Khôlles de Mathématiques MP

Exercice 1. Soit $\alpha > 0$. Nature de la série de terme général u_n définie par $u_1 > 0$ et pour tout $n \ge 1$

$$u_{n+1} = \frac{(-1)^{n+1}}{(n+1)^{\alpha+1}} \cdot \sum_{k=1}^{n} u_k.$$

Exercice 2. Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites de réels strictement positifs.

- 1. On suppose qu'à partir d'un certain rang $\frac{u_{n+1}}{u_n} \leq \frac{v_{n+1}}{v_n}.$ Montrer que $u_n = O(v_n)$.
- 2. On suppose que

$$\frac{u_{n+1}}{u_n} = 1 - \frac{\alpha}{n} + o\left(\frac{1}{n}\right) \text{ avec } \alpha > 1.$$

Montrer, à l'aide d'une comparaison avec une série de Riemann, que la série $\sum u_n$ converge.

3. On suppose cette fois-ci que $\alpha < 1$. Montrer que la série $\sum u_n$ diverge

Exercice 3. Soient $(u_n)_{n\geq 0}$ et $(v_n)_{n\geq 0}$ dans $(\mathbb{R}_+)^{\mathbb{N}}$ telles que

$$\forall n \in \mathbb{N}, v_n = \frac{1}{1 + n^2 u_n}$$

Montrer que si la série de terme général v_n converge alors la série de terme général u_n diverge.

Exercice 4. Soit (u_n) une suite réelle strictement positive et strictement croissante. Nature de la série de terme général

$$\frac{u_{n+1}-u_n}{u_n}$$

On pourra essayer de faire appara^itre une intégrale.

Exercice 5. Soit $(u_n)_{n\geq 1}$ une suite de réels positifs. On considère la suite (v_n) définie par

$$v_n = \frac{1}{n(n+1)} \sum_{k=1}^n k u_k$$

Montrer que les séries $\sum u_n$ et $\sum v_n$ ont même nature et même somme.

Exercice 6. Soient (u_n) une suite décroissante de réels positifs et α un réel positif.

On suppose la convergence de la série $\sum n^{\alpha} u_n$. Montrer que $n^{\alpha+1}u_n \to 0$.

Exercice 7. Déterminer la nature de la série de terme général

$$u_n = \frac{\sqrt{1} + \sqrt{2} + \dots + \sqrt{n}}{n^{\alpha}}$$
 (avec $\alpha \in \mathbb{R}$).

Même question avec la série de terme général $(-1)^n u_n$.

Exercice 8. Soit $f: [1; +\infty[\to \mathbb{C} \text{ une fonction de classe } \mathcal{C}^1 \text{ avec } f' \text{ intégrable sur } [1; +\infty[$

1. Montrer

$$\sum f(n)$$
 converge $\iff \left(\int_{1}^{n} f(t) dt\right)$ converge.

2. Déterminer la nature de la série

$$\sum \frac{\sin(\ln(n))}{n}.$$

Exercice 9. Soit $u \in \mathbb{R}^{\mathbb{N}}$ telle que $u_0 \in]0;1]$ et que, pour un certain $\beta > 0$ et pour tout $n \in \mathbb{N}$,

$$u_{n+1}^{\beta} = \sin u_n^{\beta}$$
.

Étudier la nature de la série de terme général u_n .

Exercice 10. Soit $\alpha > 0$ et $(u_n)_{n \ge 1}$ la suite définie par:

$$u_1 > 0$$
 et $\forall n \ge 1, u_{n+1} = u_n + \frac{1}{n^{\alpha} u_n}$.

- 1. Condition nécessaire et suffisante sur α pour que (u_n) converge.
- 2. Equivalent de u_n dans le cas où (u_n) diverge.
- 3. Equivalent de $(u_n \ell)$ dans le cas où (u_n) converge vers ℓ .