Manage the Data from Indoor Spaces: Models, Indexes & Query Processing

Huan Li

Database Laboratory, Zhejiang University lihuancs@zju.edu.cn

April 12, 2016

Overview

- 1. Outlines
- 2 2. Indoor Space Models & Applications
- 3. Indoor Data Cleansing
- 4. Indoor Movement Analysis
- 5. Appendix

- 1. Outlines
- 2 2. Indoor Space Models & Applications
- 3 3. Indoor Data Cleansing
- 4. Indoor Movement Analysis
- 5. Appendix

- 1. Outlines
- 2 2. Indoor Space Models & Applications
- 3. Indoor Data Cleansing
- 4. Indoor Movement Analysis
- 5. Appendix

About This Work...

A Foundation for Efficient Indoor Distance-Aware Query Processing. [6]

H. Lu, X. Cao, and C. S. Jensen.

- Published at ICDE' 2012.
- First time to propose a distance-aware indoor space model that integrates indoor distance seamlessly.
- Accompanying, efficient algorithms for computing indoor distances.
- Indexing framework that accommodates indoor distances.

Motivation

- A variety of LBS services are useful in indoor space.
 - a museum guidance service in a complex exhibition
 - boarding reminder service in an airport, to remind the passengers especially those far away from their gates or departures
- Such indoor LBSs will benefit from the availability of accurate indoor distances.
 - indoor space entities enable as well as constrain indoor movement, thus makes traditional space model for Euclidean/spatial network spaces unsuitable.
 - existing indoor space models [7, 8, 9] pay little attention to indoor distances.

2.5 A Foundation for Efficient Indoor Distance-aware Query Processing

Indoor Topology Mapping Structures

Mapping D2P maps a door d_k to one or two partition pairs 1 (v_i,v_j) such that one can move from partition 2 v_i to partition v_j through door d_k :

¹the basic assumption that a door corresponds to two doors can be extended by converting a door to multiple doors.

²a partition indicates a room, a hallway or a staircase. () () () () ()

Indoor Topology Mapping Structures

Mapping D2P maps a door d_k to one or two partition pairs 1 (v_i,v_j) such that one can move from partition 2 v_i to partition v_j through door d_k :

$$D2P: \mathcal{S}_{door} \to 2^{\mathcal{S}_{partition}} \times 2^{\mathcal{S}_{partition}}$$
 (1)

¹the basic assumption that a door corresponds to two doors can be extended by converting a door to multiple doors.

Indoor Topology Mapping Structures

Mapping D2P maps a door d_k to one or two partition pairs 1 (v_i,v_j) such that one can move from partition 2 v_i to partition v_j through door d_k :

$$D2P: \mathcal{S}_{door} \to 2^{\mathcal{S}_{partition}} \times 2^{\mathcal{S}_{partition}}$$
 (1)

For enterable partition of door d_k :

¹the basic assumption that a door corresponds to two doors can be extended by converting a door to multiple doors.

Mapping D2P maps a door d_k to one or two partition pairs 1 (v_i,v_j) such that one can move from partition 2 v_i to partition v_j through door d_k :

$$D2P: \mathcal{S}_{door} \to 2^{\mathcal{S}_{partition}} \times 2^{\mathcal{S}_{partition}}$$
 (1)

For enterable partition of door d_k :

$$D2P_{\Box}: \mathcal{S}_{door} \to 2^{\mathcal{S}_{partition}}$$
 (2)

¹the basic assumption that a door corresponds to two doors can be extended by converting a door to multiple doors.

 $^{^2}$ a partition indicates a room, a hallway or a staircase. $< \square > < \emptyset > < \ge > < \ge >$

Mapping D2P maps a door d_k to one or two partition pairs 1 (v_i,v_j) such that one can move from partition 2 v_i to partition v_j through door d_k :

$$D2P: \mathcal{S}_{door} \to 2^{\mathcal{S}_{partition}} \times 2^{\mathcal{S}_{partition}}$$
 (1)

For enterable partition of door d_k :

$$D2P_{\neg}: \mathcal{S}_{door} \to 2^{\mathcal{S}_{partition}}$$
 (2)

For leaveable partition of door d_k :

¹the basic assumption that a door corresponds to two doors can be extended by converting a door to multiple doors.

