Computing Free Resolutions of Ol-Modules

Michael Hanson Morrow

University of Kentucky

November 2nd, 2022

Outline

- Brief introduction to free resolutions
- Review of Gröbner basis theory for OI-modules
- Free resolutions of Ol-modules
- The OI-Schreyer's Theorem

Some motivation

Every vector space has a linearly independent generating set. What about modules over a commutative Noetherian ring R?

Some motivation

Every vector space has a linearly independent generating set. What about modules over a commutative Noetherian ring R? No. Consider the \mathbb{Z} -module $\mathbb{Z}/2\mathbb{Z}$.

Some motivation

Every vector space has a linearly independent generating set. What about modules over a commutative Noetherian ring R? No. Consider the \mathbb{Z} -module $\mathbb{Z}/2\mathbb{Z}$.

- \blacksquare Let M be a module over a commutative Noetherian ring R
- Let $m_1, \ldots, m_n \in M$
- Do the m_i form an R-linearly independent set?
- If not, how "far" are the m_i from being R-linearly independent?

Syzygies

Consider the map $\varphi: \bigoplus_{i=1}^n Re_i \to \langle m_1, \ldots, m_n \rangle$ given by $e_i \mapsto m_i$. The kernel of φ is called the *(first) syzygy module* of m_1, \ldots, m_n . Elements of $\ker(\varphi)$ are called *syzygies* and correspond to *R*-linear relations on the m_i .

Remark

We have $ker(\varphi) = 0$ if and only if the m_i are R-linearly independent.

Our running example:

$$\mathbb{Z} \stackrel{\varphi}{ o} \mathbb{Z}/2\mathbb{Z} o 0$$

where φ is given by $1 \mapsto 1 + 2\mathbb{Z}$. One checks that $\ker(\varphi) = 2\mathbb{Z}$.

But wait, there's more...

Since R is Noetherian, $\bigoplus_{i=1}^n Re_i$ is a Noetherian module. So $\ker(\varphi)$ is finitely generated, say by s_1, \ldots, s_m . Do the s_i form an R-linearly independent set?

But wait, there's more...

Since R is Noetherian, $\bigoplus_{i=1}^n Re_i$ is a Noetherian module. So $\ker(\varphi)$ is finitely generated, say by s_1, \ldots, s_m . Do the s_i form an R-linearly independent set?

We repeat the process: take the map $\psi: \bigoplus_{i=1}^m Rd_i \to \langle s_1, \ldots, s_m \rangle$ given by $d_i \mapsto s_i$. Then $\ker(\psi)$ is called the *(second) syzygy module* of m_1, \ldots, m_n .

Note: by construction, we have $im(\psi) = ker(\varphi)$.

Our running example:

$$\mathbb{Z} \stackrel{\psi}{ o} \mathbb{Z} \stackrel{\varphi}{ o} \mathbb{Z}/2\mathbb{Z} o 0$$

where ψ is given by $1 \mapsto 2$. One checks that $\ker(\psi) = 0$.

Free resolutions

Continuing in this way, we obtain an exact sequence

$$\cdots \to \bigoplus_{i=1}^m Rd_i \stackrel{\psi}{\to} \bigoplus_{i=1}^n Re_i \stackrel{\varphi}{\to} \langle \textit{m}_1, \ldots, \textit{m}_\textit{n} \rangle \to 0.$$

Free resolutions

Continuing in this way, we obtain an exact sequence

$$\cdots \to \bigoplus_{i=1}^m Rd_i \stackrel{\psi}{\to} \bigoplus_{i=1}^n Re_i \stackrel{\varphi}{\to} \langle m_1, \ldots, m_n \rangle \to 0.$$

This is an example of a *free resolution* of a module M, i.e. an exact sequence of the form

$$\cdots \rightarrow F_2 \rightarrow F_1 \rightarrow F_0 \rightarrow M \rightarrow 0$$

where each F_i is a free R-module.

