OCENIANIE ARKUSZA POZIOM ROZSZERZONY

Numer zadania		Etapy rozwiązania zadania	Liczba punktów	Uwagi dla sprawdzającego
	1.1	Przekształcenie wzoru funkcji do żądanej postaci $f(x) = 1 + \frac{-2}{x-1}$ lub $f(x) = 1 - \frac{2}{x-1}$.	1	
1.	1.2	I sposób rozwiązania podpunktu b). Zapisanie wzoru funkcji w postaci sumy $f(x) = p + \frac{p^2 - 3}{x - p}$.	2	1 pkt za wykonanie dzielenia $(px-3):(x-p)=p(x-p)+p^2-3$ lub wykorzystanie innej metody , która doprowadzi do zapisania wyrażenia w postaci sumy, np. $f(x)=\frac{p(x-p)+p^2-3}{x-p}.$ 1 pkt za zapisanie funkcji w postaci homograficznej: $f(x)=p+\frac{p^2-3}{x-p}.$
	1.3	Zapisanie nierówności $p^2 - 3 > 0$. Rozwiązanie powyższej nierówności: $p \in (-\infty, -\sqrt{3}) \cup (\sqrt{3}, \infty)$.	1	
	1.2	II sposób rozwiązania podpunktu b) Obliczenie pochodnej funkcji $f(x)$: $f'(x) = \frac{3 - p^2}{(x - p)^2}, x \neq p$ i zapisanie nierówności $\frac{3 - p^2}{(x - p)^2} < 0$ pozwalającej wyznaczyć szukany zbiór wartości parametru p .	2	1 pkt przyznajemy za obliczenie pochodnej, 1 pkt za zapisanie nierówności.

	1.3	Stwierdzenie, że $(x-p)^2 > 0$ i zapisanie nierówności $3-p^2 < 0$.	1	
	1.4	Rozwiązanie nierówności $3 - p^2 < 0$: $p \in (-\infty, -\sqrt{3}) \cup (\sqrt{3}, \infty)$.	1	
	1.2	III sposób rozwiązania podpunktu b) z zastosowaniem definicji funkcji malejącej. Dla dowolnych $x_1, x_2 \in (p, \infty)$ takich, że $x_1 < x_2$ funkcja f jest malejąca gdy $f(x_2) - f(x_1) < 0$. Obliczenie różnicy $f(x_2) - f(x_1)$: $f(x_2) - f(x_1) = \frac{p^2(x_1 - x_2) - 3(x_1 - x_2)}{(x_2 - p)(x_1 - p)} = \frac{(x_1 - x_2)(p^2 - 3)}{(x_2 - p)(x_1 - p)}.$	2	1 pkt – zapisanie założeń. 1 pkt – doprowadzenie różnicy $f(x_2) - f(x_1)$ do postaci iloczynowej.
1.	1.3	Analiza znaku ułamka: $(x_2 - p) > 0$, $(x_1 - p) > 0$ i $(x_1 - x_2) < 0$ dla każdego $x_1, x_2 \in (p, \infty)$. Zapisanie nierówności $p^2 - 3 > 0$.	1	Zauważenie, że wyrażenie $f(x_2) - f(x_1)$ przyjmuje wartość ujemną gdy $p^2 - 3 > 0$.
	1.4	Rozwiązanie nierówności $p^2 - 3 > 0$: $p \in (-\infty, -\sqrt{3}) \cup (\sqrt{3}, \infty)$.	1	
	1.2	IV sposób rozwiązania podpunktu b) Zapisanie warunku wystarczającego na to, żeby funkcja f była malejąca w przedziale $(p,+\infty)$: $f(p+1) > p$.	2	
	1.3	Zapisanie warunku $f(p+1) > p$ w postaci: $\frac{p(p+1)-3}{(p+1)-p} > p.$	1	
	1.4	Rozwiązanie nierówności $p^2 - 3 > 0$: $p \in (-\infty, -\sqrt{3}) \cup (\sqrt{3}, \infty)$.	1	

