

How to make 10,000 V power devices in GaN and Ga₂O₃?

Yuhao Zhang, Professor University of Hong Kong Email: yuhzhang@hku.hk

2025/05/30

Power semiconductors as pathways to carbon neutrality

nature reviews electrical engineering

Review Article | Published: 21 January 2025

Wide-bandgap semiconductors and power electronics as pathways to carbon neutrality

Yuhao Zhang [™], Dong Dong [™], Qiang Li [™], Richard Zhang, Florin Udrea & Han Wang [™]

Nature Reviews Electrical Engineering 2, 155–172 (2025) Cite this article

WBG semiconductor

WGB replacing Si can enable an annual carbon saving of at least 20 million tonnes in the USA – annual emissions of 4 million gasoline passenger vehicles

electricity generation 2,000 100% 81% 81% Natura gas poly of a special poly of a s

Impact on performance

Impact on energy consumption and carbon emissions

High critical electric field High thermal stability The carbon footprint of manufacturing WBG semiconductors is larger than that of Si semiconductors Si GaN Diamond Bandgap SiC Ga₂O₃ AlN

Semiconductor wafer manufacturing

Power device

- Small die size
- · Low energy loss
- Simple fabrication

Reduced carbon footprint per chip

Reduced carbon footprint per converter

Power circuit

High efficiency

Fewer passive

systems required

components and cooling

Power application

- Electrification of transportation and buildings
- · Efficient power conversion
- Integrating renewable energy in grids

Carbon-neutral electricity, transport and buildings

solar

vehicle

Challenges for WBG devices going up

Y. Zhang, F. Udrea, H. Wang, Nature Electronics, 5, 723, Nov. 2022

High material cost

High $R_{\rm DS,ON}$

Solution – Multidimensional power devices

Y. Zhang, F. Udrea, H. Wang, **Nature Electronics**, 5, 723, Nov. 2022

- Operation frequency (Hz)
- electrostatic engineering in at least one additional geometrical dimension
- break the capacity-frequency and R_{ON,SP}~BV trade-off

Vertical superjunction: from Si to WBG and UWBG

Lateral superjunction: first 10kV Ga₂O₃ device

22

12

Measure

■30µm

0%

Charge imblance $(Q_p-Q_n)/Q_n$ (%)

-40%

BV (KV) 8

Device	Ave. E-field (MV/cm)
Ga ₂ O ₃ RESURF SBD	4.7
Ga ₂ O ₃ SBD	1.1
AlGaO/NiO PND	0.5
Ga₂O₃ MOSFET	1-1.4
GaN SBD	0.94
GaN HEMT	1.1
AIGaN HEMT	1.1
Diamond SBD	0.57

10 kV Ga₂O₃ SBD operational at 200 °C

25 ℃

• 50µm

40%

- NiO superjunction: BV shows strong modulation by charge balance
- Record high lateral E-field in kilovolts devices

[1] Y. Qin et al., EDL, 2023; [2] Y. Ma, Y. Qin, M. Porter et al., Adv. Electron. Mater. 2023.

10 kV Ga₂O₃ E-mode superjunction JFET operational up to 250 °C

Filled symbol: E-mode Empty symbol: D-mode

- Junction gate + charge-balance RESURF + hybrid drain
- Different NiO doping optimized for three structures
- E-mode operation + 10 kV blocking @ 250 °C

Y. Qin et al., IEDM 24 (IEDM Technical Highlight)

10 kV GaN superjunction HEMT and Monolithic Bidirectional Switch

 $V_{DS}(V)$

- BV upscaling enabled by charge-balance between p-GaN and AlGaN/GaN
- 10 kV, 70 mΩ·cm² E-mode GaN HEMT

- Dual p-GaN JFET improves E-field management
- 3.3 kV, 5.6 mΩ·cm² E-mode GaN monolithic bidirectional HEMT

Y. Guo et al., EDL 2025

Multi-channel: lateral polarization superjunction

- √ High current capability
- $\sqrt{\text{Low R}_{\text{on}}}$ for HV
- √ Ideally, a natural superjunction

New challenges:

- (non-ideal) E-field management
- E-mode gate

Ideal multi-channel

Multi-channel w/ net charge

8

Multi-channel: enabling 10kV GaN with $R_{\rm ON,SP}$ 2.5x lower than SiC

- 4-inch wafer, five channels, R_{SH} 120 Ω/sq
- p-GaN charge balance with multi-channel (superjunction design)
- BV > 10 kV, $R_{ON.SP} = 39 \text{ m}\Omega \cdot \text{cm}^2$

- <u>Multi-Channel Monolithic-Cascode HEMT (MC²-HEMT)</u>
- $V_{TH} > 1.5 \text{ V}; I_{SAT} > 300 \text{ mA/mm}; R_{ON,SP} \text{ of } 40 \text{ m}\Omega \cdot \text{cm}^2$
- Best FOM in 6.5kV+ power transistors

M. Xiao *et al.*, "10 kV, 39 mΩ·cm² Multi-channel AlGaN/GaN Schottky barrier diodes," *IEEE Electron Device Letters*, 2021.

M. Xiao *et al.*, "Multi-Channel Monolithic-Cascode HEMT (MC2-HEMT): A New GaN Power Switch up to 10 kV," *IEDM*, 2021. (**IEDM Technical Highlights**, Nature Electronics Coverage)

Multidimensional devices: new limits and new scaling laws

- Allow geometrical scaling in power devices (limit: line -> band)
- Baliga's FOM is no longer suitable for benchmarking multidimensional power devices

Key takeaway

- The renaissance of lateral devices for high-voltage applications (significant cost reduction)
- Multidimensional architectures such as superjunction and multichannel are essential;
 e.g., multichannel GaN HEMT enables R_{on,sp} 2.5x lower than SiC MOSFET at 10 kV
- UWBG can enable high E-field and high-temperature operation

