Econ7115: Structural Models and Numerical Methods in Economics Assignment W1

Due 23 April 2025

Zi Wang HKBU Spring 2025

1. Consider the following equilibrium system of the Armington model:

•

$$w_i L_i = \sum_{n=1}^{N} \frac{1}{1 + t_{in}} \lambda_{in} X_n, \quad \lambda_{in} = \frac{\left(\frac{w_i \kappa_{in}}{A_i}\right)^{1 - \sigma}}{\sum_{k=1}^{N} \left(\frac{w_k \kappa_{kn}}{A_k}\right)^{1 - \sigma}}, \quad \kappa_{in} = \tau_{in} \left(1 + t_{in}\right). \tag{1}$$

•

$$X_{n} = w_{n}L_{n} + \sum_{i=1}^{N} \frac{t_{in}}{1 + t_{in}} \lambda_{in} X_{n}.$$
 (2)

- (a) Suppose that $t_{in} = 0$ for all (i, n).
 - Derive the equilibrium system for $(w_i)_{i=1}^N$.
 - Derive the Jacabian matrix of the equilibrium system above.
 - Consider the following parameterization: $N=3, \ \sigma=4, \ A=[3;1;1], \ L=[1;2;5], \ \mathrm{and} \ \tau_{in}=2 \ \mathrm{for \ all} \ i\neq n.$
 - Please solve for the equilibrium outcomes $(w_i)_{i=1}^3$ using the *Newton's method*, with the normalization $\sum_{i=1}^3 w_i = 1$. Compare your solution with that using fsolve in the Matlab (Note: if you do not use Matlab, you can compare your answer with that derived by any packaged nonlinear solver)
 - Consider reducing τ_{in} for all $i \neq n$ from 2 to 1.2. Please derive the welfare in each country with respect to these changes in τ_{in} .
- (b) Suppose that $t_{in} = 0.05$ for all $i \neq n$. Consider again the following parameterization: N = 3, $\sigma = 4$, A = [3; 1; 1], L = [1; 2; 5], and $\tau_{in} = 2$ for all $i \neq n$.
 - Please derive the first-order effect of $\log (1 + t_{in})$ on $\log \lambda_{in}$ for all $i \neq n$ in this general equilibrium system. Compare these GE effects with the reduced-form partial elasticity, 1σ .

- Suppose that $t_{in} = 0.25$ for all $i \neq n$. Please derive the first-order effect of $\log (1 + t_{in})$ on $\log \lambda_{in}$ for all $i \neq n$ in this general equilibrium system.
- 2. Consider an extension of the Armington model discussed in class: production uses both labor and intermediates, i.e. the unit cost of producing in country i can be expressed as

$$c_i = \frac{w_i^{\beta} P_i^{1-\beta}}{A_i}, \quad \beta \in (0, 1],$$
 (3)

where β is the value-added share and P_i is the price index of the final consumption goods in country i.

- Please derive the equilibrium system of this extension.
- Please derive the linear system that can be used to compute the Jacobian matrix of the equilibrium system above.