Sıfır Örnek ile Nesne Tanıma, Nesne Tespiti ve Görüntü Alt-yazılama

Sabancı Üniversitesi – Veri Bilimi Yaz Okulu

Gökberk Cinbiş

Department of Computer Engineering

Machine Learning in Nutshell

- Tens of thousands of machine learning algorithms
 - Hundreds new every year

- Decades of ML research oversimplified:
 - All of Machine Learning:
 - Learn a mapping from input to output $f: X \rightarrow Y$
 - e.g. X: emails, Y: {spam, notspam}

Slide by Dhruv Batra

Supervised Learning

- Input: x (images, text, emails...)
 Output: y (spam or non-spam...)
- (Unknown) Target Function
 f: X → Y (the "true" mapping / reality)
- Training dataset: $(x_1,y_1), (x_2,y_2), ..., (x_N,y_N)$
- Model / Hypothesis Class
 - $-g: X \rightarrow Y$
- Learning = Search in hypothesis space
 - Find best g in model class.

Slide adapted from Dhruv Batra

Supervised Learning

- Input: x (images, text, emails...)
 Output: y (spam or non-spam...)
- (Unknown) Target Function
 f: X → Y (the "true" mapping / reality)
- Training dataset: (x₁,y₁), (x₂,y₂), ..., (x_N,y_N)
- Model / Hypothesis Class
 - $g: X \rightarrow Y$
- Learning = Search in hypothesis space
 - Find best g in model class.

Slide adapted from Dhruv Batra

Supervised training - Image classification

Supervised training - Object detection

Supervised training - Semantic segmentation

How many training examples do we need?

75.000 non-abstract nouns from WordNet*, some of which are rare

^{*} Torralba, et al. 2008.

How many training examples do we need?

75.000 non-abstract nouns from WordNet*, some of which are rare

^{*} Torralba, et al. 2008.

How many training examples do we need?

... plus object combinations, scenes

A tennis player hitting a ball

Fork with spaghetti

Wedding car

- It is not feasible to collect several fully annotated samples per "class"
- (... and *categorization* is a questionable paradigm)

Deng et al. CVPR 2009

Learning with Incomplete Supervision

- The main goal: minimize the data collection and/or annotation effort
- Between the two extremes of supervised and unsupervised learning
- Some examples that we focus in our research group:
 - Semi-supervised learning (supervised+unsupervised)
 - Transductive learning (unsupervised test examples)
 - Weakly-supervised localization (training images with labels only)
 - Zero-shot learning (learning novel classes based on auxiliary knowledge only)
 - One-shot learning (learning from a single example)

Learning with Incomplete Supervision

- The main goal: minimize the data collection and/or annotation effort
- Between the two extremes of supervised and unsupervised learning
- Some examples that we focus in our research group:
 - Semi-supervised learning (supervised+unsupervised)
 - Transductive learning (unsupervised test examples)
 - Weakly-supervised localization (training images with labels only)
 - Zero-shot learning (learning novel classes based on auxiliary knowledge only)
 - One-shot learning (learning from a single example)

Learning with Incomplete Supervision

- The main goal: minimize the data collection and/or annotation effort
- Between the two extremes of supervised and unsupervised learning
- Some examples that we focus in our research group:
 - Semi-supervised learning (supervised+unsupervised)
 - Transductive learning (unsupervised test examples)
 - Weakly-supervised localization (training images with labels only)
 - Zero-shot learning (learning novel classes based on auxiliary knowledge only)
 - One-shot learning (learning from a single example)

Part 1: Gradient Matching Networks

IEEE / CVF Conf. on Computer Vision and Pattern Recognition (CVPR), June 2019

Part 2: Zero-shot Object Detection

British Machine Vision Conference (BMVC), September 2018

Part 3: Image Captioning with Unseen Objects

♦: A yellow and black **train** ♦: A couple of **elephants** traveling down the road.

driving down a road.

standing next to each other.

★: A yellow and black bus ★: A couple of zebra standing ★: A piece of pizza on a next to each other.

♦: A piece of cake on a white plate.

white plate.

