REPASO Y APOYO

OBJETIVO 1

MANEJAR LAS UNIDADES DE LONGITUD, MASA Y CAPACIDAD

Nombre: Curso: Fecha:

- Una magnitud es una cualidad, característica... de un objeto que podemos medir. Ejemplo: longitud, masa, capacidad, superficie, volumen, velocidad...
- Las magnitudes se expresan en unidades de medida.

Ejemplo: metros, kilómetros, kilogramos, gramos, centilitros, metros cuadrados, metros cúbicos, kilómetros por hora...

ACTIVIDADES

1 Une cada magnitud con su unidad correspondiente.

El agua de un embalse
La capacidad de una lata de refresco
La capacidad de una piscina
La velocidad de un ciclista
El peso de un saco de patatas
La longitud de un bolígrafo
El área de un campo de girasoles
El peso de un camión
La altura de un rascacielos

36 kilómetros por hora	
7 450 metros cuadrados	
45 kilogramos	
12 000 litros	
4 500 kilogramos	
350 metros	
33 centilitros	
15 centímetros	
145 hectómetros cúbicos	

- El Sistema Métrico Decimal es un sistema de medida **decimal** porque las unidades se relacionan entre sí mediante **potencias de 10**.
- Para **multiplicar** un número decimal por **10, 100, 1000**... se desplaza la coma a la derecha tantos lugares como ceros tenga la unidad: 1, 2, 3...

$$3,47 \cdot 100 = 347$$

$$5,89 \cdot 1000 = 5890$$

• Para **dividir** un número decimal entre **10, 100, 1000**... se desplaza la coma a la izquierda tantos lugares como ceros tenga la unidad: 1, 2, 3...

$$25,87:100 = 0,2587$$

$$2,9:10=0,29$$

2 Realiza las siguientes operaciones.

a)
$$34,56 \cdot 100 =$$

d)
$$0.71 \cdot 1000 =$$

g)
$$139 \cdot 10 =$$

b)
$$0.198 \cdot 100 =$$

e)
$$3528 \cdot 10 =$$

h)
$$7 \cdot 10000 =$$

f)
$$0.1 \cdot 10 =$$

3 Calcula.

d)
$$0.37:10 =$$

e)
$$0.9:10 =$$

7

MANEJAR LAS UNIDADES DE LONGITUD, MASA Y CAPACIDAD

Nombre:	Curso:	Fecha:

UNIDADES DE LONGITUD

- El **metro** es la unidad principal de longitud. Abreviadamente se escribe **m**.
- Los múltiplos (unidades mayores) y submúltiplos (unidades menores) del metro son:

Múltiplos del metro		Unidad principal	Subn	núltiplos del r	metro	
1 000 m kilómetro (km)	100 m hectómetro (hm)	10 m decámetro (dam)	metro (m)	0,1 m decímetro (dm)	0,01 m centímetro (cm)	0,001 m milímetro (mm)

- Cada unidad, en la vida real, se emplea para medir:
 - Grandes distancias como carreteras, vías férreas: km, hm.
 - Distancias intermedias como calles, alturas: dam, m.
 - Pequeñas medidas como fotografías, mobiliario: dm, cm.
 - Medidas reducidas como alfileres, insectos: mm.
- Para transformar una unidad de longitud en otra se multiplica o se divide por 10.

- 4 Asocia una unidad de longitud con cada ejemplo.
 - a) La altura de una casa.
- d) La distancia entre dos ciudades.
- g) Una ventana.

- b) La longitud de una hormiga.
- e) El tablero de tu pupitre.
- h) Un imperdible.

c) Tu altura.

- f) La anchura de una calle.
- i) Tu habitación.
- 5 Ordena, de menor a mayor (<), las medidas. Toma como referencia el metro, pasando todas las medidas a esta unidad.

1500 cm 3,5 m 94,7 dm 0,15 km 0,03 dam 6341 mm 1,3 m 2,04 km 1000 m

6 Completa la siguiente tabla.

km	hm	dam	m	dm	cm	mm
2,1						
				13 472		
			34			
	0,33					
		9,35				
					7 749	
						54

MANEJAR LAS UNIDADES DE LONGITUD, MASA Y CAPACIDAD

Nombre:	Curso:	Fecha:

2 Expresa las siguientes altitudes de estas montañas en hectómetros y kilómetros.

Nombre	Altitud (en m)	Altitud (en hm)	Altitud (en km)
Everest	8 844		
Mont Blanc	4810		
Mulhacén	3 482		
Teide	3718		
Almanzor	2 592		
Aneto	3 404		

