We claim:

1	1.	A method of forming a lubricious outer surface comprising chromium
2	said method o	comprising:
3	provid	ding a substrate comprising a surface comprising chromium, said surface
4		having an initial coefficient of friction in unlubricated condition
5		against a steel counterface; and
6	treatin	ng said substrate with an additive comprising an element X under
7)	conditions effective to produce a mixture comprising chromium-X
8		molecules and molecules of said substrate adjacent to said lubricious
9/	/	outer surface, wherein said lubricious outer surface comprises a
10		sufficient quantity of said chromium-X molecules to produce a final
11		coefficient of friction in an unlubricated condition against a steel
12		counterface that is less than said initial coefficient of friction of said
13		surface,
14	said a	dditive being selected from the group consisting of
15		substituted or unsubstituted/metal carbonyls comprising a metal
16		selected from the group consisting of tungsten, molybdenum,
17		chromium, iron, and nickel, wherein said substituted carbonyls
18		comprise an oxygen of the carbonyl substituted by an element
19		selected from the group consisting of X; and
20		compounds having the general formula
21		$\int H_n C_m X_o$
22	where	
23		n is from about 0 to about 6;

24	m is from about 1 to about 2;
25	o is from about 1 to about 2; and,
26	X is selected from the group consisting of fluorine, oxygen, sulfur, and
27	chlorine.
1	2. The method of claim 1 wherein X is fluorine.
1	3. The method of claim 1 wherein X is sulfur.
1	4. The method of claim 1 wherein X is chlorine.
1	5. The method of claim 1 wherein said final coefficient of friction is
2	about 0.3 or less.
1	6. The method of claim 1 wherein said final coefficient of friction is
2	about 0.2 or less.
1	7. The method of claim 1/wherein said final coefficient of friction is
2	about 0.1 or less.
1	8. The method of claim 1 wherein said sufficient quantity comprises
2	from about 10 atomic % to about 40 atomic % X in relation to chromium content.
1	9. The method of claim 1 wherein said sufficient quantity comprises
2	about 25 atomic % X in relation to chromium content.
1	10. The method of claim 2 wherein said sufficient quantity comprises
2	from about 10 atomic % to about 40 atomic % X in relation to chromium content.
1	11. The method of claim 2 wherein said sufficient quantity comprises
2	about 25 atomic % X in relation to chromium content.
1	12. The method of claim 3 wherein said sufficient quantity comprises
2	from about 10 atomic % to about 40 atomic % X in relation to chromium content.
	ſ

1	13.	The method of claim 3 wherein said sufficient quantity comprises
2	about 25 ator	nic % X in relation to chromium content.
1	14.	The method of claim 4 wherein said sufficient quantity comprises
2	from about 10	atomic % to about 40 atomic % X in relation to chromium content.
1	15.	The method of claim 4 wherein said sufficient quantity comprises
2	about 25 ator	nic % X in relation to chromium content.
1	16.	The method of claim 1 wherein said surface comprises an initial
2	hardness and	said conditions are effective to produce a final hardness that is greater
3	than said initi	al hardness.
1	17.	The method of claim 2 wherein said surface comprises an initial
2	hardness and	said conditions are effective to produce a final hardness that is greater
3	than said initi	al hardness.
1	18.	The method of claim 3/wherein said surface comprises an initial
2	hardness and	said conditions are effective to produce a final hardness that is greater
3	than said initi	al hardness.
1	19.	The method of claim 4 wherein said surface comprises an initial
2	hardness and	said conditions are effective to produce a final hardness that is greater
3	than said initi	al hardness.
1	20.	The method of claim 5 wherein said surface comprises an initial
2	hardness and	said conditions are effective to produce a final hardness that is greater
3	than said initi	al hardness.
1	21.	The method of claim 6 wherein said surface comprises an initial
2	hardness and	said conditions are effective to produce a final hardness that is greater
3	than said initi	al hardness.

