Job No.:
 Kitset 8
 Address:
 K8, K8, New Zealand
 Date:
 24/06/2025

 Latitude:
 -35.725947
 Longitude:
 174.051067
 Elevation:
 34.5 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N0	Ground Snow Load	0 KPa	Roof Snow Load	0 KPa
Earthquake Zone	1	Subsoil Category	D	Exposure Zone	В
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	3.6 m
Wind Region	NZ1	Terrain Category	2.34	Design Wind Speed	44 m/s
Wind Pressure	1.16 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	Very High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Mono Open

For roof Cp, i = 0.6504

For roof CP,e from 0 m To 1.65 m Cpe = -0.98 pe = -0.91 KPa pnet = -1.64 KPa

For roof CP,e from 1.65 m To 3.30 m Cpe = -0.86 pe = -0.80 KPa pnet = -1.53 KPa

For wall Windward Cp, i = 0.6504 side Wall Cp, i = -0.5578

For wall Windward and Leeward CP,e from 0 m To 20 m Cpe = 0.7 pe = 0.65 KPa pnet = 1.27 KPa

For side wall CP,e from 0 m To 3.30 m Cpe = pe = -0.60 KPa pnet = 0.02 KPa

Maximum Upward pressure used in roof member Design = 1.64 KPa

Maximum Downward pressure used in roof member Design = 0.81 KPa

Maximum Wall pressure used in Design = 1.27 KPa

Maximum Racking pressure used in Design = 1.12 KPa

Design Summary

Purlin Design

Purlin Spacing = 900 mm Purlin Span = 3850 mm Try Purlin 200x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

Second page

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.84 S1 Downward =11.27 S1 Upward =16.38

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{1.35D}$	0.56 Kn-m	Capacity	2.23 Kn-m	Passing Percentage	398.21 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	2.09 Kn-m	Capacity	2.97 Kn-m	Passing Percentage	142.11 %
$M_{0.9D\text{-W}n\text{Up}}$	-2.36 Kn-m	Capacity	-3.15 Kn-m	Passing Percentage	133.47 %
V _{1.35D}	0.58 Kn	Capacity	9.65 Kn	Passing Percentage	1663.79 %
$V_{1.2D+1.5L\ 1.2D+Sn\ 1.2D+WnDn}$	1.92 Kn	Capacity	12.86 Kn	Passing Percentage	669.79 %
$ m V_{0.9D ext{-}WnUp}$	-2.45 Kn	Capacity	-16.08 Kn	Passing Percentage	656.33 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3 considering at least 4 members acting together

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 11.10 mm

Limit by Woolcock et al, 1999 Span/240 = 15.83 mm

Deflection under Dead and Service Wind = 9.90 mm

Limit by Woolcock et al, 1999 Span/100 = 38.00 mm

Reactions

Maximum downward = 1.92 kn Maximum upward = -2.45 kn

Number of Blocking = 1 if 0 then no blocking required, if 1 then one midspan blocking required

Rafter Design Internal

Internal Rafter Load Width = 4000 mm Internal Rafter Span = 5350 mm Try Rafter 2x300x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 1.00 S1 Downward = 6.81 S1 Upward = 6.81

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	2.86 Kn-m	Capacity	10.08 Kn-m	Passing Percentage	352.45 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	5.31 Kn-m	Capacity	13.44 Kn-m	Passing Percentage	253.11 %

$M_{0.9D ext{-W}nUp}$	10.56 Kn-m	Capacity	-16.8 Kn-m	Passing Percentage	159.09 %
V _{1.35D}	3.29 Kn	Capacity	28.94 Kn	Passing Percentage	879.64 %
V _{1.2D+1.5L} 1.2D+Sn 1.2D+WnDn	6.13 Kn	Capacity	38.6 Kn	Passing Percentage	629.69 %
$ m V_{0.9D ext{-}WnUp}$	17.01 Kn	Capacity	-48.24 Kn	Passing Percentage	283.60 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 7 mm

Limit by Woolcock et al, 1999 Span/240 = 22.92 mm

Deflection under Dead and Service Wind = 18.5 mm

Limit by Woolcock et al, 1999 Span/100 = 55.00 mm

Reactions

Maximum downward = 6.13 kn Maximum upward = 17.01 kn

Rafter to Pole Connection check

Bolt Size = M16 Number of Bolts = 3

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters = J5 Joint Group for Pole = J5

Minimum Bolt edge, end and spacing for Load perpendicular to grains = 80 mm

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 14.9 fpj = 12.9 Mpa for Rafter with effective thickness = 100 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Capacity under short term loads = 43.34 Kn > 17.01 Kn

Prop on Sides = $2 ext{ 2/SG820050Dry } 1000$ mm Reaction Prop = 12.07 Kn down 25.12 Kn Up

Prop Combined axial and bending ratios (My/Phi x Mny)+(Nc/Phi x Ncy) should be less than or equal to 1

For Short Term Load = 0.92 < 1 OK

For Medium Term Load = 0.55 < 1 OK

For Long Term Load = 0.40 < 1 OK

Prop Connection check

Effective width of Pole used in Calculations = 175 mm - 20mm (Margin for chamfer)

Bolt Size = M12 Number of Bolts = 4

Minimum Bolt edge, end and spacing for Load perpendicular to grains = 60 mm

Angle of prop = 45 degree

Prop Connection Capacity under Short term loads: 49.69 Kn > 25.12 Kn OK

Prop Connection Capacity under Medium term loads: 39.75 Kn > 12.07 Kn OK

Prop Connection Capacity under Long term loads: 29.81 Kn > 6.54 Kn OK

Intermediate Design Sides

Intermediate Spacing = 2750 mm Intermediate Span = 3145 mm Try Intermediate 2x150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 1.00 S1 Downward = 9.63 S1 Upward = 0.57

