Certifying Global Optimality of Graph Cuts via Semidefinite Relaxation

A Performance Guarantee for Spectral Clustering

Shuyang Ling and Thomas Strohmer

Feb 18, 2020

Introduction

Graph G=(V,E) consists of a set of vertices V and a set of edges E connecting vertices

Summarized by edge weight matrix W w_{ij} is the value of the edge between vertices v_i and v_j

Graph Partitioning

What is the "best" way to cluster the vertices?

Graph Cut Objectives

Find a "reasonable" way to cut edges to obtain two disconnected subgraphs

Graph Cut Objectives

Let

- ▶ $\{C_1, ..., C_k\}$ be a partition of V
- $ightharpoonup cut(C, C^c) = \sum_{v_i \in C} \sum_{v_i \in C^c} w_{ij}$
- ightharpoonup |C| = number of vertices in set C
- $ightharpoonup vol(C) = \operatorname{sum} \operatorname{of} \operatorname{edges} \operatorname{pointing} \operatorname{to} \operatorname{vertices} \operatorname{in} \operatorname{set} C$

Plausible graph cut objectives

- ▶ Min Cut: $\min_j \sum_{j=1}^k cut(C_j, C_j^c)$
- ▶ Ratio Cut: $\min_{j} \sum_{j}^{k} \frac{cut(\tilde{C_{j}}, C_{j}^{c})}{|C_{j}|}$
- Normalized Cut: $\min_{j} \sum_{j}^{k} \frac{cut(C_{j}, C_{j}^{c})}{vol(C_{j})}$

Graph Cut Objectives

Let

- ▶ $\{C_1, ..., C_k\}$ be a partition of V
- $ightharpoonup cut(C, C^c) = \sum_{v_i \in C} \sum_{v_i \in C^c} w_{ij}$
- ightharpoonup |C| = number of vertices in set C
- $ightharpoonup vol(C) = \operatorname{sum} \operatorname{of} \operatorname{edges} \operatorname{pointing} \operatorname{to} \operatorname{vertices} \operatorname{in} \operatorname{set} C$

Plausible graph cut objectives

- ightharpoonup Min Cut: $\min_j \sum_j^k cut(C_j, C_j^c)$
- ▶ Ratio Cut: $\min_{j} \sum_{j}^{k} \frac{cut(C_{j}, C_{j}^{c})}{|C_{j}|}$
- Normalized Cut: $\min_{j} \sum_{j}^{k} \frac{cut(C_{j}, C_{j}^{c})}{vol(C_{j})}$

 ϵ

Ratio Cut Reformulation

Define

- ▶ Degree matrix D s.t. $d_{ii} = \sum_{j} w_{ij}$
- ightharpoonup Combinatorial graph Laplacian L=D-W
- ▶ Cluster membership matrix $U \in \mathbb{R}^{n \times k}$ s.t.

$$u_{ij} = \begin{cases} n_j^{-1/2} & v_i \in C_j \\ 0 & \text{else} \end{cases}$$

Ratio cut objective:

$$\operatorname*{arg\,min}_{U} \operatorname{Tr}(U^{\top}LU)$$
 s.t.
$$u_{ij} = \begin{cases} n_j^{-1/2} & v_i \in C_j \\ 0 & \text{else} \end{cases}$$

Ratio Cut Reformulation

Ratio cut objective: $\operatorname{arg\,min}_U \operatorname{Tr}(U^{\top}LU)$

- $lackbox{}{}$ U is restricted to a very specific form
- $ightharpoonup U^{ op}U = I_k$
- $\qquad \qquad \qquad \mathbf{U}U^{\top} = Z \in \mathbb{R}^{n \times n} \text{ s.t. } z_{ij} = \begin{cases} n_k^{-1} & v_i, v_j \text{ in same cluster } C_k \\ 0 & \text{else} \end{cases}$
- $\qquad \operatorname{Tr}(U^\top U) = \ \operatorname{Tr}(UU^\top) = k$

Spectral Clustering

- Ratio cut problem is a discrete optimization problem that is NP-hard
- Remove the discreteness constraint

$$\underset{U}{\arg\min} \ \operatorname{Tr}(U^{\top}LU)$$
 s.t.
$$U^{\top}U = I_k$$

- ▶ Rayleigh-Ritz theorem: $\hat{U} = \begin{bmatrix} u_0 & \cdots & u_{k-1} \end{bmatrix}$ first k eigenvectors of L corresponding to the k smallest eigenvalues
- $ightharpoonup \hat{U}$ doesn't provide cluster assignments
- lackbox Treat \hat{U} as an embedding in \mathbb{R}^{k-1} and perform k-means clustering
- ▶ Not guaranteed to correspond to the ratio cut solution
- Not much theoretical basis for why/how this works

ç

Spectral Clustering: Justification 1

Davis-Kahan theorem: If two matrices A and \tilde{A} are "close", then the subspaces generated by their eigenvectors is also "close"

Let

- $G_{iso} = (V, E_{iso})$ be a graph with k disconnected subgraphs
- $lackbox{W}_{iso}$ be the corresponding weight matrix
- lacksquare $L_{iso} = D_{iso} W_{iso}$ be the corresponding Laplacian matrix

