Traing versus Testing and Linear Regularization

Tong Zhang

Rutgers University

Supervised Learning Problem

- Prediction problem
 - Input X: known information.
 - Output Y: unknown information.
 - Goal: to predict Y based on X find a function (prediction rule) f(X) such that Y ≈ f(X)
- Observe historical data $S_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$
 - S_n called training data
- Learning: find a good prediction rule f(x) based on S_n

Supervised Learning Problem

- Prediction problem
 - Input X: known information.
 - Output *Y*: unknown information.
 - Goal: to predict Y based on X find a function (prediction rule) f(X) such that Y ≈ f(X)
- Observe historical data $S_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$
 - S_n called training data
- Learning: find a good prediction rule f(x) based on S_n
- Example: least squares regression
 - $f(x) = w^T x$: linear prediction rule
 - ullet learning algorithm: find \hat{w} to minimize squared error on training data

$$\hat{w} = \arg\min_{w} \sum_{i=1}^{n} (f(X_i) - Y_i)^2$$

Training versus Testing

- Training data: $S_n = \{(X_1, Y_1), ..., (X_n, Y_n)\}$
- Learning: find a prediction rule on training data
 - find a rule to fit well on S_n

Training versus Testing

- Training data: $S_n = \{(X_1, Y_1), ..., (X_n, Y_n)\}$
- Learning: find a prediction rule on training data
 - find a rule to fit well on S_n
- Test data: future observations that may be different from training data
 - purpose: learned prediction rule should work well on test data

Training versus Testing

- Training data: $S_n = \{(X_1, Y_1), ..., (X_n, Y_n)\}$
- Learning: find a prediction rule on training data
 - find a rule to fit well on S_n
- Test data: future observations that may be different from training data
 - purpose: learned prediction rule should work well on test data
- Learning process:
 - learn prediction rule on training data
 - evaluate performance on test data
- Why separate training and testing?
 - training error is usually unrealistically low (overfitting)
 - error on test data (data not used to fit model) is more realistic

Overfitting

- Goal: predict well on future unseen data (test data)
- Two aspects:
 - rule should fit training data well
 - requires a more complex model.
 - behavior of rule on test data should match that on training data
 - requires a less complex (more stable) model.

Overfitting

- Goal: predict well on future unseen data (test data)
- Two aspects:
 - rule should fit training data well
 - requires a more complex model.
 - behavior of rule on test data should match that on training data
 - requires a less complex (more stable) model.
- Model complexity:
 - more complex model: smaller training error but larger difference between test and training error
 - less complex model: larger training error but smaller difference between test and training error
- Related concepts:
 - bias variance trade-off
 - regularization

Overfitting: Simple Example

- Binary classification example:
 - Input X is one dimensional and uniformly distributed in [−1, 1]
 - True class label

$$Y = \begin{cases} 1 & X \ge 0 \\ -1 & X < 0 \end{cases}$$

- Given training data (X_i, Y_i) (i = 1, ..., n)
 - with probability one X_i are all different
- Assume you don't know the relationship of X and Y but want to learn it from data.

Overfitting Method

The following prediction rule fits training data perfectly

$$f(X) = \begin{cases} Y_i & \text{if } X = X_i \text{ for some } i \\ 1 & \text{otherwise} \end{cases}$$

- Has no prediction capability when X not in the training data.
- Very complex prediction rule arbitrary flexibility.
- Characteristics of overfitting procedure:
 - training error: small (0)
 - difference of test error and training error: large (0.5)
 - test error: large (0.5)

Underfitting method

Simply return the following prediction rule independent of the data

$$f(X) = 1.$$

- Ignore the data: fits training data poorly
- Simplistic prediction rule no flexibility.
- Characteristics of underfitting procedure:
 - training error: large (≈ 0.5)
 - ullet the difference of test error and training error: small (pprox 0)
 - test error: large (0.5)

Balanced fit

We pick the class of functions

$$f(x) = sign(x - \theta)$$

with unknown θ ; then find θ to minimize training error. Fits training data well with good prediction capability.

- small number of parameters: one dimensional.
- some flexibility but not overly complex.
- Characteristics of balanced fitting
 - training error: small (0)
 - difference of test error and training error: small (≈ 0)
 - test error: small (\approx 0)

Regularization

- Model complexity
 - how complex a target function can be represented by the model family
 - more complexity model:
 - represent more complexity and less smooth functions
 - prone to overfitting
 - less complexity model:
 - represent less complexity and smoother functions
 - prone to underfitting
- Regularization: limit model complexity to achieve good test error
 - restrict parameter space to control model complexity
- Typical learning algorithms:
 - have tuning parameters to control model complexity
 - tuning parameters should be adjusted to achieve good balance.

Bias-variance trade-off

Linear Model

- Consider training data: $S_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$
- Linear prediction rule:

$$f(X) = w^T X.$$

Linear Least Squares Method:

$$\hat{w} = \arg\min_{w} \frac{1}{n} \sum_{i=1}^{n} (w^{T} x_{i} - Y_{i})^{2}$$

Linear Model

- Consider training data: $S_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$
- Linear prediction rule:

$$f(X) = w^T X.$$

Linear Least Squares Method:

$$\hat{w} = \arg\min_{w} \frac{1}{n} \sum_{i=1}^{n} (w^{T} x_{i} - Y_{i})^{2}$$

- Complexity:
 - dimension d: the large d is the more complex the model is

Generalization and Model Complexity

Training error:

training error(
$$f$$
) = $\frac{1}{n} \sum_{i=1}^{n} (f(X_i) - Y_i)^2$.

