NSDUH_Drug_Analysis

Katelin Bauer

2023-12-20

Contents

Question 1	2
Utilize multiple regression methods to determine if there is a relationship between the age of first cocaine use during adolescence and the following predictors: demographic variables, perceived risk of cocaine use, availability of cocaine, danger seeking, age of first alcohol use, and age of first cigarette use	2
Import NSDUH data	2
Data cleaning	2
Convert categorical variables into factors	3
Plots/ exploratory data analysis	3
Model selection	11
Fitting a full multiple regression model	11
Fit reduced multiple regression models	12
Step forward variable selection	14
Exhaustive search variable selection	16
Multiple regression model with the highest adjusted r-squared, thus far:	18
VIF test for multicollinearity	23
Ridge regression model for the shrinkage of predictor coefficent values	23
Adding interaction terms to the model	24
Cross-validation	26
General takeaway:	26
Question 2	26
Utilize classification methods to determine whether a respondent used cocaine for the first time before 18 years old (yes/no) can be effectively classified based on demographic variables, perceived risk of cocaine use, availability of cocaine, danger seeking, age of first alcohol use, and age of first cigarette use.	26
Data cleaning	26
Convert categorical variables into factors	27
Plots/ exploratory data analysis	27

Logistic regression
Histogram of the fitted values and the plots of the OLS results $\dots \dots \dots$
Plots of logistic regression models
Deviance: the measure of "goodness of fit" used in general linear models
Predicting new values
Tune the model to select a threshold
Predicting with the test data
Test all the possible thresholds
Determine how well the logistic regression model performs
LDA & QDA
LDA: The LDA discriminant function assumes equal variance for all classes $\dots \dots \dots$
How well did the LDA model perform?
QDA: The QDA discriminant function does not assume equal variance for all classes
How well did the QDA model perform?
General takeaway:

Question 1

Utilize multiple regression methods to determine if there is a relationship between the age of first cocaine use during adolescence and the following predictors: demographic variables, perceived risk of cocaine use, availability of cocaine, danger seeking, age of first alcohol use, and age of first cigarette use.

Import NSDUH data

```
library(tidyverse)
library(data.table)
library(ggplot2)
library(plyr)
library(car)
library(leaps)
library(boot)
library(glmnet)

NSDUH_2020 <- read_csv("NSDUH_2020.csv")
NSDUH_2021 <- read_csv("NSDUH_2021.csv")

df_20.21 <- rbind.fill(NSDUH_2020, NSDUH_2021)</pre>
```

Data cleaning

```
df_20.21 |>
  select(DIFGETCOC, RSKYFQDGR, RSKYFQTES, CATAGE, IRALCAGE, IRCIGAGE, YODPREV, COCEVER, YEPRTDNG, COCAGE, RSKCOCM
df1 <- subset(df1, df1$COCAGE < 18)
df1 <- subset(df1, !(CATAGE %in% c(3, 4))) # Exclude respondents who are 26 or older.
df1 <- subset(df1, !(COCEVER %in% c(991))) # Exclude respondents who never used cocaine.
df1 <- subset(df1, !(DIFGETCOC %in% c(85, 94, 97, 98)))
df1 <- subset(df1, !(RSKYFQDGR %in% c(85, 94, 97, 98)))
df1 <- subset(df1, !(RSKYFQTES %in% c(85, 94, 97, 98)))
df1 <- subset(df1, !(IRALCAGE %in% c(991))) # Exclude respondents who never used alcohol.
df1 <- subset(df1, !(RSKCOCWK %in% c(85, 94, 97, 98)))
df1 <- subset(df1, !(RSKCOCMON %in% c(85, 94, 97, 98)))
df1 <- subset(df1, !(IRCIGAGE %in% c(991))) # Exclude respondents who never used cigarettes.
df1 <- subset(df1, !(YEPRTDNG %in% c(97,99)))</pre>
df1 <- subset(df1, !(YODPREV %in% c(97,99)))</pre>
head(df1)
        DIFGETCOC RSKYFQDGR RSKYFQTES CATAGE IRALCAGE IRCIGAGE YODPREV COCEVER
## 431
                4
                           3
                                            1
                                                      8
                                                              13
                                     3
                                                                        1
                                                                                1
## 1730
                           2
                                     2
                                                              15
                                                                        2
                                            1
                                                     13
                                                                                1
## 2530
                                     3
                                                              12
                5
                           4
                                            1
                                                     15
                                                                        1
                                                                                1
## 2825
                2
                           3
                                     3
                                            1
                                                     15
                                                              15
                                                                        1
                                                                                1
                                     3
## 6965
                5
                           1
                                            1
                                                              15
                                                                        2
                                                     15
## 7862
                3
                           3
                                     3
                                            1
                                                                        2
                                                                                1
        YEPRTDNG COCAGE RSKCOCMON RSKCOCWK NEWRACE2 IRSEX
##
## 431
               1
                     15
                                 1
                                          1
               2
## 1730
                     16
                                 3
                                          3
## 2530
               1
                     16
                                 4
                                          4
                                                    1
                                                          2
                                                          2
                                          2
## 2825
               1
                     16
                                 1
                                                    1
## 6965
               1
                     15
                                 4
                                          4
                                                    7
                                                          1
                                          2
## 7862
                     14
                                 2
                                                          2
```

Convert categorical variables into factors

```
df1$COCEVER <- as.factor(df1$COCEVER)
df1$DIFGETCOC<- as.factor(df1$DIFGETCOC)
df1$RSKCOCMON <- as.factor(df1$RSKCOCMON)
df1$RSKCOCWK <- as.factor(df1$RSKCOCWK)
df1$RSKYFQDGR <- as.factor(df1$RSKYFQDGR)
df1$RSKYFQTES <- as.factor(df1$RSKYFQTES)
df1$YEPRTDNG <- as.factor(df1$YEPRTDNG)
df1$YODPREV <- as.factor(df1$YODPREV)
df1$IRSEX <- factor(df1$IRSEX, labels = c("Male", "Female"))
df1$NEWRACE2 <- factor(df1$NEWRACE2)</pre>
```

Plots/ exploratory data analysis

```
ggplot(df1, aes(x = as.factor(COCAGE))) +
  geom_bar() +
  xlab("Age of First Cocaine Use") +
  ggtitle("Age of First Cocaine Use Distribution")
```

Age of First Cocaine Use Distribution


```
ggplot(df1, aes(x = DIFGETCOC)) +
  geom_bar() +
  scale_x_discrete(labels=c("1" = "Probably Impossible", "2" = "Very Difficult", "3" = "Fairly Difficult" xlab("Difficulty Getting Cocaine") +
  ggtitle("Difficulty Getting Cocaine Distribution")
```

Difficulty Getting Cocaine Distribution


```
ggplot(df1, aes(x = RSKCOCMON)) +
  geom_bar() +
  scale_x_discrete(labels=c("1" = "No Risk", "2" = "Slight Risk", "3" = "Moderate Risk", "4" = "Great Ri
  xlab("Risk Using Cocaine Once a Month") +
  ggtitle("Risk Using Cocaine Once a Month Distribution")
```

Risk Using Cocaine Once a Month Distribution


```
ggplot(df1, aes(x = RSKCOCWK)) +
  geom_bar() +
  scale_x_discrete(labels=c("1" = "No Risk", "2" = "Slight Risk", "3" = "Moderate Risk", "4" = "Great Ri
  xlab("Risk Using Cocaine Once or Twice a Week") +
  ggtitle("Risk Using Cocaine Once or Twice a Week Distribution")
```

