Домашнее задание 2: ТФКП

Задача 1. Найти все значения корня

1.1.
$$\sqrt[4]{-1}$$

1.11.
$$\sqrt[3]{8}$$

1.21.
$$\sqrt[4]{1/16}$$

1.2.
$$\sqrt[4]{\frac{-1+i\sqrt{3}}{2}}$$

1.12.
$$\sqrt[3]{8i}$$

1.22.
$$\sqrt[4]{-8-i8\sqrt{3}}$$

1.3.
$$\sqrt[3]{1}$$

1.13.
$$\sqrt[4]{16}$$

1.23.
$$\sqrt[3]{-1/8}$$

1.4.
$$\sqrt[3]{i}$$

1.14.
$$\sqrt[4]{\frac{-1-i\sqrt{3}}{32}}$$

1.24.
$$\sqrt[3]{-i/8}$$

1.5.
$$\sqrt[4]{1}$$

1.15.
$$\sqrt[3]{-8}$$

1.25.
$$\sqrt[4]{-128+i128\sqrt{3}}$$

1.6.
$$\sqrt[4]{\frac{-1-i\sqrt{3}}{2}}$$

1.16.
$$\sqrt[3]{-8i}$$

1.26.
$$\sqrt[3]{27}$$

1.7.
$$\sqrt[3]{-1}$$

1.17.
$$\sqrt[4]{-1/16}$$

1.27.
$$\sqrt[4]{1/256}$$

1.8.
$$\sqrt[3]{-i}$$

1.18.
$$\sqrt[4]{-8+i8\sqrt{3}}$$

1.28.
$$\sqrt[4]{-128-i128\sqrt{3}}$$

1.9.
$$\sqrt[4]{-16}$$
 1.19. $\sqrt[3]{1/8}$

1.19.
$$\sqrt[3]{1/8}$$

1.29.
$$\sqrt[3]{i/27}$$

1.10.
$$\sqrt[4]{(1+i\sqrt{3})/32}$$
 1.20. $\sqrt[3]{i/8}$

1.20.
$$\sqrt[3]{i/8}$$

1.30.
$$\sqrt[4]{256}$$

1.31.
$$\sqrt[3]{-27i}$$

Задача 2. Представить в алгебраической форме

2.1.
$$\sin(\pi/4+2i)$$

2.6.
$$Ln(1+i)$$

2.11.
$$ch(1-\pi i)$$

2.2.
$$\cos(\pi/6 + 2i)$$

2.7.
$$\sin(\pi/3+i)$$

2.12. Ln(
$$1+\sqrt{3}i$$
)

2.8.
$$\cos(\pi/4 + i)$$

2.13.
$$Ln(-1+i)$$

2.4.
$$sh(2 + \pi i/4)$$

2.9.
$$\text{Ln}(\sqrt{3}+i)$$

2.14.
$$\cos(\pi/4 - 2i)$$

2.5.
$$ch(2 + \pi i / 2)$$

2.10.
$$sh(1 + \pi i / 2)$$

1

2.15.
$$\sin(\pi/2-5i)$$

2.16.
$$sh(3 + \pi i / 6)$$

2.21.
$$Ln(1-i)$$

2.26.
$$\cos(\pi/6 - i)$$

2.17.
$$ch(1 + \pi i / 3)$$

2.22.
$$ch(1 - \pi i / 3)$$

2.27.
$$i^{3i}$$

2.18.
$$Ln(-1-i)$$

2.23.
$$ch(2 - \pi i / 6)$$

2.28.
$$sh(2-\pi i)$$

2.19.
$$\sin(\pi/6-3i)$$

2.29.
$$(-i)^{5i}$$

2.20.
$$\cos(\pi/3 + 3i)$$

2.25.
$$\sin(\pi/3-2i)$$

2.30.
$$(-1)^{4i}$$

2.31.
$$ch(3 + \pi i / 4)$$

Задача 3. Представить в алгебраической форме

3.1.
$$\left(-1+i\sqrt{3}\right)^{-3i}$$

3.2. Arcsin 4

3.4. Arctg
$$\left(\frac{-2\sqrt{3}+3i}{3}\right)$$
 3.5. Arcth $\left(\frac{3-4i}{5}\right)$

3.5. Arcth
$$\left(\frac{3-4i}{5}\right)$$

3.6. Arcctg
$$\left(\frac{4+3i}{5}\right)$$

3.7. Arth
$$\left(\frac{3+i2\sqrt{3}}{3}\right)$$
 3.8. $\cos\left(\frac{\pi}{2}-i\right)$

3.8.
$$\cos\left(\frac{\pi}{2}-i\right)$$

3.9.
$$\operatorname{sh}\left(1-\frac{\pi}{2}i\right)$$

3.10.
$$(-1-i)^{4i}$$

3.11.
$$\sin(\pi/4+i)$$

3.13. Arctg
$$\left(\frac{3+4i}{5}\right)$$

3.14. Arcth
$$\left(\frac{8+i3\sqrt{3}}{7}\right)$$
 3.15. Arctg $\left(\frac{3\sqrt{3}-8i}{7}\right)$

3.15. Arctg
$$\left(\frac{3\sqrt{3}-8i}{7}\right)$$

3.16. Arth
$$\left(\frac{4-3i}{5}\right)$$

3.17. Arctg
$$\left(\frac{-2\sqrt{3}+3i}{7}\right)$$
 3.18. Arcth $\left(\frac{3-i2\sqrt{3}}{7}\right)$

3.18. Arcth
$$\left(\frac{3-i2\sqrt{3}}{7}\right)$$

3.21.
$$\left(-\sqrt{3}+i\right)^{-6i}$$

$$3.22. \quad \omega = \sin\frac{i}{z}$$

3.23.
$$\omega = e^{\frac{1}{z}}$$
при $z = \frac{4 + 2\pi i}{\pi^2 + 4}$

3.24. Arcctg
$$\left(\frac{2\sqrt{3}+3i}{7}\right)$$

при
$$z = \frac{8 + 2\pi i}{\pi^2 + 16}$$

3.25. Arth
$$\left(\frac{3+i2\sqrt{3}}{7}\right)$$
 3.26. Arcth $\left(\frac{4+3i}{5}\right)$ 3.27. $\omega = \text{ch } iz$ при $z = \pi / 4 + 2i$

3.26. Arcth
$$\left(\frac{4+3i}{5}\right)$$

3.27.
$$\omega = \text{ch } iz$$

при $z = \pi / 4 + 2i$

3.28. Arctg
$$\left(\frac{3\sqrt{3}+8i}{7}\right)$$
 3.29. Arccos(-3i) **3.30.** $(4-3i)^i$

3.29.
$$Arccos(-3i)$$

3.30.
$$(4-3i)^i$$

3.31.
$$(-12+5i)^{-i}$$

Задача 4. Вычертить область, заданную неравенствами

4.1.
$$|z-1| \le 1$$
, $|z+1| > 2$

4.2.
$$|z+i| \ge 1$$
, $|z| < 2$

4.3.
$$|z-i| \le 2$$
, Re $z > 1$

4.4.
$$|z+1| \ge 1$$
, $|z+i| < 1$

4.5.
$$|z+1| < 1$$
, $|z-i| \le 1$

4.6.
$$|z+i| \le 2, |z-i| > 2$$

4.7.
$$|z-1-i| \le 1$$
, $\text{Im } z > 1$, $\text{Re } z \ge 1$

4.8.
$$|z-1+i| \ge 1$$
, Re $z < 1$, Im $z \le -1$

4.9.
$$|z-2-i| \le 2$$
, Re $z \ge 3$, Im $z < 1$

4.10.
$$|z-1-i| \ge 1$$
, $0 \le \text{Re } z < 2$, $0 < \text{Im } z \le 2$

4.11.
$$|z+i| < 2$$
, $0 < \text{Re } z \le 1$

4.12.
$$|z-i| \le 1, 0 < \arg z < \pi/4$$

4.13.
$$|z-i| \le 2, 0 < \text{Im } z < 2$$

4.14.
$$|z+i| > 1, -\pi/4 \le \arg z < 0$$

4.15.
$$|z-1-i| < 1$$
, $|\arg z| \le \pi/4$

4.16.
$$|z| < 2$$
, $-\pi/4 \le \arg(z-1) \le \pi/4$ **4.17.** $|z| \le 1$, $\arg(z+i) > \pi/4$

4.17.
$$|z| \le 1$$
, $\arg(z+i) > \pi/4$

4.18.
$$1 < |z-1| \le 2$$
, $\text{Im } z \ge 0$, $\text{Re } z < 1$

4.19.
$$1 \le |z-i| < 2$$
, Re $z \le 0$, Im $z > 1$

4.20.
$$|z| < 2$$
, Re $z \ge 1$, arg $z < \pi / 4$

4.21.
$$|z| > 1$$
, $-1 < \text{Im } z \le 1$, $0 < \text{Re } z \le 2$

4.22.
$$|z-1| > 1$$
, $-1 \le \text{Im } z < 0$, $0 \le \text{Re } z < 3$

4.23.
$$|z+i| < 1, -3\pi/4 \le \arg z \le -\pi/4$$

4.24.
$$|z-i| \le 1$$
, $-\pi/2 < \arg(z-i) < \pi/4$

4.25.
$$z\overline{z} \le 2$$
, Re $z \le 1$, Im $z > -1$

4.26.
$$z\overline{z} \le 2$$
, Re $z < 1$, Im $z > -1$

4.27.
$$1 < z\overline{z} \le 2$$
, Re $z > 0$, $0 \le \text{Im } z \le 1$

4.31.
$$|\operatorname{Re} z| \le 1$$
, $|\operatorname{Im} z| < 2$

4.28.
$$|z-1|<1$$
, arg $z \le \pi/4$, arg $(z-1) > \pi/4$

4.29.
$$|z-i| < 1$$
, arg $z \ge \pi/4$, arg $(z+1-i) \le \pi/4$

4.30.
$$|z-2-i| \ge 1, 1 \le \text{Re } z < 3, 0 < \text{Im } z \le 3$$

Задача 5. Определить вид кривой

5.1.
$$z = (3 + i2\sin t)/\cos t$$

5.3.
$$z = (-1 + i3\sin t)/\cos t$$

5.5.
$$z = (3\sin t + 4i)/\cos t$$

5.7.
$$z = (3 + i3\cos t) / \sin t$$

5.9.
$$z = (\cos t - 2i) / \sin t$$

5.11.
$$z = 3\text{ch}2t + i2\text{sh}2t$$

5.13.
$$z = 5 \sinh 4t + i 4 \cosh 4t$$

5.15.
$$z = \frac{2}{\cosh 2t} + i4 \cosh 2t$$

5.17.
$$z = \text{th}5t + \frac{5i}{\text{ch}5t}$$

5.19.
$$z = 2e^{it} + \frac{1}{2e^{it}}$$

5.21.
$$z = -2e^{it} + \frac{1}{e^{it}}$$

5.23.
$$z = \frac{1+t}{1-t} + i\frac{2+t}{2-t}$$

5.2.
$$z = (2 - i3\sin t)/\cos t$$

5.4.
$$z = (4\sin t - 3i)/\cos t$$

5.6.
$$z = (-4\sin t - 2i)/\cos t$$

5.8.
$$z = (4 - i2\cos t) / \sin t$$

5.10.
$$z = (-\cos t + 3i) / \sin t$$

5.12.
$$z = 2 \cosh 3t - i 3 \sinh 3t$$

5.14.
$$z = -4 \sinh 5t - i 5 \cosh 5t$$

5.16.
$$z = \frac{4}{\cosh 4t} + i2 \sinh 4t$$

5.18.
$$z = \frac{1}{\sinh t} - i \coth t$$

5.20.
$$z = 3e^{it} - \frac{1}{2e^{it}}$$

5.22.
$$z = 2e^{it} - \frac{1}{2e^{it}}$$

5.24.
$$z = \frac{t-1+it}{t(t-1)}$$

5.25.
$$z = \frac{1+t}{1-t} + \frac{t}{1-t}(2-4i)$$

5.26.
$$z = \frac{2+t}{2-t} + i\frac{1+t}{1-t}$$

5.27.
$$z = t^2 + 4t + 20 - i(t^2 + 4t + 4)$$

5.28.
$$z = t^2 + 2t + 5 + i(t^2 + 2t + 1)$$

5.29.
$$z = 2t^2 + 2t + 1 - i(t^2 + t + 4)$$

5.30.
$$z = t - 2 + i(t^2 - 4t + 5)$$

5.31.
$$z = t^2 - 2t + 3 + i(t^2 - 2t + 1)$$

Задача 6. Восстановить аналитическую в окрестности точки z_0 функцию f(z) по известной действительной части $u(x,y)=\mathrm{Re}\,f(z)$ или мнимой части $v(x,y)=\mathrm{Im}\,f(z)$ и значению $f(z_0)$ (z=x+iy)

