(19) BUNDESREPUBLIK DEUTSCHLAND

Offenlegungsschrift

_® DE 197 05 196 A 1

DEUTSCHES PATENTAMT Aktenzeichen: 197 05 196.0 Anmeldetag: 12. 2.97

Offenlegungstag: 30. 10. 97

(3) Unionspriorität:

358/96

27.02.96 AT

(7) Anmelder:

Semperit Reifen AG, Traiskirchen, AT

(74) Vertreter:

Schneider, E., Dipl.-Phys., Pat.-Ass., 30826 Garbsen

72 Erfinder:

Stumpf, Horst, Dipl.-Ing., Enzesfeld, AT

- (54) Fahrzeugreifen
- Fahrzeugreifen mit einem Laufstreifenprofil, welches Profilabschnitte (2, 2') aufweist, die zumindest durch von einem Seitenrand des Laufstreifenprofils zum anderen Seitenrand durchgehende Quernuten (1; 1', 1") voneinander getrennt sind. Die Quernuten besitzen einen zumindest einmal gekrümmten Verlauf. In jedem Profilabschnitt (2, 2') ist zwischen je zwei aufeinander folgenden durchgehenden Quernuten (1; 1', 1") zumindest eine weitere Quernut (3) vorgesehen, die sich, vom Laufstreifenrand ausgehend, lediglich über einen Teil der Breite des Laufstreifenprofils erstreckt. Die kürzeren weiteren Quernuten (3) beginnen in aufeinanderfolgenden Profilabschnitten (2, 2') abwechselnd auf unterschiedlichen Seiten des Laufstreifenprofils. Zumindest über die in Umfangsrichtung gemessene größte Latschlänge des Reifens liegen ausschließlich Quernuten (1; 1', 1") vor, deren Verläufe sich sämtlich voneinander unterscheiden.

Beschreibung

Die Erfindung betrifft einen Fahrzeugreifen mit einem Laufstreifenprofil, welches Profilabschnitte aufweist, die zumindest durch von einem Seitenrand des Laufstreifenprofils zum anderen Seitenrand durchgehende Quernuten voneinander getrennt sind, welche Ouernuten zumindest einmal gekrümmt verlaufen, und wobei weiters in jedem Abschnitt zwischen je zwei aufeinander folgenden durchgehenden Quernuten zumin- 10 dest eine weitere Quernut vorgesehen ist, die sich, vom Laufstreifenrand ausgehend, lediglich über einen Teil der Breite des Laufstreifenprofils erstreckt.

Ein ähnliches Profil ist in der DE-A 39 07 074 berichtung des Reifens angeordnete Diagonalprofilelemente vorhanden sind. Im Reifenschulterbereich sind diese über den gesamten Reifen gleich ausgeführten Profilelemente verbreitert und abgewinkelt und weisen je eine zusätzliche Schulterrille auf. Diese Schulterrillen 20 sind am gesamten Reifen gleich lang. Damit soll ohne Umfangsrillen insbesondere ein Reifen mit hoher Drainagefähigkeit erzielt werden, der hohe Naßrutschfestigkeit und auch verminderte Geräuschemission aufweist. Letzteres dürfte aber aufgrund der über den gesamten 25 Reifen gleichmäßigen Profilgestaltung nur unbefriedigend erzielt werden.

Daß das Geräuschniveau des Reifenprofils gesenkt werden kann, indem unterschiedlich lange Einschnitte in verschiedenen Profilelementen nur im Reifenschulter- 30 bereich vorgesehen werden, ist beispielsweise aus der DE-A 40 07 760 bekannt. Die dort beschriebenen Maßnahmen bewirken eine Aufteilung der Schwingungsfrequenzen beim Abrollen des Reifens auf ein breiteres Frequenzspektrum und dadurch eine Rollgeräuschver- 35 minderung. Aufgrund der auf den Reifenschulterbereich begrenzten Bereich der Variationen, der zusätzlich durch die vorgegebene Größe der Profilelemente beschränkt ist, ist auch der zu erzielende Geräusch vermindernde Effekt etwas begrenzt.

