

# basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE NASIONALE SENIOR SERTIFIKAAT

GRADE/GRAAD 12

PHYSICAL SCIENCES: CHEMISTRY (P2)
FISIESE WETENSKAPPE: CHEMIE (V2)

**NOVEMBER 2011** 

**MEMORANDUM** 

MARKS/PUNTE: 150

This memorandum consists of 12 pages. *Hierdie memorandum bestaan uit 12 bladsye.* 

# **SECTION A / AFDELING A**

# QUESTION 1 / VRAAG 1

| 1.1                  | Haloalkane / Haloalkaan ✓                                                                 |  | (1)                |  |  |  |  |
|----------------------|-------------------------------------------------------------------------------------------|--|--------------------|--|--|--|--|
| 1.2                  | Hydrocarbons / <i>Koolwaterstowwe</i> ✓                                                   |  | (1)                |  |  |  |  |
| 1.3                  | (Dynamic) equilibrium / (Chemical) equilibrium √ (Dinamiese) ewewig / (Chemiese) ewewig √ |  | (1)                |  |  |  |  |
| 1.4                  | Cryolite / Krioliet ✓                                                                     |  | (1)                |  |  |  |  |
| 1.5                  | (Cell) capacity / (Sel)kapasiteit ✓                                                       |  | (1)<br><b>[5]</b>  |  |  |  |  |
| QUESTION 2 / VRAAG 2 |                                                                                           |  |                    |  |  |  |  |
| 2.1                  | B✓✓                                                                                       |  | (2)                |  |  |  |  |
| 2.2                  | B✓✓                                                                                       |  | (2)                |  |  |  |  |
| 2.3                  | C✓✓                                                                                       |  | (2)                |  |  |  |  |
| 2.4                  | $D\checkmark\checkmark$                                                                   |  | (2)                |  |  |  |  |
| 2.5                  | $D\checkmark\checkmark$                                                                   |  | (2)                |  |  |  |  |
| 2.6                  | C✓✓                                                                                       |  | (2)                |  |  |  |  |
| 2.7                  | $A \checkmark \checkmark$                                                                 |  | (2)                |  |  |  |  |
| 2.8                  | $A \checkmark \checkmark$                                                                 |  | (2)                |  |  |  |  |
| 2.9                  | B✓✓                                                                                       |  | (2)                |  |  |  |  |
| 2.10                 | C✓✓                                                                                       |  | (2)<br><b>[20]</b> |  |  |  |  |

**TOTAL SECTION A / TOTAAL AFDELING: 25** 

## **SECTION B / AFDELING B**

## QUESTION 3 / VRAAG 3

3.1 3.1.1 D ✓ (1)

3.1.2 C ✓ (1)

3.2

3.2.1 4-methylpentanal / 4-metielpentanaal ✓ ✓ (2)

3.2.2 prop-1-yne / prop-1-yn √ √ Accept / Aanvaar:

propyne / *propyn*1-propyne / 1-propyn (2)

3.3  $H_2O$  / water  $\checkmark$ 

CO₂ / carbon dioxide ✓
CO₂ / koolstofdioksied / koolsuurgas✓
(2)

3.4

3.4.1 Esters ✓ (1)

3.4.3 Butanoic acid / Butanoësuur √√ (2)

3.4.4

(2) **[14]** 

## QUESTION 4 / VRAAG 4

4.1 (Structural) isomers / (Struktuur)isomere ✓ (1)

4.2

4.2.1 Boiling point / Kookpunt ✓ (1)

4.2.2 Branching / Vertakking ✓ (1)

4.2.3 Number of C atoms / Aantal C-atome ✓

## OR/OF

Molecular or molar mass or molecular formula /  $C_5H_{12} \checkmark$ Molekulêre of molêre massa of molekulêre formule /  $C_5H_{12} \checkmark$  (1)

# 4.3 Saturated / Versadig √

No carbon-carbon double (or triple) bonds. ✓ ✓ Geen koolstof-koolstofdubbelbindings (of trippelbindings). ✓ ✓

## OR / OF

Saturated / Versadig ✓

Only single bonds between C artoms. / Slegs enkelbindings tussen C-atome.

