БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ Кафедра информатики

Контрольная работа № 1 по дисциплине «Системное программирование» «Методы распределения памяти на основе виртуального адресного пространства»

Вариант 6

Факультет: ИНО

Специальность: ИиТП Студент: Дубейковский А.А.

Группа № 893551

Зачётная книжка № 75350046

Введение

Виртуальная память — метод управления памятью, которая реализуется с использованием аппаратного и программного обеспечения компьютера. Она отображает используемые программами виртуальные адреса в физические адреса в памяти компьютера.

Основная память представляется в виде непрерывного адресного пространства или набора смежных непрерывных сегментов. Операционная система осуществляет управление виртуальными адресными пространствами и соотнесением оперативной памяти с виртуальной. Программное обеспечение в операционной системе может расширить эти возможности, чтобы обеспечить виртуальное адресное пространство, которое может превысить объем оперативной памяти и таким образом иметь больше памяти, чем есть в компьютере.

Виртуальная память позволяет модифицировать ресурсы памяти, сделать объём оперативной памяти намного больше, для того чтобы пользователь, поместив туда как можно больше программ мог продолжать ими пользоваться свободно и эффективно.

Преимущества виртуальной памяти

- избавление программиста от необходимости управлять общим пространством памяти
- повышение безопасность использования программ за счет выделения памяти
- возможность иметь в распоряжении больше памяти, чем это может быть физически доступно на компьютере

Методы распределения памяти

1) Страничное распределние

При страничном распределении все фрагменты программы, на которые она разбивается (за исключением последней ее части), получаются одинаковыми. Одинаковыми полагаются и единицы памяти, которые предоставляются для размещения фрагментов программы. Эти одинаковые части называют страницами и говорят, что память разбивается на физические страницы, а программа — на виртуальные страницы. Часть виртуальных страниц задачи размещается в оперативной памяти, а часть — во внешней.

Местом во внешней памяти обычно являются магнитные диски, которые называют файлами подкачки. Их используют из-за быстродействия и прямого доступа. Иногда этот файл называют swap-файлом.

В некоторых ОС выгруженные страницы располагаются не в файле, а в специальном разделе дискового пространства. В UNIX-системах для этих целей выделяется специальный раздел, но кроме него могут быть использованы и файлы, выполняющие те же функции, если объема раздела недостаточно.

Разбиение всей оперативной памяти на страницы одинаковой величины, причем величина каждой страницы выбирается кратной степени двойки, приводит к тому, что вместо одномерного адресного пространства памяти можно говорить о двумерном. Первая координата адресного пространства — это номер страницы, а вторая координата — номер ячейки внутри выбранной страницы (его называют индексом). Таким образом, физический адрес определяется парой (Pp, I), а виртуальный адрес — парой (Pv, I), где Pv — это номер виртуальной страницы; Pp — это номер физической страницы и I — это индекс ячейки внутри страницы.

2) Сегментное распределние

При этом методе виртуальное адресное пространства процесса делится на части — сегменты, размер которых определяется с учетом смыслового значения содержащейся в них информации. Отдельный сегмент может представлять собой подпрограмму, массив данных и т. п. «Осмысленность» сегментов упрощает их защиту.

Деление виртуального адресного пространства на сегменты осуществляется компилятором на основе указаний программиста или по умолчанию, в соответствие с принятыми в системе соглашениями.

Достоинства сегментного распределения памяти:

• Если виртуальные адресные пространства нескольких процессов включают один и тот же сегмент, то в таблицах сегментов этих процессов делаются ссылки на один и тот же участок оперативной памяти, в который данный сегмент загружается в единственном экземпляре, и который в этом случае называется разделяемой памятью.

• Возможно задание дифференцированных прав доступа процесса к его сегментам, например, только чтение или запись.

Недостатки:

- Более громоздкий механизм преобразования виртуальных адресов процесса в физические. При страничной организации страницы имеют одинаковый размер, кратный степени двойки. Поэтому ОС заносит в таблицы страниц не полный адрес физической памяти, а только номер физической страницы, который одновременно представляет собой старшие разряды физического адреса любой ячейки этой страницы при преобразовании адресов. При сегментной организации сегменты могут начинаться с любого физического адреса памяти, поэтому в таблице сегментов необходимо задавать полный начальный физический адрес.
- Избыточность, т.к. сегмент может быть куда больше страницы
- Фрагментация памяти из-за непредсказуемых размеров сегментов
- 3) Сегментно-страничное распределние

В этом методе реализуются достоинства страничного и сегментного методов распределения памяти.

Как и при сегментной организации памяти, виртуальные адресные пространства разделены на сегменты. Это позволяет определить разные права доступа к разным частям кодов и данных программ.

Однако в большинстве современных реализаций все виртуальные сегменты образуют одно непрерывное линейное виртуальное адресное пространство процесса.

Перемещение данных между памятью и диском осуществляется не сегментами, а страницами. Для этого каждый сегмент и физическая память делятся на страницы одинакового размера, что позволяет эффективно использовать память, сократив до минимума фрагментацию.

Источники

- Бек, Л. Введение в системное программирование / Л. Бек : Пер. с англ.
- М.: Мир, 1988. 448 с., ил.
- https://studref.com/389114/informatika
- https://ru.wikipedia.org/wiki/HYPERLINK
 память
 Виртуальная_память
- https://ru.bmstu.wiki/