Elektronikai technológia

A tantárgy angol neve: Electronics Technology

Adatlap utolsó módosítása: 2022. augusztus 25.

Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar

Villamosmérnöki szak BSc képzés

Tantárgykód	Szemeszter	Követelmények	Kredit	Tantárgyfélév
VIETAB01	3	2/0/2/f	4	

3. A tantárgyfelelős személy és tanszék

Dr. Krammer Olivér,

4. A tantárgy előadója

Név:	Beosztás:	Tanszék
Dr. Krammer Olivér	egyetemi docens	Elektronikai Technológia Tsz.
Dr. Géczy Attila	egyetemi docens	Elektronikai Technológia Tsz.
Dr. Gordon Péter	egyetemi docens	Elektronikai Technológia Tsz.
Dr. Hurtony Tamás	egyetemi docens	Elektronikai Technológia Tsz.
Dr. Bonyár Attila	egyetemi docens	Elektronikai Technológia Tsz.
Dr. Medgyes Bálint	egyetemi docens	Elektronikai Technológia Tsz.
Dr. Berényi Richárd	egyetemi docens	Elektronikai Technológia Tsz.

5. A tantárgy az alábbi témakörök ismeretére épít

Elektronikai anyagtudomány

6. Előtanulmányi rend

Kötelező:

NEM (TárgyTeljesítve("BMEVIETAB00")) ÉS

(Kepzes("5N-A7") VAGY Kepzes("5N-A7H") VAGY Kepzes("5NAA7"))

A fenti forma a Neptun sajátja, ezen technikai okokból nem változtattunk.

A kötelező előtanulmányi rend az adott szak honlapján és képzési programjában található.

7. A tantárgy célkitűzése

Az Elektronikai technológia c. természettudományos alaptárgy keretében folyó képzés elsődleges célja az elektronikai áramkörök és rendszerek kivitelezésével, a kivitelezés ellenőrzésével, valamint a kivitelezett áramkörök és eszközök validációjával kapcsolatos alapjainak, továbbá elméleti és gyakorlati ismereteinek átadása a hallgatóknak. A tantárgy célja áttekintést adni az elektronikai alkatrészek és eszközök, az áramköri modulok, valamint az elektronikus készülékek struktúrájáról, felépítéséről, előállítási és szerelési technológiájáról, a szakterület fejlődési trendjeiről.

A tárgy azon elektronikai technológiai, mikroelektronikai, áramkör-építési, szereléstechnológiai, elektronikai készülékek fejlesztési ismereteket foglalja össze, amelyek minden villamosmérnök számára szükségesek az integrált áramkörökkel, továbbá az elektronikai részegységek és rendszerek kivitelezésével kapcsolatos alapvető tájékozottsághoz és az erre a területre specializálódott ipari szakemberekkel és kutatókkal való együttműködéshez.

8. A tantárgy részletes tematikája

Előadások tematikája:

- Bevezetés a tárgy célja, tematikája. Elektronikus alkatrészek, hordozók, részegységek rendszerezése, elektronikai anyagok rövid ismertetése.
- 2. Elektronikai készülékek tervezése, felépítése, készülékfejlesztés, műszaki specifikáció, mechanikai, termikus-, EMC (elektromágneses kompatibilitás) tervezés alapjai, gyárthatóságra tervezés.
- 3. A furat és felület szerelhető alkatrészek felépítései, tulajdonságai, csoportosításai, tárolási módok, felületszerelt aktív alkatrészek és integrált áramköri tokozások, chipméretű tokozások és szeletszintű tokozás-szerelés.
- 4. Alkatrészek forrasztása, forrasztott kötések létrehozása, kézi forrasztás folyamata és eszközei, hullámforrasztási technológia lépései, újraömlesztéses forrasztási technológia lépései, automatizált forrasztási technológiák hőprofilja.
- 5. Félvezető chipek és moduláramkörök beültetési módjai és tokozásai, félvezető chipek mechanikai rögzítése ragasztással, illetve Au-SI eutektikus forrasztással, félvezető chipek villamos bekötési technikái, mikrohuzalkötési technikák, flip-chip technológia.
- 6. Egyoldalas, kétoldalas, többrétegű és speciális áramköri lemezek technológiái, szubtraktív, additív és féladditív rajzolatkialakítási technológiák, többrétegű, együtt-laminált lemezek furatfémezési technikái, nagyfelbontású, mikroviákat tartalmazó lemezek, szekvenciális rétegépítéssel készült lemezek.
- 7. Kerámia- és polimer alapú vastagréteg technológia, szigetelő alapú integrált áramkörök, vastagréteg technológia anyagai, lépései, sziták tulajdonságai, típusai, szalagnyomtatás, hibrid IC készítési technológiája, rétegellenállások alakjai és értékbeállítása, alacsony- és magas hőmérsékleten együtt-kiégetett kerámiahordozók
- 8. Additív elektronikai gyártástechnológiák anyagai: fémporok, kerámiák, hőre lágyuló polimerek, kompozitok, biokemikáliák. Technológiák: fotopolimerizáció, szálolvasztásos építés, elektronsugaras-, lézeres- és plazmaíves direkt fémleválasztás, sugaras anyagnyomtatás, szelektív lézeres olvasztás és szinterelés, fémek direkt lézeres szinterelése.
- 9. Vákuumtechnika, vékonyréteg technológia, vákuumrendszerek, vákuumszivattyúk, vákuumpárologtatás és porlasztás technológiája, árammal közvetlenül és közvetetten hevített források, elektronsugaras fűtésű párologtatóforrás, vékonyréteg integrált áramkörök.
- 10. Elektronikai minőségbiztosítás, minőség fogalma, minőségbiztosítási biztosítási technikák alapjai, gyártásközi ellenőrző berendezések, szerelt áramkörök minősítési kritériumai, elektronikus eszközök mechanika-, termikus- és elektromos validációja.
- 11. Megbízhatóság-elmélet, elektronikai szerelvények és készülékek meghibásodásának okai és fajtái, megbízhatósági függvények, a megbízhatósági jellemzők számítása. Hibák keletkezésének elemzése, vizsgálati és hibaanalitikai tevékenység motivációi, helye és szerepe az elektronikai gyártás és minőségbiztosítás területén.
- 12. Szerelt áramköri- és készülékszintű termikus menedzsment, a hő és a hőmérsékletváltozás hatásai elektronikai szerelvényekre és készülékekre, hőenergia terjedése, termikus interfészek elektronikai szerelvényekben; hűtőbordák, direkt- és indirekt folyadékhűtés, fázisátalakulással működő hűtés; termikus tervezési alapok; termikus modellezés alapjai.
- 13. lpari meghívott előadó
- 14. Kitekintő tartalékelőadás, Ipar 4.0 az elektronikai gyártástechnológiákban, okos gyártás, okos gyár, ipari IoT (dolgok internetje), gépi tanulás módszerek alapjai az elektronikai gyártáshoz kapcsolódóan, gép-gép kapcsolat az elektronikai gyártásban; kiterjesztett HMI (ember-gép kommunikációs felület) eszközök a gyártósori gépek ellenőrzésére, optimalizálására.

Laboratóriumi foglalkozások tematikája:

- 1. Nyomtatott huzalozású lemezek előállítása szubtraktív rajzolatkészítési technológiával, furatkészítés, fúrási paraméterek, fotolitográfia, ón galvanizálás, réz maratás, forrasztásgátló maszk készítése.
- 2. Moduláramkör készítése kézi forrasztással; ismerkedés a kézi forrasztás eszközeivel, furatszerelt és nagyméretű felületszerelt alkatrészek (pl. 1206 méretkódú ellenállások) kézi forrasztása nyomtatott huzalozású lemezre, az elkészült kötések optikai mikroszkópos elemzése.
- 3. Moduláramkör készítése felületszerelési technológiával, újraömlesztéses forrasztással, ismerkedés az újraömlesztéses forrasztási technológia lépéseivel, manuális stencilnyomtatás, alkatrészek beültetése manuális beültetőkarral, kötések létrehozása újraömlesztő kemencében, kötések ellenőrzése optikai mikroszkóppal.
- 4. Számítógéppel segített kísérlettervezés, technológiai kísérletek szisztematikus tervezése, paraméterterek feltérképezése, lényeges paraméterek meghatározása, kísérleti terv összeállítása; kísérleti eredmények vizualizálása, kiértékelése.
- 5. Nyomtatott huzalozású lemez tervezése, számítógéppel segített tervezőrendszerek összetevőinek megismerése, áramkör sematikus tervének létrehozása, alkatrészrajzolatok tervezése, áramköri hordozó huzalozása, gyártófile-ok (gerber) létrehozása.
- 6. Prototipizálás, szerelt áramkörök és készülékházak 3D tervezési alapjai, 3D tervezőrendszerek felépítése, tervezési alapok: metszeti rajzok (sketch) létrehozása, 3D alakzatok létrehozása metszeti rajzokból, forgatás, extrudálás, logikai műveletek testekkel, tervek exportálása 3D fileformátumok.
- 7. Szerelt ill. készülékházba épített áramkörök termikus szimulációja; hőmérsékleti eloszlás vizsgálata terhelt, nagyteljesítményű alkatrészen, hőmérsékleti eloszlások vizsgálata szerelt moduláramkörön, a tervezési topológia és terhelési paraméterek függvényében.

