МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа радиотехники и компьютерных технологий

Отчёт о выполнении лабораторной работы 5.2

Спектрометрия α -излучения с помощью полупроводникового детектора

Авторы: Тихонов Дмитрий Романович, студент группы Б01-206а Павловский Кирилл Михайлович, студент группы Б01-206а

1 Введение

Цель работы: измерить спектры α -излучения ядер $^{226}_{88}$ Ra, $^{210}_{84}$ Po, $^{239}_{94}$ Pu, $^{238}_{92}$ U и смеси ($^{230}_{90}$ Th и $^{241}_{95}$ Am) с помощью полупроводникового детектора; исследовать последовательные α -распады указанных ядер; проверить закон Гейгера-Нэттола для ядер $^{226}_{88}$ Ra на основе табличных значений.

В работе используются: форвакуумный насос Value VE-215N, α -спектрометр Амплитуда НТЦ Мультирад-АС, персональный ЭВМ со встроенной платой АЦП, образцы с источниками $^{226}_{88}$ Ra, $^{210}_{84}$ Po, $^{239}_{94}$ Pu, $^{238}_{92}$ U и смеси ($^{230}_{90}$ Th и $^{241}_{95}$ Am).

2 Теоретические сведения

Альфа-распадом называется самопроизвольный процесс испускания ядрами альфа-частиц:

$${}_{Z}^{A}X \rightarrow {}_{Z-2}^{A-4}X' + {}_{2}^{4}He$$

Периодом полураспада $T_{1/2}$ называется время, в течение которого количество радиоактивных атомов убывает в 2 раза. Если N_0 – начальное количество радиоактивных атомов, то количество атомов N(t) в последующие моменты времени определяется законом радиоактивного распада:

$$N = N_0 \left(\frac{1}{2}\right)^{t/T_{1/2}}$$

Для α -распада период полураспада $T_{1/2}$ связан с энергией вылетающий α -частиц E_i законом Гейгера-Нэттола:

$$\ln T_{1/2} = \frac{a}{\sqrt{E_i}} + b \tag{1}$$

Спектром радиоактивного излучения называется энергетическое распределение исследуемого излучения. В случае α -распада спектром будет график зависимости количества зарегистрированных α -частиц от их энергии. Прибор, который измеряет спектр радиоактивного излучения называется спектрометром. Важной характеристикой спектрометра является его разрешающая способность R, то есть возможность различить излучение с близкими энергиями. Разрешающая способность прибора определяется разрешающей способностью детектирующего излучение датчика и шумами в электронной схеме.

Рис. 1: Схема полупроводникового детектора.

Рассмотрим принцип работы полупроводникового детектора (рис. 1). Детектор представляет собой обычно кремниевую пластинку из полупроводников n- и p-типа. В n-области находятся свободные электроны, в p-области находятся свободные дырки. Когда к пластинке прикладывается постоянное напряжение, как показано на рисунке, то свободные заряды покидают пластинку, в результате чего проводимость детектора уменьшается, при этом образуется обеднённая область шириной x_0 . Альфачастица энергией E_i пролетает через обеднённую область детектора и ионизует атомы полупроводника, переводя электроны из валентной зоны в свободную. В результате ионизации образуется пара

электрон-дырка и возникает ток под действием приложенного к детектору напряжения. Этот ток усиливается зарядочувствительным усилителем, напряжение на котором пропорционально заряду, протекающему через усилитель. Напряжение на усилителе измеряется АЦП. Ток через усилитель пропорционален числу образованных пар электрон-дырка в детекторе. На образование одной такой пары в среднем расходуется энергия $E_{\rm cp}=3.6$ эВ. Предполагая, что α -частица расходует всю свою энергию E_i на ионизацию атомов в обеднённом слое, можно оценить среднее количество образовавшихся пар электрон-дырка N:

 $N_i = \frac{E_i}{E_{\rm cp}}$

Предполагается, что ионизация атомов происходит независимо друг от друга с фиксированной интенсивностью, тогда количество ионизованных атомов подчиняется распределению Пуассона. Так как N_i велико ($E_i \sim 1~{\rm MpB},~N_i \sim 10^5$), то распределение Пуассона приближается к распределению Гаусса с средним значением N_i и среднеквадратичным отклонением $\sigma = \sqrt{N_i}$. Разрешающая способность детектора определяется как отношение среднеквадратичного отклонения к среднему значению:

$$R_{\Phi^{JI}} = \frac{\sqrt{N_i}}{N_i} = \frac{1}{\sqrt{N_i}}$$

Пусть в измеренной спектрограмме средняя энергия α -частиц составляет E_i , полуширина пика на половине высоты ΔE_i , тогда энергетическая разрешающая способность спектрометра равна:

$$R = \frac{\Delta E_i}{E_i}$$

Разрешающая способность спектрометра зависит от разрешающей способности детектора и от уровня шума в электронной схеме.

