FIZIKA 2

FORMULE

FER, Zagreb

SADRŽAJ:

Fizika 2 – Formule su preuzete iz udžbenika: Valovi i optika, Kulišić, Bartolić

1.	Titranje3
2.	Mehanički valovi6
3.	Geometrijska optika8
4.	Fizikalna optika10
5.	Fotometrija12
6.	Kvantna priroda svjetlosti13
7.	Struktura atoma14
8.	Atomska jezgra16
•	Važnije konstante17

U formulama nedostaju poglavlja: Maxwellove jednadžbe, Elektromagnetski titraji i valovi, te električna vodljivost plinova.

2 | Fizika 2 – Formule Marko NUFC

1. TITRANJE

ELASTIČNOST

Hookeov zakon:

$$\sigma = E \, \varepsilon = E \frac{\Delta x}{x}$$

 σ – napetost, E – Youngov modul elastičnosti, ε – relativna deformacija Relativna deformacija:

$$\varepsilon = \frac{\Delta x}{x}$$

Youngov modul elastičnosti:

$$E = \frac{\sigma}{\delta_L} = \frac{F L_0}{S \Delta L}$$

F – sila, S – površina na koju djeluje sila, L – duljina

Napetost smicanja:

$$\tau = \frac{F}{S}$$

Modul smicanja G:

$$G = \frac{E}{2(1+\mu)}$$

μ – Poissonov broj

Moment para sila:

Deformacija štapa učvršćenog na jednog kraja, a na drugom kraju djeluje par sila:

$$M = D\vartheta$$

 ϑ – kut zakreta zbog torzije, D – konstanta torzije

Konstanta torzije D:

$$D=\frac{\pi r^4}{2}G$$

G – modul torzije, l – duljina štapa, r – polumjer štapa

Volumni modul elastičnosti:

$$B = -p\frac{\Delta V}{V}$$

V – volumen, p – tlak

Predznak '-' se stavlja kad je tlačno NAPREZANJE (stiskanje), dok predznak '+' kad je tlačno RASTEZANJE.

TITRANIE:

Elastična ili harmonijska sila:

Sila koja tijelo vraća u ravnotežni položaj:

$$\overrightarrow{F} - - \cancel{k} \overrightarrow{S}$$

k – konstanta elastičnosti, s – elongacija, tj. Udaljenost tijela od položaja ravnoteže

Jednadžba gibanja harmoničkog oscilatora:

$$m\frac{d^2\vec{s}}{dt^2} + k\vec{s} = 0$$

Opće rješenje jednadžbe:

$$s = A \sin(\omega t + \varphi_0)$$

A – amplituda, $φ_0$ – početna faza, ω – kružna frekvencija

Kružna frekvencija: $\omega = 2\pi f = \frac{2\pi}{T}$, T – $period\ titranja$

Period titranja:

$$T=2\pi\sqrt{\frac{m}{k}}$$

NJIHALA

Matematičko njihalo:

Sitno tijelo mase *m* obješeno o nit stalne duljine, a zanemarive težine.

Sila koja vraća tijelo u položaj ravnoteže:

$$F = -mg \sin \vartheta$$

Period titranja matematičkog njihala:

$$T=2\pi\sqrt{rac{l}{g}}$$

l – duljina niti, g – akcerelacija slobodnog pada (gravitacija) = 9.81 m/s

Fizičko njihalo

Kruto tijelo koje se može okretati oko horizontalne osi koja ne prolazi kroz njegovo težište.

Moment težine:

$$M = -mgL \sin \vartheta$$

L – udaljenost osi rotacije od težišta

Period titranja fizičkog njihala:

$$T=2\pi\sqrt{rac{I}{mgL}}$$

I – moment inercije s obzirom na os

Reducirana duljina fizičkog njihala $l_r = \frac{I}{mL}$ je duljina matematičkog njihala koje ima isti period kao fizičko njihalo.

Torziono njihalo:

Torziono njihalo se sastoji od tijela obješenog o žicu tako da je objesište na vertikali koja prolazi kroz središte tijela. Moment žice

$$M_{\check{\tau}} = -D\vec{\vartheta}$$

D – *konstanta torzije*

Period titranja torzionog njihala:

$$T=2\pi\sqrt{rac{I}{D}}$$

I – moment inercije s obzirom na os vrtnje

ENERGIJA TITRANJA

Ukupna energija:

$$E = \frac{1}{2}kA^2 = \frac{1}{2}m\omega_0^2A^2$$

PRIGUŠENO TITRANJE:

Tijelo izvodi prigušeno titranje ako postoji kod titranja gubitak energije zbog trenja. Jednadžba gibanja:

$$\frac{d^2s}{dt^2} + \frac{b}{m}\frac{ds}{dt} + \frac{k}{m}s = 0, odnosno \frac{d^2s}{dt^2} + 2\delta \frac{ds}{dt} + \omega_0 s = 0$$

b – konstanta trenja, ω_0 – vlastita pulzacija neprigušenog oscilatora, δ – faktor prigušenja

Opće rješenje:

$$s(t) = Ae^{-\delta t}sin(\omega t + \varphi)$$

Pulzacija prigušenih titranja:

$$\omega = \sqrt{\omega_0^2 - \delta^2}$$

Logaritamski dekrement prigušenog titranja:

 $\lambda = \delta T$, gdje je T period prigušenog titranja

PRISILNO TITRANIE

Prisilno titranje nastaje kada vanjska sila F_v djeluje na tijelo koje titra. Vanjska sila:

$$F_v = F_0 \sin \omega t$$

Jednadžba gibanja:

$$\frac{d^2s}{dt^2} + 2\delta \frac{ds}{dt} + \omega_0 s = A_0 sin\omega t$$

Opće rješenje:

$$s(t) = A(\omega)sin(\omega t + \varphi)$$

Amplituda:

$$A(\omega) = \frac{A_0}{\sqrt{\left(\omega_0^2 - \omega^2\right)^2 + 4\delta^2 \omega^2}}$$

$$tg\;\varphi=\frac{2\delta\omega}{\omega_0^2-\omega^2}$$

Rezonantna pulzacija:

$$\omega_r = \sqrt{\omega_0^2 - 2\delta^2}$$

ZBRAJANJE HARMONIČKIH TITRAJA

$$s = s_1 + s_2 = A(\sin \omega_1 t + \sin \omega_2 t)$$

$$s = 2A \cos \frac{\omega_1 - \omega_2}{2} t \sin \frac{\omega_1 + \omega_2}{2} t$$

Frekvencija udara:

$$v=\frac{\omega_1-\omega_2}{2\pi}$$

2. MEHANIČKI VALOVI

Mehanički valovi – valovi koji se šire kroz elastična sredstva

Transvezalni val – čestice koje prenose val titraju okomito na smjer širenja

Longitudinalni val – čestice titraju oko položaja ravnoteže na pravcu kojim se širi val.

Brzina širenja vala

$$v = \lambda f$$
, f-frekvencija, λ -valna duljina

Valni broj: $k = \frac{2\pi}{\lambda}$

ŠIRENJE VALA U SREDSTVU

Brzina širenja transvezalnih valova:

$$v = \sqrt{\frac{F}{\mu}}$$
, F – napetost žice, μ - masa po jedinici duljine

Brzina longitudinalnih valova:

$$oldsymbol{v} = \sqrt{rac{E}{arrho}}$$
, E – Youngov modul elastičnosti materijala, $arrho$ – gustoća fluida

Brzina longitudinalnih valova kroz fluid:

$$v = \sqrt{\frac{B}{\varrho}}$$
, B – volumni modul elastičnosti

Fazna brzina zvučnih valova u plinu:

$$v = \sqrt{\frac{\kappa p}{\rho}} = \sqrt{\kappa \frac{RT}{M}}$$

 κ - omjer specifičnih toplinskih kapaciteta c_p/c_v , p - tlak, ρ - gustoća, R - plinska konstanta, T - apsolutna temperatura, M- molna masa plina

κ za jednoatomne plinove iznosi 1.67, za dvoatomne (npr.zrak) iznosi 1.40, a za višeatomne iznosi 1.33

MATEMATIČKI OPIS VALNOG GIBANIA

Harmonički val:

$$s(x,t) = Asin(\omega t + kx)$$

ako čestica titra po zakonu $s(x,t) = Asin(\omega t + kx)$ tada:

$$s(x,t) = Asin(\omega t - kx + \varphi_0)$$

Superpozicija:

$$s = s_1 + s_2 = Asin(\omega t - kx) + Asin(\omega t - kx + \varphi) = 2Asin\left(\omega t - kx + \frac{\varphi}{2}\right)cos\frac{\varphi}{2}$$

Ako je φ = 0, cos φ /2 = 1 – amplituda je maksimalna, nastaje KONSTRUKTIVNA interferencija.

Ako je $\varphi = \pi$, cos $\varphi/2 = 0$ – amplituda je 0, nastaje DESTRUKTIVNA intereferncija.

Konstruktivna interferencija –
$$d\sin\vartheta_n=\frac{2n\pi}{k}=n\lambda$$
, n=0,1,2,... gdje je $k=\frac{\omega}{v}=\frac{2\pi}{\lambda}$ Destruktivna interferencija – $d\sin\vartheta_n=\left(1+\frac{1}{2}\right)\lambda$, n=0,1,2,...

STOINI VALOVI

Nastaje interferencijom dvaju valova jednake amplitude, frekvencije i valne duljine, koji na istom pravcu putuju jedan nasuprot drugome.

ČVOROVI – mjesta na kojima je elongacija stalno nula - $\frac{n\lambda}{2}$, za n = 0,1,2,...

