Гл. 1. Предел и непрерывность функций одной вещественной переменной.

§ 1.1. Вещественные числа.

Вещественное число — это (бесконечная) десятичная дробь

$$s\overline{a_0, a_1a_2\dots} := s\sum_{n=0}^{\infty} a_0 \cdot 10^{-n},$$

где s — знак плюс или минус, $a_0 \in \mathbb{N} \cup \{0\}$, а a_1, a_2, \ldots — цифры от 0 до 9, и черта означает, что запись рассматривается как единое целое. При этом рациональным числам соответствуют конечные или бесконечные периодические десятичные дроби. Остальные числа, представляемые бесконечными непериодическими десятичными дробями, называют иррациональными числами.

Аксиома 1.1 (теорема Дедекинда о полноте вещественных чисел)

Пусть $A, B \subset \mathbb{R}$ — непустые множества (т. е. $A \neq \emptyset$ и $B \neq \emptyset$) такие, что $\forall x \in A \ \forall y \in B \ x < y$.

Тогда $\exists c \in \mathbb{R} : \forall x \in A \ \forall y \in B \ x \leq c \leq y$.

Определение 1.2 (отрезков, интервалов, полуинтервалов, промежутков)

Пусть $a, b \in \mathbb{R}$.

Множество $[a,b]:=\{x\in\mathbb{R}:\ a\leq x\leq b\}$ называется отрезком (замкнутым промежутком).

Множества $(a,b):=\{x\in\mathbb{R}:\ a< x< b\},\ (a,+\infty):=\{x\in\mathbb{R}:\ x>a\},\ (-\infty,b):=\{x\in\mathbb{R}:\ x< b\},\ (-\infty,+\infty):=\mathbb{R}$ называются интервалами (открытыми промежутками).

Множества $[a,b):=\{x\in\mathbb{R}:\ a\leq x< b\}$, $(a,b]:=\{x\in\mathbb{R}:\ a< x\leq b\}$, $[a,+\infty):=\{x\in\mathbb{R}:\ x\geq a\}$, $(-\infty,b]:=\{x\in\mathbb{R}:\ x\leq b\}$ называются полуинтервалами (полуоткрытыми промежутками).

Все эти множества объединены общим названием промежутки. Символом $\langle a,b\rangle$ обозначают любой из промежутков [a,b],[a,b),(a,b],(a,b).

Теорема 1.3 (лемма о вложенных отрезках (принцип Коши — Кантора))

Пусть $[a_n,b_n]$ — последовательность непустых отрезков в $\mathbb R$ таких, что $\forall n \in \mathbb N$ $[a_{n+1},b_{n+1}] \subset [a_n,b_n]$. Тогда $\exists c \in \mathbb R \ \forall n \in \mathbb N \ c \in [a_n,b_n]$. Иными словами, любая последовательность непустых вложенных отрезков в $\mathbb R$ имеет общую точку.

Определение 1.4 (ограниченности множества и нижней и верхней границ)

Множество $X \subset \mathbb{R}$ называется ограниченным снизу, если существует число $a \in \mathbb{R}$ такое, что $a \leq x$ для любого $x \in X$. При этом число a называется нижней границей множества X. Множество $X \subset \mathbb{R}$ называется ограниченным сверху, если существует число $b \in \mathbb{R}$ такое, что $x \leq b$ для любого $x \in X$. При этом число b называется верхней границей множества X. Множество $X \subset \mathbb{R}$ называется ограниченным, если X ограничено сверху и снизу.

Упражнение 1.5

Доказать, что множество $X\subset\mathbb{R}$ ограничено тогда и только тогда, когда существует число c>0 такое, что $|x|\leq c$ для любого $x\in X$.

Определение 1.6 (минимума и максимума множества)

Число $a \in X \subset \mathbb{R}$ называется наименьшим (минимальным) элементом (или минимумом) множества X, если $a \leq x$ для любого $x \in X$. Обозначают min X.

Число $b \in X \subset \mathbb{R}$ называется наибольшим (максимальным) элементом (или максимумом) множества X, если $x \leq b$ для любого $x \in X$. Обозначают $\max X$.

Теорема 1.7 (Дедекинда о существовании наибольшей нижней границы и наименьшей верхней границы)

- 1. Пусть $X \subset \mathbb{R}$ непусто и ограничено снизу. Тогда среди всех нижних границ множества X существует наибольшая.
- 2. Пусть $X \subset \mathbb{R}$ непусто и ограничено сверху. Тогда среди всех верхних границ множества X существует наименьшая.
- П. 1 теоремы 1.7 без доказательства.

Упражнение 1.8

Доказать п. 1 теоремы 1.7.

Определение 1.9 (точных границ)

Наибольшую нижнию границу непустого ограниченного снизу множества $X \subset \mathbb{R}$, существование которой следует из теоремы 1.7, называют точной нижней границей, нижней гранью или инфимумом множества X и обозначают $\inf X$. Наименьшую верхнию границу непустого ограниченного сверху множества $X \subset \mathbb{R}$, существование которой следует из теоремы 1.7, называют точной верхней границей, верхней гранью или супремумом множества X и обозначают $\sup X$.

Определение $1.10~(\overline{\mathbb{R}})$

Расширенной числовой прямой $\overline{\mathbb{R}}$ называют множество $\overline{\mathbb{R}}:=\mathbb{R}\cup\{-\infty,+\infty\}$, получающееся добавлением к \mathbb{R} двух формальных элементов $-\infty$ и $+\infty$ таких, что по определению $\forall x\in\mathbb{R}$ $-\infty< x<+\infty$.

Теорема 1.11 (о точных границах в $\overline{\mathbb{R}}$)

Любое множество $X \subset \mathbb{R}$ имеет точную верхнюю и точную нижнию границы (в \mathbb{R}).

Теорема 1.11 без доказательства.

Упражнение 1.12

- 1. Доказать теорему 1.11.
- 2. Показать, что $\inf X = -\infty$ для непустого неограниченного снизу множества $X \subset \mathbb{R}$.
- 3. Показать, что $\sup X = +\infty$ для непустого неограниченного сверху множества $X \subset \mathbb{R}$.
- 4. Показать, что $\inf \emptyset = +\infty$ и $\sup \emptyset = -\infty$.

Теорема 1.13 (критерий для точных границ)

- 1. Пусть $X \subset \mathbb{R}$ непусто и ограничено снизу, $\mathbf{a} \in \mathbb{R}$. Тогда $\inf X = \mathbf{a} \Leftrightarrow \begin{cases} \mathbf{a} \text{ нижняя граница } X, \\ \forall \varepsilon > 0 \ \exists x \in X \ x < \mathbf{a} + \varepsilon. \end{cases}$
- 2. Пусть $X \subset \mathbb{R}$ непусто и ограничено сверху, $a \in \mathbb{R}$. Тогда $\sup X = a \Leftrightarrow egin{cases} a & \text{верхняя граница } X, \\ \forall \varepsilon > 0 \ \exists x \in X \ x > a \varepsilon. \end{cases}$
- П. 1 теоремы 1.13 без доказательства.

Упражнение 1.14

Доказать п. 1 теоремы 1.13.

