

Exploring Drawbridge Transmon Coherence

Zlatko Minev

Kyle Serniak Ioan Pop Zaki Leghtas Uri Vool Gianluigi Catelani Reinier Heeres Chen Wang Nissim Ofek

Katrina Sliwa Teresa Brecht Yiwen Chu

Thanks to:

Phil, Mike, Brian, Max, Chris, Matt, Shyam, Steven, Yvonne, Qulab, RSL, and YINQE

Luigi Frunzio, Rob Schoelkopf, Michel Devoret

Outline

- I. What is the 2.5D multilayer architecture?
- II. Proof of concept devices
- III. System parameters & photon number splitting regime
- IV. Coherence through dynamical decoupling
- V. Quasiparticle dynamics

Approaches to Combining Coherence and Complexity

Coax cavities (MLS 9/12, 2/14)

The Co-Axline (MLS 11/14)

Micro-machined cavities (MLS 9/12, 12/13, 1/15)

WGMRs (MLS 1/13, 2/10/14, 1/15, 2/15)

We dream of:

For the moment:

- a. combines qubit & cavities using only wafers
- b. minimal number of moving parts
- c. maximal use of vacuum as dielectric
- d. no seams
- e. readily benefits from material improvements
- f. consistency: both layers from same wafer

In the future:

- a. any qubit (transmon, fluxonium, etc.)
- b. on-chip control lines & amplifiers
- c. layers with specific functionality
- d. full wafer stacking

First generation 3 GHz WGMRs

$$Q_i = 3.4 \cdot 10^6$$

 $T_{\phi} \ge 1 \text{ ms}$

 $R_s \leq 250n\Omega$

 $tan \delta \le 10^{-6}$

APL (2013)

Improved Resonators:

Optical fabrication

7 GHz

 $Q_i = 13M$

 $T_1 = 230 \text{ us}$

 $R_s < 9nOhm$

 $Q_s > 3.7*10^5$

Drawbridge Qubit + Storage

- $T_1 = 70 \text{ us}, T_2^R = 8 \text{ us}$
- $T_{\text{storage}} = 45 \text{ us}$
- T_{readout}, chi, etc see later

WGMR Differential Modes (D)

Qubit Mode

WGMR Sample

Coherences Summary

Mode	Qubit	Storage	Readout
Frequency (GHz)	4.890	7.070	7.267
$T_1 \; (\mu \mathrm{s})$	70	45	0.42
Q_{total}	2.0×10^{6}	2.0×10^{6}	1.8×10^{4}
$\alpha/2\pi~(\mathrm{MHz})$	300	(5×10^{-5})	(2×10^{-4})
$\chi_q/2\pi \; (\mathrm{MHz})$	_	0.23	0.30

- William Deming

T_{1 storage} from Parity Measurements

Storage-Qubit Revivals

See Zaki & Brian MLS

$$\frac{\pi}{\chi} = 2.25 \mu s$$
 $e^{-\frac{\pi}{\chi T_2}} = .75$

T₁ storage

Time (ns)

Parity measurement: Constant Ramsey time = pi/chi Vary time between storage disp. & parity measurement

Qubit T₂

Qubit $T_2 = 8\mu s$ Gaussian!

$$\epsilon_m \equiv E_m(n_g = 1/2) - E_m(n_g = 0)$$

Dispersion = -1.30×10^3 KHz

$$E_j/E_c = 27.5$$

$$E_j = 9.06 \, \text{GHz}$$

$$T_2/2\pi = 1/(2\pi \ 8.2\mu \text{s}) = 19.4\text{KHz}$$

- 1. What is the noise that limits us?
- 2. What are the charges doing?

Address Gaussian T₂ by Dynamical Decoupling

G. De Lange et al. Science 330, 60 (2010) F. Bylander et al. N.Phys. 7, 567 (2011)

A Filter

Time evolution:

$$\delta\varphi(t) = (\partial\omega_{01}/\partial\lambda) \int_0^t dt' \delta\lambda(t').$$

$$s_n(t) = \langle \uparrow | D_x^{\text{ef}}(\pi/2)^{\dagger} R^{\dagger} \sigma_y^{\text{ef}}(t) R D_x^{\text{ef}}(\pi/2) | \uparrow \rangle$$

$$R = \sigma_y^{\text{ef}}(\delta_n t) \sigma_y^{\text{ef}}(\delta_{n-1} t) \dots \sigma_y^{\text{ef}}(\delta_2 t) \sigma_y^{\text{ef}}(\delta_1 t).$$

$$\delta\varphi(t) = (\partial\omega_{01}/\partial\lambda) \int_0^t dt' \delta\lambda(t') * f_n(t)$$

