Dokumentacja wstępna

UMA Andrii Gamalii, Wiktor Topolski

Treść zadania

Algorytm analogiczny do lasu losowego z użyciem zbiorów reguł zamiast drzew decyzyjnych.

Interpretacja zadania

Las losowy z użyciem zbiorów reguł **uporządkowanych** zamiast drzew decyzyjnych. Indukcja reguł za pomocą specjalizacji AQ.

Opis algorytmów

Zmodyfikowany las losowy

B zbiorów reguł (oryginalnie drzew decyzyjnych).

Uczenie

Hiperparametry

- B maksymalna liczba zbiorów reguł
- M wielkość podzbioru trenującego dla każdej reguły

Opis algorytmu

Nauczenie B zbiorów reguł na losowo wybranym podzbiorze zbioru trenującego o wielkości M (nie usuwając tych przykładów ze zbioru trenującego) (nie może mieć sprzecznych przykładów), z losowo (bez zwracania) wybranymi atrybutami o liczbie równej podłodze pierwiastka maksymalnej liczby atrybutów. Sposób nauczania (indukcja reguł) - algorytm AQ - opisany niżej.

Predykcja

Parametry

- B nauczonych zbiorów reguł
- V wektor atrybutów

Opis algorytmu

Wybieramy tą klasę, którą wybrała większość zbiorów reguł.

Specjalizacja AQ

Algorytm tworzący zbiór reguł dla danego zbioru trenującego. Algorytm zakłada dyskretne i skończone zbiory wartości atrybutów.

- Kompleks -⟨s1, s2, ..., sn⟩ wektor n (koniunkcja) selektorów dla poszczególnych n atrybutów, spełniony gdy wszystkie selektory są spełnione, występują różne warunki np. ⟨2, 3 ∨ 2, ?⟩
 - ? selektor uniwersalny
- Reguła kompleks i klasa którą mają przykłady spełniane przez kompleks.
- Zbiór reguł (uporządkowany) każda reguła stosowana tylko dla przykładów niepokrytych przez wcześniejsze reguły, ostatnia reguła określa klasę domyślną, brak możliwości konfliktu reguł o różnych klasach.

Uczenie

Hiperparametry

- m Maksymalna ilość kompleksów, które pozostają po specjalizacji (najlepiej ocenione kompleksy)
- T Maksymalna ilość reguł w jednym zbiorze reguł

Modyfikowalne składowe algorytmu

- Sposób wyboru ziarna
- Sposób oceny kompleksu

Opis algorytmu

Algorytm powtarzamy aż wszystkie przykłady zostaną pokryte, lub gdy osiągniemy maksymalną liczbę reguł w zbiorze (t).

Ziarno x_s - przykład podstawowy, pierwszy wybierany, jest zawsze pokryty przez nową regułę.

 $\mathsf{R}^{(0)}_\mathsf{G}$ - zbiór wszystkich pokrywanych przykładów niewłaściwej klasy przez kompleksy ze zbioru G w danej iteracji.

```
R - niepokryte przykłady \begin{aligned} \mathbf{G} &= <\ ?\ >; \\ x_s \in R \text{ - ziarno} \\ R^{(1)} &= R_{c=c(x_s)} \text{ - klasa ziarna} \\ R^{(0)} &= R_{c\neq c(x_s)} \\ \text{jak długo } R^{(0)}_G \neq \emptyset \text{ (kiedy są rzeczy w tym r0):} \end{aligned}
\bullet \text{ wybierz } x_n \in R^{(0)}_G \text{ - ziarno negatywne}
\bullet \text{ dla wszystkich } k \in \{k' \in G \mid k' \rhd x_n\}
\bullet \text{ G = G - \{k\} \cup \text{specjalizacja}(k, x_n, x_s)
\bullet \text{ G = G - \{k \in G \mid (\exists k' \in G) \text{ k'} \succ k\}}
\bullet \text{ G = } Arg^m max_{k \in G\nu_{p(1)}} \text{ p(0)} \text{ (k) (m najlepszych kompleksów)}
```

zwróć $arg\ max_{k\in G\nu_{R^{(1)},R^{(0)}}}$ (k) (najlepszy kompleks z G)

gdzie

 $u_{R^{(1)},R^{(0)}}(k)$ to ocena jakości kompleksu k

 zazwyczaj poprzez liczbę wcześniej niepokrywanych przykładów, pokrywanych przez dany kompleks

Uporządkowanie zbioru reguł:

• eliminacja pokrywania przykładów klas innych niż $c(x_s)$ wyłącznie w zbiorze R (przykładów niepokrytych przez wcześniejsze reguły)

specjalizacja(k, x_n, x_s)

chcemy uzyskać zbiór maksymalnie ogólnych kompleksów k' spełniających warunki:

- $k' \prec k$
- $k' \not \lhd x_n$
- $k' \triangleright x_s$

Przykład działania

Dany zbiór trenujący R:

х	a ₁	a ₂	a_3	С
1	1	1	3	1
2	2	2	2	1
3	3	2	1	0
4	1	1	2	0

Gdzie a_1 : X -> {1, 2, 3}, a_2 : X -> {1, 2}, a_3 : X -> {1, 2, 3}, c: X -> {0, 1}. Maksymalny rozmiar **m** zbioru kompleksów **G** = 2.

