Integral solutions of $x^3 - 2y^3 = 1$

$\begin{array}{c} {\bf BMST~2025} \\ {\bf p\text{-}adic~numbers~and~applications} \\ {\bf Copenhagen} \end{array}$

Xi Feihu * Noemi Gennuso † April 19, 2025

^{*}Sorbonne University

[†]University of Milan

Contents

1	p-adic analytic funnction	3
2	Pre	7
3	Interpolation Method	9

1 p-adic analytic funnction

The main goal of this part is to completely solve the equation by p-adic method, p-adic analytic function and Strassman's theorem will be the key, in particular logarithm and exponential function.

Proposition 1.1. Let K be a complete non-archimdean field, a series $\sum_{n\geq 0} a_n$ of K converges if and only if $(a_n)_{n\geq 0}$ converges to zero.

Similarly, we can study the convergence of power series in a non-archimdean field by considering the radius convergence

$$R = 1/\limsup_{n \to \infty} \sqrt[n]{|a_n|}$$

Since ultrametric is still a metric. We can formally define

Definition. Let $B_p(a,r) = \{x \in \mathbb{Q}_p | |x-a|_p < r\}$ be a subset of \mathbb{Q}_p .

- p-adic logarithm is the p-adic analytic function $\log_p : B_p(1,1) \to \mathbb{Q}_p$ defined by

$$\log_p(x) := \sum_{n=1}^{\infty} (-1)^{n+1} \frac{(x-1)^n}{n}$$

- p-adic exponential is the p-adic analytic function $\exp_p: B_p(0, p^{-1/(p-1)}) \to \mathbb{Q}_p$ defined by

$$\exp_p(x) := \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

We will verify the statement is well-defined. For the reader who is familiar with p-adic analytic function, this section can be skipped.

It is easier to check logarithm by observing $v_p(n) \leq \log_p(n)$ for any integer $n \geq p$ and here logarithm is defined in real line, because any integer between p^k and p^{k+1} has valuation 1 and logarithm in real line is increasing, then for any $|x-1|_p = p^{-r} < 1$ we have

$$\lim_{n \to \infty} |1/n|_p |x - 1|_p^n = \lim_{n \to \infty} p^{v_p(n) - nr} = p^{\lim_{n \to \infty} n(\frac{v_p(n)}{n} - r)} = 0$$

When $|x-1|_p = 1$, notice that sequence $|1/n|_p$ diverges, so the $B_p(1,1)$ is the domain of convergence. Similarly,we will check exponentials and it will be a little complicated.

Lemma 1.2. Let $n \in \mathbb{N}$ and S_n denotes the sum of the digits of n in base p, then

$$v_p(n!) = \frac{n - S_n}{p - 1}$$

Proof. Firstly we prove $v_p(p^n!) = \frac{p^n-1}{p-1}$ for any positive integer n by recurrence. when n=1, $v_p(p)=1$; for intger $n\geq 2$ we assume that $v_p(p^{n-1}!) = \frac{p^{n-1}-1}{p-1}$, then $p^n! = p^{n-1}! \cdot \prod_{k=1}^{p-1} A_k$ with

$$A_k = (kp^{n-1} + 1) \times (kp^{n-1} + 2) \times \cdots \times (k+1)p^{n-1}$$

then clearly by valuation

$$v_p(p^n!) = v_p(p^{n-1}!) + \sum_{k=1}^{p-1} v_p(A_k)$$

$$= v_p(p^{n-1}!) + pv_p(p^{n-1}!) + 1$$

$$= \frac{p^{n-1} - 1}{p - 1} + p \cdot \frac{p^{n-1} - 1}{p - 1} + 1$$

$$= \frac{p^n - 1}{p - 1}$$

Hence we finish our recurrence. And if we tkae $a \in 1, ..., p-1$, then the formula can be generalized

$$v_p(ap^n!) = \sum_{k=0}^{a-1} v_p[(k \cdot p^n + 1) \times (k \cdot p^n + 2) \times \dots \times (k \cdot p^n + p^n)]$$
$$= \sum_{k=0}^{a-1} v_p(p^n!) = a \frac{p^n - 1}{p - 1}$$

