Layered Graph Drawing – Part 2

Lecture Graph Drawing Algorithms · 192.053

Martin Nöllenburg 29.05.2018

Layered Graph Layout

Input: directed graph D = (V, A)

Output: drawing of D that emphasizes its hierarchical structure

Layered Graph Layout

Input: directed graph D = (V, A)

Output: drawing of D that emphasizes its hierarchical structure

Criteria:

- many edges pointing upward (or some other given direction)
- ideally short, straight and vertical edges
- vertices placed on (few) horizontal layers
- few edge crossings
- evenly distributed vertices

Overview Sugiyama Framework

Step 2: Assign Layers

Layer Assignment

Input: directed acyclic graph D = (V, A)

Output: partition of V into disjoint subsets (layers) L_1, \ldots, L_h

s.t. $(u,v) \in A, u \in L_i, v \in L_j \Rightarrow i < j$

Define: y-Coordinate $y(u) = i \Leftrightarrow u \in L_i$

Layer Assignment

Input: directed acyclic graph D = (V, A)

Output: partition of V into disjoint subsets (layers) L_1, \ldots, L_h s.t. $(u, v) \in A, u \in L_i, v \in L_i \Rightarrow i < j$

Define: y-Coordinate $y(u) = i \Leftrightarrow u \in L_i$

Some optimization criteria:

- \blacksquare minimize the number h of layers (= height of the layouts)
- \blacksquare minimize the width, i.e., $\max\{|L_i| \mid 1 \le i \le h\}$
- minimize the longest edge, i.e., $\max\{j-i\mid (u,v)\in A,\,u\in L_i,\,v\in L_j\}$
- lacktriangle minimize the total edge length (pprox number of dummy vertices)

Last Lecture

- Height minimization using topological sorting (linear time)
 - → puts each vertex on lowest possible layer
- Minimization of total edge length using integer linear programming (ILP)
 - → polynomial time via LP relaxation as constraint matrix is totally unimodular

Height/Edge Length Minimization is not all

Height/Edge Length Minimization is not all

→ bound the width!

Fixed-Width Layer Assignment

Input: directed acyclic graph D = (V, A), width B

Output: layer assignment $\mathcal L$ of minumum height with at most B nodes per layer

Fixed-Width Layer Assignment

Input: directed acyclic graph D = (V, A), width B

Output: layer assignment $\mathcal L$ of minumum height with at most B nodes per layer

→ this is equivalent to the following job scheduling problem:

Minimum Precedence Constrained Scheduling (MPCS)

Input: n jobs J_1, \ldots, J_n with identical unit processing time, precedence constraints $J_i < J_k$, and B identical machines **Output:** Schedule of minimum length that satisfies all the precedence constraints

Theorem: For n jobs J_1, \ldots, J_n of equal length, a precedence relation <, a number B of identical machines, and an integer T it is NP-complete to decide if a schedule of length at most T exists, even for T=3.

Theorem: For n jobs J_1, \ldots, J_n of equal length, a precedence relation <, a number B of identical machines, and an integer T it is NP-complete to decide if a schedule of length at most T exists, even for T=3.

Proof:

lacksquare reduce NP-complete problem CLiQUE to MPCS with T=3

CLIQUE: Given graph G=(V,E) and $k\in\mathbb{N}$, is there a complete subgraph on $\geq k$ vertices in G?

Jobs: Jr for every
$$v \in V$$
, Je for every $e \in E$

for each edge (n,v) $\in E$ Ju < Je, Jv < Je

Theorem: For n jobs J_1, \ldots, J_n of equal length, a precedence relation <, a number B of identical machines, and an integer T it is NP-complete to decide if a schedule of length at most T exists, even for T=3.

Dummy jobs X_j , j = 1, ..., B-L Y_j , j = 1, ..., B-L-K' Y_j , j = 1, ..., B-L-K' $X_j < Y_i < Z_l$ #jobs: IM + IEI + (B-K) + (B-K-K') + (B-L') = 3B

dain G has a k-Clique (=> Schedule of length T=3 exists

Theorem: For n jobs J_1, \ldots, J_n of equal length, a precedence relation <, a number B of identical machines, and an integer T it is NP-complete to decide if a schedule of length at most T exists, even for T=3.

Corollary: If $\mathcal{P} \neq \mathcal{NP}$ there is no polynomial-time approximation algorithm for MPCS with approximation ratio <4/3.

