Department of Computer Science University of Cyprus

EPL342 – Databases

Lecture 12: SQL DDL I SQL Data Definition Language (Chapter 6.1, Elmasri-Navathe 7ED)

+ TransactSQL Reference Guide http://msdn.microsoft.com/en-us/library/bb510741.aspx

Demetris Zeinalipour

http://www.cs.ucy.ac.cy/courses/EPL342

Περιεχόμενο Διάλεξης

Ολοκλήρωση Διάλεξης 11 (Μετατροπή ΕΕR)

- Εισαγωγή στην SQL
- Τύποι Δεδομένων της SQL 1999
 - Αριθμοί, Συμβολοσειρές, Δυαδικές Ακολουθίες, Λογικοί Τύποι, Ημερομηνίες & Ώρα, Χρονόσημα, κ.α.
 - TSQL: Συναρτήσεις Ημερομηνίας, Αυτόματη Αύξηση Τιμής,
 Υπολογιζόμενα Γνωρίσματα, Εξειδικευμένοι Τύποι
- Ορισμός Δεδομένων (CREATE/DROP/ALTER)
 - Δημιουργία Σχήματος και Πινάκων
- Περιορισμοί (CONSTRAINTS)
 - Οντότητας, Αναφορικής Ακεραιότητας, Ονομασία, Εντολές Ενεργοποίησης Αναφοράς, Προσωρινή Απενεργοποίηση Περιορισμών

EPL342: Databases - Demetris Zeinalipour (University of Cyprus) ©

Εισαγωγή στη SQL

- Στις προηγούμενες ενότητες μελετήσαμε μια τυπική γλώσσα ΒΔ, την Σχεσιακή Άλγεβρα, η οποία στηρίζεται πάνω στο Σχεσιακό Μοντέλο.
- Σε αυτή την ενότητα θα μελετήσουμε μια πραγματική γλώσσα βάσεων δεδομένων την SQL (Structured Query Language) η οποία στηρίζεται τόσο πάνω στη Σχεσιακή Άλγεβρα όσο και πάνω στον Λογισμό Πλειάδων.
- Συγκεκριμένα θα μελετήσουμε την SQL σε δυο βασικές ενότητες:
 - Γλώσσα Ορισμού Δεδομένων (Data Definition Language,
 SQL-DDL)
 - Γλώσσα Επεξεργασίας Δεδομένων (Data Manipulation Language, SQL-DML)

Εισαγωγή στην SQL (Παραδείγματα DDL/DML)

• Παράδειγμα Γλώσσας Ορισμού Δεδομένων (Data Definition Language, **SQL-DDL**)

```
CREATE TABLE DEPARTMENT (

DNAME VARCHAR(10) NOT NULL,

DNUMBER INTEGER NOT NULL,

MGRSSN CHAR(9),

MGRSTARTDATE CHAR(9)

);
```

• Παράδειγμα Γλώσσας Επεξεργασίας Δεδομένων (Data Manipulation Language, **DML**)

```
SELECT D.MGRSSN, D.MGRSTARTDATE,
FROM DEPARTMENT AS D
WHERE DNUMBER = 10;
```

Ιστορία της SQL

- 1969: Το Σχεσιακό Μοντέλο του Edgar F. Codd υλοποιείται από τη βάση IBM System R
- 1970: O Donald D. Chamberlin και ο Raymond F. Boyce, επιστήμονες της IBM Almaden, δημιουργούν την πρώτη έκδοση της SQL η όποια ονομάζεται SEQUEL.
 - Το όνομα αλλάζει αργότερα σε SQL εφόσον το όνομα SEQUEL ήταν κατοχυρωμένο σε κάποια εταιρεία κατασκευής αεροπλάνων στην Αγγλία.
 - Την ίδια χρονιά η Relational Software, Inc., επηρεασμένο από τους Codd, Chamberlin, and Boyce, φτιάχνει την βάση δεδομένων Oracle για κρατικές υπηρεσίες των ΗΠΑ.
- 1985: Η IBM κάνει την SQL Πατέντα (US Pat. 4,506,326).
- Οι πιο επιτυχημένες προσπάθειες **τυποποίησης**
 - SQL (ANSI 1986)
 - SQL1 (ANSI 1989)
 - SQL2 ή SQL92 (ANSI 1992)
 - SQL3 ή SQL99 (ANSI 1999) (+OLAP, XML, object-relational etc.)
 - Πρότυπα που έμειναν κυρίως στις συστάσεις: SQL 2003 και SQL 2008

