The Unstable Gromov-Lawson-Rosenberg Conjecture

Sam Hughes

Scalar curvature

Definition (Scalar curvature)

Let (M,g) be a connected Riemannian n-manifold. The scalar curvature \mathbf{S} of (M,g) assigns to each point of M a real number defined by the local geometry. Precisely, $\mathbf{S} = \operatorname{tr}_{g}(\operatorname{Ric})$.

Geometrically, we may compute ${\cal S}$ at a point p as the following derivative

$$S = -(3n+2) \left. \frac{d^2}{d\varepsilon^2} \frac{\operatorname{Vol}(B_{\varepsilon}(p) \subset M)}{\operatorname{Vol}(B_{\varepsilon}(p) \subset \mathbb{R}^n)} \right|_{\varepsilon=0}$$

Scalar curvature

Examples

- $ightharpoonup S^n$ of radius r has constant scalar curvature equal to $\frac{n(n-1)}{r^2}$.
- ► Real hyperbolic space has negative scalar curvature.
- $ightharpoonup \mathbb{E}^n$ has constant scalar curvature equal to 0.

Positive scalar curvature

Question

When does M admit a metric g of positive scalar curvature κ ?

In dimension 2 this is completely solved.

Theorem (Gauss-Bonnet 1848)

Let M be a compact two-dimensional Riemannian manifold, then

$$\kappa = \int_M \mathbf{S} dA = 4\pi \chi(M).$$

The Euler characteristic (a topological invariant) is an obstruction to the geometric problem.

Dimension 3

A consequence of Perelman's proof of the Geometrization conjecture is the following:

Theorem (Perelman 2006, using work of Schoen, Yau, Gromov, and Lawson)

A closed orientable 3-manifold admits a metric of positive scalar curvature if and only if it is a connected sum of spherical 3-manifolds and copies of $S^1 \times S^2$.

Index theory

- lackbox Let M be a closed spin manifold and X a spinor bundle.
- Let $L^2(M,X)$ denote the space of square integrable sections $M \to X$.

$$L^{2}(M,X) = \left\{ f: M \to X: \int_{M} ||f(x)||^{2} dx < \infty \right\}$$

- ▶ Let $D: L^2(M,X) \to L^2(M,X)$ be the Dirac operator.
- ▶ Define Index(D) = dim ker(D) dim coker(D).

Index theory

- $ightharpoonup D^2 = \Delta + \kappa/4 \text{ and } \Delta \geq 0.$
- ▶ Now, $\kappa > 0$ implies D^2 invertible.
- ightharpoonup Hence, D invertible.
- ▶ So Index(D) = 0

Theorem (Lichnerowicz 1963)

 $Index(D) \neq 0$ implies M does not admit a metric with $\kappa > 0$.

The Atiyah-Singer index theorem

Theorem (Atiyah-Singer 1963)

If M is a closed spin 4k-manifold then $Index(D) = \hat{A}(M)$.

Here $\hat{A}(M)$ is the "A-hat genus of M", a topological invariant.

A more general obstruction

Theorem (Rosenberg 1983)

Let M be a closed spin n-manifold and G a discrete group. Let $u:M\to BG$ be a continuous map. If M admits a metric of positive scalar curvature, then $\alpha[M,u]=0\in KO_n(C_r^*G)$.

Here $\alpha:\Omega_n^{\mathrm{Spin}}(BG)\to KO_n(C_r^*G)$ is the index of the Dirac operator.

The map α

We may factor α as

$$\Omega_n^{\text{Spin}}(BG) \xrightarrow{D} ko_n(BG)$$

$$\xrightarrow{p} KO_n(BG) \xrightarrow{\mu_{\mathbb{R}}} KO_n(C_r^*(G; \mathbb{R})).$$

Here, D is the ko -orientation of spin bordism, p is the connective covering map of spectra and $\mu_{\mathbb{R}}$ is Rosenberg's assembly map.

