Тема: Приближённые методы решения обыкновенных дифференциальных уравнений.

Метод Пикара – приближённый аналитический метод.

Задача Коши: решить ОДУ y' = f(x,y) с начальным условием $y(x_0) = y_0/y$

Задача Коши имеет единственное решение, если функция f(x,y) непрерывна в окрестности точки (x_0,y_0) и имеет ограниченную частную производную по $y-f_y$.

Формула Пикара:
$$y^{(n)}(x) = y_0 + \int_{x_0}^x f(x, y^{(n-1)}(x)) dx$$
.

В области $R\{|x-x_0| < a; |y-y_0| < b\}$ погрешность оценивается формулой:

$$|y(x)-y^{(n)}(x)| \leq N^n M \frac{h^{n+1}}{(n+1)!},$$

где $M=\max|f(x,y)|$; $N=\max|f_y(x,y)|$; $h=\min(a,b/M)$.

Пример. Методом Пикара найти три первых приближённых решения дифференциального уравнения и оценить погрешность:

у`=х-у;
$$y(x=0)=1$$
; на отрезке $[0;0,5]$.
$$y^{(1)}(x) = 1 + \int_{0}^{x} (x-1) dx = 1 - x + \frac{1}{2}x^{2};$$

$$y^{(2)}(x) = 1 + \int_{0}^{x} (x-1) - \frac{1}{2}x^{2} + x dx = 1 - x + x^{2} - \frac{1}{6}x^{3};$$

$$y^{(3)}(x) = 1 + \int_{0}^{x} (x-1+x-x^{2} + \frac{1}{6}x^{3}) dx = 1 - x + x^{2} - \frac{1}{3}x^{3} + \frac{1}{24}x^{4};$$

X	X^2	X^3	X^4	$\mathbf{Y}^{(1)}$	$\mathbf{Y}^{(2)}$	$\mathbf{Y}^{(3)}$
0	0	0	0	1,	1,	1,
0,1	0,01	0,001	0,0001	0,9050	0,9098	0,9098
0,2	0,04	0,008	0,0016	0,8200	0,8397	0,8377
0,3	0,09	0,027	0,0081	0,7450	0,7855	0,7650
0,4	0,16	0,064	0,0256	0,6800	0,7494	0,7397
0,5	0,25	0,125	0,0625	0,6250	0,7292	0,7109

Для оценки погрешности каждого из приближённых решений вычислим.

$$\varepsilon^{(1)} = \frac{0.375^2}{2} = 7*10^{-2}$$
- погрешность первого приближения.

 $\underline{\text{n=2}}$: x=[0;0,5]; y=[1;0,7292]; M=1; N=1; h=min(0,5;0,2708)=0,2708;

$$\varepsilon^{(2)} = \frac{0.27^3}{6} = 3*10^{-3}$$
-погрешность второго приближения.

<u>n=3</u>: x=[0;0,5]; y=[1;0,7109]; M=1; N=1; h=min(0,5;0,29)=0,29;

$$\varepsilon^{(3)} = \frac{0.29^4}{24} = 9*10^{-4}$$
-погрешность третьего приближения.

Метод Эйлера — простейший численный метод решения систем обыкновенных дифференциальных уравнений. Впервые описан Леонардом Эйлером в 1768 году в работе «Интегральное исчисление»[1]. Метод Эйлера является явным, одношаговым методом первого порядка точности. Он основан на аппроксимации интегральной кривой кусочно-линейной функцией, так называемой ломаной Эйлера.

Пусть дана задача Коши для уравнения первого порядка:

$$\frac{dy}{dx} = f(x, y),$$
$$y_{|_{x=x_0}} = y_0,$$

Решение ищется на интервале $(x_0, b]$. На этом интервале введем узлы:

$$x_0 < x_1 < \ldots < x_n \le b.$$

Расчётная формула: $y_{k+1} = y_k + \Delta y_k$, где $\Delta y_k = hf(x_k, y_k) = hf_k$.

