Optimization Fundamentals 1

Presented by:

Katherine Dykes, Senior Engineer
National Renewable Energy Laboratory

MCEN4228-5228, Optimization with Application to Wind Plant Design

CU Boulder, CO, USA 1/19/2016

Overview

- Why Optimization?
- Basic Elements of Optimization
- A Simple Linear Optimization Problem
- A Simple Unconstrained Non-linear Optimization Problem

Why Optimization?

Why not optimization?

- Optimization is hard complex systems, lots of uncertainty, lots of trade-offs, lots of sensitivity to the problem formulations and models
- Practical design is siloed anyway the aerodynamicist designs the blade with limited input from the structural engineers and rest of the component designers; manufacturing is done often by a separate organization who will tweak a "finished" design from the OEM
- Current design approaches are "good enough" been designing things this way for decades and it works just fine

Why Optimization?

- Yes, optimization is hard, but...
- Designing a system requires many different trade-offs...
 - The cost of a wind turbine and its performance or reliability
 - The power production from a wind plant and the infrastructure costs
- And optimization allows the designer to take into account all these complex system trade-offs (across disciplines, organizations) to find the "best" design that at the same time meets all the system design requirements
- Non-intuitive "better" designs can often be identified by optimization but not by traditional design processes based on heuristics and experience

Basic Elements of Optimization

Basic Elements of Optimization Overview

- Optimization structure includes:
 - Objective Function what do we care about the most?
 - Design variables what choices do we have about our system design? What can we manipulate?
 - Parameters what can't we change about our system? What is fixed in our design a priori?
 - Constraints what other system requirements do we have that must be met?

Basic Elements of Optimization Overview

Generally expressed mathematically:

minimize
$$O(p, v)$$

with respect to v
subject to $C_1(p, v) = 0, C_2(p, v) \le 0$

- Where O is the objective function
- C_1 and C_2 are equality and inequality constraints respectively
- p are parameters and v are design variables

- Objective functions define what it means to be the best design
- The choice of objective function critically affects the outcome; the wrong objective or an objective defined too narrowly can result in bad system designs

- What if I have multiple system objectives?
 - Example: generator design for a wind turbine
 - Mass
 - Cost
 - Efficiency (performance)
 - Air-gap radius (size)
 - Example: layout design for a wind turbine
 - Gross energy
 - Loss minimization
 - Cost of infrastructure

- Approaches to multiple objectives:
 - Select global objective and turn other objectives into constraints
 - Generator cost as global subject to maximum allowable mass, air gap radius and minimum allowable efficiency
 - 2. Role objectives up into higher level objective:
 - Weighted combination of objectives, or
 - Higher level objective: $COE = \frac{F*CAPEX+OPEX}{AEP}$

- Approaches to multiple objectives
 - Take a multi-objective approach (explore the trade-space)

- Complexity of objective functions can vary drastically
 - Single Equation: $f(x) = 3x^3 + 6x^2 9$
 - Single Discipline Model:
 - Aerodynamic design of a wind turbine blade using blade-element momentum theory
 - Structural design of a wind turbine blade using a finite-element code
 - Layout of a wind plant for energy production with pre-specified turbine cp, ct curves

 Most real-world design problems involve at least 2 up to many disciplines (multi-disciplinary optimization):

– Turbine design:

Overall wind plant system design:

$$COE = \frac{F * CAPEX + OPEX}{AEP}$$

Design Variables

- Design / decision variables
 - Key elements of system design that are allowed to change
 - Must be independent of each other (else decomposition is necessary)
 - What a design variable can be depends a lot on model fidelity – i.e. rotor diameter may be a D.V. for a simple model but could be an intermediate/derived variable for a higher fidelity model where there blade length and hub radius are variables
 - Design variables may be continuous (turbine location in a plant) or discrete/integer variables (type of turbines in a plant)
 - Types of variables will determine type of optimization problem

