Type Systems in Practice suhorng

Before We Start

- You may safely skip any judgments and inference rules in this slide (things) like $\Gamma \vdash e:t$, $\frac{(x:t) \in \Gamma}{\Gamma \vdash x:t}$
- The accompanying code does not correspond exactly to the (pseudo-) code in this slide. The Infer module in the accompanying code actually transforms its input, LC terms, into STLC terms or SysF terms.

Outline

- Language Syntax and Notations
- Bidirectional Typing
- Type Inference for Simply-Typed λ -Calculus
- Hindley-Milner Type System

Language Syntax (Incomplete)

In Slide	In Code	Analogy
x	VAR "x"	X
$\lambda x.e \ \lambda(x\!:\!t).e$	LAM ("x", e) LAM ("x", t, e) ALAM ("x", t, e)	<pre>\x -> e function (x) { return e; } \(x :: t) -> e (x : t) => e [???](t x) { return e; }</pre>
$e_1\ e_2$	AP (e1, e2)	e1 e2 e1(e2)
$egin{aligned} \mathbf{let} \ x = e_1 \ \mathbf{in} \ e_2 \end{aligned}$	LET ("x", e1, e2)	<pre>let x = e1 in e2 val x = e1; e2</pre>
А	TVAR "A"	a, T (Haskell) typename A, T (roughly)
$t_1 o t_2$	TARR (t1, t2)	<pre>t1 -> t2 function<t2(t1)> t2(*)(t1)</t2(t1)></pre>

Examples

- Slide: $\lambda x. \lambda f. fx$
- Code:

```
LAM ("x", LAM ("f", AP (VAR "f", VAR "x")))
```

Javascript

```
function (x) {
  return function(f) { return f(x); }
}
```

• C++ (roughly):

```
[](auto x) {
   return [=](auto f) {
    return f(x);
   }
}
```

What Are Contexts

• Variables visible in current scope

A recurring theme

```
f(cxt, LAM(x, t, e)) = .... f((x,t) :: cxt, e) ....
```

How Type Systems are Defined

- e:t means e has type t
- When $e_1 e_2$ occurs in some context cxt, for some α, β we will have...
 - \circ $e_1: \alpha \to \beta$ in cxt
 - \circ $e_2: \alpha$ in cxt
 - \circ $e_1e_2:\beta$ in cxt
- The definition is a sort of relation and it holds iff the "shape" is correct.
 - $\circ \ e_1 \, e_2 : \mathbf{int} \ \mathsf{with} \ e_1 : \mathbf{char} \to \mathbf{int} \,, \, e_2 : \mathbf{char} \colon \mathsf{OK}$
 - $\circ \ e_1 e_2 \text{ with } e_1 : \mathbf{bool} \to \mathbf{string}, \ e_2 : \mathbf{int} : \mathsf{NO}$
 - $\circ e_1 e_2$ with $e_1 : \mathbf{int} : \mathsf{NO}$

Other rules

- x has type t precisely when $(x:t) \in cxt$ (Lookup the type of x in the current context)
- When $\lambda x. e$ occurs the context cxt, for some α, β ...
 - $\circ x$ has type α
 - \circ e has type β in the context $\{x:\alpha\} \cup \mathsf{cxt}$

```
auto f(int x) -> bool { return x == 0; }

// 'x' has type 'int'
// 'x == 0' has type 'bool'
// 'f' (will) has type 'bool(*)(int)', or roughly 'int -> bool'
```

• The case for $\lambda(x:t)$. e is similar. Just that x has type t.

Problems with Typing Rules

• $e_1 e_2 : \exists \alpha, \beta \text{ s.t. } \dots$

```
egin{array}{lll} \circ & e_1: lpha 
ightarrow eta \ & \circ & e_2: lpha \ & \circ & e_1 \ e_2: eta \end{array}
```

- \circ There's simply no clue for α even if we know β .
- $\lambda x.e: \exists \alpha, \beta \text{ s.t. } \dots$
 - $egin{array}{ll} \circ & x: lpha \ & \circ & e: eta \ & \circ & (\lambda x.e): lpha
 ightarrow eta \end{array}$
 - Gotta know $\alpha \rightarrow \beta$ in order to proceed. Or do we?

