Euler-Lagrange

Reading: Robot Modeling and Control 7.1.1

This Lecture

- How do we use kinetic and potential energy to get dynamics?
- What is the Euler-Lagrange equation?

Point Mass

Let's start with a 1-DoF example

Point Mass

What is the **equation of motion** for the point mass?

- Particle with mass *m*
- Moves up and down with position θ
- Force *f* pushing up, gravity pulling down

Point Mass

What is the **equation of motion** for the point mass?

- Particle with mass *m*
- Moves up and down with position θ
- Force *f* pushing up, gravity pulling down

$$m\ddot{\theta} = f - mg$$

Newton's second law

Lagrangian

Lagrangian *L* is the difference between kinetic and potential energy

$$L(\theta, \dot{\theta}) = K(\theta, \dot{\theta}) - P(\theta)$$

Kinetic energy

Potential energy

Lagrangian

Lagrangian *L* is the difference between kinetic and potential energy

$$L(\theta, \dot{\theta}) = K(\theta, \dot{\theta}) - P(\theta)$$

Kinetic energy

Potential energy

Kinetic energy: $K(\theta, \dot{\theta}) = \frac{1}{2}m\dot{\theta}^2$

Potential energy: $P(\theta) = mg\theta$

Lagrangian

Lagrangian *L* is the difference between kinetic and potential energy

$$L(\theta, \dot{\theta}) = \frac{1}{2}m\dot{\theta}^2 - mg\theta$$

Kinetic energy

Potential energy

Euler-Lagrange Equation

$$f = \frac{d}{dt} \frac{\partial L(\theta, \dot{\theta})}{\partial \dot{\theta}} - \frac{\partial L(\theta, \dot{\theta})}{\partial \theta}$$

Converts Lagrangian *L* to dynamic **equations of motion**

Euler-Lagrange

Apply **Euler-Lagrange Equation** to get dynamics.

$$L(\theta, \dot{\theta}) = \frac{1}{2}m\dot{\theta}^2 - mg\theta$$

$$f = \frac{d}{dt} \frac{\partial L(\theta, \dot{\theta})}{\partial \dot{\theta}} - \frac{\partial L(\theta, \dot{\theta})}{\partial \theta}$$

1. partial derivative wrt $\dot{\theta}$

2. derivative of result wrt time *t*

3. partial derivative wrt θ

Euler-Lagrange

Apply **Euler-Lagrange Equation** to get dynamics.

$$L(\theta, \dot{\theta}) = \frac{1}{2}m\dot{\theta}^2 - mg\theta$$

$$f = m\ddot{\theta} + mg$$

Takeaways

$$L(\theta, \dot{\theta}) = K(\theta, \dot{\theta}) - P(\theta)$$

total kinetic (and potential) energy summed across every joint

$$\tau_{i} = \frac{d}{dt} \frac{\partial L(\theta, \dot{\theta})}{\partial \dot{\theta}_{i}} - \frac{\partial L(\theta, \dot{\theta})}{\partial \theta_{i}}$$

torque at *i*-th joint velocity of *i*-th joint position of *i*-th joint

This Lecture

- How do we use kinetic and potential energy to get dynamics?
- What is the Euler-Lagrange equation?

Next Lecture

• How do we find the kinetic and potential energy for a robot arm?