

# OPENARTY SPECIFICATION

Dan Gisselquist, Ph.D. dgisselq (at) opencores.org

June 20, 2016

Copyright (C) 2016, Gisselquist Technology, LLC

This project is free software (firmware): you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-RANTY; without even the implied warranty of MERCHANTIBILITY or FITNESS FOR A PAR-TICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ for a copy.

# **Revision History**

| Rev. | Date      | Author      | Description |
|------|-----------|-------------|-------------|
| 0.0  | 6/20/2016 | Gisselquist | First Draft |

## Contents

|   |                                        | Page                                                                                                                                                                                                                                                                                     |
|---|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 |                                        | Introduction                                                                                                                                                                                                                                                                             |
| 2 |                                        | Architecture                                                                                                                                                                                                                                                                             |
| 3 | 3.1<br>3.2<br>3.3<br>3.4<br>3.5<br>3.6 | Software 3   Directory Structure 3   Zip CPU Tool Chain 3   Bench Test Software 3   Host Software 3   Zip CPU Programs 3   ZipOS 3   3.6.1 System Calls 3   3.6.2 Scheduler 4                                                                                                            |
| 4 |                                        | Operation                                                                                                                                                                                                                                                                                |
| 5 | 5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6 | Registers 6   Peripheral I/O Control 6   5.1.1 Interrupt Controller 6   5.1.2 Last Bus Error Address 8   5.1.3 General Purpose I/O 8   5.1.4 UART Data Register 8   Debugging Scopes 8   Internal Configuration Access Port 8   Real-Time Clock 8   On-Chip Block RAM 8   Flash Memory 8 |
| 6 |                                        | Clocks                                                                                                                                                                                                                                                                                   |
| 7 |                                        | I/O Ports                                                                                                                                                                                                                                                                                |

# **Figures**

Figure

# **Tables**

| Гab <u>le</u> | I                   | Page          |
|---------------|---------------------|---------------|
| 5.1.          | Address Regions     | 6             |
| 5.2.<br>5.3.  | ZipSystem Äddresses | $\frac{7}{7}$ |
| 5.3.<br>5.4.  | Bus Interrupts      |               |
| 6.1.          | OpenArty clocks     | 9             |
| 7.1.          | List of IO ports    | 10            |

## Preface

Dan Gisselquist, Ph.D.

### Introduction

The goals of this project include:

1. Use entirely open interfaces

This means not using the Memory Interface Generator (MIG), the Xilinx CoreGen IP, etc. Further, I wish to use all of Arty's on—board hardware: Flash, DDR3-SDRAM, Ethernet, and everything else at their full and fastest speed(s). For example, the flash will need to be clocked at 100 MHz, not the 50 MHz I've clocked it at before. The memory should also be able to support pipelined 32-bit interactions over the Wishbone bus at a 200 MHz clock. Finally, the Ethernet controller should be supported by a DMA capable interface that can drive the ethernet at its full 100Mbps rate.

- 2. Run using a 200 MHz clock, if for no other reason than to gain the experience of building logic that can run that fast.
- 3. Modify the ZipCPU to support an MMU and a data cache, and perhaps even a floating point unit.
- 4. The default configuration will also include three Pmods: a USBUART, an SDCard, and the GPS Pmod.

I intend to demonstrate this project with a couple programs:

- 1. A very simple program that runs automatically upon startup that can be used to select from among multiple configurations.
- 2. NTP Server
- 3. A ZipOS that can actually load and run programs from the SD Card

## Architecture

### Software

- 3.1 Directory Structure
- 3.2 Zip CPU Tool Chain
- 3.3 Bench Test Software

#### 3.4 Host Software

- readflash: As I am loathe to remove anything from a device that came factory installed, the readflash program reads the original installed configuration from the flash and dumps it to a file.
- wbregs: This program offers a capability very similar to the PEEK and POKE capability Apple user's may remember from before the days of Macintosh. wbregs <address> will read from the Wishbone bus the value at the given address. Likewise wbregs <address> <value> will write the given value into the given address. While both address and value have the semantics of numbers acceptable to strtoul(), the address can also be a named address. Supported names can be found in regdefs.cpp, and their register mapping in regdefs.h.
- ziprun:
- zipload:

### 3.5 Zip CPU Programs

- ntpserver:
- goldenstart:

#### 3.6 ZipOS

#### 3.6.1 System Calls

• int wait(unsigned event\_mask, int timeout)

- int clear(unsigned event\_mask, int timeout)
- void post(unsigned event\_mask)
- void yield(void)
- int read(int fid, void \*buf, int len)
- int write(int fid, void \*buf, int len)
- unsigned time(void)
- void \*malloc(void)
- void free(void \*buf)

