Risk Budgeting & Risk Parity

P. Hénaff

Version: 09 mars 2022

Mesures de risque cohérente

- ▶ Croissance: $X > Y \Rightarrow \mathcal{R}(X) \geq \mathcal{R}(Y)$
- Invariance: $\mathcal{R}(X+k) = \mathcal{R}(X)$
- ▶ Homogénéité: $\lambda \in R_+ \Rightarrow \mathcal{R}(\lambda X) = \lambda \mathcal{R}(X)$
- Convexité:

$$\lambda \in [0,1] \Rightarrow \mathcal{R}(\lambda X + (1-\lambda)Y) \leq \lambda \mathcal{R}(X) + (1-\lambda)\mathcal{R}(Y)$$

Théorème de décomposition d'Euler

Soit $f(X), X \in \mathbb{R}^n$ homogène de degré 1: $f(\lambda X) = \lambda f(X)$

Alors:

$$f(X) = \sum_{i} x_{i} \frac{\partial f(X)}{\partial x_{i}}$$
$$= X^{T} \nabla_{X} f$$
 (1)

Décomposition du risque

Soit $\mathcal{RM}_p(w)$ une mesure cohérente du risque:

- ► CMR_i Contribution marginale au risque de l'actif i: $\frac{\partial \mathcal{RM}_{p}(w)}{\partial w_{i}}$
- CR_i Contribution au risque de l'actif i: w_iCMR_i
- ► Décomposition du risque

$$\mathcal{RM}_{p}(w) = \sum_{i} w_{i} \mathsf{CMR}_{i}$$

$$= \sum_{i} \mathsf{CR}_{i}$$
(2)

Contribution relative au risque (CRR):

$$1 = \sum_{i} w_{i} \frac{\mathsf{CMR}_{i}}{\mathcal{RM}_{p}(w)}$$
$$= \sum_{i} \mathsf{CRR}_{i}$$
(3)

$$\mathcal{R}\mathcal{M}_{p}(x) = (w^{T} \Sigma w)^{1/2}$$

$$= \sum_{i} w_{i} \frac{\partial \mathcal{R}\mathcal{M}_{p}(w)}{\partial w_{i}}$$

$$= w^{T} \nabla_{w} \mathcal{R}\mathcal{M}_{p}(w)$$
(4)

$$\mathcal{R}\mathcal{M}_{p}(w) = (w^{T} \Sigma w)^{1/2}$$

$$\nabla_{w} \mathcal{R}\mathcal{M}_{p}(w) = \frac{\partial (w^{T} \Sigma w)^{1/2}}{\partial w}$$

$$= \frac{1}{2} (w^{T} \Sigma w)^{-1/2} 2\Sigma w$$

$$= \frac{\Sigma w}{\sqrt{w^{T} \Sigma w}}$$
(5)

- ► CMR_i Contribution marginale au risque de l'actif i: $\frac{(\Sigma w)_i}{\sqrt{w^T \Sigma w}}$
- Décomposition du risque

$$\mathcal{RM}_{p}(w) = \sum_{i} w_{i} \frac{(\Sigma w)_{i}}{\sqrt{w^{T} \Sigma w}}$$
 (6)

Utilité en gestion des risques

► Impact d'un changement d'allocation

$$\Delta \mathcal{R} \mathcal{M}_p(w) = \sum_i \Delta \bar{w}_i \mathsf{CMR}_i$$

$$\sum_i \Delta \bar{w}_i = 0$$
(7)

▶ Impact de l'ajout Δw_i de titres en portefeuille

$$\Delta \mathcal{R} \mathcal{M}_{p}(w) = \sum_{i} \Delta w_{i} \mathsf{CMR}_{i} \tag{8}$$

Lien avec β

$$R_p(\bar{w}) = \sum_i \bar{w}_i R_i$$

Definition

Le β d'un titre i par rapport au portefeuille est défini par:

$$\beta_i = \frac{\operatorname{Cov}(R_i, R_p(w))}{\operatorname{Var}(R_p(w))}$$

Lien avec β

Si la mesure de risque est $\sigma_p(w)$, alors

$$CMR_{i} = \frac{\partial \sigma_{p}(w)}{\partial w_{i}}$$

$$= \frac{(\Sigma w)_{i}}{\sigma_{p}(w)}$$

$$= \frac{\operatorname{Cov}(R_{i}, R_{p}(w))}{\sigma_{p}(w)}$$

$$= \frac{\operatorname{Cov}(R_{i}, R_{p}(w))}{\sigma_{p}^{2}(w)} \sigma_{p}(w)$$

$$= \beta_{i}\sigma_{p}(w)$$

$$= \beta_{i}\sigma_{p}(w)$$
(9)

$$\Sigma = \operatorname{diag}(\sigma) imes \mathrm{P} imes \operatorname{diag}(\sigma) \ \ \sigma = egin{bmatrix} 0.1 \\ 0.2 \\ 0.3 \end{bmatrix} \ \ \mathrm{P} = egin{bmatrix} 1 & 0.8 & 0.7 \\ 0.8 & 1 & 0.6 \\ 0.7 & 0.6 & 1 \end{bmatrix}$$

Table 1: Décomposition du risque

σ_i^2	W	CMR	CR	CRR
0.01	0.333	0.088	0.029	0.164
0.04	0.333	0.172	0.057	0.322
0.09	0.333	0.275	0.092	0.514

$$\sigma_p(w) = 0.178$$

Exemple (suite)

Modification de l'allocation: $w^T = (.532, .276, .192)$

$$\Delta \sigma_{p}(w) = \mathsf{CMR}^{T}(w^{*} - w) \tag{10}$$
$$= -0.03 \tag{11}$$

σ_i	W	CMR	CR	CRR
0.01	0.532	0.093	0.049	0.333
0.04	0.276	0.178	0.049	0.332
0.09	0.192	0.259	0.050	0.335

$$\sigma_{p}(w) = 0.148$$

Risk Parity & Budgeting

Parity:

$$CR_i = \frac{1}{N} \mathcal{R} \mathcal{M}_p(w)$$

Bugeting:

$$CR_i = b_i \mathcal{RM}_p(w)$$

Cas Particulier: Risk Parity avec Σ diagonal

$$\Omega = \sqrt{\mathsf{diag}(\Sigma)}$$

Cas Particulier: Risk Parity avec Σ diagonal

$$\Omega = \sqrt{\mathsf{diag}(\Sigma)}$$

$$w = \frac{\Omega^{-1}}{1^T \Omega^{-1}} \tag{12}$$

$$w_i = \frac{1/\sigma_i}{\sum_i 1/\sigma_i} \tag{13}$$

Risk Parity & Budgeting: Exemple.

Risk Budgeting

stocks

Exercice

Solution numérique du problème "risk parity".

Contribution au risque de l'actif i: $w_i \frac{(\Sigma w)_i}{w^T \Sigma w}$

1. Calculer les poids w_i de la solution RP en résolvant un programme du type:

$$\min_{w} f(w)$$
s.t.
$$1^{T} w = 1$$

$$0 < w < 1$$

- Formuler la fonction objectif f(w)
- ► Résoudre le problème avec le librarie NIcOptim
- 2. Calculer la solution d'une seconde manière, en résolvant un système d'équations non-linéaires à l'aide de la librairie lnegslv.