Automated Insurance Underwriting

Problem Statement

- Insurance is vital for financial safety, yet underwriting is slow and error-prone.
- Manual processes cause delays, hidden biases, and opaque decisions, and even if it is Automated system
- What if Al delivered instant, fair assessments with clear explanations?

Wouldn't that redefine trust in insurance?

Solution

- This system analyzes applicant data—such as demographics, health metrics, and financial information—to calculate risk scores and make underwriting decisions Confidence Levels: A visual representation of the confidence levels for each decision (e.g., bar charts).
- system uses SHAP (SHapley Additive exPlanations) to provide detailed explanations for each underwriting decision. This includes SHAP values, and feature importance visualizations. SHAP Explanation: A visualization of how each feature contributed to the decision (e.g., bar charts for SHAP values).
- Manual Override: An option for underwriters to manually override the decision.

Stakeholder

- a. Insurance Companies (Insurers)Role: The primary users of the system, responsible for underwriting policies and managing risk.
- b. Underwriters Role: Professionals who evaluate and approve insurance applications.
- c. Applicants (Policyholders)Role: Individuals or businesses applying for insurance policies.

Statistics

Key features

- Data Input: A user-friendly form for applicant details (age, BMI, income, etc.).
- Risk Calculation: A simplified algorithm to compute health, financial, and overall risk scores.
- Underwriting Decision: Automated approval, conditional approval, or decline decisions.
- Confidence Levels: Display of confidence levels for each decision.
- Risk Factor Analysis: Highlighting key risk factors and findings.
- SHAP Value Explanation: Visualizations showing how individual features influenced the decision.
- Manual Override: Allows underwriters to manually override automated decisions.

Technology and Resources Used

- Web Framework: Flask (used for deploying the model)
- Frontend: HTML, CSS, JavaScript (used in index.html)
- Backend: Flask(used in app.py)
- Programming Language: Python
- Libraries: SHAP, scikit-learn, pandas, matplotlib, seaborn
- Modeling Framework: Random Forest
- Development Environment: VS Code
- Visualization Tools: Matplotlib, Seaborn, SHAP library plots

Implemented Output

Automated risk assessment and policy recommendation system

Automated risk assessment and policy recommendation system

Automated risk assessment and policy recommendation system

Underwriting Decision

DECLINED

Confidence Risk Factors SHAP Explanation Override

Key Risk Factors

Health Risk Score 75.0%

Financial Risk Score 25.0%

Overall Risk Score 60.0%

Key Findings

- · Applicant is a smoker
- · Applicant has diabetes
- Applicant has heart disease
- Below average credit score

New Application

Underwriting Decision

DECLINED

Confidence Risk Factors SHAP Explanation Override

Feature Importance (SHAP Values)

How each factor contributed to the underwriting decision:

New Application

Automated risk assessment and policy recommendation system

Thank You!