

L7 ANSWER 1 OF 1 CAPLUS COPYRIGHT 2006 ACS on STN
 ACCESSION NUMBER: 1977:454522 CAPLUS
 DOCUMENT NUMBER: 87:54522
 TITLE: Azo dyes
 INVENTOR(S): Hamprecht, Rainer; Schuendehuette, Karl Heinz
 PATENT ASSIGNEE(S): Bayer A.-G., Fed. Rep. Ger.
 SOURCE: Ger. Offen., 17 pp.
 CODEN: GWXXBX

DOCUMENT TYPE: Patent
 LANGUAGE: German
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
DE 2546535	A1	19770428	DE 1975-2546535	19751017 <--
CH 621812	A	19810227	CH 1976-13051	19761014
BE 847332	A1	19770415	BE 1976-171542	19761015
JP 52050321	A2	19770422	JP 1976-122994	19761015
FR 2328021	A1	19770513	FR 1976-31179	19761015
FR 2328021	B1	19800808		
BR 7606916	A	19770830	BR 1976-6916	19761015
ES 452451	A1	19771101	ES 1976-452451	19761016
PRIORITY APPLN. INFO.:			DE 1975-2546535	A 19751017
GI				

AB I (R = NO₂, CN, SO₂Me; R₁ = Et, Pr) and mixts. of I were prepared for use as fast blue to violet dyes for polyester fibers. Thus, diazotization of 2,4,1-(O₂N)2C₁₀N₃NH₂ [13029-24-8] and coupling with 3-AcNH₂C₆H₄NET₂ [6375-46-8] and 3-AcNH₂C₆H₄NPr₂ [51732-34-4] gave a 50:50 mixture of I (R = NO₂, R₁ = Et) [63283-52-3] and I (R = NO₂, R₁ = Pr) [63240-28-8] which dyed polyester navy blue shades with good fastness to sublimation and crocking. Two other dyes were prepared

PCT US/04/37932

(2)

DE 2546 535

English
Abstract
On last
page

⑯

⑯ BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES

PATENTAMT

Int. Cl. 2:

C 09 B 29/08

Behördenegentum

DT 25 46 535 A 1

Offenlegungsschrift 25 46 535

⑯

Aktenzeichen: P 25 46 635.4

⑯

Anmeldetag: 17. 10. 75

⑯

Offenlegungstag: 28. 4. 77

⑯

Unionspriorität:

⑯ ⑯ ⑯

⑯

Bezeichnung: Azofarbstoffe

⑯

Anmelder: Bayer AG, 5090 Leverkusen

⑯

Erfinder: Hamprecht, Rainer, Dr., 5000 Köln; Schündehütte, Karl-Heinz, Dr., 5090 Leverkusen

DT 25 46 535 A 1

2546535

Patentansprüche:

1) Azofarbstoffe der Formel

worin

X für NO₂, CN, Halogen oder Alkylsulfonyl,

Ac für Acyl,

R₁ für Wasserstoff, Alkyl, Alkoxy, Cycloalkoxy, Aryloxy,
Aralkoxy, Halogen, CN oder Alkoxycarbonyl

R₂ für Wasserstoff, Alkyl oder Aralkyl und

R₃ für Wasserstoff, Alkyl, Aralkyl, Aryl oder Cycloalkyl

stehen, wobei die genannten Kohlenwasserstoffreste weitere
in der Azochemie übliche Substituenten tragen können,
sowie Mischungen dieser Farbstoffe.

2) Azofarbstoffe gemäß Anspruch 1,

worin

X für NO₂, CN, Cl, Br oder C₁-C₂-Alkylsulfonyl,

Ac für Formyl, C₁-C₄-Alkylcarbonyl; C₁-C₂-Alkoxycarbonyl,
C₁-C₂-Alkylsulfonyl oder Benzoyl;

R₁ für Wasserstoff, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, Phenoxy
oder Cl,

R₂ für Wasserstoff, C₁-C₆-Alkyl; C₂-C₄-Hydroxyalkyl,
β-Hydroxy-γ-chlorpropyl, C₂-C₄-Chloralkyl, Cyanäthyl,
C₁-C₂-Alkylcarbonyloxy-C₂-C₄-alkyl, Phenyl-C₁-C₃-alkyl,
C₁-C₂-Alkoxycarbonyl-C₂-C₄-alkyl oder C₁-C₂-Alkoxy-
carbonyloxy-C₂-C₄-alkyl

2546535

R₃ für R₂ oder Cyclohexyl oder Phenyl stehen.

