MAE 5776

ANÁLISE MULTIVARIADA

Júlia M Pavan Soler

pavan@ime.usp.br

Análise Multivariada

$$Y_{n\times p} = (Y_{ij}) \in \Re^{n\times p}$$

- ✓ Estatísticas descritivas multivariadas, Episóides de Concentração, Boxplot Bivariado
- ✓ Distribuição N_p, Distribuições Amostrais (T² e W_p)

 Decomposições: SS_T e Y_{nxp}
- \checkmark N_p(μ_g ; Σ_g): Inferências sobre μ_g (T², MANOVA, ICS, Correções para Múltiplos testes

Técnicas Multivariadas:

- √ 1. Análise de Componentes Principais (CP)
- ✓ 2. Escalonamento Multidimensional (CoP)
- ✓ 3. Análise de Correspondência
- ✓ 4. Análise Fatorial (Fatores Comuns e Específicos)

Quais são os critérios de otimização nessas reduções de dimensionalidade (não supervisionada)?

5. Análise Discriminante (MANOVA)

- Análise de Agrupamento
- Análise de Correlação Canônica

Redução de Dimensionalidade em (RP)

,	· · · · · · · · · · · · · · · · · · ·		Vari	áveis		
Unidades Amostrais	1	2		j		<u> p</u>
1	Y ₁₁	Y ₁₂		Y_{1j}		Y _{1p}
2	Y_{21}	Y ₂₂		Y_{2j}		Y_{2p}
i	Y_{i1}	Y_{i2}		Y_{ij}		Y_{ip}
n	Y _{n1}	Y _{n2}		Y_{nj}		Y _{np}

$$Y_{n \times p}; \quad n > p \qquad \mathfrak{R}^p \to \mathfrak{R}^m, m < p$$

Redução de Dimensionalidade \Rightarrow obter m vetores (m<p) que são combinações lineares das p variáveis originais e atendem a critérios específicos de otimização!

$$Y_{n \times p}$$
 p vetores de respostas para n indivíduos

m "Vetores de **Escores** para n indivíduos

"m" Vetores de Cargas (pesos) às p variáveis

Ténicas Multivariadas: Redução de Dimensionalidade

Como obter vetores reducionistas de dados?

$$\Re^p \to \Re^m, m < p$$

Depende:

- Estrutura dos Dados
- Objetivo da análise
- ✓ Análise de Componentes Principais: $Y_{n \times p} \Rightarrow \Re^{p \times p}, m \le \min(n, p)$
- ✓ Escalonamento Multidimensional: $Y_{n \times p} \Rightarrow D^{n \times n}, m \le \min(n, p)$

^{Anális}es não supervisionadas

✓ Análise de Correspondência: $Y_{n \times p} \Longrightarrow [0,1]^{I \times J}, m \le \min(I-1,J-1)$

Análise Discriminante:
$$Y_{n\times(p+1)} \Rightarrow \Re^{p\times p}, n = \sum_{g=1}^{G} n_g; m \le \min(n, p, G-1)$$

Análise supervisionada

- Análise de Agrupamento
- Análise de Correlação Canônica:

Análise Clássica

n > p

Observações iid **agrupadas**

(respostas quantitativas)

Técnicas de Redução de Dimensionalidade Análise Discriminante

Análises Não-Supervisionadas

✓ Análise de Fatores → Modelos de Equações Estruturais Supervisionada bem como

Flexível para Análise Não-Supervisionada

Análise Discriminante:
$$Y_{n \times p}$$
; $n = \sum_{g=1}^G n_g$; $Y_{gi_{p \times 1}} \overset{iid}{\sim} \left(\mu_g; \Sigma_g\right), g = 1, 2, ..., G$ Análise $\Re^p \to \Re^m$; $m < \min\left(n, p, G - 1\right)$ Supervisionada

- Populações Estratificadas (G grupos): Casos de G=2 e de G>2 grupos
 - ⇒ Solução de Fisher
 - Solução Probabilística (Regra Discriminante de Bayes)