TRBUSI – mjesta na žici koja najjače titraju. Maksimalna titranja dobivamo na mjestima gdje je:

$$\sin kx = \pm 1 \Rightarrow x_n = (2n+1)\frac{\lambda}{4}$$
, $n = 0, 1, 2, ...$

Jednadžba stojnog vala na žici:

$$s(x,t) = Asin(kx + \varphi_1)sin(kx + \varphi_2)$$

Transvezalni stojni valovi na napetoj žici

Rubni uvjeti gdje je L duljina žice za n=1,2,3,...

$$\lambda = \frac{2L}{n}$$

Vlastite frekvencije kojima titra napeta žica:

$$f_n = \frac{v}{\lambda_n} = n \frac{v}{2L} = \frac{n}{2L} \sqrt{\frac{F}{\mu}}$$

VALOVI ZVUKA

Zvuk – obuhvaća sve longitudinalne elastične valove u čvrstim tijelima, tekućinama i plinovima. **Infrazvuk** – zvučni valovi frekvencije niže od 20 Hz, **Ultrazvuk** – zvučni valove frekvencije više od 20 000 Hz

Brzina zvuka: v = 340.29 m/s

Transverzalni valovi	Longitudinalni valovi	Longitudinalni valovi	Longitudinalni valovi
na žici	u čvrstom tijelu	u tekućini	u plinovima
$v = \sqrt{\frac{F}{\mu}}$	$v = \sqrt{\frac{E}{\varrho}}$	$v = \sqrt{\frac{1}{\varrho K}}$	$v = \sqrt{\frac{\kappa p}{\rho}} = \sqrt{\kappa \frac{RT}{M}}$

ENERGIJA MEHANIČKIH VALOVA

Ukupna energija čestice koja harmonički titra: $E=\frac{1}{2}m\omega^2A^2$, $\mu=\frac{m}{l}=
ho S$

Gustoća energije: $\mathbf{w} = \frac{\Delta E}{\Delta V}$ $\left[\frac{J}{m^3}\right]$, E - energija, V - volumen

Ukupna energija: $w = \frac{1}{2}\mu\omega^2A^2$

Snaga prenesena kroz površinu S: $P = w S v = \frac{1}{2} \mu \omega^2 A^2 S v$

Gustoća energijskog toka: $I = \frac{P}{S} = w v$ $[W/m^2]$

JAKOST I GLASNOĆA ZVUKA

Nivo (razina) buke:

$$L = 10 \log \frac{I}{I_0} , \qquad [dB]$$

I – jakost zvuka, I_0 – jakost zvuka na pragu čujnosti (10 -23 W/m²), dB – decibeli (mjerna jedinica)

DOPPLEROV EFEKT

1.slučaj: izvor miruje, a detektor se giba brzinom v_d

Frekvencija koju detektor registrira:

$$f' = \frac{v \pm v_d}{v} f$$
, + približavanje, – udaljavanje

2.slučaj: izvor se giba brzinom v_d, a detektor miruje

$$f' = \frac{v}{v + v_i} f$$

Razlika frekvencije reflektiranih i odaslanih valova:

$$\Delta f = f' - f = \frac{2fv_p}{c - v_p}$$

3. GEOMETRIJSKA OPTIKA

Geometrijska optika je dio optike u kojoj se za opis svjetlosnih pojava služimo svjetlosnom zrakom.

1.zakon jest zakon o pravocrtnom širenju svjetlosti.

2.zakon jest zakon odbijanja ili refleksije.

3.zakon jest ZAKON LOMA ili REFRAKCIJE:

$$\frac{\sin u}{\sin l} = \frac{n_2}{n_1}$$

n_i - indeks loma svjetlosti za određeno sredstvo

RAVNO I SFERNO ZRCALO

Ravno zrcalo – glatka ploha koja može odbijati zrake svjetlosti prema zakonu odbijanja.

Virtualna slika – slika koja nastaje iza zrcala

Sferno zrcalo – zrcalo čija je površina dio kugline plohe.

Dva različita slučaja:

1. KONKAVNO (udubljeno) ZRCALO

$$\frac{1}{a} + \frac{1}{b} = \frac{1}{f} = \frac{2}{r}$$

a - udaljenost predmeta od zrcale

b – udaljenost slike od zrcala

f – žarišna udaljenost

r – polumjer zakrivljenosti

Konkavna zrcala uvijek daju realnu sliku na istoj strani na kojoj je i predmet, f je uvijek pozitivan.

2. KONVEKSNO (izbočeno) ZRCALO

$$\frac{1}{a} + \frac{1}{b} = \frac{1}{-f} = \frac{2}{r}$$

a – udaljenost predmeta od zrcala

b – udaljenost slike od zrcala

f – žarišna udaljenost

r – polumjer zakrivljenosti

C – središte sfere (r), F – žarišna točka (f)

Koveksna zrcala uvijek daju virtualnu sliku, na strani suprotnoj od predmeta (b – uvijek negativan, te f uvijek negativan)

 $m=-\frac{b}{a}$ Omjer veličine slike i veličine predmeta - povećanje:

TOTALNA REFLEKSIJA

Zraka svjetlosti pada na granicu dvaju optički različitih sredstava, dio se svjetlosti odbije, a dio se lomi u drugo sredstvo.

Kut *l* = 90°

$$\sin u_g = \frac{n_2}{n_1}$$

PLANPARALELNA PLOČA

Paralelni pomak:

$$\Delta = d \sin u (1 - \frac{\cos u}{\sqrt{n^2 - \sin^2 u}})$$

OPTIČKA PRIZMA

Optička prizma je tijelo čiji je presjek trokut.