First Solution

- Sticking to $\lambda(x:t)$. e, i.e. users are require to annotate α
 - Variables are added to the context only in this case, and we know their types now
 - *e* can only refer to variables in current context
 - \circ Hence we can infer the type of e.
- x:Lookup cxt
- $e_1 e_2$: Infer the type of e_1 and e_2 , respectively. Check their shape.
- $\lambda(x:t).e$: Infer the type (say t') of e. Then the type of $\lambda(x:t).e$ is $t \to t'$

First Solution

```
let rec infer = function
    cxt, VAR x -> List.assoc x cxt

| cxt, LAM (x, t1, e) -> TARR (t1, infer ((x,t1)::cxt, e))

| cxt, (AP (e1, e2) as e) ->
    (match infer (cxt, e1), infer (cxt, e2) with
        TARR (t1, t2), t1' when t1 = t1' -> t2
        | _ -> ERROR!!!
```

Problem: it's too verbose

```
(z : A). let ididid = (h : (A \rightarrow A) \rightarrow A \rightarrow A). h in ididid ((f : A \rightarrow A) \cdot f) ((x:A) \cdot x) z
```

• Why bother annotating f and x if the type of ididid is known (hence the type of its argumeths)?

Improvement via Bidirectional Typing

• Another motivation: We wish to turn judgments into functions, and make typing rules syntax-directed.

$$rac{(x:t) \in \Gamma}{\Gamma dash x:t} \qquad rac{\Gamma, (x:t) dash e:t'}{\Gamma dash (\lambda x.e):t o t'} \qquad rac{\Gamma dash e_1:t o t'}{\Gamma dash e_1:t} rac{\Gamma dash e_2:t}{\Gamma dash e_1:e_2:t'}$$

Improvement via Bidirectional Typing

 Another motivation: We wish to turn judgments into functions, and make typing rules syntax-directed.

$$rac{(x:t) \in \Gamma}{\Gamma dash x:t} \qquad rac{\Gamma, (x:t) dash e:t'}{\Gamma dash (\lambda x.e):t o t'} \qquad rac{\Gamma dash e_1:t o t'}{\Gamma dash e_1:t} rac{\Gamma dash e_2:t}{\Gamma dash e_1:e_2:t'}$$

- Annotate judgments with I/O modes to get a function
 - $\Gamma_{\text{in}} \vdash x_{\text{in}} : t_{\text{out}}$: Use following principles to examine and rewrite typing rules accordingly.

Separating type checking and inference:

$$\Gamma_{ exttt{in}} dash e_{ exttt{in}} \Rightarrow t_{ exttt{out}} \quad ext{(infer)} \qquad \Gamma_{ exttt{in}} dash e_{ exttt{in}} \ll t_{ exttt{in}} \quad ext{(check)}$$

• Separating type **checking** and **inference**. If we already know t, **check** e against t. Otherwise **infer** t from e.

```
val check : context * expr * type -> unit
val infer : context * expr -> type
```

- x: Simple, look up the type of x in cxt
- If an expression e can be inferred to have type t, then it can be checked against t. That is,

```
function check(cxt, e, t):
  let t' = infer(cxt, e)
  if t ≠ t':
    error
```

†See appendix for typing rules.

• The case $e_1 e_2$

```
egin{aligned} 1. & e_1: lpha 	o eta \ 2. & e_2: lpha \ 3. & e_1\,e_2: eta \end{aligned}
```

- There's no way to know α , regardless whether β is known or not.
- Must **infer** the type of e_1 . Then e_2 can be check to have type α . Luckily, most cases the funtion e_1 are known from the context.

```
function infer(cxt, AP (e1, e2)):
    -- Failed if e1 is not of function type
    let TARR (t1, t2) = infer(cxt, e1)
    check(cxt, e2, t1)
    return t2
```

• The case $\lambda x.e$, $\lambda(x:t).e$

```
1. x:\alpha
2. e:\beta
3. (\lambda x.e):\alpha \to \beta, (\lambda(x:\alpha).e):\alpha \to \beta
```

To check is humansimple.

```
function check(cxt, LAM (x, e), TARR (t, t')):
  check((x,t) :: cxt, e, t')
```

• To infer, divine x needs an annotation.

```
function infer(cxt, ALAM (x, t, e)):
  return (TARR (t, infer ((x,t) :: cxt, e)))
```

- Even better: we allow the user annotate expressions with types
- An expression "e:t" can be **inferred** to have type t while we check e against t.

```
function infer(cxt, ANNO (e, t)):
  check(cxt, e, t)
  return t
```

