Logistic Regression

Clayton W. Schupp

Galvanize

Review of Linear Regression

- Models a continuous response as a function of one or more input variables
- Assumes the response is a linear function of the input
- Finds the linear function that gives the best fit (minimizes residual error)

Classification

In the classification setting, the input stays the same, but now response is discrete \longrightarrow we could still use linear regression, but it doesn't really fit the data well

We would prefer a function with the following properties:

- Can take a continuous input (— inf, inf)
- Output should be between 0 and 1
- Output should not 'waste much time' transitioning between 0 and 1

The Logistic (Sigmoid) Function

Logistic Regression: Output

The logistic regression model is a generalized linear model where the response variable is **binary**.

$$Y_i = \begin{cases} 1, & \text{if an event occurs} \\ 0, & \text{if it doesn't} \end{cases}$$

We are interested in the probability that an event occurs given a subject's profile

$$\pi_i = P(Y_i = 1 | X = x_i)$$

 x_i represents the vector of feature values for the i^{th} subject

The distribution of $Y_i|X=x_i$ is **Bernoulli(** π_i **)**

Logistic Regression: Input

Just as with linear regression, the linear predictor is

$$X\beta = \beta_0 x_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

where X is your design matrix: x_0 is a column vector of 1's and x_1, \ldots, x_p are the feature column vectors

Note: we have p features and p+1 parameters

The explanatory variables may be quantitative, categorical, or mixed

Logistic Regression: Linking Input to Output

The function that connects the linear predictor to the desired output is the logistic function

$$y = \frac{1}{1 + e^{-x}}$$

Giving us the logistic regression model

$$\pi_i = \frac{1}{1 + e^{-X\beta}} = \frac{e^{X\beta}}{1 + e^{X\beta}}$$

An Aside: Odds and Probabilities

Given a probability (p) of an event occurring, the odds of that event are

$$odds = \frac{p}{1-p}$$

Similarly, given the odds, you can calculate the probability

$$p = \frac{odds}{1 + odds}$$

An Aside: Probabilities and Odds

Odds are commonly used in gambling, especially horse-racing

- Even odds (1:1) $\longrightarrow p = \frac{1}{1+1} = 0.5$
- Odds are 3:1 for an event $\longrightarrow p = \frac{3}{1+3} = 0.75$
- Long shot: 20:1 against

$$\longrightarrow 1 - p = 1 - \frac{20}{21} = \frac{1}{21} = 0.0476$$

Anybody ready for Vegas???

Back to the Logistic Regression Model

The logistic model can be rewritten in terms of odds via the logit function

$$logit(\pi) = log\left(\frac{\pi_i}{1-\pi}\right) = logodds$$

Giving us a nice framework that seems familiar

$$logit(\pi_i) = X\beta$$

Estimating the Parameters

Since $Y_i|X$ is Bernoulli (π_i) , the likelihood of a single data point (y_i) is

$$\pi_i^{y_i}\cdot (1-\pi_i)^{1-y_i}$$

Therefore the likelihood of all the data is

$$L(\beta) = \prod_{i=1}^{n} \pi_i^{y_i} \cdot (1 - \pi_i)^{1 - y_i}$$
$$= \prod_{i=1}^{n} \left(\frac{e^{X\beta}}{1 + e^{X\beta}}\right)^{y_i} \cdot \left(\frac{1}{1 + e^{X\beta}}\right)^{1 - y_i}$$

Estimating the Parameters

The regression coefficients can be estimated using maximum likelihood estimation

Unlike linear regression, no closed form solution exists, therefore an iterative method such as Newton-Rhapson or Gradient Descent is needed

Reasons that the model may not reach convergence

- A large number of features relative to subjects → rule of thumb is at least 10 cases for each explanatory variable
- Multicollinearity
- Sparseness, specifically low cell counts for categorical predictors

Evaluating Goodness-of-Fit

With linear regression, we could assess the fit using the R^2 which is essentially a transformation of the residual sum of squares

Deviance is analogous in the logistic regression setting

$$D = -2ln(likelihood) \sim \chi_{df}^2$$

We can now calculate the deviance for a fitted model D_{fitted} and a null intercept-only model (D_{null}) which will allow us to calculate the pseudo- R^2

$$R_L^2 = \frac{D_{null} - D_{fitted}}{D_{null}}$$

Note: unlike in linear regression, this cannot be interpreted as proportion of variance explained

Comparing Models

If you want to compare two nested models:

 H_0 : reduced model H_1 : full model

Then you can calculate the following test statistic

$$D_{red} - D_{full} \sim \chi_{df}^2$$

where df = number of parameters removed

If you want to compare two non-nested models, you can pick the model that minimizes Akaike's Criterion (AIC)

An Aside: Odds Ratio

Given the definition of odds above, the odds ratio is

$$OR = rac{Odds_1}{Odds_2} = rac{(p_1/(1-p_1))}{(p_2/(1-p_2))}$$

For example, say the probability of a disease in individuals with a certain genetic trait is $p_1=0.05$ while in the general population its $p_2=0.001$ the resulting odds ratio would be

$$OR = \frac{0.05/0.95}{0.001/0.999} \approx 53$$

This represents a measure of relative risk such that an individual with the genetic trait is 53 time more likely to develop the disease than a randomly chosen person

Model Interpretation

In linear regression, the $\hat{\beta}$ coefficients can be interpreted directly as the change in y for a 1-unit increase in the explanatory variable

In logistic regression, however, this would represent the change in logit value for a 1-unit increase in the explanatory variable, which is not interpretable

We can however convert the $\hat{\beta}$ coefficient to an estimate of Odds Ratio for a 1-unit increase in the explanatory variable

$$\widehat{OR} = e^{\hat{\beta}}$$

Making Predictions

Once the $\hat{\beta}$ coefficients have been calculated, we can estimate the probabilities of the event occurring (Y=1) for a specific covariate profile (X)

$$\hat{\pi} = \frac{e^{X\hat{\beta}}}{1 + e^{X\hat{\beta}}}$$

 $\hat{\pi}$ is a vector of probabilities for the entire sample.

To find a specific probability π_i , you would find the dot product of the i^{th} row of the X matrix and the vector of $\hat{\beta}$ coefficients

Uses of Logistic Regression

- To model the probabilities of certain conditions or states as a function of explanatory variables → identify "Risk" factors for certain conditions (i.e. disease, divorce, etc)
- To describe differences between subjects from different groups
- To adjust for the "bias" in comparing 2 groups in an observation study propensity scores

Uses of Logistic Regression

- To **predict probabilities** that subjects fall into one of 2 categories on a dichotomous response variable
- To **classify** subjects into one of 2 categories → one of our main focuses
- Lots of other possibilities

Classification

General Method

- For each unclassified subject, you would calculate the probability the subject falls in a specific class using the fitted model
- You would compare that probability to a predetermined decision rule boundary → default is 0.5
- \blacksquare If the predicted probability is > than 0.5 \longrightarrow classify as 1
- 4 If the predicted probability is $\leq 0.5 \longrightarrow \text{classify as } 0$