

Instituto de Ciências Matemáticas e de Computação SCE600 – Introdução à Ciência da Computação I Curso de Engenharia de Computação Profa. Rosana T. Vaccare Braga

UMA BREVE HISTÓRIA DA COMPUTAÇÃO

Material elaborado pela: Profa. Rosely Sanches (ICMC/USP) (adaptações por Rosana Braga)

Porque estudar História da Computação?

- Discernir fundamentos, entendendo a importância dos conceitos matemáticos e de ciência da computação na ementa do curso
 - Álgebra, lógica matemática, álgebra de boole, computabilidade (Turing), algoritmos, etc.
- Avanço exponencial (tecnologias, conceitos, ideias)
- Estabelecer conexões entre as áreas

Porque estudar História da Computação?

- Não é só olhar datas e nomes: mas o aspecto das ideias, seus fundamentos e suas consequências
- Dar significado aos acontecimentos
- História da Computação faz parte do currículo de universidades como Stanford (EUA), Manchester (UK), Waterloo (Canadá), Bordeaux (França), etc.
- Museus de computação tem surgido em todo o mundo: um dos primeiros foi em Boston
 - ICMC tem seu próprio museu ©

Histórico do Computador

O que é um computador?

Quem o inventou?

Histórico do Computador

- O computador se desenvolveu paralelamente à necessidade crescente de cálculos rápidos e exatos da humanidade
- Os ancestrais do computador remontam a mais de 3000 anos

Primeiros Métodos de Cálculo

DEDOS

 É quase certo que o primeiro instrumento de cálculo que o homem utilizou foram seus próprios dedos

Primeiros Métodos de Cálculo DEDOS

MULTIPLICAÇÃO DOS ROMANOS

- Os romanos só decoravam a tabuada da multiplicação até 5
- O resto dos cálculos era feito com os dedos

$$9 \times 7 = ?$$

Primeiros Métodos de Cálculo - DEDOS MULTIPLICAÇÃO DOS ROMANOS

soma dos dedos erguidos algarismo das dezenas

produto dos dedos abaixados algarismo das unidades

Primeiros Métodos de Cálculo - DEDOS dactilonomia sexagesimal (Wazlawick, 2016)

- Polegar toca cada um dos outros dedos da mesma mão em 3 pontos (na ponta, no meio e na base
- Os demais dedos ficam abaixados
- Na outra mão representa-se as duzias
- Consegue-se contar até 72
- Contagem atribuída aos babilônios
 3

Primeiros Métodos de Cálculo - DEDOS dactilonomia sexagesimal (Wazlawick, 2016)

Primeiros Métodos de Cálculo - DEDOS

Vara de contagem (20.000 a.C.)

Osso de Ishango

Vara de contagem (20.000 a.C.)

Pode ser feita em madeira, pedra, etc.

Vara de contar dividida com protonumerais romanos:

IIIIVIIIIX

Vara de contar dividida (por exemplo para anotar dívida: uma parte Para o credor e outra para o devedor)

Primeiros Métodos de Cálculo

- Na medida em que os cálculos foram se complicando e aumentando de tamanho, sentiu-se a necessidade de um instrumento que viesse em auxílio
- Surgiu, assim, o ÁBACO

Primeiros Métodos de Cálculo

ÁBACO (2700 a.C)

 Formado por fios paralelos e contas ou arruelas deslizantes, que de acordo com a posição, representa a quantidade a ser trabalhada.

Ábaco Chinês

Ábaco Japonês - soroban

Primeiros Métodos de Cálculo - ÁBACO

Valem 5 unidades

FIOS: posição dos dígitos

CONTAS: dígitos

Valem 1 unidade

Primeiros Métodos de Cálculo ÁBACO

Representação do número 27

$$27 = 20 + 7$$

Primeiros Métodos de Cálculo ÁBACO

Representação do número 27

$$27 = 20 + 7$$

Primeiros Métodos de Cálculo ÁBACO

SOMA EFETUADA NO ÁBACO

5000 500 50 5

1000 100 10 1 236

 $1000 \quad 100 \quad 10 \quad 1$ 236 + 61 = 297

Hieróglifos egípcios (3.000 a.C)

Símbolo egípcio	descrição	nosso número
1	bastão	1
	calcanhar	10
9	rolo de corda	100
Z	flor de lótus	1000
17	dedo apontando	10000
\odot	peixe	100000
25 12	homem	1000000

Algarismos romanos (750 a.C)

Número romano	Nome	Valor
	unus	1 (um)
V	quinque	5 (cinco)
X	decem	10 (dez)
L	quinquaginta	50 (cinquenta)
С	centum	100 (cem)
D	quingenti	500 (quinhentos)
M	mille	1,000 (mil)

Algarismos arábicos (976 d.C)

- Sistema em uma base de dez, usando um símbolo para <u>zero</u>.
- 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9
- Só foi colocado em uso após o século XIII

O Zero (628 d.C)

- Inventado (ou descoberto?) por um matemático indiano chamado Brahmagupta (598-670)
- Antes disso, havia a noção de zero, mas era considerado mais como "nada", ou "ausência de números".
- Brahmagupta desenvolveu toda a teoria de números positivos (fortunas) e negativos (débitos)

O Zero (628 d.C)

- Exemplos da teoria de Brahmagupta:
 - A soma de dois positivos é positiva, a de 2
 negativos é negativa, a de um positivo e um
 negativo é sua diferença. Se eles forem iguais, a
 soma é zero.
 - A soma de positivo com zero é positiva, de negativo com zero é negativa, de dois zeros é zero
 - A multiplicação de um negativo e um positivo é negativa, de dois positivos é positiva, de dois negativos é positiva.

O Zero (628 d.C)

- Exemplos da teoria de Brahmagupta:
 - A multiplicação de um negativo e zero é zero, de positivo e zero é zero, de dois zeros é zero.
 - Sua interpretação da divisão é diferente da nossa, ele dizia que zero dividido por zero é zero.

Sistema binário (1679)

- Gottfried Leibniz (Alemanha)
- 0 e 1 somente
- Sequência: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100....
- Ideia: com só 2 algarismos as contas são triviais: 0+0=0, 0+1=1, 0-0=0, 1-0=1, 1-1-0, 1x0=0, 0x0=0
- Vamos fazer na lousa: 12 + 6

Auxílios Manuais nos Cálculos Escritos

MULTIPLICAÇÃO DOS ÁRABES

 O método de multiplicação utilizado hoje é uma variação de um método tabular desenvolvido pelos árabes

Auxílios Manuais nos Cálculos Escritos Multiplicação dos Árabes

É feito o produto de cada dígito do número 217 por 1

É feito o produto de cada dígito do número 217 por 4 O produto é a soma dos dígitos nas diagonais

Auxílios Manuais nos Cálculos Escritos Multiplicação dos Árabes

Auxílios Mecânicos para os Cálculos

• 1617 - John Napier (inventor dos logaritmos) generalizou o procedimento tabular dos árabes e construiu um dispositivo simples e barato com bastões de OSSO:

"ossos de Napier"

Auxílios Mecânicos para os Cálculos "Ossos de Napier"

 $137 \times 4 = ?$

 $137 \times 4 = 5 4 8$

Ossos de Napier

Ossos de Napier

Auxílios Mecânicos para os Cálculos

- 1633 William Oughtred (sacerdote inglês)
- representou os logaritmos de Napier em escalas de marfim, chamando-os de CÍRCULOS DE PROPORÇÃO.
- Originou a RÉGUA DE CÁLCULOS : o primeiro computador analógico da história