	2.1	Wyznaczenie pierwiastków trójmianu $y = x^2 - 8x + 12$: $x_1 = 2, x_2 = 6$.	1	
2.	2.2	Rozważenie możliwych przypadków ciągów geometrycznych, które mogą być rosnące: $(k,2,6), (2,k,6), (2,6,k)$	3	1 pkt za rozwiązanie każdego z przypadków.
	2.3	Wyznaczenie wszystkich wartości k , dla których ciąg jest rosnący: $k = \frac{2}{3}$ lub $k = 2\sqrt{3}$ lub $k = 18$.	1	Jeśli zdający nie odrzucił rozwiązania $k=-2\sqrt{3}$, nie przyznajemy punktu.
	3.1	Zapisanie wzoru funkcji $f: f(x) = \log_{\frac{1}{2}} x$.	2	 1 pkt za wykorzystanie definicji logarytmu i zapisanie równania log_p 4 = -2. 1 pkt za wyznaczenie podstawy logarytmu. Za bezpośrednie podanie wzoru funkcji przyznajemy 2 pkt.
3.	3.2	Rozwiązanie równania $(f(x))^2 - 16 = 0$: f(x) = 4 lub $f(x) = -4$ z niewiadomą $f(x)$.	1	Zdający może od razu zapisać alternatywę równań: $\log_{\frac{1}{2}} x = -4$ lub $\log_{\frac{1}{2}} x = 4$.
	3.3	Podanie rozwiązań równania $(f(x))^2 - 16 = 0$ z niewiadomą x : $x = \frac{1}{16}$ lub $x = 16$.	1	

4.	4.1	Sporządzenie poprawnego rysunku, na którym, np.: D oznacza punkt styczności okręgu z przeciwprostokątną, E ,F są punktami styczności przyprostokątnych AC i BC trójkąta z okręgiem. (odcinek CD nie zawiera średnicy okręgu wpisanego w dany trójkąt).	1	Zdający otrzymuje punkt jeśli narysuje trójkąt z zaznaczonymi dobrymi kątami i wpisanym okręgiem.
	4.2	Wykorzystanie własności : środek okręgu wpisanego w trójkąt leży w punkcie przecięcia dwusiecznych jego kątów. ΔFBO jest prostokątny i $ \langle FBO = 30^{\circ}$. $ OF = \sqrt{3}$ stąd $ OB = 2\sqrt{3}$.	1	
	4.3	Obliczenie długość odcinka $FB \times \Delta FBO : FB = 3$.	1	
	4.4	Obliczenie długość odcinka <i>CB</i> : $ CB = CF + FB = 3 + \sqrt{3}$.	1	
	4.5	Obliczenie długość odcinka DB : $ DB = BF = 3$. Z własności trójkąta opisanego na okręgu.	1	

	4.6	Zastosowanie wzoru cosinusów w $\triangle CBD$ do obliczenie długości odcinka CD : $ CD ^2 = CB ^2 + DB ^2 - 2 CB \cdot DB \cos 60^\circ,$ $ CD ^2 = (3 + \sqrt{3})^2 + 3^2 - 2 \cdot (3 + \sqrt{3}) \cdot 3 \cdot \frac{1}{2} = 12 + 3\sqrt{3},$ $ CD = \sqrt{12 + 3\sqrt{3}}.$	2	Jeżeli błąd jest spowodowany tym, że punkty <i>C</i> , <i>O</i> , <i>D</i> są współliniowe i zdający korzysta z twierdzenia Pitagorasa w trójkącie <i>CBD</i> , wtedy nie przyznajemy punktów.
4.	4.1	II sposób rozwiązania. Sporządzenie rysunku.	1	
	4.2	Skorzystanie z tego, że $ CE = CF = r$ (czworokąt CFOE jest kwadratem) oraz ze wzoru na długość promienia okręgu wpisanego w trójkąt $ CE = CF = \frac{ AC + BC - AB }{2}$. Przyjęcie oznaczeń, np. $a = BC $ i zapisanie tej równości w postaci: $\sqrt{3} = \frac{a + a\sqrt{3} - 2a}{2} = \frac{a\left(\sqrt{3} - 1\right)}{2}$.	1	

		,		
	4.3	Obliczenie $ BC = a = \frac{2\sqrt{3}}{\sqrt{3} - 1} = 3 + \sqrt{3}$.	1	
	4.4	Obliczenie $ AC = 3\sqrt{3} + 3$, np. z wykorzystaniem funkcji trygonometrycznych w trójkącie ABC .	1	
	4.5	Obliczenie $ AE = AD = 3 + 2\sqrt{3}$.	1	
	4.6	$ CD ^{2} = (3+3\sqrt{3})^{2} + (3+2\sqrt{3})^{2} - 2(3+3\sqrt{3})(3+2\sqrt{3})\frac{\sqrt{3}}{2} = 12+3\sqrt{3}$ $ CD = \sqrt{12+3\sqrt{3}}.$	2	
4.	4.1	III sposób rozwiązania (z wykorzystaniem ∢COD). Sporządzenie rysunku. C F D A	1	