Constraints

- Some optimizations may be unconstrained (without constraints) but most are constrained
 - Presence of constraints determines optimization type
- There are both equality and inequality constraints usually try to use inequality constraints if possible
- Simplest constraints are the bounds (allowable ranges) for the design variables:

$$lb \le v \le ub$$

- Example: all turbine locations must be within the boundary of the wind farm
- Other system constraints can be described as functions
 - Example: the minimum distance between 2 turbines must be X

Constraints

- Constraints define the "feasible" design space the set of solutions in terms of combinations of design variables that are allowed for the system design
 - The objective function selects the optimum out of this space

Convex design space

Nonconvex design space

Local minima

Types of Optimization

- Objective functions and constraints can both be linear or non-linear
- These attributes (linear/non-linear, constrained/unconstrained, continuous/integer/discrete) determine the type of optimization
- There are additional classes of methods for optimizations that involve:
 - Uncertainty in design variables and/or models (deterministic vs. static)
 - A progression of decisions over time versus a single point of decision (static vs. dynamic)

Types of Optimization

 One classification of types of optimization (Dr. Andrew Ning, BYU)...

Types of Optimization

... and another along with associated methods (Dr. Cameron Thraen, OSU)

Optimization Methods

- Optimization type influences optimization method:
 - Convex optimization using gradients easiest to solve, will be able to "prove" global optimum is found (we will start here!)
 - Non-convex optimization (discrete variables, bumpy landscape/design space):
 - Use gradient techniques with multiple starts (multiple initial conditions for design variables), or
 - Use gradient-free methods, or
 - Mix gradient-based and gradient-free methods

A Simple Linear Optimization Problem

A Simple Linear Optimization Problem

 An example from economics / business operations: maximize the revenue for a business that sells three different products (each requiring different amounts of resources and time):

Resource	Desk	Table	Chair	Total Resource available
Lumber	8 ft.	6 ft.	1 ft.	48 ft
Finishing time	4 hrs	2 hrs	1.5 hrs	20 hrs
Carpentry time	2 hrs	1.5 hrs	0.5 hrs	9 hrs

- Each selling for a different price: desk for \$60, a table for \$30, and a chair for \$20
- And only 5 tables can be sold at most in a time period

Problem Set Up

- What are our design variables?
- What is our objective function?
- What are our constraints?
- What are the parameters?
- Now put the model into the form:

maximize O(p, v)with respect to vsubject to $C_1(p, v) \leq 0$

Problem Set Up

 The resulting form of the optimization problem should look like this:

Max revenue =
$$60v_1 + 30v_2 + 20v_3$$

s.t. $8v_1 + 6v_2 + v_3 \le 48$ (lumber) $4v_1 + 2v_2 + 1.5v_3 \le 20$ (finishing) $2v_1 + 1.5v_2 + 0.5v_3 \le 9$ (carpentry) $v_2 \le 5$ (table demand) $v_1, v_2, v_3 \ge 0$ (bounds)

What does this look like?

Solving the Problem

- A linear optimization problem can be solved by linear programming
- The Simplex Algorithm is a popular approach for linear programming that essentially solves a system of equations using elementary row operations
 - We introduce a "slack" variable (new d.v.) for each constraint and set it equal to the constraint value
 - We set an initial solution where the design variables are all zero
 - This is our "basic feasible solution" it is feasible but not optimal (i.e. we can choose to produce nothing)

With slack variables the set-up becomes:

Max revenue =
$$60v_1 + 30v_2 + 20v_3$$

s.t.
$$8v_1 + 6v_2 + v_3 + s_1 \le 48 \text{ (lumber)}$$

$$4v_1 + 2v_2 + 1.5v_3 + s_2 \le 20 \text{ (finishing)}$$

$$2v_1 + 1.5v_2 + 0.5v_3 + s_3 \le 9 \text{ (carpentry)}$$

$$v_2 + s_4 \le 5 \text{ (table demand)}$$

$$v_1, v_2, v_3 \ge 0 \text{ (bounds)}$$

There are 4 slack variables for each of the four constraints

Step 1: Is our basic feasible solution optimal?

