Building Classification and Regression Models in Spark ML

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

High level abstractions such as Estimators and Transformers

Chained together in a pipeline i.e. machine learning workflow

Special libraries for feature engineering

Evaluating classifiers using the confusion matrix

Decision trees and random forests for classification

Specialized regression models such as Lasso and Ridge regression

ML Pipelines, Estimators and Transformers

ML Model as Pipeline

A network

ML Model as Pipeline

DataFatames

DataFrames Flow Through the Pipeline

...and get transformed along the way

ML Model as Pipeline

Estimatonsortaransformers

Pipeline Concepts

DataFrames
Transformers
Estimators
Pipeline
Parameter

DataFrame

Use to represent the ML dataset for training

Different columns for features, labels, predictions

Transformer

Algorithm to convert one DataFrame to another

DataFrame with features -> DataFrame with predictions

Estimator

An algorithm that fits on a DataFrame to produce a Transformer

An ML algorithm -> trains on input data -> produces a model

Pipeline

Chains Estimators and Transformers to form a machine learning workflow

Chains a series of operations to be performed on DataFrames

Parameter

Design settings in ML algorithms that can be tuned

Transformers and Estimators have a common API for parameters

Pipeline Concepts

DataFrames
Transformers
Estimators
Pipeline
Parameter

Pipeline Stages

Estimator Stages

DataFrame in, Transformer out

Implement a fit() method

Obtain trained machine learning model by invoking fit()

Transformer Stages

DataFrame in, DataFrame out

Implement a transform() method

Transform features or carry out prediction using transform()

Pipelines Are DAGs

There are no cycles in the graph - acyclic

Pipelines Are DAGs

A graph with cycles will never finish computation

Pipeline Stages in Training and Prediction

Transformer Stage

DataFrame In

Transformer - use in prediction

Transformer Stage

DataFrame In

Transformer Stage

DataFrame In

DataFrame In

ML Pipeline for Sentiment Analysis

Feature Engineering in Spark

$$y = f(x)$$

Machine Learning

Most machine learning algorithms seek to "learn" the function f that links the features and the labels

Feature Engineering

Manually designing the input x variables so that a machine learning algorithm can "learn" more effectively

"Spot the Millionaire"

Raw Feature

Latitude and longitude of address

Label

Binary classification - millionaire or not?

Raw feature too granular to hold much predictive power

"Spot the Millionaire"

Engineered Feature

Apartment complex of address of individual

Label

Binary classification - millionaire or not?

Engineered feature transforms raw features

"Predict Happy Hour"

Two Independent Features

Time of day, Day of week

LabelHappy Hour or not?

Independent features need to be combined to improve predictive power

"Predict Happy Hour"

One Crossed Feature

(Time of day, Day of week)

Label

Happy Hour or not?

Feature engineering to ensure individual features always considered together

Feature Engineering in Spark

Feature Extractors

Feature Transformers

Feature Selectors

Locality Sensitive Hashing

Feature Engineering in Spark

Feature Extractors

Feature Transformers

Feature Selectors

Locality Sensitive Hashing

TF-IDF

Word2Vec

CountVectorizer

Feature Extractors create features from 'raw' data

. . .

d = "This is not the worst restaurant in the metropolis,
not by a long way"

Document as Word Sequence

Model a document as an ordered sequence of words

```
d = "This is not the worst restaurant in the metropolis,
not by a long way"

("This", "is", "not", "the", "worst", "restaurant", "in", "the",
"metropolis", "not", "by", "a", "long", "way")
```

Document as Word Sequence

Tokenize document into individual words

Represent Each Word as a Number

Represent Each Word as a Number

$$d = [x_0, x_1, ... x_n]$$

Document as Tensor

Represent each word as numeric data, aggregate into tensor

$$d = [[?], [?], ...[?]]$$

The Big Question

How best can words be represented as numeric data?

Word embeddings are used to represent text in numeric form to feed into ML algorithms

Frequency-based Embeddings

Frequency-based Embeddings

Count Vector Encoding

Reviews

The movie was bad

The actors were bad, sets were bad

All Words

the
movie
was
bad
actors
were
sets

Create a set of all words (all across the corpus)

Count Vector Encoding

Express each review as a frequency of the words which appear in that review

Flaws of Count Vectors

Large vocabulary - enormous feature vectors

Unordered - lost all context

Semantics and word relationships lost

Flaws of Count Vectors

Large vocabulary - enormous feature vectors

Unordered - lost all context

Semantics and word relationships lost

Hash words to buckets to have a fixed vocabulary size

Choose enough buckets so that collisions are rare

Hash Encoding

Suppose the words "actors" and "sets" hashed to the same bucket (represented by an integer)

Hash Encoding

Suppose the words "actors" and "sets" hashed to the same bucket (represented by an integer)

Hash Encoding

Suppose the words "actors" and "sets" hashed to the same bucket (represented by an integer)

