ПО сетевых устройств

Трещановский Павел Александрович, к.т.н.

19.04.19

Сетевые сокеты

```
int sock fd;
struct sockaddr in addr;
unsigned char txbuf[100], rxbuf[100];
/* Инициализация addr и buf не показана. */
sock fd = socket(AF INET, SOCK STREAM, 0);
connect(sock fd, (struct sockaddr *)&addr, sizeof(addr));
write(sock fd, txbuf, sizeof(txbuf));
read(sock fd, rxbuf, sizeof(rxbuf));
send(sock fd, txbuf, sizeof(txbuf), 0);
recv(sock fd, rxbuf, sizeof(rxbuf), 0);
close(sock fd);
```

Средства передачи данных между процессами

TCP vs UDP

Пакетная и потоковая передача данных

- При пакетной передаче границы сообщений сохраняются.
- UDP обеспечивает пакетную передачу.
- При потоковой передаче границы сообщений не сохраняются. Возможно объединение исходных сообщений в одно, разбиение исходного сообщения на несколько, а также любая комбинация этих операций.
- ТСР обеспечивает потоковую передачу.
- Зачем вообще менять границы сообщений? Для некоторых приложений границы не существенны (например, для передачи файла). При этом использование более крупных сообщений снижает нагрузку на процессоры, а более мелких сообщений обеспечивает передачу через локальные сети с маленьким максимальным размером кадра.
- Потоковая передача данных требует установления соединения.

Что мы хотим от сетевых сокетов?

- Поддержка нескольких видов адресации: IP-адрес + порт для связи между процессами на разных компьютерах, строковые имена между процессами на одном компьютере.
- Поддержка пакетной (с сохранением границ сообщений) и потоковой (без сохранения границ сообщения) передачи данных.
- Средства установки и разрыва соединения.
- Средства передачи и приема данных.
- Общий программный интерфейс для сетевого и не сетевого обмена.
- Сокрытие деталей реализации протоколов транспортного уровня в ядре операционной системы.

Классификация сокетов

int socket(int domain, int type, int protocol);

- domain семейство адресов:
 - AF_INET адресом сокета является пара (IP-адрес, порт),
 - AF_UNIX адресом сокета является строковые имя.
- type тип сокета:
 - SOCK_DGRAM пакетный (дейтаграммный) сокет (сохраняет границы сообщений, не гарантирует доставку, допускает передачу данных без установки соединения),
 - SOCK_STREAM потоковый сокет (не сохраняет границы сообщений, гарантирует доставку, передача данных только после установки соединения).
- protocol сетевой протокол (IPPROTO_TCP, IPPROTO_UDP, 0 протокол по умолчанию).

Программный интерфейс сокетов

Клиентские и серверные приложения

- **П**ример: Web-сервер и Web-браузер.
- **Т** Будем называть клиентом то приложение, которое устанавливает соединение, передает запросы и принимает ответы.
- Будем называть сервером то приложение, которое принимает соединения, принимает запросы и передает ответы.
- Сервер имеет известный публичный адрес, клиенту адрес сокета (не путать с IP-адресом) назначается динамически.
- Клиент, использующий пакетный сокет, вызывает функции sendto и recv.
- Клиент, использующий потоковый сокет, вызывает функции connect, send и recv.
- Для назначения клиентскому сокету динамического адреса используется вызов bind со специальными аргументами (см. инструкцию к задаче).

Адресация Unix-сокетов

- Адрес Unix-сокета строковое имя. Точнее имя файла.
- Виртуальный файл с таким именем существует, но данные в нем не хранятся. Его назначение - идентификация сокета.
- 📕 Адрес задается структурой типа struct sockaddr_un:

Пример использования:

```
struct sockaddr_un addr;
addr.sun_family = AF_UNIX;
snprintf(addr.sun_path, sizeof(addr.sun_path), "%s", "/run/server");
connect(sock fd, (struct sockaddr *)&addr, sizeof(addr));
```

struct sockaddr - абстрактный адрес. Конкретные адреса (struct sockaddr un и др.) приводятся к этому типа при передаче в функцию.

Прием и передача данных через Unix-сокеты

ssize_t recv(int sockfd, void *buf, size_t len, int flags);

- Для пакетного сокета recv всегда принимает целый пакет. Буфер должен быть не меньше размера принимаемого пакета. Возвращаемое значение размер пакета или индикация ошибки (-1).
- Для потокового сокета recv читает все имеющиеся данные, помещающиеся в данный буфер. Возвращаемое значение количество прочитанный байтов или индикация ошибки (-1). Код 0 означает, что соединение было закрыто.
- recv блокирующая функция. Она завершится только тогда, когда будут прочитаны данные. Если данных нет, то исполнение приложения блокируется до их появления.

Упражнения

Написать программу, которая отправляет учебному серверу запрос на чтение строки из ячейки 0, принимает ответ, содержащий эту строку, и выводит полученное значение в терминал. Учебный сервер хранит массив ячеек и обрабатывает клиентские запросы по адресу /tmp/sock_dgram_server. Клиентское приложение может отправлять запросы на чтение и запись значений этих ячеек. Протокол описан в инструкции к практическому заданию.