

Poc..unit 1 - Poc material unit 1 r20 jntuk

Principles of communication (Newton's Institute of Engineering)

Scan to open on Studocu

UNIT-I

Amplitude - Hodulation

Introduction:

a be a squary side and summer sold The pumpose of a communication system is to transmit an information - bearing signed from a sounce located at one point, to a user or destination, located at

->. The essential components of a bodic communication system are information sounce. Transmitter, communication channel and receiver.

Information sounce The function of softmation source is to produce resuired message which has to be transmitted. The various Hellage signals are in the form of words, group of words, symbols and sound signaly etc.

Tonomsducen: A Transducer is a device which converts one form of energy into another form.

An imput triansducin is used to convert Hessage signal and off Triansducin for converting Electrical signal and off Triansducin for Ex: Hichophone.

Transmitter: The pumpose of a transmitter is to modify the newage signal on a suitable form for transmission our the communication channel. This can be achieved through a process known of Hodulation.

The channel and the moise

The term channel means the medium through whi the medium through whi the medium through whi the medium to the receive there are two types of channels, mamely Point to Point channels and broad cast channels.

the point to point chammely are wine lines, microws links and optical fibries

geo-stationary Bibit, which covers about of of the

-> puring the process of transmission and reception signal gets distorted due to noise introduced in the system.

noise is an unwanted signal which tend to orterference with the reluired signal.

Received the main function of the necesiver is to nephroduce the message in electrical form from the distorted necessed signal. This nephroduction of the digital signal is accomplished by a process known as the demodulation of detection.

convert an electrical nessage signed so its signal

Modulation

The purpose of communication system is to transmit
Hessage signal from one place to another place through a
communication medium 31 chammel.

there basically the Hellage signals are low meluency signals which cannot be transmitted effeciently to long distance our the channel directly.

so you can use a carrier signal as high frequency signal which carry the Hessage signal to a long distance for purpose of communications.

so the 1000 frequency signary are translated onto

-> modulation may be defined of the process by which some characteristic parameters of a high

frietherry signal called consider signal is norted in accordance with the softanteous value of low friet signal called Hellage signal.

Let a simusoidal cannier wave on amalog Hodulation in given by $c(t) = A_c \sin(\omega_c t + \theta)$

where $A_c = Amplitude$ of contien signal $w_c = Ampulan$ free of "" $\theta = Phase angle.$

Any of these parameters may be varied on accordance with the message signal. Accordingly the nodulation process is termed as AM. FM and PM.

the frequency and phase nodulation are collectively called of small nodulation.

Basically modulations are of two types.

- 1. continuous wave modulation when the carrier wave is continuous on mature, the modulation process is known as continuous wave modulated of analog modulation.
- and amplitude redulation and angle redulation.
- a. Pulse modulation when the cappnier wall is a pulse type water form. The modulation is known as pulse modulation.

 Et. pulse amplitude modulation, pulse with modulation, pulse coilth modulation,

Need for nodulation.

- 1. To neduce the antenna height
- 2. TO siemove onterference
- o- Reduction of moise.
- U. Improved auality of neception.
- 5. Improve the signal to noise natio.

Amplitude modulation ...

Amplitude Hodulation is defined as the process on which the amplitude of the casissien wave is varied on accordance with the orstantaneous amplitude of message signal (8) Hodulating signal.

EXPRESSION for Amplitude Hodulated wave

Ut a cannier and Hodulating signal may be This document is available on studocu

nepnesented as alto = Ac as (27) fet + de) Here \$ = 0 for all Amplitude Modulated Technilaies. Then clt) - Accossmet and milts = Am cos 271 fmt where Ac = Amplitude of the consider wave fe = amgalon forel " " Am = Amplitude of the ressage signal. for - Angular Forel " According to the defination. The amplitude nodulated signal is s(t) = m(t)-c(t). = Ac m(+) coseTifet - 0 In order to necover the Helsage signal at the neceiving amterma, the carmier signal is added to the product of ressage signal and cappier signal. Then 5(t) = Accos 271fet + Acm(+) cos 271fet - (2) S(t) = Ac (1+m(t)) cosenfet (8) S(t) = Ac [It Kam(t)) coleTifet - (3) where Kon is constant a samplifude sensitivity

when Kon is constant = Amplitude substitute substitute m(t) = Am cos271 fmt m el (3), al set substitute m(t) = Am cos271 fmt - cos271 fet s1t) = Ac cos271 fet + Ac Ka = Am cos271 fmt - cos271 fet ta Am = m = m = modulation mdex.

