_____(R /____/ / ____/ / ____/ ___/ / /___/ / ___/ Statistics/Data Analysis

1 . do "C:\Users\lutib\AppData\Local\Temp\STD1880_000000.tmp"

2 . // EXERCICE 1

3.

4 . // Q1

5 . //a

6 . /*

> This affirmation is true:

- > The distribution of incomes of the group 2 is similar to that of the first group,
- > except that incomes are mutpliyed by a scale of 3. Since the relative inequality indices, as the Gini
- > obey to the scale invariance principle, the inequality of the two groups will be the same.

> */

7 . clear

8 . input group incl inc2 inc3

group incl inc2 inc3

1.1122

2.1224

3. 1 9 2 18

4.2362

5.2664

6. 2 27 6 18

7. end

9.

10 . igini incl , hg(group)

Index : Gini index
Group variable : group

	Group	Estimate	STE	LB	UB
1: 1 2: 2		0.44444 0.44444	0.100411 0.100411	0.186331 0.186331	0.702558 0.702558
Population		0.534722	0.080462	0.327888	0.741557

```
11 .
```

12 . //b

13 . /*

> This affirmation is false:

> When the averages of incomes of the two groups are different, we must consider the contribution of the > between group inequality to the total inequality.

> */

14 .

15 . //c

16 . /*

> This affirmation is true:

- > With the inc1, the between group inequality is the inequality of the distribution: D1: (4,4,4,12,12, > 12)
- > With the inc2, the between group inequality is the inequality of the distribution: D2: (2,2,2,6,6,6)
- > Based on the scale invariance principle (the distribution D2 is simply that of the half of the incom > es of D1),
 - The between group inequality in incl is similar to that of inc2.

*****/

17 . dentropyg incl, hg(group)

Decomposition of the Generalised Entropy Index by Groups

Group variable : group Parameter theta : 0.00

Group	Entropy index	Population (mu share	_k/mu)^theta	Absolute contribution	Relative contribution
1: Group_1	0.422837	0.500000	1.000000	0.21141	0.373084
	0.114650	0.223607	0.000000	0.110570	0.211759
2: Group_2	0.422837	0.500000	1.000000	0.21141	0.373084
	0.114650	0.223607	0.000000	0.110570	0.237621
Within				0.42283	0.746168
				0.21483	9
Between				0.14384	11 0.253832
				0.02205)
Population	0.566678	1.000000		0.56667	78 1.000000
_	0.215967	0.00000		0.21596	7 0.00000

18 . dentropyg inc2, hg(group)

Decomposition of the Generalised Entropy Index by Groups

Group variable : group Parameter theta : 0.00

Group	Entropy index	Population (mu_ share	_k/mu)^theta	Absolute contribution	Relative contribution
1: Group_1	-0.000000	0.500000 0.223607	1.000000 0.000000	-0.00000 0.00000	-0.00000
2: Group_2	-0.000000 0.000000	0.500000 0.223607	1.000000 0.000000		
Within				-0.00000 0.000000	0 -0.00000
Between				0.14384 : 0.022050	1.000000
Population	0.143841 0.022050	1.000000 0.000000		0.14384 : 0.022050	1 1.000000 0.000000

19 .

20 . // Q2

21 .

22 .

23 . dentropyg incl, hg(group) theta(0)

Decomposition of the Generalised Entropy Index by Groups

Group variable : group Parameter theta : 0.00

Group	Entropy index	Population (r share	mu_k/mu)^theta	Absolute contribution	Relative contribution
1: Group_1	0.422837	0.500000	1.00000	0.2114	19 0.373084
	0.114650	0.223607	0.00000	0.110570	0.211759
2: Group_2	0.422837	0.500000	1.00000	0.2114	19 0.373084
	0.114650	0.223607	0.000000	0.110570	0.237621
Within				0.4228	37 0.746168

Wednesday February 27 16:11:45 2019 Page 3

			 0.214839	
Between			 0.143841	0.253832
			 0.022050	
Population	0.566678	1.000000	 0.566678	1.000000
	0.215967	0.000000	 0.215967	0.00000

24 . dentropyg inc2, hg(group) theta(0)

