Bayesian Inference for Mixture Language Models

Chase Geigle, ChengXiang Zhai

Department of Computer Science
University of Illinois, Urbana-Champaign

Deficiency of PLSA

- Not a generative model
 - Can't compute probability of a new document (why do we care about this?)
 - Heuristic workaround is possible, though
- Many parameters → high complexity of models
 - Many local maxima
 - Prone to overfitting
- Overfitting is not necessarily a problem for text mining (only interested in fitting the "training" documents)

Latent Dirichlet Allocation (LDA)

- Make PLSA a generative model by imposing a Dirichlet prior on the model parameters →
 - LDA = Bayesian version of PLSA
 - Parameters are regularized
- Can achieve the same goal as PLSA for text mining purposes
 - Topic coverage and topic word distributions can be inferred using Bayesian inference

PLSA → LDA

Likelihood Functions for PLSA vs. LDA

PLSA
$$p_{d}(w|\{\theta_{j}\},\{\pi_{d,j}\}) = \sum_{j=1}^{k} \pi_{d,j} p(w|\theta_{j})$$
 Core assumption in all topic models
$$\log p(d|\{\theta_{j}\},\{\pi_{d,j}\}) = \sum_{w \in J} c(w,d) \log [\sum_{j=1}^{k} \pi_{d,j} p(w|\theta_{j})]$$

$$\log p(C|\{\theta_{j}\},\{\pi_{d,j}\}) = \sum_{d \in C} \log p(d|\{\theta_{j}\},\{\pi_{d,j}\})$$
 >PLSA component
$$p_{d}(w|\{\theta_{j}\},\{\pi_{d,j}\}) = \int_{\sum_{j=1}^{k}} \pi_{d,j} p(w|\theta_{j}) p(\pi_{d}^{2}|\{\pi_{d}^{2}\}) p(\pi_{d}^{2}|\{\pi_{d}^{2}\})$$

$$\log p(d|\{\pi_{d}^{2},\{\theta_{j}\}\}) = \int_{\mathbb{R}} \sum_{d \in C} c(w,d) \log [\sum_{j=1}^{k} \pi_{d,j} p(w|\theta_{j})] p(\pi_{d}^{2}|\{\pi_{d}^{2}\}) p(\pi_{d}^{2}|\{\pi_{d}^{2}\})$$

$$\log p(C|\{\pi_{d}^{2},\{\theta_{j}\}\}) = \int_{\mathbb{R}} \sum_{d \in C} \log p(d|\{\pi_{d}^{2},\{\theta_{j}\}\}) \frac{1}{|f|} p(\theta_{j}|\{\beta\}) d\theta_{1} ...d\theta_{k}$$
 Added by LDA

Parameter Estimation and Inferences in LDA

Parameters can be estimated using ML estimator

$$(\alpha, \beta) = \arg \max_{2 \le 1} \log p(C | \alpha, \beta)$$

How many parameters in LDA vs. PLSA?

- However, $\{\theta_j\}$ and $\{\pi_{d,j}\}$ must now be computed using posterior inference $\{\theta_j\}, \{\pi_{d,j}\} \mid C, \alpha, \beta \} = ?$
 - Computationally intractable
 - -Must resort to approximate inference
 - -Many different inference methods are available

Plate Notation

Why is exact inference intractable?

$$P(\mathbf{Z}, \Theta, \Phi \mid \mathbf{W}, \alpha, \beta) = \frac{P(\mathbf{W}, \mathbf{Z}, \Theta, \Phi \mid \alpha, \beta)}{P(\mathbf{W} \mid \alpha, \beta)}$$

where

$$\begin{split} P(\mathbf{W} \mid \alpha, \beta) &= \int_{\Phi} \int_{\Theta} \sum_{\mathbf{Z}} P(\mathbf{W}, \mathbf{Z}, \Theta, \Phi \mid \alpha, \beta) d\Theta d\Phi \\ &= \int_{\Phi} p(\Phi \mid \beta) \int_{\Theta} p(\Theta \mid \alpha) \sum_{\mathbf{Z}} p(\mathbf{Z} \mid \Theta) p(\mathbf{W} \mid \mathbf{Z}, \Phi) d\Theta d\Phi \end{split}$$

Denominator integral is intractable due to **coupling** between θ and ϕ in the summation over **Z**

Approximate Inference for LDA

- Many different ways; each has its pros & cons
- Deterministic approximation
 - variational Bayes [Blei et al. 03a]
 - collapsed variational Bayes [Teh et al. 07]
 - expectation propagation [Minka & Lafferty 02]
- Markov chain Monte Carlo
 - full Gibbs sampler [Pritchard et al. 00]
 - collapsed Gibbs sampler [Griffiths & Steyvers 04]

Very efficient and quite popular, but can only work with conjugate priors

Variational Inference

- Key idea: Use a surrogate distribution to approximate the posterior
 - Surrogate distribution is simpler than the true posterior (typically by making strong independence assumptions to break coupling)
- Goal: Find the "best" surrogate distribution from a certain parametric family by minimizing the KL-divergence from the surrogate (Q) to the true posterior (P)
 - Transforms inference into a deterministic optimization!

