CATEGORIES OF PRESHEAVES

1. Introduction – set theoretical background

These notes deal with categories of presheaves. For some arguments and also for the underlying set-theoretic setup we use Grothendieck universes [ML98, page 22]. This implies that our arguments rely on tools that go beyond the usual Zermelo-Frankel axioms. Grothendieck universes can be defined within Zermelo-Frankel set theory as follows.

Definition 1.1. Let *U* be a set. We say that *U* is *Grothendieck universe* if the following conditions are satisfied.

- (1) The set ω of finite ordinals in the sense of von Neumann is an element of U.
- (2) If $y \in U$ and $x \in y$, then $y \in U$.
- (3) If $x \in U$, then $\mathcal{P}(x) \in U$ and $\bigcup x \in U$.
- **(4)** If $x \in U$, $y \subseteq U$ and $f : x \to y$ is surjective, then $y \in U$.

If U is a Grothendieck universe, then the pair (U, ϵ) forms a model for Zermelo-Frankel theory. This implies that the existence of Grothendieck universes is independent from Zermelo-Frankel axioms. In this notes we extend the usual Zermelo-Frankel system by adding the following Tarski axiom.

Every set is an element of some Grothendieck universe.

Let U be a Grothendieck universe. We denote by \mathbf{Set}_U a category whose objects are elements of U and whose morphisms are maps of sets.

Definition 1.2. Let U be a Grothendieck universe. A category \mathcal{C} is U-small if classes of objects and morphisms of \mathcal{C} are members of U.

Definition 1.3. Let U be a Grothendieck universe. A category \mathcal{C} is *locally U-small* if for any pair X, Y of objects of \mathcal{C} we have $\operatorname{Mor}_{\mathcal{C}}(X,Y) \in U$.

Throughout this notes we fix a Grothendieck universe U. Elements of U are called sets. We use term *class* for arbitrary sets (also these ones outside U). We denote **Set**_U by **Set**. By (locally) small category we mean (locally) U-small category.

2. Creation of Limits and Colimits

Definition 2.1. Let $F: \mathcal{C} \to \mathcal{X}$, $D: I \to \mathcal{C}$ be functors. Suppose that $(X, \{f_i\}_{i \in I})$ is a cone in \mathcal{X} for the composition $F \cdot D$. We say that a cone $(Z, \{g_i\}_{i \in I})$ in \mathcal{C} for D is a lift of $(X, \{f_i\}_{i \in I})$ if F(Z) = X and $F(g_i) = f_i$ for every $i \in I$.

Definition 2.2. Let $F: \mathcal{C} \to \mathcal{X}$, $D: I \to \mathcal{C}$ be functors. We say that F *creates limits for* D if every limiting cone for $F \cdot D$ has a unique lift to a cone for D and this lift is a limiting cone for D.

Definition 2.3. Let $F: \mathcal{C} \to \mathcal{X}$ be a functor. We say that:

- **(1)** *F* creates limits if *F* creates limits for all functors $D: I \to C$.
- (2) *F creates small limits* if *F* creates limits for all functors $D: I \to \mathcal{C}$ with *I* being small category.
- (3) *F* creates finite limits if *F* creates limits for all functors $D: I \to \mathcal{C}$ with *I* being category with finitely many objects and arrows.

1

Some extra material on creation of limits can be found in [ML98, V.1]. By the usual arrow inverting one defines the notion of creation of colimits.

Now we prove an important result. First we need to introduce some notation. Suppose that $\mathcal C$ and $\mathcal X$ are categories. Then we denote by $\operatorname{Fun}(\mathcal C,\mathcal X)$ the category with functors $\mathcal C \to \mathcal X$ as objects and natural transformations between them as morphisms. We also denote by $|\mathcal C|$ the category having the same objects as $\mathcal C$ but with only identities as a morphism. There exists the canonical functor $|\mathcal C| \to \mathcal C$ that induces identity map on objects. The next result describes limits and colimits in functor categories.

Theorem 2.4. Let C, X be a categories. Then the functor $Fun(C,X) \to Fun(|C|,X)$ induced by the precomposition with the functor $|C| \to C$ creates all limits and colimits.

Proof. We prove that this functor creates limits. Creation of colimits can be handled similarly. Let I be a category. For every object i in I consider a functor $F_i:\mathcal{C}\to\mathcal{X}$ and for every arrow $\alpha:i\to j$ in I consider a natural transformation $F_\alpha:F_i\to F_j$. Suppose that these data gives rise to a functor $I\to \operatorname{Fun}(\mathcal{C},\mathcal{X})$. Each limiting cone over the composition of $I\to \operatorname{Fun}(\mathcal{C},\mathcal{X})$ and $\operatorname{Fun}(\mathcal{C},\mathcal{X})\to \operatorname{Fun}(|\mathcal{C}|,\mathcal{X})$ consists of a family of objects $\{F(X)\}_{X\in\mathcal{C}}$ of \mathcal{X} parametrized by objects of \mathcal{C} and a family $\{f_{i,X}\}_{i\in I,X\in\mathcal{C}}$ of arrows in \mathcal{X} parametrized by objects of $I\times\mathcal{C}$ such that the following assertion hold.