Ломаная Эйлера (красная линия) — приближённое решение в пяти узлах задачи Коши и точное решение этой задачи (выделено синим цветом)

Оценку погрешности выполняют методом Рунге путём двойного просчёта: с шагом $h-y_n$, и с шагом $h/2-y^*_{n}$. Пусть $y(x_n)$ — точное решение в точке x_n , тогда погрешность в этой точке:

$$|y_n^* - y(x_n)| < |y_n^* - y_n|$$
.

Пример. Решить дифференциальное уравнение 1-го порядка : y=y-2x/y с начальным условием y(x=0)=1 на интервале [0;1] с шагом h=0,2.

k	$\mathbf{x}_{\mathbf{k}}$	y _k	$F(x_k,y_k)$	Δy_k	Уточное	\mathcal{E}
0	0	1,0000	1,0000	0,2000	1,0000	0
1	0,2	1,2000	0,8667	0,1733	1,1832	0,0168
2	0,4	1,3733	0,7805	0,1581	1,3416	0,0317
3	0,6	1,5315	0,7458	0,1495	1,4832	0,0483
4	0,8	1,6811	0,7254	0,1458	1,6124	0,0687
5	1,0	1,8268			1,7320	0,0948

Метод Эйлера даёт грубое приближение к точному решению и по мере удаления от начальной точки погрешность растёт.

Усовершенствованный метод Эйлера 2-го порядка ($\alpha = 1$)

Расчётная формула:
$$\Delta y_k = hf(x_k + \frac{h}{2}, y_k + \frac{h}{2}f_k); \quad y_{k+1} = y_k + \Delta y_k,$$

Здесь выполняется корректировка наклона интегральной кривой в средней точке каждого шага.

Погрешность оценивается методом Рунге путём двойного просчёта по формуле: $|y_n^* - y(x_n)| < 1/3|y_n^* - y_n|$. Причём погрешность следует вычислять для каждой точки приближённого решения с шагом h.

Пример. Решить дифференциальное уравнение из предыдущего примера усовершенствованным методом Эйлера.

k	$\mathbf{X}_{\mathbf{k}}$	y_k	$(h/2)f_k$	$x_k+h/2$	$y_k+(h/2)f_k$	Δy_k	Уточное	\mathcal{E}
0	0	1,0000	0,1	0,1	1,1000	0,1836	1,0000	0
1	0,2	1,1836	0,0846	0,3	1,2682	0,1590	1,1832	0.0004
2	0,4	1,3426	0,0747	0,5	1,4173	0,1424	1,3416	0,0010
3	0,6	1,4850	0,0677	0,7	1,5527	0,1302	1,4832	0,0018
4	0,8	1,6152	0,0625	0,9	1,6777	0,1210	1,6124	0,0028
5	1,0	1,7362					1,7320	0,0042

Трудоёмкость вычислений возросла – правая часть дифференциального уравнения вычисляется дважды.

Метод Эйлера-Коши 2-го порядка точности ($\alpha = \frac{1}{2}$)

Расчётная формула:
$$\Delta y_k = \frac{h}{2}(f(x_k, y_k) + f(x_k + h, y_k + hf_k));$$
 $y_{k+1} = y_k + \Delta y_k.$

Погрешность оценивается по той же формуле, что и в усовершенствованном методе Эйлера, и правая часть дифференциального уравнения вычисляется дважды.

