Data Mining Programming HW2 112753204 陳品仔

1. 從 marketData 的資料中,取女性客戶的兩個欄位: Age、Spending Score 進行客戶分群,請使用 K-means 分群法,當 K=2 時,請列 出每一群的中心點,例如 C1 中心點: Age=33.3、Spending Score=87.1。2 個中心點的列表請根據中心點的 Age 數值升幂排序。

market_f = market.loc[market['Gender'] == "Female"]

Init = Random

程式碼

執行結果

	Age	Spending Score (1-100)
1	29.077	78.179
0	42.918	37.288

CO 中心點為: Age = 42.918, Spending Score = 37.288

C1 中心點為: Age = 29.077, Spending Score = 78.179

分群結果

Init = K-means++

程式碼

執行結果

	Age	Spending Score (1-100)
1	29.077	78.179
0	42.918	37.288

CO 中心點為: Age = 42.918, Spending Score = 37.288

C1 中心點為: Age = 29.077, Spending Score = 78.179

分群結果

Q1 Summary

在第一題使用了 random 和 Kmeans++兩種選擇群中心的方法,對於此資料集來說,兩種方法的結果皆相同。在一開始選擇群心會影響到後面的分類結果,從結果看來,兩群分佈較不平均 (Cluster 0 樣本較多),但有有效切分兩群之效果。

2. 承第 1 題,請利用 Elbow 方法找出 K 應該設置多少? 請提供參考 圖如下圖一。

Init = Random

程式碼

```
clusters = [num for num in range(1,11)]
SSE = []

for k in clusters:
    k_means = cluster.KMeans(n_clusters=k, init='random')
    k_means.fit(market_f_cluster)
    SSE.append(k_means.inertia_)

plt.plot(clusters, SSE, color = "blue")
plt.title('Kmeans Cluster Select - Elbow (Random)')
plt.xlabel('Number of Clusters')
plt.ylabel('SSE')
```

執行結果

選擇最佳分群(Cluster=4)

	Age	Spending Score (1-100)
1	28.370	45.704
3	29.618	81.235
2	43.583	18.500
0	53.630	49.296

分群結果

Init = K-means++

程式碼

```
clusters = [num for num in range(1,11)]
SSE = []

for k in clusters:
    k_means = cluster.KMeans(n_clusters=k, init='k-means++')
    k_means.fit(market_f_cluster)
    SSE.append(k_means.inertia_)

plt.plot(clusters, SSE, color = "green")
plt.title('Kmeans Cluster Select - Elbow (Kmeans++)')
plt.xlabel('Number of Clusters')
plt.ylabel('SSE')
```

執行結果

選擇最佳分群(Cluster=4)

	Age	Spending Score (1-100)
0	28.370	45.704
1	29.618	81.235
3	43.583	18.500
2	53.630	49.296

分群結果

Q2 Summary

這題同樣也用了 random 和 Kmeans++來選群中心,兩種方法並無差 異,效果相同。而根據 Elbow 方法,此資料集切分成 4 群為最理想狀態,比起前面所設的兩群 (k=2),分成四群 (k=4) 後,每群之間分佈較 均勻,且樣本數差不多,也有效切分四群樣本。 3. 從 marketData 的資料中,取所有客戶的三個欄位: Age、Annual Income、Spending Score 進行客戶分群,請使用 K-means 分群法,當 K=3 時,請列出每一群的中心點,例如 C1 中心點: Age=33.3、Annual Income=87.1、Spending Score=88.1。3 個中心點的列表請根據中心點的 Age 數值升幂排序。

Init = Random

程式碼

執行結果

	Age	Annual Income (k\$)	Spending Score (1-100)
2	32.692	86.538	82.128
1	40.325	44.154	49.829
0	40.395	87.000	18.632

CO 中心點為: Age = 40.395

Annual Income = 87.000

Spending Score = 18.632

C1 中心點為: Age = 40.325

Annual Income = 44.154

Spending Score = 49.829

C2 中心點為: Age = 32.692

Annual Income = 86.538

Spending Score = 82.128

分群結果

Init = K-means++

程式碼

執行結果

	Age	Annual Income (k\$)	Spending Score (1-100)
2	32.692	86.538	82.128
0	40.325	44.154	49.829
1	40.395	87.000	18.632