Теорема 1.15 (принцип Архимеда)

Если фиксировать произвольное положительное число a, то для любого действительного числа b найдётся и притом единственное целое число n такое, что $(n-1)a \leq b < na$, τ . e.: $\forall a>0 \ \forall b \in \mathbb{R} \ \exists ! n \in \mathbb{Z} : (n-1)a \leq b < na$.

Упражнение 1.16 (*)

Доказать теорему 1.15.

- § 1.2. Предел последовательности.
- 1.2.1. Определение предела последовательности.

Определение 1.17 (последовательности)

```
Последовательностью элементов множества X называют функцию x: \mathbb{N} \to X. При этом для x(n) используют запись x_n. Элемент x_n называют общим (n-\mathbf{M}) членом последовательности. Обозначения для последовательности:
```

```
(x_n \in X)_{n \in \mathbb{N}};

x_n \in X, n \in \mathbb{N};

(x_n)_{n \in \mathbb{N}};

x_n, n \in \mathbb{N};

x_1, \dots, x_n, \dots;

x_n
```

Определение 1.18 (конечного предела последовательности)

```
Говорят, что последовательность (x_n \in \mathbb{R})_{n \in \mathbb{N}} сходится
(стремится) к числу a \in \mathbb{R}, если
\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \geq n_0 \ |x_n - a| < \varepsilon
При этом число a называется пределом последовательности x_n,
и пишут x_n \to a при n \to \infty или \lim x_n = a.
```

Это определение обычно произносят следующими словами: «Последовательность (вещественных чисел) x_n сходится к числу a, если для любого (сколь угодно малого) положительного числа arepsilon найдётся номер n_0 (вообще говоря, зависящий от ε), начиная с которого все члены последовательности x_n лежат в интервале $(a-\varepsilon, a+\varepsilon)$.» Перефразировка этих слов: «Для любого ε , большего нуля, существует такое натуральное n_0 , что для каждого натурального n, большего или равного n_0 , отклонение x_n от a меньше чем ε .»

Пример 1.19

Покажем, что $\lim_{n\to\infty}\frac{1}{n}=0.$ Имеем $x_n=\frac{1}{n},\;a=0.$

Надо доказать, что $\forall \varepsilon > 0 \; \exists n_0 \in \mathbb{N} \; \forall n \geq n_0 \; \left| \frac{1}{n} \right| < \varepsilon.$

Фиксируем произвольное $\varepsilon>0$. Ищем подходящий номер n_0 . Имеем $\left|\frac{1}{n}\right|<\varepsilon\Longleftrightarrow\frac{1}{n}<\varepsilon\Longleftrightarrow n>\frac{1}{\varepsilon}$.

Это неравенство будет выполнено для все $n \geq \left\lfloor \frac{1}{\varepsilon} \right\rfloor + 1$.

Подходящий $n_0 := \left\lceil \frac{1}{\varepsilon} \right\rceil + 1.$

Определение 1.20 (бесконечных пределов последовательности)

Говорят, что последовательность $(x_n \in \mathbb{R})_{n \in \mathbb{N}}$ стремится к $+\infty$, если $\forall E > 0$ $\exists n_0 \in \mathbb{N}$ $\forall n \geq n_0$ $x_n > E$, при этом также говорят, что x_n имеет пределом $+\infty$, и пишут $x_n \to +\infty$ при $n \to \infty$ или $\lim_{n \to \infty} x_n = +\infty$.

Говорят, что последовательность $(x_n \in \mathbb{R})_{n \in \mathbb{N}}$ стремится к $-\infty$, если $\forall E > 0$ $\exists n_0 \in \mathbb{N}$ $\forall n \geq n_0$ $x_n < -E$, при этом также говорят, что x_n имеет пределом $-\infty$, и пишут $x_n \to -\infty$ при $n \to \infty$ или $\lim_{n \to \infty} x_n = -\infty$.

Говорят, что последовательность $(x_n \in \mathbb{R})_{n \in \mathbb{N}}$ стремится к ∞ , если $\forall E > 0$ $\exists n_0 \in \mathbb{N}$ $\forall n \geq n_0 \ |x_n| > E$, при этом также говорят, что x_n имеет пределом ∞ , и пишут $x_n \to \infty$ при $n \to \infty$ или $\lim_{n \to \infty} x_n = \infty$.

Замечание 1.21

Слово «стремится» применимо к любому пределу, как к конечному, так и бесконечному, а слово «сходится» употребляется только для конечного предела.

Определение 1.22 (расходящейся последовательности)

Последовательность (вещественных чисел) называется расходящейся, если она не имеет конечного предела.

Замечание 1.23

Расходящаяся последовательность либо не имеет предела, либо имеет бесконечный предел $+\infty$, $-\infty$ или ∞ . В последнем случае о последовательности говорят, что она расходится, соответственно, κ $+\infty$, κ $-\infty$ или κ ∞ .

Упражнение 1.24

- 1. Доказать, что $\lim_{n\to\infty} x_n = +\infty \Longrightarrow \lim_{n\to\infty} x_n = \infty$. А обратное, вообще говоря, не верно.
- 2. Доказать, что $\lim_{n\to\infty} x_n = -\infty \Longrightarrow \lim_{n\to\infty} x_n = \infty$.
- 3. Доказать, что $\lim_{n\to\infty}|x_n|=+\infty \Longleftrightarrow \lim_{n\to\infty}x_n=\infty.$

Определение 1.25 (бесконечно большой и бесконечно малой)

Последовательность $(x_n \in \mathbb{R})_{n \in \mathbb{N}}$ называется бесконечно большой, если $\lim_{n \to \infty} x_n = \infty$.

Последовательность $(x_n\in\mathbb{R})_{n\in\mathbb{N}}$ называется бесконечно малой, если $\lim_{n\to\infty}x_n=0$.

Упражнение 1.26

Пусть $x_n \neq 0$, $n \in \mathbb{N}$. Тогда последовательность x_n бесконечно малая тогда и только тогда, когда последовательность $\frac{1}{x_n}$ бесконечно большая.

Определение 1.27 (ограниченной последовательности)

Последовательность $(x_n \in \mathbb{R})_{n \in \mathbb{N}}$ называется ограниченной, если существует c > 0 такое, что $|x_n| \le c$ для всех $n \in \mathbb{N}$.

Упражнение 1.28

Последовательность $(x_n \in \mathbb{R})_{n \in \mathbb{N}}$ ограничена тогда и только тогда, когда ограничено множество $\{x_n : n \in \mathbb{N}\}$.

1.2.2. Предел последовательности, неравенства и алгебраические операции.

В этом пункте рассматриваются последовательности $(x_n \in \mathbb{R})_{n \in \mathbb{N}}$, $(y_n \in \mathbb{R})_{n \in \mathbb{N}}$ и $(z_n \in \mathbb{R})_{n \in \mathbb{N}}$.

