In the Claims

This listing of claims will replace all prior versions and listings of claims in the application:

- 1. (Currently Amended) A digital signal processing system,
 2 comprising:
- 3 a plurality of processor subsystems that each include:
- 4 at least one memory device; and
- a memory bus multiplexer coupled to each of said at
 least one memory device by a subsystem memory bus;
 and
- 8 a direct memory access (DMA) controller,
- wherein each of the DMA controllers is coupled to each of said
 memory bus multiplexers of each of said plurality of
 processor subsystems and is configured to access each of
 said memory devices of each of said plurality of
 processor subsystems via the corresponding subsystem
 memory bus.

2. (Canceled)

- 3. (Currently Amended) The system of claim 1, wherein each of the
 plurality of processor subsystems further includes:
- a host port interface (HPI) unit coupled to the memory
 bus multiplexer and configured to access the memory
 device via the subsystem memory bus; and
- wherein each of the HPI units is coupled to each of the memory

 bus multiplexers of each of said plurality of processor

 subsystems and is configured to access each of the memory

 devices of each of said plurality of processor subsystems

 via the corresponding subsystem memory bus.

4. (Canceled)

1	5. (Currently Amended) The A digital signal processing system, of
2	claim 1, wherein each of the plurality of processor subsystems
3	further includes comprising:
4	a plurality of processor subsystems that each include:
5	at least one memory device; and
6	a memory bus multiplexer coupled to each of said at
7	least one memory device by a subsystem memory bus;
8	and
9	a direct memory access (DMA) controller,
10	an input/output peripheral coupled to the subsystem
11	memory bus,
12	wherein each of the DMA controllers is coupled to each of said
13	memory bus multiplexers of each of said plurality of
14	processor subsystems and is configured to access each of
15	said memory devices of each of said plurality of
16	processor subsystems via the corresponding subsystem
17	memory bus, and
18	wherein each of the DMA controllers is configured to access
19	each of the peripherals via the corresponding subsystem
20	memory bus.
_	
1	6. (Currently Amended) The A digital signal processing system, of
2	claim 4, wherein each of the plurality of processor subsystems
3	further includes comprising:
4	a plurality of processor subsystems that each include:
5	at least one memory device; and
6	a memory bus multiplexer coupled to each of said at
7	least one memory device by a subsystem memory bus;
8 9	and
J	a direct memory access (DMA) controller,

10	a nost port interface (HPI) unit coupled to the memory
11	bus multiplexer and configured to access the memory
12	device via the subsystem memory bus; and
13	a remote access multiplexer coupled between the memory
14	bus multiplexer and all DMA controllers outside the
15	processor subsystem, wherein the remote access
16	multiplexer is further coupled between the memory
17	bus multiplexer and all HPI units outside the
18	processor subsystem,
19	wherein each of the DMA controllers is coupled to each of said
20	memory bus multiplexers of each of said plurality of
21	processor subsystems and is configured to access each of
22	said memory devices of each of said plurality of
23	processor subsystems via the corresponding subsystem
24	memory bus;
25	wherein each of the HPI units is coupled to each of the memory
26	bus multiplexers and is configured to access each of the
27	memory devices via the corresponding subsystem memory bus
28	wherein each of the HPI units is coupled to each of the
29	memory bus multiplexers and is configured to access each
30	of the memory devices via the corresponding subsystem
31	memory bus; and
32	wherein the memory bus multiplexer is configured to couple to
33	the memory bus at any one time exactly one of the HPI
34	unit, the DMA controller, and the remote access
35	multiplexer.

- 7. (Original) The system of claim 6, wherein each of the plurality of processor subsystems further includes:
- a remote access arbiter coupled to the remote access
 multiplexer and configured to set the remote access
 multiplexer to couple to the memory bus multiplexer at

- any one time exactly one of the HPI units and DMA controllers outside the processor subsystem.
- 8. (Original) The system of claim 6, wherein each of the plurality
 2 of processor subsystems further includes:
- a memory bus arbiter coupled to the memory bus multiplexer to
 arbitrate between access requests received from the HPI
 unit, the DMA controller, and the remote access
 multiplexer, wherein said arbitration is performed on a
 round-robin basis.

