

Nome Aluno/a:	
Número Aluno/a:	
	CLASSIFICAÇÃO:
Curso:	AUTOAVALIAÇAO:
DATA:	

UC: QUIMICA INORGÂNICA I

Ano Acadêmico: 2020-2021

Cursos: LQA; MIEQB; Estudos Gerais Regente: Prof. Carlos Lodeiro Y Espiño

INSTRUCÇOES: IMPORTANTE LER COM CALMA.

1.- Assinale com uma O (circulo) a resposta correcta. NÃO É PERMITIDO APAGAR RESPOSTAS. PODE TER RESPOSTAS MULTIPLAS.

Cada resposta apagada anula a alinha

- 2.- Não escreva a Lápiz!!. Sempre com Caneta Azul ou Preta.
- 3.- Não podem partilhar canetas.
- **4.-** É Prohibido a utilização de máquinas de calcular ou telemóveis. O Exame é sem consulta.
 - **5.-** CADA PERGUNTA CERTA é cotada com 0.66 Valores. Cada duas respostas negativas descontam uma positiva. (-0.66V)
- **6.-** O Exame está dividido em 10 valores de Escolhas múltiplas repartidos em 15 perguntas, e 10 valores de exercícios descritivos.
- **7.-** As perguntas 16-20 tem a cotação de 10 valores distribuidos por alinhas independentes.

а	b	С	d	е
а	b	С	d	е
а	b	С	d	е
а	b	C	d	е
а	b	С	d	е
а	b	С	d	е
а	b	С	d	е
а	b	С	d	е
а	b	С	d	е
а	b	С	d	е
а	b	С	d	е
а	b	С	d	е
а	b	С	d	е
а	b	С	d	е
a	b	С	d	е
	a a a a a a a a a	a b a b a b a b a b a b a b a b a b a b	a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c	a b c d a b c d a b c d a b c d a b c d a b c d a b c d a b c d a b c d a b c d a b c d a b c d a b c d

- **1.** Em relação ao "<u>efeito Quelato</u>" qual das seguintes afirmações considera que são **VERDADEIRAS**:
- a) Trata-se de um efeito estabilizador por aumento entrópico na solução.
- b) Trata-se de um efeito maioritariamente entálpico.
- **c)** Em geral, os complexos com ligandos quelato são menos estáveis que com ligandos monodentados
- d) A formação de um anel de quelação de 6 membros é muito mais estável que a de 3 ou 4 membros
- e) Um ligando monodentado pode formar um anel quelato
- **2.** Tendo em conta a **teoria de Campo Cristalino**, **TCC** na presença de um campo octaédrico, as 5 orbitais d desdobram-se em:
- a) Numa série de menor energia, duplamente degenerada (e) e noutra série de maior energia triplamente degenerada (t2) separados por uma energia igual a 3/5∆o
- **b)** Numa série de menor energia, duplamente degenerada (t2) e noutra série de maior energia triplamente degenerada (e) separados por uma energia igual a Δο
- c) Numa série de menor energia, triplamente degenerada chamada t2g, e noutra série de maior energia duplamente degenerada (eg) separados por uma energia igual a Δ o
- d) Numa série de menor energia, triplamente degenerada (t2g) e noutra série de maior energia duplamente degenerada (e) separados por uma energia igual a Δ o
- e) Numa série de menor energia, triplamente degenerada chamada t2g2, e noutra série de maior energia duplamente degenerada (eg) separados por uma energia igual a $1/5\Delta$ o
- **3.-** Em complexos octaédricos com configuração eletrónica **d**³ e **d**⁶ de **Spin baixo** (**Campo Forte**), as Energia de Estabilização de Campo Ligando (EECL) vão ser respetivamente:
- a) $6/5 \Delta o e 8/5 \Delta o$ -P respetivamente
- **b)** $6/5 \Delta o = 3/5 \Delta o$ respetivamente
- c) $4/5 \Delta o P = 8/5 \Delta o P$ respetivamente
- d) $6/5 \Delta o e 12/5 \Delta o 3P$ respetivamente
- e) $3/5 \Delta o 2P = 8/5 \Delta o$ respetivamente

4.- Dos seguintes pares de catiões metálicos de metais de transição, escolha o **PAR** de catiões com propriedades puramente paramagnéticas ao formar complexos octaédricos:

```
a) Cu(II) / Cu(I)
```

