High-dimensional Mixed Linear Regression

Kiyeon Jeon

University of Texas at Austin kiyeonj@utexas.edu

August 13, 2018

- Problem Setting
- 2 Algorithm
- Simulation
 - Symmetric case
 - Different Proportion
 - Low-dimensional case
 - High-dimensional case

Problem Setting : High-dimensional Mixed Linear Regression

- $y_i = \langle x_i, \beta_1^{\star} \rangle z_i + \langle x_i, \beta_2^{\star} \rangle (1 z_i) + w_i$ for $i = 1, \dots, n$
- $x_i, \beta_i^{\star} \in \mathbb{R}^d, z_i \in \{0, 1\}, w_i \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2)$
- $d \gg n, \beta_k^{\star}$ is sparse
- **Goal**: infer β_1^{\star} , β_2^{\star} given $\{(x_i, y_i)\}$

- Problem Setting
- 2 Algorithm
- Simulation
 - Symmetric case
 - Different Proportion
 - Low-dimensional case
 - High-dimensional case

Algorithm

Algorithm 1: Fixed Threshold

```
Input: \{(x_i, y_i)\}_{i=1,2,...,n}, \beta^{(0)}, T, G, s, \alpha(< 0.5), \eta
```

- 1: for t = 1 to T do
- 2: *J* ← ∅
- 3: $J \leftarrow \text{ the smallest } (\alpha n) \text{ index of } |y_i \langle x_i, \beta^{(t)} \rangle|$
- 4: $\beta^{(t+1)} \leftarrow \text{Update}(X, Y, \beta^{(t)}, J, \eta, s, G)$
- 5: end for

Algorithm 2: Reduced Threshold

Input:
$$\{(x_i, y_i)\}_{i=1,2,...,n}, \beta^{(0)}, T, G, s, \alpha(< 0.5), \eta, K$$

- 1: **for** t = 1 to T **do**
- 2: $J \leftarrow \emptyset$
- 3: $J \leftarrow \text{ the smallest } \max\{(n-(t-1)K), n\alpha\} \text{ index of } |y_i \langle x_i, \beta^{(t)} \rangle|$
- 4: $\beta^{(t+1)} \leftarrow \text{Update}(X, Y, \hat{\beta}^{(t)}, \hat{J}, \eta, s, G)$
- 5: end for

Algorithm

Algorithm 3: Reduced Threshold for Mixed Linear Regression

Input:Initial $\beta^{(0)}$, T, G, s, C, $\{(x_i, y_i)\}_{i=1,2,...,n}$

1: $\beta_1, S_1 \leftarrow \text{Threshold } (X, Y, \beta^{(0)}, T, G, s, \alpha, \eta, K)$

2: $\beta_2, S_2 \leftarrow \text{Robust Regression } (X, Y, \beta^{(0)}, [n] \setminus S_1)$

- Problem Setting
- 2 Algorithm
- Simulation
 - Symmetric case
 - Different Proportion
 - Low-dimensional case
 - High-dimensional case

- Problem Setting
- 2 Algorithm
- Simulation
 - Symmetric case
 - Different Proportion
 - Low-dimensional case
 - High-dimensional case

8 / 20

Symmetric case - x symmetric

$$y_1 = X\beta + e_1, y_2 = -X\beta + e_2$$

(n, d, σ)	(10,1,0)
Fixed	(5.551e-17 0.05205)
Reduced	,
	(2.776e-17, 4.636e-17)
EM-init	(2.775e-17, 4.635e-17)
EM-rand	(5.551e-17, 0.03268)

Table: (median,mean) over 100 trials(MLR)

Symmetric case - xy symmetric

$$y_1 = X\beta + e_1, y_2 = -X\beta + e_2$$

(n, d, σ)	(10,1,0)
Fixed	(5.551e-17, 03604)
Reduced	(2.775e-17, 4.561e-17)
EM-init	(2.775e-17, 4.561e-17)
EM-rand	(1.110e-16, 0.03049)

Table: (median,mean) over 100 trials(MLR)

- Problem Setting
- 2 Algorithm
- Simulation
 - Symmetric case
 - Different Proportion
 - Low-dimensional case
 - High-dimensional case