Approximation

Theorem: MPCS has a polynomial-time approximation algorithm with approximation ratio $\leq 2 - \frac{1}{B}$.

Approximation

Theorem: MPCS has a polynomial-time approximation algorithm with approximation ratio $\leq 2 - \frac{1}{B}$.

List scheduling algorithm:

- lacksquare order jobs arbitrarily as a list $\mathcal L$
- if a machine is free, assign to it the first feasible job in \mathcal{L} ; if no feasible job exists machine remains idle

observations
$$OPT \ge \frac{n}{B}$$
, $OPT \ge l = longest "path" in the order < define: $m_i = \# \text{ of } idk \text{ steps of machine } i$, observe: $m_i \le l$

$$\frac{w.l.o.g.}{B} \cdot (n + \sum_{i=2}^{B} m_i) \le \frac{n}{B} \left(n + (B-1)l\right) = \frac{n}{B} + \left(1 - \frac{n}{B}\right)l$$

$$\le OPT + \left(1 - \frac{n}{B}\right)OPT$$$

Overview

Step 3: Crossing Minimization

What would you do?

Problem Statement

Given: DAG D = (V, A), layer assignment of all vertices

Find: Permutation of the vertices on each layer, such that the number of crossing is minimized

Problem Statement

Given: DAG D = (V, A), layer assignment of all vertices

Find: Permutation of the vertices on each layer, such that the number of crossing is minimized

Properties

- problem is NP-hard even for two layers (BIPARTITE CROSSING NUMBER [Garey, Johnson '83])
- no approaches optimizing several layers simultaneously
- usually iterative optimization for two adjacent layers
 - → insert dummy vertices in each layer crossed by long edges

Given: 2-layer graph $G = (L_1, L_2, E)$ and bijective vertex ordering $x_1 \colon L_1 \to \{1, 2, \dots, |L_1|\}$

Find: vertex ordering $x_2 \colon L_2 \to \{1, 2, \dots, |L_2|\}$, such that the number of crossing among E is minumum

Given: 2-layer graph $G=(L_1,L_2,E)$ and bijective vertex ordering $x_1\colon L_1\to\{1,2,\ldots,|L_1|\}$

Find: vertex ordering $x_2 \colon L_2 \to \{1, 2, \dots, |L_2|\}$, such that the number of crossing among E is minumum

Observation:

- lacktriangleright number of crossing in 2-layer drawing of G depends only on vertex orderings, not on the exact positions
- for $u, v \in L_2$ the number of crossing among incident edges depends only on $x_2(u) < x_2(v)$ or $x_2(v) < x_2(u)$

Given: 2-layer graph $G = (L_1, L_2, E)$ and bijective vertex ordering $x_1 \colon L_1 \to \{1, 2, \dots, |L_1|\}$

Find: vertex ordering $x_2 \colon L_2 \to \{1, 2, \dots, |L_2|\}$, such that the number of crossing among E is minumum

Observation:

- lacktriangleright number of crossing in 2-layer drawing of G depends only on vertex orderings, not on the exact positions
- for $u, v \in L_2$ the number of crossing among incident edges depends only on $x_2(u) < x_2(v)$ or $x_2(v) < x_2(u)$

Def: crossing value

$$c_{uv} := |\{(uw, vz) : w \in N(u), z \in N(v), x_1(z) < x_1(w)\}|$$
 for $x_2(u) < x_2(v)$

Given: 2-layer graph $G = (L_1, L_2, E)$ and bijective vertex ordering $x_1 \colon L_1 \to \{1, 2, \dots, |L_1|\}$

Find: vertex ordering $x_2 \colon L_2 \to \{1, 2, \dots, |L_2|\}$, such that the number of crossing among E is minumum

Observation:

- lacktriangleright number of crossing in 2-layer drawing of G depends only on vertex orderings, not on the exact positions
- for $u, v \in L_2$ the number of crossing among incident edges depends only on $x_2(u) < x_2(v)$ or $x_2(v) < x_2(u)$

Def: crossing value

$$c_{uv} := |\{(uw, vz) : w \in N(u), z \in N(v), x_1(z) < x_1(w)\}|$$
 for $x_2(u) < x_2(v)$

Further Properties

Def: crossing number of G with orders x_1 and x_2 for L_1 and L_2 is denoted by $cr(G,x_1,x_2)$; for fixed x_1 let $opt(G,x_1)=\min_{x_2} cr(G,x_1,x_2)$

