Elliptic Calabi-Yau manifolds with the largest $h^{1,1}$

Yi-Nan Wang

University of Oxford

StringPheno Series, Online Feb 9th, 2021

Papers Mentioned

- YNW, On the Elliptic Calabi-Yau Fourfold with Maximal h^{1,1}, (2001.07258)
- Tian, YNW, Elliptic Calabi-Yau fivefolds and 2d (0,2) F-theory landscape, (2009.10668)

Calabi-Yau manifolds with extremal $h^{1,1}$

ullet Mathematical question: given any compact irreducible d-dimensional Calabi-Yau manifold X_d ($d \geq 3$), what is the value of

$$H_d = \max(h^{1,1}(X_d)) \tag{1}$$

- In physics, consider various string/M-theory on X_d with the maximal $h^{1,1}(X_d)$, give rise to the (currently known) largest number of fields coupled to supergravity in a specific dimension.
- (1) M-theory on the CY3 with maximal $\it h^{1,1}$: largest number of vector multiplets in 5d N=1 SUGRA landscape
- (2) F-theory on the elliptic CY3 with maximal $h^{1,1}$: largest number of tensor and vector multiplets in 6d (1,0) SUGRA landscape
- (3) F-theory on the elliptic CY4 with maximal $h^{1,1}$: largest number of axion scalars and vector multiplets in 4d $\mathcal{N}=1$ SUGRA landscape

Elliptic Calabi-Yau manifolds

- ullet It is conjectured that most of Calabi-Yau manifolds with a moderately large $h^{1,1}$ is elliptic.
- CY3 case
- (1) CICY: over 99% has elliptic structure (Anderson, Gao, Gray, Lee 16' 17')(Anderson, Gray, Hammack 18')
- (2) Batyrev construction from reflexive polytopes: (Huang Taylor 19') All CY3s with $h^{1,1} \geq 195$ or $h^{2,1} \geq 228$ has an elliptic fibration The fraction of polytopes without a toric fibration structure scales as $0.1 \times 2^{5-h^{1,1}}$ for $h^{1,1} \lesssim 20$
- Maximal $h^{1,1}$ for elliptic CY = maximal $h^{1,1}$ for CY?
- ullet Not much is known about CY4 or higher cases. Nonetheless, has interesting F-theory applications if an elliptic structure exists on X_d .

Calabi-Yau manifolds with extremal Hodge numbers

- The maximal known $h^{1,1}$ for X_d : Klemm-Lian-Roan-Yau 97'.
- Define a sequence of integers:

$$m_0 = 1 , m_{k+1} = m_k(m_k + 1).$$
 (2)

• The first a few m_i are

$$m_1 = 2$$
, $m_2 = 6$, $m_3 = 42$, $m_4 = 1806$, $m_5 = 3263442$. (3)

- We define a reflexive polytope Δ_{d+1}^* associated to a (d+1)-dimensional weighted projective space $\mathbb{P}^{1,1,d_1,d_2,\ldots,d_d}$.
- The weights are computed as:

$$d_1 = 2 \cdot m_{d-1}, \ d_2 = (2+d_1) \cdot m_{d-2}, \ d_{k+1} = \left(2 + \sum_{i=1}^k d_i\right) \cdot m_{d-k-1}.$$
 (4)

Calabi-Yau manifolds with extremal Hodge numbers

ullet After an $SL(d+1,\mathbb{Z})$ rotation, the ambient space has the vertices

$$(\vec{0}_{d-1}, 0, 1)$$

$$(\vec{0}_{d-1}, 1, 0)$$

$$(v_i^*, -2, -3) \quad (i = 1, ..., d)$$
(5)

- A $\mathbb{P}^{2,3,1}$ fibration over (d-1)-dimensional base B_{d-1}^* with vertices v_i^* .
- The Calabi-Yau hypersurface X_d^* is an elliptic fibration over B_{d-1}^* , with extremal $h^{d-1,1}$.
- (1) d = 3: $(h^{1,1}, h^{2,1}) = (11, 491)$
- (2) d = 4: $(h^{1,1}, h^{2,1}, h^{3,1}) = (252, 0, 303148)$
- (3) d = 5:

$$(h^{1,1}, h^{2,1}, h^{3,1}, h^{4,1}, h^{2,2}) = (151701, 0, 0, 247538602581, 758522)$$
(Tian

