Következmény fogalma és Rezolúciója

2023. október 27.

A feladatban egy formula tautológia tulajdonságát, vagy egy $\{\alpha_1, \dots \alpha_n\} \models \beta$ következtetési séma helyességét szeretnénk bizonyítani. Ez utóbbi a tanult tétel alapján az $\alpha_1 \wedge \ldots \wedge \alpha_n \to \beta$ formula tautológia voltával ekvivalens, így visszavezettük a feladatot a múlt órán alkalmazott módszerre.

Az, hogy egy formula tautológia, megegyezik azzal, hogy a tagadása kontradikció. Ennek igazolásához indirekt feltesszük, hogy az állítás tagadása nem kontradikció, tehát van olyan kiértékelés, ahol igaz. Ehhez a formula tagadását átalakítjuk KNF alakra és a kapott klózokból a rezolúció alaplépésének ismételt alkalmazásával következményeket írunk fel.

(Következtetési séma esetén a tételben szereplő kifejezés tagadása: $\neg \{\alpha_1 \land \ldots \land \alpha_n \rightarrow \beta\} \equiv \neg \{\neg [\alpha_1 \land \ldots \land \alpha_n] \lor \alpha_n\}$ β $\equiv \alpha_1 \wedge \ldots \wedge \alpha_n \wedge \neg \beta$ alakú, és mivel KNF-k konjunkciója is KNF, itt elég az állításokat és a következmény tagadását külön-külön KNF alakra hozni.)

Ha ezen következményekből kijön az üres klóz (nil), ami semmikor sem igaz, akkor a tagadott formula sem lehet igaz semmilyen kiértékelés esetén (azaz kontradikció), tehát az eredeti formula tautológia.

- Bizonyítsa be a következtetési sémák helyességét igazságtáblával, a definíció alapján!
 - (a) Modus ponens $\{A \to B, A\} \models B$

Megoldás.

A	B	$A \rightarrow B$	$\alpha = (A \to B) \land A$	$\alpha \to B$
h	h	i	h	i
h	i	i	h	i
i	h	h	h	i
i	i	i	i	i

 $Val\'oban,\ ahol\ a\ felt\'etelek\ egy\"uttesen\ (\alpha)\ igazak\ (ez\ csak\ az\ utols\'o\ interpret\'aci\'oban\ teljes\"ul),\ ott\ a$ következmény is igaz. A többi interpretációban a következmény bármilyen igazságértékű lehet. A tétel alapján is látható, hogy helyes a következtetési séma, mivel $\alpha \to \beta$ tautológia.

(b) Modus tollens $\{A \to B, \neg B\} \models \neg A$

	A	B	$\neg B$	$A \to B$	$\alpha = (A \to B) \land \neg B$	$\beta = \neg A$	$\alpha \to \beta$
	h	h	i	i	i	i	i
.	h	i	h	i	h	i	i
	i	h	i	h	h	h	i
	i	i	h	i	h	h	i

A feltételek együttesen csak az első interpretációban igazak. Ebben az interpretációban a következtetés is igaz, ezért helyes a következtetési séma. A tétel alapján is belátható, hogy helyes a következtetés, $mivel \ \alpha \rightarrow \beta \ tautológia \ (Minden \ interpretációban \ igaz).$

(c) Diszjunktív szillogizmus $\{A \lor B, \neg A\} \models B$

	A	$\beta = B$	$\neg A$	$A \lor B$	$\alpha = (A \vee B) \wedge \neg A$	$\alpha \to \beta$			
	h	h	i	h	h	i			
Megoldás.	h	i	i	i	i	i			
	i	h	h	i	h	i			
	i	i	h	i	h	i			
A feltételek együttesen csak a második interpretációban igazak. Ekkor a következmény is igaz, tehát									
analáhan halan	00 0	laänotlaart	atáni a	óm a Fa	a tampelt total accoming	ia +aliaaii1	minula B tantalágia		

valóban helyes a következtetési séma. Ez a tanult tétel szerint is teljesül, mivel $\alpha \to \beta$ tautológia.