(*) For every $X \in \mathcal{C}$ a pair $(F(X), \{f_{i,X}\}_{i \in I})$ is a limiting cone for a functor $I \to \mathcal{X}$ given by $i \mapsto F_i(X)$ and $\alpha \mapsto F_\alpha(X)$ for any object i and arrow α in I.

We now show that there exists a unique lift of a pair $(\{F(X)\}_{X \in \mathcal{C}}, \{f_{i,X}\}_{i \in I, X \in \mathcal{C}})$ to a cone $(F, \{f_i\}_{i \in I})$ over the functor $I \to \mathbf{Fun}(\mathcal{C}, \mathcal{X})$ described by data $(\{F_i\}_{i \in I}, \{F_\alpha\}_{\alpha \in \mathbf{Mor}(I)})$. For this pick an arrow $f: X \to Y$. Then by (*) there exists a unique arrow $F(f): F(X) \to F(Y)$ such that every square

$$F(Y) \xrightarrow{f_{i,Y}} F_i(Y)$$

$$F(f) \qquad \qquad \uparrow_{F_i(f)} \downarrow \qquad \qquad \downarrow_{F_i(f)} \downarrow \qquad \qquad \downarrow_{F_i(f)} \downarrow \qquad \downarrow_{F_i(f)}$$

for every $i \in I$ is commutative. Suppose that $f: X \to Y$ and $g: Y \to Z$ are arrows in C. Then

$$f_{i,Z} \cdot F(g \cdot f) = F_i(g \cdot f) \cdot f_{i,X} = F_i(g) \cdot F_i(f) \cdot f_{i,X} = F_i(g) \cdot f_{i,Y} \cdot F(f) = f_{i,Z} \cdot F(g) \cdot F(f)$$

According to (*) we deduce that $F(g \cdot f) = F(g) \cdot F(f)$. Similarly we prove that $F(1_X) = 1_{F(X)}$. Hence there exists a unique functor $F : \mathcal{C} \to \mathcal{X}$ that extends object mapping $\{F(X)\}_{X \in \mathcal{C}}$ and such that $\{f_i : F \to F_i\}_{i \in I}$ becomes a collection of natural transformations of functors. Therefore, $(F, \{f_i\}_{i \in I})$ is a unique lift of $(\{F(X)\}_{X \in \mathcal{C}'}, \{f_{i,X}\}_{i \in I, X \in \mathcal{C}})$ to a cone over the functor $I \to \mathbf{Fun}(\mathcal{C}, \mathcal{X})$ described by data $(\{F_i\}_{i \in I'}, \{F_\alpha\}_{\alpha \in \mathbf{Mor}(I)})$. Now we prove that the cone $(F, \{f_i\}_{i \in I})$ is limiting. For this assume that $(G, \{g_i\}_{i \in I})$ is a cone over the functor $I \to \mathbf{Fun}(\mathcal{C}, \mathcal{X})$ described by data $(\{F_i\}_{i \in I'}, \{F_\alpha\}_{\alpha \in \mathbf{Mor}(I)})$. By (*) we derive that for every $X \in \mathcal{C}$ there exists a unique morphism $\tau_X : G(X) \to F(X)$ such that

It suffices to verify that a collection $\{\tau_X\}_{X\in\mathcal{C}}$ is a natural transformation of functors $G\to F$. For this pick $f:X\to Y$. Then

$$f_{i,Y} \cdot F(f) \cdot \tau_X = F_i(f) \cdot f_{i,X} \cdot \tau_X = F_i(f) \cdot g_{i,X} = g_{i,Y} \cdot G(f) = f_{i,Y} \cdot \tau_Y \cdot G(f)$$

for every $i \in I$. According to (*) we deduce that $F(f) \cdot \tau_X = \tau_Y \cdot G(f)$. Since f is arbitrary, we derive that $\{\tau_X\}_{X \in C}$ is a natural transformation of functors $G \to F$.

Let C, X be categories. For every object $X \in C$ we denote by $\operatorname{ev}_X : \operatorname{Fun}(C, X) \to X$ the functor that sends $F \in \operatorname{Fun}(C, X)$ to F(X) and $f : F \to G$ in $\operatorname{Fun}(C, X)$ to $f_X : F(X) \to G(X)$.

