Lista 9 de CM300

- 1. Esboce os gráficos das funções abaixo.
 - (a) $f(x) = \log_2 x$

(b) $f(x) = \log_3 x$

(c) $f(x) = \log_{\frac{1}{2}} x$

(d) $f(x) = -\log_2 x$

(e) $f(x) = \log_2 x - 2$

(f) $f(x) = \log_{\frac{1}{2}}(x-2)$

- 2. Por que os gráficos dos itens (c) e (d) do item anterior são iguais?
- 3. Associe a cada gráfico a função logarítmica que o define.
 - (a) $a(x) = \log_2 x$
- (b) $b(x) = -\log_2 x$
- (c) $c(x) = -\log_2(x+3)$ (d) $d(x) = \log_2 x + 3$

- (e) $e(x) = \log_2(x+3)$ (f) $f(x) = \log_2(x-2)$ (g) $g(x) = -\log(x+2) + 2$ (h) $h(x) = -\log_2(x-2) + 2$

(3)

(6)

(5)

4. Escrever cada expressão abaixo como um único logaritmo na base 2.

(a)
$$\log_4 9$$

(b)
$$2\log_{\frac{1}{4}} 3$$

(c)
$$\frac{8}{3} \log_{\frac{1}{16}} 5$$

(d)
$$\frac{\log_4 3}{2}$$

(e)
$$3\log_{\frac{1}{2}}\left(\frac{1}{3}\right)$$

(d)
$$\frac{\log_4 3}{2}$$
 (e) $3\log_{\frac{1}{2}}\left(\frac{1}{3}\right)$ (f) $-\frac{1}{2}\log_{\frac{1}{2}}\left(\frac{1}{81}\right)$

5. Derive as funções abaixo.

(a)
$$f(x) = \frac{1}{2} \log_3 x + e^x + 3$$

(b)
$$g(x) = \log_{10} x + \log_9 x - 5\log_8 x$$

(c)
$$h(x) = 2^x + 2 \cdot 3^x - 3e^{-4x} + e^{-x} - 1$$

(c)
$$h(x) = 2^{x} + 2 \cdot 3^{x} - 3e^{-4x} + e^{-x} - 1$$
 (d) $u(x) = \left(\frac{1}{2}\right)^{x} + 3\log_{\frac{1}{2}}x + 3x^{10}$ (e) $v(x) = 3\left(\frac{3}{4}\right)^{x} + \ln x + 3e^{2x} + \sqrt{x}$ (f) $\alpha(t) = 2e^{-4t} - \frac{3^{t}}{2} + 4\left(\frac{1}{8}\right)^{t}$ (g) $\beta(x) = x^{5} + 5^{x}$ (h) $\gamma(z) = 8e^{\frac{z}{3}} + 8\log_{\frac{1}{3}}z$

(e)
$$v(x) = 3\left(\frac{3}{4}\right)^x + \ln x + 3e^{2x} + \sqrt{x}$$

(f)
$$\alpha(t) = 2e^{-4t} - \frac{3^t}{2} + 4\left(\frac{1}{8}\right)^t$$

(g)
$$\beta(x) = x^5 + 5^x$$

(h)
$$\gamma(z) = 8e^{\frac{z}{3}} + 8\log_{\frac{1}{3}}z$$

(i)
$$\mu(x) = \ln(x^2) - \ln \sqrt{x}$$

(j)
$$m(t) = t^4 - 4e^{5t} - 5e^{4t}$$

(k)
$$q(x) = \log_{10} x - \ln(x^3)$$

(1)
$$\omega(x) = \ln x + e^x + x + 1$$

6. Encontre a equação da reta tangente ao gráfico da função f no ponto de abscissa x_0 . Dê sua resposta de forma exata e também aproximada com 2 casas decimais (utilize uma calculadora).

