PATENT ABSTRACTS OF JAPAN

(11)Publication number:

05-082830

(43) Date of publication of application: 02.04.1993

(51)Int.CI.

H01L 31/107

(21)Application number: 03-242077

(71)Applicant:

FUJITSU LTD

(22)Date of filing:

20.09.1991

(72)Inventor.

SUGIURA KATSUMI

(54) SEMICONDUCTOR LIGHT RECEIVING ELEMENT

(57)Abstract

PURPOSE: To reduce the dark current in a semiconductor light sensitive element, especially of the InCaAs APD construction suitable for L&murn band optical communication.

CONSTITUTION: An avalanche photodiode with a guard ring in the light receiving part, is so constituted that a ringed electrode 10 is provided with its inside circumference identical with that of the guard ring 2.

12 = passivation film 10 = electrode 9 = substrate 7 = absorption layer 11 = electrode

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection|

[Date of extinction of right]

Copyright (C): 1998,2000 Japan Patent Office

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Industrial Application] this invention relates to a semiconductor photo detector. Suitable indium gallium arsenide system avalanche type photo diode to use for 1-micrometer band optical communication especially (InGaAs APD:Avalanche PhotoDiode) It is related with structure

[0002]

[Description of the Prior Art] <u>Drawing 3</u> is explanatory drawing of the conventional example, drawing -- setting -- 1 -- p+ -InP layer and 2 -- a guard ring and 3 -- a n-InP multiplication layer and 4 -- n+InP a layer and 5 -- n-InP a layer and 6 -- n-InP a layer and 7 -- a n-InGaAs optical-absorption layer and 8 -- n+InP a buffer layer -- 9 is n+InP. For a substrate and 10, as for a passivation film and 12, an Au/Au/Zn electrode and 11 are 1 an antireflection film and 13 | Au/Au/Ge electrodes [0003] The principal part cross section of the general structure of inGaAs APD is shown in <u>drawing 3</u> (a). Incidence of the lightwave signal is carried out inside the ring-like electrode 10. Lightwave signal which carried out incidence. It is absorbed in the optical-absorption layer 7. A carrier is generated according to the size of a signal. This carrier is injected into the n-InP multiplication layer 3 through the n-InP layer 6 and the n+-InP layer 4 by the electric field currently impressed to the optical-absorption layer 7.

[0004] Multiplication of the poured-in carrier is carried out within the multiplication layer 3, and it is taken out outside through p+-InP1 and an electrode 10. It is n-InP in order to carry out multiplication of the carrier. High electric field are impressed to the multiplication layer 3. The typical electric-field distribution currently impressed to the element at the time of operation of this element is shown in drawing 3 (b).

[0005] It is usual as shown in drawing. The electrode 10 is formed inside the guard ring.

[Problem(s) to be Solved by the Invention] It sets to a photo detector. Current which flows even if there is no lightwave signal. In order for the so-called dark current to cause noise and to reduce receiving sensitivity It is required in a thing small as much as possible.

[0007] It is made to spread. Above With APD That the dark current is as large as dozens nA(s) poses a problem. The main causes of the dark current are defective level which exists in the multiplication layer 3 and the optical-absorption layer 7, this invention is offered for the purpose of reducing the dark current in view of the above point [0008]

[Means for Solving the Problem] Drawing 1 is principle explanatory drawing of this invention, drawing -- setting -- 1 -- p+ -InP layer and 2 -- a guard ring and 3 -- a n-InP multiplication layer and 4 -- n+InP a layer and 5 -- n-InP a layer and 6 -- n-InP a layer and 7 -- a n-InGaAs optical-absorption layer and 8 -- n+InP a buffer layer -- 9 is n+InP. For a substrate and 10, as for a passivation film and 12, an Au/AuZn electrode and 11 are [an antireflection film and 13] Au. Autic electrodes.

