Dalle istruzioni alle microoperazioni

Alessandro Pellegrini

Calcolatori Elettronici Sapienza, Università di Roma

A.A. 2012/2013

Le microoperazioni

- La fase di esecuzione di un'istruzione può essere divisa in più fasi
 - In un singolo ciclo macchina, il processore può non essere in grado di eseguire tutte le operazioni associate
 - Ad esempio, un'istruzione ADD richiede il movimento dei dati verso la ALU, il calcolo del risultato e la riscrittura del risultato
- Il SCO della CPU implementa un'istruzione tramite una serie di microoperazioni, ciascuna eseguita in un ciclo macchina

PD32: Architettura completa

- Ogni operazione incomincia con la fase di fetch
- Le microoperazioni associate alla fase di fetch sono:
 - \circ PC \rightarrow MAR
 - \circ (MAR) \rightarrow MDR; PC + 4 \rightarrow PC
 - $\circ \ \mathtt{MDR} \to \mathtt{IR}$
- In questo modo, l'istruzione successiva viene caricata nel registro IR (così da poterla interpretare ed eseguire) e il valore di PC viene incrementato (così da puntare alla prossima istruzione/dato)

- Le microoperazioni associate al movimento dati dipendono dalla modalità di indirizzamento utilizzato
- MOV Rx, Ry:
 - \circ PC ightarrow MAR
 - \circ (MAR) \rightarrow MDR; PC + 4 \rightarrow PC
 - ${\color{red} \circ} \ \mathtt{MDR} \to \mathtt{IR}$
 - \circ Rx \rightarrow TEMP2
 - $\circ \ \mathtt{TEMP2} \to \mathtt{Ry}$

- MOV #label, Ry:
 - \circ PC \rightarrow MAR
 - \circ (MAR) \rightarrow MDR; PC + 4 \rightarrow PC
 - \circ MDR ightarrow IR
 - \circ PC ightarrow MAR
 - \circ (MAR) \rightarrow MDR
 - \circ PC + 4 \rightarrow PC
 - $\circ \ \mathtt{MDR} \to \mathtt{Ry}$

- MOV address, Ry:
 - \circ PC \rightarrow MAR.
 - \circ (MAR) \rightarrow MDR; PC + 4 \rightarrow PC
 - $\circ \ \mathtt{MDR} \to \mathtt{IR}$
 - \circ PC \rightarrow MAR
 - \circ (MAR) \rightarrow MDR
 - \circ PC + 4 \rightarrow PC
 - \circ MDR \rightarrow MAR
 - \circ (MAR) \to MDR
 - $\circ \ \mathtt{MDR} \to \mathtt{Ry}$

Istruzioni Aritmetiche e Logiche

- L'esecuzione di una determinata operazione aritmetica o logica dipende dall'opcode passato alla ALU
- ADD Rx, Ry:
 - \circ PC ightarrow MAR
 - \circ (MAR) \rightarrow MDR; PC + 4 \rightarrow PC
 - \circ MDR ightarrow IR
 - \circ Rx \rightarrow TEMP1
 - $\circ \ \text{Ry} \to \text{TEMP2}$
 - \circ ALU_OUT[ADD] \to Ry

Istruzioni Aritmetiche e Logiche

- L'esecuzione di una determinata operazione aritmetica o logica dipende dall'opcode passato alla ALU
- AND Rx, Ry:
 - \circ PC ightarrow MAR
 - \circ (MAR) \rightarrow MDR; PC + 4 \rightarrow PC
 - \circ MDR ightarrow IR
 - \circ Rx \rightarrow TEMP1
 - $\circ \ \text{Ry} \to \text{TEMP2}$
 - \circ ALU_OUT[AND] \to Ry

Istruzione di Somma

Istruzione di Somma

Istruzione di Somma

Istruzione di And logico

Istruzione di And logico

Istruzione di And logico

Istruzioni di controllo

• JZ ADDRESS:

- \circ PC \rightarrow MAR.
- \circ (MAR) \rightarrow MDR; PC + 4 \rightarrow PC
- \circ MDR ightarrow IR
- IF SR[Z] == 1 THEN
- \circ PC ightarrow MAR
- \circ (MAR) \rightarrow MDR
- ${\color{red} \circ} \ \, \mathtt{MDR} \to \mathtt{PC}$
- ELSE
- \circ PC + 4 \rightarrow PC

Generatore di Microoperazioni

Per generare le microoperazioni associate a tutto l'instruction set del PD32, si può utilizzare MicroOpGen:

http://www.dis.uniroma1.it/~ciciani/microopgen/