Factors Influencing Ride-Sharing Pricing in Boston: A Study on Lyft and Uber

6101 Intro to Data Science Midterm Presentation
Aaron Yang Jianjun Gao Luhuan Wang

Why this topic?

- 1. Ride-sharing Popularity
- 2. Easy Data Access
- 3. Dynamic Pricing Model
- 4. Comparative Analysis

Team Contributions

Aaron Yang	Jianjun Gao	Luhuan Wang
Outline & Proposal	Data Collection	Data Summary
Data Analysis(with Jianjun)	Data Analysis(with Aaron)	Slide Creation
Presentation	Presentation	Presentation
Paper Co-author	Paper Co-author	Paper Co-author

Key Concepts & Principles

Data Science and Statistical Methods	Programming	Visualization
Data Collection & Cleaning	R	Graphical Representation
Exploratory Data Analysis (EDA)	Python	
Regression Model		

Project Workflow Overview 1

Step No.	Phase	Tasks & Details
1.	Topic Decision	- Team Meeting - Choose a topic based on available data
2.	Data Collection	Identify Data SourcesGather data - Initial Data Cleaning
3.	Research & Background	Literature ReviewIndustry Knowledge
4.	Data Processing & EDA	Data Cleaning & TransformationDescriptive StatisticsVisualization
5.	Data Analysis & Modeling	Hypothesis TestingRegression AnalysisAdvanced Modeling - Model Evaluation

Project Workflow Overview 2

Step No.	Phase	Tasks & Details
6.	Interpretation of Results	- Discuss Findings - Statistical Significance
7.	Presentation Preparation	- Slide Development - Rehearsal
8.	Presentation & Feedback	Deliver PresentationCollect Feedback
9.	Final Paper	- Write a paper

Kaggle DataBase

More than 300,000 rows and 55 columns data

Original Dataset

		timestamp	hour	day	month	datetime	timezone	source	destination	cab_type	precipIntensityMax	uvIndexTime	temperatureMin	temperatureMinTime	temperatureMax	temperatureMaxTime	apparent Temperature Min	apparent Temperature Min Time	apparentTemp
	424553bb- 7174-41ea- aeb4- fe06d4f4b9d7	1.544953e+09				2018-12- 16 09:30:07	America/New_York	Haymarket Square	North Station	Lyft		1544979600	39.89	1545012000		1544968800		1545012000	
	4bd23055- 6827-41c6- b23b- 3c491f24e74d	1.543284e+09				2018-11- 27 02:00:23	America/New_York	Haymarket Square	North Station			1543251600	40.49	1543233600		1543251600		1543291200	
	981a3613- 77af-4620- a42a- 0c0866077d1e	1.543367e+09				2018-11- 28 01:00:22	America/New_York	Haymarket Square	North Station			1543338000		1543377600		1543320000		1543377600	
	c2d88af2- d278-4bfd- a8d0- 29ca77cc5512					2018-11- 30 04:53:02	America/New_York	Haymarket Square	North Station		0.0000			1543550400		1543510800		1543550400	
	e0126e1f- 8ca9-4f2e- 82b3- 50505a09db9a	1.543463e+09				2018-11- 29 03:49:20	America/New_York	Haymarket Square	North Station		0.0001	1543420800		1543402800		1543420800		1543392000	
693066	616d3611- 1820-450a- 9845- a9ff304a4842	1.543708e+09				2018-12- 01 23:53:05	America/New_York	West End	North End	Uber	0.0000	1543683600		1543658400		1543690800		1543658400	
	633a3fc3- 1f86-4b9e- 9d48- 2b7132112341	1.543708e+09				2018-12- 01 23:53:05	America/New_York	West End	North End	Uber	0.0000	1543683600		1543658400		1543690800		1543658400	
693068	64d451d0- 639f-47a4- 9b7c- 6fd92fbd264f	1.543708e+09				2018-12- 01 23:53:05	America/New_York	West End	North End	Uber	0.0000	1543683600		1543658400		1543690800		1543658400	
693069	727e5f07- a96b-4ad1- a2c7- 9abc3ad55b4e					2018-12- 01 23:53:05	America/New_York	West End	North End	Uber	0.0000	1543683600		1543658400		1543690800		1543658400	
693070	e7fdc087- fe86-40a5- a3c3- 3b2a8badcbda	1.543708e+09				2018-12- 01 23:53:05	America/New_York	West End	North End	Uber	0.0000	1543683600		1543658400		1543690800		1543658400	
3071 ro	ws × 57 columns																		

Drop null values, random sampling(random_state = 42),choose 6 columns

	hour	price	distance	surge_multiplier	cab_type	name
0	6	7.0	4.51	1.0	Lyft	Shared
1	0	10.5	2.80	1.0	Uber	WAV
2	12	7.0	1.09	1.0	Lyft	Lyft
3	3	15.5	0.92	1.0	Uber	Black
4	9	16.5	1.12	1.0	Lyft	Lux Black
5995	3	19.5	2.32	1.0	Uber	Black
5996	18	26.0	0.54	1.0	Lyft	Lux Black XL
5997	10	14.0	1.89	1.0	Uber	UberX
5998	13	9.0	2.08	1.0	Lyft	Lyft
5999	4	22.5	2.36	1.0	Uber	Black
6000 rows × 6 columns						