- b) Co(II) / Fe(III) Spin Alto
- c) Zn(II) / Ag(I)
- d) Mo(III) / Fe(II) Spin Baixo
- **e)** Cd(II) / Au(III)

5.- Os complexos com número de coordenação 4 dos iões **metálicos** de configuração eletrónica **d**⁸ apresentam preferencialmente a estrutura **Quadrangular Plana**, contendo o orbital d de maior energia sempre vago, e dois pares de eletrões nos restantes orbitais. Este tipo de complexos são sempre diamagnéticos, com momento de Spin, S= 0. Escolha qual será a configuração eletrónica para um exemplo de complexo de Pt(II), Pd(II) ou o Au(III) destas características:

```
 \begin{array}{lll} \textbf{a)} & (d_{yz})^2 \; (d_{xz})^2 \; (d_{xy})^2 \; (d_z^2)^2 \; (d_x^2-y^2)^0 \\ \textbf{b)} & (d_{xz})^2 \; (d_{yz})^2 \; (d_z^2)^2 \; (d_{xy})^2 \; (d_x^2-y^2)^0 \\ \textbf{c)} & (d_{yz})^2 \; (d_{xz})^2 \; (d_z^2)^2 \; (d_{xy})^2 \; (d_x^2-y^2)^2 \\ \textbf{d)} & d_{xz})^2 \; (d_{yz})^2 \; (d_z^2)^2 \; (d_{xy})^2 \; (d_x^2-y^2)^2 \\ \end{array}
```

e) $(d_x^2 - y^2)^2 (d_{yz})^2 (d_z^2)^2 (d_{xz})^2 (d_{xy-x})^2$

6.- Escolha a sequencia orbital VERDADEIRA. O <u>efeito de Jahn Teller</u> vai afetar sempre os complexos octaédricos dos iões d¹, d², d⁴, d⁶, dⁿ e dゅ Spin Alto dando origem a geometrias distorcidas. Nos complexos d¹ e d⁶, este efeito produz complexos com estabilização Z in. Diga quais das seguintes distribuições de orbitais corresponde com esticar as ligações apicais, Z in:

```
 \begin{array}{lll} \textbf{a)} & (d_{yz}) \; (d_{xz}) \; (d_{xy}) \; (d_z^2) = (d_x^2 - y^2) \\ \textbf{b)} & (d_{xz}) \; (d_{xy}) \; (d_{yz}) \; (d_x^2 - y^2) \; (d_z^2) \\ \textbf{c)} & (d_{yz}) \; (d_{xz}) = (d_{xy}) \; (d_z^2) \; (d_x^2 - y^2) \\ \textbf{d)} & (d_{xy}) \; (d_{xz}) = (d_{yz}) \; (d_x^2 - y^2) \; (d_z^2) \\ \textbf{e)} & (d_{yz}) \; (d_{xz}) \; (d_{xy}) \; (d_z^2) \; (d_x^2 - y^2) \\ \end{array}
```

7.- Sabendo que a constante de dissociação K_{diss} para o complexo $[Ag(CN)_4]^{3-}$ tem um valor de 5,0 x 10⁻⁴², numa solução 0.1 M do complexo $[Ag(CN)_4]^{3-}$, durante a reação de formação: $[Ag(CN)_4]^{3-} \leftrightarrow Ag^+ + 4CN^-$, as concentrações do prata e do cianeto dissociadas são:

- a) A concentração do cianeto é igual que a da prata
- b) A concentração do cianeto é menor que a da prata
- c) A concentração do cianeto é 4.4x10-9 M e a da prata(I) 1.1x10-9 M

- d) As concentrações são: $[CN^{-}] = 2.5 \times 10^{-7} \text{ M} \text{ e } [Ag^{+}] = 1.1 \times 10^{-3} \text{ M}$
- e) A concentração da prata é 5 vezes maior que a do cianeto

8.- A Teoria de Campo ligando, TCL, é uma aplicação da Teoria de Orbital Molecular, TOM, as orbitais d nos complexos metálicos (Δ_{oct}). Podemos ter com esta teoria 3 situações diferentes segundo envolvam as orbitais do ligando (σ ou π) e a dos metais. Identifique o diagrama TCL seguinte como um dos casos expostos:

- a) Diagrama envolvendo só orbitais σ do metal e do ligando.
- b) Diagrama envolvendo orbitais σ do metal e do ligando, e π dos ligandos.
- c) Diagrama envolvendo só orbitais π do metal e do ligando.
- d) Diagrama envolvendo orbitais σ do metal e π dos ligandos (π aceitador).
- e) Diagrama envolvendo orbitais σ do metal e π dos ligandos (π doador).