Finally we prove it by recurrence. Assuming that for any integer n-1 the identity holds, and $n = ap^r + m$ with $a \in \{1, ..., p-1\}$ and $m < p^r < n-1$, then

$$v_p(n!) = v_p(ap^r!) + \sum_{k=1}^m v_p(ap^r! + k)$$

$$= v_p(ap^r!) + v_p(m)$$

$$= a \cdot \frac{p^r - 1}{p - 1} + \frac{m - S_m}{p - 1}$$

$$= \frac{(ap^r + m) - (a + S_m)}{p - 1} = \frac{n - S_n}{p - 1}$$

By above lemma, the exponentials converges in given domain. For any $|x|_p < p^{-1/p-1}$, we estimate

 $v_p(x^n/n!) = nv_p(x) - v_p(n!) > \frac{S_n}{p-1} \xrightarrow{n \to \infty} +\infty$

which means the definition is well-defined. When $|x| = p^{-1/p-1}$, we notice that for $n = p^k$, we have

 $\left|\frac{x^n}{n!}\right|_p = p^{-p^k/p-1} \cdot p^{p^k-1/p-1} = p^{1/p-1}$

Hence, the series diverges and the domain of the convergence is $B_p(0, p^{-1/(p-1)})$.

Some properties about the power series will be needed here for the following proof.

Lemma 1.3 (analytic continuation). Let f(X) and g(X) be two formally power series over a complete non-archimdean field K, and they all converge on the domain D If there exists a non-stationary convergent sequence $(a_n)_{n\in\mathbb{N}}$ of D such that $f(a_n)=g(a_n)$, then f(X)=g(X).

Proof. The proof is similar to the classical proof. It is sufficient to consider the case that D is a disc containing zero and $(a_n)_{n\in\mathbb{N}}$ converges to zero. Then we have

$$h(X) = f(X) - g(X) = \sum_{k>1} c_k X^k$$

with $h(a_n) = 0$ for any n. Assuming that h(X) is not zero, then we take $r = \{\min n \in \mathbb{N} | c_n \neq 0\}$ the smallest non-zero index, then $h(X) = X^r h_1(X)$, here h_1 is defined by a power series with the non-zero constant cofficient, and it also converges on D. Then by continuity, we have

$$\lim_{n \to \infty} h_1(a_n) = h_1(\lim_{n \to \infty} a_n) = h_1(0) = c^r \neq 0$$

Hence for a large N, $h_1(a_N) \neq 0$. Moreover, non-stationary sequence $(a_n)_{n \in \mathbb{N}}$ implies $a_N \neq 0$, so $h(a_N) = a_N^r h_1(a_N) \neq 0$, absurd.

Lemma 1.4 (composition). Let $f(X) = \sum_{n\geq 0} a_n X^n$ and $g(X) = \sum_{m\geq 1} b_m X^m$ be two formal power series, let R be the radius convergence of f. If x is an element of a complete non-archimdean field K which satisfies

- (1) g(x) converges.
- (2) $|b_m x^m| < R$ for any $m \ge 1$.

then the formal power series $h(X) = f \circ g(X)$ converges at x with h(x) = f(g(x)).

Proof. The proof can be founded in [1, Chapter 4].

Logarithm and exponetial function keeps the same algebraic properties in p-adic context, here we just need several properties for applications to the solution of the equation.

Proposition 1.5. Let $a, b \in \mathbb{Q}_p$ with $|a|_p, |b|_p < p^{-1/(p-1)}$, then

- $(1) \exp(a+b) = \exp(a) \exp(b)$
- (2) $|\log(1+a)|_p = |a|_p$
- (3) $\exp(\log(1+a)) = 1+a$
- $(4) |\exp(a)|_p = 1$

Proof. (1) $|a+b| \le max\{|a|,|b|\} < p^{-1/p-1}$, so $\exp(a+b)$ exists. By a manipulation of power series

$$\exp(a) \exp(b) = (\sum_{m=0}^{\infty} \frac{a^m}{m!}) (\sum_{n=0}^{\infty} \frac{b^n}{n!})$$

$$= \sum_{k \ge 0} \frac{1}{k!} \sum_{m+n=k} \frac{k!}{m! \cdot n!} a^m b^n$$

$$= \sum_{k \ge 0} \frac{1}{k!} (a+b)^k = \exp(a+b)$$

we finish the proof.

