素呈+3价,在进行有关氧化还原反应的计算时,可将 Fe 元素的化合价看作+8分价。 Fe₃O₄可以用FeO·Fe₂O₃来表示,但Fe₃O₄是化合物,是一种纯净物,不能将Fe₃O₄ 看成是由 FeO 和 Fe2O3 组成的混合物。

▶ 问题 3 金属阳离子被还原一定得到金属单质吗?

不一定,存在多种价态的金属可能从较高价态被还原到较低价态,但仍为化合 态,如铁粉与氯化铁溶液的反应: $Fe+2Fe^{3+}$ === $3Fe^{2+}$ 。

◀四氧化三铁是一种 常用的磁性材料,特 制的纯净四氧化三铁 用来作录音磁带和电 讯器材的原材料。激 光打印机的墨粉中也 含有四氧化三铁。

铁的氧化物和氢氧化物

▶ 铁的氧化物比较

名称	氧化亚铁	氧化铁(俗称铁红)	四氧化三铁(俗称磁性氧化铁)
化学式	FeO	Fe_2O_3	Fe_3O_4
颜色、状态	黑色粉末	红棕色粉末	黑色晶体
铁的价态	+2 价	+3 价	+2、+3 价
水溶性	均不溶于水		
与非氧化 性酸反应	$FeO+2H^+ \longrightarrow Fe^{2+} + H_2O$	$Fe_2O_3+6H^+===$ $2Fe^{3+}+3H_2O$	$Fe_3O_4 + 8H^+ = = Fe^{2+} + 2Fe^{3+} + 4H_2O$
与 H ₂ ,CO, Al 等反应	$FeO+H_2 \xrightarrow{\triangle} Fe+H_2O$	Fe ₂ O ₃ +3CO <u>高温</u> 2Fe+3CO ₂	3Fe ₃ O ₄ +8Al <u>高温</u> 9Fe+4Al ₂ O ₃

◆故宫红墙(显红色 主要是因为含有 Fe_2O_3)

【说明】(1) FeO 不稳定,易被氧化为 Fe₃O_{4。}

- (2) FeO、Fe₃O₄ 遇氧化性酸(如 HNO₃)发生氧化还原反应,+2 价的铁均被氧化 为+3 价。
 - (3) FeO、Fe₂O₃均为碱性氧化物,Fe₃O₄是复杂的氧化物,不属于碱性氧化物。

● 铁的氢氧化物比较

名称	氢氧化亚铁	氢氧化铁
化学式	Fe(OH) ₂	Fe(OH) ₃
颜色、状态	白色固体	红褐色固体
水溶性	不溶	不溶
与酸反应	$Fe(OH)_2 + 2H^+ = Fe^{2+} + 2H_2O$	$Fe(OH)_3 + 3H^+ = Fe^{3+} + 3H_2O$
稳定性	不稳定,在空气中会迅速由白色变为灰绿色,最后变为红褐色: $4Fe(OH)_2+O_2+2H_2O=$ 4 $Fe(OH)_3$	常温下稳定,加热分解 $2Fe(OH)_3 \stackrel{\triangle}{=\!=\!=} Fe_2O_3 + 3H_2O$
制备	Fe ²⁺ +2OH ⁻ ==Fe(OH) ₂ ↓ (必须在非氧化性环境中制备)	$Fe^{3+}+3OH^-$ Fe(OH) ₃ \downarrow

锈蚀的马蹄铁 铁制

◆Fe (OH), 为白色 絮状沉淀,在空气中 迅速被氧化: 白色→ 灰绿色→红褐色,此 知识点常作为元素存 在的检验方法和物质 推断的重要突破口。