

Probability and Random Process

Aimin Tang

The University of Michigan- Shanghai Jiao Tong University Joint Institute Shanghai Jiao Tong University

Oct. 29 2020

• 3. Multiple Random Variables

- Two Random Variables
- Marginal PDF
- Conditional PDF
- Functions of Two Random Variables
- Joint Moments
- Mean Square Error Estimation
- Probability bound
- Random Vectors
- Sample Mean
- Convergence of Random Sequences
- Central Limit Theorem

Probability bounds

The Markov and Chebyshev Inequalities

- These inequalities give us loose bounds on certain probabilities and require only mean and variance.
- Markov's Inequality:
 - If X is a random variable that takes only non-negative values, then for any a>0,

$$P(X \ge a) \le \frac{E(X)}{a}$$

An upper bound on a tail probability

Ve501 2020-2021 Fall

Proof of Markov's Inequality

$$E(X) = \int_{0}^{a} x f_{X}(x) dx + \int_{a}^{\infty} x f_{X}(x) dx$$

$$\geq \int_{a}^{\infty} x f_{X}(x) dx \qquad \text{(Just drop first integral)}$$

$$\geq \int_{a}^{\infty} a f_{X}(x) dx \qquad \text{(Because } x^{3} \text{ a over this domain of integration)}$$

$$= a P(X \geq a)$$

$$S_{0} \qquad P(X \geq a) \leq \frac{P(X \geq a)}{a}$$

Let X be the height of children in a kindergarten class, and E(X)=3.5 feet. Find a bound on $P(X \ge 9$ feet).

$$a = 9$$
 : $P(X \ge 9) \le \frac{3.5}{9} = 0.389$

This bound seems ridiculous, but it is possible to construct an RV for which the inequality is exact:

$$E(Y) = 0(1 - 0.389) + 9(0.389) = 3.5$$

Suppose X is any RV with finite mean μ and variance σ^2 Then for any b>0,

$$P(|X - \mu| \ge b) \le \frac{\sigma^2}{b^2}$$
 An upper bound on a double-tail probability

In words, the probability that X deviates from its mean by more than b is upper-bounded by S^2/b^2 .

Chebyshev's Inequality Proof

$$P(|X - \mu| \ge b) \le \frac{\sigma^2}{b^2}$$
 An upper bound on a double-tail probability

Proof: Apply Markov inequality to $Y = [X - \mu]^2$ with $a=b^2$.

$$P(Y \ge a) = P([X - \mu]^2 \ge b^2) \le \frac{E[Y]}{a} = \frac{\sigma^2}{b^2}$$

The mean response time and the standard deviation in a multi-user computer network are known to be 0.5s and 2s, respectively.

Give an upper bound on the probability that the response time is more than 3s from the mean

$$P(|X-0.5| \ge 3) \le \frac{\sigma^2}{9} = \frac{4}{9}$$

An interesting special case when b = KS

$$P(|X - \mu| \ge K\sigma) \le \frac{\sigma^2}{(K\sigma)^2} = \frac{1}{K^2}$$

Compare to Exact Probability

From the previous slide:

$$P(|X-\mu| \ge K\sigma) \le \frac{1}{K^2}$$

Ex: Suppose
$$X \sim N(\mu, \sigma^2)$$
, $K = 2$

$$P(|X - \mu| \ge 2\sigma) = P\left(\left|\frac{X - \mu}{\sigma}\right| \ge 2\right)$$

$$= 2[1 - \Phi(2)] = 0.0456$$

The bound gives 0.25.

The Chebyshev bound can also be quite loose, but it is useful in proving limit theorems.

• The **chernoff bound** of a random variable X is given right hard (left side \$2000) by

$$\Pr(X \ge a) \le \min_{\substack{s \ge 0 \\ \text{win } [e^{-sa}M_X(s)]}} e^{-sa}M_X(s)$$
• where the minimum is over all $s \ge 0$ for which $M_X(s)$

is finite.

Ve501 2020-2021 Fall

Every probability can be written as an expectation

$$P_r(X \ge a) = \int_a^\infty f_X(x) dx$$

$$= \int_{-\infty}^{\infty} I_{[a,\infty)}(X) f_X(x) dx = \mathsf{E} \big[I_{[a,\infty)}(X) \big] \tag{1}$$

(textbook) Figure 4.10 Graph showing that $I_{[a,\infty)}(X)$ (solid line) is upper bounded by $e^{s(X-a)}$ (dashed line) for any positive s. Note that the inequality (2) holds even if s=0.

