Критерии оценивания задач

Максимальная оценка за каждую задачу - 10 баллов.

Задача 1 Двигатель Ванкеля

Выписано параметрическое уравнение цилиндра	+3
Найдено отношение радиусов $r = 2R/3$	+1
Найдена максимальная площадь	+2
Найдена минимальная площадь	+2
ограничение на $R \leq (\sqrt{3} - 3/2)a$	+1
получен ответ $k = 14,57 \div 14,87$	+1

Задача 2 Космический мусор

Получено однопараметрическое выражения для эксцентриситета $(e(\varphi), e(p))$ или в любой другой форме)	+3
Правильно (с требуемой точностью) найдено минимальное значение эксцентриситета $e_{min} = 0.056$	+2
Примечание: за ошибку в третьем знаке снимается 1 балл	+2
Получены в том или ином виде (графическом, аналитическом и т.д.) условия наличия или отсутствия падения обломка и угрозы столкновения с МКС	+1
Объяснено, почему обломок угрожает МКС при любых значениях эксцентриситета орбиты	+1
Получение численных оценок значений эксцентриситета, при которых	+3
обломок не падает на Землю	
Примечание	. 1
- правильная нижняя граница интервала $e_l = 0.056$	+1
- правильная верхняя граница интервала $e_u = 0.351$	+2
- верхняя граница интервала указана с ошибкой в третьем знаке	+1

Задача 3 Гравитационный бильярд

Приведены обезразмеренные уравнения движения	+1
Указана однопериодическая траектория + все начальные условия	+1
Указана 2-периодическая траектория (вертикальная) + начальные	+1
условия	
Указана 2-периодическая траектория ("полумесяц") + начальные	+1
условия	
Построен пример 3-периодической траектории	+1
Приведены начальные условия для 3-периодической траектории	+1
Построен пример 4-периодической траектории	+1

Приведены начальные условия для 4-периодической траектории	+1
Построен пример 5-периодической траектории	+1
Приведены начальные условия для 5-периодической траектории	+1

Задача 4. Несколько цветов

Ответ на вопрос о сходимости метода для начальной точки	+1
Ответ на вопрос о сходимости метода для начальной точки	+1
Приведён качественно правильный рисунок	+2
Примечание	
Если на рисунке не подписаны (или неверно подписаны) области	
сходимости, то рисунок оценивался одним баллом.	
Указано правило определения концов отрезков (точки не сходящиеся ни	+1
к какому корню, либо точки, в любой окрестности которых есть точки,	
сходящиеся к комплексным корням)	
Обозначена последовательность границ отрезков	+1
Найден (с требуемой точностью) предел последовательности длин	+3
отрезков	

Задача 5. Ток в квадрате

Приведено верное обоснование способа решения:	+4
построена разностная схема для численного решения, по два балла за	
уравнения и граничные условия (аппроксимация квадрата сеткой	
резисторов без объяснения – 3 балла)	
либо	
- выписаны базисные функции оператора Лапласа в квадрате (с учётом	
граничных условий)	
Рассчитаны коэффициенты разложения	+2
Составлено выражение для потенциала	+1
Правильно учтены дельта-функции в четверти пространства	+1
Получен численный ответ	
- с точностью 1%	+2
- с точностью менее 1%, но не более 10%	+1

Задача 6. Мёбиус, остынь!

Пункт 1	
Правильная формула для расчёта площади листа	+1
Численный ответ $S = 45,413$	+1
Правильная формула для расчёта средней температуры	+1
Численный ответ $T_{\infty} = 19,493$	+1
Пункт 2	
Уравнение в криволинейных координатах	+3
Γ рафик температуры $T_{0,0}$	+2
Значение температуры при $t = \frac{1}{2}$, $T_{0,0} = 29,194$	+1
Утешительный балл за расчёт T_{∞} без учёта кривизны ленты	+1