Bayesian Statistics Tutorial 6

YANG Chen¹ NG Say-Yao Mark² CHOO Kuan Li Justin³

National University of Singapore (NUS)

October 7, 2016

Question 1 by YANG Chen

Question 2 by NG Say-Yao Mark

Question 3 by CHOO Kuan Li Justin

© NG Say-Yao Mark: Year 4, double major in Mathematics and Statistics, minor in Computer Science.

- © NG Say-Yao Mark: Year 4, double major in Mathematics and Statistics, minor in Computer Science.
- © YANG Chen: Year 4, major in Statistics.

- © NG Say-Yao Mark: Year 4, double major in Mathematics and Statistics, minor in Computer Science.
- © YANG Chen: Year 4, major in Statistics.
- © CHOO Kuan Li Justin: Year 3, major in Statistics, minor in Economics.

- NG Say-Yao Mark: Year 4, double major in Mathematics and Statistics, minor in Computer Science.
- © YANG Chen: Year 4, major in Statistics.
- © CHOO Kuan Li Justin: Year 3, major in Statistics, minor in Economics.

Slides are available at http://mollymr305.github.io.

Question 1 (a)

Suppose that we observe two independent normal samples,

$$(x_1,\ldots,x_m) \stackrel{\text{IID}}{\sim} \mathcal{N}(\mu_1,\sigma_1^2) \text{ and } (y_1,\ldots,y_n) \stackrel{\text{IID}}{\sim} \mathcal{N}(\mu_2,\sigma_2^2).$$

Suppose also that the parameters $(\mu_1, \sigma_1^2, \mu_2, \sigma_2^2)$ are assigned the vague prior

$$p(\mu_1, \sigma_1^2, \mu_2, \sigma_2^2) \propto \frac{1}{\sigma_1^2 \sigma_2^2}.$$

Find the joint posterior density of $(\mu_1, \sigma_1^2, \mu_2, \sigma_2^2)$ and show that (μ_1, σ_1^2) and (μ_2, σ_2^2) have independent posterior distributions. Describe how to simulate from this joint posterior density.

First note that the individual priors $p(\mu_1, \sigma_1^2)$ and $p(\mu_2, \sigma_2^2)$ are independent since

$$p(\mu_1, \sigma_1^2) \propto \frac{1}{\sigma_1^2}$$
 and $p(\mu_2, \sigma_2^2) \propto \frac{1}{\sigma_2^2}$.

The joint likelihood of $\mathbf{x} = (x_1, \dots, x_m)$ and $\mathbf{y} = (y_1, \dots, y_n)$ can be decomposed into

$$p(\mathbf{x}, \mathbf{y} | \mu_1, \sigma_1^2, \mu_2, \sigma_2^2) = p(\mathbf{x} | \mu_1, \sigma_1^2) p(\mathbf{y} | \mu_2, \sigma_2^2).$$

Therefore

$$p(\mu_1, \sigma_1^2, \mu_2, \sigma_2^2 | \mathbf{x}, \mathbf{y}) \propto p(\mathbf{x}, \mathbf{y} | \mu_1, \sigma_1^2, \mu_2, \sigma_2^2) p(\mu_1, \sigma_1^2, \mu_2, \sigma_2^2)$$
$$\propto p(\mathbf{x} | \mu_1, \sigma_1^2) p(\mu_1, \sigma_1^2) p(\mathbf{y} | \mu_2, \sigma_2^2) p(\mu_2, \sigma_2^2).$$

This implies that the individual posterior distributions are independent since

$$p(\mu_1, \sigma_1^2 | \mathbf{x}) \propto p(\mathbf{x} | \mu_1, \sigma_1^2) p(\mu_1, \sigma_1^2),$$

and

$$p(\mu_2, \sigma_2^2 | \mathbf{y}) \propto p(\mathbf{y} | \mu_2, \sigma_2^2) p(\mu_2, \sigma_2^2).$$

So we consider the individual posterior distributions.

