Лабораторная работа №1

«Освоение инструментария для выполнения работ, построение простой сети»

Для начла была построена простая сеть, состоящая из одного коммутатора и двух компьютеров:

	PC1 console
ip 192.168.0.10/24	
	PC2 console
ip 192.168.0.10/24	
PC1> ip 192.168.0.10/24 Checking for duplicate address PC1 : 192.168.0.10 255.255.255.0 PC1> []	VPCS is free software, distributed under the terms of the "BSD" licence. Source code and license can be found at vpcs.sf.net. For more information, please visit wiki.freecode.com.cn. Press '?' to get help. Executing the startup file
	PC2> ip 192.168.0.20/24 Checking for duplicate address PC2: 192.168.0.20 255.255.255.0 PC2>

После запуска симуляции была выполнена команда ping на PC1.

	PC1 console	
ping 192.168.0.20		

```
PC1> ping 192.168.0.20

84 bytes from 192.168.0.20 icmp_seq=1 ttl=64 time=0.221 ms
84 bytes from 192.168.0.20 icmp_seq=2 ttl=64 time=0.245 ms
84 bytes from 192.168.0.20 icmp_seq=3 ttl=64 time=0.291 ms
84 bytes from 192.168.0.20 icmp_seq=4 ttl=64 time=0.246 ms
84 bytes from 192.168.0.20 icmp_seq=5 ttl=64 time=0.277 ms
```

Вследствие выполнения данной команды был получен ответ, свидетельствующий об успешном установлении соединения между РС1 и РС2, ответ представлен на скриншоте выше.

Стоит отметить, что на момент выполнения данной команды трафик на всех линках уже перехватывался с помощью Wireshark.

На первом скриншоте отмечен трафик, перехваченный с Switch1 \Leftrightarrow PC1, на втором – с Switch1 \Leftrightarrow PC2:

ar	р				
No.	Time	Source	Destination	Protocol	Length Info
	1 0.000000	Private_66:68:01	Broadcast	ARP	64 Who has 192.168.0.20? Tell 192.168.0.10
	2 0.000217	Private_66:68:00	Private_66:68:01	ARP	64 192.168.0.20 is at 00:50:79:66:68:00
ar	р				
No.	Time	Source	Destination	Protocol	Length Info
	1 0.000000	Private_66:68:01	Broadcast	ARP	64 Who has 192.168.0.20? Tell 192.168.0.10
	2 0.000170	Private_66:68:00	Private_66:68:01	ARP	64 192.168.0.20 is at 00:50:79:66:68:00

Можно заметить, что было перехвачено по два пакета. Первый пакет является запросом РС1 на получение МАС-адреса устройства с IPv4 192.168.0.20. Подробнее данный пакет рассмотрен на двух скриншотах ниже:

```
Frame 1: 64 bytes on wire (512 bits), 64 bytes captured (512 bits) on interface -, id \theta
 Ethernet II, Src: Private_66:68:01 (00:50:79:66:68:01), Dst: Broadcast (ff:ff:ff:ff:ff)
 v Destination: Broadcast (ff:ff:ff:ff:ff)
     .....1. .... = LG bit: Locally administered address (this is NOT the factory default)
     .... 1 .... .... = IG bit: Group address (multicast/broadcast)
 v Source: Private_66:68:01 (00:50:79:66:68:01)
     .....0. .... = LG bit: Globally unique address (factory default)
     .... ...0 .... = IG bit: Individual address (unicast)
   Type: ARP (0x0806)
   [Stream index: 0]
   Frame check sequence: 0x00000000 [unverified]
   [FCS Status: Unverified]
 Address Resolution Protocol (request)
   Hardware type: Ethernet (1)
   Protocol type: IPv4 (0x0800)
   Hardware size: 6
   Protocol size: 4
   Opcode: request (1)
   Sender MAC address: Private 66:68:01 (00:50:79:66:68:01)
   Sender IP address: 192.168.0.10
   Target MAC address: Broadcast (ff:ff:ff:ff:ff)
   Target IP address: 192.168.0.20
····P yfh···
                                                ····P yfh
```

ARP пакет состоит из 64 байт.

Первые 6 байт являются МАС-адресом назначения (в данном случае мы опрашиваем все устройства сети).

Следующие 6 байт представляют из себя МАС-адрес отправителя запроса.

Следующие 2 байта устанавливают тип данных (в данном случае ARP пакет).

Затем идут 2 байта, обозначающие тип сети, в нашем случае: 1 – Ethernet.

