3/31/2015

Aim: RX for C + PCD random variables; Change of Density for C+PCD random variables (case I) Thm. $\mathbb{P}\{X \in RX\} = 1$ for any random variable X.

Open subsets of \mathbb{R} : \mathcal{U} , where $\forall u \in \mathcal{U}$, $\exists \varepsilon > 0$ such that $u - \varepsilon$, $u + \varepsilon \subseteq \mathcal{U}$. \varnothing is open vacuously.

Thm. If \mathcal{U} is open and $\mathcal{U} \neq \emptyset$, then $\exists \Lambda \subseteq \mathbb{Z}$ and \exists sequences $(a_n | n \in \Lambda)$ and $(b_n | n \in \Lambda)$ such that $\bigcup_{n \in \mathcal{A}} (a_n, b_n)$.

Closed subsets of \mathbb{R} : $\mathcal{C} = U^c$ where \mathcal{U} is open. [Note: \varnothing and \mathbb{R} are closed]

<u>Thm.</u> If \mathcal{C} is closed, and $c_n \in \mathcal{C}$ for all $n \geq 1$, and if $c_n \to \ell \in \mathbb{R}$, then $\ell \in \mathcal{C}$.

Thm. $(\mathcal{R}X)^c$ is an open subset of \mathbb{R} . Cor. $\mathcal{R}X$ is a closed subset of \mathbb{R} .

$$\mathbb{P}\{X \in (a,b)\} = \mathbb{P}\{X < b\} - \mathbb{P}\{X \le a\} = F_X(b-) - F_X(a)$$

Thm.

$$\mathbb{P}\{X \in (\mathcal{R}X)^c\} = \mathbb{P}\left\{X \in \bigcup_{n \in \Lambda} (a_n, b_n)\right\}$$
$$= \mathbb{P}\left\{\bigcup_{n \in \Lambda} \{X \in (a_n, b_n)\}\right\}$$
$$= \sum_{n \in \Lambda} \mathbb{P}\{X \in (a_n, b_n)\}$$
$$= \sum_{n \in \Lambda} [F_X(b_n -) - F_X(a_n)]$$
$$= \sum_{n \in \Lambda} 0 = 0$$

 $\underline{\mathrm{Cor.}} \ \mathrm{If} \ \mathcal{A} \subseteq \mathbb{R} \ \mathrm{is} \ \mathrm{"manageable"} \ \mathcal{A} = \bigcup_{n \in \Lambda} ([a_n,b_n]), \Lambda \subseteq \mathbb{Z}, \ \mathrm{then} \ \mathbb{P}\{X \in \mathcal{A}\} = \mathbb{P}\{X \in \mathcal{A} \cap \mathcal{R}X\}.$

$$\mathbb{P}\{X\in\mathcal{A}\}=\mathbb{P}\{X\in\mathcal{A}\cap\mathcal{R}X\}+\mathbb{P}\{X\in\mathcal{A}\cap(\mathcal{R}X)^c\}$$

<u>C+PCD</u> random variables: Let X be a C+PCD random variable [F_X is globally continuous and is piecewise continuously differentiable].

Thm. $\mathcal{R}X = \{x \in \mathbb{R} | f_X(x) > 0\}$ (for any subset $S \subseteq \mathbb{R}$, \overline{S} is the closure of S which means $S \cup \operatorname{bd} S$).