SCHEMAT OCENIANIA ARKUSZA EGZAMINACYJNEGO II

SCHEMAT OCENIANIA ARKUSZA EGZAMINACYJNEGO II					
Nr zadania	Nr czynności	Etapy rozwiązania zadania	Liczba punktów		
11	11.1	Wyznaczenie zbioru argumentów, dla których liczba logarytmowana jest dodatnia: $x \in (-4,-1) \cup (1,+\infty)$	1 p		
	11.2	Wyznaczenie zbioru argumentów, dla których podstawa logarytmu jest dodatnia i różna od 1: $x \in (-\infty; -2) \cup (-2; -\sqrt{3}) \cup (\sqrt{3}; 2) \cup (2; +\infty)$	1 p		
	11.3	Wyznaczenie dziedziny funkcji: $x \in (-4; -2) \cup (-2; -\sqrt{3}) \cup (\sqrt{3}; 2) \cup (2; +\infty)$	1 p		
12	12.1	Za przedstawienie metody szkicowania wykresu, np. poprzez obliczanie współrzędnych punktów należących do wykresu lub przekształcenie wzoru funkcji, np. do postaci: $f(x) = 2\cos\left(x + \frac{\pi}{3}\right)$	1 p		
	12.2	Naszkicowanie wykresu funkcji	1 p		
	12.3	Rozwiązanie równania (po 1 pkt za metodę i rozwiązanie): $x = 2k\pi \lor x = -\frac{2}{3}\pi + 2k\pi$, gdzie $k \in C$	2 p		
13	13.1	Obliczenie prawdopodobieństwa otrzymania w jednym rzucie tej samej liczby oczek na obu kostkach: $p = \frac{1}{6}$	1 p		
	13.2	Wykorzystanie schematu Bernoulliego i określenie: p, q, N, k : $p = \frac{1}{6}, q = \frac{5}{6}, N = n, k \ge 1$	1 p		
	13.3	Obliczenie prawdopodobieństwa otrzymania w n rzutach co najmniej raz tej samej liczby oczek na obu kostkach: $P_n(k \ge 1) = 1 - P_n(0) = 1 - \binom{n}{0} \left(\frac{1}{6}\right)^0 \left(\frac{5}{6}\right)^n = 1 - \left(\frac{5}{6}\right)^n$	1 p		
	13.4	Rozwiązanie nierówności wykładniczej i sformułowanie odpowiedzi: $n \in \{1, 2, 3\}$	1 p		
14	14.1	Wyznaczenie: a_1, r, S_n jeśli $a_n = 3n - 2$ (w tym 1 p. za metodę oraz 1 p. za obliczenia): $a_1 = 1, r = 3, S_n = \frac{3n^2 - n}{2}$	2 p		
	14.2	Wyznaczenie: b_1 , r' , S'_n jeśli $b_n = 2n + 3$ (w tym 1 p. za metodę oraz 1 p. za obliczenia): $b_1 = 5$, $r' = 2$, $S'_n = n^2 + 4n$	2 p		
	14.3	Obliczenie granicy: $\frac{3}{2}$	1 p		

