

@ Comballs

Core babbe

3.32. Alerta visual via web

Estrutura Analítica do Projeto (EAP) da Lixeira Inteligente com Indicador de Capacidade

1. Iniciação

1.1. Análise do Problema

Identificar a necessatude de uma lissera inteligente con indicador de cagacidade para

1.2. Definicão do Excepo

 delimitar as funcionalidades e características do groyeto, incluindo a medição de capacidade e alentes vecusis.

1.3. Elaboração do Termo de Abertura do Projeto (TAP)

 documentar formalmente o mico do projeto, objetivos, e autorização para alocação de moustos.

1.4. Identificação de Stakeholders

 Listar e analisar as gartes interestadas, como decenvolvedores, usuános finais, e gestores de residuos.

2. Planejamento

2.1 Lavantamento de Banulaito

. Coletar e documentar os requisitos funcionais e não funcionais do sistes

2.2. Planejamento das Entregas

Definir ac entregas principais do projeto e seus critérios de aceitação.

2.1. Estimativa de Riscos e Restrições

Identificar appoient riscos e restrictes que postam impactar o proeto.

2.4. Definição do Cronograma (Tempo Limitado)

• Estabelecer um cranograma detalhado para a esecução das atendades do proje

2.5. Definição de Premissas

 listabelecer premiocas relacionadas à sinulação, alimentação elétrica, e faisa de medição do senso;

3. Execução

3.1. Desenvolvimento de Hardware (Simulado)

3.1.1. Integração do Sensor VLS3LOX

Integrar o sensor de distância para medir a capacidade da lisera.

1.1.2. Instalação do LEO Vermelho

Instalar um Lifó para indicar usualmente quando a lixera está ches

3.1.3. Configuração do Raspberry Pi Pico W

- Conforms a micro-remainder and asserting or components do nature

3.1.4. Fonte de Alimentação SV

Sarantir uma fonte de alimentação adequada para o funcionamento dos componentes

1.2. Desenvolvimento de Firmaure

3.2.1. Leitura de Distância com VLS3L0X

Programor a leitura de dados do sensor de dictáncia.

3.2.2. Lógica de Acionamento do LED

Desenvolver a lógica gaza acionar o LHD com base-na cagacidade medid.

3.2.3. Comunicação HTTP com Servidor Remoto

3.2.4. Documentação do Código em C

Bocumentar o código decenvolvido para manutenção e futucas atualização

3.3. Interface Online

3.3.1. Visualização dos Dados da Lixeira

Criar uma interface para viscultração dos dados coletados pelo estrena.

3.3.2. Alerta Visual via Web

Implementar aliertas visuais na interface online quando a lixera estiver cheia.

4. Monitoramento e Controle

4.1. Testes de Simulação

Realizar textre-gaza simular o funcionamento do sistema em condições controlodos:

4.2. Validação do Funcionamento do Sensor

Validar a precisio e conflabilidade do sensor de distânci

4.1. Verificação da Lógica de Alerta

Textor a lógica de approximento do GEO e allectas polícies

4.4. Availação de Desempenho do Envio HTTP

Aualiar a eficiência e confutbilidade da comunicação com o servidor nemoto.

5. Encerramento

S.1. Relatório Final

5.1.1. justification

* Aproventar a jumficativa do projeto e os beneficios alcançados.

5.1.2. Excopo e Metodología

Detalhar a escapa final e a metadologia utilizada durante o projeto.

5.1.3. Resultados

1. Resultados

5.2. Diagrama de Biocos e Descrição dos Componentes

La Diagrama de Biocos e Descrição dos Componentes
 Fornecer um disposmo de blocos do setieno e descriver os componentes utilizados.

5.3. Apresentação do Protótipo (em Simulação)

Apresentar o grotótipo desenvolvido, destacando quas funcionalidades e operação em