Regression Analysis I

Jin Young Choi Seoul National University

Outline

- linear regression
 - simple linear regression
 - multiple linear regression
- nonlinear regression
 - logistic regression
 - high-order regression
 - basis-function regression
- matrix form for regression
 - recursive least squares
- partial least squares
 - over-fitting and underfitting
 - bias/variance
 - principle component regression
 - partial least squares algorithm
 - ridge regression
 - lasso, elastic regression
- Gaussian process regression

J. Y. Choi. SNU

LINEAR REGRESSION

JIN YOUNG CHOI

ECE, SEOUL NATIONAL UNIVERSITY

http://3.droppdf.com/files/pjxkl/regression-analysis-by-example-5th-edition.pdf https://github.com/jwangjie/Gaussian-Processes-Regression-Tutorial

Regression Analysis

For independent random variable X, and dependent random variable Y, assume they
have a functional correlation between them, i.e.

$$Y = f(X)$$

• Regression: a process to find a parametric model \hat{f} that gives the best fit of f for the observed samples

$$Y = \hat{f}(X) + \epsilon$$
, X: predictor r.v., Y: response r.v.

- Assume $E(\epsilon) = 0$, $var(\epsilon) = \sigma^2$, then $E(Y|x) = \hat{f}(x)$ for an observed non-random value x
- \hat{f} can be estimated from the sample pairs $\{(y_i, x_i) | i = 1, 2, \dots, n\}$

$$y_i = \hat{f}(x_i) + \epsilon_i, \ i = 1, \ \cdots, \ n,$$

where ϵ_i are i.i.d. zero mean and variance σ^2

Simple linear regression model

$$Y = \theta_0 + \theta_1 X + \epsilon$$

$$y_i = \theta_0 + \theta_1 x_i + \epsilon_i, \ i = 1, \ \cdots, \ n,$$
 where θ_0 : intercept, θ_1 : slope

Observation Number	Response Y	Predictor X	
1	y_1	x_1	
2	y_2	x_2	
3	y_3	x_3	
:	:	•	
n	y_n	x_n	

Correlation of Y & X

$$Y = \theta_0 + \theta_1 X + \epsilon$$

$$\operatorname{Cov}(Y, X) = \frac{1}{n} \sum_{i=1}^n (y_i - \bar{y}) \ (x_i - \bar{x})$$
 where $\bar{y} = \frac{1}{n} \sum_{i=1}^n y_i$, $\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$

Observation Number	Response Y	Predictor X	
1	y_1	x_1	
2	y_2	x_2	
3	y_3	x_3	
:	:	•	
n	y_n	x_n	

Correlation of Y & X

$$\begin{split} Y &= \theta_0 + \theta_1 X + \epsilon \\ \operatorname{Cov}(Y, X) &= \frac{1}{n} \sum_{i=1}^n (y_i - \bar{y}) \ (x_i - \bar{x}) \\ \text{where } \bar{y} &= \frac{1}{n} \sum_{i=1}^n y_i \, , \ \bar{x} &= \frac{1}{n} \sum_{i=1}^n x_i \end{split}$$

Q	$y_i - \bar{y}$	$x_i - \bar{x}$	$(y_i-\bar{y})(x_i-\bar{x})$
(1)	+	+	+
(2)	+	_	_
(3)	_	_	+
(4)	_	+	_

$$\theta_1 < 0 \longrightarrow Cov(Y, X) < 0$$

Correlation Coefficient of Y & X

$$Y = \theta_0 + \theta_1 X + \epsilon$$

$$\rho(Y, X) = \frac{1}{n} \sum_{i=1}^n \left(\frac{y_i - \bar{y}}{\sigma_y} \right) \left(\frac{x_i - \bar{x}}{\sigma_x} \right)$$
where $\sigma_y^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \bar{y})^2$, $\sigma_x^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$

Q	$y_i - \bar{y}$	$x_i - \bar{x}$	$(y_i - \bar{y})(x_i - \bar{x})$
(1)	+	+	+
(2)	+	_	_
(3)	_	_	+
(4)	_	+	_

$$\theta_1 < 0$$
 \longrightarrow $-1 \le \rho(Y, X) < 0$

Least Squares Estimation

Parameters are estimated by maximum likelihood estimation (MLE)

$$\epsilon_i = y_i - \theta_0 + \theta_1 x_i$$
, $i = 1, \dots, n$, $\epsilon_i \sim N(0, \sigma^2)$

MLE:

$$(\hat{\theta}_0, \ \hat{\theta}_1) = \underset{(\theta_0, \theta_1)}{\operatorname{argmax}} \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{\epsilon_i^2}{2\sigma^2})$$

$$(\hat{\theta}_0, \ \hat{\theta}_1) = \underset{(\theta_0, \theta_1)}{\operatorname{argmax}} \ln \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{\epsilon_i^2}{2\sigma^2})$$

$$(\hat{\theta}_0, \ \hat{\theta}_1) = \underset{(\theta_0, \theta_1)}{\operatorname{argmin}} \sum_{i=1}^n \epsilon_i^2 = \sum_{i=1}^n (y_i - \theta_0 - \theta_1 x_i)^2$$

LSE:

minimizing
$$S(\theta_0, \theta_1) = \sum_{i=1}^n (y_i - \theta_0 - \theta_1 x_i)^2$$
.

Solution:

by
$$\partial S/\partial \theta_0 = 0$$
, $\partial S/\partial \theta_1 = 0$ at $\hat{\theta}_0 \& \hat{\theta}_1$,

Maximum Likelihood Estimation

$$(\hat{\theta}_0, \ \hat{\theta}_1) = \underset{(\theta_0, \theta_1)}{\operatorname{argmax}} \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{\epsilon_i^2}{2\sigma^2})$$

$$(\hat{\theta}_0, \ \hat{\theta}_1) = \underset{(\theta_0, \theta_1)}{\operatorname{argmax}} \ln \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{\epsilon_i^2}{2\sigma^2})$$

$$(\hat{\theta}_0, \ \hat{\theta}_1) = \underset{(\theta_0, \theta_1)}{\operatorname{argmin}} \sum_{i=1}^n \epsilon_i^2 = \sum_{i=1}^n (y_i - \theta_0 - \theta_1 x_i)^2$$

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \|\boldsymbol{\epsilon}\|^2 = \|\boldsymbol{y} - \Phi\boldsymbol{\theta}\|^2 \cong S(\boldsymbol{\theta})$$

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} \phi_1^T \\ \phi_2^T \\ \vdots \\ \phi_n^T \end{bmatrix} \theta + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{bmatrix}, \quad \Phi_k = \begin{bmatrix} \phi_{11} & \phi_{12} & \cdots & \phi_{1p} \\ \phi_{21} & \phi_{22} & \cdots & \phi_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{n1} & \phi_{n2} & \cdots & \phi_{np} \end{bmatrix}$$

$$y_i = \phi_i^T \theta + \epsilon_i$$

$$y_i = \theta_0 + \theta_1 \phi_{i1} + \theta_2 \phi_{i2} + \cdots + \theta_p \phi_{i(p-1)} + \epsilon_i,$$

$$i = 1, \dots, n$$

Least Squares Estimation

Parameters are estimated by maximum likelihood estimation (MLE)

$$\epsilon_i = y_i - \theta_0 + \theta_1 x_i$$
, $i = 1, \dots, n$, $\epsilon_i \sim N(0, \sigma^2)$

MLE:

$$(\hat{\theta}_0, \ \hat{\theta}_1) = \underset{(\theta_0, \theta_1)}{\operatorname{argmax}} \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{\epsilon_i^2}{2\sigma^2})$$

$$(\hat{\theta}_0, \ \hat{\theta}_1) = \underset{(\theta_0, \theta_1)}{\operatorname{argmax}} \ln \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{\epsilon_i^2}{2\sigma^2})$$

$$(\hat{\theta}_0, \ \hat{\theta}_1) = \underset{(\theta_0, \theta_1)}{\operatorname{argmin}} \sum_{i=1}^n \epsilon_i^2 = \sum_{i=1}^n (y_i - \theta_0 - \theta_1 x_i)^2$$

LSE:

minimizing
$$S(\theta_0, \theta_1) = \sum_{i=1}^n (y_i - \theta_0 - \theta_1 x_i)^2$$
.

