Задача А. Пересечение прямоугольников

Имя входного файла: rect.in
Имя выходного файла: rect.out
Ограничение по времени: 1 секунда
Ограничение по памяти: 64 мегабайта

На плоскости задано N прямоугольников с вершинами в точках с целыми координатами и сторонами, параллельными осям координат. Необходимо найти прямоугольник, являющийся их пересечением.

То, что это прямоугольник, докажите самостоятельно.

Формат входных данных

В первой строке входного файла указано число N ($1 \le N \le 1500$). В следующих N строках заданы по 4 целых числа x_1, y_1, x_2, y_2 — сначала координаты левого нижнего угла прямоугольника, потом правого верхнего ($-10^9 \le x_1 \le x_2 \le 10^9, -10^9 \le y_1 \le y_2 \le 10^9$). Обратите внимание, что прямоугольники могут вырождаться в отрезки и даже в точки.

Формат выходных данных

В единственную строку выходного файла поместите описание искомого прямоугольника в том же формате, в котором заданы прямоугольники во входном файле.

Если пересечение заданных прямоугольников пусто, выведите в выходной файл единственное число -1.

rect.in	rect.out
2	1 1 2 2
0 0 2 2	
1 1 3 3	

Задача В. Кассы

Имя входного файла: tickets.in Имя выходного файла: tickets.out Ограничение по времени: 0.5 секунда Ограничение по памяти: 64 мегабайта

На одном из московских вокзалов билеты продают N касс. Каждая касса работает без перерыва определенный промежуток времени по фиксированному расписанию (одному и тому же каждый день). Требуется определить, на протяжении какого времени в течение суток работают все кассы одновременно.

Формат входных данных

Сначала вводится одно целое число $N \ (0 < N \leqslant 10000)$.

В каждой из следующих N строк через пробел расположены 6 целых чисел, первые три из которых обозначают время открытия кассы в часах, минутах и секундах (часы — целое число от 0 до 23, минуты и секунды — целые числа от 0 до 59), оставшиеся три — время закрытия в том же формате. Числа разделены пробелами.

Время открытия означает, что в соответствующую ему секунду касса уже работает, а время закрытия — что в соответствующую секунду касса уже не работает. Например, касса, открытая с 10 ч 30 мин 30 с до 10 ч 35 мин 30 с, ежесуточно работает 300 секунд.

Если время открытия совпадает с временем закрытия, то касса работает круглосуточно. Если первое время больше второго, то касса начинает работу до полуночи, а заканчивает — на следующий день.

Формат выходных данных

Требуется вывести одно число — суммарное время за сутки (в секундах), на протяжении которого работают все N касс.

tickets.in	tickets.out
3	7200
1 0 0 23 0 0	
12 0 0 12 0 0	
22 0 0 2 0 0	
2	0
9 30 0 14 0 0	
14 15 0 21 0 0	
2	1
14 0 0 18 0 0	
10 0 0 14 0 1	

Задача С. Точки и отрезки

Имя входного файла: segments.in Имя выходного файла: segments.out Ограничение по времени: 1 секунда Ограничение по памяти: 64 мегабайта

Дано n отрезков на числовой прямой и m точек на этой же прямой. Для каждой из данных точек определите, скольким отрезкам она принадлежит. Точка x считается принадлежащей отрезку с концами a и b, если выполняется двойное неравенство $\min(a,b) \leqslant x \leqslant \max(a,b)$.

Формат входных данных

Первая строка содержит два целых числа n ($1 \le n \le 10^5$) — число отрезков и m ($1 \le m \le 10^5$) — число точек. В следующих n строках записаны по два целых числа a_i и b_i — координаты концов соответствующего отрезка. В последней строке записаны m целых чисел — координаты точек. Все числа во входном файле не превосходят по модулю 10^9 .

Формат выходных данных

В выходной файл выведите m чисел — для каждой точки выведите количество отрезков, в которых она содержится.

segments.in	segments.out
2 2	1 0
0 5	
7 10	
1 6	
1 3	0 0 1
-10 10	
-100 100 0	

Задача D. Объединение прямоугольников

Имя входного файла: union.in Имя выходного файла: union.out Ограничение по времени: 1 секунда Ограничение по памяти: 64 мегабайта

На плоскости задано N прямоугольников с вершинами в точках с целыми координатами и сторонами, параллельными осям координат. Необходимо найти площадь их объединения.

Формат входных данных

В первой строке входного файла указано число N ($0 \le N \le 1500$). В следующих N строках заданы по 4 целых числа x_1 , y_1 , x_2 , y_2 — сначала координаты левого нижнего угла прямоугольника, потом правого верхнего ($0 \le x_1 \le x_2 \le 10^9$, $0 \le y_1 \le y_2 \le 10^9$). Обратите внимание, что прямоугольники могут вырождаться в отрезки и даже в точки.