Proces indukcji pierwszej reguły:

1. Jako ziarno \mathbf{x}_s wybieramy pierwszy przykład, czyli \mathbf{x}_1 . Ziarno jest klasy 1, więc $\mathbf{R}^{(1)} = \{x_1, x_2\}, \mathbf{R}^{(0)} = \{x_3, x_4\}$. Licznik reguł $\mathbf{t} = 0$.

Zbiór kompleksów **G** inicjalizujemy zbiorem zawierającym jeden kompleks uniwersalny: $G = \{<?>\}$.

Kroki 2, 3, 4, 5, 6 są dokonywane w pętli dopóki $\mathbf{R}^{(0)}_{\mathbf{G}}$ nie jest pusty.

- 2. $\mathbf{R}^{(0)}_{G} = \{x_3, x_4\}$ zbiór pokrywanych przykładów niewłaściwej klasy.
- 3. Jako ziarno negatywne \mathbf{x}_n wybieramy \mathbf{x}_3 .
- 4. Kompleks $\mathbf{k} = \langle ? \rangle$ jest poddawany operacji **specjalizacja(k, x_n, x_s)**, w wyniku której $\langle ? \rangle$ przechodzi na $\{\langle 1 \lor 2, ?, ? \rangle, \langle ?, 1, ? \rangle, \langle ?, ?, 2 \lor 3 \rangle\}$.
- 5. Ze zbioru **G** usuwany jest kompleks < ? > i wstawiane są kompleksy otrzymane po jego specjalizacji. G = $\{< 1 \lor 2, ?, ? >, <?, 1, ?>, <?, ?, 2 \lor 3>\}$.
- 6. Wielkość zbioru **G** wynosi 3, podczas gdy **m** = 2, więc musimy zostawić w nim tylko 2 najlepsze kompleksy, oceniane przez np. **pokrycie**. W tym przypadku według pokrycia najlpesze są kompleksy < 1 ∨ 2, ?, ? >, <?, ?, 2 ∨ 3>, więć kompleks <?, 1, ?> jest odrzucany.
- 2. **G** = {< 1 \lor 2, ?, ? >, <?, ?, 3 \lor 2>}, $\mathbf{R}^{(0)}_{\mathbf{G}}$ = { \mathbf{x}_4 }.
- 3. Jako ziarno negatywne \mathbf{x}_n wybieramy \mathbf{x}_4 .
- specjalizacja(< 1 ∨ 2, ?, ? >, x₄, x₁):
 < 1 ∨ 2, ?, ? > -> < 1 ∨ 2, ?, 2 ∨ 3 >
 specjalizacja(< ?, 1, ? >, x₄, x₁):
 <?, ?, 2 ∨ 3> -> < ?, ?, 3>
- 5. **G** = $\{$ < 1 \lor 2, ?, 2 \lor 3 >, < ?, ?, 3> $\}$

- 6. Rozmiar zbioru **G** nie wykracza poza limit
- R⁽⁰⁾_G = {∅}, co oznacza, że nie zostało pokrywanych przykładów niewłaściwej klasy i możemy wyjść z pętli
- 8. Wybieramy najlepszy kompleks ze zbioru **G**, np. według miary pokrycia najlepszy jest kompleks $< 1 \lor 2, ?, 2 \lor 3 >$.
- 9. Zwracamy regułę < 1 ∨ 2, ?, 2 ∨ 3 > -> 1.
- 10. **R** = R \ $\{x_1\}$, t += 1.
- 11. Powyższe kroki są powtarzane dopóki R != {∅} oraz t <= T.

Predykcja

Pierwsza reguła spełniająca dany przykład wyznacza klasę, ostatnia reguła wyznacza klasę domyślną.

Zbiór danych

http://archive.ics.uci.edu/dataset/73/mushroom

Klasyfikacja czy grzyb jest trujący na podstawie 20 atrybutów dyskretnych 8124 przykłady - 4208 jadalnych grzybów, 3916 niejadalnych Zbiór trenujący wybieramy losowo

Eksperymenty

Zmienne algorytmów

- Sposoby oceny kompleksów, np. pokrycie, dokładność, dominacja klasy z uwzględnieniem pokrycia.
- Sposoby wyboru ziarna np. losowy, pierwszy przykład, losowy z klasy dominującej.

Hiperparametry

Użyjemy przeszukiwania losowego wartości hiperparametrów.

- Rozmiar zbioru trenującego (dla całego algorytmu), np. 80%, 90%, 95%
- Rozmiar zbiorów trenujących dla poszczególnych zbiorów reguł, np. 500 przykładów
- Maksymalna ilość zbiorów reguł, np. 100, 500, 1400
- Maksymalna ilość reguł w zbiorze reguł, np. 2, 10, 250

Miary jakości

- Confusion matrix
- Dokładność
- Precyzja
- F1-score