# Big Data Project Final Presentation

11조

강유민, 김근하, 김대원

# **Topic**

진료 내역 데이터를 이용한 **질병 유형** 및 **발병 경향 분석** 





# Goal

2013년 ~ 2015년(3년) 진료 내역 데이터를 활용하여 상위 5개 항목의 질병의 유형과 발병 경향을 분석 하고 이를 통 해 의료 산업의 마케팅 전략에 도움이 될 만한 정보를 제공

| 구분 | 의과_보건기      | 구분 | 의과_보건기           |
|----|-------------|----|------------------|
| 十世 | 관           | 구군 | 관                |
| 0  | 일반의         | 23 | 가정의학과            |
| 1  | 내과          | 24 | 응급의학과            |
| 2  | 신경과         | 25 | 산업의학과            |
| 3  | 정신과         | 26 | 예방의학과            |
| 4  | 외과          | 50 | 구강악안면외<br>과      |
| 5  | 정형외과        | 51 | 치과보철과            |
| 6  | 신경외과        | 52 | 치과교정과            |
| 7  | 흉부외과        | 53 | 소아치과             |
| 8  | 성형외과        | 54 | 치주과              |
| 9  | 마취통증의학<br>과 | 55 | 치과보존과            |
| 10 | 산부인과        | 56 | 구강내과             |
| 11 | 소아청소년과      | 57 | 구강악안면방<br>사선과    |
| 12 | 안과          | 58 | <br>구강병리과        |
| 13 | 이비인후과       | 59 | 예방치과             |
| 14 | 피부과         | 80 | 한방내과             |
| 15 | 비뇨기과        | 81 | 한방부인과            |
| 16 | 영상의학과       | 82 | 한방소아과            |
| 17 | 방사선<br>종양학과 | 83 | 한방안과,<br>이비인     |
| 18 | 병리과         | 84 | 한방신경정신<br>과      |
| 19 | 진단검사의학<br>과 | 85 | 침구과              |
| 20 | 결핵과         | 86 | 한방재활의학<br>과      |
| 21 | 재활의학과       | 87 | 사상체질과            |
| 22 | 핵의학과        | 88 | 한방응급             |
| ZZ | 결측          | -  | 정상 또는<br>해당사항 없음 |

# Data1. 진료 내역 정보 데이터

- 국민 건강 보험 공단에서 제공한 데이터
- **연도별 데이터** 제공 (2013년 ~ 2015년)
- 국민건강보험가입자 중 해당 년도에 요양(병/의원)기관으로 부터의 진료내역이 1건 이상 있는 가입자 **100만 명을 무작위**로 선별하여 표본 형성
- 진료 내역 데이터 셋의 크기를 축소하기 위해 구간 분포 비율을 유지한 채로 정제 과정 거침

