MATERIAL DE APOIO EXERCÍCIOS

PESQUISA OPERACIONAL

CONSTRUÇÃO DE MODELOS

EXERCÍCIOS

- 1.1 Certa empresa fabrica dois produtos P1 e P2. O lucro unitário do produto P1 é de R\$ 1.000,00 e o lucro unitário de P2 é R\$ 1.800. A empresa precisa de 20 horas para fabricar uma unidade de P1 e de 30 horas para fabricar uma unidade de P2. O tempo anual de produção disponível para isso é de 1200horas. A demanda esperada para cada produto é de 40 unidades para P1 e 30 unidades para P2. Construa o modelo de programação linear que objetiva maximizar o lucro.
- 1.2 A necessidade mínima de vitaminas na alimentação é de 32 unidades por dia e a de proteínas de 36 unidades por dia. Uma pessoa tem disponível carne e ovo para se alimentar. Cada unidade de carne contém 4 unidades de vitaminas e 6 unidades de proteínas. Cada unidade de ovo contém 8 unidades de vitaminas e 6 unidades de proteínas. Qual a quantidade de carne e ovo que deve ser consumida de forma a ter o Menos custo possível. Cada unidade de carne custa R\$ 3,00 e cada unidade de ovo custa R\$ 2,5.

MÉTODO GRÁFICO

EXERCÍCIO

2.1 Resolva pelo Método Gráfico o seguinte modelo de Programação Linear:

Max
$$\mathbf{Z} = 3\mathbf{x} + 4\mathbf{y}$$

Sujeito a:
$$\begin{pmatrix}
x + y \le 6 & (I) \\
x \le 4 & (II) \\
y \le 4 & (III) \\
x, y \ge 0
\end{pmatrix}$$

A segunda adotando Z = 10, resulta x = 5 e y = 10/3.

Percebemos de forma clara que o primeiro ponto que é interceptado pela Função Objetivo é o ponto C, que conforme o critério anterior de fato representa a solução ótima do problema de minimização.

MÉTODO SIMPLEX

EXERCÍCIOS

3.1 A partir do <u>Método Simplex</u> determine a solução dos seguintes problemas de Programação Linear.

Maximizar L =
$$4x + 5y$$

Sujeito a:
 $4x + 7y \le 336$
 $6x + 3y \le 252$
 $x1, x2 \ge 0$

O PROBLEMA DOS TRANSPORTES

EXERCÍCIOS RESOLVIDOS

4.1 A prefeitura de uma cidade está fazendo obras em três bairros. O material para essas obras é transportado de três depósitos O1, O2 e O3 de onde são retiradas 57, 76 e 93 toneladas de material, respectivamente. As obras são destinadas para os bairros D1, D2 e D3, que necessitam diariamente de 41, 80 e 105 toneladas, respectivamente. Os custos unitários para o transporte desse material estão na tabela a seguir.

Tabela 01 - Custos Unitários dos Transportes (R\$/unidade)

	Destino 01	Destino 03	Destino 03
Depósito 01	7	8	4
Depósito 02	5	6	3
Depósito 03	6	5	4

4.2 respectivamente. Pede-se para determinar:

- a) O custo do transporte a partir do "Método de Aproximação".
- b) O(s) destino(s) que não será(ão) plenamente abastecido(s).

<u>Tabela 01 - Custos Unitários dos Transportes</u> (R\$/unidade)

	CD 01	CD 02	CD 03	CD 04	Capacidade
Fábrica 01	5	3	10	8	40
Fábrica 02	5	2	4	9	100
Fábrica 03	8	11	9	10	60
Demanda	20	70	50	90	