Tomasulo 算法模拟器使用方法

1. 设置指令和参数

本模拟器最多可以模拟 10 条指令。可以在"指令"区选择和设置所要的指令。"指令"区如图 1 所示。

L. D	~	F8	~	21	~	R3	~
L. D	~	F4	~	16	~	R4	~
MULT. D	~	F2	×	F4	~	F6	×
SVB. D	~	F10	~	F8	~	F4	~
DIV. D	~	F12	~	F2	~	F8	~
ADD. D	~	F8	~	F10	×	F4	~
NOP	~	Null	~	Null	~	Null	~
NOP	~	Null	*	Null	~	Null	~
NOP	~	Null	~	Null	~	Null	~
NOP	~	Null	v	Null	~	Null	v

图 1 "指令"区

你可以从下拉框中选择指令,供选择的指令有以下5种:

- (1) L.D 指令: 从主存读取一个双精度浮点数;
- (2) ADD.D: 双精度浮点加法指令;
- (3) SUB.D: 双精度浮点减法指令;
- (4) MULT.D: 双精度浮点乘法指令;
- (5) DIV.D: 双精度浮点除法指令。

指令的各参数也可以从各自的下拉框中选择。

你还可以在窗口的右上区域设置各部件的执行时间 (时钟周期数),如图 2 所示。

图 2 设置功能部件时间

其中"复位"的作用是使所有设置恢复为默认值。

2. 执行

点击"执行"按钮,就进入执行状态。你可以用中间的按钮来控制指令的执行,包括"步进"、"退1步"、"前进5个周期"、"后退5个周期"、"执行到底"、"退出"等。还可以用"go"按钮直接跳转到你所指定的时钟周期。如果想修改被执行的代码,按"退出"按钮,即可回到设置指令和参数页面。

向前执行后,状态表中抹色的字段表示其内容发生了变化。

3. 对比状态表

每一个状态表的右上角外侧都有一个小三角,用鼠标左键点击它,会弹出该表在上一个时钟周期的内容。这是为了让你通过对比来了解哪些内容发生了变化。在弹出表以外的区域再次点击鼠标,就可以将其收回。

4. 各个表的内容

(1) 指令状态表

指令状态表如图 5.3 所示。它列出了各指令什么时候执行到了哪一步。其中的数字表示时钟周期, ""表示时钟周期期间。例如,图 3 中的 2³ 表示在第 2 到第 3 个时钟周期(含第 3 个),第一条 L.D 指令是在"执行"这一步。

指令	流出	执行	写结果
L.D F8, 21 (R3)	1	2~3	
L. D F4, 16 (R4)	2	3~	
MULT.D F2, F4, F6	3		
SUB.D F10, F8, F4			
DIV.D F12,F2,F8			
ADD.D F8,F10,F4	1		
Material statures alla kommente			

图 3 指令状态表

其中抹色的区域表示最近一个时钟周期其内容发生了变化。下同。

(2) 保留站

保留站的内容如图 4 所示。

Time	名称	Busy	0p	Vj	Vk	Qj	Qk
	Add1	No	3				
	Add2	No					
	Add3	No					
	Mult1	No					
	Mult2	No					

图 4 保留站

其中各字段的名称和含义如下:

Time:表示相应的保留站还有要执行多少个时钟周期;

名称:保留站的名称。用于唯一地标识相应的保留站;

Op: 要对源操作数进行的操作;

Qj, Qk: 将产生源操作数的保留名称。等于 0 表示操作数已经就绪且在 Vj 或 Vk 中, 或者不需要操作数。

Vj, Vk: 源操作数的值。对于每一个操作数来说, V 或 Q 字段只有一个有效。

Busy: 为"Yes"表示该保留站 "忙"。

(3) Load 部件

Load 部件的内容如图 5 所示。它按队列方式工作,每次处理新的访存都是从队列头部取走一条。

名称	Busy	地址	值	
Load1	Yes	21		
Load2	No			
Load3	No			

图 5 Load 部件

其中各字段的含义如下:

名称: 相应单元的名称 (标识);

Busy: "忙"标志, 为"Yes"表示已被占用;

地址: 访存的有效地址;

值: 存放从存储器读来的数据。

(4) 寄存器

寄存器的内容如图 6 所示。

字段	FO	F2	F4	F6	F8	F10	F12	F14	F16	F18
Qi					Loadl					13

图 6 寄存器的内容

该缓冲器各字段的含义如下:

Qi:寄存器状态,用于存放将把结果写入该寄存器的保留站的站号。为 0 表示当前没有正在执行的指令要写入该寄存器,也即该寄存器中的内容就绪。

值:寄存器的值。

当上述表中的内容写不下时,模拟器会采用缩写的方法。这时,在上面中间的区域中会显示缩写及其值。