## Data1. 진료 내역 정보 데이터

#### 19 columns

|      | D      | <u> </u> | n              | -          | -    |          | ш |         |       | V       |         | M | N  | 0     | п     | 0     | D  | C .      |
|------|--------|----------|----------------|------------|------|----------|---|---------|-------|---------|---------|---|----|-------|-------|-------|----|----------|
| 조녀드  | 가이자 일리 | 진료내역일성발  | # <del>-</del> | -<br>연령대코드 | 시드코드 | 9 양개시일   |   | 지르 과목 = | 조산병 = | 크드부상병코드 | O 야 인 스 |   |    |       |       |       |    | 데이터 기존일  |
| 2005 | 800942 | 1        | 1              | 11         |      | 20051230 | 3 |         | E14   | K769    | 1       | 1 | 15 | 42770 | 12830 | 29940 |    | 20151220 |
| 2005 | 816566 | 2        | 2              | 5          |      | 20051217 | 3 |         | S801  | J060    | 1       | 1 | 15 | 16460 | 4930  | 11530 |    | 20151220 |
| 2005 | 816566 | 3        | 2              | 5          |      | 20051217 | 3 |         | S335  | S801    | 7       | 7 | 15 | 89480 | 21000 | 68480 | _  | 20151220 |
| 2005 | 991692 | 4        | 2              | 8          |      | 20051214 | 3 |         | L239  | B352    | 1       | 1 | 15 | 10740 | 3000  | 7740  | _  | 20151220 |
| 2005 | 385646 | 5        | 1              | 11         |      | 20051214 | 3 |         | 110   | 5552    | 1       | 1 | 15 | 9050  | 3000  | 6050  | _  | 20151220 |
| 2005 | 795595 | 6        | 2              | 2          | - 1  | 20051210 | 3 |         | L239  | J209    | 1       | 1 | 15 | 10740 | 3000  | 7740  |    | 20151220 |
| 2005 | 88924  | 7        | 2              | 15         |      | 20051203 | 3 |         | J450  | J060    | 3       | 3 | 15 | 30630 | 4500  | 26130 |    | 20151220 |
| 2005 | 806394 | 8        | 2              | 12         |      | 20051221 | 3 |         | M545  | J069    | 2       | 2 | 15 | 21310 | 6000  | 15310 |    | 20151220 |
| 2005 | 800941 | 9        | 2              | 10         |      | 20051206 | 3 |         | M170  | K31     | 1       | 1 | 15 | 11460 | 3000  | 8460  |    | 20151220 |
| 2005 | 789654 | 10       | 2              | 15         |      | 20051215 | 3 |         | L239  | J060    | 1       | 1 | 15 | 12380 | 1500  | 10880 |    | 20151220 |
| 2005 | 504830 | 11       | 2              | 11         |      | 20051217 | 3 |         | T242  |         | 2       | 2 |    | 43390 | 13010 | 30380 |    | 20151220 |
| 2005 | 995208 | 12       | 2              | 3          | - 1  | 20051231 | 3 |         | J209  | D212    | 1       | 1 | 15 | 59910 | 17970 | 41940 |    | 20151220 |
| 2005 | 23710  | 13       | 1              | 10         | 11   | 20051205 | 3 | 1       | 163   | E039    | 2       | 2 | 15 | 16730 | 6000  | 10730 | 60 | 20151220 |
| 2005 | 657672 | 14       | 2              | 6          | 11   | 20051203 | 3 | 1       | J209  | B351    | 2       | 2 | 15 | 20810 | 6000  | 14810 | 14 | 20151220 |
| 2005 | 615056 | 15       | 1              | 7          | 26   | 20051202 | 3 | 7       | K760  | B351    | 2       | 2 | 15 | 15360 | 6000  | 9360  | 38 | 20151220 |
| 2005 | 65367  | 16       | 1              | 11         | 26   | 20051202 | 3 | 1       | J869  | K30     | 2       | 2 | 15 | 15360 | 6000  | 9360  | 30 | 20151220 |
| 2005 | 245120 | 17       | 1              | 7          | 26   | 20051203 | 3 | 7       | M791  | J209    | 2       | 2 | 15 | 21820 | 6000  | 15820 | 4  | 20151220 |
| 2005 | 739185 | 18       | 2              | 5          | 26   | 20051205 | 3 | 7       | K52   | R51     | 2       | 2 | 15 | 18450 | 6000  | 12450 | 4  | 20151220 |
| 2005 | 426197 | 19       | 2              | 13         | 26   | 20051206 | 3 | 7       | J209  |         | 3       | 3 | 15 | 30400 | 9000  | 21400 | 8  | 20151220 |
| 2005 | 73412  | 20       | 2              | 3          | 26   | 20051207 | 3 | 7       | J209  |         | 1       | 1 | 15 | 12170 | 3000  | 9170  | 2  | 20151220 |
| 2005 | 739143 | 21       | 1              | 10         | 26   | 20051210 | 3 | 7       | J209  |         | 1       | 1 | 15 | 12170 | 3000  | 9170  | 2  | 20151220 |
| 2005 | 74855  | 22       | 1              | 14         | 48   | 20051212 | 3 | 7       | 1508  | M255    | 1       | 1 | 15 | 12020 | 1500  | 10520 | 2  | 20151220 |

