Методы машинного обучения. Градиентный бустинг

Bopoнцов Константин Вячеславович www.MachineLearning.ru/wiki?title=User:Vokov вопросы к лектору: k.vorontsov@iai.msu.ru

материалы курса:

github.com/MSU-ML-COURSE/ML-COURSE-24-25 орг.вопросы по курсу: ml.cmc@mail.ru

BMK МГУ • 3 декабря 2024

Содержание

- Алгоритмы градиентного бустинга
 - Градиентный бустинг Фридмана
 - Стохастический градиентный бустинг
 - Алгоритм XGBoost
- Алгоритм CatBoost
 - Основные мотивации CatBoost
 - Упорядоченный бустинг
 - Категориальные признаки
- Вазовые алгоритмы
 - Небрежные решающие деревья
 - Логические закономерности и АВО
 - Бинаризация признаков

Напоминание. Взвешенное голосование и AdaBoost

$$X^\ell=(x_i,y_i)_{i=1}^\ell\subset X imes Y$$
 — обучающая выборка, $y_i=y(x_i)$ $a_t(x)=C(b_t(x))$ — базовые алгоритмы, $t=1,\ldots,T$

Взвешенное голосование (AdaBoost, но не только):

$$a(x) = C\left(\sum_{t=1}^{T} \alpha_t b_t(x)\right), \quad x \in X, \quad \alpha_t \geqslant 0.$$

Две основные эвристики бустинга (AdaBoost, но не только):

- ullet фиксируем $lpha_1b_1(x),\ldots,lpha_{t-1}b_{t-1}(x)$, добавляем $lpha_tb_t(x)$
- ullet гладкая аппроксимация пороговой функции потерь $[M\leqslant 0]$

Недостатки (ограничения) AdaBoost:

- ullet задача бинарной классификации, $Y=\{-1,+1\}$
- $[M \leqslant 0] \leqslant e^{-M}$, а хотелось бы произвольную $\mathcal{L}(a, y)$
- ullet $b_t\colon X o \{-1,0,+1\}$, а хотелось бы $b_t\colon X o \mathbb{R}$

Градиентный бустинг с произвольной функцией потерь

Линейный ансамбль базовых алгоритмов b_t из семейства \mathscr{B} :

$$a_T(x) = \sum_{t=1}^T \alpha_t b_t(x), \quad x \in X, \quad b_t \colon X \to \mathbb{R}, \quad \alpha_t \geqslant 0$$

Эвристика: обучаем α_T, b_T при фиксированных предыдущих. Критерий качества с гладкой функцией потерь $\mathscr{L}(a,y)$:

$$Q(\alpha, b; X^{\ell}) = \sum_{i=1}^{\ell} \mathscr{L}\left(\underbrace{\sum_{t=1}^{T-1} \alpha_t b_t(x_i)}_{a_{T-1,i}} + \alpha b(x_i), y_i\right) \to \min_{\alpha, b}.$$

 $(a_{T-1,i})_{i=1}^\ell$ — вектор текущего приближения $(a_{T,i})_{i=1}^{\ell}$ — вектор следующего приближения

G. Friedman. Greedy function approximation: a gradient boosting machine. 1999.

Параметрическая аппроксимация градиентного шага

Градиентный метод минимизации $Q(f) o \mathsf{min},\ f\in\mathbb{R}^\ell$:

$$a_{0,i}:=$$
 начальное приближение;

$$a_{T,i} := a_{T-1,i} - \alpha g_i, \quad i = 1, \ldots, \ell;$$

 $g_i = \mathscr{L}_f'ig(a_{T-1,i},\,y_iig)$ — компоненты вектора градиента, lpha — градиентный шаг.