Τύποι Δεδομένων της SQL:1999

- Σε αυτή την ενότητα θα μελετήσουμε τους **βασικούς** τύπους δεδομένων της ANSI SQL:1999.
 - Στα πλαίσια του εργαστηρίου έχετε μελετήσει ήδη αρκετούς
 εξειδικευμένους τύπους δεδομένων που ορίζονται στα πλαίσια της
 TSQL-DDL (π.χ., money, image=varbinary(max), text, κτλ.)
 - TSQL 2008 Reference: http://technet.microsoft.com/en-us/library/bb510741.aspx
 - Ο SQL Server έχει περισσότερους από 32 τύπους δεδομένων!
- ANSI SQL:1999 Τύποι
 - Αριθμητικοί Τύποι: Numeric, Decimal, INT, FLOAT, REAL, κτλ.
 - Αλφαριθμητικοί (Συμβολοσειρές) Τύποι: CHAR, VARCHAR, CLOB, NCHAR, NVARCHAR, NCLOB, κτλ.
 - Δυαδικές Ακολουθίες: BIT, BLOB.
 - Λογικοί Τύποι: BOOLEAN.
 - Ημερομηνίες & Ώρα και Χρονόσημα: DATE, TIME, TIMESTAMP.
 - Δημιουργία Εξειδικευμένων Τύπων: CREATE DOMAIN.

Τύποι Δεδομένων της SQL (Αριθμητικοί Τύποι)

Ακέραιοι αριθμοί:

- Δύο τύποι δεκαδικών ακεραίων αριθμών με διαφορετικό εύρος:
 INTEGER (ή INT), SMALLINT και TINYINT
- Το εύρος των αριθμητικών τύπων εξαρτάται από την υλοποίηση εάν και συνήθως είναι 32 bits, 16 bits και 8 bits αντίστοιχα.
- Ο SQLServer υποστηρίζει το BIGINT το οποίο είναι 64 bits.

• <u>Πραγματικοί Αριθμοί (Real Numbers)</u>:

- 3 τύποι κινητής υποδιαστολής: FLOAT[(precision)], REAL (→ Float(24)), και DOUBLE PRECISION (→ Float(53))
- Οι χρήστες μπορούν να καθορίσουν την ακρίβεια του FLOAT όχι όμως αυτή του REAL ή DOUBLE PRECISION
- Αναπαράσταση δεκαδική ή επιστημονική (π.χ., **0.1 ή 1.0E-1)**

• Δεκαδικοί Αριθμοί

3 τύποι δεκαδικής μορφής (όλοι υποδηλώνουν το ίδιο τύπο στη πράξη):

DECIMAL(i,j), DEC(i,j) $\acute{\eta}$ NUMERIC(i,j) $(\pi.\chi., i=3,j=2 \rightarrow 111.20)$

- i = ακρίβεια (# όλων των ψηφίων εκτός της υποδιαστολής i=18 default)
- **j** = κλίμακα (# των δεκαδικών ψηφίων. j=0 το default)
- Στον SQL Server δεν υπάρχει η έννοια των unsigned αριθμών.

12-7

Τύποι Δεδομένων της SQL (Συμβολοσειρές)

- Μια Συμβολοσειρά (Αλφαριθμητική Ακολουθία) είναι μια σειρά από εκτυπώσιμους (printable) χαρακτήρες οι οποίοι δηλώνονται με μονά εισαγωγικά: 'Hello SQL'
- Τύποι Συμβολοσειρών:

προαιρετικό

- Σταθερού μήκους n: CHAR[(n)] ή CHARACTER[(n)]
 - Η προκαθορισμένη τιμή του η είναι 1, αντιπροσωπεύοντας ένα μονό χαρακτήρα, δηλ., CHAR ή CHARACTER αντιπροσωπεύει ένα χαρακτήρα
 - Οι τελικοί χαρακτήρες που δεν αξιοποιούνται μένουν κενοί (space padding) και δεν λαμβάνουν μέρος σε συγκρίσεις (δεν ισχύει για εξ. εφαρμογές)
- Μεταβλητού μήκους, μέγιστου μεγέθους n: VARCHAR[(n)] ή CHAR VARYING[(n)]
- Μεγάλου Μήκους (Character Large OBject CLOB): TEXT (deprecated θα αφαιρεθεί από μελλοντική έκδοση της MSSQL)
 - Προσδιορίζει μεγάλες ακολουθίες (π.χ., κείμενα ή μεγάλες περιγραφές) μέχρι 2 ή 4
 GB (τα αντικείμενα αυτά αποθηκεύονται συνήθως εκτός βάσης δεδομένων)
 - Πάνω σε αυτά τα πεδία δεν είναι συνήθως δυνατό να γίνουν συγκρίσεις.
 - Στον SQL Server να ορίζεται ως VARCHAR(MAX) => δεν είναι deprecated
- Χαρακτήρες UNICODE για αναπαράσταση Ξένων Γλωσσών:
 - NATIONAL CHARACTER[(n] ή NCHAR(N)
 - NATIONAL VARYING CHARACTER[(n)] ή NVARCHAR(N)

Τύποι Δεδομένων της SQL (Δυαδικές Ακολουθίες)

