1 רגרסיה ומודלים סטטיסטיים - בוחן

אביב 2021

הערה כללית: כאשר אתם מתבקשים למצוא "ביטוי מפורש", הכוונה לביטוי שאפשר להציב בו את הנתונים ולקבל פתרון הערה כללית: כאשר אתם מתבקשים למצוא "ביטוי מפורש", הכוונה לערב מטריצת). למשל $\hat{m{\beta}}=(m{X}^Tm{X})^{-1}m{X}^Tm{Y}$ אם צריך, הנוסחה בהחלט יכולה לערב מטריצת).

שאלה 1 (30 נקודות)

נניח את המודל הלינארי הכללי

$$Y = X\beta + \epsilon, \quad \epsilon \sim (0, \sigma^2 I_n)$$

כאשר $m{X}^{(j)} \in \mathbb{R}^n, 0 \leq j \leq p$ מטריצה קבועה (לא מקרית) שעמודותיה שעמודותיה א מטריצה $m{X} \in \mathbb{R}^{n \times (p+1)}$ ב"ת לינארית, והעמודה הראשונה $m{X}^{(0)} = m{1}_n = (1,\dots,1)^T \in \mathbb{R}^n$ שלה היא

 $Cov[m{\epsilon}]=\sigma^2m{I}_n$ ומטריצת שונויות הסימן $\mathbb{E}[m{\epsilon}]=0$ משמעו שהוקטור המקרי בעלת תוחלת $m{\epsilon}$ בעלת תוחלת הסימן

- $\hat{m{eta}}=(m{X}^Tm{X})^{-1}m{X}^Tm{P_X}m{Y}$ א. ראינו שאומד הריבועים הפחותים עבור $m{eta}$ נתון על ידי $\hat{m{eta}}=(m{X}^Tm{X})^{-1}m{X}^Tm{Y}$. הראו שמתקיים גם $P_{m{X}}\in\mathbb{R}^{n imes n}$ א. ראינו שאומד הריבועים הפחותים עבור $P_{m{X}}=(m{X}^Tm{X})^{-1}m{X}^Tm{Y}$ היא מטריצת ההיטל על
- $\mathbb{E}[\hat{ heta}]= heta$ ב. מצאו אומד לינארי (ב-(Y-1) וחסר-הטייה בעל שונות מינימלית עבור $heta=eta_2-eta_1$. כלומר, מצאו אומד $\hat{ heta}$ אשר מקיים בעל שונות מבין כל האומדים והשונות שלו $Var(\hat{ heta})$ נמוכה מהשונות של כל אומד חסר הטייה אחר. יש לנמק מדוע האומד אכן בעל שונות מבין כל האומדים הלינאריים חסרי-ההטייה.

שאלה 2 (10 נקודות)

יהי $Y=(Y_1,\dots,Y_n)^T\in\mathbb{R}^n$ וקטור מקרי, ונסמן $\mathbf{Y}=(Y_1,\dots,Y_n)^T\in\mathbb{R}^n$ יהי $\mathbf{Y}=(Y_1,\dots,Y_n)^T\in\mathbb{R}^n$ וקטור מקרי, ונסמן $\mathbf{A}\in\mathbb{R}^{n\times n}$ מטריצה סימטרית קבועה (לא מקרית). הראו שמתקיים

$$\mathbb{E}[Q(\boldsymbol{Y})] = Q(\boldsymbol{\mu}) + \mathbb{E}[Q(\boldsymbol{Y} - \boldsymbol{\mu})]$$

 $\mathbf{X} = \mathbf{\mu} + \mathbf{\epsilon}, \quad \mathbb{E}[\mathbf{\epsilon}] = 0$ אבור ההוכחה, יהיה נוח להשתמש בייצוג

שאלה 3 (30 נקודות)

אליס ובוב צופים ב- n תצפיות מדגם $(x_i,Y_i)_{i=1}^n$, כאשר $x_i\in\mathbb{R}$ מספרים קבועים (לא מקריים). הם מעוניינים ללמוד על הקשר בין x_i ליס ובוב צופים ב- x_i למוד על הקשר במודל בין x_i ליס משתמשת במודל

$$Y_i = \alpha + \beta x_i + \epsilon_i, \quad \epsilon_i \stackrel{iid}{\sim} (0, \sigma^2)$$
 (A)

עבור הנתונים, ואילו בוב משתמש במודל

$$Y_i = \alpha + \beta x_i + \gamma x_i^2 + \epsilon_i, \quad \epsilon_i \stackrel{iid}{\sim} (0, \sigma^2)$$
 (B)

 $.Var[\epsilon_i]=\sigma^2$ ושונות $\mathbb{E}[\epsilon_i]=0$ ושונות בעלי תוחלת בעלי מ"מ ב"ת ושווי-התפלגות הסימן הסימן $\epsilon_i\stackrel{iid}{\sim}(0,\sigma^2)$ ושונות המ