8 Expresa la longitud de estos ríos en hectómetros y metros.

Nombre	Longitud (en km)	Longitud (en hm)	Longitud (en m)
Tajo	1 120		
Ebro	927		
Duero	913		
Guadiana	743		
Guadalquivir	680		
Júcar	535		
Segura	341		
Miño	340		

9 Completa.

a)
$$5.5 \text{ km} = \dots \text{m}$$

c)
$$6,7 \text{ dam} = \dots m$$

d)
$$12 \text{ km} = \dots \text{m}$$

f)
$$1,60 \text{ dm} = \dots \text{m}$$

MANEJAR LAS UNIDADES DE LONGITUD, MASA Y CAPACIDAD

Nombre: Curso: Fecha:

UNIDADES DE MASA

- El **kilogramo** y el **gramo** son las unidades principales de masa. Abreviadamente se escriben **kg** y **g**.
- Los múltiplos (*unidades mayores*) y submúltiplos (*unidades menores*) del gramo son:

Múltiplos del gramo		Unidad principal	Subm	núltiplos del g	gramo		
kilog	00 g ramo :g)	100 g hectogramo (hg)	10 g decagramo (dag)	gramo (g)	0,1 g decigramo (dg)	0,01 g centigramo (cg)	0,001 g miligramo (mg)

• Para medir grandes masas se utilizan:

Unidades	Símbolo	Equivalencias (en kg)	Equivalencia (en g)
Tonelada métrica	t	1 000 kg	1 000 000 g
Quintal métrico	q	100 kg	100 000 g
Miriagramo	mag	10 kg	10 000 g

Ejemplos: carga de un avión, envíos de alimentos, masa de un camión, etc.

• Para transformar una unidad de masa en otra se multiplica o se divide por 10.

Ordena, de mayor a menor (>), las medidas. Toma como referencia el kilogramo y pasa todas las medidas a esta unidad.

27 dag 27 dg 56 g 0,23 hg 1,02 kg 8,34 cg 345 mg 0,5 t 1,1 q

11 Completa la siguiente tabla.

t	q	kg	g	dg	cg	mg
0,5						
				31 872		
			65			
	0,31					
		9				
					1749	
						59

12 Completa.

a)
$$2.5 \text{ kg} = \dots g$$

c)
$$0.7 \text{ dag} = \dots g$$

e)
$$587 \text{ cg} = \dots \text{g}$$

b)
$$5345 \text{ mg} = \dots \text{kg}$$

d)
$$1258 g =kg$$

f)
$$6,6 \, dg = kg$$

REPASO Y APOYO OBJETIVO 1

MANEJAR LAS UNIDADES DE LONGITUD, MASA Y CAPACIDAD

Nombre:	Curso:	Fecha:	

UNIDADES DE CAPACIDAD

- $\bullet\,$ El **litro** es la unidad principal de capacidad. Abreviadamente se escribe $\ell.$
- Los múltiplos (*unidades mayores*) y submúltiplos (*unidades menores*) del litro son:

Múltiplos del litro			Unidad principal	Submúltiplos del LITRO		
1 000 ℓ kilolitro (kl)	100 l hectolitro (hl)	10 & decalitro (dal)	litro (£)	0,1 ℓ decilitro (dl)	0,01 & centilitro (cl)	0,001 ℓ mililitro (ml)

• Para transformar una unidad de capacidad en otra se multiplica o se divide por 10.

Ordena, de menor a mayor (<), las siguientes medidas. Toma como referencia el litro y pasa todas las medidas a esta unidad.

250 cl 1500 ml 2,5 l 0,005 kl 0,7 dal 19 dl 7 hl 30 l 450 cl

7

MANEJAR LAS UNIDADES DE LONGITUD, MASA Y CAPACIDAD

Nombre: Curso: Fecha:

14 Completa la siguiente tabla.

kl	hl	dal	Ł	dl	cl	ml
1,5						
				50		
					400	
	3,5					
			6			
						5 600
		14				

15 Completa.

c) 0,7 dal
$$=$$
 ℓ

b)
$$3295 \, \text{ml} = \dots \ell$$

f)
$$9,6 \, dl = \dots \ell$$

Calcula las siguientes cantidades, expresando el resultado en litros.

c)
$$3/4 \text{ de } 1000 \text{ kl} =$$

b)
$$2/5$$
 de 2500 cl =

12 La capacidad de una piscina es de 75 kl. Actualmente contiene 300 hl. ¿Cuántos litros faltan para que se llene?

Queremos llenar de vino un tonel, que tiene 5 dal de capacidad, con recipientes de 10 ℓ . ¿Cuántos recipientes de 10 ℓ necesitaremos?

