AGA KHAN UNIVERSITY EXAMINATION BOARD HIGHER SECONDARY SCHOOL CERTIFICATE

CLASS XI

MODEL EXAMINATION PAPER 2023 AND ONWARDS

Mathematics Paper I

Time: 1 hour 30 minutes Marks: 50

INSTRUCTIONS

- 1. Read each question carefully.
- My Leging & Legining Only Model hing a feathing only 2. Answer the questions on the separate answer sheet provided. DO NOT write your answers on the question paper.
- 3. There are 100 answer numbers on the answer sheet. Use answer numbers 1 to 50 only.
- 4. In each question there are four choices A, B, C, D. Choose ONE. On the answer grid black out the circle for your choice with a pencil as shown below.

Candidate's Signature

- 5. If you want to change your answer, ERASE the first answer completely with a rubber, before blacking out a new circle.
- 6. DO NOT write anything in the answer grid. The computer only records what is in the circles.
- 7. A formulae list is provided on page 2 and 3. You may refer to it during the paper, if you wish.
- 8. You may use a scientific calculator if you wish.

Aga Khan University Examination Board

List of Formulae for Mathematics XI

Note:

- All symbols used in the formulae have their usual meaning.
- The same formulae will be provided in the annual and re-sit examinations.

Complex Numbers

$$|z| = \sqrt{a^2 + b^2}$$

Matrices and Determinants

$$A_{ij} = (-1)^{i+j} M_{ij}$$

$$AdjA = (A_{ij})^t$$

$$A^{-1} = \frac{1}{|A|} A djA$$

Sequence & Series and Miscellaneous Series

$$a_n = a_1 + (n-1)d$$

$$A = \frac{a+b}{2}$$

$$S_n = \frac{n}{2} (2a_1 + (n-1)d)$$

$$a_n = a_1 r^{n-1}$$

$$G = \pm \sqrt{ab}$$

$$H = \frac{2ab}{a+b}$$

$$S_n = \frac{a_1(1-r^n)}{1-r}$$
, if $|r| < 1$

$$AdjA = (A_{ij})^{t}$$

$$A^{-1} = \frac{1}{|A|}AdjA$$
us Series
$$A = \frac{a+b}{2}$$

$$S_{n} = \frac{n}{2}(2a_{1} + (n-1)d)$$

$$G = \pm \sqrt{ab}$$

$$H = \frac{2ab}{a+b}$$

$$S_{n} = \frac{a_{1}(r^{n}-1)}{r-1}, \text{ if } |r| > 1$$

$$S_{\infty} = \frac{a_{1}}{1-r}, \text{ where } |r| < 1$$

$$\sum_{n=1}^{n} k^{2} - \frac{n(n+1)(2n+1)}{r^{2}}$$

$$\sum_{n=1}^{n} k^{3} - \left(\frac{n(n+1)}{r}\right)^{2}$$

$$S_{\infty} = \frac{a_1}{1-r}$$
, where $|r| < 1$

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} \qquad \sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2$$

$$\sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2$$

Permutations, Combinations and Probability

$$^{n}P_{r} = \frac{n!}{(n-r)!}$$

$${}^{n}C_{r} = \frac{n!}{(n-r)!r!}$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \qquad P(A \mid B) = \frac{P(A \cap B)}{P(B)} \qquad P(A \cap B) = P(A) \times P(B)$$

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

$$P(A \cap B) = P(A) \times P(B)$$

Binomial Theorem and Mathematical Induction

$$(a+x)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}x + \binom{n}{2}a^{n-2}x^2 + \binom{n}{3}a^{n-3}x^3 + \dots + \binom{n}{n-1}a^1x^{n-1} + x^n$$
$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \dots + \frac{n(n-1)(n-2)\dots(n-r+1)}{r!}x^r + \dots$$

$$T_{r+1} = \binom{n}{r} a^{n-r} x^r$$

Quadratic Equation

$$x^2 - Sx + P = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$D = b^2 - 4ac$$

