Bruce Jacob

University of Maryland ECE Dept.

SLIDE 1

ENEE 359a *Digital VLSI Design*

CMOS Memories and Systems: Part I, DRAM Systems

Prof. Bruce Jacob blj@ece.umd.edu

Slides contain original artwork (© Jacob 1999–2004, Wang 2003/4).

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 2

Overview

DRAM:

- DRAM systems
- DRAM circuits

SRAM:

- SRAM systems
- SRAM circuits
- Register files

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 3

DRAM

Dual In-line Memory Module (DIMM)

(printed circuit board w/ DRAM chips on it)

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 4

The Memory System

... and DRAM's place within it.

(typical PC-style desktop system)

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 5

DRAM-System Closeup

Traditional "JEDEC-Style" DRAM system

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 6

Memory Request Overview

^{**} Steps not required for some processor/system controllers. protocol-dependent.

Progression of a Memory Read Transaction Request Through Memory System

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 7

Access-Protocol Basics

DRAM ORGANIZATION

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 8

Access-Protocol Basics

BUS TRANSMISSION

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 9

Access-Protocol Basics

[PRECHARGE and] ROW ACCESS

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 10

Access-Protocol Basics

COLUMN ACCESS

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 11

Access-Protocol Basics

DATA TRANSFER

note: page mode enables overlap with CAS

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 12

Access-Protocol Basics

BUS TRANSMISSION

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 13

Access-Protocol Basics

A: Transaction request may be delayed in Queue

B: Transaction request sent to Memory Controller

C: Transaction converted to Command Sequences (may be queued)

D: Command/s Sent to DRAM

E₁: Requires only a **CAS** or

E₂: Requires **RAS** + **CAS** or

E₃. Requires **PRE + RAS + CAS**

F: Transaction sent back to CPU

"DRAM Latency" = A + B + C + D + E + F

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 14

Access-Protocol Basics

Read Timing for Conventional DRAM

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 15

Access-Protocol Basics

Read Timing for Synchronous DRAM

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 16

DRAM Circuit Basics

"Row" Defined

Row Size: 8 Kb @ 256 Mb SDRAM node

4 Kb @ 256 Mb RDRAM node

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 17

DRAM Circuit Basics

Sense Amplifier I: 6 rows shown

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 18

DRAM Circuit Basics

Sense Amplifier I: 6 rows shown

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 19

DRAM Circuit Basics

Sense Amplifier II: Precharged

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 20

DRAM Circuit Basics

Sense Amplifier III: Destructive Read

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 21

DRAM Circuit Basics

"Column" Defined

Column: Smallest addressable quantity of DRAM on chip

SDRAM*: column size == chip data bus width (4, 8,16, 32) RDRAM: column size != chip data bus width (128 bit fixed)

SDRAM*: get à Columns per access. n = (1, 2, 4, 8)

RDRAM: get 1 column per access.

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 22

DRAM Architecture Basics

PHYSICAL ORGANIZATION

x2 DRAM

x4 DRAM

x8 DRAM

This is per bank ...

Typical DRAMs have 2+ banks

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 23

DRAM "Speed" Part I

How fast can I move data from DRAM cell to sense amp?

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 24

DRAM "Speed" Part II

How fast can I get data out of sense amps back into memory controller?

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 25

DRAM "Speed" Part III

How fast can I move data from DRAM cell into memory controller?

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 26

DRAM "Speed" Part IV

How fast can I precharge DRAM array so I can engage another RAS?

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 27

DRAM "Speed" Part V

How fast can I read data from two different rows?

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 28

DRAM "Speed" Summary I

What do I care about?

RAS: Row Address Strobe

CAS: Column Address Strobe

RCD: Row Command Delay

RAC: Random Access Delay

RP: Row Precharge Delay

RC: Row Cycle Time

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 29

DRAM "Speed" Summary II

DRAM Type	Frequency	Data Bus Width (per chip)	Peak Data Bandwidth (per Chip)	Random Access Time (t _{RAC})	Row Cycle Time (t _{RC})
PC133 SDRAM	133	16	200 MB/s	45 ns	60 ns
DDR 266	133 * 2	16	532 MB/s	45 ns	60 ns
PC800 RDRAM	400 * 2	16	1.6 GB/s	60 ns	70 ns
FCRAM	200 * 2	16	0.8 GB/s	25 ns	25 ns
RLDRAM	300 * 2	32	2.4 GB/s	25 ns	25 ns

data: Dec. 2002

DRAM is "slow"
But doesn't have to be t_{RC} < 10ns achievable

Higher die cost → Not adopted in standard

Not commodity — Expensive

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 30

Signal Propagation

Ideal Transmission Line

 $\sim 0.66c = 20 \text{ cm/ns}$

PC Board + Module Connectors + Varying Electrical Loads

= Rather non-Ideal Transmission Line

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 31

DRAM Interface: Protocol

The Digital Fantasy

Pretend that the world looks like this

But...

