Matematyka ubezpieczeń na życie

Projekt zaliczeniowy - część 1

Niech T(x) będzie zmienną losową opisującą dalszą długość życia x-latka. Funkcją przeżycia nazywamy funkcję przedstawiającą prawdopodobieństwo, dożycia x-latka chwili k. Funkcję przeżycia zmiennej losowej T(x) oznaczamy jako

$$_k p_x = P(T(x) > k)$$

Korzystając z tablic życia z 2017 roku możemy obliczyć prawdopodobieństwo przeżycia przez 20-latka jeszcze k lat, gdzie $k=\{1,2,\ldots\}$. Za estymator $_kp_x$ przyjmuje się

$$_{k}\hat{p}_{x} = \frac{l_{x+k}}{l_{x}}$$

Poniżej przedstawiony został wykres oraz tabelka prawdopodobieństwa dożycia przez 20-latka chwili k.

Prawdopodobienstwo, ze 20-latek dozyje k-tego roku.

k	$_{k}p_{x}$	k	$_{k}p_{x}$	k	$_kp_x$	k	$_kp_x$
1	0.9992	21	0.9718	41	0.8293	61	0.3783
2	0.9984	22	0.9692	42	0.8146	62	0.3480
3	0.9975	23	0.9663	43	0.7989	63	0.3177
4	0.9966	24	0.9631	44	0.7823	64	0.2876
5	0.9956	25	0.9596	45	0.7649	65	0.2580
6	0.9947	26	0.9558	46	0.7466	66	0.2293
7	0.9937	27	0.9515	47	0.7274	67	0.2017
8	0.9926	28	0.9468	48	0.7075	68	0.1755
9	0.9915	29	0.9417	49	0.6868	69	0.1509
10	0.9904	30	0.9361	50	0.6654	70	0.1281
11	0.9892	31	0.9300	51	0.6432	71	0.1072
12	0.9879	32	0.9232	52	0.6203	72	0.0884
13	0.9866	33	0.9159	53	0.5967	73	0.0718
14	0.9852	34	0.9078	54	0.5723	74	0.0572
15	0.9837	35	0.8991	55	0.5471	75	0.0448
16	0.9820	36	0.8896	56	0.5211	76	0.0344
17	0.9803	37	0.8793	57	0.4941	77	0.0258
18	0.9784	38	0.8681	58	0.4663	78	0.0190
19	0.9764	39	0.8561	59	0.4376	79	0.0136
20	0.9742	40	0.8431	60	0.4082	80	0.0095

Dystrybuanta wyznacza prawdopodobieństwo śmierci x-latka przed lub w chwili k. Dystrybuantę zmiennej losowej T(x) oznaczamy jako

$$_k p_x = P(T(x) \le k)$$

Korzystając z tablic życia roku możemy obliczyć prawdopodobieństwo śmierci 20-latka po k latach, gdzie $k=\{1,2,\ldots\}$. Za estymator $_kq_x$ przyjmuje się

$$_{k}\hat{q}_{x} = 1 -_{k}\hat{p}_{x} = 1 - \frac{l_{x+k}}{l_{x}}$$

Poniżej przedstawiony został wykres oraz tabelka prawdopodobieństwa śmierci 20-latka po ${\bf k}$ latach.

Prawdopodobienstwo, smierci 20-latka po k latach.

k	$_kq_x$	k	$_{k}q_{x}$	k	$_{k}q_{x}$	k	$_{k}q_{x}$
1	0.0008	21	0.0282	41	0.1707	61	0.6217
2	0.0016	22	0.0308	42	0.1854	62	0.6520
3	0.0025	23	0.0337	43	0.2011	63	0.6823
4	0.0034	24	0.0369	44	0.2177	64	0.7124
5	0.0044	25	0.0404	45	0.2351	65	0.7420
6	0.0053	26	0.0442	46	0.2534	66	0.7707
7	0.0063	27	0.0485	47	0.2726	67	0.7983
8	0.0074	28	0.0532	48	0.2925	68	0.8245
9	0.0085	29	0.0583	49	0.3132	69	0.8491
10	0.0096	30	0.0639	50	0.3346	70	0.8719
11	0.0108	31	0.0700	51	0.3568	71	0.8928
12	0.0121	32	0.0768	52	0.3797	72	0.9116
13	0.0134	33	0.0841	53	0.4033	73	0.9282
14	0.0148	34	0.0922	54	0.4277	74	0.9428
15	0.0163	35	0.1009	55	0.4529	75	0.9552
16	0.0180	36	0.1104	56	0.4789	76	0.9656
17	0.0197	37	0.1207	57	0.5059	77	0.9742
18	0.0216	38	0.1319	58	0.5337	78	0.9810
19	0.0236	39	0.1439	59	0.5624	79	0.9864
20	0.0258	40	0.1569	60	0.5918	80	0.9905