Introduction to Trigonometry and Trigonometric Identities

$$l = r\theta$$

$$\sin^2 \theta + \cos^2 \theta = 1$$

$$1 + \tan^2 \theta = \sec^2 \theta$$

$$1 + \cot^2 \theta = \csc^2 \theta$$

$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta \qquad \tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} \qquad \tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$$

$$\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$$

$$\cos\frac{\theta}{2} = \pm\sqrt{\frac{1+\cos\theta}{2}}$$

$$\sin\frac{\theta}{2} = \pm\sqrt{\frac{1-\cos\theta}{2}}$$

$$\tan\frac{\theta}{2} = \pm\sqrt{\frac{1-\cos\theta}{1+\cos\theta}}$$

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$$

$$a^2 = b^2 + c^2 - 2bc\cos\alpha$$

$$\frac{a-b}{a+b} = \frac{\tan\frac{\alpha-\beta}{2}}{\tan\frac{\alpha+\beta}{2}}$$

$$\cos P - \cos Q = -2\sin\frac{P+Q}{2}\sin\frac{P-Q}{2}$$

$$\sin P - \sin Q = 2\cos\frac{P+Q}{2}\sin\frac{P-Q}{2}$$

$$\cos P + \cos Q = 2\cos\frac{P+Q}{2}\cos\frac{P-Q}{2}$$

$$\sin P + \sin Q = 2\sin \frac{P+Q}{2}\cos \frac{P-Q}{2}$$

$$\sin\frac{\alpha}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}}$$

$$\tan\frac{\alpha}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$$

$$\cos\frac{\alpha}{2} = \sqrt{\frac{s(s-a)}{bc}}$$

$$\Delta = \frac{1}{2}bc\sin\alpha = \frac{1}{2}ac\sin\beta = \frac{1}{2}ab\sin\gamma$$

$$\Delta = \sqrt{s(s-a)(s-b)(s-c)}$$

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta \qquad \tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} \qquad \tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$$

$$\cos \frac{\theta}{2} = \pm \sqrt{\frac{1 + \cos \theta}{2}} \qquad \sin \frac{\theta}{2} = \pm \sqrt{\frac{1 - \cos \theta}{2}} \qquad \tan \frac{\theta}{2} = \pm \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}}$$

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} \qquad a^2 = b^2 + c^2 - 2bc \cos \alpha \qquad \frac{a - b}{a + b} = \frac{\tan \frac{\alpha - \tan \beta}{1 + \tan \alpha \tan \beta}}{\tan \frac{\alpha + \beta}{2}}$$

$$\cos P - \cos Q = -2\sin \frac{P + Q}{2}\sin \frac{P - Q}{2} \qquad \sin P - \sin Q = 2\cos \frac{P + Q}{2}\sin \frac{P - Q}{2}$$

$$\cos P + \cos Q = 2\cos \frac{P + Q}{2}\cos \frac{P - Q}{2} \qquad \sin P + \sin Q = 2\sin \frac{P + Q}{2}\cos \frac{P - Q}{2}$$

$$\sin P + \sin Q = 2\sin \frac{P + Q}{2}\cos \frac{P - Q}{2}$$

$$\sin P + \sin Q = 2\sin \frac{P + Q}{2}\cos \frac{P - Q$$

$$R = \frac{a}{2\sin\alpha} = \frac{b}{2\sin\beta} = \frac{c}{2\sin\beta}$$

$$r_1 = \frac{\Delta}{s-a}$$
, $r_2 = \frac{\Delta}{s-b}$ and $r_3 = \frac{\Delta}{s-c}$

$$r = \frac{\Delta}{s}$$

$$R = \frac{abc}{4\Lambda}$$

Graphs of Trigonometric Functions, Inverse Trigonometric Functions and Solution of **Trigonometric Equations**

$$\sin^{-1} A \pm \sin^{-1} B = \sin^{-1} \left(A \sqrt{1 - B^2} \pm B \sqrt{1 - A^2} \right) \qquad \cos^{-1} A \pm \cos^{-1} B = \cos^{-1} \left(AB \mp \sqrt{1 - A^2} \right)$$

$$\cos^{-1} A \pm \cos^{-1} B = \cos^{-1} \left(AB \mp \sqrt{AB} \right)$$

$$\tan^{-1} A \pm \tan^{-1} B = \tan^{-1} \left(\frac{A \pm B}{1 \mp AB} \right)$$

Page 4 of 20

- The real part of the complex number $\frac{1}{i^2} + 5$ is equal to
 - A. -6
 - -4B.
 - C.
 - D. 6
- The complex conjugate of $(2-i^2)^2$ is 2.
 - A. -9
 - -6 B.
- On simplification of $\frac{5-4i-(4-3i)}{i}$, we get

