SAT vs. CP

Mohamed Siala https://siala.github.io

INSA-Toulouse & LAAS-CNRS

January 13, 2022

• A constraint is a finite relation (i.e., subset of a Cartesian product)

- A constraint is a finite relation (i.e., subset of a Cartesian product)
- A constraint can be expressed in extension (table constraint) or intention (expression)

- A constraint is a finite relation (i.e., subset of a Cartesian product)
- A constraint can be expressed in extension (table constraint) or intention (expression)
- A constraint network is defined by a triplet P = (X, D, C) where
 - X is a set of variables
 - D is a set of domains for the variables in X
 - C is a set of constraints

- A constraint is a finite relation (i.e., subset of a Cartesian product)
- A constraint can be expressed in extension (table constraint) or intention (expression)
- A constraint network is defined by a triplet P = (X, D, C) where
 - X is a set of variables
 - D is a set of domains for the variables in X
 - C is a set of constraints
- The constraint satisfaction problem (CSP) is the problem of deciding if a constraint network has a solution

- A constraint is a finite relation (i.e., subset of a Cartesian product)
- A constraint can be expressed in extension (table constraint) or intention (expression)
- A constraint network is defined by a triplet P = (X, D, C) where
 - X is a set of variables
 - D is a set of domains for the variables in X
 - C is a set of constraints
- The constraint satisfaction problem (CSP) is the problem of deciding if a constraint network has a solution
- Mostly solvable by backtracking algorithms (Search and Filtering)

Search

Search

• Search: decisions to explore the search tree

Search

- Search: decisions to explore the search tree
- Search in CP= variable ordering + value ordering

Search

- Search: decisions to explore the search tree
- Search in CP= variable ordering + value ordering
- Standard or customized

Search

- Search: decisions to explore the search tree
- Search in CP= variable ordering + value ordering
- Standard or customized

Variable Ordering

'Fail-first' principle [Haralick and Elliott, 1980]:

"To succeed, try first where you are most likely to fail"

Search

- Search: decisions to explore the search tree
- Search in CP= variable ordering + value ordering
- Standard or customized

Variable Ordering

'Fail-first' principle [Haralick and Elliott, 1980]:

"To succeed, try first where you are most likely to fail"

Value Ordering

'Succeed-first' [Geelen, 1992]:

"Follow the best chances leading to a solution"

• Filtering (propagation/pruning): inferences based on the current state

- Filtering (propagation/pruning): inferences based on the current state
- Constraint \leftrightarrow a propagator

- Filtering (propagation/pruning): inferences based on the current state
- Constraint \leftrightarrow a propagator
- Propagators are executed sequentially before taking any decision

- Filtering (propagation/pruning): inferences based on the current state
- Constraint \leftrightarrow a propagator
- Propagators are executed sequentially before taking any decision
- The level of pruning ↔ local consistency (for instance, bound consistency, arc consistency, etc)

- Filtering (propagation/pruning): inferences based on the current state
- Constraint \leftrightarrow a propagator
- Propagators are executed sequentially before taking any decision
- The level of pruning ↔ local consistency (for instance, bound consistency, arc consistency, etc)

Arc Consistency

Let C be a constraint and D be a list of domains for the variables in the scope of C.

- Filtering (propagation/pruning): inferences based on the current state
- Constraint \leftrightarrow a propagator
- Propagators are executed sequentially before taking any decision
- The level of pruning ↔ local consistency (for instance, bound consistency, arc consistency, etc)

Arc Consistency

Let C be a constraint and D be a list of domains for the variables in the scope of C.

C is Arc Consistent (AC) iff for every variable x in the scope of C, for every value $v \in D(x)$, there exists an assignment w in D satisfying C in which v is assigned to x

• A Filtering algorithm associated to a constraint C takes as input a list of domains (for the variables in the scope of C) and returns a list of domains that are smaller or identical to the original domains.

