# 台中房價預測

小組成員:劉順勇

報告日期:2020/05/14

# 資料探索式分析(EDA)

1 df = train.describe()
2 df.round(2)

|       | 土地面<br>積 | 建物總<br>面積 | 屋岭       | 樓層       | 總樓層      | 房數       | 廳數       | 衛數       | 電梯       | 經度       | 緯度       | 總價       |
|-------|----------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| count | 30000.00 | 30000.00  | 29999.00 | 30000.00 | 30000.00 | 30000.00 | 30000.00 | 30000.00 | 30000.00 | 30000.00 | 30000.00 | 30000.00 |
| mean  | 18.73    | 136.85    | 16.73    | 7.46     | 13.23    | 2.74     | 1.68     | 1.80     | 0.91     | 120.67   | 24.16    | 841.19   |
| std   | 13.09    | 90.88     | 11.78    | 4.35     | 5.79     | 1.40     | 0.70     | 1.19     | 0.29     | 0.03     | 0.03     | 760.97   |
| min   | 0.10     | 0.02      | 0.00     | 1.00     | 1.00     | 0.00     | 0.00     | 0.00     | 0.00     | 120.58   | 23.98    | 0.00     |
| 25%   | 10.80    | 86.68     | 4.04     | 4.00     | 9.00     | 2.00     | 1.00     | 1.00     | 1.00     | 120.65   | 24.14    | 410.00   |
| 50%   | 17.60    | 127.92    | 20.47    | 7.00     | 13.00    | 3.00     | 2.00     | 2.00     | 1.00     | 120.67   | 24.16    | 670.00   |
| 75%   | 24.75    | 169.27    | 24.92    | 10.00    | 15.00    | 3.00     | 2.00     | 2.00     | 1.00     | 120.69   | 24.17    | 1045.25  |
| max   | 875.00   | 6263.64   | 56.99    | 30.00    | 41.00    | 91.00    | 33.00    | 91.00    | 1.00     | 120.98   | 24.24    | 36000.00 |

# 資料探索式分析(EDA)

1 ''' calculate correlation between features to detect colinearity '''

2 corr = train.corr()

3 corr = corr.round(2)

|       | 土地面<br>積 | 建物總<br>面積 | 屋龄    | 樓層    | 總樓層   | 房數    | 廳數    | 衛數    | 電梯    | 經度    | 緯度    | 總價    |
|-------|----------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 土地面積  | 1.00     | 0.74      | -0.17 | -0.09 | -0.11 | 0.68  | 0.37  | 0.60  | -0.21 | 0.00  | -0.00 | 0.59  |
| 建物總面積 | 0.74     | 1.00      | -0.42 | 0.19  | 0.36  | 0.69  | 0.41  | 0.62  | 0.17  | -0.08 | 0.01  | 0.88  |
| 屋龄    | -0.17    | -0.42     | 1.00  | -0.31 | -0.55 | -0.08 | -0.23 | -0.05 | -0.48 | 0.03  | -0.00 | -0.52 |
| 樓層    | -0.09    | 0.19      | -0.31 | 1.00  | 0.56  | -0.00 | 0.05  | 0.00  | 0.29  | -0.06 | 0.01  | 0.25  |
| 總樓層   | -0.11    | 0.36      | -0.55 | 0.56  | 1.00  | 0.03  | 0.11  | 0.03  | 0.46  | -0.15 | 0.02  | 0.46  |
| 房數    | 0.68     | 0.69      | -0.08 | -0.00 | 0.03  | 1.00  | 0.41  | 0.86  | -0.11 | 0.01  | -0.03 | 0.50  |
| 廳數    | 0.37     | 0.41      | -0.23 | 0.05  | 0.11  | 0.41  | 1.00  | 0.22  | 0.02  | 0.01  | -0.02 | 0.36  |
| 衛數    | 0.60     | 0.62      | -0.05 | 0.00  | 0.03  | 0.86  | 0.22  | 1.00  | -0.07 | -0.01 | -0.01 | 0.46  |
| 電梯    | -0.21    | 0.17      | -0.48 | 0.29  | 0.46  | -0.11 | 0.02  | -0.07 | 1.00  | -0.08 | 0.00  | 0.18  |
| 經度    | 0.00     | -0.08     | 0.03  | -0.06 | -0.15 | 0.01  | 0.01  | -0.01 | -0.08 | 1.00  | -0.10 | -0.18 |
| 緯度    | -0.00    | 0.01      | -0.00 | 0.01  | 0.02  | -0.03 | -0.02 | -0.01 | 0.00  | -0.10 | 1.00  | 0.03  |
| 總價    | 0.59     | 0.88      | -0.52 | 0.25  | 0.46  | 0.50  | 0.36  | 0.46  | 0.18  | -0.18 | 0.03  | 1.00  |

