Universidad Tecnológica Nacional Facultad Regional Córdoba

Ingeniería Electrónica

CATEDRA

Titulo

SUBTITULO

DOCENTES XXXXXXXXXX XXXXXXXX.

XXXXXXXXXX XXXXXXXX...

COMISIÓN XRX

ALUMNOS XXXXX XXXXX, XXXXX XXXXX. XXXXX

XXXXX XXXXX, XXXXX XXXXX. XXXXX

Córdoba, 6 de noviembre de 2023

CONTENIDO

1.	Introduccion	3
2.	Marco teorico	3
3.	Primera Parte 3.1. Circuito	3 3 3 3 5
4.	Segunda Parte 4.1. Circuito	6 6 7 7 8 9
5.	5.1. Circuito	10 10 10 10
6.	6.1. Circuito	11 11 11 11 12
7.	7.1. Circuito	13 13 13 14 14
8.	8.1. Circuito 8.2. Procedimiento 8.3. Simulación	14 14 15 15

1. Introducción

2. Marco teorico

3. Primera Parte

3.1. Circuito

3.2. Procedimiento

- 1. Armar el circuito seleccionando un correcto valor de R en función del datasheet del DIAC.
- 2. Variar la tensión de alimentación (V1) desde 0V a 50V según la tabla que se observa aquí abajo.
- 3. Medir la corriente y caída de tensión en el DIAC.
- 4. Invertir los terminales del DIAC y repetir las variaciones y mediciones expresadas en el punto 1 y 2

3.3. Calculo de R

3.4. Simulación

Figura 1: Circuito simulado

3.5. Experimental

V_{CC}	$V_{A_1A_2}$	I
5	5	0
10	10	1 uA
15	15	1.5 uA
20	20	2 uA
22	22	2.2 uA
24	24	2.4 uA
26	26	2.6 uA
28	28	2.7 uA
30	30	3 uA
32	32	3.2 uA
33.4	23.2	10.5 mA
34	23.2	11.1 mA
35	23.0	12.3 mA
35.5	22.9	12.8 mA
36	22.8	13.5 mA
37	22.7	14.7 mA
38	22.6	15.8 mA
40	22.5	18.1 mA
42	22.2	20.7 mA
45	22	23.7 mA
50	22.1	29.1 mA
55	22.3	34.6 mA
60	22.5	40.2 mA
63	22.6	43.5 mA

V_{CC}	$V_{A_1A_2}$	I
-5	-5	-0
-10	-10	-1 uA
-15	-15	-1.5 uA
-20	-20	-2 uA
-22	-22	-2.2 uA
-24	-24	-2.4 uA
-26	-26	-2.6 uA
-28	-28	-2.7 uA
-30	-30	-3 uA
-32	-32	-3.2 uA
-33	-23	-10.36 mA
-34	-22.7	-11.53 mA
-36	-22.4	-13.72 mA
-38	-22.2	-16.07 mA
-40	-22.0	-18.16 mA
-42	-21.9	-20.60 mA
-45	-21.8	-24.10 mA
-50	-21.7	-29.50 mA
-55	-21.9	-34.40 mA
-60	-22.1	-39.70 mA
-63	-22.3	-43.70 mA

Fecha: 2023-11-06 Cátedra: XXXX (XRX)

4. Segunda Parte

4.1. Circuito

4.2. Procedimiento

1. Armar el circuito.

- 2. Colocar la VCC = 0V.
- 3. Cerrar el interruptor Sw.
- 4. Variar el potenciómetro de forma de relevar la tabla.
- 5. Graficar los valores obtenidos y comparar la curva con la de otro componente ya estudiado.
- 6. Abrir el interruptor Sw.
- 7. Colocar un voltímetro en paralelo a la resistencia de carga (RL) y otro en paralelo al Anodo-Catodo del SCR.
- 8. Variar la VCC desde 0V a 600V en pasos de 10V controlando permanentemente lo que sucede en los voltímetros.
- 9. Finalizado el ensayo, ¿noto un cambio de comportamiento en el circuito?, ¿En qué valor de tensión?.
- 10. Desconectando las alimentaciones de tensión, ¿puede analizar el valor ohmico de la resistencia de carga (RL)?, ¿Qué sucedió?.
- 11. Colocar la VG = 0V y cerrar el interruptor Sw.
- 12. Colocar VCC = 100V.
- 13. Subir lentamente el valor de VG hasta observar un cambio importante en la IAK (Disparo del SCR). Tomar nota del valor de VG e IG que produjo ese disparo del SCR.
- 14. Manteniendo el potenciómetro en la posición donde generó el disparo abrir el interruptor Sw y analizar que sucede con la IAK.
- 15. Manteniendo el interruptor Sw abierto bajar el valor de VCC en pasos de 10V anotando el valor de IAK para cada caso. Los últimos 10V antes de llegar a cero deben disminuirse en pasos de 1V.
- 16. Volver a subir paulatinamente la VCC hasta colocarla nuevamente en 100V analizando el comportamiento que tiene la IAK

4.3. Simulación

4.3.1. Comportamiento de la compuerta

Figura 2: Circuito simulado

4.3.2. Disparó por tensión

Figura 3: Circuito simulado

4.4. Experimental

Colacando $V_{CC} = 0V$

V_G	$I_G[mA]$
0.1	0.377
0.2	0.722
0.3	1.062
0.4	1.40
0.5	2.60
0.6	3.08
0.7	3.80
0.73	4.40
	•

Posteriormente, se colocó $V_{CC}=210V$ y se disparó el SRC tomando las mediciones pertinentes. Luego del disparó, se interumpió I_G y se procedió a disminuir V_{CC} progresivamente hasta apagar el dispositivo.

