ECEN 4517/5517

Power Electronics and Photovoltaic Power Systems Laboratory

Lecture 4

Converter Modeling and Simulation

Announcements

- This week's lab: Continue Experiment 3-1
 - You have this and next week to finish Experiment 3-1
 - Get your converter running open-loop and take data outside
 - Next week finish Exp 3-1, including simulations
 - Exp 3-1 Lab Report due by 11:59 pm (MT) on Friday February 24, 2017
- After this: Experiment 3-2
 - Experiment 3-2 has a pre-lab (due 11:59 pm, Friday February 17, 2017)
 - Have 2 weeks to work on Experiment 3-2
 - Exp 3-2 Lab Report due by 11:59 pm (MT) on Friday March 10, 2017
- Following this: Experiment 4
 - Experiment 4 has a pre-lab (due 11:59 pm, Friday March 3, 2017)
 - Have 3 weeks to work on Experiment 4
 - Exp 4 Lab Report due by 11:59 pm (MT) on Friday April 7, 2017
- Quiz 1: Monday, February 27, 2017 (in class)

Experiments

- Exp 1 PV panel and battery characteristics and direct energy transfer
- Exp 2 TI MSP430 microcontroller introduction
- Exp 3-1, 3-2 Buck dc-dc converter for PV MPPT and battery charge control
- Exp 4 Step-up 12V-200V dc-dc converter
- Exp 5 Single-phase dc-ac converter (inverter)
- Expo Complete system demonstration

Experiments 3-1 and 3-2

Experiment 3-1

- Demonstrate dc-dc converter power stage operating open loop, driven by MSP430 PWM output
- Inside, with input power supply and resistive load
- Outside, between PV panel and battery
- DC system simulation

Experiment 3-2

- Demonstrate working sensor circuitry, interfaced to microprocessor
- Demonstrate peak power tracker and battery charge controller algorithms, outside with converter connected between PV panel and battery

Experiments 3-1 Week 1

• Demonstrate dc-dc converter power stage inside

Experiments 3-1 Week 2

Demonstrate dc-dc converter power stage outside

Explore how duty ratio controls the PV and battery voltages and currents

Converter Modeling and Simulation

Average Switch Modeling

- Separate the switching elements from the remainder of the converter
- Define the terminal voltages and currents of the two-port switch network
- Derive relationships between the local average values of the switch network terminal voltages and currents

Average Switch Modeling in CCM

Relationship between average terminal waveforms:

$$\left\langle v_{1}(t)\right\rangle _{T_{S}}=rac{d'(t)}{d(t)}\left\langle v_{2}(t)\right
angle _{T_{S}}$$
 $\left\langle i_{2}(t)\right
angle _{T_{S}}=rac{d'(t)}{d(t)}\left\langle i_{1}(t)
ight
angle _{T_{S}}$

Continuous Conduction Mode (CCM) Operation

Averaged Model of Switch Network under CCM

Can model the switch network via averaged dependent sources

Averaged Switch Model in SPICE

We will use LTspice (a free version of SPICE) as the circuit simulator

.subckt CCM1 1 2 3 4 5
Et 1 6 value={(1-v(5))*v(3,4)/v(5)}
Vdum 6 2 0
Gd 4 3 value={(1-v(5))*i(Vdum)/v(5)}
.ends

This CCM averaged switch model is available inside SPICE Library file switch.lib

Average Switch Modeling in DCM

Discontinuous Conduction Mode (DCM) Operation

- Again find average values of switch network terminal voltages and currents
- Eliminate variables external to the switch network

Average Switch Modeling in DCM

Port 2

$$\left\langle i_{2}(t)\right\rangle_{T_{s}}\left\langle v_{2}(t)\right\rangle_{T_{s}} = \frac{\left\langle v_{1}(t)\right\rangle_{T_{s}}^{2}}{R_{e}(d_{1})} = \left\langle p(t)\right\rangle_{T_{s}} \quad \Rightarrow \quad \left\langle i_{2}(t)\right\rangle_{T_{s}} = \frac{d_{1}^{2}(t)}{2L} \frac{T_{s}}{\left\langle v_{1}(t)\right\rangle_{T_{s}}^{2}}{\left\langle v_{2}(t)\right\rangle_{T_{s}}}$$

Averaged Model of Switch Network under DCM

$$R_e(d_1) = \frac{2L}{d_1^2 T_s}$$

$$\langle i_2(t) \rangle_{T_s} \langle v_2(t) \rangle_{T_s} = \frac{\langle v_1(t) \rangle_{T_s}^2}{R_e(d_1)} = \langle p(t) \rangle_{T_s}$$

Summary of Averaged Switch Models

Switch Network

Averaged Switch Models

SPICE Model CCM-DCM1

```
* MODEL: CCM-DCM1
* Application: two-switch PWM converters, CCM or DCM
* Limitations: ideal switches, no transformer
* Parameters:
     L=equivalent inductance for DCM
     fs=switching frequency
* Nodes:
* 1: transistor positive (drain of an n-channel MOS)
* 2: transistor negative (source of an n-channel MOS)
* 3: diode cathode
* 4: diode anode
* 5: duty cycle control input
.subckt CCM-DCM1 1 2 3 4 5
+ params: L=100u fs=1E5
Et 1 2 value=\{MIN((1-v(5))*v(v2)/v(5), i(Va)*2*L/(V(5)*V(5))*fs)\}
Gd 4 3 value=\{MIN((1-v(5))*i(Va)/v(5), i(Va)*i(Va)*2*L*fs/(V(5)*V(5)*V(v2)))\}
Ga 0 a value=\{MAX(i(Et),0)\}
Va a b
Ra b 0 10k
Ef v2 0 value=\{MAX(V(3,4),0)\}
Rb v2 0 1k
.ends
```

Combined CCM/DCM switch model available inside switch.lib

This averaged model automatically switches between CCM and DCM as necessary

Simulation of Buck Converter in SPICE

- Replace buck converter switches with averaged switch model CCM-DCM1
- CCM-DCM1 and other SPICE model library elements are available from: http://ecee.colorado.edu/ecen4517/pspicelib/index.html
- Use your PV model from Experiment 1

Frequency Response (AC Analysis) in SPICE

- Given a nonlinear time-invariant circuit, as on the previous slide, SPICE can automatically perturb, linearize, and plot small-signal ac transfer functions
 - Use DC sources to set up the correct quiescent operating conditions
 - Include an AC source having amplitude 1
- When you perform an AC analysis, SPICE will:
 - Do a DC analysis to find the quiescent operating point
 - Linearize all nonlinear elements at this point, to construct a linear model
 - Perform an AC (phasor) analysis at specified frequencies to find the magnitudes and phases of all signals
 - Construct Bode plots of selected signals; with an input amplitude of 1,
 the signal magnitude and phase plot is the transfer function

SEPIC Frequency Response Example

Ideal SEPIC frequency response

.lib switch.lib Vg 1 0 dc 120V L1 1 2x 800uH RL1 2x 2 1U C1 2 3 100uF L2 3 0 100uH C2 4 0 100uF RL 4 0 40

Vc 5 0 dc 0.4 ac 1

Rc 5 0 1M

Xswitch 2 0 4 3 5 CCM1

.ac DEC 201 10 100kHz

.PROBE

.end

AC Analysis of SEPIC in SPICE

