电动1

的电动基本规律 第2部分 - 线性电子元件

1引言

我们在前面的章节也没有失望 电动偶极子, 并表示这两个法律基尔霍夫?, 亦即 网格法 和 法节点。 我们不过尚未研究过电子元件 常规 实 可以在一个电路中,这是本章节的目的会遇到。

偶极子2常规的线性

德?Nition 1。 线性偶极

在这里,我们将介绍在实际室认识各种常见的线性偶极子,即 电阻,线圈和电容器。在详细专注于这样的装置和德?氖精确 什么是线性偶极,回想一下一个偶极子的特征在于,所述强度 我流经它和目前的 电压 ü在它的终端。

0 0 0 0 0 0						 	 	 	 													 				 	
2.1偶极	子的特	特性																									
往往月	日本主:	征俚权	子的 :	计能																							
11117	可不扱	III 内10X	, <u>1</u> – 63	り形。																							
德?Niti	on 2。	偶极一	子的特	性																							
德?Niti	on 2。	偶极	子的特	性 ······		 	 	 	 	• • •												 				 	
德?Niti	on 2。	偶极于	子的特	性 · · · · · ·	0000	 	 0 0 0	 	 				0 0 0 0			0 0 0 0	000	, , , , ,	0 0 0			 			0000	 	
德?Niti	on 2。	偶极-	子的特	性 ······		 0 0 0 0	 	 	 		0000			0 0 0 0	0 0 0 1	0 0 0 0				0 0 0 0	0000	 	0 0 0 0		0000	 	0000
德?Niti	on 2.	偶极-	子的特	性	0 0 0 0 0	 	 	 0000	 			0001			0 0 0 0					0 0 0 0		 				 	
德?Niti	on 2.	偶极-	子的特	性 · · · · · ·	0 0 0 0 0	 	 0 0 0 0	 0 0 0 0	 											000		 	0 0 0 0			 	
德?Nitio	on 2.	偶极-	子的特	性		 	 	 	 0 0 0 0		0000					0 0 0 0				0 0 0 0	0000	 	0 0 0 0	0000		 	
德?Nitio	on 2.	偶极-	子的特	性 · · · · · · · · · · · · · · · · · · ·		 	 	 	 0 0 0 0				0000			• • • •		0000				 	0 0 0 0			 	
德?Niti	on 2。	偶极-	子的特	性 · · · · · · ·		 	 • • • •	 	 									000		0000		 				 	

v 二erentiate接收机和发电机与所述偶极子的特性?:

我 如果我们把接收器约定,因此,如果 P_{R} = UI> 0 偶极子是一个接收器,并且如果 P_{I} R< 0 偶极子发电机。

我 在协议发生器,如果 $P_{I^{\!\scriptscriptstyle R}}$ 0 偶极子是发电机,如果 $P_{I^{\!\scriptscriptstyle R}}$ < 0 那么它是一个接收器。

考虑的特点和使用的惯例的下一个象限可直接扣除

什么样的价值观 ü 和 我偶极子被认为发生器或接收器中,如图?古尔1。

人物 1? 发电机的操作或接收器和特性

2.2连接它们的偶极子

我们可以通过偶极子连接它们:

- 我 一 导体, 由单个线,这是一个导体,其电阻是苏符号? cient 电路的其它电阻低之前将被认为是无效的,注意 两端的电压? 司机为零;
- 我 一 开关,封闭的,它作为一个?司机关闭,它留下更多的电流通过。一 如在所示的图式化?古尔2。

