Marmara University Faculty of Engineering

CSE3215DIGITAL LOGIC DESIGN

Phase 1

Instructor: Betül Boz Date: 01.12.2023

	Department	Student Id Number	Name & Surname
1	CSE	150120012	Kadir BAT
2	CSE	150120055	Muhammed Talha KARAGÜL
3	CSE	150121520	Ensar Muhammet YOZGAT
4	CSE	150121021	Feyzullah ASILLIOĞLU

Assembly Language

ISA STRUCTURE

	opcode				i														
	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
ADD		00	00			D:	ST			SR	C1		0	0	0 SRC2				
ADDI		DST					SR	C1		IMM									
AND	0010				DST					SR	C1		0	0	SRC2				
ANDI		00	11			D:	ST			SR	C1				IMM				
NAND		01	00			D:	ST			SRC1			0	0	SRC2				
NOR		01	01			D:	ST			SR	C1		0	0		SRC2			
LD		01	DST ADDR																
ST	0111				SRC ADDR														
JUMP		10	00								AD	DR							
СМР		10	01		0	0	0	0	0	0		0	P1			Ol	P2		
JE		10	10		ADDR														
JA		10	11		ADDR														
JB	1100				ADDR														
JAE	1101				ADDR														
JBE	1110				ADDR														

The program is 18 data bits in lenght. We used 4-bit to represent opcode. Registers are also shown with 4-bit. ADD, AND, NAND, and NOR instructions have don't care bits. Don't care bits are 2 bits in length. ADDI and ANDI instructions contain immediate values. Immediate values can be positive or negative. For this reason, immediate bits are 2's complement. LD and ST instructions have 10 bits to demonstrate address bits. JUMP, JE, JA, JB, JAE, and JBE instructions contain 14 bits to represent address bits. CMP instruction includes 6 don't care bits. Also, our input file structure does not use commas. Please pay attention to giving the input like "ADD R1 R2 R3".

Then, we made samples of these instructions on the next page.

The 20-bit length is for 5 hexadecimal bits. The first two bits are always zero because of the 2 bits that complete the 20 bits. The numbers in 2's complement form are shown in **bold color.** For example, the 5th bit in ADDI instruction indicates the most significant bit of 2's complement.

Examples:

	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	HEX
ADD R5 R0 R2	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	1	0	01402
ADDI R3 R1 12	0	0	0	0	0	1	0	0	1	1	0	0	0	1	0	0	1	1	0	0	04C4C
AND R1 R2 R3	0	0	0	0	1	0	0	0	0	1	0	0	1	0	0	0	0	0	1	1	08483
ANDI R3 R4 -9	0	0	0	0	1	1	0	0	1	1	0	1	0	0	1	1	0	1	1	1	0CD37
NAND R5 R7 R9	0	0	0	1	0	0	0	1	0	1	0	1	1	1	0	0	1	0	0	1	115C9
NOR R11 R3 R15	0	0	0	1	0	1	1	0	1	1	0	0	1	1	0	0	1	1	1	1	16CCF
LD R8 511	0	0	0	1	1	0	1	0	0	0	0	1	1	1	1	1	1	1	1	1	1A1FF
ST R9 419	0	0	0	1	1	1	1	0	0	1	0	1	1	0	1	0	0	0	1	1	1E5A3
JUMP -4264	0	0	1	0	0	0	1	0	1	1	1	1	0	1	0	1	1	0	0	0	22F58
CMP R0 R2	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	24002
JE -7872	0	0	1	0	1	0	1	0	0	0	0	1	0	1	0	0	0	0	0	0	2A140
JA 5407	0	0	1	0	1	1	0	1	0	1	0	1	0	0	0	1	1	1	1	1	2D51F
JB -6099	0	0	1	1	0	0	1	0	1	0	0	0	0	0	1	0	1	1	0	1	3282D
JAE 1386	0	0	1	1	0	1	0	0	0	1	0	1	0	1	1	0	1	0	1	0	3456A
JBE -2971	0	0	1	1	1	0	1	1	0	1	0	0	0	1	1	0	0	1	0	1	3B465