- A Filtering algorithm associated to a constraint C takes as input a list of domains (for the variables in the scope of C) and returns a list of domains that are smaller or identical to the original domains.
- For a filtering algorithm to be correct: no consistent value should be removed (by consistent we mean belongs to a satisfying assignment).

- A Filtering algorithm associated to a constraint C takes as input a list of domains (for the variables in the scope of C) and returns a list of domains that are smaller or identical to the original domains.
- For a filtering algorithm to be correct: no consistent value should be removed (by consistent we mean belongs to a satisfying assignment).
- If all the domains are singleton, the propagator must be able to check if the assignment corresponds to a solution or not.

• CP: rich modelling language, powerful filtering, dedicated search strategies

- CP: rich modelling language, powerful filtering, dedicated search strategies
- SAT: simple input format, clause learning and backjumping, autonomous search

- CP: rich modelling language, powerful filtering, dedicated search strategies
- SAT: simple input format, clause learning and backjumping, autonomous search
- Every CSP can be encoded into SAT

- CP: rich modelling language, powerful filtering, dedicated search strategies
- SAT: simple input format, clause learning and backjumping, autonomous search
- Every CSP can be encoded into SAT
- When should we encode to SAT, when shouldn't we?

- CP: rich modelling language, powerful filtering, dedicated search strategies
- SAT: simple input format, clause learning and backjumping, autonomous search
- Every CSP can be encoded into SAT
- When should we encode to SAT, when shouldn't we?
- CP vs. SAT: a fundamental difference is the presence of global reasoning win CP.

• Decomposition is the task of reformulating a (global) constraint into smaller and simpler constraints.

- Decomposition is the task of reformulating a (global) constraint into smaller and simpler constraints.
- Take the example of AllDifferent: it can be decomposed into simple binary inequalities. **Remember the tutorial!**.

- Decomposition is the task of reformulating a (global) constraint into smaller and simpler constraints.
- Take the example of AllDifferent: it can be decomposed into simple binary inequalities. **Remember the tutorial!**.
- In general, decomposition makes the filtering weaker. We loose all the powerful filtering from the global constraints by decomposing.
- On the one hand, by decomposing into clauses, we loose the powerful filtering from CP

- Decomposition is the task of reformulating a (global) constraint into smaller and simpler constraints.
- Take the example of AllDifferent: it can be decomposed into simple binary inequalities. **Remember the tutorial!**.
- In general, decomposition makes the filtering weaker. We loose all the powerful filtering from the global constraints by decomposing.
- On the one hand, by decomposing into clauses, we loose the powerful filtering from CP
- Also the size of the encoding matters. An exponential encoding is better avoided!

- Decomposition is the task of reformulating a (global) constraint into smaller and simpler constraints.
- Take the example of AllDifferent: it can be decomposed into simple binary inequalities. **Remember the tutorial!**.
- In general, decomposition makes the filtering weaker. We loose all the powerful filtering from the global constraints by decomposing.
- On the one hand, by decomposing into clauses, we loose the powerful filtering from CP
- Also the size of the encoding matters. An exponential encoding is better avoided!
- On the other hand, clause learning in SAT is quite powerful to learn new clauses and to backjump in the search tree

- Decomposition is the task of reformulating a (global) constraint into smaller and simpler constraints.
- Take the example of AllDifferent: it can be decomposed into simple binary inequalities. **Remember the tutorial!**.
- In general, decomposition makes the filtering weaker. We loose all the powerful filtering from the global constraints by decomposing.
- On the one hand, by decomposing into clauses, we loose the powerful filtering from CP
- Also the size of the encoding matters. An exponential encoding is better avoided!
- On the other hand, clause learning in SAT is quite powerful to learn new clauses and to backjump in the search tree
- Can we find something that takes advantages from both worlds?

CP vs. SAT: To decompose or nor to decompose?

