Penurunan Konsolidasi

Menghitung penurunan konsoidasi (Sc) menggunakan Cc & Cr Ada 2 persoalan penurunan:

- 1. Berapa **besarnya** penurunan (*settlement*) yang akan terjadi?
- 2. Berapa lama waktu yang dibutuhkan sampai settlement itu selesai?

Catatan:

1. $p_1' = p_0' + \Delta p$

2. C_c dan C_r pada gambar adalah kurva yang telah dikoreksi (kurva lapangan)

Gambar 2.6 Hitungan perubahan angka pori

- (a) Lempung normally consolidated
- (b) dan (c) Lempung overconsolidated

Bila didefinisikan:

$$p_1' = p_0' + \Delta p$$

(a) penurunan untuk lempung *normally consolidated* (p_c ' = p_o ') dengan tegangan efektif sebesar p_I ' (Gambar a):

$$S_c = C_c \frac{H}{1 + e_0} \log \frac{p_1'}{p_0'}$$

- (b) untuk lempung *overconsolidated* (p_c ' > p_o ') punurunan konsolidasi primer total dinyatakan oleh persamaan yang bergantung nilai p_1 ',
- 1) bila, p_I ' $< p_c$ ' (Gambar b)

$$S_c = C_r \frac{H}{1 + e_o} \log \frac{{p_1}'}{{p_o}'}$$

2) bila, p_I ' > p_c ' (Gambar c)

$$S_c = C_r \frac{H}{1 + e_o} \log \frac{p_c'}{p_o'} + C_c \frac{H}{1 + e_o} \log \frac{p_1'}{p_o'}$$

Bisa pula digunakan rumus penurunan:

$$S = m_v \cdot H \cdot \Delta p$$

Dimana:

H = tebal lapisan tanah kompresibel/lempug (m)

 e_0 = angka pori awal

p_o' = tekanan tanah *overburden* efektif awal (kN/m²)

p_c' = tekanan pra-konsolidasi untuk tanah *overconsolidated* (kN/m²)

 $\Delta p = \Delta \sigma_v$ = tambahan tegangan akibat beban pondasi/bangunan (kN/m²)

 m_v = koefisien perubahan volume (m^2/kN)