人物 2? 开关的图式

乙 通过打开的开关上的电压显然不是零。

2.3电阻

法1。	次如	Į	Ξ1	‡																																																						
	 	0 0					0 0	0 0		 0 0	0 0	۰	0 0	 0 0	0 0	 0 0	0 0	0 0	0 1	0 0	۰	0 0	 	۰	 •		0 (0 0	۰	0 0	0 0	۰	0 0	0 0	0 0	۰	0 0	0 0	0 0	0 0	0 0	0 0	0 0	• •	0 0	 0 0	۰	0 0			 	0 0	 0 0	 0 0	0 0	0 0	0 0	۰
	 				 		0 0		0 1	 0 0	0 0	۰	0 0	 0 0	0 0	 	0 0	0 0	0 1	0 0	•	0 0	 	۰	 0	0 0	0 (0 0	0		0 0	۰	0 0	0 0	0 0	•	0 0			0 0			0 0		0 0	 0 0	۰	0 0	0 0	0 1	 		 0 0	 0 0	 0 0	0 0	0 0	۰
	 				 						0 0	۰		 		 				0 0	۰		 	۰	 ۰		0 (۰		0 0	۰		0 0		۰										 0 0	۰				 			 0 0	 	0 0	0 0	۰
	 				 	 					0 0	۰		 		 			0 1	0 0	•		 	۰			0 (0		0 0	۰		0 0		•							0 0			 0 0	۰				 		 0 0	 0 0	 	0 0	0 0	۰
	 				 	 						۰		 		 			0 1	0 0			 	۰			0 (۰											0 0			 0 0	۰				 		 0 0	 	 		0 0	۰
	 				 					 	0 0	۰	0 0	 0 0		 		0 0		0 0		0 0	 	0			0 (0		0 0	۰		0 0	0 0								0 0		0 0	 0 0	۰	0 0			 		 0 0	 0 0	 	0 0	0 0	۰
	 					 				 	0 0	۰		 		 				0 0			 			0 0		 				۰		0 0	 0 0										0 0	 	۰	0 0	0 0		 		 	 			 0 0	۰

v 性<u>的映射: 阻力 [R 被示意性地示出, 接收机惯例 作为</u>预

在sented?图3。

人物 3? 电阻接收机公约的图式

v 电阻的电流 - 电压特性: 表示曲线 / = F (U) 。 我们从

欧姆定律接收机约定:

电阻的电流电压特性是没有通过帧的原点的右边,斜率 1 / [R 如所示?古尔4。

人物 4? 电阻特性

v 注意: 我们现在来重新表达欧姆定律为 /= U/R (接收机公约)。

通常优选的是放置在形式:

$$U = GI$$
 \square $G = 1 - I$

量G称为 电导 并在西门子(用S表示)表示。

德?Nition 3。	电导
	•••••••••••••••••••••••••••••••••••••••

v 接收功率由电阻: 考虑阻力 接收机惯例, 接收功率

然后:

其中(T) 指示该电流和电压可以任选地是时间相关的。

通过电阻器接收功率			
•••••••••••			
	• • • • • • • • • • • • • • • • • • • •		
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
三 <u>和焦耳?: 由电阻接</u> 收到的能量导致它échau?EMEN	NT。这就是所谓的		
?			
度。这种现象使得洲阻力?安特斯,炉或电加热器。			
电阻的数量级:	_		
在TP使用的电阻器	1Ω1 <i>中号</i> Ω	线	1.10 - 8Ω
表 1? •	福度电阻的订单		
4电容器			
德?Nition 4。 电容器			
			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
•••••			
• • • • • • • • • • • • • • • • • • • •			
美的电容2.4.1模式			
德?Nition 5。 完美的电容模型			
• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •
•••••			
• • • • • • • • • • • • • • • • • • • •			
• • • • • • • • • • • • • • • • • • • •			
电容器的原理: 由?图5电容器的代表性示意图表示。	_		
在电容电流与电压之间的链接: 我们以前没有失望当前	1		
为电荷流动(见部分1)。因此,如果在负载到电容器标			
着时间的推移,这会产生电流。数学建模工具的变化 负载的衍生物 q 与 Ť之一 :			

