```
McMuller & 10 1 Analytic Functions:
```

Ahlfors ch. 2 f. UCC.

Lec . 24

 $f: U \subset C$ is analytic (= holomorphic) if $\forall z \in U \exists f'(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h}$

of it analytic to f differentiable in real sense and $\frac{\partial f}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right) = 0$.

and then $\frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right) = f'(z)$, and df = f'(z) dz Cauchy-Riemann eq²

(\Leftrightarrow Df: $\mathbb{R}^2 \to \mathbb{R}^2$ is complex-linear). (\Leftrightarrow conformal transformation: Df process angles between vectors (4 orientation)

· Ex: polynomids, rational functions P(z)

Rational functions extend to the <u>Rignam sphere</u> S=Cu(as): f:S→S

deg(f) = max (deg P, deg Q) (after simplifying any common zeros)

= # pole = # zeroc = #for(c) bc (with multiplichies)

deg 1 care = fractional linear transformations Aut(S) = { = + = = + = = PGL(2,C).

Lec-25 • Power seies $\sum_{n=0}^{\infty} a_n z^n$ converge for $|z| < R = \frac{1}{|i_m sup|} |a_n|^{1/n}$, uniformly on $\{|z| \le r\} \ \forall r < R$. f(z) is analytic on D_R , $f'(z) = \sum_{n=0}^{\infty} a_n z^{n-1}$.

 $\frac{1}{1-z} = \sum_{n=0}^{\infty} z^{n}, \ \exp(z) = \sum_{n=0}^{\infty} \frac{z^{n}}{n!} = e^{x} e^{iy} \ (|\cdot| = e^{Re^{z}}, Arg = Imz), \ \cos z = e^{i\frac{z}{z}} + e^{-iz}$

 $\log(z)$ only defined up to $+2\pi i \mathbb{Z}$, $z = e^{a \log z}$ also rultivalued if $a \notin \mathbb{Z}$ $\log(z) = \frac{1}{z}$, $\log(1+z) = z - \frac{z^2}{2} + \frac{z^3}{3} - \dots + (R=1)$ $\sqrt{1+z} = 1 + \frac{z}{2} - \frac{z^2}{8} + \dots + (R=1)$.

. Key facts: f analytic \Rightarrow f has derivatives to all orders f analytic on $D(z_0,r) \Rightarrow f(z) = \sum_{n=0}^{\infty} a_n(z-z_0)^n$ on $D(z_0,r)$, where $a_n = \frac{1}{n!}f^h(z_0)$

McMullen & 10 (2) Complex integration - Cauchy's integral formula (and applications)

· w = f(z) dz complex 1- form -> So f(z) dz = So f(x(f)) o'(t) dt

• Setting for Cauchy's home and application: $D \subset \mathbb{C}$ bounded region with piecewise smooth boundary $S = \partial D$, f(z) analytic on $U \supset \overline{D}$ (or on $U \setminus \{z_i\}$, $z_i \in int(D)$ isolated)

Couchy's thm; f(z) analytic on $U\supset \overline{D}$, $\partial D=\gamma \Longrightarrow \int_{\gamma} f(z) dz = 0$. (= follows from Stokes, since f analytic $\Longrightarrow f(z) dz$ is a closed 1-form).

Still holds if f analytic in $U = \{z_0\}$ and $\{im (z-z_0)f(z) = 0.$ $\int_{S'(z_0,r)} (z-z_0)^n dz = 0 \text{ if } n \neq -1, \int_{S'(z_0,r)} \frac{dz}{z-z_0} = 2\pi i. \quad \text{(or any } \{z_0\}^{\delta}).$

· Cauchy's integral finala: f analyte on UDD => f(z) = 1 / x (w) dw VZEint(D).

