VV156 RC1 Functions

Yucheng Huang

University of Michigan Shanghai Jiao Tong University Joint Institute

September 22, 2021

Introduction

Introduction

•0000

- 2 Class Content Review
- 3 Advanced questions
- 4 Geogebra and Desmos
- 5 Q&A

What will we learn in VV156/255/256

VV156

- Limits
- Derivatives and Integrals (VE203/VE401/VE215/VM211/VM235/VM250)
- Series
- Polar Coordinates

VV255

- Vectors
- Partial Derivatives
- Multiple Integrals
- Vector Calculus(VE230/VP260)

What will we learn in VV156/255/256

VV256

Introduction

00000

- Differential Equations (VE215/VE311/VE320/VV556/VV557)
- Linear Algebra (VV214/VV417)
- Fourier Transform and Laplace Transform (VE216)

Useful Softwares (3M)

Introduction

00000

(a) Matlab

(b) Mathematica

(c) Maple

Latex

Introduction

00000

https://liam.page/2014/09/08/latex-introduction/

- 1 Introduction
- Class Content Review
- 3 Advanced questions
- 4 Geogebra and Desmos
- 5 Q&A

Functions

Four ways to represent a function

- Verbally (by a description in words)
- Numerically (by a table of values)
- Visually (by a graph)
- Algebraically (by an explicit formula)

Domain and range

• Domain: D

• Range: E

Symmetry

- Even function: f(-x) = f(x)
- Odd function: f(-x) = -f(x)

A function f is called **increasing** on an interval I if

$$f(x_1) < f(x_2)$$
 whenever $x_1 < x_2$ in I

It is called **decreasing** on *I* if

$$f(x_1) > f(x_2)$$
 whenever $x_1 < x_2$ in I

Geogebra and Desmos

Find the domain of these functions

(1)
$$y = \sin \sqrt{x}$$

$$(2) y = \tan(x+1)$$

(3)
$$y = \arcsin(x - 3)$$

Solution

- (1) Since x is in the even root formula, it cannot take a negative value, $x \ge 0$, $D = \{x \mid x \ge 0\}$
- (2) Since $x + 1 \neq k\pi + \pi/2 (k = 0, \pm 1, \pm 2, \cdots)$,

$$D = \{x \mid x \neq k\pi + \pi/2 - 1, k = 0, \pm 1, \pm 2, \cdots \}$$

(3)
$$-1 \le x - 3 \le 1$$
, and $D = \{x \mid 2 \le x \le 4\}$

How to solve these questions

- The denominator in the fractional function cannot be zero
- The quantity in the even root formula cannot take a negative value, that is, it should be greater than or equal to zero
- The antilogarithm of the logarithm cannot be negative and zero, that is, it must take a positive value
- The domain of the function $y = \arcsin x$, $y = \arccos x$ is $-1 \leqslant x \leqslant 1$
- $y = \tan x$, $x \neq k\pi + \pi/2$, $y = \cot x$, $x \neq k\pi$, k is integer

Find the domain of these functions

(1)
$$h(x) = \frac{1}{\sqrt[4]{x^2 - 5x}}$$

(1)
$$h(x) = \frac{1}{\sqrt[4]{x^2 - 5x}}$$

(2) $f(u) = \frac{u+1}{1 + \frac{1}{u+1}}$
(3) $F(p) = \sqrt{2 - \sqrt{p}}$

$$(3) F(p) = \sqrt{2 - \sqrt{p}}$$

Geogebra and Desmos

Solution

(1)
$$h(x) = 1/\sqrt[4]{x^2 - 5x}$$
 is defined when

$$x^2 - 5x > 0 \Leftrightarrow x(x - 5) > 0.$$

Note that $x^2 - 5x \neq 0$ since that would result in division by zero.

The expression x(x-5) is positive if x<0 or x>5. Thus, the domain is $(-\infty, 0) \cup (5, \infty)$.

(2)
$$f(u) = \frac{u+1}{1+\frac{1}{u+1}}$$
 is defined when $u+1 \neq 0[u \neq -1]$ and $1 + \frac{1}{u+1} \neq 0$.

Since
$$1 + \frac{1}{u+1} = 0 \Rightarrow \frac{1}{u+1} = -1 \Rightarrow 1 = -u - 1 \Rightarrow u = -2$$
, the domain is

$$\{u \mid u \neq -2, u \neq -1\} = (-\infty, -2) \cup (-2, -1) \cup (-1, \infty)$$

Solution

(3) $F(p) = \sqrt{2 - \sqrt{p}}$ is defined when $p \ge 0$ and $2 - \sqrt{p} \ge 0$. Since $2 - \sqrt{p} \ge 0 \Rightarrow 2 \ge \sqrt{p} \Rightarrow \sqrt{p} \le 2 \Rightarrow 0 \le p \le 4$, the domain is [0,4].

