Álgebra Lineal - Clase 14

Gabriela Jeronimo

FCEN-UBA

Segundo cuatrimestre 2020

Esquema de la clase

- Polinomio minimal de una transformación lineal.
- ► Teorema de Hamilton-Cayley.
- Criterio de diagonalización vía polinomio minimal.
- Subespacios invariantes.

Bibliografía recomendada.

G. Jeronimo, J. Sabia, S. Tesauri. *Algebra Lineal*. Cursos de Grado. Fascículo 2. Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 2008.

Capítulo 6 (Secciones 6.3 y 6.4).

Polinomio minimal de una transformación lineal

Proposición.

Sean $A, B \in K^{n \times n}$, $A \sim B$. Entonces, $\forall P \in K[X]$, $P(A) \sim P(B)$. En particular, $P(A) = 0 \iff P(B) = 0$.

Demostración.

 $\Rightarrow P(A) \sim P(B)$.

$$A \sim B \Rightarrow \exists C \in GL(n, K) \text{ tal que } A = C.B.C^{-1}.$$

 $\Rightarrow \forall k \in \mathbb{N}, \ A^k = C.B^k.C^{-1}$
(inducción: $A^{k+1} = A.A^k = C.B.C^{-1}.C.B^k.C^{-1} = C.B^{k+1}.C^{-1}$)
Sea $P \in K[X], \ P = \sum_{i=0}^{r} a_i X^i.$
 $P(A) = P(C.B.C^{-1}) = \sum_{i=0}^{r} a_i.(C.B.C^{-1})^i$
 $= \sum_{i=0}^{r} a_i.C.B^i.C^{-1} = C.\left(\sum_{i=0}^{r} a_i B^i\right).C^{-1}$
 $= C.P(B).C^{-1}.$

Corolario.

Sean $A, B \in K^{n \times n}$, $A \sim B$. Entonces $m_A = m_B$.

No vale la recíproca:

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \text{ y } B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

cumplen que $m_A = m_B = X^2 - 1$, pero $A \nsim B$.

Observación.

Sea V un K-e.v. de dimensión finita, y sea $f: V \rightarrow V$ una t.l.

El polinomio minimal de f se obtiene como $m_f = m_{|f|_B}$ para B una base (cualquiera) de V.

Polinomio minimal de un vector

Sea $A \in K^{n \times n}$. Para $v \in K^n$, dado $P \in K[X]$, definimos P(v) = P(A).v. Decimos que P anula a v si P(v) = 0.

Observación.

Para todo $v \in K^n$, m_A anula a v: en efecto, $m_A(v) = m_A(A).v = 0.v = 0$.

Definición.

Sea $A \in K^{n \times n}$ y sea $v \in K^n$. El polinomio minimal de v (asociado a A), que notaremos $m_{A,v}$ o simplemente m_v , es el polinomio mónico de grado mínimo en K[X] que anula a v.

Existencia y unicidad se prueban como para m_A .

Ejemplos.

1. Sean $A \in K^{n \times n}$ y $v \in K^n$ un autovector de A de autovalor λ . Entonces $m_v = X - \lambda$. En efecto, si $P = X - \lambda$, entonces $P(v) = (A - \lambda I).v = 0$.

2. Sean $A=\left(\begin{array}{cc} -1 & 0 \\ 1 & -1 \end{array}\right)\in\mathbb{R}^{2\times 2}$ y $e_1=(1,0)$. Calcular m_{e_1} .

$$gr(P) = 1: P = X + a_0 \in \mathbb{R}[X].$$

$$P(e_1) = 0 \iff (A + a_0 I_2).e_1 = 0$$

 $\iff A.e_1 + a_0.e_1 = 0$

$$\iff (-1,1) + a_0(1,0) = (0,0). \quad \text{Abs!}$$

$$\Rightarrow \exists P \text{ tal que } P(e_1) = 0 \text{ y } \text{gr}(P) = 1$$

$$\Rightarrow
ot \exists P \text{ tal que } P(e_1) = 0 \text{ y gr}(P) = 1.$$

$$gr(P) = 2: P = X^{2} + a_{1}X + a_{0}.$$

$$P(e_{1}) = 0 \iff (A^{2} + a_{1}A + a_{0}I_{2}).e_{1} = 0$$

$$\iff A^{2}e_{1} + a_{1}.Ae_{1} + a_{0}.e_{1} = 0$$

$$\iff (1, -2) + a_{1}(-1, 1) + a_{0}(1, 0) = (0, 0)$$

$$\iff a_{1} = 2, a_{0} = 1.$$

$$\Rightarrow m_{e_1} = X^2 + 2X + 1.$$

Proposición.

