CIS507: Design & Analysis of Algorithms
Tutorial: Sorting & Probabilistic Analysis

1 Indicator Random Variables

- 1. Let X be an indicator random variable such that E[X] = 1/2. What is $E[\sqrt{X}]$?
- 2. Let X be an indicator random variable. Which of the following statements are true? (Circle all that apply)
 - (a) $Pr\{X=0\} = Pr\{X=1\} = 1/2$
 - (b) $Pr\{X = 1\} = E[X]$
 - (c) $E[X] = E[X^2]$
 - (d) $E[X] = (E[X])^2$

2 Throwing into Buckets

Let A[1,...,n] be an array of numbers uniformly distributed over the interval [0,1). Suppose we have another array B[0,n-1] of buckets (implemented as lists). Consider the following loop, after which bucket i holds values of A in the half-open interval [i/n, (i+1)/n):

for i = 1 to n do insert A[i] into bucket B[|nA[i]|]

- 1. Trace the algorithm on A = [.78, .17, .39, .26, .72, .94, .21, .12, .23, .68]. Show the contents of array B.
- 2. Define random variable n_i = the number of elements placed in bucket B[i] (note that this is *not* an indicator random variable). Prove that $E[n_i] = 1$ for $i = 0, 1, \ldots, n-1$. That is, the expected number of items in each bucket is 1.

Hint: $\forall i=0,1,\ldots,n-1$ and $j=1,\ldots,n,$ define indicator random variables:

$$X_{ij} = I\{A[j] \text{ falls in bucket } i\} = \begin{cases} 1 & \text{if } A[j] \text{ falls in bucket } i \\ 0 & \text{otherwise} \end{cases}$$

Start by defining n_i in terms of the X_{ij} 's.

3. Prove that $E[n_i^2] = 2 - \frac{1}{n}$ for i = 0, 1, ..., n - 1.

Hint: Note that X_{ij} and X_{ik} are independent for $j \neq k$.

3 Bucket Sort

Bucket sort assumes the input is generated by a random process that distributes elements uniformly over [0,1). It divides [0,1) into n equal sized buckets, distributed the n inputs values into the buckets, sorts each bucket (with insertion sort), then concatenates all buckets. The pseudo code is shown below.

```
BUCKET-SORT(A, n)

let B[0..n-1] be a new array

for i = 0 to n-1

make B[i] an empty list

for i = 1 to n

insert A[i] into list B[\lfloor n \cdot A[i] \rfloor]

for i = 0 to n-1

sort list B[i] with insertion sort

concatenate lists B[0], B[1], \ldots, B[n-1] together in order

return the concatenated lists
```

Intuitively, if each bucket gets a constant number of elements, it should take $\mathcal{O}(1)$ time to sort each bucket, therefore $\mathcal{O}(n)$ to sort all buckets.

- 1. Define random variable n_i = the number of elements placed in bucket B[i]. Write the recurrence of the above algorithm.
- 2. Show that the expected running time of Bucket Sort is $E[T(n)] = \Theta(n)$.

Hints:

- Remember that "insert sort" is $\Theta(n^2)$.
- Use the fact that $E[n_i^2] = 2 \frac{1}{n}$, which we proved in the previous question.
- If X is a random variable, and a is a constant, then E[aX] = aE[X]. Consequently, $E[\mathcal{O}(g(n))] = \mathcal{O}(E[g(n)])$, since the expectation doesn't depend on lower-order terms.