Capítulo 1

Gas de Fermi

La cosa comienza pasando al límite continuo, donde la $\sum_e \to V/h^3 \int d^3p$ siendo la energía $e=p^2/(2m)$

Luego, el gas ideal de Fermi sale de estas dos expresiones

$$\begin{split} \frac{P}{kT} &= \frac{4\pi}{h^3} \int_0^\infty dp \; p^2 \; \log(1 + z \, \mathrm{e}^{-\beta p^2/(2m)}) = \frac{1}{\lambda^3} f_{5/2}(z) \\ \frac{1}{V/N} &= \frac{4\pi}{h^3} \int_0^\infty dp \; p^2 \; \frac{1}{z^{-1} \, \mathrm{e}^{-\beta p^2/(2m)} + 1} = \frac{1}{\lambda^3} f_{3/2}(z) \end{split} \tag{1}$$

donde λ es la longitud de onda térmica (que es similar al ancho del paquete de onda de la partícula) Aquí en cada una de esas expresiones, en el RHS, podríamos incorporar un factor g que serían los grados de libertad internos deg(e) que no están asociados al momento p. La ecuación (1) nos relaciona z con la densidad y de allí se extrae $\mu(V,T,N)$.

v nos da idea de qué tan separadas están las partículas.

$$\begin{split} \lambda &= \sqrt{\frac{2\pi\hbar^2}{mkT}} \qquad \lambda \sim \frac{1}{T^{1/2}} \\ f_{5/2}(z) &= \frac{4}{\sqrt{\pi}} \int_0^\infty \, dx \, x^2 \, \log(1+z \, \mathrm{e}^{-x^2}) = \sum_\ell^\infty {(-1)^{\ell+1}} \frac{z^\ell}{\ell^{5/2}} \\ f_{3/2}(z) &= z \frac{\partial}{\partial z} f_{5/2}(z) = \sum_\ell^\infty {(-1)^{\ell+1}} \frac{z^\ell}{\ell^{3/2}} \end{split}$$

En general será

$$f_{\nu}(z) = \frac{1}{\Gamma(\nu)} \int_{0}^{\infty} \frac{x^{\nu-1} \ dx}{z^{-1} \ \mathrm{e}^{x} + 1} = \sum_{\ell}^{\infty} (-1)^{\ell+1} \frac{z^{\ell}}{\ell^{\nu}}$$

que cumple

$$z\,\frac{dF_{\nu}(z)}{dz}=\frac{df_{\nu}(z)}{d\mathrm{log}(z)}=f_{\nu-1}(z).$$

La física del problema dependerá de (a) la dimensión del sistema (b) la relación e(p). Notemos que por ejemplo en 2D no hay condensación de Bose.

Sabíamos que

$$U(z,V,T) = -\frac{\partial}{\partial \beta} \log Q(z,V,T)$$

$$U = \frac{3}{2} \frac{kT}{\lambda^3} f_{5/2}(z) = \frac{3}{2} PV$$

y esto es válido para bosones, fermiones y boltzmanniones.

DIBUJOS

$$\langle n_e \rangle = \frac{1}{z^{-1} \ \mathrm{e}^{\beta e} + 1} = \frac{1}{\mathrm{e}^{\beta(\mu - e)} + 1}$$

Si $\mu < 0$ como e > 0 siempre, ni aún en el estado de más baja energía se llega a ocupar el nivel (restan muchos niveles vacíos).

Sea que $T \to \infty$ entonces $\beta \to \infty$ y se sigue que

$$e^{\beta(e-\mu)} \to \infty$$
 $e > \mu$
 $e^{\beta(e-\mu)} \to 0$ $e < \mu$
 $e^{\beta(e-\mu)} \to 1$ $e = \mu$

Luego, con T=0 es Fermi un escalón. El valor de μ que determina el último estado ocupado se llama e_F

DIBUJO

$$f_{3/2}(z) = \frac{\lambda^3}{v} = \int_0^{\xi = \beta \mu} \frac{x^{1/2}}{\Gamma(3/2)3/2} dx = \frac{4}{3} \frac{1}{\pi^{1/2}} (\beta \mu)^{3/2} = \frac{4}{3} \frac{1}{\pi^{1/2}} (\beta e_F)^{3/2}$$

Pathria 132 cuentas de GC. Pathria 138 gases simples.

1.0.1 Análisis del gas ideal de Fermi

La primera aproximación consiste en

• Caso no degenerado : $\lambda^3/v \ll 1$ que lleva a T alta y v alto por ende N/V chico (densidad baja). Es un gas diluído, el límite debería ir a Boltzmann (gas ideal clásico)

$$z \ll 1$$
 $f_{\nu}(z) \approx z$ $\frac{\lambda^3}{v} \approx z$

Si vale la condición entonces

$$\frac{\lambda^3}{v} = \sum_{l=1}^{\infty} \frac{(-1)^{l+1} z^l}{l^{3/2}} \sim z - \frac{z^2}{2^{3/2}} \ll 1 \qquad z \ll 1$$

y vemos que se puede invertir para conseguir la expresión de z,

$$z \sim \frac{\lambda^3}{V} + \frac{1}{2^{3/2}} \left(\frac{\lambda^3}{V}\right)^2 \sim \frac{\lambda^3}{V} \ll 1$$

y se tiene $e^{\beta\mu} \ll 1$ y por ende $\mu \ll 0$. En el límite clásico $\mu \to -\infty$.

$$\beta pV = \frac{v}{\lambda^3} \left(z - \frac{z^2}{2^{3/2}} + \ldots\right) \approx 1 + \frac{\lambda^3}{2^{5/2}v} \qquad \qquad U = \frac{3}{2} \frac{N}{\beta} \left(1 + \frac{\lambda^3}{2^{5/2}v}\right)$$

• $\frac{\lambda^3}{v} < 1$ entonces z < 1 y hay que expandir el virial,

$$\beta pV = \sum_{l=1}^{\infty} (-1)^{l-1} a_l \left(\frac{\lambda^3}{v}\right)^{l-1}$$

que igualando coeficientes se hace (¿?)

$$\lambda^3/v$$
 a orden 1 hay efectos cuánticos

$$f_{5/2}(z) = f_{3/2}(z) \cdot \sum_{l=1}^{\infty} (-1)^{l-1} a_l \left(\frac{\lambda^3}{v}\right)^{l-1}$$

- $\frac{\lambda^3}{v} \approx 1$ Cálculo numérico
- Caso altamente degenerado : $\lambda^3/v\gg 1$ (bajas temperaturas y altas densidades), se tiene $z\gg 1$. Se puede expandir $f_{\nu}(z)$ en función de $(\log)^{-1}$ mediante lema de Sommerfeld

$$z \gg 1$$
 entonces $\log z \gg 1$
 $(\log z)^{-1} \ll 1 \log z = \beta \mu$

$$f_{5/2}(z) = \frac{8}{15\pi^{1/2}} (\log z)^{5/2} \left[1 + \frac{5\pi^2}{8} (\log z)^{-2} + \ldots \right]$$

$$f_{3/2}(z) = \frac{4}{3\pi^{1/2}} (\log z)^{3/2} \left[1 + \frac{\pi^2}{8} (\log z)^{-2} + \dots \right]$$

y entonces, tomando la más burda,

$$\begin{split} \frac{\lambda^3}{v} &= \frac{4}{3\pi^{1/2}} (\log z)^{3/2} \quad \text{a orden 0} \\ \frac{h^3}{(2\pi m k T)^{3/2}} \frac{N}{V} \frac{3\pi^{1/2}}{4} (kT)^{3/2} &= \mu^{3/2} \\ \frac{h^3}{\pi} \frac{N}{V} \frac{3}{(2m)^{3/2} 4} &= \mu^{3/2} = e_F^{3/2} \\ \frac{\lambda^3}{v} \frac{3\pi^{1/2}}{4} (kT)^{3/2} &= \mu^{3/2} \left[1 + \frac{\pi^2}{8} (\log z)^{-2} + \ldots \right] \\ \frac{h^3}{\pi} \frac{N}{V} \frac{3}{(2m)^{3/2} 4} &= e_F^{3/2} \approx \mu^{3/2} \left[1 + \frac{\pi^2}{8} (\log z)^{-2} \right] \\ e_F &\approx \mu \left[1 + \frac{\pi^2}{8} \left(\frac{\mu}{kT} \right)^{-2} \right]^{2/3} \approx \mu \left[1 + \frac{\pi^2}{12} \left(\frac{kT}{\mu} \right)^2 \right] \end{split}$$

Anoté investigar este pasaje.

