

Electromagnetic Compatibility Test Report

Tests Performed on a Delsys, Inc.

Wireless Sensor Transciever, Model SP-W06; System Model: DS-T03

Radiometrics Document RP-8506A1

Product Detail:

FCC ID: W4P-SP-W06 ISEDC ID: 8138A-DST03 Equipment type: DXX

Low power transmitter 15.249

Test Standards:

US CFR Title 47, Chapter I, FCC Part 15 Subpart C

FCC Part 15 CFR Title 47: 2016 Industry Canada RSS-210, Issue 9

This report concerns: Original Grant for Certification

Tests Performed For:

Delsys, Inc.

23 Strathmor Road
Natick, Massachusetts 01760

Radiometrics Midwest Corporation
12 Devonwood Avenue
Romeoville, IL 60446-1349
(815) 293-0772

Test Date(s): (Month-Day-Year)

December 5 thru 13, 2016

Document RP-8506A1 Revisions:

Rev.	Issue Date	Affected Sections	Revised By
0	October 13, 2017		
1	October 26, 2017	2.0, 11.2.1, 11.3	Joseph Strzelecki

Table of Contents

1.0ADMINISTRATIVE DATA	3
2.0TEST SUMMARY AND RESULTS	3
2.1 RF Exposure Compliance Requirements	4
3.0EQUIPMENT UNDER TEST (EUT) DETAILS	4
3.1 EUT Description	4
3.1.1 FCC Section 15.203 & RSS-GEN Antenna Requirements	4
3.2 Related Submittals	
4.0TESTED SYSTEM DETAILS	
4.1 Tested System Configuration	4
4.2 Special Accessories	4
4.3 Equipment Modifications	5
5.0TEST SPECIFICATIONS	
6.0TEST PROCEDURE DOCUMENTS	5
7.0RADIOMETRICS' TEST FACILITIES	
8.0DEVIATIONS AND EXCLUSIONS FROM THE TEST SPECIFICATIONS	6
9.0CERTIFICATION	6
10.0TEST EQUIPMENT TABLE	6
11.0TEST SECTIONS	6
11.1 Radiated RF Emissions	6
11.1.1 Field Strength Calculation	7
11.1.2 Duty Cycle	
11.2 Peak and Average Output Power	
11.2.1 Radiated Emissions Test Results	
11.3 Occupied Bandwidth Data	
11.4 Unintentional Emissions (Receive Mode)	
11.4.1 Measurement Instrumentation Uncertainty	15

Notice: This report must not be reproduced (except in full) without the written approval of Radiometrics Midwest Corporation.

10/26/2017

1.0 ADMINISTRATIVE DATA

Equipment Under Test: A Delsys, Inc., Trigno Avanti, Wireless Sensor Sensor Model: SP-W06 System Model: DS-T03 Serial Number: none This will be referred to as the EUT in this Report Date EUT Received at Radiometrics: (Month-Day-Year) Test Date(s): (Month-Day-Year) December 5, 2016 December 5 thru 13, 2016 Test Report Written By: Test Witnessed By: Joseph Strzelecki The tests were not witnessed by Delsys, Inc. Senior EMC Engineer Delsys, Inc. Radiometrics' Personnel Responsible for Test: Test Report Approved By Strzelecki

Joseph Strzelecki Senior EMC Engineer NARTE EMC-000877-NE

Chris W. Carlson
Director of Engineering
NARTE EMC-000921-NE

2.0 TEST SUMMARY AND RESULTS

The EUT (Equipment Under Test) is an Wireless Sensor, Model SP-W06, manufactured by Delsys, Inc..
The detailed test results are presented in a separate section. The following is a summary of the test results.

Emissions Tests Results

Environmental Phenomena	Frequency Range	Basic Standard	Test Result
RF Radiated Emissions	30-25,000 MHz	FCC Part 15.249 RSS-210 & RSS-GEN	Pass
Occupied Bandwidth Test	Fundamental Freq.	FCC Part 15 RSS-210 & RSS-GEN	Pass

The model number of the Sensor is SP-W06. The system model number is DS-T03. This report has data for the Sensor only. The data for the base unit can be found in Radiometrics' report: "Delsys-6467-FCC-IC Rpt Rev3." The measurement results for the base station are shared from IC: 8138A-DST01 because the base station in system DST-01 and DST-03 are the same.

