How it's made: lower bounds for randomized algorithms

Taisuke Yasuda July 27, 2018

Carnegie Mellon University

Overview

- · Introduction: randomized algorithms and complexity
- · Yao's minimax principle
- $\cdot \ \mathsf{Applications}$

Sorting

- · Prototypical example of a great randomized algorithm: quick sort
- · Lower bound on deterministic sorting any deterministic algorithm A sorting an n-element list L requires $\Omega(n \log n)$ comparisons in worst case
- · What about for randomized algorithms?

Complexity of randomized algorithms

Let *P* be a computational problem.

- · We view a randomized algorithm $\mathcal R$ as a probability distribution over a finite set of deterministic algorithms $\mathcal A$ solving $\mathcal P$, where $A \in \mathcal A$ is an algorithm that takes inputs from a set $\mathcal X$
- · For any measure of cost cost : $\mathcal{A} \times \mathcal{X} \to \mathbb{R}^+$ for deterministic algorithms, we define a measure of expected cost for randomized algorithms via

$$cost(\mathcal{R}, x) := \mathbb{E}_{A \sim \mathcal{R}} cost(A, x)$$

· We define the randomized complexity of the problem P via

$$\min_{\mathcal{R}} \max_{x \in \mathcal{X}} cost(\mathcal{R}, x)$$

Complexity of randomized algorithms

How the heck would you prove lower bounds for this thing?!

$$\min_{\mathcal{R}} \max_{x \in \mathcal{X}} cost(\mathcal{R}, x)$$

Theorem (Yao's minimax principle)

Define the average cost of a deterministic algorithm over a random distribution of inputs \mathcal{D} via

$$cost(A, \mathcal{D}) := \mathbb{E}_{x \sim \mathcal{D}} cost(A, x).$$

Then

$$\min_{\mathcal{R}} \max_{x \in \mathcal{X}} \mathrm{cost}(\mathcal{R}, x) = \max_{\mathcal{D}} \min_{A \in \mathcal{A}} \mathrm{cost}(A, \mathcal{D}).$$

If we fix an input distribution \mathcal{D} , then

$$\min_{A \in \mathcal{A}} \mathsf{cost}(A, \mathcal{D}) \leq \max_{\mathcal{D}'} \min_{A \in \mathcal{A}} \mathsf{cost}(A, \mathcal{D}') = \min_{\mathcal{R}} \max_{x \in \mathcal{X}} \mathsf{cost}(\mathcal{R}, x)$$

so it suffices to come up with a hard enough input distribution \mathcal{D} and show that any deterministic algorithm has to pay a high cost!

Caution: the input distribution is known to the deterministic algorithm, meaning the deterministic algorithm only needs to solve the problem for the given input distribution.

7

Example

Let $\mathcal R$ be any randomized algorithm that sorts a list L of n elements. Then $\max_{x\in\mathcal X} \mathrm{cost}(\mathcal R,x) = \Omega(n\log n)$ where cost is the number of comparisons.

Proof. Let

$$C := \max_{x \in \mathcal{X}} cost(\mathcal{R}, x)$$

and consider the cost

$$cost'(A, x) := \begin{cases} 1 & cost(A, x) \ge 10C \\ 0 & otherwise \end{cases}.$$

First note by Markov's inequality,

$$\begin{aligned} \max_{x \in \mathcal{X}} \mathbb{E}_{A \sim \mathcal{R}} \cos t'(A, x) &= \max_{x \in \mathcal{X}} \Pr_{A \sim \mathcal{R}} \left(\cos t(A, x) \ge 10C \right) \\ &\leq \max_{x \in \mathcal{X}} \frac{\mathbb{E}_{A \sim \mathcal{R}} \cos t(A, x)}{10C} \le \frac{1}{10}. \end{aligned}$$

