Practical World of Raspberry Pi

Training Highlights:

- ➤ Learn through Practical's
- ➤ Real World Examples and Projects
- ➤ Assured Post Training Support
- > Unlimited Access to the Hardware Boards for Practical's
- > Training Tutorials & data available online

Training Modules on Raspberry-Pi

S. No.	Module Name	Duration	Price(INR)
1.	Raspberry Pi for Beginners	1 Day	500(free on purchase of RPi)
2.	Embedded Linux Porting on Raspberry Pi	2 Days	1200.00
3.	QT Embedded App Development on Raspberry Pi	2 Days	2000.00
4.	In-depth Python programming on Raspberry Pi	2 Days	2000.00
5.	The Internet of Things with Raspberry Pi	2 Days	3000.00
6.	Device driver development on Raspberry Pi	2 Days	3000.00
7.	Embedded Linux BSP BootCamp on Raspberry Pi	2 Days	5000.00

Module-1: Raspberry Pi for Beginners

Duration: 2Days Timings: 9:30 AM to 5:30 PM

SNO	Topic	Activities	
Day-1	Day-1 [Embedded Linux Intro & Board Bring-up]		
1	Introduction, Setup & Hardware	- Introduction to Raspberry-Pi & Embedded Linux	
		- ARM Processor Basics & Families	
		- Raspberry-Pi Board Details and Schematic Overview	
		- Boot Process and different stages of booting	
		- Host PC Setup for Embedded Development (Windows / Ubuntu Linux)	
	Tea Break		
2	Application Programming to access Hardware	- Flashing Images on Pi	
	peripherals	- How to transfer files to/from Board & Host PC.	
		- Programming LEDs, Relays, Switches connected to Pi	
	Lunch Break		
3	Application Programming to access Hardware	- Uart Programming to communication with serial devices like GSM / GPS / GPRS / BT)	
	peripherals	- SPI Device Programming such as SPI based ADC / RTC etc.	
		- I2C Device Programming like EEPROM / Temp Sensor etc.	
4	Embedded Projects Demos	- Video Streaming using Raspberry-Pi (Digital Signage Example)	
		- Remote device accessing (Ex. for Home Automation)	
	Tea Break		
5	Embedded Projects Demos	- How to Build IoT using Raspberry-Pi	
		- Project discussion from participants and how to implement them.	

Hardware Requirements:

- Laptop with 30GB Free Space
- Install Ubuntu 12.04 LTS and additional packages using elinux_pkg.sh
- Raspberry-Pi with all accessories (Lan cable, USB to Serial Cable, Power Supply, SD-Card, Card Reader)

Who Should Attend:

- Good C Programmers seeking career in the world of Linux.
- Working Professionals from Microcontroller background, middleware C/C++.
- Programmers from Windows OS platform interested to add/migrate to Linux and Embedded Systems
- Students seeking career in Embedded Systems & Linux domain.

Module-2: Embedded Linux Porting

Duration: 2Days Timings: 9:30 AM to 5:30 PM

SNO	Topic	Activities
Day-1	[Embedded Linux Intro & Board	Bring-up]
1	Introduction, Setup & Hardware	- Introduction to Embedded Linux
	_	- ARM Processor Basics & Families
		- ARM Board Details and Schematic Overview
		- Boot Process
		- Host PC Setup for eLinux Development
		Tea Break
2	Toolchain &	- Board Boot Options
	Hardware Practical's	- Flashing Bootloader & Linux Kernel on Board
		- Setting up TFT and Running Application on Board
		- Toolchain & its components
		- How to build toolchain
		Lunch Break
3	Bootloader U-Boot	- Introduction to Bootloader
		- Primary Bootloader (TI X-Loader)
		- Bootloader Commands and their usage
4	U-Boot Porting	- Bootloader Source Code Structure
		- Compiling Bootloader
		- How to port Bootloader on ARM Based Hardware
		- Patching Bootloader
		Tea Break
5	Customizing Bootloader	- Modifying Bootloader for new feature
		- Modifying Bootloader to support new device
		- Command Line Arguments & ATAG
		- Booting with SD Card
		- Setting up NFS Server
		- Booting with NFS Server
		- Linux Kernel Compilation

