STA130 Winter 2022, Tutorial 6

Ente Kang

University of Toronto

2022-03-07

Linear Regression

- Also known as the *line of best fit*
- Key assumption:
 - There is a linear relationship between the predictor and target variables
 - We will see that this is often violated
- This week, we will study OLS with 1 predictor

The model

Assuming a linear relationship between y_i and x_i , there is a **population** regression line

$$y_i = eta_0 + eta_1 x_i + \epsilon_i$$

- β_0 : Intercept
- β_1 : slope
- ϵ_i : error (noise)

We want to approximate this using the data that we have, which will be our **fitted** regression line

$$\hat{y_i} = \hat{eta_0} + \hat{eta_1} x_i$$

 $\hat{eta_0}$ and $\hat{eta_1}$ are found using optimization, by minimizing

$$\sum_i (y_i - \hat{y_i})^2$$

Interpretation

- Assessing the model fit
 - $\circ R^2$ is the metric that we will use
 - It is between 0 and 1
 - \circ Tells us the percentage of variation in our y_i 's that are explained by the regression line
- How do we interpret the model?
 - \circ Recall: $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$
 - \circ eta_1 : Given an unit increase in x_i , it is associated with a eta_1 increase/decrease in y_i

• Important

- This is **not** a causal relationship, only an **association**
- \circ $\,$ **Do not say**, an unit increase in x_i $\,$ **causes** a eta_1 increase/decrease in y_i
- To interpret it causally, we can use **econometrics**, which is out of the scope of this course. I am happy to discuss this with anyone who is interested

Thank you and see you next week