

Power Consumption

- By 2015 we can expect to see microprocessor chips with about 100 billion transistors on a 300 mm² die
- Assuming that about 50-60% of the chip area is devoted to memory, the chip will support cache memory of about 100 MB and leave over 1 billion transistors available for logic
- How to use all those logic transistors is a key design issue
- Pollack's Rule
 - States that performance increase is roughly proportional to square root of increase in complexity

Computers

BTC3101 - Computer Organization and Architecture

6

Effective Applications for Multicore Processors

Multi-threaded native applications

- Characterized by having a small number of highly threaded processes
- Lotus Domino, Siebel CRM (Customer Relationship Manager)

Multi-process applications

- Characterized by the presence of many single-threaded processes
- Oracle, SAP, PeopleSoft

Java applications

- Java Virtual Machine is a multi-threaded process that provides scheduling and memory management for Java applications
- Sun's Java Application Server, BEA's Weblogic, IBM Websphere, Tomcat

Multi-instance applications

- One application running multiple times
- If multiple application instances require some degree of isolation, virtualization technology can be used to provide each of them with its own separate and secure environment

Multicore Computers BTC3101 - Computer Organization and Architecture

9

Intel x86 Multicore Organization Core Duo

- Advanced Programmable Interrupt Controller (APIC)
 - Provides inter-processor interrupts which allow any process to interrupt any other processor or set of processors
 - Accepts I/O interrupts and routes these to the appropriate core
 - Includes a timer which can be set by the OS to generate an interrupt to the local core
- Power management logic
 - Responsible for reducing power consumption when possible, thus increasing battery life for mobile platforms
 - Monitors thermal conditions and CPU activity and adjusts voltage levels and power consumption appropriately
 - Includes an advanced power-gating capability that allows for an ultra fine grained logic control that turns on individual processor logic subsystems only if and when they are needed

Multicore Computers BTC3101 - Computer Organization and Architecture

13

Strathmore University

Intel x86 Multicore Organization Core Duo

- 2MB shared L2 cache
 - Cache logic allows for a dynamic allocation of cache space based on current core needs
 - MESI support for L1 caches
 - Extended to support multiple Core Duo in SMP
 - L2 cache controller allows the system to distinguish between a situation in which data are shared by the two local cores, and a situation in which the data are shared by one or more caches on the die as well as by an agent on the external bus
- Bus interface
 - Connects to the external bus, known as the Front Side Bus, which connects to main memory, I/O controllers, and other processor chips

Computers

BTC3101 - Computer Organization and

14

Feature	Range of options	Default value
Processors	1 to 4	4
Instruction cache size per processor	16 KB, 32 KB, or 64 KB	32 KB
Data cache size per processor	16 KB, 32 KB, or 64 KB	32 KB
Master ports	1 or 2	2
Width of interrupt bus	0 to 224 by increments of 32 pins	32 pins
Vector floating point (VFP) coprocessor per processor	Included or not	Included

Interrupt Handling

- Distributed Interrupt Controller (DIC) collates interrupts from a large number of sources
- It provides:
 - **Masking of interrupts**
 - Prioritization of the interrupts
 - Distribution of the interrupts to the target MP11 CPUs

 - Tracking status of interrupts
 Generation of interrupts by software
- Is a single function unit that is placed in the system alongside MP11 CPUs
- **Memory mapped**
- Accessed by CPUs via private interface through SCU
- Provides a means of routing an interrupt request to a single CPU or multiple CPUs, as required
- Provide a means of interprocessor communication so that a thread on one CPU can cause activity by a thread on another CPU

Multicore Computers

BTC3101 - Computer Organization and

Strathmore University

DIC Routing

- The DIC can route an interrupt to one or more CPUs in the following three ways:
 - An interrupt can be directed to a specific processor only
 - An interrupt can be directed to a defined group of processors
 - An interrupt can be directed to all processors
- OS can generate interrupt to:
 - All but self
 - Self
 - Other specific CPU
- Typically combined with shared memory for inter-process communication
- 16 interrupt IDs available for inter-processor communication

BTC3101 - Computer Organization and Architecture

Interrupt Sources

- Inter-process Interrupts (IPI)
 - Private to CPU
 - ID0-ID15
 - Software triggered
 - Priority depends on target CPU not source
- Private timer and/or watchdog interrupt
 - ID29 and ID30
- Legacy FIQ line
 - Legacy FIQ pin, per CPU, bypasses interrupt distributor
 - Directly drives interrupts to CPU
- Hardware
 - Triggered by programmable events on associated interrupt lines
 - Up to 224 lines
 - Start at ID32

Computers

BTC3101 - Computer Organization and Architecture

22

Cache Coherency

- Snoop Control Unit (SCU) resolves most shared data bottleneck issues
- L1 cache coherency scheme is based on the MESI protocol
- Direct Data Intervention (DDI)
 - Enables copying clean data between L1 caches without accessing external memory
 - Reduces read after write from L1 to L2
 - Can resolve local L1 miss from remote L1 rather than L2
- Duplicated tag RAMs
 - Cache tags implemented as separate block of RAM
 - Same length as number of lines in cache
 - Duplicates used by SCU to check data availability before sending coherency commands
 - Only send to CPUs that must update coherent data cache
- Migratory lines
 - Allows moving dirty data between CPUs without writing to L2 and reading back from external memory

Computer

BTC3101 - Computer Organization and Architecture

24

