- 1. Если функция непрерывна на отрезке [a,b] и на его концах принимает значения разных знаков, то внутри отрезка найдется хотя бы одна точка, в которой функция обращается в нуль .
- 2. Если функция f непрерывна на сегменте и на своих концах принимает значение разных знаков, то существует такая точка c, принадлежащая этому отрезку, в которой f(c)=0.
- 3. Пусть f непрерывна на отрезке [a,b] и на концах этого отрезка принимает значения разных знаков, тогда найдется точка ξ на интервале (a,b), в которой значение функции равно нулю .
- 4. Если непрерывная функция, определённая на вещественном интервале, принимает два значения, то она принимает и любое значение между ними.
- 5. Пусть функция f непрерывна на отрезке [a,b] , причем f(a)neqf(b) , тогда для любого числа , заключенного между f(a) и f(b) , найдется точка $\gamma \in (a,b)$, что $f(\gamma) = C$.
- 6. Если функция непрерывна на отрезке [a,b], то, принимая любые два значения на [a,b], функция принимает и всякое промежуточное значение .
- 7. Пусть функция f непрерывна на отрезке [a,b] и f(a) < f(b), то для любого числа A такого, что f(a) < A < f(b), найдется точка из интервала (a,b), в которой f(c) = A.
- 8. Пусть функция f непрерывна на отрезке [a,b] и пусть есть произвольное число, находящееся между значениями f(a) и f(b), тогда существует точка $\in [a,b]$, для которой f()=.
- 9. Если функция непрерывна на отрезке [a,b], то среди ее значений на этом отрезке имеется наименьшее и наибольшее значение .
- 10. Если функция f непрерывна на отрезке [a,b], то она ограничена на нём и притом достигает своих минимального и максимального значений, т.е. существуют $x_m, x_M \in [a,b]$ такие, что $f(x_m) \leq f(x) \leq f(x_M)$

для всех $x \in [a, b]$.

- 11. Если f непрерывна на [a,b], то она достигает на нем своей верхней и нижней грани.
- 12. Если функция f(x) монотонна (нестрого) на отрезке [a,b] , а функция g(x) интегрируема на [a,b] , то существует точка $\xi \in [a;b]$ такая , что $\int\limits_a^b f(x) \cdot g(x) \, dx = f(a) \cdot \int\limits_a^\xi g(x) \, dx + f(b) \cdot \int\limits_\xi^b g(x) \, dx \; .$
- 13. Если $f,g\in R_{[a,b]}$ и функция f(x) монотонна на [a,b], то найдется такая точка $\xi\in [a;b]$, такие что $\xi\in [a,b]$ такая , что $\int\limits_a^b f(x)\cdot g(x)\,dx=f(a)\cdot\int\limits_a^\xi g(x)\,dx+f(b)$.
- 14. Если в промежутке [a,b] функции u(x) и v(x) непрерывны и имеют непрерывные производные, то $\int_a^b u(x)dv(x)=(u(x)\cdot v(x))|_a^b=\int\limits_a^b v(x)\,du(x)$.
- 15. Пусть функции u и v дифференцируемы на некотором интервале и пусть функция u'(x)*v(x) имеет первообразную на этом интервале, тогда функция u(x)*v'(x) также имеет первообразную на этом интервале, причем справедливо равенство $\int u(x)*v'(x)\,dx = u(x)*v(x) \int v(x)*u'(x)\,dx$
- 16. Если функция f(x) кусочно-непрерывна на промежутке [a,b], то на этом промежутке она интегрируема, т.е. существует $\int_a^b f(x) \, dx$.
- 17. Если функция кусочно-непрерывна на некотором отрезке, то она интегрируема на этом отрезке .
- 18. Для того, чтобы ограниченная функция f была интегрируема в смысле Дарбу, необходимо и достаточно, чтобы для любого $\varepsilon>0$ нашлось разбиение P_{ε} такое, что $S(f,P_{\varepsilon})-s(f,P_{\varepsilon})<\varepsilon$.