7

MANEJAR LAS UNIDADES DE SUPERFICIE Y VOLUMEN

Nombre:	Curso:	Fecha:
Nombre.	Curso.	i cona.

UNIDADES DE SUPERFICIE

- El **metro cuadrado** es la unidad principal de superficie. Se escribe **m**².
- Un metro cuadrado es la superficie de un cuadrado que tiene 1 metro de lado.
- Los múltiplos (*unidades mayores*) y submúltiplos (*unidades menores*) del m² son:

Múltiplos del metro cuadrado		Unidad principal	Submúltiplos del metro cuadrado			
1 000 000 m² kilómetro cuadrado (km²)	10 000 m² hectómetro cuadrado (hm²)	100 m ² decámetro cuadrado (dam ²)	metro cuadrado (m²)	0,01 m ² decímetro cuadrado (dm²)	0,0001 m ² centímetro cuadrado (cm ²)	0,000001 m² milímetro cuadrado (mm²)

• Para medir superficies de grandes objetos se utilizan:

• Para medir grandes superficies, como extensiones agrarias o terrestres, se emplean otras unidades:

Unidades	Símbolo	Equivalencia	Equivalencia (en m²)	
Hectárea	ha	1 hm²	10 000 m ²	
Área	а	1 dam²	100 m²	
Centiárea	са	1 m ²	1 m ²	

ACTIVIDADES

- 1 Si 1 m² es la superficie de un cuadrado de 1 m de lado, expresa.
 - a) 1 dm²
- b) 1 cm²
- c) 1 mm²
- d) 1 dam²
- e) 1 hm²
- f) 1 km²
- 2 Indica qué unidad de medida utilizarías para expresar las siguientes superficies.
 - a) Una calculadora de bolsillo.

d) Un campo de fútbol.

b) La terraza de una casa.

e) Un botón.

c) Un campo de girasoles.

- f) El suelo del aula.
- 3 Ordena, de menor a mayor (<), las siguientes medidas. Toma como referencia el metro cuadrado y pasa todas las medidas a esta unidad.

25,4 km² 610 m² 34 000 dm² 157 530 cm² 2,4 hm² 2 dam² 234 971 mm²

MANEJAR LAS UNIDADES DE SUPERFICIE Y VOLUMEN

Fecha: Nombre: Curso:

Completa la siguiente tabla.

km²	ha	hm²	а	dam²	m²
	0,5				
			43		
0,25					
		30			
				625	
					2500

5 Completa.

a)
$$850 \text{ dm}^2 = \dots \text{m}^2$$

c)
$$7 \text{ m}^2 = \dots \text{dm}^2$$

e)
$$785 \text{ cm}^2 = \dots \text{dm}^2$$

b)
$$3295 \text{ mm}^2 = \dots \text{m}^2$$

d)
$$36.5 \text{ cm}^2 = \dots \text{mm}^2$$

f)
$$6.9 \text{ dm}^2 = \dots \text{mm}^2$$

6 El área de un cuadrado es el producto de sus lados, $A = I \cdot I$. Calcula el área de estos cuadrados en cm² y dm². Fíjate en el ejemplo y dibuja las figuras.

a)
$$I = 5 \text{ cm}$$

b)
$$I = 3 \text{ cm}$$

c)
$$I = 4 \text{ cm}$$

$$I = 5 \text{ cm}$$

$$I = 5 \, \text{cm}$$

$$A = I \cdot I = 5 \text{ cm} \cdot 5 \text{ cm} = 25 \text{ cm}^2$$

$$25 \text{ cm}^2$$
: $100 = 0.25 \text{ dm}^2$

If area de un rectángulo es el producto de base por altura, $A = b \cdot a$. Calcula el área de estos rectángulos en cm² y dm². Fíjate en el ejemplo y dibuja las figuras.

a)
$$b = 5 \text{ cm}$$
 $a = 3 \text{ cm}$

$$a = 3 \, \mathrm{cm}$$

b)
$$b = 4 \text{ cm}$$
 $a = 2 \text{ cm}$

c)
$$b = 6 \text{ cm}$$
 $a = 4 \text{ cm}$

$$a=3 \text{ cm}$$

$$b=5\,\mathrm{cm}$$

$$A = b \cdot a = 5 \text{ cm} \cdot 3 \text{ cm} = 15 \text{ cm}^2$$

$$15 \text{ cm}^2$$
: $100 = 0,15 \text{ dm}^2$

- 8 El suelo de una pista de gimnasia es un cuadrado cuyo lado mide 20 m. Determina su área.
- 2 Un campo de fútbol mide 100 m de banda y 70 m de fondo. Expresa el área en m² y a.