YNW 20')

• Hodge numbers can be computed by Landau-Ginzburg methods. (Vafa 89')

Calabi-Yau manifolds with extremal Hodge numbers

• As Δ_{d+1}^* is reflexive, the Calabi-Yau hypersurface X_d of its dual polytope Δ_{d+1} gives the extremal $h^{1,1}$ (mirror symmetry)

$$H_3 = 491$$
 $H_4 = 303148$ (6)
 $H_5 = 247538602581$.

ullet Δ_{d+1} can be rotated into the form of $\mathbb{P}^{2,3,1}$ fibration as well:

$$(\vec{0}_{d-1}, 0, 1)$$

 $(\vec{0}_{d-1}, 1, 0)$
 $(v_i, -2, -3)$ $(i = 1, \dots, d)$ (7)

- Hence X_d is an elliptic fibration over the base manifold B_{d-1} with toric vertices v_i .
- The monomials in the Tate model correspond to points in Δ_{d+1}^* , and we can read off the F-theory gauge group over each v_{i-1} and v_{i-1} and v_{i-1} are v_{i-1} are v_{i-1} and v_{i-1} are v_{i-1} are v_{i-1} and v_{i-1} are v_{i-1} and v_{i-1} are v_{i-1} are v_{i-1} and v_{i-1} are v_{i-1} and v_{i-1} are v_{i-1} and v_{i-1} are v_{i-1} are v_{i-1} and v_{i-1} are v_{i-1} are

CY3 with largest $h^{1,1}$

- $X_3:(h^{1,1},h^{2,1})=(491,11)$
- A generic elliptic fibration over base B_2 (Morrison, Taylor 12')(Taylor 12')
- The construction of B₂
- (1) start from a toric base with cyclic representation

$$(-12//-11//(-12//)^{13},-11//-12,0).$$
 (8)

$$//\equiv -1, -2, -2, -3, -1, -5, -1, -3, -2, -2, -1.$$
 (9)

- (2) Blow up the two (-11)-curves at generic point to remove cod-2 (4,6) points. B_2 is no longer toric.
- In the known 6d (1,0) landscape, this F-theory model has the largest
- (1) T = 193
- (2) rk(G) = 296, $G = E_8^{17} \times F_4^{16} \times (G_2 \times SU(2))^{32}$.

CY4 with largest $h^{1,1}$

- $X_4:(h^{1,1},h^{2,1},h^{3,1})=(303148,0,252)$
- A generic elliptic fibration over base B₃ (Wang 20')
- The construction of B₃
- (1) construct a non-compact toric threefold B_{E_8} given by the following 3d polytope:

- After triangulation, the toric fan has 5016 3d cones, 7576 2d cones and 2561 rays
- Tune an E_8 on each of these rays!

CY4 with largest $h^{1,1}$

(2) blow up the 5016 (E_8 , E_8 , E_8) non-minimal loci and 7576 (E_8 , E_8) non-minimal loci.

- (3) Blow up 619 non-toric cod-2 (4,6) curves on divisors that support E_8
- (4) add two more rays into B_{E_8} to make it compact

CY4 with largest $h^{1,1}$

- ullet In the known 4d $\mathcal{N}=1$ landscape, the F-theory model has the largest
- (1) $G = E_8^{2561} \times F_4^{7576} \times G_2^{20168} \times SU(2)^{30200}$ (Candelas, Perevalov, Rajesh 97')
- (2) $N_{\text{axion}} = h^{1,1}(B_3) + 1 = 181820$
- Comments on moduli stabilization:

$$\frac{\chi(X_4)}{24} \approx 75000 \gg h^{3,1}(X_4) = 252, \tag{10}$$

exceeds the bound in (Bena, Blåbäck, Graña, Lüst 20')

- Complex structure moduli can be stabilized
- Kähler moduli stabilization? As most of the divisors come from blow-ups, one expects most of the Kähler moduli can be stabilized (Halverson, Plesser, Ruehle, Tian 19')
- Construct models with a standard model sector in this regime, such that all the moduli can be stabilized?