Examples

```
(\x. \f. f x) : (A \rightarrow (A \rightarrow B) \rightarrow B)
\(z : A). let ididid = \(h : (A \to A) \to A \to A). h in
ididid (\f.f) (\x.x) z
```

$$\vdash (\lambda(x:a \mathop{
ightarrow} a).\,x)(\lambda y.\,y) \Rightarrow$$

$$rac{dash \lambda(x\!:\! a\! o\! a).\, x \Rightarrow \qquad dash \lambda y.\, y \Leftarrow}{dash (\lambda(x\!:\! a\! o\! a).\, x)(\lambda y.\, y) \Rightarrow}$$

$$rac{x : a
ightarrow a dash x \Rightarrow}{dash \lambda(x : a
ightarrow a) . \, x \Rightarrow} dash \lambda y . \, y \Leftarrow}{dash (\lambda(x : a
ightarrow a) . \, x)(\lambda y . \, y) \Rightarrow}$$

$$egin{aligned} \overline{x{:}\,a {\, o\,} a \,dash\,} & \vdash \lambda y.\, y \Leftarrow \ \hline & \vdash \lambda (x{:}\,a {\, o\,} a).\, x \Rightarrow \ \hline & \vdash (\lambda (x{:}\,a {\, o\,} a).\, x)(\lambda y.\, y) \Rightarrow \end{aligned}$$

$$egin{aligned} \overline{x \colon a \to a dash x \Rightarrow a \to a} \ dash \lambda(x \colon a \to a) \colon x \Rightarrow (a \to a) \to a \to a \end{aligned} & dash \lambda y \colon y \Leftarrow a \to a \ & dash (\lambda(x \colon a \to a) \colon x)(\lambda y \colon y) \Rightarrow a \to a \end{aligned}$$

$$egin{aligned} rac{y : a dash y \Rightarrow a}{x : a
ightarrow a dash x \Rightarrow a
ightarrow a} & rac{y : a dash y \Rightarrow a}{y : a dash y \Leftarrow a} \ \hline dash \lambda(x : a
ightarrow a) . x \Rightarrow (a
ightarrow a)
ightarrow a
ightarrow a} & dash \lambda y . y \Leftarrow a
ightarrow a} \ dash \lambda y . y \Leftrightarrow a
ightarrow a \ \hline dash (\lambda(x : a
ightarrow a) . x) (\lambda y . y) \Rightarrow a
ightarrow a} \end{aligned}$$

- The case $e_1 e_2$
 - 1. $e_1: \alpha \to \beta$
 - 2. $e_2 : \alpha$
 - 3. $e_1 e_2 : \beta$
- Does not knowing α really matter?
 - Set up a constraint and solve it latter!
 - \circ Let $e_1:t$ and $e_2:t'$
 - $\circ \ t = t' \rightarrow t''$ for some unknown t''

 $\vdash \lambda f.\, \lambda z.\, f\, z\, z:$ _

$$rac{f\!:\!t_1 dash \lambda z.\,f\,z\,z:{}_-}{dash \lambda f.\,\lambda z.\,f\,z\,z:{}_-}$$

$$rac{\Gamma dash f\,z\,z\,:\,_}{f\!:\!t_1dash \lambda z.\,f\,z\,z\,:\,_}{dash \lambda f.\,\lambda z.\,f\,z\,z\,:\,_}$$

$$egin{array}{c} \Gamma dash fz : _ \ \hline \Gamma dash fzz : _ \ \hline f : t_1 dash \lambda z. \, fzz : _ \ \hline dash \lambda f. \, \lambda z. \, fzz : _ \end{array}$$

$$egin{array}{c} rac{\Gamma dash f: t_1}{\Gamma dash fz:_} \ \hline \Gamma dash fzz:_ \ \hline rac{f: t_1 dash \lambda z. \, fzz:_}{dash \lambda f. \, \lambda z. \, fzz:_} \end{array}$$

$$egin{array}{cccc} rac{\Gamma dash f: t_1 & \Gamma dash z: t_2}{\Gamma dash f z: _} \ \hline rac{\Gamma dash f zz: _}{f: t_1 dash \lambda z. \, f \, zz: _} \ dash \lambda f. \, \lambda z. \, f \, zz: _ \end{array}$$

$$rac{\Gamma dash f: t_1 \qquad \Gamma dash z: t_2}{\Gamma dash fz: t_3} \ rac{\Gamma dash fzz: _}{f: t_1 dash \lambda z. \, fzz: _}{dash \lambda f. \, \lambda z. \, fzz: _}$$

$$t_1=t_2 o t_3$$

$$egin{array}{cccc} rac{\Gamma dash f: t_2
ightarrow t_3 & \Gamma dash z: t_2 \ \hline \Gamma dash f z: t_3 & \hline & \Gamma dash f zz: _ \ \hline rac{f: t_2
ightarrow t_3 dash \lambda z. \, f \, zz: _}{dash \lambda f. \, \lambda z. \, f \, zz: _} \end{array}$$

$$t_1=t_2
ightarrow t_3$$

$$egin{array}{c} rac{\Gamma dash f: t_2
ightarrow t_3 \qquad \Gamma dash z: t_2}{\Gamma dash fz: t_3} \qquad \Gamma dash z: t_2 \ \hline rac{\Gamma dash fzz: _}{f: t_2
ightarrow t_3 dash \lambda z. \, fzz: _}{dash \lambda f. \, \lambda z. \, fzz: _} \end{array}$$