Entonces si se tiene $0 < T \ll T_F$ resulta (realmente en la carpeta está al revés $\mu = e_F[]$, así que probablemente hay un cambio de signo y aproximaciones en el medio))

$$e_F \approx \mu \left[1 - \frac{\pi^2}{12} \left(\frac{kT}{e_F}\right)^2\right]$$

y consideramos

$$\frac{1}{\mu^2} \approx \frac{1}{e_F^2}$$

pués μ es muy grande.

$$\beta pv = \frac{f_{5/2}(z)}{f_{3/2}(z)} \approx \frac{2\beta\mu}{5} \left[1 + \frac{5\pi^2}{8} \left(\frac{kT}{\mu} \right)^2 \right] \left[1 - \frac{\pi^2}{8} \left(\frac{kT}{\mu} \right)^2 \right]$$

Hasta orden dos en T resulta

$$pv \approx \frac{2\mu}{5} \left[1 + \frac{\pi^2}{2} \left(\frac{kT}{\mu} \right)^2 \right] = \frac{2e_F}{5} \left[1 - \frac{\pi}{12} \left(\frac{kT}{e_F} \right)^2 \right] \left[1 + \frac{\pi^2}{2} \left(\frac{kT}{e_F} \right)^2 \right]$$

$$pv \approx \frac{2e_F}{5} \left[1 + \frac{5\pi^2}{12} \left(\frac{kT}{e_F} \right)^2 \right]$$

$$U = \frac{3}{2} pv \approx \frac{3}{5} N e_F \left[1 + \frac{5\pi^2}{12} \left(\frac{kT}{e_F} \right)^2 \right]$$

$$C_V = \frac{\partial U}{\partial T} \approx \frac{N\pi^2 k^2 T}{2e_F} \qquad C_V \propto T$$

$$C_V \approx \frac{\pi^2}{2} N k \left(\frac{T}{T_F} \right)$$

DIBUJO T_F siempre estará en general en la zona clásica donde no vale la aproximación degenerada.

Calor específico Fermi (;?) se anula con T=0

Tomé notas de una evaluación más

$$f_{11/2}(z) \approx \frac{2}{\sqrt{\pi}} (\log z)^{1/2} \left[1 - \frac{\pi^2}{24} (\log z)^{-2} + \ldots \right]$$

que harían llegar a una corrección (notar que arriba fui hasta orden cero nomás)

$$\frac{\lambda^3}{V} \sim \frac{4}{3\sqrt{\pi}} (\log z)^{3/2} \left[1 - \frac{\pi}{8} (\log z)\right]$$

Otra cosa es la integral

$$N = \int_0^\infty \ g(e) n_e \ de \longrightarrow \int_0^\infty \ \frac{g(e)}{\mathrm{e}^{\beta(e-\mu)+1}} de$$

y vemos que la dimensionalidad entra en g(e) mientras el denominador va al escalón con temperatura nula. En este último caso la integral es $\int^{e_F} g(e) de$. Pero para $T \sim 0$ la itnegral es más complicada y el lema de Sommerfeld ayuda,

$$\begin{split} \int_0^\infty \ \frac{\phi(x)}{\mathrm{e}^{x-\xi}+1} dx &= \int_0^\xi \ \phi(x) \ dx + \frac{\pi^2}{6} \ \frac{d\phi}{dx} \Big|_{x=\xi} + \\ & \left. \frac{7\pi^4}{360} \left. \frac{d^3\phi}{dx^3} \right|_{x=\xi} + \left. \frac{31\pi^5}{15120} \left. \frac{d^5\phi}{dx^5} \right|_{x=\xi} \end{split}$$

• Caso totalmente degenerado: $\frac{\lambda^3}{v} \to \infty$ $(T \to 0)$ $z \to \infty$ La distribución de estados es escalón,

$$\langle N \rangle = \frac{4\pi V}{h^3} \int_0^{p_F} p^2 \left(\frac{1}{z^{-1} e^{\beta p^2/2m} + 1} \right) dp$$

$$\langle N \rangle = \frac{4\pi V}{h^3} \int_0^{p_F} p^2 dp$$

Notemos que

$$pV = \frac{4\pi V}{h^3} \int_0^{p_F} p^2 kT \log(1 + e^{-1/kT(p^2/2m - \mu_0)}) dp$$

tiene un comportamiento no trivial con $T \to 0$. Si $kT \to 0$ entonces si $e > \mu_0$ el log $\to 0$ y si $e < \mu_0$ el log $\to \infty$. Parecería que con $T \to 0$ es

$$pV = \frac{4\pi V}{h^3} \int_0^{p_F} p^2 \left(\frac{p^2}{2m} - \mu_0\right) dp$$

y haciendo el cambio de variables de acuerdo a $p^2/2m=e,$ que lleva a pdp=mde, se tiene

$$\begin{split} pV &= \frac{4\pi V}{h^3} \int_0^{e_F} \sqrt{2e} m^{3/2} (e - \mu_0) de \\ pV &= \frac{4\pi V}{h^3} 2^{1/2} m^{3/2} \left(\frac{e_F^{5/2}}{5/2} - \mu_0 \frac{e_F^{5/2}}{3/2} \right) = \frac{4\pi V}{h^3} 2^{1/2} m^{3/2} e_F^{5/2} \frac{4}{15} \\ U &= \frac{3}{2} pV = \frac{4\pi V}{h^3} 2^{1/2} m^{3/2} e_F^{5/2} \frac{2}{5} \\ p &= \frac{2}{5} e_F \frac{\langle N \rangle}{V} \qquad U = \frac{3}{5} e_F \, \langle N \rangle \end{split}$$

A T=0 tenemos presión y energía no nulas; las partículas no se acomodan todas en un único nivel energético (exclusión de Pauli). Para $T\approx 0$ (T bajas) el escalón en estados apenas se desdibuja DIBUJO.

En relación a esto último tenía el límite $T \to 0$ para la densidad de estados,

$$\langle n_e \rangle = \frac{1}{z^{-1} \, \mathrm{e}^{\beta e} + 1} = \frac{1}{\mathrm{e}^{\beta (e - \mu)} + 1} \quad T \to 0 \quad \begin{cases} 1 & e < \mu(T = 0) \\ 0 & e > \mu(T = 0) \end{cases}$$

 $z = e^{\beta \mu} \mathbf{y}$ $z(T \to 0) = e^{\beta e_F} \to \infty$

Teniendo el límite sale la cuenta y vemos que la cosa depende del signo de $(e-\mu)$ y $\sum_e \langle n_e \rangle = N$, pero en el continuo

$$\sum_e \; \langle n_e \rangle = N \qquad \longrightarrow \int_0^\infty \; g(e) n_e \; de = N$$

pero si tenemos el valor de la energia de Fermi basta integrar hasta allí,

$$\int_0^{e_F} g(e) n_e \, de = N$$

donde $de\ g(e)$ dependerá de la relación entre $E\ y\ p$ y la dimensión del problema.