CY5 and 2d F-theory

- ullet F-theory on elliptic CY5 ightarrow 2d (0,2) SUGRA (Weigand, Schafer-Nameki
- 16')(Lawrie, Schafer-Nameki, Weigand 16')(Weigand, Xu 18')
- ullet M-theory on CY5 ightarrow 1d $\mathcal{N}=2$ SQM (Haupt, Lukas, Stelle 09')
- Why study 2d F-theory?
- (1) Gravitational anomaly can be checked
- (2) Potential relation to other 2d theories like GLSM
- The supermultiplet structure of 2d (0,2) theory:
- (1) Vector multiplet: (A_{μ}, η_{-}, D)
- (2) Chiral multiplet: (φ, χ_+)
- (3) Fermi multiplet: (ρ_-, G)
- (4) Tensor multiplet: (ϕ, ψ_{-})
- (5) Supergravity multiplet
- Rank of gauge group = $h^{1,1}(X_5) h^{1,1}(B_4) 1$.

CY5 with largest $h^{1,1}$

- $(h^{1,1}, h^{2,1}, h^{3,1}, h^{4,1}) = (247538602581, 0, 0, 151701)$
- Generic fibration over B_4 , constructed as:
- (1) Start with a (non-compact) toric fourfold, triangulate it

- (2) Tune an E_8 on each toric divisor
- (3) Blow up all the (E_8, E_8, E_8, E_8) , (E_8, E_8, E_8) , (E_8, E_8) collisions

CY5 with largest $h^{1,1}$

New cod-4 blow up:

- (4) Blow up 167873112 non-toric cod-2 (4,6) loci on E_8 divisors
- (5) Add three toric rays back in to make B_4 compact.
- $h^{1,1}(B_4) = 181299558192$
- $G = E_8^{482632421} \times F_4^{3224195728} \times G_2^{11927989964} \times SU(2)^{25625222180}$

A list of elliptic CY5s

ullet We studied the CY5 hypersurfaces of reflexive $\mathbb{P}^{1,d_1,d_2,d_3,d_4,d_5,d_6}$ with a $\mathbb{P}^{2,3,1}$ fibration structure, with degree

$$1 + d_1 + d_2 + d_3 + d_4 + d_5 + d_6 \le 150 \tag{11}$$

- A sublist of (Kreuzer, Riegler, Sahakyan 01')
- In total 140 cases, including
- (1) Smooth bases, e. g. \mathbb{P}^4
- (2) Singular bases, e. g. $\mathbb{P}^{1,1,1,1,2}$
- Checked the 2d gravitational anomaly cancellation for a number of examples without gauge group or with non-Higgsable gauge groups.

2d Gravitational anomaly cancellations

- \bullet In 2d, the anomaly polynomial is a 4-form: I_4
- While Green-Schwarz mechanism can be used to cancel the gauge anomaly, the pure gravitational anomaly needs to be cancelled by itself (Lawrie, Schafer-Nameki, Weigand 16')(Weigand, Xu 18')

$$I_{4,\text{grav}} = \frac{1}{24} \rho_1(T) (A_{\text{moduli}} + A_{\text{universal}} + A_{3-7} + A_{7-7})$$
 (12)

(1) $\mathcal{A}_{\mathrm{moduli}}$: bulk moduli fields

2d multiplet	Multiplicity
Vector	$h^{1,1}(X_5) - h^{1,1}(B_4) - 1$
Chiral	$h^{2,1}(X_5) + h^{4,1}(X_5) - (-h^{1,1}(B_4) + h^{2,1}(B_4) - h^{3,1}(B_4)) - 1$
Fermi	$h^{2,1}(B_4) - h^{3,1}(B_4) + h^{3,1}(X_5)$
Tensor	$ au(B_4)$

- Chiral multiplet has +1 contribution
- Vector, Fermi and tensor multiplets have (-1) contribution

$$A_{\text{moduli}} = -\tau(B_4) + \chi_1(X_5) - 2\chi_1(B_4)$$
 (13)

