# Deep Text Prior: Weakly Supervised Learning for Assertion Classification

Vadim Liventsev<sup>1,2,3</sup> Irina Fedulova<sup>1</sup> Dmitry Dylov<sup>2</sup>

<sup>1</sup>Work done at Philips Innovation Labs RUS {Vadim.Liventsev,Irina.Fedulova}@philips.com

<sup>2</sup>Work done at Skolkovo Institure of Science and Technology {Vadim.Liventsev,D.Dylov}@skoltech.ru

<sup>3</sup>Currently at Eindhoven University of Technology v.liventsev@tue.nl

September 22, 2019



# Pop quiz

INDICATION: Evaluate for pneumonia

#### Pop quiz

#### INDICATION: Evaluate for pneumonia

- A. This patient has pneumonia
- B. This patient does not have pneumonia
- C. We don't know

#### Pop quiz

#### IMPRESSION: No evidence of pneumonia

- A. This patient has pneumonia
- B. This patient does not have pneumonia
- C. We don't know

#### Pop quiz

#### IMPRESSION: No evidence of pneumonia

- A. This patient has pneumonia
- B. This patient does not have pneumonia
- C. We don't know

#### Pop quiz

# **FINDINGS:** Developing *pneumonia* should be excluded by repeat image.

- A. This patient has pneumonia
- B. This patient does not have pneumonia
- C. We don't know

### Pop quiz

**FINDINGS:** Developing *pneumonia* should be excluded by repeat image.

- A. This patient has pneumonia
- B. This patient does not have pneumonia
- C. We don't know

### Pop quiz

**IMPRESSION:** Effusions represent area of atelectasis, although *pneumonia* could also have this appearance.

- A. This patient has pneumonia
- B. This patient does not have pneumonia
- C. We don't know

### Pop quiz

**IMPRESSION:** Effusions represent area of atelectasis, although *pneumonia* could also have this appearance.

- A. This patient has pneumonia
- B. This patient does not have pneumonia
- C. We don't know

#### Assertion classification problem

#### Features:

INDICATION : Evaluate for pneumonia concept of interest (1)

#### Assertion classification problem

#### Features:

```
INDICATION : Evaluate for pneumonia concept of interest (1)
```

#### Classes:

positive the author states that the patient *has* the condition negative the author asserts that the patient does *not* have the condition

speculative the author mentions the condition, but *does not* assert anything as to whether the patient has it

#### Landscape of Artificial Intelligence in Medicine



Figure: Medical AI task graph

#### Landscape of Artificial Intelligence in Medicine



Figure: Medical AI task graph

Motivation

#### **Datasets**

```
[**Hospital 9**] MEDICAL CONDITION:
64 year old immunocompromised women with persistent cough/SOB and fluid overload
REASON FOR THIS EXAMINATION:
?pna, pleural effusions

FINAL REPORT

CHEST RADIOGRAPH

INDICATION: Immunocompromised woman, shortness of breath.

COMPARISON: [**2192-12-8**].
```

newly appeared parenchymal opacity. Unchanged size of the cardiac silhouette.

Figure: A sample radiology report from MIMIC-CXR

FINDINGS: As compared to the previous radiograph, there is no relevant change. The lung volumes have increased. The monitoring and support devices are all unchanged. Unchanged scarring at the left and right lung bases but no



Motivation

#### **Datasets**



### Rule-based approaches

```
{} <{dependency:/nmod:of|nmod:for/} ({lemma:/evidence/} >{dependency:/neg/} {})
```

Figure: A sample negation cue from NegBio. Detects the phrase "No evidence of/for X"

#### Typical pipeline:

- Part of speech tagging
- Dependency parsing
- Complicated feature extraction
- Negation and speculation cues

### Rule-based approaches

```
{} <{dependency:/nmod:of|nmod:for/} ({lemma:/evidence/} >{dependency:/neg/} {})
```

Figure: A sample negation cue from NegBio. Detects the phrase "No evidence of/for X"

