

WEST BENGAL STATE UNIVERSITY

B.Sc. Honours 6th Semester Examination, 2021

STSADSE05T-STATISTICS (DSE3/4)

Time Allotted: 2 Hours Full Marks: 40

The figures in the margin indicate full marks.

Candidates should answer in their own words and adhere to the word limit as practicable.

Answer any *four* questions from Question Numbers 1-6 and any *two* questions from Question Numbers 7-9

- 1. Find a function whose first difference is $4x^3 + 2x + 5$.
- 2. In case of inverse interpolation, can you use Newton's interpolation formulae? If not, which interpolation formula can you use? Justify your answer.
- 3. If $u_x = a + bx + cx^2$, find a formula for $\int_0^1 u_x dx$ in terms of u_0 , u_1 and u_2 .
- 4. To find the solution of $x^3 + x^2 = 1$ by the method of iteration assuming an initial approximation of the root as $x_0 = 0.80$, justify which one of the following equation will be converted as $x = \varphi(x)$:

(a)
$$x = (1 - x^2)^{\frac{1}{3}}$$
 (b) $x = (1 + x)^{-\frac{1}{2}}$

you want.)

- 5. Write down the algorithm of numerical integration to evaluate $\int_{-\infty}^{0} x^2 e^x dx$. 5

 (You are permitted to draw random samples from U(0, 1) only as many times as
- 6. If $X \sim \text{Bin}(n, 0.5)$, show that $P(X = \alpha n)$ is approximately $\frac{1}{\gamma^n \sqrt{2n\pi\alpha(1-\alpha)}}$ for large n, where α is a rational number and $\gamma = \alpha^{\alpha}(1-\alpha)^{1-\alpha}$.

CBCS/B.Sc./Hons./6th Sem./STSADSE05T/2021

- 7. (a) Find the eighth term of the sequence: 3, 14, 39, 84, 155, 258, ... 5+5
 - (b) Prove that the sum of the coefficients of $y_0, y_1, \dots y_n$ in Lagrange's interpolation formula is unity.
- 8. (a) Suppose that the equation $x^2 + cx + d = 0$ has 2 real roots α and β . Show that the iteration process $x_{n+1} = -\frac{cx_n + d}{x_n}$ always converges to that root which has higher absolute value.
 - (b) For the above equation in (a), find the iteration process using Newton-Raphson method and show that the process can converge to any one of the possible roots.
- 9. Describe any two methods of Monte Carlo integration to find $\int_{-1}^{1} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx$. $(2\frac{1}{2} + 2\frac{1}{2})$ 1 Justify which one of these methods is better than the other.
 - **N.B.:** Students have to complete submission of their Answer Scripts through E-mail / Whatsapp to their own respective colleges on the same day / date of examination within 1 hour after end of exam. University / College authorities will not be held responsible for wrong submission (at in proper address). Students are strongly advised not to submit multiple copies of the same answer script.