Risk Using Cocaine Once or Twice a Week Distribution


```
ggplot(df1, aes(x = RSKYFQDGR, y = COCAGE)) +
  geom_boxplot() +
  xlab("Get a real kick out of doing dangerous things") +
  ylab("Age First Cocaine Use") +
  scale_x_discrete(labels=c("1" = "Never", "2" = "Seldom", "3" = "Sometimes", "4" = "Always")) +
  ggtitle("Tendency for Dangerous Behavior and Age of First Cocaine Use")
```



```
ggplot(df1, aes(x = RSKYFQTES, y = COCAGE)) +
  geom_boxplot() +
  xlab("Get a real kick out of doing risky things") +
  ylab("Age of First Cocaine Use") +
  scale_x_discrete(labels=c("1" = "Never", "2" = "Seldom", "3" = "Sometimes", "4" = "Always")) +
  ggtitle("Tendency for Risky Behavior and Age of First Cocaine Use")
```

Tendency for Risky Behavior and Age of First Cocaine Use


```
ggplot(df1, aes(x = IRALCAGE, y = as.factor(COCAGE), color = as.factor(IRSEX))) +
  geom_point(size = 2) +
  ggtitle("Age of First Alcohol Use vs. Age First Cocaine Use") +
  xlab("Age of First Alcohol Use") +
  ylab("Age of First Cocaine Use")
```



```
ggplot(df1, aes(x = IRCIGAGE, y = as.factor(COCAGE), color = as.factor(IRSEX))) +
  geom_point(size = 2) +
  ggtitle("Age of First Cigarette Use vs. Age First Cocaine Use") +
  xlab("Age of First Cigarette Use") +
  ylab("Age of First Cocaine Use")
```


Model selection

DIFGETCOC3

Fitting a full multiple regression model

3.01646

1.92827

```
# Adjusted R-squared: 0.2723
# p-value: 0.2833
reg_co_full <- lm(data = df1, COCAGE ~ DIFGETCOC + RSKYFQDGR + RSKYFQTES + IRALCAGE + IRCIGAGE + RSKCOC
summary(reg_co_full)
##
## Call:
## lm(formula = COCAGE ~ DIFGETCOC + RSKYFQDGR + RSKYFQTES + IRALCAGE +
       IRCIGAGE + RSKCOCMON + RSKCOCWK + NEWRACE2 + IRSEX, data = df1)
##
##
## Residuals:
##
       Min
                  1Q
                       Median
                                    3Q
                                            Max
## -1.46551 -0.32305 0.00611 0.36226
                                       0.90023
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.50493
                          1.98408
                                     4.791 0.00137 **
## DIFGETCOC2
                1.48984
                           1.83068
                                     0.814 0.43930
```

1.564 0.15637

```
## DIFGETCOC4
               2.17965
                          1.95586
                                    1.114 0.29746
## DIFGETCOC5 2.39416
                          2.11061
                                    1.134 0.28949
## RSKYFQDGR2 0.88864
                          1.25423
                                    0.709 0.49875
## RSKYFQDGR3
              1.51677
                          1.17159
                                    1.295 0.23156
## RSKYFQDGR4
               1.91260
                          1.46416
                                    1.306 0.22776
## RSKYFQTES2
                                    0.020 0.98436
              0.03756
                          1.85704
## RSKYFQTES3 -1.04514
                                   -0.615 0.55595
                          1.70078
## RSKYFQTES4 -1.32619
                          1.98897
                                   -0.667 0.52368
## IRALCAGE
               0.09010
                          0.16388
                                    0.550 0.59749
## IRCIGAGE
               0.16736
                          0.15598
                                    1.073 0.31459
## RSKCOCMON2 -1.96843
                          1.69911
                                   -1.159 0.28007
## RSKCOCMON3 -1.13448
                                   -0.525 0.61395
                          2.16176
## RSKCOCMON4
              0.31032
                          2.13747
                                    0.145 0.88816
## RSKCOCWK2
                                    0.747 0.47620
               1.67421
                          2.23996
               0.89497
## RSKCOCWK3
                          2.50553
                                    0.357 0.73018
## RSKCOCWK4
               0.07795
                          2.77135
                                    0.028 0.97825
                                    1.285 0.23473
## NEWRACE23
               1.39942
                          1.08902
## NEWRACE25
               2.11820
                          1.75309
                                    1.208 0.26144
## NEWRACE26
              -0.18293
                          0.87329
                                   -0.209 0.83931
## NEWRACE27
               0.41532
                          0.87927
                                    0.472 0.64930
## IRSEXFemale -1.00247
                          0.66808 -1.501 0.17187
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 1.047 on 8 degrees of freedom
## Multiple R-squared: 0.8122, Adjusted R-squared: 0.2723
## F-statistic: 1.504 on 23 and 8 DF, p-value: 0.2833
```

Fit reduced multiple regression models

Adjusted R-squared: 0.1917

(Intercept) 13.3333

2.5000

1.7917

1.8095

RSKYFQTES2

RSKYFQTES3

RSKYFQTES4

##

##

```
# p-value: 0.02982
reg_co_1 <- lm(data = df1, COCAGE ~ RSKYFQTES)
summary(reg_co_1)

##
## Call:
## lm(formula = COCAGE ~ RSKYFQTES, data = df1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.143 -1.125 -0.125 0.875 1.875
##
## Coefficients:</pre>
```

0.6372 20.925 < 2e-16 ***

Estimate Std. Error t value Pr(>|t|)

0.7804

0.6944

0.7616

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

3.203 0.00338 **

2.580 0.01541 *

2.376 0.02459 *

```
## Residual standard error: 1.104 on 28 degrees of freedom
## Multiple R-squared: 0.2699, Adjusted R-squared: 0.1917
## F-statistic: 3.451 on 3 and 28 DF, p-value: 0.02982
# Adjusted R-squared: 0.2406
# p-value: 0.02102
reg_co_2 <- lm(data = df1, COCAGE ~ DIFGETCOC)</pre>
summary(reg_co_2)
##
## Call:
## lm(formula = COCAGE ~ DIFGETCOC, data = df1)
## Residuals:
##
               1Q Median
      Min
                               3Q
                                      Max
## -2.0000 -0.6591 -0.0625 0.8187 1.8750
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 12.5000
                        0.7565 16.524 1.21e-15 ***
## DIFGETCOC2
                2.5000
                           0.8735
                                   2.862 0.008035 **
                3.0455
                           0.8224
                                    3.703 0.000965 ***
## DIFGETCOC3
## DIFGETCOC4
                2.6250
                           0.8458
                                   3.104 0.004449 **
## DIFGETCOC5
                2.7000
                           0.8951
                                   3.016 0.005518 **
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 1.07 on 27 degrees of freedom
## Multiple R-squared: 0.3385, Adjusted R-squared: 0.2406
## F-statistic: 3.455 on 4 and 27 DF, p-value: 0.02102
# Adjusted R-squared: 0.2395
# p-value: 0.05224
reg_co_3 <- lm(data = df1, COCAGE ~ DIFGETCOC + RSKYFQTES)</pre>
summary(reg_co_3)
##
## Call:
## lm(formula = COCAGE ~ DIFGETCOC + RSKYFQTES, data = df1)
## Residuals:
##
        Min
                 1Q
                      Median
                                   3Q
## -1.92895 -0.52089 -0.06803 0.72185 1.71001
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 12.5000
                           0.7570 16.512 1.32e-14 ***
## DIFGETCOC2
                2.9520
                           1.4832
                                   1.990
                                           0.0581 .
## DIFGETCOC3
                3.3130
                           1.4317
                                    2.314
                                            0.0295 *
## DIFGETCOC4
                2.5000
                           1.3112
                                    1.907
                                            0.0686 .
## DIFGETCOC5
              3.1591
                           1.4991
                                    2.107
                                            0.0457 *
## RSKYFQTES2
              0.5623
                           1.1721
                                   0.480
                                            0.6357
```