3) Azofarbstoffe gemäß Ansprüche 1 und 2, worin X für CN oder NO₂ stehen.

4) Azofarbstoffe gemäß Anspruch 1,

worin

X für CN oder NO₂

Ac für C₁-C₂-Alkylcarbonyl, C₁-C₂-Alkoxy carbonyl oder C₁-C₂-Alkylsulfonyl,

R₁ für Wasserstoff, Methyl, Methoxy, Äthoxy oder Chlor,

R₂ für Wasserstoff, C₁-C₄-Alkyl, Hydroxyäthyl, β-Hydroxy-γ-chlorpropyl, Cyanäthyl, C₁-C₂-Alkoxy carbonyl-oxyäthyl, Benzyl oder Phenyläthyl und

R₃ für C₁-C₄-Alkyl, Hydroxyäthyl oder C₁-C₂-Alkoxy carbonyloxyäthyl

stehen.

5) Azofarbstoffe gemäß Ansprüche 1 bis 4, worin X für NO₂ steht.

6) Azofarbstoff gemäß Anspruch 1 der Formel

7) Azofarbstoff gemäß Anspruch 1 der Formel

8) Verfahren zur Herstellung von Azofarbstoffen, dadurch gekennzeichnet, daß man α -Naphthylamine der Formel

worin

X die in Anspruch 1 angegebene Bedeutung hat, diazotiert und auf Aniline der Formel

worin

R₁ bis R₃ und Ac die in Anspruch 1 angegebene Bedeutung haben,

kuppelt.

2546535

- 9) Verfahren zur Herstellung von Azofarbstoffen, dadurch gekennzeichnet, daß man in Azofarbstoff der Formel

worin

y für Halogen, vorzugsweise Br steht und
worin Ac und R₁ bis R₃ die angegebene Bedeutung haben,
den Substituenten y gegen einen Cyansubstituenten austauscht.

- 10) Verfahren zum Färben von synthetischen Fasermaterialien, vorzugsweise solchen aus Polyestern, dadurch gekennzeichnet, daß man Azofarbstoffe gemäß Anspruch 1 verwendet.

509 Leverkusen, Bayerwerk
K-1z

16. Okt. 1975

Azofarbstoffe

Die vorliegende Erfindung betrifft neue Azofarbstoffe der Formel

worin

- X für NO_2 , CN, Halogen oder Alkylsulfonyl,
Ac für Acyl,
R₁ für Wasserstoff, Alkyl, Alkoxy, Cycloalkoxy,
 Aryloxy, Aralkoxy, Halogen, CN oder Alkoxycarbonyl
R₂ für Wasserstoff, Alkyl oder Aralkyl und
R₃ für Wasserstoff, Alkyl, Aralkyl, Aryl oder Cycloalkyl

stehen,

sowie Verfahren zu deren Herstellung und deren Verwendung zum Färben von synthetischen Fasern. Die vorstehend genannten Kohlenwasserstoffreste können ggf. weitere in der Azochemie übliche Substituenten tragen.

Le A 16 735

709817/0877

6

Der Ausdruck 'Acyl' soll im weitesten Sinne, also als Rest einer organischen Säure, verstanden werden; geeignete Acylreste sind: Formyl, Alkylcarbonyl, Alkoxycarbonyl, Arylcarbonyl, Cycloalkylcarbonyl, Aralkylcarbonyl, Alkylsulfonyl, Arylsulfonyl sowie ggf. substituierte Carbonoyl- und Sulfonylreste, z.B. $-\text{SO}_2\text{NR}_2\text{R}_3$, $\text{SO}_2(\text{R}_2)_2$, CONR_2R_3 und $\text{CON}(\text{R}_2)_2$. Bevorzugt sind Alkylcarbonylreste.

Unter den vorstehend im beliebigen Zusammenhang genannten Alkyl- oder Alkoxyresten sind vorzugsweise solche mit 1-6 C-Atomen zu verstehen, die vorzugsweise einmal durch OH, CN, Halogen, C_1-C_4 -Alkoxy, C_1-C_5 -Alkylcarbonyloxy, C_1-C_6 -Alkoxycarbonyl, CONH_2 , COOH, OCONH_2 substituiert sind.

