(11th Edition)

Mathias Preiner

Armin Biere

Nils Frolevks

http://fmv.jku.at/hwmcc20

HWMCC Editions

Previous Years

- AIGER format (http://fmv.jku.at/aiger)
- Tracks
 - □ **SINGLE** safety (bad state) property track
 - how DEEP model checkers go on unsolved SINGLE instances (Oski Technology award \$500)
 - □ **LIVENESS** track (single "justice" property)
- BTOR2 format (https://github.com/boolector/btor2tools)
 - □ HWMCC'19 first year with word-level tracks

This Year

Goal: establish word-level track as part of HWMCC

- collect large set of publicly available word-level benchmarks
- encourage researchers to work on novel model checking engines
- provide a platform for comparison

Word-level Track(s)

- BTOR2 format (https://github.com/Boolector/btor2tools)
- SINGLE safety (bad state) property track
 - □ subtracks: bit-vectors, bit-vectors+arrays
 - □ BTOR2 witnesses optional
- Intel Xeon E5-2620 v4 2.10GHz, 16 cores (32 threads), Limits: 120 GB memory, 1h wall-clock time

Word-Level Format BTOR

BTOR 1.0 [BPR'08]

- word-level generalization of the initial AIGER format
- format for quantifier-free formulas over bit-vectors and arrays
- sequential extensions

BTOR 2.0 [CAV'18]

- lifts features from the AIGER 1.9 format to word-level
 - supports invariant and fairness constraints
 - □ supports safety and liveness properties
 - □ initialization of registers/memories
- witness format
- tool suite: libbtor2parser, btorsim, btor2aiger, btorsplit, . . .

BTOR2 Format

```
(num)
                   positive unsigned integer (greater than zero)
(uint)
                   unsigned integer (including zero)
(string)
                  sequence of whitespace and printable characters without '\n'
                   sequence of printable characters without '\n'
(symbol)
                   ':' (string)
(comment) ::=
(nid)
                   (num)
(sid)
                   (num)
                   'const' (sid) [0-1]+
(const)
(constd)
                   'constd' (sid) ['-'](uint)
                   'consth' (sid) [0-9a-fA-F]+
(consth)
(input)
                   ('input' | 'one' | 'ones' | 'zero') (sid) | (const) | (constd) | (consth)
(state)
                   'state' (sid)
                   'bitvec' (num)
(bitvec)
(array)
                   'array' (sid) (sid)
(node)
                   (sid) 'sort' ( (array) | (bityec) )
                  | (nid) ( (input) | (state) )
                  | (nid) (opidx) (sid) (nid) (uint) [(uint)]
                  | (nid) (op) (sid) (nid) [(nid) [(nid)]]
                 | (nid) ( 'init' | 'next' ) (sid) (nid) (nid)
                 | (nid) ( 'bad' | 'constraint' | 'fair' | 'output' ) (nid)
                  | (nid) 'justice' (num) ( (nid) )+
                   (comment) | (node) [(symbol)] [(comment)]
(line)
(btor)
                   ( (line)'\n' )+
```

Witness Format

```
(binary-string)
                    ::= [0-1]+
(bv-assignment)
                    ::= (binary-string)
(array-assignment)
                    ::= '[' (binary-string) ']' (binary-string)
                         (uint) ( (by-assignment) | (array-assignment) ) [(symbol)]
(assignment)
                          ( (comment)'\n' | (assignment)'\n' )+
(model)
(state part)
                          '#' (uint) '\n' (model)
                          '@' (uint) '\n' (model)
(input part)
(frame)
                          [(state part)] (input part)
(prop)
                         ( 'b' | 'j' ) (uint)
                         'sat\n' ( (prop) )+ '\n'
(header)
(witness)
                         ( (comment)'\n' )+ | (header) ( (frame) )+ '.'
```