Это очень похоже на добавление одного базового алгоритма:

$$a_{T,i} := a_{T-1,i} + \alpha b(x_i), \quad i = 1, \dots, \ell$$

Идея: будем искать такой базовый алгоритм $b_T \in \mathscr{B}$, чтобы вектор $(b_T(x_i))_{i=1}^\ell$ приближал вектор антиградиента $(-g_i)_{i=1}^\ell$:

$$b_{\mathcal{T}} := \arg\min_{b \in \mathscr{B}} \sum_{i=1}^{\ell} (b(x_i) + g_i)^2$$

Алгоритм градиентного бустинга (Gradient Boosting)

```
Вход: обучающая выборка X^{\ell}; параметр T;
Выход: базовые алгоритмы и их веса \alpha_t b_t, t = 1, ..., T;
инициализация: a_{0,i} := 0, i = 1, \ldots, \ell;
для всех t = 1, \ldots, T
    базовый алгоритм, приближающий антиградиент:
    b_t := \arg\min_{b \in \mathscr{B}} \sum_{i=1}^{c} (b(x_i) + \mathscr{L}'(a_{t-1,i}, y_i))^2;
    задача одномерной минимизации:
    \alpha_t := \arg\min_{\alpha>0} \sum_{i=1}^{c} \mathscr{L}(a_{t-1,i} + \alpha b_t(x_i), y_i);
    обновление вектора значений на объектах выборки:
   a_{t,i} := a_{t-1,i} + \alpha_t b_t(x_i); \quad i = 1, \dots, \ell;
```

Каждый следующий базовый алгоритм обучается так, чтобы по возможности исправить ошибки предыдущих алгоритмов.

Пример. Классификация синтетической выборки

100 деревьев глубины 5

 $http://arogozhnikov.github.io/2016/07/05/gradient_boosting_playground.html$

Пример. Классификация синтетической выборки

100 деревьев глубины 5, с подбором вращения каждого дерева

 $http://arogozhnikov.github.io/2016/07/05/gradient_boosting_playground.html$

Частные случаи GB: регрессия, AdaBoost и другие

Регрессия:
$$\mathscr{L}(a,y)=(a-y)^2$$
, $y\in\mathbb{R}$, $b_t\in\mathbb{R}$

- ullet $b_T(x)$ обучается на разностях $y_i \sum\limits_{t=1}^{T-1} lpha_t b_t(x_i)$
- ullet если регрессии b_t линейные, то $lpha_t$ можно не обучать.

Классификация:
$$\mathscr{L}(a,y) = e^{-ay}, \ y \in \{\pm 1\}, \ b_t \in \{\pm 1,0\}$$

• GB в точности совпадает с AdaBoost [Freund, 1995]

Классификация:
$$\mathscr{L}(\mathsf{a},\mathsf{y}) = \mathcal{L}(\mathsf{-ay}), \ \ \mathsf{y} \in \mathbb{R}, \ \ b_t \in \mathbb{R}$$

• GB совпадает с AnyBoost [Mason, 2000]

Y. Freund, R. Schapire. A decision-theoretic generalization of online learning and an application to boosting. 1995.

L. Mason et al. Boosting algorithms as gradient descent. 2000.

Варианты бустинга для двухклассовой классификации

Гладкие аппроксимации пороговой функции потерь [M < 0]:

$$E(M)=e^{-M}$$
 — экспоненциальная (AdaBoost); $L(M)=\log_2(1+e^{-M})$ — логарифмическая (LogitBoost); $Q(M)=(1-M)^2$ — квадратичная (GentleBoost); $G(M)=\exp(-cM(M+s))$ — гауссовская (BrownBoost); $S(M)=2(1+e^M)^{-1}$ — сигмоидная; $V(M)=(1-M)_+$ — кусочно-линейная (из SVM);

Стохастический градиентный бустинг (SGB)

Идея: при оптимизации b_t и $lpha_t$ использовать не всю выборку X^ℓ , а случайную подвыборку, по аналогии с бэггингом

Преимущества:

- улучшается сходимость, уменьшается время обучения
- улучшается обобщающая способность ансамбля
- можно использовать несмещённые оценки out-of-bag

Эксперименты:

относительная ошибка при различном объёме выборки N

Вывод:

оптимально сэмплировать около 60–80% выборки

Friedman G. Stochastic Gradient Boosting. 1999.

