COMP9318 Tutorial 1

Wei WANG The University of New South Wales

weiw@cse.unsw.edu.au

① Data Warehouse and OLAP

Q1

- ① Create a star schema diagram that will enable FIT-WORLD GYM INC. to analyze their revenue.
 - → The fact table will include for every instance of revenue taken attribute(s) useful for analyzing revenue.
 - → The star schema will include all dimensions that can be useful for analyzing revenue
 - → The only two data sources are shown below
- ② Appreciate the ETL process involved populating the data warehouse.
- ③ Appreciate the difference of formulating queries: "Find the percentage of revenue generated by members in the last year".
- How many cuboids are there in the complete data cube?

Q1

ER DIAGRAM

DATA INSTANCES

MEMBER

Membid	MembName	MembZip	MshpID	MsDatePayed
111	Joe	60611	M1	1-Jan-04
222	Mary	60640	M3	1-Jan-04
333	Sue	60611	M3	1-Jan-04

MEMBERSHIP

MshpID	MshpName	MshpPrice
M1	Platinum	\$1,000
M2	Gold	\$800
M3	Value	\$300

ONEDAYPASS

PassID	PassDate	PassCatID	Membid
1-001	1-Jan-04	PSA	111
1-002	1-Jan-04	PSA	333
1-003	2-Jan-04	PSK	333

MERCHANDISE

MrchID	MrchName	MrchPrice
AP1	T-shirt	\$11
AP2	Hat	\$9
EQ1	Jump Rope	\$12

PASSCATEGORY

PassCatId	CatName	Price
PSA	Adult	\$20
PSS	Senior	\$10
PSK	Kid	\$3

Note: MEMEBERS can bring in non-member guests. For each nonmember guest, a member buys a one-day-guest-pass of a certain pass category.

SOLDVIA

STrid	MrchID	Quatity
11111	AP1	1
11112	AP2	1
11112	AP2	1
11113	EQ1	3

SALESTRANSACT

STrid	Date	Membid
11111	1-Jan-04	333
11112	2-Jan-04	222
11113	3-Jan-04	111

ANOTHER DATA SOURCE

SPECIALEVENT

CorpCustID	CorpCustNameLoc	EventTypeCode	EvetType	EventDate	Amount Charged
CC1	Sears, Chicago 60640	L-A	All Day Rental,	January 4, 2004	\$3500
CC2	Boeing, Chicago 60611	L-H	Half Day Rental,	January 5, 2004	\$2200

SOLUTION: STAR SCHEMA

CALENDAR

Day	Month	Quarter	Year
1	Jan	1	2004
2	Jan	1	2004
3	Jan	1	2004
4	Jan	1	2004
5	Jan	1	2004
	1 2 3 4	1 Jan 2 Jan 3 Jan 4 Jan	1 Jan 1 2 Jan 1 3 Jan 1 4 Jan 1

ITEM

ItemKey	ItemId	Category	Type
1	M1	Memship	Platinum
2	M2	Memship	Gold
3	M3	Memship	Value
4	PSA	OneDayP.	Adult
5	PSS	OneDayP.	Senior
6	PSK	OneDayP.	Kid
7	AP1	Mrch.	T-Shirt
8	AP2	Mrch.	Hat
9	EQ1	Mrch.	Jump Rope
10	L-A	Spec. Evnt	All Day
11	L-H	Spec. Evnt	Half Day

REVENUE

Calendar Key	CustKey	ItemKey	Amount	Quantity
1	1	1	\$1000	1
1	2	3	\$300	1
1	3	3	\$300	1
1	1	4	\$20	1
1	3	4	\$20	1
2	3	6	\$3	1
1	3	7	\$11	1
1	3	8	\$9	1
2	2	8	\$9	1
3	1	9	\$36	3
4	4	10	\$3500	1
5	5	11	\$2200	1

CUSTOMER

CustKey	CustId	CustName	CustCategory	Zip
1	111	Joe	Ind	60611
2	222	Mary	Ind	60640
3	333	Sue	Ind	60611
4	CC1	Sears	Corp	60640
5	CC2	Boeing	Corp	60611

