Technische Hinweise · Schaltbild Leiterplatten · Seilführungen

Das Gerät ist mit einem festeingebauten Netzteil ausgerüstet und kann in Verbindung mit dem beiliegenden Netzkabel an 220 oder 110 V Wechselspannung angeschlossen werden. Die Netzanschlußbuchse befindet sich an der linken Seite des Gerätes und ist durch einen Verschlußstopfen geschützt. Durch den Anschluß wird die Batterieleitung automatisch unterbrochen, so daß bei Betrieb mit dem Netzteil die Batterien nicht angeschlossen sind. Wird das Gerät nur mit Netzteil betrieben, so empfehlen wir, die Batterien aus dem Gerät herauszunehmen.

Im Anlieferungszustand ist der Netzspannungswähler auf 220 Volt eingestellt. Soll das Gerät an 110 Volt Wechselspannung betrieben werden, so muß der Spannungswähler (Unterseite des Gerätes) mit Hilfe eines Geldstückes auf 110 Volt umgestellt werden. Der eingestellte Spannungswert ist im danebenliegenden Feld sichtbar.

2 Ausbau des Chassis

- 2.1 Batteriekasten herausziehen.
- 2.2 Rückwandschrauben lösen, Rückwand nach unten schieben und abnehmen.
- 2.3 6 Bedienungsknöpfe abziehen.
- 2.4 Abdeckstopfen an der Antennenbuchse und an der Netzanschlußbuchse entfernen.
- 2.5 Teleskopantenne nach Lösen der entsprechenden Bodenschraube herausnehmen (Zwischenstück und Kontaktplatte beachten).
- 2.6 Nach Entfernen der restlichen 2 Bodenschrauben und der 2 Schrauben links und rechts oben, Chassis herausnehmen.

The set contains a mains unit and can be connected to 220 or 110 V mains voltage with the supplied mains cord. The respective receptacle is located on the LH side of the set and closed by a plastic cap. On connecting this mains unit the batteries are automatically disconnected. If the set is to be used with the mains unit only, we recommend to remove the batteries.

When the set is supplied the mains voltage selector is set for 220 V. If the set is to be used with 110 V mains voltage the voltage selector (lower side of the set) must be changed to 110 V with the help of a coin. The selected voltage is indicated in the field at the side.

Removal of Chassis

- 2.1 Remove battery container.
- 2.2 Loosen screws of back cover, displace back cover downwards and remove it.
- 2.3 Pull off 6 control knobs.
- 2.4 Remove cover of the antenna jack and the mains connection lack.
- 2.5 Loosen the respective screw at the bottom and remove telescopic antenna (observe intermediate piece and contact plate).
- 2.6 Remove the remaining 2 bottom screws and the 2 screws to the left and right above and remove chassis.