## OR / OF

Saturated / Versadig ✓

No multiple bonds. / Geen meervoudige bindings. ✓√ (3)

4.4

4.4.2

Pentane / Pentaan ✓✓

(2)

4.5.1

5.1 
$$H$$
 $H \longrightarrow C \longrightarrow H$ 
 $H \longrightarrow C \longrightarrow C \longrightarrow C \longrightarrow H$ 
 $H \longrightarrow$ 

- Most branching / Molecules most compact or spherical / Smallest surface area (over which intermolecular forces act.).✓
  - Least / Weakest intermolecular forces. √
  - Least energy needed to overcome intermolecular forces. ✓
  - <u>Die meeste vertak</u>. / <u>Molekule mees kompak</u> of <u>sferies</u> / <u>Kleinste</u> <u>oppervlakte</u> (waaroor intermolekulêre kragte werk.) ✓
  - Minste / Swakste intermolekulêre kragte. ✓
  - <u>Die minste energie benodig</u> om intermolekulêre kragte te oorkom. ✓ (3)

4.6 C ✓

## **QUESTION 5/VRAAG 5**

5.1

5.1.1 Addition / hydration ✓

Addisie / hidratering / hidrasie ✓

(1)

5.1.2 Substitution / Hydrolysis ✓

Substitusie / Hidrolise ✓

(1)

5.1.3 Elimination / Dehydrohalogenation / Dehydrobromination ✓ Eliminasie / Dehidrohalogenering / Dehidrobrominering ✓ (1)

5.3 Propan-2-ol

Accept / Aanvaar:

2-propanol (2)

5.4 • Dilute base ✓Verdunde basis ✓

## **QUESTION 6/VRAAG 6**

6.1 (Gas) syringe / burette / measuring cylinder ✓ (Gas)spuit / buret / maatsilinder ✓ (1)

6.2  $24 \text{ cm}^3 \checkmark \checkmark$  (2)

6.3 Decreases ✓
The gradient of the graph decreases. ✓

Verminder √ Die gradiënt van die grafiek neem af. √ (2)

6.4 Catalyst / Katalisator ✓ (1)

6.5 H<sub>2</sub>O / water ✓

CuO / copper(II) oxide  $\checkmark$ CuO / koper(II)oksied  $\checkmark$  (2)

# 6.6 In terms of lump: / In terme van soliede stuk:

Smaller (exposed) surface area / contact area ✓

Less hydrogen peroxide molecules per unit time comes in contact with the catalyst. ✓

Kleiner (blootgestelde) reaksieoppervlakte / kontakoppervlakte. ✓

Minder waterstofperoksied per eenheidstyd kom in kontak met katalisator. ✓

## OR/OF

# In terms of powder: / In terme van poeier:

<u>Larger (exposed)</u> surface area / contact area ✓

More hydrogen peroxide molecules per unit time comes in contact with the catalyst.  $\checkmark$ 

Groter (blootgestelde) reaksieoppervlakte / kontakarea. ✓

Meer waterstofperoksied per eenheidstyd kom in kontak met katalisator. ✓ (2)

6.7 Decomposition of hydrogen peroxide <u>releases oxygen</u> ✓ that resists the functioning of the bacteria. / <u>oxidises the</u> bacteria. ✓ Ontbinding van waterstofperoksied <u>stel suurstof vry</u> ✓ wat die werking van bakterie teenwerk./ wat bakterieë oksideer. ✓

(2) [**12**]

#### **QUESTION 7/VRAAG 7**

7.1

7.1.1 When the <u>equilibrium</u> in a closed system is <u>disturbed</u> ✓ the system will <u>shift the equilibrium position</u> **OR** re-<u>instate a new equilibrium</u> as to **OR** <u>favour the reaction</u> that will ✓ <u>oppose</u> **OR** <u>cancel</u> **OR** <u>counteract</u> the <u>change</u> **OR** <u>disturbance</u>. ✓

Wanneer die <u>ewewig</u> in 'n geslote sisteem<u>versteur</u> word, ✓ <u>skuif</u> die sisteem die <u>ewewigsposisie</u> sodanig deur **OF** word 'n <u>nuwe ewewig</u> <u>ingestel</u> deur OF die <u>reaksie bevoordeel</u> wat ✓ die effek van die <u>versteuring</u> **OF** <u>verandering teen te werk</u> **OF** te <u>kan</u>selleer. ✓

## OR / OF

When a <u>stress / change is placed</u> on a system in <u>equilibrium</u>  $\checkmark$  The system <u>shifts the equilibrium (position)</u> **OR** re-<u>instate a new equilibrium</u>  $\checkmark$  so as to <u>remove **OR** <u>cancel</u> **OR** <u>oppose the stress / change.</u>  $\checkmark$ </u>

Wanneer 'n sisteem in <u>ewewig</u> onderhewig is aan 'n <u>spanning</u> **OF** verandering, ✓

skuif die sisteem die <u>ewewig(posisie)</u> sodanig **OF** word 'n <u>nuwe ewewig</u> ingestel √ deur

die spanning /verandering te verwyder **OF** teen te werk **OF** te kanselleer. ✓