4.2	Obliczenie miary $\angle FOD$: (wykorzystanie miary kątów czworokąta FODB) $ \angle FOD + 2 \cdot 90^{\circ} + 60^{\circ} = 360^{\circ}$, $ \angle FOD = 120^{\circ}$.	1	
4.3	Zauważenie, że $ < FOC = 45^{\circ}$ i obliczenie $ < COD = 45^{\circ} + 120^{\circ} = 165^{\circ}$.	1	
4.4	Obliczenie długości odcinka OC . $(OC \ przekątna \ kwadratu \ o \ boku \ długości \ \sqrt{3} \).$ $ OC = \sqrt{3} \cdot \sqrt{2} = \sqrt{6} \ .$	1	
4.5	Wykorzystanie wzoru redukcyjnego: $\cos 165^{\circ} = -\cos 15^{\circ}$.	1	
4.6	Zastosowanie wzoru cosinusów w $\triangle COD$: $ CD ^2 = OC ^2 + OD ^2 - 2 \cdot OC \cdot OD \cos 165^\circ.$ Obligacjie dbygaćej odcinka CD :	2	Zdający może pozostawić wynik w takiej postaci: $9+6\sqrt{2}\cos 15^\circ$, lub odczytać wartość cosinusa z tablic i podać wynik liczbowy.

		IV sposób rozwiązania.		
		Sporządzenie rysunku.		
	4.1		1	
		Oznaczmy $ AB = a$. Z własności trójkąta ABC wynika, że		
4.	4.2	$ BC = \frac{a}{2}, AC = \frac{a\sqrt{3}}{2}.$	1	
	4.3	Wyznaczenie pola trójkąta ABC (z zastosowaniem wzoru: $S = pr$, $gdzie$ $p = \frac{1}{2}(a+b+c)$ i r $jest$ $promieniem okręgu wpisanego w ten trójkąt): \frac{\sqrt{3}}{2}\left(a+\frac{a}{2}+\frac{a\sqrt{3}}{2}\right)=\frac{ AC \cdot BC }{2}=\frac{a^2\sqrt{3}}{8}.$	1	
	4.4	Wyznaczenie $ AB = a$ z powyższej równości: $4a\left(\frac{3}{2} + \frac{\sqrt{3}}{2}\right) = a^2, AB = a = 6 + 2\sqrt{3}.$	1	
	4.5	Wyznaczenie długości odcinka <i>BD</i> : $ BD = BF = \frac{a}{2} - CF = 3 + \sqrt{3} - \sqrt{3} = 3.$	1	

	4.6	Zastosowanie wzoru cosinusów w trójkącie <i>CBD</i> do wyznaczenia długości odcinka <i>CD</i> : $ CD ^2 = CB ^2 + BD ^2 - 2 CB \cdot BD \cos 60^\circ$.	2	
4.	4.1	V sposób rozwiązania. Sporządzenie rysunku. C R D A	1	
7.	4.2	Wykorzystanie własności : środek okręgu wpisanego w trójkąt leży w punkcie przecięcia dwusiecznych jego kątów. Wyznaczenie $ AD $ z trójkąta AOD : $\frac{ OD }{ AD } = \frac{\sqrt{3}}{ AD } = \text{tg15}^{\circ} \text{ stąd } AD = \frac{\sqrt{3}}{\text{tg15}^{\circ}}$.	1	
	4.3	Wyznaczenie $ BD $ z trójkąta BOD : $\frac{ DO }{ BD } = \frac{\sqrt{3}}{ BD } = \text{tg}30^{\circ}$ stąd $ BD = 3$.	1	
	4.4	$ PD = \frac{1}{2} AD = \frac{\sqrt{3}}{2 \text{tg} 15^{\circ}}$ (z trójkąta prostokątnego PDA, w którym $\angle PDA$ = 60°).	1	

	4.5	$ DR = \frac{ BD \cdot \sqrt{3}}{2} = \frac{3\sqrt{3}}{2}$ (z trójkąta prostokątnego BDR, w którym \(DBR = 60^{\circ} \)). Wyznaczenie długości odcinka CD z trójkąta prostokątnego CDR: $ CD = \sqrt{ RD ^2 + RC ^2} = \sqrt{\frac{3}{4 \text{tg}^2 15^{\circ}} + \frac{27}{4}}.$	2	
4.	4.1	VI sposób rozwiązania. Sporządzenie rysunku.	1	
	4.2	Obliczenie miary kąta DON : $ < DON = 30^{\circ}$.	1	
	4.3	Wyznaczenia $ DN $ z trójkąta prostokątnego OND : $\frac{ DN }{ OD } = \sin 30^{\circ}$, $ DN = \frac{\sqrt{3}}{2}$ i $ ON = \frac{1}{2} OD \cdot \sqrt{3} = \frac{3}{2}$. $ CM = CF + FM = \sqrt{3} + ON = \frac{3}{2} + \sqrt{3}$.	1	
	4.4	$ CM = CF + FM = \sqrt{3} + ON = \frac{3}{2} + \sqrt{3}$.	1	