Now let \mathcal{D} be the uniform distribution on all n! permutations of L. We then have by Yao's minimax principle that

$$\min_{A \in \mathcal{A}} \Pr_{x \sim \mathcal{D}} \left(\mathsf{cost}(A, x) \geq 10C \right) = \min_{A \in \mathcal{A}} \mathbb{E}_{x \sim \mathcal{D}} \operatorname{cost}'(A, x) \leq \max_{x \in \mathcal{X}} \mathbb{E}_{A \sim \mathcal{R}} \operatorname{cost}'(A, x).$$

If A is an algorithm achieving the LHS minimum, then

$$\Pr_{x \sim \mathcal{D}} \left(\cot(A, x) \ge 10C \right) \le \frac{1}{10}$$

so A can output at most 2^{10C} permutations, for n!(9/10) distinct inputs. Because A must correctly sort L, we have

$$2^{10C} \ge \frac{9n!}{10} \implies C = \Omega(\log n!) = \Omega(n \log n).$$

Notations/definitions

· m-dimensional simplex:

$$\Delta^m := \left\{ \mathbf{p} \in \mathbb{R}^m : \mathbf{p}_i \ge 0, \sum_{i \in [m]} \mathbf{p}_i = 1 \right\}$$

 \cdot **e**_i: ith standard basis vector

Finite two-player zero-sum game

The setting...

- · Player 1 has $m \in \mathbb{N}$ possible actions, player 2 has $n \in \mathbb{N}$ possible actions (finite, two-player)
- Payoff matrix $A \in \mathbb{R}^{m \times n}$: when player 1 plays action $i \in [m]$ and player 2 plays action $j \in [n]$, player 1 receives payoff A_{ij} , player 2 receives payoff $-A_{ij}$ (zero-sum)
- · Pure strategy: playing a single action with probability 1
- Mixed strategy: playing action i with probability \mathbf{x}_i for some $\mathbf{x} \in \Delta^m$ (drawn independently)

Finite two-player zero-sum game

Payoff matrix **A** for a game of rock paper scissors where winner gets 1 point, loser gets —1 points, and a draw results in 0 points for both players:

	Rock	Paper	Scissors
Rock	0	-1	1
Paper	1	0	-1
Scissors	-1	1	0

Finite two-player zero-sum game

· Expected payoff (for player 1) for a pair of strategies:

$$V(\mathbf{p},\mathbf{q}) := \sum_{i \in [m]} \sum_{j \in [n]} \mathsf{Pr}\left(i,j\right) \mathsf{A}_{ij} = \sum_{i \in [m]} \sum_{j \in [n]} \mathsf{p}_i \mathsf{A}_{ij} \mathsf{q}_j = \mathsf{p}^\top \mathsf{A} \mathsf{q}$$

· Equilibrium point (p̂, q̂):

$$V(\mathbf{p}, \hat{\mathbf{q}}) \leq V(\hat{\mathbf{p}}, \hat{\mathbf{q}})$$
 for all $\mathbf{p} \in \Delta^m$

and

$$V(\hat{\mathbf{p}}, \mathbf{q}) \ge V(\hat{\mathbf{p}}, \hat{\mathbf{q}})$$
 for all $\mathbf{q} \in \Delta^n$

Von Neumann's minimax theorem

Von Neumann's minimax theorem

Theorem (Von Neumann's minimax theorem)

Every finite two-player zero-sum game has an equilibrium point.

Von Neumann's minimax theorem

Theorem (Brouwer's fixed point theorem)

Let $K \subseteq \mathbb{R}^d$ be compact and convex set. Then if $f: K \to K$ is a continuous function, then there exists a fixed point $\hat{\mathbf{x}} \in K$ such that $f(\hat{\mathbf{x}}) = \hat{\mathbf{x}}$.

John von Neumann on Nash's proof of the Nash equilibrium (more powerful version of minimax theorem):

That's trivial, you know. That's just a fixed point theorem.