Connective KO-theory

If $K^*(*)=\mathbb{Z}[x,x^{-1}]$ where x has degree 2. The connective K-theory of a point is $k^*(*)=\mathbb{Z}[x]$ where x has degree 2.

Similarly,

$$ko_*(*) = \begin{cases} KO_*(*) & \text{if } n \ge 0; \\ 0 & \text{if } n < 0. \end{cases}$$

G-CW complexes

Definition (G-CW complex)

A $G ext{-}CW$ complex is a $G ext{-}space\ X$ equipped with a filtration

$$\emptyset \subset X^{(0)} \subseteq X^{(1)} \subseteq \cdots \subseteq \bigcup_{n \in \mathbb{N}} X^{(n)} = X$$

Each $X^{(n)}$ is obtained from $X^{(n-1)}$ via a G-pushout of the form

$$\bigsqcup_{i \in I_n} G/H_i \times S^{n-1} \longrightarrow X^{(n-1)}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\bigsqcup_{i \in I_n} G/H_i \times D^n \longrightarrow X^{(n)}$$

where $H_i < G$ are subgroups called the isotropy groups of X.

Families of subgroups

Definition (Family of subgroups)

A family \mathcal{F} of subgroups of G is a collection of subgroups of G closed under taking subgroups and conjugation.

Examples:

- ▶ The trivial family $\mathcal{TRV} = \{\{1\}\}.$
- ▶ The family of finite subgroups \mathcal{FIN} .
- ▶ The family of virtually cyclic subgroups VC.
- ▶ The family of all subgroups ALL.

Classifying spaces for families

Definition

Let G be a group with family of subgroups \mathcal{F} . A G-CW complex X is a model for the classifying space $E_{\mathcal{F}}G$ if its isotropy groups are in \mathcal{F} and for each $H \in \mathcal{F}$, the fixed point set X^H is contractible.

Note that for a discrete group G we have $E_{\mathcal{TRV}}G = EG$.

The universal property

Proposition

For any G-CW-complex Y, whose isotropy groups belong to \mathcal{F} , there is up to G-homotopy precisely one G-map $Y \to E_{\mathcal{F}}G$.

It follows there is a unique composite map (up to G-homotopy):

$$EG \longrightarrow E_{\mathcal{FIN}}G \longrightarrow E_{\mathcal{VC}}G \longrightarrow E_{\mathcal{ALL}}G \simeq G/G \simeq \{*\}$$

Notation

We will denote $E_{\mathcal{FIN}}G$ by $\underline{\mathsf{E}}G$ and $\underline{\mathsf{E}}G/G$ by $\underline{\mathsf{B}}G$

A group G has property:

(M) if every finite subgroup is contained in a unique maximal finite subgroup.

(NM) if every maximal finite subgroup is self normalising.

The (Real) Baum-Connes Conjecture

Conjecture (Baum-Connes)

The assembly map $K_n^G(\underline{E}G) \to K_n(C_r^*(G))$, induced by the projection $\underline{E}G \to \{*\}$, is an isomorphism.

The Baum-Connes Conjecture implies that Rosenberg's assembly map is injective.

The map α

We may factor α as

$$\Omega_n^{\text{Spin}}(BG) \xrightarrow{D} ko_n(BG)$$

$$\xrightarrow{p} KO_n(BG) \xrightarrow{\mu_{\mathbb{R}}} KO_n(C_r^*(G; \mathbb{R})).$$

Here, D is the ko-orientation of spin bordism, p is the connective covering map of spectra and $\mu_{\mathbb{R}}$ is induced by $EG \to \{*\}.$

The unstable Gromov-Lawson-Rosenberg conjecture

Conjecture (Gromov-Lawson-Rosenberg)

Let M be a closed spin n-manifold, $n \geq 5$ with $\pi_1 M = G$. Suppose that $u: M \to BG$ induces the identity on G, then M admits a metric of positive scalar curvature if and only if $\alpha[M,u]=0 \in KO_n(C_r^*G)$.

