



### Topics

- PostGIS functions
  - Geometry constructors / deconstructors accessors / spatial predicates
  - Walk through a few examples.
- DE-9IM
  - Fine-tuning spatial predicates
- PostgreSQL
  - Table inheritance / partitioning
  - Database tuning

- What is PostGIS?
  - A PostgreSQL database extension that "spatially enables" the server back-end to support the storage of geometric objects in an object-relational PostgreSQL database.

- http://postgis.refractions.net/docs/

- Geometry Constructors
  - ST\_GeomFromText(text)
  - ST\_GeomFromWKB(bytea)

```
SELECT ST_GeomFromText( 'POINT(1718098 616348)', 3005);
```

- Creates a geometry data type in EPSG:3005 projection

```
• Geometry Constructors
```

- Geometry Constructors
  - ST\_BuildArea()



- Geometry Accessors / Deconstructors
  - ST\_StartPoint()
  - ST\_PointN(geometry, int)
  - ST\_ExteriorRing(geometry)

```
SELECT ST_StartPoint(geom)
FROM my_lines;
```

Geometry Accessors / Deconstructors

```
SELECT point
FROM (SELECT ST_StartPoint(geom) AS point
       FROM my_lines
       UNION ALL
       SELECT ST_EndPoint(geom) AS point
       FROM my_lines) AS a
GROUP BY point
HAVING count(*) = 4;
```

Caution: GROUP BY uses a geometry's bounding box

Geometry Accessors / Deconstructors

```
SELECT ST_GeometryN( geom, 1 ) FROM my_multilines;
```

- How to explode a MULTI\* table

- Geometry Spatial Predicates / Functions
  - ST\_Intersects()
  - ST\_Within()
  - ST\_Touches()
  - ST\_GeomUnion()
  - ST\_SymmetricDifference()
  - ST\_ConvexHull()

-

1. Identify the locations where clearcut logging occurs closer than 20m to a stream or river.

```
SELECT ST_Intersection(a.geom, ST_Buffer(b.geom, 20))
FROM streams a, logging b
WHERE ST_DWithin(a.geom, b.geom, 20)
```

### 1. What is the average elevation of a lake digitized in 3D?

```
SELECT avg(ST Z(ST PointN(ring,
                           generate series(1, ST NumPoints(ring))
FROM (
   SELECT ST ExteriorRing(geom) AS ring
   FROM lakes
   WHERE lake id = 1
   UNION ALL
   SELECT ST InteriorRingN (geom,
                             generate series(1, ST NumInteriorRings(geom))
                            AS ring
   FROM lakes
                             Image © 2007 TerraMetrics
   WHERE lake id = 1
  AS foo
```

Pointer 50°33'54.90" N 117°23'13.18" W elev 903 m

Streaming ||||||| 100%

1. Efficiently, union a set of polygons.

Bighorn Creek

SELECT ST Union (the geom) FROM ...

(takes ~16.7 seconds)

SELECT ST Buffer(ST Collect(geom), FROM

(takes ~4.1 seconds)

Image © 2007 TerraMetrics

1. Find all docks that are contained completely within a lake, not touching a lake bank.



What PostGIS functions would you use? ST\_Within? ST\_Contains? ST\_Touches?

## DE-91M The Dimensionally Extended - Nine Intersection Model

### Approach

- make pair-wise tests of the intersections between the Interiors, Boundaries, and Exteriors of two geometries and to represent these relationships in an "intersection" matrix

# DE-9IM The Dimensionally Extended Nine Intersection Model

|                                  | Interior              | Boundary                                                                                                                                                                                  | Exterior              |
|----------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Interior<br>Boundary<br>Exterior | $dim(B(a) \cap I(b))$ | $dim(\ \emph{\textbf{I}}(a)\ \cap\ \emph{\textbf{B}}(b)\ )$<br>$dim(\ \emph{\textbf{B}}(a)\ \cap\ \emph{\textbf{B}}(b)\ )$<br>$dim(\ \emph{\textbf{E}}(a)\ \cap\ \emph{\textbf{B}}(b)\ )$ | $dim(B(a) \cap E(b))$ |

#### Possible values:

#### Where:

## DE-91M The Dimensionally Extended - Nine Intersection Model

### Geometry Topology

- Boundary
  - the set of geometries of the next lower dimension





## DE-91M The Dimensionally Extended - Nine Intersection Model

### Geometry Topology

- Interior
  - the points that are left when the boundary points are removed





# DE-9IM The Dimensionally Extended - Nine Intersection Model

### Geometry Topology

- Exterior
  - consists of points not in the interior and boundary



# DE-91M The Dimensionally Extended Nine Intersection Model



| Interior | Boundary | Exterior |
|----------|----------|----------|
| 2        | 1        | 2        |
| 1        | 0        | 1        |
| 2        | 1        | 2        |
|          | 2        | 1 0      |

ST\_Relate(a, b) = '212101212'

