(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2002-289793 (P2002-289793A)

(43)公開日 平成14年10月4日(2002.10.4)

(51) Int.Cl.⁷ H 0 1 L 27/105 識別記号

FI HO1L 27/10 デーマコート*(参考) 444B 5F083

審査請求 未請求 請求項の数5 OL (全 13 頁)

(21)出願番号

特願2001-93724(P2001-93724)

(22)出願日

平成13年3月28日(2001.3,28)

(71)出願人 000005223

富士通株式会社

神奈川県川崎市中原区上小田中4丁目1番

1号

(72)発明者 松浦 克好

神奈川県川崎市中原区上小田中4丁目1番

1号 富士通株式会社内

(72)発明者 高井 一章

神奈川県川崎市中原区上小田中4丁目1番

1号 富士通株式会社内

(74)代理人 100091672

弁理士 岡本 啓三

最終頁に続く

(54) 【発明の名称】 半導体装置及びその製造方法

(57)【要約】

【課題】キャパシタを有する半導体装置の製造方法に関し、特性の良好な強誘電体キャパシタを形成すること。 【解決手段】第1絶縁膜10を半導体基板1の上方に形成する工程と、第1絶縁膜10の上面を平坦化する工程と、第1絶縁膜10を加熱する工程と、第1絶縁膜10上に酸化シリコン膜又は酸化アルミニウム膜よりなる第2絶縁膜12を形成する工程と、第2絶縁膜12上に酸化チタン膜13aを形成する工程と、酸化チタン膜13aの上にプラチナよりなるキャパシタ下部電極15aを形成する工程と、キャパシタ下部電極15aを形成する工程と、キャパシタ下部電極15a上にキャパシタ誘電体膜16a上にキャパシタ上部電極17aを形成する工程とを含む。

【特許請求の範囲】

【 間求項 1 】 半導体基板の上方に形成され且つ平坦化面を有する第 1 絶縁膜と、

1

前記第1絶縁膜の平坦化面上に形成され、前記第1絶縁 膜より水素含有率が大きい酸化シリコン膜、又は酸化ア ルミニウム膜のいずれかよりなる第2絶縁膜を形成する 工程と

前記第2絶縁膜上に形成された酸化チタン膜と、

前記酸化チタン膜の上に形成されたプラチナよりなるキャパシタ下部電極と、

前記キャパシタ下部電極上に形成されたキャパシタ誘電 体膜と

前記キャパシタ誘電体膜上に形成されたキャパシタ上部 電極とを有することを特徴とする半導体装置。

前記第1絶縁膜上に形成された酸化アルミニウム膜と、 前記酸化アルミニウム膜上に形成されたプラチナよりな るキャパシタ下部電極と、

前記キャパシタ下部電極上に形成されたキャパシタ誘電体膜と、

前記キャパシタ誘電体膜上に形成されたキャパシタ上部 電極とを有することを特徴とする半導体装置。

前記第1絶縁膜の上面を平坦化する工程と、

前記第1絶縁膜を加熱する工程と、

前記第1絶縁膜上に酸化シリコン膜又は酸化アルミニウム膜よりなる第2絶縁膜を形成する工程と、

前記第2絶縁膜上に酸化チタン膜を形成する工程と、 前記酸化チタン膜の上にプラチナよりなるキャパシタ下 部館極を形成する工程と、

前記キャパシタ下部電極上に誘電体膜を形成する工程 と、

前記誘電体膜上にキャパシタ上部電極を形成する工程と を有することを特徴とする半導体装置の製造方法。

【 間求項 5 】第 1 絶縁膜を半導体基板の上方に形成する 工程と、

前記第1絶縁膜の上面を平坦化する工程と、

前記第1絶縁膜を加熱する工程と、

前記第1絶縁膜上に酸化アルミニウムよりなる第2絶縁 膜を形成する工程と、

前記第2絶縁膜上にプラチナよりなるキャパシタ下部電極を形成する工程と、

前記キャパシタ下部電極上にキャパシタ誘電体膜を形成 する工程と、 前記キャパシタ誘電体膜上にキャパシタ上部電極を形成 する工程とを有することを特徴とする半導体装置の製造 方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体装置及びその製造方法に関し、より詳しくは、キャパシタを有する 半導体装置及びその製造方法に関する。

[0002]

【従来の技術】電源を切っても情報を記憶することのできる不揮発性メモリとして、フラッシュメモリや強誘電体メモリ(FeRAM)が知られている。フラッシュメモリは、絶縁ゲート型電界効果トランジスタ(IGFET)のゲート絶縁膜中に埋め込んだフローティングゲートを有し、フローティングゲートに記憶情報を表す電荷を蓄積することによって情報を記憶する。情報の書き込み、消去には絶縁膜を通過するトンネル電流を通す必要があり、比較的高い電圧を必要とする。

【0003】FeRAMは、強誘電体のヒステリシス特性を利用して情報を記憶する。強誘電体膜を一対の電極間のキャパシタ誘電体として有する強誘電体キャパシタは、電極間の印加電圧に応じて分極を生じ、印加電圧を取り去っても自発分極を有する。印加電圧の極性を反転すれば、自発分極の極性も反転する。この自発分極を検査すれば情報を読み出すことができる。FeRAMは、フラッシュメモリに比べて低電圧で動作し、省電力で高速の書き込みができる。

【0004】図1(a)、(b) はFeRAMのメモリセルの回路図を示す。図1(a) は1ビットの情報の記憶に230 つのトランジスタTa, Tb と2つのキャパシタCa, Cbを用いる2T/2C形式の回路であり、現在のFeRAMに使用されている。1つのキャパシタCaに"1"又は"0"の情報を記憶し、もう一方のキャパシタCbに反対の情報を記憶するという相補的な動作をさせる。プロセスの変動に対して強い構成になるが、以下に述べる1T/1C形式に比べてセル面積が約2倍になる。

