Performance of Empirical Models

Ravi Kothari, Ph.D. ravi kothari@ashoka.edu.in

"Correlation is not Causation.."

Model complexity

- Model complexity
- Prediction error

- Model complexity
- Prediction error
 - Average case

- Model complexity
- Prediction error
 - Average case
 - ► Boosting

- Model complexity
- Prediction error
 - Average case
 - ► Boosting
 - ▶ Minimum Description Length

- Model complexity
- Prediction error
 - Average case
 - Boosting
 - ► Minimum Description Length
 - ► Uniform convergence

- Model complexity
- Prediction error
 - Average case
 - Boosting
 - ▶ Minimum Description Length
 - Uniform convergence
 - ► Worst case

• Sampling without replacement methods e.g. k-fold cross validation

• Error estimate is the average of the k-error estimates

- Error estimate is the average of the k-error estimates
- When k = N, we get the leave-one-out estimate

- Error estimate is the average of the k-error estimates
- When k = N, we get the leave-one-out estimate
- Time consuming, unbiased estimate with large variance

• Sampling with replacement e.g. bootstrap

- Sampling with replacement e.g. bootstrap
- Probability that a pattern is chosen is $(1 (1 1/N)^N)$. For large N, this approaches $(1 e^{-1}) = 0.632$

- Sampling with replacement e.g. bootstrap
- Probability that a pattern is chosen is $(1 (1 1/N)^N)$. For large N, this approaches $(1 e^{-1}) = 0.632$
- ullet Patterns not chosen in the $i^{
 m th}$ bootstrap sample become part of the $i^{
 m th}$ test set

- Sampling with replacement e.g. bootstrap
- Probability that a pattern is chosen is $(1 (1 1/N)^N)$. For large N, this approaches $(1 e^{-1}) = 0.632$
- ullet Patterns not chosen in the $i^{
 m th}$ bootstrap sample become part of the $i^{
 m th}$ test set
- Induce the model using the i^{th} bootstrap sample. Get the error ϵ_i from the i^{th} test set. Repeat b times

- Sampling with replacement e.g. bootstrap
- Probability that a pattern is chosen is $(1 (1 1/N)^N)$. For large N, this approaches $(1 e^{-1}) = 0.632$
- ullet Patterns not chosen in the $i^{
 m th}$ bootstrap sample become part of the $i^{
 m th}$ test set
- Induce the model using the i^{th} bootstrap sample. Get the error ϵ_i from the i^{th} test set. Repeat b times

$$J_{\text{boot}} = \frac{1}{b} \sum_{i=1}^{b} (0.632\epsilon_i + 0.368J_{\text{total}})$$

Average Case Analysis – The Bias-Variance Decomposition

• $y = f(x) + \epsilon$. So, the y obtained corresponding to t repeated observations of x are $y(1), y(2), \dots, y(t)$

- $y = f(x) + \epsilon$. So, the y obtained corresponding to t repeated observations of x are $y(1), y(2), \dots, y(t)$
- What should the *optimal* estimator $\hat{f}^*(x;\theta)$ respond with?

- $y = f(x) + \epsilon$. So, the y obtained corresponding to t repeated observations of x are $y(1), y(2), \dots, y(t)$
- What should the *optimal* estimator $\hat{f}^*(x;\theta)$ respond with?

•

$$J = \left(\hat{f}^*(x;\theta) - y(1)\right)^2 + \left(\hat{f}^*(x;\theta) - y(2)\right)^2 + \dots + \left(\hat{f}^*(x;\theta) - y(t)\right)^2$$

- $y = f(x) + \epsilon$. So, the y obtained corresponding to t repeated observations of x are $y(1), y(2), \dots, y(t)$
- What should the optimal estimator $\hat{f}^*(x;\theta)$ respond with?

