Contents

Introduzione

1.1 Intro

Se voi signorine finirete questo corso, e se sopravviverete sarete dispensatori di fbf e pregherete per modellizzare sistemi assurdi in modo ancora più assurdo, ma fino a quel giorno non siete altro che buoni annulla convinti che tutti i cretesi sono stupidi e forse mentono.

Lasciate il formaggio fuori dall'aula.

Introduction

```
a è vera nel mondo \alpha, e scriviamo \mu \models_{\alpha} a se
```

- ullet a è una lettera enunciativa allora deve valere alpha
- a è del tipo: $a \lor b$ allora.... $\mu \models_{\alpha} a$ oppure $\mu \models_{\alpha} b$

2.1 Formule Valide in ogni frame

Le seguenti formule sono valide in ogni frame F \top con $\top \equiv a \vee \neg a$ / infatti \top è valida in ogni modello di ogni frame F, banalmente è valida \top $(a \Longrightarrow b) \Longrightarrow (\Longrightarrow b)$ infatti: Se $M\alpha(a \Longrightarrow b)$ la formula è vera Se $M_{\alpha}(a \Longrightarrow b)$ allora:

- ullet Se Mlpha allora $Mlpha \implies b$ è vera e la formula iniziale è vera
- se $M\alpha$ allora $\forall \beta : (\alpha, \beta) \in R \ M\beta a \implies b, M\beta a, M\beta b$

Esistono relazioni che non solo valide in ogni frame:

 \Longrightarrow

Non è valida in ogni frame, infatti implica che in tutti gli stati raggiungibili (ma potrebbero anche non esserci stati) da α , a è vera. Mentre implica che esiste almeno uno stato raggiungibile da α in cui a è vero.

Tutte le tautologie sono valide in ogni frame

2.2 Formule di Logica modale e significato

2.2.1 Relazione seriale

Ip) Frame F con relazione R seriale

 $Ts) \implies$

Dimostrazione:

Se non vale: $\mu\alpha$ allora immediatemente si ha la tesi in quanto l'antecedente è falso.

Se invoe: $\mu\alpha$ allora

 β : $\alpha R\beta \mu \beta a$ per definizione di box,

inoltre dato che R seriale per Ip si ha anche che $\exists \beta : (\alpha, \beta) \in R$

da cui: $\mu\alpha$ per definizione di diamond (esiste β in relazione con α per la serialità e in α vale a dato che $\mu\alpha$)

- $Ip) \implies$
- Ts) Frame F con relazione R seriale

Per assurdo:

Suppongo di trovarmi in un mondo come quello in figura (wow) in cui $\mu\alpha$, e suppongo che la relazione R del frame NON sia seriale cioè $\neg \exists \beta : (\alpha R \beta)$, se è così vale sicuramente μa (dato che α non ha successori), d'altra parte per come è il mondo considerato, cioè si nega la tesi, assurdo-

2.2.2 Relazione simmetrica

Ip) R simmetrica

Ts) $a \Longrightarrow$

Suppongo che $\mu\alpha a$ (se no avrei già la tesi), due casi:

Caso 1: Da α non parte nessun arco, allora sicuramente $\mu\alpha x$ con x qualsiasi e in particolare $\mu\alpha$

Caso 2: Esiste almeno un β tale che $\alpha R\beta$.

Dato che la relazione è simmetrica se $\alpha R\beta$ allora $\beta R\alpha$. Dato che $\mu\alpha a$, in ognuno di questi β , β' , β'' ecc. vale perché ognuno di loro è in relazione con α .

Allora per ognuno di questi β si ha $\mu\beta$, (esiste infatti un mondo, α , in cui vale a) da cui: $\mu\alpha$

Ip) $a \Longrightarrow$

Ts) R simmetrica

Per assurdo:

suppongo R non sia simmetrica e considero un frame con soli α e β e in cui $R = \{(\alpha, \beta)\}$. In questo frame considero un modello con funzione di verità tale che: $V(A) = \{\alpha\}$.

In β non vale perché β non è in relazione con nessun mondo, per questo: $\mu\alpha$

2.2.3 Funzione parziale

 \implies funzione parziale α : $\alpha R\beta$, $\beta R\gamma\beta = \gamma$

Funzione parziale, dimostrazione

Ip) funzione parziale

 $Ts) \implies$

afalsa allora dato che l'antecedente è falso di haaa avera allora $\exists \beta : \alpha R\beta$ e $\in V(\beta),$ ma dato che la funzione è parziale questo β è unico ! da cui $\mu \diamond aa$

- $Ip) \Longrightarrow$
- Ts) funzione parziale

Per assurdo: suppongo non che la funzione non sia parziale. Se è così $\exists \alpha : \alpha R \beta, \alpha R \gamma$, considero un modello in cui $V(A) = \{\beta \}$, A non vale in α dato che A è falsa in γ , il che contraddice l'ipotesi (BAM!)