Mapping D2P maps a door d_k to one or two partition pairs 1 (v_i,v_j) such that one can move from partition 2 v_i to partition v_j through door d_k :

$$D2P: \mathcal{S}_{door} \to 2^{\mathcal{S}_{partition}} \times 2^{\mathcal{S}_{partition}}$$
 (1)

For enterable partition of door d_k :

$$D2P_{\neg}: \mathcal{S}_{door} \to 2^{\mathcal{S}_{partition}}$$
 (2)

For leaveable partition of door d_k :

$$D2P_{\square}: \mathcal{S}_{door} \to 2^{\mathcal{S}_{partition}}$$
 (3)

¹the basic assumption that a door corresponds to two doors can be extended by converting a door to multiple doors.

Indoor Topology Mapping Structures

The mapping $P2D_{\square}$ maps a partition v to all the doors through which one can enter v:

Indoor Topology Mapping Structures

The mapping $P2D_{\square}$ maps a partition v to all the doors through which one can enter v:

$$P2D_{\square}: \mathcal{S}_{partition} \to 2^{\mathcal{S}_{door}}$$
 (4)

Indoor Topology Mapping Structures

The mapping $P2D_{\square}$ maps a partition v to all the doors through which one can enter v:

$$P2D_{\square}: \mathcal{S}_{partition} \to 2^{\mathcal{S}_{door}}$$
 (4)

The mapping $P2D_{\square}$ maps a partition v to all the doors through which one can leave v:

The mapping $P2D_{\square}$ maps a partition v to all the doors through which one can enter v:

$$P2D_{\square}: \mathcal{S}_{partition} \to 2^{\mathcal{S}_{door}}$$
 (4)

The mapping $P2D_{\square}$ maps a partition v to all the doors through which one can leave v:

$$P2D_{\square}: \mathcal{S}_{partition} \to 2^{\mathcal{S}_{door}}$$
 (5)

The mapping $P2D_{\square}$ maps a partition v to all the doors through which one can enter v:

$$P2D_{\square}: \mathcal{S}_{partition} \to 2^{\mathcal{S}_{door}}$$
 (4)

The mapping $P2D_{\square}$ maps a partition v to all the doors through which one can leave v:

$$P2D_{\square}: \mathcal{S}_{partition} \to 2^{\mathcal{S}_{door}}$$
 (5)

The mapping P2D is used when there's no need to differentiate the directionality:

The mapping $P2D_{\square}$ maps a partition v to all the doors through which one can enter v:

$$P2D_{\square}: \mathcal{S}_{partition} \to 2^{\mathcal{S}_{door}}$$
 (4)

The mapping $P2D_{\square}$ maps a partition v to all the doors through which one can leave v:

$$P2D_{\square}: \mathcal{S}_{partition} \to 2^{\mathcal{S}_{door}}$$
 (5)

The mapping P2D is used when there's no need to differentiate the directionality:

$$P2D(v_i): P2D_{\square}(v_i) \cup P2D_{\square}(v_i) \tag{6}$$

Accessibility Base Graph

Example

$$D2P_{\square}(d_{12}) = \{v_{10}\}, D2P_{\square}(d_{12}) = \{v_{12}\}$$

 $P2D_{\square}(v_{13}) = \{d_{13}\},$
 $P2D_{\square}(v_{13}) = \{d_{13}, d_{15}\}$

Accessibility Base Graph

- $G_{accs} = \{V, E_a, L\}$
- $V = S_{partition}$ is the set of vertices
- $E_a = \{(v_i, v_j, d_k) | (v_i, v_j) \in D2P(d_k)\}$ is the set of labeled, directed edges
- $L = S_{door}$ is the set of edge labels

Distance-Aware Model

The G_{accs} graph does not capture indoor distance information. **Extended Graph Model** is proposed to integrate indoor distances into the graph in a seamless way. *Minimum Indoor Walking Distance* (MIWD) is used.

