theta_vk_i: a $3 \times K$ matrix where the k^{th} column is the axis-angle representation of the groundtruth value of $\mathbf{C}_{v_k i}$. Use this vector as $\boldsymbol{\psi}_k$ in (3.3c) to recover the rotation matrix. $\mathbf{r}_{-}\mathbf{i}_{-}\mathbf{v}\mathbf{k}_{-}\mathbf{i}$: a $3\times K$ matrix where the k^{th} column is the groundtruth value of $\mathbf{r}_{i}^{v_{k}i}$ [m]

 $t : a 1 \times K$ matrix of time values t(k) [s] $\mathbf{w}_{\mathbf{v}}\mathbf{k}_{\mathbf{v}}\mathbf{k}_{\mathbf{i}}$: a $3 \times K$ matrix where the k^{th} column is the measured rotational velocity, $\boldsymbol{\omega}_{n_k}^{v_k i}$ [rad/s]

 $\mathbf{v}_{-}\mathbf{v}\mathbf{k}_{-}\mathbf{i}$: a $3 \times K$ matrix where the k^{th} column is the measured translational velocity, $\mathbf{v}_{v_k}^{v_k,i}$ [m/s]

w_var: a 3×1 matrix of the computed variances (based on groundtruth) of the rotational speeds [rad²/s²]

 $\mathbf{v}_{-}\mathbf{var}$: a 3 × 1 matrix of the computed variances (based on groundtruth) of the translational speeds [m²/s²]

rho_i_pj_i: a 3×20 matrix where the j^{th} column is the position of feature j, $\rho_i^{p_j i}$ [m]

 $\mathbf{y}_{\mathbf{k}}$: a $4 \times K \times 20$ array of observations, \mathbf{y}_{k}^{j} [pixels]. All components of $\mathbf{y}_{\mathbf{k}}$: (:, k, j) will be -1 if the observation is invalid.

y_var: a 4×1 matrix of the computed variances (based on groundtruth) of the stereo measurements [pixels²] $\mathbf{C}_{-\mathbf{c}_{-\mathbf{v}}}$: a 3 \times 3 matrix giving the rotation from the vehicle frame to the camera frame, \mathbf{C}_{cv}

rho_v_c_v: a 3 × 1 matrix giving the translation from the vehicle frame to the camera frame, ρ_v^{cv} [m]

fu: the stereo camera's horizontal focal length, f_u [pixels]

fv: the stereo camera's vertical focal length, f_v [pixels]

 ${\tt cu}$: the stereo camera's horizontal optical center, c_u [pixels]

 \mathbf{cv} : the stereo camera's vertical optical center, c_n [pixels]

b: the stereo camera baseline, b [m]