- Decomposition is the task of reformulating a (global) constraint into smaller and simpler constraints.
- Take the example of AllDifferent: it can be decomposed into simple binary inequalities. **Remember the tutorial!**.
- In general, decomposition makes the filtering weaker. We loose all the powerful filtering from the global constraints by decomposing.
- On the one hand, by decomposing into clauses, we loose the powerful filtering from CP
- Also the size of the encoding matters. An exponential encoding is better avoided!
- On the other hand, clause learning in SAT is quite powerful to learn new clauses and to backjump in the search tree
- Can we find something that takes advantages from both worlds? → Clause learning in CP

• Learning from conflict

- Learning from conflict
- Based on the notion of explanation

- Learning from conflict
- Based on the notion of explanation
- Generalized Nogoods [Katsirelos and Bacchus, 2005], Lazy Clause generation [Ohrimenko et al., 2009], Clause Learning in sequencing and scheduling problems [Siala, 2015], ...

- Learning from conflict
- Based on the notion of explanation
- Generalized Nogoods [Katsirelos and Bacchus, 2005], Lazy Clause generation [Ohrimenko et al., 2009], Clause Learning in sequencing and scheduling problems [Siala, 2015], ...

```
x_2 + x_{10} \ge 11 \land
x_3 + x_9 = 16 \wedge
x_5 \geq x_8 + x_9 \wedge
b \leftrightarrow (x_9 - x_4 = 14) \wedge
b \to (x_6 > 7) \land
b \rightarrow (x_6 + x_7 \leq 9) \wedge
x_{11} \geq x_9 + x_{10}
                                               30
   x_3
   x_4
                                               45
   x_5
                                               10
   x_6
   x_7
                           10
                                                   30
   x_8
```

 $x_1 + x_7 \ge 4 \land$

 $\begin{array}{ccc}
x_9 & 13 \\
x_9 & 13 \\
x_{10} & 0 \\
x_{11} & 15
\end{array}$

 $[x_1 = 1]$

10

16

13 16

 $\begin{array}{l} x_1+x_7 \geq 4 \wedge \\ x_2+x_{10} \geq 11 \wedge \end{array}$

