Metrische Räume

Norm

- **Definition**: Abbildung $||\cdot||: V \to \mathbb{R}_{\geq 0}$ sodass $\forall v, w \in V, \lambda \in \mathbb{R}$:
 - \circ Definitheit: $||v|| = 0 \Leftrightarrow v = 0$
 - Absolute Homogenität: $||\lambda v|| = |\lambda| * ||v||$
 - o Dreiecksungleichung: $||v+w|| \leq ||v|| + ||w||$ $(\mathbb{R}\text{-Vektorraum }V)$

Metrik

- Definition: $d: X \times X \to \mathbb{R}_{\geq 0}$ (Menge X) so dass $\forall x,y,z \in X$:
 - \circ Positivität: $d(x, y) = 0 \Leftrightarrow x = y$
 - Symmetrie: d(x, y) = d(y, x)
- Dreiecksungleichung: $d(x, z) \le d(x, y) + d(y, z)$
- Wichtige Metriken:
- Triviale Metrik: $d(x, y) := \begin{cases} 0, & x = y \\ 1, & x \neq y \end{cases}$
- Euklidische Metrik: $X = \mathbb{R}^n$, $d_e(x, y) \coloneqq \sqrt{\sum_{i=1}^n (x_i y_i)^2} = ||x y||$
- $\quad \text{$\circ$ Induzierte Metrik: $d(v,w)\coloneqq \|v-w\|$ (Norm $\|\cdot\|)$}$
- Winkelmetrik: $d_W(x, y) := \arccos(\langle x, y \rangle)$
- Pseudometrik: Metrik, aber $d(x, y) = 0 \Rightarrow x = y$ gilt nicht
- Metrischer Raum: (X, d) (Menge X, Metrik d auf X)

Konstruktionen

- Einheitssphäre: $S_1^n\coloneqq\left\{x\in\mathbb{R}^{n+1}:\|x\|=1\right\}n$ -te Einheitssphäre Abgeschlossener Ball: abgeschlossener r-Ball um x

$$\overline{B_r(x)} \coloneqq \{ y \in X : d(x,y) \le r \}$$

• Offener Ball: offener r-Ball um x

$$B_r(x) \coloneqq \{ y \in X : d(x,y) < r \}$$

- Abstandserhaltende Abbildung: $f: X \to Y$ sodass $\forall x, y \in X : d_Y(f(x), f(y)) = d_X(x, y).$
- (metrische Räume (X, d_X), (Y, d_Y)) · Isometrie: bijektive abstandserhaltende Abbildung
- $\rightarrow X, Y$ isometrisch $\iff \exists$ Isometrie $f:(X, d_X) \rightarrow (Y, d_Y)$

Längenmetriken

Graphen

- Graph: G = (E, K)
- \circ Eckenmenge E
- \circ Kantenmenge $K \subseteq \{\{u, v\} : u \neq v \in E\}$
- Erreichbarkeit: $p, q \in E$ erreichbar $\iff \exists$ Kantenzug zwischen p und q
- $\rightarrow d(p,q)$ = kürzester Kantenzug zwischen p und q definiert Metrik

Euklidische Metrik

- Kurvenmenge: $\Omega_{pq}(X \subseteq \mathbb{R}^n)$ Menge der stetig db. Kurven zwischen p und q
- Euklidische Länge: $L_{\text{euk}}(c) = \int_a^b ||c'(t)|| dt (c \in \Omega_{pq}(\mathbb{R}^2))$
- o unabhängig von Kurvenparametrisierung
- o invariant unter Translationen, Drehungen, Spiegelungen
- Euklidische Metrik auf \mathbb{R}^2 -Kurven: $d_{\mathrm{euk}}(p,q)\coloneqq\inf L_{\mathrm{euk}}(c)$ $(p, q \in \mathbb{R}^2, c \in \text{Menge der stetig differenzierbaren Kurven zwischen } p \text{ und } q)$ $\rightarrow (\mathbb{R}^2, d_{\text{euk}}) = (\mathbb{R}^2, d_e)$