#### **Basic information**

- 진료내역 번호, 성별, 연령, 시·도

#### **Treatment information**

 요양 개시일, 진료과목, 주상병코드, 부상병코드, 요양일수, 입 내원 일수

More than 10 million rows

•••

# Data2. 시•도별 인구수 데이터

- 통계청에서 제공한 데이터
- **연도별 데이터** 제공 (2013년 ~ 2015년)
- **시•도별 인구수** 제공
- 데이터 활용을 위해 필요한 형태로 새롭게 가공

# Data2. 시•도별 인구수 데이터

| <b>A</b> | Α         | В             | С                                           | D                | Е            | F             | G           | Н      | I                       |  |
|----------|-----------|---------------|---------------------------------------------|------------------|--------------|---------------|-------------|--------|-------------------------|--|
| 1        | 통계표명:     | 지역별 인구 및 인    | 구밀도                                         |                  |              |               |             |        |                         |  |
| 2        | 단위:       | 천명, 명/㎢       |                                             |                  |              |               |             |        |                         |  |
| 3        |           |               | 012                                         |                  | )13          | 20            |             | 201    |                         |  |
| 4        |           | 민구            | 민구밀도                                        | 민구               | 민구밀도         | 민구            | 민구밀도        | 민구     | 민구밀도                    |  |
| 5        | 계         | 50,200        | 501                                         | 50,429           | 503          | 50,747        | 506         | 51,015 | 509                     |  |
| 6        | 서울        | 10,036        | 16,583                                      | 9,990            | 16,507       | 9,975         | 16,482      | 9,941  | 16,425                  |  |
| 7        | 부산        | 3,462         | 4,498                                       | 3,456            | 4,489        | 3,452         | 4,485       | 3,452  | 4,484                   |  |
| 8 _      | 대구        | 2,480         | 2,807                                       | 2,476            | 2,802        | 2,475         | 2,801       | 2,469  | 2,794                   |  |
| 9        | 민천        | 2,794         | 2,684                                       | 2,830            | 2,718        | 2,862         | 2,722       | 2 883  | 2 748                   |  |
| 10       | 광주        | 1,504         | 3,000                                       | 1,504            | 3,000        | 1,505         | 3,002       | A      | B 005                   |  |
| 11       | 대전        | 1,540         | 2,852                                       | 1,545            | 2,860        | 1,553         | 2,879       | 1 city | number 860              |  |
| 12       | 물산        | 1,125         | 1,061                                       | 1,137            | 1,073        | 1,151         | 1,085       | 2      | 29906000 <del>097</del> |  |
| 13       | 세종        | 102           | 220                                         | 118              | 255          | 132           | 285         | 3 26   | 10260000                |  |
| 14       | 경기        | 11,974        | 1,177                                       | 12,126           | 1,192        | 12,282        | 1,207       |        | 221                     |  |
| 15       | 강원        | 1,504         | 90                                          | 1,506            | 89           | 1,510         | 90          | 4 27   | 7420000 90              |  |
| 16       | 충북        | 1,553         | 210                                         | 1,565            | 211          | 1,578         | 213         | 5 28   | 8575000 215<br>256      |  |
| 17       | 충남        | 2,043         | 249                                         | 2,062            | 251          | 2,088         | 254         | 6 29   | 4515000 207             |  |
| 18       | 전북        | 1,817         | 225                                         | 1,821            | 226          | 1,829         | 227         |        |                         |  |
| 19       | 전남        | 1,782         | 145                                         | 1,784            | 145          | 1,792         | 146         | 7 30   |                         |  |
| 20       | 경북        | 2,656         | 140                                         | 2,661            | 140          | 2,671         | 140         | 8 31   | 3452000 141<br>316      |  |
| 21       | 경남        | 3,265         | 310<br>303                                  | 3,278            | 311          | 3,307         | 314<br>315  | 9 41   | 36831000 324            |  |
| 22 _     | 제주<br>수도권 | 561<br>24.805 | 2.099                                       | 570<br>24,946    | 308<br>2,111 | 583<br>25,119 | 2,124       |        |                         |  |
| 24       |           |               | <br>'추계 시도편 : 2015-/                        |                  | <u> </u>     | 25,115        | 2,124       | 10 42  | 4533000 <u>134</u>      |  |
| 25       |           | * 수도권 : 서울, 인 |                                             | 2040],五年四古       | ㅜ ·시크르세1     |               |             | 11 43  | 4732000                 |  |
| 26       |           |               | 고전, 공기<br>구추계 시도편 : <b>201</b> 5            | 5-2045 ° O YI⊂ A | 키이그와 구든교토브   |               | I도변 구든면전은 3 | 12 44  | 6253000                 |  |
| 27       |           |               | 구후계 시포된 : 2016<br><sup>1</sup> 추계는 2017년에 작 |                  | : 근 [시 시포파증구 | - 시크리계리 다 사   | 시그는 축포단하는 / |        |                         |  |
| 21       |           | 시고를 하네근도      | 구세도 <b>2011</b> 라이 그                        | OUNED            |              |               |             | 13 45  | 5485000                 |  |
|          |           |               |                                             |                  |              |               |             | 14 46  | 5373000                 |  |
|          |           |               |                                             |                  |              |               |             | 15 47  | 8010000                 |  |

