La géométrie des variétés algébriques : cohomologie et cycles algébriques

Projet de recherche Concours du CNRS 2024

Olivier de Gaay Fortman

2 février 2024

Objectif de ce texte. Le but de ce rapport est de décrire les recherches que je compte mener dans les années à venir. Ce rapport se compose de huit chapitres ; il est structuré comme suit :

- (1) Le Chapitre 1 est consacrée à :
 - une introduction à la théorie générale de la géométrie algébrique;
 - une description du principal objectif global de ce projet de recherche; et
 - une présentation des propositions de recherche de manière intuitive.
- (2) Dans le Chapitre 2, je présente le contexte de la théorie générale qui facilite l'explication de mes diverses propositions de recherche. Ainsi, le Chapitre 2 se compose de trois sections, dans lesquelles je parle respectivement des variétés abéliennes et des jacobiennes (Section 2.4), de la théorie de Hodge, des cycles algébriques et de la cohomologie des variétés complexes (Section 2.2), et des cycles algébriques et de la cohomologie des variétés réelles (Section 2.3). J'y introduis donc les notions de cycles algébriques et de cohomologie des variétés algébriques concepts liés par l'application classe de cycle. Je formulerai les versions complexes et réelles de la conjecture de Hodge entière, thèmes importants dans ma recherche.
- (3) Les Chapitres 3 7 constituent des descriptions détaillées des cinque propositions de projet. Le Chapitre 8 consiste de la bibliographie.

Table des matières

1	Inti	roduction	3
	1.1	Brève introduction à la géométrie algébrique	3
	1.2	Objectif général de ce projet de recherche	11
	1.3	Projets, problèmes et questions	12
2	Théorie générale		20
	2.1	Variétés algébriques et cycles algébriques	20
	2.2	Cohomologie et cycles algébriques complexes	21
	2.3	Cohomologie et cycles algébriques réels	25
	2.4	Variétés abéliennes et jacobiennes	28
3	Projet I. Cohomologie de l'espace de modules des courbes réelles 31		
	3.1	Théorie de modules	31
	3.2	Modules des courbes	32
	3.3	Modules des courbes réelles	32
	3.4	Smith–Thom pour les champs et maximalité de \mathcal{M}_g	33
4	Projet II. La conjecture de Tate entière sur les corps finis		35
	4.1	La conjecture de Tate entière et la cohomologie non-ramifiée	35
	4.2	La conjecture de Tate entière pour les solides abéliens	36
	4.3	Stratégie du projet	36
5	Projet III. Variétés abéliennes isogènes à des jacobiennes sur $\overline{\mathbb{Q}}$ 3		38
	5.1	Powers of abelian varieties isogenous to Jacobians	38
6	Projet IV. La conjecture de Hodge entière		40
	6.1	1-cycles on complex abelian varieties	40
	6.2	Stratégie du projet	42
7	Projet V. La conjecture de Hodge entière réelle		43
	7.1	Résultats connus et questions ouvertes	43
	7.2	Strategie du projet	44
8	Bib	liographie	46

Chapitre 1

Introduction

Ce chapitre a trois objectifs. Dans la Section 1.1, je donne une brève introduction à la géométrie algébrique. J'y introduis la notion de variété algébrique sur un corps, ainsi que celle de cycle algébrique d'une variété algébrique donnée. Je donne également quelques intuitions pour comprendre les concepts de base qui sous-tendent la théorie de la cohomologie des variétés algébriques sur les corps \mathbb{C} , \mathbb{R} et \mathbb{F}_p pour un nombre premier p. Dans la Section 1.2, j'expliquerai, de manière informelle, l'objectif général de ce projet de recherche. Le but de la Section 1.3 est de donner un aperçu rapide des cinq projets de recherche que j'ai en tête. Je présenterai les principales questions auxquelles je compte répondre au cours de mes recherches, également de manière intuitive et informelle.

1.1 Brève introduction à la géométrie algébrique

La géométrie algébrique est l'étude des systèmes d'équations algébriques en plusieurs variables, ainsi que de la structure que l'on peut donner aux solutions de ces équations. Cette étude peut se faire de quatre manières : analytiquement, topologiquement, algébro-géométriquement et arithmétiquement. Ces quatre voies sont loin d'être indépendantes les unes des autres.

Les principaux objets d'étude dans la discipline de la géométrie algébrique sont ce que l'on appelle les *variétés algébriques*; il s'agit d'espaces qui sont localement décrits par l'annulation de plusieurs polynômes en plusieurs variables. Si l'on part d'équations dont les coefficients sont des nombres complexes, on peut utiliser des

méthodes analytiques et topologiques pour étudier les variétés algébriques. On peut alors considérer l'ensemble des zéros des équations comme une variété - topologique ou analytique - à condition de faire des hypothèses appropriées de non-singularité.

Mais on peut commencer par des équations dont les coefficients se trouvent dans n'importe quel corps, pas nécessairement de caractéristique zéro; pensons au corps fini \mathbb{F}_p de p éléments pour un certain nombre premier p. Dans ce cas, les techniques de la géométrie algébrique sont appliquées pour étudier les équations ayant leurs coefficients dans ce corps; les solutions de ces équations se trouvent dans sa clôture algébrique. Ainsi, les arguments utilisés sont géométriques, souvent complétés par l'algèbre commutative, et aussi par la théorie des nombres.

Quant à l'histoire de la géométrie algébrique, on pourrait dire que la discipline remonte à Descartes. Entre autres, Abel, Riemann, Poincaré, Noether, Severi, Weil, Zariski et Chevalley ont réalisé de brillants travaux dans ce domaine, qui a été révolutionné dans les années 1950 et 1960 par les travaux de Serre et de Grothendieck. La géométrie algébrique a continué à se développer fortement depuis lors.

Variétés algébriques affines Les principaux objets d'étude de la géométrie algébrique sont les systèmes d'équations algébriques et leurs ensembles de solutions. Soit k un corps et soit $k[T_1, \ldots, T_n]$ l'algèbre des polynômes en n variables à coefficients dans k. On souhaite étudier des sous-ensembles finis

$$S = \{f_1, \dots, f_m\} \subset k[T_1, \dots, T_n], \qquad f_1, \dots, f_m \in k[T_1, \dots, T_n].$$

Soit K un corps contenant k. Une solution de S dans K^n est un élément

$$(x_1, \dots, x_n) \in K^n$$
 pour lequel $f(x_1, \dots, x_n) = 0$ for all $f \in S$.

Définissons

$$Z(S)(K) \subset K^n \tag{1.1}$$

comme l'ensemble des solutions de S dans K^n .

Example 1.1.1. Soit $S = \{T_1^2 + T_2^2 - 1\} \subset \mathbb{Q}[T_1, T_2]$. Alors le sous-ensemble

 $Z(S)(\mathbb{R}) \subset \mathbb{R}^2$ est le cercle dans \mathbb{R}^2 :

$$Z(T_1^2 + T_1^2 - 1)(\mathbb{R}) = \{(x, y) \in \mathbb{R} \mid x^2 + y^2 = 1\} \subset \mathbb{R}^2.$$

Example 1.1.2. Soit $S = \{T_1^3 + T_1^2 T_3^2 - T_2^2\}$, et considérons l'ensemble des solutions réelles de S:

FIGURE 1.1 – La partie $Z(S)(\mathbb{R})=\{(x,y,z)\in\mathbb{R}^3\mid x^3+x^2z^2-y^2=0\}\subset\mathbb{R}^3,$ qui est l'ensemble des solutions réelles de $S=\{T_1^3+T_1^2T_3^2-T_2^2\}.$

Soit $S \subset k[T_1, \ldots, T_n]$ un sous-ensemble fini. En laissant varier l'extension de corps $K \supset k$, nous obtenons différents ensembles de solutions Z(S)(K), chacun étant un sous-ensemble de K^n .

Example 1.1.3. Soit $S = \{f(T_1, T_2)\} \subset \mathbb{Q}[T_1, T_2]$ un système composé d'une équation à deux variables.

- (1) Le système $Z(S)(\mathbb{Q})$ est un sous-ensemble de \mathbb{Q}^2 et son étude fait partie de la théorie des nombres. L'un des plus beaux résultats de cette théorie est le théorème de Faltings, qui n'était jusqu'à récemment qu'une conjecture. Ce théorème donne les conditions de finitude de l'ensemble $Z(S)(\mathbb{Q})$.
- (2) $Z(S)(\mathbb{R})$ est un sous-ensemble de \mathbb{R}^2 étudié en topologie et en analyse. C'est soit l'union d'un ensemble fini et d'une courbe algébrique, soit \mathbb{R}^2 , soit vide.
- (3) $Z(S)(\mathbb{C})$ est une surface de Riemann ou sa dégénérescence, étudiée en analyse complexe et en topologie.

Tous ces ensembles sont des incarnations différentes du même objet, une variété algébrique affine sur le corps k. Il s'agit d'un des principaux objets d'étude de la géométrie algébrique. Pour définir cet objet, on peut procéder comme suit. Définissons une sous-variété affine $X \subset \mathbb{A}^n$ sur k comme une classe d'équivalence

$$X = Z(S) \tag{1.2}$$

d'ensembles finis $S \subset k[T_1, \ldots, T_n]$, où S et S' sont équivalents si Z(S)(K) = Z(S')(K) pour toute k-algèbre K. Ici, $\mathbb{A}^n = Z(\emptyset)$ est appelé l'espace affine de dimension n sur k; il satisfait $\mathbb{A}^n(K) = K^n$ pour tout $K \supset k$.

Si X=Z(S) désigne une variété algébrique affine k défini par un système d'équations algébriques $S\subset k[T_1,\ldots,T_n]$, alors, pour toute extension de corps $K\supset k$, le sous-ensemble

$$X(K) = Z(S)(K) \subset K^n$$

est bien défini. On l'appelle l'ensemble des K-points de X.

Variétés algébriques affines réelles L'étude des racines réelles d'un système de polynômes réels

$$f_1, \dots, f_m \in \mathbb{R}[T_1, \dots, T_n] \tag{1.3}$$

constitue une partie ancienne et fascinante des mathématiques. Procédant comme avant, définissant $S = \{f_1, \dots, f_m\} \subset \mathbb{R}[T_1, \dots, T_n]$ et

$$X(\mathbb{C}) := Z(S)(\mathbb{C}) = \{ x = (x_1, \dots, x_n) \in \mathbb{C}^n \mid f_i(x) = 0 \ \forall i \} \subset \mathbb{C}^n,$$
 (1.4)

alors cette tâche consiste à étudier le sous-ensemble

$$X(\mathbb{R}) = X(\mathbb{C}) \cap \mathbb{R}^n \subset X(\mathbb{C}). \tag{1.5}$$

Il s'avère que l'on gagne beaucoup en perspicacité en étudiant l'ensemble plus large $X(\mathbb{C})$ avec l'involution anti-holomorphe naturelle

$$\sigma \colon X(\mathbb{C}) \longrightarrow X(\mathbb{C}).$$

Notez que, même lorsque le lieu réel $X(\mathbb{C})^{\sigma} = X(\mathbb{R}) = X(\mathbb{C}) \cap \mathbb{R}^n$ est vide, une telle variété réelle X peut encore être un objet de structure très riche.

Outre les méthodes algébriques, il existe de nombreuses techniques permettant d'étudier une variété affine $X = Z(f_1, \ldots, f_m)$ sur \mathbb{R} . Par exemple, si le rang de la matrice $(\frac{\partial f_i}{\partial x_j}(a))$ est maximal à chaque $a \in X(\mathbb{C})$, alors $X(\mathbb{C})$ admet la structure d'une variété complexe. Si, de plus, n est la dimension de la variété complexe $X(\mathbb{C})$, et si $X(\mathbb{R}) \neq \emptyset$, alors $X(\mathbb{R}) \subset X(\mathbb{C})$ est une sous-variété différentiable fermé de dimension n. Par conséquent, on peut appliquer des techniques topologiques et différentielles pour étudier la géométrie des ensembles (1.4) et (1.5).

Variétés algébriques Comme dans la théorie des variétés topologiques, il est naturel de considérer des objets plus généraux, connus sous le nom de variétés algébriques sur le corps k; ce sont des espaces localement isomorphes à une variété algébrique affine. Une définition plus précise sera donnée dans la Section 2.1.

Cycles algébriques Soit X une variété algébrique affine définie par un ensemble fini de polynômes $S_1 \subset k[T_1, \ldots, T_n]$. Alors tout ensemble fini $S_2 \subset k[T_1, \ldots, T_n]$ qui contient S_1 définit une sous-variété algébrique $Y = Z(S_2) \subset Z(S_1) = X$ de X. Notons que pour toute k-algèbre K, on a

$$Y(K) = Z(S_2)(K) \subset Z(S_1)(K) = X(K).$$

Example 1.1.4. Soit X une variété algébrique affine définie par un sous-ensemble fini $S \subset k[T_1, \ldots, T_n]$. Alors $X \subset \mathbb{A}^n$ est une sous-variété de l'espace affine \mathbb{A}^n .

Example 1.1.5. Soit $X = Z(T_1^2T_3 = T_2^3)$, et soit $Y \subset X$ la sous-variété algébrique $Y = Z(T_1^2T_3 = T_2^3, T_3 = 1) \subset X$. En prenant des \mathbb{R} -points, on obtient :

FIGURE 1.2 – Le sous-ensemble $Y(\mathbb{R}) = \{(x,y,z) \in \mathbb{R}^3 \mid z=1, x^2=y^3\}$ de l'ensemble $X(\mathbb{R}) = \{(x,y,z) \in \mathbb{R}^3 \mid x^2z=y^3\} \subset \mathbb{R}^3$ peut être obtenu en prenant les points réels de la sous-variété algébrique $Y \subset X$ définie ci-dessus.

