SIE2010 INFORMASJONS- OG SIGNALTEORI

Løsningsforslag eksamen august 2001

Oppgave 1

a) Gitt to vilkårlige signal $x_1(n)$ og $x_2(n)$. La $y_1(n) = \mathcal{H}\{x_1(n)\}$ og $y_2(n) = \mathcal{H}\{x_2(n)\}$. Danner nå et nytt signal $x(n) = c_1x_1(n) + c_2x_2(n)$. Operatoren $\mathcal{H}\{\}$ er lineær dersom:

$$y(n) = \mathcal{H}\{x(n)\} = c_1 \mathcal{H}\{x_1(n)\} + c_1 \mathcal{H}\{x_1(n)\} = c_1 y_1(n) + c_2 y_2(n)$$

b) Enhetspulsresponsen $h_{\alpha}(n)$:

$$h_{\alpha}(-1) = 0$$
, startvilkår $h_{\alpha}(0) = 1$ $h_{\alpha}(1) = \alpha$ \vdots $h_{\alpha}(n) = a^n u(n)$

hvor

$$u(n) = \begin{cases} 1 & n \ge 0 \\ 0 & \text{ellers} \end{cases}$$

Frekvensresponsen $H_{\alpha}(e^{j\omega})$:

$$H_{\alpha}(e^{j\omega}) = \mathcal{F}\{h_{\alpha}(n)\} = \sum_{n=0}^{\infty} \left(\alpha e^{-j\omega}\right)^n = \frac{1}{1 - \alpha e^{-j\omega}}$$

c) Setter $h_{\beta}(n) = \beta^n u(n)$ og $H_{\beta}(e^{j\omega}) = \frac{1}{1-\beta e^{-j\omega}}$

Enhetspulsresponsen $h_k(n)$ til kaskadekoplingen:

$$h_k(n) = h_{\alpha}(n) * h_{\beta}(n) = \sum_{i=-\infty}^{\infty} h_{\alpha}(i)h_{\beta}(n-i) = \sum_{i=0}^{n} \alpha^i \beta^{n-i} u(n)$$

$$= \beta^n \sum_{i=0}^{n} \left(\frac{\alpha}{\beta}\right)^i u(n) = \beta^n \frac{1 - \left(\frac{\alpha}{\beta}\right)^{n+1}}{1 - \left(\frac{\alpha}{\beta}\right)} u(n) = \frac{\beta^{n+1} - \alpha^{n+1}}{\beta - \alpha} u(n)$$
(1)

Utrkket gjelder når $\alpha \neq \beta$.

Frekvensresponsen $H_k(e^{j\omega})$: Har følgende sammenheng $h_{\alpha}(n) * h_{\beta}(n) \iff H_{\alpha}(e^{j\omega})H_{\beta}(e^{j\omega})$. Dette gir

$$H_k(e^{j\omega}) = \frac{1}{1 - \alpha e^{-j\omega}} \frac{1}{1 - \beta e^{-j\omega}} = \frac{1}{1 - (\alpha + \beta)e^{-j\omega} + \alpha\beta e^{-j2\omega}}$$

d) Både kaskadekoplingen i 1c og parallellkoplingen i 1d er lineære skiftinvariante filtre (LSI-filtre). Disse er fullstendig beskrevet av enhetspulsresponsene. Derfor må $h_k(n) = h_p(n)$, der $h_p(n)$ er impulsresponsen til parallellkoplingen, for at filtrene skal være ekvivalente.

Finner $h_n(n)$:

$$h_p(n) = Ah_{\alpha}(n) + Bh_{\beta}(n) = (A\alpha^n + B\beta^n) u(n)$$
(2)

Omskriver ligning (??)

$$h_k(n) = \left(\frac{-\alpha}{\beta - \alpha}\alpha^n + \frac{\beta}{\beta - \alpha}\beta^n\right)u(n)$$

Ved å sammenligne ligning (??) og (??) ser vi at

$$A = \frac{-\alpha}{\beta - \alpha}$$
 og $B = \frac{\beta}{\beta - \alpha}$

e) Siden begge filtrene er kausale, er BIBO-stabilitetskriteriet et tilstrekkelig kriterium for å påvise stabilitet.