BTOR 2.0 Example

```
1 sort bitvec 1
                                                                                                                  sat
 2 sort bitvec 3
                                                                                                                  b0
\left. \begin{array}{l} 3 \text{ zero 2} \\ 4 \text{ state 2 cnt} \end{array} \right\} cnt = 0
                                                                                                                  #0
                                                                                                                  @0
 5 init 2 4 3
                                                                                                                  0 011 in@0
 6 input 2 in
 \left. egin{array}{lll} 7 & \text{add} & 2 & 4 & 6 \\ 8 & \text{next} & 2 & 4 & 7 \end{array} \right\} cnt' = cnt + in
                                                                                                                  @1
                                                                                                                  0 010 in@1
                                                                                                                  @2
9 constd 2 7
10 eq 1 4 9
bad(cnt == 7)
                                                                                                                  0 010 in@2
                                                                                                                  0.3
  11 bad 10
                                                                                                                  0 000 in@3
 \begin{array}{c} \text{12 constd 2 3} \\ \text{13 ulte 1 6 12} \end{array} \right\} \textit{in} \leq 3
  14 constraint 13
```

Benchmarks

Submissions

- 10 new benchmarks (4 bit-vector, 6 bit-vector+arrays) with 36 safety properties submitted by Makai Mann
- **30** new bit-level benchmarks submitted by Gianpiero Cabodi, not considered for this year since only bit-level

Bit-blasting BTOR2 to AIGER (btor2aiger)

- bit-blasted all bit-vector benchmarks to AIGER
- no array support yet
- uses Boolector to synthesize AIGs
- uses AIGER library for constructing AIGER benchmarks

Benchmark Selection

- selected from 2319 BV and 2518 BV+arrays SINGLE benchmarks
- divided all benchmarks into 30 classes
- removed "easy" benchmarks (800 bit-vector, 817 array) solved by all model HWMCC'19 checkers¹ within 10s wall-clock time
- randomly selected from remaining benchmarks
 - □ selected N * frac(N) benchmarks per class $N \dots$ number of benchmarks in class
 - □ BEEM benchmarks limited to 15 benchmarks

$$\mathit{frac}(\textit{N}) = \begin{cases} 1/2 & \text{if } \textit{N} < 50 \\ 1/3 & \text{if } \textit{N} < 100 \\ 1/4 & \text{if } \textit{N} < 200 \\ 1/5 & \text{if } \textit{N} < 300 \\ 1/6 & \text{else} \end{cases}$$

■ in total **324** bit-vector and **315** bit-vector+array benchmarks

¹excluding BMC-only model checkers for unsat

Benchmark Selection: Bit-Vectors

class	selected	unused	removed	total	
2019/wolf/2019C/qspiflash	73	361	45	479	
2019/goel/industry/cal	44	131	58	233	
2019/mann/data-integrity/unsafe/arbitrated_top	27	54	19	100	
2019/wolf/2018D/zipcpu	24	24	98	146	
2019/wolf/2019A/picorv32	18	36	0	54	
2019/wolf/2019C/dspfilters_fastfir_second	17	17	18	52	
2019/beem	15	509	156	680	
2020/mann	15	15	0	30	
2019/wolf/2019C/vgasim	15	14	93	122	
2019/mann/data-integrity/unsafe/shift_register_top	12	12	1	25	
2019/goel/opensource	12	11	117	140	
2019/mann/data-integrity/unsafe/circular_pointer_top	11	11	3	25	
2019/goel/industry/gen	9	9	106	124	
2019/wolf/2018D/picorv32	8	8	10	26	
2019/wolf/2019C/zipversa_composecrc_prf	8	8	9	25	
2019/goel/industry/mul	5	5	1	11	
2019/wolf/2019B/marlann	3	3	3	9	
2019/wolf/2018D/VexRiscv	3	3	0	6	
2019/goel/crafted	1	1	22	24	
2019/mann/unsafe	1	1	1	3	
2019/wolf/2018D/ponylink	1	1	0	2	
2019/mann/safe	1	1	0	2	
2019/mann/unknown	1	0	0	1	

