Série 1

David Wiedemann

10 mars 2022

1

On montre la double implication.

 \leftarrow

Pour montrer que p est une application quotient, il faut montrer que $F \subset B$ est ferme ssi $p^{-1}(F)$ est ferme .

Puisque p est continue (c'est la composition de q avec l'inclusion $A \hookrightarrow X$), si F est ferme alors $p^{-1}(F)$ est ferme.

De plus, si $p^{-1}(F)$ est ferme, alors c'est un ensemble ferme sature et par hypothese il existe un ferme sature $E \subset X$ tel que $E \cap A = p^{-1}(F)$ et $q(E) \cap B = F$ et ainsi F est ferme.

On a alors bien que q(E) est un ferme puisque E etait un ferme sature.

 \Longrightarrow

Supposons maintenant que p est un quotient, soit $F \subset A$ un ferme p-sature. Ainsi, puisque p est un quotient, p(F) est un ferme de B.

On pose alors $E' = \operatorname{cl}_Y p(F)$, ie. l'intersection sur tous les fermes de Y contenant et on definit $E = q^{-1}(E')$.

Remarquons d'abord que

- E est q-sature, car c'est une preimage d'un ensemble de $Y = X/\sim$, et ainsi une reunion de classes d'equivalences
- E est ferme, en effet, c'est la preimage d'un ferme.

On pretend que $F = E \cap A$.

En effet, l'inclusion $F \subset E \cap A$ est immediate :

Soit $f \in F$, alors $p(f) \in p(F) \subset \operatorname{cl}_Y(p(F))$, et donc $f \in q^{-1}(\operatorname{cl}_Y(p(F))) = E$ et de plus $f \in A$, on en deduit que $f \in E \cap A$.

Puisque $F \subset A$ est un ferme sature, $p(F) \subset B$ est ferme et donc il existe un ferme $K \subset Y$ tel que $K \cap B = p(F)$ (par definition de la topologie quotient) et donc $q^{-1}(K) \cap A = F$.

De plus $E' \subset K$ et donc $q^{-1}(E') \cap A \subset q^{-1}(K) \cap A = F$.

Ce qui montre la double inclusion des ensembles.

Comme indique sur piazza, on supposera que l'application p est un quotient, sinon l'enonce est faux avec le contre exemple $X=\mathbb{R}, A=[0,1)$ et $x\sim y\iff x-y\in\mathbb{Z}.$

Soit $A \subset X$ comme dans l'enonce.

Soit \sim la relation d'equivalence sur X, on notera \sim' la relation d'equivalence induite sur A.

On notera $\iota: A \hookrightarrow X$ l'inclusion et $q_A: A \to A/_{\sim}$, $q_X: X \to X/_{\sim}$ les applications canoniques.

On montre le resultat en deux temps, on montrera que

- $q_X \circ \iota$ passe au quotient de q_A et induit une application $g: A/_{\sim} \to X/_{\sim}$
- L'application q_A passe au quotient de $q_X \circ \iota$ et on conclura.

$q_X \circ \iota$ passe au quotient de q_A

En effet, si $a \sim' b \in A$, on a que $q_X \circ \iota(a) = q_X(a) = q_X(b)$ car \sim' est la restriction de \sim , ainsi on a une application induite

$$\begin{array}{ccc}
A & \xrightarrow{q_X \circ \iota} & X \\
\downarrow & & & \downarrow \\
q_A \downarrow & & & & \\
A \downarrow & & & & \\
A \downarrow & & & & \\
\end{array}$$

q_A passe au quotient de $q_X \circ \iota$

Remarquons que $q_X \circ \iota = p$ et est donc par hypothese une application quotient.

On a bien que si p(a) = p(b), alors $a \sim b \iff a \sim' b \iff q_A(a) = q_A(b)$ et on a une deuxieme application induite

Finalement, on obtient les diagrammes suivants

Ainsi, on a que $g \circ f \circ p = p$ et par une derniere application de la propriete universelle, on trouve que $g \circ f = \operatorname{Id}_{A_{\nearrow }}$, le meme raisonnement montre que $f \circ g = \operatorname{Id}_{X_{\nearrow }}$.

3

Soit \sim la relation d'equivalence sur $\mathbb R$ decrite dans l'enonce et soit \sim' la relation restreinte a I.

On a clairement que \sim' identifie les points 0 et 1 et donc \sim' est la meme relation d'equivalence que decrite dans l'enonce.

On verifie les deux hypotheses de la partie 2 de l'exercice

- $q|_A$ est bien surjectif, soit $x \in \mathbb{R}$, alors $x |x| \in I$ et $x |x| \sim x$
- Montrons que c'est une application quotient en appliquant le critere de la partie 1, soit F un ferme sature de I, on pretend que la saturation de F dans \mathbb{R} reste un ferme.

En effet, puisque I est ferme dans \mathbb{R} , F est aussi un ferme dans \mathbb{R} . Soit $b \in q^{-1}(q(F))^c = (F + \mathbb{Z})^c$, et soit $b \sim a$ avec $a \in I$, soit $U \ni a$ un ouvert dans I separant a de F, alors la q-saturation de U est donnee par $\mathbb{Z} + U$ et contient donc b, de plus elle est clairement disjointe de $q^{-1}(q(F))$.

Ainsi par la partie 1, on deduit que p est un quotient et ainsi on peut appliquer le critere etabli en 2 et conclure que $\mathbb{R}/\sim =I/\sim =I/\sim =S^1$.