Лабораторная работа №3

Задача 1. Предъявите доверительный интервал уровня $1-\alpha$ для указанного параметра при данных предположениях (с обоснованиями). Сгенерируйте 2 выборки объёма объёма 25 и посчитайте доверительный интервал. Повторить 1000 раз. Посчитайте, сколько раз 95-процентный доверительный интервал покрывает реальное значение параметра. То же самое сделайте для объема выборки 10000. Как изменился результат? Как объяснить?

Задача представлена в 3 вариантах. Везде даны две независимые выборки X, Y из нормальных распределений $\mathcal{N}(\mu_1, \sigma_1^2)$, $\mathcal{N}(\mu_2, \sigma_2^2)$ объема n, m соответственно. Сначала указывается оцениваемая функция, потом данные об остальных параметрах, затем параметры эксперимента и подсказки.

1. $\tau=\mu_1-\mu_2;\,\sigma_1^2,\,\sigma_2^2$ известны; $\mu_1=2,\,\mu_2=1,\,\sigma_1^2=1,\,\sigma_2^2=0.5;$ воспользуйтесь функцией

$$\frac{\overline{X} - \overline{Y} - \tau}{\sigma}, \quad \sigma^2 = \frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}.$$

2. $\tau=\mu_1-\mu_2;\,\sigma_1^2=\sigma_2^2$ неизвестна; $\mu_1=2,\,\mu_2=1,\,\sigma_1^2=\sigma_2^2=1;$ воспользуйтесь функцией

$$\sqrt{\frac{mn(m+n-2)}{m+n}} \frac{\overline{X} - \overline{Y} - \tau}{\sqrt{n\operatorname{Var}(X) + m\operatorname{Var}(Y)}},$$

где Var(.) – выборочная смещенная дисперсия. Смотрите в сторону распределения Стьюлента.

3. $au=\sigma_1^2/\sigma_2^2;$ $\mu_1,$ μ_2 неизвестны; $\mu_1=0,$ $\mu_2=0,$ $\sigma_1^2=2,$ $\sigma_2^2=1;$ воспользуйтесь функцией

$$\frac{n(m-1)\operatorname{Var}(X)}{m(n-1)\operatorname{Var}(Y)},$$

где Var(.) – выборочная смещенная дисперсия. Смотрите в сторону распределения Φ и-шера.

Задача 2. Постройте асимптотический доверительный интервал уровня $1-\alpha$ для указанного параметра. Проведите эксперимент по схеме, аналогичной первой задаче.

Задача представлена в 7 вариантах. Сначала указывается класс распределений (однопараметрический) и оцениваемый параметр, затем параметры эксперимента и подсказки.

- 1. $\text{Exp}(\lambda)$; медиана; $\lambda=1$; воспользуйтесь предельной теоремой об асимптотическом поведении среднего члена вариационного ряда.
- 2. Распределение Лапласса с неизвестным параметром сдвига μ и единичным масштабирующим параметром; μ ; $\mu=2$; можно воспользоваться подсказкой для предыдущего варианта, хотя другие способы решения приветствуются.
- 3. $U[-\theta,\theta]; \theta; \theta=5;$ воспользуйтесь предельной теоремой об асимптотическом поведении крайних членов вариационного ряда.

- 4. Geom(p); p; p = 0.7; тут рецепт стандартный).
- 5. $\operatorname{Pois}(\lambda)$; второй момент; $\lambda=1$; воспользоваться асимптотической нормальностью второго момента.
- 6. $U[0;\theta]; \theta; \theta = 2, \text{ см. п. 3.}$
- 7. $U[-\theta; 0]; \theta; \theta = 3,$ см. п. 3.

Ключевые понятия:

- Доверительные интервалы. Доверительные интервалы для параметров нормального распределения. Теорема Фишера
- Доверительные интервалы. "Универсальный" рецепт.
- Асимптотические доверительные интервалы. "Обычный" рецепт.
- Теоремы об асимптотическом поведении среднего и крайних членов вариационного ряда.