Tabla comparativa de los diferentes tipos de excitación en generadores, con 5 columnas

		Genera	dores de corrie	nte directa		
Tipo de Excitación	Circuito equivalente	Ecuacione s	Ventajas	Desventaja s	Aplicación	Curvas
Independie nte		$E = \frac{a I_{ee}}{b + I_{ee}} \omega$ $E I_{e} = T_{e} \omega$ $V = E - r_{e} I_{e}$ $T_{e} = T_{e} - T_{r}$	El generador se puede ajustar en vacío a cualquier voltaje, dentro de su rango nominal. El generador es estable.	Trabaja con una fuente excitación independie nte.	Dos aplicacione s típicas: una, como amplificado r- multiplicad or; y la otra, como tacómetro.	V _{non}
Serie	r _a v	$E = \frac{a I}{b + l} \omega$ $EI = T_e \omega$ $V = E - r_a I$ $T_e = T_m - T_r$	Solamente con un valor de resistencia de carga se puede obtener aproximadam ente voltaje y corriente nominales.	Prácticame nte no tienen aplicación en la actualidad.	Tienen aplicación en aquellas actividades en las que se precise una intensidad prácticame nte constante, como puede ser en equipos	Salverite en asolo E V
					de soldaduras y en determinad os sistemas de alumbrado s.	
Derivación	Tex T _L R ₀ R ₀ V V V	$E = \frac{a I_{ee}}{b + I_{ee}} \omega$ $E I_{e} = T_{e} \omega$ $V = E - r_{e} I_{e}$ $T_{e} = T_{m} - T_{r}$ $I_{ex} = \frac{V}{R_{c}}$	No necesita fuente auxiliar estabilidad.	Conforme se haga trabajar a voltajes cada vez menores que el nominal, el generador va perdiendo. No se puede utilizar como fuente de voltaje controlado.	En las centrales para tracción eléctrica que precisan de una tensión constante y en todos aquellos casos en que se haya de contar con variaciones bruscas de carga, como sucede en los talleres	V _{Son}

				ZTV AA-	con grúas de gran potencia, laminadore s,	
Compuesto	In I part,	$E = \frac{a I_{\alpha}}{b+I_{\alpha}} \omega$ $E I_{\alpha} = T_{\alpha} \omega$ $V = E - \tau_{\alpha} I_{\alpha}$ $T_{\alpha} = T_{\alpha} - T_{\alpha}$	Esta máquina soporta repetidamente las condiciones de circuito corto sin dañarse.	Para la modalidad acumulativa se usa signo positivo y la tendencia es a obtener un generador voltaje constante. Esto no siempre es exacto para todos los valores de	Se usan en el sistema de generación de energía eléctrica de cc en aviones polimotore s, donde hay un generador para cada motor y se acoplan en paralelo de los mismos	v
				carga debido a los problemas de saturación del núcleo.	para atender a toda la energía eléctrica necesaria.	ı

Tipo de Excitación	Par de arranque	Control de velocidad	Circuito equivalente	Ecuaciones	Obser- vaciones	Aplicación
Independiente	Muy elevado	Fácil en forma automática	V _{ex} E v	E=K, \omega EI_=T_c \omega V=K_c \omega + \text{\$r\$}_c \end{array} \tag{V=K_c \omega + \text{\$r\$}_c \end{array}.	Requiere reóstato de arranque	En motores y en torneado, taladrado trefilación, extensión de materiales plásticos y goma, ventilación de horno, retroceso rápido vacío de ganchos de grúas, desenrollado de bobinas.
Serie	Muy elevado	Dificil control	y ISTA	$E = \frac{aI}{b+I} \omega$ $EI = T_c \omega$ $V = E + r_c I$ $T_c = T_m + T_c$	Requiere reóstato de arranque	Tracción ecléctica y en las que se requiere un alto par de arranque (grúas y malacates).

Derivación	Meno que el motor en serie	Muy estable	V Tex R ₀ R ₀	$E = \frac{aI_{ab}}{b \cdot I_{ab}} \omega$ $EI_{a} \cdot T_{a} \omega$ $V \cdot E \cdot \tau J_{a}$ $T_{a} \cdot T_{a} \cdot T_{b}$	Requiere reóstato de arranque en el inducido	Aplicaciones en donde se necesita velocidad constante a cualquier ajuste del control o en los casos en que necesario un rango apreciable de velocidades (por medio del control del campo. También en máquinas herramientas, ventiladores y bombas.
Compuesto	Más elevado que el motor en derivación	Muy estable		$E = \frac{aI_{ee}}{b + I_{ee}} \omega$ $EI_a = T_e \omega$ $V = E + r_a I_a$ $T_e = T_m + T_e$		Requiere reóstato de arranque en el inducido