Формат выходных данных

В выходной файл выведите единственное число — ответ на задачу.

union.in	union.out
3	23
1 1 3 5	
5 2 7 4	
2 4 6 7	

Задача Е. Объединение прямоугольников (версия для Python)

Имя входного файла: union.in
Имя выходного файла: union.out
Ограничение по времени: 1 секунда
Ограничение по памяти: 64 мегабайта

На плоскости задано N прямоугольников с вершинами в точках с целыми координатами и сторонами, параллельными осям координат. Необходимо найти площадь их объединения.

Формат входных данных

В первой строке входного файла указано число N ($0 \le N \le 300$). В следующих N строках заданы по 4 целых числа x_1, y_1, x_2, y_2 — сначала координаты левого нижнего угла прямоугольника, потом правого верхнего ($0 \le x_1 \le x_2 \le 10^9, 0 \le y_1 \le y_2 \le 10^9$). Обратите внимание, что прямоугольники могут вырождаться в отрезки и даже в точки.

Формат выходных данных

В выходной файл выведите единственное число — ответ на задачу.

union.in	union.out
3	23
1 1 3 5	
5 2 7 4	
2 4 6 7	

Задача F. Операционные системы

Имя входного файла: os.in
Имя выходного файла: os.out
Ограничение по времени: 1 секунда
Ограничение по памяти: 64 мегабайта

Васин жесткий диск состоит из M секторов. Вася последовательно устанавливал на него различные операционные системы следующим методом: он создавал новый раздел диска из последовательных секторов, начиная с сектора номер a_i и до сектора b_i включительно, и устанавливал на него очередную систему. При этом если очередной раздел хотя бы по одному сектору пересекается с каким-то ранее созданным разделом, то ранее созданный раздел «затирается», и операционная система, которая на него была установлена, больше не может быть загружена.

Напишите программу, которая по информации о том, какие разделы на диске создавал Вася, определит, сколько в итоге работающих операционных систем установлено и в настоящий момент работает на Васином компьютере.

Формат входных данных

Сначала вводятся натуральное число M — количество секторов на жестком диске $(1 \le M \le 10^9)$ и целое число N — количество разделов, которое последовательно создавал Вася $(0 \le N \le 100000)$. Далее идут N пар чисел a_i и b_i , задающих номера начального и конечного секторов раздела $(1 \le a_i \le b_i \le M)$.

Формат выходных данных

Выведите одно число — количество работающих операционных систем на Васином компьютере.

os.in	os.out
10	1
3	
1 3	
4 7	
3 4	
10	3
4	
1 3	
4 5	
7 8	
4 6	

Задача G. Операционные системы (версия для Python)

Имя входного файла: os.in
Имя выходного файла: os.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 64 мегабайта

Васин жесткий диск состоит из M секторов. Вася последовательно устанавливал на него различные операционные системы следующим методом: он создавал новый раздел диска из последовательных секторов, начиная с сектора номер a_i и до сектора b_i включительно, и устанавливал на него очередную систему. При этом если очередной раздел хотя бы по одному сектору пересекается с каким-то ранее созданным разделом, то ранее созданный раздел «затирается», и операционная система, которая на него была установлена, больше не может быть загружена.

Напишите программу, которая по информации о том, какие разделы на диске создавал Вася, определит, сколько в итоге работающих операционных систем установлено и в настоящий момент работает на Васином компьютере.

Формат входных данных

Сначала вводятся натуральное число M — количество секторов на жестком диске $(1 \leqslant M \leqslant 10^9)$ и целое число N — количество разделов, которое последовательно создавал Вася $(0 \leqslant N \leqslant 21000)$. Далее идут N пар чисел a_i и b_i , задающих номера начального и конечного секторов раздела $(1 \leqslant a_i \leqslant b_i \leqslant M)$.

Формат выходных данных

Выведите одно число — количество работающих операционных систем на Васином компьютере.

os.in	os.out
10	1
3	
1 3	
4 7	
3 4	
10	3
4	
1 3	
4 5	
7 8	
4 6	

Задача Н. Тесты к задаче "Пересадки"

Имя входного файла: -Имя выходного файла: -Ограничение по времени: Ограничение по памяти: -

Разработайте систему тестов для задачи "Пересадки" предыдущего дня.

Вам нужно сделать несколько тестов (от 1 до 20), удовлетворяющих условию задачи. К каждому тесту необходимо также указать правильный ответ. Тесты необходимо сохранить в файлах 001.dat, 002.dat, 003.dat и т.д., правильные ответы на них — в файлах 001.ans, 002.ans, 003.ans соответственно.

На проверку вам необходимо сдать архив в формате zip или tar.gz. Внутри этого архива должен быть каталог с именем tests. Внутри этого каталога должно быть не более 20 тестов и ответов на них. Все тесты должны строго соответствовать формату входных и выходных данных, описанных в условии задачи.

Сданный файл получает ОК, если он имеет правильный формат и структуру, содержит от 1 до 20 корректных тестов и правильные ответы на них (правильные решения выдают такие же ответы), а все неправильные решения не проходят хотя бы один тест из числа предложенных вами.

Для создания zip-архивов рекомендуется использовать 7-zip. Использовать встроенные средства Windows для создания zip-архивов нельзя, так как они создают некорректные архивы.