 x_6

 x_8

 x_{0}

 $\begin{array}{ccc} x_{10} & 0 \\ x_{11} & 15 \end{array}$

10

30

$$[x_1 = 1] \rightarrow [x_7 > 3]$$

$$[\![x_1 = 1]\!] \to [\![x_7 \ge 3]\!]$$

 $[x_2 = 9]$

 $x_1 + x_7 \ge 4 \land$

$$[x_1 = 1] \rightarrow [x_7 \ge 3]$$

$$[x_2 = 9] \rightarrow [x_{10} \ge 2]$$

$$[x_1 = 1] \rightarrow [x_7 > 3]$$

$$[\![x_2=9]\!] \rightarrow [\![x_{10}\geq 2]\!]$$

$$[x_3 = 2]$$

$$[x_1 = 1] \rightarrow [x_7 > 3]$$

$$[x_2 = 9] \rightarrow [x_{10} \ge 2]$$

$$[x_3 = 2] \rightarrow [x_9 = 14]$$

$$\label{eq:continuous_series} \begin{split} [\![x_1 = 1]\!] &\to [\![x_7 \ge 3]\!] \\ [\![x_2 = 9]\!] &\to [\![x_{10} \ge 2]\!] \\ \\ [\![x_3 = 2]\!] &\to [\![x_9 = 14]\!] \to [\![x_{11} \ge 16]\!] \end{split}$$


```
x_1 + x_7 > 4 \wedge
x_2 + x_{10} \ge 11 \land
x_3 + x_9 = 16 \wedge
x_5 > x_8 + x_9 \wedge
b \leftrightarrow (x_0 - x_4 = 14) \wedge
b \to (x_6 \ge 7) \land
b \rightarrow (x_6 + x_7 < 9) \wedge
x_{11} \ge x_9 + x_{10}
  x_5
   x_6
                             10
  x_8
  x_9 \ 14 \ 14
  x_9 = 13
   x<sub>11</sub> 16
```

```
x_1 + x_7 > 4 \wedge
x_2 + x_{10} \ge 11 \wedge
x_3 + x_9 = 16 \wedge
x_5 > x_8 + x_9 \wedge
b \leftrightarrow (x_0 - x_4 = 14) \wedge
b \to (x_6 \ge 7) \land
b \rightarrow (x_6 + x_7 < 9) \wedge
x_{11} \ge x_9 + x_{10}
  x_5
  x_6
                            10
  x_8
  x_9 \ 14 \ 14
  x_9 = 13
  x_{10} \ 2 \ 3
  x_{11} \ 16
```

```
x_1 + x_7 > 4 \wedge
x_2 + x_{10} > 11 \wedge
x_3 + x_9 = 16 \wedge
x_5 > x_8 + x_9 \wedge
b \leftrightarrow (x_0 - x_4 = 14) \wedge
b \to (x_6 \ge 7) \land
b \rightarrow (x_6 + x_7 < 9) \wedge
x_{11} \ge x_9 + x_{10}
        0 0
                                                45
  x_5
   x_6
                           10
   x_7
                                                    30
  x_8
  x_9 14 14
  x_9 = 13
  x_{11} 16
```


• Conflict analysis: $[\![b=1]\!] \wedge [\![x_7 \geq 3]\!] \Rightarrow \bot$

- Conflict analysis: $[b=1] \land [x_7 \ge 3] \Rightarrow \bot$
- New clause: $\llbracket b \neq 1 \rrbracket \vee \llbracket x_7 \leq 2 \rrbracket$

```
x_1 + x_7 > 4 \wedge
x_2 + x_{10} > 11 \wedge
x_3 + x_9 = 16 \wedge
x_5 > x_8 + x_9 \wedge
b \leftrightarrow (x_0 - x_4 = 14) \wedge
b \to (x_6 \ge 7) \land
b \rightarrow (x_6 + x_7 < 9) \wedge
x_{11} > x_9 + x_{10}
                                                     45
   x_6
                              10
                                                          30
  x_8
```

$$[x_1 = 1] \rightarrow [x_7 > 3]$$

- Conflict analysis: $[b=1] \land [x_7 \ge 3] \Rightarrow \bot$
- New clause: $[b \neq 1] \lor [x_7 \leq 2]$
- Backtrack to level 1

```
\begin{array}{l} x_1+x_7 \geq 4 \wedge \\ x_2+x_{10} \geq 11 \wedge \\ x_3+x_9=16 \wedge \\ x_5 \geq x_8+x_9 \wedge \\ b \leftrightarrow (x_9-x_4=14) \wedge \\ b \rightarrow (x_6 \geq 7) \wedge \\ b \rightarrow (x_6+x_7 \leq 9) \wedge \\ x_{11} \geq x_9+x_{10} \end{array}
```


$$\llbracket x_1 = 1 \rrbracket \rightarrow \llbracket x_7 \ge 3 \rrbracket \longrightarrow \llbracket b = 0 \rrbracket$$

- Conflict analysis: $[b=1] \land [x_7 \ge 3] \Rightarrow \bot$
- New clause: $[b \neq 1] \vee [x_7 \leq 2]$
- Backtrack to level 1
- Propagate the learnt clause

```
\begin{array}{l} x_1 + x_7 \geq 4 \land \\ x_2 + x_{10} \geq 11 \land \\ x_3 + x_9 = 16 \land \\ x_5 \geq x_8 + x_9 \land \\ b \leftrightarrow (x_9 - x_4 = 14) \land \\ b \rightarrow (x_6 \geq 7) \land \\ b \rightarrow (x_6 + x_7 \leq 9) \land \\ x_{11} \geq x_9 + x_{10} \end{array}
```


$$\llbracket x_1 = 1 \rrbracket \rightarrow \llbracket x_7 > 3 \rrbracket \longrightarrow \llbracket b = 0 \rrbracket$$

