Sciences des matériaux et Ingénierie des matériaux

Science des matériaux étudie la relation entre la microstructure des matériaux et leurs propriétés physiques

Ingénierie des matériaux: design de la structure des matériaux pour obtenir des propriétés souhaitées (sur la base de la relation connue structure-propriété)

Motivation

Tout ingénieur va rencontrer les problèmes reliées aux matériaux

mécanique → pignon d'une transmission génie civile → structure de bâtiment génie des procédés → composantes d'une raffinerie électronique → architecture d'une puce électronique

Classification des matériaux

1. Métaux et alliages métalliques – composés d'au moins 1 élément métallique (Fe, Co, Au, ...) et ayant souvent des éléments non-métalliques (carbone).

atomes très ordonnés

- 2. Céramiques combinaison des éléments métalliques et nonmétalliques, tels que
- oxydes (alumine Al₂O₃)
- nitrides (nitride de silice Si₃N₄)
- carbides (carbide de silice SiC)

Propriétés

- Grandes dureté et raideur
- Très fragiles

- **3. Polymères** matériaux plastiques et résines, davantage organiques (ayant le carbone et l'hydrogène comme éléments principaux) et ayant des molécules très grandes:
- polyéthylène
- nylon
- Polyclorure de vinyle (PVC)
- Polystyrène (PS)

Propriétés:

- Faible dureté et raideur
- Pas fragiles et très pliables

4. Composites – matériaux composés de deux ou plus composants appartenant à des catégories différentes (métaux, céramiques, polymères)

<u>Intérêt d'un composite</u>: combiner les avantages de chaque composante (ex: dureté des métaux + poids léger des polymères)

5. Matériaux avancés (en: advanced materials)

Semiconducteurs (entre conducteurs et isolants)

Puces à 10 nm entre les nœuds!

 Biomatériaux (matériaux implantés dans le corps humaine qui remplacent les tissus endommagés)

(ex: tissus artificiels fibrine-agarose+cellules)

- Matériaux adaptatifs (en: smart materials) –adaptent leurs propriétés physiques en fonction de changements des conditions opératoires
- ✓ Alliages de mémoire de forme
- ✓ Céramique piézoélectrique (actionneurs piézo)
- ✓ Matériaux magnétostrictifs (actionneurs magnéto)
- ✓ Fluides électro/magnétorhéologiques (amortisseurs contrôlables)

 Matériaux issues des nanotechnologies (design se fait à partir de la manipulation des atomes et des molécules)

Nanotubes fabriquées par évaporation du graphite

Propriétés:

- Très fortes conductivité électrique et thermique (nanoélectronique)
- Très forte résistance mécanique (matériaux composites pour aérospatiale)

I. Métaux et alliages

1. Aciers

Type d'acier	Propriétés	Applications
Acier à basse teneur de carbone (C<0.25%w)	 Mou, faible résistance à la traction Bonne résistance à la flexion (ductilité) 	Chassies des automobiles; Profilés métalliques; feuilles pour les tuyaux
Acier à moyenne teneur de carbone (0.25% <c<0.6%)< td=""><td> Bonne résistance à la traction Moyenne résistance à la flexion (ductilité) </td><td>Roues de trains; pignons; vilebrequins</td></c<0.6%)<>	 Bonne résistance à la traction Moyenne résistance à la flexion (ductilité) 	Roues de trains; pignons; vilebrequins
Acier à haute teneur de carbone (0.6% <c<1.4%)< td=""><td> Très résistants à la traction faible résistance à la flexion (ductilité) </td><td>Outils des machines-outils, filières et moule de formage, couteaux, rasoirs, ressorts</td></c<1.4%)<>	 Très résistants à la traction faible résistance à la flexion (ductilité) 	Outils des machines-outils, filières et moule de formage, couteaux, rasoirs, ressorts
Aciers inoxydables	 Contiennent du Cr (>11%w) et donc très résistants à la corrosion Résistants à haute température 	Turbines à gaz, chaudières à vapeur, cuves des réacteurs nucléaires

2. Titane

Propriétés:

- Hyper résistant à la traction
- A une très bonne ductilité
- Très bonne résistance à corrosion à température ambiante
- Faible résistance à corrosion à haute température

Applications:

- Structures des avions, des vaisseaux spatiaux
- implants chirurgicaux
- Outils des appareils de mesure

3. Métaux réfractaires (niobium, molybdène, tungstène, tantale)

Propriétés:

- Très haute température de fusion (2500-3400 °C)
- Bonne résistance à la traction

Applications:

- Mb: filières d'extrusion des polymères; structures des vaisseaux spatiaux;
- W: filaments des lampes; tubes à rayons X, électrodes de soudage à l'arc;
- Nb, Ta: matériaux résistants à la corrosion à haute T.

