

EINFÜHRUNG IN DIE TECHNISCHE INFORMATIK

TUTORIUM 18.11.2016

BESPRECHUNG

Blatt 4

WIEDERHOLUNG

Vorlesung & Für Blatt 5

WIEDERHOLUNG: HAZARDS

- ➤ Funktionshazards: Erkennen durch normales KV
- > Hazard bei Übergang, wenn nicht monotone Folge

- ➤ Betrachte Übergang (cba): (001) -> (100)
- ➤ Übergang: 1-0-1 —> Funktionshazard

WIEDERHOLUNG: HAZARDS

➤ Strukturhazard: Erkennen durch "Struktur-KV" (KV-Diagramm mit Pfadvariablen)

e₃₁ 1 1 1 e₁₂ - e₂₁ - - e₂₁

Kein Hasardfehler!

Hasardfehler!

WIEDERHOLUNG: FLIPFLOPS

- ➤ Bisher: Keine Speicherung von Signalwerten möglich!
- Lösung: Rückkoppelung
- ➤ Verschiedene FlipFlops: RS-, D-, T-, JK- FlipFlops
- ➤ Grundprinzip immer gleich

WIEDERHOLUNG: RS-FLIPFLOP

➤ S: Set, R: Reset

S	R	P	Q	
0	0	speichern		
0	1	1	0	
1	0	0	1	
1	1	unzulässig		

WIEDERHOLUNG: RS-FLIPFLOP

➤ Auch mit NAND's möglich

➤ Beachte: Eingänge S und R negiert, um gleiche Speicherzustände zu erhalten (S = 0, R = 0 —> Speichern)

WIEDERHOLUNG: RS-FLIPFLOP

 \triangleright Wieso ist S = 1, R = 1 unzulässig?

➤ Bei S = 1 und R = 1 gilt Q = P = 0 (nicht erwünscht, Q und P sollen komplementär sein)

WIEDERHOLUNG: TAKTZUSTANDSGESTEUERTE FLIPFLOPS

- ➤ FlipFlop hat zusätzlich noch Eingang für einen Takt (Clock)
- ➤ Nur wenn dieser Eingang 1 ist (Spannung liegt an) schaltet das FlipFlop, ansonsten speichert es

➤ Vorteil: Durch geschickten Takt können Hazards vermieden werden

WIEDERHOLUNG: MASTER-SLAVE FLIPFLOPS

- ➤ Problem: 2 hintereinandergeschaltene takzustandsgesteuerte FlipFlops —> Änderung des ersten FlipFlops wird innerhalb des ersten Takts zum zweiten FlipFlop übernommen
- ➤ Lösung: 2. FlipFlop läuft mit invertiertem Takt —> Master-Slave

WIEDERHOLUNG: MASTER-SLAVE FLIPFLOPS

••••••••••••••••••••••••••••••••••••

➤ Beispiel: S = 1 bei RS-Master-Slave

WIEDERHOLUNG: TAKTZUSTANDSGESTEUERTE FLIPFLOPS

➤ Nachteil: Eingangswerte müssen Konstant gehalten werden solange C = 1 (auch bei Master-Slave)

Beispiel: Störung bei einem RS-Master-Slave-Flipflop

➤ Lösung: Taktflankengesteuerte FlipFlops

WIEDERHOLUNG: TAKTFLANKENGESTEUERTE FLIPFLOPS

- ➤ Taktflanke definiert den Zeitpunkt, zu dem die Zustandsänderung eintritt
- ➤ Eingangssignale müssen nur kurz vor und nach der Taktflanke konstant sein

Schaltzeichen für Takteingänge mit Flankensteuerung:

Zustandsübergang bei positiver Taktflanke (C = 0→1)

Zustandsübergang bei negativer Taktflanke (C = 1→0)

WIEDERHOLUNG: JK-FLIPFLOP

- ➤ Erweiterung des RS-FF: JK-FF
- ➤ Jump (J) und Kill (K) entsprechen S (Set) und R (Reset) des RS
- ➤ Unterschied: Unzulässiger Zustand des RS-FF ist nun Toggle Zustand
- ➤ Entweder als Master-Slave-FF oder als taktflankengesteuertes FF
- ➤ Intern aufgebaut aus 2 RS-FF (siehe Skript)

WIEDERHOLUNG: JK-FF

➤ Beispiel: Zweiflankengesteuertes JK-FF

Zweiflankengesteuertes JK-Master-Slave-Flipflop:

J	K	Q _{n+1}
0	0	Q_n
0	1	0
1	0	1
1	1	\bar{Q}_n

WIEDERHOLUNG: D-FF

- ➤ D-FF ist ein RS-FF bei dem D = S = 1 R gilt —> Unzulässige Kombination vermieden
- ➤ D-FF reines "Verzögerungsflipflop" bei entsprechendem Takt

D	S	R	Q _{n+1}
0	0	1	0
1	1	0	1

WIEDERHOLUNG: T-FF

➤ T-FF: Toggle-FlipFlop, in Abhängigkeit des Taktsignals wechselt der Ausgang zwischen 0 und 1

Schaltzeichen:

ÜBERSICHT: FLIPFLOPS

	ohne Takt- steuerung	Zustands- steuerung	Zwei-Zustands- steuerung	Einflanken- steuerung	Zweiflanken- steuerung
RS - FF	-S	IS CI IR	- IS	- IS -> C1 - IR	- IS
D - FF		- ID - C1	- ID	ID	- ID
JK - FF			- IJ	$ \begin{array}{c cccc} -IJ & - \\ ->CI & - \\ -IK & - \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
T - FF				T − − −	→ T

ÜBUNGSBLATT 5

- ➤ Aufgabe 2: Sowohl nicht vorhersagbare, als auch verbotene Zustände sollen mit * markiert werden
- ➤ Für t = 1 gilt: a = b = c = d = e = f = *

ÜBUNGSAUFGABEN

➤ Betrachte folgendes Schaltnetz

- ➤ Gebe die boolsche Gleichung des Schaltnetzes an
- ➤ Prüfe die Übergänge (cba): (010) -> (001), (000) -> (010) auf Funktionshazards
- ➤ Prüfe den Übergang (cba): (000)-> (010) auf einen Strukturhazard und behebe ihn gegebenenfalls

ÜBUNGSAUFGABE: LÖSUNG

$$f(c,b,a): \overline{a}b\overline{c}\vee \overline{b}$$

- ➤ (cba): (010) -> (001) Funktionshazardbehaftet
- ➤ (cba): (000) -> (010) nicht Funktionshazardbehaftet

ÜBUNGSAUFGABE: LÖSUNG

> Pfadvariablen:

➤ Neue Schaltfunktion:

$$f(c,b,b^*,a) = \begin{bmatrix} b \\ & & \\ &$$

- $f: \overline{a}b\overline{c} \vee \overline{b^*}$
- Übergang (000) -> (010)
 entspricht nun (0000) -> (0110)
- > Strukturhazardbehaftet