CS 217 – Algorithm Design and Analysis

Shanghai Jiaotong University, Fall 2019

NoCode

April 27, 2021

3 Minimum Spanning Trees

Throughout this assignment, let G be a weighted graph, i.e., G = (V, E, w) with $w : E \to \mathbb{R}^+$. For $c \in \mathbb{R}$ and a weighted graph G = (V, E, w), let $G_c := (V, \{e \in E \mid w(e) \leq c\})$. That is, G_c is the subgraph of G consisting of all edges of weight at most C.

Exercise 1. Let T be a minimum spanning tree of G, and let $c \in \mathbb{R}$. Show that T_c and G_c have exactly the same connected components. (That is, two vertices $u, v \in V$ are connected in T_c if and only if they are connected in G_c). You are encouraged to draw pictures to illustrate your proof!

Proof. It is obvious that if vertices $u, v \in V$ are connected in T_c , they will also be connected in G_c . So we need to prove that if vertices $u, v \in V$ are connected in G_c , they will also be connected in T_c .

Suppose there is an edge e in G_c that connects u and v, but u and v are not connected in T_c . Therefore, e should be added to T_c in order to construct a minimum spanning tree (otherwise, the tree we constructed can have a smaller edge cost), which forms a contradiction. So, e must be in T_c and u, v must be connected.

Thus, T_c and G_c have exactly the same connected components. \square

Exercise 2. For a weighted graph G, let $m_c(G) := |\{e \in E(G) \mid w(e) \leq c\}|$, i.e., the number of edges of weight at most c (so G_c has $m_c(G)$ edges). Let T, T' be two minimum spanning trees of G. Show that $m_c(T) = m_c(T')$.

solution LEMMA: Any two minimum spanning tree have the same ordered edge weight list. (we sort the edge weight in T, T' from small to large, and the two weight list are the same)

proof of the lemma Suppose after sorting the edges in T becomes a_1, a_2, \dots, a_m , $w(a_1) \leq w(a_2) \leq \dots \leq w(a_m)$, the edges in T' becomes b_1, b_2, \dots, b_m , $w(b_1) \leq w(b_2) \leq \dots \leq w(b_m)$. Suppose i is the first number that a_i is the different edge with b_i . We can suppose $w(a_i) \geq w(b_i)$.

case 1: b_i is in T, so there must exist j > i that $b_i = a_j$. In fact, we now have $w(b_i) = w(a_j) \ge w(a_i) \ge w(b_i)$, so $w(b_i) = w(a_j) = w(a_i)$. So we can change the position of a_i and a_j in a_1, a_2, \dots, a_m , now T and T' have the same edge in the position i.

case 2: b_i is not in T, so we can add b_i to T which will lead to a cycle. For T is the minimum spanning tree, each edge in the cycle has a weight not less than $w(b_i)$, and there exists a_j which is not in T'. So we have $w(a_j) \leq w(b_i)$ and j > i, so $w(bi) \leq w(ai) \leq w(aj) \leq w(bi)$, so $w(a_i) = w(a_j) = w(b_i)$. So we can replace a_j with b_i to let T still a minimum spanning tree, than this case turn to case 1.

According to the lemma, we can easily get $m_c(T) = m_c(T')$

below is another proof based on Exercise 1

Proof. According to **Exercise 1.**, T_c , T'_c and G_c have exactly the same connected components. So the number of connected components in T_c , T'_c and G_c should be the same.

Since both T and T' are minimum spanning trees, all the connected components of T_c and T_c' should be trees.

Let G has n vertices, we can derive

 $m_c(T) = m_c(T') = n$ the number of connected components in G_c .

Exercise 3. Suppose G is connected, and no two edges of G have the same weight. Show that G has exactly one minimum spanning tree!

solution Suppose T, T' are two minimum spanning trees of G, suppose T has edges $E(T) = \{e_1, e_2, \ldots, e_m\}$ and T' has edges $E(T') = \{e'_1, e'_2, \ldots, e'_m\}$, the edges in set are arranged in weight from small to large. Suppose k is the first number that makes $e_k \neq e'_k$ which means $e_i = e'_i$ for all i < k. Now we can suppose that $w(e_k) < w(e'_k)$, then we add e_k to the T', and now there

exists a cycle in T'. And we can claim that there must be at least one edge that larger than e_k , other than the cycle is composed with the edges among e_1, e_2, \dots, e_k which can lead to an cycle in T. So now we can delete an larger edge in this cycle to get another spanning tree with smaller weight. So we get the contradiction, and the suppose are not true. So we showed that G has exactly one minimum spanning tree!

A multigraph is a graph that can have multiple edges, called "parallel edges". Without defining it formally, we illustrate it:

All other definitions, like connected components and spanning trees are the same as for normal (simple) graphs. However, when two spanning trees use different parallel edges, we consider them different:

The same multigraph with two different spanning trees.

Exercise 4. How many spanning trees does the above multigraph on 7 vertices have? Justify your answer!

Solution 49.

Proof For an n-point cycle, taking a_i as the number of edges between point i and point i + 1 (or point n and point 1), the MST number of the graph is:

$$\sum_{i=1}^{n} \prod_{j=1,j!=i}^{n} a_j$$

It's easy to show it considering the ways to get an MST without edges between point i and point i + 1.

Then we can seperate the graph into two cycles, the three-point one has 7 ways to get an MST, and the four-point one has also 7 ways to get an MST. Apparently the edge linking the two graph has to be selected, so the total number of MST for the graph equal to the product of that of the subgraph, which means, $7 \times 7 = 49$.

Exercise 5. Suppose you have a polynomial-time algorithm that, given a multigraph H, computes the number of spanning trees of H. Using this algorithm as a subroutine, design a polynomial-time algorithm that, given a weighted graph G, computes the number of minimum spanning trees of G.

Solution Consider A is MST of G, it has k edges weighted v. If we replace this k edges by other k edges weighted v and does not generate cycle, we call the new graph is B, then B is also a legal MST. Because according to **Exercise 1**, any two MST of G have the same number of edges with weight of v, and according to **Exercise 2**. G_c and A_c have the same connected components. So we can design the algorithm from the idea:

In the algorithm, we generate a MST by KRUSKAL, then We can know how many times the edge of a certain weight appears. For certain weight ω , the algorithm remove all edges with weight ω , then treat a connected block as a vertex. Then find all spanning tree of the new graph. and use the principle of multiplication to get the answer.

Algorithm 1 Computes the number of MST of G

```
1: procedure MINIMUMSPANNINGTREECOUNT(G)
       T := Kruskal(G)
 2:
       E := Edge set of T
 3:
 4:
       ans := 1
       for e \in E do
 5:
          \omega = weight of e
 6:
          if \omega has not been processed then
 7:
              W := Set of edges in T with weight \omega
 8:
              G' := (V, E/W)
9:
              C := Number of connected component if G'
10:
              H := \text{Empty graph with } C \text{ vertices.}
11:
              for w \in W do
12:
                 if w connect two connected component u, v \in G' then
13:
                     Add edge \{u, v\} to H
14:
                 end if
15:
              end for
16:
              ans := ans \cdotSpanningTreeCount(H)
17:
          end if
18:
       end for
19:
       {\bf return} ans
20:
21: end procedure
```