• for dervatives: $\frac{1}{n!}f^{(n)}(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\omega)d\omega}{(\omega-z)^{n+1}} \quad \forall z \in \inf(D).$

• in fact: φ any C° function on $\gamma = \partial D \Rightarrow g(z) = \frac{1}{2\pi i} \int_{\mathcal{X}} \frac{\varphi(\omega) d\omega}{\omega - z}$ is analytic on $\inf(D)$.

Ahlfors 4.1-4.2

Lec-26

Lec. 27 · Cauchy's bound: f analytic in $U \supset \overline{B(z_0,R)} \Rightarrow \left| \frac{f^{(n)}(z_0)}{n!} \right| \leq \frac{1}{R^n} \sup_{w \in S'(z_0,R)} |f(w)|$ • This implies: a bounded entire analytic function is constant a nonconstant entire function has dense image $\overline{f(C)} = C$. Allfors 4.3 • Taylor: f analytic on $B(z_0,R) \Rightarrow f(z) = \sum_{n=0}^{\infty} a_n(z-z_0)^n$ on $B(z_0,R)$, where $a_n = \frac{1}{n}f^{(n)}(z_0)$ (radius of conv. > R; if = R then I nonremovable singularity on S'(zo, R) if $f^{(n)}(z_0) = 0 \ \forall n$, $z_0 \in U$ connected $\Rightarrow f(z) = 0 \ \forall z \in U$ $f^{(n)}(z_0) = g^{(n)}(z_0) \forall n$ f(z)=g(z) • $f: U \rightarrow C$ analytic, not $\equiv 0 \Rightarrow ke$ zeros of f are <u>isolated</u> (no limit its in U) and $\exists k_n ik$ order at each · uniquees: f, g analytic on U connected open, f=g on a nonviseled subject of U ⇒ f=g a U. · if fn(z) analytic on U, fn -> f uniformly on compact subsets of U, When f is analytic on U; and for converge (with on compact subsets) to f (A his doesn't hold for real furtions) · uniformly bounded sequences of analytic functions on U are equicontinuous on compact subsets (by Cauchy's bound) => I subsequence which conveyes uniformly on compact subsets. · if f(z) is analytic on UCC simply connected open, then I analytic function F: U-C st F'(z) = f(z) (take $F(z) = \int_{z_0}^{z} f(z) dz$). Anthornative $\left(\frac{ex}{\cdot}\right)$ apply to $\frac{1}{2}$ to define log over a simply conn. subset of $C^*=C^{-20}$. if f has no zeroes on U simply conn², applying to $\frac{f'}{f}$ gives g(z) st. $f=e^{3}$.) • inverse function: f analytic, f(a) = b, $f'(a) \neq 0 \Rightarrow \exists$ analytic inverse function g on a hbd. of b, $g'(b) = \frac{1}{f'(a)}$ Ahlfirs 4.3 (3) Poles and singularities McMuller §12. Laures seize $f(z) = \sum_{-\infty}^{\infty} a_n z^n$ conveyes for $R_1 = \limsup_{n \to -\infty} |a_n|^{1/|n|} < |z| < R_2 = \frac{1}{\lim_{n \to -\infty} |a_n|^{1/n}}$ • if f(z) is analytic in $A_{R_1,R_2} = \{R_1 < |z| < R_2\}$ then it can be expressed as a Laurent series $\sum_{-\infty}^{\infty} a_n z^n = \left(a_n = \frac{1}{2\pi i} \int_{S'(r)} \frac{f(\omega) d\omega}{\omega^{n+1}}\right)$ which converges on A_{R_1, R_2} . · if f is analytic in D'(R) = D(R)-{0}, isolated singularly at 0, then one of these holds:

→ f has removable singularly at 0, ie. has analytic extension on D(R) \Leftrightarrow Lauret seies of f has no negative part. \Leftrightarrow f(z) is bounded in a not of 0I have a pole at 0 (of order $m \ge 1$), i.e. $\exists g(z)$ analytic on D(R) st. $f(z) = \frac{g(z)}{z^m}$ we have seize of f is $\sum_{-m}^{\infty} a_n z^n$ (finite regalise part) $\Leftrightarrow |f(z)| \to \infty$ as $z \to 0$ - of how exential singularity (ie neither removable nor pole) Experient seise has infinite negative part ← ∀E>0, f(D'(E)) is dense in C. · f is meromorphic if f is analytic in Unique? (isolated) poles at Ar, no essential singularity.