(d) Hipotetikus szillogizmus $\{A \to B, B \to C\} \models A \to C$

Megoldás. Észrevétel: az implikáció tranzitív)

_	•			-		,	
A	B	C	$A \rightarrow B$	$B \to C$	α	$\beta = A \to C$	$\alpha \to \beta$
h	h	h	i	i	i	i	i
h	h	i	i	i	i	i	i
h	i	h	i	h	h	i	i
h	i	i	i	i	i	i	i
i	h	h	h	i	h	h	i
i	h	i	h	i	h	i	i
i	i	h	i	h	h	h	i
i	i	i	i	i	i	i	i

Ahol a feltételek együttesen (α) igazak (a négy aranyos sor), ott a következmény (β) is igaz, és az $\alpha \to \beta$ formula tautológia, tehát valóban helyes a következtetési séma.

(e) Konstruktív dilemma $\{A \vee B, A \to C, B \to D\} \models C \vee D$

	A	B	C	D	$A \vee B$	$A \to C$	$B \to D$	α	$\beta = C \vee D$	$\alpha \to \beta$
	h	h	h	h	h	i	i	h	h	i
	h	h	h	i	h	i	i	h	i	i
	h	h	i	h	h	i	i	h	i	i
	h	h	i	i	h	i	i	h	i	i
	h	i	h	h	i	i	h	h	h	i
	h	i	h	i	i	i	i	h	i	i
	h	i	i	h	i	i	h	h	i	i
	h	i	i	i	i	i	i	i	i	i
	i	h	h	h	i	h	i	h	h	i
	i	h	h	i	i	h	i	h	i	i
	i	h	i	h	i	i	i	i	i	i
	i	h	i	i	i	i	i	i	i	i
ſ	i	i	h	h	i	h	h	h	h	i
	i	i	h	i	i	h	i	h	i	i
	i	i	i	h	i	i	h	h	i	i
	i	i	i	i	i	i	i	i	i	i

(f) $\{\neg B, \neg C, A \rightarrow (B \lor C)\} \models \neg A$

Megoldás.

	A	В	C	$\neg A$	$\neg B$	$\neg C$	$B \vee C$	$A \to (B \lor C)$	α	$\alpha \to \beta$
	h	h	h	i	i	i	h	i	i	i
	h	h	i	i	i	h	i	i	h	i
	h	i	h	i	h	i	i	i	h	i
Megoldás.	h	i	i	i	h	h	i	i	h	i
	i	h	h	h	i	i	h	h	h	i
	i	h	i	h	i	h	i	i	h	i
	i	i	h	h	h	i	i	i	h	i
	i	i	i	h	h	h	i	i	h	i

(g) $\{A \to \neg C, \neg B \to C\} \models A \to B$

	A	B	C	$\neg B$	$\neg C$	$A \to \neg C$	$\neg B \to C$	α	$\beta = A \to B$	$\alpha \to \beta$
	h	h	h	i	i	i	h	h	i	i
	h	h	i	i	h	i	i	i	i	i
	h	i	h	h	i	i	i	i	i	i
Megoldás.	h	i	i	h	h	i	i	i	i	i
	i	h	h	i	i	i	h	h	h	i
	i	h	i	i	h	h	i	h	h	i
	i	i	h	h	i	i	i	i	i	i
	i	i	i	h	h	h	i	h	i	i

2. Bizonyítsuk be, hogy helyesek az alábbi következtetési sémák, majd a levezetések alapján adjunk meg további helyes következményeket!

(a)
$$\begin{array}{c} A \to B \\ B \to C \\ \neg (C \land D) \\ \hline A \to \neg D \end{array}$$

Megoldás. A következtetési séma pontosan akkor helyes, ha a

 $[(A \to B) \land (B \to C) \land \neg (C \land B)] \to (A \to \neg D) \ \textit{formula tautológia. Ennek tagadása:}$

$$\neg \{\neg [(A \to B) \land (B \to C) \land \neg (C \land B)] \lor (A \to \neg D)\} \equiv [(A \to B) \land (B \to C) \land \neg (C \land B)] \land \neg (A \to \neg D)\}$$

A feltételek és a következmény tagadása \land művelettel van összekapcsolva, ezért elég az egyes darabokat külön kNF alakra hozni, ezek konjunkciója lesz a felírt formula KNF alakja.

$$A \to B \equiv \neg A \lor B$$

$$B \to C \equiv \neg B \lor C$$

$$\neg (C \land B) \equiv \neg C \lor \neg D$$

$$\neg \{A \to \neg D\} \equiv A \land D$$

Rezolúció a kapott klózok alapján:

További helyes következmények például:

 $A \to C$, mivel ennek tagadása $\neg \{A \to C\} \equiv A \land \neg C$, így ekkor is szerepelnek az A és $\neg C$ klózok a rezolúcióban.

