Analyse I - Résumé

Mahel Coquaz

Semestre d'automne 2025

Contents

	0.1	Organ	isation par cours	6
1	Pré	requis		9
	1.1	-	tés algébriques	9
	1.2		entielles & Logarithmes	
		1.2.1	Exponentielles	-
		1.2.2	Logarithmes	
	1.3		nométrie	
	1.4		ons élémentaires	
	1.1	1.4.1	Types de fonctions	
		1.4.2	Injectivité, surjectivité, bijectivité	
		1.4.3	Fonctions réciproques	
		1.4.4	Fonctions composées	
		1.1.1	Tonesions composees	11
2	Nor	nbre re		13
	2.1	Ensem	ıbles	
		2.1.1	Opération ensemblistes	
	2.2	Nombi	res naturels, rationnels, réels	
		2.2.1	Borne inférieure et supérieure	13
		2.2.2	Supremum et infimum	14
		2.2.3	Notations d'intervalles	14
	2.3	Nombi	$res\ complexes\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\$	14
		2.3.1	Propriétés des nombres complexes	14
		2.3.2	Les 3 formes de nombres \mathbb{C}	15
		2.3.3	Conjugué	
		2.3.4	Racines de $\mathbb C$	
		2.3.5	Équations polynomiales dans \mathbb{C}	17
0	G .		1 / 1	10
3	3.1		nombres réels tion	19 19
	$\frac{3.1}{3.2}$		nnement par récurrence	
	$\frac{3.2}{3.3}$		e des suites	
	5.5	3.3.1	Quotient de deux suites polynomiales	
		3.3.1	Théorème des deux gendarmes	
		3.3.3		
			Cas des suites géométriques	
		3.3.4	Remarques sur les limites	
		3.3.5	Critère de D'Alembert	
		3.3.6	Limites infinies	21
		3.3.7	Formes indéterminées	
		3.3.8	Convergence de suites monotones	22

CONTENTS	CONTENTS
JUNIE/INIO	CONTRANTS

3.4	Le nombre e	22
	Suites définies par récurrence	
	Sous-suites de Cauchy	
	3.6.1 Suites de Cauchy	
3.7	Limite supérieure et limite inférieure d'une suite bornée	

Cours

Cours 1 - 8 septembre 2025 .													(
Cours 2 - 10 septembre 2025													13
Cours 3 - 15 septembre 2025													14
Cours 4 - 17 septembre 2025													14
Cours 5 - 22 septembre 2025													16
Cours 6 - 24 septembre 2025													19
Cours 7 - 29 septembre 2025													20
Cours 8 - 1 octobre 2025													21
Cours 9 - 6 octobre 2025													22
Cours 10 - 8 octobre 2025													23

COURS

Introduction

Ce qui suit se veut être un résumé condensé du cours d'Analyse I pour IN (MATH-101e) donné au semestre d'automne 2025 à l'EPFL. Le contenu de ce cours ne m'appartient pas et est quasiment intégralement extrait du cours de la Professeur Anna Lachowska qui l'a enseigné. J'ai cependant pris la liberté de sauter/raccourcir certains passages et d'ajouter des notes lorsqu'il me semblait pertinent de le faire.

Il faut également noter que la nature de résumé de ce qui suit ne permet pas d'appréhender toutes les notions ou subtilités du cours, rien de ce qui est fait à l'EPFL ne peut être considéré comme "trivial" contrairement à ce que l'ont peut régulièrement entendre dans la bouche des profeusseurs, ce document à donc plus vocation à être un aide mémoire ou complément plutôt qu'un support complet de cours.

Ce résumé/polycopié n'est pas exempt d'erreurs, si vous en trouvez une, vous pouvez me contacter sur mon adresse EPFL mahel.coquaz@epfl.ch ou via le repo GitHub https://github.com/hotwraith/LectureNotes.

Le repository GitHub est aussi où se trouvent les dernières versions des fichiers PDFs et T_EXpour ce cours (et éventuellement d'autres).

Rendons à César ce qui appartient à César, merci à Joachim Favre et Faust dont les notes et polycopiés dactylographiés m'ont inspiré dans la réalisation de ces résumés.