Solution:

by
$$\partial S/\partial \theta_0 = 0$$
, $\partial S/\partial \theta_1 = 0$ at $\hat{\theta}_0 \& \hat{\theta}_1$,

Least Squares Estimation

$$\epsilon_i = y_i - \theta_0 + \theta_1 x_i, \quad i = 1, \quad \cdots, \quad n.$$

LSE:

$$(\hat{\theta}_0, \ \hat{\theta}_1) = \underset{(\theta_0, \theta_1)}{\operatorname{argmin}} S(\theta_0, \ \theta_1) = \sum_{i=1}^n (y_i - \theta_0 - \theta_1 x_i)^2.$$

Solution:

by
$$\partial S/\partial \theta_0 = 0$$
, $\partial S/\partial \theta_1 = 0$ at $\hat{\theta}_0 \& \hat{\theta}_1$,

$$\sum_{i=1}^{n} (y_i - \hat{\theta}_0 - \hat{\theta}_1 x_i) = 0, \quad \rightarrow \quad \hat{\theta}_0 = \bar{y} - \hat{\theta}_1 \bar{x}$$

$$\sum_{i=1}^{n} (y_i - \hat{\theta}_0 - \hat{\theta}_1 x_i) x_i = 0, \rightarrow \sum_{i=1}^{n} (y_i - \bar{y} - \hat{\theta}_1 (x_i - \bar{x})) (x_i - \bar{x} + \bar{x}) = 0,$$

$$\rightarrow \sum_{i=1}^{n} (y_i - \bar{y})(x_i - \bar{x}) - \hat{\theta}_1 \sum_{i=1}^{n} (x_i - \bar{x})^2 = 0 \rightarrow \hat{\theta}_1 = \frac{\sum_{i=1}^{n} (y_i - \bar{y})(x_i - \bar{x})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

Least squares regression line

$$\hat{Y} = \hat{\theta}_0 + \hat{\theta}_1 X.$$

Fitted values:

$$\hat{y}_i = \hat{\theta}_0 + \hat{\theta}_1 x_i, \qquad i = 1, \dots, n.$$

Error to the *i*-th observation:

$$e_i = y_i - \hat{y}_i$$
, $i = 1, \dots, n$.

Alternative formula for $\hat{\theta}_1$:

$$\hat{\theta}_{1} = \frac{\sum_{i=1}^{n} (y_{i} - \bar{y})(x_{i} - \bar{x})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} = \frac{Cov(Y, X)}{Var(X)} = \frac{\rho(Y, X)\sigma_{x}\sigma_{y}}{\sigma_{x}^{2}} = \rho(Y, X)\frac{\sigma_{y}}{\sigma_{x}}$$

 \rightarrow slope has the same sign with the correlation ($\rho(Y,X)$; covariance)

Measuring the Quality of Fit

Original Model:

$$Y = \theta_0 + \theta_1 X + \epsilon.$$

Least squares regression line:

$$\hat{Y} = \hat{\theta}_0 + \hat{\theta}_1 X.$$

• Correlation between $Y \& \hat{Y}$:

$$\rho(Y, \hat{Y}) = \frac{\sum_{i=1}^{n} (y_i - \bar{y})(\hat{y}_i - \overline{\hat{y}})}{\sqrt{(\sum_{i=1}^{n} (y_i - \bar{y})^2 \sum_{i=1}^{n} (\hat{y}_i - \overline{\hat{y}})^2)}}$$

Note that $\rho(Y, \hat{Y})$ can not be negative. Why?

Note that $\rho(Y, \hat{Y}) = 1$ implies the perfect fit.

Measuring the Quality of Fit

Goodness-of-fit index:

SST: $\sum_{i=1}^{n} (y_i - \bar{y})^2$, SST: Total sum of squares

SSR: $\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$, SSR: Regression (explained) sum of squares

SSE: $\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$, SSE: Residual (error) sum of squares

• Interpretation:

$$y_i = \hat{y}_i + y_i - \hat{y}_i$$
Observed = Fit + Error
 $y_i - \bar{y} = \hat{y}_i - \bar{y} + y_i - \hat{y}_i$

Deviation Deviation to Fit Residual

$$SST = SSR +$$

$$SST = SSR + SSE : \sum_{i=1}^{n} (\hat{y}_i - \bar{y})(y_i - \hat{y}_i) = 0$$
 [1]

• R²: Coefficient of determination

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$
 (R = 1 implies the perfect fit)

Regression Line through Origin

Simple linear regression model

$$Y = \theta_0 + \theta_1 X + \epsilon$$

 $Y = \theta_1 X + \epsilon$, no-intercept model, $\bar{y} = \bar{x} = 0$

Observation Number	Response Y	Predictor X	
1	$y_1 - \overline{y}$	$x_1 - \bar{x}$	
2	$y_2 - \bar{y}$	$x_2 - \bar{x}$	
3	$y_3 - \bar{y}$	$x_3 - \bar{x}$	
:	:	:	
n	$y_n - \bar{y}$	$x_n - \bar{x}$	

Regression Line through Origin

no-intercept model

$$y_i = \theta_1 x_i + \epsilon,$$

$$\hat{y}_i = \hat{\theta}_1 x_i, i = 1, \dots, n$$

$$e_i = y_i - \hat{y}_i.$$

$$Cov(Y,X) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y}) (x_i - \bar{x}) \to Cov(Y,X) = \frac{1}{n} \sum_{i=1}^{n} y_i x_i$$

$$\rho(Y,X) = \frac{1}{n} \sum_{i=1}^{n} \frac{y_i x_i}{\sigma_y \sigma_x} , \quad \sigma_y^2 = \frac{1}{n} \sum_{i=1}^{n} y_i^2 , \sigma_x^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2$$

$$\hat{\theta}_1 = \frac{\sum_{i=1}^n (y_i - \bar{y})(x_i - \bar{x})}{\sum_{i=1}^n (x_i - \bar{x})^2} \to \hat{\theta}_1 = \frac{\sum_{i=1}^n y_i x_i}{\sum_{i=1}^n x_i^2} = \frac{Cov(Y, X)}{\sigma_X^2} = \rho(Y, X) \frac{\sigma_Y}{\sigma_X}$$

$$R^{2} = \frac{\sum_{i=1}^{n} \hat{y}_{i}^{2}}{\sum_{i=1}^{n} y_{i}^{2}} = 1 - \frac{\sum_{i=1}^{n} e_{i}^{2}}{\sum_{i=1}^{n} y_{i}^{2}}$$

Multivariate Linear Regression

Multivariate linear regression model: p predictor (explanatory) variables

$$\begin{split} Y &= \theta_0 + \theta_1 X_1 + \theta_2 X_2 + \dots + \theta_p X_p + \epsilon \\ y_i &= \theta_0 + \theta_1 x_{i1} + \theta_2 x_{i2} + \dots + \theta_p x_{ip} + \epsilon_i, \ i = 1, \ \dots, \ n, \\ \text{where } \theta_0 \text{: intercept, } (\theta_1, \theta_2, \dots, \theta_p) \text{: normal vector } (ex.; \ y = w^T x + b) \end{split}$$

		Predictor			
i	Y	X_1	X_2	•••	X_p
1	y_1	<i>x</i> ₁₁	<i>x</i> ₁₂	• • •	x_{1p}
2	y_2	<i>x</i> ₂₁	x_{22}	•••	x_{2p}
3	y_3	<i>x</i> ₃₁	x_{32}	•••	x_{3p}
:	:	:	:	:	:
n	y_n	x_{n1}	x_{n2}	•••	x_{np}