Следующие 2 байта – тип протокола (08 00 – IPv4).

Затем идут 2 байта длин адресов: 6 байт для MAC (06) и 4 байта для IP (04).

После этого указаны 2 байта типа операции (00 01 – ARP запрос).

Затем аналогично указываются 6 байт MAC-адреса отправителя и 4 байта IPадреса (PC1).

После этого указан неизвестный MAC-адрес (6 байт), который мы хотим узнать, и IP-адрес устройства (4 байта), чей MAC-адрес мы запрашиваем (PC2).

Для того, чтобы размер пакета составлял 64 байта, в конце просто доставляются нули.

После данного запроса в ответ с PC2 был отправлен ARP пакет на PC1, который позволил первому компьютеру узнать MAC-адрес второго. На скриншоте ниже представлена более подробная информация:

```
Frame 2: 64 bytes on wire (512 bits), 64 bytes captured (512 bits) on interface -, id 0 Ethernet II, Src: Private_66:68:00 (00:50:79:66:68:00), Dst: Private_66:68:01 (00:50:79:66:68:01)
 Destination: Private_66:68:01 (00:50:79:66:68:01)
   Source: Private_66:68:00 (00:50:79:66:68:00)
    Type: ARP (0x0806)
    [Stream index: 1]
   Frame check sequence: 0x00000000 [unverified]
   [FCS Status: Unverified]
Address Resolution Protocol (reply)
   Hardware type: Ethernet (1)
   Protocol type: IPv4 (0x0800)
   Hardware size: 6
   Protocol size: 4
   Opcode: reply (2)
   Sender MAC address: Private_66:68:00 (00:50:79:66:68:00)
   Sender IP address: 192.168.0.20
   Target MAC address: Private_66:68:01 (00:50:79:66:68:01)
Target IP address: 192.168.0.10
    00 50 79 66 68 01 00 50 79 66 68 00 08 06 00 01 08 00 06 04 00 02 00 50 79 66 68 00 00 00 00 14 00 50 79 66 68 01 c0 a8 00 0a 00 00 00 00 00
                                                                    Pyfh P yfh
```

Вот пакет, полученный РС1 в свою очередь:

```
Frame 2: 64 bytes on wire (512 bits), 64 bytes captured (512 bits) on interface -, id 0
Ethernet II, Src: Private_66:68:00 (00:50:79:66:68:00), Dst: Private_66:68:01 (00:50:79:66:68:01)
    Destination: Private_66:68:01 (00:50:79:66:68:01)
       .....0.... = LG bit: Globally unique address (factory default)
.....0 .... = IG bit: Individual address (unicast)
    Source: Private_66:68:00 (00:50:79:66:68:00)
       .....0. .... = LG bit: Globally unique address (factory default)
            ...0 .... = IG bit: Individual address (unicast)
    Type: ARP (0x0806)
     [Stream index: 1]
    Frame check sequence: 0x00000000 [unverified]
    [FCS Status: Unverified]
 Address Resolution Protocol (reply)
    Hardware type: Ethernet (1)
Protocol type: IPv4 (0x0800)
    Hardware size: 6
    Protocol size: 4
    Opcode: reply (2)
    Sender MAC address: Private_66:68:00 (00:50:79:66:68:00)
    Sender IP address: 192.168.0.20
    Target MAC address: Private_66:68:01 (00:50:79:66:68:01)
Target IP address: 192.168.0.10
Pyfh P yfh
                                                            Pvfh
```

После теста, проведенного выше, коммутатор в сети был заменен на маршрутизатор:

Сначала был настроен маршрутизатор R1. Для этого сначала с помощью команды «config» был запущен конфигурационный режим, с помощью «interface ...» был совершен переход в режим настройки соответствующего интерфейса. С помощью «ip address ...» установили соответствующему порту адрес, а благодаря «no shutdown» активируем данный интерфейс.

```
config interface FastEthernet0/0 ip address 192.168.1.1 255.255.255.0 no shutdown
```

```
exit
interface FastEthernet1/0
ip address 192.168.2.1 255.255.255.0
no shutdown
exit
```

На компьютерах же были установлены соответствующие IP-адреса и шлюзы:

```
PC1 console

ip 192.168.1.10/24 192.168.1.1

PC1> ip 192.168.1.10/24 192.168.1.1

Checking for duplicate address...
PC1: 192.168.1.10 255.255.255.0 gateway 192.168.1.1

PC2 console

ip 192.168.2.10/24 192.168.2.1

PC2> ip 192.168.2.10/24 192.168.2.1

Checking for duplicate address...
PC2: 192.168.2.10 255.255.255.0 gateway 192.168.2.1

PC2> |
```

