]$
- 19. Solve the quadratic equation below. Then, choose the intervals that the solutions x_1 and x_2 belong to, with $z_1 \leq z_2$.

$$486x^2 - 27x - 9 = 0$$

$$x_1 = \boxed{ }$$
 x_2

- A. $x_1 \in [-0.14, -0.09]$ and $x_2 \in [0.16, 0.2]$
- B. $x_1 \in [-0.03, 0.05]$ and $x_2 \in [2.97, 3.07]$
- C. $x_1 \in [-0.35, -0.3]$ and $x_2 \in [0.05, 0.06]$
- D. $x_1 \in [-3.03, -2.92]$ and $x_2 \in [-0.01, 0.05]$
- E. $x_1 \in [-0.04, -0.03]$ and $x_2 \in [0.49, 0.51]$
- 20. Solve the quadratic equation below. Then, choose the intervals that the solutions belong to, with $x_1 \leq x_2$ (if they exist).

$$5x^2 - 8x - 7 = 0$$

$$x_1 = \boxed{\qquad}$$

$$x_2 = \boxed{\qquad}$$

- A. $x_1 \in [-3.24, -2.79]$ and $x_2 \in [10.84, 11.22]$
- B. $x_1 \in [-3.01, -1.95]$ and $x_2 \in [0.21, 1.25]$
- C. $x_1 \in [-0.94, -0.52]$ and $x_2 \in [2, 2.54]$
- D. $x_1 \in [-11.84, -10.71]$ and $x_2 \in [2.86, 3.37]$
- E. There are no Real solutions.