min
$$S(x) \in S: X \rightarrow \mathbb{R}$$

 $x \in X \in X$
 $g_i(x) \in O$ $i = 1... m$
 $h_j(x) = O$ $j = 1... m$
 $h_j(x) = O$ $j = 1... m$

Opany

Примеры оракулов

- Оракул нулевого порядка в запрашиваемой точке x возвращает значение целевой функции f(x).
- Оракул первого порядка в запрашиваемой точке возвращает значение функции f(x) и её градиент в данной точке $\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \dots, \frac{\partial f(x)}{\partial x_n}\right)$.
- Оракул второго порядка в запрашиваемой точке возвращает значение и градиент функции $f(x), \nabla f(x)$, а также её гессиан в данной точке $\left(\nabla^2 f(x)\right)_{ii} = \frac{\partial^2 f(x)}{\partial x_i \partial x_i}$.

Carryrayne nemoje onnungazin

Входные данные: начальная точка x^0 (0 — верхний индекс), требуемая точность решения задачи $\varepsilon>0$.

Настройка. Задать k=0 (счётчик итераций) и $I_{-1}=\varnothing$ (накапливаемая информационная модель решаемой задачи).

Основной цикл

- $oldsymbol{0}$ Задать вопрос к оракулу $\mathcal O$ в точке x^k .
- $m{2}$ Пересчитать информационную модель: $I_k = I_{k-1} \cup (x^k, \mathcal{O}(x^k))$. $m{r}$
- f 3 Применить правило метода ${\cal M}$ для получения новой точки x^{k+1} по модели I_k .
- **4** Проверить критерий остановки $\mathcal{T}_{\varepsilon}$. Если критерий выполнен, то выдать ответ \bar{x} , иначе положить k:=k+1 и вернуться на шаг 1.

ysomone

Алгоритм 1 Градиентный спуск с постоянным размером шага

Вход: размер шага $\gamma > 0$, стартовая точка $x^0 \in \mathbb{R}^d$, количество итераций K

- 1: for k = 0, 1, ..., K 1 do
- Вычислить $\nabla f(x^k)$
- $x^{k+1} = x^k \gamma \nabla f(x^k)$
- 4: end for

Выход: x^K

Muniqui ocmanoba:

• no apryvermy: ||x (- x * ||, ≤ €

 $\| \times^{k+1} - \times^{k} \| = \| \times^{k+1} - \times^{k} - \times^{k} + \times^{k} \|$

musio 6 odner = ||x(+1-x*|| + ||x(-x*||)
tra marriage

1(x -x * | -> 0

I E munch, me no apprening oney. hem

• no gynngun:
$$f(x^{(i)}) - f^* \leq \varepsilon$$

nin $f(x)$

$$\xi(x^{(i+1)}) - \xi(x^k) \in \varepsilon$$

no magnerning: || 85(x/c) || < E

Crommont Memoga

- · Magazuonnu cromerno ruero comenquia que gormaneme mornema E em nuevo
- · Opengrow cumment rune Epassemin L' opengrey gu grammen m. E. = xoponum
- Aprignen. cromword (bjenesser) ver-læ combregners crepenzer god goem. m. € € saponim

Evenurent nemez gid vanagementer vraccol

K = S(x) K = S(x) S(x) = S(x) = S(x) $S(x) - luminisele C verm. M
<math display="block">S(x) = S(x) - S(y) = M \max_{i=1...d} |x_i - y_i|$ $S(x) - S(y) = M \max_{i=1...d} |x_i - y_i|$ $S(x) - S(y) = M \max_{i=1...d} |x_i - y_i|$ $S(x) - S(y) = M \max_{i=1...d} |x_i - y_i|$

prace nemog: jugueboro nopregne yero: $f(x) - 5^* \le E$

Алгоритм 2 Метод равномерного перебора

Вход: целочисленный параметр перебора $p \ge 1$

- 1: Сформировать $(p+1)^d$ точек вида $x_{(i_1,...,i_d)} = \left(\frac{i_1}{p},\frac{i_2}{p},\dots,\frac{i_d}{p}\right)^{ op}$, где $(i_1,\ldots,i_d) \in \{0,1,\ldots,p\}^d$
- 2: Среди точек $x_{(i_1,\ldots,i_d)}$ найти точку $ar{x}$ с наименьшим значением целевой функции f.

Выход: $\bar{x}, f(\bar{x})$

Теорема 1

Алгоритм 2 с параметром p возвращает такую точку \bar{x} , что

$$f(\bar{x})-f^*\leq \frac{M}{2p},$$

откуда следует, что методу равномерного перебора нужно в худшем случае

$$\left(\left\lfloor\frac{M}{2\varepsilon}\right\rfloor+2\right)^d$$

обращений к оракулу, чтобы гарантировать $f(\bar{x}) - f^* \leq \varepsilon$.

$$M=2$$
 $\varepsilon=0,01$ $d=13$

 $\left(\frac{M}{2E}+2\right)^{d} \approx 10^{26}$ by both orange of any contract

Теорема 2

Пусть $\varepsilon < \frac{M}{2}$. Тогда аналитическая сложность описанного класса задач, т.е. аналитическая сложность метода на «худшей» для него задаче из данного класса, составляет по крайней мере

$$\left(\left\lfloor \frac{M}{2arepsilon}
ight
floor$$
 вызовов оракула.

Nogangion log.