0.7301

1.1932 -0.349

RSKYFQTES3

-0.4164

```
## RSKYFQTES4 -0.5230 1.2749 -0.410 0.6853
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.071 on 24 degrees of freedom
## Multiple R-squared: 0.4112, Adjusted R-squared: 0.2395
## F-statistic: 2.395 on 7 and 24 DF, p-value: 0.05224
```

Step forward variable selection

```
## Start: AIC=14.11
## COCAGE ~ 1
##
##
              Df Sum of Sq
                              RSS
                                       AIC
## + IRCIGAGE
                   13.0994 33.619 5.5797
## + DIFGETCOC 4
                   15.8165 30.902 8.8830
## + RSKYFQTES 3
                   12.6116 34.107 10.0407
## <none>
                            46.719 14.1091
## + IRALCAGE
                    2.0938 44.625 14.6419
               1
## + IRSEX
               1
                    0.2482 46.471 15.9387
                    5.0733 41.645 16.4306
## + RSKCOCMON 3
## + RSKYFQDGR 3
                    4.5039 42.215 16.8652
## + RSKCOCWK
                    4.1599 42.559 17.1248
## + NEWRACE2
                    2.1207 44.598 20.6225
               4
## Step: AIC=5.58
## COCAGE ~ IRCIGAGE
##
              Df Sum of Sq
                              RSS
                                      AIC
                    7.6807 25.939 5.2799
## + DIFGETCOC 4
                    5.7698 27.849 5.5545
## + RSKYFQTES 3
## <none>
                            33.619 5.5797
## + IRSEX
                    1.8292 31.790 5.7894
               1
## + IRALCAGE
               1
                    0.1763 33.443 7.4114
## + RSKYFQDGR 3
                    3.0709 30.548 8.5144
## + RSKCOCMON
                    2.4772 31.142 9.1304
               3
## + RSKCOCWK
               3
                    1.9492 31.670 9.6684
## + NEWRACE2
                    1.7110 31.908 11.9082
## - IRCIGAGE
                   13.0994 46.719 14.1091
               1
##
## Step: AIC=5.28
## COCAGE ~ IRCIGAGE + DIFGETCOC
##
##
              Df Sum of Sq
                              RSS
                                      AIC
## + IRSEX
                    3.4036 22.535 2.7788
## <none>
                            25.939 5.2799
## - DIFGETCOC 4
                  7.6807 33.619 5.5797
```

```
## + RSKCOCMON 3
                    3.2912 22.647 6.9379
## + IRALCAGE 1
                    0.0000 25.939 7.2799
## + RSKYFQTES 3
                    2.2981 23.641 8.3113
## - IRCIGAGE
                    4.9636 30.902 8.8830
               1
## + RSKCOCWK
               3
                    1.8353 24.103 8.9317
## + RSKYFQDGR 3
                    0.5309 25.408 10.6182
## + NEWRACE2
                    1.9090 24.030 10.8337
##
## Step: AIC=2.78
## COCAGE ~ IRCIGAGE + DIFGETCOC + IRSEX
##
              Df Sum of Sq
                              RSS
## <none>
                           22.535 2.7788
## + IRALCAGE
                    0.0405 22.495 4.7212
## + RSKCOCMON 3
                    2.3771 20.158 5.2117
## - IRSEX
                    3.4036 25.939 5.2799
               1
## - DIFGETCOC
              4
                    9.2550 31.790 5.7894
## + NEWRACE2
                    2.7533 19.782 6.6089
## + RSKYFQTES 3
                    1.4485 21.087 6.6529
## + RSKCOCWK
               3
                    0.7554 21.780 7.6878
## - IRCIGAGE
               1
                    5.7118 28.247 8.0079
## + RSKYFQDGR 3
                    0.3412 22.194 8.2906
summary(reg_co_1_stepout)
##
## lm(formula = COCAGE ~ IRCIGAGE + DIFGETCOC + IRSEX, data = df1)
##
## Residuals:
##
                 1Q
       Min
                     Median
                                   3Q
                                           Max
## -1.82239 -0.77183 0.07097 0.61314 1.27618
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.86768
                        0.93338 11.643 1.37e-11 ***
## IRCIGAGE
               0.19204
                          0.07629
                                   2.517 0.01861 *
## DIFGETCOC2
              1.82327
                          0.83800
                                    2.176 0.03924 *
## DIFGETCOC3
              2.43060
                          0.83267
                                    2.919 0.00733 **
## DIFGETCOC4
              2.10019
                          0.89799
                                    2.339 0.02764 *
## DIFGETCOC5
              2.51060
                          0.85786
                                    2.927 0.00720 **
## IRSEXFemale -0.74054
                          0.38110 -1.943 0.06334 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9494 on 25 degrees of freedom
## Multiple R-squared: 0.5176, Adjusted R-squared: 0.4019
## F-statistic: 4.471 on 6 and 25 DF, p-value: 0.003314
\# Chosen model: lm(formula = COCAGE \sim IRCIGAGE + DIFGETCOC + IRSEX, data = df1)
# Adjusted R-squared: 0.4019
# p-value: 0.003314
```