MANEJAR LAS UNIDADES DE SUPERFICIE Y VOLUMEN

Nombre: Curso: Fecha:

UNIDADES DE VOLUMEN

- El **metro cúbico** es la unidad principal de volumen. Se escribe **m**³.
- Un metro cúbico es el volumen de un cubo que tiene 1 metro de arista.
- Los múltiplos del m³ son cubos que tienen de arista múltiplos del metro:
 - 1 decámetro cúbico, dam³, es un cubo que tiene de arista 1 dam.
 - 1 hectómetro cúbico, hm³, es un cubo que tiene de arista 1 hm.
 - 1 kilómetro cúbico, km³, es un cubo que tiene de arista 1 km.
- Los submúltiplos del m³ son cubos que tienen de arista submúltiplos del metro:
 - 1 decímetro cúbico, dm³, es un cubo que tiene de arista 1 dm.
 - 1 centímetro cúbico, cm³, es un cubo que tiene de arista 1 cm.
 - 1 milímetro cúbico, mm³, es un cubo que tiene de arista 1 mm.

• Para transformar una unidad de volumen en otra se multiplica o se divide por 1000.

• Principales equivalencias: 1 hm³ = 1000 dam³ = 1000 000 m³

$$1 \, \text{m}^3 = 1000 \, \text{dm}^3 = 1000 \, 000 \, \text{cm}^3$$

$$1 \, dm^3 = 1000 \, cm^3 = 1000000 \, mm^3$$

- Indica qué unidad de medida utilizarías para expresar los siguientes volúmenes.
 - a) Una piscina.

d) Un embalse.

b) Un dado de parchís.

e) Tu aula.

c) Un cartón de leche.

- f) El maletero de una furgoneta.
- Ordena, de mayor a menor (>), las siguientes medidas. Toma como referencia el metro cúbico y pasa todas las medidas a esta unidad.

0,4 km³ 61 dam³ 54 000 m³ 3 157 530 cm³ 3,4 hm³ 2,01 hm³ 23 234 971 mm³

12 Completa.

a) $950 \text{ dm}^3 = \dots \text{m}^3$

c) $5 \text{ m}^3 = \dots \text{dm}^3$

e) $385 \text{ cm}^3 = \dots \text{dm}^3$

b) $3295 \text{ mm}^3 = \dots \text{cm}^3$

d) $9,65 \text{ cm}^3 = \dots \text{mm}^3$

f) $0,369 \text{ dm}^3 = \dots \text{mm}^3$

MANEJAR LAS UNIDADES DE SUPERFICIE Y VOLUMEN

Nombre: Curso: Fecha:

El volumen de un cuerpo es la cantidad de espacio que ocupa. Sabemos que 1 dm 3 = 1 000 cm 3 , es decir, que en un cubo de 1 dm (10 cm) de arista caben 1 000 cubos de 1 cm de arista.

$$1 \text{ dm}^3 = 10 \cdot 10 \cdot 10 = 1000 \text{ cm}^3$$

El volumen de un cubo es igual a: largo \cdot ancho \cdot alto $= a \cdot a \cdot a = a^3$

Calcula el volumen de un cubo cuya arista mide 3 cm.

15 Si cada cubo mide 1 cm³, calcula el volumen de las figuras.

VOLUMEN DEL ORTOEDRO

Existen figuras geométricas que tienen una forma parecida a la del cubo.

Por ejemplo, una piscina, tu aula, una caja de cerillas o un rascacielos. Calcular su volumen es muy sencillo: sus aristas no son iguales $(a, b \ y \ c)$ y la fórmula es:

$$V = a \cdot b \cdot c$$

Estas figuras se llaman ortoedros, y son prismas geométricos cuyas caras son todas rectángulos.

16 Una caja de cerillas tiene las siguientes dimensiones: 5 cm, 3 cm y 2 cm. Halla su volumen.

Calcula el volumen de una piscina de dimensiones: 10 m de largo, 8 m de ancho y 2 m de alto.

Fecha:

COMPRENDER LA RELACIÓN ENTRE LAS UNIDADES DE VOLUMEN, CAPACIDAD Y MASA

Nombre: Curso:

RELACIÓN ENTRE LAS UNIDADES DE CAPACIDAD Y VOLUMEN

• Si tomamos un recipiente de agua de 1 l de capacidad y lo vertemos en 1 dm³, observamos que cabe exactamente.

