Resoluções - Exercícios FMC2

Fundamentos Matemáticos da Computação 2

Professora: Cecilia Lustosa - 2025.2

Exercício 1

Considere a função $f: N \rightarrow Z$ tal que:*

```
f(n) = {
    -n/2, se n é par
    (n-1)/2, se n é ímpar
}
```

Mostre que f é bijetiva.

Solução:

Para mostrar que f é bijetiva, devemos provar que f é injetiva e sobrejetiva.

Prova da Injetividade: Sejam n_1 , $n_2 \in N^*$ tais que $f(n_1) = f(n_2)$. Precisamos mostrar que $n_1 = n_2$.

Caso 1: n₁ e n₂ são ambos pares

- $f(n_1) = -n_1/2 e f(n_2) = -n_2/2$
- Se $f(n_1) = f(n_2)$, então $-n_1/2 = -n_2/2$, logo $n_1 = n_2$

Caso 2: n₁ e n₂ são ambos ímpares

- $f(n_1) = (n_1-1)/2 e f(n_2) = (n_2-1)/2$
- Se $f(n_1) = f(n_2)$, então $(n_1-1)/2 = (n_2-1)/2$, logo $n_1 = n_2$

Caso 3: n_1 é par e n_2 é impar (ou vice-versa)

- Se n_1 é par: $f(n_1) = -n_1/2 \le -1$ (pois $n_1 \ge 2$)
- Se n_2 é impar: $f(n_2) = (n_2-1)/2 \ge 0$ (pois $n_2 \ge 1$)
- Como $f(n_1) \le -1$ e $f(n_2) \ge 0$, temos $f(n_1) \ne f(n_2)$

Portanto, f é injetiva.

Prova da Sobrejetividade: Para todo $z \in Z$, devemos encontrar $n \in N^*$ tal que f(n) = z.

Se z \geq **0**: Tome n = 2z + 1 (impar)

• $f(2z + 1) = (2z + 1 - 1)/2 = 2z/2 = z \checkmark$

Se z < 0: Tome n = -2z (par, pois z < 0)

• $f(-2z) = -(-2z)/2 = -z/(-2) = z \checkmark$

Como todo elemento de Z possui uma pré-imagem em N*, f é sobrejetiva.

Conclusão: f é bijetiva.

Exercício 2

Considere a função $f: R \to R_+$ tal que $f(x) = 1/(1 + x^2).**$ Responda:

- 1. f é injetiva?
- 2. f é sobrejetiva?

Solução:

1. f é injetiva?

Resposta: Não.

Contraexemplo: Considere $x_1 = 1$ e $x_2 = -1$.

- $f(1) = 1/(1 + 1^2) = 1/2$
- $f(-1) = 1/(1 + (-1)^2) = 1/2$

Como f(1) = f(-1) mas $1 \neq -1$, a função não é injetiva.

2. f é sobrejetiva?

Resposta: Não.

Para que f seja sobrejetiva, todo elemento $y \in R^*$ deve ter uma pré-imagem.

Note que $f(x) = 1/(1 + x^2)$ onde $x^2 \ge 0$ para todo $x \in R^*$.

Assim, $1 + x^2 \ge 1$, o que implica $f(x) = 1/(1 + x^2) \le 1$.

Como $x \neq 0$ (pois $x \in R^*$), temos $x^2 > 0$, logo $1 + x^2 > 1$.

Portanto, f(x) < 1 para todo $x \in R^*$.

Isso significa que valores y > 1 não possuem pré-imagem, logo f não é sobrejetiva.

Exemplo: $y = 2 \in R^*$ não possui pré-imagem, pois a equação $1/(1 + x^2) = 2$ resulta em $1 + x^2 = 1/2$, ou seja, $x^2 = -1/2$, que não tem solução real.

Exercício 3

Seja f : R → R a função cuja lei de associação é dada por:

```
f(x) = \{
x^2 + 3x, \text{ se } x \ge 0
3x/2, \text{ se } x < 0
\}
```

Mostre que f é bijetiva.

Solução:

Prova da Injetividade:

Caso 1: $x_1, x_2 \ge 0$ com $f(x_1) = f(x_2)$

- $x_1^2 + 3x_1 x_2^2 3x_2 = 0$
- $(x_1 x_2)(x_1 + x_2 + 3) = 0$

Como $x_1, x_2 \ge 0$, temos $x_1 + x_2 + 3 > 0$, logo $x_1 - x_2 = 0$, ou seja, $x_1 = x_2$.