Soit X une variété algébrique, non nécessairement affine, sur un corps k. La définition de sous-variété algébrique $Y \subset X$ se généralise naturellement dans ce cadre (voir la Définition 2.1.1 dans le Chapitre 2 ci-dessous). Le groupe des r-cycles algébriques sur X est le groupe abélien libre

$$\mathcal{Z}_r(X) = \bigoplus_{Y \subset X} \mathbb{Z} \cdot [Y]$$

sur l'ensemble des sous-variétés intègres $Y \subset X$ de dimension r de X. Un r-cycle algébrique sur X est une somme formelle finie

$$\sum n_i[Y_i]$$

où $Y_i \subset X$ est une sous-variété intègre de dimension r et $n_i \in \mathbb{Z}$, pour tout i.

Pour étudier la géométrie d'une variété algébrique X, on aimerait comprendre ses sous-variétés algébriques. L'étude de la géométrie des variétés algébriques à travers leurs cycles algébriques d'une part, et leur cohomologie d'autre part, est l'objectif principal de ce projet de recherche. Après avoir considéré les cycles algébriques ci-dessus, il est maintenant temps de discuter de la cohomologie.

Cohomologie étale Souvent, on souhaite étudier des variétés algébriques complexes qui sont localement décrites par des polynômes f_1, \ldots, f_k ayant leurs coefficients dans le sous-corps $\mathbb{Q} \subset \mathbb{C}$. En d'autres termes, ces polynômes satisfont

$$f_1, \ldots, f_k \in \mathbb{Q}[T_1, \ldots, T_n]$$
 pour un certain n.

Cela conduit à toute une série de nouvelles techniques pour étudier la variété algébrique X. Par exemple, si

$$X_{\mathbb{C}} = Z(f_1, \dots, f_k) \subset \mathbb{A}^n_{\mathbb{C}}$$

est une variété algébrique affine sur \mathbb{C} , définie par des polynômes $f_i \in \mathbb{Q}[T_1, \dots, T_n]$, alors $X_{\mathbb{C}}$ provient, par extension de scalaires, de la variété algébrique

$$X_{\mathbb{Q}} := Z(f_1, \dots, f_k) \subset \mathbb{A}^n_{\mathbb{Q}}$$

définie sur le corps des nombres rationnels. En multipliant les coefficients de f_i , on peut supposer que ces coefficients se trouvent effectivement dans \mathbb{Z} ; par conséquent, pour chaque nombre premier $p \in \mathbb{Z}$, on peut regarder la réduction

$$\bar{f}_i \in \mathbb{F}_p[T_1, \dots, T_n]$$

de f_i modulo p. On obtient ainsi, pour chaque premier p, une variété algébrique

$$X_{\mathbb{F}_p} = Z(\bar{f}_1, \dots, \bar{f}_k) \subset \mathbb{A}^n_{\mathbb{F}_p}$$

défini sur le corps fini \mathbb{F}_p de p éléments.

Supposons que $X_{\mathbb{C}}$ soit lisse. Il s'avère qu'il existe une relation mystérieuse entre le nombre d'éléments des ensembles finis

$$X(\mathbb{F}_{p^m}) = \left\{ x = (x_1, \dots, x_n) \in (\mathbb{F}_{p^m})^n \mid \bar{f_i}(x) = 0 \quad \forall i \right\} \subset (\mathbb{F}_{p^m})^n, \quad m \ge 1,$$

et la topologie de la variété complexe $X(\mathbb{C})$. Cette idée provient de Weil (voir [Wei49]), qui prévoyait que pour les équations polynomiales à coefficients entiers, la topologie euclidienne sur l'ensemble des solutions complexes devrait influencer

profondément le nombre de solutions des équations modulo un nombre premier. Ce point de vue a eu un impact considérable sur la géométrie algébrique moderne.

Lorsqu'une variété X est définie sur le corps des nombres complexes, la topologie euclidienne sur $X(\mathbb{C})$ peut être utilisée pour définir les groupes de cohomologie singulière $H^i(X(\mathbb{C}), \mathbb{Z})$ qui reflètent la structure de la variété beaucoup plus fortement que ceux définis, par exemple, par la topologie de Zariski. Pour une variété sur un corps arbitraire (comme \mathbb{F}_p), la topologie euclidienne n'est pas disponible. La topologie étale, dont la définition est purement algébrique, peut être considérée comme une solution de remplacement. Elle donne une théorie des faisceaux abéliens F sur une variété X, ainsi qu'une théorie de cohomologie

$$H^{\bullet}(X_{\text{\'et}}, F), \tag{1.6}$$

dont les propriétés sont très proches de celles qui découlent de la topologie euclidienne pour une variété algébrique complexe.

D'une part, lorsque on considère une variété sur les nombres complexes, les groupes de cohomologie étale et complexe sont étroitement liés. D'autre part, lorsque la variété est le spectre d'un corps k et n'a donc qu'un seul point comme espace sous-jacent, la topologie étale est en général loin d'être triviale. En fait, la cohomologie étale de cette variété affine $\operatorname{Spec}(k)$ est équivalente à la cohomologie galoisienne du corps k; les revêtements étales finies connexes de $\operatorname{Spec}(k)$ correspondent à des extensions séparables finies du corps k; le étale groupe fondamental de la variété $\operatorname{Spec}(k)$ n'est rien d'autre que le groupe galoisien absolu $\operatorname{Gal}(\bar{k}/k)$.

La cohomologie étale a acquis, pour l'étude des variétés sur des corps arbitraires, une importance comparable à celle de la cohomologie singulière pour l'étude de la géométrie des variétés complexes, ou de la cohomologie galoisienne pour l'étude de l'arithmétique des corps. Une de ses applications essentielles concerne l'étude des cycles algébriques d'une variété algébrique X sur un corps k. Ceci nous amène à l'objectif de ce projet de recherche, qui est l'utilisation de la cohomologie et des cycles algébriques pour étudier la géométrie des variétés algébriques.

1.2 Objectif général de ce projet de recherche

Dans les grandes lignes, mon projet de recherche concerne une étude de la géométrie des variétés algébriques, à travers une investigation de leurs groupes de cohomologie d'une part, et les sous-variétés qu'elles contiennent d'autre part.

L'idée centrale est que la géométrie d'une variété algébrique X est dans une large mesure régie par les sous-variétés contenues dans X. Considérons le groupe

$$\mathcal{Z}_r(X) = \bigoplus_{Y \subset X} \mathbb{Z} \cdot [Y]$$

des r-cycles algébriques sur X (voir la Définition 2.1 ci-dessous). Pour l'étudier, considérons un groupe de cohomologie entière approprié

$$H^{2r}(X,\mathbb{Z}(r)).$$

Par exemple, définissons-le comme la cohomologie singulière (en degré r) si le corps de base est \mathbb{C} , comme la cohomologie $\mathbb{Z}/2$ -équivariante si le corps de base est \mathbb{R} , et comme la cohomologie étale si le corps de base est fini.

Il existe alors un homomorphisme de groupes, l'application classe de cycle :

$$\mathcal{Z}_r(X) \longrightarrow \mathrm{H}^{2r}(X, \mathbb{Z}(r)),$$
 (1.7)

compatible avec les morphismes entre variétés. Cet application est déterminée par la propriété que si X est lisse et projectif et si $Y \subset X$ est une sous-variété lisse, alors (1.7) envoie [Y] à l'image de la classe fondamentale $[Y] \in H^0(Y, \mathbb{Z}(0))$ par le morphisme poussée en avant $H^0(Y, \mathbb{Z}(0)) \to H^{2r}(X, \mathbb{Z}(r))$ le long de l'inclusion $Y \hookrightarrow X$. Voir les Sections 2.2 et 2.3 ci-dessous pour plus de détails.

Au cœur de ce projet de recherche se trouve l'étude des cycles algébriques et de la cohomologie des variétés projectives lisses sur \mathbb{C} , sur \mathbb{R} , et sur \mathbb{F}_p , ainsi que l'interaction entre eux, donnée par l'application class de cycle (1.7). La question centrale de ce projet de recherche est la suivante :

Peut-on décrire l'image de l'application classe de cycle (1.7)?

1.3 Projets, problèmes et questions

Dans cette section, nous donnons une première esquisse intuitive de nos cinque propositions de projets. Sans être précis, nous motivons ces projets, expliquons les idées principales, et formulons les questions sur lesquelles nous nous concentrerons. Nous renvoyons le lecteur aux Chapitres 3-7 ci-dessous pour une description plus détaillée des mathématiques derrière ces projets de recherche, ainsi qu'une formulation plus précise des questions auxquelles nous espérons répondre.

Projet I. Cohomologie de l'espace de modules des courbes réelles Ce projet concerne un projet commun avec Emiliano Ambrosi (Maître de Conférences à l'Institut de Recherche Mathématique Avancée de l'Université de Strasbourg). L'idée centrale est d'étudier la topologie de l'espace de modules $\mathcal{M}_g(\mathbb{R})$ des courbes algébriques réelles de genre g. Les principales idées qui sous-tendent ce projet sont comme suit.

Parmi les objets les plus beaux et les plus fondamentaux de la géométrie algébrique moderne figure $\mathcal{M}_g(\mathbb{C})$, l'espace de module des courbes projectives lisses de genre g. Il s'agit d'un orbifold complexe de dimension 3g-3. Son espace topologique sous-jacent, dénoté par $|\mathcal{M}_g(\mathbb{C})|$, est l'ensemble des classes d'isomorphisme des surfaces de Riemann compactes connexes de genre g. De nombreux travaux ont été réalisés pour comprendre la structure de l'homologie et de la cohomologie de $|\mathcal{M}_g(\mathbb{C})|$ – voir, par exemple, [Pow78; Mum67; Har83; Har86; CGP21].

En revanche, on ne sait presque rien de la cohomologie de l'espace de module des courbes algébriques réelles de genre g. Ce dernier est l'orbifold réel-analytique $\mathcal{M}_g(\mathbb{R})$, de l'ensemble sous-jacent

$$|\mathcal{M}_g(\mathbb{R})| = \{\text{courbes algébriques réelles projectives lisses } C \text{ de genre } g\} / \cong$$

consistant de classes d'isomorphisme de courbes algébriques sur \mathbb{R} qui sont projectives, lisses et connexes. Dotons $|\mathcal{M}_g(\mathbb{R})|$ de sa topologie euclidienne naturelle (voir [GF22a; SS89]). Le but de ce projet est de répondre aux questions suivantes.

Questions 1.3.1 (cf. la Question 3.3.1). Soit $g \in \mathbb{Z}_{\geq 1}$. Considérons l'espace $|\mathcal{M}_g(\mathbb{R})|$ des courbes algébriques réelles de genre g. Alors, on se demande :

- (1) Pour un entier positif i, quelle est la dimension de $H^i(|\mathcal{M}_q(\mathbb{R})|, \mathbb{Z}/2)$?
- (2) Comment cette valeur se compare-t-elle à la dimension de $H^i(|\mathcal{M}_q(\mathbb{C})|, \mathbb{Z}/2)$?

Pour aborder cette question, il est naturel de tout d'abord essayer de comprendre la différence entre les nombres de Betti totaux des espaces $|\mathcal{M}_g(\mathbb{R})|$ et $|\mathcal{M}_g(\mathbb{C})|$. Pour ce faire, nous avons en tête la stratégie suivante.

Rappelons que, si X est une variété algébrique de dimension sur \mathbb{R} , *l'inégalité* de Smith-Thom est l'inégalité suivante :

$$\sum \dim H^{i}(X(\mathbb{R}), \mathbb{Z}/2) \le \sum \dim H^{i}(X(\mathbb{C}), \mathbb{Z}/2). \tag{1.8}$$

Le fait que cette égalité soit toujours valable est prouvé dans [Flo52; Tho65]; voir aussi le premier chapitre du livre [DIK00], ou bien [Man17, Théorème 3.3.6]. Une variété réelle X pour laquelle (1.8) est une égalité s'appelle une $variété \ maximale$.

Cependant, on ne peut pas directement appliquer (1.8) à \mathcal{M}_g pour comparer les topologies de $|\mathcal{M}_g(\mathbb{R})|$ et de $|\mathcal{M}_g(\mathbb{C})|$. Car, en effet, \mathcal{M}_g est en fait un *champ algébrique* sur les réels, et non pas une vraie variété. (Rappelons que la notion de champ algébrique généralise la notion de variété algébrique de la même manière que la notion d'orbifold différentiable (resp. complexe) généralise la notion de variété différentiable (resp. complexe). À priori, on n'a donc même pas une inégalité du type (1.8) qui pourrait nous permettre de comparer la topologie de $|\mathcal{M}_g(\mathbb{R})|$ avec celle de $|\mathcal{M}_g(\mathbb{C})|$.

Dans une collaboration actuelle avec Emiliano Ambrosi (maître de conférences à Strasbourg), nous résolvons cette difficulté de la manière suivante. Nous sommes sur le point de terminer la preuve du fait qu'il existe en fait un analogue naturel de (1.8) pour les champs algébriques. Plus précisément, pour tout champ de Deligne–Mumford séparé X sur \mathbb{R} , il devrait exister un faisceau constructible canonique F_X sur l'espace topologique $|X(\mathbb{C})|$, compatible avec tirer en arrière, tel que on ait

$$\sum \dim H^{i}(X(\mathbb{R}), \mathbb{Z}/2) \leq \sum \dim H^{i}(X(\mathbb{C}), F_{X}). \tag{1.9}$$

Voir la Conjecture 3.4.1. Ce resultat nous permettra de se demander si l'inégalité

(1.9) est une égalité. En d'autres termes (cf. la Question 3.3.1) :

Est-ce que l'espace de modules \mathcal{M}_g est maximal?