The Base station is FCC ID: W4P-SP-W02.

RP-8506A1 Rev. 1 Page 3 of 15

2.1 RF Exposure Compliance Requirements

Since the power output is less than 10 mW, the EUT meets the FCC requirement for RF exposure and it is exempt from RF exposure evaluations. There are no power level adjustments available to the end user. The antenna is permanently attached. The detailed calculations for RF Exposure are presented in a separate document.

3.0 EQUIPMENT UNDER TEST (EUT) DETAILS

3.1 EUT Description

The EUT is a wireless sensor, Model SP-W06, manufactured by Delsys, Inc. The EUT was in good working condition during the tests, with no known defects.

The EUT is an electronic dosimeter that measures the amount of radiation exposure that the wearer has encountered. It takes measurements periodically and sends the data to a base station via wireless transmission.

3.1.1 FCC Section 15.203 & RSS-GEN Antenna Requirements

The antenna is permanently attached to the printed circuit board. The antenna is internal to the EUT and it is not readily available to be modified by the end user. Therefore, it meets the 15.203 Requirements.

3.2 Related Submittals

Delsys, Inc. is not submitting any other products simultaneously for equipment authorization related to the EUT.

4.0 TESTED SYSTEM DETAILS

4.1 Tested System Configuration

The system was configured for testing in a typical fashion. The EUT was placed on an 80-cm or 150cm high, nonconductive test stand. The testing was performed in conditions as close as possible to installed conditions. Wiring was consistent with manufacturer's recommendations.

The EUT was tested as a stand-alone device. Power was supplied with a new battery.

The identification for all equipment used in the tested system, are:

Tested System Configuration List

Item	Description Ty	pe*	Manufacturer	Model Number	Serial Number
1	Trigno Avanti, Wireless Sensor	Ε	Delsys, Inc.	SP-W06	none

^{*} Type: E = EUT, P = Peripheral, S = Support Equipment; H = Host Computer

4.2 Special Accessories

No special accessories were used during the tests in order to achieve compliance.

RP-8506A1 Rev. 1 Page 4 of 15

4.3 Equipment Modifications

No modifications were made to the EUT at Radiometrics' test facility in order to comply with the standards listed in this report.

5.0 TEST SPECIFICATIONS

Document	Date	Title
FCC CFR Title 47	2016	Code of Federal Regulations Title 47, Chapter 1, Federal Communications Commission, Part 15 - Radio Frequency Devices
IC RSS-210 Issue 9	2016	Licence-Exempt Radio Apparatus: Category I Equipment
IC RSS-Gen Issue 4	2014	General Requirements and Information for the Certification of Radiocommunication Equipment (RSS-Gen)

6.0 TEST PROCEDURE DOCUMENTS

The tests were performed using the procedures from the following specifications:

Document	Date	Title
ANSI C63.4-2014	2014	Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
ANSI C63.10-2013	2013	American National Standard for Testing Unlicensed Wireless Devices

7.0 RADIOMETRICS' TEST FACILITIES

The results of these tests were obtained at Radiometrics Midwest Corp. in Romeoville, Illinois, USA. Radiometrics is accredited by A2LA (American Association for Laboratory Accreditation) to conform to ISO/IEC 17025: 2005 "General Requirements for the Competence of Calibration and Testing Laboratories". Radiometrics' Lab Code is 121191 and Certification Number is 1495.01. Radiometrics' scope of accreditation includes all of the test methods listed herein. A copy of the accreditation can be accessed on our web site (www.radiomet.com). Radiometrics accreditation status can be verified at A2LA's web site (www.a2la2.org).

The following is a list of shielded enclosures located in Romeoville, Illinois used during the tests:

Chamber E: Is a custom made anechoic chamber that measures 52' L X 30' W X 18' H. The walls and ceiling are fully lined with RF absorber. Pro-shield of Collinsville, Oklahoma manufactured the chamber. The floor has a 9' x 9' section of microwave absorber for testing above 1 GHz.

Test Station F: Is an area that measures 10' D X 12' W X 10' H. The floor and back wall are metal shielded.

This area is used for conducted emissions measurements.

A separate ten-foot long, brass plated, steel ground rod attached via a 6-inch copper braid grounds each of the above chambers. Each enclosure is also equipped with low-pass power line filters.

