

Institute of Informatics – Institute of Neuroinformatics

Lecture 04 Image Filtering

Davide Scaramuzza

http://rpg.ifi.uzh.ch

No exercise this afternoon

05 - Point Feature Detectors 1: Harris detector

Exercise 3: Harris detector + descriptor + matching

06 - Point Feature Detectors 2: SIFT, BRIEF, BRISK

Exercise 4: Stereo vision: rectification, epipolar matching, disparity, triangulation

Scaramuzza's lab visit and live demonstrations: Andreasstrasse 15, 2.11, 8050

Exercise session: final VO integration (it will take place close to Scaramuzza's lab)

07 - Multiple-view geometry 1

08 - Multiple-view geometry 2

09 - Multiple-view geometry 3

Exercise 5: Eight-Point algorithm

Exercise 7: Lucas-Kanade tracker

Exercise session: Deep Learning Tutorial

12 - Place recognition

13 – Visual inertial fusion

14 - Event based vision

Exercise 8: Bundle adjustment

Exercise 6: P3P algorithm and RANSAC

10 - Dense 3D Reconstruction (Multi-view Stereo)

Date	Time	Description of the lecture/exercise	Lecturer
20.09.2018	10:15 - 12:00	01 – Introduction	Davide Scaramuzza
27.09.2018	10:15 - 12:00	02 - Image Formation 1: perspective projection and camera models	Davide Scaramuzza
	13:15 – 15:00	Exercise 1: Augmented reality wireframe cube	Titus Cieslewski & Mathias Gehrig
04.10.2018	10:15 - 12:00	03 - Image Formation 2: camera calibration algorithms	Guillermo Gallego

Antonio Loquercio & Mathias Gehrig

Davide Scaramuzza

Guillermo Gallego

Antonio Loquercio & Mathias Gehrig

Davide Scaramuzza

Guillermo Gallego

Antonio Loquercio & Mathias Gehrig

Davide Scaramuzza

Antonio Loquercio

Davide Scaramuzza

Antonio Loquercio & Mathias Gehrig

Davide Scaramuzza

Davide Scaramuzza & his lab

Antonio Loquercio & Mathias Gehrig

25.10.2018

01.11.2018

08.11.2018

15.11.2018

22.11.2018

06.12.2018

13.12.2018

20.12.2018

13:15 - 15:00

Exercise 2: PnP problem

1.10.2018 10:15 - 12:00

18.10.2018

04 - Filtering & Edge detection 13:15 - 15:00

10:15 - 12:00 10:15 - 12:00 10:15 - 12:00 13:15 - 15:00

10:15 - 12:00

13:15 - 15:00

10:15 - 12:00

13:15 - 15:00

10:15 - 12:00

13:15 - 15:00

10:15 - 12:00

13:15 - 15:00

10:15 - 12:00

13:15 - 15:00

10:15 - 12:00

12:30 - 13:30

14:00 - 16:00

13:15 - 15:00Exercise session: Intermediate VO Integration 29.11.2018 10:15 - 12:00 11 - Optical Flow and Tracking (Lucas-Kanade)

Image filtering

- The word filter comes from frequency-domain processing, where "filtering" refers to the process of accepting or rejecting certain frequency components
- We distinguish between low-pass and high-pass filtering
 - A low-pass filter smooths an image (retains low-frequency components)
 - A high-pass filter retains the contours (also called edges) of an image (high frequency)

Low-pass filtered image

Low-pass filtering

Low-pass filtering Motivation: noise reduction

- Salt and pepper noise: random occurrences of black and white pixels
- Impulse noise: random occurrences of white pixels
- Gaussian noise: variations in intensity drawn from a Gaussian distribution

Original

Salt and pepper noise

Impulse noise

Gaussian noise

5 Source: S. Seitz

Gaussian noise

How could we reduce the noise to try to recover the "ideal image"?

Moving average

- Replaces each pixel with an average of all the values in its neighborhood
- Assumptions:
 - Expect pixels to be like their neighbors
 - Expect noise process to be independent from pixel to pixel

Moving average

- Replaces each pixel with an average of all the values in its neighborhood
- Moving average in 1D:

Weighted Moving Average

- Can add weights to our moving average
- Weights [1, 1, 1, 1, 1] / 5

Weighted Moving Average

Non-uniform weights [1, 4, 6, 4, 1] / 16

This operation is called *convolution*

Example of convolution of two sequences (or "signals")

- One of the sequences is flipped (right to left) before sliding over the other
- Notation: a∗b
- Nice properties: linearity, associativity, commutativity, etc.