Corollary 2.5. Let C, \mathcal{X} and I be categories and let $D: I \to \mathbf{Fun}(C, \mathcal{X})$ be a functor. Suppose that for every $X \in C$ the functor $\operatorname{ev}_X \cdot D: I \to \mathcal{X}$ admits a limit (colimit). Then D admits a limit (colimit). Moreover, suppose that $(F, \{f_i\}_{i \in I})$ is a cone (cocone) over D. Then the following are equivalent.

- (i) $(F, \{f_i\}_{i \in I})$ is a limiting cone (colimiting cocone) over D.
- (ii) $(F, \{f_i\}_{i \in I})$ is a cone (cocone) over D and for every $X \in C$ the pair $(F(X), \{f_{i,X}\}_{i \in I})$ is a limiting cone (colimiting cocone) over $ev_X \cdot D$.

Proof. The assumption that for every $X \in \mathcal{C}$ the functor $\operatorname{ev}_X \cdot D : I \to \mathcal{X}$ admits a limit (colimit) implies that the composition of D with the functor $\operatorname{Fun}(\mathcal{C},\mathcal{X}) \to \operatorname{Fun}(|\mathcal{C}|,\mathcal{X})$ induced by the canonical functor $|\mathcal{C}| \to \mathcal{C}$ admits a limit (colimit). Now by Theorem 2.4 we derive that the functor $\operatorname{Fun}(\mathcal{C},\mathcal{X}) \to \operatorname{Fun}(|\mathcal{C}|,\mathcal{X})$ creates limits and colimits. Hence D admits a limit (colimit). More precisely there exists a limiting cone (colimiting cocone) $(F,\{f_i\}_{i\in I})$ over D such that for every $X \in \mathcal{C}$ the pair $(F(X),\{f_{i,X}\}_{i\in I})$ is a limiting cone (colimiting cocone) over $\operatorname{ev}_X \cdot D$. Since any two limiting cones (colimiting cocones) over given functor are isomorphic, we deduce that (i) ⇒ (ii). On the other hand if $(F,\{f_i\}_{i\in I})$ is a cone (cocone) over D and for every $X \in \mathcal{C}$ the pair $(F(X),\{f_{i,X}\}_{i\in I})$ is a limiting cone (colimiting cocone) over $(F,\{f_i\}_{i\in I})$ is a limiting cone (colimiting cocone) over $(F,\{f_i\}_{i\in I})$ is a limiting cone (colimiting cocone) over $(F,\{f_i\}_{i\in I})$ is a limiting cone (colimiting cocone) over $(F,\{f_i\}_{i\in I})$ is a limiting cone (colimiting cocone) over $(F,\{f_i\}_{i\in I})$ is a limiting cone (colimiting cocone) over $(F,\{f_i\}_{i\in I})$ is a limiting cone (colimiting cocone) over $(F,\{f_i\}_{i\in I})$ is a limiting cone (colimiting cocone) over $(F,\{f_i\}_{i\in I})$ is a limiting cone (colimiting cocone) over $(F,\{f_i\}_{i\in I})$ is a limiting cone (colimiting cocone) over $(F,\{f_i\}_{i\in I})$ is a limiting cone (colimiting cocone) over $(F,\{f_i\}_{i\in I})$ is a limiting cocone) over $(F,\{f_i\}_{i\in I})$ is a limiting cocone) over $(F,\{f_i\}_{i\in I})$ is a limiting cocone) over $(F,\{f_i\}_{i\in I})$ over $(F,\{f_i\}_{i\in I})$ is a limiting cocone) over $(F,\{f_i\}_{i\in I})$ is a limiting cocone) over $(F,\{f_i\}_{i\in I})$ over $(F,\{f_i$

3. Presheaves

Definition 3.1. Let \mathcal{C} be a locally small category. We denote by $\widehat{\mathcal{C}}$ the category $\mathbf{Fun}(\mathcal{C}^{\mathrm{op}}, \mathbf{Set})$ and we call it *the category of presheaves on* \mathcal{C} .

Definition 3.2. Let \mathcal{C} be a locally small category. For every object $X \in \mathcal{C}$ we define $h_X = \operatorname{Mor}_{\mathcal{C}}(-, X)$. We call it *the presheaf represented by* X. Next for every morphism $f: X \to Y$ in \mathcal{C} we define a natural transformation $h_f: h_X \to h_Y$ given by formula

$$Mor_{\mathcal{C}}(Z, X) \ni g \mapsto f \cdot g \in Mor_{\mathcal{C}}(Z, Y)$$

This defines a functor $h: \mathcal{C} \to \widehat{\mathcal{C}}$ called the Yoneda embedding of \mathcal{C} .

Theorem 3.3 (Yoneda lemma). Let C be a locally small category. For every object $X \in C$ and a presheaf $F \in \widehat{C}$ map

$$\operatorname{Mor}_{\widehat{\mathcal{C}}}(h_X, F) \to F(X)$$

given by formula $p \mapsto p(1_X)$ is a bijection natural in both X and F.