• f meromorphic furthern on U extend to $\hat{f}: U \rightarrow S = Culoo$ } (set $\hat{f} = \infty$ at poles) f is analytic U-15, ie. f analytic away from its poles = the zeros of f. - meomorphic functions = quotients of enalytic functions $\frac{f(z)}{g(z)}$ • of entire function, $|f(z)| \le M|z|^n$ for $|z| - \infty = 0$ is a polynomial of degree $\le n$. $f:S \to S$ analytic (ie. f(z) and $f(\frac{1}{z})$ both mesomorphic) is a rational function. McMullen §11 @ Local behavior; maximum principle, open mapping principle. Allfors 4.3.4, 4.6.1. Cauchy = mean value formula f(z) = 1/27 f(z+re'8) do if f analytic on B(z,r) maximum principle: f analytic on U, noncombant ⇒ |f|, Re(f) don't achieve max.
 anywhere in U. If f continuous on U compact, then max achieved at ∂U. • Schwarz kenna: f analytic on $D=\{|z|<1\}$, |f(z)|<1 $\forall z\in D$, f(b)=0=) If (0) | < 1 and If(z) | < | z| \text{\$\forall Equality implies } f(z) = cz for some cest. • f = u + iv is analytic => u = Ref, v = Im f are harmonic ie. $\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$. · conversely, u harmonic on simply-conn! open UCC => Fanalytic f: U-C st. 4= Ref. · hence: C2 harmonic functions are Co, satisfy mean value formula and max principle. · (Riemann mapping thm; UCC nonempty simply connot open, U≠C => ∃ liholom. (4:U=> D={|z|<1}
ie-analytic bijection w/ analytic inverse.). · Open mapping principle: a nonconstant analytic for is an open mapping, ie. U open => f(U) open McMullen &13 (5) Residue calculus (= applications of Cauchy to calculate integrals) ALLIGIS 4.5 · argument principle: f:U-C analytic, UDD bounded Loman, D=8 assume $f \neq 0$ on ξ , then #zeros of f in D (with multiplizity) = $\frac{1}{2\pi i} \int_{\mathcal{T}} \frac{f'(z)}{f(z)} dz$ Similarly, $c \notin f(\xi) \Rightarrow f''(c)$ in D (with multiplizity) = $\frac{1}{2\pi i} \int_{\mathcal{T}} \frac{f''(z)}{f(z)-c} dz$ (loc. constant for of c : open rapping principle) = winding number of f(x) around cEC. · if f is meomorphic, winding (for) = # zeros - # poles in D (w/ multiplicities). · Rondé's hm: f,g analytic in UDD, |f(z)-g(z)| < |f(z)| \fixed z \in g => #f'(0)=#g'(0) (w/ mulhiplichies) • The residue of f at p: Resp $(f) = \frac{1}{2\pi i} \int_{S'(P,E)} f(z) dz$ = well of (z-p) in Laurent Reies (if simple pole: = 1/m (z-p)f(z)). • Residue Mans of analytic on $U \supset \overline{D} - \{p_i\}$ isolated, $\partial D = y = \frac{1}{2\pi i} \int_{Y} f(z) dz = \sum_{P_i} Ras_{P_i}(F)$. • Definite integrals via residue:

1) $\int_{0}^{2\pi} R(\sin\theta, \cos\theta) d\theta \implies \text{set } z = e^{i\theta} \text{ to get } \int_{S1}$, via $\cos\theta = \frac{z+z^{-1}}{2}$, $d\theta = \frac{dz}{iz}$, ... rational function

+ apply residue than to unit disc. + apply residue than to unit disc. 2)3) \int_{-\infty}^{\infty} R(x) dx

rational function; $\int_{-\infty}^{\infty} R(z) e^{iz} dz \Rightarrow \text{lone path to } \int_{C_R}^{\infty} C_R = \bigcap_{R \to R}^{\infty}$

Lec.29

Lec. 30

lec.31

(This requires bounds on integrand to check on semicircle - 0 as R-00) -> show over residues at polls in {In 2>0}.

