Class 9: Structural Bioinformatics 1

AUTHOR
Anh Tran

To analyze PDB file, can download csv and use read.csv() to analyze the data. Protein structures by X-ray crystalography dominate this database. We are skipping Q1-3 as the website was too slow for us.

```
d <- read.csv("Data Export Summary.csv")
head(d)</pre>
```

```
Molecular. Type
                             X.ray
                                       NMR
                                               EΜ
Multiple.methods Neutron Other
           Protein (only) 150,342 12,053 8,534
1
188
         72
2 Protein/Oligosaccharide
                             8,866
                                        32 1,540
        0
                            7,911
3
                                       278 2,681
                Protein/NA
6
        0
      Nucleic acid (only)
4
                             2,510 1,425
                                               74
13
         2
                1
5
                     0ther
                                154
                                        31
                                                6
0
        0
   Oligosaccharide (only)
                                 11
                                         6
                                                0
1
        0
    Total
1 171,221
2
  10,444
   10,876
4
    4,025
      191
5
6
       22
```

Q1: What percentage of structures in the PDB are solved by X-Ray and Electron Microscopy.

```
(169794 + 13825)/196779
```

[1] 0.9331229

Q2: What proportion of structures in the PDB are protein?

(171221 + 10444 + 10876)/196779

[1] 0.9784631

Q3: Type HIV in the PDB website search box on the home page and determine how many HIV-1 protease structures are in the current PDB?

2,545 Structures

HIV-Pr structure from 1hsg

Q4: Water molecules normally have 3 atoms. Why do we see just one atom per water molecule in this structure?

Because the resolution is not high enough/hydrogen molecules are too small so only oxygen atom is displayed per water molecule.

Q5: There is a critical "conserved" water molecule in the binding site. Can you identify this water molecule? What residue number does this water molecule have

Yes, 308

Q6: Generate and save a figure clearly showing the two distinct chains of HIV-protease along with the ligand. You might also consider showing the catalytic residues ASP 25 in each chain (we recommend "Ball & Stick" for these side-chains). Add this figure to your Quarto document. Discussion Topic: Can you think of a way in which indinavir, or even larger ligands and substrates, could enter the binding site?

HIV-Pr structure from 1hsg

3. Introduction to Bio3D in R

Bio3D is an R packaged for structural bioinformatcis. To use it we ned to call it up with the library function (just like any package)

library(bio3d)

To read PDF file we can use read.pdb()

pdb <- read.pdb("1hsg")</pre>

Note: Accessing on-line PDB file

pdb read.pdb(file = "1hsg") Call: Total Models#: 1 Total Atoms#: 1686, XYZs#: 5058 Chains#: 2 (values: A B) Protein Atoms#: 1514 (residues/Calpha atoms#: 198) Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0) Non-protein/nucleic Atoms#: 172 (residues: 128) Non-protein/nucleic resid values: [HOH (127), MK1 (1)] Protein sequence: PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYD QILIEICGHKAIGTVLVGPTPVNIIGRNLLTQIGCTLNFPQITLWQRPLVTIKIGGQLKE ALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYD01LIEICGHKAIGTVLVGPTP **VNIIGRNLLTQIGCTLNF** + attr: atom, xyz, segres, helix, sheet, calpha, remark, call Q7: How many amino acid residues are there in this pdb object? 198 Q8: Name one of the two non-protein residues? MK1 Q9: How many protein chains are in this structure? 2

attributes(pdb)

```
$names
[1] "atom" "xyz" "seqres" "helix" "sheet" "calpha"
"remark" "call"

$class
[1] "pdb" "sse"
```

The ATOM records of a PDB file are stored in pdb\$atom

head(pdb\$atom)

```
type eleno elety alt resid chain resno insert
                                                         Χ
Z 0
1 ATOM
           1
                 N < NA >
                           PR<sub>0</sub>
                                    Α
                                          1
                                              <NA> 29.361 39.686
5.862 1 38.10
2 ATOM
                           PR0
                                              <NA> 30.307 38.663
           2
                 CA <NA>
                                          1
5.319 1 40.62
3 ATOM
           3
                  C <NA>
                           PR0
                                    Α
                                          1
                                              <NA> 29.760 38.071
4.022 1 42.64
4 ATOM
                  0 < NA >
                           PR0
                                    Α
                                              <NA> 28.600 38.302
3.676 1 43.40
5 ATOM
           5
                 CB <NA>
                           PR0
                                    Α
                                          1
                                              <NA> 30.508 37.541
6.342 1 37.87
6 ATOM
                 CG <NA>
                           PR0
                                              <NA> 29.296 37.591
                                    Α
                                          1
7.162 1 38.40
  segid elesy charge
1 <NA>
            Ν
                <NA>
2 <NA>
            C
                <NA>
3
  <NA>
            C
                <NA>
4 <NA>
                <NA>
            0
5
  <NA>
            C
                <NA>
  <NA>
            C
                 <NA>
```

```
adk <- read.pdb("6s36")
```