S(t) = Accossmfet + Acm cossmfmt. cossmfet.

This is the expression for AN wave on time domain.

Fig (a) restage signal (b) cannier signal (c) Amplitude rodulated signal.

-> equation (4) can be written of S(t) = Ac cos 271 fet + mAc cos 271 fmt - cos 271 fet + -- - 0 COSZTIFANT. COSZTIFET = COS(ZTI(fe+fm)+ + COSZTI(fe-fm)+ Then equation (1) can be written on

S(t) = Accos 271 fet + mAc [cos271 (fetfm)+ + cos271 (fe-fm)+).

The el (6) of an Amplitude Hodulated wave contains

3 terms. The 1st of R. H.s nepresents the cannier wave,

the 2nd and 3nd terms are called LSB and USB

nespectively.

(a) Message signal (b) cannier signal (c) AM signal.

Frequency of Lowh side band = fe-fm and the frequency of upper side band = fe+fm

Bandwidth = (fe+fm) - (fe-fm) = 2fm.

Thus on AM. Bev is eleval to twice the frequency of nodulating signal.

Downloaded by Csec-girls (csecgirls (cse

Firefuency domain description of AM signal
The Amplitude Hodulated wave can be nepresented in
time domain as

5(t) = Accos271fet + Ackam(t) cos271fet - (1)

Im older to obtain the spectrum of the Amplitude modulated
wave sit), by taking the Fourier Triansform of sit).

Let c(f), H(f), and s(f) be the Fourier Triansform of

c(f), m(t), and s(f) nespectively.

Taking the F-T on both sides of eluation (0, we set coset) for (8(f+fc) + 8(f-fc))

m(+) costatet cf5 { (H(f+fe) + H(f-fe))

s(f)= A= [8(f-fe) + 8(f+fe)] + KaAc [M(f-fe) + M(f+fe)]

[M(f) cig spectrum of AM signal

Downloaded by Csec-girls (csecgirls0203@gmail.com)

Modulation onder
I have maded is defined as the state of made main
amplifude of Hessage signal to the maximum amplifud
of cannier sional m= Am.
and also m = Amgx - Amin
Pmax + Amim
The cappier Power $P_c = \frac{Ac^2}{2R}$
upper sideband power Puso = Lower sideband Power RSD
Puso = Puso = Act on = Pe on 2 8R uR
noted Power on AM signal PT = Act (1+ m2)
PT - Pc (+ m2)
percentage of efficiency (q) = m2
2+m2
If mal. of = 1/3 \$ 27.2.1. Pc = 674. Pso = 221.
et on=0 701, on = 201. Pc=801. PsD=201
It m = 0.51 m = 11.1- Pe = 89-1- Par = 11.1.
Side band Power PSD = PUSD+ PLSD = Action + Action BSD = Action = Permit BSD = Action = Permit BSD = Action = Permit
Downloaded by Csec-girls (csecgirls0203@gmail.com)

Efficient high level modulators are armanged so that undesired modulation products never fully develope and me meed not be filtered out this can be accomplished with the help of a switching device.

Vout(t)

/slope=1

Vim(t)

figial switching Hodulator

fig(b) Idealised IP-

The carmier wave c(t) applied to the diode is large on amplitude, so that it swings night across the chric curve of the diode. We assume that the diode acts as an ideal switch.

the diode offers zero resistance on the forward direction clfs >0, and onlimite resistance on the neverth direction ie clfs to the Transfer characteristic of the diode-load resistor combination by a piece-wise-

The onput voltage can be written ors

vin (+) = c(+) + on(+)

