Assignment 1

170050025 - Yash Khemchandani

170070015- Anshul Nasery

1. By definition $ \sigma^{2} = \frac{1}{1} \sum_{i=1}^{\infty} (x_{i} - ux)^{2} $ where σ is the standard deviation of $\{x_{i}\}_{i=1}^{\infty}$ $ \frac{1}{2} \sum_{i=1}^{\infty} (x_{i} - ux)^{2} $ $ \frac{1}{2} \sum_{i=1}^{\infty} (x_{i} - ux)^{2} $ $ \frac{1}{2} \sum_{i=1}^{\infty} x_{i} - ux ^{2} $ for any $ x_{i} = x_{i} - x_{i} ^{2}$ $ \frac{1}{2} \sum_{i=1}^{\infty} x_{i} - ux ^{2} $ for any $ x_{i} = x_{i} - x_{i} ^{2}$ $ \frac{1}{2} \sum_{i=1}^{\infty} x_{i} - ux ^{2} $ for any $ x_{i} = x_{i} ^{2}$ for all $ x_{i} = x_{i} ^{2}$ $ \frac{1}{2} \sum_{i=1}^{\infty} x_{i} ^{2} $ This will both side and position, we can take the most dixally $ \frac{1}{2} \sum_{i=1}^{\infty} x_{i} ^{2} $ $ \frac{1}{2} \sum_{i=1}^{\infty} x_{i} ^{2} $ This will $ x_{i} = x_{i} ^{2}$	Q1.	
where σ is the standard deviation of $\{xi^2\}_{i=1}^{\infty}$ u is the smean of $\{xi^2\}_{i=1}^{\infty}$ $\sigma^2(n+1) = \sum_{i=1}^{\infty} (xi-u)^2$ $\sigma^2(n+1) = \sum_{i=1}^{\infty} xi-u ^2$ for any $ xixn xi-u ^2 < \sum_{i=1}^{\infty} xi-u ^2$ $\vdots \sigma^2(n+1) > xi-u ^2$ for all i Aline both sides are position, we can take the root divides		
where σ is the standard deviation of $\{xi^2\}_{i=1}^{\infty}$ u is the smean of $\{xi^2\}_{i=1}^{\infty}$ $\sigma^2(n+1) = \sum_{i=1}^{\infty} (xi-u)^2$ $\sigma^2(n+1) = \sum_{i=1}^{\infty} x_i-u ^2$ for any $ xix = x_i-u ^2 < \sum_{i=1}^{\infty} x_i-u ^2$ \vdots $\sigma^2(n+1) > x_i-u ^2$ for all i Using both sides are position, we can take the root divides	1.	By delinition
where o is the standard deviation of {xi?i=1} Lu is the smean of {xi?i=1} $\sigma^{2}(m+1) = \sum_{i=1}^{\infty} (xi-u)^{2}$ $\sigma^{2}(m+1) = \sum_{i=1}^{\infty} xi-u ^{2}$ for any sisn xi-u ^{2} < \frac{2}{2} xi-u ^{2} \[\therefore \any sisn xi-u ^{2} \frac{2}{2} xi-u ^{2} \] \[\therefore \any sisn xi-u ^{2} \frac{2}{2} xi-u ^{2} \] \[\therefore \any sisn xi-u ^{2} \frac{2}{2} xi-u ^{2} \] \[\therefore \any sisn xi-u ^{2} \frac{2}{2} xi-u ^{2} \] \[\therefore \any sisn xi-u ^{2} \frac{2}{2} xi-u ^{2} \] \[\therefore \any sisn xi-u ^{2} \frac{2}{2} xi-u ^{2} \] \[\therefore \any sisn xi-u ^{2} \frac{2}{2} xi-u ^{2} \] \[\therefore \any sisn xi-u ^{2} \frac{2}{2} xi-u ^{2} \] \[\therefore \any sisn xi-u ^{2} \frac{2}{2} xi-u ^{2} \] \[\therefore \any sisn xi-u ^{2} \frac{2}{2} xi-u ^{2} \] \[\therefore \any xi-u ^{2} \frac{2}{2} xi-u		$\frac{\pi}{5} \left(\frac{\pi}{3} \right)^2$
where o is the standard deviation of {xi?i=1} Lu is the smean of {xi?i=1} $\sigma^{2}(m+1) = \sum_{i=1}^{\infty} (xi-u)^{2}$ $\sigma^{2}(m+1) = \sum_{i=1}^{\infty} xi-u ^{2}$ for any sisn xi-u ^{2} < \frac{2}{2} xi-u ^{2} \[\therefore \any sisn xi-u ^{2} \frac{2}{2} xi-u ^{2} \] \[\therefore \any sisn xi-u ^{2} \frac{2}{2} xi-u ^{2} \] \[\therefore \any sisn xi-u ^{2} \frac{2}{2} xi-u ^{2} \] \[\therefore \any sisn xi-u ^{2} \frac{2}{2} xi-u ^{2} \] \[\therefore \any sisn xi-u ^{2} \frac{2}{2} xi-u ^{2} \] \[\therefore \any sisn xi-u ^{2} \frac{2}{2} xi-u ^{2} \] \[\therefore \any sisn xi-u ^{2} \frac{2}{2} xi-u ^{2} \] \[\therefore \any sisn xi-u ^{2} \frac{2}{2} xi-u ^{2} \] \[\therefore \any sisn xi-u ^{2} \frac{2}{2} xi-u ^{2} \] \[\therefore \any sisn xi-u ^{2} \frac{2}{2} xi-u ^{2} \] \[\therefore \any xi-u ^{2} \frac{2}{2} xi-u		$G = \frac{1}{(n+1)} \frac{1}{1-1}$
