Theoretical-Computer-Science

This repository contains basic notes about Theoretical-Computer-Science course of Università Della Calabria. You can use this repo for review but not for study as proofs of the theorems are missing

Table of Contents

- Languages
- Grammars
 - Chomsky hierarchy

Languages

What is a language? It is simple. A set of strings. Now the question is obvious. What are strings? Strings are a sequence of simbol of an alphabet. Mathematically we denote with this simbol \$\Sigma\$ an alphabet, and with \$\Sigma^*\$ all the strings from the alphabet.

Now we can define formally a language given an alphabet $\sum w \le \$ like the set $L = (w \le x^*)$

Example: \$\Sigma =\${ 0,1 }, \$L=\${11,01,1}

Grammars

Grammars generate languages. Formally a grammar is a quadruple \$G = (V,T,P,S)\$

- · V is the set of non-terminal symbols
- T is the set of terminal symbols
- S is the initial non-terminal symbol
- P is a set of productions

Chomsky hierarchy

We can divide grammars in 4 types base on the language they generate:

- Type 3 grammar: grammar production are of the type, \$ A => a \$ \$ A \in V, \ a \in T \$ \$ A => Ba,
 A, B \in V, a \in T \$ \$ A => aB, A, B \in V, a \in T \$
- Type 2 grammar: grammar production are of the type, \$ A => \Gamma \$ \$ A \in V, \Gamma \in (V \cup T)^* \$
- Type 0 grammar: grammar production are of the type, $\$ \alpha A \beta => \alpha \gamma \beta $\$ \in V \\$, \\$\alpha \paralle \in (V \cup T)^* \\$

Regular languages

Type 3 grammars

Deterministic finite state automata

Non deterministic finite state automata

Regular expression

Proprieties of regular languages

Pumping lemma for regular languages