= Accos(2716+) + on(+). -0

The negulting load voltage vont (+) is Vout (+) ≈ { Vim(+) c(+)20 0 c(+)20 -(2) : The load voltage vout (+) variey periodically between the values of vim(+) and zero at a nate escal to the consider we may express el@ nathematically of Now (t) = Vim(t) . 9p(t) = (Accos(27)/et)+ m(t)) 9p(t). when 9plt) is a periodic puble train of duty cycle escual to one hast and seriod To = 1 :. 9p(t) can be expressed on Fourier series of $9p(f) = \frac{1}{2} + \frac{2}{\pi} \sum_{m=1}^{\infty} \frac{(-1)^{m-1}}{2m-1} cos(2\pi fc f(2m-12))$ 3plf) = 1/2 + 2 (cos 271 fet - 1/3 cos 671 fet + 1/5 cos 1071 fet) substitute eluation (1) on el (5) ul set Now (t) = (m (t) + Ac coseTifet) (1 + 2 (coseTifet - 3 cos 67/et) Vaul(t) = m(t) + Ac cosenfet + 2 m(t) cosenfet + 2Ac cos senfet +-The BPF is having the Palsband of Vowt (+) = Ac cos27/kt + 2 mill cos27/kt / -k-fm te -k+w fe-fm te k+fm but (f) = AC [1+ 4 cm (+)] COS271kt

when the = 4 TTAL

vout (+) = Ac (1+ Kam(+)) cos211 fet.

Envelope detecto

consider the case of an AH wave on which the cannier fire! is much larger than the Hessage bandwidth and percentage redulation is less than 100% such a cost shown on below tig.

- ->. The envelope of the AM wave looks like the Hodulahing signal. They the desired demodulation can be accomplished by extracting the envelope of the regulting Art wave by using detector known as encelope detector.
- -) The envelope detector produces an output signal that follows the encelope of the onput signal wallow exactly.
- -> The detector consists of a diode and nesistor capacital

Fig(a) OKT diagnam of envelope delector.

on the fositive half cycle of the mput signal, the diode is toward Fisco Envelope devector our biased and capacitor c" changes up napidly to the peak value of the mput signal.

Vout (6)

- be comes neverthe biased and the capacital 'c" dischanges the nough the load pesistal "Ri". The dischanging process continuous until the most positive half cycle.
- owlen the onput signal becomes greater than the vollage across the capacital, the diode conducts again and the process a repeated.
- with the constien line period ie RCCLL .
- so that the capacito discharges showly thenough the long enough the load resistor Re ie te LERE.

mas be finel removed by using UFF

Downloaded by Csec girls (csecgirls 0203@gmail.com

Double side band suppressed carrier nodulation We know the Amplitude nodulated wave is given by 5(t) = Accos271fet + mAc (cos271(fe+fm)) + + cos271(fe-fm)))

Forom this equation, it is observed that the carmier component on AM wave nemains constant on amplitude and Breg. This means that the cappier of amplitude modulated wave does not convey any ontormation.

In 100% nodulation, 67% of the total Power is nelwined for transmitting the consider which does not as contain any ontomation. Hence, if the consider is suppressed only the side bands nemain and save the = of Power on loot modulation. only the sidebands contain the enformation.

-> This type of suppressing the commien from the modulated wave is called bouble sideband suppressed commien nodulation

Time domain description of DSB-SC Modulation

The DSD-SC Hodulation is obtained by taking the Product of carrier signal c(t) and the nessage signal m(t) of

s(t) = c(t).m(f)

s(t) = Acm(t). (oszTilet - 0.

substitute the mill) = co Am cose 17 fmt on eluation (O. we get SIt) = Ac Am CoszTI font - coszTI fet.

W.K.T COSA COS B = COS (A+B) + COS (A-D) where A = 2Tifanti p = 2Tifat :. S(+) = Am Ac (cos(27) (fe+fm) +) + (os(27) (fe-fm))) S(t)= Am Ac cos2TI (fe+fm)+ + Am Ac cos2TI (fe-fm)+ equation (1) is called time domain personiphion of DSIT-SC wave. Fig (a) Hessage signa CH