Unter Cycloalkyl wird vorzugsweise Cyclohexyl verstanden, das gegebenenfalls einmal durch OH, CN, Halogen, CONH_2 , COOH, Alkoxy, C_1-C_6 -Alkylcarbonyloxy; C_1-C_6 -Alkoxycarbonyl substituiert ist.

Unter Aryl wird vorzugsweise Phenyl verstanden, das gegebenenfalls einmal durch Halogen, CN, Alkoxy, C_1-C_6 -Alkylcarbonyloxy, C_1-C_6 -Alkoxycarbonyl substituiert ist. Halogen, worunter im übrigen vorzugsweise Cl oder Br zu verstehen ist, kann auch 2- oder 3mal auftreten. 'Sperrige' Reste, wie z.B. tert.-Butyl, befinden sich bevorzugt in solchen Positionen, wo sie keine sterische Hinderung bewirken, z.B. in p-Stellung eines Phenylrestes.

Unter den neuen Farbstoffen sind solche bevorzugt, die der Formel I entsprechen

worin

X	für NO_2 , CN, Cl, Br oder C_1-C_2 -Alkylsulfonyl,
Ac	für Formyl, C_1-C_4 -Alkylcarbonyl; C_1-C_2 -Alkoxy-carbonyl, C_1-C_2 -Alkylsulfonyl oder Benzoyl;

2546535

- R₁ für Wasserstoff, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, Phenoxy oder Cl,
R₂ für Wasserstoff, C₁-C₆-Alkyl; C₂-C₄-Hydroxyalkyl, β-Hydroxy-γ-chlorpropyl, C₂-C₄-Chloralkyl, Cyanäthyl, C₁-C₂-Alkylcarbonyloxy-C₂-C₄-alkyl, Phenyl-C₁-C₃-alkyl, C₁-C₂-Alkoxy carbonyl-C₂-C₄-alkyl oder C₁-C₂-Alkoxy carbonyloxy-C₂-C₄-alkyl
R₃ für R₂ oder Cyclohexyl oder Phenyl stehen.

Darunter sind solche Farbstoffe bevorzugt, worin X für CN und vorzugsweise NO₂ steht.

Besonders bevorzugt sind Farbstoffe der Formel I,

worin

- X für CN oder - vorzugsweise - NO₂,
Ac für C₁-C₂-Alkylcarbonyl, C₁-C₂-Alkoxy carbonyl oder C₁-C₂-Alkylsulfonyl,
R₁ für Wasserstoff, Methyl, Methoxy, Äthoxy oder Chlor,
R₂ für Wasserstoff, C₁-C₄-Alkyl, Hydroxyäthyl, β-Hydroxy-γ-chlorpropyl, Cyanäthyl, C₁-C₂-Alkoxy carbonyloxyäthyl, Benzyl oder Phenyläthyl und
R₃ für C₁-C₄-Alkyl, Hydroxyäthyl oder C₁-C₂-Alkoxy carbonyloxyäthyl

stehen.

Die neuen Farbstoffe der Formel I können beispielsweise dadurch hergestellt werden, daß man α-Naphthylamine der Formel

II

Le A 16 735

- 3 -

709817/0877

8

worin

X die angegebene Bedeutung hat, diazotiert und auf
Aniline der Formel

worin

R_1-R_3 und Ac die angegebene Bedeutung haben, kuppelt.

In besonders vorteilhafter Weise können die Farbstoffe der Formel I außerdem dadurch hergestellt werden, daß man in Azofarbstoffen der Formel

worin

Y für Halogen, vorzugsweise Br steht und
worin Ac und R_1-R_3 die angegebene Bedeutung haben

den Substituenten Y gegen einen Cyansubstituenten austauscht.

Diese Austauschreaktion ist an sich bekannt (vgl. z.B. deutsche Offenlegungsschrift 1 544 563 = britische Patentschrift 1 125 683 und erfolgt vorzugsweise mittels Metallcyaniden, vorzugsweise CuCN oder CuCN-bildenden Verbindungen in polaren

9

aprotischen Lösungsmitteln bei Temperaturen von 60 - 120°C. Farbstoffe der Formel I, worin X für Alkylsulfonyl steht, können weiterhin dadurch erhalten werden, daß man in Azofarbstoffen der Formel IV, worin y für Halogen oder NO₂ steht, den Substituenten y gegen -SO₂CH₃ oder SO₂C₂H₅ austauscht.