Die in der EP-A-0 479 763 beschriebene Variation des Winkels der Basislinie jeder Quernut eines Laufstreifenprofils oder die in der EP-A-0 479 761 offenbarte spezielle Relation von Basis-Pitchlängen zu Bezugs-Pitchlängen sind, um nicht andere Reifeneigenschaften (Naß- 45 griff, Aquaplaning-Verhalten, Abriebswiderstand) nachteilig zu beeinflussen, auf eine gewisse Variationsbreite beschränkt.

Die Aufgabe der vorliegenden Erfindung ist es nun, zeugreifens zu finden, welche über die bekannten Verfahren der Pitchlängenvariation hinausgehend eine günstige Beeinflussung der Geräuschentwicklung des Reifens beim Abrollen und somit des Reifen/Fahrbahn-Geräusches erlaubt. Gleichzeitig soll jedoch eine Ausle- 55 sen. gung des Profils auf geforderte weitere Profileigenschaften, wie Aquaplaningverhalten, Abrieb etc. möglich sein.

Zur Lösung der obigen Aufgabe ist bei einem eingangs beschriebenen Reifen erfindungsgemäß vorgese- 60 hen, daß die kürzeren weiteren Quernuten in aufeinanderfolgenden Profilabschnitten abwechselnd auf unterschiedlichen Seiten des Laufstreifenprofils beginnen, und daß, zumindest über die in Umfangsrichtung gemessene größte Latschlänge, ausschließlich Quernuten vor- 65 liegen, deren Verläufe sich voneinander sämtlich unter-

Ein erfindungsgemäß gestaltetes Laufstreifenprofil ist

somit, gegenüber den bekannten Laufstreifenprofilen, wesentlich unregelmäßiger gestaltet. Dabei ist bei der erfindungsgemäßen Laufstreifenprofilstruktur in den Schulterbereichen eine höhere Aufgliederung des Profils mit Quernuten vorgesehen als im Mittelbereich. Dadurch wird der Anteil höherfrequenter Bereiche im beim Abrollen entstehenden Frequenzspektrum etwas erhöht, wobei diese Anteile jedoch die geringeren Amplituden besitzen. Bei herkömmlich gestalteten Laufstreifenprofilen entstehen die höherfrequenten Teile im Rollgeräusch vorrangig in der Reifenmitte, in den Schulterbereichen entstehen vorrangig die niederfrequenten Anteile, wobei letztere als wesentlich unangenehmer empfunden werden als höhere Frequenzen. Erfindungsschrieben, wobei spitzwinkelig gegenüber der Umfangs- 15 gemäß gestaltete Laufstreifenprofile unterstützen daher ein Entstehen von Frequenzspektren, wo die höheren Frequenzen geringere Amplitudenmaxima besitzen. Ein derartiges Rollgeräusch wird als wesentlich angenehmer empfunden als eines, bei dem die Amplitudenmaxima bei allen auftretenden Frequenzen in etwa gleich groß sind. Das Vermeiden von sich wiederholenden Quernutstrukturen, von der Anordnung her derart, daß zumindest jeweils über die Latschlänge keine gleichen Strukturen vorliegen, hat zusätzlich den Effekt, vorherrschende Frequenzen zu verhindern. In diesem Zusammenhang ist auch die abwechselnde Anordnung der kürzeren Quernuten von Bedeutung, da gerade diese Anordnung eine erwünschte Auslegung des Profils zum Erzielen weiterer wichtiger Profileigenschaften ermög-

> Gemäß einem weiteren Erfindungsmerkmal ist in jedem Abschnitt genau eine weitere, kürzere Quernut vorgesehen, wobei zumindest jede dritte kürzere Quernut eine von der vorhergehenden kürzeren Quernut oder den beiden vorhergehenden kürzeren Quernuten unterschiedliche Länge aufweist. Damit entsteht eine relativ "chaotische" Profilstruktur, bei der sich über den Reifenumfang wiederholende Profilausgestaltungen möglichst vermieden sind.