Idea: define a function $T: \Delta^m \times \Delta^n \to \Delta^m \times \Delta^n$ such that its fixed points are exactly the equilibrium points (\hat{p}, \hat{q})

For $i \in [m]$ and $j \in [n]$, define

$$\varphi_{i}(\mathbf{p}, \mathbf{q}) := \max \{ V(\mathbf{e}_{i}, \mathbf{q}) - V(\mathbf{p}, \mathbf{q}), 0 \}$$
$$\psi_{j}(\mathbf{p}, \mathbf{q}) := \max \{ V(\mathbf{p}, \mathbf{q}) - V(\mathbf{p}, \mathbf{e}_{j}), 0 \}$$

Now define

$$\mathsf{T}(\mathsf{p},\mathsf{q}) \coloneqq (\Phi(\mathsf{p},\mathsf{q}),\Psi(\mathsf{p},\mathsf{q}))$$

where the $[m] \ni i$ th component of Φ and $[n] \ni j$ th component of Ψ are given by

$$egin{aligned} & \Phi(\mathsf{p},\mathsf{q})_i \coloneqq rac{\mathsf{p}_i + arphi_i(\mathsf{p},\mathsf{q})}{1 + \sum_{i' \in [m]} arphi_{i'}(\mathsf{p},\mathsf{q})} \ & \Psi(\mathsf{p},\mathsf{q})_j \coloneqq rac{\mathsf{q}_j + \psi_j(\mathsf{p},\mathsf{q})}{1 + \sum_{i' \in [n]} \psi_{i'}(\mathsf{p},\mathsf{q})} \end{aligned}.$$

Proposition

If (\hat{p}, \hat{q}) is an equilibrium pair, then it is a fixed point.

Proof. For an equilibrium pair, we have

$$\varphi_{i}(\hat{\mathbf{p}}, \hat{\mathbf{q}}) = \max \{ V(\mathbf{e}_{i}, \hat{\mathbf{q}}) - V(\hat{\mathbf{p}}, \hat{\mathbf{q}}), 0 \} = 0$$

$$\psi_{j}(\hat{\mathbf{p}}, \hat{\mathbf{q}}) = \max \{ V(\hat{\mathbf{p}}, \hat{\mathbf{q}}) - V(\hat{\mathbf{p}}, \mathbf{e}_{j}), 0 \} = 0$$

Thus,

$$\begin{split} & \boldsymbol{\Phi}(\hat{\mathbf{p}}, \hat{\mathbf{q}})_{i} = \frac{\hat{\mathbf{p}}_{i} + \varphi_{i}(\hat{\mathbf{p}}, \hat{\mathbf{q}})}{1 + \sum_{i' \in [m]} \varphi_{i'}(\hat{\mathbf{p}}, \hat{\mathbf{q}})} = \hat{\mathbf{p}}_{i} \\ & \boldsymbol{\Psi}(\hat{\mathbf{p}}, \hat{\mathbf{q}})_{j} = \frac{\hat{\mathbf{q}}_{j} + \psi_{j}(\hat{\mathbf{p}}, \hat{\mathbf{q}})}{1 + \sum_{i' \in [n]} \psi_{j'}(\hat{\mathbf{p}}, \hat{\mathbf{q}})} = \hat{\mathbf{q}}_{j} \end{split}$$

so (\hat{p}, \hat{q}) is a fixed point.

24

Proposition

If (\hat{p}, \hat{q}) is a fixed point, then it is an equilibrium point.

Proof. Note that

$$\sum_{k\in[m]}p_kV(p,q)=V(p,q)=\sum_{k\in[m]}p_kV(e_k,q).$$

Thus, it is cannot be that $V(\hat{\mathbf{p}}, \hat{\mathbf{q}}) < V(\mathbf{e}_k, \hat{\mathbf{q}})$ for all $\hat{\mathbf{p}}_k > 0$. Thus there exists k^* such that $\hat{\mathbf{p}}_{k^*} > 0$ and

$$V(\hat{\mathbf{p}}, \hat{\mathbf{q}}) \geq V(\mathbf{e}_{k^*}, \hat{\mathbf{q}}) \implies \varphi_{k^*}(\hat{\mathbf{p}}, \hat{\mathbf{q}}) = 0.$$

