VECTOR CALCULUS

- 1. Given the vectors \vec{A} and \vec{B} , determine:
 - a. Their cartesian coordinates
 - b. The vectors: $\vec{A} + \vec{B}$; $\vec{A} \vec{B}$; $\vec{B} \vec{A}$; $2\vec{A} \vec{B}$
 - c. Graphically, the vectors of part b.

- 2. A vector \vec{A} has a magnitude of 8 m and makes an angle of 37° with the OX axis. Also consider the vectors $\vec{B} = 3 \vec{\imath} 5 \vec{\jmath}$ and $\vec{C} = -6 \vec{\imath} + 3 \vec{\jmath}$. Determine the vectors: $\vec{A} + \vec{C}$; $\vec{A} 2\vec{B}$; $\vec{A} 2\vec{B} + 3\vec{C}$; $\vec{A} \cdot \vec{B}$; $\vec{A} \times \vec{B}$; $\vec{B} \cdot \vec{C}$; $2\vec{A} \times \vec{C}$.
- 3. Calculate the magnitude and direction of the following vectors: $\vec{A} = 4\vec{\iota} + 3\vec{\jmath}$; $\vec{B} = 10\vec{\iota} 7\vec{\jmath}$; $\vec{A} + \vec{B}$; $\vec{A} \times \vec{B}$.
- 4. Determine the following vectors, in terms of \vec{i} and \vec{j} :

- 5. The cartesian components of a vector are: $A_x=-10$ and $A_y=6$, $\vec{B}=3\vec{\imath}+5\vec{\jmath}$ and $\vec{C}=3\vec{\imath}+4\vec{\jmath}$. Calculate:
 - a. The angle that the vector \vec{A} makes with the positive OX axis.
 - b. The angle between the vectors \vec{A} and \vec{B} .
 - c. The unitary vector of \vec{C} .
 - d. The projection of \vec{A} in the direction of \vec{C} .