Controlling diffusion processes on networks

Anil Vullikanti
Department of Computer Science
Biocomplexity Institute & Initiative
University of Virginia

November 12, 2020

Recap

- Stochastic diffusion models, independent cascades
- Influence maximization problem, F(S)
- Submodularity
- Greedy algorithm
- Monte-Carlo sampling to approximate F(S)
- Greedy gives a (1-1/e)-approximation to a submodular function

Outline for lecture

- \blacksquare F(S) is submodular
- Minimizing diffusion
- Summary

Interventions to control epidemic spread

- use of prophylactic vaccinations and anti-viral drugs
- modeled as node deletions

Non Pharmaceutical interventions (NPI)

- Reducing contacts by social distancing, school or work place closure, or isolation.
- Modeled as edge deletions

Intervention design problems

Given limited budget B for node/edge removal, minimize the epidemic outbreak

SIS model

- Recall
 - Nodes in Susceptible (S) or Infectious (I) states
 - Prob infected node causes susceptible neighbor to become infected: β
 - lacksquare Prob infected node becomes susceptible: δ
- Limiting state: all nodes in S
- Natural quantity to consider: how long does the outbreak last
 - \blacksquare Die out time au

Characterizing τ (informal)

- A = A(G): adjacency matrix of G with eigenvalues $\lambda_1(G) \ge \lambda_2(G) \ge \dots \lambda_n(G)$
 - lacktriangle We will sometimes just refer to these as A,λ_1
- lacksquare λ_1 referred to as the *spectral radius* of G
- Let $T = \delta/\beta$

Sufficient condition [A. Ganesh, L. Massoulie and D. Towsley, *IEEE INFOCOM*, 2005]

If $\lambda_1 < T$: epidemic dies out "fast"

Lemma (Sufficient condition for fast recovery)

Suppose $\lambda_1 < T$. Then, the time to extinction τ satisfies

$$E[\tau] \le \frac{\log n + 1}{1 - \lambda_1/T}$$

Lemma (Sufficient condition for fast recovery)

Suppose $\lambda_1 < T$. Then, the time to extinction τ satisfies

$$E[\tau] \le \frac{\log n + 1}{1 - \lambda_1/T}$$

■ What if $\lambda_1 > T$: not a "if and only if" result

Lemma (Sufficient condition for fast recovery)

Suppose $\lambda_1 < T$. Then, the time to extinction τ satisfies

$$E[\tau] \le \frac{\log n + 1}{1 - \lambda_1/T}$$

- What if $\lambda_1 > T$: not a "if and only if" result
- Generalized isoperimetric constant: $\eta(m) = \inf_{S \subset V, |S| \le m} \frac{E(S, \bar{S})}{|S|}$

Lemma (Sufficient condition for fast recovery)

Suppose $\lambda_1 < T$. Then, the time to extinction τ satisfies

$$E[\tau] \le \frac{\log n + 1}{1 - \lambda_1/T}$$

- What if $\lambda_1 > T$: not a "if and only if" result
- Generalized isoperimetric constant: $\eta(m) = \inf_{S \subset V, |S| \le m} \frac{E(S, \overline{S})}{|S|}$

Lemma (Sufficient condition for lasting infection)

Lemma (Sufficient condition for fast recovery)

Suppose $\lambda_1 < T$. Then, the time to extinction τ satisfies

$$E[\tau] \le \frac{\log n + 1}{1 - \lambda_1/T}$$

- What if $\lambda_1 > T$: not a "if and only if" result
- Generalized isoperimetric constant: $\eta(m) = \inf_{S \subset V, |S| \le m} \frac{E(S, \bar{S})}{|S|}$

Lemma (Sufficient condition for lasting infection)

If $\eta(m)$ is "large", then the epidemic lasts for "long"

Lemma (Sufficient condition for fast recovery)

Suppose $\lambda_1 < T$. Then, the time to extinction τ satisfies

$$E[\tau] \le \frac{\log n + 1}{1 - \lambda_1/T}$$

- What if $\lambda_1 > T$: not a "if and only if" result
- Generalized isoperimetric constant: $\eta(m) = \inf_{S \subset V, |S| \le m} \frac{E(S, \bar{S})}{|S|}$