Proof. Fix $p:h_X\to F$ for some $X\in\mathcal{C}$ and $F\in\widehat{\mathcal{C}}$. Denote $x=p(1_X)$. Next let $f:Y\to X$ be a morphism in \mathcal{C} . Since p is natural transformation, we derive that the diagram

$$h_X(Y) \xrightarrow{p_Y} F(Y)$$

$$h_X(f) \uparrow \qquad \qquad \uparrow F(f)$$

$$h_X(X) \xrightarrow{p_X} F(X)$$

is commutative. Thus $p_Y(f) = p_Y(h_X(f)(1_X)) = F(f)(x)$. This shows that for every object $Y \in \mathcal{C}$ and every morphism $f: Y \to X$ we have $p_Y(f) = F(f)(x)$. Hence p is uniquely determined by x. This proves that the map described in the statement is injective. Now we prove that it is surjective. For this fix an element $x \in F(X)$ and define $p:h_X \to F$ by formula $p_Y(f) = F(f)(x)$ for every morphism $f: Y \to X$ in \mathcal{C} . Consider morphisms $g: Z \to Y$ and $f: Y \to X$ in \mathcal{C} and note that

$$F(g)(p_Y(f)) = F(g) \cdot F(f)(x) = F(f \cdot g)(x) = p_Z(f \cdot g) = p_Z(h_X(g)(f))$$

Thus *p* is a morphism of presheaves and $p(1_X) = x$.

It remains to prove that the map in the statement is natural with respect to X and F. This is left to the reader as an exercise.

Corollary 3.4. *Let* C *be a locally small category. The functor* $h: C \to \widehat{C}$ *is full and faithful.*

Proof. Fully faithfulness follows from Theorem 3.3.

Now we investigate small limits and colimits in presheaf categories. For this fix a locally small category $\mathcal C$ and $X \in \mathcal C$. We denote by $\operatorname{ev}_X : \widehat{\mathcal C} \to \operatorname{\mathbf{Set}}$ the functor that sends a presheaf F to F(X) and a morphism $f: F \to G$ to f_X .

Corollary 3.5. Fix a locally small category C. Let I be a category and let $D: I \to \widehat{C}$ be a functor. If I is a small category, then D admits a limit (colimit). Moreover, for a cone (cocone) $(F, \{f_i\}_{i \in I})$ over D the following assertions are equivalent.

- (i) $(F, \{f_i\}_{i \in I})$ is a limiting cone (colimiting cocone) over D.
- (ii) $(F, \{f_i\}_{i \in I})$ is a cone (cocone) over D and for every $X \in C$ the pair $(F(X), \{f_{i,X}\}_{i \in I})$ is a limiting cone (colimiting cocone) over $ev_X \cdot D$.

Proof. By [ML98, V.1, Theorem 1 and Exercise 8] we know that the category **Set** admits both small limits and small colimits. Now it suffices to use Corollary 2.5.

Finally we add one notational remark. Let C be a locally small category and F, G be presheaves on C. Then we denote by $Mor_{C}(F,G)$ the class of morphisms of presheaves with domain F and codomain G.

4. Classes of generators

Definition 4.1. Let C be a category. A class K of objects of C is called *a class of generators for* C if for any pair of distinct and parallel arrows

$$X \stackrel{f}{\Longrightarrow} Y$$

there exists $Z \in \mathcal{K}$ and a morphism $h : Z \to X$ such that $f \cdot h \neq g \cdot h$.

Now we introduce special case of the notion of the class of generators of category. For this we need one more definition.

Definition 4.2. Let \mathcal{C} be a category and X be an object of \mathcal{C} . An object of \mathcal{C} over X is a morphism $f: Y \to X$ in \mathcal{C} . If $f_1: Y_1 \to X$, $f_2: Y_2 \to X$ are objects of \mathcal{C} over X, then a morphism over X between these objects consists of a morphism $f: Y_1 \to Y_2$ in \mathcal{C} such that the following triangle

$$Y_1 \xrightarrow{f} Y_2$$

$$X \xrightarrow{f_1} X$$

is commutative. This defines the category of objects of C over X.

For every object X of a category $\mathcal C$ we denote by $\mathcal C/X$ the category of objects over X. Next suppose that X is an object of $\mathcal C$ and $\mathcal K$ is a subclass of the class of objects of $\mathcal C$. We denote by $\mathcal K/X$ the full subcategory of $\mathcal C/X$ that consists of morphisms $f:K\to X$ such that K is in K. For every such class we denote by π_X the canonical functor $K/X\to K$ that sends every arrow $f:K\to X$ in K/X to K. In the case of considerations in which multiple distinct classes are involved we specify more precise notation. Next suppose that $f:X\to Y$ is a morphism in a category $\mathcal C$. Then the composition with f induces a functor $\mathcal C/X\to \mathcal C/Y$. We denote this functor by $\mathcal C/f$. Now if K is a class of objects of $\mathcal C$, then we denote by K/f the functor $K/X\to K/Y$ induced by $\mathcal C/f$.

