Math 122A Homework 8

Ethan Martirosyan February 29, 2024

Bak and Newman Chapter 6

Problem 10

First, we will find the minimum modulus of z^2-z in the disc $|z|\leq 1$. Notice that $0^2-0=0$, so the minimum modulus of z^2-z in the disc $|z|\leq 1$ is evidently 0. Next, we claim that the maximum modulus of z^2-z in the disc $|z|\leq 1$ is 2. Since z^2-z is analytic on the disc $|z|\leq 1$, we may apply the Maximum Modulus Theorem to deduce that the maximum of z^2-z must occur on the circle |z|=1. Notice that $z^2-z=z(z-1)$. In order to maximize this product under the constraint that |z|=1, we only need to maximize |z-1| under this constraint. This maximum is achieved when z=-1. Thus, we may deduce that the maximum modulus of z^2-z in the disc $|z|\leq 1$ is $|z^2-z|=|z||z-1|=|-1||-1-1|=2$.

Problem 13

For the sake of contradiction, let us suppose that $p(z) \neq 0$ for all $z \in \mathbb{C}$. Let M > 0 be an arbitrary positive constant, and let $D_M = \{z \in \mathbb{C} : |z| \leq M\}$. By the Minimum Modulus Theorem, we know that p(z) will attain its minimum on the boundary of D_M . Since p(z) is a nonconstant polynomial, we know that

$$\lim_{z \to \infty} p(z) = \infty$$

This informs us that there must exist some positive constant L such that $|z| \geq L$ implies that |p(z)| > |p(0)|. Notice that for every $z \in \partial D_L$, we have |p(z)| > |p(0)| (since |z| = L). This means that p(z) does not attain its minimum on the boundary of D_L (because the modulus of p(0) is strictly less than the modulus of p(z) for every $z \in \partial D_L$), contrary to the Minimum Modulus Theorem. This contradiction informs us that there must exist some $z \in \mathbb{C}$ such that p(z) = 0.

Needham Chapter 7

Problem 1

For any loop L and point p such that $p \notin L$, we know that $\nu(L,p) = 0$ if and only if p is outside L and that $\nu(L,p) = \pm 1$ if and only if p is inside L. By page 341 of Needham, we know that $N(p) = |\nu(L,p)| + 2s$, where s is a non-negative integer and N(p) is the number of intersection points of the ray from p with the simple loop L. From this, we obtain $|\nu(L,p)| = N(p) - 2s$. Using this equation and the fact that $|\nu(L,p)| \le 1$, we may deduce that N(p) is even if and only if $\nu(L,p) = 0$ and that N(p) is odd if and only if $\nu(L,p) = \pm 1$. This informs us that if the number of intersection points is even, then p is outside L; if the number of intersection points is odd, then p is inside L.

Problem 20

If f=g on Γ , then we have f-g=0 on Γ . This informs us that |f-g|=0 on Γ . Since f-g is analytic on and inside Γ , we may apply the Maximum Modulus Theorem to deduce that |f-g|=0 inside Γ so that f=g throughout Γ .