No free lunch: approximation quality depends on variational family chosen

A Mean Field Approximation for LDA

$$Q(\Phi, \mathbf{Z}, \Theta \mid \lambda, \pi, \gamma) = \prod_{i=1}^{K} Dir(\phi_i \mid \lambda_i) \prod_{j=1}^{M} q_j(\theta_j \mid \gamma_j) \prod_{t=1}^{N_j} q_j(z_{j,t} \mid \pi_{j,t})$$

- Uses a fully factorized surrogate distribution
- λ , γ , π are the variational parameters
- These are adjusted to minimize

Variational Inference for LDA

- Solve a series of constrained minimizations for each variational parameter (since they don't depend on each other)
- Result: a simple coordinate ascent algorithm (update each variable in turn and iterate until convergence)

$$\pi_{j,t,i} \propto \phi_{i,w_{j,t}} \exp\left(\Psi(\gamma_{j,i}) - \Psi\left(\sum_{k=1}^{K} \gamma_{j,k}\right)\right)$$

$$\gamma_{j,i} = \alpha_i + \sum_{t=1}^{N_j} \pi_{j,t,i}.$$

$$\lambda_{i,v} = \beta_v + \sum_{i=1}^{M} \sum_{t=1}^{N_j} \pi_{j,t,v} \mathbb{1}(w_{j,t} = v)$$

Variational Inference: (Non-exhaustive) Pros/Cons

• Pros:

- 1. Deterministic algorithm---easy to tell when you've converged
- 2. Embarrassingly parallel over documents

Cons:

- 1. Speed: makes many calls to transcendental functions
- 2. Quality: fully factorized variational distribution is a questionable approximator
- 3. Memory usage: requires to store the per-token variational distributions

Collapsed Inference Algorithms

- If your priors are conjugate, they can be integrated out!
- Result: a simpler distribution (less variables) from which to build inference methods
- Let be the number of times topic is observed in document
- Let be the number of times word type is assigned topic

so then

where is the multivariate Beta function.

Collapsed Inference Algorithms (cont'd.)

- Distribution over only W and Z
- How do we get back and? MAP estimate from Z: and
- But how do we get the count vectors and?
 - 1. Gibbs sampling: sample values of **Z**, count from those samples
 - 2. Variational inference: use a surrogate distribution to model the probability of **Z** and use its expectation ("expected counts")

Collapsed Gibbs Sampling for LDA

- Key idea: construct a well-behaved Markov chain such that
 - 1. the states of the chain represent an assignment of
 - 2. state transitions occur between states that differ in only one
 - 3. transition probabilities are based on the full conditional:
 - where is the set of assignments for without position
- Guaranteed to produce true samples from the posterior!
 IF you run it for long enough...

Collapsed Gibbs Sampling for LDA (cont'd.)

Algorithm: for each position, sample a new value of based on the current values of the rest of the . Use the newly sampled value for computing the probability for the next sample.

Key equation:

number of times topic occurs in document

number of times word type assigned to topic

count excluding current position

$$P(z_i=j|\mathbf{z}_{-i},\mathbf{w}) \propto rac{n_{-i,j}^{(w_i)}+eta}{n_{-i,j}^{(\cdot)}+Weta} rac{n_{-i,j}^{(d_i)}+lpha}{n_{-i,j}^{(d_i)}+Tlpha}$$

$$P(z_i=j|\mathbf{z}_{-i},\mathbf{w}) \propto rac{n_{-i,j}^{(w_i)}+eta}{n_{-i,j}^{(\cdot)}+Weta} rac{n_{-i,j}^{(d_i)}+lpha}{n_{-i,j}^{(d_i)}+Tlpha}$$

$$P(z_i=j|\mathbf{z}_{-i},\mathbf{w}) \propto rac{n_{-i,j}^{(w_i)}+eta}{n_{-i,j}^{(\cdot)}+Weta} rac{n_{-i,j}^{(d_i)}+lpha}{n_{-i,j}^{(d_i)}+Tlpha}$$

