Рекламная пауза

H.C. Калинин планирует кружок по геометрии по вторникам вечером, начиная с 17 ноября.

Информация — в команде Teams с кодом присоединения x71fjmw (этот код также можно найти в таблице Classes в общем канале факультета).

Содержание

- 📵 Вторая квадратичная форма поверхности
 - Координатное определение
 - Гауссово отображение и оператор Вейнгартена
 - Соприкасающийся параболоид, кривизна по направлению
- 2 Главные кривизны
 - Определение, теорема Родрига
 - \bullet Случай m=2, теорема Эйлера
 - Вычисление главных кривизн
 - Гауссова и средняя кривизна

Лекция 10 11 ноября 2020 г.

Напоминание: второй дифференциал — билинейная форма

Пусть $U \subset \mathbb{R}^m$ — открытая область, $f \colon U \to \mathbb{R}$ — гладкая функция, $x \in U$.

Тогда определен второй дифференциал $d_x^2 f$ — симметричная билинейная форма на \mathbb{R}^m .

Значение $d_x^2(v,w)$ на векторах $v,w\in\mathbb{R}^m$ определяется так: дифференцируем f вдоль v во всех точках, полученную функцию от точки дифференцируем вдоль v в точке x.

Матрица этой билинейной формы состоит из вторых частных производных $\frac{\partial f}{\partial x_i \partial x_i}$.

Аналогично, для гладкого $f\colon U\to\mathbb{R}^N$ второй дифференциал d_x^2f — билинейная функция из $\mathbb{R}^m\times\mathbb{R}^m$ в \mathbb{R}^N .

 $f: \mathbb{R}^m \longrightarrow \mathbb{R} \quad \times \in \mathbb{R}^m$ $d_{\times} f: \mathbb{R}^m \times \mathbb{R}^m \longrightarrow \mathbb{R}$ $d_{x_0}^2 f(v, w) = \left(f_V\right)' (\infty).$ Summershad, Cerama et purmace

3 / 64

Лекция 10 11 ноября 2020 г.

Содержание

- 📵 Вторая квадратичная форма поверхности
 - Координатное определение
 - Гауссово отображение и оператор Вейнгартена
 - Соприкасающийся параболоид, кривизна по направлению
- Правные кривизны
 - Определение, теорема Родрига
 - \bullet Случай m=2, теорема Эйлера
 - Вычисление главных кривизн
 - Гауссова и средняя кривизна

Нормаль

Соглашение

Далее рассматриваем только поверхности коразмерности 1, т.е. размерности m в \mathbb{R}^{m+1} .

Поверхности и подмногообразия коразмерности 1 называются гиперповерхностями.

Определение

Нормаль гиперповерхности M в точке $p \in M$ — единичный вектор n, ортогональный T_pM .

Замечание

Нормаль определена однозначно с точностью до \pm . Считаем, что в каждой точке поверхности выбрана и зафиксирована одна из двух нормалей, причем выбор зависит от точки непрерывно (и гладко).

В классическом случае по умолчанию
$$n = \frac{r_x \times r_y}{|r_x \times r_y|}$$

Вторая форма

Пусть $r: U \subset \mathbb{R}^m \to \mathbb{R}^{m+1}$ — регулярная поверхность, $x \in U$, n — нормаль в точке r(x).

Определение

Вторая фундаментальная форма r в точке x (относительно нормали n) — симметричная билинейная форма \mathbf{II} на \mathbb{R}^m , определяемая равенством

$$\mathbf{II}(v,w) = \langle d_x^2 r(v,w), n \rangle, \quad v,w \in \mathbb{R}^m.$$

Так же называются соответствующая квадратичная форма и матрица.

Краткая запись: $\mathbf{II} = \langle d^2r, n \rangle$.

Обозначение матрицы: (h_{ij}) или $\begin{pmatrix} L & M \\ M & N \end{pmatrix}$ (при m=2).

6 / 64

Лекция 10 11 ноября 2020 г.