Теорема 1.29 (о пределе последовательности и неравенстве)

Пусть
$$\lim_{n \to \infty} x_n = \mathsf{a}$$
 и $\lim_{n \to \infty} y_n = \mathsf{b}$, где $\mathsf{a}, \mathsf{b} \in \overline{\mathbb{R}}$. Тогда

- 1) если a < b, то $\exists n_0 \in \mathbb{N} \ \forall n \geq n_0 \ x_n < y_n$;
- 2) если $\exists n_0 \in \mathbb{N} \ \forall n \geq n_0 \ x_n \leq y_n$, то $a \leq b$.

Доказательство теоремы 1.29 для случая $a,b\in\mathbb{R}$.

Замечание 1.30

Утверждение 2) в теореме 1.29 называют предельным переходом в неравенстве.

Следствие 1.31 (о единственности предела)

Пусть
$$\lim_{n \to \infty} x_n = a$$
 и $\lim_{n \to \infty} x_n = b$. Тогда $a = b$.

Доказательство следствия 1.31 для случая $a,b\in\mathbb{R}$.

Теорема 1.32 (о зажатой последовательности)

Пусть $\lim_{n\to\infty} x_n = \lim_{n\to\infty} z_n = a$, где $a\in\overline{\mathbb{R}}$, и для всех n, начиная c некоторого, $x_n\leq y_n\leq z_n$. Тогда $\lim_{n\to\infty} y_n=a$.

Доказательство теоремы 1.32 для случая $a \in \mathbb{R}$.

Теорема 1.33 (об ограниченности сходящейся последовательности)

Если последовательность сходится, т. е. имеет конечный предел, то она ограничена.

Упражнение 1.34

- 1. Доказать теорему 1.29 для случая $a \in \mathbb{R}$ и $b = +\infty$.
- 2. Доказать теорему 1.29 для случая $a = -\infty$ и $b \in \mathbb{R}$.
- 3. Доказать теорему 1.29 для случая $a=-\infty$ и $b=+\infty$.
- 4. Доказать следствие 1.31 для случаев $a = \pm \infty$.
- 5. Доказать теорему 1.32 для случаев $a = \pm \infty$.

Теорема 1.35 (о бесконечно малых)

- 1) Если x_n и y_n бесконечно малые, то $x_n \pm y_n$ тоже бесконечно малая.
- 2) Если x_n бесконечно малая, а y_n ограниченная, то $x_n y_n$ тоже бесконечно малая.

Теорема 1.36 (о пределе последовательности и алгебраических операциях)

Пусть $\lim_{n \to \infty} x_n = a$ и $\lim_{n \to \infty} y_n = b$, где $a,b \in \mathbb{R}$. Тогда

- 1) $\lim_{n\to\infty} (x_n \pm y_n) = a \pm b;$
- $2) \lim_{n\to\infty} (x_n y_n) = ab;$
- 3) $\lim_{n\to\infty}\frac{x_n}{y_n}=\frac{a}{b}$ (при дополнительном условии, что все y_n и b не равны нулю).

1.2.3. Подпоследовательности и частичные пределы.

Определение 1.37 (подпоследовательности)

Пусть $(x_n \in X)_{n \in \mathbb{N}}$ — последовательность элементов множества X, а $(n_k \in \mathbb{N})_{k \in \mathbb{N}}$ — строго возрастающая последовательность номеров, т. е. $n_1 < n_2 < \ldots < n_k < \ldots$. Последовательность $(x_{n_k})_{k \in \mathbb{N}}$ (как функция от k) называется подпоследовательностью последовательности $(x_n)_{n \in \mathbb{N}}$.

Определение 1.38 (частичного предела последовательности)

Если подпоследовательность $(x_{n_k})_{k\in\mathbb{N}}$ стремится к какому-либо пределу (конечному или бесконечному), то его называют частичным пределом последовательности $(x_n\in\mathbb{R})_{n\in\mathbb{N}}$.

Теорема 1.39 (о пределе подпоследовательности последовательности, имеющей предел)

Пусть последовательность $(x_n \in \mathbb{R})_{n \in \mathbb{N}}$ иеет предел $a \in \overline{\mathbb{R}}$. Тогда любая ее подпоследовательность $(x_{n_k})_{k \in \mathbb{N}}$ стремится к тому же самому пределу a.

Доказательство теоремы 1.39 для случая $a \in \mathbb{R}$.

Упражнение 1.40

Доказать теорему 1.39 для случаев $a = \pm \infty$.

Теорема 1.41 (Больцано — Вейерштрасса)

Если последовательность вещественных чисел ограничена, то в ней есть сходящаяся подпоследовательность.

Следствие 1.42

Из любой последовательности вещественных чисел можно выбрать подпоследовательность, имеющую предел (конечный или бесконечный).

Без доказательства.

Замечание 1.43

Следствие показывает, что множество частичных пределов любой последовательности вещественных чисел не пусто.

Определение 1.44 (верхнего и нижнего предела последовательности)

```
Пусть L \subset \mathbb{R} — множество всех частичных пределов последовательности (x_n \in \mathbb{R})_{n \in \mathbb{N}}. Тогда величина \varinjlim_{n \to \infty} x_n := \sup L называется верхним пределом последовательности (x_n)_{n \in \mathbb{N}}; величина \varinjlim_{n \to \infty} x_n := \inf L называется нижним пределом последовательности (x_n)_{n \in \mathbb{N}}.
```

1.2.4. Монотонные последовательности.

Определение 1.45 (монотонной последовательности)

Последовательность $(x_n)_{n\in\mathbb{N}}$ называется неубывающей, если $\forall n\in\mathbb{N}$ $x_{n+1}\geq x_n$ невозрастающей, если $\forall n\in\mathbb{N}$ $x_{n+1}\leq x_n$ возрастающей, если $\forall n\in\mathbb{N}$ $x_{n+1}>x_n$ убывающей, если $\forall n\in\mathbb{N}$ $x_{n+1}>x_n$. Невозрастающие и неубывающие последовательности называют монотонными, а возрастающие и убывающие — строго монотонными.

Предел и непрерывность функций одной вещ. перем.

Теорема 1.46 (Вейерштрасса о монотонной последовательности)

Любая монотонная последовательность имеет предел. При этом если она ограничена, то предел конечен.

1.2.5. Фундаментальные последовательности.

Определение 1.47 (фундаментальной последовательности)

Последовательность $(x_n)_{n\in\mathbb{N}}$ называется фундаментальной (или сходящейся в себе, или последовательностью Коши), если она удовлетворяет условию Коши:

 $\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n, m \geq n_0 \ |x_n - x_m| < \varepsilon$

Теорема 1.48 (критерий Коши)

Последовательность вещественных чисел сходится тогда и только тогда, когда она фундаментальна.

Замечание 1.49

Напомним, что мы говорим, что последовательность сходится, только тогда, когда она имеет конечный предел.

Пример 1.50

Последовательность $x_n = \sin n$ расходится.

- § 1.3. Предел функции.
- 1.3.1. Определение предела функции по Коши.

