

Trees (Weight Balanced)

Algorithms and Data Structures 2, 340300 Lecture – 2023W Univ.-Prof. Dr. Alois Ferscha, teaching@pervasive.jku.at

JOHANNES KEPLER UNIVERSITY LINZ Altenberger Straße 69 4040 Linz, Austria iku.at

Balanced Trees

Two different approaches

Height-balanced trees:

The maximum allowed **height difference** of the two subtrees is limited

Weight-balanced trees:

The **ratio** of the **node weights (number of nodes)** of both **subtrees** meets certain conditions.

Balanced Trees

Balanced trees are introduced as a compromise between balanced and natural search trees, whereby **logarithmic** search complexity is required in the worst case.

For the **height** h_b of an AVL tree with N nodes we have:

$$\lfloor \log_2 N \rfloor \leq h_b \leq 1,44 * \log_2 (N+2)$$

- The upper limit can be derived from Fibonacci trees, a subclass of the AVL trees.
- Let N(h) be the minimum number of nodes of a height-balanced tree with height h. We have:
 - N(0)=1, N(1)=2, N(2)=4, N(3)=7, N(4)=12, N(5)=20, ...
 - N(h) = 1 + N(h-1) + N(h-2) = Fib(h+3) 1

0,1,1,2,3,5,8,13,21, ...

- Fib(h) = $1/\sqrt{5}$ * ($((1 + \sqrt{5})/2)^h$ $((1 \sqrt{5})/2)^h$)
- for all h we have: Fib(h) $\geq 1/\sqrt{5}$ * $((1 + \sqrt{5})/2)^h 1$
- if N(h)=Fib(h+3)-1 we have: $\log_2(N(h)+2) \ge \log_2(1/\sqrt{5}) + (h+3) \log_2((1+\sqrt{5})/2)$
- From this the estimation follows: $h \le 1,44 \log_2 (N(h)+2) \rightarrow h = O(\log N(h))$

Minimum number of nodes grows exponential with height

→ so vice versa: height grows logarithmically with node number

Weight-Balanced Search Trees

Weight-balanced or BB trees (bounded balance):

Tolerated deviation of the structure from balanced binary tree is defined as the **difference** between the **number of nodes** in the **right** and **left subtree**.

Definition:

Let B be a binary search tree with left subtree B_l and I be the number of nodes in B_l (let N be the corresponding number of nodes in B)

- ρ (**B**) = (I + 1) / (N + 1) is the **root balance** of B.
- A tree B is weight-balanced (BB(α)) or of **limited balance** α , if **for each subtree** B' of B we have: $\alpha \le \rho$ (B') $\le 1 \alpha$

Weight-Balanced Search Trees

Parameter α as degree of freedom in the tree

- $\alpha = 1/2$: Balancing criterion only accepts complete binary trees
- α < 1/2 : Structural restriction is increasingly relaxed

What effects does the relaxation of the balancing criterion have on costs?

Rebalancing

- Use of the same rotation types as for the AVL tree
- is guaranteed by the choice of $\alpha \le 1 \sqrt{2}/2$

Search and update costs: O (log₂ N)

Multipath Search Trees

Each internal node of a multipath search tree

- has **d children**, where $d \ge 2$
- Stores a **set of records(k, x)** where k is the key and x the element
- Number of records: d-1
- Additionally: 2 pseudo records: $k_0 = -\infty$ and $k_d = \infty$

For all children of an internal node we have:

 Keys of the children lie between the keys of the respective records

External nodes are placeholders

Multipath Search

Similar to binary search

If k < k₁ search in the leftmost child

• If $k > k_{d-1}$ search in the rightmost child

If d>2:
 find key k_{i-1} and k_i for which:
 k_{i-1} < k < k_i and continue
 search in child v_i

Example: Search 8

Multipath Search

Similar to binary search

If k < k₁ search in the leftmost child

• If $k > k_{d-1}$ search in the rightmost child

If d>2:
 find key k_{i-1} and k_i for which:
 k_{i-1} < k < k_i and continue
 search in child v_i

Example: Search 12

(2,4) Trees

width property

Special case of a multipath tree:

- Each node has a **minimum** of **2**, and a **maximum** of **4** children
- All external nodes have the same depth

Height of the tree is O(log N)

depth property

Insert in (2,4) Trees

Insert key in lowest internal node, that has been reached during search.

