Introduction to Exploration in Reinforcement Learning

CS 234 Recitation

What is Exploration in Reinforcement Learning?

Machine Learning

(Learning from data)

Data are given

Reinforcement Learning

(Learning to make good sequences of decisions)

Data are collected by interacting with the world

Why do we need Efficient Exploration?

Some RL successes are impressive, but...

...need a lot of data

...require extensive fine tuning

Exploration:

Learn efficiently and reliably

Why is Exploration Hard in RL?

Design of Experiments

Goal of Reinforcement Learning:

Cumulate as much 'reward' as possible while interacting with the system...

...while learning how the world works!

Why is Exploration Hard?

Pure Exploitation: always play best known action / policy

=> stuck in suboptimal polices forever

Pure Exploration: keep exploring indefinitely

=> never uses knowledge to accumulate reward

Need to balance exploration with exploitation

Performance Measure: Regret

Performance Measure: Regret

Regret: sum of losses compared to optimal policies

Remark: algorithm is being evaluated while learning

minimize Regret = maximize sum of Rewards

$$\min_{\pi} \left(Regret(T) \right) = \max_{\pi} \left(\mathbb{E}_{\pi} \sum_{t=1}^{I} r_{t} \right)$$

Ex I: Union Bound

CS 234: Assignment #3

2 Best Arm Identification in Multiarmed Bandit (35pts)

In this problem we focus on the Bandit setting with rewards bounded in [0,1]. A Bandit problem instance is defined as an MDP with just one state and action set \mathcal{A} . Since there is only one state, a "policy" consists of the choice of a single action: there are exactly $A = |\mathcal{A}|$ different deterministic policies. Your goal is to design a simple algorithm to identify a near-optimal arm with high probability.

Imagine we have n samples of a random variable x, $\{x_1, \ldots, x_n\}$. We recall Hoeffding's inequality below, where \overline{x} is the expected value of a random variable x, $\widehat{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ is the sample mean (under the assumption that the random variables are in the interval [0,1]), n is the number of samples and $\delta > 0$ is a scalar:

$$\Pr\left(|\widehat{x} - \overline{x}| > \sqrt{\frac{\log(2/\delta)}{2n}}\right) < \delta.$$

Assuming that the rewards are bounded in [0,1], we propose this simple strategy: allocate an identical number of samples $n_1 = n_2 = ... = n_A = n_{des}$ to every action, compute the average reward (empirical payout) of each arm $\hat{r}_{a_1}, \ldots, \hat{r}_{a_A}$ and return the action with the highest empirical payout arg $\max_a \hat{r}_a$. The purpose of this exercise is to study the number of samples required to output an arm that is at least ϵ -optimal with high probability. Intuitively, as n_{des} increases the empirical payout \hat{r}_a converges to its expected value \bar{r}_a for every action a, and so choosing the arm with the highest empirical payout \hat{r}_a corresponds to approximately choosing the arm with the highest expected payout \bar{r}_a .

(a) (15 pts) We start by defining a good event. Under this good event, the empirical payout of each arm is not too far from its expected value. Starting from Hoeffding inequality with n_{des} samples allocated to every action show that:

$$\Pr\left(\exists a \in \mathcal{A} \quad s.t. \quad |\widehat{r}_a - \overline{r}_a| > \sqrt{\frac{\log(2/\delta)}{2n_{des}}}\right) < A\delta.$$

In other words, the *bad event* is that at least one arm has an empirical mean that differs significantly from its expected value and this has probability at most $A\delta$.

More interesting algorithm: Identify near optimal arm with random stopping time

(a) (15 pts) We start by defining a good event. Under this good event, the empirical payout of each arm is not too far from its expected value at a random stopping time T. Starting from Hoeffding inequality with n_{des} samples allocated to every action find x such that:

$$\Pr\left(\exists a \in \mathcal{A} \quad s.t. \quad |\widehat{r}_a - \overline{r}_a| > \sqrt{\frac{\log(2x/\delta)}{2n_{des}}}\right) < \delta.$$

for the random stopping time n_{des} .

