Использование обучения с подкреплением для решения задачи распознавания диктора в интерактивном режиме

Головин Вячеслав Сергеевич

2023

Содержание

	Вве	едение]
1	Распознавание диктора в интерактивном режиме		6
	1.1	Задача распознавание диктора	4
	1.2	Интерактивный режим	
2	Детали реализации и результаты		•
	2.1	Данные для обучения и извлечение эмбеддингов	
	2.2	Обучение Guesser	
	2.3	Обучение Enquirer	
	2.4	Эвристическая модель выбора слов	
3	Модификации метода		4
	3.1	От идентификации к верификации	
	3.2		
	3.3	Добавление шума	
	3.4	Альтернативные эмбеддинги	
	Зак	слючение	

Введение

бла-бла, распознавание диктора это важно и полезно...

1 Распознавание диктора в интерактивном режиме

1.1 Задача распознавание диктора

. . .

1.2 Интерактивный режим

.

2 Детали реализации и результаты

2.1 Данные для обучения и извлечение эмбеддингов

Здесь мы практически полностью повторяем описанный в [1] подход. Единственным (но очень существенным) отличием является использованная размерность эмбеддингов. Перед тем как перейти к обсуждению этого момента, расскажем про исходные данные.

Итак, для обучения и тестирования моделей мы использовали датасет TIMIT[2]. Он составлен из аудиозаписей речи 630 дикторов, говорящих на 8 основных диалектах американского английского языка. Эти дикторы поделены на обучающую (train) и тестовую (test) выборки, в первую входят 468 дикторов, во вторую — 162. Для обучения нейросетевых моделей мы также создавали валидационную выборку, в которую выделялись 20% дикторов из обучающей.

Каждый из дикторов произносит 10 фонетически насыщенных предложений. При этом 2 из 10 предложений являются общими для всех дикторов 1 , остальные 8 уникальны для каждого диктора. Такое разделение позволяет без особых затруднений подготовить данные, необходимые для описанной в 1.2 игры:

• 2 общих предложения можно использовать для получения аудиозаписей слов. Для этого разделим аудиозаписи этих предложений по временным отметкам, предоставленным создателями датасета. В результате получим 20 аудиозаписей слов² для каждого диктора.

¹Общие предложения:

 $She\ had\ your\ dark\ suit\ in\ greasy\ wash\ water\ all\ year.$

Don't ask me to carry an oily rag like that.

 $^{^{2}}$ Аналогично [1] мы не используем слово an.

• 8 уникальных для каждого диктора предложений можно использовать для получения голосовых подписей — эмбеддингов дикторов — просто при помощи усреднения эмбеддингов аудиозаписей этих предложений.

В качестве векторов признаков использовались эмбеддинги x-vector [3]. Весь процесс преобразования аудиозаписей в векторы признаков осуществлялся с помощью библиотеки Kaldi [4]. На первом этапе рассчитывались мел-частотные кепстральные коэффициенты³ и производилось детектирование голосовой активности (англ. VAD — voice activity detection). Полученные векторы признаков поступали на вход предобученной нейронной сети [5]. В качестве эмбеддингов использовались данные со второго 512-мерного слоя.

Здесь, как уже было сказано ранее, мы отступаем от оригинальной работы [1], где использовались 128-мерные эмбеддинги. На это есть две причины. Во-первых, из приведенных в [1] комментариев неочевидно⁴, как производилось понижение размерности. Во-вторых, мотивация такого преобразования тоже неочевидна. Уже первые проведенные нами эксперименты показали, что при использовании 512-мерных эмбеддингов точность идентификации оказывается существенно выше приведенных в [1] значений.

2.2 Обучение Guesser

. . .

2.3 Обучение Enquirer

. . .

2.4 Эвристическая модель выбора слов

. . .

 $^{^3 \}Pi$ араметры аналогичны использованным в [1] и определяются требованиями предобученной модели.

⁴Цитата: We then process the MFCCs features through a pretrained X-Vector network to obtain a high quality voice embedding of fixed dimension 128, where the X-Vector network is trained on augmented Switchboard, Mixer 6 and NIST SREs.

3 Модификации метода

3.1 От идентификации к верификации

Enquirer менять вообще не нужно, Guesser — cobcem немного.

3.2 CodebookEnquirer

вроде работает

3.3 Добавление шума

обучается норм, результаты такие же

3.4 Альтернативные эмбеддинги

внезапно эмбеддинги 2017 года оказались не очень

Заключение

все работает, но хотелось бы большего

Список литературы

- [1] M. Seurin, F. Strub, P. Preux и O. Pietquin, A machine of few words interactive speaker recognition with reinforcement learning, 2020. arXiv: 2008.03127 [eess.AS].
- [2] Garofolo, John S. и др., TIMIT acoustic-phonetic continuous speech corpus, 1993. DOI: 10.35111/17GK-BN40. url: https://catalog.ldc.upenn.edu/LDC93S1.
- [3] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey и S. Khudanpur, «X-Vectors: Robust DNN embeddings for speaker recognition,» в 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, апр. 2018. DOI: 10.1109/icassp.2018.8461375. url: https://www.danielpovey.com/files/2018_icassp_xvectors.pdf.
- [4] D. Povey и др., «The kaldi speech recognition toolkit,» в *IEEE 2011 Workshop on Automatic Speech Recognition and Understanding*, IEEE Catalog No.: CFP11SRW-USB, Hilton Waikoloa Village, Big Island, Hawaii, US: IEEE Signal Processing Society, дек. 2011.

[5] «SRE16 Xvector Model.» (2017), url: http://kaldi-asr.org/models/m3 (дата обр. 18.05.2023).