

What is Language Model

A language model is a type of machine learning model trained to conduct a probability distribution over words.

For example,

I will go to _____

Which word is more appropriate here?

school.

market.

college.

These predictions can be done by a language model.

Types of language models

- Statistical language models
 - Statistical language models are a type of model that use statistical calculations in the data to make predictions about the likelihood of specific sequences of words.
 - Should It be, I will go to school or market?
 - A basic approach to building a probabilistic language model is to calculate n-gram probabilities.
- Neural language models
 - Neural language models use neural networks to predict the likelihood of a sequence of words.
 - These models are trained on a large corpus of text data and are capable of learning the underlying structure of the language.

- An n-gram model is a type of probabilistic language model used in natural language processing (NLP) to predict the next item in a sequence as a function of the preceding items.
- The "n" in n-gram represents the number of words in a given token sequence, and it can be adjusted based on the specific requirements of a task.

- So, if n = 1, then it will be unigram model (1-gram model)
- If n=2, then it will be bi-gram model (2-gram model)
- If n=3, then it will be a trigram-model (3-gram model)

And so on...

Recall some concepts

Conditional Probability:

$$P(B/A) = P(A \cap B)/P(A)$$

Or,
$$P(A \cap B) = P(A) * P(B/A)$$

So, we can say,

$$P(A \cap B \cap C) = P(A) * P(B/A) * P(C/A \cap B)$$
; Which is a chain rule

We can write as below;

$$P(A \cap B \cap C \cap ... Z) = P(A) * P(B/A) * P(C/A \cap B) * P(D/A \cap B \cap C)....$$

Now, consider a sentence;

I will go to school

 $P(I \cap will \cap go \cap to \cap school)$

 $= P(I) * P(will / I) * P(go / I \cap will) * P(to / I \cap will \cap go) * P(school / I \cap will \cap go \cap to)$

So, we can write it,

$$P(w_1 \cap w_2 \cap w_3 \dots w_{j-1}) = \prod_i P(w_i / w_1 \cap w_2 \cap w_3 \dots w_{j-1})$$

So, we can write it,

$$P(W_1 \cap W_2 \cap W_3 \dots W_{i-1}) = \prod_i P(W_i / W_1 \cap W_2 \cap W_3 \dots W_{i-1})$$

For, Uni-gram:
$$P(w_1 \cap w_2 \cap w_3 \dots w_{\square}) \approx \prod_i P(w_i)$$

Bi-gram:
$$P(w_1 \cap w_2 \cap w_3 \dots w_{\square}) \approx \prod_i P(w_i / w_{i-1})$$

Tri-gram:
$$P(w_1 \cap w_2 \cap w_3 \dots w_{\square}) \approx \prod_i P(w_i / w_{i-1} \cap w_{i-2})$$

Four-gram:
$$P(w_1 \cap w_2 \cap w_3 \dots w_{\square}) \approx \prod_i P(w_i / w_{i-1} \cap w_{i-2} \cap w_{i-3})$$

So, we can write it,

$$P(w_1 \cap w_2 \cap w_3 \dots w_{i-1}) = \prod_i P(w_i / w_1 \cap w_2 \cap w_3 \dots w_{i-1})$$

For, Uni-gram:
$$P(w_1 \cap w_2 \cap w_3 \dots w_{\square}) \approx \prod_i P(w_i)$$

Bi-gram:
$$P(w_1 \cap w_2 \cap w_3 \dots w_{\square}) \approx \prod_i P(w_i / w_{i-1})$$

Tri-gram:
$$P(w_1 \cap w_2 \cap w_3 \dots w_{-1}) \approx \prod_i P(w_i / w_{i-1} \cap w_{i-2})$$

Four-gram:
$$P(w_1 \cap w_2 \cap w_3 \dots w_{\square}) \approx \prod_i P(w_i / w_{i-1} \cap w_{i-2} \cap w_{i-3})$$

In practice, we usually use bi-gram, Tri-gram or Four-gram.