Case 1:

Node has 1 record

Case 2:

Node has 2 records

Case 3:

Node has already 3 records

Node splitting: Split node into two
 1-element nodes and move middle
 element into parent node

Insert in (2,4) Trees

Top-Down Insertion

- Starting with the root, **node-splitting** is done for **each node with three** elements, that is visited on the way when searching for the insertion position
- This ensures that inserting can be done according to case 1 or 2.

split concerns constant number of nodes \rightarrow O(1)

Bottom-Up Insertion

- Searcjh for insertion position
- If the node at the insertion position has already 3 elements, **node-splitting** is done
- If this results in an "overflow" in the parent node (by moving the middle element upwards), node-splitting is done again.

the maximum number of levels affected is $log N \rightarrow O(log N)$

Principle

- Find the record to be deleted via key
- Remove the entry and merge (inverse operation to split), if node has too few entries

Example

The following special cases must be considered in detail:

- If node has internal nodes among its children: reduce this case to the case where node has only
 external nodes as successors:
 - Search for previous entry according to in-order traversing
 - **Swap** entry with this predecessor
 - is repeated until the entry is at the lowest level of the tree.

The entry to be deleted is the **last entry** in the node:

- **Get** entry **from parent** in this node
- Replace "gap" in parent node with entry from sibling (transfer)

Example: Remove 3

All siblings have only one records:

- Get entry from parent node
- "Merge" 2 siblings

Example: Remove 11

All siblings have only one records:

- Get entry from parent node
- "Merge" 2 siblings

Example: Remove 11

Parent has only one record:

Merging propagates upwards

Parent has only one record:

Merging propagates upwards

Example: Rem

(2,4) Trees :: Complexity

Splitting, Transfer, Merge: O(1)

Search

Runtime corresponds to height of the tree, therefore O(log N)

Insert

- During search O(log N) nodes are visited
- Inserting requires (at maximum) O(log N) node-splitting operations
- A node-splitting operation can be done in constant time, O(1)
- Therefore the overall complexity for insert is: O(log N)

Remove

- During search O(log N) nodes are visited
- Remove requires at maximum O(log N) update operations (Transfer, Merge)
- Therefore the overall complexity for remove is: O(log N)

From (2,4) Trees to Red-Black Trees

Properties of (2,4) trees:

- balanced
- Search, Insert, Remove: O(log N)
- but: structure!!

From (2,4) Trees to Red-Black Trees

Properties of (2,4) trees:

- balanced
- Search, Insert, Remove: O(log N)
- but: structure!!

Red-Black trees

- balanced
- Search, Insert, Remove: O(log N)
- Binary tree structure!

Red-black Trees

(2,4) tree

Red-Black tree

Red-black trees are another way of representing (2,4) trees.

Red-black Trees

A red-black tree is a binary search tree with the following properties

- Edges are colored red or black
- In **no** path from root to leaf there are **two consecutive red** edges
- The number of black edges is the same for each path from the root to a leaf ("black height")
- Edges that lead to leaves are always black.

Properties of red-black Trees

Let

N be the number of **internal nodes**

L be the number of leaves (L = N+1)

H be the **height**

B be the **Black Height** (height according to black edges)

Property 1:

$$2^{B} \leq N+1 \leq 4^{B}$$

Property 2:

$$1/2 \log_2(N+1) \le B \le \log_2(N+1)$$

Property 3:

$$\log_2(N+1) \leq H \leq 2\log_2(N+1)$$

Search algorithm in Red-Black trees is identical to search in binary trees

Implies a search complexity of O(log N)

Height is twice as high as that of the corresponding (2,4) tree

- Search for leaf position at which the new key is to be inserted.
- Replace leaf with internal node containing new key
- Color the edge leading into the new node red.
- Attach two new leaves to the new node via black edges

• If the parent of the new node has already an incoming red edge, two red edges would follow each other. Therefore restructuring by **rotation** or **promotion** is required.

Restructuring by **rotation** (**single**)

n ... new node

p ... parent

g ... grandparent

Restructuring by **rotation** (**double**)

n ... new node

p ... parent

g ... grandparent

Restructuring by **promotion** (if sibling of p is also red)

n ... new node

p ... parent

g ... grandparent

Can propagate upwards (if parent of g has a red incoming edge)

Insert in red-black Trees :: Summary

If two red edges follow each other after insertion, then

- restructure tree by single or double rotation done!
- or recolor edges (if necessary propagate upwards)

Runtime

- Restructuring: O(1)
- Promotion (Recoloring): O(log N)
 if it propagates until root is reached
- Therefore the **overall** complexity for insert is: O(log N)

Case 1:

The node to be deleted has at least one external node as a child.

Case 2:

The node to be deleted has **no external node** as child, then replace node with in-order predecessor (or successor).

Algorithm for Remove:

3.

