Pure Appl. Chem., Vol. 80, No. 5, pp. 1135–1140, 2008. doi:10.1351/pac200880051135 © 2008 IUPAC

# $\gamma$ -Methylidene- $\delta$ -valerolactones as a coupling partner for cycloaddition: Palladium-catalyzed [4+3] cycloaddition with nitrones\*

Ryo Shintani<sup>‡</sup>, Masataka Murakami, and Tamio Hayashi

Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan

Abstract: A new type of reagent,  $\gamma$ -methylidene- $\delta$ -valerolactones, has been devised, which acts as a four-carbon unit in a Pd-catalyzed cycloaddition reaction through the formation of a 1,4-zwitterionic species. The utility has been demonstrated in the context of stereoselective [4+3] cycloaddition with nitrones to provide highly functionalized 1,2-oxazepines, including the asymmetric variant with high enantioselectivity.

Keywords: cycloaddition; nitrones; palladium catalyst; asymmetric catalysis.

### INTRODUCTION

Intermolecular cycloadditions catalyzed by transition-metal complexes are useful methods for convergent synthesis of cyclic materials [1]. The development of a new and efficient intermolecular cycloaddition reaction is, therefore, of high value in organic chemistry. In this context, Trost described the use of palladium–trimethylenemethane (TMM) complexes as a 1,3-dipole-like three-carbon unit in the formation of a cyclic framework almost 30 years ago (Scheme 1a) [2]. Since then, this method has been applied to the construction of a variety of cyclic compounds [3], and some asymmetric variants have also been reported [4]. Herein we introduce a new type of reagent,  $\gamma$ -methylidene- $\delta$ -valerolactones,

(a)
$$\begin{array}{c}
-OAc \\
SiMe_3
\end{array}
\begin{array}{c}
Pd(0) \\
-Me_3SiOAc
\end{array}
\begin{array}{c}
Pd(II) \\
-Pd(0)
\end{array}
\begin{array}{c}
\delta - o \\
-Pd(0)
\end{array}$$
(b)
$$\begin{array}{c}
Pd(0) \\
-CO_2
\end{array}
\begin{array}{c}
Pd(0) \\
-CO_2
\end{array}
\begin{array}{c}
Pd(0) \\
-Pd(0)
\end{array}
\begin{array}{c}
\delta - o \\
-Pd(0)
\end{array}
\begin{array}{c}
\delta + o \\
-Pd(0)
\end{array}$$

Scheme 1

<sup>\*</sup>Paper based on a presentation at the 14<sup>th</sup> International Symposium on Organometallic Chemistry Directed Towards Organic Synthesis (OMCOS-14), 2–6 August 2007, Nara, Japan. Other presentations are published in this issue, pp. 807–1194. ‡Corresponding author: E-mail: shintani@kuchem.kyoto-u.ac.jp

which serves as a four-carbon unit in the Pd-catalyzed cycloaddition through the formation of a 1,4-zwitterionic species (Scheme 1b) [5], and demonstrate their utility in the [4+3] cycloaddition with nitrones to provide highly functionalized 1,2-oxazepines [6], including the asymmetric variant with high enantioselectivity.