1	22.	The method of claim 7 wherein said surface comprises an initial
2	hardness and	said conditions are effective to produce a final hardness that is greater
3	than said init	ial hardness.
1	23.	The method of claim 16 wherein said final hardness is about 15 GPa or
2	more.	
1	24.	The method of claim 16 wherein said final hardness is about 20 GPa or
2	more.	
1	25.	The method of claim 16 wherein said final hardness is about 25 GPa or
2	more.	
1	26.	The method of claim/17 wherein said final hardness is about 15 GPa or
2	more.	
1	27.	The method of claim 17 wherein said final hardness is about 20 GPa or
2	more.	
1	28.	The method of claim 17 wherein said final hardness is about 25 GPa or
2	more.	
1	29.	The method of claim 18 wherein said final hardness is about 15 GPa or
2	more.	
1	30.	The method of claim 18 wherein said final hardness is about 20 GPa or
2	more.	
1	31.	The method of claim 18 wherein said final hardness is about 25 GPa or
2	more.	
1	32.	The method of claim 19 wherein said final hardness is about 15 GPa or
2	more.	

1	33.	The method of claim 19 wherein said final hardness is about 20 GPa or
2	more.	
1	34.	The method of claim 19 wherein said final hardness is about 25 GPa or
2	more.	
1	35.	The method of claim 20 wherein said final hardness is about 15 GPa or
2	more.	
1	36.	The method of claim 20 wherein said final hardness is about 20 GPa or
2	more.	
1	37.	The method of claim 20 wherein said final hardness is about 25 GPa or
2	more.	
1	38.	The method of claim 21 wherein said final hardness is about 15 GPa or
2	more.	
1	39.	The method of claim 21 wherein said final hardness is about 20 GPa or
2	more.	
1	40.	The method of claim 21 wherein said final hardness is about 25 GPa or
2	more.	
1 .	41.	The method of claim 22 wherein said final hardness is about 15 GPa or
2	more.	
1	42.	The method of claim 22 wherein said final hardness is about 20 GPa or
2	more.	
1	43.	The method of claim 22 wherein said final hardness is about 25 GPa or
2	more.	
1	44.	The method of claim 2 wherein said final coefficient of friction is
2	about 0.3 or	less.

1	45.	The method of claim 2 wherein said final coefficient of friction is
2	about 0.2 or le	ess.
1	46.	The method of claim 2 wherein said final coefficient of friction is
2	about 0.1 or le	ess.
1	47.	The method of claim 2 wherein said sufficient quantity comprises
2	from about 10	atomic % to about 40 atomic % X in relation to chromium content.
1	48.	The method of claim 2 wherein said sufficient quantity comprises
2	about 25 ator	nic % X in relation to chromium content.
1	49.	The method of claim 29 wherein said sufficient quantity comprises
2	from about 10	atomic % to about 40' atomic % X in relation to chromium content.
1	50.	The method of claim 29 wherein said sufficient quantity comprises
2	about 25 ator	nic % X in relation/to chromium content.
1	51.	The method of claim 30 wherein said sufficient quantity comprises
2	from about 10	atomic % to about 40 atomic % substituent in relation to chromium
3	content.	
1	52.	The method of claim 30 wherein said sufficient quantity comprises
2	about 25 ator	nic % X in relation to chromium content.
1	53.	The method of claim 31 wherein said sufficient quantity comprises
2	from about 10	atomic % to about 40 atomic % X in relation to chromium content.
1	54.	The method of claim 31 wherein said sufficient quantity comprises
2	about 25 ator	nic % X/in relation to chromium content.
1	55.	The method of claim 44 wherein said surface comprises an initial
2		said conditions are effective to produce a final hardness that is greater
3	than said initia	al hardness.