6.1.
$$u = x^2 - y^2 + x$$
, $f(0) = 0$

6.2.
$$u = x^3 - 3xy + 1$$
, $f(0) = 1$

6.3.
$$v = e^x(y\cos y + x\sin y), f(0) = 0$$

6.4.
$$u = x^2 - y^2 - 2y$$
, $f(0) = 0$

6.5.
$$u = \frac{e^{2x} + 1}{e^x} \cos y$$
, $f(0) = 2$

6.6.
$$u = \frac{x}{x^2 + y^2}$$
, $f(1) = 1 + i$

6.7.
$$\upsilon = e^{-y} \sin x + y$$
, $f(0) = 1$

6.8.
$$\upsilon = e^x \cos y$$
, $f(0) = 1 + i$

6.9.
$$\upsilon = -\frac{y}{(x+1)^2 + y^2}$$
, $f(0) = 1$

6.10.
$$v = y - \frac{y}{x^2 + y^2}$$
, $f(1) = 2$

6.11.
$$u = e^{-y} \cos x$$
, $f(0) = 1$

6.12.
$$u = y - 2xy$$
, $f(0) = 0$ **6.13.** $u = x^2 - y^2 + 2x + 1$, $f(0) = i$

6.14.
$$u = x^2 - y^2 - 2x + 1$$
, $f(0) = 1$

6.15.
$$v = 3x^2y - y^3 - y$$
, $f(0) = 0$

6.16.
$$\upsilon = 2xy + y$$
, $f(0) = 0$

6.17.
$$\upsilon = 3x^2y - y^3$$
, $f(0) = 1$

6.18.
$$u = e^x(x\cos y - y\sin y), f(0) = 0$$

6.19.
$$\upsilon = 2xy + 2x$$
, $f(0) = 0$

6.20.
$$u = 1 - \sin y \cdot e^x$$
, $f(0) = 1 + i$

6.21.
$$\upsilon = \frac{e^{2x} - 1}{e^x} \sin y$$
, $f(0) = 2$ **6.22.** $\upsilon = 1 - \frac{y}{x^2 + y^2}$, $f(1) = 1 + i$

6.22.
$$\upsilon = 1 - \frac{y}{x^2 + y^2}$$
, $f(1) = 1 + i$

6.23.
$$u = e^{-y} \cos x + x$$
, $f(0) = 1$

6.24.
$$\upsilon = e^{-y} \sin x$$
, $f(0) = 1$

6.25.
$$u = \frac{x+1}{(x+1)^2 + y^2}$$
, $f(0) = 1$

6.26.
$$u = x/(x^2 + y^2) + x$$
, $f(1) = 2$

6.27.
$$v = x^2 - y^2 - x$$
, $f(0) = 0$

6.28.
$$u = -2xy - 2y$$
, $f(0) = i$

6.29.
$$\upsilon = 2xy - 2y$$
, $f(0) = 1$

6.30.
$$u = x^3 - 3xy^2 - x$$
, $f(0) = 0$

6.31.
$$\upsilon = 2xy + x$$
, $f(0) = 0$

Задача 7. Вычислить интеграл от функции комплексного переменного по данной кривой

7.1.
$$\int_{AB} \overline{z}^2 dz; AB: \{ y = x^2; z_A = 0; z_B = 1 + i \}$$

7.2.
$$\int_{L} (z+1)e^{z}dz$$
; L: $\{|z|=1, \text{Re } z \ge 0\}$

7.3.
$$\int_{AB} \text{Im } z^3 dz$$
; AB — отрезок прямой, $z_A = 0$, $z_B = 2 + 2i$

7.4.
$$\int_{AB} (z^2 + 7z + 1)dz$$
; AB – отрезок прямой, $z_A = 1$, $z_B = 1 - i$

7.5.
$$\int_{ABC} |z| dz$$
; ABC – ломаная, $z_A = 0$, $z_B = -1 + i$, $z_C = 1 + i$

7.6.
$$\int_{AB} (12z^5 + 4z^3 + 1)dz$$
; AB — отрезок прямой, $z_A = 1$, $z_B = i$

7.7.
$$\int_{AB} \overline{z}^2 dz$$
; AB — отрезок прямой, $z_A = 0$, $z_B = 1 + i$

7.8.
$$\int_{ABC} z^3 e^{z^4} dz$$
; ABC – ломаная, $z_A = i$, $z_B = 1$, $z_C = 0$

7.9.
$$\int_{ABC} \text{Re} \frac{\overline{z}}{z} dz$$
; $AB : \{ |z| = 1, \text{Im} \ge 0 \}$, BC – отрезок, $z_B = 1$, $z_C = 2$.

7.10.
$$\int_{ABC} (z^2 + \cos z) dz; \ ABC$$
 – ломаная, $z_A = 0, \ z_B = 1, \ z_C = i$

7.11.
$$\int_{L}^{\frac{\overline{z}}{z}} dz$$
; L – граница области $\{1 < |z| < 2, \operatorname{Re} z > 0\}$

7.12.
$$\int_{ABC} (\cosh z + \cos iz) dz$$
; ABC – ломаная, $z_A = 0$, $z_B = -1$, $z_C = i$

7.13.
$$\int_{L} |z| \cdot \overline{z} dz; L : \{|z| = 4, \text{Re } z \ge 0\}$$

7.14.
$$\int_{L} (\operatorname{ch} z + z) dz; L: \{ |z| = 1, \operatorname{Im} z \le 0 \}$$

7.15.
$$\int_{L} |z| \operatorname{Re} z^{2} dz; L: \{|z| = R, \operatorname{Im} z \ge 0\}$$

7.16.
$$\int_{AB} (3z^2 + 2z)dz; AB: \{ y = x^2; z_A = 0; z_B = 1 + i \}$$

7.17.
$$\int_{L} z \operatorname{Re} z^{2} dz; \ L: \{ |z| = R, \operatorname{Im} z \ge 0 \}$$

7.18.
$$\int_{ABC} (z^2 + 1)dz$$
; ABC – ломаная, $z_A = 0$, $z_B = -1 + i$, $z_C = i$

7.19.
$$\int\limits_{AB} e^{|z|^2} dz$$
; AB — отрезок прямой, $z_A = 1 + i$, $z_B = 0$

7.20.
$$\int_{L} (\sin iz + z) dz; L: \{ |z| = 1, \text{Re } z \ge 0 \}$$

7.21.
$$\int_{AB} z \operatorname{Re} z^2 dz$$
; AB – отрезок прямой, $z_A = 0$, $z_B = 1 + 2i$

7.22.
$$\int_{AB} (2z+1)dz; AB: \{ y = x^3; z_A = 0; z_B = 1+i \}$$

7.23.
$$\int_{ABC} z\overline{z} dz$$
; $AB: \{ |z| = 1, \text{Re } z \ge 0, \text{Im} \ge 0 \}$, $BC - \text{отрезок}$, $z_B = 1$, $z_C = 0$

7.24.
$$\int_{L} (\cos iz + 3z^2) dz; L: \{ |z| = 1, \text{Im } z \ge 0 \}$$

7.25.
$$\int_{L} |z| dz$$
; $L: \{ |z| = \sqrt{2}, 3\pi / 4 \le \arg z \le 5\pi / 4 \}$

7.26.
$$\int_{ABC} (z^9 + 1) dz$$
; ABC – ломаная, $z_A = 0$, $z_B = 1 + i$, $z_C = i$

7.27.
$$\frac{1}{2i} \int_{|z|=R} \overline{z} dz$$

7.28.
$$\int_{ABC} (\sin z + z^5) dz$$
; ABC – ломаная, $z_A = 0$, $z_B = 1$, $z_C = 2i$

7.29.
$$\int_{AB} z \operatorname{Im} z^2 dz$$
; AB – отрезок прямой, $z_A = 0$, $z_B = 1 + i$

7.30.
$$\int_{L} (z^3 + \sin z) dz$$
; $L: \{ |z| = 1, \text{Re } z \ge 0 \}$

7.31.
$$\int_{I} z |z| dz; L: \{|z| = 1, \text{Im } z \ge 0\}$$

Задача 8. Найти все лорановские разложения данной функции по степеням 2.

8.1.
$$\frac{z-2}{2z^3+z^2-z}$$

8.2.
$$\frac{z-4}{z^4+z^3-2z^2}$$

8.1.
$$\frac{z-2}{2z^3+z^2-z}$$
 8.2. $\frac{z-4}{z^4+z^3-2z^2}$ **8.3.** $\frac{3z-18}{2z^3+3z^2-9z}$

8.4.
$$\frac{2z-16}{z^4+2z^3-8z^2}$$

8.4.
$$\frac{2z-16}{z^4+2z^3-8z^2}$$
 8.5. $\frac{5z-50}{2z^3+5z^2-25z}$ **8.6.** $\frac{3z-36}{z^4+3z^3-18z^2}$

8.6.
$$\frac{3z-36}{z^4+3z^3-18z^2}$$

8.7.
$$\frac{7z-98}{2z^3+7z^2-49z}$$
 8.8. $\frac{4z-64}{z^4+4z^3-32z^2}$ **8.9.** $\frac{9z-162}{2z^3+9z^2-81z}$

8.8.
$$\frac{4z-64}{z^4+4z^3-32z^2}$$

8.9.
$$\frac{9z-162}{2z^3+9z^2-81z}$$

8.10.
$$\frac{5z-100}{z^4+5z^3-50z^2}$$

8.10.
$$\frac{5z-100}{z^4+5z^3-50z^2}$$
 8.11. $\frac{11z-242}{2z^3+11z^2-121z}$ **8.12.** $\frac{6z-144}{z^4+6z^3-72z^2}$

