- 1. (CURRENTLY AMENDED): A graphics processing method, comprising the steps of:
 - (a.) caching texture memory fetches, using a cache tag assignment which is [[essentially]] unique mapped, the cache tag assignment having a tag length and mip mapping addresses, while
 - (b.) generating condensed cache tags, by removing two bits from the tag length by means of a remapping which exploits [[the]]different address resolutions implied by level of detail settings in [[the]]different mip mapping processes to re-encode the mip mapping addresses
 - (c.) and using [[said]]the condensed tags for [[said]]caching step (a.);
 - (d.) coding a map level identifier so that
 - a largest map level uses 1 bit to designate a map level and ((m-i) + (n-j)) bits to specify said addresses on said x- and y-axis,
 - a second largest map level uses 3 bits to designate a map level and ((m-i) + (n-j)-2) bits to specify the addresses on the x-axis and y-axis, and
 - successively smaller map levels use greater than 3 bits to designate a map level and less than ((m-i) + (n-j)-2) bits to specify the addresses on the x-axis and y-axis.

2. (CANCELED)

- (CURRENTLY AMENDED): A graphics processing method, comprising caching texture memory fetches using a cache tag assignment in which a unique relation between a mip-mapping-level-of-detail parameter and coordinate bits defines a smaller tag address for any given memory address;
 - wherein a map level identifier is coded so that
 - a largest map level uses 1 bit to designate a map level and ((m-i) + (n-j)) bits to specify said addresses on said x- and y-axis,
 - a second largest map level uses 3 bits to designate a map level and ((m-i) + (n-j)
 2) bits to specify the addresses on the x-axis and y-axis, and

successively smaller map levels use greater than 3 bits to designate a map level and less than ((m-i) + (n-j)-2) bits to specify the addresses on the x-axis and y-axis.

- 4. (CURRENTLY AMENDED): The graphics processing method of Claim 3, wherein [[said]]the cache tag assignment is generated by combining a mip-map-level-of-detail parameter which can have at least 2^{J-1} + 1 different values together with coordinate bits which can have as many as 2^K different values into fewer than J + 2K bits without loss of information; wherein J represents the number of bits for [[the]]a_level of detail and K represents the number of bits for arbitrary coordinate values.
- 5. (CURRENTLY AMENDED): The graphics processing method of Claim 3, wherein [[said]]the cache tag assignment is generated by combining a first parameter which can have at least $2^{J-1} + 1$ different values together with coordinate bits which can have as many as 2^K different values into fewer than J + 2K bits without loss of information;

wherein [[said]]the first parameter and [[said]]the coordinate bits are three-dimensional coordinates; and

wherein J represents the number of bits for [[the]]a level of detail and K represents the number of bits for arbitrary coordinate values.

- 6. (CURRENTLY AMENDED): A method of generating condensed cache tags, comprising the steps of:
 - (a.) concatenating[[the]] a texel address on[[the]] an x- and y-axis with a map level identifier, where addresses on the x-axis can require m bits, addresses on the y-axis can require n bits, and [[said]]the map-level identifier can require p bits;
 - (b.) if two caches are being used for odd/even maps, deleting [[the]]a_least significant bit of [[said]]the map level identifier;
 - (c.) if texels are being stored in the cache in 2ⁱx2^j patches, such that i and j represent a texel's address on the x- and y-axis respectively and said address having i and j least significant bits, deleting the i least significant bits of the address on the x-axis and the j least significant bits of the address on the y-axis; and
 - (d.) coding said map level identifier so that
 - [[the]]a largest map level uses 1 bit to designate [[the]]a map level and ((m-i) + (n-j)) bits to specify said addresses on said x- and y-axis,
 - [[the]]a second largest map level uses 3 bits to designate [[the]]a map level and ((m-i) + (n-j)-2) bits to specify [[said]]the addresses on [[said]]the x-axis and y-axis, and
 - successively smaller map levels use greater than 3 bits to designate [[the]]a_map level and less than ((m-i) + (n-j)-2) bits to specify [[said]]the_addresses on [[said]]the_x-axis and y-axis.
 - 7. (CANCELLED): A cache system for a texture map, comprising:
 - a texture memory containing at least one map, wherein [[the]]addresses for said map can require m bits for [[the]]an_x axis_coordinate, n bits for [[the]] a y axis_coordinate, and p bits for [[the]]a map level identifier; and
 - a direct-mapped texture cache for [[said-]]the texture memory, configured to be accessed using lookup tags which require m + n 1 or fewer bits.
 - 8. (CURRENTLY AMENDED): A graphics processing method, comprising the steps of:

- (a.) caching texture memory fetches, using a cache tag assignment which is [[essentially]] unique mapped, while
- (b.) generating condensed cache tags, by means of a remapping which exploits

 [the]]different address resolutions implied by level of detail settings in

 [[the]]different mip mapping processes to re-encode [[the]]mip mapping
 addresses into a length which is only one bit longer than [[the]]a
 maximum condensed length of [[the]]a spatial [[addresses]] address
- (c.) and using [[said]]the condensed tags for [[said]]caching step (a.)
- (d.) coding a map level identifier so that
- a largest map level uses 1 bit to designate a map level and ((m-i) + (n-j)) bits to specify said addresses on said x- and y-axis,
- a second largest map level uses 3 bits to designate a map level and ((m-i) + (n-j)2) bits to specify the addresses on the x-axis and y-axis, and
- successively smaller map levels use greater than 3 bits to designate a map level and less than ((m-i) + (n-j)-2) bits to specify the addresses on the x-axis and y-axis.