Prove or Disprove

- If f and g are both even functions, is f + g even? If f and g are both odd functions, is f + g odd? What if f is even and g is odd? Justify your answers.
- If f and g are both even functions, is the product fg even? If f and g are both odd functions, is fg odd? What if f is even and g is odd? Justify your answers.

Columbian for

Solution for 1

(i) If f and g are both even functions, then f(-x) = f(x) and g(-x) = g(x). Now (f+g)(-x) = f(-x) + g(-x) = f(x) + g(x) = (f+g)(x), so

f + g is an even function.

- (ii) If f and g are both odd functions, then f(-x) = -f(x) and g(-x) = -g(x). Now (f+g)(-x) = f(-x) + g(-x) = -f(x) + [-g(x)] = -[f(x) + g(x)] = -(f+g)(x), so f+g is an odd function.
- (iii) If f is an even function and g is an odd function, then (f+g)(-x)=f(-x)+g(-x)=f(x)+[-g(x)]=f(x)-g(x), which is not (f+g)(x) nor -(f+g)(x), so f+g is neither even nor odd. (Exception: if f is the zero function, then f+g will be odd. If g is the zero function, then f+g will be even.)

Solution for 2

- (i) If f and g are both even functions, then f(-x) = f(x) and g(-x) = g(x). Now (fg)(-x) = f(-x)g(-x) = f(x)g(x) = (fg)(x), so fg is an even function.
- (ii) If f and g are both odd functions, then f(-x) = -f(x) and g(-x) = -g(x). Now (fg)(-x) = f(-x)g(-x) = [-f(x)][-g(x)] = f(x)g(x) = (fg)(x), so fg is an even function. (iii) If f is an even function and g is an odd function, then (fg)(-x) = f(-x)g(-x) = f(x)[-g(x)] = -[f(x)g(x)] = -(fg)(x), so fg is an odd function.

Vertical and Horizontal Shifts, suppose c > 0

y = f(x) + c, shift the graph of y = f(x) a distance c units upward y = f(x) - c, shift the graph of y = f(x) a distance c units downward

y = f(x - c), shift the graph of y = f(x) a distance c units to the right

y = f(x + c), shift the graph of y = f(x) a distance c units to the left

Vertical and Horizontal Stretching and Reflecting, suppose c > 1

y = cf(x), stretch the graph of y = f(x) vertically by a factor of c y = (1/c)f(x), shrink the graph of y = f(x) vertically by a factor of c

y = f(cx), shrink the graph of y = f(x) horizontally by a factor of C

y = f(x/c), stretch the graph of y = f(x) horizontally by a factor of c

y = -f(x), reflect the graph of y = f(x) about the x-axis

y = f(-x), reflect the graph of y = f(x) about the y-axis

Combinations of Functions

Definition:

Given two functions f and g, the composite function $f \circ g$ (also called the composition of f and g) is defined by

$$(f\circ g)(x)=f(g(x))$$

It is possible to take the composition of three or more functions. For instance, the composite function $f \circ g \circ h$ is found by first applying h, then g, and then f as follows:

$$(f \circ g \circ h)(x) = f(g(h(x)))$$

Graph the functions step by step

$$(1)y = 1 - 2\sqrt{x+3}$$

$$(2)y = |\cos \pi x|$$

Figure: Solution for the first function

Q&A

Figure: Solution for the second function

Q&A

Find the function (a) $f \circ g$, (b) $g \circ f$, (c) $f \circ f$, and (d) $g \circ g$ and their domains.