Note: Accessing on-line PDB file PDB has ALT records, taking A only, rm.alt=TRUE

adk

Call: read.pdb(file = "6s36")

```
Total Models#: 1
     Total Atoms#: 1898, XYZs#: 5694 Chains#: 1 (values: A)
     Protein Atoms#: 1654 (residues/Calpha atoms#: 214)
    Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)
    Non-protein/nucleic Atoms#: 244 (residues: 244)
     Non-protein/nucleic resid values: [ CL (3), HOH (238), MG
(2), NA (1)
   Protein sequence:
MRIILLGAPGAGKGTQAQFIMEKYGIPQISTGDMLRAAVKSGSELGKQAKDIMDAGKLVT
DELVIALVKERIAQEDCRNGFLLDGFPRTIPQADAMKEAGINVDYVLEFDVPDELIVDKI
VGRRVHAPSGRVYHVKFNPPKVEGKDDVTGEELTTRKDDQEETVRKRLVEYHQMTAPLIG
      YYSKEAEAGNTKYAKVDGTKPVAEVRADLEKILG
+ attr: atom, xyz, segres, helix, sheet,
        calpha, remark, call
m <- nma(adk)
 Building Hessian... Done in 0.111 seconds.
 Diagonalizing Hessian... Done in 0.344 seconds.
```

plot(m)


```
mktrj(m, file="adk_m7.pdb")
```

4. Comparative analysis of Adenylate kinase (ADK)

We will start our analysis with a single PDB id (code from the PDB database): 1AKE

First we get its primary sequence:

```
#install.packages("bio3d")
#install.packages("devtools")
#install.packages("BiocManager")
#BiocManager::install("msa")
#devtools::install_bitbucket("Grantlab/bio3d-view")
```

Q10. Which of the packages above is found only on BioConductor and not CRAN?

msa

Q11. Which of the above packages is not found on BioConductor or CRAN?

bio3d-view

Q12. True or False? Functions from the devtools package can be used to install packages from GitHub and BitBucket?

TRUE

seqs.fasta

```
aa <- get.seq("1ake_a")
Warning in get.seq("1ake_a"): Removing existing file:</pre>
```

Fetching... Please wait. Done.

180

```
aa
           60
pdb | 1AKE | A
MRIILLGAPGAGKGTQAQFIMEKYGIPQISTGDMLRAAVKSGSELGKQAKDIMDAGKLVT
           60
             61
           120
pdb | 1AKE | A
DELVIALVKERIAQEDCRNGFLLDGFPRTIPQADAMKEAGINVDYVLEFDVPDELIVDRI
             61
           120
            121
           180
pdb | 1AKE | A
VGRRVHAPSGRVYHVKFNPPKVEGKDDVTGEELTTRKDDQEETVRKRLVEYHQMTAPLIG
            121
```

```
214
            181
             YYSKEAEAGNTKYAKVDGTKPVAEVRADLEKILG
pdb | 1AKE | A
            181
                                                214
Call:
  read.fasta(file = outfile)
Class:
  fasta
Alignment dimensions:
  1 sequence rows; 214 position columns (214 non-gap, 0 gap)
+ attr: id, ali, call
  Q13. How many amino acids are in this sequence, i.e. how long is
  this sequence?
214
 # Blast or hmmer search
 #b <- blast.pdb(aa)</pre>
 # Plot a summary of search results
 #hits <- plot(b)
 # List out some 'top hits'
 hits <- NULL
 hits$pdb.id <- c('1AKE_A','6S36_A','6RZE_A','3HPR_A','1E4V_A','
 head(hits$pdb.id)
[1] "1AKE A" "6S36 A" "6RZE A" "3HPR A" "1E4V A" "5EJE A"
 # Download releated PDB files
 files <- get.pdb(hits$pdb.id, path="pdbs", split=TRUE, gzip=TRU
Warning in get.pdb(hits$pdb.id, path = "pdbs", split = TRUE,
qzip = TRUE): pdbs/
```

