4.
$$(x^2+1)y' + 2xy = xe^{x}$$
, $y(0) = \frac{1}{2}$
Since $\frac{d}{dx}(x^2+1) = 2x$, this equation is already in the right form:
 $(x^2+1)y' + 2xy = \frac{d}{dx}[(x^2+1)y] = xe^{x^2} = >$
 $(x^2+1)y = \int xe^{x^2}dx = \frac{e^{x^2}}{2} + c = >$
 $y = \frac{e^{x^2}}{2(x^2+1)} + \frac{c}{x^2+1}$ Solve for c:
 $\frac{1}{2} = \frac{e^{(0)^2}}{2((0)^2+1)} + \frac{c}{x^2+1} = \frac{1}{2} + c = > c = 0$,
So $y = \frac{e^{x^2}}{2(x^2+1)}$

Put in standard form: $y' + \frac{\partial x}{x^{2}+1} y = \frac{xe^{x^{2}}}{x^{2}+1}$ Integrating $M = \begin{cases} \int \rho(x)dx & \int \frac{2x}{x^{2}+1} dx & \ln(x^{2}+1) \\ = e & = x^{2}+1 \end{cases}$ $L_{Remember, this is derived from } \frac{\partial x}{x^{2}+1} \mu = \mu',$

Since this condition means that $x = \frac{x e^{x}}{\mu} = \frac{x e^{x}}{x^{z+1}} = \frac{x e^{x}}{x^{z+1}} = \frac{x e^{x}}{x^{z+1}} = \frac{x e^{x}}{x^{z}} = \frac{x e^$

(b)
$$V(t) = \int_0^{y(t)} A(s) ds$$
 By chain rule and fundamental thm of ealculus, $\frac{dV}{dt} = A(y(t)) y'(t)$, where $A(h) = \pi \left(\frac{h^{3/4}}{2}\right)^2 = \pi h^{3/2}$

$$So_1 \frac{dV}{dt} = \pi y^{3/2} \frac{dy}{dt}$$

(c)
$$V' = -\alpha \sqrt{agy} = -\alpha \sqrt{a(32)}y = -8\alpha \sqrt{y}$$

But also

 $V' = \pi y^{3/2}y'$, so, setting them equal, or

 $-8\alpha \sqrt{y} = \pi y^{3/2}y' \Rightarrow -8\alpha = \pi yy'$

Now, separate variables:

 $\pi y^{3/2}y' \Rightarrow \pi y^{3/2}y$

Now, separate variables.

- 8adt = Trydy =>
$$\frac{Try^2}{2}$$
 = -8at + C

- 8adt = Trydy => $\frac{Try^2}{2}$ = -8a(0)+c=>C=76

(d)
$$y(0) = 12$$
 from initial condition = $\frac{11(12)^2}{2} = -8a(0) + C = 7C = 72\pi$
 $y(1) = 6$ given = $\frac{11(6)^2}{2} = -8a(1) + 72\pi = 7a = \frac{18\pi - 72\pi}{-8}$ or whoops! It looks like we weren't supposed to $a = \frac{18\pi - 72\pi}{-8} = 72\pi$ use $g = 32$ ft/s², but we can fix that $a = \frac{27\pi\sqrt{2}}{29}$

(e) The tank is empty when
$$y(t)=0$$
 or
$$\frac{11^2(0)^2}{2}=-8at+72\pi$$

$$\frac{17^2(0)^2}{2}=-8at+72\pi$$

$$\frac{17^2(0)^2}{2}=-8at+72\pi$$
or
$$\frac{72\pi}{a\sqrt{ag}}$$
if g is unspeakied

Resonance occurs when a homogeneous solution and a pour line function are linearly dependent.

mu" + & u' + Ku = f(t) => U" + Ku = cos(響t) + Sin(介t)

So, resonance occurs if $y_n = C_1 \cos(\frac{2\pi}{3}t) + C_2 \sin(\frac{2\pi}{3}t)$ or if yn= (, cos (m+) + Cz sin (m+)

Note that we are assuming k is a real number. For physical reasons, so complex rocts appear in conjugate pairs.

The characteristic equation r2 + K = 0 must therefore have either r= ± 21 i or r= ± Tri as solutions, and

$$K = -r^2 = -\left(\frac{2\pi}{3}i\right)^2 = \frac{4\pi^2}{9}$$
 or $K = -r^2 = -\left(\pi i\right)^2 = \pi^2$

4.
$$y'' + 2y = 0$$
, $y(0) = y'(2) = 0$
The characteristic equation is
$$r^2 + 2 = 0 \Rightarrow r = \pm \sqrt{-2}$$

- Solution is $y = c_1e^{rt} + c_2e^{-rt}$ which cannot be zero because exponentials are always positive. $y(0)=0 \Rightarrow 0 = c_1 + c_2$ and $y'(8)=0 \Rightarrow 0 = c_1re^{rt} c_2re^{rt}$ Solving this system gives $c_1 = c_2 = 0$
- If z=0, then r=0 with multiplicty 2, so that y=0, y=0, y=0, y=0, y=0, y=0, y=0, y=0, y=0, y=0
- If 2>0, then -2<0, so r is pure imaginary. Say, $r=\pm \omega i$, where $\omega=\sqrt{2}$. Then, y=c, $\cos(\omega t)+cz\sin(\omega t)$ and

$$y'(z)=0 \Rightarrow 0 = C_z \omega \cos(a\omega)$$

 $y'(z)=0 \Rightarrow 0 = C_z \omega \cos(a\omega)$
so either $C_z=0$ or $\cos(a\omega)=0$
(remember, $\omega=\sqrt{2}>0$)

$$\cos(a\omega) = 0$$
iff
$$2\omega = \frac{(2\kappa+1)\pi}{2}, \kappa\in\mathbb{Z} \text{ or } \sqrt{2} = \frac{(2\kappa+1)\pi}{4} = \sum_{k=1}^{\infty} \frac{(2\kappa+1)^{2}\pi^{2}}{16}, \kappa\in\mathbb{Z}$$

Note that, under this condition on 2, we have the freedom to choose any value of Cz, so there are certainly nonzero solutions.

