The n=2 orbital states are $|nlm\rangle=|211\rangle,|210\rangle,|21-1\rangle,|200\rangle$. Considering spin, each of the above state will be tensored with $\left|\frac{1}{2}\right\rangle$ or $\left|-\frac{1}{2}\right\rangle$, so n=2 has degeneracy of 8.

In the following, we will omit the 2 in $|nlm\rangle$, which simplifies the eight degenerate states as $|lm\rangle \otimes |\pm \frac{1}{2}\rangle$.

1.

$$V = \frac{A}{2\hbar^2} \left(J^2 - L^2 - S^2 \right) + \frac{B}{\hbar} (J_z + S_z)$$

$$= \underbrace{\left[\frac{A}{2\hbar^2} \left(J^2 - L^2 - S^2 \right) + \frac{B}{\hbar} J_z \right]}_{V_z} + \underbrace{\frac{B}{\hbar} S_z}_{V_z}$$

$$(1)$$

where V_1 is diagonalizable in the L^2, S^2, J^2, J_z basis, and V_2 is diagonalizable in the S^2, S_z basis.

2. Using C-G coefficients, we can express the 8 (spherical) basis in L^2 , S^2 , J^2 , J_z as linear combination of the (Cartesian) basis $|lm\rangle \otimes |\pm \frac{1}{2}\rangle$

$$|ls; jm\rangle \qquad |lm\rangle \otimes |s_z\rangle$$

$$|a\rangle \qquad \left|1\frac{1}{2}; \frac{3}{2}\frac{3}{2}\right\rangle \qquad = |11\rangle \otimes \left|\frac{1}{2}\right\rangle \qquad (2)$$

$$\left|1\frac{1}{2}; \frac{3}{2}\frac{1}{2}\right\rangle = \sqrt{\frac{1}{3}}|11\rangle \otimes \left|-\frac{1}{2}\right\rangle + \sqrt{\frac{2}{3}}|10\rangle \otimes \left|\frac{1}{2}\right\rangle \tag{3}$$

$$\left|1\frac{1}{2}; \frac{3-1}{2}\right\rangle \qquad = \sqrt{\frac{1}{3}} |1-1\rangle \otimes \left|\frac{1}{2}\right\rangle + \sqrt{\frac{2}{3}} |10\rangle \otimes \left|-\frac{1}{2}\right\rangle \tag{4}$$

$$\left|1\frac{1}{2}; \frac{3-3}{2}\right\rangle \qquad = |1-1\rangle \otimes \left|-\frac{1}{2}\right\rangle \tag{5}$$

$$|e\rangle$$
 $\left|1\frac{1}{2};\frac{1}{2}\frac{1}{2}\right\rangle$ $=\sqrt{\frac{2}{3}}|11\rangle\otimes\left|-\frac{1}{2}\right\rangle-\sqrt{\frac{1}{3}}|10\rangle\otimes\left|\frac{1}{2}\right\rangle$ (6)

$$\left|1\frac{1}{2}; \frac{1}{2} - \frac{1}{2}\right\rangle = -\sqrt{\frac{2}{3}} |1 - 1\rangle \otimes \left|\frac{1}{2}\right\rangle + \sqrt{\frac{1}{3}} |10\rangle \otimes \left|-\frac{1}{2}\right\rangle \tag{7}$$

$$|g\rangle$$
 $\left|0\frac{1}{2};\frac{1}{2}\frac{1}{2}\right\rangle$ $=|00\rangle\otimes\left|\frac{1}{2}\right\rangle$ (8)

$$\left|0\frac{1}{2}; \frac{1-1}{2}\right\rangle \qquad = \left|00\right\rangle \otimes \left|-\frac{1}{2}\right\rangle \tag{9}$$

$$V|a\rangle = \overbrace{\left[\frac{A}{2}\left(\frac{3}{2}\frac{5}{2} - 1 \cdot 2 - \frac{1}{2}\frac{3}{2}\right) + \frac{3B}{2}\right]|a\rangle}^{V_{2}|a\rangle} + \underbrace{\frac{V_{2}|a\rangle}{B}|a\rangle}_{V_{2}|b\rangle} = \underbrace{\left[\frac{A}{2} + 2B\right]|a\rangle}_{V_{2}|b\rangle} + \underbrace{\frac{A}{2}\left(\frac{3}{2}\frac{5}{2} - 1 \cdot 2 - \frac{1}{2}\frac{3}{2}\right) + \frac{B}{2}\right]|b\rangle}_{V_{2}|b\rangle} - \underbrace{\frac{A}{2}\sqrt{\frac{1}{3}}|11\rangle \otimes \left|-\frac{1}{2}\right\rangle}_{V_{2}|b\rangle} + \underbrace{\frac{B}{2}\sqrt{\frac{2}{3}}|10\rangle \otimes \left|\frac{1}{2}\right\rangle}_{V_{2}|b\rangle} = \underbrace{\frac{A}{2}\sqrt{\frac{1}{3}}|11\rangle \otimes \left|-\frac{1}{2}\right\rangle}_{=\frac{A}{2}\sqrt{\frac{1}{3}}|11\rangle \otimes \left|-\frac{1}{2}\right\rangle}_{=\frac{A}{2}\sqrt{\frac{1}{3}}|1-1\rangle \otimes \left|\frac{1}{2}\right\rangle}_{=\frac{A}{2}\sqrt{\frac{1}{3}}|1-1\rangle \otimes \left|\frac{1}{2}\right\rangle}_{=\frac{A}{2}\sqrt{\frac{1}{3}}|1-1\rangle \otimes \left|\frac{1}{2}\right\rangle}_{=\frac{A}{2}\sqrt{\frac{1}{3}}|1-1\rangle \otimes \left|\frac{1}{2}\right\rangle}_{=\frac{A}{2}\sqrt{\frac{1}{3}}|1-1\rangle \otimes \left|\frac{1}{2}\right\rangle}_{=\frac{A}{2}\sqrt{\frac{3}{3}}|1-1\rangle \otimes \left|\frac{1}{2}\right\rangle}_{=\frac{A}{2}\sqrt{\frac{3}{3}}|11\rangle \otimes \left|-\frac{1}{2}\right\rangle}_{=\frac{A}{2}\sqrt{\frac{3}{3}}|11\rangle \otimes \left|-\frac{1}{2}\right\rangle}_{=\frac{A}{2}\sqrt{\frac{3}$$

With (2)-(17), we can construct the full 8×8 matrix of V in the spherical basis.

