CÁLCULO AVANZADO

Segundo Cuatrimestre — 2019

Práctica 5: Completitud, continuidad uniforme y el teorema de Baire

Completitud

- **1.** Sea X un espacio métrico, sea $x = (x_n)_{n \ge 1}$ una sucesión en X y sea $a \in X$.
- (a) La sucesión x converge a a si y solo si toda subsucesión de x converge a a.
- (*b*) Si toda subsucesión de *x* posee una subsucesión que converge a *a*, entonces *x* misma converge *a*.
- (c) Si x es de Cauchy y posee una subsucesión que converge a a, entonces x misma converge a a.

Solución. (a) El claro que si toda subsucesión de x converge a a, entonces x misma converge a a, simplemente porque x es una subsucesión de sí misma. Supongamos entonces que la sucesión x converge a x y sea $(x_{n_k})_{k\geq 1}$ una subsucesión de x. Sea $\varepsilon>0$. Como x converge a a, existe $N\in\mathbb{N}$ tal que para cada $n\geq N$ es $d(x_n,a)<\varepsilon$. Pero entonces si $k\geq N$ es $n_k\geq k\geq N$ y $d(x_{n_k},a)<\varepsilon$. Esto nos dice que $(x_{n_k})_{k\geq 1}$ converge a a.

- (b) Supongamos que x no converge a a, de manera que existe $\varepsilon > 0$ tal que no existe $N \in \mathbb{N}$ tal que para todo $n \geq N$ es $d(x_n, a) < \varepsilon$. En otras palabras, para todo $N \in \mathbb{N}$ existe $n \geq N$ tal que $d(a, x_n) \geq \varepsilon$ y, en consecuencia, el conjunto $I = \{n \in \mathbb{N} : d(a, x_n) \geq \varepsilon\}$ no es acotado. El conjunto debe ser, por lo tanto, infinito y hay entonces una función estrictamente creciente $\phi : \mathbb{N} \to I$. Consideremos la subsucesión $(x_{\phi(n)})_{n \geq 1}$ de $(x_n)_{n \geq 1}$. La hipótesis nos dice que esta subsucesión posee una subsucesión $(x_{\phi(n_k)})_{k \geq 1}$ que converge a a: esto es absurdo, ya que $d(x_{\phi(n_k)}, a) \geq \varepsilon$ para todo $k \geq 1$.
- (c) Supongamos que la sucesión $x=(x_n)_{n\geq 1}$ es de Cauchy y que posee una subsucesión $(x_{n_k})_{k\geq 1}$ que converge a a. Sea $\varepsilon>0$. Como la sucesión es de Cauchy, existe $N\in\mathbb{N}$ tal que

$$n,m \ge N \implies d(x_n,x_m) < \frac{\varepsilon}{2}.$$

Por otro lado, como la subsucesión converge a a, existe $K \in \mathbb{N}$ tal que

$$k \ge K \implies d(x_{n_k}, a) < \frac{\varepsilon}{2}.$$

Si ahora $r \in \mathbb{N}$ es tal que $r \ge \max\{N, K\}$, entonces

$$d(x_r, a) \le d(x_r, x_{n_r}) + d(x_{n_r}, a) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

porque $n_r \ge r \ge N$ y $r \ge K$. Esto nos dice que la sucesión x converge a a.

- **2.** (*a*) Una sucesión en un espacio métrico que converge es de Cauchy. ¿Vale la recíproca?
- (b) Una sucesión en un espacio métrico que es de Cauchy es acotada.

Solución. Fijemos un espacio métrico X.

(a) Sea $(x_n)_{n\geq 1}$ una sucesión en X que converge a x y sea $\varepsilon>0$. Como la sucesión converge a x, existe $N\in\mathbb{N}$ tal que $d(x_n,x)<\varepsilon/2$ siempre que $n\geq N$. En particular, si $n,m\geq N$ tenemos que

$$d(x_n, x_m) \le d(x_n, x) + d(x, x_m) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Vemos así que la sucesión $(x_n)_{n\geq 1}$ es de Cauchy.

La implicación recíproca no vale. Por ejemplo, la sucesión $(1/n)_{n\geq 1}$ en $\mathbb{R}\setminus\{0\}$ es de Cauchy pero no converge en ese espacio.

- (b) Sea $(x_n)_{n\geq 1}$ una sucesión de Cauchy en X. En particular, existe $N\in\mathbb{N}$ tal que $d(x_n,x_m)<1$ siempre que $n,\ m\geq N$. Sea $R=1+\max\{d(x_N,x_i):i\in \llbracket N\rrbracket\}$, que es claramente un número positivo. Si $n\in\mathbb{N}$ entonces hay dos casos: o bien $n\leq N$, y entonces $d(x_N,x_n)< R$ y $x_n\in B_R(x_N)$, o bien $n\geq N$, y entonces $d(x_N,x_n)< 1\leq R$. Vemos así que toda la sucesión $(x_n)_{n\geq 1}$ está contenida en la bola $B_R(x_N)$.
- **3.** Sea *X* un espacio métrico. Si toda bola cerrada de *X* es un espacio completo, entonces *X* es un espacio completo.

Solución. Supongamos que toda bola cerrada de X es un espacio completo y sea $(x_n)_{n\geq 1}$ una sucesión de Cauchy en X. Como vimos en el Ejercicio ${\bf 2}$, existe un punto $y\in X$ y R>0 tal que $x_n\in \overline{B}_R(y)$ para todo $n\in \mathbb{R}$, esto es, la sucesión toma valores en la bola cerrada $\overline{B}_R(y)$. Como se trata entonces de una sucesión de Cauchy en esa bola cerrada, la hipótesis nos dice que tiene allí un límite x. Es claro que $(x_n)_{n\geq 1}$ converge a x también en el espacio X. La conclusión de esto es que X es completo, como queremos.

- **4.** Sea *X* un espacio métrico.
- (a) Todo subespacio completo de *X* es cerrado.
- (b) Si X es completo, entonces todo subespacio cerrado de X es completo.

Solución. (a) Sea Y un subespacio de X que es completo y sea $y \in \bar{Y}$, la clausura de Y en X. Existe entonces una sucesión $(y_n)_{n\geq 1}$ con valores en Y que converge en X a y. En particular, esa sucesión es de Cauchy en X y, como toma valores en Y, también en Y. Como Y es completo, existe $y' \in Y$ tal que $(y_n)_{n\geq 1}$ converge a y' en Y. Por supuesto, $(y_n)_{n\geq 1}$ también converge a y' en X y como una sucesión posee a lo sumo un límite, vemos que $y=y'\in Y$. Esto nos dice que $\overline{Y}\subseteq Y$, es decir, que Y es cerrado en X.

(b) Supongamos ahora que X es completo y sea Y un subespacio cerrado de X. Sea $(y_n)_{n\geq 1}$ una sucesión de Cauchy en Y. Claramente esa sucesión también es una sucesión de Cauchy en X, así que la hipótesis hecha sobre X implica que existe $y\in X$ tal que $(y_n)_{n\geq 1}$ converge a y en X. Como Y es un cerrado de X, debe ser $y\in Y$, y como es claro que $(y_n)_{n\geq 1}$ converge también a y en Y, vemos que Y es un espacio completo.

5. Un espacio métrico X es completo si y solamente si cada sucesión $(F_n)_{n\geq 1}$ de cerrados no vacíos de X tal que $F_n\supseteq F_{n+1}$ para todo $n\in\mathbb{N}$ y con $\lim_{n\to\infty} \operatorname{diam}(F_n)=0$ tiene intersección no vacía.