4. Alliages à mémoire de forme

Phase moins compacte (martensite)

Phase plus compacte (austénite)

 Alliages Ni-Ti (nitinol)
 Alliages Cu-Al-Ni

Passage d'une phase à une autre se fait soit par changement de température, soit par déformation.

Applications:

- Amortisseurs et absorbeur de choc des lanceurs des vaisseaux spatiaux;
- Actionneurs dans le domaine aérospatiale,
- Autofocus des smartphones, système de stabilisation optique (photo)
- Chirurgie dentale

Fabrication des métaux: formage

Barreaux, tubes de section non-circulaire

Barreaux, tubes, fils de section circulaire

Fabrication des métaux: fonderie

Applications/avantages:

- Pièces de très grand volumes
- Métal d'une ductilité très faible
- Souvent fiable économiquement

Fabrication des métaux: métallurgie des poudres

Applications:

- Métal d'une ductilité très faible
- Métal de haute température de fusion
- Haute précision de fabrication

Buts recuit:

- Diminuer les contraintes internes
- Augmenter la ductilité et la ténacité (résistance à la fracturation)
- Produire une microstructure souhaitée

Buts trempe:

- Produire une phase cristallin hors équilibre thermo
- → généralement dureté plus élevée

Eau/ huile

II. Céramiques

1. Verres

Composition: SiO₂ (70%w), CaO, Na₂O, Al₂O₃

Structure non-cristalline

Application: vitres, optique, fibres de verre (composites)

2. Verres-céramiques

Structure cristalline

Propriétés:

- Résistance mécanique assez élevée;
- Petite dilatation thermique → pas sensibles aux chocs therm.
- Basse conductivité électrique

Crystalline Applications:

- Tables en verre; vitres des microondes, surfaces des cuisinières
- Isolants des circuits imprimés

3. Argiles

Composition: $SiO_2 - Al_2O_3$

Structure cristalline en feuillets

Applications:

- briques, toiture, carrelage
- Lavabos, porcelaine, pots en argile

4. Céramique réfractaire

Composition: SiO₂ - Al₂O₃

Applications:

briques réfractaires pour les cheminées, fours industrielles, foyers des centrales thermiques

5. Abrasifs

Diamant (C) carbure de tungstène (WC) corindon (Al₂O₃ cristallisé)

Dureté très élevée

6. Ciments

Composition: SiO₂ - CaO

silicate

Prise du ciment: réaction d'hydratation:

$$2CaO-SiO_2 + xH_2O = 2CaO-SiO_2-xH_2O$$
silicate

L'enchevêtrement du gel C-S-H donne sa solidité au ciment

7. Systèmes microélectromécaniques (MEMS)

- Composants céramiques pour le stockage des données;
- Mécanique de précision;
- Détecteurs chimiques;
- Analyse de l'ADN;
- Micro-valves de microfluidique

8. Fibres optiques

Fabrication des verres: « press & blow » des bouteilles

Matière primaire: sable de quartz SiO₂+CaCO₃+soude Na₂CO₃

Fabrication des verres: étirage des plaques

Fabrication des produits argileux (briques, carrelage, ...)

III. Polymères

Macromolécules ayant des groupement chimiques répétitifs

Figure 14.7 Schematic representations of (a) linear, (b) branched, (c) crosslinked, and (d) network (three-dimensional) molecular structures. Circles designate individual repeat units.