$$egin{array}{c} rac{\Gamma dash f: t_2
ightarrow t_3 \qquad \Gamma dash z: t_2}{\Gamma dash fz: t_3} \qquad \Gamma dash z: t_2 \ \hline rac{\Gamma dash fzz: t_4}{f: t_2
ightarrow t_3 dash \lambda z. \, fzz: _}{dash \lambda f. \, \lambda z. \, fzz: _} \end{array}$$

$$t_3=t_2
ightarrow t_4$$

$$egin{array}{c} rac{\Gamma dash f: t_2
ightarrow t_2
ightarrow t_4 \qquad \Gamma dash z: t_2}{\Gamma dash fz: t_2
ightarrow t_4} \qquad \Gamma dash z: t_2} \ rac{\Gamma dash fzz: t_4}{f: t_2
ightarrow t_2
ightarrow t_4 dash \lambda z. \, fzz: _} \ dash \lambda f. \, \lambda z. \, fzz: _ \end{array}$$

$$t_3=t_2
ightarrow t_4$$

$$egin{array}{c} rac{\Gamma dash f: t_2
ightarrow t_2
ightarrow t_4 \qquad \Gamma dash z: t_2}{\Gamma dash fz: t_2
ightarrow t_4} \qquad \Gamma dash z: t_2} \ rac{\Gamma dash fzz: t_4}{f: t_2
ightarrow t_2
ightarrow t_4 dash \lambda z. \, fzz: t_2
ightarrow t_4}{dash \lambda f. \, \lambda z. \, fzz: _} \end{array}$$

• Write $\Gamma :\equiv f : t_2 \rightarrow t_3, \ z : t_2$.

$$egin{array}{c} rac{\Gammadash f:t_2
ightarrow t_2
ightarrow t_4}{\Gammadash fz:t_2
ightarrow t_4} & \Gammadash z:t_2}{\Gammadash fz:t_2
ightarrow t_4} & \Gammadash z:t_2} \ rac{\Gammadash fzz:t_4}{f:t_2
ightarrow t_2
ightarrow t_4dash \lambda z.\,fzz:t_2
ightarrow t_4}{dash \lambda f.\,\lambda z.\,fzz:(t_2
ightarrow t_2
ightarrow t_4)
ightarrow t_2
ightarrow t_4} \ \end{array}$$

$$\lambda f.\,\lambda z.\,fzz$$

• Allocate fresh unknown t_1

• Case $\lambda x.e$ with $x:\equiv f$, $e:\equiv \lambda z.fzz$

 $\circ x : \alpha$

 \circ $e:\beta$

 $\circ \ (\lambda x.e): lpha
ightarrow eta$

• Context: []

Now $f: t_1$

$$\lambda f.$$
 $\lambda z. fzz$

• Allocate fresh unknown t_2

• Case $\lambda x.e$ with $x:\equiv z$, $e:\equiv fzz$

 $\circ x : \alpha$

 \circ $e:\beta$

 $\circ \ (\lambda x.e): lpha
ightarrow eta$

• Context: [(*f*:*t*₁)]

Now $f: t_1$ $z: t_2$

$$\lambda f.\,\lambda z.\,fzz$$

• Recursion.

ullet Case $e_1\,e_2$ with $e_1:\equiv fz$, $e_2:\equiv z$

$$\circ$$
 $e_1: lpha
ightarrow eta$

$$\circ$$
 $e_2:lpha$

$$\circ$$
 $e_1e_2:\beta$

• Context: $[(f:t_1),(z:t_2)]$

Now $f: t_1$ $z: t_2$

$$\lambda f. \, \lambda z. \, fz \, z$$

• Recursion.

ullet Case $e_1\,e_2$ with $e_1:\equiv f$, $e_2:\equiv z$

$$\circ$$
 $e_1: lpha
ightarrow eta$

$$\circ$$
 $e_2:lpha$

$$\circ$$
 $e_1e_2:\beta$

• Context: $[(f:t_1),(z:t_2)]$

 $\mathsf{Now}\ f: t_1 \qquad z: t_2$

$$\lambda f. \lambda z. f$$
 zz

• Lookup context and return t_1 .

• Case x with x := f

 $\circ x : \alpha$

 \circ $(x:\alpha) \in \mathtt{cxt}$

• Context: $[(f:t_1),(z:t_2)]$

Now $f: t_1$ $z: t_2$

$$\lambda f. \lambda z. f z$$

• Lookup context and return t_2 .