$$\sum_{n=0}^{\infty} |h(n)| < \infty$$

Tester om $h_k(n)$ er stabilt for $\alpha \neq \beta$:

$$\begin{split} \sum_{i=0}^{\infty} |h_k(n)| &= \sum_{i=0}^{\infty} \left| \frac{-\alpha}{\beta - \alpha} \alpha^i + \frac{\beta}{\beta - \alpha} \beta^i \right| \\ &\leq \frac{|\alpha|}{|\beta - \alpha|} \sum_{i=0}^{\infty} |\alpha|^i + \frac{|\beta|}{|\beta - \alpha|} \sum_{i=0}^{\infty} |\beta|^i \\ &= \frac{|\alpha|}{|\beta - \alpha|} \frac{1}{1 - |\alpha|} + \frac{|\beta|}{|\beta - \alpha|} \frac{1}{1 - |\beta|} \qquad |\alpha| < 1 \text{ og} |\beta| < 1 \end{split}$$

Dvs: $h_k(n)$ er stabilt når $|\alpha| < 1$ og $|\beta| < 1$. Får det samme konvergensområde for $h_p(n)$.

Oppgave 2

a) Basisfunksjonene i rekka er:

$$\varphi_k(t) = e^{-j\frac{2\pi}{T_0}kt}$$

der k er alle heltall. Disse basisfunksjonene er ortogonale dersom (vi må integererer over en periode T_0):

$$\frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \varphi_n(t) \varphi_m^*(t) dt = \begin{cases} A_{kk} & n = m \\ 0 & \text{ellers} \end{cases}$$

Tester om dette er oppfylt:

$$\int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \varphi_n(t) \varphi_m^*(t) dt = \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} e^{-j\frac{2\pi}{T_0}nt} e^{j\frac{2\pi}{T_0}mt} dt = \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} e^{-j\frac{2\pi}{T_0}(n-m)t} dt = \int$$

b) Fra figuren i oppgaveteksten ser vi at grunnperioden $T_0 = 1$. (Da blir basisfunksjonene ortonormale). Koeffisientene α_k i rekka er:

$$\alpha_k = \int_0^1 x(t) \varphi_k^*(t) dt = \int_0^1 x(t) e^{j2\pi kt} dt = A \int_0^{\frac{1}{2}} e^{j2\pi kt} dt$$

$$= \frac{A}{j2\pi k} \left[e^{j\pi k} - 1 \right] = \frac{A e^{j\frac{\pi}{2}k}}{j2\pi k} \left[e^{j\frac{\pi}{2}k} - e^{-j\frac{\pi}{2}k} \right]$$

$$= \frac{A}{\pi k} e^{j\frac{\pi}{2}k} \sin(\frac{\pi}{2}k)$$

For å forenkle dette videre må vi finne et utrykk for eksponensial- og sinusleddet:

$$e^{j\frac{\pi}{2}k} \cdot \sin(\pi \frac{k}{2}) = \begin{cases} 0, & k = 4l\\ j, & k = 4l+1\\ 0, & k = 4l+2\\ j, & k = 4l+3 \end{cases}$$

der l er heltall. Vi må også finne et eksplisivt utrykk for α_0 , da denne har 0 i nevneren:

$$\alpha_0 = \frac{A}{2} e^{j\frac{\pi}{2}k} \frac{\sin(\frac{\pi}{2}k)}{\pi k/2} \bigg|_{k=0} = \frac{A}{2} \operatorname{sinc}(0) = \frac{A}{2}$$

Totalt får vi da:

$$\alpha_k = \begin{cases} \frac{A}{2}, & k = 0\\ \frac{jA}{\pi k}, & k \text{ er odde} \\ 0, & k \text{ er like } \neq 0 \end{cases}$$

c) Parsevals relasjon gir effekten i signalet x(t)

$$P = \frac{1}{T_0} \int_0^{T_0} x^2(t) dt = \int_0^1 x^2(t) dt = \int_0^{\frac{1}{2}} A^2 dt = \frac{A^2}{2}$$

