0.1 Понятия фазового потока и фазового объема

Определение 0.1. Рассматриваем давно привычную нам систему $\frac{d\vec{x}}{dt} = \vec{f}(\vec{x})$.

Пусть $\mathscr{D} \subset \mathbb{R}^n$ – это область в ее фазовом пространстве. Возымем произвольную точку $\vec{x}_0 \in \mathscr{D}$ и выпустим из нее фазовую траекторию. Таким образом, с течением времени t мы будем двигаться по этой траектории. Обозначим точку на данной траектории в момент времени t как $q^t \vec{x}_0$.

Теперь можно определить преобразование области $\mathcal{D}: \forall \vec{x}_0 \in \mathcal{D}$ сделаем отображение $\vec{x}_0 \to g^t \vec{x}_0$. Получаем $\mathcal{D} \to g^t \mathcal{D}$. Другими словами, каждую точку \mathcal{D} сносим по фазовой траектории на время t.

Tак вот преобразование q^t и называется фазовым потоком.

Перечислим несколько полезных свойств введенного нами фазового потока:

- $g^{t_1+t_2} = g^{t_1} \cdot g^{t_2} = g^{t_2} \cdot g^{t_1};$
- $g^t \cdot g^{-t} = g^{-t} \cdot g^t = \mathrm{Id}$ тождественное преобразование;
- Фазовый поток является группой;
- И еще сильнее, фазовый поток однопараметрическая группа, то есть каждому числу $t \in \mathbb{R}$ соответствует единственное преобразование $g^t: \mathscr{D} \to g^t \mathscr{D}$.

Определение 0.2. Пусть у нас опять есть область \mathscr{D} фазового пространства \mathbb{R}^n . Подействуем на \mathscr{D} фазовым потоком g^t . Тогда $\mathscr{D}(t) = g^t \mathscr{D}$ и $\vec{x} = g^t \vec{x}_0$. Определим следующую величину как фазовый объем:

$$V_{\mathscr{D}}(t) = \int_{\mathscr{D}(t)} d\vec{x} = \int_{g^t \mathscr{D}} d(g^t \vec{x}_0).$$

0.2 Теорема Лиувилля

Теорема 0.1. В автономной системе дифференциальных уравнений $\frac{d\vec{x}}{dt} = \vec{f}(\vec{x})$ производная фазового объема $V_{\mathscr{D}}(t)$ области $\mathscr{D} \subset \mathbb{R}^n$ фазового пространства может быть вычислена по формуле:

$$\frac{dV_{\mathscr{D}}(t)}{dt} = \int\limits_{\mathscr{Q}} \operatorname{div} \vec{f} \cdot d\vec{y},$$

где
$$\operatorname{div} \vec{f} = \sum_{i=1}^n \frac{\partial f^i}{\partial x^i}$$
 – дивергенция \vec{f} , а $\vec{y} = \vec{x}(0)$.

Доказательство. Докажем, что производная равна этому при t=0, а в силу автономности системы это будет верно в каждой точке.

Пишем производную по определению: $\frac{dV_{\mathscr{D}}}{dt}(0) = \lim_{t \to 0} \frac{V_{\mathscr{D}}(t) - V_{\mathscr{D}}(0)}{t}.$

Из системы имеем $\vec{x} = \vec{y} + \int_{0}^{t} \vec{f}(\tau) d\tau$.

При малых значениях t получаем следующее: $x^i=y^i+f^i(\vec{y})t+o(t), t \to 0$

На все это дело можно смотреть как на замену координат $x^i \longrightarrow y^i$. Тогда получаем следующее выражение для фазового объема:

$$V_{\mathscr{D}}(t) = \int_{\mathscr{D}(t)} d\vec{x} \xrightarrow{\mathscr{D}(0) = \mathscr{D}} \int_{\mathscr{D}} |J| d\vec{y},$$

где $J=rac{\partial(x^1,x^2,\ldots,x^n)}{\partial(y^1,y^2,\ldots,y^n)}$ – якобиан преобразования.

Посчитаем этот якобиан

$$J = \begin{vmatrix} 1 + \frac{\partial f^1}{\partial y^1} t & \frac{\partial f^1}{\partial y^2} t & \cdots & \frac{\partial f^1}{\partial y^n} t \\ \frac{\partial f^2}{\partial y^1} t & 1 + \frac{\partial f^2}{\partial y^2} t & \cdots & \frac{\partial f^2}{\partial y^n} t \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f^n}{\partial y^1} t & \frac{\partial f^n}{\partial y^2} t & \cdots & 1 + \frac{\partial f^n}{\partial y^n} t \end{vmatrix} = \left(1 + \frac{\partial f^1}{\partial y^1} t\right) \left(1 + \frac{\partial f^2}{\partial y^2} t\right) \dots \left(1 + \frac{\partial f^n}{\partial y^n} t\right) + o(t).$$

Здесь мы все, что имеет множители t^2, t^3, \ldots, t^n , завернули в o(t). Однако если раскрыть скобки, то такие слагаемые все еще остаются. Раскроем эти скобки и опять впихнем все ненужное в o(t):

$$J = 1 + \left(\frac{\partial f^1}{\partial y^1} + \frac{\partial f^2}{\partial y^2} + \dots + \frac{\partial f^n}{\partial y^n}\right)t + o(t) = 1 + t\operatorname{div}\vec{f} + o(t).$$

Ну, а теперь считаем эту производную:

$$\frac{dV_{\mathscr{D}}}{dt} = \lim_{t \to 0} \frac{V_{\mathscr{D}}(t) - V_{\mathscr{D}}(0)}{t} = \lim_{t \to 0} \frac{\int_{\mathscr{D}} \left(1 + t \operatorname{div} \vec{f} + o(t)\right) d\vec{y} - \int_{\mathscr{D}} d\vec{y}}{t} = \int_{\mathscr{D}} \operatorname{div} \vec{f} \cdot d\vec{y}.$$

0.3 Теорема Пуанкаре

Пускай g^t - непрерывное взаимнооднозначное отображение, сохраняющее фазовый объем и переводящее ограниченную область $\mathscr D$ саму в себя, то есть $g^t\mathscr D=\mathscr D$. Тогда:

$$\forall x_0 \in \mathscr{D} \longmapsto \forall U(x_0) \ \exists \overline{x} \in U(x_0) : g^n \overline{x} \in U(x_0) \ (n = t_0),$$

где $U(x_0)$ – некоторая окрестность точки x_0 .

Другими словами, для любой окрестности U любой точки x_0 области $\mathscr D$ найдется точка $\overline x$, возвращающаяся обратно в эту же окрестность.