• Case x with x := z

$$\circ x : \alpha$$

$$\circ$$
 $(x: lpha) \in \mathtt{cxt}$

• Context: $[(f:t_1),(z:t_2)]$

Now $f: t_1$ $z: t_2$

$$\lambda f. \lambda z. fz z$$

• Allocate fresh unknown t_3 . Return t_3 .

$$t_1=t_2 o t_3$$

ullet Case $e_1\,e_2$ with $e_1:\equiv f$, $e_2:\equiv z$

$$\circ$$
 $e_1: \alpha \rightarrow \beta$

$$\circ$$
 $e_2: lpha$

$$\circ$$
 $e_1e_2:\beta$

• Context: $[(f:t_1),(z:t_2)]$

$$\mathsf{Now}\ f: t_1 \qquad z: t_2$$

$$\lambda f. \lambda z. fz z$$

• Lookup context and return t_2 .

$$t_1=t_2 o t_3$$

• Case x with x := z

$$\circ x : \alpha$$

$$\circ$$
 $(x:lpha)\in \mathtt{cxt}$

• Context: $[(f:t_1),(z:t_2)]$

Now
$$f: t_1$$
 $z: t_2$

$$\lambda f. \lambda z. fzz$$

• Allocate fresh unknown t_4 . Return t_4 .

$$t_1=t_2
ightarrow t_3 \ t_3=t_2
ightarrow t_4$$

ullet Case $e_1\,e_2$ with $e_1:\equiv fz$, $e_2:\equiv z$

$$\circ$$
 $e_1: \alpha \rightarrow \beta$

$$\circ$$
 $e_2:\alpha$

$$\circ$$
 $e_1e_2:\beta$

• Context: $[(f:t_1),(z:t_2)]$

$$\mathsf{Now}\ f:t_1 \qquad z:t_2 \qquad fz:t_3$$

$$\lambda f.$$
 $\lambda z. fzz$

• Return $t_2 \rightarrow t_4$

$$t_1=t_2 o t_3 \ t_3=t_2 o t_4$$

• Case $\lambda x.e$ with $x:\equiv z$, $e:\equiv fzz$

$$\circ x : \alpha$$

$$\circ$$
 $e:\beta$

$$\circ \ (\lambda x.e): lpha
ightarrow eta$$

• Context: [(*f*:*t*₁)]

$$\mathsf{Now}\ f: t_1 \qquad z: t_2 \qquad fz: t_3 \qquad fzz: t_4$$

$$\lambda f.\,\lambda z.\,fzz$$

• Return $t_1 \rightarrow (t_2 \rightarrow t_4)$

$$t_1=t_2 o t_3 \ t_3=t_2 o t_4$$

• Case $\lambda x. e$ with $x :\equiv f$, $e :\equiv \lambda z. fzz$

```
\circ x : \alpha
```

$$\circ$$
 $e:\beta$

$$\circ \ \ (\lambda x.\,e): lpha
ightarrow eta$$

• Context: []

$$\mathsf{Now}\ f: t_1 \qquad z: t_2 \qquad fz: t_3 \qquad fzz: t_4 \qquad (\lambda z. \, fzz): t_2 o t_4$$

- At top level: $(\lambda f. \lambda z. fzz): t_1 \to t_2 \to t_4$
- ullet $(f:t_1)$, $(z:t_2)$, $(fz:t_3)$, $(fzz:t_4)$, $(\lambda z.\,fzz):t_2 o t_4$

$$t_1=t_2 o t_3 \ t_3=t_2 o t_4$$

- At top level: $(\lambda f. \lambda z. fzz): (t_2 \to t_3) \to t_2 \to t_4$
- ullet $(f:t_2
 ightarrow t_3)$, $(z:t_2)$, $(fz:t_3)$, $(fzz:t_4)$, $(\lambda z.fzz):t_2
 ightarrow t_4$

$$egin{aligned} t_1 &= t_2
ightarrow t_3 \ t_3 &= t_2
ightarrow t_4 \end{aligned}$$

• Substitute $t_2 \rightarrow t_3$ for t_1 !

- At top level: $(\lambda f. \lambda z. fzz): (t_2 \rightarrow t_2 \rightarrow t_4) \rightarrow t_2 \rightarrow t_4$
- $ullet (f:t_2 o t_2 o t_4)$, $(z:t_2)$, $(fz:t_2 o t_4)$, $(fzz:t_4)$, $(\lambda z.\,fzz):t_2 o t_4$

$$t_1=t_2
ightarrow t_3 \ t_3=t_2
ightarrow t_4$$

• Substitute $t_2 \rightarrow t_4$ for t_3 !