Our running example is a finite free resolution:

$$0 \to \mathbb{Z} \stackrel{2}{\to} \mathbb{Z} \xrightarrow{\mathsf{mod} \ 2} \mathbb{Z}/2\mathbb{Z} \to 0$$

What can you do with free resolutions?

To list a few things...

- Homological constructions such as Ext and Tor
- Hilbert functions and Hilbert polynomials
- Betti numbers

A theorem of Hilbert

Theorem (Hilbert's Syzygy Theorem)

Every finitely generated module over the polynomial ring $K[x_1, ..., x_n]$ has a finite free resolution with length $\leq n$.

A theorem of Hilbert

Theorem (Hilbert's Syzygy Theorem)

Every finitely generated module over the polynomial ring $K[x_1, ..., x_n]$ has a finite free resolution with length $\leq n$.

A proof due to Schreyer (see [E95, Chapter 15]) gives explicit generators for the syzygy modules. This lets one compute free resolutions in *finite time*.

What about sequences of modules?

Given a sequence of related modules over a sequence of related polynomial rings, we wish to simultaneously compute a free resolution for each module.

To formalize the notion of "related sequence" we use the framework of Ol-modules over Ol-algebras.

Ol-algebras

- Let $[n] = \{1, \dots, n\}$ for $n \in \mathbb{N}$ and set $[0] = \emptyset$.
- Let OI denote the category whose objects are [n] for $n \in \mathbb{Z}_{\geq 0}$ and whose morphisms are strictly increasing maps.
- Let *K* be a field, and denote by *K*-Alg the category of commutative, associative, unital *K*-algebras whose morphisms are unital *K*-algebra homomorphisms.

Definition

An OI-algebra over K is a covariant functor $\mathbf{A}: OI \rightarrow K$ -Alg.

- For an object $[n] \in OI$ and any functor F out of OI, we write F_n instead of F([n]). We call F_n the width n component of F.
- We write Hom(m, n) instead of $Hom_{OI}([m], [n])$.

Our main OI-algebra

Example

Fix $c \in \mathbb{N}$ and define an OI-algebra **P** as follows:

• For $m \ge 0$ set

$$\mathbf{P}_m = K[x_{i,j} : i \in [c], j \in [m]].$$

② For $\varepsilon \in \text{Hom}(m, n)$ define

$$P(\varepsilon): P_m \to P_n \text{ via } x_{i,j} \mapsto x_{i,\varepsilon(j)}.$$

Example

If c = 2, we can think of **P** as the sequence

$$K, K\begin{bmatrix} x_{1,1} \\ x_{2,1} \end{bmatrix}, K\begin{bmatrix} x_{1,1} & x_{1,2} \\ x_{2,1} & x_{2,2} \end{bmatrix}, K\begin{bmatrix} x_{1,1} & x_{1,2} & x_{1,3} \\ x_{2,1} & x_{2,2} & x_{2,3} \end{bmatrix}, \dots$$

Continuing the example...

Example

If c = 2, we can think of **P** as the sequence

$$\textit{K}, \textit{K} \begin{bmatrix} \textit{x}_{1,1} \\ \textit{x}_{2,1} \end{bmatrix}, \textit{K} \begin{bmatrix} \textit{x}_{1,1} & \textit{x}_{1,2} \\ \textit{x}_{2,1} & \textit{x}_{2,2} \end{bmatrix}, \textit{K} \begin{bmatrix} \textit{x}_{1,1} & \textit{x}_{1,2} & \textit{x}_{1,3} \\ \textit{x}_{2,1} & \textit{x}_{2,2} & \textit{x}_{2,3} \end{bmatrix}, \ldots$$

Now let $\varepsilon \in \text{Hom}(2,3)$ be given by $1 \mapsto 2$ and $2 \mapsto 3$.

Let
$$f = 3x_{2,1}^2 - x_{1,1}x_{2,2} \in \mathbf{P}_2$$
.

