

(b) y = 1/x, x > 0

EXERCÍCIOS 16.2

- **1.** $\frac{1}{54}(145^{3/2}-1)$ **3.** 1638,4
- **5.** $\frac{243}{8}$
- **9.** $\sqrt{5} \pi$ **11.** $\frac{1}{12} \sqrt{14} (e^6 1)$
- **13.** $\frac{2}{5}$ (e-1)

- **17.** (a) Positiva **21.** $\frac{6}{5} - \cos 1 - \sin 1$
- (b) Negativa **23.** 1,9633
- **19.** 45
 - **25.** 15,0074

27. $3\pi + \frac{2}{3}$

- **29.** (a) $\frac{11}{8} 1/e$
- (b)

- **31.** $\frac{172704}{5632705}\sqrt{2}(1-e^{-14\pi})$
- **33.** $2\pi k$, $(4/\pi, 0)$
- **35.** (a) $\overline{x} = (1/m) \int_C x \rho(x, y, z) ds$,
- $\overline{y} = (1/m) \int_C y \rho(x, y, z) ds,$

 $\overline{z} = (1/m) \int_C^C z \rho(x, y, z) ds$, onde $m = \int_C \rho(x, y, z) ds$

- **37.** $I_x = k(\frac{1}{2}\pi \frac{4}{3}), I_y = k(\frac{1}{2}\pi \frac{2}{3})$ **39.** $2\pi^2$ **41.** $\frac{7}{3}$
- **43.** (a) $2ma \mathbf{i} + 6mbt \mathbf{j}, 0 \le t \le 1$ (b) $2ma^2 + \frac{9}{2}mb^2$
- **45.** ≈1,67 × 10^4 pés-lb
- **47.** (b) Sim

EXERCÍCIOS 16.3

- **3.** $f(x, y) = x^2 3xy + 2y^2 8y + K$
- **5.** Não conservativo **7.** $f(x, y) = ye^x + x \operatorname{sen} y + K$
- **9.** $f(x, y) = x \ln y + x^2 y^3 + K$
- **11.** (b) 16 **13.** (a) $f(x, y) = \frac{1}{2}x^2y^2$ (b) 2
- **15.** (a) $f(x, y, z) = xyz + z^2$ (b) 77
- **17.** (a) $f(x, y, z) = ye^{xz}$ (b) 4
- 21. Não importa qual curva é escolhida.
- **23.** 30 **25.** Não 27. Conservativo
- **31**. (a) Sim (b) Sim (c) Sim **33.** (a) Não (b) Sim (c) Sim

EXERCÍCIOS 16.4

- 3. $\frac{2}{3}$ 5. 12

- 9. -24π 11. $-\frac{16}{3}$
- **3.** $\frac{2}{3}$ **5.** 12 **7.** $\frac{1}{3}$ **9.** -24π **11. 15.** $-8e + 48e^{-1}$ **17.** $-\frac{1}{12}$ **19.** 3π **23.** $(4a/3\pi, 4a/3\pi)$ se a região é a porção do disco $x^2 + y^2 = a^2$ no primeiro quadrante
- **27.** 0

EXERCÍCIOS 16.5

- **1.** (a) $-x^2 \mathbf{i} + 3xy \mathbf{j} xz \mathbf{k}$ (b) yz
- **3.** (a) $ze^x \mathbf{i} + (xye^z yze^x) \mathbf{j} xe^z \mathbf{k}$ (b) $y(e^z + e^x)$
- **5.** (a) **0** (b) $2/\sqrt{x^2 + y^2 + z^2}$
- 7. (a) $\langle -e^y \cos z, -e^z \cos x, -e^x \cos y \rangle$
- (b) $e^x \operatorname{sen} y + e^y \operatorname{sen} z + e^z \operatorname{sen} x$
- **9.** (a) Negativa (b) rot $\mathbf{F} = \mathbf{0}$
- **11.** (a) Zero (b) rot \mathbf{F} pontos na direção negativa de z
- **13.** $f(x, y, z) = xy^2z^3 + K$
- 15. Não conservativo
- **17.** $f(x, y, z) = xe^{yz} + K$ **19**. Não

EXERCÍCIOS 16.6

- **1.** *P*: não; *Q*: sim
- **3.** Plano por (0, 3, 1) contendo os vetores $\langle 1, 0, 4 \rangle, \langle 1, -1, 5 \rangle$
- 5. Paraboloide hiperbólico
- 7.

8.

11.

- **15**. II
- **19.** x = u, y = v u, z = -v
- **21.** $y = y, z = z, x = \sqrt{1 + y^2 + \frac{1}{4}z^2}$
- **23.** $x = 2 \operatorname{sen} \phi \cos \theta, y = 2 \operatorname{sen} \phi \operatorname{sen} \theta,$
- $z = 2\cos\phi, 0 \le \phi \le \pi/4, 0 \le \theta \le 2\pi$

$$z = 2\cos\phi, 0 \le \phi \le \pi/4, 0 \le \theta \le 2\pi$$

[ou
$$x = x$$
, $y = y$, $z = \sqrt{4 - x^2 - y^2}$, $x^2 + y^2 \le 2$]

- **25.** $x = x, y = 4 \cos \theta, z = 4 \sin \theta, 0 \le x \le 5, 0 \le \theta \le 2\pi$
- **29.** $x = x, y = e^{-x} \cos \theta$,
- $z = e^{-x} \operatorname{sen} \theta, 0 \le x \le 3,$
- $0 \le \theta \le 2\pi$