Пример. Решить дифференциальное уравнение из предыдущего примера методом Эйлера-Коши.

k	$\mathbf{x}_{\mathbf{k}}$	y_k	$f(x_k,y_k)$	x_k+h	y_k+hf_k	$f(x_k+h,y_k+hf_k)$	Δy_k	Уточное	\mathcal{E}
0	0	1,0	1,0000	0,2	1,2000	0,8667	0,1867	1,0000	0
1	0,2	1,1867	0,8497	0,4	1,3566	0,7669	0,1617	1,1832	0,0035
2	0,4	1,3484	0,7551	0,6	1,4994	0,6991	0,1454	1,3416	0,0068
3	0,6	1,4938	0,6905	0,8	1,6319	0,6515	0,1342	1,4832	0,0106
4	0,8	1,6280	0,6452	1,0	1,7570	0,6187	0,1264	1,6124	0,0156
5	1,0	1,7544						1,7320	0,0224

Метод Рунге-Кутта 4-го порядка точности

На каждом і-ом шаге вычисляют 4 числа:

$$K_1 = hf(x_i, y_i); K_2 = hf(x_i + h/2, y_i + k_1/2); K_3 = hf(x_i + h/2, y_i + k_2/2); K_4 = hf(x_i + h, y_i + k_3)$$

и определяют их средневзвешенное по формуле:

$$\Delta y_i = 1/6(K_1 + 2K_2 + 2K_3 + K_4);$$
 $y_{i+1} = y_i + \Delta y_i$.

Погрешность оценивается методом Рунге по формуле:

$$|y_i^{\times} - y(x_i)| \approx 1/15 |y_i^{\times} - y_i|$$

При ручных расчётах целесообразно формировать следующую таблицу.

i	X	у	y`=f(x,y)	K=h f	Δγ
0	X ₀	y_0	$f(x_0,y_0)$	$K_1^{(0)}$	$K_1^{(0)}$
	$x_0 + h/2$	$y_0 + k_1/2$	$f(x_0+h/2, y_0+k_1/2)$	$K_2^{(0)}$	2 K ₂ ⁽⁰⁾
	$x_0 + h/2$	$y_0 + k_2/2$	$f(x_0+h/2, y_0+k_2/2)$	$K_3^{(0)}$	2 K ₃ ⁽⁰⁾
	x_0+h	$y_0 + k_3$	$f(x_0+h, y_0+k_3)$	$K_4^{(0)}$	$K_4^{(0)}$
					$1/6\sum_{1}^{4}K_{n}^{(0)}=\Delta y_{0}$
1	\mathbf{x}_1	$y_1=y_0+\Delta y_0$	$f(x_1,y_1)$	$K_1^{(1)}$	$K_1^{(1)}$
	$x_1 + h/2$	$y_1+k_1/2$	$f(x_1+h/2,y_1+k_1/2)$	$K_2^{(1)}$	$2K_2^{(1)}$
	$x_1 + h/2$	$y_1+k_2/2$	$f(x_1+h/2,y_1+k_2/2)$	$K_3^{(1)}$	2K ₃ ⁽¹⁾
	x_1+h	y ₁ +k ₃	$f(x_1+h, y_1+k_3)$	$K_4^{(1)}$	$K_4^{(1)}$
					$1/6\sum_{1}^{4}K_{n}^{(1)}=\Delta y_{1}$
2	X ₂	$y_2=y_1+\Delta y_1$			

Пример. Найти решение дифференциального уравнения $y = y/x - y^2$ с начальным условием y(x=1) = 1 на отрезке [1;2] с шагом h=0,2 методом Рунге – Кутта 4-го порядка точности.