2.2.4 Funzione totale

non ci sono "conti" da fare, R è seriale sse R è seriale $a \implies a$, e se R è una funzione parziale aa

quindi dato che l'implica prevede un and di implica da una parte e dall'altra per definizione abbiamo la tesi

2.2.5 Relazione euclidea

Ip) relazione euclidea

Ts) $a \implies a$

Suppongo sia vero l'antecedente (se falso ho finito), quindi vale: da cui: μ dato che si ha che esiste almeno un β tale che in beta vale a solo un beta: autoanello perché euclidea e quindi

diversi beta: ognuno dei vari β' , β'' , ecc. sono in relazione con β , dato che la relazione è euclidea, pertanto dato che in β vale a, in ognuno di loro vale

 $Ip)a \implies a$

Ts) relazione euclidea

Per assurdo, suppondo valga ip) ma non la tesi

Considero un Frame in cui: $\alpha R\beta$, $\alpha R\gamma$, $\beta R\gamma$ ma NON $\beta R\gamma$ cioè si ha un frammento in cui non vale l'euclidea. Poniamo che il modello sia tale che $V(A) = \{\gamma\}$

In queste ipotesi vale dato che in γ vale a. In β non vale a e neppure perché non ha "uscite", da cui in a non vale contraddicendo così l'ipotesi (BAM!)

Semantica

3.1 Simboli secessari

abcio
è a è conseguenza semantica di b, se in ogni Frame, Modello e Mondo in cu
i μb si ha anche μa

Vale anche da destra a sinistra, dimostrazione simile.

3.2 Logiche

Una logica Λ su L è un insieme di fbf su L che:

- contiene tutte le tautologie
- è chiusa rispetto al Modus Ponens

```
Ad esempio; PL(\phi) cioè i teoremi della logica proposizionale
Altro esempio \Lambda_C = \{a \mid Fa \ per \ ogni \ F \in C\}
infatti:
```

• contiene tutte le tautologie perché sono vere mondo per mondo dappertutto

Semantica9

• MP : suppongo che in un mondo α accada che: $\mu\alpha b$, $\mu\alpha a$. Se vale anche $\mu\alpha ab$... l'antecedente è vero, quindi dato che l'implicazione è vera, deve essere vero anche il conseguente da cui non può che essere $\mu\alpha b$

Una logica si dice **uniforme** se è chiusa rispetto a sostituzioni uniformi cioè se sostituendo a una lettere uguali formule uguali in una tautologia, ottengo una tautologia.

Es. $\Lambda_C = \{a \mid Fa \ per \ ogni \ F \in C\}$ NON è uniforme infatti se considero V(A) = S, dove S sono tutti gli stati possibili (mondi), vale anche $\mu\alpha A$, e cioè A è una tautologia, se al posto di A sostituisco $B \wedge \neg B$ (falsa in ogni modello e mondo) non ottengo una tautologia.

Teorema

Sono equivalenti:

- 1. Λ è normale
- 2. per ogni intero $n \geq 0$, $a1 \wedge a2 \wedge ... \wedge an \implies a \text{ implica } 1 \wedge 2 \wedge ... \wedge n \implies$
- 3. valgono:
 - (a) T
 - (b) $\wedge b \implies (a \wedge b)$
 - (c) $ab \text{ implica} \implies b$

Dimostrazione

 $1 \implies 2$

per induzione.

se n = 0 allora a allora per la regola RN che vale in Λ per ipotesi se n > 0 (passo induttivo) suppongo valga l'antecedente, altrimenti 2 vale senz'altro;

Ricordiamo che $a1 \wedge a2 \wedge ... \wedge an \implies a \equiv a1 \wedge a2 \wedge ... a_{n-1} \implies (an \implies a)$

Verso la decidibilità - Logica determinata

4.1 Insieme Λ consistente e sue proprietà

Sia Λ una logica (cioè ha tutte le tautologie ed è chiusa rispetto al Modus Ponens) Γ si dice Λ -consistente se: $\Gamma\Lambda\bot$, dove $\bot = A \land \neg A$ Δ si dice Λ -consistente massimale se per ogni fbf a $a \in \Delta$ oppure $\neg a \in \Delta$

Proprietà:

- 1. Se e $\Gamma \subseteq \Delta$ allora Δa . Ovvero se alcune premesse non mi servono posso comunque metterle per dedurre una formula
- 2. Se $a \in \Lambda \subseteq \Lambda'$ allora $\Gamma \vdash_{\Lambda'} a$. Ovvero quello che posso dedurre in una logica più scarna (es. PL) lo posso dedurre anche in una più ricca che la contien (es. Modale)
- 3. se $a \in \Gamma$ allora . Infatti $a \implies a$ è un teorema dato che $a \implies a$ è una tautologia
- 4. $\{a|\}$ è la minima logica che contiene $\Gamma \cup \Lambda$. Infatti posso dedurre tutte le tautologie da Γ , anche se non userò nessuna formula di Γ ma solo quelle che già sono nella logica Λ
- 5. Se e $\{a\}b$ allora bInfatti: per dedurre a uso regole di inferenza, formule di Γ , assiomi di Λ . Per arrivare in b uso assiomi di Λ e regole di inferenza, quindi posso arrivare da Γ direttamente in b usando formule di Γ , regole di inf. e assiomi di Λ
- 6. Se e ab allora b, dato che Λ è chiusa rispetto al MP
- 7. $\Gamma \cup \{a\}b$ se e solo se ab Andata: $a_1 \wedge ... \wedge a \wedge ... \wedge a_n \implies b$ (per definizione di teorema), si può portare a

alla destra dell'implicazione $a_1 \wedge ... \wedge a_n \implies (a \implies b)$ **Ritorno**: $a_1 \wedge ... \wedge a_n \implies (a \implies b)$, basta portare a tra le and.

