Image Quality Assessment

Wang Yan

2016.12.19

CONTENT

- Remaining Questions of ILNIQE
- Database
- ◆ Benchmark
- ◆ Future Work

Remaining Questions of ILNIQE

• 5 Kinds, totally 234 Features

- Statistics of Normalized Luminance
- (2) Statistics of MSCN Products
- (3) Gradient Statistics
- **Statistics of Colors**

MSCN

Gradient

Remaining Questions of ILNIQE

Experimental Results

Feature	Kinds	Quantity	SROCC	PLCC	RMSE	MAE
mscn	12	18	0.8390	0.7287	0.7329	0.6050
mscn+color	125	24	0.8378	0.7167	0.7352	0.6054

Feature	Kinds	Quantity	SROCC	PLCC	RMSE	MAE
without color	1234	228	0.8891	0.8509	0.6166	0.5272
ALL	12345	234	0.8838	0.8446	0.6300	0.5350

Color features do have an inverse effect

Remaining Questions of ILNIQE

• Experimental Results

Feature	Kinds	Quantity	SROCC	PLCC	RMSE	MAE
without log-Gabor	1235	42	0.8127	0.7639	0.7848	0.6678
ALL	12345	234	0.8838	0.8446	0.6300	0.5350
	Γ					
without Gradient	1245	216	0.8784	0.8515	0.6436	0.5293
ALL	12345	234	0.8838	0.8446	0.6300	0.5350
	•					
without mscn	3 4 5	216	0.8605	0.8088	0.6862	0.5687
ALL	12345	234	0.8838	0.8446	0.6300	0.5350

Database

• 数据集介绍

大连数据集共有10组图像,组间以不同的浑浊度区分,组内以不同的深度区分。去除每组内同样深度的图像及重复的纯水质图像,最终共有87张有效图像。

	深度	范围	数量	删减后数量	清晰度	拍摄	时间	浑浊情况	对应水质文件
1	460	1360	10	10	1360	15:30	15:37	-	
2	360	1360	11	11	1360	15:51	16:08	月31日15:30+氢氧化	03311004-03311651.dat
3	460	1360	10	10	1360	16:23	16:46	16:15+氢氧化铝	
4	500	1300	9	9	1100	9:21	9:24	4月1日09:15+氢氧化铝	04010847-04010930.dat
5	400	1300	10	10	900	9:33	9:41	9:26、9:30+氢氧化铝	
6	400	1300	10	8	700	9:52	9:55	9:43+氢氧化铝	04010931-04011048.dat
7	300	1200	10	8	600	10:04	10:23	9:57+氢氧化铝	
8	300	1100	9	8	500	10:56	11:05	10:54+氢氧化铝	04011049-04011128.dat
9	200	1100	10	7	400	11:19	11:25	11:05+氢氧化铝	04011043-04011120.uat
10	200	1100	10	6	300	16:07	16:14	15:54+氢氧化铝	04011601-04011616.dat

Database

• 数据集整理

✓ Database-CR

$$E(p) = e^{-CR} E(p_0)$$

C:波段为532nm的光的衰减系数,

R:目标物距离摄像机的距离

2

Database

• 数据集整理

✓ Database-MOS

- 每组的氢氧化铝含量逐渐增高,所以10组图像的清晰度是整体逐渐 降低的,即每组中对应的同样深度的图像质量应该是逐渐下降的。
- 以人眼可见最清晰的第4组图像为基准,来设置MOS值

Database

• 实验分析

- ✓ 无法完全排除实验环境中的光照影响
- ✓ 将C和R系数直接相乘作为图像质量可能不是非常可观,也许C和R的权重不同也会影响实验结果
- ✓ 图像左上角都留有摄像机拍摄时间,可能会对整幅图像的质量评价 过程造成影响