### 各行政區數量分佈 6000 5000 4000 3000 2000 1000 0 西屯區 北屯區 北區 南屯區 西區 大里區 大雅區

## 各行政區數量分佈

資料多集中在西屯區、北屯區、 北區以及南屯區。



# 房子屋龄分佈

房子房齡介於 0 – 50 歲內, 主要集中在0-5歲和 20-30歲。



# 房子總價分佈

#### 房子總價介於 0-1000 內。

# 土地面積分佈

## 建物總面積分佈







# 房子總價分佈

#### 房子總價介於 0-1000 內。





# 土地面積 & 總價

















## 用途&總價



# 資料清理

## #1 遺漏值 Imputation

```
1 ''' Step 1: impute missing value or invalid value '''
2 train[train.isnull().values]
```

```
行政區 土地面積 建物總面積 屋齡 樓層 總樓層 用途 房數 廳數 衛數 電梯 車位類別 交易日期 經度 緯度 總價 28986 北區 3.96 33.75 NaN 8 16 1.0 1 0 1 1 無 2017/5/13 120.665374 24.159243 150
```

4 train['屋齡'].fillna(value=train['屋齡'].mean(), inplace=True)

# 資料清理

## #2 Scale numerical data

```
5 cols = ['土地面積', '建物總面積', '屋齡']
6 transformer = RobustScaler()
7 for col in cols:
8 train[col] = transformer.fit_transform(np.array(train[col]).reshape(30000, -1)).flatten()
```

## #3 Discretize numerical data

```
2 for col in cols:
3   X = np.array(train[col]).reshape(-1,1)
4   est = KBinsDiscretizer(n_bins=8, encode='ordinal', strategy='kmeans').fit(X)
5   train[str(col)+'組別'] = est.transform(X)
```



## #4 Deal with observations of which house price=0

```
1 ''' Step 4: deal with observations with house price = 0 '''
2 train[train['總價'] == 0] #6 observations
3
```

|       | 行政區 | 土地面積  | 建物總面積  | 屋齡        | 樓層 | 總樓層 | 用途  | 房數 | 廳數 | 衛數 | 電梯 | 車位類別 | 交易日期       | 經度         | 緯度        | 總價 |
|-------|-----|-------|--------|-----------|----|-----|-----|----|----|----|----|------|------------|------------|-----------|----|
| 4386  | 大里區 | 24.09 | 148.49 | 25.919766 | 5  | 7   | 1.0 | 3  | 2  | 2  | 1  | 無    | 2018/1/11  | 120.679558 | 24.095737 | 0  |
| 5798  | 大里區 | 20.33 | 123.95 | 26.946481 | 6  | 7   | 1.0 | 3  | 2  | 2  | 1  | 無    | 2019/11/13 | 120.688712 | 24.107648 | 0  |
| 15470 | 大里區 | 21.60 | 84.12  | 35.217698 | 4  | 5   | 1.0 | 3  | 2  | 2  | 0  | 無    | 2018/1/18  | 120.683116 | 24.114160 | 0  |
| 22036 | 西屯區 | 10.96 | 94.84  | 21.708865 | 9  | 15  | 1.0 | 2  | 2  | 1  | 1  | 坡道機械 | 2017/1/3   | 120.634910 | 24.176418 | 0  |
| 23785 | 西屯區 | 20.58 | 129.33 | 26.639835 | 6  | 15  | 1.0 | 3  | 2  | 2  | 1  | 無    | 2019/8/12  | 120.614063 | 24.182148 | 0  |
| 29228 | 西區  | 26.49 | 77.76  | 39.171236 | 5  | 5   | 1.0 | 3  | 2  | 2  | 0  | 無    | 2017/9/20  | 120.661001 | 24.150425 | 0  |

```
4 ''' method 1: treat them as outliers and remove ''' 5 train.drop(train[train['總價'] == 0].index, axis=0, inplace=True)
```

# 資料清理

## #4 Deal with observations of which house price=0







376.2

320.4

510.0

811.6

316.2





```
1 ''' Step 5: deal with univariate outliers '''
2 plt.boxplot(train['總價'], vert=False)
3 plt.show()
```



以IQR計算, Outliers 多達







- 1. Cluster-based Local Outlier Factor
- 2. Feature Bagging
- 3. Histogram-base Outlier Detection (HBOS)
- 4. Isolation Forest
- 5. K Nearest Neighbors (KNN)
- 6. Average KNN