V_{CC}	$I_{AK}[mA]$
195	28
187	26
180	25.5
175	24.6
170	23.8
160	22.7
149	21
140	19
110	12.8
100	11.7
90	10.5
80	9.5

De esta manera, las mediciones tomadas en este último procedicimento resultan

Parametro	Modido	Datasheet			
1 arametro	iviedido	TYP.	MAX		
$\overline{V_{GT}}$					
I_{GT}					
V_T					
I_H					

5. Tercera Parte

5.1. Circuito

Para este terecera parte, se trabajo con el mismo circuito que en la parte anterior.

5.2. Procedimiento

- 1. Armar el circuito.
- 2. Completar los valores de la tabla 1 fijando el valor de IG y variando el valor de VCC hasta observar el disparo del SCR. Relevar el valor de VCC, IAK y VAK en el cual se produce el disparo para cada caso
- 3. Completar los valores de la tabla 2 fijando el valor de IG y variando el valor de VCC. Relevar IAK y VAK para cada caso. Es posible que deba alterar algunos valores de resistencia dependiendo del SCR utilizado.

5.3. Experimental

$I_G[mA]$	V_{CC}	I_{AK}	V_{AK}
4	14	5.70	0.69
4.5	2	5.20	0.66

$I_G \rightarrow$	4mA		3.	35	3.0	65	2	0	10	0
V_{CC}	V_{AK}	I_{AK}								
0			0	3.40	0	3.6				
1			0.60	3.50	0.6	3.62				
2			1	3.55	0.73	3.70				
3			1.60	3.57	1.09	3.90				
4			2.33	3.60	1.1	3.90				
5			2.46	3.72	1.33	4				
6			2.50	3.75	1.35	4.10				
7			2.81	3.9	1.25	4.12				
8			0.67	4.62	0.75	4.36				

6. Cuarta Parte

6.1. Circuito

6.2. Procedimiento

- 1. Armar el circuito.
- 2. Variar el potenciómetro de forma que VG quede a potencial de cero volts cuando conectemos la fuente de alimentación.
- 3. Colocar la tensión de alimentación alterna en 50 VCC
- 4. Aumentar lentamente la VG observando permanentemente la IG e IA. Determinar el momento donde el dispositivo se dispara.
- 5. Bajar el valor de VG a cero y observar lo que sucede con la IA.
- 6. En función de lo estudiado en el teórico apagar el SCR.
- 7. Subir ahora el valor de VCC a 100V y repetir los pasos 4, 5 y 6.
- 8. Subir ahora el valor de VCC a 150V y repetir los pasos 4, 5 y 6.
- 9. Completar la siguiente tabla de mediciones.

6.3. Simulación

Figura 4: Circuito simulado

6.4. Experimental

V_C	$V_{CC} = 50$			$V_{CC} = 100$			$V_{CC} = 150$		
V_1	I_G	I_A	V_1	I_G	I_A	V_1	I_G	I_K	
0									
1									
2 3									
3									
4									
5									
6									
7									
8									
9									
10									
11									
12									
13									
14									
15									

7. Quinta Parte

7.1. Circuito

7.2. Procedimiento

- 1. Armar el circuito.
- 2. Variar el potenciómetro de forma que VG quede a potencial de cero volts cuando conectemos la fuente de alimentación.
- 3. Colocar la tensión de alimentación alterna en 50 VCC
- 4. Aumentar lentamente la VG observando permanentemente la IG e IA. Determinar el momento donde el dispositivo se dispara.
- 5. Bajar el valor de VG a cero y observar lo que sucede con la IA.
- 6. En función de lo estudiado en el teórico apagar el TRIAC.
- 7. Subir ahora el valor de VCC a 100V y repetir los pasos 4, 5 y 6.
- 8. Subir ahora el valor de VCC a 150V y repetir los pasos 4, 5 y 6.
- 9. Completar la siguiente tabla de mediciones.

7.3. Simulación

7.4. Experimental

V_{C}	$c_C =$	50	$V_{CC} = 100$			$V_{CC} = 150$		
V_1	I_G	I_A	V_1	I_G	I_A	V_1	I_G	I_K
0								
1								
2								
3								
4								
1 2 3 4 5 6 7 8								
6								
7								
8								
9								
10								
11								
12								
13								
14								
15								

8. Sexta Parte

8.1. Circuito

8.2. Procedimiento

1. Armar el circuito y conectar el osciloscopio en paralelo al Triac.

- 2. Llevar el potenciómetro hacia el valor óhmico más alto.
- 3. Observar y graficar la forma de onda observada en el osciloscopio.
- 4. Variar el valor del potenciómetro mientras se observa la forma de onda en el osciloscopio. Graficar al menos 2 graficas adicionales a las del punto 3 en diferentes posiciones del potenciómetro.
- 5. Observar y medir con el osciloscopio el valor de la IH que produce el apagado del TRIAC al final de cada semiciclo.

8.3. Simulación

8.4. Experimental

Página 15 de 15