			/
1		56.	The method of claim 45 wherein said surface comprises an initial
2	hardne	ss and s	said conditions are effective to produce a final hardness that is greater
3	than sa	id initia	al hardness.
1		57.	The method of claim 46 wherein said surface comprises an initial
2	hardne	ss and s	said conditions are effective to produce a final hardness that is greater
3	than sa	id initia	al hardness.
1		58.	The method of claim 55 wherein said final hardness is about 15 GPa or
2	more.		
1		59.	The method of claim 55 wherein said final hardness is about 20 GPa or
2	more.		
1		60.	The method of claim 55 wherein said final hardness is about 25 GPa or
2	more.		
1		61.	The method of claim 56 wherein said final hardness is about 15 GPa or
2	more.		
1		62.	The method of claim 56 wherein said final hardness is about 20 GPa or
2	more.		
1		63.	The method of claim 56 wherein said final hardness is about 25 GPa or
2	more.		
1		64.	The method of claim 57 wherein said final hardness is about 15 GPa or
2	more.		
1		65.	The method of claim 57 wherein said final hardness is about 20 GPa or
2	more.		
1		66.	The method of claim 57 wherein said final hardness is about 25 GPa or
2	more.		

1	67.	The method of claim 3 wherein said final coefficient of friction is
2	about 0.3 or l	less.
1	68.	The method of claim 3 wherein said final coefficient of friction is
2	about 0.2 or l	less.
1	69.	The method of claim 3 wherein said final coefficient of friction is
2	about 0.1 or l	less.
1	70.	The method of claim 3 wherein said sufficient quantity comprises
2	from about 1	0 atomic % to about 40 atomic % X in relation to chromium content.
1	71.	The method of claim 3 wherein said sufficient quantity comprises
2	about 25 ato	mic % X in relation to chromium content.
1	72.	The method of claim 41 wherein said sufficient quantity comprises
2	from about 1	0 atomic % to about 40 atomic % X in relation to chromium content.
1	73.	The method of claim 41 wherein said sufficient quantity comprises
2	about 25 ato	mic % X in relation to chromium content.
1	74.	The method of claim 42 wherein said sufficient quantity comprises
2	from about 1	0 atomic % to about 40 atomic % X in relation to chromium content.
1	75.	The method of claim 42 wherein said sufficient quantity comprises
2	about 25 ato	mic % X in relation to chromium content.
1	76.	The method of claim 43 wherein said sufficient quantity comprises
2	from about 1	0 atomic % to about 40 atomic % X in relation to chromium content.
1	77.	The method of claim 43 wherein said sufficient quantity comprises
2	about 25 ato	mic % X in relation to chromium content

1	78.	The method of claim 67 wherein said surface comprises an initial
2	hardness and	said conditions are effective to produce a final hardness that is greater
3	than said initi	al hardness.
1	79.	The method of claim 68 wherein said surface comprises an initial
2	hardness and	said conditions are effective to produce a final hardness that is greater
3	than said initi	al hardness.
1	80.	The method of claim 69 wherein said surface comprises an initial
2	hardness and	said conditions are effective to produce a final hardness that is greater
3	than said initi	al hardness.
1	81.	The method of claim 78 wherein said final hardness is about 15 GPa or
2	more.	
1	82.	The method of claim 78 wherein said final hardness is about 20 GPa or
2	more.	
1	83.	The method of claim 78 wherein said final hardness is about 25 GPa or
2	more.	
1	84.	The method of claim 79 wherein said final hardness is about 15 GPa or
2	more.	
1	85.	The method of claim 79 wherein said final hardness is about 20 GPa or
2	more.	
1	86.	The method of claim 79 wherein said final hardness is about 25 GPa or
2	more.	
1	87.	The method of claim 80 wherein said final hardness is about 15 GPa or
2	more.	
		1

1		88.	The method of claim 81 wherein said final hardness is about 20 GPa or
2	more.		
1		89.	The method of claim 81 wherein said final hardness is about 25 GPa or
2	more.		
1		90.	A method of forming a lubricious outer surface comprising chromium,
2	said m	ethod o	comprising:
3		provid	ding a substrate comprising a surface comprising chromium, said surface
4			having an initial coefficient of friction in an unlubricated condition
5			against a steel counterface;
6		treatin	ng said surface with an additive comprising oxygen under conditions
7			effective to produce a mixture comprising chromium-oxide molecules
8			and substrate molecules adjacent to said lubricious outer surface
9			consisting essentially of oxide molecules comprising chromium oxide;
10		where	ein said lubricous outer surface has a final coefficient of friction in an
11			unlubricated condition against a steel counterface that is less than said
12			initial coefficient of friction.
1		91.	The method of claim 90 wherein said final coefficient of friction of
2	said su	ırface i	s about 0.3 or less.
1		92.	The method of claim 90 wherein said final coefficient of friction of
2	said su	ırface i	s about 0.2 or less.
1		93.	The method of claim 90 wherein said final coefficient of friction of
2	said su	ırface i	s about ∅.1 or less.
			1

