Lecture 21: Maximums and Minimums (MAM)

Tae Eun Kim, Ph.D.

Autumn 2021

Local Extrema and Critical Points

Definition

- **1** A function f has a **local maximum** at a, if $f(a) \ge f(x)$ for every x in some *open interval* containing a.
- **2** A function f has a **local minimum** at a, if $f(a) \le f(x)$ for every x in some *open interval* containing a.

A local extremum is either a local maximum or a local minimum.

Connection to Derivatives

When the function under consideration has a "nice" graph and has a peak or a trough, the tangent line at this local extremum must be horizontal.

Theorem (Fermat's Theorem)

If f has a local extremum at a and f is differentiable at a, then f'(a) = 0.

Example: horizontal tangent line

Consider the plots of $f(x) = x^3 - 4.5x^2 + 6x$ and $f'(x) = 3x^2 - 9x + 6$.

Connection to Derivatives (cont'd)

Question. Is it still possible for a function to have a peak or a trough without having a horizontal tangent line there? If so, draw a graph.

Example: undefined derivative

Consider the plots of $f(x) = x^{2/3}$ and $f'(x) = \frac{2}{3x^{1/3}}$:

Critical Points

The following definition captures the two scenarios previously presented:

Definition (Critical points)

Assume that a function f is defined on an open interval I that contains a point a. The function f has a **critical point** at a if

$$f'(a) = 0$$
 or $f'(a)$ does not exist.

Question. Find all critical points of $f(x) = e^{\frac{1}{3}x^3 - 4x + 5}$.

Question. Find all critical points of g(x) = |x - 5|.

Necessary but not sufficient

Scenario 1: f'(a) = 0 with no local extremum

Consider the plots of $f(x) = x^3$ and $f'(x) = 3x^2$.

x=0 is a critical point since $f^{\prime}(0)=0$, yet f has neither a local minimum or a local maximum at 0.

Necessary but not sufficient (cont'd)

f'(a) DNE with no local extremum

Consider the plots of $f(x) = \sqrt[3]{x}$ and $f'(x) = \frac{1}{3}x^{-2/3}$.

x=0 is a critical point of f since $\lim_{x\to 0} f'(x)=\infty$ (vertical tangent), yet f(0) is neither a local minimum nor a local maximum.

The First Derivative Test

So the real question is how we classify a critical point. The following answer provides a method of finding relative extrema.

Theorem (First Derivative Test)

Suppose that f is continuous on an interval that contains a critical point a and assume f is differentiable on an interval containing a, except possibly at a.

- If f'(x) > 0 to the left of a and f'(x) < 0 to the right of a, then f has a local maximum at a.
- If f'(x) < 0 to the left of a and f'(x) > 0 to the right of a, then f has a local minimum at a.
- If f'(x) has the same sign to the left and right of a, then f has no local extreme value at a.

Question. Find all local maximum and minimum points for the function $f(x) = x^3 - x$.

Concavity and Inflection Points

Recall that second derivatives carry concavity information:

Theorem (Test for Concavity)

Suppose that f''(x) exists on an interval.

- **1** If f''(x) > 0 on an interval, then f is concave up on that interval.
- **2** If f''(x) < 0 on an interval, then f is concave down on that interval.

And there are points at which the concavity changes from up to down or down to up.

Definition (Inflection point)

If f is continuous at x=a and its concavity changes either from up to down or down to up at x=a, then f has an **inflection point** at a.

Illustration: inflection points

Examples

This is an inflection point. The concavity changes from concave up to concave down.

This is an inflection point. The concavity changes from concave up to concave down.

Non-examples

This is **not** an inflection point. The curve is concave down on either side of the point.

This is **not** an inflection point. The curve is concave down on either side of the point.

The Second Derivative Test

Theorem (Second Derivative Test)

Suppose that f''(x) is continuous on an open interval and that f'(a)=0 for some value of a in that interval.

- If f''(a) < 0, then f has a local maximum at a.
- If f''(a) > 0, then f has a local minimum at a.
- If f''(a) = 0, then the test is inconclusive. In this case, f may or may not have a local extremum at x = a.

Question. Consider the function

$$f(x) = \frac{x^4}{4} + \frac{x^3}{3} - x^2$$

Using the second derivative test, find the intervals on which f is increasing and decreasing and identify the local extrema of f.