This operation is called *convolution*

Example of convolution of two sequences (or "signals")

- One of the sequences is flipped (right to left) before sliding over the other
- Notation: a * b
- Nice properties: linearity, associativity, commutativity, etc.

2D Filtering

Convolution:

- Flip the filter in both dimensions (bottom to top, right to left) (=180 deg turn)
- Then slide the filter over the image and compute sum of products

Filtering an image: replace each pixel with a linear combination of its neighbors.

The **filter** *H* is also called "**kernel**" or "**mask**".

Review: Convolution vs. Cross-correlation

Convolution

$$G[x,y] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} F[x-u,y-v]H[u,v]$$

$$G = F * H$$

Properties: linearity, associativity, commutativity

Cross-correlation

$$G[x,y] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} F[x+u,y+v]H[u,v]$$

$$G = F \otimes H$$

Properties: linearity, but not associativity and commutativity

Input image

Filtered image

G[x,y]

Input image

Input image

Input image

Input image

Input image

F[x, y]

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

original

filtered

Gaussian filter

What if we want the closest pixels to have higher influence on the output?

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

This kernel is the approximation of a Gaussian function:

$$H[u,v] = \frac{1}{2\pi\sigma^2}e^{-\frac{u^2+v^2}{2\sigma^2}}$$

Smoothing with a Gaussian

Compare the result with a box filter

Gaussian filters

- What parameters matter?
- Size of the kernel
 - NB: a Gaussian function has infinite support, but discrete filters use finite kernels

 σ = 5 pixels with 10 x 10 pixel kernel

 $\sigma = 5$ pixels with 30 x 30 pixel kernel

Gaussian filters

- What parameters matter?
- Variance of Gaussian: control the amount of smoothing

Recall: standard deviation = σ [pixels], variance = σ^2 [pixels²]

Smoothing with a Gaussian

 σ is called "scale" or "width" or "spread" of the Gaussian kernel, and controls the amount of smoothing.

10

20

Sample Matlab code

```
>> hsize = 20;
>> sigma = 5;
>> h = fspecial('gaussian', hsize, sigma);
>> mesh(h);
>> imagesc(h);
>> im = imread('panda.jpg');
>> outim = imfilter(im, h);
>> imshow(outim);
```


Boundary issues

- What about near the image edges?
 - the filter window falls off the edges of the image
 - need to pad the image borders
 - methods:
 - zero padding (black)
 - wrap around
 - copy edge
 - reflect across edge

Summary on (linear) smoothing filters

Smoothing filter

- has positive values (also called coefficients)
- sums to 1 \rightarrow preserve brightness of constant regions
- removes "high-frequency" components; "low-pass" filter

Non-linear filtering

Effect of smoothing filters

Linear smoothing filters do not alleviate salt and pepper noise!

Median filter

- It is a non-linear filter
- Removes spikes: good for "impulse noise" and "salt & pepper noise"

Median filter

Plots of a row of the image

Median filter

Median filter preserves sharp transitions (i.e., edges),

^{...} but it removes small brightness variations.

High-pass filtering (edge detection)

Edge detection

- Ultimate goal of edge detection: an idealized line drawing.
- Edge contours in the image correspond to important scene contours.

Edges are sharp intensity changes

Images as functions F(x, y)

Edges look like steep cliffs

Derivatives and edges

An edge is a place of rapid change in the image intensity function.

Differentiation and convolution

For a 2D function F(x, y) the partial derivative along x is:

$$\frac{\partial F(x,y)}{\partial x} = \lim_{\varepsilon \to 0} \frac{F(x+\varepsilon,y) - F(x,y)}{\varepsilon}$$

For discrete data, we can approximate using finite differences:

$$\frac{\partial F(x,y)}{\partial x} \approx \frac{F(x+1,y) - F(x,y)}{1}$$

What would be the respective filters along x and y to implement the partial derivatives as a convolution?