Multivariate Linear Regression

Multivariate linear regression model: p predictor (explanatory) variables

$$Y = \theta_0 + \theta_1 X_1 + \theta_2 X_2 + \dots + \theta_p X_p + \epsilon$$

$$y_i = \theta_0 + \theta_1 x_{i1} + \theta_2 x_{i2} + \dots + \theta_p x_{ip} + \epsilon_i, \ i = 1, \ \dots, \ n,$$
where θ_0 : intercept, $(\theta_1, \theta_2, \dots, \theta_p)$: normal vector

- Fitted model by LSE: n-p-1; degree of freedom (df); p+1; # of estimated parameters $\hat{y}_i = \hat{\theta}_0 + \hat{\theta}_1 x_{i1} + \hat{\theta}_2 x_{i2} + \dots + \hat{\theta}_p x_{ip}$, $i=1,\dots,n$, $e_i = y_i \hat{y}_i$.
- Measuring Quality of Fit:

$$\rho(Y, \hat{Y}) = \frac{\sum_{i=1}^{n} (y_i - \bar{y})(\hat{y}_i - \overline{\hat{y}})}{\sqrt{\left(\sum_{i=1}^{n} (y_i - \bar{y})^2 \sum_{i=1}^{n} (\hat{y}_i - \overline{\hat{y}})^2\right)}}$$

$$R^2 = \frac{\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2} = 1 - \frac{\sum_{i=1}^{n} e_i^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}$$

Multivariate Linear Regression

Tests of Hypotheses for Multivariate linear model

$$Y = \theta_0 + \theta_1 X_1 + \theta_2 X_2 + \dots + \theta_p X_p + \epsilon$$

$$y_i = \theta_0 + \theta_1 x_{i1} + \theta_2 x_{i2} + \dots + \theta_p x_{ip} + \epsilon_i, \ i = 1, \ \dots, \ n,$$
where θ_0 : intercept, $(\theta_1, \theta_2, \dots, \theta_p)$: normal vector

- Hypotheses: H_0 : Reduced model (RM), H_1 : Full model (FM)
 - 1. All the regression coefficients associated with the predictor variables are zero.
 - 2. Some of the regression coefficients are zero.
 - 3. Some of the regression coefficients are equal to each other.
 - 4. The regression parameters satisfy certain specified constraints (ex. $|\theta_i| \le \alpha$).
- Sum of Squares: $SSE(RM) \ge SSE(FM)$

$$SSE(FM) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
$$SSE(RM) = \sum_{i=1}^{n} (y_i - \hat{y}_i^*)^2$$

■
$$F$$
-test: $F = \frac{[SSE(RM) - SSE(FM)]/(p+1-k)}{SSE(FM)/(n-p-1)}$ (F is large $\rightarrow RM$ is inadequate \uparrow)

The critical values are given in Table A.4 and A.5 in "Regression Analysis by Example", S. Chatterjee et.al., Wiley.

NONLINEAR REGRESSION

JIN YOUNG CHOI
ECE, SEOUL NATIONAL UNIVERSITY

https://github.com/jwangjie/Gaussian-Processes-Regression-Tutorial

Logistic Regression

• Logistic response function representing the relation between the probability π and X_1, X_2, \dots, X_p

$$\pi = p(Y = 1 | X_1 = x_1, \cdots, X_p = x_p) = \frac{\exp(\theta_0 + \theta_1 x_1 + \dots + \theta_p x_p)}{1 + \exp(\theta_0 + \theta_1 x_1 + \dots + \theta_p x_p)}$$

Logistic Regression

Logistic response function

$$\pi(X_1 = x_1, \dots, X_p = x_p) = p(Y = 1 | X_1 = x_1, \dots, X_p = x_p) = \frac{\exp(\theta_0 + \theta_1 x_1 + \dots + \theta_p x_p)}{1 + \exp(\theta_0 + \theta_1 x_1 + \dots + \theta_p x_p)}$$

$$1 - \pi(X_1 = x_1, \dots, X_p = x_p) = p(Y = 0 | X_1 = x_1, \dots, X_p = x_p) = \frac{1}{1 + \exp(\theta_0 + \theta_1 x_1 + \dots + \theta_p x_p)}$$

$$\frac{\pi}{1-\pi} = \exp(\theta_0 + \theta_1 x_1 + \dots + \theta_p x_p)$$

$$f(X_1 = x_1, \dots, X_p = x_p) = \ln \frac{\pi}{1-\pi} = \theta_0 + \theta_1 x_1 + \dots + \theta_p x_p$$

$$f(X) = \ln \frac{\pi}{1-\pi} = \theta_0 + \theta_1 X_1 + \dots + \theta_p X_p$$

High-order Regression

High-order polynomial regression model

$$Y = \theta_0 + \theta_1 X + \theta_2 X^2 + \dots + \theta_m X^m + \epsilon y_i = \theta_0 + \theta_1 x_i + \theta_2 x_i^2 + \dots + \theta_m x_i^m + \epsilon_i, i = 1, \dots, n.$$

High-order multivariate regression model

$$Y = \theta_0 + \theta_1 X_1 + \dots + \theta_k X_k + \dots + \theta_{k(\pi)} X_{\pi_1} \dots X_{\pi_j} \dots + \dots + \theta_p X_{\mu(m)}^m + \epsilon$$
$$y_i = \theta_0 + \theta_1 x_{i1} + \dots + \theta_k x_{ik} + \dots + \theta_{k(\pi)} x_{i\pi_1} \dots x_{i\pi_j} \dots + \dots + \theta_M x_{ip}^m + \epsilon_i$$

Matrix-vector form

Let
$$\theta = [\theta_0 \ \theta_1 \ \cdots \theta_p]^T$$
, $\phi_i = [1 \ \phi_{i1} \cdots \phi_{ip}]^T$
 $y = [y_1 \ y_2 \ \cdots \ y_n]^T$, $\epsilon = [\epsilon_1 \ \epsilon_2 \ \cdots \ \epsilon_n]^T$

Then
$$y_i = \phi_i^T \theta + \epsilon_i$$
, $i = 1, \dots, n$.
 $y = \Phi \theta + \epsilon$, $\Phi = [\phi_1 \phi_2 \dots \phi_n]^T$

$$\Phi = \begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{\mathsf{m}} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{\mathsf{m}} \\ 1 & x_3 & x_3^2 & \cdots & x_3^{\mathsf{m}} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{\mathsf{m}} \end{bmatrix}$$

Basis-function Regression

Matrix-vector form of General Regression

Let
$$\theta = [\theta_0 \ \theta_1 \ \cdots \ \theta_p]^T$$
, $\phi_i = [1 \ \phi_{i1} \ \cdots \ \phi_{ip}]^T$
 $\mathbf{y} = [y_1 \ y_2 \ \cdots \ y_n]^T$, $\boldsymbol{\epsilon} = [\epsilon_1 \ \epsilon_2 \ \cdots \ \epsilon_n]^T$

Then
$$y_i = \phi_i^T \theta + \epsilon_i$$
, $i = 1, \dots, n$.
 $\mathbf{y} = \Phi \theta + \boldsymbol{\epsilon}$, $\Phi = [\phi_1 \phi_2 \dots \phi_n]^T$

Basis for General Regression

- sin, cos basis: $\phi_{im} = \sin \omega_m x_i$ or $\cos \omega_m x_i$

- radial basis:
$$\phi_{im} = \exp \frac{-\|x_i - \mu_m\|^2}{\sigma_m^2}$$

- sigmoid basis:
$$\phi_{im} = \frac{1}{1 + \exp(-w_m^T x_i - b_m)}$$
 or $\frac{\exp(w_m^T x_i + b_m)}{1 + \exp(w_m^T x_i + b_m)}$

Logistic Regression

Least Squares Estimation

$$y = \Phi \theta + \epsilon, \quad \epsilon \sim N(0, \sigma^2 \mathbf{I})$$

MLE:

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{\|\epsilon\|^2}{2\sigma^2})$$

LSE:

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \|\boldsymbol{\epsilon}\|^2 = \|\boldsymbol{y} - \Phi\theta\|^2 \cong S(\theta)$$

Solution:

by
$$\nabla_{\theta} S(\theta) = 0$$
 at $\hat{\theta}$.

