

LYCÉE LA MARTINIÈRE MONPLAISIR LYON

SCIENCES INDUSTRIELLES POUR L'INGÉNIEUR

CLASSE PRÉPARATOIRE M.P.S.I.

Année 2017 - 2018

C4: MODÉLISATION DES PERFORMANCES CINÉMATIQUES DES SYSTÈMES

TD 9 - Cinématique des solides(C4-4)

Compétences

- Analyser : Apprécier la pertinence et la validité des résultats :
 - o unités du système international;
 - o homogénéité des grandeurs.
- Modéliser : Proposer un modèle de connaissance et de comportement :
 - Solide indéformable;
 - o référentiel, repère;
 - équivalence solide/référentiel;
 - o vecteur-vitesse angulaire de deux référentiels en mouvement l'un par rapport à l'autre";
- Résoudre : Proposer un modèle de connaissance et de comportement
 - Modélisation plane;
 - o Torseur cinématique;

1 Mécanisme d'ouverture de porte en accordéon

a) Présentation et paramétrage

L'étude porte sur le dimensionnement d'un système de porte "accordéon" motorisée utilisé dans un bus. Le cahier des charges est résumé sur le diagramme d'exigence ci-dessous :

FIGURE 1 – Présentation de la problématique de l'étude.

La figure 2 ci-dessous représente une porte "accordéon" motorisée.

FIGURE 2 – Système d'ouverture de porte en accordéon

- Le battant 1
 - o est articulé par rapport à la paroi du bus 0 en A;
 - son repère associé est : $R_1 = (A, \vec{x}_1, \vec{y}_1, \vec{z}_{0.1})$;
 - son paramètre de mouvement est $\theta = (\vec{x}_0, \vec{x}_1) = (\vec{y}_0, \vec{y}_1)$;
 - $\circ \overrightarrow{BA} = a \cdot \overrightarrow{v}_1$
- Le battant 2
 - o est articulé par rapport à la chaine 3 en C et par rapport au battant 1 en B;
 - son repère associé est : $R_2 = (A, \overrightarrow{x}_2, \overrightarrow{y}_2, \overrightarrow{z}_{0,2});$
 - son paramètre de mouvement est $\beta = (\vec{x}_0, \vec{x}_2) = (\vec{y}_0, \vec{y}_2)$;
 - $\circ \overrightarrow{BC} = a \cdot \overrightarrow{v}_2$.
- La chaîne $\bf 3$ qui est mise en mouvement par un moto-réducteur $\bf 4$. Le maillon $\bf C$ se déplace à vitesse notée v(t).
- On considère la phase de fermeture de la porte, (à l'instant initial les points A et C sont confondus).
- Q 1 : Représenter les figures planes de projection permettant de paramétrer le problème
- Q 2 : Représenter sur la figure et la configuration ci-dessus les différents repères et les paramètres angulaires associés.
 - b) Résolution : détermination de la relation entrée-sortie du problème.
 - Q 3: Quelle est la nature du mouvement du maillon de chaine 3 par rapport à la paroi du bus 0?
- Q 4 : Caractériser ce mouvement par son torseur cinématique en fonction de $v: \left\{ \mathscr{V}_{(3/0)} \right\}$ au point C puis au point B.
 - Q 5 : Quelle est la nature du mouvement du battant 1 par rapport à la paroi du bus 0?
 - **Q** 6 : Donner l'expression du torseur cinématique $\left\{\mathscr{V}_{(1/0)}\right\}$ au point A.
 - **Q** 7 : Déduire le torseur cinématique $\left\{ \mathscr{V}_{(1/0)} \right\}$ au point B.
 - **Q 8 :** Déterminer le torseur cinématique $\{\mathscr{V}_{(2/1)}\}$ au point B en fonction de $\dot{\beta}$ et $\dot{\theta}$.
 - Q 9 : Déterminer le torseur cinématique $\{\mathcal{V}_{(2/3)}\}$ au point C puis au point B en fonction de a et $\dot{\beta}$.
 - Q 10 : Traduire la relation de Chasles au Point $B: \left\{ \mathscr{V}_{(1/0)} \right\} = \left\{ \mathscr{V}_{(1/2)} \right\} + \left\{ \mathscr{V}_{(2/3)} \right\} + \left\{ \mathscr{V}_{(3/0)} \right\}$.
 Q 11 : En projetant la relation en vitesse issue de la question précédente en déduire deux équations scalaires.
- Q 12 : A l'aide des conditions initiales lorsque la porte est ouverte ($\beta = \theta = 0$) et en intégrant par rapport au temps une des deux équations précédentes, en déduire une relation entre β et $\theta \forall t$ et l'expression de v(t) en fonction de θ .
- Q 13 : Déterminer numériquement l'expression de v(t) pour respecter le cahier des charges (On prendra a=1m).