Frequency-based Embeddings

Captures how often a word occurs in a **document** as well as the **entire corpus**

$$d = [x_0, x_1, ... x_n]$$

Document as Tensor

Represent each word as numeric data, aggregate into tensor

$$x_i = tf(w_i) \times idf(w_i)$$

Tf-Idf

Tf = Term Frequency; Idf = Inverse Document Frequency

Tf-Idf

Frequently in a single document

Might be important

Frequently in the corpus

Probably a common word like "a", "an", "the"

Evaluating Tf-Idf

Important advantages

- Feature vector much more tractable in size
- Frequency and relevance captured

One big drawback

- Context still not captured

Feature Engineering in Spark

Feature Extractors

Feature Transformers

Feature Selectors

Locality Sensitive Hashing

Tokenizer

PCA

StandardScaler

OneHotEncoder

Feature Transformers refine existing features

...

Split text fragment into words

Tokenizer

Split documents into paragraphs
Split paragraphs into sentences
Split sentences into words
Simple library functions available

Continuous data can be ordered, categorical data can not

ML algorithms only operate on numbers

Categorical data need to be encoded as numbers

Numerical encodings of categorical data should never be ordered

Continuous data can be ordered, categorical data can not

ML algorithms only operate on numbers

Categorical data need to be encoded as numbers

Numerical encodings of categorical data should never be ordered

Sunday

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Monday	O	1	O	Ο	Ο	O	Ο
Thursday	O	0	O	O	1	O	Ο
Saturday	O	Ο	O	Ο	Ο	O	1

	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Monday	O	1	O	Ο	0	O	Ο
Thursday	O	Ο	O	Ο	1	O	Ο
Saturday	O	Ο	O	Ο	0	O	1

Standardized Data

Many techniques work best on standardized data

Standardization prevents some (high-variance) data series from dominating

Examples:

- Principal Components Analysis
- Lasso/Ridge Regression

Standardizing Data

Standardizing Data

Each column of the standardized data has mean 0 and variance 1

Principal Components Analysis

A technique to re-express complex data in terms of a few, well-chosen vectors (Principal Components) that most efficiently capture the variation in that data

Feature Engineering in Spark

Feature Extractors

Feature Transformers

Feature Selectors

Locality Sensitive Hashing

VectorSlicer RFormula ChiSqSelector

Feature Selectors choose a subset of features

VectorSlicer

DATE	OPEN		PRICE
2016-12- 01	772	• • •	779
2016-11- 01	758	• • •	747
2006-01 -01	302	• • •	309

Select
["Date",
"Price"]

DATE	PRICE
2016-12-01	779
2016-11-01	747
2006-01-01	309

Feature Engineering in Spark

Feature Extractors

Feature Transformers

Feature Selectors

Locality Sensitive Hashing

Nearest Neighbor Search

Similarity Join

Used in clustering

Locality Sensitive Hashing (LSH)

Evaluating Classifiers - The Confusion Matrix

Accuracy

Compare predicted and actual labels
High accuracy is good, but...

All-is-well Binary Classifier

Here, accuracy for rare cancer may be 99.9999%, but...

Accuracy

Some labels maybe much more common/rare than others

Such a dataset is said to be skewed

Accuracy is a poor evaluation metric here

Confusion Matrix

Predicted Labels

		Carctea Labers	_
Λ ΔL L Δ		Cancer	No Cancer
Actual	Label		
	Cancer	10 instances	4 instances
	No Cancer	5 instances	1000 instances

Confusion Matrix

Predicted Labels

A otual Labal	Cancer	No Cancer	
Actual Label Cancer	10	4	
No Cancer	5	1000	

True Positive

False Positive

True Negative

Predicted Labels

False Negative

Predicted Labels

Confusion Matrix

Predicted Labels

No Cancer Cancer **Actual Label** TP FN 10 Cancer FP TN No 5 1000 Cancer

Predicted Labels

No Cancer Cancer **Actual Label** TP FN 10 4 Cancer FP TN No 5 1000 Cancer

Predicted Labels

Actual Label = Predicted Label

Predicted Labels

Accuracy = 99.12%

Classifier gets it right 99.12% of the time

But...

Predicted Labels

Predicted Labels

Precision = Accuracy when classifier flags cancer

Predicted Labels

Actual Label	Cancer	No Cancer
	TP	FN
Cancer	10	4
	FP	TN
No Cancer	5	1000
Precision =	$= \frac{TP}{TP + FP} =$	$\frac{10}{15}$ = 66.67%

Precision = 66.67%

• 1 in 3 cancer diagnoses is incorrect

Predicted Labels

No Cancer Cancer **Actual Label** TP FN 10 4 Cancer FP TN No 5 1000 Cancer

Predicted Labels

Recall = Accuracy when cancer actually present

Predicted Labels

Recall = 71.42%

• 2 in 7 cancer cases missed

"Always Positive"

Pthreshold = 0

- Recall = 100%
- Precision = 14/1005 = 13.9%
- Classifier not conservative enough

"Always Negative"

 $P_{\text{threshold}} = 1$

- **Recall** = 0%
- Precision = Infinite
- Classifier too conservative

Precision-Recall Tradeoff

F₁ Score

Precision x Recall

$$F_1 = 2 x$$

Precision + Recall

- Harmonic mean of precision, recall
- Closer to lower of two
- Favors even tradeoff

Demo

Implement classification using Decision Trees in spark.ml

Evaluate the model using the F1 score

Random Forests

Jockey or Basketball Player?