Определение 1.51 (предельной точки)

1) Точку $a\in\mathbb{R}$ называют предельной точкой (или точкой сгущения) множества $X\subset\mathbb{R}$, если

$$\forall \varepsilon > 0 \ \exists x \in X \ 0 < |x - a| < \varepsilon.$$

Соотношение 0<|x-a|<arepsilon можно записать так:

$$x \in (a - \varepsilon, a + \varepsilon) \setminus \{a\}.$$

2) Точку $a\in\mathbb{R}$ называют предельной точкой (или точкой сгущения) слева множества $X\subset\mathbb{R}$, если

$$\forall \varepsilon > 0 \ \exists x \in X \ a - \varepsilon < x < a.$$

3) Точку $a \in \mathbb{R}$ называют предельной точкой (или точкой сгущения) справа множества $X \subset \mathbb{R}$, если $\forall \varepsilon > 0 \ \exists x \in X \ a < x < a + \varepsilon$.

- 4) Бесконечно удаленную точку $+\infty$ называют предельной точкой множества $X \subset \mathbb{R}$, если $\forall E>0 \ \exists x \in X \ x>E$.
- 5) Бесконечно удаленную точку $-\infty$ называют предельной точкой множества $X \subset \mathbb{R}$, если $\forall E>0 \ \exists x \in X \ x<-E$.

Замечание 1.52

- 1. В словесном выражении тот факт, что a предельная точка множества X, означает, что в X есть точки, сколь угодно близкие к a, но при этом отличные от нее самой.
- 2. Предельная точка может принадлежать множеству, а может и не принадлежать. Если точка принадлежит множеству, это еще не значит, что она для него предельная.
- 3. Словосочетание «точка сгущения» можно использовать только в случае конечной точки, в отличие от универсального «предельная точка». Используя термин «точка сгущения», мы будем подчеркивать, что речь идет исключительно о случае конечной предельной точки.
- 4. Множество $\mathbb N$ всех натуральных чисел не имеет конечных предельных точек, у него единственной предельной точкой является $+\infty$.

Определение 1.53 (конечного предела функции в точке сгущения)

Пусть $f:X \to \mathbb{R}$, $a \in \mathbb{R}$ — точка сгущения $X \subset \mathbb{R}$. Число $I \in \mathbb{R}$ называют пределом f(x) в точке a и пишут $I = \lim_{\substack{x \to a \\ x \to a}} f(x)$, если $\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall x \in X \; (0 < |x - a| < \delta \Rightarrow |f(x) - I| < \varepsilon)$. При этом также говорят, что f(x) стремится к I при $x \to a$ и пишут $f(x) \to I$, $x \to a$, или $f(x) \to I$.

Определение 1.54 (конечных односторонних пределов функции в точке сгущения)

Пусть $f: X \to \mathbb{R}$, $a \in \mathbb{R}$ — точка сгущения $X \subset \mathbb{R}$ слева. Число $I \in \mathbb{R}$ называют пределом f(x) в точке a слева, если $\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall x \in X \; (a - \delta < x < a \Rightarrow |f(x) - I| < \varepsilon)$, при этом пишут $I = \lim_{x \to a - 0} f(x)$, нередко этот предел обозначают f(a - 0) и называют значением функции f слева в точке a.

Пусть $f: X \to \mathbb{R}$, $a \in \mathbb{R}$ — точка сгущения $X \subset \mathbb{R}$ справа. Число $I \in \mathbb{R}$ называют пределом f(x) в точке a справа, если $\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in X \ (a < x < a + \delta \Rightarrow |f(x) - I| < \varepsilon)$, при этом пишут $I = \lim_{x \to a + 0} f(x)$, нередко этот предел обозначают f(a + 0) и называют значением функции f справа в точке a.

Замечание 1.55

Предела в точке может не быть, даже если есть оба односторонних предела, однако если односторонние пределы существуют и равны между собой, то предел в точке есть и он равен общему значению односторонних пределов.

Определение 1.56 (конечного предела функции на бесконечности)

Пусть $f:X\to\mathbb{R},\ \pm\infty$ — предельная точка множества $X\subset\mathbb{R}.$ Число $I\in\mathbb{R}$ называют пределом f(x) при $x\to\pm\infty$ и пишут $I=\lim_{x\to\pm\infty}f(x)$, если

$$\forall \varepsilon > 0 \ \exists \Delta > 0 \ \forall x \in X \ (\pm x > \Delta \Rightarrow |f(x) - I| < \varepsilon)$$

Пределы на бесконечности рассматриваются как односторонние пределы функции.

Определение 1.57 (бесконечного предела функции в точке сгущения)

Пусть $f:X \to \mathbb{R}$, $a \in \mathbb{R}$ — точка сгущения $X \subset \mathbb{R}$. Говорят, что f(x) стремится $\mathbf{k} + \infty$ или $\mathbf{k} - \infty$ при $x \to a$ или что $+ \infty$ или $- \infty$ является пределом f(x) в точке a и пишут $\lim_{x \to a} f(x) = \pm \infty$ или $f(x) \xrightarrow[x \to a]{} \pm \infty$, если $\forall E > 0 \; \exists \delta > 0 \; \forall x \in X \; (0 < |x - a| < \delta \Rightarrow \pm f(x) > E)$. Говорят, что f(x) стремится $\mathbf{k} \propto$ при $x \to a$ или что ∞ является пределом f(x) в точке a и пишут $\lim_{x \to a} f(x) = \infty$ или $f(x) \xrightarrow[x \to a]{} \infty$, если $\forall E > 0 \; \exists \delta > 0 \; \forall x \in X \; (0 < |x - a| < \delta \Rightarrow |f(x)| > E)$.

Замечание 1.58

Аналогично даются определения бесконечных пределов слева и справа в точке и при $x \to \pm \infty$.

Определение 1.59 (окрестности и проколотой окрестности)

Окрестностью и проколотой окрестностью точки $a\in \mathbb{R}$ называют произвольное множество вида, указанного в следующей таблице, где $\delta>0$ и $\Delta>0$ — произвольные числа:

	$a\in\mathbb{R}$	$a = +\infty$	$a=-\infty$
Окрестность	$(a-\delta,a+\delta)$	$(\Delta, +\infty]$	$[-\infty, -\Delta)$
Проколотая	$(a-\delta,a+\delta)\setminus\{a\}$	$(\Delta, +\infty)$	$(-\infty, -\Delta)$
окрестность			

Утверждение 1.60 (определение предельной точки на языке окрестностей)

Точка $\mathbf{a} \in \mathbb{R}$ является предельной точкой множества $X \subset \mathbb{R}$ тогда и только тогда, когда для любой проколотой окрестности $\overset{\circ}{U}$ точки \mathbf{a} пересечение $X \cap \overset{\circ}{U}$ непусто.

Без доказательства.

Утверждение 1.61 (определение предела функции на языке окрестностей)

Пусть $f:X\to\mathbb{R}$, $a\in\overline{\mathbb{R}}$ — предельная точка $X\subset\mathbb{R}$, $I\in\overline{\mathbb{R}}$. Тогда $\lim_{x\to a}f(x)=I$ тогда и только тогда, когда для любой окрестности $\stackrel{\circ}{V}$ точки I существует такая проколотая окрестность $\stackrel{\circ}{U}$ точки a, что $f(\stackrel{\circ}{U}\cap X)\subset V$.

Без доказательства.

1.3.2. Определение предела функции по Гейне.

