Practical List Question 3

```
import pandas as pd
from google.colab import drive
drive.mount('/content/gdrive')
df=pd.read_csv('/content/gdrive/MyDrive/Q3_wine.csv')
print(df)
```

Mounted at /content/gdrive											
	Wine	Alcohol	Malic.acid	Ash		Color.int	Hue	OD	Proline		
0	1	14.23	1.71	2.43		5.64	1.04	3.92	1065		
1	1	13.20	1.78	2.14		4.38	1.05	3.40	1050		
2	1	13.16	2.36	2.67		5.68	1.03	3.17	1185		
3	1	14.37	1.95	2.50		7.80	0.86	3.45	1480		
4	1	13.24	2.59	2.87		4.32	1.04	2.93	735		
			• • •			• • •					
173	3	13.71	5.65	2.45		7.70	0.64	1.74	740		
174	3	13.40	3.91	2.48		7.30	0.70	1.56	750		
175	3	13.27	4.28	2.26		10.20	0.59	1.56	835		
176	3	13.17	2.59	2.37		9.30	0.60	1.62	840		
177	3	14.13	4.10	2.74	• • •	9.20	0.61	1.60	560		

[178 rows x 14 columns]

from matplotlib import pyplot as plt

plt.figure(figsize = [20, 100])

Check whether all attributes are standardized or not (mean is 0 and standard deviation is 1). If not, standardize the attributes.

```
Mean_result=list()
for i in range(1,df.shape[1]):
    column=df.columns[i]
    Mean_result.append(df[column].mean())
print(Mean_result)
print(len(Mean_result))

    [13.000617977528083, 2.336348314606741, 2.3665168539325854, 19.49494382022472, 99.741
    13

SD_result=list()
for i in range(1,df.shape[1]):
    column=df.columns[i]
    SD_result.append(df[column].std())
print(SD_result)

    [0.8118265380058577, 1.1171460976144627, 0.2743440090608148, 3.3395637671735052, 14.2
```

column=df.columns[i]
plt.subplot(13, 1, i)
plt.hist(df[column])


```
secwine_data=df
from sklearn import preprocessing
for i in range(1,secwine_data.shape[1]):
    column=df.columns[i]
    secwine_data[column]=preprocessing.scale(df[column])
secwine_data
```

	Wine	Alcohol	Malic.acid	Ash	Acl	Mg	Phenols	Flavanoids
0	1	1.518613	-0.562250	0.232053	-1.169593	1.913905	0.808997	1.034819
1	1	0.246290	-0.499413	-0.827996	-2.490847	0.018145	0.568648	0.733629
2	1	0.196879	0.021231	1.109334	-0.268738	0.088358	0.808997	1.215533
3	1	1.691550	-0.346811	0.487926	-0.809251	0.930918	2.491446	1.466525
4	1	0.295700	0.227694	1.840403	0.451946	1.281985	0.808997	0.663351
173	3	0.876275	2.974543	0.305159	0.301803	-0.332922	-0.985614	-1.424900
174	3	0.493343	1.412609	0.414820	1.052516	0.158572	-0.793334	-1.284344
175	3	0.332758	1.744744	-0.389355	0.151661	1.422412	-1.129824	-1.344582
176	3	0.209232	0.227694	0.012732	0.151661	1.422412	-1.033684	-1.354622
177	3	1.395086	1.583165	1.365208	1.502943	-0.262708	-0.392751	-1.274305

178 rows × 14 columns

```
SMean result=list()
from sklearn import preprocessing
for i in range(1,secwine_data.shape[1]):
  column=secwine data.columns[i]
  SMean_result.append(round(secwine_data[column].mean()))
print(SMean_result)
     [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
SSD_result=list()
from sklearn import preprocessing
for i in range(1,secwine data.shape[1]):
  column=secwine data.columns[i]
  SSD_result.append(round(secwine_data[column].std()))
print(SSD result)
     [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
plt.figure(figsize = [20, 100])
for i in range(1,secwine data.shape[1]):
```

```
column=secwine data.columns[i]
https://colab.research.google.com/drive/1DzgGhbphhjVopnuwCDY69wLP_kTE1l5L#scrollTo=0S86qCc-HD1H&printMode=true
```

plt.subplot(13, 1, i)
plt.hist(secwine_data[column])

