

Statistical Methods in AI (CSE/ECE 471)

Representation Learning (Siamese Network, Autoencoders)

Ravi Kiran (ravi.kiran@iiit.ac.in)

Vineet Gandhi (v.gandhi@iiit.ac.in)

Center for Visual Information Technology (CVIT)
IIIT Hyderabad

Transfer Learning: Approach-1

- Learn only weights for newly added layers.
- Ideal when 'new domain' data is small in quantity

Transfer Learning: Approach-2

- LR for new layer weights = 10 * source_Ir (for bias, 20 * source_Ir)
- Ideal when 'new domain' data is reasonably large or domain shift is significant

Classification

Face Identification/Recognition (1:N matching)

How to reuse DeepFace (trained on celebrities) for another face dataset?

Classification

Classification

Face Identification/Recognition (1:N matching)

How to reuse DeepFace (trained on celebrities) for another face dataset? Ans: Fine-tuning

No-finetuning Classification

Classification

Face Identification/Recognition (1:N matching)

How to reuse DeepFace (trained on celebrities) for another face dataset (without any training)? Ans: Use CNN as feature extractor. k-NN on feature representations

Verification

Face Authentication/Verification (1:1 matching)

Feature Extraction

Feature Extraction

Verification: Approach - 1

DB image

DB image

Verification: Approach - 1

MISMATCH]

N

DB image

Verification: Approach – 1B

Verification: Approach – 1C

DB-image

Tied weights

DB image

Contrastive Loss:

Learn f_Q , f such that:

- dist (f_Q, f) is large when ids mismatch
- $\operatorname{dist}(f_Q, f)$ is small when ids match

Verification: Approach – 1C

Tied weights

Contrastive Loss

DB image

Contrastive Loss: $yd^2 + (1-y) \max(margin - d, 0)$

- Learn f_Q , f such that:
- $d = dist(f_O, f)$ is large when ids mismatch (y=0)
- $d = dist(f_O, f)$ is small when ids match (y=1)

Vector Space

Verification: Approach – 1C

Learning a similarity function

DB image

 f_B

CNN Vector Space

Vector Space

Contrastive Loss: $yd^2 + (1 - y) \max(margin - d, 0)^2$

Learn f_Q , f such that:

- $d = dist(f_Q, f)$ is large when ids mismatch (y=0)
- $d = dist(f_O, f)$ is small when ids match (y=1)

Verification Approach 2

4

Popular Architecture Varieties

- No one "architecture" fits all!
- Design largely governed by what performs well empirically on the task at hand.

Zagoruyko, S. and Komodakis, N., 2015. Learning to compare image patches via convolutional neural networks. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (pp. 4353-4361).

Siamese Network

Application in Signature Verification

 The input is 8(feature) x 200(time) units.

 The cosine distance was used, (1 for genuine pairs, -1 for

Bromley J, Guyon I, Lecun Y, et al. Signature Verification using a" Siamese" Time Delay Neural Network, NIPS Proc. 1994

Siamese Network (Person re-id)

http://www.fubin.org/research/Person_ReID/Person_ReID.html

Siamese CNN – Training

 Update each of the two streams independently and then average the weights.

Applications

Ranking

Retrieval

https://github.com/paucarre/tiefvision

Street-View to Overhead-View Image Matching

Vo, N.N. and Hays, J., 2016, October. Localizing and orienting street views using overhead imagery. In European Conference on Computer Vision (pp. 494-509).

Many variants exist

Popular Loss Function – Triplet Loss

https://medium.com/@prabhnoor0212/siamese-network-keras-31a3a8f37d04

Unsupervised Learning: Deep Auto-encoder

Unsupervised Learning

"We expect unsupervised learning to become far more important in the longer term. Human and animal learning is largely unsupervised: we discover the structure of the world by observing it, not by being told the name of every object."

- LeCun, Bengio, Hinton, Nature 2015

Auto-encoder

Original

Image

PCA

Deep

Auto-encoder

Deep Auto-encoder

500

1000

Auto-encoder

De-noising auto-encoder

Vincent, Pascal, et al. "Extracting and composing robust features with denoising autoencoders." *ICML*, 2008.

Auto-encoder – Text Retrieval

Vector Space Model

query document

Bag-of-word

Semantics are not considered.

Auto-encoder – Text Retrieval

The documents talking about the same thing will have close

Auto-encoder – Similar Image Search

Retrieved using Euclidean distance in pixel intensity space

(Images from Hinton's slides on Coursera)

Reference: Krizhevsky, Alex, and Geoffrey E. Hinton. "Using very deep autoencoders for content-based image retrieval." *ESANN*. 2011.

Auto-encoder – Similar Image Search

(crawl millions of images from the Internet)

Retrieved using Euclidean distance in pixel intensity space

retrieved using 256 codes

Auto-encoder

for CNN As close as possible

CNN -Unpooling

Alternative: simply repeat the values

Source of image:

https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/image_segmentation.html

Deconvolution

Actually, deconvolution is convolution.

Pokémon

http://140.112.21.35:2880/~tlkagk/pokemon/pca.html http://140.112.21.35:2880/~tlkagk/pokemon/auto.html

The code is modified from

http://jkunst.com/r/pokemon-visualize-em-all/

PCA ~ Autoencoder with linear layers

Output of the hidden layer is the code

Code Reference

https://blog.keras.io/building-autoencoders-in-keras.html