Then
$$P(\varepsilon)(f) = 3x_{2,2}^2 - x_{1,2}x_{2,3} \in P_3$$
.

OI-modules

Definition

An Ol-module over an Ol-algebra A is a covariant functor

 $M : OI \rightarrow K\text{-Vect such that}$

- \bullet each \mathbf{M}_m is an \mathbf{A}_m -module, and
- ② for each $\varepsilon \in \text{Hom}(m, n)$ and any $a \in \mathbf{A}_m$, the diagram

commutes.

We often refer to **M** as an **A**-module.

Ol-submodules

Definition

A subset of an Ol-module \mathbf{M} is a subset of $\coprod_{m\geq 0} \mathbf{M}_m$. An element of \mathbf{M} is an element of \mathbf{M}_m for some $m\geq 0$. Such an element has width m. If \mathbf{M} and \mathbf{N} are Ol-modules, then by $\mathbf{N}\subseteq \mathbf{M}$ we mean $\mathbf{N}_m\subseteq \mathbf{M}_m$ for all $m\geq 0$.

Definition

Let M and N be OI-modules. We say N is a *submodule* of M if $N \subseteq M$ and N inherits its structure from M.

Orbits and generation

Let $G \subseteq \mathbf{M}$ and let $m \ge 0$. The *m-orbit* of G is the set

$$\operatorname{Orb}(G, m) = \{ \mathbf{M}(\varepsilon)(g) : g \in \mathbf{M}_{\ell} \cap G, \varepsilon \in \operatorname{Hom}(\ell, m) \}.$$

Definition

A submodule $\mathbf{N} \subseteq \mathbf{M}$ is *finitely generated* if there is a finite subset $G \subset \mathbf{N}$ such that $\mathbf{N}_m = \langle \operatorname{Orb}(G, m) \rangle$ for all $m \geq 0$. In this case we write $\mathbf{N} = \langle G \rangle_{\mathbf{M}}$.

Example

If we consider **P** as an Ol-module over itself, then the Ol-*ideal* given by $\mathbf{I}_n = \langle x_i x_j : 1 \le i < j \le n \rangle$ is finitely generated by $\{x_1 x_2\}$.

Homomorphisms

Definition

Let \mathbf{M} and \mathbf{N} be \mathbf{A} -modules. A homomorphism (or \mathbf{A} -linear map) $\varphi: \mathbf{M} \to \mathbf{N}$ is a collection of \mathbf{A}_n -linear maps $\varphi_n: \mathbf{M}_n \to \mathbf{N}_n$ such that the diagram

$$\begin{array}{c|c}
\mathbf{M}_{m} & \xrightarrow{\varphi_{m}} & \mathbf{N}_{m} \\
\mathbf{M}(\varepsilon) \downarrow & & \downarrow \mathbf{N}(\varepsilon) \\
\mathbf{M}_{n} & \xrightarrow{\varphi_{n}} & \mathbf{N}_{n}
\end{array}$$

commutes for all $\varepsilon \in \text{Hom}(m, n)$. In categorical terms, φ is a natural transformation such that each φ_n is \mathbf{A}_n -linear.

Example

Let $\varphi: \mathbf{M} \to \mathbf{N}$ be an **A**-linear map. Then $\ker(\varphi)$ is the submodule of **M** given by $(\ker(\varphi))_n = \ker(\varphi_n)$. Similarly, $\operatorname{im}(\varphi)$ is the submodule of **N** given by $(\operatorname{im}(\varphi))_n = \operatorname{im}(\varphi_n)$.