FISCH cannier sional

SIED SIED FISCO DSB-SC Signal

Frequency domain description of OSD-SC sional W.K.T the DSD-SC signal is given by s(+) = Acm(+) cos 271 fet -(0) In order to obtain the spectrum of DSD-SC: by appling the Founier Transform. Let c(f). m(f) and s(f) to the Fourier Transform of citi m(t) and sit) respectively. :. apply the Fourier mansform of elo on both sides we set F.T (S(+)) = F.T (Ac m(+) cos(271fet)) = Ac F.T [m(+) { = 1271fet - J271fet } s(f) = Ac {F-T [m(f) e = 27) fet } + Ac {F-T [m(f) e = 227 fet]} m(t) eszilet (F) -1 (f-fe)
m(t) eszilet (F) M (f+fe) o form of s(f) = Ac [H(f-fe)+H(f+fe)]-0 Fishor spectrum of equation @ = called DSB-SC m MCSJORE signal Ineluency domain deskniption. -fe o fe upper sideband forel = fe+fm Lower sideband forel - fe-for spectnum of connien signal Bandwidth - USB friel - LSB friel - (fe+ fm) - (k-fm) D.W = 2fm - fe-low - he - te+for D te-form # fe fethor

This document is available on **Studocu**Downloaded by Geec-girls (csecgirls0203@gmail.com)

Ring Modulato :.

(a) cincuit diagram of Ring nodulator.

condition when outer diodes one on and money diodes are off.

condition when outer diades one on and onmer diades one off.

- -> one of the most useful product modulators for generating a pSB-SC wave is the ming modulator shown in fig(a).

 The Foundiodes form a ming in which they all Point in the sand way hence the marme ming modulator.
- of frequency for which is applied by means of two center-tapped transformers.
- we assume that the diodes one ideal and the many formers and perfectly balanced.

when the caritier voltage is Positive, the outer diodes to ane switched on and offers zero resistance, whereas the ormer diodes are switched off and offers refinite resistance as shown on fig(b). so that the Hodulator multiplies the message signal by "+1".

when the carmier vollage is megative, the situation becomes reversed and the modulator multiplies the message signal by -1". Thus the string modulator is a product modulator for a stuare wave carmier and the message signal of shown in high the stuare wave carmier all can be represented by a fourier series of all = $\frac{y}{11} \int_{-10^{-1}}^{\infty} \frac{(-1)^{m-1}}{2m-1} \cos 2\pi f e + (2m-1) - (1)$ The simp modulator output is situation with ...

Fig (a) Hessage signal

TC(t)

Fis(b) samane wave cannier

there is no output from the modulator at the cornier frequency, ie the modulator output consists of modulation products. Thus the rims modulator is referred to as "accubale balanced modulator."

coherent petection of DSD-SC Hodulation

The process of extracting an original nessage signal from DSD-sc wave is known as detection or demodulation of DSIT-SC

The Message signal m(t) can be necovered from a DSDSC wake s(t) by multiplying s(t) with a locally generalled sine wave and then low pass fillering the product of stour on fig.

-> It is assumed that the locally generaled commien signal is exactly coherent on both frequency and phase with the commissional alt used on the product nodulated to generate sits. The nethod of demodulation is known as coherent detection of synchronous detection.

The locally generaled carrier signal is denoted by c'the Accos(27) lett. The OIP of the product rodulator V(+) = s(+). c'(+).

VIt) = Ac. om (t) cos 27 fet . Ac cos (27 fet + 0).

= AL m(t) cos 27/kt. cos (27/kt +0).

W-K-T (OSA (OSB = (OS (A+B) + (OS (A-D))

V(t) = Ac2 m(t) [cos(unfet +p) + cosp)

VIED = Act mits cos (inhet +6) + Act con(t) cosp. 1

The first term on el D represents a DSBSC wave with a I cannier frieldency etc, whereas the second term is propartional to the message signal miltor

- The old of the product modulated is passed thorough the LPF.
- The Amplitude of deHodulated output is maximum and elual to Act when \$5=00 and the amplitude is zero when \$5=00. This effect is called Quadrature mull effect.

or undonature means the phase difference of 900 81 71/2 madians.

costas Receiven

costas neceiver consists of two product modulators with common input sito, which is prosesse wave. The other imput

for both product modulators is taken from voltage cartrolled scillet (vco) with -90° phase shift to one of the product modulator as shown on fig.