Decomposition of the Generalised Entropy Index by Groups

Group variable : group Parameter theta : 0.00

Group	Entropy index	Population (share	<pre>mu_k/mu)^theta</pre>	Absolute contribution	Relative contribution
1: Group_1	-0.000000	0.50000 0.223607	0 1.00000 0.000000	0.00000	-0.00000
2: Group_2	-0.000000 0.000000	0.50000 0.223607	0 1.000000 0.000000	-0.0000 0.000000	-0.000000 0.000000
Within				-0.0000 0.00000	
Between				0.1438 0.02205	
Population	0.143841 0.022050	1.00000 0.000000	0	0.1438 0.02205	

25 . dentropyg inc3, hg(group) theta(0)

Decomposition of the Generalised Entropy Index by Groups

Group variable : group Parameter theta : 0.00

Group	Entropy index	Population (mi share	u_k/mu)^theta	Absolute contribution	Relative contribution
1: Group_1	0.422837	0.500000	1.000000	0.21141	L9 0.500000
	0.114650	0.223607	0.000000	0.110570	0.243290
2: Group_2	0.422837	0.500000	1.000000	0.21141	L9 0.500000
	0.114650	0.223607	0.000000	0.110570	0.243290
Within				0.42283	1.00000
				0.081070	0
Between				-0.00000	-0.00000
				0.000000	0
Population	0.422837	1.000000		0.42283	37 1.000000
	0.081070	0.000000		0.081070	0.000000

26 . 27 . // Q3

28 . igini incl inc2 inc3

Index : Gini index

	Variable	Estimate	STE	LB	UB
1: GINI_inc1		0.534722	0.080462	0.327888	0.741557
2: GINI_inc2		0.250000	0.055902	0.106300	0.393700
3: GINI_inc3		0.44444	0.071001	0.261930	0.626958

```
29 .
30 .
31 .
32 .
33 . // EXERCICE 2
35 .
36 . // Q1
37 . clear
38 . input identifier pre_tax_income hhsize nchild nelderly
        identif~r pre_tax~e
                                hhsize nchild nelderly
     1. 1 240 4 2 1
2. 2 600 5 3 1
3. 3 230 3 2 0
     4. 4 1250 3 1 1
     5. 5 1900 4 1 1
     6.6280420
     7. 7 620 3 1 1
     8.8880 430
     9. end
40 . /* Scenario A */
41 . gen pcincatA = pre_tax_income * (1.00-0.10)/hhsize
43 . scalar elder_pens_A = 6000*0.02/30
44 . scalar child_all_A = 6000*0.08/15
45 .
46 .
47 .
48 . gen
            pceldA = nelderly*elder_pens_A/hhsize
49 . gen pcallowA = nchild*child_all_A/hhsize
50 . gen dpcincA= pcincatA+ pceldA+ pcallowA
51 .
```

Wednesday February 27 16:11:46 2019 Page 5

52 . /* Scenario B */

53 . gen pcincatB = pre_tax_income * (1.00-0.10)/hhsize

54 . scalar elder_pens_B = 6000*0.00/30

55 . scalar child_all_B = 6000*0.10/15

56

57 . gen pceldB = nelderly*elder_pens_B/hhsize

58 . gen pcallowB = nchild*child_all_B/hhsize

59 . gen dpcincB= pcincatB+ pceldB+ pcallowB

60 .

61 .

62 . // Q2

63 . igini dpcincA dpcincB , hsize(hhsize)

Index : Gini index
Household size : hhsize

Variable	Estimate	STE	LB	UB
1: GINI_dpcincA 2: GINI_dpcincB	0.356542	0.043298	0.254158	0.458927
	0.348667	0.042336	0.248557	0.448776

64 .

65 . // Q3

66 . diginis pcincatA pceldA pcallowA, hsize(hhsize)

Decomposition of the Gini Index by Incomes Sources: Rao's (1969) Approach. Household size : hhsize

Sources	Income Share	Concentration Index	Absolute Contribution	Relative Contribution	
1: pcincatA	0.915254	0.395556	0.362034	1.015402	
	0.028163	0.049440	0.044582	0.011868	
2: pceldA	0.003390	0.140000	0.000475	0.001331	
	0.001013	0.163075	0.000506	0.001416	
3: pcallowA	0.081356	-0.073333	-0.005966	-0.016733	
	0.027877	0.077784	0.004574	0.012486	
Total	1.000000		0.356542	2 1.000000	
	0.000000		0.043298	0.000000	