Matriz de Dados

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			áveis	Varia			Unidades	Grupos
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	=	р	 j		2	1		•
$\overset{\smile}{\cdots}$	$n \times p$	 Y _{1p}	Y _{1j}		Y ₁₂	Y ₁₁	1	
Y		Y_{2p}	Y_{2j}		Y_{22}	Y_{21}	2	1
Y_{i1} Y_{i2} Y_{ij} Y_{ij} Y_{ip}								
	$g(n_g \times p)$	Y_{ip}	Y_{ij}		Y_{i2}	Y_{i1}	i	•••
$G \qquad \stackrel{\cdots}{\stackrel{\cdots}{\stackrel{\cdots}{\stackrel{\cdots}{\stackrel{\cdots}{\stackrel{\cdots}{\stackrel{\cdots}{\stackrel{\cdots}$		• • • •	 				()	G

Objetivos da ANÁLISE DISCRIMINANTE

- Obter Funções Discriminantes das "p" variáveis
 - Redução de dimensionalidade: $\Re^p \to \Re^m$; m \le min[n,p,(G-1)]
 - Classificação de "novas" observações (predição de grupos)

Análise Discriminante - Motivação

Medidas biométricas (mm) de Pardais fêmea
 (Manly, 2005; Hermon Bumps, 1898).

Pardal	Sobrev.	X1	X2	Х3	X4	X5
1	S	156	245	31.6	18.5	20.5
21	S	159	236	31.5	18.0	21.5
22	N	155	240	31.4	18.0	20.7
	/					
49	N	164	248	32.3	18.8	20.9

Como as características corporais dos pardais pode ser usada para predizer grupos de pássaros Sobreviventes e Não-Sobreviventes?

Análise Discriminante - Motivação

Dados "Iris" do R (Fisher, RA, 1936. The use of multiple measurements in taxonomic problems. *Annals of Eugenics* 7, Part II: 179–188)

Medidas do comprimento e largura da pétala e sépala de 50 flores de íris de cada uma de três espécies (setosa, versicolor e virginica).

$$Y_{150\times4} = \begin{pmatrix} Y_{G=1\ 50\times4} \\ Y_{G=2\ 50\times4} \\ Y_{G=3\ 50\times4} \end{pmatrix}$$

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	/ setosa \
3	4.7	3.2	1.3	0.2	setosa
50	5.0	3.3	1.4	0.2	setosa
51	7.0	3.2	4.7	1.4	versicolor
100	5.7	2.8	4.1	1.3	versicolor
101	6.3	3.3	6.0	2.5	virginica
102	5.8	2.7	5.1	1.9	virginica /
					\
150	5.9	3.0	5.1	1.8	virginica

Quais
variáveis
mais
contribuem
para a
discriminação
das
espécies?

Análise Discriminante - Motivação

⇒ Dados do Transcriptoma: A expressão de "genes" pode ser usada para predizer (caracterizar) diferentes tecidos tumorais (cancer)?

Irizarry, R.A. and Love, M.I. Data Analysis for the Life Sciences, 2015. $Y_{189\times22.215} = \begin{pmatrix} Y_1 \\ ... \\ Y_{189} \end{pmatrix} = \begin{pmatrix} Y_{(1)}, ..., Y_{(22.215)} \end{pmatrix}$

Inicialmente, considere a dispersão das seguintes variáveis:

Sepal.Width x Petal.Width

Petal.Length x Petal.Width

Qual seria uma direção "ótima" na dispersão dos dados para a discriminação das espécies?

(direção ótima = combinação linear das variáveis)

Dados Iris – G=3 Pepal.Length x Petal.Width

Dados Iris – G=3 Sepal.Width x Petal.Width

Gráfico de dispersão das observações (em \Re^2).

Indique uma direção (terceiro eixo, l'Y) que defina uma função discriminante linear de separação dos grupos!

Dados Iris – G=3 Pepal.Length x Petal.Width

Dados Iris – G=3 Sepal.Width x Petal.Width

correspondentes Escores

Indicação de um terceiro eixo, l'Y (em preto), que define uma função discriminante linear de separação entre os grupos.

Como obter essa direção discriminante?

$$Y_i \in \Re^p$$
; $Y_i = (Y_{i1}, Y_{i2}, ..., Y_{ip}) \rightarrow X = l' Y_i = l_1 Y_{i1} + l_2 Y_{i2} + ... + l_p Y_{ip}$

obter Cargas e os

Função Discriminante Linear de Fisher

Inção Discrimina.

