

Indian Institute of Science, Banglore Department of Computational and Data Sciences (CDS)

DS284: Numerical Linear Algebra ${\it Quiz}~4$

Faculty Instructor: Dr. Phani Motamarri TAs: Kartick Ramakrishnan, Soumalya Nandi, Sameer Khadatkar

Submission Deadline: Nov 14, 2021 3:55PM Max Points: 20

Notations: (i) Vectors \mathbf{v} and matrices \mathbf{M} are denoted by bold faced lower case and upper case alphabets respectively. (ii) Set of all real numbers is denoted by \mathbb{R} (iii) Set of all n dimensional vectors is denoted by \mathbb{R}^n and set of all $m \times n$ matrices is denoted by $\mathbb{R}^{m \times n}$. (iv) \mathbf{I}_n denotes the identity matrix of order n. (v) $\mathbf{0}_n$ denotes the null matrix of order $n \times n$

1. Which of the following is/are true?

(2 Points)

- (a) **QR** factorization and **LU** factorization can turn out to be identical for certain full rank matrices $\mathbf{A} \in \mathbb{R}^{m \times m}$.
- (b) LU factorization using Gaussian elimination without partial pivoting if it exists, is always unique for any full rank matrix $\mathbf{A} \in \mathbb{R}^{m \times m}$.
- (c) Gaussian elimination algorithm with partial pivoting will not have row interchanges for row-diagonally dominant full rank matrix $\mathbf{A} \in \mathbb{R}^{m \times m}$.
- (d) LU factorization using Gaussian elimination with partial pivoting algorithm results in L having $\|\mathbf{L}\| = O(1)$.
- 2. Which of the following is/are true?

(2.5 Points)

- (a) Recall that a given matrix $\mathbf{A} \in \mathbb{R}^{m \times m}$ can always be written as $\mathbf{A} = \mathbf{A}_{s} + \mathbf{A}_{ss}$, such that $\mathbf{A}_{s} = \mathbf{A}_{s}^{T}$ and $\mathbf{A}_{ss} = -\mathbf{A}_{ss}^{T}$. If \mathbf{A}_{s} is symmetric positive definite, then $\mathbf{x}^{T}\mathbf{A}\mathbf{x} > 0$ for all $\mathbf{x} \neq \mathbf{0}$.
- (b) Let $\mathbf{L} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 6 & -4 & 1 \end{bmatrix}$ and $\mathbf{U} = \begin{bmatrix} 1 & 2 & 6 \\ 0 & 2 & -8 \\ 0 & 0 & -67 \end{bmatrix}$ be the $\mathbf{L}\mathbf{U}$ factorization of a given matrix \mathbf{A} . Then this matrix \mathbf{A} has to be a symmetric positive definite matrix
- (c) If **R** is an exact Cholesky factor of a symmetric positive definite matrix **A** and $\tilde{\mathbf{R}}$ is the Cholesky factor obtained on a finite precision computer for the same matrix **A**. Then $\frac{\|\tilde{\mathbf{R}}^T\tilde{\mathbf{R}}-\mathbf{A}\|}{\|\mathbf{A}\|} \leq \frac{\|\tilde{\mathbf{R}}-\mathbf{R}\|}{\|\mathbf{R}\|}$
- (d) If $\mathbf{A} \in \mathbb{R}^{m \times m}$ is a symmetric positive definite matrix and $\mathbf{X} \in \mathbb{R}^{m \times m}$ is any matrix, then $\mathbf{X}^T \mathbf{A} \mathbf{X}$ is always symmetric positive definite.

