

higher education & training

Department:
Higher Education and Training
REPUBLIC OF SOUTH AFRICA

MARKING GUIDELINE

NATIONAL CERTIFICATE FITTING AND MACHINING THEORY N2 4 APRIL 2018

This marking guideline consists of 8 pages.

SECTION A

QUESTION 1: OCCUPATIONAL SAFETY

NOTE: Candidates need to answer either QUESTION 1.1 OR QUESTION 1.2.

- 1.1 1.1.1 Provide maximum positive protection.
 - Must be corrosion and fire resistant.
 - Easily repairable.
 - Guard must not create hazards such as splinters and pinch points.
 - Should be a permanent feature of the machine without weakening the structure.
 - Should not affect the efficiency of the machine. (Any 2 X 1)
- 1.1 1.1.2 Fixed guards
 - Interlocking guards
 - Automatic guards

 $(3 \times 1) \qquad (3)$

[′] [5]

OR

- 1.2 1.2.1 When an accident causes the immediate death of a person, ✓ the place must not be disturbed or altered.✓ (2)
 - When the disturbance is necessary to prevent further accidents
 - To remove injured persons and corpses or to rescue persons from danger
 - When work stoppage seriously affects the working of the mine

 (3×1) (3)

[5]

QUESTION 2: COUPLINGS

- 2.1 Rigid/Permanent/Fixed couplings
 - Flexible couplings
 - Self-aligning couplings (3)
- 2.2 Drive flange
 - Driven flange
 - Key
 - Driving shaft
 - Driven shaft
 - Nuts and bolts
 - Resilient material between flanges (Any 3 × 1) (3)

PRODUCTION AND QUALITY CONTROL N5

QUESTION 3: LIMITS AND FITS

3.1 A – Clearance fit

B – Transition fit

C – Interference fit (3)

• The speed of rotation between two components

- The length of the bearing surface
- The finish of the surfaces (3)
- 3.3 Interference fit (1)

QUESTION 4: BEARINGS

- Excessive load on bearing
- · Lack of or inadequate supply of lubrication
- Dirty oil causing friction
- Uneven bearing surfaces
- Bearing not seated properly
- · Bearing and shaft out of line
- Eccentric shaft
- Incorrect grade of oil
- Bearing halves pulled up too tight (Any 5 × 1) [5]

QUESTION 5: LUBRICANTS AND VALVES

5.1 5.1.1 Liquid

5.1.2 Semi-solid

5.1.3 Liquid

 (3×1) (3)

5.2 • Ball

- Gate
- Diaphragm

• Globe (Any 3 × 1) (3)

Copyright reserved Please turn over

[6]

[7]

FITTING AND MACHINING THEORY N2

QUESTION 6: PACKING, STUFFING BOXES, JOINTS AND WATER PIPE SYSTEMS

6.1 A – Gland

B – Shaft

C - Adjusting nuts

D - Packing/Packing rings

E – Pump casing

(5)

Thermoplastic piping becomes soft and pliable when heated and it can be softened over and over by reheating it whereas thermosetting plastic piping undergoes a chemical change when exposed to heat and pressure and cannot be softened by reheating.

(2)

6.3 6.3.1 90° elbow is used where two pipes must be connected at an angle of 90° to each other for a specific use.

6.3.2 Cross piece is where pipes must be connected and joined from four directions.

 (2×1) (2)

<u>[9]</u>

QUESTION 7: PUMPS

7.1 • Centrifugal pumps

Reciprocating pumps

• Rotary pumps (3)

7.2 A – Sliding vanes

B – Shaft

C - Rotor (3)

[6]

QUESTION 8: COMPRESSORS

8.1 True

8.2 False

8.3 False

8.4 True

 (4×1) [4]

FITTING AND MACHINING THEORY N2

QUESTION 9: V-BELTS, CHAIN DRIVES, GEAR DRIVES AND REDUCTION GEARBOXES

9.1	 To prevent accidents and injury to the operator To prevent accidents and injury to workers in the vicinity of the machine 		(2)
9.2	Drive pulley		(1)
9.3	 Compact and can be used in confined spaces Provides a direct drive Positive drive/No slip takes place Lasts longer Can deal with high torque 	(Any 3 × 1)	(3)
9.4	 Wear causes elongation of chains Cannot operate at high speeds Breaks without warning Noisy Flexible in one plane Sprockets need replacing due to wear 	(Any 4 × 1)	(4)
9.5	Reduction gearing means the speed of power drives are reduced drastically, ✓ but at the same time heavier work can be done without the load stopping the motor. ✓		(2) [12]

TOTAL SECTION A:

60

10.5.4

 (4×1)

(4) [**20**]