0.1 Organisation par cours

1

- Cours 1 8 septembre 2025: "C'est trivial ça" p.9
 - Présentation et explications du cours et de sa forme
 - Révisions et passage en revue des prérequis
- Cours 2 10 septembre 2025: For \mathbb{R} ? p.13
 - Notations ensemblistes
 - Opérations ensemblistes
 - Nombres & théorème des bornes inférieure et supérieure
- Cours 3 15 septembre 2025: Élisabeth Born(é)e p.14
 - Supremum et infimum
 - Notations d'intervalles
- Cours 4 17 septembre 2025: ça se complique... p.14
 - Arguments et modules de nombres complexes
 - Les 3 formes de nombres complexes
 - Formule de Moivre et puissance de nombres complexes
- \bullet Cours 5 22 septembre 2025: C'est du français ou des maths ? p.16
 - Conjugué d'un complexe
 - Racines de complexes
 - Équations polynomiales dans $\mathbb C$
- \bullet Cours 6 24 septembre 2025: Classé sans suite p.19
 - Définition des suites
 - Le raisonnement par récurrence
 - Limites de suites
- Cours 7 29 septembre 2025: C'est limite ça p.20
 - Limites finies
 - Quotient de suites polynomiales
 - Théorème des deux gendarmes
- Cours 8 1 octobre 2025: Le roi d'Alembert... p.21
 - Suites géométriques
 - Critère d'Alembert
 - Limites infinies & formes indéterminées

 $^{^1\}dot{\rm A}$ cause d'une skill issue il faut cliquer sur le **numéro** de page pour être envoyé sur la section correspondante du pdf.

- \bullet Cours 9 6 octobre 2025: ee
eaaaooo p.22
 - Convergence de suites monotones
 - $-\,$ Le nombre e
 - Suites définies par récurrence
- \bullet Cours 10 8 octobre 2025: Netflix p.23

Chapter 1

Prérequis

Cours 1 - 8 septembre 2025: "C'est trivial ça"

1.1 Identités algébriques

- $(x+y)^2 = x^2 + 2xy + y^2$
- $(x+y)(x-y) = x^2 y^2$
- $(x-y)(x^2 + xy + y^2) = x^3 y^3$
- $(x+y)(x^2 xy + y^2) = x^3 + y^3$

1.2 Exponentielles & Logarithmes

1.2.1 Exponentielles

Avec $a, b \in \mathbb{R}$

- $\bullet \ a^x a^y = a^{x+y}$
- $\bullet \ \frac{a^x}{a^y} = a^{x-y}$
- $(ab)^x = a^x b^x$
- $a^0 = 1$
- $\bullet \ (a^x)^y = a^{xy}$
- $\sqrt[n]{a} = a^{1/n}$
- $\bullet \ \left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$
- $a^1 = a$

1.2.2 Logarithmes

Avec ln = log le logarithme naturel

- $\ln(xy) = \ln(x) + \ln(y)$
- $\ln(\frac{x}{y}) = \ln(x) \ln(y)$
- $\ln(x^c) = c \cdot \ln(x)$
- ln(1) = 0
- $\log_a(a) = 1$

1.3 Trigonométrie

Avec $\sin(x), \cos(x) \ \forall x \in \mathbb{R}$

- $\tan x = \frac{\sin x}{\cos x} \& \cot x = \frac{\cos x}{\sin x}$
- $\sin(x \pm y) = \sin(x)\cos(y) \pm \cos(x)\sin(y)$
- $cos(x \pm y) = cos(x) cos(y) \mp sin(x) sin(y)$
- $\cos(0) = \cos(x x) = \cos^2(x) + \sin^2(x) = 1$
- $\sin(2x) = \sin(x+x) = \sin(x)\cos(x) + \cos(x)\sin(x) = 2\sin(x)\cos(x)$
- $\cos(2x) = \cos(x+x) = \cos^2(x) \sin^2(x)$

1.4 Fonctions élémentaires

1.4.1 Types de fonctions

- 1. Polynomiales
 - Linéaire: f(x) = ax + b; $a, b \in \mathbb{R}$
 - Quadratiques: $f(x) = ax^2 + bx + c$; $a, b, c \in \mathbb{R}, a \neq 0$
- 2. Fonctions rationnelles: $f(x) = \frac{P(x)}{Q(x)}$ où P(x) et Q(x) sont des polynômes, et $Q(x) \neq 0$
- 3. Fonctions algébriques: Toute fonction qui est une solution d'une équation polynomiale, ex: $f(x) = \sqrt{x}$
- 4. Fonctions transcendantes: fonctions non algébriques
 - (a) Exponentielles et logarithmiques: $f(x) = e^x$, $g(x) = \ln(x)$
 - (b) Fonctions trigos et réciproques: $f(x) = \sin(x), g(x) = \cos(x)$