Extended Graph Model $G_{dist} = \{V, E_a, L, f_{dv}, f_{d2d}\}$

- $V = S_{partition}$ is the set of vertices
- $E_a = G_{accs}.E_a$
- $L = S_{door}$ is the set of edge labels
- $f_{dv} = S \times V \to \mathcal{R} \cup \{\infty\}$ maps an edge to a distance value.

$$f_{dv} = \begin{cases} \max_{p \in v_j} ||d_i, p||, & if \ v_j \in D2P_{\square}; \\ \infty, & otherwise. \end{cases}$$

• $f_{d2d} = V \times S_{door} \times S_{door} \to \mathcal{R} \cup \{\infty\}$ maps a 3-tuple to a distance value.

$$f_{dv} = \begin{cases} ||d_i, d_j||_{v_k}, & if \ d_i \in P2D_{\square}(v_k) and d_j \in P2D_{\square}(v_k); \\ \infty, & if \ d_i = d_j and d_i, d_j \in P2D(v_k); \\ 0, & otherwise. \end{cases}$$

Computation: door-to-door distance

Algorithm 1 d2dDistance(Source door d_s , destination door d_t)

```
1: initialize a min-heap H

 for each door d<sub>i</sub> ∈ S<sub>door</sub> do

        if d_i \neq d_s then
            dist[d_i] \leftarrow \infty
 5:
        else
            dist[d_i] \leftarrow 0
 6:
        enheap(H, \langle d_i, dist[d_i] \rangle)
        prev[d_i] \leftarrow null
 9: while H is not empty do
         \langle d_i, dist[d_i] \rangle \leftarrow deheap(H)
10:
        if d_i = d_t then
11:
12:
            return dist[d_i]
         mark door d_i as visited
13:
         parts \leftarrow D2P_{\vdash}(d_i)
14:
15:
        for each partition v \in parts do
            for each unvisited door d_i \in P2D_{\square}(v) do
16:
                if dist[d_i] + G_{dist} \cdot f_{d2d}(v, d_i, d_i) < dist[d_i] then
17:
                   dist[d_j] \leftarrow dist[d_i] + G_{dist}.f_{d2d}(v, d_i, d_j)
18:
                   replace d_i's element in H by \langle d_i, dist[d_i] \rangle
19:
```

 $prev[d_i] \leftarrow (v, d_i)$

20:

- f 0 d_t as source door, d_s as destination door, $d2dDistance(d_t,d_s)$ finds the minimum walking distance in a Diikstra way.
- 2 $dist[d_j]$ stores the current shorest path distance from souce d_s to a door d_j .

Computation: point-to-point distance (I)

Algorithm 2 pt2ptDistance(Source indoor position p_s , destination indoor position p_t)

```
 v<sub>s</sub> ← getHostPartition(v<sub>s</sub>)
```

- v_t ← getHostPartition(p_t)
- 3: dist ← ∞
- for each door d_e ∈ P2D_□(v_e) do
- $dist_1 \leftarrow dist_V(p_s, d_s)$
- for each door $d_t \in P2D_{\neg}(v_t)$ do
- $dist_2 \leftarrow dist_V(p_t, d_t)$
- 8:
- if $dist > dist_1 + d2dDistance(d_s, d_t) + dist_2$ then
- $dist \leftarrow dist_1 + d2dDistance(d_s, d_t) + dist_2$
- 10: return dist

- \bigcirc getHostPartition(p) returns the partition that contains p.
- 2 $dist_V: P \times \mathcal{S}_{door} \to \mathcal{R} \cup \{\infty\}$ returns the shortest intra-partition distance between a position p and a door d, i.e., the minimum distance one must walk to get from position p to door d without leaving p's host partition.
- minimum door-to-door distance from each door d_s in $P2D_{\vdash}(d_s)$ to each door $P2D_{\neg}(d_t)$ is computed.
- intra-partition distances $dist_V(p_s, d_s)$ and $dist_V(p_t, d_t)$ are added to that distance to get one possible position-to-position distance.
- the minimum is returned as the result

Computation: point-to-point distance (II)