Formulação de Fisher – Caso de 2 Populações (G=2)

Observação por observações multivariadas

Observação por observações multivariadas Considere uma População constituída por observações multivariadas (quantitativas) e estratificada em dois subgrupos, tal que:

$$Y_{n \times p} = \begin{bmatrix} Y_{1(n_1 \times p)} \\ Y_{2(n_2 \times p)} \end{bmatrix} \Rightarrow \begin{cases} Y_i \in \Re^p; & E(Y_i \mid \tau_1) = \mu_{1(p \times 1)} & Cov(Y_i \mid \tau_1) = \Sigma_{1(p \times p)} \\ & E(Y_i \mid \tau_2) = \mu_{2(p \times 1)} & Cov(Y_i \mid \tau_2) = \Sigma_{2(p \times p)} \end{cases}$$

Suposição
$$\Rightarrow$$
 $\Sigma_1 = \Sigma_2 = \Sigma$

Matrizes de covariâncias homogêneas

Para G=2: Proposta de Fisher é obter combinações lineares das "p" variáveis que maximizem a distância entre os centróides dos grupos na função discriminante :

$$Y_i \in \mathfrak{R}^p \to X_i = l' Y_i;$$

Solução ao problema de otimização (Desigualdade de Cauchy-Schwarz):

$$Y_i \in \Re^p \to X_i = l' Y_i;$$

$$l = \arg\max_l \frac{\left(\mu_{X1} - \mu_{X2}\right)^2}{\sigma_X^2} = \arg\max_l \frac{\left(l'\mu_1 - l'\mu_2\right)^2}{l'\Sigma l}$$

$$l_{p imes 1} = \Sigma^{-1} \left(\mu_1 - \mu_2
ight);$$
 Cargas

$$l_{p \times 1} = \Sigma^{-1} (\mu_1 - \mu_2);$$
 $X_i = l' Y_i = (\mu_1 - \mu_2)' \Sigma^{-1} Y_i$

Função Discriminante Linear de Fisher

Estimação

Suposição: Obs. independentes, Matrizes de covariâncias homogêneas, prioris iguais.

$$Y_{n \times p} = \begin{bmatrix} Y_{1(n_1 \times p)} \\ Y_{2(n_2 \times p)} \end{bmatrix} \Longrightarrow$$

$$Y_{n \times p} = \begin{bmatrix} Y_{1(n_1 \times p)} \\ Y_{2(n_2 \times p)} \end{bmatrix} \Rightarrow \qquad Y_i \in \Re^p \to X_i = l' Y_i = (\mu_1 - \mu_2)' \Sigma^{-1} Y_i$$

Para dados amostrais: Adotar estimadores "apropriados" de $\hat{\mu}_1$, $\hat{\mu}_2$, $\hat{\Sigma}$ $X_i = l'Y_i = \left(\overline{Y_1} - \overline{Y_2}\right)'S_c^{-1}Y_i$ Função discriminante $\overline{Y_1}$ $\overline{Y_2}$ S_c

$$X_i = l'Y_i = \left(\overline{Y_1} - \overline{Y_2}\right)' S_c^{-1} Y_i$$

$$S_{c_{p \times p}} = \frac{(n_1 - 1)S_1 + (n_2 - 1)S_2}{n_2 + n_2 - 2}$$
 Matriz de covariância comum aos grupos

Regra de Classificação Amostral: Alocação de uma nova observação aos Grupos
$$[X_0 \ge c \Rightarrow Y_0 \in \tau_1]$$
 Para a nova observação Y_0 , calcular

$$Y_0 = (Y_{01}, Y_{02}, \dots Y_{0p})? \rightarrow X_0 = l'Y_0 \begin{cases} X_0 \ge c \Rightarrow Y_0 \in \tau_1 \\ X_0 < c \Rightarrow Y_0 \in \tau_2 \end{cases}$$

Para a nova observação Y₀, calcular X_0 e alocar ao grupo de acordo com o ponto de corte "c"

$$c = \overline{X} = \frac{1}{2} \left(\overline{X}_1 + \overline{X}_2 \right) = \frac{1}{2} \left(l' \overline{Y}_1 + l' \overline{Y}_2 \right) = \frac{1}{2} l' \left(\overline{Y}_1 + \overline{Y}_2 \right) = \frac{1}{2} \left(\overline{Y}_1 - \overline{Y}_2 \right)' S_c^{-1} \left(\overline{Y}_1 + \overline{Y}_2 \right)$$

Função Discriminante Linear de Fisher Critério

Dados hipotéticos: *p*=2, *G*=2

A Regra de Classificação de Bayes é mais adaptativa na definição do ponto de corte "c" !

