TWITTER TOPIC CLUSTERING

Tweets on Candidates for the U.S. Presidential Election 2016

MARCO RUBIO

EXECUTIVE SUMMARY

The purpose of this exercise was to discover topics from tweets about each of the 5 selected candidates.

The desire to find meaning in constantly evolving political discussion using Twitter data was a very challenging project. The process and its challenges will be discussed in the next few sections. I was a very useful learning curve for us and we came to the conclusion that k-means clustering was quite limited to provide us with very meaningful topic clusters.

Due to the diverse and non-uniform nature of data and the unavailability of prior labels to test with, we believe that the topic clusters we created provide us some insight on the "word on the street" about each U.S. Presidential candidate, but we discovered that there is significant room for improvement. These improvements will be discussed in the last part of the report.

Despite not finding clusters that could generate political discussion, there were some interesting insights that we did come across:

- Bernie Sanders is the only candidate with issue oriented clusters (taxes, health etc.).
- The word Liar appears many times in tweets associated with Ted Cruz.
- A cluster from the Test data set likens **Donald Trump** to a Facist historical figure.
- It's not smooth sailing for Hillary Clinton, there's a lot of mention of her email scandal and Bengazi hearings.
- Overall, all candidates had significant tweets on Polls, Endorsements, Debates and Primaries/Caucuses.

APPLICATION FUNCTIONALITY

The project was split up in four phases and an R-script is submitted for each phase:

1) Module 1: Download the data

Initially, 100,000 tweets were downloaded from twitter using the twitteR package on 27th January 2016, and from there 10,000 tweets were downloaded daily and saved as CSVs for each of the 5 candidates separately until 17th February 2016. Finally, we have created a database of 1,500,000 tweets for 5 candidates.

2) Module 2 & 3: Merge & Clean the data

During this process only relevant fields were kept, duplicate tweets were removed and tweets were sorted by date. The next step was to remove non-ASCII characters, hyperlinks, twitter jargon (via, RT), extra spaces, and converting all text to lowercase in data.table. The rest of the clean-up process was conducted in a corpus where we removed numbers, punctuation (preserving hash-tags), and removing a standard and custom list of stopwords. At each stage of the cleaning process a new column of clean text was created.

3) Module 4: Topic clustering

During the clustering step, the tweets were split into training and test data based on the day of the week on which they were published. Mon, Tue, Thu, Fri and Sat for *training data set*, and Wed & Sun for *testing data set*. The document term matrix was created with 1-grams and bi-grams and a TF-IDF weighting. After conducting a frequency and sparsity analysis, Sparsity was set to 0.99, and that reduced the dimensions from over 100,000 to around 90.

In order to implement k-means, the number of clusters were determined using the elbow method. Based on the k, the k-means function was applied to create k clusters and the top 5 centers (terms) were set to be the "topics" for each cluster. This process was repeated for the test data set to compare the results, and then for each candidate.

The process described above was run separately for each candidate to determine their topic clusters. At no point was data from one candidate merged with the data from another candidate. In the Appendix the process map that outlines the process described above can be found.