PRODUCTION AND QUALITY CONTROL N5

SECTION B

QUESTION 10: HYDRAULICS AND PNEUMATICS

10.1 Pressure Area (2×1) (2)10.2.1 10.2 Pump Reservoir Actuator/Cylinder Valves **Piping** $(Any 3 \times 1)$ (3)10.2.<mark>2</mark> • Pump - produces the movement of the hydraulic fluid to develop pressure in the fluid. Reservoir – stores hydraulic fluid until it is needed. Actuator/Cylinder - changes the hydraulic pressure into mechanical movement Valves - used to control the flow of hydraulic fluid in the system. Piping – channels the pressurized hydraulic fluid in the system. $(Anv 3 \times 1)$ (3)10.3 Power transmission Lubrication (3×1) Cooling (3)10.4 • Reliability - Pneumatic equipment are very reliable and durable. Adaptability – existing machinery can be easily automated with minimum of alterations. • Safety – working with compressed air in safer than working with electrical or hydraulic power. • Variable speed and power - Pneumatic circuits can be easily adjusted to produce different speeds of operation. • Economy – pneumatic equipment has low set-up and maintenance costs. • Operation in adverse conditions – pneumatic components are not affected by dust or corrosive atmospheres Availability – compressed air is readily available in most industries $(Any 5 \times 1)$ (5)10.5 10.5.1 The pressure relief valve releases air if the system exceeds safe limits. 10.5.2 The regulator controls the amount of air flow. 10.5.3 Non-return valves prevent the reversal of flow of air in a pneumatic system.

Copyright reserved Please turn over

The directional control valve controls the direction of air flow.

PRODUCTION AND QUALITY CONTROL N5

QUESTION 11: CENTRE LATHES

11.1 Computer numerical control

(1)

- 11.2 11.2.1 • Short tapers can be cut to any angle.
 - It is simple to operate and calculate. Internal and external tapers can be turned.

 (3×1) (3)

11.2.2 • It is not accurate.

- The length of taper is limited to the travel of the compound slide.
- It can only be fed by hand causing fatigue to the operator and inaccurate surface finish of the workpiece.

 (3×1) (3)

11.3 11.3.1 Lead = Number of starts \times pitch of thread

$$= 3 \times 6$$

$$= 18 \text{ mm}\checkmark \tag{1}$$

 $Depth = \frac{Pitch}{2}$ 11.3.2

$$=\frac{6}{2}$$

 $= 3 \text{ mm} \checkmark$

Mean diameter (Dm) = Outside diameter - depth

$$= 42 - 3$$

$$= 39 \text{ mm}\checkmark$$
(2)

11.3.3 $\tan \theta = \frac{\text{Lead}}{\pi \text{Dm}}$

$$=\frac{18}{\pi\times39}$$

$$= 0.147 \checkmark$$

$$\theta = 8^{\circ} 22' \checkmark \tag{2}$$

11.4 $S = \pi DN$

$$N = \frac{S}{\pi \times D} \checkmark$$

$$=\frac{0.2\times60}{\pi\times0.175}\checkmark$$

$$N = 21,827 \text{ r/min } \checkmark$$
 (3)

T700(E)(A4)T PRODUCTION AND QUALITY CONTROL N5 11.5 • Supporting long, slender workpieces between centres 11.5.1 Maintaining concentricity of long workpieces while machining • Reducing vibration or chatter, ensuring a better finish of the workpiece

MARKING GUIDELINE

• Supporting workpieces against the pressure of heavy machining $(Any 3 \times 1)$ (3)

11.5.2 Travelling steady (1)

(1) 11.5.3 Fixed steady [20]

QUESTION 12: MILLING MACHINES AND SURFACE GRINDERS

12.1 12.1.1 Dividing head (1)

12.1.2 It divides the circumference of a workpiece equally into the number of required parts.

(1)

12.1.3 A – Index plate

B - Crank handle

C - Sector arms

(3)

Indexing = $\frac{40}{N}$ 12.2

$$=\frac{40}{9}$$

$$=4\frac{4}{9}\checkmark$$

$$=4\left[\frac{4}{9}\times\frac{2}{2}\right]\checkmark$$

$$=4\frac{8}{18}\checkmark$$

Indexing = Four full turns of the crank handle and eight holes in an 18 hole plate. \checkmark (5)

- 12.3 Costs less
 - Less vibration on arbour
 - Higher arbour speed
 - Less power needed to drive the cutter
 - Less chance of shearing the key

(5)

12.4 12.4.1 Aluminium oxide

> 12.4.2 Silicon carbide

 (2×1)

(2)

- 12.5 Scratching of the workpiece
 - Chatter marks of the workpiece
 - Burning of the workpiece
 - Loading of the grinding wheel

Glazing of the grinding wheel

 $(Any 3 \times 1)$

(3) [20]

TOTAL SECTION B:

40

GRAND TOTAL:

100