Bestückungsseite / components side

Fig. 2

HF- und ZF-Platte / RF and IF Board PL 2

Bedruckungsseite / Printed Side

Fig. 3

6 C60/43pF

K 1047 c

2 C20/36pF

KW SW

				V 101 C104 SV 101 C104 SV 101 C103 R105 R105 R104 R105 R107 R	20103 2113 113 113 114 115 1104 115 1104 116 117 117 118 119 119 1106 1106 1106 1106 1106 1106 1106 1106 1107 1107 1108 1109	R153 C152 8 R154 R154 P220 P220 P220 P3		AA112
w	Vorkreis RF circuit	Zwischenkreis Intermediate circ	Oszillatorkreis C Oscillator circ.		UKW Tasten/ FM buttons	5 c 4 4 5 6 • Q		7,1V 7,1V 7,1V R165H C173 = 21 S + 10 H2186 100 82k 82k
1	L10-12 C10/15pF C11/4,5-20pF	L 13-15 C 13/43 pF C14/4,5-20pF	L 16-18 C16/39pF C17/4,5-20pF	AF 201c AF 201c	7	6	C,160	R 165 C 173 Z 2,1 St 10 R 186 8,2k 8,2k
2	L 20-22 C20/36 pF C 21/4,5-20 pF	L 23-25 C 23/43 pF C 24/4,5-20pF	L26-28 C26/39 pF C27/4,5-20 pF	C11-60 G 47n R71	AF 126 ge C78 47n → → → → → → → → → → → → → → → → → → →			
3	L30-32 C30/36pF C31/4,5-20pF	L 33-35 C33/47pF C34/4,5-20pF	L 36-38 C 36/39 pF C 37/4, 5-20 pF	Vorkreis KW 1-6 C1	1	R452 200 k 1, 195 2, 199 381	70 AC 176 X	9 8 7 D252 680k 4V R262 C279 25µ/6V C281 22µ/16V 22µ/16V 22n
	L40-42 C40/39pF C41/4,5-20pF L50-52 C50/39pF	L43-45 C43/47pF C44/4,5-20pF L53-55 C53/47pF	L 46-48 C46/39 pF C47/4,5-20pF L 56-58 C56/36 pF	2 C66 SFD 037	C80 16,56 V73 1 C16-56 6 AF201c Oszillatorkreis C17-57 C3	C95 1,65n 1,65n 1,95 1,95	C82 4 4 5 5 68n	BA100 R273 R187 188 PC 178a
	C 51/4,5-20pF L 60-62	C 54/4,5-20pF	C 57/4,5-20pF	Oszillatorkreis KW 6		BA124	V25z R 256 1,8k X 25z ZE 1.5	4,7k R269
	C60/43pF C61/4,5-20pF	C63/56pF C64/4,5-20pF	C 66/36 pF C 67/4,5-20 pF		R252 2,7 k	C321 1,65n	C325	BA100 R275 R275 R276 R300 BDC R275 R276 R300 BDC R275 R276 R300 BDC R275 R276 R300 BDC R275 R375 R300 BDC R300 R300 R300 R300 R300 R300 R300 R30
				8 7 L302 L301 C252 G 5 4 L303 C252 G 5 4 C252 G 5 4 C252 G 7 3,3 C252 G 7 4,5 - 20	R258 6,8 k R253 560 C255 C277 0,1 p C255 C277 0,1 p C262 C333	10 T C310 T C269 T C268 1,1n 3 e C273 330 c T T C273 330 c T T C273 1,1n 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Belastbarkeit/Rating	Nennspannung / Nominal voltage Tra 11
				1	AF 126 br. R 254 C 258 C 25	220 220 1 220 1 220 1 220 1 20 20 20 20 20 20 20 20 20 20		Ein/Aus On/off Bereich Schwingspannung Osc. voltage U 75-175 LW 50-150 MW 110-180. MB 50-130 KW1 200 KW2 220 KW2 220 KW3 80 KW4 230 KW5 120 KW6 150
				<u>(K1047</u>)c	Änderungen vorbehalten! Modifications reserved!		ichnete Schalterstellung: UKW vn in position: FM	KW6 150

ältigungen dieser Unterlage sowie Verwertung unv ng Ihres inhattes sind, sowelt indtit ausdrücklich inden, unzulässig. Zuwiderhandlungen sind strabb prilichten zu Schadenersatz (LiturG, UWG, BGB) Alle Rechte für den Fall den Patenherteilung ode GM-Eintragung sowie Änderungen vorbehalte

6 Einstellung des Kollektorruhestromes

- 6.1. Die Betriebsspannung soll 9 V betragen.
- 6.2 Vor der Ruhestrom-Einstellung das Gerät ca. 1 Std. bei Prüfraum-Temperatur lagern.
- 6.3 In die gemeinsame Kollektorleitung beider Endtransistoren (
 7) Fig. 9) ein Milliamperemeter schalten (Multavi V, Meßbereich 15 mA).
- 6.4 Lautstärkeregler auf Minimum.
- 6.5 Den Ruhestrom ca. 1 Minute nach dem Einschalten des Gerätes mit dem Einstellregler R 422 (Fig. 6) auf 4 mA + 20-10 % einstellen.

7 AM-Abgleich

- 7.1 Die Betriebsspannung soll 9 V betragen.
- 7.2 Meßsender und Empfänger erden.
- 7.3 Zeiger mit der Eichmarke in Deckung bringen. (Linke Skalenseite).
- 7.4 Outputmeter (Ri ≥ 100 Ω) parallel zum eingebauten Lautsprecher anschließen. 50 mW = 0,5 V am Outputmeter.
- 7.5 Lautstärkeregler auf Maximum, Sopranregler auf "hell", Baßregler auf "dunkel".
- 7.6 Beim AM-Abgleich künstliche Antenne, Fig. 7, verwenden
- 7.7 Vor dem AM-ZF-Abgleich, Kern der Saugkreisspule L 305 herausdrehen.
- 7.8 Die AM-ZF-Saugkreisspule L 305 wird nach erfolgtem ZF-Abgleich wieder auf Spannungsminimum abgeglichen.

8 FM-Abgleich

- 8.1 Durch Drehen der AFC-Taste automatische Scharfabstimmung ausschalten.
- 8.2 Beim FM-Abgleich ein hochohmiges Voltmeter Ri \geq 50 k Ω /V parallel zu C 175 anschließen, $\langle 6 \rangle$ Fig. 3.
- 8.3 Angegebene Reihenfolge der Abgleichelemente einhalten.
- 8.4 Abgleich so lange wiederholen, bis keine Verbesserung mehr erzielt wird.
- 8.5 Vor Abgleich Spannung am Emitter V 255 mittels R 265 auf 4,0 \pm 0,1 V einstellen.