Least Squares Estimation

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \|\boldsymbol{\epsilon}\|^2 = \|\boldsymbol{y} - \Phi\theta\|^2 \cong S(\theta)$$

Solution:

$$\nabla_{\theta} S(\theta) = 0 \text{ at } \hat{\theta}$$

$$\nabla_{\theta} (\mathbf{y} - \Phi \theta)^T (\mathbf{y} - \Phi \theta) = 0 \text{ at } \hat{\theta}$$

$$2\Phi^T\left(\mathbf{y}-\Phi\hat{\theta}\right)=0$$

$$\Phi^T \mathbf{y} - \Phi^T \Phi \hat{\theta} = 0$$

$$\hat{\theta} = (\Phi^T \Phi)^{-1} \Phi^T \mathbf{y}$$

Interim Summary

- linear regression
 - simple linear regression
 - multiple linear regression
- nonlinear regression
 - logistic regression
 - high-order regression
 - basis-function regression
- matrix form for regression
 - recursive least squares
- partial least squares
 - over-fitting and underfitting
 - bias/variance
 - principle component regression
 - partial least squares algorithm
 - ridge regression
 - lasso, elastic regression
- Gaussian process regression

J. Y. Choi. SNU

Least Squares Estimation

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \|\boldsymbol{\epsilon}\|^2 = \|\boldsymbol{y} - \Phi\theta\|^2 \cong S(\theta)$$

Solution:

$$\nabla_{\theta} S(\theta) = 0 \text{ at } \hat{\theta}$$

$$\nabla_{\theta} (\mathbf{y} - \Phi \theta)^T (\mathbf{y} - \Phi \theta) = 0 \text{ at } \hat{\theta}$$

$$2\Phi^T\left(\mathbf{y}-\Phi\hat{\theta}\right)=0$$

$$\Phi^T \mathbf{y} - \Phi^T \Phi \hat{\theta} = 0$$

$$\hat{\theta} = (\Phi^T \Phi)^{-1} \Phi^T \mathbf{y}$$

Least Squares Estimation

$$\hat{\theta} = (\Phi^T \Phi)^{-1} \Phi^T \mathbf{y} \leftarrow \mathbf{y} = \Phi \theta + \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim N(0, \sigma^2 \mathbf{I}) \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_k \end{bmatrix} = \begin{bmatrix} \phi_1^T \\ \phi_2^T \\ \vdots \\ \phi_r^T \end{bmatrix} \theta + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_k \end{bmatrix}, \quad \Phi_k = \begin{bmatrix} \phi_{11} & \phi_{12} & \cdots & \phi_{1p} \\ \phi_{21} & \phi_{22} & \cdots & \phi_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{k1} & \phi_{k2} & \cdots & \phi_{kn} \end{bmatrix}$$

Observation Matrix

$$\Phi_k = [\phi_1 \, \phi_2 \quad \cdots \quad \phi_k]^T \to \Phi_k^T \, \Phi_k = [\phi_1 \, \phi_2 \quad \cdots \quad \phi_k] \begin{bmatrix} \phi_1^T \\ \phi_2^T \\ \vdots \\ \phi_k^T \end{bmatrix} = \sum_{i=1}^k \phi_i \, \phi_i^T$$

$$\mathbf{y}_k = [y_1 \ y_2 \ \cdots \ y_k]^T$$

Recursive Least Squares

$$\hat{\theta}_k = (\Phi_k^T \Phi_k)^{-1} \Phi_k^T \mathbf{y}_k \to \hat{\theta}_{k+1} = (\Phi_k^T \Phi_k + \phi_{k+1} \phi_{k+1}^T)^{-1} \Phi_{k+1}^T \mathbf{y}_{k+1}$$

 $y_i = \theta_0 + \theta_1 \phi_{i1} + \theta_2 \phi_{i2} + \dots + \theta_p \phi_{ip} + \epsilon_i,$

Matrix Inversion Lemma

$$(A + BDC)^{-1} = A^{-1} - A^{-1}B(D^{-1} + CA^{-1}B)^{-1}CA^{-1}$$

Sherman-Morrison formula:
$$(A + uv^T)^{-1} = A^{-1} - \frac{A^{-1}uv^TA^{-1}}{1+v^TA^{-1}u}$$

Recursive Least Squares

$$\hat{\theta}_{k+1} = (\Phi_k^T \Phi_k + \phi_{k+1} \phi_{k+1}^T)^{-1} \Phi_{k+1}^T \mathbf{y}_{k+1}$$

define
$$P_k \cong (\Phi_k^T \Phi_k)^{-1}$$
,

$$\begin{split} \hat{\theta}_{k+1} &= (P_k^{-1} + \phi_{k+1} \phi_{k+1}^T)^{-1} \Phi_{k+1}^T \boldsymbol{y}_{k+1} \\ &= \left(P_k - \frac{P_k \phi_{k+1} \phi_{k+1}^T P_k}{1 + \phi_{k+1}^T P_k \phi_{k+1}} \right) \Phi_{k+1}^T \boldsymbol{y}_{k+1}, \text{ (don't need inverse)} \end{split}$$

define
$$G_k \cong \frac{P_k \phi_{k+1}}{1 + \phi_{k+1}^T P_k \phi_{k+1}} \implies P_{k+1} = P_k - \frac{P_k \phi_{k+1} \phi_{k+1}^T P_k}{1 + \phi_{k+1}^T P_k \phi_{k+1}} = P_k - G_k \phi_{k+1}^T P_k$$

Recursive Least Squares (cont.)

$$\begin{split} \hat{\theta}_{k+1} &= (P_k - G_k \phi_{k+1}^T P_k) [\Phi_k^T \quad \phi_{k+1}] \begin{bmatrix} \mathbf{y}_k \\ \mathbf{y}_{k+1} \end{bmatrix} \\ &= (P_k - G_k \phi_{k+1}^T P_k) (\Phi_k^T \mathbf{y}_k + \phi_{k+1} \mathbf{y}_{k+1}) \\ &= (I - G_k \phi_{k+1}^T) (P_k \Phi_k^T \mathbf{y}_k + P_k \phi_{k+1} \mathbf{y}_{k+1}) \\ &= (I - G_k \phi_{k+1}^T) (\hat{\theta}_k + P_k \phi_{k+1} \mathbf{y}_{k+1}) \\ &= \hat{\theta}_k - G_k \phi_{k+1}^T \hat{\theta}_k + P_k \phi_{k+1} \mathbf{y}_{k+1} - G_k \phi_{k+1}^T P_k \phi_{k+1} \mathbf{y}_{k+1} \\ &= \hat{\theta}_k - G_k \phi_{k+1}^T \hat{\theta}_k + G_k \mathbf{y}_{k+1} + G_k \phi_{k+1}^T P_k \phi_{k+1} \mathbf{y}_{k+1} - G_k \phi_{k+1}^T P_k \phi_{k+1} \mathbf{y}_{k+1} \\ &= \hat{\theta}_k - G_k \phi_{k+1}^T \hat{\theta}_k + G_k \mathbf{y}_{k+1} + G_k \phi_{k+1}^T P_k \phi_{k+1} \mathbf{y}_{k+1} - G_k \phi_{k+1}^T P_k \phi_{k+1} \mathbf{y}_{k+1} \\ &= \hat{\theta}_k - G_k \phi_{k+1}^T \hat{\theta}_k + G_k \mathbf{y}_{k+1} + G_k \phi_{k+1}^T P_k \phi_{k+1} \mathbf{y}_{k+1} - G_k \phi_{k+1}^T P_k \phi_{k+1} \mathbf{y}_{k+1} \\ &\hat{\theta}_{k+1} = \hat{\theta}_k + G_k (\mathbf{y}_{k+1} - \phi_{k+1}^T \hat{\theta}_k), P_0 = \alpha \mathbf{I}, \alpha \gg 1. \\ &\hat{\theta} = \hat{\theta}_n \quad G_k \cong \frac{P_k \phi_{k+1}}{1 + \phi_{k+1}^T P_k \phi_{k+1}} \quad P_{k+1} = P_k - G_k \phi_{k+1}^T P_k \end{split}$$

