AULA PRÁTICA Nº 7 – LÓGICA PROGRAMÁVEL

Tópicos

- Dispositivos Lógicos Programáveis: *PLA* e *ROM*
- Linguagem VHDL.
- Simulação com LogicWorks.

Exercícios

1 [Nova abordagem ao último problema do guião anterior] Pretende-se construir um subsistema computacional com 2 entradas de dados, A e B, e 3 entradas de controlo, C₂, C₁ e C₀. A saída do circuito F, obedece à seguinte tabela de verdade:

C2	C ₁	C ₀	F
0	0	0	1
0	0	1	A + B
0	1	0	$\overline{A \bullet B}$
0	1	1	$A \oplus B$
1	0	0	$\overline{A \oplus B}$
1	0	1	A ullet B
1	1	0	$\overline{A+B}$
1	1	1	0

- a) Pretende-se implementar o circuito com uma *PLA* (*Programmable Logic Array*). Indique as respectivas dimensões mínimas e desenhe uma arquitectura para o dispositivo incluindo o mapa das ligações a efectuar nos planos dos produtos e das somas.
- b) Descreva a *PLA* em linguagem *VHDL*. Simule o comportamento do circuito.
- Pretende-se construir um circuito combinatório que funcione como um transcodificador entre os códigos *AIKEN* e *BCD*. Uma entrada *x* indicará o sentido da codificação. Se for 0, a conversão será de *BCD* para *AIKEN*; se for 1, será em sentido contrário, naturalmente. Para além do código de saída, o circuito deverá contemplar uma saída *z* que detecte a presença à entrada de uma palavra não pertencente ao código. [Nota: o código *AIKEN* é um código decimal binário, ponderado e autocomplementar com pesos 2421].
 - a) Implemente e simule o circuito com uma ROM (Read-Only Memory).
 - b) Implemente e simule o circuito com uma *PLA*.

Figura 1 Transcodificador BCD-AIKEN

3 Descreva em *VHDL* um circuito combinatório que faça o deslocamento à direita duma palavra de 8 *bits*. O número de *bits* deslocado é dado pelas variáveis N_2, N_1, N_0 , podendo pois variar de 0 a 7. Considere uma entrada adicional *CS* para definir o tipo de deslocamento: *CS*=0 para deslocamento não circular e *CS*=1 para deslocamento circular.

Figura 2 Shifter de 8 bits

Exercício complementar

- Os modernos gravadores digitais de banda magnética, quando usados em modo de *streaming*, usam um código conhecido por *GCR* (*Group Code Recording*). Com este código são gravadas palavras de 5 *bits* por cada 4 *bits* de informação de acordo a seguinte tabela. Projecte um sistema de transcodificação para ser usado tanto na fase da gravação como na fase da leitura. Uma entrada de controlo *W/R* indica o modo de funcionamento (gravação ou leitura). Baseie a sua solução de acordo com as seguintes condições:
 - a) Uma só PLA
 - b) Duas *PLA* e "buffers tri-state" do tipo 74244

B3B2B1B	G4G3G2G1
$0\ 0\ 0\ 0$	11001
$0\ 0\ 0\ 1$	11011
0010	$1\ 0\ 0\ 1\ 0$
0011	$1\ 0\ 0\ 1\ 1$
0100	11101
0101	10101
0110	10110
0 1 1 1	10111
$1.0\ 0\ 0$	11010
1001	$0\ 1\ 0\ 0\ 1$
1010	01010
1011	01011
1100	11110
1 1 0 1	01101
1110	01110
1111	01111

Figura 3 Group Code Recording Codec