Solución. Supongamos primero que X es un espacio métrico que satisface la condición de enunciado y mostremos que es necesariamente completo. Sea $(x_n)_{n\geq 1}$ una sucesión de Cauchy de X. Para cada $n\in\mathbb{N}$ pongamos $G_n:=\{x_m:m\geq n\}$ y $F_n:=\overline{G}_n$. Es claro que para todo $n\in\mathbb{N}$ es $G_n\supseteq G_{n+1}$, así que $F_n\supseteq F_{n+1}$. Por otro lado, si $\varepsilon>0$, que la sucesión $(x_n)_{n\geq 1}$ sea de Cauchy implica que existe $N\in\mathbb{N}$ tal que

$$n, m \ge N \implies d(x_n, x_m) < \frac{\varepsilon}{2}.$$

Si ahora $n \ge N$, entonces tenemos que $G_n \subseteq \overline{B}_{\varepsilon/2}(x_N)$ y, por lo tanto, $F_n \subseteq \overline{B}_{\varepsilon/2}(x_N)$, así que, en particular, es diam $(F_n) < \varepsilon$. Esto nos dice que $\lim_{n \to \infty} \operatorname{diam}(F_n) = 0$. De acuerdo a la hipótesis que hicimos sobre X, existe un punto x en la intersección $\bigcap_{n \ge 1} F_n$.

Mostremos que la sucesión $(x_n)_{n\geq 1}$ converge a x. Sea $\varepsilon>0$. Como $(\operatorname{diam}(F_n))_{n\geq 1}$ converge a 0, existe $N\in\mathbb{N}$ tal que $\operatorname{diam}(F_N)<\varepsilon$. Como $\{x\}\cup G_N\subseteq F_N$, tenemos que para todo $n\in\mathbb{N}$ tal que $n\geq N$ es $d(x,x_n)<\varepsilon$. Esto prueba lo que queríamos.

Probemos ahora la necesidad de la condición del enunciado. Supongamos que X es un espacio métrico completo y sea $(F_n)_{n\geq 1}$ una sucesión de cerrados no vacíos de X tal que $F_n\supseteq F_{n+1}$ para todo $n\in\mathbb{N}$ y $\lim_{n\to\infty} \operatorname{diam}(F_n)=0$. Para cada $n\in\mathbb{N}$ podemos elegir un punto x_n en F_n : obtenemos así una sucesión $(x_n)_{n\geq 1}$ en X. Es una sucesión de Cauchy: si $\varepsilon>0$, entonces existe $N\in\mathbb{N}$ tal que $\operatorname{diam}(F_N)<\varepsilon$ y si $n,m\geq N$ entonces $x_n,x_m\in F_N$, así que $\operatorname{d}(x_n,x_m)<\varepsilon$. Como X es completo, existe $x\in X$ tal que $(x_n)_{n\geq 1}$ converge a x.

Si $m \in \mathbb{N}$, entonces la sucesión $(x_{m+n})_{n\geq 1}$ toma valores en F_m y converge a x, así que $x \in F_m$. Esto implica que $x \in \bigcap_{m\geq 1} F_m$ y, por lo tanto, que esta intersección no es vacía. \square

6. Sean X e Y dos espacios métricos. El espacio métrico $X \times Y$, con su métrica d_{∞} , es completo si Y solamente si Y e Y son completos.

Solución. Mostremos primero que

una sucesión $((x_n, y_n))_{n\geq 1}$ de puntos de $X\times Y$ es de Cauchy si y solamente si las sucesiones $(x_n)_{n\geq 1}$ e $(y_n)_{n\geq 1}$ son de Cauchy en X y en Y.

y que

una sucesión $((x_n, y_n))_{n\geq 1}$ de puntos de $X\times Y$ converge a (x, y) si y solamente si las sucesiones $(x_n)_{n\geq 1}$ e $(y_n)_{n\geq 1}$ en X y en Y convergen a x y a y, respectivamente.

Tenemos que probar cuatro implicaciones.

• Sea $((x_n, y_n))_{n\geq 1}$ una sucesión de puntos de $X\times Y$, supongamos que es de Cauchy y sea $\varepsilon>0$. Como $((x_n,y_n))_{n\geq 1}$, existe $N\in\mathbb{N}$ tal que

$$n, m \ge N \implies d_{\infty}((x_n, y_n), (x_m, y_m)) < \varepsilon.$$

Si ahora $n, m \ge N$, entonces que

$$d_X(x_n, x_m) \le \max\{d(x_n, x_m), d(y_n, y_m)\} = d_{\infty}((x_n, y_n), (x_m, y_m)) < \varepsilon$$

у

$$d_Y(y_n, y_m) \le \max\{d(x_n, x_m), d(y_n, y_m)\} = d_{\infty}((x_n, y_n), (x_m, y_m)) < \varepsilon.$$

Esto nos dice que las sucesión $(x_n)_{n\geq 1}$ e $(y_n)_{n\geq 1}$ son de Cauchy en X y en Y.

• Sea $((x_n, y_n))_{n\geq 1}$ una sucesión de puntos de $X\times Y$, supongamos que converge a (x, y) y sea $\varepsilon>0$. Como $((x_n, y_n))_{n\geq 1}$ converge a (x, y), existe $N\in\mathbb{N}$ tal que

$$n \ge N \implies d_{\infty}((x_n, y_n), (x, y)) < \varepsilon.$$

Tenemos entonces que si $n \ge N$ es

$$d_{\mathcal{X}}(x_n, x) \le \max\{d(x_n, x), d(y_n, y)\} = d_{\infty}((x_n, y_n), (x, y)) < \varepsilon$$

y

$$d_Y(y_n, y) \le \max\{d(x_n, x), d(y_n, y)\} = d_{\infty}((x_n, y_n), (x, y)) < \varepsilon,$$

y vemos así que la sucesión $(x_n)_{n\geq 1}$ converge a x en X y que la sucesión $(y_n)_{n\geq 1}$ converge a y en Y.

• Supongamos ahora que $(x_n)_{n\geq 1}$ es una sucesión de Cauchy en X, que $(y_n)_{n\geq 1}$ es una sucesión de Cauchy en Y y sea $\varepsilon>0$. Como $(x_n)_{n\geq 1}$ es de Cauchy, existe $N\in\mathbb{N}$ tal que

$$n, m \ge N \implies d_X(x_n, x_m) < \varepsilon$$
,

y como $(y_n)_{n\geq 1}$ es de Cauchy, existe $M\in\mathbb{N}$ tal que

$$n, m \ge M \implies d_{v}(y_{n}, y_{m}) < \varepsilon.$$

Se sigue de esto que si $n, m \ge \max\{N, M\}$, entonces

$$d_{\infty}((x_n, y_n), (x_m, y_m)) = \max\{d_X(x_n, x_m), d_Y(y_n, y_m)\} < \varepsilon.$$

Podemos concluir con esto que la sucesión $((x_n, y_n))_{n \ge 1}$ es de Cauchy en $X \times Y$.

Finalmente, supongamos que (x_n)_{n≥1} es una sucesión en X que converge a x, que (y_n)_{n≥1} es una sucesión en Y que converge a y, y sea ε > 0. Como (x_n)_{n≥1} converge a x, existe N ∈ N tal que

$$n \ge N \implies d_{x}(x_{n}, x) < \varepsilon$$
,

y como $(y_n)_{n\geq 1}$ converge a y, existe $M\in\mathbb{N}$ tal que

$$n \ge M \implies d_{\nu}(y_n, y) < \varepsilon$$
.

