General Physics 2 | 3rd Quarter

WW4: Series-Parallel Circuits

February 9 2022

A. Given:

- $V_T = 24 V$
- $R_1 = 4\Omega$
- $R_2 = 6 \Omega$
- $R_3 = 4\Omega$
- $R_4 = 6 \Omega$
- $R_5 = 4\Omega$

Find:

- \bullet R_T
- \bullet I_T
- I_1, \dots, I_5
- V_1, \dots, V_5

Answers:

•
$$R_T = \frac{84}{41}\Omega$$

•
$$V_1, V_2 = 24 V$$

•
$$V_3 = \frac{48}{7}V$$

•
$$V_4 = \frac{72}{7}V$$

•
$$V_5 = \frac{48}{7}V$$

•
$$I_T = \frac{82}{7}A$$

•
$$I_1 = 6A$$

•
$$I_2 = 4A$$

•
$$I_2 = 4 A$$

• $I_3, I_4, I_5 = \frac{12}{7} A$

B. Given:

•
$$V_T = 10V$$

•
$$R_1 = 3\Omega$$

•
$$R_2 = 4\Omega$$

•
$$R_3 = 2 \Omega$$

•
$$R_4 = 2\Omega$$

•
$$R_5 = 4\Omega$$

•
$$R_6 = 4\Omega$$

Find:

$$\bullet$$
 R_T

$$\bullet$$
 I_T

•
$$I_1, \dots, I_6$$

•
$$V_1, \dots, V_6$$

Answers:

•
$$R_T = \frac{26}{8} \Omega$$

$$V_1 = \frac{45}{13}V$$

•
$$V_2 = \frac{60}{13}V$$

•
$$V_3 = \frac{25}{13}V$$

•
$$V_4 = \frac{5}{13}V$$

•
$$V_5, V_6 = \frac{10}{13}V$$

•
$$I_1, I_2 = \frac{15}{13}A$$

•
$$I_3 = \frac{25}{26}A$$

•
$$I_4, I_5, I_6 = \frac{5}{26}A$$

$$\bullet I_T = \frac{15}{13} A$$