MAS115 Calculus I 2006-2007

Problem sheet for exercise class 3

- Make sure you attend the excercise class that you have been assigned to!
- The instructor will present the starred problems in class.
- You should then work on the other problems on your own.
- The instructor and helper will be available for questions.
- Solutions will be available online by Friday.

Problem 1: Compute the following limits:

(a)
$$\lim_{x \to 4} \frac{4-x}{5-\sqrt{x^2+9}}$$
, (b) $\lim_{u \to 1} \frac{u^4-1}{u^3-1}$.

- Problem 2: **Two wrong statements about limits.** Show by example that the following statements are wrong.
 - (*a) The number L is the limit of f(x) as x approaches x_0 if f(x) gets closer to L as x approaches x_0 .
 - (b) The number L is the limit of f(x) as x approaches x_0 if, given any $\epsilon > 0$, there exists a value of x for which $|f(x) L| < \epsilon$.

Explain why the functions in your examples do not have the given value of L as a limit as $x \to x_0$.

Problem 3: Use the graph of the greatest integer function y = |x| to determine the limits

(*a)
$$\lim_{\theta \to 3^{-}} \frac{\lfloor \theta \rfloor}{\theta}$$
, (b) $\lim_{t \to 4^{+}} (t - \lfloor t \rfloor)$.

Problem 4: Compute the following limits:

(*a)
$$\lim_{x \to \infty} \frac{x + \sin x + 2\sqrt{x}}{x + \sin x}$$
, (b) $\lim_{x \to \infty} \frac{x^{2/3} + x^{-1}}{x^{2/3} + \cos^2 x}$.

Extra: Roots of a quadratic equation that is almost linear. The equation $ax^2 + 2x - 1 = 0$, where a is a constant, has two roots if a > -1 and $a \neq 0$, one positive and one negative:

$$r_{+}(a) = \frac{-1 + \sqrt{1+a}}{a}$$
, $r_{-}(a) = \frac{-1 - \sqrt{1+a}}{a}$.

- (a) What happens to $r_+(a)$ as $a \to 0$? As $a \to -1^+$?
- (b) What happens to $r_{-}(a)$ as $a \to 0$? As $a \to -1^{+}$?
- (c) Support your conclusions by graphing $r_{+}(a)$ and $r_{-}(a)$ as functions of a. Describe what you see.