Fintech: Predicting Repayment Status

July 29, 2024

Abstract

Use ML to predict the repayment status of borrowers – a classic topic of fintech. Also, I'll explore how to choose more efficient features.

1 Research Objectives

This article provides a detailed breakdown of a relatively traditional fintech project, covering various aspects such as data acquisition, data observation, data cleaning, data preprocessing, model selection and training, reflection and improvement (enhancing feature selection), and more.

This study focuses on the repayment status of borrowers from Lending Club Loans. Lending Club is the largest lending market in the United States, with over 4 million users obtaining more than \$80 billion in personal loans through the platform. As the only large-scale digital marketplace bank, Lending Club offers a wide range of financial products and services to its users. Predicting a borrower's repayment status based on various factors is a crucial task for all lending companies (not limited to traditional banks).

Therefore, this article will primarily focus on predicting the repayment status of borrowers based on various characteristics from Lending Club Loans, aiming to achieve a selection objective.

2 Data Source

The data for this study primarily comes from the borrower and repayment status datasets available on the Lending Club official website.

After reading the data, we observe the general situation of the data table:

After gaining a general understanding of the data table (including the columns, their data types, the number of records, and the number of unique values), we can begin building the model.

3 Building the Model

3.1 Checking and Observing the Data

3.1.1 First, we need to check for missing values in the data.

We found that, aside from some missing values in the **emp_length** column, there are almost no missing values in other data columns. Since we are not using a time series model here, these missing values are not a major concern and can be directly handled by using *dropna* in subsequent modeling.

Figure 1: A screenshot of LendingClub: https://www.lendingclub.com

Data #	columns (total 29 co		: Hull Count	Dtype
0	id	9004	non-null	int64
1	loan_amnt	9004	non-null	int64
2	funded amnt	9004	non-null	int64
2	funded_amnt_inv	9004	non-null	float64
4	term	9004	non-null	object
5	int_rate	9004	non-null	float64
6	installment	9004	non-null	float64
7	grade	9004	non-null	object
8	emp_length	8688	non-null	object
9	home_ownership	9004	non-null	object
10	annual_inc	9004	non-null	float64
11	verification_status		non-null	object
12	purpose		non-null	object
13	addr_state		non-null	object
14	dti		non-null	float64
15	earliest_cr_line		non-null	int64
16	inq_last_6mths		non-null	int64
17	open_acc		non-null	int64
18	pub_rec	9004	non-null	int64
19	revol_bal		non-null	int64
20	revol_util		non-null	float64
21	total_acc		non-null	int64
22	out_prncp		non-null	int64
23	out_prncp_inv		non-null	int64
24	total_pymnt		non-null	float64
25	total_pymnt_inv		non-null	float64
26	total_rec_prncp		non-null	float64
27	total_rec_int		non-null	float64
28	loan_status es: float64(10), int6		non-null object(8)	object

Figure 2: Brief info of data

id	9004
loan_amnt	604
funded_amnt	681
funded_amnt_inv	1234
term	2
int_rate	70
installment	3871
grade	7
emp_length	11
home_ownership	3
annual_inc	1555
verification_status	3
purpose	13
addr_state	45
dti	2559
earliest_cr_line	458
inq_last_6mths	9
open_acc	33
pub_rec	3
revol_bal	7573
revol_util	1023
total_acc	63
out_prncp	1
out_prncp_inv	1
total_pymnt	8962
total_pymnt_inv	8942
total_rec_prncp	2199
total_rec_int	8838
loan_status	2
dtype: int64	

Figure 3: Unique numbers of each item

3.1.2 Next, we will check the correlation among the data.

It can be observed that there is a high correlation among total_payment, total_payment_inv, to-tal_rec_prncp, and total_rec_int, indicating redundancy among these features.

In fact, in the "Reflection and Summary" section at the end of this article, we will also find that the importance of these features is relatively low. Therefore, when further optimizing the model, we can select only one representative feature from this group.

3.1.3 Then, we will observe the distribution characteristics of the data.

The above section discusses observing the distribution of features. Next, we will match the features with the repayment status to more intuitively examine the relationship between each feature and the repayment status. From the initial observations, it appears that the features **term**, **grade**, **emp_length**, **and purpose** all have some predictive power regarding the repayment status.

Next, we will visualize the regional distribution

3.2 Data Cleaning

First, convert categorical variables into numerical variables. The data table (showing a subset of the columns) will then be updated as follows.

Next, remove missing values and redundant features. Finally, perform data normalization, using z-score normalization.

3.3 Training the Model

Since the target variable y(repayment status) is a binary classification variable (0/1), we will not consider models that predict continuous outcomes (such as linear regression). Instead, we will consider four models: Logistic Regression, K-Nearest Neighbors (KNN), Random Forest, and Support Vector Machine (SVM). We will use Cross-Validation to select the best model among the four as our predictive model, employing an 80%-20% split for training and testing data.

The performance of the logistic regression model is the best; thus, we trained the data using logistic regression. On the test set, the model performs well, with high accuracy and recall rates, effectively predicting borrowers' repayment status.

Figure 4: Correlation heatmap

Figure 5: The distribution of features (before match)

Figure 6: The distribution of features (after match)

Total amount issued by State

CSDN @QuantTradeGuy

Figure 7: Visualize the regional distribution

	installment	grade	emp_length	home_ownership	 revol_bal
0	162.87	1	10+ years	2	 13648
1	59.83	2	Less than 1 year	2	 1687
2	84.33	2	10+ years	2	 2956
3	339.31	2	10+ years	2	 5598
4	156.46	0	3 years	2	 7963
5	109.43	4	9 years	2	 8221
6	152.39	5	4 years	1	 5210
7	121.45	1	Less than 1 year	2	 9279
8	153.45	2	5 years	1	 4032
9	402.54	1	10+ years	1	 23336

Figure 8: Convert categorical variables into numerical variables

	precision	recall	f1-score	support	
0	0.52	0.04	0.08	302	
1	0.84	0.99	0.91	1499	
accuracy			0.83	1801	
macro avg	0.68	0.52	0.49	1801	
weighted avg	0.78	0.83	0.77	1801	

Figure 9: Performance on test set

4 Reflection and Improvement

We can further enhance the model. In addition to training with more models, one improvement approach is to perform feature selection, identifying important features and reducing multicollinearity to make the results more significant.

For feature refinement, we will employ two methods for cross-validation. The first method involves using the feature importance ranking from Random Forest.

The second method is to observe the coefficients of the logistic regression model to assess the extent (importance) of their impact on the predicted variables.

It can be seen that annual_inc, int_rate, and revol_util are likely the top three important features. Additionally, we find that out_prncp and out_prncp_inv have a minimal impact on the predicted variables. These variables can be removed or considered for feature merging to obtain higher-quality features. We can then continue to follow the steps outlined in the "Building the Model" section to train a more optimal model.

Figure 10: Random Forest Importance Ranking

Figure 11: Linear Regression Importance Ranking