- Graphs
- Edges
- Vertex (Vertices)
- Degree
- Degree Sequence
- Sum of Degree Sequence
- Isomorphism

Graph Theory (2002)

2002 Question 6

- A company operates an express coach service between seven cities; c1,c2,c3,...,c7
- The number of other cities to which each city is directly linked by a coach is given in the following table.

CITY	C1	C2	C3	C4	C5	C6	C7
No. of Connections	3	2	3	5	4	4	1

Graph Theory (2002)

Describe how such as communications network can be modelled by a graph, saying what the vertices represent and a rule for determining when two vertices are adjacent.

Calculate how many pairs of cities have a direct coach link between them. giving at brief explanation of your method.

Graph Theory (2002)

- What is meant by saying that a graph is simple?
- Say why a graph model of this communications network would be simple.

- Is it possible to construct a graph with degree sequence (4,4, 4, 3, 3, 2, I)?
- Either construct an example of such a graph or say why it is not possible to do so

Graph Theory (2007)

Question 6 Given the following definitions for simple, connected graphs:

- K_n is a graph on n vertices where each pair of vertices is connected by an edge;
- C_n is the graph with vertices v₁, v₂, v₃, ..., v_n and edges {v₁, v₂}, {v₂, v₃}, ...{v_n, v₁};
- W_n is the graph obtained from C_n by adding an extra vertex, v_{n+1}, and edges from this to each of the original vertices in C_n.

Graph Theory (2007)

(a) Draw K ₄ , C ₄ , and W ₄ .	[2,	1
---	-----	---

(b) Giving your answer in terms of n, write down an expression for the number of edges in K_n, C_n, and W_n.
[2¹/₂]

Graph Theory (2007- Part C not part of course)

- (c) (i) Find the number of different paths of length two in each of the graphs in part (a), where a path does not contain the same edge more than once, and a path from v_x to v_y is different from a path from v_y to v_x.
 - (ii) Giving your answer in terms of n, write down an expression for the number of different paths of length two there are in K_n.
 [5]

Graph Theory (2006)

Question 5 (a) Let G be a simple graph with vertex set $V(G) = \{v_1, v_2, v_3, v_4, v_5\}$ and adjacency lists as follows:

 $v_1 : v_2 v_3 v_4$

 v_2 : $v_1 v_3 v_4 v_5$

 v_3 : $v_1 v_2 v_4$

 v_4 : $v_1 v_2 v_3$.

 $v_5 : v_2$

Graph Theory (2006)

- List the degree sequence of G.
- (ii) Draw the graph of G.
- (iii) Find two distinct paths of length 3, starting at v₃ and ending at v₄.
- (iv) Find a 4 cycle in G.

 $v_1 : v_2 v_3 v_4$

 v_2 : $v_1 v_3 v_4 v_5$

 $v_3 : v_1 v_2 v_4$

 v_4 : $v_1 v_2 v_3$.

 $v_5 : v_2$

Graph Theory (2006)

- (b) In the following cases either construct a graph with the specified properties or say why it is not possible to do so.
 - A graph with degree sequence 3,2,2,1.
 - (ii) A simple graph with degree sequence 4,3,2,2. [4]

Question 6

Let G be a graph and let u and v be vertices of G.

- (a) i. Say what is meant by the degree of v.
 - ii. Say what is meant by saying u and v are adjacent.

[2]

(b) State, without proof, a result connecting the number of edges of G with the degrees of its vertices.

[1]

- (c) A graph is called k-regular if each of its vertices has degree k.
 - Use the result from (b) to find the number of edges in a 7-regular graph with 8 vertices.
 - ii. Explain why it is not possible to construct a 7-regular graph on 9 vertices.
 - iii. Construct an example of a 2-regular graph on 5 vertices.

- (c) A graph is called k-regular if each of its vertices has degree k.
 - Use the result from (b) to find the number of edges in a 7-regular graph with 8 vertices.
 - ii. Explain why it is not possible to construct a 7-regular graph on 9 vertices.
 - iii. Construct an example of a 2-regular graph on 5 vertices.

- iv. Construct an example of a 3-regular graph on 6 vertices.
- v. Given a 7-regular graph on 2n vertices where $n \ge 4$ find how many edges there are in this graph.

[7]

- iv. Construct an example of a 3-regular graph on 6 vertices.
- v. Given a 7-regular graph on 2n vertices where $n \ge 4$ find how many edges there are in this graph.

[7]

Question 4 (a) What properties should a graph possess if it is

(i) simple (ii) connected?

[2]

(b) Given a graph G with degree sequence

- (i) How many vertices are there in G?
- (ii) Find the number of edges in G, explaining how you obtain your answer.

(iii) Draw an example of a simple graph G with the degree sequence 4,3,3,2,1,1.

[6]

(c) (i) Say why it is not possible to construct a simple graph with the degree sequence

4, 2, 2, 2.

(ii) Show it is possible to construct a graph with this degree sequence if we do not require it to be simple. [2]

Blank Page

Blank Page