Dependent Session Protocols in Separation Logic from First Principles

A Separation Logic Proof Pearl

Jules Jacobs Radboud University Nijmegen Jonas Kastberg Hinrichsen

Aarhus University

Robbert Krebbers

Radboud University Nijmegen

Message Passing Concurrency

Message passing:

- ► Well-structured approach to writing concurrent programs
- ► Threads as services and clients
- ▶ Used in Go, Scala, C#, and more

Message Passing Concurrency

Message passing:

- ► Well-structured approach to writing concurrent programs
- ► Threads as services and clients
- ▶ Used in Go, Scala, C#, and more

Bi-directional session channels:

${\tt new_chan}\ ()$	Create channel and return two endpoints c1 and c2
$c.\mathtt{send}(v)$	Send value <i>v</i> over endpoint <i>c</i>
$c.\mathtt{recv}()$	Receive and return next inbound value on endpoint c

Message Passing Concurrency

Message passing:

- ► Well-structured approach to writing concurrent programs
- ► Threads as services and clients
- ▶ Used in Go, Scala, C#, and more

Bi-directional session channels:

${f new_chan}\ ()$	Create channel and return two endpoints c1 and c2
$c.\mathtt{send}(v)$	Send value <i>v</i> over endpoint <i>c</i>
$c.\mathtt{recv}()$	Receive and return next inbound value on endpoint c

Example Program:

```
let (c_1, c_2) = new_chan () in
fork {let x = c_2.recv() in c_2.send(x + 2)};
c_1.send(40); let y = c_1.recv() in assert(y = 42)
```

Example Program:

```
let (c_1, c_2) = new_chan () in
fork {let x = c_2.recv() in c_2.send(x + 2)};
c_1.send(40); let y = c_1.recv() in assert(y = 42)
```

Example Program:

```
let (c_1, c_2) = new_chan () in
fork {let x = c_2.recv() in c_2.send(x + 2)};
c_1.send(40); let y = c_1.recv() in assert(y = 42)
```

Safety	Functional Correctness
Type systems	Program logics

Example Program:

```
let (c_1, c_2) = new_chan () in
fork {let x = c_2.recv() in c_2.send(x + 2)};
c_1.send(40); let y = c_1.recv() in assert(y = 42)
```

Safety	Functional Correctness
Type systems	Program logics
Automatic checking	Manual proofs

Example Program:

```
let (c_1, c_2) = new_chan () in
fork {let x = c_2.recv() in c_2.send(x + 2)};
c_1.send(40); let y = c_1.recv() in assert(y = 42)
```

Safety	Functional Correctness
Type systems	Program logics
Automatic checking	Manual proofs
Session types	(Actris) dependent session protocols

Example Program:

```
let (c_1, c_2) = new_chan () in
fork {let x = c_2.recv() in c_2.send(x + 2)};
c_1.send(40); let y = c_1.recv() in assert(y = 42)
```

Safety	Functional Correctness
Type systems	Program logics
Automatic checking	Manual proofs
Session types	(Actris) dependent session protocols
!ℤ. ?ℤ. end	! (40). ?(42). end

Example Program:

```
let (c_1, c_2) = new_chan () in
fork {let x = c_2.recv() in c_2.send(x + 2)};
c_1.send(40); let y = c_1.recv() in assert(y = 42)
```

Safety	Functional Correctness
Type systems	Program logics
Automatic checking	Manual proofs
Session types	(Actris) dependent session protocols
$!\mathbb{Z}.\ ?\mathbb{Z}.$ end	! (40). ?(42). end
Minimalist versions exists	Actris employs heavy machinery
(Dhardha et al., Kobayashi et al.)	Minimalist version is the goal of this work

Example Program:

```
let (c_1, c_2) = new_chan () in
fork {let x = c_2.recv() in c_2.send(x + 2)};
c_1.send(40); let y = c_1.recv() in assert(y = 42)
```

$$c_1 \rightarrowtail !\langle 40 \rangle. ?\langle 42 \rangle.$$
 end $c_2 \rightarrowtail ?\langle 40 \rangle. !\langle 42 \rangle.$ end

Example Program:

```
let (c_1, c_2) = new_chan () in
fork {let x = c_2.recv() in c_2.send(x + 2)};
c_1.send(40); let y = c_1.recv() in assert(y = 42)
```

$$c_1 \longrightarrow !(x : \mathbb{Z}) \langle x \rangle. ?\langle x + 2 \rangle.$$
 end $c_2 \longrightarrow ?(x : \mathbb{Z}) \langle x \rangle. !\langle x + 2 \rangle.$ end

Example Program:

```
let (c_1, c_2) = \text{new\_chan}() in
fork {let \ell = c_2.\text{recv}() in \ell \leftarrow (! \ell + 2); c_2.\text{send}(())};
let \ell = \text{ref} 40 in c_1.\text{send}(\ell); c_1.\text{recv}(); \text{assert}(! \ell = 42)
```

$$c_1 \longrightarrow ?$$
 $c_2 \longrightarrow ?$

Example Program:

```
let (c_1, c_2) = new_chan () in
fork {let \ell = c_2.recv() in \ell \leftarrow (! \ell + 2); c_2.send(())};
let \ell = \text{ref } 40 \text{ in } c_1.\text{send}(\ell); c_1.\text{recv}(); \text{assert}(! \ell = 42)
```

$$c_1 \longrightarrow !(\ell : \mathsf{Loc}, x : \mathbb{Z}) \langle \ell \rangle \{ \ell \mapsto x \}. ?\langle () \rangle \{ \ell \mapsto (x+2) \}.$$
 end $c_2 \rightarrowtail ?(\ell : \mathsf{Loc}, x : \mathbb{Z}) \langle \ell \rangle \{ \ell \mapsto x \}. !\langle () \rangle \{ \ell \mapsto (x+2) \}.$ end

Example Program:

```
let (c_1, c_2) = new_chan () in
fork {let \ell = c_2.recv() in \ell \leftarrow (! \ell + 2); c_2.send(())};
let \ell = \text{ref } 40 \text{ in } c_1.\text{send}(\ell); c_1.\text{recv}(); \text{assert}(! \ell = 42)
```

