Corso: Fondamenti, Linguaggi e Traduttori 2

Paola Giannini

Esercizi e domande in preparazione all'esame

Domande: generale

- Consideriamo un linguaggio, L, come si specificano
 - 1 il lessico di L
 - 2 la sintassi di L,
- Cosa si fa durante
 - l'Analisi Lessicale
 - l'Analisi Sintattica,
 - 3 l'Analisi Semantica (controllo dei tipi)
- Quali sono gli input e gli output delle 3 analisi precedenti?

Domande: scanner

- Quali classi lessicali fanno in generale parte di un linguaggio di programmazione
- Cosa è un Token
- Fare esempi di Token
- Come (con quale classe di linguaggi) si specificano i token dei linguaggi
- Come si può implementare il riconoscimento lessicale

Domande: parsing

- Definizione di grammatica LL(1)
- Per quali ragioni una grammatica può non essere LL(1)?
- Come si può specificare un parser Top-Down

Domande: AST e Symbol Table

- Cosa è e a cosa serve definire un Abstract Syntax Tree per una grammatica di un linguaggio di programmazione.
- Quale è la differenza fra AST e parsing tree per una stringa di un linguaggio di programmazione.
- Cosa è la Symbol Table, quali informazioni contiene e a cosa serve.
- Come può essere implementata una Symbol Table .

Domande: analisi di tipo e visitor

- Cosa si fa con l'Analisi di Tipo.
- A cosa serve il Pattern Visitor. Descriverne la struttura.

Domande

• Consideriamo il seguente linguaggio di espressioni intere e floating point:

Assumiamo che le operazioni plus e times possano avvenire solo se i due operandi sono interi oppure floating point.

- Scrivere
 - una espressione corretta,
 - una con errori lessicali,
 - una senza errori lessicali ma con errori sintattici
 - ed una con solo errori semantici

Esercizi: (1)

Data la grammatica:

1.
$$S \rightarrow A C$$
\$

2.
$$C \rightarrow c$$

3.
$$C \rightarrow \epsilon$$

4.
$$A \rightarrow A B C d c$$

5.
$$A \rightarrow B Q$$

6.
$$B \rightarrow b B$$

7.
$$B \rightarrow \epsilon$$

8.
$$Q \rightarrow q$$

9.
$$Q \rightarrow \epsilon$$

- trovare i non-terminali e le produzioni che generano la stringa vuota
- gli insiemi First delle parti destre delle produzioni e Follow dei non terminali.
- gli insiemi Predict delle produzioni.

Esercizi: (2-3)

Dire se le seguenti grammatiche sono LL(1) oppure no

- 1. $S \rightarrow A B c$ \$
- 2. $A \rightarrow a$
- 3. $A \rightarrow \epsilon$
- 4. $B \rightarrow b$
- 5. $B \rightarrow \epsilon$
- 1. $S \rightarrow Ab$ \$
- 2. $A \rightarrow a$
- $3. \quad A \to B$
- 4. $A \rightarrow \epsilon$
- 5. $B \rightarrow b$
- 6. $B \rightarrow \epsilon$

Esercizi: (4)

Dire come mai la seguente grammatica non è LL(1) e se possibile definirne una equivalente LL(1)

- 1. $DL \rightarrow DL$; D
- 2. $DL \rightarrow D$
- 3. $D \rightarrow T IdL$
- 4. $IdL \rightarrow IdL$, id
- 5. $IdL \rightarrow id$
- 4. $T \rightarrow int$
- 4. $T \rightarrow bool$

il punto e virgola e la virgola a destra nelle produzioni e id, int e bool sono simboli terminali

Esercizi

Esercizi: (5)

Consideriamo la grammatica

 Definire una grammatica per lo stesso linguaggio che permetta il parsing top-down e definire i Predict delle produzioni.

