How CAREFUL

do YOU have to be

to SOLVE

a System of Equations T

Josué Tonelli-Cueto

Moving a glass

Moving a glass

Moving a glass

ALL ERRORS ARE DIFFERENT,

ALLERRORS ARE DIFFERENT, BUT SOME ERRORS ARE MORE DIFFERENT THAN OTHERS

```
\begin{cases} 1.00 \times + 1.01 \text{ y} = 1.00 \\ 2.00 \times + 2.50 \text{ y} = 1.00 \end{cases}
```

$$\begin{cases} 1.00 \times + 1.01 \text{ y} = 1.00 \\ 2.00 \times + 2.50 \text{ y} = 1.00 \end{cases} \times \approx 3.10...$$

$$\begin{cases} 1.00 \times + 1.01 \text{ y} = 1.00 \\ 2.00 \times + 2.50 \text{ y} = 1.00 \end{cases} \times \approx 3.10...$$

V5.

$$\begin{cases} 1.00 \times + 1.01 \text{ y} = 1.00 \\ 2.00 \times + 2.10 \text{ y} = 1.00 \end{cases}$$

$$\begin{cases} 1.00 \times + 1.01 & y = 1.00 \\ 2.00 \times + 2.50 & y = 1.00 \end{cases} \times \approx 3.10...$$

$$V5.$$

$$\begin{cases} 1.00 \times + 1.01 & y = 1.00 \\ 2.00 \times + 2.10 & y = 1.00 \end{cases} \times \approx 13.62...$$

$$2.00 \times + 2.10 & y = 1.00 \end{cases} \times \approx 13.62...$$

$$\begin{cases} 1.00 \times + 1.01 & y = 1.00 \\ 2.00 \times + 2.50 & y = 1.00 \end{cases} \times \approx 3.10...$$

$$V \approx -2.08...$$

$$V \approx 13.62...$$

$$\begin{cases} 1.00 \times + 1.01 & y = 1.00 \\ 2.00 \times + 2.10 & y = 1.00 \end{cases} \times \approx 13.62...$$

$$2.00 \times + 2.10 & y = 1.00 \end{cases} \times \approx 13.62...$$

$$\begin{cases} 1.00 \times + 1.01 & y = 1.00 \\ 2.00 \times + 2.50 & y = 1.00 \end{cases} \times \frac{3.00...}{3.40...}$$

$$\begin{cases} 2.00 \times + 2.50 & y = 1.00 \\ 0.00... \end{cases} \times \frac{3.00...}{2.00...}$$

$$\begin{cases} 1.00 \times + 1.01 & y = 1.00 \\ 2.00 \times + 2.10 & y = 1.00 \end{cases} \times \frac{3.00...}{2.00...}$$

$$\begin{cases} 1.00 \times + 1.01 & y = 1.00 \\ 0.00 & y = 1.00 \end{cases} \times \frac{3.00...}{2.00...}$$

$$\begin{cases} 1.00 \times + 1.01 & y = 1.00 \\ 2.00 \times + 2.50 & y = 1.00 \end{cases} \times \frac{3.00...}{3.40...}$$

$$\begin{cases} 2.00 \times + 2.50 & y = 1.00 \\ 1.00 & 0 \end{cases} \times \frac{3.00...}{2.00...}$$

$$\begin{cases} 1.00 \times + 1.01 & y = 1.00 \\ 2.00 \times + 2.10 & y = 1.00 \end{cases} \times \frac{3.00...}{2.00...}$$

$$\begin{cases} 1.00 \times + 1.01 & y = 1.00 \\ 2.00 \times + 2.10 & y = 1.00 \end{cases} \times \frac{3.00...}{2.00...}$$

$$\begin{cases} 1.00 \times + 1.01 & y = 1.00 \\ 2.00 \times + 2.50 & y = 1.00 \end{cases} \times \frac{3.00...}{3.40...}$$

$$\begin{cases} 2.00 \times + 2.50 & y = 1.00 \\ 1.00 & -2.00... \end{cases}$$

$$\begin{cases} 1.00 \times + 1.01 & y = 1.00 \\ 2.00 \times + 2.10 & y = 1.00 \end{cases} \times \frac{10.99...}{3.40...}$$

$$\begin{cases} 1.00 \times + 1.01 & y = 1.00 \\ 2.00 \times + 2.10 & y = 1.00 \end{cases} \times \frac{10.99...}{3.40...}$$

$$\begin{cases} 1.00 \times 7 & 1.00 \\ 1.00 \times 7 & 1.00 \\ 2.00 \times 7 & 1.00 \\ 1.00 \times 7$$

```
3.00...
\int 1.00 \times 7 = 1.00
                                       × 2 3.10...
                                       Y ≈ -2.08...
2.00 \times + 2.50 \text{ y} = 1.00
                                         -2.00...
\frac{1.00}{1.00} vs. \frac{1.00}{1.00} \frac{1.00}{1.00}
                                         10.99...
                                       × 2 13.62...
                                       Y~-12.49...
2.00 \times + 2.10 \text{ y} = 1.00
                                     7 - 9, 99...
```

But systems don't always have one solution

$$\begin{cases} 2.00 \times^{2} - 2.10 \times y + 3.10 y^{2} + 7.00 = 0 \\ 7x - 3y + 1 = 0 \end{cases}$$

$$\begin{cases} 2.00 \times^{2} - 2.10 \times y + 3.10 y^{2} + 7.00 = 0 \\ 7x - 3y + 1 = 0 \end{cases}$$

$$\begin{cases} 2.00 \times^{2} - 2.10 \times y + 3.10 y^{2} + 7.00 = 0 \\ 7x - 3y + 1 = 0 \end{cases}$$

$$\begin{cases} 2.00 \times^{2} - 2.10 \times y + 3.10 y^{2} + 7.00 = 0 \\ 7 \times - 3 y + 1 = 0 \end{cases}$$

One?

Two?

$$\begin{cases} 2.00 \times^{2} - 2.10 \times y + 3.10 y^{2} + 7.00 = 0 \\ 7 \times - 3 y + 1 = 0 \end{cases}$$
The more of these, the more solutions

SENSITIVITY TO ERRORS

SENSITIVITY TO ERRORS

NUMBER OF SOLUTIONS

SENSITIVITY TO ERRORS

NUMBER OF SOLUTIONS

how do they relate?

My research for the Masses:

My research for the Masses:

The MORE solutions a system have,

My research for the Masses: The MORE solutions a system have, the MORE SENSITIVE TO ERRORS

its solutions are 1

Thank You For your Atention!