Práctica 04: Simu	ılación de una Codificación Lineal Sin Ruido			
$20~{\sf de~marzo}$				
Apellidos:	Nombre:			
Apellidos:				
	Grupo G1:			

EJEMPLO DE LA SIMULACIÓN

Supongamos que vamos a transmitir un mensaje escrito en el alfabeto

 $"ABCDEFGHIJKLMN\~NOPQRSTUVWXYZ\ abcdefghi\'ijklmn\~nopqrstuvwxyz"$

por un canal sin ruido con alfabeto del canal el cuerpo finito de cardinal 5, \mathbb{F}_5 . Para ello, al mensaje original le realizamos dos procesos de codificación.

1. El primer proceso es una codificación del alfabeto fuente, 5-aria, en bloque y de longitud la mínima posible. Es decir, como el alfabeto tiene 56 símbolos, dicha longitud mínima es

$$long_min = \lceil log_5(56) \rceil = 3$$

Para codificar cada símbolo del alfabeto, si pos es la posición que ocupa dicho símbolo dentro del alfabeto, calculamos la expresión en base 5 del número entero pos-1 y completamos con ceros a la izquierda hasta conseguir longitud 3 (expresión en base 5 de longitud 3 para el entero pos-1). Por ejemplo, si queremos codificar el mensaje "Las", como

símbolo	pos - 1	codificación
L	11	[0, 2, 1]
a	28	[1, 0, 3]
S	48	[1, 4, 3]

se obtiene

$$codi_{-}1 = [0, 2, 1, 1, 0, 3, 1, 4, 3]$$

2. La segunda codificación aplica a la lista anterior, $codi_{-}1$, la codificación lineal en \mathbb{F}_5 con matriz generadora $G = (\mathrm{Id}_2|A)$, siendo

$$A = \left(\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right).$$

Es decir, cada secuencia binaria de longitud 2 se codifica multiplicándola por la matriz G (producto en \mathbb{F}_5). Si la longitud de la lista a codificar no es un múltiplo de 2, la cola que queda al final se codifica con los mismos dígitos. Por ejemplo, si la lista binaria a codificar es la de antes

$$codi_{-}1 = [0, 2, |1, 1|, 0, 3, |1, 4|, 3]$$

tendremos 4 secuencias de longitud 2 a codificar usando G, y una cola de longitud 1,que mantenemos.

Como en nuestro caso la matriz generadora es

$$G = \left(\begin{array}{cc|c} 1 & 0 & 1 & 2 \\ 0 & 1 & 3 & 4 \end{array}\right),$$

las codificación lineal para codi₋1 es

	1	2	3	4	cola
sec.	[0, 2]	[1,1]	[0, 3]	[1,4]	[3]
$codi_2$	[0, 2, 1, 3]	[1, 1, 4, 1]	[0, 3, 4, 2]	[1, 4, 3, 3]	[3]

y el mensaje codificado que se envía por el canal es la concatenación de las palabras código con la cola, es decir, la lista

$$L = [0, 2, 1, 3, 1, 1, 4, 1, 0, 3, 4, 2, 1, 4, 3, 3, 3].$$

PROBLEMA

Supongamos ahora que hacemos una simulación como la descrita antes, donde el alfabeto **alf** es el disponible en el fichero entrada_datos_04, se trabaja con códigos **ternarios**, y A es la matriz

$$A = \left(\begin{array}{ccccccc} 1 & 2 & 0 & 1 & 2 & 1 & 2 \\ 0 & 1 & 2 & 0 & 1 & 2 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 \end{array}\right).$$

Sabiendo que durante la transmisión por el canal **no se ha producido ruido** y que el mensaje obtenido del canal es el indicado la lista L (disponible en el fichero entrada_datos_04), se pide obtener el mensaje original.

mensaje original	
	I