

Material Point Methods: A Hands-on Tutorial

Yuanming Hu

Overview

Moving Least Squares MPM

Constitutive models in MPM

Lagrangian

Material Point Methods: A Hands-on Tutorial GAMES 201 Lecture 8

Yuanming Hu

MIT CSAIL

July 27, 2020

Table of Contents

Material Point Methods: A Hands-on Tutorial

 $Yuanming\ Hu$

Overview

Moving Least Squares MPM

Constitutive models in MPM

Lagrangian

- Overview
- 2 Moving Least Squares MPM
- 3 Constitutive models in MPM
- 4 Lagrangian forces in MPM

A little bit of MPM theory (in graphics)

Material Point Methods: A Hands-on Tutorial

Yuanming Hu

Overview

Moving Least Squares MPM

Constitutive models in MPM

Lagrangian forces in MPN

Just like FEM, MPM belongs to the family of Galerkin methods. There are **no elements** in MPM, so MPM \in Element-free Galerkin (EFG).

- MPM particles correspond to FEM quadrature points, instead of elements.
 MPM typically uses one-point quadrature rule.
- MPM equations are derived using weak formulation.

Table of Contents

Material Point Methods: A Hands-on Tutorial

Yuanming Hu

Overview

Moving Least Squares MPM

Constitutive models in MPM

Lagrangian

Overview

2 Moving Least Squares MPM

Constitutive models in MPM

4 Lagrangian forces in MPM

Moving Least Squares MPM (MLS-MPM)

Material Point Methods: A Hands-on Tutorial

Yuanming Hu

Overviev

Moving Least Squares MPM

Constitutive models in MPM

Lagrangian forces in MPN

TL; DR: use MLS shape function in MPM.

- Originally proposed in SIGGRAPH 2018¹.
- Further improved in the SIGGRAPH Asia 2019 Taichi paper² to save memory bandwidth.
- Faster and easier to implement than classical B-spline MPM.
- Reason for simplicity and performance: MPM almost always uses the APIC transfer scheme, and MLS-MPM reuses APIC as much as possible.

¹Y. Hu et al. (2018). "A moving least squares material point method with displacement discontinuity and two-way rigid body coupling". In: *ACM Transactions on Graphics (TOG)* 37.4, pp. 1–14.

²Y. Hu et al. (2019). "Taichi: a language for high-performance computation on spatially sparse data structures". In: *ACM Transactions on Graphics (TOG)* 38.6, pp. 1–16.

Notations

Material Point Methods: A Hands-on Tutorial

Yuanming Hu

Overview

Moving Least Squares MPM

Constitutive models in MPM

Lagrangian forces in MPM

In this lecture,

- Scalars are non-bold. E.g., m_i and V_p^0 .
- Vectors/matrices are bold lower-/upper-case letters respectively. E.g., \mathbf{v}_p and \mathbf{C}_p .
- Subscript i for grid nodes; p for particles. E.g., \mathbf{v}_i and \mathbf{v}_p .
- Superscripts are for time steps, e.g. \mathbf{x}_p^n and \mathbf{x}_p^{n+1} .

Recap: Affine Particle-in-Cell³ for incompressible fluids

Material Point Methods: A Hands-on Tutorial

Yuanming Hu

Overview

Moving Least Squares MPM

Constitutive models in MPM

Lagrangian forces in MPN Particle to grid (P2G)

• $(m\mathbf{v})_i^{n+1} = \sum_p w_{ip}[m_p\mathbf{v}_p^n + m_p\mathbf{C}_p^n(\mathbf{x}_i - \mathbf{x}_p^n)]$ (Grid momentum)

• $m_i^{n+1} = \sum_p m_p w_{ip}$ (Grid mass)

@ Grid operations

• $\hat{\mathbf{v}}_i^{n+1} = (m\mathbf{v})_i^{n+1}/m_i^{n+1}$ (Grid velocity)

• Apply Chorin-style pressure projection: $\mathbf{v}^{n+1} = \mathbf{Project}(\hat{\mathbf{v}}^{n+1})$

3 Grid to particle (G2P)

• $\mathbf{v}_n^{n+1} = \sum_i w_{in} \mathbf{v}_i^{n+1}$ (Particle velocity)

• $\mathbf{C}_n^{n+1} = \frac{4}{\Delta x^2} \sum_i w_{ip} \mathbf{v}_i^{n+1} (\mathbf{x}_i - \mathbf{x}_n^n)^T$ (Particle velocity gradient)

• $\mathbf{x}_n^{n+1} = \mathbf{x}_n^n + \Delta t \mathbf{v}_n^{n+1}$ (Particle position)

³C. Jiang, C. Schroeder, and J. Teran (2017). "An angular momentum conserving affine-particle-in-cell method". In: *Journal of Computational Physics* 338, pp. 137–164.

