STATA CRASH COURSE

BASIC SYNTAX (基本語法)

Christy Pu

健康政策計量分析 2023

Today's objective

- ·熟悉STATA介面,了解基本語法 (再來就可獨立學習, Google是你的好朋友)。
- 實際操作簡單的健保資料。
- I will assume:
- You already have SAS/Excel/SPSS-readable files.
- You have basic knowledge on statistics (what is a t-test, chi-2, logistic regression...etc)

Why STATA?

- Why not? There is nothing other programs can do while STATA can't.
- 分析比SAS快很多、程式好寫很多
- Misconception: STATA can't handle large datasets → This depends on your hardware, not on STATA.
- Can STATA handle NHI data with longitudinal calculation?
 Definitely!
- However: There may be certain programs that do run slower in STATA compared with other statistical software's (e.g. multilevel is kind of slow; machine learning is better with R)
- Personal experience: Nothing serious (thesis, dissertation, publications with complicated models)

Resources

 Make friends with this website: http://www.ats.ucla.edu/stat/stata/

Resources

 If you are unsure of a command, always Google it. Most of the times it leads you directly you to the UCLA websites, or STATA's own FAQ.

e.g.: just Google "STATA merge"

搜尋	約有 380,000 項結果 (搜尋時間:0.21 秒)
網頁	提示:如只要搜尋中文(繁體)的結果,可使用使用偏好指定搜尋語言。
圖片	merge - Stata
地圖	www. stata .com/help.cgi? merge - 翻譯這個網頁
影片	[poc] STATA基本入門
新聞	homepage.ntu.edu.tw/~huilin/stata%20user%20guide.doc
更多	檔案類型: Microsoft Word - 快速檢視 STATA是一個十分好用而且簡單的統計套裝軟體,透過輕鬆的資料輸入方式,而且 Append a data file to current file .sort .Sort observations .merge . Merge a data
<mark>台北市</mark> 變更位置	Stata FAQ: How can I merge multiple files in Stata? www.ats.ucla.edu > > Stata > FAQ - 頁庫存檔 - 翻譯這個網頁 對鎖 www.ats.ucla.edu 的所有結果
網路 所有中文網頁 繁體中文網頁 台灣的網頁 外文網頁翻譯版 更多搜尋工具	In order for Stata to merge the datasets, the id variable, or variables, will have to have the one name across all files. Additionally, if the variable is a string in one Stata Learning Ivious Combining data www.ats.ucla.edu > > Stata > Modules - 頁庫存檔 - 翻譯這個網頁 Stata Learning Module Combining data. This module will illustrate how you can combine files in Stata. Examples will include appending files, one to one match
	In Stata, how do I merge two data sets? - Knowledge Base

kb.iu.edu/data/azck.html - 頁庫存檔 - 翻譯這個網頁

26 Apr 2012 - In Stata, how do I merge two data sets? Note: For a one-to-many or many

- STATA interface
- "findit" → e.g findit merge
- The best way to learn STATA (and any software) is by typing in the commands.
- Definition of how good you can handle a statistical program: how many commands you know and remember.
- No single course can teach you all.
- Just play with it!

- compress → Type "compress" and STATA will store the variables in the most efficient way for you.
- clear → whenever you type "clear", STATA will empty the memory. Note if you have unsaved work you will lose it too.

Getting started

- Do-file (always keep a do-file → record <u>every</u> single command you use)
- 請保持寫程式的良好習慣: the first command in every dofile should be defining the dataset you use.
- use "C:\Users\Christy\Desktop\STATA Summer Course\Car.dta", clear
- Note there is maximum limit of 131071 bytes for a do-file.
- (not a problem unless you have bad programming habits)
- Log file
- log using "C:\Users\Christy\Desktop\STATA Summer Course\Car", replace
- XXXXXX
- yyyy
- log close

Inputting data

- Copy and paste.
 - Excel: The first line in the spreadsheet should have the variable names
- StatTansfer → open directly
- Transfer it using SAS

Inputting data

- use "C:\Users\Christy\Desktop\STATA Summer Course\Car.dta", clear
- The clear option will clear the revised dataset currently in memory before opening the other one.
- Basic notation and rules:
 - A variable can not start with number, e.g. 2005age (use age2005, _2005age instead)
 - Underscore(底線) → hyphen will be read as "minus" or "to"
 - Always put " " (引號) for string variables. E.g count if name=="Mark"
 - Note: font matter when you copy and paste from, say, PPT.
 - gen aa="cccc"

- Missing data in Stata is "." (for numeric) and "" (for string) Thus "..."
 "-" "999" etc. will be read as they are. You can always replace them later using commands.
- E.g. replace sex=. If sex==999
- Note different versions handle capital/common letters differently, but they matters (弄錯會出現紅字喔!)
- However, capital letters is allowed for variables.
- All commands are in common letters (弄錯會出現紅字喔!)

Useful notations

- Equal (make changes): $= \rightarrow$ e.g generate year=2005
- Equal (identity) $== \rightarrow$ e.g. count if year==2005

```
. count if price=5000
=exp not allowed
r(101);
. count if make="Ford"
type mismatch
r(109);
```

- Not equal to: ~=
- > , <, >=, <= +(加), (減), *(乘) /(除)
- and: & → count if name=="Mark" & age==20
- or: | → count if name=="Mark"|name=="John"
- count if (name=="Mark"|name=="John") & age==20

In-class exercise

- Open the course file car.dta.
- Open a new do-file, save it
- 總共有幾筆資料? (答案:74)
- 計算: 平均價格是多少? (答案: 6165.3)
- 把variable "make" 改名成 "manufacturer"
- 有多少車是foreign-made? (variable name: foreign) (答案:22)
- 有多少車價格>=5000? (答案:37)

Useful commands

- Attaches a label (up to 80 characters) to the dataset →
 - label data "1978 Automobile Data, In-class exercise"
- Label variable (or label var) →
 - label var price "price of car"
 - label variable price "" (to clear)
- Label define →
 - label define stock 0 no 1 yes 2 maybe
 - label list stock
- label drop → label drop stock
- Rename → rename stock instock

Examining data

- list price
- list price if price>6000
- list in 45/49 (list only the 45~49 observations)
- sum (short for summarize, only for numeric values)
- sum price
- sum price, detail
- sum price if length<200
- sum price if weight>3000
- sum price if weight>3000, detail

sum price weight headroom if length<200 Variable Obs Mean Std. Dev. Min Max price 5318.489 2092.824 3291 47 12990 weight 533.2261 2567.021 1760 3470 47 headroom 2.670213 .7243933 1.5 4.5 47

. sum price if length<200, detail							
price of the car							
	Percentiles	Smallest					
1%	3291	3291					
5%	3667	3299					
10%	3798	3667	0bs	47			
25%	4099	3748	Sum of Wgt.	47			
50%	4589		Mean	5318.489			
		Largest	Std. Dev.	2092.824			
75%	5799	9690					
90%	8129	9735	Variance	4379912			
95%	9735	11995	Skewness	2.146823			
99%	12990	12990	Kurtosis	7.373537			

tabstat

- tabstat price weight mpg
- tabstat price weight mpg, by(foreign) stat(mean sd min max) long

mean	mean	p1	1st percentile
count	count of nonmissing	p5	5th percentile
n	same as count	p10	10th percentile
sum	sum	p25	25th percentile
max	maximum	median	median (same as p50)
min	minimum	p50	50th percentile (same as median)
range	range = max - min	p75	75th percentile
sd	standard deviation	p90	90th percentile
variance	variance	p95	95th percentile
CV	coefficient of variation (sd/mean)	p99	99th percentile
semean	standard error of mean	iqr	interquartile range = p75 - p25
skewness	skewness	q	equivalent to specifying p25 p50 p75
kurtosis	kurtosis		

tabstat price weight mpg, by(foreign) stat(mean sd min max) long foreign price weight stats mpg Domestic 6072.423 3317.115 19.82692 mean sd3097.104 695.3637 4.743297 3291 min 1800 12 15906 4840 34 max Foreign 6384.682 2315.909 24.77273 mean 2621.915 433.0035 sd6.611187 min 3748 1760 14 12990 3420 41 max Total 6165.257 3019.459 21.2973 mean 2949.496 777.1936 5.785503 sd min 3291 1760 12 15906 4840 41 max

Examining data

- tab length
- tab length if length<170
- tab length if length<170, sum(weight)
- 保持良好習慣: 跑迴歸前先sum或tab所有變項,並作完整描述性統計。
- Saving the dataset
- save "C:\Users\Christy NB\Desktop\STATA Summer Course\Car.dta", replace
- (即使是全新檔名,也可以打replace)

. tab length	if length<170		
Length			
(in.)	Freq.	Percent	Cum.
142	1	5.88	5.88
147	1	5.88	11.76
149	1	5.88	17.65
154	1	5.88	23.53
155	2	11.76	35.29
156	1	5.88	41.18
157	1	5.88	47.06
161	1	5.88	52.94
163	2	11.76	64.71
164	1	5.88	70.59
165	3	17.65	88.24
168	1	5.88	94.12
169	1	5.88	100.00
Total	17	100.00	

. tab length	if length<170,	, sum(weight)	
Length	_	of Weight (lb	
(in.)	Mean	Std. Dev.	rreq.
142	1,830	0	1
147	1,800	0	1
149	1,760	0	1
154	1,980	0	1
155	1,985	77.781746	2
156	1,990	0	1
157	1,800	0	1
161	2,130	0	1
163	2,115	7.0710678	2
164	2,050	0	1
165	2,140	103.92305	3
168	2,640	0	1
169	2,580	0	1
Total	2,069.412	245.44527	17

Basic operations

- Keep variable(s) →
 - keep price weight length
 - Keep christy* (keep all variables beginning with christy)
- Drop variable(s) → drop price weight
- Generate a variable →
 - gen want=1 if price<=4500 & stock==1
 - gen eco = length + weight

```
. gen eco = length + weight if price<6000
(23 missing values generated)
. gen eco=length/weight if price<6000
eco already defined
r(110);</pre>
```

 保持良好習慣: always drop those variables you mistakenly generated.

