Quantum Field Theory Summary Revision Notes

Sam Crawford

May 17, 2018

Contents

1	Clas	sical Field Theory	2
A	Proc	ıfs	4
	A. 1	Proof of Proposition 1.1	4
	A.2	Proof of Proposition 1.2 (Nother's Theorem)	4

1 Classical Field Theory

Definition 1.1

Lagrangian density and action

The **Lagrangian density** of a field theory, which can be thought of *as* the field theory itself is a function

$$\mathcal{L} = \mathcal{L}(\varphi_a, \partial_\mu \varphi_a). \tag{1.1}$$

This is used mainly to define the action of the field theory

$$S[\varphi_a] = \int_{\mathbb{M}} d^4x \, \mathcal{L}(\varphi_a, \partial_\mu \varphi_a). \tag{1.2}$$

Proposition 1.1

(Euler-Lagrange equations)

The action of a field theory with Lagrangian density \mathcal{L} is minimised when the **Euler-Lagrange equations**

$$\partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \varphi_{a})} \right) - \frac{\partial \mathcal{L}}{\partial \varphi_{a}} = 0 \tag{1.3}$$

are satisfied.

Proof. See appendix A.1 for proof.

Example 1.1

(Klein-Gordon Field)

The **Klein-Gordon** Lagrangian for a real scalar field φ is

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \varphi)(\partial^{\mu} \varphi) - \frac{1}{2} m^2 \varphi^2. \tag{1.4}$$

The Euler-Lagrange equation for which, called the Klein-Gordon equation is

$$\partial^{\mu}\partial_{\mu}\varphi + m^{2}\varphi = (\Box + m^{2})\varphi = 0. \tag{1.5}$$

Example 1.2

(Electromagnetic Field)

In a vacuum (i.e. no charged particles), **Maxwell's electromagnetism** is given by the Lagrangian

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu}.\tag{1.6}$$

Variation of which produces Maxwell's equations

$$\partial_{\mu}F^{\mu\nu} = 0. \tag{1.7}$$

Proposition 1.2

(Noether's Theorem)

If a field theory has an action which is invariant under the action of some Lie group, then there is an associated *conserved current* j^{μ} such that

$$\partial_{\mu}j^{\mu} = 0,$$
 \Rightarrow $\frac{d}{dt}\left(\int_{V} d^{3}x \, j^{0}\right) = \int_{\partial V} j^{i} \, dS_{i}.$ (1.8)

Proof. See appendix A.2 for proof.

Example 1.3

(The Energy-Momentum Tensor)

A common external symmetry in classical mechanics is that of spatial translation. Consider the action of an infinitesimal translation

$$x^{\mu} \to X^{\mu} + \epsilon^{\mu} \quad \Rightarrow \quad \varphi_a \to \varphi_a + \epsilon^{\mu} \partial_{\mu} \varphi_a$$
 (1.9)

A Proofs

A.1 Proof of Proposition 1.1

Proof. For now, we just treat φ_a and $\partial_{\mu}\varphi_a$ as variables, not functions. As such the variation of the Lagrangian density is

$$\delta \mathcal{L} = \frac{\partial \mathcal{L}}{\partial \varphi_a} \delta \varphi_a + \frac{\partial \mathcal{L}}{\partial (\partial_\mu \varphi_a)} \delta(\partial_\mu \varphi_a). \tag{A.1.1}$$

Next, for any reasonable variation of φ_a , we would expect that $\delta(\partial_\mu \varphi_a) = \partial_\mu (\delta \varphi_a)$. Assuming this is the case, then integrating by parts (noting that \mathbb{M} has no boundary), the variation of the action is

$$\delta S = \int_{\mathbb{M}} d^4 x \left[\frac{\partial \mathcal{L}}{\partial \varphi_a} - \partial_\mu \left(\frac{\partial \mathcal{L}}{\partial (\partial_\mu \varphi)} \right) \right] \delta \varphi_a. \tag{A.1.2}$$

Assuming this vanishes for any variation $\delta \varphi_a$ means, by the fundamental lemma of the calculus of variations, that the term in square brackets must also vanish. This results in the Euler-Lagrange equations.

A.2 Proof of Proposition 1.2 (Nother's Theorem)

Proof. The action of (part of) a Lie group can be represented by action of the corresponding Lie algebra. Basically, we consider an 'infinitesimal' transformation

$$\varphi_a \to \varphi_a + \delta \varphi_a = \varphi_a + X_a(\varphi).$$
 (A.2.1)

The condition for invariance, that $\int_{\mathbb{M}} \delta \mathcal{L} d^4x$ vanishes, allows us to say that $\delta L = \partial_{\mu} F^{\mu}$ (ignoring cohomology). Varying the Lagrangian using (A.2.1) gives us

$$\delta \mathcal{L} = \frac{\partial \mathcal{L}}{\partial \varphi_a} X_a + \frac{\partial \mathcal{L}}{\partial (\partial_\mu \varphi_a)} \partial_\mu X_a$$

$$= \left[\frac{\partial \mathcal{L}}{\partial \varphi_a} - \partial_\mu \left(\frac{\partial \mathcal{L}}{\partial (\partial_\mu \varphi_a)} \right) \right] X_a + \partial_\mu \left(\frac{\partial \mathcal{L}}{\partial (\partial_\mu \varphi_a)} X_a \right). \tag{A.2.2}$$