Erratum

Brevet no

Demande de brevet nº 72 01 397

N° de publication : 2.168.136

Classification internationale : A 61 \pm 27/00//C 07 c 109/00

ERRATUM

Raison sociale de la déposante erronée

au lieu de :

"Société dite : FERLUI"

il faut lire :

"Société dite : <u>FERLUX</u>"

RÉPUBLIQUE FRANÇAISE

INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

PARIS

Invention de:

Priorité conventionnelle :

Nº de publication : n'utiliser que pour classement et les commandes de reproduction).

72.01397

2.168.136

Nº d'enregistrement national .

(A utiliser pour les paiements d'annuités, les demandes de copies officielles et toutes autres correspondances avec (1.N.P.I.)

DEMANDE ION

		1re PUBLICAT	TION
	(22)	Date de dépôt	17 janvier 1972, à 14 h 3 mn.
	41)	Date de la mise à la disposition du public de la demande	B.O.P.I. — «Listes» n. 35 du 31-8-1973.
	(51)	Classification internationale (Int. Cl.)	A 61 k 27/00//C 07 c 109/00.
•	71)	Déposant : Société dite : FERLUI, rési	dant en France.
	73	Titulaire : Idem (71)	
	74)	Mandataire : Cabinet Guerbilsky, 38,	avenue Hoche, Paris (8).
	(54)	Nouveaux dérivés de benzoylhydrazones	s o-amino substituées.

15

20

25

30

35

La présente invention a pour objet de nouvéaux dérivés de benzoylhydrazones o-amino substituées de formule générale :

$$R_3$$
 CO - NH - N = C
 R_4
 R_5
 R_1
 R_2

10 dans laquelle :

R, représente:

a) soit un noyau phényle éventuellement substitué en ortho, méta, et/ou para par un ou plusieurs radicaux alcoxy ou trifluorométhyle

b) soit un groupement benzyle

c) soit un groupement -(CH₂)n - dans lequel n est supérieur à 1; le noyau phényle étant éventuellement substitué en ortho, méta et/ou para par un ou plusieurs radicaux alcoxy

d) soit un groupement benzoyle éventuellement substitué sur le noyau phényle en ortho, méta et/ou para par un ou plusieurs atomes d'halogènes, un ou plusieurs radicaux alkyle, alcoxy, nitro

R₂ et R₃ peuvent être identiques ou différents et représentent chacun :

- soit un atome d'hydrogène ou d'halogène, soit un radical alkyle inférieur ou nitro

R₄ et R₅ peuvent être identiques ou différents et représentent chacun :

- soit un atome d'hydrogène, soit un radical alkyle inférieur ou carboxy, soit un noyau phényle éventuellement substitué en ortho, méta et/ou para par un ou plusieurs atomes d'halogènes, un ou plusieurs radicaux hydroxyle, ou dialkylamino dans le cas où R₁ prend la signification a) ou c) ou d)

- soit un noyau pyridyle en ortho, méta ou para.

Ces composés sont utiles du point de vue pharmacologique du fait qu'ils possèdent d'intéressantes propriétés analgésiques, antiinflammatoires et antipyrétiques.

20

30

La préparation de ces dérivés est avantageusement effectuée en passant par la préparation d'un composé intermédiaire : une benzoylhydrazine ortho-amino substituée dont lemode opératoire, décrit dans la demande de brevet PV-70-32.533 déposée par la demanderesse le 8 Septembre 1970, pour : "Benzoyl Hydrazines O. Amino substituées."

peut être résumé comme suit :

A) Lorsque R₁ représente un radical phényle ou phénylalkyle :

1°) dans un premier temps on condense un acide chloro-2
benzoïque et une amine primaire selon le procédé décrit par

ULIMANN pour obtenir un acide anthranilique N-substitué, selon
la réaction :

15
$$\begin{array}{c} R_{3} \\ R_{2} \end{array}$$

$$+ R_{1} - NH_{2} \longrightarrow \begin{array}{c} R_{3} \\ R_{2} \end{array}$$

$$NH - R_{1}$$

2°) L'acide anthranilique N-substitué est cyclisé par le phosgène en anhydride isatoïque N-substitué, selon la réaction :

3°) on fait réagir l'hydrate d'hydrazine sur cet anhydride pour obtenir une benzoylhydrazine ortho-amino substituée, selon la réaction:

