STL

and functions such as lists, stacks, arrays, The Standard Template Library (STL) is a common programming data structures set of C++ template classes to provide etc. It is a library of container classes, algorithms, and iterators.

SORTING

Sorting

some meaningful order.We generally sort the array in ascending or Data sorting is any process that involves arranging the data into descending order.

Examples of sorting:-

$$A = \{1, 6, 4, 3, 3, 2, 7\}$$

https://www.geeksforgeeks.org/sorting-algorithms/#algo To learn more about sorting algorithms refer this link :-

Sorting in Competitive Programming

Time Complexity of mergesort and quicksort = O(n * log(n))

Sort STL :- a[n]

sort(a, a+n, greater<int>()); -- descending order sort(a, a+n); -- ascending order

E.g. a[8] = {8,9,7,6,4,5,10,1}

Q. How to sort the complete array?

sort(a,a+8);

Ans: [1,4,5,6,7,8,9,10]

Q. How to sort the first four elements?

sort(a,a+4);

Ans: [6,7,8,9,4,5,10,1]

Q. How to sort the last four elements?

sort(a+4,a+8);

Ans: [8,9,7,6,1,4,5,10]

VECTOR

Vector

Vectors are same as dynamic arrays with the ability to resize itself automatically when an element is inserted or deleted, with their storage being handled automatically by the container.


```
#include<br/>
using namespace std;<br/>
using namespace std;<br/>
using namespace std;<br/>
using namespace std;<br/>
v.pop_<br/>
int n;<br/>
for(int i=0; i<n; i++)<br/>
cout<br/>
for(int i=0; i<v.size(); i++)<br/>
for(int i=0; i<v.size(); i++)
```

INPUT

2

Output

0123410

4

0123

- push_back(x)
- pop_back()
- size()
- begin()
- end()

vector <int> v; v.size()=4;

sort(a, a+n);

sort(v.begin(), v.end());

PAIR

Pair

Coordinates $(x,y) = \{ (6,7), (12,10), (4,9), (16,8), (13,17) \}$

13	17
16	∞
4	တ
12	10
9	7
^ ×	<u>\</u>

If we sort the coordinates, x[] and y[]

^ `` X	4	9	12	13	16
^- >	7	8	o	10	17

Pair is used to combine two values of 2 same or different data types together. To access the elements, we use variable name with dot operator followed by first or second.

//(array of pair) pair<data_type,data_type> p; pair<string,int> p[n];

```
cout << p[i].first << " "
for(int i = 0; i < 5; i++)
                                               << plil second;
                                                                 cout << "\n";
                                                                                           pair<ll,ll> p[5];
for(int i = 0 ; i < 5 ; i++) {
#include<br/>
stdc++.h>
                    using namespace std;
                                                                                                                                                                                       p[i].second = b;
                                   #define II long long
                                                                                                                                                  cin >> a >> b;
                                                                                                                                                                   p[i].first = a;
                                                                                                                                                                                                                             sort(p,p+5);
                                                                                                                                lla,b;
                                                                       int main() {
```

return 0;

MAP

MAP

Maps are part of the C++ STL (Standard Template Library). Maps are the associative containers that store sorted key-value pair, in which each key is cannot be altered. Values associated with keys unique and it can be inserted or deleted but can be changed.

Roll no ----> Student's Name

(Index) unique Key	24	45	46	47	54
m	Hema	Rekha	Jaya	Sushma	Nirma
⋖	24	45	46	47	54
L	0	_	7	က	4

Value	Hema	Rekha	Jaya	Sushma	Nirma
(Index) Key	24	45	46	47	54

QUESTION

Q.) Write a program to find out the frequency of all unique number in an array.


```
cout << i.first << "\t\\t\t" << i.second;
                                                                                                                                                                                                                                           Element Frequency
    cout << "Element Frequency";
                                                                                                                                                                                                             Output
                                                                                                         cout<< endl;
                                          for (auto i : m)
                          cout << endl;
                                                                                                                                                return o;
#include<br/>
stdc++.h>
                         using namespace std;
```

int $a[6]=\{1,3,2,1,2,1\}$;

map<int,int> m;

for(int i=0; i<6; i++)

m[a[i]]++;

#define II long long

int main()

STACK

Stack

Stack is a linear data structure which follows a particular order in which the operations are performed. The order may be **LIFO**(Last In First Out) or **FILO**(First In Last Out).

example of plates stacked over one another in the canteen. There are many real-life examples of a stack. Consider an


```
\widetilde{\mathbb{C}}
```

```
30
                                                           20
                                                              Û
using namespace std;
                                    stack<int> s;
                                                s.push(10);
                                                            s.push(20);
                                                                        s.push(30);
                                                                                    s.pop();
                                                                                                  return 0;
            int main()
```

#include
bits/stdc++,h>

QUEUE

Queue

Queue is a data structure designed to operate in **FIFO** inserted from rear end and get removed from front (First in First out) context. In queue elements are end.

#include

bits/stdc++.h>
using namespace std;

int main() {

queue<int> q; q,push(10); q,push(5); q,push(15); q,pop(); return 0;

PRIORITY QUEUE

Priority Queue

that the first element of the queue is greatest of all the elements and the elements are in descending order. Priority queue is a container which is designed such

Declaration - priority_queue<int> q;

SET

Set

to be unique because the value of the element identifies Sets are a type of containers in which each element has it. The values are stored in a specific order.

Properties:

- . No duplicates
- 2. Sorted in ascending order.
- Searches an element in O(log n) time,
- . Unindexed.

search time, by using unordered set, which has search time of We can compromise with the sorted order for improving the O(1)

Insert 5

Insert 2

Insert 4

Insert 3


```
cout < "10 not found.";
                                                                                                        cout << "10 found.";
                                                                                                                                                                                            Output
                     cout<<"40 found.";
                                                       if(s.find(10)==s.end())
                                                                                                                                                                                                                              40 found.
                                        cout<<endl;
                                                                                                                             return 0;
                                                                                            else
      else
                                                                                                                                                                                                                                                                      cout<<"40 not found.";
#include<br/>
bits/stdc++.h>
                                                                                                                                                                                                                                                 if(s.find(40)==s.end())
                     using namespace std;
                                                                                                                                s.insert(10);
                                                                                                            s.insert(60);
                                                                                                                                                       s.insert(20);
                                                                                                                                                                             s.insert(20);
                                                                                                                                                                                                    s.insert(40);
                                                                                      set < int > s;
                                                                                                                                                                                                                          s.erase(10);
                                           int main()
```

10 not found.

GCD OR HCF

GCD or HCF

Common Factor) of n numbers is the largest number GCD (Greatest Common Divisor) or HCF (Highest that divides all of them.

Program to find GCD or HCF of two numbers

$$36 = 2^{2} \cdot 3^{3}$$

$$60 = 2^{2} \cdot 3^{5}$$

GCD = Multiplication of common factors

$$= 2^*2^*3 = 12$$

36

Example of GCD

To find gcd in c++ we use __gcd() function.

To find gcd of two numbers a and b we can use

gcd = __gcd(a, b)

Eg: gcd of 4 and 8 is

Solution: 4

QUESTION

DIVISIBLE ARRAY

https://ideone.com/e2nfj7

