

ЭКВИВАЛЕНТНОСТЬ ТЕПЛОТЫ И РАБОТЫ

ДВА СПОСОБА ИЗМЕНЕНИЯ ВНУТРЕННЕЙ ЭНЕРГИИ

PAGOTA FASA

Изобарное расширение газа

$$A_1' = F \cdot \Delta x = p_2 \cdot S \cdot \Delta x$$

Изобарное сжатие газа

$$A_2' = -F \cdot \Delta x = -p_1 \cdot S \cdot \Delta x$$

ЦИКЛ РАБОТЫ ТЕПЛОВОЙ МАШИНЫ

РАБОТА ГАЗА ЗА ЦИКЛ

ПЕРВЫЙ ЗАКОН ТЕРМОДИНАМИКИ

Внутренняя энергия изолированной системы не изменяется при любых взаимодействиях внутри системы: U = const, $\Delta U = 0$.

Изменение ΔU внутренней энергии неизолированной термодинамической системы равно сумме количества переданной теплоты Q и работы A внешних сил

$$\Delta U = Q + A$$

Любая машина может совершить работу A' над внешними телами только за счет изменения ΔU внутренней энергии или получения извне некоторого количества теплоты Q

$$A'=Q-\Delta U$$

ВТОРОЙ ЗАКОН ТЕРМОДИНАМИКИ

Невозможно создание периодически действующей тепловой машины, совершающей работу за счет получения количества теплоты от одного тела и не вызывающей при этом никаких изменений в других телах

КПД ТЕПЛОВОЙ МАШИНЫ

$$\eta = \frac{A'}{Q_1}$$
 $A' = Q_1 - Q_2$ $\eta = \frac{Q_1 - Q_2}{Q_1}$

МАКСИМАЛЬНОЕ ЗНАЧЕНИЕ КПД ТЕПЛОВОЙ МАШИНЫ

Холодильник

Сади Карно

Цикл Карно

$$\eta = \frac{T_1 - T_2}{T_1}$$

КПД идеальной тепловой машины

4

ТЕРМОДИНАМИКА

ПАРОВАЯ МАШИНА ПОЛЗУНОВА

Иван Иванович Ползунов

- 1 топка
- 2 котел
- 3 трубы для пара
- 4 парораспределительное устройство
- 5 и 6 цилиндры
- 7 трубы для воды
- 8 водяной бак
- 9 полубалансиры
- 10 тяги
- 11 воздушные трубы
- 12 водяные трубы
- 13 водяной бак

Схема устройства паровой машины И.И. Ползунова

Б ПАРОВАЯ ТУРБИНА

ТАЗОТУРБИННЫЙ ДВИГАТЕЛЬ

КОМПРЕССИОННЫЙ ХОЛОДИЛЬНИК

ТЕРМОДИНАМИКА

9 РАКЕТНЫЕ ДВИГАТЕЛИ

Константин Эдуардович Циолковский

Формула Циолковского

$$\frac{m}{m} = e^{\frac{v}{u}}$$

т, - начальная масса ракеты

т- конечная масса ракеты

v – конечная скорость ракеты

и - скорость истечения газов

Юрий Алексеевич Гагарин

- 1 полезный груз
- 2 окислитель
- 3 горючее
- 4 насосы
- 5 камера сгорания
- 6 сопло

Ракетный двигатель

- 1 рулевые камеры сгорания и сопла
- 2 основные камеры сгорания
- 3 насос подачи окислителя
- 4 насос подачи горючего
- 5 силовая рама

Ракета-носитель "Союз"

3HEPTETNKA N 3HEPTETNYECKNE PECYPCЫ

Современное мировое потребление энергии

Среднее потребление энергии на душу населения в мире

Средняя потребляемая мощность на душу населения

4·10[™] Дж в год 7·10[™] Дж в год 2 кВт

Мировые энергетические ресурсы

	Разведанные извлекаемые запасы	Годовое потребление	Срок исчерпания запасов
Уголь	10000-10³т (3000-10³ Дж)	2,6·10° т (8·10™ Дж)	800 лет
Нефть	140·10° т (65·10° Дж)	3,1·10° т (14·10° Дж)	45 лет
Газ	140·10 ¹² м³ (54·10 ²⁸ Дж)	2,4·10 ¹² м³ (9·10 ¹⁸ Дж)	60 лет
Уран	15-10 т (6,2-10 Дж)	7-10° T (2,9-10" Дж)	20 лет

Энергетические ресурсы России

Уголь	4000-10° т (1,2-10° Дж)	2,7-10" т (0,8-10" Дж)	2500 лет
Нефть	10·10° т (4,6·10 ²⁰ Дж)	3-10" т (1,4-10" Дж)	30 лет
Газ	30·10 ¹² м³ (12·10 ²⁰ Дж)	6-10" м³ (2,3-10" Дж)	50 лет