Simulation Results - Different Proportion

(n, d, p, σ)	(1000,100,0.1,0)	(1000,100,0.2,0)	(1000,100,0.4,0)
Fixed	(3.968e-12, 4.018e-12)	(4.524e-12,4.510e-12)	(5.911e-12,5.8789e-12)
Reduced	(5.590e-12, 5.643e-12)	(6.675e-12,6.680e-12)	(1.253e-11,1.269e-11)
EM-init	(0.03459,0.05530)	(2.638e-17,0.02041)	(4.579e-16,0.01127)
EM-rand	(0.1154,0.1454)	(0.1347,0.1993)	(0.7476,0.6216)

(median, mean) over 100 trials(MLR) - Grad Descent(noiseless)

(1000,100,0.1,0.1)	(1000,100,0.2,0.1)	(1000,100,0.4,0.1)
(0.03837,0.03855)	(0.04461,0.04458)	(0.06472,0.06469)
(0.08775,0.08739)	(0.09009,0.09031)	(0.09249,0.09317)
(0.09129, 0.1139)	(0.04210,0.06023)	(0.04899,0.06161)
(0.1565, 0.1791)	(0.2497,0.2875)	(0.7080,0.6076)
(1000,100,0.1,0.3)	(1000,100,0.2,0.3)	(1000,100,0.4,0.3)
(0.1267, 0.1267)	(0.1536,0.1548)	(0.3721,0.3881)
(0.2615, 0.2623)	(0.2762,0.2760)	(0.3098, 0.3118)
(0.1930, 0.2186)	(0.1948, 0.2207)	(0.1853, 0.2008)
(0.3327, 0.3537)	(0.5340,0.5139)	(0.8175, 0.7589)
	(0.03837,0.03855) (0.08775,0.08739) (0.09129,0.1139) (0.1565,0.1791) (1000,100,0.1,0.3) (0.1267,0.1267) (0.2615,0.2623) (0.1930,0.2186)	(0.03837,0.03855) (0.04461,0.04458) (0.08775,0.08739) (0.09009,0.09031) (0.09129,0.1139) (0.04210,0.06023) (0.1565,0.1791) (0.2497,0.2875) (1000,100,0.1,0.3) (1000,100,0.2,0.3) (0.1267,0.1267) (0.1536,0.1548) (0.2615,0.2623) (0.2762,0.2760) (0.1930,0.2186) (0.1948,0.2207)

(median,mean) over 100 trials(MLR) - Grad Descent(noisy)

- Problem Setting
- 2 Algorithm
- Simulation
 - Symmetric case
 - Different Proportion
 - Low-dimensional case
 - High-dimensional case

Simulation Results - Low-dimensional case

$$y_i = x_i^T \beta_{z_i} + e_i, \ e_i \sim \mathcal{N}(0, \sigma^2)$$

(n, d, σ)	(30,3,0)	(60,3,0)	(90,3,0)
Fixed	(0.0620,0.246)	(5.207e-16,0.133)	(5.17e-16,0.100)
Reduced	(4.48e-16, 0.0242)	(4.80e-16,6.52e-16)	(4.25e-16,6.33e-16)
EM-init	(3.50e-16,0.0527)	(3.38e-16,0.00596)	(3.33e-16,0.0193)
EM-rand	(3.90e-16,0.167)	(3.68e-16,0.0754)	(3.4e-16,0.0648)
(n, d, s, σ)	(50,5,0)	(100,5,0)	(150,5,0)
Fixed	(0.340,0.347)	(7.15e-16,0.128)	(7.12e-16,0.0308)
Reduced	(7.91e-16,0.0258)	(6.76e-16,9.11e-16)	(6.74e-16,1.02e-15)
EM-init	(6.32e-16,0.0831)	(5.40e-16,0.0184)	(5.13e-16,0.0118)
EM-rand	(6.81e-16,0.190)	(5.43e-16,0.0348)	(5.26e-16,0.0386)
(n, d, s, σ)	(100,10,0)	(200,10,0)	(300,10,0)
Fixed	(2.79e-15,0.255)	(1.22e-15,0.0532)	(1.10e-15,0.0196)
Reduced	(1.218e-15,0.0138)	(1.13e-15,1.26e-15)	(1.12e-15,1.43e-15)
EM-init	(1.026e-15,0.0453)	(8.93e-16,0.0126)	(9.61e-16,1.09e-15)
EM-rand	(1.32e-15,0.234)	(9.06e-16,0.0555)	(9.74e-16,0.0299)

