Resumen MD2 Filmina 2

Lautaro Bachmann

Contents

Cotas para Greedy
Teorema de Brooks
Propiedad
VIT
Very Important Theorem
Corolario
Consecuencia
Grafos bipartitos
El problema 2COLOR
Teorema
Algoritmo 2COLOR para G conexo
Complejidad
Corolario 3

Cotas para Greedy

$$(G) \le +1$$

Teorema de Brooks

Si G es conexo, entonces $(G) \leq m$, a menos que G sea un ciclo impar o un grafo completo.

Propiedad

Si G es conexo, entonces existe un ordenamiento de los vértices tal que Greedy colorea todos los vértices, salvo uno, con colores o menos.

VIT

Very Important Theorem

Sea G=(V,E) un grafo cuyos vértices estan coloreados con un coloreo propio c con r colores $\{0,1,...,r-1\}$. $\{0,-1\}$. Sea una permutación de los números 0,1,...,r-1, es decir, $-:\{0,1,...,r-1\} \rightarrow \{0,1,...,r-1\}$ es una biyección. $\{0,\text{ Sea Vi}=-1\} \rightarrow \{0,-1\}$ $\{x\in V:c(x)=i\}$, i=0,1,...,r-1. $\{x\in i\}$, - Ordenemos los vértices poniendo primero los vértices de V (0), luego los de V (1),etc, hasta V (r-1). (el orden interno de los vértices dentro de cada V (i) es irrelevante)

Entonces Greedy en ese orden coloreará G con r colores o menos.

Corolario

Existe un ordenamiento de los vértices de G tal que Greedy colorea G con (G) colores.

Consecuencia

si no podemos obtener (G) polinomialmente, usaremos el VIT para tratar de obtener una aproximación a (G).

No siempre se puede, pero en la practica suele funcionar bastante bien, dependiendo de cuales permutaciones se usen.

Grafos bipartitos

Un grafo se dice bipartito si (G) = 2.

Es decir, si G = (V, E) entonces existen $X, Y \subseteq V$ tales que:

$$1 V = X Y. 2 X Y =$$

$$3\ wv\in E\quad (w\in X,\,v\in Y)\quad (w\in Y,\,v\in X)$$

El problema 2COLOR

Dado un grafo G, ¿es $(G) \leq 2$?

Teorema

2COLOR es polinomial

Algoritmo 2COLOR para G conexo.

Elegir un vértice x cualquiera.

Correr BFS(x), creando un arbol.

Para cada vértice z, sea N(z) el nivel de z en el arbol BFS(x).

Colorear $c(z) = (N(z) \mod 2)$.

Chequear si el colorario dado en [4] es propio.

Si lo es, retornar " (G) \leq 2"

Si no lo es, retornar "(G) > 2"

Complejidad

la complejidad total es O(m) + O(m) = O(m).

Corolario

Sea G un grafo con $(G) \geq 3$.

Como $(G) \geq 3$, el coloreo de 2 colores dado en el algoritmo no \geq puede ser propio.

Conclusión:

 $(G) \ge 3$ si y solo si existe un ciclo impar en G.