8. se e solo se $\Gamma \cup \{\neg a\}$ non è Λ -consistente

Andata: , $\Gamma \neg a$, posso dedure \bot che è contro la definizione di Λ -consistenza Ritorno: Se $\Gamma \cup \{\neg a\}$ non è Λ -consistente, allora $\Gamma \cup \{\neg a\}\bot$ da cui per 7. $\Gamma \neg a \Longrightarrow \bot$ (sposto $\neg a$ a destra e metto l'implica), Dato che $(\neg a \Longrightarrow \bot) \Longrightarrow a$ è una tatutologica, per MP ottengo a

9. Γ è se e solo se $\exists \beta : \Gamma_{\Lambda}\beta$

Andata: Basta prendere $\neg a \land a$

Ritorno: Se deducessi tutte le formule $(\neg \exists \beta : \Gamma_{\Lambda} \beta \text{ significa } \forall \beta : \beta)$, potrei dedurre anche \bot , da cui la non consistenza

10. Γ è se per ogni a

$$\Gamma \cup \{a\} \circ \Gamma \cup \{\neg a\}$$
è

se allora $\Gamma \cup \{\neg a\}$ non è consistente perché con a e $\neg a$ posso dedurre \bot , ma $\Gamma \cup \{a\}$ lo è

se $\Gamma \neg a$ allora $\Gamma \cup \{\neg a\}$ è consistente ma non $\Gamma \cup \{a\}$

- 11. $\bot \notin \Gamma$ se Γ è (altrimenti potrei dedurlo per il 3.)
- 12. Se Δ è massimale e Δa allora $a \in \Delta$ se $a \notin \Delta$ allora $\neg a \in \Delta$ (dato che Δ è massimale) ma se Δ contiene $\neg a$ allora per il 2.) $\Delta \neg a$, che insieme a Δa mi da $\Delta \bot$
- 13. Se Δ è e $a \in \Delta$. $ab \in \Delta$ allora $b \in \Delta$. Lo si vede subito usando 2.) se tutti e tre, e poi 6.) (deduco a, ab, allora deduco anche b)

4.2 Insieme Λ consistente massimale

Lemma di Lindelman - Esistenza dell'insieme in una logica Λ consistente

Considero tutte le formule $b1,\ b2,\ b3,\ldots$ della logica Λ (posso farlo perché sono un'infinità numerabile)

Chiamo Γ_0 un insieme che contiene una sola formula (ad esempio una tautologia) Dopodichè iterativamente, per ogni formula mi chiedo

$$\Gamma_0 b1$$
?
$$\begin{cases} si: & \Gamma_1 = \Gamma_0 \cup b1 \\ no: & \Gamma_1 = \Gamma_0 \cup \neg b1 \end{cases}$$

$$\Gamma_1 b2$$
 ?
$$\begin{cases} si: & \Gamma_2 = \Gamma_1 \cup b2 \\ no: & \Gamma_2 = \Gamma_1 \cup \neg b2 \end{cases}$$

 $\Delta = \bigcup_{n \geq 0} \Gamma_i \pmod{\text{questa unione è infinita}}$

 Δ è consistente massimale infatti:

- 1. Massimale in quanto contiene a oppure $\neg a$ per costruzione
- 2. Consistente. Per assurdo se non lo fosse avrei: $\Delta \perp$ cioè esiste un numero finito di formule di Δ da cui deduco il falso, dato che è un numero finito di formule, sta in Γ_i , cioè esiste un Γ_i non consistente, assurdo perché lo sono tutti per costruzione 4

Nota:

- ullet Non sappiamo costruire Δ perché nasce da unione infinita
- Non è unico, infatti se considero formule in ordine diverse potrei "dire" si o no in modo diverso

es. a, ab, b (allora Δ contiene b) es. b, c (allora Δ contiene $\neg b$)

4.2.1 Teorema

se e solo se $a \in a$ tutti i quei $\Delta \Lambda - consistenti massimali tali che: <math>\Gamma \subseteq \Delta$

Andata:

, anche Δa per la 1.)

Ritorno:

Per assurdo, se $\Gamma_{\Lambda}a$ allora $\Gamma \cup \{\neg a\}$ è (per la 8.) da cui per Lindellman esiste Δ' che contiene $\Gamma \cup \{\neg a\}$ consistente massimale data la consistenza Δ' non contiene a, il che è contro l'ipotesi 4