Задача А. Перестановки

Имя входного файла: permutations.in Имя выходного файла: permutations.out

Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Выведите в выходной файл все перестановки из n чисел.

Формат входного файла

Во входном файле задано число $n\ (1\leq n\leq 8).$

Формат выходного файла

Выведите в выходной файл в лексикографическом порядке все перестановки чисел от 1 до n.

permutations.in	permutations.out
3	1 2 3
	1 3 2
	2 1 3
	2 3 1
	3 1 2
	3 2 1

Задача В. Оптимальная перестановка

Имя входного файла: optimal.in Имя выходного файла: optimal.out Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Будем называть <u>ценностью</u> перестановки $\langle a_1, a_2, \dots, a_n \rangle$ величину $(a_1a_2 + a_2a_3 + \dots + a_{n-1}a_n) \bmod r$.

Вам даны n и r, найдите перестановку, имеющую максимальную ценность. Если таких перестановок несколько, выведите первую лексикографически.

Формат входного файла

Во входном файле заданы числа n и r ($2 \le n \le 10, 2 \le r \le 100$).

Формат выходного файла

Выведите в выходной файл две строки. Первая строка должна содержать максимальное возможное значение ценности перестановки. Вторая должна содержать оптимальную перестановку. Если таких перестановок несколько, выведите первую в лексикографическом порядке.

optimal.in	optimal.out
3 5	4
	1 3 2

Задача С. Красивые перестановки

Имя входного файла: beautiful.in Имя выходного файла: beautiful.out Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Будем называть <u>ценностью</u> перестановки $\langle a_1, a_2, \dots, a_n \rangle$ величину $(a_1a_2 + a_2a_3 + \dots + a_{n-1}a_n) \bmod r$.

Петя считает число красивым, если оно либо равно 0, либо число его делителей кратно 3. Например, 9 — красивое число (у него три делителя: 1, 3 и 9), а 6 — нет (у него 4 делителя: 1, 2, 3 и 6).

Вам даны n и r, найдите число перестановок, ценность которых является красивым числом.

Формат входного файла

Во входном файле заданы числа n и r ($2 \le n \le 10, 2 \le r \le 1000$).

Формат выходного файла

Выведите в выходной файл число перестановок, ценность которых является красивым числом.

Пример

beautiful.in	beautiful.out
3 10	2

Комментарий

В примере искомые перестановки — $\langle 1, 3, 2 \rangle$ и $\langle 2, 3, 1 \rangle$

Задача D. Двоичные вектора

Имя входного файла: vectors.in Имя выходного файла: vectors.out Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Выведите в выходной файл все двоичные вектора.

Формат входного файла

Во входном файле задано число $n \ (1 \le n \le 10)$.

Формат выходного файла

В первой строке выходного файла выведите количество двоичных векторов длины n. В следующих строках выведите сами эти вектора в лексикографическом порядке по одному в строке.

Пример

vectors.in	vectors.out
3	8
	000
	001
	010
	011
	100
	101
	110
	111

Система оценивания

Только 100. Ну, или 0.

Задача Е. Двоичные вектора 2

Имя входного файла: vectors2.in Имя выходного файла: vectors2.out Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Выведите в выходной файл все двоичные вектора, в которых нет двух единиц подряд.

Формат входного файла

Во входном файле задано число $n \ (1 \le n \le 16)$.

Формат выходного файла

В первой строке выходного файла выведите количество двоичных векторов длины n в которых нет двух единиц подряд. В следующих строках выведите сами эти вектора в лексикографическом порядке по одному в строке.

vectors2.in	vectors2.out
3	5
	000
	001
	010
	100
	101

Задача F. Сочетания

Имя входного файла: choose.in
Имя выходного файла: choose.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 64 мегабайта

Выведите все сочетания из n по k.

Формат входного файла

Во входном файле заданы числа n и k.

Формат выходного файла

Выведите в выходной файл все сочетания по k из чисел от 1 до n в лексикографическом порядке. $1 \le k \le n \le 100$, число сочетаний, которое необходимо вывести, не превосходит 100 000. Суммарное количество элементов в этих сочетаниях не превышает 10^6 .

choose.in	choose.out
4 2	1 2
	1 3
	1 4
	2 3
	2 4
	3 4

Задача G. Останки Юрского периода

 Имя входного файла:
 jurassic.in

 Имя выходного файла:
 jurassic.out

 Ограничение по времени:
 2 seconds

 Ограничение по памяти:
 256 мегабайта

Археологи недавно нашли фрагменты динозавра Юрского периода. Археологи решили, что они отправят кости динозавра в музей. Но, к сожалению, кости такие большие, что они не смогли положить их в один ящик. Поэтому они разделили скелет на отдельные кости и отправили каждый из них по-отдельности. Теперь сотрудникам музея предстоит собрать скелет. Для того, чтобы они могли это сделать, археологи отметили точки, в которых кости должны были быть соединены, специальными пометками. А именно — в каждой точке, где соединялись две кости, археологи написали на каждой из них одинаковые заглавные латинские буквы.

Однако пока археологи разбирали и упаковывали скелет, были обнаружены еще кости и они тоже были отправлены в музей. Причем они тоже могли быть соединены друг с другом, поэтому на них также могли быть пометки. Более того, археологи всегда использовали одинаковые пометки в точках на костях, которые должны были быть соединены, но они могли использовать одну и ту же пометку для различных соединений. Правда на каждой кости было не более одной пометки конкретной буквой.

Теперь работники музея пытаются разобраться с этой ситуацией и найти хотя бы какое-нибудь теоретически возможное множество костей исходного скелета динозавра. А именно, они хотят найти множество костей, которое удовлетворяет следующим условиям.

- Кости, помеченные некоторой буквой, можно попарно соединить друг с другом. Иначе говоря, каждая пометка встречается четное число раз.
- Число костей в наборе максимально.

Формат входного файла

Первая строка входного файла содержит N — число костей ($1 \le N \le 24$). Следующие N строк содержат описание костей: каждая строка содержит непустую последовательность различных заглавных букв латинского алфавита — метки на костях.

Формат выходного файла

На первой строке выходного файла выведите L — максимальное вомзожное число костей, из которых можно собрать скелет. Вторая строка должна содержать L чисел — номера костей. Кости пронумерованы от 1 до N в порядке, в котором они заданы во входном файле.

jurassic.in	jurassic.out
6	5
ABD	1 2 3 5 6
EG	
GE	
ABE	
AC	
BCD	
1	0
ABC	