- א. מצאו במפורש את אומדי הריבועים הפחותים עבור eta ו- eta תחת המודל (A), ואת אומדי הריבועים הפחותים עבור eta ו- eta תחת המודל (B).
 - .(A) את המודל $Cov(\hat{lpha},\hat{eta})$ ואת $Var[\hat{lpha}]$, $Var[\hat{eta}]$ תחת המודל
 - .(B) תחת המודל עבור $Var[\hat{\gamma}]$ תחת המודל ...
- ד. מצאו רווח-סמך ברמת ביטחון ϵ_i בעלי התפלגות נורמלית (A), אשר מוסיפים את ההנחה ש- בעלי התפלגות נורמלית ד. מצאו רווח-סמך ברמת ביטחון iid (כלומר $\epsilon_i \stackrel{iid}{\sim} \mathcal{N}(0,\sigma^2)$)
- ה. מצאו מבחן דו-צדדי עבור השערת האפס $H_0:\gamma=0$ תחת המודל (B), כאשר מוסיפים את ההנחה ש- בעלת התפלגות ה. ($\epsilon_i\stackrel{iid}{\sim}\mathcal{N}(0,\sigma^2)$ נורמלית (כלומר

שאלה 4 (30 נקודות)

ב-R. לאחר מכן, ניישם את בשאלה זו נבנה ידנית פונקציה אשר מבצעת את מרבית הפעולות של הפונקציה המובנית (lm() ב-R. לאחר מכן, ניישם את הפונקציה שבנינו לניתוח קובץ הנתונים Startups.csv אשר מכיל נתונים אודות ההוצאות השונות, המדינה והרווח של סטארט-אפים אמריקינים. אנחנו נרצה לחזות את רווח החברה בהינתן המאפיינים השונים הנתונים לנו.

א. בשם $My_lm({m X},{m Y})$ שבו שלד לפונקציה עשבו R בשם R א. בתיקייה המצורפת במודל שקובץ את מטריצת עשבו $Quiz_1.R$ בשם R א. בתיקייה המצורפת במודל שקובץ את הפרמטרים ברגרסיה לינארית המשתנים המסבירים אואת וקטור המשתנים המוסברים ${m Y}$. הפונקציה צריכה לאמוד את הפרמטרים ברגרסיה לינארית מהצורה

$$Y = X\beta + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma^2 I_n)$$

ולהחזיר אומדנים שונים כפי שמוסבר בהרחבה בקובץ ה-R המצורף. בסעיף זה עליכם לכתוב את הקוד הנדרש לקבלת הפלט בפונקציה. אסור להשתמש בפונקציה lm() או כל פונקציה אחרת אשר אומדת רגרסיה לינארית.

- ב. קראו את הקובץ Startups.csv. אנו נרצה לאמוד מודל לינארי בו Profit הוא המשתנה המוסבר ויתר המשתנים הם המשתנים המסבירים. בעזרת הפונקציה מסעיף א', תבצעו את השלבים הבאים
 - (i) הציגו סטטיסטיקה תיאורית בסיסית עבור כל אחד מהמשתנים במודל.
 - (ii) בדקו את ההתפלגות האמפירית של Profit באמצעת שימוש ב-Histogram. מה ניתן ללמוד מהתפלגות זו?
- וחשבו Profit וחשבו המשתנים השולי שלו מול הבירים הרציפים, הציגו את ה-Scatter-plot השולי שלו מול המשתנים המסבירים הרציפים, הציגו את ה-Scatter-plot השולי שלו מול המשתנים המסבירים הרציפים, הציגו את הקורלציה ביניהם.
 - $.\hat{eta}$ בצעו טרנספומציות רלוונטיות על המשתנים, אמדו את המודל הלינארי המבוקש וחשבו את (iv)
- עבור כל אחד מ- $j \leq p = 0$ חשבו את הסטטיסטי ה $T_j^{H_0} = \frac{\hat{eta}_j eta_j^{H_0}}{S.E.(\hat{eta}_j)}$ עבור כל אחד מ $j \leq p \leq p = 0$ חשבו את הסטטיסטי (v) \hat{eta}_j . הוא האומד לסטיית התקן של \hat{eta}_j
 - 1-lpha חשבו את רווח הסמך ל- eta_j ברמת מובהקות (vi)
 - lpha=0.05 עבור כל אחד מ- $eta_j=0$ קבעו אם נדחה את השערת האפס עבור כל אחד מ- $0\leq j\leq p$ ברמת מובהקות (vii)
 - . הקובץ test.csv מכיל מידע על סטארט-אפים אמריקנים נוספים. בעזרת המודל שאמדתם בסעיף ב':
 - . עבור כל תצפית בקובץ $Startups\ test.csv$ מצאו את ערך (i)

אשר מופיע Profit את ערך את ערך את את ערך בסעיף הקודם, וכן ב- Y_i^* את הערך האמיתי של אחדוי שחישבתם בסעיף הקודם, וכן ב- בקובץ. חשבו את שורש הסטייה הריבועית הממוצעת של התחזית, כלומר חשבו את

$$RMSE(Y^*, \hat{Y}^*) = \sqrt{\frac{1}{n_{test}} \sum_{i=1}^{n_{test}} (Y_i^* - \hat{Y}_i^*)^2}$$

 $.Startups_test.csv$ כאשר בקובץ מספר התצפיות מספר מ