Definition 4.3. Let C be a category and K be a class of objects of C. Suppose that for every object X of C a pair

$$(X, \{f\}_{f \in \mathcal{K}/X})$$

is a colimiting cocone of a functor given as the composition of $\pi_X : \mathcal{K}/X \to \mathcal{K}$ with the inclusion functor $\mathcal{K} \hookrightarrow \mathcal{C}$. Then we call \mathcal{K} a dense class of generators for \mathcal{C} .

Let \mathcal{C} be a locally small category and \mathcal{K} be a class of objects of \mathcal{C} . We also denote by \mathcal{K} the corresponding full subcategory of \mathcal{C} . We define a functor $\Gamma_{\mathcal{K}}:\mathcal{C}\to\widehat{\mathcal{K}}$ as the composition of the Yoneda embedding $\mathcal{C}\to\widehat{\mathcal{C}}$ with the restriction functor $\widehat{\mathcal{C}}\to\widehat{\mathcal{K}}$.

Theorem 4.4. Let C be a locally small category and K be a class of objects of C. Then the following are equivalent.

- (i) K is a (dense) class of generators for C.
- (ii) The functor

$$\Gamma_{\mathcal{K}}: \mathcal{C} \to \widehat{\mathcal{K}}$$

is (full and) faithful.

Proof. First we need to introduce some notation. For every object X of \mathcal{C} we denote by $F_X : \mathcal{K}/X \to \mathcal{C}$ the functor obtained as the compositon of $\pi_X : \mathcal{K}/X \to \mathcal{K}$ with the inclusion functor $\mathcal{K} \to \mathcal{C}$. We also denote by Γ_X the value of Γ on X and for every object Y of \mathcal{C} we denote by $\operatorname{Cocone}_Y(F_X)$ the class of cocones with Y as the vertex over the functor F_X . Finally if $g: X \to Y$ is a morphism of \mathcal{C} , then we denote by Γ_g a natural morphism $\Gamma_X \to \Gamma_Y$ induced by g.

Suppose now that X and Y are objects of C. Let $\sigma : \Gamma_X \to \Gamma_Y$ be a natural transformation. Then one can show that $\{\sigma(f)\}_{f \in \mathcal{K}/X}$ is a cocone of F_Y with vertex in Y and moreover, the map

$$\operatorname{Mor}_{\mathcal{K}}(\Gamma_X, \Gamma_Y) \ni \sigma \mapsto \{\sigma(f)\}_{f \in \mathcal{K}/X} \in \operatorname{Cocone}_{Y}(F_X)$$

is bijective. We have a commutative triangle

From this we derive that Γ is (full and) faithful if and only if

$$\operatorname{Mor}_{\mathcal{C}}(X,Y) \ni g \mapsto \{g \cdot f\}_{f \in \mathcal{K}/X} \in \operatorname{Cocone}_{Y}(F_{X})$$

is (bijective) injective for any pair X, Y of objects in \mathcal{C} . This map is (bijective) injective for any pair X, Y of objects in \mathcal{C} if and only if \mathcal{K} is a class of (dense) generators for \mathcal{C} . This proves theorem. \square

Corollary 4.5. Let C be a locally category. Then the class of representable presheaves $\{h_X\}_{X\in C}$ is a dense class of generators for \widehat{C} .

Proof. We want to apply Theorem 4.4 to $\widehat{\mathcal{C}}$. Our issue is that in general $\widehat{\mathcal{C}}$ is not a locally small category. To fix this we must be specific and work with Grothendieck universes [ML98, page 22]. We assume (c.f. Section 1) that our base Grothendieck universe is U. Then $\mathbf{Set} = \mathbf{Set}_U$ is the category of U-small sets and \mathcal{C} is a locally U-small category. Next $\widehat{\mathcal{C}} = \mathbf{Fun}(\mathcal{C}^{\mathrm{op}}, \mathbf{Set}_U)$ is a presheaf category. Now we fix another universe V that contains U and such that $\widehat{\mathcal{C}}$ is V-small. We denote by \mathbf{Set}_V the category of V-small sets. We can apply Theorem 4.4 to a locally V-small category $\widehat{\mathcal{C}}$. Consider the composition of the Yoneda embedding $h:\widehat{\mathcal{C}} \to \mathbf{Fun}(\widehat{\mathcal{C}}^{\mathrm{op}}, \mathbf{Set}_V)$ with the restriction $\mathbf{Fun}(\widehat{\mathcal{C}}^{\mathrm{op}}, \mathbf{Set}_V) \to \mathbf{Fun}(\mathcal{C}^{\mathrm{op}}, \mathbf{Set}_V)$ induced by the usual Yoneda embedding $h:\mathcal{C} \to \widehat{\mathcal{C}}$. The composition is isomorphic with the functor $\widehat{\mathcal{C}} = \mathbf{Fun}(\mathcal{C}^{\mathrm{op}}, \mathbf{Set}_U) \to \mathbf{Fun}(\mathcal{C}^{\mathrm{op}}, \mathbf{Set}_V)$ induced by the inclusion $\mathbf{Set}_U \to \mathbf{Set}_V$. Hence it is full and faithful. Now (replacing our base universe U by V) we can apply Theorem 4.4 to a locally V-small category $\widehat{\mathcal{C}}$ and derive the statement. \square

