DSP Assignment 3 IIR filtering Report

Ben Frazer*

January 2, 2022

1	Introduction	BEN:PETER:MAIN	
	□ Present the problem		
	\Box describe the working principles of an accelerometer Bases tilt sensor		
	\square design objectives		
2	Working Principles	BEN:PETER:MAIN	
	\boxminus high level data flow diagrams		
	\Box Underlying principles		
3	Filter design objectives	BEN:MAIN	
	\Box justify filter design requirements		
	– translate the high-level project design objectives into filter design objectives		
	\square discuss key design metrics		
	\Box discuss importance of rise time as a metric for "responsiveness"		
	\square filter dataflow diagram + discuss		
	\Box present discuss final design objective for filter design stage		
	*2704250F@student.gla.ac.uk		

	- cutoff frequency	
	* ??	
	- filter type	
	* Butterworth	
	* because??	
	- order	
	* second order?	
	* no cascading because we only want a lowpass response	
	* because we want our code to execute as fast as possible	
	* we are not as concerned about steep cutoffs	
3.1	Sensor noise	Ben
	discuss noise in accelerometers in general	
	potential additional noise sources (ADCs/EMF)	
	mention that noise tends to be relatively speaking higher frequency and uniformly distributed frequency domain	in the
3.2	Procedure for Quantifying sensor noise	Ben
	present approach for quantifying noise	
	discuss problems due to de spectral leakage	
	eliminate using time-domain first order polynomial fit	
3.3 □		Ben
	discuss how sensor motion will disturb the measurement of angle	

		discuss how sample rate was checked		
4		Implementation Ben:Cammeron:Main		
3.6	3	Final design Ben		
		only important when cutoff frequency bottoms out		
		It is effectively a free degree of freedom that allows a limited improvement to settling time at the cost of additional computation		
		transition width becomes important because it also affects settling time		
☐ Present plot showing different filter orders				
		As the cuttof tends towards lower frequencies, the relative "flatness" of the pass-band is diminished resulting in exponential increase in settling time for a given increase in frequency		
		Attenuation after the cuttof is not an important metric since disturbances are transient and noise is flatly distributed		
		Filter order directly influences the maximum achievable transition width		
3.5	5	influence of Filter order BEN		
		point out the fundamental 2 between filter cutoff frequency and		
		discuss how settling time is a metric for responsiveness		
3. 4	1	Settling Time BEN		
		lower priority than sensor noise		
		$comment \ on \ the \ trade \ off \ between \ settling \ time \ and \ rejection \ of \ noise/ \ disturbances \ and \ settling \ time \ and \ rejection \ of \ noise/ \ disturbances \ and \ settling \ time \ and \ rejection \ of \ noise/ \ disturbances \ and \ settling \ time \ and \ rejection \ of \ noise/ \ disturbances \ and \ settling \ time \ and \ rejection \ of \ noise/ \ disturbances \ and \ settling \ time \ and \ rejection \ of \ noise/ \ disturbances \ and \ settling \ time \ and \ rejection \ of \ noise/ \ disturbances \ and \ settling \ time \ and \ rejection \ of \ noise/ \ disturbances \ and \ settling \ time \ and \ rejection \ of \ noise/ \ disturbances \ and \ settling \ time \ and \ rejection \ of \ noise/ \ disturbances \ and \ settling \ time \ and \ rejection \ and \ rejec$		
		- identify and comment on the frequency range of these harmonics		
		- comparison plots should be at the same sample rate and length (can be achieved by cropping the longer "at rest" recording)		
		\Box (present figure) show the harmonic content of the sensor under motion vs at rest		

	discuss unit testing	
	- include here the tables of filter coefficients used (refer to dataflow	w diagram)
	maybe discuss how angle measurements were derived	
	present images of the setup	
4.1	Filter design	Cammeron
	just a brief overview of the high-level design commands used	
	Reiterate the cutoff frequency decided above	
4.2	Filter Unit Testing	CAMMERON
4.3	Sample rate Verification	CAMMERON
4.4	Angle measurement	Ben
5	Results	CAMMERON: MAIN
Treat	t this section as presentation of results	
	present plot of the raw vs filtered data	
	discuss the achieved sample rate	
	link to youtube video	
	with reference to the youtube video $+$ cammeron's pics with the protest	ractor discuss success
6	Design Review	BEN:MAIN
	discuss limitations	
	- influence of sample rate on cutoff frequency	