Free OI-modules

Definition

Fix integers $d_1, \ldots, d_s \geq 0$ and define an OI-module over **P** as follows. For all $n \geq 0$ let

$$\mathsf{F}_n = igoplus_{\substack{1 \leq i \leq s \ \pi \in \mathsf{Hom}(d_i,n)}} \mathsf{P}_n e_{\pi,i}$$

and for all $\varepsilon \in \text{Hom}(m, n)$ define $\mathbf{F}(\varepsilon) : \mathbf{F}_m \to \mathbf{F}_n$ via $e_{\pi,i} \mapsto e_{\varepsilon \circ \pi,i}$. We call \mathbf{F} a free OI-module with basis $\{e_{\mathrm{id}_{[d]},i}\}$.

Remark

Any **P**-linear map out of **F** is uniquely determined by where the $e_{id_{[d_i]},i}$ are sent.

Free OI-module example

Example

Let **F** have basis $\{e_{\mathrm{id}_{[2]}}\}$. Then **F**_n is a free **P**_n-module of rank $\binom{n}{2}$ for all n > 0.

Specifically, if c=1 we can think of ${\bf F}$ as the sequence

$$0, 0, K[x_1, x_2], K[x_1, x_2, x_3]^3, K[x_1, x_2, x_3, x_4]^6, \dots$$

Monomial orders

A monomial in **F** is an element $x^u e_{\pi,i}$ for some monomial x^u in **P**.

Definition

A total order < on the monomials of ${\bf F}$ is a *monomial order* on ${\bf F}$ if for all monomials $\mu, \nu \in {\bf F}_m$ with $\mu < \nu$ we have

- $oldsymbol{0} \ \mu < a\mu < a
 u$ for all monomials $1
 eq a \in \mathbf{P}_m$, and
- \bullet $\mu < \mathbf{F}(\varepsilon)(\mu) < \mathbf{F}(\varepsilon)(\nu)$ for all $\varepsilon \in \operatorname{Hom}(m, n)$ with m < n.

Monomial orders exist, for example the *lex order*, and any monomial order is a *well-order* [NR19].

Division with remainder

Given a monomial order < on \mathbf{F} and an element $f \in \mathbf{F}_m$, one defines $\operatorname{Im}(f) \in \mathbf{F}_m$, $\operatorname{It}(f) \in \mathbf{F}_m$ and $\operatorname{Ic}(f) \in K$.

Remark

Any monomial order < on \mathbf{F} restricts to a monomial order $<_n$ on \mathbf{F}_n for all n > 0.

Definition

Let $f \in \mathbf{F}_n$ and let $G \subseteq \mathbf{F}$. A remainder of f modulo G (with respect to <) is defined to be a remainder of f modulo Orb(G, n) (with respect to $<_n$).

Remainders of f modulo G can be computed in finite time [CLO].

Division with remainder

What does it mean to be a remainder?

If r is a remainder of $f \neq 0$ modulo G, then we can write $f = \sum a_i q_i + r$ for some $a_i \in \mathbf{P}_n$ and some $q_i \in \mathrm{Orb}(G, n)$ such that

- either r = 0 or Im(r) is not divisible by any element of Orb(Im(G), n),
- Im(r) < Im(f) if $r \neq 0$, and
- $\operatorname{Im}(a_iq_i) \leq \operatorname{Im}(f)$ whenever $a_iq_i \neq 0$.

Gröbner bases

Definition

Fix a monomial order < on \mathbf{F} and let \mathbf{M} be a submodule of \mathbf{F} . A subset $G \subseteq \mathbf{M}$ is called a *Gröbner basis* for \mathbf{M} if

$$\langle \operatorname{Im}(\mathbf{M}) \rangle_{\mathbf{F}} = \langle \operatorname{Im}(G) \rangle_{\mathbf{F}}$$

where $lm(\mathbf{M}) = \{lm(f) : f \in \mathbf{M}\}\ and \ lm(G) = \{lm(g) : g \in G\}.$

Remark

A set $G \subseteq \mathbf{M}$ forms a Gröbner basis for \mathbf{M} if and only if $\mathrm{Orb}(G, n)$ forms a Gröbner basis for \mathbf{M}_n with respect to $<_n$ for all $n \ge 0$.