5. Internal hom

We start by making few remarks. Let \mathcal{C} be a locally small category and let X be an object of \mathcal{C} . Recall that $\pi_X : \mathcal{C}/X \to \mathcal{C}$ is a functor that sends morphism $f : Y \to X$ to Y. For every presheaf F on \mathcal{C} we denote by $F_{|X}$ the functor

$$F \cdot (\pi_X)^{\operatorname{op}} : (\mathcal{C}/X)^{\operatorname{op}} \to \mathbf{Set}$$

The map $F \mapsto F_{|X}$ extends to a functor $\widehat{\mathcal{C}} \to \widehat{\mathcal{C}/X}$. Let $\mathbf{1}_{|X}$ denote a presheaf on \mathcal{C}/X that assigns to every object over X a set with one element. According to Corollary 3.5 we derive that $\mathbf{1}_{|X}$ is a terminal object in $\widehat{\mathcal{C}/X}$.

Fact 5.1. Let C be a category and let F be a presheaf on C. Suppose that $x \in F(X)$ for some X in C. Then x determines a morphism $\mathbf{1}_{|X} \to F_{|X}$ that for every object f in C/X sends a unique element of $\mathbf{1}_{|X}(f)$ to $F(f)(x) \in F_{|X}(f)$. This gives rise to a bijection

$$F(X) \cong \operatorname{Mor}_{\mathcal{C}/X} (\mathbf{1}_{|X}, F_{|X})$$

Proof. We left to the reader as an exercise.

Let \mathcal{C} be a locally small category. If $f: X \to Y$ is a morphism in \mathcal{C} , then we have a functor $\widehat{\mathcal{C}/Y} \to \widehat{\mathcal{C}/X}$ induced by the precomposition with $(\mathcal{C}/f)^{\mathrm{op}}$.

Definition 5.2. Let \mathcal{C} be a locally small category and let F, G be presheaves on \mathcal{C} . Assume that for every object X in \mathcal{C} the class $\mathrm{Mor}_{\mathcal{C}/X}(F_{|X},G_{|X})$ is a set. We define

$$\mathcal{M}$$
or _{\mathcal{C}} $(F,G)(X) = \mathrm{Mor}_{\mathcal{C}/X}(F_{|X},G_{|X})$

for every X in \mathcal{C} . This is a presheaf on \mathcal{C} , since for every morphism $f: X \to Y$, we can compose a morphism $\sigma: F_{|Y} \to G_{|Y}$ of presheaves with $(\mathcal{C}/f)^{\operatorname{op}}$ i.e. we have a map

$$\mathcal{M}$$
or $_{\mathcal{C}}(F,G)(Y) \ni \sigma \mapsto \sigma_{(\mathcal{C}/f)^{\mathrm{op}}} \in \mathcal{M}$ or $_{\mathcal{C}}(F,G)(X)$

and these make \mathcal{M} or $_{\mathcal{C}}(F,G)$ a functor. The presheaf \mathcal{M} or $_{\mathcal{C}}(F,G)$ is called *an internal hom of F and G*.

Let F, G and H be presheaves on a locally small category $\mathcal C$ and assume that $\mathcal M$ or $_{\mathcal C}(F,G)$ exists. Fix a morphism of presheaves $\sigma: H \times F \to G$. Pick an object X in $\mathcal C$ and $x \in H(X)$. Let $i_x: \mathbf 1_{|X} \to H_{|X}$ be a morphism determined by $x \in H(X)$ as in Fact 5.1. Then $\sigma_{|X} \cdot \left(i_x \times 1_{F_{|X}}\right)$ yields a morphism $\tau_x: F_{|X} \to G_{|X}$. Suppose now that $f: Y \to X$ is a morphism in $\mathcal C$. We have

$$\left(\sigma_{|X}\cdot\left(i_{x}\times1_{F|X}\right)\right)_{(\mathcal{C}/f)^{\mathrm{op}}}=\left(\sigma_{|X}\right)_{(\mathcal{C}/f)^{\mathrm{op}}}\cdot\left(\left(i_{x}\right)_{(\mathcal{C}/f)^{\mathrm{op}}}\times\left(1_{F|X}\right)_{(\mathcal{C}/f)^{\mathrm{op}}}\right)=\sigma_{|Y}\cdot\left(i_{F(f)(x)}\times1_{F|Y}\right)$$

