Linear Algebra

$$\mathbb{R}^n = \left(\begin{array}{c} \text{set of all column vectors} \\ \text{with } n \text{ entries} \end{array} \right)$$

Column vectors can be added and multiplied by real numbers.

Linear transformation is a function

$$T: \mathbb{R}^n \to \mathbb{R}^m$$
, $T(\mathbf{v}) = A\mathbf{v}$

It satisfies:

- T(u+v) = T(u) + T(v)
- \bullet T(cv) = cT(v)

Tupical problem: given a vector b find all vectors x such that

$$T(\mathbf{x}) = \mathbf{b}$$

(i.e solve the equation Ax = b).

Fact: Such vectors *x* are of the form

$$x = v_0 + n$$

where:

- \bullet **v**₀ is some distinguished solution of Ax = b;
- $n \in Nul(A)$ (i.e. n is a solution of Ax = 0).

Calculus

$$C^{\infty}(\mathbb{R}) = \left(\begin{array}{c} \text{set of all smooth} \\ \text{functions } f \colon \mathbb{R} \to \mathbb{R} \end{array} \right)$$

Functions can be added and multiplied by real numbers.

Differentiation is a function

$$D \colon C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R}), \quad D(f) = f'$$

It satisfies:

- D(f + g) = D(f) + D(g)• D(cf) = cD(f)

Typical problem: given a function qfind all functions f such that

$$D(f) = q$$

(i.e find antiderivatives of q).

Fact: Such functions *f* are of the form

$$f = F + C$$

where:

- F is some distinguished antiderivative of q;
- C is a constant function (i.e. C is a solution of D(f) = 0).

Definition

A (real) vector space is a set V together with two operations:

addition

$$\begin{array}{ccc} V \times V \longrightarrow V \\ (\mathbf{u}, & \mathbf{v}) \longmapsto & \mathbf{u} + \mathbf{v} \end{array}$$

• multiplication by scalars

$$\mathbb{R} \times V \longrightarrow V$$

$$(c, v) \longmapsto c \cdot v$$

Moreover the following conditions must be satisfied:

1)
$$u + v = v + u$$

2)
$$(u + v) + w = u + (v + w)$$

3) there is an element
$$0 \in V$$
 such that $0 + u = u$ for any $u \in V$

4) for any
$$u \in V$$
 there is an element $-u \in V$ such that $u + (-u) = 0$

5)
$$c(u + v) = cu + cv$$

6)
$$(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$$

$$7) (cd)u = c(du)$$

8)
$$1u = u$$

Elements of V are called *vectors*.

Theorem

If V is a vectors space then:

- 1) $c \cdot \mathbf{0} = \mathbf{0}$ where $c \in \mathbb{R}$ and $\mathbf{0} \in V$ is the zero vector;
- 2) $0 \cdot \mathbf{u} = \mathbf{0}$ where $0 \in \mathbb{R}$, $\mathbf{u} \in V$ and $\mathbf{0}$ is the zero vector;
- 3) $(-1) \cdot u = -u$

Proof of 2):

We have:

$$0 \cdot u = (0+0) \cdot u = 0 \cdot u + 0 \cdot u$$

This gives:

 $(0 \cdot u) + (-(0 \cdot u)) = (0 \cdot u + 0 \cdot u) + (-(0 \cdot u))$
 $11 \leftarrow by (4)$
 $(0 \cdot u) + (0 \cdot u + (-(0 \cdot u)))$
 $11 \leftarrow by (4)$
 $(0 \cdot u) + 0$
 $11 \leftarrow by (3)$ and (1)

 $0 \cdot u$

So:

 $0 = 0 \cdot u$

Examples of vector spaces.

$$\mathbb{R}^{n} = \left\{ \begin{bmatrix} a_{1} \\ a_{2} \\ a_{n} \end{bmatrix} \mid a_{1}, a_{n} \in \mathbb{R} \right\}$$

4)
$$M_{m,n}(\mathbb{R}) = \left\{ \text{the set of all } m \times n \text{ matrices} \right\}$$

$$= \left\{ \begin{bmatrix} a_{ii} & \cdots & a_{in} \\ \vdots & & \vdots \\ a_{mi} & \cdots & a_{mn} \end{bmatrix} \mid a_{ij} \in \mathbb{R} \right\}$$

Defitnition

Let V be a vector space. A *subspace* of V is a subset $W \subseteq V$ such that

- 1) $0 \in W$
- 2) if $u, v \in W$ then $u + v \in W$
- 3) if $u \in W$ and $c \in \mathbb{R}$ then $cu \in W$.

Example.

Recall: \mathbb{P} = the vector space of all polynomials.

Take
$$P_n = \{ \text{the set of polynomials of degree } \in n \}$$

 P_n is a subspace of P

Note:

Let S_3 = the set of polynomials of degree $\underline{\alpha}quol$ to 3). S_3 is not a subspace of \mathbb{P} $\underline{E}.g$: $p(t) = 7 + t - 2t^2 + 3t^3$ } polynomials in S_3 $q(t) = 5 - 4t + 2t^2 - 3t^3$ } polynomial of degree 1, not in S_3

Proposition: If V is a vector space, and W = V is a subspace then W is itself a vector space.

Example.

Recall: $\mathcal{F}(\mathbb{R})$ = the vector space of all functions $f: \mathbb{R} \to \mathbb{R}$

Some interesting subspaces of $\mathcal{F}(\mathbb{R})$:

- 1) $C(\mathbb{R}) = \text{the subspace of all continuous functions } f \colon \mathbb{R} \to \mathbb{R}$
- 2) $C^n(\mathbb{R}) = \text{the subspace of all functions } f: \mathbb{R} \to \mathbb{R} \text{ that are differentiable } n \text{ or more times.}$
- 3) $C^{\infty}(\mathbb{R}) = \text{the subspace of all smooth functions } f: \mathbb{R} \to \mathbb{R} \text{ (i.e. functions that have derivatives of all orders: } f', f'', f''', ...).$

Note

Let
$$S = \{ \text{ the set of all functions } f: \mathbb{R} \to \mathbb{R} \}$$

S is not a subspace of $F(\mathbb{R})$

E.g. Take $f(t) = t^2$, then $f(t) \in S$

but $(-2) \cdot f(t) = -2 \cdot t^2$ is not in S .

Note. If V is a vector space then:

- 1) the biggest subspace of V is V itself;
- 2) the smallest subspace of V is the subspace $\{0\}$ consisting of the zero vector only;
- 3) if a subspace of V contains a non-zero vector, then it contains infinitely many vectors.

Indeed: if W, is a subspace of V and $u \in W$, $u \neq 0$ then for any $c \in \mathbb{R}$ we have $cu \in W$ and $c, u \neq c_2 u$ for $c_1 \neq c_2$.