WET the DSDSC signal is given by sIt) = Accos(27) fet) mill).
Let the output of vco be 4(t) = cos(27) fet to).

The oil of vco is applied as the commier omput of the upper product modulator, Hence the oil of the upper product modulator is $v_1(t) = s(t) c_1(t) = A_c(cos(2\pi kt) m(t) cos(2\pi kt+d))$

: VI(t) = Ac cospm(t) + Ac cos (47) fet + p) m(t).

This signal is applied of an onput of the upper low pass hitter the oil of this low pass filter is voilt) = Az cosp mit)

> The oil of -90° Phase shiften is by cut)=cos (27/kt+p-90°) = sim (27/kt+p).

this signal is applied as the consider supert of the lower Isroduct nodulated is

V2(+) = S(+) (2(+) = Ac(d(21) tet) m(+). sim (31) tet +6).
After simplifying we will get U2(+):

V2(+)= AL simpom(+)+ AL sim (unlet + \$).m(+)
This is applied of an input of the lower low pass titles. The

OIP of lower low Palls filter a vositi) = Az sind mit).

mputs of the phase discriminator. Based on the phase difference blue these two signals, the phase discriminator the phase discriminator the phase discriminator broduces a DC control signal.

(12)

Quadrature cannier multiplexing (3) Quadrature-amplitude nodulation (QAH) scheme enables two DSD-SC Modulated waves to occupy the same to amsmission bandwidth, and it allows for the separation of the two Message signals at the receiver output.

Ag (B) Receives

S studocu

- The transmitter part of BLAM shown on hig (a), which we of two separate product rodulators that are supplied with two carrier signals of the same frequency but differing on phase by 90°. The transmitted signal siti consists of the sum of these two product rodulator outputs. Then

 5H) = Acm, (t) cos (5Th/ct) + Acm, (t) sim (2Th/ct) (1)

 where m, (t) and m, (t) denote two different message signals applied to the product rodulators. They sit occupies a

 Transmission bandwidth of 2fm, when fm" is the

 Message bandwidth of m, (t) of m, when fm" is the
- The neceiver point of Quan in shown on hig(b), The multiplexed signal sit) is applied simultaneously to two seperate coherent detectors that are supplied with two local carriiers of the same frequency, but differing on phase by 90°. The outputput of one detector is 12 Acmillo whereas the output of the ce and detector is 12 Acmillo whereas the output of the ce and detector is 12 Acmillo whereas the output of the ce and detector is 12 Acmillo whereas the output of the ce and detector is 15 Acmillo whereas the output of the ce and
- television.

(13)

Amplitude nodulation, and double sideband suppressed cannier nodulation are wasteful of bandwidth because both are neswined a transmission bandwidth escal to twice the message bandwidth. In either cash, one half of the transmission bandwidth is occupied by the upper sideband whereas the other half occupied by the upper sideband whereas the other half occupied by the lower sideband.

- each other by vintue of their symmetry about the annier. This means that if the amplitude and phase spectra of one is known, other can be unituely determined.
- me cessary to reproduce the message signal uniformly at the necessary and the message signal uniformly at the necessary and the necessary and one of the sideband is suppressed no information is lost.
- > so far the advantage is that the transmission bandwidth nescribed for this case is escal to the restage bandwidth.
- scheme is neferred to of a SSD-SC Hodulation.
- s the advantage of SSD-SC is the elimination of high forces cannier and neduced band width nelcustement.

Time domain description of SSB Hodulation The standard expression for DSB-SZ wall on hime domain 5 5(4) = Acm(+) rod 27/fet where m (t) = Am cos 271 fmt. SIt) = ALAm codeTI font. codeTI let 5(t) = AcAm [cos 271 (Fe+Fm)+ + cos 271 (Fe-Fm)+) = Ac Am cos 27 (fetfins)+ + Ac Am cos 271 (fe-fins)+ The eluation (can be written as ISH) = ACAM COS 27 (fc I fam)t) This is the expression for SSB wave on himl domain. Here + sign is wold for USB and I'm sign is used for LSD. 1312) SPENJOUM OF DSID , S(F) = 1 AZM (6) Fish spectnam of USB VSB AS(a) 69(c) specknam of LSD te fet form Dand width of SSD SSD-SC(USD = tz - (te-for) 45(P) fertetfm=fm Dowof SSD = form/ (712 SSD-SC/LSD where for is ruessage signal frequency

Energy discrimination Hethod:

The frequency discrimination method can be used to generale SSB-SC wave when the message signal is nestricted and approximately related to carrier frequency.