Pour plus de détails, voir le Chapitre 3 ci-dessous.

Projet II. La conjecture de Tate entière sur les corps finis L'objectif global de ce projet est d'étudier l'analogue de la conjecture de Hodge entière en caractéristique positive. Il s'agit donc d'une étude des sous-variétés des variétés algébriques $Y \subset X$ d'une variété algébrique défini sur un corps fini, et le lien entre ces sous-variétés et l'action galoisienne sur la cohomologie.

Soit p un nombre premier. Le but de ce projet est d'étudier les courbes $C \subset X$ contenu dans X, lorsque X est une variété abelienne sur le corps fini \mathbb{F}_p . (Rappelons que une variété abelienne sur \mathbb{F}_p est une variété projective lisse sur \mathbb{F}_p équipée d'une loi de groupe algébrique $m \colon X \times X \to X$; voir la Section 2.4.)

Pour étudier ces courbes $C \subset X$, on essaie d'étudier la structure du groupe des 1-cycles $\mathcal{Z}_1(X)$ et ses liens avec une théorie de cohomologie convenablement définie. Alors que l'on a esquissé les idées principales derrière la cohomologie étale dans la Section 1.1 (voir en particulier (1.6)), les définitions précises qui amènent à une théorie de cohomologie avec tous les axiomes habituels (dualité de Poincaré, décomposition de Künneth, etc.) demande un certain effort. Ce projet a été entrepris avec succès par Artin, Grothendieck et Verdier, voir [SGA4] ou [Mil80].

Soit $n = \dim(X)$. En conséquence de ce qui précède, pour chaque nombre premier $\ell \neq p$, il existe un \mathbb{Z}_{ℓ} -module bien défini

$$\mathrm{H}^{2n-2}_{\mathrm{\acute{e}t}}(X_{\overline{\mathbb{F}}_p},\mathbb{Z}_\ell(n-1)),$$

fonctoriel de manière contravariante en X, doté d'une action du groupe de Galois

$$\operatorname{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p) \cong \varprojlim_{m \in \mathbb{Z}_{\geq 1}} \mathbb{Z}/m = \widehat{\mathbb{Z}}.$$

De plus, chaque courbe $C \subset X$ définit une classe

$$[C] \in \mathrm{H}^{2n-2}_{\mathrm{\acute{e}t}}(X_{\overline{\mathbb{F}}_p}, \mathbb{Z}_{\ell}(n-1))$$

qui est invariante sous l'action de $\operatorname{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p)$. On peut se demander : Est-ce que toutes les classes de cohomologie $\alpha \in \operatorname{H}^{2n-2}_{\operatorname{\acute{e}t}}(X_{\overline{\mathbb{F}}_p}, \mathbb{Z}_\ell(n-1))^{\operatorname{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p)}$ s'écrivent comme combinaison \mathbb{Z}_ℓ -linéaire finie $\alpha = \sum n_i[C_i]$ des courbes C_i dans X?

Pour reformuler cette question, notons que la construction ci-dessus donne en fait un homomorphisme de groupes, l'application classe de cycle, qui envoie une courbe $C \subset X$ à sa classe de cohomologie :

$$\mathcal{Z}_{1}(X) \otimes_{\mathbb{Z}} \mathbb{Z}_{\ell} \longrightarrow \mathrm{H}^{2n-2}_{\mathrm{\acute{e}t}}(X_{\overline{\mathbb{F}}_{p}}, \mathbb{Z}_{\ell}(n-1))^{\mathrm{Gal}(\overline{\mathbb{F}}_{p}/\mathbb{F}_{p})}$$

$$(C \subset X) \mapsto [C]. \tag{1.10}$$

La conjecture de Tate pour les courbes sur X fait référence à la propriété selon laquelle (1.10) devient surjective après la tensorisation avec \mathbb{Q}_{ℓ} sur \mathbb{Z}_{ℓ} . La conjecture de Tate entière pour les courbes sur X réfère à la propriété que l'application (1.10) elle-même est déjà surjective. On ne connaît pas des exemples de variétés projectives lisses X sur \mathbb{F}_p pour lesquelles la surjectivité de (1.10) échoue.

On sait que les variétés abéliennes sur \mathbb{F}_p satisfont à la conjecture de Tate pour les diviseurs (voir [Tat66]). Cela signifie que pour les variétés abéliennes, le conoyau de (1.10), qui est un groupe abélien de type fini pour toute variété projective lisse, est en fait *fini* dans le cas des variétés abéliennes. Il est donc naturel de se demander si l'application (1.10) est surjective pour toute variété abélienne sur \mathbb{F}_p . Les premiers cas à considérer sont certainement les variétés abéliennes de dimension trois, ce qui nous amène à la question suivante.

Question 1.3.2 (Wittenberg, cf. la Question 4.1.2 et la Conjecture 4.2.1). Soit X une variété abélienne de dimension trois sur \mathbb{F}_p . Soit $\alpha \in \mathrm{H}^4_{\mathrm{\acute{e}t}}(X_{\overline{\mathbb{F}}_p}, \mathbb{Z}_\ell(2))$ une classe telle que $\sigma(\alpha) = \alpha$ pour tout $\sigma \in \mathrm{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p)$.

Est-ce que \alpha s'écrit comme une combinaison linéaire

$$\alpha = \sum n_i[C_i] \in \mathrm{H}^4_{\mathrm{\acute{e}t}}(X_{\overline{\mathbb{F}}_p}, \mathbb{Z}_\ell(2))^{\mathrm{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p)} \qquad (n_i \in \mathbb{Z}_\ell)$$

de classes des courbes $C_i \subset X$ dans X sur \mathbb{F}_p ?

Le but de ce projet est de répondre à la Question 1.3.2 par l'affirmative; voir le Chapitre 4 pour plus de détails.

Projet III. Variétés abéliennes isogènes à des jacobiennes sur $\overline{\mathbb{Q}}$ D'une part, dans [GFS24], avec Stefan Schreieder, nous prouvons qu'il existe des variétés abéliennes A sur \mathbb{C} dont aucune puissance A^k ($k \geq 1$) n'est isogène à la jacobienne d'une courbe. D'autre part, il est connu qu'ils existent des variétés abéliennes A sur le corps des nombres algébriques $\overline{\mathbb{Q}}$ qui ne sont pas isogènes à une jacobienne (cf. [Tsi12; CO12; MZ20]). À la lumière de ces deux résultats, on peut se demander s'il existe des variétés abéliennes A sur $\overline{\mathbb{Q}}$ dont aucune puissance A^k n'est isogène à une jacobienne. Le but de ce projet est de répondre à cette question par l'affirmative. Voir le Chapitre 5 pour plus de détails.

Projet IV. La conjecture de Hodge entière Soit X une variété algébrique complexe projective lisse de dimension n. Soit $C \subset X$ une courbe lisse contenue dans X. L'inclusion $i: C \hookrightarrow X$ induit un homomorphisme de Gysin

$$i_*: \mathbb{Z} = \mathrm{H}^0(C(\mathbb{C}), \mathbb{Z}) = \mathrm{H}_2(C(\mathbb{C}), \mathbb{Z}) \to \mathrm{H}_2(X(\mathbb{C}), \mathbb{Z}) = \mathrm{H}^{2n-2}(X(\mathbb{C}), \mathbb{Z}).$$
 (1.11)

Ainsi, on obtient une classe de cohomologie

$$[C] = i_*(1) \in H^{2n-2}(X(\mathbb{C}), \mathbb{Z}).$$

Cette construction s'étend aux courbes arbitraires $C \subset X$, et il est naturel de se demander :

Question 1.3.3. Quelles classes de cohomologie $\alpha \in H^{2n-2}(X(\mathbb{C}), \mathbb{Z})$ s'écrivent comme combinaison \mathbb{Z} -linéaire

$$\alpha = \sum_{i=1}^{m} n_i [C_i]$$

des courbes $C_i \subset X$ dans X?

Pour le dire autrement : la construction ci-dessus définit un homomorphisme de groupes, appelé l'application classe de cycle

$$\mathcal{Z}_1(X) \to \mathrm{H}^{2n-2}(X(\mathbb{C}), \mathbb{Z}),$$
 (1.12)

et la Question 1.3.3 devient :

Quelle est l'image de l'application classe de cycle (1.12)?

Comme nous l'expliquerons dans le Chapitre 6 ci-dessous, il existe une propriété naturelle, appelée la conjecture de Hodge entière pour les 1-cycles, qui permet de décrire précisément l'image de (1.12). Cette propriété échoue en général, mais ils existent des classes intéressantes de variétés projectives lisses pour lesquelles elle tient. La question de savoir si les variétés abéliennes (c'est-à-dire les tores complexes projectifs) satisfont la conjecture de Hodge entière pour les 1-cycles, reste une question ouverte importante.

Dans [BGF23], avec Beckmann nous avons prouvé que pour une grande classe de variétés abéliennes, les *variétés jacobiennes*, la conjecture de Hodge entière pour les 1-cycles est satisfaite. La poursuite de mes recherches sur la conjecture de Hodge entière pour les variétés abéliennes est le premier objectif principal de ce projet de recherche. Ainsi, la question principale de ce projet est la suivante :

Question 1.3.4 (cf. la Question 6.1.4). Est-ce que la conjecture de Hodge entière pour les 1-cycles vaut pour les variétés abéliennes complexes?

Voir le Chapitre 6 ci-dessous pour plus de détails.

Projet V. La conjecture de Hodge entière réelle Pour expliquer le cinquième objectif de ce projet de recherche, nous transposons la discussion dans le cadre réel. Soit X une variété algébrique projective lisse sur \mathbb{R} . Considérons l'action

$$G = \mathbb{Z}/2 \odot X(\mathbb{C})$$

de G sur $X(\mathbb{C})$ donnée par l'involution anti-holomorphic naturelle $\sigma\colon X(\mathbb{C})\to X(\mathbb{C})$. Par rapport à cette action, on peut considérer le groupe de cohomologie équivariant

$$\mathrm{H}^{2k}_G(X(\mathbb{C}),\mathbb{Z}(k))$$

au sens de Borel (cf. [Gro57; AB84]). Ceci est un groupe de cohomologie compatible avec tirer en arrière par des morphismes $X \to Y$ des variétés algébriques. De plus,

par [Kra94; Ham97], il existe une application classe de cycle réelle

$$\mathcal{Z}_r(X) \to \mathrm{H}^{2k}_G(X(\mathbb{C}), \mathbb{Z}(k)).$$
 (1.13)

L'analogue naturel de la Question 1.3.3 en géométrie algébrique réelle est alors :

Question 1.3.5. Peut-on décrire l'image de l'application (2.9)?

Dans la Section 7 ci-dessous, nous préciserons cette question. Comme dans le cas complexe, il existe une propriété naturelle, appelée la conjecture de Hodge entière réelle pour les r-cycles, qui - lorsqu'elle est satisfaite - donne une description assez précise de l'image de (2.9) en termes de la structure de Hodge équivariante sur $H_G^{2k}(X(\mathbb{C}),\mathbb{Z}(k))$ et les opérations de Steenrod sur $H^{\bullet}(X(\mathbb{R}),\mathbb{Z}/2)$. Cette propriété a été introduite par Benoist et Wittenberg dans [BW20a; BW20b], et prouvée pour diverses classes de variétés réelles. Comme dans le cas complexe, ils existent des variétés réelles pour lesquelles cette propriété vaut, et des variétés réelles pour lesquelles elle n'est pas vraie.

Les solides de Calabi–Yau et les solides uniréglés complexes satisfont la conjecture de Hodge entière par [Voi06; Tot21] (voir le Théorème ... ci-dessous). L'analogue réel de ce théorème reste ouvert [BW20a; BW20b]. Dans [GF24], j'ai commencé à étudier la conjecture de Hodge entière pour les variétés abéliennes de dimension 3 sur \mathbb{R} . Le but de ce projet de recherche est de poursuivre mon étude de la conjecture de Hodge entière réelle. Le point de départ est la question suivante.

Question 1.3.6 (Benoist-Wittenberg, cf. la Question 7.1.2). Soit X une variété projective lisse sur \mathbb{R} . Supposons que X est soit un solide uniréglé, soit un solide de Calabi-Yau, soit une variété rationnellement connexes. Est-ce que la variété X satisfait à la conjecture de Hodge entière réelle pour les 1-cycles?

Dans [GF24], j'ai fait un premier pas dans cette direction; voir le Théorème 7.1.3 dans le Chapitre 7 pour un énoncé plus général.

Theorem 1.3.7 (de Gaay Fortman, cf. [GF24]). Soit X une variété abélienne de dimension 3 sur \mathbb{R} . Soit

$$\alpha \in \mathrm{H}^4(X(\mathbb{C}), \mathbb{Z}(2))^{\mathrm{Gal}(\mathbb{C}/\mathbb{R})}$$

une classe de Hodge, fixée par le groupe de Galois $\operatorname{Gal}(\mathbb{C}/\mathbb{R})$. Alors $\alpha = \sum_i n_i[C_i]$ est une combinaison \mathbb{Z} -linéaire de classes des courbes algébriques réelles $C_i \subset X$.

Voir la Section 2.2 pour la notion de classe de Hodge. Dans [GF24], en plus du résultat ci-dessus, nous prouvons la conjecture de Hodge intégrale réelle pour une grande classe de variétés abéliennes réelles de dimension trois (voir le Théorème 1.10 dans loc. cit). Le but de ce projet de recherche est de continuer mon travail sur la Question 7.1.2. Voir le Chapitre 7 ci-dessous pour plus de détails.