The FCC has accepted these sites as test site number US1065. The FCC test site Registration Number is 732175. Details of the site characteristics are on file with the Industry, Science and Economic Development Canada as site number IC 3124A-1.

RP-8506A1 Rev. 1 Page 5 of 15

A complete list of the test equipment is provided herein. The calibration due dates are indicated on the equipment list. The equipment is calibrated in accordance to ANSI/NCSL Z540-1 with traceability to the National Institute of Standards and Technology (NIST).

8.0 DEVIATIONS AND EXCLUSIONS FROM THE TEST SPECIFICATIONS

There were no deviations or exclusions from the test specifications.

9.0 CERTIFICATION

Radiometrics Midwest Corporation certifies that the data contained herein was taken under conditions that meet or exceed the requirements of the test specification and the data contained herein was taken with calibrated test equipment. The results relate only to the EUT listed herein.

10.0 TEST EQUIPMENT TABLE

					Frequency	Cal	
RMC ID	Manufacturer	Description	Model No.	Serial No.	Range	Period	Cal Date
AMP-05	RMC/Celeritek	Pre-amplifier	MW110G	1001	1.0-12GHz	24 Mo.	10/06/15
AMP-20	Avantek	Pre-amplifier	SF8-0652	15221	8-18GHz	12 Mo	01/05/16
AMP-22	Anritsu	Pre-amplifier	MH648A	M23969	0.1-1200MHz	12 Mo.	01/05/16
ANT-04	Tensor	Biconical Antenna	4104	2246	20-250MHz	24 Mo.	05/16/16
ANT-06	EMCO	Log-Periodic Ant.	3146	1248	200-1000MHz	24 Mo.	11/25/15
ANT-36	EMCO	Horn Antenna	3115	2502	1.0-18GHz	24 Mo.	11/02/16
ANT-48	RMC	Std. Gain Horn	HW2020	1001	18-26.5 GHz	24 Mo.	12/15/15
MXR-02	HP / Agilent	Harmonic Mixer	11970K	2332A00489	18-26.5GHz	12 Mo.	01/08/16
				2648A13481			
REC-08	Hewlett Packard	Spectrum Analyzer	8566B	2209A01436	30Hz-22GHz	24 Mo.	12/21/15
REC-21	Agilent	Spectrum Analyzer	E7405A	MY45118341	9Hz-26.5 GHz	24 Mo.	12/22/15
THM-03	Fluke	Temp/Humid Meter	971	95850465	N/A	12 Mo.	01/11/16

Note: All calibrated equipment is subject to periodic checks.

Software Company	Test Software Name	Version	Applicable Tests
Radiometrics	REREC11D	01.05.16	RF Radiated Emissions (FCC Part 15 & EN 55011/22)
Agilent	PSA/ESA-E/L/EMC	2.4.0.42	Bandwidth and screen shots

11.0 TEST SECTIONS

11.1 Radiated RF Emissions

Radiated emission measurements were performed with linearly polarized broadband antennas. The results obtained with these antennas can be correlated with results obtained with a tuned dipole antenna. The radiated emission measurements were performed with a spectrum analyzer. The bandwidth used from 150 kHz to 30 MHz is 9 or 10 kHz and the bandwidth from 30 MHz to 1000 MHz is 100 or 120 kHz. Above 1 GHz, a 1 MHz bandwidth is used. A 10 dB linearity check is performed prior to start of testing in order to determine if an overload condition exists. A harmonic mixer was used from 18 to 25 GHz. Figure 4 herein lists the details of the test equipment used during radiated emissions tests.

The EUT was rotated through three orthogonal axis as per 5.10.1 of ANSI C63.10 during the radiated tests.

RP-8506A1 Rev. 1 Page 6 of 15

Final radiated emissions measurements were performed inside of an anechoic chamber at a test distance of 3 meters. The anechoic chamber is designated as Chamber E. This Chamber meets the Site Attenuation requirements of ANSI C63.4 and CISPR 16-1. Chamber E is located at 12 East Devonwood Ave. Romeoville, Illinois EMI test lab.