(2) Notice that $v_p(n!) = v_p(n) + v_p((n-1)!)$ and $v_p(n!) \ge 0$, which implies $|n!|_p \le |n|_p$. and we can estimate that

$$v_p(\frac{a^{n-1}}{n!}) = (n-1)v_p(a) - v_p(n!) > \frac{n-1}{p-1} - \frac{n-S_n}{p-1} = \frac{S_n - 1}{p-1} \ge 0$$

Hence we can conclude that

$$\left|\frac{a^n}{n}\right|_p \le \left|\frac{a^n}{n!}\right|_p = \left|\frac{a^{n-1}}{n!}\right|_p \cdot |a|_p < |a|_p$$

for any $n \geq 2$. Therefore by the inequality of ultrametric, we can conclude the result.

- (3) Firstly we will check the condition of the lemma 1.4. Let $f(X) = \exp(X)$ and $g(X) = \log(1+X)$, then $|a| < p^{-1/p-1} < 1$ impiles that g(a) converges. Notice that each term $(-1)^{m+1} \frac{x^m}{m}$ in g(a), we have estimated in the proof of (2), the absolute value is strictly less than the radius $R = p^{-1/p-1}$, hence we by composition we proved that $\exp(\log(1+a))$ converges. Let $x_k = \frac{p^k}{p^k+1} < 1$ be the sequence of \mathbb{Q} , caculate its p-adic absolute value $|x_k|_p = p^{-k} < R$ (to avoid the equality here, we convente $k \geq 2$), hence x_k is a non-stationary sequence converging to zero by p-adic absolute value. Finally by lemma 1.3, we can conclude that $\exp(\log(1+a)) = 1 + a$ since formally power series $\exp(\log(1+X))$ has the same cofficient with 1 + X.
 - (4) notice that

$$|\exp(a) - 1| = |\sum_{n \ge 1} \frac{a^n}{n!}| < |a| < 1$$

Hence immediately by ultrametric

$$|\exp(a)| = |\exp(a) - 1 + 1| = 1$$

Remark. The method of proof (3) is to avoid discussing too much formal power series. Generally, we can prove the permanence of algebraic form

$$\exp(\log(1+X)) = 1+X$$

without considering the convergence over a fromal power series ring R[[X]] with R as a commutative \mathbb{Q} -algebra. The proof without analytic method is not easy, it needs some combinatorial trick, a method via formal derivative can be found in [2].

Applying (1) to (2), then we can get the identity

$$(1+a)^n = \exp(n\log(1+a)), \quad \forall n \in \mathbb{N}$$

For extending the definition for interpolation, i.e. let $(1+a)^x$ makes sense for any $x \in \mathbb{Z}_p$, a traditional definition is based on the Newton's binoimal theorem (see [3, Chapter 5]), which needs some work and here we will not use binoimal, so we consider the extension of the function from \mathbb{Z} and notice \mathbb{Z} is a dense subset of p-adic integer.

Definition. Let $a \in \mathbb{Q}_p$ with $|a|_p < p^{-1/(p-1)}$, then the binoimal interpolation can be defined by a p-adic analytic function

$$f_a: \mathbb{Z}_p \to \mathbb{Q}_p, \quad x \mapsto \exp(x \log(1+a))$$

This construction satisfies $f_a(n) = (1+a)^n$ for any integr n.

When fixing a, we can estimate for any $x \in \mathbb{Z}_p$

$$|x \log(1+a)|_p = |x|_p |a|_p < p^{1-/p-1}$$

that means f_a is well-defined, and by convention we denote $f_a(x) = (1+a)^x$.

Strassman's Theorem will be crucial part in the proof, we give a version which is easy to use here:

Theorem 1.6 (Strassman's Theorem).