Si ahora $n \ge \max\{N, M\}$, entonces es

$$d((x_n, y_n), (x, y)) = \max\{d_X(x_n, x), d_Y(y_n, y)\} < \varepsilon.$$

Vemos así que la sucesión $((x_n, y_n))_{n\geq 1}$ converge a (x, y) en $X \times Y$.

Hagamos ahora el ejercicio.

- Supongamos que X × Y es completo y sean (x_n)_{n≥1} e (y_n)_{n≥1} sucesiones de Cauchy en X y en Y, respectivamente. Sabemos que la sucesión ((x_n, y_n))_{n≥1} es entonces de Cauchy en X × Y y, como este espacio es completo, converge a un punto (x, y) ∈ X × Y. Como vimos arriba, esto implica que la sucesión (x_n)_{n≥1} converge a x en X y la sucesión (y_n)_{n≥1} converge a y en Y: podemos concluir, por lo tanto, que X e Y son espacios métricos completos.
- Recíprocamente, supongamos que X e Y son espacios métricos completos y sea $((x_n, y_n))_{n\geq 1}$ una sucesión de Cauchy en $X\times Y$. Vimos arriba que las sucesiones $(x_n)_{n\geq 1}$ e $(y_n)_{n\geq 1}$ son de Cauchy en X y en Y, así que como estos espacios son completos por hipótesis existen $x\in X$ e $y\in Y$ tales que $(x_n)_{n\geq 1}$ e $(y_n)_{n\geq 1}$ convergen a x y a y, respectivamente, y esto implica que la sucesión $(x_n, y_n))_{n\geq 1}$ converge a (x, y). Vemos así que $X\times Y$ es un espacio métrico completo.
- 7. (a) Sea X un conjunto, sea B(X) el conjunto de todas las funciones $X \to \mathbb{R}$ que son acotadas y consideremos la métrica d_{∞} sobre B(X) tal que

$$d_{\infty}(f,g) := \sup_{x \in X} |f(x) - g(x)|$$

cada vez que f y g son elementos de B(X). El espacio métrico $(B(X), d_{\infty})$ es completo.

- (b) Sea X un espacio métrico y sea $C_b(X)$ el conjunto de las funciones $X \to \mathbb{R}$ que son continuas y acotadas. Es $C_b(X) \subseteq B(X)$, así que podemos restringir la métrica d_{∞} de B(X) a $C_b(X)$. El espacio métrico $(C_b(X), d_{\infty})$ es completo.
- (c) El conjunto c_0 de la sucesiones de números reales que convergen a 0 dotado de la métrica d_{∞} tal que

$$d_{\infty}(a,b) = \sup_{n \ge 1} |a_n - b_n|$$

cada vez que $a=(a_n)_{n\geq 1}$ y $b=(b_n)_{n\geq 1}$ son elementos de c_0 es un espacio métrico completo.

Solución. (a) Sea $(f_n)_{n\geq 1}$ una sucesión de Cauchy en B(X).

Sea $x \in X$. Si $\varepsilon > 0$, entonces existe $N \in \mathbb{N}$ tal que $n, m \ge N \implies d_{\infty}(f_n, f_m) < \varepsilon$ y entonces si $n \in \mathbb{N}$ tales que $n, m \ge 1$ tenemos que

$$|f_n(x)-f_m(x)| \leq \sup_{x \in X} |f(x)-g(x)| = d_{\infty}(f_n, f_m) < \varepsilon.$$

Vemos así que la sucesión $(f_n(x))_{n\geq 1}$ de números reales es de Cauchy. Como $\mathbb R$ es un espacio métrico completo, esa sucesión tiene límite: llamémoslo f(x).

Obtenemos de esta forma una función $f:X\to\mathbb{R}$. Veamos que es acotada. Como $(f_n)_{n\geq 1}$ es de Cauchy, existe $N\in\mathbb{N}$ tal que para todo $n\geq N$ se tiene que $d_\infty(f_N,f_n)<1$. Esto implica que para todo $x\in X$ es $|f_N(x),f_n(x)|<1$ siempre que $n\geq N$ y, por lo tanto, que la sucesión $(f_n(x))_{n\geq 1}$ está a la larga en $B_1(f_N(x))$: como consecuencia de esto, el límite de esa sucesión, f(x), pertenece a $\overline{B}_1(f_N(x))$, esto es, $|f(x)-f_N(x)|\leq 1$. Sea ahora $M=\sup_{x\in X}|f_N(x)|$. Para cada $x\in X$ tenemos que

$$|f(x)| \le |f(x) - f_N(x)| + |f_N(x)| \le 1 + M.$$

Vemos así que la función f es acotada y, por lo tanto, que se trata de un elemento de B(X). Para terminar, mostremos que la sucesión $(f_n)_{n\geq 1}$ converge a f en B(X). Sea $\varepsilon>0$. Como $(f_n)_{n\geq 1}$ es de Cauchy, existe $N\in\mathbb{N}$ tal que $n,\,m\geq N \implies d_\infty(f_n,f_m)<\varepsilon/3$. Se sigue de esto, por supuesto, que para cada $x\in X$ y cada $n,\,m\in\mathbb{N}$ con $n,\,m\geq N$ se tiene que $|f_n(x)-f_m(x)|<\varepsilon/3$. Tomando límite cuando m crece en esta desigualdad, vemos que para todo $x\in X$ y todo $n\geq N$ es $|f_n(x)-f(x)|\leq \varepsilon/3<\varepsilon/2$ y, por lo tanto, que para todo $n\geq N$ es $d_\infty(f_m,f)\leq \varepsilon/2<\varepsilon$. Esto muestra que $(f_n)_{n\geq 1}$ converge a f en B(X), como queríamos.

(b) Como $C_b(X)$ es un subespacio de B(X), para mostrar que es completo es suficiente con mostrar que es cerrado en B(X). Supongamos que $(f_n)_{n\geq 1}$ es una sucesión de funciones de $C_b(X)$ que converge a f en B(X): tenemos que mostrar que f pertenece a $C_b(X)$, esto es, que f es continua. Sea f es f es continua. Sea f es continua en f es continu

$$|f(y) - f(x)| \le |f(y) - f_n(y)| + |f_n(y) - f_n(x)| + |f_n(x) - f(x)|$$

$$\le d_{\infty}(f, f_n) + |f_n(y) - f_n(x)| + d_{\infty}(f_n, f)$$

$$< \varepsilon.$$

Vemos así que la función f es continua en x.

(c) Sea $(a_n)_{n\geq 1}$ una sucesión de Cauchy en c_0 y supongamos que para cada $n\in\mathbb{N}$ es $a_n=(a_{n,k})_{k\geq 1}$. Si $k\in\mathbb{N}$ y $\varepsilon>0$, entonces como $(a_n)_{n\geq 1}$ es de Cauchy existe $N\in\mathbb{N}$ tal que $m,m'\geq N\Longrightarrow d(a_m,a_{m'})<\varepsilon$ y, en particular, tenemos que cada vez que m y m' son mayores que N es $|a_{m,k},a_{m',k}|\leq d(a_m,a_{m'})<\varepsilon$. Esto nos dice que la sucesión de números reales $(a_{m,k})_{m>1}$ es de Cauchy y, por lo tanto, que converge: sea b_k su límite.

