ECE132: Basic Electrical and Electronics Engineering Lab

Experiment 1: The verification of Kirchhoff's voltage law and Kirchhoff's current law

Introduction

In complex circuits such as bridge or T networks, we can not simply use Ohm's Law alone to find the voltages or currents circulating within the circuit. For these types of calculations we need certain rules which allow us to obtain the circuit equations and for this we can use **Kirchhoffs Circuit Law**.

It states that, "In any network of conductors, the algebraic sum of currents meeting at a point (or junction) is zero".

In other words the algebraic sum of ALL the currents entering and leaving a node must be equal to zero, I(exiting) + I(entering) = 0

Kirchhoffs Current Law

Currents Entering the Node Equals Currents Leaving the Node

Using Kirchhoffs Current Law, KCL the equations are given

as:

At node A: $I_1 + I_2 = I_3$ At node B: $I_3 = I_1 + I_2$

I,+	I. =	\mathbb{T}_3			
I, =	VI - VA		I3-	<u>Va - V</u> s R3	
<u> </u>	Na-VA		Dom	. VB= 0	
VI-VA	+ Va	- VA	=	VA R3	
VI +	Va -	VA (I	Ra	= VA R3	
N + V	R2 = 1	VA +	VAP I	† Ra	
N +	<u> </u>	VA {	1 R1+	R3 - R5	
Vi +	N2 2 Ra	VA (Ra Ra + F	Rs + R, Ra	
a contract	30	VA	800+4	000 + 200)
3×8	046 - 494	11.4	198 = 1	la	

I, = 10 - 11.428	2	-0.1428
10		
To= 20-11.428	7	0.4386
I3 = 11.428	2	0.2857
40		

Using Kirchhoffs Current Law, KCL the equations are given

as:

At node A: $I_1 + I_2 = I_3$ At node B: $I_3 = I_1 + I_2$

 $I_1 = -0.1428$ amp $I_2 = 0.4286$ amp $I_3 = 0.2857$ amp

Kirchhoffs Voltage Law or KVL, states that "in any closed loop network, the total voltage around the loop is equal to the sum of all the voltage drops within the same loop" which is also equal to zero. In other words the algebraic sum of all voltages within the loop must be equal to zero.

$$V_{AB} + V_{BC} + V_{CD} + V_{DA} = 0$$

Using Kirchhoffs Voltage Law, KVL the equations are given as:

• Loop 1 is given as : $10 = R_1 I_1 + R_3 I_3 = 10I_1 + 40I_3$

• Loop 2 is given as : $20 = R_2 I_2 + R_3 I_3 = 20I_2 + 40I_3$

10= R.T. + R.T.3
10 = 10 T1 + 40 T3 (13= 1+6)
10 = 50T, + 40T2 - 0
20 - Rala + RaT3
20 = 20 To + 40 Is (132 /1+12)
20 = 60 Ta + 40 I, (2)
10 = SOT, + 40T2 X60
40- 40T, + 60TA X 40
600 = 3000T, + 2400 T2
800 = 1600 T, + 2400 TD
-200= 1400T1 - O
-200 = II = - 0.1488
TyoO To = 0.4286
I2 = 0.4386
To = 0-8857
V OT
VA = R.I. = -1,498
V83 = RoIs = 11.428
VRa = 1979 = 8,572

Using Kirchhoffs Voltage Law, KVL the equations are given as:

- Loop 1 is given as : $10 = R_1 I_1 + R_3 I_3 = 10I_1 + 40I_3$
- Loop 2 is given as : $20 = R_2 I_2 + R_3 I_3 = 20I_2 + 40I_3$
- VR1 = -1.428
- VR2 = 8.572
- VR3 = 11.428

Let Verify using Proteus

- $I_1 = -0.1428$ amp
- $I_2 = 0.4286$ amp
- $I_3 = 0.2857$ amp
- VR1 = -1.428
- VR2 = 8.572
- VR3 = 11.428

Problem to be solved

Thanks You