

LÓGICA - 1º Grado en Ingeniería Informática

Facultad de Informática Universidad Politécnica de Madrid

Sustituciones y Unificación

David Pérez del Rey

dperezdelrey@fi.upm.es

Despacho 2104

Tel: +34 91 336 74 45

Sustituciones - Notación LPO

La sustitución es una operación sintáctica sobre fórmulas y términos que devuelve nuevas fórmulas y términos:

$$A - sustitución \rightarrow A'$$
 $t - sustitución \rightarrow t'$

- Esta operación se aplica única y exclusivamente sobre variables libres presentes en A o en t. De no haberlas, el resultado de la sustitución es la expresión inicial.
- Siendo A una fórmula y x una variable de un LPO
 - A(x) indica la aparición de al menos una ocurrencia libre de x en A
 - A { x / t } representa a la fórmula obtenida a partir de A sustituyendo todas las apariciones de la variable libre x por el término t.
- Ejemplos:
 - A(x): $P(x,f(y)) \rightarrow \exists yQ(x,y)$;

A $\{x/a\}$: $P(a,f(y)) \rightarrow \exists yQ(a,y)$

• A(y): $\exists x((P(x,y)\lor Q(x,y))\land R(x,y));$

 $A\{y/f(z)\}:\exists x((P(x,f(z))\lor Q(x,f(z)))\land R(x,f(z)))$

Sustituciones - Condiciones

- Condiciones para la sustitución de una variable libre por un término:
 - Reemplazo de todas y sólo las ocurrencias de la variable libre en la fórmula por el término
 - $(\exists x (P(x,f(y)) \rightarrow \exists y Q(x,y))) \{y/a\} = \exists x (P(x,f(a)) \rightarrow \exists y Q(x,y))$
 - $(\exists xA)\{y/t\} = \exists xA\{y/t\}$ sii t **no** contiene apariciones de **x**
 - $\exists x(\neg(x=y))\{y/z\} = \exists x(\neg(x=z))$
 - $\exists x(\neg(x=y))\{y/x\} = ? \exists x(\neg(x=x))$
 - $(\forall xA)\{y/t\} = \forall xA\{y/t\}$ sii t **no** contiene apariciones de **x**
 - ∀xPadre(x,y){y/primogénito(x)} =? ∀xPadre(x,primogénito(x))
 - (∃xA){y/t} = ∃z(A{x/z}){y/t sii t contiene apariciones de x pero z no aparece en A
 - $\exists x(\neg(x=y))\{y/x\} = \exists z(\neg(x=y)\{x/z\}))\{y/x\} = \exists z(\neg(z=y))\{y/x\} = \exists z(\neg(z=x)) \}$
 - (∀xA){y/t} = ∀z(A{x/z}){y/t} sii t contiene apariciones de x pero z no aparece en A
 - ∀xPadre(x,y){y/primogénito(x)} = ∀z(Padre(x,y){x/z}){y/primogénito(x)} =
 ∀zPadre(z,y){y/primogénito(x)} = ∀zPadre(z,primogénito(x))

Sustituciones - Notación LC

- Una sustitución es una función finita de un conjunto de variables de un lenguaje en el de términos. Se representa como α = {x1/t1, x2/t2, ..., xn/tn} donde x1, ..., xn son variables diferentes y t1, ..., tn son términos tales que, en cada ti no aparece la variable xi
- Un par xi/ti se denomina *ligadura*
- **Dominio(** α **)** = {xi / xi/ti $\in \alpha$ }
- Rango(α) = {yi / yi aparece en ti y xi/ti $\in \alpha$ }
- Una sustitución que no sustituye ninguna variable se llama sustitución vacía (λ)
- Si α es una función biyectiva de variables en variables entonces α se denomina **renombrado**

Ejemplos: Ctes = $\{a, b, c, d\}$, $Var = \{x, y, z, w\}$, $Func = \{f/1, h/2\}$

- $\alpha 1 = \{x/f(a), y/x, z/h(b,y), w/a\}$
- Dominio(α 1) = {x, y, z, w}
- Rango(α 1) = {x, y}

- $\alpha 2 = \{x/a, y/a, z/h(b,c), w/f(d)\}$
- Dominio(α 2) = {x, y, z, w}
- Rango(α 2) = \varnothing

