Amendment to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1. 2. (canceled)
- 3. (currently amended) The method of embedding digital watermark information according to Claim 2A method of embedding digital watermark information $b_1 b_n$ (2 \leq n) in image data, comprising the steps of:

dividing the image data into a plurality of areas S each consisting of $M \times N$ (1 $\leq M$, N) pixels;

defining an area G consisting of $P \times Q$ ($1 \le P$, Q) of the areas S; allocating each of the areas S constituting said area G to some one of: areas $T_1 - T_n$ whose pixel values are changed, areas $J_1 - J_k$ ($1 \le k$) in which information $p_1 - p_k$ ($1 \le k$) specifying an embedding format for embedding said digital watermark information $b_1 - b_n$ in said areas $T_1 - T_n$, and areas $H_1 - H_m$ ($1 \le m$) whose pixel values are not changed;

corresponding each of said $T_1 - T_n$, whose pixel values are changed, to each of said digital watermark information $b_1 - b_n$ and changing the pixel value of each area T according to a bit value;

locating areas $T_1 - T_n$, areas $J_1 - J_k$ and areas $H_1 - H_m$ in a predetermined same arrangement in said area G; and

locating said area G repeatedly over entire image data, wherein:

said digital watermark information $b_1 - b_n$ is embedded by increasing or decreasing pixel data values in the corresponding areas $T_1 - T_n$ according to a bit value (0, 1) of each bit of the digital watermark information $b_1 - b_n$; and

said information p_1-p_k specifying said embedding format is embedded such that said information indicates a pattern of respective increasing/decreasing directions in the area T_1-T_n for a bit value of the digital watermark information, in each area G to which the area J_1-J_k embedded with said information p_1-p_k belong.

4. - 6. (canceled)

7. (currently amended) A method of extracting digital watermark information, for extracting the digital watermark information $b_1 - b_n$ ($2 \le n$), a bit value of the digital watermark information being 0 or 1, from image data in which said digital watermark information is embedded, comprising steps of:

dividing the image data into a plurality of areas S each consisting of M \times N (1 \leq M, N) pixels; detecting areas H₁ – H_m (1 \leq m) in which any of bit information 0 and 1 is not embedded, from said plurality of areas S;

recognizing a plurality of areas G each consisting of $P \times Q$ (1 $\leq P$, Q) of the areas S, said plurality of areas G being located on said image data, and said recognition being carried out by comparing locations of said detected areas $H_1 - H_m$ on said image data and locations of predetermined areas $H_1 - H_m$ in the areas S;

in each of the plurality of areas G recognized, extracting information $p_1 - p_k$ (1 \leq k) from areas $J_1 - J_k$ in which said information $p_1 - p_k$ (1 \leq k) in which said information $p_1 - p_k$ (1 \leq k) should be embedded, said information $p_1 - p_k$ specifying an embedding format for embedding said digital watermark information $b_1 - b_n$ respectively in said areas $T_1 - T_n$;

recognizing the embedding format of the digital watermark information $b_1 - b_n$ in the areas $T_1 - T_n$ in the areas G in question; and

extracting the digital watermark information $b_1 - b_n$ from the areas $T_1 - T_n$, according to the recognized embedding format The method of extracting digital watermark information according to Claim 6,

wherein:

for each of the plurality of groups G recognized, the information p_1-p_k embedded in the areas J_1-J_k is extracted to recognize a pattern of increasing/decreasing directions of pixel data values for a bit value of the digital watermark information, in the area G in question; and

each bit value of the digital watermark information b_1-b_n embedded in the areas T_1-T_n is detected according to the recognized pattern of increasing/decreasing directions.

8. - 10. (canceled)

11. (currently amended) A program product for making a computer execute a method of embedding digital watermark information $b_1 - b_n$ (2 \leq n) in image data, comprising:

codes for dividing the image data into a plurality of areas S each consisting of $M \times N \ (1 \le M, N)$ pixels;

codes for defining an area G consisting of $P \times Q$ ($1 \le P$, Q) of the areas S:
 codes for allocating each of the areas S constituting said area G to some one
 of: areas $T_1 - T_n$ whose pixel values are changed, areas $J_1 - J_k$ ($1 \le k$) in which
 information $p_1 - p_k$ ($1 \le k$) specifying an embedding format for embedding said digital
 watermark information $b_1 - b_n$, a bit value of the digital watermark information being
 0 or 1, in said areas $T_1 - T_n$, and areas $H_1 - H_m$ ($1 \le m$) whose pixel values are not changed;

codes for corresponding each of said $T_1 - T_n$ whose pixel values are changed, to each of said digital watermark information $b_1 - b_n$ and changing the pixel value of each area T according to a bit value;

codes for locating one or more areas $T_1 - T_n$, and areas $J_1 - J_k$ in a predetermined same arrangement in said area G:

codes for locating said area G repeatedly over entire image data; The program product according to Claim 10,

further comprising:

codes for embedding said digital watermark information $b_1 - b_n$ by increasing or decreasing pixel data values in the corresponding areas $T_1 - T_n$ according to a bit value (0, 1) of each bit of the digital watermark information $b_1 - b_n$; and

codes for embedding said information p_1-p_k specifying said embedding format such that said information indicates a pattern of respective increasing/decreasing directions in the areas T_1-T_n for a bit value of the digital watermark information, in each area G to which the areas J_1-J_k embedded with said information p_1-p_k belong: and

a computer readable storage medium for holding the codes.

