Epreuve écrite

Examen de fin d'études secondaires 2015

Section: D

Branche: Statistique et Probabilités

Numéro	d'ordre	du	candidat	

1. <u>Statistique descriptive</u> (4 + 3 + 4 + 5 + 4 = 20 points)

Considérons la série statistique suivante relative à la durée de séjour annuelle à l'étranger d'un échantillon de 200 personnes:

durée de séjour (nuitées)	nombre de personnes
[0-10[30
[10-15[50
[15-20[60
[20-25[25
[25 – 30 [15
[30-50[20

Travail à faire:

- 1. Établissez l'histogramme et le polygone des effectifs.
- 2. Calculez la moyenne arithmétique par changement d'origine et d'échelle.
- 3. Déterminez la médiane et interprétez.
- 4. Calculez l'écart-type par changement d'origine et d'échelle.
- 5. Calculez le pourcentage des personnes qui passent entre 8 et 22 jours à l'étranger.

2. Régression et corrélation (2 + 6 + 2 = 10 points)

Le tableau suivant donne pour un glacier le nombre de boules de glaces vendues et le nombre d'heures de soleil pour les mois de juillet de 6 années consécutives.

Année	heures de soleil	glaces vendues
N	270	3000
N+1	175	1800
N+2	225	3000
N+3	340	4500
N+4	180	2300
N+5	280	3400

Travail à faire:

- 1. Présentez le nuage des points.
- 2. Déterminez, par la méthode des moindres carrés ordinaires, l'équation de la droite de régression de y en x et représentez cette droite sur le graphique précédent.
- 3. Fin juin N+6, les météorologistes prévoient pour le mois de juillet N+6 une durée d'insolation de 320 heures. Estimez le nombre de boules de glaces vendues pour le glacier pendant le mois de juillet N+6.

Epreuve écrite

Examen de fin d'études secondaires 2015

Numéro d'ordre du candidat

Section: D

Branche: Sociétés commerciales

3- Analyse combinatoire et calcul de probabilités (4 + 6 + 6 = 16 points)

Dans un panier à linge se trouvent 4 serviettes de bain bleues rayées, 6 serviettes de bain rouges carrées, 2 serviettes de bain bleues carrées et 2 serviettes de bain vertes rayées.

- 1. De combien de façons peut-on ranger ces serviettes dans une armoire:
 - a) si les couleurs et les motifs doivent rester regroupés?
 - b) idem, sauf que les serviettes de bain rouges carrées doivent se situer en bas de la pile?
- 2. On tire au hasard simultanément 4 serviettes du panier. Quelle est la probabilité de:
 - a) tirer aucune rouge?
 - b) tirer au moins 2 bleues?
 - c) tirer autant de carrées que de rayées?
- 3. On tire au hasard 3 serviettes du panier en remettant après chaque tirage la serviette précédente. Quelle est la probabilité de:
 - a) tirer dans l'ordre une serviette verte, une serviette rouge et une serviette bleue?
 - b) tirer dans l'ordre une serviette bleue carrée, une serviette bleue et une serviette bleue rayée?

4. <u>Loi de probabilité</u> (6 + 2 + 4 + 2 = 14 points)

Soit un jeu de 32 cartes. On tire 1 carte qu'on remet après chaque tirage. Soit X la variable aléatoire "nombre d'As obtenus" après 6 tirages.

Travail à faire:

- 1. Établissez la loi de probabilité.
- 2. Calculez l'espérance mathématique.
- 3. Calculez l'écart-type.
- 4. Calculez la probabilité qu'au moins 4 As ont été tirés.