7	Future work	BEN:MAIN
	\square improvements	
	$\hfill\square$ have the filter design recalculate based on avera	ge sample-rate
	$\hfill\Box$ more instantaneous response using a gyroscope	+ sensor fusion
8	conclusion	PETER:CAMMERON:BEN:MAIN
	\Box challenges faced	
	\Box problems with firmatta I2C (documented progre	ess)
	\Box reiterate that we were successful	
9	Appendices	Ben
	\boxtimes include unit test code	
	\boxtimes include links section:	
	- the git repo	
	- the youtube video	
	- link to bernds source code	
	\Box description of the link	
9.	1 Code	
9.	1.1 realtime_iir_main.py	
	<pre>1 """ Modules """ 2 from pyfirmata2 import Arduino 3 from scipy import signal 4 import numpy as np</pre>	
	import realtime_plot as rtp import iir filter as iir	

```
""" Constants """
   # Arduino Sample Rate
10
  fs = 1000 # Max 1000
  # Nyquist
  fn = fs / 2
   """ IIR Filter Design """
15
  # Noise Removal
16
  sos = signal.butter(1, 1 / fn, "lowpass", output="sos")
17
18
  x_filter = iir.IIR_filter(sos)
19
  y_filter = iir.IIR_filter(sos)
   z_filter = iir.IIR_filter(sos)
   """ Real Time Plotters """
23
   sample_plot = rtp.RealtimePlots(fs, 2, ["X", "Y", "Z"],
24

    sample_limits=[-5,5], channels=3)

   orientation_plot = rtp.RealtimeVectorPlot()
25
26
   """ Convert Normalized Voltage to Acceleration """
27
   def v2a(n_volt):
28
       # Normalised voltage to voltage and Re-centre (3.3V / 2 = 0g)
29
       volts = (n_volt * 5) - (3.3 / 2)
30
       # Convert to acceleration (300mV per g)
31
       return volts / 0.3
32
33
   """ Sample Process Function """
34
   def addX(data):
35
       acc = v2a(data)
36
       f_acc = x_filter.filter(acc)
37
38
       sample_plot.addSample(acc, f_acc, channel=0)
39
       orientation_plot.addSample(f_acc, channel=0)
40
41
   def addY(data):
42
       acc = v2a(data)
43
       f_acc = y_filter.filter(acc)
44
45
       sample_plot.addSample(acc, f_acc, channel=1)
46
       orientation_plot.addSample(f_acc, channel=1)
47
48
   def addZ(data):
49
       acc = v2a(data)
50
       f_acc = z_filter.filter(acc)
51
52
       sample_plot.addSample(acc, f_acc, channel=2)
53
       orientation_plot.addSample(f_acc, channel=2)
54
55
   """ Aurdino Data Aquisition """
```

```
board = Arduino(Arduino.AUTODETECT)
board.samplingOn(1000/fs)
board.analog[0].register_callback(addX)
board.analog[0].enable_reporting()
board.analog[1].register_callback(addY)
board.analog[1].enable_reporting()
board.analog[2].register_callback(addZ)
board.analog[2].enable_reporting()

""" Show Real Time Plots """
rtp.plt.show()
board.exit()
```