(a)
$$f(x) = e^x + 2x$$
; $x_0 = 0$

(b)
$$f(x) = \ln x + 1$$
; $x_0 = e$

(c)
$$f(x) = \ln x + 2$$
; $x_0 = \sqrt{e}$ (d) $f(x) = 2^x$; $x_0 = 1$

(d)
$$f(x) = 2^x$$
; $x_0 = 1$

(e)
$$f(x) = e^{3x}$$
; $x_0 = \frac{2}{3}$

(f)
$$f(x) = \log_3 x$$
; $x_0 = 1$

(e)
$$f(x) = e^{3x}$$
; $x_0 = \frac{2}{3}$
(f) $f(x) = \log_3 x$; $x_0 = 1$
(g) $f(x) = \left(\frac{1}{2}\right)^x$; $x_0 = -2$
(h) $f(x) = -e^{2x}$; $x_0 = 2$
(i) $f(x) = \log_2 x$; $x_0 = 16$
(j) $f(x) = e^x$; $x_0 = -4$

(h)
$$f(x) = -e^{2x}$$
; $x_0 = 2$

(i)
$$f(x) = \log_2 x$$
; $x_0 = 16$

(j)
$$f(x) = e^x$$
; $x_0 = -4$

7. Faça o mesmo que na questão anterior, porém trace também o gráfico de f juntamente com a reta tangente.

(a) $f(x) = \log_2 x$ $x_0 = 4$

(c) $f(x) = 2^x - 2$; $x_0 = 2$

(b) $f(x) = \log_{\frac{1}{2}} x$; $x_0 = 1$

(d) $f(x) = \left(\frac{1}{2}\right)^x$; x = -1

- 8. Uma colônia de microorganismos tem 3 bilhões de indivíduos no dia t=0 e dobra a cada dia transcorrido.
 - (a) Qual função dá a quantidade M de bilhões de microorganismos no dia t?
 - (b) Qual é a quantidade de microorganismos no fim do 5° dia (t = 5)?
 - (c) A que taxa a população de microorganismos está crescendo no fim do 5º dia?
- 9. A quantidade q em miligramas de um determinado medicamento na corrente sanguínea se dá aproximadamente através da expressão $q(t) = 20 \frac{1}{10^t}$, onde t é a quantidade de horas transcorridas desde a ingestão.
 - (a) Qual é a quantidade de medicamento no organismo duas horas após sua ingestão?
 - (b) A que taxa o medicamento está saindo da corrente sanguínea duas horas após sua ingestão?
- 10. Uma pessoa aplicou R\$2000,00 em um investimento com rendimentos diários que equivalem a 10% ao ano.
 - (a) Qual função dá o montante D de dinheiro que essa pessoa terá no final do t-ésimo ano de aplicação?
 - (b) Quanto dinheiro a pessoa terá no final do 3° ano?
 - (c) A que taxa o montante de dinheiro estará aumentando no final do 3º ano?
- **11.** Uma população de coelhos variou aproximadamente conforme a função $c(t) = 3500 \left(\frac{7}{8}\right)^t + 1000 \left(\frac{4}{3}\right)^t$, onde t é dado em semanas, $t \in [0; 4]$.
 - (a) Quantos coelhos havia em t=0?
 - (b) Quantos coelhos havia em t = 2?

Respostas:

1.

-6

-6

(a)

6

7

4

2

0

-2

-4

-2

0

2

10

(d)

6

4

2

0

-2

-4

-6

-6

-6

-4

-2

0

2

4

6

8

10

2. Porque as funções são iguais, uma vez que $\log_{\frac{1}{2}} x = \frac{\log_2 x}{\log_2 \frac{1}{2}} = \frac{\log_2 x}{-1} = -\log_2 x$.

3. 1-e 2-b 3-g 4-a 5-f 6-h 7-c 8-d.

4.