16

1752000

- 2013년 ~ 2015년 3년 시도별 인구 합산!

# Data3. 지역별 진료과목 데이터

- 대한 병원 협회에서 제공한 데이터
- **지역별 진료과목 현황** 제공
- 데이터 활용을 위해 필요한 형태로 새롭게 가공

- 시도, 내과, 소아 청소년과,

- 이비인후과, 정형외과, 안과

| 1  | city | Internal m | pediatrics | otolaryngo | orthopedia | ophthalmo | ology |
|----|------|------------|------------|------------|------------|-----------|-------|
| 2  | 11   | 175        | 104        | 54         | 141        | 46        |       |
| 3  | 26   | 132        | 77         | 36         | 98         | 16        |       |
| 4  | 27   | 99         | 58         | 21         | 66         | 12        |       |
| 5  | 28   | 48         | 29         | 12         | 36         | 6         |       |
| 6  | 29   | 46         | 30         | 10         | 29         | 7         |       |
| 7  | 30   | 50         | 17         | 12         | 32         | 8         |       |
| 8  | 31   | 41         | 23         | 12         | 23         | 4         |       |
| 9  | 41   | 240        | 134        | 67         | 168        | 3         |       |
| 10 | 42   | 47         | 23         | 19         | 37         | 11        |       |
| 11 | 43   | 46         | 21         | 8          | 29         | 7         |       |
| 12 | 44   | 62         | 27         | 16         | 39         | 8         |       |
| 13 | 45   | 74         | 27         | 15         | 51         | 8         |       |
| 14 | 46   | 82         | 33         | 22         | 55         | 13        |       |
| 15 | 47   | 100        | 33         | 26         | 55         | 16        |       |
| 16 | 48   | 134        | 76         | 50         | 89         | 14        |       |
| 17 | 49   | 8          | 6          | 4          | 7          | 4         |       |