 $A \to (\neg D \lor C)$, mivel ennek tagadása $\neg \{A \to C\} \equiv A \land D \land \neg C$, így ekkor is szerepelnek az A, D és $\neg C$ klózok a rezolúcióban.

(b)
$$\begin{array}{c}
A \to \neg C \\
\neg B \to C
\end{array}$$

$$A \to B$$

Megoldás. A feltételeknek és a következmény tagadásának KNF alakja:

$$A \to \neg C \equiv \neg A \lor \neg C$$
$$\neg B \to C \equiv B \lor C$$
$$\neg \{A \to B\} \equiv A \land \neg B$$

Rezolúció a kapott klózok alapján:

További helyes következmények például:

 $A \to (B \lor C)$, mivel ennek tagadása $\neg \{A \to (B \lor C)\} \equiv A \land \neg B \land \neg C$, így ekkor is szerepelnek az A és $\neg B$ klózok a rezolúcióban.

 $A \to (B \vee \neg C)$, mivel ennek tagadása $\neg \{A \to (B \vee \neg C)\} \equiv A \wedge \neg B \wedge C$, így ekkor is szerepelnek az A és $\neg B$ klózok a rezolúcióban.

 $B \lor C$, mivel ennek tagadása $\neg \{B \lor C\} \equiv \neg B \land \neg C$, így ekkor is szerepelnek az $\neg B$ és $\neg C$ klózok a rezolúcióban.

(c)
$$\begin{array}{c}
\neg A \to (B \land C) \\
(C \land A) \to D \\
\neg B \\
\hline
\neg D \to A
\end{array}$$

Megoldás. A feltételeknek és a következmény tagadásának KNF alakja:

Rezolúció a kapott klózok alapján:

Megjegyzés: $a \neg C \lor \neg A \lor D$ és $\neg D$ klózok rezolválásával $a \neg C \lor \neg A$ klóz adódik, ebből azonban az $A \lor C$ klózzal együtt nem következik az üres klóz, mivel ezek nem egymás tagadásai.

Rezolválásukból $A \vee \neg A$ vagy $C \vee \neg C$ következik, ezek mindig igazak, így nem visznek közelebb az ellentmondáshoz.

Emiatt egy lépésben mindig csak egy literál tüntethető el.

További helyes következmények például:

A, hiszen a fenti megoldásban ennek alkalmazása is elegendő volt.

 $A \to \neg B$, mivel ennek tagadása $A \wedge B$, ahonnan a korábbi lépésekhez hasonlóan, vagy a B és a feltételekből adódó $\neg B$ klózból egy lépésben következik az üres klóz.

$$(d) \quad \begin{array}{c} A \to (B \land C) \\ \neg B \lor \neg C \\ \hline \neg A \end{array}$$

Megoldás. A feltételeknek és a következmény tagadásának KNF alakja:

$$\begin{array}{l} A \rightarrow (B \wedge C) \equiv \neg A \vee (B \wedge C) \equiv (\neg A \vee B) \wedge (\neg A \vee C) \\ \neg B \vee \neg C \\ \hline \neg \{\neg A\} \equiv A \end{array}$$

Rezolúció a kapott klózok alapján:

További helyes következmények például:

 $A \rightarrow B$, mivel ennek tagadása $A \land \neg B$

 $A \rightarrow \neg C$, mivel ennek tagadása $A \wedge C$

Mindkét esetben a fentihez hasonlóan két lépésben következik az ellentmondás.

- 3. Bizonyítsa be rezolúció segítségével, hogy az első három állítás nulladrendű logikai következménye a negyedik állítás:
 - Ha nem tanulok, nem sikerül jól a zh-m.
 - Nem tudok egyszerre tanulni és bulizni is.
 - Elmehetek rakodómunkásnak, ha nem sikerül a zh-m.
 - Nem bulizok, vagy rakodómunkásnak állok.