67 . diginis pcincatB pceldB pcallowB, hsize(hhsize)

Decomposition of the Gini Index by Incomes Sources: Rao's (1969) Approach. Household size : hhsize

Sources Income C		Concentration Index	Absolute Contribution	Relative Contribution
1: pcincatB	0.900000 0.033607	0.395556	0.35600 0	0 1.021032 0.015775
2: pceldB	0.033007 0.000000 0.000000	0.000000	0.000000	
3: pcallowB	0.100000 0.033607	-0.073333 0.077784	-0.007333 0.005663	
Total	1.000000 0.000000		0.34866 0.042336	7 1.000000 0.000000

```
68 .
69 . // Q4
70 . /*
  > The scenario B is with the highest reduction in inequality in disposable incomes.
  > This is because in scenario A, the elderly pension program benefits target all of the elderly even if
  > they are richer in general (in this example).
  > */
71 .
72 . // Q5
73 . // generating the per capita income without applying any program
74 . gen pcinc = pre_tax_income/hhsize
75 . difgt pcinc dpcincB , hsizel(hhsize) hsize2(hhsize) pline1(100) pline2(100) alpha(0)
```

Variable	Estimate	Std. Err.	t	P> t	[95% Conf. int	erval] Pov.	line
pcinc dpcincB	.3666667 .3666667	.1835415 .1835415	1.99773 1.99773	0.0859 0.0859	06734 06734	.8006734 .8006734	100
diff.	0	0	•	•	0	0	

```
76 .
77 . // Q6
78 . difgt pcinc dpcincB , hsizel(hhsize) hsize2(hhsize) pline1(100) pline2(100) alpha(1)
```

Variable	Estimate	Std. Err.	t	P> t	[95% Conf. int	cerval] Pov.	line
pcinc dpcincB	.1166667 .0616667	.061366 .0374656	1.90116 1.64596	0.0990 0.1438	0284408 0269254	.2617742 .1502588	100 100
diff.	055	.027522	-1.9984	0.0858	1200792	.0100792	

```
79 . /*
  > The households that receive child allowances have some improvement in well-being, but this improvement
  > is not enough to make them escape poverty.
  > This is what explains the unchanged level of headcount. In the inverse, the poverty gap index is sensi
  > tive to any improvement in the well-being of the poor, and this explains the reduction of this index.
80 .
82 . // EXERCICE 3
83 .
84 . //Stata code for the Practical exercise 3 - BLOC3
85 .
86 . // Q1
87 . clear
```

88 . end of do-file

89 . use "C:\Users\lutib\Dropbox\PEP_distance_Poverty Course (Exercises)\2019\weaks_semaines 4-5-6\version\ > data_2.dta"

Wednesday February 27 16:11:46 2019 Page 7

- 90 . do "C:\Users\lutib\AppData\Local\Temp\STD1880_000000.tmp"
- 91 . svyset psu [pweight=sweight], strata(strata)

pweight: sweight
 VCE: linearized
Single unit: missing
Strata 1: strata
 SU 1: psu
 FPC 1: <zero>

92 . save, replace

file C:\Users\lutib\Dropbox\PEP_distance_Poverty Course (Exercises)\2019\weaks_semaines 4-5-6\version\da
> ta_2.dta saved

93 .

94 . // Q2

95 . ifgt ae_exp, pline(21000) hs(hsize)

Poverty index : FGT index Household size : hsize Sampling weight : sweight Parameter alpha : 0.00

Variable	Estimate	STE	LB	UB	Pov. line
ae_exp	0.336664	0.015603	0.306042	0.367287	21000.00

96 . 97 . // Q3

98 . ifgt ae_exp, pline(21000) hs(hsize) hgroup(sex)

Poverty index : FGT index Household size : hsize Sampling weight : sweight Group variable : sex Parameter alpha : 0.00

Group	Estimate	STE	LB	UB	Pov. line
1: Male 2: Female	0.324918 0.379359	0.015614 0.035122	0.294274 0.310428	0.355562 0.448290	21000.00 21000.00
Population	0.336664	0.015603	0.306042	0.367287	21000.00

99 .

100 . end of do-file

101 .