Ukupna devijacija δ zrake:

$$\delta = u_1 - l_1 + u_2 - l_2 = u_1 + u_2 - (l_1 + l_2)$$

Lomni kut prizme: $A = l_1 + l_2 \Rightarrow \delta = u_1 + u_2 - A$

Minimalna devijacija kad je $u_1=u_2$ i $l_1=l_2$: $\boldsymbol{\delta_{min}}=\mathbf{2u_1}-\mathbf{A}$

Indeks loma sredstva prizme: $n = \frac{\sin u_1}{\sin l_1} = \frac{\sin \left(\frac{\delta_{min} + A}{2}\right)}{\sin \frac{A}{2}}$

Lomni zakon na sfernoj granici: $\frac{n_1}{a} + \frac{n_2}{b} = \frac{n_2 - n_1}{r}$, Poprečno povećanje: $m = -\frac{n_1}{n_2} \frac{b}{a}$

TANKE LEĆE

Leća je tanko prozirno optičko tijelo omeđeno dvjema poliranim površinama.

Konvergentne staklene leće:

a)bikonveksna b) plankonveksna c)konver.menisk

Divergentne staklene leće:

a)bikonkavna b)plankonkvana c)diver.menisk

1. KONVERGENTNE LEĆE

$$\frac{1}{a} + \frac{1}{b} = \frac{n_2 - n_1}{n_1} \left(\frac{1}{r_1} - \frac{1}{r_2} \right) = \frac{1}{f} = J$$

Konvergentna leća je u mogućnosti dati realnu sliku. f je uvijek pozitivan. Realna slika se uvijek nalazi na suprotnoj strani od predmeta (b pozitivan), dok se virtualna slika nalazi na istoj strani kao i predmet (b negativan)

2. DIVERGENTNE LEĆE

$$\frac{1}{a} + \frac{1}{b} = \frac{n_2 - n_1}{n_1} \left(\frac{1}{r_1} - \frac{1}{r_2} \right) = \frac{1}{-f} = J$$

Divergentna leća nije u mogućnosti dati realnu sliku, te je f uvijek negativan. Slika je uvijek virtualna (b negativan), te se nalazi uvijek na istoj strani kao i predmet.

Povećanje:

$$m=\frac{b}{a}$$

4. FIZIKALNA OPTI

INTERFERENCIJA VALOVA

Interferencija valova tj. slaganje dvaju ili više valova.

Svjetlosni valovi, tj. elektromagnetski valovi $v = \frac{c}{r}$

Jakost električnog polja elektromagnetskog vala:

$$E_{1} = E_{0} sin\omega \left(t - \frac{nx_{1}}{c}\right)$$

$$E_{2} = E_{0} sin\omega \left(t - \frac{nx_{2}}{c}\right)$$

Rezultantna elongacija:

$$E_A = 2E_0 \cos \frac{\omega}{2c} (nx_2 - nx_1) \sin \left[\omega t - \frac{\omega n}{2c} (x_1 + x_2)\right]$$

nx₂-nx₁ razlika u hodu koju valovi imaju na mjestu intereferencije c – brzina svjetlosti ($3*10^8$ m/s), n – indeks loma sredstva kojim se širi svjetlost, t – vrijeme

U točki A se javlja **svjetlost** ako je:

$$\frac{\omega}{2c}(nx_2 - nx_1) = 0$$
, $za\pi, 2\pi, ...(k-1)\pi$

U točki A se javlja tama ako je:

$$\frac{\omega}{2c}(nx_2-nx_1)=\frac{\pi}{2},\frac{3\pi}{2},\dots\ \left(\frac{2k-1}{2}\right)\pi$$

YOUNGOV POKUS

U Youngovom pokusu se na zastoru vide tamne i svijetle pruge intereferencije.

Razlika u hodu:

$$\Delta = \frac{ay}{d}$$

a –mali razmak, d – udaljenost zastora, y – udaljenost interferencijske pruge, $\Delta = k\lambda$

Pojačano svijetlo:

$$2\Delta\sqrt{n^2-sin^2u}=(2k+1)\frac{\lambda}{2}$$

NEWTONOVA STAKLA

Vrlo poznati eksperiment kojim se pokazaju lokalizirane pruge intereferencije.

Newtonova stakla se sastoje od planparalelne staklene ploče i na nju položene plankonveksne leće, gdje je leća položena na planparalelnu ploču tako da je dodiruje svojom izbočenom stranom.

Debljina sloja *d*:

$$d=\frac{r^2}{2R-d}=\frac{r^2}{2R}$$

Svjetlost:

$$d_s = \frac{2k-1}{4}\lambda$$
, $k = 1, 2, 3, ...$

$$d_t = \frac{k}{2}\lambda$$
 , $k = 0, 1, 2, ...$

MICHELSONOV INTERFEROMETAR

Michelsonov interferometar je uređaj kojim se može promatrati interferencija dvaju svjetlosnih snopova.