Podemos definir una presión y energía de Fermi así

$$e_F = \frac{p_f^2}{2m} \qquad e_F = kT_F$$

con un gas que tiene $T < T_F$ es un gas altamente degenerado y será

$$e_F = \frac{\hbar^2}{2m} \left(\frac{6\pi^2}{v}\right)^{3/2}$$

Ahora bien, si las partículas tienen spin entonces es g=2 de modo que

$$\int_{0}^{e_{F}}degg(e)=N$$

en este caso será más chica la energía de Fermi. Veamos qué pasa a temperaturas bajas con C_V y U. Para los números de ocupación se tiene el gráfico bajo estas lineas

Luego será

$$U = \sum_{e} e n_{e} = \frac{3}{5} N e_{F} \left[1 + \frac{5\pi^{2}}{12} \left(\frac{kT}{e_{F}} \right)^{2} + \dots \right]$$

y entonces tendremos

Para la presión es P(T=0)=2/3U(T=0)/V pero como $U=3/5Ne_F$, hay presión porque al ser ferminones igualmente hay cierta repulsiçon: la visión clásica de T=0 con partículas quietas no es apropiada.

El número de partículas excitados puede venir de $\sim NkT/e_F$ entonces estando relacionado con al análogo del kT. El Pathria comenta esto en pag. 199.

EJEMPLO 0.1 Problema 4

EJEMPLO 0.2 Problema 5

1.1 Cuánticos III –reubicar–

1.1.1 Los números de ocupación

DIBUJO

Se ve que para Bose $\mu < 0$ siempre pero $\langle n \rangle \to \infty$ si $\mu \to 0^+$. El gráfico es para T alta. Con T bajas todo tiende a suceder más pegado al eje $\beta(e-\mu)=0$

1.1.2 Comportamiento de $f_{3/2}(z)$

$$\begin{split} f_{3/2}(z) &= \sum_{j=1}^{\infty} (-1)^{j+1} \frac{z^j}{j^{3/2}} \approx z - \frac{z^2}{2^{3/2}} \qquad z \text{ chico} \\ f_{3/2}(z) &= \frac{1}{\Gamma(3/2)} \int_0^{\infty} \frac{x^{1/2}}{z^{-1} \operatorname{e}^x + 1} dx \approx \frac{1}{\Gamma(3/2)} \int_0^{\log z = \beta \mu} x^{1/2} dx \end{split}$$

Notemos que con $\beta\mu$ grande el integrando es 1 o 0 (DIBUJO); en realidad es un escalón en el límite en que $\xi\equiv\beta\mu\to\infty$

Definimos $\log z \equiv \xi$ para no especular con temperaturas.

$$f_{3/2}(z) = \frac{4}{3\sqrt{\pi}}(\log z)^{3/2} \ z \text{ muy alto}$$

$$f_{3/2}(z) = \frac{4}{3\sqrt{\pi}} \left[(\log z)^{3/2} + \frac{\pi^2}{8} (\log z)^{-1/2} + \ldots \right]$$

El valor λ^3/v determina relación entre T,V,N que son los parámetros macroscópicos que uno fija.

1.1.3 Casos

- Comportamiento clásico: $\frac{\lambda^3}{v} \ll 1$ Altas Ty bajas $n \equiv \frac{N}{V}$

$$\frac{\lambda^3}{v} = f_{3/2}(z) \approx z - \frac{z^2}{2^{3/2}}$$

y por inversión de la serie

$$z = \frac{\lambda^3}{v} + \left(\frac{\lambda^3}{v}\right)^2 2^{-3/2}$$

y entonces si $\frac{\lambda^3}{v}\ll 1$ se tiene que $z\ll 1$

$$\frac{pv}{kT} = \frac{v}{\lambda^3} f_{5/2}(z) \qquad \qquad \frac{\lambda^3}{v} = f_{3/2}(z)$$

$$\frac{pv}{kT} = \frac{f_{5/2}(z)}{f_{3/2}(z)} \approx \frac{z - z^2/2^{5/2}}{z - z^2/2^{3/2}} \approx 1 + \frac{1}{2^{3/2}} \left(\frac{\lambda^3}{v}\right)$$

siendo el último término una corrección cuántica.

• Comportamiento cuántico : $\frac{\lambda^3}{v} \gg 1$ Bajas T y altas $n \equiv \frac{N}{V}$ A T=0 determinamos la e_F como (con el límite de $T \to 0$)

$$\frac{\lambda^3}{v} = \frac{1}{\Gamma(3/2)} \int_0^{\log z = \beta \mu} x^{1/2} dx = \frac{4}{3\sqrt{\pi}} (\log z)^{3/2}$$

$$\left(\frac{3\lambda^3 \sqrt{\pi}}{4v}\right)^{2/3} = \left(\frac{3h^3 \sqrt{\pi}}{4(2\pi mkT)^{3/2}v}\right)^{2/3} = \log z = \beta e_F$$

$$\frac{h^2}{2m} \left(\frac{3}{4\pi v}\right)^{2/3} = e_F = \frac{\hbar}{2m} \left(\frac{6\pi^2}{v}\right)^{2/3}$$

Sabemos que en Boltzmann es $\frac{\lambda^3}{v} = z$

A T=0 la ocupación por nivel es un escalón $(e_F=\mu(T=0))$

$$\langle n_e \rangle = \begin{cases} 1 & \quad e < e_F \\ 0 & \quad e > e_F \end{cases}$$

Estoy ya lo grafiqué antes. Hay que consolidar todo este material.

1.1.4 Funciones termodinámicas con T baja y n alta

Usamos Sommerfeld

$$\frac{\lambda^3}{v} = f_{3/2}(z) \qquad \qquad \mu = e_F$$

orden 1

$$\begin{split} \frac{\lambda^3}{v} &= \frac{4}{3\sqrt{\pi}} (\log z)^{3/2} \left[1 + \frac{\pi^2}{8} (\log z)^{-2} \right] \\ &\frac{\lambda^3}{v} \frac{3\sqrt{\pi}}{4} \left[1 + \frac{\pi^2}{8} (\log z)^{-2} \right]^{-1} \approx (\log z)^{3/2} \\ e_F \left(1 - \frac{\pi^2}{12} \left(\frac{T}{T_F} \right)^2 \right) \approx \mu(T) \text{ cumple } \mu(T = 0) = e_F \end{split}$$

Puede verse que con $\frac{\lambda^3}{v} > 1$ (T baja y n alta) es

$$C_V pprox rac{N\pi^2 k^2 T}{2e_F}$$

DIBUJO

Aún a T=0 hay presión no nula pero $S\to 0$ con $T\to 0$ respetando la tercera ley. Existe una relación de recurrencia

$$\begin{split} z\frac{\partial}{\partial z}f_{\nu}(z) &= z\frac{\partial}{\partial z}\sum_{l=1}^{\infty}(-1)^{l+1}\frac{z^{l}}{l^{\nu}} = \sum_{l=1}^{\infty}(-1)^{l+1}\frac{lz^{l-1}z}{l^{\nu}} = \sum_{l=1}^{\infty}(-1)^{l+1}\frac{z^{l}}{l^{\nu-1}} = f_{\nu-1}(z)\\ f_{\nu}(z) &= \int\frac{1}{z}f_{\nu-1}(z)dz\\ f_{3/2}(z) &\approx \frac{4}{3\sqrt{\pi}}(\log z)^{5/2} \end{split}$$

entonces

$$f_{5/2}(z) = \int dz \frac{4}{3\sqrt{\pi}} \frac{(\log z)^{3/2}}{z} = \frac{4}{3\sqrt{\pi}} \int dz \frac{2}{5} \frac{\partial}{\partial z} (\log z)^{5/2} = \frac{8}{15\sqrt{\pi}} (\log z)^{5/2} \frac{\text{Usamos}}{d(\log z)^n = n(\log z)^{n-1}/z}$$

