REMARKS

I. Summary of the Examiner's Action

A. Claim Rejections

As set forth in page 2 of the August 11 Office Action, claims 1, 5 – 7 and 14 – 20 stand rejected under 35 U.S.C. § 103(a) as being unpatentable over United States Patent Application Publication No. 2004/0198366 to Crocker *et al.* (hereinafter "the Crocker application") in view of United States Patent Application Publication No. 2006/0002338 to Guo (hereinafter "the Guo application").

As set forth in page 9 of the August 11 Office Action, claims 2 – 4 and 8 – 10 stand rejected under 35 U.S.C. § 103(a) as being unpatentable over the Crocker application in view of the Guo application.

As set forth in page 11 of the February 8 Office Action, claims 11 – 12 stand rejected under 35 U.S.C. § 103(a) as being unpatentable over the Crocker application in view of the Guo application and further in view of United States Patent Application Publication No. 2004/0203948 to Provost *et al.* (hereinafter "the Provost application").

These rejections are respectfully disagreed with, and are traversed below.

II. Applicants' Response – Claim Rejections

A. Rejection of Claims 1, 5 – 7 and 14 – 20 under 35 U.S.C. § 103(a)

Applicants have amended independent claims 1, 7, 15 and 18 - 20 to recite additional features of Applicants' invention. In particular, Applicants have made clear that "each connection parameter setting" corresponds to "a different service bearer". Support for the amendments is found throughout the application; *see*, for example, page 4, line 26 - page 5, line 4 and page 6, lines 9 - 27. No new matter has been added by these amendments.

Claim 1 (as amended) is reproduced here (emphasis added):

1. A method for establishing a wireless data transfer connection between a remote application and a controlling application, where the wireless link from the remote application is implemented by a wireless terminal connected to the remote application, the method comprising:

arranging a group of allowable connection parameter settings in a

pre-determined order, each connection parameter setting

corresponding to a different service bearer;

attempting to use a default connection parameter setting;

detecting that the default connection parameter setting for the wireless link is not usable; and

wireless link from the group of allowable connection

parameter settings in the pre-determined order one-afteranother until a usable connection parameter setting is

found, wherein when a usable connection parameter setting
is found, a service bearer corresponding to the usable
connection parameter setting is used for the wireless data
transfer.

Commissioner for Patents

Application Serial No. 10/815,263

November 9, 2006

Page 12

Applicants respectfully submit that neither the Crocker nor the Guo applications

either describe or suggest the emphasized subject matter of claim 1, whether taken

singly or in combination.

In particular, as described in the portions of the Crocker application

reproduced at pages 14 and 15 of Applicants' Amendment dated June 6, 2006, the

methods and apparatus of Crocker operate in a manner different from Applicants'

invention. In Crocker's methods, the current operating conditions are detected and an

alternate communications link is selected in dependence on the detected operating

conditions. See Crocker application, paragraphs [0030]; [0031]; [0040]; and [0042].

In contrast to Applicants' invention as claimed, the methods disclosed in the

Crocker application do not serially select "another connection parameter setting for

the wireless link from the group of allowable connection parameter settings in the pre-

determined order one-after-another until a usable connection parameter setting is

found". Instead, in the event of failure of the default communication link, Crocker's

methods select a substitute communications link on the basis of current operating

conditions, i.e., the selection order is not pre-determined.

In particular, it is important in Crocker that an alternate communications link

not be selected in a pre-determined order because varying circumstances have to be

accommodated. Crocker's methods are intended to be used in communicating

information from automobiles to a telematics service center. Typical information

communicated by an automobile to the telematics service center in Crocker's system

as described at paragraph [0004] concerns deployment of an airbag in the automobile. Such a situation obviously implicates safety and health concerns of passengers in the automobile (emphasis added):

"The first information that is conveyed after the establishment of a communications link between a mobile vehicle and a telematics service center may be critical with information such as the identification of the telematics unit, location of the mobile vehicle, and event type. For example, when an airbag is deployed, the telematics unit might send out a short message to a call center conveying information on the identification and location of the vehicle with the deployed airbag. If the communication link to the telematics service center fails before essential data is sent, the call center may not be able to take appropriate actions and deliver necessary services."

Since safety and health concerns are at issue in Crocker, it is not surprising that the criticality of information to be communicated is taken into consideration when selecting a backup communications link, as described at Crocker, paragraph [0031] (emphasis added):

"There are a number of factors that may influence the choice of communications link including the type of failure, the velocity of the mobile vehicle, the bit or frame-error rates of the voice or data channel, the location of the mobile vehicle, a criticality assessment of the information to be communicated, an assessment of the type of data to be communicated, the basis for the call, a delay impact assessment, a reconnect attempt elapsed time, a reconnect attempt number, and the availability of digital or analog coverage ..."

Since selection of a backup communication link is context-dependent in Crocker, it is not seen what relevance Crocker's teachings have to the claimed subject matter at Commissioner for Patents

Application Serial No. 10/815,263

November 9, 2006

Page 14

issue, where an alternate communication parameter setting (which corresponds to a

particular service bearer) is serially selected "in the pre-determined order one-after-

another until a usable connection parameter setting is found".

Guo does not remedy the deficiency of the Crocker application. As now

amended, the claims make clear that "connection parameter setting" corresponds

specifically to those connection parameter settings associated with particular service

bearers. Accordingly, a particular service bearer is selected by choosing the

connection parameter setting associated with the service bearer. The relied-upon

portions of the Guo application do not concern selection of an alternate service bearer.