S-Polynomials and Critical Pairs

Definition

The *S*-polynomial of $f, g \in \mathbf{F}_m$ is the combination

$$S(f,g) = \frac{\operatorname{lcm}(\operatorname{Im}(f),\operatorname{Im}(g))}{\operatorname{lt}(f)}f - \frac{\operatorname{lcm}(\operatorname{Im}(f),\operatorname{Im}(g))}{\operatorname{lt}(g)}g.$$

Definition

Let $B \subseteq \mathbf{F}$ and let $m \ge 0$. A tuple

$$(\mathbf{F}(\sigma)(f), \mathbf{F}(\tau)(g)) \in \mathrm{Orb}(B, m) \times \mathrm{Orb}(B, m)$$

is called a *critical pair* if Im(f) and Im(g) involve the same basis element and $m = |im(\sigma) \cup im(\tau)|$. The set of all critical pairs of B is denoted C(B).

Important: C(B) is finite if B is finite.

OI-Buchberger's Criterion

Theorem (M, Nagel)

A generating set G of a submodule M of F forms a Gröbner basis for M if and only if each S(f,g) with $(f,g) \in C(G)$ has a remainder of zero modulo G.

Key idea: any S-polynomial $S(\mathbf{F}(\sigma)(f), \mathbf{F}(\tau)(g))$ can be written as $\mathbf{F}(\rho)(S(\mathbf{F}(\overline{\sigma})(f), \mathbf{F}(\overline{\tau})(g)))$ where $(\mathbf{F}(\overline{\sigma})(f), \mathbf{F}(\overline{\tau})(g))$ is a critical pair.

Buchberger's Algorithm

Let < be a monomial order on **F** and let $G \subset \mathbf{F}$ be a finite set.

- Are there $(f,g) \in C(G)$ such that S(f,g) has a nonzero remainder modulo G?
- ② If so, append the remainder to G and repeat.
- F is Noetherian (see [NR19]) so this process terminates.
- **1** Computes a finite Gröbner basis for $\langle G \rangle_{\mathbf{F}}$.

Gröbner basis example

Consider **P** as a free OI-module over itself. Let c=2 and let $B=\{x_{2,1}^2+x_{1,1}\in \mathbf{P}_1, x_{2,2}+x_{1,2}x_{1,1}\in \mathbf{P}_2\}$. Using Macaulay2, we can compute a Gröbner basis for $\langle B\rangle_{\mathbf{P}}$. It consists of the elements

$$\begin{aligned} x_{2,1}^2 + x_{1,1} &\in \mathbf{P_1} \\ x_{2,2} + x_{1,2}x_{1,1} &\in \mathbf{P_2} \\ x_{1,2}^2 x_{1,1}^2 + x_{1,2} &\in \mathbf{P_2} \\ -x_{1,3}^2 + x_{1,3}x_{1,2} &\in \mathbf{P_3} \\ -x_{1,3}x_{1,2} + x_{1,3}x_{1,1} &\in \mathbf{P_3} \\ -x_{1,3}x_{1,1}^3 - x_{1,3} &\in \mathbf{P_3} \end{aligned}$$

https://github.com/morrowmh/OIGroebnerBases

Return to free resolutions

Definition

Let M be an A-module. A free resolution of M is an exact sequence

$$\cdots \to \textbf{F}^2 \to \textbf{F}^1 \to \textbf{F}^0 \to \textbf{M} \to 0$$

where each \mathbf{F}^{i} is a free Ol-module over \mathbf{A} .

Theorem (Nagel, Römer, 2019)

If M is a finitely generated P-module, then a free resolution of M exists where each \mathbf{F}^i is finitely generated.