Actris dependent session protocols:

$$c_1 \rightarrowtail !(\ell : \mathsf{Loc}, x : \mathbb{Z}) \langle \ell \rangle \{ \ell \mapsto x \}. ?\langle () \rangle \{ \ell \mapsto (x+2) \}.$$
 end $c_2 \rightarrowtail ?(\ell : \mathsf{Loc}, x : \mathbb{Z}) \langle \ell \rangle \{ \ell \mapsto x \}. !\langle () \rangle \{ \ell \mapsto (x+2) \}.$ end

Actris has many more features:

- ▶ Built on top of the Iris higher-order concurrent separation logic framework
 - ► Allows reasoning about mutable references, locks, and more
- Advanced message passing features
 - ► Channels over channels, recursive protocols, subprotocols (cf. subtyping)
- Fully mechanised on top of Iris in Coq

Observation: Actris is founded upon heavy machinery

- ► Custom bi-directional buffer implementation of session channels
- ► Custom step-indexed recursive domain equation to obtain protocols
- Custom higher-order ghost state

Observation: Actris is founded upon heavy machinery

- Custom bi-directional buffer implementation of session channels
- Custom step-indexed recursive domain equation to obtain protocols
- Custom higher-order ghost state

Question: How far can we get with a simpler approach?

Observation: Actris is founded upon heavy machinery

- ► Custom bi-directional buffer implementation of session channels
- ► Custom step-indexed recursive domain equation to obtain protocols
- Custom higher-order ghost state

Question: How far can we get with a simpler approach?

Start from first principles:

- ► Mutable references *instead of* bi-directional buffers
- ► Higher-order invariants *instead of* custom recursive domain equation
- ► First-order ghost state *instead of* higher-order ghost state

Observation: Actris is founded upon heavy machinery

- Custom bi-directional buffer implementation of session channels
- ► Custom step-indexed recursive domain equation to obtain protocols
- Custom higher-order ghost state

Question: How far can we get with a simpler approach?

Start from first principles:

- ► Mutable references *instead of* bi-directional buffers
- ► Higher-order invariants *instead of* custom recursive domain equation
- ► First-order ghost state *instead of* higher-order ghost state

All of these features are support in Iris!

MiniActris: a Proof Pearl Version of Actris

Key ideas:

- 1. Build one-shot channels on mutable references, and higher-order one-shot protocols on Iris's higher-order invariants
- 2. Build session channels on one-shot channels (Kobayashi et al., Dharda et al.), and session protocols on nested one-shot protocols
- 3. Mechanise solution on top of the Iris mechanisation in Coq

MiniActris: a Proof Pearl Version of Actris

Key ideas:

- 1. Build one-shot channels on mutable references, and higher-order one-shot protocols on Iris's higher-order invariants
- 2. Build session channels on one-shot channels (Kobayashi et al., Dharda et al.), and session protocols on nested one-shot protocols
- 3. Mechanise solution on top of the Iris mechanisation in Coq

Contributions:

- 1. A three layered approach to the implementation and specification of channels
 - $\blacktriangleright \ \ \text{One-shot channels} \to \text{functional session channels} \to \text{imperative session channels}$
- 2. Recovering Actris-style specifications for imperative session channels
 - ▶ Without custom recursive domain equations or higher-order ghost state
- 3. A minimalistic mechanisation in less than 1000 lines of Coq & Iris code

Outline of Presentation

In the rest of this talk we will cover:

- ► Layer 1: One-shot channels
- ► Layer 2: Functional session channels
- ► Layer 3: Imperative session channels
- ► Additional features
- Concluding remarks

Layer 1: One-Shot Channels

Layer 1: One-Shot Channels (Implementation)

Channel primitives:

```
\begin{array}{l} \mathbf{new1} \; () \triangleq \; \mathbf{ref \; None} \\ \mathbf{send1} \; c \; v \triangleq c \leftarrow \mathsf{Some} \; v \\ \mathbf{recv1} \; c \triangleq \; \mathbf{match} \; ! \; c \; \mathbf{with} \\ \mid \; \mathsf{None} \; \; \Rightarrow \; \mathbf{recv1} \; c \\ \mid \; \mathsf{Some} \; v \Rightarrow \; \mathbf{free} \; c; \; v \\ \mathbf{end} \end{array}
```

Example program:

```
let c = \text{new1}() in
fork {let \ell = \text{ref} 42 \text{ in send1 } c \ell};
assert(!(recv1 c) = 42)
```

```
Protocols: p ::= (\mathsf{Send}, \Phi) \mid (\mathsf{Recv}, \Phi) \quad \mathsf{where} \quad \Phi : \mathsf{Val} \to \mathsf{iProp}
```

Duality:
$$\overline{(\mathsf{Send},\Phi)} \triangleq (\mathsf{Recv},\Phi)$$
 $\overline{(\mathsf{Recv},\Phi)} \triangleq (\mathsf{Send},\Phi)$

Points-to: $c \mapsto p$

```
Protocols: p ::= (\mathsf{Send}, \Phi) \mid (\mathsf{Recv}, \Phi) \quad \text{where} \quad \Phi : \mathsf{Val} \to \mathsf{iProp}
```

Duality:
$$\overline{(\mathsf{Send},\Phi)} \triangleq (\mathsf{Recv},\Phi)$$
 $\overline{(\mathsf{Recv},\Phi)} \triangleq (\mathsf{Send},\Phi)$

Points-to: $c \mapsto p$

Specifications:

$$\begin{split} & \{\mathsf{True}\} \ \, \mathbf{new1} \; () \; \{c.\, c \rightarrowtail p * c \rightarrowtail \overline{p}\} \\ & \{c \rightarrowtail (\mathsf{Send}, \Phi) * \Phi \; v\} \; \, \mathbf{send1} \; c \; v \; \{\mathsf{True}\} \\ & \{c \rightarrowtail (\mathsf{Recv}, \Phi)\} \; \, \mathbf{recv1} \; c \; \{v.\, \Phi \; v\} \end{split}$$

Layer 1: One-Shot Channels (Proof of Example)

Example program:

let
$$c = \text{new1}()$$
 in
fork {let $\ell = \text{ref} 42 \text{ in send1 } c \ell$ };
assert(!(recv1 c) = 42)