1. Thermoplastiques

Peuvent fondre et revenir à l'état initial après la solidification

Type de plastique	Propriétés	Applications typiques
Polyéthylène	Bonne résistance chimique, isolant électrique, bonne tenacité, petite résistance à traction	brique alimentaire (lait), jouets, filmes d'emballage, sacs
Polyamide (nylon)	Bonne résistance mécanique, résistance à l'abrasion, bonne tenacité, absorbe de l'eau	Roulements, pignons, cames, isolation des câbles
Fluorocarbones (téflon)	Inerte chimiquement, faibles frottement, résistant à des températures <260°C; faible résistance mécanique	Joints d'étanchéité anticorrosifs; tuyauterie pour l'industrie chimique; couches antiadhésifs
Polyester	Très bonne tenacité, très bonne résistance à la traction et à l'humidité, aux acides	Bouteilles plastiques, filmes d'enregistrement magnétique, cordes des pneus
Polycarbonates	Absorbent peu d'eau, transparents, bonne résistance aux chocs, bonne ductilité et résistance chimique	Lentilles, pellicules photographiques, vitres blindées, capteurs solaires

2. Thermorigides (résines)

ne peuvent être mis en œuvre qu'une seule fois et deviennent infusibles et insolubles après polymérisation

Type de plastique	Propriétés	Applications typiques
Ероху	Bonne résistance mécanique et anticorrosive, bonne adhésion, low cost	Conduits électriques, lavabos, constituant des composites fibrés dans l'aéronautique
Polyuréthane	Flexible, bonne adhésion, peut avoir une bonne résistance mécanique, bon isolant thermique	Isolation thermique, mousse de meubles et d'emballage, colles, roues des patins, combinaison de natation

3. Elastomères

Très élastiques: peuvent subir de grandes déformations avant la rupture

Type de plastique	Propriétés	Applications typiques
Polyisoprène naturel	Bonne résistance mécanique, résistance à l'abrasion, mauvaise résistance à la chaleur	Pneus, tubes, joints d'étanchéité
Acrylonitrile- butadien (Nitrile, NBR)	Bonne résistance chimique, moyenne résistance à la chaleur	Durites des voitures, tuyaux d'essence, joints d'étanchéité
Polysiloxane (silicone)	Bonne résistance à la chaleur, faible résistance mécanique	Isolants thermiques, joints d'étanchéité, tuyaux pour l'industrie agro-alimentaire et biomédicale, circuits microfluidiques

4. Fibres de polymères

Applications:

Textile: polyamide (nylon), polyester, viscose (faite de la cellulose)

Renforcement des bétons: polypropylène

 Renforcement des matériaux des avions/bateaux/pare-balles: aramide (polyamide aromatique, Kevlar@)

Mise en forme des polymères

Thermocompression (thermoplastiques, résines, élastomères)

Injection (thermoplastiques)

« Fiber spinning » (thermoplasiques fondus ou en solution)

Figure 2. Processing sequence of mesophase carbon fibers. Adapted from McHugh6.

IV. Composites

1. Métallo-céramique

Métaux renforcés par des particules céramiques dures

Avantage: composite léger avec bonne résistance mécanique et thermique

Applications:

- Moteurs des voitures de course
- Prothèses dentaires
- Outils des machines à outils (carbure de tungstène, carbure de titane)

2. Composites renforcés avec des particules sphériques

Pneus renforcés par le noir de carbone ou particules de silice

Bétons – pâte cimentaire + sable + graviers

3. Composites renforcés avec des fibres

3.1 Fibres dans la matrice polymérique (époxy & polyesters)

Type de fibres	Propriétés/Avantages	Applications
Fibres de verre	Low cost, bonne résistance mécanique/ permettent de diminuer le poids des véhicules/ bateaux	Chassies des voitures, coques des bateaux, tubes plastiques, planchers industriels
Fibres de carbone	bonne résistance mécanique et thermique/permettent de diminuer le poids et augmenter la résistance à la chaleur	Equipement sportifs de haute performance, cage des moteurs des fusils, réservoirs à haute pression, composants de structure des avions et hélicoptères
Fibres d'aramide	Bonne flexibilité et ductilité	Gilets pare-balles, équipement sportifs de haute performance, pneus, cases de missiles, réservoirs de haute pression, plaquettes et disques de freinage

