tabular[t]cAndrea Hanke

Warum spherical harmonics?

Johannes Hahn Andrea Hanke

7. Juni 2021

Inhaltsverzeichnis

0	Einführung	2
1	Warum Tensoren?	2
	1.1 Wiederholung: Vektorräume	2
	1.2 Bilineare Abbildungen	4
	1.3 Das Tensorprodukt	6
	Blatt 1	11
	1.1. Casimir-Elemente von euklidischen Räumen	11
	1.2. Casimir-Elemente allgemein	11
	1.3. Aber Tensoren sind doch so Buchstaben mit Indizes	11
	1.4. Was denn für Indizes?	12
2	Warum Darstellungstheorie?	13

0 Einführung

1 Warum Tensoren?

1.1 Wiederholung: Vektorräume

Wir kennen uns bereits mit Vektorräumen aus. Typische Beispiele sind \mathbb{R}^3 oder der Raum der Polynome von einem bestimmten Grad n. Da uns in diesem Kurs noch weitere Vektorräume begegnen werden und zum Vergleich mit anderen mathematischen Objekten (z.B. Darstellungen), ist hier ihre Definition zusammengefasst.

1.1 **Definition** (Vektorräume und lineare Abbildungen): Sei K ein Körper. Ein K-Vektorraum $(V, +, \cdot)$ besteht aus

- einer Menge V,
- einer Abbildung $+: V \times V \to V, (v, w) \mapsto v + w$, genannt (Vektor)addition und

• einer Abbildung $\cdot: K \times V \to V, (\lambda, v) \mapsto \lambda \cdot v$, genannt Skalarmultiplikation. die die Vektorraum-Axiome in Tabelle 1.1 erfüllen. Alles, was Element eines Vektorraums ist, kann Vektor genannt werden.

Vektorraum-Axiom	Bedeutung
(V,+) ist eine abelsche Gruppe	Addition verhält sich wie erwartet
Assoziativität	$\forall u, v, w \in V : u + (v + w) = (u + v) + w$
Neutrales Element bzw. "Null"	$\exists 0 \in V \forall v \in V : v + 0 = 0 + v$
Inverse bzw. "negative" Elemente	$\forall v \in V \exists w \in V : v + w = 0$
Kommutativität	$\forall u, v \in V : u + v = v + u$
Eigenschaften der Skalarmultiplikation	
Assoziativität	$\forall a,b \in K, v \in V: a \cdot (b \cdot v) = (a \cdot b) \cdot v$
Normierung bzw. Nichttrivialität	$\forall v \in V: 1 \cdot v = v,$ wobei 1 das Einselement des Körpers bezeichnet
Verträglichkeit von Addition und Skalar-multiplikation	
Distributivität bzgl. $(V, +)$	$\forall a \in K, u, v \in V : a \cdot (u + v) = a \cdot u + a \cdot v$
Distributivität bzgl. $(K, +)$	$\forall a,b \in K, v \in V : (a+b) \cdot v = a \cdot v + b \cdot v$
Axiome linearer Abbildungen	Bedeutung
Additivität	$\forall v_1, v_2 \in V : f(v_1 + v_2) = f(v_1) + f(v_2)$
Homogenität	$\forall \lambda \in K, v \in V : f(\lambda \cdot v) = \lambda \cdot f(v)$

Tabelle 1.1: Definierende Eigenschaften von Vektorräumen und linearen Abbildungen

Sind V,W zwei K-Vektorräume und $f:V\to W$ eine Abbildung, so heißt f (K-)lineare Abbildung oder (Vektorraum-)Homomorphismus, falls die beiden Axiome in Tabelle 1.1 erfüllt sind. Den Raum aller K-linearen Abbildungen von V nach W bezeichnen wir mit $\operatorname{Hom}_K(V,W)$. Eine K-linearen Abbildungen von V nach V (also gleicher Definitions- und Zielraum) heißt (Vektorraum-)Endomorphismus, der Raum aller solcher Abbildungen wird mit $\operatorname{End}_K(V)$ notiert.