Пример вычисления

Рассмотрим цилиндр $r(x, y) = (\cos x, \sin x, y)$. Первые производные и нормаль:

$$r_x = (-\sin x, \cos x, 0)$$

$$\frac{r_y = (0,0,1)}{\left(n = \frac{r_x \times r_y}{|r_x \times r_y|}\right)} = (\cos x, \sin x, 0) \qquad (3) \quad n : \mathbb{R}^2 \rightarrow \mathbb{R}^3$$

Вторые производные:

$$r_{xx} = (-\cos x, -\sin x, 0)$$

$$r_{xy} = r_{yx} = 0$$
$$r_{yy} = 0$$

$$r_{yy}=0$$

Вторая форма:

$$\mathbf{II} = \begin{pmatrix} \langle r_{xx}, n \rangle & \langle r_{xy}, n \rangle \\ \langle r_{yx}, n \rangle & \langle r_{yy}, n \rangle \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}.$$

 $dn = \begin{pmatrix} -s & in x & 0 \\ cos x & 0 \\ 0 & 0 \end{pmatrix}$

$$= -1$$

Вторая форма и производная нормали

Теорема (другое определение II)

Для второй формы r в точке x верно равенство

$$\mathbf{II}(v,w) = -\langle d_X r(v), d_X n(w) \rangle,$$

для любых $v,w\in\mathbb{R}^m$, где нормаль n рассматривается как функция на U.

Краткая запись: $\mathbf{II} = -\langle dr, dn \rangle$.

Замечание: правая часть симметрична по v и w, так как она равна левой части.

dropmy an opene
$$bR^2$$

$$\begin{cases} V' = Kh & (V' = Y'') \\ h' = -KV \end{cases}$$

Вторая форма и производная нормали

Теорема (другое определение II)

Для второй формы r в точке x верно равенство

$$\mathbf{II}(v,w) = -\langle d_{x}r(v), d_{x}n(w)\rangle,$$

для любых $v,w\in\mathbb{R}^m$, где нормаль п рассматривается как функция на U.

Краткая запись: $\mathbf{II} = -\langle dr, dn \rangle$.

Замечание: правая часть симметрична по v и w, так как она равна левой части.

Доказательство.

Дифференцируем равенство $\langle dr(v), n \rangle = 0$ вдоль w. Получаем

Получаем 📆 (🗸 🗸)

$$\langle d^2r(v,w),n\rangle+\langle dr(v),d_{n}(w)\rangle=0.$$

Первое слагаемое по определению равно $\mathbf{II}(v, w)$.

$$f(x) = (d_x \cap v), v(x) > 0$$

$$dn = d_{xh}$$

 $d\Gamma = d_{x}\Gamma$

$$d^2r = d_x^2 \Gamma.$$

Примеры: плоскость и сфера

• Пусть r параметризует подмножество аффинной гиперплоскости.

Тогда
$$n = const$$
 \implies $dn = 0$ \implies $\mathbf{II} = 0$.

Лекция 10 11 ноября 2020 г.

Примеры: плоскость и сфера

• Пусть *r* параметризует подмножество аффинной гиперплоскости.

Тогда $n = const \implies dn = 0 \implies (\mathbf{II} = 0.$

• Пусть *r* параметризует подмножество сферы радиуса R с центром в 0. Направим нормаль

внутрь. Тогда

$$n = -\frac{1}{R}r$$

$$dn = -\frac{1}{R}dr$$
(2)

 $\langle dr, dn \rangle = -\frac{1}{R} \langle dr, dr \rangle$

$$II = \frac{1}{R}I$$

Замечание

Для поверхностей, параметризованных связной областью, верно и обратное: если $\mathbf{II} = \frac{1}{R}\mathbf{I}$, где R > 0 константа, то поверхность — часть сферы радиуса R.

Это станет ясно потом.

Лекция 10

Для записей

Содержание

- 📵 Вторая квадратичная форма поверхности
 - Координатное определение
 - Гауссово отображение и оператор Вейнгартена
 - Соприкасающийся параболоид, кривизна по направлению
- 2 Главные кривизнь
 - Определение, теорема Родрига
 - \bullet Случай m=2, теорема Эйлера
 - Вычисление главных кривизн
 - Гауссова и средняя кривизна

Лекция 10

Напоминание из алгебры

Пусть X — евклидово пространство, $B\colon X\times X\to \mathbb{R}$ — билинейная форма. Тогда B можно записать в виде

$$B(x, y) = \langle x, Ay \rangle,$$

где $A: X \to X$ — линейный оператор.