10 B) Lorsque R₁ représente un groupement benzoyle -CO-R₁:

1°) on fait réagir sur un acide anthranilique un chlorure
d'acide

2°) le dérivé obtenu est cyclisé dans l'anhydride acétique en benzoxazinone, selon les réactions :

15
$$R_3$$
 R_3
 R_4
 R_1
 R_3
 R_4
 R_5
 R_5
 R_5
 R_5
 R_6
 R_7
 R

3°) enfin par une réaction analogue à celle faite sur l'an-30 hydride isatoïque, on fait réagir l'hydrate d'hydrazine pour obtenir une benzoylhydrazine ortho-amino substituée:

$$\begin{array}{c} R_{3} \\ \\ R_{1} \end{array} + NH_{2}-NH_{2}, H_{2}O \xrightarrow{R_{3}} CO-NH-NH_{2}$$

$$R_{2} \\ R_{2} \\ \end{array}$$

25

30

35

Dans l'un et l'autre cas, les benzoylhydrazines étant ainsi préparées comme produits intermédiaires, on les fait réagir dans une deuxième étape avec un aldéhyde ou une cétone pour obtenir les dérivés faisant l'objet du brevet, selon la réaction :

Les dérivés selon l'invention sont décrits ci-dessous de manière plus détaillée à l'aide de quelques exemples de réalisation qui ne sont donnés qu'à titre purement explicatif, nullement limitatif.

Les exemples I à V décrivent la préparation de différents composés dont un tableau récapitulatif explicite les formules et résume l'analysé. Les exemples VI à VIII illustrent l'activité pharmacologique de tels composés et les exemples IX à XI illustrent leur emploi dans la constitution de médicaments. EXEMPLE I:

N[chloro-4 (phényléthyl amino-2) benzoyl]N' isopropylidène hydrazine:(composé n° 9 du tableau récapitulatif)

16,9 g (0,058 mole) de chlore-4 phényléthylamino-2 benzoylhydrazine sont dissous dans 300 ml d'acétone. On chauffe quelques instants à reflux et on laisse refroidir. On concentre partiellement l'acétone. On filtre et on lave à l'éther de pétrole le précipité obtenu.

Selon le même mode opératoire on prépare les dérivés suivants dont les caractéristiques physiques sont données dans le tableau récapitulatif.

10

15

20

25

30

N(benzylamino-2 benzoyl)N' isopropylidène hydrazine : (composé n° 1)

obtenu en utilisant la benzylamino-2 benzoylhydrazine.

N(nitro-4 benzylamino-2 benzoyl)N³ isopropylidène hydrazine:

(composé n° 2)
Obtenu en utilisant le nitro-4 benzylamino-2 benzoylhydrasine

N[chloro-4 (benzylamino-2)benzoyl]N' isopropylidène hydrazine: (composé n° 4)

Obtenu en utilisant la chloro-4 benzylamino-2 benzoyl-hydrazine.

N[chloro-4(méthoxy-4 phénylamino-2)benzoyl]N isopropylidène hydrazine : (composé n° 6)

Obtenu en utilisant la chloro-4 (méthoxy-4' phénylamino-2) benzoylhydrazine.

EXEMPLE II :

N [méthyl-5 (paratolucylamino-2)benzoyl]Nº isopropylidène hydrazine : composé nº 8

15 g (0,053 mole) de méthyl-5 paratoluoyl amino-2 benzoylhydrazine sont dissous à froid dans 150 ml d'acétone et laissés
sous agitation; au bout de quelques minutes il se forme un abondant précipité que l'on sépare en filtrant et qu'on lave à l'éther.

Selon le même mode opératoire on prépare les dérivés suivants dont les caractéristiques physiques sont données dans le tableau récapitulatif.

N (nitro-4' benzoylamino-2 benzoyl)N' isopropylidène hydrazine : (composé n° 3)

Obtenu en utilisant la nitro-4 benzoylamino-2 benzoyl hydrazine.

N[méthyl-5 (fluoro-4 benzoylamino-2) benzoyl]N isopropylidène hydrazine : (composé n° 5)

Obtenu en utilisant la méthyl-5 fluoro-4° benzoylamino-2 benzoylhydrazine.

N méthyl-5 (bromo-4° benzoylamino-2) benzoyl N° isopropylidène hydrazine: (composé n° 7)

Obtenu en utilisant la méthyl-5 bromo-4' benzoylamino-2 benzoylhydrazine.