[0009] What is necessary is just to make inner circumference of a ring-like electrode into structure which is in agreement with the inner circumference of a guard ring fundamentally as a means to solve the above-mentioned trouble. As [correspond / the inner circumference of the purpose of this invention of a ring-like electrode / in the avalanche type photo diode which has a ring-like guard ring / namely, / with the light-receiving section / with the inner circumference of this guard ring | The electrode of the shape of this ring is prepared and it is attained by the bird clapper.

[0010

[Function] The dark current in this system. The following two components are mainly ruling over, namely, Quantity electric field are impressed. The dark current (Id1) by the defective level in the InP multiplication layer 3, and the dark current (Id2) by the defective level in the optical-absorption layer 7 it is.

[0011] As [show / the following formula | these current | respectively (Each area (S1 and S2) and thickness (L1 and L2) Defective level concentration (NT1 and NT2)-It is proportional.

Id1**qS1 L1 NT1 Id2**qS2 L2 NT2 -- here o is an electronic more thange.

[0012] this invention is S1. It is effective in being able to decrease and reducing the dark current [0013]

[Example] <u>Drawing 1</u> is explanatory drawing of principle explanatory drawing-cum-1 example of this invention. <u>Drawing 2</u> is the related view of the defective level concentration in an optical-absorption layer, and the dark current.

[0014] It is n+-InP as shown in <u>drawing 1</u>. It is MOVPE (Metal Organic VaporPhase Epitaxy) on a substrate 9. A method is used and it is n+-InP with a thickness of 1 micrometer. Buffer layers 8 and 2.4 n-InGaAs optical-absorption layers 7 and 0.5 of mum n+-InP of mum n-InP of 4 or 3 micrometers of layers A layer 5 is grown up in order.

[0015] A guard ring 2 is beryllium (Be) to the shape of a ring. An ion implantation is carried out and it creates. At this time Guard ring 2 Inner circumference is a diameter of light-receiving. For example, it is made in agreement with 50 micrometers.

[0016] It is created by the selective diffusion of zinc (Zn) or cadmium (Cd), and the p+ layer 1 is 0.2-micrometer n-InP. A layer 3 turns into a multiplication layer. Next, a bore is the same as a guard ring on a guard ring 2 so that it may illustrate, and it leaves the hole of the shape of a ring with a width of face of about 5 micrometers, and is a plasma CVD method about a silicon-nitride (Si3N4) film to a data front face. About 0.2 micrometers is deposited

[0017] then Vacuum deposition of AuZn and the Au film is carried out to the hole mentioned above, and it considers as an electrode. And vacuum deposition of gold and germanium (AuGe), and the gold (Au) is carried out to the inferior surface of tongue of data, and it considers as an electrode.

[0018] It is the defective level concentration NT in the optical-absorption layer 7 to drawing 2. Dark current Id A relation is shown. Defective level concentration N1 in the multiplication layer 3 it is 1.5X1013cm-3. Although the dark current decreases with reduction of NT2, if NT2 becomes about | 5X1011cm - / 3 or less |, the dark current by NT1 will become dominant. [0019] Now. NT2 can be reduced to about | 5X1011cm - | three, and NT1 is governing the present dark current. Therefore, S1 It turns out that decreasing is effective in reduction of the dark current.

[0020] In the case of the element of 50 micrometers of diameters of light-receiving By this invention. S1 can be reduced about 30% and can also reduce the dark current about 30%.

[0021]

[Effect of the Invention] According to this invention, the place which can reduce the area of the field which is governing the dark current, can reduce the dark current leading to noise, and contributes to the improvement in a performance of a photo detector is large.

[Translation done.]

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DRAWINGS

[Drawing 1]

本発明の原理説明図

[Drawing 2]

光吸収層中の欠陥準位濃度と暗電流との関係図

[Drawing 3]

役来術の説明図

[Translation done.]

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2. **** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] As [be / in agreement with the light-receiving section - it, the avalanche type photo-diode which has a ring-like guard ring / the inner circumference of a ring-like electrode [with the lime, enganderence of this guard ring.] Semi-conductor photo-detector which the electrode of the shape of this ring is prepared and is characterized by the bird clapper.