9.- Imagine que consegue sintetizar os complexos metálicos observados na tabela, justifique com os seus conhecimentos quais dos grupos de metais formaram complexos paramagnéticos, segundo a **TCC**?

Composto	Geometria
[Ag(CN) ₆] ⁵⁻	Octaédrico
[PtCl ₄] ²⁻	Quadrangular planar
[NiCl ₄] ²⁻	Tetraédrico
[Co(CN) ₆] ⁴⁻ (Spin Baixo)	Octaédrico
[Cu(NH ₃) ₆] ²⁺ (Alto/Baixo Spin)	Octaédrico

- Ag, Co a)
- b) Ρt
- Co; Pt c)
- Co: Cu: Pt d)
- Co; Cu e Ni

10.- A constante de associação numa reação de formação de complexos metálicos pode ser calculada em função da concentração do complexo formado, e dos reagentes iniciais, metal e ligando.

$M + nL \Leftrightarrow ML_n$

Escolha entre as seguintes formulas seguintes que equações deve utilizar para definir a constante de dissociação do mesmo complexo:

- $K = [ML_n] / [M][L]^n$ $K = [ML] / [M]^{n/2}[L]^n$ a)
- b)
- $K = [M][L]^n / [ML_n]$ C)
- $K = [M][L] / [ML_n]^{n/2}$ d)
- $K = [M][L]^{n/2} / [ML_n]$ e)

11.- Tendo em conta os parâmetros termodinâmicos observados na tabela seguinte, ΔG° e ΔS° para reações de formação de complexos de Ferro(III) com diversos ligandos doadores de oxigénio, escolha a sequência de estabilidade dos complexos formados, de menor a maior estabilidade em função do ligando coordenado.

	ΔG° (KJ mol ⁻¹)	∆S° (J mol⁻¹)
Fe ³⁺ + H ₂ O	- 44,85 (β ₁) - 74,48 (β ₆)	- 12,13 - 33,98
Fe ³⁺ + OH(CH ₂) ₂ OH	- 59,83 (β ₁) - 111,71 (β ₂) - 121,71 (β ₃)	+ 20,9 + 19,9 + 17,6
Fe ³⁺ + acac	- 114,64 (β ₃)	+ 71,59
Fe ³⁺ + AEDT ⁴⁻	- 107,52 (β ₁)	+ 95,30

- a) $AEDT^{4}$ < $OH(CH_2)_2OH > H_2O > acac$
- **b)** OH(CH₂)₂OH > AEDT⁴ > acac > H₂O
- c) $H_2O < OH(CH_2)_2OH < acac < AEDT^{4-}$
- d) $H_2O < acac < OH(CH_2)_2OH < AEDT^{4-}$
- **e)** AEDT⁴⁻ < H₂O = OH(CH₂)₂OH < acac
- **12.-** Considere os seguintes complexos metálicos. Qual pode considerar-se com geometria **QUADRANGULAR PLANA** sem lugar a dúvidas:
- **a)** [Cu(NH₃)₄]Cl
- **b)** [Ni(PPh₃)₄]²⁺
- **c)** $[Co(NO_2)_4(H_2O)_2]^{2-}$
- d) $[Pt(CI)_2(PEt_3)(H_2O)]$
- **e)** [Fe(H₂O)₄I]Cl₂
- **13.-** Um exemplo prático da Teoria de Pearson aplicado na Bioquímica é a desintoxicação por complexação de metais tóxicos como o Cd(II), Hg(II) e Pb(II) pela ação das metalotioneínas. Neste grupo de proteínas, diga que aminoácidos são utilizados como ligandos para coordenar-se ao metal soft:
- a) Alaninas e serinas
- b) Cisteinas e metioninas
- c) Triptofanos e metioninas
- d) Histidinas e alaninas
- e) Ácido glutâmico e tirosinas

14.- Segundo a **Teoria de Pearson** (**HSAB**), um ácido duro caracterizasse por ter elevada carga positiva e ainda um tamanho (raio iónico) relativamente pequeno quando for um metal de transição. Das seguintes séries de seis metais identifique quais podem ser considerados **TODOS** como Ácidos Duros segundo a teoria de HSAB:

```
a) Lu(III); Mg(II); Al(III); Cu(II); Hg(II); Cd(II)
```

