NANO 266 - Lab 3

Zhi Deng PID:A53058446

May 20, 2015

$\mathbf{Q}\mathbf{1}$

First of all, perform the k-point convergence test on both bcc and hcp Fe with convergence criteria set to 1 meV/atom.

- For bcc Fe, set the lattice parameter a = 5.42 a.u. Use a $k \times k \times k$ k-point grid, where k increases from 8 to 20 with increment 1.
- For hcp Fe, set the lattice parameters a = 4.8 a.u. and c/a = 1.73. Use a $k_1 \times k_1 \times k_3$ k-point grid, where k_1 increases from 8 to 20 with increment 1, k_3 is automatically determined by k_1 and c/a. For more details on k_3 , please see the following program and table.

```
import numpy as np
calat = 1.73
k1_array = np.arange(8,21)
k3_array = np.ceil(k1_array/calat).astype(int)
```

_	1												20
k_3	5	6	6	7	7	8	9	9	10	10	11	11	12

Convergence test results:

- bcc Fe converges at $15 \times 15 \times 15$ k-point grid.
- fcc Fe converges at $16 \times 16 \times 10$ k-point grid.

Use the converged k-mesh for the following calculations.

1

Calculate and plot the ground state energy of bcc and hcp Fe near the equilibrium lattice constant. For bcc Fe, the equilibrium lattice constant $a_0 = 2.842 \,\text{Å} = 5.37 \,\text{a.u.}$ For hcp Fe, the equilibrium lattice constant $a_0 = 2.540 \,\text{Å} = 4.80 \,\text{a.u.}$, and c/a = 1.73. Note the energy differences between different ratios are small near a_0 .

 $\mathbf{2}$

In thermodynamics, pressure is defined as:

$$p = -\frac{\partial U}{\partial V},$$

where U is the internal energy and V is the volume. The internal energy is the total energy from DFT calculation. On the E-V plot, the pressure on certain point can be calculated from the slope of the tangent line at that point.

The Gibbs free energy change is given by

$$\Delta G = \Delta U + p\Delta V - T\Delta S,$$

where T is the temperature, ΔS is the entropy change. The contribution of entropy is relatively small comparing with the other terms in solids. Therefore,

$$\Delta G = \Delta U + p\Delta V.$$

The phase transition occurs when the 2 phases have the same Gibbs free energy ($\Delta G = 0$). Even with a difference in internal (total) energy, 2 structures can have the same Gibbs free energy as long as they satisfy the following condition:

$$\Delta U = -p\Delta V.$$

For this case, on the E-V plot, the 2 points on different curves share a common tangent line as the phase transition pressure is unique.

The cell volume can be calculated from lattice parameters with the following equations:

$$V_{\text{bcc}} = a^3, V_{\text{hcp}} = \frac{\sqrt{3}}{2} \left(\frac{c}{a}\right) a^3$$

Plot the energy of bcc and hcp Fe against cell volume. For the hcp structure, the choice of c/a has no effect on the E-V curve. All the curves from different c/a will merge into one curve on the E-V plot. (tested)

To find the common tangent line, first fit each curve to a 4-degree polynomial

$$y(x) = ax^4 + bx^3 + cx^2 + dx + e,$$

The derivative of the above function is given by:

$$y'(x) = 4ax^3 + 3bx^2 + 2cx + d.$$

The equation of the tangent line passing through an arbitrary point $(x_0, y(x_0))$ on the curve is given by:

$$y - y(x_0) = y'(x_0)(x - x_0)$$

$$y = y'(x_0)x - y'(x_0)x_0 + y(x_0)$$

The common tangent line passing through 2 points of tangency $(x_1, y_1(x_1))$ and $(x_2, y_2(x_2))$ on different curves should have the same slope and intercept. Therefore,

$$\begin{cases} y_1'(x_1) = y_2'(x_2) \\ -y_1'(x_1)x_1 + y_1(x_1) = -y_2'(x_2)x_2 + y_2(x_2) \end{cases}$$

Solve the equations to get the coordinates of the 2 points of tangency to get the common tangent line.

Thanks to NumPy and SciPy, I was able to solve them numerically without even knowing the equation of either curve. The source code is available at:

With the data of 2 tangent points, the pressure is calculated as:

$$p = -\frac{\Delta E}{\Delta V} = 60.12 \,\mathrm{GPa}$$

3

To calculate the total energy of bcc Fe in anti-ferromagnetic state, break the bcc symmetry to simple cubic cell with the 2 atoms having the opposite starting magnetization values (2 different species). Do a k-point convergence test using the lowest energy structure from ferromagnetic bcc Fe to get the converged total energy. The template is available at: https://github.com/adengz/nano266/blob/master/labs/lab3/Fe.sc.pw.in.template

The result shows that the total energy converges at at $10 \times 10 \times 10$ k-point grid.