#### 3.6.2 Scheduler

# Operation

## Registers

There are several address regions on the S6 SoC, as shown in Tbl. 5.1.

| Binary Address                     | Base       | Size(W) | Purpose                          |
|------------------------------------|------------|---------|----------------------------------|
| 0000 0000 0000 0000 0001 0000 xxxx | 0x00000100 | 16      | Peripheral I/O Control           |
| 0000 0000 0000 0000 0001 0001 0yyx | 0x00000110 | 8       | Debug scope control              |
| 0000 0000 0000 0000 0001 0001 10xx | 0x00000118 | 4       | Flash control                    |
| 0000 0000 0000 0000 0001 0001 11xx | 0x00000118 | 4       | RTC control                      |
| 0000 0000 0000 0000 0001 0010 00xx | 0x00000120 | 4       | SDCard controller                |
| 0000 0000 0000 0000 0001 0010 01xx | 0x00000124 | 4       | Packet Controller                |
| 0000 0000 0000 0000 0001 0011 00xx | 0x00000130 | 4       | GPS Uart                         |
| 0000 0000 0000 0000 0001 0011 01xx | 0x00000134 | 4       | GPS Clock                        |
| 0000 0000 0000 0000 0001 0011 1xxx | 0x00000138 | 8       | GPS Testbench                    |
| 0000 0000 0000 0000 0001 010x xxxx | 0x00000140 | 32      | Ethernet configuration registers |
| 0000 0000 0000 0000 0001 011x xxxx | 0x00000160 | 32      | ICAPE2 Configuration Port        |
| 0000 0000 0000 0000 10xx xxxx xxxx | 0x00000800 | 1k      | Ethernet TX Buffer               |
| 0000 0000 0000 0000 11xx xxxx xxxx | 0x0000c00  | 1k      | Ethernet RX Buffer               |
| 0000 0000 0000 1xxx xxxx xxxx xxxx | 0x00008000 | 32k     | On-chip Block RAM                |
| 0000 01xx xxxx xxxx xxxx xxxx xxxx | 0x00400000 | 4M      | QuadSPI Flash                    |
| O1xx xxxx xxxx xxxx xxxx xxxx xxxx | 0x04000000 | 64M     | DDR3 SDRAM                       |

Table 5.1: Address Regions

### 5.1 Peripheral I/O Control

Tbl. 5.3 shows the addresses of various I/O peripherals included as part of the SoC. We'll walk through each of these peripherals in turn, describing how they work.

#### 5.1.1 Interrupt Controller

Currently defined bus interrupts are listed in Tbl. 5.4.

| Base        | Size(W) | Purpose                       |  |
|-------------|---------|-------------------------------|--|
| 0x0c0000000 | 1       | Primary Zip PIC               |  |
| 0x0c0000001 | 1       | Watchdog Timer                |  |
| 0x0c0000002 | 1       | Bus Watchdog Timer            |  |
| 0x0c0000003 | 1       | Alternate Zip PIC             |  |
| 0x0c0000004 | 1       | ZipTimer-A                    |  |
| 0x0c0000005 | 1       | ZipTimer-B                    |  |
| 0x0c0000006 | 1       | ZipTimer-C                    |  |
| 0x0c0000007 | 1       | ZipJiffies                    |  |
| 0x0c0000008 | 1       | Master task counter           |  |
| 0x0c0000009 | 1       | Master prefetch stall counter |  |
| 0x0c000000a | 1       | Master memory stall counter   |  |
| 0x0c000000b | 1       | Master instruction counter    |  |
| 0x0c000000c | 1       | User task counter             |  |
| 0x0c000000d | 1       | User prefetch stall counter   |  |
| 0x0c000000e | 1       | User memory stall counter     |  |
| 0x0c000000f | 1       | User instruction counter      |  |
| 0x0c0000010 | 1       | DMA command register          |  |
| 0x0c0000011 | 1       | DMA length                    |  |
| 0x0c0000012 | 1       | DMA source address            |  |
| 0x0c0000013 | 1       | DMA destination address       |  |
| 0x0c0000040 | 1       | MMU context register          |  |
| 0x0c0000080 | 32      | MMU TLB                       |  |

Table 5.2: ZipSystem Addresses

| Name     | Address | Width | Access | Description              |
|----------|---------|-------|--------|--------------------------|
| VERSION  | 0x0100  | 32    | R      | Build date               |
| PIC      | 0x0101  | 32    | R/W    | Bus Interrupt Controller |
| BUSERR   | 0x0102  | 32    | R      | Last Bus Error Address   |
| PWRCOUNT | 0x0103  | 32    | R      | Ticks since startup      |
| BTNSW    | 0x0104  | 32    | R/W    | Button/Switch controller |
| LEDCTRL  | 0x0105  | 32    | R/W    | LED Controller           |
| GPIO     | 0x0106  | 32    | R/W    | GPIO controller          |
| GPS-     | 0x0107  | 29    | R/W    | GPS UART Setup register  |
| SETUP    |         |       |        |                          |
| CLR-LEDx | 0x0108  | 32    | R/W    | Color LED controller     |