Lemma: The following properties hold:

- $ightharpoonup \operatorname{cr}(G, x_1, x_2) = \sum_{x_2(u) < x_2(v)} c_{uv}$

Further Properties

Def: crossing number of G with orders x_1 and x_2 for L_1 and L_2 is denoted by $cr(G,x_1,x_2)$; for fixed x_1 let $opt(G,x_1)=\min_{x_2} cr(G,x_1,x_2)$

Lemma: The following properties hold:

- $ightharpoonup \operatorname{cr}(G, x_1, x_2) = \sum_{x_2(u) < x_2(v)} c_{uv}$

The value of $cr(G, x_1, x_2)$ can be computed in $O(n \log n)$ time in a divide-and-conquer algorithm similar to merge sort

Iterative Crossing Minimization

Let G = (V, E) be a DAG with layers L_1, \ldots, L_h .

- 1) compute a random ordering x_1 for layer L_1
- 2) for $i=1,\ldots,h-1$ consider layers L_i and L_{i+1} and minimize $cr(G,x_i,x_{i+1})$ with fixed x_i (\rightarrow **OSCM**)
- 3) for i = h 1, ..., 1 consider layers L_{i+1} and L_i and minimize $cr(G, x_i, x_{i+1})$ with fixed x_{i+1} (\rightarrow **OSCM**)
- 4) repeat (2) and (3) until no further improvement happens
- 5) possibly repeat steps (1)–(4) with another x_1
- 6) return the best found solution

Iterative Crossing Minimization

Let G = (V, E) be a DAG with layers L_1, \ldots, L_h .

- 1) compute a random ordering x_1 for layer L_1
- 2) for $i=1,\ldots,h-1$ consider layers L_i and L_{i+1} and minimize $cr(G,x_i,x_{i+1})$ with fixed x_i (\rightarrow **OSCM**)
- 3) for i = h 1, ..., 1 consider layers L_{i+1} and L_i and minimize $cr(G, x_i, x_{i+1})$ with fixed x_{i+1} (\rightarrow **OSCM**)
- 4) repeat (2) and (3) until no further improvement happens
- 5) possibly repeat steps (1)–(4) with another x_1
- 6) return the best found solution

Theorem: The One-Sided Crossing Minimization (OSCM) problem is NP-hard (Eades, Wormald 1994).

Algorithms for OSCM

Heuristics:

- barycenter
- median

Exact:

ILP model

Barycenter Heuristic (Sugiyama, Tagawa, Toda 1981)

Idea: few crossings when vertices are close to their neighbors

set

$$x_2(u) = \frac{1}{\deg(u)} \sum_{v \in N(u)} x_1(v)$$

Barycenter Heuristic (Sugiyama, Tagawa, Toda 1981)

Idea: few crossings when vertices are close to their neighbors

set

$$x_2(u) = \frac{1}{\deg(u)} \sum_{v \in N(u)} x_1(v)$$

in case of equality introduce small gap

Properties:

- easy to implement
- fast
- usually very good results
- lacksquare finds optimum if $\operatorname{opt}(G, x_1) = 0$
- lacktriangle may perform $\Theta(\sqrt{n})$ times worse than optimal for some graphs

Barycenter Heuristic (Sugiyama, Tagawa, Toda 1981)

Idea: few crossings when vertices are close to their neighbors

set

$$x_2(u) = \frac{1}{\deg(u)} \sum_{v \in N(u)} x_1(v)$$

in case of equality introduce small gap

Properties:

- easy to implement
- fast
- usually very good results
- finds optimum if $opt(G, x_1) = 0$

Why do we find a crossing-free solution if it exists?

Median Heuristic (Eades, Wormald 1994)

Idea: set position to median of the neighbors

- for vertex $v \in L_2$ with neighbors v_1, \ldots, v_k set $x_2(v) = \operatorname{med}(v) = x_1(v_{\lceil k/2 \rceil})$ or $x_2(v) = 0$ if $N(v) = \emptyset$
- if $x_2(u) = x_2(v)$ and u, v have different degree parity, place the odd degree vertex to the left
- If $x_2(u) = x_2(v)$ and u, v have the same degree parity, place an arbitrary one to the left
- lacktriangle using linear-time median finding this takes O(|E|) time

Median Heuristic (Eades, Wormald 1994)