Теорема 1.62 (об эквивалентности определений предела по Коши и Гейне)

Пусть $f: X \to \mathbb{R}$, $a \in \overline{\mathbb{R}}$ — предельная точка множества $X \subset \mathbb{R}$, $I \in \overline{\mathbb{R}}$. Тогда $\lim_{x \to a} f(x) = I$ тогда и только тогда, когда для любой последовательности $(x_n \in X)_{n \in \mathbb{N}}$ такой, что $x_n \neq a$, $n \in \mathbb{N}$, и $\lim_{n \to \infty} x_n = a$, имеет место равенство $\lim_{n \to \infty} f(x_n) = I$.

Доказательство теоремы 1.62 для случая $a, l \in \mathbb{R}$.

Упражнение 1.63

- 1. Доказать теорему 1.62 в случае, когда $a \in \mathbb{R}$ и $l = \pm \infty$.
- 2. Доказать теорему 1.62 в случае, когда $a=\pm\infty$ и $l\in\mathbb{R}$.
- 3. Доказать теорему 1.62 в случае, когда $a=\pm\infty$ и $l=\pm\infty$.

Теорема 1.64 (о пределе функции и неравенстве)

Пусть $f,g:X\to\mathbb{R}$, $a\in\overline{\mathbb{R}}$ — предельная точка множества $X\subset\mathbb{R}$ и существуют пределы $\lim_{x\to a}f(x)$ и $\lim_{x\to a}g(x)$. Если в некоторой проколотой окрестности точки a выполнено неравенство $f(x)\leq g(x)$, то $\lim_{x\to a}f(x)\leq \lim_{x\to a}g(x)$.

Без доказательства.

Замечание 1.65

Даже если между функциями наблюдается строгое неравенство, то между пределами можно гарантировать только нестрогое неравенство.

Упражнение 1.66

- 1. Опираясь на теоремы 1.29 и 1.62, докажите теорему 1.64.
- 2. В теореме 1.29 о пределе последовательности и неравенстве было две части, а для функций в теореме 1.64 сформулирована только одна из них. Вторая часть для функций также верна и формулируется аналогично. Сформулируйте эту часть для функций и докажите ее.

Теорема 1.67 (о зажатой функции)

Пусть $f,g,h:X\to\mathbb{R}$, $a\in\overline{\mathbb{R}}$ — предельная точка множества $X\subset\mathbb{R}$ и $\lim_{x\to a}f(x)=\lim_{x\to a}g(x)=I\in\overline{\mathbb{R}}$. Если в некоторой проколотой окрестности точки а выполнено неравенство $f(x)\leq h(x)\leq g(x)$, то $\lim_{x\to a}h(x)=I$.

Без доказательства.

Упражнение 1.68

Опираясь на теоремы 1.32 и 1.62, докажите теорему 1.67.

Теорема 1.69 (о пределе функции и алгебраических операциях)

Пусть $f,g:X o\mathbb{R},\ a\in\overline{\mathbb{R}}$ — предельная точка множества $X\subset\mathbb{R}$ и существуют конечные пределы $\lim_{x\to a}f(x)$ и $\lim_{x\to a}g(x)$.

Тогда

1)
$$\lim_{\substack{x \to a \\ y \to a}} (f(x) \pm g(x)) = \lim_{\substack{x \to a \\ y \to a}} f(x) \pm \lim_{\substack{x \to a \\ y \to a}} g(x);$$
2)
$$\lim_{\substack{x \to a \\ y \to a}} (f(x) \cdot g(x)) = \lim_{\substack{x \to a \\ y \to a}} f(x) \cdot \lim_{\substack{x \to a \\ y \to a}} g(x);$$

2)
$$\lim_{x \to a} (f(x) \cdot g(x)) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x);$$

$$3) \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x),$$

$$3) \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$
 (при дополнительном условии, что $\lim_{x \to a} g(x) \neq 0$).

Без доказательства.

Упражнение 1.70

Опираясь на теоремы 1.36 и 1.62, докажите теорему 1.69.

Теорема 1.71 (критерий Коши для предела функции)

Пусть $f:X\to\mathbb{R}$, $a\in\overline{\mathbb{R}}$ — предельная точка $X\subset\mathbb{R}$. Тогда 1) если $a\in\mathbb{R}$, то функция f(x) имеет конечный предел при $x\to a$ тогда и только тогда, когда

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x_1, x_2 \in X$$
$$(0 < |x_1 - a| < \delta, 0 < |x_2 - a| < \delta \Rightarrow |f(x_1) - f(x_2)| < \varepsilon);$$

2) если $a = +\infty$, то функция f(x) имеет конечный предел при $x \to +\infty$ тогда и только тогда, когда $\forall \varepsilon > 0 \; \exists \Delta > 0 \; \forall x_1, x_2 \in X \; (x_1, x_2 > \Delta \Rightarrow |f(x_1) - f(x_2)| < \varepsilon);$ 3) если $a = -\infty$, то функция f(x) имеет конечный предел при $x \to -\infty$ тогда и только тогда, когда $\forall \varepsilon > 0 \; \exists \Delta > 0 \; \forall x_1, x_2 \in X \; (x_1, x_2 < -\Delta \Rightarrow |f(x_1) - f(x_2)| < \varepsilon).$

Без доказательства.

Предел и непрерывность функций одной вещ. перем.

Упражнение 1.72

Опираясь на теоремы 1.48 и 1.62, докажите теорему 1.71.

Теорема 1.73 (о пределе композиции)

```
Пусть f:X \to \mathbb{R}, g:Y \to \mathbb{R} такие, что f(X) \subset Y, и пусть a \in \overline{\mathbb{R}} — предельная точка множества X \subset \mathbb{R}. Предположим, что выполнены условия
```

- 1) существует $\lim_{x \to a} f(x) = b \in \overline{\mathbb{R}};$
- 2) существует $\lim_{y\to b} g(y) = I \in \overline{\mathbb{R}};$
- 3) для любого $x \in X$ такого, что $x \neq a$, выполнено неравенство $f(x) \neq b$.

$$T$$
огда $\lim_{x \to a} g(f(x)) = I$.

Доказательство теоремы 1.73 для случая $a, b, l \in \mathbb{R}$.

Упражнение 1.74

Докажите теорему 1.73 для случаев, когда

- 1) $a, b \in \mathbb{R}, I = \pm \infty$;
- 2) $a, l \in \mathbb{R}, b = \pm \infty$;
- 3) $a = \pm \infty$, $b, l \in \mathbb{R}$;
- 4) $a \in \mathbb{R}$, $b, l = \pm \infty$;
- 5) $a, l = \pm \infty, b \in \mathbb{R}$;
- 6) $a, b = \pm \infty, I \in \mathbb{R}$;
- 7) $a, b, l = \pm \infty$.

§ 1.4. Асимптотические сравнения.

1.4.1. Асимптотические сравнения o-малое и O-большое.

Выяснить асимптотическое поведение (или просто асимптотику) функции при $x \to a \in \overline{\mathbb{R}}$ значит представить ее в виде суммы более простой функции и чего-то малого по сравнению с этой простой при $x \to a$. Символы o-малое и o-большое позволяют придать

символы *о*-малое и *О*-оольшое позволяют придать соответствующим представлениям строгую математическую запись и гибкое оперирование с ними.