15

25

30

N[(ortho méthoxybenzoyl)amino-2 benzoyl]N° isopropylidène hydrazine: (composé n° 10)

Obtenu en utilisant l'orthométhoxybenzoylamino-2 benzoyl hydrazine.

5 N[(orthofluorobenzoyl)amino-2 benzoyl] N' isopropylidène hydrazine : (composé n° 11)

Obtenu en utilisant l'orthofluorobenzoylamino-2 benzoylhydrazine.

N[chloro-4(paratoluoylamino-2)benzoyl] N² isopropylidène hydrazine : (composé n° 15)

Obtenu en utilisant la chloro-4 (paratoluoylamino-2) benzoyl hydrazine.

N(paraméthylbenzoylamino-2 benzoyl)N isopropylidène hydrazine : (composé n° 25)

Obtenu en utilisant la paraméthylbenzoylamino-2 benzoyl hydrazine.

N[méthyl-5 (orthofluorobenzoylamino-2)benzoyl]N isopropylidène hydrazine : (composé n° 29)

Obtenu en utilisant la méthyl-5 orthofluorobenzoylamino-2 benzoylhydrazine.

EXEMPLE III

N[méthyl-5(parafluorobenzoylamino-2)benzoyl]N' benzylidène hydrazine : (composé n° 16)

On porte au reflux 10 g (0,035 mole) de méthyl-5 parafluorobenzoylamino-2 benzoyl hydrazine et 3,7 g (0,035 mole) de benzaldéhyde dans 250 ml d'éthanol absolu pendant 3 heures. On laisse refroidir, on filtre. Le précipité recueilli est recristallisé dans l'acétate d'éthyle.

Selon le même mode opératoire on prépare les dérivés suivants dont les caractéristiques physiques sont données dans le tableau récapitulatif.

N[méthyl-5(parafluorobenzoylamino-2)benzoyl]Nº méthylbenzylidène hydrazine : (composé nº 18)

Obtenu en utilisant l'acétophénone.

N[méthyl-5(parafluorobenzoylamino-2)benzoyl]N'(dichloro-3',5')
hydroxy-2') benzylidène hydrazine : (composé n° 12)
Obtenu en utilisant l'aldéhyde dichloro-3,5 salicylique.

15

20

25

30

N[méthyl-5 (parafluorobenzoylamino-2) benzoyl]N'(hydroxy-2'benzylidène) hydrazine : (composé n° 14)

Obtenu en utilisant l'aldéhyde salicylique

N(para nitro benzoylamino-2 benzoyl)N' benzylidène hydrazine : (composé n° 23)

Obtenu en utilisant la paranitrobenzoylamino-2 benzoylhydrazine et le benzaldéhyde.

N(paranitrobenzoylamino-2 benzoyl)N'(hydroxy-2' benzylidène) hydrazine: (composé n° 24)

Obtenu en utilisant la même hydrazine que précédemment et l'aldéhyde salicylique.

N(paranitrobenzoylamino-2 benzoyl)N'(dichloro-3',5' hydroxy-2' benzylidène)hydrazine (composé n° 26)

Obtenu en utilisant la même hydrazine et l'aldéhyde dichloro-3,5 salicylique.

N(paranitrobenzoylamino-2 benzoyl)N' carboxy éthylidène hydrazine : (composé n° 27)

Obtenu en utilisant la même hydrazine et l'acide pyruvique. N(benzylamino-2 benzoyl)N' hydroxy-2' benzylidène hydrazine : (composé n° 28)

Obtenu en utilisant la benzylamino-2 benzoylhydrazine et l'aldéhyde salicylique.

N(métatrifluorométhylphénylamino-2 benzoyl)N° hydroxy-2° benzylidène hydrazine : (composé n° 30).

Obtenu en utilisant la métatrifluorométhylphénylamino-2 benzoylhydrazine et l'aldéhyde salicylique.

N(diméthoxy-3',4') phényléthylamino-2 benzoyl)N' hydroxy-2"
benzylidène hydrazine: (composé n° 32)

Obtenu en utilisant la diméthoxy 3',4' phényléthylamino-2 benzoylhydrazine et l'aldéhyde salicylique.

N| chloro-4 (méthoxy-4° phénylamino-2)benzoyl]N' (hydroxy-2" benzylidène hydrazine : (composé n° 33)

Obtenu en utilisant la chloro-4 (méthoxy-4') phénylamino-2 benzoylhydrazine et l'aldéhyde salicylique.