XGBoost: популярная и быстрая реализация GB над деревьями

Деревья регрессии и классификации (CART):

$$b(x,w) = \sum_{k \in K} w_k B_k(x)$$

где $B_k(x)$ — бинарный индикатор [x попадает в лист k], w_k — значение в листе k, K — множество листьев дерева. Для любого x одно и только одно слагаемое не равно нулю.

Критерий качества с суммой L_0 и L_2 регуляризаторов:

$$Q(w) = \sum_{i=1}^{\ell} \mathscr{L}(a(x_i) + b(x_i, w), y_i) + \gamma |K| + \frac{\lambda}{2} \sum_{k \in K} w_k^2 \rightarrow \min_{w},$$

где $a(x_i) = \sum_{t=1}^{T-1} \alpha_t b_t(x_i)$ — ранее построенная часть ансамбля.

В некоторых случаях задача имеет аналитическое решение.

XGBoost: приближённое аналитическое решение для wi

Приблизим
$$\mathscr{L}(a+b,y) pprox \mathscr{L}(a,y) + b\mathscr{L}'(a,y) + rac{b^2}{2}\mathscr{L}''(a,y)$$
:

$$\Phi(w) = \sum_{i=1}^{\ell} \left(g_i b_i + \frac{1}{2} h_i b_i^2 \right) + \gamma |\mathcal{K}| + \frac{\lambda}{2} \sum_{k \in \mathcal{K}} w_k^2 \rightarrow \min_{w},$$

где
$$b_i^p = \sum_k w_k^p B_k(x_i)$$
, $g_i = \mathscr{L}'ig(a(x_i), y_iig)$, $h_i = \mathscr{L}''ig(a(x_i), y_iig)$.

Из условий $\frac{\partial \Phi(w)}{\partial w_k}=0$ находим оптимальное значение листа k:

$$w_k = -\frac{\sum_i g_i B_k(x_i)}{\lambda + \sum_i h_i B_k(x_i)}$$

Подставляя w_k обратно в $\Phi(w)$, выводим критерий ветвления:

$$\Phi(B_1,\ldots,B_k) = -\frac{1}{2} \sum_{k \in K} \frac{\left(\sum_i g_i B_k(x_i)\right)^2}{\lambda + \sum_i h_i B_k(x_i)} + \gamma |K| \rightarrow \min$$

XGBoost и другие варианты GB

Преимущества XGBoost (eXtreme Gradient Boosting):

- L₂ регуляризация сокращает переобучение
- L_0 регуляризация упрощает деревья (pruning)
- как и общий GB, допускает произвольные функции потерь
- очень быстрая реализация за счёт аналитических формул
- имеет механизм обработки пропущенных значений

Что ещё бывает:

- Light GBM для обучения на сверхбольших данных
- Яндекс. MatrixNet GB над Oblivious Decision Tree
- Яндекс.CatBoost для категориальных признаков

Основные мотивации Cat Boost

Две проблемы:

- Надо обрабатывать категориальные признаки с большим числом редких значений (пользователь, регион, город, реклама, рекламодатель, товар, документ, автор, и т.д.)
- ullet Переобучение (смещённость, target leakage) в градиентах: $g_i = \mathscr{L}'ig(a_{t-1}(x_i), y_iig)$ вычисляются в тех же точках x_i , по которым ансамбль $a_{t-1}(x)$ обучался аппроксимировать y_i

Приём, похожий на Out-Of-Bag и на онлайновые методы:

- для получения несмещённых оценок на объекте x_i хранить и дообучать ансамбль на выборках без этого объекта
- ullet как сделать, чтобы этих выборок было $O(\log \ell)$, а не $O(\ell)$?
- как сделать, чтобы они не сильно перекрывались?