Let f(X) be a non-zero power series in Tate algebra over \mathbb{C}_p as following

$$f(X) = \sum_{n=0}^{\infty} a_n X^n = a_0 + a_1 X + a_2 X^2 + \dots$$

Let $N = \max\{m \in \mathbb{N} : |a_m|_p \ge |a_n|_p \text{ for all } n \in \mathbb{N}\}$, then $f : \mathbb{Z}_p \to \mathbb{C}_p$ has at most N zeros.

Proof. It is rewritten from corollary 16.14.

2 Pre

Theorem 2.1 (Dirichlet's unit theorem).

Let K be a number field with r real embeddings and s pairs complex embeddings, and let \mathcal{O}_K be its integer ring, then its unit group has isomorphic structure:

$$\mathcal{O}_K^{\times} \cong \mu(K) \times \mathbb{Z}^{r+s-1}$$

where $\mu(K)$ is the group of roots of unity in K, and it is a finite cyclic gourp.

Proof. A standard proof can be founded in [4], here we just consider the case of r=1 and s=1.

Although unit theorem can show us the structure of the unit, but it is difficult to give a perfect algorithm to how to exactly compute the fundamental unit, here it is a criterion about the fundamental unit.

Lemma 2.2. Let K be a cubic extension of \mathbb{Q} with negative discriminant, and let u be the fundamental unit with u > 1, then

$$|\Delta_K| < 4u^3 + 24$$

Proof.

A more strong estimation about the upper bound of the fundamental unit in a cubic field can be founded in Box's thesis [5, Theorem 1.82], that shows for a cubic field $K = \mathbb{Q}(\sqrt[3]{a})$ with $d = |\Delta_K|$, a element u > 1 can be choosen as a fundamental unit if and only if

$$u < (\frac{d - 32 + \sqrt{d^2 - 64d + 960}}{8})^{2/3}$$

Now for solve the equation, we take $K = \mathbb{Q}(\sqrt[3]{2})$ be the extension field of the raitional number, and we denote $\theta = \sqrt[3]{2}$, then each element in its has the form

$$a + b\theta + c\theta^2$$
 with $a, b, c \in \mathbb{Q}$

Then we prove some properties of the field:

Proposition 2.3. in $\mathbb{Q}(\sqrt[3]{2})$ we have

- The unit group is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}$.
- $N_{\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}}(a+b\theta+c\theta^2) = a^3 + 2b^3 + 4c^3 6abc$
- $u = -1 + \theta$ is a fundamental unit.

Proof. Firstly we suppose that $\sigma: \mathbb{Q}(\sqrt[3]{2}) \hookrightarrow \mathbb{C}$ is a field embedding, then surely $\sigma(1) = 1$. Let $f(X) = X^3 - 2$ be a polynoimal, and notice that $f(\theta) = 0$, then

$$0 = \sigma(f(\theta)) = f(\sigma(\theta))$$

Clearly $\sigma(\theta)$ must be the root of f in \mathbb{C} , so we can conclude the roots are $\theta, \theta w, \theta w^2$, where $w = e^{2i\pi/3}$. Hence the unique real embedding is $\sigma = id$ and there are two conjugate complex embedding, which means r = 1 and s. For the group of roots of unity, we notice that $\mathbb{Q}(\sqrt[3]{2}) \subset \mathbb{R}$ as a subfield, and $x^n = 1$ only has possible solutions $\{\pm 1\}$ in \mathbb{R} for any $n \in \mathbb{N}$, so $\mu_K = \{\pm 1\} \cong \mathbb{Z}/2\mathbb{Z}$.

For the norm we consider the \mathbb{Q} -linear map l_x with $x = a + b\theta + c\theta^2$, then

$$l_x(1) = a + b\theta + c\theta^2, l_x(\theta) = 2c + a\theta + b\theta^2, l_x(\theta^2) = 2b + 2c\theta + a\theta^2$$

so we can conclude the norm by

$$det[l_x]_{\{1,\theta,\theta^2\}} = \begin{vmatrix} a & 2c & 2b \\ b & a & 2c \\ c & b & a \end{vmatrix} = a^3 + 2b^3 + 4c^3 - 6abc$$

and we take $u = -1 + \theta$, then N(u) = -1 + 2 = 1, so it is a unit.

