- 1. (free points!) Circles ω_1, ω_2 are externally tangent at T. Points A and B are the touchpoints of a common tangent line k, as in the picture below. Denote by r_1, r_2 the radii of ω_1, ω_2 respectively.
 - (a) Calculate |AB|.
 - (b) Prove that $ATB = 90^\circ$.
 - (c) Let r denote the radius of a circle ω , which is externally tangent to both ω_1, ω_2 and to line k. Find r.

- 2. Circles ω_1, ω_2 are internally tangent at T. A line through T meets ω_1, ω_2 at A, B respectively. Prove that the tangents to ω_1, ω_2 at A and B are parallel.
- 3. Points D, E are chosen on sides of AC and BC of a triangle ABC so that the line DE is parallel to the tangent line to the circumcircle of ABC at C. Prove that ABDE is cyclic.

Remark: We then say that DE is **antiparallel** to AB with respect to AC and BC.

- 4. Circles ω_1 , ω_2 intersect at A and B. Choose a point C on ω_1 different from A and B. Lines CA i CB intersect ω_2 at P,Q respectively. Prove that PQ is parallel to the tangent line to ω_1 at C.
- 5. Let AD and BE be the altitudes of a triangle ABC. Point M is the midpoint of AB. Prove that the lines MD and ME are tangent to the circumcircle of CDE.
- 6. Let ABCDE be a convex pentagon in which

$$\stackrel{?}{\Rightarrow} BAC + \stackrel{?}{\Rightarrow} ADB = \stackrel{?}{\Rightarrow} AEC$$

Prove that the circumcircles of ABD and ACE are tangent.

7. Two circles ω_1, ω_2 intersect at K, M. Let A and B denote the touchpoints of a common tangent line to ω_1, ω_2 . Show that

$$AMB + AKB = 180^{\circ}$$
.

8. Let ABC be a triangle. The bisector of δBAC meets the side BC at point D and meets the circumcircle of triangle ABC at point E. The line through B that is parallel to line CE meets side AC at point F.

- (a) Prove that ABDF is cyclic.
- (b) Prove that line BE is tangent to the circumcircle of triangle ADF at point B.
- 9. \bigstar Two circles o_1, o_2 are externally tangent at D. A tangent line to o_1 at A meets the circle o_2 at two different points B and C. Prove that A is equidistant to BD i CD.
- 10. \bigstar Two circles Ω , ω are internally tangent at T. A segment AB of Ω is tangent to ω at C. Let line CT meet Ω at two different points T, M. Prove that M is the midpoints of arc AB of the circle Ω .
- 11. \bigstar Circles ω_1, ω_2 are internally tangent at T. A line meets ω_1 at points A and B and meets ω_2 at C and D. Prove that

$$ATC = BTD$$
.

12. Let ABCD be square. Let P lie inside ABCD. Prove that if

$$AP = DCP = 15^{\circ}$$

then triangle ABP is equilateral.

13. \bigstar A circle ω is tangent to a semicircle with diameter AB (see the picture below). Find α .

Rys. 2