

Bachelier en Informatique de Gestion

Programmation Orientée Objet

Enseignement supérieur économique de type court

Code FWB: 7525 21 U32 D3

Code ISFCE: 4IPO3

Table des matières

- Introduction
 - 00. Propos liminaires
 - 01. Programmation procédurale : rappel
- Concepts de Programmation Orientée Objet
 - 11. Programmation orientée objet : bases
 - 13. Programmation orientée objet : aspects avancés
 - 17. Patron de conception (design pattern)
- Applications de la POO
 - 21. Graphical User Interface

Partie 21: Graphical User Interface (GUI)

Python: "tkinter"

21. Graphical User Interface (GUI)

- 21-03 : widgets de base
- ■21-05 : Model View Controller
- ■21-07 : widgets avancés
- 21-13: widgets animés
- 21-23 : widgets de base de données

Principes généraux

- Programmation événementielle ("event-driven")
- Widgets du GUI
- Callback
- Architecture du code : MVC

Quelques références ...

- Apprendre à programmer avec Python
 - Utilisation de fenêtres et de graphismes
- Des interfaces graphiques modernes avec Python
 - Utilisation de CustomTkinter (CTk)
- Pourquoi le design 'bordélique' des apps chinoises est en fait brillant
 - GUI, psychologie, sociologie, Occident vs Chine

Programmation événementielle

Programmation événementielle

Callback: "Command"

- Callback = fonction appelée lorsque l'évènement arrive
 - càd lorsque le widget est activé
 - un bouton est pressé
 - la souris quitte une fenêtre, etc.
 - Python : le callback s'appelle command
- Procédure à suivre :
 - 1. Ecrire la fonction py
 - 2. L'associer au widget

Chapitre 21-03 : widgets de base

Principaux Widgets de Tkinter

Classic bustes

76 tk	
Checkbutton 0	_
Checkbutton 1	
Checkbutton 2	
Checkbutton 3	
Checkbutton 4	
Checkbutton 5	_
Checkbutton 6	
Checkbutton 7	
Checkbutton 8	
Checkbutton 9	
Checkbutton 10	
Checkbutton 11	
T -b1/b	<u>*</u>

Exo 21-03-01: architecture générale

Exo 21-03-01: architecture générale

• importer le module tkinter from tkinter import *

```
• ouvrir une fenêtre
```

```
window = Tk()
```

 créer une "entry", l'afficher et y placer le curseur de la souris

```
e = Entry(window)
e.pack()
e.focus_set()
```

• créer une zone pour afficher du texte

définir la commande pour le bouton

```
def callback():
    t.insert(END, e.get()+"\n" )
    e.delete(0, END)
```

créer un bouton

 que le programme reste à l'écoute des événéments :

```
window.mainloop()
```


Exo 21-03-02: la calculatrice

- Reproduisez les fonctionnalités de la calculatrice ci-contre
- Première étape : uniquement
 - Les chiffres 1, 2, 3
 - Les opérations +, = et C (clear)
- Deuxième étape
 - Les chiffres 4, 5, 6
 - Les opérations M+, M-, MR, MC
 - Les opérations $\frac{1}{x}$, et \sqrt{x}
- Troisième étape
 - Les chiffres 7, 8, 9
 - Les opérations -, *, /

Exo 21-03-03: le convertisseur d'adresse IP

Problème posé:

L'utilisateur entre une adresse IP en valeurs décimales

```
193.224.49.7
```

L'application affiche la même valeur en binaire

```
11000001.11100000.
00110001.00000111
```


Exo 21-03-04: combobox, sample

Exo 21-03-05: listbox, sample

Chapitre 21-05: Model View Controller

Modèle Avantages

Vue Inconvénients

Contrôleur

Architecture MVC (desktop)

Model

- Indépendant des autres modules
- Gérer toutes les données
- Gérer la logique des données
 - Validation
 - Lecture
 - Enregistrement
- Interagir avec Controller
 - Controller paramétrise les

- requêtes pour SELECT
- Controller fournit les données pour UPDATE, INSERT, ..
- Exemple : application bancaire
 - Fichier des clients
 - Liste des dépôts
 - Vérification : les retraits ne dépassent pas la limite de crédit