Finally we prove that u is exactly a fundamental unit by contradiction. Assuming that $\eta > 1$ is a fundamental unit, and notice that 0 < u < 1, so there exists a integer $k \ge 1$ such that $u = \eta^{-k}$. In this case we have negative discriminant $\Delta = -108$, then by lemma 2.2 we can estimate $\eta > \sqrt[3]{21}$, then

$$-1 + \sqrt[3]{2} = \eta^{-k} < (\sqrt[3]{21})^{-k}$$

It only holds for k = 1, which means u is the largest positive unit less than one, so u can be choosen as a fundamental unit.

Return to the original equation, now we can give a equivalent statement:

Proposition 2.4. The integral solution of the equation $x^3 - 2y^3 = 1$ is

$$\{(x,y) \in \mathbb{Z} | x - y\theta = u^k, \text{ for some } k \in \mathbb{Z}\}$$

Proof. We notice that $x^3 - 2y^3 = 1$ can be rewritten as $N_{\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}}(x - y\theta) = 1$. And by the Dirichlet's unit theorem, its unit group is of the form $\pm u^k$. Notice that $N_{\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}}(-1) = -1$, so

$$N_{\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}}(-u^n) = N_{\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}}(-1)N_{\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}}^n(u) = -1, \quad \forall n \in \mathbb{Z}$$

Hence the integral solution is of the form u^k in $\mathbb{Q}(\sqrt[3]{2})$.

Notice that if k=0 we can get the trival solution (1,0); if k=1, we can find another solution (-1,-1); By known result, we need to prove that for any other k, $x-y\theta=u^k$ has no solution, one possible method is to prove that for any other u^k , the cofficient with respect to base vector θ^2 is non-zero. For the case k<0, we denote $v=u^{-1}=1+\theta+\theta^2$ and use multinomial formula then

$$(1 + \theta + \theta^2)^k = \sum_{i+j+k=n} \frac{n!}{i!j!k!} \theta^{j+2k}$$

with $\theta^3 = 2$ we can rewrite it to get a linear combination of $\{1, \theta, \theta^2\}$, clearly here the cofficient of θ^2 will not be zero so the choice of k will be limited to be less than zero. However, when $k \geq 2$ we will find that it is difficult to analyse, for example

$$u^{2} = 1 - 2\theta + \theta^{2}$$

$$u^{3} = 1 + 3\theta - 3\theta^{2}$$

$$u^{4} = -7 - 2\theta + 6\theta^{2}$$

The problem here is difficult to formulate u^k since there exists negative cofficient in $-1 + \theta$, it is not easy to deduce that whether the cofficient of θ^k will vanish in a certain k or not, the argument here will be not clear, a pure algebraic method can be founded in [6, Chapter 24] by discussing binoimal units.

3 Interpolation Method

Now we will solve the equation by using p-adic interpolation method. Firstly, we notice that $\sqrt[3]{2} \notin \mathbb{Q}_3$ by observing that $n^3 = 2 \mod 9$ has no solution, so we still consider the finite extension by adjoining $\theta = \sqrt[3]{2}$ to construct, then we have the similar result.

Proposition 3.1. In $\mathbb{Q}_3(\theta)$ we have

- This field is a complete non-archimdean field with the absolute value:

$$|a + b\theta + c\theta^2| = \sqrt[3]{|a^3 + 2b^3 + 4c^3 - 6abc|_3}$$

In this field, observing that $|u-1|=1>3^{-1/2}$ prevents us from directly using interpolation, and notice that $|u^3-1|=3^{-1}<3^{-1/2}$, hence we will interpolate on u^3 .

Theorem 3.2. The only solutions to the integral equation on

$$x^3 - 2y^3 = 1$$

are
$$(x, y) = (1, 0)$$
 and $(x, y) = (-1, -1)$.