> Eine weitere, sich wiederholende Profilabschnitte möglichst vermeidende Laufstreifengestaltung ist gemäß einem weiteren Merkmal der Erfindung gegeben, wenn Profilabschnitte mit mehr als einer kürzeren Quernut vorgesehen sind, wobei die kürzeren Quernuten alle im wesentlichen die gleiche Länge aufweisen. Diese Ausführungsform gestattet eine gezielte Beeinflussung bestimmter Frequenzbereiche im Rollger-

Bei einer weiteren Ausführungsvariante sind Profileine Profilstruktur für einen Laufstreifen eines Fahr- 50 abschnitte mit mehr als einer kürzeren Quernut vorgesehen sind, wobei in diesen Profilabschnitten kürzere Quernuten unterschiedlicher Längen angeordnet sind. Dadurch lassen sich zusätzliche weitere Profileigenschaften, wie etwa die Profilstabilität, günstig beeinflus-

Eine für das Rollgeräusch vorteilhafte weitere Ausgestaltung sieht vor, daß sich zumindest in jedem dritten aufeinanderfolgenden Profilabschnitt die Anzahl der kürzeren Quernuten ändert.

Dabei ist es für die vorteilhafte Gliederung der Schulterbereiche günstig, wenn kürzere Quernuten vorgesehen sind, die nicht über die Mittelumfangslinie M-M hinausgehen.

Um Gestaltungsmöglichkeiten des Profils hinsichtlich einer gleichzeitigen Optimierung von Abriebsverhalten, Aquaplaningeigenschaften etc. offen zu halten, sollte die Anzahl der kürzeren Quernuten pro Profilabschnitt bis zu sechs, insbesondere bis zu vier, betragen.

In diesem Zusammenhang ist es zusätzlich von Vorteil, wenn die oder jede kürzere Quernut in einem Profilabschnitt in gleichem Sinn wie die diesen Abschnitt begrenzenden durchgehenden Quernuten gekrümmt

In der nachfolgenden Beschreibung wird die Erfindung anhand einiger in den Zeichnungen dargestellter Ausführungsbeispiele näher erläutert.

Dabei zeigt die Fig. 1 eine schematische Darstellung eines Teils einer Abwicklung eines Laufstreifens über 10 die gesamte Laufstreifenbreite mit einer Profilausbildung gemäß einer ersten Ausführungsform der Erfindung, Fig. 2 ist eine schematische Darstellung entsprechend Fig. 1 für eine zweite Ausführungsform der Erfindung, Fig. 2a zeigt einen Teil einer Abwicklung eines 15 erfindungsgemäßen Laufstreifenprofils entsprechend der schematischen Fig. 2 mit zusätzlichen Umfangsnuten und Fig. 3 ist ein Diagramm zur Erläuterung der einzelnen Laufstreifenbereiche und der bevorzugten Bereiche für die Neigung der Quernuten in den einzel- 20 nen Breitenbereichen des Laufstreifens.

Unter der Laufstreifenbreite wird hierbei die Breite des Reifens in der Bodenaufstandsfläche (Latschabdruckbreite) gemäß den E.T. R.T.O.-Standards verstanden. Der Laufstreifenbereich wird über seine Breite B 25 zugsweise maximal zwei gleich lange Quernuten 3 auf-(Breite in der Bodenaufstandsfläche) in verschiedene Zonen unterteilt: den Äquatorbereich BA, zwei halbmittige Bereiche BHR und BHL und zwei Schulterbereiche BSR und BSL (siehe auch Fig. 3). Für diese Zonen gelten folgende Beziehungen:

$$0.2 \times B < B_A < 0.4 \times B$$

$$0.1 \times B < B_{HL,R} < 0.3 \times B$$

$$0.1 \times B < B_{HLR} < 0.3 \times B$$

$$B_{SL} + B_{HL} + B_A + B_{HR} + B_{SR} = B$$

Dabei kann $B_{SL} = B_{SR}$ und/oder $B_{HL} = B_{HR}$ sein.

Für bezüglich der Umfangsmittellinie asymmetrisch gestaltete Laufstreifenprofile brauchen BSR und BSL bzw. BHR und BHL nicht übereinzustimmen und es kann auch der Äquatorbereich BA aus der Mitte des Laufstreifens asymmetrisch verschoben sein.