9. (Canceled)

- 1 10. (Currently Amended) A digital signal processor chip, 2 comprising:
- a plurality of memory bus multiplexers, each of the memory bus

 multiplexers is coupled to one or more corresponding

 memory devices by a corresponding memory bus; and
- a plurality of DMA controllers each coupled to each of the
 plurality of memory bus multiplexers, each of the DMA

 controllers is configurable to access each of the memory

 devices via a corresponding one of the plurality of
 memory bus multiplexers;
- 11 a plurality of memory bus arbiters each coupled to respective memory bus multiplexer, wherein each of the 12 13 plurality of memory bus arbiters is configured to set 14 their respective memory bus multiplexers to grant access 15 to the corresponding memory bus in response to one or 16 more access requests from the plurality of DMA 17 controllers;
- 18 <u>a plurality of host port interface (HPI) units each coupled to</u>
 19 <u>each of the plurality of memory bus multiplexers, and</u>

- 20 <u>each configured to access each of the memory devices via</u>
 21 <u>a corresponding one of the plurality of memory bus</u>
 22 <u>multiplexers;</u> and
 23 a plurality of memory bus arbitant each seach seach seach
- 23 <u>a plurality of memory bus arbiters each coupled to a</u>
 24 <u>respective memory bus multiplexer, and each configured to</u>
 25 <u>arbitrate between a local DMA controller, a local HPI</u>
 26 <u>unit, and a remote access multiplexer for access to a</u>
 27 memory bus.

11 and 12. (Canceled)

- 1 13. (Currently Amended) The chip of claim $\frac{11}{10}$, further comprising
- 2 a plurality of memory bus arbiters each coupled to a respective
- 3 memory bus multiplexer, wherein each of the plurality of memory bus
- 4 arbiters is configured to set their respective memory bus
- 5 multiplexers to grant access to the corresponding memory bus in
- 6 response to one or more access requests from the plurality of DMA
- 7 controllers.
- 1 14. (Original) The chip of claim 13, wherein the arbiters are
- 2 further configured to resolve conflicts on a round-robin priority
- 3 basis and grant only one access request at a time.

15 and 16. (Canceled)

- 1 17. (Original) A multi-core digital signal processor, comprising:
- 2 a first processor subsystem that includes:
- 3 a first processor core;
- a first memory device coupled to the first processor core by a first instruction bus;
- a first memory bus multiplexer coupled to the first memory device by a first memory bus;

8	a first DMA controller coupled to the first memory bus
9	multiplexer and configured to control the first
10	memory bus to access the first memory device;
11	a first HPI unit coupled to the first memory bus
12	multiplexer and configured to control the first
13	memory bus to access the first memory device; and
14	a first remote access multiplexer coupled to the first
15	memory bus multiplexer; and
16	a second processor subsystem that includes:
17	a second processor core;
18	a second memory device coupled to the second processor
19	core by a second instruction bus;
20	a second memory bus multiplexer coupled to the second
21	memory device by a second memory bus;
22	a second DMA controller coupled to the second memory bus
23	multiplexer and configured to control the second
24	memory bus to access the second memory device;
25	a second HPI unit coupled to the second memory bus
26	multiplexer and configured to control the second
27	memory bus to access the second memory device; and
28	a second remote access multiplexer coupled to the second
29	memory bus multiplexer,
30	wherein the first DMA controller is coupled to the second
31	remote access multiplexer and is configured to control
32	the second memory bus to access the second memory device,
33	and
34	wherein the second DMA controller is coupled to the first
35	remote access multiplexer and is configured to control
36	the first memory bus to access the first memory device.

^{1 18. (}Original) The processor of claim 17, wherein the first HPI 2 unit is coupled to the second remote access multiplexer and is

- 3 configured to control the second memory bus to access the second
- 4 memory device, and wherein the second HPI unit is coupled to the
- 5 first remote access multiplexer and is configured to control the
- 6 first memory bus to access the first memory device.
- 1 19. (Original) The processor of claim 17, further comprising a
- 2 first arbiter coupled to the first memory bus multiplexer and
- 3 configured to arbitrate between the first DMA controller, the first
- 4 HPI unit, and the first remote access multiplexer for control of
- 5 the first memory bus.