Sea $b=(b_k)_{k\geq 1}$. Queremos probar primero que b es un elemento de c_0 , es decir, que es una sucesión de números reales que converge a 0, y segundo que la sucesión $(a_n)_{n\geq 1}$ con la que empezamos converge a b en c_0 .

- Sea $\varepsilon > 0$. Como la sucesión $(a_n)_{n \geq 1}$ es de Cauchy, sabemos que existe $N \in \mathbb{N}$ tal que $n \geq N \implies d(a_n, a_N) < \varepsilon/2$. Por otro lado, como la sucesión $(a_{N,k})_{k \geq 1}$ converge a 0, existe $K \in \mathbb{N}$ tal que $k \geq K \implies |a_{N,k}| < \varepsilon/2$. Si ahora $n \geq N$ y $k \in \mathbb{N}$ tenemos que $|a_{n,k} a_{N,k}| < \varepsilon/2$ y, como $(a_{n,k})_{n \geq 1}$ converge a b_k , que $|b_k a_{N,k}| \leq \varepsilon/2$. Pero entonces para cada $k \geq K$ es $|b_k| \leq |b_k a_{N,k}| + |a_{N,k}| < \varepsilon$. Esto muestra que la sucesión $(b_k)_{k \geq 1}$ converge a 0.
- Sea otra vez $\varepsilon > 0$. Como la sucesión $(a_n)_{n \geq 1}$ es de Cauchy, sabemos que existe $N \in \mathbb{N}$ tal que $n, m \geq N \implies d(a_n, a_m) < \varepsilon/2$. Esto significa que siempre que $n, m \geq N$ y $k \in \mathbb{N}$ se tiene que $|a_{n,k} a_{m,k}| < \varepsilon/2$. Como la sucesión $(a_{n,k})_{n \geq 1}$ converge a b_k , esto implica que para todo $m \geq N$ y todo $k \in \mathbb{N}$ es $|b_k a_{m,k}| \leq \varepsilon/2 < \varepsilon$, es decir, que para todo $m \geq N$ es $d(b, a_m) \leq \varepsilon$.

Con todo esto vemos que c_0 es completo.

8. Sea X un espacio métrico y sea D un subconjunto denso de X. Si toda sucesión de Cauchy con valores en D converge en X, entonces X es un espacio métrico completo.

Solución. Supongamos que toda sucesión de Cauchy con valores en D converge en X y sea $(x_n)_{n\geq 1}$ una sucesión de Cauchy en X. Como D es denso en X, para cada $n\in \mathbb{N}$ existe $a_n\in D$ tal que $d(a_n,x_n)<1/n$. Mostremos que la sucesión $(a_n)_{n\geq 1}$, que toma valores en D, es de Cauchy. Sea $\varepsilon>0$. Como la sucesión $(x_n)_{n\geq 1}$ es de Cauchy, existe $N\in \mathbb{N}$ tal que cada vez que n y m son elementos de \mathbb{N} se tiene que

$$n, m \ge N \implies d(x_n, x_m) < \varepsilon/3.$$

Por otro lado, existe $M \in \mathbb{N}$ tal que $1/M < \varepsilon/3$. Si ahora $n \in \mathbb{N}$ tales que $n, m \ge \max\{N, M\}$, entonces

$$d(a_n, a_m) \le d(a_n, x_n) + d(x_n, x_m) + d(x_m, a_m) < \frac{1}{n} + \frac{\varepsilon}{3} + \frac{1}{m} < \varepsilon.$$

Ahora bien, como la sucesión $(a_n)_{n\geq 1}$ es de Cauchy y toma valores en D, nuestra hipótesis nos dice que existe $x\in X$ tal que $(a_n)_{n\geq 1}$ converge a x. Mostremos que la sucesión $(x_n)_{n\geq 1}$ con la que empezamos también converge a x.

Sea $\varepsilon > 0$. Como $(a_n)_{n \geq 1}$ converge a x, existe $N \in \mathbb{N}$ tal que $d(a_n, x) < \varepsilon/2$ para todo $n \geq N$. Por otro lado, existe $M \in \mathbb{N}$ tal que $1/M < \varepsilon/2$. Si ahora n es un elemento de \mathbb{N} tal que $n \geq \max\{N, M\}$, entonces tenemos que

$$d(x_n, x) \le d(x_n, a_n) + d(a_n, x) < \frac{1}{n} + \frac{\varepsilon}{2} < \varepsilon.$$

Esto muestra que la sucesión $(x_n)_{n\geq 1}$ tiene límite en X y, en definitiva, que X es un espacio métrico completo.

Continuidad uniforme

9. Sean X e Y dos espacios métricos. Una función $f: X \to Y$ tal que existe $\lambda > 0$ con $d(f(x), f(x')) \le \lambda d(x, x')$ cada vez que x y x' son puntos de X es uniformemente continua.

Solución. Sea $\varepsilon > 0$ y sea $\delta := \varepsilon/\lambda$. Si x e x' son elementos de X tales que $d(x,x') < \delta$, entonces $d(f(x),f(x')) \le \lambda d(x,x') < \lambda \delta = \varepsilon$.

10. (*a*) Sean X e Y espacios métricos, sea A un subconjunto de X y sea $f: X \to Y$ una función. Si existe $\alpha > 0$, un entero $n_0 \in \mathbb{N}$ y sucesiones $(x_n)_{n \geq 1}$ en A tales que

$$\lim_{n \to \infty} d(x_n, y_n) = 0, \qquad \forall n \in \mathbb{N}, n \ge n_0 \implies d(f(x_n), f(y_n)) \ge \alpha,$$

entonces f no es uniformemente continua sobre A.

- (*b*) La función $f: x \in \mathbb{R} \mapsto x^2 \in \mathbb{R}$ no es uniformemente continua. ¿Y su restricción al intervalo $(-\infty, -\pi]$?
- (c) La función $g: t \in (0,1) \mapsto 1/t \in \mathbb{R}$ no es uniformemente continua.

Solución. (a) Supongamos existen α , n_0 , $(x_n)_{n\geq 1}$ e $(y_n)_{n\geq 1}$ que satisfacen las condiciones del enunciado y supongamos, para llegar a un absurdo, que la función f es uniformemente continua. Como α es positivo, existe entonces $\delta>0$ tal que siempre que $x, x'\in X$ son tales que $d(x,x')<\delta$ se tiene que $d(f(x),f(x'))<\alpha$. Como $\lim_{n\to\infty}d(x_n,y_n)=0$, existe $n\in\mathbb{N}$ tal que $n\geq n_0$ y $d(x_n,y_n)<\delta$. De acuerdo a la hipótesis y a la forma en que elegimos δ , tenemos entonces que $\alpha>d(f(x_n),f(y_n))\geq\alpha$. Esta es la contradicción que queríamos.

(b) Sea $\alpha\coloneqq 1,\, n_0\coloneqq 1$ y para cada $n\in\mathbb{N}$ pongamos $x_n\coloneqq -n$ e $y_n\coloneqq -n-1/n.$ Claramente

$$\lim_{n\to\infty}d(x_n,y_n)=\lim_{n\to\infty}\left|-n-\left(-n-\frac{1}{n}\right)\right|=\lim_{n\to\infty}\frac{1}{n}=0.$$

y para todo $n \in \mathbb{N}$ es

$$d(f(x_n), f(y_n)) = \left| n^2 - \left(n + \frac{1}{n} \right)^2 \right| = \left| 2 - \frac{1}{n^2} \right| \ge 2 - \frac{1}{n^2} \ge 1 = \alpha.$$

De acuerdo a la primera parte, la función f no es uniformemente continua. Su restricción a $(-\infty, -\pi]$ tampoco lo es, por exactamente la misma razón.