Erfindungsgemäß gestaltete Laufstreifenprofile besitzen von ihrer Grundstruktur her, wie in Fig. 1 dargestellt ist, vorzugsweise über die gesamte Laufstreifenbreite B verlaufende geschwungene Quernuten 1, die insbesondere in der Form eines großen S oder eines 50 Teiles eines großen S gestaltet sind. Wesentlich ist nun, daß die Quernuten 1 unterschiedliche Strukturen bzw. unterschiedliche Verläufe besitzen, so daß beim Abrollen des Reifens mit einem erfindungsgemäßen Laufstreifenprofil unter normalen Betriebsbedingungen zumin- 55 dest über die Latschlänge (Bodenaufstandsflächenlänge) keine in ihrem Verlauf übereinstimmenden Quernuten vorliegen. Idealerweise wird das Profil so gestaltet, daß sich sämtliche Quernuten 1 über den Profilumfang voneinander unterscheiden.

Bevorzugt, wie insbesondere Fig. 3 zeigt, wird der Verlauf der geschwungenen Ouernuten 1 so gewählt, daß sie an den Laufstreifenrändern Winkel αL, αR von 70 bis 110° mit der Mittelumfangslinie M-M einschließen und in der Laufstreifenmitte einen Winkel β von 10 bis 65 85°. Für eine einzelne Quernut 1 betrachtet kann dabei $|90^{\circ} - \alpha_L| = |90^{\circ} - \alpha_R|$ sein.

Zwischen je zwei in Umfangsrichtung aufeinanderfol-

genden Quernuten 1 befindet sich ein Profilabschnitt 2. In jedem derartig von den durchgehenden Quernuten 1 definierten Abschnitt sind nun erfindungsgemäß, abwechselnd an den Laufstreifenrändern der linken und 5 rechten Schulterbereiche BSL und BSR beginnend, Quernuten 3 vorgesehen, die nicht über die gesamte Laufstreifenbreite B verlaufen. Beim Ausführungsbeispiel gemäß Fig. 1 reichen diese zusätzlichen Quernuten 3 unterschiedlich weit über den Laufstreifen. So reicht etwa die in Fig. 1 unterste Quernut 3a vom rechten Schulterbereich BSR bis zum Beginn des gegenüberliegenden Schulterbereiches BsL. Die beiden nächsten zusätzlichen Quernuten 3b in den beiden nächsten Abschnitten reichen von ihrem Beginn im Schulterbereich bis zum Beginn des gegenüberliegenden halbmittigen Bereiches BHL bzw. BHR. Die beiden folgenden kurzen Quernuten 3c enden genau in der Laufstreifenmitte an der Mittelumfangslinie M-M. Wie durch die Quernuten 3d gezeigt ist, können diese auch so kurz gehalten werden, daß sie nicht über den Schulterbereich BSL bzw. BSR hinausgehen, in dem sie beginnen.

Die Abfolge verschieden langer zusätzlicher Quernuten 3 in hintereinander liegenden Profilabschnitten 2 des Laufstreifens kann beliebig variiert werden, wobei voreinanderfolgen und dann die Länge der darauffolgenden Quernut 3 unterschiedlich gewählt wird. Bei statistischer Variation der Längen aufeinanderfolgender kurzer Quernuten 3 wird eine für die Geräuschminderung 30 besonders vorteilhafte regellose Profilausgestaltung erzielt.

Wie auch aus Fig. 1 hervorgeht, sind die zusätzlichen Quernuten 3 in vorteilhafter Weise zumindest in ihren Anfangsbereichen im wesentlichen gleichsinnig ge-35 krümmt wie die durchgehenden Quernuten 1 und sind mit ihren Anfangsbereichen auch ungefähr in der gleichen Richtung orientiert.

