

Unit 2: Boundary value problems

Course > and PDEs

> <u>5. The Heat Equation</u> > 5. Initial conditions

5. Initial conditions Continued example

Video

Download video file

Transcripts

<u>Download SubRip (.srt) file</u> <u>Download Text (.txt) file</u>

Summary:

- We modeled an insulated metal rod with exposed ends held at $0^{\circ} C$.
- Using physics, we found that its temperature $\theta\left(x,t\right)$ was governed by the PDE

$$\frac{\partial \theta}{\partial t} =
u \frac{\partial^2 \theta}{\partial x^2}, \quad 0 < x < \pi, \quad ext{(the heat equation)}.$$

For simplicity, we specialized to the case $\nu=1$, length π , and initial temperature $\theta\left(x,0\right)=1$.

- Trying $\theta=v\left(x\right)w\left(t\right)$ led to separate ODEs for v and w, leading to solutions $e^{-n^2t}\sin nx$ for $n=1,2,\ldots$ to the PDE with boundary conditions.
- We took linear combinations to get the general solution

$$\theta(x,t) = b_1 e^{-t} \sin x + b_2 e^{-4t} \sin 2x + b_3 e^{-9t} \sin 3x + \cdots$$

to the PDE with homogeneous boundary conditions $heta\left(0,t
ight)=0$, and $heta\left(\pi,t
ight)=0$.

Initial conditions. As usual, we postponed imposing the initial condition, but now it is time to impose it.

Question 5.1 Which choices of b_1, b_2, \ldots make the general solution above also satisfy the initial condition $\theta(x,0)=1$ for $x\in(0,\pi)$?

 $\mathrm{Set}\, t=0\,\mathrm{in}$

General solution:
$$\theta(x,t) = b_1 e^{-t} \sin x + b_2 e^{-4t} \sin 2x + b_3 e^{-9t} \sin 3x + \cdots$$
 (3.45)

(the general solution to the Heat Equation) and use the initial condition on the left to get

$$1 = b_1 \sin x + b_2 \sin 2x + b_3 \sin 3x + \cdots$$
 for $x \in (0, \pi)$,

which must be solved for b_1, b_2, \ldots

Because the right hand side is odd and of base period 2π , to find such b_i , the left hand side must be extended to an odd period 2π function, namely $\operatorname{Sq}(x)$. So we need to solve

$$\operatorname{Sq}\left(x
ight)=b_{1}\sin x+b_{2}\sin 2x+b_{3}\sin 3x+\cdots \quad ext{for all } x\in\mathbb{R}.$$

We already know the answer:

$$\operatorname{Sq}\left(x
ight)=rac{4}{\pi}\sin x+rac{4}{3\pi}\sin 3x+rac{4}{5\pi}\sin 5x+\cdots.$$

In other words $b_n=0$ for even n, and $b_n=rac{4}{n\pi}$ for odd n. Substituting these b_n back into the general solution to the heat equation gives

$$heta \left({x,t}
ight) = rac{4}{\pi }{e^{ - t}}\sin x + rac{4}{{3\pi }}{e^{ - 9t}}\sin 3x + rac{4}{{5\pi }}{e^{ - 25t}}\sin 5x + \cdots .$$

Question 5.2 What does the temperature profile look like when t is large?

Answer: All the Fourier components are decaying, so $\theta(x,t)\to 0$ as $t\to +\infty$ at every position. Thus the temperature profile approaches a horizontal segment, the graph of the zero function. But the Fourier components of higher frequency decay much faster than the first Fourier component, so when t is large, the formula

$$\mathcal{Q}(x,t) \simeq \frac{4}{\pi} e^{-t} \sin x$$

$$\Theta\left(x\right)= egin{bmatrix} 0 & & \\ \hline 0 & & \\ \hline \end{pmatrix}$$
 Answer: 0

Solution:

The steady state solution is $\Theta(x) = 0$.

For large times, the solution is dominated by the first term $\theta\left(x,t\right) \approx \frac{4}{\pi}e^{-t}\sin x$. But this term tends to zero as t tends to infinity. Thus as you might expect, if you submerge the ends of a metal rod in an ice bath, eventually, the temperature everywhere in the bar will be 0.

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

Another initial condition

2/2 points (graded)

Suppose that a thin metal bar initially has temperature given by $\theta_0\left(x\right)=x$ at time t=0. Then both ends are submerged in an ice bath and held at 0 degrees Celsius.

The general solution can be written as

$$heta\left(x,t
ight)=C_{1}\left(t
ight)\sin x+C_{2}\left(t
ight)\sin 2x+C_{3}\left(t
ight)\sin 3x+\cdots.$$

Find the function $C_n\left(t\right)$ given that the Fourier series of the 2π -periodic sawtooth wave is given by

$$2\sum_{n=1}^{\infty}\frac{\left(-1\right)^{n+1}}{n}\sin\left(nt\right)$$

(Note that you must find both the constant coefficient, and multiply by the correct function of t.)

Find the steady state solution $\Theta(x)$.

FORMULA INPUT HELP

Solution:

The general solution to the heat equation with homogeneous boundary conditions is always

$$heta\left(x,t
ight)=C_{1}\left(t
ight)\sin x+C_{2}\left(t
ight)\sin 2x+C_{3}\left(t
ight)\sin 3x+\cdots.$$

First note that the general solution takes the form

$$\theta(x,t) = b_1 e^{-t} \sin x + b_2 e^{-4t} \sin 2x + b_3 e^{-9t} \sin 3x + \cdots$$

Thus
$$C_n\left(t
ight)=b_ne^{-n^2t}.$$

To find the coefficients b_n , set t=0 and set the general solution to be equal to the Fourier series for the Sawtooth wave, which is the odd, 2π -periodic extension of the function given as the initial condition: $\theta_0\left(x\right)=t$, for $0< t<\pi$.

$$b_1\sin x+b_2\sin 2x+b_3\sin 3x+\cdots=2\sin x-\sin \left(2x
ight)+rac{2}{3}\sin \left(3x
ight)+\cdots+2rac{\left(-1
ight)^{n+1}}{n}\sin \left(nx
ight)+\cdots.$$

Therefore
$$b_n=rac{2(-1)^{n+1}}{n}$$
 , and $C_n\left(t
ight)=rac{2(-1)^{n+1}}{n}e^{-n^2t}$.

The general solution therefore is

$$heta\left(x,t
ight)=2\sum_{n=1}^{\infty}rac{\left(-1
ight)^{n+1}}{n}e^{-n^{2}t}\sin nx.$$

Note that as t tends to infinity, every term tends to 0 in this Fourier series due to the exponential decay term in each summand. Therefore the steady state solution $\Theta=0$ for this initial condition as well.

The steady state solution for the Heat Equation with homogeneous boundary conditions $\theta(0,t)=0$, and $\theta(L,t)=0$ will always be the constant zero function.

Submit

You have used 1 of 7 attempts

• Answers are displayed within the problem

5. Initial conditions

Hide Discussion

Topic: Unit 2: Boundary value problems and PDEs / 5. Initial conditions

Add a Post

Show all posts

by recent activity 🗸

rnere are no posts in this topic yet.

×		

© All Rights Reserved

is a very good approximation. Eventually, the temperature profile is indistinguishable from a sinusoid of angular frequency 1 whose amplitude is decaying to 0. This can be observed in the mathlet.

Steady state

1/1 point (graded)

What is the steady state solution $\Theta\left(x\right)$ defined as $\theta\left(x,t\right) \to \Theta\left(x\right)$ as time $t \to \infty$.