Megoldás. A formalizálás során használt ítéletváltozók:

T: tanulok, S: jól sikerül a zh, B: bulizok, R: elmegyek rakodómunkásnak.

$$\neg T \to \neg S
 \neg (T \land B)
 \neg S \to R
 \neg B \lor R$$

A feltételeknek és a következmény tagadásának KNF alakja:

$$T \vee \neg S$$

$$\neg T \vee \neg B$$

$$S \vee R$$

$$R \wedge \neg R$$

Rezolúció a kapott klózok alapján:

- 4. Nulladrendű logikai rezolúció segítségével igazolja, hogy az első négy állítás következménye az ötödik.
 - Ha a virágok korán nyílnak, nem lesz probléma az idei mézterméssel.
 - Ha a méhek nem porozzák be a virágokat, akkor probléma lesz az idei mézterméssel.
 - Egyszerre nem tudják a méhek beporozni a virágokat és elrepülni délre.
 - A virágok korán nyílnak
 - A méhek nem repülnek délre.

Megoldás. A formalizálás során használt ítéletváltozók:

K: a virágok korán nyílnak, P: probléma lesz az idei mézterméssel, B: a méhek beporozzák a virágokat, D: a méhek délre repülnek.

$$K \to \neg P$$

$$\neg B \to P)$$

$$\neg (B \land D)$$

$$K$$

$$\neg D$$

 $A\ felt\'eteleknek\ \'es\ a\ k\"ovetkezm\'eny\ tagad\'as\'anak\ KNF\ alakja:$

Rezolúció a kapott klózok alapján:

5. Ha Gandalf a hegyeket választja, akkor nem jut át a túloldalra. Ha Mória bányáit választja, akkor sem jut át a túloldalra. De tegyük fel, hogy Gandalf végül mégis átjutott a túloldalra. Ezek szerint ebben a történetben Gandalf nem a hegyeket és nem is a bányákat választotta. Igaz ez?

Megoldás. A formalizálás során használt ítéletváltozók:

H: hegyeket választja, A: átjut a túloldalra, M: Mória bányáit választja

$$H \to \neg A$$

$$M \to \neg A$$

$$A$$

$$\neg H \land \neg M$$

A feltételeknek és a következmény tagadásának KNF alakja:

$$\neg H \lor \neg A
 \neg M \lor \neg A
 A

$$\neg \{\neg H \land \neg M\} \equiv H \lor M$$$$

Rezolúció a kapott klózok alapján:

6. Ha Bilbo elolvassa a Terms & Conditionst és jó lakomát tart, akkor elmehet egy nagy kalandra a törpökkel. Tudjuk, hogy Bilbo, mint minden hobbit, jó lakomát tartott. Igaz-e, hogy Bilbo nem olvasta el a Terms & Conditionst?

Megoldás. A megadott információk alapján a következtetés helyességét nem tudjuk eldönteni.

- 7. A dolog úgy áll állapította meg Nyuszi -, hogy be vagy szorulva.
 - Ez mind attól van jegyezte meg Micimackó kissé idegesen -, hogy ezeknek a modern lakásoknak nincs elég széles kijáratuk. A bejáratok jók, de a kijáratok nem elég szélesek.
 - (...) Akartam mondani, csak nem szeretem figyelmeztetni a vendéget, hogy **egyikünk túlságosan sokat eszik. És az az egyikünk nem én voltam**. De ezen most kár vitatkozni, elfutok Róbert Gidáért.
 - (a) Formalizáljuk Nyuszi állítását!

Megoldás. M: Micimackó túl sokat eszik, N: Nyuszi túl sokat eszik. Ekkor Nyuszi állítása:

$$(M \vee N) \wedge \neg N$$

(b) Mire célzott Nyuszi?

Megoldás. Arra, hogy Micimackó túl sokat eszik. (M)

(c) Igazoljuk, hogy az állítás, és e mögöttes tartalom ekvivalensek!

	M	N	$(M \vee N)$	\wedge	$\neg N$
	h	h	h	h	i
Megoldás.	h	i	i	h	h
	i	h	i	i	i
	i	i	i	h	h

Tehát valójában a két állítás **nem** ekvivalens. Figyeljük meg viszont, hogy minden interpretációban, ahol Nyuszi állítása igaz, igaz az is, hogy Micimackó túl sokat eszik. Vagyis az, hogy Micimackó túl sokat eszik, **logikai következménye** Nyuszi állításának.

8. Igazságtábla vizsgálatával keressünk olyan formula párokat, melyek egymás logikai következményei! (Definíció alapján)