Lemma (Sufficient condition for lasting infection)

If
$$r=rac{\delta}{\beta\eta(m)}<1$$
, then

$$\Pr[\tau > r^{-m+1}/(2m)] \ge \frac{1-r}{e}(1+O(r^m))$$

Implications for different network models

- Hypercube: $\lambda_1 = \log_2 n$, and $\eta(m) = (1 a) \log_2 n$ for $m = n^a$
 - Fast die out if $\beta < \frac{1}{\log_2 n}$, slow die out if $\beta > \frac{1}{(1-a)\log_2 n}$
- Erdős-Rényi model: $\lambda_1 = (1 + o(1))np = (1 + o(1))d$ and $\eta(m) = (1 + o(1))(1 \alpha)d$ where $m/n \to \alpha$
 - Fast die out if $\beta < \frac{1}{(1+o(1))d}$, slow die out if $\beta > \frac{1}{(1+o(1))(1-\alpha)d}$
- Power law graphs (Chung-Lu model): assume degree distribution with power law exponent $\gamma > 2.5$
 - $E[\tau] = O(\log n)$ if $\beta < (1-u)/\sqrt{m}$ and $E[\tau]$ exponential if $\beta > m^{\alpha}/\sqrt{m}$ for some $u, \alpha \in (0,1)$ and $m = n^{\lambda}$, for $\lambda \in (0,\frac{1}{\gamma-1})$
- In general, gap between necessary and sufficient conditions for epidemic to last long

Note on derivations

There exist three different approaches for deriving spectral radius characterization

- Continuous time approximation [A. Ganesh, L. Massoulie and D. Towsley, *IEEE INFOCOM*, 2005]
 - Gives both upper and lower bounds on τ (in terms of λ_1 and $\eta(m)$)
- Independence assumption [D. Chakrabarti, et al., ACM TISS, 2008]
 - Only gives condition in terms of λ_1
 - Extended to other models beyond SIS [BA Prakash, et al., KAIS, 2012]
- Mean-field assumption [P. Van Mieghem, J. Omic, and R. Kooij. IEEE/ACM ToN, 2009]

Implications

- Low spectral radius ⇒ epidemic dies out faster
- Strategy to control outbreak: reduce spectral radius
- lacksquare λ_1 is monotone: decreases if nodes or edges are removed

Implications

- Low spectral radius ⇒ epidemic dies out faster
- Strategy to control outbreak: reduce spectral radius
- lacksquare λ_1 is monotone: decreases if nodes or edges are removed

Spectral Radius Minimization (SRM) problem

- Given: graph G=(V, E), threshold T and cost c(v) for each node v
- Objective: choose cheapest set $S \subseteq V$ of nodes to delete (i.e., vaccinate) so that $\lambda_1(G[V-S]) \leq T$.

Similarly, edge version

Approximation algorithms

- SRM is NP-hard, in general
- Therefore, approximation algorithms
- Let $V_{opt}(T)$ be an optimum solution for a given T
- α -approximation if the algorithm picks set S with cost $c(S) \leq \alpha \cdot c(V_{opt}(T))$, and $\lambda_1(G[V-S]) \leq T$
- (α, μ) -approximation if the algorithm picks set S with cost $c(S) \leq \alpha \cdot c(V_{opt}(T))$, and $\lambda_1(G[V-S]) \leq \mu T$

■ Pick nodes in non-increasing order of:

- Pick nodes in non-increasing order of:
 - Degree [Van Mieghem et al., 2011]

- Pick nodes in non-increasing order of:
 - Degree [Van Mieghem et al., 2011]
 - Eigenscore $x_1(i)$, where \mathbf{x}_1 is the first eigenvector [Tong et al., 2012], [Van Mieghem et al., 2011]

- Pick nodes in non-increasing order of:
 - Degree [Van Mieghem et al., 2011]
 - Eigenscore $x_1(i)$, where \mathbf{x}_1 is the first eigenvector [Tong et al., 2012], [Van Mieghem et al., 2011]
 - Pagerank [Tong et al., 2012]

