浙江大学 20<u>20</u> - 20<u>21</u> 学年<u>秋冬</u>学期 《计算机组成与设计》课程期末考试试卷

课程号: 67190020 , 开课学院: _信息与电子工程学院_

考试试卷: √A卷、B卷(请在选定项上打√)

考试形式: √闭、开卷(请在选定项上打√),

允许带 1 张 A4 大小的手写资料和计算器入场

考试日期: 2021 年 1 月 23 日, 考试时间: 120 分钟

诚信考试,沉着应考,杜绝违纪。

考生姓名:				学号:	·		所属院系	(专业):		_
题序		_	=	Ξ	四	五	六	七	八	总
得分										
评卷人										
I.		CHO	ICF (60)	noints)						
1.										
						,				
			_, _,							
2.	Fo	r X = -0	.0011, Y =	-0.0101, w	hat's the	2's compl	lement of (X+Y)? (A)	
A.		100	B. 1.1		C. 1.	_	D. 1.1			
3.	is generally used to increase the apparent size of physical memory. (B)									
	A.	Secon	dary memo	ory B	. Virtual	memory	C. Har	d disk	D. Disks	S
4.	Th	a tima d	alov batwa	en two suc	cacciva i	nitiations (of memory	operation	is .(.	A)
٦.			=				_	operation	. (Α)
	A. Memory access time B. Memory search time C. Memory cycle time D. Instruction delay									
			, - ,							
5.	When performing a looping operation, the instruction gets stored in the . (B)									
	A.	Regist	ers	B. Cac	he	C. Sy	stem heap	D	. System sta	ack
6.	Th	e instru	ction "lw x	5 40(x6)"	does	(C)				
0.	The instruction "lw x5, $40(x6)$ " does (C) A. Loads the value of x5 and stores it x6									
	B. Loads the value of x5 and stores it in Memory[x6 + 40]									
			the value i							
	D.	Loads	the value of	of x6 and st	tores it in	n Memory[[x5 + 40]			
7.	TI.	a addras	ssing mode	which mal	zes iise c	of both regi	ster file an	d memory	is (C)

	A. Immediate addressin	g B. Registe	B. Register addressingD. PC-relative addressing						
	C. Base addressing	D. PC-rela							
8.	In a system which has 64 registers, the register id is long. (D)								
	A. 32-bit B. 8	3-bit C. 5-bit	D. 6-bit						
9.	The processor keeps track of the result of its operations using flags called (A)								
	A. Conditional code fla	gs B. Te	est output flags						
	C. Type flags	D. No	one of the mentioned						
10.	The wrong statement/s regarding interrupts and subroutines among the following is/are (D)								
	i) The subroutine and int	terrupts have a return stater	ment						
	ii) Both of them alter the content of the PC								
	iii) Both are software oriented								
	iv) Both can be initiated	iv) Both can be initiated by the user							
	A. i, ii, and iv	B. ii and iii							
	C. iv	D. iii and iv							
11.	The execution of the following $x5,0(x6)$ sd $x5,0(x6)$	lowing two instructions ma	ay have the (A)						
A	A. RAW (Read after Write	B. WAW (Write after Write)						
	C. WAR (Write after Read		a dependency.						
12.	For a 32-bit cache-memo	ory system, a 32KB, 4-way	set-associative cache has 2 words cache line						
	size, how many bits are	there in such cache's tag? ((A)						
	A: 19 B: 2	C: 23	D: 25						
13.			95%, and penalty to access the cache and We can infer that the average memory access						
A	$\Lambda: (1+10)/2$	B: 1	0×5% + 1×95%						
	C: $(10+1)\times5\% + 1\times95\%$	D: 1	0×95% + 1×5%						
14.	Which of the following	cache designer guideline is	not valid? (B)						
A. I	Fully associative caches h	nave no conflict misses.							
B. I	n reducing misses, assoc	iativity is more important th	han capacity.						
C. 7	The higher the memory ba	andwidth, the larger the cac	che block.						
D. 7	The shorter the memory l	atency, the smaller the cacl	he block.						

