1 Auswertung

Die Apparatkonstante $K_{\rm kl}$ und die Fallstrecke zwischen den Messmarken werden der Anleitung entnommen. Die Massen und Radien der Kugeln, werden gemessen:

$$\begin{split} r_{\rm kl} &= 7.75 \cdot 10^{-3} \, \mathrm{m} \\ r_{\rm gr} &= 7.9 \cdot 10^{-3} \, \mathrm{m} \\ m_{\rm kl} &= 0.004 \, 84 \, \mathrm{kg} \\ m_{\rm gr} &= 0.005 \, 36 \, \mathrm{kg} \\ K_{\rm kl} &= 7.640 \cdot 10^{-8} \, \mathrm{Pa} \, \mathrm{m}^3 \, \mathrm{kg}^{-1} \\ l &= 0.1 \, \mathrm{m} \end{split}$$

Die Dichten der Kugeln kann über die Formel

$$\rho = \frac{3 \cdot m}{4 \cdot \pi r^3} \tag{1}$$

berechnet werden. Somit ergeben sich die Dichten:

$$\rho_{\rm kl} = \rho = \frac{3 \cdot m_{\rm kl}}{4 \cdot \pi r_{\rm kl}^3} = 2482.285 \,\mathrm{kg} \,\mathrm{m}^{-3}$$

$$\rho_{\rm gr} = \rho = \frac{3 \cdot m_{\rm gr}}{4 \cdot \pi r_{\rm gr}^3} = 2595.343 \,\mathrm{kg} \,\mathrm{m}^{-3}$$

Bei 20°C beträgt die Dichte von Wasser [2]:

$$\rho_{\rm Fl} = 998.2\,{\rm kg\,m^{-3}}$$

Nun wird die Apparatkonstante $K_{\rm gr}$ bestimmt.

Tabelle 1: Messung der Fallzeit $t_{\rm kl}$ der kleinen Kugel mit r_1 bei 22°C.

Tabelle 2: Messung der Fallzeit $t_{\rm gr}$ der grossen Kugel mit r_2 bei 22°C.

t/s
66.09
65.47
66.23
64.92
65.09
66.27
65.76
65.56
65.83
64.87

Für den Mittelwert von $t_{\rm kl}$ ergibt sich:

$$\overline{t_{\rm kl}} = (11.603 \pm 0.024) \, {\rm s}$$

Der Mittelwert wurde hierbei anhand der Formel

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{2}$$

bestimmt. Die Abweichung σ mit i = 1, ..., n:

$$\sigma_i = \frac{s_i}{\sqrt{n}} = \sqrt{\frac{\sum_{j=1}^n (v_j - \overline{v_i})^2}{n*(n-1)}} \tag{3}$$

Zunächst muss der Wert der Viskosität ermittelt werden. Hierzu werden die Werte aus Tabelle 1, $K_{\rm kl}$ und $\rho_{\rm Fl}$ in Gleichung (2) eingesetzt:

$$\eta = (1.3156 \pm 0.0027) \cdot 10^3 \, \mathrm{Pa\,s}$$

Um nun $K_{\rm gr}$ zu ermitteln, wird (2) nach diesem Wert umgestellt:

$$K_{\rm gr} = \frac{\eta}{(\rho_{\rm gr} - \rho_{\rm Fl}) \cdot t_{\rm gr}} = (9.543 \pm 0.024) \cdot 10^{-9} \, \rm Pa \, m^3 \, kg^{-1}$$

Tabelle 3: Messung der Fallzeit der grossen Kugel mit r_2 bei verschiedenen Temperaturen.

$T/^{\circ}C$	t/s	$ ho_{ m Fl}/{ m kgm}^{-3}$	$\eta/10^{-3} \mathrm{Pa\ s}$
28	59.80	996.8	0.912 ± 0.0023
28	58.47	996.8	0.892 ± 0.0022
32	54.95	995.0	0.839 ± 0.0022
32	54.13	995.0	0.827 ± 0.0021
36	51.09	993.7	0.781 ± 0.0020
36	50.04	993.7	0.765 ± 0.0019
40	47.40	992.2	0.725 ± 0.0018
40	46.69	992.2	0.714 ± 0.0018
47	42.76	989.4	0.655 ± 0.0016
47	41.93	989.4	0.643 ± 0.0016
51	39.61	987.6	0.608 ± 0.0015
51	38.67	987.6	0.593 ± 0.0015
56	36.23	985.2	0.557 ± 0.0014
56	36.32	985.2	0.558 ± 0.0014
60	34.20	983.2	0.526 ± 0.0013
60	34.09	983.2	0.524 ± 0.0013
65	32.40	980.6	0.499 ± 0.0013
65	32.10	980.6	0.495 ± 0.0012
70	30.27	977.8	0.467 ± 0.0012
70	29.78	977.8	0.460 ± 0.0012

Anhand der Werte aus Tabelle 3 können nun die Konstanten der Andradeschen Gleichung (3) bestimmt werden. Für die Dichte des Wassers $\rho_{\rm Fl}$, bei den verschiedenen Temperaturen, wurden Literaturwerte verwendet [2]. Die Viskosität wurde mithilfe der Gleichung (2) bestimmt. Die Messwertpaare mit selber Temperatur werden jeweils wie oben gemittelt.

Abbildung 1: Bestimmung der Konstanten der Andradeschen Gleichung.

Mithilfe der Pythonfunktion CurveFit können so die beiden Konstanten der Andradeschen Gleichung berechnet werden:

$$\begin{split} A &= (-8.613 \pm 0.005) \cdot 10^{-6} \, \mathrm{Pa\,s} \\ B &= (3164.07 \pm 905.73) \, \mathrm{K} \end{split}$$

Zuletzt werden, zur Überprüfung der Laminarität der Strömung, die Reynoldszahlen bestimmt. Durch Gleichung (4) erhält man somit für die beiden Kugeln:

kleine Kugel: Re = $331, 6 \pm 0, 7$ grosse Kugel: Re = $62, 5 \pm 0, 16$