Tutorial Business Analytics

Tutorial 6 - Solution

Exercise 6.1

Calculate:

- a) entropy(0.1, 0.9)
- b) entropy(0.8, 0.2)
- c) entropy(0.3, 0.7)
- d) entropy(0.5, 0.5)
- e) entropy(0.8, 0.1, 0.1)

- a) entropy(0.1, 0.9) = $-0.1 \cdot \log_2 0.1 0.9 \cdot \log_2 0.9 = 0.469$.
- b) entropy(0.8, 0.2) = 0.722.
- c) entropy(0.3, 0.7) = 0.881.
- d) entropy(0.5, 0.5) = 1.
- e) entropy(0.8, 0.1, 0.1) = 0.922.

Exercise 6.2

Calculate:

- a) info([2, 3])
- b) info([5, 4])
- c) info([2,3], [5, 4])
- d) info([2, 3], [9, 0])

- a) info([2, 3]) = entropy($\frac{2}{2+3}$, $\frac{3}{2+3}$) = 0.971.
- b) info([5, 4]) = 0.991.
- c) $\inf_{(2,3], [5,4]} = \frac{2+3}{(2+3)+(5+4)} \cdot \inf_{(2,3]} + \frac{5+4}{(2+3)+(5+4)} \cdot \inf_{(5,4]} = 0.984.$
- d) info([2, 3], [9, 0]) = 0.347.

Exercise 6.3

Construct a tree:

Temperature	Visibility	Snow depth	Sport
< -5	Clear	≥ 50	Skiing
< -5	Fog	≥ 50	Swimming
< -5	Fog	< 50	Swimming
< -5	Rain	≥ 50	Skiing
< -5	Rain	< 50	Swimming
≥ -5	Clear	≥ 50	Skiing
≥ -5	Clear	< 50	Skiing
≥ -5	Fog	< 50	Swimming
≥ -5	Rain	≥ 50	Skiing

Constructing the tree:

	< -5	≥ -5	Clear	Fog	Rain	< 50	≥ 50	Σ
Skiing	2	3	3	0	2	1	4	5
Swimming	3	1	0	3	1	3	1	4

Attribute temperature

gain(temperature) = info(root) - info(temperature)
= info([5, 4]) - info([2, 3], [3, 1])
=
$$0.991 - 0.900 = 0.091$$

Attribute visibility

gain(visibility) = info(root) - info(visibility)
= info([5, 4]) - info([3, 0], [0, 3], [2, 1])
=
$$0.991 - 0.306 = 0.685$$

Attribute snow depth

gain(snow depth) = info(root) - info(snow depth)
= info([5, 4]) - info([1, 3], [4, 1])
=
$$0.991 - 0.762 = 0.229$$

Temperature	Visibility	Snow depth	Sport
< -5	Rain	≥ 50	Skiing
< -5	Rain	< 50	Swimming
≥ -5	Rain	≥ 50	Skiing

Attribute temperature

gain(temperature) = info([2, 1]) - info([1, 1], [1, 0])
=
$$0.918 - 0.667$$

= 0.251

Attribute snow depth

gain(snow depth) = info([2, 1]) - info([0, 1], [2, 0])
=
$$0.918 - 0$$

= 0.918

Result:

Exercise 6.4

Construct a tree for the following table, that has an additional ID attribute now.

ID	Temperature	Visibility	Snow depth	Sport
Α	< -5	Clear	≥ 50	Skiing
В	< -5	Fog	≥ 50	Swimming
С	< -5	Fog	< 50	Swimming
D	< -5	Rain	≥ 50	Skiing
Е	< -5	Rain	< 50	Swimming
F	≥ -5	Clear	≥ 50	Skiing
G	≥ -5	Clear	< 50	Skiing
Н	≥ -5	Fog	< 50	Swimming
1	≥ -5	Rain	≥ 50	Skiing

Construct a tree:

Exercise 6.5

Construct the tree from exercise 6.4 a second time using gain ratio:

ID	Temperature	Visibility	Snow depth	Sport
Α	< -5	Clear	≥ 50	Skiing
В	< -5	Fog	≥50	Swimming
С	< -5	Fog	< 50	Swimming
D	< -5	Rain	≥ 50	Skiing
Е	< -5	Rain	< 50	Swimming
F	≥ -5	Clear	≥ 50	Skiing
G	≥ -5	Clear	< 50	Skiing
Н	≥ -5	Fog	< 50	Swimming
1	≥ -5	Rain	≥ 50	Skiing

Construct the tree from exercise 6.4 a second time using gain ratio:

	< -5	≥ -5	Clear	Fog	Rain	< 50	≥ 50	Σ
Skiing	2	3	3	0	2	1	4	5
Swimming	3	1	0	3	1	3	1	4

Attribute temperature

- gain(temperature) = info([5,4]) info([2,3], [3,1]) = 0.991 0.900 = 0.091
- gainRatio(temperature) = 0.091 / info([5,4]) = 0.091 / 0.991 = 0.092

Attribute visibility

- gain(visibility) = info([5,4]) info([3,0], [0,3], [2,1]) = 0.991 0.306 = 0.685
- gainRatio(visibility) = 0.685 / info([3,3,3]) = 0.685 / 1.585 = 0.432

Attribute snow depth

- gain(snow depth) = info([5,4]) info([1,3], [4,1]) = 0.991 0.762 = 0.229
- gainRatio(snow depth) = 0.229 / info([4,5]) = 0.229 / 0.991 = 0.231

Attribute ID

- gain(ID) = info([5,4]) info([1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0])= 0.991
- gainRatio(ID) = 0.991 / info([1,1,1,1,1,1,1,1,1]) = 0.991 / 3.17 = 0.313

ID	Temperature	Visibility	Snow depth	Sport
D	< -5	Rain	≥ 50	Skiing
Е	< -5	Rain	< 50	Swimming
1	≥ -5	Rain	≥ 50	Skiing

Attribute temperature

- gain(temperature) = $\inf([2, 1]) \inf([1, 1], [1, 0]) = 0.918 0.667 = 0.251$
- gainRatio(temperature) = 0.251 / info([2,1]) = 0.251 / 0.918 = 0.273

Attribute snow depth

- gain(snow depth) = info([2, 1]) info([0, 1], [2, 0]) = 0.918 0 = 0.918
- gainRatio(snow depth) = 0.981 / info([1,2]) = 0.918 / 0.918 = 1

Attribute ID

- $\begin{aligned} &gain(ID) = info([2,1]) info([1,0],\,[0,1],\,[1,0]) = 0.918 0 = 0.918 \\ &gainRatio(ID) = 0.918 \, / \, info([1,1,1]) = 0.918 \, / \, 1.585 = 0.579 \end{aligned}$

Result:

Exercise 6.6

Find the optimal binary splits.

a)	60	60	120	120	180	180	180
	F	F	T	F	F	T	Т

b)	5	5	7	7	7	8	9	9
	Т	Т	Т	Т	F	Т	F	F

Find the optimal binary splits.

a)	60	60	120	120	180	180	180
,	F	F	Т	F	F	Т	Т

All possible splits: [0,2], [1,1], [2,1]

- info([0,2],[3,2]) = 0.694 split at 90
- $\inf([1,3],[2,1]) = 0.857$

b)	5	5	7	7	7	8	9	9
	Т	Т	Т	Т	F	Т	F	F

All possible splits: [2,0],[2,1],[1,0],[0,2]

- $\inf_{([2,0],[3,3])} = 0.75$
- $\inf([4,1],[1,2]) = 0.796$
- $\inf([5,1],[0,2]) = 0.488 \text{ split at } 8.5$