Algorithm 3 pt2ptDistance2(Source indoor position p_s , destination indoor position p_s)

```
tination indoor position p_t)

 v<sub>s</sub> ← getHostPartition(p<sub>s</sub>)

 2: v<sub>t</sub> ← getHostPartition(p<sub>t</sub>)
 3: doors_s \leftarrow P2D_{\vdash}(v_s)
 4: doors_t \leftarrow P2D \neg (v_t)
 5: for each door d_s \in doors_s do
        np \leftarrow \text{the partition in } D2P_{\vdash}(d_s) \setminus \{v_s\}
        if P2D_{\square}(np) = \{d_s\} and np \neq v_t then
           remove ds from doorss
 9: dist_m \leftarrow \infty
10: for each door d_o \in doors_o do
        doors \leftarrow \emptyset
        for each door d_t \in doors_t do
13-
           if dist_V(p_s, d_s) + dist_V(p_t, d_t) < dist_m then
14:
               add dt to doors
15:
        initialize a min-heap H
16:
        for each door d_i \in S_{door} do
           if d_i \neq d_s then
17:
18-
               dist[d_i] \leftarrow \infty
19:
20:
               dist[d_i] \leftarrow 0
21:
           enheap(H, \langle d_i, dist[d_i] \rangle)
22:
        while H is not empty do
23.
           \langle d_i, dist[d_i] \rangle \leftarrow deheap(H)
24.
           if d_i \in doors then
25.
                doors \leftarrow doors \setminus \{d_i\}
26.
               if dist_m > dist_V(p_s, d_s) + dist[d_i] + dist_V(p_t, d_i)
               then
                  dist_m \leftarrow dist_V(p_s, d_s) + dist[d_i] + dist_V(p_t, d_i)
28.
               if doors = \emptyset then
                  break
29:
30-
           mark door de as visited
31:
           parts \leftarrow D2P_{\vdash}(d_i)
32.
           for each partition v \in parts do
33:
               for each unvisited door d_i \in P2D(v) do
                  if d_i \in P2D_{\vdash}(v) then
34:
35:
                      if dist[d_i] + G_{dist} \cdot f_{d2d}(v, d_i, d_i) < dist[d_i] then
                         dist[d_i] \leftarrow dist[d_i] + G_{dist}.f_{d2d}(v, d_i, d_j)
```

37: return $dist_m$

- ① lines 1–4: $doors_s(doors_t)$ is initialized to contain all leaving(entering) doors of the source(destination) partition $v_s(v_t)$.
- ② lines 5–8: a door d_s in doors_s is excluded if it leads to a non-destination partition that has d_s as its sole leaving door.
- 3 lines 11–14: for each source door d_s , initialize a set doors, excluding any destination door d_t that is too far away compared to current shortest distance $dist_m$.
- Iines 15–36: follows the spirit of Dijkstra, only visits those doors that allow objects to move out(line 34), also updates the current shortest distance dist_m when a shorter one is found.
- $oldsymbol{5}$ the current expansion for a door d_s terminates when set doors becomes empty.

Computation: point-to-point distance (III)

Algorithm 4 pt2ptDistance3(Source indoor position p_s , destination indoor position p_t)

```
1: v_s \leftarrow \text{getHostPartition}(p_s)
 2: v<sub>t</sub> ← getHostPartition(p<sub>t</sub>)
 3: doors_s \leftarrow P2D_{\vdash}(v_s)
 4: doors_t \leftarrow P2D \neg (v_t)
5: for each door d_s \in doors_s do
        np \leftarrow \text{the partition in } D2P_{\square}(d_s) \setminus \{v_s\}
7: if P2D_{\square}(np) = \{d_s\} and np \neq v_t then
            remove d. from doors.
        for each door d_t \in doors_t do
            dists[d_s][d_t] \leftarrow \infty
10:
11: dist_m \leftarrow \infty
12: for each door d_s \in doors_s do
         doors \leftarrow \emptyset
13:
        for each door d_t \in doors_t do
14:
15:
            if dists[d_s][d_t] = \infty and dist_V(p_s, d_s) + dist_V(p_t, d_t) <
            dist_m then
               add d_t to doors
16:
17:
        initialize a min-heap H
18:
        for each door d_i \in \Sigma_{door} do
            if d_i \neq d_s then
19:
20:
               dist[d_i] \leftarrow \infty
21:
            else
22:
               dist[d_i] \leftarrow 0
23:
            enheap(H, \langle d_i, dist[d_i] \rangle)
```

 $prev[d_i] \leftarrow null$

24:

- 1 lines 1–8: initialize as same as the version of pt2ptDistance2.
- ② lines 9–10: a two-dimensional array $dists[d_i][d_j]$ is employed to store the currently shortest indoor distance from source door d_i to destination door d_j .
- ③ line 15: the condition whether $dist[d_s][d_t]$ is infinity is check together with $dist_V(p_s,d_s) + dist_V(p_t,d_t) < dist_m$.
- 4 line 24: initialize $prev[d_i]$ as empty.

