2.2 Customer Pair-Wise Matrix-Based Algorithm

This procedure iterates on a set of customers denoted as set S. S is initially set as a sorted list of customers in descending order of R_i . In the process of iteration, a customer is considered ideal if it has the maximum R_i in set S and it is not in any of the existing cluster α (α = 1,2 ... *C*).

Step 1: Initiation:

- (i)
- Set $C (\alpha = 1, 2 ... C)$ (ii)
- (iii) Set t_i

Step 2: Assignment:

- Find customer i with maximum relation index Ri, $(i \in I)$ to serve as candidate ideal customers for size group α
- (ii) For $i \neq k$, find maximum value of r_{ik} (say $r_{ik} = 1$), assign all customer k with $max(r_{ik})$ into cluster α
- Compute percentage degree of fit for cluster α : $h_{\alpha} = \frac{\sum_{i=1}^{g_{\alpha}} \sum_{k=1}^{g_{\alpha-1}} 100r_{ik}}{n_{\alpha}(n_{\alpha}-1)}$ (iii)
- For l > 1, repeat (ii) (iii) and select i as ideal customer for cluster α , if $h_{\alpha}^{i} =$ (iv) $\max (h_{\alpha}^1, h_{\alpha}^2, \dots, h_{\alpha}^I)$. Else, go to step 3

Step 3: Updating

- Eliminate i and k assigned to cluster α from set S. (i)
- Update $\alpha = \alpha + 1$ (ii)
- Update set S (iii)
- If $\alpha < C$, go to step (2). Otherwise, go to step (4). (iv)

Step 4: Centering

Find a new ideal customer for each cluster ($\alpha = 1, 2 \dots C$), which is the customer whose dimensions minimize the total distance or loss of fit to other customers.

Step 5: Re-Assignment

Given all new ideal customer (cluster center), re-assign customers into nearest cluster.

Step 6: Stopping

If the overall percentage degree of fit for the system : $H_{\alpha} = \sum_{\alpha=1}^{C} \frac{h_{\alpha}}{C}$ is improved, go to step 4. Else stop.

Step 7: Output

Compute percentage degree of fit and aggregate loss for each cluster
$$\alpha=1,2\dots C$$

Percentage degree of fit: $h_{\alpha}=\frac{\sum_{i=1}^{g_{\alpha}}\sum_{k=1}^{g_{\alpha-1}}100r_{ik}}{n_{\alpha}(n_{\alpha}-1)}$

Aggregate loss:
$$\frac{\sqrt{(\sum_{k=1}^{n_{\alpha}}\sum_{j=1}^{m}(x_{ij}-x_{kj})^2)}}{n_{\alpha}}$$