Three forms of the Multivariate Normal $exp(-\frac{1}{2}(x-y)^{T}z^{T}(x-y))$ $\mathcal{N}\left(X;\mathcal{M}\right) = \frac{1}{\left(\det(\Sigma')(2\pi)^{K}\right)}$ ERK MERK RUXK SPD reduce poorprint? $\#pasams = \mathcal{U} + \mathcal{U}^2 \mathcal{U} \cdot (\mathcal{U} + 1) = \mathcal{O}(\mathcal{U}^2)$ 1000 AODO 1) Full Ovorionce 2 Diagonal Covariance (3) Spherical / Isotropical Covercence 1) Full Covariance $S_{i}^{\prime} = S_{i}^{\prime}$ -Dallows for defining intractions of the duendons ("correlation") in TFP: Multivariale Normal TriL (also chede) for SPD Derlorma Cholesky decomplishen Z = Z = ZE) Crede & V with m & & 2) Diagonal Cousiance $Z' = \begin{cases} C_0^2 \\ C_1^2 \\ C_2^2 \end{cases}$ ER uxk $C_1^2 \\ C_2^2 \\ C_{N-1}$ ER uxk $det(S_1) = \frac{1}{11} \lambda_k(S_1)$ d=0product of eyon values4 $= \frac{\mathcal{K}-1}{1}$ $\mathcal{L}=0$ eign values are diagonal entrées Of the diagonal ans trix" $\sum_{i=1}^{n-1} \frac{1}{2^{n}}$ $\int \int \left(X \right) \mu_1 da_2(G^2) =$ $=\frac{1}{\sqrt{\frac{\lambda-4}{1-(\tau_{u}^{2})}}} = \frac{2 \times \rho \cdot (-\frac{4}{2}(x-\mu)^{-1/2})^{3/2}}{\sqrt{\frac{\lambda-4}{1-(\tau_{u}^{2})}}} = \frac{1}{\sqrt{\frac{\lambda-4}{1-(\tau_{u}^{2})}}} = \frac{1}{\sqrt{\frac{\lambda-4}{1-(\tau_{u}^{2})}$ in TFP: Multivariale Normal Diag 65 but uses the scale digonal (std per dimension instead of varionce) Sphrital / Isotropical Gaussian one varance/ standard deviation for dh of the dimensions $\left(\angle = \neg T \right)$ $det(\Sigma) = \frac{k \cdot 1}{1/\sqrt{2}} = (\sqrt{2})^{k} = \sqrt{2}k$ k = 0 $2 = (-2)^{-1} = 4$ $\mathcal{N}(X, \mu, \sigma^2 \underline{I}) = \underbrace{\frac{1}{\sigma^2 \kappa (2\pi)}}_{\sigma^2 \kappa (2\pi)} e^{-\kappa} \underbrace{(x - \mu)^{\top} (x - \mu)}_{\sigma^2 \kappa (2\pi)}$ regular Scale product Multivariale Haund Diag Multivapate Normal Diag Independent of Batched Universe with diagonal with or formed K) Normal Scale multiplier