Chapitre 2

Théorie générale

2.1 Variétés algébriques et cycles algébriques

Variétés algébriques Soit k un corps. Comme dans la théorie des variétés topologiques, il est naturel de considérer des objets plus généraux, connus sous le nom de variétés algébriques sur k; ce sont des espaces localement annelés X localement isomorphes à une variété algébrique affine. L'explication plus détaillée de ces termes nécessite un certain travail (voir par exemple [EGAI], [Mum88] ou [Har77]), mais l'idée est claire : tout sous-ensemble fini $S = \{f_1, \ldots, f_m\}$ de $k[T_1, \ldots, T_n]$ définit un espace localement annelé $U_S = \operatorname{Spec}(k[T_1, \ldots, T_n]/(f_1, \ldots, f_m))$. Cet espace U_S a la propriété que l'ensemble $U_S(\bar{k})$ de ses \bar{k} -points peut être vu comme sous-ensemble de l'espace vectoriel \bar{k}^n . En tant que tel, l'ensemble $U_S(\bar{k})$ admet, de façon compatible avec la définition (1.1), la description suivante :

$$U_S(\bar{k}) = \{a \in (\bar{k})^n \mid f_1(a) = \dots = f_m(a) = 0\} \subset \bar{k}^n.$$

D'habitude, on définit une variété affine sur k comme un espace localement annelé isomorphe à U_S pour un certain S. Une variété affine dans ce sens donne lieu à une sous-variété affine $X \subset \mathbb{A}^n$ comme dans (1.2) pour un certain n, et inversement.

Une variété algébrique sur k est un espace localement annelé X admettant un recouvrement ouvert fini par des variétés affines. Une telle X est lisse si le rang de la matrice $(\frac{\partial f_i}{\partial x_j}(a))_{ij}$ est maximal pour chaque ouvert $U \subset X$ isomorphe à une variété affine U_S défini par $S = \{f_1, \ldots, f_m\} \subset k[T_1, \ldots, T_n]$ et chaque $a \in U_S(\bar{k})$.

Un exemple fondamental de variété algébrique est l'espace projectif \mathbb{P}^n de dimension n sur k. Une variété algébrique X est projective si X admet un plongement $X \hookrightarrow \mathbb{P}^N_k$ pour un entier $N \geq 0$. Une variété sur \mathbb{R} s'appelle une variété réelle.

Cycles algébriques

Définition 2.1.1. Soit X une variété algébrique sur un corps k.

- (1) Une sous-variété algébrique de X est l'image $Y \subset X$ d'une immersion fermée de variétés algébriques, doté de sa structure naturelle de variété algébrique.
- (2) Une sous-variété algébrique $Y \subset X$ est intègre si Y est irréductible et s'il n'y a pas de nilpotents non nuls dans le faisceau structural \mathcal{O}_Y de Y. Définissons $\mathcal{Z}_r(X)$, le groupe des r-cycles algébriques de X, comme le groupe abélien libre sur l'ensemble des sous-variétés intègres $Y \subset X$ avec $\dim(Y) = r$.
- (3) Un cycle algébrique sur X est un élément du groupe abélien libre

$$\mathcal{Z}_{\bullet}(X) := \bigoplus \mathcal{Z}_r(X).$$
 (2.1)

2.2 Cohomologie et cycles algébriques complexes

Soit X une variété algébrique projective lisse (voir la Section [ref]). L'étude des groupes $\mathcal{Z}_r(X)$ des r-cycles algébriques sur X est une partie fondamentale de la géométrie algébrique moderne. En général, cependant, ces groupes sont très compliqués, et l'on aimerait disposer d'outils permettant de les mieux comprendre. La théorie de Hodge fournit un tel outil - et en fait un outil très puissant - comme nous allons maintenant l'expliquer.

Théorie de Hodge Soit X une variété complexe. La structure complexe de X permet de décomposer le fibré vectoriel des 1-formes différentielles complexes sur X comme

$$\Omega_{X,\mathbb{C}} = \Omega_X^{1,0} \oplus \Omega_X^{0,1}, \tag{2.2}$$

où $\Omega_X^{1,0}$ est le fibré vectoriel des 1-formes qui sont \mathbb{C} -linéaires pour la structure complexe sur T_X , et

$$\Omega_X^{0,1} = \overline{\Omega_X^{1,0}}$$

est le conjugué complexe de $\Omega_X^{1,0}$. Alors $\Omega_X^{1,0}$ est localement engendré par les dz_i , où z_i sont des coordonnées holomorphes locales sur X, et $\Omega_X^{0,1}$ est localement engendré par les $d\bar{z}_i$.

Soit $\mathscr{A}^k_{X,\mathbb{C}}$ le faisceau de k-formes différentielles complexes sur X, et pour $p,q\in\mathbb{Z}_{\geq 0}$ avec p+q=k, soit

$$\mathscr{A}_{X}^{p,q}\subset \mathscr{A}_{X.\mathbb{C}}^{k}$$

le sous-faisceau de k-formes différentielles complexes de type (p,q): ce sont les k-formes α qui, en coordonnées holomorphes locales z_i , peuvent s'écrire comme

$$\alpha = \sum_{\substack{i_1 < \dots < i_p \\ j_1 < \dots < j_q}} a_{I,J} dz_1 \wedge \dots \wedge dz_p \wedge d\bar{z}_1 \wedge \dots d\bar{z}_q.$$

De (2.2), on obtient une décomposition en sous-faisceaux

$$\mathscr{A}_{X,\mathbb{C}}^k = \bigoplus_{p+q=k} \mathscr{A}_X^{p,q}.$$
 (2.3)

On a une application canonique

$$\operatorname{Ker}\left(d\colon \mathscr{A}_{X}^{p,q}(X) \to \mathscr{A}_{X,\mathbb{C}}^{k+1}(X)\right) \to \operatorname{H}^{k}(X,\mathbb{C}),\tag{2.4}$$

où $d\colon \mathscr{A}^k_{X,\mathbb{C}}\to \mathscr{A}^{k+1}_{X,\mathbb{C}}$ est la différentielle; notons $\mathrm{H}^{p,q}(X)\subset \mathrm{H}^k(X,\mathbb{C})$ l'image de (2.4). Puisque

$$d\mathscr{A}_{X}^{p,q} \subset \mathscr{A}_{X}^{p+1,q} \oplus \mathscr{A}_{X}^{p,q+1},$$

il n'y a aucune raison a priori pour que (2.3) induise une décomposition du groupe de cohomologie de de Rham

$$\mathrm{H}^{k}(X,\mathbb{C}) = \frac{\mathrm{Ker}\left(d \colon \mathscr{A}_{X,\mathbb{C}}^{k}(X) \to \mathscr{A}_{X,\mathbb{C}}^{k+1}(X)\right)}{\mathrm{Im}\left(\mathscr{A}_{X,\mathbb{C}}^{k-1}(X) \to \mathscr{A}_{X,\mathbb{C}}^{k}(X)\right)}$$

en une somme directe des sous-espaces vectoriels complexes $\mathrm{H}^{p,q}(X)\subset\mathrm{H}^k(X,\mathbb{C})$.

Néanmoins, on a :

Theorem 2.2.1 (Hodge [Hod61]). Soit X une variété projective complexe lisse. Alors (2.3) induit une décomposition

$$\mathrm{H}^k(X(\mathbb{C}),\mathbb{C}) = \bigoplus_{p+q=k} \mathrm{H}^{p,q}(X).$$

Conjecture de Hodge entière Toute sous-variété algébrique d'une variété projective lisse sur un corps k induit une classe dans un groupe de cohomologie convenablement défini. Des conjectures importantes prédisent que l'on peut comprendre le sous-groupe des classes algébriques dans la cohomologie de cette variété via des structures qui a priori ne sont pas directement liées aux cycles algébriques euxmêmes (e.g. théorie de Hodge, représentations de Galois, etc.). Dans cette section, nous expliquons cela lorsque le corps de base est le corps des complexes \mathbb{C} .

Soit X une variété projective lisse sur \mathbb{C} . Il existe une obstruction pour qu'un élément $\alpha \in H^{2k}(X(\mathbb{C}), \mathbb{Z})$ soit dans l'image de l'application class de cycle (1.12). En effet, par le Théorème 2.2.1, il existe une décomposition de Hodge fonctorielle canonique

$$\mathrm{H}^k(X(\mathbb{C}),\mathbb{C})=\mathrm{H}^k(X(\mathbb{C}),\mathbb{Z})\otimes\mathbb{C}=\bigoplus_{p+q=k}\;\mathrm{H}^{p,q}(X)\quad \text{ telle que } \ \overline{\mathrm{H}^{p,q}(X)}=\mathrm{H}^{q,p}(X),$$

et donc si l'on définit le groupe des classes de Hodge entières de degré 2k comme

$$\operatorname{Hdg}^{2k}(X(\mathbb{C}), \mathbb{Z}) = \left\{ \alpha \in \operatorname{H}^{2k}(X(\mathbb{C}), \mathbb{Z}) \mid \alpha_{\mathbb{C}} \in \operatorname{H}^{k,k}(X) \subset \operatorname{H}^{2k}(X(\mathbb{C}), \mathbb{C}) \right\}, \quad (2.5)$$

alors

$$[Z] \in \mathrm{Hdg}^{2k}(X(\mathbb{C}), \mathbb{Z})$$

pour toute sous-variété $Z \subset X$ de dimension r (où $r + k = \dim(X)$). Pour voir ceci, supposons pour simplifier que Z soit lisse. Alors le morphisme de Gysin i_* défini dans (1.11) s'étend en l'application naturelle \mathbb{C} -linéaire

$$i_{*,\mathbb{C}} \colon \mathrm{H}^{0}(Z(\mathbb{C}),\mathbb{C}) = \mathrm{H}^{0,0}(Z) \to \mathrm{H}^{k,k}(X) \subset \mathrm{H}^{2k}(X(\mathbb{C}),\mathbb{C}),$$

ce qui rend clair que

$$[Z]_{\mathbb{C}} = i_{*,\mathbb{C}}(1) \in \mathrm{H}^{k,k}(X).$$

On conclut que si $\mathrm{H}^{2k}(X(\mathbb{C}),\mathbb{Z})_{\mathrm{alg}}\subset\mathrm{H}^{2k}(X(\mathbb{C}),\mathbb{Z})$ est l'image de (1.12), alors

$$\mathrm{H}^{2k}(X(\mathbb{C}), \mathbb{Z})_{\mathrm{alg}} \subset \mathrm{Hdg}^{2k}(X(\mathbb{C}), \mathbb{Z}).$$
 (2.6)

De même, pour $r, k \in \mathbb{N}$ avec $r + k = \dim(X)$, on a

$$H^{2k}(X(\mathbb{C}), \mathbb{Q})_{alg} = \operatorname{Im} \left(\mathcal{Z}_r(X) \otimes \mathbb{Q} \to H^{2k}(X(\mathbb{C}), \mathbb{Q}) \right)$$

$$\subset \operatorname{Hdg}^{2k}(X(\mathbb{C}), \mathbb{Q}) = \operatorname{Hdg}^{2k}(X(\mathbb{C}), \mathbb{Z}) \otimes \mathbb{Q}.$$
(2.7)

Conjecture 2.2.2 (Conjecture de Hodge). Soit X une variété projective lisse sur \mathbb{C} , et tout $k \in \mathbb{Z}_{\geq 0}$. Alors l'inclusion dans (2.7) est une égalité.

Autrement dit, la conjecture predit que toute classe de Hodge rationnelle sur X est une combinaison \mathbb{Q} -lineaire finie de classes de sous-variétés algébriques $Z \subset X$.

Cette conjecture reste largement ouverte. Pour comprendre cette conjecture, on voudrait comprendre une propriété plus forte, qui échoue pour certains variétés X et se trouve être vraie pour d'autres. On arrive à la conjecture de Hodge entière.

Définition 2.2.3. Une variété complexe projective satisfait à la conjecture de Hodge entière pour les r-cycles (IHC $_r(X)$) si l'inclusion (2.6) est une égalité.

Notez que $IHC_r(X)$ implique que (2.7) est une égalité. Cependant, malgré son nom, la conjecture de Hodge entière pour les cycles r est une propriété plutôt qu'une conjecture : on sait depuis Atiyah et Hirzebruch [AH62] qu'ils existent des variétés X et des entiers $r \in \mathbb{N}$ tel que la propriété $IHC_r(X)$ ne tient pas.

D'une part, en cherchant à comprendre la conjecture de Hodge, il est important de se demander comment la conjecture de Hodge entière peut échouer. D'autre part, pour certaines variétés avec une géométrie particulièrement riche, la conjecture de Hodge entière s'avère être satisfaite. Au cours des dernières années, le problème de classifier les variétés projectives lisses X et les entiers r tels que $IHC_r(X)$ est vérifiée (et ceux pour lesquels elle ne l'est pas) est devenu un domaine de recherche très important et intéressant. Voir par exemple [AH62; Tre; Tot97; Voi06; CTV12; Sch19; BO20; Tot21; BGF23].

2.3 Cohomologie et cycles algébriques réels

Si X est une variété projective lisse sur \mathbb{R} , alors l'involution anti-holomorphe $\sigma: X(\mathbb{C}) \to X(\mathbb{C})$ induit une involution linéaire

$$F_{\infty} = \sigma^* \colon \mathrm{H}^k(X(\mathbb{C}), \mathbb{C}) \to \mathrm{H}^k(X(\mathbb{C}), \mathbb{C})$$

tel que $F_{\infty}(H^{p,q}(X)) = H^{q,p}(X)$ et $F_{\infty}(H^k(X(\mathbb{C}),\mathbb{Z})) = H^k(X(\mathbb{C}),\mathbb{Z})$. Le rôle de la théorie de Hodge en géométrie algébrique réelle consiste à exploiter cette involution.