1.2: Wir sind praktisch ausschließlich an \mathbb{R} - und \mathbb{C} -Vektorräumen interessiert in diesem

Kurs.

1.3 Definition (Kern & Bild):

Ist $f: V \to W$ eine K-lineare Abbildung, so ist

$$\ker(f) := \{ v \in V \mid f(v) = 0 \}$$

der Kern von f und

$$im(f) := \{ w \in W \mid \exists v \in V : f(v) = w \}$$

das Bild von f.

1.2 Bilineare Abbildungen

- **1.4:** Es gibt i.A. keine Multiplikation zweier Vektoren miteinander in irgendeinem Sinne. Wir können immer Skalare mit Vektoren multiplizieren, aber nicht Vektoren mit Vektoren. Nichts desto trotz ist es *manchmal* doch so, dass zusätzlich zu Addition und Skalarmultiplikation eine weitere Operation existiert, die ein sinnvolles Konzept von Multiplikation liefert, z.B.
 - a.) Der Vektorraum der Polynome $\mathbb{R}[X]$ hat die Polynommultiplikation, d.h.

$$\left(\sum_{i=0}^{n} a_i X^i\right) \cdot \left(\sum_{j=0}^{m} b_j X^j\right) := \sum_{k=0}^{n+m} \left(\sum_{\substack{i,j\\i+j=k}} a_i b_j\right) X^k$$

b.) Der Vektorraum der Funktionen $X \to \mathbb{C}$ für einen festen Definitionsbereich X hat die punktweise Multiplikation, d.h.

$$f \cdot g := x \mapsto f(x)g(x)$$

c.) Die Hintereinanderausführung von linearen Abbildungen $\operatorname{Hom}_K(V,W) \times \operatorname{Hom}_K(U,V) \to \operatorname{Hom}_K(U,W), (f,g) \mapsto f \circ g$ ist eine Abbildung, die sich in vielerlei Hinsicht auch wie eine Multiplikation verhält. Für U=V=W erhält man insbesondere eine Multiplikation $\operatorname{End}_K(V) \times \operatorname{End}_K(V) \to \operatorname{End}_K(V)$.

Nach Wahl von je einer Basis können wir $\operatorname{Hom}_K(V,W)$, $\operatorname{Hom}_K(U,V)$ und $\operatorname{Hom}_K(U,W)$ mit $K^{n\times m}$, $K^{m\times p}$ und $K^{n\times p}$ identifizieren. Die Hintereinanderausführung von linearen Abbildung entspricht dann der Matrixmultiplikation.

d.) ...

1.5 Definition (Bilineare & multilineare Abbildungen):

Sind V, W, X drei K-Vektorräume, so heißt eine Abbildung $\phi : V \times W \to X$ bilinear, falls sie beiden Linearitätsbedingungen in Tabelle 1.5 erfüllt, d.h. die Funktion ist separat

Axiom	Bedeutung
Linearität:	
im ersten Argument	$\forall v_1, v_2 \in V, w \in W : \phi(v_1 + v_2, w) = \phi(v_1, w) + \phi(v_2, w)$
	$\forall \lambda \in K, v \in W, w \in W: \phi(\lambda v, w) = \lambda \phi(v, w)$
im zweiten Argument	$\forall v \in V, w_1, w_2 \in W : \phi(v, w_1 + w_2) = \phi(v, w_1) + \phi(v, w_2)$
	$\forall \lambda \in K, v \in W, w \in W: \phi(v, \lambda w) = \lambda \phi(v, w)$
Falls $\phi: V \times V \to X$, kann optional gelten:	
Symmetrie bzw. Kommutativität	$\forall u, v \in V : \phi(u, v) = \phi(v, u)$
Antisymmetrie	$\forall u, v \in V : \phi(u, v) = -\phi(v, u)$
Falls $\phi: V \times V \to V$, kann optional gelten:	
Assoziativität	$\forall u, v, w \in V : \phi(u, \phi(v, w)) = \phi(\phi(u, v), w)$

Tabelle 1.2: Eigenschaften von bilinearen Abbildungen

linear, wenn man nur den ersten oder nur den zweiten Input variiert und den anderen festhält.

