Alejandro Soto Joint work with T. Foster, J. Rabinoff and F. Shokrieh.

Goethe University Frankurt am Main

5th Encuentro Colombiano de Combinatoria June 22, 2016

- What are tropical theta functions?
- 2 Voronoi tilings
- Applications
- Tropicalizing classical theta functions

History

 Tropical abelian varieties and tropical theta functions were introduced by Mikhalkin and Zarkov in 2007 in a combinatorial setting. They work out the tropical Jacobian of a metric graph and studied the tropical Riemann theta function on it.

History

- Tropical abelian varieties and tropical theta functions were introduced by Mikhalkin and Zarkov in 2007 in a combinatorial setting. They work out the tropical Jacobian of a metric graph and studied the tropical Riemann theta function on it.
- Some ideas were already present before in different contexts, namely graph theory and degenerations of abelian varieties.

History

- Tropical abelian varieties and tropical theta functions were introduced by Mikhalkin and Zarkov in 2007 in a combinatorial setting. They work out the tropical Jacobian of a metric graph and studied the tropical Riemann theta function on it.
- Some ideas were already present before in different contexts, namely graph theory and degenerations of abelian varieties.
- In 2013 Baker and Rabinoff showed that the 'tropicalization' of the Jacobian of a smooth projective connected curve is the tropical Jacobian of the associated 'tropical' curve.

In this work, the main results are:

• Compatibility between the algebraic and the tropical setting: i.e. the tropicalization of a (non-archimedean) theta function is a tropical theta function.

In this work, the main results are:

• Compatibility between the algebraic and the tropical setting: i.e. the tropicalization of a (non-archimedean) theta function is a tropical theta function.

Here the main tool is the uniformization theory of abelian varieties over non-archimedean fields.

In this work, the main results are:

Compatibility between the algebraic and the tropical setting:
 i.e. the tropicalization of a (non-archimedean) theta function
 is a tropical theta function.

Here the main tool is the uniformization theory of abelian varieties over non-archimedean fields.

• Application to faithful troipicalization of abelian varieties.

In this work, the main results are:

Compatibility between the algebraic and the tropical setting:
 i.e. the tropicalization of a (non-archimedean) theta function
 is a tropical theta function.

Here the main tool is the uniformization theory of abelian varieties over non-archimedean fields.

Application to faithful troipicalization of abelian varieties.

To obtain this result, we have used the combinatorics of the tropical theta functions.

Roughly speaking...

Tropical theta functions are functions defined on a tropical abelian variety (real torus) or, equivalently, are functions defined on a real vector space which are quasi-periodic respect to a full rank lattice.

Roughly speaking...

Tropical theta functions are functions defined on a tropical abelian variety (real torus) or, equivalently, are functions defined on a real vector space which are quasi-periodic respect to a full rank lattice.

But....

• What do we mean by a tropical abelian variety?

Roughly speaking...

Tropical theta functions are functions defined on a tropical abelian variety (real torus) or, equivalently, are functions defined on a real vector space which are quasi-periodic respect to a full rank lattice.

But....

- What do we mean by a tropical abelian variety?
- Which kind of functions do we obtain?

Roughly speaking...

Tropical theta functions are functions defined on a tropical abelian variety (real torus) or, equivalently, are functions defined on a real vector space which are quasi-periodic respect to a full rank lattice.

But....

- What do we mean by a tropical abelian variety?
- Which kind of functions do we obtain?
- What is the relation with classical theta functions?

We fix the following data *

- Let $M \simeq \mathbb{Z}^n$, $M' \simeq \mathbb{Z}^n$ and $[\cdot, \cdot] : M' \times M \to \mathbb{R}$ be a non-degenerate pairing.
- Set $N_{\mathbb{R}} := \operatorname{Hom}(M, \mathbb{R})$, $N'_{\mathbb{R}} := \operatorname{Hom}(M', \mathbb{R})$ and $\lambda : M' \to M$ be a group morphism. It induces an integral affine morphism $\varphi : N_{\mathbb{R}} \to N'_{\mathbb{R}}$.
- Let $\langle \cdot, \cdot \rangle : M \times N_{\mathbb{R}} \to \mathbb{R}$ be the canonical pairing.
- Assume that $[\cdot, \lambda(\cdot)] : M' \times M' \to \mathbb{R}$ is positive definite.