•

$$J = (\hat{f}^*(x;\theta) - y(1))^2 + (\hat{f}^*(x;\theta) - y(2))^2 + \dots + (\hat{f}^*(x;\theta) - y(t))^2$$

• Minimum of J is achieved when $\hat{f^*}(x;\theta)=(y(1),y(2),\ldots,y(t))/t$, i.e. E[y|x]

The Bias-Variance Decomposition

The Bias-Variance Decomposition

• Average case analysis of the prediction (generalization) error

The Bias-Variance Decomposition

Average case analysis of the prediction (generalization) error

•

$$E_{\mathcal{X}}\left[\left(\hat{f}(x;\mathcal{X}) - E[y|x]\right)^{2}\right]$$

$$= E_{\mathcal{X}}\left[\left(\left(\hat{f}(x;\mathcal{X}) - E_{\mathcal{X}}\left[\hat{f}(x;\mathcal{X})\right]\right) + \left(E_{\mathcal{X}}\left[\hat{f}(x;\mathcal{X})\right] - E[y|x]\right)\right)^{2}\right]$$

$$= \underbrace{\left(E_{\mathcal{X}}\left[\hat{f}(x;\mathcal{X})\right] - E[y|x]\right)^{2}}_{\text{Squared Bias}} + \underbrace{E_{\mathcal{X}}\left[\left(\hat{f}(x;\mathcal{X}) - E_{\mathcal{X}}\left[\hat{f}(x;\mathcal{X})\right]\right)^{2}\right]}_{\text{Variance}}$$

• The Bias term,

$$\underbrace{\left(E_{\mathcal{X}}\left[\hat{f}(x;\mathcal{X})\right] - E[y|x]\right)^{2}}_{\text{Squared Bias}}$$

• The Bias term,

$$\underbrace{\left(E_{\mathcal{X}}\left[\hat{f}(x;\mathcal{X})\right] - E[y|x]\right)^{2}}_{\text{Squared Bias}}$$

 Measures deviation of the averaged estimator output from the averaged system output

The Bias term,

$$\underbrace{\left(E_{\mathcal{X}}\left[\hat{f}(x;\mathcal{X})\right] - E[y|x]\right)^{2}}_{\text{Squared Bias}}$$

- Measures deviation of the averaged estimator output from the averaged system output
- Bias is 0 even when a particular estimator has a large error which is canceled out by an opposite error generated by another model

Variance

Variance

• The Variance term,

$$\underbrace{E_{\mathcal{X}}\left[\left(\hat{f}(x;\mathcal{X}) - E_{\mathcal{X}}\left[\hat{f}(x;\mathcal{X})\right]\right)^{2}\right]}_{\text{Variance}}$$

Variance

• The Variance term,

$$\underbrace{E_{\mathcal{X}}\left[\left(\hat{f}(x;\mathcal{X}) - E_{\mathcal{X}}\left[\hat{f}(x;\mathcal{X})\right]\right)^{2}\right]}_{\text{Variance}}$$

Measures the sensitivity of the estimator

Variance

The Variance term,

$$\underbrace{E_{\mathcal{X}}\left[\left(\hat{f}(x;\mathcal{X}) - E_{\mathcal{X}}\left[\hat{f}(x;\mathcal{X})\right]\right)^{2}\right]}_{\text{Variance}}$$

- Measures the sensitivity of the estimator
- It is independent of the underlying system f(x)

• Let the estimator be k-nearest neighbor

- Let the estimator be k-nearest neighbor
- When k = N, the output is simply the average of the training set output i.e. $(1/N) \sum_{i=1}^{N} y^{(i)}$
 - ► Estimate is likely to be unchanged from one training data set to another. Bias is high but variance is low

- Let the estimator be k-nearest neighbor
- When k = N, the output is simply the average of the training set output i.e. $(1/N) \sum_{i=1}^{N} y^{(i)}$
 - ► Estimate is likely to be unchanged from one training data set to another. Bias is high but variance is low
- If k = 1, the output follows local changes (as opposed to the population behavior)
 - ▶ Indeed, when $N \to \infty$ then Bias $\to 0$. Bias is low but variance will be high