Für Abbildungen $V_1 \times V_2 \times V_3 \to X$, die von drei Inputvektoren abhängig sind, kann man entsprechend definieren, dass eine Abbildung trilinear heißt, wenn sie die drei Distributivgesetze erfüllt. Für vier, fünf, ... k Input-Vektoren spricht man entsprechend von k-fach linearen Abbildungen.

1.6 Beispiel:

Die drei genannten "Multiplikationen" von oben sind bilinear. Polynommultiplikation und punktweise Multiplikation von Funktionen sind kommutativ und assoziativ. Die Komposition $\operatorname{End}_K(V) \times \operatorname{End}_K(V) \to \operatorname{End}_K(V)$ ist assoziativ, aber nicht kommutativ, falls $\dim(V) > 1$.

Es gibt viele weitere, äußerst nützliche Beispiele.

d.) Richtungsableitungen sind bilinear in der Richtung und der Funktion:

Sei $X\subseteq\mathbb{R}^n$ ein geeigneter Definitionsbereich (z.B. eine offene Menge). Sei außerdem $f:X\to\mathbb{C}$ eine differenzierbare Funktion. Dann existieren insbesondere alle Richtungsableitungen $(\partial_v f)(x_0)=\lim_{t\to 0}\frac{f(x_0)-f(x_0+tv)}{t}$ in allen Punkten

 $x_0 \in X$. Die Abbildungsvorschrift $(v, f) \mapsto \partial_v f$ liefert eine bilineare Abbildung für mehrere Kombinationen von Vektorräumen, z.B. $\mathbb{R}^n \times C^1(\mathbb{R}^n) \to C^0(\mathbb{R}^n)$ oder $\mathbb{R}^n \times C^{\infty}(\mathbb{R}^n) \to C^{\infty}(\mathbb{R}^n)$.

e.) Allgemeiner: Lineare Differentialoperatoren:

Für mehrfach differenzierbare Funktionen kann man natürlich auch mehrere Ableitungsschritte hintereinander ausführen. Auf diese Weise erhält man multilineare Abbildungen: k-faches Ableiten in k Richtungen, also der Differentialoperator $\partial_{v_1}\partial_{v_2}\cdots\partial_{v_k}$ ist k-fach linear in den Vektoren $v_1,...,v_k$ als Inputs. Die Anwendung auf eine Funktion ist entsprechend (k+1)-fach linear in den k Richtungsvektoren und der Funktion als Inputs.

Als k-lineare Abbildung ist dies eine symmetrische Abbildung, d.h. $\partial_v \partial w f = \partial_w \partial_v f$, sofern f zweimal stetig differenzierbar ist. Das ist der Satz von Schwarz¹.

f.) Kreuzprodukt:

Es gibt eine besondere bilineare Abbildung $X : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3$, genannt Kreuzprodukt, die in anderen Dimensionen keine gute Analogie hat, nämlich

$$\begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} \times \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} := \begin{pmatrix} y_1 z_2 - y_2 z_1 \\ x_1 z_2 - x_2 z_1 \\ x_1 y_2 - x_2 y_1 \end{pmatrix}$$

Es ist bilinear, aber weder kommutativ noch assoziativ. Stattdessen ist es antisymmetrisch.

1.3 Das Tensorprodukt

1.7: Bilineare Abbildungen sind in vielerlei Hinsicht ähnlich zu linearen Abbildungen, z.B. kann man sie durch Basiswahl eindeutig beschreiben, d.h.