Sean $A \in K^{n \times n}$, $v \in K^n$ y $P \in K[X]$. Entonces:

$$P(v) = 0 \iff m_v \mid P$$
. En particular, $m_v \mid m_A$.

Proposición.

Sea $A \in K^{n \times n}$ y sea $B = \{v_1, \dots, v_n\}$ una base de K^n . Entonces $m_A = \text{mcm}\{m_{v_i} : i = 1, \dots, n\}$ (mcm = mínimo común múltiplo).

Demostración.

Sea $P = mcm\{m_{v_i} : i = 1, ..., n\}.$

$$m_{V_i} \mid m_A \ \forall 1 \leq i \leq n \Rightarrow P \mid m_A$$
.

$$\forall 1 \leq i \leq n, \ m_{v_i} \mid P \Rightarrow P(A).v_i = 0.$$

Sea $v \in K^n$ y sean $\alpha_1, \ldots, \alpha_n \in K$ tales que $v = \sum_{i=1}^n \alpha_i v_i$.

$$P(A).v = P(A)\left(\sum_{i=1}^{n} \alpha_i.v_i\right) = \sum_{i=1}^{n} \alpha_i P(A).v_i = 0.$$

$$P(A) \in K^{n \times n}$$
 y $P(A).v = 0 \ \forall \ v \in K^n \Rightarrow P(A) = 0 \Rightarrow m_A \mid P$.

 m_A y P son mónicos y se dividen mutuamente $\Rightarrow m_A = P$.

Ejemplo. Calcular
$$m_A$$
 para $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.

Sea $E = \{e_1, e_2, e_3\}$ la base canónica de \mathbb{R}^3 .

Sea
$$E = \{e_1, e_2, e_3\}$$
 is base canonical de \mathbb{R} .
$$m_A = \text{mcm}\{m_{e_1}, m_{e_2}, m_{e_3}\}.$$

$$m_{e_1}$$
: $\{e_1, Ae_1\} = \{e_1, e_1 + e_2\}$ es l.i.,
 $\{e_1, Ae_1, A^2e_1\} = \{e_1, e_1 + e_2, e_1 + e_3\}$

$$\{e_1, Ae_1, A^2e_1\} = \{e_1, e_1 + e_2, e_1 + 2e_2\}$$
 es l.d:

$$0 = (e_1 + 2e_2) - 2 \cdot (e_1 + e_2) + e_1 = A^2 e_1 - 2 \cdot A e_1 + e_1.$$

$$0 = (e_1 + 2e_2) - 2.(e_1 + e_2) + e_1 = A^2 e_1 - 2.Ae_1 + e_1.$$

$$\Rightarrow m_{e_1} = X^2 - 2X + 1 = (X - 1)^2.$$

$$m_{e_1} : Ae_2 = e_2 \Rightarrow m_{e_2} = X - 1.$$

$$m_{e_3}$$
: $Ae_3 = 2.e_3 \Rightarrow m_{e_3} = X - 2.$

$$\Rightarrow m_A = \text{mcm}\{(X-1)^2, X-1, X-2\} = (X-1)^2(X-2).$$

Teorema de Hamilton-Cayley

Teorema (Hamilton-Cayley)

Sea $A \in K^{n \times n}$. Entonces $m_A \mid \mathcal{X}_A$. (Es decir, $\mathcal{X}_A(A) = 0$).

Demostración.

Sea $v \in K^n$, $v \neq 0$. Supongamos que $\{v, Av, \dots, A^kv\}$ es l.i. y que $A^{k+1}v + a_kA^kv + \dots + a_1Av + a_0v = 0$.

$$\Rightarrow m_v = X^{k+1} + a_k X^k + \dots + a_1 X + a_0.$$

Sea $f_A: K^n \to K^n$, $f_A(x) = A.x$.

$$\{v, Av, \dots, A^kv\} = \{v, f_A(v), \dots, f_A^k(v)\}$$
 es l.i.