1.1.5 Sobre la aproximación de gas de Fermi para el núcleo

En lo que sigue una deducción más detallada del cálculo. Considero una caja de lados ${\cal L}$

$$\boldsymbol{k} = \frac{2\pi}{L}\boldsymbol{n}$$
 $\hbar \boldsymbol{k} = \boldsymbol{p} = \frac{h}{L}\boldsymbol{n}$

$$E = \frac{(\hbar |\mathbf{k}|)^2}{2m} = \frac{\hbar^2}{m} \frac{2\pi^2}{L^2} (n_x^2 + n_y^2 + n_z^2) \qquad n_i \in \mathbb{Z}$$

Quiero saber qué densidad de estados energéticos tengo. Para ello, en esféricas

$$E = \frac{\hbar^2}{m} \frac{2\pi^2}{L^2} r^2$$

donde r vive en la esfera (no es necesario tomar el octante y dividir sobre 8)

$$a(E)dE = N(r)dr = 4\pi r^2 dr$$

siendo g(E)dE el número de puntos entre E y E+dE,

$$\begin{split} dE &= \frac{(\hbar\pi)^2}{L^2m} 4r dr \\ g(E) dE &= \frac{L^3 m^{3/2} E^{1/2}}{\hbar^{3/2} \pi^2 \sqrt{2}} dE \\ N &= g \int_0^{e_F} g(E) dE = \sqrt{2} \frac{V m^{3/2}}{\hbar^3 \pi^2} \int_0^{e_F} e^{1/2} dE \\ N &= \frac{V m^{3/2}}{\hbar^3 \pi^2} \frac{2^{3/2}}{3} e_F^{3/2} \\ \frac{1}{v} &= \frac{m^{3/2}}{\hbar^3 \pi^2} \frac{2^{3/2}}{3} e_F^{3/2} \end{split}$$

y entonces deducimos de aquí que

$$e_F = \frac{\hbar}{2m} \left(\frac{3\pi^2}{v} \right)^{2/3}$$

que coincide con la expresión para e_F con degeneración g=2

$$n_x^2 + n_y^2 + n_z^2 = r^2$$
 $V = \frac{4}{3}\pi r^3$ $dV = 4\pi r^2 dr$

Tomo en el origen de coordenadas $n_i=\pm 1,\pm 2,\ldots$ y así voy de -L/2 a L/2<.

¿Y estas cuentas sueltas?

$$E = \frac{(\hbar\pi)^2}{2ma^2}r^2 \qquad dE = \frac{(\hbar\pi)^2}{ma^2}rdr$$

$$N(r)dr = \frac{\pi}{2}r^2dr$$

será lo mismo que el incremento en niveles energéticos

$$N(e)de = \frac{m^2 a^3}{\pi^2 \hbar^3} \left(\frac{E}{2}\right)^{1/2} dE$$

Pensamos un conjunto de nucleones como un gas de Fermi. Claramente

Recordemos que a T=0era $pV=2/5Ne_F$ y $U=3/5Ne_F$

$$N = 2 \int_0^{e_F} N(e) \ de$$

porque tenemos la ocupación en función de la energía

$$e_F \propto \left(\frac{N}{V}\right)^{2/3}$$
 según la definición de e_F

Al aplicar este modelo (del gas de Fermi) al núcleo hacemos algunas consideraciones

$$R = a_0 A^{1/3}$$
 $V \propto A$

siendo A el número de nucleones.

Para un núcleo se tienen N=A-Z neutrones, siendo Z protones y A nucleones.

$$E = \frac{3}{5} N_T e_F (\text{ a } T = 0)$$

y tenemos un \boldsymbol{e}_F de protones y de neutrones, que son

$$e_{Fp} \propto \left(\frac{Z}{A}\right)^{2/3}$$
 $e_{Fn} \propto \left(\frac{A-Z}{A}\right)^{2/3}$ $(Z^{5/3}+(A-Z)^{5/3})^{2/3}$

$$E = \frac{3}{5} \left[Z \left(\frac{Z}{V} \right)^{2/3} + (A - Z) \left(\frac{A - Z}{V} \right)^{2/3} \right] = \frac{3}{5} \left(\frac{Z^{5/3} + (A - Z)^{5/3}}{A^{2/3}} \right)$$

donde hemos supuesto ambos pozos iguales. Si los pozos no fueran iguales cambia la e_F .

Se minimiza E con Z = N = A/2 (simetría)

$$f_4 \propto E - E_0 = \frac{3}{5\,A^{2/3}} \left[Z^{5/3} + (A-Z)^{5/3} - 2(A/2)^{5/3} \right]$$

que se puede reescribir en función de D=(N-Z)/2=(A-2Z)/2=A/2-Z (que será chico) y de esta manera

$$Z = \frac{A}{2} - D \qquad A - Z = \frac{A}{2} + D$$

$$f_4 \propto \frac{3}{5} \left(\frac{[A/2 - D]^{5/3} + [A/2 + D]^{5/3} - 2[A/2]^{5/3}}{A^{2/3}} \right)$$

y que con un Taylor en $D \approx 0$ resulta

$$f_4 \propto \frac{(A/2-Z)^2}{A} \propto D^2$$
 término de simetría

1.1.6 Cuánticos 3 – más material para reubicar-

Un esquema de temas: comportamiento de los números de ocupación gas de Fermi : comportamiento de $f_{\nu}(z)$ con $\nu=3/2$ gas de Fermi con condiciones extremas

$$\lambda^3/v \gg 1$$
 $\lambda^3/v \ll 1$

 e_F con degeneración g funciones termodinámicas con $\lambda^3/v \ggg 1~S \to 0$ con $T \to 0$ Aproximación de gas de Fermi para núcleo densidad de estados g(e)

La expresión para $\mu(T)$ con $T \geq 0$ sale de

$$\begin{split} \frac{\lambda^3}{v} &= \frac{4}{3\sqrt{\pi}} (\log z)^{3/2} \left[1 + \frac{\pi^2}{8} (\log z)^{-2} \right] \\ (\log z)^{3/2} &= \frac{3\sqrt{\pi}h^3}{(2\pi m)^{3/2} (kT)^{3/2} 4v} \frac{1}{\left[1 + \frac{\pi^2}{8} (\log z)^{-2} \right]} \\ \mu &= \left(\frac{3\sqrt{\pi}}{4v} \right)^{2/3} \frac{h^2}{2\pi m} \left(1 + \frac{\pi^2}{8 \log^2 z} \right)^{-2/3} \\ \mu &= e_F \left[1 - \frac{\pi^2}{12} \left(\frac{kT}{e_F} \right)^2 \right] \end{split}$$

y con T baja podemos escribir todo en función de la e_F .

$$E = \frac{3}{5}Ne_F \qquad \qquad \text{con } T = 0$$

Hay un yeite en la deducción que refiere a que abajo es lo mismo usar orden 1 que orden dos y reemplazo $(\beta\mu)^{-2}$ por $(\beta e_F)^{-2}$

Lo importante de tener $f_{3/2}(z)$ en función de λ^3/v , desde

$$\lambda^3/v = f_{3/2}(z)$$

DIBUJO

es que vemos que z chico lleva a λ^3/v grande y consecuentemente z grande lleva a λ^3/v grande.

Luego,

clásico $z \ll 1$

$$\frac{\lambda^3}{v} \ll 1$$
 independientemente

cuántico $z\gg 1$

$$\frac{\lambda^3}{v} \gg 1$$
 independientemente

Con T=0 es $\mu(T=0)=e_F$ DIBUJO escalón Cuántico (límite máximo) entonces

$$z \to \infty \Rightarrow \frac{\lambda^3}{v} = \frac{4(\log z)^{3/2}}{3\sqrt{\pi}}$$

$$\frac{\lambda^3}{v} = \frac{4}{2\sqrt{\pi}} (\beta e_F)^{3/2} \text{ con } z = e^{\beta e_F}$$

Entonces e_F es el nivel tal que debajo de él hay N estados. En el espacio de momentos las partículas ocupan una esfera de radio p_F .