Jockeys

Tend to be light to meet horse carrying limits

Basketball Players

Tend to be tall, strong and heavy

Jockey or Basketball Player?

Intuitively know

- jockeys tend to be light
- ...and not very tall
- basketball players tend to be tall
- ...and also quite heavy

Order of decision variables matters

Rules and order found using ML

Decision Tree

Decision trees are prone to overfitting on the training data

"If everyone in the room is thinking the same thing, then somebody isn't thinking."

General Patton

Weight > 150 lbs Basketball Height >6' =6'

Random Forests

Train many decision trees

- each on random sample of data

Combine their output

- averaging for regression
- mode for classification

Weight > 150 lbs Basketball Height >6' =6' Basketball Jockey

Random Forests

Extremely powerful technique

Example of ensemble learning

Individual trees should be as different as possible

Demo

Implement classification using Random Forests in spark.ml

Build an ML pipeline to chain transformers and estimators

Setting up the Regression Problem

X Causes Y

Cause Independent variable

EffectDependent variable

X Causes Y

Cause Explanatory variable

EffectDependent variable

Linear Regression involves finding the "best fit" line

The "best fit" line is the one where the sum of the squares of the lengths of these dotted lines is minimum

The "best fit" line is the one where the sum of the squares of the lengths of these dotted lines is minimum

The "best fit" line is the one where the sum of the squares of the lengths of these dotted lines is minimum

The "best fit" line is the one where the sum of the squares of the lengths of the errors is minimum

Minimising Least Square Error

The "best fit" line is the one where the sum of the squares of the lengths of the errors is minimum

Challenge: Fit the "best" curve through these points

Good Fit?

A curve has a "good fit" if the distances of points from the curve are small

We could draw a pretty complex curve

We can even make it pass through every single point

But given a new set of points, this curve might perform quite poorly

The original points were "training data", the new points are "test data"

Overfitting

Great performance in training, poor performance in real usage

A simple straight line performs worse in training, but better with test data

Overfitting

Low Training Error

Model does very well in training...

High Test Error

...but poorly with real data

Overfitting in Regression

Multi-collinearity in regression leads to overfitting

Model performs well in training, poorly in prediction

Various techniques to improve regression algorithm

Regularized Regression Models

Lasso Regression

Penalizes large regression coefficients

Ridge Regression

Also penalizes large regression coefficients

Elastic Net Regression

Simply combines lasso and ridge

EASY

Regularization

Penalize complex models

Add penalty to objective function

Penalty as function of regression coefficients

Forces optimizer to keep it simple

Regularized Regression Models

Lasso Regression

Penalizes large regression coefficients

Ridge Regression

Also penalizes large regression coefficients

Elastic Net Regression

Simply combines lasso and ridge

Ordinary MSE Regression

Minimize

To find

A, B

$$y = A + Bx$$

Minimize

To find

A, B

x is a hyperparameter

$$y = A + Bx$$

Minimize

To find

A, B

α is a hyperparameter

$$y = A + Bx$$

Minimize

 $+ \alpha (|A| + |B|)$

To find

A, B

L-1 Norm of regression coefficients

α is a hyperparameter

$$y = A + Bx$$

α is a hyperparameter

$$y = A + Bx$$

 $\alpha = 0$ ~ Regular (MSE regression)

α → ∞ ~ Force small coefficients to zero

Model selection by tuning α

Eliminates unimportant features

"Lasso" ~ <u>Least Absolute Shrinkage and</u> <u>Selection Operator</u>

Math is complex

No closed form, needs numeric solution

Minimize $(y^{actual} = y^{predicted})^2 + \alpha (|A| + |B|)$ To find A, BL-2 Norm of regression coefficients

α is a hyperparameter

$$y = A + Bx$$

Add penalty for large coefficients

Penalty term is L-2 norm of coefficients

Penalty weighted by hyperparameter α

Unlike lasso, ridge regression has closedform solution

Unlike lasso, ridge regression will not force coefficients to 0

- Does not perform model selection

Demo

Implement linear regression in spark.ml

Use the Elastic Net parameter to range between Lasso and Ridge regression

Perform hyperparameter tuning to find the best possible model

Summary

Estimators, Transformers chained to form an ML pipeline

Evaluating classifiers using the confusion matrix, accuracy, precision and recall

Decision trees and random forests for classification

Specialized regression models such as Lasso and Ridge regression