Table 5.3: I/O Peripheral Registers

| Name       | Bit Mask | Description                                                        |  |
|------------|----------|--------------------------------------------------------------------|--|
| INT_BUTTON | 0x0001   | A Button has been pressed.                                         |  |
| INT_SWITCH | 0x0002   | The Scope has completed its collection                             |  |
| INT_PPS    | 0x0004   | Top of the second                                                  |  |
| INT_RTC    | 0x0008   | An alarm or timer has taken place (assuming the RTC is in-         |  |
|            |          | stalled, and includes both alarm or timer)                         |  |
| INT_NETRX  | 0x0010   | A packet has been received via the network                         |  |
| INT_NETTX  | 0x0020   | The network controller is idle, having sent its last packet        |  |
| INT_UARTRX | 0x0040   | A character has been received via the UART                         |  |
| INT_UARTTX | 0x0080   | The transmit UART is idle, and ready for its next character.       |  |
| INT_GPIO   | 0x0100   | The GPIO input lines have changed values.                          |  |
| INT_FLASH  | 0x0200   | The flash device has finished either its erase or write cycle, and |  |
|            |          | is ready for its next command. (Alternate config only.)            |  |
| INT_SCOPE  | 0x0400   | A scope has completed collecting.                                  |  |
| INT_GPSRX  | 0x0800   | A character has been received via GPS                              |  |
| INT_SDCARD | 0x1000   | The SD-Card controller has become idle                             |  |

Table 5.4: Bus Interrupts

- 5.1.2 Last Bus Error Address
- 5.1.3 General Purpose I/O
- 5.1.4 UART Data Register
- 5.2 Debugging Scopes
- 5.3 Internal Configuration Access Port
- 5.4 Real-Time Clock
- 5.5 On-Chip Block RAM
- 5.6 Flash Memory

# Clocks

| Name         | Source | Rates (MHz) |          | Description                    |
|--------------|--------|-------------|----------|--------------------------------|
|              |        | Max         | Min      |                                |
| i_clk_100mhz | Ext    | 100 M       | MHz      | 100 MHz Crystal Oscillator     |
| s_clk        | PLL    | 200 MHz     |          | Internal Logic, Wishbone Clock |
| ram_clk      | PLL    | 200 MHz     |          | DDR3 SDRAM Clock               |
| o_sck        | Logic  | 108 MHz     | 50 MHz   | QSPI Flash clock               |
| o_sdclk      | Logic  | 50 MHz      | 100  kHz | SD-Card clock                  |

Table 6.1: OpenArty clocks

# I/O Ports

Table. 7.1 lists the various I/O ports associated with OpenArty.

| Port             | Width    | Direction    | Description                                             |
|------------------|----------|--------------|---------------------------------------------------------|
| $i_{clk_100mhz}$ | 1        | Input        | Clock                                                   |
| o_qspi_cs_n      | 1        | Output       | Quad SPI Flash chip select                              |
| o_qspi_sck       | 1        | Output       | Quad SPI Flash clock                                    |
| io_qspi_dat      | 4        | Input/Output |                                                         |
| i_btn            | 2        | Input        | Inputs from the two on-board push-buttons               |
| o_led            | 4        | Output       | Outputs controlling the four on-board LED's             |
| o_pwm            | 1        | Output       | Audio output, via pulse width modulator                 |
| o_pwm_shutdo     | own_n, 1 | Output       | Audio output shutdown control                           |
| o_pwm_gain       | 1        | Output       | Audio output 20 dB gain enable                          |
| i_uart           | 1        | Input        | UART receive input                                      |
| o_uart           | 1        | Output       | UART transmit output                                    |
| o_uart_cts       | 1        | Output       | H/W flow control response, true if the internal single- |
|                  |          |              | byte receive buffer is empty.                           |
| $i_uart_rts$     | 1        | Input        | H/W flow control, true if the PModUSBUART wishes        |
|                  |          |              | to send a byte                                          |
| i_kp_row         | 4        | Output       | Four wires to activate the four rows of the keypad      |
| o_kp_col         | 4        | Output       | Return four wires, from the keypads columns             |
| i_gpio           | 14       | Output       | General purpose logic input lines                       |
| o_gpio           | 14       | Output       | General purpose logic output lines                      |
| io_scl           | 1        | Input/Output | I2C clock port                                          |
| io_sda           | 1        | Input/Output | I2C data port                                           |

Table 7.1: List of IO ports