Przez K(x) oznaczamy spłaszczony dalszy czas życia x-latka (K=K(x)=[T(x)]). Prawdopodobieństwo śmierci 20-latka w k-tym roku oznaczamy jako

$$P(K=k) =_k p_x \cdot q_{x+k}$$

Korzystając z tablic życia możemy obliczyć prawdopodobieńs
wto śmierci x-latka w k-tym roku, gdzie $k=\{1,2,\ldots\}$. Za estymator
 P(K=k) przyjmuje się

$$P(K = k) =_k \hat{p}_x \cdot \hat{q}_{x+k} = \frac{d_{x+k-1}}{l_x}$$

.

Prawdopodobienstwo, smierci 20-latka w k-tym roku.

k	P(K=k)	k	P(K=k)	k	P(K=k)	k	P(K=k)
1	0.0008	21	0.0026	41	0.0147	61	0.0303
2	0.0009	22	0.0029	42	0.0157	62	0.0303
3	0.0009	23	0.0032	43	0.0166	63	0.0301
4	0.0009	24	0.0035	44	0.0174	64	0.0296
5	0.0010	25	0.0039	45	0.0183	65	0.0287
6	0.0010	26	0.0042	46	0.0191	66	0.0276
7	0.0010	27	0.0047	47	0.0199	67	0.0262
8	0.0011	28	0.0051	48	0.0207	68	0.0246
9	0.0011	29	0.0056	49	0.0214	69	0.0228
10	0.0012	30	0.0062	50	0.0221	70	0.0208
11	0.0013	31	0.0067	51	0.0229	71	0.0188
12	0.0013	32	0.0074	52	0.0236	72	0.0167
13	0.0014	33	0.0080	53	0.0244	73	0.0145
14	0.0015	34	0.0088	54	0.0252	74	0.0124
15	0.0016	35	0.0095	55	0.0261	75	0.0104
16	0.0017	36	0.0103	56	0.0270	76	0.0086
17	0.0019	37	0.0112	57	0.0278	77	0.0069
18	0.0020	38	0.0120	58	0.0287	78	0.0054
19	0.0022	39	0.0129	59	0.0294	79	0.0041
20	0.0024	40	0.0138	60	0.0299	80	0.0030

Projekt zaliczeniowy - część 2

Wprowadzamy dodatkową zmienną losową T(y) opisującą dalszy czas trwania życia y-latka. Przez T(x:y) = min(T(x), T(y)) rozumiemy dalszy czas życia do momentu śmierci pierwszego z nich. Funkcję przeżycia dla nowej zmiennej losowej T(x:y) oznaczamy jako

$$_k p_{x:y} = P(T(x:y) > k)$$

Zakładamy, że zmienne te są niezależne. Korzystając z tablic życia otrzymujemy

$$_{k}p_{x:y} =_{k} p_{x} \cdot_{k} p_{y} = \frac{l_{x+k}}{l_{x}} \cdot \frac{l_{y+k}}{l_{y}}$$

Przez $T(\overline{x:y})=min(T(x),T(y))$ rozumiemy dalszy czas życia do momentu śmierci ostatniego z nich. Funkcję przeżycia $T(\overline{x:y})$ oznaczamy jako

$$_{k}p_{\overline{x:y}} = P(T(\overline{x:y}) > k)$$

Zakładamy, że zmienne te są niezależne. Korzystając z tablic życia otrzymujemy

$$_{k}p_{\overline{x:y}} =_{k} p_{x} +_{k} p_{y} -_{k} p_{x} \cdot_{k} p_{y} = \frac{l_{x+k}}{l_{x}} + \frac{l_{y+k}}{l_{y}} - \frac{l_{x+k}}{l_{x}} \cdot \frac{l_{y+k}}{l_{y}}$$

Funckje przeżycia dla 20-latka i 28-latka:

Prawdopodobieństwo dożycia k-tego roku przez 20-latka i 28-latka do momentu pierwszej śmierci znacznie spada w momencie dożycia jeszcze 20 kolejnych lat. Z kolej prawdopodobieństwo dożycia przez nich k-tego roku do momentu ostatniej śmierci zaczyna dopiero maleć w momencie dożycia jeszcze 40 kolejnych lat.