Rekkeutviklingen av x(t) gir den samme effekten, noe vi må vise.

$$P = \frac{1}{T_0} \int_0^{T_0} \left| \sum_{k=-\infty}^{\infty} \alpha_k \varphi_k(t) \right|^2 dt = \frac{1}{T_0} \int_0^{T_0} \left| \sum_{k=-\infty}^{\infty} \alpha_k \varphi_k(t) \sum_{l=-\infty}^{\infty} \alpha_l^* \varphi_l^*(t) \right| dt$$
$$= \frac{1}{T_0} \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \alpha_k \alpha_l^* \int_0^{T_0} \varphi_k(t) \varphi_l^*(t) dt = \frac{1}{T_0} \sum_{k=-\infty}^{\infty} |\alpha_k|^2 \cdot T_0$$

Den siste overgangen er gyldig da basisfunksjonene er ortogonale. (De er også ortonormale da $T_0=1$). Utnytter videre at $\alpha_{-k}^2=\alpha_k^2$

$$\Rightarrow \quad P = \sum_{k=-\infty}^{\infty} |\alpha_k|^2 = |\alpha_0^2| + 2\sum_{k=1}^{\infty} |\alpha_k|^2 = \left(\frac{A}{2}\right)^2 + 2\sum_{k=1,3,5,\dots}^{\infty} \left|\frac{-jA}{\pi k}\right|^2$$

Ved å substituere inn $m=\frac{k}{2}+\frac{1}{2} \rightarrow k=2m-1$ får vi

$$P = \frac{A^2}{4} + \frac{2A^2}{\pi^2} \sum_{m=1}^{\infty} \frac{1}{(2m-1)^2} = \frac{A^2}{4} + \frac{2A^2}{\pi^2} \frac{\pi^2}{8} = \frac{A^2}{2} \quad \text{q.e.d.}$$

d) Da x(t) er et reelt signal, må også rekkeutviklingen $x_r(t)$ ha reell form. Siden vi har komplekse koeffisienter, kan dette bare være oppfylles dersom koeffisientene opptrer i komplekskonjugerte par. Dvs:

$$\alpha_{-n} = \alpha_n^*$$

Dette ser vi stemmer ut fra utrykket for α_k på forige side. Får da:

$$x_r(t) = \sum_{-\infty}^{\infty} \alpha_k e^{j2\pi kt}$$

$$= \frac{A}{2} + \sum_{k=1,3,5}^{\infty} -\frac{jA}{\pi k} \left(e^{-j2\pi kt} - e^{j2\pi kt} \right)$$

$$= \frac{A}{2} + \frac{A}{\pi} \sum_{m=0}^{\infty} \frac{1}{2m-1} \left(e^{j2\pi(2m-1)t} - e^{-j2\pi(2m-1)t} \right)$$

$$= \frac{A}{2} + \frac{2A}{\pi} \sum_{m=0}^{\infty} \frac{\sin(2\pi(2m-1)t)}{2m-1}$$

Rekkeutviklingen $x_r(t)$ består av sinusledd. Siden sinusfunksjonene er kontinuerligne, blir også $x_r(t)$ kontinuerlig. Når vi tar med uendelig mange ledd i $x_r(t)$ blir den eksakt lik x(t) bortsett fra der x(t) er diskontinuerlig. For $t=0,\,1/2$ og 1 er x(t) diskontinuerlig. Alle sinusleddene i $x_r(t)$ er 0 for disse t verdiene. Dermed blir

$$x_r(0) = x_r(\frac{1}{2}) = x_r(1) = \frac{A}{2}$$

e) Punktprøvingen gir

$$x(n) = \{A, A, A, A, A, 0, 0, 0, 0\}$$

Finner DFT av x(n)

$$X(k) = \sum_{n=0}^{8} x(n)e^{-j\frac{2\pi}{9}nk} = A\sum_{n=0}^{4} x(n)e^{-j\frac{2\pi}{9}nk} = A\frac{1 - e^{-j\frac{10\pi}{9}k}}{1 - e^{-j\frac{2\pi}{9}k}}$$

x(n) er ikke en eksakt representasjon av x(t), fordi $\mathcal{F}\{x(t)\}$ ikke er båndbegrenset. Dette skyldes den skarpe overgangen fra A til 0 ved $t=\frac{1}{2}$, noe som gir lekkasje i frekvensplanet.