Матрицы A и B в любом ортонормированном базисе совпадают.

В неортонормированном базисе матрицы A и B связаны соотношением B = GA, где G — матрица Грама данного базиса.

Форма B симметрична \iff оператор A симметричен (самосопряжен), т.е. $\langle x,Ay\rangle = \langle Ax,y\rangle$ для любых $x,y\in X$.

(i)
$$(x)^T B(y) = B(x,y).$$

(2) $(x)^T A(y)$

(3) $(x)^T A(y)$

(4) $(x)^T B(y) = B(x,y).$

Гауссово отображение

Пусть $M^m \subset \mathbb{R}^{m+1}$ — гладкое подмногообразие.

Определение

Гауссово отображение M — это непрерывное (и, следовательно, гладкое) отображение $\widehat{n} \colon M \to \mathbb{S}^m$ такое, что для каждой $p \in M$ вектор $\widehat{n}(p)$ — нормаль к M в этой точке.

Т.е. это та же нормаль, но рассматриваемая как функция на поверхности, а не на области координат U.

Замечание

- \bullet Если M покрывается одной картой, то гауссово отображение существует.
- В общем случае оно существует тогда и только тогда, когда M ориентируемо (см. ниже).
- $n = \widehat{n} \circ r$, где n нормаль как функция от координат.
- Обычно n и \hat{n} обозначаются одинаково.

Лекция 10 11 ноября 2020 г.

Ориентация многообразия (анонс)

Определение

Ориентация гладкого многообразия M — это следующая структура:

- Для каждой точки $p \in M$ на касательном пространстве $T_p M$ введена ориентация (т.е. отображение из множества базисов $T_p M$ в $\{\pm 1\}$, согласованное со знаками определителей матриц перехода).
- \bullet Эта ориентация непрерывно зависит от p.

Многообразие ориентируемо, если на нём существует ориентация, иначе — неориентируемо.

Подробности про это будут будут позже.

Лекция 10 11 ноября 2020 г.

Оператор Вейнгартена

Пусть $M^m \subset \mathbb{R}^{m+1}$ — гиперповерхность, \widehat{n} — её гауссово отображение, $p \in M$.

Рассмотрим дифференциал $d_p\widehat{n}\colon T_pM o T_{n(p)}\mathbb{S}^m.$

 $T_p M$ и $T_{n(p)} \mathbb{S}^m$ — гиперплоскости, ортогональные n(p) \Longrightarrow они параллельны (а если рассматривать их как линейные подпространства в \mathbb{R}^{m+1} , то совпадают).

Определение

Пусть $P \colon T_{n(p)}\mathbb{S}^m \to T_pM$ — «параллельный перенос» между этими гиперплоскостями (при правильных отождествлениях это тождественное отображение).

Оператор Вейнгартена (оператор формы, shape operator) M в точке p — линейное отображение $S: T_pM \to T_pM$,

$$S=-P\circ d_p\widehat{n}.$$

Отождествляя касательные пространства с линейными подпространствами в \mathbb{R}^{m+1} , имеем $S=-d_{\mathfrak{o}}\widehat{n}$.

Лекция 10 11 ноября 2020 г.

Вторая форма на касательной плоскости

Определение

В тех же обозначениях, определим билинейную форму $\widehat{\mathbf{II}}$ на $T_p M$ равенством

$$\widehat{\mathbf{H}}(v, w) = \langle v, S(w) \rangle = -\langle v, d\widehat{n}(w) \rangle$$

Теорема

Пусть M параметризована регулярной поверхностью $r \colon U \subset \mathbb{R}^m \to \mathbb{R}^{m+1}$, $x \in U$, p = r(x).

Тогда билинейные формы **II** на \mathbb{R}^m (определяемая r) и $\widehat{\mathbf{II}}$ на $T_p M$ соответствуют друг другу при изоморфизме $d_{\mathsf{x}} r \colon \mathbb{R}^m \to T_p M$.

