21-127 Homework 8

Christian Broms Section J

Tuesday 27th March, 2018

Complete the following problems. Fully justify each response.

NOTE: due to the Spring Break, this homework set is a bit longer than is typical. You only need to turn in those problems marked with (*).

1. (*) Let X be a finite set, and suppose there is a surjection $f: X \to Y$. Prove that $|X| \ge |Y|$.

Proof. If f is surjective, then $\forall y \in Y, \exists x \in X \text{ such that } f(x) = y$. Since f is a function, each x contributes at most one to y. Let |B| = n. There must be at least n xs, so $|X| \ge n = |Y|$.

2. (*) Let

$$X_2 = \{ n \mid 1 \le n \le 200, n = k^2 \exists k \in \mathbb{Z} \},\$$

 $X_3 = \{ n \mid 1 \le n \le 200, n = k^3 \exists k \in \mathbb{Z} \},\$

and

$$X_4 = \{ n \mid 1 \le n \le 200, n = k^4 \ \exists k \in \mathbb{Z} \}.$$

Determine $|X_2 \cup X_3 \cup X_4|$.

- 3. (*) Let $X = \{(a_1, a_2, \dots, a_n) \mid a_i \in \{0, 1\} \forall i\} = \{0, 1\}^n$. These are sometimes called bitstrings of length n.
 - (a) Show that there is a bijection between X and $\{f : [n] \to \{0, 1\}\}$, the set of functions from [n] to $\{0, 1\}$
 - (b) Show that there is a bijection between X and $\mathcal{P}([n])$.

- (c) Determine |X|.
- 4. (*) Let X and Y be finite sets. Define $X^Y = \{f : Y \to X\}$, the set of functions from Y to X. Prove that $|X^Y| = |X|^{|Y|}$.
- 5. (*) Let $n, k \in \mathbb{N}$ with $n \geq k$. Prove, by counting in 2 ways, that $k \binom{n}{k} = (n-k+1) \binom{n}{k-1}$.

Proof. Suppose we wish to select from a group of n people a committee of k people with a president (so there are k-1 members plus one president on the committee). There are two ways to do this. First, we could select the k people for the committee from the n total people, and then select the president from the committee of k people so we have $\binom{k}{1}\binom{n}{k}=k\binom{n}{k}$.

On the other hand, we could first select the committee with k-1 members from the n total people. We then choose the president from the remaining group of people, which is now n-k+1 in size. Using this selection technique we get $\binom{n-k+1}{1}\binom{n}{k-1}=(n-k+1)\binom{n}{k-1}$.

Thus, since both sides of the equality count the same set, they are equal.

6. (*) How many subsets of [20] contain a multiple of 4? Prove that your answer is correct.

Proof. There are 2^{20} possible subsets of $\{1, 2, 3, \dots 20\}$. There are 2^5 possible subsets of $\{4, 8, 12, 16, 20\}$. Thus, there are $2^5 = 32$ subsets of [20] that contain a multiple of 4.

- 7. (*) Let $f: X \to Y$ be a bijection. Prove that X is countably infinite if and only if Y is countably infinite.
- 8. (*) Let X be a finite set. Show that $\mathbb{N}^X = \{f : X \to \mathbb{N}\}$ is countably infinite.