Consider $\mathbf{x}, \mu_1, \sigma_1^2$ first. Note that

$$\sum_{i=1}^{m} \frac{(x_i - \mu_1)^2}{2\sigma_1^2} = \frac{1}{2\sigma_1^2} \left(m(\mu_1 - \bar{x})^2 + \sum_{i=1}^{m} (x_i - \bar{x})^2 \right).$$

This is implies that:

$$\begin{split} \rho(\mu_1, \sigma_1^2 | \mathbf{x}) &\propto \rho(\mathbf{x} | \mu_1, \sigma_1^2) \rho(\mu_1, \sigma_1^2) \\ &\propto \left(\prod_{i=1}^m \frac{1}{\sqrt{2\pi\sigma_1^2}} \exp\left\{ -\frac{(x_i - \mu_1)^2}{2\sigma_1^2} \right\} \right) \cdot \frac{1}{\sigma_1^2} \\ &\propto \frac{1}{\sigma_1^{m+2}} \exp\left\{ -\sum_{i=1}^m \frac{(x_i - \mu_1)^2}{2\sigma_1^2} \right\} \\ &= \frac{1}{\left(\sigma_1^2\right)^{m/2+1}} \exp\left\{ -\frac{1}{2\sigma_1^2} \left(m(\mu_1 - \bar{x})^2 + \sum_{i=1}^m (x_i - \bar{x})^2 \right) \right\} \end{split}$$

(continued from previous slide...)

$$= (\sigma_1^2)^{-m/2-1} \exp\left\{-\frac{\sum_{i=1}^m (x_i - \bar{x})^2}{2\sigma_1^2}\right\} \exp\left\{-\frac{m(\mu_1 - \bar{x})^2}{2\sigma_1^2}\right\}$$
$$\propto p(\sigma_1^2|\mathbf{x}) \cdot p(\mu_1|\sigma_1^2, \mathbf{x}),$$

where

$$\left\{ \begin{array}{l} \sigma_1^2 | \mathbf{x} \sim \mathsf{InvGamma}\left(m/2, \frac{\sum_{i=1}^m (x_i - \bar{x})^2}{2}\right) \\ \mu_1 | \sigma_1^2, \mathbf{x} \sim \mathcal{N}(\bar{x}, \sigma_1^2/m). \end{array} \right.$$

In a similar fashion we obtain:

$$\left\{ \begin{array}{l} \sigma_2^2 | \mathbf{y} \sim \mathsf{InvGamma}\left(n/2, \frac{\sum_{j=1}^n (y_i - \bar{y})^2}{2} \right) \\ \mu_2 | \sigma_2^2, \mathbf{y} \sim \mathcal{N}(\bar{y}, \sigma_2^2/n). \end{array} \right.$$

Since the posterior distribution of the pairs (μ_1, σ_1^2) and (μ_2, σ_2^2) are independent we generate the pairs individually.

- ▶ To generate (μ_1, σ_1^2) :
 - 1 Generate $\sigma_1^2 | \mathbf{x} \sim \text{InvGamma}\left(m/2, \frac{\sum_{i=1}^m (x_i \bar{x})^2}{2}\right)$.
 - 2 Generate $\mu_1|\sigma_1^2, \mathbf{x} \sim \mathcal{N}(\bar{\mathbf{x}}, \sigma_1^2/m)$.
- ▶ To generate (μ_2, σ_2^2) , apply a similar procedure as above.
 - 1 Generate $\sigma_2^2 | \mathbf{y} \sim \text{InvGamma}\left(n/2, \frac{\sum_{j=1}^n (y_i \bar{y})^2}{2}\right)$.
 - 2 Generate $\mu_2|\sigma_2^2$, $\mathbf{y} \sim \mathcal{N}(\bar{\mathbf{y}}, \sigma_2^2/n)$.

Question 1 (b)

The following data gives the mandible length in millimetres for 10 male and 10 female golden jackals in the British Museum.

Males	Females
120 107 110 116 114 111 113 117 114 112	110 111 107 108 110 105 107 106 111 111

- ▶ Using the the model in 1(a), simulate 10,000 samples of $(\mu_1, \sigma_1^2, \mu_2, \sigma_2^2)$ from the joint posterior density.
- ► Construct a kernel estimate of the posterior density of the difference in mean mandible length between the sexes, using the density command in R.
- Check if there is sufficient evidence to conclude that males have a larger average length.

