${\bf Contents}$

1	Ste	o 4 Machine learning						
	1.1	Step 0: Look at and Modify the dataset	1					
	1.2	Step 1: Explore the dataset	4					
	1.3	Step 2: Split sets, train a Machine Learning Model and Evaluate performance	10					

1 Step 4 Machine learning

1.1 Step 0: Look at and Modify the dataset

So, I am curious. Can I predict vaccination data?

I will work with the South West's vaccination data.

	First	Second	Third
2022-01-26	986	2520	4034
2022-01-25	899	1845	4283
2022-01-24	723	1445	3441
2022-01-23	1035	3007	3439
2022-01-22	1822	4709	5896

As we can see, there are waves. So, the count of jabs depends on dates.

Let's get features: 1) Year 2) Month 3) Day etc.

	First	Second	Third	Year	Month	Day	DayOfYear	Weekday	Quarter	IsMonthStart	IsMonthEnd
2022-01-26	986	2520	4034	2022	1	26	26	2	1	FALSE	FALSE
2022-01-25	899	1845	4283	2022	1	25	25	1	1	FALSE	FALSE
2022-01-24	723	1445	3441	2022	1	24	24	0	1	FALSE	FALSE
2022-01-23	1035	3007	3439	2022	1	23	23	6	1	FALSE	FALSE
2022-01-22	1822	4709	5896	2022	1	22	22	5	1	FALSE	FALSE

1.2 Step 1: Explore the dataset

1.2.1 Data types

	X
First	double
Second	double
Third	double
Year	double
Month	double
Day	double
DayOfYear	double
Weekday	double
Quarter	double
IsMonthStart	logical
IsMonthEnd	logical

1.2.2 Data description

```
## Warning in FUN(newX[, i], ...): no non-missing arguments to min; returning Inf
## Warning in FUN(newX[, i], ...): no non-missing arguments to min; returning Inf
## Warning in FUN(newX[, i], ...): no non-missing arguments to max; returning -Inf
## Warning in FUN(newX[, i], ...): no non-missing arguments to max; returning -Inf
```

	vars	n	mean	sd	median	trimmed	mad	min	max	range	skew	kurtosis	se
First	1	415	11037.614458	1.397158e + 04	4210	8067.084084	4505.6214	0	84537	84537	1.9844177	3.951509	685.8377044
Second	2	415	10367.351807	1.347722e + 04	3998	7464.363363	5791.0356	0	78425	78425	1.9238326	3.660264	661.5705282
Third	3	415	8507.130120	1.744754e + 04	6	4277.684685	7.4130	0	109810	109810	2.7468594	8.772511	856.4660313
Year	4	415	2021.004819	3.474905e-01	2021	2021.000000	0.0000	2020	2022	2	0.0733470	5.258013	0.0170576
Month	5	415	6.496385	3.759607e+00	7	6.495495	4.4478	1	12	11	-0.0039414	-1.332763	0.1845519
Day	6	415	15.800000	8.698159e+00	16	15.804805	10.3782	1	31	30	-0.0047243	-1.172368	0.4269758
DayOfYear	7	415	182.298795	1.153394e+02	182	182.063063	154.1904	1	366	365	0.0092348	-1.316336	5.6617903
Weekday	8	415	2.992771	2.000591e+00	3	2.990991	2.9652	0	6	6	0.0081057	-1.257893	0.0982051
Quarter	9	415	2.501205	1.171057e+00	3	2.501501	1.4826	1	4	3	-0.0028915	-1.480493	0.0574849
IsMonthStart	10	415	NaN	NA	NA	NaN	NA	Inf	-Inf	-Inf	NA	NA	NA
IsMonthEnd	11	415	NaN	NA	NA	NaN	NA	Inf	-Inf	-Inf	NA	NA	NA

1.2.3 Zeroes

1.2.4 Correlations

		_
Var1	Var2	value
First	Month	-0.5432969
Second	Month	-0.1888013
First	DayOfYear	-0.5343244
Second	DayOfYear	-0.1901012
First	Quarter	-0.6070344
Second	Quarter	-0.1799906

1.2.5 Weekdays

As you remember, I have a question.

Let's answer.

So, most of South West's people prefer to get a jab on Saturdays.

1.2.6 Missing values

Calculate a count of dates in the dataset.

415

Calculate a count of dates between maximum and minimum dates.

415

There are no missing dates.

1.3 Step 2: Split sets, train a Machine Learning Model and Evaluate performance

Define necessary variables

Prepare sets and train models using parameters.

y_column = "First"

DecisionTree: 0.719657929335243

RandomForest: 0.774580856609961

Look at the tree

DecisionTree: 0.7248630326024768

RandomForest: 0.7837038702898657

Repeat for the Second

y_column = "Second"

DecisionTree: 0.7692636418171874

RandomForest: 0.8318561653086721

DecisionTree: 0.7692636418171874

RandomForest: 0.8318561653086721

Repeat for Third

y_column = "Third"

DecisionTree: 0.8664423499345815

RandomForest: 0.840745098066024

DecisionTree: 0.8664423499345815

RandomForest: 0.840745098066024

Compare the score with the mean value of the column that we predicted.

A combination of the following features give us the best result:

- Weekday,
- Year,

• DayOfYear