- Pick nodes in non-increasing order of:
 - Degree [Van Mieghem et al., 2011]
 - Eigenscore $x_1(i)$, where x_1 is the first eigenvector [Tong et al., 2012], [Van Mieghem et al., 2011]
 - Pagerank [Tong et al., 2012]
- Hybrid rule: pick node based on either degree or eigenscore, depending on reduction in λ_1

- Pick nodes in non-increasing order of:
 - Degree [Van Mieghem et al., 2011]
 - Eigenscore $x_1(i)$, where x_1 is the first eigenvector [Tong et al., 2012], [Van Mieghem et al., 2011]
 - Pagerank [Tong et al., 2012]
- Hybrid rule: pick node based on either degree or eigenscore, depending on reduction in λ_1

Worst case performance

There exist instances, such that for all the above heuristics, the solution is $\Omega(\frac{n}{\sqrt{T}})$ times the optimal

Our results¹

- Algorithm GREEDYWALK: gives an $(O(\log^2 n), 1 + \epsilon)$ -approximation
- Primal-dual version: gives an $(O(\log n), 1 + \epsilon)$ -approximation
- Constant factor approximation by semidefinite programming based rounding

- Consider closed walks of length k
 - Start and end at same node
 - Length *k* of a walk: #edges in it

- Walk *v*₃, *v*₄, *v*₅, *v*₄, *v*₇, *v*₆, *v*₃ of length 6
 - Nodes can be repeated
- Walk v_7 , v_8 , v_9 , v_7 of length 3

- \blacksquare Consider closed walks of length k
 - Start and end at same node
 - Length k of a walk: #edges in it

- \blacksquare Consider closed walks of length k
 - Start and end at same node
 - Length *k* of a walk: #edges in it
- Node v "hits" walk w if $v \in w$.

■ Node v_1 hits the walks $w_1 = (v_1, v_2, v_1, v_2, v_1),$ $w_2 = (v_1, v_3, v_1, v_3, v_1),$ $w_3 = (v_1, v_2, v_3, v_4, v_1),$ $w_4 = (v_1, v_4, v_3, v_2, v_1),$ and four other walks

- Consider closed walks of length k
 - Start and end at same node
 - Length k of a walk: #edges in it
- Node v "hits" walk w if $v \in w$.
- n(v, G): #walks (of length k) containing node v

- Node v_1 hits the walks $w_1 = (v_1, v_2, v_1, v_2, v_1),$ $w_2 = (v_1, v_3, v_1, v_3, v_1),$ $w_3 = (v_1, v_2, v_3, v_4, v_1),$ $w_4 = (v_1, v_4, v_3, v_2, v_1),$ and four other walks
- $n(v_1, G) = 8$

- Consider closed walks of length k
 - Start and end at same node
 - Length *k* of a walk: #edges in it
- Node v "hits" walk w if $v \in w$.
- n(v, G): #walks (of length k) containing node v
- d(w): #distinct nodes in walk w

- Node v_1 hits the walks $w_1 = (v_1, v_2, v_1, v_2, v_1),$ $w_2 = (v_1, v_3, v_1, v_3, v_1),$ $w_3 = (v_1, v_2, v_3, v_4, v_1),$ $w_4 = (v_1, v_4, v_3, v_2, v_1),$ and four other walks
- $n(v_1, G) = 8$
- $d(w_1) = 2, d(w_4) = 4$

- Consider closed walks of length k
 - Start and end at same node
 - Length *k* of a walk: #edges in it
- Node v "hits" walk w if $v \in w$.
- n(v, G): #walks (of length k) containing node v
- d(w): #distinct nodes in walk w
- Let $W_k(G)$ denote the set of closed walks of length k
- Let $W_k(G) = |\mathcal{W}_k(G)|$

- Node v_1 hits the walks $w_1 = (v_1, v_2, v_1, v_2, v_1),$ $w_2 = (v_1, v_3, v_1, v_3, v_1),$ $w_3 = (v_1, v_2, v_3, v_4, v_1),$ $w_4 = (v_1, v_4, v_3, v_2, v_1), \text{ and four other walks}$
- $n(v_1, G) = 8$
- $d(w_1) = 2, d(w_4) = 4$