#	Challenge	Solution
1	Install package, hidden/missing package?	Research on StackOverflow.com and other
1	There were some packages like RWEKA (used for n-grams), that	forums provided with suitable steps to
	did not available on CRAN and they were dependent on some	overcome this issue.
	other packages, like java, that had some complications with	overcome this issue.
	installation.	
2	Cleaning up tweets	Removing some of these items was not a very
_	An important step in trying to find topic information on political	simple task. Instead of using standard corpus
	topics in tweets was to remove content that was considered to	cleaning techniques, we resorted to Perl
	be noise and that did not have any meaning. In this case, it	regular expressions.
	would have to do with hyperlink strings and text associated with	regular expressions:
	retweets ("via", "RT", username of retweet).	
3	Processing times	To overcome this issue, we converted the
	Data-processing using the gsub function in a data frame data	data frame to a data.table before converting
	structure proved to be more challenging as the size of the data	it into a corpus.
	set increased (e.g. around 4 hours to clean-up).	
	The processing time for 1.5 million tweets was enormous at	To overcome the second issue, we realized
	the end of the project. Determining the number of clusters per	the importance of the prototype of 5000
	candidate took up at least 15 minutes to process for each	tweets. That was an incredibly fast and
	candidate. Naturally, the processing time increased when the	reliable way to test our code before running it
	size of the training data doubled (when we switched the scope	on 1.5 million tweets and wait hours for the
	of the training data from the first 100,000 tweets to tweets	process to end.
	from 5 days a week).	
4	Removing Unicode characters	In the end, we used Perl regular expressions
	We initially tried to use the iconv() function in R to remove	to match on strings starting with " <u" and<="" th=""></u">
	non-ASCII characters. But that function was resulting in other	ending with ">" to target and remove those
	complications and not really cleaning up the data either.	characters.
5	N-Grams	During our research we discovered the
	We decided to include bi-grams as some bi-grams ("white	RWEKA package that created n-grams.
	house", "South Carolina") were occurring many times and had	We decided to include both 1-grams and bi-
	significant meaning when together. The challenge with that	grams. In the case where bi-grams were more
	decision was to find a package that performed that task and	significant than their 1-gram components the
	also that we would be losing out on a lot of 1-grams if we	TF-IDF weighting and sparsity application
	included bi-grams.	would filter them out. The same would be
		applicable to all bi-grams that had no
		meaning.
6	How many clusters should there be?	Thanks to the guidance provided by the
	To determine how many topic clusters there should be, was	professor, used the "elbow" method to
	the next logical challenge for us.	identify the number of clusters k in our k-
	When we applied the method to discover the number of	means topic clustering project.
	clusters, it was not always very clear. Sometimes there were no	When the results from the elbow were not
	elbows, and sometimes there were multiple elbows (See	clear or in the case of multiple elbows, we had
	Appendix).	to test multiple Ks till we could find an
	What does each aluster represent?	optimal k.
7	What does each cluster represent?	We chose top 5 centers (terms) from each of
	Near the end of the process we decided to exclude the names	clusters to represent the topic of that cluster.
	of all the candidates to give more meaning to our topics.	This included 1-grams and bi-grams and
	Including names of other candidates meant that all the clusters	provided some insight into what that cluster
	would be skewed by the presence of the names, and no other	was about. (See Appendix).

	opinion. What we were looking for are not comparisons, but	
	the "word on the street" on each candidate. That is why we	
	removed the names. But even after that what did each cluster	
	represent?	
8	Evolution of clusters	We segmented the data by days of the week.
	After running a test of the whole process, we came to realize	Tweets from 5 days of the week served as
	one major flaw in our process. The 100,000 tweets	part of the training data set (Mon, Tue, Thu,
	downloaded on January 27 th 2016 as our training data set, did	Fri, Sat), while tweets from the remaining two
	not seem to in line with the latest discussion. The problem	days (Wed, Sun) were part of the test data
	here was that the test data set, downloaded a few days or	set; representing a mixture between the old
	weeks after the training data set would always be out of sync	and new topics, and providing a constantly
	due to the nature of constantly evolving Twitter data and	evolving training and test data set to ensure
	political developments.	that our topic clusters also evolve every week.
9	Testing the model	We wanted to use the test data set in some
	The biggest challenge was to ascertain how to test the model.	way, so we decided to repeat the process on
	Since we did not have prior labels for the tweets in our test	the test data and compare the number and
	data set, we could not perform External Validation.	nature of clusters with those of the training
		data set (See Appendix).
10	Nature of the data	A creative way to work with topic clustering
	Twitter data is very limiting when it comes to topic clustering.	and topic classification is discussed in the next
	This is because each document is limited to only 140	section.
	characters. This results in a very low TF-IDF, and provides very	
	little flexibility and insight when performing Sparsity and	
	Frequency analysis.	

DESIDERATA FOR FUTURE WORK

A process has been created where the topic clusters evolve over time. This is our best take-away from the project at this stage. However, during the project we did discover other techniques and methods that would be very useful in making this project more accurate and meaningful. They fell out of scope for us, but they would be very useful to implement for other projects related to twitter data.

1) Use of hash-tags (#) for external-validation and topic clusters

One of the main challenges we faced when trying to discover the theme for each candidate was that there were no standard topics, labels or "tags" that each tweet could be related to. Which is why we could not perform external validation, or topic classification and had to resort to clustering. One way to overcome the problem is to treat hash-tags as the labels and/or topics.

2) Find info in hyperlink text

Another challenge was the limitation of 140 characters, and this makes the tweets not provide much information. Removing hyperlinks means removing hyperlink text. Sometimes there is useful information in the hyperlink text that can be salvaged to get more insight.

3) Web crawling

Taking the case from (2) one step forward would be to actually go to the hyperlink pasted and use the content from there and add it to the tweet document. This would increase size of the document and bring more diversity to the document term matrices.

4) KNN & Sentiment Analysis

Another project that we had started working on during the course of the topic clustering project was that of Topic Classification using KNN, and the possibility of performing a sentiment analysis as well. This would be possible if the tweets for each candidate were tagged by their name and then pooled together into one data set, to predict which candidate a tweet was referring to.