Sphärische Geometrie

- Sphärische Länge: $L_S(c) \coloneqq \int_a^b \|c'(t)\| dt = \int_a^b \sqrt{x'_1^2 + x'_2^2 + x'_3^2} dt$ (für $c : [a,b] \ni t \mapsto (x_1(t),x_2(t),x_3(t)) \in S_R^2 \subset \mathbb{R}^3$)
 invariant unter \mathbb{R}^2 -Rotationen
- **Großkreis**: Schnitt von S_R^2 und und 2-dimensionalen UVR des \mathbb{R}^2
- Sphärenmetrik: $d_S(p,q) \coloneqq \inf L_s(c) (c \in \Omega_{pq}(S_R^2))$
- $\circ (S_R^2, D_S)$ ist metrischer Raum und isometrisch zu $(S_R^2, R * d_W)$

Grundbegriffe allg. Topologie

Topologische Räume

- Topologie: $\mathcal{O} \subseteq \mathcal{P}(X)$ (Menge X) sodass
- $\circ X, \emptyset \in \mathcal{O}$
- \circ Durchschnitte endlich & Vereinigungen beliebig vieler Mengen aus $\mathcal O$ in $\mathcal O$
- Topologischer Raum: (X, \mathcal{O})
- \circ Abgeschlossene Teilmengen $A \subset X : X \setminus A$ offen
- · Wichtige Topologien:
- $\circ \ \textit{Triviale Topologie} \colon \mathcal{O}_{\mathsf{trivial}} \coloneqq \{X, \varnothing\}$
- \circ Diskrete Topologie: $\mathcal{O}_{ ext{diskret}} \coloneqq \mathcal{P}(X)$
- Standard-Topologie auf \mathbb{R} : $\mathcal{O}_s := \{I \in \mathbb{R} : I = \text{Vereinigung offener Intervalle}\}$
- ∘ Zariski-Topologie: $\mathcal{O}_Z := \{O \subset \mathbb{R} : O = \mathbb{R} \setminus E, E \subset \mathbb{R} \text{ endlich}\} \cup \{\emptyset\}$
- Induzierte Topologie (Metrik):
 - $-U \subset X \text{ d-offen} \iff \forall p \in U \exists \varepsilon = \varepsilon(p) > 0 : B_{\varepsilon}(p) \subset U$
 - d-offene Mengen bilden induzierte Topologie
- $\circ \ \textit{Teilraum-Topologie} : \mathcal{O}_Y \coloneqq \{U \subseteq Y : \ \exists \ V \in \mathcal{O}_X : U = V \cap Y\}$ (Topologischer Raum (X, \mathcal{O}_X) , Teilmenge $Y \subseteq X$)
- o *Produkttopologie*: Topologische Räume (X, \mathcal{O}_X) , (Y, \mathcal{O}_Y)
- $W \subseteq X \times Y$ offen in Produkttopologie $\iff \forall (x,y) \in W \exists \text{ Umgebung } U \text{ von } x$ in X und V von y in Y, sodass $U \times V \subseteq W$
- $\quad \circ \ \, \textit{Quotiententopologie} \colon (X,\mathcal{O}) \text{ topologischer Raum, } \pi : X \ni x \mapsto [x] \in X/\sim$ kanonische Projektion
 - $\to U \subset X/\sim \text{ist offen} \Leftrightarrow \pi^{-1}(U) \text{ ist offen in } X.$
- Basis für Topologie $\mathcal{O} \colon \mathcal{B} \subset \mathcal{O}$ sodass für jede offene Menge Ø $\neq V \in \mathcal{O}$ gilt $V = \bigcup V_i, \quad V_i \in \mathcal{B}$
- Umgebung $U \subset X$ von $A \subset X$, falls $\exists \ O \in \mathcal{O} : A \subset O \subset U$ (Topologischer Raum (X, \mathcal{O}))
- Innerer, äußerer Punkt $p \in X$ von $A \subset X$, falls A (bzw. $X \setminus A$) Umgebung
- \rightarrow Inneres von $A \subset X$: Menge \mathring{A} der inneren Punkte von A
- **Abgeschlossene Hülle** von A: Menge $\overline{A} \subset X$, die *nicht* äußere Punkte sind