i	X	у	f(x,y)	k=hf	Δ y
0	1,0	1	0	0	0

			ı	ı	ı
	1,1	1,0000	-0,0909	-0,0182	-0,0364
	1,1	0,9909	-0,0811	-0,0162	-0,0324
	1,2	0,9838	-0,1480	-0,0296	-0,0296
					-0,0164
1	1,2	0,9016	-0,0616	-0,0123	-0,0123
	1,3	0,8954	-0,1130	-0,0226	-0,0452
	1,3	0,8903	-0,1078	-0,0216	-0,0431
	1,4	0,8800	-0,1459	-0,0292	-0,0292
					-0,0216
2	1,4	0,7718	-0,0444	-0,0089	-0,0089
	1,5	0,7674	-0,0773	-0,0156	-0,0310
	1,5	0,7641	-0,0744	-0,0149	-0,0298
	1,6	0,7569	-0,0998	-0,0200	-0,0200
					-0,0149
3	1,6	0,6823	-0,0391	-0,0078	-0,0078
	1,7	0,6794	-0,0611	-0,0122	-0,0245
	1,7	0,6762	-0,0595	-0,0119	-0,0238
	1,8	0,6704	-0,0770	-0,0154	-0,0154
					-0,0119
4	1,8	0,6108	-0,0338	-0,0068	-0,0068
	1,9	0,6074	-0,0493	-0,0099	-0,0197
	1,9	0,6059	-0,0482	-0,0096	-0,0193
	2,0	0,6012	-0,0608	-0,0122	-0,0122
					-0,0097
5	2,0	0,5529			

Метод Адамса 4-го порядка точности

Необходимо для начала решения задать начальный отрезок $[y_0, y_1, y_2, y_3]$, который вычисляют одним из методов Рунге-Кутта. Расчётная формула:

$$y_{k+1} = y_k + \Delta y_k; \Delta y_k = t_k + \frac{1}{2} \Delta t_{k-1} + \frac{5}{12} \Delta^2 t_{k-2} + \frac{3}{8} \Delta^3 t_{k-3}$$
.

По заданным значениям $(x_0,y_0),(x_1,y_1),(x_2,y_2),(x_3,y_3)$ вычисляются :

$$t_0 = hf(x_0, y_0); \quad t_1 = hf(x_1, y_1); \quad t_2 = hf(x_2, y_2); \quad t_3 = hf(x_3, y_3).$$

Далее составляется расчётная таблица, дополненная справа столбцами

конечных разностей до 3-го порядка включительно.

На первом шаге полагаем K=3 и вычисляем Δ у₃, беря значения конечных разностей с диагонали расчётной таблицы. Это позволяет определить у₄=y₃+ Δ у₃, а затем t₄, Δ t₃, Δ ² t₂, Δ ³ t₁. Получена новая диагональ в расчётной таблице, которая позволяет найти Δ у₄ и у₅=y₄+ Δ у₄ и т. д.

K	$\mathbf{x}_{\mathbf{k}}$	$\mathbf{y}_{\mathbf{k}}$	Δy_k	$t_k=hf_k$	Δt_k	$\Delta^2 t_k$	$\Delta^3 t_k$
0	X 0	y_0		t_0	Δt_0	$\Delta^2 t_0$	$\Delta^3 t_0$
1	\mathbf{x}_1	y_1		t_1	Δt_1	$\Delta^2 t_1$	$\Delta^3 t_1$
2	X 2	y ₂		t_2	Δt_2	$\Delta^2 t_2$	$\Delta^3 t_2$
3	X ₃	y ₃	Δy_3	t_3	Δt_3	$\Delta^2 t_3$	
4	X4	y ₄	Δy_4	t ₄	Δt_4		
5	X5	y ₅	Δy_5	t_5			
6	X ₆	y ₆					

Пример. Найти решение дифференциального уравнения y = x + y на интервале [0;0,8] с шагом h=0,1. Начальный отрезок решения [1;1,1103;1,2427;1,3996].

K	X _k	y _k	Δy_k	$t_k = hf_k$	Δt_k	$\Delta^2 t_k$	$\Delta^3 t_k$
0	0	1,0		0,1	0,02103	0,00221	0,00024
1	0,1	1,1103		0,12103	0,02324	0,00245	0,00025
2	0,2	1,2427		0,14427	0,02569	0,00270	0,00028
3	0,3	1,3996	0,18391	0,16996	0,02839	0,00299	0,00031
4	0,4	1,5835	0,21377	0,19835	0,03138	0,00330	0,00035