#### Typical pipeline:

- Part of speech tagging
- Dependency parsing
- Complicated feature extraction
- Negation and speculation cues

#### Issues:

- Generalisation issues
- Language bias
- Dataset bias



# Statistical approaches

#### Typical pipeline:

- Part of speech tagging
- Dependency parsing
- Complicated feature extraction
- Support Vector Machines

### Statistical approaches

#### Typical pipeline:

- Part of speech tagging
- ② Dependency parsing
- Complicated feature extraction
- Support Vector Machines

#### Issues:

- Generalisation issues
- Language bias
- Dataset bias



### Our approach

Incorporate as much prior knowledge as possible into our models:

- Incorporate metadata into assertion specification
- Use state of the art pretrained language models (ELMo) for sentence representation
- Use prototype network approach to incorporate relationships between classes
- Use specialized model architectures for the task at hand
- Use heuristic algorithms to pretrain the models with inexact supervision



#### Assertion representation



Figure: Vector representation of an assertion

### Prototype networks

$$CMSE(TC, PC, TR, PR) = (TC - PC)^2 + TC * (TR - PR)^2 (2)$$

T true

P predicted

R reality

C confidence



Figure: Class prototypes in reality-confidence space



#### Models



Figure: LSTM model

#### Models



Figure: Attention-based model

### NegBio+ heuristic algorithm

```
speculative if the assertion is in INDICATION, REASON FOR THIS EXAMINATION or similar section negative if one of NegBio negation cues fires ("no X", "no evidence of X")

positive otherwise
```

# Weakly supervised learning schedules

- Classic. Initialize weights randomly, then minimize | | model<sub>weights</sub>(X) y<sub>true</sub> | |
- ② Deep Prior. Initialize weights randomly, minimize  $||\text{model}_{\text{weights}}(X) \text{NegBio}_{+}(X)||$ .
- 3 Transfer. Use the weights obtained with Deep Prior as initialization,  $\underset{\text{weights}}{\text{minimize}}||\text{model}_{\text{weights}}(X) y_{\text{true}}||$ .

#### Cross-validation results

Table: Accuracy on I2B2 Challenge

|         | ctakes     | 0.796   | 0.796      | 0.796    |
|---------|------------|---------|------------|----------|
| Vectors | Model      | Classic | Deep Prior | Transfer |
| elmo    | attention1 | 0.625   | 0.704      | 0.756    |
| elmo    | attention8 | 0.621   | 0.706      | 0.738    |
| elmo    | lstm1024   | 0.798   | 0.755      | 0.866    |
| elmo    | lstm128    | 0.846   | 0.747      | 0.868    |
| elmo    | lstm512    | 0.858   | 0.733      | 0.858    |
| elmo    | lstm8      | 0.621   | 0.624      | 0.673    |

#### Cross-validation results

Table: Accuracy on MIMIC-CXR-FREQ

|          | NegBio+    | 0.834   | 0.834      | 0.834    |
|----------|------------|---------|------------|----------|
| Vectors  | Model      | Classic | Deep Prior | Transfer |
| elmo     | attention1 | 0.615   | 0.803      | 0.932    |
| elmo     | attention3 | 0.863   | 0.225      | 0.950    |
| elmo     | attention8 | 0.919   | 0.576      | 0.944    |
| elmo     | lstm8      | 0.639   | 0.878      | 0.898    |
| elmo     | lstm128    | 0.927   | 0.873      | 0.967    |
| elmo     | lstm512    | 0.912   | 0.873      | 0.975    |
| elmo     | lstm1024   | 0.785   | 0.876      | 0.939    |
| fasttext | attention1 | 0.610   | 0.429      | 0.870    |
| fasttext | attention3 | 0.944   | 0.325      | 0.773    |
| fasttext | attention8 | 0.778   | 0.441      | 0.838    |
| fasttext | lstm8      | 0.276   | 0.388      | 0.058    |
| fasttext | lstm128    | 0.705   | 0.914      | ∂ 0.929  |