30% overlap with HWMCC'19 benchmarks (98 in total)

Benchmark Selection: Bit-Vectors+Arrays

class	selected	unused	removed	total
2019/wolf/2019C/dblclockfft_butterfly	129	643	427	1199
2019/wolf/2019C/zipcpu_zipcpu_piped	74	370	86	530
2019/wolf/2019C/zipcpu_zipcpu_dcache	63	311	253	627
2019/wolf/2019A/picorv32	18	36	0	54
2019/wolf/2018A/zipcpu	9	8	40	57
2019/wolf/2018A/picorv32	7	6	10	23
2019/wolf/2019B/marlann	5	4	0	9
2019/wolf/2018A/VexRiscv	3	3	0	6
2020/mann	3	2	0	5
2019/mann/unsafe	1	1	1	3
2019/wolf/2018A/ponylink	1	1	0	2
2019/mann/safe	1	1	0	2
2019/mann/unknown	1	0	0	1

19% overlap with HWMCC'19 benchmarks (58 in total)

AVR: Abstractly Verifying Reachability

Aman Goel, Karem Sakallah (Univ. of Michigan)

- AVR proof race: 16 parallel configurations racing proof/counterexample
 - □ 11 variants of IC3+SA

word-level IC3 with syntax-guided abstraction, plus add-ons:

- data abstraction
- incremental refinement
- interpolation

- property-directed word splitting
- extract/concat handler
- hvbrid abstractions □ 2 variants of BMC, plus data abstraction (new)
- □ 3 variants of K-induction (new)
- Support for Arrays (new)
- Arrays + data / hybrid abstractions (new)
- Supports Verilog, VMT and BTOR2 frontends
- Inductive invariants (SMT-LIB), counterexample traces (BTOR2)

Thanks to Yices 2, Boolector, MathSAT 5, Yosys, Btor2Tools and Cadence JasperGold teams

Yakir Vizel (Technion), Arie Gurfinkel (Univ. of Waterloo)

- Based on a model checking algorithm that combines interpolation and PDR
- Interpolants are extracted from BMC queries
- PDR is used to generalize the interpolants
- Original paper CAV 2014
- Other improvements: FMCAD 2014, CAV 2015
- The latest version includes interpolants that are extracted from k-induction proofs
- K-AVY paper appeared in CAV 2019
- The tool executes AVY and k-AVY in various configurations, BMC and PDR
- Implementation uses ABCs infrastructure, MiniSAT, Glucose and Muser

Alberto Griggio, Martin Jonas (Fondazione Bruno Kessler)

- Portfolio approach (*n* engines in parallel, no communication)
- BV category:
 - □ SAT-based IC3 and BMC
 - $\hfill\Box$ SMT-based IC3 with implicit abstraction
- BV+Arrays category:
 - □ SMT-based IC3 with implicit abstraction, k-induction, BMC
- SAT solver: CaDiCaL
- **SMT solver**: MathSAT

Makai Mann, Ahmed Irfan, Florian Lonsing, Yahan Yang, Clark Barrett (Stanford Univ.)

- Lightweight, adaptable SMT-based model checker
 - ☐ Built on solver-agnostic SMT API, smt-switch
- Competition portfolio configuration
 - □ BMC
 - □ K-Induction
 - □ Interpolation-based
 - □ Model-based IC3 (BV only)
 - □ IC3 with Interpolant Generalization (BV only)
 - □ Counterexample-Guided Prophecy built on Interpolation-based MC (Arrays only)
- SMT Solvers
 - □ Boolector, MathSAT5 and CVC4
 - □ Many thanks to the SMT solver developers!