- At top level: $(\lambda f. \lambda z. fzz): (t_2 \rightarrow t_2 \rightarrow t_4) \rightarrow t_2 \rightarrow t_4$
- $ullet \ (f:t_2 o t_2 o t_4)$, $(z:t_2)$, $(fz:t_2 o t_4)$, $(fzz:t_4)$, $(\lambda z.\,fzz):t_2 o t_4$

$$t_1=t_2
ightarrow t_3 \ t_3=t_2
ightarrow t_4$$

• No more t_1 and t_3 . Done!

$$(\lambda f.\,\lambda z.\,fzz):(A o A o B) o A o B$$

• There might be equations of form $T_1 \rightarrow T_2 = T_3 \rightarrow T_4$. We can simply solve $T_1 = T_3$ and $T_2 = T_4$ recursively, arriving at equations of form $t_i = T_j$.

Disjoint Sets to the Rescue

- Union and Find!
- Our data type for meta-types:

- Disjoint set (metavar ref) is integraed into (meta-) types typ
- A 'a ref is a mutable variable of type 'a

Unification: Solve an Equation

- $t_i = T$ (or = $(_ \rightarrow _), ...$) \Rightarrow substitute RHS for t_i (*)
- $T_1 \rightarrow T_2 = T_3 \rightarrow T_4 \Rightarrow \mathsf{Solve}\ T_1 = T_3$, $T_2 = T_4$ recursively.

```
function unify(TVAR (r = LINK t), t'): -- ← Find
   unify(t, t')

function unify(TVAR (r = UNLINK x), TVAR (s = UNLINK y)), x == y:
   no-op

function unify(TVAR (r = UNLINK x), t): -- ← Union
   if occurs(x, t): -- ← See ◆ ◆ page
        ERROR!!
   r := LINK t

function unify(TARR (t1, t2), TARR (t3, t4)):
   unify(t1, t3)
   unify(t2, t4)
```

• The case for t, TVAR the same

Final Step

Case x

```
function typeinfer(cxt, VAR x):
  return (lookup x in cxt)
```

• Case $e_1 e_2$

```
function typeinfer(cxt, AP (e1, e2)):
  let t1 = typeinfer(cxt, e1)
  let t2 = typeinfer(cxt, e2)
  let t = fresh_var()
  unify(t1, TARR (t2, t))
  return t
```

• Case $\lambda x.e$

```
function typeinfer(cxt, LAM (x, e)):
  let t = fresh_var()
  return (TARR (t, typeinfer((x,t) :: cxt, e)))
```

(*) Occurs Check

- Infer $\lambda x.\,xx$: Get equation $x:t_1$, $xx:t_2$ and $t_1=t_1\to t_2$
 - \circ Cannot eliminate t_1 by substituting $t_1 \to t_2$ for t_1 !

• In equation $t_i = T$, it's an error if t_i occurs in T.

Pseudo(?) Code...

 The accompanying code further handles exception and translate LC terms into STLC terms.

```
type typ = TVAR of metavar ref | TARR of typ * typ
and metavar = UNLINK of string | LINK of typ
let rec unify = function
    TVAR {contents = LINK t}, t'
    t', TVAR {contents = LINK t} ->
      unify (t, t')
   TVAR ({contents = UNLINK x}), TVAR ({contents = UNLINK x'})
      when x = x' \rightarrow ()
  TVAR ({contents = UNLINK x} as r), t
    t, TVAR ({contents = UNLINK x} as r) ->
  if occurs (x, t) then raise Occurs_check else r := LINK t
| TARR (t1, t2), TARR (t1', t2') ->
      (unify (t1, t1'); unify (t2, t2')
let rec infer = function
    cxt, VAR x -> List.assoc x cxt
  | cxt, LAM (x, e) ->
      let t = fresh var () in
      TARR (t, infer((x, t)::cxt, e))
  | cxt, AP (e1, e2) ->
      let t = fresh var () in
      (unify (infer (cxt, e1), TARR (infer (cxt, e2), t));
       t)
```

Polymorphism: Generic the Easy Way

• C++ Style:

```
template<typename a> a id(a x) { return x; }
id<int>(...)
id<shared_ptr<expr_t>>(...)
```

Different code (semantics) when instantiated with different types

Functional Style:

```
\circ \ (\lambda x.\, x):A	o A : \mathsf{OK}.
```

- $\circ \ (\lambda x. x): B \to B : \mathsf{OK}.$
- \circ The same term $(\lambda x. x): T \to T$ is OK for any type T!
- Let give it the type $\forall T. T \rightarrow T$

Polymorphism: Girard's System F

In Slide	In Code	Analogy
$\Lambda lpha.e$	TLAM ("a", e)	<pre>def foo[a]() = fn bar<a>() { } template<typename a=""> e</typename></pre>
e~[t]	TAP (e, t)	e <t>()</t>
А	TVAR "A"	a, T (Haskell) typename A, T (roughly)
$t_1 o t_2$	TARR (t1, t2)	t1 -> t2 function <t2(t1)> t2(*)(t1) (roughly)</t2(t1)>
orall a.t	TALL (a, t)	forall a. t $\{a : Set 1\} \rightarrow t$ $\forall \{a\} \rightarrow t$

