A rideshare company has m cars at work;

n People request a car.

Each car can only be used for some requests

due to Proximity.

Assign a car to pick up each person.

two types of objects => two types of vertices (car, people) (0, 02).

Relationship between vertices of first type and second type => edge connecting vertices.

(\mathbf{e}_{τ}

Bipartite graph: (X, Y, E)

Notices esges.

E is ordered pairs (V, w) with $V \in X$, $w \in Y$.

if $(V, w) \in E$, we say V and w are neighbors (adjacons) V, w are endpoints of edge (V, w).

A matching M in a bipartite graph is a subsets of edges that doesn't have any vertex in X or Y as an endpoint more than once.

Coal: Find a matching that is as large as possible.

Dipartite matching LP.

Lahel X as $\{1, 2, ..., n\}$, Y as $\{n+1, ..., n+m\}$.

Non-negative Xij: for each $(i, j) \in E$. $Xij = \begin{cases} 1, (i, j) \text{ is part of } M. \\ 0, (i, j) \text{ isn't part of } M. \end{cases}$ Constriant: for each vertex, at most one edge

with the vertex as an endpoint can be in M. $j, e, \sum_{i} \chi_{i,j} \leq 1, \sum_{j} \chi_{i,j} \leq 1$ Example: $X_{i,j} \leq 1, \sum_{j} \chi_{i,j} \leq 1$

max	X14 + X16 + Xx + X27 + X34 + X15
S.t.	X14 + X16 ≤/
	Xx + Xv7 < 1
	$\chi_{34} + \chi_{45} \leq /$
	$X_{14} + X_{34} \leq 1$
	$\chi_{is} + \chi_{is} \leq I$
	$\chi_{16} \leq I, \chi_{\eta} \leq I$
Basic solu	ution to System $Ax = b$.
	B, is given by $X_B = A_B^{-1}b$, $X_N = 0$.
XB will	be integral if both AB' and b are composed
only of	integers. but AB is composed of integers.
	M has integer entries, then
M-1 has:	integer entries if and only if det(M)=±1.
Proof: deti	M) $\det(M^{-1}) = 1$ $M^{-1} = \frac{1}{\det(M)} \operatorname{adj}(M)$
	Civen an LP with feasible region
0	: $Ax \le b$, $x \ge 0$. All basic feasible sols will be
integers	if:
D. b is	all integers.

1). every square submetrix of A of size kxk has det 0.1.-1 (for all k) (Such an A is called totally unimodular) Pront: add slack vous: Ax = b -> Ax + Is = b. aiven basis B. basic sol: XB = AB b AB is a submatrix of [AI] assume A13 has k columns from A n-k columns from I. der (AB) can be simplified using the columns from I to the dee of a kxk matrix. Example: $dee \begin{bmatrix} 15 & 00 \\ 16 & 10 \end{bmatrix} = -det \begin{bmatrix} 15 & 00 \\ 37 & 00 \end{bmatrix} = -det \begin{bmatrix} 15 \\ 37 & 00 \end{bmatrix}$ $\begin{bmatrix} 26 & 10 \\ 48 & 01 \end{bmatrix}$ => det(A) equals to a kxk submatrix of A. = det $(A_B) = 0, 1, or -1.$ if det(AB)=0, AB is not invertible => 13 isn't a valid basis. if det (AB) = 1 or -1. by lemma, AB' has integer

entries, $\Longrightarrow X_{15} = 1$	A13 b has	integer en	tries