PhD Defense

December 13th, 2019

Arbeitsgruppe Symmetrische Kryptographie, Horst-Görtz-Institut für IT Sicherheit, Ruhr-Universität Bochum

Friedrich Wiemer

Security Arguments and Tool-based Design of Block Ciphers

RUB

RUB

The setting
Block Ciphers and Security Notion

Block Ciphers

Security

Substitution Permutation Networks

RUB

Overview

- 1 Introduction
- 2 Subspace Trail Attack
- 3 Security against Subspace Trail Attacks
- 4 Conclusion

Subspace Trail Cryptanalysis

2019-

Main Idea of Subspace Trails

Security Arguments and Tool-based Design of Block Ciphers Subs -Subspace Trail Attack Subspace Trail Cryptanalysis

Subspace Trail Cryptanalysis

2019-

Main Idea of Subspace Trails

Security Arguments and Tool-based Design of Block Ciphers Subs -Subspace Trail Attack Subspace Trail Cryptanalysis

Subspace Trail Cryptanalysis

Main Idea of Subspace Trails

Subspace Trail Cryptanalysis [GRR16] (FSE'16)

Let $U_0, \ldots, U_r \subseteq \mathbb{F}_2^n$, and $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$. Then these form a subspace trail (ST), $U_0 \xrightarrow{F} \cdots \xrightarrow{F} U_r$, iff

$$\forall a \in U_i^{\perp} : \exists b \in U_{i+1}^{\perp} : F(U_i + a) \subseteq U_{i+1} + b$$

Security Arguments and Tool-based Design of Block
Ciphers
Subspace Trail Attack
Subspace Trail Cryptanalysis

Our Goal

Given a starting subspace U, we can efficiently compute the corresponding longest subspace trail.

Lemma

Let $U \xrightarrow{F} V$ be a ST. Then for all $u \in U$ and all $x: F(x) + F(x + u) \in V$.

Security Arguments and Tool-based Design of Block
Ciphers
—Subspace Trail Attack
—Subspace Propagation

Subspace Propagation

RUE

Convert destroy subspace to two care efficiency converts the converge converts the converge converts the converge converts to the converge converts to the converge converts to the converge converts to the converge converge to the converge conv

Given a starting subspace *U*, we can efficiently compute the corresponding longest subspace trail.

Lemma

Let $U \xrightarrow{F} V$ be a ST. Then for all $u \in U$ and all $x: F(x) + F(x + u) \in V$.

Security Arguments and Tool-based Design of Block
Ciphers
—Subspace Trail Attack
—Subspace Propagation

Given a starting subspace *U*, we can efficiently compute the corresponding longest subspace trail.

Lemma

Let $U \xrightarrow{F} V$ be a ST. Then for all $u \in U$ and all $x: F(x) + F(x + u) \in V$.

Security Arguments and Tool-based Design of Block
Ciphers
Subspace Trail Attack
Subspace Propagation

Given a starting subspace *U*, we can efficiently compute the corresponding longest subspace trail.

Lemma

Let $U \xrightarrow{F} V$ be a ST. Then for all $u \in U$ and all $x: F(x) + F(x + u) \in V$.

Security Arguments and Tool-based Design of Block
Ciphers
Subspace Trail Attack
Subspace Propagation

Given a starting subspace *U*, we can efficiently compute the corresponding longest subspace trail.

Lemma

Let $U \xrightarrow{F} V$ be a ST. Then for all $u \in U$ and all $x: F(x) + F(x + u) \in V$.

Computing the subspace trail

■ To compute the next subspace, we have to compute the image of the derivatives.

Security Arguments and Tool-based Design of Block
Ciphers
Subspace Trail Attack
Subspace Propagation

Propagate a Basis

ComputeTrail Algorithm

Computation of Subspace Trails

Input: A nonlinear function $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$, a subspace U. **Output:** A subspace trail $U \rightrightarrows^F \cdots \rightrightarrows^F V$.

- 1 function ComputeTrail(F, U)
 2 if dim U = n then return U
- 3 $V \leftarrow \emptyset$ 4 **for** u_i basis vectors of U **do**
- for enough $x \in_{\mathbb{R}} \mathbb{F}_2^n \operatorname{do}$
- $6 V \leftarrow V \cup \Delta_{u_i}(F)(x)$
- 7 $V \leftarrow \operatorname{Span}\{V\}$
 - return $U \rightrightarrows^F ComputeTrail(F, V)$

Correctness: previous two lemmata

■ Line 4: max. *n* iterations

Runtime:

- Line 5: n + c random vectors are enough
- Overall: $\mathcal{O}(n^2)$ evaluations of F

Remaining Problem: cyclic STs

How many random vectors are enough:
https://math.stackexchange.com/questions/564603/
probability-that-a-random-binary-matrix-will-have-full-column-rank

Correctness: previous two lemmata

Line 4: max. a iterations
Line 5: a + c random vectors are enoug

Overall: O(a²) modulations of E

How to Bound the Length of Subspace Trails

Activating a single S-box only

The Connection to Linear Structures

S-boxes without Linear Structures

S-boxes with Linear Structures

Conclusion

Thanks for your attention!

Applications of ComputeTrail

- Bound longest probability-one subspace trail
- Link to Truncated Differentials
- Finding key-recovery strategies

References I