- **c)** Co(II); Ag(I); Cd(II); Tl(I); Hg(I); V(V)
- **d)** Na(I), Li(I); Be(II); Fe(III), K(I); La(III)
- e) Co(III); Mo(III); Cr(III); Ce(III); Zr(IV); Sn(IV)

15.- Nas minas de ouro é utilizada a estratégia de complexar o metal com cianeto sódico para formar o correspondente complexo linear de ouro com dois cianetos. Este complexo apresenta uma constante de formação de β_2 = K= 10^{39} a 298K. Aplicando a equação da energia livre de Gibbs ΔG =-RT lnK, e conhecendo o complexo formado, escolha a alinha que melhor define a este sistema: (R = 0.314)

- a) O complexo é altamente instável em agua, tem um $\Delta G = -228 \text{ kJ.mol}^{-1}$, e na presença de Zn(0) em agua salgada formará a espécie [Zn(CN)₂]° em solução, libertando o Au(III).
- b) O complexo é altamente estável em agua, tem um $\Delta G = -222 \text{ kJ.mol}^{-1}$, e na presença de Zn(0) em agua salgada formará a espécie Na₂[Zn(NC)₄] em solução, libertando o Au(I).
- c) O complexo é altamente estável em agua, tem um $\Delta G = -182 \text{ kJ.mol}^{-1}$, e na presença de Zn(0) em agua salgada formará a espécie [Zn(CN)₄]Na₂ em solução, libertando o Au(I).
- d) O complexo é altamente estável em agua, tem um $\Delta G = -222 \text{ kJ.mol}^{-1}$, e na presença de Zn(0) em agua salgada formará a espécie Na₂[Zn(CN)₄] em solução, libertando o Au(0).
- e) Nenhuma alinha é valida.

b) Fe(II); Zn(II); Cr(III); Ru(II); Ag(I); Fe(III)

16.- (1V) Na seguinte serie de complexos metálicos com ligandos polidentados e monodentados, identifique o número de anéis quelato formados em cada um, e escolha uma sequência de estabilidade de mais estável a menos estável.

$$\begin{split} &[Cu(trien)_2]^+\\ &[Fe(ox)_2(H_2O)_2]^{3^-}\\ &[Ru(Phen)_3]^{2+}\\ &[Co(en)_2]^{2+},\\ &[Ni(12\text{-}azacrown\text{-}4)]^{2+}\\ &[Pt(CN)_2(I)_2]^{2^-} \end{split}$$

diga quais das espécies apresentam isomerias e que isómeros identifica.	

17.- (3V) Nos complexos metálicos da alinha anterior desenhe todas as estruturas, e

18.- (1.5V) Considere os complexos $[Fe(CO)_3(CN)_3]^-$, $[Co(en)_2]^{3+}$, e $[Pt(SCN)_2(I)_2]^{2-}$ (Números atómicos = Fe (26); Co(27); Pt(78), e a serie de Tsuchida.

Prediga quantos eletrões desemparelhados existiram em cada complexo.

Tenha em conta a TCC (quando for preciso considere os complexos de Campo Forte e Campo Fraco).

,

19.-(1V) Considere os dois seguintes compostos de coordenação octaédricos de ferro. Na procura de um sistema catalítico eficaz seguido por magnetismo pretendesse selecionar o melhor sistema:

$$[Fe(NH_3)_6]^{2+;} [Fe(CN)_6]^{3-}$$

a) Determine para ambos o estado de spin destes complexos, e calcule a energia de EECL tendo em conta os seguintes valores tabelados:

$\Delta_{ m oct}$ (cm $^{ ext{-}1}$)			D (1)
H ₂ O	NH ₃	CN⁻	P (cm ⁻¹)
13700	22800	31000	29900

20.- (2.5V) Represente as **configurações eletrónicas** dos seguintes quatro complexos usando a Teoria do Campo cristalino, (Tenha em conta o desdobramento de campo octaédrico ou tetraédrico)

Dados: Números atómicos, Co = 26; Mn=25; Ni=28; Re= 75

- a) [Mn(H₂O)₆]²⁺ (spin alto)
- b) $[Co(C_2O_4)_2]^{2-}$ (spin baixo)
- c) $[Ni(NH_3)_6]^{2+}$ (spin alto)
- d) $[Re(CN)_4]^{2-}$ (spin baixo)
 - a) Preveja qual deles tem o maior momento magnético de Spin.