Compare the total energies between ferromagnetic and anti-ferromagnetic states using the converged total energies. The total energy of bcc Fe in ferromagnetic state is around $0.5\,\mathrm{eV/atom}$ lower than that in anti-ferromagnetic state.

$\mathbf{Q2}$

1

Calculate and plot the energy of cubic ${\rm PbTiO_3}$ as a function of lattice parameter.

At equilibrium, the lattice parameter $a = 3.9632 \,\text{Å} = 7.489 \,\text{a.u.}$

$\mathbf{2}$

Using the lattice constant at equilibrium, calculate and plot the energy as a function of the displacement of Ti along c-axis.

The total energy reaches minimum when the displacement of Ti is $\pm 0.05\vec{c}$. The energy difference between this configuration and the minimum-energy configuration from previous part is $45.71\,\mathrm{meV/fu}$.

3

Perform the relaxation allowing Ti movement together with O using the configuration with Ti displacement of $0.05\vec{c}$.

The final atomic positions are listed in the following table.

	x	y	z
Pb	0	0	0
Ti	0.5	0.5	0.504526412
О	0.5	0.5	-0.000608651
О	0.5	0	0.500988678
О	0	0.5	0.500988678

Record the final energy to compare the energy differences.

4

Using the lowest energy configuration obtained from part 1 as reference, plot the energy difference of the following $PbTiO_3$ configurations:

- 1. Ti at (0.5,0.5,0.5). Space group: $Pm\bar{3}m$
- 2. Ti at (0.5,0.5,0.55). Space group: P4mm
- 3. Ti at (0.5,0.5,0.504). Space group: P4mm

The most stable structure is the one with Ti coordinates of (0.5,0.5,0.55). (For the 3rd configuration, I believe the total energy converged to a local minimum)

In the lowest energy structure, the center of mass of positive charges (Pb^{2+}) does not coincide with the one of negative charges (TiO_4 tetrahedra). The non-polarized structure (with space group $Pm\bar{3}m$) tends to polarize due to the energy difference, which explains the spontaneous electric polarization, i.e., the ferroelectricity of PbTiO_3 .

$\mathbf{Q}\mathbf{3}$

1

Calculate the ground state energy of Cu, Au and CuAu. The initial guess of lattice constants are listed in the following table.

Structure	a					
Structure	unit: Å	unit: a.u.				
fcc Cu	3.61505	6.83				
fcc Au	4.17010	7.88				
L1 ₀ CuAu	3.96900	7.50				

Perform the k-point convergence test for all structures to get converged total energies.

Convergence test results:

• Cu converges at $14 \times 14 \times 14$ k-point grid. The lattice constant a = 6.88 a.u. for the relaxed structure.

- Au converges at $16 \times 16 \times 16$ k-point grid. The lattice constant a = 7.88 a.u. for the relaxed structure.
- CuAu converges at $8 \times 8 \times 8$ k-point grid.

Use the converged total energies for formation energy calculations.

2

Calculate the formation energy of CuAu.

$$\Delta H_{\rm f}({\rm Cu_{0.5}Au_{0.5}}) = E({\rm Cu_{0.5}Au_{0.5}}) - 0.5E({\rm Cu}) - 0.5E({\rm Au})$$

= -54.97 meV/atom

3

Calculate the ground state energy of Cu_3Au and CuAu_3 . The initial guess on lattice constants are predicted from the relaxed structure of fcc Cu and Au based on Vegard's law (7.13 a.u. for Cu_3Au and 7.63 a.u. for CuAu_3). The k-mesh choice should be similar to CuAu as all of them start from simple cubic structure with 4 atoms in the unit cell.

Both Cu_3Au and $CuAu_3$ converges at $7 \times 7 \times 7$ k-point grid. Use the converged total energies for formation energy calculations.

4

Calculate the formation energy of Cu₃Au and CuAu₃.

$$\begin{split} \Delta H_{\rm f}({\rm Cu_{0.75}Au_{0.25}}) &= E({\rm Cu_{0.75}Au_{0.25}}) - 0.75E({\rm Cu}) - 0.25E({\rm Au}) \\ &= -40.35\,{\rm meV/atom} \\ \Delta H_{\rm f}({\rm Cu_{0.25}Au_{0.75}}) &= E({\rm Cu_{0.25}Au_{0.75}}) - 0.25E({\rm Cu}) - 0.75E({\rm Au}) \\ &= -23.95\,{\rm meV/atom} \end{split}$$

Plot the formation energy as a function of x in $Cu_{1-x}Au_x$ using the phase diagram module in Pymatgen.

From the binary phase diagram, we can tell that $\mathrm{Cu_3Au}$ and CuAu are stable ordered intermetallic structures at $0\,\mathrm{K}$. While the formation energy of $\mathrm{CuAu_3}$ is above the convex hull, indicating it's unstable at $0\,\mathrm{K}$.