Since (\hat{p}, \hat{q}) is a fixed point,

$$\hat{\mathbf{p}}_{k^*} = \mathbf{\Phi}(\hat{\mathbf{p}}, \hat{\mathbf{q}})_{k^*} = \frac{\hat{\mathbf{p}}_{k^*} + \varphi_{k^*}(\hat{\mathbf{p}}, \hat{\mathbf{q}})}{1 + \sum_{i' \in [m]} \varphi_{i'}(\hat{\mathbf{p}}, \hat{\mathbf{q}})} = \frac{\hat{\mathbf{p}}_{k^*}}{1 + \sum_{i' \in [m]} \varphi_{i'}(\hat{\mathbf{p}}, \hat{\mathbf{q}})}.$$

$$\hat{\mathbf{p}}_{k^*} = \frac{\hat{\mathbf{p}}_{k^*}}{1 + \sum_{i' \in [m]} \varphi_{i'}(\hat{\mathbf{p}}, \hat{\mathbf{q}})}$$

Then,

$$\begin{split} \sum_{i' \in [m]} \varphi_{i'}(\hat{\mathbf{p}}, \hat{\mathbf{q}}) &= 0 \implies \max \left\{ V(\mathbf{e}_{i'}, \hat{\mathbf{q}}) - V(\hat{\mathbf{p}}, \hat{\mathbf{q}}), 0 \right\} = 0 \\ &\implies V(\mathbf{e}_{i'}, \hat{\mathbf{q}}) \le V(\hat{\mathbf{p}}, \hat{\mathbf{q}}) \end{split}$$

so for any mixed strategy $\mathbf{p} \in \Delta^m$,

$$V\left(p,\hat{q}\right) = \sum_{k \in [m]} p_k V\left(e_k,\hat{q}\right) \leq \sum_{k \in [m]} p_k V\left(\hat{p},\hat{q}\right) = V\left(\hat{p},\hat{q}\right).$$

Proof of von Neumann's minimax theorem. Let T be as defined above and note that it is a continuous function defined from a compact convex set to itself. Then by the Brouwer's theorem, there exists a fixed point (\hat{p}, \hat{q}) of T and thus there exists an equilibrium pair (\hat{p}, \hat{q}) .

Corollary

$$\max_{p \in \Delta^m} \min_{q \in \Delta^n} V(p,q) = \min_{q \in \Delta^n} \max_{p \in \Delta^m} V(p,q)$$

Proof. For all $\mathbf{p} \in \Delta^m$, we have that

$$\min_{q \in \Delta^n} V(p,q) \leq \min_{q \in \Delta^n} \max_{p \in \Delta^m} V(p,q)$$

so maximizing over $\mathbf{p} \in \Delta^m$ on both sides yields

$$\max_{p \in \Delta^m} \min_{q \in \Delta^n} \textit{V}(p,q) \leq \min_{q \in \Delta^n} \max_{p \in \Delta^m} \textit{V}(p,q).$$

On the other hand, let (\hat{p}, \hat{q}) be an equilibrium pair. Then,

$$\begin{split} \min_{q \in \Delta^n} \max_{p \in \Delta^m} V(p,q) &\leq \max_{p \in \Delta^m} V(p,\hat{q}) \leq V(\hat{p},\hat{q}) \\ &\leq \min_{q \in \Delta^n} V(\hat{p},q) \leq \max_{p \in \Delta^m} \min_{q \in \Delta^n} V(p,q). \end{split}$$

$$\min_{\mathcal{R}} \max_{x \in \mathcal{X}} \mathrm{cost}(\mathcal{R}, x) = \max_{\mathcal{D}} \min_{A \in \mathcal{A}} \mathrm{cost}(A, \mathcal{D}).$$

Proof. Consider the finite two-player zero-sum game where player 1's actions are the inputs \mathcal{X} , player 2's actions are the deterministic algorithms \mathcal{A} , and the payoff for actions $x \in \mathcal{X}$ and $A \in \mathcal{A}$ is given by cost(A,x). Then von Neumann's minimax theorem yields the above result.