## CYCLOADDITION OF γ-METHYLIDENE-δ-VALEROLACTONES WITH NITRONES

In an initial investigation, we prepared  $\gamma$ -methylidene- $\delta$ -valerolactone **1a** as a model reagent for our study in two steps from known compounds as shown in Scheme 2, and examined its utility for a [4+3] cycloaddition reaction with nitrone **2a** in the presence of 5 mol % of Pd catalyst at 40 °C (Table 1). The reaction proceeded smoothly by the use of PPh<sub>3</sub> as a ligand, giving the desired 1,2-oxazepine **3aa** in 95 % yield as a mixture of two diastereomers (72/28; entry 1). The use of other ligands such as  $P(Oi-Pr)_3$  and phosphoramidite **4** [7] also gave **3aa** in high yield (97–99 % yield; entries 2 and 3), and high diastereoselectivity (90/10) was achieved with ligand **4**. Other ligands such as t-Bu<sub>2</sub>P(o-PhC<sub>6</sub>H<sub>4</sub>), P(Ot-Bu)<sub>3</sub>, and  $P(OPh)_3$  were not very effective, giving **3aa** in <30 % yield. Under the conditions with **4** as the ligand, several other  $\gamma$ -methylidene- $\delta$ -valerolactones undergo cycloadditions with **2a** as well to give the corresponding 1,2-oxazepines in high yield with good to excellent diastereoselectivity (87/13–94/6; entries 4–7). Unfortunately, however, lactones **1** with alkyl substituents are not suitable reagents under the present reaction conditions. The cycloaddition also proceeds with nitrones having a substituted aryl group at their electrophilic carbon atoms with high diastereoselectivity (92/8–94/6; entries 8–10).

#### Scheme 2

A proposed catalytic cycle of this process is illustrated in Scheme 3. Thus, oxidative addition of the allyl ester moiety of **1** to Pd(0), followed by decarboxylation [8,9], gives 1,4-zwitterionic species **A**. The anionic carbon of **A** then attacks the electrophilic carbon of **2** to give intermediate **B**, which undergoes a ring-closure through a nucleophilic attack of the oxygen atom to the  $\pi$ -allylpalladium moiety, leading to the formation of 1,2-oxazapine **3** along with regeneration of Pd(0).

### Scheme 3

**Table 1** Pd-catalyzed [4+3] cycloaddition of γ-methylidene-δ-valerolactones **1** with nitrones **2**.

$$\begin{array}{c} \text{PdCp}(\eta^3\text{-}C_3\text{H}_5) \\ \text{(5 mol \%)} \\ \text{(5 mol \%)} \\ \text{(5 mol \%)} \\ \text{(1.8 equiv)} \\ \text{(Ar}^2 = 4\text{-EtO}_2\text{CC}_6\text{H}_4) \\ \textbf{1a: Ar} = \text{Ph} \\ \textbf{1b: Ar} = 4\text{-MeOC}_6\text{H}_4 \\ \textbf{1c: Ar} = 2\text{-MeC}_6\text{H}_4 \\ \textbf{1d: Ar} = 3\text{-thienyl} \\ \textbf{1e: Ar} = 1\text{-naphthyl} \\ \end{array} \begin{array}{c} \text{PdCp}(\eta^3\text{-}C_3\text{H}_5) \\ \text{(5 mol \%)} \\ \text{ligand (10 mol \%)} \\ \text{CH}_2\text{Cl}_2 \\ \text{40 °C, 24 h} \\ \textbf{3} \\ \textbf{3} \\ \textbf{CO}_2\text{Me} \\ \textbf{3} \\ \textbf{3} \\ \textbf{CO}_2\text{Me} \\ \textbf{3} \\ \textbf{2c: Ar}^1 = \text{Ph} \\ \textbf{2b: Ar}^1 = 4\text{-MeC}_6\text{H}_4 \\ \textbf{2c: Ar}^1 = 4\text{-ClC}_6\text{H}_4 \\ \textbf{2d: Ar}^1 = 4\text{-ClC}_6\text{-ClC}_6\text{H}_4 \\ \textbf{2d: Ar}^1 = 4\text{-ClC}_6\text{-ClC}_6\text{-ClC}_6\text{-ClC}_6\text{-ClC}_6\text{-ClC}_6\text{-ClC}_6\text{-ClC}_6\text{-ClC}_6\text{-ClC}_6\text{-ClC}_6\text{-ClC}_6\text{-ClC}_6\text{-ClC}_6\text{-ClC}_6\text{-ClC}_6\text{-ClC}_6\text{-ClC}_6\text{-ClC}_6\text{-ClC}_6\text{-ClC}_6\text{-ClC}_6\text{-ClC}_6\text{-ClC}_6\text{-ClC}_$$