【0005】図1(b) は、1 ビットの情報の記憶に1つのトランジスタ T_1 又は T_2 と1つのキャパシタ C_1 又は C_2 を用いる1 T/1 C形式の回路であり、DRAM と構成が同じで、セル面積が小さくて高集積化が可能である。しかし、メモリセルから読み出された電荷が

"1"の情報か"0"の情報かを判定するために、基準電圧が必要となる。この基準電圧を発生させるリファレンスセル C_0 は、読み出しされる毎に分極を反転させることになるので、疲労によりメモリセルよりも早く劣化してしまう。また、1 T/1 C は、判定のマージンが 2 T/2 C に比べて狭くなり、プロセスの変動に対して弱く、まだ実用化されていない。

【 O O O 6 】 F e R A M の 強誘 電体 膜 は、チタン酸 ジル 50 コン酸鉛 (P Z T)、 La ドープ P Z T (P L Z T) 等 の

PZT系材料や、SrBizTazO9(SBT、Y1)、SrBiz(Ta,Nb)zO9(SBTN、YZ)等のBi層状構造化合物等で形成される。これらの強誘電体膜はゾルゲル法、スパッタ法等によって成膜される。通常、これらの成膜法により、下部電極上にアモルファス相の強誘電体膜を形成し、その後の熱処理によって強誘電体膜をペロブスカイト構造へと結晶化させる。良好なFeRAMを作製するためには、強誘電体膜の結晶粒の配向を制御することも必要である。

【0007】強誘電体膜の結晶化は酸化性雰囲気で行われるため、キャパシタ電極はPt等の貴金属や酸化しても 導電性のIrO2、SrRuO3、Lao.sSro.sCoO3等で形成される。

[0008]

【発明が解決しようとする課題】ところで、強誘電体キャパシタを形成するに当たっては、強誘電体膜直下の下部電極形成工程が重要である。従来の下部電極として、絶縁膜上にチタン(Ti)とプラチナ(Pt)を順に形成した積層構造が使われていた。Ti膜を用いるのは、絶縁膜と下部電極との密着性を改善させるためである。Ti膜が無いと、半導体装置の製造工程途中でPt電極の膜剥がれが起こる可能性が高い。

【0009】Pt膜はスパッタ法で成膜されるが、高温で成膜を行うとTi膜との反応が生じ、結果として(111)面に強く自己配向しないで、ランダム配向した構造が得られてしまうため、室温で成膜を行っていた。Pt膜の結晶性は、その上に形成される強誘電体膜の膜質に影響を与える。また、高融点金属であるPt膜の結晶粒は小さくてその粒径が20nm程度の針状結晶となっていた。強誘電体キャパシタの特性をさらに良好にするためには、Pt膜の結晶粒を大きくして柱状結晶にすることが望まれる。

【0010】それらの解決方法として、Tiの代わりにTi 02を用いることが考えられ、これによりPt成膜時の下地 金属との反応が抑えられるので、Pt膜を500℃と高温 にて成膜でき、(111)面に強く配向したままでPt膜 の結晶粒を100~150nmと大きくし、柱状結晶に することが可能になる。しかし、脱ガスが施された絶縁 膜の上にTiO2膜を形成すると、TiO2膜の結晶性が悪くなり、これがPt膜の結晶性を改善する能力を低下させてしまい、Pt膜上の強誘電体膜の結晶性の改善が不十分となってしまう。

【0011】本発明の目的は、特性の良好な強誘電体キャパシタを有する半導体装置及びその製造方法を提供することにある。

[0012]

【課題を解決するための手段】上記した課題は、半導体 基板の上方に形成され且つ平坦化面を有する第1絶縁膜 と、前記第1絶縁膜の平坦化面上に形成され且つ前記第 1絶縁膜より水素含有率が大きい酸化シリコン膜、又は 酸化アルミニウム膜のいずれかよりなる第 2 絶縁膜を形成する工程と、前記第 2 絶縁膜上に形成された酸化チタン膜と、前記酸化チタン膜の上に形成されたプラチナよりなるキャパシタ下部電極と、前記キャパシタ下部電極上に形成されたキャパシタ誘電体膜と、前記キャパシタ誘電体膜上に形成されたキャパシタ上部電極とを有することを特徴とする半導体装置によって解決される。上記した半導体装置において、前記第 2 絶縁膜として酸化アルミニウム膜を用いる場合には、前記酸化チタン膜を介さずに前記第 2 絶縁膜上にプラチナよりなるキャパシタ下部電極を形成してもよい。

【0013】上記した課題は、第1絶縁膜を半導体基板の上方に形成する工程と、前記第1絶縁膜の上面を平坦化する工程と、前記第1絶縁膜を加熱する工程と、前記第1絶縁膜上に酸化シリコン膜又は酸化アルミニウム膜よりなる第2絶縁膜を形成する工程と、前記第2絶縁膜上に酸化チタン膜を形成する工程と、前記酸化チタン膜の上にプラチナよりなるキャパシタ下部電極を形成する工程と、前記キャパシタ下部電極上にキャパシタ誘電体膜を形成する工程と、前記キャパシタ誘電体膜上にキャパシタ上部電極を形成する工程とを有することを特徴とする半導体装置の製造方法によって解決される。

【0014】前記酸化チタン膜は、第2絶縁膜上に形成したチタン膜を熱酸化して形成することが好ましい。上記した半導体装置の製造方法において、前記第2絶縁膜として前記酸化アルミニウム膜を形成する場合には、前記酸化チタン膜を形成せずに、前記第2絶縁膜上にプラチナよりなるキャパシタ下部電極を形成してもよい。