Protocol:

$$\Phi v \triangleq v \mapsto 42$$

 $c \mapsto (\text{Send}, \Phi)$
 $c \mapsto (\text{Recv}, \Phi)$

Specifications:

$$\begin{split} & \{\mathsf{True}\} \ \ \mathsf{new1} \ () \ \ \{c . c \rightarrowtail p * c \rightarrowtail \overline{p}\} \\ & \{c \rightarrowtail (\mathsf{Send}, \Phi) * \Phi \ v\} \ \ \mathsf{send1} \ c \ v \ \ \{\mathsf{True}\} \\ & \{c \rightarrowtail (\mathsf{Recv}, \Phi)\} \ \ \mathsf{recv1} \ c \ \ \{v . \Phi \ v\} \end{split}$$

$$c \rightarrowtail (tag, \Phi) \triangleq \dots$$

One-shot specifications proven sound with standard Iris methodology.

1. Model channel as a state transition system

$$c \rightarrowtail (tag, \Phi) \triangleq \dots$$

One-shot specifications proven sound with standard Iris methodology.

1. Model channel as a state transition system

$$c \rightarrowtail (tag, \Phi) \triangleq \dots$$

- 1. Model channel as a state transition system
- 2. Use invariant with disjunct for each state

$$c \rightarrowtail (tag, \Phi) \triangleq \dots$$

- 1. Model channel as a state transition system
- 2. Use invariant with disjunct for each state

chan_inv
$$\triangleq (\underbrace{}_{(1) \text{ initial state}}) \lor (\underbrace{}_{(2) \text{ message sent, but not yet received}}) \lor (\underbrace{}_{(3) \text{ final state}})$$

$$c \rightarrowtail (tag, \Phi) \triangleq \dots$$

- 1. Model channel as a state transition system
- 2. Use invariant with disjunct for each state
- 3. Determine resource ownership of each state

$$c \rightarrowtail (tag, \Phi) \triangleq \dots$$

- 1. Model channel as a state transition system
- 2. Use invariant with disjunct for each state
- 3. Determine resource ownership of each state

chan_inv
$$c \Phi \triangleq (\underbrace{c \mapsto \text{None}}) \vee (\underbrace{\exists v. c \mapsto \text{Some } v * \Phi v}) \vee (\underbrace{(3) \text{ final state}})$$

$$c \rightarrowtail (tag, \Phi) \triangleq \dots$$

One-shot specifications proven sound with standard Iris methodology.

- 1. Model channel as a state transition system
- 2. Use invariant with disjunct for each state
- 3. Determine resource ownership of each state
- 4. Encode send/recv transition as transferring a token to the invariant

$$c \ \Phi \triangleq (\underbrace{c \mapsto \text{None}}_{\text{(1) initial state}}) \lor (\underbrace{\exists v. \ c \mapsto \text{Some} \ v * \Phi \ v}_{\text{(2) message sent, but not yet received}}) \lor (\underbrace{}_{\text{(3) final state}})$$

$$c \rightarrowtail (tag, \Phi) \triangleq \dots$$

Recv

Recv'd

Sent

Send

Start

One-shot specifications proven sound with standard Iris methodology.

- 1. Model channel as a state transition system
- 2. Use invariant with disjunct for each state
- 3. Determine resource ownership of each state
- 4. Encode send/recv transition as transferring a token to the invariant

$$\mathsf{chan_inv} \ \gamma_s \qquad c \ \Phi \triangleq (\underbrace{c \mapsto \mathsf{None}}_{(1) \ \mathsf{initial} \ \mathsf{state}}) \lor (\underbrace{\exists v. \ c \mapsto \mathsf{Some} \ v \ast \Phi \ v \ast \mathsf{tok} \ \gamma_s}_{(2) \ \mathsf{message} \ \mathsf{sent, but not yet received}}) \lor (\underbrace{\mathsf{tok} \ \gamma_s}_{(3) \ \mathsf{final} \ \mathsf{state}})$$

$$c \rightarrowtail (tag, \Phi) \triangleq \dots$$

Recv

Recv'd

Sent

Send

Start

Layer 1: One-Shot Channels (Proof of Specifications)

One-shot specifications proven sound with standard Iris methodology.

- 1. Model channel as a state transition system
- 2. Use invariant with disjunct for each state
- 3. Determine resource ownership of each state
- 4. Encode send/recv transition as transferring a token to the invariant

$$\mathsf{chan_inv} \ \gamma_s \ \gamma_r \ c \ \Phi \triangleq (\underbrace{c \mapsto \mathsf{None}}_{(1) \ \mathsf{initial} \ \mathsf{state}}) \lor (\underbrace{\exists v. \ c \mapsto \mathsf{Some} \ v \ast \Phi \ v \ast \mathsf{tok} \ \gamma_s}_{(2) \ \mathsf{message} \ \mathsf{sent,} \ \mathsf{but} \ \mathsf{not} \ \mathsf{yet} \ \mathsf{received}}_{(3) \ \mathsf{final} \ \mathsf{state}}) \lor (\underbrace{\mathsf{tok} \ \gamma_s \ast \mathsf{tok} \ \gamma_r}_{(3) \ \mathsf{final} \ \mathsf{state}})$$

$$c \rightarrowtail (tag, \Phi) \triangleq \dots$$

Recv

Sent

Recv'd

Send

Start

Layer 1: One-Shot Channels (Proof of Specifications)

One-shot specifications proven sound with standard Iris methodology.

- 1. Model channel as a state transition system
- 2. Use invariant with disjunct for each state
- 3. Determine resource ownership of each state

Send

Recv

- 4. Encode send/recv transition as transferring a token to the invariant
- 5. Give sender/receiver their token and access to the invariant

$$\mathsf{chan_inv} \ \gamma_s \ \gamma_r \ c \ \Phi \triangleq (\underbrace{c \mapsto \mathsf{None}}_{(1) \ \mathsf{initial} \ \mathsf{state}}) \lor (\underbrace{\exists v. \ c \mapsto \mathsf{Some} \ v \ast \Phi \ v \ast \mathsf{tok} \ \gamma_s}_{(2) \ \mathsf{message} \ \mathsf{sent,} \ \mathsf{but} \ \mathsf{not} \ \mathsf{yet} \ \mathsf{received}}_{(3) \ \mathsf{final} \ \mathsf{state}}) \lor (\underbrace{\mathsf{tok} \ \gamma_s \ast \mathsf{tok} \ \gamma_r}_{(3) \ \mathsf{final} \ \mathsf{state}})$$

$$c \rightarrowtail (tag, \Phi) \triangleq \dots$$

Layer 1: One-Shot Channels (Proof of Specifications)

One-shot specifications proven sound with standard Iris methodology.

