

UNIVERSITY OF SOUTHERN MINDANAO

MATH121E

Calculus 2

Topic Outline

Applications of Definite Integral

- Plane areas
- Areas Between curves
- Other Applications
 - a. Volume
 - b. Work
 - c. Hydrostatic Pressure

$$A = \int_{a}^{b} (Y_{upper} - Y_{lower}) dx$$
 This is for vertical Strip

$$A = \int_{a}^{b} (X_{right} - X_{left}) dy$$
 This is for horizontal strip Strip

Steps to Solve the problem

- 1. Find for the vertex
- 2. Find the intersection point
- 3. Draw the curves
- 4. Solve the area

For vertex= we have the standard form $F(x) = ax^{2}+bx+C, \text{ for vertex we have the formula}$ $x=\underline{-b}$ 2a $F(y) = ay^{2}+by+C; \text{ vertex is } y=\underline{-b}$

2a

Find the area bounded by the curve $y = x^2$ and the x-axis and the ordinates x=1 and x=3

Y=X2 is a parabola facing upward

$$A = \int_{0}^{b} (Yupper - Yumer) dx$$

$$= \int_{1}^{3} (x^{2} - 0) dx$$

$$= \int_{1}^{3} x^{2} dx$$

$$= \frac{x^{3}}{3} \Big|_{1}^{3}$$

Ver fex:
$$y=x^2$$

from; $x=\frac{-b}{2a}$
 $a=1$, $b=0$
 $x=\frac{-0}{2(1)}=0$
Substitute value of x in $y=x^2$
 $y=0^2$
 $y=0$
 $y=0$

Substituting the limits

$$A = \frac{x^{3}}{3} \Big|_{1}^{3}$$

$$= \frac{3^{3}}{3} - \frac{1^{3}}{3}$$

$$= \frac{27}{3} - \frac{1}{3}$$

$$A = \frac{26}{3} \text{ sq. units}$$

2. Find the area typing above the x-axis and under the parabola

$$y = 4x - x^2$$

a.) Vertex;

to solve for vertex, we have a standard equation

$$f(x) = ax^2 + bx + c$$

using the given equation
 $y = 4x - x^2$
 $y = -x^2 + 4x$

9=-1, 6=4 from the formula

$$X = -\frac{b}{2q}$$
 $X = -\frac{4}{2(-1)}$
 $X = -\frac{4}{2(-1)}$

X = 2 - substitute this in the equation of parabola

$$y = -x^{2} + 4x$$

 $y = -(2)^{2} + 4(2)$
 $y = -4 + 8$
 $y = 4$
 $y = 4$

b) for the limits and point of intersection
$$y = 4x - x^{2}$$

$$1c+x=0;$$

$$y = 4x - x^{2}$$

$$0 = 4x - x^{2}$$

$$0 = x(4-x)$$

$$x=0$$

$$x = 4x - x^{2}$$

c.) Draw the curve

d) find the area A = (b Yupper - 7 (mer) dx

$$= \int_{0}^{4} \left[4x - x^{2} - (0) \right] \partial y$$

$$= \int_{0}^{4} \left(4x - x^{2} \right) dx$$

$$= \int_{0}^{4} \left(4x - x^{2} \right) dx$$

$$= \int_{0}^{4} \left(4x - x^{2} \right) dx$$

$$= \left[2(4)^{2} - \frac{4^{3}}{3} \right]_{0}^{4} = 2x^{2} - \frac{x^{3}}{3} \Big|_{0}^{4}$$

$$= \left[2(4)^{2} - \frac{4^{3}}{3} \right]_{0}^{4} = 0$$

$$= 2(16) - \frac{64}{3}$$

$$= 32 - \frac{64}{3}$$

$$= \frac{96 - 64}{3} = \frac{32}{3} \text{ sq. units}$$

32 sq. units

Note: Y_{lower} is equal to zero because the intersection or the line touches the x axis