8.12.
$$\frac{6z-144}{z^4+6z^3-72z^2}$$

8.13.
$$\frac{13z - 338}{2z^3 + 13z^2 - 169z}$$

8.14.
$$\frac{7z-196}{z^4+7z^3-98z^2}$$

8.13.
$$\frac{13z - 338}{2z^3 + 13z^2 - 169z}$$
 8.14. $\frac{7z - 196}{z^4 + 7z^3 - 98z^2}$ **8.15.** $\frac{15z - 450}{2z^3 + 15z^2 - 225z}$

8.16.
$$\frac{8z-256}{z^4+8z^3-128z^2}$$
 8.17. $\frac{z+2}{z+z^2-2z^3}$ **8.18.** $\frac{z+4}{2z^2+z^3-z^4}$

8.17.
$$\frac{z+2}{z+z^2-2z^3}$$

8.18.
$$\frac{z+4}{2z^2+z^3-z^4}$$

8.19.
$$\frac{3z+18}{9z+3z^2-2z^3}$$

$$8.20. \ \frac{2z+16}{8z^2+2z^3-z^4}$$

8.19.
$$\frac{3z+18}{9z+3z^2-2z^3}$$
 8.20. $\frac{2z+16}{8z^2+2z^3-z^4}$ **8.21.** $\frac{5z+50}{25z+5z^2-2z^3}$

8.22.
$$\frac{3z+36}{18z^2+3z^3-z^4}$$
 8.23. $\frac{7z+98}{49z+7z^2-2z^3}$ **8.24.** $\frac{4z+64}{32z^2+4z^3-z^4}$

$$8.23. \frac{7z+98}{49z+7z^2-2z^3}$$

8.24.
$$\frac{4z+64}{32z^2+4z^3-z^4}$$

8.25.
$$\frac{9z+162}{81z+9z^2-2z^3}$$

8.26.
$$\frac{5z+100}{50z^2+5z^3-z^4}$$

8.25.
$$\frac{9z+162}{81z+9z^2-2z^3}$$
 8.26. $\frac{5z+100}{50z^2+5z^3-z^4}$ **8.27.** $\frac{11z+242}{121z+11z^2-2z^3}$

8.28.
$$\frac{6z+144}{72z^2+6z^3-z^4}$$

8.28.
$$\frac{6z+144}{72z^2+6z^3-z^4}$$
 8.29. $\frac{13z+338}{169z+13z^2-2z^3}$ **8.30.** $\frac{7z+196}{98z^2+7z^3-z^4}$

8.30.
$$\frac{7z+196}{98z^2+7z^3-z^4}$$

8.31.
$$\frac{15z + 450}{225z + 15z^2 - 2z^3}$$

Задача 9. Найти все лорановские разложения данной функции по степеням $z - z_0$

9.1.
$$\frac{z+1}{z(z-1)}$$
, $z_0 = 1 + 2i$

9.7.
$$\frac{z-1}{z(z+1)}$$
, $z_0 = -1 + 2i$

9.2.
$$\frac{z+1}{z(z-1)}$$
, $z_0 = 2-3i$

9.8.
$$\frac{z-1}{z(z+1)}$$
, $z_0 = -2-3i$

9.3.
$$\frac{z+1}{z(z-1)}$$
, $z_0 = -3-2i$

9.9.
$$\frac{z+3}{z^2-1}$$
, $z_0=2+i$

9.4.
$$\frac{z+1}{z(z-1)}$$
, $z_0 = -2+i$

9.10.
$$\frac{z+3}{z^2-1}$$
, $z_0 = 3-i$

9.5.
$$\frac{z-1}{z(z+1)}$$
, $z_0 = 1+3i$

9.11.
$$\frac{z+3}{z^2-1}$$
, $z_0 = -2+3i$

9.6.
$$\frac{z-1}{z(z+1)}$$
, $z_0 = 2-i$

9.12.
$$\frac{z+3}{z^2-1}$$
, $z_0 = -2-2i$

9.13.
$$\frac{z}{z^2+1}$$
, $z_0=2+i$

9.22.
$$4 \cdot \frac{z-2}{(z+1)(z-3)}, z_0 = 3+i$$

9.14.
$$\frac{z}{z^2+1}$$
, $z_0 = 1-2i$

9.23.
$$4 \cdot \frac{z-2}{(z+1)(z-3)}, z_0 = 2-2i$$

9.15.
$$\frac{z}{z^2+1}$$
, $z_0 = -3+i$

9.24.
$$4 \cdot \frac{z-2}{(z+1)(z-3)}$$
, $z_0 = -2-i$

9.16.
$$\frac{z}{z^2+1}$$
, $z_0 = -3-2i$

9.25.
$$\frac{2z}{z^2+4}$$
, $z_0 = -1-3i$

9.17.
$$4 \cdot \frac{z+2}{(z-1)(z+3)}$$
, $z_0 = -2 + 2i$

9.26.
$$\frac{2z}{z^2+4}$$
, $z_0 = -3+2i$

9.18.
$$4 \cdot \frac{z+2}{(z-1)(z+3)}$$
, $z_0 = 1-3i$

9.27.
$$\frac{2z}{z^2+4}$$
, $z_0=2+3i$

9.19.
$$4 \cdot \frac{z+2}{(z-1)(z+3)}$$
, $z_0 = -3-i$

9.28.
$$\frac{2z}{z^2+4}$$
, $z_0=3+2i$

9.20.
$$4 \cdot \frac{z+2}{(z-1)(z+3)}$$
, $z_0 = -2+i$

9.29.
$$\frac{2z}{z^2-4}$$
, $z_0 = -1+3i$

9.21.
$$4 \cdot \frac{z-2}{(z+1)(z-3)}$$
, $z_0 = -1-2i$ **9.30.** $\frac{2z}{z^2-4}$, $z_0 = 2+2i$

9.30.
$$\frac{2z}{z^2-4}$$
, $z_0=2+2i$

9.31.
$$\frac{2z}{z^2-4}$$
, $z_0=3-2i$

Задача 10. Данную функцию разложить в ряд Лорана в окрестности точки z_0

10.1.
$$z\cos\frac{1}{z-2}$$
, $z_0 = 2$

10.2.
$$\sin \frac{z}{z-1}$$
, $z_0 = 1$

10.3.
$$ze^{z/(z-5)}$$
, $z_0 = 5$

10.4.
$$\sin \frac{2z-7}{z+2}$$
, $z_0 = -2$

10.5.
$$\cos \frac{3z}{z-i}$$
, $z_0 = i$

10.7.
$$\sin \frac{3z-i}{3z+i}$$
, $z_0 = -\frac{i}{3}$

10.9.
$$z \sin \frac{z}{z-1}$$
, $z_0 = 1$

10.11.
$$z^2 \sin \pi \frac{z+1}{z}$$
, $z_0 = 0$

10.13.
$$\cos \frac{z^2 - 4z}{(z - 2)^2}$$
, $z_0 = 2$

10.15.
$$\sin \frac{z}{z-3}$$
, $z_0 = 3$

10.17.
$$e^{\frac{z}{z-3}}$$
, $z_0 = 3$

10.19.
$$\sin \frac{z^2 - 4z}{(z - 2)^2}$$
, $z_0 = 2$

10.21.
$$ze^{\frac{\pi}{z-a}}$$
, $z_0 = a$

10.23.
$$z \sin \pi \frac{z+2}{z}$$
, $z_0 = 0$

10.25.
$$z^2 \sin \frac{z+3}{z}$$
, $z_0 = 0$

10.27.
$$z\cos\frac{z}{z-3}$$
, $z_0 = 3$

10.29.
$$z \cos \frac{z}{z-5}$$
, $z_0 = 5$

10.31.
$$z \sin \frac{\pi z}{z-a}$$
, $z_0 = a$

10.6.
$$\sin \frac{5z}{z-2i}$$
, $z_0 = 2i$

10.8.
$$z\cos\frac{3z}{z-1}$$
, $z_0 = 1$

10.10.
$$(z-3)\cos \pi \frac{z-3}{z}$$
, $z_0 = 0$

10.12.
$$z\cos\frac{z}{z+2i}$$
, $z_0 = -2i$

10.14.
$$\sin \frac{z+i}{z-i}$$
, $z_0 = i$

10.16.
$$ze^{\frac{1}{z-2}}$$
, $z_0 = 2$

10.18.
$$\sin \frac{2z}{z-4}$$
, $z_0 = 4$

10.20.
$$e^{\frac{4z-2z^2}{(z-1)^2}}$$
, $z_0 = 1$

10.22.
$$ze^{\frac{\pi z}{z-\pi}}, z_0 = \pi$$

10.24.
$$z\cos\pi\frac{z+3}{z-1}$$
, $z_0 = 1$

10.26.
$$z \sin \frac{z^2 - 2z}{(z-1)^2}$$
, $z_0 = 1$

10.28.
$$z \sin \pi \frac{z-1}{z-2}$$
, $z_0 = 2$

10.30.
$$ze^{\frac{z}{z-4}}$$
, $z_0 = 4$

Задача 11. Определить тип особой точки z=0 и найти вычет в этой точке для данной функции

11.1.
$$\frac{e^{9z}-1}{\sin z-z+z^3/6}$$
 11.2. z^3e^{7/z^2}

11.2.
$$z^3 e^{7/z^2}$$

11.3.
$$\frac{\sin 8z - 6z}{\cos z - 1 + z^2/2}$$

11.4.
$$\frac{\cos 7z - 1}{\sin z - z - z^3 / 6}$$
 11.5. $\frac{\sin 6z - 6z}{\sin z - 1 - z^2 / 2}$

11.5.
$$\frac{\sinh (z-6z)}{\cosh (z-1-z^2/2)}$$

11.6.
$$\frac{\cosh 5z - 1}{e^z - 1 - z}$$

11.7.
$$z \sin \frac{6}{z^2}$$

11.8.
$$\frac{e^z - 1}{\sin z - z + z^3 / 6}$$

11.9.
$$\frac{\sin z^2 - z^2}{\cos z - 1 + z^2 / 2}$$

11.10.
$$\frac{\cos z^2 - 1}{\sin z - z - z^3 / 6}$$
 11.11. $\frac{e^{5z} - 1}{\sin z - 1 - z^2 / 2}$

11.11.
$$\frac{e^{5z}-1}{\cosh z-1-z^2/2}$$

11.12.
$$\frac{\sin 4z - 4z}{e^z - 1 - z}$$

11.13.
$$z^4 \sin \frac{5}{z^2}$$

11.14.
$$\frac{\cos 3z - 1}{\sin z - z + z^3 / 6}$$

11.15.
$$\frac{\sinh 2z - 2z}{\cos z - 1 + z^2 / 2}$$

11.16.
$$\frac{\cosh 2z - 1}{\sinh z - z - z^3 / 6}$$

11.16.
$$\frac{\cosh 2z - 1}{\sinh z - z - z^3 / 6}$$
 11.17. $\frac{e^{z^3}}{\cosh z - 1 - z^2 / 2}$

11.18.
$$ze^{4/z^3}$$

11.19.
$$\frac{\sin z^3 - z^3}{e^z - 1 - z}$$

11.19.
$$\frac{\sin z^3 - z^3}{e^z - 1 - z}$$
 11.20. $\frac{\cos z^3 - 1}{\sin z - z + z^3 / 6}$

11.21.
$$\frac{e^{7z}-1}{\cos z-1+z^2/2}$$

11.22.
$$\frac{\sin 6z - 6z}{\sinh z - z - z^3 / 6}$$
 11.23. $z \sin \frac{3}{z^3}$

