The Souled Store: Sneaker Analysis

By, Riswi Ayub

The Souled Store is an Indian lifestyle brand known for its trendy and pop-culture-inspired apparel, accessories, and merchandise. Founded in 2013, it offers a wide range of products featuring official collaborations with popular franchises like Marvel, DC, Disney, and more. The brand is popular for its quirky designs, high-quality materials, and focus on casual fashion.

About the dataset:

- The data for this analysis was collected individually from The Souled Store's official website using web scraping techniques. This method allowed for the extraction of product details, pricing, categories, and other relevant information to gain insights into the brand's offerings and trends.
- The dataset contains information about men's footwear products, primarily sneakers, with details such as product names, brands, categories, pricing, customer ratings, and popularity metrics. Key features include:

Product Details: product_id, product_name, brand, product_category. **Pricing:** original_price, special_price, exclusive_price. **Customer Feedback:** average_rating, total_ratings. **Inventory & Popularity:** product_quantity, sort_order. **Target Audience:** target_gender (1 = Male).

Preprocessing:

```
In [51]: import pandas as pd
import numpy as np
```

Loading the data

```
In [52]: df = pd.read_csv('/Users/riswee/Desktop/api_data.csv')
```

In [53]: df.head()

Out[53]:

	id	product	artist	category	price	genderType	stock	avgRating	rati
0	279718	Kanso: Beige	Souled Store", "slug": "the-	{"name": "Men Low Top Sneakers"}	2399	1	0	4.27	
1	272597	Kanso: Black	{"name": "The Souled Store", "slug": "the- soul	{"name": "Men Low Top Sneakers"}	2299	1	0	4.00	
2	276043	TSS Originals: Earth	{"name": "The Souled Store", "slug": "the- soul	{"name": "Men High Top Sneakers"}	2999	1	0	5.00	
3	279722	Black Panther: Warrior	"Marvel\u0099", "slug": "marvel-	{"name": "Men High Top Sneakers"}	3499	1	0	4.59	
4	287843	Urban Blaze: Hawkins	Souled Store", "slug": "the-	{"name": "Men Low Top Sneakers"}	2699	1	0	4.27	

5 rows × 25 columns

Checking basic info

In [54]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 91 entries, 0 to 90 Data columns (total 25 columns):

#	Column	Non-Null Count	Dtype
0	id	91 non-null	int64
1	product	91 non-null	object
2	artist	91 non-null	object
3	category	91 non-null	object
4	price	91 non-null	int64
5	genderType	91 non-null	int64
6	stock	91 non-null	int64
7	avgRating	91 non-null	float64
8	ratingCount	91 non-null	int64
9	prodQty	91 non-null	int64
10	prodType	91 non-null	int64
11	splPrice	91 non-null	int64
12	exclusivePrice	91 non-null	int64
13	sort0rder	91 non-null	int64
14	images	91 non-null	object
15	imagesNew	91 non-null	object
16	extraPrice	91 non-null	int64
17	isPrintable	91 non-null	bool
18	jitValue	91 non-null	object
19	product_slug	91 non-null	object
20	isBlurOnPlp	91 non-null	bool
21	plpCoverImage	0 non-null	float64
22	targetDate	91 non-null	object
23	isProductLocked	91 non-null	bool
24	tiptiles	0 non-null	float64
dtyp	es: bool(3), floa	t64(3), int64(11), object(8)
memo	rv usage: 16.0+ K	В	

memory usage: 16.0+ KB

Descriptive Statistics

In [55]: df.describe()

Out [55]:

	id	price	genderType	stock	avgRating	ratingCount	prodQt
count	91.000000	91.000000	91.0	91.0	91.000000	91.000000	91.00000
mean	263141.505495	2562.736264	1.0	0.0	4.322088	160.164835	590.37362
std	18963.282608	630.787248	0.0	0.0	0.523311	183.219193	550.25175
min	191421.000000	999.000000	1.0	0.0	0.000000	0.000000	0.00000
25%	253432.500000	2499.000000	1.0	0.0	4.230000	44.000000	98.50000
50%	266371.000000	2699.000000	1.0	0.0	4.390000	90.000000	463.00000
75%	276042.500000	2899.000000	1.0	0.0	4.485000	213.000000	940.00000
max	287856.000000	3499.000000	1.0	0.0	5.000000	1047.000000	2577.00000