- For string variables →
- gen car_id=[own] + [id]
- gen car_id2 = [own] + " loves STATA" if own=="Christy"
- replace car_id2 = [own] + " loves SAS" if own=="Hu"

- Replace →
- replace stock=. if price>7000
- replace eco= height/weight

"gen" vs. "egen"

- "gen" is to generate a variable.
- "egen" generates a variable containing a function.

For example, I want to generate a variable containing the

mean of price:

egen mean_price = mean(price)

 You can then do whatever calculation you want, e.g:

count if price > mean_price keep if price > mean_price

		_
price	mean_price	
4,099	6165.257	
4,749	6165.257	
3,799	6165.257	
4,816	6165.257	
7,827	6165.257	
5,788	6165.257	
4,453	6165.257	
5,189	6165.257	
10,372	6165.257	
4,082	6165.257	
11,385	6165.257	
14,500	6165.257	
15,906	6165.257	
3,299	6165.257	
5,705	6165.257	
4,504	6165.257	
5,104	6165.257	
3,667	6165.257	
3,955	6165.257	
3 084	6165 257	
	4,099 4,749 3,799 4,816 7,827 5,788 4,453 5,189 10,372 4,082 11,385 14,500 15,906 3,299 5,705 4,504 5,104 3,667 3,955	4,099 6165.257 4,749 6165.257 3,799 6165.257 4,816 6165.257 7,827 6165.257 5,788 6165.257 4,453 6165.257 5,189 6165.257 10,372 6165.257 4,082 6165.257 11,385 6165.257 14,500 6165.257 15,906 6165.257 3,299 6165.257 5,705 6165.257 4,504 6165.257 3,667 6165.257 3,955 6165.257

egen

Functions in egen include:

mean, sd, max, mean, median, mode, rank, iqr, kurt,

skew, rowmean, rowmax...etc

For more functions: findit egen

- For percentiles and quantiles:
- pctile p_price = price, nq(5)
- and
- xtile x_price = price, nq(5)

	price	mean_price	p_price	x_price	
1	4,099	6165.257	4099	1	
2	4,749	6165.257	4647	3	
3	3,799	6165.257	5705	1	
4	4,816	6165.257	7827	3	
5	7,827	6165.257		4	
6	5,788	6165.257		4	
7	4,453	6165.257		2	
8	5,189	6165.257		3	
9	10,372	6165.257		5	
10	4,082	6165.257		1	
11	11,385	6165.257		5	
12	14,500	6165.257		5	
13	15,906	6165.257		5	
14	3,299	6165.257		1	
15	5,705	6165.257		3	
16	4,504	6165.257		2	
17	5,104	6165.257		3	
18	3,667	6165.257		1	
19	3,955	6165.257		1	
20	3,984	6165.257		1	
21	4 010	6165 257		1	

"sort" and "by"

- Sort in ascending order → sort
- E.g. →
- sort id
- sort id sex
- Sort in descending order:
- gsort id -sex (the minus sign means this variable is to be sorted in descending order)
- Sort must be performed before "by" →
- sort own
- by own: sum price
- by own: logistic Y X₁ X₂ X₃

sort own					
by own: sum	price				
own = Chris	sty				
Variable	0bs	Mean	Std. Dev.	Min	Max
price	16	5317.375	2225.208	3798	12990
own = Hu					
Variable	0bs	Mean	Std. Dev.	Min	Max
price	21	6409.762	2998.587	3291	14500
own = Jack					
Variable	0bs	Mean	Std. Dev.	Min	Max
price	22	6626.773	3229.574	3799	15906

Merge files

File Edit View Data Tools id[1] id income sex 1 1 1 10 1 2 2 100 2 3 3 3 20 2 4 4 4 200 1 5 5 300 2 6 6 6 30 1 7 7 7 40 2 8 8 8 400 1 9 9 9 500 2 10 10 50 1 11 11 70 1 12 12 80 2 13 13 90 1 14 14 90 2	Data Editor (Edit) - [using]					
id income sex 1 1 10 1 2 2 100 2 3 3 20 2 4 4 200 1 5 5 300 2 6 6 30 1 7 7 40 2 8 8 400 1 9 9 500 2 10 10 50 1 11 11 70 1 12 12 80 2 13 13 90 1 14 14 90 2	File	Edit View	v Data T	ools		
id income sex 1 1 10 1 2 2 100 2 3 3 20 2 4 4 200 1 5 5 300 2 6 6 30 1 7 7 40 2 8 8 400 1 9 9 500 2 10 10 50 1 11 11 70 1 12 12 80 2 13 13 90 1 14 14 90 2				" •		
1 1 10 1 2 2 100 2 3 3 20 2 4 4 200 1 5 5 300 2 6 6 30 1 7 7 40 2 8 8 400 1 9 9 500 2 10 10 50 1 11 11 70 1 12 12 80 2 13 13 90 1 14 14 90 2		i	d[1]	1		
2 2 100 2 3 3 20 2 4 4 200 1 5 5 300 2 6 6 30 1 7 7 40 2 8 8 400 1 9 9 500 2 10 10 50 1 11 11 70 1 12 12 80 2 13 13 90 1 14 14 90 2		id	income	sex		
3 3 20 2 4 4 200 1 5 5 300 2 6 6 30 1 7 7 40 2 8 8 400 1 9 9 500 2 10 10 50 1 11 11 70 1 12 12 80 2 13 13 90 1 14 14 90 2	1	1	10	1		
4 4 200 1 5 5 300 2 6 6 30 1 7 7 40 2 8 8 400 1 9 9 500 2 10 10 50 1 11 11 70 1 12 12 80 2 13 13 90 1 14 14 90 2	2	2	100	2		
5 5 300 2 6 6 30 1 7 7 40 2 8 8 400 1 9 9 500 2 10 10 50 1 11 11 70 1 12 12 80 2 13 13 90 1 14 14 90 2	3	3	20	2		
6 6 30 1 7 7 40 2 8 8 400 1 9 9 500 2 10 10 50 1 11 11 70 1 12 12 80 2 13 13 90 1 14 14 90 2	4	4	200	1		
7 7 40 2 8 8 400 1 9 9 500 2 10 10 50 1 11 11 70 1 12 12 80 2 13 13 90 1 14 14 90 2	5	5	300	2		
8 8 400 1 9 9 500 2 10 10 50 1 11 11 70 1 12 12 80 2 13 13 90 1 14 14 90 2	6	6	30	1		
9 9 500 2 10 10 50 1 11 11 70 1 12 12 80 2 13 13 90 1 14 14 90 2	7	7	40	2		
10 10 50 1 11 11 70 1 12 12 80 2 13 13 90 1 14 14 90 2	8	8	400	1		
11 11 70 1 12 12 80 2 13 13 90 1 14 14 90 2	9	9	500	2		
12 12 80 2 13 13 90 1 14 14 90 2	10	10	50	1		
13 13 90 1 14 14 90 2	11	11	70	1		
14 14 90 2	12	12	80	2		
	13	13	90	1		
15 15 00 1	14	14	90	2		
15 15 80 1	15	15	80	1		

Master file

Merge (con't)

- merge 1:1 id using "C:\Users\Christy\Desktop\using.dta"
- _merge
- 1 -> observation only appears in the Master data
- 2 -> observation only appears in the Using data
- 3 → Observations in both Master and Using data

merge 1:1 id using "C:\Users\Christy\Desktop\using.dta", update

STATA will use the Using values only when Master has missing values.

merge 1:1 id using "C:\Users\Christy\Desktop\using.dta", replace update

STATA will use the value in Using to replace Master.

merge 1:1 id using "C:\Users\Christy\Desktop\using.dta", update

	<u> </u>			
	id	income	sex	_merge
1	1	10	1	matched (3)
2	2	20	2	nonmissing conflict (5)
3	3	30	2	nonmissing conflict (5)
4	4	200	1	missing updated (4)
5	5	50	2	nonmissing conflict (5)
6	6	60	1	nonmissing conflict (5)
7	7	40	2	missing updated (4)
8	8	80	1	nonmissing conflict (5)
9	9	90	2	nonmissing conflict (5)
10	10	100	1	nonmissing conflict (5)
11	11	70	1	using only (2)
12	12	80	2	using only (2)
13	13	90	1	using only (2)
14	14	90	2	using only (2)
15	15	80	1	using only (2)

. merge 1:1 id using "C:\Users\Christy\Desktop\using.dta", update

Result	# of obs.	
not matched	5	
from master	0	(_merge==1)
from using	5	(<u>merge==2</u>)
matched	10	
not updated	1	(_merge==3)
missing updated	2	$(_{merge}==4)$
nonmissing conflict	7	(_merge==5)

. tab _merge

_merge	Freq.	Percent	Cum.
using only (2)	5	33.33	33.33
matched (3)	1	6.67	40.00
missing updated (4)	2	13.33	53.33
nonmissing conflict (5)	7	46.67	100.00
Total	15	100.00	

Merge files (con't)

保持良好習慣: merge前先預測應出現什麼數值, 然後 tab _merge 檢察

Q: 健保資料庫ID檔=master, CD檔=using, merge後應該會出現哪些 _merge值?