Определение 1.75 (асимптотических сравнений o-малое и O-большое)

Пусть $f, g: X \to \mathbb{R}$, $a \in \overline{\mathbb{R}}$ — предельная точка $X \subset \mathbb{R}$. Говорят, что функция f(x) есть о-малое от g(x) (или по сравнению с g(x)) при $x \to a$, и пишут $f(x) = o(g(x)), x \to a$, если f(x) можно представить в виде произведения $f(x) = \alpha(x)g(x)$, где $\alpha(x) \to 0$ при $x \to a$. Говорят, что функция f(x) есть О-большое от g(x) (или по сравнению с g(x)) при $x \to a$, и пишут f(x) = O(g(x)), $x \to a$, если f(x) можно представить в виде произведения $f(x) = \beta(x)g(x)$, где $\beta(x)$ ограничена в (проколотой) окрестности точки a, т. е. существует такая (проколотая) окрестность U точки a, что функция $\beta(x)$ ограничена на этой окрестности.

Замечание 1.76

Если в определении сравнений функция g(x) не обращается в нуль в некоторой окрестности точки а, то можно сказать так: f(x) есть o-малое (соответственно O-большое) относительно g(x) при $x \to a$ означает, что $\lim_{x \to a} \frac{f(x)}{g(x)} = 0$ (соответственно отношение $\frac{f(x)}{g(x)}$ ограничено в некоторой окрестности точки a). Так как в большинстве ситуаций соотношение $g(x) \neq 0$ вблизи точки а выполняется, нередко асимптотические сравнения воспринимаются именно так, как условия на отношение функций, без привлечения для них дополнительных обозначений $\alpha(x)$ и $\beta(x)$. Для обнаружения сравнения вида f(x) = O(g(x)) чаще всего обращаются к изучению предела отношения $\frac{f(x)}{\sigma(x)}$ в точке a, и если он есть и конечен, то указанное сравнение есть (ввиду того, что наличие конечного предела функции влечет ее ограниченность вблизи предельной точки).

Замечание 1.77

Важно понимать, что символами типа O(f(x)) и o(f(x)), если они не используются в конкретных равенствах, обозначают не одну функцию, а класс функций, обладающих отмеченным в символе свойством, так что если говорят «возьмем функцию O(f(x)) или o(f(x)) при $x \to a$ », то имеют в виду, что рассматривается некоторая функция, обладающая указанным свойством, т. е. некоторая функция h(x) такая, что $h(x) = \varphi(x)f(x)$, где соответственно $\varphi(x)$ ограничена вблизи a или $\lim_{x\to a} \varphi(x) = 0$.

Теорема 1.78 (правила работы с \emph{o} -малым и \emph{O} -большим)

Выражения с о-малыми и О-большими можно преобразовывать по следующим правилам, в которых равенство означает, что левую часть можно заменить правой частью (но не наоборот), или, иначе говоря, выражение в левой части обладает свойством, указанным в правой:

- 1) o(f) = O(f);
- 2) $o(f) \pm o(f) = o(f)$, $O(f) \pm O(f) = O(f)$;
- 3) o(o(f)) = o(f), O(O(f)) = O(f);
- 4) O(o(f)) = o(f), o(O(f)) = o(f);
- 5) $f \cdot o(g) = o(fg), f \cdot O(g) = O(fg)$

при условии, что все асимптотические сравнения относятся к одной и той же точке.

П. 4) и 5) теоремы 1.78 без доказательства.

Упражнение 1.79

Доказать п. 4) и 5) теоремы 1.78.

Замечание 1.80

Особенности асимптотических сравнений подчеркивает тот факт, что разность o(f(x)) - o(f(x)) не есть нуль. Еще раз обратим внимание на то, что o(f(x)) — отражение свойства, а не конкретная функция, так что, как видно из п. 2) теоремы 1.78, o(f(x)) - o(f(x)) = o(f(x)).

Teopema 1.81 (о сравнении показательной, степенной и логарифмической функций)

Пусть
$$a>1$$
 и $\alpha>0$. Тогда

1)
$$\frac{x^{\alpha}}{a^{x}} \rightarrow 0$$
, τ . e . $x^{\alpha} = o(a^{x})$ πpu $x \rightarrow +\infty$;

2)
$$\frac{\log_a x}{x^\alpha} \to 0$$
, τ . e . $\log_a x = o(x^\alpha)$ при $x \to +\infty$; 3) $x^\alpha \log_a x \to 0$, τ . e . $\log_a x = o(x^{-\alpha})$ при $x \to +0$.

3)
$$x^{\alpha} \log_a x \to 0$$
, τ . e. $\log_a x = o(x^{-\alpha})$ при $x \to +0$.

1.4.2. Главная часть функции. Эквивалентные функции.

Определение 1.82 (главной части)

Пусть $f,g:X\to\mathbb{R},\ a\in\overline{\mathbb{R}}$ — предельная точка $X\subset\mathbb{R}$. Функция g(x) называется главной частью f(x) при $x\to a$, и пишут $f(x)\sim g(x),\ x\to a$, если f(x)=g(x)+o(g(x)) при $x\to a$.

Замечание 1.83

Выделение главной части позволяет в плане предельных свойств заменять функцию более простой функцией с полным осознанием того, чем мы при переходе к пределу жертвуем, а именно слагаемым со свойством o(g(x)). Вместе с тем важно подчеркнуть, что главная часть играет большую роль только в процессе предельного перехода, и невозможно понять, насколько функция отличается от ее главной части в какой-то фиксированной точке вблизи той, в которой происходит рассмотрение.

Замечание 1.84

Если $g(x) \neq 0$ для x из некоторой окрестности точки a, то определяющее главную часть равенство можно записать так: $\frac{f(x)}{g(x)} = 1 + o(1)$ при $x \to a$, где o(1) — просто бесконечно малая, т. е. функция, имеющая пределом нуль. Последнее равенство можно записать так $\lim_{x\to a} \frac{f(x)}{g(x)} = 1$. Это равенство обычно служит основой для определения асимптотической эквивалентности функций.

Определение 1.85 (эквивалентных функций)

Пусть $f,g:X\to\mathbb{R}$, $a\in\overline{\mathbb{R}}$ — предельная точка $X\subset\mathbb{R}$. Если выполнено $\lim_{x\to a}\frac{f(x)}{g(x)}=1$, то функции f(x) и g(x) называются эквивалентными при $x\to a$, и пишут $f(x)\sim g(x)$, $x\to a$.

Теорема 1.86 (о главных частях элементарных функций)

Имеют место следующие асимптотические равенства при $x \to 0$:

1)
$$e^x = 1 + x + o(x)$$
;

2)
$$\ln(1+x) = x + o(x)$$
;

2)
$$\sin(1+x) = x + o(x)$$

3)
$$\sin x = x + o(x)$$
;

4)
$$(1+x)^{lpha}=1+lpha x+o(x)$$
, где $lpha\in\mathbb{R}$.