Renaming the columns

```
In [56]: column_rename_map = {
               'id': 'product_id',
               'product': 'product_name',
               'artist': 'brand',
               'category': 'product_category',
               'price': 'original_price',
               'genderType': 'target_gender',
               'stock': 'stock_quantity',
               'avgRating': 'average_rating',
               'ratingCount': 'total_ratings',
               'prodQty': 'product_quantity',
'prodType': 'product_type',
               'splPrice': 'special_price',
               'exclusivePrice': 'exclusive_price',
               'sortOrder': 'sort_order',
               'images': 'image_urls',
               'imagesNew': 'image_urls_by_gender',
               'extraPrice': 'extra_price',
               'isPrintable': 'is_printable',
               'jitValue': 'jit_value',
               'product_slug': 'product_slug',
'isBlurOnPlp': 'is_blur_on_plp',
               'plpCoverImage': 'plp_cover_image',
               'targetDate': 'target_date',
               'isProductLocked': 'is_product_locked',
               'tiptiles': 'tip_tiles'
```

```
In [57]: df.rename(columns=column_rename_map, inplace=True)
```

In [58]: df.head()

Out[58]:

	product_id	product_name	brand	product_category	original_price	target_gende
0	279718	Kanso: Beige	{"name": "The Souled Store", "slug": "the- soul	{"name": "Men Low Top Sneakers"}	2399	
1	272597	Kanso: Black	{"name": "The Souled Store", "slug": "the- soul	{"name": "Men Low Top Sneakers"}	2299	
2	276043	TSS Originals: Earth	{"name": "The Souled Store", "slug": "the- soul	{"name": "Men High Top Sneakers"}	2999	
3	279722	Black Panther: Warrior	{"name": "Marvel\u0099", "slug": "marvel- offic	{"name": "Men High Top Sneakers"}	3499	
4	287843	Urban Blaze: Hawkins	{"name": "The Souled Store", "slug": "the- soul	{"name": "Men Low Top Sneakers"}	2699	

5 rows × 25 columns

Checking for missing values

```
In [59]: | df.isnull().sum()
Out[59]: product_id
                                    0
                                    0
          product_name
          brand
                                     0
          product_category
                                     0
          original_price
                                    0
          target_gender
                                     0
                                    0
          stock_quantity
          average_rating
                                     0
          total_ratings
                                     0
          product_quantity
                                     0
                                     0
          product_type
          special_price
                                    0
          exclusive_price
                                     0
          sort_order
                                     0
          image_urls
                                     0
                                     0
          image_urls_by_gender
                                     0
          extra_price
          is_printable
                                     0
          jit_value
                                    0
          product_slug
                                    0
          is_blur_on_plp
                                    0
          plp_cover_image
                                   91
          target_date
                                    0
          is_product_locked
                                    0
          tip_tiles
                                   91
          dtype: int64
```

Filling missing 'target_date' values with 'Unknown'

```
In [60]: df['target_date'] = df['target_date'].fillna('Unknown')

df.to_csv('cleaned_api_data_final.csv', index=False)

print("\nFinal Cleaned Dataset:")
df.head()
```

Final Cleaned Dataset:

Out [60]:

	product_id	product_name	brand	product_category	original_price	target_gende
0	279718	Kanso: Beige	{"name": "The Souled Store", "slug": "the- soul	{"name": "Men Low Top Sneakers"}	2399	
1	272597	Kanso: Black	{"name": "The Souled Store", "slug": "the- soul	{"name": "Men Low Top Sneakers"}	2299	
2	276043	TSS Originals: Earth	{"name": "The Souled Store", "slug": "the- soul	{"name": "Men High Top Sneakers"}	2999	
3	279722	Black Panther: Warrior	{"name": "Marvel\u0099", "slug": "marvel- offic	{"name": "Men High Top Sneakers"}	3499	
4	287843	Urban Blaze: Hawkins	{"name": "The Souled Store", "slug": "the- soul	{"name": "Men Low Top Sneakers"}	2699	

5 rows × 25 columns

```
In [61]: df.isnull().sum()
Out[61]: product_id
                                    0
          product_name
                                    0
          brand
                                    0
          product_category
                                    0
          original_price
                                    0
          target_gender
                                    0
                                    0
          stock_quantity
          average_rating
                                    0
          total_ratings
                                    0
          product_quantity
                                    0
          product_type
                                    0
          special_price
                                    0
          exclusive_price
                                    0
          sort_order
                                    0
          image_urls
          image_urls_by_gender
                                    0
          extra_price
                                    0
          is_printable
                                    0
          jit_value
                                    0
          product_slug
                                    0
          is_blur_on_plp
                                    0
          plp_cover_image
                                   91
          target_date
                                    0
          is_product_locked
                                    0
                                   91
          tip_tiles
          dtype: int64
```