Exhaustive search variable selection

```
reg_co_1_ex <- regsubsets(data = df1, COCAGE ~ DIFGETCOC + RSKYFQDGR + RSKYFQTES + IRALCAGE + IRCIGAGE
reg_co_1_summary <- summary(reg_co_1_ex)</pre>
reg_co_1_summary
## Subset selection object
## Call: regsubsets.formula(data = df1, COCAGE ~ DIFGETCOC + RSKYFQDGR +
       RSKYFQTES + IRALCAGE + IRCIGAGE + RSKCOCMON + RSKCOCWK +
##
       NEWRACE2 + IRSEX)
## 23 Variables (and intercept)
               Forced in Forced out
##
## DIFGETCOC2
                               FALSE
                   FALSE
## DIFGETCOC3
                   FALSE
                               FALSE
## DIFGETCOC4
                  FALSE
                               FALSE
## DIFGETCOC5 FALSE
## RSKYFQDGR2 FALSE
## RSKYFQDGR3 FALSE
## RSKYFQDGR4 FALSE
## RSKYFQTES2 FALSE
## RSKYFQTES2 FALSE
## RSKYFQTES3 FALSE
                               FALSE
                               FALSE
                             FALSE
                             FALSE
                             FALSE
                             FALSE
## RSKYFQTES4
                  FALSE
                             FALSE
                  FALSE
## IRALCAGE
                               FALSE
## IRCIGAGE
                  FALSE
                               FALSE
## RSKCOCMON2
                  FALSE
                              FALSE
## RSKCOCMON3
                  FALSE
                             FALSE
                 FALSE
## RSKCOCMON4
                               FALSE
## RSKCOCWK2
                  FALSE
                               FALSE
## RSKCOCWK3
                  FALSE
                               FALSE
## RSKCOCWK4
                  FALSE
                               FALSE
## NEWRACE23
                   FALSE
                               FALSE
## NEWRACE25
                  FALSE
                               FALSE
## NEWRACE26
                  FALSE
                               FALSE
## NEWRACE27
                  FALSE
                               FALSE
## IRSEXFemale
                   FALSE
                               FALSE
## 1 subsets of each size up to 8
## Selection Algorithm: exhaustive
            DIFGETCOC2 DIFGETCOC3 DIFGETCOC4 DIFGETCOC5 RSKYFQDGR2 RSKYFQDGR3
## 1 (1)""
                  11 11 11 11 11 11
                                                         11 11
                       11 11
                                   11 11
## 2 (1)""
                                                                     "*"
                                   11 11
                                              11 11
                                                          11 11
## 3 (1)""
                       "*"
                                   11 11
                                              11 11
## 4 (1)""
                        "*"
                        11 11
                                   11 11
                                              11 11
                                                          11 11
## 5 (1)""
                       "*"
"*"
## 6 (1)""
                                   11 11
                                              11 11
## 7 (1)""
                                   11 11
                                              11 11
                                                          11 11
                                   "*"
                                               "*"
                                                          11 11
## 8 (1) "*"
            RSKYFQDGR4 RSKYFQTES2 RSKYFQTES3 RSKYFQTES4 IRALCAGE IRCIGAGE
##
                 11 11 11 11
                                        11 11
                                                          11 11
## 1 (1)""
                                                                   "*"
                        11 11
                                   11 11
                                              11 11
## 2 (1)""
                                                          11 11
                                                                    "*"
## 3 (1)""
                       11 11
                                 11 11
                                              11 11
                                                          11 11
                                                                    11 * 11
## 4 (1)""
                        11 11
                                   11 11
                                              11 11
                                                          11 11
                                                                    "*"
                                   11 11
                        11 11
                                              "*"
                                                          11 11
                                                                    "*"
## 5 (1)""
## 6 (1)""
                        "*"
                                   "*"
                                              "*"
                                                          11 11
                                                                    11 11
```

```
## 7 (1)""
                              "*"
                    "*"
                                       "*"
                                                         "*"
## 8 (1)""
##
          RSKCOCMON2 RSKCOCMON3 RSKCOCMON4 RSKCOCWK2 RSKCOCWK3 RSKCOCWK4
## 1
    (1)""
     (1)""
## 2
## 3
    (1)"*"
     (1)
## 5
## 6
     (1)"*"
## 7 (1)"*"
## 8 (1) "*"
##
          NEWRACE23 NEWRACE25 NEWRACE26 NEWRACE27 IRSEXFemale
                            11 11
## 1
    (1)""
                   11 11
## 2 (1)""
## 3 (1) " "
    (1)""
## 4
## 5 (1)""
## 6 (1) " "
## 7 (1) " "
## 8 (1) " "
```

```
df_exh <- data.frame(adjR2 = reg_co_1_summary$adjr2, nvar = 1:length(reg_co_1_summary$adjr2))
ggplot(df_exh, (aes(nvar, adjR2))) +
   geom_line()</pre>
```



```
which.max(reg_co_1_summary$adjr2)
## [1] 8
# Exhaustive search recommends 8 variables, however, since there are factors, each level counts as 1 va
reg_ex_model <- lm(data = df1, COCAGE ~ DIFGETCOC + RSKYFQTES + IRALCAGE + RSKCOCMON)
summary(reg_ex_model)
##
## Call:
## lm(formula = COCAGE ~ DIFGETCOC + RSKYFQTES + IRALCAGE + RSKCOCMON,
      data = df1
##
## Residuals:
##
       Min
                 1Q
                      Median
                                   3Q
                                          Max
## -1.49567 -0.31874 -0.02383 0.36230 1.92808
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 12.15927
                        1.28355
                                  9.473 7.8e-09 ***
## DIFGETCOC2 1.78908
                          1.38353
                                   1.293
                                           0.2107
## DIFGETCOC3 2.81240
                         1.27395
                                  2.208
                                           0.0391 *
## DIFGETCOC4 1.88125
                          1.16201
                                  1.619
                                          0.1211
## DIFGETCOC5 2.10079
                          1.45577
                                   1.443
                                          0.1645
## RSKYFQTES2 1.69070
                          1.16423
                                   1.452
                                          0.1620
## RSKYFQTES3 0.23714
                          1.14709
                                   0.207
                                           0.8383
## RSKYFQTES4
              0.21419
                          1.24442
                                   0.172 0.8651
                                   1.422
## IRALCAGE
               0.12431
                          0.08739
                                           0.1703
## RSKCOCMON2 -1.64548
                          0.63206 -2.603
                                           0.0170 *
## RSKCOCMON3 -1.85164
                          0.71618 -2.585
                                           0.0177 *
## RSKCOCMON4 -0.65661
                          0.73699 -0.891
                                           0.3836
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 0.9252 on 20 degrees of freedom
## Multiple R-squared: 0.6335, Adjusted R-squared: 0.432
## F-statistic: 3.143 on 11 and 20 DF, p-value: 0.01265
# Adjusted R-squared: 0.432
```

Multiple regression model with the highest adjusted r-squared, thus far:

p-value: 0.01265

```
model_best_pt1 <- lm(data = df1, COCAGE ~ DIFGETCOC + IRCIGAGE + RSKCOCMON + RSKCOCWK + NEWRACE2 + IRSE
plot(model_best_pt1)</pre>
```


COCAGE ~ DIFGETCOC + IRCIGAGE + RSKCOCMON + RSKCOCWK + NEWRACE2 ·

COCAGE ~ DIFGETCOC + IRCIGAGE + RSKCOCMON + RSKCOCWK + NEWRACE2

COCAGE ~ DIFGETCOC + IRCIGAGE + RSKCOCMON + RSKCOCWK + NEWRACE2 ·

COCAGE ~ DIFGETCOC + IRCIGAGE + RSKCOCMON + RSKCOCWK + NEWRACE2 ·

```
##
## Call:
## lm(formula = COCAGE ~ DIFGETCOC + IRCIGAGE + RSKCOCMON + RSKCOCWK +
## NEWRACE2 + IRSEX, data = df1)
```

Residuals:
Min 1Q Median 3Q Max
-1.25267 -0.27778 0.08044 0.30349 1.12718

summary(model_best_pt1)

##

Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 10.26064 1.38646 7.401 2.22e-06 *** ## DIFGETCOC2 1.61424 0.81404 1.983 0.06599 ## DIFGETCOC3 3.20939 0.99762 3.217 0.00576 ** 0.03719 2.70502 1.18308 2.286 ## DIFGETCOC4 ## DIFGETCOC5 2.43451 0.92083 2.644 0.01842 ## IRCIGAGE 0.22229 0.09781 2.273 0.03818 ## RSKCOCMON2 -1.85454 1.31924 -1.4060.18017 ## RSKCOCMON3 -0.74528 1.62910 -0.457 0.65388 0.84930 ## RSKCOCMON4 0.31040 1.60564 0.193 ## RSKCOCWK2 1.91746 1.56737 1.223 0.24007 ## RSKCOCWK3 0.94690 1.80278 0.525 0.60709 ## RSKCOCWK4 0.32648 1.89318 0.172 0.86539

```
## NEWRACE23
               0.72044
                          0.64502
                                    1.117 0.28160
## NEWRACE25
                          1.14034
                                    1.911 0.07534 .
               2.17890
## NEWRACE26
              -0.10414
                          0.70132
                                   -0.148 0.88393
## NEWRACE27
              -0.43752
                          0.53032
                                   -0.825 0.42230
## IRSEXFemale -1.12669
                          0.47113
                                   -2.391 0.03033 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9074 on 15 degrees of freedom
## Multiple R-squared: 0.7357, Adjusted R-squared: 0.4537
## F-statistic: 2.609 on 16 and 15 DF, p-value: 0.03522
# Adjusted R-squared: 0.4537
# p-value: 0.03522
```

There are outliers in the data which could contribute to the model only being able to explain approximately 45% of the variance in the response variable according to the adjusted r-squared value. The Q-Q plot shows a fairly normal linear distribution of the data, however, around the max/min values the regression line is displaying some curvature. It is possible that there is multicollinearity among predictors.