- $\alpha 3 = \{x/y, z/w\}$ (renombrado)
- Dominio(α 3) = {x, z}

Rango(α 3) = {y, w}

Sustituciones

- Dada una fórmula A y una sustitución $\alpha = \{x1/t1, ..., xn/tn\}$, se denomina **aplicación de** α **a A (A\alpha)** a la fórmula obtenida reemplazando <u>simultáneamente</u> cada ocurrencia en A de xi por ti, para cada xi/ti $\in \alpha$.
 - $\alpha = \{x/f(a), y/x, z/h(b,y), w/a\}$
 - $P(x, y, z) \alpha = P(f(a), f(a), h(b,f(a)))$
 - $P(x, y, z) \alpha = P(f(a), x, h(b,y))$

Sustituciones

- Dada una fórmula A y una sustitución $\alpha = \{x1/t1, ..., xn/tn\}$, se denomina **aplicación de** α **a A (A\alpha)** a la fórmula obtenida reemplazando <u>simultáneamente</u> cada ocurrencia en A de xi por ti, para cada xi/ti $\in \alpha$.
 - $\alpha = \{x/f(a), y/x, z/h(b,y), w/a\}$
 - $P(x, y, z) \alpha = P(f(a), f(a), h(b, f(a)))$ incorrecto
 - $P(x, y, z) \alpha = P(f(a), x, h(b,y))$ correcto
- Una fórmula A' es **instancia** de otra A si existe una sustitución, no vacía, α tal que A' = A α
- Una sustitución α es **idempotente** si Dominio(α) \cap Rango(α) = \emptyset
- Si α es una sustitución idempotente entonces $(A\alpha)\alpha = A\alpha$

•
$$\alpha 1 = \{x/a, y/f(b), z/v\}$$
 $P(x, y, w, z) \alpha 1 = P(a, f(b), w, v)$

$$P(a, f(b), w, v) \alpha 1 = P(a, f(b), w, v)$$

o
$$\alpha 2 = \{x/a, y/f(b), z/x\}$$
 $P(x, y, w, z) \alpha 2 = P(a, f(b), w, x)$

$$P(a, f(b), w, x) \alpha 2 = P(a, f(b), w, a)$$

• α 1 es idempotente, α 2 no

Composición de sustituciones

• Dadas dos sustituciones α = {x1/t1, ..., xn/tn} y β = {y1/s1, ..., ym/sm} su **composición** $\alpha\beta$ se define eliminando del conjunto

$$\{x1/t1\beta, ..., xn/tn\beta, y1/s1, ..., ym/sm\}$$

- las ligaduras xi/tiβ tales que xi ≡ tiβ,
- y las ligaduras yi/si tales que yi no pertenece a {x1,...,xn}

• Ejemplo:

- si $\alpha = \{x/3, y/f(x,1)\}$ y $\beta = \{x/4\}$ entonces $\alpha\beta = \{x/3, y/f(4,1)\}$ y $\beta\alpha = \{x/4, y/f(x,1)\}$
- Propiedades de la composición:
 - $(A\alpha)\beta = A(\alpha\beta)$
 - $(\alpha\beta)\gamma = \alpha(\beta\gamma)$
 - $\alpha \lambda = \lambda \alpha = \alpha$
 - $\alpha\beta \neq \beta\alpha$

- Hallar las sustituciones resultantes de componer las siguientes sustituciones:
 - {x/a, y/f(b,z)} ∘ {z/c, u/d} =
 - $\{x/a, y/f(b,z)\} \circ \{z/c, y/d\} =$
 - $\{x/y\} \circ \{y/f(b,z), z/c\} =$
 - $\{x/y\} \circ \{y/f(y)\} =$
- Hallar las expresiones resultantes de aplicar las siguientes sustituciones:
 - $(P(y,x))\{y/f(x), x/a\} =$
 - $(\{P(x,f(y)), P(g(y,x),z)\})\{y/f(x), x/a, z/y\} =$
 - $({P(x,f(y)), P(g(z,a),z)}){y/b, x/g(f(b),a), z/f(b)} =$

