AHMAD FARAZ KHAN

ahmadfk@vt.edu ♦ linkedin.com/in/ahmadfarazkhandurrani/ ♦ +1 540-4496457

EDUCATION

Ph.D. in Computer Science, Virginia Tech, Blacksburg, VA

January 2021 - present

Research Focus: Machine Learning Systems

M.S. in Computer Science, Virginia Tech, Blacksburg, VA

June 2024

B.S. in Computer Science, LUMS, Lahore, Pakistan

May 2020

TECHNICAL PROFICIENCY

Programming Languages: Python, Javascript, C++.

Tools and Libraries: Pytorch, Tensorflow, Hugging Face, LangChain, Ollama, Pandas, SciPy, IBM Federated Learning, Spark MLlib, PySpark, Dask, Hadoop, DeepSpeed, MinIO, Selenium, AWS Suite, Docker, Kubernetes

WORK EXPERIENCE

Graduate Research Assistant, DSSL, Virginia Tech

Spring 2021 - present

Advisor: Dr. Ali Butt, Virginia Tech, Mentor: Dr. Ali Anwar, University of Minnesota

ML Algorithms and Optimization

- Designed an RLHF approach to fine-tune deep learning compression optimizations without sacrificing accuracy. Increased **resource** utilization up to 81×, scalability by 78×, and accuracy up to 53%.
- \bullet Developed clustering-based personalized learning solutions for distributed ML systems. Improved the **personalized accuracy by** up to 45%.
- Devised a Direct Preference Optimization (DPO) approach for prompt optimization without separate reward modeling for Large Language Models (LLMs). **Enhanced score by 27**% compared to supervised fine-tuning.
- Created a DPO approach to mitigate sycophancy by fine-tuning LLMs on our curated dataset. Reduced sycophancy by 64% in persona-based tests and 44% in preference-driven tests.
- Implemented a RAG-based AI-driven DevOps platform using LLM agents for adaptive online configuration of cloud systems, employing context-aware prompting for optimal resource efficiency and reduced human effort and cost.

Impact: Publications at ACM EuroSys'24 and IEEE BigData'25, with current submissions at OSDI'25 and IPDPS'25.

ML Infrastructure

- Created an adaptive aggregator server for collaborative learning with **one million**+ nodes. Increased **scalability by 4**×, **latency by 8**×, and **cost reduction by 2**×.
- Developed a scheduler for collaborative learning that balances efficiency and accuracy tradeoff, improving accuracy by 57% and reducing training time by 40%.
- Designed an efficient, scalable, cost-effective cache with locality-aware execution for non-training workloads in distributed learning systems, decreased average latency and cost by 71% and 98% respectively.
- \bullet Improved secure AI systems by identifying and removing contributions from adversarial data sources, thereby enhancing accuracy through incentive-based systems. Raised the **accuracy by 7**%

Impact: Publications at IEEE CLOUD'22, IEEE BigData'22 & 23, FL-AAAI'22, with current submissions at FAST'25.

SELECT PUBLICATIONS

"FLOAT: Federated Learning Optimizations with Automated Tuning", **Ahmad Faraz Khan** et al. 19th ACM European Conference on Computer Systems (EuroSys 2024).

"Towards Cost-Effective and Resource-Aware Aggregation at Edge for Federated Learning", **Ahmad Faraz Khan** et al. *IEEE International Conference on Big Data (BigData 2023)*.

"TIFF: Tokenized Incentive for Federated Learning", Jingoo Han, **Ahmad Faraz Khan** et al. 15th IEEE International Conference on Cloud Computing (CLOUD 2022).

"Heterogeneity-Aware Adaptive Federated Learning Scheduling", Jingoo Han, **Ahmad Faraz Khan** et al. *IEEE International Conference on Big Data (BigData 2022)*.

"Tokenized Incentive for Federated Learning", Jingoo Han, **Ahmad Faraz Khan** et al. AAAI International Workshop on Trustable, Verifiable and Auditable Federated Learning (FL-AAAI 2022).

SERVICES

External review committee for USENIX ATC (2024), reviewer for Springer Neural Processing Letters (2022 & 2023), IEEE Transactions on Network and Service Management Journal (2024), and PeerJ Computer Science Journal (2024).

ADDITIONAL EXPERIENCES

Graduate Teaching Roles: Taught the Web/Cloud Development course (Summer 2024 & Fall 2023) and assisted with Advanced Operating Systems (Spring & Fall 2024), Python Programming (Spring 2020 & Fall 2021), and Computer Security (Spring 2022).