 A. 1+iB. 1-iC. -1-iD. -1+iThe factorised form of the expression $x^4 + y^4$ is

 A. $(x^2 + iy^2)(x^2 + iy^2)$ 3. $(x^2 iy^2)^2 + 2ix^2y^2$ 2. $(x^2 iy^2)(x^2 + iy^2)$ 3. $(x^2 + iy^2)^2 = 2x^2$ 3. $(x^2 + iy^2)^2 = 2x^2$ 4. $(x^2 + iy^2)^2 = 2x^2$ 5. $(x^2 + iy^2)^2 = 2x^2$ 3.
- 4.
 - A. $(x^2 + iy^2)(x^2 + iy^2)$ B. $(x^2 iy^2)^2 + 2ix^2y^2$ C. $(x^2 iy^2)(x^2 + iy^2)$ D. $(x^2 + iy^2)^2 2ix^2y^2$
- The square matrix $[a_{ij}]_{3\times 3}$ will be an upper triangular matrix if it satisfies the condition 5.

(**Note**: *i* and *j* represents the row and column numbers respectively.)

- $a_{ij} = 0$ for all j < i.
- $a_{ij} = 1$ for all j < i. B.
- C. $a_{ij} = 0$ for all j > i.
- D. $a_{ij} = 1$ for all j > i.

Page 5 of 20

6. The product of the matrices
$$\begin{bmatrix} -i \\ i^2 \end{bmatrix}$$
 and $\begin{bmatrix} i \\ 1 \end{bmatrix}$ is

- A.

- D. not possible.

7. The determinant of the matrix
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 will be

- B. 0
- C. 1
- D.

7. The determinant of the matrix
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 will be

A. -1
B. 0
C. 1
D. 2

8. The determinant $\begin{vmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{vmatrix}$ can also be written in another form as

(**Note**: *k* is a constant.)

A.
$$\begin{vmatrix} m_{11} + k & m_{12} \\ m_{21} + k & m_{22} \end{vmatrix}$$
.

A.
$$\begin{vmatrix} m_{11} + k & m_{12} \\ m_{21} + k & m_{22} \end{vmatrix}$$
B.
$$\begin{vmatrix} m_{11} \times k m_{12} & m_{12} \\ m_{21} \times k m_{11} & m_{22} \end{vmatrix}$$

C.
$$\begin{vmatrix} m_{11} \div k \, m_{21} & m_{12} \\ m_{21} \div k \, m_{11} & m_{22} \end{vmatrix}$$

D.
$$\begin{vmatrix} m_{11} & m_{12} - k m_{11} \\ m_{21} & m_{22} - k m_{21} \end{vmatrix}$$

9. If
$$M = \begin{bmatrix} 0 & x & 3 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
 is a singular matrix, then the value of x will be

- A. -3
- -1B.
- C. 1
- D.

Page 6 of 20

- $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ The adjoint of the matrix $\begin{vmatrix} 1 & 1 & 1 \end{vmatrix}$ is

 - B. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.
- For the matrix $\begin{bmatrix} 2 & 2 & -7 \\ 1 & 1 & 3 \\ -x & y & z \end{bmatrix}$, the cofactor of the element -x will be

 A. -133. -12. 13. 131. 13
- If the determinant of the matrix $\begin{bmatrix} x & 0 & 1 \\ 1 & 4 & 1 \\ 0 & -2 & 2 \end{bmatrix}$ is 3, then the value of x will be

 - B. $-\frac{1}{10}$.

 - D. $\frac{1}{2}$.

Page 7 of 20

- If the n^{th} term of a sequence is $\left(-2\right)^{\frac{n}{2}}$, then $(2n)^{\text{th}}$ term of the sequence will be
 - A. $(-2)^n$.
 - B. $(-2)^{2n}$
 - C. $(-2)^{\frac{n}{4}}$
 - D. $(-2)^{4n}$
- The sum of the 5th and 6th terms of an arithmetic sequence is 20. If the common difference is 2, then the first term of the sequence will be
 - A. -2
 - -1B.
 - C.
 - D.
- $\operatorname{den} T_n \text{ of }$ If T_n of an arithmetic sequence is 2n-1, then T_n of the associated harmonic sequence will be

 - B. $\frac{2}{n}-1$
 - $C. \qquad \frac{1}{2n-1}$
 - D. $\frac{1}{2n} 1$
- The harmonic mean between the two terms, x and y is
 - A. $\frac{xy}{x+y}$.