2d Gravitational anomaly cancellations

- (2) $A_{\rm universal} = 24$: contribution from the single gravity mutiplet
- (3) A_{3-7} : contribution from supermultiplets in the 3-7 sector:

In 2d F-theory, there are forced D3-branes wrapping 2-cycle C on B_4 :

$$C = \frac{1}{24}\pi_* c_4(X_5) - \frac{1}{2}\pi_* (G_4 \cdot G_4)$$
 (14)

Multiplet	Multiplicity
Chiral	$h^0(C, N_{C/B_4}) + g(C) - 1 + c_1(B_4) \cdot C$
Fermi	$h^0(C, N_{C/B_4}) + g(C) - 1 + 7c_1(B_4) \cdot C$

$$A_{3-7} = -6c_1(B_4) \cdot C|_{B_4} \tag{15}$$

(4) A_{7-7} : contribution from the 7-7 sector

$$\mathcal{A}_{7-7} = \sum_{R} \dim(R) \chi(R) - \text{rk}(G) \chi(\text{adj})$$
 (16)

• For non-Higgsable gauge groups, $\chi(\text{adj}) = -\frac{1}{24} \int_S c_1(S) c_2(S)$.

Examples

- 6d ambient space: $\mathbb{P}^{1,1,1,1,n,2n+8,3n+12}$
- For $n \ge 4$, the base is "generalized Hirzebruch fourfold" $B_{n,4}$, analogous to Hirzebruch surfaces \mathbb{F}_n in 6d F-theory

Examples

Base	G_{nH}	$\chi_1(X_5)$	$\xi_1(B_4)$	$\tau(B_4)$	$A_{grav 3-7}$	$\mathcal{A}_{grav 7 ext{-}7}$
B _{4,4}	-	93 188	-2	0	-93 216	0
B _{6,4}	<i>SU</i> (3)	151 466	-2	0	-151488	-6
B _{8,4}	<i>SO</i> (8)	235 292	-2	0	-235 296	-24
B _{12,4}	E_6	494 924	-2	0	-494 880	-72
B _{24,4}	E ₈	2 314 868	-2	0	-2314656	-240

- ullet Gravitational anomaly is cancelled, independent of G_4 flux choice!
- ullet In fact, these holds for any vertical flux $G_4 \in H^{2,2}_V(X_5)$ that
- (1) Satisfies transversality conditions:

$$\int G_4 \wedge S_0 \wedge \omega_4 = 0, \ \int G_4 \wedge \omega_6 = 0, \ \forall \omega_4 \in H^4(B_4), \ \omega_6 \in H^6(B_4).$$
(17)

(2) Does not break gauge groups

$$\int G_4 \wedge E_i \wedge \omega_4 = 0, \ \forall \omega_4 \in H^4(B_4). \tag{18}$$

Singular bases

- Consider $B_4 = \mathbb{P}^{1,1,1,1,n}$, has a $\mathbb{C}^4/\mathbb{Z}_n$ orbifold singularity.
- The hyperplane class *H* has the self-intersection number

$$H^4 = \frac{1}{n}.\tag{19}$$

The various Chern classes of $\mathbb{P}^{1,1,1,1,n}$ are

$$c_{1} = (n+4)H$$

$$c_{2} = (4n+6)H^{2}$$

$$c_{3} = (6n+4)H^{3}$$

$$c_{4} = 4 + \frac{1}{n}.$$
(20)

• In this case, $\tau(B_4)$ and $\chi_1(B_4)$ are still well-defined: (Maxim, Schürmann 15')

$$\tau(\mathbb{P}^{1,1,1,1,n}) = 1$$

$$\chi_1(\mathbb{P}^{1,1,1,1,n}) = -1.$$
(21)

Singular bases

 \bullet The total gravitational anomaly I_4 does not cancel, needs to add a new contribution from the base singularity:

\mathbb{Z}_n	$\mathcal{A}_{ ext{orbifold}}$
\mathbb{Z}_2	-1
\mathbb{Z}_3	1
\mathbb{Z}_4	3
\mathbb{Z}_6	9
\mathbb{Z}_8	15
\mathbb{Z}_{12}	27
\mathbb{Z}_{24}	63

• What is the physical origin? localized 2d (0,2) SCFT?