- Intent In simple terms, intent means the purpose or goal behind a user's action or message.
- In everyday language: if someone says, "Book me a ticket to Pokhara", their **intent** is not just saying words—it's wanting to book a ticket.

•

- **TF-IDF score** = TF × IDF
 - High score → The word is frequent in one document but rare across others (likely meaningful).
 - Low score → The word is common everywhere (like "the", "is", "and") —
 usually not helpful for distinguishing meaning.

TF-IDF stands for **Term Frequency – Inverse Document Frequency**.

It's a numerical statistic that measures how important a word is in a document compared to all other documents in the dataset.

- TF (Term Frequency) → How often a word appears in a document.
 Formula:
- **IDF (Inverse Document Frequency)** → How unique the word is across all documents.

Instead of just one score, we calculate TF-IDF for **every word** in the vocabulary for a given text, producing a **vector** (list of numbers).

This **vector** is the numerical representation of the text that can be fed into machine learning models.

- ☑ Collect training data: A set of example sentences for each intent (e.g., Book_Flight, Get_Weather, Cancel_Ticket).
- Preprocess the text: Lowercase, remove stopwords, maybe stem or lemmatize.
- Convert to TF-IDF vectors: Each sentence becomes a numerical vector.
- Train a classifier: Feed vectors into an ML algorithm (e.g., Logistic Regression, SVM, Naive Bayes) to learn patterns for each intent.

Prediction:

• A new user guery is transformed into a TF-IDF vector.

• The classifier predicts the most likely intent based on training.

Data splitting

- We split the dataset into:
 - Training set (e.g., 80%): Used to train the model.
 - o Validation set (e.g., 20%): Used to check performance on unseen data.
- This ensures we measure how well the model **generalizes**, not just memorizes.

What is Random Forest?

- Random Forest is a supervised machine learning algorithm used for classification and regression tasks.
- It's an **ensemble method**, meaning it combines the output of multiple models (here, **decision trees**) to make a better overall prediction.
- The "forest" = many decision trees, each trained on a slightly different version of the data.

Model initialization (Random Forest)

- A Random Forest is an ensemble of decision trees.
- Each tree is trained on a random subset of data and features.
- Hyperparameters you might set:
 - o n_estimators → number of trees (e.g., 100)
 - o max_depth → maximum depth of each tree
 - o random state → seed for reproducibility
- Why Random Forest?
 - Handles non-linear relationships
 - Good for small to medium datasets
 - Works well with sparse vectors like TF-IDF output

Model training

- The Random Forest is trained using training data TF-IDF vectors as inputs and intent labels as outputs.
- Each decision tree learns word patterns that indicate specific intents.
- Example:

 o If "book" and "flight" have high TF-IDF scores → Decision: Intent = Book Flight.

Model evaluation

- We use the validation set to see how accurate the model is.
- Common metrics:
 - o **Accuracy** → % of correct predictions
 - o **Precision** → How often the predicted intent is correct
 - o **Recall** → How many correct intents the model catches
 - o **F1-score** → Balance between precision and recall
- This step tells us if the model is ready or needs improvement.

g) Save model and vectorizer

- After training, save:
 - Trained Random Forest model
 - Fitted TF-IDF vectorizer (so new queries are transformed the same way as training queries)
- Why save? So you don't have to retrain every time you can just load and use.

h) Predict intent for new queries

- When a new user query arrives:
 - o Load the saved **TF-IDF vectorizer**.
 - o Transform the query into a vector (same process as training).

i) Intent prediction

- Feed the vector into the saved Random Forest model.
- Model outputs a predicted intent label.
- Example:

vbnet

CopyEdit

Input: "Show me hotels in Kathmandu"

Output: Find_Hotel

j) Return result

- Send the predicted intent to the **chatbot** or **application**.
- The system then decides what action to take:
 - \circ If intent = Get_Weather \rightarrow Fetch weather API
 - \circ If intent = Book_Flight \rightarrow Start booking flow