3 Методика измерений и экспериментальная установка

3.1 Описание экспериментальной установки

Схема экспериментальной установки приведена на рисунке 2:

Рис. 2: Схема экспериментальной установки.

Форвакуумный насос соединён с корпусом α -спектрометра вакуумным шлангом для откачки измерительной камеры до давлений $0.4 \div 20$ ммрт.ст.. В камеру α -спектрометра на специальный столик помещается радиоактивный препарат. Над столиком находится полупроводниковый детектор частиц, который регистрирует α -частицы в диапазоне энергий $4.0 \div 9.5$ МэВ. Сигнал с детектора усиливается и подаётся на 12-битный АЦП. То есть спектрометр имеет 4096 каналов измерения энергий α -частиц. Результаты измерений передаются на компьютер, который проводит первичную обработку данных – строит спектр радиоактивного распада. На подложку стола подаётся отрицательный относительно корпуса потенциал, чтобы ядра отдачи с импульсом направленным к детектору не попадали на него и не загрязняли его.

3.2 Оборудование и приборы

- Форвакуумный насос Value VE-215N. Остаточное давление: 0.00002 атм. = 0.0152 ммрт.ст..
- Альфа-спектрометр Амплитуда НТЦ Мультирад-АС. Диапазон энергии регистрируемого излучения $4.0 \div 9.5$ МэВ. Диапазон измерения активности $1 \cdot 10^2 \div 5 \cdot 10^5$ Бк. Пределы допускаемой основной относительной погрешности измерений активности в исследуемых образцах $\varepsilon = 10\%$. Максимальное значение входной нагрузки статистически распределённых импульсов не менее $10^4 \, \frac{\text{имп}}{\text{с}}$. Диапазон поддерживаемого в камере давления $0.4 \div 20.0$ ммрт.ст.. Уровень собственного фона не более $100 \, \frac{\text{имп}}{\text{сутки}}$.

3.3 Методика эксперимента

Так как зависимость энергии α -частицы от номера зарегистрировавшего её канала спектрометра не известна, то в начале работы проводится градуировка детектора. Для этого измеряется спектр излучения $^{226}_{88}$ Rа в течение примерно 10 минут, каждому пику на графике спектра ставится в соответствие энергия зарегистрированной α -частицы. Так как амплитуда сигнала на выходе детектора пропорциональна энергии α -частицы, то градуировочная кривая должна быть прямой.

После градуировки детектора измеряются спектры $^{210}_{84}$ Po, $^{239}_{94}$ Pu, $^{238}_{92}$ U и смеси ($^{230}_{90}$ Th и $^{241}_{95}$ Am) в течение примерно 10 минут. По градуировочной зависимости определяются энергии зарегистрированных α -частиц, и по справочнику определяются атомы, в результате радиоактивного распада которых образовалась α -частица.

4 Результаты измерений и обработка данных

4.1 Градуировка детектора

По известным значениям энергии α -частицы при распаде $^{226}_{88}$ Ra и его дочерних ядер, определяются коэффициенты a и b градуировочной кривой детектора:

$$E_i = a \cdot N_i + b.$$

График градуировочной кривой $E_i(N_i)$ изображен на рисунке 3. С помощью метода наименьших квадратов были получены следующие градуировочные коэффициенты:

$$a = (2.97 \pm 0.01) \cdot 10^{-3} \frac{\text{M} \cdot \text{B}}{\text{KaH.}},$$

 $b = (-0.10 \pm 0.02) \text{ M} \cdot \text{B}.$

Рис. 3: Зависимость энергии α -частицы от номера канала $E_i(N_i)$.