# Analysis: EDA – Step 1



#### 지역 별 분석

```
In [94]: fig = plt.figure(figsize=(20,10))
         # 4111
         data su sick 1=data su[data su['treat kind']==1]
         data su sick 1=data su sick 1.groupby('main sick s').count()
         data su sick 1['ratio']=data su sick 1['city']/data_su_sick_1['city'].sum()
         data su sick 1=data su sick 1.sort values('ratio', ascending=False)
         data su sick 1=data su sick 1.rename(index={'JO':'Common cold','K2':'Stomach & Duodenum','J2':'lower respiratory infecti
         data su sick 1=data su sick 1.iloc[:3]
         explode = (0, 0, 0)
         colors = ['gold', 'yellowgreen', 'lightcoral']
         ax1 = plt.subplot2grid((2,2),(0,0))
         plt.pie(data su sick 1.ratio, explode=explode, shadow=True, colors=colors, autopct='%1.1f%%', startangle=120, labels=data
         plt.title('Internal medicine')
         plt.axis('equal')
         plt.legend()
         # 전형외과
         data su sick 2=data su[data su['treat kind']==5]
         data su sick 2=data su sick 2.groupby('main sick s').count()
         data su sick 2['ratio']=data su sick 2['city']/data su sick 2['city'].sum()
         data su sick 2=data su sick 2.sort values('ratio', ascending=False)
         data su sick 2=data su sick 2.rename(index={'M5':'Dorsopathies','M7':'Soft tissue diso
         data su sick 2=data su sick 2.iloc[:3]
         explode = (0, 0, 0.2)
         ax1 = plt.subplot2grid((2,2),(0,1))
         plt.pie(data su sick 2.ratio, explode=explode, shadow=True, colors=colors, autopct='%1
         plt.title('orthopedics')
         plt.axis('equal')
         plt.legend()
         # OIHI인후교
         data su sick 3=data su[data su['treat kind']==13]
         data su sick 3=data su sick 3.groupby('main sick s').count()
         data su sick 3['ratio']=data su sick 3['city']/data su sick 3['city'].sum()
         data su sick 3=data su sick 3.sort values('ratio', ascending=False)
         data su sick 3=data su sick 3.rename(index={'JO':'Common cold','J3':'Upper respiratory
         data su sick 3=data su sick 3.iloc[:3]
         explode = (0, 0, 0.2)
         ax1 = plt.subplot2grid((2,2),(1,0))
         plt.pie(data su sick 3.ratio, explode=explode, shadow=True, colors=colors, autopct='%1
         plt.title('otolaryngology')
         plt.axis('equal')
         plt.legend()
        # 217
```





#### 연령 & 성별 분석

```
In [33]: tw=JR_2010_2015[JR_2010_2015['treat_kind']==12]

In [32]: t_m=twe[twe['sex']==2]
    t_m=twe[twe['sex']==1]
    t_m=t_m[('sex']==1)
    t_m=t_m[('sex', 'treat_kind')]
    t_m=t_m[('sex', 'treat_kind')]
    t_m=t_m[('sex', 'treat_kind')]
    t_m=t_m(('sex', 'treat_kind'))
    t_m=t_m(('sex', 'treat_kind))
    t_m=t_m(('sex', 'treat_kind))
    t_m=t_m((sex), ('sex), ('sex))
    t_m=t_m((sex), ('sex), ('sex))
    t_m=t_m((sex), ('sex), ('sex), ('sex))
    t_m=t_m((sex), ('sex), ('sex
```



