1. Soient A et B des points d'affixes respectifs a=1+i et b=2-i. Déterminer l'affixe c du point C tel que le triangle ABC soit direct et rectangle isocèle en A.

 $\text{2. L'application f:} \left\{ \begin{array}{ccc} \mathbb{C} & \longrightarrow & \mathbb{C} \\ z & \longmapsto & \mathrm{e}^z \end{array} \right. \text{ est-elle injective? surjective? Justifier.}$

3. Quelle est l'image de l'application $f: \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{C} \\ x & \longmapsto & e^{ix} \end{array} \right. ?$

4	Déterminer	le sens d	le variation	de f·v	$C = \mathbb{R} \longrightarrow 1$	$\sqrt{1 + e^{-x^3}}$	sans calcule	r ea	dérinée

5. Soit E un ensemble. L'application
$$f: \left\{ \begin{array}{ccc} \mathcal{P}(E) & \longrightarrow & \mathcal{P}(E) \\ X & \longmapsto & \overline{X} \end{array} \right.$$
 est-elle injective? surjective? Justifier.

6. Montrer que l'application
$$f: x \in \mathbb{R} \mapsto \ln(1+e^x)$$
 induit une bijection de \mathbb{R} sur un intervalle à déterminer.