[Translation done.]

(19)日本国特新庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平5-82830

(43)公開日 平成5年(1993)4月2日

(51)Int.CL.5

識別配号

庁内整理番号

FI

技術表示管所

HOIL 31/107

8422-4M

HO1L 31/10

В

審査請求 未請求 請求項の数1(全 3 頁)

(21)出願番号

特願平3-242077

(71)出願人 000005223

富士通株式会社

(22)出願日

平成3年(1991)9月20日

神奈川県川崎市中原区上小田中1015番地

(72)発明者 杉浦 勝己

神奈川県川崎市中原区上小田中1015番地

富士通株式会社内

(74)代理人 弁理士 井桁 貞一

(54)【発明の名称】 半導体受光素子

(57)【要約】

【目的】 本発明は半導体受光素子に係わり、特に1μ m帯光通信に用いるのに好適なInGaAs APDの構造に関 し、暗電流を低減することを目的とする。

【構成】 受光部にリング状のガードリングを有するア バランシェ型フォト・ダイオードにおいて,リング状の 電極の内周が該ガードリングの内周と一致するように、 該リング状の電極が設けられてなるように構成する。

本発明の原理説明図 12.反射的止膜 LP*InP層 J.n-InP增倍層 5. n-InP層 4. n+ InP層 名n-InP層 ↑7. n-InGaAs世級取局 -& n+ InPバッファ層 ├9 n'InP基板

【特許請求の範囲】

【請求項1】 受光部にリング状のガードリングを有するアバランシェ型フォト・ダイオードにおいて、

リング状の電極の内周が該ガードリングの内周と一致するように、該リング状の電極が設けられてなることを特 像とする半導体受光素子。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、半導体受光素子に係わり、特に1μm帯光通信に用いるのに好適なインジウム 10・ガリウム・砒素系アバランシェ型フォト・ダイオード (InGaAs APD:Avalanche PhotoDiode) の構造に関する

[0002]

【従来の技術】図3は従来例の説明図である。図において、1はp+-InP層、2はガードリング、3はn-InP増倍層、4はn+InP層、5はn-InP層、6はn-InP層、7はn-InGaAs光吸収層、8はn+InPバッファ層、9はn+InP基板、10はAu/AuZn電極、11はバッシベーション膜、12は反射防止膜、13はAu/AuGe電極であ 20る。

【0003】InGaAs APDの一般的な構造の主要部断面図を図3(a)に示す。リング状の電極10の内側に光信号は入射する。入射した光信号は、光吸収層7で吸収され、信号の大きさに応じてキャリアを発生する。このキャリアは光吸収層7に印加されている電界によってn-InP層6及びn⁺-InP層4を通ってn-InP増倍層3に注入される。

【0004】注入されたキャリアは増倍層3内で増倍されp・-InP1及び電極10を通して外部に取り出される。キャリアを増倍するため、n-InP増倍層3には高電界が印加されている。この素子の動作時に、素子に印加されている典型的な電界分布を図3(b)に示す。

【0005】図に示すように、通常、電極10はガードリングの内側に設けられている。

[0006]

【発明が解決しようとする課題】受光素子において、光信号が無くても流れる電流、いわゆる暗電流は雑音の原因となり受信感度を低下させるため、できるだけ小さい事か要求される。

【0007】しかし、上記の APDでは、暗電流が数十n Aと大きいことが問題となっている。暗電流の主な原因は、増倍層3及び光吸収層7中に存在する欠陥準位である。本発明は、以上の点を鑑み、暗電流を低減することを目的として提供されるものである。

[0008]

【課題を解決するための手段】図1は本発明の原理説明図である。図において、1はp⁺-InP層、2はガードリング、3はn-InP増倍層、4はn⁺InP層、5はn-InP層、6はn-InP層、7はn-InCaAs光吸収刷 8は

n⁺ InP バッファ層, 9はn⁺ InP 基板, 10はAu/AuZn 電極, 11はパッシベーション膜, 12は反射防止膜, 13は Au/AuGe電極である。