| Entry | 1  | 2         | Ligand           | Product | Yield (%)a | dr <sup>b</sup> |
|-------|----|-----------|------------------|---------|------------|-----------------|
| 1     | 1a | 2a        | PPh <sub>3</sub> | 3aa     | 95         | 72/28           |
| 2     | 1a | 2a        | $P(Oi-Pr)_3$     | 3aa     | 97         | 78/22           |
| 3     | 1a | 2a        | 4                | 3aa     | 99         | 90/10           |
| 4     | 1b | 2a        | 4                | 3ba     | 95         | 93/7            |
| 5     | 1c | 2a        | 4                | 3ca     | 62         | 87/13           |
| 6     | 1d | 2a        | 4                | 3da     | 92         | 91/9            |
| 7     | 1e | 2a        | 4                | 3ea     | 96         | 94/6            |
| 8     | 1e | 2b        | 4                | 3eb     | 77         | 92/8            |
| 9     | 1e | 2c        | 4                | 3ec     | 98         | 93/7            |
| 10    | 1e | <b>2d</b> | 4                | 3ed     | 98         | 94/6            |

<sup>&</sup>lt;sup>a</sup>Combined yield of two diastereomers.

Because the step from **A** to **B** in Scheme 3 creates two contiguous tertiary and quaternary stere-ocenters, it would be desirable to conduct this reaction in an asymmetric fashion. On the basis of the ligand effect described in Table 1, we employed chiral phosphoramidite ligand (*S*)-**5** [10] in the reaction of **1a** with nitrone **2d**. Under these conditions, cycloadduct **3ad** was obtained in high yield (98 % yield, dr = 85/15) and the enantioselectivity of the major diastereomer was 71 % ee (Table 2, entry 1). By changing the nitrogen substituents from isopropyl to (*R*)-1-phenylethyl (ligand (*S*,*R*,*R*)-**6**) [10,11], higher enantioselectivity was observed (83 % ee; entry 2). Other  $\gamma$ -methylidene- $\delta$ -valerolactones such as **1b** and **1e** also provide the cycloadducts with nitrones **2** with high efficiency in the presence of ligand (*S*,*R*,*R*)-**6** (84–96 % ee; entries 3–6). The absolute configuration of **3ec** (entry 6) was determined to be (3*S*,4*R*) by X-ray crystallographic analysis as shown in Fig. 1.

<sup>&</sup>lt;sup>b</sup>Determined by <sup>1</sup>H NMR.

**Table 2** Pd-catalyzed asymmetric [4+3] cycloaddition of **1** with **2**.

PdCp(
$$\eta^3$$
-C<sub>3</sub>H<sub>5</sub>)  
(5 mol %)  
ligand (10 mol %)  
Ar CO<sub>2</sub>Me Ar H Ar H Ar CO<sub>2</sub>CC<sub>6</sub>H<sub>4</sub>)  
1 2 CO<sub>2</sub>Me Ar C

| Entry          | 1  | 2          | Ligand            | Product | Yield (%)a | dr <sup>b</sup> | ee (%) <sup>c</sup> |
|----------------|----|------------|-------------------|---------|------------|-----------------|---------------------|
| 1              | 1a | 2d         | (S)- <b>5</b>     | 3ad     | 98         | 85/15           | 71                  |
| 2              | 1a | 2d         | (S,R,R)- <b>6</b> | 3ad     | 98         | 81/19           | 83                  |
| 3              | 1b | 2d         | (S,R,R)- <b>6</b> | 3bd     | 99         | 86/14           | 84                  |
| 4              | 1e | 2d         | (S,R,R)- <b>6</b> | 3ed     | 98         | 80/20           | 96                  |
| 5 <sup>d</sup> | 1e | 2b         | (S,R,R)- <b>6</b> | 3eb     | 99         | 70/30           | 89e                 |
| 6              | 1e | <b>2</b> c | (S,R,R)- <b>6</b> | 3ec     | 89         | 72/28           | 88 <sup>f</sup>     |

<sup>&</sup>lt;sup>a</sup>Combined yield of two diastereomers.