- 3. Find the area bounded by the parabola $x = 8t 2y y^2$ and the y-axis and the lines y = -1 and y = 3.
- 9) Solve for Vartex; $f(x) = ay^2 + by + c$ $x = 8 + 2y - y^2$ a = -1 b = 2 $y = -\frac{b}{2q}$ $y = \frac{-2}{2(-1)}$ y = 1 - y + substitute in $x = 8 + 2y - y^2$ $x = 8 + 2(i) - 1^2$ x = 9 y = -1
 - b. limits and point of intraction is already given > y=1 and y=3
 - c. Draw the curve

hote: X left = 0 since the giren line theres the y-axis

d- Solve for area

A =
$$\int_{0}^{1} \left(x_{right} - x_{trpt} \right) dy$$

A = $\int_{-1}^{3} \left[\left(x_{right} - x_{trpt} \right) dy$
= $\int_{-1}^{3} \left(x_{right} - x_{right} - x_{right} \right) dy$
= $\left[x_{right} - x_{right} - x_{right} \right] dy$
= $\left[x_{right} + x_{right} - x_{right} \right] dy$
= $\left[x_{right} + x_{right} - x_{right} \right] dy$
= $\left[x_{right} + x_{right} - x_{right} \right] dy$
= $\left[x_{right} + x_{right} - x_{right} \right] dy$
= $\left[x_{right} + x_{right} - x_{right} \right] dy$
= $\left[x_{right} + x_{right} - x_{right} \right] dy$
= $\left[x_{right} + x_{right} - x_{right} \right] dy$
= $\left[x_{right} + x_{right} - x_{right} \right] dy$
= $\left[x_{right} + x_{right} - x_{right} \right] dy$
= $\left[x_{right} + x_{right} - x_{right} \right] dy$
= $\left[x_{right} + x_{right} - x_{right} \right] dy$
= $\left[x_{right} + x_{right} - x_{right} \right] dy$
= $\left[x_{right} + x_{right} - x_{right} \right] dy$
= $\left[x_{right} + x_{right} - x_{right} \right] dy$
= $\left[x_{right} + x_{right} - x_{right} \right] dy$
= $\left[x_{right} + x_{right} - x_{right} \right] dy$
= $\left[x_{right} + x_{right} - x_{right} \right] dy$
= $\left[x_{right} + x_{right} - x_{right} \right] dy$
= $\left[x_{right} + x_{right} - x_{right} \right] dy$
= $\left[x_{right} + x_{right} - x_{right} \right] dy$
= $\left[x_{right} + x_{right} - x_{right} \right] dy$
= $\left[x_{right} + x_{right} - x_{right} \right] dy$
= $\left[x_{right} + x_{right} - x_{right} \right] dy$
= $\left[x_{right} + x_{right} - x_{right} \right] dy$
= $\left[x_{right} + x_{right} - x_{right} \right] dy$
= $\left[x_{right} + x_{right} - x_{right} \right] dy$
= $\left[x_{right} + x_{right} - x_{right} \right] dy$
= $\left[x_{right} + x_{right} - x_{right} \right] dy$
= $\left[x_{right} + x_{right} - x_{right} \right] dy$
= $\left[x_{right} + x_{right} - x_{right} \right] dy$
= $\left[x_{right} + x_{right} - x_{right} \right] dy$
= $\left[x_{right} + x_{right} - x_{right} \right] dy$
= $\left[x_{right} + x_{right} - x_{right} \right] dy$
= $\left[x_{right} + x_{right} - x_{right} \right] dy$
= $\left[x_{right} + x_{right} - x_{right} \right] dy$
= $\left[x_{right} + x_{right} - x_{right} \right] dy$
= $\left[x_{right} + x_{right} - x_{right} \right] dy$
= $\left[x_{right} + x_{right} - x_{right} \right] dy$
= $\left[x_{right}$

End of Topic

Thank you

Engr. Febe F. Murillo

College of Engineering and Information Technology