數位訊號處理實驗 Digital Signal Processing Laboratory Lab 4 Heart Rate Detection

Task 1

Detect the R wave from your recorded ECG signals.

Pre-Processing of ECG Signals (3/3)

Task 3 (See Your TAs' Demo)

- Implement the pre-processing of the ECG signals(Lab 3) and R-peak detection in real time and display the processed ECG signals and the R-peaks in real time.
 - Better modularize your signal processing flow. That is, please make each block as a function and then perform function calls.
 - Note that you can implement your signal processing modules in PC or in Arduino.
 - Can you display "Heart Rate" (Inverse of the RR interval) in real time?
 - Can you "beep" for each R peak

Task 2

Find the R-peaks in MIT-BIH database.

(You have to take care "group delay" introduced by your linear phase FIR filtering in order to obtain the almost the same R-peak time as provided by the MIT-BIH database)

- Detailed description about the provided data, please see the Lab 4 on the LMS e-learning system.
- Please draw a table in your report. The first column is the name of the data set, the 2nd column is TP, the 3rd column is FN, and the 4th column is FP.
- Please justify how you estimate your TP, FN, and FP and the precision when matching your results with the ground truth.

數位訊號處理概論 Introduction to Digital Signal Processing: Topic 7 Design of FIR and IIR Filters (Part of Textbook Chap 10 and Chap 11)

Meng-Lin Li (李夢麟), Ph. D.

mlli@ee.nthu.edu.tw

Department of Electrical Engineering National Tsing Hua University

Recall: For Example: Ideal Low Pass Filter with Linear Phase

$$H_{\rm lp}\left(e^{j\omega}\right) = \begin{cases} e^{-j\alpha\omega}, & |\omega| < \omega_{\rm c} \\ 0, & \omega_{\rm c} < |\omega| \le \pi \end{cases}$$
 (10.21)

$$h_{\rm lp}[n] = \frac{\sin \omega_{\rm c}(n-\alpha)}{\pi(n-\alpha)}.$$
 (10.22)

all pass filter.

$$w_c = \pi$$
, $\alpha = h_d$, α ; delay.

 $hep(n) = S(n-n_d)$
 $k(n) \rightarrow hep(n) \rightarrow k(n-n_d)$

Recall: Group Delay: Amplitude Response and Angle Response

Figure 10.3 The differences between the magnitude and amplitude response representations of the frequency response function. Group delay $\tau_{gd}(\omega) = -\frac{d\Psi(e^{j\omega})}{d\omega}$ (10.44)

Recall: Linear Phase System vs. Group Delay

$$H_{\mathrm{lp}}\left(\mathrm{e}^{\mathrm{j}\omega}\right) = \begin{cases} \mathrm{e}^{-\mathrm{j}\alpha\omega}, & |\omega| < \omega_{\mathrm{c}} \\ 0. & \omega_{\mathrm{c}} < |\omega| \leq \pi \end{cases} \quad \text{Group delay = ?}$$

Figure 10.3 The differences between the magnitude and amplitude response representations of the frequency response function.

Table 10.1 Properties of impulse response sequence h[n] and frequency response function $H(e^{j\omega}) = A(e^{j\omega})e^{j\Psi(e^{j\omega})}$ of FIR filters with linear phase.

Type	h[k]	M	$A(e^{j\omega})$	$A(e^{j\omega})$	$\Psi(e^{j\omega})$
I	even	even	$\sum_{k=0}^{M/2} a[k] \cos \omega k$	even-no restriction	$-\frac{\omega M}{2}$
П	even	odd	$\sum_{k=1}^{\frac{M+1}{2}} b[k] \cos \left[\omega \left(k - \frac{1}{2}\right)\right]$	even $A(e^{j\pi}) = 0$	$-\frac{\omega M}{2}$
Ш	odd	even	$\sum_{k=1}^{M/2} c[k] \sin \omega k$	odd $A(e^{j0}) = 0$ $A(e^{j\pi}) = 0$	$\frac{\pi}{2} - \frac{\omega M}{2}$
IV	odd	odd	$\sum_{k=1}^{\frac{M+1}{2}} d[k] \sin \left[\omega \left(k - \frac{1}{2}\right)\right]$	odd $A(e^{j0}) = 0$	$\frac{\pi}{2} - \frac{\omega M}{2}$

Table 10.2	Unified	representation	and	uses of FI	2 filtore	with	linear phace	
Table 10.2	Offilled	representation	allu	uses of Fil	7 IIILEIS	VVILII	illiear briase	. 77

Type	M	$Q(e^{j\omega})$	$P(e^{j\omega})$	$H(e^{j\omega}) = 0$	Uses
I	even	1	$\sum_{k=0}^{M/2} \tilde{a}[k] \cos \omega k$		LP, HP, BP, BS, multiband filters
П	odd	$\cos(\omega/2)$	$\sum_{k=0}^{\frac{M-1}{2}} \tilde{b}[k] \cos \omega k$	$\omega=\pi$	LP, BP
III	even	$\sin \omega$	$\sum_{k=0}^{M/2} \tilde{c}[k] \cos \omega k$	$\omega = 0, \pi$	differentiators, Hilbert transformers
IV	odd	$\sin(\omega/2)$	$\sum_{k=0}^{\frac{M-1}{2}} \tilde{d}[k] \cos \omega k$	$\omega = 0$	differentiators, Hilbert transformers

Potential Final Projects

光源及互動感應控制模組微小化 設計;利用無線傳輸將擷取到的 生理數據視覺化,並作為長期記 錄及醫療參考

整合呼吸心跳感應器

高功率微型LED及整合型聚光罩

數位式電子燈光色彩調控系統

內外時鐘 Clock Inside Out

作品所傳遞的訊息是「外在與內在世界時間的差異與層次」,當觀眾配戴著生理感應器看到時鐘時,就進入了有別於外在世界的時間和空間,雖然時針和分針仍然隨著世界的時間在運轉,但秒針是依著觀眾的心跳節奏前進,隨著觀眾的呼吸速度亮暗。

Link "Heart Rate" with "Audio" or/and "Video" Play