Always drop _merge before performing next merge. drop _merge

```
. merge id using "C:\Users\Christy NB\Downloads\bb.dta"
    merge already defined
r(110);
```

aa

id	marital	sex	Ces_D	year
a	S	M	3	1995
b	M	M	2	1995
С	M	F	4	1995
d	S	M	10	1995
e	S	M	2	1995
	a b c d	a S b M c M d S	a S M b M M c M F d S M	a S M 3 b M M 2 c M F 4 d S M 10

This is definitely not what we wanted.

bb

	id	id marital sex		Ces_D	year
1	a	S	М	0	1996
2	b	M	М	5	1996
3	С	D	F	9	1996
4	d	S	М	25	1996
5	e	D	М	18	1996

			,		
	id	marital	sex	Ces_D	year
1	a	S	M	3	1995
2	b	М	M	2	1995
3	С	М	F	4	1995
4	d	S	M	10	1995
5	e	S	M	2	1995

Merge is used to add variables, what if we want to add observations?

Answer: use append

Append

Option1: rename your variables

Option 2: use "append"

append using "C:\Users\Christy NB\Desktop\bb.dta"

	id	marital	sex	Ces_D	year
1	a	S	М	3	1995
2	b	М	М	2	1995
3	С	М	F	4	1995
4	d	S	М	10	1995
5	e	S	М	2	1995
6	a	S	М	0	1996
7	b	M	М	5	1996
8	С	D	F	9	1996
9	d	5	М	25	1996
10	e	D	М	18	1996

Working with dates in STATA

We will learn 3 things about date in STATA:

- Creating new (clean) date variables from your old (dirty) date variable using the "date" function.
- Formatting the new date variable so it displays in a way that you can read it as a date.
- Ways to use STATA's special date functions to analyze date variables.
- STATA calculates days elapsed from Jan 1, 1960.
- So Jan 2, 1960 is represented by the number "1", and Jan 1, 1961 by the number "365".

- generate date1=date(car_date, "YMD")
- format date1 %d

	car_date			car_date	datel			id	car_date	date1
1	20010101		1	20010101	14976		1	var14	20010101	01jan2001
2	19950301		2		12843	-	2	ddd	19950301	01mar1995
				19950301			3	bbb	20050617	17jun2005
3	20050617		3	20050617	16604					-
4	20051007		4	20051007	16716		4	bbb	20051007	07oct2005
5	20040503		5	20040503	16194		5	bbb	20040503	03may2004
6	19990701		6	19990701	14426		6	ppp	19990701	01jul1999
7	20030721		7	20030721	15907		7	ddd	20030721	21jul2003
8	20051115		8	20051115	16755		8	aaa	20051115	15nov2005
9	19950301		9	19950301	12843		9	var14	19950301	01mar1995
10	20020905		.0	20020905	15588		10	ZZZ	20020905	05sep2002
11	19950301		1	19950301	12843		11	aaa	19950301	01mar1995
12	19950301	1	2	19950301	12843		12	bbb	19950301	01mar1995
13	20010726	1	.3	20010726	15182		13	bbb	20010726	26jul2001
14	20020610		4	20020610	15501		14	ZZZ	20020610	10jun2002
15	20041130		.5	20041130	16405		15	xyz	20041130	30nov2004

 (Note YMD can be changed to DMY YDM etc...any order you need) • The "date" function in STATA is very powerful, it recognize almost any date format:

name bday John Jan 1 1960 Mary 07/11/1955 Kate 11.12.1962 Mark Jun/8 1959

name	bday	birthday
John	Jan 1 1960	01jan1960
Mary	07/11/1955	11jul1955
Kate	11.12.1962	12nov1962
Mark	Jun/8 1959	08jun1959

bday b
4-12-1990 4.12.1990 Apr 12, 1990 Apr12,1990 April 12, 1990 4/12.1990
Apr121990

bday	birthday
4-12-1990	12apr1990
4.12.1990	12apr1990
Apr 12, 1990	12apr1990
Apr12,1990	12apr1990
April 12, 1990	12apr1990
4/12.1990	12apr1990
Apr121990.	

Date - variations

- generate birthday=MDY (month,day,year)
- format birthday %d

month	day	year
7	11	1948
1	1	1960
10	15	1970
12	10	1971

Month	day	year	birthday
7	11	1948	11jul1948
1	1	1960	01jan1960
10	15	1970	15oct1970
12	10	1971	10dec1971

- Note that if your year is in two digits, use:
- replace birthday=MDY(month,day,year+1900)

Date - calculation

- You can do any sort of mathematical manipulation with this integer variable, like this:
- gen bday10 = birthday + 10
- 03jan1960 → 13jan1960
- gen difference = date1 date2
- Suppose date 1 = 01jan2000, and date2 = 05jan2000,
- difference → 4

Sample birthday program in NHI

- generate birthday=date(id_birthday, "YMD")
- format birthday %d
- gen date1="20050101"
- generate date2=date(date1, "YMD")
- format date2 %d
- gen age2005=(date2-birthday)/365.25

Date -calculation

- To compare date →
- generate after1999 = 0
- replace after1999 = 1 if date1 > d(1jan1999)
- To extract dates →
- generate m=month(date1)
- generate d=day(date1)
- generate y=year(date1)
- generate w=week(date1)
- generate dw=dow(date1)

	date1	m	d	у	W	dw
1	01mar1995	3	1	1995	9	3
2	07oct2005	10	7	2005	40	5
3	03may2004	5	3	2004	18	1
4	01jul1999	7	1	1999	26	4
5	21jul2003	7	21	2003	29	1
6	15nov2005	11	15	2005	46	2
7	01mar1995	3	1	1995	9	3
8	05sep2002	9	5	2002	36	4
9	01mar1995	3	1	1995	9	3
10	01mar1995	3	1	1995	9	3
11	26jul2001	7	26	2001	30	4
12	10jun2002	6	10	2002	23	1
13	30nov2004	11	30	2004	48	2
14	10aug2001	8	10	2001	32	5
15	25jun2005	6	25	2005	26	6
16	23dec2005	12	23	2005	51	5
17	31mar2005	3	31	2005	13	4
4.0	002004	4	0	2004	4.5	4

Extract a portion of the string variable

- When will this come in handy? E.g.
- In NHI data, I want to analyze ICD-9 codes begin with 250 (this include 250XX, 250.XX, 25012345 etc)
- In NHIS data, there are two distinct cohorts stored in the same database (age 12~65 and age>65), but I just want to analyze the first cohort.
- I am analyzing open-ended questions, e.g. "Why didn't you buy insurance?", and this is open ended. I want to analyze those whose answers include "financial" → this include "financial reasons", "I don't want to buy insurance due to financial reasons" "I have financial problems!", "I am financially limited" etc.

E.g. 1 \rightarrow ICD-9 codes in NHI

- gen diabetes=1 if(regexm(icd, "^[2][5][0]"))
- or gen aa=regexs(0) if(regexm(icd, "^[2][5][0]"))
- The ^ means counting from the first letter (else 3250 will also be marked)

	icd	diabetes	aa
1	25000	1	250
2	38033		
3	188.00		
4	250.xx	1	250
5	250133	1	250
6	V3462		
7	250	1	250
8	250.277	1	250
9	419		
10	250.	1	250

- Two functions to remember: regexm and regexs
- regexm = regular expressions that matches (something)
- regexs = regular expressions specified by regexm

How regexs is represented?

```
Regexm(variable, "([0-9]*)\-([0-9]*)\-([0-9]*)")
```

```
    Subexpression # String Returned
```

```
• regexs(0) 907-789-3939
```

```
• regexs(1) 907
```

- regexs(2) 789
- regexs(3) 3939
- E.g. gen aa= regexs(2) if regexm(variable, "([0-9]*)\-([0-9]*)\-([0-9]*)")
- Will give you aa =789.
- Tip1: Simply count from the bracket after the variable name (not including redundant brackets).
- Tip2: Try it with a few observations first, may require lots of trial and error

E.g. 1 \rightarrow ICD-9 codes in NHI (con't)

- Extracts the first three codes:
- gen icd9_3=regexs(0) if(regexm(icd, "^[0-9a-zA-Z][0-9][0-9]"))

	icd	icd9_3
1	25000	250
2	38033	380
3	188.00	188
4	250.xx	250
5	250133	250
6	V3462	V34
7	250	250
8	250.277	250
9	419	419
10	250.	250

Analyzing only those with id being with "B" in NHIS is similar.