- Let the estimator be k-nearest neighbor
- When k = N, the output is simply the average of the training set output i.e. $(1/N) \sum_{i=1}^{N} y^{(i)}$
 - ► Estimate is likely to be unchanged from one training data set to another. Bias is high but variance is low
- If k = 1, the output follows local changes (as opposed to the population behavior)
 - ▶ Indeed, when $N \to \infty$ then Bias $\to 0$. Bias is low but variance will be high
- ullet The best solution is usually some intermediate k

 Bias and Variance are complementary, i.e. reducing one (most often) increases the other

- Bias and Variance are complementary, i.e. reducing one (most often) increases the other
- The trick is to allow one to increase if the other decreases more than the increase

- Bias and Variance are complementary, i.e. reducing one (most often) increases the other
- The trick is to allow one to increase if the other decreases more than the increase
- Approaches like weight decay, pruning, growing, early stopping are based on the above premise (avoid overfitting, i.e. tolerate increased bias in the *hope* that variance reduces more)

- Bias and Variance are complementary, i.e. reducing one (most often) increases the other
- The trick is to allow one to increase if the other decreases more than the increase
- Approaches like weight decay, pruning, growing, early stopping are based on the above premise (avoid overfitting, i.e. tolerate increased bias in the *hope* that variance reduces more)
- Other approaches are based on aggregation (e.g. bagging bootstrap aggregating, boosting)

• AdaBoost for a two-class classification setting,

- AdaBoost for a two-class classification setting,
 - Create T models each trained with a different distribution on the training set,

$$F(x) = \operatorname{sign} \left(\sum_{t=1}^{T} \alpha_t \hat{f}_t(x; \theta_t) \right)$$

- AdaBoost for a two-class classification setting,
 - Create T models each trained with a different distribution on the training set,

$$F(x) = \operatorname{sign} \left(\sum_{t=1}^{T} \alpha_t \hat{f}_t(x; \theta_t) \right)$$

▶ Initially, weight $D_1^{(i)}$ on each pattern is 1/N

- AdaBoost for a two-class classification setting,
 - Create T models each trained with a different distribution on the training set,

$$F(x) = \operatorname{sign} \left(\sum_{t=1}^{T} \alpha_t \hat{f}_t(x; \theta_t) \right)$$

- ▶ Initially, weight $D_1^{(i)}$ on each pattern is 1/N
- ightharpoonup Train using the distribution D_t

• Get error rate ϵ_t as,

$$\epsilon_t = \frac{1}{N} \sum_{i=1}^{N} I\left[\hat{f}_i(x^{(i)}; \Theta) \neq y^{(i)}\right]$$

$$\alpha_t = \log\left(\frac{1 - \epsilon_t}{\epsilon_t}\right)$$

Reassign weightage on each pattern as,

$$D_{t+1}(i) = \frac{D_t}{Z_t} \times \left\{ \begin{array}{ll} e^{-\alpha_t} & \text{if } \hat{f}_i(x^{(i)}; \theta_i) = y^{(i)} \\ e^{\alpha_t} & \text{if } \hat{f}_i(x^{(i)}; \theta_i) \neq y^{(i)} \end{array} \right.$$

□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ○○○

$$\underbrace{L(D)}_{\text{Description Length}} = \underbrace{L(D|H)}_{\text{Perturbation}} + \underbrace{L(H)}_{\text{Complexity (Nominal Model)}}$$
(1)

$$\underbrace{L(D)}_{\text{Description Length}} = \underbrace{L(D|H)}_{\text{Perturbation}} + \underbrace{L(H)}_{\text{Complexity (Nominal Model)}}$$
(1)

