		Tipo de Prova Teste 1	Ano letivo 2018/2019	Data 10 -04-2019	
P.PORTO	ESCOLA SUPERIOR DE TECNOLOGIA	Curso Licenciatura em Engenharia Informática Licenciatura em Segurança Informática de Redes de Compui			
	E GESTÃO	Unidade Curricular Matemática Discreta		Duração 1,5 horas	

Observações

Responda às questões que se seguem na folha do enunciado da prova.

Submeta no moodle um ficheiro com os cálculos que efetue no scilab

Questão	1.1	1.2	2.1	2.2	2.3	2.4	3.1	3.2	4	5.1	5.2	5.3	5.4	5.5	5.6	5.7	6.1	6.2	Total
Cotação	24	12	15	5	10	15	6	6	20	9	9	9	6	4	10	10	10	20	200

1. Considere os conjuntos

$$X = \{x^2 - x : x \in \{0,1,2,3\}\}, Y = \{\{1\}, 1,2,\{2\}, 3,\{3,4\}\} \ e \ Z = \{x \in N : x < 3 \ e \ x \ é \ impar\} = \{1\}$$

1.1. Indique, se cada uma das seguintes afirmações é verdadeira ou falsa. No caso de ser falsa, corrija a afirmação de forma a torná-la verdadeira.

1.1.1.
$$\{\emptyset, 1, \{1\}\} \subseteq Y$$

1.1.2.
$$\{\emptyset, \{2\}, \{2,6\}\} \in \mathcal{P}(X)$$

1.1.3.
$$\#\mathcal{P}(\mathcal{P}(X)) = 2^8$$

1.1.4.
$$#Y = 7$$

1.1.5. A função
$$f: X \to \mathcal{P}(X)$$
 tal que $f(x) = \{x\}$ é injetiva e sobrejetiva.

1.1.6. Seja
$$g: \mathbb{Z} \to \mathbb{Z}$$
 tal que $g(x) = 3x$, então
$$g^{-1}(Z) = 3$$

1.2. Defina por extensão os conjuntos:

1.2.1.
$$X \cup Y$$

1.2.2.
$$X \oplus (Y - Z)$$

1.2.3.
$$\mathcal{P}(Z) \times Z$$

Página 1 de 4

- **2.** Considere as relações $R = \{(x, y): x, y \in \mathbb{Z} \ e \ x y \ \'e \ inteiro\} \ e \ S = \{(1,2),(2,1),(2,2),(3,2)\} \ definida sobre o conjunto <math>\{1,2,3,4\}$.
 - **2.1.** Mostre que R é uma relação de equivalência em \mathbb{Z} .

		Tipo de Prova Teste 1	Ano letivo 2018/2019	Data 10 -04-2019
P.PORTO	Curso Licenciatura em Engenharia Informática Licenciatura em Segurança Informática de Redes de Comp Unidade Curricular Matemática Discreta	Licenciatura em Engenharia Informática	Hora 00:00	
			Duração 1,5 horas	

- **2.2.** Calcule a classe de equivalência de 2, relativamente à relação R.
- **2.3.** Indique o domínio e o contradomínio de S.
- **2.4.** Calcule $S \circ S$; $S^{-1} \in S^{-1} \cap R$ e simétrico(S).
- 3. Determine, apresentando todos os cálculos:

$$\sum_{i=0}^{100} 3 \times \left(-\frac{1}{2}\right)^i + \sum_{i=5}^{50} \left[(-1)^i\right]$$

$$\prod_{j=2}^{12} \left(\sum_{k=1}^{30} (k-1) \right)$$

4. Considere a fórmula de recorrência dada por: $\begin{cases} G(1) = 2 \\ G(n) = 7 \ G(n-1) + 1, \ n > 1 \end{cases}$ Recorrendo ao algoritmo EGV (*Expand, Guess, Verify*), encontre a fórmula fechada.

ESTG-PR05-Mod013V2 Página 2 de 4

P.PORTO	ESCOLA SUPERIOR DE TECNOLOGIA	Tipo de Prova Teste 1	Ano letivo 2018/2019	Data 10 -04-2019
		Curso Licenciatura em Engenharia Informática Licenciatura em Segurança Informática de Redes de Comput	Hora 00:00	
	E GESTÃO	Unidade Curricular Matemática Discreta		Duração 1,5 horas

5. Considere o grafo G_1 definido por $V(G_1) = \{a, b, c, d, e\} \in E(G_1) = \{(a, a), (a, b), (a, e), (b, c), (c, d), (c, e), (d, e)\}, o grafo <math>\vec{G}_2$ representado na **Figura 1** e o grafo \vec{G}_3 cujos vértices são A,B,C,D e a

matriz de adjacências é introduzida no Scilab usando o código: -->M=[1 1 0 0; 1 0 0 2; 1 1 0 0; 1 0 0 1]

5.1. Indique a matriz de adjacências de \vec{G}_2

5.2. Represente G_1 e \vec{G}_3 graficamente

5.3. Determine os graus de cada vértice de G_1 e \vec{G}_3

- **5.4.** Indique, justificando quantos caminhos de comprimento 5 do vértice C para o vértice B, existem no grafo \vec{G}_3 ;
- **5.5.** Indique, justificando quais dos grafos são grafos simples;
- **5.6.** Diga, justificando se \vec{G}_3 é fortemente conexo.
- **5.7.** Averigue se o grafo \vec{G}_3 é Euleriano ou semi-Euleriano.

ESTG-PR05-Mod013V2 Página 3 de 4

		Tipo de Prova Teste 1	Ano letivo 2018/2019	Data 10 -04-2019
P.PORTO	SUPERIOR DE TECNOLOGIA E GESTÃO LICE Univ	Curso Licenciatura em Engenharia Informática Licenciatura em Segurança Informática de Redes de Comput	Hora 00:00	
		Unidade Curricular Matemática Discreta		Duração 1,5 horas

6. Considere o grafo apresentado na Figura 2 onde estão representados os Concelhos da Região do Tâmega e Sousa e algumas das distâncias em km entre cada um deles.

Concelhos	Vértice
Amarante	Α
Baião	В
Castelo de Paiva	СР
Celorico de Basto	СВ
Cinfães	С
Felgueiras	F
Lousada	L
Marco de Canaveses	MC
Paços de Ferreira	PF
Penafiel	Р
Resende	R

Basto. Indique o número de km percorridos.

6.2. Use o algoritmo de Dijkstra para encontrar o caminho mais curto entre Paços de Ferreira e Resende.

ESTG-PR05-Mod013V2 Página 4 de 4