## OR / OF

When the <u>conditions affecting an equilibrium are changed</u>, ✓ the <u>equilibrium (position) shifts</u> in such a way ✓ as to <u>oppose</u> the change **OR** <u>cancel the change</u>. ✓ Wanneer die <u>toestande wat 'n ewewig</u> beïnvloed, <u>verander word</u>, ✓ sal die <u>ewewig(posisie) sodanig verskuif</u> ✓ dat die verandering teengewerk word **OF** gekanselleer word. ✓

(3)

## NSC/NSS - Memorandum

7.1.2 Decreases ✓

When the pressure is increased,

the reverse reaction is favoured. ✓

The reaction that produced the smaller volume/amount of gas is favoured.  $\checkmark$ OR

4 mol or volumes of gas produces 2 mol or volumes of gas.

Verminder ✓

Wanneer die druk verhoog word,

word die terugwaartse reaksie bevoordeel. ✓

Die reaksie wat 'n kleiner volume / aantal mol vorm, word bevoordeel. ✓

**OF** 

4 mol of volumes gas reageer om 2 mol of volumes gas te vorm.

(3)

7.1.3 Products form at faster rate. ✓

Higher yield of products. ✓

Produkte vorm teen 'n vinniger tempo. ✓

Groter opbrengs van produkte. ✓ (2)

7.2

#### 7.2.1 **CALCULATIONS USING NUMBER OF MOLES** BEREKENINGE WAT AANTAL MOL GEBRUIK

# Option 1 / Opsie 1:

 $n(H_2O)$  at equilibrium / by ewewig = 0,2 mol (given)

 $n(H_2O)$  formed / gevorm = n(CO) formed/gevorm = 0,2 (mol)  $n(H_2)$  reacted = (0,2 mol):  $n(CO_2)$  reacted = (0,2 mol)

At equilibrium / By ewewig:

 $n(H_2) = (x - 0.2)/(x - change / verandering)$ n(CO<sub>2</sub>) = 0.1 (mol)/(0.3 - change / verandering)

 $n(H_2O) = n(CO) = 0.2 \text{ (mol) } \checkmark$ 

Equilibrium concentration / Ewewigskonsentrasies:

$$c(H_{2}) = \frac{n}{V} = \frac{x - 0.2}{10}$$

$$c(CO_{2}) = \frac{n}{V} = \frac{0.1}{10}$$

$$c(H_{2}O) = \frac{n}{V} = \frac{0.2}{10}$$

$$c(CO) = \frac{n}{V} = \frac{0.2}{10}$$

$$K_{C} = \frac{[CO][H_{2}O]}{[H_{2}][CO_{2}]} \checkmark \therefore \frac{(0.02)(0.02)}{\left(\frac{x - 0.2}{10}\right)(0.01)} \checkmark = 4 \checkmark$$

 $x = 0.3 \cdot n(H_2) = 0.3 \text{ mol } \checkmark$ 

# Option 2/Opsie 2

|                                                                                                | H <sub>2</sub>     | CO <sub>2</sub> | H <sub>2</sub> O | CO    |                               |
|------------------------------------------------------------------------------------------------|--------------------|-----------------|------------------|-------|-------------------------------|
| Initial quantity (mol)  Aanvangshoeveelheid (mol)                                              | х                  | 0,3             | 0                | 0     |                               |
| Change (mol)                                                                                   |                    |                 |                  |       | ratio √                       |
| Verandering (mol)                                                                              | - 0,2              | -0,2            | + 0,2            | + 0,2 | verhouding                    |
| Quantity at equilibrium (mol)/ Hoeveelheid by ewewig(mol)                                      | x -0,2             | 0,1) ✓          | 0,2              | 0,2√  |                               |
| Equilibrium concentration (mol·dm <sup>-3</sup> )  Ewewigskonsentrasie (mol·dm <sup>-3</sup> ) | $\frac{x-0,2}{10}$ | 0,01            | 0,02             | 0,02  | Divide by 10√<br>Deel deur 10 |

$$K_{C} = \frac{[CO][H_{2}O]}{[H_{2}][CO_{2}]} \checkmark \therefore \frac{(0,02)(0,02)}{\left(\frac{x-0,2}{10}\right)(0,01)} \checkmark = 4 \checkmark \therefore x = 0,3 \therefore n(H_{2}) = 0,3 \text{ mol } \checkmark$$

