Course contents

The following assignments will be covered:

- A1: "Linear Regression"
- A2: "Logistic Regression"
- A3: "Multi-class Classification and Neural Networks"
- A4: "Neural Network Learning"
 A5: "Regularized Linear Regression and Bias/Variance"
 A6: "Support Vector Machines"
 A7: "K-Means Clustering and PCA"

- A8: "Anomaly Detection and Recommender Systems"

First part of the workshop

Session 1:

Activity	Time	Remark
Introduction	42m	Self-study
Linear Regression with One Variable	1h10m	Self-study
Linear Algebra Review	1h	Self-study
Linear Regression with Multiple Variables	1h4m	Self-study
Octave/Matlab Tutorial	1h19m	
Work on assignment "Linear Regression"	Rest	

Session 2:

Activity	Time
Presentation of solution to assignment A1	20m
Logistic Regression	1h11m
Regularization	39m
Work on assignment A2	Rest

Session 3:

Activity	Time	Remark
Presentation of solution to assignment A2	30m	
Neural Networks: Representation	1h2m	Self-study
Neural Networks: Learning	1h17m	Self-study
Work on assignments A3 and A4	Rest	

Session 4:

Activity	Time	Remark
Presentation of solution to assignment A3 and A4	60m	
Advice for Applying Machine Learning	1h3m	Self-study
Machine Learning System Design	59m	Self-study
Work on assignment A5	Rest	

Session 5:

Activity	Time	Remark
Presentation of solution to assignment A5	30m	
Support Vector Machines	1h37m	Self-study
Unsupervised Learning	39m	Self-study
Dimensionality Reduction	1h7m	Self-study
Work on assignments A6 and A7	Rest	

Session 6:

Activity	Time	Remark

Presentation of solutions to assignments A6 and A7	60m	
Anormaly Detection	1h30m	Self-study
Recommender Systems	58m	Self-study
Work on assignment A8	Rest	

Session7:

Activity	Time	Remark
Presentation of solution to assignment A8	30m	
Large Scale Machine Learning	1h3m	Self-study
Application Example: Photo OCR	56m	Self-study
Guest lecture TBD	Approx 45m	
Outstanding issues	Rest	

Second part of the workshop

Activity	Time	Remark
Presentation and discussion of machine learning papers	4h	Prepare presentation of selected paper(s).

List of papers:

Electricity Consumption w.r.t. various measurements:

- Forecasting uncertainty of Thailand's electricity consumption compare with using artificial neural network and multiple linear regression methods, IEEE Conference on Industrial Electronics and Applications, 2017
- Forecasting household electricity consumption in the province of Aceh using combination time series model, International Conference on Electrical Engineering and Informatics, 2017
- A hybrid method for short-term electricity consumption prediction, IEEE Conference of the Industrial Electronics Society, 2017

- Prediction of electricity consumption based on DT and RF: An application on USA country power consumption, IEEE International Conference on Electrical, Instrumentation and Communication Engineering, 2017
- Short-term electricity consumption forecast with artificial neural networks A case study of office buildings, IEEE Manchester PowerTech, 2017
- Support Vector Regression for Electricity Consumption Prediction in a Building in Japan,
 IEEE International Conference on Computational Science and Engineering, 2017
- Estimation of the electricity consumption of Turkey trough artificial neural networks, IEEE International Symposium on Computational Intelligence and Informatics, 2016
- A hybrid forecasting method of electricity consumption based on trend extrapolation theory and LSSVM, IEEE PES Asia-Pacific Power and Energy Engineering Conference, 2016
- Multivariate electricity consumption prediction with Extreme Learning Machine, International Joint Conference on Neural Networks, 2016

Classification of (malware) software:

- Malware Visualization for Fine-Grained Classification, IEEE Access, 2018
- Malware classification with LSTM and GRU language models and a character-level CNN,
 IEEE International Conference on Acoustics, Speech and Signal Processing, 2017
- Malware classification using static analysis based features, IEEE Symposium Series on Computational Intelligence, 2017
- Classification of Malware programs using autoencoders based deep learning architecture and its application to the microsoft malware Classification challenge (BIG 2015) dataset, IEEE National Aerospace and Electronics Conference, 2017
- NLP-based approaches for malware classification from API sequences, Asia Pacific Symposium on Intelligent and Evolutionary Systems, 2017
- Deep android malware detection and classification, International Conference on Advances in Computing, Communications and Informatics, 2017
- Evolving Deep Neural Networks architectures for Android malware classification, IEEE Congress on Evolutionary Computation, 2017
- Empowering convolutional networks for malware classification and analysis, International Joint Conference on Neural Networks, 2017
- On the effectiveness of application characteristics in the automatic classification of malware on smartphones, International Conference on Malicious and Unwanted Software, 2016