Hausdorffsches Trennungsaxiom

- Hausdorffsch (top. Raum (X, \mathcal{O})): $\forall p \neq q \in X \exists U \ni p, V \ni q : U \cap V = \emptyset$ (Umgebungen U, V)
- · Hausdorffsche Räume:
- o Metrische Räume (über Dreiecks-Ugl.)
- \circ (\mathbb{R} , \mathcal{O}_s), weil \mathcal{O}_s von Metrik induziert wird
- o Teilraum von Hausdorff-Raum
- o Produkt von Hausdorff-Räumen bzgl. Produkttopologie

Stetigkeit

- Stetigkeit (zwischen top. Räumen (X, \mathcal{O}_X) , (Y, \mathcal{O}_Y)): $f: X \to Y$ stetig falls Urbilder offener Mengen in Y offen sind in X
- Homöomorphismus (zw. top. Räumen): $f: X \to Y$ bijektiv mit f, f^{-1} stetig
- $\rightarrow X, Y \text{ homomorph}, \text{ falls } \exists \text{ Homo } f: X \rightarrow Y \text{ (schreibe } X \cong Y)$
- o Homöomorphismengruppe: Identität, Verkettungen, Inverse von Homö sind Homö → Gruppe
- · Wichtige Homöomorphismen:
- $\circ \ [0,1] \cong [a,b] (a < b \in \mathbb{R})$
- $\circ S^n \setminus \{(0,\ldots,0,1)\} \cong \mathbb{R}^n \text{ (also } S^n \text{ ohne "Nordpol")}$

Zusammenhang

- **Definition**: (X, \mathcal{O}) zusammenhängend, falls \emptyset und X die einzigen offenabgeschlossenen Teilmengen sind
- $\iff X$ ist nicht disjunkte Vereinigung von 2 offenen, nichtleeren Mengen
- · Eigenschaften:
- o A zusammenhängend $\Rightarrow \overline{A}$ ist zusammenhängend
- o A,B zusammenhängend, $A\cap B\neq\varnothing\Rightarrow A\cup B$ zusammenhängend

Zusammenhangskomponente

- **Definition**: Z(x) = Vereinigung aller zusammenhängender Teilmengen, die xenthalten
- · Eigenschaften:
 - $\circ Z(X) = \text{disjunkte Zerlegung von } X$
 - Elemente von Z(X) = zusammenhängend

Weg-Zusammenhang

• **Definition**: (X, \mathcal{O}) weg-zusammenhängend

$$\Leftrightarrow \forall p,q \in X \exists \operatorname{Weg} \alpha : [0,1] \to X : \alpha(0) = p \land \alpha(1) = q$$

- · Eigenschaften:
 - o X weg-zusammenhängend $\Rightarrow X$ zusammenhängend
 - o Stetige Bilder von (weg-)zusammenhängenden Räumen sind es auch
 - o Ein (nicht) zusammenhängender Raum kann nur zu einem (nicht) zusammenhängenden Raum homöomorph sein

Kompaktheit

- **Definition**: (X,\mathcal{O}) kompakt \Leftrightarrow jede offene X-Überdeckung besitzt *endliche* Teilüberdeckung:

Teilüberdeckung:
$$X = \bigcup_{i \in I} U_i, \ U_i \ \text{offen} \ \Rightarrow \exists i_1, \dots, i_k \in I : X = U_{i_1} \cup \dots \cup U_{i_k}$$
• Lokal kompakt: Jeder Punkt von X besitzt kompakte Umgebung
• Eigenschaften:

- o Man kann von lokale auf globale Eigenschaften schließen
- $\to X$ kompakt, $f: X \to \mathbb{R}$ lokal beschränkt $\Rightarrow f$ beschränkt
- Stetige Bilder kompakter Räume sind kompakt
- o Abgeschlossene Teilräume kompakter Räume sind kompakt
- Produkte kompakter Räume sind kompakt
- o Kompakte Mengen in Hausdorff-Räumen sind abgeschlossen