IEOR E4650 Business Analytics

Session 2: Lending Analytics
Nomis (B): Analyzing the Value Proposition

## **Today**

#### Nomis (B)

- e-Car data
- Market analysis
- Pricing opportunity

#### Logistic regression

- Predicting customers' decisions
- Analytics-driven APR

#### E-Car Data

|    | Α    | В    | С         | D    | E      | F        | G    | Н         | I       | J    | K       | L       |
|----|------|------|-----------|------|--------|----------|------|-----------|---------|------|---------|---------|
|    |      |      | Approve   |      |        | Previous | Car  | Competiti |         |      | Cost of | Partner |
| 1  | Tier | FICO | Date      | Term | Amount | APR      | Type | on APR    | Accept? | APR  | Funds   | Bin     |
| 2  | 2    | 702  | 7/2/2002  | 60   | 22000  |          | U    | 5.85      | 0       | 6.19 | 1.84    | 3       |
| 3  | 2    | 710  | 7/3/2002  | 60   | 21000  |          | U    | 5.85      | 0       | 6.19 | 1.84    | 1       |
| 4  | 3    | 693  | 7/6/2002  | 60   | 19598  |          | U    | 5.85      | 1       | 7.29 | 1.84    | 1       |
| 5  | 3    | 696  | 7/6/2002  | 60   | 23071  |          | U    | 5.85      | 0       | 7.29 | 1.84    | 3       |
| 6  | 3    | 697  | 7/8/2002  | 60   | 21578  |          | U    | 5.80      | 1       | 7.29 | 1.84    | 2       |
| 7  | 2    | 702  | 7/8/2002  | 60   | 20211  |          | U    | 5.80      | 1       | 6.19 | 1.84    | 2       |
| 8  | 2    | 709  | 7/10/2002 | 60   | 21051  |          | U    | 5.80      | 1       | 6.19 | 1.84    | 1       |
| 9  | 3    | 690  | 7/12/2002 | 60   | 21498  |          | U    | 5.80      | 0       | 7.29 | 1.84    | 1       |
| 10 | 3    | 684  | 7/13/2002 | 60   | 18000  |          | U    | 5.80      | 1       | 7.29 | 1.84    | 3       |
| 11 | 2    | 706  | 7/15/2002 | 60   | 24025  |          | U    | 5.80      | 0       | 6.19 | 1.84    | 1       |
| 12 | 2    | 704  | 7/15/2002 | 60   | 23000  |          | U    | 5.80      | 0       | 6.19 | 1.84    | 3       |
| 13 | 3    | 693  | 7/16/2002 | 60   | 19620  |          | U    | 5.80      | 1       | 6.59 | 1.84    | 2       |
| 14 | 2    | 702  | 7/17/2002 | 60   | 24227  |          | U    | 5.80      | 1       | 5.35 | 1.84    | 1       |
| 15 | 2    | 705  | 7/18/2002 | 60   | 21262  |          | U    | 5.80      | 0       | 5.69 | 1.84    | 1       |
| 16 | 3    | 692  | 7/19/2002 | 60   | 25000  |          | U    | 5.80      | 0       | 6.59 | 1.84    | 1       |

• Rows: observations (208,085)

• Columns: variables (12)

• Categorical variables: tier, car type, accept?, partner bin

• Continuous variables: FICO, term, amount, competition APR, APR, prime

## The e-Car Environment: Observations

# Net Revenue Analysis: Segment Level

#### Focus on one segment

- USED cars
- FICO scores 684-712
- Term = 60 months
- Amount between 17.8K and 25K

# Segment Analysis: Avg Net Rev per Cust per Month per Accepted Quote vs. APR



# Segment Analysis: Conversion Rate versus APR



# Segment Analysis: Average Net Revenue vs. APR



# Segment Analysis: APR Quoted (Frequency)



# Segment Analysis



#### From Data to Decisions

#### The Goal

Data available for 208,085 past customer interactions:

- customer characteristics (FICO)
- loan characteristics (amount, term)
- APR quotes
- responses (accept / reject)

Objective: Find the "best" APR to set for future customers

# Framing the Problem

## Framing the Problem

#### Maximize

(Net Revenue for loan)  $\times$  (Probability of accept given APR quoted)

#### Two key inputs:

- Net Revenue
  - $\Rightarrow$  calculate from cost information Typically, profit per loan is Net revenue minus adjustment for customer risk
- Prob. of accept given APR quoted
  - ⇒ need to "predict" customer decisions
  - ightarrow In economic terms, we need to estimate the *demand curve* from the data.

# Accept? versus Quoted APR



#### Illustrative segment for all future analysis

- USED cars, FICO: 684-712
- Term: 60 months, Amount: between 17.8K and 25K

## Accept? versus Quoted APR: Bucketed Data



Bucketed data for easier visualization

- APR buckets: 4.125-4.375, 4.375-4.625, etc.
- Average in each bucket plotted with two standard errors

## How to Predict "Accept?"

Linear regression

$$Accept_i = a + b APR_j + \varepsilon_j$$

where  $APR_j$  is the APR quoted to customer j and

$$\mathsf{Accept}_j = \begin{cases} 1 & \text{if customer } j \text{ accepted the quote} \\ 0 & \text{otherwise} \end{cases}$$

- Focus on a given profile of customer / loan characteristics (FICO bucket, loan term, amount bucket)
- Linear regression allows loan acceptance to vary with the quoted rate

# Accept? versus Quoted APR: Linear Regression



Does this look reasonable?