(Explicit) Moving Least Squares MPM (MLS-MPM)

Material Point Methods: A Hands-on Tutorial

Yuanming Hu

Moving Least Squares MPM

- Particle to grid (P2G)
 - $\mathbf{F}_n^{n+1} = (\mathbf{I} + \Delta t \mathbf{C}_n^n) \mathbf{F}_n^n, \dots$ (Deformation update)
 - $(m\mathbf{v})_{i}^{n+1} = \sum_{n} w_{ip} \{ m_{p}\mathbf{v}_{p}^{n} + [m_{p}\mathbf{C}_{p}^{n} \frac{4\Delta t}{\Delta x^{2}} \sum_{n} V_{p}^{0}\mathbf{P}(\mathbf{F}_{p}^{n+1})(\mathbf{F}_{p}^{n+1})^{T}](\mathbf{x}_{i} \mathbf{x}_{p}^{n}) \}$ (Grid momentum)
 - $m_i^{n+1} = \sum_p m_p w_{ip}$ (Grid mass)
- @ Grid operations

 - $\hat{\mathbf{v}}_i^{n+1} = (m\mathbf{v})_i^{n+1}/m_i^{n+1}$ (Grid velocity)
 $\mathbf{v}_i^{n+1} = \mathsf{BC}(\hat{\mathbf{v}}_i^{n+1})$ (Grid boundary condition. BC is the boundary condition operator.)
- Grid to particle (G2P)
 - $\mathbf{v}_n^{n+1} = \sum_i w_{in} \mathbf{v}_i^{n+1}$ (Particle velocity)
 - $\mathbf{C}_{n}^{n+1} = \frac{4}{\Lambda x^{2}} \sum_{i} w_{ip} \mathbf{v}_{i}^{n+1} (\mathbf{x}_{i} \mathbf{x}_{n}^{n})^{T}$ (Particle velocity gradient)
 - $\mathbf{x}_n^{n+1} = \mathbf{x}_n^n + \Delta t \mathbf{v}_n^{n+1}$ (Particle position)

Note that in classical B-spline MPM, deformation update usually happens after G2P.

Deformation update

Material Point Methods: A Hands-on Tutorial

Yuanming Hu

Overvie

Moving Least Squares MPM

Constitutive models in MPN

Lagrangian forces in MPM

Deformation gradients evolve because $\nabla \mathbf{v} = \left. \frac{\partial \mathbf{v}^n}{\partial \mathbf{x}} \right|_{\mathbf{x} = \mathbf{x}^n} \neq \mathbf{0}$.

(Local velocity field is not constant, so the material keeps deforming.) Evaluating new deformation gradients:

$$\mathbf{F}_{p}^{n+1} = (\mathbf{I} + \Delta t \nabla \mathbf{v}) \, \mathbf{F}_{p}^{n}. \tag{1}$$

In MLS-MPM, APIC \mathbf{C}_p^n is used as an approximation of $\nabla \mathbf{v}$. Therefore in MLS-MPM we have

$$\mathbf{F}_p^{n+1} = (\mathbf{I} + \Delta t \mathbf{C}_p^n) \mathbf{F}_p^n. \tag{2}$$

P2G: Computing internal forces

Material Point Methods: A Hands-on Tutorial

Yuanming Hu

Moving Least

Squares MPM

momentum).

Recall that

Two momentum terms:

• APIC: $w_{ip}[m_p\mathbf{v}_p^n + m_p\mathbf{C}_p^n(\mathbf{x}_i - \mathbf{x}_p^n)]$

• Particle elastic force (impulse):

 $\Delta t \mathbf{f}_{ip} = -w_{ip} \frac{4\Delta t}{\Delta r^2} \sum_{n} V_{n}^0 \mathbf{P}(\mathbf{F}_{n}^{n+1}) (\mathbf{F}_{n}^{n+1})^T] (\mathbf{x}_i - \mathbf{x}_n^n)$