- ▶ Let $\mathbf{x}, \mu_1, \sigma_1^2$ correspond to the m = 10000 males.
- ▶ Let $\mathbf{y}, \mu_2, \sigma_2^2$ correspond to the n = 10000 females.

For the males:

For the females:

To estimate the posterior density of the difference in mean length between the sexes, $\mu_1 - \mu_2$, perform the following:

> plot(density(mu.1 - mu.2), type='l', col='red')

To decide whether there is sufficient evidence to conclude that males have a larger average, we can setup the following hypotheses:

$$\begin{cases} H_0: & \mu_1 - \mu_2 > 0, \\ H_1: & \mu_1 - \mu_2 \le 0. \end{cases}$$

We then compare the posterior odds, p_0/p_1 where

$$\begin{cases} p_0 = \mathbf{P}(\mu_1 - \mu_2 > 0), \\ p_1 = 1 - p_0. \end{cases}$$

The computation is shown below:

```
> p.0 <- sum(mu.1 - mu.2 > 0) / length(mu.1 - mu.2)
```

> p.1 <- 1 - p.0

> cat('Posterior odds:', p.0/p.1)

Posterior odds: 499

The posterior odds are high, hence there is strong evidence supporting the hypothesis H_0 that males have a larger average.

Question 2

After a posterior analysis on data from a population of squash plants, it was determined that the weight of a randomly chosen play, Y, could be modelled with the distribution:

$$p(y,\theta,\sigma^2) = 0.31\phi(y|\theta,\sigma) + 0.46\phi(y|2\theta,2\sigma) + 0.23\phi(y|3\theta,3\sigma),$$

where $\phi(y|\theta,\sigma)$ denotes the PDF of a $\mathcal{N}(\theta,\sigma^2)$ distribution. Ther posterior distributions of the parameters have been calculated as

$$\sigma^2 \sim \text{InvGamma}(10, 2.5)$$
 and $\theta | \sigma^2 \sim \mathcal{N}(4.1, \sigma^2/20)$.

How to sample $10,000 \ y$ -values from the posterior predictive distribution?

Note that the posterior predictive distribution is

$$p(\tilde{y}|y) = \int p(\tilde{y}|\theta, \sigma^2) p(\theta, \sigma^2|y) \, d\theta d\sigma^2 = \mathbf{E}_{\theta, \sigma^2|y} \left[p(\tilde{y}|\theta, \sigma^2) \right],$$

where

$$p(\tilde{y}, \theta, \sigma^2) = 0.31\phi(\tilde{y}|\theta, \sigma) + 0.46\phi(\tilde{y}|2\theta, 2\sigma) + 0.23\phi(\tilde{y}|3\theta, 3\sigma).$$

Our proposed steps to sampling $p(\tilde{y}|y)$ is:

- (1) Sample $\sigma^2 \sim \text{InvGamma}(10, 2.5)$.
- (2) Sample $\theta | \sigma^2 \sim \mathcal{N}(4.1, \sigma^2/20)$.
- (3) Sample $\tilde{y}|\theta,\sigma^2$ based on

$$p(\tilde{y}|\theta,\sigma^2) = 0.31\phi(\tilde{y}|\theta,\sigma) + 0.46\phi(\tilde{y}|2\theta,2\sigma) + 0.23\phi(\tilde{y}|3\theta,3\sigma).$$

- * Repeat steps (1)-(3) until a large enough sample of \tilde{y} is generated.
- * Use this sample as an estimate of the posterior predicitve distribution.

The computation in R is shown below:

The estimate of $p(\tilde{y}|y)$ is shown below:

> plot(density(Y), type='l', col='red')

Question 2 (a) & Solution

(a) Find a 75% quantile-based confidence interval for a new value of Y.

Solution. We use the sample distribution generated previously.

```
> cat('75% Quantile-based CI:',
+ '[',
+ quantile(Y, .125),
+ ',',
+ quantile(Y, .875),
+ ']')
```

75% Quantile-based CI: [7.12233 , 8.621781]

Question 2 (b)

Find a 75% HPD region for a new Y as follows:

- (i) Compute estimates of the posterior density of Y using the density command in R and then normalize the density values so that the sum to 1. Sort these discrete probabilities in decreasing order.
- (ii) Find the first probability value such that the cumulative sum of the sorted values exceeds 0.75. Your HPD region includes all values of *y* which have a discretized probability greater than this cutoff. Describe your HPD region and compare it to your quantile-based region.