E.g (2): get those who replied "financial"

gen financial= regexs(0) if (regexm(reasons, "[Ff][iI][nN][aA][nN][cC][iI][Aa][IL]"))

	reasons	financial
1	I am financially limited	financial
2	Financial problems	Financial
3	I hate the government	
4	Money-financiallly!!!	financial
5	Insurance is stupid	
6	None of your business	
7	FiNanCiaLXDDD :)	FiNanCiaL
8	No need	
9	I have financialissue	financial
10	I am short-sighted	

E.g. → Detect separate words

- I have first and last name in the same variable, but I want them in separate variables. → e.g., I want "Christy Pu" to be stored as "Christy" and "Pu".
- gen Firstname = regexs(2) if regexm(name, "(([a-zA-Z]*)[]([a-zA-Z]*))")
- gen Lastname = regexs(3) if regexm(name, "(([a-zA-Z]*)[]([a-zA-Z]*))")

	name	
1	Christy Pu	
2	Little Bear	
3	Jack Chou	
4	Mark Yang	
5	Pretty Hu	

	Firstname	Lastname
	Christy	Pu
	Little	Bear
	Jack	Chou
	Mark	Yang
	Pretty	Hu

E.g → Extract the *n*th letter

- I want to get the 4th letter for each name.
- gen fourth = regexs(5) if regexm(name, "(([a-zA-Z])([a-zA-Z])([a-zA-Z]))")

name	fourth
Christy Pu	i
Little Bear	t
Jack Chou	k
Mark Yang	k
Pretty Hu	t

String and numeric variables

- You may wish to change the variable type interchangeably.
- E.g. Sex is stored as "Male" and "Female", you want male=1 and female = 2.
- You have a variable stored in numeric form but you want it to be in string form (and vice versa). E.g. → date.
- (This often happens when you copy and paste variable from STATA to, say, Excel, or mistakes in entering data.)
- Two sets of commands:
- encode vs. decode
- destring vs. tostring

encode vs. decode (1)

 encode sex, gen(sex1) → change string to numeric, with label

	sex	sex1	sex2
1	Male	Male	1
2	Female	Female	0
3	Male	Male	1
4	Male	Male	1
5	Female	Female	0
6	Female	Female	0
7			.

```
. label list sex1
sex1:
    1 Female
    2 Male
```

- You can now do any calculation with it, e.g. →
- gen sex2=sex1-1

encode vs. decode (2)

- To get it back to string:
- decode sex1, gen (sex3)

	sex	sex1	sex2	sex3
1	Male	Male	1	Male
2	Female	Female	0	Female
3	Male	Male	1	Male
4	Male	Male	1	Male
5	Female	Female	0	Female
6	Female	Female	0	Female
7				

destring vs. tostring (1)

destring birthday, gen (birthday1)

	birthday	birthday1	birthday2
1	19800122	19800122	19800122
2	19751212	19751212	19751212
3	20050922	20050922	20050922
4	19980423	19980423	19980423
5	20080202	20080202	20080202
6	19680918	19680918	19680918

- Destring works only when the string variable is in number.
- To get it back to string
- tostring birthday1, gen(birthday2)

Collapse

Extremely useful when analyzing NHI data.

	id_birthday	id	acode_icd9_1	acode_icd9_2	acode_icd9_3	drug_amt	t_amt	id_sex
1	19820900	012e61103b1db1b6e92ecf423de53aa5	5819			0	1202	M
2	19820921	012e61103b1db1b6e92ecf423de53aa5	250.11			0	1430	M
3	19820921	012e61103b1db1b6e92ecf423de53aa5	581			0	2290	М
4	19820921	012e61103b1db1b6e92ecf423de53aa5	250			0	2000	М
5	19820921	012e61103b1db1b6e92ecf423de53aa5	4658	250123		160	415	М
6	19740327	014fd9cb0edfc5b57255ee4a9e39660b	7804	7870		84	531	М
7	19740327	014fd9cb0edfc5b57255ee4a9e39660b	7294			425	2406	М
8	19810520	01adaa2d0a09b8e6781ebc0bcbc23d4d	7061			100	221	F
9	19810520	01adaa2d0a09b8e6781ebc0bcbc23d4d	5234	5210		0	1430	F
10	19810520	01adaa2d0a09b8e6781ebc0bcbc23d4d	250			100	241	F
11	19680724	025ce9868ffe69b3ea57018f64401c77	4650	4659	250.187	73	334	F

- The above is a hypothetical CD file
- I want to:
- Count how many outpatient each patient has.
- Calculate the average outpatient and drug expenditure by person.
- Find those who had any diagnose of 250 in acode_icd9(1-3)

Count how many outpatient each patient has (1)

gen count=1
collapse (sum) count, by (id id_birthday)

	id_birthday	id	acode_icd9_1	acode_icd9_2	acode_icd9_3	drug_amt	t_amt	id_sex
1	19820900	012e61103b1db1b6e92ecf423de53aa5	5819			0	1202	М
2	19820921	012e61103b1db1b6e92ecf423de53aa5	250.11			0	1430	М
3	19820921	012e61103b1db1b6e92ecf423de53aa5	581			0	2290	М
4	19820921	012e61103b1db1b6e92ecf423de53aa5	250			0	2000	М
5	19820921	012e61103b1db1b6e92ecf423de53aa5	4658	250123		160	415	М
6	19740327	014fd9cb0edfc5b57255ee4a9e39660b	7804	7870		84	531	М
7	19740327	014fd9cb0edfc5b57255ee4a9e39660b	7294			425	2406	М
8	19810520	01adaa2d0a09b8e6781ebc0bcbc23d4d	7061			100	221	F
9	19810520	01adaa2d0a09b8e6781ebc0bcbc23d4d	5234	5210		0	1430	F
10	19810520	01adaa2d0a09b8e6781ebc0bcbc23d4d	250			100	241	F
11	19680724	025ce9868ffe69b3ea57018f64401c77	4650	4659	250.187	73	334	F

1 19820900 012e61103b1db1b6e92ecf423de53aa5	- 1
	-
2 19820921 012e61103b1db1b6e92ecf423de53aa5	4
3 19740327 014fd9cb0edfc5b57255ee4a9e39660b	2
4 19810520 01adaa2d0a09b8e6781ebc0bcbc23d4d	3
5 19680724 025ce9868ffe69b3ea57018f64401c77	1

Count how many outpatient each patient has (2)

- Or alternatively:
- sort id id_birthday
- by id id_birthday: gen count= _N

	acode_icd9_1	acode_icd9_2	acode_icd9_3	drug_amt	t_amt	id_sex	newid	count
1	5819			0	1202	M	012e61103b1db1b6e92ecf423de53aa519820900	1
2	250.11			0	1430	M	012e61103b1db1b6e92ecf423de53aa519820921	4
3	581			0	2290	M	012e61103b1db1b6e92ecf423de53aa519820921	4
4	250			0	2000	M	012e61103b1db1b6e92ecf423de53aa519820921	4
5	4658	250123		160	415	М	012e61103b1db1b6e92ecf423de53aa519820921	4
6	7804	7870		84	531	M	014fd9cb0edfc5b57255ee4a9e39660b19740327	2
7	7294			425	2406	M	014fd9cb0edfc5b57255ee4a9e39660b19740327	2
8	7061			100	221	F	01adaa2d0a09b8e6781ebc0bcbc23d4d19810520	3
9	5234	5210		0	1430	F	01adaa2d0a09b8e6781ebc0bcbc23d4d19810520	3
10	250			100	241	F	01adaa2d0a09b8e6781ebc0bcbc23d4d19810520	3
11	4650	4659	250.187	73	334	F	025ce9868ffe69b3ea57018f64401c7719680724	1
			I	1				

_N is equal to the number of observations in the dataset except in a by command when it is equal to the total number of observations in the by-group.