1	94. The method of claim 90 wherein said additive is selected from	the group
2	consisting of carbon monoxide, carbon dioxide, formic acid, methyl alcoh	ol, ethyl
3	alcohol, and acetone.	
1 .	95. The method of claim 90 wherein said sufficient quantity c	omprises
2	from about 10 atomic % to about 40 atomic % substituent in relation to ch	romium
3	content.	
1	96. The method of claim 90 wherein said sufficient quantity co	mprises
2	about 25 atomic % substituent in relation to chromium content.	
1	97. The method of claim 91 wherein said sufficient quantity c	omprises
2	from about 10 atomic % to about 40 atomic % substituent in relation to ch	romium
3	content.	
1	98. The method of claim 1 wherein said sufficient quantity co	mprises
2	about 25 atomic % substituent in relation to chromium content.	
1	99. The method of claim 92 wherein said sufficient quantity c	omprises
2	from about 10 atomic % to about 40 atomic % substituent in relation to ch	romium
3	content.	
1	100. The method of claim 92 wherein said sufficient quantity co	mprises
2	about 25 atomic % substituent in relation to chromium content.	
1	101. The method of claim 93 wherein said sufficient quantity co	omprises
2	from about 10 atomic % to about 40 atomic % substituent in relation to ch	romium
3	content.	
1	102. The method of claim 94 wherein said sufficient quantity co	mprises
2	about 25 atomic % substituent in relation to chromium content.	

		1
1	103.	The method of claim 94 wherein said sufficient quantity comprises
2	from about 10	atomic % to about 40 atomic % substituent in relation to chromium
3	content.	
1	104.	The method of claim 90 wherein said sufficient quantity comprises
2	about 25 ator	nic % substituent in relation to chromium content.
1	105.	The method of claim 90 wherein said surface comprises an initial
2	hardness and	said conditions are effective to produce a final hardness that is greater
3	than said initi	al hardness.
1	106.	The method of claim 91 wherein said surface comprises an initial
2	hardness and	said conditions are effective to produce a final hardness that is greater
3	than said initi	al hardness.
1	107.	The method of claim 92 wherein said surface comprises an initial
2	hardness and	said conditions are effective to produce a final hardness that is greater
3	than said initi	al hardness.
1	108.	The method of claim 93 wherein said surface comprises an initial
2	hardness and	said conditions are effective to produce a final hardness that is greater
3	than said initi	al hardness.
1	109.	The method of claim 94 wherein said surface comprises an initial
2	hardness and	said conditions are effective to produce a final hardness that is greater
3	than said initi	al hardness.
1	110.	The method of claim 105 wherein said final hardness is about 15 GPa
2	or more.	
1	111.	The method of claim 105 wherein said final hardness is about 20 GPa
2	or more.	

1 The method of claim 105 wherein said final hardness is about 25 GPa 2 or more. The method of claim 106 wherein said final hardness is about 15 GPa 1 113. 2 or more. The method of claim 106 wherein said final hardness is about 20 GPa 1 114. 2 or more. The method of claim 106 wherein said final hardness is about 25 GPa or more. The method of claim 107 wherein said final hardness is about 15 GPa 1 116. 2 or more. The method of claim 107/wherein said final hardness is about 20 GPa 117. 1 2 or more. The method of claim/107 wherein said final hardness is about 25 GPa 118. 1 2 or more. The method of claim 108 wherein said final hardness is about 15 GPa 119. or more. 120. The method of claim 108 wherein said final hardness is about 20 GPa 2 or more. The method of claim 108 wherein said final hardness is about 25 GPa 121. 2 or more. 122. The method of claim 109 wherein said final hardness is about 15 GPa 2 or more. The method of claim 109 wherein said final hardness is about 20 GPa 2 or more.