- 19. Пусть функция f ограничена на отрезке [a,b], тогда для того, чтобы f была интегрируемой на этом отрезке, необходимо и достаточно, чтобы для любого положительного ε существовало такое положительное δ , что для каждого разбиения Π , диаметр которого $d\left(\Pi\right)<\delta$, справедливо неравенство $\overline{S}_{\Pi}-\underline{S}_{\Pi}<\varepsilon$.
- 20. Ограниченная функция f интегрируема по Риману на отрезке [a,b] тогда и только тогда, когда для любого $\varepsilon>0$ можно найти такое разбиение P указанного отрезка, что выполняется неравенство: $\sum_{k=1}^n (M_k-m_k) \Delta x_k < \varepsilon,$ где $m_k=\inf\{f(t):t\in[x_{k-1},x_k]\}$ и $M_k=\sup\{f(t):t\in[x_{k-1},x_k]\}$.
- 21. Ограниченная функция f интегрируема по Риману на отрезке [a,b] тогда и только тогда, когда для любого положительного числа ε существует такое разбиение $P\in\sigma[a,b]$, что выполняется неравенство U(P,f)-L(P,f)<0
- 22. Если функция f(x) дифференцируема в некоторой точке x_0 , принадлежащей интервалу $(x_0-\delta,x_0+\delta)$ и имеет в этой точке экстремум, то $f'(x_0)=0$.
- 23. Если функция y = f(x) имеет экстремум в точке x_0 , то ее производная $f'(x_0)$ либо равна нулю, либо не существует.
- 24. Пусть $\varphi \geq 0$ суммируемая на A функция и >0 произвольное положительное число, тогда $\mu\{x\in A|\varphi(x)\geq c\}\leq \frac{1}{c}\int\limits_{A}\varphi(x)\,d\mu$.
- 25. Если функция $f\in L_1(X)$, то для любого $\varepsilon>0$ верно неравенство $\mu\{|f|\geq \varepsilon\}\leq \frac{1}{\varepsilon}*\int\limits_V |f|\,d\mu$.
- 26. Если f(x) непрерывна на промежутке [a,b], то имеет место такая оценка определенного интеграла: $m(b-a) \leq \int_a^b f(x) \, dx \leq M(b-a)$, где m наименьшее, а M наибольшее значения функции f(x) на промежутке [a,b] .

- 27. Если m есть наименьшее, а M наибольшее значение функции f(x) в промежутке (a,b), то значение интеграла $\int\limits_a^b f(x)\,dx$ заключено между m(b-a) и M(b-a) .
- 28. Если функция непрерывна на отрезке [a,b], то на этом отрезке она и ограничена .
- 29. Если f непрерывна на [a,b], то она ограничена на нем, т.е. существует такое число M, что $|f(x)| \leq M$, при всех $x \in [a,b]$.
- 30. Пусть функция f(x) непрерывна на отрезке [a,b] и дифференцируема на интервале (a,b), тогда для того, чтобы f(x) была постоянна на отрезке [a,b], необходимо и достаточно, чтобы для любого $x\in(a,b)$ выполнялось условие f'=0.
- 31. Если во всех точках некоторого промежутка производная функции f(x) равна нулю, то функция f(x) сохраняет в этом промежутке постоянное значение .
- 32. Пусть функция f(x) непрерывна на отрезке [a,b] и дифференцируема на интервале (a,b), тогда чтобы f(x) не убывала на отрезке [a,b], необходимо и достаточно, чтобы при любом $x \in (a,b)$ выполнялось условие $f' \geq 0$.
- 33. Пусть функция f(x) непрерывна на отрезке [a,b] и дифференцируема на интервале (a,b), тогда чтобы f(x) не возрастала на отрезке [a,b], необходимо и достаточно, чтобы при любом $x \in (a,b)$ выполнялось условие $f' \leq 0$.
- 34. Если во всех точках некоторого промежутка производная функции f больше нуля, то функция f возрастает в этом промежутке.
- 35. Если во всех точках некоторого промежутка производная функции g меньше нуля, то функция g убывает на этом промежутке.

- 36. Если P(z) полином степени $n \geq 1$ и для любого комплексного числа существует полином Q(z) степени n-1 такой, что справедливо равенство $P(z)=(z-c)\cdot Q(z)+P(c)$.
- 37. Остаток при делении многочлена P(z) на многочлен z-a равен значению этого многочлена при z=a , то есть равен P(a) .
- 38. Пусть f непрерывная функция, определённая на отрезке [a,b], тогда для любого $\varepsilon>0$ существует такой многочлен p с вещественными коэффициентами, что для всех x из $[a,\ b]$ одновременно выполнено условие $|f(x)-p(x)|<\varepsilon$.
- 39. Если функция f(x) непрерывна на сегменте [a,b], то для $\varepsilon>0$ найдется многочлен $P_n(x)$ с номером n, зависящим от ε , такой, что $|P_n(x)-f(x)|<\varepsilon$ сразу для всех x из сегмента [a,b].
- 40. Если на отрезке [a,b] функции f(x) и g(x) непрерывны и дифференцируемы в каждой точке интервала (a,b), причем $g'\neq 0$ во всех точках этого интервала, то тогда между точками a и b существует точка c (a < c < b), что имеет место равенство $\frac{f(b) f(a)}{g(b) g(a)} = \frac{f'(c)}{g'(c)}$.
- 41. Если функции f(x) и g(x) определены и непрерывны на сегменте [a,b], f(x) и g(x) имеют конечные производные f'(x) и g'(x) на интервале (a,b), ${f'}^2(x)+{g'}^2(x)\neq 0$ при a< x< b, $g(a)\neq g(b)$, то $\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(c)}{g'(c)}$, где a< c< b.
- 42. Если функция y = f(x) непрерывна на отрезке [a,b] и дифференцируема на интервале (a,b), то внутри отрезка [a,b] найдется хотя бы одна точка (a < c < b) такая, что будет иметь равенство f(b) f(a) = f'(c) * (b-a)
- 43. Если функция f(x) определена и непрерывна на сегменте [a,b] и f(x) имеет конечную производную f'(x) на интервале (a,b), то $f(b)-f(a)=(b-a)\cdot f'(c)$, где a< c< b .
 - 44. Если функция f(x) и g(x) дифференцируемы в окрестности точки

 x_0 и, кроме того, $\lim_{x \to x_0} f(x) = 0$ и $\lim_{x \to x_0} g(x) = 0$ причем $g' \neq 0$ в окрестности точки x_0 , то тогда $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$ при условии, что второй предел существует .