View

- Indépendant des autres modules
- Présenter les données via des éléments visuels
 - Texte, Table, Graphique, ... Interagir avec Controller
 - Balises HTML, Javascript, CSS
 - Tkinter, Canvas
- Préparer la mise à jour des

données

- Formulaire
- Bouton
- Tkinter
- - Controller envoie les données à View
 - View met en forme les données reçues

Contrôleur / Controller

Vov Model

Consider

Locar

- Dépendant de Model et View
- Traiter les actions de Router
 - Callbacks
 - Validation des données d'un formulaire

- Modifier Model
 - Mise à jour (UPDATE)
 - Ajout (INSERT)
 - Suppression (DELETE)
- Modifier View
 - Suite aux modifications de Model
 - Suite aux actions de Router

Avantages

- Maintenance aisée du code
 - code plus facile à étendre et à développer
 - composant Model testable séparément de l'utilisateur
 - prise en charge facilitée de nouveaux types de web clients
 - différents composants développables en parallèle.
 - migration de base de données facilitée
- Réduction de la complexité
 - division de l'application (en modèle, vue et contrôleur)
 - router unique traitant les requêtes de l'utilisateur

- séparation de business logic et UI logic
- Meilleur support pour le test-driven development (TDD)
 - Modularité et indépendance des classes et des objets, donc testables séparément.
- Bien adapté aux applications web complexes
 - développement par de grandes équipes de concepteurs et de développeurs
 - facilitation de Search Engine Optimization (SEO)
 - exploitation et amélioration des fonctionnalités proposées par ASP.NET, JSP, Django, etc.

Inconvénients

- Code difficile à lire, à modifier, à Difficulté d'appliquer MVC tester unitairement et à réutiliser dans un UI moderne par un développeur extérieur.
 - augmentation du nombre de lignes de code
- Navigation dans le framework parfois complexe.
 - introduction de plusieurs couches d'abstraction obligeant les utilisateurs à s'adapter à l'architecture du MVC.
 - appropriation de l'application ralentie à cause de l'apprentissage

- - architecture non adaptée aux SPA
 - MVC orienté serveur, non orienté client
- Difficulté pour plusieurs programmeurs de mener une programmation parallèle.
- Connaissance de plusieurs technologies nécessaire.

Chapitre 21-07: widgets avancés

Pour les plus curieux ...

Autres évènements

- Pour lier des fonctions à d'autres évènements que le "click"
 - double-click, autres boutons de la souris, etc.
 - **2**1-07-12-event.py

GUI dynamique

- Pour rendre un GUI plus dynamique
 - modifier les labels
 - 21-07-13-gui_dynamique.py

Touches du clavier

- Pour associer une touche clavier à une fonction, de la même façon qu'un bouton.
 - 21-07-17-KeyBinding_sample.py

```
.bind( "<KeyPress>", command )
```


Insérer une image dans un form

- Pour insérer une image dans l'interface utilisateur
 - **2**1-07-21-insert_image.py
 - programmation.gif

Insérer une image animée dans un form

- Pour insérer une image dans l'interface utilisateur
 - 21-07-23-insert_anim.py
 - tenor.gif

Gestion de fenêtres multiples

- approche par création et destruction
 - hard
 - 21-07-35-multiple_windows.zip
- approche par show/hide
 - soft et plus simple

Chapitre 21-13 : widgets animés

Jouons au ballon ... ©

Exo 21-13-11: la balle mouvant

- Fichier de départ 21-13-11_balle_start.py
- Ouvrez le fichier, faites tourner le programme et observez le code.
- Ajoutez les fonctionnalités suivantes :
 - Mouvoir la balle en diagonale
 - Paramétrer le saut et la couleur de la balle
 - Réinitialiser la balle en sa position centrale
- Pour les geeks :
 - Faire circuler la balle sur un carré
 - Faire circuler la balle sur un cercle

Exo 21-13-21 : la balle en POO

- Fichier de départ 21-13-11_balle_start.py
- Réécrivez le code sous forme de classe
 - un objet "ballon" est créé
 - les boutons "gauche", "droite", etc. donnent les ordres (callback) à cet objet
 - supprimez les variables globales