1AKE.pdb.gz exists. Skipping download

```
Warning in get.pdb(hits$pdb.id, path = "pdbs", split = TRUE,
gzip = TRUE): pdbs/
6S36.pdb.gz exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pdbs", split = TRUE,
qzip = TRUE): pdbs/
6RZE.pdb.gz exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pdbs", split = TRUE,
qzip = TRUE): pdbs/
3HPR.pdb.gz exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pdbs", split = TRUE,
gzip = TRUE): pdbs/
1E4V.pdb.gz exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pdbs", split = TRUE,
gzip = TRUE): pdbs/
5EJE.pdb.gz exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pdbs", split = TRUE,
gzip = TRUE): pdbs/
1E4Y.pdb.gz exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pdbs", split = TRUE,
gzip = TRUE): pdbs/
3X2S.pdb.gz exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pdbs", split = TRUE,
gzip = TRUE): pdbs/
6HAP.pdb.gz exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pdbs", split = TRUE,
gzip = TRUE): pdbs/
6HAM.pdb.gz exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pdbs", split = TRUE,
gzip = TRUE): pdbs/
4K46.pdb.gz exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pdbs", split = TRUE,
qzip = TRUE): pdbs/
3GMT.pdb.gz exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pdbs", split = TRUE,
```

```
gzip = TRUE): pdbs/
4PZL.pdb.gz exists. Skipping download
```

```
0%
|========
15%
23%
| 31%
|----
|-----
46%
| 54%
| 62%
| 69%
|-----
77%
85%
|-----
  | 92%
```

```
|========| 100%
```

```
# Align releated PDBs
pdbs <- pdbaln(files, fit = TRUE, exefile="msa")</pre>
```

Reading PDB files: pdbs/split_chain/1AKE_A.pdb pdbs/split_chain/6S36_A.pdb pdbs/split_chain/6RZE_A.pdb pdbs/split_chain/3HPR_A.pdb pdbs/split_chain/1E4V_A.pdb pdbs/split_chain/5EJE_A.pdb pdbs/split_chain/1E4Y_A.pdb pdbs/split_chain/3X2S_A.pdb pdbs/split_chain/6HAP_A.pdb pdbs/split_chain/6HAM_A.pdb pdbs/split_chain/4K46_A.pdb pdbs/split_chain/3GMT_A.pdb pdbs/split_chain/3GMT_A.pdb

PDB has ALT records, taking A only, rm.alt=TRUE

Extracting sequences

```
pdb/seq: 1
             name: pdbs/split chain/1AKE A.pdb
   PDB has ALT records, taking A only, rm.alt=TRUE
pdb/seq: 2
             name: pdbs/split_chain/6S36_A.pdb
   PDB has ALT records, taking A only, rm.alt=TRUE
             name: pdbs/split_chain/6RZE_A.pdb
pdb/seq: 3
   PDB has ALT records, taking A only, rm.alt=TRUE
pdb/seq: 4
             name: pdbs/split_chain/3HPR_A.pdb
   PDB has ALT records, taking A only, rm.alt=TRUE
pdb/seq: 5
             name: pdbs/split_chain/1E4V_A.pdb
pdb/seq: 6
             name: pdbs/split chain/5EJE A.pdb
   PDB has ALT records, taking A only, rm.alt=TRUE
pdb/seq: 7
             name: pdbs/split_chain/1E4Y_A.pdb
```

```
pdb/seq: 8    name: pdbs/split_chain/3X2S_A.pdb
pdb/seq: 9    name: pdbs/split_chain/6HAP_A.pdb
pdb/seq: 10    name: pdbs/split_chain/6HAM_A.pdb
    PDB has ALT records, taking A only, rm.alt=TRUE
pdb/seq: 11    name: pdbs/split_chain/4K46_A.pdb
    PDB has ALT records, taking A only, rm.alt=TRUE
pdb/seq: 12    name: pdbs/split_chain/3GMT_A.pdb
pdb/seq: 13    name: pdbs/split_chain/4PZL_A.pdb
```

```
# Vector containing PDB codes for figure axis
ids <- basename.pdb(pdbs$id)

# Draw schematic alignment
plot(pdbs, labels=ids)</pre>
```



```
anno <- pdb.annotate(ids)
unique(anno$source)</pre>
```

- [1] "Escherichia coli"
- [2] "Escherichia coli K-12"
- [3] "Escherichia coli 0139:H28 str. E24377A"
- [4] "Escherichia coli str. K-12 substr. MDS42"
- [5] "Photobacterium profundum"

