Definition 5.17 The Nondeterministic Top-Down PDA NT(G)

Let $G = (V, \Sigma, S, P)$ be a context-free grammar. The nondeterministic top-down PDA corresponding to G is $NT(G) = (Q, \Sigma, \Gamma, q_0, Z_0, A, \delta)$, defined as follows:

$$Q = \{q_0, q_1, q_2\}$$
 $A = \{q_2\}$ $\Gamma = V \cup \Sigma \cup \{Z_0\}$

The initial move of NT(G) is the Λ -transition

$$\delta(q_0, \Lambda, Z_0) = \{(q_1, SZ_0)\} - Initialization$$

and the only move to the accepting state is the A-transition

$$\delta(q_1, \Lambda, Z_0) = \{(q_2, Z_0)\}$$
 - Acceptance

The moves from g_1 are the following:

For every
$$A \in V$$
, $\delta(q_1, \Lambda, A) = \{(q_1, \alpha) \mid A \to \alpha \text{ is a production in } G\}$ by For every $\sigma \in \Sigma$, $\delta(q_1, \sigma, \sigma) = \{(q_1, \Lambda)\}$ by $\rho \in \Sigma$

Move Number	State	Input	Stack Symbol	Move
<u>'1</u>	q_0	Λ	Z_0	(q_1, SZ_0)
2	q_1	Λ	S	$(q_1, [S]), (q_1, SS), (q_1, \Lambda)$
°/3	q_1	1	1	(q_1,Λ)
4	q_1]]	(q_1,Λ)
5	q_1	Λ	Z_0	(q_2, Z_0)
(all other combinations)				none

```
...5
             [][]], [S]Z_0)
                                                  \Rightarrow [S]
                                                 \Rightarrow [SS]
                                                  \Rightarrow [[S]S]
                                                  \Rightarrow [[]S]
\vdash (q_1, []], S]Z_0)
                                                  \Rightarrow [[][S]]
                                                  → [[][]]
    (q_1, ], ]Z_0
\vdash (q_1, \Lambda, Z_0)
  (q_2, \Lambda, Z_0)
```

$$S \rightarrow S + T \mid T$$

 $T \rightarrow T + F \mid F$
 $F \rightarrow (S) \mid a$

CFG TO NPDA CONSTRUCTION (EXAMPLE 2)

$$S \rightarrow S + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow (S) \mid a$

$$(90, 040, 20)$$
 $(91, 040, 520)$
 $(91, 040, 520)$
 $(91, 040, 54720)$
 $(91, 040, 74720)$
 $(91, 040, 74720)$
 $(91, 040, 740, 74020)$
 $(91, 040, 04020)$
 $(91, 040, 04020)$
 $(91, 040, 04020)$
 $(91, 040, 04020)$
 $(91, 040, 04020)$
 $(91, 040, 04020)$
 $(91, 040, 04020)$
 $(91, 040, 04020)$
 $(91, 040, 04020)$
 $(91, 040, 04020)$
 $(91, 040, 04020)$
 $(91, 040, 04020)$
 $(91, 040, 04020)$
 $(91, 040, 04020)$
 $(91, 040, 04020)$
 $(91, 040, 04020)$
 $(91, 040, 04020)$
 $(91, 040, 04020)$
 $(91, 040, 04020)$
 $(91, 040, 04020)$
 $(91, 040, 04020)$
 $(91, 040, 04020)$
 $(91, 040, 04020)$
 $(91, 040, 04020)$
 $(91, 040, 04020)$
 $(91, 040, 04020)$
 $(91, 040, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$
 $(91, 04020)$

CFG TO NPDA CONSTRUCTION (EXAMPLE 3)

$$L=\{a^{i}b^{j}c^{k}|j=1+k,l,k>0\}$$

$$J=i+k$$

$$a^{i}b^{j}+k$$

$$a^{i}b^{j}+k$$

$$b^{k}=k$$

$$a^{i}b^{j}+k$$

CFG TO NPDA CONSTRUCTION (EXAMPLE 3)

L= {
$$a^i b^j c^k | j = I + k, I, k > 0$$
}

9.
$$\Lambda$$
 2. $(9_{1}, S_{2})$
9. Λ S $(9_{1}, S_{1}S_{2})$
9. Λ S_{1} $(9_{1}, aS_{1}b)$ $(9_{1}, ab)$
9. Λ S_{2} $(9_{1}, bS_{2}c)$ $(9_{1}, bc)$
9. α α $(9_{1}, \Lambda)$
9. α α $(9_{1}, \Lambda)$
9. α α $(9_{1}, \Lambda)$
9. α α $(9_{2}, \Lambda)$

CFG TO NPDA CONSTRUCTION (EXAMPLE 3)

CFG TO NPDA CONSTRUCTION (EXAMPLE 4)

$$S \rightarrow [S] S | \Lambda$$
 \downarrow
 q_0
 Λ
 Z_0
 (q_1, S_2_0)
 Q_1
 Q_1
 Q_2
 Q_1
 Q_1
 Q_2
 Q_1
 Q_1
 Q_2
 Q_1
 Q_1
 Q_2
 Q_2
 Q_2
 Q_2
 Q_2
 Q_2
 Q_2
 Q_2
 Q_1
 Q_2
 Q_2
 Q_2
 Q_2
 Q_3
 Q_4
 Q_1
 Q_1
 Q_2
 Q_2
 Q_2
 Q_3
 Q_4
 Q_1
 Q_2
 Q_2
 Q_3
 Q_4
 Q_4
 Q_4
 Q_5
 Q_5