- This Method consists of a balanced Modulated and a filling which is designed to pass the desined side band and suppress the condesined one. This method is also known as filler Hethod of generation of SSD-SC signal.
- The nequinement of this method of generation of SSD-se is the unwanted sideband whose forefuency components is suppressed from the desired sideband by twice the lowest frequency component of modulating signal.
- following two nelconoments have to be satisfical
 - The pass band of filts should be same as that of the desired side band.

This document is available on Studocu

2) The transition band of the filts should not exceed twice the minimum frequency component present on the Hellage signal.

This nethod is based on the time domain description of the SSB-SC signal.

- The SSD-SC signal can be generated by using two separate simultaneous DSB Hodulation and combining them suitably depending on the desired side band.
- The consists of two balanced modulators with commien wave on shall suadmature to each other.
- balanced Hodulato A. producing a DSD-SC wave that translates the spectrum of met symmetrically spaced above the carrier forefuency of."
- The hilbert transform will of will is applied to the balanced modulated B, producing a DSD-Sc wave that contains sidebands having identical amplitude spectrum as that of modulated A, but of different relative phase.
- on set of sidebands and neimforcement of the
 - -) S(t) SSB-SC = A COMITOS (27) Fet) 7 Az milt) Sim (27) ED

 HERE -LE Sign HD USD, +LE Sign HD LSB.

 This is also confined occurrent is available (orley) studocum

vestigial sideband Modulation (USD)

- -> A vestigial side band system is a compramise between DSD-SL and SSD-SL System.
- Bandwidth is only slightly higher than SSB signaly and but costiderably less than DSB-SZ signals.
- of signaly which is not very high on low firel components
- -> At low frequencies, the upper and lower sidebands of translated signal tend to meet at the commien frequency under such cases, it becomes very difficult to isolate one sideband from the other.
- The difficulty has been overcome the new scheme called vestigial side band (VSD), on which orstead of one side band netect ampletely we allowed a gradual cut-off that sideband.
- -> This gradual cut is compensated by a vestige (87 Postion) of the other sideband.

Generation of USD signals

mlt) Product DSD-SC Sideband VSD wave fills (5) sittle (5) sittle HIFD I

EVSB signal can be generated by passing a DSB-SC signal through an appropriate filler of transfer function H(1). as shown on fig.

:. S(t) = (Ac m(t) cos271 (et) H(t) -0 The spectrum of VSB signal s(f) is given by s(f) = A= (M(f-fe) + M(f+fe)) H(f)-6). The function of the sideband filter is to allow the complete one sideband and some part of the other

Fig1a) spectnam of Hessage

-fe-fu -fe -fe+fim 0 k-for fe fe+fv f

Fig (h) specttrum of USD signal

Dand width = k+fv - (k-fm)

= fettv-ktfm

(D.w = fet for) where for is the foreliency

ial sideband

- VSB Transmission of amalog and Digital relevision:
- VSB Hodulation used for the transmission of television and similar signals, and also good Phase characteristics for the transmission of low frequency components.
- ond vedio signal bandwidth is enter
- -> Dy wing DSD-SL, ie AH transmission for the TV signals.

 the system bandwidth will be 4.2 +2 = 8.4 MHZ.
 - If we add the guard bandwidth between the sound and picture carniers, then the total bandwidth refluired for the transmission of vedio signal by using DSD-SC is about about 9 HHZ
 - => If we use SSB-SC for the transmission of vedio signal which needs only SAHT bandwillh, Here only USB is sent relevision.
- -> But lower friedwencies of chammel is having emportant
 - of vedio signal and picture cannier one transmitted without any suppression, whereas a vestige is a part of lower sideband is transmitted of shown in high and the nemaining part is suppressed.

so by wing VSB on Television -Full USB (SMHZ + 0.5MHZ (Guand band)) = 5-5AHZ) TXEd 1 F & LSD (0-75AHZ + 0.5AHZ = 1.25AH) is Transmitted -) sound is given with bandwidth of 0-25AHZ a colon is sent along with video signal, and cold has maximum bandwidth of 1.51HZ.