1.4.2 Injectivité, surjectivité, bijectivité

Définition 1.4.1 $D(f) = \{x \in \mathbb{R} : f(x) \text{ est bien définie } \} = \text{le domaine de définition de } f$

 $f(D) = \{y \in R : \exists x \in D(f) : f(x) = y\} = l$ 'ensemble image de f

Définition 1.4.2 Surjectivité

 $f: E \to F$ est surjective $si \ \forall y \in F, \exists \ au \ \underline{moins} \ un \ x \in E: f(x) = y$

Définition 1.4.3 Injectivité

 $f: E \to F$ est injective $si \ \forall y \in F, \exists$ au <u>plus</u> un $x \in E: f(x) = y$ Autrement dit: Soit $x_1, x_2 \in D_f: f(x_1) = \overline{f(x_2)} \to x_1 = x_2$

Définition 1.4.4 Bijectivité $Si\ f: E \to F$ est injective ET surjective, alors elle est bijective

1.4.3 Fonctions réciproques

Définition 1.4.5 N'existent que si $f: E \to F$ est **bijective** et est définie par $f^{-1}: F \to E$ donc $f(x) = y \Leftrightarrow x = f^{-1}(y)$

1.4.4 Fonctions composées

Soit $f:D_f\to\mathbb{R}$ et $g:D_g\to\mathbb{R}$ avec $f(D_f)\subset D_g$ on peut alors définir la fonction composée $g\circ f:D_f\to \operatorname{par}\,g\circ f(x)=g(f(x))^{-1}$

¹Il est bon de noter que de manière générale: $g \circ f \neq f \circ g$

Chapter 2

Nombre réels

Cours 2 - 10 septembre 2025: For \mathbb{R} ?

2.1 Ensembles

Un ensemble est une "Collection des objets définis et distincts" (G. Cantor)

Définition 2.1.1 $\mathbf{X} \subset \mathbf{Y}$ Soit $\forall b \in X \Rightarrow b \in Y$ Sa négation: $\mathbf{X} \not\subset \mathbf{Y}$ $\exists a \in X : a \notin Y$

Définition 2.1.2 $X = Y \Leftrightarrow Y \subset X \ et \ X \subset Y$

Définition 2.1.3 \emptyset *l'ensemble vide:* $\emptyset = \{\}$ $\forall X : \emptyset \subset X$ $\forall X : X \subset X$

2.1.1 Opération ensemblistes

- Réunion: $X \cup Y = \{a \in \cup : a \in X \text{ ou } a \in Y\}$
- Intersection: $X \cap Y = \{a \in \cap : a \in X \ et \ a \in Y\}$
- Différence: $X \setminus Y = \{ a \in \setminus : a \in X \text{ et } a \notin Y \}$

Propriété $A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C)$

2.2 Nombres naturels, rationnels, réels

2.2.1 Borne inférieure et supérieure

Définition 2.2.1 Soit $S \subset \mathbb{R}, S \neq \emptyset$. Alors $a \in \mathbb{R}(b \in \mathbb{R})$ est un minorant/majorant de S si $\forall x \in S$ on a: $a \leq x$ ou $x \leq b$ Si S possède un minorant/majorant on dit que S est minoré/majoré. Si S est majoré et minoré, alors S est dit borné.

Cours 3 - 15 septembre 2025: Élisabeth Born(é)e

2.2.2 Supremum et infimum

Théorème 2.2.1 Tout sous-ensemble non-vide majoré/minoré $S \subset \mathbb{R}$ admet un supremum/infimum qui est unique.

Unicité Si inf/supS existe alors il est le plus grand minorant/majorant de S

2.2.3 Notations d'intervalles

Soit $a < b, a, b \in \mathbb{R}$. Intervalles bornés

- $\{x \in \mathbb{R} : a \le x \le b\} = [a, b]$ intervalle fermé borné
- $\{x \in \mathbb{R} : a < x < b\} = [a, b]$ intervalle ouvert borné
- $\{x \in \mathbb{R} : a \le x < b\} = [a, b]$ intervalle borné ni ouvert ni fermé

Intervalles non-bornés:

- $\{x \in \mathbb{R} : x \ge a\} = [a, +\infty[\text{ ferm\'e}]$
- $\{x \in \mathbb{R} : x > a\} = [a, +\infty[$ ouvert
- $\{x \in \mathbb{R} : x < b\} =]-\infty, b]$ fermé
- $\{x \in \mathbb{R} : x < b\} =]-\infty, b[$ ouvert

2.3 Nombres complexes

Cours 4 - 17 septembre 2025: ça se complique...