После настройки было проверено соединение между PC1 и PC2 посредством команды «ping»:

```
PC1 console
ping 192.168.2.10
```

Стоит отметить, что на скриншоте ниже представлен результат уже второго выполнения данной команды:

```
PC1> ping 192.168.2.10

84 bytes from 192.168.2.10 icmp_seq=1 ttl=63 time=14.904 ms
84 bytes from 192.168.2.10 icmp_seq=2 ttl=63 time=47.702 ms
84 bytes from 192.168.2.10 icmp_seq=3 ttl=63 time=18.473 ms
84 bytes from 192.168.2.10 icmp_seq=4 ttl=63 time=17.766 ms
84 bytes from 192.168.2.10 icmp_seq=5 ttl=63 time=18.195 ms
```

Ниже представлены скриншоты перехваченного трафика.

PC1 ⇔ R1:

ar	p icmp				
No.	Time	Source	Destination	Protocol I	Length Info
	2 0.000039	cc:01:58:9b:00:00	Broadcast	ARP	60 Gratuitous ARP for 192.168.1.1 (Reply)
	3 0.000044	cc:01:58:9b:00:00	Broadcast	ARP	60 Gratuitous ARP for 192.168.1.1 (Reply)
	10 44.935707	Private_66:68:01	Broadcast	ARP	64 Gratuitous ARP for 192.168.1.10 (Request)
	12 45.936343	Private_66:68:01	Broadcast	ARP	64 Gratuitous ARP for 192.168.1.10 (Request)
	13 46.937242	Private_66:68:01	Broadcast	ARP	64 Gratuitous ARP for 192.168.1.10 (Request)
	19 90.167729	192.168.1.10	192.168.2.10	ICMP	98 Echo (ping) request id=0x1388, seq=1/256, ttl=64 (no response found!)
	20 92.168845	192.168.1.10	192.168.2.10	ICMP	98 Echo (ping) request id=0x1588, seq=2/512, ttl=64 (no response found!)
	21 92.186624	cc:01:58:9b:00:00	Broadcast	ARP	60 Who has 192.168.1.10? Tell 192.168.1.1
	22 92.186708	Private_66:68:01	cc:01:58:9b:00:00	ARP	60 192.168.1.10 is at 00:50:79:66:68:01
	23 94.169815	192.168.1.10	192.168.2.10	ICMP	98 Echo (ping) request id=0x1788, seq=3/768, ttl=64 (reply in 24)
	24 94.189930	192.168.2.10	192.168.1.10	ICMP	98 Echo (ping) reply id=0x1788, seq=3/768, ttl=63 (request in 23)
	25 95.191014	192.168.1.10	192.168.2.10	ICMP	98 Echo (ping) request id=0x1888, seq=4/1024, ttl=64 (reply in 26)
	26 95.208134	192.168.2.10	192.168.1.10	ICMP	98 Echo (ping) reply id=0x1888, seq=4/1024, ttl=63 (request in 25)
	27 96.209143	192.168.1.10	192.168.2.10	ICMP	98 Echo (ping) request id=0x1988, seq=5/1280, ttl=64 (reply in 28)
	28 96.224664	192.168.2.10	192.168.1.10	ICMP	98 Echo (ping) reply id=0x1988, seq=5/1280, ttl=63 (request in 27)
	30 99.983701	192.168.1.10	192.168.2.10	ICMP	98 Echo (ping) request id=0x1d88, seq=1/256, ttl=64 (reply in 31)
	31 99.994086	192.168.2.10	192.168.1.10	ICMP	98 Echo (ping) reply id=0x1d88, seq=1/256, ttl=63 (request in 30)
	32 100.994378	192.168.1.10	192.168.2.10	ICMP	98 Echo (ping) request id=0x1e88, seq=2/512, ttl=64 (reply in 33)
	33 101.012221	192.168.2.10	192.168.1.10	ICMP	98 Echo (ping) reply id=0x1e88, seq=2/512, ttl=63 (request in 32)
	34 102.012472	192.168.1.10	192.168.2.10	ICMP	98 Echo (ping) request id=0x1f88, seq=3/768, ttl=64 (reply in 35)
	35 102.030830	192.168.2.10	192.168.1.10	ICMP	98 Echo (ping) reply id=0x1f88, seq=3/768, ttl=63 (request in 34)
	36 103.031617	192.168.1.10	192.168.2.10	ICMP	98 Echo (ping) request id=0x2088, seq=4/1024, ttl=64 (reply in 37)
	37 103.049405	192.168.2.10	192.168.1.10	ICMP	98 Echo (ping) reply id=0x2088, seq=4/1024, ttl=63 (request in 36)
	38 104.049752	192.168.1.10	192.168.2.10	ICMP	98 Echo (ping) request id=0x2188, seq=5/1280, ttl=64 (reply in 39)
	39 104.067835	192.168.2.10	192.168.1.10	ICMP	98 Echo (ping) reply id=0x2188, seq=5/1280, ttl=63 (request in 38)