 $V|g\rangle = \left[\frac{A}{2}\left(\frac{1}{2}\frac{3}{2} - 0 \cdot 1 - \frac{1}{2}\frac{3}{2}\right) + \frac{B}{2}\right]|g\rangle + \frac{B}{2}|g\rangle = B|g\rangle$

 $V|h\rangle = \left\lceil \frac{A}{2} \left(\frac{1}{2} \frac{3}{2} - 0 \cdot 1 - \frac{1}{2} \frac{3}{2} \right) - \frac{B}{2} \right\rceil |h\rangle - \frac{B}{2} |g\rangle = -B|h\rangle$

3. The diagonal elements for the a, d, g, h block are the energy eigenvalues for these states:

$$E_a = \frac{A}{2} + 2B \tag{18}$$

(16)

(17)

$$E_d = \frac{A}{2} - 2B \tag{19}$$

$$E_g = 0A + B \tag{20}$$

$$E_h = 0A - B \tag{21}$$

These are depicted in the $E \sim B$ diagram below as red **straight** lines.

For the b, e block, the energy eigenvalues can be found via

$$\left[E_{be} - \left(\frac{A}{2} + \frac{2B}{3}\right)\right] \left[E_{be} - \left(-A + \frac{B}{3}\right)\right] - \frac{2B^{2}}{9} = 0 \qquad \Longrightarrow
E_{be}^{2} + \left(\frac{A}{2} - B\right) E_{be} - \left(\frac{A^{2}}{2} + \frac{AB}{2}\right) = 0 \qquad \Longrightarrow
E_{be,\pm} = \frac{1}{2} \left(-\frac{A}{2} + B \pm \sqrt{\frac{9A^{2}}{4} + AB + B^{2}}\right) \qquad (22)$$

Similarly for the c, f block:

$$\left[E_{cf} - \left(\frac{A}{2} - \frac{2B}{3}\right)\right] \left[E_{cf} - \left(-A - \frac{B}{3}\right)\right] - \frac{2B^2}{9} = 0 \qquad \Longrightarrow
E_{cf}^2 + \left(\frac{A}{2} + B\right) E_{cf} - \left(\frac{A^2}{2} - \frac{AB}{2}\right) = 0 \qquad \Longrightarrow
E_{cf,\pm} = \frac{1}{2} \left(-\frac{A}{2} - B \pm \sqrt{\frac{9A^2}{4} - AB + B^2}\right) \qquad (23)$$

The *B*-dependency of $E_{be,\pm}$, $E_{cf,\pm}$ are plotted in the diagram with green **curved** lines.

The asymptotic behaviors of $E_{be,\pm}$, $E_{cf,\pm}$ as $B/A \rightarrow 0$ and $B/A \rightarrow \infty$ are

$$\begin{split} \frac{A}{2} + \frac{2B}{3} &= \frac{1}{2} \left[-\frac{A}{2} + B + \frac{3A}{2} \left(1 + \frac{2B}{9A} \right) \right] & \stackrel{\longleftarrow}{\bowtie}_{B/A \to 0} & E_{be,+} & \xrightarrow{B/A \to \infty} & \frac{1}{2} \left[-\frac{A}{2} + B + B \left(1 + \frac{A}{2B} \right) \right] = B \\ -A + \frac{B}{3} &= \frac{1}{2} \left[-\frac{A}{2} + B - \frac{3A}{2} \left(1 + \frac{2B}{9A} \right) \right] & \stackrel{\longleftarrow}{\bowtie}_{B/A \to 0} & E_{be,-} & \xrightarrow{B/A \to \infty} & \frac{1}{2} \left[-\frac{A}{2} + B - B \left(1 + \frac{A}{2B} \right) \right] = -\frac{A}{2} \\ \frac{A}{2} - \frac{2B}{3} &= \frac{1}{2} \left[-\frac{A}{2} - B + \frac{3A}{2} \left(1 - \frac{2B}{9A} \right) \right] & \stackrel{\longleftarrow}{\bowtie}_{B/A \to 0} & E_{cf,+} & \xrightarrow{B/A \to \infty} & \frac{1}{2} \left[-\frac{A}{2} - B + B \left(1 - \frac{A}{2B} \right) \right] = -\frac{A}{2} \\ -A - \frac{B}{3} &= \frac{1}{2} \left[-\frac{A}{2} - B - \frac{3A}{2} \left(1 - \frac{2B}{9A} \right) \right] & \stackrel{\longleftarrow}{\bowtie}_{B/A \to 0} & E_{cf,-} & \xrightarrow{B/A \to \infty} & \frac{1}{2} \left[-\frac{A}{2} - B - B \left(1 - \frac{A}{2B} \right) \right] = -B \end{split}$$

In particular, as $B/A \to \infty$, $E_{be,+}$ will approach E_g , both $E_{cf,+}$ and $E_{be,-}$ will converge to -A/2, and $E_{cf,-}$ will approach E_h . These are the "five states" of high field as described in Fig 5.3's caption.