【0015】次に、本発明の作用について説明する。本発明によれば、第1絶縁膜の表面を平坦化し、加熱により脱ガスした後に、その平坦化面上に酸化シリコン又は酸化アルミニウムよりなる第2絶縁膜を形成し、その上に酸化チタン膜を形成し、その後に、キャパシタの下部電極となるプラチナ膜を形成し、さらにキャパシタの誘電体膜と上部電極を形成している。この場合、酸化チタン膜は、第2絶縁膜上に形成したチタン膜を熱酸化して形成することが好ましい。

【0016】そのような工程によれば、脱ガスした第1 絶縁膜の影響を第2絶縁膜により低減して結晶性の良いチタン膜を形成し、これを熱酸化して得られた酸化チタン膜は(200)ピークが強くなり、その上に形成される粒径が100~150nmの柱状の結晶のプラチナ膜の形成を助長させ、しかもプラチナ膜の剥離を防止している。この結果、そのようなプラチナ膜の上に形成された酸化物誘電体の結晶方位が所望の方向に揃うため、残留分極の大きさが最大化される。つまり、高信頼性を持つキャパシタを得ることができる。

【0017】なお、第2絶縁膜は加熱されないので、第2絶縁膜が第1絶縁膜と同じ材料、例えば酸化シリコンから構成されていても、第2絶縁膜に含有される水素や

水は第1絶縁膜中のそれらよりも多くなるが、膜厚を調 整することにより水素や水によるキャパシタへの影響を 殆ど無視できる状態にすることができる。さらに、別の 本発明によれば、平坦化された第1絶縁膜を加熱した後 に、その上に第2絶縁膜として酸化アルミニウム膜を形 成し、さらに下部電極であるプラチナ膜を成膜すること により、プラチナ膜の膜剥がれのおそれが無く、Pt膜の 粒径が100~150nmと大きい状態で、プラチナ膜 の結晶性を安定して良好にすることができる。

[0018]

【発明の実施の形態】以下に本発明の実施形態を図面に 基づいて説明する。図2~図7は、本発明の実施形態に 係るFeRAMのメモリセルの形成工程を示す断面図で ある。図2(a) に示す構造を形成するまでの工程を説明 する。

【0019】まず、シリコン(半導体)基板1の表面 に、活性領域3を囲む索子分離絶縁膜2を形成する。素 子分離絶縁膜2は、LOCOS法により形成してもよい し、シリコン基板1に満を形成してその中に絶縁膜を埋 め込む方法によって形成してもよい。また、シリコン基 板1はn型でもp型でもよい。そのような素子分離絶縁 膜2を形成した後に、シリコン基板1のメモリセル領域 の活性領域3と周辺回路領域(不図示)の活性領域に不 純物を導入することにより、pウェル、nウェルを形成 する。なお、本実施形態では、メモリセル領域の活性領 域3にpウェル3aを形成している。

【0020】続いて、シリコン基板1の活性領域3表面 上にゲート酸化膜4を形成した後に、基板全面に多結晶 又は非晶質のシリコン膜とSiOz保護膜6aを順次形成す る。その後、シリコン膜のうち、p型ウェル3aの上の 部分にはn型不純物を、n型ウェル(不図示)上の部分 にはp型不純物を導入する。その後に、シリコン膜とSi 02膜をフォトリソグラフィー法によりパターニングする ことにより、メモリセル領域内の活性領域3を通る2つ のゲート電極5と、周辺回路領域の活性領域を通るゲー ト電極(不図示)を形成する。なお、メモリセル領域3 上に形成されるゲート電極5はワード線を兼ねた形状に 形成される。

【0021】続いて、ゲート電極5の両側のpウェル3 a内にn型不純物をイオン注入して低濃度のn型不純物 拡散層を形成する。また、絶縁膜、例えばSiO2膜をCV D法によりシリコン基板 1 の全面に形成した後に、その 絶縁膜をドライエッチングで全面にわたって均一にエッ チングしてゲート電極5の両側部分にのみ側壁絶縁膜6 bとして残す。さらに、ゲート電極5と側壁絶縁膜6b をマスクにして活性領域3内に再びn型不純物をイオン 注入して高濃度のn型不純物拡散層を形成する。これに より、ゲート電極5の両側には、低濃度と高濃度の n型 不純物拡散層からなるLDD構造の第1、第2及び第3 のn型不純物拡散層7a,7bが形成される。それらの 50 め、一旦、それを壊す必要が生じるためである。したが

n型不純物拡散層7a,7bはソース/ドレイン領域と なる。

【0022】また、同様な方法により周辺回路領域に も、図示しないn型不純物拡散層とp型不純物拡散層が 形成される。以上の工程により、シリコン基板1へのM OSトランジスタ8の基本的な構造の形成が終了する。 なお、周辺回路領域ではСМОSも形成される。以上の 工程は、通常のMOSトランジスタ製造工程であり、そ の他の公知の工程を用いてもよい。

【0023】次に、図2(b) に示すように、MOSFE T8を覆う厚さ200nmのSiONよりなる酸化防止膜9 をシリコン基板 1 上に C V D 法により形成した後に、酸 化防止膜9の上に厚さ600nmのSiO2膜10をCVD 法により成膜し、これらにより第1層間絶縁膜11を形 成する。なお、SiOz膜10を形成するための反応ガスと して例えばTEOSを用いる。

【0024】続いて、図2(c) に示すように、素子分離 用絶縁膜2との界面からSiOz膜10上面までの第1層間 絶縁膜11の厚さが785nmになるように、化学機械 研磨(CMP)法により第1層間絶縁膜11を上面から 研磨して平坦化する。その後に、N2雰囲気中、650 ℃、30分間のアニールを行って第1層間絶縁膜11の 脱ガスを十分に行う。

