

SP500

Optimizando Portafolios de Inversión

> Prof.: Dennys García Miguel Zamorano

Índice

ETL pipeline

Preprocesamiento

- Extracción
- Organización

Frontera Eficiente

- Construcción de Frontera Eficiente
 - P. Mínima varianza
 - P. MáximoSharp

NN

- a. Overview
- b. Trainer
- c. Métricas de Desempeño
- d. Visualizaciones
- e. Evaluación de la nn

Construyendo

La frontera eficiente

Pasos a seguir

- 1. Rendimientos diarios
- 2. Anualizarlos
- M de covarianza
- 4. calcular los portafolios de:
 - a. Min Varianza
 - b. Max Sharp
- 5. Calculamos betas
- 6. Calculamos beta ponderada

Cálculos Preliminares

Aplicar la teoría de Frontera Eficiente a sp500

primero se calculan los rendimientos diarios (o periódicos) y luego se anualizan.
 Cálculo de Rendimientos Diarios (Logarítmicos o Simples):
 Para un activo i, el rendimiento logarítmico rit

2. El rendimiento histórico promedio anualizado para un activo
$$i$$
 se calcula como el promedio de los rendimientos diarios, escalado por la frecuencia anual (por ejemplo, 252 días hábiles):

$$r_{i,t} = \ln \left(rac{P_{i,t}}{P_{i,t-1}}
ight)$$

$$\mu_i = r_{i,\mathrm{avg}} imes \mathrm{frequency}$$

$$S = \operatorname{cov}(R) \times \operatorname{frequency}$$

Markowitz y la Frontera Eficiente

 La frontera eficiente es el conjunto de portafolios que ofrecen el máximo rendimiento esperado para un nivel dado de riesgo, o el mínimo riesgo para un nivel dado de rendimiento.

Las cotas de nuestra frontera eficiente

2. Portafolio de Máximo Ratio de Sharpe (Maximum Sharpe Ratio Portfolio - MSR)

El objetivo del Portafolio de Máximo Ratio de Sharpe es encontrar la combinación de pesos que maximice el Ratio de Sharpe. El Ratio de Sharpe mide el exceso de rendimiento de un portafolio por unidad de riesgo (desviación estándar).

Fórmula del Ratio de Sharpe (SR_P) :

$$SR_P = \frac{\mu_P - r_f}{\sigma_P}$$

1. Portafolio de Mínima Varianza (Minimum Variance Portfolio - MVP)

El objetivo del Portafolio de Mínima Varianza es encontrar la combinación de pesos que minimice la varianza total del portafolio.

Las Betas

- · Comovimiento con el Mercado:
 - eta=1: El activo se mueve en la misma dirección y magnitud que el mercado.
 - $\beta > 1$: El activo es más volátil que el mercado (amplifica los movimientos del mercado). Se considera más riesgoso en términos sistemáticos.
 - $\beta < 1$: El activo es menos volátil que el mercado (amortigua los movimientos del mercado). Se considera menos riesgoso en términos sistemáticos.
 - $\beta = 0$: El activo no tiene correlación con los movimientos del mercado (teóricamente, como una cuenta de ahorros).

Gestión y Ajuste del Riesgo:

- Si un inversor cree que el mercado va a subir, podría aumentar la β_P de su portafolio invirtiendo más en activos con $\beta>1$.
- Si espera una caída del mercado, podría reducir la eta_P invirtiendo más en activos con eta<1 o incluso con eta<0 (si los encuentra).

Resultados

Portafolio de Máxima Sharpe

Retorno Esperado: 149.31%, Volatilidad: 32.76%, Sharpe: 4.56

Portafolio de Mínima Varianza

Retorno Esperado: 19.45%, Volatilidad: 15.41%, Sharpe: 1.26

Predicción

NN para predicción de sharpe ratio

NN

Parámetros

```
X= 'Riesgo (Volatilidad)',
'Retorno Esperado', 'Beta'
```

Y= 'Sharpe Ratio

tol=0.000100 for 20 consecutive epoch

Evaluación

📊 TABLA COMPLETA DE	MÉTRICAS
	Valor
MSE	0.0332
RMSE	0.1822
MAE	0.1014
R ²	0.9690
R ² Ajustado	0.9632
Varianza Explicada	0.9694
Error Máximo	0.6957
MAPE	0.0672
Correlación Spearman	0.9624
100	

Arquitectura

- 1. RELU
- 2. Capa de tamaño

Gracias por su atención :D