(c) Pongamos $\alpha\coloneqq 1/4,$ $n\coloneqq 1$ y para cada $n\in\mathbb{N}$ sean $x_n=1/n$ e $y_n=1/n-1/(n+1)^2$. Tenemos que

$$\lim_{n\to\infty}d(x_n,y_n)=\lim_{n\to\infty}\left|\frac{1}{n}-\left(\frac{1}{n}-\frac{1}{(n+1)^2}\right)\right|=\lim_{n\to\infty}\frac{1}{(n+1)^2}=0$$

y para todo $n \in \mathbb{N}$ es

$$d(g(x_n), g(y_n)) = \left| g\left(\frac{1}{n}\right) - g\left(\frac{1}{n} - \frac{1}{(n+1)^2}\right) \right| = \frac{n^2}{1 + n + n^2} \ge \frac{1}{4}.$$

Otra vez, la primera parte del ejercicio nos dice que la función g no es uniformemente continua.

- **11.** (a) Sean X e Y dos espacios métricos Y sea $f: X \to Y$ una función uniformemente continua. Si $(x_n)_{n\geq 1}$ es una sucesión de Cauchy en X, entonces $(f(x_n))_{n\geq 1}$ es una sucesión de Cauchy en Y.
- †(b) Si $f: X \to Y$ es una función entre espacios métricos que tiene la propiedad de que para cada sucesión de Cauchy $(x_n)_{n\geq 1}$ en X la sucesión $(f(x_n))_{n\geq 1}$ es de Cauchy en Y, ¿es f necesariamente uniformemente continua?
- (c) Sean X e Y dos espacios métricos y sea $f: X \to Y$ un homeomorfismo uniforme. El espacio X es completo si y solamente si el espacio Y lo es.
- (*d*) Si un espacio métrico (X, d) es completo y d' es una métrica sobre X uniformemente equivalente a d, entonces el espacio métrico (X, d') es completo.

Solución. (a) Supongamos que $(x_n)_{n\geq 1}$ es una sucesión de Cauchy y sea $\varepsilon>0$. Como f es uniformemente continua, existe $\delta>0$ tal que

$$d(x,x')<\delta \implies d(f(x),f(x'))<\varepsilon.$$

Por otro lado, como $(x_n)_{n\geq 1}$ es de Cauchy, existe $N\in\mathbb{N}$ tal que

$$n, m \ge N \implies d(x_n, x_m) < \delta$$
.

Si ahora n y m son elementos de $\mathbb N$ tales que $n, m \ge N$, entonces tenemos que $d(x_n, x_m) < \delta$ y, por lo tanto, $d(f(x), f(x')) < \varepsilon$. Esto muestra que $(f(x_n))_{n \ge 1}$ es de Cauchy.

- (b) Consideremos la función $f:t\in\mathbb{R}\mapsto t^2\in\mathbb{R}$. Sabemos del Ejercicio $\mathbf{10}(b)$ que no es uniformemente continua. Sea, por otro lado, $(x_n)_{n\geq 1}$ una sucesión de Cauchy en \mathbb{R} . Como \mathbb{R} es completo, esa sucesión converge a un punto $x\in\mathbb{R}$ y, como la función f es continua, sabemos que la sucesión $(f(x_n))_{n\geq 1}$ converge a f(x) así que, en particular, es de Cauchy. Vemos así que la respuesta a la pregunta del enunciado es negativa.
- (c) Es suficiente que mostremos que Y es completo si X lo es, porque para probar la implicación recíproca a partir de la directa es suficiente reemplazar a la función f por su inversa, que también es un homeomorfismo uniforme.

Supongamos entonces que X es completo y sea $(y_n)_{n\geq 1}$ una sucesión de Cauchy en Y. Como f es un homeomorfismo uniforme, existen constantes positivas α y β tales que

$$\alpha d(x, x') \le d(f(x), f(x')) \le \beta d(x, x')$$

cada vez que x y x' están en X. Por otro lado, como f es una biyección, hay una sucesión $(x_n)_{n\geq 1}$ en X tal que $f(x_n)=y_n$ para todo $n\in\mathbb{N}$. Mostremos que $(x_n)_{n\geq 1}$ es de Cauchy en X. Sea $\varepsilon>0$. Como $(y_n)_{n\geq 1}$ es de Cauchy, existe $N\in\mathbb{N}$ tal que

$$n, m \ge N \implies d(y_n, y_m) < \alpha \varepsilon$$
.

Si ahora $n \ y \ m$ son dos elementos de $\mathbb N$ tales que $n, \ m \ge N$, entonces tenemos que $\alpha d(x_n, x_m) \le d(f(x_n), f(x_m)) = d(y_n, y_m) \le \alpha \varepsilon$, así que $d(x_n, x_m) \le \varepsilon$.

Como estamos suponiendo que X es un espacio completo, existe $x \in X$ tal que $(x_n)_{n\geq 1}$ converge a x y, como f es una función continua, tenemos que $(y_n)_{n\geq 1} = (f(x_n))_{n\geq 1}$ converge a f(x). El espacio Y es, por lo tanto, completo.

(*d*) Sean *d* y *d'* dos métricas sobre *X* uniformemente equivalentes, de manera que la función $id_X : (X,d) \to (X,d')$ es un homeomorfismo uniforme. Si (X,d) es completo, la parte (*c*) del ejercicio nos dice que (X,d') es completo.

12. Dé ejemplos de

- (a) una función $\mathbb{R} \to \mathbb{R}$ que es acotada y continua, pero no uniformemente.
- (b) una función $\mathbb{R} \to \mathbb{R}$ que es uniformemente continua pero no acotada.

Solución. Sea $f:t\in\mathbb{R}\mapsto\cos t^2\in\mathbb{R}$, que es claramente una función continua y acotada. Veamos que no es uniformemente continua. Supongamos, por el contrario, que lo es. Existe entonces $\delta>0$ tal que

$$|x-y|<\delta \implies |f(x)-f(y)|<1.$$

Para cada $n \in \mathbb{N}$ sean $x_n = \sqrt{2n\pi}$ e $y_n = \sqrt{(2n+1)\pi}$. Es como la función

$$h:t\in(0,+\infty)\to\sqrt{t}\in\mathbb{R}$$

es diferenciable, el teorema de Lagrange nos dice que para cada $n \in \mathbb{N}$ existe ξ_n en el

intervalo $(2n\pi, (2n+1)\pi)$ tal que

$$\sqrt{(2n+1)\pi} - \sqrt{2n\pi} = h((2n+1)\pi) - h(2n\pi) = h'(\xi_n) = \frac{1}{2\sqrt{\xi_n}},$$

así que

$$\left|\sqrt{(2n+1)\pi} - \sqrt{2n\pi}\right| \le \frac{1}{2\sqrt{2n\pi}}.$$

En particular, como $\lim_{n\to\infty} 1/2\sqrt{2n\pi} = 0$ existe $n \in \mathbb{N}$ tal que

$$\left|\sqrt{(2n+1)\pi}-\sqrt{2n\pi}\right|<\delta$$

y, por lo tanto, en vista de la forma en que elegimos a δ , es

$$2 = \left|\cos(2n+1)\pi - \cos 2n\pi\right| = \left|f\left(\sqrt{(2n+1)\pi}\right) - f\left(\sqrt{2n\pi}\right)\right| < 1.$$

Esto es, por supuesto, absurdo. Esto da un ejemplo para la primera parte.