Доказательство теоремы 1.87 следует из следующих

замечательных пределов:

1)
$$\lim_{x\to 0} \frac{e^x - 1}{x} = 1$$

2)
$$\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$$
;

3)
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$

4)
$$\lim_{x \to 0} \frac{(1+x)^{\alpha}-1}{x} = \alpha.$$

где $\alpha \in \mathbb{R}$.

Теорема 1.87 (формулы Тейлора для элементарных функций)

Имеют место следующие асимптотические равенства при

$$x \to 0:$$
1) $e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + o(x^{n});$
2) $\ln(1+x) = \frac{x}{1} - \frac{x^{2}}{2} + \frac{x^{3}}{3} + \dots + (-1)^{n+1} \frac{x^{n}}{n} + o(x^{n});$
3) $\sin x = \frac{x}{1!} - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots + (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+1});$
3') $\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots + (-1)^{n} \frac{x^{2n}}{(2n)!} + o(x^{2n});$
4)
$$(1+x)^{\alpha} = 1 + \frac{\alpha}{1!}x + \frac{\alpha(\alpha-1)}{2!}x^{2} + \dots + \frac{\alpha(\alpha-1)(\alpha-2)\dots(\alpha-(n-1))}{2!}x^{n} + o(x^{n});$$

- 1.4.2. Работа с неопределенностями вида $\frac{0}{0}$ и $\frac{\infty}{\infty}$.
- 1. Преобразование выражений.
- 2. Использование замечательных пределов. Использование эквивалентности.
- 3. Асимптотические разложения.
- 4. Правило Бернулли Лопиталя.

Теорема 1.88 (правило Бернулли — Лопиталя)

Пусть $x_0 \in \mathbb{R}$ — предельная точка интервала (a,b), где $a,b \in \mathbb{R}$. Пусть функции $f,g:(a,b) \to \mathbb{R}$ дифференцируемы в проколотой окрестности точки x_0 и $g(x) \neq 0$ в этой окрестности. Пусть либо $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$, либо $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = \pm \infty$. Тогда если существует конечный предел $\lim_{x \to x_0} \frac{f'(x)}{g'(x)}$, то $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$.

Без доказательства.

Преобразование других неопределенностей:

1)
$$0 \cdot \infty$$
:

$$f\cdot g=\frac{f}{g^{-1}}.$$

2)
$$\infty - \infty$$
:

$$f-g=rac{1}{f^{-1}}-rac{1}{g^{-1}}=rac{g^{-1}-f^{-1}}{f^{-1}g^{-1}};$$

3)
$$1^{\infty}$$
, ∞^0 , 0^0 :

$$\lim_{x \to x_0} f(x)^{g(x)} = \lim_{x \to x_0} e^{g(x) \ln f(x)} = e^{\lim_{x \to x_0} (g(x) \ln f(x))}.$$

§ 1.5. Элементарные функции и замечательные пределы.

1.5.1. Элементарные функции.

К элементарным функциям относим:

- 1) степенную функцию $x \mapsto x^{\alpha}$;
- 2) показательную функцию $x \mapsto a^x$;
- 3) тригонометрические функции $x\mapsto\sin x,\ x\mapsto\cos x,\ x\mapsto \operatorname{tg} x,\ x\mapsto\operatorname{ctg} x;$
- 4) обратные к ним;
- 5) функции, получающиеся из перечисленных при помощи алгебраических операций и композиции, примененных конечное число шагов, т. е. фактически все, что можно написать формулой.

1.5.2. Показательная функция.

Теорема
$$1.89$$
 (о существовании предела $\lim\limits_{n o\infty}ig(1+rac{x}{n}ig)^nig)$

Для любого $x \in \mathbb{R}$ существует $\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n$, обозначаемые через $\exp(x)$:

$$\exp(x) := \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n$$

Определение 1.90 (экспоненциальной (показательной) функции и числа e)

Функцию $x \mapsto \exp(x)$, определенную в силу теоремы 1.89 на R, называют экспоненциальной (или показательной) функцией или просто экспонентой.

3начение $\exp(1)$ называют числом e:

$$e = \exp(1) = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$$

Теорема 1.91 (о свойствах показательной функции)

Функция ехр обладает следующими свойствами:

- 1) $\exp(x + y) = \exp(x) \cdot \exp(y)$, $x, y \in \mathbb{R}$;
- 2) $\exp(x) > 0$ для всех $x \in \mathbb{R}$;
- 3) функция ехр возрастающая;
- 4) функция ехр имеет следующее поведение на концах области определения:

$$\lim_{x \to -\infty} \exp(x) = 0, \lim_{x \to +\infty} \exp(x) = +\infty;$$

5) имеет место следующее соотношение, называемое

замечательным пределом
$$\lim_{x\to 0} \frac{e^x-1}{x}=1.$$

П. 1)-4) теоремы 1.91 без доказательства.

Упражнение 1.92

Доказать п. 1)-4) теоремы 1.91.

Замечание 1.93 ($e^x = \exp(x)$)

В школьном курсе математики рассматривают функцию возведения в степень. Сначала определяют степень с натуральным показателем, и это можно сделать для любого а, затем степень с целым показателем, и здесь появляется ограничение $a \neq 0$, потом переходят уже к степени с рациональным показателем $a^{\frac{1}{q}}$, при этом уже ограничиваются значениями a > 0, и, наконец, распространяют на случай произвольного вещественного показателя, используя либо непрерывность, либо монотонность. Это довольно длинный путь, и мы пошли другим путем. Остался вопрос: почему эти два разных способа построения дают одну и ту же функцию?

Совпадение функций e^x и $\exp(x)$ в рациональных точках обеспечено основным свойством, изложенным в п. 1) теоремы 1.91. Действительно, это очевидно для натуральных x, далее распространяется на целые и рациональные, так что для рациональных совпадение следует из алгебраических свойств. Но в то время как функция e^{x} получается пока определенной лишь для рациональных чисел, функция $\exp(x)$ определена всюду. Разумно считать, что они должны совпадать всюду, коли это происходит на рациональных точках, и тем самым в дальнейшем наряду с обозначением $\exp(x)$ будем использовать также обозначение e^{x} .

1.5.3. Натуральный логарифм.

Определение 1.94 (натурального логарифма)

Функцию, обратную к экспоненциальной функции $\exp(x)$, называют натуральным логарифмом и обозначают символом $\ln(x)$ или $\ln x$.

Теорема 1.95 (о свойствах логарифма)

Функция $\ln x$ обладает следующими свойствами:

- 1) логарифм определен для x > 0;
- 2) $\ln(xy) = \ln x + \ln y, x, y > 0;$
- 3) функция $\ln x$ возрастающая;
- 4) функция ехр имеет следующее поведение на концах области определения:

$$\lim_{x \to +0} \ln x = -\infty, \lim_{x \to +\infty} \ln x = +\infty;$$

5) имеет место следующее соотношение, называемое

замечательным пределом
$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1.$$

П. 1)–4) теоремы 1.95 без доказательства.

Упражнение 1.96

Доказать п. 1)-4) теоремы 1.95.

Определение 1.97 (степени с произвольным основанием)

Для a>0 определим степень с основанием a следующим образом:

$$a^{x} = \exp(x \ln a) = e^{x \ln a}$$

Определение 1.98 (степенной функции)

Для фиксированного $\alpha \in \mathbb{R}$ определим степенную функцию $x \mapsto x^{\alpha}$ на $(0, +\infty)$ следующим образом: $x^{\alpha} = \exp(\alpha \ln x)$.

