Série 2012

Procédures de qualification

Planificatrice-électricienne CFC Planificateur-électricien CFC

Connaissances professionnelles écrites

Pos. 2 Bases technologiques

Nom, prénom	N° de candidat	Date

Temps: 30 minutes

Auxiliaires: Recueil de formules sans exemple de calcul, calculatrice de poche (sans

banque de données), règle, compas, équerre et rapporteur.

Cotation: - Le nombre de points maximum est donné pour chaque exercice.

- Pour obtenir le maximum de points, les formules et les calculs doivent figurer dans la solution ainsi que les résultats avec leur unité soulignés deux fois.

- Le cheminement de la solution doit être clair et son contrôle doit être aisé.

- Pour des exercices avec des réponses à choix multiples, pour chaque réponse fausse il sera déduit le même nombre de points que pour une réponse exacte.

- Si dans un exercice on demande plusieurs réponses, vous êtes tenu de répondre à chacune d'elle. Les réponses sont évaluées dans l'ordre où elles sont données. Les réponses données en plus ne sont pas évaluées.

- S'il manque de la place, la solution peut être écrite au dos de la feuille.

Barème: Nombres de points maximum: 24,0

23,0 - 24,0	Points = Note	6,0
20,5 - 22,5	Points = Note	5,5
18,0 - 20,0	Points = Note	5,0
16,0 - 17,5	Points = Note	4,5
<u>13,5 - 15,5</u>	Points = Note	4,0
11,0 - 13,0	Points = Note	3,5
8,5 - 10,5	Points = Note	3,0
6,0 - 8,0	Points = Note	2,5
4,0 - 5,5	Points = Note	2,0
1,5 - 3,5	Points = Note	1,5
0,0 - 1,0	Points = Note	1,0

Les solutions ne sont pas données pour des raisons didactiques

(Décision de la commission des tâches d'examens du 09.09.2008)

Signature des	Points	Note	
expertes / experts:		obtenus	

Délai d'attente:	Cette épreuve d'examen ne peut pas être utilisée librement comme exercice
	avant le 1 ^{er} septembre 2013.

Créé par: Groupe de travail USIE examen de fin d'apprentissage

Installatrice-électricienne CFC / Installateur-électricien CFC

Editeur: CSFO, département procédures de qualification, Berne

Exer	cices	Nombre d maximal	le points obtenus
1.	Nommez trois moyens permettant de produire une tension électrique et expliquez pour chacun d'eux le principe utilisé.	3	
2.	Quelle est l'énergie consommée par une plaque de cuisson vitrocéramique absorbant une puissance moyenne de 1500W sachant que la préparation d'un repas pour quatre personnes dure exactement 99 minutes ?	2	
	Topao pour quatro personinco duro exactement de minutos .		

Exer	cices	Nombre d	e points obtenus				
3.	Un courant électrique circule dans une spire. Celle-ci est placée dans un champ magnétique.	3					
	a) Dessinez le sens du flux magnétique produit par les pôles.b) Dessinez le sens du flux magnétique produit par chaque conducteur de la						
	spire. c) Indiquez à l'aide de flèches les zones présentant un renforcement ou un						
	affaiblissement du champ magnétique. d) Indiquez le sens de rotation de la spire sachant que celle-ci est montée sur ur						
	axe.e) Comment peut-on augmenter la force sur les conducteurs de la spire?f) Quel type de moteur fonctionne selon ce principe?						
	N • X						

Exer	cices	Nombre of maximal	le points obtenus
4.	Le mât d'une construction provisoire est assuré avec un câble de 5m de longueur. A quelle distance par rapport au sommet du mât de 7 m doit-on fixer le câble de sorte à avoir un angle de 60° entre le sol et le câble?	2	
5.	Une ligne de cuivre de 75 m est chargée par un courant maximum de 12 A. La chute de tension en ligne ne doit pas dépasser 4% de la tension de départ (230 V / 50 Hz). Calculez la section normalisée minimale que vous devez utiliser pour cette ligne afin de respecter la chute de tension maximale. $\rho_{\text{Culvre}} = 0,0175 \frac{\Omega \cdot mm^2}{m}$	3	

													Nombre maximal
surintens	sité ayar	une canalisant un couran	nt max	ximal	assig	né de	e déc						3
14 3000	1011 003	conductour	o Ct a	u mo	ac ac	pose	,.						
		u 5.2.3.1.1.					,,,			. 54	D0 (2 5	
		ère pour les PVC / ligne											
la ligne 70° C / température ambiante 30° C													
Mode de Nombre Courant de déclenchement assigné [A] du coupe surintensité inséré en amont de													
pose de référence	de circuits	la canalisatio	n 16	20	25	32	40	50	63	80	100	125	
A1	1	1,5	2,5		4	6	10	16	25	35	50	70	
A2 B1	1	1,5	2,5	2,5	6	6	0	16 10	25 16	35 25	50 35	70 50	
	1	1,5		2,5	4	6		10	16	25	35	50	
B2	2	1,5	2,5	4	6	1	0	16	25	35	50	95	
) Dátar	minez 4	en fonction o	du tak	بيدهاد	la se	ction	itu ذ	ilicar r	our l	മട ഹ	una-		
		suivants. Le											
		ement la de						•					
	1		r	Donoi	+6 do								
Prote		Section		Densi cour									
[A	۸]	[mm ²]		[A/m	_								
16	6												
50	n												
ິວເ													
<u></u>													
		donoitás da		ranta	ur loo	dow	, lign	00.00	nt all		J iffára	onton 2	
		densités de	e coui	rant s	ur les	deux	⟨ lign	es so	nt-elle	es si c	différe	entes?	
		densités de	e coul	rant s	ur les	deux	k lign	es so	nt-elle	es si c	différe	entes?	
		densités de	e coui	rant s	ur les	deux	k lign	es so	nt-elle	es si d	différe	entes?	
		densités de	e coul	rant s	ur les	deux	∢ lign	es so	nt-elle	es si (différe	entes?	
		densités de	e coui	rant s	ur les	deux	k lign	es so	nt-elle	es si d	différe	entes?	
		densités de	e coui	rant s	ur les	deux	∢ lign	es so	nt-elle	es si (différe	entes?	
		densités de	e coui	rant s	ur les	deux	k lign	es so	nt-elle	es si d	différe	entes?	
		densités de	e coui	rant s	ur les	deux	∢ lign	es so	nt-elle	es si (différe	entes?	
		densités de	e coui	rant s	ur les	deux	(lign	es so	nt-elle	es si d	différe	entes?	

Exer	cices	Nombre o	le points obtenus
7.	Un monte-charge de bâtiment s'élève de 18 m en 23 secondes. La cage du monte-charge pèse 0,7 tonne et peut transporter une charge de 1,4 tonne. Calculez la puissance électrique absorbée (en kW) sachant que le monte-charge complet (moteur et système de levage) a un rendement de 75%?	3	
8.	Un accumulateur Ni-MH (Nickel-Hydrure métallique) a les caractéristiques suivantes: $E=1,2\ V;\ R_i=0,36\ \Omega;\ Q=1'200\ mAh.$ Trois accumulateurs sont couplés en parallèle et produisent ensemble un courant de 1,5 A. a) Calculez la tension aux bornes du couplage.	3	
	b) Calculez le temps de décharge complet de ce couplage (hypothèse : le courant de décharge est constant).		

Exer	cices	Nombre d maximal	e points obtenus
9.	Nommez quatre grandeurs physiques pouvant être contrôlées par des capteurs en technique du bâtiment.	2	
	Total	24	