	4.5	$ DM = DN + MN = \frac{\sqrt{3}}{2} + OF = \frac{3\sqrt{3}}{2}.$	1	
		Wyznaczenie CD z twierdzenia Pitagorasa w trójkącie CMD:		
	4.6	$ CD ^2 = CM ^2 + DM ^2 = \left(\frac{3}{2} + \sqrt{3}\right)^2 + \left(\frac{3\sqrt{3}}{2}\right)^2 = 12 + 3\sqrt{3},$	2	
		$ CD = \sqrt{12 + 3\sqrt{3}} .$		
4.	4.1	VII sposób rozwiązania. Sporządzenie rysunku.	1	Zdający otrzymuje punkt jeśli narysuje trójkąt z zaznaczonymi dobrymi kątami i wpisanym okręgiem.
	4.2	La Do (lao Labbo) jest prostoratily i xi Do 30.	1	
		$ OF = \sqrt{3}$ stad $ OB = 2\sqrt{3}$.		
	4.3	Obliczenie długości odcinków FB z ΔFBO i BD z ΔBDO : $ FB = 3$ i $ BD = 3$.	1	
	4.4	Obliczenie długość odcinka <i>CB</i> : $ CB = CF + FB = 3 + \sqrt{3}$.	1	

	4.5	Obliczenie długości odcinków BG i CG i DG : $\left BG\right = \frac{1}{2}\left BC\right = \frac{3+\sqrt{3}}{2} \;,\; \left CG\right = \frac{\sqrt{3}}{2}\left BC\right = \frac{3+3\sqrt{3}}{2} \;,$ $\left GD\right = \left BD\right - \left BG\right = \frac{3-\sqrt{3}}{2} \;.$	1	
	4.6	Zastosowanie twierdzenia Pitagorasa ΔBGC do obliczenie długości odcinka CD : $ CD ^2 = CG ^2 + GD ^2$ $ CD ^2 = \left(\frac{3+3\sqrt{3}}{2}\right)^2 + \left(\frac{3-\sqrt{3}}{2}\right)^2 = 12+3\sqrt{3}$, $ CD = \sqrt{12+3\sqrt{3}}$.	2	
5.	5.1	Sporządzenie wykresu funkcji (skorzystanie z definicji wartości bezwzględnej i sporządzenie wykresu albo naszkicowanie wykresu funkcji $g(x) = 2x - x^2$, a następnie naszkicowanie wykresu funkcji $f(x) = g(x)$).		Zdający może rozpatrzyć dwa przypadki i za każdy poprawnie rozwiązany otrzymuje 1 pkt. Jeśli jest prawidłowy rysunek to zdający otrzymuje 2 pkt. Przyznajemy 1 punkt jeśli, np rysunek jest prawidłowy tylko po jednej stronie osi Oy, - gdy zdający nie wybrał tej części wykresu, która jest prawidłowa (pozostawił niepotrzebne części wykresu).
	5.2	Wskazanie każdego punktu, w którym istnieje ekstremum lokalne funkcji f i określenie rodzaju ekstremum: minimum lokalne dla $x=0$, maksimum lokalne dla $x=-1$ oraz $x=1$.	1	
	6.1	Wyznaczenie współrzędnych punktu D : $D = (0,6)$.	1	
6.	6.2	Wyznaczenie współrzędnych punktów A i B : $A = (-3,0), B = (6,0)$	1	
0.		Wyznaczenie długości odcinka CD : $ CD = 3$.	1	
	6.4	Obliczenie pola trapezu: $P_{ABCD} = \frac{9+3}{2} \cdot 6 = 36$.	1	

