Summary - Data Wrangling with Panda

Conda Environment	conda env export > environment.yml : existing environment
Conda Environment	conda env create -f environment.yml : create from file import pandas as pd import numpy as np
Imported Packages	%matplotlib inline import matplotlib.pyplot as plt from pandas.plotting import scatter_matrix
	%load_ext line_profiler import seaborn as sns import missingno as msno
	from sklearn.preprocessing import Imputer from sklearn.preprocessing import LabelBinarizer
Read CSV	<pre>df = pd.read_csv('application_train.csv')</pre>
Glimpse Data in Dataframe	df.head(6)
Dataframe Informtion	df.info(null_counts=True, verbose=True)
Distinct observations	<pre>df.nunique().sort_values()</pre>
Variables that have 2 Values	<pre>inter_cat = df.loc[:,df.nunique(axis=0).apply(lambda x: x < 3)]</pre>
Sort values	<pre>inter_cat.nunique().sort_values()</pre>
Value of the Binary Variables	<pre>for c in inter_cat.columns: print("{}: \t {} ".format(c, df[c].unique()))</pre>
Separate Categorical and Numeric Variables	<pre>cat_vars = [*df.select_dtypes('object').columns.values.tolist(), *inter_cat.columns.values.tolist()]</pre>
Class imbalance	<pre>num_vars = df.columns.difference(cat_vars).values.tolist() df['TARGET'].value counts()</pre>
	import missingno as msno
Overview of missing data	<pre>msno.matrix(df) total = df.isnull().sum().sort values(ascending = False)</pre>
Percentage of missing data	<pre>percent = (df.isnull().sum()/df.isnull().count()*100).sort_values(ascending = False) missing_application_train_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent'])</pre>
	missing_application_train_data.query('Percent > 50')
Imputer Class Median	<pre>from sklearn.preprocessing import Imputer imputer = Imputer(strategy="median", verbose= True) imputer.fit(df[num_vars]) X = imputer.transform(df[num_vars].copy()) temp = pd.DataFrame(X, columns=num vars)</pre>
Filling Missing Categorical Attributes with Special Value	temp = df[cat_vars].fillna(999,inplace=False)
	<pre>Option 1: pd.get dummies(df[cat vars], dummy na=True) : Option 1</pre>
Encode Dummy Variables	<pre>Option 2: encoder = LabelBinarizer() temp_cat_lhot = encoder.fit_transform(df['FLAG_DOCUMENT_4'])</pre>
Data Distributions	<pre>df[num_vars].hist(figsize=(40,30)) plt.show()</pre>
Descriptive Statistics	df[num_vars].describe()
Visualize Correlations	<pre>plt.figure(figsize = (20,20)) ax = sns.heatmap(df[num_vars].corr(), square= True , linewidths=.5, cmap="Blues")</pre>
Feature Selection	
Outliers	
Conversation Cafe	Build a Checklist for Exploratory Data Analysis
	Scaling the Analysis: How would you organize your analysis - extending it to include the other files in the data set?
	Class Imbalance: In debt collection, data is often imbalance. How would you handle the imbalanced data?
	Missing Data: How do you decide on an appropriate Strategy to impute missing values for Numerical and Categorical data?