Revisiting AR Piano Projection Chapter 0

Jordan Aiko Deja

Supervisors:

Matjaž Kljun Klen Čopič Pucihar

Hi, I'm Jordan! @jrdndj

am twitter

about me

PhD student

CS program

use AR viz to help newbies learn the

piano in a less-overwhelming way

my research (in plain english 😂)

this presentation is part of a bigger story

key takeways from this presentation..

- how to do RL surveys(or at least an idea on how to..)
- how to position your thesis (based on gaps in your findings)
- key findings on AR piano

for today 🔆

we will look at existing AR piano prototypes

in this survey 📖

review method

- **discussion**
- ? future

Preferred Reporting Items for Systematic Reviews and Meta-Analyses

database search

* remove duplicates

conference proceedings, journal articles.

"augmented reality piano", "AR piano", "augmented reality keyboard", "AR keyboard"

publication details, contributions, AR application, citation count, study design, results

disclaimer on my findings...

- too few articles reviewed
- **NEW** field is underdeveloped
- ? findings are only "indicative"

6 contribution categories

a keyboard rendered as graphics that users can "press"

a virtual character that helps the user play/learn

set of visualizations that guides users on what/when to press

design experiments and setups that evaluate usability, learning, etc

use of algorithms that track hand/finger/movement

interfaces and modes to help the users learn

M AR Keyboard

AR agent/tutor

piano roll

user studies

hand tracking

learning modes

papers across the years

Paper	Author	Year	#	KB	AT	PR	US		LM	Others
P1	Huang et al. [26]	2011	50	1				1		
P2	Nugraha et al. [41]	2014	38	1			1			
P3	Barakonyi and Schmalstieg [2]	2005	47	1	1	1			/	
P4	Chow et al. [11]	2013	45	1		1	1		1	
P5	Weing et al. [58]	2013	29			1	/	1	1	gamified viz
P6	Hackl and Anthes [23]	2017	7	1		1				
P7	Chouvatut and Jindaluang [10]	2013	8	1		1				supports PWD's
P8	Fernandez et al. [20]	2016	7		/	1				
P9	Das et al. [15]	2017	5	1	1	1			/	lesson builder
P10	Claudia et al. [13]	2017	0			1				
P11	Trujano et al. [56]	2018	4	1		1				
P12	Kerdvibulvech [27]	2017	4	1			/	1		users gesture on air
P13	Oka and Hashimoto [42]	2013	27					1		piano fingering
P14	Liang et al. [34]	2016	20	1				/		
P15	Schmalstieg and Wagner [51]	2007	268			1	1			
P16	Correa et al. [14]	2009	63	1		1	/			patients w/ cerebral palsy
P17	Xiao et al. [64]	2014	28		1	/			/	
P18	Takegawa et al. [53]	2012	26			1	/		/	
P19	Xiao and Ishii [62]	2011	31		/	/	/			3 unique interfaces
P20	Xiao et al. [61]	2013	17		/	0.000	1			, ,
P21	Li [33]	2018	1	1			/			
P22	Zagout et al. [68]	2015	1	1						
P23	Leonard et al. [31]	2013	9	1			/			
P24	Raymaekers et al. [45]	2014	14	77/		1	/		/	shooting game
P25	Rogers et al. [47]	2017	42			1	1		1	
P26	Birhanu and Rank [5]	2017	2				•			
P27	Sun and Chiang [52]	2018	3	1		1	/			one and two hand modes
P28	Goodwin and Green [22]	2013	10		/	1	2557			one and the name modes
P29	Zeng et al. [69]	2019	2		•	10.50				used ar markers
P30	De Pra et al. [16]	2014	6	/				/		magnetic glove
P31	Molloy et al. [39]	2019	1			/	/	1,000		cognitive load, motivation
P32	Cai et al. [9]	2019	1			1	•		-	formal & competition mode
P33	Gerry et al. [21]	2019	2		/	1		1	•	leap motion capture
P34	Zhang et al. [70]	2019	22	1		•				icap monon capture
P35	Pan et al. [43]	2010	2	1			/			single & pair modes
P36	Cai et al. [43]	2019	0	•		/	٧	/		group piano
P37	Sandnes and Eika [49]	2019	0			1		•		group plano
P38	Kim et al. [28]	2019	11	1		1	/			
P38 P39	Xiao and Ishii [63]		7	•		1	-/			practice modes
		2011			,	1	V		1	- A
P40	Xu and Huisman [65]	2019	0	480	/		48.0	000	/	self reflection
			$\bar{x} = 21$	47%	22%	67%	45%	20%	32%	