Weighted Recursive Least Squares

$$\hat{\theta}_{k+1} = (\lambda \Phi_k^T \Phi_k + \phi_{k+1} \phi_{k+1}^T)^{-1} \Phi_{k+1}^T y_{k+1}, 0 < \lambda < 1$$

$$\hat{\theta}_{k+1} = \hat{\theta}_k + G_k(y_{k+1} - \phi_{k+1}^T \hat{\theta}_k), P_0 = \alpha \mathbf{I}, \alpha \gg 1$$

$$\hat{\theta} = \hat{\theta}_n$$

$$G_{k} \cong \frac{\lambda^{-1} P_{k} \phi_{k+1}}{1 + \lambda^{-1} \phi_{k+1}^{T} P_{k} \phi_{k+1}}$$
$$P_{k+1} = \lambda^{-1} P_{k} - \lambda^{-1} G_{k} \phi_{k+1}^{T} P_{k}$$

$$P_{k+1} = \lambda^{-1} P_k - \lambda^{-1} G_k \phi_{k+1}^T P_k$$

$$\Phi_k = [\phi_1 \phi_2 \quad \cdots \quad \phi_k]^T$$
$$\mathbf{y}_k = [y_1 \ y_2 \ \cdots \ y_k]^T$$

$$P_k \cong (\Phi_k^T \Phi_k)^{-1}$$

$$\lambda^{-1} P_k \cong (\lambda \Phi_k^T \Phi_k)^{-1}$$

Quality of Fit in Matrix form

Regression model in matrix form

$$y = \Phi\theta + \epsilon$$

Estimated parameter

$$\hat{\theta} = (\Phi^T \Phi)^{-1} \Phi^T y = \theta + (\Phi^T \Phi)^{-1} \Phi^T \epsilon$$
 (unbiased estimate)

Confidence Interval

$$E(\hat{\theta}) = \theta,$$

$$E((\theta - \hat{\theta})^{T}(\theta - \hat{\theta})) = E\epsilon^{T}\Phi(\Phi^{T}\Phi)^{-1}(\Phi^{T}\Phi)^{-1}\Phi^{T}\epsilon = ETr(\epsilon^{T}\Phi(\Phi^{T}\Phi)^{-1}(\Phi^{T}\Phi)^{-1}\Phi^{T}\epsilon)$$

$$= ETr((\Phi^{T}\Phi)^{-1}(\Phi^{T}\Phi)^{-1}\Phi^{T}\Phi\epsilon^{T}\epsilon) = Tr((\Phi^{T}\Phi)^{-1})\sigma^{2} \rightarrow \hat{\theta} = \theta \pm \alpha\sigma$$

Prediction

$$\hat{y} = \Phi \hat{\theta} = \Phi \theta + \Phi (\Phi^T \Phi)^{-1} \Phi^T \epsilon = \Phi \theta + \mathbb{H} \epsilon,$$

where \mathbb{H} is symmetric and idempotent ($\mathbb{H}^2 = \mathbb{H}$), $\mathbb{H} \Phi = \Phi$.
 $\mathbb{H} \hat{y} = \mathbb{H} \Phi \theta + \mathbb{H} \epsilon = \Phi \theta + \mathbb{H} \epsilon = \hat{y}$

• Residual vector : $e = y - \widehat{y} = (\mathbf{I} - \mathbb{H})\epsilon$

Quality of Fit in Matrix form

Residual vector

$$e = y - \hat{y} = (\mathbf{I} - \mathbb{H})\epsilon$$

$$E(e^{T}e) = E(\epsilon^{T}(\mathbf{I} - \mathbb{H})(\mathbf{I} - \mathbb{H})\epsilon) = E(\epsilon^{T}(\mathbf{I} - \mathbb{H})\epsilon)$$

$$= Tr(\mathbf{I} - \mathbb{H})E(\epsilon^{T}\epsilon) = Tr(\mathbf{I} - \mathbb{H})n\sigma^{2} = (n - p - 1)n\sigma^{2}$$

here

$$Tr(\mathbf{I} - \mathbb{H}) = Tr(\mathbf{I}) - Tr(\mathbb{H}) = n - Tr(\Phi(\Phi^T \Phi)^{-1} \Phi^T)$$

$$= n - Tr((\Phi^T \Phi)^{-1} \Phi^T \Phi) = n - (p+1), p+1: # of parameters$$

$$(p+1) \times n \cdot n \times (p+1)$$

hence

 $E(e^Te/(n-p-1)) = n\sigma^2 \rightarrow \frac{e^Te}{n-p-1}$: unbiased estimate of $n\sigma^2$

Coefficient of Determination

$$R^2 = 1 - \frac{e^T e}{(y - \bar{y}\mathbf{1})^T (y - \bar{y}\mathbf{1})}, R_a^2 = 1 - \frac{e^T e/(n - p - 1)}{(y - \bar{y}\mathbf{1})^T (y - \bar{y}\mathbf{1})/(n - 1)}$$

PARTIAL LEAST SQUARES REGRESSION

JIN YOUNG CHOI
ECE, SEOUL NATIONAL UNIVERSITY

Overfitting and Underfitting

$$Y = \theta_0 + \theta_1 X + \theta_2 X^2 + \dots + \theta_M X^M + \epsilon$$

Sum-of-Squares Error Function

Oth Order Polynomial

1st Order Polynomial

3rd Order Polynomial

9th Order Polynomial

Over-fitting

Root-Mean-Square (RMS) Error: $E_{
m RMS} = \sqrt{|E(\cdot heta \, \star)/n}$

Data Set Size:

9th Order Polynomial

Model Complexity

- VC(Vapnik-Chervonenkis)-dimension:
 Maximum number of points that can be labeled in all possible way
- VC dimension of linear classifiers in N dimensions

is
$$h=N+1$$
 (= #of weights, n_w), cf.) MLP: O(n_w^2)

- Measure of Complexity of a classifier
- Minimizing VC dim. == Minimizing Complexity

Bias and Variance in Parameter Estimation

Mean Squared Error(MSE) decomposition

$$MSE(\hat{\theta}) = E\left((\hat{\theta} - \theta)^{2}\right)$$

$$= E\left((\hat{\theta} - E(\hat{\theta}) + E(\hat{\theta}) - \theta)^{2}\right)$$

$$= E\left((\hat{\theta} - E(\hat{\theta}))^{2} + 2\left(\hat{\theta} - E(\hat{\theta})\right)\left(E(\hat{\theta}) - \theta\right) + \left(E(\hat{\theta}) - \theta\right)^{2}\right)$$

$$= E\left(\hat{\theta} - E(\hat{\theta})\right)^{2} + 2E\left(\hat{\theta} - E(\hat{\theta})\right)\left(E(\hat{\theta}) - \theta\right) + \left(E(\hat{\theta}) - \theta\right)^{2}$$

$$= E\left(\hat{\theta} - E(\hat{\theta})\right)^{2} + \left(E(\hat{\theta}) - \theta\right)^{2}$$

$$= Var(\hat{\theta}) + Bias(\hat{\theta}, \theta)^{2}$$
overfitting underfitting

Bias and Variance in Parameter Estimation

Mean Squared Error(MSE) decomposition

$$MSE(\hat{\theta}) = E((\hat{\theta} - \theta)^{2})$$
$$= Var(\hat{\theta}) + Bias(\hat{\theta}, \theta)^{2}$$

Structural Risk Minimization

For fixed training samples n

Partial Least Squares

Matrix-vector form for General Regression (Revisit)

Let
$$\theta = [\theta_0 \ \theta_1 \ \cdots \ \theta_M]^T$$
, $\phi_i = [1 \ \phi_{i1} \ \cdots \ \phi_{iM}]^T$
 $\mathbf{y} = [y_1 \ y_2 \ \cdots \ y_n]^T$, $\boldsymbol{\epsilon} = [\epsilon_1 \ \epsilon_2 \ \cdots \ \epsilon_n]^T$