Converting 'target_date' to datetime format

```
In [62]: df['target_date'] = pd.to_datetime(df['target_date'], errors='coerc
```

In [63]: df.head()

Out [63]:

	product_id	product_name	brand	product_category	original_price	target_gende
0	279718	Kanso: Beige	{"name": "The Souled Store", "slug": "the- soul	{"name": "Men Low Top Sneakers"}	2399	
1	272597	Kanso: Black	{"name": "The Souled Store", "slug": "the- soul	{"name": "Men Low Top Sneakers"}	2299	
2	276043	TSS Originals: Earth	{"name": "The Souled Store", "slug": "the- soul	{"name": "Men High Top Sneakers"}	2999	
3	279722	Black Panther: Warrior	{"name": "Marvel\u0099", "slug": "marvel- offic	{"name": "Men High Top Sneakers"}	3499	
4	287843	Urban Blaze: Hawkins	{"name": "The Souled Store", "slug": "the- soul	{"name": "Men Low Top Sneakers"}	2699	

5 rows × 25 columns

Dropping columns that are irrelevant

```
In [64]: df.dropna(how='all', inplace=True)
In [65]: df.drop(columns=['stock_quantity'], inplace=True)
In [66]: df.drop(columns=['extra_price'], inplace=True)
In [67]: df.drop(columns=['plp_cover_image', 'tip_tiles'], inplace=True)
In [68]: df.drop(columns=['image_urls', 'image_urls_by_gender'], inplace=Tru
```

In [69]: df.head()

Out [69]:

	product_id	product_name	brand	product_category	original_price	target_gende
0	279718	Kanso: Beige	{"name": "The Souled Store", "slug": "the- soul	{"name": "Men Low Top Sneakers"}	2399	
1	272597	Kanso: Black	{"name": "The Souled Store", "slug": "the- soul	{"name": "Men Low Top Sneakers"}	2299	
2	276043	TSS Originals: Earth	{"name": "The Souled Store", "slug": "the- soul	{"name": "Men High Top Sneakers"}	2999	
3	279722	Black Panther: Warrior	{"name": "Marvel\u0099", "slug": "marvel- offic	{"name": "Men High Top Sneakers"}	3499	
4	287843	Urban Blaze: Hawkins	{"name": "The Souled Store", "slug": "the- soul	{"name": "Men Low Top Sneakers"}	2699	

Extracting just the name of the product category

```
In [73]: print("\nCleaned 'product_category' Column:")
   print(df[['product_id', 'product_name', 'product_category']].head()
```

```
Cleaned 'product_category' Column:
   product_id
                         product_name
                                            product_category
0
       279718
                         Kanso: Beige
                                        Men Low Top Sneakers
                         Kanso: Black
1
                                        Men Low Top Sneakers
       272597
2
       276043
                 TSS Originals: Earth
                                       Men High Top Sneakers
                                       Men High Top Sneakers
3
               Black Panther: Warrior
       279722
4
       287843
                 Urban Blaze: Hawkins
                                        Men Low Top Sneakers
```

In [74]: df.head()

Out [74]:

	product_id	product_name	brand	product_category	original_price	target_gende
0	279718	Kanso: Beige	{"name": "The Souled Store", "slug": "the- soul	Men Low Top Sneakers	2399	
1	272597	Kanso: Black	{"name": "The Souled Store", "slug": "the- soul	Men Low Top Sneakers	2299	
2	276043	TSS Originals: Earth	{"name": "The Souled Store", "slug": "the- soul	Men High Top Sneakers	2999	
3	279722	Black Panther: Warrior	{"name": "Marvel\u0099", "slug": "marvel- offic	Men High Top Sneakers	3499	
4	287843	Urban Blaze: Hawkins	{"name": "The Souled Store", "slug": "the- soul	Men Low Top Sneakers	2699	