# Accept? versus Quoted APR: Linear Regression

#### Issues with linear regression

- Response function reflects probabilities: it should be between 0 and 1
- For a binary response variable, there are only two cases
  - Violates the normality assumption
  - Different variance at different levels of quoted APR

#### Logistic Regression

Logistic regression is a technique for fitting a curve to data in which the dependent variable is binary

#### **Applications**

- Response to medical treatment: worked (coded as 1) or did not work (coded as 0)
- Customized pricing: bought (1) or not (0)
- Sponsored search: user clicked (1) or did not click (0)

## Logistic Regression for Predicting Customer Response

Probability of accept given quoted 
$$\mathsf{APR} = \frac{\exp(w)}{1 + \exp(w)}$$

with 
$$w = a + b APR$$

## Logistic Regression for Predicting Customer Response

Probability of accept given quoted 
$$\mathsf{APR} = \frac{\mathsf{exp}(w)}{1 + \mathsf{exp}(w)}$$

with 
$$w = a + b APR$$

- Always between 0 and 1
- Allows for flexible non-linear shapes
- Parameters a and b need to be estimated based on the data pick the parameters that "best" explain the data we have

# Logistic Regression: Model Flexibility



# Accept? versus Quoted APR: Logistic Regression





## Logistic Regression in Excel: Step 1



Step 1: Load the CBS Business Analytics add-in

 Double-click cbs\_ba.xll (or use Excel options | add-ins to automatically load every time)

# Logistic Regression in Excel: Step 2



#### Step 2

- ullet Type =LogisticRegTrain and press the  $f_x$  (Insert function) icon
- Select input variable column (APR) and output variable column (Accept?)
- Select 7 rows and 3 columns; press F2 (edit) and CNTL-SHIFT-ENTER
- See videos on Canvas for more detail

## Logistic Regression in Excel: Step 3 (Output)

| LogisticRegTrain (7,3) | Constant | APR     |
|------------------------|----------|---------|
| Coefficients           | 6.36     | -1.13   |
| Std error              | 0.42     | 0.07    |
| p-value                | 1.3E-51  | 7.8E-59 |
| Log-likelihood         | -786.3   |         |
| Number valid obs       | 1540     |         |
| Total obs              | 1540     |         |

Interpreting the output:

Prob. of accept given quoted APR

$$= \ \frac{\exp(6.36 \text{ - } 1.13 \times \mathsf{APR})}{1 + \exp(6.36 \text{ - } 1.13 \times \mathsf{APR})}$$



#### Logistic Regression in R

Number of Fisher Scoring iterations: 5

```
>nomis_log_reg = glm( formula = Accept. ~ APR, family = binomial)
>summary(nomis log reg)
Call:
glm(formula = Accept. ~ APR, family = binomial, data = nomis_data)
Deviance Residuals:
                                     Max
   Min 10 Median 30
-1.8044 -0.8909 -0.3032 0.8859 3.8847
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) 6.36032 0.42079 15.12 <2e-16 ***
APR.
       -1.12777 0.06973 -16.17 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 2000.3 on 1539 degrees of freedom
Residual deviance: 1572.6 on 1538 degrees of freedom
AIC: 1576.6
```

Session 2-27

## Moving to Decisions: Setting the APR for Used Car Loans

e-Car's objective: assign "best" rate to each incoming customer

Maximize

 $(\mathsf{Net}\ \mathsf{Revenue}(\mathsf{APR})) \times (\mathsf{Probability}\ \mathsf{accept}\ \mathsf{quoted}\ \mathsf{APR})$ 

#### Exercise

Assume prime = 1.40%, loan amount = \$21,000

Compute expected net revenue per customer per month for:

- APR = 6.00 (mode of rates offered in segment)
   Payments per month from customer to e-Car if accept: \$406
   Cost per month to e-Car: \$363
- APR = 4.75 (alternative rate)
   Payments per month from customer to e-Car if accept: \$393
   Cost per month to e-Car: \$363

#### Average Net Revenue per Quote vs. Quoted APR



# The Opportunity



## Logistic Regression: General Formula

In general, there could be multiple independent variables  $(x_1,...,x_k)$  (as in linear regression)

Probability of success given  $(x_1,...,x_k)$  is modeled as

$$p(x_1, ..., x_k) = \frac{\exp(w)}{1 + \exp(w)}$$

with 
$$w = a + b_1 x_1 + b_2 x_2 + ... + b_k x_k$$

Parameters  $a, b_1, ..., b_k$  need to be estimated

# Nomis Solutions Today



## Summary

#### Predictive Analytics

- Attempt to capture and exploit relationships in the data to:
  - Predict customer decisions
  - Improve decision making

#### Logistic regression

- ullet Model probabilistic behavior of customers with 0/1 outcomes
- Select the parameters that maximize the likelihood of observing the data

Many business models are supported by or rely on predictive analytics

## Other Applications of Logistic Regression

Online advertising (e.g., Google / www.google.com)

Business model:

- Sponsored search: cost per click (CPC)
- Key question: what drives clicks (quality of ad,...)

Online Content Recommendations (e.g., Outbrain, Inc. / www.outbrain.com)

Business model:

- Users "sold" from site to another
- Revenue sharing between operator and source publisher
- Key revenue driver of recommendation operator: clicks
- Key question: what drives clicks (context, exploration, clicks of other users, etc.)