PC2 ⇔ R1:

о.	Time	Source	Destination	Protocol	Length Info
	2 0.010061	cc:01:58:9b:00:10	Broadcast	ARP	60 Gratuitous ARP for 192.168.2.1 (Reply)
	3 0.010085	cc:01:58:9b:00:10	Broadcast	ARP	60 Gratuitous ARP for 192.168.2.1 (Reply)
	9 38.180935	Private_66:68:00	Broadcast	ARP	64 Gratuitous ARP for 192.168.2.10 (Request)
	10 39.181788	Private_66:68:00	Broadcast	ARP	64 Gratuitous ARP for 192.168.2.10 (Request)
	11 40.181871	Private_66:68:00	Broadcast	ARP	64 Gratuitous ARP for 192.168.2.10 (Request)
	15 64.641801	cc:01:58:9b:00:10	Broadcast	ARP	60 Who has 192.168.2.10? Tell 192.168.2.1
	16 64.641904	Private_66:68:00	cc:01:58:9b:00:10	ARP	60 192.168.2.10 is at 00:50:79:66:68:00
	18 66.645783	192.168.1.10	192.168.2.10	ICMP	98 Echo (ping) request id=0x1588, seq=2/512, ttl=63 (reply in 19)
	19 66.645887	192.168.2.10	192.168.1.10	ICMP	98 Echo (ping) reply id=0x1588, seq=2/512, ttl=64 (request in 18)
	20 68.649129	192.168.1.10	192.168.2.10	ICMP	98 Echo (ping) request id=0x1788, seq=3/768, ttl=63 (reply in 21)
	21 68.649279	192.168.2.10	192.168.1.10	ICMP	98 Echo (ping) reply id=0x1788, seq=3/768, ttl=64 (request in 20)
	22 69.667238	192.168.1.10	192.168.2.10	ICMP	98 Echo (ping) request id=0x1888, seq=4/1024, ttl=63 (reply in 23)
	23 69.667376	192.168.2.10	192.168.1.10	ICMP	98 Echo (ping) reply id=0x1888, seq=4/1024, ttl=64 (request in 22
	24 70.683829	192.168.1.10	192.168.2.10	ICMP	98 Echo (ping) request id=0x1988, seq=5/1280, ttl=63 (reply in 25)
	25 70.683970	192.168.2.10	192.168.1.10	ICMP	98 Echo (ping) reply id=0x1988, seq=5/1280, ttl=64 (request in 24
	27 74.453218	192.168.1.10	192.168.2.10	ICMP	98 Echo (ping) request id=0x1d88, seq=1/256, ttl=63 (reply in 28)
	28 74.453394	192.168.2.10	192.168.1.10	ICMP	98 Echo (ping) reply id=0x1d88, seq=1/256, ttl=64 (request in 27)
	29 75.471338	192.168.1.10	192.168.2.10	ICMP	98 Echo (ping) request id=0x1e88, seq=2/512, ttl=63 (reply in 30)
	30 75.471499	192.168.2.10	192.168.1.10	ICMP	98 Echo (ping) reply id=0x1e88, seq=2/512, ttl=64 (request in 29)
	31 76.489948	192.168.1.10	192.168.2.10	ICMP	98 Echo (ping) request id=0x1f88, seq=3/768, ttl=63 (reply in 32)
	32 76.490081	192.168.2.10	192.168.1.10	ICMP	98 Echo (ping) reply id=0x1f88, seq=3/768, ttl=64 (request in 31)
	33 77.508529	192.168.1.10	192.168.2.10	ICMP	98 Echo (ping) request id=0x2088, seq=4/1024, ttl=63 (reply in 34)
	34 77.508634	192.168.2.10	192.168.1.10	ICMP	98 Echo (ping) reply id=0x2088, seq=4/1024, ttl=64 (request in 33
	35 78.526995	192.168.1.10	192.168.2.10	ICMP	98 Echo (ping) request id=0x2188, seq=5/1280, ttl=63 (reply in 36)
	36 78.527117	192.168.2.10	192.168.1.10	ICMP	98 Echo (ping) reply id=0x2188, seq=5/1280, ttl=64 (request in 35

Здесь:

ARP пакеты 2 и 3 отправляются для уведомления всей сети о том, что адреса 192.168.1.1 и 192.168.2.1 принадлежат маршрутизатору.