Maksimum svijetla

$$2(l_2 - l_1)\cos u = m\lambda$$

m – cijeli broj, u – upadni kut svjelosne zrake na zrcalo Za m=1 taj je kut praktički $\frac{n}{2}$

FRAUNHOFEROV OBIG NA PUKOTINI

Dvije susjedne zrake ogibnog kuta α imaju razliku u hodu:

$$\delta = \frac{\Delta}{m} = \frac{d}{m} \sin \alpha$$

Ukupna amplituda valova pod proizvoljnim kutem α

$$E(\alpha) = E(0) \frac{\sin\left(\frac{\pi d}{\lambda}\sin\alpha\right)}{\frac{\pi d}{\lambda}\sin\alpha}$$

Intenzitet svjelosti:

$$I(\alpha) = I(0) \frac{\sin^2\left(\frac{\pi d}{\lambda}\sin\alpha\right)}{\left(\frac{\pi d}{\lambda}\sin\alpha\right)^2}$$

d – Širina pukotine, I(0) – intenzitet za $\alpha = 0$

Uvjet za pokrajni maksimum:

$$d\sin\alpha = \frac{2k\pm 1}{2}\lambda$$
 , $I = \frac{I_0}{\left(k\pm \frac{1}{2}\right)^2\pi^2}$

FRAUNHOFEROV OGIB NA DVIJE PUKOTINE

Na zastoru će se u područjima maksimuma pojavljivati minimumi, tj. u području svijetla se pojavljuju tamna mjesta.

Ukupna amplituda:

$$E(\alpha) = E(0) \frac{\sin\left(\frac{\pi d}{\lambda}\sin\alpha\right)}{\frac{\pi d}{\lambda}\sin\alpha} \frac{\sin\left(\frac{2\pi D}{\lambda}\right)}{\sin\left(\frac{\pi D}{\lambda}\sin\alpha\right)}$$

Intenzitet svijetla:

$$I(\alpha) = I(0) \left[\frac{\sin\left(\frac{\pi d}{\lambda}\sin\alpha\right)}{\frac{\pi d}{\lambda}\sin\alpha} \right]^2 \left[\frac{\sin\left(\frac{2\pi D}{\lambda}\right)}{\sin\left(\frac{\pi D}{\lambda}\sin\alpha\right)} \right]^2$$

D – razmak između pukotina, d – širina pukotina

Uvjeti za minimum i maksimum svjetlosti:

Interferencijska slika 1.reda (pukotina):

maks:
$$\mathbf{d} \sin \alpha = \mathbf{k} \lambda$$
, $za k = \pm 1, \pm 2, \pm 3$ min: $\mathbf{d} \sin \alpha = (2\mathbf{k} \pm 1) \frac{\lambda}{2}$, $\alpha = 0$

min:
$$\mathbf{d} \sin \alpha = (2\mathbf{k} \pm 1)\frac{\lambda}{2}$$
, $\alpha = 0$

Interferencijska slika 2.reda (unutar pojava od pukotine):

maks:
$$\mathbf{D} \sin \alpha = \left(2\mathbf{k}' \pm 1\frac{\hat{\lambda}}{2}\right)$$
, $za k = 0, \pm 1, \pm 2$ min: $\mathbf{D} \sin \alpha = \mathbf{k}' \lambda$

min:
$$\mathbf{D} \sin \alpha = \mathbf{k}' \lambda$$

OPTIČKA REŠETKA

Optička rešetka ukoliko ima broj pukotina N velik.

Intenzitet svijetla pod kutom α:

$$I(\alpha) = I(0) \left[\frac{\sin\left(\frac{\pi b}{\lambda}\sin\alpha\right)}{\frac{\pi b}{\lambda}\sin\alpha} \right]^2 \left[\frac{\sin\left(\frac{N\pi d}{\lambda}\right)}{\sin\left(\frac{\pi d}{\lambda}\sin\alpha\right)} \right]^2$$

b – širina pukotine, d – konstanta rešetke

Glavni maksimum:

$$d \sin \alpha = m\lambda$$
, $za m = 0, \pm 1, \pm 2, ...$

Glavni minimum:

$$d \sin \alpha = \left(k + \frac{m}{N}\right) \lambda$$
, $za k' = 0,1,2,...i m = 1,2,3,...(N-1)$

Moć razlučivanja rešetke:

$$\frac{\Delta \lambda}{\lambda} = \frac{1}{mN}$$

Disperzija ili razvučenost spektra:

$$\frac{\mathrm{d}\alpha}{d\lambda} = \frac{m}{d\cos\alpha}$$

POLARIZACIJA VALOVA SVJETLOSTI

Brewsterov zakon za određivanje kuta polarizacije

$$tg u = \frac{n_2}{n_1}$$

Malusov zakon:

$$I_{\varphi} = I_0 cos^2 \varphi$$

 φ - kut između ravnina refleksije prve i druge ploče, I_0 – intenzitet zrake odbijene na drugoj ploči kad je $\varphi=0$.

Polarizator je uređaj pmoću kojega dobivamo *linearno polariziranu svjetlosti*.

Ukoliko je svjetlost prije ulaska u polarizator prethodno bila *nepolarizirana* vrijedi: $I_1 = \frac{I_0}{2}$

5. FOTOMETRIJA

Fotometrija se bavi mjerenjem svjetlosnih veličina iz područja elektromagnetskih zračenja na koje je oko osjetljivo.

