Вибрация

КАЛИБРОВКА ДАТЧИКОВ ВИБРАЦИИ И УДАРА

Часть 3

Вторичная вибрационная калибровка методом сличения

Издание официальное

Предисловие

1 РАЗРАБОТАН Межгосударственным Техническим комитетом по стандартизации МТК 183 «Вибрация и удар»

ВНЕСЕН Госстандартом России

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 16—99 от 8 октября 1999 г.)

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации
Азербайджанская Республика	Азгосстандарт
Республика Армения	Армгосстандарт
Республика Беларусь	Госстандарт Республики Беларусь
Республика Казахстан	Госстандарт Республики Казахстан
Киргизская Республика	Киргизстандарт
Российская Федерация	Госстандарт России
Туркменистан	Главная государственная инспекция Туркменистана
Украина	Госстандарт Украины

³ Настоящий стандарт представляет собой полный аутентичный текст международного стандарта ИСО 5347-3—93 «Методы калибровки датчиков вибрации и удара. Часть 3. Вторичная вибрационная калибровка» и содержит дополнительные требования, отражающие потребности экономики страны

5 ВВЕДЕН ВПЕРВЫЕ

⁴ Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 18 апреля 2000 г. № 112-ст межгосударственный стандарт ГОСТ 30652—99 (ИСО 5347-3—93) введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 января 2001 г.

Вибрация

КАЛИБРОВКА ДАТЧИКОВ ВИБРАЦИИ И УДАРА Часть 3

Вторичная вибрационная калибровка методом сличения

Vibration. Calibration of vibration and shock pick-ups. Part 3. Secondary vibration calibration by comparison methods

Дата введения 2001—01—01

1 Область применения

Настоящий стандарт распространяется на датчики (преобразователи) ускорения, скорости и перемещения линейной вибрации и удара и устанавливает метод и средства их вторичной вибрационной калибровки.

Дополнительные требования, отражающие потребности экономики страны, по тексту стандарта выделены курсивом.

Стандарт распространяется на датчики со следующими параметрами.

- диапазон частот: 1÷10000 Гц;
- динамический диапазон: 0.1 мкм $\div 10$ мм (в зависимости от частоты), 1 мм/с $\div 10$ м/с (в зависимости от частоты), $10\div 1000$ м/с 2 (в зависимости от частоты);
 - пределы допустимой относительной погрешности:

для датчиков скорости и перемещения в *диапазоне частот* $1\div20~\Gamma u - \pm10~\%$, в диапазоне частот $20\div1000~\Gamma u - \pm4~\%$;

для датчиков ускорения в диапазоне частот $20 \div 1000$ $\Gamma \mu - \pm 2$ %, в диапазоне частот $20 \div 2000$ $\Gamma \mu - \pm 3$ %, в диапазоне частот $20 \div 5000$ $\Gamma \mu - \pm 5$ %, в диапазоне частот $1 \div 10000$ $\Gamma \mu - \pm 10$ %.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ ИСО 5347-0—95 Вибрация. Методы калибровки датчиков вибрации и удара. Часть 0. Общие положения

ГОСТ ИСО 5347-1—96 Вибрация. Калибровка датчиков вибрации и удара. Часть 1. Первичная вибрационная калибровка методами лазерной интерферометрии

ГОСТ 24346—80 Вибрация. Термины и определения

3 Определения

Термины, применяемые в настоящем стандарте, и их определения — по ГОСТ 24346 и ГОСТ ИСО 5347-0.