Then
$$y_i = \phi_i^T \theta + \epsilon_i$$
, $i = 1, \dots, n$.
 $\mathbf{y} = \Phi \theta + \boldsymbol{\epsilon}$, $\Phi = [\phi_1 \phi_2 \dots \phi_n]^T$

Matrix-vector form for Multivariate Regression with no-intercept

$$y_i = \mathbf{x}_i^T \theta + \epsilon_i, \ i = 1, \ \dots, \ n$$

$$\mathbf{y} = \mathbf{X}\theta + \boldsymbol{\epsilon}, \ \mathbf{X} = [\mathbf{x}_1 \ \mathbf{x}_2 \ \dots \ \mathbf{x}_n]^T$$

$$\mathbf{x}_i = [x_{i1} \ \dots \ x_{ip}]^T, \ \theta = [\theta_1 \ \dots \ \theta_p]^T$$

$$\mathbf{x}_i = \mathbf{x}_i^o - \mu, \ \mu = 1/n \sum_i \mathbf{x}_i^o$$

• Goal: reduce the input & parameter dimension: p > q

$$\mathbf{x}_i = [x_{i1} \cdots x_{ip}]^T, \ \theta = [\theta_1 \cdots \theta_p]^T \longrightarrow \mathbf{z}_i = [z_{i1} \cdots z_{iq}]^T, \ \theta = [\theta_1 \cdots \theta_q]^T$$

Principal Component Regression

$$\mathbf{a}_k = E^T(\mathbf{x}_k - \mathbf{m})$$

• Principal Component Analysis for $\mathbf{X} = [\mathbf{x}_1 \ \mathbf{x}_2 \ \cdots \ \mathbf{x}_n]$

$$\mathbf{S} = \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T} = \mathbf{X}\mathbf{X}^{T}, \ \mathbf{S}\mathbf{u}_{k} = \lambda_{k}\mathbf{u}_{k}, \lambda_{1} > \lambda_{2} \cdots > \lambda_{p}$$

 $\mathbf{cov}(\mathbf{X}, \mathbf{X}) = \frac{1}{n} \mathbf{X} \mathbf{X}^T$

• Reduced dim. vector (q

$$\mathbf{z}_i = \overline{\mathbf{U}}^T \mathbf{x}_i, \ \overline{\mathbf{U}} = [\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_q]$$
 Orthonormal eigenvectors $\{\mathbf{u}_i\}$ \mathbf{S} is symmetric $\mathbf{U}^T = \mathbf{U}^{-1}$

$$\begin{split} \mathbf{Z} &= [\mathbf{z}_1 \ \mathbf{z}_2 \ \cdots \ \mathbf{z}_n] = \overline{\mathbf{U}}^T \ [\mathbf{x}_1 \ \mathbf{x}_2 \ \cdots \ \mathbf{x}_n] \\ \\ \mathbf{Z} &= \overline{\mathbf{U}}^T \mathbf{X} \rightarrow \mathbf{Z}^T = \mathbf{X}^T \overline{\mathbf{U}}, \quad \mathbf{y} = \mathbf{X}^T \boldsymbol{\theta} + \boldsymbol{\epsilon} \approx \mathbf{y} = \mathbf{Z}^T \overline{\mathbf{U}}^T \boldsymbol{\theta} + \boldsymbol{\epsilon} = \mathbf{y} = \mathbf{Z}^T \boldsymbol{\theta} + \boldsymbol{\epsilon} \end{split}$$

• Applying LS algorithm to $y = \mathbf{Z}^T \vartheta + \boldsymbol{\epsilon}$

$$\widehat{\vartheta} = \underset{\vartheta}{\operatorname{argmin}} \|\boldsymbol{\epsilon}\|^2 = \|\boldsymbol{y} - \mathbf{Z}^T \vartheta\|^2 \to \widehat{\vartheta} = (\mathbf{Z}\mathbf{Z}^T)^{-1}\mathbf{Z}\boldsymbol{y} \to \widehat{y} = \mathbf{z}^T \widehat{\vartheta}, \ \boldsymbol{z} = \overline{\mathbf{U}}^T \mathbf{x}$$

Partial Least Squares

Nonlinear Iterative Partial Least Squares (NIPALS) algorithm

 $\hat{\vartheta} = \operatorname{argmin} \|\boldsymbol{\epsilon}\|^2 = \|\boldsymbol{y} - \mathbf{Z}^T \vartheta\|^2 \to \hat{\vartheta} = (\mathbf{Z}\mathbf{Z}^T)^{-1}\mathbf{Z}\boldsymbol{y} \to \hat{y} = \boldsymbol{z}^T \hat{\vartheta}, \ \boldsymbol{z} = \overline{\mathbf{U}}^T \mathbf{x}$

$$\mathbf{X}\mathbf{X}^{T}\mathbf{u} = \lambda\mathbf{u}$$
Let $\mathbf{t} = \mathbf{X}^{T}\mathbf{u}$

$$\mathbf{u} = \frac{1}{\lambda}\mathbf{X}\mathbf{t}$$
Since $\|\mathbf{u}\| := 1 = \frac{1}{\lambda}\|\mathbf{X}\mathbf{t}\|$

$$\lambda = \|\mathbf{X}\mathbf{t}\|$$

$$\overline{\mathbf{U}} = [\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_q], \mathbf{z}_i = \overline{\mathbf{U}}^T \mathbf{x}_i$$

$$\mathbf{Z} = \overline{\mathbf{U}}^T \mathbf{X} \to \mathbf{Z}^T = \mathbf{X}^T \overline{\mathbf{U}}, \quad \mathbf{Z} = [\mathbf{z}_1 \ \mathbf{z}_2 \ \cdots \ \mathbf{z}_n]$$

■ Applying LS algorithm to $y = \mathbf{Z}^T \vartheta + \epsilon$

$$\mathbf{t} \coloneqq \mathbf{x}_j$$
 for some j

Loop

$$\mathbf{u} = \mathbf{X}\mathbf{t}/\|\mathbf{X}\mathbf{t}\|$$

$$\mathbf{t} = \mathbf{X}^T \mathbf{u}$$

Until t stop changing

$$\mathbf{X}^T \coloneqq \mathbf{X}^T - \mathbf{t}\mathbf{u}^T = \mathbf{X}^T (\mathbf{I} - \mathbf{u}\mathbf{u}^T)$$

Repeat the Loop up to a small ||Xt||

Ridge Regression for Regularization

 l_2 regularization term is added

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \|\mathbf{y} - \Phi\theta\|^2 + \gamma \|\theta\|_2^2 \left(= S(\theta)\right)$$

solution:

$$\nabla_{\theta} ((\mathbf{y} - \Phi \theta)^T (\mathbf{y} - \Phi \theta) + \gamma \theta^T \theta) = 0 \text{ at } \hat{\theta}$$

$$2\Phi^{T}\left(\mathbf{y}-\Phi\widehat{\theta}\right)+2\gamma\widehat{\theta}=0$$

$$\hat{\theta} = (\Phi^T \Phi - \gamma \mathbf{I})^{-1} \Phi^T \mathbf{y}$$

$$\hat{\theta}_{k+1} = \hat{\theta}_k + G_k(y_{k+1} - \phi_{k+1}^T \hat{\theta}_k),$$

$$G_k \cong \frac{\lambda^{-1} P_k \phi_{k+1}}{1 + \lambda^{-1} \phi_{k+1}^T P_k \phi_{k+1}}$$

$$\widehat{\theta}_{k+1} = \widehat{\theta}_k + G_k (y_{k+1} - \phi_{k+1}^T \widehat{\theta}_k),$$

$$G_k \cong \frac{\lambda^{-1} P_k \phi_{k+1}}{1 + \lambda^{-1} \phi_{k+1}^T P_k \phi_{k+1}}$$

$$P_{k+1} = \lambda^{-1} P_k - \lambda^{-1} G_k \phi_{k+1}^T P_k, P_0 = -\gamma \mathbf{I}$$

$$P_0 = \alpha \mathbf{I}, \alpha \gg 1$$

Lasso Regression for Regularization

- LASSO(Least Absolute Shrinkage Selector Operator)
- l₁ regularization term is added