Svjetlosni tok:

$$d\phi = I d\omega$$
 [lm]

I – svjetlosna jakost izvora u promatranom smjeru, dω - prostorni kut, lm – lumen (mjerna jedinica)

Svjetlosna jakost:

$$dI = i(\lambda) d\lambda$$
 [cd]

 $i(\lambda)$ - funkcija razdiobe svjetlosne jakosti, cd – kandela (mjerna jedinica)

Osvjetljenje:

$$E = \frac{d\phi}{dS} = \frac{I}{r^2} \cos \beta \qquad [lx]$$

S – površina osvjetljenja, β – kut upadanja, r – udaljenost koju prođe središnja zraka snopa, lx – luks (mjerna jedinica)

Svjetlosna odzračnost:

$$M = \frac{d\phi}{dA} \qquad \left[\frac{W}{m^2}\right]$$

Difuzni izvori imaju konstantnu luminanciju:

$$L(\alpha, \varphi) = L_0$$

6. KVANTNA PRIRODA SVJETLOSTI

Crno tijelo apsorbira dio upadnog zračenja, a dio reflektira. **Idealno crno tijelo** apsorbira sva upadna zračenja.

Stefan-Boltzmannov zakon:

$$I = \sigma T^4$$
 , $gdje je \sigma = 5,67 \cdot 10^{-8} \frac{W}{m^2 K^4}$

I – ukupni intezitet zračenja idealnog crnog tijela, σ - Stefan-Boltzmannova konstanta, T – temperatura

Ukupna snaga zračenja:

$$P = S \sigma T^4$$

P – snaga, S – površina crnog tijela

Faktor emisije ε za realna tijela:

$$I_{\varepsilon} = \varepsilon \, \sigma \, T^4$$

 ε - faktor emisije (0 < ε < 1)

Wienov zakon:

Valna duljina koja odgovara maksimumu izračene energije (λ_m) obrnuto proporcionalna apsolutnoj temperaturi.

$$\lambda_m T = 2,898 \cdot 10^{-3} Km$$

PLANCKOV ZAKON ZRAČENJA ZA CRNO TIJELO

Spektralna gustoća zračenja - Planckov zakon zračenja

$$f_{ct}(\lambda, T) = \frac{2\pi hc^2}{\lambda^5} \frac{1}{e^{\frac{hc}{\lambda kT}} - 1}$$

c – brzina svjetlosti u vakuumu, k – Boltzmannova konstanta $k=1,381\cdot 10^{-23}\frac{J}{K}$, h – Planckova konstanta $h = 6.626 \cdot 10^{-34} Is$

Energija fotona:

$$E_{fot} = h f = h \frac{c}{\lambda}$$

FOTOELEKTRIČNI EFEKT

Fotoelektrični efekt je izbacivanje elektrona iz substance pod utjecajem elektromagnetskog zračenja.

Napon zaustavljanja (Uz):

$$\frac{mv_m^2}{2} = eU_z$$

Einstenova relacija za energiju fotona:

$$\frac{mv_m^2}{2} = eU_z$$

$$E=mc^2$$

$$p = mc = \frac{hf}{c} = \frac{h}{\lambda}$$

Fotoelektrični efekt:

$$hf = W_{izlaz} + \frac{1}{2}m_e v_{maks}^2 \Rightarrow \frac{1}{2}m_e v^2 \leq E_{fot} - W_{izlaz}$$

Ukoliko je *hf*<*W*_i nema fotoefekta.

COMPTONOV EFEKT

Sudar fotona frekvencije *f* s mirnim elektronom.

Zakon očuvanja energije:

$$hf + m_0c^2 = hf' + mc^2$$

$$(mv)^2 = \left(h\frac{f}{c}\right)^2 + \left(h\frac{f'}{c}\right)^2 - 2\frac{h^2ff'}{c^2}\cos\vartheta$$

$$m = \frac{m_0}{\sqrt{1 - v^2/c^2}}$$

Comptonov efekt:

$$\Delta \lambda = \lambda' - \lambda = \frac{c}{f'} - \frac{c}{f} = \frac{2h}{m_0 c} (1 - \cos \theta) = \frac{2h}{m_0} \sin^2 \frac{\theta}{2}$$

7. STRUKTURA ATOMA

Diskretne spektralne linije rezultat su elektromagnetske emisije iz atoma razrijeđenih plinova i para metala pobuđenih najčešće u električnom polju. Vodikov atom emitira serije spektralnih linija određenih valnih duljina.

Balmerova formula:

$$\frac{1}{\lambda} = R_H \left(\frac{1}{k^2} - \frac{1}{n^2} \right)$$
, k = 1,2,3,..., n = k + 1, k + 2,...

 R_H – Rydbergova konstanta $R_H = 1,097 \cdot 10^7 m^{-1}$

BOHROV MODEL ATOMA

Bohrovi postulati – elektron mora kružiti oko jezgre samo po točno određenim kvantiziranim stazama. Dopuštene staze $n=h/2\pi$

$$L = r_n m_e v_n = nh$$

Glavni kvantni broj – prirodni broj n=1,2,3,...

Elektron prelazi iz više u niže energijsko stanje $(E_m > E_n)$ energijska se razlika $(E_m - E_n)$ emitira u obliku svjetlosnog kvanta (fotona), dok elektron koji prelazi iz nižeg (n) u više (m) energijsko stanje, nastaje apsorpcija energije i pobuđivanje atoma. $hf = E_m - E_n$

Centripetalna sila:

$$\frac{m_e v_n^2}{r_n} = \frac{1}{4\pi\varepsilon_0} \frac{e^2}{r_n^2}$$

Polumjer dopuštenih Bohrovih kružnica:

$$r_n = n^2 \frac{\varepsilon_0 h^2}{\pi m_e e^2}$$
 , n = 1,2,3,...