$$f(x) = \frac{x}{1+x}, \quad g(x) = \sin 2x$$

Solutions

$$\frac{3\pi}{2} + 2\pi n \Rightarrow x \neq \frac{3\pi}{4} + \pi n \quad [n \text{ an integer }]$$

$$(b) \ (g \circ f)(x) = g(f(x)) = g\left(\frac{x}{1+x}\right) = \sin\left(\frac{2x}{1+x}\right)$$
Domain: $\{x \mid x \neq -1\}$

$$(c) \ (f \circ f)(x) = f(f(x)) = f\left(\frac{x}{1+x}\right) = \frac{\frac{x}{1+x}}{1+\frac{x}{1+x}} = \frac{\left(\frac{x}{1+x}\right) \cdot (1+x)}{\left(1+\frac{x}{1+x}\right) \cdot (1+x)} = \frac{x}{1+x+x} = \frac{x}{2x+1} \text{ Since } f(x) \text{ is not defined for } x = -1, \text{ and } f(f(x)) \text{ is not defined for } x = -\frac{1}{2}, \text{ the domain of } (f \circ f)(x) \text{ is } D = \left\{x \mid x \neq -1, -\frac{1}{2}\right\}$$

$$(d) \ (g \circ g)(x) = g(g(x)) = g(\sin 2x) = \sin(2\sin 2x) \text{ Domain: } \mathbb{R}$$

 $f(x) = \frac{x}{1+x}, D = \{x \mid x \neq -1\}; \quad g(x) = \sin 2x, D = \mathbb{R}$

Domain: $1 + \sin 2x \neq 0 \implies \sin 2x \neq -1 \implies 2x \neq 0$

(a) $(f \circ g)(x) = f(g(x)) = f(\sin 2x) = \frac{\sin 2x}{1 + \sin 2x}$

Find $f \circ g \circ h$

$$f(x) = \tan x$$
, $g(x) = \frac{x}{x-1}$, $h(x) = \sqrt[3]{x}$

Solutions

$$(f \circ g \circ h)(x) = f(g(h(x))) = f(g(\sqrt[3]{x})) = f\left(\frac{\sqrt[3]{x}}{\sqrt[3]{x}-1}\right) = \tan\left(\frac{\sqrt[3]{x}}{\sqrt[3]{x}-1}\right)$$

- 1 Introduction
- 2 Class Content Review
- Advanced questions
- 4 Geogebra and Desmos
- 6 Q&A

Composite Function

(a) If g(x) = 2x + 1 and $h(x) = 4x^2 + 4x + 7$, find a function f such that $f \circ g = h$. (Think about what operations you would have to perform on the formula for g to end up with the formula for h.) (b) If f(x) = 3x + 5 and $h(x) = 3x^2 + 3x + 2$, find a function g such that $f \circ g = h$.

Exercise /

Solutions

(a) By examining the variable terms in g and h, we deduce that we must square g to get the terms $4x^2$ and 4x in h. If we let

$$f(x) = x^2 + c$$
, then
 $(f \circ g)(x) = f(g(x)) = f(2x+1) = (2x+1)^2 + c = 4x^2 + 4x + (1+c)$.

Since
$$h(x) = 4x^2 + 4x + 7$$
, we must have $1 + c = 7$. So $c = 6$ and $f(x) = x^2 + 6$

$$f(x) = x^2 + 6$$

(b) We need a function g so that f(g(x)) = 3(g(x)) + 5 = h(x). But $h(x) = 3x^2 + 3x + 2 = 3(x^2 + x) + 2 = 3(x^2 + x - 1) + 5$, so we see that $g(x) = x^2 + x - 1$

Special Functions

Dirichlet Function

$$1_{\mathbb{Q}}(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$$

Special Functions

Impulse Function

$$\delta(t) = \begin{cases} \infty & t = 0 \\ 0 & t \neq 0 \end{cases}$$

Step Function

$$H[n] = \begin{cases} 0, & n < 0 \\ 1, & n \ge 0 \end{cases}$$

Ramp Function

$$R(x) := \begin{cases} x, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

Hyperbolic Function

$$\sinh(x) = \frac{e^x - e^{-x}}{2}, \cosh(x) = \frac{e^x + e^{-x}}{2}, \tanh(x) = \frac{\sinh(x)}{\cosh(x)}$$

For more detail, see in textbook section 3.9 and exercise.

Inverse trigonometric function

$$\begin{aligned} & \arcsin(x), \arccos(x), \arctan(x) \\ & \arcsin(x) = \ln\left(x + \sqrt{x^2 + 1}\right) \\ & \arcsin(x) = \ln\left(x + \sqrt{x^2 - 1}\right) \\ & \arctan(x) = \frac{1}{2}\ln\left(\frac{1 + x}{1 - x}\right) \end{aligned}$$

- Introduction
- 2 Class Content Review
- 3 Advanced questions
- 4 Geogebra and Desmos
- **5** Q&A

Geogebra and Desmos

https://www.geogebra.org/calculator https://www.desmos.com/

Geogebra and Desmos

- Advanced questions
- **5** Q&A

Q&A

Q&A