Restricting to a width

If we can find a resolution

$$\cdots \rightarrow \mathbf{F}^2 \rightarrow \mathbf{F}^1 \rightarrow \mathbf{F}^0 \rightarrow \mathbf{M} \rightarrow 0$$

then for all $w \ge 0$ we get an induced free resolution

$$\cdots \to \textbf{F}_w^2 \to \textbf{F}_w^1 \to \textbf{F}_w^0 \to \textbf{M}_w \to 0$$

over \mathbf{P}_w .

A word on minimal resolutions

Remark

If M is graded, one can find a *graded* free resolution of M, i.e. each map is degree preserving.

Theorem (Fieldsteel, Nagel, 2021)

Let M be a finitely generated graded P-module. Then a minimal graded free resolution of M exists and is unique up to isomorphism.

Remark

Width-wise minimal implies minimal, but the converse does not hold in general.

From Gröbner bases to syzygies

Let \mathbf{F} be a free Ol-module over \mathbf{P} and let \mathbf{M} be a finitely generated submodule. We wish to compute a free resolution of \mathbf{M} . Here is the process:

- ① Use the Ol-Buchberger's Algorithm to compute a finite Gröbner basis $B = \{b_1, \dots, b_t\}$ of \mathbf{M} .
- ② Assume each $b_i \in \mathbf{M}_{w_i}$ and let \mathbf{G} be the free \mathbf{P} -module with basis $\{\epsilon_{i\mathbf{d}_{[w:i]},i}\}$.
- **3** Consider the **P**-linear map $\varphi : \mathbf{G} \to \langle B \rangle_{\mathbf{F}}$ induced by $\epsilon_{\mathrm{id}_{[w:]},i} \mapsto b_i$.
- **①** Use the OI-Schreyer's Theorem to compute a finite Gröbner basis for $Syz(B) := ker(\varphi)$.
- Repeat.

Schreyer monomial order

Definition

1 Define a total order \prec_B on the set

$$\{(\pi,i) : i \in [t], \pi \in \mathsf{Hom}(w_i,m), m \geq w_i\}$$

as follows. For $\pi \in \mathsf{Hom}(w_i, m)$ and $\rho \in \mathsf{Hom}(w_i, n)$ we say $\pi < \rho$ if

$$(m,\pi(1),\ldots,\pi(w_i))<(n,\rho(1),\ldots,\rho(w_i))$$

in the usual lex order on \mathbb{N}^{w_i+1} . Now define $(\pi, i) \prec_B (\rho, j)$ if either i < j or i = j and $\pi < \rho$.

② Define a total order $<_B$ on the monomials of **G** by setting $a\epsilon_{\pi,i} <_B b\epsilon_{\rho,j}$ if either $\operatorname{Im}(\varphi(a\epsilon_{\pi,i})) < \operatorname{Im}(\varphi(b\epsilon_{\rho,j}))$ or equality occurs and $(\rho,j) \prec_B (\pi,i)$.

Some setup...

Definition

For any $i, j \in [t]$, $\sigma \in \text{Hom}(w_i, m)$ and $\tau \in \text{Hom}(w_j, m)$ with $m \ge \max(w_i, w_j)$, use the division algorithm to write

$$S(\mathbf{F}(\sigma)(b_i),\mathbf{F}(\tau)(b_j)) = \sum_{\ell} a_{i,j,\ell}^{\sigma,\tau} \mathbf{F}(\pi_{i,j,\ell}^{\sigma,\tau})(b_{k_{i,j,\ell}^{\sigma,\tau}})$$

for some $a_{i,j,\ell}^{\sigma,\tau} \in \mathbf{P}_m$ and $\mathbf{F}(\pi_{i,j,\ell}^{\sigma,\tau})(b_{k_{i,l,\ell}^{\sigma,\tau}}) \in \mathrm{Orb}(B,m)$. Define