Computation: point-to-point distance (III)

```
while H is not empty do
26:
           \langle d_i, dist[d_i] \rangle \leftarrow deheap(H)
27:
           if d_i \in doors then
28:
               doors \leftarrow doors \setminus \{d_i\}
29:
              if dist_m > dist_V(p_s, d_s) + dist[d_i] + dist_V(p_t, d_i)
              then
30:
                 dist_m \leftarrow dist_V(p_s, d_s) + dist[d_i] + dist_V(p_t, d_i)
31:
              (v, d_i) \leftarrow prev[d_i]
              while d_i \neq d_s do
32:
                 if d_i \in doors_s and d_i > d_s then
33:
                     dists[d_i][d_i] \leftarrow dist[d_i] - dist[d_i]
34.
35.
                     if dist_m > dist_V(p_s, d_j) + dists[d_j][d_i] +
                     dist_V(p_t, d_i) then
                       dist_m \leftarrow dist_V(p_s, d_i) + dists[d_i][d_i] +
36:
                        dist_V(p_t, d_i)
37:
                  (v, d_i) \leftarrow prev[d_i]
              if doors = \emptyset then
38:
                 break
39:
           else if d_i \in doors_s and d_i < d_s then
40:
41:
              for each door d_i \in doors do
                 dists[d_s][d_i] \leftarrow dist[d_i] + dists[d_i][d_i]
42:
                 if dist_m > dist_V(p_s, d_s) + dists[d_s][d_i] +
43:
                 dist_V(p_t, d_i) then
44:
                     dist_m \leftarrow dist_V(p_s, d_s) + dists[d_s][d_i] +
                     dist_{V}(p_{t}, d_{i})
45:
              break
           mark door di as visited
46:
           parts \leftarrow D2P_{\vdash}(d_i)
47:
           for each partition v \in parts do
48:
              for each unvisited door d_i \in P2D(v) do
49:
50:
                 if d_i \in P2D_{\vdash}(v) then
                     if dist[d_i] + G_{dist} \cdot f_{d2d}(v, d_i, d_j) < dist[d_j] then
51:
                       dist[d_i] \leftarrow dist[d_i] + G_{dist}.f_{d2d}(v, d_i, d_j)
52:
                       prev[d_i] \leftarrow (v, d_i)
54: return dist<sub>m</sub>
```

- 1 lines 26–31: when a destination door $door_i$ is popped from priority queue H and processed, its previous door d_j on the shortest path is obtained.
- 2 line 32: backward optimization is continued until the current source door d_s is reached.
- ① lines 33–34: if door d_j is a source door and it has not been processed by the for-loop, the shortest distance from d_j to destination door d_i is stored in $dist[d_i][d_i]$.
- lines 35–36: shortest indoor distance from the source position to the destination is updated if necessary.
- Iines 40–45: a similar optimization also applies to the forward direction. If d_i popped from H is a source door and processed before the current for-loop, the distance can be directly used.

Indoor Distance-Aware Indexes

Definition (Door-to-Door Distance Matrix)

an N-by-N matrix, denoted as M_{d2d} , where $N = |S_{doors}|$ is the total number of doors. Without loss of generality, suppose $1 \le d_i \le d_j \le N$, we have:

- 1) $M_{d2d}[d_i, d_i] = 0;$
- 2) $M_{d2d}[d_i, d_j] = d2dDistance(d_i, d_j);$
- 3) $M_{d2d}[d_i, d_j]$ may differ from $M_{d2d}[d_j, d_i]$ due to the directed doors.

$$\begin{pmatrix} d_1 & d_{11} & d_{12} & d_{13} & d_{14} & d_{15} \\ d_1 & 0 & 1.7 & 2.7 & 3.2 & 2.6 & 4.3 \\ d_{11} & 1.7 & 0 & 1.9 & 3.4 & 3 & 4.4 \\ d_{12} & 2.7 & 1.9 & 0 & 2 & 2.2 & 3 \\ d_{13} & 3.2 & 3.4 & 2 & 0 & 1.2 & 1 \\ d_{14} & 2.6 & 3 & 2.2 & 1.2 & 0 & 2.2 \\ d_{15} & 3.2 & 3.4 & 1.5 & 3.5 & 3.7 & 0 \end{pmatrix}$$