Упорядоченный бустинг (ordered boosting)

Идеи:

- ullet вычислять g_i по модели a_{t-1} , которая не обучалась на x_i
- строить обучающие подвыборки удваивающейся длины
- построить много таких случайно перемешанных выборок

Обозначения:

 $\sigma_1, \dots, \sigma_s$ — случайные перестановки выборки X^ℓ X^{rj} — подвыборка первых 2^j объектов из $\sigma_r(X^\ell)$ $a_t^{rj}(x)$ — ансамбль-полуфабрикат, обученный по X^{rj} $g_{ti}^r = -\mathcal{L}'(a_{t-1}^{rj}(x_i), y_i)$ — антиградиент в точке (x_i, y_i) для ансамбля a_{t-1}^{rj} , который по ней не обучался, $j = \lfloor \log_2(i-1) \rfloor$

L. Prokhorenkova et al. CatBoost: unbiased boosting with categorical features. 2019.

Модификация градиентного бустинга

```
сгенерировать случайные перестановки \sigma_0, \sigma_1, \ldots, \sigma_s;
для всех t = 1, ..., T
    выбрать перестановку \sigma_r случайно из \sigma_1, \ldots, \sigma_s;
    g_{ti}^r := -\mathscr{L}'(a_{t-1}^{rj}(x_i), y_i) — несмещённый антиградиент;
    b_t := \arg\min_{b} \sum_{i=1}^{c} (b(x_i) - g_{ti}^r)^2;
    для всех деревьев b_t^{rj}, r = 1, ..., s, 2^j \le \ell:
         скопировать общую для них структуру дерева из b_t;
       вычислить в листьях b_t^{rj} средние по \{g_{ti}^r\colon x_i\in X^{rj}\};
    вычислить в листьях b_t средние по \{g_{ti}^0: x_i \in X^{0j}\};
    GB: вычислить \alpha_t и обновить a_{t,i} := a_{t-1,i} + \alpha_t b_t(x_i);
```

Способы обработки категориальных признаков

Пусть V — множество (словарь) значений признака f(x)

Стандартные методы либо громоздкие, либо переобучаются:

- ullet бинаризация (one-hot encoding): $b_{v}(x) = [f(x) = v]$
- группирование (кластеризация) значений (LightGBM)
- статистика по целевому признаку (target statistics, TS):

$$\tilde{f}(x_i) = \frac{\sum_{k=1}^{\ell} [f(x_k) = f(x_i)] y_k + \gamma p}{\sum_{k=1}^{\ell} [f(x_k) = f(x_i)] + \gamma}$$

CatBoost:

ullet статистика TS вычисляется по перестановкам X^{rj} :

$$\tilde{f}(x_i) = \frac{\sum_{\mathbf{x}_k \in \mathbf{X}^{ij}} [f(\mathbf{x}_k) = f(\mathbf{x}_i)] y_k + \gamma p}{\sum_{\mathbf{x}_k \in \mathbf{X}^{ij}} [f(\mathbf{x}_k) = f(\mathbf{x}_i)] + \gamma}, \quad j = \lfloor \log_2(i-1) \rfloor$$

 конъюнкции категориальных признаков создаются «налету» в процессе построения деревьев

Небрежные решающие деревья (Oblivious Decision Tree, ODT)

Решающая таблица: бинарное дерево глубины H; для всех узлов уровня h условие ветвления $f_h(x)$ одинаково; на уровне h число вершин 2^{h-1} ; число листьев 2^H .

Классификатор задаётся таблицей решений $B \colon \{0,1\}^H \to Y$:

$$b(x) = B(f_1(x), \ldots, f_H(x)).$$

Пример: задача XOR, H = 2.

R.Kohavi, C.-H.Li. Oblivious decision trees, graphs, and top-down pruning. 1995.