9. A tantárgy oktatásának módja (előadás, gyakorlat, laboratórium)

Előadás és laboratórium.

10. Követelmények

A szorgalmi időszakban: Részvétel a hét darab laboratóriumi foglalkozáson és ezek sikeres teljesítése. A laboratóriumi foglalkozások elején az előzetes kompetenciák felmérésére rövid (kb. 15 perces) szintfelmérők legalább elégséges teljesítése. Kettő darab 60 perces összegző értékelés legalább elégséges teljesítése.

A vizsgaidőszakban: nincs.

11. Pótlási lehetőségek

A szintfelmérő teljesítményértékelés kizárólag a laboratóriumi foglalkozással együtt pótolható.

A félév során két darab laboratóriumi foglalkozás pótolható.

Az **összegző értékelések** pótlására, javítására egyszeri lehetőség biztosított. Pót-pótzárthelyi csak a korábbi összegző értékelések teljesítésének alacsony sikeressége kevesebb, mint kétharmad) esetén biztosított.

12. Konzultációs lehetőségek

lgény szerint, a nagy zárthelyiket megelőzően, egyeztetett időpontban.

13. Jegyzet, tankönyv, felhasználható irodalom

Harsányi Gábor: Elektronikai technológia, BME Viking Zrt., VI202-010, Budapest, 2011

B. Illés, O. Krammer, A. Géczy: Reflow Soldering: Apparatus and Heat Transfer Processes, Elsevier, Amsterdam,

Hollandia, 2020, ISBN: 9780128185056

Pinkola János (szerk.): Elektronikai Technológia Laboratórium, Műegyetemi kiadó, 55082, Budapest, 2007

14. A tantárgy elvégzéséhez átlagosan szükséges tanulmányi munka

Kontakt óra		
Félévközi készülés előadásokra		
Félévközi készülés gyakorlatokra		
Félévközi készülés laborokra	28	
Felkészülés zárthelyire		
Házi feladat elkészítése		
Kijelölt írásos tananyag elsajátítása		
Vizsgafelkészülés		
Összesen	120	

15. A tantárgy tematikáját kidolgozta

Név:	Beosztás:	Tanszék
Dr. Krammer Olivér	egyetemi docens	Elektronikai Technológia Tsz.
Dr. Harsányi Gábor	egyetemi tanár	Elektronikai Technológia Tsz.
Dr. Jakab László	egyetemi tanár	Elektronikai Technológia Tsz.
Dr. Illés Balázs	egyetemi tanár	Elektronikai Technológia Tsz.
Dr. Géczy Attila	egyetemi docens	Elektronikai Technológia Tsz.
Dr. Gordon Péter	egyetemi docens	Elektronikai Technológia Tsz.
Dr. Hurtony Tamás	egyetemi docens	Elektronikai Technológia Tsz.

IMSc tematika és módszer

A tárgyhoz tartozó laborgyakorlatokon, a programban részt vevő hallgatókat külön csoportokba helyezzük. A programban részt vevő hallgatók számára egyes laborgyakorlatokat az adott területen legtapasztaltabb kolléga (aki

lehetőség szerint kutatásokat is végez/végzett az adott területen) irányításával fogják elvégezni, akik az alap labor anyagon felül megismertetik a hallgatók az adott terület jelenlegi kurrens kutatási témáival, legújabb eredményeivel.

IMSc pontozás

Az IMSc pontozás a tárgyhoz tartozó 2 db összegző értékelésen kiadott plusz feladatokkal történik. A plusz feladatok pontszámának aránya az összegző értékelésben 25%-os. Plusz IMSc pont az összegző értékelések 75%-os teljesítése felett szerezhető. A tárgyban szerezhető maximális IMSc pontszám 20 (összegző értékelésenként max. 10). Az IMSc pontok megszerzése a programban részt nem vevő hallgatók számára is biztosított.