(median,mean) over 100 trials(MLR) - Full Correct

14 / 20

Simulation Results - Low-dimensional case

$$y_i = x_i^T \beta_{z_i} + e_i, \ e_i \sim \mathcal{N}(0, \sigma^2)$$

(n, d, σ)	(1000,100,0)	(500,100,0)	(2000,100,0)
Fixed	(0.7326,0.7225)	(0.7975,0.7929)	(3.977e-12,0.2660)
Reduced	(6.9652e-12,0.006843)	(0.6181, 0.4955)	(3.568e-12,3.644e-12)
EM-init	(2.0896e-12,0.006398)	(0.6010, 0.5323)	(1.810e-12,1.7538e-12)
EM-rand	(0.8138,0.6981)	(1.044,1.0391)	(1.998e-12,0.1267)

(median, mean) over 100 trials(MLR) - Grad Descent(noiseless)

(n, d, σ)	(1000,100,0.05)	(1000,100,0.1)	(1000,100,0.3)
Fixed	(0.7482,0.7141)	(0.7357,0.7140)	(0.7687,0.7720)
Reduced	(0.03332,0.03346)	(0.07626,0.07683)	(0.3488, 0.4067)
EM-init	(0.02516,0.02520)	(0.05192,0.05894)	(0.1986, 0.2239)
EM-rand	(0.8242,0.6745)	(0.8156,0.7188)	(0.8694,0.8076)

(median, mean) over 100 trials(MLR) - Grad Descent(noisy)

- Problem Setting
- 2 Algorithm
- Simulation
 - Symmetric case
 - Different Proportion
 - Low-dimensional case
 - High-dimensional case

Simulation Results - High-dimensional case

(n, d, s, σ)	(200,1000,5,0)	(200,2000,5,0)	(200,2000,10,0)
Fixed	(0.6309, 0.5142)	(0.5656,0.4758)	(0.8294,0.7917)
Reduced	(2.606e-12,0.2329)	(1.9967e-12,0.1903)	(0.7854,0.6780)
EM-rand	(0.7059,0.6198)	(0.8598, 0.7714)	(0.9547,0.9660)

(median, mean) over 100 trials(MLR) - noiseless case

(n, d, s, σ)	(200,1000,5,0.05)	(200,1000,5,0.1)	(200,1000,5,0.3)
Fixed	(0.5302,0.4897)	(0.6341,0.5486)	(0.6648, 0.6391)
Reduced	(0.02214,0.2270)	(0.05273,0.2802)	(0.3885,0.4501)
EM-rand	(0.6560,0.5450)	(0.7205,0.5980)	(0.7945,0.7487)

(median,mean) over 100 trials(MLR) - noisy case

Simulation Results - High-dimensional case

(n, d, s, σ)	(500,5000,10,0)	(1000,5000,20,0)
Fixed	(0.4928, 0.4285)	(0.7590,0.5964)
Reduced	(2.536e-13,0.02019)	(1.003e-13,0.02243)
EM-rand	(0.6856, 0.5507)	(0.3469,0.5763)

(median,mean) over 100 trials(MLR) - noiseless case

(n, d, s, σ)	(500,5000,10,0.05)	(500,5000,10,0.1)	(500,5000,10,0.3)
Fixed	(0.5699,0.4531)	(0.6228, 0.5427)	(0.7077,0.6685)
Reduced	(0.01544,0.09110)	(0.03920,0.1083)	(0.3301,0.4112)
EM-rand	(0.8323, 0.6422)	(0.7902,0.6005)	(0.9053, 0.7963)

(median,mean) over 100 trials(MLR) - noisy case

References

Bhatia, Kush and Jain, Prateek and Kar, Purushottam(2015) Advances in Neural Information Processing Systems 15, 721–729

The End