Obter a Função Discriminante Linear de Fisher nos seguintes casos:

G=2: Setosa x Virginica

- ✓ p=2: Sepal.Length
 Sepal.Width
- ✓ **p=2**: Petal.Length Petal.Width
- ✓ **p=4**: Sepal.Length Sepal.Width Petal.Length Petal.Width

Dados Iris, G=2 (Setosa x Virginica) p=2, n=50+50=100

$$X_i = l'Y_i = \left(\overline{Y}_1 - \overline{Y}_2\right)' S_c^{-1} Y_i$$

Cargas da Função discriminante

Sepal.Length Sepal.Width l^\prime -10.23536 11.64024

Centróides por grupo

 Sepal.Length
 Sepal.Width

 setosa
 5.006
 3.428

 virginica
 6.588
 2.974

 Dif
 -1.582
 0.454

Matriz de Covariância: S.setosa

 Sepal.Length
 Sepal.Width

 Sepal.Length
 0.12424898
 0.09921633

 Sepal.Width
 0.09921633
 0.14368980

Matriz de Covariância: S.virginica

 Sepal.Length
 Sepal.Width

 Sepal.Length
 0.40434286
 0.09376327

 Sepal.Width
 0.09376327
 0.10400408

Matriz de Covariância: S.pooled

Sepal.Length Sepal.Width
Sepal.Length 0.2642959 0.0964898
Sepal.Width 0.0964898 0.1238469

c = -22.07399

Dados Iris, G=2 (Setosa x Virginica) p=2, n=50+50=100 $X_i = l'Y_i = \left(\overline{Y_1} - \overline{Y_2}\right)S_c^{-1}Y_i$

$$X_{i} = -10.23536 * Sepal.Length_{i} + 11.640 * Sepal.Width_{i} \begin{cases} \geq -22.07399 \Longrightarrow Setosa \\ < -22.07399 \Longrightarrow Virginica \end{cases}$$

	X_{i}		X_{i}
1	-11.459508	26	-16.256091
2	-15.232555	27	-11.599996
3	-10.857435	28	-12.483044
4	-10.997923	29	-13.647068
5	-9.271948	30	-10.857435
6	-9.874021	31	-13.044995
7	-7.505851	32	-15.694140
8	-11.599996	33	-5.498901
9	-11.278898	34	-7.405485
10	-14.068531	35	-14.068531
11	-12.202069	36	-13.928043
12	-9.552923	37	-15.553652
13	-14.209019	38	-8.248412
14	-9.091338	39	-10.114874
15	-12.804141	40	-12.623532
16	-7.124510	41	-10.435972
17	-9.874021	42	-19.286577
18	-11.459508	43	-7.786826
19	-14.108653	44	-10.435972
20	-7.967436	45	-7.967436
21	-15.694140	46	-14.209019
22	-9.131460	47	-7.967436
23	-5.177803	48	-9.833899
24	-13.787556	49	-11.178532
25	-9.552923	50	-12.764019

X_i	X_{i}
101 -26.069989	126 -36.445839
102 -27.936452	127 -30.866573
103 -37.750350	128 -27.514989
104 -30.726085	129 -32.913645
105 -31.609133	130 -38.773886
106 -42.868031	131 -43.149006
107 -21.052674	132 -36.626448
108 -40.961446	133 -32.913645
109 -39.476325	134 -31.890109
110 -31.789743	135 -32.171084
111 -29.281086	136 -43.891567
112 -34.077669	137 -24.905966
113 -34.679742	138 -29.421573
114 -29.240964	139 -26.491453
115 -26.772428	140 -34.539254
116 -28.257549	141 -32.492182
117 -31.609133	142 -34.539254
118 -34.579376	143 -27.936452
119 -48.547663	144 -32.351694
120 -35.803644	145 -30.164134
121 -33.375230	146 -33.656206
122 -24.725356	147 -35.382180
123 -46.219615	148 -31.609133
124 -33.054133	149 -23.882429
125 -30.164134	150 -25.467916

Matriz de classificação (ou confusão)

	Predito			
	setosa	virginica		
setosa	50	0		
virginica	<u></u> 1	49		

% de classificação correta: 100% Setosa 98% Virginica

Dados Iris, G=2 (Setosa x Virginica) p=2, n=100

$$X_{i} = l'Y_{i} = \left(\overline{Y}_{1} - \overline{Y}_{2}\right)' S_{c}^{-1} Y_{i}$$