APPENDIX

RESULTS – TOPIC CLUSTERING

The next few sections are split up by candidates and their results; topic clusters and document distribution for both training and test data sets.

	DONALD TRUMP (R)					
Training set Testing set						
Cluster	Topic	Doc %	Topic	Doc %		
1	love phoraone bruh kidnapped open letter	3.05	vote therapy guy therapy night	2.06		
2	vote hampshire debate fox news	4.81	win time scalia vote republican	2.26		
3	president president rt conchobar rt conchobar # realdonaldtrump	92.14	guy #realdonaldtrump #realdonaldtrump save #trump ' sad	0.01		
4			people support vote man hate	0.97		
5			total liar total liar sunday presidential	1.07		
6			president hitler adolf hitler adolf #realdonaldtrump	93.63		

Trump - Elbow analysis on Training set

Trump - Elbow analysis on Testing set

HILLARY CLINTON (D)						
	Training set		Testing set			
Cluster	Topic	Doc %	Topic	Doc %		
1	candidate cnn women berniesanders #imwithhe r	3.05	donors state read nevada big	1.07		
2	youth message latest latest message message yo uth	99.83	iowa win caucus hold voters	3.73		
3			issue great deal prose great deal	91.28		
4			deserve deserve black doesn' deserve doesn' black vote	1.43		
5			town town hall hall dems hold	1.39		
6			fbi email video emails benghazi	1.09		

Clinton - Elbow analysis on Training set

Clinton - Elbow analysis on Testing set

BERNIE SANDERS (D)							
Cluster	Train Topic	Doc %	Test Topic Doc %				
1	campaign women health presidential people	2.0	hampshire win socialist million united	1.48			
2	president obama love people supporters	76.17	million million january january raised million raised	1.68			
3	bern iowa endorsement berniesanders win	1.02	vote realize moment moment realize realize vote	96.84			
4	feelthebern hillaryclinton #bernie #demtownhall #berniesanders	4.07					
5	voting poll big democratic people	0.95					
6	vote young president #feelthebern make	1.28					
7	iowa caucus vote win rally	4.42					
8	berniesanders endorsement campaign hillaryclinton live	4.22					
9	taxes raise taxes raise video health	1.84					
10	win america iowa hampshire #feelthebern	0.50					
11	town hall hall town cnn democratic	1.54					
12	video campaign make president people	1.50					
13	support young people poll iowa	0.47					

Sanders - Elbow analysis on Training set

Sanders - Elbow analysis on Testing set

	TED CRUZ (R)					
Training set			Testing set			
Cluster	Topic	Doc %	Topic	Doc %		
1	#cruzcrew #pjnet #tcot vote #scprimary	4.83	nasty dirty ballothold realbencarson ballothold tricks realbencarson ballothold lib lib realbencarson dirty tricks	1.15		
2	presidential candidate conservative voters republican	2.35	debate debates beat debate beat debates debates debate poll iowa	97.16		
3	#trump #iacaucus realdonaldtrump united #cruz	1.18	tony perkins tony perkins endorses endorsement president endorsed leader	1.69		
4	president endorses obama senator realdonaldtrump	1.07				
5	america #pjnet god christian #iowacaucus	0.88				
6	people #iowacaucus vote iowa obama	0.34				
7	poll cnn iowa liar trump	0.25				
8	cnn lies realbencarson lying liar	1.15				
9	iowa gop campaign liar states	86.83				
10	hampshire iowa #iowacaucus win debate	1.13				

Cruz - Elbow analysis on Training set

Cruz - Elbow analysis on Testing set

MARCO RUBIO (R)					
Training set			Testing set		
Cluster	Topic	Doc %	Topic	Doc %	
1	iowa debate president campaign Obama	86.3	haley nikki haley nikki carolina south carolina south endorse haley endorse	4.68	
2	moines des moines des register moines register	3.02	#gopdebate night people today realdonaldtrump immigration #rubio #teammarco	2.22	
3	haley nikki haley nikki carolina south	4.91	debate iowa gop president register campaign hampshire obama	93.08	
4	gop hampshire debate register endorsement	5.78			

Rubio - Elbow analysis on Training set

Rubio - Elbow analysis on Testing set

RESULTS – SENTIMENT ANALYSIS

This result stimulated the sentiment of people who posted their tweets about these 5 candidates during the project period.

tweet negative neutral positive

How did people feel about Donald Trump?

How did people feel about Hillary Clinton?

How did people feel about Bernie Sanders?

How did people feel about Ted Cruz?

How did people feel about Marco Rubio?