#### main sick by woman age 12,11



#### main sick by man age 2,12

```
In []: # man age 12 main sick 37#
```









#### 월별 분석

#### First Month Find 3 Large main sick

f1 = f1.rename(columns = {0: 'counts'})

```
In [12]: al = pd.value_counts(ms_2010_2015_codel_st[ms_2010_2015_codel_st['main_sick'].str.match('A')]['main_sick'].values, sort = True)
         b1 = pd.value.counts(ms 2010 2015.code1.st[ms 2010 2015.code1.st[main.sick'],str.match('B')]['main.sick'],values, sort = True)
         c1 = pd.value_counts(ms_2010_2015_code1_st[ms_2010_2015_code1_st["main_sick"],str.match("C")]["main_sick"],values, sort = True)
         dl = pd.value_counts(ms_2010_2015_code1_st[ms_2010_2015_code1_st["main_sick"].str.match("D")]["main_sick"].values, sort = True)
          e1 = pd.value_counts(ms_2010_2015_code1_st[ms_2010_2015_code1_st['main_sick'].str.match('E')]['main_sick'].values, sort = True)
         fl = pd.value counts(ms 2010 2015 codel st[ms 2010 2015 codel st['main sick'].str.match('F')]['main sick'].values, sort = True)
          g1 = pd.value_counts(ms_2010_2015_code1_st[ms_2010_2015_code1_st["main_sick"].str.match('G')]['main_sick'].values, sort = True)
         h1 = pd.value_counts(ms_2010_2015_code1_st[ms_2010_2015_code1_st['main_sick'].str.match('H')]['main_sick'].values, sort = True)
         il = pd.value_counts(ms_2010_2015_code1_st[ms_2010_2015_code1_st['main_sick'].str.match('I')]['main_sick'].values, sort = True)
         j1 = pd.value_counts(ms_2010_2015_code1_st[ms_2010_2015_code1_st['main_sick'].str.match('J')]['main_sick'].values, sort = True)
         k1 = pd.value_counts(ms_2010_2015_code1_st[ms_2010_2015_code1_st['main_sick'].str.match('K')]['main_sick'].values, sort = True)
         11 = pd.value_counts(ms_2010_2015_codel_st[ms_2010_2015_codel_st['main_sick'].str.match('L')]['main_sick'].values, sort = True)
         m1 = pd.value_counts(ms_2010_2015_code1_st[ms_2010_2015_code1_st['main_sick'], str.match('M')]['main_sick'], values, sort = True)
         n1 = pd.value_counts(ms_2010_2015_code1_st[ms_2010_2015_code1_st["main_sick"].str.match("N")]["main_sick"].values, sort = True)
         o1 = pd.value_counts(ms_2010_2015_code1_st[ms_2010_2015_code1_st['main_sick'].str.match('0')]['main_sick'].values, sort = True)
         p1 = pd.value_counts(ms_2010_2015_codel_st[ms_2010_2015_codel_st['main_sick'].str.match('P')]['main_sick'].values, sort = True)
          q1 = pd.value_counts(ms_2010_2015_code1_st[ms_2010_2015_code1_st["main_sick"].str.match('Q')]['main_sick'].values, sort = True)
         r1 = pd.value_counts(ms_2010_2015_code1_st[ms_2010_2015_code1_st["main_sick"],str.match("R")]["main_sick"],values, sort = True)
         s1 = pd.value_counts(ms_2010_2015_code1_st[ms_2010_2015_code1_st['main_sick'].str.match('S')]['main_sick'].values, sort = True)
         t1 = pd.value_counts(ms_2010_2015_code1_st[ms_2010_2015_code1_st['main_sick'].str.match('T'))['main_sick'].values, sort = True)
         ul = pd.value_counts(ms_2010_2015_code1_st[ms_2010_2015_code1_st['main_sick'].str.match('U')]['main_sick'].values, sort = True)
         v1 = pd.value_counts(ms_2010_2015_code1_st[ms_2010_2015_code1_st['main_sick'].str.match('V')]['main_sick'].values, sort = True)
         w1 = pd.value_counts(ms_2010_2015_codel_st[ms_2010_2015_codel_st['main_sick'].str.match('\frac{\psi}{\psi})]['main_sick'].values, sort = True)
         x1 = pd.value_counts(ms_2010_2015_code1_st[ms_2010_2015_code1_st['main_sick'].str.match('X')]['main_sick'].values, sort = True)
         y1 = pd.value_counts(ms_2010_2015_code1_st[ms_2010_2015_code1_st['main_sick'].str.match('Y')]['main_sick'].values, sort = True)
          z1 = pd.value counts(ms 2010 2015 code1 st[ms 2010 2015 code1 st[main sick'],str.match('Z')]['main sick'],values, sort = True)
```

```
In [13]: code1_list = []
         a1 = pd.DataFrame(a1)
         a1 = a1.rename(columns = {D: 'counts'})
         al_max = al.iloc[al['counts'].values.argmax()]
         code1_list.append(a1_max)
         b1 = pd.DataFrame(b1)
         b1 = b1.rename(columns = {0: 'counts'})
         code1 list.append(b1.iloc[b1['counts'].values.argmax()])
         c1 = pd.DataFrame(c1)
         c1 = c1.rename(columns = {0: 'counts'})
         code1_list.append(c1.iloc[c1['counts'].values.argmax()])
         d1 = pd.DataFrame(d1)
         d1 = d1.rename(columns = {0: 'counts'})
         code1_list.append(d1.iloc[d1['counts'].values.argmax()])
         e1 = pd.DataFrame(e1)
          e1 = e1.rename(columns = {0: 'counts'})
         code1_list.append(e1.iloc[e1['counts'].values.argmax()])
         f1 = pd.DataFrame(f1)
```









