Logika, lista 2.

1. Definiujemy pojęcie semantycznego wnioskowania: dla zbioru formuł T i formuły φ danego języka L:

$$T \models \varphi \iff (\forall M \models T) M \models \varphi.$$

Dowieść, że $T \vdash \varphi \Leftrightarrow T \models \varphi$. (Wynika stąd, że definicja \vdash jest poprawna.)

- 2. * Udowodnić, że semantyczne wnioskowanie ma charakter finitarny, tzn. $T \models \varphi \iff (\exists T_0 \subseteq T)(T_0 \text{ sko/nczony i } T_0 \models \varphi)$. W dowodzie nie odwoływać się do aksjomatycznego ujęcia KRL oraz nie używać ultraproduktu. Jednym z kroków dowodu jest "semantyczna" wersja twierdzenia o istnieniu modelu: jeśli każdy skończony podzbiór T ma model, to T ma model. Udowodnić to imitując dowód Henkina. To zadanie jest wyłączone z zadania domowego.
- 3. Dowieść, że $M \cong N \Rightarrow M \equiv N$.
- 4. Dowieść, że jeśli $M \equiv N$ i L, M są skończone, to $M \cong N$. Więcej: istnieje zdanie σ takie, że $M \models \sigma$ oraz $\forall N \models \sigma$, $N \cong M$.
- 5. Załóżmy, że L jest skończonym językiem relacyjnym. Dowieść, że $M \equiv N \Leftrightarrow \forall n \ D$ ma strategię zwycięską w grze $\Gamma_n(M, N)$.
 - $(a) \Rightarrow$
 - $(b) \Leftarrow$
- 6. Dowieść, że jeśli T jest zupełna i posiada rekurencyjnie przeliczalny zbiór aksjomatów, to T jest rozstrzygalna.
- 7. Załóżmy, że w zdaniu φ występują wyłącznie unarne symbole relacyjne (poza logicznymi). Dowieść, że $\exists n < \omega \ (n \text{ zależy tylko od długości } \varphi)$ takie, że jeśli φ ma model, to ma model mocy < n.
- 8. Wywnioskować stąd, że istnieje algorytm rozstrzygający, czy φ jest tautologią dla φ takich, jak w zadaniu 7.
- 9. Niech

$$FLO = \{\varphi : \forall M \models LO, \ M \text{ sko/nczony} \Rightarrow M \models \varphi\},$$

$$FLO_{\infty} = \{\varphi : \exists n \forall M \models LO, \ M \text{ skończony i } ||M|| > n \Rightarrow M \models \varphi\}.$$

- (a) Dowieść, że teoria FLO jest rozstrzygalna.
- (b) Dowieść, że teoria FLO_{∞} jest rozstrzygalna (wsk: w (a), (b) użyć gier Ehrenfeuchta).
- (c) Zauważyć, że FLO nie jest zupełna, FLO_{∞} jest zupełna i $FLO_{\infty} = Th(?, \leq)$ (tzn. wskazać konkretny model nieskończony tej teorii).

- 10. (a) Dowieść, że nie istnieje zdanie φ takie, że $\forall M$ ($M \models \varphi \iff M$ skończony).
 - (b) Dowieść, że nie istnieje teoria $T\supseteq LO$ (w jakimkolwiek języku zawierającym język teorii LO), która ma modele nieskończone i której wszystkie modele nieskończone są dobrze uporządkowane.