11.23.
$$z \sin \frac{3}{z^3}$$

11.24.
$$\frac{\cos 5z - 1}{\cosh z - 1 - z^2 / 2}$$

11.25.
$$\frac{\sinh 4z - 4z}{e^z - 1 - z}$$

11.26.
$$\frac{\cosh 3z - 1}{\sin z - z + z^3 / 6}$$

11.25.
$$\frac{\sinh 4z - 4z}{e^z - 1 - z}$$
 11.26. $\frac{\cosh 3z - 1}{\sin z - z + z^3 / 6}$ 11.27. $\frac{e^{z^4} - 1}{\cos z - 1 + z^2 / 2}$

11.28.
$$\frac{\sin z^4 - z^4}{\sin z - z - z^3 / 6}$$
 11.29. $z \cos \frac{2}{z^3}$

11.29.
$$z \cos \frac{2}{z^3}$$

11.30.
$$\frac{\cos z^4/2}{\cot z - 1 - z^2/2}$$

11.31.
$$(e^{z^5}-1)/(e^z-1-z)$$

Задача 12. Для данной функции найти изолированные точки, определить их тип и найти вычеты в указанных точках

12.1.
$$e^{1/z} / \sin(1/z)$$

12.2.
$$1/\cos z$$

12.3.
$$tg^2z$$

12.4.
$$z \operatorname{tg} z e^{1/z}$$

12.5.
$$\frac{e^z-1}{z^3(z+1)^3}$$

12.5.
$$\frac{e^z-1}{z^3(z+1)^3}$$
 12.6. $\frac{z^2+1}{(z-i)^2(z^2+4)}$

12.7.
$$\frac{(z+\pi)\sin\frac{\pi}{2}z}{z\sin^2 z}$$
 12.8. $tg\frac{1}{z}$

12.8.
$$tg \frac{1}{z}$$

12.9.
$$\cot \frac{1}{z}$$

12.10.
$$\frac{1}{e^z+1}$$

12.11.
$$ctg \pi z$$

12.12.
$$\frac{\sin \pi z}{(z-1)^3}$$

12.13.
$$\frac{1}{\sin z^2}$$

12.14.
$$\frac{\sin 3z - 3\sin z}{z(\sin z - z)}$$
 12.15. $\frac{1}{e^z - 1} - \frac{1}{z}$

12.15.
$$\frac{1}{e^z-1}-\frac{1}{z}$$

12.16.
$$\frac{e^z - 1}{\sin \pi z}$$

12.18.
$$\frac{\sin z}{z^3(1-\cos z)}$$

12.19.
$$\frac{e^{1/z}}{(e^z-1)(1-z)^3}$$

12.20.
$$\frac{1}{z^2} + \sin \frac{1}{z^2}$$

12.19.
$$\frac{e^{1/z}}{(e^z-1)(1-z)^3}$$
 12.20. $\frac{1}{z^2} + \sin\frac{1}{z^2}$ 12.21. $\frac{z^2}{(z^2-4)^2\cos\frac{1}{z-2}}$

12.22.
$$z^2 \sin \frac{1}{z}$$

12.22.
$$z^2 \sin \frac{1}{z}$$
 12.23. $\frac{\cos \frac{\pi}{2} z}{z^4 - 1}$ 12.24. $\frac{\sin \pi z}{(z^3 - 1)^2}$

12.24.
$$\frac{\sin \pi z}{(z^3-1)^2}$$

12.25.
$$\frac{\sin^3 z}{z(1-\cos z)}$$

12.26.
$$\operatorname{ctg} \frac{1}{z} - \frac{1}{z^2}$$

12.25.
$$\frac{\sin^3 z}{z(1-\cos z)}$$
 12.26. $\cot \frac{1}{z} - \frac{1}{z^2}$ **12.27.** $\frac{\sin 3z^2}{z(z^3+1)}e^{1/z}$

12.28.
$$\frac{\cos \pi z}{(4z^2-1)(z^2+1)}$$
 12.29. $\frac{\sin 3z}{z(1-\cos z)}$ 12.30. $\frac{2z-\sin 2z}{z^2(z^2+1)}$

12.29.
$$\frac{\sin 3z}{z(1-\cos z)}$$

12.30.
$$\frac{2z-\sin 2z}{z^2(z^2+1)}$$

12.31.
$$\frac{\sin \pi z}{z^4 - 1} e^{1/z}$$

Задача 13. Вычислить интеграл

13.1.
$$\oint_{|z|=1/2} \frac{dz}{z(z^2+1)}$$

13.1.
$$\oint_{|z|=1/2} \frac{dz}{z(z^2+1)}$$
 13.2. $\oint_{|z-1-i|=5/4} \frac{2dz}{z^2(z-1)}$ **13.3.** $\oint_{|z-i|=3/2} \frac{dz}{z(z^2+4)}$

13

13.3.
$$\oint_{|z-i|=3/2} \frac{dz}{z(z^2+4)}$$

13.4.
$$\oint_{|z|=1} \frac{2 + \sin z}{z(z+2i)} dz$$

13.6.
$$\oint_{|z-3/2|=2} \frac{z(\sin z + 2)}{\sin z} dz$$

13.8.
$$\oint_{|z-3/2|=2} \frac{2z |z-1|}{\sin z} dz$$

13.10.
$$\oint_{|z-1/2|=1} \frac{iz(z-i)}{\sin \pi z} dz$$

13.12.
$$\oint_{|z-1/2|=1} \frac{e^z+1}{z(z-1)} dz$$

13.14.
$$\oint_{|z-2|=3} \frac{\cos^2 z + 1}{z^2 - \pi^2} dz$$

13.16.
$$\oint_{|z-6|=1} \frac{\sin^3 z + 2}{z^2 - 4\pi^2} dz$$

13.18.
$$\oint_{|z+3/2|=1} \frac{\cos^3 z + 3}{2z^2 + \pi z} dz$$

13.20.
$$\oint_{|z|=1/4} \frac{\ln(e+z)}{z\sin\left(z+\frac{\pi}{4}\right)} dz$$

13.22.
$$\oint_{|z|=1} \frac{z^3 - i}{\sin 2z(z - \pi)} dz$$

13.24.
$$\oint_{|z|=2} \frac{z^2 + \sin z + 2}{z^2 + \pi z}$$

13.26.
$$\oint_{|z-3/2|=2} \frac{\sin z}{z(z-\pi)\left(z+\frac{\pi}{3}\right)} dz$$

13.5.
$$\oint_{|z-3|=1/2} \frac{e^z dz}{\sin z}$$

13.7.
$$\oint_{|z-1|=3} \frac{ze^z}{\sin z} dz$$

13.9.
$$\oint_{|z-1/4|=1/3} \frac{z(z+1)^2}{\sin 2\pi z} dz$$

13.11.
$$\oint_{|z-3|=1} \frac{\sin 3z + 2}{z^2(z-\pi)} dz$$

13.13.
$$\oint_{|z|=1} \frac{e^{zi} + 2}{\sin 3zi} dz$$

13.15.
$$\oint_{|z-1|=3/2} \frac{\ln(z+2)}{\sin z} dz$$

13.17.
$$\oint_{|z+1|=1/2} \frac{\operatorname{tg} z + 2}{4z^2 + \pi z} dz$$

13.19.
$$\oint_{|z+1|=2} \frac{\sin^2 z - 3}{z^2 + 2\pi z}$$

13.21.
$$\oint_{|z|=\pi/2} \frac{z^2 + z + 3}{\sin z (\pi + z)} dz$$

13.23.
$$\oint_{|z-1|=2} \frac{z(z+\pi)}{\sin 2z} dz$$

13.25.
$$\oint_{|z-3/2|=1} \frac{z(z+\pi)}{\sin 3z(z-\pi)} dz$$

13.27.
$$\oint_{|z-\pi|=1} \frac{(z^2+\pi)^2}{i\sin z} dz$$

$$\mathbf{13.28.} \oint_{|z|=2} \frac{\sin^2 z}{z \cos z} dz$$

13.30.
$$\oint_{|z-3/2|=2} \frac{z^3 + \sin 2z}{\sin \frac{z}{2}(z-\pi)}$$

$$\mathbf{13.29.} \oint_{|z-\pi|=2} \frac{\cos^2 z}{z \sin z} dz$$

13.31.
$$\oint_{|z-1|=2} \frac{z^2+1}{(z^2+4)\sin\frac{z}{3}} dz$$

Задача 14. Вычислить интеграл

14.1.
$$\oint_{|z|=1} \frac{\cos z^2 - 1}{z^3} dz$$

14.3.
$$\oint_{|z|=3} \frac{e^{1/z}+1}{z} dz$$

14.5.
$$\oint_{|z|=1/3} \frac{1-2z+3z^2+4z^3}{2z^2} dz$$

14.7.
$$\oint_{|z|=1} \frac{3z^4 - 2z^3 + 5}{z^4} dz$$

14.9.
$$\oint_{|z|=1/2} \frac{e^{2z^2}-1}{z^3} dz$$

14.11.
$$\oint_{|z|=2} \frac{z - \sin z}{2z^4} dz$$

14.13.
$$\oint_{|z|=1/3} \frac{4z^5 - 3z^3 + 1}{z^6} dz$$

14.15.
$$\oint_{|z|=1} \frac{\cos z - 1}{z^3} dz$$

14.2.
$$\oint_{|z|=1/2} \frac{2-z^2+3z^3}{4z^3} dz$$

14.4.
$$\oint_{|z|=2} \frac{\sin z^3}{1-\cos z} dz$$

14.6.
$$\oint_{|z|=2} \frac{1-\cos z^2}{z^2} dz$$

14.8.
$$\oint_{|z|=3} \frac{1-\sin\frac{1}{z}}{z} dz$$

14.10.
$$\oint_{|z|=1/3} \frac{3-2z+4z^4}{z^3} dz$$

14.12.
$$\oint_{|z|=1} \frac{z^3 - 3z^2 + 1}{2z^4} dz$$

14.14.
$$\oint_{|z|=1} \frac{e^{2z}-z}{z^2} dz$$

14.16.
$$\oint_{|z|=1} \frac{\cos iz - 1}{z^3} dz$$

14.17.
$$\oint_{|z|=1/3} \frac{1-2z^4+3z^5}{z^4} dz$$

14.19.
$$\oint_{|z|=1/2} \frac{z^5 - 3z^3 + 5z}{z^4} dz$$

14.21.
$$\oint_{|z|=3} \frac{\cos z^2 - 1}{z^4} dz$$

14.23.
$$\oint_{|z|=1} \frac{ze^{\frac{1}{z}} - z - 1}{z^3} dz$$

14.25.
$$\oint_{|z|=1/2} \frac{z^4 + 2z^2 + 3}{2z^6} dz$$

14.27.
$$\oint_{|z|=1/3} \frac{1-z^4+3z^6}{2z^3} dz$$

14.29.
$$\oint_{|z|=1/3} \frac{e^z - \sin z}{z^2} dz$$

14.31.
$$\oint_{|z|=1} \frac{z^2 e^{\frac{1}{z^2}} - 1}{z} dz$$

14.18.
$$\oint_{|z|=3} \frac{z^2 + \cos z}{z^3} dz$$

14.20.
$$\oint_{|z|=2} \frac{z - \sin z}{z^5} dz$$

14.22.
$$\oint_{|z|=1/2} \frac{2+3z^3-5z^4}{z^5} dz$$

14.24.
$$\oint_{|z|=2} z^2 \sin \frac{i}{z^2} dz$$

14.26.
$$\oint_{|z|=1} \frac{e^{iz}-1}{z^3} dz$$

14.28.
$$\oint_{|z|=2} z^3 \cos \frac{2i}{z} dz$$

14.30.
$$\oint_{|z|=3} \frac{2z^3 + 3z^2 - 2}{2z^5} dz$$

Задача 15. Вычислить интеграл

15.1.
$$\oint_{|z|=0,2} \frac{3\pi z - \sin 3\pi z}{z^2 - \sinh^2 \pi^2 z} dz$$

15.3.
$$\oint_{|z|=0,5} \frac{\sin 2\pi z - 2\pi z}{z^2 \sin^2 \frac{\pi^2 z}{z^2}} dz$$

