Apache Spark Essentials

Quách Đình Hoàng

Contents

- Spark Application Concepts
- Transformations, Actions, and Lazy Evaluation
- The Spark UI

Spark Application Concepts

Application

- A user program built on Spark using its APIs.
- It consists of a driver program and executors on the cluster.

SparkSession

An object that provides a point of entry to interact with Spark's APIs.

Job

A parallel computation consisting of multiple tasks

Stage

• Each job gets divided into smaller sets of tasks called stages that depend on each other.

Task

A single unit of work or execution that will be sent to a Spark executor.

Spark Application and SparkSession

Figure 2-2. Spark components communicate through the Spark driver in Spark's distributed architecture

Spark Jobs

- The driver converts your Spark application into one or more Spark jobs
 - It then transforms each job into a DAG (directed acyclic graph).

Figure 2-3. Spark driver creating one or more Spark jobs

Spark Stages

- Stages are created based on what operations can be performed serially or in parallel
 - Each Spark operation may be divided into multiple stages

Figure 2-4. Spark job creating one or more stages

Spark Tasks

- Each stage is comprised of Spark tasks (a unit of execution)
 - Each task maps to a single core and works on a single partition of data

Figure 2-5. Spark stage creating one or more tasks to be distributed to executors

Transformations, Actions, and Lazy Evaluation

- Spark operations on distributed data can be classified into two types: transformations and actions
 - Transformations: transform a Spark DataFrame into a new DataFrame without altering the original data (immutability)
 - All transformations are evaluated lazily (delaying execution until an action is invoked)
 - they are recorded or remembered as a lineage
 - A recorded lineage allows Spark optimize transformations for more efficient execution

Figure 2-6. Lazy transformations and eager actions

Transformations, Actions, and Lazy Evaluation

- Lazy evaluation allows Spark to optimize transformations (queries)
- Lineage and data immutability provide fault tolerance

Table 2-1. Transformations and actions as Spark operations

Transformations	Actions
orderBy()	show()
groupBy()	take()
filter()	count()
select()	collect()
join()	save()

Narrow and Wide Transformations

• Transformations can be classified as having either narrow dependencies or wide dependencies.

Figure 2-7. Narrow versus wide transformations

The Spark UI

- A graphical user interface can be used to inspect or monitor Spark applications in their various stages of decomposition, that is, jobs, stages, and tasks.
 - A list of scheduler stages and tasks
 - A summary of RDD sizes and memory usage
 - Information about the environment
 - Information about the running executors
 - All the Spark SQL queries

References

• Jules S. Damji, Brooke Wenig, Tathagata Das & Denny Lee, *Learning Spark: Lightning-Fast Data Analytics, 2nd Edition*, O'Reilly, 2020.