#### Cross-validation results

Table: Accuracy on MIMIC-CXR-LONG

|          | NegBio+    | 0.71    | 0.71       | 0.71     |
|----------|------------|---------|------------|----------|
| Vectors  | Model      | Classic | Deep Prior | Transfer |
| elmo     | attention3 | 0.800   | 0.770      | 0.683    |
| elmo     | attention8 | 0.833   | 0.710      | 0.843    |
| elmo     | lstm128    | 0.716   | 0.690      | 0.750    |
| elmo     | lstm512    | 0.763   | 0.710      | 0.691    |
| elmo     | lstm8      | 0.721   | 0.700      | 0.821    |
| fasttext | attention3 | 0.722   | 0.680      | 0.821    |
| fasttext | attention8 | 0.810   | 0.750      | 0.739    |
| fasttext | lstm128    | 0.686   | 0.690      | 0.722    |
| fasttext | lstm512    | 0.862   | 0.700      | 0.788    |
| fasttext | lstm8      | 0.830   | 0.690      | 0.694    |



# Result highlights

Table: Heuristic pretraining effect on MIMIC-CXR-FREQ

| Vectors  | Model      | Classic | Transfer |
|----------|------------|---------|----------|
| elmo     | attention1 | 0.615   | + 0.317  |
| elmo     | attention3 | 0.863   | + 0.097  |
| elmo     | attention8 | 0.919   | + 0.025  |
| elmo     | lstm8      | 0.639   | + 0.249  |
| elmo     | lstm128    | 0.927   | + 0.040  |
| elmo     | lstm512    | 0.912   | + 0.063  |
| elmo     | lstm1024   | 0.785   | + 0.154  |
| fasttext | attention1 | 0.610   | + 0.260  |
| fasttext | attention8 | 0.778   | + 0.050  |
| fasttext | lstm512    | 0.748   | + 0.097  |
| fasttext | lstm1024   | 0.578   | + 0.218  |

## Result highlights

Table: Contextualized embeddings effect on MIMIC-CXR-FREQ

| Model      | Schedule   | fasttext | elmo    |
|------------|------------|----------|---------|
| lstm8      | Classic    | 0.276    | + 0.363 |
| lstm8      | Deep Prior | 0.388    | + 0.490 |
| lstm8      | Transfer   | 0.058    | + 0.848 |
| lstm512    | Classic    | 0.748    | + 0.164 |
| lstm512    | Deep Prior | 0.381    | + 0.492 |
| lstm512    | Transfer   | 0.841    | + 0.134 |
| lstm1024   | Classic    | 0.578    | + 0.207 |
| lstm1024   | Deep Prior | 0.309    | + 0.567 |
| lstm1024   | Transfer   | 0.796    | + 0.143 |
| attention1 | Classic    | 0.610    | + 0.164 |
| attention1 | Deep Prior | 0.429    | + 0.374 |
| attention1 | Transfer   | 0.870    | + 0.062 |

# Result highlights

Table: Deep prior effect on MIMIC-CXR-FREQ

| Vectors      | Model            | Advantage over NegBio+ |
|--------------|------------------|------------------------|
| elmo<br>elmo | lstm8<br>lstm128 | + 0.044<br>+ 0.039     |
| elmo         | Istm512          | + 0.039                |
| elmo         | lstm1024         | + 0.042                |

### Neural relaxation of algorithms

Given X and heuristic(X) one can outperform heuristic(X) by solving

$$\underset{\text{weights}}{\text{minimize}}||\text{model}_{\text{weights}}(X) - \text{heuristic}(X)|| \qquad \qquad (3)$$

### Neural relaxation of algorithms

Given X and heuristic(X) one can outperform heuristic(X) by solving

#### Neural networks are priors!

On a different problem (mild/moderate/severe classification) we managed to achieve +30% improvement via this method

### Commercial break Acknowledgments

#### Organizations:





People: Artem Shelmanov, Ilya Sochenkov, Francis Tyers



# Ask us anything

Vadim.Liventsev@skoltech.ru v.liventsev@tue.nl Irina.Fedulova@philips.com D.Dylov@skoltech.ru