- ① See above. Note that this is not the unique answer.
- ② There are several tasks involved when importing the data into the data warehouse. E.g., we need to *extract* zipcode information from CorpCustNameLoc; we need to perform aggregation $(price \cdot Quantity)$ for tuples in the merchandise table; we might also need to deal with (near) duplicate object detection (e.g., the same "member" that appear in two data sources).
- ③ "Find the percentage of revenue generated by members in the last year" can be easily answered on the star schema by two aggregate queries on the fact table. Specifically, if the complete data cube has been built, the queries can be efficiently answered by the cuboid (Year), and the cuboid (Year, Category).
- ④ Since CustName is not likely to be a good "level" for analysis (rather, it is a descriptive attribute), there are 4 levels on Calendar dimension, 3 on Item, and 3 on Customer. Therefore, there are (4+1)*(3+1)*(3+1)=80 in total.

Note that we could have different hierarchies on a dimension. E.g., we

could consider the hierarchy on the Customer dimension one of the following. They have different semantics, but do not affect the number of cuboids.

Q2

Consider the star schema below

- → Write an MDX query that display total DollasSold for each product category and each store in the State 'CA'.
- → Write an MDX query that display total DollasSold for each product category and each store in the State 'CA' in 2007.
- → create a star schema that has **Month** and **Region** as the finest granularity on the corresponding dimensions. Show all tables in the new data model populated with the data based on the data from the original model.

Q2 10

Q2 11

CALENDAR

Calendar Key	Day	Month	Quarter	Year
1	1	Jan	1	2003
2	2	Jan	1	2003
3	1	Feb	1	2003

STORE

StoreKey	StoreID	State	Region
1	X1	Maine	East
2	X2	New Jersey	East
3	Y1	Ohio	Midwest

SALES

Calendar Key	ProKey	StoreKey	CustKey	\$Sold	UnitsSold
1	1	1	1	\$15	1
1	2	2	2	\$20	1
1	2	1	1	\$40	2
1	2	2	1	\$20	1
2	2	1	1	\$19	1
2	2	2	1	\$19	1
3	3	3	1	\$9	2
3	3	3	2	\$9	1
3	3	3	3	\$9	1

PRODUCT

ProKey	ProName	ProType	Category
1	Luvs 50	Diapers	Infant Care
2	Huggies 24	Diapers	Infant Care
3	High C	Vitamin	Dietary Supp

CUSTOMER

CustKey	CustID	Gender
1	12	Male
2	23	Male
3	34	Female

SOLUTION: MDX QUERY

```
SELECT [Product].[Category].MEMBERS ON COLUMNS
[Store].[USA].[CA].CHILDREN ON ROWS

FROM [Sales]

WHERE ([Measures].[DollasSold])

SELECT [Product].[Category].MEMBERS ON COLUMNS
[Store].[USA].[CA].CHILDREN ON ROWS

FROM [Sales]

WHERE ([Time].[2007], [Measures].[DollasSold])
```

SOLUTION: STAR SCHEMA

CALENDAR

Calendar Key	Month	Quarter	Year
1	Jan	1	2003
2	Feb	1	2003

STORE

StoreKey	Region
1	East
2	Midwest

$\mathsf{SALES} \; (\leftarrow \mathsf{Intermediate})$

Calendar Key	ProKey	StoreKey	CustKey	\$Sold	UnitsSold
1	1	1	1	\$15	1
1	2	1	2	\$20	1
1	2	1	1	\$40	2
1	2	1	1	\$20	1
1	2	1	1	\$19	1
1	2	1	1	\$19	1
2	3	2	1	\$9	2
2	3	2	2	\$9	1
2	3	2	3	\$9	1

PRODUCT

ProKey	ProName	ProType	Category
1	Luvs 50	Diapers	Infant Care
2	Huggies 24	Diapers	Infant Care
3	High C	Vitamin	Dietary Supp

CUSTOMER

CustKey	CustID	Gender
1	12	Male
2	23	Male
3	34	Female

SALES

Calendar Key	ProKey	StoreKey	CustKey	\$Sold	UnitsSold
1	1	1	1	\$15	1
1	2	1	2	\$20	1
1	2	1	1	\$98	5
2	3	2	1	\$9	2
2	3	2	2	\$9	1
2	3	2	3	\$9	1