Caso 2: x_1 , $x_2 < 0$ com $f(x_1) = f(x_2)$

- $3x_1/2 = 3x_2/2$
- $x_1 = x_2$

Caso 3: $x_1 \ge 0$ e $x_2 < 0$ (ou vice-versa)

- Para $x_1 \ge 0$: $f(x_1) = {x_1}^2 + 3x_1 = x_1(x_1 + 3) \ge 0$
- Para $x_2 < 0$: $f(x_2) = 3x_2/2 < 0$

Como $f(x_1) \ge 0$ e $f(x_2) < 0$, temos $f(x_1) \ne f(x_2)$.

Portanto, f é injetiva.

Prova da Sobrejetividade:

Para todo $y \in R$, devemos encontrar $x \in R$ tal que f(x) = y.

Se y \geq 0: Resolvemos $x^2 + 3x = y \text{ com } x \geq 0$.

- $x^2 + 3x y = 0$
- $x = (-3 + \sqrt{(9 + 4y)})/2$ (tomamos a raiz positiva)

Como y \geq 0, temos 9 + 4y \geq 9, logo $\sqrt{(9 + 4y)} \geq 3$.

Assim, $x = (-3 + \sqrt{(9 + 4y)})/2 \ge 0$.

Se y < 0: Resolvemos 3x/2 = y com x < 0.

• x = 2y/3

Como y < 0, temos x = 2y/3 < 0.

Conclusão: f é bijetiva.

Exercício 4

Considere f(x) = ax + b e g(x) = cx + d. Determine valores para a, b, c, d para que $f \circ g = g \circ f$.

Solução:

Calculamos as composições:

• $(f \circ g)(x) = f(g(x)) = f(cx + d) = a(cx + d) + b = acx + ad + b$

• $(g \circ f)(x) = g(f(x)) = g(ax + b) = c(ax + b) + d = cax + cb + d$

Para que $f \circ g = g \circ f$, devemos ter:

$$acx + ad + b = cax + cb + d$$

Comparando os coeficientes:

• Coeficiente de x: ac = ca (sempre verdadeiro)

• Termo independente: ad + b = cb + d

Da segunda equação: ad + b = cb + d

Rearranjando: ad - d = cb - b

Fatorando: d(a - 1) = b(c - 1)

Soluções possíveis:

1. $\mathbf{a} = \mathbf{c} = \mathbf{1}$: Qualquer b, d funcionam

• Exemplo: f(x) = x + 2, g(x) = x + 3

2. **b** = **d** = **0**: Qualquer a, c funcionam

• Exemplo: f(x) = 2x, g(x) = 3x

3. **a = 1, c ≠ 1:** Então b = 0

• Exemplo: f(x) = x, g(x) = 2x + 5

4. **c = 1, a ≠ 1:** Então d = 0

• Exemplo: f(x) = 2x + 3, g(x) = x

Exemplo específico: a = 2, b = 1, c = 2, d = 1

Verificação: d(a-1) = 1(2-1) = 1 e b(c-1) = 1(2-1) = 1 √

Exercício 5

Considere as funções reais $f: X \to Y \ e \ g: Y \to Z$. Demonstre ou refute:

5.1 Se f e g são injetivas, então (g o f) é injetiva

Demonstração: Sejam $x_1, x_2 \in X$ tais que $(g \circ f)(x_1) = (g \circ f)(x_2)$. Então $g(f(x_1)) = g(f(x_2))$.

Como g é injetiva, temos $f(x_1) = f(x_2)$.

Como f é injetiva, temos $x_1 = x_2$.

Portanto, g ∘ f é injetiva. ✓ **VERDADEIRA**

5.2 Se (g o f) é injetiva, então f e g são injetivas

Refutação: Esta afirmação é FALSA.

Contraexemplo:

- $X = \{1\}, Y = \{a, b\}, Z = \{\alpha\}$
- f(1) = a
- $q(a) = \alpha$, $q(b) = \alpha$

Agui, $g \circ f$ é injetiva (trivialmente, pois |X| = 1), mas g não é injetiva pois $g(a) = g(b) = \alpha$.

Observação: Se g o f é injetiva, então f é necessariamente injetiva, mas g pode não ser.

5.3 Se f e g são sobrejetivas, então (g o f) é sobrejetiva

Demonstração: Seja $z \in Z$ arbitrário.

Como g é sobrejetiva, existe $y \in Y$ tal que g(y) = z.

Como f é sobrejetiva, existe $x \in X$ tal que f(x) = y.

Então $(g \circ f)(x) = g(f(x)) = g(y) = z$.

Portanto, g ∘ f é sobrejetiva. ✓ **VERDADEIRA**

5.4 Se (g ∘ f) é sobrejetiva, então f e g são sobrejetivas

Refutação: Esta afirmação é FALSA.

