Telemetria para monitoramento de protótipo veicular elétrico

Projeto desenvolvido para a disciplina de PIN22104 - PROJETO INTEGRADOR II

Aluno: Marcelo Miguel Cardoso Instituto Federal de Santa Catarina - Campus Florianópolis

RESUMO—O presente documento tem por objetivo descrever o desenvolvimento de um sistema de telemetria aplicável a um protótipo veicular de propulsão elétrica. Este projeto tem por objetivo a leitura de sensores para medição de grandezas elétricas e mecânicas presentes no veículo real, armazená-las e transmitilas para um dispositivo com interface para visualização dos dados. Para demostração será desenvolvido um modelo em escala do veículo real, utilizando sistema de propulsão, armazenamento de energia e comandos rádio controlados

Palavras-chave—telemetria, sensores, veicular, interface

I. Conceive

Diferentes formas de mobilidade estão se popularizando cada vez mais no cotidiano das pessoas, sendo assim, cada vez mais torna-se importante a elaboração de conceitos e de protótipos. São exemplos os veículos elétricos que por possuírem diversos benefícios em relação aos veículos a combustão tornando-se cada dia mais viáveis para inserção em massa principalmente nas zonas urbanas. Para contribuir no desenvolvimento de veículos várias universidades estão buscando pelo aperfeiçoamento da mobilidade através de protótipos veiculares.

A. A competição Shell Eco Marathon

Objetivando o desenvolvimento tecnológico e redução de impactos ambientais causados pela mobilidade, a empresa multinacional Shell promove anualmente a Shell Eco Marathon onde equipes de competição espalhadas pelo mundo competem buscando aumentar a eficiência de protótipos veiculares. Neste processo testam-se novos conceitos e aperfeiçoase o desenvolvimento de sistemas de propulsão, visando principalmente a eficiência energética. Ao elaborar esses protótipos busca-se o máximo de distância percorrida com o mínimo de consumo energético.

A Shell Eco Marathon é dividida em 2 categorias de protótipos:

- Protótipo Ultraeficiênte: Veículo de 3 ou 4 rodas pilotado por uma pessoa embarcada;
- Conceito Urban: Veículo com 4 rodas e capacidade de acomodar 2 pessoas (piloto e passageiro).

Há ainda uma subdivisão das fontes energéticas que podem ser usados nos protótipos:

- Propulsão com motor a combustão (gasolina ou álcool);
- Propulsão com motor elétrico e bateria;
- Propulsão a hidrogênio e motor elétrico.

B. Importância do sensoriamento de protótipos

Visando o aperfeiçoamento dos protótipos torna-se necessária a obtenção, transmissão e armazenamento de informações de sensores que estão envolvidos na dirigibilidade dos protótipos.

Focando em veículos propelidos por eletricidade, as variáveis mais importantes envolvidas são: Tensão instantânea da bateria, corrente instantânea de consumo, velocidade, rotação das rodas, nível de aceleração, temperatura do controlador e motor, tempo gasto e restante, entre outras.

C. Sistema de telemetria em protótipos ultraeficiêntes

Para auxiliar o aperfeiçoamento de protótipos veiculares torna-se necessária a coleta de informações envolvidas na dirigibilidade dos protótipos. Sendo assim, o projeto descrito ao longo deste texto visará detalhar sobre a implementação de um **Sistema de telemetria embarcado** com as seguintes características:

- 1) Sensores: Deverá obter variáveis provenientes de sensores dos itens presentes no carro:
 - Sensor de corrente;
 - Sensor de Tensão;
 - Sensor de rotação;
 - Sensor de nível de aceleração;
 - Sensor de pedal de freio;
 - Sensor de temperatura.
- 2) Localização: A localização é fundamental para posterior análise das variáveis obtidas pois há grande impacto perincipalmente nas curvas durante a corrida. Para isso, será utilizado um modulo GPS.
- 3) Transmissão sem fio: Para a transmissão destas informações em tempo real, será usado um transmissor presente no protótipo, e um receptor presente no box. Responsáveis pela telemetria estarão analisando os dados recebidos e informando ao piloto no protótipo sobre eventuais estratégias de pista, visando cumprir o objetivo.
- 4) Armazenamento de dados: Para posterior análise, visto que a competição permite 4 tentativas e ainda volta teste, é de fundamental importância percorrer a pista e coletar informações para analisar e planejar novas estratégias tanto para próximas tentativas como para futuras inovações no protótipo.

5) Apresentações de dados para o piloto: Algumas informações são importantes que o piloto tenha acesso durante a corrida, tais como velocidade, tempo gasto, tempo restante, nível de bateria, alertas, entre outros.

D. Bancada de testes do sistema de telemetria

Para realizar os testes do sistema de telemetria será necessário aplicar em um protótipo semelhante ao que será utilizado na prática. Devido à dificuldade para utilizar no protótipo veicular real, será construído um modelo em escala do protótipo veicular com redução nas dimensões em cerca de 4 para 1. Dessa forma espera-se obter as informações envolvidas, espaço necessário e viabilidade de demonstração do funcionamento do sistema. Após ser feita a validação do projeto o mesmo será transferido para o protótipo real.

- 1) Modelo em escala do protótipo veicular: Algumas características ainda estão por definir mas a principio pretende-se utilizar dos seguintes recursos:
 - Carcaça feita em fibra de vidro;
 - Controlador do motor idêntico ao real;
 - Direção em escala com servo motor para esterçamento;
 - Bateria com capacidade reduzida para acomodar na escala;
 - Motor reduzido para compatibilizar com a escala;
 - Controle remoto com capacidade de simulação de piloto internamente ao veículo;

Uma observação importante é que a bancada de testes será capaz de alterar as variáveis simulando a presença do piloto interno ao modelo em escala e esse sistema será isolado do sistema de telemetria a ser testado, apenas compartilhando a mesma bateria, dessa forma o projeto estará de acordo com o regulamento da competição. O controle remoto atuará nas seguintes variáveis simulando um piloto:

- Direção;
- Freios;
- Acelerador.

Assim, o sistema de controle remoto não influenciará diretamente nos sensores, e sim apenas no veículo que será então sensoreado.