Day	Pay-1 [Embedded Linux Intro & Board Bring-up]		
1	Linux Kernel	- Introduction to Linux Kernel Arch	
		- Kernel Dir Structure	
		- Kernel Layers H/W dependent and independent (BSP)	
		- Kernel Build System (KConfig)	
2	Tea Break		
3	Kernel Porting & Compilation	- How to configure and compile for ARM Hardware	
		- Type of kernel images (vmlinux, zImage, uImage)	
		- Kernel initialization process	
		- How to port Kernel on New ARM Hardware	
4	Lunch Break		
5	Kernel Modification	- How to modify the Kernel code	
		- How to integrate new driver / module in kernel image	
		- Building static and dynamic kernel modules	
6	Root File System	- Components of RootFS	
		-Types of RootFS	
		-Different types of Flash Device (NOR / NAND)	
		- Building RootFS from scratch and using Build System (Buildroot)	
7	Tea Break		
8 Embedded Application Development - How to development		- How to develop embedded applications	
	-	- Debugging application on target using GDB	
		- Running sample Web-Server Application	
		- Using Eclipse for embedded application development	

Hardware Requirements:

- Laptop with 30GB Free Space
- Install Ubuntu 12.04 LTS and additional packages using elinux_pkg.sh
- Raspberry-Pi with all accessories (Lan cable, USB to Serial Cable, Power Supply, SD-Card, Card Reader)

Who Should Attend:

- Good C Programmers seeking career in the world of Linux.
- Working Professionals from Microcontroller background, middleware C/C++.
- Programmers from Windows OS platform interested to add/migrate to Linux and Embedded Systems
- Students seeking career in Embedded Systems & Linux domain.

Module-3: QT Embedded App Development on RaspberryPi

Duration: 2 Days Fee: INR 2000

-: Write us for more details (info@aeslab.com) :-

Module-4: In-depth Python programming on Raspberry-Pi

Duration: 2 Days INR 2000

-: Write us for more details (info@aeslab.com) :-

Module-5: The Internet Of Things with Raspberry Pi

Duration: 2 Days INR 3000

-: Write us for more details (info@aeslab.com) :-

Module-6: Device Driver Programming on Pi

Duration: 2Days Timings: 9:30 AM to 5:30 PM

Time T	opic	Activities
09:30 - 11:00	Introduction and Arch of	- Introduction to Kernel Space and User Space
	Linux Device Drivers	- Memory mgmt in Kernel
		- How to develop Kernel Device Driver
		- Layers of LDD
		- Processor Memory Layout
		- Device Register Access from Code
11:00 -11:15	Tea Break	
11:15-12:45	Kernel Module	- Kernel Module Programming
	Programming	- Module Parameters
		- Exporting Symbols between modules
12:45-13:30	Lunch Break	
13:30-14:30	Character Device Drivers	- Linux Kernel Device Driver Framework
		- Virtual File System as bridge between Driver and Application
		- Implementing basic character driver
14:30-15:30	Character Device Drivers	- Writing Makefile to compile Device driver
		- Compiling and running on X86
		- Cross Compiling and running on ARM Hardware
15:30-15:45	Tea Break	
15:45-17:30	Advance options in	- Implementing advance api like ioct in character device driver
	Character Device Drivers	- Standards to follow while implementing ioctl
		- Writing and testing LED driver with IOCTL on ARM Hardware
	,	
09:30 - 11:00	Interrupts in Device	- Interrupts in ARM Processor
	Driver	- Interrupts Mechanism in Linux Kernel
	09:30 - 11:00 11:00 -11:15 11:15-12:45 12:45-13:30 13:30-14:30 14:30-15:30 15:30-15:45 15:45-17:30	11:00 -11:15 Tea Break 11:15-12:45 Kernel Module Programming 12:45-13:30 Lunch Break 13:30-14:30 Character Device Drivers 14:30-15:30 Character Device Drivers 15:30-15:45 Tea Break 15:45-17:30 Advance options in Character Device Drivers

			- How to implement Interrupts in device driver
2	11:00 -11:15	Tea Break	
3	11:15-12:45	Interrupt Handling &	- Writing and testing Interrupt for Button press on ARM Target
		Bottom Half	- Writing and testing multiple Intterupts in single driver
			- How to implement Shared Interrupts
			- How to handle lengthy ISR using Bottom Half (Soft IRQ, Tasklet &
			Workquees)
4	12:45-13:30	Lunch Break	
5	13:30-14:30	Special File Systems	- Ram based files systems in Linux
		ProcFS & SysFS	- Using procfs for special purpose and accessing kernel data structure
			- How to implement procfs
			- Sysfs implementation in device drivers for easy application access.
6	14:30-15:30	Introduction to Block	- Introduction to block and network device drivers
		Device and Network	- Case study of Network Device Drivers
		Device Drivers	
7	15:30-15:45	Tea Break	
8	15:45-17:30	Advance Device Drivers	- MTD Subsystem for Flash Memory Devices
		and debugging	- Nand and Nor Device Drivers
			- USB Subsystem Introduction
			- How usb gadget drivers are used in Embedded Applications
			-Debugging Techniques like debugfs / target debugging