Pour une sous-variété algébrique lisse

$$j: Z \hookrightarrow X$$

de dimension r, et $k = \dim(X) - r$, de manière analogue à ce qui précède la composition

$$j_*: H^0(Z(\mathbb{R}), \mathbb{Z}/2) = H_r(Z(\mathbb{R}), \mathbb{Z}/2) \to H_r(X(\mathbb{R}), \mathbb{Z}/2) = H^k(X(\mathbb{R}), \mathbb{Z}/2)$$

peut être utilisée pour définir une classe de cohomologie

$$[Z] = j_*(1) \in \mathrm{H}^k(X(\mathbb{R}), \mathbb{Z}/2).$$

Comme précédemment, cette construction s'étend aux combinaisons linéaires de sous-variétés, et étant compatible avec l'équivalence rationnelle, elle induise un homomorphisme [BH61]

$$\mathcal{Z}_r(X) \to \mathrm{H}^k(X(\mathbb{R}), \mathbb{Z}/2).$$
 (2.8)

Pour relier (2.8) à l'application de classe de cycle complexe définie dans (1.12), c Pour relier (2.8) à l'application de classe de cycle complexe définie dans (1.12), considérons l'action

$$G=\mathbb{Z}/2 \circlearrowleft X(\mathbb{C})$$

de G sur $X(\mathbb{C})$ donnée par l'involution anti-holomorphic naturelle $\sigma\colon X(\mathbb{C})$

 $X(\mathbb{C})$. With regard to this action, we can consider le groupe de cohomologie équivariant $H_G^{2k}(X(\mathbb{C}), \mathbb{Z}(k))$ au sens de Borel (cf. [Gro57; AB84]).

$$H_G^{2k}(X(\mathbb{C}), \mathbb{Z}(k)) = H^{2k}(X(\mathbb{C}) \times_G EG, \underline{\mathbb{Z}(k)}), \text{ où}$$

 $X(\mathbb{C}) \times_G EG = (X(\mathbb{C}) \times EG) / G.$

Ici, $EG = \varinjlim_{n} \mathbb{S}^{n}$ est un espace contractile, $\mathbb{Z}(k)$ est le groupe abélien \mathbb{Z} transformé en un G-module en déclarant que $\sigma(1) = (-1)^{k}$ pour le générateur $\sigma \in G$, et $\mathbb{Z}(k)$ est un faisceau bien choisi sur $X(\mathbb{C}) \times_{G} EG$.

Par [Kra94; Ham97], il existe une application classe de cycle réelle

$$\mathcal{Z}_r(X) \to \mathrm{H}^{2k}_G(X(\mathbb{C}), \mathbb{Z}(k))$$
 (2.9)

de sorte que les morphismes (1.12), (2.8) et (2.9) s'insèrent dans un diagramme commutatif

$$\mathcal{Z}_{r}(X) \xrightarrow{} \mathcal{Z}_{r}(X_{\mathbb{C}})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$H^{k}(X(\mathbb{R}), \mathbb{Z}/2) \longleftarrow H^{2k}_{G}(X(\mathbb{C}), \mathbb{Z}(k)) \xrightarrow{\varphi} H^{2k}(X(\mathbb{C}), \mathbb{Z}(k)).$$

$$(2.10)$$

Recently, the analogue of the integral Hodge conjecture for real algebraic varieties has been formulated [BW20a; BW20b]. Let X be a smooth projective variety over \mathbb{R} , and let $G = \operatorname{Gal}(\mathbb{C}/\mathbb{R})$. Consider the natural homomorphism $\varphi \colon \mathrm{H}^{2k}_G(X(\mathbb{C}), \mathbb{Z}(k)) \to \mathrm{H}^{2k}(X(\mathbb{C}), \mathbb{Z}(k))$, see diagram (2.10), as well as the subgroup of Hodge classes $\operatorname{Hdg}^{2k}(X(\mathbb{C}), \mathbb{Z}(k)) \subset \mathrm{H}^{2k}(X(\mathbb{C}), \mathbb{Z}(k))$, see (2.5). Building on work of Krasnov [Kra91; Kra94] and Van Hamel [Ham97], Benoist and Wittenberg define a subgroup

$$\operatorname{Hdg}_{G}^{2k}(X(\mathbb{C}),\mathbb{Z}(k))_{0} \subset \varphi^{-1}\left(\operatorname{Hdg}^{2k}(X(\mathbb{C}),\mathbb{Z}(k))\right) \subset \operatorname{H}_{G}^{2k}(X(\mathbb{C}),\mathbb{Z}(k))$$

with certain suitable properties, that contains the cohomology class of any codimension k-cycle on X, and study the resulting real cycle class map

$$\mathcal{Z}_r(X) \to \operatorname{Hdg}_G^{2k}(X(\mathbb{C}), \mathbb{Z}(k))_0 \qquad (r+k = \dim(X)).$$
 (2.11)

L'analogue naturel de la Définition 2.2.3 en géométrie algébrique réelle est alors :

Définition 2.3.1. The real integral Hodge conjecture for r-cycles on X refers to the property that the real cycle class map (2.11) is surjective.

In other words, a smooth projective variety X over R satisfies the real integral Hodge conjecture for r-cycles if each $\alpha \in \operatorname{Hdg}_G^{2k}(X(\mathbb{C}), \mathbb{Z}(k))_0$ can be written as a sum of cohomology classes attached to real algebraic subvarieties of X. As in the complex situation, this property holds for all real varieties X and integers r as long as $r \in \{\dim(X), \dim(X) - 1, 0\}$ by the results of [Kra91; MH98; Ham97; BW20a], and it can fail for other values of $r \in \{0, 1, \ldots, \dim(X)\}$.

L'idée est la suivante. Il y a une obstruction évidente pour qu'une classe dans $H_G^{2k}(X(\mathbb{C}),\mathbb{Z}(k))$ soit algébrique : son image dans $H^{2k}(X(\mathbb{C}),\mathbb{Z}(k))$ peut ne pas être une classe de Hodge. Mais à part cela, il s'avère que les classes algébriques satisfont à une certaine condition topologique propre à la géométrie algébrique réelle, découverte par Kahn [Kah87] et Krasnov [Kra94] (voir aussi [BW20a, Theorem 1.18] pour une formulation précise de cette condition). Pour tout $k \in \mathbb{Z}_{>0}$, on note

$$\operatorname{Hdg}_{G}^{2k}(X(\mathbb{C}), \mathbb{Z}(k))_{0} \subset \operatorname{H}_{G}^{2k}(X(\mathbb{C}), \mathbb{Z}(k))$$
 (2.12)

le sous-groupe des classes $\alpha \in \mathrm{H}^{2k}_G(X(\mathbb{C}),\mathbb{Z}(k))$ telles que :

- (1) l'image de α dans $\mathrm{H}^{2k}(X(\mathbb{C}),\mathbb{Z}(k))$ est Hodge, et que
- (2) α vérifie la condition topologique ci-dessus [BW20a, Définition 1.19].

On dit alors qu'une variété projective lisse X sur \mathbb{R} satisfait la conjecture de Hodge entière réelle pour les r-cycles ($\mathbb{R}IHC_r$) si l'homomorphisme résultant

$$\mathcal{Z}_r(X) \to \mathrm{Hdg}_G^{2k}(X(\mathbb{C}), \mathbb{Z}(k))_0 \quad (r+k = \dim(X))$$
 (2.13)

est surjectif. Comme dans le cas complexe, il s'agit d'une propriété plutôt que d'une conjecture : elle est valable pour certaines variétés mais échoue pour d'autres. Comme son analogue complexe, $\mathbb{R}IHC_r$ est une propriété extrêmement puissante : prédisant précisément quelles classes de cohomologie sont algébriques, elle nous en dit long sur la géométrie de X et de ses sous-variétés. Par exemple, il peut être très difficile de produire des sous-variétés explicites ; si le groupe $\mathrm{Hdg}_G^{2k}(X(\mathbb{C}),\mathbb{Z}(k))_0$ est grand alors $\mathbb{R}IHC_r$ prédit que malgré cette difficulté, il y en a beaucoup.

2.4 Variétés abéliennes et jacobiennes

The class of abelian varieties is one of the simplest classes of varieties where the Hodge conjecture is not known to be true. Naturally, a certain amount of effort is directed toward them. As we outlined in Section ..., if a variety satisfies the integral Hodge conjecture, then it satisfies the Hodge conjecture, and there are several classes of varieties for which the integral Hodge conjecture fails. It remains an important open question whether or not abelian varieties satisfy the integral Hodge conjecture (see Question ...).

We will now explain briefly what abelian varieties are. We will also explain how to obtain an abelian variety starting from an algebraic curve. This construction yields a important subclass of the class of all abelian varieties, the so-called Jacobian varieties.

Variétés abéliennes complexes We first define abelian varieties in the complex setting.

Définition 2.4.1. A lattice in a complex vector space V is a discrete subgroup of V which spans V as a real vector space. A complex torus is the quotient $T = V/\Lambda$ of a complex space V by a lattice $\Lambda \subset V$. A complex abelian variety is a smooth algebraic variety A with an algebraic group law $m: A \times A \to A$ such that the underlying complex Lie group $A(\mathbb{C})$ is isomorphic to a complex torus $T = V/\Lambda$.

Example 2.4.2. Complex tori $T = V/\Lambda$ of dimension one are compact complex Riemann surfaces of genus one. As such, they are automatically algebraic. The associated abelian varieties are one-dimensional, and called *elliptic curves*.

Variétés jacobiennes Let C be a smooth projective complex curve of genus g; in other words, a Riemann surface of genus g. Let $H^0(C, \Omega_C)$ be the space of holomorphic differentiable 1-forms on $C(\mathbb{C})$, and let $H^0(C, \Omega_C)^{\vee} = \operatorname{Hom}_{\mathbb{C}}(H^0(C, \Omega_C), \mathbb{C})$ be the dual vector space. There is a natural homomorphism

$$H_1(C(\mathbb{C}), \mathbb{Z}) \longrightarrow H^0(C, \Omega_C)^{\vee},$$

 $\gamma \mapsto \left(\omega \mapsto \int_{\gamma} \omega\right).$

This map is injective, and the quotient $H^0(C,\Omega_C)^{\vee}/H_1(C(\mathbb{C}),\mathbb{Z})$ is a complex torus. In fact, the complex torus $H^0(C,\Omega_C)^{\vee}/H_1(C(\mathbb{C}),\mathbb{Z})$ turns out to be algebraic, hence gives rise to an abelian variety in the sense of Definition 2.4.1.

Définition 2.4.3. The *Jacobian* of C, denoted by JC, is the complex abelian variety JC with underlying complex torus $JC(\mathbb{C}) = H^0(C, \Omega_C)^{\vee}/H_1(C(\mathbb{C}), \mathbb{Z})$.

Abelian varieties and Jacobians over arbitrary fields In Section 2.4.1, we introduced the notion of complex abelian variety, see Definition 2.4. One can alternatively define it as a smooth projective complex variety A that is equipped with an algebraic group law $A \times A \to A$. This latter definition readily generalizes to arbitrary fields. Thus, for a field k, we define a abelian variety over k to be a smooth, projective, and geometrically irreducible variety A over k equipped with an algebraic group law $m: A \times A \to A$. The reason that these group varieties are called 'abelian' is because it turns out that, necessarily, the group law m is commutative (see e.g. [Mum08, p. 44, Corollary 2]). If k is algebraically closed, a polarization on A is an algebraic equivalence class $[\mathcal{L}]$ of an ample line bundle on A, where two such line bundles are algebraically equivalent if one can deform one into the other in an algebraic way (see for a precise definition). For an arbitrary field k, a polarization on A is a polarization $[\mathcal{L}]$ on the abelian variety $A \times_k \bar{k}$ which is invariant under the action of $Gal(\bar{k}/k)$ on the set of polarizations.

We let \mathcal{A}_g be the moduli stack of principally polarized abelian varieties of dimension g. For a field k, we let $|\mathcal{A}_g(k)|$ denote the set of isomorphism classes in the groupoid $\mathcal{A}_g(k)$. In other words :

 $|\mathcal{A}_g(k)| = \{\text{isomorphism classes of principally polarized}$ abelian varieties of dimension g over $k\}$.

A smooth projective curve of genus g over k is a geometrically irreducible variety C of dimension 1 over k, such that dim $H^0(C, \Omega_C^1) = 1$. A divisor on C is an integral linear combination $\sum_i n_i[p_i]$ of closed points $p_i \in C$. There is a natural notion of degree of such a divisor, and the rational equivalence classes of degree zero divisors on C form an abelian group, denoted by $\operatorname{Pic}^0(C)$.

It turns out that there exists a natural principally polarized abelian variety

over k, associated to C, denoted by JC and called the Jacobian of C, whose k-rational points are in natural bijection with $Pic^0(C)$. Letting $|\mathcal{M}_g(k)|$ denote the set of isomorphism classes of smooth projective curve of genus g over k, this construction defines a function

$$|\mathcal{M}_g(k)| \longrightarrow |\mathcal{A}_g(k)|$$

that sends a curve C to its Jacobian JC.

Chapitre 3

Projet I. Cohomologie de l'espace de modules des courbes réelles

Ce projet concerne un projet commun avec Emiliano Ambrosi (maître de conférences à l'IRMA, Strasbourg). L'idée centrale est d'étudier la topologie de l'espace de modules $\mathcal{M}_g(\mathbb{R})$ des courbes algébriques réelles de genre g, la comparent à la topologie de $\mathcal{M}_g(\mathbb{C})$.