Auch diese Austauschreaktion ist im Prinzip bekannt (vgl. deutsche Offenlegungsschrift 1 809 921, britische Patentschrift 1 255 367) und erfolgt mit alkylsulfinsauren Salzen in organischen Lösungsmitteln, wie z.B. Dimethylformamid, gegebenenfalls unter Zusatz von Wasser und Cu(I)-Verbindungen bei Temperaturen zwischen 50 und 100°C.

Die als Ausgangsmaterialien eingesetzten Farbstoffe IV sind in bekannter Weise durch Diazotieren entsprechender ω -Naphthylamine und Vereinigung mit entsprechenden Kupplungskomponenten leicht zugänglich.

Als Diazokomponenten II seien folgende aromatischen Amine genannt:

2.4-Dinitronaphthylamin-1, 2-Chlor-4-nitronaphthylamin, 2-Brom-4-nitro-naphthylamin-1, 2-Cyan-4-nitro-naphthylamin-1, 2-Methylsulfonyl-4-nitronaphthylamin-1, 2-Aethylsulfonyl-4-nitro-naphthylamin-1.

Als Kupplungskomponenten III eignen sich z.B. die folgenden substituierten Aniline:

3-Acetylamino-N,N-diäthylanilin, 3-Formylamino-N,N-diäthylanilin, 3-Acetylamino-N,N-dipropylanilin, 3-Acetylamino-N-äthyl-N-propylanilin, 3-Acetylamino-N,N-dibutyl-anilin, 3-Acetylamino-N-(β -cyanäthyl)-N-äthyl-anilin, 3-Acetylamino-N-(β -cyanäthyl)-N-(β -hydroxyäthyl)-anilin, 3-Acetylamino-N-äthyl-N-(β -hydroxy-äthyl)-anilin, 3-Acetylamino-N,N-di-(β -hydroxyäthyl)-anilin, 3-Acetyl-amino-N-äthyl-N-(β -carbomethoxyäthyl)-anilin, 3-Acetylamino-N,N-di-(β -carboäthoxy-äthyl)-anilin, 3-Benzoylamino-N-äthyl-N-

2546535

10

(β -äthoxy-äthyl)-anilin, 3-Acetylamino-6-methoxy-N.N-diäthyl-anilin, 3-(methoxy-carbonyl-amino)-6-äthoxy-N-äthyl-N-(β -cyan-äthyl)-anilin, 3-Acetylamino-6-methoxy-N.N-di(β -acetoxy-äthyl)-anilin, 3-Acetylamino-N-äthyl-N-(β -carboxyäthyl)-anilin, 3-Formylamino-N-äthyl-N-/ β -(β '-carboxy-propionyloxy)-äthyl/-anilin, 3- β -carboxypropionylamino)-N.N-diäthylanilin.

Die neuen Farbstoffe sind sehr farbstark und eignen sich zum Färben von Fasermaterialien aus linearen aromatischen Polyestern, wie Polyäthylenterephthalate und Celluloseestern, wie Cellulosetriacetat nach dem üblichen Carrier-Verfahren, insbesondere aber nach dem HT-Verfahren. Hierbei werden violette bis blaue Färbungen mit guten Echtheiten, insbesondere Sublimier-, Naß- und Reibeechtheit erhalten. Ein besonders gutes Ziehvermögen lässt sich hierbei durch Mischungen der Farbstoffe der Formel I erreichen. Die Mischungen können nicht nur aus den fertigen Farbstoffen hergestellt werden, sondern auch durch Kupplung einer Diazokomponente auf eine Mischung der Kupplungskomponenten.