We fix the following data *

- Let $M \simeq \mathbb{Z}^n$, $M' \simeq \mathbb{Z}^n$ and $[\cdot, \cdot] : M' \times M \to \mathbb{R}$ be a non-degenerate pairing.
- Set $N_{\mathbb{R}} := \operatorname{Hom}(M, \mathbb{R})$, $N'_{\mathbb{R}} := \operatorname{Hom}(M', \mathbb{R})$ and $\lambda : M' \to M$ be a group morphism. It induces an integral affine morphism $\varphi : N_{\mathbb{R}} \to N'_{\mathbb{R}}$.
- Let $\langle \cdot, \cdot \rangle : M \times N_{\mathbb{R}} \to \mathbb{R}$ be the canonical pairing.
- Assume that $[\cdot, \lambda(\cdot)] : M' \times M' \to \mathbb{R}$ is positive definite.

Remark

Note that M (and M') is a full rank lattice in $N'_{\mathbb{R}}$ (in $N_{\mathbb{R}}$) via the pairing $[\cdot,\cdot]$, as it is non-degenerate. That is, we have $m\in M\mapsto [\cdot,m]\in N'_{\mathbb{R}}$ and $m'\in M'\mapsto [m',\cdot]\in N_{\mathbb{R}}$. Note that $\varphi(M')\subset M'$.

With this data, we are ready to define tropical abelian varieties.

Definition

Given the data *, a tropical abelian variety is given by the real torus $\Sigma = N_{\mathbb{R}}/M'$. The dual tropical abelian variety is given by $\Sigma' = N'_{\mathbb{R}}/M$ and the induced morphism $\overline{\varphi}: \Sigma \to \Sigma'$ (or λ) is called a polarization. If φ is an isomorphism, the polarization is called principal.

With this data, we are ready to define tropical abelian varieties.

Definition

Given the data *, a tropical abelian variety is given by the real torus $\Sigma = N_{\mathbb{R}}/M'$. The dual tropical abelian variety is given by $\Sigma' = N'_{\mathbb{R}}/M$ and the induced morphism $\overline{\varphi}: \Sigma \to \Sigma'$ (or λ) is called a polarization. If φ is an isomorphism, the polarization is called principal.

Remark

The image of N in Σ (N' in Σ') gives the integral structure in the (dual) tropical abelian variety.

Example: Tropical elliptic curve

If $N_{\mathbb{R}} \simeq \mathbb{R}$ and $M' \simeq \gamma \mathbb{Z}$ with $\gamma \in \mathbb{R}_{>0}$. A tropical elliptic curve Σ is isomorphic to a circle $\mathbb{R}/\gamma\mathbb{Z}$.

Example: Tropical elliptic curve

If $N_{\mathbb{R}} \simeq \mathbb{R}$ and $M' \simeq \gamma \mathbb{Z}$ with $\gamma \in \mathbb{R}_{>0}$. A tropical elliptic curve Σ is isomorphic to a circle $\mathbb{R}/\gamma\mathbb{Z}$.

Figure: Tropical elliptic curve.

Definition

Let $\Sigma = N_{\mathbb{R}}/M'$ be a tropical abelian variety with polarization λ and let $c:M' \to \mathbb{R}$ be a function satisfying

$$c(u'_1 + u'_2) - c(u'_1) - c(u'_2) = [u'_1, \lambda(u'_2)],$$

for all $u_1', u_2' \in M'$.

Definition

Let $\Sigma = N_{\mathbb{R}}/M'$ be a tropical abelian variety with polarization λ and let $c:M' \to \mathbb{R}$ be a function satisfying

$$c(u'_1 + u'_2) - c(u'_1) - c(u'_2) = [u'_1, \lambda(u'_2)],$$

for all $u_1', u_2' \in M'$. A tropical theta function respect to (λ, c) is a piece-wise integral affine function $\theta_{\text{trop}} : N_{\mathbb{R}} \to \mathbb{R}$ such that

$$\theta_{\text{trop}}(w) = \theta_{\text{trop}}(w + u') + c(u') + \langle \lambda(u'), w \rangle,$$

for all u' M and all $w \in N_{\mathbb{R}}$.

Definition

Let $\Sigma = N_{\mathbb{R}}/M'$ be a tropical abelian variety with polarization λ and let $c:M' \to \mathbb{R}$ be a function satisfying

$$c(u'_1 + u'_2) - c(u'_1) - c(u'_2) = [u'_1, \lambda(u'_2)],$$

for all $u_1', u_2' \in M'$. A tropical theta function respect to (λ, c) is a piece-wise integral affine function $\theta_{\text{trop}} : N_{\mathbb{R}} \to \mathbb{R}$ such that

$$\theta_{\text{trop}}(w) = \theta_{\text{trop}}(w + u') + c(u') + \langle \lambda(u'), w \rangle,$$

for all u' M and all $w \in N_{\mathbb{R}}$.