35 EXEMPLE IV

N/méthyl-5 (parafluorobenzoylamino-2)benzoyl Nº (paradiméthyl-amino benzylidène) hydrazine : (composé nº 19)

On porte au reflux 10 g (0,035 mole) de méthyl-5 parafluoro-

10

15

20

25

30

benzoylamino-2 benzoyl hydrazine et 5,2 g (0,035 mole) de paradiméthylaminobenzaldéhyde dans 250 ml d'éthanol absolu pendant 3 heures. On laisse refroidir. Après l'avoir essoré et séché, laver à chaud le précipité par l'acétate d'éthyle.

Selon le même mode opératoire on prépare le dérivé suivant dont les caractéristiques physiques sont données dans le tableau récapitulatif.

N(diméthoxy-3',4' phényléthylamino-2 benzoyl)N'(paradiméthylamino-benzylidène) hydrazine : (composé n° 31)

Obtenu en utilisant le diméthoxy-3',4' phénylamino-2 benzoylhydrazine.

EXEMPLE V

N(paranitrobenzoylamino-2 benzoyl)N' nicotinylidène hydrazine : (composé n° 21)

On chauffe à reflux pendant 2 heures 10 g (0,033 mole) de paranitrobenzoylamino-2 benzoylhydrazine avec 3,6 g (0,033 mole) d'aldéhyde nicotinique dans 150 ml d'acide acétique. On concentre à sec puis on lave le résidu successivement à l'alcool et à l'éther de pétrole.

Selon le même mode opératoire on prépare les dérivés suivants dont les caractéristiques physiques sont données dans le tableau récapitulatif.

N(méthyl-5 (parafluorobenzoylamino-2 benzoyl)N'(nicotinylidène) hydrazine: (composé n° 17)

Obtenu en utilisant la méthyl-5 parafluorobenzoylamino-2 benzoyl hydrazine.

N[méthyl-5 (parafluorobenzoylamino-2)benzoyl]N* isonicotinyli-dène hydrazine: (composé n° 13)

Obtenu en utilisant la parafluorobenzoylamino-2 benzoylhydrazine et l'aldéhyde isonicotinique.

N(paranitrobenzoylamino-2 benzoyl)N' isonicotinylidène hydrazine (composéh° 20)

Obtenu en utilisant la paranitrobenzoylamino-2 benzoylhydrazine et l'aldéhyde isonicotinique.

N(paranitrobenzoylamino-2 benzoyl) N'(picolinylidène)hydrazine:
(composé n° 22)

Obtenu en utilisant la paranitrobenzoylamino-2 benzoylhydrazine et la pyridine-2 aldéhyde.

			% N	14,84	17,30	16,29	12,93	12,64	12,57	10,8
	1.6	Trouvé	% н	99,9	5,51	4,85	5,82	5,39	5,20	4,73
	élémentaire	Tr	%	72,92	62,11	80,09	64,86	65,68	61,46	55,84
R. H. H. H. P.	Analyse él		% N	14,96	17,17	16,7	13,30	12,85	12,67	10,8
	Ana.	Calculé	% н	8,8	5,56	4,70	5,74	5,55	5,43	4,67
LATIE - NH - N		0	% 0	72,5	62,50	0,09	9,49	0,99	61,5	55,6
R3 CO - NH R2 NH - R4		Ç O		143	218	212	196	202	205	225
AU REGA		ρ		CH ₂	OH ₂	CH ₂	c _{HD}	GH ₃	品元	0H ₂
R3.	³ —	р		OH ₂	CH3	CH3	CH ₃	CH ₂	CH2	€ _{HO}
n générale:			£23	Ħ	Ħ	ш	田	CH ₂	н	CH ₂
		ſ	بر در	ш	NO ₂	坩	GJ.	Ħ	C)	н
Formule			æ	CH ₂	CH ₂	00 / 102	CHO CHO	00	OCH ₂	00 Br
•			rro- dui t	-	2	10	4	5	9	2

