О числе независимости случайного многодольного гиперграфа

Студент 608 группы Николаев Александр Евгеньевич

Московский государственный университет имени М.В.Ломоносова Механико-математический факультет Кафедра теории вероятностей

> Научный руководитель: д.ф.-м.н., профессор Шабанов Дмитрий Александрович

> > 2021г.

Определение

Гиперграф H — это пара H = (V, E), где на конечном множестве вершин V определен набор подмножеств (рёбер) E.

Определение

Гиперграф H=(V,E) называется k-однородным гиперграфом, если каждое его ребро $e\in E$ содержит ровно k вершин.

Определение

k-однородный гиперграф H=(V,E) называется k-дольным гипергафом если множество его вершин можно разбить на k множеств таким образом, что в каждом ребре присутствует ровно одна вершина из каждого множества.

Заметим что 2-однородный гиперграф есть классический граф, а 2-однородный 2-дольный гиперграф есть классический двудольный граф.

Определение

Циклом в случайном гиперграфе называют последовательность различных вершин и различных ребер $(v_1,e_1,\ldots,e_t,v_{t+1})$ такую, что $e_i\cap e_{i+1}=v_i$ для всех $1\leq i\leq t$ и $v_1=v_{t+1}$.

Определение

Гипердерево - связный гиперграф без циклов.

Определение

Множество вершин $W \subset V$ в гиперграфе H = (V, E) называется независимым, если оно не содержит полных ребер внутри себя.

Определение

Числом независимости $\alpha(H)$, гиперграфа H называется максимальный размер независимого множетсва в H.

Биномиальная модель k-однородного случайного (полного или k-дольного) гиперграфа H(n,k,p): каждое возможное k-ребро включается в гиперграф на n вершинах независимо от других с вероятностью p.

- В случае k-дольного гиперграфа мы будем изуать гиперграфы с $p=\frac{cn}{n^k}$
- В случае полного гиперграфа мы будем изуать гиперграфы с $p=\frac{cn}{\binom{n}{k}}$

Обзор известных результатов

Число независимости случайного графа G(n,p) активно изучается, начиная с опубликованных в 70-х годах прошлого века работ Д. Матулы [1], Дж. Гримметта и К. МакДиармида [2], П. Эрдеша и Б. Боллобаша [3] для случая постоянного $p \in (0,1)$. Была доказана сильная концентрация значений $\alpha(G(n,p))$.

Теорема 1

[П. Эрдеш, Б. Боллобаш, [3]] Пусть $p\in (0,1)$ фиксировано, $b=(1-p)^{-1}$. Для положительного $\varepsilon>0$ положим

$$\begin{array}{l} k_{+\varepsilon} = \left[2\log_b n - 2\log_b \log_b n + 2\log_b \frac{e}{2} + 1 + \varepsilon \right] \\ k_{-\varepsilon} = \left[2\log_b n - 2\log_b \log_b n + 2\log_b \frac{e}{2} + 1 - \varepsilon \right] \end{array}$$

Тогда для любого $\varepsilon > 0$

$$P(k_{-\varepsilon} \leqslant \alpha(G(n,p)) \leqslant k_{+\varepsilon} - 1) \to 1$$
 при $n \to +\infty$

В недавней работе М. Бойяти, Д. Гамарник и П. Тетали [5], обосновали существование следующего предела для случая p линейно зависящего от n, однако им не удалось получить значение $\gamma(c)$

$$\frac{\alpha(G(n, c/n))}{n} \xrightarrow{P} \gamma(c) \tag{1}$$

Для $c \leq e$, γ может быть найдена с помощью алгоритма предложенного Р. Карпом и М. Сипсером [6] для поиска максимального паросочетания в случайном графе G(n,c/n). Следствие из их доказательства может быть сформулировано следующим образом

$$\frac{\alpha(G(n, c/n))}{n} \xrightarrow{P} r + \frac{cr^2}{2},\tag{2}$$

где r=r(c) является единственным на (0,1) решением уравнения $r=e^{-cr}$. В общем случае значение величины $\gamma(c)$ остается неизвестным.

Новые результаты

Цель настоящей работы обобщение результата (2) на случай многодольного гиперграфа $H_k(n,k,p)$ в разреженном случае

Теорема 2

Для любых фиксированных $k\geq 3$ и $c\in (0,\frac{1}{k-1})$, при $p=\frac{nc}{n^k}$

$$\frac{\alpha(H_k(n,k,p))}{n} \xrightarrow{P} k(r + \frac{c(k-1)}{k}r^k), \quad \text{если } n \to +\infty$$
 (3)

где r- это единственное решение уравнения $r=e^{-cr^{k-1}}$ из (0,1).

