Q1 We are to prove the sequence $\left(\frac{5n^7}{7^n}\right)_{n\in\mathbb{N}}$ converges.

Proof. We shall first prove the statement (1): $(n > 11) \rightarrow (5n^7 < 5^n)$ Statement 1 can be proved by induction.

Base case: for n = 12, $5n^7 = 179159040 < 5^n = 244140625$.

Induction: Assuming $5n^7 < 5^n$. $(\forall n > 11)$ $(\frac{n+1}{n} < \frac{12}{11} \approx 1.0909 < 1.2585 \approx 5^{\frac{1}{7}}) \rightarrow (\frac{n+1}{n})^7 < 5 \rightarrow 5(n+1)^7 < 5 \cdot 5n^7 < 5 \cdot 5^n = 5^{n+1}$. And statement 1 is proved.

We also need statement 2, which is obvious: $(0 < a < 1, 0 < n < m) \rightarrow$ $(a^m < a^n)$

 $\forall \epsilon > 0$, let $l_1 = \frac{\ln \epsilon}{\ln \frac{5}{2}}$ and $l_2 = 12$. Let N be the greater of l_1 and l_2 .

$$(n > N) \to \underbrace{\frac{5n^7}{7^n}}_{\alpha} < \underbrace{\frac{5^n}{7^n}}_{\beta} < \underbrace{\frac{5^N}{7^N}}_{\gamma} \le \underbrace{\left(\frac{5}{7}\right)^{\frac{\ln \epsilon}{\ln \frac{5}{7}}}}_{\delta} = \epsilon$$

 $\alpha < \beta$ is of statement 1. $\beta < \gamma \le \delta$ is of statement 2.

 $(\beta \text{ is of statement 1. } \beta < \gamma \leq o \text{ is or statement 2.}$ Thus we have proved that $(\forall \epsilon > 0)(\exists N \in \mathbb{N})(\forall n > N)(\frac{5n^7}{7^n} < \epsilon)$. Q.E.D.

Q2 Let \mathbb{S} be a countable set, and let \mathbb{E}_s be a countable sets for all $s \in \mathbb{S}$. Define the set

$$\mathbb{E} = \bigcup_{s \in \mathbb{S}} \mathbb{E}_s$$

We are to prove that \mathbb{E} is countable by constructing a bijective mapping $\mathfrak{C}: \mathbb{N} \to \mathbb{E}$.

Proof. By definition there exists a bijective function $f: \mathbb{N} \to \mathbb{S}$, and bijective function $g_s: \mathbb{N} \to \mathbb{E}_s$. Moreover, let us denote each element of the set \mathbb{E}_s to be E_s^1, E_s^2, \cdots . As there exists a bijective function g between \mathbb{N} and \mathbb{E}_s , $\{E_s^i|i\in\mathbb{N}\}=\mathbb{E}_s$

We also know that there exists a bijective mapping $h: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$.

Now consider the function defined thus: $m: \mathbb{N} \times \mathbb{N} \to E$ such that $m(a,b) = E^a_{f(b)}$. m is bijective.

The function $\mathfrak{C} = m \circ h : \mathbb{N} \to \mathbb{E}$ is bijective, as all of the function used to construct it are bijective.

Q.E.D.