 - $C. \qquad \frac{2xy}{x+y}$
 - D. $\frac{2xy}{x-y}$

Page 8 of 20

- The arithmetic mean between two numbers is c. If one number is a, then the other number will

 - B.
 - C. 2a-c.
 - 2c-a. D.
- The ratio of $3^{\rm rd}$ term to $5^{\rm th}$ term, i.e. a_3 : a_5 , of a geometric sequence is 1: 4. The common ratio ± 2 If the geometric mean between 3 and b is $\frac{9}{2}$, then the value of b will be

 A 6
 B. 9
 C. $\frac{27}{2}$ $\frac{27}{4}$ of the geometric sequence will be
- 19.
- The first term of an infinite geometric sequence is $-\frac{1}{2}$. If the common ratio is $-\frac{1}{2}$, then sum 20. of the infinite geometric series will be

 - B.
 - C.
- If $\left(\frac{p}{2}\right)! = 6$, then the value of p is equal to
 - A. 12!
 - B. 6!
 - C. 12
 - D. 6

Page 9 of 20

22. A man goes to a bakery where he finds *Samosas* (*S*), Vegetable rolls (*R*) and Potato Cutlets (*P*). They are served with *Chatni* (*C*) or *Ketchup* (*K*). The tree diagram which illustrates the given situation for all the possible combinations will be

- 23. 13 applicants applied for 4 positions in a firm. The job titles are manager, computer programmer, accountant and specialist. The possible ways of selection of the applicants are
 - A. 52
 - B. 715
 - C. 17,160
 - D. 28, 561
- 24. The number of ways a teacher can select 6 students from a class of 30 students to create a math's club is
 - A. 180
 - B. 593,775
 - C. 427,518,000
 - D. 729,000,000

- A bag contains 6 red, 5 yellow, 8 white, 6 black and 10 blue balls. A ball is drawn at random 25. without replacement from the bag. The process is repeated two times. What is the probability that both the balls drawn are blue?
 - $\frac{10}{35} \times \frac{9}{34}$.
 - B. $\frac{10}{35} \times \frac{9}{35}$.
 - $C. \qquad \frac{10}{35} \times \frac{10}{34} \,.$
 - D. $\frac{10}{35} \times \frac{10}{35}$.
- A fair coin is tossed three times. The probability of getting at least TWO heads is 26.
 - A

 - D.
- ing at least TWO 1 With reference to the principle of mathematical induction, the TRUE statement for m = 1 is 27.
 - A. $5+6(5^{m+1})$ is divisible by 3 B. $5+7(5^{m+1})$ is divisible by 3 C. $5+6(5^{m-1})$ is divisible by 5 D. $5+7(5^{m-1})$ is divisible by 5
- In the expansion of $\left(x^2 + \frac{1}{x}\right)^6$, the condition required to obtain the constant term will be 28.

(**Formula**: $T_{r+1} = {}^{n}C_{r}a^{n-r}b^{r}$, where symbols have their usual meanings.)

- A. 12 - r = r.
- 12 2r = r. B.
- C. 12 + r = -r.
- D. 12 + 2r = -r.

Page 11 of 20

- If $(1-x)^{-5} = 1 + 5x + bx^2 + ...$, then the value of b will be
 - -15A.
 - B. -10
 - C. 10
 - D. 15
- Which of the following conditions is valid for the convergence of $(1-x)^{\frac{1}{4}}$? 30.
 - |x| < 4A.
- The solution set of the quadratic equation $2x^2 + \frac{1}{2} = 0$ is

 A. $\{-i, i\}$.

 B. $\{0, \frac{i}{2}\}$.

 c. $\{\frac{i}{4}, -\frac{i}{4}\}$. $\{\frac{i}{2}, -\frac{i}{2}\}$.
- The nature of the roots of the equation $x^2 2bx + b^2 = 0$, where $b \in \mathbb{Z}$, is
 - real and equal. A.
 - real and unequal. В.
 - C. complex and equal.
 - complex and unequal. D.

Page 12 of 20

A polynomial P(x) of degree 4 is divided by x-3 and the remainder is -11 as shown in the 33. given synthetic division.

