6 The time taken for an object to fall from rest through a certain distance on Mars is $T_{\rm M}$. The time taken for the same object to fall from rest through the same distance on Earth is $T_{\rm E}$. The acceleration of free fall on Mars is $3.71\,{\rm m\,s^{-2}}$.

Assume that air resistance is negligible on both Earth and Mars.

What is the ratio $\frac{T_{\rm M}}{T_{\rm E}}$?

- **A** 0.378
- **B** 0.615
- **C** 1.63
- **D** 2.64

- 7 Which statement about mass is correct?
 - A Mass has a magnitude and a direction.
 - **B** Mass resists changes in motion.
 - **C** The greater the mass of an object, the greater its acceleration when falling in a vacuum.
 - **D** The mass of an object depends on its location.
- **8** A snooker ball has a mass of 200 g. It hits the cushion of a snooker table and rebounds along its original path.

The ball arrives at the cushion with a speed of $14.0\,\mathrm{m\,s^{-1}}$ and then leaves it with a speed of $7.0\,\mathrm{m\,s^{-1}}$. The ball and the cushion are in contact for a time of $0.60\,\mathrm{s}$.

What is the average force exerted on the ball by the cushion?

- **A** 1.4 N
- **B** 2.3 N
- **C** 4.2 N
- **D** 7.0 N
- **9** A ball falls from rest through air and eventually reaches a constant velocity.

For this fall, forces *X* and *Y* vary with time as shown.

What could be forces X and Y?

	force X	force Y
Α	air resistance	resultant force
В	air resistance	weight
С	upthrust	resultant force
D	upthrust	weight