Academic year: 2023-2024

Date: 18-12-2023

Teacher's name: H. Fneish

CRDP: 1528

Class and section: 12 LS & GS En

Student's name:

PHYSICS EXAM MECHANICS

فانوية الأمير شكيب أوسلان الرسمية المختلطة

Mark: /20 Duration: 80 minutes

This exam is formed of two obligatory exercises in two pages The use of non-programmable calculator is recommended

Exercise 1 (8 points)

Determination of the force of friction

A block (S), considered as a particle, of mass m = 100g, can slide on path ABC situated in a vertical plane. This path is formed of two parts:

- AB is straight and inclined by an angle α with respect to the horizontal (sin $\alpha = 0.1$);
- BC is straight and horizontal.

At instant $t_0 = 0$, the block (S) is released without initial velocity from point A, situated at a height h_A above the horizontal x-axis, confounded with BC, and of unit vector \vec{i} (Doc. 1).

Along part AB, the motion of (S) takes place without friction, and along part BC, (S) is subjected to a force of friction \vec{f} supposed constant and parallel to the displacement.

The aim of this exercise is to determine the magnitude f of the force of friction \vec{f} .

Take:

- the horizontal plane containing the x-axis as the reference level for gravitational potential energy;
- $g = 10 \text{m/s}^2$.

1) Motion of (S) between A and B

The block (S) slides without friction along part AB and reaches B at t = 2s.

The two curves (a) and (b) shown in document 2 represent the gravitational potential energy and the mechanical energy of the system [(S), Earth] as functions of time, during the motion of (S) between A and B.

- **1.1**) Indicate for each curve the appropriate energy. Justify.
- **1.2**) Using document 2:
 - **1.2.1**) determine the distance AB covered by (S) along the inclined plane;
 - **1.2.2)** show that the speed of (S) at B is $V_B = 2m/s$.

2) Motion of (S) between B and C

At t = 2s, the block (S) reaches B and continues its motion along part BC and stops at C at t = 4s.

- **2.1**) Determine the linear momenta of (S), $\langle \vec{P}_B \rangle$ at B and $\langle \vec{P}_C \rangle$ at C.
- **2.2**) Deduce the variation $\Delta \vec{P}$ of the linear momentum of (S) between B and C.
- **2.3**) Show that the sum of the external forces exerted on (S) between B and C is $\sum \vec{F}_{ext} = -f\vec{i}$.
- **2.4**) Determine the magnitude f of \vec{f} , knowing that $\Delta \vec{P} \cong \sum \vec{F}_{ext}$. Δt , where Δt is the duration of the motion between B and C.

Exercise 2 (10 points)

Energy and linear momentum of a system

A frictionless track ABE, situated in a vertical plane, is formed of two parts. The first part AB is an inclined plane of length 1.6m and making an angle $\alpha = 30^{\circ}$ with the horizontal, the other part BE is a horizontal plane. A solid (S₁), considered as a particle of mass $m_1 = 2$ kg, is released without initial velocity from point A as shown in document 3.

The horizontal plane passing through BE is taken as a gravitational potential energy reference. Take $g = 10 \text{m/s}^2$.

- 1- Show that the expression of the speed of (S_1) at point B is $V_1 = \sqrt{2gAB \sin \alpha}$. Calculate its value.
- 2- As (S_1) reaches point C with a velocity $\vec{V}_1 = V_1 \vec{i}$, it enters in a perfectly elastic head-on collision with a stationary solid (S_2) considered as a particle of mass $m_2 = 3$ kg. (S_2) is connected to the free end of an un-stretched horizontal spring (R) of negligible mass and stiffness k = 100N/m. The other end of the spring is fixed to a support at point E.
 - **2.1-** Determine, just after collision, the velocities \vec{V}_1' and \vec{V}_2' of (S_1) and (S_2) respectively.
 - **2.2-** After collision, (S_2) compresses (R) until it stops at point D. Determine the maximum compression $x_m = CD$ of the spring.

Exercise 3 (2 points)

Launching of two solids

Two blocks (S₁) and (S₂), of respective masses $m_1 = 2$ kg and $m_2 = 3$ kg, are placed on a frictionless horizontal surface. A light spring is attached to (S₂), and the blocks are pushed together with the spring between them. A cord initially holding the blocks together is burned; after that happens, (S₂) moves to the right with a velocity $\vec{V}_2 = 4\vec{\iota}$ (m/s). The x-axis is taken as a reference level for gravitational potential energy.

- **1-** Determine the velocity \vec{V}_1 of (S_1) .
- **2-** Find the system's original elastic potential energy.