$$\begin{pmatrix} & 1 & 2 & 3 & 4 & 5 & 6 \\ d_1 & d_1 & d_{11} & d_{14} & d_{12} & d_{13} & d_{15} \\ d_{11} & d_{11} & d_1 & d_{12} & d_{14} & d_{13} & d_{15} \\ d_{12} & d_{12} & d_{11} & d_{13} & d_{14} & d_1 & d_{15} \\ d_{13} & d_{13} & d_{15} & d_{14} & d_{12} & d_1 & d_{11} \\ d_{14} & d_{14} & d_{13} & d_{12} & d_{15} & d_1 & d_{11} \\ d_{15} & d_{15} & d_{12} & d_1 & d_{11} & d_{13} & d_{14} \end{pmatrix}$$

Definition (Distance Index Matrix)

an N-by-N matrix, denoted as M_{idx} . Given a door identifier d_i , two integer $1 \le j \le k \le N$, $M_{d2d}[d_i, M_{idx}[d_i, j]] \le M_{d2d}[d_i, M_{idx}[d_i, k]]$.

Indexing Indoor Moving Objects

- store objects within the same partition together in an object bucket or several chained buckets.
- a linear table **Door-to-Partition Table** (DPT) is used to store the relationship between doors and partition object bucket. Each record in DPT is a 5-tuple $(d_i, vPtr_1, dist_1, vPtr_2, dist_2)$, where d_i is a door identifier.
- if $D2P(d_i) = \{(v_j, v_k)\}$, which means that door d_i is directional from partition v_j to v_k , then field $vPtr_1$ is a null pointer while $vPtr_2$ is a pointer that points to the object bucket of partition v_k , $dist_1$ is ∞ , and $dist_2$ is $G_{dist}.f_{dv}(d_i, v_k)$.

Intra-Partition Object Index and Search

- a grid index is built for spatial objects in each indoor partition.
- all spatial objects in an indoor partition v_i are organized using a corresponding bucket B_i , B_i consists of multiple sub-buckets each of which corresponds to a grid cell.
- for $rangeSearch(B_i,q,r)$, search only those grid cells that overlap the circle centered at q and with radius r, if a cell is fully inside the circle, all the objects in its sub-bucket are included directly.
- for $nnSearch(B_i, q, dist_{nn})$, search only those grid cells that overlap the circle centered at q and with radius $dist_{nn}$.

Indoor Distance-Aware Queries: Range Query

Algorithm 5 range(Position q, distance r)

```
1: v \leftarrow getHostPartition(q)

 R ← rangeSearch(v's bucket, p, r)

 for each door d<sub>i</sub> ∈ P2D<sub>□</sub>(v) do

        r_1 \leftarrow r - dist_V(q, d_i)
        for j from 1 to |S_{door}| do
           d_i \leftarrow M_{idx}[d_i, j]
 6:
           if M_{d2d}[d_i, d_j] > r_1 then
              break
           else
              r_2 \leftarrow r_1 - M_{d2d}[d_i, d_i]
10:
11:
              if DPT[d_i].vPtr_1 \neq null then
                  if DPT[d_j].dist_1 \leq r_2 then
12:
                      add objects in \overline{DPT}[d_i].vPtr_1's bucket to R
13:
14:
                  else
                      R \leftarrow R \cup \text{rangeSearch}(\text{DPT}[d_i].vPtr_1, d_i, r_2)
15:
               if DPT[d_i].vPtr_2 \neq null then
16:
                  if DPT[d_i].dist_2 \leq r_2 then
17:
                      add objects in DPT[d_i].vPtr_2's bucket to R
18:
19:
                  else
                     R \leftarrow R \cup \text{rangeSearch}(\text{DPT}[d_i].vPtr_2, d_i, r_2)
20.
21: return R
```

- **1** a range query $Q_r(q,r)$ returns those indoor objects that are within distance r of q.
- lines 1-2: first gets the query position q's host partition v and searches for possibly qualifying objects within v by calling rangeSearch(v's bucket, p, r).
- 3 lines 4–8: exploiting the index in $M_{idx}[d_i,*]$, the search is conducted in non-descending order of $M_{idx}[d_i,d_j]$, where d_j is a door covered by the distance r from position q.
- Iines 12–18: if a partition is entirely within the query range, all objects in corresponding bucket are added to the result

