

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

	swer on the Question Paper. Materials are required.		
•			2 hours 15 minutes
Paper 2			May/June 2008
COMBINED SO	CIENCE		5129/02
CENTRE NUMBER		CANDIDATE NUMBER	
CANDIDATE NAME			

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use

UNIVERSITY of CAMBRIDGE

International Examinations

For Examiner's Use

1 Fig. 1.1 shows some organisms in an ecosystem. They are not drawn to the same scale.

Fig. 1.1

(a) From Fig. 1.1 name

(1)	a producer,
	[1]
(ii)	a herbivore.
	[1]

© UCLES 2008 5129/02/M/J/08

(b) Choose organisms from Fig. 1.1 to complete this food chain.

For Examiner's Use

		1		2		3		4	
	grass		>		>	small bird	>		
1								[2]	
	(c)	State the	e energy	source for the foc	od chain.				
								[1]	
	(d)	State the	e essenti	al type of organis	m not sh	own in the ecosys	stem.		
								[1]	
	(e)	Suggest	why a fo	ood chain rarely ha	as more t	han five stages.			
								[2]	

2 The following is a list of metals.

aluminium	copper	
magnesium	potassium	zinc

Complete the sentences by choosing metals from the list. Each metal may be used once, more than once or not at all.

(a)	is used for electrical wiring in houses.	[1]
(b)	reacts vigorously with water producing hydrogen.	[1]
(c)	is extracted from haematite.	[1]
(d)	does not react with dilute sulphuric acid.	[1]
(e)	is used to galvanise iron to prevent it from rusting.	[1]

3 Fig. 3.1 shows two resistors, **A** and **B**, connected in series. The resistance of **A** is 7.0 Ω . The ammeter reads 0.20 A.

For Examiner's Use

Fig. 3.1

- (a) Calculate
 - (i) the charge that passes through resistor A in 3.0 minutes,

(ii) the potential difference across resistor A.

(b) The voltmeter reads 2.0 V.

Calculate the potential difference across resistor **B**.

4

For

Examiner's Use

Methane is the main constituent of natural gas. Methane burns in excess oxygen to form carbon dioxide and water.			
The equ	uation for the reaction is		
	$\mathrm{CH_4}$ + $\mathrm{2O_2}$ \rightarrow $\mathrm{2H_2O}$ + $\mathrm{CO_2}$		
(a) De	scribe a test to show that carbon dioxide is produced.		
tes	t		
res	sult[2]		
(b) (i)	Calculate the relative molecular mass of		
	methane,		
	carbon dioxide [2]		
	(A _r : C, 12; H, 1; O, 16.)		
(ii)	Calculate the mass of carbon dioxide produced by burning 4g of methane.		
	mass = g [2]		

5 Pieces of blue cobalt chloride paper are placed on the upper and lower surfaces of a plant leaf. They are held in place by glass slides as shown in Fig. 5.1.

For Examiner's Use

The plant is watered normally.

Fig. 5.1

Cobalt chloride paper is blue when dry and pink when it absorbs water.

(a) Complete the table to show the colour of each piece of cobalt chloride paper after one hour.

	upper surface	lower surface
start	blue	blue
after one hour		

[1]

		ι
(b)	(i)	Name the process by which water is lost from the leaf.
		[1
	(ii)	State two ways in which the upper surface of a leaf differs from the lower surface causing a difference in the rate of water loss.
		1
		2[2
(c)	Nar	ne the cells through which most water enters a plant and also the process involved
	nan	ne of cells

process[2]

5129/02/M/J/08

© UCLES 2008

6 Fig. 6.1 shows apparatus used to investigate the reaction between copper(II) oxide and hydrogen.

For Examiner's Use

Fig. 6.1

The equation for the reaction is

$$CuO + H_2 \rightarrow Cu + H_2O$$

(a) What type of reaction does the copper(II) oxide undergo?

.....[1]

(b) State two properties that show that copper is a metal.

property 1

property 2[2]

(c) Suggest a test to prove that the colourless liquid is **pure** water.

.....[1]

8 7 A free-fall parachutist jumps out of an aircraft. Fig. 7.1 shows how his downward velocity changes with time. downward velocity 10 20 time/s Fig. 7.1 (a) Name the downward force acting on the parachutist,[1] the form of energy lost by the parachutist as he falls.[1] **(b)** The parachutist accelerates during the first 10 seconds. Explain how Fig. 7.1 shows that the acceleration is **not** constant.[1] (c) The parachutist has a mass of 80 kg. At one point during his descent, the net downward force on him is 300 N. Calculate his acceleration.

acceleration =[3]

For Examiner's

Use

5129/02/M/J/08

© UCLES 2008

8 Fig. 8.1 shows two similar metal cans.

For Examiner's Use

Fig. 8.1

Can **A** has a shiny white surface and can **B** has a matt black surface. Both cans contain equal masses of cold water at the same initial temperature. The cans are placed equal distances from a heater that emits infra-red radiation.

