ALGORÍTMICA NUMÉRICA

1^{er} Parcial (15/11/2018)

Ejercicio 1 Se considera una representación en coma flotante en base 2, utilizando el redondeo al número más próximo. Cada palabra utiliza en memoria los siguientes 8 bits: 4 bits para el exponente, $e=(e_1\,e_2\,e_3\,e_4)$, y 4 bits para la mantisa, $m=(b_1\,b_2\,b_3\,b_4)$. Los

números máquina \hat{x} representados son los siguientes:

$$\hat{x} = m \times 2^{e-8} = (1.b_1b_2b_3b_4)_2 \times 2^{(e_1e_2e_3e_4)_2-8}$$

En esta representación:

- ¿Cuántos números máquina hay?
- Calcular el rango de valores (en formato decimal) de la mantisa (valor mínimo y valor máximo):

$$m = (1.b_1b_2b_3b_4)_2$$

 Calcular el rango de valores (en formato decimal) del exponente (valor mínimo y máximo):

$$(e_1e_2e_3e_4)_2 - 8$$

- Calcular Vmin (menor número máquina) y Vmax (mayor número máquina).
- Calcular los números máquina (en formato decimal) y el contenido de los 8 bits a almacenar en memoria para los números que se indican.

	Nº máquina (dec)	$e_1 e_2 e_3 e_4$	$b_1 b_2 b_3 b_4$
1			
0.05			
1+0.05			
1.05			

- ¿Cuántos números máquina verifican $\hat{x} < 1$? ¿Cuántos números máquina verifican $\hat{x} \ge 1$?

Ejercicio 2 Dada la función

$$S(x) = \begin{cases} p(x) & x \in [-1,0] \\ a+bx & x \in [0,1] \\ c+d(x-1)+e(x-1)^2 & x \in [1,2] \end{cases}.$$

Queremos que S(x) sea una función spline de grado 2 tal que S'(-1) = 0 y que interpole los datos de la tabla:

X _k	-1	0	1	2
$S(x_k)$	2	5	λ	14

Para lo cual se pide calcular la solución en cada subintervalo en el siguiente orden:

1) Calcular el polinomio p(x).

- 2) Calcular los parámetros a, b y determinar el valor de λ .
- 3) Calcular los parámetros c, d, y e.

Ejercicio 3

Se considera la tabla de datos:

хi	1	2	3
yi	6	12	32

- a) Se van a ajustar los datos de la tabla por un polinomio p(x) de grado 2 con p(0)=2 y p'(0)=0:
- Dar la expresión general de los polinomios que cumplen las condiciones anteriores.
- Plantear el sistema lineal H·C=B resultante de ajustar los datos por el tipo de función señalado. Dar la matriz H de coeficientes y el vector B de términos independientes del sistema lineal.
- Dar las ecuaciones normales del sistema y la expresión del polinomio pedido.
- b) Se van a ajustar los datos de la tabla por una función del tipo $u(x) = 2e^{ax^2}$. Linealizar el problema de ajuste y escribir matricialmente el sistema lineal. Dar la expresión de la matriz de coeficientes y el vector de términos independientes de dicho sistema lineal.

Soluciones

Ejercicio 1

Hay $2^8 = 256$ números máquina.

El rango de valores de la mantisa es $m \in \left[(1.0000)_2 = 1, (1.1111)_2 = 2 - 2^{-4} = 1.9375 \right]$

El rango de valores del exponente es $(e_1e_2e_3e_4)_2 - 8 \in \left[(0000)_2 - 8 = -8, (1111)_2 - 8 = 2^{-4} - 1 - 8 = 7 \right]$

Los valores mínimo y máximo son

$$v_{\min} = (1.0000)_2 \times 2^{(00000)} 2^{-8} = 2^{-8} = 0.0039, \quad v_{\max} = (1.1111)_2 \times 2^{(1111)} 2^{-8} = (2 - 2^{-4}) \times 2^7 = 248$$

La representación de los números reales dados en la siguiente

Sea
$$x = 1$$
, $\hat{x} = \hat{1} = (1.0000)_2 \times 2^{(1000)_2 - 8} = 1 \times 2^0 = 1$

Sea
$$x = 0.05$$
, $0.05 \in [2^{-5} = 0.0313, 2^{-4} = 0.0625]$, $\hat{x} = (1.b_1b_2b_3b_4)_2 \times 2^{e-8} = m \times 2^{-5}$

Por tanto, $e = (0011)_2 = 3$, y $m = 0.05 \times 2^{-5} = 1.6$.

El valor m = 1.6 se encuentra entre las siguientes mantisas consecutivas

$$(1.1001)_2 = 1.5625 < 1.6 < (1.1010)_2 = 1.6250$$

Utilizando el redondeo tenemos,

$$\hat{x} = \widehat{0.05} = (1.1010)_2 \times 2^{(0011)_2 - 8} = 1.6250 \times 2^{-5} = 0.0508$$

Sea
$$x=1+0.05$$
, $\hat{x}=\hat{1}+\widehat{0.05}=(1.0000)_2\times 2^0+(1.1010)_2\times 2^{-5}=$
= $(1.0000)_2\times 2^0+(0.0000)_2\times 2^0=(1.0000)_2\times 2^0=1$

Sea x = 1.05.