Prawdopodobieństwo, że obie osoby dożyją do 60 lat wynosi $_{60}p_{20:28}$

[1] 0.716137

Prawdopodobieństwo, że przynajmniej jedna osoba dożyje do 60 lat wynosi $_{60}p_{\overline{20:28}}$

[1] 0.9763722

Niech K(x) oznacza spłaszczony dalszy czas życia x-latka (K(x) = [T(x)]), odpowiednio dla y-latka (K(y) = [T(y)]). Prawdopodobieństwo, że obie osoby umrą dokładnie w k-tym roku, gdzie $k = \{1, 2, ...\}$ wynosi

$$P(K(x) = k - 1 \land K(y) = k - 1) = P(K(x) = k - 1) \cdot P(K(y) = k - 1) = \frac{d_{x + k - 1}}{l_x} \cdot \frac{d_{y + k - 1}}{l_y}$$

k	P	k	P	k	P	k	P
1	0.0000010	19	0.0000103	37	0.0002060	55	0.0007905
2	0.0000011	20	0.0000124	38	0.0002321	56	0.0008029
3	0.0000011	21	0.0000149	39	0.0002595	57	0.0008058
4	0.0000013	22	0.0000179	40	0.0002883	58	0.0007974
5	0.0000014	23	0.0000215	41	0.0003184	59	0.0007762
6	0.0000015	24	0.0000260	42	0.0003493	60	0.0007422
7	0.0000017	25	0.0000312	43	0.0003815	61	0.0006951
8	0.0000019	26	0.0000374	44	0.0004150	62	0.0006367
9	0.0000021	27	0.0000447	45	0.0004500	63	0.0005697
10	0.0000024	28	0.0000533	46	0.0004861	64	0.0004965
11	0.0000028	29	0.0000632	47	0.0005237	65	0.0004207
12	0.0000032	30	0.0000746	48	0.0005621	66	0.0003460
13	0.0000038	31	0.0000876	49	0.0006011	67	0.0002752
14	0.0000044	32	0.0001026	50	0.0006396	68	0.0002120
15	0.0000052	33	0.0001193	51	0.0006768	69	0.0001576
16	0.0000061	34	0.0001381	52	0.0007121	70	0.0001129
17	0.0000072	35	0.0001589	53	0.0007434	71	0.0000775
18	0.0000086	36	0.0001815	54	0.0007701	72	0.0000512

Prawdopodobieństwo, że jedna z tych osób umrze dokładnie w k-tym roku wynosi

$$P(K(x) = k - 1 \lor K(y) = k - 1) = P(K(x) = k - 1) + P(K(y) = k - 1) - P(K(x) = k - 1) \cdot P(K(y) = k - 1)$$

Korzystając z tablic życia otrzymamy

$$\frac{d_{x+k-1}}{l_x} + \frac{d_{y+k-1}}{l_y} - \frac{d_{x+k-1}}{l_x} \cdot \frac{d_{y+k-1}}{l_y}$$

k	P	k	P	k	Р	k	P
1	0.0019944	19	0.0068827	37	0.0294112	55	0.0556016
2	0.0020856	20	0.0075498	38	0.0310858	56	0.0559382
3	0.0021768	21	0.0082771	39	0.0327485	57	0.0559796
4	0.0022780	22	0.0090648	40	0.0343896	58	0.0556872
5	0.0024097	23	0.0099328	41	0.0360190	59	0.0550223
6	0.0025413	24	0.0108913	42	0.0376173	60	0.0539853
7	0.0026730	25	0.0119097	43	0.0392143	61	0.0525363
8	0.0028250	26	0.0130283	44	0.0408202	62	0.0506840
9	0.0030173	27	0.0142068	45	0.0424350	63	0.0484564
10	0.0032300	28	0.0154750	46	0.0440490	64	0.0458612
11	0.0034831	29	0.0168027	47	0.0456819	65	0.0429559
12	0.0037565	30	0.0181997	48	0.0472942	66	0.0397976
13	0.0040804	31	0.0196558	49	0.0488755	67	0.0364443
14	0.0044246	32	0.0211907	50	0.0503862	68	0.0330140
15	0.0048193	33	0.0227643	51	0.0517866	69	0.0295561
16	0.0052545	34	0.0243862	52	0.0530565	70	0.0261404
17	0.0057401	35	0.0260464	53	0.0541269	71	0.0228379
18	0.0062863	36	0.0277247	54	0.0549883	72	0.0196895

