자기지도학습 특강

세상에 쓸모없는 데이터는 없다

진행자: 신해솔, 김언지

튜터: 문이안, 박현영

Content

1. Background

- 1-1 supervised learning
- 1-2 latent vector
- 1-3 data and labeling

2. Self supervised learning

- 2-1 signal
- 2-2 Self supervised learning
- 2-3 pretext task
- 2-4 downstream task

3. Examples

- 3-1 Rotation Task
- 3-2 SimCLR
- 3-3 MAE

4. Conclusion

5. Code practice

Background

Supervised learning

지도학습

training

고양이 / 강아지

데이터 + 레이블 -> 모델

Supervised learning

입력 데이터를 처리하는 과정에서 필연적으로 중간 단계의 벡터를 생성하게 됨

Supervised learning

입력 데이터를 처리하는 과정에서 필연적으로 중간 단계의 벡터를 생성하게 됨 = latent vector

Latent vector

왜 latent vector를 만들어 사용하려는걸까?

고차원 데이터의 본질을 저차원으로 압축!

Latent vector

즉, LATENT VECTOR는!

고차원 데이터의 저차원 압축 표현 : 원본 데이터의 핵심 특성을 담고있는 것

이 벡터 안에

나 있다.

여기서 고차원 데이터 = 이미지, 텍스트 등 여기서 저차원 압축 표현 = 숫자로 표현되어진 벡터

우리가 모델을 학습시키는 주 목표는

모델(여기서 encoder)이 이 latent vector를 잘 만들어낼 수 있도록 하는것!

Latent vector

Latent vector and Learning

Data and labeling

라벨링의 현실적 어려움

- → ImageNet 1400만 장 라벨링에 수년 소요
- → 주관적 판단, 실수 등의 문제

지도 학습에는 대량의 데이터 필요

라벨 데이터 부족→ 지도학습에서의 모델 성능 제한

Data and labeling

원본 데이터 자체가 정답이 되어보면 어떨까?

라벨이 없는 데이터에서 데이터 자체의 구조를 이용해 스스로 감독 시그널(supervision signal)을 생성하여 표현을 학습하는 방법

Signal

Signal

무엇을 학습 목표로 삼을것인가? 일반적인 지도학습

Signal

실제 label간의 loss 계산

output: [0.8, 0.1, 0.1]label: [1.0, 0.0, 0.0] $H = -\sum p(x)\log p(x)$

고양이

output

cross-entropy loss:

 $-(1 \times \log(0.8) + 0 \times \log(0.1) + 0 \times \log(0.1))$

= 0.22

예측값과 정답 라벨 간의 차이(loss) 최소화

Data and labeling

어떻게?

원본 data 자체에서 loss 계산

10	20	30	40	50
60	70	80	90	100
110	120	130	140	150
160	150	180	190	200
210	220	230	240	250

12	20	28	38	50
58	68	78	90	98
110	118	12	138	148
158	168	180	188	198
208	218	228	238	250

mse =
$$(4+4+\dots+4+4)/25$$

= $76/25$
= 3.04 $MSE = \frac{1}{n} \Sigma \left(y - \hat{y}\right)^2$

Pretext task

Pretext Task

- ·데이터에서 자동으로 생성한 보조 과제
- ·레이블 없이 데이터의 특징을 학습하는 단계

Pretext Task를 통해 Encoder가 의미 있는 Latent Representation을 학습

Downstream task

Downstream Task

- ·실제로 해결하고자 하는 목표 과제
- ·분류, 검출, 분할 등 구체적 응용

Pretext에서 학습한 특징을 Downstream에서 활용

Examples

Rotation Task

Unsupervised Representation Learning by Predicting Image Rotations

90 rotation

Rotation Task

Unsupervised Representation Learning by Predicting Image Rotations

학습 목표: 이미지가 몇 도 회전했는지에 대한 예측값과 실제 정답 간의 차이(loss) 최소화원본 이미지를 0°, 90°, 180°, 270°로 회전시켜 4개의 변형을 만들고, 각 이미지가 몇 도 회전되었는지 구별하며 표현을 학습하는 방식

Rotation Task

$$CE = -(0 + \log(0.2) + 0 + 0)$$

$$= -(0 + (-1.609) + 0 + 0)$$

$$= 1.609$$

SimCLR

SimCLR

A Simple Framework for Contrastive Learning of Visual Representations

학습 목표: 두 이미지가 positive pair인지, negative pair인지에 대한 예측과 실제 정답 간의 차이(loss) 최소화 augmentation된 원본 이미지와 다른 이미지들을 원본 이미지와 같은 이미지인지 아닌지 구별하며 표현을 학습하는 방식

SimCLR

MAE

Masked Autoencoders Are Scalable Vision Learners

MAE

Masked Autoencoders Are Scalable Vision Learners

학습 목표: 마스킹된 이미지의 복원 예측값과 원본 이미지의 픽셀값들과의 차이(loss) 최소화 이미지의 일부 패치를 랜덤하게 마스킹하고,

나머지 부분으로부터 가려진 패치의 원본 픽셀값을 재구성해가며 표현을 학습하는 방식

MAE task head data input prediction rotation data Model MSE $MSE = \frac{1}{n} \Sigma \left(y - \widehat{y} \right)^2$ 1/5*(1+0+4+1+1)= 1.4

Conclusion

Conclusion

labeled data는 극히 제한적, unlabeled data는 무한대

- → 원본 데이터 자체를 정답으로 활용하는 자기지도학습
 - → 지도학습의 가장 큰 문제점인 라벨 데이터 의존성을 해결할 수 있는 핵심적인 해결책

세상은 Unlabeled Data로 가득하다

code practice