

Physics (2)

Section 08

Faculty of Information Technology Egyptian E-Learning University

Spring 2021

Electric current (I)

We can assume that all electrons travel with constant drift velocity

The current is defined as the net charge (dq) that passes (perpendicular) through a given area per unit time.

$$I = \frac{dq}{dt}$$

Scalar quantity

$$\begin{bmatrix} I \end{bmatrix} = \frac{\begin{bmatrix} q \end{bmatrix}}{\begin{bmatrix} t \end{bmatrix}} = \frac{C}{Sec} = A$$

Materials that obeys Ohm's law are called Ohmic. Example: Metals

$$R = \frac{\Delta V}{I}$$
: Ohm's Law $I = \frac{1}{R} \Delta V$

$$I = \frac{1}{R} \Delta V$$

$$R = \frac{\ell}{\sigma A}$$

$$R = \frac{\ell}{\sigma A} \qquad \sigma = \frac{1}{R} \frac{\ell}{A} \qquad \text{Units of } \sigma = \Omega^{-1}.\text{m}^{-1}$$

Units of
$$\sigma = \Omega^{-1}.m^{-1}$$

$$\rho = \frac{1}{\sigma}$$

$$\rho = R \frac{A}{\ell}$$

$$R = \rho \frac{\ell}{A}$$

Units of
$$\rho = \Omega$$
.n

The power **P** is defined as the rate at which the charge loses energy

$$P = \frac{\Delta U}{\Delta t}$$

$$P = \frac{\Delta U}{\Delta t} \qquad P = I \Delta V = \frac{\Delta V^2}{R} = I^2 R$$

Q1. In the Bohr model of the hydrogen atom, an electron in the lowest energy state moves at a speed of 2.19 \times 10⁶ m/s in a circular path of radius 5.29 \times 10⁻¹¹ m. What is the effective current associated with this orbiting electron?

Solution

The period of the electron in its orbit is $T = 2\pi r/v$, and the current represented by the orbiting electron is

$$I = \frac{\Delta Q}{\Delta t} = \frac{|e|}{T} = \frac{v|e|}{2\pi r}$$

$$= \frac{(2.19 \times 10^6 \text{ m/s})(1.60 \times 10^{-19} \text{ C})}{2\pi (5.29 \times 10^{-11} \text{ m})}$$

$$= 1.05 \times 10^{-3} \text{ C/s} = \boxed{1.05 \text{ mA}}$$

Q2. A 0.900 V potential difference is maintained across a 1.50 m length of tungsten wire that has a cross sectional area of 0.600 mm². What is the current in the wire? Note: $\rho_{tungsten} = 5.60 \times 10^{-8} \ \Omega$. m

Solution

$$\Delta V = IR$$
 and $R = \frac{\rho \ell}{A}$. The area is

$$A = (0.600 \text{ mm}^2) \left(\frac{1.00 \text{ m}}{1.000 \text{ mm}} \right)^2 = 6.00 \times 10^{-7} \text{ m}^2$$

From the potential difference, we can solve for the current, which gives

$$\Delta V = \frac{I \rho \ell}{A} \rightarrow I = \frac{\Delta V A}{\rho \ell} = \frac{(0.900 \text{ V})(6.00 \times 10^{-7} \text{ m}^2)}{(5.60 \times 10^{-8} \Omega \cdot \text{m})(1.50 \text{ m})}$$

Q3. A 100 W lightbulb connected to a 120 V source experiences a voltage surge that produces 140 V for a moment. By what percentage does its power output increase? Assume its resistance does not change.

Solution

From $P = (\Delta V)^2 / R$, we find that

$$R = \frac{(\Delta V_i)^2}{P} = \frac{(120 \text{ V})^2}{100 \text{ W}} = 144 \Omega$$

The final current is

$$I_r = \frac{\Delta V_r}{R} = \frac{140 \text{ V}}{144 \Omega} = 0.972 \text{ A}$$

The power during the surge is

$$P = \frac{(\Delta V_f)^2}{R} = \frac{(140 \text{ V})^2}{144 \Omega} = \boxed{136 \text{W}}$$

So the percentage increase is

$$\frac{136 \text{ W} - 100 \text{ W}}{100 \text{ W}} = 0.361 = 36.1\%$$

Q4. Batteries are rated in terms of ampere-hours (A.h). For example, a battery that can produce a current of 2.00 A for 3.00 h is rated at 6.00 A.h. (a) What is the total energy, in kilowatt-hours, stored in a 12.0 V battery rated at 55.0 A.h? (b) At \$0.110 per kilowatt-hour, what is the value of the electricity at dollar that produced by this battery?

Solution

(a) The total energy stored in the battery is

$$\Delta U_{E} = q(\Delta V) = It(\Delta V)$$

$$= (55.0 \text{ A} \cdot \text{h})(12.0 \text{ V}) \left(\frac{1 \text{ C}}{1 \text{ A} \cdot \text{s}}\right) \left(\frac{1 \text{ J}}{1 \text{ V} \cdot \text{C}}\right) \left(\frac{1 \text{ W} \cdot \text{s}}{1 \text{ J}}\right)$$

$$= 660 \text{ W} \cdot \text{h} = \boxed{0.660 \text{ kWh}}$$

(b) The value of the electricity is

Cost =
$$(0.660 \text{ kWh}) \left(\frac{\$0.110}{1 \text{ kWh}} \right) = \$0.072 6$$

(1)

How much energy is dissipated as heat during a two-minute time interval by a 1.5- $k\Omega$ resistor which has a constant 20-V potential difference across its leads?

- a. 58 J
- b. 46 J
- c. 32 J
- d. 72 J
- e. 16 J

Answer (C)

(2)

How many electrons pass through a 20- Ω resistor in 10 min if there is a potential drop of 30 volts across it?

- a. 5.6×10^{21}
- b. 7.5 × 10²¹
- c. 9.4×10^{21}
- d. 1.1×10^{21}
- e. 3.8×10^{21}

Answer (a)

(3)

A cook plugs a 500 W crockpot and a 1000 W kettle into a 240 V power supply, all operating on direct current. When we compare the two, we find that

- a. $I_{crockpos} < I_{kettle}$ and $R_{crockpos} < R_{kettle}$.
- **b.** $I_{crockpos} < I_{kettle}$ and $R_{crockpos} > R_{kettle}$.
- c. $I_{crockpost} = I_{kettle}$ and $R_{crockpost} = R_{kettle}$.
- d. $I_{crockpox} > I_{kentle}$ and $R_{crockpox} < R_{kentle}$.
- e. $I_{crockpos} > I_{kettle}$ and $R_{crockpos} > R_{kettle}$.

Answer (b)

(4)

If 5.0×10^{21} electrons pass through a $20-\Omega$ resistor in 10 min, what is the potential difference across the resistor?

- a. 21 V
- b. 32 V
- c. 27 V
- d. 37 V
- e. 54 V

Answer (c)