British Machine Vision Conference (BMVC), September 2019

Outline

- Introduction
- Gradient Matching Networks
- Zero-Shot Object Detection by Hybrid Region Embedding
- Image Captioning with Unseen Objects
- Conclusions

Zero-shot object recognition

Seen Classes

cow

bird

Unseen Classes

bat monkey

i - Learn a classification model on seen classes ii - Use the model for both sets

Semantic Class Embedding Space

Mainstream approach

A weakness in purely discriminative approaches

Akata et al. "Label-embedding for attribute-based classification." CVPR 2013.

Generative-model-based approaches

Xian et al. "Feature generating networks for zero-shot learning." CVPR 2018. Verma et al. "Generalized zero-shot learning via synthesized examples." CVPR 2018.

Generative-model-based approaches

Three important inter-connected challenges:

- **Semantics:** How do we enforce producing samples that truly belong to the target class?
- **Variance**: How do we enforce producing a variety of samples for a given embedding?
- Xian et al. "Fe Data quality: How do we make sure that the resulting training examples is actually useful? (ie. will the classifier trained over them be accurate?)

Verma et al.

Training with real and generated samples

Gradient matching loss

$$\mathcal{L}_{GM} = \mathbb{E}_{\theta} \left[1 - \frac{g_r(\theta)^T g_f(\theta)}{||g_r(\theta)||_2 ||g_f(\theta)||_2} \right]$$

$$g_r(\theta) = \mathbb{E}_{(x,a) \sim p_{\text{data}}} \left[\nabla_{\theta} \mathcal{L}(x, a, f_{\theta}) \right]$$

$$g_f(\theta) = \mathbb{E}_{\tilde{x} \sim \mathcal{G}(z, a), a \sim p_{\text{data}}} \left[\nabla_{\theta} \mathcal{L}(\tilde{x}, a, f_{\theta}) \right]$$

To approximate the expectation over θ

$$\mathcal{L}_{GM} = \underline{\mathbb{E}_{\theta}} \left[1 - \frac{g_r(\theta)^T g_f(\theta)}{||g_r(\theta)||_2 ||g_f(\theta)||_2} \right]$$

Repeatedly:

- train the classification model N epochs,
- re-initialize all parameters and reset the optimizer state.

Gradient matching network (GMN)

Gradient matching loss
+ adversarial loss (allows unsupervised learning)

Experiments - Datasets

Caltech-UCSD Birds-200-2011 (CUB) - 200 bird species - 12k

SUN Attribute (SUN) - 717 scene categories - 14k

Animals with Attributes (AWA) - 50 animal categories - 30k

Wah et al. "The Caltech-UCSD Birds-200-2011 Dataset", 2011.

Patterson et al. "Sun attribute database: Discovering, annotating, and recognizing scene attributes" CVPR, 2012. Lampert et al. "Attribute-based classification for zero-shot visual object categorization" TPAMI, 2013.

Evaluation Metrics

Normalized score (NS): average of the top-1 per-class scores

- T-1 : NS of <u>unseen</u> classes in <u>ZSL</u> setting
- u: NS of <u>unseen</u> classes in <u>GZSL</u> setting
- s: NS of seen classes in GZSL setting
- h: harmonic mean of **u** and **s** $\frac{2 \times \mathbf{u} \times \mathbf{s}}{\mathbf{u} + \mathbf{s}}$

Zero-shot prediction (unseen classes)