 $<sup>^{\</sup>rm f}$  The minor diaster eomer was 89 % ee.



**Fig. 1** X-ray structure of **3ec** with thermal ellipsoids drawn at the 50 % probability level (Flack parameter = -0.01(6)).

<sup>&</sup>lt;sup>b</sup>Determined by <sup>1</sup>H NMR.

<sup>&</sup>lt;sup>c</sup>Ee of the major diastereomer (determined by chiral HPLC).

<sup>&</sup>lt;sup>d</sup>The reaction was conducted with 10 mol % of catalyst for 48 h.

 $<sup>^{\</sup>rm e}$  The minor diaster eomer was 91 % ee.

# CYCLOADDITION OF $\gamma\textsc{-METHYLIDENE-}\delta\textsc{-VALEROLACTONES}$ WITH OTHER PARTNERS

The present catalysis using regents 1 is not limited to the couplings with nitrones. For example, 1a underwent a cycloaddition with azomethine imine 7 [12,13] to give the corresponding [4+3] cycloadduct (8) with dr = 87/13, and the major diastereomer was isolated in 79 % yield (Scheme 4). In addition, the reaction of 1a with methyl acrylate in the presence of  $P(o\text{-Tol})_3$  as the ligand gave the corresponding [4+2] cycloadduct (9) in 83 % yield with dr = 84/16 (Scheme 5).

PdCp(
$$\eta^3$$
-C<sub>3</sub>H<sub>5</sub>)  
(5 mol %)  
4 (10 mol %)  
Ph CO<sub>2</sub>Me  
1a 7 Ph CO<sub>2</sub>Me  
1a 7 8: dr = 87/13  
(1.8 equiv) (Ar = 4-CF<sub>3</sub>C<sub>6</sub>H<sub>4</sub>) 8: dr = 87/13 major: 79 % yield

### Scheme 4

Scheme 5

### **CONCLUSIONS**

In summary, we have described the development of  $\gamma$ -methylidene- $\delta$ -valerolactones as a new class of reaction partner in the Pd-catalyzed cycloaddition reaction. These reagents act as a four-carbon unit in a cyclic framework by forming a 1,4-zwitterionic species, and we have demonstrated their utility in the context of stereoselective [4+3] cycloaddition with nitrones, including the results of the asymmetric variant. Future studies will explore further application of these reagents to various other transition-metal-catalyzed cycloaddition reactions.

# **ACKNOWLEDGMENTS**

Support has been provided in part by a Grant-in-Aid for Scientific Research, the Ministry of Education, Culture, Sports, Science and Technology, Japan (21 COE on Kyoto University Alliance for Chemistry).

# **REFERENCES**

(a) M. Lautens, W. Klute, W. Tam. Chem. Rev. 96, 49 (1996); (b) H.-W. Frühauf. Chem. Rev. 97, 523 (1997); (c) K. V. Gothelf, K. A. Jørgensen. Chem. Rev. 98, 863 (1998); (d) S. Kotha, E. Brahmachary, K. Lahiri. Eur. J. Org. Chem. 4741 (2005); (e) M. A. Battiste, P. M. Pelphrey, D. L. Wright. Chem.—Eur. J. 12, 3438 (2006).

