Project Euler #197: Investigating the behaviour of a recursively defined sequence

This problem is a programming version of Problem 197 from projecteuler.net

Given is the function $f(x)=[2^{b-x^2}]\times 10^{-9}$ ([] is the floor-function), the sequence u_n is defined by u_0 and $u_{n+1}=f(u_n)$.

Find $u_n + u_{n+1}$ for $n = 10^{12}$ with given u_0 and b. Your answer would be considered correct if it has absolute error not more than 10^{-8} .

Input Format

Every test file contains two real numbers: u_0 and b with no more than two digits after decimal point. These numbers are situated in a single line and are separated by a single space.

Constraints

- $28 \le b \le 32$
- $0 < u_0 < 10$

Output Format

Output exactly one real number which is the answer to the problem.

Sample Input 0

0 30

Sample Output 0

1.473849410