國立與大附中 113 學年度第 1 學期第二次定期考查 高三數甲 (304-314)

座號:____ 姓名:_____ 試題共四頁,答案卷一頁

命題老師:Ting 審題老師:Mr. Lu

備註:請於答案卡與答案卷上畫上與寫上正確的身分資料,若因未劃記書寫身分資料,或因劃記書寫錯誤,造成 閱卷老師讀卡或閱卷困擾者,統一扣該科總成績 5 分。

第壹部分、選擇(填)題(合計占88分)

一、單選題(占 24 分)

說明:第1題至第4題,每題有5個選項,其中只有一個是正確或最適當的選項,請畫記在答案卡之「選擇 (填) 題答案區」。各題答對者,得6分;答錯、未作答或畫記多於一個選項者,該題以零分計算。

1. 如圖所示,已知 y = f(x) 的圖形和 x 軸交於 (0,0), (1,0), (2,0), (3,0)四點,且分別與 x 軸所圍的面積 $R_1=3$, $R_2=5$, $R_3=7$,則 $\int_0^{3} f(x)dx$ 值為何?

(1)5

(2)7

(3) 9 (4) 10

2. 若 f'(x) = x(x-3),則下列敘述何者正確?

$$(1) f(0) = 0$$

 $(1) \, f(0) = 0$ $(2) \, f(2) < f(3)$ $(3) \, f(x)$ 的圖形沒有反曲點

(4) f(x)的圖形在區間(2,3)為凹口向上

(5) f(x)的圖形在區間(1,2)為凹口向上

3. 設 $f(x) = \int_{2}^{x} \sqrt{2t-1}dt$,則 f'(4) = ?

$$(1) 2(\sqrt{7} - \sqrt{3}) \qquad (2) \sqrt{7} - \sqrt{3}$$

$$(2)\sqrt{7}-\sqrt{3}$$

$$(3) 2\sqrt{7}$$

$$(4)\frac{\sqrt{7}}{2}$$

 $(5)\sqrt{7}$

4. 設 a 為不為零之實數,若 $f(x) = \frac{1}{3}x^3 + \frac{a+2}{2}x^2 + 2ax + a$ 為三次多項式,則 y = f(x) 圖形 <u>不可能</u> 在下列 哪個區間為遞增?

$$(1)[-2024, -113]$$

$$(2)[-113, -8]$$

$$(3) [-8, -1] (4) [-1, 3]$$

$$(4)[-1,3]$$

(5)[3,10]

二、多選題(占24分)

- 說明:第5題至第7題,每題有5個選項,其中至少有一個是正確的選項,請將正確選項畫記在答案卡之「選擇(填)題答案區」。各題之選項獨立判定,所有選項均答對者,得8分;答錯1個選項者, 得4.8分;答錯2個選項者,得1.6分;答錯多於2個選項或所有選項均未作答者,該題以零分計算。
- 5. 設函數 $f(x)=\sqrt{1-x^2}$, $g(x)=-x^2+1$,並設 R 為函數 f(x) 與函數 g(x) 的圖形與 x=-1,x=1 圍成的區域,則下列選項哪些正確?
 - (1) 積分 $\int_{-1}^{1} f(x)dx = \pi$ 。
 - (2) 積分 $\int_{-1}^{1} g(x)dx = \frac{4}{3}$
 - (3) 當 $-1 \le x \le 1$ 時, $f(x) \ge g(x)$ 。
 - (4) 區域 R 的面積為 $\pi-rac{4}{3}$
 - (5) 區域 R 繞 x 軸所得的旋轉體體積為 $\frac{4}{15}\pi$ 。

- 6. 設 $y = f(x) = x^4 + ax^3 + bx^2 + cx$ 為一個四次多項式,其中 a, b, c 為實數,請選出正確的選項。
 - (1) f(x) = 0 必有實數解。
 - (2) f'(x) = 0 必有實數解。
 - (3) y = f(x) 圖形至少有一個反曲點。
 - (4) 由 y = f(x) 圖形和 x = 0、x = 1 以及 x 軸所圍出來的區域面積為 $\frac{1}{5} + \frac{a}{4} + \frac{b}{3} + \frac{c}{2}$ 。
 - (5) $\int_0^1 |f(x)| dx = \left| \frac{1}{5} + \frac{a}{4} + \frac{b}{3} + \frac{c}{2} \right| \circ$

- 7. 設一個三次多項式 $f(x) = ax^3 + bx^2 + cx + d = a(x-h)^3 + p(x-h) + k$, 其中 a,b,c,d,p,h,k 均為實數 ,且 $a \neq 0$,則下列選項哪些正確?
 - $(1) h = \frac{b}{3a} \circ$
 - (2) $p = 3ah^2 + 2bh \circ$
 - (3) y = f(x) 在點 (0, d) 的切線斜率為 c。
 - (4) 若 ap > 0,則 $b^2 3ac < 0$ 。
 - (5) 若 $b^2 3ac \le 0$,則 ap > 0。

三、選填題(占 40 分)

- 說明:1. 第 A 至 H 題,將答案畫記在答案卡之「選擇(填)題答案區」所標示的列號(8-28)

 - 2. 每題完全答對給 5 分,答錯不倒扣,未完全答對不給分。 3. 若答案為分數,皆須化為最簡分數;若答案內有根號,皆須化為最簡根式。
- A. 已知多項式 $f(x)=x^4-6x^3+6x^2+5x-1$ 在 $(\alpha,f(\alpha))$ 及 $(\beta,f(\beta))$ 為 y=f(x) 圖形的反曲點,則 $\alpha+\beta= \textcircled{8}$ 。