Centróides por grupos

Petal.Length Petal.Width setosa 1.462 0.246 virginica 5.552 2.026 Dif -4.090 -1.78

S.setosa

Petal.Length Petal.Width
Petal.Length 0.030159184 0.006069388
Petal.Width 0.006069388 0.011106122

S.virginica

Petal.Length Petal.Width
Petal.Length 0.30458776 0.04882449
Petal.Width 0.04882449 0.07543265

S.pooled

Petal.Length Petal.Width
Petal.Length 0.16737347 0.02744694
Petal.Width 0.02744694 0.04326939

Cargas da Função discriminante

Petal.Length Petal.Width l^\prime -19.74417 -28.61337

c = -101.7476

Dados Iris, G=2 (Setosa x Virginica) p=2, n=50+50=100

$$X_i = l'Y_i = \left(\overline{Y}_1 - \overline{Y}_2\right)' S_c^{-1} Y_i$$

$$X_i = -19.74417 * Petal.Length_i - 28.6133711.640 * Petal.Width_i$$

$$n_i \begin{cases} \ge -101.7476 \implies Setosa \\ < -101.7476 \implies Virginica \end{cases}$$

	X_{i}		X_{i}
1	-33.36452	26	-37.31335
2	-33.36452	27	-43.03602
3	-31.39010	28	-35.33893
4	-35.33893	29	-33.36452
5	-33.36452	30	-37.31335
6	-45.01044	31	-37.31335
7	-36.22585	32	-41.06161
8	-35.33893	33	-32.47760
9	-33.36452	34	-33.36452
10	-32.47760	35	-35.33893
11	-35.33893	36	-29.41568
12	-37.31335	37	-31.39010
13	-30.50318	38	-30.50318
14	-24.57993	39	-31.39010
15	-29.41568	40	-35.33893
16	-41.06161	41	-34.25143
17	-37.11277	42	-34.25143
18	-36.22585	43	-31.39010
19	-42.14910	44	-48.75870
20	-38.20027	45	-48.95927
21	-39.28777	46	-36.22585
22	-41.06161	47	-37.31335
23	-25.46685	48	-33.36452
24	-47.87178	49	-35.33893
25	-43.23660	50	-33.36452

X_i	X_{i}
101 -189.99845	126 -169.96910
102 -155.06068	127 -146.27609
103 -176.57869	128 -148.25051
104 -162.07143	129 -170.65544
105 -177.46561	130 -160.29759
106 -190.39961	131 -174.80485
107 -137.49150	132 -183.58944
108 -175.89235	133 -173.51677
109 -166.02026	134 -143.61533
110 -191.97287	135 -150.62608
111 -157.92202	136 -186.25020
112 -159.00951	137 -179.23945
113 -168.68102	138 -160.09701
114 -155.94760	139 -146.27609
115 -169.36736	140 -166.70660
116 -170.45486	141 -179.23945
117 -160.09701	142 -166.50603
118 -195.23536	143 -155.06068
119 -202.04554	144 -182.30136
120 -141.64091	145 -184.07520
121 -178.35253	146 -168.48044
122 -153.97318	147 -153.08626
123 -189.51269	148 -159.89643
124 -148.25051	149 -172.42928
125 -172.62986	150 -152.19934

Matriz de classificação (ou confusão)

	Predito				
	setosa virginica				
setosa	50	0			
virginica	0	50			

100% de classificação correta!

Dados Iris, G=2 (Setosa x Virginica) p=4 n=100

Centróide dos grupos:

	Sepal.L	Sepal.W	Petal.L	Petal.W
setosa	5.006	3.428	1.462	0.246
virginica	6.588	2.974	5.552	2.026
Diferença	-1.582	0.454	-4.090	-1.780

S.comum

0.264	0.096	0.160	0.030
0.096	0.124	0.042	0.028
0.160	0.042	0.167	0.027
0.030	0.028	0.027	0.043

Cargas do discriminante linear

LD1
Sepal.L -1.1338828
Sepal.W -0.8603685
Petal.L 2.6138926
Petal.W 2.6310427

LD1 ≤ 0 Setosa > 0 Virginica

100% de classificação correta em ambos os grupos!