2546535

41

Beispiel 1

Herstellung des Farbstoffs der Formel

$X = 50 \% N(C_2H_5)_2$

$50 \% N(C_3H_7)_2$

67,6 g 2,4-Dinitronaphthylamin-1 und 60 ml Nitrosylschwefelsäure (42 %) werden nacheinander unter Rühren bei 35 - 40°C langsam in 175 ml 93-proz. Schwefelsäure eingetragen. Man röhrt weitere 2 Stunden bei 35-40°C. Zu einer Lösung, bzw. Suspension von 10 g Harnstoff, 46,6 g 3-Dipropylaminoacetanilid und 38,0 g 3-Diäthylaminoacetanilid in 1 l Wasser, die durch Zugabe von 300 g Eis auf 5°C abgekühlt wurde, lässt man unter weiterer Eiskühlung die schwefelsaure Diazotierung langsam zufließen. Hierbei wird durch gleichzeitige Zugabe von 700 ml 40-proz. Natronlauge ein pH-Wert von 1,5-1,7 eingehalten. Man lässt auf Raumtemperatur erwärmen, saugt ab und wäscht mit Wasser nach. Man erhält ein dunkles Pulver, das Polyester marineblau mit guter Sublimier- und Reibechtheit färbt.

Beispiel 2

Herstellung des Farbstoffs der Formel

Le A 16 735

- 7 -

709817/0877

42

Zu einer Suspension von 11,6 g 2-Brom-4-nitro-naphtylamin-1 in 30 ml Propionsäure und 120 ml Eisessig tropfte man bei 0-5°C 8 ml Nitrosylschwefelsäure (42-proz.) und ließ dann noch 1,5 Stunden bei dieser Temperatur nachröhren. Die erhaltene Diazotierung wurde langsam bei 0-5°C einer Lösung von 12 g Diäthylamino-acetanilid und 2 g Amidosulfonsäure in 300 ml Eiswasser und 2 ml konz. Schwefelsäure zugefügt. Man stumpfte mit Natriumacetat auf pH=3 ab, ließ noch eine Stunde röhren und saugte dann den rot-violetten Brom-Farbstoff ab.

14 g 3-Acetylarnino-4-/2-brom-4-nitro-naphthalin-1/-azo-N,N-diäthylanilin wurden in 50 ml Dimethylformamid und 4 Tropfen Pyridin suspendiert. Nach Zugabe von 2,86 g Kupfer(I)-cyanid wurde 30 Minuten auf 70°C erwärmt. Nach Abkühlen auf Raumtemperatur wurde mit Wasser gefällt, dann abgesaugt und mit Methanol gewaschen. Zur Entkupferung rührte man den Farbstoff über Nacht in einer Lösung von 4,7 g wasserfreiem Eisen(III)-chlorid in 20 ml konz. Salzsäure und 80 ml Wasser, saugte dann ab und wusch mit Wasser. Der erhaltene Farbstoff färbt Polyester dunkelblau.

Ähnlich gute Ergebnisse erzielt man, wenn man anstelle von CuCN eine entsprechende Menge Zn(CN)₂ in Gegenwart katalytischer Mengen einer Cu-I-Verbindung (CuCN, CuBr u.ä.) verwendet.

Beispiel 3

Herstellung des Farbstoffs der Formel

2546535

13

9 g 3-Acetylarnino-4-/2,4-dinitronaphthalin-1/-azo-N,N-diäthyl-anilin wurden in 200 ml Dimethylformamid und 1 ml Pyridin gelöst. Nach Zugabe von 22,5 g Natriummethylsulfat und 2 g Kupfer(I)-bromid wurde 30 Minuten auf 50°C erwärmt. Nach Abkühlen auf Raumtemperatur wurde mit Wasser gefällt, abgesaugt und mit Methanol gewaschen. Der erhaltene Farbstoff färbt Polyester violett.

Nach ähnlichen Verfahren können die in der nachfolgenden Tabelle aufgeführten Farbstoffe erhalten werden.

Beispiel Nr.	Farbstoff	Nuance
4		blau
5		blau
6		blau

2546535

74

<u>Beispiel Nr.</u>	<u>Farbstoff</u>	<u>Nuance</u>
7		blau
8		blau
9		blau
10		blau
11		blau

2546535

45

Beispiel Nr.	Farbstoffe	Nuance
-----------------	------------	--------

blau

blau

blau

blau

Le A 16 735

- 11 -

709817/0877

2546535

16

**Beispiel
Nr.**

Farbstoff

Nuance

16

blau

17

blau

Le A 16 735

- 12 -

709817/0877

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADING TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.