Министерство образования и науки Российской Федерации федеральное государственное автономное образовательное учреждение высшего образования

«САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО»

Факультет среднего профессионального образования

ОТЧЁТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ № 4

по теме: Построение реляционной модели БД с использованием метода нормальных форм по дисциплине: Основы проектирования баз данных

Специальность 09.02.07 Информационные системы и программирование

Проверил:		Выполнил:
Говоров А.И.		студент группы Ү2436
 Дата: «»	2020г.	Сердюк Г.А.
Оценка		

ЦЕЛЬ РАБОТЫ

Цель практической работы №4: овладеть практическими навыками построения реляционной модели базы данных методом нормальных форм.

ЗАДАНИЕ

- 1. Выполнить проектирование схемы реляционной БД (согласно индивидуальному заданию) методом нормальных форм.
- 2. Провести сравнительный анализ построенной схемы БД и схемы физической модели (Phisycal Model) БД, спроектированной с использованием CA Erwin Data Modeler (ЛР №3).

ХОД РАБОТЫ

1. Схема реляционной БД методом нормальных форм представлена на рисунке №1.

Рисунок 1 — Схема реляционной БД методом нормальных форм

2. Схема физической модели БД, спроектированной с использованием CA Erwin Data Modeler представлена на рисунке №2.

Рисунок 2 — Схема физической модели БД

3. Список функциональных зависимостей представлен на рисунках 3 и 4.

	Основной	Зависимый
1	Номер_соревнования	ID_собаки
2	Номер_соревнования	ID_участника
3	Номер_соревнования	ID_эксперта
4	ID_эксперта Номер_соревнования ID_собаки	Балл
5	ID_участника ID_собаки	Возраст
6	Номер_соревнования	Время_проведения
7	Номер_документа	Данные_собаки
8	Номер_документа	Дата_посл_прививки
9	Номер_соревнования ID_спонсора	Дата_проведения
10	ID_участника ID_собаки	Допуск_к_соревнован
11	Номер_документа	Классность
12	Номер_документа	Кличка_матери
13	Номер_документа	Кличка_отца
14	ID_участника ID_собаки	Название_клуба
15	ID_участника ID_собаки	Номер_документа
16	ID_эксперта	Номер_клуба

Рисунок 3 — Схема функциональных зависимостей БД (1 часть)

17	Номер_соревнования	Номер_ринга
18	ID_участника ID_собаки	Порода
19	ID_участника Номер_соревнования ID_собаки	Проверка_чека
20	ID_эксперта	Ринг_обслуживания
21	ID_спонсора	Сумма_спонсировани
22	ID_участника	ФИО_участника
23	ID_эксперта Номер_соревнования ID_собаки	Этап

Рисунок 4 — Схема функциональных зависимостей БД (2 часть)

4. Составным ключом УО является следующий набор атрибутов:

- а. ID_участника
- b. ID_собаки
- с. ID_эксперта
- d. ID_спонсора
- е. Номер_документа
- f. Номер_соревнования

вывод

Реляционная БД объединяет наборы однотипных записей, описываемых с помощью двумерных таблиц. В правильно построенной реляционной базе данных в каждой таблице есть один или несколько столбцов, значения в которых во всех строках разные. Реляционная таблица состоит из строк (записей) и столбцов (полей) и имеет уникальное имя внутри базы.

Таблица отражает сущность (класс объектов) реального мира, а каждая ее строка — конкретный экземпляр этой сущности. Инфологическая модель предметной области отражает предметную область в виде совокупности информационных объектов и их структурных связей.