				iteration		
			1	2	•••	1000
i	${\mathcal W}_i$	d_i	z_i	z_i		z_i
1	MATHEMATICS	1	2	2		2
2	KNOWLEDGE	1	2	1		2
3	RESEARCH	1	1	1		2
4	WORK	1	2	2		1
5	MATHEMATICS	1	1	2		2
6	RESEARCH	1	2	2		2
7	WORK	1	2	2		2
8	SCIENTIFIC	1	1	1		1
9	MATHEMATICS	1	2	2		2
10	WORK	1	1	2		2
11	SCIENTIFIC	2	1	1		2
12	KNOWLEDGE	2	1	2		2
		•				
		•				
•	•	•	•	•		•
50	JOY	5	2	1		1

$$P(z_i=j|\mathbf{z}_{-i},\mathbf{w}) \propto rac{n_{-i,j}^{(w_i)}+eta}{n_{-i,j}^{(\cdot)}+Weta} rac{n_{-i,j}^{(d_i)}+lpha}{n_{-i,j}^{(d_i)}+Tlpha}$$

Collapsed Gibbs Sampling: (Non-exhaustive) Pros/Cons

• Pros:

- Ease of implementation
- Fast iterations (no transcendental functions), fast convergence (at least relative to a full Gibbs sampler)
- Low memory usage (only require storage for the current values of)

Cons:

- No obvious parallelization strategy (each iteration depends on previous)
- Can be difficult to assess convergence
 - "Variational inference is that thing you implement while waiting for your Gibbs sampler to converge." David Blei

Other Inference Variations

- Parallelization: AD-LDA [Newman et al. 09]
 - Idea: Distribute documents across cores (or machines)
 - locally maintain "differences" instead of updating globally shared counts
 - Resolve these "differences" once all documents have been sampled
 - Can be used for both CGS and CVB/CVB0
- Online learning: Stochastic Variational Inference [Hoffman et al. 13]
 - Idea: Learn LDA models on streaming data (learned Wikipedia topic model with low resource usage
 - Stochastic Collapsed VI also possible [Foulds et al. 13]

Extensions of LDA

- Capturing topic structures
- Capturing context
- With supervision

Learning topic hierarchies

- Fixed hierarchies: [Hofmann 99c]
- Learning hierarchies:[Blei et al. 03b]

Twelve Years of NIPS [Blei et al. 03b]

Capturing Topic Structures: Correlated Topic Model (CTM) [Blei & Lafferty 05]

- Draw topic proportions from a logistic normal, where topic occurrences can exhibit correlation.
- Use for:
 - Providing a "map" of topics and how they are related
 - Better prediction via correlated topics

Sample Result of CTM

The Author-Topic model

[Rosen-Zvi et al. 04]

Four example topics from NIPS

TOPIC 19				
WORD	PROB.			
LIKELIHOOD	0.0539			
MIXTURE	0.0509			
EM	0.0470			
DENSITY	0.0398			
GAUSSIAN	0.0349			
ESTIMATION	0.0314			
LOG	0.0263			
MAXIMUM	0.0254			
PARAMETERS	0.0209			
ESTIMATE	0.0204			
AUTHOR	PROB.			
Tresp_V	0.0333			
Singer_Y	0.0281			
Jebara_T	0.0207			
Ghahramani_Z	0.0196			
Ueda_N	0.0170			
Jordan_M	0.0150			
Roweis_S	0.0123			
Schuster_M	0.0104			
Xu_L	0.0098			
Saul_L	0.0094			

TOPIC 24					
WORD	PROB.				
RECOGNITION	0.0400				
CHARACTER	0.0336				
CHARACTERS	0.0250				
TANGENT	0.0241				
HANDWRITTEN	0.0169				
DIGITS	0.0159				
IMAGE	0.0157				
DISTANCE	0.0153				
DIGIT	0.0149				
HAND	0.0126				
AUTHOR	PROB.				
Simard_P	0.0694				
Martin_G	0.0394				
LeCun_Y	0.0359				
Denker_J	0.0278				
Henderson_D	0.0256				
Revow_M	0.0229				
Platt_J	0.0226				
Keeler_J	0.0192				
Rashid_M	0.0182				
Sackinger E	0.0132				