Жадный алгоритм обучения ODT

```
Вход: выборка X^{\ell}; множество признаков F; глубина дерева H; Выход: признаки f_h, h=1,\ldots,H; таблица B\colon\{0,1\}^H\to Y; для всех h=1,\ldots,H признак с максимальным выигрышем определённости: f_h:=\arg\max_{f\in \text{bin}\{F\}} \text{Gain } (f_1,\ldots,f_{h-1},f); f\in \text{bin}\{F\} B(\beta):=\begin{cases} \text{Major}(U_{H\beta}), \text{ мажоритарное правило в алгоритме ID3} \\ \Phi(U_{H\beta}), \Phi(U)=\begin{cases} \text{avg}\{y_i\colon x_i\in U\}, \text{ в алгоритме CART} \\ \text{avg}\{g_{ti}^r\colon x_i\in U\}, \text{ в алгоритме CatBoost} \end{cases}
```

 $U_{h\beta} = \left\{ x_i \in X^\ell \colon f_{s}(x_i) = \beta_{s}, \ s = 1..h \right\}$ — выборка объектов x_i , дошедших до вершины $\beta = (\beta_1, \dots, \beta_h) \in \{0,1\}^h$ уровня h Выигрыш от ветвления на уровне h по всей выборке X^ℓ :

$$\mathsf{Gain}\left(f_1,\ldots,f_h\right) = \Phi(X^\ell) - \sum\nolimits_{\beta \in \{0,1\}^h} \frac{|U_{h\beta}|}{\ell} \, \Phi(U_{h\beta})$$

Напоминание. Конъюнктивные логические закономерности

Семейство интерпретируемых логических правил:

$$b(x) = \bigwedge_{j \in J} \left[\alpha_j \leqslant f_j(x) \leqslant \beta_j \right]$$

 $J\subset\{1,\ldots,n\}$ — подмножество небольшого числа признаков $[\alpha_i, \beta_i]$ — отрезок значений признака f_i

Информативность предиката b(x) относительно класса $y \in Y$:

$$\begin{cases} p_y(b) = \#\{x_i \colon b(x_i) = 1 \text{ if } y_i = y\} \to \max_b \\ n_y(b) = \#\{x_i \colon b(x_i) = 1 \text{ if } y_i \neq y\} \to \min_b \end{cases}$$

Критерий обучения базовых алгоритмов (из AdaBoost):

$$\sqrt{p_y(b)} - \sqrt{n_y(b)} \to \max_b$$

R.E.Schapire, Y.Singer. Improved boosting using confidence-rated predictions. 1999

Алгоритмы вычисления оценок, АВО

Бинарная функция сходства по набору признаков J:

$$b(x) = B_J(x, x_i) = \bigwedge_{j \in J} \left[|f_j(x) - f_j(x_i)| \leqslant \varepsilon_j \right]$$

 $J\subset\{1,\ldots,n\}$ — подмножество небольшого числа признаков $\mathbf{x}_i\in X^\ell$ — эталонный объект из обучающей выборки $\mathbf{\varepsilon}_j$ — порог сходства объектов по признаку f_j

Преимущества:

- объединение принципов голосования, сходства и поиска логических правил в информативных подпространствах
- подходит для задач с малыми обучающими выборками

Дмитриев А. Н., Журавлев Ю. И., Кренделев Ф. П. Об одном принципе классификации и прогноза геологических объектов и явлений. 1968. Журавлёв Ю. И., Никифоров В. В. Алгоритмы распознавания, основанные на вычислении оценок, 1971.