VIF test for multicollinearity

```
vif(reg_co_full) # full multiple regression model
                   GVIF Df GVIF^(1/(2*Df))
##
## DIFGETCOC
              94.212852 4
                                  1.765077
## RSKYFQDGR 49.082416 3
                                  1.913467
## RSKYFQTES
             71.583190 3
                                  2.037676
## IRALCAGE
               3.281790 1
                                  1.811571
## IRCIGAGE
               4.808258 1
                                  2.192774
## RSKCOCMON 187.159736 3
                                  2.391674
## RSKCOCWK 137.863677
                        3
                                  2.272872
## NEWRACE2
              28.594388
                        4
                                  1.520670
## IRSEX
               3.243370 1
                                  1.800936
```

The variance inflation test indicates a high probability of the presence of multicollinearity among the following predictors:

DIFGETCOC, RSKYFQDGR, RSKYFQTES, RSKCOCMON, RSKCOCWK, and NEWRACE2.

Ridge regression model for the shrinkage of predictor coefficent values

```
X <- model.matrix(data = df1, COCAGE ~ DIFGETCOC + RSKYFQDGR + RSKYFQTES + IRALCAGE + IRCIGAGE + RSKCOC
set.seed(123)
cv.ridge = cv.glmnet(X, df1$COCAGE, alpha = 0)
plot(cv.ridge)</pre>
```


cv.ridge # cross-validated MSE: 1.555

```
##
## Call: cv.glmnet(x = X, y = df1$COCAGE, alpha = 0)
##
## Measure: Mean-Squared Error
##
       Lambda Index Measure
                                SE Nonzero
##
## min
          9.7
                 46
                      1.541 0.2749
                                         23
## 1se 639.8
                      1.555 0.3123
                                         23
                  1
```

Adding interaction terms to the model

```
reg_co_5 <- lm(data = df1, COCAGE ~ IRCIGAGE*DIFGETCOC + IRSEX)
summary(reg_co_5)

##
## Call:
## lm(formula = COCAGE ~ IRCIGAGE * DIFGETCOC + IRSEX, data = df1)
##
## Residuals:
## Min    1Q Median    3Q Max
## -1.6706 -0.3222    0.0000    0.6072    1.5411</pre>
```

```
##
## Coefficients:
##
                      Estimate Std. Error t value Pr(>|t|)
                                  11.0166
                                          0.363
                                                   0.7202
## (Intercept)
                        4.0000
## IRCIGAGE
                        1.0000
                                   1.2938
                                            0.773
                                                    0.4482
## DIFGETCOC2
                       7.0092
                                  11.1295
                                           0.630
                                                   0.5356
## DIFGETCOC3
                        9.9825
                                  11.1327
                                            0.897
                                                    0.3801
## DIFGETCOC4
                        5.3807
                                  11.6387
                                            0.462
                                                    0.6486
## DIFGETCOC5
                       13.2199
                                  11.2360
                                           1.177
                                                    0.2525
## IRSEXFemale
                       -0.6735
                                  0.3778 - 1.783
                                                    0.0891
## IRCIGAGE:DIFGETCOC2 -0.6761
                                   1.2996 -0.520
                                                    0.6083
                                   1.2992 -0.663
## IRCIGAGE:DIFGETCOC3
                      -0.8611
                                                    0.5147
## IRCIGAGE:DIFGETCOC4 -0.5576
                                   1.3197 -0.422
                                                    0.6770
## IRCIGAGE:DIFGETCOC5 -1.1369
                                   1.3068 -0.870
                                                    0.3941
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 0.9149 on 21 degrees of freedom
## Multiple R-squared: 0.6238, Adjusted R-squared: 0.4446
## F-statistic: 3.482 on 10 and 21 DF, p-value: 0.00769
# Adjusted R-squared: 0.4446
# p-value: 0.00769
reg_co_6 <- lm(data = df1, COCAGE ~ DIFGETCOC*IRCIGAGE + NEWRACE2 + IRSEX + RSKCOCMON + RSKCOCWK)
summary(reg_co_6)
##
## Call:
  lm(formula = COCAGE ~ DIFGETCOC * IRCIGAGE + NEWRACE2 + IRSEX +
##
      RSKCOCMON + RSKCOCWK, data = df1)
##
## Residuals:
               1Q Median
                               30
## -1.2478 -0.2135 0.0000 0.2737 1.0647
##
## Coefficients:
                       Estimate Std. Error t value Pr(>|t|)
                      11.905933 11.497359
                                             1.036 0.3226
## (Intercept)
## DIFGETCOC2
                       0.468186 11.202066
                                             0.042
                                                     0.9674
## DIFGETCOC3
                       2.304238 11.301114
                                             0.204
                                                     0.8422
## DIFGETCOC4
                      -7.886776 12.455839 -0.633
                                                     0.5396
## DIFGETCOC5
                       6.544602 11.243498
                                             0.582
                                                     0.5723
## IRCIGAGE
                                                     0.9262
                                 1.341927
                                             0.095
                       0.127250
## NEWRACE23
                       0.479285
                                0.639380
                                             0.750
                                                     0.4692
                                             2.796
## NEWRACE25
                       3.124347
                                 1.117285
                                                     0.0174 *
## NEWRACE26
                       0.009009
                                0.637668
                                             0.014
                                                     0.9890
## NEWRACE27
                                            0.562
                       0.318757 0.567679
                                                     0.5857
## IRSEXFemale
                      -0.574050 0.486892 -1.179
                                                     0.2633
## RSKCOCMON2
                      -1.512975 1.271836 -1.190
                                                     0.2592
## RSKCOCMON3
                      -1.089306
                                           -0.718
                                1.517365
                                                     0.4878
## RSKCOCMON4
                      -0.026129 1.466706 -0.018
                                                     0.9861
## RSKCOCWK2
                                             0.381
                       0.589041 1.546323
                                                     0.7105
## RSKCOCWK3
                       0.035582 1.726412
                                           0.021
                                                     0.9839
```

```
## RSKCOCWK4
                      -0.025054
                                 1.738935 -0.014
                                                    0.9888
## DIFGETCOC2: IRCIGAGE 0.113476 1.314495
                                            0.086
                                                    0.9328
## DIFGETCOC3:IRCIGAGE 0.054463 1.330172
                                            0.041
                                                    0.9681
## DIFGETCOC4:IRCIGAGE 0.711822
                                 1.374656
                                            0.518
                                                    0.6148
## DIFGETCOC5: IRCIGAGE -0.368079
                                 1.312840 -0.280
                                                    0.7844
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8069 on 11 degrees of freedom
## Multiple R-squared: 0.8467, Adjusted R-squared: 0.5679
## F-statistic: 3.037 on 20 and 11 DF, p-value: 0.03108
# Adjusted R-squared: 0.5679
# p-value: 0.03108
```

Cross-validation

```
# Full model:
glm_co2 <- glm(data = df1, COCAGE ~ DIFGETCOC + RSKYFQDGR + RSKYFQTES + IRALCAGE + IRCIGAGE + RSKCOCMON
glm_co2_cv <- cv.glm(data = df1, glm_co2)
glm_co2_cv$delta # Prediction MSE = 3.696113 3.613343

## [1] 3.696113 3.613343

# Model with the lowest cross-validated prediction MSE:
glm_co3 <- glm(data = df1, COCAGE ~ DIFGETCOC + IRCIGAGE)
glm_co_cv3 <- cv.glm(data = df1, glm_co3)
glm_co_cv3$delta # Prediction MSE = 1.246017 1.238274</pre>
```

[1] 1.246017 1.238274

General takeaway:

The model with the lowest cross-validated prediction MSE only included two predictor variables. However, this model has quite a low adjusted r-squared value. Therefore, I would recommend further evaluation of the data and the predictor variables with high GVIF values before recommending a model.