4 Средства калибровки и вспомогательные устройства

- 4.1 Оборудование для поддержания комнатной температуры (23±3) °C.
- 4.2 Эталонный датчик ускорения, откалиброванный вместе с согласующим усилителем методом лазерной интерферометрии по ГОСТ ИСО 5347-1 с погрешностью в пределах $\pm (0.5 \div 1.0)\%$ при выбранных частоте и ускорении.
 - 4.3 Генератор низкочастотный со следующими характеристиками:
 - допускаемая относительная погрешность измерения частоты в пределах ±0,1 %;
 - нестабильность частоты в пределах ±0,1 % от показания за время измерения;
 - нестабильность амплитуды в пределах ±0,1 % от показания за время измерения.
 - 4.4 Комплекс усилитель мощности/вибростенд со следующими характеристиками:
 - суммарный коэффициент нелинейных искажений не более 10 %;
- поперечное и вращательное (ротационное) ускорения должны быть по возможности минимальными и не превышать 10 % от ускорения в основном направлении на заданной частоте (для частоты свыше 1000 Гц допускается 30 %);
 - фон и шум: не менее чем на 40 дБ ниже уровня выходного сигнала;
 - нестабильность амплитуды ускорения в пределах ±0,1 % от показания за время измерения;
- поверхность, к которой крепят датчик, не должна вызывать деформации датчика, влияющей на результат калибровки.
- 4.5 Вольтметр среднего квадратического значения (СКЗ) и согласующий усилитель калибруемого датчика со следующими характеристиками:
 - диапазон частот: 1÷10000 Ги;
 - допускаемая относительная погрешность в пределах $\pm (0,1 \div 0,5)$ %.

Для получения амплитудного значения, используемого в формулах, измеренное СКЗ ускорения умножают на $\sqrt{2}$.

- 4.6 Измеритель нелинейных искажений со следующими характеристиками:
- диапазон частот: 1÷30000 Ги;
- динамический диапазон: 0÷10 %;
- допускаемая относительная погрешность в пределах ±10 %.
- 4.7 Осциллограф (необязательно) для контроля формы сигнала на выходе датчика в частотном диапазоне $1\div30000~\Gamma u$.
- 4.8 Усилитель калибруемого датчика, требующего согласования выходных параметров с входными параметрами согласующего усилителя, должен обеспечивать следующее условие:

$$R \cdot C = \frac{1}{2 \pi f \sqrt{\frac{1}{(\gamma + 1)^2} - 1}},$$
 (1)

где R — входное сопротивление согласующего усилителя, Ом;

C — суммарная емкость, состоящая из емкости датчика с кабелем и входной емкости согласующего усилителя, Φ ;

f — нижний предел частоты датчика, Гц;

 — значение неравномерности АЧХ на нижнем пределе диапазона частот датчика, относительные единицы.

5 Рекомендуемые амплитуды и частоты

Шесть значений амплитуд ускорения и шесть значений частот, равномерно распределенных по рабочему диапазону датчика, следует выбирать из следующих рядов:

амплитуда — 1, 2, 3, 5, 10, 20, 30, 50, 100, 200, 300, 500, 1000 м/ c^2 ;

частота — 1, 2, 3, 5, 10, 20, 40, 80, 160, 315, 630, 1250, 2500, 5000, 10000 Γ ц.

Отклонения выбранных значений амплитуд и частот от значений, при которых откалиброван эталонный датчик ускорения, не должны выходить за пределы ±10 %.

6 Порядок проведения калибровки

Эталонный и калибруемый датчики крепят друг к другу и устанавливают на стол вибростенда. Структурная схема вторичной вибрационной калибровки датчика приведена на рисунке 1.

1— вибростенд; 2— опора вибростенда; 3— эталонный датчик; 4— калибруемый датчик; 5— усилитель мощности; 6— согласующий усилитель калибруемого датчика; 7— согласующий усилитель эталонного датчика; 8— низкочастотный генератор сигналов; 9— электронный вольтметр; 10— измеритель нелинейных искажений; 11— электронный осциллограф

Рисунок 1 — Структурная схема вторичной вибрационной калибровки датчика

Проверяют значения нелинейных искажений и поперечного движения стола вибростенда в месте крепления датчиков при частотах и амплитудах калибровки (выполнение этих операций допускается только при метрологической аттестации).

Задают вибрацию с выбранными частотой и амплитудой ускорения и измеряют напряжения на выходе датчиков.

Определяют базовый коэффициент преобразования на базовой частоте (для датчиков ускорения предпочтительно 160 или 80 Γ ц) и базовой амплитуде (для датчиков ускорения предпочтительно 100 или 10 м/с²). Затем определяют коэффициенты преобразования датчика при других частотах и амплитудах. Результаты измерений выражают в виде отклонения от базового коэффициента преобразования в процентах.

С целью уменьшения погрешности калибровки на частотах свыше 5000 Гц рекомендуется учитывать эффект «относительного движения» датчиков, обусловленного резонансом корпуса эталонного датчика, нагруженного массой калибруемого датчика.

