Medical Store Management System

Phase-3

Shikhar Sharma 10682 shikhars@iitk.ac.in

$\begin{array}{c} {\rm CS315~Course~Project} \\ {\rm IIT~Kanpur} \end{array}$

March 19, 2013

Contents

1	EER/ER diagram of Phase-2 converted into tables	2
2	Different kinds of integrity constraints satisfied by the DB	2
	2.1 Entity Integrity	2
	2.2 Referential Integrity	2
	2.3 Domain Integrity	3
	2.4 User Defined Integrity	3
3	Tables after normalization 3.1 Justification	3
4	Create statements for the DB design (including the necessary integrity constraints)	4

1 EER/ER diagram of Phase-2 converted into tables

```
medicine (name, buy_timestamp, expiry_date, chem_amount, qty, cp, sp, pharmaco)

medicine_compound (name, buy_timestamp, expiry_date, chem_amount, cp, compound)

transaction (id, txn_timestamp, buy_sell, notes)

person (pid, name, address)

person_email (pid, email)

person_tel_no (pid, tel_no)

supplier_pharmaco (pid, pharmaco)

employee (pid, salary, duty_timings)

txn_on (name, buy_timestamp, chem_amount, expiry_date, cp, id, qty_buy_sell)

txn_person (id, pid_person, pid_employee)
```

2 Different kinds of integrity constraints satisfied by the DB

2.1 Entity Integrity

- None of the primary keys has a null value.
- The primary keys have been underlined in the section above this one.

2.2 Referential Integrity

- 'name', 'chem_amount', 'cp' in the relation **medicine_compound** are foreign keys referencing the same fields in the relation **medicine**.
- 'pid' in the relation **person_email** is a foreign key referencing the same field in the relation **person**.
- 'pid' in the relation **person_tel_no** is a foreign key referencing the same field in the relation **person**.
- 'pid' in the relation **supplier_pharmacol** is a foreign key referencing the same field in the relation **person**.

2.3 Domain Integrity

• They will be mentioned in the CREATE statements in Section 4.

2.4 User Defined Integrity

- medicine ≥ 0
- $cp \ge 0$
- $sp \ge 0$
- $qty_buy_sell > 0$
- salary ≥ 0
- buy_sell IN ('b', 's')

3 Tables after normalization

```
medicine (name, buy_timestamp, expiry_date, chem_amount, qty, cp, sp)

name_pharma (name, pharmaco)

name_compound (name, compound)

transaction (id, txn_timestamp, buy_sell, notes)

person (pid, name, address)

person_email (pid, email)

person_tel_no (pid, tel_no)

supplier_pharmaco (pid, pharmaco)

employee (pid, salary, duty_timings)

txn_on (name, buy_timestamp, chem_amount, expiry_date, cp, id, qty_buy_sell)

txn_person (id, pid_person, pid_employee)
```

3.1 Justification

The functional dependencies are :

```
    name → pharmaco
    name → compound
    name buy_timestamp chem_amount cp expiry_date → sp Qty pharmaco
    id → txn_timestamp buy_sell notes
    pid → name address
    email → pid
    tel_no → pid
    pid → salary duty_timings
```

9. id name buy_timestamp chem_amount cp expiry_date → qty_buy_sell

The tables transaction, person, person_email, person_tel_no, supplier_pharmaco, employee, txn_on, and txn_person will stay unchanged.

Due to FD#2, the table **medicine_compound** will be split into **name_compound**(<u>name</u>, <u>compound</u>) and **name_details**(<u>name</u>, <u>buy_timestamp</u>, <u>expiry_date</u>, <u>chem_amount</u>, <u>cp</u>) but the table **name_details** is already contained in the table **medicine** and is therefore not needed.

Due to FD#1, the table **medicine** will be split into **medicine**($\underline{\text{name}}$, $\underline{\text{buy_timestamp}}$, expiry_date, $\underline{\text{chem_amount}}$, quantity, cp, sp) and $\underline{\text{name_pharma}}$ ($\underline{\text{name}}$, $\underline{\text{pharma}}$)

4 Create statements for the DB design (including the necessary integrity constraints)

```
    CREATE TABLE medicine (
        name varchar(60) NOT NULL,
        buy_timestamp timestamp NOT NULL,
        expiry_date date NOT NULL,
        chem_amount varchar(10) NOT NULL,
        qty int NOT NULL,
        cp int NOT NULL,
        sp int NOT NULL,
        sp int NOT NULL,
        PRIMARY KEY(name, buy_timestamp, expiry_date, chem_amount, cp)
        );
```

```
• CREATE TABLE name_pharma (
    name varchar(60) references medicine(name),
    pharmaco varchar(50) NOT NULL,
    PRIMARY KEY(name, pharmaco)
 );
• CREATE TABLE name_compound (
    name varchar(60) references medicine(name),
    compound varchar(50) NOT NULL,
    PRIMARY KEY(name, compound)
 );
• CREATE TABLE transaction (
    id int PRIMARY KEY,
    txn_timestamp timestamp NOT NULL,
    buy_sell char(1) NOT NULL,
    notes text
 );
• CREATE TABLE person (
    pid int PRIMARY KEY NOT NULL AUTO_INCREMENT,
    name varchar(60) NOT NULL,
    address text NOT NULL
 );
• CREATE TABLE person_email (
    pid int references person(pid),
    email varchar(45) PRIMARY KEY NOT NULL
 );
• CREATE TABLE person_tel_no (
    pid int references person(pid),
    tel_no int PRIMARY KEY NOT NULL
• CREATE TABLE supplier_pharmaco (
    pid int references person(pid),
    pharmaco varchar(50) NOT NULL,
    PRIMARY KEY(pid, pharmaco)
 );
• CREATE TABLE employee (
    pid int references person(pid),
    salary int NOT NULL,
    duty_timings varchar(20) NOT NULL
• CREATE TABLE txn_on (
    name varchar(60) NOT NULL,
```

```
buy_timestamp timestamp NOT NULL,
    chem_amount varchar(10) NOT NULL,
    expiry_date date NOT NULL,
    cp int NOT NULL,
    id int NOT NULL,
    id int NOT NULL,
    PRIMARY KEY(name, buy_timestamp, chem_amount, expiry_date, cp,
    id),
     FOREIGN KEY(id) REFERENCES transaction(id)
);

• CREATE TABLE txn_person (
    id int NOT NULL,
    pid_person int NOT NULL,
    pid_employee int NOT NULL,
    PRIMARY KEY(id, pid_person, pid_employee)
);
```