Turn in the homework problems only.

Homework Problems

1. Let X_1, \dots, X_n be *i.i.d.* random variables from the probability density function of the following form:

$$f_X(x|\theta) = \begin{cases} \frac{2x}{\theta^2}, & 0 < x < \theta \\ 0, & \text{otherwise} \end{cases}$$

where $\theta > 0$. Find a minimal sufficient statistic for θ .

2. Suppose that X_1, \dots, X_n are *i.i.d.* random variables from pdf

$$f_X(x|\theta) = \theta x^{\theta-1} \exp\left(-x^{\theta}\right)$$

where $\theta > 0$, x > 0. Show that $(\log X_{(n)})/(\log X_{(1)})$ is an ancillary statistic.

3. Let X_1, \dots, X_n be *i.i.d.* random variables from a uniform distribution Uniform $(-\theta, \theta)$ with the pdf given by

$$f_X(x|\theta) = \frac{1}{2\theta}I(-\theta < x < \theta), \qquad \theta > 0$$

- (a) Is the two dimensional statistic $T_1(\mathbf{X}) = (X_{(1)}, X_{(n)})$ a complete sufficient statistic? Justify your answer.
- (b) Is the one-dimensional statistic $T_2(\mathbf{X}) = \max_i \{|X_i|\}$ a complete sufficient statistic? Justify your answer.
- 4. Let X_1, \dots, X_n be *i.i.d.* random variables from $N(\mu, \sigma^2)$ population with known μ . Find a one-dimensional minimal sufficient statistic for σ^2 .
- 5. Let X_1, \dots, X_n be *i.i.d.* observations uniformly drawn from $\{1, 2, \dots, \theta\}$, where θ is a positive integer. This corresponds to a discrete uniform with pmf

$$f_X(x|\theta) = \begin{cases} 1/\theta & x = 1, 2, \dots, \theta \\ 0 & \text{otherwise} \end{cases}$$

Show that $T(\mathbf{X}) = \max_i X_i$ is a complete, minimal sufficient statistic.

{ Hint: Showing completeness is somewhat involved. The direct way of doing that involves the followings two steps.

Step 1: Find the pmf of $T(\mathbf{X})$, i.e. find

$$\Pr(\max_{i} X_{i} = k) \text{ for } k = \{1, \dots, \theta\}.$$

Step 2: Let g be any function. Set up the equation

$$E[g(T)] = \sum_{k=1}^{\theta} g(k) \Pr(\max_{i} X_{i} = k) = 0.$$
 (1)

Since this identity is true for all θ , plug in (1) $\theta=1,2,\cdots$ etc. and establish that g(k)=0 for all k.

Practice Problems

- (a) C&B Exercise 6.8
- (b) C&B Exercise 6.9
- (c) C&B Exercise 6.14
- (d) C&B Exercise 6.17
- (e) C&B Exercise 6.20
- (f) C&B Exercise 6.22
- (g) C&B Exercise 6.31