Замечание 1.99

Пользуясь свойствами показательной функции, легко проверить, что в случае $\alpha \in \mathbb{Q}$ определенная нами функция x^{α} совпадает со степенной функцией, которая определяется в школьном курсе математики. Кроме того, используя подходящее продолжение (четное или нечетное) в некоторых случаях можно доопределить x^{α} на большее множество: при $\alpha=1,2,\ldots-$ на \mathbb{R} , при $\alpha=-1,-2,\ldots$ на $\mathbb{R}\setminus\{0\}$. При некоторых $\alpha\in\mathbb{Q}$ также можно расширить область определения x^{α} , например, при $\alpha=1/3$ функция $x^{1/3}$ естественно определяется на всем \mathbb{R} .

Теорема 1.100 (замечательный предел для степенной функции)

Имеет место следующее соотношение, именуемое замечательным пределом

$$\lim_{x \to 0} \frac{(1+x)^{\mu} - 1}{x} = \mu, \ \mu \in \mathbb{R}.$$

1.5.4. Тригонометрические функции.

Определение 1.101 (тригонометрических функций)

Косинус $\cos x$ и синус $\sin x$ вещественного числа $x \in \mathbb{R}$ определяются соответственно как абсцисса и ордината точки на единичной окружности, которая получается из точки (1,0) после того, как она проходит по окружности путь x против часовой стрелки, если x>0, и путь -x по часовой стрелке, если x<0.

Тангенс tg x и котангенс ctg x определяются как отношения:

$$tg x = \frac{\sin x}{\cos x}, \ ctg x = \frac{\cos x}{\sin x}$$

с естественными областями определения.

Teopema 1.102 (замечательный предел для $\sin x$)

Имеет место следующее соотношение, называемое

замечательным пределом:
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
.

§ 1.6. Непрерывность.

1.6.1. Определение непрерывной функции.

Определение 1.103 (непрерывности функции в точке)

Функцию $f:X \to \mathbb{R}$ называют непрерывной в точке $a \in X \subset \mathbb{R}$, если

 $\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in X \ (|x - a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon.$

Замечание 1.104

Для точки $a \in X$ возможны два случая: a — точка сгущения X или a — не точка сгущения (в последнем случае говорят, что a — изолированная точка множества X).

Если a — точка сгущения X, то в этом случае можно говорить о пределе f(x) в точке a и условие в определении непрерывности означает, что $\lim_{x\to a} f(x) = f(a)$, т. е. предел совпадает со значением.

Если точка a изолированная, то по определению предельной точки $\exists \delta>0: \ (a-\delta,a+\delta)\cap X=\{a\}.$ Для этого δ посылка $|x-a|<\delta$ выполняется для одной единственной точки a, для которой, конечно, $|f(x)-f(a)|=0<\varepsilon.$ Стало быть, в изолированной точке любая функция всегда непрерывна.

Замечание 1.105

Если точка a не принадлежит X, но является точкой сгущения X, формально говорить о непрерывности нельзя. Однако можно считать, что f(x) непрерывна в a, если f(x) имеет конечный предел в a. Действительно, если доопределить f(x) в точке a, полагая $f(a) = \lim_{x \to a} f(x)$, то полученная функция будет непрерывной в a.

Определение 1.106 (точки разрыва, разрывов первого и второго рода, устранимого разрыва)

Если функция не непрерывна в точке a, то говорят, что она разрывна в данной точке или, более эмоционально, что она терпит разрыв в этой точке. Разрыв в точке может произойти в связи с разными обстоятельствами. В зависимости от приведших к разрыву причин различают устранимые разрывы, когда, поменяв значение функции в точке а, можно превратить ее в непрерывную, и неустранимые, когда это невозможно. Для устранимости разрыва надо иметь по крайней мере оба односторонних предела, и эта ситуация выделается отдельно. А именно говорят, что функция имеет в точке $a \in X$ разрыв первого рода, если в этой точке существуют конечные односторонние пределы. При этом пределы $\lim_{x \to a-0} f(x)$ и $\lim_{x o a+0} f(x)$ называют соответственно значениями функции f в точке а слева и справа и обозначают символами f(a-0) и f(a+0) (если a=0, то обычно пишут короче f(-0) и f(+0)).

Если значения f(a-0) и f(a+0) совпадают, то говорят, что разрыв устранимый, в противном случае разрыв называют неустранимым. Все разрывы, не относящиеся к разрывам первого рода, называют разрывами второго рода. Естественно, ни о какой устранимости разрыва второго рода речи идти не может, ибо в это случае нет хотя бы одного одностороннего конечного предела.

Теорема 1.107 (непрерывность в точке и алгебраические операции и композиция)

1. Если $f,g:X\to\mathbb{R}$ непрерывны в точке a, то $f\pm g$, fg, $\frac{f}{g}$ тоже непрерывны в точке a (последнее при условии, что $g(a)\neq 0$). 2. Пусть функции f и g таковы, что определена их композиция $g\circ f$. Если $f:X\to Y$ непрерывна в точке $a\in \text{dom}(g\circ f)$ и $g:Y\to\mathbb{R}$ непрерывна в точке f(a), то $g\circ f:X\to\mathbb{R}$

Без доказательства.

непрерывна в точке а.

Замечание 1.108 (о непрерывности элементарных функций)

Об элементарных функциях можно сказать, что все они непрерывны в каждой точке их областей определения. Доказательство этого факта основано на оценках для соответствующих функций, установленных при их рассмотрении.

1.6.2. Свойства непрерывных функций.

Определение 1.109 (непрерывности функции на множестве)

Говорят, что функция непрерывна на множестве, если она непрерывна в каждой точке этого множества.

$\mathsf{Teopema}\ 1.110\ (\mathsf{\overline{b}onbuaho} - \mathsf{Komu}\ \mathsf{o}\ \mathsf{промежутo} \mathsf{\overline{q}hbx}\ \mathsf{зhaчehusx})$

Пусть $f:\langle a,b\rangle \to \mathbb{R}$ — непрерывная функция на промежутке $\langle a,b\rangle$ и $y_1=f(x_1),\ y_2=f(x_2),\ x_1,x_2\in \langle a,b\rangle,\ x_1< x_2,$ — два ее значения. Тогда для любого y, лежащего между y_1 и y_2 , найдется такое $x\in [x_1,x_2],$ что f(x)=y.

Замечание 1.111

Иными словами, непрерывная функция на промежутке принимает все свои промежуточные значения.

Теорема 1.112 (Вейерштрасса о наибольшем и наименьшем значениях)

Пусть $f:[a,b] \to \mathbb{R}$ — непрерывная функция, заданная на отрезке [a,b]. Тогда существуют такие точки $x_{\min}, x_{\max} \in [a,b]$, что для любого $x \in [a,b]$ выполнены неравенства $f(x_{\min}) \le f(x) \le f(x_{\max})$, т. е. f принимает наибольшее и наименьшее значения на отрезке. В частности, f ограничена.