		N %	12,87	12,77	12,70	13,30	8,93	15,11
taire	Trouvé	% н	6,50	6,19	5,83	5,37	3,66	4,46
élémentaire	Į.	% 0	70,49	65,45	. 46,34	65,30	57,72	66,84
Analyse	S 00	% N	13,0	12,73	12,92	13,40	9,12	14,86
	Calculé	% н	6,55	6,12	5,88	5,14	3,50	4,55
	•	% D	5,07	2,59	66,55	65,25	57,4	00,79
	о Ен		516	153	205	190	250	240
	떢	`	€ _{HD}	OH 3	CH ₂	CHD CHE	н	Щ
	Т.		¢ _{H⊅}	. ^{ОН} 3	. с _{Шэ}	CH 2	OH CI	N
	R.		[€] HO	H	н	H	CH ₂	CH ₂
	F2		H	τρ	н	H .	H	H
	. 2		^ε m —	(CH ²) ² (ZH ²)	00-00H ₃	- OO	4—————————————————————————————————————	00 E
	Pro- duit		∞	6	10	11	12	13

									1			
								Ane	Analyse él	élémentaire	re	
Pro-	ĸ	R,	R ₂	R _L	ᄶ	<u>ي</u>	, Ca.	Calculé		Tro	Trouvé	
년 당	-	V	^	+	`		% 0	% н	% N	%	% н	% N
14	GO E	Щ	B ₃		н	234	67,5	4,64	10,73	67,23	4,72	10,75
15	00 CH3	5	Ħ	OH 3	CH ₃	205	63,0	5,28	12,25	62,80	5,32	11,87
16	GO = E	щ	CH3		田.	211	70,5	4,84	11,2	70,44	4,74	11,21
17	CO F	н	CH2	N N	Ħ	274	0,79	4,55	14,9	67,58	4,63	14,83
18	00 S	н	CH ₂	CH ₂		229	71,0	5,16	10,8	70,78	5,24	10,63
19	E - 00	田	CH ₂	E E E	Ħ	258	6,89	5,55	13,4	68,97	5,54	12,98
50	CO NO2	H	н		斑	261	61,69	3,88	17,96	61,49	3,99	17,59

ī	Ī	Ī	·	82	87	42	13,52	74	11,52	14,80	
			% N	17,62	17,87	14,42	5,	13,74	7	4	
و	ا	Trouvé	% н	3,70	3,87	4,13	4,05	60,9	3,17	4,15	
orio+mom>t>	חבחחם	Tro	C %	62,03	61,62	65,00	62,86	69,07	53,70	54,86	
	- 1		. % N	17,96	17,96	14,15	13,88	15,51	11,85	15,11	
1.00.4	Analyse	Calculé	Н% П	3,88	3,88	4.15	3,95	6,07	2,98	5,81	
ŀ		Cal	%	69,19	64,69	6,49	62,4	68,70	55,5	55,0	
		C F4	L	239	506	261	260	200	566	200	
		뮸		н	甲	н	н	CH ₃	Ħ	CH ₂	
		$\mathbb{R}_{L_{L}}$	+			0	# (CH ₃	2 E	НООЭ	
-		R _z	`	н	щ	Ħ	斑	н	н	Ħ	
		Ή	ų.	Ħ	н	Ħ	Ħ	田	斑	田	
		, ad		CO-NO2	CO \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	00 - NO2	GO - NO2	CO CH2	00 - MO2	CO NO.	
		Pro-	duit	23	22	23	54	25	56	27	_

-								
,		N %	12,24	12,62	10,33	12,48	9,81	10,51
	Trouvé	% н	5,54	5,83	4,09	6,81	90'9	4,58
élémentaire	됍	% 5	72,55	66,08	62,79	69,45	69,01	63,67
1		% N	12,15	12,80	10,5	12,55	10,0	10,61
Analyse	- Calculé	ж н	5,55	5,55	4,04		5,96	4,58
	, Са.	% 0	73,0	66,0	63,2	69,93 6,77	689	63,7
	ى ئ		149	200	74	159	136	185
	rt Pt		Ħ	CH ₂	щ	Ħ	' #	ш
	ρ	1		CH2		M. G.		S B
	ρ	5	н	CH ₂	Ħ	н	ш	H
	ρ	Ç	н	Ħ	Ħ	н	щ	0,1
	ρ	L	€ 1 1 1 1 1 1 1 1 1 1	00	OFF.	(CH ₂) ₂ 0CH ₃	(CH ₂) ₂	CHDO OCH3
	Pro-	duit	28	6%	30	31	32	33

EXEMPLE VI : Activité analgésique

Cette activité a été mise en évidence par le test de Siegmund, (Référence: SIEGMUND E.A.; CADMUS R.A.; GOLU, "A method for evaluating both non narcotic and narcotics analgesics, Prosoc. Exp. Biol. 1957, b, 95, 729-731.

