

 $\rm FIG.~10:$ (Color online) Mean square displacement $\Delta r^2(t_{\rm w},t_{\rm w}+t)$ as defined in Eq. (7) for the temperature quench from $5000\,\rm K$ to $2500\,\rm K$ and for O-atoms. Waiting times and corresponding line styles are the same as in Fig. 4.

C. Mean Square Displacement

In the previous section, we have focused on the analysis of $C_q(t_w, t_w + t)$ and identified different time-windows. In this section, we consider the mean square displacement

$$\Delta r^{2}(t_{\rm w}, t_{\rm w} + t) = \frac{1}{N} \sum_{i=1}^{N} \left\langle \left(\mathbf{r}_{i}(t_{\rm w} + t) - \mathbf{r}_{i}(t_{\rm w})\right)^{2} \right\rangle. (7)$$

Figure 10 shows $\Delta r^2(t_{\rm w},t_{\rm w}+t)$ for the temperature quench from 5000 K to 2500 K and for O-atoms. As in Fig. 4, for times $t\lesssim 5\cdot 10^{-5}\,\rm ns$ and zero waiting time, the mean square displacement $\Delta r^2(t_{\rm w}=0,t)$ is well approximated by Δr^2 of the high temperature $T_{\rm i}=5000\,\rm K$ from which the system has been quenched (see dashed line in Fig. 10) and thus independent of $T_{\rm f}$. For times $t\approx 10^{-3}\,\rm ns$, $\Delta r^2(t_{\rm w},t_{\rm w}+t)$ is oscillatory due to the small system size [31], while for times $t\gtrsim 10^{-3}\,\rm ns$ and waiting times $t_{\rm w}\geq 0.33\,\rm ns$, we find that Δr^2 forms a plateau which is independent of $t_{\rm w}$. As for C_q , we find that the plateau is the more horizontal the smaller $T_{\rm f}$ and the plateau height depends on the particle type but is independent of $T_{\rm i}$.

For waiting times $t_{\rm w} \geq 0.33\,\rm ns$ and times $t \gtrsim 0.1\,\rm ns$, the mean square displacement leaves the plateau and increases further. To characterize the dependence of this α -relaxation we define the time $t_{\rm r}^{\rm msd}$ as the time $t = t_{\rm r}^{\rm msd}$ for which $\Delta r^2(t_{\rm w},t_{\rm w}+t_{\rm r}^{\rm msd})=1.35\,\rm \mathring{A}^2$ (see Fig. 11). We can identify again the three time windows (I) of waiting times $t_{\rm w}\lesssim 0.3\,\rm ns$ with a dependence on $T_{\rm i},T_{\rm f}$ and particle type, (II) the aging regime of intermediate waiting times where $t_{\rm r}^{\rm msd}$ follows roughly a power law, and (III) for very long waiting times when equilibrium is reached. The transition from (II) to (III) occurs at approximately the

 $\rm FIG.$ 11: (Color online) $t_{\rm r}^{\rm msd}$ for O-atoms. Symbols for the different $(T_{\rm i},T_{\rm f})$ combinations are the same as in Fig. 7. Error bars are indicated exemplary for (3760 K, 2500 K), (5000 K, 2500 K) and (5000 K, 3000 K).

FIG.~12: (Color online) $\Delta r^2(t/t_{\rm r}^{\rm msd})$ for the temperature quench from $5000~\rm K$ to $2500~\rm K$ and for O-atoms.

same times t_{23} as for C_q , i.e. $t_{23}\approx 0.3\,\mathrm{ns}$ for $T_{\mathrm{f}}=3250\,\mathrm{K},$ $t_{23}\approx 1\,\mathrm{ns}$ for $T_{\mathrm{f}}=3000\,\mathrm{K},\,t_{23}\approx 3\,\mathrm{ns}$ for $T_{\mathrm{f}}=2750\,\mathrm{K}$ and $t_{23}\approx 10\,\mathrm{ns}$ for $T_{\mathrm{f}}=2500\,\mathrm{K}.$

Figure 12 shows the equivalent of Fig. 8 to test time superposition. We find for $\Delta r^2(t/t_{\rm r}^{\rm msd})$ that time superposition is valid for waiting times $0.34\,{\rm ns} \le t_{\rm w} \lesssim 8.83\,{\rm ns}$, i.e. for the time window (II) but not for the time window (III).