Beim Ausführungsbeispiel gemäß Fig. 2 ist die Anzahl der zusätzlichen Quernuten 3 in den zwischen den durchgehenden Nuten 1', 1" definierten Profilabschnitten 2' unterschiedlich. Auch hier gilt, daß die Anzahl der zusätzlichen Quernuten 3 in aufeinanderfolgenden Abschnitten 2' des Laufstreifens beliebig variiert werden kann, wobei vorzugsweise maximal zweimal gleich viele 45 Quernuten 3 aufeinanderfolgen und dann die Anzahl der darauffolgenden Quernuten 3 geändert wird. Um ein möglichst "chaotisches" Profilmuster zu erzielen, können die Anzahlen der Quernuten 3 pro Abschnitt 2' statistisch variiert werden. So sind in den beiden untersten Abschnitten 2' der Fig. 2 jeweils vier kurze zusätzliche Quernuten 3e in je einem Abschnitt 2' vorgesehen, der von zwei durchgehenden Quernuten 1', 1" mit jeweils etwas unterschiedlichem Krümmungsverlauf definiert wird. Der Krümmungsverlauf der Quernuten 1', 1" ist dabei derart gewählt, daß auf einer Laufstreifenseite ein großer Abstand zwischen den Nuten 1', 1" gegeben ist, in welchem Schulterbereich BSL dann die kurzen Quernuten 3e vorgesehen sein können. Der anschlie-Bende Abschnitt 2' zwischen den beiden Quernuten 1', 1" weist seine größte Länge im gegenüberliegenden Schulterbereich BSR auf, wo nun die kurzen Quernuten 3e - in gleicher Anzahl wie im vorhergehenden Abschnitt 2' - vorgesehen sind. Im darauffolgenden Abschnitt 2', zwischen den durchgehenden Quernuten 1' und 1", ist die Anzahl der zusätzlichen Quernuten, diesmal wieder im linken Schulterbereich BSL, bereits geän-

Auch bei diesem Ausführungsbeispiel besitzen die

Quernuten 1', 1" zumindest im wesentlichen einen Verlauf in der Form eines S. Für die Winkel α'_L , α'_R , β' sowie die Winkel α'_L und α''_R gelten die in der Beschreibung zum Ausführungsbeispiel gemäß Fig. 1 erwähnten Größenangaben. Der Winkel β'' , den die Quernuten 1", die in ihrem Mittelbereich einen zum Mittelbereich der Quernuten 1' gegensinnigen Verlauf besitzen, mit der Mittelumfangslinie M-M einschließen, wird ebenfalls im Winkelbereich des Winkels β (Fig. 3) gewählt, mit dem Unterschied, daß der Winkel β'' bezüglich der Umfangsrichtung in die andere Richtung gemessen wird. Wie schon beim Ausführungsbeispiel gemäß Fig. 1 beschrieben unterscheidet sich zumindest der Verlauf jener Quernuten 1', 1" voneinander, die unter normalen Betriebsbedingungen über den Bereich der Latschlänge 15 der Reifen vorliegen.

Bei diesem Ausführungsbeispiel kann zusätzlich innerhalb eines Profilabschnittes 2' die Länge der kurzen Quernuten 3 variiert werden, beispielsweise indem einzelne kurze Quernuten 3 nur in den Schulterbereichen 20 BSR und BSL oder auch in den Äquatorbereich BA hinein verlaufen. Von der Anzahl der kurzen Quernuten 3 her werden in einem Profilabschnitt 2' insbesondere bis zu sechs, vorzugsweise bis zu vier, Quernuten 3 angeordnet.

Ein weiteres Ausführungsbeispiel in Weiterbildung des Schemas der Fig. 2 ist in Fig. 2a dargestellt, wobei hier in bekannter Weise noch zwei Umfangsnuten 4 vorgesehen sind. Diese Umfangsnuten 4 befinden sich hier symmetrisch zu beiden Seiten der Mittelumfangslinie M-M, könnten aber selbstverständlich auch asymmetrisch dazu liegen, wie auch die Anzahl der Umfangsnuten 4 unterschiedlich gewählt werden kann. Vorteilhafterweise verlaufen die Umfangsnuten im wesentlichen parallel zur Umfangsrichtung des Reifens. Durch die Umfangsnuten 4 und die durchgehenden Quernuten 1 entstehen Blockstrukturen 2", die sehr unterschiedlich sein können.