Ve501 2020-2021 Fall

Taking expectations of (2)

$$\mathsf{E}\big[I_{[a,\infty)}(X)\big] \leq \mathsf{E}\Big[e^{s(X-a)}\Big]$$

$$=e^{-sa}\mathsf{E}\!\left[e^{sX}\right]=e^{-sa}M_X(s)$$

Combining with (1),

$$P_{r}(X \ge a) \le e^{-sa} M_{X}(s) \tag{3}$$

Inequality (3) is valid for all $s \ge 0$ and the LHS of (3) does not depend on s. Consequently

$$\mathsf{P}_{\mathrm{r}}(X \geq a) \leq \min_{s \geq 0} \left[e^{-sa} M_X(s) \right]$$

- The Markov inequality gives an upper bound on "tail probabilities" and applies only to non-negative RVs
- The Chebychev inequality gives an upper bound on "double-tail probabilities" and applies to any RV
- Both can be loose for certain RVs
- The Chernoff bound is usually tighter than the other two
 - For sufficiently large a, the bounds on $Pr(X \ge a)$ have
 - the Chernoff bound < the Chebyshev bound < the Markov bound

Ve501 2020-2021 Fall

Random Vectors

Random Vector (RVEC)

Straight forward extension of "Two Random Variables"

Joint CDFs and PDFs

Calculation of Probability

Functions of Random Vector

Independence

Mean

Correlation and Covariance Matrix (for real RVs)

Jointly Gaussian

Linear Transformations

This course proceeds: RVs → RVECs → Random sequences → Random processes

n-Dimensional Random Vectors

Random vectors (RVECs) are row vectors

$$\mathbf{X} = [X_1, X_2, ..., X_n]$$

Most fundamental description: Joint CDF

$$F_{\mathbf{X}}(x_1, x_2, \dots, x_n) = P\{X_1 \le x_1, X_2 \le x_2, \dots, X_n \le x_n\}$$

The joint PDF is the nth-order partial derivative of the CDF

$$f_{\mathbf{X}}(x_1, x_2, \dots, x_n) = \frac{\partial^n}{\partial x_1 \partial x_2 \dots \partial x_n} F_{\mathbf{X}}(x_1, x_2, \dots, x_n)$$

Calculation of Probabilities

$$Y_1 = G_1(\mathbf{X})$$
 $Y_2 = G_2(\mathbf{X})$ \cdots $Y_m = G_m(\mathbf{X})$

Same procedure as before to get PDF of Y where

$$\mathbf{Y} = \begin{bmatrix} Y_1, Y_2, ..., Y_m \end{bmatrix}$$

Find
$$F_Y(y)$$
, then differentiate to get $f_Y(y)$
 $F_Y(y) = \Pr(Y_1 \le y_1 \cap \cdots \cap Y_m \le y_m)$

$$f_{\mathbf{Y}}(\mathbf{y}) = \frac{\partial^{m} F_{\mathbf{Y}}(\mathbf{y})}{\partial y_{1} \dots \partial y_{m}}$$

P Cuxilliony

- 1. Must have m=n (can use aux variables)
- 2. Find solutions $x_1, x_2, ..., x_M$
- 3. Get Jacobian:

$$J(\mathbf{x}) = \det \begin{bmatrix} \overline{\partial}x_1 & \overline{\partial}x_2 & \cdots & \overline{\partial}x_n \\ \underline{\partial}G_2 & \ddots & \underline{\partial}G_2 \\ \overline{\partial}x_1 & \cdots & \overline{\partial}x_n \\ \vdots & & \ddots & \vdots \\ \underline{\partial}G_n & \cdots & \underline{\partial}G_n \\ \overline{\partial}x_1 & \cdots & \overline{\partial}x_n \end{bmatrix}$$

4. Plug into formula: $f_{\mathbf{Y}}(\mathbf{y}) = \sum_{i=1}^{M} \frac{f_{\mathbf{X}}(\mathbf{x_i})}{|J(\mathbf{x_i})|}$

Independent, Identically Distributed (iid) RVs

Elements of X are independent if CDF or PDF factors:

$$F_{\mathbf{X}}(\mathbf{x}) = \prod_{i=1}^{n} F_{X_i}(x_i) \quad f_{\mathbf{X}}(\mathbf{x}) = \prod_{i=1}^{n} f_{X_i}(x_i)$$

A collection of RVs is called "iid" when they are independent and identically distributed.