- 45. Пусть функции f(x) и g(x) определены и дифференцируемы в промежутке $(a,b), g'(x) \neq 0$ для всех $x \in (a,b), \lim_{x \to a} f(x) = 0$ и $\lim_{x \to a} g(x) = 0$ существует конечный или бесконечный предел $\lim_{x \to a} \frac{f'(x)}{g'(x)}$, тогда $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$
- 46. Если f(x) непрерывна на промежутке [a,b], то между точками a и b найдется хотя бы одна точка ξ такая, что будет иметь место равенство $\int\limits_a^b f(x)dx = f(\xi)\cdot (b-a) \; .$
- 47. Пусть функция f(x) непрерывна на отрезке [a,b], тогда существует точка $\xi\in[a,b]$ такая, что $\int\limits_a^b f(x)dx=f(\xi)\cdot(b-a)$.
- 48. Если вещественная функция, непрерывная на отрезке [a,b] и дифференцируемая на интервале (a,b), принимает на концах отрезка [a,b] одинаковые значения, то на интервале (a,b) найдётся хотя бы одна точка, в которой производная функции равна нулю.
- 49. Пусть функция дифференцируема в открытом промежутке , на концах этого промежутка сохраняет непрерывность и принимает одинаковые значения: f(a) = f(b) , тогда существует точка , в которой производная функции равна нулю : f'(c) = 0 .
- 50. Пусть функция f(x) непрерывна на отрезке [a,b] и дифференцируема на интервале (a,b), причем f(a)=f(b), тогда существует точка $c\in [a,b]$ такая, что f'(c)=0.
- 51. Если функция f непрерывна на [a,b], функция f дифференцируема во всех внутренних точках [a,b] и f(a)=f(b), тогда существует точка $c\in(a,b)$, в которой f'(c)=0 .

- 52. Если функция f(x) непрерывна на отрезке [a,b], в каждой точке интервала (a,b) существует конечная производная f'(x) и, кроме того, f(a)=f(b), то тогда между точками a и b найдется хотя бы одна точка a < c < b такая, что f'(c)=0.
- 53. Если функция f интегрируема на [a,b] и непрерывна в точке $x_0\in [a,b],$ то функция $F(x)=\int\limits_a^x f(t)\,dt$ дифференцируема в точке функция x_0 и функция $F'(x_0)=f(x_0)$.
- 54. Если функция f(x) непрерывна на промежутке [a,b], то интеграл с переменным верхним пределом $\int\limits_a^x f(t)\,dt$ имеет производную, равную значению подынтегральной функции при верхнем пределе, т.е $\left(\int\limits_a^x f(t)\,dt\right)'=f(x)$.
- 55. Если функция f интегрируема на [a,b] и непрерывна в точке $\in [a,b]$, то интеграл с переменным верхним пределом $F(x)=\int\limits_a^x f(t)\,dt$ имеет производную в точке и выполняется равенство F'(c)=f(c).
- 56. Если f(x) непрерывна на отрезке [a,b] и $\Phi(x)$ любая её первообразная на этом отрезке, то имеет место равенство $\int\limits_a^b f(x)\,dx = \Phi(b) \Phi(a) = \Phi(x)\bigg|_a^b$
- 57. Если F(x) любая первообразная функции f(x), то справедливо равенство $\int\limits_a^x f(t)\,dt = F(x) F(a)$.
- 58. Пусть f функция, интегрируема по Риману на отрезке [a,b] и функция F непрерывна на отрезке [a,b] и дифференцируема в каждой

внутренней точке этого отрезка, причем F'=f(x) , a < x < b, тогда справедлива формула $\int\limits_a^b f(x)\,dx = F(b) - F(a)$.

- 59. Если функция y=f(x) определенна на отрезке [a,b] и на этом отрезке f(x) дифференцируема n раз, тогда f(x) может быть представлена в виде $f(x)=f(a)+\frac{f'(a)}{1!}*(x-a)+\frac{f''(a)}{2!}*(x-a)^2+\ldots+\frac{f^{(n-1)}(a)}{(n-1)!}*(x-a)^{n-1}+R_n$
- 60. Пусть $k \geq 1$ является целым, и пусть функция $f: \mathbb{R} \to \mathbb{R}$ является k раз дифференцируемой в точке $a \in \mathbb{R}$, тогда существует функция $h_k: \mathbb{R} \to \mathbb{R}$ такая, что $f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \ldots + \frac{f^{(k)}(a)}{k!} * (x-a)^k + \lim_{x \to a} h_k(a) = 0$.
- 61. Пусть функция f(x) n раз дифференцируема в точке x_0 , тогда $f(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} * (x-x_0)^k + o((x-x_0)^n) \ .$