		25
1	124.	The method of claim 100 wherein adid finel hardness is shout 25 GPs
	124.	The method of claim 109 wherein said final hardness is about 25 GPa
2	or more.	
1	125.	A method of forming a hard surface comprising chromium, said
2	method comp	orising:
3	provid	ling a substrate comprising chromium comprising a surface having an
4		initial hardness;
5	treatir	ng said surface with an additive comprising an element selected from the
6		group consisting of oxygen, carbon, and a combination thereof under
7		conditions effective to produce a final surface having a final hardness
8		greater than said initial hardness, said final surface comprising a
9		mixture comprising substrate molecules and molecules selected from
0		the group consisting of chromium oxide, chromium carbide, and a
1		combination thereof, said mixture being adjacent to an outer surface
2		consisting esentially of oxides comprising chromium oxide.
1	126.	The method of claim 125 wherein said additive is selected from the
2	group consist	ing of carbon monoxide, carbon dioxide, formic acid, methyl alcohol,
3	ethyl alcohol,	and acetone.
1	127.	The method of claim 125 wherein said additive is selected from the
2	group consist	ing of carbon monoxide ions and carbon dioxide ions.
1	128.	The method of claim 125 wherein said additive is carbon monoxide
2	ions.	
1	129.	The method of claim 125 wherein said final hardness is about 15 GPa
2	or more.	

		26)
1	130.	The method of claim 125 wherein said final hardness is about 20 GPa
2	or more.	
1	131.	The method of claim 125 wherein said final hardness is about 25 GPa
2	or more.	
1	132.	The method of claim 126 wherein said final hardness is about 15 GPa
2	or more.	
1	133.	The method of claim 126 wherein said final hardness is about 20 GPa
2	or more.	
1	134.	The method of claim 126 wherein said final hardness is about 25 GPa
2	or more.	
1	135.	The method of claim 12/7 wherein said final hardness is about 15 GPa
2	or more.	
1	136.	The method of claim 127 wherein said final hardness is about 20 GPa
2	or more.	
1	137.	The method of claim 127 wherein said final hardness is about 25 GPa
2	or more.	
1	138.	The method of claim 128 wherein said final hardness is about 15 GPa
2	or more.	The method of claim 128 wherein said final hardness is about 20 GPs
1 2	or more.	The method of claim 128 wherein said final hardness is about 20 GPa
1	140.	The method of claim 128 wherein said final hardness is about 25 GPa
2	or more.	The method of claim 120 wherein said final hardness is about 25 of a
1	141.	A method for making a medical implant comprising:
-		

2	provid	ling a component of a medical implant comprising a substrate
3		comprising a surface comprising chromium, said surface having an
4		initial coefficient of friction in an unlubricated condition against a steel
5		counterface;
6	treatin	ng said surface with an additive comprising oxygen under conditions
7		effective to produce a mixture comprising substrate molecules and
8		chromium-oxide molecules adjacent to a lubricious outer surface
9		consisting essentially of oxide molecules comprising chromium oxide,
0		said surface having a final coefficient of friction in an unlubricated
1		condition against a steet counterface that is less than said initial
12		coefficient of friction.
1	142.	The method of claim 141 wherein said final coefficient of friction of
2	said surface is	s about 0.3 or less.
1	143.	The method of claim 141 wherein said final coefficient of friction of
2	said surface is	s about 0.2 or less
1	144.	The method of claim 141 wherein said final coefficient of friction of
2	said surface is	s about 0.1 or less.
1	145.	The method of claim 141 wherein said sufficient quantity comprises
2	from about 10	atomic % to about 40 atomic % oxygen in relation to chromium
3	content.	
1	146.	The method of claim 141 wherein said sufficient quantity comprises
2	about 25 ator	nic % oxygen in relation to chromium content.