Database-CR-cut

Benchmark

		Metrics					
		PLCC	SROCC	RMSE	MAE		
JNB	Database-CR	0.8278	0.7775	14.0899	11.2122		
	Database-CR-cut	0.8448	0.7979	13.4393	10.6634		
JIND	Database-MOS	0.7984	0.7167	15.1229	11.9165	×	
	Database-MOS-cut	0.8097	0.7415	14.7360	11.5722		
	Database-CR	0.6309	0.7645	25.1131	21.7471		
CPBD	Database-CR-cut	0.6189	0.8325	25.1131	21.7471	~	
CPBD	Database-MOS	0.6155	0.6893	25.1131	21.7471	×	
	Database-MOS-cut	0.6103	0.7719	25.1131	21.7471		
	Database-CR	0.8826	0.8787	11.8043	8.4178		
CCEO	Database-CR-cut	0.7615	0.6654	16.2766	12.4783		
SSEQ	Database-MOS	0.8168	0.8415	14.8460	12.2230	×	
	Database-MOS-cut	0.8152	0.7119	14.5450	11.7843		
	Database-CR	0.1926	0.2853	24.6442	21.1189	-	
BRISQUE	Database-CR-cut	0.2464	0.3064	24.3674	21.2220		
DIVIZOR	Database-MOS	0.3183	0.3767	23.8244	20.7380		
	Database-MOS-cut	0.3076	0.3371	23.9073	20.9107		
	Database-CR	0.4330	0.5387	22.6368	18.9655	55	
ILNIQE	Database-CR-cut	0.7225	0.6563	17.3624	13.5283	2/	
ILIVIQE	Database-MOS	0.4196	0.5861	22.7957	19.1034	\checkmark	
	Database-MOS-cut	0.7033	0.6507	17.8524	13.9872		
	Database-CR	0.3681	0.3433	23.3536	19.8314		
NIQE	Database-CR-cut	0.3809	0.3046	23.2199	19.8259		
IVIQL	Database-MOS	0.1030	0.2850	25.1131	21.7471	_	
	Database-MOS-cut	0.1116	0.2261	25.1131	21.7471		
	Database-CR	0.2363	0.2203	24.4020	20.9007		
LPC	Database-CR-cut	0.2268	0.1744	24.4587	21.2083		
	Database-MOS	0.3419	0.2681	23.5996	20.0309	_	
	Database-MOS-cut	0.2922	0.2201	24.0171	20.6644		
	Database-CR	0.5326	0.5138	25.1131	21.7471		
FADE	Database-CR-cut	0.5222	0.5056	25.1131	21.7471	,	
FADE	Database-MOS	0.4072	0.3982	25.1131	21.7471		
	Database-MOS-cut	0.4090	0.4017	25.1131	21.7471		

- ●7种无参IQA
- ●1种雾密度评价方法FADE
- ●4个数据集
- ●4个性能指标

Benchmark

• 补充实验

- ✓ 由于每组图像之间的氢氧化铝都是人为投放,无法完全定量组间清晰度差别,所以可能造成赋值过程不严谨
- ✓ 对10组图像分别进行质量评价,将10组评价指标取均值,得到的最终评价指标也加入Benchmark,对比结果

		Metrics					
		PLCC	SROCC	RMSE	MAE		
SSEQ	Database-CR	0.8826	0.8787	11.8043	8.4178		
33LQ	Database-group	0.8475	0.6891	12.9513	10.1375		
ILNIQE	Database-CR-cut	0.7225	0.6563	17.3624	13.5283		
ILIVIQE	Database-group	0.7925	0.6773	16.813	13.5941		
FADE	Database-CR	0.5326	0.5138	25.1131	21.7471		
IADL	Database-group	0.6650	0.5854	26.6670	22.7020		

Future Work

- 基于对水下成像过程的认知
- 综合水下图像失真特点
- 研究Benchmark上不同IQA性能好坏的原因
- 逐步完善或提出更好的适合于水下图像的评价算法

Thanks