Union-find Data Tree based implemental [67 7.3]

Represent each component as a star

(9) (7) (3) (8) (5)

Pointes take O(n) space using an ærræy

- · make -set (A) -> O(a) time
- · find -> O(1) time
- · union -> o(n) time

May be me con get faster unions at the expense of slower tinds

Idea: Do laty unions:

. make set: O(n) time

· find: O(n) time

· union : O(i) time

union (1,L)

unia (2,3)

:

union (4-1, n)

find (1)

path of length no

I dea: Union by rank Every root his aerank, union (m, v) if vank(v) < rank(v) if vank(v) < rank(v) Increase rank of new root by 1 if rank(n) = vank(n)
increase rank of new root by 1 if rank (m) = vank (n)
Obs: If In is set rooted at u the ITul> 2 rank(m)
(96): $rank(n) \leq log_2 n$ $\forall n$
Obs: If n ≠ parent [n] the rank [n] < rank [parent[n]]
· make_set (A) -> O(u) time //sets rantin)=0
\cdot find $\rightarrow 0$ (log n) time.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$

logen! My More find here takes Odlyn)

Idea: After find [n] set parent [n] = find (n)
so next time we call find (n) it rons faster Obs Does not improve a amortized running time perfor of finds all techn $\Omega(lg_1)$ $\frac{1}{2}\log L$ Idea: Use path compression: whate parent[n] = find(n) for even vertex or on path from v to a Obs: At least on that example of inds on leaves take O(u) time and no una sps

Acherman function overall very very slow graving

Fact: m find operation take O(m ×(n)) function