The entire frequency range from 30 to 25,000 MHz was slowly scanned with particular attention paid to those frequency ranges which appeared high. Measurements were performed using two antenna polarizations, (vertical and horizontal). The worst case emissions were recorded. All measurements may be performed using either the peak, average or quasi-peak detector functions. If the peak detector data exceeds or is marginally close to the limits, the measurements are repeated using a quasi-peak detector or average function as required by the specification for final determination of compliance.

The detected emission levels were maximized by rotating the EUT, adjusting the positions of all cables, and by scanning the measurement antenna from 1 to 4 meters above the ground.

11.1.1 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and by subtracting the Amplifier Gain from the measured reading. The basic equation is as follows:

FS = RA + AF + CF - AG + HPF + PKA

Where: FS = Field Strength

RA = Receiver Amplitude

AF = Antenna Factor

CF = Cable Attenuation Factor

AG = Amplifier Gain

PKA = Peak to Average Factor (This is only used for average measurements above 1 GHz)

The Peak to average factor is used when average measurements are required. It is calculated by the highest duty cycle in percent over any 100mS transmission. The factor in dB is 20*Log(Duty cycle mS/100 mS).

Note: The actual FCC limits are in uV/m. The data in the results table coverted the limits to dBuV/m.

100 uV/m = 40.0 dBuV/m

150 uV/m = 43.5 dBuV/m

200 uV/m = 46.0 dBuV/m

500 uV/m = 54.0 dBuV/m

11.1.2 Duty Cycle

In accordance to 7.5 of ANSI C63.10 the following procedures were used. The averave value of the pulsed emissions were measured as per section 7.5, formula (10) of ANSI C63.10-2013.

The Peak to average factor is calculated by the highest duty cycle in percent over any 100mS transmission. The factor in dB is 20 * Log(Duty cycle/100). The transmitter operates for a maximum duration of 15.1 ms in any 100 ms interval for a 15.1% maximum duty cycle. 20 Log*(mSec/100mSec) = -16.4 dB Peak to average Correction factor.

The EUT was set to the "worst-case" pulse ON time. The RF output connect to the input of an Ocsilloscope via a Crystal detector. The 100 ms period that contains the maximum number of pulses was found to be 49. The duty cycle was determined by dividing the total maximum "ON time" by 100 ms (tON/100 ms).

RP-8506A1 Rev. 1 Page 7 of 15

This shows the duty cycle over

Duty cycle = ((49*0.309)/100) mSec = 15.1%

In its highest duty cycle mode, the transmitter sends the data in 0.309 mSec bursts. At most, there are 49 of these transmission in any 100 mSec, for a maximum transmitter duty cycle of 15.1%.

The duty cycle correction factor was used applying Equation (10) of ANSI C63.10 to the duty cycle determined in the preceding steps.

11.2 Peak and Average Output Power

The power output test method from ANSI C63.10-2013 section 11.9.1.1 was used for this test. The spectrum analyzer was set to peak channel power with a span of 20 MHz. The EUT antenna port was connected to the Spectrum analyzer Via a low loss coaxial cable. The trace was allowed to stabilize. The indicated level is the peak output power.

Span = 25 MHz; RBW = 1 MHz; VBW = 3 MHz

RP-8506A1 Rev. 1 Page 8 of 15

Tested by: Joseph Strzelecki/ Richard Tichgelaar

Test Date: December 13, 2016

Peak Power

Frequency	Spec An Reading	Attenuator & cable	Peak Pov	ver (dBm)
(MHz)	(dBm)	Loss (dB)	dBm	Watts
2402	-7.29	20.25	12.96	0.0198
2440	-7.23	20.25	13.02	0.0200
2480	-7.25	20.25	13.00	0.0200

Average Power

Frequency	Spec An Reading	Attenuator & cable Loss	Peak	Duty Cycle	Av	erage
MHz	dBm	dB	mW	%	mW	W
2402	-7.29	20.25	19.77	15.1	2.99	0.00299
2440	-7.23	20.25	20.04	15.1	3.03	0.00303
2480	-7.25	20.25	19.95	15.1	3.01	0.00301

This is used for RF exposure calculations, so there are no limits

RP-8506A1 Rev. 1 Page 9 of 15

11.2.1 Radiated Emissions Test Results

Test Date	12/09 & 12/12/2016
Test Distance	3 Meters
Specification	FCC Part 15 Subpart C & RSS-GEN & RSS-210
Abbreviations	Pol = Antenna Polarization; V = Vertical; H = Horizontal; P = peak; Q = QP