ARP пакеты 10, 11, 12, 13 используются для проверки конфликтов на этапе установки адресов для PC1 (192.168.1.10) и PC2 (192.168.2.10).

ARP пакеты 15, 16, 21, 22 аналогичны пакетам, разобранным в схеме с коммутатором. Они отправляются на этапе первого «ping».

Остальные ICMP пакеты являются ping запросами между PC1 и PC2. Здесь можно отметить пакеты 19 и 20, в которых ответ не был получен по причине того, что PC1 ещё не был известен MAC-адрес PC2.

Далее для примера был рассмотрен отдельно взятый ІСМР пакет:

```
Frame 23: 98 bytes on wire (784 bits), 98 bytes captured (784 bits) on interface -, id 0
Ethernet II, Src: Private_66:68:01 (00:50:79:66:68:01), Dst: cc:01:58:9b:00:00 (cc:01:58:9b:00:00)
Internet Protocol Version 4, Src: 192.168.1.10, Dst: 192.168.2.10
   0100 .... = Version: 4
  .... 0101 = Header Length: 20 bytes (5)
Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT)
   Total Length: 84
    Identification: 0x8815 (34837)
   000. .... = Flags: 0x0
...0 0000 0000 0000 = Fragment Offset: 0
    Protocol: ICMP (1)
    Header Checksum: 0x6e2f [validation disabled]
    [Header checksum status: Unverified]
    Source Address: 192.168.1.10
   Destination Address: 192.168.2.10
   [Stream index: 0]
Internet Control Message Protocol
    Type: 8 (Echo (ping) request)
   Code: 0
   Checksum: 0x0881 [correct]
    [Checksum Status: Good]
    Identifier (BE): 6024 (0x1788)
Identifier (LE): 34839 (0x8817)
    Sequence Number (BE): 3 (0x0003)
    Sequence Number (LE): 768 (0x0300)
   Data (56 bytes)
       Data: 08090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f
       [Length: 56]
```

```
cc 01 58 9b 00 00 00 50 79 66 68 01 08 00 45 00
     00 54 88 15 00 00 40 01 6e 2f c0 a8 01 0a c0 a8
    02 0a 08 00 08 81 17 88 00 03 08 09 0a 0b 0c 0d
0020
    0e 0f 10 11 12 13 14 15
0030
                              16 17 18 19 1a 1b 1c 1d
     1e 1f 20 21 22 23 24 25
0040
                              26 27 28 29 2a 2b 2c 2d
                                                           !"#$% &'()*+,
0050
     2e 2f 30 31 32 33 34 35
                              36 37 38 39 3a 3b 3c 3d
                                                         ./012345 6789:;<=
0060
     3e 3f
```

ІСМР пакет, в свою очередь, состоит из 98 байт.

Сначала идет 14 байт Ethernet заголовка:

6 байт МАС-адреса получателя;

6 байт МАС-адреса отправителя;

4 байта типа протокола (08 00 – IPv4);

Затем идет 20 байт ІР заголовка:

```
1 байт: 4 – тип протокола (IPv4), 5 – длина заголовка 20 байт;
```

- 1 байт приоритета (00 обычный приоритет);
- 2 байта длины пакета (0054 = 84 байта, включая данные);
- 2 байта с идентификатором пакета (88 15);
- 1 байт флагов (00);
- 1 байт, указывающий на фрагментирование пакета (00 пакет целый);
- 1 байт ttl (время жизни пакета в сети) (40 = 64 прохода);
- 1 байт протокола (01 ICMP);

- 2 байта контрольной суммы заголовка (6e 2f);
- 4 байта ІР-адреса отправителя;
- 4 байта ІР-адреса получателя;

После этого идет ІСМР заголовок (8 байт):

- 1 байт типа (08 Echo Request);
- 1 байт кода (00 для ping);
- 2 байта контрольной суммы ІСМР (08 81);
- 2 байта идентификатора (17 88);
- 2 байта номера последовательности (00 03);

В конце идет 48 байт, которые являются полезной нагрузкой.