

VHDL. Lenguaje de descripción hardware

Introducción e historia

Dominios descriptivos y niveles de abstracción

Dominios descriptivos:

Comportamiento

 Se realiza la función sin información de cómo se hace

Estructural

 Los bloques se conectan mediante interconexiones (netlist o esquemas)

Físico

 Localización y propiedades físicas reales

Dominios descriptivos y niveles de abstracción

■ Niveles de abstracción:

- Circuito
 - Valores continuos,
 Todo es electrónica,
 tiempo continuo
- Lógico
 - Valores lógicos (T,F), sólo computación, tiempo continuo
- RT (Register Transfer)
 - Palabras con valores discretos, control y procesamiento, tiempo discreto
- Algorítmico
 - Estructuras abstractas, dependencias en lugar de tiempo
 - Sistema
 - Relaciones entre subsistemas, sincro. y protocolos

Dominios descriptivos y niveles de abstracción

■ Medidas:

Circuito

 Tiempo de subida y bajada, consumos área

Lógico

 Tiempo de conmutación, skew, área equivalente

* RT

 Tiempo de ciclo, márgenes, puertas equivalentes

Algorítmico

 Latencia, cadencia de datos, número de módulos

Sistema

Ancho de banda, MIPS.

Dominios descriptivos y niveles de abstracción

Dominio

■ Transiciones:

Síntesis/Análisis

comportamiento ⇔ estructural

Optimización

Mejora de una descripción sin variar el nivel de abstracción

Generación/ Extracción

estructural ⇔ físico

Refinamiento/Abstracción

Bajar/Subir el nivel de abstracción en el mismo dominio

Niveles de diseño y dominios de representación

VHDL: VHSIC, Hardware Description Language VHSIC: Very High Speed Integrated Circuits

¿Para qué sirven los HDL?

Sirven para modelar circuitos, para expresar ideas

Los modelos se pueden simular para comprobar que se corresponden con la funcionalidad deseada

O se pueden sintetizar para crear un circuito que funcione como el modelo

¿Para qué sirven los HDL?

Se puede construir el modelo de un circuito que ya exista, que ya esté implementado, es decir, sintetizado


```
if A = '1' and B= '1' then
   S <= '1' after 5 ns;
else
   s <= '0' after 5 ns;
end if;</pre>
```

En este caso el objetivo es simular el circuito para comprobar que su funcionalidad se ajusta a las especificaciones iniciales

¿Para qué sirven los HDL?

Para generar documentación, siempre y cuando los modelos de los circuitos estén bien comentados.

Para crear bancos de prueba (test-bench), es decir, crear los estímulos y ver los resultados durante la simulación.

Estado actual y alternativa

- En la actualidad el diseño mediante esquemas no es una alternativa realista en ningún proyecto, por ejemplo GForce4 tiene 65 Mtransistores y 800.000 líneas de código Verilog.
- La alternativa estándar es usar un HDL
 - Verilog: Costa Oeste de EEUU, para ASICs, menos verboso, más parecido a C, menos expresivo.
 - VHDL: Costa Este y Europa, para FPGAs, más verboso, más parecido a PASCAL y ADA, más expresivo.
- El diseño se sintetiza a partir de un HDL, pero gran parte del diseño y la verificación se realiza con lenguajes estándares
 - C y Matlab
- VHDL es el estándar para FPGAs en proyectos industriales de moderada complejidad en España.

VHDL. Historia

- Surge a principios de los '80s del proyecto DARPA (del Departamento de Defensa de los EE.UU.) llamado VHSIC (Very High Speed Integrated Circuits)
- Se utiliza como forma de describir circuitos integrados
 - Crisis del ciclo de vida del HW: Cada vez los circuitos integrados eran más complejos, y el coste de reponerlos cada vez era mayor, básicamente porque no estaban correctamente documentados. VHDL nació como una manera estándar de documentar circuitos.
 - El uso de VHDL permitió comprobar que el tiempo de diseño de los circuitos se reducía, porque se podían crear directamente de su descripción: utilidad de la síntesis.
 - En 1987 el trabajo se cedió al IEEE, y a partir de ese momento es un estándar abierto.
- VHDL: VHSIC Hardware Description Language
 - VHSIC: Very High Speed Integrated Circuits

VHDL. Evolución

1980: El departamento de defensa de los EEUU funda el proyecto para crear un HDL estándar dentro del programa VHSIC

1981: Woods Hole Workshop, reunión inicial entre el Gobierno, Universidades e Industria

1983: Se concedió a Intermetrics, IBM y Texas Instruments el contrato para desarrollar VHDL

1985: Versión 7.2 de dominio público.

1987: El IEEE lo ratifica como su estándar 1076 (VHDL-87)

1993: El lenguaje VHDL fue revisado y ampliado, pasando a ser estándar 1076 '93 (VHDL-93)

2000: Última modificación de VHDL

VHDL. ¿Futuro?

- Los lenguajes de descripción de hardware también tienen limitaciones:
 - Metodología de diseño nueva, exige un cambio de mentalidad con respecto al SW
 - No permiten reusar código SW para HW.
 - Poseen enorme reusabilidad intrínsica.
 - La decisión HW/SW se debe hacer antes de la codificación
 - La simulación es lenta, siempre hay que recurrir a una simulación algorítmica usando lenguajes SW
- Como respuesta a esto, hay varias iniciativas para describir HW usando lenguajes de alto nivel, tipo SW
 - Handel-C, System-C
 - Forge (Java)
 - Superlog
- VHDL es un lenguaje de presente, en el futuro ya se verá ...