- 1. Model channel as a state transition system
- 2. Use invariant with disjunct for each state
- 3. Determine resource ownership of each state
- 4. Encode send/recv transition as transferring a token to the invariant
- 5. Give sender/receiver their token and access to the invariant

$$\mathsf{chan_inv} \ \gamma_s \ \gamma_r \ c \ \Phi \triangleq (\underbrace{c \mapsto \mathsf{None}}_{(1) \ \mathsf{initial} \ \mathsf{state}}) \lor (\underbrace{\exists v. \ c \mapsto \mathsf{Some} \ v \ast \Phi \ v \ast \mathsf{tok} \ \gamma_s}_{(2) \ \mathsf{message} \ \mathsf{sent}, \ \mathsf{but} \ \mathsf{not} \ \mathsf{yet} \ \mathsf{received}}_{(3) \ \mathsf{final} \ \mathsf{state}})$$

Start

$$c \rightarrowtail (tag, \Phi) \triangleq \exists \gamma_s, \gamma_r.$$
 chan_inv $\gamma_s \gamma_r c \Phi$ * \rightarrow \begin{cases} \text{tok } \gamma_s & \text{if } tag = Send \text{tok } \gamma_r & \text{if } tag = Recv

Recv'd

Sent

Layer 2: Functional Session Channels

Functional session channel primitives:

$$\mathbf{new} () \triangleq \mathbf{new1} ()$$

$$\mathbf{send} \ c \ v \triangleq \mathbf{let} \ c' = \mathbf{new1} \ () \ \mathbf{in} \ \mathbf{send1} \ c \ (v,c'); \ c'$$

$$\mathbf{recv} \ c \triangleq \mathbf{recv1} \ c$$

Functional session channel primitives:

$$new () \triangleq new1 ()$$

$$send c v \triangleq let c' = new1 () in send1 c (v, c'); c'$$

$$recv c \triangleq recv1 c$$

Functional session channel primitives:

$$new () \triangleq new1 ()$$

$$send c v \triangleq let c' = new1 () in send1 c (v, c'); c'$$

$$recv c \triangleq recv1 c$$

Functional session channel primitives:

$$new() \triangleq new1()$$

 $send c v \triangleq let c' = new1() in send1c(v,c'); c'$
 $recv c \triangleq recv1c$

Functional session channel primitives:

$$new () \triangleq new1 ()$$

$$send c v \triangleq let c' = new1 () in send1 c (v, c'); c'$$

$$recv c \triangleq recv1 c$$

Functional session channel primitives:

$$new () \triangleq new1 ()$$

$$send c v \triangleq let c' = new1 () in send1 c (v, c'); c'$$

$$recv c \triangleq recv1 c$$

Functional session channel primitives:

$$new () \triangleq new1 ()$$

$$send c v \triangleq let c' = new1 () in send1 c (v, c'); c'$$

$$recv c \triangleq recv1 c$$

Functional session channel primitives:

$$new () \triangleq new1 ()$$

$$send c v \triangleq let c' = new1 () in send1 c (v, c'); c'$$

$$recv c \triangleq recv1 c$$

Functional session channel primitives:

$$new () \triangleq new1 ()$$

$$send c v \triangleq let c' = new1 () in send1 c (v, c'); c'$$

$$recv c \triangleq recv1 c$$

Functional session channel primitives:

$$new() \triangleq new1()$$

 $send c v \triangleq let c' = new1() in send1c(v,c'); c'$
 $recv c \triangleq recv1c$

Functional session channel primitives:

$$new() \triangleq new1()$$

 $send c v \triangleq let c' = new1() in send1c(v,c'); c'$
 $recv c \triangleq recv1c$

Functional session channel primitives:

```
\begin{split} & \text{new } () \triangleq \text{new1 } () \\ & \text{send } c \ v \triangleq \text{let } c' = \text{new1 } () \text{ in send1 } c \ (v,c'); \ c' \\ & \text{recv } c \triangleq \text{recv1 } c \end{split}
```

Functional session channel primitives:

$$\begin{split} & \text{new } () \triangleq \text{new1 } () \\ & \text{send } c \ v \triangleq \text{let } c' = \text{new1 } () \text{ in send1 } c \ (v,c'); \ c' \\ & \text{recv } c \triangleq \text{recv1 } c \end{split}$$

$$!\langle w \rangle. p \triangleq (\mathsf{Send}, \lambda(v, c'). v = w * c' \rightarrowtail \overline{p})$$

Functional session channel primitives:

$$\begin{split} & \text{new } () \triangleq \text{new1 } () \\ & \text{send } c \ v \triangleq \text{let } c' = \text{new1 } () \text{ in send1 } c \ (v,c'); \ c' \\ & \text{recv } c \triangleq \text{recv1 } c \end{split}$$

$$!\langle w \rangle. p \triangleq (\mathsf{Send}, \lambda(v, c'). v = w * c' \rightarrowtail \overline{p})$$

Functional session channel primitives:

$$\begin{split} & \text{new } () \triangleq \text{new1 } () \\ & \text{send } c \ v \triangleq \text{let } c' = \text{new1 } () \ \text{in send1 } c \ (v,c'); \ c' \\ & \text{recv } c \triangleq \text{recv1 } c \end{split}$$

$$!\langle w \rangle. p \triangleq (\mathsf{Send}, \lambda(v, c'). \ v = w * c' \rightarrowtail \overline{p})$$