- 3. Let, $\mathbf{M} \in \mathbb{R}^{n \times n}$ be a non-zero matrix with $n \geq 2$ and $\mathbf{M}^2 = \mathbf{0}$ where, $\mathbf{0}$ is a null matrix. Let, $\alpha \in \mathbb{R} \setminus \{0\}$. Then,
 - (a) α is an eigenvalue of both $(\mathbf{M} + \alpha \mathbf{I})$ and $(\mathbf{M} \alpha \mathbf{I})$
 - (b) The algebraic multiplicity of the eigenvalue α for $(\alpha \mathbf{I} \mathbf{M})$ is n
 - (c) $-\alpha$ is one of the k distinct eigenvalues of $(\mathbf{M} \alpha \mathbf{I})$ with k > 1
 - (d) None of the above
- 4. Let $\mathbf{A} \in \mathbb{R}^{m \times m}$ and $\mathbf{B} \in \mathbb{R}^{m \times m}$ be any two non-zero matrices, then which of the following is true? (2 Points)
 - (a) If A is non-singular then (B) and (ABA^{-1}) have the same eigenvalues.
 - (b) If **A** is real skew-symmetric matrix with λ as eigenvalue then $\left|\frac{1-\lambda}{1+\lambda}\right|=1$.
 - (c) Two diagonalizable matrices **A** and **B** with the same eigenvalues and eigenvectors must be the same matrix.
 - (d) If λ is an eigenvalue with both algebraic multiplicity and geometric multiplicity to be 3 then the dimension of column space of $\mathbf{A} \lambda \mathbf{I}_m$ is 3.
- 5. For any real symmetric matrix \mathbf{A} , the Rayleigh quotient is given by $r(\mathbf{x}) = \frac{\mathbf{x}^T \mathbf{A} \mathbf{x}}{\mathbf{x}^T \mathbf{x}}$. Which of the following is/are correct. (3 Points)
 - (a) For any \mathbf{x} , $r(\mathbf{x})$ is between the minimum and maximum eigenvalues of \mathbf{A} .
 - (b) If the distance between a unit vector \mathbf{x} and the eigenvector \mathbf{q}_J of a real symmetric matrix \mathbf{A} , in the sense of 2 norm is Δ , i.e. $||\mathbf{x} \mathbf{q}_J||_2 = \Delta$. Then $|\mathbf{x}^T \mathbf{A} \mathbf{x} \lambda_J| = O(\Delta)$, where λ_J is the eigenvalue corresponding to eigenvector \mathbf{q}_J
 - (c) Let $\mathbf{A} = \begin{bmatrix} 2 & 5 \\ 4 & 3 \end{bmatrix}$ and $\mathbf{x} = \begin{bmatrix} 3 \\ 7 \end{bmatrix}$. The value $\beta = 5$ minimizes the $||\mathbf{A}\mathbf{x} \beta\mathbf{x}||$
 - (d) Let $\mathbf{A} = \begin{bmatrix} \mathbf{B} & \mathbf{b} \\ \mathbf{b}^T & \gamma \end{bmatrix}$ (for some symmetric matrix \mathbf{B} , some vector \mathbf{b} , and some real number γ). Then, the smallest eigenvalue of $\mathbf{B} \leq$ smallest eigenvalue of \mathbf{A} .

6. Which of the following is/are true:

- (2 Points)
- (a) An eigenvalue solver can be designed to compute eigenvalues and eigenvectors of a given matrix $\mathbf{A} \in \mathbb{R}^{m \times m}$ in a finite number of steps, using exact arithmetic.
- (b) An eigenvalue solver designed to compute all eigenvalues and eigenvectors of a symmetric dense matrix $\mathbf{A} \in \mathbb{R}^{m \times m}$ requires at most $O(m^3)$ work, if it is not initially reduced to tri-diagonal form in Phase 1.
- (c) Power iteration produces a sequence of vectors $\mathbf{v}^{(i)}$ that converges to the eigenvector corresponding to the largest eigenvalue of $\mathbf{A} \in \mathbb{R}^{m \times m}$ starting with any initial guess vector $\mathbf{v}^{(0)} \neq \mathbf{0}$.
- (d) Let $\mathbf{F} \in \mathbb{R}^{m \times m}$ denote the Householder reflector that introduces zeros below the diagonal entry of symmetric matrix $\mathbf{A} \in \mathbb{R}^{m \times m}$ in the 1st column when pre-multiplied with \mathbf{A} . Then eigenvalues of $\mathbf{F}\mathbf{A}\mathbf{F}^T$ and \mathbf{A} are the same.
- 7. Which of the following is/are true:

(2 Points)

- (a) Suppose that matrix $\mathbf{A} \in \mathbb{R}^{m \times m}$ and λ be an eigenvalue of A, then so is $\bar{\lambda}$ (complex conjugate).
- (b) Let $\mathbf{A} \in \mathbb{R}^{m \times m}$ be any non-zero diagonalizable matrix then rank of \mathbf{A} = number of non-zero eigenvalues of \mathbf{A} .
- (c) All orthogonal matrices are normal matrices.
- (d) Consider the matrix $\mathbf{A} = \mathbf{I}_9 2\mathbf{u}\mathbf{u}^T$, with $\mathbf{u} = \frac{1}{3}[1, 1, 1, 1, 1, 1, 1, 1, 1]^T$ where \mathbf{I}_9 is a 9×9 identity matrix. If λ and μ are two distinct eigenvalues of \mathbf{A} , then $|\lambda \mu| = 0$.
- 8. Given matrix $\mathbf{A} = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 4 & 0 & 3 & 0 & 0 \\ 0 & 8 & 0 & 4 & 2 \\ 0 & 0 & 0 & 8 & 4 \end{bmatrix}$, which of the following is/are true: (2

Points)

- (a) The sum of eigenvalues of **A** is 16.
- (b) The sum of eigenvalues of $\mathbf{A}\mathbf{A}^T$ is 194.
- (c) The product of eigenvalues of $\mathbf{A}\mathbf{A}^T$ is 9216.
- (d) Eigenvalues of $\mathbf{A}\mathbf{A}^T$ and $\mathbf{A}^T\mathbf{A}$ are the same.
- (e) The eigenvalues of $\mathbf{A}\mathbf{A}^T$ are always non-zero and positive.