- 3. Оценка интеграла, монотонность интеграла, теоремы о среднем.
- **а.** Одна общая оценка интеграла. Начнем с общей оценки интеграла, которая, как потом выясниться, справедлива не только для интегралов от действительных функций.

ТЕОРЕМА 3. Если $a\leqslant b$ и $f\in\mathbb{R}[a,b]$, то $|f|\in\mathbb{R}[a,b]$ и справедливо неравенство

$$\left| \int_{a}^{b} f(x)dx \right| \leqslant \int_{a}^{b} |f|(x)dx. \tag{9}$$

Если при этом $|f|(x) \leqslant C$ на [a,b], то

$$\int_{a}^{b} |f|(x)dx \leqslant C(b-a). \tag{10}$$

◄ При a = b утверждение тривиально, поэтому будем считать, что a < b.

Для доказательства теоремы достаточно вспомнить теперь, что $|f| \in \mathbb{R}[a,b]$ (см. утверждение 4 из §1), и написать следующую оценку интегральной суммы $\sigma(f,P,\xi)$:

$$\left| \sum_{i=1}^{n} f(\xi_i) \Delta x_i \right| \leqslant \sum_{i=1}^{n} |f(\xi_i)| |\Delta x_i| = \sum_{i=1}^{n} |f(\xi_i)| \Delta x_i \leqslant C \sum_{i=1}^{n} \Delta x_i = C(b-a).$$

Переходя к пределу при $\lambda(P) \to 0$, получаем

$$\left| \int_{a}^{b} f(x) dx \right| \leqslant \int_{a}^{b} |f|(x) dx \leqslant C(b-a). \blacktriangleright$$

b. Монотонность интеграла и первая теорема о среднем. Все дальнейшее спецефично для интегралов от действительных функций.

ТЕОРЕМА 4. Если $a \leq b, f_1, f_2 \in \mathbb{R}[a,b]$ и $f_1(x) \leq f_2(x)$ в любой точке $x \in [a,b],$ то

$$\int_{a}^{b} f_1(x)dx \leqslant \int_{a}^{b} f_2(x)dx. \tag{11}$$

 \blacktriangleleft При a=b утверждение тривиально. Если же a < b, то достаточно записать для интегральных сумм неравенство

$$\sum_{i=1}^{n} f_1(\xi_i) \Delta x_i \leqslant \sum_{i=1}^{n} f_2(\xi_i) \Delta x_i,$$

справидливое, поскольку $\Delta x_i>0 (i=1,\dots,n)$, и затем перейти в нем к пределу $\lambda(P)\to 0.$ \blacktriangleright

Теорему 4 можно трактовать как утверждение о монотонности зависимости интеграла от подынтегральной функции.

Из теоремы 4 получается ряд полезных следствий. Следствие 1.Eсли $a\leqslant b, f\in \mathbb{R}[a,b]$ и $m\leqslant f(x)\leqslant M$ на $x\in [a,b],$ то

$$m \cdot (b-a) \leqslant \int_{a}^{b} f(x)dx \leqslant M \cdot (b-a),$$
 (12)

u, в частности, если $0\leqslant f(x)$ на [a,b], то

$$0 \leqslant \int_a^b f(x)dx.$$

◄ Соотношение (12) получается, если проинтегрировать каждый член неравенств $m \le f(x) \le M$ и воспользоваться теоремой 4. ▶ Следствие 2. *Если*

$$f \in \mathbb{R}[a,b], \qquad m = \inf_{x \in [a,b]} f(x), \qquad M = \sup_{x \in [a,b]} f(x),$$

то найдется число $\mu \in [m,M]$ такое, что

$$\int_{a}^{b} f(x)dx = \mu \cdot (b - a). \tag{13}$$

 \blacktriangleleft Если a=b, то утверждение тривиально. Если $a\neq b$, то положим $\mu=\frac{1}{b-a}\int\limits_a^bf(x)dx$.

Тогда из (12) следует, что $m \leqslant \mu \leqslant M$, если a < b. Но обе части (13) меняют знак при перестановке местами a и b, поэтому (13) справедливо и при b < a. \blacktriangleright

Следствие 3. Если $f \in C[a,b]$, то найдется точка $\xi \in [a,b]$ такая, что

$$\int_{a}^{b} f(x)dx = f(\xi)(b-a). \tag{14}$$

◀ По теореме о промежуточном значении для непрерывной функции, на отрезке [a,b] найдется точка ξ , в которой $f(\xi)=\mu$, если только

$$m = \min_{x \in [a,b]} f(x) \leqslant \mu \leqslant \max_{x \in [a,b]} f(x) = M.$$

Таким образом, (14) следует из (13). ▶

Равенство (14) часто называют*первой теоремой о среднем* для интеграла. Мы же зарезервируем это название для следующего, несколько более общего утверждения.

Теорема 5 (первая теорема о среднем для интеграла). Пусть

$$f,g \in R[a,b],$$
 $m = \inf_{x \in [a,b]} f(x),$ $M = \sup_{x \in [a,b]} f(x).$

Eсли функция g неотрицательна (или неположительна) на отрезке [a,b], то

$$\int_{a}^{b} (f \cdot g)(x) dx = \mu \int_{a}^{b} g(x) dx, \tag{15}$$

 $\epsilon \partial e \ \mu \in [m, M].$

Если, кроме того, известно, что $f\in C[a,b]$, то найдется точка $\xi\in [a,b]$ такая, что

$$\int_{a}^{b} (f \cdot g)(x)dx = f(\xi) \int_{a}^{b} g(x)dx. \tag{16}$$

◄ Поскольку перестановка пределов интегрирования приводит к изменению знака одновременно в обеих частях равенства (15), то достаточно проверить это равенство в случае a < b. Изменение знака функции g(x) тоже одновременно меняет знак обеих частей равенства (15), поэтому можно без ограничений общности доказательств считать, что $g(x) \ge 0$ на [a,b].

Поскольку $m=\inf_{x\in[a,b]}f(x)$ и $M=\sup_{x\in[a,b]}f(x),$ то при $g(x)\geqslant 0$

$$mg(x) \leqslant f(x)g(x) \leqslant Mg(x)$$
.

Поскольку $m\cdot g\in R[a,b], f\cdot g\in \mathbb{R}[a,b]$ и $M\cdot g\in \mathbb{R}[a,b]$, то, применяя теорему 4 и теорему 1, получаем

$$m\int_{a}^{b}g(x)dx \leqslant \int_{a}^{b}f(x)g(x)dx \leqslant M\int_{a}^{b}g(x)dx. \tag{17}$$

Если $\int\limits_a^b g(x)dx=0$, то, как видно из этих неравенств, соотношение (15) выполнено.

Если же $\int_{a}^{b} g(x)dx \neq 0$, то, пологая

$$\mu = \left(\int_{a}^{b} g(x)dx\right)^{-1} \cdot \int_{a}^{b} (f \cdot g)(x)dx,$$

из (17) находим, что

$$m \leqslant \mu \leqslant M$$

но это равенство равносильно соотношению (15).

Равенство (16) теперь следует из (15) и теоремы о промежуточном значении для функции $f \in C[a,b]$, с учетом того, что в случае $f \in C[a,b]$

$$m = \min_{x \in [a,b]} f(x) \qquad u \qquad M = \max_{x \in [a,b]} f(x). \blacktriangleright$$

Заметим, что равенство (13) получается из (15), если $g(x) \equiv 1$ на [a,b].