CESM2 (TSMLT) Feedforward and Feedback Estimates

Walker Lee, March 16, 2021, Cornell University

Table 1: Temperature Targets

	то	T1	T2
Member 1	288.62	2.60	-29.52
Member 2	288.61	2.57	-29.55
Member 3	288.68	2.74	-29.30
Member 4	288.65	2.59	-29.50
Member 5	288.62	2.63	-29.38
Ensemble average	288.64 ± 0.01	2.63 ± 0.03	-29.45 ± 0.05

Targets are defined as the average over the 2020-2039 period in the SSP 245 runs (CESM2, full chemistry).

Table 2: Sensitivity Estimates (includes significant digits)

	My CESM 2		My CESM 1			GLENS CESM 1			
	ℓ ₀ ⁻¹	ℓ ₁ -1	ℓ ₂ -1	ℓ ₀ -1	ℓ ₁ -1	ℓ 2 ⁻¹	ℓ ₀ ⁻¹	ℓ ₁ -1	ℓ ₂ -1
T ₀	-7.95			-6.66			-5.2		
T ₁	-4.8	-7.6		-2.43	-3.7		-3.7	-4.4	
T ₂	-2.6	0.0	-2	-2.29	-2.0	-2.49	-2.4	-2.2	-1.6

My estimates for CESM2 sensitivities are drawn from the data of Tilmes et al 2020.

Table 3: Temperature increase seen in SSP 245 relative to temperature targets, beginning from ~0 in 2030 (in other words, how much temperature increase needs to be offset)

Metric	Behavior	Forcing required to offset
T ₀	+0.0276 K per year	enough ℓ_0 to offset this change
T ₁	erratic - assume no detectable change	enough ℓ_1 to cancel out whatever ℓ_0 is doing to T_1
T ₂	+0.0080 K per year	enough ℓ_2 to offset this change, minus the influence of ℓ_0 (neglect influence of ℓ_1 on T_2 - see table 2 above)

Feedforward calculations

- **l**₀:
- -0.0276 K/yr ÷ -7.95 K/ ℓ_0 = **0.0035** ℓ_0 per year
- \(\ell_1:
- $\circ\quad$ -4.8 K/ ℓ_0 × 0.0035 ℓ_0/yr = -0.0165 K/yr to offset
- \circ 0.0165 K/yr \div -7.6 K/ ℓ_1 = -0.0022 ℓ_1 per year
- \{2:
- o -0.0080 K/year required in total
- \circ -2.6 K/ ℓ_0 × 0.035 ℓ_0 /yr = -0.0091 K/yr from ℓ_0
- $\circ\quad 0.0011 \ \text{K/yr} \ \text{of} \ T_2 \ \text{leftover} \to \text{the desired} \ \ell_0 \ \text{already overcompensates} \ T_2 \ \text{by a}$ small amount
- o 0.0011 K/yr ÷ 2.14 K/ ℓ_2 = -0.0005 ℓ_2 per year

Table 4: Injection rates

Latitude	Equation	ℓ_0 and ℓ_1 feeds	$\ell_{\scriptscriptstyle 0}$ feed only
30N	20ℓ ₁ ^N + 40ℓ ₂	0	0
15N	$30(\ell_0 - \ell_1^{N} - \ell_1^{S} - \ell_2) + 45\ell_1^{N}$	0.0388*(t-2030) Tg/yr	0.1041*(t - 2030) Tg/yr
15S	$30(\ell_0 - \ell_1^N - \ell_1^S - \ell_2) + 45\ell_1^S$	0.1367*(t-2030) Tg/yr	0.1041*(t - 2030) Tg/yr
30S	20ℓ ₁ ^S + 40ℓ ₂	0.0435*(t-2030) Tg/yr	0

Table 5: Feedback gains

Metric	Old Gain	GLENS sens.	New sens.	Ratio	New gain
ℓ_0	0.028	-5.2	-7.95	0.66	0.0183
ℓ_1	0.13	-4.4	-7.6	0.58	0.0753
ℓ_2	0.39	-1.6	-2	0.8	0.3120