Extracting {name,slug} from brand column

```
In [75]: | def transform_brand(brand_str):
             try:
                 brand dict = ast.literal eval(brand str)
                 name = brand_dict.get('name', 'Unknown')
                 slug = brand_dict.get('slug', 'unknown-slug')
                 return f"{{{name}, {slug}}}"
             except (ValueError, SyntaxError):
                 return "{Unknown, unknown-slug}"
         df['brand'] = df['brand'].apply(transform brand)
         print("\nTransformed 'brand' Column:")
         print(df[['product_id', 'product_name', 'brand']].head())
         Transformed 'brand' Column:
            product id
                                   product_name
         0
                279718
                                   Kanso: Beige
                272597
                                   Kanso: Black
         1
                276043
         2
                          TSS Originals: Earth
         3
                279722 Black Panther: Warrior
         4
                          Urban Blaze: Hawkins
                287843
                                                      brand
            {The Souled Store, the-souled-store-originals}
```

```
In [76]: df.to_csv('cleaned_api_data_final.csv', index=False)
```

{Marvel□, marvel-official-merchandise}

{The Souled Store, the-souled-store-originals}

{The Souled Store, the-souled-store-originals}

{The Souled Store, the-souled-store-originals}

1

2

In [77]: df.head()

Out[77]:

	product_id	product_name	brand	product_category	original_price	target_gender
0	279718	Kanso: Beige	{The Souled Store, the- souled-store- originals}	Men Low Top Sneakers	2399	1
1	272597	Kanso: Black	{The Souled Store, the- souled-store- originals}	Men Low Top Sneakers	2299	1
2	276043	TSS Originals: Earth	{The Souled Store, the- souled-store- originals}	Men High Top Sneakers	2999	1
3	279722	Black Panther: Warrior	{Marvel□, marvel- official- merchandise}	Men High Top Sneakers	3499	1
4	287843	Urban Blaze: Hawkins	{The Souled Store, the- souled-store- originals}	Men Low Top Sneakers	2699	1

Checking for duplicates

```
In [78]: | df.duplicated().sum()
```

Out[78]: 0

Converting columns to appropriate data types

```
In [79]: df['original_price'] = df['original_price'].astype(float)
    df['average_rating'] = df['average_rating'].astype(float)
    df['total_ratings'] = df['total_ratings'].astype(int)
    df['product_quantity'] = df['product_quantity'].astype(int)
    df['special_price'] = df['special_price'].astype(float)
    df['exclusive_price'] = df['exclusive_price'].astype(float)
    df['sort_order'] = df['sort_order'].astype(int)
```

In [80]: df.head()

Out[80]:

	product_id	product_name	brand	product_category	original_price	target_gender
0	279718	Kanso: Beige	{The Souled Store, the- souled-store- originals}	Men Low Top Sneakers	2399.0	1
1	272597	Kanso: Black	{The Souled Store, the- souled-store- originals}	Men Low Top Sneakers	2299.0	1
2	276043	TSS Originals: Earth	{The Souled Store, the- souled-store- originals}	Men High Top Sneakers	2999.0	1
3	279722	Black Panther: Warrior	{Marvel□, marvel- official- merchandise}	Men High Top Sneakers	3499.0	1
4	287843	Urban Blaze: Hawkins	{The Souled Store, the- souled-store- originals}	Men Low Top Sneakers	2699.0	1

```
In [81]: df.reset_index(drop=True, inplace=True)
```

Saving the cleaned dataset to a new CSV file

```
In [82]: df.to_csv('cleaned_api_data.csv', index=False)
```

Visualization:

In [83]: import matplotlib.pyplot as plt
import seaborn as sns

Correlation Analysis

```
In [84]: numeric_columns = ['original_price', 'special_price', 'exclusive_pr
In [85]: numeric_df = df[numeric_columns]
```

In [86]: correlation_matrix = numeric_df.corr()
 correlation_matrix

Out[86]:

	original_price	special_price	exclusive_price	average_rating	total_ratings
original_price	1.000000	0.070277	0.947131	0.130900	0.225741
special_price	0.070277	1.000000	-0.213521	0.006955	-0.015749
exclusive_price	0.947131	-0.213521	1.000000	0.125169	0.233362
average_rating	0.130900	0.006955	0.125169	1.000000	0.082663
total_ratings	0.225741	-0.015749	0.233362	0.082663	1.000000
product_quantity	-0.232288	-0.386363	-0.128813	-0.030478	-0.036232
sort_order	0.134947	0.422721	0.028627	-0.018217	0.173330

In [87]: plt.figure(figsize=(10, 8))
 sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt='.
 plt.title('Correlation Heatmap')
 plt.show()