Wenn V, W zwei K-Vektorräume sind, b_1, \ldots, b_n eine Basis von V und $c_1, \ldots c_m$ eine Basis von W, und $\phi: V \times W \to X$ eine bilineare Abbildung, dann sind alle Werte $\phi(v, w)$ bereits eindeutig festgelegt, wenn man $\phi(b_i, c_j)$ für alle i und j kennt, und umgekehrt liefert jede beliebige Wahl von Vektoren $x_{ij} \in X$ genau eine bilineare Abbildung $\psi: V \times W \to X$, die $\psi(b_i, c_j) = x_{ij}$ erfüllt.

Weiter könnte man z.B. jetzt den Raum aller bilinearen Abbildungen Bil(V,W;X) betrachten und beweisen, dass das selbst ein Vektorraum ist genau wie der Raum der linearen Abbildungen zwischen zwei festen Vektorräumen selbst ein Vektorraum ist.

Ähnliches gilt auch für k-lineare Abbildungen. Außerdem kann man sich davon überzeugen, dass diese Strukturen mit Hintereinanderausführung von Abbildungen verträglich sind. Hier ist noch zu beachten, dass multilineare Abbildungen viel mehr Möglichkeiten

¹Hermann Amandus Schwarz (1843 – 1921), dt. Mathematiker.

haben, zwei Abbildungen hintereinander auszuführen, z.B. könnte man zwei bilineare Abbildungen hintereinander ausführen, indem man

$$\phi(\psi(u,v),w)$$
 oder $\phi(u,\psi(v,w))$

bildet und i.A. sind das zwei verschiedene 3-lineare Abbildungen. Man hat bereits drei fundamental verschiedene Möglichkeiten, lineare und bilineare Abbildungen miteinander zu kombinieren: Man kann $\phi(\alpha(u),v)$, $\phi(u,\alpha(w))$ oder $\alpha(\phi(u,v))$ bilden je nachdem, was davon tatsächlich definiert ist. Alle Kombinationen sind jedoch wieder bilineare Abbildungen. Wenn man allgemein k- und m-lineare Abbildungen miteinander kombinieren will, hat man sehr schnell eine explodierende Anzahl verschiedener Möglichkeiten vor sich. Sie alle liefern wieder multilineare Abbildungen als Ergebnis und alle Möglichkeiten a verschiedene multilineare Abbildungen auf diese Weise zu kombinieren, sind selbst a-fach lineare Operationen zwischen den entsprechenden Abbildungsräumen.

Man könnte all das jetzt für alle diese Kombinationen beweisen, wenn man zu viel Freizeit und Tinte hat. Alle Beweise sind langweilig, wenn man den linearen Fall einmal verstanden hat und funktionieren in der Tat völlig analog. Das große Problem ist eigentlich, eine geeignete Notation zu finden, die einem erlaubt, diese Beweise alle nur einmal und dafür allgemein zu führen, statt in jeder neuen Kombination von vorne anfangen zu müssen. Und selbst wenn man sich so eine Notation überlegt, dann steht man noch vor einigen technischen, aber völlig trivialen Problemen, die mehr Arbeit verlangen als man für solche Trivialitäten erwartet. Wenn man beispielsweise eine Notation erfindet um zwei multilineare Abbildungen miteinander zu verbinden, dann stellt sich die Frage, ob alle Arten, drei multilineare Abbildungen zu verbinden, sich durch schrittweises Verbinden von je zweien erhalten lassen und ob dafür eine geeignete Form von Assoziativität gilt. Erneut stellt man fest, dass die Antwort "ja" ist, die geeignete Form von Assoziativität gilt und die Beweise alle analog zum linearen Fall laufen.

- 1.8: All diese Fälle sind letztendlich so sehr ähnlich zum linearen Fall, dass es in der Tat eine Konstruktion gibt, die es einem erlaubt, multilineare Abbildungen als echte lineare Abbildungen aufzufassen, sodass man überhaupt nichts mehr beweisen muss, das über den (schon bekannten) linearen Fall und die Existenz und grundlegenden Eigenschaften dieser Konstruktion hinaus geht. Dieses Konstrukt ist das *Tensorprodukt*.
- **1.9 Satz und Definition** (Universelle Eigenschaft und Existenz des Tensorprodukts): Es seien V, W zwei K-Vektorräume. Es gibt eine "universelle bilineare Abbildung", d.h. es gibt ein Vektorraum T und eine bilineare Abbildung $\tau: V \times W \to T$, sodass jede bilineare Abbildung $\phi: V \times W \to X$ sich schreiben lässt als $f \circ \tau$ mit einer eindeutig bestimmten linearen Abbildung $f: T \to X$.