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 32

DRAM Interface: Signals

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 33

Interface: Clocking Issues

What Kind of Clocking System?

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 34

Path Length Differential

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 35

Timing Variations

How many DIMMs in System?

How many devices on each DIMM?

Who built the memory module?

Infinite variations on timing!

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 36

Topology

DRAM System Topology Determines
Electrical Loading Conditions
and Signal Propagation Lengths

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 37

SDRAM Topology Example

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 38

SDRAM Topology Example II

(Same topology, different drawing, a little more detail)

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 39

RDRAM Topology Example

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 40

I/O - Differential Pair

Single Ended Transmission Line

Differential Pair Transmission Line

Increase Rate of bits/s/pin?

Cost Per Pin?

Pin Count?

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 41

I/O - Multi Level Logic

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 42

Packaging

DIP "good old days"

SOJSmall Outline J-lead

TSOP
Thin Small Outline
Package

LQFP
Low Profile Quad
Flat Package

FBGA
Fine Ball Grid Array

Features	Target Specification				
Package	FBGA	LQFP			
Speed	800MBps	550Mbps			
Vdd/Vddq	2.5V/2.5V (1.8V)				
Interface	SSTL_2				
Row Cycle Time t _{RC}	35	ns			

Memory Roadmap for Hynix NetDDR II

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 43

Access Protocol

Single Cycle Command

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 44

Access Protocol (r/r)

Command

Data

Consecutive Cache Line Read Requests to Same DRAM Row

a = Active (open page)

r = Read (Column Read)

d = Data (Data chunk)

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 45

Access Protocol (r/w)

$$\begin{array}{c|c} Col & w_0 & r_1 \\ \hline & & \\ \hline Data & d_0 & d_0 & d_0 & d_1 & d_1 & d_1 & d_1 \\ \hline \end{array}$$

Case 1: Read Following a Write Command to Different DRAM Devices

Case 2: Read Following a Write Command to Same DRAM Device

Soln: Delay Data of Write Command to match Read Latency

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 46

Address Mapping

Access Distribution for Temp Control Avoid Bank Conflicts Access Reordering for performance

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 47

Example: Bank Conflicts

Read 05AE5700 — Device id 3, Row id 266, Bank id 0
Read 023BB880 — Device id 3, Row id 1BA, Bank id 0
Read 05AE5780 — Device id 3, Row id 266, Bank id 0
Read 00CBA2C0 — Device id 3, Row id 052, Bank id 1

More Banks per Chip == Performance == Logic Overhead

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 48

Example: Access Reordering

Read 05AE5700

Read 00CBA2C0

- Read 023BB880 Read 05AE5780
- Device id 3, Row id 266, Bank id 0 Device id 3, Row id 1BA, Bank id 0 Device id 3, Row id 266, Bank id 0
- Device id 1, Row id 052, Bank id 1

Strict Ordering

Memory Access Re-ordered

Act = Activate Page (Data moved from DRAM cells to row buffer) Read = Read Data (Data moved from row buffer to memory controller) Prec = Precharge (close page/evict data in row buffer/sense amp)

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 49

Technology Roadmap (ITRS)

	2004	2007	2010	2013	2016
Semi Generation (nm)	90	65	45	32	22
CPU MHz	3990	6740	12000	19000	29000
MLogicTransistors/cm^2	77.2	154.3	309	617	1235
High Perf chip pin count	2263	3012	4009	5335	7100
High Performance chip cost (cents/pin)	1.88	1.61	1.68	1.44	1.22
Memory pin cost	0.34 -	0.27 -	0.22 -	0.19 -	0.19 -
(cents/pin)	1.39	0.84	0.34	0.39	0.33
Memory pin count	48-160	48-160	62-208	81-270	105-351

Trend:

Free Transistors & Costly Interconnects

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 50

Choices for Future

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 51

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 52

DRAM Evolution

Read Timing for Conventional DRAM

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 53

DRAM Evolution

Read Timing for Fast Page Mode

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 54

DRAM Evolution

Read Timing for Extended Data Out

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 55

DRAM Evolution

Read Timing for Burst EDO

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 56

DRAM Evolution

Read Timing for Pipeline Burst EDO

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 57

DRAM Evolution

Read Timing for Synchronous DRAM

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 58

DRAM Evolution

Inter-Row Read Timing for ESDRAM

Regular CAS-2 SDRAM, R/R to same bank

ESDRAM, R/R to same bank

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 59

DRAM Evolution

Write-Around in ESDRAM

Regular CAS-2 SDRAM, R/W/R to same bank, rows 0/1/0

ESDRAM, R/W/R to same bank, rows 0/1/0

(can second READ be this aggressive?)

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 60

DRAM Evolution

Internal Structure of Virtual Channel

Segment cache is software-managed, reduces energy

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 61

DRAM Evolution

Internal Structure of Fast Cycle RAM

Reduces access time and energy/access

Bruce Jacob

University of Maryland ECE Dept.

SLIDE 62