- Consider closed walks of length k
 - Start and end at same node
 - Length *k* of a walk: #edges in it
- Node v "hits" walk w if $v \in w$.
- n(v, G): #walks (of length k) containing node v
- d(w): #distinct nodes in walk w
- Let $W_k(G)$ denote the set of closed walks of length k
- Let $W_k(G) = |\mathcal{W}_k(G)|$
- Let c(v) denote the cost of picking node v

- Node v_1 hits the walks $w_1 = (v_1, v_2, v_1, v_2, v_1),$ $w_2 = (v_1, v_3, v_1, v_3, v_1),$ $w_3 = (v_1, v_2, v_3, v_4, v_1),$ $w_4 = (v_1, v_4, v_3, v_2, v_1),$ and four other walks
- $n(v_1, G) = 8$
- $d(w_1) = 2, d(w_4) = 4$

Algorithm GREEDYWALK

Main idea

Pick the smallest set S of nodes which hit many walks, for $k = \theta(\log n)$ (chosen to be an even number).

Algorithm GREEDYWALK

Main idea

Pick the smallest set S of nodes which hit at least $W_k(G) - nT^k$ walks, for $k = \theta(\log n)$ (chosen to be an even number).

Algorithm GREEDYWALK

Main idea

Pick the smallest set S of nodes which hit at least $W_k(G) - nT^k$ walks, for $k = \theta(\log n)$ (chosen to be an even number).

- Initialize $S \leftarrow \emptyset$
- Repeat while $W_k(G[V-S]) \ge nT^k$:
 - Pick the $v \in V S$ that maximizes $\frac{n(v,G[V-S])}{c(v)}$
 - $S \leftarrow S \cup \{v\}$

${\rm GreedyWalk} \ \ \text{example}$

Node	n(v,G)
v_1	9
<i>v</i> ₂	10
V3	17
V4	24
<i>V</i> 5	11
<i>v</i> ₆	17
<i>V</i> 7	27
. <i>v</i> ₈ ,	17
<i>V</i> 9	15

${\rm GreedyWalk} \ \ \text{example}$

Node	n(v,G)
v_1	9
<i>v</i> ₂	9
V3	12
V4	13
<i>V</i> 5	7
<i>v</i> ₆	7
<i>V</i> 7	-
. <i>v</i> ₈ ,	6
<i>V</i> 9	6
	9

Analysis

Lemma

We have
$$\lambda_1(G[V-S]) \leq (1+\epsilon)T$$
, and $c(S) = O(\frac{1}{\epsilon}\log^2 n \cdot c(V_{opt}(T)))$ for any $\epsilon \in (0,1)$.

Main steps in the proof:

- (A) Bound spectral radius of residual graph, i.e., $\lambda_1(G[V-S])$
- (B) Bound c(S)

- Let G' = G[V S]
- By construction: $W_k(G') \le nT^k$
- Let A denote the adjacency matrix of G'

- Let G' = G[V S]
- By construction: $W_k(G') \leq nT^k$
- Let A denote the adjacency matrix of G'
- Let the eigenvalues of A be $\lambda_1, \lambda_2, \ldots$

- Let G' = G[V S]
- By construction: $W_k(G') \leq nT^k$
- Let A denote the adjacency matrix of G'
- Let the eigenvalues of A be $\lambda_1, \lambda_2, \ldots$
- Eigenvalues of A^k are $\lambda_1^k, \lambda_2^k, \dots$

- Let G' = G[V S]
- By construction: $W_k(G') \leq nT^k$
- Let A denote the adjacency matrix of G'
- Let the eigenvalues of A be $\lambda_1, \lambda_2, \ldots$
- Eigenvalues of A^k are $\lambda_1^k, \lambda_2^k, \dots$
- Sum of eigenvalues = trace

