2

What is claimed is:

L	1. A method for performing forward error correction in a SONET system,
2	wherein a coding scheme associated with the forward error correction has a coding factor
3	of (n/k) and an interleaving depth, the method comprising:
. 4	receiving a data string to be coded, the data string having a number of bytes;
5	dividing the number of bytes by the interleaving depth thereby producing B byte
6	chunks;
7	segmenting each byte chunk based on k of the coding factor thereby producing a
. 8	number of segments;
9	encoding each segment in accordance with the coding scheme thereby producing
10	consecutive FEC sub-frames, each FEC sub-frame including non-parity
11	bytes and parity bytes;
12	concatenating separately the non-parity bytes and corresponding parity bytes of
13	(B/k) consecutive FEC sub-frames thereby producing rows of a FEC
14	frame having X rows, where X is equal to the interleaving depth; and
15	consecutively interleaving each row of the FEC frame thereby producing a coded
16	data string.
1	2. The method of claim 1 wherein the method is carried out by a EEC

- 2. The method of claim 1 wherein the method is carried out by a FEC coding module implemented by one or more application specific integrated circuits.
- The method of claim 1 wherein the number of bytes included in the data string to be coded make up one row of a SONET STS-N input signal.
- 1 4. The method of claim 3 wherein the SONET STS-N input signal has a number of rows, and each row is coded independently of the other rows.

2

1	5.	The method of claim 1 wherein the coded data string makes up one row
2	of a SONET-	FEC frame.

- 1 6. The method of claim 1 wherein the number B of byte chunks is an integer number of byte chunks.
- 7. The method of claim 1 wherein the number of segments produced is equal to (B/k).
- The method of claim 1 wherein the coded data string represents one row of a SONET frame STS-N signal.
- 1 9. The method of claim 1 further comprising:
- 2 scrambling the coded data string; and
- 3 transmitting the scrambled coded data string.
- 1 10. The method of claim 1 further comprising:
 - in response to there being one or more additional data strings to be coded, repeating the method for each additional data string.
- 1 11. The method of claim 1 wherein the SONET system defines a number of operatively coupled functional layers including a line layer, a section layer, and a FEC layer, and the method operates in the FEC layer.
- 1 12. The method of claim 11 wherein the section and line layers are associated with transport overhead bytes, and each transport overhead byte is associated with generation and insert/drop functionality that is executed before the encoding of the FEC layer.
- 1 13. The method of claim 11 wherein the section layer is associated with an overhead byte B1 that is used for a section error monitoring function, and the line layer

1

2

3

4

1 2

3

5

performed.

- 3 is associated with an overhead byte B2 that is used for a line error monitoring function,
- and both bytes B1 and byte B2 are each calculated using a BIP-8 algorithm before the
- 5 encoding of the FEC layer.
- 1 14. The method of claim 11 wherein the SONET system has a transmitting
- 2 node and a receiving node communicatively coupled by a transmission medium, and at
- 3 the receiving node, transport overhead bytes B1 and byte B2 are each calculated using a
- 4 BIP-8 algorithm after a FEC decoding process corresponding to the encoding of the FEC
- 5 layer has been performed.
- 1 15. The method of claim 1 wherein the SONET system defines a number of operatively coupled functional layers including a line layer and a combined section &
- 3 FEC layer, and the method operates in the section & FEC layer.
 - 16. The method of claim 15 wherein the section & FEC layer is associated with transport overhead bytes, and each transport overhead byte is associated with generation and insert/drop functionality that is executed after the encoding of the section & FEC layer.
 - 17. The method of claim 15 wherein the section & FEC layer is associated with an overhead byte B1 that is used for a section error monitoring function, and byte B1 is calculated using a BIP-8 algorithm after the encoding of the section & FEC layer.
- 18. The method of claim 15 wherein the SONET system has a transmitting node and a receiving node communicatively coupled by a transmission medium, and at the receiving node, transport overhead byte B1 is calculated using a BIP-8 algorithm before a FEC decoding process corresponding to the encoding of the FEC layer has been

1	19. A method for performing forward error correction in one of a SONET
2	system or an SDH system, wherein a coding scheme associated with the forward error
3	correction has a coding factor of (n/k) and an interleaving depth, the method comprising:
4	receiving a data string to be coded, the data string having a number of bytes;
5	dividing the number of bytes by the interleaving depth thereby producing B byte
6	chunks;
7	segmenting each byte chunk based on k of the coding factor thereby producing a
8	number of segments;
9	encoding each segment in accordance with the coding scheme thereby producing
10	consecutive FEC sub-frames, each FEC sub-frame including non-parity
11	bytes and parity bytes;
12	concatenating separately the non-parity bytes and corresponding parity bytes of
13	(B/k) consecutive FEC sub-frames thereby producing rows of a FEC
14	frame having X rows, where X is equal to the interleaving depth; and
15	consecutively interleaving each row of the FEC frame thereby producing a coded
16	data string.
1	20. A method for performing forward error correction in a SONET/SDH
2	system, wherein a coding scheme associated with the forward error correction has a
3	coding factor of (n/k) and an interleaving depth, the method comprising:
4	receiving a coded data string forming a row of a SONET/SDH-FEC frame;
5	estimating bit error using a BIP-8 algorithm thereby characterizing transmission
6	line conditions without the benefit of the forward error correction;
7	de-interleaving the coded data string thereby creating X rows of a FEC frame,
8	where X equals the interleaving depth;
9	decoding each FEC frame in accordance with the coding scheme thereby
10	producing decoded data stings; and

11	interleaving the decoded data strings thereby forming a row of a SONET/SDH
12	frame.
1	21. A method for performing forward error correction in a SONET/SDH
2	system, wherein a coding scheme associated with the forward error correction has a
3	coding factor of (n/k) and an interleaving depth, the method comprising:
4	receiving a coded data string forming a row of a SONET/SDH-FEC frame;
5	de-interleaving the coded data string thereby creating X rows of a FEC frame,
6	where X equals the interleaving depth;
7	decoding each FEC frame in accordance with the coding scheme thereby
8	producing decoded data stings;
9	estimating bit error using a BIP-8 algorithm thereby characterizing transmission
10	line conditions as improved by the forward error correction; and
11	interleaving the decoded data strings thereby forming a row of a SONET/SDH
12	frame.