Extendemos a $B = \{v, f_A(v), \dots, f_A^k(v), w_{k+2}, \dots, w_n\}$ base de K^n .

$$|f_A|_B = \left(egin{array}{ccccc} 0 & 0 & \dots & 0 & -a_0 & \ 1 & 0 & & 0 & -a_1 & \ 0 & 1 & & dots & dots & M \ dots & & \ddots & 0 & -a_{k-1} & \ 0 & \dots & 0 & 1 & -a_k & \ & & & \mathbb{O} & & N \end{array}
ight).$$

$$\mathcal{X}_A = \mathcal{X}_{f_A} = \mathcal{X}_{|f_A|_B} =$$

$$= \det \left(\begin{array}{ccccc} X & 0 & \dots & 0 & a_0 \\ -1 & X & & 0 & a_1 \\ 0 & -1 & & \vdots & \vdots & & -M \\ \vdots & & \ddots & X & a_{k-1} \\ 0 & \dots & & -1 & X + a_k \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & &$$

$$= (X^{k+1} + a_k X^k + \dots + a_1 X + a_0). \det(X.I_{n-k-1} - N)$$

$$= m_{v}. \det(X.I_{n-k-1}-N).$$

$$\Rightarrow m_{v} \mid \mathcal{X}_{A} \ \forall v \in K^{n}$$
.

$$E = \{e_1, \dots, e_n\}$$
 base canónica de K^n .

$$m_{e_i} \mid \mathcal{X}_A \ \forall 1 \leq i \leq n \Rightarrow m_A = \text{mcm}\{m_{e_1}, \dots, m_{e_n}\} \mid \mathcal{X}_A.$$

Consecuencias.

Sea $A \in K^{n \times n}$. Entonces:

- $ightharpoonup \operatorname{gr}(m_A) \leq n.$
- $ightharpoonup \exists v \in K^n \text{ tal que } \operatorname{gr}(m_v) = n \Rightarrow m_v = m_A = \mathcal{X}_A.$

Observación.

$$A \in GL(n,K) \Rightarrow A^{-1} \in \langle I_n, A, A^2, \dots, A^{n-1} \rangle$$
.

Si $\mathcal{X}_A=X^n+a_{n-1}X^{n-1}+\cdots+a_1X+a_0$, por el Teorema de Hamilton-Cayley,

$$A^{n} + a_{n-1}A^{n-1} + \cdots + a_{1}A + a_{0}I_{n} = 0.$$

 $a_0 = \mathcal{X}_A(0) = \det(0.I_n - A) = \det(-A) = (-1)^n \det(A) \neq 0$, porque A es inversible.

$$I_{n} = -a_{0}^{-1} \cdot (A^{n} + a_{n-1}A^{n-1} + \dots + a_{2}A^{2} + a_{1}A)$$

$$= -a_{0}^{-1} \cdot (A^{n-1} + a_{n-1}A^{n-2} + \dots + a_{2}A + a_{1}I_{n}) \cdot A.$$

Criterio de diagonalización vía polinomio minimal

Si $A \in K^{n \times n}$ y $\mathcal{X}_A \in K[X]$ se factoriza linealmente en K[X] y tiene todas sus raíces simples, entonces A es diagonalizable.

No vale la recíproca: por ejemplo, $A = I_n$ es diagonalizable y $\mathcal{X}_A = (X-1)^n$ tiene raíces múltiples.

Proposición.

Sea $A \in K^{n \times n}$. Entonces A es diagonalizable en $K^{n \times n}$ si y sólo si m_A se factoriza linealmente en K[X] y todas sus raíces son simples.

Demostración.

 (\Rightarrow) Supongamos que A es diagonalizable.