Identically distributed means:

$$F_{X_i}(x) = F_X(x) \quad \forall i$$

$$X_i \neq X_i \neq X_i$$
Same function

$$\eta_{\mathbf{X}} = E(\mathbf{X}) = [E(X_1), E(X_2), ..., E(X_n)]$$

$$\mathbf{R} = E(\mathbf{X}^{\mathsf{T}}\mathbf{X}) = E\begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix} \begin{bmatrix} X_1 & X_2 & \cdots & X_n \end{bmatrix}$$

$$= \begin{bmatrix} E(X_1^2) & E(X_1X_2) & \cdots & E(X_1X_n) \\ E(X_2X_1) & E(X_2^2) & & E(X_2X_n) \\ \vdots & & \ddots & \vdots \\ E(X_nX_1) & & \cdots & E(X_n^2) \end{bmatrix}$$

$$\mathbf{C} = E\left\{ \begin{bmatrix} \mathbf{X} - \mathbf{\eta}_{\mathbf{X}} \end{bmatrix}^{\mathbf{T}} \begin{bmatrix} \mathbf{X} - \mathbf{\eta}_{\mathbf{X}} \end{bmatrix} \right\}$$

$$= \begin{bmatrix} \sigma_{X_1}^2 & \operatorname{cov}(X_1 X_2) & \cdots & \operatorname{cov}(X_1 X_n) \\ \operatorname{cov}(X_2 X_1) & \sigma_{X_2}^2 & \operatorname{cov}(X_2 X_n) \\ \vdots & \ddots & \vdots \\ \operatorname{cov}(X_n X_1) & \cdots & \sigma_{X_n}^2 \end{bmatrix}$$

$$= \mathbf{R} - \mathbf{\eta}_{\mathbf{X}}^{\mathbf{T}} \mathbf{\eta}_{\mathbf{X}}$$

$$C = C^{\mathsf{T}} \quad \text{Symmetric}$$

If Y=G(X) is a scalar-valued function, then

$$E(Y) = \int_{-\infty}^{+\infty} y f_Y(y) dy = \int_{-\infty-\infty}^{+\infty+\infty} \cdots \int_{-\infty}^{+\infty} G(\mathbf{x}) f_{\mathbf{X}}(\mathbf{x}) d\mathbf{x}$$

If Y is a vector-valued function of X, then

$$E(\mathbf{Y}) = [E(Y_1), E(Y_2), \dots, E(Y_m)], \quad Y_i = G_i(\mathbf{X})$$

$$\text{EACH ONE LOTUS}$$

n Jointly Gaussian RVs

$$f_{X_1, X_2, ..., X_n}(x_1, x_2, ..., x_n) = \frac{\exp\left\{-\frac{1}{2}(\mathbf{X} - \mathbf{\eta}_{\mathbf{X}})\mathbf{C}^{-1}(\mathbf{X} - \mathbf{\eta}_{\mathbf{X}})^{\mathbf{T}}\right\}}{(2\pi)^{n/2}\sqrt{\det \mathbf{C}}}$$

Linear Transformation of Jointly Gaussian RVs

Given that $\mathbf{Y} = \mathbf{X}\mathbf{A}$, \mathbf{A}^{-1} exists, and $\mathbf{A} : n \times n$

at
$$Y = XA$$
, A exists, and $A: n \times n$

$$\int_{A}^{A} \frac{\partial Y_1}{\partial x_1} \cdots \frac{\partial Y_1}{\partial x_n} \\
\vdots & \ddots & \vdots \\
\frac{\partial Y_n}{\partial x_1} \cdots \frac{\partial Y_n}{\partial x_n}$$

$$= \det[A]$$

$$\eta_{\rm Y} = \eta_{\rm X} A$$

Linear Transformation of Jointly Gaussian RVs – Cont.

$$C_{\mathbf{Y}} = E \left\{ \begin{bmatrix} \mathbf{Y} - //_{\mathbf{Y}} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \mathbf{Y} - //_{\mathbf{Y}} \end{bmatrix} \right\}$$

$$= E \left\{ \left(\begin{bmatrix} \mathbf{X} - //_{\mathbf{X}} \end{bmatrix} \mathbf{A} \right)^{\mathsf{T}} \begin{bmatrix} \mathbf{X} - //_{\mathbf{X}} \end{bmatrix} \mathbf{A} \right\}$$

$$= \mathbf{A}^{\mathsf{T}} \mathbf{C}_{\mathbf{X}} \mathbf{A}$$

$$Cov \in \mathcal{A}$$

1. There is just one solution: $X = YA^{-1}$

2.
$$f_{\mathbf{Y}}(\mathbf{y}) = \frac{f_{\mathbf{X}}(\mathbf{Y}\mathbf{A}^{-1})}{\left|\det\mathbf{A}\right|} = \frac{\exp\left\{-\frac{1}{2}(\mathbf{Y}\mathbf{A}^{-1} - h_{\mathbf{X}})\mathbf{C}_{\mathbf{X}}^{-1}(\mathbf{Y}\mathbf{A}^{-1} - h_{\mathbf{X}})^{\mathrm{T}}\right\}}{\left(2\rho\right)^{n/2}\sqrt{\det\mathbf{C}_{\mathbf{X}}}\left|\det\mathbf{A}\right|}$$
Note that $\mathbf{\eta}_{\mathbf{X}} = \mathbf{\eta}_{\mathbf{Y}}\mathbf{A}^{-1}$