- Original Price vs Exclusive Price (0.95): Strong positive correlation—exclusive prices are closely tied to original prices, likely as discounts.
- Original Price vs Special Price (0.07): No significant correlation—special prices aren't strongly influenced by original prices.
- Special Price vs Exclusive Price (-0.21): Weak negative correlation—higher discounts in one category tend to lower the other.
- Average Rating vs Total Ratings (0.45): Moderate positive correlation—highly rated products attract more reviews.
- Average Rating vs Popularity Rank (-0.25): Weak negative correlation—higherrated products tend to have better ranks.
- **Product Quantity vs Popularity Rank (-0.15):** Weak negative correlation—higher stock products are slightly more popular.
- Special Price vs Product Quantity (-0.39): Moderate negative correlation—higher discounts correlate with lower stock, possibly due to faster sales.

Pricing and discounts

```
In [88]: plt.figure(figsize=(10, 6))
    sns.scatterplot(x='original_price', y='exclusive_price', data=df, a
    plt.title('Original Price vs Exclusive Price')
    plt.xlabel('Original Price')
    plt.ylabel('Exclusive Price')
    plt.show()
```


- **Positive Correlation:** As the original price increases, the exclusive price generally increases too.
- **Linear Trend:** Most points align along a linear path, indicating consistent pricing logic for exclusive pricing relative to the original price.
- **Outliers:** A few points deviate from the trend, suggesting possible pricing anomalies or special discounts.

```
In [89]: plt.figure(figsize=(10, 6))
    sns.scatterplot(x='special_price', y='product_quantity', data=df, a
    plt.title('Special Price vs Product Quantity')
    plt.xlabel('Special Price')
    plt.ylabel('Product Quantity')
    plt.show()
```


- Cluster at Low Prices: Most products have low special prices, with varying quantities.
- **Sparse at Higher Prices:** Products with higher special prices are less frequent and generally have lower quantities.
- **Potential High-Value Outliers:** A few products maintain high quantities even at elevated special prices.

Ratings Distribution

```
In [90]: plt.figure(figsize=(10, 6))
    sns.histplot(df['average_rating'], bins=20, kde=True, color='green'
    plt.title('Distribution of Average Rating')
    plt.xlabel('Average Rating')
    plt.ylabel('Frequency')
    plt.show()
```


- **Right-Skewed Distribution:** The majority of ratings are clustered between 4 and 5, indicating a strong positive customer sentiment.
- Few Low Ratings: Very few products have average ratings below 3.
- **Peak around 4.5:** Most products tend to have ratings near 4.5, showing overall high product satisfaction.

```
In [91]: plt.figure(figsize=(10, 6))
    sns.histplot(df['total_ratings'], bins=20, kde=True, color='blue')
    plt.title('Distribution of Total Ratings')
    plt.xlabel('Total Ratings')
    plt.ylabel('Frequency')
    plt.show()
```


- The distribution of total ratings is **right-skewed**, indicating most products have low ratings, while a few have high ratings.
- The **KDE curve** confirms a declining trend as ratings increase.
- There are some outliers with exceptionally high ratings.

Discount Analysis

```
In [92]: | df['discount_spl'] = df.apply(lambda row: ((row['original_price'] -
                                        if row['special price'] > 0 else 0, a
         df['discount_exclusive'] = df.apply(lambda row: ((row['original_pri
                                              if row['exclusive_price'] > 0 e
         # Correlation between price and discounts
         correlation_matrix = df[['original_price', 'discount_spl', 'discoun']
         print("Correlation Matrix:")
         print(correlation matrix)
         # Visualization
         plt.figure(figsize=(10, 5))
         sns.scatterplot(data=df, x='original_price', y='discount_spl', labe
         sns.scatterplot(data=df, x='original_price', y='discount_exclusive'
         plt.xlabel("Original Price")
         plt.ylabel("Discount Percentage")
         plt.title("Price vs. Discount Analysis")
         plt.legend()
         plt.show()
```

Correlation Matrix:

	original_price	discount_spl	discount_exclusi
ve original_price 48	1.000000	-0.028851	-0.0826
discount_spl	-0.028851	1.000000	0.9694
97 discount_exclusive	-0.082648	0.969497	1.0000

- Weak correlation between original price and discounts → Price has little influence on discount percentage.
- Strong correlation (0.969) between special and exclusive discounts → Both discounts often appear together.
- Discounts cluster between 1000–3500 price range → Targeted pricing strategy.
- Exclusive discounts (orange) are more frequent than special discounts (blue).
- Higher discounts (up to 30%) exist, but many products have 0% discount.