Sean $\lambda_1, \ldots, \lambda_r$ los autovalores de A, $\lambda_i \neq \lambda_j$ si $i \neq j$ y sea $\{v_1, \ldots, v_n\}$ base de K^n de autovectores de A.

$$m_{A} = \operatorname{mcm}\{m_{v_{1}}, \dots, m_{v_{n}}\}$$

$$= \operatorname{mcm}\{X - \lambda_{1}, \dots, X - \lambda_{1}, \dots, X - \lambda_{r}, \dots, X - \lambda_{r}\}$$

$$= (X - \lambda_{1})(X - \lambda_{2}) \dots (X - \lambda_{r})$$

(⇐) Supongamos
$$m_A = (X - \lambda_1) \dots (X - \lambda_r)$$
 con $\lambda_i \neq \lambda_j$ si $i \neq j$. $\Rightarrow \lambda_1, \dots, \lambda_r$ son todos los autovalores de A en K .

Veamos que $K^n = \bigoplus_{i} E_{\lambda_i}(A)$, con $E_{\lambda_i}(A) = \{v \in K^n \mid Av = \lambda_i v\}$.

Sea
$$v \in K^n - \{0\}$$
. Consideremos el subespacio $S = \langle v, Av, A^2v, \dots, A^mv, \dots \rangle \subseteq K^n$.

Supongamos que $m_v = X^{k+1} + a_k X^k + \cdots + a_1 X + a_0$.

Supongamos que
$$m_V = X^{k+1} + a_k X^k + \dots + a_1 X + a_0$$
.
 $\Rightarrow \{v, Av, A^k v\}$ es li $v, A^{k+1} v \in \langle v, Av, A^2 v, A^k v \rangle$

$$\Rightarrow \{v, Av, \dots, A^k v\} \text{ es l.i. } y A^{k+1} v \in \langle v, Av, A^2 v, \dots, A^k v \rangle$$

 $\Rightarrow A^{j}v \in \langle v, Av, \dots, A^{k}v \rangle \forall i \in \mathbb{N}$

$$A^{j}v \in \langle v, Av, \dots, A^{k}v \rangle \forall j \in \mathbb{N}$$

$$A^{k}v \in \mathbb{N} \quad A^{k}v \quad A^{k}$$

$$\Rightarrow B_S = \{v, Av, \dots, A^k v\} \text{ es una base de } S.$$

Sea $f_A: S \to S$, $f_A(x) = A.x$ $(x \in S \Rightarrow Ax \in S)$.

ea
$$f_A: S \to S, \ f_A(x) = A.x \ (x \in S \Rightarrow Ax \in S).$$

$$|f_A|_{B_S} = \begin{pmatrix} 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & & \vdots & -a_1 \\ 0 & 1 & \ddots & & \vdots \\ \vdots & \vdots & \ddots & 0 & -a_{k-1} \\ 0 & 0 & \dots & 1 & -a_k \end{pmatrix}.$$

$$\mathcal{X}_{f_A} = X^{k+1} + a_k X^k + \cdots + a_1 X + a_0 = m_v.$$

 $\mathcal{X}_{f_A} = m_V \mid m_A \text{ y } m_A = (X - \lambda_1) \dots (X - \lambda_r) \text{ con } \lambda_i \neq \lambda_j \text{ si } i \neq j$ $\Rightarrow \mathcal{X}_{f_A} = (X - \lambda_{i_1}) \dots (X - \lambda_{i_{k+1}}) \text{ en } K[X] \text{ y sus raices son simples.}$

$$\Rightarrow f_A: S \to S$$
 es diagonalizable $\Rightarrow S = \bigoplus_{i=1}^{k+1} E_{\lambda_{i_j}}(f_A)$

$$v \in S \Rightarrow \exists v_{i_j} \in E_{\lambda_{i_j}}(f_A), \ 1 \leq j \leq k+1: \ v = v_{i_1} + \dots + v_{i_{k+1}}.$$
 $v_{i_j} \in E_{\lambda_{i_j}}(f_A)$ (autovector de f_A de autovalor λ_{i_j})

$$\Rightarrow Av_{i_j} = f_A(v_{i_j}) = \lambda_{i_j}v_{i_j} \Rightarrow v_{i_j} \in E_{\lambda_{i_i}}(A)$$
 (autovector de A).

$$\Rightarrow v \in \bigoplus_{i=1}^r E_{\lambda_i}(A).$$

Luego,
$$K^n = \bigoplus_{i=1}^r E_{\lambda_i}(A)$$
.