Escore da função discriminante

Análise de Componentes Principais (Único grupo)

$Y_{n \times p} \Rightarrow Z_{n \times m}$

$$\Sigma = V \Lambda V'$$

$$\sum V_j = \lambda_j V_j$$

$$Z_{ji} = V'_j Y_i$$
 escore

$$V_j = a$$
; $\max_{\|a\|=1} \frac{a' \Sigma a}{a' a}$

$$\hat{\Sigma} = S_u = \frac{1}{n-1} S_T$$

$$= \frac{1}{n-1} \sum_{i=1}^{n} (Y_i - \overline{Y}) (Y_i - \overline{Y})'$$

$$Z_{n \times m} = Y_{n \times p} V_{p \times m}$$

Critério de maximização

$$\max \frac{a'S_u a}{a'a}$$

Análise Discriminante G=2 (ou mais grupos)

$$Y_{n \times p}$$
; $n = \sum_{g=1}^{G} n_g$; $Y_{i p \times 1} \Longrightarrow X_i = l'Y_i$

$$\max_{l;X=l'Y} \frac{\left(\mu_{X_1} - \mu_{X_2}\right)^2}{\sigma_Y^2}; \quad \Sigma_1 = \Sigma_2 = \Sigma$$

EXOdaAD

$$\frac{l'(\mu_{1}-\mu_{2})(\mu_{1}-\mu_{2})'l}{l'\Sigma l} \leq (\mu_{1}-\mu_{2})'\Sigma^{-1}(\mu_{1}-\mu_{2})$$

escore

$$S_c = \frac{1}{n - G} S_W$$

Critério de maximização

(G≥2)

 $\max \frac{a'S_B a}{a'S_c a}$

Solução de Fisher: G=2 → G>2

Como obter as funções discriminantes?

Número de funções discriminantes: $m \le \min(n, p, G-1)$

Solução de Fisher para Muitas Populações

$$Y_{n \times p} = \begin{bmatrix} Y_{1(n_1 \times p)} \\ \dots \\ Y_{G(n_G \times p)} \end{bmatrix} \Rightarrow \begin{cases} Y_i \in \Re^p; & E(Y_i \mid \tau_1) = \mu_{1(p \times 1)} & \dots & E(Y_i \mid \tau_G) = \mu_{G(p \times 1)} \\ \hline Cov(Y_i \mid \tau_g) = \Sigma_g = \Sigma_{(p \times p)}, & g = 1, 2, \dots, G \end{cases}$$

$$\text{Matriz de covariância homogênea}$$

$$Y_i \in \Re^p \to X_i = l' Y_i;$$

B: Matriz de covariância

$$Y_{i} \in \Re^{p} \to X_{i} = l' Y_{i};$$

$$l = \arg\max_{l; X = l'Y} \frac{\sum_{g=1}^{G} \left(\mu_{X_{g}} - \overline{\mu}_{X}\right)^{2}}{\sigma_{X}^{2}} \Rightarrow \frac{\sum_{g=1}^{G} \left(l'\mu_{g} - l'\overline{\mu}\right)^{2}}{\sigma_{X}^{2}} = \frac{l' \sum_{g=1}^{G} \left(\mu_{g} - \overline{\mu}\right) \left(\mu_{g} - \overline{\mu}\right)' l}{l'\Sigma l} = \frac{l' B l}{l'\Sigma l}$$

Σ : Matriz de covariância **DENTRO** de grupos

As funções discriminantes, $L_{p \times m} = (l_1, ..., l_m)$, são obtidas a partir dos autovetores da matriz $\Sigma^{-1} B$, restritos a $L \Sigma L = I$.

$$\sum_{\substack{\Gamma \in \Gamma \\ \text{Matriz simétrica}}} \sum_{\substack{\Gamma \in \Gamma \\ \text{Matriz simétrica}}} \sum_{\substack{\Gamma \in \Gamma \\ \text{Matriz simétrica}}} \sum_{\substack{\Gamma \in \Gamma \\ \text{Matrix simétrica}}} \sum_{\substack{\Gamma \in \Gamma \\ \text$$

Método de Fisher para Muitas Populações

Dados Amostrais: maximizar a função em termos de estimadores apropriados

$$\frac{l' B l}{l' \Sigma l} \implies \hat{l} = \arg \max_{l} \frac{l' \hat{B} l}{l' \hat{\Sigma} l} \implies \hat{L}_{p \times m} = (\hat{l}_{1}, ..., \hat{l}_{m})$$