Further submissions

Competitive Bit-Level Model Checkers

- ABC
 - □ Robert K. Brayton, Baruch Sterin, Alan Mishchenko (UC Berkeley)
- pdtrav
 - ☐ Gianpiero Cabodi et.al. (Politecnico di Torino)

Non-Competitive Model Checkers (submitted by organizers)

- BtorMC
 - □ Aina Niemetz, Mathias Preiner, Armin Biere (Stanford, JKU)
 - □ compiled from Boolector repository @ 95859db with CaDiCaL
- CoSA2
 - □ Makai Mann, Ahmed Irfan, Florian Lonsing, Clark Barrett (Stanford Univ.)
- camical²: BMC for sanity checking
- ABC17²: HWMCC'17 winner, similar performance to ABC this year
- nmtip²: withdrawn due to some issues in testing phase

²Not shown in results but log files provided

Ranking

■ 3 categories

- □ bit-vectors
- □ bit-vectors+arrays
- combined
- each category divided into
 - □ sat
 - □ unsat
 - □ all
- 9 rankings each with 1 gold, 1 silver, 1 bronze (27 "medals" in total)

Results

Bit-Vectors (sat)

Bit-Vectors (sat)

			total	slvd	sat	to	unk	real	time	best	uniq
1	abc	•	64	56	56	8	0	17368	200348	20	6
2	nuxmv		64	47	47	17	0	13340	53240	9	0
3	avr		64	47	47	0	17	17452	251887	2	1
	pdtrav	•	64	45	45	16	3	29746	166427	6	3
	cosa2		64	40	40	24	0	12702	51132	9	0
	pono		64	40	40	24	0	14025	70219	2	0
	avy	•	64	40	40	24	0	20110	199809	10	0
	btormc		64	40	40	24	0	20415	20412	6	0

^{• ...}run on bit-blasted AIGER benchmark

Bit-Vectors (unsat)

Bit-Vectors (unsat)

			total	slvd	unsat	to	mo	unk	real	time	best	uniq
1	avr		225	210	210	0	0	15	26893	409198	28	10
2	abc	•	225	206	206	19	0	0	19137	228731	67	0
3	pdtrav	•	225	200	200	25	0	0	45145	263503	8	1
	nuxmv		225	198	198	27	0	0	31397	125205	21	2
	avy	•	225	196	196	29	0	0	23945	237719	44	0
	pono		225	102	102	106	16	1	21918	103916	9	0
	cosa2		225	95	95	130	0	0	26547	99951	3	0
	btormc		225	75	75	149	0	1	17797	17791	45	1

^{• ...}run on bit-blasted AIGER benchmark

Bit-Vectors (all)

Bit-Vectors (all)

			total	slvd	sat	unsat	to	mo	unk	real	time	best	uniq
1	abc	•	324	262	56	206	62	0	0	36505	429078	87	6
2	avr		324	257	47	210	0	0	67	44345	661085	30	11
3	nuxmv		324	245	47	198	79	0	0	44737	178444	30	2
	pdtrav	•	324	245	45	200	76	0	3	74891	429930	14	4
	avy	•	324	236	40	196	88	0	0	44055	437528	54	0
	pono		324	142	40	102	165	16	1	35943	174134	11	0
	cosa2		324	135	40	95	189	0	0	39249	151083	12	0
	btormc		324	115	40	75	208	0	1	38212	38203	51	1

• ...run on bit-blasted AIGER benchmark

Bit-Vectors+Arrays (sat)

Bit-Vectors+Arrays (sat)

		total	slvd	sat	to	unk	real	time	best
	btormc	19	19	19	0	0	10193	10192	0
1	avr	19	19	19	0	0	11232	157865	1
2	pono	19	18	18	0	1	4733	19048	10
	cosa2	19	18	18	1	0	5287	21277	8
3	nuxmv	19	3	3	16	0	11	30	0

Bit-Vectors+**Arrays** (unsat)