4) branch behavior eg. $\int_{-\infty}^{\infty} R(x) dx$: "keyhole" contour + use the multivalued nature of the integrand \Rightarrow $\xrightarrow{}$ don't cancel!

Ahlfors 5,1-52

Lec. 33

6 Sum and product expansions:

• parkal fractions: R(z) rational function $\Rightarrow R(z) = \sum_{j} P_{j} \left(\frac{1}{z-b_{j}}\right) + S(z)$ (bj = poles) where $P_{j} \left(\frac{1}{z-b_{j}}\right) = \frac{a-m}{(z-b_{j})^{m}} + \cdots + \frac{a-1}{z-b_{j}}$ polar part at $z=b_{j}$; S(z) polynomial.

• for f(z) meromorphic with (isolated) poles by, with polar parts $P_j\left(\frac{1}{z-b_j}\right)$: $\sum P_j\left(\frac{1}{z-b_j}\right) \text{ might not converge, but } \exists \text{ polynomials } q_j(z) = \text{truncated Taylor series of } P_j\left(\frac{1}{z-b_j}\right)$ $\text{st.} \quad \sum \left(P_j\left(\frac{1}{z-b_j}\right) - q_j(z)\right) \text{ converges (absolutely, uniformly on conject sets).}$ Then we get $f(z) = \sum_j \left(P_j\left(\frac{1}{z-b_j}\right) - q_j(z)\right) + g(z)$, g entire analytic function. • $Ex: \frac{\pi^2}{\sin^2(\pi z)} = \sum_{n \in \mathbb{Z}} \frac{1}{(z-n)^2}$, $\pi \cot(\pi z) = \frac{1}{z} + \sum_{n \neq 0} \left(\frac{1}{z-n} + \frac{1}{n}\right)$.

Lec. 34

• infinite products: ∏ p: converges if • at most finitely many terms are zero.
• IT p: converges to a non-zero limit p: ≠0
This forces p: → 1, and convergence amounts to that of ∑ log(pi).
(Unif.) convergent products of analytic functions are analytic, orders of zeros = sum of orders of the factors that equal zero.

• for f(z) entire function with (isolated) zeros at b_j with order m_j $\prod \left(1-\frac{z}{b_j}\right)^{m_j}$ mught not conveye, but $\exists q_j(z) = \frac{z}{b_j} + \frac{1}{2}\left(\frac{z}{b_j}\right)^2 + \dots + \frac{1}{d}\left(\frac{z}{b_j}\right)^d$ polynomial (brunched Taylor seils of $-\log\left(1-\frac{z}{b_j}\right)$ st. $\prod \left(1-\frac{z}{b_j}\right) e^{q_j(z)} \prod_{i=1}^{m_j} conveyes (absolutely, unif on compact sets).$ Then we get $f(z) = z^m \prod \left(1-\frac{z}{b_j}\right) e^{\frac{z}{b_j}} + \dots + \frac{(z/b_j)^d}{d} \prod_{j=1}^{m_j} e^{g(\overline{z})}, g(\overline{z}) entire for.$

• \underline{Ex} : $\sin(\pi z) = \pi z \prod_{n \neq 0} \left(\left(1 - \frac{z}{n} \right) e^{\frac{z}{n}} \right)$.

· in sum & product expressions, find the unknown term g(z) by comparing ((eg.) derivatives and/or by showing g is bounded (hence constant), etc.