Idea: set position to median of the neighbors

- for vertex $v \in L_2$ with neighbors v_1, \ldots, v_k set $x_2(v) = \operatorname{med}(v) = x_1(v_{\lceil k/2 \rceil})$ or $x_2(v) = 0$ if $N(v) = \emptyset$
- if $x_2(u) = x_2(v)$ and u, v have different degree parity, place the odd degree vertex to the left
- If $x_2(u) = x_2(v)$ and u, v have the same degree parity, place an arbitrary one to the left
- lacksquare using linear-time median finding this takes O(|E|) time

Properties:

- easy to implement
- fast
- mostly good performance
- \blacksquare finds optimum when $\operatorname{opt}(G, x_1) = 0$
- factor-3 approximation

Theorem: Let $G = (L_1, L_2, E)$ be a 2-layer graph and x_1 an arbitrary ordering of L_1 . Then it holds that $\operatorname{med}(G, x_1) \leq 3 \operatorname{opt}(G, x_1)$.

Theorem: Let $G = (L_1, L_2, E)$ be a 2-layer graph and x_1 an arbitrary ordering of L_1 . Then it holds that $\operatorname{med}(G, x_1) \leq 3 \operatorname{opt}(G, x_1).$

Proof: Let $u, v \in L_2$ with $x_2(u) < x_2(v)$

Martin Nöllenburg · Graph Drawing Algorithms: Layered Graph Drawing

Proof: (cont'd)

1)
$$c_{vu} \ge ad + a + d + \varepsilon$$

$$2) c_{uv} \le ac + bc + bd + c + b$$

3)
$$c_{uv} \le 3ad + 3d + a + 1$$

$$=) 3ad + 3d + a + 1 - 3(ad + a + d + \varepsilon) > 0$$

$$a=0 \Rightarrow deg(u) \leq 2$$

$$a=0 \Rightarrow deg(u) \leq 2$$

$$oif deg(u) \leq 1 \qquad Cuv - 3 Cvu \leq 0$$

$$med(u) = med(v)$$

$$(1) a=0, \varepsilon=0$$

$$=) Cvu \stackrel{?}{=} d$$

$$(2)_{a=0,b=1}^{a=0,b=1}$$
 $= 2c+d+1$

$$(1) a=0, E=0$$

$$=) Cvu = d$$

$$(2) a=0, b=1$$

$$=) Cuv = 2C+d+1$$

$$Cuv-3Cvu = 3d-1-3d=-1 = 0$$

$$Contradiction$$

$$Contradiction$$
Martin Nöllenburg · Graph Drawing Algorithms: Layered Graph Drawing

Proof: (cont'd)

Lemma: The following properties hold:

$$\operatorname{Cor}(G, x_1, x_2) = \sum_{x_2(u) < x_2(v)} c_{uv} \operatorname{opt}(G, x_1) \ge \sum_{u, v \in L_2} \min\{c_{uv}, c_{vu}\}$$

$$med(G_1,x_n) = cr(G_1,x_n,x_2) = \sum_{\substack{x_1(u) \in X_2(u) \\ \text{Comparted}}} c_{uv} \in 35 \text{ min } \{c_{uv},c_{vu}\} = \sum_{\substack{x_2(u) \in X_2(u) \\ \text{Comparted}}} c_{uv} \in 35 \text{ min } \{c_{uv},c_{vu}\} = 3 \text{ opt}(G_1,x_1)$$

Properties:

- branch-and-cut technique für DAGs of bounded size
- finds optimal solution
- no guarantee to find solution in polynomial time
- suitable for small to medium-size graphs

Properties:

- branch-and-cut technique für DAGs of bounded size
- finds optimal solution
- no guarantee to find solution in polynomial time
- suitable for small to medium-size graphs

ILP model:

lacktriangle define arbitrary order < of L_2

Properties:

- branch-and-cut technique für DAGs of bounded size
- finds optimal solution
- no guarantee to find solution in polynomial time
- suitable for small to medium-size graphs

ILP model:

lacksquare define arbitrary order < of L_2

binary variables $x_{uv} = \begin{cases} 1 & \text{if } u \text{ left of } v \\ 0 & \text{otherwise} \end{cases}$

$$\operatorname{cr}(G, x_1, x_2) = \sum_{u < v} (c_{uv} x_{uv} + c_{vu} (1 - x_{uv})) = \sum_{u < v} (c_{uv} - c_{vu}) x_{uv} + \sum_{u < v} c_{vu}$$