Examen de fin d'études secondaires 2015

Section: D

Branche: Sociétés commerciales

Numéro d'ordre du candidat

CORRIGÉ MODÈLE

1. Statistique descriptive (4 + 3 + 4 + 5 + 4 = 20 points)

durée de séjour (nuitées)	nombre de personnes	c _i	Amplitude a _i	hi	Effectif cumulé croissant	z _i	n _i * z _i	n _i * z _i ²
[0-10[30	5	10	15	30	-2,5	-75	187,50
[10-15[50	12,5	5	50	80	-1	-50	50
[15-20[60	17,5	5	60	140	. 0	0	0
[20-25[25	22,5	5	25	165	1	25	25
[25-30[15	27,5	5	15	180	2	30	60
[30-50[20	40	20	10	200	4,5	90	405
	N = 200	14.74					20	727,50

1. Établissez l'histogramme et le polygone des effectifs.

graphique

2. Calculez la moyenne arithmétique par changement d'origine et d'échelle.

$$\bar{z} = \frac{20}{200} = 0.1$$

$$\bar{x} = 17.5 + 5 \cdot 0.1 = 18 \text{ nuitées}$$

3. Déterminez la médiane et interprétez.

M_e = valeur de la 200/2 = 100^e observation. Donc la classe médiane est [15 ; 20 [

$$M_e = 15 + \left(\frac{200}{2} - 80\right) \left(\frac{20 - 15}{140 - 80}\right)$$

 $\Leftrightarrow M_e = 16,67$ nuitées à l'étranger

50 % des personnes de l'échantillon passent moins de 16,67 nuitées à l'étranger, l'autre moitié passe plus de 16,67 nuitées à l'étranger.

- 4. Calculez l'écart-type par changement d'origine et d'échelle.
- a) la variance;

$$\bar{z} = 0.1$$

$$\sigma_z^2 = \left(\frac{1}{200} 727,50\right) - (0,1)^2 = 3,6275$$

donc:

$$\sigma_x^2 = 3,6275 \cdot 5^2 = 90,6875$$

b) l'écart-type.

$$\sigma_x = \sqrt{90,6875} = 9,52 \text{ nuitées}$$

5. Calculez le pourcentage des personnes qui passent entre 8 et 22 jours à l'étranger.

$$\begin{bmatrix}
 8 - 10 & 30 \cdot \frac{10 - 8}{10} & = 6 \\
 \begin{bmatrix}
 10 - 15 & 50 \\
 \hline
 15 - 20 & 60 \\
 \hline
 \end{bmatrix}
 \begin{bmatrix}
 25 \cdot \frac{22 - 20}{5} & = 10 \\
 \hline
 \end{bmatrix}$$

Total: 126

Calcul du pourcentage:

$$\frac{126}{200} \cdot 100 = 63 \%$$

Régression et corrélation (2 + 6 + 2 = 10 points)

Présentez le nuage des points.

graphique

2. Déterminez, par la méthode des moindres carrés ordinaires, l'équation de la droite de régression de y en x et représentez cette droite sur le graphique précédent.

Année	heures de soleil X _i	glaces vendues y _i	x_i^2	$x_i y_i$
N+1	175	1800	30625	315000
N+4	180	2300	32400	414000
N+2	225	3000	50625	675000
N	270	3000	72900	810000
N+5	280	3400	78400	952000
N+3	340	. 4500	115600	1530000
Total	1470	18000	380550	4696000

DÉTERMINATION DE X:

$$\frac{1470}{6} = 245$$

DÉTERMINATION DE \bar{y} :

$$\frac{18000}{6} = 3000$$

DETERMINATION DU PARAMETRE α:

$$\alpha = \frac{\left(\frac{1}{N} \sum_{i=1}^{N} x_i y_i\right) - \overline{xy}}{\left(\frac{1}{N} \sum_{i=1}^{N} x_i^2\right) - \overline{x}^2}$$

$$\alpha = \frac{\left(\frac{1}{6} \ 4696000\right) - 245 \cdot 3000}{\left(\frac{1}{6} \ 380550\right) - 245^2} = 14,019608$$

DETERMINATION DU PARAMETRE β:

$$\beta = \bar{y} - \alpha \bar{x}$$
= 3000 - 14,019608 \cdot 245 = -434,80396

DETERMINATION DE L'EQUATION DE LA DROITE:

$$y = \alpha x + \beta$$

y = 14,019608 x - 434,80396

3. Fin juin N+6, les météorologistes prévoient pour le mois de juillet N+6 une durée d'insolation de 320 heures. Estimez le nombre de boules de glaces vendues pour le glacier.

$$y = 14,019608 \cdot 320 - 434,80396 = 4051,47$$
 boules de glace

Analyse combinatoire et calcul de probabilités (4 + 6 + 6 = 16 points) 3.