Assuming hyperelastic materials. Deriving f_i using potential energy gradients:

$$U = \sum_{p} V_{p}^{0} \psi_{p}(\mathbf{F}_{p})$$

 $(m\mathbf{v})_{i}^{n} = \sum_{n} w_{ip} \{ m_{p}\mathbf{v}_{p}^{n} + [m_{p}\mathbf{C}_{p}^{n} - \frac{4\Delta t}{\Delta x^{2}} \sum_{n} V_{p}^{0}\mathbf{P}(\mathbf{F}_{p}^{n+1})(\mathbf{F}_{p}^{n+1})^{T}](\mathbf{x}_{i} - \mathbf{x}_{p}^{n}) \}$ (Grid

$$\mathbf{f}_i$$

$${\bf f}_i ~=~ -\frac{\partial\,U}{\partial{\bf x}_i}$$
 ψ_p : elastic energy density of particle $p;~U$: total elastic potential energy.

 V_n^0 : particle initial volume.

10 / 26

P2G: Computing nodal force f_i

Material Point Methods: A Hands-on Tutorial

Yuanming Hu

Moving Least Squares MPM

Assume we move forward $\tau \to 0$, and then compute deformed grid node location $\hat{\mathbf{x}}_i = \mathbf{x}_i + \tau \mathbf{v}_i$, $\mathbf{C}_n = \frac{4}{\Delta r^2} \sum_i w_{in} \mathbf{v}_i (\mathbf{x}_i - \mathbf{x}_n)^T$, updated $\mathbf{F}_n' = (\mathbf{I} + \tau \mathbf{C}_n) \mathbf{F}_n$:

$$\mathbf{f}_{i} = -\frac{\partial U}{\partial \mathbf{x}_{i}} = -\sum_{i} V_{p}^{0} \frac{\partial \psi(\mathbf{F}_{p}^{\prime})}{\partial \hat{\mathbf{x}}_{i}}$$
(5)

$$= -\sum \frac{V_p^0}{\tau} \frac{\partial \psi_p(\mathbf{F}_p')}{\partial \mathbf{V}_i} \tag{6}$$

$$= -\sum_{p} \frac{V_{p}^{0}}{\tau} \frac{\partial \psi(\mathbf{F}_{p}^{\prime})}{\partial \mathbf{F}_{p}^{\prime}} \frac{\partial \mathbf{F}_{p}^{\prime}}{\partial \mathbf{C}_{p}} \frac{\partial \mathbf{C}_{p}}{\partial \mathbf{v}_{i}^{n}}$$

$$= -\sum_{p} \frac{v_{p}^{0}}{\tau} \frac{\nabla V_{p}^{0}}{\partial \mathbf{F}_{p}^{\prime}} \frac{\partial v_{p}^{0}}{\partial \mathbf{C}_{p}} \frac{\partial v_{p}^{0}}{\partial \mathbf{v}_{i}^{n}}$$

$$= -\sum_{p} \frac{V_{p}^{0}}{\tau} \mathbf{P}_{p}(\mathbf{F}_{p}^{\prime}) \cdot \tau \mathbf{F}_{p}^{T} \cdot \frac{4w_{ip}}{\Delta x^{2}} (\mathbf{x}_{i} - \mathbf{x}_{p})$$
(8)

$$= -\frac{4}{\Delta x^2} \sum V_p^0 \mathbf{P}(\mathbf{F}_p') \cdot \mathbf{F}_p^T w_{ip}(\mathbf{x}_i - \mathbf{x}_p)$$

(9)

11/26

Grid operations: enforcing boundary conditions (BC)

Material Point Methods: A Hands-on Tutorial

Yuanming Hu

Overvie

Moving Least Squares MPM

Constitutive models in MPN

Lagrangian forces in MPN

BC in MPM should be applied on the grid. For all grid nodes i within the boundary:

$$\mathbf{v}_{i}^{n+1} = \mathsf{BC}_{\mathsf{sticky}}(\hat{\mathbf{v}}_{i}^{n+1}) = \mathbf{0}$$
(10)

$$\mathbf{v}_{i}^{n+1} = \mathsf{BC}_{\mathsf{slip}}(\hat{\mathbf{v}}_{i}^{n+1}) = \hat{\mathbf{v}}_{i}^{n+1} - \mathbf{n}(\mathbf{n}^{T}\hat{\mathbf{v}}_{i}^{n+1})$$
(11)

$$\mathbf{v}_{i}^{n+1} = \mathsf{BC}_{\mathsf{separate}}(\hat{\mathbf{v}}_{i}^{n+1}) = \hat{\mathbf{v}}_{i}^{n+1} - \mathbf{n} \cdot \min(\mathbf{n}^{T}\hat{\mathbf{v}}_{i}^{n+1}, 0)$$
(12)

(n: surface normal)
Extras:

- **1** Adding gravity $\hat{\mathbf{v}}_i^{n+1} + = \Delta t \mathbf{g}$
- 2 Moving collision object
- 3 Coulomb Friction

Summary: benefits of MLS-MPM

Material Point Methods: A Hands-on Tutorial

Yuanming Hu

Overvie

Moving Least Squares MPM

Constitutive models in MPM

Lagrangian forces in MPI

Why is MLS-MPM (SIGGRAPH 2018) easier and faster than classical B-spline MPM (SIGGRAPH 2013)?

