Himanshu Rana

11/9/18

CS 385 Algorithms

"I pledge my honor that I have abided by the Stevens Honor System" - Himanshu Rana(hrana2)

- 1. In the else statement where L1 is copied to L2 in reverse order, it would that L1 is copied to L2 not in reverse order
- 2.

n	m	744 +5952 6696
72	93	
36	186	
18	372	
9	744	
4	1488	
2	2978	
1	5952	

- 3. a) The worst case scenario is when each element in the array is less than the pivot b) $\Theta(n^2)$
- 4. 2205 * 1132 = 2,496,060

$$c2 = a1 * b1 = 22 * 11 = 242$$

 $c0 = a0 * b0 = 05 * 32 = 160$
 $c1 = (a1 + a0) * (b1 + b0) - (c2 + c0) = (27 * 43) - 402$
 $05 * 32$
 $c2 = a1 * b1 = 0 * 3 = 0$
 $c0 = a0 * b0 = 5 * 2 = 10$
 $c1 = (a1 + a0) * (b1 + b0) - (c2 + c0) = 25 - 10 = 15$
 $22 * 11$
 $c2 = a1 * b1 = 2 * 1 = 2$
 $c0 = a0 * b0 = 2 * 1 = 2$
 $c1 = (a1 + a0) * (b1 + b0) - (c2 + c0) = 8 - 4 = 4$

5. 24, 18, 67, 68, 69, 25, 19, 20, 11, 93

- d) 5 internal nodes
- e) 5 leaves
- f) 4 is the max width
- g) 3 is height

7. a)
$$T(n) = 2T(n/4) + 1$$
 $\Theta(n^{1/2}) = \Theta(\sqrt{n})$
 $A = 2, b = 4, d = 0$
 $2 > 4^0$

b)
$$T(n) = 2T(n/4) + \sqrt{n}$$
 $\Theta(\sqrt{n} \log n)$
 $A = 2, b = 4, d = \frac{1}{2}$
 $2 = 4^{\frac{1}{2}}$

c)
$$T(n) = 2T(n/4) + n$$
 $\Theta(n)$
 $A = 2, b = 4, d = 1$
 $2 < 4$

d)
$$T(n) = 2T(n/4) + n^2$$
 $\Theta(n^2)$
 $A = 2, b = 4, d = 2$
 $2 < 4^2$

e)
$$T(n) = 2T(n/4) + n^3$$
 $\Theta(n^3)$
 $A = 2, b = 4, d = 3$
 $2 < 4^3$

8) a)
$$T(n) = 6T(n/3) + n^{3}(2)$$
 $\Theta(n^{(\log base 3 of 6)})$
b) $a = 6$, $b = 3$, $d = 3/2$
 $6 > \sqrt{27}$