On sait que $x^2=-1$ n'a pas de solutions dans $\mathbb{R},$ alors on introduit i tel que $i^2=-1$ 1

2.3.1 Propriétés des nombres complexes

Prenons les \mathbb{C}^2 de la forme $\{z = a + ib\}$, où $a, b \in \mathbb{R}$

•
$$(+) (a+ib) + (c+id) = (a+c) + i(b+d)$$

$$-\exists = \in C : 0 + 0i = 0 \text{ tel que } (a+ib) + 0 + 0i = a+ib \ \forall a, b \in \mathbb{R}$$

 $-\exists \text{ l'opposé pour } (a+ib) : (-a+i(-b)) + (a+ib) = 0 + 0i = 0$

•
$$(\cdot)(a+ib)\cdot(c+id) = ac - bd + i(ad+bc)$$

 $^{^1{\}rm Oui},$ en maths quand un truc marche pas on invente un truc pour que ça marche, si seulement on pouvait faire ça en exam...

²ℂ dénote l'ensemble des complexes

$$-\exists 1 \in \mathbb{C} : 1 + 0i = 1 : (a + ib) \cdot (1 + 0i) = a + ib$$

$$-z \in \mathbb{C}, z \neq 0 \Rightarrow \exists z^{-1} \in \mathbb{C} : z \cdot z^{-1} = z^{-1} \cdot z = 1$$

- Pour
$$z = a + ib \in \mathbb{C}^* \Rightarrow z^{-1} = \frac{a - ib}{a^2 + b^2}$$

$$-z_1(z_2+z_3)=z_1z_2+z_1z_3$$

– \mathbb{C} n'est pas ordonné: $i > 0 \Rightarrow i^2 = -1 > 0$ et $i < 0 \Rightarrow (-i)^2 = -1 > 0$, on voit qu'on a -1 > 0 ce qui est absurde.

2.3.2 Les 3 formes de nombres \mathbb{C}

Forme cartésienne

 $\mathbf{z} = \mathbf{a} + \mathbf{ib}, \, a, b \in \mathbb{R}$

z = Re(z) + Im(z)i (Re et Im respectivement les parties réelles et imaginaires de z)

$$|z| = \sqrt{(Re(z)^2 + (Im(z))^2} = \sqrt{a^2 + b^2} \ge 0^3$$

Trouver φ et arg(z):

•
$$a > 0$$
: $arg(z) = \arctan(\frac{b}{a}) \in]-\frac{\pi}{2}, \frac{\pi}{2}[$ à $2k\pi$ près, $k \in \mathbb{Z}$

•
$$a < 0$$
: $arg(z) = \arctan(\frac{b}{a}) + \pi \in \frac{\pi}{2}, \frac{3\pi}{2}$ à $2k\pi$ près, $k \in \mathbb{Z}$

• Si
$$a = 0$$
:

$$-arg(z) = \frac{\pi}{2} \text{ si } Im(z) = b > 0$$

$$-arg(z) = \frac{3\pi}{2}$$
 si $Im(z) = b < 0$

Forme polaire trigonométrique

$$\mathbf{z} = \rho(\cos(\varphi) + \mathbf{i}\sin(\varphi) \ \rho \le 0, \ \varphi \in \mathbb{R}$$
$$|z| = \rho \le 0 \ \rho \ne 0 \Rightarrow \sin(\varphi) = \frac{Im(z)}{\rho}, \ \cos(\varphi) = \frac{Re(z)}{\rho}, \ \tan(\varphi) = \frac{Im(z)}{Re(z)} = \frac{a}{b} \ \text{si}$$
$$a = Re(z) \ne 0$$

Forme polaire exponentielle

$$e^{iy}=\cos(y)+i\sin(y)$$
 (Formule d'Euler)
$$z=\rho(\cos(\varphi)+i\sin(\varphi))=\rho e^{i\varphi}$$

