Sentimental Analysis on Tweets

Iro Moumoulidou

Technical University Of Crete

June 23, 2016

Introduction

- Main Object: Classify tweets as positive/negative
- Build a Classifier with Supervised Learning

Our Data Set

- Data set retrieved from an in-class competition organized at Kaggle
- Set of tweets already classified as negative or positive
- 84.400 of them were used to train our classifier, 8.420 to test it

Tweet Representation

- Every Tweet is a Bag of Words (positive or negative respectively)
- Union of same sentiment bags of words, form the terms of each class
- However, do we need every single one of these terms?

Detection Of Uninformative Terms

- Characteristics of tweets: Qusername, #feelings, urls
- Stopwords
- What about terms that appear in both classes?

Detection Of Uninformative Terms

• For a term x of both classes a metric is defined as:

$$ratio = \frac{min(P_x, N_x)}{max(P_x, N_x)}$$

- If this ratio is close to one, occurrences of the term are almost equal
- A good threshold should be found for discarding these terms

Detection Of Uninformative Terms

- Another idea: Select the most representative terms-words for each class
- Metric used: tf as in Information Retrieval
- Term-frequency(tf) in a class is defined as:

$$tf_c = \frac{\text{frequency of term in class c}}{\text{maximum frequency of class c}}$$

Again a good threshold should be found for discarding irrelative terms

Multinomial Naive Bayes

- Model used to train our classifier is Multinomial Naive Bayes
- Given a tweet t, the classifier should choose the class that maximizes the probability p(c|t)
- Formally we get:

$$c_{NB} = \operatorname*{argmax}_{c} p(c|t)$$

$$= \operatorname*{argmax}_{c} \frac{p(t|c)p(c)}{p(t)}$$

$$= \operatorname*{argmax}_{c} p(t|c)p(c)$$

Multinomial Naive Bayes

• However a tweet is a set of independent terms, so we get:

$$c_{NB} = \operatorname*{argmax}_{c} p(t|c)p(c)$$

$$= \operatorname*{argmax}_{c} p(t_{1}, t_{2}, \dots, t_{n}|c)p(c)$$

$$= \operatorname*{argmax}_{c} p(t_{1}|c)p(t_{2}|c) \dots p(t_{n}|c)p(c)$$

• The probability of each term t_i is defined as:

$$p(t_i|c) = \frac{\text{frequency of term } t_i \text{ in class } c + 1}{\text{sum of all frequencies in class } c + |D|}$$

• |D|: number of distinct words in both classes

Multinomial Naive Bayes

• Finally, the a-priori probability of each class is defined as:

$$p(c) = \frac{\text{num of processed tweets in class c}}{\text{total num of processed tweets}}$$

Preprocessing Of Test Tweets

Every test-tweet has undergone the same preprocessing(stopword removal etc) as the training tweets.

Experiments

Quick overview of our two thresholds:

$$ratio = \frac{min(P_x, N_x)}{max(P_x, N_x)}$$

Experiments

$$tf_c = \frac{\text{frequency of term in class c}}{\text{maximum frequency of class c}}$$

- First, we set a threshold for ratio metric and discard every term above it.
- Then, among the remaining tweets in each class those with tf less than the second threshold are discarded

Experiments

• The error results of our classifier for various thresholds are:

$t1 \setminus tf$				
0.9	0.32	0.36	0.46	0.464
0.7	0.33	0.37	0.43	0.464
0.5	0.34	0.38	0.45	0.464 0.464 0.458

Table 1: Errors for Various Thresholds

- As we decrease the t1, we increase the number of terms chosen for deletion according to the first filter.
- We observe that the error in this case does not change much.

Experiments

- As we increase the tf threshold, the error deteriorates as we choose to keep less and less terms.
- So the tf thresholds seems to determine the final error, and the more terms are included in the feature vector of each class, the better perfomance we get.

Thank You!