Calculate the average outpatient expenditure by person.

collapse (mean) t_amt drug_amt, by (id id_birthday)

	id_birthday	id	acode_icd9_1	acode_icd9_2	acode_icd9_3	drug_amt	t_amt	id_sex
1	19820900	012e61103b1db1b6e92ecf423de53aa5	5819			0	1202	М
2	19820921	012e61103b1db1b6e92ecf423de53aa5	250.11			0	1430	М
3	19820921	012e61103b1db1b6e92ecf423de53aa5	581			0	2290	М
4	19820921	012e61103b1db1b6e92ecf423de53aa5	250			0	2000	М
5	19820921	012e61103b1db1b6e92ecf423de53aa5	4658	250123		160	415	М
6	19740327	014fd9cb0edfc5b57255ee4a9e39660b	7804	7870		84	531	М
7	19740327	014fd9cb0edfc5b57255ee4a9e39660b	7294			425	2406	М
8	19810520	01adaa2d0a09b8e6781ebc0bcbc23d4d	7061			100	221	F
9	19810520	01adaa2d0a09b8e6781ebc0bcbc23d4d	5234	5210		0	1430	F
10	19810520	01adaa2d0a09b8e6781ebc0bcbc23d4d	250			100	241	F
11	19680724	025ce9868ffe69b3ea57018f64401c77	4650	4659	250.187	73	334	F

	id_birthday	id	t_amt	drug_amt
1	19820900	012e61103b1db1b6e92ecf423de53aa5	1202	0
2	19820921	012e61103b1db1b6e92ecf423de53aa5	1533.75	40
3	19740327	014fd9cb0edfc5b57255ee4a9e39660b	1468.5	254.5
4	19810520	01adaa2d0a09b8e6781ebc0bcbc23d4d	630.667	66.6667
5	19680724	025ce9868ffe69b3ea57018f64401c77	334	73

Options available for collapse

- mean means (default)
- median medians
- p1 1st percentile
- p2 2nd percentile ... 3rd-49th percentiles p50 50th
- sd standard deviations
- sum sums
- rawsum sums,
- max maximums
- min minimums
- iqr interquartile range
- first first value
- last last value
- firstnm first nonmissing value
- lastnm last nonmissing value

etc.

Find those who had any diagnose of 250 in acode_icd9(1-3)

- gen dm=regexs(0) if (regexm(acode_icd9_1, "^[2][5][0]"))
- replace dm=regexs(0) if (regexm(acode_icd9_2, "^[2][5][0]"))
- replace dm=regexs(0) if (regexm(acode_icd9_3, "^[2][5][0]"))

	id_birthday	id	acode_icd9_1	acode_icd9_2	acode_icd9_3	drug_amt	t_amt	id_sex	dm
1	19820900	012e61103b1db1b6e92ecf423de53aa5	5819			0	1202	М	
2	19820921	012e61103b1db1b6e92ecf423de53aa5	250.11			0	1430	М	250
3	19820921	012e61103b1db1b6e92ecf423de53aa5	581			0	2290	M	
4	19820921	012e61103b1db1b6e92ecf423de53aa5	250			0	2000	М	250
5	19820921	012e61103b1db1b6e92ecf423de53aa5	4658	250123		160	415	М	250
6	19740327	014fd9cb0edfc5b57255ee4a9e39660b	7804	7870		84	531	М	
7	19740327	014fd9cb0edfc5b57255ee4a9e39660b	7294			425	2406	М	
8	19810520	01adaa2d0a09b8e6781ebc0bcbc23d4d	7061			100	221	F	
9	19810520	01adaa2d0a09b8e6781ebc0bcbc23d4d	5234	5210		0	1430	F	
10	19810520	01adaa2d0a09b8e6781ebc0bcbc23d4d	250			100	241	F	250
11	19680724	025ce9868ffe69b3ea57018f64401c77	4650	4659	250.187	73	334	F	250

Count how many times each person has DM outpatient

- gen dm=regexs(0) if (regexm(acode_icd9_1, "[2][5][0]"))
- replace dm=regexs(0) if (regexm(acode_icd9_2, "[2][5][0]"))
- replace dm=regexs(0) if (regexm(acode_icd9_3, "[2][5][0]"))
- gen DMcount=1 if dm~=""

	id_birthday	id	acode_icd9_1	acode_icd9_2	acode_icd9_3	drug_amt	t_amt	id_sex	dm	DMcount
1	19820900	012e61103b1db1b6e92ecf423de53aa5	5819			0	1202	М		
2	19820921	012e61103b1db1b6e92ecf423de53aa5	250.11			0	1430	М	250	1
3	19820921	012e61103b1db1b6e92ecf423de53aa5	581			0	2290	М		
4	19820921	012e61103b1db1b6e92ecf423de53aa5	250			0	2000	М	250	1
5	19820921	012e61103b1db1b6e92ecf423de53aa5	4658	250123		160	415	М	250	1
6	19740327	014fd9cb0edfc5b57255ee4a9e39660b	7804	7870		84	531	М		
7	19740327	014fd9cb0edfc5b57255ee4a9e39660b	7294			425	2406	М		
8	19810520	01adaa2d0a09b8e6781ebc0bcbc23d4d	7061			100	221	F		
9	19810520	01adaa2d0a09b8e6781ebc0bcbc23d4d	5234	5210		0	1430	F		
10	19810520	01adaa2d0a09b8e6781ebc0bcbc23d4d	250			100	241	F	250	1
11	19680724	025ce9868ffe69b3ea57018f64401c77	4650	4659	250.187	73	334	F	250	1

collapse (sum) DMcount, by(id id_birthday)

	id_birthday	id	acode_icd9_1	acode_icd9_2	acode_icd9_3	drug_amt	t_amt	id_sex	dm	DMcount
1	19820900	012e61103b1db1b6e92ecf423de53aa5	5819			0	1202	М		
2	19820921	012e61103b1db1b6e92ecf423de53aa5	250.11			0	1430	М	250	1
3	19820921	012e61103b1db1b6e92ecf423de53aa5	581			0	2290	М		
4	19820921	012e61103b1db1b6e92ecf423de53aa5	250			0	2000	М	250	1
5	19820921	012e61103b1db1b6e92ecf423de53aa5	4658	250123		160	415	М	250	1
6	19740327	014fd9cb0edfc5b57255ee4a9e39660b	7804	7870		84	531	М		
7	19740327	014fd9cb0edfc5b57255ee4a9e39660b	7294			425	2406	М		
8	19810520	01adaa2d0a09b8e6781ebc0bcbc23d4d	7061			100	221	F		
9	19810520	01adaa2d0a09b8e6781ebc0bcbc23d4d	5234	5210		0	1430	F		
10	19810520	01adaa2d0a09b8e6781ebc0bcbc23d4d	250			100	241	F	250	1
11	19680724	025ce9868ffe69b3ea57018f64401c77	4650	4659	250.187	73	334	F	250	1

	id_birthday	id	DMcount
1	19820900	012e61103b1db1b6e92ecf423de53aa5	0
2	19820921	012e61103b1db1b6e92ecf423de53aa5	3
3	19740327	014fd9cb0edfc5b57255ee4a9e39660b	0
4	19810520	01adaa2d0a09b8e6781ebc0bcbc23d4d	1
5	19680724	025ce9868ffe69b3ea57018f64401c77	1

Collapse → Do them all together

- gen count=1
- gen dm=regexs(0) if (regexm(acode_icd9_1, "[2][5][0]"))
- replace dm=regexs(0) if (regexm(acode_icd9_2, "[2][5][0]"))
- replace dm=regexs(0) if (regexm(acode_icd9_3, "[2][5][0]"))
- gen DMcount=1 if dm~=""
- collpase (sum) count DMcount (mean) t_amt drug_amt, by(id id_birthday)

	id_birthday	id	count	DMcount	t_amt	drug_amt
1	19820900	012e61103b1db1b6e92ecf423de53aa5	1	0	1202	0
2	19820921	012e61103b1db1b6e92ecf423de53aa5	4	3	1533.75	40
3	19740327	014fd9cb0edfc5b57255ee4a9e39660b	2	0	1468.5	254.5
4	19810520	01adaa2d0a09b8e6781ebc0bcbc23d4d	3	1	630.667	66.6667
5	19680724	025ce9868ffe69b3ea57018f64401c77	1	1	334	73

Drop duplicate observations

- E.g. when you have duplicated id in the NHI ID file.
- duplicate drop id, force
- For example, you want to keep only the most recent insurance in-date for each person:
- gsort id id_birthday –id_in_date
- duplicates drop id id_birthday, force
- To detect duplicate id:
- duplicates list id

Keep the last observation in dd file (alternatively)

- sort id id_birthday in_date out_date
- by id id_birthday in_date: gen a=_n
- by id id_birthday in_date: gen b=_N

	id	id_birthday	card_seq_no	func_type	in_date	out_date	a	b
1	411e27ec301fb7026d3773f91f79aabc	19451229	E3	AE	20000726	20000801	1	1
2	411e27ec301fb7026d3773f91f79aabc	19451231	E3	AE	20000726	20000801	1	1
3	41c369c19a48b31fe8277ce3e64b5eb5	19981230	A6	10	20000814	20000815	1	1
4	437a1100370a66df83b504758fcd8877	19440627	E4	AA	20000724	20000727	1	1
5	4b4831361f3b28de11f05bdbcb41ec5c	19370105	В3	02	20001104	20001106	1	1
6	4fab28b2972029bc84732fb6edfca7da	19631011	A1	13	19991231		1	6
7	4fab28b2972029bc84732fb6edfca7da	19631011	A1	13	19991231		2	6
8	4fab28b2972029bc84732fb6edfca7da	19631011	A1	13	19991231		3	6
9	4fab28b2972029bc84732fb6edfca7da	19631011	A1	13	19991231		4	6
10	4fab28b2972029bc84732fb6edfca7da	19631011	A1	13	19991231		5	6
11	4fab28b2972029bc84732fb6edfca7da	19631011	A1	13	19991231	20001130	6	6
12	53b0703b0ec68d9650d3038d463a5cd3	19420921	I5	AE	20000912	20000915	1	1
13	53b0703b0ec68d9650d3038d463a5cd3	19420921	I5	AE	20001120		1	3
14	53b0703b0ec68d9650d3038d463a5cd3	19420921	I5	AE	20001120		2	3
15	53b0703b0ec68d9650d3038d463a5cd3	19420921	I5	AE	20001120		3	3

keep if a ==b

Reshape: wide to long

income2001 income2000 income2002 sev

 When you have separate waves in different data files and you want to run longitudinal analysis.