Bi-gram Model

The formula should be:

$$P(w_1 \cap w_2 \cap w_3 \dots w_{\square}) \approx \prod_i P(w_i / w_{i-1})$$

Here,
$$P(w_i / w_{i-1}) = P(w_i \cap w_{i-1}) / P(w_{i-1})$$

Now, for a sentence;

$$P(\text{school/I will go to}) = \frac{N \text{ (I will go to school)}}{N \text{ (I will go to)}}$$

N (I will go to)

Bi-gram Model

$$P(\text{school/I will go to}) = \frac{N \text{ (I will go to school)}}{N \text{ (I will go to)}}$$

$$N(I \text{ will go to school}) = P(I / ~~) * P(will / I) * P(go / will) * P(to / go) * P(school / to)~~$$

 $N(I \text{ will go to}) = P(I / ~~) * P(will / I) * P(go / will) * P(to / go)~~$

Same, P(market/I will go to) = P(market/ to)

Tri-gram Model

The formula should be:

$$P(W_1 \cap W_2 \cap W_3 \dots W_{-1}) \approx \prod_i P(W_i / W_{i-1} \cap W_{i-2})$$

Here,
$$P(w_i / w_{i-1} \cap w_{i-2}) = P(w_i \cap w_{i-1} \cap w_{i-2}) / P(w_{i-1} \cap w_{i-2})$$

Now, for the sentence;

$$P(\text{school/I will go to}) = \frac{N \text{ (I will go to school)}}{N \text{ (I will go to)}}$$

N (I will go to)

Tri-gram Model

P(school/I will go to) =
$$\frac{N \text{ (I will go to school)}}{N \text{ (I will go to)}}$$

N(I will go to school) = P(will/
$$<$$
S> \cap I) * P(go/ I \cap will) * P(to / will \cap go) * P(school / go \cap to)

$$N(I \text{ will go to}) = P(\text{will}/ ~~\cap I) * P(go/I \cap \text{will}) * P(to / \text{will } \cap \text{go})~~$$

So, P(school/I will go to) = P(school/ go
$$\cap$$
 to)

Same, P(market/I will go to) = P(market/ go ∩ to)

Four-gram Model

P(school/I will go to) =
$$\frac{N \text{ (I will go to school)}}{N \text{ (I will go to)}}$$

$$N(I \text{ will go to school}) = P(go/ < S > \cap I \cap will) * P(to / I \cap will \cap go) * P(school / will \cap go \cap to)$$

$$N(I \text{ will go to}) = P(go/ < S > \cap I \cap will) * P(to / I \cap will \cap go)$$

So, P(school/I will go to) = P(school/ will
$$\cap$$
 go \cap to)

Same, P(market/I will go to) = P(market/ will \cap go \cap to)

So, What would be the better way to predict the next word??

So, What would be the better way to predict the next word??

If we consider all the previous words.

So, What would be the better way to predict the next word??

If we consider all the previous words.

But there is a problem

Because the computation will be to complex

Let us solve a small example to better understand the Bi-gram model.

Training corpus:

<S> I will go to the store.

<S> I will go to the park.

<S> She will go to school.

<S> He will come here.

<S> I will eat dinner.

<S> I will play games.

Test data:

<s> I will go to </s>

Next Word	Probability
P(the / to)	2/3
P(school / to)	1/3

Let us solve a small example to better understand the Bi-gram model.

Training corpus:

<S> I will go to the store.

<S> I will go to the park.

<S> She will go to school.

<S> He will come here.

<S> I will eat dinner.

<S> I will play games.

Test data:

<s> I will go to the </s> Here, the is more likeable.

Next Word	Probability
P(the / to)	2/3
P(school / to)	1/3

Let us solve a small example to better understand the Tri-gram model.