TOPIC 29	
WORD	PROB.
REINFORCEMENT	0.0411
POLICY	0.0371
ACTION	0.0332
OPTIMAL	0.0208
ACTIONS	0.0208
FUNCTION	0.0178
REWARD	0.0165
SUTTON	0.0164
AGENT	0.0136
DECISION	0.0118
AUTHOR	PROB.
Singh_S	0.1412
Barto_A	0.0471
Sutton_R	0.0430
Dayan_P	0.0324
Parr_R	0.0314
Dietterich_T	0.0231
Tsitsiklis_J	0.0194
Randlov_J	0.0167
Bradtke_S	0.0161
Schwartz_A	0.0142

TOPIC 87					
WORD	PROB.				
KERNEL	0.0683				
SUPPORT	0.0377				
VECTOR	0.0257				
KERNELS	0.0217				
SET	0.0205				
SVM	0.0204				
SPACE	0.0188				
MACHINES	0.0168				
REGRESSION	0.0155				
MARGIN	0.0151				
AUTHOR	PROB.				
Smola_A	0.1033				
Scholkopf_B	0.0730				
Burges_C	0.0489				
Vapnik_V	0.0431				
. ~~	0.0 10 1				
. –	0.0210				
. –	0.0210				
Chapelle_O	0.0210				
Chapelle_O Cristianini_N	0.0210 0.0185				
Chapelle_O Cristianini_N Ratsch_G	0.0210 0.0185 0.0172				

Dirichlet-multinomial Regression (DMR) [Mimno & McCallum 08]

Allows arbitrary features to be used to influence choice of topics

Figure 3: The Dirichlet-multinomial Regression (DMR) topic model. Unlike all previous models, the prior distribution over topics, α , is a function of observed document features, and is therefore specific to each distinct combination of metadata feature values.

Supervised LDA [Blei & McAuliffe 07]

- **1** Draw topic proportions $\theta \mid \alpha \sim \text{Dir}(\alpha)$.
- 2 For each word
 - Draw topic assignment $z_n \mid \theta \sim \text{Mult}(\theta)$.
 - Draw word $w_n \mid z_n, \beta_{1:K} \sim \text{Mult}(\beta_{z_n})$.
- 3 Draw response variable $y \mid z_{1:N}, \eta, \sigma^2 \sim N(\eta^T \bar{z}, \sigma^2)$, where

$$\bar{z} = (1/N) \sum_{n=1}^{N} z_n.$$

Sample Results of Supervised LDA

- 10-topic sLDA model on movie reviews (Pang and Lee, 2005).
- Response: number of stars associated with each review

Challenges and Directions for Future Research

Challenge 1: How can we quantitatively evaluate the benefit of topic models for text mining?

- Currently, most quantitative evaluation is based on perplexity which doesn't reflect the actual utility of a topic model for text mining
- Need to separately evaluate the quality of both topic word distributions and topic coverage (do more in line with "intrusion test" [Chang et al. 09])
- Need to consider multiple aspects of a topic (e.g., coherent?, meaningful?) and define appropriate measures
- Need to compare topic models with alternative approaches to solving the same text mining problem (e.g., traditional IR methods, nonnegative matrix factorization)
- Need to create standard test collections

Challenges and Directions for Future Research (cont.)

Challenge 2: How can we help users interpret a topic?

- Most of the time, a topic is manually labeled in a research paper; this is insufficient for real applications
- Automatic labeling can help, but the utility still needs to evaluated
- Need to generate a summary for a topic to enable a user to navigate into text documents to better understand a topic
- Need to facilitate post-processing of discovered topics (e.g., ranking, comparison)

Challenges and Directions for Future Research (cont.)

- Challenge 3: How can we address the problem of multiple local maxima?
 - All topic models have the problem of multiple local maxima, causing problems with reproducing results
 - Need to compute the variance of a discovered topic
 - Need to define and report the confidence interval for a topic
- Challenge 4: How can we develop efficient estimation and inference algorithms for sophisticated models?
 - How can we leverage a user's knowledge to speed up inferences for topic models?
 - Need to develop parallel estimation/inference algorithms

Challenges and Directions for Future Research (cont.)

- Challenge 5: How can we incorporate linguistic knowledge into topic models?
 - Most current topic models are purely statistical
 - Some progress has been made to incorporate linguistic knowledge (e.g., [Griffiths et al. 04, Wallach 08])
 - More needs to be done
- Challenge 6: How can we incorporate more sophisticated supervision into topic modeling to maximize its support for user tasks?
 - Current models are mostly pre-specified with little flexibility for an analyst to "steer" the analysis process; need to develop a general analysis framework to enable an analyst to use multiple topic models together to perform complex text mining tasks
 - Need to combine topic modeling (as a generative model for feature learning) with deep learning to optimize task support