3.1 Théorie de modules

L'un des problèmes centraux de la géométrie algébrique est le problème de la classification. Pouvons-nous classer toutes les variétés algébriques à isomorphisme près? Cette tâche pourrait sembler énorme et difficile, mais a quand même connu beaucoup de progrès ces dernières décennies. Elle se compose de deux parties :

- 1. Dans la partie discrète on étudie les invariants numériques des variétés X, tels que la dimension, le degré (si $X \subset \mathbb{P}^n$ est une hypersurface), le genre (si X est une courbe), etc.
- 2. Dans la partie continue, on étudie les familles de variétés ayant les mêmes invariants numériques. Souvent, lorsqu'il existe une famille continue d'objets non isomorphes, l'espace des paramètres porte une structure de variété algébrique complexe, appelée espace de modules. Ceci est un outil très puissant : toutes les techniques de géométrie algébrique peuvent être appliquées à l'étude de l'espace des paramètres ainsi qu'aux variétés qui définissent un point dans cet espace.

3.2 Modules des courbes

Parmi les objets les plus beaux et les plus fondamentaux de la géométrie algébrique moderne figure $\mathcal{M}_g(\mathbb{C})$, l'espace de module des courbes projectives lisses de genre g. Il s'agit d'un orbifold complexe, dont l'espace topologique sous-jacent est en bijection naturelle avec l'ensemble des classes d'isomorphisme des surfaces de Riemann compactes connexes de genre g. De nombreux travaux ont été réalisés pour comprendre la structure de l'homologie et de la cohomologie de $\mathcal{M}_g(\mathbb{C})$:

(1)
$$H_1(\mathcal{M}_q(\mathbb{C}), \mathbb{Q}) = 0$$
 pour $g \ge 3$ (voir [Pow78; Mum67; Har83]),

(2)
$$H_2(\mathcal{M}_q(\mathbb{C}), \mathbb{Q}) \cong \mathbb{Q}^2 \text{ pour } g \geq 5$$
 (voir [Har83]),

(3)
$$H^i(\mathcal{M}_q(\mathbb{C}), \mathbb{Q}) = 0$$
 for $i > 4g - 5$ (voir [Har86]),

(4)
$$\mathrm{H}^{4g-6}(\mathcal{M}_g(\mathbb{C}), \mathbb{Q})$$
 est non nul pour $g = 3, g = 5$ et $g \ge 7$ (voir [CGP21]).

3.3 Modules des courbes réelles

En revanche, on ne sait presque rien de la cohomologie de l'espace de modules des courbes algébriques réelles de genre g. Ce dernier est l'orbifold réel-analytique $\mathcal{M}_g(\mathbb{R})$ avec l'ensemble sous-jacent

 $|\mathcal{M}_q(\mathbb{R})| = \{\text{courbes algébriques réelles projectives lisses } C \text{ de genre } g\} / \text{isomorphisme.}$

On dote l'ensemble $|\mathcal{M}_g(\mathbb{R})|$ avec sa topologie euclidienne naturelle, voir [GF22a; GF22b] et comparer [SS89]. De façon similaire, soit $|\mathcal{M}_g(\mathbb{C})|$ l'espace de modules des surfaces de Riemann compacts de genre g. Il y a une flêche naturelle

$$|\mathcal{M}_q(\mathbb{R})| \to |\mathcal{M}_q(\mathbb{C})|$$

qui envoie une courbe réelle C vers la courbe complexe $C_{\mathbb{C}}$ qu'elle induite.

Questions 3.3.1 (joint avec Emiliano Ambrosi). Soit $g \in \mathbb{Z}_{\geq 2}$. Considérons l'espace topologique $|\mathcal{M}_g(\mathbb{R})|$ sous-jacent à l'espace de modules des courbes algébriques réelles de genre g défini ci-dessus.

(1) Pour un entier positif i, quelle est la dimension de $H^i(|\mathcal{M}_q(\mathbb{R})|, \mathbb{Z}/2)$?

(2) Comment cette valeur se compare-t-elle à la dimension de $H^i(|\mathcal{M}_q(\mathbb{C})|, \mathbb{Z}/2)$?

To understand these questions better, the first thing to do is to compare the cohomology ring of $\mathcal{M}_g(\mathbb{R})$ with the cohomology ring of $\mathcal{M}_g(\mathbb{C})$. To explain this, rappelons que, si X est une variété algébrique de dimension n sur \mathbb{R} , l'inégalité Smith-Thom (cf. [Flo52; Tho65]) dit que

$$\sum_{i=0}^{n} \dim \mathcal{H}^{i}(X(\mathbb{R}), \mathbb{Z}/2) \leq \sum_{i=0}^{2n} \dim \mathcal{H}^{i}(X(\mathbb{C}), \mathbb{Z}/2). \tag{3.1}$$

Voir aussi [Man17, Théorème 3.3.6] ou le livre [DIK00]. Une variété réelle X pour laquelle (3.1) est une égalité est appelée une $variété\ maximale$.

3.4 Smith–Thom pour les champs et maximalité de \mathcal{M}_q

Many moduli spaces are not actual varieties, but algebraic stacks. The category of algebraic stacks contains the category of algebraic varieties, but is larger; the moduli stack that parametrizes certain algebraic objects (like curves of fixed genus, line bundles on a fixed variety, or lines in affine space) does not only parametrize the objects, but also their automorphisms. Ever since their first appearance in [DM69], algebraic stacks are an indispensable tool in moduli theory [ref, ref].

In an ongoing project, we generalize the classical Smith-Thom inequality (see (3.1) above) to the setting of algebraic stacks. The result is as follows; we are convinced that the following holds, and are nearby a complete proof.

Conjecture 3.4.1 (Ambrosi–de Gaay Fortman). For a separated Deligne–Mumford stack X over \mathbb{R} , there exists a canonical constructible sheaf F_X on $|X(\mathbb{C})|$, compatible with pull-back, such that the following inequality holds:

$$\sum \dim H^{i}(X(\mathbb{R}), \mathbb{Z}/2) \leq \sum \dim H^{i}(X(\mathbb{C}), F_{X}). \tag{3.2}$$

The sheaf F_X in Theorem 3.4.1 is very explicit. As indicated above, we are close to completing the last steps in the proof. As a result, it makes sense to introduce:

Définition 3.4.2. Let X be a separated Deligne–Mumford stack over \mathbb{R} . We say that X is maximal if the inequality (3.2) is an equality.

This leads to the following question, which was our original main motivation:

Question 3.4.3. Let $g \geq 2$ be an integer and consider the moduli stack \mathcal{M}_g of smooth curves of genus g over \mathbb{R} . Is the moduli space \mathcal{M}_g maximal?

After finishing writing down the paper in which we prove Conjecture 3.4.1, our goal is to continue to collaborate, and work on Question 3.4.3.

Chapitre 4

Projet II. La conjecture de Tate entière sur les corps finis

4.1 La conjecture de Tate entière et la cohomologie nonramifiée

]Introduire la conjecture de Tate entière, er faire le lien avec la cohomologie non-ramifiée.]

Question 4.1.1 (Colliot-Thélène–Kahn). Pour X une variété projective et lisse de dimension 3 sur \mathbb{F}_p , a-t-on $\mathrm{H}^3_{\mathrm{nr}}(X_{\mathrm{\acute{e}t}},\mathbb{Z}_\ell(2))=0$?

Voir [CTK13].

Question 4.1.2 (Wittenberg). Soit X une variété abélienne de dimension 3 sur \mathbb{F}_p . Soit $\alpha \in H^4_{\text{\'et}}(X_{\overline{\mathbb{F}}_p}, \mathbb{Z}_\ell(2))$ une classe telle que $\sigma(\alpha) = \alpha$ pour tout $\sigma \in \text{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p)$. Est-ce que α s'écrit comme une combinaison linéaire

$$\alpha = \sum n_i[C_i] \in \mathrm{H}^4_{\mathrm{\acute{e}t}}(X_{\overline{\mathbb{F}}_p}, \mathbb{Z}_\ell(2))^{\mathrm{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p)} \qquad (n_i \in \mathbb{Z}_\ell)$$

de classes des courbes $C_i \subset X$ dans X sur \mathbb{F}_p ?

4.2 La conjecture de Tate entière pour les solides abéliens

Le but de ce projet est d'étudier les 1-cycles sur les solides abéliens. Nous les étudions en caractéristique positive, en étudiant la version forte de la conjecture de Tate entière pour les 1-cycles sur les solides abéliens. Cette propriété prédit l'existence de courbes C sur un tel solide A sur \mathbb{F}_q qui engendrent le \mathbb{Z}_ℓ -module $H^4_{\text{ét}}(A_{\overline{\mathbb{F}}_p}, \mathbb{Z}_\ell(2))^{\mathrm{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_q)}$.

Fixons un entier positif $n \in \mathbb{N}$. Le but de ce projet est de prouver :

Conjecture 4.2.1. Soient $p \neq \ell$ des nombres premiers, soit $q = p^n$ et soit (X, θ) un solide abélien principalement polarisé sur \mathbb{F}_q .

(1) L'application classe de cycle

$$cl_X \colon \mathrm{CH}_1(X) \otimes \mathbb{Z}_\ell \to \mathrm{H}^4_{\mathrm{\acute{e}t}}(X_{\overline{\mathbb{F}}_q}, \mathbb{Z}_\ell(2))^G \quad (G = \mathrm{Gal}(\overline{\mathbb{F}}_q/\mathbb{F}_q))$$

est surjective.

(2) Il existe un tel (X, θ) sur \mathbb{F}_q , et un nombre premier $\ell \neq p$, tel que l'application

$$AJ: CH_1(X)_{hom} \otimes \mathbb{Z}_{\ell} \longrightarrow H^1(G, H^3_{\text{\'et}}(X \times_{\mathbb{F}_q} \overline{\mathbb{F}}_q, \mathbb{Z}_{\ell}(2)))$$

n'est pas surjective. En particulier, la réponse à la Question 4.1.1 est "non".

4.3 Stratégie du projet

Pour attaquer la Conjecture 4.2.1, le point de départ est comme suit.

Theorem 4.3.1 (Beckmann-de Gaay Fortman). Soit (X, θ) une variété abélienne principalement polarisée de dimension g sur \mathbb{F}_q telle que la classe minimale $\theta^{g-1}/(g-1)!$ est dans l'image de l'application classe de cycle

$$cl_X \colon \mathrm{CH}_1(X) \otimes \mathbb{Z}_\ell \to \mathrm{H}^{2g-2}_{\mathrm{\acute{e}t}}(X_{\overline{\mathbb{F}}_q}, \mathbb{Z}_\ell(g-1))^{\mathrm{Gal}(\overline{\mathbb{F}}_q/\mathbb{F}_q)}$$

Alors cl_X est surjective.

Démonstration. Cela découle de [BGF23, Proposition 3.11] et de la surjectivité de l'application $\operatorname{CH}^1(X) \otimes \mathbb{Z}_\ell \to \operatorname{H}^2_{\operatorname{\acute{e}t}}(X_{\overline{\mathbb{F}}_q}, \mathbb{Z}_\ell(1))^{\operatorname{Gal}(\overline{\mathbb{F}}_q/\mathbb{F}_q)}$ (voir [Tat66; Tat94]). \square

D'après le Théorème 4.3.1, la Conjecture 4.2.1 se réduit à la question de savoir si, pour p > 2 et $\ell = 2$,

$$\gamma_{\min} = \theta^2/2 \in \mathrm{H}^4_{\mathrm{\acute{e}t}}(X_{\overline{\mathbb{F}}_q}, \mathbb{Z}_\ell(2))$$

est à l'image de cl_X pour tout solide abélien principalement polarisé (X,θ) sur \mathbb{F}_q .

On considère alors le résultat suivant par Oort et Ueno. Pour une courbe projective lisse géométriquement connexe C sur un corps k, on note $JC = \operatorname{Pic}^0(C)$, la variété jacobienne de C, et on note θ_{JC} la polarisation principale canonique de JC. Une variété abélienne polarisée sur un corps est dite géométriquement indécomposable si son changement de base sur la clôture algébrique n'est pas isomorphe comme variétés abéliennes polarisées à un produit de sous-variétés abéliennes polarisées non triviales.

Theorem 4.3.2 (Oort–Ueno). Soit (X, θ_X) un solide abélien géométriquement indécomposable principalement polarisé solide sur \mathbb{F}_q . Il existe une courbe C/\mathbb{F}_q telle que

$$(X_{\mathbb{F}_{q^2}},\theta_X)\cong (JC_{\mathbb{F}_{q^2}},\theta_{JC})$$

 $sur \mathbb{F}_{q^2}$. De plus, il existe un homomorphisme $\varepsilon \colon Gal(\overline{\mathbb{F}}_q/\mathbb{F}_q) \to \{\pm 1\}$ tel que (X, θ) soit isomorphe au ε -twist de (JC, θ_{JC}) sur \mathbb{F}_q .

 $D\acute{e}monstration$. Voir [OU73] ou [Ser20, Theorem 4.2.1].

Pour un plongement $C \hookrightarrow JC = \operatorname{Pic}^0(C)$ défini par un point rationnel de C, on a

$$[C] = \theta_{JC}^2/2 \in \mathrm{H}^4_{\mathrm{\acute{e}t}}(JC_{\overline{\mathbb{F}}_q}, \mathbb{Z}_\ell(2)).$$

Ainsi $\gamma_{\min} \in \mathrm{H}^4_{\mathrm{\acute{e}t}}(X_{\overline{\mathbb{F}}_q}, \mathbb{Z}_\ell(2))$ devient algébrique sur l'extension de degré deux \mathbb{F}_{q^2} de \mathbb{F}_q , et est même donné par la classe d'une courbe irréductible $C_{\mathbb{F}_{q^2}} \subset X_{\mathbb{F}_{q^2}}$.