- [6] "Burkholderia pseudomallei 1710b"
- [7] "Francisella tularensis subsp. tularensis SCHU S4"

anno

S	tructureId	chainId	macromo	leculeType	chainLe	ngth	
experimentalTechnique							
1AKE_A	1AKE	Α		Protein		214	
X-ray							
6S36_A	6S36	Α		Protein		214	
X-ray							
6RZE_A	6RZE	Α		Protein		214	
X-ray							
3HPR_A	3HPR	Α		Protein		214	
X-ray							
1E4V_A	1E4V	Α		Protein		214	
X-ray							
5EJE_A	5EJE	Α		Protein		214	
X-ray							
1E4Y_A	1E4Y	Α		Protein		214	
X-ray							
3X2S_A	3X2S	Α		Protein		214	
X-ray							
6HAP_A	6HAP	Α		Protein		214	
X-ray							
6HAM_A	6HAM	Α		Protein		214	
X-ray							
4K46_A	4K46	Α		Protein		214	
X-ray							
3GMT_A	3GMT	Α		Protein		230	
X-ray							
4PZL_A	4PZL	Α		Protein		242	
X-ray							
r	esolution	SC0	pDomain				
pfam							
1AKE_A	2.00 A	Adenylate	kinase	Adenylate	kinase,	active	
site lid	(ADK_lid)						
6S36_A	1.60		<na></na>	Adenylate	kinase,	active	
site lid	(ADK_lid)						
6RZE_A	1.69		<na></na>	Adenylate	kinase,	active	
site lid	(ADK_lid)						
3HPR_A	2.00		<na></na>	Adenylate	kinase,	active	
site lid (ADK_lid)							
1E4V_A	1.85 A	Adenylate	kinase	Adenylate	kinase,	active	

```
site lid (ADK_lid)
5EJE_A
             1.90
                               <NA> Adenylate kinase, active
site lid (ADK lid)
1E4Y A
             1.85 Adenylate kinase Adenylate kinase, active
site lid (ADK_lid)
3X2S_A
             2.80
                               <NA> Adenylate kinase, active
site lid (ADK lid)
                               <NA> Adenylate kinase, active
6HAP A
             2.70
site lid (ADK_lid)
6HAM_A
             2.55
                               <NA> Adenylate kinase, active
site lid (ADK lid)
4K46 A
             2.01
                               <NA> Adenylate kinase, active
site lid (ADK_lid)
3GMT_A
             2.10
                               <NA> Adenylate kinase, active
site lid (ADK_lid)
4PZL A
             2.10
                               <NA> Adenylate kinase, active
site lid (ADK_lid)
               ligandId
                     AP5
1AKE A
6S36_A CL (3),NA,MG (2)
          NA (3),CL (2)
6RZE_A
3HPR A
                     AP5
1E4V_A
                     AP5
5EJE_A
                  AP5,C0
1E4Y_A
                     AP5
3X2S A
         JPY (2), AP5, MG
                     AP5
6HAP A
6HAM_A
                     AP5
4K46_A
            ADP, AMP, PO4
3GMT A
                S04 (2)
4PZL_A
             CA, FMT, GOL
ligandName
1AKE A
BIS(ADENOSINE)-5'-PENTAPHOSPHATE
6S36_A
                                            CHLORIDE ION
(3), SODIUM ION, MAGNESIUM ION (2)
6RZE A
                                                           SODIUM
ION (3), CHLORIDE ION (2)
3HPR A
BIS(ADENOSINE)-5'-PENTAPHOSPHATE
1E4V A
BIS(ADENOSINE)-5'-PENTAPHOSPHATE
                                         BIS(ADENOSINE)-5'-
5EJE_A
PENTAPHOSPHATE, COBALT (II) ION
```

1E4Y A

BIS(ADENOSINE)-5'-PENTAPHOSPHATE

3X2S_A N-(pyren-1-ylmethyl)acetamide (2),BIS(ADENOSINE)-5'-

PENTAPHOSPHATE, MAGNESIUM ION

6HAP_A

BIS(ADENOSINE)-5'-PENTAPHOSPHATE

6HAM A

BIS(ADENOSINE)-5'-PENTAPHOSPHATE

4K46_A ADENOSINE-5'-DIPHOSPHATE, ADENOSINE

MONOPHOSPHATE, PHOSPHATE ION

3GMT A

SULFATE ION (2)

