

E[g(x)] > g(E[x]) =) for conver G, &
finite values of
LHS & RHS

Tensen's Inequality

Let's try to take $g(x) = \ln \sqrt{x}$ $g'(x) = \sqrt{x} \left(\frac{1}{2} \times \frac{7}{2}\right) = \frac{1}{2}$ g''(x) = -1 which π -ive when π is find π so give take π

: E[-In [x] ? -In [E(x) -In To which & finite

Also LHI is finite as $ln(JX) \leq X$ as:

for X > 1, $ln(JX) \leq JX \leq X$ for $0 < x \leq 1$, $ln(JX) \leq 0 \leq X$ $\vdots \quad F[ln(X)] \rightarrow -ln(F[X)$ $\vdots \quad F[ln(X)] \leq ln(IO)$