Then

- $ightharpoonup L_{iso}$ has k zero eigenvalues
- The k eigenvectors of L_{iso} that correspond to the k zero eigenvalues are of the form $u_{ij} = \begin{cases} n_j^{-1/2} & v_i \in \text{ subgraph } j \\ 0 & \text{else} \end{cases}$

This is the type of ${\cal U}$ we want to find in the ratio cut problem

Spectral Clustering: Justification 1

Davis-Kahan theorem: If two matrices A and \tilde{A} are "close", then the subspaces generated by their eigenvectors is also "close"

Let

- $W = W_{iso} + \Delta$ such that Δ is "small" and W corresponds to a connected graph G = (V, E)
- lackbox L = D W be the combinatorial Laplacian matrix

Then

- L has one zero eigenvector
- The eigenspaces generated by the eigenvectors of L and L_{iso} is "small"
 - lacktriangle Hopefully the eigenvectors of L are a good approximation of the eigenvectors of L_{iso}

Spectral Clustering: Justification 2

Laplacian eigenmap - the embedding generated by the eigenvalues and eigenvectors of \boldsymbol{L}

- If instead of $\hat{U}=\begin{bmatrix}u_0&\cdots&u_{k-1}\end{bmatrix}$, we use $\hat{U}=\begin{bmatrix}u_1/\sqrt{\lambda_1}&\cdots&u_{k-1}/\sqrt{\lambda_{k-1}}\end{bmatrix}$, we get a Laplacian eigenmap
- Characterizes the expected commute time of a random walk between two vertices
- ► Equivalent to performing kernel *k*-means on the generalized inverse of *L*:

$$\arg \max_{U} \operatorname{Tr}(U^{\top}L^{\dagger}U)$$
 s.t. $u_{ij} = \begin{cases} n_{j}^{-1/2} & v_{i} \in C_{j} \\ 0 & \text{else} \end{cases}$

- Main idea: Spectral clustering is too loose of a relaxation of the ratio cut problem
- Solution: Add additional constraints
- ► Goal: Find out when the solution to the relaxed version of the ratio cut problem coincides with the actual solution

Recall the ratio cut problem: $\arg \min_{U} \ \mathsf{Tr}(U^{\top}LU)$

$$\mathsf{Rewrite} \ \mathsf{Tr}(U^\top L U) = \ \mathsf{Tr}(L U U^\top) = \ \mathsf{Tr}(L Z)$$

Then we get

$$\arg\min_{Z} \operatorname{Tr}(LZ)$$
 s.t. $z_{ij} = \begin{cases} n_k^{-1} & v_i, v_j \in C_k \\ 0 & \text{else} \end{cases}$

- ► Still a discrete optimization problem
- Also note that Ze=e, Z is positive semidefinite, ${\rm Tr}(Z)=k$, entries of $Z\geq 0$

$$\begin{split} \arg\min_{Z} \ \mathrm{Tr}(LZ) \\ \text{s.t.} \ Z &\geq 0 \text{ element-wise} \\ Z \text{ is PSD} \\ Ze &= e \\ \mathrm{Tr}(Z) &= k \end{split}$$

This is a convex semidefinite programming problem

 Spectral clustering has no (known) conditions for which we are guaranteed the correct clustering

Theorem 3.1

- Given
 - \blacktriangleright Connected graph G=(V,E) and corresponding weight matrix W
 - ► Number of clusters *k*
 - Known optimal ratio cut clustering
 - $lackbox{W}_{iso}$ based on W and the known optimal ratio cut clustering of G
 - ightharpoonup D and L corresponding to W
 - $ightharpoonup D_{iso}$ and L_{iso} corresponding to W_{iso}
 - $D_{\delta} = D D_{iso}$
- ► Then
 - $\{C_1,...,C_k\}=RCSDP(L,k)$ is the optimal ratio cut clustering given that $||D_\delta||_{op}<\frac{1}{4}\lambda_{k+1}(L_{iso})$


```
L <- graph.laplacian(W)</pre>
rc.sdp(L, 2)$Z %>%
 MASS::fractions()
    [,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1/3 1/3 1/3 0
                           0
[2,] 1/3 1/3 1/3 0 0
[3,] 1/3 1/3 1/3 0 0
[4,]
      0
          0
              0 1/3 1/3 1/3
[5,] 0 0
              0 1/3 1/3 1/3
[6,]
      0
          0
              0
                 1/3 1/3 1/3
```

Check conditions

```
W.iso <- W
W.iso[3, 4] \leftarrow W.iso[4, 3] \leftarrow 0
L.iso <- graph.laplacian(W.iso)
D <- diag(colSums(W))</pre>
D.iso <- diag(colSums(W.iso))</pre>
D.delta <- D - D.iso
n \leftarrow nrow(W)
norm(D.delta, type = '2')
[1] 1
eigen(L.iso)$values[n - 2] / 4
```

[1] 0.75

- ▶ In general, the output of RatioCut-SDP \hat{Z} does not provide cluster memberships
- Not clear how to obtain clustering from \hat{Z}
- ▶ One idea: Use SVD/spectral decomposition on \hat{Z} to obtain an embedding and perform k-means on the embedding
- ldeally we could obtain $U \in \mathbb{R}^{n \times k}$ from \hat{Z} but in general rank(Z) = n-1
- Rank constraints are not convex, no good way to force $Z = UU^{\top}$ for $U \in \mathbb{R}^{n \times k}$ k