A tropical theta function descends and give rise to a well defined function $\overline{\theta_{\mathrm{trop}}}:\Sigma\to\mathbb{R}$ on the tropical abelian variety.

If λ is an isomorphism and

$$c(u')=\frac{1}{2}[u',\lambda(u')],$$

we get

If λ is an isomorphism and

$$c(u') = \frac{1}{2}[u', \lambda(u')],$$

we get

The Riemann theta function

given by

$$heta_{ ext{trop}}(w) = \min_{u' \in \mathcal{M}'} \left\{ \frac{1}{2} [u', \lambda(u')] + \langle \lambda(u'), w \rangle \right\}.$$

If we identify M' with M via λ , we have

$$\theta_{\mathrm{trop}}(w) = \min_{u \in M} \left\{ \frac{1}{2} [u, u] + \langle u, w \rangle \right\}.$$

If we identify M' with M via λ , we have

$$\theta_{\text{trop}}(w) = \min_{u \in M} \left\{ \frac{1}{2} [u, u] + \langle u, w \rangle \right\}.$$

and the transformation rule is given by

$$\theta_{\mathrm{trop}}(w) = \theta_{\mathrm{trop}}(w+u) + \frac{1}{2}[u,u] + \langle u,w \rangle,$$

for all $w \in N_{\mathbb{R}}$ and $u \in M$.

With the notation introduced so far, we have

Voronoi polytopes

With the notation introduced so far, we have

Definition

The *Voronoi polytope* associated to $u \in M$ is defined as

Voronoi tilings

$$\operatorname{Vor}_u = \big\{ x \in \mathcal{N}_{\mathbb{R}} \ : \ [x-u, \, x-u] \leq [x-u', \, x-u'] \text{ for all } u' \in M \big\}.$$

Voronoi polytopes

With the notation introduced so far, we have

Definition

The *Voronoi polytope* associated to $u \in M$ is defined as

$$Vor_u = \{ x \in N_{\mathbb{R}} : [x - u, x - u] \le [x - u', x - u'] \text{ for all } u' \in M \}.$$

It is giving by the points in $N_{\mathbb{R}}$ which are closest to u with respect to $[\cdot,\cdot]$.

Voronoi polytopes

With the notation introduced so far, we have

Definition

The *Voronoi polytope* associated to $u \in M$ is defined as

$$\operatorname{Vor}_{u} = \{ x \in N_{\mathbb{R}} : [x - u, x - u] \le [x - u', x - u'] \text{ for all } u' \in M \}.$$

It is giving by the points in $N_{\mathbb{R}}$ which are closest to u with respect to $[\cdot,\cdot]$.

The following properties hold.

- $Vor_u = Vor_0 + u$.
- Vor₀ is centrally symmetric.
- $\{Vor_{\mu}\}_{\mu \in M}$ gives a polyhedral decomposition of $N_{\mathbb{R}}$.
- Vor_0 is a fundamental domain w.r.t. M.

A Voronoi decomposition of the plane

For example, we have the following Voronoi decomposition of the plane w.r.t. $\begin{pmatrix} [e_1, e_1] & [e_1, e_2] \\ [e_2, e_1] & [e_2, e_2] \end{pmatrix} = \begin{pmatrix} 2/3 & 1/3 \\ 1/3 & 2/3 \end{pmatrix}$

Corner locus of tropical theta functions

From now on, we will restrict to principally polarized tropical abelian varieties. The Riemann tropical theta function can be written as

$$\theta_{\text{trop}}(w) = \min_{u \in M} \left\{ \frac{1}{2} [u, u] - [u, w] \right\}$$

= $\frac{1}{2} \min_{u \in M} \left\{ [u - w, u - w] \right\} - \frac{1}{2} [w, w],$

Corner locus of tropical theta functions

From now on, we will restrict to principally polarized tropical abelian varieties. The Riemann tropical theta function can be written as

$$\theta_{\text{trop}}(w) = \min_{u \in M} \left\{ \frac{1}{2} [u, u] - [u, w] \right\}$$

= $\frac{1}{2} \min_{u \in M} \left\{ [u - w, u - w] \right\} - \frac{1}{2} [w, w],$

If we restrict θ_{trop} to Vor_u we get

$$\theta_{\text{trop}}(w) = \frac{1}{2}[u, u] - [u, w].$$

Corner locus of tropical theta functions

From now on, we will restrict to principally polarized tropical abelian varieties. The Riemann tropical theta function can be written as

$$\begin{array}{rcl} \theta_{\text{trop}}(w) & = & \min_{u \in M} \left\{ \frac{1}{2}[u, u] - [u, w] \right\} \\ & = & \frac{1}{2} \min_{u \in M} \left\{ [u - w, u - w] \right\} - \frac{1}{2}[w, w], \end{array}$$

If we restrict θ_{trop} to Vor_u we get

$$\theta_{\text{trop}}(w) = \frac{1}{2}[u, u] - [u, w].$$

It follows that the corner locus of θ_{trop} is given by the boundary of the Voronoi polytopes induced by $[\cdot,\cdot]$.