Training corpus:

<s>She w</s>	ill go to	the marke	t tomorrow.
--------------	-----------	-----------	-------------

<s>He will make sure to call you</s>

<s>I will go to the party tonight.<th><s>I will</s></th><th>go to</th><th>the</th><th>party</th><th>tonic</th><th>ht.</th></s>	<s>I will</s>	go to	the	party	tonic	ht.
--	---------------	-------	-----	-------	-------	-----

<s>Will</s>	you	go	to	the	store?
-------------	-----	----	----	-----	--------

<s>I have to</s>	go to schoo	I tomorrow.
------------------	-------------	-------------

<s>They</s>	will	visit	us	next	summer	
YOF THEY	V V I I I	VISIL	uS	IICAL	Summer	. 7/0-

<s>Tomorrow,</s>	l will ac	to the	office	early.
·O· IOIIIOIIOV,	90		011100	Carry. 7C

<s>I nee</s>	on of be	to the	library this	afternoon.	
-0/1 He	su io go	נט נווכ	library triis	antennoon.	7/0/

Next Word	Probability
P(the / go to)	5/6
P(school / go to)	1/6

Test data: <s> I will go to </s>

Let us solve a small example to better understand the Tri-gram model.

Training corpus:

<s>I will always</s>	choose the	best option	on.
----------------------	------------	-------------	-----

<s>She</s>	will	go	to	the	market	tomorrow.
------------	------	----	----	-----	--------	-----------

<s>He will make sure to call you</s>	
--------------------------------------	--

<s>I will go to the party tonight.<</s>	. 5
--	-----

~Q~\\/ill \	1011	20	to	tho	store?
~3~vviii v	vou	ųυ	ιΟ	uie	Store (\/ \ \> -

<s>I have to</s>	go to schoo	I tomorrow.
------------------	-------------	-------------

<s>They</s>	/ will	visit	LIS	next	summer	
O- 111C)	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	VISIL	us	HOAL	Summer.	. 7/0/

<S>Tomorrow, I will go to the office early.

<S>I need to go to the library this afternoon.

Next Word	Probability
P(the / go to)	5/6
P(school / go to)	1/6

Test data: <s> I will go to the </s> Here, the is more likeable.

Let check which sentence is more probable using Bi-gram model.

Training corpus:

<S> I will go to the store.

<S> I will go to the park.

<S> She will go to school.

<S> He will come here.

<S> I will eat dinner.

<S> I will play games.

Test data:

<S> I will play games

<S> I will go to school

Next Word	Probability
P(I / <s>)</s>	4/6
P(will / I)	4/4
P(play / will)	1/6
P(games / play)	1/1

Let check which sentence is more probable using Bi-gram model.

Training corpus:

<s></s>	l will	go	to	the	store	
---------	--------	----	----	-----	-------	--

Test data:

```
<s> I will play games </s> = (4/6) * (4/4) * (1/6) * (1/1) = 1/9
```

<S> I will go to school

Next Word	Probability
P(I / <s>)</s>	4/6
P(will / I)	4/4
P(go / will)	3/6
P(to / go)	3/4
P(school / to)	1/3

Let check which sentence is more probable using Bi-gram model.

Training corpus:

<s></s>	I will	go	to	the	store	
---------	--------	----	----	-----	-------	--

Test	data

<s> I will play games</s>	= (4/6) * ((4/4) * (1/6)) * (1/1) = 1/9
---------------------------	-------------	---------------	-----------------

Next Word	Probability
P(I / <s>)</s>	4/6
P(will / I)	4/4
P(go / will)	3/6
P(to / go)	3/4
P(school / to)	1/3

Let check which sentence is more probable using Bi-gram model.

Training corpus:

<s></s>	l will	go	to	the	store	
---------	--------	----	----	-----	-------	--

<s></s>	I will	go	to	the	park.	

<s></s>	She	will	go	to	school	
---------	-----	------	----	----	--------	--

Next Word	Probability
P(I / <s>)</s>	4/6
P(will / I)	4/4
P(go / will)	3/6
P(to / go)	3/4
P(school / to)	1/3

Test data:

```
<s> I will play games </s> = (4/6) * (4/4) * (1/6) * (1/1) = 1/9 [This sentence is more likely]
```

<S> I will go to school </S> = (4/6) * (4/4) * (3/6) * (3/4) * (1/3) = 1/12