- Let G' = G[V S]
- By construction: $W_k(G') \leq nT^k$
- Let A denote the adjacency matrix of G'
- Let the eigenvalues of A be $\lambda_1, \lambda_2, \ldots$
- Eigenvalues of A^k are $\lambda_1^k, \lambda_2^k, \dots$
- Sum of eigenvalues = trace
- $\blacksquare \Rightarrow \sum_{i} \lambda_{i}^{k} = \sum_{i} A_{ii}^{k}$

■ A_{ii}^k : number of closed walks of length k containing node i

- A_{ii}^k : number of closed walks of length k containing node i

- A_{ii}^k : number of closed walks of length k containing node i
- $\sum_i A_{ii}^k$ (over)-counts all walks of length k
 - Walk w gets counted d(w) times
 - Therefore, $\sum_i A_{ii}^k = \sum_{w \in \mathcal{W}_k} d(w)$

Putting everything together

$$\sum_{i} \lambda_{i}^{k} = \sum_{i} A_{ii}^{k} = \sum_{w \in \mathcal{W}(G')} d(w) \le kW_{k}(G')$$

$$\Rightarrow \sum_{i} \lambda_{i}^{k} \le kW_{k}(G') \le knT^{k}$$

$$\lambda_{i}^{k} \ge 0 \text{ since } k \text{ is even}$$

$$\Rightarrow \lambda_{1}^{k} \le knT^{k}$$

$$\Rightarrow \lambda_{1} \le (kn)^{1/k}T$$

$$\Rightarrow \lambda_{1} \le (1+\epsilon)T \text{ for } k \geqslant \frac{2}{\epsilon} \log n.$$

Proof: bounding c(S) (main idea)

How do we relate c(S) and $c(V_{opt})$?

S: greedily hits as many walks as possible

 V_{opt} : reduces λ_1 to below T by removing minimum cost node set

Consider the following instance of hitting set:

- Ground set: *V*, i.e., all nodes
- Collection of sets W_k , where each closed walk w is a set in W_k
- Goal: choose a subset of V that "hits" at least $L = W_k(G) nT^k$ walks (subsets in W_k)

Let V_{hitopt} be an optimal solution for this hitting set problem

Proof: bounding c(S) (main idea)

How do we relate c(S) and $c(V_{opt})$?

S: greedily hits as many walks as possible

 V_{opt} : reduces λ_1 to below T by removing minimum cost node set

Compare with the cost of set V_{hitopt} .

We will show that

$$c(V_{hitopt}) \leq c(V_{opt})$$
, and $c(S) = O(\frac{1}{\epsilon} \log^2 n \cdot c(V_{hitopt}))$

- Let \hat{A} denote the adjacency matrix corresponding to $G[V-V_{opt}]$, and let the eigenvalues of \hat{A} be $\hat{\lambda}_1 \geq \hat{\lambda}_2 \dots$
- By definition of V_{opt} : $\hat{\lambda}_1 \leq T$

- Let \hat{A} denote the adjacency matrix corresponding to $G[V-V_{opt}]$, and let the eigenvalues of \hat{A} be $\hat{\lambda}_1 \geq \hat{\lambda}_2 \dots$
- By definition of V_{opt} : $\hat{\lambda}_1 \leq T$

$$W_k(G[V-V_{opt}]) \leq \sum_i \hat{A}_{ii}^k$$

- Let \hat{A} denote the adjacency matrix corresponding to $G[V-V_{opt}]$, and let the eigenvalues of \hat{A} be $\hat{\lambda}_1 \geq \hat{\lambda}_2 \dots$
- By definition of V_{opt} : $\hat{\lambda}_1 \leq T$

$$egin{aligned} W_k(G[V-V_{opt}]) & \leq \sum_i \hat{A}^k_{ii} \ & = \sum_{i=1}^n \hat{\lambda}^k_i \end{aligned}$$

- Let \hat{A} denote the adjacency matrix corresponding to $G[V-V_{opt}]$, and let the eigenvalues of \hat{A} be $\hat{\lambda}_1 \geq \hat{\lambda}_2 \dots$
- By definition of V_{opt} : $\hat{\lambda}_1 \leq T$

$$egin{aligned} W_k(G[V-V_{opt}]) &\leq \sum_i \hat{A}^k_{ii} \ &= \sum_{i=1}^n \hat{\lambda}^k_i \ &\leq n \hat{\lambda}^k_1 \ ext{(Perron-Frobenius theorem)} \end{aligned}$$