Functional session channel primitives:

$$\begin{split} & \text{new } () \triangleq \text{new1 } () \\ & \text{send } c \ v \triangleq \text{let } c' = \text{new1 } () \ \text{in send1 } c \ (v,c'); \ c' \\ & \text{recv } c \triangleq \text{recv1 } c \end{split}$$

$$!\langle w \rangle. p \triangleq (\mathsf{Send}, \lambda(v, c'). \ v = w * c' \rightarrowtail \overline{p})$$

Functional session channel primitives:

$$\begin{split} & \text{new } () \triangleq \text{new1 } () \\ & \text{send } c \ v \triangleq \text{let } c' = \text{new1 } () \text{ in send1 } c \ (v,c'); \ c' \\ & \text{recv } c \triangleq \text{recv1 } c \end{split}$$

$$!(x:\tau)\langle w\rangle\{P\}. \ \rho \triangleq (\mathsf{Send}, \lambda(v,c'). \ \exists (x:\tau). \ v=(w\ x)*P\ x*c' \rightarrowtail \overline{\rho\ x})$$

Functional session channel primitives:

$$\begin{split} & \text{new } () \triangleq \text{new1 } () \\ & \text{send } c \ v \triangleq \text{let } c' = \text{new1 } () \text{ in send1 } c \ (v,c'); \ c' \\ & \text{recv } c \triangleq \text{recv1 } c \end{split}$$

$$!(x:\tau)\langle w\rangle\{P\}. p \triangleq (\mathsf{Send}, \lambda(v,c'). \exists (x:\tau). v = (w \ x) * P \ x * c' \rightarrowtail \overline{p \ x})$$

Functional session channel primitives:

$$\begin{split} & \text{new } () \triangleq \text{new1 } () \\ & \text{send } c \ v \triangleq \text{let } c' = \text{new1 } () \text{ in send1 } c \ (v,c'); \ c' \\ & \text{recv } c \triangleq \text{recv1 } c \end{split}$$

$$!(x:\tau)\langle w\rangle\{P\}. p \triangleq (\mathsf{Send}, \lambda(v,c'). \exists (x:\tau). v = (w \ x) * P \ x * c' \rightarrowtail \overline{p \ x})$$

Functional session channel primitives:

$$\begin{split} & \text{new } () \triangleq \text{new1 } () \\ & \text{send } c \ v \triangleq \text{let } c' = \text{new1 } () \text{ in send1 } c \ (v,c'); \ c' \\ & \text{recv } c \triangleq \text{recv1 } c \end{split}$$

$$!(x:\tau)\langle w\rangle\{P\}.p\triangleq(\text{Send},\lambda(v,c').\exists(x:\tau).v=(w\;x)*P\;x*c'\mapsto\overline{p\;x})$$

?(x:\tau)\langle P\rangle.p\\eq\!!(x:\tau)\langle P\rangle.\overline{p}

Functional session channel primitives:

```
\begin{split} & \text{new } () \triangleq \text{new1 } () \\ & \text{send } c \ v \triangleq \text{let } c' = \text{new1 } () \text{ in send1 } c \ (v,c'); \ c' \\ & \text{recv } c \triangleq \text{recv1 } c \end{split}
```

```
 !(x : \tau) \langle w \rangle \{P\}. p \triangleq \underbrace{(Send, \lambda(v, c'). \exists (x : \tau). v = (w x) * P x * c' \rightarrowtail \overline{p x})}_{?(x : \tau) \langle w \rangle \{P\}. p \triangleq \underbrace{!(x : \tau) \langle w \rangle \{P\}. \overline{p}}_{end!} 
 end! \triangleq \underbrace{(Send, \ldots)}_{end!} 
 end! \triangleq \underbrace{(Send, \ldots)}_{end!}
```

Functional session channel primitives:

$$\begin{split} & \text{new } () \triangleq \text{new1 } () \\ & \text{send } c \ v \triangleq \text{let } c' = \text{new1 } () \text{ in send1 } c \ (v,c'); \ c' \\ & \text{recv } c \triangleq \text{recv1 } c \end{split}$$

```
!(x:\tau)\langle w\rangle\{P\}.p\triangleq(\text{Send},\lambda(v,c').\exists(x:\tau).v=(w\,x)*P\,x*c'\mapsto\overline{p\,x})
?(x:\tau)\langle P\rangle.p\\eq!(x:\tau)\langle P\rangle.\overline{p}
```

Functional session channel primitives:

```
new() \triangleq new1()

send c v \triangleq let c' = new1() in send1 c(v, c'); c'

recv c \triangleq recv1 c
```

Dependent session protocols:

```
!(x:\tau)\langle w\rangle\{P\}.p\triangleq \underbrace{(\mathsf{Send},\lambda(v,c').\exists(x:\tau).v=(w\,x)*P\,x*c'\rightarrowtail\overline{p\,x})}_{?(x:\tau)\langle w\rangle\{P\}.p}\triangleq \underbrace{!(x:\tau)\langle w\rangle\{P\}.\overline{p}}_{}
```

```
 \{ \text{True} \} \text{ new } () \ \{ c. \ c \rightarrowtail p * c \rightarrowtail \overline{p} \} 
 \{ c \rightarrowtail (!(x:\tau) \langle w \rangle \{P\}.p) * P \ t \} \text{ send } c \ (w \ t) \ \{ c'.c' \rightarrowtail p \ t \} 
 \{ c \rightarrowtail (?(x:\tau) \langle w \rangle \{P\}.p) \} \text{ recv } c \ \{ (v,c'). \ \exists (x:\tau). \ v = (w \ x) * P \ x * c' \rightarrowtail p \ x \}
```

Functional session channel primitives:

```
new() \triangleq new1()

send c v \triangleq let c' = new1() in send1 c(v, c'); c'

recv c \triangleq recv1 c
```

Dependent session protocols:

```
!(x:\tau)\langle w\rangle\{P\}.p\triangleq \underbrace{(\mathsf{Send},\lambda(v,c').\exists(x:\tau).v=(w\,x)*P\,x*c'\rightarrowtail\overline{p\,x})}_{?(x:\tau)\langle w\rangle\{P\}.p}\triangleq \underbrace{!(x:\tau)\langle w\rangle\{P\}.\overline{p}}_{}
```

```
 \{ \text{True} \} \text{ new } () \ \{ c. \ c \rightarrowtail p * c \rightarrowtail \overline{p} \} 
 \{ c \rightarrowtail (!(x:\tau) \langle w \rangle \{P\}.p) * P \ t \} \text{ send } c \ (w \ t) \ \{ c'.c' \rightarrowtail p \ t \} 
 \{ c \rightarrowtail (?(x:\tau) \langle w \rangle \{P\}.p) \} \text{ recv } c \ \{ (v,c'). \ \exists (x:\tau). \ v = (w \ x) * P \ x * c' \rightarrowtail p \ x \}
```

