HOMEWORK 11

LEANDRO RIBEIRO

Proposition 9.12. Let A and B be sets. There exists an injection from A to B if and only if there exists a surjection from B to A.
Proof.
Proposition 10.9. Let $x \in \mathbb{R}$ be such that $0 \le x \le 1$, and let $m, n \in \mathbb{N}$ be such that $m \ge n$. Then $x^m \le x^n$.
Proof.
Proposition 10.16. If the sequence (x_k) converges to L , then
$\lim_{k \to \infty} x_{k+1} = L.$
Proof.
Proposition 10.14. If (x_k) converges to L and to L' then $L = L'$.
Proof.

Date: April 18, 2017.