B. 若
$$\int_1^3 (3x^2 + ax + 1) dx = 24$$
,則實數 $a = 910$ 。

C. 設三次函數 $f(x) = ax^3 + ax^2 + (a-1)x + 7$ 恆為遞增函數,則實數 a 範圍為 $a \ge \frac{11}{12}$ 。

D. 設函數 $f(x) = 2x^2$ 的圖形與 x 軸,x = 0 及 x = 2 所圍成的區域為 R,若在區間 [0,2] 等分成 n 段,並分別 在這些等分點上作上矩形,若這些上矩形的總和 (即上和) 為 U_n ,則 $U_4 = \frac{13(14)}{(15)}$ 。

E. 試求
$$\int_0^3 (\sqrt{x^2 - 2x + 1} + x^2) dx = \frac{16(17)}{18}$$
。

F. 已知多項式 f(x) 满足 f''(x) = -6x + 4,若 y = f(x) 在 x = 1 有局部極值 3,則 f(-2) = 19(20)。

G. 已知 R 為函數 $f(x) = -x^2 + 2$ 的圖形與 x 軸所圍成的區域,則 R 繞 x 軸所得的旋轉體體積為

H. 試求極限
$$\lim_{n\to\infty}\left(\frac{2}{n}\right)^6\left[1^5+2^5+\cdots+n^5\right]=\frac{26(27)}{28}$$
。

第貳部分、計算題 (合計占 12 分)

說明:第貳部分為計算題,限使用黑色原子筆在標示題號答案卷內作答。請由左而右橫式書寫,第二題作答時必須寫出計算過程或理由,否則將酌予扣分,第二題只寫答案或未在答案卷上作答者均不予計分。

Bao 在練習學測考古題時,寫到類似題如下:「平面上兩點 A 、 B 之距離為 6 ,以 A 為圓心作一半徑為 r(0 < r < 6) 的圓 Γ ,過 B 作圓 Γ 的切線,切點 (之-) 為 P 。當 r 變動時, $\triangle PAB$ 的面積最大可能值為何?」

一、請用r表示 $\triangle PAB$ 的面積。(不須寫出計算過程或理由,請於答案卷上作答,4分)

二、承第一題,請用「微分」的方法及「一階 (或二階) 檢定法」求出,當 r 為多少時, $\triangle PAB$ 面積有最大值為何?(必須寫出計算過程或理由,請於答案卷上作答,8 分)

選擇題:

- 1. (1) 2. (4) 3. (5) 4. (3)
- 5. (2)(3)(5) 6. (1)(2) 7. (3)(4)

選填題:

- A. 3 B. -1 C. $\frac{3}{2}$ D. $\frac{15}{2}$
- E. $\frac{23}{2}$ F. 21 G. $\frac{64\sqrt{2}}{15}\pi$ H. $\frac{32}{3}$

計算題:

- -、 $\triangle PAB$ 面積為 $\frac{1}{2}r\sqrt{36-r^2}$
- 二、當 $r = 3\sqrt{2}$ 時, $\triangle PAB$ 面積有最大值為 18。 過程與評分:

(方法一)

$$1.(3~ \odot)$$
 由第一題知 $\triangle PAB$ 面積為 $\frac{1}{2}r\sqrt{36-r^2}$

$$f(r) = \frac{1}{2}r\sqrt{36 - r^2}$$

則
$$f'(r) = \frac{1}{2}\sqrt{36 - r^2} + \frac{1}{2}r\frac{-2r}{2\sqrt{36 - r^2}} = \frac{18 - r^2}{\sqrt{36 - r^2}}$$

 $2.(3 \, \beta) f'(r) = 0$ 解得 $r = \pm 3\sqrt{2}$, 又 0 < r < 6, 可得表格如下:

	0		$3\sqrt{2}$		6
f'		+	-	+	
f	0	7	18	\ \ \	0

$$(2-2.)f''(r) = \frac{-2r\sqrt{36-r^2}}{36-r^2} - (18-r^2)\frac{-r}{\sqrt{36-r^2}} \text{ , 所以 } f''(3\sqrt{2}) = \frac{-6\sqrt{2}\times18-0}{18} < 0 \text{ or } f''(3\sqrt{2}) = \frac{-6\sqrt{2}\times18-0}{18}$$

 $3.(2 \, \mathcal{G})$ 故由一階檢定法可知,當 $r = 3\sqrt{2}$ 時 $(1 \, \mathcal{G})$, $\triangle PAB$ 有最大值 $18(1 \, \mathcal{G})$ 。

(3-2.)(2 分) 故由二階檢定法可知,當 $r = 3\sqrt{2}$ 時 (1 分), $\triangle PAB$ 有最大值 18(1 分)。

(方法二)

$$1.(3\ eta)$$
 由第一題知 $\triangle PAB$ 面積為 $\frac{1}{2}r\sqrt{36-r^2}=\frac{1}{2}\sqrt{36r^2-r^4}$

$$\Rightarrow f(r) = 36r^2 - r^4$$

則
$$f'(r) = 72r - 4r^3$$

 $2.(3 \, \beta) f'(r) = 0$ 解得 $r = \pm 3\sqrt{2}$ 或 0,又 0 < r < 6,可得表格如下:

	0		$3\sqrt{2}$		6
f'		+	_	+	
f	0	7	324		0

- $\overline{(2\text{-}2.)f''(r) = 72 12r^2 < 0}$,所以 $f''(3\sqrt{2}) = 72 12 \times 18 < 0$ 。
- $3.(2 \, \beta)$ 故由一階檢定法可知,當 $r = 3\sqrt{2}$ 時 $(1 \, \beta)$, $\triangle PAB$ 有最大值 $18(1 \, \beta)$ 。
- (3-2.)(2 分) 故由二階檢定法可知,當 $r = 3\sqrt{2}$ 時 (1 分), $\triangle PAB$ 有最大值 18(1 分)。