$$s_{i,j}^{\sigma,\tau} = \textit{m}_{i,j}^{\sigma,\tau} \epsilon_{\sigma,i} - \textit{m}_{j,i}^{\tau,\sigma} \epsilon_{\tau,j} - \sum_{\ell} \textit{a}_{i,j,\ell}^{\sigma,\tau} \epsilon_{\pi_{i,j,\ell}^{\sigma,\tau},k_{i,j,\ell}^{\sigma,\tau}} \in \textbf{G}$$

where

$$m_{i,j}^{\sigma,\tau} = \frac{\mathsf{lcm}(\mathbf{F}(\sigma)(\mathsf{lm}(b_i)),\mathbf{F}(\tau)(\mathsf{lm}(b_j)))}{\mathbf{F}(\sigma)(\mathsf{lm}(b_i))} \in \mathbf{P}_m.$$

OI-Schreyer's Theorem

Theorem (M, Nagel)

The $s_{i,j}^{\sigma,\tau}$ with $(\mathbf{F}(\sigma)(b_i),\mathbf{F}(\tau)(b_j)) \in \mathcal{C}(B)$ and $(\sigma,i) \prec_B (\tau,j)$ form a finite Gröbner basis for $\mathsf{Syz}(B)$ with respect to $<_B$.

Syzygy example

Let **G** be the free **P**-module (c=2) with basis $\{\epsilon_{\mathrm{id}_{[2]}}\}$ and let $B=\{x_{1,1}x_{2,2}-x_{1,2}x_{2,1}\in \mathbf{P}_2\}$ so that $(\langle B\rangle_{\mathbf{P}})_n$ is the ideal of \mathbf{P}_n generated by the 2×2 minors of the matrix

$$\begin{bmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,n} \\ x_{2,1} & x_{2,2} & \cdots & x_{2,n} \end{bmatrix}.$$

Using Macaulay2 we compute a Gröbner basis for Syz(B):

$$-x_{1,1}\epsilon_{23} + x_{1,2}\epsilon_{13} - x_{1,3}\epsilon_{12} \in \mathbf{G}_3$$
$$x_{2,2}\epsilon_{13} - x_{2,3}\epsilon_{12} - x_{2,1}\epsilon_{23} \in \mathbf{G}_3.$$

Note: $\epsilon_{ij} \leftrightarrow \epsilon_{\pi}$ where $\pi : [2] \rightarrow [3]$ is given by $1 \mapsto i$ and $2 \mapsto j$.

https://github.com/morrowmh/OIGroebnerBases

Resolution example

Let c=1 and let ${\bf F}$ be the free ${\bf P}$ -module with basis $\{e_{{\sf id}_{[1]}},e_{{\sf id}_{[2]}}\}$. Let ${\bf M}$ be the submodule of ${\bf F}$ generated by

$$\{x_1x_2e_{\pi},(x_1+x_2)e_{\sigma}+x_3e_{\tau}\}\subset \mathbf{F}_3$$

(see chalkboard for maps). Then with Macaulay2 we compute the beginning of a free resolution (the minimal resolution) of \mathbf{M} :

$$\mathbf{G}^4 o \mathbf{G}^3 o \mathbf{G}^2 o \mathbf{G}^1 o \mathbf{G}^0 o \mathbf{M} o 0$$

where

$$rk(\mathbf{G}^4) = 20, rk(\mathbf{G}^3) = 13, rk(\mathbf{G}^2) = 8, rk(\mathbf{G}^1) = 4, rk(\mathbf{G}^0) = 2.$$

https://github.com/morrowmh/OIGroebnerBases

References

- [CLO] D. Cox, J. Little, D. O'Shea, *Ideals, Varieties, and Algorithms*, Springer (2006).
- [E95] D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Springer (1995).
- [FN21] N. Fieldsteel, U. Nagel, Minimal and cellular free resolutions over polynomial Ol-algebras, Preprint, arXiv:2105.08603, 2021.
- [NR19] U. Nagel, T. Römer, Fl- and Ol-modules with varying coefficients, J. Algebra 535 (2019), 286-322.