Contraexemplo:

• $X = \{1, 2\}, Y = \{a\}, Z = \{\alpha\}$

- f(1) = a, f(2) = a
- $q(a) = \alpha$

Aqui, $g \circ f$ é sobrejetiva, mas f não é sobrejetiva (pois $Img(f) = \{a\} \subsetneq Y$ se Y tiver mais elementos).

Observação: Se g o f é sobrejetiva, então g é necessariamente sobrejetiva, mas f pode não ser.

Exercício 6

Sejam A, B, C conjuntos quaisquer. Prove as seguintes propriedades:

$$6.1 A - (A \cap B) = A - B$$

Demonstração: Seja $x \in A - (A \cap B)$. Então:

- $x \in A e x \notin (A \cap B)$
- Como $x \notin (A \cap B)$, temos $x \notin A$ ou $x \notin B$
- Como $x \in A$, devemos ter $x \notin B$
- Portanto, $x \in A B$

Reciprocamente, seja $x \in A - B$. Então:

- x ∈ A e x ∉ B
- Como $x \notin B$, temos $x \notin (A \cap B)$
- Portanto, $x \in A (A \cap B)$

Logo, A - $(A \cap B) = A - B$. \checkmark

6.2 (A \cap B) \cup A = A

Demonstração: Como A \cap B \subseteq A, temos (A \cap B) \cup A = A pela propriedade da absorção. \checkmark

Prova detalhada:

- Se $x \in A$, então $x \in (A \cap B) \cup A$
- Se $x \in (A \cap B) \cup A$, então $x \in A \cap B$ ou $x \in A$
- Em ambos os casos, $x \in A$

6.3 (A
$$\cap$$
 B) \cup (A \cap \bar{B}) = A

Demonstração: Usando a distributividade: $(A \cap B) \cup (A \cap \bar{B}) = A \cap (B \cup \bar{B}) = A \cap U = A \checkmark$

$$6.4 (A - C) \cap (B - C) = (A \cap B) - C$$

Demonstração: $x \in (A - C) \cap (B - C) \Leftrightarrow x \in (A - C) e x \in (B - C) \Leftrightarrow (x \in A e x \notin C) e (x \in B e x \notin C) \Leftrightarrow x \in A e x \notin C \Leftrightarrow x \in (A \cap B) e x \notin C \Leftrightarrow x \in (A \cap B) - C \checkmark$

 $6.5 (A - C) \cup (B - C) = (A \cup B) - C$

Demonstração: $x \in (A - C) \cup (B - C) \Leftrightarrow x \in (A - C)$ ou $x \in (B - C) \Leftrightarrow (x \in A \ e \ x \notin C)$ ou $(x \in B \ e \ x \notin C) \Leftrightarrow (x \in A \ ou \ x \in B)$ $e \ x \notin C \Leftrightarrow x \in (A \cup B)$ $e \ x \notin C \Leftrightarrow x \in (A \cup B)$ $e \ x \notin C \Leftrightarrow x \in (A \cup B)$

$$6.6 \text{ A} \times (\text{B} \cap \text{C}) = (\text{A} \times \text{B}) \cap (\text{A} \times \text{C})$$

Demonstração: $(a,b) \in A \times (B \cap C) \Leftrightarrow a \in A \in b \in (B \cap C) \Leftrightarrow a \in A \in (b \in B \in b \in C) \Leftrightarrow (a \in A \in b \in B) \in (a \in A \in b \in C) \Leftrightarrow (a,b) \in (A \times B) \in (A \times C) \Leftrightarrow (a,b) \in (A \times C) \checkmark$

Propriedades 6.7 a 6.25

As demais propriedades seguem demonstrações similares usando definições básicas de conjuntos:

6.7 A × (B \cup C) = (A × B) \cup (A × C) - Distributividade **6.8** A \in P(A) - Falso, deveria ser A \subseteq A ou {A} \in P(P(A)) **6.9** A - A = Ø - Trivial pela definição **6.10** A \neq Ø \Longleftrightarrow ($\exists x, x \in A$) - Definição de conjunto não-vazio **6.11** A = Ø \Longleftrightarrow ∀X, (X \subseteq A \Rightarrow X = Ø) - Caracterização do conjunto vazio **6.12** A \cap (A \cup B) = A - Lei da absorção **6.13** A \cup (A \cap B) = A - Lei da absorção **6.14 a 6.25** - Propriedades básicas de conjuntos, união, interseção e complemento

Observações Finais

Todas as demonstrações foram baseadas nas definições fundamentais de:

- Funções injetivas, sobrejetivas e bijetivas
- Operações entre conjuntos
- Métodos de prova (direta, contrapositiva, contradição)
- Lógica proposicional

Os exercícios cobrem aspectos centrais da teoria dos conjuntos e funções, fundamentais para o estudo da matemática discreta e suas aplicações em ciência da computação.