Matriz de "Soma de Quadrados e Produtos Cruzados Entre grupos" (SQPC da MANOVA):

$$\hat{B}_{p \times p} = S_B = \sum_{g=1}^{G} n_g \left(\overline{Y}_g - \overline{Y} \right) \left(\overline{Y}_g - \overline{Y} \right)'$$

Matriz de "Quadrado Médio e Produto Cruzado Dentro de grupos" (QMPC da MANOVA):

$$\hat{\Sigma} = S_{c_{p \times p}} = \frac{(n_1 - 1)S_1 + \dots + (n_G - 1)S_G}{n_1 + \dots + n_G - G} = \frac{1}{n - G} \sum_{g=1}^{G} \sum_{i=1}^{n_g} (Y_{gi} - \overline{Y}_g) (Y_{gi} - \overline{Y}_g)' = \frac{1}{n - G} S_W$$

Regra de Classificação Amostral:

Alocar a observação Y_0 ($\in \Re^p$) à população τ_k em que o valor da função discriminante X_0 ($\in \Re^m$) está mais "próxima" de seu centróide

Populações Estratificadas em Muitos Grupos (G>2)

 $m \le \min(n, p, G-1)$

Como realizar a redução dos dados (p=2, G=15)? Uma única dimensão (X=l'Y) é suficiente para uma boa discriminação dos grupos?

Populações Estratificadas em Muitos Grupos (G>2)

Entendendo a direção discriminante

A direção discriminante ótima é aquela que maximiza B (eixo de variação ENTRE grupos) relativamente a Σ (eixo de variação DENTRO de grupos).

Alocar a observação Y_0 ($\in \Re^p$) à população τ_k em que o valor da função discriminante X_0 ($\in \Re^m$) está mais "próxima" de seu centróide

Dados Iris: G=3 e p=4

Probabilidades a priori dos grupos

setosa versicolor virginica 0.3333333 0.33333333

Centróides dos grupos

Sepal.LSepal.WPetal.LPetal.Wsetosa5.0063.4281.4620.246versicolor5.9362.7704.2601.326virginica6.5882.9745.5522.026

Cargas das Funções discriminantes

LD1 LD2
Sepal.L 0.8293776 0.02410215
Sepal.W 1.5344731 2.16452123
Petal.L -2.2012117 -0.93192121
Petal.W -2.8104603 2.83918785

Redução de dimensionalidade em Análise discriminante: m=min(n,p,G-1)=2

 X_0 é classificada no grupo ao qual possui menor distância (Euclidiana Padronizada) ao centróide

Matriz de Classificação setosa versicolor virginica setosa 50 0 0 versicolor 0 48 2 virginica 0 1 49 setosa versicolor virginica 1.00 0.96 0.98

Validação Empírica de um Algoritmo de Classificação Amostral

Métricas de validação via a Matriz de Classificação

Matriz de Classificação (ou de Confusão)

	Pred			
Verdade	τ ₁ +	τ ₂ -		
τ ₁ +	n _{1c} v+	n _{1M} F-	n_1	
τ_2 -	n _{2M} F+	n _{2c} v-	n_2	

Taxa de Erro Aparente (proporção de itens mal classificados):

$$TxErro = \frac{n_{1M} + n_{2M}}{n_1 + n_2} = \frac{F_+ + F_-}{n}$$
 Estima Pr(classificação errada)

• Acurácia:
$$Acurácia = \frac{n_{1C} + n_{2C}}{n_1 + n_2} = \frac{V_+ + V_-}{n}$$
 Estima Pr(classificação correta)

Métricas de Validação via a Matriz de Classificação

	Pred		
Verdade	τ ₁ +	τ ₂ -	
+ τ ₁	n _{1c} v+	n _{1M} F-	n ₁
<u></u> τ ₂	n _{2M} F+	n_{2c} V-	n_2

Matriz de Classificação (ou de Confusão)

■ Sensibilidade =
$$\frac{V_+}{V_+ + F_-}$$
 = P(V+) = Pr(classificação + | +) Po

Poder Preditivo via a Curva ROC: Sensibilidade x (1-Especificidade)

■ Especificidade =
$$\frac{V_{-}}{F_{+} + V_{-}}$$
 = P(V-) = Pr(classificação - | -)

■ Escore $G = \sqrt{Sensibilidade * Especificidade}$ Média geométrica da P(V+) e P(V-)

■ Preditivo Positivo =
$$\frac{V_{+}}{F_{+} + V_{+}}$$
 Preditivo Negativo =
$$\frac{V_{-}}{F_{-} + V_{-}}$$