Question 2

Utilize classification methods to determine whether a respondent used cocaine for the first time before 18 years old (yes/no) can be effectively classified based on demographic variables, perceived risk of cocaine use, availability of cocaine, danger seeking, age of first alcohol use, and age of first cigarette use.

Data cleaning

```
df_20.21 |>
  select (DIFGETCOC, FUCOC18, RSKYFQDGR, RSKYFQTES, IRALCAGE, IRCIGAGE, COCEVER, COCAGE, RSKCOCMON, RSKCOCWK, NEWR
df1 <- subset(df1, !(COCAGE %in% c(991, 985, 994, 997, 998)))
df1 <- subset(df1, !(COCEVER %in% c(991))) # Exclude respondents who never used cocaine.
df1 <- subset(df1, !(DIFGETCOC %in% c(85, 94, 97, 98)))
df1 <- subset(df1, !(RSKYFQDGR %in% c(85, 94, 97, 98)))
df1 <- subset(df1, !(RSKYFQTES %in% c(85, 94, 97, 98)))
df1 <- subset(df1, !(IRALCAGE %in% c(991))) # Exclude respondents who never used alcohol.
df1 <- subset(df1, !(RSKCOCWK %in% c(85, 94, 97, 98)))
df1 <- subset(df1, !(RSKCOCMON %in% c(85, 94, 97, 98)))
df1 <- subset(df1, !(IRCIGAGE %in% c(991))) # Exclude respondents who never used cigarettes.
head(df1)
      DIFGETCOC FUCOC18 RSKYFQDGR RSKYFQTES IRALCAGE IRCIGAGE COCEVER COCAGE
##
## 2
                      2
                                3
                                                   16
## 16
              3
                      2
                                                   17
                                                                           25
                                1
                                          1
                                                            15
                                                                     1
                      2
## 20
              3
                                4
                                          3
                                                   16
                                                            29
                                                                     1
                                                                           18
              4
                      2
                                1
                                          1
                                                  14
                                                           14
                                                                     1
                                                                           19
## 28
## 29
              2
                      2
                                                  13
                                                           15
                                                                           18
                                                                     1
                      2
                                                  8
                                                                           21
## 34
              5
                                1
                                          1
                                                           15
                                                                     1
##
      RSKCOCMON RSKCOCWK NEWRACE2 IRSEX
## 2
                       4
              4
                                1
## 16
              4
                       4
                                1
                                      2
## 20
              3
                       4
                                1
## 28
             4
                      4
                                1
              2
## 29
                       4
                                1
                                      1
## 34
```

Convert categorical variables into factors

```
df1$COCEVER <- as.factor(df1$COCEVER)
df1$DIFGETCOC<- as.factor(df1$DIFGETCOC)
df1$RSKCOCMON <- as.factor(df1$RSKCOCMON)
df1$RSKCOCWK <- as.factor(df1$RSKCOCWK)
df1$RSKYFQDGR <- as.factor(df1$RSKYFQDGR)
df1$RSKYFQTES <- as.factor(df1$RSKYFQTES)
df1$IRSEX <- factor(df1$IRSEX, labels = c("Male", "Female"))
df1$NEWRACE2 <- factor(df1$NEWRACE2)
df1$FUCOC18 <- factor(df1$FUCOC18)</pre>
```

Plots/ exploratory data analysis

```
ggplot(df1, aes(x = COCAGE)) +
  geom_bar() +
  xlab("Age of First Cocaine Use") +
  ggtitle("Age of First Cocaine Use Distribution")
```

Age of First Cocaine Use Distribution


```
ggplot(df1, aes(x = FUCOC18)) +
geom_bar() +
xlab("First used Cocaine Before 18 Years Old") +
scale_x_discrete(labels=c("1" = "Yes", "2" = "No"))
```



```
ggplot(df1, aes(x = DIFGETCOC)) +
  geom_bar() +
  scale_x_discrete(labels=c("1" = "Probably Impossible", "2" = "Very Difficult", "3" = "Fairly Difficult"
  xlab("Difficulty Getting Cocaine") +
  ggtitle("Difficulty Getting Cocaine Distribution")
```

Difficulty Getting Cocaine Distribution


```
ggplot(df1, aes(x = RSKCOCMON)) +
  geom_bar() +
  scale_x_discrete(labels=c("1" = "No Risk", "2" = "Slight Risk", "3" = "Moderate Risk", "4" = "Great Ri
  xlab("Risk Using Cocaine Once a Month") +
  ggtitle("Risk Using Cocaine Once a Month Distribution")
```

Risk Using Cocaine Once a Month Distribution


```
ggplot(df1, aes(x = RSKCOCWK)) +
  geom_bar() +
  scale_x_discrete(labels=c("1" = "No Risk", "2" = "Slight Risk", "3" = "Moderate Risk", "4" = "Great Ri
  xlab("Risk Using Cocaine Once or Twice a Week") +
  ggtitle("Risk Using Cocaine Once or Twice a Week Distribution")
```



```
ggplot(df1, aes(x = RSKYFQDGR, y = COCAGE)) +
  geom_boxplot() +
  xlab("Get a real kick out of doing dangerous things") +
  ylab("Age First Cocaine Use") +
  scale_x_discrete(labels=c("1" = "Never", "2" = "Seldom", "3" = "Sometimes", "4" = "Always")) +
  ggtitle("Tendency for Dangerous Behavior and Age of First Cocaine Use")
```

Tendency for Dangerous Behavior and Age of First Cocaine Use


```
ggplot(df1, aes(x = RSKYFQTES, y = COCAGE)) +
  geom_boxplot() +
  xlab("Get a real kick out of doing risky things") +
  ylab("Age of First Cocaine Use") +
  scale_x_discrete(labels=c("1" = "Never", "2" = "Seldom", "3" = "Sometimes", "4" = "Always")) +
  ggtitle("Tendency for Risky Behavior and Age of First Cocaine Use")
```

Tendency for Risky Behavior and Age of First Cocaine Use


```
ggplot(df1, aes(x = IRALCAGE, y = as.factor(COCAGE), color = as.factor(IRSEX))) +
  geom_point(size = 2) +
  ggtitle("Age of First Alcohol Use vs. Age First Cocaine Use") +
  xlab("Age of First Alcohol Use") +
  ylab("Age of First Cocaine Use")
```



```
ggplot(df1, aes(x = IRCIGAGE, y = as.factor(COCAGE), color = as.factor(IRSEX))) +
  geom_point(size = 2) +
  ggtitle("Age of First Cigarette Use vs. Age First Cocaine Use") +
  xlab("Age of First Cigarette Use") +
  ylab("Age of First Cocaine Use")
```