Ainsi, la façon la plus naturelle d'aborder la Conjecture 4.2.1 est via la question suivante. Soit $k \supset \mathbb{F}_p$ un corps fini et soit C une courbe projective lisse non-hyperelliptique de genre 3 sur k, telle que JC est géométriquement indécomposable. Soit (A, θ) l'unique twist quadratique de JC sur A.

Question 4.3.3. Est-ce que la classe $\gamma_{\min} \in H^4_{\text{\'et}}(A_{\overline{\mathbb{F}}_p}, \mathbb{Z}_2(2))$ est algébrique ?

Projet III. Variétés abéliennes isogènes à des jacobiennes sur $\overline{\mathbb{Q}}$

In this section, I describe my second research proposal, whose goal is to generalize Tsimerman's theorem [Tsi12] – saying there exists abelian varieties A over the field of algebraic numbers $\overline{\mathbb{Q}}$ which are not isogenous to a Jacobian – to prove that there are abelian varieties A over $\overline{\mathbb{Q}}$ none of whose powers A^k ($k \geq 1$) is isogenous to a Jacobian. Before I explain this further, let me recall the notions of abelian variety and Jacobian variety, over an arbitrary field.

For abelian varieties A and B over k, an isogeny $\phi \colon A \to B$ is a surjective homomorphism of algebraic groups with finite kernel. As Jacobian varieties constitute such fundamental examples of abelian varieties, one would like to understand how large the class is that one obtains by considering abelian varieties A for which there exists a curve C together with an isogeny $\phi \colon A \to JC$. In other words :

Which abelian varieties A are isogenous to a Jacobian?

5.1 Powers of abelian varieties isogenous to Jacobians

One of the corollaries of the main result our joint paper [GFS24] with Stefan Schreieder, is as follows.

Theorem 5.1.1 (de Gaay Fortman–Schreieder). For each integer $g \geq 4$, there

exist principally polarized abelian varieties A of dimension g over \mathbb{C} , such that A^k is not isogenous to any product of Jacobians, for each integer $k \geq 1$.

In fact, the locus of abelian varieties A having the property that A^k is isogenous to a product of Jacobians constitutes a meagre subset of the space $|\mathcal{A}_g(\mathbb{C})|$ of principally polarized abelian varieties of dimension g over \mathbb{C} .

For dimension reasons, every principally polarized abelian variety of dimension ≤ 3 over an algebraically closed field is isomorphic to a product of Jacobians. For $g \geq 4$ this is no longer true, as

$$\dim \mathcal{M}_q = 3g - 3 < g(g+1)/2 = \dim \mathcal{A}_q$$

in that range. Over the complex numbers, this implies that for each $g \geq 4$, there are principally polarized abelian varieties not isogenous to a Jacobian; in fact the very general complex abelian variety satisfies this property. Over countable fields, however, this line of argument fails. It remained an open question, due to Katz and Oort ([CO12] and [ref]) whether there exist abelian varieties over $\overline{\mathbb{Q}}$ not isogenous to any Jacobian – until Tsimerman proved this, see [Tsi12] (and compare [MZ20]).

In light of our result, see Theorem 5.1.1 above, it is natural to ask whether this theorem has an analogue over $\overline{\mathbb{Q}}$.

Are there abelian varieties A over $\overline{\mathbb{Q}}$ such that A^k is not isogenous to a Jacobian, for any integer $k \in \mathbb{Z}_{\geq 1}$?

The goal of this project is to answer this question.

Projet IV. La conjecture de Hodge entière

The goal of this research project is to study:

6.1 1-cycles on complex abelian varieties

En général, on ne connait pas la réponse à la question suivante.

Question 6.1.1. Existent-ils des variétés abéliennes complexes qui échouent à la conjecture de Hodge entière?

Pour étudier cette question, il est naturel d'étudier la classe minimale d'une variété abélienne principalement polarisée (A, θ) : c'est la classe

$$\gamma_{\min} = \theta^{g-1}/(g-1) ! \in \mathrm{Hdg}^{2g-2}(A(\mathbb{C}), \mathbb{Z}).$$

La conjecture de Hodge entière pour les 1-cycles sur A prédit que γ_{\min} est algébrique, c'est-à-dire la classe de cohomologie attachée à une combinaison \mathbb{Z} -linéaire de courbes $C_i \subset A$.

Lorsque $A = JC = \operatorname{Pic}^0(C)$ est la jacobienne d'une courbe projective lisse C de genre g sur \mathbb{C} , alors tout point $p \in C(\mathbb{C})$ définit un plongement

$$C \hookrightarrow JC, \quad x \mapsto [x] - [p],$$

et on a

$$[C] = \theta^{g-1}/(g-1) ! \in H^{2g-2}(JC(\mathbb{C}), \mathbb{Z})$$

par la formule de Poincaré [Arb+85, §I.5]. Pour $g \leq 3$, toute variété abélienne principalement polarisée (A, θ) est isomorphe à un produit de variétés jacobiennes, d'où l'on peut déduire que la classe minimale $\gamma_{\min} = \theta^{g-1}/(g-1)!$ est algébrique pour de telles variétés abéliennes. Pour $g \geq 4$, cependant, l'algébricité de γ_{\min} reste un problème ouvert important.

Grabowski a prouvé dans sa thèse [Gra04] que la conjecture de Hodge entière vaut pour les solides abéliens complexes (c'est-à-dire les variétés abéliennes complexes de dimension 3). Depuis lors, il n'y a pas eu beaucoup de progrès sur la conjecture de Hodge entière pour les variétés abéliennes, jusqu'à ce que nous prouvions dans [BGF23] le résultat suivant :

Theorem 6.1.2 (Beckmann-de Gaay Fortman). Soit (A, θ) une variété abélienne principalement polarisée de dimension g. Si la classe minimale $\gamma_{\min} \in H^{2g-2}(A(\mathbb{C}), \mathbb{Z})$ est algébrique, alors A satisfait la conjecture de Hodge entière pour les 1-cycles.

Corollary 6.1.3 (Beckmann-de Gaay Fortman). La conjecture de Hodge entière pour les 1-cycles vaut pour tout produit

$$A = J(C_1) \times \cdots \times J(C_n)$$

de jacobiennes des courbes projectives lisses C_i sur \mathbb{C} .

D'après le Théorème 6.1.2, la conjecture de Hodge entière pour les 1-cycles sur les variétés abéliennes complexes principalement polarisées est équivalente à l'algébricité de la classe minimale γ_{\min} de toute variété abélienne complexe (A, θ) . On est naturellement amené à se demander :

Question 6.1.4. Soit (A, θ) une variété abélienne complexe principalement polarisée très générale de dimension $g \geq 4$. Considérons la classe minimale

$$\gamma_{\min} \in \mathrm{Hdg}^{2g-2}(A(\mathbb{C}), \mathbb{Z}).$$

Est-elle algébrique?

6.2 Stratégie du projet

Consider Theorem 6.1.2 above; it says that the integral Hodge conjecture for one-cycles holds on products of Jacobians of curves. Let A be any abelian variety. Then by Theorem 6.1.2 above, if there exists an abelian variety B such that $A \times B$ is isomorphic (as unpolarized abelian varieties) to a product $\prod_i JC_i$ of Jacobians JC_i of smooth projective curves C_i (one says that "A is a direct summand in a product of Jacobians"), then A satisfies the integral Hodge conjecture for one-cycles. After our result, Voisin has proved a converse to this latter statement [Voi23].

Combining both statements yields the following result.

Theorem 6.2.1 (Beckmann–De Gaay Fortman, Voisin). Let A be a principally polarized complex abelian variety. Then A satisfies the integral Hodge conjecture for 1-cycles if and only A is a direct summand in a product of Jacobians.

 $D\acute{e}monstration$. See [BGF23] and [Voi23].

In a recent project with Stefan Schreieder, we prove that no non-trivial power of a very general hyperelliptic Jacobian of dimension $g \geq 4$ is isogenous to the Jacobian of any curve (see [GFS24, Theorem 1.1]). As a corollary, we show in the same paper that if A is a very general principally polarized abelian variety of dimension $g \geq 4$, then there are no simple abelian varieties B_1, \ldots, B_n such that $A \times B$ for $B := \prod_i B_i$ is isomorphic to a product of Jacobians of curves (cf. [GFS24, Corollary 1.6]). This is particularly interesting because, in view of Theorem 6.2.1, it gives some evidence towards the failure of the integral Hodge conjecture for one-cycles on abelian varieties A. Namely, the geometry of any abelian variety B such that $A \times B$ is isomorphic to a product of Jacobians, is restricted.

The goal of this research project is to proceed in this same direction, aiming to consider a very general principally polarized abelian variety A of dimension $g \geq 4$, put further restrictions on the geometry of any abelian varieties B that satisfies the property that $A \times B$ is isomorphic to a product of Jacobians.

Projet V. La conjecture de Hodge entière réelle

Le deuxième objectif de ce projet de recherche est l'étude de la conjecture de Hodge entière réelle une classe riche de variétés réelles. Pour expliquer cela, commençons à considérer une variété projective lisse X sur \mathbb{R} et un entier $k \in \mathbb{Z}_{\geq 0}$. Quel devrait être le bon ensemble de conditions sur les classes dans $\mathrm{H}^{2k}_G(X(\mathbb{C}),\mathbb{Z}(k))$ à considérer, pour que toutes les classes algébriques satisfassent ces conditions, et que dans situations favorables, ces conditions sont-elles suffisantes pour distinguer les classes algébriques des classes non algébriques? Benoist et Wittenberg ont répondu à cette question dans $[\mathrm{BW20a}]$, où ils formulent la conjecture de Hodge entière réelle; voir la Définition 2.3.1 ci-dessus. Rappelons que il s'agit d'une propriété plutôt qu'une conjecture. Le but de ce projet sera de prouver cette propriété pour les solides de Calabi-Yau et les solides uniréglés sur les nombres réels.

7.1 Résultats connus et questions ouvertes

Quelles classes de variétés n-dimensionnelles X et quels entiers $r \leq n$ sont tels que $\mathbb{R}\mathrm{IHC}_r$ vaut pour X? Pour toutes les variétés de toute dimension n, pour r=0 et r=n, la propriété est satisfaite. Krasnov a prouvé un analogue équivariant du (1,1)-théorème de Lefschetz, notant que la suite exacte courte exponentielle sur $X(\mathbb{C})$ est G-équivariante [Kra91; MH98; Ham97]. Ainsi, $\mathbb{R}\mathrm{IHC}_{n-1}$ vaut pour tout X. Pour $r \in \{1, \ldots, n-2\}$, la propriété $\mathbb{R}\mathrm{IHC}_r$ peut échouer. Cependant, on a :

Theorem 7.1.1 (Voisin–Totaro). Soit X une variété complexe, projective et lisse. Supposons que $\dim(X) = 3$ et X est une variété uniréglée ou de Calabi–Yau. Alors X satisfait à la conjecture de Hodge entière.

 $D\acute{e}monstration$. Voir [Voi06] et [Tot21].

Conditionnellement à la conjecture de Tate pour les surfaces sur les corps finis, Voisin a également démontré la conjecture de Hodge entière pour les 1-cycles sur les variétés rationnellement connexes de toute dimension, voir [Voi13]. L'analogue réel de ces résultat reste un problème ouvert. Plus précisément, on voudrait connaître la réponse à la question suivante (voir [BW20a, Question 2.16]) :

Question 7.1.2 (Benoist-Wittenberg). Soit X une variété projective lisse sur \mathbb{R} . Supposons que X est soit un solide uniréglés, soit un solide de Calabi-Yau, soit une variété rationnellement connexes. Alors est-ce que X satisfait $\mathbb{R}IHC_1$?

Benoist et Wittenberg n'ont que des résultats partiels dans le cas rationnel-lement connexe, voir [BW20b]. En particulier, il est important de se demander qu'est-ce qui se passe pour les variétés de dimension 3 sur \mathbb{R} qui sont Calabi-Yau. Le but de ce projet sera to make progress on Question 7.1.2. Dans [GF24], j'ai fait un premier pas, en démontrant :

Theorem 7.1.3 (de Gaay Fortman, cf. [GF24]). Soit A une variété abélienne de dimension 3 sur \mathbb{R} . Alors les classes de Hodge G-invariants $\operatorname{Hdg}^{2\bullet}(A(\mathbb{C}),\mathbb{Z}(2))^G$ sur A sont algébriques, c.a.d. donnés par des cycles algébriques réels. De plus, A satisfait à la conjecture de Hodge entière réelle dans chacun des cas suivants :

- (1) Le lieu réel $A(\mathbb{R})$ est connexe.
- (2) Il existe un isomorphisme $A \cong B \times E$ avec le produit d'une surface abélienne B et d'une courbe elliptique E de lieu réel $E(\mathbb{R})$ connexe.

Démonstration. Voir [GF24].