because $(i_x)_{(\mathcal{C}/f)^{\mathrm{op}}} = i_{F(f)(x)}$. This implies that $(\tau_x)_{(\mathcal{C}/f)^{\mathrm{op}}} = \tau_{F(f)(x)}$. Hence $\tau : H \to \mathcal{M}\mathrm{or}_{\mathcal{C}}(F,G)$ given by

$$H(X) \ni x \mapsto \tau_x \in \operatorname{Mor}_{\mathcal{C}/X} (F_{|X}, G_{|X})$$

is a morphism of presheaves. This defines a map of classes

$$Mor_{\mathcal{C}}(H \times F, G) \in \sigma \mapsto \tau \in Mor_{\mathcal{C}}(H, \mathcal{M}or_{\mathcal{C}}(F, G))$$

Theorem 5.3. Let C be a locally small category and F, G be presheaves on C. Assume that for every object X in C the class $Mor_{C/X}(F_{|X}, G_{|X})$ is a set. Then the map

$$Mor_{\mathcal{C}}(H \times F, G) \rightarrow Mor_{\mathcal{C}}(H, \mathcal{M}or_{\mathcal{C}}(F, G))$$

described above is a bijection natural in H.

Proof. The fact that the map in the statement is natural in H is left to the reader as an exercise. Pick an object X in C. We verify now that the map

$$\operatorname{Mor}_{\mathcal{C}}(h_{X} \times F, G) \to \operatorname{Mor}_{\mathcal{C}}(h_{X}, \operatorname{Mor}_{\mathcal{C}}(F, G))$$

is a bijection. Pick a morphism $\sigma: h_X \times F \to G$ of presheaves and suppose that $\tau: h_X \to \mathcal{M}\mathrm{or}_{\mathcal{C}}(F,G)$ is its value under the discussed map. According to Yoneda lemma (Theorem 3.3) τ is uniquely determined by its value on 1_X . We denote this value by ρ . Thus it suffices to prove that

$$\operatorname{Mor}_{\mathcal{C}}\left(h_{X}\times F,G\right)\ni\sigma\mapsto\rho\in\operatorname{Mor}_{\mathcal{C}/X}\left(F_{|X},G_{|X}\right)$$

is bijective. We retrieve ρ by means of procedure described before the statement of this theorem. Firstly 1_X according to Fact 5.1 determines a morphism $i: \mathbf{1}_{|X} \to (h_X)_{|X}$. Now $\rho \in \mathrm{Mor}_{\mathcal{C}/X}\left(F_{|X},G_{|X}\right)$ is isomorphic with $\sigma_{|X}\cdot\left(i\times 1_{F_{|X}}\right)$. Hence for every $f:Y\to X$ and $y\in F(Y)$ we have

$$\rho_f(y) = \sigma_Y(f, y)$$

This implies that σ and ρ are mutually determined and thus

$$Mor_{\mathcal{C}}(h_X \times F, G) \rightarrow Mor_{\mathcal{C}}(h_X, \mathcal{M}or_{\mathcal{C}}(F, G))$$

is a bijection.

Now we prove the general case. We know that the map

$$Mor_{\mathcal{C}}(H \times F, G) \rightarrow Mor_{\mathcal{C}}(H, \mathcal{M}or_{\mathcal{C}}(F, G))$$

is natural in H and is bijective when H is a representable presheaf. Now the following statements hold.

- (1) Every presheaf is canonically the colimit of representable presheaves by Corollary 4.5.
- (2) The functor $(-) \times F : \widehat{\mathcal{C}} \to \widehat{\mathcal{C}}$ preserves colimits (this follows from cartesian closedness of **Set** [ML98, page 98] and Corollary 3.5).

(3) Suppose that V is a Grothendieck universe that contains the base universe U and such that $\widehat{\mathcal{C}}$ is V-locally small. Then the functor

$$\operatorname{Mor}_{\mathcal{C}}(-, \mathcal{M}\operatorname{or}_{\mathcal{C}}(F, G)) : \widehat{\mathcal{C}} \to \operatorname{\mathbf{Set}}_{V}$$

preserves colimits [ML98, V.4, Theorem 1].

Therefore, we derive that the map in the question is bijective for every presheaf *H*.

6. Subpresheaves of internal hom

Let \mathcal{C} be a locally small category and let F, G be a presheaves on \mathcal{C} . The requirement that $\mathrm{Mor}_{\mathcal{C}/X}\left(F_{|X},G_{|X}\right)$ is a set for every object X in \mathcal{C} is a serious limitation of Theorem 5.3. In this section we explain a useful result which addresses this issue.