15.2.
$$\oint_{|z|=1} \frac{\cos 3z - 1 + 9z^2 / 2}{z^4 \sinh \frac{9}{4} z} dz$$

15.4.
$$\oint_{|z|=2} \frac{\sin 3z - 1 + 9z^2 / 2}{z^4 \sin \frac{9z}{8}} dz$$

15.5.
$$\oint_{|z|=0.5} \frac{e^{2z} - 1 - 2z}{z \sinh^2 4iz} dz$$

15.7.
$$\oint_{|z|=0.2} \frac{e^{8z} \cosh 4z}{z \sin 4\pi z} dz$$

15.9.
$$\oint_{|z|=1} \frac{\sin 3z - \sin 3z}{z^3 \sin 2z} dz$$

15.11.
$$\oint_{|z|=1} \frac{6z - \sin 6z}{z^2 \sinh^2 2z} dz$$

15.13.
$$\oint_{|z|=6} \frac{\sin \pi z - \pi z}{z^2 \sin^2 \frac{\pi z}{6}} dz$$

15.15.
$$\oint_{|z|=0.9} \frac{e^{3z} - 1 - 3z}{\sinh^2 \pi z} dz$$

15.17.
$$\oint_{|z|=1} \frac{e^{7z} - \cosh 5z}{z \sin 2iz} dz$$

15.19.
$$\oint_{|z|=2} \frac{\sin 3z - \sin 3z}{z^3 \sin z - iz} dz$$

15.21.
$$\oint_{|z|=2} \frac{\sin 3z - 3z}{z^2 \sinh^2 iz} dz$$

15.23.
$$\oint_{|z|=5} \frac{\sin 2z - 2z}{z^2 \sin^2 \frac{z}{3}} dz$$

15.25.
$$\oint_{|z|=0,4} \frac{e^{2z}-1-2z}{z \sinh^2 2\pi z} dz$$

15.6.
$$\oint_{|z|=0}^{\infty} \frac{e^{4z} - \cos 7z}{z \sin 2\pi z} dz$$

15.8.
$$\oint_{|z|=0.1} \frac{\cosh z - \cos 3z}{z^2 \sin 5\pi z} dz$$

15.10.
$$\oint_{|z|=0.05} \frac{e^{4z} - 1 - \sin 4z}{z^3 \sinh 16\pi z} dz$$

15.12.
$$\oint_{|z|=2} \frac{\cos 4z - 1 + 8z^2}{z^4 \sinh \frac{4z}{3}} dz$$

15.14.
$$\oint_{|z|=1} \frac{\cosh 4z - 8z^2 - 1}{z^4 \sin \frac{8z}{3}} dz$$

15.16.
$$\oint_{|z|=0.5} \frac{e^{6z} - \cos 8z}{z \sinh 4z} dz$$

15.18.
$$\oint_{|z|=0.5} \frac{\cosh 3z - \cos 4iz}{z^2 \sin 5z} dz$$

15.20.
$$\oint_{|z|=0.5} \frac{e^{5z} - 1 - \sin 5z}{z^2 \sinh 5z} dz$$

15.22.
$$\oint_{|z|=2} \frac{\cos 2z - 1 + 2z^2}{z^4 \sinh \frac{\pi z}{3}} dz$$

15.24.
$$\oint_{|z|=1} \frac{\cosh 2z - 1 - 2z^2}{z^4 \sin \frac{2\pi z}{3}} dz$$

15.26.
$$\oint_{|z|=0.3} \frac{e^{4z} - 1 - \sin 4z}{z^2 \sinh 8iz} dz$$

15.27.
$$\oint_{|z|=0.5} \frac{e^{5z} - \cosh 6z}{z \sin \pi z} dz$$

15.28.
$$\oint_{|z|=0.2} \frac{\cosh 2z - \cos 2z}{z^2 \sin 8z} dz$$

15.29.
$$\oint_{|z|=4} \frac{\sinh iz - \sin iz}{z^3 \sinh \frac{z}{3}} dz$$

15.30.
$$\oint_{|z|=0,3} \frac{e^{3z} - 1 - \sin 3z}{z^2 \sinh 3\pi z} dz$$

15.31.
$$\oint_{|z|=0,5} \frac{e^{2z} - \cos 9z}{z \sinh \pi i z} dz$$

Задача 16. Вычислить интеграл

16.1.
$$\oint_{|z+i|=3} \left(\frac{4\sin\frac{\pi z}{4-2i}}{(z-2+i)^2(z-4+i)} + \frac{\pi i}{e^{\pi z/2}+i} \right) dz$$

16.2.
$$\oint_{|z+6|=2} \left(ze^{\frac{1}{z+6}} + \frac{2\cos \pi z/5}{(z+5)^2(z+3)} \right) dz$$

16.3.
$$\oint_{|z-i|=3} \left(\frac{\pi}{e^{\pi z/2} - i} - \frac{2 \operatorname{sh} \frac{\pi i z}{4 + 2i}}{(z - 2 - i)^2 (z - 4 - i)} \right) dz$$

16.4.
$$\oint_{|z+2|=2} \left(z \operatorname{ch} \frac{1}{z+2} - \frac{2 \sin(\pi z/2)}{(z+1)^2 (z-1)} \right) dz$$

16.5.
$$\oint_{|z-2i|=2} \left(\frac{2\cos\frac{\pi z}{2+2i}}{(z-2-2i)^2(z-4-2i)} + \frac{\pi i}{e^{\pi z/2}+1} \right) dz$$

16.6.
$$\oint_{|z+3|=2} \left(z \sinh \frac{i}{z+3} - \frac{4 \sinh(\pi i z/4)}{(z+2)^2 z} \right) dz$$

16.7.
$$\oint_{|z+5i|=2} \left(\frac{\pi i}{e^{\pi z/2} + i} + \frac{8 \operatorname{ch} \frac{\pi i z}{1-5i}}{(z-1+5i)^2 (z-3+5i)} \right) dz$$

16.8.
$$\oint_{|z+4|=2} \left(z \cos \frac{1}{z+4} - \frac{2 \sin(\pi z/6)}{(z+3)^2 (z+1)} \right) dz$$

16.9.
$$\oint_{|z-7i|=2} \left(\frac{2\sin\frac{\pi i z}{2+14i}}{(z-1-7i)^2(z-3-7i)} + \frac{\pi}{e^{\pi z/2}+i} \right) dz$$

16.10.
$$\oint_{|z+5|=2} \left(z \sin \frac{i}{z+5} - \frac{4 \operatorname{ch}(\pi i z/4)}{(z+4)^2 (z+2)} \right) dz$$

16.11.
$$\oint_{|z-3i|=2} \left(\frac{\pi i}{e^{\pi z/2} + i} + \frac{2\cos\frac{\pi z}{1+3i}}{(z-1-3i)^2(z-3-3i)} \right) dz$$

16.12.
$$\oint_{|z-1|=2} \left(ze^{\frac{2}{z-1}} + \frac{2\cos \pi z/2}{(z-2)^2(z-4)} \right) dz$$

16.13.
$$\oint_{|z+i|=2} \left(\frac{2\sin\frac{\pi z}{2-2i}}{(z-1+i)^2(z-3+i)} - \frac{3\pi i}{e^{\pi z/2}+i} \right) dz$$

16.14.
$$\oint_{|z-2|=2} \left(z \operatorname{ch} \frac{3}{z-2} + \frac{2 \cos(\pi z/3)}{(z-3)^2 (z-5)} \right) dz$$

16.15.
$$\oint_{|z+7i|=2} \left(\frac{\pi i}{e^{\pi z/2} - i} - \frac{8 \operatorname{ch} \frac{\pi i z}{1 - 7i}}{(z - 1 + 7i)^2 (z - 3 + 7i)} \right) dz$$

16.16.
$$\oint_{|z-3|=2} \left(z \sinh \frac{1}{z-3} - \frac{2 \sin(\pi z/8)}{(z-4)^2 (z-6)} \right) dz$$

16.17.
$$\oint_{|z+3i|=2} \left(\frac{4\sinh\frac{\pi iz}{2-6i}}{(z-1+3i)^2(z-3+3i)} - \frac{\pi}{e^{\pi z/2}-i} \right) dz$$

16.18.
$$\oint_{|z-4|=2} \left(z \cos \frac{1}{z-4} + \frac{10 \operatorname{ch}(\pi i z/5)}{(z-5)^2 (z-7)} \right) dz$$

16.19.
$$\oint_{|z-5i|=2} \left(\frac{\pi i}{e^{\pi z/2} - i} + \frac{2\cos\frac{\pi z}{1+5i}}{(z-1-5i)^2(z-3-5i)} \right) dz$$

16.20.
$$\oint_{|z-5|=2} \left(z \sin \frac{i}{z-5} + \frac{2 \operatorname{sh}(\pi i z/12)}{(z-6)^2 (z-8)} \right) dz$$

16.21.
$$\oint_{|z+i|=2} \left(\frac{4\sin\frac{\pi z}{2+2i}}{(z-1-i)^2(z-3-i)} + \frac{\pi i}{e^{\pi z/2}-i} \right) dz$$

16.22.
$$\oint_{|z-6|=2} \left(ze^{\frac{1}{z-6}} + \frac{2 \operatorname{ch} \pi i z/5}{(z-5)^2 (z-3)} \right) dz$$

16.23.
$$\oint_{|z-6i|=2} \left(\frac{\pi i}{e^{\pi z/2} + 1} - \frac{2 \operatorname{ch} \frac{\pi i z}{1+6i}}{(z-1-6i)^2 (z-3-6i)} \right) dz$$

16.24.
$$\oint_{|z-5|=2} \left(z \operatorname{ch} \frac{2}{z-5} + \frac{4 \cos(\pi z/4)}{(z-4)^2 (z-2)} \right) dz$$

16.25.
$$\oint_{|z+6i|=2} \left(\frac{2\sinh\frac{\pi iz}{2-12i}}{(z-1+6i)^2(z-3+6i)} - \frac{\pi i}{e^{\pi z/2}+1} \right) dz$$

16.26.
$$\oint_{|z-4|=2} \left(z \operatorname{sh} \frac{1}{z-4} + \frac{2 \sin(\pi z/6)}{(z-3)^2 (z-1)} \right) dz$$

16.27.
$$\oint_{|z+2i|=2} \left(\frac{\pi}{e^{\pi z/2} + 1} + \frac{4\cos\frac{\pi z}{1-2i}}{(z-1+2i)^2(z-3+2i)} \right) dz$$