Examples

• Slide & Code: $\Lambda a. \Lambda b. \lambda(x:a). \lambda(f:a \rightarrow b). fx$

```
TALL("a", TALL ("b",

LAM ("x", TVAR "A",

LAM ("f", TARR (TVAR "A", TVAR "B"),

AP (VAR "f", VAR "x")))))
```

• Rust: (not sure)

```
fn app<A,B>(x : A, f : fn(A) -> B) -> B {
  f(x)
}
```

• C++ (roughly):

```
template<typename A,typename B>
B app(A x, function<B(A)> f) {
  return f(x);
}
```

Examples

```
\Lambda T, \Lambda S.
       (\Lambda lpha. \Lambda eta. \lambda(f{:}\, lpha 
ightarrow eta). \, \lambda(z{:}\, lpha). \, f\, z) \,\, [T] \,\,\, [S 
ightarrow S] \,\, (\lambda(x{:}\, T). \, \lambda(y{:}\, S). \, y)
\rightsquigarrow \Lambda T. \Lambda S.
       \underline{(\Lambda\beta.\,\lambda(f\text{:}\hspace{0.1cm}T\hspace{0.1cm}\rightarrow\hspace{0.1cm}\beta).\,\lambda(z\text{:}\hspace{0.1cm}T\hspace{0.1cm}).\,f\,z)\,\,[S\hspace{0.1cm}\rightarrow\hspace{0.1cm}S]\,\,(\lambda(x\text{:}\,T).\,\lambda(y\text{:}\,S).\,y)}
\rightsquigarrow \Lambda T. \Lambda S.
       (\lambda(f{:}T 
ightarrow S 
ightharpoonup S). \lambda(z{:}T). \, f\, z) (\lambda(x{:}T). \, \lambda(y{:}S). \, y)
\rightsquigarrow \Lambda T. \Lambda S.
       \lambda(z:T) (\lambda(x:T).\lambda(y:S).y) z
\rightsquigarrow \Lambda T. \Lambda S.
       \lambda(z:T)\lambda(y:S).y
```

 Generalize at let. ∀-quantifiers are only allowed at "top" level

```
egin{array}{ll} \circ & orall a. orall b. a 
ightarrow b 
ightarrow b: \mathsf{OK} \ \circ & orall a. orall b. b 
ightarrow (a 
ightarrow b) 
ightarrow b: \mathsf{OK} \ \circ & (orall a. a 
ightarrow a) 
ightarrow \mathsf{Int}: \mathsf{Not} \ \mathsf{OK} \end{array}
```

A type together with a list of ∀-quantified variables

```
type typescheme = POLY of string list * typ
```

Generalization: (Not typeable in previous systems!)

```
let id = \lambda x. x in \leftarrow Generalize at this point id \ id \ id
```

```
egin{aligned} \lambda u. \ (\mathbf{let} \ id = \boxed{\lambda x. x} \ \mathbf{in} \ id \ id \ id) \end{aligned}
```

- Inferred to be $t_1 \to t_1$ by the preceding algorithm.
- t_1 is free: UNLINK "t1" and is not bound in cxt
 - \circ Assume that $u:t_3$.
 - \circ cxt-bound type variables like UNLINK "t3" in $\lambda(u:t_3)$ should not be generalized

```
egin{aligned} \lambda u. \ (\mathbf{let} \ egin{aligned} id \ id \ id \end{aligned}) = \lambda x. x \ \mathbf{in} \end{aligned}
```

- Generalize unbound free variables (t_1 in this case)
- $ullet id: orall t_1$. $t_1
 ightarrow t_1$

 λu .

```
(egin{aligned} (\mathbf{let} \ id = \Lambda t_1 \ldotp \lambda(x; t_1) \ldotp x \ \mathbf{in} \ id [(t_2 
ightarrow t_2) 
ightarrow t_2 
ightarrow t_2] \, id [t_2 
ightarrow t_2] \, id [t_2] \end{aligned} ig)
```

- Being explicit...
- Each use of id is of different type. t_2 is another unbound type variable.