- ① Directly reuse APIC C_p as an approximation of ∇v for deformation gradient update. No need to evaluate ∇w_{ip} (Fewer FLOPs)
- 2 Easy to move deformation update from G2P to P2G, because we only need C_p for deformation update. (Fewer bytes to fetch from main memory)
- 3 In P2G, APIC and MLS-MPM momentum contribution can be fused, since they are both "MLS". (Fewer FLOPs)

MLS-MPM is consistent with the weak formulation of the Cauchy momentum equation. See the original MLS-MPM paper⁴ for a correctness proof.

⁴Y. Hu et al. (2018). "A moving least squares material point method with displacement discontinuity and two-way rigid body coupling". In: *ACM Transactions on Graphics (TOG)* 37.4, pp. 1–14.

Table of Contents

Material Point Methods: A Hands-on Tutorial

Yuanming Hu

Overview

Moving Least Squares MPM

Constitutive models in MPM

Lagrangian

Overview

Moving Least Squares MPM

3 Constitutive models in MPM

4 Lagrangian forces in MPM

Constitutive Models

Material Point Methods: A Hands-on Tutorial

Yuanming Hu

Overvier

Moving Least Squares MPM

Constitutive models in MPM

Lagrangian forces in MPM

Common constitutive models in MPM:

- 1 Elastic objects: NeoHookean & Corotated
- Pluid: Equation-of-States (EOS)
- 3 Elastoplastic objects (snow, sand etc.): Yield criteria: ad-hoc boxing⁵, Cam-clay⁶, Drucker-prager⁷, NACC, ...

Two critical aspects of a constitutive model in MPM:

- (Elastic/plastic) deformation update
- (PK1) stress evaluation

⁵A. Stomakhin et al. (2013). "A material point method for snow simulation". In: *ACM Transactions on Graphics (TOG)* 32.4, pp. 1–10.

⁶J. Gaume et al. (2018). "Dynamic anticrack propagation in snow". In: *Nature communications* 9.1, pp. 1–10.

⁷G. Klár et al. (2016). "Drucker-prager elastoplasticity for sand animation". In: *ACM Transactions on Graphics (TOG)* 35.4, pp. 1–12.

Constitutive models for elastic solids

Material Point Methods: A Hands-on Tutorial

Yuanming Hu

Overview

Moving Least Squares MPM

Constitutive models in MPM

Lagrangian forces in MPN Deformation update: simply $\mathbf{F}_p^{n+1} = (\mathbf{I} + \Delta t \mathbf{C}_p^n) \mathbf{F}_p^n$.

PK1 stresses of hyperelastic material models:

- Neo-Hookean:
 - $\psi(\mathbf{F}) = \frac{\mu}{2} \sum_{i} [(\mathbf{F}^T \mathbf{F})_{ii} 1] \mu \log(J) + \frac{\lambda}{2} \log^2(J)$.
 - $\mathbf{P}(\mathbf{F}) = \frac{\delta \psi}{\partial \mathbf{F}} = \mu(\mathbf{F} \mathbf{F}^{-T}) + \lambda \log(J) \mathbf{F}^{-T}$
- (Fixed) Corotated:
 - $\psi(\mathbf{F}) = \mu \sum_{i} (\sigma_i 1)^2 + \frac{\lambda}{2} (J 1)^2$. σ_i are singular values of \mathbf{F} .
 - $\mathbf{P}(\mathbf{F}) = \frac{\partial \psi}{\partial \mathbf{F}} = 2\mu(\mathbf{F} \mathbf{R}) + \lambda(J 1)J\mathbf{F}^{-T}$

Cauchy stress $\sigma = \frac{1}{J} \mathbf{P} \mathbf{F}^T$ is usually unused in MPM.

More details: check out the SIGGRAPH 2016 MPM course8.