■ Escore F1 =
$$2 \frac{\Pr{ecis\~ao} * Sensibilidade}{\Pr{ecis\~ao} + Sensibilidade}$$

Média harmônica da precisão e sensibilidade

Validação de um Algoritmo de Classificação

Matriz de Classificação (ou de Confusão)

	Pred		
Verdade	$ au_1$	τ_2	
τ_1	n _{1c} v ₊	n _{1M} F+	n_1
τ_2	n _{2M} F-	n _{2c} v-	n_2

TxErro subestima a Probabilidade de erro de classificação (populacional): os mesmos dados são usados para Treinamento e Teste do algoritmo

- Método de Particionamento (Data Split): particiona os dados em Amostra de Treinamento e Amostra de Validação (Teste)
- Método de "Validação Cruzada" (Cross-validation)

Paris Constitution of the Constitution of the

Validação de um Algoritmo de Classificação Amostral

Validação Cruzada pelo método Leave-One-Out (Fold=N)

- Inicie com as observações de τ₁. Omita uma obs deste grupo e obtenha a função de classificação baseada nos remanescentes N-1=(n1-1)+n2 observações (supondo G=2)
- Classifique a obs omitida usando a função calculada no passo 1
- 3. Repetir os passos 1 e 2 até que todas as obs de τ_1 tenham sido classificadas. Calcule o número de erros de classificação neste grupo
- 4. Repita os passos de 1 a 3 para as observações do grupo 2.

Taxa de Erro de Classificação esperada é dada por:

$$TxErro = \frac{n_{1M}^{Cross} + n_{2M}^{Cross}}{n_1 + n_2}$$

Algoritmos de CV podem usar *Fold*=k, k<n.

Análise Discriminante Normalização de Variáveis

		Variáveis					
Uni	idades Amostrais	1	2		j	р	
	1	Y ₁₁₁	Y ₁₁₂		Y _{11j}	Y _{11p})\
G1 2 n ₁	2	Y ₁₂₁	Y ₁₂₂		Y_{12j}	Y _{12p}	$\overline{Y}_{1p\times 1}$ $(S_{1p\times p})$
							Pid
	n ₁	Y _{1n11}	Y _{1n12}		Y _{1n1j}	Y_{1n1p}	
	 1	Y ₂₁₁	Y ₂₁₂		Y _{21j}	Y _{21p}	
G2	2	Y ₂₂₁	Y ₂₂₂		Y_{22j}	Y_{22p}	$\overline{Y}_{2p\times 1}$ ($S_{2p\times}$
	 n ₂	 Y _{2n21}	 Y _{2n22}	•••	 Y _{2n2j}	 Y _{2n2p}	
							$(\overline{Y}_{p\times 1})$ $S_{c p\times p}$

Na AD a normalização das variáveis é usada com a finalidade de facilitar a interpretação das cargas das variáveis na função discriminante e no cálculo de "c". O comando "lda" do R adota a "normalização" das variáveis para calcular as funções discriminantes, mas o "linda" não. A normalização da variável j avaliada no indivíduo i do grupo g é dada por:

$$Y_{gij}^* = \left(egin{array}{c} Y_{gij} - \overline{Y_j} \\ \hline (S_{gj}) \end{array}
ight)$$
 independe de grupo Variância: cada grupo

Média: para cada j independente

Variância: para cada grupo g e variável i

$$\overline{Y}_{j} = \frac{1}{n_{1} + n_{2}} \sum_{g=1}^{2} \sum_{i=1}^{n_{g}} Y_{gij}$$

 $\overline{Y}_j = \frac{1}{n_1 + n_2} \sum_{g=1}^{2} \sum_{i=1}^{n_g} Y_{gij}$ Média da variável j (j=1,...,p), independente de grupo

$$S_{gj} = \frac{1}{n_{g} - 1} \sum_{g=1}^{2} (Y_{gij} - \overline{Y}_{gj})^{2}$$
 Variância da variável j no grupo g

✓ Regra Discriminante Linear de Fisher

Flexibilidade: MANOVA permite estimar as matrizes de covariância ENTRE (S_B) e DENTRO (S_W) de grupos sob diferentes modelos, incluindo ajustes por covariáveis!

Métodos Probabilísticos de Análise Discriminante.

Regra de Classificação de Bayes

Regressão Logística