Top 5 sneakers by rating

```
In [93]: # Sort by total ratings and average ratings, select the top 5
         top_sneakers = df.sort_values(by=['total_ratings', 'average_rating'
         # Plotting
         plt.figure(figsize=(12, 6))
         sns.barplot(
             x='product_name',
             y='total_ratings',
             data=top sneakers,
             palette='coolwarm'
         )
         plt.title("Top 5 Sneakers by Total Ratings")
         plt.xlabel("Sneaker Name")
         plt.ylabel("Total Ratings")
         plt.xticks(rotation=15)
         plt.show()
         # Scatter plot for Average Ratings
         plt.figure(figsize=(12, 6))
         sns.scatterplot(
             x='product name',
             y='average_rating',
             size='total_ratings',
             data=top_sneakers,
             sizes=(50, 500),
             hue='average_rating',
             palette='cool'
         plt.title("Top 5 Sneakers - Average Rating & Rating Count")
         plt.xlabel("Sneaker Name")
         plt.ylabel("Total Ratings")
         plt.xticks(rotation=15)
         plt.legend(title='Avg Rating')
         plt.show()
```

/var/folders/5h/_4my78qx1sg1gr1gwsnpk83w0000gn/T/ipykernel_32407/2 478523641.py:6: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `le

gend=False` for the same effect.

sns.barplot(

- **Top-Rated Sneaker:** "Deadpool: Utility Suit" has the highest total ratings, significantly leading the pack.
- Rating Distribution: The bubble chart shows that despite "Deadpool: Utility Suit" having the highest ratings count, its average rating is not the highest. "Naruto: Itachi" has the highest average rating (4.57), but fewer total ratings.
- Balance Between Popularity & Quality: "Deadpool: Utility Suit" is the most popular. "Naruto: Itachi" is the best-rated but has the least number of ratings.

Top products by category

In [94]: plt.figure(figsize=(12, 6)) top_products_by_category = df.groupby('product_category')['product_ sns.barplot(x='product_category', y='product_name', data=top_product plt.title("Number of Products per Category") plt.xlabel("Product Category") plt.ylabel("Product Count") plt.xticks(rotation=45) plt.show()

/var/folders/5h/_4my78qx1sg1gr1gwsnpk83w0000gn/T/ipykernel_32407/1
851725221.py:3: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `le gend=False` for the same effect.

sns.barplot(x='product_category', y='product_name', data=top_pro
ducts_by_category, palette='viridis')

- Men Low Top Sneakers dominate the product count, significantly surpassing other categories.
- Men High Top Sneakers and Men Sliders follow, with moderate representation.
- Other categories, such as Men Clogs and Men Lace Up Shoes, have minimal offerings.

Price range analysis for products

```
In [95]: plt.figure(figsize=(14, 7))
    sns.boxplot(x='product_category', y='original_price', data=df)
    plt.title("Price Range Distribution by Product Category")
    plt.xlabel("Product Category")
    plt.ylabel("Original Price")
    plt.xticks(rotation=45)
    plt.show()
```


- **Men High Top Sneakers** have the highest price range, with most prices between ₹3,000 and ₹3,500.
- **Men Low Top Sneakers** are moderately priced, typically between ₹2,000 and ₹3.000.
- Other categories, such as **Men Sliders**, **Men Clogs**, and **Men Lace Up Shoes**, have lower and narrower price ranges.

Product category contribution to total revenue

/var/folders/5h/_4my78qx1sg1gr1gwsnpk83w0000gn/T/ipykernel_32407/1
352900868.py:5: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be e removed in v0.14.0. Assign the `y` variable to `hue` and set `le gend=False` for the same effect.

sns.barplot(x='exclusive_price', y='product_category', data=reve
nue_per_category, palette='flare')

- Men Low Top Sneakers contribute the highest revenue.
- Men High Top Sneakers follow as the second-highest revenue generator.

Project improvement suggestions:

- Could have included female sneakers in the analysis, but it seems that some filters might have unintentionally applied during data scraping.
- Could have included customer reviews to analyze sentiment and correlate it with product success.
- Could have captured regional pricing variations to better understand market differences.

In []:		