- \bullet Conflict analysis: $[\![b=1]\!] \wedge [\![x_7 \geq 3]\!] \Rightarrow \bot$
- New clause: $[b \neq 1] \vee [x_7 \leq 2]$
- Backtrack to level 1
- Propagate the learnt clause
- Continue exploration

```
\begin{array}{l} x_1 + x_7 \geq 4 \wedge \\ x_2 + x_{10} \geq 11 \wedge \\ x_3 + x_9 = 16 \wedge \\ x_5 \geq x_8 + x_9 \wedge \\ b \leftrightarrow (x_9 - x_4 = 14) \wedge \\ b \rightarrow (x_6 \geq 7) \wedge \\ b \rightarrow (x_6 + x_7 \leq 9) \wedge \\ x_{11} \geq x_9 + x_{10} \end{array}
```


Conflict analysis

Algorithm 1: 1-UIP-with-Propagators

```
\begin{array}{ll} \mathbf{1} \  \, \Psi \leftarrow explain(\bot) \; ; \\ \mathbf{2} \  \, \mathbf{while} \; | \{q \in \Psi \mid level(q) = current \; level\} | > 1 \; \mathbf{do} \\ & \quad | \quad p \leftarrow \arg \max_q \{ \{rank(q) \mid level(q) = current \; level \; \wedge \; q \in \Psi \} ) \; ; \\ \mathbf{3} \quad | \quad \Psi \leftarrow \Psi \cup \{q \mid q \in explain(p) \wedge level(q) > 0\} \setminus \{p\} \; ; \\ & \quad \mathbf{return} \; \Psi \; ; \end{array}
```

• To enable clause learning in CP, every propagator must be able to explain their filtering in the form of clauses ("Lazy Clause Generation").

- To enable clause learning in CP, every propagator must be able to explain their filtering in the form of clauses ("Lazy Clause Generation").
- We distinguish two types of explanations:

- To enable clause learning in CP, every propagator must be able to explain their filtering in the form of clauses ("Lazy Clause Generation").
- We distinguish two types of explanations:
 - Explaining Failure
 - Explaining Domain filtering

- To enable clause learning in CP, every propagator must be able to explain their filtering in the form of clauses ("Lazy Clause Generation").
- We distinguish two types of explanations:
 - Explaining Failure
 - Explaining Domain filtering
- Example: Explain the constraint $X \leq Y$ with two scenarios (failure and propagation).

Exercise

- Let (x_1, \ldots, x_n) be a sequence of Boolean variables, and let d be a positive integer.
- The CARDINALITY (x_1, \ldots, x_n, d) constraint holds iff exactly d variables from the sequence (x_1, \ldots, x_n) are true.
- Write a filtering algorithm for CARDINALITY.
- What is the time complexity?
- Does it enforce arc consistency?
- Explain the CARDINALITY filtering.

Correction

```
Algorithm 4: CARDINALITY([x_1, ..., x_n], d)
  if |\{x_j \mid \mathcal{D}(x_j) = \{1\}\}| > d then
1 | D ←⊥;
  if |\{x_j \mid \mathcal{D}(x_j) = \{0\}\}| > n - d then
2 | D ←⊥;
  if |\{x_i \mid \mathcal{D}(x_i) = \{1\}\}| = d then
       foreach i \in \{1..n\} do
            if \mathcal{D}(x_i) = \{0, 1\} then
              \mathcal{D}(x_i) \leftarrow \{0\};
3
  else
       if |\{x_i \mid \mathcal{D}(x_i) = \{0\}\}| = n - d then
            foreach i \in \{1..n\} do
                 if \mathcal{D}(x_i) = \{0,1\} then
                   \mathcal{D}(x_i) \leftarrow \{1\};
4
  return \mathcal{D};
```