- 1. Remove **v** by "**removeAboveExternal**" operation on a leaf **w**, which is a child of **v**.
- 2. If **parent incoming edge** to **v** was red, color the incoming edge to **u** now black

If parent incoming edge to \mathbf{v} was black, color the incoming edge to \mathbf{u} double-black.

4. As long as there are double-black colored edges, "**color compensation**" by **restructuring** or **recoloring** is required (total number of black edges must be preserved).

Elimination of double-black colored edges

• Search "nearby" red edge and change colors from (red, double-black) in (black, black)

Case 1: black sibling with red child;

Restructuring

Elimination of double-black colored edges

• Search "nearby" red edge and change colors from (red, double-black) in (black, black)

Case 2: black sibling with black child;

Recoloring (with possible **propagation** upwards)

Elimination of double-black colored edges

• Search "nearby" red edge and change colors from (red, double-black) in (black, black)

Case 3: red sibling;

Adjustment

Then proceed according to case 1 or 2.

Red-black Trees :: Summary

Insert or **Remove** can cause a **local interference** (successive red or double-black colored edges)

Resolving the interference

- Locally by restructuring
- Globally by propagation on higher levels (recoloring)

Complexity

- One restructure or recolor step: O(1)
- Insert: at maximum 1 restructure step or O(log N) recolor steps
- Remove: at maximum 2 restructure steps or O(log N) recolor steps
- Overall complexity: O(log N)

Splay Trees

Binary search tree, in which "splaying" is done **after each access operation** => adaption to search queries

- Splaying: special move-to-root operation is applied to node x
- Three cases for one step in splaying:
 - zick-zick: x is right (left) child of y, y is right (left) child of z

Splay Trees

Three cases for one step in splaying:

• zick-zack: x is left (right) child of y, y is right (left) child of z

Three cases for one step in splaying:

• zick: x is left (right) child of y, y is root

Splaying operation starts at the **lowest** node **x**, which is **visited** in an **access operation** (**insert**, **delete**, **find**)

Is executed **until** this node **x** is the **root**

In each zick-zick or zick-zack step the height of x decreases by 2, in one zick step by 1

• Therefore, splaying the node **x** with **depth d** requires \[\d/2 \] zick-zacks or zick-zicks if **d** is even and an additional zick if **d** is odd

Each of these operations affect a **constant** number of nodes, so the complexity is O(1)

Therefore we have a complexity for splaying of O(d)

d ... depth of the tree

splaying starts at node 14: zick-zack

after zick-zack

next step: zick-zick

after zick-zick

next step: zick-zick

after zick-zick - done!

When and at which node is splaying performed?

Search for key k

- Case 1: node x contains key k, then splaying of x
 (previous example could be considered as splaying after "find 14")
- Case 2: search unsuccessful, then splaying of **parent** of **last visited** leaf (previous example could be considered as splaying after "find 14,5")

Insertion of key k

Splaying is done with new node x containing k
 (previous example could be considered as splaying after "insert 14")

Removal of key k

Splaying with parent of removed node

Example for Insert

original tree

Example for Insert

- original tree
- after Insert of 2

after splaying

after insertion of 3

after splaying

Example for Remove: remove 8

Example for Remove: remove 8

Set the rightmost internal node of the left subtree of 8 at the position of 8 Splaying with paret of this node (node 6)

Example for Remove: remove 8

Set the rightmost internal node of the left subtree of 8 at the position of 8

Splaying with paret of this node (node 6)

Example for Remove: remove 8

Splay Trees :: Analysis

```
Insert, Remove, Search: O(h) (with h = depth of the tree)
```

in worst case: h = N therefore O(N) (see example of insertion)

An amortized analysis (using the accounting method) can show that on average we have: O(log N)

Splay Trees :: Analysis

Implementation	Search Time		Insertion Time		Deletion Time	
Skip lists	0.051 msec	(1.0)	0.065 msec	(1.0)	0.059 msec	(1.0)
Non-recursive AVL trees	0.046 msec	(0.91)	0.10 msec	(1.55)	0.085 msec	(1.46)
Recursive 2-3 trees	0.054 msec	(1.05)	0.21 msec	(3.2)	0.21 msec	(3.65)
Self-adjusting trees:						
Top-down splaying	0.15 msec	(3.0)	0.16 msec	(2.5)	0.18 msec	(3.1)
Bottom-up splaying	0.49 msec	(9.6)	0.51 msec	(7.8)	0.53 msec	(9.0)

Trees (Weight Balanced)

Algorithms and Data Structures 2, 340300 Lecture – 2023W Univ.-Prof. Dr. Alois Ferscha, teaching@pervasive.jku.at

JOHANNES KEPLER UNIVERSITY LINZ Altenberger Straße 69 4040 Linz, Austria

iku.at