Fig. 3.85 spectrum of transmitted TV signal using VSB Transmission (NTSc),

Frequency Translation:

The process of converting a band of frequencies to another location on the total foreluency spectorum is called foreluency Translation.

of downward on friedward, so that it occupies a new friedward this friedward translation is obtained by multiplication of the signal by a locally generaled sime wave, For example, coulder the DSB-SC wave

s(+)= m(+) (0)(27/fe+) - 0

m which the nodulating wave m(t) is limited to the bound
-for Lf & from the spectrum of sIt) occupies the Bretwerry
bands fc-for & f & fetfor and -fe-for & f & -fetfor of shown
in higher.

on frieducined to trianslate the modulated wave downward on frieducing, so that its carrier is champed from 'fe" to a new value "fe" where feete, This can be obtained by multiply the mooning modulated wave sit) by a sinewave of frieducing for supplied by a local oscillator.

VI(t) = S(t) (0) (27/fet) = m(t) (0) (27/fet) . co) (27/fet)
- 1/2 m(t) (0) (27/fe-fe) + 1/2 m(t) (0) (27/fet)

The spectrum of VI(t) is shown in fig(b).

The Hodulated wave translated downward on Brequency by Passing the multiplier output vi(t) through a band Pass filter of mid-band Brequency for and band width 2 form.

. The filter output is

1211)= - mit) cos (271 (k-ft) k

= = = m1+2 cos(271fot) where fx-f+=fo.

Fig: illustrations the Frequency marlatin (0) spectrum of Assorse

Figib spectrum of signal by Multiplying DSD-sc wall with a local cannier.

Fisco spectnum of DSB-SC wall Anaplated downward in

-, A device that carmier out the firel translation of a modulated wave is called Hiller. The operation is called Hilling of heteroand DPE. THE Multiplies is continued of Dand Pay 1210 and DPE. THE Hulliplies is constructed of cod(27) fet) by ying non-Linear of switching device. Miximo is a limear operation F9 Block diagram of it completely preserves the relation of the sidebands of the oncoming rodulated wall to the comics.

Figi - Block diagram of pom system

Frequency division Multiplexing (form):

This technique permits a fixed frequency band to every user in the complete channel band width. Such frequency slot its allotted continuosly to that user.

- As an example concldes that the channel band width is IMHZ, let there be 10 users, each orequiring upto 100KHZ band width. Then the example channel band width of 1MHZ can be divided into 10 frequency bands. (i.ve) each of 100KHZ and every user can be allotted one independent frequency band. This technique is known as "frequency Birism Multiplexing".
- The malphy used for modulated signal. This is due to the fact that a modulated signal can be placed in any frequency band by just changing the coursier frequency. However, at the receiver, these frequency multiplexed signals can be separated by the use of tuned circuits of their respective frequency band and these are independent tuned circuits and demodulators.

Downloaded by Csec-girls (csecgirls0203@gmail.com)

- The FDM scheme is shown in figure with the elmutaneous. @

 transmission of three message signals. The spectra of

 the message signals. The spectra of the message

 signals anothe sum of the madulated corriers are

 indicated in the figure.
- Any type of modulation can be used in FDM as long as the countries spacing is sufficient to avoid spectral overlap. However the most widely user method of modulation is SSB modulation.
- → At the receiving end of the channel the three modulated Signals are separated by boundpass filters and then demodulated.
- > FDM 85 used in telephone system, elementary, commercial broad cost, television and communication networks.
- Spaced 10kHz apart in the Arequency xange of 540 to 1600 KHz. This separation is not sufficient to avoid spectral overlap for AM with a reasonably high fidelity and signal. Therefore AM stations on adjacent carrier frequencies are place geographically for apart to minimize interference commercial FM broadcost uses carrier frequencies spaced 200 KHz apart. In a long distance telephone system upto 600 or more voice signals are transmitted over a co-axial cable or micronave links by using SSB madulation with carrier frequency spaced 4 KHZ.