То есть

$$\mathbf{H}(v,w) = \widehat{\mathbf{H}}(d_{x}r(v),d_{x}r(w))$$

для любых $v, w \in \mathbb{R}^m$.

Klingenberg. Roward

Лекция 10 11 ноября 2020 г.

Доказательство

Продифференцировав равенство $n = \widehat{n} \circ r$ в точке x, получаем

$$d_{x}n = d_{p}\widehat{n} \circ d_{x}r = -S \circ d_{x}r$$

Подставим $w \in \mathbb{R}^n$:

$$d_{x}n(w) = -S(d_{x}r(w))$$
 (2)

Умножим скалярно на $d_x r(v)$ и на -1:

$$-\langle d_{x}r(v),d_{x}n(w)
angle = \langle d_{x}r(v),S(d_{x}r(w))
angle$$
 Левая часть равна $\mathbf{II}(v,w)$ по второму определению \mathbf{II} .

Правая часть равна $\hat{\mathbf{II}}(d_x r(v), d_x r(w))$ по определению.

Итак,

$$\prod \mathbf{H}(v,w) = \widehat{\mathbf{H}}(d_{x}r(v),d_{x}r(w))$$

\(\rightarrow \overline{\pmathbb{I}} \big(dr(\overline{\pmathbb{O}}), dr(\overline{\pmathbb{O}}) \)
\(\rightarrow \overline{\pmathbb{I}} \)
\(\rightarrow \overline{\pmathbb{O}} - e \overline{\pmathbb{O}} - e \overline{\pmathbb{I}} \)

Лекция 10

Следствия

Следствия из теоремы:

- **1** симметрична
- \bigcirc S симметричный оператор на T_pM
- $oldsymbol{3}$ Матрица $oldsymbol{II}$ матрица $oldsymbol{\widehat{II}}$ в базисе (r_{x_i})
- lacktriangledown Матрицы lacktriangledown, lacktriangledown и lacktriangledown lacktriangl

$$B = G \cdot A$$

где [S] — матрица S в базисе (r_{x_i})

5 При замене координат **II** меняется по тому же правилу, что **I**.

Предупреждение

Далее \widehat{n} и $\widehat{\mathbf{II}}$ часто будут обозначаться без крышки.

$$\widehat{\underline{I}} f_{V_1 w}) = \langle v, S(w) \rangle = \\ = -\langle v, d\hat{n} (w) \rangle.$$

Приложение: характеризация плоскости

Рассмотрим простую поверхность $r \colon U \subset \mathbb{R}^m \to \mathbb{R}^{m+1}$.

Теорема

- **1** II = 0 во всех точках.
- **2** M = r(U) содержится в некоторой гиперплоскости.

Доказательство.

2 ⇒ 1 было

$$1 \implies 2: \mathbf{II} = 0 \implies \widehat{\mathbf{II}} = 0$$

$$\implies S = 0$$
 всюду (2)

$$\implies \widehat{n} = const \ ($$
так как $S = -d\widehat{n})$

 \Longrightarrow Функция $f: M \to \mathbb{R}$, $f(x) = \langle x, n \rangle$ имеет нулевую производную ($df = \langle \cdot, n \rangle |_{TM} = 0$) \Longrightarrow она константа.

 $\implies M$ лежит в гиперплоскости, ортогональной n

Лекция 10 11 ноября 2020 г.

Приложение: характеризация сферы

Рассмотрим простую поверхность $r: U \subset \mathbb{R}^m \to \mathbb{R}^{m+1}$.

Теорема

Пусть U связна, R>0. Тогда два условия равносильны:

- $\mathbf{0}(\mathbf{II} = \pm \frac{1}{R}\mathbf{I})$ во всех точках.
- M = r(U) содержится в некоторой сфере радиуса R.

Доказательство.