T und τ sind in der Tat eindeutig bestimmt bis auf einen eindeutigen Isomorphismus, d.h. wenn $\tau': V \times W \to T'$ eine weitere universelle bilineare Abbildung ist, dann gibt es genau einen Isomorphismus $\alpha: T \to T'$, sodass

Diagram

²Wer's nicht glaubt, probiere es selbst aus und finde alle diese Beweise, bis das notwendige Maß an Langeweile erreicht ist.

$$V \times W \xrightarrow{\tau} T \xrightarrow{\alpha} T' = \tau'$$

gilt. Man schreibt üblicherweise $V \otimes W$ statt T und $v \otimes w$ statt $\tau(v,w)$ für diesen eindeutig bestimmten Vektorraum und bilineare Abbildung und nennt sie Tensorprodukt von V und W. (Achtung: Das Tensorprodukt ist streng genommen die Kombination aus T und τ , nicht nur T).

1.10: Ausgeschrieben sagt die universelle Eigenschaft folgendes: Von einer Abbildungsvorschrift $\phi:(v,w)\mapsto x_{v,w}$, die je einen Inputvektor aus V und einen aus W nimmt und einen Vektor aus X produziert, gibt es genau dann eine Realisierung dieser Abbildungsvorschrift als lineare Abbildung $f:V\otimes W\to X$ mit $f(v\otimes w)=x_{v,w}$, wenn ϕ bilinear ist.

Jede bilineare Abbildung kann so eindeutig als lineare Abbildung auf dem Tensorprodukt der beiden Inputräume betrachtet werden, und umgekehrt kann jede lineare Abbildung auf einem Tensorprodukt als bilineare Abbildung aufgefasst werden, indem man sie auf die Menge der reinen Tensoren einschränkt.

1.11 Definition (Reine Tensoren):

Ein Element von $V \otimes W$, das die Form $v \otimes w$ hat, wird als reiner Tensor bezeichnet.

1.12 (Diskussion: reine vs. nicht-reine Tensoren): Ein wichtiger, vielleicht der wichtigste Grund, Tensorräume als eigenständiges Objekt einzuführen statt ausschließlich mit multilinearen Abbildungen zu arbeiten ist die Existenz von nicht-reinen Tensoren: Eine Summe $v_1 \otimes w_1 + v_2 \otimes w_2 + \ldots + v_k \otimes w_k$ (die natürlich immer existiert, weil $V \otimes W$ ja ein Vektorraum ist) ist i.A. kein reiner Tensor, lässt sich also i.A. nicht darstellen als $v_1 \otimes w_1 + v_2 \otimes w_2 + \ldots + v_k \otimes w_k = x \otimes y$.

Es stellt sich heraus, dass viele der wirklich interessanten Tensoren, die einem so in freier Wildbahn begegnen, nicht rein sind.