5.
$$(1-x^{2})y^{11} - 2xy^{1} + 2y = 0$$
, $y(0) = 1$, $y'(0) = 0$ centered about $x_{0} = 0$

(a) since $y(x) = \sum_{n=0}^{\infty} C_{n}X^{n}$, $y(0) = C_{0}$ and $y'(0) = C_{1}$, S

$$C_{0} = 1 \text{ and } C_{1} = 0$$

(b) $y(x) = \sum_{n=0}^{\infty} C_{n}X^{n}$ plugin: $(1-x^{2})\sum_{n=2}^{\infty} C_{n}n(n-1)x^{n-2} - 2x\sum_{n=1}^{\infty} C_{n}nx^{n-1} + 2\sum_{n=2}^{\infty} C_{n}x^{n} = 0$
 $y'(x) = \sum_{n=1}^{\infty} C_{n}nx^{n-1} e^{y_{0}x^{1}} = \sum_{n=0}^{\infty} C_{n}x^{n}(n+1)x^{n} - \sum_{n=0}^{\infty} C_{n}n(n-1)x - 2\sum_{n=1}^{\infty} C_{n}nx^{n} + 2\sum_{n=0}^{\infty} C_{n}x^{n} = 0$
 $y''(x) = \sum_{n=2}^{\infty} C_{n}n(n-1)x^{n-2}$

So, $\sum_{n=0}^{\infty} \left[C_{n+2}(n+2)(n+1) - C_{n}n(n-1) - 2C_{n}n + 2C_{n} \right] x^{n} = 0 \Rightarrow$
 $C_{n+2}(n+2)(n+1) - n^{2}C_{n} + C_{n}n - 2C_{n}n + 2C_{n}n + 2C_{n}n = 0 \Rightarrow$
 $C_{n+2}(n+2)(n+1) - n^{2}C_{n} + C_{n}n - 2C_{n}n + 2C_{n}n + 2C_{n}n = 0 \Rightarrow$
 $C_{n+2}(n+2)(n+1) - n^{2}C_{n}n + 2C_{n}n + 2C_{$

 $C_{2} = -C_{0} \qquad C_{8} = -\frac{5!}{7} \frac{3!}{5!} \frac{1}{3} C_{0}$ $C_{4} = -\frac{1}{3} C_{0} \qquad C_{2n} = -\frac{1}{2n-1} C_{0}$ $C_{2n} = -\frac{1}{2n-1} C_{0}$ Since $c_{0} = 1$ $(d) C_2 = -C_0$

C6 = - 3 . 1 Co

(e) This depends on the values of the domain wholen consideration.

6.
$$w'' + 4w' + 5w = 8$$
. (t), $w(0) = 1$, $w'(0) = -3$

Since we will be using Duhamelé principle, we will keep

the S term separate.

Take Laplace transform

 $S^2W - S + 3 + 4(SW - 1) + 5W = 1$
 $(S^2 + 4S + 5)W = S + 1 + 2$
 $W = \frac{S+1}{(S+2)^2+1} + \frac{1}{(S+2)^2+1} = \frac{(S+2)-1}{(S+2)^2+1} + \frac{1}{(S+2)^2+1}$
 $w = \frac{2}{(S+2)^2+1} + \frac{1}{(S+2)^2+1} = \frac{2}{(S+2)^2+1} + \frac{1}{(S+2)^2+1}$

Depends on initial functions weight function

 $v = \frac{2}{(S+2)^2+1} + \frac{2}{(S+2)^2+1} + \frac{1}{(S+2)^2+1}$
 $v = \frac{2}{(S+2)^2+1} + \frac{1}{(S+2)^2+1} + \frac{1}{(S+2)^2+1} + \frac{1}{(S+2)^2+1}$
 $v = \frac{2}{(S+2)^2+1} + \frac{1}{(S+2)^2+1} + \frac{1}{(S+2$

7.
$$(2xye^{x^2y} + cos x) dx + x^2e^{x^2y} dy = 0$$
 $My = 2xe^{x^2y} + 2x^3ye^{x^2y}$ Since $My = Nx$, the equation is exact!

 $N_x = 2xe^{x^2y} + 2x^3e^{x^2y}$

Let Y be the equation s.t. $Y_x = M$ and $Y_y = N$.

Then, $Y = \int Ndy = \int x^2e^{x^2y} dy = e^{x^2y} + g(x)$

and $2xye^{x^2y} + cos x = M = Y_x = 2xe^{x^2y} + g'(x) \Longrightarrow cos x = g'(x) \Longrightarrow g(x) = + sin(x) + C$

So, $Y = e^{x^2y} + sin(x) + C$

and $e^{x^2y} + sin(x) = C$