El número x = 1.05 se encuentra entre los siguientes números máquina consecutivos $(1.0000)_2 \times 2^0 = 1 < 1.05 < (1.0001)_2 \times 2^0 = 1.0625$.

Utilizando el redondeo tenemos,

$$\hat{x} = \widehat{1.05} = (1.0001)_2 \times 2^{(1000)_2 - 8} = 1.0625 \times 2^0 = 1.0625$$

	Nº máquina	$e_1 e_2 e_3 e_4$	$b_1 b_2 b_3 b_4$
1	1	1000	0000
0.05	0.0508	0011	1010
1+0.05	1	1000	0000
1.05	1.0625	1000	0001

¿Cuántos números máquina verifican $\hat{x} < 1$? ¿Cuántos números máquina verifican $\hat{x} \ge 1$?

$$\hat{x} = m \times 2^{e-8}, \quad m \in [1, 2) \implies m2^{-1} < 1, \quad m2^{0} \ge 1$$

Luego, $\hat{x} = m \times 2^{e-8} < 1$ si $e-8 \le -1$. Hay 8 exponentes que verifican $e-8 \le -1$.

$$\hat{x} = m \times 2^{e-8} \ge 1$$
 si $e-8 \ge 0$. Hay 8 exponentes que verican $e-8 \ge 0$.

Por tanto, hay $2^7 = 128$ números máquina que verifican $\hat{x} < 1$,

y hay 128 números máquina que verifican $\hat{x} \ge 1$.

Ejercicio 2

a) p(x) es un polinomio de grado 2 que tiene que cumplir las condiciones p(-1)=2, p(0)=5 y p'(-1)=0.

Tabla de diferencias divididas generalizada:

- -1 2
- -1 2 0
- 0 5 3 3

Luego el polinomio es:

$$p(x)=2+3(x+1)^2$$

b) Los parámetros a, b y λ:

Imponemos las condiciones de interpolación y continuidad:

$$S(0)=5 \rightarrow a=5$$

$$S'(0^{-})=S'(0^{+}) \rightarrow 6=b$$

$$S(1)=5+6=\lambda \rightarrow \lambda=11$$

c) Los parámetros c,d, y e:

Resolvemos por el método de Newton para que nos sea más fácil obtener los parámetros. Necesitamos primero calcular $S'(1^-)=6$ (del subintervalo anterio).

Tabla de diferencias divididas generalizada:

- 1 11
- 1 11 6
- 2 14 3 -3

Polinomio de grado 2; $q(x) = 11 + 6(x-1) - 3(x-1)^2$

Y los parámetros pedidos: c=11 d=6 e=-3

Ejercicio 3

a) En primer lugar se busca la expresión general de los polinomios de grado 2 que verifican las condiciones p(0)=2 y p'(0)=0. Para ello se considera un polinomio general de grado dos $p(x)=ax^2+bx+c$ y se imponen las condiciones p(0)=2 y p'(0)=0, resultando c=2 y b=0. Por tanto la expresión general del tipo de polinomios aproximantes es:

$$p(x) = ax^2 + 2$$

Se observa que se dispone de un parámetro (a) para ajustar los datos de la tabla.

- Se plantea el sistema lineal sobredeterminado resultante

$$p(x_i) = ax_i^2 + 2 \approx y_i \leftrightarrow ax_i^2 \approx y_i - 2, i=1,2,3.$$

Escrito en formato matricial:

$$\begin{pmatrix}
1 \\
4 \\
9
\end{pmatrix} a = \begin{pmatrix}
4 \\
10 \\
30
\end{pmatrix}$$

- Las ecuaciones normales del sistema vienen dadas por H'Ha= H'b:

$$\begin{pmatrix}
1 & 4 & 9 \end{pmatrix} \underbrace{\begin{pmatrix} 1 \\ 4 \\ 9 \end{pmatrix}}_{H} a = \begin{pmatrix} 1 & 4 & 9 \end{pmatrix} \underbrace{\begin{pmatrix} 4 \\ 10 \\ 30 \end{pmatrix}}_{B} \rightarrow 98a = 314 \rightarrow a = 3,2014$$

Por lo tanto, el polinomio pedido tiene la expresión: $p(x) = 3.2014x^2 + 2$

b) Se considera el ajuste de los datos dados por una función del tipo $u(x)=2e^{ax^2}$, resultando el sistema no lineal

$$u(x_i) = 2e^{ax_i^2} = y_i$$
, i=1,2,3.

Se aplican logaritmos para linealizar las ecuaciones anteriores, resultando el sistema lineal sobredeterminado:

$$ax_i^2 = \log(y_i/2)$$
, i=1,2,3.

Escrito en forma matricial:

$$\underbrace{\begin{pmatrix} 1 \\ 4 \\ 9 \end{pmatrix}}_{H} a = \underbrace{\begin{pmatrix} \log(3) \\ \log(6) \\ \log(16) \end{pmatrix}}_{B}.$$