 $2 \implies 1$ было (\pm зависит от направления нормали).

$$1 \implies 2: \mathbf{II} = \frac{1}{R}\mathbf{I} \implies \widehat{\mathbf{II}} = \frac{1}{R}\langle , \rangle$$

$$\Longrightarrow S = \frac{1}{R} id_{T_pM}$$
 для всех $p \in M$

$$\implies d\widehat{n}(v) = -rac{1}{R}v$$
 (в \mathbb{R}^{m+1}) для любого $v \in TM$ (3)

20 / 64

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 釣りの

Лекция 10 11 ноября 2020 г.

Для записей

$$\int U' = k u$$

$$\int u' = -k u$$

$$f(p) = \frac{1}{R} = -\infty u st$$

$$c(t) = \int H + R \cdot u(t)$$

$$c' = \int Y' + R u' = V - R k v = 0$$

c(+) = const.

Dre upoloù
$$I - margnya 1 \times 1$$

$$= (K_{\chi} \cdot |\chi'|^2).$$

Содержание

- 📵 Вторая квадратичная форма поверхности
 - Координатное определение
 - Гауссово отображение и оператор Вейнгартена
 - Соприкасающийся параболоид, кривизна по направлению
- Правные кривизнь
 - Определение, теорема Родрига
 - \bullet Случай m=2, теорема Эйлера
 - Вычисление главных кривизн
 - Гауссова и средняя кривизна

Вторая форма специального графика

Пусть $M^m \subset \mathbb{R}^{m+1}$ — гиперповерхность, $p \in M$.

Поместим начало отсчёта в точку р и выберем декартовы координаты так, что $T_p M$ — первая координатная гиперплоскость и $n(p) = (0, \dots, 0, 1)$.

Тогда M окрестности p=0 совпадает с графиком функции $f:U\subset T_pM=\mathbb{R}^m\to\mathbb{R}$, причем $d_0f=0$.

Теорема

В этих условиях в точке 0

$$\widehat{\mathbf{II}}=d_0^2f$$

12 6 mar.

$$\frac{f: T_p M \rightarrow R.}{d_o f: T_p M \times T_p M \rightarrow R} = (\ell_1 -, \ell_m)$$

Доказательство

$$r(x) = (x, f(x)), \qquad x \in U \subset \mathbb{R}^m$$

$$d_0f=0 \implies d_0r$$
 — включение $\mathbb{R}^m=T_pM$ в $\mathbb{R}^{m+1} \implies \widehat{\mathbf{II}}=\mathbf{II}.$

$$\mathbf{II} = \langle (0, \dots, 0, d_0^2 f), (0, \dots, 0, 1) \rangle = d_0^2 f$$

$$J = \langle d^2r, n \rangle$$

$$f(x_{1}, x_{n}) = (x_{1}, \dots, x_{n}, f(\dots))$$

Лекция 10

Соприкасающийся параболоид

Определение

В тех же предположениях и обозначениях, соприкасающийся параболоид M в точке p — график квадратичной формы

$$\frac{1}{2}\widehat{\mathbf{II}}\colon T_pM \to \mathbb{R}$$

$$f(k) = 0 + 0 + \frac{1}{z} d_0^2 f(k, k) + \frac{1}{z} d_0^2$$

Лекция 10 11 ноября 2020 г.

Соприкасающийся параболоид

Определение

В тех же предположениях и обозначениях, соприкасающийся параболоид M в точке p — график квадратичной формы

$$\frac{1}{2}\widehat{\mathbf{II}}\colon T_pM \to \mathbb{R}$$

Теорема

Соприкасающийся параболоид имеет касание 2-го порядка с М в точке р.

Доказательство.

Из формулы Тейлора для f.

Типы точек (m = 2)

Пусть m=2, Π — соприкасающийся параболоид поверхности M в точке p. В зависимости от его вида точка p принадлежит одному из типов:

- ① p эллиптическая точка, если Π знакоопределена (т.е. положительно или отрицательно определена) $\iff \Pi$ эллиптический параболоид
- p гиперболическая точка (седловая точка), если
 \mathbf{II} знакопеременная форма
 \Leftrightarrow Π гиперболический параболоид
- р параболическая точка, если II вырождена, но не равна 0
 - $\iff \Pi$ параболический цилиндр
- **4** p точка уплощения, если **II** = 0 ⇔ Π — плоскость