3.2. Fibres dans la matrice métallique

Applications:

- Block de cylindres des moteurs (Al + fibres de carbone)
- Composantes de transmission
- Arbres des moteurs à haute vitesse
- Renforcement de la structure de la navette spatiale

« Orbiter » (fibres de bore)

Avantages:

- Petit poids
- Faibles vibrations lors de rotation des axes

3.3. Fibres de carbone dans la matrice carbone

Applications:

- Moteurs des fusils;
- Moules de hautes pression et températures;
- Turbines à gaz
- Disques de freinage

Avantages:

bonne résistance à la chaleur

4. Composites structurels

4.1 Composite laminaire

Applications:

- Coques/ailes des avions,
- Skis

Avantages:

- Réduction du poids
- Combinaison des propriétés mécaniques souhaitées

4.2. Composite « sandwich »

Applications:

- Toits, planchers, murs
- Ailes, fuselage des avions
- Pare-chocs des véhicules
- Briques de lait

Avantages:

- Réduction du poids
- Combinaison des propriétés mécaniques souhaitées

La composition d'une brique alimentaire

$$\begin{split} \frac{\lambda + 2\mu}{\mu} \left(\frac{1}{r} \frac{\partial^{2} u_{r}}{\partial r \partial \theta} + \frac{2}{r^{2}} \frac{\partial u_{r}}{\partial \theta} + \frac{1}{r^{2}} \frac{\partial^{2} u_{\theta}}{\partial \theta^{2}} - \frac{1}{r^{2}} u_{\theta} - \frac{\cot^{2} \theta}{r^{2}} u_{\theta} \right. \\ & + \frac{\cot \theta}{r^{2}} \frac{\partial u_{\theta}}{\partial \theta} - \frac{\cot \theta}{r^{2} \sin \theta} \frac{\partial u_{\phi}}{\partial \phi} + \frac{1}{r^{2} \sin \theta} \frac{\partial^{2} u_{\phi}}{\partial \theta \partial \phi} \right) - \frac{1}{r^{2} \sin \theta} \frac{\partial^{2} u_{\phi}}{\partial \theta \partial \phi} \\ & - \frac{\cot \theta}{r^{2} \sin \theta} \frac{\partial u_{\phi}}{\partial \phi} + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2} u_{\theta}}{\partial \phi^{2}} + \frac{1}{r} \frac{\partial u_{\theta}}{\partial r} + \frac{1}{r^{2}} u_{\theta} - \frac{1}{r^{2}} \frac{\partial u_{r}}{\partial \theta} + \frac{\partial^{2} u_{\theta}}{\partial r^{2}} \\ & - \frac{1}{r^{2}} u_{\theta} + \frac{1}{r} \frac{\partial u_{\theta}}{\partial r} + \frac{1}{r^{2}} \frac{\partial u_{r}}{\partial \theta} - \frac{1}{r} \frac{\partial^{2} u_{r}}{\partial r \partial \theta} = 0 \end{split} \tag{2.4}$$

2.2 Dilute Suspension, Spherical Inclusions

 $\sin^2 \theta$ and the terms independent of θ gives the three governing equations

$$2(1-\nu)\left(U_r'' + \frac{2}{r}U_r' - \frac{2}{r^2}U_r - \frac{3}{r}U_\theta' + \frac{3}{r^2}U_\theta\right) + (1-2\nu)\left(-\frac{6}{r^2}U_r + \frac{3}{r}U_\theta' + \frac{3}{r^2}U_\theta\right) = 0$$

$$2(1-\nu)\left(\frac{2}{r}U_r' + \frac{4}{r^2}U_r - \frac{6}{r^2}U_\theta\right) + (1-2\nu)\left(-\frac{2}{r}U_r' + U_\theta'' + \frac{2}{r}U_\theta'\right) = 0$$

$$(2.8)$$

$$U_{\theta} + U_{\phi} = 0 \tag{2.9}$$

where the prime designates derivatives with respect to r. The solution of (2.7)-(2.9) may be shown to be given by