1		CUB	SUN	\mathbf{AWA}
		T-1	T-1	T-1
1	Zhang et al. '18	52.6	61.7	67.4
2	Bucher et al. '17	57.8	60.4	66.3
3	Xian et al DEVISE '18	60.3	60.9	66.9
4	Xian et al ALE '18	61.5	62.1	68.2
5	Xian et al Softmax '18	57.3	60.8	68.2
6	Verma et al. '18	59.6	63.4	69.5
7	Felix et al cycle-WGAN '18	57.8	59.7	65.6
8	Felix et al cycle-CLSWGAN '18	58.4	60.0	66.3
9	$\operatorname{Bilinear} \mid \operatorname{LN} \mid \mathcal{L}_{\operatorname{cWGAN}}^{\operatorname{S}}$	61.7	62.7	67.3
10	Bilinear LN $\mathcal{L}_{\text{gWGAN}}^{\tilde{S}} + \mathcal{L}_{\text{CLS}}$	61.9	62.7	66.4
11	Bilinear LN $\mathcal{L}_{cWGAN}^{S} + \mathcal{L}_{CYCLE}$	62.2	62.7	68.2
12	$\begin{array}{c cccc} \text{Bilinear} & \text{LN} & \mathcal{L}_{\text{cWGAN}}^{\text{S}} + \mathcal{L}_{\text{GM}} \; (\textit{Ours}) \\ \text{Linear} & \text{LN} & \mathcal{L}_{\text{cWGAN}}^{\text{S}} + \mathcal{L}_{\text{GM}} \; (\textit{Ours}) \\ \text{Bilinear} & \text{AC} & \mathcal{L}_{\text{cWGAN}}^{\text{S}} + \mathcal{L}_{\text{GM}} \; (\textit{Ours}) \\ \text{Linear} & \text{AC} & \mathcal{L}_{\text{cWGAN}}^{\text{S}} + \mathcal{L}_{\text{GM}} \; (\textit{Ours}) \end{array}$	67.0	63.6	72.0
13	Linear LN $\mathcal{L}_{cWGAN}^{S} + \mathcal{L}_{GM}$ (Ours)	63.1	58.9	70.1
14	Bilinear AC $\mathcal{L}_{cWGAN}^{S} + \mathcal{L}_{GM}$ (Ours)	65.7	62.6	69.7
15	Linear AC $\mathcal{L}_{cWGAN}^{S} + \mathcal{L}_{GM}$ (Ours)	63.8	61.1	66.8

Generalized zero-shot prediction (seen + unseen classes)

				CUB			SUN			AWA	
			u	\mathbf{s}	h	u	\mathbf{s}	h	u	\mathbf{s}	h
1	Zhang et al. '18		31.5	40.2	35.3	41.2	26.7	32.4	38.7	74.6	51.0
2	Bucher et al. '17		28.8	55.7	38.0	40.5	37.2	38.8	2.3	90.2	4.5
3	Xian et al DEVISE '18		52.2	42.4	46.7	38.4	25.4	30.6	35.0	62.8	45.0
4	Xian et al ALE '18		40.2	59.3	47.9	41.3	31.1	35.5	47.6	57.2	52.0
5	Xian et al Softmax '18		43.7	57.7	49.7	42.6	36.6	39.4	57.9	61.4	59.6
6	Verma et al. '18		41.5	53.3	46.7	40.9	30.5	34.9	56.3	67.8	61.5
7	Felix et al cycle-WGAN '18		46.0	60.3	52.2	48.3	33.1	39.2	56.4	63.5	59.7
8	Felix et al cycle-CLSWGAN '18		45.7	61.0	52.3	49.4	33.6	40.0	56.9	64.0	60.2
9	Bilinear LN	$\mathcal{L}_{ ext{cWGAN}}^{ ext{S}}$	45.6	59.2	51.5	50.6	30.3	37.3	53.5	72.0	61.4
10	Bilinear LN	$\mathcal{L}_{ ext{cWGAN}}^{ ext{S}} + \mathcal{L}_{ ext{CLS}}$	45.5	58.9	51.4	50.6	30.3	37.3	52.7	71.0	60.5
11	Bilinear LN	$\mathcal{L}_{ ext{cWGAN}}^{ ext{S}} + \mathcal{L}_{ ext{CYCLE}}$	51.1	54.9	52.9	50.6	30.3	37.3	55.4	70.1	61.8
12	Bilinear LN	$\mathcal{L}_{\text{cWGAN}}^{\text{S}} + \mathcal{L}_{\text{GM}} (Ours)$	54.7	58.4	56.5	42.5	35.5	38.7	61.1	71.3	65.8
13	Linear LN	$\mathcal{L}_{cWGAN}^{S} + \mathcal{L}_{GM} (Ours)$	48.5	62.8	54.7	42.0	39.3	40.7	57.1	81.3	67.1
14	Bilinear AC	$\mathcal{L}_{\underline{c}WGAN}^{S} + \mathcal{L}_{GM} (Ours)$	53.8	58.2	55.9	43.2	36.2	39.4	54.8	74.1	63.0
15	Linear AC	$\mathcal{L}_{\text{cWGAN}}^{\text{S}} + \mathcal{L}_{\text{GM}} (Ours)$	45.8	65.5	53.9	53.2	33.0	42.8	46.8	84.8	60.3