1.1.7 Estadísticas –otra cosa para reubicar–

Esta sección es un sketchi

$$\left\langle n\right\rangle _{i}=\frac{1}{\mathrm{e}^{\beta(e_{i}-\mu)}+a} \qquad \qquad \begin{cases} a=0 \quad \mathrm{MB} \\ a=-1 \quad \mathrm{BE} \\ a=1 \quad \mathrm{FD} \end{cases}$$

DIBUJO

Graficamos $1/e^x + a$ En la zona clásica coinciden las tres y es

$$\mathrm{e}^{\beta(e_i-\mu)}\gg 1 \forall e_i\;\;\mathrm{de}\;\mathrm{inter\acute{e}s}$$

$$z^{-1} \; \mathrm{e}^{\beta e_i} \gg 1 \qquad \qquad \beta(e_i - \mu) \gg 0$$

$$e^{\beta e_i} \gg z$$
 $e_i \gg \mu$

de (2) se deduce que como e_i pueden ser ≈ 0 entonces $0\gg \mu$ y por lo tanto ${\rm e}^{\beta\mu}\equiv z\ll 1$ de (1)

$$1 \gg e^{\beta \mu}$$
 $0 \gg \beta \mu$

Clásicamente $e^{\beta\mu}$ domina sobre z

$$\mu < 0 \text{ y } |\mu| \gg 1$$

Bose $\mu < \text{todo } e$

Fermi μ sin restricción

Para $z \gg 1$ conviene definir $\xi = \log z$ y entonces

$$f_{\nu}(z) = \frac{1}{\Gamma(\nu)} \int_{0}^{\infty} \frac{x^{\nu-1}}{e^{x-\xi} + 1} dx$$

Siendo ξ grande se tendrá que

$$F = \frac{1}{e^{x-\xi} + 1} = \begin{cases} 1 & x < \xi \\ 1/2 & x = \xi \\ 0 & z > \xi \end{cases}$$

En este supuesto $\xi \gg 1$ podemos integrar

$$f_{\nu}(z) \approx \frac{1}{\Gamma(\nu)} \int_0^{\infty} x^{\nu-1} dx$$

donde suponemos $T \gtrsim 0$ con lo cual $\beta \mu \to \infty, \xi \to \infty$ y $z^{-1} \to 0$, $e^{-\xi} \to 0$

$$f_{\nu}(z) \approx \frac{\xi^{\nu}}{\Gamma(\nu)\nu}$$

Con $\nu = 3/2$ resulta

$$\begin{split} f_{3/2}(z) &\approx \frac{(\log z)^{3/2}}{\Gamma(3/2)3/2} \\ \frac{\lambda^3}{v} &= \frac{4}{3} \frac{1}{\pi^{1/2}} (\beta \mu)^{3/2} \to \left(f_{3/2}(z) \frac{3\sqrt{\pi}}{4} \right)^{2/3} \frac{1}{\beta} = e_F \\ \frac{h^2}{2m} \left(\frac{3}{4v\pi} \right)^{2/3} &= \mu = e_F(\mu \text{ a } T = 0) \end{split}$$

La $e_F(\mu$ a T=0) es la energía hasta la cual se hallan ocupados los niveles energéticos. Con $T\gtrsim 0$ la ocupación es un escalón

DIBUJO

La e_F es el valor de $\mu(T=0)$

La energía U es

$$U = \frac{3}{2}pV = \frac{3V}{2\beta\lambda^3}f_{3/2}(z) = \frac{3N}{2\beta}\frac{f_{5/2}(z)}{f_{3/2}(z)}$$

Tenemos una aproximación de Sommerfeld para z grande

$$\begin{split} f_{3/2}(z) &= \frac{4}{3\sqrt{\pi}} (\log z)^{3/2} \left[1 + \frac{\pi^2}{8} (\log z)^{-2} + \ldots \right] \\ f_{5/2}(z) &= \frac{8}{15\sqrt{\pi}} (\log z)^{5/2} \left[1 + \frac{5\pi^2}{8} (\log z)^{-2} + \ldots \right] \\ U &= \frac{3N}{5\beta} (\log z) \left[1 + \frac{5\pi^2}{8} (\log z)^{-2} + \ldots \right] \left[1 + \frac{\pi^2}{8} (\log z)^{-2} + \ldots \right]^{-1} \\ U &= \frac{3\mu}{5} \left[1 + \frac{5\pi^2}{8} (\log z)^{-2} + \ldots \right] = \frac{3\mu}{5} + \frac{15\pi^2\mu}{60} \left(\frac{1}{\beta\mu} \right)^2 + \ldots \\ C_v &\equiv \frac{\partial}{\partial T} U/N \cong \frac{\pi^2}{2} \frac{k^2T}{\mu} \end{split}$$

entonces con $T \gtrsim 0$ es $C_v \propto T$ y con T = 0 es

$$\frac{U}{N} = \frac{3}{5}e_F$$

$$\frac{U}{N} = \frac{3}{5}e_F \left(1 + \frac{5\pi^2}{12} \left(\underbrace{\frac{T}{e_F/k}}_{\equiv T_F}\right)^2 + \dots\right)$$

Para $z \approx 1$ se debe expandir en el virial

$$\frac{pV}{NkT} = \sum_{l=1}^{\infty} a_l \left(\frac{\lambda^3}{gv}\right)^{l-1} (-1)^{l-1}$$

Sabemos que

$$\frac{p}{kT} = \frac{f_{5/2(z)}}{\lambda^3}$$

y entonces con las expresiones de f_{ν} ,

$$\frac{pV}{NkT} = \frac{\sum_{j=1}^{\infty} (-1)^{j+1} z^j / j^{5/2}}{\sum_{k=1}^{\infty} (-1)^{k+1} z^k / k^{3/2}}$$

Debemos usar toda la serie

$$\left[\sum_{l=1}^{\infty}a_{l}\left(\frac{\lambda^{3}}{gv}\right)^{l-1}(-1)^{l-1}\right]\left[\sum_{k=1}^{\infty}(-1)^{k+1}z^{k}/k^{3/2}\right]=\sum_{j=1}^{\infty}(-1)^{j+1}z^{j}/j^{5/2}$$

Resultan

$$\begin{cases} a_1 = 1 \\ a_2 = -0.17678 \\ a_3 = -0.00330 \end{cases}$$

$$\frac{pV}{NkT} = 1 + 0.17678 \underbrace{\left(\frac{\lambda^3}{gv}\right)}_{xT^{-3/2}} - 0.00330 \left(\frac{\lambda^3}{gv}\right)^2$$

Usando

$$\frac{U}{N} \cong 3/2kT \left(1 + 0.17678 \left(\frac{\lambda^3}{gv} \right) \right)$$

U = 3/2pV

$$\frac{\partial}{\partial T} \frac{U}{N} = C_v = 3/2kT \left(1 + 0.17678 \left(\frac{\lambda^3}{gv}\right)\right) + \frac{3}{2}kT0.17678 \frac{h^3}{gv(2\pi mk)^{3/2}2/3T^{5/2}}$$

y se puede despejar

$$c_v = \frac{3}{2}k\left[1 - 0.08839\left(\frac{\lambda^3}{gv}\right)\right]$$

1.2 Estudio de un metal – título tentativo –

1.2.1 Estudio de un metal

Modelamos un metal como una red de átomos que pueden oscilar y un gas de electrones

$$(m{x}_1,...,m{x}_N)$$
 N átomos
$$(m{x}_1^0,...,m{x}_N^0)$$
 Equilibrio fundamental