Rather, they merely concern varying power levels of transitional signals to reduce a

level of instability in a wireless network.

Further, even assuming for the sake of argument that Examiner is correct that

the Guo application concerns selection of alternate connection parameter settings

corresponding to alternate service bearers (Applicants do not admit that this is

factually correct), the methods described in Guo do not serially select connection

parameter settings in a pre-determined order one after another until a usable

connection parameter setting is found as in the case of Applicants' invention as

claimed. Rather, Guo describes a method where power requirements are estimated

based on current network conditions or a set of reference power levels as desribed at

Guo, paragraph [0049]:

"In this example, after the rate change request is received in Step

S₁, the signal generating portion 12 uses the requested rate to calculate an

estimate of the power which would be required for adequate transmission

Page 15

of future signals to the user equipment 20. Calculation of this required

power estimate can be based, for example, on current network conditions

or may be based on a set of reference power levels required to achieve

various transmission rates according to various network conditions (such

reference power levels may be determined by an earlier simulation, for

example)."

It does not follow from this or the remaining portions of Guo that power level settings

are serially selected, one-after-another, in a pre-determined order until a usable power

level setting is selected. Rather, the power level requirements are estimated, possibly

using a look-up table describing reference power levels necessary to achieve desired

transmission rates. In other words, the power level necessary is estimated and that

power level is selected. Power levels are not serially selected in a predetermined

order until an acceptable power level setting is achieved. Even in the latter example

described by Guo where reference power levels are used, the power levels will not be

serially selected in a pre-determined order one-after-another until a usable power level

is found because the power level selected depends on the desired transmission rate

and network conditions. Once these are known, the power level corresponding to

these factors is selected; there is no reason to serially select the power level settings.

The fact that the power level may later be adjusted does not alter the

conclusion, since the initial starting point is selected based on an estimate and not

arrived at through a process where power levels are serially selected one-after-another

in a pre-determined order until a usable power level setting is achieved.

Continuing, assuming for the sake of argument that the Examiner is correct in concluding that Guo does describe or suggest a method that serially selects another connection parameter from a group of allowable connection parameter settings in a pre-determined order until a usable connection parameter setting is found (Applicants do not agree that such a conclusion is correct), it is improper to combine the teaching of Guo with that of Crocker, because it changes the underlying principle of operation of Crocker's method See MPEP 2143.01(VI), and renders Crocker's method unsuitable for its intended purpose. See MPEP 2143.01(V) The method of Crocker does not choose communication links in a pre-determined order because it must take situation context into consideration. If the teaching of Guo is combined with Crocker, a method is created where communication links are selected in a predetermined order (thus changing Crocker's principle of operation) and without reference to context (thus not permitting circumstances to be taken into condition and hence rendering Crocker's method unsuitable for its intended use – which is to select an alternate communications links based on circumstances).

For the foregoing reasons, Applicants respectfully submit that independent claim 1 is patentable over the Crocker and Guo applications, whether taken singly or in combination. Accordingly, Applicants respectfully request that the rejection of claim 1 be withdrawn. Applicants respectfully submit that independent claims 7, 15 and 18 - 20 are patentable for reasons similar to those recited with respect to claim 1, and for reasons attributable to their independently-recited features. Accordingly, Applicants respectfully request that the rejection of independent claims 7, 15 and 18 - 20 be withdrawn as well. Applicants further submit that dependent claims 5 - 6, 14,

Commissioner for Patents

Application Serial No. 10/815,263

November 9, 2006

Page 17

and 16 - 17 are patentable both as depending from allowable base claims and for

reasons attributable to their independently-recited features.

C. Rejection of Claims 2 – 4 and 8 – 10 under 35 U.S.C. § 103(a)

Applicants respectfully submit that claims 2-4 and 8-10 are patentable as

depending from allowable base claims. In addition, Applicants submit the following

additional remarks supporting the patentability of claims 2-4 and 8-10.

Applicants respectfully submit that it is not seen why it is obvious in view of

the Crocker application that transmission is switched back to the default connection

parameter after a pre-determined time. One of ordinary skill in the art, having the

Crocker disclosure in mind, would more probably conclude that each data

transmission attempt after a first occurs in accordance with the method actually

disclosed in the Crocker patent, i.e., the current conditions are tested, and the

communications method most suitable for current operating conditions is selected.

Further, the aspect of switching back to the default connection parameter

setting is only taught by Applicants, so it is the epitome of hindsight to modify the

Crocker disclosure in a manner that is only taught by Applicants.

D. Rejection of Claims 11 – 12 under <u>35 U.S.C.</u> § 103(a)

Applicants respectfully submit that dependent claims 11 - 12 are patentable as

depending from allowable base claims and for reasons attributable to their

independently-recited features.

IV. Conclusion

Applicants submit that in light of the foregoing remarks the application is now in condition for allowance. Applicants therefore respectfully request that the outstanding rejections be withdrawn and that the case be passed to issuance.

Respectfully submitted,

November 2006

Date

David M. O'Neill (35,304)

Customer No.: 29683

HARRINGTON & SMITH, LLP 4 Research Drive

Shelton, CT 06484-6212

Telephone: (203) 925-9400 Facsimile: (203) 944-0245 Email: DOneill@hspatent.com

CERTIFICATE OF MAILING

I hereby certify that this correspondence is being deposited with the United States Postal Service as first class mail in an envelope addressed to: Commissioner for Patents, P.O. 1450, Alexandria, VA 22313-1450 on the date indicated.

Date

11/9/2006

Name of Person Making Deposit