Functional session channel primitives:

```
new () \triangleq new1 ()
send c v \triangleq let c' = new1 () in send1 c (v, c'); c'
recv c \triangleq recv1 c
```

Dependent session protocols:

```
!(x:\tau)\langle w\rangle\{P\}.p\triangleq \underbrace{(\mathsf{Send},\lambda(v,c').\exists(x:\tau).v=(w\,x)*P\,x*c'\rightarrowtail\overline{p\,x})}_{?(x:\tau)\langle w\rangle\{P\}.p}\triangleq \underbrace{!(x:\tau)\langle w\rangle\{P\}.\overline{p}}_{}
```

```
 \{ \text{True} \} \text{ new } () \ \{ c. \ c \rightarrowtail p * c \rightarrowtail \overline{p} \} 
 \{ c \rightarrowtail (!(x:\tau) \langle w \rangle \{P\}.p) * P \ t \} \text{ send } c \ (w \ t) \ \{ c'. \ c' \rightarrowtail p \ t \} 
 \{ c \rightarrowtail (!(x:\tau) \langle w \rangle \{P\}.p) \} \text{ recv } c \ \{ (v,c'). \ \exists (x:\tau). \ v = (w \ x) * P \ x * c' \rightarrowtail p \ x \}
```

Functional session channel primitives:

```
new () \triangleq new1 ()
send c v \triangleq let c' = new1 () in send1 c (v, c'); c'
recv c \triangleq recv1 c
```

Dependent session protocols:

```
! (x : \tau) \langle w \rangle \{P\}. p \triangleq (\text{Send}, \lambda(v, c'). \exists (x : \tau). v = (w \ x) * P \ x * c' \longrightarrow \overline{p} \ \overline{x}) ? (x : \tau) \langle w \rangle \{P\}. p \equiv (\text{Recv}, \lambda(v, c'). \exists (x : \tau). v = (w \ x) * P \ x * c' \longmapsto p \ x)
```

```
 \{ \text{True} \} \text{ new } () \ \{ c. \ c \rightarrowtail p * c \rightarrowtail \overline{p} \} 
 \{ c \rightarrowtail (!(x:\tau) \langle w \rangle \{P\}.p) * P \ t \} \text{ send } c \ (w \ t) \ \{ c'. \ c' \rightarrowtail p \ t \} 
 \{ c \rightarrowtail (!(x:\tau) \langle w \rangle \{P\}.p) \} \text{ recv } c \ \{ (v,c'). \ \exists (x:\tau). \ v = (w \ x) * P \ x * c' \rightarrowtail p \ x \}
```

Observation: Dependent session protocol definitions rely on higher-order invariants

Observation: Dependent session protocol definitions rely on higher-order invariants

Recall the definitions:

$$c \rightarrowtail p \triangleq \exists \gamma_s, \gamma_r. \boxed{\text{chan_inv } \gamma_s \ \gamma_r \ c \ p.2} \dots$$

$$!(x:\tau) \langle w \rangle \{P\}. p \triangleq (\text{Send}, \lambda(v, c'). \ \exists (x:\tau). \ c' \rightarrowtail \overline{p \ x} \dots)$$

Observation: Dependent session protocol definitions rely on higher-order invariants

Recall the definitions:

$$c \rightarrowtail p \triangleq \exists \gamma_s, \gamma_r. \boxed{\text{chan_inv } \gamma_s \ \gamma_r \ c \ p.2} \dots$$

$$!(x : \tau) \langle w \rangle \{P\}. p \triangleq (\text{Send}, \lambda(v, c'). \ \exists (x : \tau). \ c' \rightarrowtail \overline{px} \dots)$$

$$c \rightarrowtail !(x : \tau) \langle w \rangle \{P\}.p$$

Observation: Dependent session protocol definitions rely on higher-order invariants

Recall the definitions:

$$c \rightarrowtail p \triangleq \exists \gamma_s, \gamma_r. \boxed{\text{chan_inv } \gamma_s \ \gamma_r \ c \ p.2} \dots$$

$$!(x : \tau) \langle w \rangle \{P\}. p \triangleq (\text{Send}, \lambda(v, c'). \ \exists (x : \tau). \ c' \rightarrowtail \overline{px} \dots)$$

$$c \rightarrowtail !(x : \tau) \langle w \rangle \{P\}.p \equiv \exists \gamma_s, \gamma_r. \text{ chan_inv } \gamma_s \gamma_r c (!(x : \tau) \langle w \rangle \{P\}.p).2 \dots$$

Observation: Dependent session protocol definitions rely on higher-order invariants

Recall the definitions:

$$c \rightarrowtail p \triangleq \exists \gamma_s, \gamma_r. \boxed{\text{chan_inv } \gamma_s \ \gamma_r \ c \ p.2} \dots$$

$$!(x : \tau) \langle w \rangle \{P\}. p \triangleq (\text{Send}, \lambda(v, c'). \ \exists (x : \tau). \ c' \rightarrowtail \overline{px} \dots)$$

Observation: Dependent session protocol definitions rely on higher-order invariants