$\sigma^{2}(m+1) = \sum_{j=1}^{\infty} (x_{i}-u)^{2}$ $\sigma^{2}(m+1) = \sum_{j=1}^{\infty} x_{i}-u ^{2}$ $for any x_{i} = x_{i}-u ^{2} < \sum_{j=1}^{\infty} x_{i}-u ^{2}$ $\vdots \sigma^{2}(m+1) > x_{i}-u ^{2} for all i$ $Jince both sides are faither, we can take the root divides$		
$\sigma^{2}(m+1) = \sum_{i=1}^{\infty} (x_{i}-u)^{2}$ $\sigma^{2}(m+1) = \sum_{i=1}^{\infty} x_{i}-u ^{2}$ $for any x_{i} = x_{i}-u ^{2} < \sum_{i=1}^{\infty} x_{i}-u ^{2}$ $\vdots \sigma^{2}(m+1) > x_{i}-u ^{2} for all i$ $Jince both sides are faither, we can take the scoot divides$		where or is the standard deviation of Exising
$\sigma^{2}(m+1) = \sum_{i=1}^{m} (\pi i - ui)^{2}$ $\sigma^{2}(m+1) = \sum_{i=1}^{m} \pi i - ui ^{2}$ $for any \pi i \times \pi \pi i - ui ^{2} < \sum_{i=1}^{m} \pi i - ui ^{2}$ $\therefore \sigma^{2}(m+1) > \pi i - ui ^{2} \text{ for all } i$ $\lim_{n \to \infty} \pi i - u_{n} ^{2} \text{ for all } i$ $\lim_{n \to \infty} \pi i - u_{n} ^{2} \text{ for all } i$ $\lim_{n \to \infty} \pi i - u_{n} ^{2} \text{ for all } i$		E is the moon of Exis. "
$\sigma^{2}(m+1) = \sum_{i=1}^{\infty} x_{i}-u_{i} ^{2}$ for any $ x_{i} \leq x_{i}-u_{i} ^{2} < \sum_{i=1}^{\infty} x_{i}-u_{i} ^{2}$ $\therefore \sigma^{2}(m+1) > x_{i}-u_{i} ^{2} \text{ for all } i$ $\text{Jing both sides are positive, we can take the root divides}$		0
$\sigma^{2}(m+1) = \sum_{i=1}^{\infty} x_{i}-u_{i} ^{2}$ for any $ x_{i} \leq x_{i}-u_{i} ^{2} < \sum_{i=1}^{\infty} x_{i}-u_{i} ^{2}$ $\therefore \sigma^{2}(m+1) > x_{i}-u_{i} ^{2} \text{ for all } i$ $\text{Jing both sides are positive, we can take the root divides}$		
$\sigma^{2}(m+1) = \sum_{i=1}^{\infty} x_{i}-u_{i} ^{2}$ for any $ x_{i} \leq x_{i}-u_{i} ^{2} < \sum_{i=1}^{\infty} x_{i}-u_{i} ^{2}$ $\therefore \sigma^{2}(m+1) > x_{i}-u_{i} ^{2} \text{ for all } i$ $\text{Jing both sides are positive, we can take the root divides}$		$\sigma^2(n-1) = \sum_{i=1}^{m} (x_i - u_i)^2$
for any 15ism Ni-ul2 & 2 Ni-ul2 i=1 i=1 i=1 ling both sides are position, we can take the root dixely		021
for any 15ism Ni-ul2 & 2 Ni-ul2 i=1 i=1 i=1 ling both sides are position, we can take the root dixely		$\sigma^2(n+1) = \sum_{i=1}^{\infty} x_i - u_i ^2$
lince both sides are position, we can take the root dixely		
lince both sides are position, we can take the root dixely		for any 1sism xi-ul2 & 2 xi-ul2
lince both sides are position, we can take the root dixely		Č=1
lince both sides are position, we can take the root dixely		.: 02 (n+) > xi-u 2 for alli
		line both sides are positive, we seen take the want divide.
· · ni-ul < o - 11:		
to the second		ille of Forto > lu-in :.

