2.6. Численные методы решения задачи Коши для обыкновенных дифференциальных уравнений. Понятия сходимости, аппроксимации и устойчивости разностных схем.

Задача Коши:
$$\frac{dy}{dx} = f(x, y); y \Big|_{x=x_0} = y_0;$$

Дискретизация задачи Коши:

Поводи вычисление на отрезке $[t_0,T]$. Введем сетку $t_0 < t_1 < ... < t_n = T$, назовем узлами сетки $h_i = t_i - t_{i-1}$, назовем шагом сетки.

Задача в нахождении решения задачи Коши в узлах сетки. Заменим уравнение на дискретный аналог: $\frac{1}{n} \sum\nolimits_{j=0}^k \alpha_j \, y_{_{n+1-j}} = \Phi(t_n, y_{_{n+1-k}}, ..., y_{_{n+1}}, h) - \text{k-шаговый метод}.$

Явный метод Эйлера

$$\frac{y_{n+1} - y_n}{h} = f(t_n, y_n) \to y_{n+1} = y_n + h \cdot f(t_n, y_n)$$

Неявный метод Эйлера

$$\frac{y_{n+1} - y_n}{h} = f(t_{n+1}, y_{n+1}) \to y_{n+1} = y_n + h \cdot f(t_{n+1}, y_{n+1})$$

Устойчивость

Разностная схема *устойчива*, если существует $C_s > 0$ (независимая от h – шага сетки):

$$\|\Delta y_h\| \leq C_s \cdot \|\Delta f_h\|;$$

это означает непрерывную зависимость погрешности решения от погрешности входных данных.

Аппроксимация

Аналогично, вводится понятие аппроксимации дифференциальной задачи с порядком а:

$$\left\| \Delta f_h \right\| \le C_a \left\| h \right\|^a$$

Сходимость

Сходимость решения разностной задачи: $\|\Delta y_h\| \le C_d \|h\|^d$, d – порядок сходимости.

Тһ Лакса:

Т.е. устойчивая схема обеспечивает сходимость решения с порядком аппроксимации. Доказательство: $\|\Delta y_h\| \leq C_s \|\Delta f_h\| \leq C_s \cdot C_a \|h\|^a$, $C_d = C_s \cdot C_a$

Определение. Решение задачи (8.3) u^{τ} сходится при $\tau \to 0$ к решению исходной задачи (8.2), если

1

$$||u^{\tau} - U^{\tau}|| \rightarrow 0$$

2.6

при $\tau \to 0$.

При этом, если имеет место оценка

$$||u^{\tau} - U^{\tau}|| \le C \tau^p (C \ne C(\tau)),$$

то имеет место сходимость порядка р.

Определение. Говорят, что задача (8.3) аппроксимирует задачу (8.2) на ее решении, если невязка

$$||r_{\tau}|| \rightarrow 0$$

при au o 0, где $r_{ au} \equiv L_{ au}(U^{ au}) - F_{ au}$; при этом, если имеет место оценка

$$||r_{\tau}|| \leq C_1 \tau^p (C_1 \neq C_1(\tau)),$$

то говорят, что имеет место аппроксимация порядка р.

Определение. Задача (8.3) устойчива, если из соотношений

следует

$$||u^{\tau} - v^{\tau}|| \le C_2 (||\xi_{\tau}|| + ||\eta_{\tau}||), C_2 \ne C_2(\tau).$$

Теорема 1 (В.С.Рябенького - П. Лакса). Решение задачи (8.3) сходится к решению исходной задачи (8.2), если задача (8.3) устойчива и аппроксимирует задачу (8.2); если аппроксимация имеет порядок р, то сходимость также имеет порядок р.

Доказательство.

В силу аппроксимации имеем оценку: $\|r_{\tau}\| \le C_1 \tau^p$. Тогда из определения устойчивости, положив $\mathbf{v}^{\tau} = \mathbf{U}^{\tau}$, получим

$$||u_{\tau} - U_{\tau}|| \le C_2 ||r_{\tau}|| \le C_2 C_1 \tau^p = C \tau^p,$$

поскольку в данном случае

$$| | \eta^{\tau} | | = 0$$

и, кроме того,

$$| | r_{\tau} | | = | | \xi_{\tau} | |$$
.