- Τα Bit strings είναι σειρές από δυαδικά ψηφία (0 ή 1) ή
 NULL. (TRUE=1, FALSE=0 ή NULL)
- Τύποι Bit Strings
 - Σταθερού μήκους n: BIT[(n)]
 - Μεταβλητού μήκους, μέγιστου μεγέθους n: VARBIT[(n)] ή BIT VARYING[(n)]
 - **Μεγάλου Μήκους (Binary Large OBject BLOB):** Αντίστοιχα με το CLOB αλλά χωρίς ρητή κωδικοποίηση
- Η προκαθορισμένη τιμή του **n** είναι **1**.
- O SQL server αποθηκεύει τα bits σε byte (π.χ., 3bit = 1Byte, 9b=2B, ...)
- Μειονεκτήματα
 - Κάποιες υλοποιήσεις (π.χ., Oracle) δεν υποστηρίζουν bit-strings οπόταν συνίσταται η χρήση Char(1)=Y|N
 - Δεν επιτρέπεται η **χρήση ευρετηρίων** πάνω από bit strings
 - π.χ., ευρετήριο κατακερματισμού που να βρίσκει γρήγορα τους ΕΜΡLΟΥΕΕ 12-9 βάσει του δυαδικού γγωρίσματος sex="MIF".

- Οι τύποι δεδομένων Ημερομηνίας και Ώρας προστεθήκαν στην SQL2
- Τρεις τύποι χρονολογικών δεδομένων
 - Ημερομηνία (DATE)
 - $-\Omega\rho\alpha$ (TIME)
 - Χρονόσημο (TIMESTAMP)
- Πέρα από αυτούς τους **τύπους** η έννοια της **Ώρας/Ημερομηνίας** στις περισσότερες υλοποιήσεις **υποστηρίζεται** και υπό την μορφή **συναρτήσεων** όπως θα δούμε στη συνέχεια.

- Τύπος Δεδομένων DATE
 - Εξ'ορισμού μορφή (Default format): YYYY-MM-DD
 - **Εύρος:** 0001-01-01 έως 9999-12-31
 - Ακρίβεια: Ημέρας
 - Ημερολόγιο: Γρηγοριανό
 - **DEFAULT** τιμή: 1900-01-01
 - Μέγεθος: 3 bytes στον SQL Server
 - 3 bytes (16M days = 45K years)
 - Εάν ήταν 2bytes (65K days = 180 years)
- Παράδειγμα

```
CREATE TABLE DEPARTMENT (
...
MGRSTARTDATE DATE NOT NULL DEFAULT 1900-01-01
);
```


- Τύπος Δεδομένων TIME [(precision)]
 - Εξ'ορισμού μορφή: hh:mm:ss[.nnnnnnn]
 - **Εύρος:** 00:00:00.0000000 εως 23:59:59.9999999
 - Ακρίβεια: 100 nanoseconds (almost microsec.)
 - **DEFAULT** τιμή: 00:00:00
 - Μέγεθος: 5 bytes (στον SQL Server)
- Τύπος Δεδομένων TIMESTAMP[(precision)]
 - Συνδυάζει την ώρα μαζί μαζί την ημερομηνία
 - Στον SQL Server 2008 ονομάζεται datetime2 (ΥΥΥΥ-MM-DD hh:mm:ss[.nnnnnnn] - nanosecond)
 - Υπάρχουν και τα datetime (YYYY-MM-DD hh:mm:ss[.nnn] millisecond) και smalldatetime (YYYY-MM-DD hh:mm:ss second)

Εξειδικευμένοι Τύποι SQL Server

https://docs.microsoft.com/en-us/sql/t-sql/data-types/data-

4,,,,,	a transact a			2017
Data type	S-transact-s Format	Range	Accuracy	Storage size (bytes)
<u>time</u>	hh:mm:ss[.nnnnn nn]	00:00:00.00000000 through 23:59:59.9999999	100 nanoseconds	3 to 5
<u>date</u>	YYYY-MM-DD	0001-01-01 through 9999-12-31	1 day	3
<u>smalldatetime</u>	YYYY-MM-DD hh:mm:ss	1900-01-01 through 2079-06-06	1 minute	4
<u>datetime</u>	YYYY-MM-DD hh:mm:ss[.nnn]	1753-01-01 through 9999-12-31	0.00333 second	8
datetime2	YYYY-MM-DD hh:mm:ss[.nnnnn nn]	0001-01-01 00:00:00.0000000 through 9999-12-31 23:59:59.9999999	100 nanoseconds	6 to 8
datetimeoffset	YYYY-MM-DD hh:mm:ss[.nnnnn nn] [+]-]hh:mm 12: Databases - De	0001-01-01 00:00:00.00000000 through 9999-12-31 23:59:59.9999999 (in	100 nanoseconds	