Recall the definitions:

$$c \rightarrowtail p \triangleq \exists \gamma_s, \gamma_r. \boxed{\text{chan_inv } \gamma_s \ \gamma_r \ c \ p.2} \dots$$

$$!(x : \tau) \langle w \rangle \{P\}. p \triangleq (\text{Send}, \lambda(v, c'). \ \exists (x : \tau). \ c' \rightarrowtail \overline{px} \dots)$$

$$\begin{array}{l} c \rightarrowtail ! (x:\tau) \langle w \rangle \{P\}. \, \rho \equiv \\ \exists \gamma_s, \gamma_r. \begin{array}{l} \text{chan_inv } \gamma_s \, \gamma_r \, c \, (! \, (x:\tau) \, \langle w \rangle \{P\}. \, \rho).2 \end{array} \dots \equiv \\ \exists \gamma_s, \gamma_r. \begin{array}{l} \text{chan_inv } \gamma_s \, \gamma_r \, c \, (\lambda(v,c'). \, \exists (x:\tau). \, c' \rightarrowtail \overline{p \, x} \dots) \end{array} \dots \equiv \\ \exists \gamma_s, \gamma_r. \begin{array}{l} \text{chan_inv } \gamma_s \, \gamma_r \, c \, (\lambda(v,c'). \, \exists (x:\tau). \, \exists \gamma_s, \gamma_r. \, \boxed{\text{chan_inv } \gamma_s \, \gamma_r \, c' \, (\overline{p \, x}).2} \dots \end{array} \end{array} \right] \dots \end{array}$$

Layer 2: Functional Session Channels (Crux of Session Protocols)

Observation: Dependent session protocol definitions rely on higher-order invariants

Recall the definitions:

$$c \rightarrowtail p \triangleq \exists \gamma_s, \gamma_r. \boxed{\text{chan_inv } \gamma_s \ \gamma_r \ c \ p.2} \dots$$

$$!(x : \tau) \langle w \rangle \{P\}. p \triangleq (\text{Send}, \lambda(v, c'). \ \exists (x : \tau). \ c' \rightarrowtail \overline{px} \dots)$$

Unfolding the definitions yield the following nesting:

$$\begin{array}{ll} c \rightarrowtail ! (x : \tau) \langle w \rangle \{P\}. p \equiv \\ \exists \gamma_s, \gamma_r. \begin{array}{l} \text{chan_inv } \gamma_s \ \gamma_r \ c \ (! \ (x : \tau) \ \langle w \rangle \{P\}. p).2 \end{array} \dots \equiv \\ \exists \gamma_s, \gamma_r. \begin{array}{l} \text{chan_inv } \gamma_s \ \gamma_r \ c \ (\lambda(v,c'). \ \exists (x : \tau). \ c' \rightarrowtail \overline{px} \dots) \end{array} \dots \equiv \\ \exists \gamma_s, \gamma_r. \begin{array}{l} \text{chan_inv } \gamma_s \ \gamma_r \ c \ (\lambda(v,c'). \ \exists (x : \tau). \ \exists \gamma_s, \gamma_r. \ \hline \\ \text{chan_inv } \gamma_s \ \gamma_r \ c' \ (\overline{px}).2 \end{array} \dots \end{array} \right] \dots$$

Nested invariants are supported by Iris

Layer 3: Imperative Channels

Layer 3: Imperative Channels (Motivation and Implementation)

Functional channels are inconvenient:

$$\dots$$
 let $c =$ send $c \ \ell$ in recv $c; \dots$

We instead want:

 $\dots c.\mathtt{send}(\ell); c.\mathtt{recv}(); \dots$

Layer 3: Imperative Channels (Motivation and Implementation)

Functional channels are inconvenient:

...let
$$c = \text{send } c \ \ell \text{ in recv } c; \ldots$$

We instead want:

$$\dots c.\mathsf{send}(\ell); c.\mathsf{recv}(); \dots$$

Solution: Imperative channels

$$\begin{aligned} \mathbf{new_chan} \; () &\triangleq \mathbf{let} \; c = \mathbf{new} \; () \; \mathbf{in} \; (\mathbf{ref} \; c, \mathbf{ref} \; c) \\ c. \mathbf{send}(v) &\triangleq c \; \leftarrow \; \mathbf{send} \; (! \; c) \; v \\ c. \mathbf{recv}() &\triangleq \mathbf{let} \; (v, c') = \mathbf{recv} \; ! \; c \; \mathbf{in} \; c \; \leftarrow \; c'; v \end{aligned}$$

Layer 3: Imperative Channels (Motivation and Implementation)

Functional channels are inconvenient:

```
\dots let c = send c \ \ell  in recv c; \dots
```

We instead want:

$$\dots c.\mathtt{send}(\ell); c.\mathtt{recv}(); \dots$$

Solution: Imperative channels

```
\begin{aligned} \mathbf{new\_chan} \; () &\triangleq \mathbf{let} \; c = \mathbf{new} \; () \; \mathbf{in} \; (\mathbf{ref} \; c, \mathbf{ref} \; c) \\ c. \mathbf{send} (v) &\triangleq c \leftarrow \mathbf{send} \; (! \; c) \; v \\ c. \mathbf{recv} () &\triangleq \mathbf{let} \; (v, c') = \mathbf{recv} \; ! \; c \; \mathbf{in} \; c \leftarrow c'; v \end{aligned}
```

With this we can write the program from the introduction:

```
let (c_1, c_2) = new_chan () in
fork {let \ell = c_2.recv() in \ell \leftarrow (! \ell + 2); c_2.send(())};
let \ell = \text{ref } 40 \text{ in } c_1.\text{send}(\ell); c_1.\text{recv}(); \text{assert}(! \ell = 42)
```

Layer 3: Imperative Channels (Specifications and Proof)

Points-to:

$$c \stackrel{\mathsf{imp}}{\rightarrowtail} p \triangleq \exists (c' : \mathsf{Val}). \ c \mapsto c' * c' \longmapsto p$$

Layer 3: Imperative Channels (Specifications and Proof)

Points-to:

$$c \stackrel{\mathsf{imp}}{\rightarrowtail} p \triangleq \exists (c' : \mathsf{Val}). \ c \mapsto c' * c' \longmapsto p$$

Actris Specifications:

$$\{ \text{True} \} \ \ \textbf{new_chan} \ () \ \{ (c_1, c_2). \ c_1 \stackrel{\text{imp}}{\rightarrowtail} p * c_2 \stackrel{\text{imp}}{\rightarrowtail} \overline{p} \}$$

$$\{ c \stackrel{\text{imp}}{\longmapsto} (! (x : \tau) \langle w \rangle \{P\}. p) * P \ t \} \ \ c. \textbf{send}(w \ t) \ \{ c \stackrel{\text{imp}}{\longmapsto} p \ t \}$$

$$\{ c \stackrel{\text{imp}}{\longmapsto} (? (x : \tau) \langle w \rangle \{P\}. p) \} \ \ c. \textbf{recv}() \ \{ v. \ \exists (x : \tau). \ v = (w \ x) * P \ x * c \stackrel{\text{imp}}{\longmapsto} p \ x \}$$