Indoor Distance-Aware Queries: Nearest Neighbor Query

Algorithm 6 NN(Position q)

```
1: nn \leftarrow \text{null}; dist_{nn} \leftarrow \infty
 2: v ← getHostPartition(q)

 (nn, dist<sub>nn</sub>) ← nnSearch(v's bucket, q, dist<sub>nn</sub>)

 for each door d<sub>i</sub> ∈ P2D<sub>□</sub>(v) do

        r_1 \leftarrow dist_V(q, d_i)
        for j from 1 to |S_{door}| do
           d_i \leftarrow M_{idx}[d_i, j]
           if r_1 + M_{d2d}[d_i, d_i] > dist_{nn} then
 8:
               break
 9:
            else
10:
11:
               r_2 \leftarrow r_1 + M_{d2d}[d_i, d_i]
               if DPT[d_i].vPtr_1 \neq null then
12:
13:
                  (obi, dist) \leftarrow nnSearch(DPT[d_i], vPtr_1, d_i, dist_{nn} -
                  r_2
14:
                  if dist + r_2 < dist_{nn} then
15:
                      (nn, dist_{nn}) \leftarrow (obj, dist + r_2)
               if DPT[d_i].vPtr_2 \neq null then
16:
17:
                   (obj, dist) \leftarrow nnSearch(DPT[d_i].vPtr_2, d_i, dist_{nn} -
                   r_2
                  if dist + r_2 < dist_{nn} then
18.
                      (nn, dist_{nn}) \leftarrow (obj, dist + r_2)
19:
20: return R
```

- **1** a nearest neighbor query $Q_{nn}(q,r)$ returns those indoor objects whose distance from q is the samllest among all objects.
- 2 line 2: $nnSearch(B_i, q, dist_{nn})$ searches an object bucket B_i to find the nearest neighbor from q, $dist_{nn}$ is the current shortest distance for fast prunning.
- $\textbf{3} \ \ \text{lines 4-19: for each door} \ d_i \ \text{through} \\ \text{which one can leave} \ v, \ \text{search is} \\ \text{conducted in the similar way as for} \\ \text{range query processing.}$

References I

- C. S. Jensen, H. Lu, and B. Yang.
 Graph model based indoor tracking.
 In MDM, pp. 122–131, 2009.
- [2] B. Yang, H. Lu, and C. S. Jensen. Scalable continuous range monitoring of moving objects in symbolic indoor space. In CIKM, pp. 671–680, 2009.
- [3] B. Yang, H. Lu, and C. S. Jensen. Probabilistic threshold k nearest neighbor queries over moving objects in symbolic indoor space. In EDBT, pp. 335–346, 2010.
- [4] H. Lu, B. Yang, and C. S. Jensen. Spatio-temporal Joins on Symbolic Indoor Tracking Data. In *ICDE*, pp. 816–827, 2011.

References II

- [5] C. S. Jensen, H. Lu and B. Yang. Indoor-A New Data Management Frontier. In *IEEE Data Eng. Bull.*, pp. 12–17, 2010.
- [6] H. Lu, X. Cao, and C. S. Jensen. A foundation for efficient indoor distance-aware query processing. In *ICDE*, pp. 438–449, 2012.
- [7] C. Becker and F. Dürr.
 On location models for ubiquitous computing.
 In Personal and Ubiquitous Computing, pp. 20–31, 2005.
- [8] D. Li and D. L. Lee. A lattice-based semantic location model for indoor navigation. In MDM, pp. 17–24, 2008.
- T. Becker, C. Nagel and T. H. Kolbe
 A multilayered space-event model for navigation in indoor spaces.
 In 3D Geo-Information Sciences, pp. 61–77, 2009.

- 1. Outlines
- 2 2. Indoor Space Models & Applications
- 3 3. Indoor Data Cleansing
- 4. Indoor Movement Analysis
- 5. Appendix

- 1. Outlines
- 2 2. Indoor Space Models & Applications
- 3. Indoor Data Cleansing
- 4. Indoor Movement Analysis
- 5. Appendix

- 1. Outlines
- 2 2. Indoor Space Models & Applications
- 3 3. Indoor Data Cleansing
- 4. Indoor Movement Analysis
- 5. Appendix

The End. Thanks:)