6 Setting Collector Zero Signal Current

- 6.1 The operating voltage should be 9 volts.
- 6.2 Previous to setting collector zero signal current store set at test room temperature for approx. 1 hour.
- 6.3 Connect an ammeter (Multavi V, measuring band 15 mA) to the combined collector lead of both output transistors (\(\lambda 7 \rangle \text{fig. 9}\).
- 6.4 Turn volume control to minimum.
- 6.5 Approx. 1 minute after switching on set, set zero signal current via adjuster R 422 (fig. 6) to 4 mA + 20-10 %.

7 AM Alignment

- 7.1 Operating voltage should be 9 V.
- 7.2 Ground signal generator and set.
- 7.3 Line up pointer with RH end calibration of dial.
- 7.4 Connect outputmeter (Ri \geq 100 Ω) in parallel to built-in speaker. 50 mW = 0.5 V output.
- 7.5 Volume control to maximum, treble control to "treble", bass control to "bass".
- 7.6 For AM alignment use dummy antenna, see fig. 7.
- 7.7 Before starting the AM-IF alignment turn out core of the wavetrap coil L 305.
- 7.8 After IF alignment the AM-IF wavetrap L 305 is realigned to min. voltage.

8 FM Alignment

- 8.1 Cut out automatic frequency control by turning AFC button.
- 8.2 For FM alignment connect voltmeter (Ri \geq 50 k Ω /V) in parallel to C 175 (6) Fig. 3.
- 8.3 Follow alignment sequence carefully.
- 8.4 Repeat alignment until no further improvement can be obtained.
- 8.5 Before aligning set voltage at emitter V 255 by means of R 265 to 4.0 \pm 0.1 V.

Lage der Abgleichpunkte / Position of Alignment Points

Fig. 6

120 0,47µF ≈ ≈ Meßsender Signal generator

Fig. 7

Fig. 8

Abgleichtabelle

Wellenbereiche / Wavebands

Alignment Table

K1 4,58 - 6,26 MHz \doteq 65,5 - 47,9 m

	M MB	0,148 — 0,345 M 0,515 — 1,62 M 1,62 — 4,58 M	IHz = 584 - IHz = 185 -	- 857,1 m - 185 m - 65,5 m - 2,77 m	K3 8,45 — 11 K4 11,55 — 15 K5 15,85 — 21	3,52 MHz = ,6 MHz = 5,93 MHz =	48,0 — 35,2 35,0 — 25,8 25,7 — 18,8 18,8 — 13,7 13,8 — 9,9	2 m 3 m 3 m 7 m	
Bereich	Meßsend Signal Gen	I Skalenzeiger		Abgleichelemente			AM- und NF-Empfindlichkelt bezogen auf 50 mW Ausgangsleistung; FM 0,5 V Ratiospannung		
Band	an F to Fr		Pointer to Adjustments			AM and AF sensitivity for 50 mW out- put; FM 0.5 ratio voltage			
							über ohmschen Spannungsteller = 20:1 via ohmic voltage divider = 20:1		
M 1) ZF/IF	Antennenanschluß	460 kHz ²) (452 kHz)	ca. 1600 kHz appr. 1600 kHz	L 222, L 220, L 218, L 325, L 321			ab Basis/from base V 252		
	from antenna connection		ca. 590 kHz appr. 590 kHz	L 305 Min./min. output			ca./approx. 50 μV		
K ZF/IF			-	L 99, L 95			ab Basis/from base V 72 ca./approx. 50 μV		
	ü. künstl. Antenne via dummy antenna Fig. 7			Oszillator Oscillator	Zwischenkreis Int. circ.	Vorkreis/RF circuit	on M, I bei K	L im homogenen Feld in homogeneous field ab Antennenanschluß om antenna connection	
м		590 kHz	590 kHz	L 315		L 225	ca./approx. 50 μV/m		
		1500 kHz	1500 kHz	C 272		C 190			
L		160 kHz	160 kHz	L 319		L 227	ca. /approx. 200 μV/m		
		300 kHz	300 kHz	C 275		C 191	ca./approx. 150 μV/m ca./approx. 3 μV		
мв		2,3 MHz		L 310		5) L 301			
	Koppelspule	4,1 MHz		C 269	1.14	C 252	-		
K1	coupling coil	4,6 MHz 6,2 MHz		L 17	L 14	C 11			
		6,25 MHz		L 27	L 24	5) L 21	-		
K2		8,5 MHz		C 27	C 24	C 21			
		8,5 MHz		L 37	L 34	5) L 31	-[
КЗ	Antenne	11,5 MHz		C 37	C 34	C 31	-		
	antenna	11,8 MHz		L 47	L 44	5) L 41	- ca./approx. 2 μV		
K4		15,75 MHz		C 47	C 44	C 41			
		16,0 MHz		L 57	L 54	5) L 51	- -		
K5		21,4 MHz		C 57	C 54	C 51	-		
		22,0 MHz		L 67	L 64	5) L 61			
K6		29,6 MHz		C 67 .	C 64	C 61			
				über Spanr		nungsteiler/via voltage divider = 10:1			
U (ZF/IF)	über 100 pF an 〈4〉 via 100 pF to 〈4〉	10,7 MHz	108 MHz	L 217, L 215, L 212, L 211, L 207, L 206, L 202, L 105, 1) L 201 auf max. Ratiospannung to max. ratio voltage 4) R 179 auf /to min. Outputm.		ab Basis/from	Basis/from base V 151 ca. approx. 0,5 V		
	über 60 Ω Kabel via 60 Ω cable			Oszillator Zwischenkreis Oscillator Int. circ.		Spannung an (B) mit		ab Ant./from ant.	
,,	Antonno/antonno	87 MHz	87 MHz	L 104	L 103	R 458 - 4,18 V ∓ 0,5 %		ca. approx. 2 μV	
U	Antenne/antenna	108 MHz	108 MHz	C 119	C 112	R 274 - 28,4 V ± 0,5 %		ca. approx. 2 μV	
Q (K + U)								ab TA-Buchse 60 mV from PU jack	