План доказательства

Шаг 1

Утверждение 1

Для любой функции $p=p(n)\in(0,1)$ выполнено соотношение

$$rac{lpha(H_k(n,k,p))-Elpha(H_k(n,k,p))}{n}\stackrel{P}{\longrightarrow} 0$$
 при $n o\infty$ (4)

Результат: для обоснования результата достаточно показать, что существует такая константа $\gamma=\gamma(k,c)\in(0,1)$, что при $p=\frac{nc}{n^k}$

$$rac{Elpha(H_k(n,k,p))}{n}\longrightarrow \gamma(k,c)$$
 при $n o +\infty$ (5)

Шаг 2 - структура разреженного многодольного гиперграфа

Лемма 1

Среднее число компонент с циклами ограниченно сверху величиной $2\ln 2n$

Лемма 2

Компоненты размером от $\frac{4}{k-1} \ln n$ покрывают не более o(n) вершин с вероятностью, стремящейся к 1.

Как следствие

Лемма 3

Гипердеревья занимают kn(1-o(1)) вершин с вероятностью, стремящейся к 1.

Шаг 3 - применение алгоритма Карпа-Сипсера для поиска независимого множества в k-однородном гипердереве T(V,E)

- Суть алгоритма в определении типа вершины w_0 , w_1 или r.
- Максимальное независимое множество состоит из всех вершин типа r и $\frac{k-1}{k}$ доли вершин типа w_1

Шаг 4 - Апроксимация алгоритма Карпа-Сипсера на случайное гипердерево.

Построим случайное k-однородное гипердерево T(k,c) с корнем в вершине \widetilde{v} , последовательно добавляя ребра, причем количество ребер выходящих из корня и любой из далее полученных вершин, будет иметь распределение Пуассона с параметром c.

Утверждение 2

Если $\widetilde{v}-$ корень случайного гипердерева T(k,c), то

$$P(\widetilde{v} \in R) = r, \quad P(\widetilde{v} \in W) = w = 1 - r$$

$$P(\widetilde{v} \in W_1) = w_1 = cr^k, \quad P(\widetilde{v} \in W_0) = w_0 = w - w_1$$

где $r \in (0,1)$ — решение уравнения $r = e^{-cr^{k-1}}$

Шаг 5 - Аналог алгоритма Карпа-Сипсера для многодольного гиперграфа.

Так как гипердеревья занимают nk(1-o(1)) вершин $H_k(n,k,p)$, то обозначив за $H_k'(n,k,p))$ объединение древесных компонент и изолированных вершин $H_k(n,k,p)$ можно показать следующие

Утверждение 3

$$\lim_{n \to \infty} \frac{E\alpha(H_k(n, k, p))}{n} = \lim_{n \to \infty} \frac{E\alpha(H'_k(n, k, p))}{n}$$

Утверждение 4

При $c<rac{1}{k-1}$ выполяется утверждение

$$\gamma(k,c) = \lim_{n \to \infty} \frac{E\alpha(H_k(n,k,p))}{n} = \lim_{n \to \infty} \left(P(v \in R) + \frac{k-1}{k} P(v \in W_1) \right)$$

Шаг 6 - Апроксимация случайного гипердерева и многодольного гиперграфа.

Покажем что вероятности вершин быть типа w и r в древесных компонентах многодольного гиперграфа стремятся к вероятности иметь такой же тип в случайном гипердереве T(k,c)

Лемма 4

Пусть $k\geqslant 3, c\in (0,\frac{1}{k-1})$ фиксированы. Тогда при $p=\frac{nc}{n^k}$ выполнены следующие соотношения:

$$\lim_{n\to\infty}P(v\in R)=P(\widetilde{v}\in R)=r,\quad \lim_{n\to\infty}P\left(v\in W_1\right)=P\left(\widetilde{v}\in W_1\right)=w_1$$

где величины r и w_1 определены в утверждении 2.

Шаг 7 - доказательство результата

Собирая вместе полученные результаты устанавливаем истинность теоремы.

Библиография

- Matula D.W., "On the complete subgraphs of a random graph", In: Combinatory Mathematics and its applications, Chapel Hill, 1970, 356–369.
- Grimmett G., McDiarmid C., "On colouring random graphs", Math. Proc. Cambr. Phil. Soc., 77 (1975), 313–325.
- Bollobas B., Erdős P., "Cliques in random graphs", Math. Proc. Cambr. Phil. Soc., 80 (1976), 419–427.
- Wormald N., "Models of random regular graphs", Surveys in Combinatorics, London Math. Soc. Lec. Notes Ser., 267, Cambridge Univ. Press, Cambridge, 1999, 239–298.
- Bayati M., Gamarnik D., Tetali P., "Combinatorial approach to the interpolation method and scaling limits in sparse random graphs", Ann. Probab., 41:6 (2013), 4080–4015.
- Karp R., Sipser M., "Maximum matchings in sparse random graphs", 22nd Ann. Symp. on Found. Computer Sci., 1981, 364–375.

Спасибо за внимание!