Sind in einem Profilabschnitt mehr als eine kürzere Quernut angeordnet, so ist es günstig, deren Abstände 40 untereinander und die Abstände zu den Quernuten unter Anwendung des bekannten Verfahrens der Pitchlängenvariation, zu optimieren, um eine zusätzliche günstige Beeinflussung des Rollgeräusches zu erzielen. Auch die gegenseitigen Abstände der Quernuten werden vorteilhafterweise entsprechend ermittelt.

Zusätzlich ist es von Vorteil, wenn Reifen mit erfindungsgemäß gestalteten Profilen mit einer besonderen Außenkontur im Laufstreifenbereich versehen werden. Die Auslegung erfolgt derart, daß bei montiertem und aufgepumptem Reifen (normale Betriebsbedingungen) die Profilaußenkontur unterschiedliche Krümmungsradien in den Bereichen BA, BHL und BHR sowie BSL und BSR besitzt, wobei der Radius im Aquatorbereich BA am größten ist, in den halbmittigen Bereichen BHL bzw. BHR 55 etwas geringer ist und in den Schulterbereichen BSL bzw. BSR am geringsten ist.

Patentansprüche

1. Fahrzeugreifen mit einem Laufstreifenprofil, welches Profilabschnitte (2, 2') aufweist, die zumindest durch von einem Seitenrand des Laufstreifenprofils zum anderen Seitenrand durchgehende Quernuten (1; 1', 1") voneinander getrennt sind, 65 welche Quernuten (1; 1', 1") zumindest einmal gekrümmt verlaufen, und wobei weiters in jedem Abschnitt (2, 2') zwischen je zwei aufeinanderfolgen-

den durchgehenden Quernuten (1; 1', 1") zumindest eine weitere Quernut (3) vorgesehen ist, die sich, vom Laufstreifenrand ausgehend, lediglich über einen Teil der Breite des Laufstreifenprofils erstreckt, dadurch gekennzeichnet, daß die kürzeren weiteren Quernuten (3) in aufeinander folgenden Profilabschnitten (2, 2') abwechselnd auf unterschiedlichen Seiten des Laufstreifenprofils beginnen, und daß, zumindest über die in Umfangsrichtung gemessene größte Latschlänge, ausschließlich Quernuten (1; 1', 1") vorliegen, deren Verläufe sich sämtlich voneinander unterscheiden.

2. Reifen nach Anspruch 1, dadurch gekennzeichnet, daß in jedem Profilabschnitt (2) genau eine weitere, kürzere Quernut (3a, 3b, 3c, 3d) vorgesehen ist, wobei zumindest jede dritte kürzere Quernut eine von der vorhergehenden kürzeren Quernut oder den beiden vorhergehenden kürzeren Quernuten unterschiedliche Länge aufweist.

3. Reifen nach Anspruch 1, dadurch gekennzeichnet, daß Profilabschnitte (2') mit mehr als einer kürzeren Quernut vorgesehen sind, wobei die kürzeren Quernuten (3e) alle im wesentlichen die gleiche Länge aufweisen.

4. Reifen nach Anspruch 1, dadurch gekennzeichnet, daß Profilabschnitte (2') mit mehr als einer kürzeren Quernut vorgesehen sind, wobei in diesen Profilabschnitten (2') kürzere Quernuten unterschiedlicher Längen angeordnet sind.

5. Reifen nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß sich zumindest in jedem dritten aufeinanderfolgenden Profilabschnitt (2') die Anzahl der kürzeren Quernuten (3e) ändert.

6. Reifen nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß kürzere Quernuten (3e) vorgesehen sind, die nicht über die Mittelumfangslinie (M-M) hinausgehen.

7. Reifen nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß Profilabschnitte (2') vorgesehen sind, die bis zu sechs, insbesondere bis zu 4, kürzere Quernuten (3e) aufweisen.

8. Reifen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die oder jede kürzere Quernut (3) in einem Profilabschnitt (2, 2') in gleichem Sinn wie die diesen Abschnitt (2, 2') begrenzenden durchgehenden Quernuten (1) gekrümmt verläuft.

9. Reifen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zumindest eine, vorzugsweise gerade verlaufende Umfangsnut (4) vorgesehen ist, welche zusammen mit den Quernuten (1) die Profilabschnitte (2, 2') des Laufstreifens unter Bildung von Profilblöcken und dergleichen aufgliedert.