- Hallar las sustituciones resultantes de componer las siguientes sustituciones:
 - $\{x/a, y/f(b,z)\} \circ \{z/c, u/d\} = \{x/a, y/f(b,c), z/c, u/d\}$
 - $\{x/a, y/f(b,z)\} \circ \{z/c, y/d\} =$
 - $\{x/y\} \circ \{y/f(b,z), z/c\} =$
 - $\{x/y\} \circ \{y/f(y)\} =$
- Hallar las expresiones resultantes de aplicar las siguientes sustituciones:
 - $(P(y,x))\{y/f(x), x/a\} =$
 - $(\{P(x,f(y)), P(g(y,x),z)\})\{y/f(x), x/a, z/y\} =$
 - $(\{P(x,f(y)), P(g(z,a),z)\})\{y/b, x/g(f(b),a), z/f(b)\} =$

- Hallar las sustituciones resultantes de componer las siguientes sustituciones:
 - $\{x/a, y/f(b,z)\} \circ \{z/c, u/d\} = \{x/a, y/f(b,c), z/c, u/d\}$
 - {x/a, y/f(b,z)} ∘ {z/c, y/d} = {x/a, y/f(b,c), z/c}
 - $\{x/y\} \circ \{y/f(b,z), z/c\} =$
 - $\{x/y\} \circ \{y/f(y)\} =$
- Hallar las expresiones resultantes de aplicar las siguientes sustituciones:
 - $(P(y,x))\{y/f(x), x/a\} =$
 - $(\{P(x,f(y)), P(g(y,x),z)\})\{y/f(x), x/a, z/y\} =$
 - $(\{P(x,f(y)), P(g(z,a),z)\})\{y/b, x/g(f(b),a), z/f(b)\} =$

- Hallar las sustituciones resultantes de componer las siguientes sustituciones:
 - $\{x/a, y/f(b,z)\} \circ \{z/c, u/d\} = \{x/a, y/f(b,c), z/c, u/d\}$
 - $\{x/a, y/f(b,z)\} \circ \{z/c, y/d\} = \{x/a, y/f(b,c), z/c\}$
 - $\{x/y\} \circ \{y/f(b,z), z/c\} = \{x/f(b,z), y/f(b,z), z/c\}$
 - $\{x/y\} \circ \{y/f(y)\} =$
- Hallar las expresiones resultantes de aplicar las siguientes sustituciones:
 - $(P(y,x))\{y/f(x), x/a\} =$
 - $(\{P(x,f(y)), P(g(y,x),z)\})\{y/f(x), x/a, z/y\} =$
 - $({P(x,f(y)), P(g(z,a),z)}){y/b, x/g(f(b),a), z/f(b)} =$

- Hallar las sustituciones resultantes de componer las siguientes sustituciones:
 - $\{x/a, y/f(b,z)\} \circ \{z/c, u/d\} = \{x/a, y/f(b,c), z/c, u/d\}$
 - $\{x/a, y/f(b,z)\} \circ \{z/c, y/d\} = \{x/a, y/f(b,c), z/c\}$
 - $\{x/y\} \circ \{y/f(b,z), z/c\} = \{x/f(b,z), y/f(b,z), z/c\}$
 - $\{x/y\} \circ \{y/f(y)\} = \{x/f(y), y/f(y)\}$
- Hallar las expresiones resultantes de aplicar las siguientes sustituciones:
 - $(P(y,x))\{y/f(x), x/a\} =$
 - $(\{P(x,f(y)), P(g(y,x),z)\})\{y/f(x), x/a, z/y\} =$
 - $(\{P(x,f(y)), P(g(z,a),z)\})\{y/b, x/g(f(b),a), z/f(b)\} =$

- Hallar las sustituciones resultantes de componer las siguientes sustituciones:
 - $\{x/a, y/f(b,z)\} \circ \{z/c, u/d\} = \{x/a, y/f(b,c), z/c, u/d\}$
 - $\{x/a, y/f(b,z)\} \circ \{z/c, y/d\} = \{x/a, y/f(b,c), z/c\}$
 - $\{x/y\} \circ \{y/f(b,z), z/c\} = \{x/f(b,z), y/f(b,z), z/c\}$
 - $\{x/y\} \circ \{y/f(y)\} = \{x/f(y), y/f(y)\}$
- Hallar las expresiones resultantes de aplicar las siguientes sustituciones:
 - $(P(y,x))\{y/f(x), x/a\} = P(f(x), a)$
 - $(\{P(x,f(y)), P(g(y,x),z)\})\{y/f(x), x/a, z/y\} =$
 - $({P(x,f(y)), P(g(z,a),z)}){y/b, x/g(f(b),a), z/f(b)} =$