Ejemplo.

Sea $A \in \mathbb{C}^{n \times n}$ tal que $A^k = I_n$ para algún $k \in \mathbb{N}$. Entonces A es diagonalizable.

 $A^k - I_n = 0 \Rightarrow X^k - 1$ anula a $A \Rightarrow m_A \mid X^k - 1$. $X^k - 1$ tiene todas sus raíces en $\mathbb C$ y son simples $\Rightarrow m_A$ también. Luego, A es diagonalizable.

Subespacios invariantes

Definición.

Sea V un K-e.v. y sea $f:V\to V$ una t.l. Un subespacio $S\subseteq V$ se dice invariante por f o f-invariante si $f(S)\subseteq S$.

Ejemplo.

$$A = \begin{pmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & -1 & 3 \end{pmatrix}, f_A : \mathbb{R}^4 \to \mathbb{R}^4, f_A(x) = A.x.$$

Si $E = \{e_1, e_2, e_3, e_4\}$ es la base canónica de \mathbb{R}^4 , algunos subespacios invariantes por f_A son:

- $ightharpoonup S_1 = \langle e_1 \rangle$, ya que $f_A(e_1) = -e_1 \in S_1$
- $S_2 = \langle e_1, e_2 \rangle$: $f_A(e_1) = -e_1 \in S_2 \text{ y } f_A(e_2) = e_1 - e_2 \in S_2$
- ► $S_3 = \langle e_3, e_4 \rangle$: $f_A(e_3) = 2e_3 - e_4 \in S_3 \text{ y } f_A(e_4) = e_3 + 3e_4 \in S_3$
- \triangleright $S_4 = \langle e_1, e_3, e_4 \rangle = S_1 + S_3.$

Proposición.

Sean V un K-e.v y $f:V\to V$ una t.l. Entonces:

- ightharpoonup Nu(f) e Im(f) son subespacios f-invariantes de V.
- ▶ S subespacio f-invariante de V de dimensión $1 \iff S = \langle v \rangle$ con $v \in V$ autovector de f.
- ▶ S y T subespacios f-invariantes de $V \Rightarrow S \cap T$ y S + T subespacios f-invariantes de V.

Observación.

 $f: V \to V$ t.l., $S \subset V$ subespacio invariante por $f \Rightarrow$ la restricción de f a S, que notamos $f_{|_{S}}$, es una t.l. de S en S.

Proposición.

Sean V un K-.v. de dimensión finita, $f:V\to V$ una t.l. y $S\subseteq V$ un subespacio invariante por f. Si $f_{|_S}:S\to S$ es la restricción:

- i) $m_{f|_S} \mid m_f$.
- ii) $\mathcal{X}_{f|_{S}} \mid \mathcal{X}_{f}$.

Demostración.

Sean $n=\dim V$ y $s=\dim S$. Sean $B_S=\{v_1,\ldots,v_s\}$ una base de S y $v_{s+1},\ldots,v_n\in V$ tales que $B=\{v_1,\ldots,v_s,v_{s+1},\ldots,v_n\}$ es una base de V.

- i) $m_{f_{\mid_S}} = \text{mcm}\{m_{v_1}, \dots, m_{v_s}\}.$ $m_{v_i} \mid m_f \ \forall 1 \leq i \leq s \Rightarrow \text{el mcm de estos polinomios también lo divide, es decir, <math>m_{f_{\mid_S}} \mid m_f.$
- ii) Para la base B, se tiene que

$$|f|_B = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix} \in K^{n \times n}$$
, con $A = |f|_S|_{B_S} \in K^{s \times s}$.

$$\mathcal{X}_{f} = \mathcal{X}_{|f|_{B}} = \det \begin{pmatrix} X.I_{s} - A & -B \\ 0 & X.I_{n-s} - C \end{pmatrix}$$
$$= \det(X.I_{s} - A).\det(X.I_{n-s} - C) = \mathcal{X}_{f|_{S}}.Q,$$

$$\Rightarrow \mathcal{X}_{f|_{\mathcal{E}}} \mid \mathcal{X}_{f}.$$