		10	1ncome2001	1ncome2000	1ncome2002	se	X	1	. a	2000	1234	M
	1	a	1000	1234	5000		M	2	a	2001	1000	М
	2	b	2080	3213	4534		F		a	2002	5000	М
	3	С	3213	999	2345		M	4	ь	2000	3213	F
	4	d	2343	1234	33		F		b	2001	2080	F
	5	e	1923	2323	234		F		ь	2002	4534	F
reshape long income, i(id) j(year)								7	c	2000	999	М
								8	С	2001	3213	М
									С	2002	2345	М
. resh	. reshape long income, i(id) j(year)								d	2000	1234	F
(note:	(note: j = 2000 2001 2002)								d	2001	2343	F
								12	d	2002	33	F
Data					wide	\rightarrow	long	13	е	2000	2323	F
								14	е	2001	1923	F
Number of obs. 5 -> 15								4.0	_	2002	224	г
Number of variables 5 ->							4					
j variable (3 values)						\rightarrow	year					
xij variables:												
income2000 income2001 income2002 -> inc							income					

- reshape long income, i(id id_birthday) j(year)
- "year" is the name of the time variable that you want STATA to generate. You can call it anything (e.g: month, wave etc).
- If id is not unique:

```
. reshape long income, i(id) j(year)
(note: j = 2000 2001 2002)
i=id does not uniquely identify the observations;
there are multiple observations with the same value of id.
Type "reshape error" for a listing of the problem observations.
r(9);
```

Reshape: long to wide

	id	year	income	sex				
1	a	2000	1234	М				
2	a	2001	1000	М				
3	a	2002	5000	М				
4	b	2000	3213	F				
5	b	2001	2080	F				
6	b	2002	4534	F				
7	С	2000	999	М				
8	С	2001	3213	М				
9	С	2002	2345	М				
10	d	2000	1234	F				
11	d	2001	2343	F				
12	d	2002	33	F				
13	e	2000	2323	F				
14	e	2001	1923	F				
10	_	2002	224	_				

1									
	id	income2000	income2001	income2002	sex				
1	a	3213	2080	4534	F				
2	b	1234	1000	5000	М				
3	С	999	3213	2345	М				
4	d	1234	2343	33	F				
5	e	2323	1923	234	F				

reshape wide income, i(id) j(year)

```
reshape wide income, i(id) j(year)
(note: j = 2000 2001 2002)
                                    long
                                                 wide
Data
Number of obs.
                                                     5
                                       15
Number of variables
                                                     5
 variable (3 values)
                                                 (dropped)
                                    year
xij variables:
                                                 income2000 income2001 income2002
                                  income
```

Loops in STATA

- Use loops wisely can save you a lot of time.
- We will demonstrate many cases where loops may be appropriate.

foreach

Example 1

```
famid incl
                                                  inc6
               inc2
                       inc3
                                inc4
                                         inc5
                                                          inc7
                                                                   inc8
                                                                            inc9
                                                                                   inc10
                                                                                             inc11
                                                                                                       inc12
      3281
               3413
                       3114
                                2500
                                         2700
                                                  3500
                                                          3114
                                                                   3319
                                                                            3514
                                                                                     1282
                                                                                              2434
                                                                                                        2818
2
      4042
               3084
                       3108
                                3150
                                         3800
                                                  3100
                                                          1531
                                                                   2914
                                                                            3819
                                                                                     4124
                                                                                              4274
                                                                                                        4471
      6015
               6123
                                                  6200
                                                          6186
                                                                   6132
                                                                            3123
                                                                                     4231
                                                                                                        6215
                       6113
                                6100
                                         6100
                                                                                              6039
```

 Suppose you want to compute the amount of tax (10%) paid for each month, you can do this:

```
generate taxinc1 = inc1 * .10
generate taxinc2 = inc2 * .10
generate taxinc3 = inc3 * .10
generate taxinc4 = inc4 * .10
generate taxinc5 = inc5 * .10
generate taxinc6 = inc6 * .10
generate taxinc7 = inc7 * .10
generate taxinc8 = inc8 * .10
generate taxinc9 = inc9 * .10
generate taxinc10= inc10 * .10
generate taxinc11= inc11 * .10
generate taxinc12= inc12 * .10
```

 But what if you have a thousand variables to do? For example, 50 years of data.

Example 1 (con't)

```
foreach var of varlist inc1-inc12 {
  generate tax`var' = `var' * .10
}
```

- The first time we cycle through the statements, the value of var will be inc1 and the second time the value of var will be inc2 and so on.
- `var' . The ` is the quote right below the ~ on keyborad and the ' is the quote below the " on keyboard.
- The first time through the loop, `var' is replaced with inc1, so the statement:
- generate tax`var' = `var' * .10 becomes
- generate taxinc1 = inc1 * .10

Example 2

 Assume the hypothetical income data below, and you want to generate a variable containing the cumulated income (e.g. when calculating Gini coefficient).

	id	income			id	income			id	income	cumulated	
1	a	200	sort income	1	b	135		1	b	135	135	
2	b	135		2	a	200	_	2	a	200	335	
3	С	1876		3	h	321		3	h	321	656	
4	d	999		4	e	435		4	e	435	1091	
5	e	435			5	d	999		5	d	999	2090
6	f	1256		6	f	1256	_	6	f	1256	3346	
7	g	3257		7	С	1876		7	С	1876	5222	
8	h	321		8	g	3257		8	g	3257	8479	
			_				_					

```
gen cumulated = income[1] in 1
local i=2
while `i' < 9 {
replace cumulated = income[`i'] + cumulated[`i'-1] in `i'
local i = `i'+1
}</pre>
```

- Very useful in analyzing NHI data with many years.
- For example, I want to create a variable determining each subject's income group for 2000~2009:
- local j=0
- while `j'<=9
- use "my ID 200`j", clear
- gen income=1 if ins_amt<=40000
- replace income =2 if ins_amt>40000
- save "my ID 200`j", replace
- Local j=`j'+1

Commands/Syntax covered

- findit
- set mem, set maxvar, set matsize
- compress
- clear
- use
- log using
- inputst
- save
- #delimit;
- label
- List
- rename
- tabstat
- tab

- keep
- drop
- generate (or gen)
- replace
- sort and by
- merge
- append
- Date (DMY etc)
- duplicates drop
- regexs, regexm
- encode, decode
- destring, tostring
- Collapse
- Reshape
- forach, local

In class exercise

- Use the SAS NHI id and cd files provided, do the following:
- 1. Transfer the two SAS files into STATA format.
- 2. Generate 3 new variables in id_2005 containing
- (1) How many people did not have any claim in 2005 (ans:478).
 - (2) mean number of outpatient visited for those who had a claim (ans:9.39).
 - (3) 2005 average outpatient costs by person (for those who had at least one utilization), just use t_amt. (calculate one mean) (ans:837.5)
 - (4) How many people had a "250" diagnose (including all extensions) in any of the three diagnosis (acode_icd9_1, acode_icd9_2, acode_icd9_3)? (ans:210)
 - You must show me your do-file, and the last command should be summarizing the three new variables you created)
- 學統計軟體就只有持續的練習,沒有捷徑!