4PZL_A CALCIUM

ION, FORMIC ACID, GLYCEROL

	source
1AKE_A	Escherichia coli
6S36_A	Escherichia coli
6RZE_A	Escherichia coli
3HPR_A	Escherichia coli K-12
1E4V_A	Escherichia coli
5EJE_A	Escherichia coli 0139:H28 str. E24377A
1E4Y_A	Escherichia coli
3X2S_A	Escherichia coli str. K-12 substr. MDS42
6HAP_A	Escherichia coli 0139:H28 str. E24377A
6HAM_A	Escherichia coli K-12
4K46_A	Photobacterium profundum
3GMT_A	Burkholderia pseudomallei 1710b
4PZL A	Francisella tularensis subsp. tularensis SCHU S4

structureTitle

1AKE_A STRUCTURE OF THE COMPLEX BETWEEN ADENYLATE KINASE FROM ESCHERICHIA COLI AND THE INHIBITOR AP5A REFINED AT 1.9

ANGSTROMS RESOLUTION: A MODEL FOR A CATALYTIC TRANSITION STATE 6S36_A

Crystal structure of E. coli Adenylate kinase R119K mutant 6RZE_A

Crystal structure of E. coli Adenylate kinase R119A mutant $3 \, \text{HPR} \ A$

Crystal structure of V148G adenylate kinase from E. coli, in complex with Ap5A $\,$

1E4V A

Mutant G10V of adenylate kinase from E. coli, modified in the Gly-loop

5EJE_A

Crystal structure of E. coli Adenylate kinase G56C/T163C

double mutant in complex with Ap5a

1E4Y A

Mutant P9L of adenylate kinase from E. coli, modified in the Gly-loop

3X2S_A

Crystal structure of pyrene-conjugated adenylate kinase

6HAP A

Adenylate kinase

6HAM A

Adenylate kinase

4K46_A

Crystal Structure of Adenylate Kinase from Photobacterium profundum

3GMT_A

Crystal structure of adenylate kinase from burkholderia pseudomallei

4PZL A

The crystal structure of adenylate kinase from Francisella tularensis subsp. tularensis SCHU S4

citation

rObserved rFree

1AKE_A Muller, C.W., et al. J Mol Biol (1992)

0.19600 NA

6S36_A Rogne, P., et al. Biochemistry (2019)

0.16320 0.23560

6RZE A Rogne, P., et al. Biochemistry (2019)

0.18650 0.23500

3HPR_A Schrank, T.P., et al. Proc Natl Acad Sci U S A (2009)

0.21000 0.24320

1E4V_A Muller, C.W., et al. Proteins (1993)

0.19600 NA

5EJE_A Kovermann, M., et al. Proc Natl Acad Sci U S A (2017)

0.18890 0.23580

1E4Y A Muller, C.W., et al. Proteins (1993)

0.17800 NA

3X2S_A Fujii, A., et al. Bioconjug Chem (2015)

0.20700 0.25600

6HAP_A Kantaev, R., et al. J Phys Chem B (2018)

0.22630 0.27760

6HAM_A Kantaev, R., et al. J Phys Chem B (2018)

0.20511 0.24325

4K46_A Cho, Y.-J., et al. To be published

0.17000 0.22290

3GMT_A Buchko, G.W., et al. Biochem Biophys Res Commun (2010)

0.23800 0.29500

4PZL_A 0.19360 0.23680 rWork spaceGroup 1AKE A 0.19600 P 21 2 21 C 1 2 1 6S36_A 0.15940 6RZE_A 0.18190 C 1 2 1 3HPR_A 0.20620 P 21 21 2 P 21 2 21 1E4V_A 0.19600 P 21 2 21 5EJE_A 0.18630 P 1 21 1 1E4Y_A 0.17800 3X2S_A 0.20700 P 21 21 21 6HAP_A 0.22370 I 2 2 2 6HAM_A 0.20311 P 43 4K46_A 0.16730 P 21 21 21 3GMT_A 0.23500 P 1 21 1 4PZL_A 0.19130 P 32

Tan, K., et al. To be published

Jump to PCA

```
# Perform PCA
pc.xray <- pca(pdbs)
plot(pc.xray)</pre>
```


Eigenvalue Rank

```
# Calculate RMSD
rd <- rmsd(pdbs)</pre>
```

Warning in rmsd(pdbs): No indices provided, using the 204 non NA positions

```
# Structure-based clustering
hc.rd <- hclust(dist(rd))
grps.rd <- cutree(hc.rd, k=3)

plot(pc.xray, 1:2, col="grey50", bg=grps.rd, pch=21, cex=1)</pre>
```


6. Normal mode analysis [optional]

```
# NMA of all structures
modes <- nma(pdbs)</pre>
```

Details of Scheduled Calculation:

- ... 13 input structures
- ... storing 606 eigenvectors for each structure

... dimension of x\$U.subspace: (612x606x13)

```
... coordinate superposition prior to NM calculation
... aligned eigenvectors (gap containing positions removed)
... estimated memory usage of final 'eNMA' object: 36.9 Mb
 0%
15%
 |=========
23%
 |==============
| 31%
 | 38%
46%
54%
62%
69%
 |-----
| 77%
 |-----
85%
|-----
```

Extracting SSE from pdbs\$sse attribute

