§1. Komplexní čísla, algebraický tvar komplexního čísla

Pozn: Množinu všech komplexních čísel označíme \mathbb{C} .

Def: Komplexním číslem $z \in \mathbb{C}$ nazýváme každou uspořadanou dvajici z = (x, y) reálných čísel, tj. kartézského čtverce $\mathbb{R}^2 = \mathbb{C}$, na které jsou definovány rovnost a operace sčítání, odčítání, násobení a dělení takto:

1. Rovnost komplexních čísel $z_1 = (x_1, y_1); z_2 = (x_2, y_2)$ definujeme takto:

$$z_1 = z_2 \Leftrightarrow x_1 = x_2 \land y_1 = y_2$$

$$z_1 \neq z_2 \Leftrightarrow x_1 \neq x_2 \lor y_1 \neq y_2$$

2. Součet komplexních čísel $z_1 = (x_1, y_1); z_2 = (x_2, y_2)$ definujeme takto:

$$z_1 + z_2 = (x_1 + x_2; y_1 + y_2)$$

- 3. Rozdíl komplexních čísel $z_1=(x_1,y_1); z_2=(x_2,y_2)$: Rozdílem rozumíme komplexní číslo z, pro které platí $z_1=z_2+z$, zapisujeme $z=z_1-z_2$
- 4. Součin komplexních čísel $z_1 = (x_1, y_1); z_2 = (x_2, y_2)$ definujeme takto:

$$z_1 \cdot z_2 = (x_1x_2 - y_1y_2; x_1y_2 + x_2y_1)$$

5. Podíl komplexních čísel $z_1=(x_1,y_1); z_2=(x_2,y_2)$: Posdílem rozumíme komplexní číslo z, pro které platí $z_1=z_2\cdot z$, zapisujeme $z=\frac{z_1}{z_2}$

V.1.1.: Nechť $z_1 = (x_1, y_1), z_2 = (x_2, y_2) \in \mathbb{C}$. Pak platí:

1.
$$z_1 - z_2 = (x_1 - x_2; y_1 - y_2)$$

2.
$$z_2 = \overrightarrow{0} : \frac{z_1}{z_2} = \left(\frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2}; \frac{x_2 y_1 - x_1 y_2}{x_2^2 + y_2^2}\right)$$

[Dk:

1.

$$z_1 = z_2 + z$$

Dosadím:

$$(x_1, y_1) = (x_2, y_2) + (x_1 - x_2; y_1 - y_2)$$

Ekvivalentně upravím:

$$(x_1, y_1) = (x_1 - x_2 + x_2; y_1 - y_2 + y_2)$$

$$(x_1, y_1) = (x_1, y_2)$$

Což evidentně platí. QED

2.

$$z_1 = z_2 \cdot z$$

Dosadím:

$$(x_1, y_1) = (x_2, y_2) \cdot \left(\frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2}; \frac{x_2 y_1 - x_1 y_2}{x_2^2 + y_2^2}\right)$$

Ekvivalentně upravím:

$$(x_1, y_1) = \left(x_2 \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2} - y_2 \frac{x_2 y_1 - x_1 y_2}{x_2^2 + y_2^2}; \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2} y_2 + x_2 \frac{x_2 y_1 - x_1 y_2}{x_2^2 + y_2^2}\right)$$

$$(x_1, y_1) = \left(\frac{x_1 x_2^2 + x_2 y_1 y_2 - x_2 y_1 y_2 + x_1 y_2^2}{x_2^2 + y_2^2}; \frac{x_1 x_2 y_2 + y_1 y_2^2 + x_2^2 y_2 - x_1 x_2 y_2}{x_2^2 + y_2^2}\right)$$

 $(x_1, y_1) = (x_1, y_2)$

Což evidentně platí. QED

Př: 11/1:

- 1. 5 + 4i
- 2.6 + 3i
- 3. ??? Co to jako má znamenat ???
- 4. 6 9i
- 5. analogicky

V.1.2.:

Množina $\mathbb C$ má následující vlastnosti:

 $\forall z_1, z_2, z_3 \in \mathbb{C}$:

- 1. $z_1 + z_2 = z_2 + z_1$
- 2. $(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$
- 3. $\exists o \in \mathbb{C} : \forall z \in \mathbb{C} : z + o = o + z = z$, kde o = (0,0)
- 4. $\forall z \in \mathbb{C} : \exists z' \in \mathbb{C} : z + z' = z' + z = o \ (z' \text{ je číslo opačné k } z)$
- 5. $z_1 \cdot z_2 = z_2 \cdot z_1$
- 6. $(z_1 \cdot z_2) \cdot z_3 = z_1 \cdot (z_2 \cdot z_3)$
- 7. $\exists e \in \mathbb{C} : \forall z \in \mathbb{C} : z \cdot e = e \cdot z = z$, kde e = (1,0)
- 8. $\forall z \in \mathbb{C} \{o\}: \exists z^* \in \mathbb{C} \{o\}: z^* \cdot z = z \cdot z^* = e \ (z^*$ je číslo převrácené kz)
- 9. $(z_1 + z_2) \cdot z_3 = z_1 z_3 + z_2 z_3$