PICTURE

Los desplazamientos del equilibrio serán

$$oldsymbol{x}_i - oldsymbol{x}_i^0 = ec{\xi}_i$$

Planteo de un potencial de pequeñas oscilaciones

$$K = \sum_i \frac{m}{2} |\vec{\xi}_i|^2 \qquad \text{cinética}$$

$$V = V(\{\boldsymbol{x}_i^0\}) + \sum_i \underbrace{\frac{\partial V}{\partial \boldsymbol{x}_i}\bigg|_{\boldsymbol{x}_i}}_{=0} (\boldsymbol{x}_i - \boldsymbol{x}_i^0) + \sum_{i,j} \frac{1}{2} \frac{\partial V}{\partial \boldsymbol{x}_i} \boldsymbol{x}_j (\boldsymbol{x}_i - \boldsymbol{x}_i^0) (\boldsymbol{x}_j - \boldsymbol{x}_j^0)$$

Es cero porque está evaluado en el mínimo.

$$V = V_0 + \sum_{i,j} \frac{1}{2} k_{ij} \vec{\xi}_i \cdot \vec{\xi}_j$$
 potencial

siendo las constantes de fuerza k_{ij} las que controlan la interacción

$$H = V_0 + \frac{m}{2} |\vec{\xi}_i|^2 + \sum_{i,j} \frac{1}{2} k_{ij} \vec{\xi}_i \cdot \vec{\xi}_j$$

Este hamiltoniano se puede pasar a modos normales diagonalizando la matriz de fuerzas

$$H = V_0 + \frac{m}{2} \sum_{i=1}^{3N} (\dot{q}_i^2 + \omega_i^2 q_i^2)$$

y ω_i son las frecuencias de los 3N modos normales del sistema de N grados de libertad en 3D. En modos normales el hamiltoniano del sistema es el de 3N osciladores armónicos independientes (no acoplados. Puede resolverse mediante los operadores de bajada y de subida (cuántica) resultando en

$$E = \sum_{i}^{3N} \left(n_i + \frac{1}{2} \right) \hbar \omega_i$$

donde n_i es el número de fonones (ocupación) del modo normal i—ésimo. Estos fonones, cuasipartículas, son bosones porque pueden ser

$$n_i = 0, 1, 2, ..., \infty$$

y su número total no está fijo ($\mu=0$ pues la energía no depende del número de fonones)

$$n_i = \frac{1}{e^{\beta\hbar\omega_i} - 1}$$

pues $\hbar\omega_i$ es la energía del estado i-ésimo

$$\begin{split} n_i &= \frac{1}{\mathrm{e}^{\hbar\omega_i/kT}-1} \\ E &= V_0 + \frac{1}{2} \sum_i^{3N} \hbar\omega_i + \sum_i^{3N} n_i \hbar\omega_i \end{split}$$

La función de partición canónica será

$$\begin{split} Q &= \sum_E \, \mathrm{e}^{-\beta E} = \sum_E \, \mathrm{e}^{-\beta \left(\frac{1}{2} \sum \hbar \omega_i + \sum n_i \hbar \omega_i\right)} \\ Q &= \sum_{n_1 = 0}^\infty \sum_{n_2 = 0}^\infty \dots \sum_{n_N = 0}^\infty \, \mathrm{e}^{-\beta \sum \left(\hbar \omega_i / 2 + n_i \hbar \omega_i\right)} \\ Q &= \sum_{n_1} \, \mathrm{e}^{-\beta \left(\hbar \omega_1 / 2 + n_1 \hbar \omega_1\right)} \sum_{n_2} \, \mathrm{e}^{-\beta \left(\hbar \omega_2 / 2 + n_2 \hbar \omega_2\right)} \, \dots \\ Q &= \prod_i^{3N} \left(\sum_{n_i = 0} \, \mathrm{e}^{-\beta \left(\hbar \omega_i / 2 + n_i \hbar \omega_i\right)} \right) = \prod_i^{3N} \left(\sum_{n_i = 0} \, \mathrm{e}^{-\beta n_i \hbar \omega_i} \right) \, \mathrm{e}^{-\beta \hbar \omega_i / 2} \\ Q &= \prod_i^{3N} \left(\frac{1}{1 - \, \mathrm{e}^{-\beta \hbar \omega_i}} \right) \, \mathrm{e}^{-\beta \hbar \omega_i / 2} = \prod_i^{3N} \left(\frac{1}{\, \mathrm{e}^{\beta \hbar \omega_i} \, - \, \mathrm{e}^{-\beta \hbar \omega_i}} \right) \\ \log Q &= \sum_i^{3N} \log \left(\frac{1}{\, \mathrm{e}^{\beta \hbar \omega_i} \, - \, \mathrm{e}^{-\beta \hbar \omega_i}} \right) = \sum_i^{3N} - \log \left(\, \mathrm{e}^{\beta \hbar \omega_i} \, - \, \mathrm{e}^{-\beta \hbar \omega_i} \right) \\ \log Q &= \sum_i^{3N} - \log \left(2 \sinh \left(\frac{\hbar \omega_i}{2kT} \right) \right) \end{split}$$

Si quisiéramos pasar al continuo resultaría (con $N \to \infty$)

$$\log Q = -\int_0^\infty d\omega g(\omega) \log \left[2 \sinh \left(\frac{\beta \hbar \omega_i}{2} \right) \right]$$

donde $g(\omega)$ es la densidad de estados y

 $d\omega g(\omega)=~\#$ de modos normales con frecuencia entre ω y $\omega+d\omega$

Tenemos dos métodos de cálculo de energía

$$\begin{split} E &= \sum_{i}^{3N} (n_i + 1/2) \hbar \omega_i & -\frac{\partial \log Q}{\partial \beta} = \sum_{i}^{3N} \frac{1}{\mathrm{e}^{\square} - \mathrm{e}^{-\square}} (\; \mathrm{e}^{\square} + \; \mathrm{e}^{-\square}) \frac{\hbar \omega_i}{2} \\ & \sum_{i}^{3N} \hbar \omega_i \left(\frac{1/2 \, \mathrm{e}^{\beta \hbar \omega_i} + 1/2}{\mathrm{e}^{\beta \hbar \omega_i} - 1} \right) & -\frac{\partial \log Q}{\partial \beta} = \sum_{i}^{3N} \left(\frac{\mathrm{e}^{\square} + \mathrm{e}^{-\square}}{\mathrm{e}^{\square} - \mathrm{e}^{-\square}} \right) \frac{\hbar \omega_i}{2} \\ & \sum_{i}^{3N} \frac{\hbar \omega_i}{2} \left(\frac{\mathrm{e}^{\beta \hbar \omega_i} + 1}{\mathrm{e}^{\beta \hbar \omega_i} - 1} \right) & = \sum_{i}^{3N} \left(\frac{\mathrm{e}^{2\square} + 1}{\mathrm{e}^{2\square} - 1} \right) \frac{\hbar \omega_i}{2} \end{split}$$

Por supuesto ambas coinciden. Observemos que

de fonones =
$$\sum_{i=1}^{3N} n_i$$

es una cantidad que no es fija (se crean y se destruyen). Por ello podemos evaluar fácilmente el Q.

Desde E se puede evaluar el C_v

$$\begin{split} \frac{\partial E}{\partial T} &= \sum_{i}^{3N} \frac{\hbar \omega_{i}}{2} \frac{\partial}{\partial T} \left(\frac{\cosh \square}{\sinh \square} \right) \\ C_{v} &= \sum_{i}^{3N} \frac{\hbar \omega_{i}}{2} \left[\frac{\sinh \square}{\sinh \square} \frac{\partial \square}{\partial T} - \frac{\cosh^{2} \square}{\sinh^{2} \square} \frac{\partial \square}{\partial T} \right] \\ C_{v} &= \sum_{i}^{3N} \frac{\hbar \omega_{i}}{2} \frac{\hbar \omega_{i}}{2k} \left(\frac{-1}{T^{2}} \right) \left(\frac{-1}{\sinh^{2} \square} \right) \end{split}$$

Tenemos el modelo de Einstein, que usa $\omega_i = \omega_E \forall i$ y entonces

$$\begin{split} C_v &= 3Nk \left(\frac{\hbar \omega_E}{kT}\right)^2 \frac{1}{\left[e^{\hbar \omega_E/kT2} - e^{-\hbar \omega_E/kT2}\right]^2} \\ C_v &= 3Nk \left[\left(\frac{1}{t}\right)^2 \left(\frac{1}{e^{1/(2t)} - e^{-1/(2t)}}\right)^2\right] \end{split}$$

Con $T \ggg 1$ es [...] $\to 1$ y $C_V = 3Nk$ (clásico). Con T < 1 se comporta exponencialmente.