(a)	Explain why the temperature of the water begins to rise more quickly in can B than in can A .
	[1]
(b)	As the water in the cans is heated, the volume of the water increases.
	State the change, if any, that occurs in
	(i) its mass,[1]
	(ii) its density[1]
(c)	Infra-red radiation is one component of the electromagnetic spectrum.
	Name two other components of the electromagnetic spectrum that have longer wavelengths than infra-red radiation.
	and[2]

For Examiner's Use

9	(a)	Exp	lain two ways in which chewing aids the process of digestion.	
		1		
		2		
				[2]
	(b)	Des	scribe the function of the salivary glands in the process of digestion.	
				[4]
	(c)	Con	nplete the following sentences about dental hygiene.	
		Whe	en grow between teeth, they produce ac	id.
		This	s acid attacks the teeth causing	[2]
10	Hyd Etha	lroch anoic	loric acid, HC l , and sulphuric acid, H $_2$ SO $_4$, are strong acids. c acid, CH $_3$ CO $_2$ H, is a weak acid.	
			3 2 7	
	(a)		te the name of the ion that causes acidity.	[1]
		Stat	~ -	
		Stat	te the name of the ion that causes acidityet the colour of the solution obtained when Universal Indicator is added to a solution	
		Stat Stat (i)	te the name of the ion that causes acidityet the colour of the solution obtained when Universal Indicator is added to a solution hydrochloric acid,	of
		Stat Stat (i) (ii) Acid Mag	te the name of the ion that causes acidityet the colour of the solution obtained when Universal Indicator is added to a solution hydrochloric acid,	of [1]
	(b)	Stat Stat (i) (ii) Acid Mag	te the name of the ion that causes acidity	of [1]
	(b)	Stat (i) (ii) Acid Mag	te the name of the ion that causes acidity. The the colour of the solution obtained when Universal Indicator is added to a solution hydrochloric acid,	of [1] [1]
	(b)	Stat (i) (ii) Acid Mag	te the name of the ion that causes acidity. The the colour of the solution obtained when Universal Indicator is added to a solution hydrochloric acid,	of [1] [1]

© UCLES 2008 5129/02/M/J/08

11 Fig. 11.1 shows paint droplets sprayed from a paint gun.

For Examiner's Use

Fig. 11.1

Each droplet has a negative charge.

(a)	Explain why the paint droplets move away from each other.
	[1]
(b)	The paint droplets are attracted to a metal surface.
	State whether the surface is uncharged, positively charged or negatively charged.
	[1]

12 Fig. 12.1 lists some quantities that may be measured in physics experiments.

quantity measured	unit
frequency of a wave	
period of a pendulum	

Fig. 12.1

Complete the table by writing down the units in which each quantity could be measured. [2]

13 (a) The electronic structures of nitrogen and hydrogen are shown in Fig. 13.1.

For Examiner's Use

Fig. 13.1

Construct a dot and cross diagram to show the electronic arrangement in a molecule of ammonia.

L	2	

(b) Ammonia is manufactured from nitrogen and hydrogen using the Haber process. State the essential conditions for the Haber process.

temperature	°C
pressure	atm
catalyst	[3]

(c) Ammonia is used to make the fertiliser ammonium sulphate. This contains nitrogen which is essential for the growth of plants. State the names of two other elements essential for the growth of plants.

and	[2	

14	(a)	Describe what	is meant by the term famine.	For Examiner's Use
			[1]	
	(b)	State and expla	ain two ways by which famine may be caused.	
		1		
		2		
			[4]	
15	(a)		15.1 to show how the voltage output of a simple a.c. generator changes the voltage change for two complete rotations of the coil.	
		1		
		voltage		
		output		
		0-	-	
			time	
			Fig. 15.1 [3]	
	(b)	State one way increased.	by which the maximum voltage output of an a.c. generator could be	
			[1]	

16 A uniform metre rule is placed on a knife edge so that it balances horizontally. A soft-iron rod of weight 0.10N is hung at the 20 cm mark. The rule is balanced by placing a lead disc at the 70 cm mark, as shown in Fig. 16.1.

For Examiner's Use

Fig. 16.1

(a) Calculate the weight of the lead disc.