$$-\frac{\cot\theta}{r^2}u_{\theta} + \frac{1}{r} \text{ R.M. Christensen "Mecanics of Composite Materials"} \\ -\frac{1}{r^2}\frac{\partial u_{\theta}}{\partial \theta} - \frac{\cot\theta}{r^2}u_{\theta} + \frac{1}{r^2}\frac{\partial^2 u_r}{\partial \theta^2} + \frac{\cot\theta}{r^2}\frac{\partial u_r}{\partial \theta} + \frac{1}{r^2\sin^2\theta}\frac{\partial^2 u_r}{\partial \phi^2} \\ U_{\theta} = A_1r - \frac{(7-4\nu)}{(1-2\nu)}A_2r^3 - \frac{2A_3}{4}$$

$$-\frac{1}{r^2}\frac{\partial u_{\theta}}{\partial \theta} - \frac{\partial v_{\phi}}{\partial r^2}u_{\theta} + \frac{1}{r^2}\frac{\partial u_{\phi}}{\partial \theta^2} + \frac{\partial v_{\phi}}{\partial \theta} + \frac{1}{r^2\sin^2\theta}\frac{\partial u_{\phi}}{\partial \phi^2}$$

$$-\frac{1}{r\sin\theta}\frac{\partial^2 u_{\phi}}{\partial r\partial \phi} - \frac{1}{r^2\sin\theta}\frac{\partial u_{\phi}}{\partial \phi} = 0$$
(2.5)

and

$$\begin{split} &\frac{(\lambda+2\mu)}{\mu}\frac{1}{r\sin\theta}\left(\frac{\partial^{2}u_{r}}{\partial r\partial\phi}+\frac{2}{r}\frac{\partial u_{r}}{\partial\phi}+\frac{1}{r}\frac{\partial^{2}u_{\theta}}{\partial\theta\partial\phi}+\frac{\cot\theta}{r}\frac{\partial u_{\theta}}{\partial\phi}+\frac{1}{r\sin\theta}\frac{\partial^{2}u_{\phi}}{\partial\phi^{2}}\right)\\ &+\frac{1}{r}\frac{\partial u_{\phi}}{\partial r}-\frac{1}{r\sin\theta}\frac{\partial^{2}u_{r}}{\partial r\partial\phi}+\frac{\partial^{2}u_{\phi}}{\partial r^{2}}+\frac{1}{r}\frac{\partial u_{\phi}}{\partial r}+\frac{1}{r^{2}}\frac{\partial^{2}u_{\phi}}{\partial\theta^{2}}-\frac{1}{r^{2}}u_{\phi}-\frac{\cot^{2}\theta}{r^{2}}u_{\phi}\\ &+\frac{\cot\theta}{r^{2}}\frac{\partial u_{\phi}}{\partial\theta}+\frac{1}{r^{2}}\frac{\cot\theta}{\sin\theta}\frac{\partial u_{\theta}}{\partial\phi}-\frac{1}{r^{2}\sin\theta}\frac{\partial^{2}u_{\theta}}{\partial\theta\partial\phi}=0 \end{split} \tag{2.6}$$

Substituting (2.3) into (2.4)-(2.6) and equating to zero the coefficients of

$$U_{\theta} = A_{1}r - \frac{(7 - 4\nu)}{(1 - 2\nu)}A_{2}r^{3} - \frac{2A_{3}}{r^{4}} + \frac{2A_{4}}{r^{2}}$$

$$U_{\phi} = -U_{\theta}$$
(2.10)

At this point, solutions of the form of (2.10) are taken for the inclusion phase and the matrix phase; thus

$$U_{ri} = A_1 r - \frac{6\nu_i}{1 - 2\nu_i} A_2 r^3$$

$$U_{\theta i} = A_1 r - \frac{(7 - 4\nu_i)}{1 - 2\nu_i} A_2 r^3$$
(2.11)

and

$$U_{rm} = B_1 r + \frac{3B_3}{r^4} - \frac{5 - 4\nu_m}{1 - 2\nu_m} \frac{B_4}{r^2}$$

$$U_{\theta m} = B_1 r - \frac{2B_3}{r^4} + \frac{2B_4}{r^2}$$
(2.12)

Génie aérospatiale

Génie civile

Génie mécanique

Génie des procédés

Génie chimique

Bio ingénierie

Microélectronique