# Analysis: EDA – Step 2





#### number

#### city

| Geonggi  | 1951700 |
|----------|---------|
| Seoul    | 1441390 |
| Busan    | 501095  |
| Geongnam | 487949  |
| Incheon  | 436450  |
| Geongbuk | 360681  |
| Daegu    | 350615  |
| Chungnam | 308911  |
| Jeonbuk  | 276578  |
| Jeonnam  | 275215  |
| Daejeon  | 252140  |
| Chungbuk | 228575  |
| Gwangju  | 220330  |
| Ulsan    | 192124  |
| Gangwon  | 185537  |
| Jeju     | 92684   |
|          |         |

#### 지역 별 분석 감기 및 호흡기 질환

Expectation patient number  $= 3 * 2880 * (N_i * R_i + N_p * R_p + N_o * R_o)$ 3 year

Patient number per doctor in 1 year (2 patient) \* (6 hour) \* (5 days) \* (48 weeks)



#### 월 별 & 연령 및 성별 분석 감기 및 호흡기 질환



월 별에 따른 감기 및 호흡기 환자 수 [경기 지역]

연령 및 성별에 따른 감기 및 호흡기 환자 수 [경기 지역]

# 지역 별 분석 관절, 척추 및 연조직 질환 Gangneung Andong SOUTH

#### number

#### city

| Geonggi  | 811525 |
|----------|--------|
| Seoul    | 695991 |
| Geongnam | 336663 |
| Jeonnam  | 309454 |
| Busan    | 301820 |
| Geongbuk | 278134 |
| Jeonbuk  | 242348 |
| Chungnam | 234223 |
| Incheon  | 210143 |
| Daegu    | 193588 |
| Chungbuk | 166157 |
| Gangwon  | 129633 |
| Daejeon  | 118360 |
| Gwangju  | 109343 |
| Ulsan    | 80067  |
| Jeju     | 71977  |
|          |        |

#### 지역 별 분석 관절, 척추 및 연조직 질환

### Expectation patient number = $3 * 2880 * (N_o * R_o)$



#### 월 별 & 연령 및 성별 분석 관절, 척추 및 연조직 질환



월 별에 따른 관절, 척추 및 연조직 환자 수 [경기 지역]

연령 및 성별에 따른 관절, 척추 및 연조직 환자 수 [경기 지역]

# 지역 별 분석 식도, 위 및 십이지장 질환 Chulcheon Gangneung Seoul Suwon Andong SOUTH Gunsan

#### number

|     | 100.00 | 1     |
|-----|--------|-------|
| 100 | ш      | 70.00 |
|     | ш      | 100   |
| 48  | III S  |       |
|     |        |       |

| Geonggi  | 246536 |
|----------|--------|
| Seoul    | 210314 |
| Busan    | 82897  |
| Geongnam | 66491  |
| Geongbuk | 60179  |
| Incheon  | 58449  |
| Daegu    | 52605  |
| Chungnam | 50693  |
| Jeonbuk  | 47649  |
| Jeonnam  | 43136  |
| Chungbuk | 38955  |
| Daejeon  | 34632  |
| Gangwon  | 32161  |
| Gwangju  | 27148  |
| Ulsan    | 21724  |
| Jeju     | 9992   |

#### 지역 별 분석 식도, 위 및 십이지장 질환

### Expectation patient number = $3 * 2880 * (N_i * R_i)$



#### 월 별 & 연령 및 성별 분석 식도, 위 및 십이지장 질환



월 별에 따른 식도, 위 및 십이지장 환자 수 [경기 지역]

연령 및 성별에 따른 식도, 위 및 십이지장 환자 수 [경기 지역]

## Result

#### 지역 별 분석 감기 및 호흡기 질환

Real patient number > Expectation patient number

⇒ Need to increase hospital

**Real patient number < Expectation patient number** 

⇒ Exist more than enough hospital



### Result

3월과 12월에 병원을 찾는 0~9세의 영유아들을 위해 병원이 그에 맞는 서비스를 제공하면 Good



월 별에 따른 감기 및 호흡기 환자 수 [경기 지역]

연령 및 성별에 따른 감기 및 호흡기 환자 수 [경기 지역]

# Q&A