			1
15	15.1	Zapisanie wektora \overrightarrow{MN} jako sumy odpowiednich wektorów: $ \overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{AB} + \overrightarrow{BN} $ $ \overrightarrow{MN} = \overrightarrow{MD} + \overrightarrow{DC} + \overrightarrow{CN} $ $ (2)$	1 p
	15.2	Dodanie równości (1) i (2) stronami	1 p
	15.3	Przekształcenie wyniku do prostej postaci: $ \frac{1}{2} \cdot \left(\overrightarrow{AB} + \overrightarrow{DC} \right) $	1 p
	15.4	Zinterpretowanie otrzymanego wyniku	1 p
	16.1	Sporządzenie rysunku wraz z oznaczeniami i zaznaczenie kąta nachylenia:	2 p
16	16.2	Obliczenie długości wysokości h trapez u : $h = \frac{2\sqrt{3}a}{3}$	1 p
	16.3	Obliczenie długości krótszej podstawy b trapezu: $b = \frac{\left(3\sqrt{2} - 2\sqrt{3}\right)a}{3}$	1 p
	16.4	Obliczenie pola <i>S</i> trapezu: $S = \frac{2(\sqrt{6} - 1)a^2}{3}$	1 p
	17.1	Wprowadzenie oznaczeń, np.: $x = \sqrt[3]{5\sqrt{2} + 7}, y = \sqrt[3]{5\sqrt{2} - 7}, a = x - y$ lub $a = \sqrt[3]{5\sqrt{2} + 7} - \sqrt[3]{5\sqrt{2} - 7}$ i $a^3 = \left(\sqrt[3]{5\sqrt{2} + 7} - \sqrt[3]{5\sqrt{2} - 7}\right)^3$	1 p
	17.2	Skorzystanie z tożsamości: $(x-y)^3 = x^3 - y^3 - 3xy(x-y)$	1 p
17	17.3	Wykorzystanie tożsamości i oznaczeń do uzyskania równania z niewiadomą a (w tym 1 p. za metodę oraz 1 p. za obliczenia): $a^3 = 14 - 3a$ (*)	2 p
	17.4	Wyznaczenie całkowitego pierwiastka równania (*): $a = 2$	1 p
	17.5	Zapisanie równania (*) w postaci iloczynowej: $(a-2)(a^2+2a+7)=0$ lub stwierdzenie, że równanie (*) ma jeden pierwiastek	1 p
	17.6	Wykazanie, że $\sqrt[3]{5\sqrt{2}+7} - \sqrt[3]{5\sqrt{2}-7}$ jest liczbą całkowitą - sprawdzenie warunku $\Delta\langle 0$ i uzasadnienie, że $a=2$ jest jedynym rzeczywistym pierwiastkiem równania (*)	1 p

		D 1 : 11 1 1 / : 1 1 : : :	
18	18.1	Doprowadzenie układu do równania jednej zmiennej i rozwią- zanie	2 p
	18.2	Wyznaczenie współrzędnych wierzchołków czworokąta: $A = (-1; -3), B = (1; -3), C = (3; 5), D = (-3; 5)$	1 p
	18.3	Uzasadnienie że czworokąt $ABCD$ jest trapezem równoramiennym, np. $AB \parallel CD$ oraz $\mid AD \mid = \mid BC \mid$	1 p
	18.4	Wyznaczenie równania symetralnej odcinka <i>BC</i> : $x + 4y - 6 = 0$	1 p
	18.5	Wyznaczenie współrzędnych środka okręgu: $O = \left(0, \frac{3}{2}\right)$	1 p
	18.6	Obliczenie długości promienia okręgu: $r = \frac{\sqrt{85}}{2}$	1 p
	18.7	Zapisanie równania okręgu: $x^2 + \left(y - \frac{3}{2}\right)^2 = \frac{85}{4}$	1 p
	19.1	Określenie warunków istnienia rzeczywistych pierwiastków równania: $\Delta \ge 0$ dla $m \in \left\langle -6; \frac{4}{3} \right\rangle$	1 p
	19.2	Określenie wzoru funkcji $m \to f(m) = \frac{x_1 + x_2}{x_1 x_2}$: $f(m) = \frac{-m + 5}{\left(m + \frac{1}{2}\right)^2}$	1 p
	19.3	Określenie dziedziny funkcji $f: m \in \left\langle -6; -\frac{1}{2} \right\rangle \cup \left(-\frac{1}{2}; \frac{4}{3} \right\rangle$	1 p
40	19.4	Zastosowanie wzoru na pochodną ilorazu	1 p
19	19.5	Obliczenie pochodnej funkcji f	1 p
	19.6	Określenie miejsca zerowego pochodnej funkcji f : $m = 10\frac{1}{2}$	1 p
	19.7	Obliczenie wartości $f(-6)$ i $f(\frac{4}{3})$: $f(-6) = \frac{4}{11}$, $f(\frac{4}{3}) = \frac{12}{11}$	2 p
	19.8	Zbadanie znaku pochodnej funkcji: $f'(m) > 0$ dla $m \in \left(-6 : -\frac{1}{2}\right)$, $f'(m) < 0$ dla $m \in \left(-\frac{1}{2}; \frac{4}{3}\right)$	1 p
	19.9	Uzasadnienie, że $f(-6) = \frac{4}{11}$ jest najmniejszą wartością funkcji ($m = \frac{21}{2}$ leży poza przedziałem określoności).	1 p

Za prawidłowe rozwiązanie każdego z zadań inną metodą (zgodną z poleceniem) od przedstawionej w schemacie przyznajemy maksymalną liczbę punktów.