Machine Learning & Probabilistic Modelling

Dr. Svetlin Penkov

Fall 2019

About me

Dreaming about building intelligent robots since the age of 6...

About me

PhD in Robotics & Al

Research Scientist & Team Lead

About me

Robots should learn to program themselves...

- Team of world experts in AI and robotics
- Design, develop and deploy AI based solutions in challenging domains
- Research new state-of-the-art Al methods

Why Machine Learning & Probabilistic Modelling?

Deep Neural Networks

Probabilistic Machine Learning

- Deep neural networks sit within a more general framework for probabilistic machine learning
- All modern machine learning algorithms have a probabilistic formulation

Autonomous Agents

Lee Sedol resigning to AlphaGo.

Opening a valve at DARPA Rescue Challenge.

Probabilistic Robotics

Uncertainty

- Parameter uncertainty
- Structural uncertainty
- Algorithmic uncertainty
- Experimental uncertainty
- Interpolation uncertainty

Aleatory vs. epistemic uncertainty

Uncertainty is Present in Any Real Data

- 1. I have written down the word 'uncertainty' on a sheet of paper
- 2. Write down the word 'uncertainty' on the same sheet
- 3. Pass the sheet to the next person
- 4. If you are the last person give me back the sheet

Autonomous Driving

Simultaneous Localisation and Mapping (SLAM)

Risk Estimation Under Uncertainty

Learning From Demonstration

The Physical Symbol Grounding Problem

(Penkov et al., ICRA 2017)

Learning from Demonstration

Eye Tracking & Task Execution

3D Eye Tracking with ORBSLAM

3D Eye Tracking & Demonstration

3D Eye Tracking & Demonstration

Probabilistic Graphical Model

Inference Results

Instance Learning

<u>Learnt Symbol Instances:</u>

PR2 Tower Building

HRI Collaboration

Reinforcement Learning

Policy Gradients Setup

(Penkov & Ramamoorthy, ICLR 2019)

Perceptor Gradients Setup

Cart-Pole Balancing

(Penkov & Ramamoorthy, ICLR 2019)

Cart-Pole Balancing

Representation Learning

Is the sheet of paper ready?

Course Logistics

- 15 lectures + seminars
- Every Tuesday 17:00-21:00
 - o 17:00 19:00 seminars
 - o 19:00 21:00 lectures
- Lecture Theatre 500
- Slides in english
- One coursework
 - out ~6th Nov, due ~1st Dec
- One project
 - out ~10 Dec, due ~1st Feb

Supplementary reading

Course Logistics

- Course webpage
 - https://svepe.github.io/mlpm/
- Piazza group
 - Fill in MLPM enrollment form on the webpage to get an invitation
 - o I will do my best to follow the group and respond to personal messages

Final Note

- I hope you find the course hard, but meaningful
 - This means you will learn a lot
- There is a **solid theoretical thread** in the course
- There will be <u>hands on programming</u> involved
 - The project will involve programming (most likely Python)
- There will be lots of <u>state of the art examples and applications</u>
- I am teaching for the first time in Bulgaria, so any feedback is more than welcome

SEE YOU NEXT TUESDAY AT 19:00 HERE!