- ') Vor dem AM-ZF Abgleich Kern des Sperrkreises L 305 herausdrehen. Das ZF-Ausgangssignal des Meßsenders muß klein gehalten wer-
- 3) Bei Geräten mit besonderer Kennzeichnung AM-ZF 452 kHz = 0,452 MHz.
- Vor Abgleich L 201 so verstimmen, daß der Kern 1 mm aus dem Topf herausragt.
- 4) Ein AM-Signal, 400 Hz, 30 % moduliert, soll eine Ratiospannung von 1,4 V erzeugen. Dann mit R 179 ein Spannungsminimum am Outputmeter einstellen.
- 3) Kernstellung 2. Maximum.
- 4) Koppelspule, ca. 20 Windungen, 6 cm Durchmesser, an das Meßsenderkabel anschließen und in die Nähe des Ferritstabes bringen. Abgleich nach der Abgleichtabelle.

- Unscrew the core of rejector circuit L 305 before alignment. The IF signal of the signal generator must be maintained at a low value.
- ²) For sets with special indication IF-AM 452 kHz = 0.452 MHz.
- 3) Before alignment adjust L 201 until the core protrudes 1 mm from the cup
- 4) An AM signal, 400 Hz, 30 % modulated, must produce a ratio voltage of 1.4 V. Adjust a voltage minimum at the outputmeter by means of P. 170.
- 5) Core positioned at second maximum.

Abgleichanleitung · Leiterplatten

Die Anschlußpunkte neben den Platten sind durch Zahlen gekennzeichnet und stimmen mit denen im Schaltbild überein.

Connection points on the boards are marked by numbers which correspond to those in the schematic.

NF-Piatte / AF Board PL 1
Bedruckungsseite / Printed Side

Grundplatte / Main Board PL 23 (Trommelschalter) / (Rotary switch) Bestückungsseite / Components Side

Fig. 4

Trafoplatte / Transformer Board PL 4 Bestückungsseite / components side

Schalterplatte / Switch Board PL 3

Bestückungsseite / Components Side

Oberseite = rote Leitungsbahnen Unterseite = schwarze Leitungsbahnen

Verbindungspunkte zwischen der Ober- und Unterseite

Top side = red lines Lower side = black lines

= connection points
between top side and lower side

3 Auswechseln der Seilzüge

- 3.1 Chassis ausbauen.
- 3.2 Seilzüge nach Fig. 1 auflegen. Zum Auflegen des Seilzuges für die obere Skala (Länge ca. 0,6 m) muß der Seilzug für die untere Skala (Länge ca. 0,5 m) und der Reflektor abgenommen werden.

4 Auswechseln der Sicherung

- 4.1 Abdeckstopfen der Buchsen auf der linken Seite entfernen.
- 4.2 Kreuzschlitzschraube der Buchsenabdeckplatte entfernen.
- 4.3 Platte an der Schraubenseite etwas anheben und nach unten abziehen.
- 4.4 Sicherung auswechseln.

3 Exchanging the Drive Cables

- 3.1 Remove chassis.
- 3.2 Place cable drives as shown in fig. 1. Before placing the drive cable for the upper dial (length approx. 0.6 m) it is requested to remove the drive cable for the lower dial (length approx. 0.5 m) and the reflector.

4 Exchanging the Fuse

- 4.1 Remove covers of the jacks on the LH side.
- 4.2 Remove phillips screw of the cover plate of the jacks.
- 4.3 Lift the plate slightly at the side of the screws and remove it downwards.
- 4.4 Exchange fuse.

