

Figure 1: End-to-end latency of 4 testing applications with 5 devices in the orchestration network.

Figure 2: End-to-end latency of 4 testing applications with 8 devices in the orchestration network.

Figure 3: End-to-end latency of 4 testing applications with 11 devices in the orchestration network.

Figure 4: End-to-end latency of 4 testing applications with 14 devices in the orchestration network.

Figure 5: End-to-end latency for 4 testing application as the number of devices in the orchestration network increasing.

Figure 6: Probability of failure for 4 testing application with 14 devices in the orchestration network.

Figure 7: End-to-end latency for 4 applications with different network conditions.

Figure 8: Cost and Probability failure sweep, on the x-axis is γ . As more emphasis is put on the weight assigned to cost, the failure probability increase and cost decrease.

Figure 9: Cost and Probability failure sweep, on the x-axis is γ . As more emphasis is put on the weight assigned to cost, the failure probability increase and cost decrease.

Figure 10: Cost and Probability failure sweep, on the x-axis is γ . As more emphasis is put on the weight assigned to cost, the failure probability increase and cost decrease.

Figure 11: Cost and Probability failure sweep, on the x-axis is γ . As more emphasis is put on the weight assigned to cost, the failure probability increase and cost decrease.

Figure 12: Latency and probability of failure sweep, on the x-axis is β . As more emphasis is put on failure probability, the end-to-end latency increase and probability of failure decrease.

Figure 13: Latency and probability of failure sweep, on the x-axis is β . As more emphasis is put on failure probability, the end-to-end latency increase and probability of failure decrease.

Figure 14: Latency and probability of failure sweep, on the x-axis is β . As more emphasis is put on failure probability, the end-to-end latency increase and probability of failure decrease.

Figure 15: Latency and probability of failure sweep, on the x-axis is β . As more emphasis is put on failure probability, the end-to-end latency increase and probability of failure decrease.

Figure 16: Latency and cost sweep, on the x-axis is γ . As more emphasis is put on cost, the framework tends to optimize the cost and the end-to-end latency increase.

Figure 17: Latency and cost sweep, on the x-axis is γ . As more emphasis is put on cost, the framework tends to optimize the cost and the end-to-end latency increase.

Figure 18: Latency and cost sweep, on the x-axis is γ . As more emphasis is put on cost, the framework tends to optimize the cost and the end-to-end latency increase.

Figure 19: Latency and cost sweep, on the x-axis is γ . As more emphasis is put on cost, the framework tends to optimize the cost and the end-to-end latency increase.