Examen Parcial de FCO – Temas 1 al 5 15 de Diciembre de 2014 APELLIDOS: _______ NOMBRE: ______

FIRMA:

Normativa:

DNI:

- •La duración del examen es de 2:30hrs.
- •Por favor, escriba su nombre y apellidos en letras **MAYÚSCULAS** y **firme** en **TODAS** las hojas.
- •DEBE responder en el espacio asignado.
- •No se permiten calculadoras ni apuntes.
- •Debe permanecer en silencio durante la realización del examen.
- •No se puede abandonar el examen hasta que el profesor lo indique.
- Debe tener una identificación en la mesa a la vista del profesor (DNI, carnet UPV, tarjeta residente, etc.)
- **1.(0,75 puntos)** Sea un procesador que opera a 125 MHz que es capaz de ejecutar en promedio 2 instrucciones de 32 bits almacenadas en memoria cada ciclo de reloj.

Se pide:

¿Cuál es el tiempo de ciclo de dicho procesador? (Justificar/mostrar cálculos)

Tiempo de ciclo = 1/Frecuencia

$$1/(125 * 10^6 \text{ Hz}) \cong 0,008 * 10^{-6} \text{ s} = 8 * 10^{-3} * 10^{-6} = 8 * 10^{-9} = 8 \text{ ns}$$

2.(0,75 puntos) Dado el siguiente número positivo en hexadecimal

$$A = FC0,2014_{16}$$

Se pide:

Su valor en binario. (Justificar/mostrar cálculos)

Cada digito hexadecimal se representa con 4 bits en binario:

 $FC0,2014_{16} = 1111\ 1100\ 0000\ ,0010\ 0000\ 0001\ 0100_2$

3.(1 punto) Se desear diseñar un circuito combinacional que a partir de un DATO de 3 bits (D_2 D_1 D_0) y una señal de control INVERTIR (I), funcione de la siguiente forma:

Si la señal INVERTIR es igual a cero, el circuito debe obtener a la SALIDA $(S_2 S_1 S_0)$ el mismo DATO de la entrada $(D_2 D_1 D_0)$.

En el caso de que la señal INVERTIR se fije al valor 1, a la SALIDA se debe obtener el DATO complementado $(D_2/D_1/D_0)$.

Se pide:

a)(0,25 puntos) Dibuje la Interfaz del circuito con entradas y salidas.

b)(**0,75 puntos**) Tabla de Verdad:

ı	D_2	D_1	D_0	S ₂	S ₁	S_0
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	1	0
0	0	1	1	0	1	1
0	1	0	0	1	0	0
0	1	0	1	1	0	1
0	1	1	0	1	1	0
0	1	1	1	1	1	1
1	0	0	0	1	1	1
1	0	0	1	1	1	0
1	0	1	0	1	0	1
1	0	1	1	1	0	0
1	1	0	0	0	1	1
1	1	0	1	0	1	0
1	1	1	0	0	0	1
1	1	1	1	0	0	0

4. (**1,5 puntos**). A partir de la siguiente tabla de verdad:

	D	С	В	Α	F
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	0
3	0	0	1	1	1
4	0	1	0	0	1
5	0	1	0	1	1
6	0	1	1	0	X
7	0	1	1	1	1

	ם	С	В	Α	F
8	1	0	0	0	0
9	1	0	0	1	X
10	1	0	1	0	0
11	1	0	1	1	X
12	1	1	0	0	X
13	1	1	0	1	0
14	1	1	1	0	0
15	1	1	1	1	0

Examen Parcial de FCO – Temas 1 al 5

15 de Diciembre de 2014

APELLIDOS: ______ NOMBRE: _____

DNI: _____ FIRMA:

- a)(**0,5 puntos**) Escriba las formas canónicas conjuntiva y disyuntiva correspondientes a la función F de la tabla:
- (0,25 puntos) Forma Disyuntiva: $F = \sum_{D,C,B,A} (1,3,4,5,7) + \sum_{\phi} (6,9,11,12)$
- (0,25 puntos) Forma Conjuntiva $F = \prod_{D,C,B,A} (0,2,8,10,13,14,15) \bullet \prod_{\phi} (6,9,11,12)$
- b) **(0,5 puntos)** Simplifique la función F mediante un mapa de Karnaugh, utilizando minitérminos (1's).

DC BA	00	01	11	10
00	0	1	X	0
01	1	1	0	X
11	1	1	0	X
10	0	X	0	0

c)(0,5 puntos) Simplifique la función F mediante un mapa de Karnaugh, utilizando maxitérminos (0's).

5. (1,5 puntos) Diseñar un decodificador de 4 a 16 con salidas activas a nivel bajo, y entrada de habilitación activa a nivel alto.

Se pide:

a) (1 punto) Diseñarlo empleando decodificadores de 2 a 4 con salidas y entradas de habilitación a nivel bajo. También se pueden utilizar las puertas NOT que se estimen necesarias.

b)(0,5 puntos) Dibuje el símbolo de los decodificadores, que se tiene que emplear.

6. (1,5 puntos) A partir del siguiente circuito secuencial, se pide:

a)(1 punto) Obtener el cronograma de funcionamiento:

Examen Parcial de FCO – Temas 1 al 5 15 de Diciembre de 2014

b)(0,25 puntos) Indicar la función que realiza el circuito:

Se trata de un contador módulo 5, es decir, realiza la cuenta: 0 -1-2-3-4-0-1-2-.....

c)(0,25 puntos) ¿Qué otro biestable se podría emplear en el circuito secuencial anterior sin alterar su comportamiento?

Biestable 7	-		
Diestable i			

7.(1,5 puntos) Dado el diagrama de estados de la figura, con entrada E y salida [S].

a)(0,5 puntos) Rellene la tabla de estados:

Estado Actual	Estado	Siguiente	Salida
	E=0	E=1	S
А	В	R	0
В	В	С	0
С	A	D	0
D	Α	R	1
R	Α	R	0

b)(1 punto) Rellene el cronograma. Para ello, supóngase:

- •Que la secuencia de la entrada sea: E= 0-1-0-0-1-1
- Que el sistema secuencial está implementado con biestables "D" síncronos activos por flanco de bajada, y
- •Que el estado de partida sea el estado B

Bajo estas condiciones, determine sobre el cronograma la sucesión de estados (A, B, C, etc) (0,5 puntos), y la salida S (0,5 puntos).

- **8.(1,5 puntos)** Se desea construir un autómata de Moore que controle un desfibrilador automático. El sistema dispone de dos entradas: F y P, que cuando se activan (a nivel alto) indican que el paciente está fibrilando (F) y que tiene pulso (P). El sistema presenta dos salidas: D y A, para activar el desfibrilador (D), y para activar una alarma (A). El sistema supervisa las condiciones del paciente, pudiendo suceder los siguientes casos:
 - Si el paciente tiene no fibrila y tiene pulso, se mantiene la supervisión.
 - Si el paciente tiene fibrila y tiene pulso, debe activarse la salida D durante un ciclo, volviendo posteriormente a supervisar al paciente.
 - Si el paciente no tiene pulso debe activarse la salida A de forma indefinida.
- a)(0,25 puntos) Dibuje la interfaz del sistema

Examen Parcial de FCO – Temas 1 al 5 15 de Diciembre de 2014

APELLIDOS:		NOMBRE:	
DNI:	FIRMA:		

b)(1,25 puntos) Realice el diagrama de estados. Para indicar las entradas, considere el orden FP, y para las salidas el orden [DA].

