

0. CONTENTS 2. DRNN 1. INTRODUCTION 3. EXPERIMENTS 4. CONCLUSION

1. INTRODUCTION

1) DRNN

Goal: Real-time contextual adaptation and assistance in the form of recommended actions that are personalized for user.

Proposed architecture

- 1. Using GRU, we are going to perform deep learning for user interaction patterns.
- 2. Collaborative filtering techniques that enable sharing of data among users
- 3. Fast approximate nearest-neighbor methods in Euclidean spaces for quick UI control and/or content recommendations.
- -> outperforms state-of the-art tensor-factorization and metric embedding methods in contents recommendation

2-1) Proposed personalized adaptive user interface

2-1) Proposed personalized adaptive user interface

2-1) Proposed personalized adaptive user interface

2-2) Memory: Gated Recurrent Units

Gate Recurrent units are used to recommend user interaction information in real time at 't'.

2-2) Memory: Gated Recurrent Units

Update gate : $z_t^{(k)} = sigm([W_z x_t + U_z h_{t-1}]_k)$

Reset gate : $r_t^{(k)} = sigm([W_r x_t + U_r h_{t-1}]_k)$

sigm: Sigmoid function (0~1)

W, U: Learning parameters

 x_t : Input

 h_{t-1} : Previous state value

2-2) Memory: Gated Recurrent Units

Update gate : $z_t^{(k)} = sigm([W_z x_t] + [U_z h_{t-1}]_k) \rightarrow (Present input value] + past information)$

- The update gate controls how much of the previous hidden state to remember.

Reset gate : $r_t^{(k)} = sigm([W_r x_t + U_r h_{t-1}]_k)$

- The update gate controls how much of the previous hidden state to forget.

sigm: Sigmoid function (0~1)

W, U: Learning parameters

 x_t : Input(user interaction history)

 h_{t-1} : Previous state value

2-2) Memory: Gated Recurrent Units

$$\tilde{h}_{t}^{(k)} = \tanh ([W_{r} x_{t} + r_{t} \odot U_{r} h_{t-1}]_{k})$$

tanh : Hyperbolic tangent

 $ilde{h}_t^{(k)}$: Candidate activation (memorable information)

⊙ : Element-wise multiplication

2-2) Memory: Gated Recurrent Units

$$\tilde{h}_t^{(k)} = \tanh \left(\left[W x_t + r_t \odot U h_{t-1} \right]_k \right)$$

-> Reflects the present information (Wx_t) and the past information (Uh_{t-1}), but how much it stores depends on reset gate(r_t) value.

 $r_t = 0$ -> forget all past information $r_t = 1$ -> remember all past information

Current information (Wx_t) is computed regardless of reset gate(r_t) value.

2-2) Memory: Gated Recurrent Units

$$z_{t}^{(k)} = sigm([W_{z} x_{t} + U_{z} h_{t-1}]_{k})$$

$$r_{t}^{(k)} = sigm([W_{r} x_{t} + U_{r} h_{t-1}]_{k})$$

$$\tilde{h}_{t}^{(k)} = \tanh([W_{r} x_{t} + r_{t} \odot U_{r} h_{t-1}]_{k})$$

-> state update : $h_t^{(k)} = (1 - z_t^{(k)}) h_{t-1}^{(k)} + z_t^{(k)} \tilde{h}_t^{(k)}$

2-2) Memory: Gated Recurrent Units

Output:
$$h_t^{(k)} = (1 - z_t^{(k)}) h_{t-1}^{(k)} + z_t^{(k)} \tilde{h}_t^{(k)}$$

So output is a combination of past state value and candidate value.

- The update $gate(z_t^{(k)})$ determines the combination ratio.

user interaction history information is returned through the GRUs.

2-3) Embedding Symbols as Vector

2-3) Embedding Symbols as Vector

1. Embedding symbols as vectors

- set the embedding sizes to be equal $n_u = n_i = n_{EMB}$ since the learnt space is shared.
- 2. To project interaction histories into this latent space, along with users and target items.
- 3. Find KNN

2-3) Embedding Symbols as Vector

- 1. Embedding symbols as vectors
 - set the embedding sizes to be equal $n_u = n_i = n_{EMB}$ since the learnt space is shared.
- 2. To project interaction histories into this latent space, along with users and target items.
- 3. Find KNN

2-3) Embedding Symbols as Vector

- 1. Embedding symbols as vectors
 - set the embedding sizes to be equal $n_u = n_i = n_{EMB}$ since the learnt space is shared.
- 2. To project interaction histories into this latent space, along with users and target items.
- 3. Find Nearest Neighbor (FLANN) > recommend

3-1) Training Data

Training Data

- Equation Grapher UI dataset(EqGraph)
 51 users , 16 items , 1277 interactions
- Microsoft Web Data 1205 users , 246 items, 6623 interactions
- 2015 ASSISTment dataset 4130 users , 100 items, 51,318 interactions
- Loss optimize stochastic gradient descent (Adam)

$$L = \sum_{u,t} l_{\text{SM}}(u,t)$$

$$l_{\text{SM}} = -a_{u,t+1,y} + \log \frac{\sum_{j \in S} \exp(a_{u,t+1,j} - \log |I|)}{|I|}$$

 $a_{u,t+1,y}$: Preference score for item j

3-2) Model Training and Parameters

Model training and Parameters

200 epochs 100-sample mini-batches

15 negative sample

Embedding size { 32, 64, 128 }

Dropout regularization {0.05, 0.10, 0.15, 0.20}

10-fold cross-validation: Training data: 90% / Test data: 10%

Performance evaluation

$$ext{MAP} = rac{\sum_{q=1}^{Q} ext{AveP(q)}}{Q}$$

$$ext{nDCG}_{ ext{p}} = rac{DCG_p}{IDCGp} \hspace{0.5cm} ext{DCG}_{ ext{p}} = \sum_{i=1}^p rac{rel_i}{\log_2(i+1)}.$$

3-3) MAP and NDCG score

MC: Markov Chain

FPMC: Factorized Personalized

Markov Chain

ME: Euclidean Metric

DRNN-DP: DRNN with dot product

DRNN-SE: squared Euclidean

DRNN achieves the highest scores

3-4) MAP scores

Dataset	MC	FPMC	ME	DRNN-DP	DRNN-SE
EqGraph	0.535	0.574	0.568	0.620	0.611
	(0.054)	(0.031)	(0.057)	(0.062)	(0.078)
MSWeb	0.409	0.410	0.407	0.475	0.466
	(0.020)	(0.023)	(0.021)	(0.022)	(0.016)
Assist'15	0.378	0.361	0.359	0.526	0.534
	(0.015)	(0.016)	(0.014)	(0.020)	(0.022)

DRNN achieves 15~50 % higher MAP score

3-5) Query times

FLANN faster than dot-product or Euclidean distances

3-6) MAP scores vs Embedding size

DRNN's performance generally improved with embedding size, with a few exceptions where nEMB = 128

4. CONCLUSION

- This paper presented an architecture for an adaptive user interface with a RNN that performs sequential recommendation of content and control elements.
- Relative to the compared methods, the DRNN provided higher (or similar) accuracies, with fast prediction.
- The use of FLANN to perform item recommendations improved query times by an order of magnitude over standard exact techniques
- **DRNN can be easily extended to project side-information**, such as user profiles and interaction element features into the latent space

Q & A

Thank you!