All emissions except Fundamental and harmonics; Emissions in Transmit Mode

Freq. MHz	Meter Reading				Cable &	Dist.			Margin	
				Λ	Λ		FUT	1 1 14		
I IVITZ	4D\/	Doot	Ant.	Ant	Amp	Fact	EUT	Limit	Under	Nata
	dBuV	Dect.	Pol.	Factor	Factors	dB	dBuV/m	dBuV/m	Limit dB	Note
33.3	40.7	Р	H	11.4	-28.3	0.0	23.8	40.0	16.2	
112.5	34.1	Р	H	12.4	-27.8	0.0	18.6	43.5	24.9	
126.8	35.2	Р	Н	12.0	-27.8	0.0	19.5	43.5	24.0	
130.1	33.6	P	H	11.8	-27.7	0.0	17.7	43.5	25.8	
193.4	32.0	Р	Н	16.9	-27.5	0.0	21.4	43.5	22.1	
250.0	31.0	Р	Н	17.0	-27.3	0.0	20.7	46.0	25.3	
443.8	30.6	Р	Н	16.0	-27.1	0.0	19.5	46.0	26.5	
496.3	30.9	Р	Н	17.4	-26.9	0.0	21.3	46.0	24.7	
691.3	29.9	Р	Н	21.2	-26.2	0.0	24.9	46.0	21.1	
912.5	30.2	Р	Н	22.5	-24.8	0.0	27.9	46.0	18.1	
2000.0	41.0	Р	Н	27.6	-34.3	0.0	34.2	74.0	39.8	1
2367.5	45.3	Р	Н	28.2	-33.9	0.0	39.5	74.0	34.5	1
2410.0	48.3	Р	Н	28.4	-33.9	0.0	42.9	74.0	31.1	1
2487.5	44.2	Р	Н	28.7	-34.0	0.0	38.9	74.0	35.1	1
2530.0	44.5	Р	Н	28.8	-33.8	0.0	39.5	74.0	34.5	1
2965.0	43.1	Р	Н	29.8	-33.2	0.0	39.8	74.0	34.2	1
3202.5	39.5	Р	Н	30.8	-32.9	0.0	37.5	74.0	36.5	1
32.8	46.3	Р	V	11.3	-28.3	0.0	29.3	40.0	10.7	
53.1	39.8	Р	V	10.8	-28.2	0.0	22.4	40.0	17.6	
75.7	38.9	Р	V	6.3	-28.0	0.0	17.2	40.0	22.8	
114.2	41.4	Р	V	12.5	-27.8	0.0	26.1	43.5	17.4	
120.8	42.0	Р	V	12.4	-27.8	0.0	26.6	43.5	16.9	
132.9	37.3	Р	V	11.7	-27.7	0.0	21.3	43.5	22.2	
193.4	40.4	Р	V	16.9	-27.5	0.0	29.8	43.5	13.7	
247.3	40.0	Р	V	16.6	-27.3	0.0	29.3	46.0	16.7	
383.1	31.2	Р	V	15.2	-27.2	0.0	19.2	46.0	26.8	
490.6	29.8	Р	V	17.3	-26.8	0.0	20.3	46.0	25.7	
536.3	31.2	Р	V	16.9	-26.4	0.0	21.7	46.0	24.3	
766.3	31.8	Р	V	21.1	-26.0	0.0	26.9	46.0	19.1	
922.5	29.8	Р	V	22.8	-24.8	0.0	27.8	46.0	18.2	
1132.5	43.2	Р	V	24.8	-34.5	0.0	33.4	74.0	40.6	1
1550.0	42.5	Р	V	25.6	-34.5	0.0	33.7	74.0	40.3	1
2367.5	51.7	Р	V	28.2	-33.9	0.0	46.0	74.0	28.0	1
2407.5	49.7	Р	V	28.4	-33.9	0.0	44.2	74.0	29.8	1
2490.0	46.2	Р	V	28.7	-33.9	0.0	40.9	74.0	33.1	1
2530.0	46.4	Р	V	28.8	-33.8	0.0	41.5	74.0	32.5	1
2567.5	48.7	Р	V	28.8	-33.7	0.0	43.9	74.0	30.1	1
2577.5	44.6	Р	V	28.9	-33.6	0.0	39.9	74.0	34.1	1
2597.5	43.4	Р	V	28.9	-33.6	0.0	38.7	74.0	35.3	1
3285.0	40.4	Р	V	31.0	-32.8	0.0	38.6	74.0	35.4	1

Note 1: Peak Reading under the Average limit

Judgment: Passed by at least 10.7 dB

No other emissions were detected within 10 dB of the limits.

