Parábola

Dados uma reta **d** e um ponto $\mathbf{F}^{(F \notin d)}$, de um plano α , chamamos de *parábola* o conjunto de pontos do plano α equidistantes de \mathbf{F} e **d**.

Por exemplo, sendo \mathbf{F} , \mathbf{P} , \mathbf{Q} e \mathbf{R} pontos de um plano α e \mathbf{d} uma reta desse mesmo plano, de modo que nenhum ponto pertença a \mathbf{d} , temos:

$$\begin{cases} d_{FP} = d_{Pd} \\ d_{FQ} = d_{Qd} \\ d_{FR} = d_{Rd} \end{cases}$$

Observações:

1^a) A parábola é obtida seccionando-se obliquamente um cone circular reto:

- 2ª) Os telescópios refletores mais simples têm espelhos com secções planas parabólicas.
- 3ª) As trajetórias de alguns cometas são parábolas, sendo que o Sol ocupa o foco.
- 4^a) A superfície de um líquido contido em um cilindro que gira em torno de seu eixo com velocidade constante é parabólica.

Elementos

Observe a parábola representada a seguir. Nela, temos os seguintes elementos:

foco: o ponto **F**

diretriz: a reta d

• vértice: o ponto V

• parâmetro: **p**

Então, temos que:

• o vértice **V** e o foco **F** ficam numa mesma reta, o eixo de simetria **e**.

Assim, sempre temos $e^{\perp d}$.

- DF = p
- **V** é o ponto médio de $\overline{DF}(DV = VF = \frac{P}{2})$

$$\overline{DF}(DV = VF = \frac{P}{2})$$

Equações da parábola

Vamos considerar os seguintes casos:

a) parábola com vértice na origem, concavidade para a direita e eixo de simetria horizontal

Como a reta **d** tem equação $x = -\frac{p}{2}$ e na parábola temos:

- $F(\frac{p}{2},0)$;
- P(x, y);
- d_{PF} = d_{Pd} (definição);
 obtemos, então, a equação da parábola:

$$y^2 = 2px$$

b) parábola com vértice na origem, concavidade para a esquerda e eixo de simetria horizontal

Nessas condições, a equação da parábola é:

$$y^2 = -2px$$

c) parábola com vértice na origem, concavidade para cima e eixo de simetria vertical

d) parábola com vértice na origem, concavidade para baixo e eixo de simetria vertical

$$x^2 = -2py$$