【0025】次に、図3(a) に示すように、TEOSを 用いてCVD法により、強誘電体キャパシタの結晶性改 善目的のSiOzキャップ層12を第1層間絶縁膜11上に 130 n m の厚さに形成する。次に、強誘電体キャパシ タの下部電極層となるPt/TiOz積層を形成するために、 まず、表1に示す条件で厚さ20nmのTi膜13をスパ ッタ法によりSiO2キャップ層12上に形成する。

[0026]

【表1】

	Arガス圧	DCパワー	時間	温度
Ti	0.15Pa	2.6kW	13秒	150℃

【0027】続いて、図3(b) に示すように、RTA (rapid thermal annealing)装置を用いて700℃、6 0秒、02雰囲気でTi膜13を熱酸化して、Ti膜13をル チル型結晶構造のTiOz膜13aとする。そのような条件 のRTA処理により形成されたTiOz膜13aの厚さは5 Onmとなる。このルチル型結晶構造のTiO₂膜13aを 作成するには反応性スパッタでもよいがTi膜の高温によ る熱酸化法が望ましい。反応性スパッタによる作成で は、シリコン基板1を髙温で加熱する必要があるため、 特別なスパッタチャンバ構成を必要とする。さらに、一 般の炉による酸化よりも、RTA装置による酸化の方が TiOz 膜の結晶性が良好になる。なぜなら、通常の加熱炉 による酸化によれば、酸化しやすいTi膜は、低温におい てルチル型結晶構造以外のいくつもの結晶構造を作るた

って、昇温速度の速いRTAによる酸化の方が良好な結 晶を形成するために有利になる。

【0028】なお、キャップ層12として窒化物を用い ると、その上のTi膜13の膜質が改善されない傾向にあ る。次に、図3(c) に示すように、TiO2膜13a上にキ ャパシタの下部電極15である150nmの厚さのPt膜 をスパッタ法により形成する。その下部電極 15の形成 条件の一例を表2に示す。

[0029]

【表2】

		Arガス圧	DCパワー	時間	温度
i	Pt	0.6Pa	0.5kW	182秒	550℃

【0030】次に、図4(a) に示すように、表3に示す 条件でスパッタにより180nmの厚さのPLZT(強 誘電体)膜16を下部電極層14上に形成する。

[0031]

【表4】

	ガス圧	Arガス流量	O2ガス流量	DCパワー	時間
IrO2	0.8Pa	100sccm	63sccm	2.0kW	26秒

【0035】ここで、上部電極層17として導電性酸化 物であるIrO2を用いたのは、PLZT膜16の水素劣化 耐性を向上させるためであるが、Pt膜、SrRuO3 (SR O)を用いてもよい。しかし、Ptは水素分子に対して触 媒作用があるために水素ラジカルを発生させ易く、これ により P L Z T 膜 1 6 を還元し、劣化させ易いのであま り好ましくはない。これに対して、IrOz、SROは触媒 作用を持たないために水素ラジカルを発生させにくく、 PLZT膜16の水素劣化耐性が格段に向上する。

【0036】次いで、02濃度1%のArと02の混合雰囲気 中にシリコン基板1をおいて、725℃20秒、昇温速 度125℃/secの条件で、PLZT膜16の急速熱処理 を行う。上記したように、最初にPLZT膜16を58 5℃という低温において結晶化させると、PLZT膜1 6の結晶は<111>方向に配向する。さらに、PLZ T膜16を微量の酸素雰囲気中に置き、より高温の72 5℃で熱処理することによって、PLZT膜16の結晶 格子中の酸素欠陥が補充されるだけではなく、PLZT 膜16に緻密化が起こる。

【0037】ところで、PL2T膜16の緻密化をIrOz の上部電極層 17を形成する前に行うとすれば、PLZ T膜16中のたくさんの気泡が一カ所に集まってしま い、これを表面から見ると、PLZT膜16の粒界部に ピンホールが開いた状態になってしまので好ましくな い。これに対して、IrOzの上部電極層17を堆積した後 にPLZT膜16の緻密化の熱処理を行うと、PLZT 膜16の表面荒れが防止されて、非常にフラットなIrOz / P L Z T界面が得られる。その界面の欠陥が減少して いることも容易に推察される。しかも、蒸気圧の高いこ とによるPLZT膜16中からのPbやPb0の脱離に対し *【表3】

	Arガス圧	RFパワー	時間
PLZT	0.7Pa	1.0kW	323秒

【0032】さらに、02濃度2.5%であるArと02の混 合雰囲気中にシリコン基板1を入れて、585℃、90 秒間、常温からの昇温速度125℃/secの条件で強誘電 体膜である P L Z T 膜 1 6 を急速熱処理を行う。このよ うに、PLZT膜16を不活性雰囲気中に置いて、低温 で結晶化することにより、PLZT膜16の結晶は望ま しい<111>方向に優先配向する。

【0033】次に、図4(b) に示すように、上部電極層 17となる厚さが150nmの酸化イリジウム(IrO₂) 膜を表4に示す条件でスパッタ法によりPLZT膜16 上に形成する。

[0034]

ても1r02がブロックすることによって防ぐことができ

【0038】以上のように強誘電体膜であるPLZT膜 16を緻密化させた後に、図4(c)に示すように、IrO2 よりなる上部電極層17の上にキャパシタ上部電極のパ ターン形状を有するレジストパターン18を形成し、そ のレジストパターン18をマスクにして上部電極層17 をパターニングしてこれをキャパシタの上部電極17a とする。その後、レジストパターン18を除去する。

【0039】次に、図5(a) に示す構造を形成するまで の工程を説明する。まず、02雰囲気中にシリコン基板1 をおいて650℃、60分間のアニールを行う。このア ニールは、スパッタ及びエッチングによりPL2T膜1 6に入ったダメージを回復させるためのものである。続 いて、キャパシタ強誘電体のパターン形状を有するレジ ストパターン(不図示)を形成し、このレジストパター ンをマスクにしてPLZT膜16をエッチングしてこれ をキャパシタの強誘電体膜16aを形成する。