16.28.
$$\oint_{|z-3|=2} \left(z \cos \frac{1}{z-3} + \frac{4 \operatorname{ch}(\pi i z/2)}{z(z-2)^2} \right) dz$$

16.29.
$$\oint_{|z-2i|=2} \left(\frac{2\sin\frac{\pi z}{2+4i}}{(z-1-2i)^2(z-3-2i)} - \frac{\pi}{e^{\pi z/2}+1} \right) dz$$

16.30.
$$\oint_{|z-2|=2} \left(z \sin \frac{i}{z-2} - \frac{2 \operatorname{sh}(\pi i z/2)}{(z-1)^2 (z+1)} \right) dz$$

16.31.
$$\oint_{|z+2i|=3} \left(\frac{\pi}{e^{\pi z/2} + 1} + \frac{6 \operatorname{ch} \frac{\pi i z}{2 - 2i}}{(z - 2 + 2i)^2 (z - 4 - 2i)} \right) dz$$

Задача 17. Вычислить интеграл

17.1.
$$\int_{0}^{2\pi} \frac{dt}{2 + \sqrt{3} \sin t}$$
17.2.
$$\int_{0}^{2\pi} \frac{dt}{4 + \sqrt{15} \sin t}$$
17.3.
$$\int_{0}^{2\pi} \frac{dt}{5 + 2\sqrt{6} \sin t}$$
17.4.
$$\int_{0}^{2\pi} \frac{dt}{6 + \sqrt{35} \sin t}$$

17.5.
$$\int_{0}^{2\pi} \frac{dt}{7 + 4\sqrt{3}\sin t}$$

17.7.
$$\int_{0}^{2\pi} \frac{dt}{5 - 3\sin t}$$

$$17.9. \int_{0}^{2\pi} \frac{dt}{9 - 4\sqrt{5}\sin t}$$

17.11.
$$\int_{0}^{2\pi} \frac{dt}{3 - \sqrt{5}\sin t}$$

$$17.13. \int_{0}^{2\pi} \frac{dt}{4 - 2\sqrt{3}\sin t}$$

$$17.15. \int_{0}^{2\pi} \frac{dt}{6 - 4\sqrt{2}\sin t}$$

17.17.
$$\int_{0}^{2\pi} \frac{dt}{\sqrt{3}\sin t - 2}$$

17.19.
$$\int_{0}^{2\pi} \frac{dt}{2\sqrt{6}\sin t - 5}$$

17.21.
$$\int_{0}^{2\pi} \frac{dt}{4\sqrt{3}\sin t - 7}$$

$$17.23. \int_{0}^{2\pi} \frac{dt}{3\sin t + 5}$$

$$17.25. \int_{0}^{2\pi} \frac{dt}{4\sqrt{5}\sin t + 9}$$

17.27.
$$\int_{0}^{2\pi} \frac{dt}{\sqrt{5}\sin t + 3}$$

$$17.29. \int_{0}^{2\pi} \frac{dt}{2\sqrt{3}\sin t + 4}$$

$$17.31. \int_{0}^{2\pi} \frac{dt}{4\sqrt{2}\sin t + 6}$$

17.6.
$$\int_{0}^{2\pi} \frac{dt}{5 - 4\sin t}$$

17.8.
$$\int_{0}^{2\pi} \frac{dt}{8 - 3\sqrt{7}\sin t}$$

17.10.
$$\int_{0}^{2\pi} \frac{dt}{4 - \sqrt{7} \sin t}$$

17.12.
$$\int_{0}^{2\pi} \frac{dt}{3 - 2\sqrt{2}\sin t}$$

17.14.
$$\int_{0}^{2\pi} \frac{dt}{5 - \sqrt{21} \sin t}$$

17.16.
$$\int_{0}^{2\pi} \frac{dt}{8 - 2\sqrt{15}\sin t}$$

17.18.
$$\int_{0}^{2\pi} \frac{dt}{\sqrt{15}\sin t - 4}$$

17.20.
$$\int_{0}^{2\pi} \frac{dt}{\sqrt{35}\sin t - 6}$$

$$17.22. \int_{0}^{2\pi} \frac{dt}{4\sin t + 5}$$

17.24.
$$\int_{0}^{2\pi} \frac{dt}{3\sqrt{7}\sin t + 8}$$

17.26.
$$\int_{0}^{2\pi} \frac{dt}{\sqrt{7}\sin t + 4}$$

17.28.
$$\int_{0}^{2\pi} \frac{dt}{2\sqrt{2}\sin t + 3}$$

$$17.30. \int_{0}^{2\pi} \frac{dt}{\sqrt{21}\sin t + 5}$$

Задача 18. Вычислить интеграл

18.1.
$$\int_{0}^{2\pi} \frac{dt}{(1+\sqrt{10/11}\cos t)^2}$$

18.3.
$$\int_{0}^{2\pi} \frac{dt}{(1+\sqrt{6/7}\cos t)^2}$$

18.5.
$$\int_{0}^{2\pi} \frac{dt}{(3\sqrt{2} + 2\sqrt{3}\cos t)^2}$$

18.7.
$$\int_{0}^{2\pi} \frac{dt}{(4+3\cos t)^2}$$

18.9.
$$\int_{0}^{2\pi} \frac{dt}{(\sqrt{7} + 2\cos t)^2}$$

18.11.
$$\int_{0}^{2\pi} \frac{dt}{(3+\sqrt{5}\cos t)^2}$$

18.13.
$$\int_{0}^{2\pi} \frac{dt}{(2\sqrt{2} + \sqrt{7}\cos t)^2}$$

18.15.
$$\int_{0}^{2\pi} \frac{dt}{(\sqrt{6} + \sqrt{5}\cos t)^2}$$

18.17.
$$\int_{0}^{2\pi} \frac{dt}{(\sqrt{2} + \cos t)^2}$$

18.19.
$$\int_{0}^{2\pi} \frac{dt}{(3+\cos t)^2}$$

18.21.
$$\int_{0}^{2\pi} \frac{dt}{(\sqrt{3} + \cos t)^2}$$

18.23.
$$\int_{0}^{2\pi} \frac{dt}{(\sqrt{13} + 2\sqrt{3}\cos t)^2}$$

18.25.
$$\int_{0}^{2\pi} \frac{dt}{(3+2\cos t)^2}$$

18.27.
$$\int_{0}^{2\pi} \frac{dt}{(\sqrt{10} + 3\cos t)^2}$$

18.2.
$$\int_{0}^{2\pi} \frac{dt}{(\sqrt{5} + \cos t)^2}$$

18.4.
$$\int_{0}^{2\pi} \frac{dt}{(2\sqrt{3} + \sqrt{11}\cos t)^2}$$

18.6.
$$\int_{0}^{2\pi} \frac{dt}{(4+\cos t)^2}$$

18.8.
$$\int_{0}^{2\pi} \frac{dt}{(\sqrt{5} + \sqrt{3}\cos t)^{2}}$$

18.10.
$$\int_{0}^{2\pi} \frac{dt}{(4+\sqrt{7}\cos t)^2}$$

18.12.
$$\int_{0}^{2\pi} \frac{dt}{(3+2\sqrt{2}\cos t)^2}$$

18.14.
$$\int_{0}^{2\pi} \frac{dt}{(\sqrt{6} + \cos t)^2}$$

18.16.
$$\int_{0}^{2\pi} \frac{dt}{(\sqrt{7} + \sqrt{5}\cos t)^2}$$

18.18.
$$\int_{0}^{2\pi} \frac{dt}{(\sqrt{5} + 2\cos t)^2}$$

18.20.
$$\int_{0}^{2\pi} \frac{dt}{(\sqrt{7} + \sqrt{2}\cos t)^2}$$

18.22.
$$\int_{0}^{2\pi} \frac{dt}{(2+\sqrt{3}\cos t)^2}$$

18.24.
$$\int_{0}^{2\pi} \frac{dt}{(2+\cos t)^2}$$

18.26.
$$\int_{0}^{2\pi} \frac{dt}{(2+\sqrt{2}\cos t)^2}$$

18.28.
$$\int_{0}^{2\pi} \frac{dt}{(\sqrt{3} + \sqrt{2}\cos t)^2}$$

18.29.
$$\int_{0}^{2\pi} \frac{dt}{(\sqrt{7} + \sqrt{3}\cos t)^2}$$

18.31.
$$\int_{0}^{2\pi} \frac{dt}{(\sqrt{5} + \sqrt{2}\cos t)^2}$$

18.30.
$$\int_{0}^{2\pi} \frac{dt}{(\sqrt{7} + \cos t)^2}$$

Задача 19. Вычислить интеграл

19.1.
$$\int_{-\infty}^{+\infty} \frac{x^2 - x + 2}{x^4 + 10x^2 + 9} dx$$

19.3.
$$\int_{-\infty}^{+\infty} \frac{dx}{(x^4+1)^2}$$

19.5.
$$\int_{-\infty}^{+\infty} \frac{dx}{(x^2 - x + 1)^2}$$

19.7.
$$\int_{-\infty}^{+\infty} \frac{dx}{x^4 + 10x^2 + 9}$$

19.9.
$$\int_{-\infty}^{+\infty} \frac{x^2 dx}{(x^2 + 3)^2}$$

19.11.
$$\int_{-\infty}^{+\infty} \frac{dx}{(x^2+9)(x^2+1)^2}$$

19.13.
$$\int_{-\infty}^{+\infty} \frac{x^2 + 1}{(x^2 + 4x + 13)^2} dx$$

19.15.
$$\int_{-\infty}^{+\infty} \frac{dx}{(x^2+1)^2(x^2+4)}$$

19.17.
$$\int_{-\infty}^{\infty} \frac{dx}{(1+x^2)^3}$$

19.2.
$$\int_{-\infty}^{+\infty} \frac{x-1}{(x^2+4)^2} dx$$

19.4.
$$\int_{-\infty}^{+\infty} \frac{dx}{(x^2+4)^2(x^2+16)}$$

19.6.
$$\int_{-\infty}^{+\infty} \frac{dx}{(x^2+4)(x^2+9)^2}$$

19.8.
$$\int_{-\infty}^{+\infty} \frac{dx}{(x^2+9)(x^2+4)^2}$$

19.10.
$$\int_{-\infty}^{+\infty} \frac{dx}{(x^2+2)(x^2+3)^2}$$

19.12.
$$\int_{-\infty}^{+\infty} \frac{x^2 + 1}{(x^2 + x + 1)^2} dx$$

19.14.
$$\int_{-\infty}^{\infty} \frac{x^2}{(x^2+5)^2} dx$$

19.16.
$$\int_{-\infty}^{\infty} \frac{x^2 + 5}{x^4 + 5x^2 + 6} dx$$

19.18.
$$\int_{-\infty}^{+\infty} \frac{x^2 + 3}{\left(x^2 + 10x + 29\right)^2} dx$$