RP-8506A1 Rev. 1 Page 10 of 15

Fundammental and Harmonic Emissions FCC 15.249; Three axis tested

		Spectrum Analyzer Readings									EUT	Peak	Ave	Peak	Ave	Margin
hrm	Tx	Peak Ave			Peak			Ave	Corr.	Emission	Tot. FS		Limit		Under	
		Vertical Polarization			Horizontal Polarization					Freq						
#	Freq	Χ	Υ	Z N	lax	Χ	Υ	Z	Max	Fact.		dBu'	V/m	dBu'	V/m	Limit
1	2402	103.0	104.9	112.6	96.2	108.3	108.3	104.1	91.9	-5.9	2402.0	106.7	90.3	114	94	3.7
BE	2402	43.0	44.9	52.6	36.2	48.3	48.3	44.1	31.9	0.0	2400.0	52.6	36.2	74	54	17.8
2	2402	44.2	53.9	46.0	37.5	45.1	43.8	47.8	31.4	3.4	4804.0	57.3	40.9	74	54	13.1
3	2402	43.5	41.4	38.5	27.1	37.9	38.4	40.2	23.8	7.2	7206.0	50.7	34.3	74	54	19.7
4	2402	37.5	39.8	35.7	23.4	38.7	37.5	40.9	24.5	14.0	9608.0	54.9	38.5	74	54	15.5
1	2440	102.4	101.0	111.6	95.2	103.9	105.0	97.8	88.6	-5.2	2440.0	106.4	90.0	114	94	4.0
2	2440	44.7	54.2	45.1	37.8	46.8	44.2	50.6	34.2	3.6	4880.0	57.8	41.4	74	54	12.6
3	2440	39.5	42.2	38.6	25.8	37.8	38.2	39.7	23.3	7.6	7320.0	49.8	33.4	74	54	20.6
4	2440	37.9	39.9	41.9	25.5	36.8	37.4	37.1	21.0	14.5	9760.0	56.4	40.0	74	54	14.0
1	2480	100.1	99.6	110.1	93.7	103.9	103.4	98.7	87.5	-5.3	2480.0	104.8	88.4	114	94	5.6
BE	2480	45.1	44.6	55.1	38.7	48.9	48.4	43.7	32.5	0.0	2483.5	55.1	38.7	74	54	15.3
2	2480	45.6	53.2	52.2	36.8	47.8	46.0	52.2	35.8	3.8	4960.0	57.0	40.6	74	54	13.4
3	2480	38.2	41.4	39.7	25.0	38.6	37.8	39.7	23.3	8.1	7440.0	49.5	33.1	74	54	20.9
4	2480	36.2	35.1	37.0	20.6	37.4	36.2	35.8	21.0	14.4	9920.0	51.8	35.4	74	54	18.6
	Column numbers (see below for explanations)															
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

Column #1. hrm = Harmonic; BE = Band Edge emissions

Column #2. Frequency of Transmitter.

Column #3. Uncorrected readings from the spectrum analyzer with First Axis Rotation.

Column #4. Uncorrected readings from the spectrum analyzer with Second Axis Rotation.

Column #5. Uncorrected readings from the spectrum analyzer with Third Axis Rotation.

Column #6. Average Reading based on peak reading reduced by the Duty cycle correction

Column #7. Uncorrected readings from the spectrum analyzer with First Axis Rotation.

Column #8. Uncorrected readings from the spectrum analyzer with Second Axis Rotation.

Column #9. Uncorrected readings from the spectrum analyzer with Third Axis Rotation.

Column #10. Average Reading based on peak reading reduced by the Duty cycle correction

Column #11. Corr. Factors = Cable Loss - Preamp Gain + Antenna Factor

Column #12. Frequency of Tested Emission

Column #13. Highest peak field strength at listed frequency.

Column #14. Highest Average field strength at listed frequency.