Les trois formes

$$z = Re(z) + Im(z)i = |z|(\cos(arg(z)) + i\sin((arg(z))) = |z| \cdot e^{i \cdot arg(z)}$$

οù

$$|z| = \sqrt{(Re(z))^2 + (Im(z))^2}$$
 (module de z)

 $^{3|}z| = 0 \Leftrightarrow z = 0$

$$\begin{split} |z| \neq 0 \Rightarrow \arg(z) &= \arctan\left(\frac{Im(z)}{Re(z)}\right), \ Re(z) > 0 \\ &= \arctan\left(\frac{Im(z)}{Re(z)}\right) + \pi, \ Re(z) < 0 \\ &= \frac{\pi}{2}, \ Re(z) = 0, \ Im(z) > 0 \\ &= \frac{3\pi}{2}, \ Re(z) = 0, \ Im(z) < 0 \end{split}$$
 (argument de z)

$$e^{i\pi} = -1$$
 (Formule d'Euler)

 $\forall \rho > 0, \varphi \in \mathbb{R}, n \in \mathbb{N}^*$:

$$(\rho(\cos(\varphi) + i\sin(\varphi))^n = \rho^n(\cos(n\varphi) + i\sin(n\varphi))$$

$$(\rho e^{i\varphi})^n = \rho^n e^{in\varphi}$$
(Formule de Moivre)

Cours 5 - 22 septembre 2025: C'est du français ou des maths ?

2.3.3 Conjugué

Définition 2.3.1 $z=a+ib\in\mathbb{C}$ alors le conjugué de z est $\overline{z}=a-ib$ $\mathbf{z}\overline{\mathbf{z}}=|\mathbf{z}|^{\mathbf{2}}\in\mathbb{R}$

En forme polaire le conjugué s'écrit:

$$z = \rho(\cos(\varphi) + i\sin(\varphi)) \Rightarrow \overline{z} = \rho(\cos(\varphi) - i\sin(\varphi))$$
$$= \rho(\cos(-\varphi) + i\sin(-\varphi))$$
$$= \rho e^{-i\varphi}$$

Propriétés

 $\forall z \in \mathbb{C}$:

1.
$$\overline{z \pm w} = \overline{z} \pm \overline{w}$$

$$2. \ \overline{z \cdot w} = \overline{z} \cdot \overline{w}$$

3.
$$\overline{\left(\frac{z}{w}\right)} = \frac{\overline{z}}{\overline{w}}$$

$$4. \ |\overline{z}| = |z|$$

5.
$$a = Re(z) = \frac{z + \overline{z}}{2}$$

6.
$$b = Im(z) = \frac{z - \overline{z}}{2i}$$

7.
$$\cos(\varphi) = \frac{e^{i\varphi} + e^{-i\varphi}}{2}$$

8.
$$\sin(\varphi) = \frac{e^{i\varphi} - e^{-i\varphi}}{2i}$$

2.3.4 Racines de $\mathbb C$

$$\begin{aligned} & \textbf{Proposition 2.3.1} \ \ w = s \cdot e^{i\varphi}, \ w \in \mathbb{C}^* \ \ alors \ \forall n \in \mathbb{N}^* \\ & \{z \in \mathbb{C}^* : z^n = w\} = \left\{ \sqrt[n]{s} e^{i \cdot \frac{\varphi + 2k\pi}{n}}, \ k = 0, 1, ..., n-1 \right\} \end{aligned}$$

2.3.5 Équations polynomiales dans $\mathbb C$

Quadratiques

$$az^{2} + bz + c = 0, \ a, b, c \in \mathbb{C}, \ a \neq 0$$

$$z = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$b^{2} - 4ac = 0 \Rightarrow z = -\frac{b}{2a}$$

$$\neq 0 \Rightarrow 2 \text{ solutions}$$

Théorème fondamental de l'algèbre

Théorème 2.3.1 Tout polynôme $P(z) = a_n z^n + a_{n-1} z^{n-1} + ... + a_1 z + a_0, a_n, a_{n-1}, ..., a_0 \in \mathbb{C}.$

$$P(z) = a_n(z - z_1)(z - z_2)...(z - z_n) \text{ où } z_1, ..., z_n \in \mathbb{C}$$

= $a_n(z - w_1)^{m_1}(z - w_2)^{m_2}...(z - w_p)^{m_p}$

Polynômes à coefficients réels

Proposition 2.3.2 Si $z \in \mathbb{C}$ est une racine de P(z) à coefficients réels, alors \overline{z} l'est aussi.

