Universidade Federal do Espírito Santo Departamento de Informática Profa. Claudine Badue Algoritmos Numéricos I

Lista de Exercícios Teóricos 1

Exercício 1 [Campos, 2007; Exercício 2.11]

Resolver o sistema abaixo pelo método da eliminação de Gauss sem pivotação parcial. Verificar também a unicidade e exatidão da solução.

$$\begin{bmatrix} 1 & 2 & 4 \\ -3 & -1 & 4 \\ 2 & 14 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 13 \\ 8 \\ 50 \end{bmatrix}$$

Exercício 2 [Campos, 2007; Exercício 2.12]

Resolver o sistema abaixo pelo método da eliminação de Gauss com pivotação parcial. Verificar também a unicidade e exatidão da solução.

$$\begin{bmatrix} -2 & 3 & 1 \\ 2 & 1 & -4 \\ 4 & 10 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -5 \\ -9 \\ 2 \end{bmatrix}$$

Exercício 3 [Campos, 2007; Exercício 2.16]

Resolver o sistema abaixo pelo método da decomposição LU com a estratégia indicada. Verificar também a unicidade e exatidão da solução.

$$\begin{bmatrix} 2 & 6 & -3 \\ 1 & 3.001 & 2 \\ 4 & -1 & 9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5 \\ 9 \\ 29 \end{bmatrix}$$

- a) Sem pivotação.
- b) Com pivotação parcial.

Exercício 4 [Campos, 2007; Exercício 2.29]

Calcular a inversa da matriz *A* pela decomposição LU com pivotação parcial, sendo

$$A = \begin{bmatrix} 1 & 6 & 4 \\ 2 & -3 & 1 \\ 5 & 5 & 8 \end{bmatrix}$$

Exercício 5 [Ruggiero e Lopes, 2009; Exemplo 3.10]

Resolva o sistema linear:

$$\begin{bmatrix} 10 & 2 & 1 \\ 1 & 5 & 1 \\ 2 & 3 & 10 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 7 \\ -8 \\ 6 \end{bmatrix}$$

pelo método de Jacobi com $x^0 = (0.7 - 1.6 \ 0.6)^T$ e $\in = 0.05$ usando os critérios de parada $\frac{\|x^k - x^{k-1}\|_{\infty}}{\|x^k\|_{\infty}} \le \in$ e $k \ge k_{\max}$.

Exercício 6 [Ruggiero e Lopes, 2009; Exercício 3.23]

 a) Usando o critério das linhas, verifique para que valores positivos de k se tem garantia de que o método de Gauss-Seidel vai gerar uma sequência convergente para a solução do sistema:

$$\begin{bmatrix} k & 3 & 1 \\ k & 10 & 1 \\ 1 & 6 & 8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

- b) Escolha o menor valor inteiro e positivo para *k* e faça duas iterações do método de Gauss-Seidel para o sistema obtido.
- c) Calcule o erro relativo cometido no item (b).

Exercício 7 [Ruggiero e Lopes, 2009; Exercício 5.1]

Dada a tabela abaixo,

х	e^x
2.4	11.02
2.6	13.46
2.8	16.44
3.0	20.08
3.2	24.53

3.4	29.96
3.6	36.59
3.8	44.70

- a) Calcule $e^{3.1}$ usando um polinômio de interpolação sobre três pontos na forma de Lagrange ou Newton.
- b) Dê um limitante para o erro cometido no item (a).

Exercício 8 [Ruggiero e Lopes, 2009; Exercício 5.9]

Construa a tabela de diferenças divididas com os dados:

X	f(x)
0.0	-2.78
0.5	-2.241
1.0	-1.65
1.5	-0.594
2.0	1.34
2.5	4.564

- a) Estime o valor de f(1.23) da melhor maneira possível usando um polinômio interpolador na forma de Lagrange ou Newton.
- b) Estime o erro cometido no item (a).
- c) Justifique o grau do polinômio que você escolheu para resolver o item (a).

Referências

- F. F. Campos. *Algoritmos Numéricos*. Livros Técnicos e Científicos, Segunda Edição, 2007.
- M. A. G. Ruggiero & V. L. da R. Lopes. *Cálculo Numérico: Aspectos Teóricos e Computacionais*. Pearson Makron Books, Segunda Edição, 2009.