# <u>CALCULATIONS USING CONCENTRATION</u> <u>BEREKENINGE WAT KONSENTRASIE GEBRUIK</u>

# Option2/Opsie2

|                                                                                                      | H <sub>2</sub>               | CO <sub>2</sub> | H <sub>2</sub> O | CO    |               |
|------------------------------------------------------------------------------------------------------|------------------------------|-----------------|------------------|-------|---------------|
| Initial concentration (mol·dm <sup>-3</sup> )  Aanvangskonsentrasie (mol·dm <sup>-3</sup> )          | x<br>10                      | 0,03            | 0                | 0     | Divide by 10✓ |
| Change in concentration (mol·dm <sup>-3</sup> )  Verandering in konsentrasie (mol·dm <sup>-3</sup> ) | 0,02                         | 0,02            | 0,02             | 0,02  | ratio ✓       |
| Equilibrium concentration (mol·dm <sup>-3</sup> )  Ewewigskonsentrasie (mol·dm <sup>-3</sup> )       | $\sqrt{\frac{x}{10}} - 0.02$ | 0,01) ✓         | 0,02             | 0,02✓ |               |

$$K_C = \frac{[CO][H_2O]}{[H_2][CO_2]} \checkmark : \frac{(0,02)(0,02)}{(0,x-0,02)(0,01)} \checkmark = 4 \checkmark : x = 0,3 : n(H_2) = 0,3 \text{ mol } \checkmark (8)$$

## 7.2.2 Exothermic ✓

A decrease in  $K_c$  implies: Lower product concentration / less products **OR** higher reactant concentration / more reactants.  $\checkmark$ 

<u>Reverse reaction favoured</u>. ✓ This means the forward reaction is exothermic. *Eksotermies* ✓

'n Afname in K<sub>c</sub> beteken: 'n laer produkkonsentrasie / minder produkte **OF** hoër reaktanskonsentrasie / meer reaktanse. ✓

<u>Terugwaartse reaksie bevoordeel.</u> ✓ Dus is die voorwaartse reaksie eksotermies.

## OR / OF

Exothermic

Decrease in K<sub>c</sub> – reverse reaction is favoured. ✓

Increase in temperature favours the endothermic reaction. ✓

: Forward reaction is exothermic.

Eksotermies

Afname in K<sub>c</sub> – terugwaartse reaksie word bevoordeel√

Toename in temperatuur bevoordeel die endotermiese reaksie√

.: Voorwaartse reaksie is eksotermies.

(3) **[19]** 

## **QUESTION 8/VRAAG 8**

- 8.1 Chemical (energy) to electrical (energy) ✓

  Chemiese (energie) na elektriese (energie) ✓

  (1)
- 8.2 Completes the circuit. / Voltooi die stroombaan. ✓

## OR / OF

Maintains <u>electrical neutrality</u>. ✓ *Handhaaf <u>elektriese neutraliteit.</u> ✓*(1)

- 8.3  $Pb \rightarrow Pb^{2+} + 2e^{-} \checkmark \checkmark$  (2)
- 8.4 Pb to Cu  $\checkmark$  (1)
- 8.5 Pb + Cu<sup>2+</sup>  $\checkmark \rightarrow$  Pb<sup>2+</sup> + Cu  $\checkmark$  Balancing  $\checkmark$  (3)
- 8.6 Exothermic / eksotermies √ (1)
- 8.7  $E_{\text{cell}}^{\theta} = E_{\text{cathode}}^{\theta} E_{\text{anode}}^{\theta} \checkmark$  $= 0.34 \checkmark (-0.13) \checkmark$  $E_{\text{cell}}^{\theta} = 0.47 \text{ V} \checkmark$  (4)
- 8.8 Measurements not done at:

Temperature of  $\underline{25 \text{ °C}} / \underline{298 \text{ K}} \checkmark \checkmark$ Concentration of  $\underline{1 \text{ mol·dm}^{-3}} \checkmark \checkmark$ 

Metings nie gedoen by:

Temperatuur van <u>25 °C / 298 K</u> ✓ ✓ Konsentrasie van <u>1 mol·dm</u>-<sup>3</sup> ✓ ✓

(4) **[17]** 

(2)

(3)

#### **QUESTION 9/VRAAG 9**

9.1 A <u>substance that forms free</u> (positive and negative) <u>ions when melted or</u> dissolved. ✓✓

'n Stof wat vrye (positiewe en negatiewe) ione vorm wanneer gesmelt of opgelos word.

