Introduction to Homotopy Theory

(Notes based on lectures by Sergiy Maksymenko)

Abstract

Homotopy theory studies spaces up to a homotopy, which is a continuous deformation of one continuous function to another. This documents is a work in progress done during a course audit. These notes are taken purposefully in English to strenghten intuition and simplify lookup of concepts in related literature.

Contents

1	Point-set Topology	1
2	Homotopy 2.1 Homotopy and equivalence	2
3	Quotient Spaces and Maps3.1 Quotients and Groups3.2 Cones of Topological Spaces	3 3
4	Retractions and Deformation Retractions	3
5	Classes of Homotopy Maps 5.1 Mappings of S ¹ to Itself	3
6	Resources	3

1 Point-set Topology

Definition 1.1 (TOPOLOGICAL SPACE): A topological space is a pair $\langle X, \tau \rangle$, where X is a set and τ , a topology on X, is a collection of subsets ($\tau \subseteq \mathcal{P}(X)$) called open sets, such that:

- $\emptyset \in \tau$.
- $X \in \tau$.
- τ is closed under arbitrary finite intersections.
- τ is closed under abbitrary unions. Maybe find some cute notation for this.

Definition 1.2 (TRIVIAL TOPOLOGY): A topological space is called trivial, when the topology on X consists only of \emptyset and X.

Definition 1.3 (DISCRETE TOPOLOGY): A topological space is called discrete, when $\tau = \mathcal{P}(X)$.

Definition 1.4 (CONTINUOUS MAP): Let $\langle X, \tau \rangle$ and $\langle Y, \sigma \rangle$ be topological spaces. A map $f: X \to Y$ is **continuous** if $\forall s \in \sigma, f^{-1}(s) \in \tau$. In plain English, a map is continuous when a preimage of an open set in Y is an open set in X.

C(X, Y) denotes a set of all continuous maps between X and Y.

Base of topology and methods of inducing topologies on sets were discussed during Lecture 2.

2017/03/06 at 22:40:03

Bonus. Compare topology to a field of sets to a σ -algebra to a Borel σ -algebra. Discussed during Lecture 5.

2 Homotopy

Definition 2.1 (HOMOTOPY): Two continuous maps $f,g:X\to Y$ are homotopic if there is a map called homotopy $H:X\times[0,1]\to Y$ that *continuously deforms* f to g, denoted $f\simeq g$ or $f\overset{H}\simeq g$. In general:

$$X \times [0,1] \xrightarrow{H} Y$$

$$H(x,0) = f(x)$$

$$H(x,1) = g(x)$$

$$H(x,t) = tf(x) + (1-t)g(x)$$

Example 2.1: $1 \stackrel{x^t}{\simeq} x$ when viewed as x^0 and x^1 .

$$X \times [0,1] \xrightarrow{H} Y$$

$$H(x,0) = x^{0}$$

$$H(x,1) = x^{1}$$

$$H(x,t) = x^{t}$$

Another possible homotopy between the same functions is $t \cdot x + (1 - t) \cdot 1$, which suggsts that there may be many more of them.

Plots?

Example 2.2: $\{\cdot\} \times [0,1] - > \mathbb{C}$ with $H(x,t) = e^{2\pi i t}$

2.1 Homotopy and equivalence

Theorem 2.2: Homotopy equivalence between spaces is an equivalence relation.

Theorem 2.3: A homotopy between continuous maps is an equivalence relation.

$$Proof.$$
 ...

2.2 Contractible Spaces

Definition 2.4 (CONTRACTIBILITY): A space is contractible if it is homotopically equivalent to a point (a constant map).

Definition 2.5 (PATH-CONNECTEDNESS):

Theorem 2.6: Any convex set is contractible.

Definition 2.7 (STAR-CONVEX SET):

Theorem 2.8: Any star-convex set is contractible.

2017/03/06 at 22:40:03

2.2.1 Trees

3 Quotient Spaces and Maps

See lectures 2 and 3.

Brouwer's Fixed Point Theorem was mentioned around here. Bring up the context?.

- 3.1 Quotients and Groups
- 3.2 Cones of Topological Spaces
- 4 Retractions and Deformation Retractions
- 5 Classes of Homotopy Maps

See lectures 4 and 5.

5.1 Mappings of S^1 to Itself

6 Resources

 $\label{lem:com/site} \textbf{Course page:} \ \texttt{https://sites.google.com/site/kafedramatematikikau/products-services/homotopy-theory}$

2017/03/06 at 22:40:03 3