(b)

	weight =	1 [2]
A magnet is held under the soft-iron ro	d.	
Explain what will happen to the balance	ed metre rule.	

© UCLES 2008 5129/02/M/J/08

17 The electronic structure of aluminium is shown in Fig. 17.1.

For Examiner's Use

Fig. 17.1

Fig. 17.2

(a)	(i)	Complete Fig. 17.2 to show the electronic structure of an aluminium ion .	[1]
	(ii)	State the charge on the aluminium ion.	[1]
(b)	Usir	ng the electronic structure and the Periodic Table, explain why aluminium is a met	al.
			[2]
(c)	Alur	minium is used to make food containers because it is resistant to corrosion.	
	Ехр	lain why aluminium is resistant to corrosion.	
			[2]

18 Fig. 18.1 shows a germinating seed.

For Examiner's Use

Fig. 18.1

(a)	Name the	parts	labelled	in	Fig.	18.1.
-----	----------	-------	----------	----	------	-------

A	
В	
C	
D	[4]
State three conditions that affect the germination of seeds.	
1	
2	

3.[3]

(b)

19 Fig. 19.1 shows a measuring cylinder that contains some water. Fig. 19.2 shows the same measuring cylinder with 50 metal spheres added.

For Examiner's Use

Calculate

(a) the volume of the 50 metal spheres,

volume = cm^3 [2]

(b) the volume of a single metal sphere.

volume = cm³ [1]

20 Fig. 20.1 shows an extension-load graph for a spring.

For Examiner's Use

Fig. 20.1

......cm [1]

(b) The length of the spring with no load is 20 cm.

What load gives the spring a total length of 30 cm?

load = N [2]

© UCLES 2008

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

DATA SHEET
The Periodic Table of the Elements

		0	4 He He ium	20 Neon 10	18	36	131 Xe Xenon Xenon 54	Rn Radon 86	
		NII		19 T Sluorine	35.5 C1 Chlorine	80 Br Bromine 35	127 I lodine 53	At Astatine 85	
		N		16 Oxygen 8	32 S Sulphur 16	79 Selenium 34	128 Te Tellurium 52	Po Polonium 84	
		>		14 N Nitrogen 7	31 P Phosphorus 15	75 As Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth	
		2		12 Carbon 6	28 Si Silicon	73 Ge Germanium 32	119 Sn Tin 50	207 Pb Lead 82	
				11 Boron 5	27 A1 Aluminium 13	70 Ga Gallium 31	115 In Indium 49	204 T1 Thallium	-
S						65 Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80	
Elemen						64 Copper 29	108 Ag Silver 47	197 Au Gold	
The Periodic Table of the Elements	Group					Nickel Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78	
dic Tabl	Gro					59 Co Cobalt 27	103 Rh Rhodium 45	192 Ir Iridium 77	
ne Perio			T Hydrogen			56 Fe Iron	Ru Ruthenium 44	190 OS Osmium 76	
F						Mn Manganese 25	Tc Technetium 43	186 Re Rhenium 75	
						52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74	-
						51 V Vanadium 23	93 Nb Niobium 41	181 Ta Tantalum 73	_
						48 Ti Titanium 22	91 Zr Zirconium 40	178 Hf Hafnium 72	
						45 Scandium 21	89 Y Yttrium 39	139 La Lanthanum 57 *	Ac Actinium +
		=		9 Be Beryllium	24 Mg Magnesium	40 Ca Calcium 20	Strontium	137 Ba Barium 56	226 Ra Radium 88
		-		7 Lithium	23 Na Sodium	39 K Potassium 19	85 Rb Rubidium 37	133 CS Caesium 55	Fr Francium 87
ICL	ES 2	008		1		5129/02	2/M/J/08		

Nobelium Mendelevium 169 **T** Ø **Fa** Fermium 167 **Er** Erbium 165 **Holmium** Es 162 **Q** ರ **Berkelium** 159 **Tb** Terbium Gadolinium 157 **Gd** Curium **Am** Americium 152 **Eu** Europium **Pu** Samarium 150 **Sm** Neodymium ‡ **Z** Praseodymium 59 Ра ₽ **₽** 140 **Cerium** Thorium 232 **Th** 28 06 b = proton (atomic) number a = relative atomic mass X = atomic symbol

*58-71 Lanthanoid series †90-103 Actinoid series

в 🗶

Key

q

175 **Lu** Lutetium

Ľ

The volume of one mole of any gas is $24\,\mathrm{dm^3}$ at room temperature and pressure (r.t.p.).