- (a) B. M. Trost, D. M. T. Chan. J. Am. Chem. Soc. 101, 6429 (1979); (b) B. M. Trost, D. M. T. Chan. J. Am. Chem. Soc. 105, 2315 (1983).
- 3. D. M. T. Chan. In *Cycloaddition Reactions in Organic Synthesis*, S. Kobayashi, K. A. Jørgensen (Eds.), p. 57, Wiley-VCH, Weinheim (2002).
- (a) A. Yamamoto, Y. Ito, T. Hayashi. *Tetrahedron Lett.* 30, 375 (1989); (b) B. M. Trost, J. P. Stambuli, S. M. Silverman, U. Schwörer. *J. Am. Chem. Soc.* 128, 13328 (2006); (c) R. Shintani, S. Park, W.-L. Duan, T. Hayashi. *Angew. Chem., Int. Ed.* 46, 5901 (2007).
- 5. Y. Inoue, M. Ajioka, M. Toyofuku, A. Mori, T. Fukui, Y. Kawashima, S. Miyano, H. Hashimoto. *J. Mol. Catal.* **32**, 91 (1985).
- (a) T. Kurihara, Y. Sakamoto, H. Matsumoto, N. Kawabata, S. Harusawa, R. Yoneda. *Chem. Pharm. Bull.* 42, 475 (1994); (b) J. I. Levin, A. M. Venkatesan, P. S. Chan, T. K. Bailey, G. Vice, J. Coupet. *Bioorg. Med. Chem. Lett.* 4, 1819 (1994); (c) I. Takano, I. Yasuda, M. Nishijima, Y. Hitotsuyanagi, K. Takeya, H. Itokawa. *J. Org. Chem.* 62, 8251 (1997).
- 7. J. Durán, G. Moisés, L. Castedo, J. L. Mascareñas. Org. Lett. 7, 5693 (2005).
- 8. (a) I. Shimizu, T. Yamada, J. Tsuji. *Tetrahedron Lett.* **21**, 3199 (1980); (b) T. Tsuda, Y. Chuji, S. Nishi, K. Tawara, T. Saegusa. *J. Am. Chem. Soc.* **102**, 6381 (1980); (c) J. A. Tunge, E. C. Burger. *Eur. J. Org. Chem.* 1715 (2005); (d) S.-L. You, L.-X. Dai. *Angew. Chem., Int. Ed.* **45**, 5246 (2006).
- (a) E. C. Burger, J. A. Tunge. Org. Lett. 6, 4113 (2004); (b) D. K. Rayabarapu, J. A. Tunge. J. Am. Chem. Soc. 127, 13510 (2005); (c) B. M. Trost, J. Xu. J. Am. Chem. Soc. 127, 17180 (2005); (d) J. T. Mohr, D. C. Behenna, A. M. Harned, B. M. Stoltz. Angew. Chem., Int. Ed. 44, 6924 (2005); (e) N. T. Patil, Z. Huo, Y. Yamamoto. J. Org. Chem. 71, 6991 (2006).
- 10. L. A. Arnold, R. Imbos, A. Mandolin, A. H. M. de Vries, R. Naasz, B. L. Feringa. *Tetrahedron* **56**, 2865 (2000).
- 11. (a) B. L. Feringa, M. Pineschi, L. A. Arnold, R. Imbos, A. H. M. de Vries. *Angew. Chem., Int. Ed. Engl.* **36**, 2620 (1997); (b) B. L. Feringa. *Acc. Chem. Res.* **33**, 346 (2000).
- 12. (a) H. Dorn, A. Otto. *Chem. Ber.* **101**, 3287 (1968); (b) H. Dorn, A. Otto. *Angew. Chem., Int. Ed. Engl.* **7**, 214 (1968); for a review, see: (c) J. G. Schantl. *Sci. Synth.* **27**, 731 (2004).
- (a) I. Panfil, Z. Urbanczyk-Lipkowska, K. Suwinska, J. Solecka, M. Chmielewski. *Tetrahedron* 58, 1199 (2002); (b) A. Suárez, C. W. Downey, G. C. Fu. *J. Am. Chem. Soc.* 127, 11244 (2005); (c) L. Pezdirc, V. Jovanovski, B. Bevk, R. Jakse, S. Pirc, A. Meden, B. Stanovnik, J. Svete. *Tetrahedron* 61, 3977 (2005); (d) R. Shintani, T. Hayashi. *J. Am. Chem. Soc.* 128, 6330 (2006); (e) A. Chan, K. A. Scheidt, *J. Am. Chem. Soc.* 129, 5334 (2007).