Vodik

Vodik u osnovnom stanju (n = 1), njegov elektron kruži po 1.stazi. Kada je atom pobuđen elektron se nalazi na jednoj od udaljenijih staza (n=2,3,4,...)

Energija elektrona

$$E=E_k+E_p$$
, $E_k=rac{e^2}{8\piarepsilon_0r_n}=rac{m_ee^4}{8arepsilon_0^2n^2h^2}$, $E_p=-rac{m_ee^4}{4arepsilon_0^2n^2h^2}$

Ukupna energija elektrona:

$$E_n = -\frac{1}{n^2} \frac{m_e e^4}{8\epsilon_0^2 h^2} \implies E_1 = -13, 6 \text{ eV}$$
 , $E_n = \frac{E_1}{n^2}$

LINIJSKI SPEKTAR VODIKA

2. Bohrov postulat za energiju fotonoma koji se emitiraju:

$$hf = E_m - E_n = \frac{m_e e^4}{8\varepsilon_0^2 h^2} \left(\frac{1}{n^2} - \frac{1}{m^2}\right)$$

Ukupna energija:

$$E = \frac{mv^2}{2} - \frac{Ze^2}{4\pi\varepsilon_0 r}$$

Polumjer dopuštene Bohrove kružnice:

$$r_n = n^2 \frac{\varepsilon_0 h^2}{\pi m_o Z e^2}$$
 , n = 1,2,3,...

Z – redni broj elementa

Energija elektrona na stazi polumjera r:

$$E_n = -\frac{1}{n^2} \frac{m_e Z^2 e^4}{8\varepsilon_0^2 h^2}$$

RENDGENSKO ZRAČENIE

Vrlo prodorno nevidljivo zračenje koje nastaje pri izboju u cijevi s razrijeđenim plinom (*X-zrake*).

Moseleyev zakon za karakteristični X spektar:

Spektri su po svojoj strukturi za sve elemente jednaki, samo se valne duljine pojedinih linija smanjuju s porastom rednog broja.

K-serija:

$$f = cR\left(1 - \frac{1}{n^2}\right)(Z - a)^2$$

Z – redni broj elementa, R – Rydbergova konstanta, (Z-a)² – faktor

L-serija:

$$f = cR\left(\frac{1}{2^2} - \frac{1}{n^2}\right)(Z - a)^2$$

VALNA PRIRODA ČESTICE

Količina gibanja fotona produkt je mase i brzine:

$$p = mc = \frac{hf}{c} = \frac{h}{\lambda}$$

De Broglieva relacija:

$$\lambda = \frac{h}{mf} = \frac{h}{p}$$

DIFRAKCIJA ELEKTRONA

Difrakcija (ogib) elektrona pri raspršenju niskoenergetskih elektrona na kristalima metala.

Braggov zakon:

Rendegenske zrake pokazuju difrakcijske pojave na kristalnoj rešetki. Razlika puta između dvije zrake što se reflektiraju na susjednih Braggovih ravnina daje difrakcijski maksimum zračenja ako vrijedi:

$$2dsin\vartheta = n\lambda$$
 $n = 1.2.3...$

θ - kut što ga zatvara zraka i Braggova ravnina.

Prema De Braggu frekvencija:

$$mc^2 = hf$$

mc² – ukupna energija čestice

KVANTNI BROJEVI

Glavni kvantni broj određuje energiju elektrona u atomu.

Orbitalni kvantni broj l=0,1,2,...,(n-1)

Magnetski kvatni broj m=l, l-1, ..., 0, -1, -2, ..., -l

Kvantni broj elektrona spina:

$$s=-\frac{1}{2},+\frac{1}{2}$$

Bozoni su čestice s cjelobrojnim kvantnim brojem spina: s=0,1,2,...

Fotoni imaju kvantni broj spina s=1.

8. ATOMSKA JEZGRA

Atomska jezgra sadrži A nuklone: Z protoni i A-Z neutroni.

A je maseni broj. Naboj jezgre je Ze gdje je $e=1,6*10^{-19}$ C

Unificirana atomska masena konstanta

$$m_u = 1,66054 \cdot 10^{-27} kg$$

Masa mirovanja protona, neutrona i atoma vodika:

$$m_v = 1,00728 m_u$$
,

$$m_n = 1,00867 m_u$$
,

$$m_H = 1,007825 m_u$$

Defekt mase:

Razlika ukupne mase protona i neutrona i mase nukleida.

$$\Delta m = Zm_p + Nm_n - m_A = 0,03038 m_u$$

Energija vezanja:

$$E_B = [Zm_H + (A - Z)m_n - m_X]c^2$$

 m_X – masa izotopa ${}^A_Z X$

RADIOAKTIVNOST

Aktivnost

$$A = -\frac{dN}{dt} = \lambda N$$

N – broj neraspadnutih jezgara, a λ – konstanta raspada

Početni broj neraspadnutih jezgara:

$$N_0 = \frac{N_A m}{M}$$

 N_A – Avogadrova konstanta(6.022*10²³ mol⁻¹), m – masa elementa, M – molna masa (Z)