Test error:

test error(
$$w$$
) = $\mathbf{E}_{(x,y)}(f(x) - y)^2$

- Learning algorithm: find \hat{w} to minimize training error
- Model complexity: measuring difference of training and test error
- Generalization error: with large probability we have

test error(
$$\hat{w}$$
) \leq training error(\hat{w}) + $\underbrace{O(d/n)}_{\text{difference of training test}}$

12 / 23

- only useful when $d \ll n$
- what to do when *d* is large? need other form of regularization

Linear Regularization

- Regularization: restrict the model expressiveness when d is large.
- Restrict the linear family size: $g(w) \leq A$.
 - example: $g(w) = ||w||_2^2 = \sum_{i=1}^d w_i^2$.
 - A: tuning parameter (estimated through cross-validation).
- Model complexity: measured by A.
- Benefit of regularization:
 - statistical: robust to large number of features.
 - numerical: stabilize solution.

Linear Regularization Formulation

- Goal: minimize average squared loss on unseen data.
- A practical method: minimize observed loss on training:

$$\hat{w} = \arg\min_{w} \frac{1}{n} \sum_{i=1}^{n} (w^{T} X_{i} - Y_{i})^{2},$$

such that $g(w) \leq A$.

• Equivalent formulation ($\lambda \geq 0$):

$$\hat{w} = \arg\min_{w} \frac{1}{n} \sum_{i=1}^{n} (w^{T} X_{i} - Y_{i})^{2} + \lambda g(w)$$

- Small A corresponds to larger λ and vice versus
- Complexity: A large complexity large; λ small complexity large

Training and Test Error versus λ

model complexity decreases as λ increases

Model Complexity: generalization bound

Least squares with square regularization:

$$\hat{w} = \arg\min_{w} \frac{1}{n} \sum_{i} (w^{T} X_{i} - Y_{i})^{2} + \lambda w^{2}.$$

• Predictive power of \hat{w} :

$$\text{test error} \leq \left(1 + \frac{1}{\lambda n} \max_{x} \|x\|_2^2\right)^2 \underbrace{\min_{w} E_{x,y} \left((w^T x - y)^2 + \lambda \|w\|_2^2\right)}_{\text{best possible regularized loss}}$$

- Robust to large feature set:
 - square reg $g(w) = \frac{1}{2}w^2$
 - generalization depends on $\|x\|_2^2/\lambda$, not on dimension d

L_p Regularization

L_p-regularization: (constrained version)

$$\hat{w}^{L_p} = \arg\min_{w \in R^d} \sum_{i=1}^n (w^T X_i - Y_i)^2 \text{ subject to } \sum_{j=1}^d |w_j|^p \leq A.$$

• Equivalent formulation: $\lambda \geq 0$ is regularization parameter (penalized version)

$$\hat{w}^{L_p} = \arg\min_{w \in R^d} \sum_{i=1}^n (w^T X_i - Y_i)^2 + \lambda \sum_{j=1}^d |w_j|^p.$$

- p = 0: sparsity; p = 1:Lasso; p = 2: ridge regression.
 - subset selection: p = 0 (non-convex, non-smooth)
 - $p \in (0,1)$ (non-convex, smooth)
 - $p \ge 1$: convex (p = 1 is the closest convex approximation to p = 0)
 - p = 2: ridge regression; p = 1: Lasso

Ridge regression

Regularization formulation

$$\hat{w}^{L2} = \arg\min_{w \in R^d} \sum_{i=1}^n (w^T X_i - Y_i)^2 + \lambda \sum_{j=1}^d |w_j|^2.$$

- Implicit dimension reduction effect (principal components).
- More stable (smaller weights) than least squares
- It does not generally lead to sparse solution.
- Closely related to kernel methods.

Ridge regression solution

- X: n × d data matrix (n training data and d features)
- Solution of ridge regression:

$$\hat{\mathbf{w}}^{L2} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{Y}.$$

Compare to standard least squares regression solution:

$$\hat{\mathbf{w}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}.$$

disadvantage: X^TX may not be invertible

- Advantage: ridge regression allows d > n
 - stable: $X^TX + \lambda I$ is always invertible
 - Implicit dimension reduction effect.

The Effect of Correlated Feature

- Boston Housing data: 13 variables (X[·, 1 · · · 13])
- Adding another feature: $X[\cdot, 14] = X[\cdot, 13] + \text{random-noise}$
 - smaller noise: $X[\cdot, 13]$ is more correlated to $X[\cdot, 14]$
- weight $|w_{13}|$ under various noise size

noise size	0.01	0.1	0.5	1
least squares	358	25.5	1.77	14.7
ridge ($\lambda = 1$)	3.90	3.99	3.39	7.31

least squares is not stable when there are correlated features

Lasso

Find w with 1-norm ≤ s to minimize squared error:

$$\hat{w}^{L1} = \arg\min_{w \in R^d} \sum_{i=1}^n (w^T X_i - Y_i)^2$$
 subject to $\sum_{j=1}^d |w_j| \leq s$.

• Equivalent to $(\lambda \ge 0)$ is regularization parameter):

$$\hat{w}^{L1} = \arg\min_{w \in R^d} \sum_{i=1}^n (w^T X_i - Y_i)^2 + \lambda \sum_{j=1}^d |w_j|.$$

Solution property

- Convex optimization problem, but solution may not be unique.
- Global solution can be efficiently found.
- Solution is sparse: some w_j will be zero: achieves feature selection.
- Solution is not necessarily stable.

Summary

- Training versus test:
 - find prediction rule to best fit training data
 - performance evaluated on test data
- Model complexity: difference between training and test error
 - increase model complexity decreases training error but increases difference between training and test
- Regularization:
 - control model complexity by restricting parameter space
- Linear regularization: restrict weight using $||w||_p \le A$
 - p = 2: ridge regression stable solution and allow $d \ge n$
 - p = 1: Lasso (convex) sparse solution but may be unstable.