Positive and negative results

The conjecture has been verified for:

- ► All simply connected *M* [Stolz 1992].
- ▶ When $\pi_1(M)$ is finite with periodic cohomology [Botvinnik-Gilkey-Stolz 1997].
- ► $G = \pi_1(M)$ is torsion free discrete and dim $BG \le 9$ [Joachim-Schick 1992].
- \blacktriangleright $\pi_1(M)$ is a Fuchsian group [Davis-Pearson 2003].

There is a counterexample due to [Schick 2004] with $\pi_1(M)=\mathbb{Z}^4\oplus\mathbb{Z}_3.$

Towards a new result

Proposition

Let Γ be a group satisfying (M), (NM), the Baum-Connes conjecture, and be such that all maximal finite subgroups have periodic cohomology. If $\underline{B}G$ is finite and

$$p: \widetilde{ko}_n(\underline{B}\Gamma) \to \widetilde{KO}_n(\underline{B}\Gamma)$$

is an isomorphism for all $n \geq 6$ and injective for n = 5, then Γ satisfies the unstable GLR conjecture.

The proof

When Γ satisfies (M) and (NM), the p-chain spectral sequence of Davis and Lück is very well behaved. It collapses on the E^2 -page.

Let $X = \underline{\mathsf{B}}\Gamma$. Using this we get a commutative diagram:

$$\begin{split} \widetilde{ko}_{n+1}(X) & \longrightarrow \bigoplus_{(H) \in \Lambda} \widetilde{ko}_n(BH) & \longrightarrow \widetilde{ko}_n(B\Gamma) & \longrightarrow \widetilde{ko}_n(X) \\ \downarrow^p & \downarrow_{\mu_{\mathbb{R}} \circ p} & \downarrow_{\mu_{\mathbb{R}} \circ p} & \downarrow_p \\ \widetilde{KO}_{n+1}(X) & \longrightarrow \bigoplus_{(H) \in \Lambda} \widetilde{KO}_n(C^*_r(H;\mathbb{R})) & \longrightarrow \widetilde{KO}_n(C^*_r(\Gamma;\mathbb{R})) & \longrightarrow \widetilde{KO}_n(X). \end{split}$$

If $\beta \in \ker(c)$, then there exists $\gamma \in \ker(b)$.

The proof (cont.)

For a group L let $ko_n^+(BL)$ be the subgroup of $ko_n(BL)$ given by D[M,f] where M is a positively curved spin manifold and f is a continuous map.

Now Botvinnik, Gilkey and Stolz (1997) prove for a finite group ${\cal H}$ of odd order with periodic cohomology that

$$ko_n^+(BH) = \ker(\mu_{\mathbb{R}} \circ p : ko_n(BH) \to KO_n^{\mathrm{top}}(C_r^*(H))$$

and so $\gamma \in ko_n^+(B\Gamma)$.

A result of Stolz (1995) states that if $D[M,f]\in ko_n^+(B\Gamma)$, then M admits a metric of positive scalar curvature.

Lemma (Joachim-Schick 1998)

Let X be a finite CW complex of dimension at most 9, then $p:\widetilde{ko}_n(X)\to \widetilde{KO}_n(X)$ is an isomorphism for all $n\geq 6$ and an injection for n=5.

▶ The map p induces a map of Atiyah-Hirzebruch spectral sequences $E^*_{*,*} \to F^*_{*,*}$ where,

$$E_{p,q}^2:=H_p(X;ko_q)\quad\text{and}\quad F_{p,q}^2:=H_p(X;KO_q)$$

▶ These converge to $ko_{p+q}(X)$ and $KO_{p+q}(X)$.