$$revenue = 60v_1 + 30v_2 + 20v_3$$

- No, if increasing a non-basic variable (the design variables) increases the objective function then the current solution is not optimal
- v_1 has the largest impact on profit, therefore look at increasing v_1

- Step 2: Increase a non-basic variable as much as possible without violating any constraints
- Use "ratio test", given v_2 , v_3 are 0, solve for the maximum value of v_1 to use up each constraint:

$$8v_1 + s_1 \le 48$$

$$4v_1 + s_2 \le 20$$

$$2v_1 + s_3 \le 9$$

$$s_4 \le 5$$

• Maximum increase in v_1 is minimum from solving each of the above equations with the slacks set to 0 (in this case 4 from the last equation $v_1 = \frac{9}{2} = 4.5 \rightarrow 4$

- Step 3: "Pivot" to turn the entering variable into a basic variable (i.e. use it all up to the maximum level allowed by the "binding constraint")
- Use elementary row operations on our problem to have a coefficient of 1 for v_1 in the constraint row 3 (this is the pivot row) and a coefficient of 0 in all other rows
- This turns v_1 into a basic variable and the slack variable in row 3 into a non-basic variable

ERO 0	profit	v1	v2	v3	s1	s2	s3	s4	rhs	ero description
0	1		15	-5			30		240	
1				-1	1		-4		16	
2			-1	0.5		1	-2		4	
3		1	0.75	0.25			0.5		4.5	
4			1					1	5	

s1

s1

s1

s1

1

1

0.25

-1

1

0.25

-5

-1

0.25

s2

s2

s2

s2

1

1

s3

s3

s3

s3

10

2

-0.5

10

10

s4

s4

s4

s4

30

-4

-4

0.5

10

-4

-4

0.5

10

-8

-4

0.5

10

-8

-4

1.5

rhs

rhs

rhs

rhs

1

240

16

4.5

16

8

4.5

280

8

4.5

280

24

5

ero description

8 multiplied row 2 by 2

ero description

ero description

24 added row 2 to ro1

ero description

2.5 add -1/4 times row 2 to row 3

280 added 5 times row 2 to row 0

v3

v3

ν3

v3

5

-2

-2

1

1.25

5

-2

0.75

5

-2

0.75

15

0.75

ERO 1

ERO 2

ERO 3

ERO 4

profit

profit

profit

profit

0

0

0

v1

v1

v1

ν1

1

1

1

1

v2

v2

v2

v2

1

1

								•		
	profit	v1	v2	v3	s1	s2	s3	s4	rhs	ero d
0	1		15	-5			30		240	
4									4.0	

- Repeat steps 1-3 until an optimal solution is found
- Step 1: is the current solution optimal?

$$revenue = 240 - 15v_2 + 5v_3 - 30s_3$$

- No increase v_3 will increase revenue
- Step 2: Use ratio test on current state of constraint rows

$$-v_3 + s_1 \le 16$$

$$0.5v_3 + s_2 \le 4$$

$$v_1 + 0.25v_3 \le 4.5$$

$$s_4 \le 5$$

• Limited by row 2 where $v_3 = \frac{4}{0.5} = 8$, so step 3 pivot on row 2

8 multiplied row 2 by 2

ero description

ero description

24 added row 2 to ro1

ero description

2.5 add -1/4 times row 2 to row 3

280 added 5 times row 2 to row 0

4.5

16

8

4.5

280

8

4.5

280

24

8

5

rhs

rhs

1

1

rhs

-4

0.5

10

-4

-4

0.5

10

-8

-4

10

-8

-4

1.5

0.5

s4

s4

s4

s3

s3

s3

10

2

2

-0.5

10

2

10

	_									
ERO 0	profit	v1	v2	v3	s1	s2	s3	s4	rhs	ero description
0	1		15	-5			30		240	
1				-1	1		-4		16	
2			-1	0.5		1	-2		4	
3		1	0.75	0.25			0.5		4	
4			1					1	5	
ERO 1	profit	v1	v2	v3	s1	s2	s3	s4	rhs	ero description
0	1		15	-5			30		240	
1				-1	1		-4		16	