Согласно теории сдвиг по энергии b должен быть равен 0. Систематическая ошибка, вносимая этим сдвигом $\varepsilon \sim 2\%$. Далее в таблицах будет приведена только случайная составляющая ошибок, чтобы иметь представление об их порядке. Полная погрешность оценивается по формуле:

$$\varepsilon_{\Sigma} = \sqrt{\varepsilon^2 + \varepsilon_{E_i}^2}$$

4.2 Исследование спектров α -распада

С помощью градуировочной зависимости, определялась энергия альфа-частиц для всех остальных элементов: $^{226}_{88}\mathrm{Ra},\,^{241}_{95}\mathrm{Am}+^{230}_{90}\mathrm{Th},\,^{239}_{94}\mathrm{Pu},\,^{238}_{92}\mathrm{U}.$

В таблицах для каждой последовательности радиоактивных распадов приведены: N_i – средний номер канала, зарегистрировавший альфа-частицу с фиксированной энергией, ΔN_i – среднеквадратичное отклонение в единицах каналов, E_i – средняя энергия зарегистрированных альфа-частиц, ширина ΔE_i – среднеквадратичное отклонение в энергетических единицах, σ_x – случайная составляющая ошибки определения величины x.

Оценка погрешности проводилась по формуле погрешности косвенных измерений:

$$\varepsilon_{R_{f,i}} = \frac{1}{2} \sqrt{\varepsilon_{\Sigma}^2 + \left(\frac{0.05}{3.60}\right)^2} \sim 1.5\%$$

$$\varepsilon_{R_i} = \sqrt{\varepsilon_{E_i}^2 + \varepsilon_{\Sigma}^2} \approx \varepsilon_{\Sigma} \sim 2\%$$

Рис. 4: Спектр $^{226}_{88}$ Ra.

N_i	dN_i	E_i , МэВ	σ_{E_i} , МэВ	ΔE_i , МэВ	$\sigma_{\Delta E_i}$, МэВ
1640.0	24.33	4.78	0.03	0.0723	0.0003
1881.0	23.97	5.49	0.03	0.0712	0.0003
2055.0	21.05	6.01	0.03	0.0626	0.0002
2617.0	22.50	7.68	0.04	0.0669	0.0002

Таблица 1: Энергии пиков $^{226}_{88} \mathrm{Ra}.$

Рис. 5: Спектр $_{95}^{241}$ Am + $_{90}^{230}$ Th.

N_i	ΔN_i	E_i , МэВ	$\varepsilon_{E_i},\%$	ΔE_i , МэВ	$R_i \cdot 10^2$	$R_{f,i} \cdot 10^2$
1622	15.80	4.73	0.6	0.0469	0.99	0.087
1894	17.12	5.53	0.6	0.0509	0.92	0.081

Таблица 2: Энергии пиков $^{241}_{95}\mathrm{Am} + ^{230}_{90}\mathrm{Th}.$

Рис. 6: Спектр $_{94}^{239}$ Ри.

 Φ РКТ М Φ ТИ, 2024 6

N_i	ΔN_i	E_i , МэВ	$\varepsilon_{E_i},\%$	ΔE_i , МэВ	$R_i \cdot 10^2$	$R_{f,i} \cdot 10^2$
	16.81 20.90	5.22 5.53	0.6 0.6	$0.0500 \\ 0.0621$	0.96 1.12	0.083 0.081

Таблица 3: Энергии пиков $^{239}_{94}{\rm Pu}.$

Рис. 7: Спектр $_{92}^{238}$ U.

N_i	ΔN_i	E_i , МэВ	$\varepsilon_{E_i},\%$	ΔE_i , МэВ	$R_i \cdot 10^2$	$R_{f,i} \cdot 10^2$
	87.96	4.07	0.7	0.2614	6.43	0.094
	43.20	4.75	0.6	0.1284	2.71	0.087

Таблица 4: Энергии пиков $_{92}^{238}$ U.

4.3 Проверка закона Гейгера-Нэттола

Зная энергии α -распада $^{226}_{88}$ Rа и его дочерних ядер, а также периоды их полураспада, можно судить о точности выполнения закона Гейгера-Неттола. С этой целью проведем линеаризацию зависимости:

Рис. 8: График $\log T_{1/2} \left(\frac{1}{\sqrt{E_i}} \right)$.

5 Заключение

• В работе были получены спектры α -излучения ядер. Мы экспериментально определили энергетическое разрешение детектора (см. таблицы):

$$R_i = \frac{\Delta E_i}{E_i}, \ \varepsilon_{R_i} \sim 2\%.$$

- Оценка влияния статистической флуктуации числа электрон-дырочных пар $R_{f,i} = \sqrt{\frac{E_{\rm cp}}{E_i}}, \ \varepsilon_{R_{f,i}} \sim 1.5\%$, создаваемых падающей частицей, получилась на порядки меньше вычисленных энергетических разрешений R_i . Поэтому можно сделать вывод, что основной причиной разброса импульсов по амплитуде является шум электрических цепей.
- Был проверен закон Гейгера-Нэттола методом линеаризации зависимости. Коэффициент корреляции слабо отличается от единицы.