Para la segunda es suficiente considerar la función $id_{\mathbb{R}} : \mathbb{R} \to \mathbb{R}$, que es uniformemente continua pero no acotada.

Solución. Sea A y B subconjuntos no vacíos de X tales que d(A,B)=0 y sea $\varepsilon>0$. Como f es uniformemente continua, existe $\delta>0$ tal que

$$d(x, x') < \delta \implies d(f(x), f(x')) < \varepsilon$$
.

Por otro lado, como inf $\{d(a,b): a \in A, b \in B\} = d(A,B) = 0 < \delta$, existen $a \in A$ y $b \in B$ tales que $d(a,b) < \delta$ y, por lo tanto, $d(f(a),f(b)) < \varepsilon$. Esto nos dice que

$$d(f(A), f(B)) = \inf\{d(f(a), f(b)) : a \in A, b \in B\} < \varepsilon.$$

Como esto vale cualquiera sea $\varepsilon > 0$, podemos concluir que d(f(A), f(B)) = 0.

14. Sean X e Y dos espacios métricos, sea D un subconjunto denso de X y sea $f:D\to Y$ una función uniformemente continua. Si Y es completo, entonces existe una y solo una función continua $\bar{f}:X\to Y$ tal que $\bar{f}|_D=f$ y, más aún, esta función \bar{f} es uniformemente continua.

Solución. Sea $x \in X$. Como D es denso, existe una sucesión $(q_n)_{n \geq 1}$ en D que converge a x. Afirmamos que la sucesión $(f(q_n))_{n \geq 1}$ es de Cauchy. Veámoslo: sea $\varepsilon > 0$. Como f es uniformemente continua, existe $\delta > 0$ tal que $d(f(z), f(z')) < \varepsilon$ siempre que z y z' son elementos de X tales que $d(z, z') < \delta$. Por otro lado, como la sucesión $(q_n)_{n \geq 1}$ converge a x, es de Cauchy, y existe $N \in \mathbb{N}$ tal que

$$n, m \ge N \implies d(q_n, q_m) < \delta$$
.

Si ahora n y m son dos elementos de $\mathbb N$ tales que n, $m \ge N$, entonces la elección de N implica que $d(q_n,q_m)<\delta$ y, a su vez, la elección de δ , que $d(f(q_n),f(q_m))<\varepsilon$. Esto prueba que $(f(q_n))_{n\ge 1}$ es una sucesión de Cauchy en Y y, como Y es completo por hipótesis, que converge a un punto Y.

Afirmamos ahora que este punto y depende solamente del punto x de X con el que empezamos y no de la forma en que elegimos la sucesión $(q_n)_{n\geq 1}$ en D que converge a x. Para verlo, supongamos que $(q'_n)_{n\geq 1}$ es otra sucesión en D que converge a x. Podemos considerar entonces la sucesión $(r_n)_{n\geq 1}$ tal que

$$r_n = \begin{cases} q_{n/2} & \text{si } n \text{ es par;} \\ q'_{(n+1)/2} & \text{si } n \text{ es impar.} \end{cases}$$

Es fácil ver, usando que $(q_n)_{n\geq 1}$ y $(q'_n)_{n\geq 1}$ son sucesiones que convergen a x, que la sucesión $(r_n)_{n\geq 1}$ converge a x. Lo que hicimos, entonces, nos dice que la sucesión $(f(r_n))_{n\geq 1}$ converge. En particular, todas sus subsucesiones convergen al mismo límite: esto implica, claro, que las sucesiones $(q_n)_{n\geq 1} = (r_{2n})_{n\geq 1}$ y $(q'_n) = (r_{2n-1})_{n\geq 1}$ tienen el mismo límite.

Como consecuencia de esto es claro que existe una función $\bar{f}: X \to Y$ con la siguiente propiedad:

si $x \in X$ y $(q_n)_{n\geq 1}$ es una sucesión en D que converge a x, entonces la sucesión $(f(q_n))_{n\geq 1}$ converge a $\bar{f}(x)$.

Si $q \in D$, entonces la sucesión $(q_n)_{n \ge 1}$ que tiene $q_n = q$ para todo $n \in \mathbb{N}$ claramente toma valores en D y converge a q: la propiedad que caracteriza a \bar{f} , entonces, nos dice que

$$\bar{f}(q) = \lim_{n \to \infty} f(q_n) = \lim_{n \to \infty} f(q) = f(q).$$

Esto nos dice que $\bar{f}|_D = f$. Veamos que \bar{f} es uniformemente continua.

Sea $\varepsilon > 0$. Como f es uniformemente continua, existe $\delta > 0$ tal que

$$q, q' \in D, d(q, q') < \delta \implies d(f(q), f(q')) < \frac{\varepsilon}{3}.$$

Sean ahora x y x' dos elementos de X tales que $d(x,x') < \delta/3$. Podemos elegir sucesiones $(q_n)_{n\geq 1}$ y $(q'_n)_{n\geq 1}$ en D que convergen a x y a x', respectivamente, y sabemos que las sucesiones $(f(q_n))_{n\geq 1}$ y $(f(q'_n))_{n\geq 1}$ convergen a f(x) y a f(x'), respectivamente. En particular, existe $n\in \mathbb{N}$ tal que $d(q_n,x)<\delta/3$, $d(q'_n,x')<\delta/3$, $d(f(q_n),\bar{f}(x))<\varepsilon/3$ y $d(f(q'_n),\bar{f}(x'))<\varepsilon/3$, y tenemos entonces que

$$d(q_n, q'_n) \le d(q_n, x) + d(x, x') + d(x', q'_n) < \frac{\delta}{3} + \frac{\delta}{3} + \frac{\delta}{3} = \delta,$$

así que $d(f(q_n), f(q'_n)) < \varepsilon/3$ y, por lo tanto,

$$\begin{split} d(\bar{f}(x),\bar{f}(x')) &\leq d(\bar{f}(x),f(q_n)) + d(f(q_n),f(q_n')) + d(f(q_n'),\bar{f}(x')) \\ &< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon. \end{split}$$

Para terminar, tenemos que ver que la afirmación de unicidad es cierta. Sea $g: X \to Y$ otra función continua tal que $g|_D = f$. Si $x \in X$, entonces existe una sucesión $(q_n)_{n \ge 1}$ en D que converge a x y, como \bar{f} y g son continuas y $\bar{f}(q) = g(q)$ para todo $q \in D$,

$$g(x) = \lim_{n \to \infty} g(q_n) = \lim_{n \to \infty} \bar{f}(q_n) = f(x).$$

Esto nos dice que $g = \bar{f}$.

El teorema de Baire

15. Si n es positivo, entonces \mathbb{R}^n no es unión finita de subespacios vectoriales propios.

Solución. Sean V_1, \ldots, V_m subespacios vectoriales propios de \mathbb{R}^n tales que $\mathbb{R}^n = \bigcup_{i=1}^m V_i$ y, por lo tanto, tales que $\bigcap_{i=1}^m (\mathbb{R}^n \setminus V_i) = \emptyset$. Para llegar a un absurdo es suficiente en vista del teorema de Baire, que mostremos que cada $\mathbb{R}^n \setminus V_i$ es un abierto denso de \mathbb{R}^n .