The E^2 page for ko:

4	$\uparrow H_0(X;\mathbb{Z})$	$H_1(X;\mathbb{Z})$	$H_2(X;\mathbb{Z})$	$H_3(X;\mathbb{Z})$	$H_4(X;\mathbb{Z})$
3	0	0	0	0	0
2	$H_0(X;\mathbb{Z}_2)$	$H_1(X;\mathbb{Z}_2)$	$H_2(X;\mathbb{Z}_2)$	$H_3(X;\mathbb{Z}_2)$	$H_4(X;\mathbb{Z}_2)$
1	$H_0(X;\mathbb{Z}_2)$	$H_1(X;\mathbb{Z}_2)$	$H_2(X;\mathbb{Z}_2)$	$H_3(X;\mathbb{Z}_2)$	$H_4(X;\mathbb{Z}_2)$
0	$H_0(X;\mathbb{Z})$	$H_1(X;\mathbb{Z})$	$H_2(X;\mathbb{Z})$	$H_3(X;\mathbb{Z})$	$H_4(X;\mathbb{Z})$
-1	0	0	0	0	0
-2	0	0	0	0	0
-3	0	0	0	0	0
-4	0	0	0	0	0

The F^2 page for KO:

4	$ \uparrow H_0(X;\mathbb{Z}) $	$H_1(X;\mathbb{Z})$	$H_2(X;\mathbb{Z})$	$H_3(X;\mathbb{Z})$	$H_4(X;\mathbb{Z})$
3	0	0	0	0	0
2	$H_0(X;\mathbb{Z}_2)$	$H_1(X;\mathbb{Z}_2)$	$H_2(X;\mathbb{Z}_2)$	$H_3(X;\mathbb{Z}_2)$	$H_4(X;\mathbb{Z}_2)$
1	$H_0(X;\mathbb{Z}_2)$	$H_1(X;\mathbb{Z}_2)$	$H_2(X;\mathbb{Z}_2)$	$H_3(X;\mathbb{Z}_2)$	$H_4(X;\mathbb{Z}_2)$
0	$H_0(X;\mathbb{Z})$	$H_1(X;\mathbb{Z})$	$H_2(X;\mathbb{Z})$	$H_3(X;\mathbb{Z})$	$H_4(X;\mathbb{Z})$
					
-1	0	0	0	0	0
-2	0	0	0	0	0
-3	0	0	0	0	0
-4	$H_0(X;\mathbb{Z})$	$H_1(X;\mathbb{Z})$	$H_2(X;\mathbb{Z})$	$H_3(X;\mathbb{Z})$	$H_4(X;\mathbb{Z})$

The d^2 and d^3 differentials:

The differential d^5 and all of the differentials together:

- ► Now, the differentials in both spectral sequences are given by the same duals of cohomology operations.
- ▶ It follows $E^n_{p,q} \cong F^n_{p,q}$ for $q \geq 6$ and $E^n_{p,q} \rightarrowtail F^n_{p,q}$ for n=5.
- ▶ The spectral sequences converge to $E^{\infty} = Gr \text{ ko}(X)$ and $F^{\infty} = Gr \text{ KO}(X)$.
- ▶ The difference between $\operatorname{Gr\,ko_n}(X)$ and $ko_n(X)$ is a sequence of extension problems. The Five Lemma yields that a solution to each extension problem in $ko_n(X)$ determines an isomorphic solution in $KO_n(X)$ for $n \geq 6$.

Putting it together

Theorem (H.)

Let G be a discrete group satisfying (M), (NM), the Baum-Connes conjecture, and be such that all maximal finite subgroups have periodic cohomology. If $\underline{B}G$ is finite and has dimension at most 9, then G satisfies the unstable GLR conjecture.

Examples

- ▶ 3-manifold groups with no elements of order 2;
- ► One relator groups;
- ▶ Many S-arithmetic subgroups of $PSL_2(\mathbb{R})$;
- ▶ Graphs of groups of the above with torsion-free edge groups admitting a finite model for $\underline{B}G$.

Thanks for listening!