In summary

- a novel proxy loss for zero-shot learning
 - O better estimation of class distributions
- state of the art on CUB, AWA and SUN

Source code: https://mbsariyildiz.github.io/

Outline

- Introduction
- Gradient Matching Networks
- Zero-Shot Object Detection by Hybrid Region Embedding
- Image Captioning with Unseen Objects
- Conclusions

Motivation

Detection in the Wild using text-based queries

Robotic

Our approach

- → Our method consists of two components:
 - (i) utilize a convex combination of class embeddings,
 - ♦ (ii) directly learn to map regions to the space of class embeddings.
- → Zero-shot object detection within the YOLO detection framework.

Convex Combination of Class Embeddings

Represent a given image region (i.e. a bounding box) as the convex combination of training class embeddings.

$$f_{\text{CC}}(x,b,y) = \frac{\phi_{\text{CC}}(x,b)^{\text{T}} \boldsymbol{\eta}(y)}{\|\phi_{\text{CC}}(x,b)\| \|\boldsymbol{\eta}(y)\|}$$

$$\phi_{\text{CC}}(x,b) = \frac{1}{\sum_{y \in \mathcal{Y}_s} p(y|x,b)} \sum_{y \in \mathcal{Y}_s} p(y|x,b) \eta(y)$$

Convex Combination of Class Embeddings

Represent a given image region (i.e. a bounding box) as the convex combination of training class embeddings.

Sum of class embeddings, weighted by posterior probability

$$f_{\text{CC}}(x,b,y) = \frac{\phi_{\text{CC}}(x,b)^{\text{T}} \eta(y)}{\|\phi_{\text{CC}}(x,b)\| \|\eta(y)\|}$$

$$\phi_{\text{CC}}(x,b) = \frac{1}{\sum_{y \in \mathcal{Y}_s} p(y|x,b)} \sum_{y \in \mathcal{Y}_s} p(y|x,b) \eta(y)$$

Region Scoring by Label Embedding

- The goal is to directly model the compatibility between the visual features of image regions and class embeddings.
- The equation can be interpreted as a dot product between L2-normalized image region descriptors and class embeddings.

Hybrid region embedding

The two scores are accumulated within the loss function:

$$L_{\text{LE}}(x,b,y) = \frac{1}{|\mathcal{Y}_s| - 1} \sum_{y' \in \mathcal{Y}_s \setminus \{y\}} \max \left(0, 1 - f_{\text{LE}}(x,b,y) + f_{\text{LE}}(x,b,y') \right)$$

Experimental Results on PASCAL VOC

- Select 16 of the 20 classes as the training set.
- Remaining 4 classes as the test set. These test classes are car, dog, sofa and train respectively.
- Class-attribute relations of aPaY dataset are used for semantic descriptions.

Experimental Results on PASCAL VOC

- Select 16 of the 20 classes as the training set.
- Remaining 4 classes as the test set. These test classes are car, dog, sofa and train respectively.
- Class-attribute relations of aPaY dataset are used for semantic descriptions.
- 65.6% mAP on seen classes, 54.6% mAP on unseen ones.