Upgrading our Algorithm

• Case x: Instantiate the term. Replace \forall -quantified type variables with fresh type variables.

```
function typeinfer(cxt, VAR x):
  return (instantiate(lookup x in cxt))
```

- o Instantiate: $\forall a. \forall b. \, a \rightarrow (a \rightarrow b) \rightarrow b$ becomes $t_i \rightarrow (t_i \rightarrow t_j) \rightarrow t_j$ for **fresh** type variables t_i , t_j
- Case let

```
function typeinfer(cxt, LET (x, e1, e2)):
  let t1 = typeinfer(cxt, e1)
  return typeinfer((x,∀a.t1) :: cxt, e2)
```

• Quantify: calculate free variables as of t1 which are unbound in cxt, i.e. $\overline{a} := FV(t_1) \setminus (\bigcup_{t \in \text{cxt}} FV(t))$.

Remarks

- Bidirectional often allows an algorithm to be read off from the typing rules. It is also comparatively easy to adapt bidirectional approach to more sophisticated typing systems like RankNTypes [4] and dependently typed languages [5] where full type inference can be undecidable.
- There are still much work to do when turning a type system into a bidirectional system. For example, our type system may have **subtyping** like $\forall a \ b. \ a \rightarrow b \rightarrow a \prec \forall c. \ c \rightarrow c \rightarrow c$. The user could have annotated less general type than expected.

Remarks

• Type checking System F (The one with $\Lambda a.e, e[t]$) might involve checking equivalence between types. For example, should the following term be accepted?

$$(\lambda(f: \forall \alpha. \, \alpha \rightarrow \alpha). \, f) \, (\Lambda \beta. \, \lambda(x:\beta). \, x)$$

But the issue comes back when we have type constructors anyway.

- Algorithm W (Type inference algorithm for HM System) is kind of global algorithm whereas bidirectional approach propagates type information locally.
- We can extend HM system with data types. This naturally leads to a kind system on types that classifies type constructors.

References

- 1. Frank Pfenning. CMU CS15-312 Foundations of Programming Languages http://www.cs.cmu.edu/~fp/courses/15312-f04/index.html
- 2. D. Christiansen. Bidirectional Typing Rules: A Tutorial http://www.itu.dk/people/drc/tutorials/bidirectional.pdf
- 3. Oleg Kiselyov. How OCaml type checker works -- or what polymorphism and garbage collection have in common. http://okmij.org/ftp/ML/generalization.html
- 4. Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Mark Shields. Practical type inference for arbitrary-rank types. http://research.microsoft.com/en-us/um/people/simonpj/papers/higher-rank/
- 5. Andres Löh, Conor McBride and Wouter Swierstra. A Tutorial Implementation of a Dependently Typed Lambda Calculus. http://www.andres-loeh.de/LambdaPi/

Language Syntax Quick Guide

In Slide	In Code	Analogy
x	VAR "x"	x
$\lambda x.e \ \lambda(x\!:\!t).e$	LAM ("x", e) LAM ("x", t, e) ALAM ("x", t, e)	<pre>\x -> e function (x) { return e; } \(x :: t) -> e (x : t) => e [???](t x) { return e; }</pre>
$e_1\ e_2$	AP (e1, e2)	e1 e2 e1(e2)
$\mathbf{let}\; x = e_1 \; \mathbf{in}\; e_2$	LET ("x", e1, e2)	<pre>let x = e1 in e2 val x = e1; e2</pre>
e: t	ANNO (e,t)	e :: t
$\Lambda lpha.e$	TLAM ("a", e)	<pre>def foo[a]() = fn bar<a>() { } template<typename a=""> e</typename></pre>
$e\left[t ight]$	TAP (e, t)	e <t>()</t>

Bidirectional Typing

- $\Gamma_{\tt in} \vdash e_{\tt in} \Rightarrow t_{\tt out} : e \text{ can be inferred to have type } t$
- $\Gamma_{\tt in} \vdash e_{\tt in} \Leftarrow t_{\tt in}$: e can be checked against type t

$$\frac{(x{:}\,t) \in \Gamma}{\Gamma \vdash x \Rightarrow t} \qquad \frac{\Gamma, x{:}\,t \vdash e \Rightarrow t'}{\Gamma \vdash (\lambda(x{:}\,t).\,e) \Rightarrow t \to t'} \qquad \frac{\Gamma, x{:}\,t \vdash e \Leftarrow t'}{\Gamma \vdash (\lambda x.\,e) \Leftarrow t \to t'}$$

$$\frac{\Gamma \vdash e_1 \Rightarrow \alpha \rightarrow \beta \qquad \Gamma \vdash e_2 \Leftarrow \alpha}{\Gamma \vdash e_1 \, e_2 \Rightarrow \beta}$$

$$\frac{\Gamma \vdash e \Leftarrow t}{\Gamma \vdash (e : t) \Rightarrow t} \qquad \frac{\Gamma \vdash e \Rightarrow t' \qquad \Gamma \vdash t = t'}{\Gamma \vdash e \Leftarrow t}$$