19.19.
$$\int_{-\infty}^{+\infty} \frac{dx}{(x^2+1)^2(x^2+5)^2}$$

19.21.
$$\int_{-\infty}^{+\infty} \frac{x^2 + 4}{(x^2 + 9)^2} dx$$

19.23.
$$\int_{-\infty}^{+\infty} \frac{dx}{(x^2+2)^2(x^2+10)^2}$$

19.25.
$$\int_{-\infty}^{+\infty} \frac{x^2 + 10}{(x^2 + 4)^2} dx$$

19.27.
$$\int_{-\infty}^{+\infty} \frac{dx}{(x^2+3)^2(x^2+15)^2}$$

19.29.
$$\int_{-\infty}^{+\infty} \frac{dx}{(x^2 - 10x + 29)^2}$$

19.31.
$$\int_{-\infty}^{+\infty} \frac{dx}{(x^2+1)^2(x^2+16)}$$

19.20. $\int_{-\infty}^{\infty} \frac{dx}{x^4 + 7x^2 + 12}$

19.22.
$$\int_{-\infty}^{\infty} \frac{dx}{(x^2+1)^5}$$

19.24.
$$\int_{-\infty}^{+\infty} \frac{x^2 - 1}{(x^2 + 8x + 17)^2} dx$$

19.26.
$$\int_{0}^{\infty} \frac{dx}{(x^2+1)^4}$$

19.28.
$$\int_{-\infty}^{\infty} \frac{x^2 + 2}{x^4 + 7x^2 + 12} dx$$

19.30.
$$\int_{-\infty}^{+\infty} \frac{x^2}{(x^2 + 11)^2} dx$$

Задача 20. Вычислить интеграл

20.1.
$$\int_{0}^{+\infty} \frac{x \sin 3x}{(x^2 + 4)^2} dx$$

20.3.
$$\int_{-\infty}^{+\infty} \frac{\cos 2x}{(x^2+1)^2} dx$$

20.5.
$$\int_{-\infty}^{+\infty} \frac{(x+1)\cos x}{x^4 + 5x^2 + 6} dx$$

20.7.
$$\int_{0}^{+\infty} \frac{(x^2+3)\cos 2x}{x^4+3x^2+2} dx$$

20.2.
$$\int_{0}^{+\infty} \frac{(x-1)\sin x}{(x^2+9)^2} dx$$

20.4.
$$\int_{-\infty}^{+\infty} \frac{x^2 \cos x}{(x^2 + 1)^2} dx$$

20.6.
$$\int_{-\infty}^{+\infty} \frac{x \sin \frac{x}{2} dx}{(x^2 + 1)(x^2 + 9)}$$

20.8.
$$\int_{-\infty}^{+\infty} \frac{(x^3 - 2)\cos\frac{x}{2}dx}{(x^2 + 1)^2}$$

20.9.
$$\int_{-\infty}^{+\infty} \frac{(x^2 - x)\sin x}{x^4 + 9x^2 + 20} dx$$

20.11.
$$\int_{-\infty}^{+\infty} \frac{x \sin 2x - \sin x}{(x^2 + 4)^2} dx$$

20.13.
$$\int_{-\infty}^{+\infty} \frac{x^3 \sin x}{x^4 + 5x^2 + 4} dx$$

20.15.
$$\int_{-\infty}^{+\infty} \frac{x \sin x}{(x^2 + 1)^2} dx$$

20.17.
$$\int_{0}^{+\infty} \frac{\cos x dx}{(x^2 + 1)^3}$$

20.19.
$$\int_{-\infty}^{+\infty} \frac{x \sin x \, dx}{x^2 - 2x + 10}$$

20.21.
$$\int_{0}^{+\infty} \frac{x \sin \frac{x}{2}}{x^2 + 4} dx$$

20.23.
$$\int_{0}^{+\infty} \frac{\cos 2x}{(x^2 - x + 1)^2} dx$$

20.25.
$$\int_{-\infty}^{+\infty} \frac{x^2 \cos x}{x^4 + 10x^2 + 9} dx$$

20.27.
$$\int_{-\infty}^{+\infty} \frac{(x^3+1)\sin x}{x^4+5x^2+4} dx$$

20.29.
$$\int_{-\infty}^{+\infty} \frac{(x^2 + x)\sin x}{x^4 + 13x^2 + 36} dx$$

20.31.
$$\int_{-\infty}^{+\infty} \frac{\cos 3x - \cos 2x}{(x^2 + 1)^2} dx$$

20.10.
$$\int_{-\pi}^{+\infty} \frac{x \cos x}{x^2 - 2x + 2} dx$$

20.12.
$$\int_{-\infty}^{+\infty} \frac{\cos 5x dx}{(x^2+1)^2(x^2+4)}$$

20.14.
$$\int_{0}^{+\infty} \frac{(x+1)\sin 2x}{x^2 + 2x + 2} dx$$

20.16.
$$\int_{0}^{+\infty} \frac{\cos 2x}{\left(x^2 + \frac{1}{4}\right)^2} dx$$

20.18.
$$\int_{0}^{+\infty} \frac{\cos x dx}{(x^2 + 16)(x^2 + 9)}$$

20.20.
$$\int_{-\infty}^{+\infty} \frac{x \cos x \, dx}{x^2 - 2x + 10}$$

20.22.
$$\int_{-\infty}^{+\infty} \frac{\sin 2x}{(x^2 - x + 1)^2} dx$$

20.24.
$$\int_{0}^{+\infty} \frac{(x^3 + 5x)\sin x}{x^4 + 10x^2 + 9} dx$$

20.26.
$$\int_{-\infty}^{+\infty} \frac{(x^3+1)\cos x}{x^4+5x^2+4} dx$$

20.28.
$$\int_{-\infty}^{+\infty} \frac{\cos 2x - \cos x}{(x^2 + 1)^2} dx$$

20.30.
$$\int_{-\infty}^{+\infty} \frac{(x^2 + x)\cos x}{x^4 + 13x^2 + 36} dx$$

Задача 21. По данному графику оригинала найти изображение

<u>21.13</u>.

21.13.

<u>21.14</u>.

21.14.

<u>21.15</u>.

21.15.

<u>21.16</u>.

21.16.

<u>21.17</u>.

21.17,

<u>21.18</u>.

21.18.

<u>21.22</u>.

<u>21.24</u>.

Задача 22. Найти оригинал по заданному изображению

4p+5	<u>p</u>
$\frac{1}{(p-2)(p^2+4p+5)}.$	$\frac{p}{(p+1)(p^2+p+1)}$.
2 <i>p</i>	1
$\frac{22.3}{(p^2+4p+8)^2}.$	$\frac{1}{p(p^2+1)^2}.$
p+3	n
$\frac{p+3}{p^3+2p^2+3p}.$	$\frac{p}{(p+1)(p^2+4p+5)}$.
6	4
$\frac{6}{p^3 - 8}.$	$\frac{4}{p^3+8}$.
1	p+4
$\frac{1}{p^5+p^3}$.	$\frac{p+4}{p^2+4p+5}.$
n	p+5
$\frac{p}{(p^2+1)(p^2+4)}.$	$\frac{p+5}{(p+1)(p^2-2p+5)}.$
1	3p + 2
$\frac{1}{p^3+p^2+p}$.	$\frac{1}{(22.14.} (p+1)(p^2+4p+5).$
1	1
$\frac{1}{p(p^3+1)}$.	$p^{3}(p^{2}-4)$

<u>22.17</u> .	$\frac{p}{\left(p^2+1\right)\left(p^2-2\right)}.$	$\frac{1}{p^3-1}$.
	$\frac{e^{-p/2}}{\left(p^2+1\right)\!\left(p^2+2\right)}.$	$\frac{5}{(p-1)(p^2+4p+5)}.$
	$\frac{5p}{(p+2)(p^2-2p+2)}.$	$\frac{1}{(p-2)(p^2+2p+3)}.$
	$\frac{p}{\left(p^2+4p+8\right)^2}.$	$\frac{1-p}{p(p^2+3p+3)}.$
	$\frac{2p+1}{(p+1)(p^2+2p+3)}.$	$\frac{2-3p}{(p-2)(p^2-4p+5)}.$
		$\frac{2-p}{p^3-2p^2+5p}.$
	$\frac{2}{(p+1)(p^2+2p+2)}.$	$\frac{2-p}{(p-1)(p^2-4p+5)}.$
	$\frac{3p-2}{(p-1)(p^2-6p+10)}.$	

Задача 23. Найти решение дифференциального уравнения, удовлетворяющее условиям $y(0)=0,\ y'(0)=0.$

y'' - y = th t.	$y'' - y' = \frac{1}{1 + e^t}.$
$y'' - 2y' + y = \frac{e^t}{1 + t^2}.$	$\frac{23.4.}{23.4.} y'' - 2y' + 2y = 2e^t \cos t.$
$23.5. y'' - y' = th^2 t.$	$y'' - y = \frac{1}{\operatorname{ch} t}$.

$y'' - y' = \frac{e^t}{1 + e^t}.$	$y'' - 2y' + y = \frac{e^t}{t+1}$
$y'' - y' = \frac{e^t}{1 + e^t}.$ $y'' + y' = \frac{e^{2t}}{3 + e^t}.$	$y'' - 2y' = \frac{e^t}{\operatorname{ch} t}.$
$y'' - y = \frac{1}{1 + \operatorname{ch} t}.$	$y'' + y' = \frac{1}{1 + e^t}.$
$y'' - 4y' + 4y = \frac{2e^{2t}}{\cosh^2 2t}.$	$y'' - 4y = \frac{1}{\cosh^3 2t}.$
$y'' - y = \frac{1}{\cosh^2 t}.$	$y'' + y' = \frac{e^t}{1 + e^t}.$
$y'' + 2y' + y = \frac{e^{-t}}{(t+1)^2}.$	$2y'' - y' = \frac{e^t}{\left(1 + e^{t/2}\right)^2}.$
$y'' - y = \frac{1}{\cosh^3 t}.$	$y'' - y' = \frac{e^{2t}}{\left(1 + e^t\right)^2}.$
$y'' + 2y' + y = \frac{te^{-t}}{t+1}.$	$y'' - y' = \frac{e^{2t}}{2 + e^t}.$
$y'' - y = \frac{\sinh t}{\cosh^2 t}.$	$y'' + y' = \frac{e^t}{\left(1 + e^t\right)^2}.$
$y'' + 2y' + y = \frac{e^{-t}}{1 + t^2}.$	$y'' - 2y' + y = \frac{e^t}{\cosh^2 t}.$
$y'' + 2y' + y = \frac{e^{-t}}{\cosh^2 t}.$	$\frac{23.28}{23.28}. \ y'' - 4y = th^2 2t.$
$y'' + 2y' = \frac{1}{\cosh^2 t}.$	$y'' + y' = \frac{1}{\left(1 + e^t\right)^2}.$
$y'' + 4y' + 4y = \frac{e^{-2t}}{(1+2t)^2}.$	

Задача 24. Операционным методом решить задачу Коши

$y'' + y = 6e^{-t},$	$y''-y'=t^2,$
y(0) = 3, y'(0) = 1.	y(0) = 0, y'(0) = 1.
$y'' + y' = t^2 + 2t,$	$y'' - y = \cos 3t,$
y(0) = 0, y'(0) = -2.	y(0) = 1, y'(0) = 1.
$y'' + y' + y = 7e^{2t},$	y'' + y' - 2y = -2(t+1),
y(0)=1, y'(0)=4.	y(0) = 1, y'(0) = 1.
$y'' - 9y = \sin t - \cos t,$	$y'' + 2y' = 2 + e^t,$
y(0) = -3, y'(0) = 2.	y(0) = 1, y'(0) = 2.
$2y'' - y' = \sin 3t,$	$y'' + 2y' = \sin t/2,$
y(0) = 2, y'(0) = 1.	y(0) = -2, y'(0) = 4.
$y'' + y = \sinh t,$	$y'' + 4y' + 29y = e^{-2t},$
y(0) = 2, y'(0) = 1.	y(0) = 0, y'(0) = 1.
$y'' - 3y' + 2y = e^t,$	$2y'' + 3y' + y = 3e^t,$
y(0) = 1, y'(0) = 0.	y(0) = 0, y'(0) = 1.
y'' - 2y' - 3y = 2t,	$y'' + 4y = \sin 2t,$
y(0) = 1, y'(0) = 1.	y(0) = 0, y'(0) = 1.
$2y'' + 5y' = 29\cos t,$	$y'' + y' + y = t^2 + t,$
y(0) = -1, y'(0) = 0.	y(0) = 1, y'(0) = -3.
$y'' + 4y = 8\sin 2t,$	y'' - y' - 6y = 2,
y(0) = 3, y'(0) = -1.	y(0) = 1, y'(0) = 0.
$y'' + 4y = 4e^{2t} + 4t^2,$	$y'' + 4y' + 4y = t^3 e^{2t},$
y(0)=1, y'(0)=2.	y(0) = 1, y'(0) = 2.
$y'' - 3y' + 2y = 12e^{3t},$	$y'' + 4y = 3\sin t + 10\cos 3t,$
y(0) = 2, y'(0) = 6.	y(0) = -2, y'(0) = 3.