【0040】レジストパターンを除去した後に、水素に よって還元されやすい強誘電体膜16aを保護するため に、水素をトラップしやすいPLZT膜をエンキャップ 層19としてスパッタにより20nmの厚さに形成す る。さらに、エンキャップ層19を、02雰囲気中、70 0 ℃ 6 0 秒の条件で、昇温速度 1 2 5 ℃/secの急速熱処 理をする。

【0041】その後に、図5(b) に示すように、キャパ シタ下部電極のパターン形状を有するレジストパターン 20をエンキャップ層19上に形成し、レジストパター ン20をマスクにしてエンキャップ層19、下部電極層 50 15及びTiOz膜13aをエッチングし、これにより得ら

れた下部電極層 1 5 のパターンをキャパシタの下部電極 1 5 a とする。

【0042】レジストパターン20を除去した後に、02 雰囲気中にシリコン基板1を置いて、650℃、60分間の条件でPL2Tよりなる強誘電体膜16aの回復アニールを行う。以上の工程により、パターニングされた下部電極15a、強誘電体膜16a及び上部電極17aによりメモリセル領域のキャパシタCが形成される。

【0043】続いて、図5(c) に示すように、厚さ15 00nmのSiO2よりなる第2層間絶縁膜21をCVD法 によりシリコン基板 1 の全面に成膜してキャパシタ C を **覆った後に、第2層間絶縁膜21の表面をCMPにより** 平坦化する。次に、図6(a) に示すように、不純物拡散 層7a, 7bと下部電極20のそれぞれの上に開口22 a, 22b, 22dを有するレジストパターン22を第 2 層間絶縁膜 2 1 の上に形成した後に、レジストパター ン22をマスクに使用して第2層間絶縁膜21、エンキ 1をドライエッチングする。これにより、キャパシタC の下部電極15aの上にコンタクトホール21dが形成 され、さらに、SiOzキャップ層12、第1層間絶縁膜1 1を貫通して不純物拡散層7a,7bを露出するコンタ クトホール21a、21bが形成される。その後にレジ ストパターン22を除去する。

【0044】次に、図6(b)に示すように、コンタクトホール21a,21b,21d中を埋める導電性プラグ23a,23b,23dを形成する工程に移る。導電性プラグ23a,23b,23dを形成するために、まず、密箱層としてTiN/Ti積層膜をスパッタ法によりコンタクトホール21a,21b,21dの内面と第2層間絶縁膜21の上面に予め形成する。続いて、タングステン膜をTiN/Ti積層膜上に形成した後に、タングステン膜をTiN/Ti積層膜をCMP法により研磨して第2層間絶縁膜21の上面から除去することにより、それらの金属膜をコンタクトホール21a,21b,21d内にのみ残して導電性プラグ23a,23b,23dとして使用する。

【0045】次に、図6(c)に示すように、導電性プラグ23a,23b,23d及び第2層間絶縁膜21の上に、導電性プラグ23a,23b,23dの酸化を防止するための酸化防止膜24となるSiON膜を100nmの厚さにCVD法により成膜する。その後に、図7(a)に示すように、キャパシタの上部電極17aの上に開口25aを有するレジストパターン25を酸化防止膜24上に形成し、さらに、レジストパターン25をマスクにして酸化防止膜24,第2層間絶縁膜21及びエンキャップ層19をドライエッチングし、これにより上部電極17a上にコンタクトホール21eを形成する。その後にレジストパターン25を除去する。

【0046】その後に、02雰囲気中で550℃、60分 50 て、絶縁膜表面が荒れたためであると思われる。

間のアニールによって強誘電体膜 16a の回復アニールを行う。次に、図 7(b) に示すように、酸化防止膜 24 を全面エッチバックにより除去して導電性プラグ 23 a, 23b, 23d の上端を露出させる。その後に、図 7(c) に示すように、上部電極 17a 上のコンタクトホ

10

a, 23 b, 23 dの上崎を路田させる。その後に、図7(c)に示すように、上部電極17a上のコンタクトホール21e内と第2層間絶縁膜21上にアルミニウム膜を形成し、ついで、アルミニウム膜をパターニングすることにより、pウェル3aの両側の不純物拡散層7aの上の導電性プラグ23aとキャパシタCの上部電極17aを接続するための配線26aを形成し、同時にpウェル3a中央の不純物拡散層7bの上の導電性プラグ23bの上にビット線接続用の導電パッド26bを形成し、さらにキャパシタCの下部電極15a上の導電性プラグ23dに接続する配線26dを形成する。

【0047】なお、上部電極17aと不純物拡散層7aの電気的接続を窒化チタン(TiN)の局所配線を介して行い、その上に絶縁膜を介してビット線を形成してもよい。続いて、図示しないが、第3層間絶縁膜、ビット線、カバー膜を成膜する。また、必要に応じて、層間絶縁膜、配線工程を繰り返し、多層配線を形成してもよい。

【0048】以上のようにして強誘電体キャパシタを有するFeRAMメモリセル構造が形成される。次に、強誘電体キャパシタの下部電極15aを構成するPt膜14の下地依存性について説明する。まず、Ti膜の結晶性の調査結果について図8を参照して説明し、その後に、Ti膜を酸化して得られるTiOz膜とその上に形成されるPt膜の結晶性について図9を参照して説明する。

【0049】本発明者は、上記したキャップ層12の効果について従来工程と比較する実験を行った。その実験は、絶縁膜をCVD法により成膜した後に、その絶縁膜上に幾つかのプロセスステップでTi膜をスパッタで形成してTi膜の結晶性がどのように異なるか調べた。まず、5種類のテストプロセス(TP)ウェハを形成し、それぞれのTPウェハ上のTi(002)ピーク強度をX線回折法により調査したところ図8に示すような結果が得られた。