1.

a)
$$P_4 \cdot P_6 \cdot P_2 \cdot P_2 \cdot P_4 = 1658880$$
 possibilités
b) $P_4 \cdot P_6 \cdot P_2 \cdot P_2 \cdot P_3 = 414720$ possibilités

b)
$$P_4 \cdot P_6 \cdot P_2 \cdot P_3 \cdot P_3 = 414720$$
 possibilités

2.

a)
$$\frac{C_6^0 \cdot C_8^4}{C_{14}^4} = \frac{70}{1001} = 0,069930$$

a)
$$\frac{C_6^0 \cdot C_8^4}{C_{14}^4} = \frac{70}{1001} = 0,069930$$

b) $1 - \frac{C_6^0 \cdot C_8^4}{C_{14}^4} - \frac{C_6^1 \cdot C_8^3}{C_{14}^4} = 1 - \frac{70}{1001} - \frac{336}{1001} = 0,594406$
c) $\frac{C_6^2 \cdot C_8^2}{C_{14}^4} = \frac{420}{1001} = 0,419580$

c)
$$\frac{C_6^2 \cdot C_8^2}{C_{14}^4} = \frac{420}{1001} = 0,419580$$

a)
$$\frac{2}{14} \cdot \frac{6}{14} \cdot \frac{6}{14} = 0,026239$$

a)
$$\frac{2}{14} \cdot \frac{6}{14} \cdot \frac{6}{14} = 0,026239$$

b) $\frac{2}{14} \cdot \frac{6}{14} \cdot \frac{4}{14} = 0,017493$

4. <u>Loi de probabilité</u> (6 + 2 + 4 + 2 = 14 points)

1. Établissez la loi de probabilité.

p (tirer un as) =
$$\frac{4}{32} = \frac{1}{8}$$

$$q = \frac{7}{8}$$

X		$p_i = P(X = x_i)$
X ₁ = 0	$C_6^0 \cdot \left(\frac{1}{8}\right)^0 \cdot \left(\frac{7}{8}\right)^6$	0,448795
X ₂ = 1	$C_6^1 \cdot \left(\frac{1}{8}\right)^1 \cdot \left(\frac{7}{8}\right)^5$	0,384682
X ₃ = 2	$C_6^2 \cdot \left(\frac{1}{8}\right)^2 \cdot \left(\frac{7}{8}\right)^4$	0,137386
x ₄ = 3	$C_6^3 \cdot \left(\frac{1}{8}\right)^3 \cdot \left(\frac{7}{8}\right)^3$	0,026169
x ₅ = 4	$C_6^4 \cdot \left(\frac{1}{8}\right)^4 \cdot \left(\frac{7}{8}\right)^2$	0,002804
x ₆ = 5	$C_6^5 \cdot \left(\frac{1}{8}\right)^5 \cdot \left(\frac{7}{8}\right)^1$	0,000160
x ₇ = 6	$C_6^6 \cdot \left(\frac{1}{8}\right)^6 \cdot \left(\frac{7}{8}\right)^0$	0,000004
		1

2. Calculez l'espérance mathématique.

$$E(X) = n \cdot p = 6 \cdot \frac{1}{8} = 0,75$$

3. Calculez l'écart-type.

variance:

$$\sigma^{2}(X) = n \cdot p \cdot q = 6 \cdot \frac{1}{8} \cdot \frac{7}{8} = 0,65625$$

écart-type:

$$\sigma(X) = \sqrt{0,65625} = 0,810093$$

4. Calculez la probabilité qu'au moins 4 As ont été tirés.

$$P(X \ge 4) = P(X = 4) + P(X = 5) + P(X = 6) = 0,002804 + 0,000160 + 0,000004 = 0,002968$$