Beispiel: In der Quantenmechanik wird das Tensorprodukt benutzt, um mehrere interagierende Quanten-Systeme als ein einziges großes System zu betrachten: Wenn V und W der Zustandsraum je einer Menge X bzw. Y quantenmechanischer Teilchen sind, dann ist $V \otimes W$ der Zustandsraum des quantenmechanischen Systems, das aus den Teilchen von X und Y besteht und beliebige Interaktionen zwischen ihnen erlaubt. Ein reiner Tensor $v \otimes w$ entspricht in dieser Sichtweise demjenige Zustand des Gesamtsystems, in dem sich die Teilchen aus X im Zustand v, und das aus Y im Zustand w befinden. Die nicht-reinen Tensoren entsprechen dann "Überlagerungen" solcher reinen Zustände und das fundamental wichtige Phänomen von "verschränkten" Teilchen ist ein Ausdruck dessen, dass eben nicht alle Zustände reine Zustände sind, in denen man die Teilchen von Xunabhängig von denen in Y einen Zustand zuschreiben kann: Es kann z.B. ein Zustand der Form $x_1 \otimes y_1 + x_2 \otimes y_2$ konstruiert (und auch experimentell realisiert) werden, in dem x_1 und x_2 sowie y_1 und y_2 beide jeweils senkrecht zueinander sind. In solch einem Zustand des Gesamtsystems können die X-Teilchen in Zustand x_1 oder x_2 gemessen werden, aber nur dann, wenn gleichzeitig die Y-Teilchen in Zustand y_1 bzw. y_2 liegen. Es kann eben nicht unabhängig voneinander der X-Anteil in Zustand x_1 sein, während der Y-Anteil des Gesamtsystems in Zustand y_2 ist (hier geht die Orthogonalität ein).

1.13 Beispiel (Casimir-Element):

Ist V ein endlich-dimensionaler \mathbb{R} -Vektorraum und haben wir ein Skalarprodukt fest gewählt, so gibt es einen besonderen Tensor $\Omega_V \in V \otimes V$. Für jede Orthogonalbasis e_1, \ldots, e_n von V lässt er sich schreiben als

$$\Omega_V = \sum_{i=1}^n e_i \otimes e_i$$

Für $V = \mathbb{R}^3$ und die Standardbasis e_x, e_y, e_z ist etwa

$$\Omega_{\mathbb{R}^3} = e_x \otimes e_x + e_y \otimes e_y + e_z \otimes e_z$$

Betrachten wir den Raum der linearen Differentialoperatoren erster Ordnung auf $C^{\infty}(V)$, d.h. der Vektorraum der Operatoren $\{\partial_v \mid v \in V\}$. Darin schreibt sich das Casimir-Element als

$$\Omega = \sum_{i=1}^{n} \partial_{v_i} \otimes \partial_{e_i}$$

Wenn wir die Komposition von Operatoren (eine bilineare Abbildung) auf diesen Tensor anwenden, erhalten wir den Laplace-Operator:

$$\Delta = \sum_{i=1}^{n} \partial_{e_i}^2$$

Man beachte insbesondere, dass das Ergebnis der Summe auf der rechten Seite unabhängig von der gewählten Basis ist, obwohl die einzelnen Summanden es natürlich nicht sind. Das erklärt z.B., wieso der Laplace-Operator und viele ähnlich aussehende Konstruktionen physikalische sinnvolle Objekte liefern, obwohl ihre Definition auf den ersten Blick basisabhängig zu sein scheint.

1.14: Man kann sich jedoch leicht davon überzeugen, dass die Menge aller Summen von reinen Tensoren tatsächlich das volle Tensorprodukt abdeckt:

$$V \otimes W = \{ v_1 \otimes w_1 + v_2 \otimes w_2 + \ldots + v_k \otimes w_k \mid k \in \mathbb{N}, v_i \in V, w_i \in W \}$$

In der Welt der Quantenmechanik würde man dazu also z.B. sagen: Der Zustandsraum des aus zwei Einzelsystemen kombinierten Systems besteht aus allen Kombinationen von reinen Zuständen der Einzelsysteme sowie allen Überlagerungen dessen.

Es ist i.A. ein sehr schwieriges Problem, einem konkreten Tensor anzusehen, ob er rein ist oder nicht, und wenn nicht, welche reinen Zustände man zusammen addieren muss, um ihn zu erhalten. Nicht einmal die Anzahl der mindestens notwendigen Summanden ist einfach zu finden im Allgemeinen.