Zakon radioaktivnog raspada:

$$N = N_o e^{-\lambda t}$$

$$A = A_o e^{-\lambda t} \quad [Bq]$$

 $Bq - bekerel (mjerna jedinica) = s^{-1}$

Vrijeme poluraspada:

$$\tau_{1/2} = \frac{\ln 2}{\lambda} = \frac{0.693}{\lambda}$$

Srednje vrijeme života:

$$au = \frac{1}{\lambda}$$

Energija koja se oslobodi ili apsorbira u nuklearnoj reakciji:

$$Q = (m_x + m_a)c^2 - (m_Y + m_b)c^2$$

Udarni presjek:

$$* \sigma = \frac{\Delta N}{nN\Delta x}$$

ΔN - broj reakcija, N – broj upadnih čestica koji prođu kroz metu, Δx - debljina mete, n – broj jezgara jedinici volumena

VAŽNIJE KONSTANTE

	Brzina svjetlosti u vakuumu	c	299 792 458 m/s
	elementarni električni naboj	e	1,602177 · 10 − 19 C
	dielektrična konstanta (permitivnost) vakuuma	$\varepsilon_0 = 1/(\mu_0 c^2)$	8,8541878 · 10 ^{- 12} F/m
	permeabilnost vakuuma	μ_0	$4\pi \cdot 10^{-7} \text{N/A}^2$
	Newtonova gravitacijska konstanta	G	$6,6726 \cdot 10^{-11} \mathrm{m}^3 \mathrm{kg}^{-1} \mathrm{s}^{-2}$
	Planckova konstanta	h	$6,626076 \cdot 10^{-34} \mathrm{J}\mathrm{s} =$
			$=4,1356692 \cdot 10^{-15} \text{ eVs}$
	reducirana Planckova konstanta	$\hbar = \frac{h}{2\pi}$	$1,054573 \cdot 10^{-34} \text{ J s} =$
	reductional transcrova constants		$=6,582122 \cdot 10^{-16} \mathrm{eVs}$
	Doltamon novo konstanto	R	1,38066 · 10 ^{- 23} J/K
	Boltzmannova konstanta	$k = \frac{R}{N_{A}}$	1,38060 · 10 · · J/K
	plinska konstanta	R	8,3145 J mol ⁻¹ K ⁻¹
	Avogadrova konstanta	N_{A}	6,022137 · 10 ²³ mol - 1
	Faradayeva konstanta	F	96485,31 C/mol
	molni volumen idealnog plina	V_{m}	22414,1 cm³ mol ⁻¹
	Loschmidtova konstanta	$N_{\rm A}/V_{\rm m}=n_0$	$2,68676 \cdot 10^{25} \text{ m}^{-3}$
	Stefan-Boltzmannova konstanta	σ	$5,6705 \cdot 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$
	Rydbergova konstanta	R_{\star}	10973731,53 m ⁻¹
	Masa elektrona	m_{ϵ}	$9,109389 \cdot 10^{-31} \text{ kg} =$
		-	$= 5,485799 \cdot 10^{-4} \text{ u}$
	omjer mase elektrona i protona	m_e/m_p	5,44617 · 10 - 4
	specifični naboj elektrona	<u>e</u>	1,75882 · 10 ¹¹ C/kg
	•	m_e	
	konstanta fine strukture	$\alpha = \frac{\mu_0 c e^2}{2 h}$	$7,297353 \cdot 10^{-3}$
	Bohrov radius	r _o	0,529177 · 10 ⁻¹⁰ m
		ĥ	·
	Comptonova valna duljina	$\frac{h}{m_e c} = \lambda_C$	$2,4263 \cdot 10^{-12} \mathrm{m}$
	magnetski moment elektrona	μ_{ϵ}	928,477 · 10 ^{- 26} J/T
	Bohrov magneton	<u>eħ</u>	9,274015 · 10 ⁻²⁴ J/T
	Bolliov magneton	$\mu_{\rm B} = \frac{2 m_{\rm e}}{2 m_{\rm e}}$	9,274013*10 371
	nuklearni magneton	u. =	5.050787 · 10 - 27 J/T
		$2 m_{\rm p}$	
	masa protona	m_{p}	$1,672623 \cdot 10^{-27} \text{ kg} =$
		•	= 1,0072765 u
	omjer mase protona i elektrona	m_p/m_e	1836,153
	specifični naboj protona	<u>e</u>	9,57883 · 10 ⁷ C/kg
		$m_{ m p}$	1 11061 10 26 1
	magnetski moment protona	μ_p	1,41061 · 10 ⁻²⁶ J/T
	masa neutrona	$m_{\rm n}$	$1,674928 \cdot 10^{-27} \text{ kg} =$
			= 1,0086649 u
		m.	
•	omjer mase neutrona i protona	m _e	1,001378
I	nagnetski moment neutrona	μ _a	0,96624 - 10 ⁻²⁶ J/T
	nasa deuterona	m_e	3,343586·10 ⁻²⁷ kg
ŧ	elektron volt	eV	1,602177 · 10 - 18 J
2	atomska jedinica mase	ū	1,66054 · 10 ⁻²⁷ kg
	tandardna akceleracija sile teže		9,80665 m/s ²
		gn .	2,00000 III/S

17 | Fizika 2 – Formule Marko NUFC