Principe :

10

15

30

35

L'injection d'un agent irritant : la phénylbenzoquinone (en solution à 0,02 %) dans le péritoine de la souris, détermine des mouvements d'étirements ou de torsion (Writing Syndrom) dont la fréquence est diminuée par l'administration préventive d'analgésique. Les substances sont données par voie orale 30 minutes avant l'injection d'agent irritant. On compte le nombre d'étirements entre la 5ème et la 10ème minute après l'injection de phénylbenzoquinone. On calcule le pourcentage d'animaux protégés. Une souris est considérée comme protégée si elle effectue moins de 5 étirements en 5 minutes.

Résultats:

20 .	Produit n°	Toxicité aiguë per os - souris DL 50 mg/kg	Dose administrée mg/kg per os	Pourcentage d'acti- vité par rapport aux témoins
	1	>1200	180 90	80 40
	9	900	90	50
25	11	>1200	300 150	70 30

Dans les mêmes conditions expérimentales, la glaphénine, administrée per os à la dose de 60 mg/kg donne 100 % d'activité. Conclusions:

Ces composés, qui ont une faible toxicité, présentent une remarquable activité analgésique. Le composé n° 1 a, à doses suffisantes, une activité comparable à celle de la glaphénine à la dose de 60 mg/kg per os.

EXEMPLE VII : Activité antiinflammatoire

Cette activité a été mise en évidence par le test de l'oedème à la carragénine. (Référence : WINTER C.A.; RISLEY E.A.; NUSS G.N.: Carrogeenin-induced edema in hind paw of the rat as an assay for anti-inflammatory drugs. Proc. Soc. Exp. Biol. N.Y. 111, 544 (1962).

Principe:

5

10

25

30

35

Le rat reçoit en injection dans la voûte plantaire 0,05 ml d'une solution à 1 % de carragénine dans le sérum physiologique. Le volume de la patte est mesuré avant et 3 heures après l'injection de l'agent phlogogène à l'aide du pléthysmographe APELAB. Toutes les substances sont administrées par voie orale, une heure avant l'injection de carragénine.

Résultats:

	Produit	Toxicité aiguë per os souris DL 50 mg/kg	Dose administrée per os mg/kg	Pourcentage d'in- hibition par rap- port aux témoins
15	1	> 1200	240	40
•	11	> 1200	300	20
	23	> 1200	300	30
20	30	>1200	120	40

Dans les mêmes conditions expérimentales l'acide niflumique, administré à la dose de 60 mg/kg per os, donne 50 % d'inhibition.

Conclusions :

Ces composés, qui ont une très faible toxicité, présentent une activité antiinflammatoire très nette. Les composés n° 1 et n° 31 ont, en particulier, à doses suffisantes, une activité comparable à celle de l'acide niflumique à la dose de 60 mg/kg per os.

EXEMPLE VIII - Activité antipyrétique

La recherche consiste à mettre en évidence la diminution ou l'inhibition de l'hyperthermie provoquée par la levure de bière, Références : SMITH P.K.; HAMBOURGER W.E. J. Pharmacol. Exp. Therm. 54, 346 (1935).

Principe:

L'hyperthermie est provoquée expérimentalement chez le rat

par une injection de levure de bière en sous-cutanée (à raison de 2 ml par rat d'une suspension à 20 % dans le sérum physiolo-gique) la veille de l'expérimentation. Le matin de l'expérience le produit à expérimenter est donné à une dose voisine du 10ème de la DL 50, per os.

La température rectale est mesurée 30 minutes, 1 heure, 2 heures, 3 heures après l'administration du produit. Résultats:

10	Produit nº	Toxicité aiguë souris per os DL 50 mg/kg	Dose administrée per os mg/kg	Activité
•	1	> 1200	150	nette
15	11	> 1200	300	légère

Dans les mêmes conditions expérimentales le pyramidon, à la dose de 100 mg/kg, présente une forte activité.

Conclusions :

La nette activité antipyrétique du composé n° 1, qui est très faiblement toxique, est à signaler.