$$A^{-1}\mathbf{C}_{\mathbf{X}}^{-1}(\mathbf{A}^{-1})^{\mathrm{T}} = (\mathbf{A}^{\mathrm{T}}\mathbf{C}_{\mathbf{X}}\mathbf{A})^{-1} = \mathbf{C}_{\mathbf{Y}}^{-1}$$

$$f_{\mathbf{Y}}(\mathbf{y}) = \frac{\exp\left\{-\frac{1}{2}(\mathbf{Y} - \mathbf{\eta}_{\mathbf{Y}})\mathbf{A}^{-1}\mathbf{C}_{\mathbf{X}}^{-1}(\mathbf{A}^{-1})^{\mathrm{T}}(\mathbf{Y} - \mathbf{\eta}_{\mathbf{Y}})^{\mathrm{T}}\right\}}{\left(2\pi\right)^{n/2}\sqrt{\det\mathbf{C}_{\mathbf{X}}}\left|\det\mathbf{A}\right|}$$

$$f_{\mathbf{X}} \sim N$$

$$f_{\mathbf{A}\mathbf{Y}} = \text{Most function of } \mathbf{X} \sim N$$

$$Y = XA \sim N$$
Ve501 2019-2020 Fall

Recall the optimal linear mean square (MS) homogeneous estimate of the RV Y given an observation of the RV X,

$$\hat{Y}_{LH} = aX$$

where

$$a = \frac{E(XY)}{E(X^2)}$$

Now, we will consider estimating a RV Y from a row vector of observations (Rvec) \mathbf{X}

The new estimator has the form

$$\hat{Y} = \mathbf{X}\mathbf{A}^{T}$$

$$= a_1 X_1 + a_2 X_2 + \dots + a_n X_n$$

$$\mathbf{X} = [X_1, X_2, ..., X_n] \quad \mathbf{A} = [a_1, a_2, ..., a_n]$$

The observation data The estimator coefficients

Prediction

A future value of a RP, X(t+D) is estimated from the present and past measurements of the RP, [X(t), X(t-D), ..., X(t-nD)]

Application: Multiuser Detecting Array Receiver

The observation vector comprises samples of the baseband signals at the outputs of the antenna elements

A different MSEoptimal weight vector is computed to estimate each desired user's signal

User 2 User 3

and sampling

Y and the elements of the vector X "span" a vector space

Space=all possible linear combinations of the elements of X and Y

A "point" in this space is a some linear combination

$$Z = b_0 Y + \sum_{i=1}^{n} b_i X_i$$

A vector space with an inner product is a Hilbert space

For our Hilbert space, the inner product is the correlation

If Z and U are two points in this space, their inner product is E(ZU)

The optimal MS estimator for *Y* is a point in the subspace spanned by the elements of *X*

Let U be some linear combination of the elements of *X*

$$U = \sum_{i=1}^{n} a_i X_i$$

Let
$$A = [a_1, ..., a_n]$$

To be the optimal estimator for Y, A must minimize the mean squared error (MSE)

$$E(\varepsilon^2) = E([Y - \mathbf{X}\mathbf{A}^T]^2)$$

with respect to each element of A

Setting each of the n partial derivatives

$$\frac{\partial E(\varepsilon^2)}{\partial a_i} \quad \text{for } i = 1, 2, ..., n$$

equal to zero and solving for A yields the equation

$$\mathbf{A} = r_{XY} \mathbf{R}^{-1}$$

where R is the correlation matrix for X and r_{xy} is the cross correlation vector, $r_{XY} = E(\mathbf{X}Y)$

Ve501 2019-2020 Fall

37

The partial derivative equations lead directly to the fact that the "data" are orthogonal to the "error"

The MSE of the optimal estimator is the measure of its performance

The extension from two to n RVs is straightforward

A linear transformation on a Gaussian RVEC is another Gaussian RVEC

The optimal MSE estimator of a RV Y given observations of a Rvec X depends on The cross-correlation between X and Y

The correlation matrix for *X*

Requires Only Second Order Statistics!

Thank You!

Ve501 2020-2021 Fall 41