Simple proof for Frequent Directions

Edo Liberty*

Abstract

This paper provides a short proof of the main results in [1] and [2].

Proof of the main results

The main insight needed for producing the simplified proof is changing the item being sketched. We will consider sketching the *covariance* of a stream of matrices rather than the stream itself. The results turns out to be identical.

Let $X_t \in \mathbb{R}^{d \times n_t}$ be a stream of matrices. Let $C = \sum_{t=1}^T X_t X_t^T \in \mathbb{R}^{d \times d}$ be their covariance matrix. Frequent directions [1] maintains a rank deficient approximate covariance matrix $\tilde{C}_t \in \mathbb{R}^{d \times d}$ as follows. Given \tilde{C}_{t-1} and X_t compute $U_t \Lambda^t U_t^T = \tilde{C}_{t-1} + X_t X_t^T$. Let $\Delta_t = U_t \cdot \min(\Lambda^t, I \cdot \lambda_t^t) \cdot U_t^T$. Here, λ_t^t is the ℓ 'th largest eigenvalue of $\tilde{C}_{t-1} + X_t X_t^T$. Finally, set \tilde{C}_0 to be the all zeros matrix and let \tilde{C} denote \tilde{C}_T . Set $\tilde{C}_t = \tilde{C}_{t-1} + X_t X_t^T - \Delta_t$. Note that $\tilde{C}_t = U_t \cdot \max(\Lambda^t - I \cdot \lambda_t^t, 0) \cdot U_t^T$ whose rank is at most $\ell - 1$ for all t by construction. It can therefore be stored in $O(d\ell)$ space. Assuming $n_t < \ell$, the update operation itself also consumes at most $O(d\ell)$ space. Note that $\Delta_t = X_t X_t^T - \tilde{C}_t + \tilde{C}_{t-1}$ and so $\sum_{t=1}^T \Delta_t = \sum_{t=1}^T X_t X_t^T - \sum_{t=1}^T (\tilde{C}_t - \tilde{C}_{t-1}) = C - \tilde{C}$. Moreover, $\|\Delta_t\| \leq \frac{1}{\ell} \operatorname{tr}(\Delta_t)$ because the top ℓ eigenvalues of Δ_t are all equal to one another.

$$\|C - \tilde{C}\| = \|\sum_{t=1}^{T} \Delta_t\| \le \sum_{t=1}^{T} \|\Delta_t\| \le \frac{1}{\ell} \sum_{t=1}^{T} \operatorname{tr}(\Delta_t) = \frac{1}{\ell} \operatorname{tr}\left(\sum_{t=1}^{T} \Delta_t\right) = \frac{1}{\ell} \operatorname{tr}(C - \tilde{C}) \le \frac{1}{\ell} \operatorname{tr}(C)$$

The last step is due to $\operatorname{tr}(\tilde{C}_T) \geq 0$ because \tilde{C}_T is positive semidefinite. This completes the proof of claim 1 in [1]. For the main result in [2] note that $\|\Delta_t\| < \frac{1}{\ell-k}\operatorname{tr}(\bar{P}_k\Delta_t\bar{P}_k)$ for any projection \bar{P}_k having a null space of dimension at most k. This is also because the top ℓ eigenvalues of Δ_t are all equal to one another.

$$||C - \tilde{C}|| \le \sum_{t=1}^{T} ||\Delta_t|| \le \frac{1}{\ell - k} \operatorname{tr} \left(\bar{P}_k \left(\sum_{t=1}^{T} \Delta_t \right) \bar{P}_k \right) \le \frac{1}{\ell - k} \operatorname{tr} \left(\bar{P}_k C \bar{P}_k \right)$$

Applying this using \bar{P}_k which nullifying the top k eigenvalues of C_T gives $\|C - \tilde{C}\| < \frac{1}{\ell - k} \sum_{i=k+1}^d \lambda_i$ where λ_i are the eigenvalues of C sorted in descending order. This proves the main result in [2].

References

- [1] Edo Liberty. Simple and deterministic matrix sketching. In *The 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2013, Chicago, IL, USA, August 11-14, 2013*, pages 581–588. ACM, 2013.
- [2] Mina Ghashami and Jeff M. Phillips. Relative errors for deterministic low-rank matrix approximations. In Chandra Chekuri, editor, *Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms*, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 707–717. SIAM, 2014.

^{*}Pinecone