9.1.2 rununittest.py

```
import unittest
   import iir_filter
   import scipy.signal as signal
3
4
   """Function used to collect the IIR filter output influenced by the

    specifications"""

7
   def getCoefficients(w, order, system_type, input_signal):
       coeff = []
9
       irr_result = []
10
       b, a = signal.butter(order, 2 * w, system_type)
11
12
       for i in b:
13
           coeff.append(i)
15
       for i in a:
16
           coeff.append(i)
17
18
       f = iir_filter.IIR2_filter(coeff)
19
20
       for i in range(len(input_signal)):
21
           irr_result.append(round(f.filter(input_signal[i]), 4))
23
       return irr_result
24
25
26
   """Function used to collect the IIR filter output influenced by SOS at
27

→ given specifications"""
28
29
   def getSOSCoefficients(w, order, system_type, input_signal):
30
       sos = signal.butter(order, 2 * w, system_type, output='sos')
31
       sos check = []
32
```

```
33
       fi = iir_filter.IIR_filter(sos)
34
35
       for i in range(len(input_signal)):
36
           sos_check.append(round(fi.filter(input_signal[i]), 4))
37
       return sos_check
39
40
41
   """Unit test class function for a lowpass and highpass filters"""
42
43
44
   class TestStringMethods(unittest.TestCase):
45
46
       def test_lowpass_2nd_order_filter(self):
47
           cutoff freq = 0.1 # define the normalized cutoff frequency
48
           filter_order = 2 # state the filter order
49
           filter_type = 'lowpass' # state the type of filter used
50
           test_input = [1, 3, 5] # define the input signal coefficients
51
52
           hand_calculated_values = [0.0675, 0.4144, 1.2552] # array
53
       that contains the hand calculated values for the
           # above specification
54
55
           filter_calculated_values = getCoefficients(cutoff_freq,
56
       filter_order, filter_type,
                                                        test_input) #
57
       array contains the IIR filter output values for the
           # same specification
58
59
           self.assertEqual(hand_calculated_values,
60
                             filter_calculated_values) # compare both
61
      arrays to check if they aer similar
62
       def test_lowpass_sos_filter(self):
63
           cutoff_freq = 0.1 # define the normalized cutoff frequency
           filter_order = 2 # state the filter order
65
           filter_type = 'lowpass' # state the type of filter used
66
           test_input = [1, 3, 5] # define the input signal coefficients
67
68
           hand_calculated_values = [0.0675, 0.4144, 1.2552] # array
69
       that contains the hand calculated values for the
           # above specification
70
71
           filter_sos_calculated_values = getSOSCoefficients(cutoff_freq,
72
       filter_order, filter_type,
                                                                test_input)
73
       # array contains the sos influenced IIR filter
           # output values for the same specification
74
```

```
75
           self.assertEqual(hand_calculated_values,
76
                             filter sos calculated values) # compare both
77
      arrays to check if they aer similar
78
       def test_highpass_2nd_order_filter(self):
            cutoff_freq = 0.3 # define the normalized cutoff frequency
80
            filter_order = 2 # state the filter order
81
           filter_type = 'highpass' # state the type of filter used
82
           test_input = [6, -8, 3] # define the input signal
83
       coefficients
84
            hand_calculated_values = [1.2394, -4.5894, 6.6175] # array
85
       that contains the hand calculated values for the
           # above specification
86
87
            filter_calculated_values = getCoefficients(cutoff_freq,
88
       filter_order, filter_type,
                                                        test input) #
89
       array contains the IIR filter output values for the
           # same specification
90
91
           self.assertEqual(hand_calculated_values,
92
                             filter_calculated_values) # compare both
93
       arrays to check if they aer similar
94
       def test_highpass_sos_filter(self):
95
            cutoff_freq = 0.3 # define the normalized cutoff frequency
            filter_order = 2 # state the filter order
97
           filter_type = 'highpass' # state the type of filter used
98
           test_input = [6, -8, 3] # define the input signal
99
       coefficients
100
            hand_calculated_values = [1.2394, -4.5894, 6.6175] # array
101
       that contains the hand calculated values for the
           # above specification
102
103
            filter_sos_calculated_values = getSOSCoefficients(cutoff_freq,
104
       filter_order, filter_type,
                                                               test_input)
105
       # array contains the sos influenced IIR filter
           # output values for the same specification
106
107
           self.assertEqual(hand_calculated_values,
108
                             filter_sos_calculated_values) # compare both
109
    → arrays to check if they aer similar
110
   try: # BF 20/12/21 - check if i am being run in the ipython shell
111
       IPYTHON
112
```

```
except:
113
        __IPYTHON__ = False
114
115
   if not __IPYTHON__:
116
        if __name__ == '__main__':
117
            unittest.main()
118
   else: # BF 20/21/21 - This code allows the unit test to run in the
119
       IPyhton shell
        unittest.main(argv=['first-arg-is-ignored'], exit=False)
120
```

9.1.3 calcAngles.py

```
#!/usr/bin/env ipython
  import unittest
  import numpy as np
   import numpy.linalg as ln
5
6
   def calcAngles(vec, DoDebug=False):
       """returns the angles of a 3d vector relative to the orthoginal

    unit vectors""

       angle = np.array([0,0,0])
       referenceFrame = []
10
       referenceFrame.append([1,0,0])
11
       referenceFrame.append([0,1,0])
12
       referenceFrame.append([0,0,1])
13
       for i in range(3):
14
          if DoDebug:
15
               print(f"unitVec{i} = {referenceFrame[i]}")
16
           part1=np.dot(vec,referenceFrame[i])/
17
       (ln.norm(vec)*ln.norm(referenceFrame[i]))
           angle1 = np.arccos(part1)
18
           angle[i] = np.rad2deg(angle1)
19
          #angle1 = np.arcsin(abs(vec[i])/np.linalg.norm(vec))
20
          \#angle[i] = 90 - np.rad2deg(angle1)
21
           if DoDebug:
22
               print(f"angle[{i}] = {angle[i]}")
       return angle
25
26
   27
   testVec = [99.1, 99.1, 99.1]
28
   class TestCalcAngles(unittest.TestCase):
29
30
       def test1(self):
31
           testvec = [1,1,1]
32
           angles = calcAngles(testVec)
33
           didPass =
34
       np.testing.assert_array_almost_equal([54,54,54],angles)
```

```
#print(didPass)
35
36
37
38
  try: # BF 20/12/21 - check if i am being run in the ipython shell
39
       __IPYTHON__
40
41
   except:
       __IPYTHON__ = False
42
43
  if not __IPYTHON__:
44
       if __name__ == '__main__':
45
           unittest.main()
   else: # BF 20/21/21 - This code allows the unit test to run in the
   → IPyhton shell
       unittest.main(argv=['first-arg-is-ignored'], exit=False)
48
```