Method	Test split	aeroplane	bicycle	bird	boat	bottle	pns	cat	chair	cow	dining table	horse	motorbike	person	potted plant	sheep	tvmonitor	car	dog	sofa	train	mAP (%)
LE	v	.46	.50	.44	.28	.12	.59	.44	.20	.11	.38	.35	.47	.65	.16	.18	.53	+,	-		-	36.8
	t	-	-	-	-	-	7	-	-		35	-	-	-	-	7	7	.54	.79	.45	.12	47.9
	v+t	.34	.48	.40	.23	.12	.34	.28	.12	.09	.32	.28	.36	.60	.15	.13	.50	.27	.26	.20	.05	27.4
	v	.69	.74	.72	.63	.43	.83	.73	.43	.43	.66	.78	.80	.75	.41	.62	.75	21		-	12	65.0
CC	t	-	-	-	-	~	-	-	-	1		-	-	-	-	-	-	.60	.85	.44	.27	53.8
	v+t	.67	.73	.70	.59	.41	.61	.58	.32	.32	.65	.74	.68	.72	.39	.57	.72	.49	.24	.10	.15	52.0
Н	v	.70	.73	.76	.54	.42	.86	.64	.40	.54	.75	.80	.80	.75	.34	.69	.79		-	7	171.	65.6
	t	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	.55	.82	.55	.26	54.2
	v+t	.68	.72	.74	.48	.41	.61	.48	.25	.48	.73	.75	.71	.73	.33	.59	.57	.44	.25	.18	.15	52.3

Example detections

Gokberk Cinbis - 2019

Outline

- Introduction
- Gradient Matching Networks
- Zero-Shot Object Detection by Hybrid Region Embedding
- Image Captioning with Unseen Objects
- Conclusions

Problem Statement

- Motivation: Overcome the data collection bottleneck in image captioning.
- Task: Define a new paradigm for generating captions of unseen classes.
- **Key Idea:** Use zero-shot object detector with template based sentence generator.

Zero-shot Image Captioning

Image Captioning

Visual Input

Textual Input

"a person riding a horse"

Zero-shot Image Captioning

 $\{person, horse\} \in unseen classes$

Zero-shot Image Captioning

 $\{person, horse\} \in unseen classes$

	Image Captioning	Partial Zero-Shot Image Captioning	True Zero-Shot Image Captioning
Visual Input			
Textual Input	"a person riding a horse "	"a person rid ing a horse "	"a person riding a korse"

Zero-Shot Object Detector

Zero-Shot Object Detector

Zero-Shot Object Detector

* Lu, Jiasen, et al. "Neural baby talk." CVPR 2018.

Gokberk Cinbis - 2019 51

Generation*

Generalized Zero-shot Detection

- There can still be a significant bias towards the seen classes.
- Aim to overcome this problem by introducing a scaling coefficient:

$$f(x,c,i) = \begin{cases} \alpha f(x,c,i), & if \ c \in \hat{Y}_s \\ f(x,c,i), & otherwise \end{cases}$$

Experimental Setup

- Dataset: MSCOCO splits for evaluating zero-shot image captioning.
- Evaluation: F1 score, METEOR, SPICE, ROUGE-L, BLEU metrics.
- Class Embeddings: Use 300-dim word2vec of class embeddings.
- ZSD Evaluation: COCO validation images consist of only unseen objects.
- GZSD Evaluation: Use COCO val5k split, which contains both seen and unseen class instances.

Generalized-ZSD results

Classes	GZSD w/o α	GZSD				
Bottle	0	0.8				
Bus	0	21.4				
Couch	2.7	4.9				
Microware	0	1.2				
Pizza	0	4.8				
Racket	0	0.7				
Suitcase	0	9.1				
Zebra	0	15.8				
U-mAP(%)	0.3	7.3				
S-mAP(%)	27.4	19.2				
Harmonic Mean	0.7	10.6				

Image Captioning Results

Comparison Results

Image Captioning Results

Comparison Results

Qualitative Results

Image captioning results of images which consist of seen and unseen classes:

A small white dog is sitting on a couch.

A red bus is driving down the street.

A couple of zebra standing in a field.

A tennis player is about to hit a racket.

A white plate topped with a piece of pizza.

A kitchen with a microwave and a counter.

In summary,

- a new paradigm for generating captions of unseen classes.
- a novel approach for generalized zero-shot object detection problem.

Conclusions

- Towards semantically rich recognition systems, build models that are
 - more flexible
 - more tightly integrated with language
 - requires less supervision
- Presented:
 - Gradient Matching Networks
 - GMN can be used for **semi-supervised / transductive training** not only for ZSL but also in traditional classification and few-shot learning settings
 - A zero-shot object detection approach
 - A approach for Captioning with Unseen Objects

Thank you!

Gokberk Cinbis - 2019