	1	6	3		
B:	L - 1 -	1 ~			
	1 6	3	5		
C:					
	5 6	3			
D:		,	.		
	6	3			
		10 • • •			
II.	TRUE OR FALSE (1	• /	1	1	
1.	The miss penalty can be reduced by improving the mechanisms for data transfer between				
2	different levels of hierarchy. (T)				
2.	For forwarding you need only look at the data available in the WB stage. (F)				
3.	In a system where multiple programs are running, the physical address space must be larger than the total size of the virtual address space. (F)				
	than the total size of the virtual address spaces. (F) In set associative and associative mapping there exists less flexibility. (F)				
1		_		acc flevibility (F)	
	In set associative and associa	tive mapping tl	nere exists le		
4. 5.	In set associative and associa When using the Big Endian a	tive mapping the signment to si	nere exists le	ess flexibility. (F) er, the sign bits of the number is store	
5.	In set associative and associa	tive mapping the ssignment to so word. (F)	nere exists le tore a numbe	er, the sign bits of the number is store	
5.6.	In set associative and associa When using the Big Endian a in the lower order byte of the The order in which the return	ssignment to st word. (F) addresses are	nere exists le tore a numbe	er, the sign bits of the number is store and used is First-In-First-Out. (F)	
5.	In set associative and associa When using the Big Endian a in the lower order byte of the The order in which the return Cache performance is of less	tive mapping the ssignment to stoward. (F) addresses are importance in	nere exists le tore a numbe generated an faster proces	er, the sign bits of the number is store	
5.6.	In set associative and associative and associative and associative when using the Big Endian at in the lower order byte of the The order in which the return Cache performance is of less compensates for the high men	tive mapping the ssignment to standard word. (F) addresses are importance in mory access times.	nere exists letore a number generated an faster processine. (F)	er, the sign bits of the number is store ad used is First-In-First-Out. (F) ssors because the processor speed	
5.6.7.	In set associative and associative and associative and associative and associative and associative when using the Big Endian at in the lower order byte of the The order in which the return Cache performance is of less compensates for the high men Pipelining improves performance.	tive mapping the ssignment to standard word. (F) addresses are importance in mory access time ance by increase	nere exists letore a number generated an faster proces ne. (F)	er, the sign bits of the number is store ad used is First-In-First-Out. (F) ssors because the processor speed on throughput. (T)	
5.6.7.8.9.	In set associative and associative and associative and associative when using the Big Endian at in the lower order byte of the The order in which the return Cache performance is of less compensates for the high men Pipelining improves performance A write-through cache typical	ssignment to st word. (F) addresses are importance in mory access timence by increase tlly requires more	mere exists lettore a number generated an faster processine. (F) sing instructione bus bandone	er, the sign bits of the number is store ad used is First-In-First-Out. (F) ssors because the processor speed	

III. Assembly and Pipeline (10 points)

Consider the following RISC-V assembly code, where \$result, \$A, \$B, and \$C represent the registers that are used to store the addresses of the variables result, A, B, and C.

```
lw x1, 0($C)
lw x2, 0($A)
mul x3, x1, x2
lw x4, 0($B)
mul x5, x1, x4
sub x6, x5, x3
lw x7, 0($result)
add x8, x7, x6
sw x8, 0($result)
```

The table below gives the instruction latencies for a simple pipeline implementation of an in-order issue, out-of-order completion CPU (an instruction can be issued as long as its operands are ready and the previous instruction is issued, do not worry about forwarding, cache misses and hits):

Assembly instruction formats	Instruction latency (# of cycles)		
lw x1, #offset(x2)	8		
sw x1, #offset(x2)	8		
add x1, x2, x3	6		
sub x1, x2, x3	6		
mul x1, x2, x3	10		

1. Transform the assembly code into C code.

```
// A, B, C, result are global variables
int *A, *B, *C, *result;

void foo() {
    // write your code here
    *result = *result + *B * (*C - *A);
}
```

2. What's the execution time of this assembly code?

```
50 cycles
```

3. Optimize the assembly code to minimize the execution time. Write down the minimal execution time and the assembly code after optimization. You should rename the registers to make sure new registers appear in ascending order. (e.g. x1, x2, x3, ...) The table below may help you.

Instruction	Start cycle	End cycle	
lw x1, 0(\$C)	1	8	
lw x2, 0(\$A)	2	9	
lw x3, 0(\$B)	3	10	
lw x4, 0(\$result)	4	11	
sub x5, x1, x2	10	15	
mul x6, x3, x5	16	25	
add x7, x4, x6	26	31	
sw x7, 0(\$result)	32	39	

39 cycles

IV. Cache Mapping (10 points)

A computer system has a 128-byte cache. It uses four-way set-associative mapping with 8 bytes in each block. The physical address size is 32 bits, and the smallest addressable unit is 1 byte.

1. Draw a diagram showing the organization of the cache and indicating how physical addresses are related to the cache addresses.

2.	To what block frames of the cache can the address 0x000010AF be assigned?
An	y block frame in set 1

3. If the addresses 0x000010AF and 0xFFFF7AXY can be simultaneously assigned to the same cache set, what values can the address digits X and Y have?

V. Virtual Memory (10 points)

Suppose that a system has a 32-bit (4GB) virtual address space. It has 4GB of physical memory, and uses 4kB pages. Assume each page table entry is 32-bit long and there are 100 programs running in the system at the same time.

1. If this system uses a single-level page table, calculate the total size of the page tables.

```
4 MB * 100 = 400 MB
```

2. If this system uses a two-level page table, what's the **smallest possible** size of all page tables in the memory? In such case, how many bits are there in the 1st-level and 2nd-level page number?

```
(4 \text{ kB} + 4 \text{ kB}) * 100 = 800 \text{ kB}
10 bits and 10 bits
```