Donc
$$P(z) = P(\overline{z}) = 0$$
 et $(x - z)(x - \overline{z})$ divise le polynôme

Chapter 3

Suites de nombres réels

Cours 6 - 24 septembre 2025: Classé sans suite

3.1 Définition

Définition 3.1.1 On définit une suite de nombre réels comme une application $f: \mathbb{N} \to \mathbb{R}$ définie pour tout nombre naturel $(\forall n \leq n_0 \in \mathbb{N})$

Définition 3.1.2 Une suite (a_n) est majorée (minorée) s'il existe un nombre $M(m) \in \mathbb{R}$ tel que $a_n \leq M \ \forall n \in \mathbb{N} \ (a_n \geq m \ \forall n \in \mathbb{N})$. On dit que la suite est **bornée** si elle est majorée **et** minorée.

Définition 3.1.3 Une suite (a_n) est croissante (strictement croissante) si $\forall n \in \mathbb{N}$ on a $a_{n+1} \geq a_n$ $(a_{n+1} > a_n)$.

Une suite (a_n) est décroissante (strictement décroissante) si $\forall n \in \mathbb{N}$ on a $a_{n+1} \leq a_n \ (a_{n+1} < a_n)$.

Une suite est dite (strictement) monotone si elle est (strictement) croissante ou (strictement) décroissante.

3.2 Raisonnement par récurrence

Soit P(n) une proposition dépendant d'un entier naturel n, telle que:

- 1. Initialisation: $P(n_0)$ est vraie, et...
- 2. **Hérédité**: $\forall n \geq n_0$, P(n) implique P(n+1), alors P(n) est **vraie** pour tout $n \geq n_0$.

Il est *très* important de bien démontrer les deux étapes de la récurrence, autrement il est facile d'obtenir une preuve qui est fausse.

3.3 Limite des suites

Définition 3.3.1 On dit que la suite (x_n) est **convergente** et admet pour **limite** le nombre réel $l \in \mathbb{R}$ si pour tout $\epsilon > 0$, $\exists n_0 \in \mathbb{N} : \forall n \geq n_0$ on a $|x_n - l| \leq \epsilon$. Une suite qui n'est **pas** convergente est dite **divergente**.

Cours 7 - 29 septembre 2025: C'est limite ça

Proposition 3.3.1 Si elle existe, la limite l'd'une suite (a_n) est unique.

Proposition 3.3.2 Toute suite convergente est bornée. **Attention**, la réciproque est fausse, ex: $a_n = (-1)^n$ est bornée mais non convergente.

$$|x+y| \ge |x| + |y|$$
 (Inégalité triangulaire)

Proposition 3.3.3 Soient (a_n) et (b_n) deux suites convergentes: $\lim_{n\to\infty} a_n = a$ et $\lim_{n\to\infty} b_n = b$.

- 1. $\lim_{n\to\infty} (a_n \pm b_n) = a \pm b$
- 2. $\lim_{n\to\infty} (a_n \cdot b_n) = a \cdot b$
- 3. $\lim_{n\to\infty} \left(\frac{a_n}{b_n}\right) = \frac{a}{b}, \ \forall b\neq 0$

3.3.1 Quotient de deux suites polynomiales

Prenons:

$$x_n = a_p n^p + \dots + a_1 n + a_0$$

$$y_n = b_q n^q + \dots + b_1 n + b_0$$

$$\lim_{n \to \infty} \left(\frac{x_n}{y_n}\right) = 0, \ p < q$$

$$= \frac{a_p}{b_q}, \ p = q$$

$$= diverge, \ p > q$$

L'idée est la suivante:

$$\frac{x_n}{y_n} = \frac{a_p n^p + \dots + a_1 n + a_0}{b_q n^q + \dots + b_1 n + b_0} = \frac{n^p}{n^q} \cdot \frac{\left(a_p + a_{p-1} \frac{1}{n} + \dots + a_0 \frac{1}{n^p}\right)}{\left(b_q + b_{q-1} \frac{1}{n} + \dots + b_0 \frac{1}{n^q}\right)}$$

Le terme de droite tendant vers $\frac{a_p}{b_q}$ et le terme de gauche tendant vers différentes possibilités listées plus haut selon p et q.

