Clonagem Gênica

Alan Silva

Clonagem Gênica

- Sinônimos: DNA recombinante ou Engenharia Genética
 - Combinar dois ou mais fragmentos de DNA diferentes
 - Replicar esse DNA exógeno em um organismo (vetor).
- Vetores de Clonagem
 - Moléculas de DNA que levam o DNA alvo até o hospedeiro
 - Componentes básicos:
 - Sequência que permita sua replicação no hospedeiro
 - Local de clonagem para inserção de DNA exógeno (sítio de clonagem)
 - Marcador seletivo: seleção de hospedeiros contendo o vetor
 - Ser de fácil isolamento

Fonte: ThermoFisher

Clonagem Gênica

- Tipos de vetores
 - Plasmídeos: DNA circular de bactérias (~10 kb)
 - Fagos: vírus que infectam e transmitem DNA (~40 kb)
 - Cosmídeos: plasmídeo híbrido com DNA de fago (~40 kb)
 - BACS/YACS: cromossomos artificiais de bactérias e leveduras (~300 kb)

Plasmídeos

- Replicação, transdução, expressão.
- Precisam de uma região *ori* para replicar na bactéria
- Procariotos ou eucariotos: *ori* e genes compatíveis
- Vamos falar de plasmídeos para clonagem e replicação.

Como entender um plasmídeo: pUC18

- Características
 - Pequeno: permite montagem de muitos fragmentos
 - Sem genes para toxinas
 - Possui uma *ori* procariótica
 - Possui um sítio múltiplo de clonagem (MCS)
 - Possui marcador seletivo para resistência à ampicilina
 - Possui sistema de seleção por colônias brancas/azuis

Fonte: ThermoFisher

Sistema de seleção de colônias Azul/Branco

- Gene LacZ
 - Codifica uma β-galasidosidade
 - Clonar em *E. coli* compatível
 - Crescer as colônias em meio com análogo da lactose (X-gal) e um ativador do gene (IPTG)
 - Resultado:
 - MCS vazio: enzima produzida, converte x-gal em 5-bromo-4-cloro-indoxil que dimeriza e forma pigmento azul
 - MCS contendo gene: enzima não produzida, colônia translúcida.

Sistema de seleção com Plasmídeo Suicida

- pJET1.2
 - Contém o MCS dentro do gene que codifica uma enzima de restrição que fragmenta o genoma bacteriano (eco47IR)
 - MCS contém sítios de restrição ou ponto de inserção cego (blunt)
 - Apenas colônias com inserto
 - MCS vazio: enzima produzida e mata a bactéria
 - MCS contendo DNA: enzima não é produzida e a colônia é formada

Como ligar um fragmento a um plasmídeo

- Fragmento a ser ligado
 - Retirar da fonte digerindo e purificando ou via PCR
 - Via digestão: conferir enzima(s), digerir e purificar antes de usar
 - Via PCR: adicionar sítio de restrição e bases extras nos primers, amplificar, digerir e purificar antes do uso
- Plasmídeo receptor
 - Plasmídeo "novo" ou "reutilizado"
 - Novo: linearizar com enzimas de digestão e purificar antes do uso Reutilizado: digerir para separar o *backbone* do fragmento que deseja remover, separar por eletroforese e purificar a banda do plasmídeo
- Ligação
 - Plasmídeo + fragmento (1:1 até 1:5) + buffer + T4 ligase
 - Utilizar 1:1 se o fragmento tiver mesmo tamanho do plasmídeo

Estudo de caso: Montagem de Cassete de RNAi

- Situação Ideal: vetor pSilent1
 - Plasmídeo com sítios prontos para ligar

Estudo de caso: Montagem de Cassete de RNAi

- Plasmídeo base: pRedi
 - Vetor já contendo cassete de RNAi para o gene DsRed
 - Verificar a possibilidade de reutilizar esse vetor para o gene alvo
 - Estudar as digestões e junções necessárias
- Gene Alvo
 - Predição de siRNA no cDNA do gene
 - Ferramenta DSIR: http://biodev.cea.fr/DSIR/DSIR.html
 - Conferir sítios de restrição compatíveis
 - Apal/BglII e HindIII/XhoI
 - Desenhar primers para fragmento de 400-500 pb com caudas

Montagem do primeiro fragmento no Cassete

- Digestão do plasmídeo
 - Retirar o fragmento atual para poder inserir o novo
 - Fragmento 1:
 - Digerir com *Hind* III e *Xho* I (1 µg de plasmídeo)
 - Separar em gel de agarose, purificar e quantificar a banda do plasmídeo
- Amplificação do fragmento
 - Amplificar por PCR e digerir diretamente ou purificar antes
 - Digerir produto de PCR com *Hind* III e *Xho* I (500-1000 ng)
- Ligação
 - Fechar o plasmídeo com o fragmento novo
 - Proporção plasmídeo x produto: 1:3 ou 1:1 (tamanhos semelhantes)

Montagem do primeiro fragmento no Cassete

 Digestão do fragmento de PCR
Ligação e clonagem e Plasmídeo

PCR: ~400 bp

Plasmídeo: 7,4kb menos ~400 pb

Plasmídeo

 $3 \mu L pRedi (337 ng/\mu L)$ 3 µL Buffer R 1 μL HindIII (10 U/μL) 1 μ L XhoI (10 U/ μ L) 22 μL Água

Produto de PCR

10 μ L PCR (53 ng/ μ L) 3 uL Buffer R $1 \mu L HindIII (10 U/\mu L)$ $1 \mu L Xhol (10 U/\mu L)$ 15 μL Water

Digestão

37 °C – 2h 80 °C – 20 min Purificar (plasmídeo do gel) - 0.7%, TAE 1x, 1.5h 70V

Ligação (1:3 molar, máx. 100 ng)

2 μL Buffer T4 10x $2 \mu L pRedi (35 ng/\mu L)$ $5 \mu L PCR (3 ng/\mu L)$ 1 μ L T4 ligase (5 U/ μ L) 10 μL Água

PCR de 8 colônias

Plasmídeo:PCR = 7000:400 = 17,5:1 = 17,5:3 final