Dk:

Nechť $z_k = (x_k, y_k)$, pro všechna k:

- 1. ekvivalentní s $(x_1 + x_2, y_1 + y_2)$
- 2. ekvivalentní s $(x_1 + x_2 + x_3, y_1 + y_2 + y_3)$
- 3. (x+0, y+0) = (x, y)
- 4. $z' = -z \Rightarrow (x + -x, y + -y) = (0, 0)$
- 5. ekvivalentní s $(x_1x_2 y_1y_2; x_1y_2 + x_2y_1)$
- 6. analogicky dvojím dosazením
- 7. $(x_1 \cdot 1 y_1 \cdot 0; x_1 \cdot 0 + 1 \cdot y_1) = (x_1, y_1)$
- 8. Dosadíme $z^* = \left(\frac{x}{x^2+y^2}; \frac{y}{x^2+y^2}\right): \left(x\frac{x}{x^2+y^2} y\frac{-y}{x^2+y^2}; x\frac{-y}{x^2+y^2} + \frac{x}{x^2+y^2}y\right) = \left(\frac{x^2+y^2}{x^2+y^2}; \frac{0}{x^2+y^2}\right) = (1;0)$
- 9. ekvivalentní s $((x_1+x_2)x_3-(y_1+y_2)y_3;(x_1+x_2)y_3+x_3(y_1+y_2))$

Pozn:

]

- 1) Vlastnosti 1-4 z věty V.1.2. zajišťují, že $\mathbb C$ s operací + tvoří komutativní grupu $(\mathbb C,+)$
- 2) Vlastnosti 5-8 z věty V.1.2. zajišťují, že $\mathbb{C} \{o\}$ s operací × tvoří komutativní grupu ($\mathbb{C} \{o\}$, ×)
- 3) Vlastnosti 1-9 z věty V.1.2. zajišťují, že $\mathbb C$ s operacemi $+, \times$ tvoří komutativní těleso (pole) $(C, +, \times)$

Pozn: Souvislost množiny \mathbb{R} a \mathbb{C} :

Ztotožníme \mathbb{R} s jistou podmnožinou množiny \mathbb{C} . Zobrazení $\phi: \mathbb{R} \to \mathbb{C}$ definujeme takto: $\forall x \in \mathbb{R}: \phi(x) = (x,0)$ Zobrazení ϕ je injektivní (tedy prosté), ale není bijektivní. Pro $x,y \in \mathbb{R}$ má následující vlastnosti:

1.
$$\phi(x) + \phi(y) = \phi(x+y)$$

$$2. \ \phi(x) \cdot \phi(y) = \phi(x \cdot y)$$

 ϕ zachovává operace + ,× . Je to izomorfní zobrazení $\mathbb R$ do $\mathbb C.$ Lze tedy každé komplexní číslo (x,0)ztotožnit s reálným číslem x.

Pozn: Konvence

Komplexní číslo (0,1) označíme i. Přitom platí: (x,y) = (x,0) + (0,y) = x + iy $i^2 = -1$

Def: Nechť $z \in \mathbb{C}; z = (x, y)$:

Zápis čísla z ve tvaru z=x+iy nazýváme algebraickým tvarem komplexního čísla z. Číslo $x\in\mathbb{R}$ nazýváme reálnou částí a $y\in\mathbb{R}$ nazýváme částí imaginární, číslo i=(0,1) nazýváme imaginární jednotkou. Zapisujeme $x=\mathrm{Re}z,y=\mathrm{Im}z$. Čísla z=x+iy, kde $y\neq 0$, nazýváme imaginárními, čísla z=iy, kde $y\neq 0$ nazýváme ryze imaginárními.

Pozn: Množina komplexních čísel je tedy sjednocením množiny čísel reálných a čísel imaginárních.

Pozn: Při počítání s komplexními čísly v algebraickém tvaru lze tato čísla formálně chápat jako mnohočleny a využívat faktu, že $-1=i^2$.

Pozn: Platí: $\forall n \in \mathbb{Z}$: $i^{4n} = 1 \wedge i^{4n+1} = i \wedge i^{4n+2} = -1 \wedge i^{4n+3} = -i$

Př:
$$(2+i) + (1-2i) = 3-i$$

$$(2+i)(1-2i) = 2-4i+i-2i^2 = 2-3i+2 = 4-3i$$

$$\frac{2+i}{1-2i} = \frac{2+4i+i+2i^2}{1-4i^2} = \frac{5i}{5} = i$$