【0009】上記の問題点を解決する手段として、基本的には、リング状の電極の内周を、ガードリングの内周と一致するような構造にすれば良い。即ち、本発明の目的は、受光部にリング状のガードリングを有するアバランシェ型フォト・ダイオードにおいて、リング状の電極の内周が該ガードリングの内周と一致するように、該リング状の電極が設けられてなることにより達成される。【0010】

【作用】この系における暗電流は、主に次の二つの成分が支配している。即ち、高電界が印加されている InP増倍層3中の欠陥準位による暗電流(Ia1)と光吸収層7中の欠陥準位による暗電流(Ia2)である。

【0011】これらの電流はそれぞれ次式で示すように、それぞれの面積(S1及びS2)、層厚(L1及びL2)、欠陥準位濃度(N11及びN12)に比例する。

Id1∝qS1 L1 N11、 Id2∝qS2 L2 N12
ここで、qは電子の単位電荷である。
【0012】本発明は、S1を低減することができ、暗電流を低減する効果がある。

[0013]

【実施例】図1は本発明の原理説明図兼一実施例の説明図,図2は光吸収層中の欠陥準位濃度と暗電流との関係図である。

【0014】図1に示すように、n⁺ -InP 基板9上に MOVPE(Metal Organic VaporPhase Epitaxy)法 を用いて厚さ1μmのn⁺ -InP バッファ層8, 2.4 μ mのn-InGaAs光吸収層7, 0.5 μmのn⁺ -InP 層 4,3μmのn-InP 層5を順に成長する。

【0015】ガードリング2はリング状にベリリウム (Be) をイオン注入して作成する。この時、ガードリング2の内間が受光径、例えば50μmに一致するようにしておく。

【0016】p+層1は、亜鉛(Zn)或いはカドミウム(Cd)の選択拡散により作成され、0.2μmのn-InP 層3が増倍層となる。次に、図示するようにガードリング2上、内径がガードリングと同じであり、幅5μm程度のリング状の穴を残して資料表面に窒化シリコン(Si3N4)膜をプラズマCVD法により 0.2μm程度堆積する。【0017】その後、上述した穴にAuZn及びAu膜を真空蒸着して電極とする。そして、資料の下面には金・ゲルマニウム(AuGe)と金(Au)とを真空蒸着して電極とする。

【0018】図2に光吸収層7中の欠陥準位濃度NTと暗電流Iaとの関係を示す。増倍層3中の欠陥準位濃度NTIは 1.5X10¹³cm⁻³である。NT2の減少と共に暗電流は減少するが、NT2が5X10¹¹cm⁻³程度以下になるとNT1による暗電流が支配的になるわけである。

P層, 6はn-InP層, 7はn-InGaAs光吸収層, 8は 50 【0019】現在, Nt2は5 X10¹¹cm-3程度まで低減す

ることができており、現状の暗電流はNriが支配してい る。従って、S1 を低減することが暗電流の低減に有効 なことが判る。

【0020】受光径50μmの素子の場合、本発明によ り、S1は30%程度低減でき、暗電流も30%程度低減す ることができる。

[0021]

【発明の効果】本発明によれば、暗電流を支配している 領域の面積を低減することができ、雑音の原因となる暗 電流を低減でき、受光素子の性能向上に寄与するところ 10 8 n⁺ InP バッファ層 が大きい。

【図面の簡単な説明】

【図1】 本発明の原理説明図

【図2】 光吸収層中の欠陥準位濃度と暗電流との相関 図

【図1】

【図3】

従来例の説明図

【図3】 従来例の説明図 【符号の説明】

- 1 p' InP 層
- 2 ガードリング
- 3 n-InP增倍層
- 4 n+ InP 層
- 5 n-InP層
- 6 n-InP層
- 7 n-InGaAs光吸収層
- 9 n+ InP 基板
- 10 Au/AuZn電極
- 11 パッシベーション膜
- 12 反射防止膜
- 13 Au/AuGe電極

【図2】