For (i), we carry out the following computation in R.

- > values <- density(Y)\$y / sum(density(Y)\$y)</pre>
- > values.sorted <- sort(values, decreasing=TRUE)</pre>

For (ii), we carry out the following computation in R. > cumulative.sum <- cumsum(values.sorted)</pre> > index <- 1 > while (cumulative.sum[index] < 0.75) {</pre> + index <- index + 1 + } > probability.value <- values.sorted[index]</pre> > HPD <- density(Y)\$x[values > probability.value] > cat('75% HPD:', '[', min(HPD), ',', max(HPD), ']') 75% HPD: [7.134047 , 8.620336]

The 75% HPD is similar to the 75% quantile-based CI.

Question 3

Assume that $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ is an IID sample generated from $\mathbf{x} = (x_1, x_2, x_3) \sim \text{Multinomial}(1; p_1, p_2, p_3)$ which has PDF

$$p(\mathbf{x}|p_1,p_2,p_3) = \frac{1!}{x_1!x_2!x_3!}p_1^{x_1}p_2^{x_2}p_3^{x_3}.$$

with $x_j \in [0,1]$ for j=1,2,3, $x_1+x_2+x_3=1$ and $p_j \geq 0$ for j=1,2,3, $p_1=p_2+p_3=1$. Assume a Dirichlet prior with nonnegative parameters α_j , j=1,2,3 for (p_1,p_2,p_3) :

$$p(p_1, p_2, p_3) = \frac{\Gamma(\alpha_1 + \alpha_2 + \alpha_3)}{\Gamma(\alpha_1)\Gamma(\alpha_2)\Gamma(\alpha_2)} p_1^{\alpha_1 - 1} p_2^{\alpha_2 - 1} p_3^{\alpha_3 - 1}.$$

Let $\mathbf{x}_i = (x_{i1}, x_{i2}, x_{i3})$, i = 1, 2, ..., n and set $x_{ij} = \sum_{i=1}^n x_{ij}$, j = 1, 2, 3.

Question 3

- (a) For the posterior PDF $p(p_1, p_2, p_3 | \mathbf{x}_1, ..., \mathbf{x}_n)$ and show that the prior $p(p_1, p_2, p_3)$ is a conjugate prior for (p_1, p_2, p_3) with respect to $p(\mathbf{x}|p_1, p_2, p_3)$.
- (b) Let \mathbf{x}_{n+1} be a new observation. Derive the PDF $p(\mathbf{x}_{n+1}|\mathbf{x}_1,\ldots,\mathbf{x}_n)$ and identify the distribution. Note that $\Gamma(a+1)=a\Gamma(a)$ for a>0 and 1!=0!.

First we derive the joint likelihood of x_1, \ldots, x_n :

$$\begin{split} & p(\mathbf{x}_1, \dots, \mathbf{x}_n | p_1, p_2, p_3) \\ &= \prod_{i=1}^n \left(\frac{1!}{x_{i1}! x_{i2}! x_{i3}!} p_1^{x_{i1}} p_2^{x_{i2}} p_3^{x_{i3}} \right) \\ &= \left(\prod_{i=1}^n \frac{1!}{x_{i1}! x_{i2}! x_{i3}!} \right) p_1^{\sum_{i=1}^n x_{i1}} p_2^{\sum_{i=1}^n x_{i2}} p_3^{\sum_{i=1}^n x_{i3}}. \end{split}$$

Recall that

$$p(p_1, p_2, p_3) = \frac{\Gamma(\alpha_1 + \alpha_2 + \alpha_3)}{\Gamma(\alpha_1)\Gamma(\alpha_2)\Gamma(\alpha_3)} p_1^{\alpha_1 - 1} p_2^{\alpha_2 - 1} p_3^{\alpha_3 - 1}.$$