人物 5? 电容器的原理

符号取决于所选择的约定:	
我 在接收器的约定: 如果 q 增加,这意味着 我 积极的,因此 /= + pq	DT
我 在协议发生器 如果 q 增加,那么 我 是负的,因此 / = - pQ	DT ₆
我们从这个之间的关系推断 <i>我</i> 至 <i>U,</i> 接收器的约定:	u.
/ = DQ──	_
I = DQ - DT = C	DT
完美的电容	
v 注意: 在稳定状态,数量不取决于时间,这	<i>社DT</i> = 0 因此 / = 0。 该
没有电流流过,电容器表现得像断开的开关。	
2.4.2能源方面	
追求表现冷凝器,接收器公约所接收的功率。	
••••••••••••••••••••••••••••••	••••••••••••••••••••••••
德?Nition 6。 能量存储在电容器	
•••••••••••••	
需要注意的是,你可以有 $P_{I\!\!P}$ 0 或 $P_{I\!\!P}$ $<$ 0 这意味着的 Δ E,电容器可以作为接收器 ($P_{I\!\!P}$ $>$ 0) 或发电机 ($P_{I\!\!P}$ $<$ 0)。	作用
v 注意: 由电容器接收的功率是 <i>PR= 铜的</i>	
凯莉是?斯内德,我们不能有 <u>在D</u> T→∞,电谷精内响的电 大小 继续。	IDENTIFICE
电容器两端的电压的连续性	

2.4.3电容实

在现实中,一个小的电流可以从电容器的一个极板流到另一个(称为漏电流) 完善的电容的模型不能同意。为了模拟实际电容并联地附加 一个叫做电阻电容完美 泄漏电阻, 如所示?古尔6。

人物 6? 建模实际电容器

2.5线圈

德?Nition 7。盘

0 0 0 0 0 0 0 0 0 0 0		
理想的线圈的模型	型2.5.1	
德?Nition 8。	理想的线圈	
		• • • • • • • • • • • • • • • • • • • •

据所表示的,接收器约定,如下:

人物 7? 一个理想的线圈的映射

在实际工作中遇到的房间通常的电感值几个mH至1之间H.

在稳定状态下,强度不依赖于时间,当	<u>=</u> στ = 0 和
$U=1$ 时 ij $\overline{DT0=0}$ 。线圈充当?司机。	
2.5.2能源方面	
力求表达由线圈接收到的功率。	
•••••••••••••••••••••••••••••••••••••••	
德?Nition 9。 能量存储在线圈	
	,
	,
需要注意的是,你可以有 $P_{I\!\!P}$ 0 或 $P_{I\!\!P}$ < 0 这意味着的 Δ E,该线圈可作为接收器作用 $(P_{I\!\!P}$ $> 0)$ 或发电机 $(P_{I\!\!P}$ $< 0)$ 。	
v 跨越线圈强度的连续性: 由线圈接收到的电力被写入 PR= 里 油	DT.
这一权力应保持?斯内德,它因此不能	
在一个线圈中的电流的连续性	
2.5.3实际卷轴	
在现实?形成线圈LS具有一定的内部电阻,这是不反映在	
理想线圈的模型。为了模拟一个真实的线圈,所以我们将设置一个理想的线圈 性,通常表示 /R 如所示?古尔8。	

人物 8? 模拟一个真实的线圈

通常在实际工作中使用的线圈的内部电阻是几欧姆的量级。

3个电阻协会

- 3.1电阻协会法律
- 3.1.1串联电阻

考虑 ñ 串联连接的电阻器,如图?古尔9。

人物 9? 串联电阻协会

定理1。 串联电阻协会	
3.1.2电阻并联	
现在考虑N个电阻并联,如图?古尔10。	
• • • • • • • • • • • • • • • • • • • •	

 \boldsymbol{u}

人物 10? 并联电阻协会

定理2。 并联电阻协会	
	, .