分群結果

Q3 Summary

可以從圖中看到,分為 3 群時,Cluster 0 擁有較多的樣本數,每群之間的樣本數分佈較不均勻。

4. 承第 3 題,請利用 Elbow 方法找出 K 應該設置多少? 請提供參考 圖如圖一。

Init = Random

程式碼

```
clusters = [num for num in range(1,11)]
SSE = []

for k in clusters:
    k_means = cluster.KMeans(n_clusters=k, init='random')
    k_means.fit(market_all_cluster)
    SSE.append(k_means.inertia_)

plt.plot(clusters, SSE, color = "blue")
plt.title('Kmeans Cluster Select - Elbow (Random)')
plt.xlabel('Number of Clusters')
plt.ylabel('SSE')
```

執行結果

Init = K-means++

程式碼

```
clusters = [num for num in range(1,11)]
SSE = []

for k in clusters:
    k_means = cluster.KMeans(n_clusters=k, init='k-means++')
    k_means.fit(market_all_cluster)
    SSE.append(k_means.inertia_)

plt.plot(clusters, SSE, color = "green")
plt.title('Kmeans Cluster Select - Elbow (Kmeans++)')
plt.xlabel('Number of Clusters')
plt.ylabel('SSE')
```

執行結果

Q4 Summary

根據 Elbow 方法,這題並無明顯的最佳解,因此,透過上圖我選擇 了分為 3 群作為最佳解,同樣比較了 random 和 K-means++的找初始群 新方法,並無明顯差異。

5. 承第 4 題的 K 值設置,假設現在有一個行銷活動,請問你要怎麼透過 K-means 分群結果進行篩選,選擇一群目標客群,請列出此群的中心 點,並解釋你的理由。

程式碼

```
k_means_k = cluster.KMeans(n_clusters=3, init='k-means++', max_iter=30, random_state=99)
k_means_k.fit(market_all_cluster)
center_k = k_means_k.cluster_centers_
center_k_df = pd.DataFrame(center_k, columns=market_all_cluster.columns)
display(center_k_df)
```

執行結果

	Age	Annual Income (k\$)	Spending Score (1-100)
0	40.325	44.154	49.829
1	40.395	87.000	18.632
2	32.692	86.538	82.128

分群結果

Counter({0: 123, 2: 39, 1: 38})

Market Data Kmeans Clusters (Kmeans++ cluster=3)

各群資訊

Cluster	0:		
	Age	Annual Income (k\$)	Spending Score (1-100)
count	123.000	123.000	123.000
mean	40.325	44.154	49.829
std	16.114	16.038	19.694
min	18.000	15.000	3.000
25%	24.500	30.000	42.000
50%	38.000	46.000	50.000
75%	51.500	59.500	58.500
max	70.000	69.000	99.000

Cluster	1:		
	Age	Annual Income (k\$)	Spending Score (1-100)
count	38.000	38.000	38.000
mean	40.395	87.000	18.632
std	11.377	16.271	10.916
min	19.000	70.000	1.000
25%	34.000	76.250	10.250
50%	41.500	80.000	16.500
75%	47.000	96.000	26.750
max	59.000	137.000	40.000

Cluster	2:		
	Age	Annual Income (k\$)	Spending Score (1-100)
count	39.000	39.000	39.000
mean	32.692	86.538	82.128
std	3.729	16.312	9.364
min	27.000	69.000	63.000
25%	30.000	75.500	74.500
50%	32.000	79.000	83.000
75%	35.500	95.000	90.000
max	40.000	137.000	97.000

Q5 Summary

根據第四題的 Elbow 方法,最後選擇分 3 群作為最佳解,可以從上面的資訊看到 Cluster0 有 123 個樣本,Cluster1 有 38 個,而 Cluster2 有 39 個樣本。深入每一群內來看,我會選擇 Cluster2 作為我的目標客群。 Cluster2 顧客主要集中在 27-40 歲的顧客,可針對該年齡層的人來設計他們所流行的商品。另外,Cluster2 的顧客 Annual Income 也落在 69k-120k,比起 Cluster0 的顧客,較能針對 Cluster2 的顧客來設計擁有較高品質且較高單價的商品。雖然從 Annual Income 來看,Cluster1 的顧客與Cluster2 差不多,但就 Spending Score(顧客購買行為和物品分數)來看Cluster2 是優於 Cluster1 的。最後,因 Cluster0 三項因素分佈較廣泛,也較難鎖定某一特定族群來做銷售設計,因此,最終選擇 Cluster2 來作為目標客群。