En general, mostremos que

si V es un subespacio propio de \mathbb{R}^n , entonces $\mathbb{R}^n \setminus V$ es un abierto denso de \mathbb{R}^n .

Sea, para ello, V un subespacio propio de \mathbb{R}^n y sea $m := \dim V$ su dimensión. Sabemos que existe una función lineal $\phi : \mathbb{R}^n \to \mathbb{R}^{n-m}$ tal que $V = \ker \phi$. La función ϕ es continua, porque es lineal, así que $V = \phi^{-1}(\{0\})$ es un cerrado de \mathbb{R}^n y, por lo tanto, $\mathbb{R}^n \setminus V$ es un abierto de \mathbb{R}^n .

Veamos ahora que $\mathbb{R}^n \setminus V$ es denso. Como V es un subespacio propio de \mathbb{R}^n , existe $w \in \mathbb{R}^n \setminus V$ y, en particular $\phi(w) \neq 0$. Sea $x \in \mathbb{R}^n$. Si x está en $\mathbb{R}^n \setminus V$, es claro que $x \in \mathbb{R}^n \setminus V$. Supongamos entonces que $x \in V$. Si $n \in \mathbb{N}$, entonces

$$\phi\left(x+\frac{w}{n}\right)=\frac{\phi(w)}{n}\neq 0,$$

de manera que $x + w/n \in \mathbb{R}^n \setminus V$. Como

$$\lim_{n\to\infty} d(x+w/n,x) = \lim_{n\to\infty} d(w/n,0) = 0,$$

tenemos que $x \in \overline{\mathbb{R}^n \setminus V}$ también en este caso.

16. En un espacio métrico completo sin puntos aislados, un subconjunto denso y numerable no es un conjunto G_{δ} .

Solución. Sea X un espacio métrico completo sin puntos aislados y sea D un subconjunto denso y numerable de X. Supongamos que D es un conjunto G_{δ} , de manera que su complemento $X \setminus D$ es un conjunto F_{σ} , es decir, es unión numerable de conjuntos cerrados. Más aún, cada uno de esos cerrados tiene interior vacío, ya que es disjunto de D y D interseca cada abierto de X.

Por otro lado, como X no tiene puntos aislados, para todo $q \in D$ el conjunto $\{q\}$ tiene interior vacío y, por lo tanto, $D = \bigcup_{q \in D} \{q\}$ es también unión numerable de cerrados de interior vacío. Por supuesto, de estas dos cosas se sigue que $X = D \cup (X \setminus D)$ es unión numerable de cerrados de interior vacío, esto es, de primera categoría. Esto es absurdo, porque el teorema de Baire nos dice que X es de segunda categoría.

17. No existen funciones $f: \mathbb{R} \to \mathbb{R}$ que sean continuas solo en los elementos de \mathbb{Q} . *Sugerencia.* Para cada $n \in \mathbb{N}$ considere el conjunto

 $U_n := \{x \in \mathbb{R} : \text{existe un abierto } U \subseteq \mathbb{R} \text{ tal que } x \in U \text{ y diam}(f(U)) < 1/n \}.$

Solución. Sea $f:\mathbb{R}\to\mathbb{R}$ una función que es continua en los puntos de \mathbb{Q} y consideremos para cada $n\in\mathbb{N}$ el conjunto U_n de la sugerencia. Si $n\in\mathbb{N}$ y $x\in U_n$, entonces existe un abierto U en \mathbb{R} tal que $x\in U$ y $\mathrm{diam}(f(U))<1/n$ y, por lo tanto, $x\in U\subseteq U_n$: esto nos dice que U_n es abierto. Concluimos así que $V:=\bigcap_{n\geq 1}U_n$ es un conjunto G_δ en X.

Mostremos que V es el conjunto de puntos de continuidad de f. Sea primero $x \in V$ y sea $\varepsilon > 0$. Existe $n \in \mathbb{N}$ tal que $2/n < \varepsilon$ y, como $x \in U_b$, hay un abierto U en \mathbb{R} tal que $x \in U$ diam(f(U)) < 1/n y, en particular, $f(U) \subseteq B_{2/n}(f(x)) \subseteq B_{\varepsilon}(f(x))$. Así, la función f es continua en x.

Sea ahora $x \in \mathbb{R} \setminus V$, de manera que existe $n \in \mathbb{N}$ tal que $x \notin U$ y, por lo tanto, no existe ningún abierto U de \mathbb{R} tal que $\in U$ y diam(f(U)) < 1/n. En particular, para todo $\delta > 0$ existe $y \in B_{\delta}(x)$ tal que d(f(x), f(y)) > 1/n: vemos con esto que la función f no es continua en x.

La conclusión es que el conjunto de puntos de continuidad de una función $\mathbb{R} \to \mathbb{R}$ es un conjunto G_{δ} y, como \mathbb{Q} no es un conjunto G_{δ} , que una función $\mathbb{R} \to \mathbb{R}$ no puede ser continua exactamente en los puntos de \mathbb{Q} .

- **18.** Sea *X* un espacio métrico. Decimos que un subconjunto *A* de *X* es *nunca denso* en *X* si su clausura tiene interior vacío.
- (a) El complemento de un subconjunto nunca denso de X es denso. ¿Vale la afirmación recíproca?
- (b) Si U es un abierto denso de X, entonces $X \setminus U$ es nunca denso.
- (*c*) Si *A* es un subconjunto de *X*, entonces las siguientes afirmaciones son equivalentes:
 - (i) A es nunca denso en X.
 - (ii) Toda bola abierta B de X contiene otra B' tal que $B' \cap A = \emptyset$.
 - (iii) A no es denso en ninguna bola abierta.

Solución. (a) Sea A un conjunto nunca denso en X. Si U es un abierto no vacío de X, entonces $U \nsubseteq \overline{A}$, así que $U \cap (X \setminus A) \supseteq U \cap (X \setminus \overline{A}) \neq \emptyset$. Como U interseca no trivialmente a todo abierto no vacío de X, es denso.

La implicación recíproca no es cierta: el complemento de $\mathbb Q$ en $\mathbb R$ es denso en $\mathbb R$, pero $\mathbb Q$ no es nunca denso en $\mathbb R$.

- (b) Sea U un abierto denso en X. El conjunto $A := X \setminus U$ es cerrado y tiene interior vacío: en efecto, si V es un abierto de X contenido en A, entonces V es disjunto de U, lo que es absurdo, ya que U es denso.
- (c) $(i\Rightarrow ii)$ Supongamos que A es nunca denso en X y sea B una bola abierta de X. Como \overline{A} tiene interior vacío, no contiene a B, así que $B\setminus \overline{A}$ es un conjunto no vacío. Como además esa diferencia es abierta, es claro que existe otra bola abierta B' tal que $B\subseteq B\setminus \overline{A}$ y, en particular, $B\subseteq B'$ y $B'\cap A=\emptyset$.

 $(ii\Rightarrow iii)$ Supongamos que toda bola abierta de X contiene otra bola abierta disjunta de A y sea B una bola abierta de X. Por hipótesis, existe una bola abierta B' tal que $B\subseteq B$ y $B'\cap A=\emptyset$: esto nos dice que $A\cap B$ no es denso en B, porque B' es un abierto no vacío de B.

