CS 65500 Advanced Cryptography

Lecture 1: Basics of Indistinguishability

Instructor: Aarushi Goel

Spring 2025

Agenda

- → Independence / Perfect Secrecy
- -> Statistical Indistinguishability
- → Computational Indistinguishability

Private Communication

How can Aliu send m to Bob, while keeping it hidden from an eavesdropper Eve?

One - Time Pad

Eve

One - Time Pad

Let m=0. What are the possible values of c?

prop	r	C= m + L
1/2	0	0
I/		
/2	1	

=> Whatever Eve sees us independent of m

(i.e., c)

also called the "view" of the adversary

Severy

- → Is the message m really secret?
- Five would have easily guessed on with probability 1/2.

 In fact if they already knew something about m, they can do better.

 NOTE: we did not claim that m is random

But Eve could have done this without looking at C.

C did not leak any additional information about m.

Secrecy

Typical goal ûn Cryptography:

PRESERVE SECRECY!

Intuitively speaking, this is what we want:

What Eve leains about mafter seeing C, is the same as what they arready

Knew about m.

Formalizing Secrecy

Event1: What did Eve already know about the message?

Probability distribution over m

i.e., $\forall m$, Pr [msg = m]

Event 2: What does Eve learn after seeing C?

New distribution Pr [msg = m | view = c]

What do we want for Secrety? Eve's knowledge in Event 1

Eve's Knowledge ûn Event 2

Formalizing Secrecy

view is independent of meg

for all possible values of msg, the view is distributed identically

Formalizing Secrecy (Summary)

These au equivalent formulations:

Formalizing Secrecy

Is Pr[meg=m, | view=v] = Pr[meg=m2 | view=v]?

Why / Why not?

This is only true if meg is uniform.

Relaxing Secrecy Requirement

What if the view is not exactly independent of the message?

Next Best Thing:

View is close to a distribution that is independent of the message

>> Statistical Closenies

> Computational Closenus

Statistical Difference

Given two distributions A & B over some sample space, how well can a test T distinguish between them?

— T is given a sample drawn from A or B

— How differently does it behave in the two cases?

$$\Delta(A,B) = \max_{T} \left| P_{T} \left[T(x) = 0 \right] - P_{T} \left[T(x) = 0 \right] \right|$$

Statistical

difference
between

A & B

max over all such possible tests

Statistical Indistinguishability

A and B are statistically indistinguishable from each other if the statistical difference between them is negligible Examples: 2-20, 2-50, 2

we let the user decide which of these they want.

- Decide how? Using a <u>security</u> parameter <u>K</u>

 Security quarantees will be given asymptotically as a function of the security parameter.
- \rightarrow Given $\{A_K\}$ & $\{B_K\}$, $\Delta(A_K, B_K)$ is a function of K.

we want this to be negligible function in K!

Negligible Functions

- The best distinguishing test T* should have extremely small probability of success.
- If T* has extremely small success probability given one sample, the best distinguishing test. Should also have extremely small success probability given polynomially many samples
- Functions that decay so quickly (i.e., approach to zuo) that they cannot be rescued by any polynomial

Negligible Functions

Definition: A function $\mathcal{V}(.)$ is negligible if for every polynomial p(.), we have $\lim_{n\to\infty} p(k) \cdot \mathcal{V}(k) = 0$

→ A negligible function decays faster than all inverse polynomial functions.

Definition: A function V(K) is negligible if $\forall c \geq 0, \exists N$ S.t., $\forall K > N$, $V(K) \leq \frac{1}{K^c}$

Statistical Indistinguishability

Definition: Distribution ensembles $\{A\kappa\}$, $\{B\kappa\}$ are statistically indistinguishable if $\{A\kappa\}$, $\{A\kappa$

 \Rightarrow \exists nightighte V(.), $S.t \neq tests T$, $\forall K$ $|PL [T_K(x) = 0] - PL [T_K(x) = 0]| \leq V(K)$ $x \leftarrow AK$ $x \leftarrow BK$

Ques: is this equivalent to: \(\forall \tests \), \(\forall \tests \), \(\forall \tests \) regligible \(\forall \).)

S.t. \(\forall K \) \(\forall R \) \(\forall T_K(X) = 0 \) \(\forall \) \(\forall K \) \(\forall

Computational Indistinguishability

Definition: Distribution ensembles ¿Ak¸, ¿Bk¸; au
computationally indistinguishable if
Y efficient tests T, F negligible V(.). s.t. VK,

What is efficient?

Cost of Computation

It can be helpful to think of cost of computation in terms of monetary value. Following costs are approximated using the pricing model of Amazon EC2

clock cycles	approx cost	reference	
2^{50}	\$3.50	cup of coffee	
2^{55}	\$100	decent tickets to a Portland Trailblazers game	
2^{65}	\$130,000	median home price in Oshkosh, WI	
2^{75}	\$130 million	budget of one of the Harry Potter movies	
2^{85}	\$140 billion	GDP of Hungary	
2^{92}	\$20 trillion	GDP of the United States	
2^{99}	\$2 quadrillion	all of human economic activity since $300,000 BC^4$	
2^{128}	really a lot	a billion human civilizations' worth of effort	

Computational Security

John Nash

It doesn't really matter whether attacks are impossible, only whether attacks are computationally infeasible?

Modern Cryptography is based on this principle.

Efficient = Probabilistic Polynomial Time. (PPT)

Computational Security

Non-uniform PPIT: A family of randomized programs $\{T_K\}$ (one for each value of the security parameter K), s.t. there is a polynomial $\rho()$ with each T_K running for at most time $\rho(K)$.

Uniform PPT J: where T is a single program that takes
K as an additional input.

By default: We will consider non-uniform PPT adjorithms/adversaries/tests/distinguishers.

Choosing an Appropriate Security Parameter

Some example references for what extremely small probabilities are equivalent to.

pro	bability	equivalent	
	2^{-10}	full house in 5-card poker	
	2^{-20}	royal flush in 5-card poker	
	2^{-28}	you win this week's Powerball jackpot	
	2^{-40}	royal flush in 2 consecutive poker games	
	2^{-60}	the next meteorite that hits Earth lands in this square $ ightarrow$	