Exercice V-1

Quels sont dans la liste suivante, les réactifs électrophiles et les réactifs nucléophiles ?

H₂O, HO⁻, H₃O⁺, NH₃, CH₄, BH₃, ROH, HCl, CH₃Li, H₂SO₄, NO₂⁺, NO₃⁻, SO₃

H₂O par les doublets de l'oxygène, nucléophile faible,

HO nucléophile fort en raison de la charge négative,

H₃O⁺ électrophile fort,

NH₃ excellent nucléophile, disponibilité du doublet de l'azote,

CH₄ ni électrophile, ni nucléophile,

BH₃ électrophile, acide de Lewis,

ROH nucléophile (idem H₂O),

HCl libère H⁺ électrophile fort, Cl⁻ nucléophile faible

CH₃Li: Li⁺CH₃, CH₃ nucléophile

H₂SO₄: H⁺ électrophile, HSO₄⁻ nucléophile faible

NO₂⁺ électrophile fort,

NO₃ nucléophile faible,

SO₃ électrophile fort (charge + sur S)

Exercice V-2

A partir des énergies de liaison, indiquer si ces réactions sont possibles :

$$\begin{split} CH_3\text{-}CH_3 &+ Cl_2 &\longrightarrow CH_3\text{-}CH_2\text{Cl} + \text{HCl} \\ \Delta H^0 &= (395 + 243) - (340 + 431) = \text{-} \, 133 \, \text{kJ/mol} \\ \Delta S^0 &= 0 \\ \Delta G^0 &< 0 \, \text{donc réaction possible} \\ CH_3\text{-}CH_2\text{OH} &\longrightarrow CH_2\text{=}CH_2 + H_2\text{O} \\ \Delta H^0 &= 75 \, \text{kJ/mol} \\ \Delta S^0 &> 0 \\ \Delta G^0 &= \Delta H^0 \text{-} \, T \, \Delta S^0 \text{. Pour que la réaction soit possible} \end{split}$$

 $\Delta G^0 = \Delta H^0$ - T ΔS^0 . Pour que la réaction soit possible il faut $\Delta G^0 < 0.$ Réaction possible si T suffisamment élevée.

$$CH_3$$
-CO- CH_3 + HBr \longrightarrow CH_3 - $CBr(OH)$ - CH_3
 $\Delta H^0 = 28 \text{ kJ/mol}$
 $\Delta S^0 < 0$

 $\Delta G^0 > 0$. Réaction impossible.

Liaison	Н - Н	H - Cl	H - Br	H - I	C1 - C1	Br - Br	I - I
$\Delta_{\rm r} { m H}^0$	435	431	368	297	243	192	151
Liaison	С - Н	O - H	N - H	S - H	C - C	C - O	C - N
$\Delta_{\rm r} { m H}^{ m 0}$	395	430	375	345	350	370	300
Liaison	C - Cl	C - Br	C - I	C = C	C = O	C = C	C = N
$\Delta_{r}H^{0}$	340	280	220	610	740	835	850

Énergies de liaison à 298 K en kJ/mol.

Exercice V-3

La molécule suivante peut donner deux réactions de condensation :

- condensation entre deux molécules (réaction intermoléculaire)
- condensation sur elle-même (réaction intramoléculaire)

En vous appuyant sur les variations d'enthalpie et d'entropie, indiquer quelle réaction sera favorisée.

Mêmes liaisons mises en jeu pour les deux réactions, donc même ΔH^0

 $\Delta S^0 = 0$ pour réaction 1

 $\Delta S^0 > 0$ pour réaction 2

 $\Delta G_{2}^{0} < \Delta G_{1}^{0}$ donc réaction 2 favorisée.

Exercice V-4

On considère le 2-chloro-3-phénylbutane.

- 1) Notez les deux carbones asymétriques.
- 2) On traite le stéréoisomère 2S,3S par de l'hydroxyde de sodium dilué dans un solvant aprotique polaire ; on observe une substitution nucléophile d'ordre 2, menant à un composé A.

Quand le stéréoisomère 2S,3S est traité par de l'hydroxyde de sodium concentré en milieu très peu polaire, on observe essentiellement une élimination d'ordre 2, menant à un composé B.

Dessinez en projection de Fischer (carbone 1 au dessus) :

- le (2S,3S) 2-chloro-3-phénylbutane
- le composé A

Dessinez en formule semi-développée, le composé $\bf B$ et précisez s'il s'agit du stéréoisomère $\bf Z$ ou $\bf E$. Expliquez pourquoi la réaction d'élimination est favorisée par rapport à la substitution dans le second cas.

Réaction de substitution nucléophile d'ordre 2, inversion de configuration du carbone substitué.

$$CH_3$$
 H
 CI
 H
 C_6H_5
 CH_3
 H
 CH_3
 H
 C_6H_5
 CH_3

(2S,3S) 2-chloro-3-phénylbutane

(2R,3S) 3-phénylbutan-2-ol

Réaction d'élimination, l'attaque de l'ion OH^{\cdot} se fait du coté opposé à Cl (encombrement stérique) ; L'alcène formé est donc du type E

$$C = C$$
 $C = C$
 $C = C$

(E)2-phénylbut-2-ène