# 資料清理



# 資料清理







## Feature Extraction

## Dummy variables / One-hot encoding

```
1 district = pd.get_dummies(train['行政區'], drop_first=True)
2 train = pd.concat([train, district], axis=1)
3 train.drop('行政區', inplace=True, axis=1)
4 train.head(5)
```

```
1 enc = OneHotEncoder()
2 train['用途'] = enc.fit_transform(np.array(train['用途']).reshape(-1,1)).toarray()
3 train.head(5)
```

| 北區 | 北屯區 | 南區 | 南屯區 | 大里區 | 大雅區 | 東區 | 西區 | 西屯區 |
|----|-----|----|-----|-----|-----|----|----|-----|
| 0  | 0   | 0  | 1   | 0   | 0   | 0  | 0  | 0   |
| 0  | 0   | 0  | 0   | 0   | 0   | 0  | 0  | 1   |
| 0  | 0   | 0  | 0   | 0   | 0   | 0  | 0  | 1   |
| 0  | 0   | 0  | 0   | 0   | 0   | 0  | 0  | 1   |
| 0  | 0   | 0  | 0   | 0   | 0   | 0  | 0  | 1   |

| 用<br>途 | 房數 | <u>廳</u><br>數 | <b>衛</b><br>數 | 電梯 |
|--------|----|---------------|---------------|----|
| 1.0    | 4  | 2             | 2             | 1  |
| 1.0    | 3  | 2             | 2             | 1  |
| 1.0    | 4  | 2             | 2             | 1  |
| 1.0    | 2  | 1             | 2             | 1  |
| 1.0    | 3  | 2             | 2             | 1  |

## Feature Extraction

### Date → Year / Month / Day

```
1 date = train['交易日期'].str.split('/')
2 train['year'] = [i[0] for i in date]
3 train['month'] = [i[1] for i in date]
4 #train['day'] = [i[2] for i in date]
5 train.drop('交易日期', inplace=True, axis=1)
6 train.head()
```





## Feature Selection

- 1. Select according to p-value
- 2. Backward Elimination (BE)
- 3. Recursive Feature Elimination (RFE)



- 4. L1-based feature selection
  - Lasso selection (LSO)
  - Lasso CV selection (LSOCV)
- 5. Tree-based Feature Elimination
- Random Forest Regressor (RF)

## Feature Selection

#### Recursive Feature Elimination (RFE)



# Model Selection

## Model Sets (11)

```
8 regressor = []
 9 model 0 = linear model.LinearRegression()
10 regressor.append(model 0)
11 model 1 = linear model.Ridge()
12 regressor.append(model 1)
13 model 2 = linear model.Lasso()
14 regressor.append(model 2)
15 model 3 = linear model.LassoCV()
16 regressor.append(model 3)
17 model 4 = linear model.LassoLars()
18 regressor.append(model 4)
19 model 5 = linear model.LassoLarsCV()
20 regressor.append(model 5)
21 model 6 = linear model.LassoLarsIC(criterion='bic')
22 regressor.append(model 6)
23 model 7 = linear model.ElasticNet()
24 regressor.append(model 7)
25 model 8 = linear model.BayesianRidge()
26 regressor.append(model_8)
28 #regressor.append(model 9)
29 #model 10 = linear model.SGDRegressor()
30 #regressor.append(model 10)
31 model 9 = linear model.RANSACRegressor()
32 regressor.append(model 9)
33 model 10 = linear model.TheilSenRegressor()
34 regressor.append(model 10)
35 model 11 = linear model.HuberRegressor()
36 regressor.append(model 11)
```

## Feature Sets (6)

#### 66 models



## Model Selection

## Linear Regression with features from RFE



```
1 from sklearn.linear_model import LinearRegression
2
3 X_train = train.drop('總價', axis=1)
4 X_train = X_train.loc[:, features_RFE]
5 y_train = train['總價']
6 reg = LinearRegression().fit(X_train, y_train)
7
8 test = test.loc[:, features_RFE]
9 y_pred = reg.predict(test)
```

# The finishing touch

# Negative predictions (KNN)

```
1 ''' use knn to deal with negative predictions '''
2 X = test.loc[(y_pred>0), :]
3 y = y_pred[y_pred>0]
4
5 neigh = KNeighborsRegressor(n_neighbors=5)
6 neigh.fit(X, y)
7
8 X_test = test.loc[(y_pred<=0), :]
9 y_test = neigh.predict(X_test)</pre>
```

|      | id   | 總價         |
|------|------|------------|
| 56   | 56   | 96.555849  |
| 68   | 68   | 187.728518 |
| 96   | 96   | 64.680380  |
| 128  | 128  | 235.701325 |
| 170  | 170  | 180.480372 |
|      |      |            |
| 4680 | 4680 | 191.008947 |
| 4726 | 4726 | 85.189675  |
| 4749 | 4749 | 129.566624 |
| 4829 | 4829 | 155.537113 |
| 4981 | 4981 | 117.047040 |

# Q&A