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \| \boldsymbol{y} - \Phi \boldsymbol{\theta} \|^2 + \gamma \| \boldsymbol{\theta} \|_1$$

 solution: l₁ norm is not differentiable → constrained convex form by adding new optimization variables,

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \| \mathbf{y} - \Phi \theta \|^2 + \gamma \mathbf{1}^T \mathbf{s}$$

subject to $|\theta_i| \le s_i, i = 1, \dots, n$

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \|\mathbf{y} - \Phi\theta\|^2 + \gamma \mathbf{1}^T \mathbf{s}$$
subject to $-s_i \leq \theta_i \leq s_i$, $i = 1, \dots, n$

Elastic Regression for Regularization

- $\hat{\theta} = \underset{\theta}{\operatorname{Ridge}} + \underset{\theta}{\operatorname{LASSO}}$ $\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \|\boldsymbol{y} \boldsymbol{\Phi}\boldsymbol{\theta}\|^2 + \gamma_1 \|\boldsymbol{\theta}\|_2^2 + \gamma_2 \|\boldsymbol{\theta}\|_1$
- solution: l₁ norm is not differentiable → constrained convex form by adding new optimization variables,

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \|\mathbf{y} - \Phi\theta\|^2 + \gamma_1 \|\theta\|_2^2 + \gamma_2 \mathbf{1}^T \mathbf{s}$$
subject to $|\theta_i| \le s_i$, $i = 1, \dots, n$

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \|\mathbf{y} - \Phi\theta\|^2 + \gamma_1 \|\theta\|_2^2 + \gamma_2 \mathbf{1}^T \mathbf{s}$$
subject to $-s_i \le \theta_i \le s_i$, $i = 1, \dots, n$

Interim Summary

- linear regression
 - simple linear regression
 - multiple linear regression
- nonlinear regression
 - logistic regression
 - high-order regression
 - basis-function regression
- matrix form for regression
 - recursive least squares
- partial least squares
 - over-fitting and underfitting
 - bias/variance
 - principle component regression
 - partial least squares algorithm
 - ridge regression
 - lasso, elastic regression
- Gaussian process regression

Outline

- linear regression
 - simple linear regression
 - multiple linear regression
- nonlinear regression
 - logistic regression
 - high-order regression
 - basis-function regression
- matrix form for regression
 - recursive least squares
- partial least squares
 - over-fitting and underfitting
 - bias/variance
 - principle component regression
 - partial least squares algorithm
 - ridge regression
 - lasso, elastic regression
- Gaussian process regression

GAUSSIAN PROCESS REGRESSION

JIN YOUNG CHOI

ECE, SEOUL NATIONAL UNIVERSITY

https://arxiv.org/pdf/2009.10862.pdf

https://github.com/jwangjie/Gaussian-Processes-Regression-Tutorial

http://mlg.eng.cam.ac.uk/tutorials/06/es.pdf

https://www.sciencedirect.com/science/article/abs/pii/S0022249617302158

http://www.gaussianprocess.org/gpml/chapters/RW.pdf

General regression model (single variable)

$$y = f(x) + \epsilon$$
,

where $\epsilon \sim N(0, \sigma^2)$ and so x, y are Gaussian random variables.

- Goal: to estimate f(x) with uncertainty from observation data $D = \{(x_i, y_i) | i = 1, \dots, n\}$
- x_i, y_i are treated as Gaussian random variables.

(b) Five possible regression functions by GPR

General regression model (single variable)

$$y = f(x) + \epsilon,$$

where $\epsilon \sim N(0, \sigma^2)$ and so x, y are Gaussian random variables.

Define

$$\mathbf{x}^{\mathrm{T}} = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}, \quad \mathbf{y}^{\mathrm{T}} = \begin{bmatrix} y_1 & \cdots & y_n \end{bmatrix}, \quad \mathbf{f} := \mathbf{f}(\mathbf{x}) = \begin{bmatrix} f(x_1) & \cdots & f(x_n) \end{bmatrix}.$$

$$p(\mathbf{x}, \mathbf{y}) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2} (\begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} - \boldsymbol{\mu})^T \Sigma^{-1} (\begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} - \boldsymbol{\mu})\right] := \boldsymbol{\mathcal{N}}(\boldsymbol{\mu}, \Sigma)$$

Conditional probability (recall)

$$f_{X|Y}(x|y) = \frac{1}{(2\pi)^{\frac{k}{2}} \sqrt{\det \Sigma_{X|y}}} \exp\left(-\frac{1}{2}(x - \mu_{X|y})^t \Sigma_{X|y}^{-1}(x - \mu_{X|y})\right),$$

where

$$\mu_{X|y}=A(y-\mu_Y)+\mu_X$$
 and $\Sigma_{X|y}=\Sigma_X-AC_{YX}$, where $A\Sigma_Y=\Sigma_{XY}$.

General regression model (single variable)

$$y = f(x) + \epsilon,$$

where $\epsilon \sim N(0, \sigma^2)$ and so x, y are Gaussian random variables.

Define

$$\mathbf{x} = [x_1 \quad \cdots \quad x_n], \quad \mathbf{y} = [y_1 \quad \cdots \quad y_n], \quad \mathbf{f} := \mathbf{f}(\mathbf{x}) = [f(x_1) \quad \cdots \quad f(x_n)].$$

$$p(\mathbf{x}|\mathbf{y}) = \frac{1}{(2\pi)^{d/2} |\Sigma_{\mathbf{x}|\mathbf{y}}|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x} - \mu_{\mathbf{x}|\mathbf{y}})^T \Sigma_{\mathbf{x}|\mathbf{y}}^{-1} (\mathbf{x} - \mu_{\mathbf{x}|\mathbf{y}})\right] \coloneqq \mathcal{N}(\mu_{\mathbf{x}|\mathbf{y}}, \Sigma_{\mathbf{x}|\mathbf{y}})$$

 $x = f^{-1}(y)$ $\Sigma_{\mathbf{x}|\mathbf{y}} \neq \sigma^{2}\mathbf{I}$ $\Sigma_{\mathbf{x}|\mathbf{y}} = cov(x_{i}, x_{j})$ $= exp\left(-\frac{(x_{i} - x_{j})^{2}}{2}\right)$

a RBF kernel

Gaussian Processes (\mathcal{GP}) for multivariate regression $y = f(\mathbf{x}) + \epsilon$.

define $\mu_f(\mathbf{x}) := \mathbb{E}(f(\mathbf{x}))$, then we assume $f(\mathbf{x})$ is distributed as a Gaussian process $f(\mathbf{x}) \sim \mathcal{GP}(\mu_f(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$

where
$$k(\mathbf{x}, \mathbf{x}') = \mathbb{E}\left[\left(f(\mathbf{x}) - \mu_f(\mathbf{x})\right)\left(f(\mathbf{x}') - \mu_f(\mathbf{x}')\right)\right]$$
 called the kernel of \mathcal{GP} .

