# Microgrid Energy Trading on Blockchain

Shravya Bhamidipati (2022UCP1891), Aryan Pingoliya(2022UCP1499)

Department of Computer Science and Engineering

Blockchain Technology

December 12, 2024

### Outline

- Introduction
- Project Objectives
- 3 Challenges of Energy Management
- Proposed Blockchain-Based Solutions
- System Architecture
- 6 Functional Design
  - Microgrid Registration
  - Energy Listing and Buying
  - Price Updates and Withdrawals
- Smart Contract Explanation
- Security Considerations
- Onclusion

#### Introduction

- **Goal:** To implement a decentralized, peer-to-peer (P2P) energy trading system for microgrids.
- Concept: Leverages Ethereum-based smart contracts to enable energy exchanges.
- Why Blockchain?
  - Transparency
  - Security
  - Efficiency (Automated Transactions)

### **Project Objectives**

### Decentralized Energy Trading

Facilitate direct energy exchanges without centralized intermediaries.

### Transparency and Security

Securely record all transactions on the blockchain.

#### Automated Transactions

Use smart contracts to automate energy listings and trades.

### **Empower Microgrids**

Enable microgrids to sell surplus energy directly to others.

### CHALLENGES OF ENERGY MANAGEMENT

#### Subcontracting and Affiliation Risks:

- Contractors without sufficient qualifications rely on affiliated enterprises to win bids, leading to variability in project quality and safety standards.
- Excessive layers of subcontracting disrupt market order.

#### **2** Funds AND ENERGY Mismanagement:

- Delays in payment to workers and misappropriation of funds.
- Difficulty in ensuring fair wage distribution and accountability.

### **3** Lack of Transparency and Control:

- No effective supervision over project progress.
- Inadequate records of worker attendance and wage payments.

## Proposed Blockchain-Based Solutions

### Data Deposit

- Records critical project data (e.g., contracts, payments, worker information) on a blockchain to ensure tamper-proof documentation.
- Links project data with external administrative bodies like judicial departments and talent markets.

### Enterprise Credit Management

- Uses AI to evaluate and store credit ratings of enterprises and individuals on the blockchain.
- Facilitates informed decision-making for future bidding and enforces penalties for violations (e.g., delayed wages, poor project quality).

#### Contract Management

- Automates contract signing and verification via blockchain with digital signatures.
- Tracks contract execution and ensures reliable evidence for dispute resolution.
- Example: If a subcontractor fails to meet contractual obligations, the system records the breach in real-time.

### Proposed BLockchain solutions

#### Funds Management

- Establishes escrow accounts for worker wages.
- Uses smart contracts to automate payments when conditions are met, ensuring timely and accurate fund distribution.
- Example: A smart contract triggers wage payment upon confirmation of project milestones, reducing reliance on manual processing.

#### Project Process Control

- Monitors project progress using blockchain for real-time updates on safety, quality, and adherence to schedules.
- Example: Blockchain records on-site safety training attendance, preventing compliance violations.

# System Architecture

- Microgrids: Energy producers or consumers.
- Smart Contracts: Handle registration, listings, transactions.
- **Ethereum Blockchain:** Immutable and transparent transaction records.
- Users: Buyers and sellers interact with the system.



### **EXAMPLE ARCHITECTURE**



Figure: ENERGY TRADE

### Microgrid Registration

- Purpose: To allow microgrids to participate in energy trading.
- Details:
  - Register energy capacity and energy price.
  - Initial energy balance matches the registered capacity.

# **Energy Listing and Buying**

### **Energy Listing**

- Sellers specify the amount of energy for sale.
- Smart contracts ensure valid energy balance.

### **Energy Buying**

- Buyers purchase energy by sending equivalent Ether.
- Energy balances are updated post-transaction.

### Price Updates and Withdrawals

- Price Updates: Microgrids adjust prices dynamically.
- Withdrawals: Contract owners can withdraw accumulated Ether.

# Practical implementation



Figure: ENERGY TRADE using aurdinos - UNO R3

### Contract Code: Key Components

#### Microgrid Structure:

- The Microgrid structure stores critical data for each microgrid:
- energyCapacity: The maximum amount of energy that can be supplied by the microgrid.
- - energyBalance: The amount of energy currently available for sale.
- - energyPrice: The price per kWh of energy.
- registered: A boolean value that ensures a microgrid is registered before performing transactions.

#### • Key Functions:

- registerMicrogrid()
- listEnergyForSale()
- buyEnergy()
- updateEnergyPrice()
- withdraw()

#### • Events:

• EnergyRegistered, EnergyListed, EnergyBought

## Security Considerations

- Access Control: Only registered microgrids interact with contracts.
- Funds Handling: Sufficient checks for Ether transfers.
- Immutability: Transactions are recorded on the Ethereum blockchain.

#### Conclusion

- Decentralized energy trading using blockchain enhances transparency, security, and efficiency.
- Smart contracts ensure automated and secure operations.
- Future scalability for advanced energy management systems.

# Presented By-

#### THANK YOU

Group Members
Shravya Bhamidipati (2022UCP1891), Aryan Pingoliya (2022UCP1499)
Department of Computer Science and Engineering