1.15 (Diskussion: Das Wort "Tensor"): Im Gegensatz zum Wort "Vektor", das zumindestens meistens "Element eines Vektorraums" bedeutet und selten anders verwendet

wird, ist das Wort "Tensor" etwas überbelegt. Die verschiedenen Verwendungsformen des Worten fallen grob in zwei Kategorien: 1.) "ich habe keine Ahnung, was Tensoren sind, aber andere Leute benutzen das Wort, also tue ich das auch" und 2.) irgendetwas, das tatsächlich mit Tensorprodukten zu tun hat.

Zu 1. später mehr, zu 2. nur soviel: "Tensor" kann sowohl "Element eines Tensorprodukts von Vektorräumen" bedeuten (so werden wir das Wort verwenden) als auch einen von diversen, verwandten Begriffe, z.B. wird das auch als Kurzform von Tensorfeld verwendet. Ein Tensorfeld ist ein Funktion, die jedem Punkt des gerade betrachten geometrischen Raums X (oder Raumzeit) je ein Element $t(x) \in V_x \otimes V_x \otimes V_x \otimes ...$ zuordnet, wobei gewisse Stetigkeitseigenschaften gefordert werden, die für zwei eng beieinander liegende Punkte x, x' fordern, dass V_x und $V_{x'}$ "im Wesentlichen der gleiche Raum" sind und t(x), t(x') ebenfalls eng zusammen liegen (formal ist das natürlich eine richtige ϵ - δ -artige Definition). Ggf. wird auch nicht nur ein Vektorraum V_x pro Punkt verwendet, sondern mehrere. Je nachdem, welche Zusatzeigenschaften man an solch ein Tensorfeld stellt, wird auch nicht nur das Tensorprodukt der Vektorräume selbst, sondern auch eine vom Tensorprodukt abgeleitete Konstruktion betrachtet (z.B. symmetrische oder äußere Potenzen, siehe weiter unten).

Physiker sprechen außerdem noch "Pseudotensoren", die aber mathematisch gesehen auch nur Tensoren wie alle anderen sind. Der Unterschied liegt darin, dass der Tensorraum, aus dem sie kommen, mit einer Zusatzstruktur versehen wird, der einer Darstellung. Während "gewöhnliche" Tensoren ihre Tensorprodukte in der "offensichtlichen" Weise als Darstellung auffassen, wird bei Pseudotensoren ein "Twist" auf die Darstellung angewendet.

Aufgaben

Aufgabe 1.1. – Casimir-Elemente von euklidischen Räumen

Es sei V ein endlich-dimensionaler \mathbb{R} -Vektorraum mit Skalarprodukt und $e_1, ..., e_n$ eine Orthonormalbasis.

a.) Zeige, dass der Casimir-Tensor

$$\Omega_V := \sum_{i=1}^n e_i \otimes e_i$$

unabhängig von der Basiswahl ist, d.h. wenn $e'_1, ..., e'_n$ eine weitere Orthonormalbasis von V ist, dann gilt:

$$\sum_{i=1}^{n} e_i \otimes e_i = \sum_{i=1}^{n} e_i' \otimes e_i'$$

Hinweis: Orthogonale Matrizen.

b.) Zeige, dass Ω_V "isotrop" ist, d.h. für alle Isometrien $Q:V\to V$ gilt:

$$(Q \otimes Q)(\Omega) = \Omega$$

Hinweis: Benutze a.

Aufgabe 1.2. – Casimir-Elemente allgemein

Es sei V ein endlich-dimensionaler K-Vektorraum, $b_1, ..., b_n$ eine beliebige Basis von V und $b_1^*, ..., b_n^*$ die dazu duale Basis von V^* .

a.) Zeige, dass

$$\Omega := \sum_{i=1}^{n} b_i \otimes b_i^* \in V \otimes V^*$$

unabhängig von der Basiswahl ist.

Hinweis: Wenn A eine Basiswechselmatrix zwischen zwei Basen von V ist, wie sieht dann die Basiswechselmatrix der beiden dazugehörigen dualen Basen von V^* aus?