- Let \hat{A} denote the adjacency matrix corresponding to $G[V-V_{opt}]$, and let the eigenvalues of \hat{A} be $\hat{\lambda}_1 \geq \hat{\lambda}_2 \dots$
- By definition of V_{opt} : $\hat{\lambda}_1 \leq T$

$$egin{aligned} W_k(G[V-V_{opt}]) &\leq \sum_i \hat{A}^k_{ii} \ &= \sum_{i=1}^n \hat{\lambda}^k_i \ &\leq n \hat{\lambda}^k_1 \ ext{(Perron-Frobenius theorem)} \ &\leq n T^k \end{aligned}$$

Relating $c(V_{hitopt})$ with $c(V_{opt})$

- Let \hat{A} denote the adjacency matrix corresponding to $G[V-V_{opt}]$, and let the eigenvalues of \hat{A} be $\hat{\lambda}_1 \geq \hat{\lambda}_2 \dots$
- By definition of V_{opt} : $\hat{\lambda}_1 \leq T$

$$egin{aligned} W_k(G[V-V_{opt}]) &\leq \sum_i \hat{A}^k_{ii} \ &= \sum_{i=1}^n \hat{\lambda}^k_i \ &\leq n \hat{\lambda}^k_1 \ ext{(Perron-Frobenius theorem)} \end{aligned}$$

 V_{opt} is a feasible solution to this hitting set instance $\Rightarrow c(V_{hitopt}) \leq c(V_{opt})$

Relating
$$c(S)$$
 and $c(V_{hitopt})$

- V_{hitopt}: an optimal solution for this hitting set problem
- In contrast: *S* is a greedy solution
- By standard greedy analysis, we can show $c(S) = O(c(V_{\text{hitopt}}) \log (\#\text{sets})) = O(c(V_{\text{hitopt}}) \log |\mathcal{W}_k|)$
- $|\mathcal{W}_k| = W_k(G) \leqslant n\Delta^k$, where Δ is the maximum degree (note: $\Delta \leq n$)
- Therefore, $c(S) = O(c(V_{hitopt}) \cdot (\log n \log \Delta)/\epsilon) = O(\frac{1}{\epsilon} \log^2 n \cdot c(V_{hitopt}))$

Empirical evaluation (edge version)

Baselines: prior heuristics

- Pick edges e = (i, j) in decreasing order of $eigenscore(i, j) = x^1(i) \cdot x^1(j)$ [Tong et al., 2012], [Van Mieghem et al., 2011]
- Pick edges e = (i, j) in decreasing order of degscore(i, j) = d(i)d(j) [Van Mieghem et al., 2011]
- Hybrid rule: pick edge from either order whose removal causes the largest reduction in λ_1

Empirical evaluation

- Significantly better than all prior heuristics for all kinds of networks
- \blacksquare Performance improves with k

ProductDegree
EigenScore
LinePagerank
Hybrid
GreedyWalk

10

0.02 0.04 0.06 0.08 0.1
Fraction of edges removed

Autonomous system network

P2P Gnutella network

Brightkite network

Better approximation factor?

- Partial coverage problem: primal-dual algorithm of [Gandhi et al., 2004] for selecting a minimum cost collection of sets that covers at least k elements, with O(f)-approximation, where f is the maximum number of sets containing any element
- Our set system:
 - Sets \equiv nodes, elements \equiv walks in \mathcal{W}_k
 - $f = O(\log n)$, since walks have length $k = O(\log n)$
- Set system of size $n^{O(\log n)}$, so cannot apply primal-dual algorithm of [Gandhi et al., 2004] directly
 - Can do updates implicitly and get polynomial time $O(\log n)$ -approximation
 - Results in $c(S) = O(c(V_{opt}(T)) \log n)$, $\lambda_1(G[V-S]) \leq (1+\epsilon)T$
- Constant factor approximation by semidefinite programming based rounding.