STATA CRASH COURSE

STATISTICAL TESTS AND REGRESSIONS (檢定與迴歸分析)

t-test

ttest mpg==25 (one-sample mean-comparison test)

```
ttest mpg==25
One-sample t test
/ariable
                                 Std. Err.
                                             Std. Dev.
                                                          [95% Conf. Interval]
              Obs
                         Mean
               74
                      21.2973
                                  .6725511
                                             5.785503
                                                           19.9569
                                                                      22.63769
    mpg
   mean = mean(mpg)
                                                                  t = -5.5055
Ho: mean = 25
                                                 degrees of freedom =
   Ha: mean < 25
                               Ha: mean != 25
                                                               Ha: mean > 25
Pr(T < t) = 0.0000
                           Pr(|T| > |t|) = 0.0000
                                                           Pr(T > t) = 1.0000
```

t-test

 ttest mpg1==mpg2 (two-sample mean-comparison test, paired)

```
ttest mpg1==mpg2
aired t test
ariable
              Obs
                         Mean
                                 Std. Err.
                                            Std. Dev.
                                                         [95% Conf. Interval]
                                 .7881701
                                             2.730301
                                                                     22.73475
   mpg1
               12
                           21
                                                         19.26525
                                 .9384465
                                             3.250874
   mpg2
               12
                        22.75
                                                         20.68449
                                                                     24.81551
   diff
               12
                        -1.75
                                 .7797144
                                              2.70101
                                                         -3.46614
                                                                    -.0338602
    mean(diff) = mean(mpg1 - mpg2)
                                                                 t = -2.2444
Ho: mean(diff) = 0
                                                degrees of freedom =
                                                                           11
Ha: mean(diff) < 0 Ha: mean(diff) != 0
                                                          Ha: mean(diff) > 0
                          Pr(|T| > |t|) = 0.0463
Pr(T < t) = 0.0232
                                                           Pr(T > t) = 0.9768
```

- Or:
- ttest mpg1 == mpg2, unpaired (for unpaired data)

t-test

22

23

24

27

21

23

• ttest mpg. bv(treated) (two-group mean-comparison test

	liesi i	iiipg,	Dythe	ateu) (two-gr	oup me		прапъс	<i>)</i>
	mpg	treated							
1	20	0	. ttest mpq	g, by(treat	ed)				
2	23	0							
3	21	0	Two-sample	t test wit	h equal var	lances			
4	25	0	Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Int
5	18	0							
6	17	0	0	12	21	.7881701	2.730301	19.26525	22
7	18	0	1	12	22.75	.9384465	3.250874	20.68449	24
8	24	0	combined	24	21.875	.6264476	3.068954	20.57909	23
9	20	0	Johnsanda		21.070	10204470	0.000304	20107303	
10	24	0	diff		-1.75	1.225518		-4.291568	.79
11	23	0							
12	19	0	diff = Ho: diff =	mean(0) -:	mean(1)		dograce	t of freedom	= -:
13	24	1	Ho. dill -	O			degrees	OI Treedom	_
14	25	1	Ha: dif	ff < 0		Ha: diff !=	0	Ha: d	iff:
15	21	1	Pr(T < t)	= 0.0837	Pr($T \mid > t \rangle = 0$	0.1673	Pr(T > t	.) =
16	22	1							
17	23	1				41			ı
18	18	1	TYou ca	an alw	avs us	se the p	ull-dow	vn men	u.
19	17	1				•			•
20	28	1	□habit:	alwav	S CODV	the co	mmand	JOV OT	ır
21	24	1			I J			, , ,	-

but do-files.

erval]

73475 81551

.17091

915684

1.4280

0.9163

Chi-square test

tabulate region agecat, chi2

. tabulate :	region agecat, o	chi2		
Census Region	19-29	agecat 30-34	35+	Total
NE N Cntrl South West	46 162 139 160	83 92 68 73	37 30 43 23	166 284 250 256
Total P	507 earson chi2(6) :	316 61.2877	133 Pr = 0.000	956

tabulate region agecat, exact

ANOVA

anova write prog (one-way)

	prog	write
1	general	52
2	vocation	59
3	general	33
4	vocation	44
5	academic	52
6	academic	52
7	general	59
8	academic	46
9	general	57
10	academic	55
11	vocation	46
12	academic	65
13	academic	60
14	academic	63
15	academic	57
16	general	49
17	academic	52
18	general	57
19	academic	65
20	general	39

. anova write	prog					
		Number of obs Root MSE			squared j R-squared	= 0.1776 = 0.1693
	Source	Partial SS	df	MS	F	Prob > F
	Model	3175.69786	2	1587.84893	21.27	0.0000
	prog	3175.69786	2	1587.84893	21.27	0.0000
	Residual	14703.1771	197	74.635417		
	Total	17878.875	199	89.843593		

anova write prog sex sex*prog (two-way)

Frequently used regressions

- OLS (reg)
- Logistic (logit)
- Probit (probit)
- Ordered logit (ologit)
- Ordered probit (oprobit)
- Multinomial logit (mlogit)
- Poisson regression (poisson)

- Negative binomial regression (nbreg)
- Seemingly unrelated regression (sureg)

Linear regression (OLS)

- regress y x1 x2
- reg mpg weight length
- (Y=mpg, X_1 = weight, X_2 =length)
- (results can simply be copied and pasted to Excel)

```
reg mpg weight length
                                                       Number of obs =
                             df
    Source
                   ss
                                      MS
                                                       F(2, 71) =
                                                                         69.34
    Model
              1616.08062
                             2
                                 808.040312
                                                      Prob > F
                                                                        0.0000
  Residual
              827.378835
                                  11.653223
                                                      R-squared
                             71
                                                                        0.6614
                                                      Adj R-squared =
                                                                        0.6519
     Total
              2443.45946
                                 33.4720474
                                                       Root MSE
                                                                        3.4137
                             73
                                                          [95% Conf. Interval]
                  Coef.
                          Std. Err.
                                               P>|t|
       mpg
    weight
              -.0038515
                            .001586
                                       -2.43
                                               0.018
                                                         -.0070138
                                                                     -.0006891
    length
                                       -1.44
                                               0.155
              -.0795935
                           .0553577
                                                         -.1899736
                                                                       .0307867
               47.88487
                            6.08787
                                        7.87
                                               0.000
                                                            35.746
                                                                      60.02374
     cons
```

Creating dummy variables (xi:)

. tab own			
own	Freq.	Percent	Cum.
Christy	16	21.62	21.62
Hu	21	28.38	50.00
Jack	22	29.73	79.73
Nicole	11	14.86	94.59
var14	4	5.41	100.00
Total	74	100.00	

	own	_Iown_2	_Iown_3	_Iown_4	_Iown_5
1	Christy	0	0	0	0
2	Jack	0	1	0	0
3	Jack	0	1	0	0
4	Nicole	0	0	1	0
5	Hu	1	0	0	0
6	Hu	1	0	0	0
7	Jack	0	1	0	0
8	Christy	0	0	0	0
9	Nicole	0	0	1	0
10	Christy	0	0	0	0
11	Hu	1	0	0	0
12	Hu	1	0	0	0
13	Jack	0	1	0	0
14	var14	0	0	0	1
15	Christy	0	0	0	0
16	Jack	0	1	0	0
17	Jack	0	1	0	0
18	Nicole	0	0	1	0
19	Hu	1	0	0	0
20	Hu	1	0	0	0
21	Jack	0	1	0	0
22	Christy	0	0	0	0

- xi: regress mpg weight i.own
- (STATA 15 does not require you to type xi)

. xi: regress	mpg weight i	.own				
i.own	_Iown_1-5		(_Iown_1	for own	==Christy omit	ted)
Source	SS	df	MS		Number of obs	
Model Residual	1645.73486 797.724596		29.146973 1.7312441		Prob > F R-squared	= 0.6735
Total	2443.45946	73 33	3.4720474		Adj R-squared Root MSE	
mpg	Coef.	Std. Err	. t	P> t	[95% Conf.	Interval]
weight	0059294	.0005201	-11.40	0.000	0069672	0048916
_Iown_2	-1.231024	1.14298	-1.08	0.285	-3.511804	1.049757
_Iown_3	.308643	1.13061	0.27	0.786	-1.947454	2.56474
_Iown_4	-1.69187	1.348067	-1.26	0.214	-4.381895	.9981548
_Iown_5	.9945885	1.914804	0.52	0.605	-2.826343	4.81552
_cons	39.65625	1.712349	23.16	0.000	36.23931	43.07319

Post estimation for regress

twoway (scatter yhat mpg)

For graphics, simply use the pull-down menu and then copy the commands.

 predict resid, residual → this predicts the residual of the estimation.

Logistic regressions

• logit y $x_1 x_2 \rightarrow$ this gives you the raw estimates

```
logit foreign mpg weight
teration 0: log likelihood = -45.03321
teration 1: log likelihood = -29.898968
teration 2: log likelihood = -27.495771
teration 3: log likelihood = -27.184006
teration 4: log likelihood = -27.175166
            log\ likelihood = -27.175156
teration 5:
ogistic regression
                                              Number of obs
                                                                       74
                                              LR chi2(2)
                                                                    35.72
                                              Prob > chi2 =
                                                                   0.0000
\log likelihood = -27.175156
                                              Pseudo R2
                                                                   0.3966
   foreign
                  Coef.
                         Std. Err.
                                            P>|z|
                                                      [95% Conf. Interval]
              -.1685869
                         .0919174
                                     -1.83
                                            0.067
                                                     -.3487418
                                                                   .011568
       mpg
    weight
              -.0039067
                         .0010116
                                     -3.86
                                            0.000
                                                     -.0058894
                                                                  -.001924
     cons
               13.70837
                                                      4.851864
                         4.518707
                                      3.03
                                             0.002
                                                                  22.56487
```

Logistic regressions

• logistic y x1 x2 \rightarrow this gives you the odds ratios.

```
logistic foreign mpg weight
ogistic regression
                                                    Number of obs
                                                    LR chi2(2)
                                                                            35.72
                                                    Prob > chi2
                                                                           0.0000
\log likelihood = -27.175156
                                                    Pseudo R2
                                                                           0.3966
    foreign
               Odds Ratio
                            Std. Err.
                                                  P>|z|
                                                             [95% Conf. Interval]
                                            \mathbf{z}
                                         -1.83
                                                  0.067
                 .8448578
                             .0776572
                                                             .7055753
                                                                         1.011635
     weight
                 .9961009
                             .0010077
                                         -3.86
                                                  0.000
                                                             .9941279
                                                                          .9980779
```

- predict phat

 the default, calculates the probability of a positive outcome.
- xb calculates the linear prediction.
- stdp calculates the standard error of the linear prediction.