Partial derivatives of an image

-1 1

Alternative Finite-difference filters

Prewitt filter
$$G_{\chi} = \begin{bmatrix} -1 & 0 & +1 \\ -1 & 0 & +1 \\ -1 & 0 & +1 \end{bmatrix}$$
 and $G_{y} = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ +1 & +1 & +1 \end{bmatrix}$

```
Sobel filter G_x = \begin{bmatrix} -1 & 0 & +1 \\ -2 & 0 & +2 \\ -1 & 0 & +1 \end{bmatrix} and G_y = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ +1 & +2 & +1 \end{bmatrix}
```

```
Sample Matlab code
>> im = imread('lion.jpg');
>> h = fspecial('sobel');
>> outim = imfilter(double(im), h);
>> imagesc(outim);
>> colormap gray;
```


Image gradient

The gradient of an image:

$$\nabla F = \left[\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}\right]$$

The gradient points in the direction of fastest intensity change

$$\nabla F = \begin{bmatrix} \frac{\partial F}{\partial x}, 0 \end{bmatrix}$$

$$\nabla F = \begin{bmatrix} \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y} \end{bmatrix}$$

The gradient direction (orientation of edge normal) is given by:

$$\theta = tan^{-1} \left(\frac{\partial F}{\partial y} / \frac{\partial F}{\partial x} \right)$$

The edge strength is given by the gradient magnitude

$$\|\nabla F\| = \sqrt{\left(\frac{\partial F}{\partial x}\right)^2 + \left(\frac{\partial F}{\partial y}\right)^2}$$

Effects of noise

Consider a single row or column of the image

- Plotting intensity as a function of position gives a signal

Where is the edge?

Solution: smooth first

Where is the edge?

Look for peaks in
$$\frac{\partial}{\partial x}(F*H)$$

Alternative: combine derivative and smoothing filter

$$\frac{\partial}{\partial x}(F*H) = F*\frac{\partial H}{\partial x}$$

Differentiation property of convolution.

Derivative of Gaussian filter (along x)

Derivative of Gaussian filters

Laplacian of Gaussian

Consider
$$\frac{\partial^2}{\partial x^2}(F*H) = F*\frac{\partial^2 H}{\partial x^2}$$

Zero-crossings of bottom graph

2D edge detection filters

• ∇^2 is the Laplacian operator: $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$

Summary on (linear) filters

Smoothing filter:

- has positive values
- sums to 1 → preserve brightness of constant regions
- removes "high-frequency" components: "low-pass" filter

Derivative filter:

- has opposite signs used to get high response in regions of high contrast
- sums to $0 \rightarrow$ no response in constant regions
- highlights "high-frequency" components: "high-pass" filter

- Compute gradient of smoothed image in both directions
- Discard pixels whose gradient magnitude is below a certain threshold
- Non-maximal suppression: identify local maxima along gradient direction

Take a grayscale image. If not grayscale (i.g., RGB), convert it into a grayscale by replacing each pixel by the mean value of its R, G, B components.

Original image (Lenna image: https://en.wikipedia.org/wiki/Lenna)

Take a grayscale image. If not grayscale (i.g., RGB), convert it into a grayscale by replacing each pixel by the mean value of its R, G, B components.

Original image (Lenna image: https://en.wikipedia.org/wiki/Lenna)

Convolve the image F with x and y derivatives of Gaussian filter

$$\frac{\partial F}{\partial x} = F * \frac{\partial G}{\partial x}$$

$$\frac{\partial F}{\partial y} = F * \frac{\partial G}{\partial y}$$

$$\|\nabla F\| = \sqrt{\left(\frac{\partial F}{\partial x}\right)^2 + \left(\frac{\partial F}{\partial y}\right)^2}$$
: Edge strength

Threshold it (i.e., set to 0 all pixels whose value is below a given threshold)

Thresholded $\|\nabla F\|$

Take local maximum along gradient direction

Thinning: non-maxima suppression (local-maxima detection) along edge direction

Summary (things to remember)

- Image filtering (definition, motivation, applications)
- Moving average
- Linear filters and formulation: box filter, Gaussian filter
- Boundary issues
- Non-linear filters
 - Median filter and its applications
- Edge detection
 - Derivating filters (Prewitt, Sobel)
 - Combined derivative and smoothing filters (deriv. of Gaussian)
 - Laplacian of Gaussian
 - Canny edge detector
- Readings: Ch. 3.2, 4.2.1 of Szeliski book

Understanding Check

Are you able to:

- Explain the differences between convolution and correlation?
- Explain the differences between a box filter and a Gaussian filter?
- Explain why should one increase the size of the kernel of a Gaussian filter if is large (i.e. close to the size of the filter kernel?
- Explain when would we need a median filter?
- Explain how to handle boundary issues?
- Explain the working principle of edge detection with a 1D signal?
- Explain how noise does affect this procedure?
- Explain the differential property of convolution?
- Show how to compute the first derivative of an image intensity function along x and y?
- Explain why the Laplacian of Gaussian operator is useful?
- List the properties of smoothing and derivative filters?
- Illustrate the Canny edge detection algorithm?
- Explain what non-maxima suppression is and how it is implemented?