10. Reifen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß sich der unterschiedliche Verlauf aufeinanderfolgender durchgehender Quernuten (1) durch Variation der Krümmung ergibt.

Hierzu 2 Seite(n) Zeichnungen

Nummer: Int. Cl.⁶: **DE 197 05 196 A1 B 60 C 11/117**30. Oktober 1997

Offenlegungstag:

Nummer: Int. Cl.⁶:

Offenlegungstag:

DE 197 05 196 A1 B 60 C 11/11730. Oktober 1997

Fig. 2a

Fig. 3

702 044/405

DERWENT-ACC-NO: 1997-364098

DERWENT-WEEK: 199804

COPYRIGHT 2010 DERWENT INFORMATION LTD

TITLE: Tyre tread having series of transverse

grooves curving across full width of tyre includes sequences of intermediate grooves with varied curvature and length, in broken pattern tending to generate low amplitude, higher and random frequencies for reduced

noise perception

INVENTOR: STUMPF H

PATENT-ASSIGNEE: SEMPERIT REIFEN AG[SEMP]

PRIORITY-DATA: 1996AT-000358 (February 27, 1996)

PATENT-FAMILY:

PUB-NO	PUB-DATE	LANGUAGE
AT 9600358 A	June 15, 1997	DE
DE 19705196 A1	October 30, 1997	DE
AT 403358 B	December 15, 1997	DE

APPLICATION-DATA:

PUB-NO	APPL-DESCRIPTOR	APPL-NO	APPL-DATE
AT 9600358A	N/A	1996AT- 000358	February 27, 1996
AT 403358B	N/A	1996AT- 000358	February 27, 1996
DE 19705196A1	Previous Publ	1997DE- 1005196	February 12, 1997

INT-CL-CURRENT:

TYPE IPC DATE

CIPS B60C11/00 20060101 CIPS B60C11/04 20060101

ABSTRACTED-PUB-NO: AT 9600358 A

BASIC-ABSTRACT:

This tyre tread pattern has continuous, separating, transverse grooves (1) running edge to edge, each having curved sections. Further intermediate transverse grooves, start from one edge of the tread, and run only across a part of its width. The further transverse grooves succeed circumferentially, alternating on opposite sides of the tread. Exclusively transverse grooves (1) are present over the greater part of the circumferential contact surface, with differing, broken progressions.

USE - To make a tyre generating reduced perceived noise.

ADVANTAGE - This tread pattern is a development of the known principles of pitch length variation, to minimise noise generation, when rolling on the road. The pattern may be designed to include other desirable properties, such as antiaquaplaning- and good wear resisting characteristics. Because the shoulder regions are more divided than the centre, emissions are raised in frequency, but at the same time are reduced in amplitude. More conventional tyres tend to generate higher frequencies in the centre, with audibly unpleasant, low frequencies generated at the shoulders. Predominant frequencies are prevented by irregularities of the new tread pattern, due to the interruptions. Further, irregular, shorter grooves increase the chaotic noise spectrum generated. Further perceived noise reduction effects are discussed, and tread pattern size relationships are provided in the text.

CHOSEN-DRAWING: Dwg.2a/3

TITLE-TERMS: TYRE TREAD SERIES TRANSVERSE GROOVE CURVE

FULL WIDTH SEQUENCE INTERMEDIATE VARY
LENGTH BREAK PATTERN TEND GENERATE LOW
AMPLITUDE HIGH RANDOM FREQUENCY REDUCE

NOISE PERCEPTION

DERWENT-CLASS: A95 Q11

CPI-CODES: A12-T01B;

ENHANCED-POLYMER-INDEXING: Polymer Index [1.1] 018;

H0124*R;

Polymer Index [1.2] 018; ND01; Q9999 Q9234 Q9212; Q9999 Q9256*R Q9212; K9416; B9999 B5378 B5276; B9999 B3974*R B3963 B3930 B3838 B3747; B9999 B5287 B5276; K9392;

SECONDARY-ACC-NO:

CPI Secondary Accession Numbers: 1997-116722