Bit-Vectors+**Arrays** (unsat)

		total	slvd	unsat	to	mo	unk	real	time	best	uniq
1	avr	274	271	271	0	0	3	15878	230699	75	12
2	nuxmv	274	252	252	22	0	0	54916	161218	2	0
3	pono	274	226	226	38	2	8	23112	95755	23	1
	cosa2	274	220	220	43	1	10	91618	365311	1	0
	btormc	274	199	199	75	0	0	5417	5403	173	1

Bit-Vectors+Arrays (all)

Bit-Vectors+Arrays (all)

		total	slvd	sat	unsat	to	mo	unk	real	time	best	uniq
1	avr	315	290	19	271	0	0	25	27110	388564	76	12
2	nuxmv	315	255	3	252	60	0	0	54927	161248	2	0
3	pono	315	244	18	226	54	6	11	27845	114803	33	1
	cosa2	315	238	18	220	63	1	13	96905	386589	9	0
	btormc	315	218	19	199	97	0	0	15611	15595	173	1

Combined (sat)

Combined (sat)

			total	slvd	sat	to	unk	real	time	best	uniq
1	avr		83	66	66	0	17	28685	409752	3	1
	btormc		83	59	59	24	0	30608	30603	6	0
	cosa2		83	58	58	25	0	17989	72410	17	0
2	pono		83	58	58	24	1	18759	89266	12	0
3	abc	•	64	56	56	8	0	17368	200348	20	6
	nuxmv		83	50	50	33	0	13351	53270	9	0
	pdtrav	•	64	45	45	16	3	29746	166427	6	3
	avy	•	64	40	40	24	0	20110	199809	10	0

Combined (unsat)

Combined (unsat)

			total	slvd	unsat	to	mo	unk	real	time	best	uniq
1	avr		499	481	481	0	0	18	42771	639897	103	22
2	nuxmv		499	450	450	49	0	0	86313	286423	23	2
3	pono		499	328	328	144	18	9	45030	199671	32	1
	cosa2		499	315	315	173	1	10	118164	465262	4	0
	btormc		499	274	274	224	0	1	23214	23194	218	2
	abc	•	225	206	206	19	0	0	19137	228731	67	0
	pdtrav	•	225	200	200	25	0	0	45145	263503	8	1
	avy	•	225	196	196	29	0	0	23945	237719	44	0

Combined (all)

Combined (all)

			total	slvd	sat	unsat	to	mo	unk	real	time	best	uniq
1	avr		639	547	66	481	0	0	92	71456	1049649	106	23
2	nuxmv		639	500	50	450	139	0	0	99664	339693	32	2
3	pono		639	386	58	328	219	22	12	63789	288937	44	1
	cosa2		639	373	58	315	252	1	13	136153	537672	21	0
	btormc		639	333	59	274	305	0	1	53822	53797	224	2
	abc	•	324	262	56	206	62	0	0	36505	429078	87	6
	pdtrav	•	324	245	45	200	76	0	3	74891	429930	14	4
	avy	•	324	236	40	196	88	0	0	44055	437528	54	0

Results Summary

	gold	silver	bronze
avr	7	1	1
abc	2	1	1
nuxmv		5	2
pono		2	4
pdtrav			1

Congratulations to the winners!

Conclusion

Submissions

- 3 word-level and 3 bit-level model checkers
- only 10 new word-level benchmarks with 36 safety properties

Next Edition

- BTOR2 witnesses required
- (maybe) bit-blasting of array benchmarks

Thanks to all submitters!

References i

- Robert Brummayer and Armin Biere and Florian Lonsing BTOR: Bit-Precise Modelling of Word-Level Problems for Model Checking. Workshop on Bit-Precise Reasoning, 2018
- Aina Niemetz and Mathias Preiner and Clifford Wolf and Armin Biere Btor2, BtorMC and Boolector 3.0. CAV, Pages 587–595, 2018
- Armin Biere and Keijo Heljanko and Siert Wieringa AIGER 1.9 and Beyond. FMV Technical Report 11/2, 2011