Diferencialinių lygčių sprendimas

V praktikos užduotis

Paimkite dif. lygtį ir sprendimo metodus pagal savo eilės numerį. Koši uždavinį nurodytame intervale išspręsti reikia 3 būdais: 1) Tiksliai (ne skaitiškai), pritaikant tinkamą metodą; 2) ir 3) Nurodytais skaitiniais metodais. Jei panaudojus Eulerio metodą gaunama netiesinė lygtis, ją spręskite paprastųjų iteracijų metodu iš pirmos programavimo užduoties "Netiesinės lygtys".

Atsiskaitymui reikia pateikti:

- 1. Tikslų lygties sprendimą panaudojant pradinę sąlygą. Spręskite ranka ant popieriaus ir sprendimą pateikite kaip nuotrauką/pdf. Jeigu mokate ar turite priemonių, galima tiesiai į kompiuterį, bet turi būti perskaitoma.
- 2. 1-ojo skaitinio metodo kodą.
- 3. 2-ojo skaitinio metodo kodą.
- 4. Atlikti sprendinių analizę ir pavaizduoti grafiškai: Imkite skirtingas h reikšmės, pvz. $h=0.1,\ 0.05,\ 0.01,$ ir abiems skaitiniams metodams sudarykite lentelę iš paklaidų nuo tikrojo sprendinio. Padarykite išvadas apie panaudotų skaitinių metodų tikslumą, t.y. kurios eilės jie yra. Visus 3 sprendinius pavaizduokite grafiškai, skaitiniams sprendiniams padėkite taškus tinklo mazguose, kad matytųsi suskaičiuotos reikšmės.

Vertinimas: 0.3 + 0.3 + 0.2 + 0.2.

Metodai

- 1. Išreikštinis Eulero
- 2. Neišreikštinis Eulerio
- 3. Simetrinis Eulerio (dar vad. Crank Nickolson met.)
- 4. Tripakopis Rungės-Kuto (dar vad. Kutto met.)

$$\begin{array}{c|cccc}
0 & & & & \\
\frac{1}{2} & \frac{1}{2} & & & \\
1 & -1 & 2 & & \\
& \frac{1}{6} & \frac{2}{3} & \frac{1}{6}
\end{array}$$

- 5. Dvipakopis Rungės-Kuto su $\sigma = 0.5$ (dar vad. simetriniu R-K met.)
- 6. Dvipakopis Rungės-Kuto su $\sigma = 1$ (dar vad. Heun met.)

Nr.	Lygtis	Pradinė sąlyga	Intervalas	Metodai
1	$yy' = xy^2 - 2x$	y(1) = 1	$x \in [1, 7]$	1, 2
2	$y' - y - xe^x \sin x = 0$	y(0) = 1	$x \in [0, 10]$	1, 3
3	xyy' = lnx + 1	y(1) = 1	$x \in [1, 8]$	1, 4
4	$y' = -\frac{y^3}{2x}$	y(1) = 4	$x \in [1, 8]$	1, 5
5	y' - 2y - x = 0	y(0) = 0	$x \in [0, 8]$	1, 6
6	$y' = xy^2 + x$	y(0) = 4	$x \in [0, 8]$	1, 3
7	$y' = -\frac{xy^3}{\sqrt{1+x^2}}$	y(0) = -1	$x \in [0, 1]$	1, 2
8	$ty' - 2y = t^4 \sin \frac{t}{2}$	$y(\pi) = 2\pi^2$	$t \in [\pi, 4\pi]$	1, 6
9	$ty' + 2y + t = t^2$	y(0.1) = 10	$t \in [0.1, 10]$	1, 4
10	$y' = \frac{\sin t}{\sin y}$	$y(0) = \frac{\pi}{2}$	$t \in [0, \frac{\pi}{2}]$	1, 5
11	$y' - y \tan x = \sin x$	y(0) = 1	$x \in [0, 1.5]$	1, 2
12	$ty' + 2y - 1 = t^3$	y(1) = 2	$t \in [1, 8]$	1, 3
13	$y' = y^2 \cos x + \cos x$	y(0) = 2	$x \in [0, 10]$	1, 6
14	$(x^2+4)y'=2xy$	y(0) = 8	$x \in [0, 8]$	1, 5
15	$y' = (2x^2 + 2)e^{-y}$	y(1) = 0	$x \in [1, 5]$	1, 4
16	$y' - y + 2t^2 = 0$	y(1) = -1	$t \in [1, 6]$	1, 3
17	$xy' + 3y = \frac{2+x^2}{x^3}$	y(1) = 2	$x \in [1, 10]$	1, 2
18	$y' = \frac{y^3}{x^2}$	y(1) = 1	$x \in [1, 5]$	1, 5
19	$y' - y - (t^3 - 1)e^t = 0$	y(0) = -1	$t \in [0, 10]$	1, 4
20	$ty' - 2y = t^4 - t^3$	y(1) = 2	$t \in [1, 6]$	1, 6
21	$y' = \frac{2x}{\sin y}$	$y(0) = \frac{\pi}{2}$	$x \in [0, 0.8]$	1, 3
22	$ty' - 2y = t^4 \cos(2t)$	$y(\pi) = 0$	$t \in [\pi, 6\pi]$	1, 2
23	$y' = x\sqrt{1 - y^2}$	y(0) = 0.5	$x \in [0, 1]$	1, 5
24	$xy' + 3y = x + \frac{2}{x}$	y(1) = 2	$x \in [1, 8]$	1, 6
25	$y' - y - xe^x \cos x = 0$	y(1) = 2	$x \in [1, 7]$	1, 2