APPLICAZIONI INDUSTRIALI ELETTRICHE ED ELETTRONICA (MODULO 2)

kanopo

2022

Indice

1	Intr	roduzione all'elettronica	
	1.1	Trasduttori	
	1.2	Digitale vs analogico	
	1.3	Analogico vs digitale	
	1.4	ADC(Convertitore analogico digitale)	
	1.5	DAC(convertitore digitale analogico)	
2	Sen	niconduttori	
	2.1	Caratteristiche	
	2.2	Drogaggio di un semiconduttore	
	2.3	Correnti di "drift"	
	2.4	Diffusione	
3	Dio	odo	
	3.1	Diodo a giunzione PN	
	3.2	Diodo polarizzato in diretta	
	3.3	Diodo polaizzato in inversa	
		3.3.1 Breakdown a valanga	
4	вјт	BJT(Transistore bipolare a giunzione)	
	4.1	Zone di funzionamento	
		4.1.1 Zona attiva diretta	
		4.1.2 Zona di saturazione	
5	da ı	riguardare il BJT per gli esercizi	
6	Tra	ansistor MOSFET(Metal-Oxide Semiconductor Field Effect Transistor)	
	6.1	Capacità MOS: accumulazione	
	6.2	Capacità MOS: svuotamento	
\mathbf{E}	len	co delle figure	
	1	Diodo BJT	
	2	Funzionamento BJT	
	3	MOSFET	
	3 4	MOS accumulazione	
	5		
	O .	MOS svuotamento	

Elenco delle tabelle

1 Introduzione all'elettronica

1.1 Trasduttori

I trasduttori sono dispositivi che mettono in contatto la realtà e l'elettonica. ne esistono di due famiglie:

- sensori
- trasduttori

I sensori trasformano grandezze fisiche in elettriche, mentre i trasduttori utilizzano le grandezze elettriche per trasformarle in grandezze fisiche.

1.2 Digitale vs analogico

- grande potenza di calcolo ed eleaborazione del segnale
- maggior robustezza ai disturbi
- minor sensibilità alla temperatura

1.3 Analogico vs digitale

- in natura le grandezze fisiche sono descrivibili come segnali analogici
- sensori e attuatori
- per la conversione da analogico a digitale e viceversa, si usano circuiti DAC e ADC

1.4 ADC(Convertitore analogico digitale)

- viene fissata la tensione di fondo scala (V_{fs})
- la tensione d'ingresso analogica viene convertita nel valore più vicino numero a n-bit
- maggiore è il numero di bit usati per la conversione e maggiore è la precisione del ADC(si perdono meno informazioni nella conversione)(minor errore di quantizzazione).

1.5 DAC(convertitore digitale analogico)

la tensione in uscita è:

$$V_O = (\sum_{n=0}^{+\infty} b_n 2^{-n}) V_{fs}$$

$$V_O = (b_1 2^{-1} + b_2 2^{-2} + \dots + b_n 2^{-n}) V_{fs}$$

Scritto in due maniere (sero uguali)

2 Semiconduttori

2.1 Caratteristiche

- Resistività (ρ) intermedia tra isolanti e conduttori
- $\bullet\,$ possibilità di variare ρ mediante il drogaggio
- due portatori di carica(elettroni e lacune)

2.2 Drogaggio di un semiconduttore

Sostanzialmente si mettono atomi di diverso tipo nel composto che va a formare il semiconduttore finale. Quando parliamo di silicio, distinguiamo silicio-p e silicio-n.

- droganti di tipo n: elementi del 5 gruppo(5 elettroni esterni o di valenza)
- droganti di tipo p: 3 elettroni di valenza

Nei composti drogati di tipo n, si forma un atomo libero di muoversi e nei composti di tipo p si ha una mancanza di un atomo (quidni una lacuna).

2.3 Correnti di "drift"

Per campi elettrici moderati esiste una relazione lineare tra intensità del campo e velocità media dei portatori di carica.

Ci sono materiali con un'alta mobilità delle cariche(μ).

La corrente di drifpt penso sia legata alla conducibilità del materiale.

2.4 Diffusione

Simile ai gas, i semiconduttori cercano di avere un equilibrio di cariche al propro interno.

3 Diodo

3.1 Diodo a giunzione PN

Il diodo è formato da due parti, una parte drogata di tipo p e una drogata di tipo n.

Questa costruzione forma ua forza che impedisce il passaggio di cariche nei diodi perchè si oppone a quello che dovrebbe essere il normale fluire delle cariche avendo una parte positiva e una negativa.

Fra la parte P e quella N si trova la "regione svuotata".

3.2 Diodo polarizzato in diretta

la tensione applicata dall'esterno si localiza tutta ai capi della regione svuotata, la corrente di diffusione prevade su quella di drift e c'è il passaggio delle cariche.

Tendenzialmente la tensione da vincere per permettere il fluire della corrente è di $V_T = 0.7V$ ma varia in base ai materiali impiegati e alle temperature.

3.3 Diodo polaizzato in inversa

La barrriera di potenziale si alza un **botto**.

Per correnti molto la giunzione funziona come interruttore aperto, però se si continua ad aumentare la corrente si incombe nella corrente di breakdown.

3.3.1 Breakdown a valanga

- vengono iniettati elettroni nella regione svuotata
- forte campo elettrico nella regione svuotata
- l'elettrone acquista elevata forza cinetica
- collisione con atomo nel reticolo
- un'elettrone dell'atomo si libera e applica energia ad altri legami
- si crea una valanga dove esplode tutto
- il diodo è cafuddato

4 BJT(Transistore bipolare a giunzione)

Il BJT è un tripolo(diodo a tre terminazioni):

- \bullet collettore
- base
- emettitore

Figura 1: Diodo BJT

4.1 Zone di funzionamento

Figura 2: Funzionamento BJT

4.1.1 Zona attiva diretta

la corrente di base(di solito piccola) funge da controllo rispetto alla corrente (solitamente enorme) sul collettore.

4.1.2 Zona di saturazione

In questo caso la base funge da interruttore, o passa 0 corrente o passa tutta la corrente tra collettore ed emettitore.

5 da riguardare il BJT per gli esercizi

6 Transistor MOSFET (Metal-Oxide Semiconductor Field Effect Transistor)

Figura 3: MOSFET

6.1 Capacità MOS: accumulazione

Figura 4: MOS accumulazione

L'accumulazione è l'aumento di concentrazione di lacune sotto l'ossido del gate.

6.2 Capacità MOS: svuotamento

Figura 5: MOS svuotamento

Le lacune vengono allontanate dal campo elettrico e viene creata una zona svuotata sotto l'ossido del gate.