COMP229: Introduction to Data Science Lecture 3: linear transformations

Vitaliy Kurlin, vitaliy.kurlin@liverpool.ac.uk Autumn 2018, Computer Science department University of Liverpool, United Kingdom

The scanner for registrations will be from week 2.

Data normalisation

Real data often comes from different sources and requires some normalisation, e.g. scaling real values to [0,1] or shifting so that the average is 0.

Let measurements be in the range [p, q]. How should you map the variable $x \in [p, q]$ to [0, 1]?

Find a linear function f(x) = ax + b that bijectively (one-to-one) maps [p, q] to [0, 1].

You may assume that f(p) = 0 and f(q) = 1.

1-variable normalisation

One potential solution: shift [p, q] to [0, q - p] and divide by q - p. The function is $f(x) = \frac{x - p}{q - p}$.

The coefficients in
$$f(x) = ax + b$$
 are $a = \frac{1}{q - p}$, $b = -\frac{p}{q - p}$. Check that $f(p) = 0$, $f(q) = 1$.

Any point in \mathbb{R}^n can be represented by a vector:

$$\begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
 has the coordinates $x = 2$, $y = 1$ in \mathbb{R}^2 .

Operations on vectors and matrices

Vectors are added and multiplied by a scalar coordinate-wise: $\begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} s \\ t \end{pmatrix} = \begin{pmatrix} x+s \\ y+t \end{pmatrix}$.

Matrices are added and multiplied by a scalar "entry-wise" similarly to vectors, but are multiplied together "rows-by-columns":

$$\left(\begin{array}{cc} a_1 & b_1 \\ c_1 & d_1 \end{array}\right) \left(\begin{array}{cc} a_2 & b_2 \\ c_2 & d_2 \end{array}\right) = \left(\begin{array}{cc} a_1a_2 + b_1c_2 & a_1b_2 + b_1d_2 \\ c_1a_2 + d_1c_2 & c_1b_2 + d_1d_2 \end{array}\right).$$

Possible: $m \times n$ matrix times $n \times k$ matrix.

Translations and scalings

Definition 3.1. The *translation* by a fixed vector $\vec{u} = \begin{pmatrix} s \\ t \end{pmatrix}$ is defined for any $\vec{v} = \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$ by $f(\vec{v}) = \vec{v} + \vec{u} = \begin{pmatrix} x + s \\ y + t \end{pmatrix}$, similarly in \mathbb{R}^n .

The (non-uniform) scaling is the multiplication by a diagonal matrix $f(\vec{v}) = A\vec{v}$ for a fixed matrix

$$A = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$
, where non-diagonal entries = 0.

A linear transformation

Definition 3.2. An *affine* transformation of \mathbb{R}^n is a map $\mathbb{R}^n \to \mathbb{R}^n$ given by a formula f(v) = Av + B, where A is a fixed $n \times n$ matrix, $B \in \mathbb{R}^n$ is a fixed vector, $v \in \mathbb{R}^n$ is a variable vector. If $B = \vec{0}$, then f(v) = Av is called a *linear* transformation.

If n = 2, any affine transformation has the form $f\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} s \\ t \end{pmatrix} =$ $= \begin{pmatrix} ax + by + s \\ cx + dy + t \end{pmatrix} \text{ for any coordinates } x, y \in \mathbb{R}.$

Transformation exercises

Write down matrices of two affine transformations:

- 1) first translate by $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$, then scale the first coordinate by 2 and the second by 3.
- 2) first scale as above, then translate by $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

Geometrically describe
$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} 3x - 3 \\ 2y + 4 \end{pmatrix}$$
.

Transformations don't commute

1)
$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x+2 \\ y+1 \end{pmatrix} \mapsto \begin{pmatrix} 2x+4 \\ 3y+3 \end{pmatrix}$$
.
2) $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} 2x \\ 3y \end{pmatrix} \mapsto \begin{pmatrix} 2x+2 \\ 3y+1 \end{pmatrix}$.

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} 3x \\ 2y \end{pmatrix} \mapsto \begin{pmatrix} 3x - 3 \\ 2y + 4 \end{pmatrix} = \begin{pmatrix} 3(x - 1) \\ 2(y + 2) \end{pmatrix},$$

we first scale by (3, 2), then translate by (-3, 4); or we first translate by (-1, 2), scale by (3, 2).

Rotations in the plane

Definition 3.3. The rotation in the plane around the origin in the counterclockwise direction through an angle eta is the linear transformation

$$\vec{v} \mapsto A\vec{v} \text{ with } A = \begin{pmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{pmatrix}.$$

Invertible transformations

Definition 3.4. A linear transformation $\vec{v} \mapsto A\vec{v}$ in \mathbb{R}^2 (or a matrix A) is called *invertible* if there is

$$\vec{v} \mapsto B\vec{v}$$
 such that $AB = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = BA$.

The *determinant* is $\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc$.

Claim 3.5. *A* is invertible if and only if $\det A \neq 0$.

Outline.
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{\det A} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$
.

Your questions and the quiz

To benefit from the lecture, now you could

- ask or submit your anonymous questions to the COMP229 folder after the lecture;
- write down your summary in 2-3 phrases,
 e.g. list key concepts you have learned;
- talk to your classmates to revise the lecture.

Question. Is the linear transformation $\vec{v} \mapsto A\vec{v}$ with $A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ invertible? Find $\vec{v} \mapsto A^{-1}\vec{v}$.

Answer to the quiz and summary

Answer. *A* is invertible (or non-singular), because $\det A = 2 \neq 0$. The inverse is $A^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$.

A is a rotation through $\pi/4$ with a scaling by $\sqrt{2}$.

- Any linear transformation of \mathbb{R}^n is defined by $\vec{v} \mapsto A\vec{v}$, where A is any $n \times n$ matrix.
- The rotation of \mathbb{R}^2 around (0, 0) through an angle β is defined by $A = \begin{pmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{pmatrix}$.
- $\vec{v} \mapsto A\vec{v}$ is invertible if and only if det $A \neq 0$.