Tropical theta function for elliptic curves

For a tropical elliptic curve, we have

Figure: The graph of $\theta_{\rm trop}$.

Tropical Jacobians

Let Γ be a connected finite metric graph. Consider $H^1(\Gamma,\mathbb{Z})$ and $H^1(\Gamma,\mathbb{R})=H^1(\Gamma,\mathbb{Z})\otimes_{\mathbb{Z}}\mathbb{R}$. Define the edge length pairing on $C_1(\Gamma,\mathbb{Z})$ by

$$[e, e'] := \begin{cases} I(e) & \text{if } e = e' \\ 0 & \text{otherwise} \end{cases}$$

for $e, e' \in E$ the edges of Γ .

Tropical Jacobians

Let Γ be a connected finite metric graph. Consider $H^1(\Gamma, \mathbb{Z})$ and $H^1(\Gamma, \mathbb{R}) = H^1(\Gamma, \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{R}$. Define the edge length pairing on $C_1(\Gamma, \mathbb{Z})$ by

$$[e, e'] := \begin{cases} I(e) & \text{if } e = e' \\ 0 & \text{otherwise} \end{cases}$$

for $e, e' \in E$ the edges of Γ .

Definition

The Jacobian of the metric graph Γ is the principally polarized tropical abelian variety $\Sigma := H^1(\Gamma, \mathbb{R})/H_1(\Gamma, \mathbb{Z})$ with lattice $H_1(\Gamma, \mathbb{Z})$ and the pairing $[\cdot, \cdot]$ defined above. The integral structure is given by $H^1(\Gamma, \mathbb{Z})$.

Voronoi decomposition

Fact

We have that Vor_0 is a zonotope generated by the segments [-e/2, e/2], for $e \in H^1(\Gamma, \mathbb{R})$, with e a non-bridge edge.

Voronoi decomposition

Fact

We have that Vor_0 is a zonotope generated by the segments [-e/2, e/2], for $e \in H^1(\Gamma, \mathbb{R})$, with e a non-bridge edge.

Example in dimension 2.

Connection with tropical geometry

As we have said, one of the main results is to used tropical theta functions in order to construct faithful tropicalizations.

Connection with tropical geometry

As we have said, one of the main results is to used tropical theta functions in order to construct faithful tropicalizations.

- What is a tropicalization?
- When is it faithful?

Connection with tropical geometry

As we have said, one of the main results is to used tropical theta functions in order to construct faithful tropicalizations.

- What is a tropicalization?
- When is it faithful?

Algebraic Varieties

tropicalization

Polyhedral complexes

Tropicalization

A field K is is called non-archimedean if it is endowed with a non-archimedean norm, i.e. $|\cdot|:K\to\mathbb{R}$ such that for all $x,y\in K$

$$|xy| = |x||y|, \quad |x+y| \le \max\{|x|, |y|\},$$

and |x| = 0 iff x = 0. We will assume that K is complete and algebraically closed.

A field K is is called non-archimedean if it is endowed with a

non-archimedean norm, i.e. $|\cdot|:K\to\mathbb{R}$ such that for all $x,y\in K$

$$|xy| = |x||y|, \quad |x+y| \le \max\{|x|, |y|\},$$

and |x| = 0 iff x = 0. We will assume that K is complete and algebraically closed.

Tropicalization

Let $X \subset (K^{\times})^n$ be a closed subvariety. Then the set

$$\operatorname{trop}(X) := \overline{\{(-\log|x_1|, \ldots, -\log|x_n|) : (x_1, \ldots, x_n) \in X\}} \subset \mathbb{R}^n$$

is a polyhedral complex.

Tropical line

Consider $X \subset (K^{\times})^2$ given by

$$x+y+1=0.$$

The tropical variety is

Tropicalization and analytic geometry

To a variety X defined over a non-archimedean field K one can associate an "analytic variety" X^{an} . There exists a piece-wise affine space S, called the skeleton, such that X^{an} is a strong deformation retract of X^{an} .