12. - 14. (canceled)

15. (currently amended) A program product for making a computer execute a method of extracting digital watermark information $b_1 - b_n$ ($2 \le n$), a bit value of the digital watermark information being 0 or 1, from image data in which said digital watermark information is embedded, comprising:

codes for dividing the image data into a plurality of areas S each consisting of $M \times N \ (1 \le M, N)$ pixels;

codes for detecting areas $H_1 - H_m$ (1 \leq m) in which any of bit information 0 and 1 is not embedded, from said plurality of areas S codes for recognizing a plurality of areas G each consisting of P \times Q (1 \leq P, Q) of the areas S, said plurality

of areas G being located on said image data, and said recognition being carried out by comparing locations of said detected areas $H_1 - H_m$ on said image data and locations of predetermined areas $H_1 - H_m$ in the areas S;

codes for extracting, in each of the plurality of areas G recognized, information $p_1 - p_k$ (1 \leq k) from areas $J_1 - J_k$ in which said information $p_1 - p_k$ (1 \leq k) should be embedded, said information $p_1 - p_k$ specifying an embedding format for embedding said digital watermark information $b_1 - b_n$ respectively in said areas $T_1 - T_n$:

codes for recognizing the embedding format of the digital watermark information $b_1 - b_n$ in the areas $T_1 - T_n$ in the area G in question;

 $\frac{codes\ for\ extracting\ the\ digital\ watermark\ information\ b_1-b_n\ from\ the\ areas}{T_1-T_n\ according\ to\ the\ recognized\ embedding\ format;} The\ program\ product}$

further comprising:

codes for extracting, for each of the plurality of groups G recognized, the information p_1-p_k embedded in the areas J_1-J_k to recognize a pattern of increasing/decreasing directions of pixel data values for a bit value of the digital watermark information, in the area G in question, and to detect each bit value of the digital watermark information b_1-b_n embedded in the areas T_1-T_n according to the recognized pattern of increasing/decreasing directions; and

a computer readable storage for holding the codes.

16. - 18 (canceled)

19. (currently amended) An apparatus for embedding digital watermark information $b_1 - b_n$ (2 \leq n) in image data, comprising:

a processing part for dividing the image data into a plurality of areas S each consisting of $M \times N$ (1 $\leq M$, N) pixels;

a processing part for defining an area G consisting of $P \times Q$ (1 $\leq P$, Q) of the areas S;

a processing part for allocating each of the areas S constituting said area G to some one of: areas $T_1 - T_n$ whose pixel values are changed, areas $J_1 - J_k$ ($1 \le k$) in which information $p_1 - p_k$ ($1 \le k$) specifying an embedding format for embedding said digital watermark information $b_1 - b_n$ in said areas $T_1 - T_n$, and areas $H_1 - H_m$ ($1 \le m$) whose pixel values are not changed:

a processing part for corresponding each of said $T_1 - T_n$ whose pixel values are changed, to each of said digital watermark information $b_1 - b_n$ and changing the pixel value of each area T according to a bit value;

a processing part for locating one or more areas $T_1 - T_n$, one or more areas $J_1 - J_k$ and one or more areas $H_1 - H_m$ in a predetermined same arrangement in said area G:

a processing part for locating said area G repeatedly over entire image data;

The apparatus for embedding digital watermark information according to

Claim 18,

further comprising:

a processing part for embedding said digital watermark information $b_1 - b_n$ by increasing or decreasing pixel data values in the corresponding areas $T_1 - T_n$ according to a bit value (0, 1) of each bit of the digital watermark information $b_1 - b_n$; and

a processing part for embedding said information $p_1 - p_k$ specifying said embedding format such that said information indicates a pattern of respective increasing/decreasing directions in the area $T_1 - T_n$ for a bit value of the digital watermark information, in each area G to which the areas $J_1 - J_k$ embedded with said information $p_1 - p_k$ belong.

20. - 22 (canceled)

23. (currently amended) An apparatus for extracting digital watermark information $b_1 - b_n$ ($2 \le n$), a bit value of the digital watermark information being 0 or 1, from image data in which said digital watermark information is embedded, comprising:

a processing part dividing the image data into a plurality of areas S each consisting of $M \times N$ (1 $\leq M$, N) pixels;

a processing part for detecting areas $H_1 - H_m$ (1 \leq m) in which any of bit information 0 and 1 is not embedded, from said plurality of areas S;

a processing part for recognizing a plurality of areas G each consisting of P \times Q (1 \le P, Q) of the areas S, said plurality of areas G being located repeatedly over entire said image data, and said recognition being carried out by comparing locations of said detected areas $H_1 - H_m$ on said image data and locations of predetermined areas $H_1 - H_m$ in the areas S; a processing part for extracting, in each of the plurality of areas G recognized, information $p_1 - p_k$ (1 \le k) from areas $J_1 - J_k$ in which said information $p_1 - p_k$ (1 \le k) should be embedded, said information $p_1 - p_k$ specifying an embedding format for embedding said digital watermark information $b_1 - b_n$ respectively in said areas $T_1 - T_n$;

a processing part for recognizing the embedding format of the digital watermark information $b_1 - b_n$ in the areas $T_1 - T_n$ in the area G in question;

a processing part for extracting the digital watermark information $b_1 - b_n$ from the areas $T_1 - T_n$, according to the recognized embedding format; and

The apparatus for extracting digital watermark information according to Claim 22,

further comprising:

a processing part for extracting, for each of the plurality of groups G recognized, the information p_1-p_k embedded in the areas J_1-J_k , to recognize a pattern of increasing/decreasing directions of pixel data values for a bit value of the digital watermark information, in the area G in question, and to detect each bit value of the digital watermark information b_1-b_n embedded in the areas T_1-T_n , according to the recognized pattern of increasing/decreasing directions.

24. - 26. (canceled)