Column #15. Peak Limit. (Fundamental limit is 15.249, Harmonics are 15.209)

Column #16. Average Limit. (Fundamental limit is 15.249, Harmonics are 15.209)

Column #17. The margin (last column) is the worst case margin under the peak or average limits for that row.

Overall Judgment: Passed by at least 3.7 dB

No other Emissions were detected from 30 to 25,000 MHz within 10 dB of the limits.

RP-8506A1 Rev. 1 Page 11 of 15

Figure 1. Drawing of Radiated Emissions Setup

Chamber E, anechoic

- Antenna height varied 1-4 meters
- Distance from antenna to tested system is 3
- AC cords not shown. They are connected to AC outlet with low-pass filter on turntable

	Receive	Pre-	Spectrum
Frequency Range	Antenna	Amplifier	Analyzer
30 to 200 MHz	ANT-04	AMP-22	REC-11
200 to 1000 MHz	ANT-06	AMP-22	REC-11
1 to 10 GHz	ANT-36	AMP-05	REC-11
10 to 18 GHz	ANT-36	AMP-20	REC-11
18 to 25 GHz	ANT-48	AMP-29	REC-08; MXR-01

11.3 Occupied Bandwidth Data

The occupied bandwidth of the RF output was measured using a spectrum analyzer. The bandwidth was measured using the peak detector function and a narrow resolution bandwidth.

A broadband antenna was used to receive the modulated signal. The spectrum analyzer was set to the MAX HOLD mode to record the worst case of the modulation. The spectrum analyzer display was digitized and plotted. A limit was drawn on the plots based on the level of the modulated carrier. The plots of the occupied bandwidth for the EUT are supplied on the following page.

Channel MHz	99% EBW MHz
2402	1.040
2440	1.046
2480	1.046

Judgement: Pass

RP-8506A1 Rev. 1 Page 12 of 15

Figure 2. Occupied Bandwidth Plots

RP-8506A1 Rev. 1 Page 13 of 15

11.4 Unintentional Emissions (Receive Mode)

Manufacturer	Delsys	Specification	FCC Part 15.209 & RSS-GEN
Model	SP-W06	Test Date	12/12/2016
Serial Number	None	Test Distance	3 Meters
Abbreviations	Pol = Antenna Polarizat	ion; V = Vertical;	H = Horizontal; P = peak; Q = QP
Configuration	Receive mode		

	Meter				Cable &	Dist.			Margin	
Freq.	Reading		Ant.	Ant	Amp	Fact	EUT	Limit	Under	
MHz	dBuV	Dect.	Pol.	Factor	Factors	dB	dBuV/m	dBuV/m	Limit dB	Note
31.1	33.1	Р	Н	11.2	-28.3	0.0	16.0	40.0	24.0	
32.2	40.8	Р	Н	11.3	-28.3	0.0	23.8	40.0	16.2	
65.8	35.5	Р	Н	7.6	-28.1	0.0	15.0	40.0	25.0	
93.8	35.4	Р	Н	10.6	-27.9	0.0	18.1	43.5	25.4	
121.3	33.4	Р	Н	12.3	-27.8	0.0	17.9	43.5	25.6	
187.9	35.6	Р	Н	17.1	-27.5	0.0	25.2	43.5	18.3	
250.0	31.0	Р	Н	17.0	-27.3	0.0	20.8	46.0	25.2	
376.9	30.9	Р	Н	14.7	-27.1	0.0	18.5	46.0	27.5	
459.4	32.0	Р	Н	16.1	-27.0	0.0	21.1	46.0	24.9	
505.0	30.8	Р	Н	17.7	-27.0	0.0	21.5	46.0	24.5	
625.0	30.9	Р	Н	18.8	-26.5	0.0	23.2	46.0	22.8	
841.3	30.3	Р	Н	21.8	-25.4	0.0	26.7	46.0	19.3	
1165.0	46.4	Р	Н	25.1	-34.6	0.0	36.9	74.0	37.1	1
1177.5	46.6	Р	Н	25.2	-34.6	0.0	37.2	74.0	36.8	1
1402.5	44.0	Р	Н	25.6	-34.6	0.0	35.0	74.0	39.0	1
1777.5	45.6	Р	Н	26.8	-34.4	0.0	38.0	74.0	36.0	1
2027.5	41.6	Р	Н	27.6	-34.2	0.0	35.0	74.0	39.0	1