【0050】比較の基準となるリファレンスのTPウェハとして、厚さ200nmのSiON膜と厚さ300nmのSiON膜を順次成膜した後にSiON膜上にTi膜をスパッタし、こTi膜の(002)面のピーク強度を図8の "Reference"で示すように「1」とし、これにより他のTPウェハを規格化する。図8で"CMP"と表記しているものは、厚さ200nmのSiON膜の上に厚さ600nmのSiON膜を形成し、SiON膜のうち300nmの厚さをCMP法により削り、その上にTi膜を形成したTPウェハである。その結果、Tiの(002)ピーク強度は、リファレンスの80%程度に下がってしまう。これは、CMP後のスラリー除去で使用される希フッ酸処理によって、絶縁膜表面が荒れたためであると思われる。

【0051】図8で"BEL-AN"と表記したもの は、厚さ200nmのSiON膜の上に300nmのSiOz膜 を堆積した後に、N2雰囲気中、650℃30分間のアニ ールを行ってSiO2膜の絶縁膜の脱ガスを行い、その後に SiOz膜上にTi膜を形成したTPウェハである。こうする と、CVD法で形成したSiOz膜中の水分が十分除去され るが、Ti成膜時の水分(水の分圧)が低すぎてTi (00 2) ピーク強度がリファレンスに比べて40%とかなり 下がるようである。吸湿がほとんどない熱酸化膜上でも 同様な結果が得られることからも、この仮説が裏付けら れる。しかし、脱ガス処理は、SiON膜やWSi ゲート中の 水紫も脱離させる効果があるので、水素耐性に乏しい強 誘電体キャパシタを成膜する前には必要な工程である。 そうしないと、強誘電体膜であるPLZT膜の結晶化ア ニール時に、下地絶縁膜からの脱水素によって、強誘電 体キャパシタが劣化してしまうことになる。

【0052】図8で"CMP&BEL-AN"と表記したものは、SiON膜を200nmの厚さに成膜し、さらに600nmの厚さでSiOx 膜を成膜した後に、SiOx 膜の300nmの厚さをCMPにより削った後、N2雰囲気中、650 $\mathbb{C}30$ 分間のアニールを行って脱ガスを行い、その後にSiOx 膜上にTi 膜を形成したTP ウェハである。そうすると、Ti (002) ピーク強度は、リファレンスの20%程度まで下がってしまった。

【0053】図8で "CMP&BEL-AN&SiO CAP" と表記したものは、SiON膜を200nmn成膜し、その上に600nmの厚さでSiO、膜を成膜して、SiO、膜の300nmの厚さをCMPにより削った後で、N2雰囲気中、650℃、30分間のアニールを行って脱ガスを行い、その後にSiO、膜上に上記実施形態のSiO、キャップ層を130nmの厚さに形成し、そのSiO、キャップ層の上にTi膜を形成したTPウェハである。その結果、CMP、BEL-AN工程を経ているにもかかわらず、Ti膜の(002)ピークがリファレンスの80%まで回復していた。SiO、キャップ層の有無で比較すると、4倍の結晶性の改善であった。

【0054】以上のことから、"CMP"と"CMP&BEL-AN&Si0 CAP"のTi膜が最も(002)ピークが高いことがわかった。なお、"CMP"のTPウェハ上のTi膜も(002)ピークが高いが、下地であるSi02膜の脱ガス処理が施されていないので良好な強誘電体キャパシタを形成するための対策としては用いられない。

【0055】次に、上記した5種類のTPウェハのTi膜をそれぞれ熱酸化してTiOz膜を形成し、そのTiOz膜の上にPt膜を形成した場合のPt膜の(222)のピーク強度を比較したところ、図9に示すような結果が得られた。Pt膜の(222)のピーク強度が高いほどその上に形成される強誘質体膜の膜質が良くなる。図9は、X線回折測定から得られた回折ピーク強度を、処理が異なる下地 50

絶縁膜毎に規格化してプロットしたものである。なお、それぞれの TiO_2 は、20nmoTi膜を600℃、60分で熱酸化して作成したものである。

12

【0056】図9の "Good TiO2"は、図8の "CMP&BEL-AN&SiO CAP" のTi膜を熱酸化してTiO2膜を形成した後に、TiO2膜上にPt膜を形成したものであり、その酸化前のTi膜の (002) ピークを「1」とし、酸化後のTiO2膜の (200) ピークを「1」とし、その上にPt膜の (222) ピークを「1」として、これによりその他のTPウェハを規格化している。

【0057】図9の "Bad TiO2" は、図8の "BEL-AN"と "CMP&BEL-AN"のTi膜を熱酸化してTiO2膜を形成した後に、TiO2膜上にPt膜を形成したものである。なお、図9の "Al2O3"は、Al2O3 膜の上に直にPt膜を形成したものであり、これについては第2実施形態において説明する。

【0058】図9によれば、TiO2のルチル結晶構造の(200)ピークが弱いと、Pt(222)ピークが弱くなっていることが分かる。強いTiO2(200)ピークのものは、アモルファスであるAl2O3 膜上のPt膜に比べて、Pt(222)ピークが強くなっていることから、Ptの(111)配向性を助長させている。さらに、Ti(002)ピークが弱いと、それを酸化して得られるTiO2(200)ピークが弱くなっていることが分かる。