Properties:

- branch-and-cut technique für DAGs of bounded size
- finds optimal solution
- no guarantee to find solution in polynomial time
- suitable for small to medium-size graphs

ILP model:

- lacktriangle define arbitrary order < of L_2
- binary variables $x_{uv} = \begin{cases} 1 & \text{if } u \text{ left of } v \\ 0 & \text{otherwise} \end{cases}$

$$\operatorname{cr}(G, x_1, x_2) = \sum_{u < v} (c_{uv} x_{uv} + c_{vu} (1 - x_{uv})) = \sum_{u < v} (c_{uv} - c_{vu}) x_{uv} + \sum_{u < v} c_{vu}$$

minimize $\sum_{u < v} (c_{uv} - c_{vu}) x_{uv}$ s.t.

- $\blacksquare x_{uv} \in \{0,1\}$ for all $u < v \in L_2$
- transitivity

How to model transitivity in ILP?

Properties:

- branch-and-cut technique für DAGs of bounded size
- finds optimal solution
- no guarantee to find solution in polynomial time
- suitable for small to medium-size graphs

ILP model:

- lacktriangle define arbitrary order < of L_2
- binary variables $x_{uv} = \begin{cases} 1 & \text{if } u \text{ left of } v \\ 0 & \text{otherwise} \end{cases}$

$$\operatorname{cr}(G, x_1, x_2) = \sum_{u < v} (c_{uv} x_{uv} + c_{vu} (1 - x_{uv})) = \sum_{u < v} (c_{uv} - c_{vu}) x_{uv} + \sum_{u < v} c_{vu}$$

minimize
$$\sum_{u < v} (c_{uv} - c_{vu}) x_{uv}$$
 s.t.

$$x_{uv} \in \{0,1\}$$
 for all $u < v \in L_2$

$$uv \in \{0,1\}$$
 for all $u < v \in L_2$

$$0 \le x_{uv} + x_{vw} - x_{uw} \le 1 \text{ for all } u < v < w \in L_2$$

Experimental Evaluation (Jünger, Mutzel 1997)

0.8 Minimum 0.75 0.7 Assign 0.65 0.6 lime in Seconds on a SPARC10 0.55 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0.5 0.2 0.4 0.6 0.7 8.0 0.9 Density

Quality averaged over 100 instances on 20 + 20 vertices bipartite graphs with increasing density

Running times on the same instances

Overview

Step 4: Coordinate Assignment

What are the goals?

Edge Straightening

Goal: minimize deviation from straight line for edges with dummy vertices

Idea: quadratic programming

- let $p_{uv} = (u, d_1, \dots, d_k, v)$ be a path with k dummy vertices between u and v
- let $a_i = x(u) + \frac{i}{k+1}(x(v) x(u))$ be the x-coordinate of d_i assuming straight line
- \blacksquare minimize $\sum_{i=1}^{k} (x(d_i) a_i)^2$ over all paths
- constraints: $x(w) x(z) \ge \delta$ for all vertices on the same layer with w right of z (δ is a spacing parameter)

Edge Straightening

Goal: minimize deviation from straight line for edges with dummy vertices

Idea: quadratic programming

- let $p_{uv} = (u, d_1, \dots, d_k, v)$ be a path with k dummy vertices between u and v
- let $a_i = x(u) + \frac{i}{k+1}(x(v) x(u))$ be the x-coordinate of d_i assuming straight line
- lacksquare minimize $\sum_{i=1}^k (x(d_i) a_i)^2$ over all paths
- constraints: $x(w) x(z) \ge \delta$ for all vertices on the same layer with w right of z (δ is a spacing parameter)

Properties:

- solving quadratic program often time expensive
- width can grow exponentially
- objective function can be modified for optimizing verticality

Step 5: Drawing edges

- postprocessing: optionally substitute polylines by Bézier curves
- draw all edges in original orientation

Summary

Summary

- flexible framework for drawing directed graphs
- sequential optimization of various criteria
- decomposition into often NP-hard but still practically feasible subproblems
- implies restricted solution space

Announcements

- The class on June 12 is shifted to Monday, June 11 in the same time slot 9:00–11:00 in seminar room 186.
- Student presentations from exercise groups will take place on July 3, 10:00–12:00 and 13:00–15:00. Attendance required.
- Oral exam dates are July 10 and September 18. Registration in TISS will open June 1.