Dibujo

 $C_v \to 3Nk$ con $T \ggg 1, \, C_v \to 0$ con $T \to 0$ Tiende a cero muy rápidamente

1.2.2 Modelo de Debye

Las frecuencias se distribuyen continuamente de modo que hay

$$\int_0^{\omega_D} g(\omega) d\omega = 3N$$

modos normales; es decir que se integra hasta una frecuencia de corte ω_D . $g(\omega)$ la extraemos de considerar frecuencias permitidas de una onda plana de sonido en un sólido de lados L.

$$egin{align} m{p} &= rac{h}{L} m{n} = rac{h}{2\pi} m{k} &
ightarrow & m{k} = rac{2\pi}{L} m{n} & \delta |m{k}| = rac{(2\pi)^3}{V} \ & c_s &= rac{\omega}{|m{k}|} &
ightarrow & 4\pi k^2 rac{V}{(2\pi)^3} dk = 1 ext{ esféricas} \ & d|m{k}| = rac{d\omega}{c_s} \ & \end{array}$$

y será

$$\begin{split} \frac{V}{2\pi^2}k^2dk &= \frac{V}{2\pi^2}\frac{\omega^2}{c^3}d\omega\\ g(\omega)d\omega &= g(k)dk \quad \rightarrow \quad g(\omega) = \frac{V\omega^2}{2\pi^2c^3}\\ \int_0^{\omega_D} \frac{V\omega^2}{2\pi^2c^3}\,d\omega &= \frac{V\omega_D^3}{6\pi^2c^3} = 3N\\ \omega_D &= c\left(\frac{18\pi^2}{v}\right)^{1/3} \end{split}$$

En realidad hay que considerar los tres modos: uno longitudinal y dos transversales,

$$\int_{0}^{\omega_{D}} \frac{V\omega^{2}}{2\pi^{2}} \left(\frac{1}{c_{L}^{3}} + \frac{2}{c_{T}^{3}}\right) d\omega = \frac{V\omega_{D}^{3}}{6\pi^{2}} \left(\frac{1}{c_{L}^{3}} + \frac{2}{c_{T}^{3}}\right) = 3N$$

$$\omega_{D} = \left(\frac{1}{c_{L}^{3}} + \frac{2}{c_{T}^{3}}\right)^{-1/3} \left(\frac{18\pi^{2}}{v}\right)^{1/3}$$

$$\frac{V}{2\pi^{2}c^{3}} = \frac{9N}{\omega_{D}^{3}} \longrightarrow g(\omega) = \frac{9N}{\omega_{D}^{3}}\omega^{2}$$

Había unas cuentitas de los diferenciales discretos que se pueden referir nomás.

$$C_v = \sum_i^{3N} k_B \left(\frac{\hbar \omega_i}{k_B T}\right)^2 \frac{\mathrm{e}^{-\left(\frac{\hbar \omega_i}{k_B T}\right)}}{(1 - \mathrm{e}^{-\left(\frac{\hbar \omega_i}{k_B T}\right)})^2}$$

La suma en los 3N modos normales (estados de fonones) puede pasarse a integral

$$C_v = \int_0^{\omega_D} g(\omega) k_B \left(\frac{\hbar \omega}{k_B T}\right)^2 \frac{\mathrm{e}^{-\left(\frac{\hbar \omega}{k_B T}\right)}}{(1 - \mathrm{e}^{-\left(\frac{\hbar \omega}{k_B T}\right)})^2} d\omega$$

Usando la aproximación de Debye es DIBUJO

$$g(\omega) = \frac{9N}{\omega_D^3} \omega^2$$

$$C_v = \int_0^{\omega_D} \frac{9N}{\omega_D^3} \omega^2 k_B \left(\frac{\hbar \omega}{k_B T}\right)^2 \frac{\mathrm{e}^-}{(1 - \mathrm{e}^{-\left(\frac{\hbar \omega}{k_B T}\right)})^2} dx$$

reemplazamos

$$x = \frac{\hbar\omega}{k_B T} \qquad dx = \frac{\hbar}{k_B T} d\omega$$

$$k_B \int_0^{\hbar\omega_D/(k_B T)} \frac{9N}{\omega_D^3} \left(\frac{k_B T}{\hbar}\right)^3 x^4 \frac{\mathrm{e}^{-x}}{(1 - \mathrm{e}^{-x})^2} dx$$

$$C_v = 3Nk_B \left(\int_0^{\beta\hbar\omega_D \equiv x_D} \frac{3x^4 \,\mathrm{e}^{-x}}{x_D^3 (1 - \mathrm{e}^{-x})^2} dx\right)$$

$$D(x_D) \equiv \frac{3}{x_D^3} \int_0^{x_D} \frac{x^4 \,\mathrm{e}^{-x}}{(1 - \mathrm{e}^{-x})^2} dx = \frac{3}{x_D^3} \int_0^{x_D} \frac{x^4 \,\mathrm{e}^x}{(\mathrm{e}^x - 1)^2} dx$$

El caso límite $T\to\infty$ (clásico) resulta en $D(x_D)=1$ pues el integrando es como x^2 y entonces

$$C_v = 3Nk_b$$

DIBUJITO bosquejo Trabajando sobre $D(x_D)$ se tiene

$$\frac{3}{x_D^3} = \left[\int_0^{x_D} \frac{x^4 e^x}{(e^x - 1)^2} dx \right]$$

e integrando por partes $(u = x^4$ y $dv = e^x/(e^x - 1)^2 dx)$ se arriba a

$$\frac{3x_D}{1-{\,{\rm e}}^{x_D}}+\frac{12}{x_D^3}\int_0^{x_D}\frac{x^3}{{\,{\rm e}}^x-1}dx$$

Con $x \ll 1$ es

$$e^x - 1 = x\left(1 + \frac{x}{2} + \frac{x^2}{6}\right)$$

$$\frac{1}{e^x - 1} = \frac{1}{x} \left(1 + \frac{x}{2} + \frac{x^2}{6} \right)^{-1} \approx \frac{1}{x} \left(1 - \left[\frac{x}{2} + \frac{x^2}{6} \right] + \left[\frac{x}{2} + \frac{x^2}{6} \right]^2 \right)$$

y quedándonos a orden 2

$$\frac{1}{e^x - 1} \approx \frac{1}{x} \left(1 - \frac{x}{2} + \frac{x^2}{12} \right) = \frac{1}{x} - \frac{1}{2} + \frac{x}{12}$$

$$3x_D\left(-\frac{1}{x_D}+\frac{1}{2}-\frac{x_D}{12}\right)+\frac{12}{x_D^3}\int_0^{x_D}\left(x^2-\frac{x^3}{2}+\frac{x^4}{12}\right)dx=1-\frac{x_D^2}{20}$$

llegamos a

$$C_v = 3Nk_b \left[1 - \frac{x_D^2}{20} \right] = 3Nk_b \left[1 - \frac{(\hbar\omega_D)^2}{20(kT)^2} \right]$$

 Con $x_D \ll 1 \ (T \gg 1)$ tiende al valor clásico (Pettit & Dulong) Con $x_D \gg 1$

$$D(x_D) = \frac{3x_D}{1 - \mathrm{e}^{x_D}} + \frac{12}{x_D^3} \int_0^{x_D} \frac{x^3}{\mathrm{e}^x - 1} dx$$

y como podemos integrar entre $0 e \infty$ con lo cual

$$\int_{0}^{\infty} \frac{x^3}{e^x - 1} dx = \frac{\pi^4}{15}$$

DIBUJO

$$D(x_D) = \frac{4}{5} \frac{\pi^4}{x_D^3} = \frac{4\pi^4}{5} \left(\frac{kT}{\hbar \omega_D}\right)^3$$

DIBUJO Ley de Dulong y Pettit

$$C_v = 3Nk_B \left(\frac{4\pi^4}{5}\right) \left(\frac{k}{\hbar\omega_D}\right) T^3$$

Con $x_D\gg 1(T\ll 1)$ tiende a 0 como resulta experimentalmente.