24.25.	24.26.
$y'' + 2y' + 10y = 2e^{-t}\cos 3t,$	$y'' + 3y' - 10y = 47\cos 3t - \sin 3t,$
y(0) = 5, y'(0) = 1.	y(0) = 3, y'(0) = -1.
$y'' + y' - 2y = e^{-t}$,	$y'' - 2y' = e^{t}(t^{2} + t - 3),$
y(0) = -1, y'(0) = 0.	y(0) = 2, y'(0) = 2.
$y'' + y = 2\cos t,$	$y'' - y = 4\sin t + 5\cos 2t,$
y(0) = 0, y'(0) = 1.	y(0) = -1, y'(0) = -2.
$y'' - 3y' + 2y = 2e^t \cos \frac{t}{2},$	
y(0)=1, y'(0)=0.	

Задача 25. Решить систему дифференциальных уравнений

$\int \dot{\mathbf{x}} = \mathbf{x} + 3\mathbf{v} + 2$	$\int \dot{\mathbf{x}} = -\mathbf{x} + 3\mathbf{v} + 1$
$\begin{cases} \dot{x} = x + 3y + 2, \\ \dot{y} = x - y + 1; \end{cases}$	$\begin{cases} \dot{x} = -x + 3y + 1, \\ \dot{y} = x + y; \end{cases}$
x(0) = -1, y(0) = 2.	x(0) = 1, y(0) = 2.
$\begin{cases} \dot{x} = x + 4y, \\ \dot{y} = 2x - y + 9; \end{cases}$	$\begin{cases} \dot{x} = x + 2y + 1, \\ \dot{y} = 4x - y; \end{cases}$
$\dot{y} = 2x - y + 9;$	$\dot{y} = 4x - y;$
x(0) = 1, y(0) = 0.	x(0) = 0, y(0) = 1.
$\begin{cases} \dot{x} = 2x + 5y, \\ \dot{y} = x - 2y + 2; \end{cases}$	$\begin{cases} \dot{x} = -2x + 5y + 1, \\ \dot{y} = 4x - y; \end{cases}$
$\dot{y} = x - 2y + 2;$	$\int \dot{y} = 4x - y;$
x(0) = 1, y(0) = 1.	x(0) = 0, y(0) = 1.
$\int \dot{x} = 3x + y,$	$\begin{cases} \dot{x} = -3x - 4y + 1, \\ \dot{y} = 2x + 3y; \end{cases}$
$\begin{cases} \dot{x} = 3x + y, \\ \dot{y} = -5x - 3y + 2; \end{cases}$	$\dot{y} = 2x + 3y;$
x(0) = 2, y(0) = 0.	x(0) = 0, y(0) = 2.

$\int \dot{x} = -2x + 6y + 1,$	$\int \dot{x} = 2x + 3y + 1,$
$\begin{cases} \dot{x} = -2x + 6y + 1, \\ \dot{y} = 2x + 2; \end{cases}$	$\begin{cases} \dot{x} = 2x + 3y + 1, \\ \dot{y} = 4x - 2y; \end{cases}$
x(0) = 0, y(0) = 1.	x(0) = -1, y(0) = 0.
$\int \dot{x} = x + 2y,$	$\int \dot{x} = 2x - 2y,$
$\begin{cases} \dot{x} = x + 2y, \\ \dot{y} = 2x + y + 1; \end{cases}$	$\begin{cases} \dot{x} = 2x - 2y, \\ \dot{y} = -4x; \end{cases}$
$ 25.11. x(0) = 0, \ y(0) = 5. $	x(0) = 3, y(0) = 1.
$\int \dot{x} = -x - 2y + 1,$	$\int \dot{x} = 3x + 5y + 2,$
$\dot{y} = -\frac{3}{2}x + y;$	$\begin{cases} \dot{x} = 3x + 5y + 2, \\ \dot{y} = 3x + y + 1; \end{cases}$
x(0) = 1, y(0) = 0.	x(0) = 0, y(0) = 2.
$\int \dot{x} = 3x + 2y,$	$\int \dot{x} = 2y + 1,$
$\dot{y} = \frac{5}{2}x - y + 2;$	$\begin{cases} \dot{x} = 2y + 1, \\ \dot{y} = 2x + 3; \end{cases}$
x(0) = 0, y(0) = 1.	x(0) = -1, y(0) = 0.
$ \begin{cases} \dot{x} = 2x + 8y + 1, \\ \dot{y} = 3x + 4y; \end{cases} $	$\int \dot{x} = 2x + 2y + 2,$
$\dot{y} = 3x + 4y;$	$\begin{cases} \dot{x} = 2x + 2y + 2, \\ \dot{y} = 4y + 1; \end{cases}$
x(0) = 2, y(0) = 1.	x(0) = 0, y(0) = 1.
$\begin{cases} \dot{x} = x + y, \\ \dot{y} = 4x + y + 1; \end{cases}$	$\begin{cases} \dot{x} = x - 2y + 1, \\ \dot{y} = -3x; \end{cases}$
$\dot{y} = 4x + y + 1;$	$\dot{y} = -3x;$
x(0) = 1, y(0) = 0.	25.20. x(0) = 0, y(0) = 1.
$ \begin{cases} \dot{x} = 3y + 2, \\ \dot{y} = x + 2y; \end{cases} $	$\begin{cases} \dot{x} = x + 4y + 1, \\ \dot{y} = 2x + 3y; \end{cases}$
, and the second	$\dot{y} = 2x + 3y;$
x(0) = -1, y(0) = 1.	x(0) = 0, y(0) = 1.
$\begin{cases} \dot{x} = 2y, \\ \dot{y} = 2x + 3y + 1; \end{cases}$	$\begin{cases} \dot{x} = -2x + y + 2, \\ \dot{y} = 3x; \end{cases}$
x(0) = 2, y(0) = 1.	x(0) = 1, y(0) = 0.

$\begin{cases} \dot{x} = 4x + 3, \\ \dot{y} = x + 2y; \end{cases}$	$\int \dot{x} = y + 3,$
$\dot{y} = x + 2y;$	$\begin{cases} \dot{x} = y + 3, \\ \dot{y} = x + 2; \end{cases}$
x(0) = -1, y(0) = 0.	x(0) = 1, y(0) = 0.
$\begin{cases} \dot{x} = x + 3y + 3, \\ \dot{y} = x - y + 1; \end{cases}$	$\begin{cases} \dot{x} = -x + 3y + 2, \\ \dot{y} = x + y + 1; \end{cases}$
$\dot{y} = x - y + 1;$	$\dot{y} = x + y + 1;$
x(0) = 0, y(0) = 1.	x(0) = 0, y(0) = 1.
$\int \dot{x} = 3y,$	$\int \dot{x} = x + 3y,$
$\begin{cases} \dot{x} = 3y, \\ \dot{y} = 3x + 1; \end{cases}$	$\begin{cases} \dot{x} = x + 3y, \\ \dot{y} = x - y; \end{cases}$
x(0) = 2, y(0) = 0.	x(0) = 1, y(0) = 0.
$\int \dot{x} = -2x + y,$	
$\begin{cases} \dot{x} = -2x + y, \\ \dot{y} = 3x; \end{cases}$	
x(0) = 0, y(0) = 1.	

26. Выяснить, во что преобразуется геометрическая фигура при отображении с помощью функции w = f(z)

27.1. $w = e^z$; прямые $x = C$, $y = C$.	27.2. $w = e^z$; полоса $\alpha < y < \beta$, $0 \le \alpha < \beta \le 2\pi$.
27.3. $w = e^z$; прямые $y = kx + b$.	27.4. $w = e^z$; полоса между $y = x$ и $y = x + 2\pi$.
27.5.	27.6.
$w = e^z$; полуполоса $x < 0$, $0 < y < \alpha \le 2\pi$.	$w = e^z$; полуполоса $x > 0$, $0 < y < \alpha \le 2\pi$.
$w = \frac{1-z}{1+z}$; область $D: \{ z < 1, \text{ Im } z > 0\}$.	27.8. $w = \ln z$; полярная сетка $ z = R$, $\arg z = \theta$.
27.9. $w = \ln z$, угол $0 < \arg z < \alpha \le 2\pi$.	27.10. $w = \ln z$; сектор $ z < 1$, $0 < \arg z < \alpha \le 2\pi$.
27.11 . $w = \ln z$; кольцо $r_1 < z < r_2$ с разрезом по отрезку $[r_1, r_2]$.	27.12. $w = \cos z$, прямоугольная сетка $x = C$, $y = C$.

27.13. $w = \cos z$, полуполоса $0 < x < \pi$, $y < 0$.	27.14. $w = \cos z$; полуполоса $0 < x < \pi/2$, $y > 0$.
27.15. $w = \cos z$, полуполоса $-\pi/2 < x < \pi/2$, $y > 0$.	
27.17. $w = \cos z$; прямоугольник $0 < x < \pi$, $-h < y < h$, $h > 0$.	27.18.
27.19. $w = \arcsin z$; первый квадрант.	27.20. $w = \text{ch } z$; прямоугольная сетка $x = C$, $y = C$.
27.21. $w = \operatorname{ch} z$; полоса $0 < y < \pi$.	27.22. $w = \text{ch } z$; полуполоса $x > 0$, $0 < y < \pi$.
27.23. $w = \operatorname{Arsh} z$, первый квадрант.	27.24. $w = \operatorname{tg} z$, полуполоса $0 < x < \pi$, $y > 0$.
27.25. $w = \lg z$, полоса $0 < x < \pi$.	27.26. $w = \operatorname{tg} z$, полоса $0 < x < \pi/4$.
27.27. $w = \operatorname{tg} z$, полоса $-\pi/4 < y < \pi/4$.	27.28. $w = \coth z$; полуполоса $0 < y < \pi$, $x > 0$.
27.29. $w = \coth z$; полоса $0 < y < \pi$.	27.30. $w = \frac{z-3+i}{z+1+i}$; полуплоскость Re $z < 1$.
27.31. $w = \frac{2}{z-1}$; область $D: \{1 < z < 2\}$.	