

LATAM Webinar

Introduction to Open Networking Foundation (ONF.org)

Silicon Valley based industry non-profit. Spun-out from Stanford & Berkeley in 2011 Mission to transform networking with: SDN
Disaggregation

Open Source

Successfully created several platforms and solutions now in production with operators

50+ people 80% engineering

Should not be considered a 'standards organization'

All operator board

Large eco-system of operators, cloud players and vendors

ONF Portfolio

ONF's Projects

ONF's Projects

ODTN

ODTN: SDN & Disaggregation of Optical Transport Goals Achieved

- gNPY Optical planning tool integration for optical impairment validation (ONF + TIP)
- Stratum Integration on CASSINI (PLVision + ONF + Edgecore)
- ODTN + Trellis Fabric (ONF)
- OpenConfig Driver consolidation to avoid proliferation (Palc Netwkrs)
- Bit Error Rate (BER) retrieval and GUI (Sterlite and ONF)
- Alarm Support (Nokia + ONF)
- CzechLight Roadm Drivers (CESNET)

GNPy + ONOS Integration

Integration of ONOS with GNPy optical simulation software:

- network optimization according to optical impairments.
- ONOS + GNPy's achieve best path from A to B according to GSNR.
- Avoided duplication of effort for optical Path computation Element.
- Demo at TIP Summit '19 and OFC '20 (hardened)

ODTN, Trellis with Stratum on Cassini

- Stratum is the first open source operating system for Cassini, a packet optical transponder with merchant silicon switching ASIC
- Optical capabilities managed with OpenConfig and gNMI
 - Discovery, Wavelength, Modulation, Power
- Support for ACO/DCO optical pluggables through TAI open source API
- Integrated as a native **Trellis spine** (L2 L4) using Tomahawk+ ASIC and as **transponder** with ODTN Openconfig Drivers

ODTN + Trellis + Stratum is the first open source complete stack for a packet optical data-centre leaf spine fabric.

ODTN: SDN & Disaggregation to Optical Transport Next Steps

- Extend Stratum Capabilities with BER, ALARMs and other parameters (ONF + PLVision)
- Extend GNPy integration with path selection by user (Czechlight + Tip/PSE)
- FEC (Forward error correction) (Sterlite)
- Extension of GUI with path selection and visualization
- Integrate μONOS config micro service (ONF and Metrohaul)

SD-RAN

O-RAN Architecture

SD-RAN Going Forward ..

- Many past high-quality demos of μONOS-RIC performance and example xApps
 - With clear focus on bringing true SDN-based control to the RAN
 - Lifting CU-C side RRM functions as xApps
- Late Q3, ONF decision to push the O-RAN compliant μ ONOS-RIC implementation towards pre-production grade
- Focus Areas
 - O-RAN compliant interfaces E2, O1, A1 and protocols ASN.1, SCTP, NETCONF etc
 - Maintain clustered micro-ONOS architecture for HA and Performance
 - Work beyond the RIC and develop e2e SD-RAN solution
 - Requires integration with 3rd party xApp vendors (FB, Intel, AirHop etc)
 - Develop SDK that makes xApps portable across RIC implementations
 - Requires integration with 3rd party CU/DU vendors (Radisys, Sercomm etc)
 - Develop ONF's own O-RAN compliant RU/CU/DU to serve as exemplar
 - Develop ONF's own O-RAN compliant Ran-Simulator for scale testing
 - Develop SDRAN-in-a-Box, a complete e2e solution for dev/test & reference
 - Contribute learnings of new SMs and app-sdk back to O-RAN and OSC
 - SD-RAN solution releases every quarter / Regression test suites on physical test-pods
 - QA/Interop lab with DT O-RAN Open Test and Integration Center (OTIC) in Berlin
 - Hardening & operationalization towards Lab & Field-trials with DT, Facebook and others

Development of xApp SDKs

Enabling Inter-RIC Platform Portability of xApps

SD-RAN Ecosystem

https://opennetworking.org/news-and-events/press-releases/onf-announces-new-5g-sd-ran-project/

Aether

Aether Services

Aether Platform Components

Projected Aether Status by Year End 2021

Pre-production grade with multiple-nines availability Fully
automated
CI/CD,
complete
adherence to
DevOps

Supporting 5G SA 5G NSA LTE

Aether deployments at enterprises with real use cases Pronto research outputs integrated into Aether

SEBA

RD1.0 vs. RD2.0 - High Level Target Architecture

RD1.0 RD2.0

RD 2.0 Additions

- Detailed NBI APIs for POD, OLT, ONT, Service Management
- Broadband Network Gateway (BNG) Updates
- Device Management (DM)
- Per OLT VOLTHA Stack Model for Scaling
- Access Technology Fixed Wireless Access (FWA) / mmWAVE
- Use Cases for POD Lifecycle Management

TASSEN: Silicon Independence & Programmability

Learn from the OpenFlow experience

- Formal specification of the forwarding pipeline is essential
- Re-use proven cloud native technologies (gRPC) and focus on capabilities for operator use cases (pipeline data models)
- Complete testing of forwarding pipeline

Complementary to BBF-based BNGs

- DBNG-CP communicates with DBNG-UP-c using BBF-specified interfaces (i.e. SCI, Packet redirect & Management)
- DBNG-UP can then be split into a DBNG-UP-c that will communicate southbound with the BNG-u using the Tassen interfaces (i.e. P4 Runtime & gNMI)... similar to 5G UPF-c and UPF-u split

Alternatively native Tassen-based BNGs

BNG-c components that support Tassen's south bound interfaces (i.e. P4
 Runtime and gNMI) talk natively through the mapper to the BNG-u

TASSEN: Silicon Independence & Programmability

Learn from the OpenFlow experience

- Formal specification of the forwarding pipeline is essential
- Re-use proven cloud native technologies (gRPC) and focus on capabilities for operator use cases (pipeline data models)
- Complete testing of forwarding pipeline

Complementary to BBF-based BNGs

- DBNG-CP communicates with DBNG-UP-c using BBF-specified interfaces (i.e. SCI, Packet redirect & Management)
- DBNG-UP can then be split into a DBNG-UP-c that will communicate southbound with the BNG-u using the Tassen interfaces (i.e. P4 Runtime & gNMI)... similar to 5G UPF-c and UPF-u split

Alternatively native Tassen-based BNGs

BNG-c components that support Tassen's south bound interfaces (i.e. P4
 Runtime and gNMI) talk natively through the mapper to the BNG-u

Thank you

Questions: eric@opennetworking.org