					1 -		
$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{i}{k(1+2k^2)(2r_3+r_5)}$	$\frac{i (6k^2 (2r_3 + r_5) + t_1)}{\sqrt{2} k (1 + 2k^2)^2 (2r_3 + r_5) t_1}$	0	$\frac{6k^2(2r_3+r_5)+t_1}{(1+2k^2)^2(2r_3+r_5)t_1}$
${\mathfrak l}_{1^-}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^-\alpha}^{\#2}$	0	0	0	$-\frac{1}{\sqrt{2} (k^2 + 2k^4)(2r_3 + r_5)}$	$\frac{6k^2(2r_3+r_5)+t_1}{2(k+2k^3)^2(2r_3+r_5)t_1}$	0	$-\frac{i(6k^2(2r_3+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(2r_3+r_5)t_1}$
$\sigma_{1^-\alpha}^{\#1}$	0	0	0	$\frac{1}{k^2 (2 r_3 + r_5)}$	$-\frac{1}{\sqrt{2} \; (k^2 + 2 k^4) (2 r_3 + r_5)}$	0	$\frac{i}{k(1+2k^2)(2r_3+r_5)}$
$\tau_{1}^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{-2ik^3(2r_3+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	$\frac{-2k^4(2r_3+r_5)+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{+}\alpha\beta$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2(2r_3+r_5)+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3(2r_3+r_5)-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_1^{\#1}{}_+\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\tau_{1}^{\#1} + \alpha \beta \frac{i \sqrt{2} k}{t_1 + k^2 t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{#2} + \alpha \beta$	$\tau_1^{\#1} + ^{\alpha\beta}$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$t_1^{\#2} + ^{\alpha}$

	$\omega_{1}^{\#1}{}_{lphaeta}$	$\omega_{1}^{\#2}{}_{\alpha\beta}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1^{-}\ lpha}^{\#1}$	$\omega_{1-\alpha}^{\#2}$	$f_{1-\alpha}^{\#1}$	$f_{1-\alpha}^{#2}$
$\omega_1^{\#1} \dagger^{\alpha\beta}$	$k^2 (2r_3 + r_5) - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2} \dagger^{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$f_{1}^{\#1} \dagger^{\alpha\beta}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\sharp 1} \dagger^{lpha}$	0	0	0	$k^2 (2r_3 + r_5) + \frac{t_1}{6}$	$\frac{t_1}{3\sqrt{2}}$	0	<u> </u>
	0)	J	` 5 5 6	3 √2)	3
$\omega_1^{\#2} \dagger^{\alpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	3 √2 <u>t1</u> 3		$\frac{3}{\frac{1}{3} i \sqrt{2} k t_1}$
		_			, ,		3

$\omega_{0^{\text{-}}}^{\#1}$	0	0	0	<i>-t</i> ₁
$f_{0}^{\#2}$	0	0	0	0
$f_{0}^{\#1}$	0	0	0	0
$\omega_{0}^{\#1}$	$6 k^2 r_3$	0	0	0
,	$\omega_{0}^{\#1}$ \dagger	r#1 + 0	r#2 +	$\omega_{0}^{\#1}$ \dagger

	$\sigma_{0}^{\#1}$	$\tau_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0^{+}}^{\#1}$ †	$\frac{1}{6 k^2 r_3}$	0	0	0
$\tau_{0^{+}}^{\#1}$ †	0	0	0	0
$\tau_{0^{+}}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$-\frac{1}{t_1}$

