- 1. 讨论下列各题:
- (1) 设 g(x) 是有界函数且 $f(x) = \begin{cases} \frac{1-\cos x}{\sqrt{x}} & x > 0, \\ x^2 g(x) & x \le 0. \end{cases}$

讨论 f(x) 在 x = 0 处的连续性及可导性。

- (2) 设函数 f(x) 定义在 \mathbb{R} 上,且对任意的x,极限 $\lim_{n\to\infty} n[f(x+\frac{1}{n})-f(x)]$ 都存在,问: 这样的函数是否可导? 为什么?
- 2. 设 f(x) 在 x = a 可导,且 $f(a) \neq 0$,求 $\lim_{x \to \infty} \left[\frac{f\left(a + \frac{1}{x}\right)}{f(a)} \right]^x$.
- 3. 设f(0)=1, f'(0)=-1, 求下列各值。

(1)
$$\lim_{x\to 0} \frac{\cos x - f(x)}{x}$$
, (2) $\lim_{x\to 0} \frac{2^x f(x) - 1}{x}$, (3) $\lim_{x\to 1} \frac{f(\ln x) - 1}{1 - x}$.

- 4. 设函数 f(x) 在 x = 0 点连续。
- (1) 如果极限 $\lim_{x\to 0} \frac{f(x)-f(-x)}{x}$ 存在,那么函数 f(x) 在 x=0 点是否可导?为什么?
- (2) 如果极限 $\lim_{x\to 0} \frac{f(2x) f(x)}{x}$ 存在,那么函数 f(x) 在 x = 0 点是否可导?为什么?

5. 定义函数
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0, \\ 0, & x = 0, \end{cases}$$

- (1) 计算导函数 f'(x); (2) 讨论导函数 f'(x) 的连续性。
- 6. 设函数 f(x) 在 x = 0 点处可导且 f(0) = 0 , 定义

 $x_n = f(\frac{1}{n^2}) + f(\frac{2}{n^2}) + \dots + f(\frac{n}{n^2})$. 证明序列 $\{x_n\}$ 收敛,并求出极限值。

- 7. 求解下列各题:
- (1) 设 y = y(x) 由方程 $e^{xy} + \tan(xy) = y$ 确定的可导函数,其中 $x \in (-r,r)$, r > 0 . 求 y'(0) .
- (2) 设 f(x) 可导, $F(x) = f(x)(1 + |\sin x|)$,若使 F(x) 在 x = 0 处可导,求 f(0) 的值.

(4) 设
$$y = f(\frac{x+1}{x-1})$$
. 如果函数 $f(x)$ 满足 $f'(x) = \arctan \sqrt{x}$, 求 $\frac{dy}{dx}\Big|_{x=2}$.

(5) 已知参数方程
$$\begin{cases} x = t + e^t \\ y = t + \ln(1+t), \end{cases}$$
 求二阶导数
$$\frac{d^2y}{dx^2}.$$

- (6) 设 $f(x) = (x-a)^2 g(x)$, 其中 g'(x) 在 x = a 的某个邻域连续, 求 f''(a).
- 8. 求一个单位圆的位置,该单位圆的圆心在 y 轴上,并位于抛物线 $y = x^2$ 的上方,且与抛物线 $y = x^2$ 恰好有 2 个切点。
- 9. 设函数 y = f(x) 存在反函数 x = g(y). 如果函数 y = f(x) 三阶可导, 并且 $f'(x) \neq 0$. 试用函数 y = f(x) 的前三阶导数来表示反函数 x = g(y) 的前三阶导数。
- 10. 设 $y = (\arcsin x)^2$.

(1) 求证:
$$(1-x^2)y''-xy'=2$$
;

- (2)求 $y^{(n)}(0)$.
- 11. 求下列极限:
- (1) 已知函数 f(x) 在 x = 0 处可导, f(0) = 0, f'(0) = 2, 且当 $x \neq 0$ 时 $f(x) \neq 0$, 求极限 $\lim_{x \to 0} (1 2f(x))^{\frac{1}{\sin x}}.$
- (2) 已知 f'(0) 存在, f(0) = 0 ,求极限 $\lim_{x\to 0} \frac{f(1-\cos x)}{\tan(\sin x^2)}$.
- (3) 设曲线 y = f(x) 在原点处与曲线 $y = \sin x$ 相切,求极限 $\lim_{x \to +\infty} x^{\frac{1}{2}} \sqrt{f(\frac{2}{x})}$.
- 12. 设函数 f(x) 满足 f(0) = 0. 则 f(x) 在 x = 0 点可导的充要条件是存在一个在 x = 0 连续的函数 g(x) 使得 f(x) = xg(x).
- 13. 设函数 f(x) 定义在(a,b) 上且在 $x_0 \in (a,b)$ 处可导,数列 $\{x_n\}$, $\{y_n\} \subset (a,b)$ 满足

$$x_n < x_0 < y_n$$
且 $\lim_{n \to \infty} x_n = x_0$, $\lim_{n \to \infty} y_n = x_0$. 求极限 $\lim_{n \to \infty} \frac{f(y_n) - f(x_n)}{y_n - x_n}$.

- 14. 设函数 $f(x) = \begin{cases} x^{\alpha} \cos \frac{1}{x}, & x > 0 \\ 0, & x = 0 \end{cases}$ 在 x = 0 处右连续但右导数不存在,求 α 的取值范围.
- 15. 求解下列各题:
- (1) 设有一半径为1cm 的球,为了提高球面的光洁度,需镀上厚度为0.01cm 的一层铜。试估计需要镀铜多少立方厘米?
- (3) 求 tan 31⁰ 的近似值,保留到小数点后四位。