1.2.3 Gas de electrones en metales

Consideramos bajas temperaturas y altas densidades

$$\frac{\lambda^3}{v} \gg 1$$
 CASO DEGENERADO

$$\frac{\lambda^3}{v} = f_{3/2}(z) \quad \text{con } z \gg 1(T=0)$$

Usamos aproximación de Sommerfeld (1928)

$$\begin{split} \frac{\lambda^3}{v} &= \frac{4}{3\pi^{1/2}}[\log(x)]^{3/2} \qquad \text{a orden cero} \\ &\frac{h^3}{v(2\pi mkT)^{3/2}} = \frac{4}{3\pi^{1/2}} \left(\frac{e_F}{kT}\right)^{3/2} \\ &e_F = \frac{h^2 3^{2/3}}{2m(4\pi v)^{2/3}} \\ e_F &= \frac{\hbar^2}{2m} \left(\frac{32^3\pi^2}{4v}\right)^{2/3} = \frac{\hbar^2}{2m} \left(\frac{6\pi^2}{v}\right)^{2/3} \\ z &= \mathrm{e}^{\beta\mu(T=0)} = \mathrm{e}^{\beta e_F} \end{split}$$

Veamos que la e_F disminuye con el aumento de v y m. Para la distribución de Fermi teníamos

DIBUJO

$$\frac{1}{e^{\frac{e-\mu(T)}{kT}}+1}$$

Sea un δe

$$n_e = \frac{1}{\mathrm{e}^{(e_F + \delta e - e_F + (\pi^2/12)(T'/T_F)^2 e_F)/(kT')} + 1} = \frac{1}{\mathrm{e}^{\frac{\delta e}{kT'} + (\pi^2/12)(T'/T_F)} + 1}$$

Usamos que

$$\mu = e_F \left(1 - \frac{\pi^2}{12} \left(\frac{T}{T_F}\right)^2\right)$$

y como $\pi^2/12 \sim 1$ se tiene $\,{\rm e}^{\delta e/(kT') + kT'/(kT_F)}$

Si $kT' \ll kT_F$ entonces se tiene

$$\frac{1}{e^{\delta e/(kT')} + 1}$$

lo cual dice que con $\delta e=2kT'$ es $n_e\sim 0.11$ y es 2kT' justamente el apartamiento del caso degenerado.

Si, como sucede con $T_{\rm AMB}$ en un gas de electrones por ejemplo,

$$T_{
m AMB} \ll T_F$$

se tiene

 $T_F = e_F/k_B$

DIBUJO

La T_F es una propiedad de las partículas del gas que mide la sensibilidad ante cambios en la temperatura.

Para saber si me hallo muy lejos del comportamiento tipo escalón (T=0) evalúo T_F . Si resulta $T< T_F$ entonces la variación 2kT es aproximadamente el e tal que $n_e=0.11$.

Asimismo para el C_v se tenía

$$C_v = \frac{\pi^2}{2} Nk \left(\frac{T}{T_F}\right)$$
 Gas de Fermi

Modelando un sólido como

gas de Fermi (electrones) + gas de fonones (átomos centrales)

se tienen

$$C_{\alpha} = \alpha T + \beta T^3$$

y vemos que a $T_{\rm AMB}$ (alta) domina el término de fonones y a muy baja T ($T\lesssim 1$) el de electrones.

* idea

Dibujito

Evaluando la desigualdad $T < T_F$ podemos ver si la distribución tiene pinta de escalón o de rampa.

1.2.4 Emisión termoiónica

Modelaremos un gas de electrones confinado en un potencial W creado por una red de iones positivos.

DIBUJO

Veamos emisión en \hat{z} . Necesitaremos

$$K>W \qquad \frac{p_z^2}{2m}>W \qquad p_z>(2mW)^{1/2}$$

y sea $n\mathbf{v}\cdot\mathbf{A}$ flujo de electrones a través del área A en la unidad de tiempo, R el número de electrones en la unidad de tiempo y de área nv_z , i.e.

$$R = n \frac{p_z}{m} = \frac{N p_z}{V m}$$

$$\begin{split} R = \sum_{e_i} \frac{n_i p_z}{Vm} & \frac{V\delta |\boldsymbol{p}|}{h^3} = 1 \\ R = \int_{(2mW)^{1/2}}^{\infty} dp_z \int_0^{\infty} dp_x \int_0^{\infty} dp_y \, \frac{1}{\mathrm{e}^{[p^2/(2m) - \mu]/(kT)} + 1} \left(\frac{p_z}{m}\right) \frac{1}{h^3} \end{split}$$

Pasamos $dp_x dp_y = p' 2\pi dp'$ (polares)

$$\frac{2\pi}{h^3} \int_{(2mW)^{1/2}}^{\infty} dp_z \left(\frac{p_z}{m}\right) \int_0^{\infty} \frac{p'}{\mathrm{e}^{[p_z^2/(2m) + p^2/(2m) - \mu]/(kT)} + 1} dp'$$

y con un cambio de variables $\xi = p'^2/(2mkT)$

$$\begin{split} &\frac{2\pi}{h^3} \int_{(2mW)^{1/2}}^{\infty} dp_z 2p_z \int_0^{\infty} \frac{kT}{\mathrm{e}^{p_z^2/(2mkT)}} \, \mathrm{e}^{\xi} \, \mathrm{e}^{-\mu/(kT)} + 1 \\ &\frac{4\pi kT}{h^3} \int_{(2mW)^{1/2}}^{\infty} dp_z p_z \log (1 + \, \mathrm{e}^{[-p_z^2/(2m) + \mu]/(kT)}) \end{split}$$

a T altas resulta

$$R = \frac{4\pi kT}{h^3} \int_{(2mW)^{1/2}}^{\infty} dp_z p_z \, \mathrm{e}^{[-p_z^2/(2m) + \mu]/(kT)}$$

y con otro cambio de variables $p_z^2/(2mkT) = e$

$$R = kT \int_{W/(kT)}^{\infty} 2mde \, \mathrm{e}^{-e} \, \mathrm{e}^{\mu/(kT)}$$

$$R = \frac{4\pi kT}{h^3} 2mkT e^{\mu/(kT)} e^{-W/(kT)} = \frac{8\pi m(kT)^2}{h^3} e^{(\mu-W)/kT}$$

a T bajas también es

$$\log(1 + {\,{\rm e}^{(\mu - p_z^2/sm)/kT}}) \approx {\,{\rm e}^{[\mu - p_z^2/2m]/(kT)}}$$

con lo cual la integral da lo mismo

$$R = \frac{8\pi m (kT)^2}{h^3} e^{(\mu - W)/kT} e^{-W/(kT)}$$

pero aquí

$$\frac{\lambda^3}{v} \approx z = e^{\mu/(kT)} \rightarrow \frac{h^3}{v(2\pi m kT)^{3/2}} = z$$

$$R = \frac{4(kT)^{1/2}}{v(2\pi m)^{1/2}} e^{-W/(kT)}$$