3.3.2 Théorème des deux gendarmes

Soient (a_n) , (b_n) , (c_n) , trois suites telles que:

1.
$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = l$$

2.
$$\exists k \in \mathbb{N} : \forall n \leq k \Rightarrow a_n \geq b_n \geq c_n$$

Alors $\lim_{n\to\infty} b_n = l$

Cours 8 - 1 octobre 2025: Le roi d'Alembert...

3.3.3 Cas des suites géométriques

Les suites géométriques ont la forme $a_n = a_0 \cdot r^n$, $a_0 \in \mathbb{R}$ et $a_0 \neq 0$, $r \in \mathbb{R}$.

$$\lim_{n \to \infty} a_0 r^n = 0, |r| < 1$$

$$\lim_{n \to \infty} a_0 r^n = a_0, r = 1$$

$$\lim_{n \to \infty} a_0 r^n = divergente, |r| > 1 \text{ ou } r = -1$$

Intermède notation

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$
 avec $0 \le k \le n$

3.3.4 Remarques sur les limites

- 1. Si $\lim_{n\to\infty} x_n = l \in \mathbb{R}$ alors $\lim_{n\to\infty} |x_n| = |l|$
- 2. Si $\lim_{n\to\infty} |x_n| = 0 \Rightarrow \lim_{n\to\infty} x_n = 0$
- 3. Si $\lim_{n\to\infty} |x_n| = l \neq 0$ n'implique pas la convergence de x_n (ex $a_n = (-1)^n$)
- 4. Si (a_n) est bornée et $\lim_{n\to\infty} b_n = 0$, alors $\lim_{n\to\infty} a_n b_n = 0$

3.3.5 Critère de D'Alembert

Soit (a_n) une suite telle que $a_n \neq 0 \ \forall n \in \mathbb{N}$ et $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \rho \geq 0$, alors:

- Si $\rho < 1 \Rightarrow \lim_{n \to \infty} a_n = 0$
- Si $\rho > 1 \Rightarrow \lim_{n \to \infty} a_n \ diverge$

3.3.6 Limites infinies

Définition 3.3.2 On dit que $(a_n)/(b_n)$ tends vers $+\infty/-\infty$ si $\forall A>0$ $\exists n_0 \in \mathbb{N}: \forall n \leq n_0, \ a_n \geq A/b_n \leq -A$

Notation: $\lim_{n\to\infty} a_n = \infty$, $\lim_{n\to\infty} b_n = -\infty$

Attention: les suites (a_n) et (b_n) sont **divergentes**.

Propriétés:

1.
$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = \infty \Rightarrow \lim_{n\to\infty} (a_n + b_n) = \infty$$

2.
$$\lim_{n\to\infty} a_n = \pm \infty$$
 et (b_n) est bornée $\Rightarrow \lim_{n\to\infty} (a_n \pm b_n) = \pm \infty$

3.
$$\lim_{n\to\infty} b_n = \infty/-\infty$$
 et $a_n \ge / \le b_n \Rightarrow \lim_{n\to\infty} a_n = \infty/-\infty^1$

4.
$$(a_n)$$
 bornée et $\lim_{n\to\infty} b_n = \pm \infty \Rightarrow = \lim_{n\to\infty} \frac{a_n}{b_n} = 0$

5.
$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n}$$
, $a_n \neq \forall n \Rightarrow alors (a_n) diverge^2$.

¹C'est la "règle d'un seul gendarme" ou théorème du chien méchant, ou etc...

²Extension du critère d'Alembert

3.3.7 Formes indéterminées

- 1. $\infty \infty$
- $2. \frac{\infty}{\infty}$
- 3. $\frac{0}{0}$
- $4. 0 \cdot \infty$

Cours 9 - 6 octobre 2025: eeeaaaooo

3.3.8 Convergence de suites monotones

Théorème 3.3.1 Toute suite croissante/décroissante qui est majorée/minorée converge vers son supremum/infimum.

Toute suite croissante/décroissante qui n'est pas majorée/minorée tend $vers +\infty/-\infty$.

On utilise $(a_n) \uparrow = (a_n)$ est croissante, $(b_n) \downarrow = (b_n)$ est décroissante.

