Ministerul Educației Centrul Național de Politici și Evaluare în Educație

EVALUAREA NAȚIONALĂ PENTRU ABSOLVENȚII CLASEI a VIII-a Anul școlar 2023 - 2024 Matematică

Simulare

BAREM DE EVALUARE ȘI DE NOTARE

• Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I si SUBIECTUL al II-lea:

- Se punctează doar rezultatul, astfel: pentru fiecare răspuns se acordă fie cinci puncte, fie zero puncte.
- Nu se acordă punctaje intermediare.

SUBIECTUL al III-lea

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.

SUBIECTUL I (30 de puncte)

1.	a)	5 p
2.	d)	5p
3.	c)	5p
4.	d)	5p
5.	d)	5p
6.	a)	5p

SUBIECTUL al II-lea (30 de puncte)

1.	d)	5p
2.	b)	5 p
3.	c)	5 p
4.	c)	5p
5.	c)	5p
6.	d)	5p

SUBIECTUL al III-lea (30 de puncte)

1.	a) Restul împărțirii lui 53 la 18 este 17	1 p
	17 ≠ 5, deci Maria nu poate avea în bibliotecă 53 de cărți	1p
	b) $n=8c_1+5=12c_2+5=18c_3+5$, unde n este numărul cărților din bibliotecă, iar c_1 , c_2 și c_3 sunt numere naturale	1p
	n-5 este multiplu comun al numerelor 8, 12 și 18, deci $n=72k+5$, unde k este număr natural	1p
	Cum n este cel mai mic număr natural de trei cifre cu proprietățile din enunț, obținem $n = 149$	1p
2.	a) $E(0) = (2 \cdot 0 + 3)^2 + (0 - 2)(0 + 2) - 3(1 - 0) + 2 =$	1p
	=9-4-3+2=4	1p
	b) $E(n) + 6 = 4n^2 + 12n + 9 + n^2 - 4 - 3 + 3n + 2 + 6 = 5n^2 + 15n + 10$, pentru orice număr natural n	1p
	$N = 5(n^2 + 3n + 2) = 5(n+1)(n+2)$, pentru orice număr natural n	1p
	Cum $n+1$ și $n+2$ sunt numere naturale consecutive, obținem $(n+1)(n+2)$:2, deci N :10	1p

Probă scrisă la matematică

Simulare

Ministerul Educației Centrul Național de Politici și Evaluare în Educație

3.	a) $a = 5 \cdot \left(\frac{3}{6} + \frac{2}{6} + \frac{1}{6}\right) - \frac{2}{3} \cdot \frac{3}{1} =$	1p
	=5-2=3	1p
	b) $\overline{3c}$ și \overline{cb} sunt direct proporționale cu numerele 4 și $3 \Rightarrow \frac{\overline{3c}}{4} = \frac{\overline{cb}}{3}$	1p
	$b=3^{10}:3^8-5^8:5^7=9-5=4$	1p
	$37c = 74 \Rightarrow c = 2$, de unde obţinem $\overline{abc} = 342$	1p
4.	a) $\angle ABE = \angle EBC = 20^{\circ}$, deci $\angle BMD = 70^{\circ}$	1p
	$\ll BMD = \ll EMA = 70^{\circ}$	1p
	b) $EF \perp BC$, $AD \perp BC \Rightarrow EF \parallel AD$	1p
	$\angle AEB = 70^{\circ} \Rightarrow \angle AEM = \angle EMA \Rightarrow \Delta EAM$ este isoscel, deci $AE = AM$	1p
	$\Delta EFB \equiv \Delta EAB \Rightarrow EF = EA$ și, cum $AM = EA$ și $EF AM$, obținem că $AMFE$ este romb	1p
5.	$\mathbf{a}) AB = 3AP$	1p
	3AP = 15, de unde obţinem $AP = 5$ cm	1p
	b) $\triangle ANP \sim \triangle CND \Rightarrow \frac{AN}{CN} = \frac{NP}{ND} = \frac{AP}{CD} = \frac{1}{3}$, deci $AN = \frac{AC}{4}$ şi, cum $AO = \frac{AC}{2}$, obținem $AN = NO$	1p
	$PS \perp AN$, $S \in AN$ și $DV \perp NO$, $V \in NO$ și, cum $\Delta SNP \sim \Delta VND$, obținem $\frac{PS}{DV} = \frac{NP}{ND} = \frac{1}{3}$	1p
	$\frac{\mathcal{A}_{\Delta ANP}}{\mathcal{A}_{\Delta DNO}} = \frac{\frac{AN \cdot PS}{2}}{\frac{NO \cdot DV}{2}} = \frac{AN}{NO} \cdot \frac{PS}{DV} = \frac{1}{3}$	1р
6.	a) MN este linie mijlocie în triunghiul $AA'D' \Rightarrow MN = \frac{AD'}{2}$	1p
	PQ este linie mijlocie în triunghiul $ADD' \Rightarrow PQ = \frac{AD'}{2}$, deci $MN = PQ$	1p
	b) $MN \parallel AD'$, $PQ \parallel AD' \Rightarrow MN \parallel PQ$	1p
	$MPCB$ este paralelogram, deci $MB \parallel PC$ și, cum $MN \cap MB = \{M\}$, MN , $MB \subset (MNB)$, $PQ \cap PC = \{P\}$, PQ , $PC \subset (PQC)$, obținem $(MNB) \parallel (PQC)$	1p
	$CT \subset (PQC) \Rightarrow CT \parallel (MNB)$	1p