Data Visualization

Quiz

- Explain the importance of data types and why we may not want to use Excel in our data pipelines.
- What's the definition of the tidy data?
- Is this data table tidy? Why? Why not? Can you make it tidy?

	treatmenta	treatmentb
John Smith	<u></u>	2
Jane Doe	16	11
Mary Johnson	3	1

Part II

Data Science

Excel

You've just found some typos in country_data.csv you downloaded. What would you do?

	Α	В
1	Country	Experiment 1
2	Belgium	70
3	France	65
4	Japan	73
5	South Korea	71
6	USA	75
7	Chiina 81	
0		

You've just found some typos in a dataset. What would you do?

	Α	В
4		_
1	Country	Experiment 1
2	Belgium	70
3	France	65
4	Japan	73
5	South Korea	71
6	USA	75
7	Chiina	81
0		

Ok, let me quickly fix them by hand...

What could be problems?

- 1. What if you introduce a different error?
- 2. What if you re-download the raw data?
- 3. What if you have to explain the process but you can't remember?
- 4. What if it breaks the pipeline and you can't remember exactly what you fixed?
 - What if someone else takes over your job?

Never handle your data manually & Be explicit!

Clean/process you data with auxiliary data files and scripts.

- The code & auxiliary data serves as concrete documentation of the process (provenance).
- Easier to spot errors.
- You can simply re-apply (or improve) the script/data when you have a new version of the raw dataset.
- Automation!
- Others can catch up quickly and test/check the process (more 👀 is good)

Data Provenance

Histogram

Draw a histogram

Score	Frequency
0-199	5
200-399	29
400-599	56
600-799	17
800-999	3

No gaps!

Bar graph vs. histogram

Draw a histogram

Hours	Frequency
0- I	4,300
I-3	6,900
3-5	4,900
5-10	2,000
10-24	2,100

Hours	Frequency	Width	Height (Frequency Density)
0–1	4,300	1	4,300 ÷ 1 = 4,300
1–3	6,900	2	6,900 ÷ 2 = 3,450
3–5	4,900	2	4,900 = 2 = 2,450
5–10	2,000	5	2,000 % 5 = 400
10–24	2100	14	2,100 ÷ 14 = 150

Head First Statistics

In histogram, **area**, not the height, represents the frequency!