## OR/OF

A liquid / solution / melted substance that conducts electricity through the movement of free ions.  $\checkmark$   $\checkmark$ 

A vloeistof / oplossing / gesmelte stof wat elektrisiteit gelei deur die beweging van vry ione. ✓✓

9.2

$$9.2.1 2C\ell \rightarrow C\ell_2 + 2e^{-} \checkmark \checkmark (2)$$

9.2.2 
$$Cu^{2+} + 2e^{-} \rightarrow Cu \checkmark \checkmark$$
 (2)

9.3 Q ✓

9.4

9.4.1 Cu is a stronger reducing agent ✓ than the Cℓ ions. ✓ Cu will be oxidised / loses electrons, ✓ resulting in the plate becoming eroded.

<u>Cu is 'n sterker reduseermiddel</u> ✓ as die Cℓ̄-ione. ✓ Cu <u>sal geöksideer</u> word / elektrone verloor, ✓ wat tot gevolg het dat die plaat verweer.

## OR / OF

The <u>Cℓ ion is a weaker reducing agent</u> ✓ <u>than Cu</u> ✓ and will therefore not be oxidised. ✓

Die  $\underline{C\ell}$ -ioon is 'n swakker reduseermidel  $\checkmark$  as  $\underline{Cu}$   $\checkmark$  en sal dus <u>nie geöksideer word nie</u>.

9.4.2 P ✓ (1) [12]

## **QUESTION 10/VRAAG 10**

10.1 Allows only positive ions (cations/Na<sup>+</sup> ions) to migrate to cathode half-cell. ✓ Laat slegs positiewe ione (katione/Na<sup>+</sup>-ione) toe om na die katode-halfsel te migreer. ✓

# OR/OF

Prevents chloride ions/Cl ions from migrating to the cathode half-cell.

Verhoed dat chloried-ione/<u>Cℓ</u> -ione na die katode-halfsel migreer.

(1)

10.2 Y ✓

Chloride ions are oxidised at Y. ✓ Chloriedione word by Y geöksideer. ✓

## OR/OF

Chloride ions are negative and must be attracted to Y. 

Chloriedione is negatief en word deur Y aangetrek.

(2)

10.3

10.31 Hydrogen / H<sub>2</sub> ✓ Waterstof / H<sub>2</sub> ✓

(1)

10.3.2 Chlorine /  $C\ell_2 \checkmark$  Chloor /  $C\ell_2 \checkmark$ 

(1)

10.3.3 Sodium hydroxide / NaOH ✓ Natriumhidroksied / NaOH ✓

(1)

Natriumniaroksiea / NaOH √

10.4  $2H_2O + 2C\ell^-\checkmark \rightarrow H_2 + 2OH^- + C\ell_2\checkmark$  Balancing  $\checkmark$ 

#### OR / OF

$$2H_2O + 2NaCl \checkmark \rightarrow H_2 + 2NaOH + Cl_2 \checkmark$$
 Balancing  $\checkmark$ 

(3)

10.5 Uses huge amounts of electricity / energy. ✓

Combustion of coal during generation of electricity releases huge amounts of carbon dioxide into atmosphere. ✓

Gebruik groot hoeveelhede elektrisiteit. ✓

<u>Verbranding van steenkool</u> tydens opwekking van elektrisiteit stel groot hoeveelhede koolstofdioksied in die atmosfeer vry. ✓

(2) **[11]** 

(2)

[12]

## QUESTION 11 / VRAAG 11

11.1

11.1.2 2NO + 
$$O_2 \checkmark \rightarrow 2NO_2 \checkmark$$
 Balancing  $\checkmark$  (3)

11.2 
$$H_2O$$
 / water  $\checkmark$  (1)

11.3 
$$4NO_2 + O_2 \checkmark + 2H_2O \rightarrow 4HNO_3$$
 Balancing  $\checkmark$  (2)

 $\frac{10\% \text{ of } 50 \text{ kg} = 5 \text{ kg}}{}$  (3)

# 11.5 ANY ONE / ENIGE EEN:

- Fish / Aquatic life dies. ✓
   Results in loss of income / jobs / food. ✓
   Vis / Waterlewe gaan dood. ✓
   Lei tot verlies aan inkomste / werk / voedsel. ✓
- Leads to poor water quality. ✓
   Not enough drinking water. / Poses health risk. ✓
   Lei tot swak waterkwaliteit. ✓
   Nie genoeg drinkwater nie. / Gesondheidsrisiko. ✓
- Water recreation areas become unattractive / dangerous. ✓
   Lack of income due to decline in tourism. / Less recreation facilities. ✓
   Waterontspanningsareas word onaansienlik/gevaarlik. ✓
   Verlies aan inkomste as gevolg van afname in toerisme. ✓

TOTAL SECTION B/TOTAAL AFDELING B: 125
GRAND TOTAL/GROOTTOTAAL: 150