⁸C. Jiang et al. (2016). "The material point method for simulating continuum materials". In: *ACM SIGGRAPH 2016 Courses*, pp. 1–52.

Constitutive models weakly compressible fluids⁹

Material Point Methods: A Hands-on Tutorial

Yuanming Hu

Constitutive models in MPM

Volume ratio $J_p = V_p^n/V_p^0 = \det(\mathbf{F}_p^n)$.

The simplest equation of state: p = K(1 - J), Cauchy stress $\sigma = -p\mathbf{I}$. K: bulk modulus.

Computing $det(\mathbf{F}_{n}^{n})$ can be numerically unstable.

Recall that for $\mathbf{F}_{2\times 2}$, $\det(\mathbf{F}) = \mathbf{F}_{00}\mathbf{F}_{11} - \mathbf{F}_{01}\mathbf{F}_{10}$. The "-" opeartion leads to catastrophic cancellation. Same for $\mathbf{F}_{3\times3}$ (Question: why doesn't this happen to NeoHookean/corotated materials?)

Deformation update: instead of maintaining \mathbf{F}_p , directly maintain $J_n^n = \det(\mathbf{F}_n^n)$:

$$\mathbf{F}_{n}^{n+1} = (\mathbf{I} + \Delta t \mathbf{C}_{n}^{n}) \mathbf{F}_{n}^{n}$$
(13)

$$\Rightarrow \det(\mathbf{F}_p^{n+1}) = \det(\mathbf{I} + \Delta t \mathbf{C}_p) \det(\mathbf{F}_p^n)$$
 (14)

$$\Rightarrow J_n^{n+1} = (1 + \Delta t \mathbf{tr}(\mathbf{C}_n^n)) J_n^n \tag{15}$$

⁹A. P. Tampubolon et al. (2017). "Multi-species simulation of porous sand and water mixtures". In: ACM Transactions on Graphics (TOG) 36.4, pp. 1–11.

Simulating weakly compressible fluids (lazy solution)

Material Point Methods: A Hands-on Tutorial

Yuanming Hu

Overviev

Moving Least Squares MPM

Constitutive models in MPM

Lagrangian forces in MPN

Setting μ to zero in (Fixed) corotated model. (Recap) In corotated materials:

- $\psi(\mathbf{F}) = \mu \sum_i (\sigma_i 1)^2 + \frac{\lambda}{2} (J 1)^2$. σ_i are singular values of \mathbf{F} .
- $\mathbf{P}(\mathbf{F}) = \frac{\partial \psi}{\partial \mathbf{F}} = 2\mu(\mathbf{F} \mathbf{R}) + \lambda(J 1)J\mathbf{F}^{-T}$

Recap: Singular value decomposition (SVD)

Material Point Methods: A Hands-on Tutorial

Yuanming Hu

Overvier

Moving Least

Constitutive models in MPM

Lagrangian forces in MPN

Theorem

(Existence of singular value decompositions) Every real matrix $\mathbf{M}_{n\times m}$ can be decomposed into $\mathbf{M}_{n\times m} = \mathbf{U}_{n\times n} \mathbf{\Sigma}_{n\times m} \mathbf{V}_{m\times m}^T$, where \mathbf{U} and \mathbf{V} are orthonormal matrices, and $\mathbf{\Sigma}$ is a diagonal matrix.

Diagonal entries $\sigma_i = \Sigma_{ii}$ are called **singular values**.

To learn more about linear algebra: check out Gilbert Strang's MIT OCW.

SVD: Intuition

Material Point Methods: A Hands-on Tutorial

Yuanming Hu

Constitutive models in MPM

$$M = U \cdot \Sigma \cdot V^*$$

(Source: Wikipedia)

2×2 and 3×3 SVD¹⁰ in Taichi

Material Point Methods: A Hands-on Tutorial

Yuanming Hu

Overvie

Moving Least Squares MPM

Constitutive models in MPM

Lagrangian forces in MPN

Note that SVD is not unique. We additionally require

- $\det(\mathbf{U}) = \det(\mathbf{V}) = 1$.
- $|\Sigma_{ii}|$ are sorted in decreasing order.
- Only the singular value with smallest magnitude can be negative.

Example

U, sig, V = ti.svd(M) # sig is an NxN diagonal matrix.

¹⁰A. McAdams et al. (2011). Computing the singular value decomposition of 3x3 matrices with minimal branching and elementary floating point operations. Tech. rep. University of Wisconsin-Madison Department of Computer Sciences.