Exo 21-13-24 : la balle en mode "grille" (1/2)

- Reprenez l'exercice précédent
- Placez les boutons autour du canvas.
 - gauche" à gauche
 - "droite" à droite, etc.
- Tuyaux:
 - Ne placez pas les boutons sur le canvas même.
 - Utilisez grid () au lieu de pack ()

Exo 21-13-24 : la balle en mode "grille" (1/2)

- En mode "grille", on découpe le GUI en colonnes et rangées
- Exemple avec 3 colonnes et 3 rangées
 - L'image se trouve en haut à gauche

```
row = 0
column = 0
```

Le bouton "droite" se trouve en

```
row = 1 column = 2
```

• Code:

```
.grid( row=1, column=2 )
```


Exo 21-13-31: la balle automatique (1/2)

- Reprenez l'exercice précédent
- Introduisez un mouvement automatique
 - démarrant au bouton "démarrer"
 - s'arrêtant au bouton "arrêter"

Exo 21-13-31: la balle automatique (2/2)

- Considérez le corrigé fourni
 - Fichier "07-31-balle+auto.py"
 - Cliquez plusieurs fois sur "démarrez".
 - Que constatez-vous ?
 - Expliquez ce bug.
 - https://fr.wikipedia.org/wiki/ Thread_(informatique)
 - https://en.wikipedia.org/wiki/ Multithreading_(computer_a rchitecture)

Exo 21-13-41 : deux balles

- Reprenez les exercices précédents
- Intégrez la balle manuelle et la balle automatique au sein de la même application. Cf video.

Exo 21-13-51: plusieurs balles

- Un nombre indéterminé de balles : trois, quatre, ..., N.
- Détection de collision entre les balles et les murs
- Détection de collision des balles entre elles
- POO complète, avec héritage

Exo 21-13-69: la balle mouvante

- Reprenez l'exercice précédent.
- Ajoutez les fonctionnalités suivantes (de simple à complexe)
 - Paramétrer la couleur des balles
 - Réinitialiser les balles en leur position centrale
 - Faire circuler les balles sur un autre parcours de votre choix
 - Faire circuler la balle sur un cercle

Chapitre 21-23 : widgets base de données

widgets de base de données

- Approche par les widgets de base
 - combinaison de Frame, Label, .pack(), etc.
 - 21-23-11-database_label_grid.py

widgets de base de données

- Approche par les widgets avancés
 - utilisation de Ttk et TreeView
 - 21-23-13-database_treeview.py

∅ tk			\times
nom de la table:	player_score_partie		
LA PARTIE	LE JOUEUR	LE SCORE	
entre collègues	Alex		449
entre amis	Cédric		443
ISFCE	Cédric		403
entre collègues	Bertrand		396
entre amis	Bertrand		375

Ttk TreeView

Simple File System Explorer
Program Files
⊕ Program Files (x86)
⊕ ProgramData
⊕ ■Python27
⊕ ■Python310
⊟ i Python311
⊕ DLLs
⊕ mDoc
⊕ include
⊟ i iiLib
abc.py
aifc.py
antigravity.py
argparse.py
ast.py
asynchat.py
☐ iasyncio
base_events.py

	Size	Modified
widgets	25KB	Yesterday
gallery	2KB	Two weeks ago
resources	220KB	Three weeks ago
tutorial	2.1MB	Ten minutes ago
canvas	18KB	Last week
tree	5KB	Ten minutes ago
text	12KB	Yesterday

Les couleurs en notation hexadécimale

Les couleurs en hexadecimal

Le système décimal est un système de numération en base 10.

Le système hexadécimal est un système de numération en base 16.

$$\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

Les couleurs en hexadecimal

- Que valent les nombres hexadécimaux suivants dans le système décimal ?
 - **=** 4
 - ■B
 - **A**6
 - = FF
 - **1**0

Les couleurs en hexadecimal

Augmenter la valeur d'une couleur, augmente son intensité.

Les noms de couleurs

- 140 noms (prédéfinis) de couleurs :
 - https://www.w3schools.com/colors/colors_names.asp