Therefore

$$\rho(p_1, p_2, p_3 | \mathbf{x}_1, \dots, \mathbf{x}_n)
\propto \rho(\mathbf{x}_1, \dots, \mathbf{x}_n | p_1, p_2, p_3) \rho(p_1, p_2, p_3)
\propto \rho_1^{\sum_{i=1}^n x_{i1}} \rho_2^{\sum_{i=1}^n x_{i2}} \rho_3^{\sum_{i=1}^n x_{i3}} \cdot \rho_1^{\alpha_1 - 1} \rho_2^{\alpha_2 - 1} \rho_3^{\alpha_3 - 1}
\propto \rho_1^{\alpha_1 - 1 + \sum_{i=1}^n x_{i1}} \rho_2^{\alpha_2 - 1 + \sum_{i=1}^n x_{i2}} \rho_3^{\alpha_3 - 1 + \sum_{i=1}^n x_{i3}}$$

From this we can identify the posterior density to be Dirichlet with parameters $\alpha_j + \sum_{i=1}^n x_{ij}$ for j=1,2,3. So it is clear that our prior is a conjugate prior for (p_1,p_2,p_3) with respect to $p(\mathbf{x}|p_1,p_2,p_3)$

By definition of posterior predictive distribution we know that $p(\mathbf{x}_{n+1}|\mathbf{x}_1,...,\mathbf{x}_n)$ is equal to

$$\int p(\mathbf{x}_{n+1}|p_1,p_2,p_3)p(p_1,p_2,p_3|\mathbf{x}_1,\ldots,\mathbf{x}_n)\,\mathrm{d}p_1\mathrm{d}p_2\mathrm{d}p_3,$$

where the integral ranges over the prescribed domain of (p_1, p_2, p_3) , i.e. all $p_1, p_2, p_3 \in [0, 1]$ such that $p_1 + p_2 + p_3 = 1$.

Let

$$C_{\alpha} = \frac{\Gamma(\alpha_{1} + \alpha_{2} + \alpha_{3} + \sum_{i=1}^{n} x_{i1} + x_{i2} + x_{i3})}{\Gamma(\alpha_{1} + \sum_{i=1}^{n} x_{i1})\Gamma(\alpha_{2} + \sum_{i=1}^{n} x_{i2})\Gamma(\alpha_{3} + \sum_{i=1}^{n} x_{i3})}$$
$$= \frac{\Gamma(\alpha_{1} + \alpha_{2} + \alpha_{3} + n)}{\Gamma(\alpha_{1} + \sum_{i=1}^{n} x_{i1})\Gamma(\alpha_{2} + \sum_{i=1}^{n} x_{i2})\Gamma(\alpha_{3} + \sum_{i=1}^{n} x_{i3})}$$

and

$$C_{x} = \frac{1!}{x_{n+1,1}!x_{n+1,2}!x_{n+1,3}!} = 1.$$

Then the integral reduces to:

$$C_{\alpha}C_{x}\int p_{1}^{\alpha_{1}-1+\sum_{i=1}^{n+1}x_{i,1}}p_{2}^{\alpha_{2}-1+\sum_{i=1}^{n+1}x_{i,2}}p_{3}^{\alpha_{3}-1+\sum_{i=1}^{n+1}x_{i3}}dp_{1}dp_{2}dp_{3}.$$

We evaluate the integral, using the fact that the Dirichlet density integrates to one; so it must give the appropriate normalization constant.

$$\begin{split} &C_{\alpha}C_{x}\int p_{1}^{\alpha_{1}-1+\sum_{i=1}^{n+1}x_{i,1}}p_{2}^{\alpha_{2}-1+\sum_{i=1}^{n+1}x_{i,2}}p_{3}^{\alpha_{3}-1+\sum_{i=1}^{n+1}x_{i3}}\mathrm{d}p_{1}\mathrm{d}p_{2}\mathrm{d}p_{3}\\ &=C_{\alpha}\frac{\Gamma(\alpha_{1}+\sum_{i=1}^{n+1}x_{i1})\Gamma(\alpha_{2}+\sum_{i=1}^{n+1}x_{i2})\Gamma(\alpha_{3}+\sum_{i=1}^{n+1}x_{i3})}{\Gamma(\alpha_{1}+\alpha_{2}+\alpha_{3}+\sum_{i=1}^{n+1}x_{i1}+x_{i2}+x_{i3})}\\ &=C_{\alpha}\frac{\Gamma(\alpha_{1}+\sum_{i=1}^{n+1}x_{i1})\Gamma(\alpha_{2}+\sum_{i=1}^{n+1}x_{i2})\Gamma(\alpha_{3}+\sum_{i=1}^{n+1}x_{i3})}{\Gamma(\alpha_{1}+\alpha_{2}+\alpha_{3}+n+1)}\\ &=C_{\alpha}\frac{\Gamma(\alpha_{1}+\sum_{i=1}^{n+1}x_{i1})\Gamma(\alpha_{2}+\sum_{i=1}^{n+1}x_{i2})\Gamma(\alpha_{3}+\sum_{i=1}^{n+1}x_{i3})}{(\alpha_{1}+\alpha_{2}+\alpha_{3}+n)\Gamma(\alpha_{1}+\alpha_{2}+\alpha_{3}+n)} \end{split}$$

