

<u>Gameboard</u>

Physics

Waves & Particles

Nuclear

Essential Pre-Uni Physics J2.1

Essential Pre-Uni Physics J2.1

A 'mole' of nuclei contains $6.02 \times 10^{23}\,$ nuclei. The mass of one mole of nuclei (the 'molar mass') is approximately equal to $0.001\,\mathrm{kg}\times$ the mass number of the nucleus. Use this approximation wherever you have a question and are not given the molar mass explicitly.

Complete the questions in the table:

Half life	Decay constant / $ m s^{-1}$
53 s	(a)
12 years	(b)

Part A Half life of $53 \, \mathrm{s}$

a) What is the decay constant?

Part B Half life of $12 \, \mathrm{years}$

b) What is the decay constant?

<u>Gameboard</u>

Physics

Waves & Particles

Nuclear

Essential Pre-Uni Physics J2.8

Essential Pre-Uni Physics J2.8

A 'mole' of nuclei contains 6.02×10^{23} nuclei. The mass of one mole of nuclei (the 'molar mass') is approximately equal to $0.001\,\mathrm{kg}\times$ the mass number of the nucleus. Use this approximation wherever you have a question and are not given the molar mass explicitly.

Part A Number of nuclei

 $^{238}\mathrm{U}$ has a half life of $4.47 \times 10^9 \, \mathrm{years}$. How many $^{238}\mathrm{U}$ nuclei would you need in order to have an activity of $5000 \, \mathrm{Bq}$? Give your answer to 2 significant figures (strictly the answer to this question should be given to 1 sig fig, but 2 sig figs allows us to check your method is correct)

Part B Mass of the sample

What is the mass of the $^{238}\mathrm{U}$ sample? Give your answer to 2 significant figures (strictly the answer to this question should be given to 1 sig fig, but 2 sig figs allows us to check your method is correct).

Gameboard:

STEM SMART Physics 33 - Exponentials in radioactivity

<u>Gameboard</u>

Physics

Waves & Particles

Nuclear

Essential Pre-Uni Physics J2.10

Essential Pre-Uni Physics J2.10

A 'mole' of nuclei contains $6.02 \times 10^{23}\,$ nuclei. The mass of one mole of nuclei (the 'molar mass') is approximately equal to $0.001\,\mathrm{kg}\times$ the mass number of the nucleus. Use this approximation wherever you have a question and are not given the molar mass explicitly.

A 'radioactive battery' for a long range space probe uses a radioisotope with a decay constant of $4.4 \times 10^{-12} \, \mathrm{s}^{-1}$, and a molar mass of $0.236 \, \mathrm{kg}$. Each time one nucleus decays, $2.5 \times 10^{-12} \, \mathrm{J}$ of electrical energy is `made' by the generator. Calculate the mass of the radioactive sample if the spacecraft requires $200 \, \mathrm{J}$ of electricity every second (i.e. this is a $200 \, \mathrm{W}$ spacecraft). Give your answer to 2 significant figures.

Gameboard:

STEM SMART Physics 33 - Exponentials in radioactivity

<u>Gameboard</u>

Physics

Waves & Particles

Wave Motion

Inverse Square Intensity 16.1

Inverse Square Intensity 16.1

Quantities:

P Power (W)

I Intensity (W m^{-2})

C Count rate (Bq = s⁻¹)

Subscripts label different locations, so I_1 is measured at r_1 .

A Surface area (m^2)

r Distance from source (m)

Equations:

$$A_{\sf sphere} = 4\pi r^2 \hspace{1cm} I = rac{P}{A}$$

For a source which radiates in all directions, use the equations above to derive expressions for:

Part A The intensity I at a distance r from a source of power P

the intensity I at a distance r from a source of power P.

The following symbols may be useful: I, P, pi, r

Part B $\hspace{1.5cm}$ The distance d at which a source P has intensity I

the distance d at which a source P has intensity I.

The following symbols may be useful: I, P, d, pi

Part C $\hspace{1.5cm}$ The intensity I_2 at a distance r_2 from a source

the intensity I_2 at a distance r_2 from a source if the intensity at distance r_1 is I_1 .

The following symbols may be useful: I_1 , I_2 , r_1 , r_2

Gameboard:

STEM SMART Physics 33 - Exponentials in radioactivity

<u>Gameboard</u>

Physics

Waves & Particles

Wave Motion

Inverse Square Intensity 16.6

Inverse Square Intensity 16.6

When dentists take X-rays, they stand by the door, or outside the room. Calculate the intensity at $3.5\,\mathrm{m}$ from the source as a fraction of the intensity $0.32\,\mathrm{m}$ from it.

Gameboard:

STEM SMART Physics 33 - Exponentials in radioactivity

<u>Gameboard</u>

Physics

Waves & Particles

Wave Motion

Inverse Square Intensity 16.7

Inverse Square Intensity 16.7

The background count in a laboratory is 36 counts in $40\,\mathrm{s}$. When a gamma source is placed $1.5\,\mathrm{m}$ from the detector, there are 236 counts each minute.

Part A Background-corrected count rate

Calculate the background-corrected count rate in Bq.

Part B Expected background-corrected count rate

Calculate the expected background-corrected count rate $15\,\mathrm{cm}$ from the source.

Gameboard:

STEM SMART Physics 33 - Exponentials in radioactivity

<u>Home</u> <u>Gameboard</u>

oard Physics

Waves & Particles

Nuclear

Essential Pre-Uni Physics J3.5

Essential Pre-Uni Physics J3.5

Tritium has a half life of about 12 years. If you put $3.0\,\mu\mathrm{g}$ of tritium into a luminous sign, how much will still be there $50\,\mathrm{years}$ later?

Gameboard:

STEM SMART Physics 33 - Exponentials in radioactivity

<u>Home</u> <u>Gameboard</u> Physics Waves & Particles Nuclear Essential Pre-Uni Physics J3.8

Essential Pre-Uni Physics J3.8

Carbon-14 has a half life of about $5700 \, \mathrm{years}$. What fraction of the original amount of carbon-14 would you expect to find in the timbers of a boat built $8000 \, \mathrm{years}$ ago? Give your answer as a decimal to 4 significant figures.

Gameboard:

STEM SMART Physics 33 - Exponentials in radioactivity

<u>Gameboard</u>

Physics

Waves & Particles

Nuclear

Essential Pre-Uni Physics J3.9

Essential Pre-Uni Physics J3.9

Uranium-238 has a half life of $4.47 \times 10^9~{\rm years}$ and decays to thorium-234. The thorium decays (by a series of further nuclear processes which are relatively brief) to lead. Assuming that a rock was originally entirely uranium, and that at present, 1.5% of the nuclei are now lead, calculate the age of the rock. Give your answer in years to 2 significant figures.

Gameboard:

STEM SMART Physics 33 - Exponentials in radioactivity

<u>Gameboard</u>

Physics

Waves & Particles

Nuclear

Exponential Decay - Using Logarithms 35.2

Exponential Decay - Using Logarithms 35.2

How much time is taken for 7.0% of a radioactive rock (containing uranium) to decay if $T_{1/2}=4.5 imes10^9\,\mathrm{years}$?