EXEMPLE IX

20

25

35

Forme pharmaceutique : comprimés

On peut utilisér en thérapeutique humaine des comprimés présentant avantageusement la composition suivante :

Pour 1 comprimé :

- composé nº 1	0,100 g
- .	0,100 g
-	0,040 g
	0,015 g
	0,015 g
- Stéarate de magnésium	0,015 g
	- Amidon

Les doses moyennes seront de 1 à 4 comprimés par jour.

EXEMPLE X

Forme pharmaceutique : gélules

On peut utiliser en thérapeutique humaine des gélules présentant avantageusement la composition suivante : Pour 1 gélule :

- composé nº 11

0,200 g

Les doses seront de 2 à 3 gélules par jour.

EXEMPLE XI

5

10

Forme pharmaceutique : suppositoires

On peut utiliser en thérapeutique humaine par voie rectale des suppositoires présentant avantageusement la composition suivante:

Pour 1 suppositoire :

- composé nº 1

0,100 g

- excipient q.s.p.

Un suppositoire le soir au coucher, un 2ème éventuellement le matin.

- REVENDICATIONS -

1 - Nouveaux dérivés de benzoylhydrazones ortho-amino substituées caractérisés en ce qu'ils répondent à la formule :

10

15

20

25

35

5

dans laquelle :

R, représente :

- a) soit un noyau phényle éventuellement substitué en ortho, méta, et/ou para par un ou plusieurs radicaux alcoxy ou trifluorométhyle
- b) soit un groupement benzyle
- c) soit un groupement -(CH2)n dans lequel n est supérieur à 1; le noyau phényle étant éventuellement substitué en ortho, méta et/ou para par un ou plusieurs radicaux alcoxy
- d) soit un groupement benzoyle éventuellement substitué sur le noyau phényle en ortho, méta et/ou para par un ou plusieurs atomes d'halogènes, un ou plusieurs radicaux alkyle, alcoxy, nitro

R₂ et R₃ peuvent être identiques ou différents et représentent chacun :

- soit un atome d'hydrogène ou d'halogène, soit un radical alkyle inférieur ou nitro
- 30 R₄ et R₅ peuvent être identiques ou différents et représentent chacun :
 - soit un atome d'hydrogène, soit un radical alkyle inférieur ou carboxy, soit un noyau phényle éventuellement substitué en ortho, méta et/ou para par un ou plusieurs atomes d'halogènes, un ou plusieurs radicaux hydroxyle, ou dialkylamino dans le cas où R₁ prend la signification a) ou c) ou d)
 - soit un noyau pyridyle en ortho, méta ou para.

10

15

20

- 2 Dérivés selon la revendication 1 caractérisés en ce que R_4 et R_5 sont des radicaux méthyle et R_1 un radical benzyle, phényléthyle ou benzoyle.
- 3 Dérivés selon la revendication 1 caractérisés en ce que l'un des radicaux R_4 et R_5 est un noyau phényle éventuellement substitué et l'autre est l'hydrogène.
 - 4 -Dérivés selon la revendication 1 caractérisés en ce qu'ils sont constitués par la N(benzylamino-2 benzoyl)N' isopropylidène hydrazine, la N[(orthofluorobenzoyl)amino-2 benzoyl] N' isopropylidène hydrazine, la N[chloro-4 (phényléthylamino-2) benzoyl] N' isopropylidène hydrazine, la N(paranitrobenzoyl-amino-2 benzoyl) N' benzylidène hydrazine, la N(métatrifluoro-méthylphénylamino-2 benzoyl) N' hydroxy-2' benzylidène hydrazine ou la N(diméthoxy-3',4' phényléthylamino-2 benzoyl) N' (paradiméthylamino-benzylidène) hydrazine.
 - 5 Procédé de préparation de dérivés de benzoylhydrazones ortho-amino substituées selon l'une quelconque des revendications 1 à 4, caractérisé en ce/qu'il comporte la réaction d'un benzoyl-hydrazine orthoamino substituée

R₃ CO-NH-NH₂

25

30

avec une aldéhyde ou une cétone R4-CO-R5.

- 6 médicaments, notamment à activité analgésique, antiinflammatoire ou antipyrétique, caractérisés en ce qu'ils comportent comme composé actif au moins un dérivé selon l'une quelconque des revendications 1 à 4.
- 7 Médicaments selon la revendication 6, caractérisés en ce qu'ils sont présentés sous forme de comprimés, de gélules ou de suppositoires.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
•

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.