Filtered coherence decay in freq. space:

$$\langle \exp[i\,\delta\varphi(t)]\rangle \equiv \exp[-\chi_N(t)]$$

$$\chi_N(\tau) = \tau^2 \sum_{\lambda} \left(\frac{\partial \omega_{01}}{\partial \lambda} \right)^2 \int_0^\infty d\omega \, S_{\lambda}(\omega) \, g_N(\omega, \tau),$$

$$g_N(\omega, \tau) = \frac{1}{(\omega \tau)^2} \left| 1 + (-1)^{1+N} \exp(i\omega \tau) + \frac{1}{2} \sum_{i=1}^{N} (-1)^j \exp(i\omega \delta_j \tau) \cos(\omega \tau_\pi / 2) \right|^2$$

Types of noise:

$$S_{\lambda}(\omega) = A_{\lambda}/\omega \qquad \qquad \chi_{N}(\tau) = (\Gamma_{\varphi}\tau)^{2}$$

$$\langle \delta n(t_{1}) \delta n(t_{2}) \rangle = \bar{n}e^{-(\kappa/2)|t_{1}-t_{2}|} \qquad \qquad \langle \exp[i \, \delta \varphi(t)] \rangle = e^{-\gamma_{2}t} \exp\left\{-4\bar{n}\,\theta_{0}^{2} \left[\frac{\kappa|t|}{2} - 1 + \exp\left(-\frac{\kappa|t|}{2}\right)\right]\right\}$$

F. Bylander et al. N. Phys. (2011); Gambetta et al. PRA (2006)

Improvement of T₂ with DD

 Results similar to that of flux qubits but with almost an order of magnitude longer coherences

Reconstructing Noise Spectrum

$$g_N(\omega,\tau) = \frac{1}{(\omega\tau)^2} \left| 1 + (-1)^{1+N} \exp(i\omega\tau) + 2\sum_{j=1}^N (-1)^j \exp(i\omega\delta_j\tau) \cos(\omega\tau_\pi/2) \right|^2,$$

Filter Peak (KHz)

Filter Peak (KHz)

Quasiparticle

Injection in WGMRs

In collaboration with Uri, Gianluigi, Chen, Nissim

U. Vool and I. Pop, et al. 2014 C. Wang and Y. Gao, et al. 2014

Injection Spectroscopy v. delay

threshold (more on next slides)

= 260 KHz

 χ_{qr}

JPC Readout & Resolved Histograms

Time Domain Analysis (Preliminary)

Three layers to the analysis:

(see Uri's MM rehearsal for more)

- 1. Qubit state v. time: determined from IQ time series using unbiased filter.
- 2. Qubit T1 & polarization: from qubit state jump statistics.
- 3. QP Dynamics: x_{qp} , temp. of bath, etc. inferred from qubit T1 (rates) & polarization.

A few remarks:

g / not g

Correlation between measurements

Some biases in filter

But gives us general picture for all states and rates!

U. Vool and I. Pop, et al. 2014; C. Wang, et al. 2014

2. Qubit T1 & polarization

from tracking dynamics of the qubit state

region

ignore highly excited region (more on it in later slides)

The qubit T_1 is shorter closer to the injection but it recovers on a timescale of ~110 μ s

The population relaxes to steady state on the same time scale.

U. Vool and I. Pop, et al. 2014; C. Wang, et al. 2014

Quasiparticle Injection Threshold Behavior

qubit population versus time for different injection power

Rates appear to be:

Independent of injection power Independent of readout power

Quasiparticle equilibration rate to steady state:

Device *	Tau_ss	
Drawbridge Transmon	0.11 ms	
Fluxonium	0.13 ms	
'Fat' Transmon	0.25 – 2.8 ms	
'Skinny' Transmon	5 - 18 ms	

U. Vool and I. Pop, et al. 2014; C. Wang, et al. 2

500 µm 90 μm 50 μm

A plausible story

(1) Diffusion Γ_D (2) Vortices Γ_V

$$\Gamma_{T1} = \Gamma_D + \Gamma_V$$

$$\Gamma_{D} = \frac{Area*Length of bridge}{width *Diffusion const.}$$

$$\approx 1ms$$

$$\Gamma_{V} = \frac{N*Trap.power}{Area}$$
 $\Rightarrow N \sim 30 \text{ vortices}$

Some Next Steps

 Extract all rates between g, e, f+ from IQ time correlations ala Nissim

Summary & Conclusions

Proof of concept devices

Achieved

System parameters & photon number splitting regime

Easily engineerable parameters, similar to other implementations

Coherence through dynamical decoupling

Large T2s can be obtained if we can get rid of low frequency noise

Quasiparticle dynamics

Fast relaxation (vortices in film?)

Future

Wafer stacking
Multiple qubits
New materials
Fluxonium