3	1	0	- 10	- 2	4
		3	9	- 3	- 15
	?	?	- 1	- 5	-11

The quotient of the given division of the polynomial will be

- A. -x-5
- $-x^2 5x$ B.
- $x^3 + 3x^2 x 5$ C.
- $x^4 + 3x^3 x^2 5x$ D.
- If α and β are the roots of the equation $ax^2 bx = 1$, then the value of $(\alpha \beta)^2 (\alpha + \beta)^2$ will be

 A. $-\frac{1}{a}$.

 B. $-4\left(\frac{1}{a}\right)$. 34.

 - C. $\frac{1}{a}$.
 - D. $4\left(\frac{1}{a}\right)$.
- If $x^2 y^2 = k^2$ and y = a, then the value of x, in terms k and a, will be 35.

 - A. $\pm (k^2 + a)$. B. $\pm (k^2 + a^2)$.
 - C. $\pm \sqrt{k^2 + a}$.
 - D. $\pm \sqrt{k^2 + a^2}$.
- For the equation $a^2x^2 + bx + 64 = 0$, the sum roots is equal to the product of the roots. The 36. value of b will be
 - A. -64
 - B. -8
 - C. 8
 - 64 D.

Page 13 of 20

- In degrees, 3π rad can be expressed as 37.
 - 0.16° A.
 - 9.42° B.
 - C. 180°
 - 540° D.
- The positive square root of $\left[4\left(1+\frac{1}{\tan^2\beta}\right)\right]$ will be equal to
 - $2\cot \beta$. A.
 - B. $2 \tan \beta$.
 - C. $2\sec \beta$.
 - D. $2\csc\beta$.
- The terminal ray of angle 2360° lies in the 39.
 - A. Ist quadrant.
 - B.
 - C.
 - IInd quadrant.
 IIIrd quadrant.
 IVth quadrant.
- $\frac{1-\sin^2\theta}{1+\tan^2\theta}$ equals to 40.
 - A. 1
 - $\cot^2 \theta$ B.
 - C. $\sec^4 \theta$
 - $\cos^4 \theta$ D.
- In the given triangle, the value of *x* will be

NOT TO SCALE

- 5 cm. A.
- B.
- $10\sqrt{3}$ cm. C.
- $5\sqrt{3}$ cm. D.

Page 14 of 20

42. The area of the given triangle ABC is equal to

NOT TO SCALE

- $50 \times \sin 30^{\circ}$ A.
- B. $100 \times \sin 30^{\circ}$
- $100 \times (\sin 75^{\circ})^2$ C.
- $200 \times (\sin 75^{\circ})^{2}$ D.
- The sides of a triangle ABC are 6 cm, 5 cm and 7 cm. If its area is $6\sqrt{6}$ cm² then the in-radius 43. Model Kind of the circle associated to the triangle ABC is calculated to be
 - $\frac{2\sqrt{6}}{3}$ cm.

 - $2\sqrt{6}$ cm. C.
 - $\frac{1}{2\sqrt{6}}$ cm. D.
- 44. In the given triangle ABC, if b = 10 cm, $\sin \alpha = 0.39$ and $\sin \beta = 0.99$, then a is approximately equal to

NOT TO SCALE

- A. 3.94 cm.
- 3.86 cm. B.
- C. 4.86 cm.
- D. 25.38 cm.

Page 15 of 20

In the given triangle, $\angle A$ is equal to

NOT TO SCALE

- 25.96° A.
- B. 30.96°
- C. 35.96°
- 40.96° D.
- cm. $2a^2$ cm.

 The range of $\frac{\sin \alpha}{\cos \alpha}$ is the set of all

 A. real numbers.

 3. real numbers excert

 1. real numbers

 2. real numbers If two sides of a right angled triangle are equal to a cm, then the measurement of the third side will be
- The period of $\cos ec \left(\frac{4\theta}{5} + 60^{\circ} \right)$ is

 - D. $\frac{8\pi}{5}$.

Page 1	6 of 20
49.	A trig
	(Note
	A.
	B.
	C.
	D.
50.	Whic
	A.
	B. C.
	D.

e: p is a constant.)

- 0
- π 2
- π
- also undefined
- Model Page 1 Earning Only Model Ping & Learning Only ch of the given functions is an even function?
 - $\cos^2\theta\sin\theta$.
 - $\sin \theta \tan \theta$.
 - $\cos\theta\tan\theta$.
 - $\sin\theta\cot^2\theta$.

Model Linds Teathing Outh

Model Find & Learning Only Model Finds & Learning Only

Model Faler 2023 ring Only

Mylkbale Sozining Only Modelhing Peaching Page 1 earning only