【0059】したがって、良好な結晶性を持つ高温成膜のPtの下部電極層を得るためには、Tiの(002)ピークを強くする必要があり、このことから、図8の"CMP&BELーAN&SiOCAP"、即ち上記した実施形態のキャパシタの形成工程が最も好ましいことがわかる。ところで、図8に示した5種類のTPウェハ上のTi膜をそれぞれ酸化してTiO膜を形成し、その上にPt膜、PLZT膜、IrO2電極を形成する工程を経て強誘電体キャパシタを形成し、それらの強誘電体キャパシタの分極電荷量Qs*と疲労特性を測定したところ、表5に示すような結果が得られた。

【0060】表5によれば、"Reference"と"CMP&BEL-AN&Si0 CAP"の疲労特性が良いことから本実施形態による改善が見られることがわかる。疲労特性は、上部電極と下部電極の間に $7 \, \text{V}$ 、 $10^7 \, \text{回}$ 、正負のパルスを印加し、初期の Q_{sw} を100%として、疲労測定後、何% Q_{sw} が減少しているかをウェハ面内3点平均した値で示している。

【0061】なお、表5では疲労特性を測定した場合を示していて、各T P ウェハ上の強誘電体キャパシタのQ s*はあまり差がないと思われるが、実際には"Reference"と"C M P & B E L - A N & Si0 C A P"の各T P ウェハ上に形成された強誘電体キャパシタのQ s*は、その他のものよりも 2μ C / c m2 程度大きくなる傾向にある。

0 [0062]

【表5】

	Qsw(μ C/cm ²)	疲労特性
Ref.	29.2	5.32%
СМР	29.3	7.50%
BEL-AN	30.3	7.75%
CMP & BEL-AN	29.8	8.37%
CMP & BEL-AN & SIO CAP	30.4	6.31%

【0063】以上、実施形態に沿って説明したが、本発 明は上記した実施形態に制限されるものではない、例え ば、下部電極としてPt/Ti積層構造を用いた場合にも応 用できるし、強誘電体材料としてPZT、PLZTを用 いる場合を主に説明したが、他の強誘電体材料も用いる こともできる。例えば、SBT、SBTN等を用いても よい。また、上記実施形態では強誘電体膜の成膜をスパ ッタ法で行う場合を主に説明したが、他の成膜方法、例 えばゾルゲル法、MOCVD法等を用いることができ る。その他、種々の変更、改良、組み合わせが可能なこ とは当業者に自明であろう。

【0064】なお、図3(a) に示したキャップ層12を 構成する材料としてSiOzの代わりにAlzO3 を適用しても よい。キャップ層 1 2 となるAl2 03 膜は、表 6 に示す条 件で高周波スパッタにより例えば20nmの厚さに形成 される。

[0065]

【表6】

	Arガス圧	Arガス流量	RFパワー	時間
Al2O3	1.0Pa	20sccm	2.0kW	40秒

【0066】そのようなAlzO3 のキャップ層12の上に Ti膜13を形成し、そのTi膜13を熱酸化してTi0₂膜1 3 a を形成すると、Al2 03 膜上のTiO2膜13 a の結晶性 は、キャップ層12としてSiO2を用いた場合とほぼ同じ になった。

(第2の実施の形態)次に、本発明の第2実施形態に係 る半導体装置の製造工程を説明する。

【0067】まず、図2(a)~(c)に示したように、シ リコン基板 1 にMOSトランジスタ8を形成し、その上 40 に第1層間絶縁膜11を形成し、第1層間絶縁膜11の*

*表面をСMP法により平坦化するまでの工程は第1実施 形態と同様である。続いて図10(a) に示すように、第 1層間絶縁膜11の平坦化面上にAl203 よりなるキャッ プ層12aを髙周波スパッタにより20nmの厚さに形 成する。そのスパッタ条件は、例えば表6と同じにす

14

【0068】この後に、図10(b) に示すように、キャ ップ層12aの上にPt/TiOz 積層構造ではなく、下部電 極膜14として膜厚150nmの単層構造のPt膜をスパ ッタにより形成する。スパッタ条件は例えば時間を18 2秒とし、その他は表2と同じとする。ここで、下部電 極膜14とその下地構造としてPt/TiOz/SiOz積層構造の 代わりにPt/Al203積層構造を用いたのはプロセス安定性 を向上させるためである。図9において説明したよう に、AlzO3 はもともとアモルファスな材料なので、その 下のSiOz膜10の影響を受けないし、さらに、Ti膜の堆 積と、Ti膜の酸化の2工程を短縮できる利点もある。

【0069】そして、Pt膜を形成した後、第1実施形態 と同様に、下部電極膜14上にPLZT膜16、上部電 極膜17を順に堆積し、これらの膜をパターニングして 上部電極17a、強誘電体膜16aを形成し、それらの 上にエンキャップ層19を形成し、続いて、図10(c) に示すように、下部電極膜14をパターニングしてキャ パシタCの下部電極14aを形成する。その後の工程は 第1実施形態と同様なので省略する。

【0070】以上の工程により形成されたキャパシタC の下部電極 1 4 a の特性を調べるために、本発明者は、 第1実施形態で採用したPt/TiO2/SiO2積層構造の上にP LZT膜と上部電極を形成して強誘電体キャパシタを構 30 成した場合のスイッチング電荷量等と、本実施形態のよ うにPt/Al203積層構造の上にPLZT膜と上部電極を形 成して強誘電体キャパシタを構成した場合のスイッチン グ電荷量等とを比較する実験を行って表7に示す結果を 得た。

【0071】その実験は、50μm角にパターニングさ れた上部電極 17 a とその下の下部電極膜 15 にプロー ブを当てて測定を行った。表7は、第1実施形態の下部 電極構造と第2実施形態の下部電極構造の違いによるサ ンプルの電気的特性の結果を示している。

[0072]

【表7】

	Qsw(μC/cm²)	リーク電流(A/cm²)	疲労特性
Pt/TiO2	31.4	8.27×10 ⁻⁴	5.33%
Pt/Al2O3	30.3	1.04×10 ⁻³	5.11%