1 litro es el volumen de un cubo que tiene 1 dm de arista, es decir, la capacidad de 1 dm³.

Por tanto, 1 $\ell = 1 \text{ dm}^3$.

• Si tomamos un recipiente de agua de 1 ml de capacidad y lo vertemos en 1 cm³, observamos que cabe exactamente.

1 mililitro es el volumen de un cubo que tiene 1 cm de arista, es decir, la capacidad de 1 cm³.

Por tanto, $1 \text{ ml} = 1 \text{ cm}^3$.

ACTIVIDADES

1 Recuerda las unidades de capacidad y volumen, y establece la equivalencia entre m³, dm³, ℓ y kl.

$$1 \text{ m}^3 = \dots \text{dm}^3 = \dots \ell = \dots \text{kI}$$

2 Expresa en ℓ.

a)
$$4 \text{ m}^3 = \dots \ell$$

b)
$$2000 \text{ mm}^3 = \dots \ell$$

c)
$$50 \text{ dm}^3 = \dots \ell$$

d)
$$3.5 \text{ kl} = \dots \ell$$

e)
$$3000 \text{ cm}^3 = \dots \ell$$

f)
$$0.5 \text{ m}^3 = \dots \ell$$

3 Expresa en dm³.

a)
$$55 \ell = \dots dm^3$$

b)
$$35 dl = dm^3$$

c)
$$10 \text{ dal} = \dots \text{dm}^3$$

d)
$$0,35 \text{ m}^3 = \dots \text{dm}^3$$

e)
$$0.25 \text{ kl} = \dots \text{dm}^3$$

f)
$$5000 \text{ ml} = \dots \text{dm}^3$$

4 Expresa en cm³.

a)
$$125 \,\ell \, y \, 9 \, dl = \, cm^3$$

b) 12 dal y 8
$$\ell = cm^3$$

c) 7 hl y 5 dl =
$$cm^3$$

d)
$$2 \text{ kl y } 5 \ell = \dots \text{cm}^3$$

e)
$$3 \ell y 25 dl = \dots cm^3$$

f)
$$12 \text{ dl y } 45 \text{ cl} = \dots \text{cm}^3$$

COMPRENDER LA RELACIÓN ENTRE LAS UNIDADES DE VOLUMEN, CAPACIDAD Y MASA

Nombre: Curso: Fecha:

RELACIÓN ENTRE LAS UNIDADES DE MASA Y VOLUMEN

- Si tomamos un recipiente con agua destilada de 1 l de capacidad y lo pesamos en una balanza, esta se equilibraría exactamente con una pesa de 1 kg.
 - 1 kg es la masa que tiene 1 dm³ de agua destilada.

Por tanto, $1 \text{ kg} = 1 \ell$.

- Y si tomamos un recipiente con agua destilada de 1 ml de capacidad (que ocupa 1 cm³) y lo pesamos en una balanza, esta se equilibraría exactamente con una pesa de 1 g.
 - 1 g es la masa que tiene 1 cm³ de agua destilada.

Por tanto, $1 g = 1 cm^3$.

TABLA DE EQUIVALENCIAS

Unidades de volumen	m³			dm³			cm ³
Unidades de capacidad	kl	hl	dal	٤	dl	cl	ml
Unidades de masa	t	q	mag	kg	hg	dag	g

$$1 \ell = 1 dm^3 = 1 kg$$

5 Expresa en kilogramos los siguientes volúmenes y capacidades de agua destilada.

a) 45
$$\ell = \dots kg$$

c)
$$0.5 \text{ kl} = \dots \text{kg}$$

e)
$$3000 \text{ cm}^3 = \dots \text{kg}$$

b)
$$20 \text{ dm}^3 = \dots \text{kg}$$

d)
$$3.5 \, \text{kl} = \dots \, \text{kg}$$

f)
$$0.5 \text{ m}^3 = \dots \text{kg}$$

6 Expresa en gramos estos volúmenes y capacidades de agua destilada.

a) 55
$$\ell = \dots$$
 g

c)
$$1 \, dal = g$$

e)
$$0.25 cl =g$$

b)
$$35 \, dl = \dots g$$

d)
$$0.357 \text{ m}^3 = \dots \text{g}$$

f)
$$5\,000\,\text{ml} = \dots g$$

- 7 Un embalse contiene 95 hm³ de agua. Calcula.
 - a) Su capacidad en m³.

- b) Su capacidad en litros.
- c) Si fuera agua destilada, ¿cuál sería su masa en toneladas y en kilogramos?