(a)
$$\log_2 3$$

(b)
$$\log_2\left(\frac{1}{3}\right)$$

(b)
$$\log_2\left(\frac{1}{3}\right)$$
 (c) $\log_2\left(\frac{1}{\sqrt[3]{25}}\right)$ (d) $\log_2\sqrt[4]{3}$ (e) $\log_2 27$

(d)
$$\log_2 \sqrt[4]{3}$$

(e)
$$\log_2 2$$

(f)
$$\log_2\left(\frac{1}{9}\right)$$

5. (a)
$$f'(x) = \frac{1}{(2\ln 3)x} + e^x$$

(b)
$$g'(x) = \frac{1}{x \ln 10} + \frac{1}{x \ln 9} - \frac{5}{x \ln 8}$$

(c)
$$h'(x) = (\ln 2)2^x + (2\ln 3)3^x + 12e^{-4x} - e^{-x}$$

(d)
$$u'(x) = \left[\ln\left(\frac{1}{2}\right)\right] \left(\frac{1}{2}\right)^x + \frac{3}{(\ln\frac{1}{2})x} + 30x^9$$

(e)
$$v'(x) = \left[3 \ln \left(\frac{3}{4} \right) \right] \left(\frac{3}{4} \right)^x + \frac{1}{x} + 6e^{2x} + \frac{1}{2}x^{-\frac{1}{2}}$$

(f)
$$\alpha'(t) = -8e^{-4t} - \frac{\ln 3}{2}3^t + \left[4\ln\left(\frac{1}{8}\right)\right] \left(\frac{1}{8}\right)^t$$

(g)
$$\beta'(x) = 5x^4 + (\ln 5)5^x$$

(h)
$$\gamma'(z) = \frac{8e^{\frac{z}{3}}}{3} + \frac{8}{z\ln(\frac{1}{3})}$$

(i)
$$\mu'(x) = \frac{2}{x} - \frac{1}{2x}$$

(j)
$$m'(t) = 4t^3 - 20e^{5t} - 20e^{4t}$$

(k)
$$q'(x) = \frac{1}{(\ln 10)x} - \frac{3}{x}$$

(1)
$$\omega'(x) = \frac{1}{x} + e^x + 1$$

6. (a)
$$y = 3x + 1$$

(b)
$$y = \frac{x}{e} + 1 \approx 0,37x + 1,00$$

(c)
$$y = \frac{x}{\sqrt{e}} + \frac{3}{2} \approx 0,61x + 1,50$$

(d)
$$y = 2 \ln 2 + 2 - 2 \ln 2 \approx 1,39x + 0,61$$

(e)
$$y = 3e^2x - e^2 \approx 22,17x - 7,39$$

(f)
$$y = \frac{x}{\ln 3} - \frac{1}{\ln 3} \approx 0.91x - 0.91$$

(g)
$$y = \left[4 \ln \left(\frac{1}{2} \right) \right] x + 4 + 8 \ln \left(\frac{1}{2} \right) \approx -2,77x - 1,55$$

(h)
$$y = -2e^4x + 3e^4 \approx -109,20x + 163,79$$

(i)
$$y = \frac{x}{16 \ln 2} + 4 - \frac{1}{\ln 2} \approx 0,09x + 2,56$$

(j)
$$y = \frac{x}{e^4} + \frac{5}{e^4} \approx 0,02x + 0,09$$

(a)
$$y = \frac{x}{4 \ln 2} + 2 - \frac{1}{\ln 2} \approx 0.36x + 0.56$$

(b)
$$y = -\frac{x}{\ln 2} + \frac{1}{\ln 2} \approx -1,44x + 1,44$$

(c) $y = (4 \ln 2)x + 2 - 8 \ln 2 \approx 2,77x - 3,55$

(d) $y = -(2 \ln 2)x + 2 - 2 \ln 2 \approx -1,39x + 0,61$

8. (a) $M(t) = 3 \cdot 2^t$.

(b) 96 bilhões.

(c) 66,54 bilhões de microorganismos por dia.

9. (a) 0, 2mg.

(b) 0.46 mg/h.

- **10.** (a) $D(t) = 2000(1,1)^t$.
- (b) R\$2662,00.

(c) 253,71R\$/ano.

- **11.** (a) 4500.
 - (b) 4457.
 - (c) Diminuiu, pois 4500 > 4457.
 - (d) Aumentando, pois c'(2) > 0. A taxa de crescimento populacional em t = 2 foi de c'(2) = 154 coelhos/semana.