0.25

s1

s1

s1

1

1

0.25

-1

1

0.25

s2

s2

s2

1

1

0.75

v3

v3

v3

5

-2

-2

1

1.25

5

-2

0.75

5

-2

0.75

v2

v2

v2

profit

profit

profit

2

0

2

0

1

2

3

4

v1

v1

v1

1

1

1

ERO 2

ERO 3

ERO 4

Check step 1, is the current solution optimal?

$$revenue = 280 - 5v_2 - 10s_2 - 10s_3$$

• Yes! Increase the value of v_2 will not increase the objective function any further; this is our *optimal basic feasible solution*

- Final solution:
 - Revenue = 280
 - $v_1 = 4$, $v_2 = 0$, $v_3 = 2$ or 4 desks, no tables and 2 chairs
 - $s_1 = 24$, $s_2 = 0$, $s_3 = 0$, $s_4 = 0$ or there are 24 units of lumber left over after the optimal solution is solved but no remaining time and there are 5 units of table demand left

Slack Variables & Constraints

- Slack variables tell us something about the solution, in our final solutions, s_2 , s_3 are part of our non-basic variable set; these constraints are the "binding constraints"
- "Binding constraints" are those that bind the optimum so that you can not do any better
 - if the overall constraint in this case on finishing time or carpentry time where increased, we could increase our profit
- "Non-binding constraints" are those that don't affect the overall optimum – you could increase them and it wouldn't have the results
 - The constraints on lumber and table number did not affect the results; there are still some left over after the optimization is solved

Slack Variables & Constraints

- How much impact would relaxing a constraint have on the optimum?
- Return to the ratio tests:
 - the first binding constraint on v_1 was the carpentry constraint $2v_1 + s_3 \le 8$
 - An increase of 1 on the carpentry time limit of 8 would allow for an extra 0.5 desks to be made which would increase profit by 0.5*60 or \$30
 - An increase of 1 on the finishing time limit of 20 would result in an increase in the constraint for pivot 2 for the finishing constraint $0.5v_3+s_2\leq 5$. This would allow for 2 more chairs at an increased revenue of 2*20 or \$40
- \$30 and \$40 are the "shadow prices" of the constraints how much more could be made by a relaxation of the constraint by one unit
 - In other words, the "sensitivity" of the solution to those constraints

Simple Linear Optimization Problem

Recap:

- Linear optimization problems (where objective functions and constraints are linear) are generally the easiest class of optimization problems to solve
- If all the variables are continuous as well, then using simple linear programming methods (i.e. the Simplex method) is possible
- The problems still highlight various important aspects of all optimization problems:
 - Problem set-up according to standard structure
 - Feasible design/solution space
 - Iterative approach to improving objective function through sequential increase/decrease of design variables
 - Role of the constraint in "binding" / helping to determine the optimum solution
 - The role of constraint relaxation in terms of influencing optimum and optimum sensitivity to different binding constraints

A Simple Unconstrained Non-linear Optimization Problem

Unconstrained Optimization

- Ignoring constraints, focus on minimization/maximization of a non-linear function f(x)
- Recall basic calculus
- First-order conditions
 - First derivative = 0
- Second-order conditions
 - 2nd derivative > 0 => Minimum
 - 2nd derivative < 0 => Maximum

Unconstrained Optimization

- Converting a maximization problem to a minimization problem and vice versa is a useful tool:
 - Max f(x) = Min [-f(x)]
 - Solving the complementary problem is the "dual" and provides useful information
- Complexities arise even in the unconstrained world for nonlinear functions

Unconstrained Optimization (formal)

- Unconstrained local minimum x* defined s.t.:
 - $f(x^*) \le f(x)$ for all x with $|x-x^*| \le e$
- Write the Taylor series for f (x) about x* as
 - $f(x^* + a) = f(x^*) + a(df(x)/dx) + 0.5a^2 d^2f(x)/dx^2 + ... [at x = x^*]$
 - For small a, first three terms dominate.
- We see from the Taylor series that for x to be a local minimum then:
 - df(x)/dx = 0 (first derivate zero)
 - $d^2f(x)/dx^2 >= 0$ (second derivative > 0)
- These are called the first- and second-order necessary conditions for a local minimum.