7.	7.1	Wyznaczenie $\cos x$ z danego równania: $\cos x = 0$ lub $\cos x = \frac{1}{2}$.	1	Jeśli zdający podzieli równanie obustronnie przez cos x, bez komentarza dostaje 0 pkt.
	7.2	Wybranie i zapisanie rozwiązań należących do przedziału $\langle 0, 2\pi \rangle$: $x_1 = \frac{\pi}{3}, \ x_2 = \frac{\pi}{2}, \ x_3 = \frac{3}{2}\pi, \ x_4 = \frac{5}{3}\pi$.	2	Jeśli zdający w 7.1 podzielił równanie przez cos <i>x</i> ale poprawnie rozwiązał otrzymane w ten sposób równanie otrzymuje 1 pkt. Zdający może podać odpowiedź w stopniach.
	7.1	II sposób rozwiązania. Rozwiązanie równania gdy $\cos x = 0$: $x = \frac{\pi}{2}$ lub $x = \frac{3\pi}{2}$.	1	
	7.2	Rozwiązanie równania gdy $\cos x \neq 0$: 1 pkt - za doprowadzenie równania do najprostszej postaci $\cos x = \frac{1}{2}$. 1 pkt - za rozwiązanie: $x = \frac{\pi}{3}$ lub $x = \frac{5\pi}{3}$.	2	
	8.1	Zaznaczenie w przedziale (2,3) poprawnego znaku pochodnej: (+).	1	
8.	8.2	Zapisanie, że mimo poprawienia błędu w tej tabeli umieszczone w niej dane nie pozwalają stwierdzić dokładnie ile miejsc zerowych ma funkcja f: mogą być 2, 3 albo 4 miejsca zerowe (zdający sporządza rysunki lub przedstawia słowne uzasadnienie).	3	1 pkt jeśli zdający poda odpowiedź – nie pozwala, 2 pkt jeśli poda odpowiedź – nie pozwala, bo może mieć 2 lub 3 lub 4 miejsca zerowe (poprawnie wskazuje dwie różne liczby miejsc zerowych, ale nie pokazuje, jak wygląda wykres funkcji). 3 pkt jeśli poda odpowiedź i narysuje dwa wykresy lub pokazuje, że np. w przedziale (3,+∞) funkcja może mieć 0 miejsc zerowych lub 1 miejsce zerowe.

9.	9.1	Obliczenie prawdopodobieństwa $P(A \cap B)$: $P(A \cap B) = P(A) - P(A \setminus B) = 0, 2.$ (1 pkt za pokazanie metody, 1 pkt za obliczenia)	2	
	9.2	Obliczenie iloczynu prawdopodobieństw $P(A) \cdot P(B)$ i zapisanie, że dane zdarzenia są niezależne: $P(A) \cdot P(B) = 0.5 \cdot 0.4 = 0.2$.	1	
10.	10.1	Obliczenie różnicy dwóch kolejnych wyrazów w postaci ogólnej: $a_{n+1} - a_n = 2 - p^2$ i stwierdzenie, że ciąg (a_n) jest arytmetyczny.	1	
	10.2	Obliczenie żądanej sumy dwudziestu jeden wyrazów danego ciągu: $S_{40}-S_{19}=-1400+266=-1134 \text{ lub } \frac{a_{20}+a_{40}}{2}\cdot 21=-1134.$	2	1 pkt za przedstawienie metody, 1 pkt za wykonanie obliczeń.
	10.3	Zapisanie warunku na to aby ciąg (b_n) był stały: $p^2 + p - 2 = 0$.	1	
	10.4	Wyznaczenie wszystkich wartości p , dla których ciąg (b_n) jest stały: $p=1$ lub $p=-2$.	1	
11.	11.1	Wyznaczenie pierwiastków trójmianu kwadratowego: <i>n</i> , 2 <i>n</i> .	1	
	11.2	Wyznaczenie zbioru rozwiązań nierówności $x^2 - 3nx + 2n^2 < 0$: $(n,2n)$.	1	
	11.3	Wyznaczenie największej liczby całkowitej spełniającej nierówność i zapisanie wzoru funkcji $f: 2n-1$, $f(n) = 2n-1$, dla $n > 1$.	1	

12.	12.1		1	
		Zauważenie, że trójkąt <i>ABC</i> jest prostokątny i kąt <i>ABC</i> ma miarę 60°.		
	12.2	Zapisanie pola zacieniowanej figury jako odpowiedniej różnicy pól: np. deltoidu <i>ADBC</i> i wypukłego wycinka kołowego <i>DBC</i> .	1	
		Obliczenie pola deltoidu <i>ADBC</i> : $P_{ADBC} = 64\sqrt{3}$.	1	
	12.4	Obliczenie pola zacieniowanej figury: $P_f = 64\left(\sqrt{3} - \frac{\pi}{3}\right)$.	1	

Za prawidłowe rozwiązanie każdego z zadań inną metodą od przedstawionej w schemacie przyznajemy maksymalną liczbę punktów.