(continued from previous slide)

Notice that only one of the variables $x_{n+1,1}, x_{n+1,2}, x_{n+1,3}$ can be equal to 1. Whereas the remaining two must be set to 0.

 \implies Without loss of generality we may assume $x_{n+1,1}=1$ whilst $x_{n+1,2}=x_{n+1,3}=0$. Then we get the following cancellation of terms,

$$C_{\alpha} \frac{\Gamma(\alpha_{1} + \sum_{i=1}^{n+1} x_{i1}) \Gamma(\alpha_{2} + \sum_{i=1}^{n+1} x_{i2}) \Gamma(\alpha_{3} + \sum_{i=1}^{n+1} x_{i3})}{(\alpha_{1} + \alpha_{2} + \alpha_{3} + n) \Gamma(\alpha_{1} + \alpha_{2} + \alpha_{3} + n)}$$

$$= C_{\alpha} \frac{\Gamma(\alpha_{1} + \sum_{i=1}^{n+1} x_{i1}) \Gamma(\alpha_{2} + \sum_{i=1}^{n} x_{i2}) \Gamma(\alpha_{3} + \sum_{i=1}^{n} x_{i3})}{(\alpha_{1} + \alpha_{2} + \alpha_{3} + n) \Gamma(\alpha_{1} + \alpha_{2} + \alpha_{3} + n)}$$

$$= \frac{\Gamma(\alpha_{1} + \sum_{i=1}^{n+1} x_{i1})}{\Gamma(\alpha_{1} + \sum_{i=1}^{n} x_{i1}) (\alpha_{1} + \alpha_{2} + \alpha_{3} + n)}$$

(continued from previous slide)

$$\frac{\Gamma(\alpha_{1} + \sum_{i=1}^{n+1} x_{i1})}{\Gamma(\alpha_{1} + \sum_{i=1}^{n} x_{i1})(\alpha_{1} + \alpha_{2} + \alpha_{3} + n)} \\
= \frac{(\alpha_{1} + \sum_{i=1}^{n} x_{i1})\Gamma(\alpha_{1} + \sum_{i=1}^{n} x_{i1})}{\Gamma(\alpha_{1} + \sum_{i=1}^{n} x_{i1})(\alpha_{1} + \alpha_{2} + \alpha_{3} + n)} \\
= \frac{(\alpha_{1} + \sum_{i=1}^{n} x_{i1})}{(\alpha_{1} + \alpha_{2} + \alpha_{3} + n)}$$

This means that $\mathbf{x}_{n+1} \in \{(1,0,0),(0,1,0),(0,0,1)\}$ follows the multinomial distribution with

$$\begin{cases} \mathbf{P}(\mathbf{x}_{n+1} = (1,0,0)) = \frac{(\alpha_1 + \sum_{i=1}^{n} x_{i1})}{(\alpha_1 + \alpha_2 + \alpha_3 + n)} \\ \mathbf{P}(\mathbf{x}_{n+1} = (0,1,0)) = \frac{(\alpha_2 + \sum_{i=1}^{n} x_{i2})}{(\alpha_1 + \alpha_2 + \alpha_3 + n)} \\ \mathbf{P}(\mathbf{x}_{n+1} = (0,0,1)) = \frac{(\alpha_3 + \sum_{i=1}^{n} x_{i3})}{(\alpha_1 + \alpha_2 + \alpha_3 + n)} \end{cases}$$

Thank you very much for your attention.