1	147.	The method of claim 142 wherein said sufficient quantity comprises
2	from about 10	atomic % to about 40 atomic % oxygen in relation to chromium
3	content.	
1	148.	The method of claim 142 wherein said sufficient quantity comprises
2	about 25 ator	nic % oxygen in relation to chromium content.
1	149.	The method of claim 143 wherein said sufficient quantity comprises
2	from about 10	atomic % to about 40 atomic % oxygen in relation to chromium
3	content.	
1	150.	The method of claim 143 wherein said sufficient quantity comprises
2	about 25 ator	nic % oxygen in relation to chromium content.
1	151.	The method of claim 1/44 wherein said sufficient quantity comprises
2	from about 10	atomic % to about 40 atomic % oxygen in relation to chromium
3	content.	
1	152.	The method of claim 144 wherein said sufficient quantity comprises
2	about 25 ator	nic % oxygen in relation to chromium content.
1	153.	The method of claim 141 wherein said surface comprises an initial
2	hardness and	said conditions are effective to produce a final hardness that is greater
3	than said initi	al hardness.
1	154.	The method of claim 142 wherein said surface comprises an initial
2	hardness and	said conditions are effective to produce a final hardness that is greater
3	than said initi	al hardness/
1	155.	The method of claim 143 wherein said surface comprises an initial
2	hardness and	said conditions are effective to produce a final hardness that is greater
3	than said initia	al hardness

1	156.	The method of claim 144 wherein said surface comprises an initial
2	hardness and	said conditions are effective to produce a final hardness that is greater
3	than said initi	al hardness.
1	157.	The method of claim 141 wherein said final hardness is about 15 GPa
2	or more.	
1	158.	The method of claim 141 wherein said final hardness is about 20 GPa
2	or more.	
1	159.	The method of claim 14) wherein said final hardness is about 25 GPa
2	or more.	
1	160.	The method of claim/142 wherein said final hardness is about 15 GPa
2	or more.	
1	161.	The method of claim 142 wherein said final hardness is about 20 GPa
2	or more.	
1	162.	The method of claim 142 wherein said final hardness is about 25 GPa
2	or more.	
1	163.	The method of claim 143 wherein said final hardness is about 15 GPa
2	or more.	
1	164.	The method of claim 143 wherein said final hardness is about 20 GPa
2	or more.	
1	165.	The method of claim 143 wherein said final hardness is about 25 GPa
2	or more.	
1	166.	The method of claim 144 wherein said final hardness is about 15 GPa
2	or more.	
		1

		/
1	167.	The method of claim 144 wherein said final hardness is about 20 GPa
2	or more.	
1	168.	The method of claim 144 wherein said final hardness is about 25 GPa
2	or more.	
1	169.	A substrate comprising chromium and a gradient from an inside to an
2	outside surfac	ee consisting essentially of:
3	substr	ate molecules/a mixture of/said substrate molecules and substrate-X
4		molecules comprising chromium-X/a surface comprising a sufficient
5		quantity of said chromium-X molecules to produce a final coefficient
6		of friction in an unlubricated condition against a steel counterface that
7		is less than a virgin coefficient of friction of said surface in the absence
8		of said gradient;
9	where	in X is selected from the group consisting of fluorine, oxygen, sulfur,
10		and chlorine.
1	170.	The substrate of claim 169 wherein X is fluorine.
1	171.	The substrate of claim 169 wherein X is sulfur.
1	172.	The substrate of claim 169 wherein said gradient further comprises
2	chromium car	bide molecules.
1	173.	The substrate of claim 170 wherein said gradient further comprises
2	chromium car	bide molecules.
1	174.	The substrate of claim 171 wherein said gradient further comprises
2	chromium car	bide molecules.
1	175.	A chromium coating comprising a gradient from inside to an outside
2	surface consis	eting essentially of:

1	180.	The method of claim 174 wherein said chromium coating comprises in
2	initial hardnes	ss, and said means for reducing said initial coefficient of friction further
3	comprises me	ans for increasing said initial hardness.
1	181.	A chromium coating comprising
2	a surfa	ace comprising chromium oxide having an initial coefficient of friction
3		in an unlubricated condition against a steel counterface; and
4	means	for reducing said initial coefficient of friction.
1	182.	The chromium coating of claim 176 further comprising in initial
2	hardness, said	means for reducing said in tial coefficient of friction further comprising
3	means for inc	reasing said initial hardness.
1	183.	A chromium alloy substrate comprising
2	a surfa	ace comprising chromium oxide having an initial coefficient of friction
3		in an unlubricated condition against a steel counterface; and
4	means	for reducing said initial coefficient of friction.
1	184.	The chromium alloy substrate of claim 178 further comprising in initial
2	hardness, said	means for reducing said initial coefficient of friction further comprising
3	means for inc	reasing said initial hardness.
1	185.	A method of forming a hard chromium coating comprising:
2	provid	ing a chromium coating having an initial hardness; and
3	means	for increasing said initial hardness.
1	186. /	The method of claim 180 wherein said means for reducing said initial
2	hardness furth	per comprises means for decreasing said initial coefficient of friction.
1	187.	A chromium coating comprising
2	a surfa	ice comprising chromium oxide having an initial hardness; and

3	means	for increasing said initial hardness.
1	188.	The chromium coating of claim 187 wherein said means for reducing
2	said initial ha	rdness further comprises means for decreasing said initial coefficient of
3	friction.	
1	189.	A substrate comprising a chromium coating comprising:
2	a grad	ient consisting essentially of primarily chromium/a mixture of
3		chromium-X molecules and chromium molecules/a surface comprising
4		a sufficient quantity of said chromium-X molecules to produce a final
5		coefficient of friction in an unlubricated condition against a steel
6		counterface that is less than a virgin coefficient of friction of said
7		surface in the absence of said gradient;
8	X bein	g selected from the group donsisting of fluorine, oxygen, sulfur, and
9		chlorine.
1	190.	The substrate of claim 1/89 wherein X is fluorine.
1	191.	The substrate of claim 89 wherein X is sulfur.
1	192.	A substrate comprising a chromium coating comprising a gradient
2	from inside to	an outside surface consisting essentially of:
3	prima	rily chromium molecules/a mixture of chromium oxide molecules and
4		chronium molecules/a surface comprising a sufficient quantity of said
5		chromium oxide molecules to produce a final coefficient of friction in
6		an unfubricated condition against a steel counterface that is less than a
7		virgin coefficient of friction of said surface in the absence of said
8		gradient.

1	102	
1	193.	The substrate of claim 192 wherein said gradient further comprises
2	chromium car	rbide molecules.
1	194.	The substrate of claim 192 comprising an automotive component.
1	195.	The substrate of claim 192 comprising an aeronautical component.
1	196.	The substrate of claim 192 comprising a journal bearing.
1	197.	The substrate of claim 192 comprising a tool for injection molding of
2	filled polyme	rs.
1	198.	The substrate of claim 192 wherein said tool is selected from the group
2	consisting of	a plated mold and a runner block.
1	199.	A medical implant comprising a gradient from inside to an outside
2	surface consis	sting essentially of:
3	chrom	ium alloy molecules/a mixture comprising chromium alloy molecules
4		and chromium oxide molecules/a surface comprising a sufficient
5		quantity of said chromium oxide molecules to produce a final
6		coefficient of friction in an unlubricated condition against a steel
7		counterface that is less than a virgin coefficient of friction of said
8		surface in the absence of said gradient.
1	200.	The medical implant of claim 199 wherein said gradient further
2	comprises chr	romium carbide molecules.
1	201.	The medical implant of claim 199 comprising a total joint replacement.
1	202.	The medical implant of claim 200 comprising a total joint replacement.
1	203.	A medical implant comprising a gradient from inside to an outside
2	surface consis	sting essentially of:

3	a surf	ace comprising chromium oxide having an initial coefficient of friction
4		in an unlubricated condition against a steel counterface; and
5	means	s for reducing said initial coefficient of friction.
1	204.	The medical implant of claim 169 further comprising means for
2	increasing an	initial hardness of said surface.
1	205.	The medical implant of claim 202 comprising a total joint replacement.
1	206.	The medical implant of claim 203 comprising a total joint replacement.
		ľ