Battery Model Summary

Jules Pare

Arrhenius Correlation Amp-hour Throughput Model

$$Q_{loss} = A \exp \left[\frac{-E_a + BC_{rate}}{RT} \right] Ah_{th}^{z}$$

- Q_{loss} Capacity Loss
 C_{rate} Mean C Rate
 R Ideal Gas Constant
 T Temperature
- Ah_{th} Amp-hour Throughput
- A,B,D,z Fitting Coefficents

L. Chen, Y. Tong, and Z. Dong, "Li-Ion Battery Performance Degradation Modeling for the Optimal Design and Energy Management of Electrified Propulsion Systems," *Energies*, vol. 13, no. 1629, p. 1629, Apr. 2020, doi: 10.3390/en13071629.

Second-Order Arrhenius Amp-Hour Throughput

$$Q_{loss} = (aT^2 + bT + c) \exp[(dT + e)I_{rate}] Ah_{th} + ft^{0.5} \exp\left[-\frac{E_a}{RT}\right]$$

a	8.61E-6, 1/Ah-K ²	$I_{\rm rate}$	C-rate
b	-5.13E-3, 1/Ah-K	t	Days
c	7.63E-1, 1/Ah	$E_{\rm a}$	24.5, kJ mol ⁻¹
d	-6.7E-3, 1/K-(C-rate)	R	8.314, J mol ⁻¹ K ⁻
e	2.35, 1/(C-rate)	T	K
f	14,876, 1/day ^{1/2}		

J. Wang et al., "Degradation of lithium ion batteries employing graphite negatives and nickel—cobalt—manganese oxide + spinel manganese oxide positives: Part 1, aging mechanisms and life estimation," J. Power Sources, vol. 269, pp. 937–948, Dec. 2014, doi: 10.1016/j.jpowsour.2014.07.030.

Deshpande-Bernardi Model

$$Q_{loss} = Q_{loss}^{SEI\ growth} + Q_{loss}^{SEI\ crack}$$

$$Q_{loss} = Kt^{y} + a \left\{ \sum_{i}^{n} (DOD_{i})^{2} \right\}$$

- Q_{loss} Capacity Loss
 t Time
- DOD Depth of Discharge
- n Number of Cycles
- K, y, a Fitting Parameters

R. D. Deshpande and K. Uddin, "Physics inspired model for estimating 'cycles to failure' as a function of depth of discharge for lithium ion batteries," J. Energy Storage, vol. 33, p. 101932, Jan. 2021, doi: 10.1016/j.est.2020.101932.

Quadradic Approximation Model

$$\ln\left[-\ln\left(\frac{C(t)}{C_0}\right)\right] = \ln(k_c) + \alpha \ln(t)$$

$$\ln(k_c) = \beta_0 + \beta_T \left(\frac{1}{T}\right) + \beta_S(SOC) + \beta_C(I_C) + \beta_D(I_D) + \beta_{TC} \left(\frac{I_C}{T}\right) + \beta_{TD} \left(\frac{I_D}{T}\right) + \beta_{TT} \left(\frac{1}{T^2}\right) + \beta_{SS}(SOC^2)$$

- C(t) Present Capacity
- C_0 Inital Capacity
- k_c Stress Factor Fitting Parameter
- t-Time
- T-Ambient Temperature
- SOC Average SOC
- I_C Charge Current
- I_D Discharge Current
- β_i Set of fitting parameters
- α Fitting parameter for time

D. Galatro, C. D. Silva, D. A. Romero, O. Trescases, and C. H. Amon, "Challenges in data-based degradation models for lithium-ion batteries," *Int. J. Energy Res.*, vol. 44, no. 5, pp. 3954–3975, 2020, doi: https://doi.org/10.1002/er.5196.

Nonlinear model with linear stress factors

Cycling:
$$L = 1 - \alpha_{sei} \exp[-N\beta_{sei}f_d] - \alpha_{sei} \exp[-Nf_d]$$

Calendar: $L = 1 - \alpha_{sei} \exp[-t\beta_{sei}f_d] - \alpha_{sei} \exp[-tf_d]$

- L-Degradation in form (1-SOH)
- $N-Number\ of\ cycles$
- t-time
- α_{sei} , β_{sei} , f_d Fitting parameters

$$f_d^1 = (S_{\delta}(\delta) + S_t(t_c))S_{\sigma}(\sigma)S_T(T_c)$$

$$f_d^t = S_t(t)S_{\sigma}(\sigma)S_T(T_c)$$

$$\delta - DOD$$

$$t - time$$

$$\sigma - SOC$$

$$T_c - chamber temperature$$

$$S(i) - Linear stress models$$

B. Xu, A. Oudalov, A. Ulbig, G. Andersson, and D. S. Kirschen, "Modeling of Lithium-Ion Battery Degradation for Cell Life Assessment," IEEE Trans. Smart Grid, vol. 9, no. 2, pp. 1131–1140, Mar. 2018, doi: 10.1109/TSG.2016.2578950.

Model with EC and Thermal Model

$$\frac{C(t)}{C_0} = 1 + c_a c_v^{V - V_0} c_t^{T - T_0} \sqrt{t}$$

V-Voltage $V_0-Nominal\ Voltage$ T-Temperature $T_0-Nominal\ Temperature$ $c_a, c_v, c_t-Fitting\ parameters$

t-time