3.2分频器的电压和电流

3.2.1分压器

考虑两个电阻 $[R_1]$ 和 $[R_2]$ 串联放置,通过它的电流强度的 我并进行电压 U,如所示?古尔11.分压器的配方可以在表达的电压两个电阻器的一个函数的一个 U,不涉及 我在表达式。

人物 11? 分压器

定理3。分压器
v 证明:
该器件降低了非常简单的紧张局势。它是进行更方便的工具
计算的电路。
实施例1。考虑下面所示的电路。
实施例1。考虑下面所示的电路。
实施例1。考虑下面所示的电路。
实施例1。考虑下面所示的电路。 $R_1 \qquad R_2 \qquad R_3 \qquad U_s$ 表达电压 \bar{u} σ
实施例1。 考虑下面所示的电路。 $R_1 \qquad R_2 \qquad R_3 \qquad U_s$ 表达电压 \ddot{u}_{PS} 在以下方面 \ddot{u}_{PS} 为此,我们通过编写的等效电阻简化?时代电路 协会 $[R_1$ 和 $[R_2]$ 面中 $[R_3]$ 和 $[R_4]$
实施例1。考虑下面所示的电路。 $R_1 \qquad R_2 \qquad R_3 \qquad U_s$ 表达电压 \bar{u} σ
实施例1。考虑下面所示的电路。 $R_1 \qquad R_2 \qquad R_4 \qquad R_3 \qquad U_s$ 表达电压 $\ddot{u} \rightarrow e$ 在以下方面 \ddot{u}_B 为此,我们通过编写的等效电阻简化?时代电路 协会 R 1、和 R 2、而中 R 3、和 R 4、
实施例1。考虑下面所示的电路。 $R_1 \qquad R_2 \qquad R_4 \qquad R_3 \qquad U_s$ 表达电压 u_{P} 年在以下方面 u_{P} 为此,我们通过编写的等效电阻简化?时代电路 协会 R 1.和 R 2.而中 R 3.和 R 4.
実施例1。考虑下面所示的电路。 R1 R2 Ue R4 R3 Us 表达电压 0 か存在以下方面 0 m 为此,我们通过编写的等效电阻简化?时代电路 协会 [R・和 [R2 而中 [R3 和 [R4. R4 R4 R4
实施例1。考虑下面所示的电路。 $R_1 \qquad R_2 \qquad R_4 \qquad R_3 \qquad U_s$ 表达电压 u_{P} 年在以下方面 u_{P} 为此,我们通过编写的等效电阻简化?时代电路 协会 R 1.和 R 2.而中 R 3.和 R 4.
実施例1。考虑下面所示的电路。 R1 R2 Ue R4 R3 Us 表达电压 0 か存在以下方面 0 m 为此,我们通过编写的等效电阻简化?时代电路 协会 [R・和 [R2 而中 [R3 和 [R4. R4 R4 R4

3.2.2功率分配器

考虑并行的两个电阻 $[R_1$ 和 $[R_2$ 受到张力 \ddot{u} 。 $[R_1$ 由电流穿过 \mathcal{B}_1 和 [R2当前 我2和 $I = I_{1+}$ 我2如所示?古尔12.分流的公式用于表达 我1或我2在以下方面我不涉及ü。

人物 12? 分流

定理4。分流	
	••••••
	• • • • • • • • • • • • • • • • • • • •
<i>∨</i> 证明:	
- Wa-77 -	
	••••••
变体例2 多度2 士尔12和极设势们有 ID. ID.	, 然 后克 田小子

分压器:

[R2 然后它,用公式

做一个分流?

4个来源的电压和电流的

通过它的电流。这种方法被称为?

为了治疗源,我们把自己置身于 发电机惯例 这是最合乎逻辑的选择 因为它们对电路提供能量。通常有两种类型的源: 来源 电压 和 电源。

一个小电阻并联放置具有高电阻器件通过限制来保护

理想的电压和电流的4.1源

4.1.1理想电压源

德?Nition 10。 理想电压源	
•••••••••••••••••••••••••••••••••••••••	

v 制图: 您可以根据视为电压源满足各种图案

呈现的?古尔13。

人物 13? 映射电压源

v 特点: 功能 U = F(1) 一个理想的电压源是一个水平行中,由于电压源开出 E 任何 我如所示?古尔14。

人物 14? 理想电压源的特性

乙 跨理想电压源的电压是已知的并且是 E ,但我们不知道先验当前 \mathcal{A} 输出。

4.1.2理想的电流源

德?Nition 11。	理想的电流源
	••••••••••••••••••••••••••••••••
	••••••••••••••••••••••••••••••••••••