RP-8506A1 Rev. 1 Page 14 of 15

	Meter				Cable &	Dist.			Margin	
Freq.	Reading		Ant.	Ant	Amp	Fact	EUT	Limit	Under	
MHz	dBuV	Dect.	Pol.	Factor	Factors	dB	dBuV/m	dBuV/m	Limit dB	Note
2412.5	49.3	Р	Н	28.4	-33.8	0.0	43.8	74.0	30.2	1
2982.5	40.6	Р	Н	29.9	-33.1	0.0	37.4	74.0	36.6	1
3055.0	41.3	Р	Н	30.3	-33.1	0.0	38.6	74.0	35.4	1
30.5	30.6	Р	V	11.1	-28.4	0.0	13.4	40.0	26.6	
35.0	44.0	Р	V	11.5	-28.3	0.0	27.2	40.0	12.8	
44.3	35.1	Р	V	12.0	-28.3	0.0	18.8	40.0	21.2	
73.4	35.0	Р	V	6.4	-28.0	0.0	13.4	40.0	26.6	
105.3	42.1	Р	V	12.2	-27.8	0.0	26.4	43.5	17.1	
110.8	42.8	Р	V	12.4	-27.8	0.0	27.4	43.5	16.1	
162.6	33.4	Р	V	15.3	-27.6	0.0	21.1	43.5	22.4	
226.9	36.7	Р	V	14.5	-27.4	0.0	23.8	46.0	22.2	
233.5	36.4	Р	V	14.9	-27.4	0.0	23.9	46.0	22.1	
246.7	37.8	Р	V	16.5	-27.3	0.0	27.0	46.0	19.0	
274.4	34.7	Р	V	13.0	-27.3	0.0	20.4	46.0	25.6	
322.5	36.0	Р	V	13.7	-27.3	0.0	22.4	46.0	23.6	
379.4	34.1	Р	V	14.9	-27.2	0.0	21.9	46.0	24.1	
465.6	32.4	Р	V	16.7	-26.9	0.0	22.2	46.0	23.8	
491.9	30.4	Р	V	17.3	-26.8	0.0	20.8	46.0	25.2	
627.5	34.2	Р	V	18.9	-26.5	0.0	26.6	46.0	19.4	
863.8	32.4	Р	V	23.0	-25.3	0.0	30.2	46.0	15.8	
1067.5	52.5	Р	V	24.2	-34.5	0.0	42.3	74.0	31.7	1
1082.5	52.3	Р	V	24.3	-34.6	0.0	42.1	74.0	31.9	1
1120.0	51.5	Р	V	24.6	-34.5	0.0	41.5	74.0	32.5	1
1242.5	49.2	Р	V	25.5	-34.7	0.0	40.0	74.0	34.0	1
1275.0	49.4	Р	V	25.5	-34.7	0.0	40.3	74.0	33.7	1
1285.0	48.8	Р	V	25.6	-34.7	0.0	39.7	74.0	34.3	1
1462.5	45.7	Р	V	25.5	-34.6	0.0	36.6	74.0	37.4	1
1582.5	44.7	Р	V	25.8	-34.4	0.0	36.1	74.0	37.9	1
2410.0	49.6	Р	V	28.4	-33.9	0.0	44.1	74.0	29.9	1
3617.5	41.0	Р	V	31.5	-32.6	0.0	39.9	74.0	34.1	1

Judgment: Passed by 12.8 dB.

No other emissions were detected from 1 to 13 GHz within 10 dB of the limits.

11.4.1 Measurement Instrumentation Uncertainty

Measurement	Uncertainty
Radiated Emissions, E-field, 3 meters, 30 to 200 MHz	3.3 dB
Radiated Emissions, E-field, 3 meters, 200 to 1000 MHz	4.9 dB
Radiated Emissions, E-field, 3 meters, 1 to 18 GHz	4.8 dB
Radiated Emissions, E-field, 3 meters, 18 to 26 GHz	5.3 dB
Bandwidth using marker delta method at a span of 4 MHz	4 kHz
Temperature THM-02	0.6 Deg C

The uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2 in accordance with CISPR 16-4-2.

RP-8506A1 Rev. 1 Page 15 of 15