Logistic regression

Full model

Predicting FUCOC18: First used cocaine before 18 years old. 1 = yes, 2 = no.

```
logreg <- glm(FUCOC18 ~</pre>
                        DIFGETCOC + RSKYFQDGR + RSKYFQTES + IRALCAGE + IRCIGAGE + RSKCOCMON + RSKCOCWK
summary(logreg)
##
## Call:
## glm(formula = FUCOC18 ~ DIFGETCOC + RSKYFQDGR + RSKYFQTES + IRALCAGE +
       IRCIGAGE + RSKCOCMON + RSKCOCWK + NEWRACE2 + IRSEX, family = binomial,
##
       data = df1)
##
## Coefficients:
##
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.289464
                          0.386181
                                    -8.518 < 2e-16 ***
## DIFGETCOC2
              -0.142517
                          0.140519
                                    -1.014 0.31048
## DIFGETCOC3
              -0.352274
                          0.135498
                                    -2.600 0.00933 **
## DIFGETCOC4
              -0.234533
                          0.135260
                                    -1.734 0.08293
              -0.378135
                                    -2.558
## DIFGETCOC5
                          0.147796
                                            0.01051 *
## RSKYFQDGR2
               0.099670
                          0.118968
                                     0.838
                                            0.40215
## RSKYFQDGR3 -0.126927
                          0.139946
                                    -0.907 0.36442
## RSKYFQDGR4 -0.373253
                          0.212885
                                    -1.753 0.07955
## RSKYFQTES2
                                    0.009
              0.001057
                           0.114458
                                            0.99263
```

```
## RSKYFQTES3 -0.091399
                         0.143492 -0.637 0.52415
## RSKYFQTES4 -0.608691
                         0.256123 -2.377 0.01747 *
## IRALCAGE
               0.138420 0.014115
                                  9.807 < 2e-16 ***
## IRCIGAGE
               0.181156
                         0.013345 13.574 < 2e-16 ***
## RSKCOCMON2 -0.172217
                         0.207011
                                  -0.832 0.40546
## RSKCOCMON3 -0.284822 0.222996 -1.277 0.20151
## RSKCOCMON4 -0.557617 0.232801 -2.395 0.01661 *
                                  1.407 0.15950
## RSKCOCWK2
              0.498379 0.354274
## RSKCOCWK3
               0.794486 0.363097
                                    2.188 0.02866 *
## RSKCOCWK4
             0.848723 0.371272
                                  2.286 0.02226 *
## NEWRACE22
             0.383105
                         0.214286
                                  1.788 0.07380
## NEWRACE23
                        0.285515 -1.182 0.23740
              -0.337340
## NEWRACE24
             -0.186630 0.738435
                                  -0.253 0.80047
## NEWRACE25
             -0.309381
                         0.312654
                                  -0.990 0.32240
## NEWRACE26
              -0.049339
                         0.167275 -0.295 0.76803
## NEWRACE27
              -0.579327
                         0.106765 -5.426 5.76e-08 ***
## IRSEXFemale -0.227410
                         0.074744 -3.043 0.00235 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 5383.6 on 5072 degrees of freedom
## Residual deviance: 4680.8 on 5047 degrees of freedom
## AIC: 4732.8
## Number of Fisher Scoring iterations: 5
# Reduced model (Removed RSKYFDGR, the variable with the least significant levels overall)
logreg2 <- glm(FUCOC18 ~ DIFGETCOC + RSKYFQTES + IRALCAGE + IRCIGAGE + RSKCOCMON + RSKCOCWK + NEWRACE2
summary(logreg2)
##
## glm(formula = FUCOC18 ~ DIFGETCOC + RSKYFQTES + IRALCAGE + IRCIGAGE +
      RSKCOCMON + RSKCOCWK + NEWRACE2 + IRSEX, family = binomial,
##
      data = df1
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.295490 0.383769 -8.587 < 2e-16 ***
## DIFGETCOC2 -0.144450
                         0.140308 -1.030 0.30323
## DIFGETCOC3 -0.358371
                         0.135211 -2.650 0.00804 **
## DIFGETCOC4 -0.245276
                         0.134762 -1.820 0.06875 .
## DIFGETCOC5 -0.401765
                         0.147272 -2.728 0.00637 **
## RSKYFQTES2
             0.007429
                         0.091783
                                  0.081 0.93549
## RSKYFQTES3
             -0.227770
                         0.104031 -2.189 0.02857 *
## RSKYFQTES4 -0.929852
                         0.197891 -4.699 2.62e-06 ***
## IRALCAGE
               0.139232
                         0.014078
                                  9.890 < 2e-16 ***
                         0.013324 13.591 < 2e-16 ***
## IRCIGAGE
              0.181087
## RSKCOCMON2 -0.155924
                         0.205966 -0.757 0.44903
## RSKCOCMON3 -0.264049
                         0.222158 -1.189 0.23461
## RSKCOCMON4 -0.543480
                         0.231984 -2.343 0.01914 *
```

1.374 0.16956

0.484703 0.352865

RSKCOCWK2

```
## RSKCOCWK3
            0.788379
                      0.362053 2.178 0.02944 *
## RSKCOCWK4 0.851700 0.370256 2.300 0.02143 *
## NEWRACE22
           0.383211 0.213620 1.794 0.07283
## NEWRACE23
           -0.317186 0.285133 -1.112 0.26596
                             -0.171 0.86437
## NEWRACE24
           -0.125825
                     0.736641
## NEWRACE25
           ## NEWRACE26 -0.058411
                      0.166966 -0.350 0.72646
## NEWRACE27 -0.585598
                      0.106671 -5.490 4.02e-08 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
     Null deviance: 5383.6 on 5072 degrees of freedom
## Residual deviance: 4688.5 on 5050 degrees of freedom
## AIC: 4734.5
##
## Number of Fisher Scoring iterations: 5
```

Histogram of the fitted values and the plots of the OLS results

```
# Full logistic regression model
ggplot(logreg$df1, aes(x = logreg$fitted.values)) +
  geom_histogram( bins = 100) +
  ggtitle("Full Logistic Regression Model")
```

Full Logistic Regression Model


```
# Reduced logistic regression model
ggplot(logreg2$df1, aes(x = logreg2$fitted.values)) +
  geom_histogram( bins = 100) +
  ggtitle("Reduced Logistic Regression Model")
```

Reduced Logistic Regression Model

Plots of logistic regression models

Full logistic regression model
plot(logreg)

(FUCOC18 ~ DIFGETCOC + RSKYFQDGR + RSKYFQTES + IRALCAGE + IRCIGAGE

(FUCOC18 ~ DIFGETCOC + RSKYFQDGR + RSKYFQTES + IRALCAGE + IRCIGAGE

(FUCOC18 ~ DIFGETCOC + RSKYFQDGR + RSKYFQTES + IRALCAGE + IRCIGAGE

Leverage (FUCOC18 ~ DIFGETCOC + RSKYFQDGR + RSKYFQTES + IRALCAGE + IRCIGAGE

Reduced logistic regression model
plot(logreg2)

FUCOC18 ~ DIFGETCOC + RSKYFQTES + IRALCAGE + IRCIGAGE + RSKCOCMON

FUCOC18 ~ DIFGETCOC + RSKYFQTES + IRALCAGE + IRCIGAGE + RSKCOCMON

FUCOC18 ~ DIFGETCOC + RSKYFQTES + IRALCAGE + IRCIGAGE + RSKCOCMON

FUCOC18 ~ DIFGETCOC + RSKYFQTES + IRALCAGE + IRCIGAGE + RSKCOCMON

Plots of both the full and reduced models show that there are outliers in the data. Since the points curve off at the extremities of the Q-Q plot, this would indicate the data has more extreme values than data coming from a perfectly normal distribution.