Contribution types per year

. ,	med.=8.5	\bar{x} =14.19			
[63]	3	ex, ob	Im, Us	SSI	epityte = 1,5 e en 1,5 e • € en en e _s te = 1,5 e e e
[28]	_*	ex, md	FI, Op	REC	*n not reported
[43]	13	pl, pr	Sc, Sk	OEQ, PSP, SMQ, SSI	3000 F-070
[39]	23	pl	At, Im, Mo, Us	OEQ, QUE*, SSI	*SUS [32]
[52]	20	ex, pc, pl	Sc, Sk, Us, TI	PSP, TTM	
[47]	74*	pc, pl, pr	At, CL, Sa, Sk, Us, TI	QUE†	$n_1=56, n_2=18, \dagger [19, 25, 29, 60]$
[45]	-*	ex, pl, pr	At, Sa, Us	OEQ, REC	*open demo UT
[31]	20	ex, pr	Op, Sa, Sk	OEQ, TTM	
[33]	17	ex, ob	Mo, Op	QUE*	*instrument from [71]
[61]	15	ob	Im, Op, Us	SMQ, SSI	20 92
[62]	5	pc, pl*	Im, Op	PSP, REC, SSI, TTM	*improvise a piece
[53]	9	pl, pr	FI, No, Sc, TI	PSP, SSI, TTM	
[14]	1	ex, qu	Op, Us*	REC, TTM	*patient motor effects
[51]	6	pl, qu	Sa, TI	PSP, SSI, TTM	
[27]	1	pl	Sc, TI	TTM	
[58]	5	ex, pr	CL, FI, No, Sa	SMQ	
[11]	7	pl	Sa, Us	OEQ	

Tools

SMQ

Notes

Metrics or constructs

At, Op, Us

Ref.

[41]

Size (n)

8

Treatment

md, pc

Treatment Legend: ex= free usage and exploration modes; md= marker detection; ob= observation of prototype usage; pc= play piano chords on the piano; pl= play a piece in the piano; pr= practice the piano; qu= complete quest in a game or gamified interface. Metrics Legend: At= attractiveness; CL= cognitive load; Fl= accuracy of finger information; Im= level and quality of immersiveness; Mo= level of user motivation; No= accuracy of notation; Op= functional check of the different features of the prototype; Sa= satisfaction rating of the prototype; Sk= improvement in skill; Us= ease of use and usability; Tl= time interval and usage of the system; Sc= scoring (for gamified prototypes). Tools Legend: OEQ= open ended questionnaires; QUE= used a peer-reviewed questionnaire/instrument; PSP= player scoring plug-ins; REC= observations from recordings; SMQ= self made questionnaire; SSI= semi structured interviews; TTM= time tracking mechanisms.

MirrorFugue reflections (Xiao 2010, 2011)

piano roll projections (Takegawa, 2012)

dancing agents (Xiao, 2013)

practice, listen, play modes (Rogers, 2014)

+ cognitive load

+ SLT

Social Learning Theory (Bandura & Walter, 1977)

anime agent (Goodwin, 2013)

hand tracking in pressing an AR piano (Liang, 2016)

music everywhere-AR piano (Das, 2017)

falling keys (Trujano, 2018)

competitive mode (Cai, 2019)

motion tracking injury prevention (Sony, 2020)

others

user affect

team/collaboration

for rehab/injury prevention

recent work on spatiotemporal pointing (Park & Lee, 2020)

With moving targets

spatio

with respect to space

temporal

with respect to time

spatiotemporal

with respect to both time and space

what's lacking

- ## "preventing errors"
- modelling user movement

in summary

results of a literature review

questions and opportunities for future work

Jordan says thank you!

jordan.deja@famnit.upr.si

ajrdndj