Tropicalization and analytic geometry

To a variety X defined over a non-archimedean field K one can associate an "analytic variety" X^{an} . There exists a piece-wise affine space S, called the skeleton, such that X^{an} is a strong deformation retract of X^{an} .

Analytic Varieties

tropicalization

Polyhedral complexes

Faithful tropicalization

The tropicalization is called faithful, if the skeleton S of X^{an} can be represented in the tropical variety, i.e. $\mathrm{trop}|_S$ is a homeomorphism onto its image and is unimodular, with $\mathrm{trop}: X^{\mathrm{an}} \to \mathbb{R}^n$.

Faithful tropicalization of tropical Jacobians

Consider the case of dimension 2. We use tropical theta functions to construct the map $\psi = (\psi_1, \psi_2, \psi_3) : N_{\mathbb{R}} \to \mathbb{R}$, with

$$\psi_{\alpha}(w) = \theta_{\text{trop}}(w + \frac{1}{2}\alpha) + \theta_{\text{trop}}(w - \frac{1}{2}\alpha) - 2\theta_{\text{trop}}(w)$$

$$\psi_{\beta}(w) = \theta_{\text{trop}}(w + \frac{1}{2}\beta) + \theta_{\text{trop}}(w - \frac{1}{2}\beta) - 2\theta_{\text{trop}}(w)$$

$$\psi_{\gamma}(w) = \theta_{\text{trop}}(w + \frac{1}{2}\gamma) + \theta_{\text{trop}}(w - \frac{1}{2}\gamma) - 2\theta_{\text{trop}}(w).$$

With α, β, γ the relevant vectors respect to the Voronoi decomposition of $N_{\mathbb{R}}$.

The domain of linearity of ψ gives a subdivision of Vor_0 .

This map descends to map $\overline{\psi}:\Sigma\to\mathbb{R}^3$ which is unimodular but is not injective.

To obtain injectivity, we consider a new map

$$\psi': \Sigma \to \mathbb{R}^3 \times \mathbb{R}^3$$
.

given by
$$\psi'(w) := (\psi(w), \psi(w + \epsilon \alpha))$$
, for $\alpha \in (0, 1/2)$.

Tropicalizing classical theta functions

To obtain injectivity, we consider a new map

$$\psi': \Sigma \to \mathbb{R}^3 \times \mathbb{R}^3$$
.

given by
$$\psi'(w) := (\psi(w), \psi(w + \epsilon \alpha))$$
, for $\alpha \in (0, 1/2)$.

Theorem

The map ψ' is faithful, i.e. unimodular e injective.

Non-archimedean theta functions

Let A be a principally polarized abelian variety over K which is totally degenerate, i.e. $A \simeq (K^{\times})^n/\Lambda$, with Λ a full rank lattice.

A theta function on A is given by a function $\theta: (K^{\times})^n \to K$ defined as

$$\theta = \sum_{m \in M} q(m, m)^{1/2} \chi^m,$$

satisfying $\theta(x) = c(\lambda)\chi^{\sigma(\lambda)}(x)\theta(\lambda x)$, with $\sigma: \Lambda \to M$ a group isomorphism, $c: \Lambda \to K^{\times}$ a morphism and q is a symmetric bilinear form.

Non-archimedean theta functions

Let A be a principally polarized abelian variety over K which is totally degenerate, i.e. $A \simeq (K^{\times})^n/\Lambda$, with Λ a full rank lattice.

A theta function on A is given by a function $\theta: (K^{\times})^n \to K$ defined as

$$\theta = \sum_{m \in M} q(m, m)^{1/2} \chi^m,$$

satisfying $\theta(x) = c(\lambda)\chi^{\sigma(\lambda)}(x)\theta(\lambda x)$, with $\sigma: \Lambda \to M$ a group isomorphism, $c: \Lambda \to K^{\times}$ a morphism and q is a symmetric bilinear form.

Tropicalizing and restricting to the points in the skeleton of A we obtain

$$\theta_{\text{trop}}(w) = \min_{m \in M} \{\frac{1}{2}[m, m] + \langle m, w \rangle\},$$

with $[m, m] = -\log|q(m, m)|$.

Faithful tropicalization

Due to the previous slide, there exists an algebraic map

$$\Psi: A \dashrightarrow (K^3) \times (K^3)$$

that tropicalizes to ψ' .

$$\Psi_{\alpha}(w) = \theta(w\gamma^{1/2})\theta(w\gamma^{-1/2})/\theta(w)^{2}....$$

This implies faithful tropicalization for abelian surfaces.

Remark

It remains open how to construct faithful maps on general tropical abelian varieties.