• In ffnn, we could say the weights are $\mathcal{N}(0, \sigma_1)$ i.e. the model is $exp(-\parallel w\parallel^2)/(2\sigma_1^2)$

$$\underbrace{L(D)}_{\text{Description Length}} = \underbrace{L(D|H)}_{\text{Perturbation}} + \underbrace{L(H)}_{\text{Complexity (Nominal Model)}}$$
(1)

- In ffnn, we could say the weights are $\mathcal{N}(0, \sigma_1)$ i.e. the model is $exp(-\parallel w\parallel^2)/(2\sigma_1^2)$
- Say, perturbation based on the data is $\mathcal{N}(0, \sigma_2)$ i.e. $\exp(-\parallel \epsilon \parallel^2)/(2\sigma_2^2)$

$$\underbrace{L(D)}_{\text{Description Length}} = \underbrace{L(D|H)}_{\text{Perturbation}} + \underbrace{L(H)}_{\text{Complexity (Nominal Model)}}$$
(1)

- In ffnn, we could say the weights are $\mathcal{N}(0, \sigma_1)$ i.e. the model is $exp(-\parallel w\parallel^2)/(2\sigma_1^2)$
- Say, perturbation based on the data is $\mathcal{N}(0, \sigma_2)$ i.e. $exp(-\parallel\epsilon\parallel^2)/(2\sigma_2^2)$
- The total description length is,

$$L(D) = -\log(D|H) - \log(H)$$

= $\frac{1}{2\sigma_2^2} (y^{(i)} - \hat{f}(x^{(i)}; \theta))^2 + \frac{1}{2\sigma_1^2} \| w \|^2$

Worst Case Analysis – The VC Dimension

Empirical and True Risk

Empirical and True Risk

• Let $x \in \{-1, +1\}^n$. Then,

$$J_{\text{emp}}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \left(y^{(i)} - \hat{f}(x^{(i)}; \theta) \right)^{2}$$
$$J(\theta) = E \left[\left(y - \hat{f}(x; \mathcal{X}) \right)^{2} \right]$$

Empirical and True Risk

• Let $x \in \{-1, +1\}^n$. Then,

$$J_{\text{emp}}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \left(y^{(i)} - \hat{f}(x^{(i)}; \theta) \right)^{2}$$
$$J(\theta) = E \left[\left(y - \hat{f}(x; \mathcal{X}) \right)^{2} \right]$$

• $J(heta)\gg J_{
m emp}(heta).$ From the law of large numbers,

$$\Pr[|J(\theta) - J_{emp}(\theta)| > \epsilon] \to 0, \text{ as } N \to \infty$$

• However the stronger result also holds,

$$\Pr\left[\sup_{ heta} |J(heta) - J_{\mathrm{emp}}(heta)| > \epsilon\right] o 0, \ \ \mathrm{as} \ extit{N} o \infty$$

• However the stronger result also holds,

$$\Pr\left[\sup_{ heta} |J(heta) - J_{\mathrm{emp}}(heta)| > \epsilon
ight] o 0, \ \ \mathrm{as} \ extcolor{N} o \infty$$

 This is the uniform convergence of the empirical error rate to the true error rate

• However the stronger result also holds,

$$\Pr\left[\sup_{ heta} |J(heta) - J_{ ext{emp}}(heta)| > \epsilon
ight] o 0, \ ext{as } extit{N} o \infty$$

- This is the uniform convergence of the empirical error rate to the true error rate
- What is the rate of uniform convergence?