• Failure 1:

$$x^1 \wedge x^2 \wedge x^{d+1} \rightarrow \bot$$

Where $D(x^i) = \{1\}$

• Failure 1:

$$x^1 \wedge x^2 \wedge x^{d+1} \rightarrow \bot$$

Where $D(x^i) = \{1\}$

• Failure 2:

$$\neg x^1 \wedge \neg x^2 \wedge \neg x^{n-d+1} \rightarrow \bot$$

Where
$$D(x^i) = \{0\}$$

• Explaining the propagating the value 1: the conjunction of all the assigned variables

• Failure 1:

$$x^1 \wedge x^2 \wedge x^{d+1} \rightarrow \bot$$

Where $D(x^i) = \{1\}$

• Failure 2:

$$\neg x^1 \land \neg x^2 \land \neg x^{n-d+1} \rightarrow \bot$$

Where
$$D(x^i) = \{0\}$$

- Explaining the propagating the value 1: the conjunction of all the assigned variables
- Explaining the propagating the value 0: the conjunction of all the assigned variables

• SAT, CP, MIP, (also, MaxSAT, SMT, QBF, ASP, Pseudo-Boolean) are efficient tools to solve hard combinatorial problems

- SAT, CP, MIP, (also, MaxSAT, SMT, QBF, ASP, Pseudo-Boolean) are efficient tools to solve hard combinatorial problems
- When you master one or few techniques, it opens the door to work on diverse problems. The more you apply to different problems, the more you learn

- SAT, CP, MIP, (also, MaxSAT, SMT, QBF, ASP, Pseudo-Boolean) are efficient tools to solve hard combinatorial problems
- When you master one or few techniques, it opens the door to work on diverse problems. The more you apply to different problems, the more you learn
- The choice depends on the problem at hand (is it easy to linearise? what is the size of the SAT encoding? Can we use/invent global constraints?, etc)

- SAT, CP, MIP, (also, MaxSAT, SMT, QBF, ASP, Pseudo-Boolean) are efficient tools to solve hard combinatorial problems
- When you master one or few techniques, it opens the door to work on diverse problems. The more you apply to different problems, the more you learn
- The choice depends on the problem at hand (is it easy to linearise? what is the size of the SAT encoding? Can we use/invent global constraints?, etc)
- You don't need to implement a solver: use existing ones! check the different solver competitions

- SAT, CP, MIP, (also, MaxSAT, SMT, QBF, ASP, Pseudo-Boolean) are efficient tools to solve hard combinatorial problems
- When you master one or few techniques, it opens the door to work on diverse problems. The more you apply to different problems, the more you learn
- The choice depends on the problem at hand (is it easy to linearise? what is the size of the SAT encoding? Can we use/invent global constraints?, etc)
- You don't need to implement a solver: use existing ones! check the different solver competitions
- Hybrid approaches are the future: take advantage of diverse methodologies

- SAT, CP, MIP, (also, MaxSAT, SMT, QBF, ASP, Pseudo-Boolean) are efficient tools to solve hard combinatorial problems
- When you master one or few techniques, it opens the door to work on diverse problems. The more you apply to different problems, the more you learn
- The choice depends on the problem at hand (is it easy to linearise? what is the size of the SAT encoding? Can we use/invent global constraints?, etc)
- You don't need to implement a solver: use existing ones! check the different solver competitions
- Hybrid approaches are the future: take advantage of diverse methodologies

References I

Katsirelos, G. and Bacchus, F. (2005).

Generalized NoGoods in CSPs.

In Proceedings of the 20th National Conference on Artificial Intelligence, AAAI'05, and the 17th Conference on Innovative Applications of Artificial Intelligence, IAAI'05, Pittsburgh, Pennsylvania, USA, pages 390–396.

Ohrimenko, O., Stuckey, P. J., and Codish, M. (2009).

Propagation via Lazy Clause Generation.

Constraints, 14(3):357-391.

Siala, M. (2015).

Search, propagation, and learning in sequencing and scheduling problems. (Recherche, propagation et apprentissage dans les problèmes de séquencement et d'ordonnancement).

PhD thesis, INSA Toulouse, France.