Different expression of protein-encoding genes in prokaryotes and eukaryotes:
• Prokaryotes have functionally similar genes regulated under one operon, one transcription start site but many translation
start site on mRNA
Eukaryotes have promotor for individual genes, mRNA undergoes processing.
Lac operon in E.Coli
○ CAP - Promotor - Operator - LacZ - LacY - LacA
CAP: Catabolite activation protein binding site
 Promotor: allows σ70 binding, assembly point of transcriptosome
Operator: binding point of repressor
 LacZ: β-galactosidase (Catabolism of lactose)
LacY: Permease (lactose transporter)
LacA: Transacetylase (removal of toxic waste)
Prokaryotic transcription regulation: Lac operon
 At low glucose levels, cAMP concentration increases (Glucose <— Adenylyl cyclase —> cAMP)
o cAMP binds to CAP, bind to enhancer region, upregulate Lac Operon transcription
 At high lactose level, lactose bind to lac repressor, sequestrating from it binding with operator, upregulate lac Vice versa
Eukaryotic transcription regulation:
Assembly of initiation complex
Regulation via proximal promotor region
Regulation via distal enhancer region (with mediator)
Unique expression of different regulators/general TFs in different tissues.
Levels of regulations:
Basal transcription level: influenced by repressor/activator
Tissue specific regulation: presence of unique TFs in certain tissues
o mRNA processing regulation: Regulate 5'cap, 3'poly-A, alt splicing create different transcripts
Transcription factors
 Transcription factors usually have two domains: Ligand binding domain and DNA binding domain
© E.g. Glucocorticoid receptor: responsive to growth hormone, GH bind to LBD, form dimer, DBD bind to DNA.
Epigenetics: Inheritable changes in phenotype caused by reversible changes on chromatin but not DNA sequence itself
Methylation:
Addition of a methyl group to the CpG sequence
Extensively in eukaryotes but lost in yeast and worms.
Unmethylated DNA indicates foreign gene in bacteria
• Functions:
Methylation repress promotor activity, repress transcription, controls X-chromosome inactivation
Blocks splicing sites —>alt splicing, inhibit transposable element relocation
○ Involved in imprinting, inherit phenotypes

CpG islands: region of high CpG sequence, found in 5' end of the gene in promotor reg	gion(~1-2kb)
Methylation inhibition mechanism:	
CpG with attached methyl group - physical impedement for protein binding	
 However, Methyl-CpG binding protein bind exclusively to methylated CpG, can actio 	n/recruit proteins
Maintainence methylation and De Novo methylation	
Maintainence methylation:	
o enzyme involved: ubiquitously expressed DNA methyltransferase (DNMT1)	
 After replication, daughter strands are hemimethylated, DNMT1 binding methy 	ated other strand
De Novo methylation	
○ Enzymes involved: DNMT3a and 3b.	
 Create new methylation patterns, developmentally regulated 	
 E.g. methylation erasure after fertilisation, rewriting methylation pattern in early 	development.
Imprinting: exception to erasure and rewriting during fertilisation.	
 During gametogenesis, a gene is turned on/off at a locus depending on the sex of th 	e organism
Some genes are expressed only in eggs, others only in sperms, this ensures offsprir	ng only have one set of active allele.
 During gametogenesis/meiosis, imprinting are erased and pattern is established bas producing individual. 	ed on the sex of the gamete
 Imprinting methylation occurs at imprinting control region (ICR) upstream of the general 	9.
E.g. Igf2/H19 genes in human	
 During female gametogenesis, egg generated by the female removes all methy 	lation at this allele, CTCF bind to
imprinting control region, prevent enhancers to mediate and promote lgf expres	
 In male gemetogenesis, the Igf/H19 gene in the sperm is methylated, inhibit H[*] 	
expression.	
 IGF allele have a father origin-dependent expression pattern, H19 have a moth 	er origin dependent expression
pattern. Imprinting genes have a parent-of-origin-dependent expression pattern	
 In offsprings, one allele express H19, other express Igf, both at moderate amount 	
 Defect: Beckwith-Weidemann syndrome(Igf +/+), abnormal large size, low block 	
 Defect: Silver-Russel syndrome(H19+/+), stunted growth, big head 	a saga.
Bolodi. Olivoi Haddordynaromo(i Houring), stantoù growth, big houd	

Eu/Pro protein expression genes regulated as	
Lac structure, regulation	
Eukaryotic regulation levels, methods	
TF structure	
Epigenetics def	
DNA Methylation mechanism function	
Two types of methylation	
Imprinting	