Ha ce naryou now rescur rom my S u t 35 upapa G(V,E) or give. 10.1

dour. 10.1

$$d(v_4) = min(d(v_4), d(v_1) + w(v_1, v_4)) = min(\infty, 4 + 3) = \frac{1}{4}$$

$$d(V_2) = 5 / d(V_2) = \min_{min \mid 5, 4+5} | d(V_1) + w(s, V_2)|^2 = \min_{min \mid 5, 4+5} | \min_{min \mid 5, 9}$$

4)
$$Y = V_2$$
, $V_2 \rightarrow (V_3, V_4)$
 $O(V_3) = min(O(V_3), O(V_2) + W(V_2, V_3)) =$
 $= min(AO, 5 + 4) = 2 min(10, 9) = 9$
 $O(V_4) = min(O(V_4) = O(V_2) + W(V_2, V_4)) =$
 $= min(Y, 5 + 2) = Y$

5)
$$y = v_4$$
 $v_4 \rightarrow l v_3, t$

$$\frac{c(lv_3) = \mathbf{G}}{d(v_4)} = \min \left(d(t) = d(v_4) + w(v_4, t) \right) = d(v_4) = \min \left(\infty, 7 + 7 \right) = 14$$

6)
$$y = v_3$$

 $d(t_{\xi}) = min(d(t_1, d(v_3) + w(v_3, t)) = min(14, 9+5) = p_4$

42 V4

d (t) = min (dt), d (4) + w (v4, t) =

= min (14, 4+ 4) = 14

MAB no Knackan

		Ymin Xmin	У	ol(v1)	-	dly)			ousement
0	-	5	-	00	00	00	00	00	June
1	4	V1	SI	4	5	00	9:	00	(5,1)
2	5	V2	V1	4	5	10	7	00	(S, V2)
3	7	V4	V2	4	5	9	7	00	(V2, V4) (V2, V2
4	9	V3	V4	4	5	9	7	14	(V2, V4)
5	14	t	V3	4	5	9	¥	14	(V3;t) um (V4,t)
	A		1 -		Sic				ingumsua nà

- 4 -