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	2.16 Kn-m	Capacity	4.2 Kn-m	Passing Percentage	194.44 %
$ m V_{0.9D ext{-}WnUp}$	2.75 Kn	Capacity	24.12 Kn	Passing Percentage	877.09 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 29.31 mm Limit by Woolcock et al, 1999 Span/100 = 31.45 mm

Reactions

Maximum = 2.75 kn

Girt Design Front and Back

Girt's Spacing = 700 mm Girt's Span = 4000 mm Try Girt 150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after

installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.92 S1 Downward =9.63 S1 Upward =14.36

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	1.78 Kn-m	Capacity	1.94 Kn-m	Passing Percentage	108.99 %
$ m V_{0.9D ext{-}WnUp}$	1.78 Kn	Capacity	12.06 Kn	Passing Percentage	677.53 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 31.45 mm Limit by Woolcock et al, 1999 Span/100 = 40.00 mm Sag during installation = 15.52 mm

Reactions

Maximum = 1.78 kn

Girt Design Sides

Girt's Spacing = 1300 mm Girt's Span = 2750 mm Try Girt 150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 0.82 S1 Downward = 9.63 S1 Upward = 16.84

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	1.56 Kn-m	Capacity	1.73 Kn-m	Passing Percentage	110.90 %
$V_{0.9D\text{-W}nUp}$	2.27 Kn	Capacity	12.06 Kn	Passing Percentage	531.28 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 13.05 mm Limit by Woolcock et al. 1999 Span/100 = 27.50 mm

Sag during installation = 3.47 mm

Reactions

Maximum = 2.27 kn

Middle Pole Design

Geometry

175 SED H5 (Minimum 200 dia. at Floor Level)	Dry Use	Height	3300 mm
Area	27598 mm2	As	20698.2421875 mm2
Ix	60639381 mm4	Zx	646820 mm3
Iy	60639381 mm4	Zx	646820 mm3
Lateral Restraint	1300 mm c/c		

Loads

Total Area over Pole = 11 m2

Dead	4.29 Kn	Live	3.08 Kn
Wind Down	9.98 Kn	Snow	0.00 Kn
Moment wind	10.86 Kn-m		
Phi	0.8	K8	1.00
K1 snow	0.8	K1 Dead	0.6
K1wind	1		

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

PhiNcx Wind	397.41 Kn	PhiMnx Wind	18.78 Kn-m	PhiVnx Wind	49.01 Kn
PhiNcx Dead	238.44 Kn	PhiMnx Dead	11.27 Kn-m	PhiVnx Dead	29.41 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.69 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.46 < 1 OK$

Deflection at top under service lateral loads = 32.29 mm < 33.00 mm

Drained Lateral Strength of Middle pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30))}{(1+\sin(30))}$ $Kp = \frac{(1+\sin(30))}{(1-\sin(30))}$

Geometry For Middle Bay Pole

Ds = 0.6 mm Pile Diameter

L= 1600 mm Pile embedment length

f1 = 2700 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 10.86 Kn-m Shear Wind = 4.02 Kn

Pile Properties

Safety Factory 0.55

Hu = 8.49 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 13.91 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.78 < 1 OK

End Pole Design

Geometry For End Bay Pole

Geometry

150 SED H5 (Minimum 175 dia. at Floor Level)	Dry Use	Height	3300 mm
Area	20729 mm2	As	15546.6796875 mm2
Ιχ	34210793 mm4	7x	421056 mm3

Ix 34210793 mm4 Zx 421056 mm3

Iy 34210793 mm4 Zx 421056 mm3

Lateral Restraint mm c/c

Loads

Total Area over Pole = 5.5 m2

Dead	1.38 Kn	Live	1.38 Kn
Wind Down	4.46 Kn	Snow	0.00 Kn
Moment Wind	5.43 Kn-m		
Phi	0.8	K8	0.66
K1 snow	0.8	K1 Dead	0.6
K1wind	1		

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

PhiNex Wind	195.59 Kn	PhiMnx Wind	8.01 Kn-m	PhiVnx Wind	36.81 Kn
PhiNcx Dead	117.35 Kn	PhiMnx Dead	4.81 Kn-m	PhiVnx Dead	22.09 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.71 < 1 OK

 $(Mx/PhiMnx)^2 + (N/phiNcx) = 0.50 < 1 \text{ OK}$

Deflection at top under service lateral loads = 31.14 mm < 35.91 mm

Ds =	0.6 mm	Pile Diameter
L =	1300 mm	Pile embedment length
f1 =	2700 mm	Distance at which the shear force is applied
f2 =	0 mm	Distance of top soil at rest pressure

Loads

Total Area over Pole = 5.5 m^2

Moment Wind =	5.43 Kn-m
Shear Wind =	2.01 Kn

Pile Properties

Safety Factory 0.55

Hu = 4.89 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 7.84 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.69 < 1 OK

Drained Lateral Strength of End pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30))}{(1+\sin(30))}$ $Kp = \frac{(1+\sin(30))}{(1-\sin(30))}$

Geometry For End Bay Pole

Ds = 0.6 mm Pile Diameter

L= 1300 mm Pile embedment length

f1 = 2700 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 5.43 Kn-m Shear Wind = 2.01 Kn

Pile Properties

Safety Factory 0.55

Hu = 4.89 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 7.84 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.69 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m³

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between

10/11

both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(1600) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(1600)

Skin Friction = 20.68 Kn

Weight of Pile + Pile Skin Friction = 25.36 Kn

Uplift on one Pile = 15.56 Kn

Uplift is ok