	$\ell(c_1/z_1) = \frac{1}{3}$
	$1\left(\frac{c_{2}}{2}\right) = \frac{1}{3}$
	$\rho\left(\frac{c_3}{2_1}\right) = \sqrt{3}$
(dr)	P(N3/2) = 1/2
75.05	P N3/C-71 = 1
	$7c_{221}=1$
	P (N3/c321) = 0
	2 14 - 11 5
(c)	P(N3 C2,21). P(C2,21)
	P(N3/21)
=	$1 \cdot \sqrt{9} = 2/2$
	16 10 10 10 10 10 10 10 10 10 10 10 10 10
(4)	
(4)	$\frac{1}{(c_1 u_3, z_1)} = \frac{1}{(c_1, z_1)} \frac{1}{(c_1, z_1)} \frac{1}{(c_1, z_1)}$
	P(N3/Z1)
	= ½×⅓ = ⅓
	\\alpha \\ \alpha \\ \alph
(9	line the probability of winning when suitabled > probability of winning when mot, we can complied that switching is induct benified.
	probability of winning when mod,
	we can conduid that switching is indud benified.
	The state of the s

Q4. f=0.6

```
err_median = 733.0434
err_mean = 359.5526
err_quartile = 80.9587
```

f = 0.3

```
err_median = 22.0039
err_mean = 95.2669
err_quartile = 0.0173
```

For both the cases, **the quartile provides the best filtering**, because in both the cases, on an average, more than 25% of the values are uncorrupted, hence the first quartile is more or less unchanged from the non-noisy data

For a smaller corruption in values, the median provides better filtering than mean because the noise is in only 1 direction, and the median's robustness means that for most intervals, only some points are much above the actual value, and this assures the mid value to be approximately the same as before.

For the mean on the other hand, even the small number of extreme values wreaks havoc with the value.

For a higher corruption, more intervals have more than half number of values being corrupted, making the median much bigger than the actual value of y, while the mean performs marginally better, since about 40% values are very small compared to the noise, which keeps the mean of the interval small.

Plots-

$$\int_{\text{new}}^{2} = \frac{\sum_{i=1}^{n+1} n^{2}}{n} - \frac{n \cdot (\text{old mean})^{2}}{n^{-1}}$$

$$\int_{\text{old}}^{2} = \frac{\sum_{i=1}^{n} n^{2}}{n-1} - \frac{n \cdot (\text{old mean})^{2}}{n^{-1}}$$

$$\sum_{i=1}^{n} n^{2} = (n-1) \left(\int_{\text{old}}^{2} + \left(\frac{n}{n-1}\right) \left(\mu_{\text{old}}\right)^{2}\right)$$

$$\sum_{i=1}^{n} n^{2} = \frac{(n-1) \left(\int_{\text{old}}^{2} + \left(\frac{n}{n-1}\right) \mu_{\text{old}}^{2}\right) + \frac{(\text{New Data})^{2}}{n} - \frac{n+1}{n} \left(\mu_{\text{new}}^{2}\right)$$

$$\sum_{i=1}^{n} n^{2} = \frac{(n-1) \left(\int_{\text{old}}^{2} + \left(\frac{n}{n-1}\right) \mu_{\text{old}}^{2}\right) + \frac{(\text{New Data})^{2}}{n} - \frac{n+1}{n} \left(\mu_{\text{new}}^{2}\right)$$

Mean_{rew} =
$$\frac{\sum_{i=1}^{N} \chi_{i}}{n+1}$$

Mean_{rew} = $\frac{\sum_{i=1}^{N} \chi_{i}^{2}}{n+1} + New Data Value}$
 $\frac{n+1}{n+1}$ odd Mean + New Data Value
 $\frac{n+1}{n+1}$

In order to update the histogram, one would need the bin size, and then add one value to the required bin, by taking $\lfloor (newDataValue - a_{min}/bin_size \rfloor$ as the bin into the which the value goes. If the newDataValue is less than a_{min} a new bin will have to be created.

For the median, several cases exist, which have been coded in the function. These are-

1. If n is odd, and new value is greater than the next-to-median element, or lesser than previous-to-median, the new_median will be the mean of the old_median and next/previous element. If it is between the old_median and next element/previous element, the new_median is the mean of the old_median and the newDataValue.

2. If n is even, and the new value is less than a[n/2], median is a[n/2], or if it is greater than a[n/2 + 1] median is a[n/2 + 1], while if it is between these two, the median is newDataValue

In the programming assignment, the three files contain functions for updating mean, std and median, but driver code to test them, or for I/O is not written.

	Number of people = n
	Let us take the case where none of the directed agriclash.
	Ataking the mumber of days in a year to be 315.
	No. of days on which first Birthday of \$1 can fall = 365
	3
	No. of days for p2's histoday = 364.
-	Similarly
	Similarly no. of days for pris birthday = (315-m+1)
	Probability that no birthday falls on Same day = 3(5×3(4×3(3×(3(5-7)4)))
	= 315×364×3(3× (315-71)
-	(365)~
	(notability that attent two histodays coincide = 1 - (365×364x - (315-2011))
-	$= 1 - \left(\frac{3(5 \times 3(4 \times - (3(5 - 21))))}{(3(5)^{2})}\right)$
-	
1	
11	

Plot of probability (in percent) vs No. of people

The programming assignment has been done such that the file **Problem6.m** contains the main code for generating this plot, while the other two files contain helper functions.