1. Find all docks that are contained completely within a lake, not touching a lake bank.



```
SELECT a.id

FROM docks a, lakes b

WHERE a.geom && b.geom

AND ST_Relate(a.geom, b.geom, 'TFFTFF212');
```

1. Identify linear spatial features that intersect on a line and not at a point.



```
SELECT a.id, intersection(a.geom, b.geom)
FROM mylines a, mylines b
WHERE a.id != b.id
AND a.geom && b.geom
AND ST_Relate(a.geom, b.geom, '1*1***1**');
```

## Table Inheritance

```
CREATE TABLE cities (
   name text,
   population real,
   altitude int
);
```

```
CREATE TABLE capitals (
province text
) INHERITS (cities);
```

| cities     |      |  |
|------------|------|--|
| name       | text |  |
| population | real |  |
| altitude   | int  |  |
| inherits   |      |  |
| capitals   |      |  |
| name       | text |  |
| population | real |  |
| altitude   | int  |  |
| province   | text |  |

## Table Inheritance



\_inherits\_

| table1        |                  |  |
|---------------|------------------|--|
| dataset_name  | char(4) NOT NULL |  |
| validity_date | date NOT NULL    |  |
| attr1         | int              |  |
| attr2         | geometry         |  |

| table2        |                  |  |
|---------------|------------------|--|
| dataset_name  | char(4) NOT NULL |  |
| validity_date | date NOT NULL    |  |
| attr1         | int              |  |
| attr2         | text             |  |
| attr2         | geometry         |  |

| ••• |     |  |
|-----|-----|--|
| dat | ch  |  |
| val | da  |  |
| ••• | int |  |





new\_hol\_edges

code smallint

the\_geom geometry

code check constraints

new\_admin\_edges

code smallint

the\_geom geometry

code check constraints





cwb\_edges

```
CREATE TABLE hydro_edges (
) INHERITS cwb_edges;

ALTER TABLE hydro_edges

ADD CONSTRAINT code_check

CHECK (code = ...);
```

code check constraints

- The biggest bottleneck in a spatial database is I/O
- When setting up a server, invest in a:
  - great file system
    - RAID 5 good for web servers, not spatial DBs
    - Recommend RAID 1/0
  - **good** memory
  - adequate CPU(s)

- postgresql.conf
  - Startup
    - checkpoint\_segment\_size
      - # of WAL files 16MB each
      - Default: 3
      - Set to at least 10 or 30 for databases with heavy write activity or more for large database loads
      - Possibly store the xlog on a separate disk device
    - shared\_buffers
      - Default: ~32MB
      - About 1/3 to 3/4 of available RAM

- postgresql.conf
  - Startup
    - constraint\_exclusion
      - Default: "off"
      - Set to "on" to ensure the query planner will optimize as desired.

- postgresql.conf
  - Runtime
    - work\_mem
      - Memory used for sort operations and complex queries
      - Default: 1MB
      - Adjust up for large dbs, complex queries, lots of RAM
      - Adjust down for many concurrent users or low RAM

- postgresql.conf
  - Runtime
    - maintainence\_work\_mem
      - Memory used for VACUUM, CREATE INDEX, etc.
      - Default:16MB
      - Generally too low ties up I/O, locks objects while swapping memory.
      - Recommend 32MB to 256MB on production servers with lots of RAM, but depends on number of concurrent users.

- postgresql.conf
  - Runtime
    - On development systems with lots of RAM and few developers...

```
SET work_mem TO 1200000;
```

```
SET maintainence_work_mem TO 1200000;
```

- postgresql.conf
  - Runtime
    - client\_min\_messages

```
SET client_min_messages to DEBUG;
```

- Useful when writing PL/Pgsql functions.

```
CREATE FUNCTION my_function () RETURNS TEXT AS $BODY$
BEGIN

RAISE DEBUG 'myvar: %' var;
...
```

## Performance Tips

- Spatial function calls can be expensive.
   Be efficient in their use avoid unnecessary/duplicate function calls.
  - Use St\_Expand where appropriate
  - Use one relate call instead of 2 or 3 other spatial calls.
  - Use St\_Distance()==0 instead of intersects() on large geometries
  - Avoid St\_Buffer() unless you need a buffered geometry

### Performance Tips

 Partition your data into Most Frequently Used (MFU) and Least Frequently Used (LFU).



## Appendex A

```
// PostGIS and JTS
Class.forName("org.postgresgl.Driver");
Connection conn =
   DriverManager.getConnection("jdbc:postgresql://...");
WKBReader wkbReader = new WKBReader();
WKBWriter wkbWriter = new WKBWriter();
String query =
   "SELECT the geom FROM my spatial table
    WHERE the geom && ST GeomFromWKB(?, 3005)");
PreparedStatement pstmt = conn.prepareStatement(query);
pstmt.setBytes(1, wkbWriter.write(myJTSPolygon);
ResultSet rs = pstmt.executeQuery();
while(rs.next) {
   Geometry g = wkbReader.read(WKBReader.hexToBytes(
                   rs.getString(1)));
   // Do stuff with Geometry
```

## Appendex B