9.1.4 realtime iir main.py

```
1 """ Modules """
  from pyfirmata2 import Arduino
  from scipy import signal
  import numpy as np
  import realtime_plot as rtp
  import iir_filter as iir
  """ Constants """
  # Arduino Sample Rate
  fs = 1000  # Max 1000
  # Nyquist
  fn = fs / 2
13
14
  """ IIR Filter Design """
15
  # Noise Removal
16
  sos = signal.butter(1, 1 / fn, "lowpass", output="sos")
17
18
  x_filter = iir.IIR_filter(sos)
  y_filter = iir.IIR_filter(sos)
20
  z_filter = iir.IIR_filter(sos)
^{21}
22
   """ Real Time Plotters """
  sample_plot = rtp.RealtimePlots(fs, 2, ["X", "Y", "Z"],

    sample_limits=[-5,5], channels=3)

  orientation_plot = rtp.RealtimeVectorPlot()
26
   """ Convert Normalized Voltage to Acceleration """
27
  def v2a(n_volt):
28
       # Normalised voltage to voltage and Re-centre (3.3V / 2 = 0g)
       volts = (n_volt * 5) - (3.3 / 2)
30
```

```
# Convert to acceleration (300mV per g)
31
       return volts / 0.3
32
33
   """ Sample Process Function """
34
   def addX(data):
35
       acc = v2a(data)
       f_acc = x_filter.filter(acc)
37
38
       sample_plot.addSample(acc, f_acc, channel=0)
39
       orientation_plot.addSample(f_acc, channel=0)
40
41
   def addY(data):
42
       acc = v2a(data)
43
       f_acc = y_filter.filter(acc)
44
45
       sample_plot.addSample(acc, f_acc, channel=1)
46
       orientation_plot.addSample(f_acc, channel=1)
47
48
   def addZ(data):
49
       acc = v2a(data)
50
       f_acc = z_filter.filter(acc)
51
52
       sample_plot.addSample(acc, f_acc, channel=2)
53
       orientation_plot.addSample(f_acc, channel=2)
54
55
   """ Aurdino Data Aquisition """
56
   board = Arduino(Arduino.AUTODETECT)
57
   board.samplingOn(1000/fs)
   board.analog[0].register_callback(addX)
  board.analog[0].enable_reporting()
   board.analog[1].register_callback(addY)
  board.analog[1].enable_reporting()
  board.analog[2].register_callback(addZ)
   board.analog[2].enable_reporting()
64
   """ Show Real Time Plots """
   rtp.plt.show()
67
   board.exit()
```

