Filtros

Las señales de entrada a medir, definidas por consigna para el grupo, son:

- 1. $x_1(t) = A \cdot cos(2\pi f_{in}t)$, con $f_{in} = 1kHz$
- 2. La extensión periódica de $x_2(t) = A \cdot \sin(2\pi f_{in}t)$, con $t \in [0; 3\pi]$
- 3. La extensión periódica de $x_3(t) = A \cdot t^2$, con $t \in [-2\tau; 2\tau]$ y $f_0 = \frac{1}{4\tau}$

Notamos que como todas las señales son periódicas, su espectro estará dado por el Desarrollo en Serie de Fourier (DSF) de las mismas y por ende este espectro será discreto.

Notamos, a su vez, que tanto la función $\frac{3}{2}$ seno como la cuadrática tendrán infinitos armónicos de la frecuencia fundamental, y que es por esta razón que el filtro pasabajos a utilizar necesariamente tendrá que eliminar algunas componentes en frecuencia de la señal original para poder realizar un muestreo que cumpla con el criterio de Nyquist.

Se buscará entonces diseñar el filtro Anti-Aliasing de manera tal que un porcentaje suficiente de potencia de la señal original se encuentre dentro de la banda pasante, pudiéndose así preservar y muestrear correctamente la información correspondiente a esta señal. A su vez, la frecuencia de corte de este filtro y la limitación en ancho de banda consecuente de la misma deberá ser tal que la frecuencia de muestreo necesaria para cumplir el criterio de Nyquist sea realizable por los componentes encargados de realizar el sampleo. Haciendo un análisis previo del oscilador, el Sample and Hold y la llave analógica, se decidió que la máxima frecuencia de sampleo realizable para el sistema es de 50kHz. Como se busca oversamplear (muestrear a frecuencias mayores a las de Nyquist) para lograr una mayor calidad de señal, la frecuencia de corte f_p del filtro deberá entonces ser mucho menor a 25kHz.

Teniendo en cuenta que en realidad el criterio de Nyquist utiliza un filtro pasabajos ideal para llegar a la condicion $f_b \leq 2 \cdot f_s$, se decide tomar como frecuencia limitante de ancho de banda f_b no a la frecuencia de corte f_p sino a la frecuencia $f_a = 1.5 f_p$ definida por consigna. Dado que necesitamos que luego de esta banda la señal esté completamente atenuada, y teniendo en cuenta que el sistema digital cuantiza en 8 bits, sabemos que deberá atenuarse aproximadamente 48 (dB) en la frecuencia f_a para poder considerar atenuada completamente cualquier componente.

Procedemos entonces a realizar un análisis espectral de las distintas señales de entrada para poder definir la frecuencia f_p del filtro. Para esto hallamos el DSF de cada una de las señales y buscamos cuál señal será aquella que acumule menor cantidad de potencia a frecuencias mayores, porque ésta será entonces la determinante.

Debemos aclarar que los cálculos fueron realizados para $x_i'(t) = \frac{x_i(t)}{A}$, i = 1,2,3, ya que la constante multiplicativa no afectará a las conclusiones que se llegan en cuanto a frecuencias limitantes. Sí tendrá que tenerse la amplitud en cuenta cuando se verifiquen las condiciones de tensión de entrada máxima y mínima para el sistema en su totalidad.