Proof. Let $f: \mathbb{Z}_3 \to \mathbb{Q}_3(\theta)$ be the p-adic analytic function defined by $f(x) = \exp(x \log u^3)$, and $f|_{\mathbb{Z}}(n) = u^{3n}$, it is well-efined by **lemma...**. In particular

$$\log u^3 \equiv 3\theta - 3\theta^2 \mod 9\mathbb{Z}_3$$

hence

$$\exp(x \log u^3) = 1 + (3\theta - 3\theta^2)x + 9xh(x) \tag{1}$$

for some convegrent power series h(X) with cofficient on $\mathbb{Z}_3(\theta)$. Since $\mathbb{Q}_3(\theta)$ is a vector space under basis $\{1, \theta, \theta^2\}$, then f(x) can be denoted by three power series with respect to basis as following

$$f(x) = (\sum_{k>0} a_k x^k) + (\sum_{k>0} b_k x^k)\theta + (\sum_{k>0} c_k x^k)\theta^2$$

and we will study the cofficient with respect to θ^2 to show that u^n can not be of the form $x - y\theta$ unless n = 0, 1. we take $f_r(x) = u^r f(x)$ with r = 0, 1, 2.

-When r = 0, the equation (1) can be rewritten as

$$f_0(x) = 1 + 3x \cdot \theta + (-3\theta^2 x + 9xh(x))$$

In detail, by writing h(x) as the form of linear combination

$$h(x) = h_1(x) + h_2(x) \cdot \theta + h_3 \cdot \theta^2$$

with h_1, h_2, h_3 the convegrent power series defined on \mathbb{Z}_3 , so again

$$f_0(x) = (1 + 9xh_1(x)) + (3x + 9xh_2(x)) \cdot \theta + (-3x + 9xh_3(x)) \cdot \theta^2$$

we apply Strassman's theorem to $-3x + 9xh_1(x) = 0$, and notice that the cofficient of x is $a_1 \equiv 3 \mod 9\mathbb{Z}_p$ and the other cofficients are $a_i \equiv 0 \mod 9\mathbb{Z}_p$, hence we can conclude that N = 1 and x = 0 is the unique solution.

-When r=1, similarly the equation can be rewritten as

$$f_1(x) = [-1 - 6x - 9xh_3(x) + 18xh_1(x)] + [1 - 3x - 9xh_2(x) + 9xh_3(x)] \cdot \theta + [6x + 9xh_2(x) - 9xh_1(x)] \cdot \theta^2$$

applying Strassman's theorem to $6x + 9x(h_1 + h_2)(x) = 0$, we can conclude that N = 1 and x = 0 is the unique solution.

- When r=2, similarly the cofficient with respect to θ^2 is

$$1 - 9x + 9(h_3(x) - 2h_2(x) + h_3(x))$$

notice that the constant cofficient |1| = 1, which strictly greater than any other cofficient, hence no solution for x such that the cofficient turns zero by Strassman's theorem.

In conclusion, we can conclude the solution of the integral equation $x^3 - 2y^3 = 1$ by proposition 2.4, when $n \equiv 0 \mod 3$, the only solution is (1,0) which corresponds to r = 0, x = 1; when $n \equiv 1 \mod 3$, the only solution is (-1, -1) which corresponds to r = 1, x = 0; when $n \equiv 2 \mod 3$, no solution will exists.

References

- [1] H. Cohen, S. Axler, and K. Ribet, *Number theory: Volume I: Tools and diophantine equations*. Springer, 2007.
- [2] B. Sambale, "An invitation to formal power series," Jahresbericht der Deutschen Mathematiker-Vereinigung, vol. 125, no. 1, pp. 3–69, 2023.
- [3] F. Q. Gouvêa and F. Q. Gouvêa, p-adic Numbers. Springer, 1997.
- [4] J. Neukirch, Algebraic number theory. Springer Science & Business Media, 2013, vol. 322.
- [5] J. Box, "An introduction to skolem's p-adic method for solving diophantine equations," Bachelor thesis, Korteweg-de Vries Instituut voor Wiskunde Faculteit der Natuurwetenschappen, Wiskunde en Informatica, Universiteit van Amsterdam, 2014.
- [6] L. J. Mordell, Diophantine Equations: Diophantine Equations. Academic press, 1969, vol. 30.