Lagrangian density	$-rac{1}{3}t_1\;\omega_{\lambda}^{\;lpha\prime}\;\;\omega_{\kappalpha}^{\;\;\kappa}-t_1\;\omega_{\kappa\lambda}^{\;\;\kappa}\;\;\omega_{\kappa\lambda}^{\;\;\prime}-2r_3\partial_{\imath}\omega^{\kappa\lambda}_{\;\;\kappa}\partial^{\imath}\omega_{\lambda}^{\;\;lpha}-r_5\partial_{\imath}\omega^{\kappa\lambda}_{\;\;\kappa}\partial^{\imath}\omega_{\lambda}^{\;\;lpha}+$	$2 r_3 \partial_{\alpha} \omega_{\lambda}^{\ \ \alpha} \partial_{\kappa} \omega^{\theta \kappa \lambda} - r_5 \partial_{\alpha} \omega_{\lambda}^{\ \ \alpha} \partial_{\kappa} \omega^{\theta \kappa \lambda} - 2 r_3 \partial_{\theta} \omega_{\lambda}^{\ \ \alpha} \partial_{\kappa} \omega^{\theta \kappa \lambda} +$	$r_5 \partial_\theta \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\theta \kappa \lambda} - 2 r_3 \partial_\alpha \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\kappa \lambda \theta} - r_5 \partial_\alpha \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\kappa \lambda \theta} +$	$4 r_3 \partial_\theta \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\kappa \lambda \theta} + 2 r_5 \partial_\theta \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\kappa \lambda \theta} - \frac{1}{2} t_1 \partial^\alpha f_{\theta \kappa} \partial^\kappa f_\alpha^{\ \theta} -$	$\frac{1}{2}t_1\partial^{\alpha}f_{\kappa\theta}\partial^{\kappa}f_{\alpha}^{ \theta}-\frac{1}{2}t_1\partial^{\alpha}f^{\lambda}_{ \ \kappa}\partial^{\kappa}f_{\alpha\lambda}+\frac{1}{3}t_1\;\omega_{\kappa\alpha}^{ \alpha}\;\partial^{\kappa}f'_{\ l}+\frac{1}{3}t_1\;\omega_{\kappa\lambda}^{ \lambda}\;\partial^{\kappa}f'_{\ l}+$	$rac{2}{3}t_1\partial^{lpha}f_{\kappalpha}\partial^{\kappa}f'_{\ \prime}$ - $rac{1}{3}t_1\partial_{\kappa}f^{\lambda}_{\ \lambda}\partial^{\kappa}f'_{\ \prime}$ + 2 $t_1\omega_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{$	$\frac{1}{3}t_1\;\omega_{,\lambda}^{\lambda}\;\partial^{\kappa}f'_{\kappa}+\frac{1}{2}t_1\;\partial^{\alpha}f^{\lambda}_{\kappa}\;\partial^{\kappa}f_{\alpha}+\frac{1}{2}t_1\;\partial_{\kappa}f^{\lambda}_{\theta}\;\partial^{\kappa}f_{\lambda}^{\theta}+\frac{1}{2}t_1\;\partial_{\kappa}f^{\lambda}_{\theta}\;\partial^{\kappa}f_{\lambda}^{\theta}-$	$rac{1}{3}t_1\partial^{lpha}f^{\lambda}_{\ \ lpha}\partial^{\kappa}f_{\lambda\kappa}$ - $4r_3\partial^{eta}\omega_{_{I}}^{\ \lambdalpha}\partial_{\lambda}\omega_{_{lpha}}^{\ \ \prime}$ - $2r_3\partial_{lpha}\omega_{_{\lambda}}^{\ \ lpha}$ $\partial^{\lambda}\omega_{_{\kappa}}^{\ \ lpha}$ +	$r_5\partial_{lpha}\omega_{\lambda}^{lpha}\partial^{\lambda}\omega^{ heta\kappa}_{\kappa} + 2r_3\partial_{ heta}\omega_{\lambda}^{lpha}\partial^{\lambda}\omega^{ heta\kappa}_{\kappa} - r_5\partial_{ heta}\omega_{\lambda}^{lpha}\partial^{\lambda}\omega^{ heta\kappa}_{\kappa}$	Added source term: $\left f^{lphaeta}\mid_{lpha_{eta}} + \omega^{lphaeta\chi}\mid_{lpha_{eta\chi}}$
--------------------	---	--	---	---	---	---	---	---	---	---

	$\sigma_{2^{+}lphaeta}^{\sharp1}$	$ au_{2}^{\#1}{}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1}\dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$ au_2^{\#1} \dagger^{lphaeta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{t_1}$

	$\omega_{2}^{\#1}{}_{lphaeta}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2^{-}\alpha\beta\chi}^{\#1}$
$\omega_{2}^{\#1}\dagger^{lphaeta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2}^{#1} \dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{\sharp 1} \dagger^{lphaeta\chi}$	0	0	<u>t</u> 1 2

Source constraints				
SO(3) irreps	#			
$\tau_{0+}^{\#2} == 0$	1			
$\tau_{0+}^{\#1} == 0$	1			
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3			
$\tau_{1}^{\#1\alpha} == 0$	3			
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3			
$\tau_{2+}^{\#1\alpha\beta} - 2 i k \sigma_{2+}^{\#1\alpha\beta} == 0$	5			
Total #:	16			

 $\frac{\text{Unitarity conditions}}{r_5 < -2 r_3 \&\& t_1 < 0 \mid\mid t_1 > 0}$

(No massive particles)