Assignment#4

2017706106 현민기

1. 개요 - 과제 목표

가. -Fine-tuning

·실제로 충분한 크기의 데이터셋을 갖추기는 상대적으로 드물기 때문에, (무작위 초기화를 통해) 바닥부터(from scratch) 전체 Convolutional Network를 학습 어려움

·매우 큰 데이터셋 (예. 100가지 Category에 대해 120만개의 이미지가 포함된 ImageNet)에서 Convolutional Network를 미리 학습(Pretrain)한 후, 이 Convolutional Network를 관심있는 작업을 위한 초기화, 고정 특 징 추출기로 사용

2. 구현 방법

가.

<strategy 1>;

model_ft = models.resnet18(pretrained=True)

; pretrained 된 resnet18을 불러옴. Freeze를 따로 시키지 않으므로, parameter를 freeze시키는 코드가 없음.

num_ftrs = model_ft.fc.in_features

; input의 개수를 in_features로 정의, resnet18 속의 input 개수는 총 512개이므로, in_features 대신에 512를 넣어도 원만하게 코드 진행 가능. model_ft의 epochs를 10으로 설정하여 총 epoch 0~9까지 출력되게 끔 설정.

model_ft.fc=nn.Linear.(num_ftrs, 2)

; Classifier를 정의

<strategy 3>;

model_conv = models.resnet18(pretrained=True)

; pretrained 된 resnet18을 불러옴. Convolution network part 모두 Freeze 시키므로, parameter를 freeze 시키는 for param in model ~ grad=False 의 구문 존재.

num_ftrs = model_conv.fc.in_features

; input의 개수를 in_features로 정의, resnet18 속의 input 개수는 총 512개이므로, in_features 대신에 512를 넣어도 원만하게 코드 진행 가능. model_ft의 epochs를 10으로 설정하여 총 epoch 0~9까지 출력되게 끔 설정.

model_conv.fc=nn.Linear.(num_ftrs, 2)

; Classifier를 정의

3. 결과 화면

가. 결과 화면 캡쳐

```
| Second |
```

<strategy 1>

<Strategy 3>

나. 결과표

	본인 네트워크		Strategy 1		Strategy 3	
	Val loss	Acc	Val loss	Acc	Val loss	Acc
0	0.6758	0.5490	0.3222	0.8497	0.3068	0.8954
1	0.6864	0.5817	0.2549	0.9216	0.2061	0.9542
2	0.6861	0.5882	0.3729	0.8562	0.2202	0.9216
3	0.6962	0.4575	0.2058	0.9281	0.1834	0.9542
4	0.7012	0.4837	0.2516	0.9346	0.3167	0.8497
5	0.6859	0.5163	0.2885	0.9020	0.2069	0.9412
6	0.6849	0.5882	0.2185	0.9216	0.1875	0.9477
7	0.6853	0.5686	0.2145	0.9281	0.1702	0.9673
8	0.6875	0.5098	0.2122	0.9281	0.1745	0.9608
9	0.6942	0.5033	0.2521	0.9281	0.1906	0.9477