Deviance: the measure of "goodness of fit" used in general linear models

Note: The closer the p-value is to one, the closer the model corresponds to a "perfect" saturated model.

```
# Just the intercept term/ null deviance
pchisq(logreg$null.deviance, logreg$df.null, lower.tail = FALSE)

## [1] 0.001187091

# Full model
pchisq(logreg$deviance, logreg$df.residual, lower.tail = FALSE)

## [1] 0.9999042

# Reduced model
pchisq(logreg2$deviance, logreg2$df.residual, lower.tail = FALSE)
```

[1] 0.9998834

Both of the models are very close to 1, which suggests that they fit the data well. Specifically, the full model is a better fit according to the amount of deviance.

Predicting new values

Tune the model to select a threshold

```
df1 <- tidyr::drop_na(df1)
# Define the split between training and testing data
set.seed(1234)
training_pct <- .5</pre>
Z <- sample(nrow(df1), floor(training_pct*nrow(df1)))</pre>
log_train <- df1[Z, ]</pre>
log_test <- df1[-Z, ]</pre>
# Run the model on the training data
logreg <- glm(FUCOC18 ~ DIFGETCOC + RSKYFQTES + IRALCAGE + IRCIGAGE + RSKCOCMON + RSKCOCWK + NEWRACE2
summary(logreg)
##
## Call:
## glm(formula = FUCOC18 ~ DIFGETCOC + RSKYFQTES + IRALCAGE + IRCIGAGE +
      RSKCOCMON + RSKCOCWK + NEWRACE2 + IRSEX, family = "binomial",
##
      data = log_train)
##
## Coefficients:
             Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -3.429724  0.576343  -5.951  2.67e-09 ***
## DIFGETCOC2 -0.048536 0.202248 -0.240 0.81034
## DIFGETCOC3 -0.343506 0.190828 -1.800 0.07185
## DIFGETCOC4 -0.403279 0.189628 -2.127 0.03345 *
## DIFGETCOC5 -0.427156 0.211855 -2.016 0.04377 *
## RSKYFQTES2 -0.003562 0.128781 -0.028 0.97794
## RSKYFQTES3 -0.263333 0.148027 -1.779 0.07525
## RSKYFQTES4 -0.805029 0.299535 -2.688 0.00720 **
## IRALCAGE
            ## IRCIGAGE
            ## RSKCOCMON2 0.007186 0.274099 0.026 0.97909
## RSKCOCMON3 -0.146295 0.299351 -0.489 0.62505
## RSKCOCMON4 -0.437367 0.314575 -1.390 0.16442
## RSKCOCWK2
             0.417824 0.533985 0.782 0.43394
## RSKCOCWK3
            0.618447 0.549783 1.125 0.26063
## RSKCOCWK4 0.855958 0.561724 1.524 0.12756
## NEWRACE23 -0.259782 0.381433 -0.681 0.49583
## NEWRACE24 -0.209290 1.195018 -0.175 0.86097
## NEWRACE25 -0.282903 0.447623 -0.632 0.52738
## NEWRACE26
            0.375575
                       0.256003 1.467 0.14236
## NEWRACE27
             -0.471092
                       0.152918 -3.081 0.00207 **
## IRSEXFemale -0.079330 0.105267 -0.754 0.45109
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
```

```
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 2705.2 on 2535 degrees of freedom
## Residual deviance: 2360.6 on 2513 degrees of freedom
## AIC: 2406.6
##
## Number of Fisher Scoring iterations: 5
```

Predicting with the test data

```
# Get predictions on the test data
Prob <- predict(logreg, type = "response", newdata = log_test)

# Set up the possible thresholds
threshold <- seq(0, 1, .01)
length(threshold)</pre>
```

[1] 101

Test all the possible thresholds

```
TPR <- FPR <- err.rate <- rep(0, length(threshold))
for (i in seq_along(threshold)) {
    Yhat <- rep(NA_character_, nrow(log_test))
    Yhat <- ifelse(Prob >= threshold[[i]], "1", "2")

    err.rate[i] <- mean(Yhat != log_test$FUCOC18)

TPR[[i]] <- sum(Yhat == "1" & log_test$FUCOC18 == "1") /
    sum(log_test$FUCOC18 == "1")

FPR[[i]] <- sum(Yhat == "1" & log_test$FUCOC18 == "2") /
    sum(log_test$FUCOC18 == "2")
}

ggplot(tibble(threshold, err.rate),
    aes(threshold, err.rate)) +
    geom_point()</pre>
```



```
table(log_test$FUCOC18)
##
     1 2
##
## 560 1977
\# What is the minimum error rate of our model? 0.2207331
min(err.rate)
## [1] 0.2207331
# What is the best threshold?
which.min(err.rate)
## [1] 101
threshold[which.min(err.rate)]
## [1] 1
Yhat <- ifelse(Prob >= threshold[which.min(err.rate)], "1", "2")
table(Yhat, log_test$FUCOC18)
##
## Yhat 1
```

2 560 1977

Determine how well the logistic regression model performs

```
round(mean(log_test$FUCOC18 == Yhat), 3) # Correct classification rate
## [1] 0.779
Correct classification rate of 77.9%
```

LDA & QDA

LDA: The LDA discriminant function assumes equal variance for all classes

```
suppressMessages(library(tidyverse))
library(MASS)
library(ISLR2)
# Define the split between training and testing data
set.seed(1234)
training_pct <- .5</pre>
Z <- sample(nrow(df1), floor(training_pct*nrow(df1)))</pre>
lda_train <- df1[Z, ]</pre>
lda_test <- df1[-Z, ]</pre>
lda_out <- lda(FUCOC18 ~ DIFGETCOC + RSKYFQTES + IRALCAGE + IRCIGAGE + RSKCOCMON + RSKCOCWK + NEWRACE2
Predicted.Direction_lda <- predict(lda_out, data.frame(lda_test))$class</pre>
table(lda_test$FUCOC18, Predicted.Direction_lda)
##
      Predicted.Direction_lda
##
          1
##
         81 479
```

How well did the LDA model perform?

76 1901

Correct classification rate of 78.1%

##

```
round(mean(lda_test$FUCOC18 == Predicted.Direction_lda), 3) # Classification Rate
## [1] 0.781
```

QDA: The QDA discriminant function does not assume equal variance for all classes.

```
# Define the split between training and testing data
set.seed(1234)
training_pct <- .5
Z <- sample(nrow(df1), floor(training_pct*nrow(df1)))
qda_train <- df1[Z, ]
qda_test <- df1[-Z, ]

qda_out <- qda(FUCOC18 ~ DIFGETCOC + RSKYFQTES + IRALCAGE + IRCIGAGE + RSKCOCMON + RSKCOCWK + NEWRACE2
Predicted.Direction_qda <- predict(qda_out, data.frame(qda_test))$class
table(qda_test$FUCOC18, Predicted.Direction_qda)

## Predicted.Direction_qda
## Predicted.Direction_qda</pre>
```

2 205 1772

152 408

How well did the QDA model perform?

```
round(mean(qda_test$FUCOC18 == Predicted.Direction_qda), 3)
## [1] 0.758
```

Correct classification rate of 75.8%

General takeaway:

##

The model with the highest correct classification rate on the testing data was the LDA model. Therefore, I would recommend the following model for classifying whether an respondent used cocaine for the first time before age 18:

$$\label{eq:lda} \begin{split} & \operatorname{Ida}(\operatorname{FUCOC18} \sim \operatorname{DIFGETCOC} + \operatorname{RSKYFQTES} + \operatorname{IRALCAGE} + \operatorname{IRCIGAGE} + \operatorname{RSKCOCMON} + \operatorname{RSKCOCWK} + \operatorname{NEWRACE2} + \operatorname{IRSEX}) \end{split}$$