v 制图: 我们满足两个类型的映射,如图?古尔15。

人物 15? 映射理想的电流源

v 特点: 功能 *U = F (1)* 电流理想源是垂直线,由于源提供电流 *我*0 不管电压 *ü* 在其端子处,如图?古尔16。

人物 16? 理想的电流源的特性

乙 源的电流输出是众所周知的,但是这不是电压的情况下 \ddot{u} 在它的终端。

实际的电压和电流的4.2源

4.2.1实际电压源

在现实中,由电压源提供的电压不是独立的,通过它运行的强度。 当电流被充电时,电压降被观察到。这是因为如果实际发生器相关 与电阻串联。

|--|

我 如果内部电阻为零 (R = 0) 则源是理想的。

我 电动势 Ë 是identi?在有限元é?在没有电流扣除空?。

4.2.2实际电流源

v 备注:

类似地,通过实际电流源输送的电流的强度取决于在其电压 终端。

德?Nition 13。 实际电流源
be
•••••••••••••••••••••••••••••••••••
Λ.
I.
pente-G
7000
\downarrow
$\longrightarrow u \longrightarrow i$
Caractéristique II.
Caracteristique
v 证 <u>明:</u>
•••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••
v 备 <u>注:</u>
我 如果 $G=0$ 当电源是理想的。
我 我0显示为 短路电流,即通过源的电流时的电压在
其端子是零。
4.3定理戴维南
定理5。 戴维南定理
ACCO MARKA

- v 方<u>法: ?一个没有</u>正确地应用戴维南定理,请按照下列步骤操作:
 - 1.表达了张力 \ddot{u}_{AB} 基于该问题的数据在两个终端A和B之间。我们推断 \ddot{E}_{B} 。
 - 2.被动来源:
 - 我 电压源通过?LS驱动程序所取代。
 - 我 电流源被打开的开关代替。
 - 3.计算端子A和B之间的等效电阻,其对应于 [R =.

人物 17? 戴维南定理

4.提请等效电路图。

实施例3。 应用戴维南定理上面示出的网络和绘制的等效电路图 获得。

非线性偶极和工作点的5实施例

5.1非线性偶极的实施例:所述二极管

所以在这个过程中到目前为止,我们已经处理过的线性偶极子的情况。我们将在工作满足 一**些实际非线性偶极子,其中包括** 二极管。 这样的构成是由材料半

导体,并且其电流 - 电压特性示于?图18中

常模式由两个半行,一个水平和另一垂直二极管的特性,

人物 18? 二极管的电流 - 电压特性

如所示?古尔19。

人物 19? 二极管建模

现在寻求解释之前的造型。

- 我 如果电压 ü 二极管两端的大于所述电压低 ū。叫 阈值电压,是 I=0 什么什么 ü。 电流不流动无关的电压:所述二极管行为像 开关打开。据说,该二极管阻塞(因为它不会让电流)。
- 我 如果电压 \ddot{u} 跨越二极管 \ddot{u}_{σ} 则强度可以取任何值:二极管表现为理想电压发生器FEM \ddot{u}_{D} 我们说二极管 带宽。
- v 二极管的原理: 二极管示意性示出,接收机的协议,如在呈现 图20。

人物 20? 二极管图

二极管导通在由三角形指示的方向,并阻止其他方式。我们将在 实际工作中,要处理这些组件。

5.2工作点

考虑所示的电路?古尔21,具有实际电压源的关联

有限元 Ë和内部电阻 [R用二极管。

人物 21?电路研究

研究必须满足两个要求的电路:

我 由于发电机的特点,我们必须有 $\ddot{u}=E-H$ 是否 $I=\dot{e}_{-\ddot{u}}$

我 我们也必须尊重特点 / = F(u)的 的二极管。

吸取上述两种特性,我们观察到,它们相交于点E(见?古尔22)。这是

叫 工作点, 它的坐标表示的值 *ü* 和 *我* 二极管两端。

R.

人物 22? 工作点