Принципы информативности, непротиворечивости, тупиковости

ullet информативность предиката b(x) класса $y\in Y$:

$$\begin{cases} p_y(b) = \#\{x_i \colon b(x_i) = 1 \text{ if } y_i = y\} \to \max \\ n_y(b) = \#\{x_i \colon b(x_i) = 1 \text{ if } y_i \neq y\} \to \min \end{cases}$$

• информативность функции сходства B(x, x'):

$$\begin{cases} p(B) = \# \big\{ (x_i, x_j) \colon B(x_i, x_j) = 1 \text{ in } y_i = y_j \big\} \to \max \\ n(B) = \# \big\{ (x_i, x_j) \colon B(x_i, x_j) = 1 \text{ in } y_i \neq y_j \big\} \to \min \end{cases}$$

- непротиворечивость: n(B) = 0
 - тест J: $B_J(x_i, x_i) = 0$, $\forall i, j: y_i \neq y_i$
 - представительный набор (J,i): $B_J(x_i,x_j)=0$, $\forall j$: $y_i\neq y_j$
- тупиковость: никакое подмножество признаков $J' \subset J$ не является тестом (или представительным набором)

Журавлёв Ю. И., Никифоров В. В. Алгоритмы распознавания, основанные на вычислении оценок, 1971.

Вспомогательная задача бинаризации вещественного признака

Цель — сократить перебор предикатов вида $[f(x) \leqslant \alpha]$.

Дано: выборка значений признака $f(x_i) \in \mathbb{R}$, $x_i \in X^\ell$.

Найти: разбиение области значений признака на зоны:

$$\zeta_0(x) = [f(x) < d_1];$$

$$\zeta_s(x) = [d_s \le f(x) < d_{s+1}], \qquad s = 1, \dots, r-1;$$

$$\zeta_r(x) = [d_r \le f(x)].$$

Критерий: максимум информативности при минимуме r.

Пороги d_i нет смысла ставить между точками одного класса:

Способы разбиения области значений признака на зоны

- Разбиение на квантили (равномощные подвыборки)
- Разбиение по равномерной сетке «удобных» значений
- Жадная максимизация информативности путём слияний
- Объединение нескольких разбиений

Выбор «удобных» пороговых значений

Задача: на отрезке [a,b] найти значение x^* с минимальным числом значащих цифр. Если таких x^* несколько, выбрать из них наиболее близкий к середине отрезка:

$$x^* = \arg\min_{x} \left| \frac{1}{2} (a+b) - x \right|.$$

<i>a</i> =	2,16667
	2,19
<i>x</i> * =	2,2
	2,21
(a+b)/2 =	2,23889
	2,29
	2,3
	2,31
b =	2,31111

Жадный алгоритм слияния зон по критерию информативности

```
Вход: выборка X^{\ell}; параметры r и \delta_0;
Выход: D = \{d_1 < \cdots < d_r\} — последовательность порогов;
D:=\varnothing; упорядочить выборку X^{\ell} по возрастанию f(x_i);
для всех i = 2, ..., \ell
    если f(x_{i-1}) \neq f(x_i) и y_{i-1} \neq y_i то
     добавить порог \frac{1}{2}(f(x_{i-1}) + f(x_i)) в конец D
повторять
    для всех d_i \in D, i = 1, ..., |D| - 1
     \delta I_i := I(\zeta_{i-1} \vee \zeta_i \vee \zeta_{i+1}) - \max\{I(\zeta_{i-1}), I(\zeta_i), I(\zeta_{i+1})\};
    i := \arg\max \delta I_s;
    если \delta I_i > \delta_0 то
     слить зоны \zeta_{i-1}, \zeta_i, \zeta_{i+1}, удалив d_i и d_{i+1} из D_i;
пока |D| > r + 1:
```

- Ансамбли позволяют решать сложные задачи, которые плохо решаются отдельными базовыми алгоритмами.
- Важное открытие середины 90-х: обобщающая способность бустинга не ухудшается с ростом сложности T.
- Градиентный бустинг наиболее общий из всех бустингов:
 - произвольная функция потерь
 - произвольное пространство оценок R
 - подходит для регрессии, классификации, ранжирования
- Чаще всего GB применяется к решающим деревьям
- RF и SGB универсальные модели машинного обучения
- CatBoost общедоступная реализация от Яндекса
 - для категориальных признаков
 - для уменьшения переобучения