Math and Proofs Class 2

September 26th, 2017

Recap of Last Class

- We looked at 2 examples of axiom systems
 - Euclidean Geometry
 - Peano Axioms of Arithmetic
- Left off before proving that addition is commutative

Peano Axioms

- Zero is a number
- If a is a number, the successor of a is a number
- Zero is not the successor of a number
- Two numbers of which the successors are equal are themselves equal
- If a set S of numbers contains zero and also the successor of every number in S, then every number is in S.

Set Theory

- System we use today
- Pioneered by Georg Cantor in the 1890s
- Kronecker: I don't know what predominates in Cantor's Theory philosophy or theology, but I am sure that there is no mathematics there
- Feferman: Simply not relevant to everyday mathematics
- Hilbert: No one will drive us from the paradise which Cantor created for us
- Subsumes both Euclidean geometry and the Peano axioms (and much else)
- (Much of this material is taken from *Doing Mathematics* by Steven Galovich and from *An Outline of Set Theory* by James M. Henle)

Set Theory (cont.)

- Undefined terms: set, element
- Axioms: ZFC
 - ▶ Equality: Two sets are equal if and only if they have the same elements
 - ▶ Empty Set: There is a set with no elements (called the *empty set*: \emptyset)
 - ▶ Union: If d is a set of sets, then the union of these sets is a set
 - ▶ Power Set: If d is a set, then the collection of all subsets of d is also a set (called the power set: $\mathcal{P}(d)$)
 - Many more, some of which are quite technical
- Notation: =, $\{\}$, \in , \subseteq , \emptyset , \cup , \cap , \setminus , $\mathcal{P}(d)$

Set Theory Results

- For any set A, $\emptyset \subseteq A$
- ② For any set A, $A \subseteq A$
- **1** If A, B, and C are sets where $A \subset B$ and $B \subset C$, then $A \subset C$
- **1** Let A and B be sets. Then A = B if and only if $A \subset B$ and $B \subset A$.

Exercise 1

Let $A = \{x, y, \{x, y\}\}$. True or false:

- **②** $\{x,y\}$ ∈ *A*

Exercise 2

Let $A = \{1, 2, 3\}, B = \{2, 3, 4\}, C = \{4, 5, 6\}$. Find each of the following sets:

- \bullet $A \cup B$
- $a \cap B$
- \bullet $B \cap C$
- A \ B

8 / 10

More Set Theory Results

Let A, B, C be sets

Next Time

• More set theory!