Экзамен Ozon Masters 3 августа 2019 Вариант 2 Задача 1 Исследовать на сходимость ряд $\sum_{n=1}^{\infty} a_n$, если

$$a_n = \frac{(n+1)!}{\beta(\beta+1)\dots(\beta+n)n^{\alpha}}, \quad \beta > 0$$

Задача 2 В некотором эксперименте получены n независимых наблюдений X_1,\ldots,X_n , из показательного распределения со средним μ и найдена оценка $\hat{X}=\frac{1}{n}\sum_{i=1}^n X_i$ величины μ . Во втором независимом эксперименте получены m независимых наблюдений Y_1,\ldots,Y_m той же показательно распределенной случайной величины, что и в первом эксперименте, и найдена вторая оценка $\hat{Y}=\frac{1}{m}\sum_{i=1}^m Y_i$ величины μ . Эти две оценки затем объединяются в одну оценку вида $T_p=p\hat{X}+(1-p)\hat{Y}$ (0< p<1). Найдите p, при котором $Var(T_p)$ минимально.

Задача 3 Даны целые числа k_1,\dots,k_n . Вычислите определитель $|a_{ij}|_1^n$, где $a_{ij}=\frac{1}{(k_i+j-i)!}$ при $k_i+j-i\geq 0$ и $a_{ij}=0$ при $k_i+j-i<0$.

Задача 4 При каких $a \in R$ уравнение $\dot{x} = (a + \sin^2 t)x + 1$ имеет ровно одно периодическое решение?

Задача 5 Некоторая фирма входит в торговое партнерство с другими фирмами. Смысл партнерства в том, что фирмы могут продавать товары друг друга расчитываясь другими товарыми согласно некоторому установленному курсу, который меняется ежедневно и расчитывается основываясь на текущем спросе. То есть происходит бартер товаров.

Допустим фирма выполняет операции с n товарами. Для каждой пары товаров $i \neq j$ поддерживается обменный курс r_{ij} , который обозначает, что одна единица товара i обменивается на r_{ij} единиц товара j. Курс может быть дробным.

Фирма заинтересована в арбитражном обмене: то есть когда существует такая последовательность товаров i_1, \ldots, i_k, i_1 , что обмен товара i_1 на r_{i_1, i_2} товаров i_2 , i_2 на r_{i_2, i_3} товаров i_3 и т.д. и заканчивая обменом полученных товаров назад на товар i_1 , что в итоге число товаров i_1 в результате обмена выросло.

Предложите эффективный полиномиальный алгоритм поиска арбитражного обмена (если существует).

Задача 6 Пусть заданы n двумерных векторов $v_1=(x_1,y_1),\ldots,v_n=(x_n,y_n)$ с целочисленными компонентами x_i и y_i . При этом известно, что $|x_i|\leq \frac{2^{n/2}}{100\sqrt{n}}$ и $|y_i|\leq \frac{2^{n/2}}{100\sqrt{n}}$ для всех i. Докажите, что существует два непересекающихся множества индексов I и $J\subset\{1,\ldots,n\}$ таких, что

$$\sum_{i \in I} v_i = \sum_{j \in J} v_j$$