Columns Adjustments

cab_type <chr></chr>	name <chr></chr>		
Lyft	Shared		
Uber	WAV		
Lyft	Lyft		
Uber	Black		
Lyft	Lux Black		
Uber	WAV		

cab_company <chr></chr>	cab_type <chr></chr>
Lyft	Shared
Uber	WAV
Lyft	Lyft
Uber	Black
Lyft	Lux Black
Uber	WAV

Descriptive Stats

```
unique(df$cab_company) #see unique values in company
## [1] "Lyft" "Uber"
```

```
summary(df) # descriptive stats
```

```
price
                                           surge multiplier
       hour
                                 distance
## Min. : 0.0
                Min. : 2.5
                              Min. :0.02
                                           Min. :1.00
  1st Qu.: 6.0
                1st Qu.: 9.0
                              1st Qu.:1.30
                                           1st Qu.:1.00
## Median :12.0
                Median :13.5
                              Median :2.19
                                           Median :1.00
        :11.7
                Mean :16.5
                              Mean :2.20
                                            Mean :1.02
  3rd Qu.:18.0
                3rd Qu.:22.5
                              3rd Qu.:2.94
                                           3rd Qu.:1.00
  Max. :23.0
                Max. :73.5
                              Max. :7.46
                                           Max. :2.50
     cab_type
                        name
  Length:6000
                    Length:6000
## Class :character Class :character
   Mode :character Mode :character
```

```
unique(df$cab_type) #see unique values in cab_type

## [1] "Shared" "WAV" "Lyft" "Black" "Lux Black"
## [6] "Lyft XL" "Lux" "UberX" "Black SUV" "UberPool"
## [11] "Lux Black XL" "UberXL"
```

```
# measure of variance
sd(df$price)
sd(df$distance)
sd(df$surge_multiplier)
```

```
[1] 9.43
[1] 1.14
[1] 0.103
```


0-8: Relatively High

15-23: Relatively Low

Highest Price:

Black SUV, Lux Black XL

Lowest Price:

Shared

Highest Median when Tipped 1.75

Lowest Median when Tipped 1

A Trend That is not Obvious

Histogram of Prices by Cab Type (Ly Histogram of Prices by Cab Type (Ut

Normal Q-Q Plot

Normality Test For Distance

density(x = df\$distance)

Normality Test For Hour

$density(x = df\hour)$

Normality Test For Surge_mutiplier

Normality Test For Price

Theoretical Quantiles

Correlation Heatmap for Numeric Columns

Chi-Squared Test for Cab Company & Cab Type

```
# Chi-squared test
chisq_result <- chisq.test(df$cab_company, df$cab_type)
chisq_result

##
## Pearson's Chi-squared test
##
## data: df$cab_company and df$cab_type
## X-squared = 6000, df = 11, p-value <2e-16</pre>
```

Cab_company and cab_type are significantly related.

Linear Regression Analysis

```
Call:
lm(formula = price ~ distance + surge_multiplier, data = df)
Residuals:
  Min
          10 Median
                             Max
-32.53 -6.75 -1.61 4.98 38.56
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
(Intercept)
                -12.9730
                            1.1094 -11.7
                                            <2e-16 ***
distance
                 2.8232
                            0.0962
                                     29.4
                                           <2e-16 ***
surge_multiplier 22.8997
                            1.0703
                                     21.4 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 8.52 on 5997 degrees of freedom
Multiple R-squared: 0.184,
                              Adjusted R-squared: 0.183
F-statistic: 674 on 2 and 5997 DF, p-value: <2e-16
```

Distance, surge_multiplier are good predictors for price.

In terms of 0.184 R-squared, the model is not so good.

Summary

-the reasons we chose this topic

With the development of social technology and fast-paced life, online shared-vehicle-services have attracted more and more attention.

Selected graphics

Used python to do the initial data cutting

— Normality Test

Boxplot

Heatmap

Final result (according to EDA)

Weak relation to: Price and Hours

Price Fluctuations Throughout the Day

 Possible Peak Hours: the first peak close to the 5th hour might /the subsequent decrease might signify a lull during mid-morning.

Midday Drop & Evening Rise

Final result (according to EDA)

Strong relation to: Surge_multiplier and Distance with Price

Hours is not a Key-point

Final result (according to EDA)

Strong relation to: Cab_company and Cab_type

Cab_company: This may result in software design and vehicle design being different from each other:

Uber is the cheaper company.

Uber is available all over the world, while Lyft is only available in the United States and Canada.

Reference Page

- Brllrb. (2019). Uber and Lyft Dataset: Boston, MA. Kaggle. https://www.kaggle.com/datasets/brllrb/uber-and-lyft-dataset-boston-ma/data
- 2. Peng, R. D., & Matsui, E. (2016). Art of Data Science.

Thank you for your attention!