7.2 Strategie du projet

La première étape de ce projet sera d'étendre le résultat du Théorème 7.1.3 aux solides de Calabi–Yau sur $\mathbb R$ arbitraires. Il est naturel d'essayer d'adapter la

stratégie de Voisin sur les nombres réels. Ce qu'elle prouve est le suivant. Supposons que $H^2(X_{\mathbb{C}}, \mathcal{O}_{X_{\mathbb{C}}}) = 0$. Soit $S \subset X_{\mathbb{C}}$ une surface lisse obtenue comme section d'un diviseur suffisamment ample sur $X_{\mathbb{C}}$. Le schéma de Hilbert \mathcal{H} des déformations de S dans $X_{\mathbb{C}}$ est lisse autour de $[S] \in \mathcal{H}$; on obtient une famille de déformations $\mathscr{S} \to U \subset \mathcal{H}$ avec U lisse. Soit $0 \in U(\mathbb{C})$ correspondant à S, et considérons l'application de Kodaira-Spencer $\rho: T_0U \to H^1(S, T_S)$. Supposons qu'il existe un élément $\lambda \in H^1(S, \Omega_S^1)$ tel que la composition

$$T_0U \to \mathrm{H}^1(S, T_S) \xrightarrow{\cup \lambda} \mathrm{H}^2(S, \Omega_S^1 \otimes T_S) \to \mathrm{H}^2(S, \mathcal{O}_S)$$
 (7.1)

est surjectif. Alors toute classe $\alpha \in H^4(X(\mathbb{C}), \mathbb{Z})$ est algébrique.

Le critère ci-dessus porte le nom de critère de Green. Prouvé à l'origine par Green dans l'appendice de [CHM88], il peut être appliqué dans de nombreuses situations pour prouver la densité des lieux de Noether-Lefschetz. Bien que facile à énoncer, il est souvent difficile à vérifier, comme c'est le cas pour [Voi06] : la partie difficile de la preuve de Voisin consiste en effet à vérifier le critère, ce qu'elle fait en dégénérant la surface S en une surface de nombreux nœuds. Sur les nombres réels, un critère analogue existe, voir [Ben18, §1]. Il porte le nom Critère de Green sur \mathbb{R} . En répétant l'argument ci-dessus, on obtient une famille $\mathscr{S} \to U$ de surfaces lisses dans X définie sur \mathbb{R} , telle que $S = \mathscr{S}_0 \subset X$ est une section d'un suffisamment ample diviseur de X. Comme dans le cas de [Voi06; Tot21], il n'est pas difficile de montrer que le critère de Green sur \mathbb{R} implique \mathbb{R} IHC₁ pour X. On peut alors essayer d'adapter sur \mathbb{R} la preuve de Voisin de la satisfaction du critère complexe.

J'ai prouvé dans le [GF22b, Théorème 1.2] qu'il existe un analogue naturel du critère de Green pour une famille de variétés abéliennes $\psi: \mathcal{A} \to B$, et que ce critère est le même critère sur \mathbb{R} que sur \mathbb{C} . Le critère prédit la densité du sous-ensemble $R_k \subset B(\mathbb{R})$ ainsi que du sous-ensemble $S_k \subset B(\mathbb{C})$ constitué des $t \in B(\mathbb{R})$ (resp. $t \in B(\mathbb{C})$) tels que $\mathcal{A}_t = \psi^{-1}(t)$ contient une sous-variété abélienne réelle (resp. complexe) de dimension k. Cette relation étonnamment simple entre le critère de Green complexe et son analogue réel pour les familles de variétés abéliennes soulève l'espoir que le critère de Green pour les courbes sur les surfaces sur des solides réels de Calabi-Yau puisse être vérifié d'une manière ou d'une autre.

Bibliographie

- [AB84] Michal Atiyah et Raoul Bott. "The moment map and equivariant cohomology". In: *Topology* 23 (1984).
- [AH62] Michael Atiyah et Friedrich Hirzebruch. "Analytic cycles on complex manifolds". In: *Topology* 1 (1962), p. 25-45.
- [Arb+85] Enrico Arbarello et al. Geometry of Algebraic Curves. Volume I. Springer-Verlag, 1985.
- [Ben18] Olivier Benoist. "Sums of three squares and Noether-Lefschetz loci". In: Compositio Mathematica 154 (2018).
- [BGF23] Thorsten Beckmann et Olivier de Gaay Fortman. "Integral Fourier transforms and the integral Hodge conjecture for one-cycles on abelian varieties". In: *Compositio Mathematica* 159.6 (2023), p. 1188-1213.
- [BH61] Armand BOREL et André HAEFLIGER. "La classe d'homologie fondamentale d'un espace analytique". In : Bulletin de la Société Mathématique de France 89 (1961).
- [BO20] Olivier Benoist et John Christian Ottem. "Failure of the integral Hodge conjecture for threefolds of Kodaira dimension zero". In: Commentarii Mathematici Helvetici 95.1 (2020), p. 27-35.
- [BW20a] Olivier Benoist et Olivier Wittenberg. "On the integral Hodge conjecture for real varieties, I". In: *Inventiones Mathematicae* 222.1 (2020), p. 1-77.

- [BW20b] Olivier BENOIST et Olivier WITTENBERG. "On the integral Hodge conjecture for real varieties, II". In: Journal de l'École polytechnique 7 (2020), p. 373-429.
- [CGP21] Melody Chan, Søren Galatius et Sam Payne. "Tropical curves, graph complexes, and top weight cohomology of \mathcal{M}_g ". In : *J. Amer. Math. Soc.* 34.2 (2021), p. 565-594.
- [CHM88] Ciro Ciliberto, Joe Harris et Rick Miranda. "General Components of the Noether-Lefschetz Locus and their Density in the Space of all Surfaces". In: *Mathematische Annalen* 282 (1988).
- [CO12] Ching-Li Chai et Frans Oort. "Abelian varieties isogenous to a Jacobian". In: Ann. of Math. (2) 176.1 (2012), p. 589-635.
- [CTK13] Jean-Louis COLLIOT-THÉLÈNE et Bruno KAHN. "Cycles de codimension 2 et H^3 non ramifié pour les variétés sur les corps finis". In : J. K-Theory 11.1 (2013), p. 1-53.
- [CTV12] Jean-Louis COLLIOT-THÉLÈNE et Claire VOISIN. "Cohomologie non ramifiée et conjecture de Hodge entière". In: Duke Mathematical Journal 161.5 (2012), p. 735-801.
- [DIK00] Alex Degtyarev, Iila Itenberg et Viatcheslav Kharlamov. *Real Enriques surfaces*. T. 1746. Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2000, p. xvi+259.
- [DM69] Pierre Deligne et David Mumford. "The irreducibility of the space of curves of given genus". In : *Publications Mathématiques de l'IHÉS* 36 (1969).
- [EGAI] Jean DIEUDONNÉ et Alexander GROTHENDIECK. Éléments de géométrie algébrique. I. Le langage des schémas. Institut des Hautes Études Scientifiques. Publications Mathématiques, 1960.
- [Flo52] Edwin Earl Floyd. "On periodic maps and the Euler characteristics of associated spaces". In: Trans. Amer. Math. Soc. 72 (1952), p. 138-147.

- [GF22a] Olivier de GAAY FORTMAN. "Moduli spaces and algebraic cycles in real algebraic geometry". Thèse de doct. École normale supérieure de Paris, 2022.
- [GF22b] Olivier de GAAY FORTMAN. "Real moduli spaces and density of non-simple real abelian varieties". In: *The Quarterly Journal of Mathematics* 73.3 (2022), p. 969-989.
- [GF24] Olivier de GAAY FORTMAN. "On the integral Hodge conjecture for real abelian threefolds". In: Journal für die reine und angewandte Mathematik (Crelles Journal) (2024).
- [GFS24] Olivier de GAAY FORTMAN et Stefan SCHREIEDER. Curves on powers of hyperelliptic Jacobians. 2024. arXiv: 2401.06577 [math.AG].
- [Gra04] Craig Grabowski. "On the integral Hodge conjecture for 3-folds". Thèse de doct. Duke University, 2004.
- [Gro57] Alexander Grothendieck. "Sur quelques points d'algèbre homologique". In : *Tohoku Mathematical Journal* 9 (1957), p. 119-221.
- [Ham97] Joost van HAMEL. "Algebraic cycles and topology of real algebraic varieties." Thèse de doct. Vrije Universiteit Amsterdam, 1997.
- [Har77] Robin HARTSHORNE. Algebraic geometry. Graduate Texts in Mathematics. Springer, 1977, p. xvi+496.
- [Har83] John HARER. "The second homology group of the mapping class group of an orientable surface". In: *Invent. Math.* 72.2 (1983), p. 221-239.
- [Har86] John Harer. "The virtual cohomological dimension of the mapping class group of an orientable surface". In: *Invent. Math.* 84.1 (1986), p. 157-176.
- [Hod61] William Hodge. "Differential forms in algebraic geometry". In: Rendiconti di Matematica e delle sue Applicazioni 20 (1961), p. 172-234.
- [Kah87] Bruno KAHN. "Construction de classes de Chern équivariantes pour un fibré vectoriel réel". In: Communications in Algebra 15.4 (1987), p. 695-711.

- [Kra91] Vyacheslav Krasnov. "Characteristic classes of vector bundles on a real algebraic variety". In: *Izvestiya Rossiiskoi Akademii Nauk, Seriya Matematicheskaya* 55.4 (1991), p. 716-746.
- [Kra94] Vyacheslav Krasnov. "On the equivariant Grothendieck cohomology of a real algebraic variety and its applications". In: *Izvestiya Rossiiskoi Akademii Nauk, Seriya Matematicheskaya* 58.3 (1994), p. 36-52.
- [Man17] Frédéric MANGOLTE. Variétés Algébriques Réelles. T. 24. Cours Spécialisés. Société Mathématique de France, 2017, p. vii+484.
- [MH98] Frédéric MANGOLTE et Joost van HAMEL. "Algebraic cycles and topology of real Enriques surfaces". In: *Compositio Mathematica* 110.2 (1998).
- [Mil80] James MILNE. Étale Cohomology. Princeton Mathematical Series, No.
 33. Princeton University Press, Princeton, N.J., 1980, p. xiii+323.
- [Mum08] David Mumford. Abelian Varieties. T. 5. Tata Institute of Fundamental Research Studies in Mathematics. Tata Institute of Fundamental Research, 2008, p. xii+263.
- [Mum67] David Mumford. "Abelian quotients of the Teichmüller modular group". In: J. Analyse Math. 18 (1967), p. 227-244.
- [Mum88] David Mumford. The red book of varieties and schemes. T. 1358. Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1988, p. vi+309.
- [MZ20] David MASSER et Umberto ZANNIER. "Abelian varieties isogenous to no Jacobian". In: Ann. of Math. (2) 191.2 (2020), p. 635-674.
- [OU73] Frans OORT et Kenji UENO. "Principally polarized abelian varieties of dimension two or three are Jacobian varieties". In: *J. Fac. Sci. Univ. Tokyo Sect. IA Math.* 20 (1973), p. 377-381.
- [Pow78] Jerome POWELL. "Two theorems on the mapping class group of a surface". In: *Proc. Amer. Math. Soc.* 68.3 (1978), p. 347-350.
- [Sch19] Stefan SCHREIEDER. "Stably irrational hypersurfaces of small slopes". In: Journal of the American Mathematical Society 32.4 (2019), p. 1171-1199.

- [Ser20] Jean-Pierre SERRE. Rational points on curves over finite fields. T. 18. Documents Mathématiques (Paris). Société Mathématique de France, Paris, 2020, p. x+187.
- [SGA4] Michael Artin, Alexander Grothendieck et Jean-Louis Verdier.

 Théorie de Topos et Cohomologie Etale des Schémas I, II, III. Springer,
 1971.
- [SS89] Mika Seppälä et Robert Silhol. "Moduli spaces for real algebraic curves and real abelian varieties". In: *Mathematische Zeitschrift* 201.2 (1989).
- [Tat66] John TATE. "Endomorphisms of abelian varieties over finite fields". In: Inventiones Mathematicae 2 (1966), p. 134-144.
- [Tat94] John TATE. "Conjectures on algebraic cycles in l-adic cohomology". In:
 Motives (Seattle, WA, 1991). T. 55. Proc. Sympos. Pure Math. Amer.
 Math. Soc., Providence, RI, 1994, p. 71-83.
- [Tho65] René Thom. "Sur l'homologie des variétés algébriques réelles". In : Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse). Princeton Univ. Press, Princeton, N.J., 1965, p. 255-265.
- [Tot21] Burt Totaro. "The integral Hodge conjecture for 3-folds of Kodaira dimension zero". In: Journal of the Institute of Mathematics of Jussieu 20.5 (2021), p. 1697-1717.
- [Tot97] Burt Totaro. "Torsion algebraic cycles and complex cobordism". In: Journal of the American Mathematical Society 10.2 (1997), p. 467-493.
- [Tre] "Trento examples". In: Classification of Irregular Varieties (Trento, 1990). T. 1515. Lecture Notes in Mathematics. Springer, 1992, p. 134-139.
- [Tsi12] Jacob TSIMERMAN. "The existence of an abelian variety over $\overline{\mathbb{Q}}$ isogenous to no Jacobian". In : Ann. of Math. (2) 176.1 (2012), p. 637-650.

- [Voi06] Claire VOISIN. "On integral Hodge classes on uniruled or Calabi-Yau threefolds". In: *Moduli spaces and arithmetic geometry*. T. 45. Advanced Studies in Pure Mathematics. Mathematical Society of Japan, 2006, p. 43-73.
- [Voi13] Claire VOISIN. "Remarks on curve classes on rationally connected varieties". In: A celebration of algebraic geometry. T. 18. Clay Math. Proc. Amer. Math. Soc., Providence, RI, 2013, p. 591-599.
- [Voi23] Claire Voisin. Cycle classes on abelian varieties and the geometry of the Abel-Jacobi map. 2023. arXiv: 2212.03046 [math.AG].
- [Wei49] André Weil. "Numbers of solutions of equations in finite fields". In: Bulletin of the American Mathematical Society 55 (1949), p. 497-508.