 $(iii \Rightarrow i)$ Si A no es nunca denso en X, entonces el interior de \overline{A} no es vacío y existe

una bola abierta B tal que $B \subseteq \overline{A}$. Si $b \in B$, entonces existe una sucesión de puntos de A que converge a b y, como B es un entorno de b, esa sucesión posee una subsucesión con valores en B: vemos así que $b \in \overline{B \cap A}$ y, por lo tanto, que el conjunto $B \cap A$ es denso en B, esto es, que A es denso en B.

19. Sea $(I_n)_{n\geq 1}$ una enumeración de los subintervalos no degenerados (es decir, de longitud positiva) y cerrados de [0,1] que tienen extremos racionales y para cada $n\in\mathbb{N}$ sea

$$E_n := \{ f \in C[0,1] : f \text{ es monótona en } I_n \}.$$

- (a) Cualquiera sea $n \in \mathbb{N}$, el conjunto E_n es un cerrado nunca denso de C[0,1].
- (b) Existen funciones continuas $[0,1] \to \mathbb{R}$ que no son monótonas en ningún subintervalo propio de su dominio.
- (c) El conjunto de las funciones $[0,1] \to \mathbb{R}$ que son continuas y que tienen algún intervalo de monotonía tiene interior vacío en C[0,1].

Solución. (a) Sabemos que para cada $t \in [0,1]$ la función $e_t: f \in C[0,1] \mapsto f(t) \in \mathbb{R}$ es continua. Se sigue inmediatamente de eso que si $s, t \in [0,1]$, entonces la función $e_{s,t}: f \in C[0,1] \mapsto f(s) - f(t) \in \mathbb{R}$ es continua y, por lo tanto, que los conjuntos

$$D_{s,t}^- := \{ f \in C[0,1] : e_{s,t}(f) \le 0 \}, \qquad D_{s,t}^+ := \{ f \in C[0,1] : e_{s,t}(f) \ge 0 \}$$

son cerrados de C[0,1]. Si $n \in \mathbb{N}$, vemos entonces que

$$E_n^- = \bigcap_{\substack{s,t \in I_n \\ s < t}} D_{s,t}^-, \qquad E_n^+ = \bigcap_{\substack{s,t \in I_n \\ s < t}} D_{s,t}^+$$

son cerrados de C[0,1]. Observemos que E_n^- y E_n^+ tienen por elementos a las funciones de C[0,1] que son crecientes o decrecientes en I_n , respectivamente. Veamos que tienen interioryacío.

Sea $f \in E_n^-$ y sea $\varepsilon > 0$. Como f es continua, hay un subintervalo no degenerado [a,b] contenido en I_n tal que diam $f([a,b]) < \varepsilon/2$. Sea $g:[0,1] \to \mathbb{R}$ tal que si $x \in [0,1]$ es

$$g(x) = \begin{cases} f(x) & \text{si } x \in [0, a] \text{ o } x \in [b, 1]; \\ 2\frac{f(b) + \varepsilon - f(a)}{b - a} (x - a) + f(a) & \text{si } x \in [a, (a + b)/2]; \\ -\frac{2\varepsilon}{b - a} \left(x - \frac{a + b}{2}\right) + f(b) + \varepsilon & \text{si } x \in [(a + b)/2, b]. \end{cases}$$

Esta función g es continua y tiene

$$g\left(\frac{a+b}{2}\right) = f(b) + \varepsilon > f(b) = g(b),$$

así que no pertenece a E_n^- . Sea $t \in [0,1]$. Si $t \in [0,a] \cup [b,1]$, es |g(t)-f(t)| = 0. Si $t \in [a,(a+b)/2]$, es

$$|g(t) - f(t)| = \left| 2 \frac{f(b) + \varepsilon - f(a)}{b - a} (x - a) + f(a) - f(t) \right|$$

$$\leq (f(b) + \varepsilon - f(a)) + |f(a) - f(t)| < 3\varepsilon.$$

De manera similar, si $t \in [(a+b)/2, b]$, entonces

$$|g(t) - f(t)| = \left| -\frac{2\varepsilon}{b - a} \left(t - \frac{a + b}{2} \right) + f(b) + \varepsilon - f(t) \right|$$
$$= \varepsilon + |f(b) - f(t)| + \varepsilon < 3\varepsilon.$$

Esto nos dice que E_n^- no contiene a la bola $B_{3\varepsilon}(f)$. Así, E_n^- no contiene ninguna bola abierta y, por lo tanto, tiene interior vacío. El mismo razonamiento se aplica a E_n^+ , por supuesto.

- (b), (c) De acuerdo a la primera parte, el conjunto $M = \bigcup_{n \geq 1} E_n^- \cup \bigcup_{n \geq 1} E_n^+$ es de primera categoría en C[0,1] y, por lo tanto, es un subconjunto propio de C[0,1]: todo elemento de C[0,1] que no está en esa unión es una función que no es creciente ni decreciente en ninguno de los intervalos I_n y, ya que todo subintervalo no degenerado de [0,1] contiene uno de los I_n , en ningún subintervalo no degenerado de [0,1].
- **20.** Supongamos que [a, b] es un intervalo no degenerado de \mathbb{R} . Una función $f:[a,b] \to \mathbb{R}$ es *de Lipschitz* si existe k > 0 tal que $|f(x) f(y)| \le k|x y|$ cada vez que x e y son elementos de [a,b].

El conjunto Lip[a, b] de las funciones [a, b] $\to \mathbb{R}$ que son de Lipschitz está contenido en C[a,b] y que allí tiene interior vacío.

Solución. Es evidente que toda función de Lipschitz en [a,b] es uniformemente continua, así que $\operatorname{Lip}[a,b]\subseteq C[a,b]$. Para cada $n\in\mathbb{N}$ sea L_n el conjunto de las funciones f de C[a,b] tales que $|f(x)-f(y)|\leq n|x-y|$ cada vez que x e y están en [a,b]. Si para cada $x,y\in[a,b]$ escribimos $e_{x,y}:f\in C[a,b]\mapsto |f(x)-f(y)|\in\mathbb{R}$, que es una función continua, entonces

$$L_n = \bigcap_{x,y \in [a,b]} \{ f \in C[a,b] : e_{x,y}(f) \le n|x-y| \}$$

es un cerrado de C[a,b], ya que cada intersecando es cerrado. Vamos a probar que el interior de L_n es vacío. De esto se sigue, gracias al teorema de Baire, que la unión $\bigcup_{n\in\mathbb{N}}L_n$, que es el conjunto $\mathsf{Lip}[a,b]$ de las funciones de Lipschitz de C[a,b], tiene interior vacío.

Sea $f \in L_n$, sea $q \in \mathbb{N}$, sea $g : t \in [a, b] \mapsto \sin(qt) \in \mathbb{R}$ y sea $h = f + \varepsilon g/2$. Es claro que $h \in B_{\varepsilon}(f)$. Mostremos que podemos elegir q de manera que $h \notin L_n$. Como a < b, es posible elegir q suficientemente grande como para que existan α y β en [a, b] tales que $0 < \beta - \alpha < \varepsilon/2n$, $\sin(q\alpha) = -1$ y $\sin(q\beta) = 1$, y entonces

$$h(\beta) - h(\alpha) = f(\beta) - f(\alpha) + \varepsilon \ge -n(\beta - \alpha) + \varepsilon \ge \frac{\varepsilon}{2} > n(\beta - \alpha),$$

ya que $|f(\beta) - f(\alpha)| < n|\beta - \alpha|$, y entonces $h \notin L_n$, como queremos.