Unificadores

- Una sustitución α es un *unificador* de dos fórmulas A y B si A α = B α . En este caso se dice que A y B son unificables
- Un unificador α de A y B se denomina *unificador de máxima generalidad (umg)* sii para cualquier otro unificador β de A y B existe alguna sustitución γ tal que β = $\alpha\gamma$
- Si dos fórmulas son unificables entonces tienen umg
- El umg de dos fórmulas es único (salvo renombrado)
- Ejemplo:
 - A = P(x, f(x, g(y)), z) y B = P(r, f(r, u), a)
 - $\alpha 1 = \{x/r, u/g(y), z/a\} y \alpha 2 = \{x/a, r/a, y/b, u/g(b), z/a\}$
 - $A\alpha 1 = B\alpha 1 = P(r, f(r, g(y)), a)$
 - $A\alpha 2 = B\alpha 2 = P(a, f(a, g(b)), a)$
 - α 1 y α 2 son unificadores de A y B, pero α 1 es el umg de A y B
 - $\gamma = \{r/a, y/b\}, \alpha 2 = \alpha 1 \gamma$

Unificadores

• Unificabilidad de expresiones:

- Constantes: unificables entre sí sólo cuando son idénticas
- Variables: unificables con cualquier término (simple o complejo) bajo sustitución
- Funciones: unificables entre sí sólo cuando tienen idéntico símbolo de función y sus argumentos son unificables
- Átomos: unificables entre sí sólo cuando tienen idéntico símbolo de predicado y sus argumentos son unificables

Algoritmo de Unificación

Sean A y B dos átomos con el mismo símbolo de predicado:

- (1) $\alpha = \lambda$
- (2) Mientras $A\alpha \neq B\alpha$:
 - (2.1) Encontrar el símbolo más a la izquierda en $A\alpha$ tal que el símbolo correspondiente en $B\alpha$ sea diferente
 - (2.2) Sean t_A y t_B los términos de $A\alpha$ y $B\alpha$ que empiezan con esos símbolos:
 - (a) Si ni t_A ni t_B son variables o, si uno de ellos es una variable que aparece en el otro → terminar con fallo (A y B no son unificables)
 - (b) En otro caso, sea t_A una variable \Rightarrow el nuevo α es el resultado de $\alpha\{t_A/t_B\}$
- (3) Terminar, siendo α el umg de A y B

Algoritmo de Unificación

• Ejemplo: A = P(x, x) y B = P(f(a), f(b))

α	Αα	Βα	(t_A, t_B)	
λ	P(x, x)	P(f(a), f(b))	(x,f(a))	
$\{x/f(a)\}$	P(f(a), f(a))	P(f(a), f(b))	(a,b)	

Fallo → A y B no son unificables

• Ejemplo: A = P(x, f(y)) y B = P(z, x)

α	Αα	Βα	(t_A, t_B)	
λ	P(x, f(y))	P(z, x)	(x,z)	
$\{x/z\}$	P(z, f(y))	P(z, z)	(f(y),z)	
$\{x/z\}\cdot\{z/f(y)\}=$	P(f(y), f(y))	P(f(y), f(y))		
= $\{x/f(y), z/f(y)\}$ = UMG \Rightarrow A y B son unificables y su umg es $\{x/f(y), z/f(y)\}$				

Ejercicios UMG

 Para el siguiente par de fórmulas atómicas, encontrar el unificador de máxima generalidad

1.
$$P(x, f(g(u), u), g(x))$$

2.
$$Q(a, y, g(a, y))$$

3.
$$R(g(a), y, f(y), u)$$

4.
$$P(a, f(x))$$

5.
$$Q(f(a), g(a,y))$$

6.
$$R(x, x, y)$$

7.
$$P(f(x), x)$$

8.
$$Q(x, f(y, x), g(y))$$

$$Q(v, f(w, g(w)), g(v))$$

9.
$$R(f(x, y), g(y), a)$$

