Coordinate Geometry

10^{th} Maths - Chapter 7

This is Problem-4 from Exercise 7.2

1. Find the ratio in which the line segement joining the points $\begin{pmatrix} -3\\10 \end{pmatrix}$ and $\begin{pmatrix} 6\\-8 \end{pmatrix}$ is divided by $\begin{pmatrix} -1\\6 \end{pmatrix}$.

Solution:

The input parameters for this problem are available in Table

Symbol	Value	Description
P	$\begin{pmatrix} -3\\10 \end{pmatrix}$	First point
Q	$\begin{pmatrix} 6 \\ -8 \end{pmatrix}$	Second point
R	$\begin{pmatrix} -1 \\ 6 \end{pmatrix}$	Desired point

Table 1

Using section formula,

$$\mathbf{R} = \frac{\mathbf{Q} + n\mathbf{P}}{1+n} \tag{1}$$

and the ratio of line segment when divide by point \mathbf{R} ,

$$\mathbf{n} = \frac{\mathbf{Q} - \mathbf{R}}{\mathbf{R} - \mathbf{P}} \tag{2}$$

$$\implies \frac{\binom{6}{-8} - \binom{-1}{6}}{\binom{-1}{6} - \binom{-3}{10}} \tag{3}$$

$$\Rightarrow \frac{\binom{6}{-8} - \binom{-1}{6}}{\binom{-1}{6} - \binom{-3}{10}}$$

$$\Rightarrow \frac{\binom{-7}{14}}{\binom{-2}{4}} \Rightarrow \binom{\frac{7}{2}}{\frac{7}{2}}$$

$$(3)$$

Hence the ratio **n** is $\frac{7}{2}$.

Figure 1