Simulating elastoplastic solids

Material Point Methods: A Hands-on Tutorial

Yuanming Hu

Overvie

Moving Least Squares MPM

Constitutive models in MPM

Lagrangian forces in MPM

In hyperelastic settings:

$$\mathbf{F}_p = \mathbf{F}_{p, \mathrm{elastic}} \mathbf{F}_{p, \mathrm{plastic}}, \mathbf{\psi}_p^n = \mathbf{\psi}(\mathbf{F}_{p, \mathrm{elastic}}),$$

i.e., the potential energy penalizes elastic deformation only.

Example

"Box" yield criterion¹¹: deformation udpate:

- 1 Evolve $\hat{\mathbf{F}}_p^{n+1} = (\mathbf{I} + \Delta t \mathbf{C}_p^n) \mathbf{F}_{p, \text{elastic}}^n$
- 2 SVD: $\hat{\mathbf{F}}_n^{n+1} = \mathbf{U}\hat{\mathbf{\Sigma}}\mathbf{V}^T$
- 3 Clamping: $\Sigma_{ii} = \max(\min(\hat{\Sigma}_{ii}, 1 + \theta_s), 1 \theta_c)$ (forget about too large deformations)
- 4 Reconstruct: $\mathbf{F}_{p,\mathbf{elastic}}^{n+1} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$; move clamped parts to $\mathbf{F}_{p,\mathbf{plastic}}^{n+1}$

¹¹A. Stomakhin et al. (2013). "A material point method for snow simulation". In: ACM Transactions on Graphics (TOG) 32.4, pp. 1–10.

Table of Contents

Material Point Methods: A Hands-on Tutorial

Yuanming Hu

Overviev

Moving Least Squares MPM

Constitutive models in MPM

Lagrangian forces in MPM

- Overview
- 2 Moving Least Squares MPM
- 3 Constitutive models in MPM
- 4 Lagrangian forces in MPM

Lagrangian forces in MPM¹²

Material Point Methods: A Hands-on Tutorial

Yuanming Hu

Overviev

Moving Least Squares MPM

Constitutive models in MPN

Lagrangian forces in MPM TL; DR: Treat MPM particles as FEM vertices, and use FEM potential energy model. A triangular mesh is needed.

Benefits:

- (Compared to FEM): Self-collision is handled on the grid;
- (Compared to MPM): Numerical fracture is avoided due to the mesh connectivity.
- Can easily couple MPM and FEM.

Easy to implement in Taichi using AutoDiff: ti example mpm_lagrangian_forces

¹²C. Jiang et al. (2015). "The affine particle-in-cell method". In: *ACM Transactions on Graphics (TOG)* 34.4, pp. 1–10.

Introducing Taichi "field"

Material Point Methods: A Hands-on Tutorial

Yuanming Hu

Overview

Moving Least Squares MPM

Constitutive models in MPM

Lagrangian forces in MPM

Upgrading Taichi: pip install --upgrade taichi==0.6.22

Use "**field**" instead of "tensor" since Taichi vo.6.22

- The name "tensor" is deprecated. Always use "field" instead.
- ti.var is deprecated. Use ti.field instead.
- Argument at is deprecated. Use atype instead.

Declaring fields in Taichi

```
# particle_x = ti.Vector(3, dt=ti.f32, shape=1024)
particle_x = ti.Vector.field(3, dtype=ti.f32, shape=1024)
particle_F = ti.Matrix.field(3, 3, dtype=ti.f32, shape=1024)
# density = ti.var(dtype=ti.f32, shape=(256, 256))
density = ti.field(dtype=ti.f32, shape=(256, 256))
num_springs = ti.field(dtype=ti.i32, shape=())
```


Fields := global variables in Taichi

Material Point Methods: A Hands-on Tutorial

Yuanming Hu

Overview

Moving Least Squares MPM

Constitutive models in MPN

Lagrangian forces in MPM

Distinguishing global fields from local variables

Global variables are always declared with "field". Local variables are always declared without "field":

```
x = ti.Vector.field(3, dtype=ti.f32, shape=(128, 512)) # global
@ti.kernel
def foo():
    a = ti.Vector([0.2, 0.4]) # local
```

The word "field" refers to ...

- 1 a component of a (database) record. For example, mass and volume properties of a particle array.
- 2 a (physical) quantity that is assigned to every point in space. E.g., "velocity fields", and "magnetic fields". High-dimensional arrays of scalars/vectors/matrices are exactly "fields" sampled at discrete grid points.