SSN College of Engineering, Kalavakkam - 603110

Department of Electronics and Communication Engineering

Degree and Programme		B.E (Computer Science and Engineering)		
Semester and Section:		VI Semester / A Section		
Subject Code and Subject:		IT6502 – Digital Signal Processing		
Periods / Week:	4	No. of Credits:	4	
	•		Date: 23.12.2016	

Course Objectives:

- To briefly review signals and systems
- To learn discrete Fourier transform and its properties
- To know the characteristics of IIR and FIR filters learn the design of infinite and finite impulse response filters for filtering undesired signals
- · To understand Finite word length effects

Course Outcomes:

On successful completion of this course, the student will be able to

- CO1: Understand signals, systems and basics of digital signal processing.
- CO2: Understand and apply DFT and FFT for the analysis of digital signals & systems.
- CO3: Design and realize Butterworth and Chebyshev IIR filters using impulse invariant and bilinear transformation techniques.
- CO4: Design and realize FIR filters using window techniques and frequency sampling method.
- CO5: Characterize finite Word length effect on digital filters.

Syllabus

UNIT I SIGNALS AND SYSTEMS

9

Basic elements of DSP – concepts of frequency in Analog and Digital Signals – sampling theorem – Discrete – time signals, systems – Analysis of discrete time LTI systems – Z transform – Convolution (linear and circular) – Correlation. (CO1)

UNIT II FREQUENCY TRANSFORMATIONS

9

Introduction to DFT – Properties of DFT – Circular convolution - Filtering methods based on DFT – FFT Algorithms Decimation – in – time Algorithms, Decimation – in – frequency Algorithms –Use of FFT in Linear Filtering – DCT – Use and applications of DCT. (CO2)

UNIT III IIR FILTER DESIGN

9

Structures of IIR – Analog filter design – Discrete time IIR filter from analog filter – IIR filter design by Impulse Invariance, Bilinear transformation, Approximation of derivatives– (HPF, BPF, BRF) filter design using frequency translation (CO3)

UNIT IV FIR FILTER DESIGN

9

Structures of FIR – Linear phase FIR filter – Filter design using windowing techniques (Rectangular window, Hamming window, Hanning Window), Frequency sampling techniques (CO4)

UNIT V FINITE WORD LENGTH EFFECTS IN DIGITAL FILTERS 9
Binary fixed point and floating point number representations – Comparison – Quantization noise – truncation and rounding – quantization noise power – input quantization error – coefficient quantization error – limit cycle oscillations – dead band – overflow error – signal scaling. (CO5)

Total= 45 Periods

Lesson Plan

- Content delivery methods:
 1. Lecture interspersed with discussion (chalk and board)
 - 2. Presentation slides (PPT)

Assessment methods:

Continuous Assessment Internal Model Assessment

SI. No.	Course Content	СО	Knowledge level	Proposed Period & Number of Hours to be handled	Actual Period & Number of Hours handled				
	Unit I								
1	Introduction to Signals & Systems/ DSP	CO1	U	2					
2	Basic elements of DSP – concepts of frequency in Analog and Digital Signals, Sampling Theorem	CO1	U	1					
3	Discrete – time signals, systems		C	3					
4	Analysis of discrete time LTI systems – Z transform	CO1	U	4					
5	Convolution (linear and circular)	CO1	U & Ap	1					
6	Correlation	CO1	U & Ap	1					
7	Problems Solving	CO1	U & Ap	3					
Unit II									
1	Introduction to DFT	CO2	U	1					
2	Properties of DFT	CO2	U	2					
3	Filtering methods based on DFT	CO2	U, Ap	2					
4	Decimation – in – time Algorithms,	CO2	U, Ap	2					
5	Decimation – in – frequency Algorithms	CO2	U & Ap	2					
6	Use of FFT in Linear Filtering	CO2	U & Ap	2					
7	DCT & Applications	CO2	U	2					
8	Problems Solving	CO2	U & Ap	3					
Unit III									
1	Structures of IIR	CO3	U	2					
2	Analog filter design – Discrete time IIR filter from analog filter	CO3	U, Ap	3					

3	IIR filter design by Impulse Invariance	CO3	U, Ap	2				
4	Bilinear transformation, Approximation of derivatives	CO3	U & Ap	3				
5	(HPF, BPF, BRF) filter design using frequency translation	CO3	U & Ap	2				
6	Problem Solving	CO3	U & Ap	3				
Unit IV								
1	Structures of FIR	CO4	U	1				
2	Linear phase FIR filter	CO4	U	2				
3	Filter design using windowing techniques	CO4	U & Ap	4				
4	Frequency sampling techniques	CO4	U	3				
5	Problem Solving	CO4	U & Ap	3				
Unit V								
1	Binary fixed point and floating point number representations	CO5	U	2				
2	Quantization noise, truncation and rounding	CO5	U & Ap	2				
3	Quantization noise power – input quantization error – coefficient quantization error	CO5	U	2				
4	Limit cycle oscillations – dead band	CO5	U, Ap	1				
5	Overflow error – signal scaling.	CO5	U, Ap	2				