3.4 Le nombre e

Soit $(x_n): x_0 = 1$, $x_n = \left(1 + \frac{1}{n}\right)^n \ \forall n \ge 1$ $(y_n): y_0 = 1$, $y_n = \sum_{k=0}^n \ \forall n \ge 1$, $(y_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!})$

- 1. $x_n \leq y_n \ \forall n \in \mathbb{N}$
- 2. $y_n \leq 3 \ \forall n \in \mathbb{N}$
- 3. $(y_n) \uparrow \forall n \in \mathbb{N}$
- 4. $(x_n) \uparrow \forall n \in \mathbb{N}$

Donc $\exists \lim_{n\to\infty} y_n = l \le 3 \Rightarrow \exists \lim_{n\to\infty} x_n = l' \le 3$.

On peut prouver ceci par récurrence, on se rend compte qu'en vrai $\lim_{n\to\infty} x_n = e$.

Définition 3.4.1 $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n \stackrel{def}{=} e$

3.5 Suites définies par récurrence

Soit $x_0 = a \in \mathbb{R}$ et $x_{n+1} = g(x)$ où $g : \mathbb{R} \to \mathbb{R}$ une fonction.

Proposition 3.5.1 Récurrence linéaire Soit $a_0 \in \mathbb{R}$, $a_{n+1} = qa_n + b$, où $q, b \in \mathbb{R}$. Alors

- 1. $si |q| < 1 \Rightarrow (a_n) converge vers \lim_{n \to \infty} a_n = \frac{b}{1-q}$
- 2. $si |q| \ge 1 \Rightarrow (a_n)$ diverge sauf $si (a_n)$ est une suite constante.

Proposition 3.5.2 Si $x_0 \in \mathbb{R}$, $x_{n+1} = g(x_n)$ et $g: E \to E \subset \mathbb{R}$ telle que:

- 1. $\exists m, M \in \mathbb{R} : m \leq g(x) \leq M \ \forall x \in E$
- 2. g est croissante: $\forall x_1, x_2 \in E : x_1 \leq x_2 \Rightarrow g(x_1) \leq g(x_2)$

Alors la suite (x_n) , $x_{n+1} = g(x_n)$ est bornée et monotone \Rightarrow convergente. Remarque: Si (2) est remplacé par $x_1 \leq x_2 \Rightarrow g(x_1) \leq g(x_2)$ (g décroissante) \Rightarrow alors (x_n) n'est pas monotone (mais peut être convergente).

Cours 10 - 8 octobre 2025: Netflix

3.6 Sous-suites de Cauchy

Définition 3.6.1 Une sous suite d'une suite (a_n) est une suite $k \mapsto a_{n_k}$ où $k \mapsto n_k$ est suite strictement croissante de nombres naturels.

Ex:

$$a_n = (-1)^n \ \forall n \in \mathbb{N} \Rightarrow a_{2k} = (-1)^{2k}, \ (a_{2k}) \subset (a_n) \lim_{k \to \infty} a_{2k} = 1$$

$$a_{2k+1} = (-1)^{2k+1}, \ (a_{2k+1}) \subset (a_n) \lim_{k \to \infty} a_{2k+1} = -1$$

$$(a_n) \ est \ divergente$$

Proposition 3.6.1 Convergence d'une sous-suite $Si \lim_{n\to\infty} a_n = l \Rightarrow toute sous-suite (a_{n_k})$ converge aussi vers l.

Théorème 3.6.1 Théorème de Bolzano-Weierstrass Dans toute suite bornée il existe une sous-suite convergente.

3.6.1 Suites de Cauchy

Définition 3.6.2 La suite (a_n) est une suite de Cauchy si $\forall \epsilon > 0$ il existe $n_0 \in \mathbb{N}$ tel que $\forall n \geq n_0$ et $\forall m \geq n_0$, $|a_n - a_m| \leq \epsilon$

Proposition 3.6.2 Une suite (a_n) est une suite de Cauchy \Leftrightarrow (a_n) est convergente.

3.7 Limite supérieure et limite inférieure d'une suite bornée

Définition 3.7.1 Soit (x_n) une suite bornée: $\exists m, M \in \mathbb{R}$: $m \le x_n \le M \ \forall n \in \mathbb{N}$.

On définit la suite
$$y_n = \sup \{x_k, k \ge n\}$$
 $y_n \downarrow y_n \ge x_n \ge m \ \forall n \in \mathbb{N}$ la suite $z_n = \inf \{x_k, k \ge n\}$ $y_n \uparrow z_n \le x_n \le M \ \forall n \in \mathbb{N}$