Solution

$$\begin{split} & \Pr \left(\exists a \in \mathcal{A} \quad s.t. \quad | \ \widehat{r}_a - \overline{r}_a | > \sqrt{\frac{\log(2x/\delta)}{2n_{des}}} \right) \\ & \leq \Pr \left(\bigcup_{a \in \mathcal{A}} \bigcup_{n} \quad s.t. \quad | \ \widehat{r}_a - \overline{r}_a | > \sqrt{\frac{\log(2x/\delta)}{2n}} \right) \\ & \leq \Pr \left(\bigcup_{a \in \mathcal{A}} \bigcup_{n} \quad s.t. \quad | \ \widehat{r}_a - \overline{r}_a | > \sqrt{\frac{\log(2x/\delta)}{2n}} \right) \\ & \leq \sum_{a \in \mathcal{A}} \sum_{n=1}^{\infty} \Pr \left(\quad | \ \widehat{r}_a - \overline{r}_a | > \sqrt{\frac{\log(2x/\delta)}{2n}} \right) \\ & \leq \sum_{a \in \mathcal{A}} \sum_{n=1}^{\infty} \frac{\delta}{x} \quad \leq \sum_{a \in \mathcal{A}} \sum_{n=1}^{\infty} \frac{\delta}{cAn^2} = \frac{\pi^2}{6} \frac{1}{c} \delta \leq \delta \,. \end{split}$$

Posterior Sampling

- 1: Initialize prior over each arm a, $p(\mathcal{R}_a)$
- 2: **loop**
- 3: For each arm a sample a reward distribution \mathcal{R}_a from posterior
- 4: Compute action-value function $Q(a)=\mathbb{E}[\mathcal{R}_a]$
- 5: $a_t = \arg\max_{a \in \mathcal{A}} Q(a) \subset$
- 6: Observe reward *r*
- 7: Update posterior $p(\mathcal{R}_a|r)$ using Bayes law
- 8: end loop

Example II: Posterior Sampling

$$\sigma_1 = \sigma_2 = \dots = \sigma$$

Assumption: Known Variance

Assume
$$x \mid \mu \sim \mathcal{N}(\mu, \sigma^2)$$
 and $\mu \sim \mathcal{N}(\mu_0, \sigma_0^2)$. Then:
$$\mu \mid x \sim \mathcal{N}\left(\frac{\sigma_0^2}{\sigma^2 + \sigma_0^2} x + \frac{\sigma^2}{\sigma^2 + \sigma_0^2} \mu_0, \left(\frac{1}{\sigma_0^2} + \frac{1}{\sigma^2}\right)^{-1}\right)$$

Example II: Posterior Sampling

Can compute the posterior in closed form in few cases only

Normal-gamma distribution

From Wikipedia, the free encyclopedia

In probability theory and statistics, the normal-gamma distribution (or Gaussian-gamma distribution) is a bivariate four-parameter family of continuous probability distributions. It is the conjugate prior of a normal distribution with unknown mean and precision. [2]

Contents [hide] 1 Definition 2 Properties 2.1 Probability density function 2.2 Marginal distributions 2.3 Exponential family 2.4 Moments of the natural statistics 2.5 Scaling 3 Posterior distribution of the parameters 3.1 Interpretation of parameters 4 Generating normal-gamma random variates 5 Related distributions 6 Notes

normal-gamma		
Parameters	μ location (real)	
	$\lambda>0$ (real)	
	lpha>0 (real)	
	eta>0 (real)	
Support	$x\in (-\infty,\infty),\; au\in (0,\infty)$	
PDF	$f(x, au\mid \mu,\lambda,lpha,eta) = rac{eta^lpha\sqrt{\lambda}}{\Gamma(lpha)\sqrt{2\pi}} au^{lpha-rac{1}{2}}\epsilon^{lpha}$	$e^{-eta^{\prime}}$
Mean	[1] $\mathrm{E}(X) = \mu, \mathrm{E}(\mathrm{T}) = lpha eta^{-1}$	
Mode	$\left(\mu, \frac{\alpha - \frac{1}{2}}{\beta}\right)$	
Variance	$ ag{[1]} \operatorname{var}(X) = \Big(rac{eta}{\lambda(lpha-1)}\Big), \operatorname{var}(\mathrm{T}) = 0$	$= \alpha_{l}$

Definition [edit]

7 References

For a pair of random variables, (X,T), suppose that the conditional distribution of X given T is given by

$$X \mid T \sim N(\mu, 1/(\lambda T)),$$

meaning that the conditional distribution is a normal distribution with mean μ and precision λT — equivalently, with variance $1/(\lambda T)$.

Suppose also that the marginal distribution of *T* is given by

$$T \mid lpha, eta \sim \mathrm{Gamma}(lpha, eta),$$

where this means that T has a gamma distribution. Here λ , α and β are parameters of the joint distribution.

Then (X,T) has a normal-gamma distribution, and this is denoted by