Observere videre at $x(n) = \mathcal{F}^{-1}\{X(k)\}$ har omtrent de samme basisfunksjonene som rekka i 2a) $(e^{j\frac{2\pi}{N}nk}$ v.s. $e^{j\frac{2\pi}{T_0}nt})$. Forskjellen er at basisfunksjonene til x(n) er diskrete mens basisfunksjonene til x(t) er kontinuerlige. Av dette konkluderer vi med at x(n) er den 9-ordens diskrete rekkeutviklingen av x(t).

Oppgave 3

a) Vi bruker 3 bits uniform kvantiserer. Kvantiseringsintervallene Δ er da av lengde

$$\Delta = \frac{A - (-A)}{2^3} = \frac{A}{4}$$

Kvantiseringsstøyen σ_X^2 finner vi ved hjelp av høyrate
approksimasjonen

$$\sigma_X^2 \approx \frac{\Delta^2}{12} = \frac{A^2}{192}$$

b)

Entropien til det kvantiserte signalet

$$H = -\sum_{n=1}^{8} p_n \log_2(p_n) = -2 \left(\frac{1}{32} \log_2 \frac{1}{32} + \frac{3}{32} \log_2 \frac{3}{32} + \frac{5}{32} \log_2 \frac{5}{32} + \frac{7}{32} \log_2 \frac{7}{32} \right)$$

$$= 2.75 \text{ [bit/symbol]}$$

5

- c) Kanalkapasiteten er den teoretiske maksimale informasjonsmengde målt i bit, som kan overføres over en gaussisk kanal feilfritt. Dette kan i teorien oppnås dersom vi innfører feilkorrigerende koding.
 - C er kanalkapasiteten, målt i [bit/s].
 - B er båndbredden til kanalen, enhet [Hz].
 - P er gjennomsnittlig effekt på mottatt symbol (evt. sendt symbol da det ikke er demping på kanalen), enhet [W].
 - $\frac{N_0}{2}$ er effektspektraltet
theten til støyen, dvs. støyeffekten per enhet båndbredde på kanalen, enhet
 [W/Hz].
- d) Siden signalet punktprøves med $f_s=10~\rm kHz$ og det trengs 2.75 bit/punktprøve, må kanalen overføre 27500 bit/sekund. Da båndbredden B til kanalen er 10 kHz og det trengs 2 symbol/Hz, må hvert kanalsymbol representere

$$\frac{27500 \text{ [bit/sekund]}}{2 \cdot 10000 \text{ [Hz]}} = 1.375 \text{ [bit]}$$

Finner den minste sendereffekten som kan gi feilfri overføring:

$$C = B \log_2 \left(1 + \frac{P}{N_0 B} \right)$$

$$1 + \frac{P}{N_0 B} = 2^{\frac{C}{B}}$$

$$\Rightarrow P = N_0 B \left(2^{\frac{C}{B}} - 1 \right)$$

Setter inn verdier og få

$$P \ge 10^{-4} \cdot 10^4 (2^{2,75} - 1) = 6,73 \text{ [W]}$$

Dvs: Vi må minst bruke en signalleffekt på 6.73 [W] for å kunne overføre signalet fra 3a. feilfritt.

e) Kan bruke variabel-lengde koding og sende i gjennomsnitt 1,375 bit/punktprøve. Dersom en legger til ekstra bit til feilkorrigerende koding, kunne en benytte i gjennomsnitt 2 bit/punktprøve og derfor benytte 4-nivå signalering. Ved bruk av variabellengde-koding er bufring nødvendig. I praksis må vi bruke en noe større båndbredde B (ca 20-40%) for å overføre den samme mengde informasjon som det som er teoretisk mulig. Vi må også sende med en større sendereffekt P, altså mer enn det Shannon's teorem sier er nødvendig.