Math 523H–Homework 2

1. Suppose $\{s_n\}$ is a sequence such that for all n we have

$$|s_n - s_{n+1}| \le \frac{1}{\alpha^n}$$

for some $\alpha > 1$. Then prove that $\{s_n\}$ is a Cauchy sequence.

Hint: Use geometric series to bound $|s_n - s_{n+k}|$.

2. Suppose we are given a decimal expansion $k.d_1d_2d_3\cdots$ of a real number where k is an integer and $d_i \in \{0, 1, 2, \cdots, 9\}$. Show that

$$s_n = k + \frac{d_1}{10} + \dots + \frac{d_n}{10^n}$$

is a Cauchy sequence. Hint: Use Problem 1.

3. Consider the sequence

$$s_n = \frac{1}{1 \cdot 5} + \frac{1}{3 \cdot 7} + \frac{1}{5 \cdot 9} + \frac{1}{7 \cdot 11} + \dots + \frac{1}{(2n-1)(2n+3)}$$

Show that $\{s_n\}$ is a Cauchy sequence and compute its limit.

Hint: Compute the partial fraction expansion of the $\frac{1}{(2j-1)(2j+3)}$.

- 4. Consider two rational Cauchy sequences $\{s_n\}$ and $\{t_n\}$ and denote by $\{s_n \cdot t_n\}$ the sequence obtained by the products term by term. Show
 - (a) The sequence $\{s_n \cdot t_n\}$ is again a Cauchy sequence.
 - (b) If $\{s_n\} \sim \{s'_n\}$ and $\{t_n\} \sim \{t'_n\}$ show that $\{s_n \cdot t_n\} \sim \{s'_n \cdot t'_n\}$. This shows that the product of two real numbers is independent of the choice of the representatives in the equivalence classes.
- 5. Consider a sequence s_n and assume that $\lim_{n\to\infty} \left| \frac{s_{n+1}}{s_n} \right| = L$ exists.
 - (a) Show that if L < 1 then $\lim_{n \to \infty} s_n = 0$. Hint: Pick b such that L < b < 1 and choose N so large that $\left| \frac{s_{n+1}}{s_n} \right| < a < 1$ for all $n \ge N$. Then show that for $n \ge N$ we have $|s_n| \le b^{n-N} |s_N|$.
 - (b) Show that if L > 1 then $\lim_{n \to \infty} |s_n| = \infty$. Hint: You can either use a similar trick as in part (a) or you can deduce it directly from part (a) by considering the sequence $t_n = \frac{1}{|s_n|}$.

6. Let p > 0. Show that

$$\lim_{n\to\infty}\frac{a^n}{n^p}=\left\{\begin{array}{ll} 0 & \text{if } |a|\leq 1\\ +\infty & \text{if } a>1\\ \text{does not exists} & \text{if } a<-1 \end{array}\right.$$

Hint: Use Problem 5

7. Show that for any number a we have $\lim_{n\to\infty} \frac{a^n}{n!} = 0$. Hint: Use Problem 5.

8. Suppose $\{a_n\}$ is a convergent sequence with $\lim_{n\to\infty} a_n = a$ and define a new sequence b_n by

$$b_n = \frac{1}{n} \sum_{k=1}^n a_k = \frac{1}{n} (a_1 + \dots + a_n)$$

that is b_n is the average of the first n terms of the sequence a_n . Show that $\{b_n\}$ is a convergent sequence and $\lim_{n\to\infty}b_n=a$.