<u>Distributed Graph Computing Systems:</u> <u>Design, Implementation and Applications</u>

Yi Lu ylu@cse.cuhk.edu.hk

Pregel+

A Distributed Graph Computing Framework with Effective Message Reduction

http://www.cse.cuhk.edu.hk/pregelplus/

Performance Highligts

HashMin on BTC, 15 machines

Pregel+	Pregel+ with Mirroring	Giraph	GraphLab (Sync)	GraphLab (Async)	GPS	GPS LALP
27 s	10 s	93 s	83 s	155 s	38 s	33 s

Pregel+

A Distributed Graph Computing Framework with Effective Message Reduction

http://www.cse.cuhk.edu.hk/pregelplus/

Performance Highligts

SV on USA Road, 15 machines

Pregel+	Pregel+ with Request- Respond Paradigm		GraphLab	GPS	
262 s	138 s	690 s	inapplicable	190 s	

Blogel

A Block-Centric Framework for Distributed Computation on Real-World Graphs

http://www.cse.cuhk.edu.hk/blogel/

 $hash(v) = id(v) \mod \#\{machines\}$

Pregel Computing model

Blogel Computing model

BWorker::block_set

BWorker::vertex_set

Blogel

http://www.cse.cuhk.edu.hk/blogel/

Graph Voronoi Diagram (GVD) & 2D Partitioning

Blogel

A Block-Centric Framework for Distributed Computation on Real-World Graphs

http://www.cse.cuhk.edu.hk/blogel/

Performance Highligts

HashMin on Friendster, 15 machines

Superstep		1	2	3	4	5	6	7	8	
Drogol	Time	26.86 s	27.64 s	27.86 s	26.97 s	8.96 s	0.43 s	0.15 s	0.11 s	
Pregel+	Msg #	1,725,523,081	1,719,438,065	1,717,496,808	1,636,980,454	416,289,356	8,780,258	1,484,531	587,275	
Dlagal	Time	0.53 s	1.53 s	0.25 s	0.10 s	0.06 s				
Blogel	Msg #	6,893,957	6,892,723	5,620,051	4,134	0				

Single-Source Shortest Path, 15 machines

		Time	Step#
Euro	Pregel+	1767.69 s	6210
Euro Road	B-GVD	36.11 s	248
Koau	B-2D	11.10 s	60
TICA	Pregel+	9788.08 s	10789
USA Road	B-GVD	84.44 s	458
Noau	B-2D	12.48 s	58

Nearly 2 orders of magnitude improvements

Analysis of Graph Computing Frameworks

		Giraph	GPS	Pregel+	PowerGraph	GraphChi
Always-	PageRank	٧	٧	٧	٧	٧
active	Diameter Estimation	٧	٧	٧	٧	٧
Graph	Single-Source Shortest Paths	٧	٧	٧	٧	٧
traversal	HashMin	٧	٧	٧	٧	٧
Multi	Shiloach-Vishkin's Algorithm	٧	٧	٧	X	X
phase	Bipartite Maximal Matching	٧	٧	٧	٧	٧
Graph mutation	Graph Coloring	٧	٧	٧	٧	X

systematic + algorithmic optimizations

- Large adjacency-list partitioning
- Dynamic partitioning
- Multi-threading
- Message combiner
- Mirroring
- Asynchronous execution
- Vertex-cut partitioning
- Out-of-core computation
- Selective scheduling

- Finishing Computations Serially
- Edge Cleaning On Demand
- Single Pivot

Illustration for dynamic partitioning

Distributed v.s. Single-machine

PageRank

Diameter Est

HashMin

Pregel Algorithms for Massive Graphs

- Linear space usage
- Linear computation cost
- Linear communication cost
- At most logarithmic number of rounds

- Graph connectivity problems
 - Connected components
 - Bi-connected components
 - Strongly connected components

List of publications

• 2015

- Yi Lu, James Cheng, Da Yan, Huanhuan Wu
 Large-Scale Distributed Graph Computing Frameworks: An Experimental Evaluation
 In Proc. of the VLDB Endowment (PVLDB), Volumn 8(3), Kohala Coast, Hawaii, 2015.
- Da Yan, James Cheng, Yi Lu, Wilfred Ng
 Effective Techniques for Message Reduction and Load Balancing in Distributed Graph Computation
 In Proc. of International World Wide Web (WWW) Conference, Florence, Italy, 2015.

• 2014

- Da Yan, James Cheng, Yi Lu, Wilfred Ng
 Blogel: A Block-Centric Framework for Distributed Computation on Real-World Graphs
 In Proc. of the VLDB Endowment (PVLDB), Volumn 7(14), Hangzhou, China, 2014.
- Da Yan, James Cheng, Kai Xing, Yi Lu, Wilfred Ng, Yingyi Bu
 Pregel Algorithms for Graph Connectivity Problems with Performance Guarantees
 In Proc. of the VLDB Endowment (PVLDB), Volumn 7(14), Hangzhou, China, 2014.
- Huanhuan Wu, James Cheng, Silu Huang, Yiping Ke, Yi Lu, Yanyan Xu
 Path Problems in Temporal Graphs
 In Proc. of the VLDB Endowment (PVLDB), Volumn 7(9), Hangzhou, China, 2014.