The kernel is based on assumptions such as smoothness, that is, similar \mathbf{x} , \mathbf{x}' yields similar $f(\mathbf{x})$ and $f(\mathbf{x}')$. Thus a popular kernel is

$$k(\mathbf{x}, \mathbf{x}') = \sigma_f^2 \exp\left(-\frac{1}{2\lambda}(\mathbf{x} - \mathbf{x}')^T (\mathbf{x} - \mathbf{x}')\right),$$

where hyperparameters λ and σ_f^2 represents the length-scale and signal (f) variance to control relation between \mathbf{x} and $f(\mathbf{x})$.

$$k(\mathbf{x}, \mathbf{x}') = \sigma_f^2 \exp\left(-\frac{1}{2\lambda}(\mathbf{x} - \mathbf{x}')^T (\mathbf{x} - \mathbf{x}')\right)$$

Modeling of prior sampling function of \mathcal{GP}

■ Denote $\mathbf{X} = [\mathbf{X}_1 \quad \cdots \quad \mathbf{X}_n], \ \mathbf{y}^T = [y_1 \quad \cdots \quad y_n], \ \mathbf{f}^T := [f(\mathbf{x}_1) \quad \cdots \quad f(\mathbf{x}_n)].$

Let X_* be a matrix containing a new input points x_i^* , $i=1,\cdots,n$. Then define the kernel matrix as

$$\mathbf{K}(\mathbf{X}_{*}, \mathbf{X}_{*}) = \begin{bmatrix} k(\mathbf{x}_{1}^{*}, \mathbf{x}_{1}^{*}) & k(\mathbf{x}_{1}^{*}, \mathbf{x}_{2}^{*}) & \cdots & k(\mathbf{x}_{1}^{*}, \mathbf{x}_{n}^{*}) \\ k(\mathbf{x}_{2}^{*}, \mathbf{x}_{1}^{*}) & k(\mathbf{x}_{2}^{*}, \mathbf{x}_{2}^{*}) & \cdots & k(\mathbf{x}_{2}^{*}, \mathbf{x}_{n}^{*}) \\ \vdots & \vdots & \ddots & \vdots \\ k(\mathbf{x}_{n}^{*}, \mathbf{x}_{1}^{*}) & k(\mathbf{x}_{n}^{*}, \mathbf{x}_{2}^{*}) & \cdots & k(\mathbf{x}_{n}^{*}, \mathbf{x}_{n}^{*}) \end{bmatrix}$$

• Choosing the prior mean function $\mu_f(\mathbf{x}) = 0$, we can sample values of f at inputs \mathbf{X}_* from \mathcal{GP} as

$$\mathbf{f}_* \sim \mathcal{N}(0, \mathbf{K}(\mathbf{X}_*, \mathbf{X}_*))$$

which is the prior distribution model without observation data $D = \{(x_i, y_i) | i = 1, \dots, n\}$.

Posterior predictions from a \mathcal{GP}

- Observations are $D = \{(\mathbf{x}_i, y_i) | i = 1, \dots, n\} = \{\mathbf{X}, \mathbf{y}\}$, $\mathbf{X} = [\mathbf{X}_1 \quad \dots \quad \mathbf{X}_n]$, $\mathbf{y}^T = [y_1 \quad \dots \quad y_n]$.
- The predictions for new inputs \mathbf{X}_* by drawing \mathbf{f}_* from the posterior distribution $p(f \mid D)$.

 A joint Gaussian distribution of \mathbf{y} and \mathbf{f}_* Let \mathbf{X}_* follows

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{f}_* \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} \mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma_{\epsilon}^2 \mathbf{I} & \mathbf{K}(\mathbf{X}, \mathbf{X}_*) \\ \mathbf{K}(\mathbf{X}_*, \mathbf{X}) & \mathbf{K}(\mathbf{X}_*, \mathbf{X}_*) \end{bmatrix} \right), \qquad \qquad \begin{aligned} y &= f(x) + \epsilon \\ y_* &= f_*(x_*) + \epsilon \end{aligned}$$

where σ_{ϵ}^2 is the assumed noise level of the observations.

The conditional distribution $p(\mathbf{f}_*|\mathbf{X},\mathbf{y},\mathbf{X}_*)$ can be derived to a multivariate normal distribution with mean

$$\mu_{\mathbf{f}_*}(\mathbf{X}_*) = \mathbf{K}(\mathbf{X}_*, \mathbf{X})[\mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma_{\epsilon}^2 \mathbf{I}]^{-1} \mathbf{y}$$

and variance

$$cov_{\mathbf{f}_*}(\mathbf{X}_*) = \mathbf{K}(\mathbf{X}_*, \mathbf{X}_*) - \mathbf{K}(\mathbf{X}_*, \mathbf{X})[\mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma_{\epsilon}^2 \mathbf{I}]^{-1}\mathbf{K}(\mathbf{X}, \mathbf{X}_*)$$

Posterior predictions from a \mathcal{GP}

• The mean function of the \mathcal{GP} can be given as

$$\mu_f(\mathbf{x}) = \mathbf{K}(\mathbf{x}, \mathbf{X})[\mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma_\epsilon^2 \mathbf{I}]^{-1}\mathbf{y}$$

and covariance function as

$$cov_f(\mathbf{x}, \mathbf{x}') = k(\mathbf{x}, \mathbf{x}') - \mathbf{K}(\mathbf{x}, \mathbf{X})[\mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma_\epsilon^2 \mathbf{I}]^{-1}\mathbf{K}(\mathbf{X}, \mathbf{x}')$$

$$\mathbf{K}(\mathbf{x}, \mathbf{X}) = \begin{bmatrix} k(\mathbf{x}, \mathbf{x}_1) & k(\mathbf{x}, \mathbf{x}_2) & \cdots & k(\mathbf{x}, \mathbf{x}_n) \end{bmatrix}$$

$$\mathbf{K}(\mathbf{X}, \mathbf{x}') = \begin{bmatrix} k(\mathbf{x}_1, \mathbf{x}') \\ k(\mathbf{x}_2, \mathbf{x}') \\ \vdots \\ k(\mathbf{x}_n, \mathbf{x}') \end{bmatrix}$$

The effect of the hyperparameters λ and σ_f^2 of the kernel

$$k(\mathbf{x}, \mathbf{x}') = \sigma_f^2 \exp\left(-\frac{1}{2\lambda}(\mathbf{x} - \mathbf{x}')^T (\mathbf{x} - \mathbf{x}')\right) \approx \mathbb{E}\left[\left(f(\mathbf{x}) - \mu_f(\mathbf{x})\right)\left(f(\mathbf{x}') - \mu_f(\mathbf{x}')\right)\right],$$

 λ : length-scale, σ_f^2 : signal (f) variance to control relation between \mathbf{x} and $f(\mathbf{x})$.

$$p(\mathbf{y}|\mathbf{X}) = \frac{1}{(2\pi)^{d/2} \left| \sum_{\mathbf{y}|\mathbf{X}} \right|^{1/2}} \exp \left[-\frac{1}{2} (\mathbf{y} - \mathbf{\mu}_{\mathbf{y}|\mathbf{X}})^T \sum_{\mathbf{y}|\mathbf{X}}^{-1} (\mathbf{y} - \mathbf{\mu}_{\mathbf{y}|\mathbf{X}}) \right] \\ \left[\begin{bmatrix} \mathbf{y} \\ \mathbf{f}_* \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} \mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma_{\epsilon}^2 \mathbf{I} & \mathbf{K}(\mathbf{X}, \mathbf{X}_*) \\ \mathbf{K}(\mathbf{X}_*, \mathbf{X}) & \mathbf{K}(\mathbf{X}_*, \mathbf{X}_*) \end{bmatrix} \right)$$

• The optimized hyperparameters λ and σ_f^2

$$\lambda, \sigma_f^2 = \max_{\lambda, \sigma_f^2} \log p(\mathbf{y}|\mathbf{X})$$

$$k(\mathbf{x}, \mathbf{x}') = \sigma_f^2 \exp\left(-\frac{1}{2\lambda}(\mathbf{x} - \mathbf{x}')^T (\mathbf{x} - \mathbf{x}')\right)$$

$$\log p(\mathbf{y}|\mathbf{X}) = -\frac{1}{2}\mathbf{y}^T[\mathbf{K}(\mathbf{X},\mathbf{X}) + \sigma_\epsilon^2\mathbf{I}]^{-1}\mathbf{y} - \frac{1}{2}\log \det[\mathbf{K}(\mathbf{X},\mathbf{X}) + \sigma_\epsilon^2\mathbf{I}] - \frac{n}{2}\log 2\pi$$

Summary

- linear regression
 - simple linear regression
 - multiple linear regression
- nonlinear regression
 - logistic regression
 - high-order regression
 - basis-function regression
- matrix form for regression
 - recursive least squares
- partial least squares
 - over-fitting and underfitting
 - bias/variance
 - principle component regression
 - partial least squares algorithm
 - ridge regression
 - lasso, elastic regression
- Gaussian process regression