Exercise 1:

Part	Answer	Mark
1.1	Curve (a) corresponds to ME. Since no friction therefore ME = constant.	1.5
	Curve (b) corresponds to GPE, since as height decreases GPE decreases.	
1.2.1	At A: $GPE_A = 0.2J$. But $GPE_A = mgh_A = mg(AB \sin \alpha)$.	1.5
	So $0.2 = 0.1 \times 10 \times AB \times 0.1$, we get: $AB = 2m$.	
1.2.2		1.5
	$0.2 = \frac{1}{2} \times 0.1 \times V_B^2 + 0$, we get $V_B = 2$ m/s.	
	$\vec{P}_B = m\vec{V}_B$, so $\vec{P}_B = 0.2\vec{i}$; $\vec{P}_C = m\vec{V}_C = \vec{0}$ (kgm/s).	1
2.2	$\Delta \vec{P} = \vec{P}_C - \vec{P}_B$, so $\Delta \vec{P} = \vec{0} - 0.2\vec{1} = -0.2\vec{1}$ (kgm/s).	1
2.3	$\sum \vec{F}_{\text{ext}} = m\vec{g} + \vec{N} + \vec{f}.$	1
	$\vec{mg} + \vec{N} = \vec{0}$. So, $\sum \vec{F}_{ext} = -\vec{n}$.	
2.4	$\Delta \vec{P} = \sum \vec{F}_{\text{ext}} \cdot \Delta t$, so $-0.2\vec{i} = -f\vec{i} \times 2$, we get $f = 0.1$ N.	0.5

Exercise 2:

Part	Answer key	Mark
1	The non-conservative force (friction) is neglected; then, the mechanical energy is	2
	conserved.	
	$M.E_A = M.E_B \Longrightarrow G.P.E_A + K.E_A = G.P.E_B + K.E_B.$	
	$\left rac{1}{2} m V_A^2 + m g h_A ight = rac{1}{2} m V_1^2 + m g h_B ext{ with } h_A = L \sin lpha$, $V_A = 0$ and $h_B = 0$.	
	$0 + mgL \sin \alpha = \frac{1}{2}mV_1^2 + 0 V_1^2 = 2gL \sin \alpha.$	
	$V_1 = \sqrt{2gL\sin\alpha} = \sqrt{2 \times 10 \times 1.6 \times 0.5} = 4m/s.$	
2.1	During collision, the system $(S) = [(S_1); (S_2)]$ is isolated.	6
	$\sum \vec{F}_{ext} = \frac{d\vec{P}_S}{dt} = \vec{0} \Longrightarrow \vec{P}_S = constant.$	
	Principle of conservation of linear momentum:	
	$\vec{P}_{hc} = \vec{P}_{ac} \implies m_1 \vec{V}_1 + m_2 \vec{V}_2 = m_1 \vec{V}_1' + m_2 \vec{V}_2'.$	
	The collision is head on; then, the above expression can be written in its algebraic form:	
	$m_1V_1 + m_2V_2 = m_1V_1' + m_2V_2'$ with $V_2 = 0$.	
	$m_1(V_1-V_1)=m_2V_2$ (1).	
	The collision is elastic; then, the kinetic energy is conserved: $K.E_i = K.E_f$.	
	$\left \frac{1}{2} m_1 V_1^2 + \frac{1}{2} m_2 V_2^2 \right = \frac{1}{2} m_1 {V_1'}^2 + \frac{1}{2} m_2 {V_2'}^2 \Longrightarrow m_1 \left(V_1^2 - {V_1'}^2 \right) = m_2 {V_2'}^2.$	
	$m_1(V_1 + V_1')(V_1 - V_1') = m_2 V_2'^2 \dots (2).$	
	Divide (2) by (1): $V_1 + V_1' = V_2' \dots (3)$.	
	Replace (3) in (1): $m_1(V_1 - V_1) = m_2(V_1 + V_1) \Longrightarrow V_1' = \frac{m_1 - m_2}{m_1 + m_2} V_1$.	
	$V_1' = \frac{2-3}{2+3} \times 4 = -0.8m/s$ (the minus sign indicates that (S ₁) rebounds back).	
	Using equation (3): $V_2' = V_1 + V_1' = 4 - 0.8 = 3.2m/s$.	
2.2	The non-conservative force (friction) is neglected; then, the mechanical energy is	2
	conserved.	
	$M.E_C = M.E_D.$	
	$K.E_C + G.P.E_C + E.P.E_C = K.E_D + G.P.E_D + E.P.E_D.$	
	$ \frac{1}{2}m_2V_2^{'2} + 0 + 0 = 0 + 0 + \frac{1}{2}kx_m^2. $	
	$x_m = \sqrt{\frac{m_2}{k}}V_2' = \sqrt{\frac{3}{10}} \times 3.2 = 0.55m = 55cm.$	

Exercise 3:

Part	Answer key	Mark
1	The system is isolated, then $\sum \vec{F}_{ext} = \frac{d\vec{P}}{dt} = \vec{0} \implies \vec{P} = constant$.	1
	Principle of conservation of linear momentum: $\vec{P}_i = \vec{P}_f$.	
	$\vec{0} = m_1 \vec{V}_1 + m_2 \vec{V}_2 \implies \vec{V}_1 = -\frac{m_2 \vec{V}_2}{m_1} = -\frac{(3)(4\vec{1})}{2} = -6\vec{1} \text{ (m/s)}.$	
2	The non-conservative force (friction) is neglected; then, the mechanical energy is	1
	conserved.	
	$ME_i = ME_f$.	
	$KE_i + GPE_i + EPE_i = KE_f + GPE_f + EPE_f.$	
	$0 + 0 + EPE_i = \frac{1}{2}m_1V_1^2 + \frac{1}{2}m_2V_2^2 + 0 + 0.$	
	$EPE_i = \frac{1}{2} \times 2 \times 6^2 + \frac{1}{2} \times 3 \times 4^2 = 60J.$	