7 Правила обработки результатов калибровки

Если оба датчика чувствительны к одному и тому же параметру вибрации, коэффициент преобразования калибруемого датчика рассчитывают по формулам:

- для датчика в комплекте с усилителем

$$S_2 = S_1 \cdot \frac{X_2}{X_1},\tag{2}$$

где S_2 — коэффициент преобразования калибруемого датчика с усилителем;

 S_1 — коэффициент преобразования эталонного датчика с усилителем;

 X_1 — выходной сигнал эталонного датчика;

 X_2 — выходной сигнал калибруемого датчика.

- для датчика без усилителя

$$S_{2}' = S_{1} \cdot \frac{X_{2}}{X_{1} \cdot K_{2}}, \tag{3}$$

где $S_2{}'-\kappa$ оэффициент преобразования калибруемого датчика без усилителя;

 $\mathit{K}_{2}-$ коэффициент передачи усилителя калибруемого датчика.

Если датчики чувствительны к различным параметрам вибрации, коэффициент преобразования калибруемого датчика рассчитывают по формулам:

$$S_{v} = 2 \pi f S_{a} , \qquad (4)$$

$$S_d = 4 \pi^2 f^2 S_a \,, \tag{5}$$

$$S_d = 2 \pi f S_v , \qquad (6)$$

где S_v — коэффициент преобразования датчика скорости;

 S_a — коэффициент преобразования датчика ускорения;

 S_d — коэффициент преобразования датчика перемещения;

f — частота, Γ ц.

Затем следует рассчитать общую погрешность калибровки при соответствующей доверительной вероятности, как указано в приложении А.

ПРИЛОЖЕНИЕ А (обязательное)

Расчет погрешности

А.1 Расчет общей (суммарной) погрешности

Общую погрешность калибровки при доверительной вероятности 95 % Х₉₅ рассчитывают по формуле

$$X_{95} = \pm \sqrt{X_{\rm r}^2 + X_{\rm s}^2}$$
, (A.1)

где $X_{\rm r}$ — случайная погрешность;

 $X_{\rm s}$ — систематическая погрешность.

Случайную погрешность при доверительной вероятности 95 % $X_{r(95)}$ рассчитывают по формуле

$$X_{r(95)} = \pm t \sqrt{\frac{e_{r1}^2 + e_{r2}^2 + e_{r3}^2 + \dots + e_{rn}^2}{n}},$$
 (A.2)

где $e_{r1}, e_{r2}, \ldots, e_{rn}$ — отклонение от среднего арифметического значения результатов единичных измерений;

n — число измерений;

t — коэффициент распределения Стьюдента для установленных доверительной вероятности и числа измерений.

Систематическая погрешность должна быть исключена или учтена.

Неисключенную систематическую погрешность $X_{s(95)}$ рассчитывают по формуле

$$X_{S(95)} = \frac{K}{\sqrt{3}} \cdot e_{S_2} \,, \tag{A.3}$$

где K — коэффициент, зависящий от доверительной вероятности (для доверительной вероятности 95 % K=2);

 e_{S_2} — абсолютная погрешность коэффициента преобразования калибруемого датчика на частотах калибровки, амплитуде и коэффициенте усиления усилителя (см. A.2).

А.2 Расчет погрешности коэффициента преобразования на частотах, амплитудах и коэффициентах усиления усилителя, на которых проводят калибровку

Относительную погрешность коэффициента преобразования калибруемого датчика рассчитывают по формуле

$$\frac{e_{S_2}}{S_2} = \pm \sqrt{\left(\frac{e_{S_1}}{S_1}\right)^2 + \left(\frac{2 e_u}{u}\right)^2 + \left[\frac{1}{2} \left(\frac{d_{\text{tot}}}{100}\right)^2\right]^2 + \left(\frac{a_t T_1}{100 a_{\text{CK3}}}\right)^2 + \left(\frac{a_t T_2}{100 a_{\text{CK3}}}\right)^2 + \left(\frac{2 a_n}{a_{\text{CK3}}}\right)^2}$$
(A.4)

где S_1 — коэффициент преобразования эталонного датчика;