Example: Unconstrained Optimization

- Find the local minima, maxima and the global minimum, maximum (if finite) for the following equations:
- Find first derivative, use Matlab or other method to find the roots of:

$$f(x) = x^5 + 4x^4 - 67x^3 - 22x^2 + 444x - 360$$

 Find second derivative at each root point, if positive minima, else it is a maxima

Unconstrained Optimization (formal)

 In the vector case, where x is a real vector, the Taylor series about x* is:

$$f(x^* + \alpha s) = f(x^*) + \alpha s^T \nabla f(x^*) + \frac{1}{2} \alpha s^T \nabla^2 f(x^*) s + \cdots$$

- In this case, the first order condition now depends on the gradient of f(x): $\nabla f(x^*) = 0$
- And the second order condition now depends on the Hessian:

$$\nabla^2 f(x^*) \ge 0.$$

- A symmetric square matrix >= 0 is positive semidefinite or > 0 is positive definite
- Thus, Hessian positive semi-definite for minima

Unconstrained Optimization (formal)

- In the scalar example, one variable allowed easy identification of roots and minima/maxima
- Determining $\nabla^f(x^*) = 0$ for a vector optimization problem often involves a system of non-linear equations
- Therefore need to use a method to solve system of nonlinear equations, such as Newton's method

Optimization: Newton's Method

- Process for Newton's method:
 - Make an initial guess x0
 - Expand g(x) around x0 using Taylor series:

$$g(x^{0} + \Delta x) = g(x^{0}) + \nabla g(x^{0}) \Delta x + \cdots$$

$$\nabla g\left(x^{0}\right) = \left(\begin{array}{ccc} \frac{\partial g_{1}(x)}{\partial x_{1}} & \cdots & \frac{\partial g_{1}(x)}{\partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_{n}(x)}{\partial x_{1}} & \cdots & \frac{\partial g_{n}(x)}{\partial x_{n}} \end{array}\right) \right|$$

– Want to find delta-x such that:

$$g(x^0 + \Delta x) \approx g(x^0) + \nabla g(x^0) \Delta x = 0$$

Optimization: Newton's Method

- Process for Newton's method (continued):
 - Solve for delta-x:

$$\Delta x = -\left[\nabla g\left(x^{0}\right)\right]^{-1} g\left(x^{0}\right)$$

Update for new estimate of x:

$$x^1 = x^0 + \Delta x$$

- Iterate process beginning with x1
- Repeat until process converges (i.e. the magnitude of delta-x smaller than a threshold value / tolerance)
- A solution will be found, not necessarily THE solution

Example II: Unconstrained Optimization

 Find the local minima, maxima and the global minimum, maximum (if finite) for the following equation:

$$-F(x) = (x1 + 3)^2 + x2^2 - x1^*x^2 + \cos(x1) + 5x^2 + 6$$

Find first order condition (gradient) equation:

$$- \nabla f(x^*) = 0 = \begin{pmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \end{pmatrix}$$

Similarly, find Hessian matrix

$$- \nabla^{2} f(x^{*}) \geq 0. = \begin{bmatrix} \frac{\partial^{2} f(x)}{\partial x_{1}^{2}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{2}} \\ \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{2}^{2}} \end{bmatrix}$$

Use Matlab to find minimum/maximum

Recap

Recap

- Optimization is a complex discipline involving a wide variety of problems
- Type of problem will determine the possible types of methods for solving the problem
- The two most simple optimization problems are:
 - Unconstrained optimization of a non-linear convex problem
 - Constrained optimization of a linear problem
- References:
 - Winston & Venkataramanan, Introduction to Mathematical Programming, 4th Edition
 - Course text on Optimization