Hardware Requirements:

- Laptop with 30GB Free Space
- Install Ubuntu 12.04 LTS and additional packages using elinux_pkg.sh
- Raspberry-Pi with all accessories (Lan cable, USB to Serial Cable, Power Supply, SD-Card, Card Reader)

Who Should Attend:

- Working Professionals from Microcontroller background, middleware C/C++ to start with Linux Device driver programming.
- Programmers from Windows OS platform interested to add/migrate to Linux and Embedded Systems

Modulo 7 : Emboddod I	inux PCD on Dognhouny Di
Module-7: Embedded L	Day-2
1st Half: [Get Comfort with ARM Target Board]	1 st Half: [Kernel Deep Dive Cont HANDS-ON]
- PhyBoard-WEGA System Arch	- Walkthrough MMC domain in AM335x & its implementation
- Boot Process from PowerOn	- Lab Add SD-CARD support to Board file and enable root file
 Primary Boot Loader 	system to be mounted from SD-Card partition.
 Main Boot Loader (U-Boot / Barebox) 	
 Kernel & Root File System 	- Walkthrough GPIO's and its driver implementation
- Flashing Images using TFTP	- Lab Modify Board file to configure any pin of WEGA Board
o (BootLoader, Kernel, RFS)	and test it using Linux user application.
- Cross compile C app and Execute on Target	
	- Understanding UARTs in AM335x and its driver components
2 nd Half: [Bootloader & Kernel Deep Dive HANDS-ON]	- Lab Modify Board file to configure UART-2 & UART-3 on
- Bootloader Code Walk through	WEGA Board and test it using Linux user application.
- Basic Hardware Configuration in Bootloader	
o RAM / FLASH (NAND)	2 nd Half: [Kernel Deep Dive Cont HANDS-ON]
 Communication Ports (Serial, Ethernet) 	- Intput Subsytem in Linux
- Lab Modify/Add GPIO Driver to power LED status in	- Lab: Modify Board file to Configure Switches on WEGA board
Bootloader code and test it on Target	to generate input events & test it from user app.
- Kernel Code Walk through	- I2C Subsytem in Linux
- Kernel Modifications for basic Board Booting	- Lab: Modify Board file to add support of i2c based EEPROM
 Board File Structure & Components 	or RTC and test it using user app.
 Understanding Pin Muxing 	
 Adding devices inits in Board File 	- SPI Subsytem in Linux
 Understanding Platform data 	- Lab: Modify Board file to add SPI based External ADC device
 Adding PMIC configuration for power domains 	to WEGA Board and test it from user app.
 Modifying Voltage Regulator for different devices 	
 Adding NAND support 	- Display Sub-System in Linux
 Adding Serial Port 	- Lab: Configure the 7" LCD Display and test it using fbtest utils
 Make file modifications & Board Config file creation 	in linux.

Training Objective

- Learn Linux BSP Development from scratch and get ready for the next project engaged in Board Bring-up and BSP Development.
- Deep dive in to the Boot-loader & Kernel code to become familiar for BSP modifications.
- Make your hands dirty with Board file writing, modifying pin Muxing & device driver code.

Pre-requisites:

- Should have hands-on in board bring-up and knowledge of writing Linux Device drivers.

RaspberryPi Board:

INR 2880* /- (* Tax Extra)

Features:

- **♣**Broadcom BCM2835 SoC full HD multimedia applications processor in Chip
- **4700 MHz Low Power ARM1176JZ-F Applications Processor in CPU**
- **♣Dual Core VideoCore IV® Multimedia Co-Processor in GPU**
- **4**512 MB SDRAM @ 400 MHz in RAM
- **♣**MicroSD
- 4x USB Ports
- **4** 1x 10/100mb Ethernet RJ45 Jack

Address:

#9/1 1st Floor, 3rd Main, 8th Block, Opp. Police Station, Kormangala, Bangalore-560095, India. Ph: +91-80-41307589, Mob: +91-9972039671, www.aeslab.com, info@aeslab.com