Let $\varepsilon > 0$ and consider the problem P of taking an n-bit string $x \in \{0,1\}^n$ and correctly outputting whether it has less than an ε fraction of 0s or not, with probability at least 2/3. Then for any n, any randomized algorithm solving P requires $\Omega(1/\varepsilon)$ queries.

Proof. We define an input distribution \mathcal{D} as follows. Divide n into $1/\varepsilon$ blocks of size εn each. Then for each $i \in [1/\varepsilon]$, define the n-bit string y_i that is all 1s everywhere except on the ith block:

$$y_i = \underbrace{11 \dots 1}_{\text{block 1}} \underbrace{11 \dots 1}_{\text{block 2}} \dots \underbrace{0 \ 0 \dots 0}_{\text{block } i} \dots \underbrace{11 \dots 1}_{\text{block 1/}\varepsilon}.$$

Note that on input y_i , the algorithm should output **NO**. We then draw from \mathcal{D} as follows:

$$\mathcal{D} := \begin{cases} 1^n & \text{with probability } 1/2 \\ y_i & \text{with } i \in [1/\varepsilon] \text{ drawn uniformly with probability } \varepsilon/2 \end{cases}.$$

Fix a deterministic algorithm A making Q queries and solving the problem with probability at least 2/3.

- · If A doesn't output YES on input 1ⁿ, then it is already incorrect with probability 1/2. Then since A is deterministic, A outputs YES if it reads all 1s.
- · A deterministically queries at most Q blocks, so with probability

$$\left(\frac{1}{\varepsilon} - Q\right) \cdot \frac{\varepsilon}{2} = \frac{1}{2} - \frac{Q\varepsilon}{2}$$

it outputs YES when it should have said NO.

It cannot be that $Q < 1/(3\varepsilon)$, since otherwise

$$\frac{1}{2} - \frac{Q\varepsilon}{2} > \frac{1}{2} - \frac{1}{6} = \frac{1}{3}$$

and so the failure rate is too high. Then by Yao's minimax principle, for any randomized algorithm $\mathcal R$ with expected query complexity $<1/(3\varepsilon)$, there exists an input x such that the probability that $\mathcal R$ fails with probability at least 1/3.

Example: Solving a system of equations

Consider the problem P of reading a matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$ and a vector $\mathbf{b} \in \mathbb{R}^n$ and outputting a vector $\mathbf{x}' \in \mathbb{R}^d$ such that

$$\left\| \mathbf{A}\mathbf{x}' - \mathbf{b} \right\|_2 \leq 2 \min_{\mathbf{x} \in \mathbb{R}^d} \left\| \mathbf{A}\mathbf{x} - \mathbf{b} \right\|_2,$$

with probability at least 2/3. Then for each m, there exists \mathbf{A}_m and \mathbf{b}_m such that any randomized algorithm solving P reads $\Omega(m)$ in expectation.

Example: Solving a system of equations

Proof (sketch). We construct an input distribution where half the time, the algorithm must output $\mathbf{x}' = 1^d$ and the rest of the time, we place a single very large R in a random entry of \mathbf{A} so that $\mathbf{x}' = 1^d$ fails to be a successful output. The algorithm must read $\Omega(m)$ entries to determine whether R is in the matrix or not with constant probability, so we conclude by Yao's minimax principle.

References

- 1. Kuhn, Harold William. *Lectures on the Theory of Games (AM-37)*. Princeton University Press, 2009.
- 2. Motwani, Rajeev, and Prabhakar Raghavan. *Randomized algorithms*. Chapman & Hall/CRC, 2010.
- 3. CSE 598A Sublinear Algorithms Spring 2012 (Penn State University, Prof. Sofya Raskhodnikova)
- 4. 15-895 Algorithms for Big Data Fall 2017 (Carnegie Mellon University, Prof. David Woodruff)

