

导论

数字信号处理 2020 秋季课程

信号

- › 消息(message): 常常把来自外界的各种报道统 称为消息。
- › 信息(information): 通常把消息中**有意义**的内容称为信息。
- › 信号(signal): 信号是**反映信息**的各种物理量, 是系统直接进行加工、变换以**实现通信**的对象。

信号是信息(消息)的表现形式,信息(消息)是信号的具体内容。信号是传递信息的载体,是反映信息的物理量;

▶如: 电压、电流、电磁场、声音、烽火、信鸽

信号的处理、分析和解释

› 信号的处理: 对信号进行加工或变换

› 信号传输、交换、处理相互密切联系,又各自组成独立的学科体系。它们共同的理论基础之一是要研究信号的基本性能(进行信号分析),包括信号的描述、分解、变换、检测、特征提取以及为适应指定要求而进而进行信号设计。

信号的分类

 λ **连续信号**: 在观测过程的连续时间范围内信号有确定的值。允许 在其时间定义域上存在有限个间断点。通常以 $\chi(t)$ 表示。

› **模拟信号**: 在任意时刻的**取值**是连续的连续信号。

- > **离散信号**: 信号仅在规定的离散时刻有定义。通常以x[n]表示。
 - ▶信号本身特性
 - ▶对连续信号抽样
 - ▶计算机内的信号表示

› **数字信号: 取值**为离散的离散信号。

连续和离散信号之间的关系

信号的描述

函数描述: 使用具体的数学表达式,把信号描述为**一个或若干个**自变量的函数或序列的形式。

- $> x(t) = \sin(t)$
- ▶一般以时间作为自变量
- >一维信号和多维信号

波形描述:按照函数自变量的变化关系,画出信号波形。

离散信号(序列)的表示

) 函数表示

$$> x[n] = ke^{-2n}, n = 0,1,2,3,\cdots$$

> 波形表示

- ,列表表示
 - ▶↓表示n = 0的位置
- > 序列的表格表示

$$x[n] = [0, 2, 0, 1, 3, 1, 0]$$

系统

› 系统(system)是指若干相互关联的事物组合而成**具有特定功能的整体**, 如电路系统、通讯系统、电力系统、机械系统、政治结构、经济组织、计算机网络, 交通网络、神经元系统等等

信号与系统是相互依存的整体。

- › 信号必定是由系统产生、发送、传输与接收,离开系统没有孤立 存在的信号;
- > 系统的重要功能就是对信号进行加工、变换与处理,没有信号的 系统就没有存在的意义

信号处理与分析的应用

> 从信息源到有用信息

电视广播通信系统框图

> 数字信号的处理

信号处理系统

数字信号处理的发展

1805 1822

1965

课程目标

- › 掌握信号与系统理论的**基本概念**和**基本分析**方法;
 - ▶认识如何建立信号与系统数学模型,通过数学分析求解,并对结果给与物理解释;
 - ▶为独立地分析与解决信息领域内的实际问题打下理论基础

- › 信号和系统的分析、**类比能力**:
 - >信号描述与特性分析,系统建模与特性分析,解释信号和系统的特性
- > 信号和系统设计能力:
 - >设计满足需要的信号,设计满足信号处理能力的系统

课程体系和特点

- › 前序课程
 - ▶高等数学 (微积分,常微分方程)
 - > 复变函数
 - ▶电路分析
 - ▶ 机器学习导论

- ,课程特点
 - ▶系统性
 - ▶对称性 (知识的串联、并联)

课程内容框架

	时域	频域	复频域
信号	信号的变换信号的分解	傅里叶变换	拉普拉斯变换 Z变换
系统	信号的卷积 系统差分方程的求解	信号的抽样和恢复调制和解调	系统函数

课程内容框架

	时域	频域	复频域
连续信号	连续信号的变换	傅里叶变换 傅里叶级数	拉普拉斯变换
离散信号	离散信号的变换	离散傅里叶级数 离散时间傅里叶变换 离散傅里叶变换 快速傅里叶变换	Z变换

生活中的现象

> 车轮倒转

> 声调变化

课程信息

,课程主页

► http://www.lamda.nju.edu.cn/yehj/dsp2020/

› 教学立方课程邀请码: FC6WJNRK

> 考评

▶平时成绩 30%: 共4次作业, 部分作业包括编程题

▶期末成绩 70%: 笔试

信号处理与人工智能

- > 应用:
 - ▶随机傅里叶级数用于支持向量机

▶使用信号滤波观点分析图神经网络

- > 类比:
 - ▶信号的卷积和卷积神经网络

▶信号的表示和主成分分析

参考书目

复习:复数知识

- \Rightarrow 基本单位: $j = i = \sqrt{-1}$
- \rightarrow 直角坐标表示: z = x + jy
 - ▶实部: $x = Re\{z\}$, 虚部 $y = Im\{z\}$
- \rightarrow 极坐标表示: $z = re^{j\omega}$

- \Rightarrow 共轭复数: $z^* = x jy = re^{-j\omega}$
- $zz^* = |z|^2 = r^2; \frac{z}{z^*} = e^{j2\omega}$
- $(z_1 + z_2)^* = z_1^* + z_2^*; (z_1 z_2)^* = z_1^* z_2^*; (\frac{z_1}{z_2})^* = \frac{z_1^*}{z_2^*}$
- $|z| = |z^*|, |z_1 z_2| = |z_1||z_2|$

三角函数与复数

- \rightarrow 极坐标表示: $z = re^{j\omega}$
- $x = r \cos \omega$, $y = r \sin \omega$

- › 欧拉 (Euler) 公式
 - $\geq e^{j\omega t} = \cos \omega t + j \sin \omega t$
 - $\geq e^{-j\omega t} = \cos \omega t j \sin \omega t$

- $\cos \omega t = \frac{1}{2} \left(e^{j\omega t} + e^{-j\omega t} \right)$

致谢

- > 课件制作过程中部分参考了
 - ▶奥本海姆教授《信号与系统》、《离散时间信号处理》的教材中的相关内容

▶卓晴教授《信号与系统》课程课件的相关内容

▶郑君里教授《信号与系统》教材和课件中的内容

▶陈后金教授《信号与系统》、《数字信号处理》课程和课件的相关内容