Rate of Uniform Convergence

Rate of Uniform Convergence

• However the stronger result also holds,

$$\mathsf{Pr}\left[\sup_{ heta} \lvert J(heta) - J_{\mathrm{emp}}(heta)
vert > \epsilon
ight] < 4 \; \Delta(2N) \; \mathrm{e}^{-rac{\epsilon^2 N}{8}}$$

Rate of Uniform Convergence

• However the stronger result also holds,

$$\mathsf{Pr}\left[\sup_{ heta} \lvert J(heta) - J_{\mathrm{emp}}(heta)
vert > \epsilon
ight] < 4 \; \Delta(2N) \; e^{-rac{\epsilon^2 N}{8}}$$

All realizations

Growth function

Rate of Uniform Convergence

• However the stronger result also holds,

$$\mathsf{Pr}\left[\sup_{ heta} \lvert J(heta) - J_{\mathrm{emp}}(heta)
vert > \epsilon
ight] < 4 \; \Delta(2N) \; \mathrm{e}^{-rac{\epsilon^2 N}{8}}$$

All realizations Growth function

 This is the uniform convergence of the empirical error rate to the true error rate

• $\Delta(2N)$ is identically equal to 2^N or bounded above by $\Delta(N) \leq N^{d_{vc}} + 1$ i.e. the machine can shatter upto d_{vc} points in a general position (realize all possible dichotomies)

• $\Delta(2N)$ is identically equal to 2^N or bounded above by $\Delta(N) \leq N^{d_{vc}} + 1$ i.e. the machine can shatter upto d_{vc} points in a general position (realize all possible dichotomies)

• $\Delta(2N)$ is identically equal to 2^N or bounded above by $\Delta(N) \leq N^{d_{vc}} + 1$ i.e. the machine can shatter upto d_{vc} points in a general position (realize all possible dichotomies)

ullet The estimator can generalize beyond $d_{
m vc}$ – the VC dimension

VC Dimension – Example

VC Dimension - Example

ullet $d_{
m vc}$ for a linear classifier in n dimensions is (n+1)

VC Dimension - Example

• $d_{\rm vc}$ for a linear classifier in n dimensions is (n+1)

VC Dimension - Example

• d_{vc} for a linear classifier in n dimensions is (n+1)

ullet The estimator can generalize beyond $d_{
m vc}$ – the VC dimension

Linear Classifier

Linear Classifier

$$\begin{array}{ll} \Pr\left[\sup_{\theta} \lvert J(\theta) - J_{\mathrm{emp}}(\theta) \rvert > \epsilon\right] & < & 4\; \Delta(2N)\; e^{-\frac{\epsilon^2 N}{8}} \\ \\ & < & 4\; \left[(2N)^{d_{\mathrm{vc}}} + 1\right]\; e^{-\frac{\epsilon^2 N}{8}} \\ \\ & < & 4\; \left[(2N)^{n+1} + 1\right]\; e^{-\frac{\epsilon^2 N}{8}} \end{array}$$

Linear Classifier

$$\begin{split} \Pr\left[\sup_{\theta} & |J(\theta) - J_{\text{emp}}(\theta)| > \epsilon \right] & < 4 \Delta(2N) \ e^{-\frac{\epsilon^2 N}{8}} \\ & < 4 \left[(2N)^{d_{\text{vc}}} + 1 \right] \ e^{-\frac{\epsilon^2 N}{8}} \\ & < 4 \left[(2N)^{n+1} + 1 \right] \ e^{-\frac{\epsilon^2 N}{8}} \end{split}$$

For right side to be small, approximately,

$$N > \frac{8n\log n}{\epsilon^2}$$

ullet Intervals in ${\cal R}$: 2

- Intervals in $\mathcal{R}:2$
- ullet Axis parallel rectangles in $\mathcal{R}^2:4$

- Intervals in \mathcal{R} : 2
- Axis parallel rectangles in \mathcal{R}^2 : 4
- ullet Circle in $\mathcal{R}^2:3$

- Intervals in \mathcal{R} : 2
- Axis parallel rectangles in \mathbb{R}^2 : 4
- ullet Circle in $\mathcal{R}^2:3$
- Triangle in \mathbb{R}^2 : 7

Conclusion

Conclusion

• Empirical models need to be carefully designed and used to realize their advantages

Conclusion

- Empirical models need to be carefully designed and used to realize their advantages
- B^2V , VC-Dimension or MDL are good points for designing/analyzing new algorithms