Interaction terms

- reg Y x##z (full specification)
- reg Y c.x##z
- reg Y x z x#z (same as the full specification)
- reg Y x x#z (simple effect, same model, different representation)
- reg Y z x#z (simple effect, same model, different representation)

Example

- COCI=0,1,2,3
- AGE=1,2,3

. reg ERQ i.CO	CI_G_##i.AGE_G					
Source	SS	df M	S		mber of obs = 11, 30553) =	
Model Residual	435.840419 78607.9916 3	11 39.621 0553 2.5728		Pr R-	ob > F =	0.0000
Total	79043.832 3	0564 2.5861	7432		j R-squared = ot MSE =	
ERQ	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
COCI G						
1	.3553899	.1043324	3.41	0.001	.150894	.5598857
2	.270629	.1070403	2.53	0.011	.0608255	.4804325
3	025002	.077158	-0.32	0.746	1762349	.126231
AGE G						
	.1282751	.055023	2.33	0.020	.0204277	.2361226
3	.1836687	.0568497	3.23	0.001	.072241	.2950965
COCI G #AGE G						
1 2	2577499	.1109142	-2.32	0.020	4751462	0403535
1 3	1001503	.1167473	-0.86	0.391	3289799	.1286793
2 2	3089093	.1135565	-2.72	0.007	5314847	0863338
2 3	1178965	.1184281	-1.00	0.319	3500205	.1142275
3 2	1259063	.0821819	-1.53	0.126	2869862	.0351736
3 3	0355818	.085717	-0.42	0.678	2035907	.132427
_cons	.3155779	.0508505	6.21	0.000	.2159089	.4152469

reg FRO i CO	CI G i.COCI G #	Hi ACE C				
. reg Ekg 1.co	CI_G 1.COCI_G_1	T.AGE_G_				
Source	SS	df M	S	Nii	mber of obs =	30565
200200					11, 30553) =	
Model	435.840419	11 39.621	8563		ob > F =	
Residual	78607.9916 30				squared =	
					j R-squared =	
Total	79043.832 30	0564 2.5861	7432		ot MSE =	
ERQ	Coef.	Std. Err.	t	P> t	[95% Conf.	<pre>Interval]</pre>
COCI_G_						
1	.3553899	.1043324	3.41	0.001	.150894	.5598857
2	.270629	.1070403	2.53	0.011	.0608255	.4804325
3	025002	.077158	-0.32	0.746	1762349	.126231
COCI_G_#AGE_G_						
0 2	.1282751	.055023	2.33	0.020	.0204277	.2361226
0 3	.1836687	.0568497	3.23	0.001	.072241	.2950965
1 2	1294748	.0963038	-1.34	0.179	3182341	.0592846
1 3	.0835184	.1019708	0.82	0.413	1163487	.2833855
2 2	1806341	.0993355	-1.82	0.069	3753359	.0140676
2 3	.0657722	.1038909	0.63	0.527	1378584	.2694028
3 2	.0023689	.0610436	0.04	0.969	1172792	.1220169
3 3	.1480869	.0641522	2.31	0.021	.0223458	.2738279
_cons	.3155779	.0508505	6.21	0.000	.2159089	.4152469

. reg ERQ i.AGE_G_ i.COCI_G_#i.AGE_G_

Source	SS	df M	S		umber of obs =	
					(11, 30553) =	
Model	435.840419	11 39.621			cob > F =	
Residual	78607.9916 3	0553 2.5728	4036		-squared =	
_					dj R-squared =	
Total	79043.832 3	0564 2.5861	7432	Ro	oot MSE =	1.604
ERÇ	Coef.	Std. Err.	t	P> t	[95% Conf.	<pre>Interval]</pre>
AGE G						
2	.1282751	.055023	2.33	0.020	.0204277	.2361226
3	.1836687	.0568497	3.23	0.001	.072241	.2950965
COCI G #AGE G						
1 1	.3553899	.1043324	3.41	0.001	.150894	.5598857
1 2	.09764	.037639	2.59	0.009	.0238659	.171414
1 3	.2552395	.0523897	4.87	0.000	.1525535	.3579255
2 1	.270629	.1070403	2.53	0.011	.0608255	.4804325
2 2	0382803	.0379137	-1.01	0.313	1125926	.0360321
2 3	.1527325	.0506713	3.01	0.003	.0534146	.2520504
3 1	025002	.077158	-0.32	0.746	1762349	.126231
3 2	1509082	.0282931	-5.33	0.000	2063639	0954526
3 3	0605838	.0373368	-1.62	0.105	1337655	.0125979
cons	.3155779	.0508505	6.21	0.000	.2159089	.4152469

Change reference group

regress Y ib2.edu ib3.source

Generalized estimating equation (GEE)

- GEEs are one of the methods of analysis that account for
- correlated observations.
- Examples repeated observations on individuals over
- time, clustered observations (e.g. data grouped by family,
- general practice etc).
- GEEs use robust estimation of standard errors to allow for clustering.

Example

- webuse union
- xtset id year

```
xtset id year
panel variable: id (unbalanced)
time variable: year, 70 to 88, but with gaps
delta: 1 unit
```

- To fit a logit GEE:
- xtgee union age grade not_smsa south, family(binomial) link(logit)

```
xtgee union age grade not smsa south, family(binomial) link(logit)
Iteration 1: tolerance = .07327489
Iteration 2: tolerance = .00519852
Iteration 3: tolerance = .00024049
Iteration 4: tolerance = .00001086
Iteration 5: tolerance = 4.907e-07
                                                  Number of obs
GEE population-averaged model
                                                                            26200
Group variable:
                                         id
                                                  Number of groups
                                                                             4434
Link:
                                      logit
                                                  Obs per group: min =
Family:
                                   binomial
                                                                              5.9
                                                                  avg =
Correlation:
                               exchangeable
                                                                 max =
                                                                               12
                                                  Wald chi2(4)
                                                                           229.87
                                                  Prob > chi2
Scale parameter:
                                                                           0.0000
                                          1
                             Std. Err.
                                                            [95% Conf. Interval]
       union
                    Coef.
                                            \mathbf{z}
                                                  P > |z|
                             .0020824
                                                  0.000
                 .0098801
                                          4.74
                                                            .0057986
                                                                         .0139616
         age
       grade
                 .0606146
                             .0108383
                                          5.59
                                                  0.000
                                                            .0393719
                                                                         .0818573
   not smsa
                -.1257349
                             .0483488
                                         -2.60
                                                  0.009
                                                           -.2204969
                                                                        -.0309729
       south
                -.5747081
                              .048645
                                        -11.81
                                                  0.000
                                                           -.6700506
                                                                        -.4793656
                -2.163394
                             .1484472
                                        -14.57
                                                           -2.454345
                                                                        -1.872443
                                                  0.000
       cons
```

Example of command: xtgee score age education location [fweight = aaa], family(binomial) link(logit) exposure(treat) corr(unstructured) vce(robust)

Cox proportional hazards model

Assume the dataset:

	failtime	load	bearings
1	100	15	0
2	140	15	1
3	97	20	0
4	122	20	1
5	84	25	0
6	100	25	1
7	54	30	0
8	52	30	1
9	40	35	0
10	55	35	1
11	22	40	0
12	30	40	1

stset failtime → Declare data to be survival-time data

stcox load bearings → Fit Cox proportional hazards model

```
stset failtime
    failure event: (assumed to fail at time=failtime)
obs. time interval: (0, failtime)
                   failure
exit on or before:
      12 total obs.
      0 exclusions
      12 obs. remaining, representing
      12 failures in single record/single failure data
     896 total analysis time at risk, at risk from t =
                           earliest observed entry t =
                                last observed exit t =
                                                            140
Cox regression -- Breslow method for ties
                                                Number of obs =
No. of subjects =
                          12
                                                                        12
No. of failures =
                         12
Time at risk =
                         896
                                                LR chi2(2)
                                                                    23.39
Log likelihood = -8.577853
                                                Prob > chi2
                                                                    0.0000
```

_t	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
					.1419999 -5.053723	

Kaplan-Meier

- webuse drug2b
- sts graph, by(drug)