【0073】表7中の第1列は、3V印加した時のスイ ッチング電荷型 Qswをウェハ面内 5 点平均した値で示し ている。Pt/Al203のサンプルの方が、図9に示したよう 50 時のリーク電流を、同じようにウェハ面内5点で測定

に結晶性は悪かったけれども、QswはPt/TiO2のサンプ ルに迫る値になっている。次の第2列は、5 V印加した

【0074】 最後の第3列は、7V、107回、正負のパルスを印加させて疲労特性を測定したものである。初期のQswを100%として、疲労測定後、何%Qswが減少しているかをウェハ面内3点平均した値で示している。こちらは、Pt/Al203 のサンプルの方が若干良い結果になっている。結局、Pt/Al203構造を用いても、Qswや疲労特性を悪化させることなく、プロセスの安定性を確保できることが分かった。また、Al203 膜上のPt膜には膜剥がれが生じることはなかった。

【0075】なお、強誘電体膜としてPLZTを用いたが、その他のPZT又はPZT系材料や、SrBizTazOo、SrBiz(Ta,Nb)2Oo 等のBi層状構造化合物等を用いてもよい。また、酸化物の高誘電体材料を用いるキャパシタにおいても、上記した下部電極の形成を採用してもよい。【0076】

【発明の効果】以上述べたように本発明によれば、CMPを施しさらに脱ガス処理を行った絶縁膜上に、もう一度、絶縁膜を形成する工程を、キャパシタ用下部電極層を形成する前に追加するようにしたので、絶縁膜上に形成したTi膜の(002)ピークを強くすることができ、しかも下部電極層であるPtの膜剥が生じるおそれが無くなり、Pt膜の粒径が100~150nmと大きい状態で、Ptの結晶性を良好にすることができる。また、キャパシタの強誘電体膜では膜中の結晶方位が所望の方向に揃うため、残留分極の大きさが最大化される。つまり、高信頼性を持つ強誘電体キャパシタを得ることができる。

【0077】さらに、本発明の他の構造によれば、CM Pを施した絶縁膜上に、もう一度、AI203 膜を形成する工程を、キャパシタ用下部電極層を形成する前に追加し、ついで下部電極層であるPteAI203 膜上に成膜することにより、Ptの膜剥がれのおそれが無く、Pt膜の粒径が $100\sim150$ nmと大きい状態で、Ptの結晶性を安定して良好にすることができる。

【図面の簡単な説明】

【図1】図1(a),(b) は、FeRAMメモリセルの回路 図である。 【図2】図2(a) \sim (c) は、本発明の第1実施形態に係る $F \in R \land M$ のメモリセルの形成工程を示す断面図(その1)である。

16

【図3】図3(a) \sim (c) は、本発明の第1実施形態に係る $F \in R \land M$ のメモリセルの形成工程を示す断面図(その2)である。

【図4】図4(a) \sim (c) は、本発明の第1実施形態に係る $F \in R \land M$ のメモリセルの形成工程を示す断面図(その3)である。

0 【図5】図5(a) ~(c) は、本発明の第1実施形態に係るFeRAMのメモリセルの形成工程を示す断面図(その4)である。

【図6】図6(a) \sim (c) は、本発明の第1実施形態に係る $F \in R \land M$ のメモリセルの形成工程を示す断面図(その5)である。

【図7】図7(a) \sim (c) は、本発明の第1実施形態に係る $F \in R \land M$ のメモリセルの形成工程を示す断面図(その6)である。

【図8】図8は、本発明の実施形態によるTi膜とその他 20 の工程によるTi膜の結晶を示す図である。

【図9】図9は、本発明の実施形態によるTi膜、TiO z膜、Pt膜とその他の工程によるTi膜、TiOz膜、Pt膜の 結晶を示す図である。

【図10】図10(a) ~(c) は、本発明の第2実施形態 に係るFeRAMのメモリセルの形成工程を示す断面図 である。

【符号の説明】

1 …シリコン (半導体) 基板、2 …素子分離絶縁膜、3 …活性領域、3 a …ウェル、4 …ゲート酸化膜、5 …ゲ のト電極、6 a …保護膜、6 b …側壁絶縁膜、7 a, 7 b, 7 c …不純物拡散層、8 …MOSトランジスタ、9 …酸化防止膜、10 …Si0z膜、11 …層間絶縁膜、12, 12 a …キャップ層、13 …Ti膜、13 a …Ti0 z膜、14, 15 …下部電極層、14a, 15 a …下部電極、16 … P L Z T 膜、16 a …強誘電体膜、17 … 上部電極層、17 a …上部電極、18 …レジストパターン、19 …エンキャップ層、20 …レジストパターン、21 …層間絶縁膜、23 a, 23 b, 23 d …導電性プラグ、24 …酸化防止膜、25 …レジストパターン、2 d0 6 a …配線、26 b …パッド、26 d …配線。

【図1】

FeRAMのメモリセルの回路図

2T/2C

[図2]

第1実施形態(1)

[図8]

本発明の実施形態によるTI膜とその他の 工程によるTI膜の結晶特性図

[図9]

本発明の実施形態によるTi, TiO₂.Plとその他の工程による Ti, TiO₂.Ptの結晶特性図

【図3】

【図4】

【図5】

【図6】

フロントページの続き

(72)発明者 商松 知広 神奈川県川崎市中原区上小田中4丁目1番 1号 富士通株式会社内

(72)発明者 横田 竜也

神奈川県川崎市中原区上小田中4丁目1番 1号 富士通株式会社内

F ターム(参考) 5F083 FR02 FR03 GA27 JA15 JA17 JA38 JA40 JA42 JA43 JA45 JA56 MA06 MA18 MA20 PR21 PR22 PR34 PR40 PR43 PR53