S₂ — коэффициент преобразования калибруемого датчика;

 e_{S_1} — абсолютная погрешность комплекта — эталонного датчика и усилителя (не более 0,5 %), рассчитанная методом вычисления общей погрешности при калибровке эталонного датчика по ГОСТ ИСО 5347-1; она зависит от выбранных частоты, амплитуды и коэффициента усиления усилителя (см. A.3);

u - выходной сигнал датчика, В;

 e_u — абсолютная погрешность вольтметра, В;

 d_{tot} — общее искажение, %, рассчитанное по формуле

$$d_{\text{tot}} = 100 \cdot \sqrt{\frac{a_{\text{tot}}^2 - a_{\text{CK3}}^2}{a_{\text{CK3}}^2}},$$
 (A.5)

где a_{tot} — общее среднее квадратическое значение ускорения, м/с²;

 $a_{\rm CK3}$ — среднее квадратическое значение ускорения на частоте возбуждения, м/с²;

 $a_{\rm t}$ — среднее квадратическое значение поперечного и ротационного ускорений, м/с²;

 T_1 — отношение максимальной поперечной чувствительности эталонного датчика к чувствительности датчика в направлении измерительной оси, %;

 T_2 — отношение максимальной поперечной чувствительности калибруемого датчика к чувствительности датчика в направлении измерительной оси, %;

 $a_{\rm n}$ — среднее квадратическое значение ускорения фона и шума, м/с².

Если коэффициент преобразования датчика рассчитан по формулам (4) и (6) настоящего стандарта, формулу (A.4) следует дополнить слагаемым $(e_{f}/f)^{2}$; если коэффициент преобразования датчика рассчитан по формуле (5) настоящего стандарта, формулу (A.4) следует дополнить слагаемым (2 e_{f}/f)², где e_{f} — абсолютная погрешность измерения частоты, Γ_{Π} ; f — частота, Γ_{Π} .

А.3 Общую абсолютную погрешность коэффициента преобразования эталонного датчика в комбинации с усилителем e_S , в случае их использования за пределами базовых частот и амплитуд рассчитывают по формуле

$$\frac{e_{S_1}}{S} = \pm \sqrt{\left(\frac{e_S}{S}\right)^2 + \left(\frac{L_{fA}}{100}\right)^2 + \left(\frac{L_{fp}}{100}\right)^2 + \left(\frac{L_{aA}}{100}\right)^2 + \left(\frac{L_{ap}}{100}\right)^2 + \left(\frac{I_A}{100}\right)^2 + \left(\frac{I_p}{100}\right)^2 + \left(\frac{R}{100}\right)^2 + \left(\frac{E_A}{100}\right)^2 + \left(\frac{E_p}{100}\right)^2},$$
(A.6)

где S — коэффициент преобразования датчика на базовых частоте и амплитуде, $B \cdot c^2/m$;

 e_S — абсолютная погрешность коэффициента преобразования датчика на базовых частоте и амплитуде, $R_s c^2/M$

 $L_{\it fd}$ — отклонение амплитудно-частотной характеристики усилителя, %;

 $L_{\!f\!p}$ — отклонение амплитудно-частотной характеристики датчика, %;

 L_{aA} — нелинейность амплитудной характеристики усилителя, %;

 L_{ap} — погрешность от нестабильности коэффициента усиления и входного импеданса усилителя, %;

 I_A — погрешность от нестабильности усилителя, %;

 I_{ρ} — погрешность от нестабильности датчика, %;

 \dot{R} — погрешность коэффициента усиления по диапазону усилителя (погрешность коэффициента усиления для различных настроек усилителя), %;

 E_{A} — погрешность, вызванная воздействием окружающих условий на усилитель, %;

 E_p — погрешность, вызванная воздействием окружающих условий на датчик, %.

УДК 620.178.5.05:006.354

OKC 17.160

П18

ОКП 42 7746

Ключевые слова: вибрация, удар, датчики, калибровка, погрешность, метод сличения

Редактор *Т.С. Шеко* Технический редактор *В.Н. Прусакова* Корректор *М.В. Бучная* Компьютерная верстка *Е.Н. Мартемыяновой*

Изд. лиц. № 021007 от 10.08.95. Сдано в набор 10.05.2000. Подписано в печать 13.06.2000. Усл. печ. л. 0,93. Уч.-изд. л. 0,60. Тираж 320 экз. С 5296. Зак. 557.