Layer 3: Imperative Channels (Specifications and Proof)

Points-to:

$$c \stackrel{\mathsf{imp}}{\rightarrowtail} p \triangleq \exists (c' : \mathsf{Val}). \ c \mapsto c' * c' \longmapsto p$$

Actris Specifications:

$$\{ \text{True} \} \text{ } \textbf{new_chan } () \ \{ (c_1, c_2). \ c_1 \xrightarrow{\text{imp}} p * c_2 \xrightarrow{\text{imp}} \overline{p} \}$$

$$\{ c \xrightarrow{\text{imp}} (! (x : \tau) \langle w \rangle \{P\}. p) * P \ t \} \ c. \textbf{send}(w \ t) \ \{ c \xrightarrow{\text{imp}} p \ t \}$$

$$\{ c \xrightarrow{\text{imp}} (?(x : \tau) \langle w \rangle \{P\}. p) \} \ c. \textbf{recv}() \ \{ v. \exists (x : \tau). \ v = (w \ x) * P \ x * c \xrightarrow{\text{imp}} p \ x \}$$

Proof of specifications is trivial reasoning about references

Layer 3: Imperative Channels (Example and Proof)

Program from introduction:

```
\begin{split} &\textbf{let}\ (c_1,c_2) = \textbf{new\_chan}\ ()\ \textbf{in} \\ &\textbf{fork}\ \{\textbf{let}\ \ell = c_2.\textbf{recv}()\ \textbf{in}\ \ell \leftarrow (!\ l+2); c_2.\textbf{send}(())\}\ ; \\ &\textbf{let}\ \ell = \textbf{ref}\ 40\ \textbf{in}\ c_1.\textbf{send}(\ell); c_1.\textbf{recv}(); \textbf{assert}(!\ \ell = 42) \end{split}
```

Protocol:

```
c_1 \rightarrowtail !(\ell : \mathsf{Loc}, x : \mathbb{Z}) \langle \ell \rangle \{ \ell \mapsto x \}. ?\langle () \rangle \{ \ell \mapsto (x+2) \}. \, \mathsf{end}^?
c_2 \rightarrowtail ?(\ell : \mathsf{Loc}, x : \mathbb{Z}) \langle \ell \rangle \{ \ell \mapsto x \}. !\langle () \rangle \{ \ell \mapsto (x+2) \}. \, \mathsf{end}^!
```

Layer 3: Imperative Channels (Example and Proof)

Program from introduction:

```
let (c_1, c_2) = \text{new\_chan}() in fork \{\text{let } \ell = c_2.\text{recv}() \text{ in } \ell \leftarrow (!I+2); c_2.\text{send}(())\}; let \ell = \text{ref} 40 \text{ in } c_1.\text{send}(\ell); c_1.\text{recv}(); \text{assert}(!\ell = 42)
```

Protocol:

$$c_1 \longrightarrow !(\ell : \mathsf{Loc}, x : \mathbb{Z}) \langle \ell \rangle \{ \ell \mapsto x \}. ?\langle () \rangle \{ \ell \mapsto (x+2) \}. \, \mathsf{end}^?$$
 $c_2 \rightarrowtail ?(\ell : \mathsf{Loc}, x : \mathbb{Z}) \langle \ell \rangle \{ \ell \mapsto x \}. ! \langle () \rangle \{ \ell \mapsto (x+2) \}. \, \mathsf{end}^!$

We can now prove this via specifications fully derived during this talk!

Additional Features of MiniActris

Other Features of MiniActris

Recursive protocols: $\mu p. ! \langle 40 \rangle. ? \langle 42 \rangle. p$

Variance subprotocols: $?(n : \mathbb{N}) \langle n \rangle . ! \langle n+2 \rangle . p \subseteq ?(x : \mathbb{Z}) \langle x \rangle . ! \langle x+2 \rangle . p$

Channel deallocation: traditional & new (send_close)

Sending channels as messages, integration with Iris, \dots

Other Features of MiniActris

Recursive protocols: $\mu p. ! \langle 40 \rangle. ? \langle 42 \rangle. p$

Variance subprotocols: $?(n : \mathbb{N}) \langle n \rangle . ! \langle n+2 \rangle . p \subseteq ?(x : \mathbb{Z}) \langle x \rangle . ! \langle x+2 \rangle . p$

Channel deallocation: traditional & new (send_close)

Sending channels as messages, integration with Iris, ...

Everything mechanized in less than 1000 lines of Coq!

Concluding Remarks

MiniActris

This work (ICFP'23)

Asynchronous channels

Dependent session protocols

Iris separation logic

Channels over channels

Recursive protocols

Channel deallocation

Variance subprotocols

MiniActris

This work (ICFP'23)

Asynchronous channels **Dependent session protocols** Iris separation logic Channels over channels **Recursive protocols** Channel deallocation Variance subprotocols

Actris 1.0

Hinrichsen, Bengtson, Krebbers (POPL'20)

Actris 1.0

Hinrichsen, Bengtson, Krebbers (POPL'20)

Actris 2.0

Hinrichsen, Bengtson, Krebbers (LMCS'22)

Conclusion: Sessions ♥ (Iris) Higher-Order Separation Logic

MiniActris: a separation logic proof pearl for verified message passing

- ▶ Three layers: one-shot \rightarrow functional \rightarrow imperative
- ► Simple soundness proof with nested invariants
- ► Abundance of protocol features
- ► Mechanized in 1000 lines of Coq

Suitable as an exercise in separation logic courses?

- ► One-shot channels: *suitable*
- ▶ Dependent session protocols: *nested one-shot protocols*

! \langle "Thank you" \rangle {MiniActrisKnowledge}. μ rec.? $(q : Question) \langle q \rangle$ {AboutMiniActris q}. ! $(a : Answer) \langle a \rangle$ {Insightful q a}.rec