Definition 6.1. Let \mathcal{C} be a locally small category and let F, G, J be presheaves on \mathcal{C} . Suppose that for every object X in \mathcal{C} there exists an inclusion of classes $J(X) \subseteq \operatorname{Mor}_{\mathcal{C}/X}(F_{|X}, G_{|X})$ such that the square of maps (horizontal arrows in the square are inclusions) of classes

$$J(Y) \hookrightarrow \operatorname{Mor}_{\mathcal{C}/Y} (F_{|Y}, G_{|Y})$$

$$J(f) \downarrow \qquad \qquad \downarrow^{\sigma \mapsto \sigma_{(\mathcal{C}/f)^{\operatorname{op}}}}$$

$$J(X) \hookrightarrow \operatorname{Mor}_{\mathcal{C}/X} (F_{|X}, G_{|X})$$

is commutative for every morphism $f: X \to Y$ in C. Then we say that J is a subpresheaf of internal hom of F and G.

Let \mathcal{C} be a locally small category, F, G, H be presheaves on \mathcal{C} . Fix a morphism $\sigma: H \times F \to G$ of presheaves. Recall form the previous section that for every object X in \mathcal{C} and x in H(X) we denote by $i_x: \mathbf{1}_{|X} \to H_{|X}$ a unique morphism determined by x (Fact 5.1). Next we denote by $\tau_x: F_{|X} \to G_{|X}$ a unique morphism isomorphic with $\sigma_{|X} \cdot (i_x \times 1_{F_{|X}})$.

Definition 6.2. Let \mathcal{C} be a locally small category, F, G, H be presheaves on \mathcal{C} and assume that J is a subpresheaf of internal hom of F and G. Then a morphism of presheaves $\sigma: H \times F \to G$ is called a family of J-morphisms parametrized by H if for every object X in \mathcal{C} and every x in H(X) we have $\tau_x \in J(X)$.

We continue discussion started before the definition. Let us now assume that $\sigma: H \times F \to G$ is a family of *J*-morphisms parametrized by *H* for some subpresheaf *J* of internal hom of *F* and *G*. Then $\tau: H \to J$ given by

$$H(X) \ni x \mapsto \tau_x \in J(X)$$

is a morphism of presheaves. The proof is identical to the proof of the analogous statement preceding Theorem 5.3. This gives rise to a map of classes

{families of *J*-morphisms parametrized by
$$H$$
} $\ni \sigma \mapsto \tau \in Mor_{\mathcal{C}}(H, J)$

Theorem 6.3. Let C be a locally small category and F, G be presheaves on C. Assume that J is a subpresheaf of internal hom of F and G. Then the map

$$\{families \ of \ J\text{-morphisms parametrized by } H\} \rightarrow \operatorname{Mor}_{\mathcal{C}}(H,J)$$

described above is a bijection natural in H.

Proof. We enlarge our base universe U to a Grothendieck universe V such that \mathcal{C} is V-small. Then \mathcal{M} or $_{\mathcal{C}}(F,G) \in \mathbf{Fun}(\mathcal{C}^{\mathrm{op}},\mathbf{Set}_{V})$ and J is a legitimate subobject of \mathcal{M} or $_{\mathcal{C}}(F,G)$ in $\mathbf{Fun}(\mathcal{C}^{\mathrm{op}},\mathbf{Set}_{V})$. For every $H \in \widehat{\mathcal{C}} = \mathbf{Fun}(\mathcal{C}^{\mathrm{op}},\mathbf{Set}_{U}) \subseteq \mathbf{Fun}(\mathcal{C}^{\mathrm{op}},\mathbf{Set}_{V})$ we have a bijection

$$Mor_{\mathcal{C}}(H \times F, G) \rightarrow Mor_{\mathcal{C}}(H, \mathcal{M}or_{\mathcal{C}}(F, G))$$

natural in H. This follows according to Theorem 5.3 applied to the enlarged category of presheaves $Fun(\mathcal{C}^{op}, Set_V)$. Finally this bijection induces a bijection

{families of *J*-morphisms parametrized by
$$H$$
} \rightarrow Mor_C (H , J)

on its subclasses, which is natural in H and is given by the rule described in the discussion preceding the statement of the theorem.

7. REMARKS ON COPRESHEAF CATEGORIES

Definition 7.1. Let C be a locally small category. The category Fun(C, Set) is called *the category of copresheaves on C.*

All results stated above for categories of presheaves hold for categories of copresheaves by virtue of the identification

$$\operatorname{Fun}\left(\mathcal{C},\operatorname{Set}\right)=\operatorname{Fun}\left(\left(\mathcal{C}^{\operatorname{op}}\right)^{\operatorname{op}},\operatorname{Set}\right)$$

REFERENCES

[ML98] Saunders Mac Lane. Categories for the working mathematician, volume 5 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1998.