Analiza danych w ubezpieczeniach na życie

Projekt egzaminacyjny - część 1

Podpunkt 1

Dana jest sytuacja, w której x-latek zakupuje ubezpieczenie, w którym kwota C=1 jest wypłacana na koniec roku jego śmierci. Niech Z będzie zmienną losową opisującą wartość bieżącą tego świadczenia:

$$Z = V^{K+1}$$

gdzie:

K to spłaszczony dalszy czas życia x-latka, K=[T(x)] V jest czynnikiem dyskontującym, $V=\frac{1}{1+i}$ i to stopa efektywna roczna.

Chcąc wyznaczyć jednorazową składkę netto (JSN) jaką x-latek musi zapłacić przy zakupie tego ubezpieczenia należy obliczyć wartość oczekiwaną zmiennej losowej Z.

$$EZ = A_x = \sum_{k=0}^{\infty} \cdot V^{k+1} \cdot P(K=k)$$

gdzie:

P(K=k) to prawdopodobieństwo, że x-latek umrze w k-tym roku.

Zakładamy, że i = 5%. JSN jaką 20-latek musi zapłacić, chcąc wykupić ubezpieczenie w wysokości 50000 zł wypłacane na koniec roku jego śmierci wynosi:

[1] 4827.258

Podpunkt 2

Oznaczmy przez u_1 , u_2 odpowiednio stan T(x:y), $T(\overline{x:y})$. Niech K(x:y) oznacza spłaszczony dalszy czas życia x-latka i y-latka do momentu pierwszej śmierci, a $K(\overline{x:y})$ spłaszczony dalszy czas życia x-latka i y-latka do momentu drugiej śmierci. Stan u_1 , u_2 ubezpiecza się na kwotę C=1. Świadczenie jest wypłacane odpowiednio na koniec roku pierwszej śmierci, na koniec roku drugiej śmierci. Zmienne Z_1 , Z_2 opisujące wartości bieżące tego świadczenia:

$$Z_1 = Z_2 = V^{K+1}$$

Chcąc wyznaczyć jednorazową składkę netto (JSN) jaką stan u_1 musi zapłacić przy zakupie tego ubezpieczenia należy obliczyć wartość oczekiwaną zmiennej losowej Z_1 .

$$EZ_1 = A_{u_1} = \sum_{k=0}^{\infty} V^{k+1} \cdot P(K(x:y) = k)$$

Jednak o wiele wygodniej jest posłużyć się zależnością

$$A_{u_1} + d \cdot \ddot{a}_{u_1} = 1$$

gdzie:

dto stopa dyskontowa, $d=\frac{i}{i+1}$
 \ddot{a}_{u_1} to aktuarialna wartość renty dla stan
uu

Zakładamy, że i=5%. JSN jaką 20-latek i 28-latek muszą zapłacić, chcąc wykupić ubezpieczenie w wysokości 50000 zł wypłacane na koniec roku **pierwszej śmierci** wynosi:

[1] 10382.39

Chcąc wyznaczyć jednorazową składkę netto (JSN) jaką stan u_2 musi zapłacić przy zakupie tego ubezpieczenia należy obliczyć wartość oczekiwaną zmiennej losowej \mathbb{Z}_2 .

$$EZ_2 = A_{u_2} = \sum_{k=0}^{\infty} \cdot V^{k+1} \cdot P(K(\overline{x:y}) = k)$$

gdzie:

$$P(K(\overline{x:y})=k) =_k p_{\overline{x:y}} \cdot q_{\overline{x+k:y+k}} =_k p_x +_k p_y -_k p_x \cdot_k p_y \cdot (1 - (p_{x+k} + p_{y+k} - p_{x+k} \cdot p_{y+k}))$$

Zakładamy, że i=5%. JSN jaką 20-latek i 28-latek muszą zapłacić, chcąc wykupić ubezpieczenie w wysokości 50000 zł wypłacane na koniec roku **drugiej** śmierci wynosi:

[1] 5507.32

Projekt egzaminacyjny - część 2

Dana jest sytuacja, w której stan u wpłaca na początku roku po złotówce tak długo jak żyje. Niech Y będzie zmienną losową opisującą wartość bieżącą wpłat

$$Y = \sum_{k=0}^{\infty} \cdot V^k \cdot \mathbb{1}_{\{K(u) \ge k\}}$$

Chcąc wyznaczyć aktuarialną wartość renty dla stanu u należy obliczyć wartość oczekiwaną zmiennej Y.

$$AWR = \ddot{a}_u = EY = \sum_{k=0}^{\infty} \cdot V^k \cdot P(K(u) \ge k) = \sum_{k=0}^{\infty} \cdot V^k \cdot_k p_u$$

a) aktuarialna wartość renty do momentu śmierci osoby x-latka, u=x

$$AWR = \sum_{k=0}^{\infty} \cdot V^k \cdot_k p_x$$

AWR do momentu śmierci 20-latka przy stopie oprocentowania i=5% wynosi [1] 18.05

b) aktuarialna wartość renty do momentu pierwszej śmierci x-latka lub y-latka, u=x:y

$$AWR = \sum_{k=0}^{\infty} \cdot V^k \cdot_k p_{x:y} = \sum_{k=0}^{\infty} \cdot V^k \cdot_k p_x \cdot_k p_y$$

AWR do momentu pierwszej śmierci 20-latka lub 28-latka przy stopie oprocentowania i=5% wynosi

[1] 16.64

c) aktuarialna wartość renty do momentu drugiej śmierci x-latka lub y-latka, $u=\overline{x:y}$

$$AWR = \sum_{k=0}^{\infty} \cdot V^k \cdot_k p_{\overline{x:y}} = \sum_{k=0}^{\infty} \cdot V^k \cdot (_k p_x +_k p_y -_k p_x \cdot_k p_y)$$

AWR do momentu drugiej śmierci 20-latka lub 28-latka przy stopie oprocentowania i=5% wynosi

[1] 18.69

Projekt egzaminacyjny - część 3

Dana jest sytuacja, w której x-latek i y-latek zakupują ubezpieczenie, w którym kwota C_1 wypłacana jest na koniec roku pierwszej śmierci, a kwota C_2 wypłacana jest na koniec roku drugiej śmierci. Składka wysokości P płacona jest na początku roku do momentu:

- a) pierwszej śmierci
- b) drugiej śmierci

Zmienną losową opisującą wartość bieżącą wpłat jest

$$Z = C_1 \cdot V^{K_1+1} + C_2 \cdot V^{K_2+1}$$

Zmienna losowa opisująca wartość bieżąca wypłat jest

a)

$$Y = P \cdot \sum_{k=0}^{\infty} V^k \cdot \mathbb{1}_{\{K_1 \ge k\}}$$

b)

$$Y = P \cdot \sum_{k=0}^{\infty} V^k \cdot \mathbb{1}_{\{K_2 \ge k\}}$$

gdzie:

$$K_1 = K(x:y)$$

$$K_2 = K(\overline{x:y})$$

Chcąc obliczyć wysokość składki P korzystamy z zasady równoważności. Średnie wartości wpłat są równe śrendim wartościom wypłat EZ=EY

a)

$$C_1 \cdot A_{x:y} + C_2 \cdot A_{\overline{x:y}} = P \cdot \ddot{a}_{x:y}$$

Wyznaczając ze wzroru P otrzymamy:

$$P = \frac{C_1 \cdot A_{x:y} + C_2 \cdot A_{\overline{x:y}}}{\ddot{a}_{x:y}}$$

b)

$$C_1 \cdot A_{x:y} + C_2 \cdot A_{\overline{x:y}} = P \cdot \ddot{a}_{\overline{x:y}}$$

Wyznaczając ze wzroru P otrzymamy:

$$P = \frac{C_1 \cdot A_{x:y} + C_2 \cdot A_{\overline{x:y}}}{\ddot{a}_{\overline{x:y}}}$$

W sytuacji, w której 20-latek i 28-latek zakupują ubezpieczenie, w którym $C_1=50000$, a $C_2=100000$, stopa procentowa i=5%, składka netto P płacona na początku każdego roku wynosi:

w przypadku a)

[1] 1285.93

w przypadku b)

[1] 1145.03