9.1.5 realtime plot.py

```
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.animation import FuncAnimation
import matplotlib.pyplot as plt
import numpy as np
import time
import calcAngles
""" Rolling Buffer """
class RollingBuffer:
```

```
def __init__(self, size):
           self.size = size
10
           self.plot_buffer = np.zeros(self.size)
11
           self.data_buffer = []
12
13
       def update(self):
           self.plot_buffer = np.append(self.plot_buffer,
15
       self.data_buffer)
           self.plot_buffer = self.plot_buffer[-self.size:]
16
           self.data_buffer = []
17
           return self.plot_buffer
18
19
       def add(self, v):
            self.data_buffer.append(v)
21
22
   """ Real-Time Plotter Variable Channel """
23
   class RealtimePlots:
24
       def __init__(self, fs, window_time, labels, sample_limits=[-0.5,
25
       0.5], channels=1):
           # Buffer
26
           self.buffer_size = fs * window_time
27
           self.r buffers = []
28
           self.f_buffers = []
29
30
           # Figure Plot
31
           self.fig, self.ax = plt.subplots(nrows=2)
32
33
           # Sample Plot
34
           self.ax[0].plot([0,
35
       self.buffer_size-1],[0,0],"r--",label="Zero")
           self.ax[0].set_ylim(sample_limits[0], sample_limits[1])
36
           self.ax[0].set_title("Un-Filtered")
37
           self.r lines = []
38
39
           # Filter Plot
40
           self.ax[1].plot([0,
41
       self.buffer_size-1],[0,0],"r--",label="Zero")
           self.ax[1].set_ylim(sample_limits[0], sample_limits[1])
42
           self.ax[1].set_title("Filtered")
43
           self.f_lines = []
44
45
           # Plot Buffers
           for i in range(channels):
47
                self.r_buffers.append(RollingBuffer(self.buffer_size))
48
                line, = self.ax[0].plot(self.r_buffers[i].update(),
49
       label=labels[i])
                self.r_lines.append(line)
50
51
                self.f_buffers.append(RollingBuffer(self.buffer_size))
52
```

```
line, = self.ax[1].plot(self.f_buffers[i].update(),
53
       label=labels[i])
                self.f_lines.append(line)
54
           self.ax[1].legend(loc=4)
55
56
           self.anim = FuncAnimation(self.fig, self.update, interval=100)
           self.update_count = 0
58
59
           # Sample Rate
60
           self.sample_count = 0
61
            self.label = self.ax[0].text(0, sample_limits[0], "Sample
62
       Rate: -", ha="left", va="bottom", fontsize=15)
           self.last = 0
63
64
       def update(self, x):
65
           # Buffer
66
           for i in range(len(self.r_lines)):
67
                self.r_lines[i].set_ydata(self.r_buffers[i].update())
68
                self.f_lines[i].set_ydata(self.f_buffers[i].update())
69
70
           # Sample Rate Calc
71
           if self.update_count % 5 == 0: # Reduce updates for
72
       performance
                current_time = time.time()
73
                sample_rate = self.sample_count / (current_time -
74
       self.last)
                self.last = current_time
75
                self.sample_count = 0
76
77
                self.label.set_text(f"Fs: {sample_rate:.1f}Hz")
78
           self.update count += 1
79
80
       def addSample(self, v, f, channel=0):
81
           if channel == 0:
82
                self.sample count += 1
           self.r_buffers[channel].add(v)
84
           self.f_buffers[channel].add(f)
85
86
   """ Real-Time Vector Plotter """
87
   class RealtimeVectorPlot:
88
       def __init__(self):
89
           self.vec = np.zeros(3)
90
91
           self.fig, self.ax =
92
       plt.subplots(subplot_kw=dict(projection="3d"))
           self.ax.set_xlim(-1.0, 1.0)
93
           self.ax.set_ylim(-1.0, 1.0)
94
           self.ax.set_zlim(-1.0, 1.0)
95
           self.ax.set_xticks([])
96
```

```
self.ax.set yticks([])
97
            self.ax.set_zticks([])
98
99
            self.anim = FuncAnimation(self.fig, self.update, interval=100)
100
            self.q = self.ax.quiver(0, 0, 0, 0, 0, 1)
101
            self.x = self.ax.quiver(0, 0, 0, 1, 0, 0, color="red")
102
            self.y = self.ax.quiver(0, 0, 0, 0, 1, 0, color="green")
103
            self.z = self.ax.quiver(0, 0, 0, 0, 0, 1, color="blue")
104
105
            self.tLastUpdate = 0
106
            self.updatePeriod_s = 1
107
            self.label = self.ax.text(0, 0, 0, "test",
108
        transform=self.ax.transAxes)
            self.angle = np.array([0,0,0])
109
110
        def update(self, x):
111
            m = np.max(np.abs(self.vec))
112
            if m != 0:
113
                self.q.remove()
114
                self.q = self.ax.quiver(0, 0, 0, self.vec[0] / m,
115
       self.vec[1] / m, self.vec[2] / m, color="black")
                #angle calcs
116
                now = time.time()
117
                if (now - self.tLastUpdate)>self.updatePeriod_s:
118
                     #angle between the vector and the x plane
119
                     self.angle = calcAngles.calcAngles(self.vec)
120
                     self.label.set_text(f"angle (deg) x:{self.angle[0]},
121
       y:{self.angle[1]}, z:{self.angle[2]}")
                     self.tLastUpdate = now
122
123
        def addSample(self, v, channel=0):
124
            self.vec[channel] = v
125
```

- 9.2 Links
- 9.2.1 Project Source code

BEN

9.2.2 Filter Source code

BEN

9.2.3 Project demonstration YouTube Video

CAMMERON