- b.) Wie entspricht das dem Casimir-Element euklidischer Räume?
 - i.) Zeige zunächst, dass die Abbildung $V \to V^*, v \mapsto \langle v, \rangle$ ein Isomorphismus $V \to V^*$ ist.
 - ii.) Was tut diese Abbildung mit einer Orthonormalbasis?

Aufgabe 1.3. – Aber Tensoren sind doch so Buchstaben mit Indizes

Häufig wird einem von Physikern oder Ingenieuren ein Tensor lediglich als ein Buchstabe mit Indizes untergejubelt - z.B. der Spannungstensor σ_{ij} . Es sei V ein endlichdimensionaler \mathbb{R} -Vektorraum mit Skalarprodukt und $e_1, ..., e_n$ eine Orthonormalbasis. Wir betrachten das m-fache Tensorprodukt $V^{\otimes m}$. Wer mag, kann zur Vereinfachung n=3 und $K=\mathbb{R}$ wählen.

11

- a.) Einen beliebigen Tensor aus $V^{\otimes m}$ schreiben wir z.B. als $T \in V^{\otimes m}$, während er andernorts mit $T_{j_1 \cdots j_n}$ bezeichnet wird, was streng genommen nur eine Kollektion besonders nummerierter Zahlen aus K ist. Wie ist der Zusammenhang zwischen T und $T_{j_1 \cdots j_n}$?
 - Hinweise: Von V induzierte Basiswahl für $V^{\otimes m}$, Vergleiche mit einem Vektor $v \in V$ und v_i .
- b.) Ein sehr häufig verwendeter "Buchstabe mit Indizes" ist das Kronecker- δ , oder auch der δ_{ij} -Tensor. Um welchen Tensor handelt es sich hier? Hinweis: Übersetze in die Schreibweise mit dem Tensorprodukt \otimes .
- c.) Die Spur eines Tensors zwischen seinem k-ten und l-ten Faktor wird in Indexschreibweise als Dopplung eines bestimmten Indexes an den entsprechenden Stellen notiert, $T_{j_1\cdots j_{k-1}ij_{k+1}\cdots j_{l-1}ij_{l+1}\cdots j_m}$, die eine Summe über i von 1 bis n impliziert (a.k.a. Einstein'sche Summenkonvention). Überzeuge dich, dass dies unserer Definition von Spur entspricht.

Üblich zum Spur nehmen ist auch eine Schreibweise mit dem Kronecker- δ :

$$T_{j_1\cdots j_{k-1}ij_{k+1}\cdots j_{l-1}rj_{l+1}\cdots j_m}\delta_{ir},$$

ebenfalls mit impliziter Summe über gedoppelte Indizes. Zeige, dass dies die gleiche Operation beschreibt.

d.) Eine weitere häufiger zu findende Schreibweise mit dem Kronecker- δ ist die folgende:

$$T_{j_1\cdots j_{k-1}j_kj_{k+1}\cdots j_{l-1}j_lj_{l+1}\cdots j_m}\delta_{ir},$$

was üblicherweise gekürzt wird auf $T_{j_1\cdots j_m}\delta_{j_{m+1}j_{m+2}}$. Was ist der Unterschied zu c.)? Schreibe diesen Tensor ohne Indizes auf.

Aufgabe 1.4. – Was denn für Indizes?

Schön, dass dir die Index-Schreibweise noch nicht begegnet ist. Da wir in unserem Kurs so wenig wie möglich mit dieser Schreibweise arbeiten wollen wie möglich, kann dies zu deinem Vorteil sein.

Es sei V ein endlich-dimensionaler \mathbb{R} -Vektorraum mit Skalarprodukt und $e_1,...,e_n$ eine Orthonormalbasis. Wir betrachten das m-fache Tensorprodukt $V^{\otimes m}$. Wer mag, kann zur Vereinfachung n=3 und $K=\mathbb{R}$ wählen. Zeige, dass $tr_{(i,r)}(T)=tr_{(i,n+1)(r,n+2)}(T\otimes\Omega_V)$ gilt.

2 Warum Darstellungstheorie?