北航医学物理研究

张高龙

放射治疗

质子放疗

- 与光子治疗相比,质子治疗的优势在于其独特的深度剂量曲线(Bragg曲线),对靶屋前路径的组织有着极低的辐射剂量,靶区后的组织几乎不会受到辐射。
- 质子具有比光子高10%的生物有效性(即,1.1的RBE),有较强的细胞致死作用。

图1.1 与15 MV光子束相比, SOBP质子 束的深度剂量分布充分覆盖了肿瘤

4D蒙特卡罗模拟器官运动 对质子治疗中剂量分布的影响

1.PBS扫描束流源模型建立

5.Gamma分析

4.用repainting技术进行计划分割

基于TOPAS的质子放疗次级中子 辐射场研究

孙小晴

• 育京

质子相对于X射线、光子的物理优势: Bragg Peak 空间剂量分布,脑部肿瘤、儿童肿瘤 质子放疗的局限性

次级中子(远端沉积、高RBE),继发性癌症的风险;辐射防护

• 研究现状

- 研究对象:双散射(DS)、平扫(US)、笔形束扫描(PBS)
- 研究方法: MC模拟(物理模型、反应截面库)

实验测量(剂量当量: CR39、WENDI-II...,能谱:扩展Bonner球系统)

• 研究目的

以一洲质子医学中心为研究对象,对PBS模式下次级中子辐射场进行评估(能量、分布、影响因素…),为临床工作和辐射防护提供参考;中子能谱探测方法探索(飞行时间、反冲质子)

般放疗流程

治疗计 划的

第一步: 获取影像信息

第二步: 勾画靶区与正常组织

第三步:治疗计划设计

第五步:治疗

第四步: 计划质量验证

基于人工智能的自适应放疗

第三步:治疗计划设计

影像合成、影像配准背景

1)

初次治疗kVCT

第10次治疗kVCT

随着治疗的进行,患者解剖信息改变,初始治疗方案不适用,需要重新计划,需要新kVCT

2)

kVCT

<mark>获取速度慢</mark> 清晰,可进行剂量计算

获取速度快 <mark>模糊</mark>,不适于剂量计算

MVCT

影像合成方法

模型

kVCT 获取速度慢,清晰

经过Cycle-GAN 将MVCT合成伪kVCT

- ➤ 网络分为两个阶段:训练(Training)和预测(Prediction)。
- 训练过程中,从MVCT和kVCT中提取64 × 64 × 64的块,并通过生成器产生相应的合成图像。合成图像块然后通过逆生成器产生相应的循环图像。
- 预测过程中,将MVCT图像被输入训练好的模型中,以产生相应的伪kVCT图像。

MVCT引导自适应放疗中生成合成CT

图像预处理

基于卷积神经网络的交叉X射线图像 实施三维重建 ^{刘非凡}

对抗生成网络算法在 CBCT与CT的图像配准中的应用

自动勾画背景

人工靶区勾画与正常组织勾画,是治疗计划的前提条件

人工勾画, 耗时达数小时, 勾画质量依赖人工经验

自动勾画方法

基于深度学习的自动勾画

MR

勾画

冯朝阳

剂量预测背景

计划设计需要人工填写剂量限制,用时可达数小时,依赖人工经验

剂量预测方法

基于深度学习对CyberKnife的剂量预 测BEAMnrc的剂量验证

苗余超

CyberKnife系统采用小射野对患者肿瘤进行立体定向放射治 疗,考虑到小野易形成射线束电子不平衡状态以及探测器介质其 体积的影响, 会带来临床剂量测量、计算及评估的困难。本研究 通过实施CyberKnife系统射线追踪算法得到的剂量,采用深度学 习的方法对患者进行放疗的计划剂量的预测,同时考虑到预测结 果的准确性,采用精确的蒙特卡罗模拟计算的剂量进行验证。该 研究将深度学习引入放疗剂量,提高了放疗计划的效率,同时金 标准蒙卡的验证保证了预测剂量的准确性。

基于深度学习的剂量预测研究 刘耀颖

1、鼻咽癌基于三维深度学习模型的Tomotherapy剂量预测研究

方法与结果

基于深度学习的剂量预测研究

刘耀颖

2、数据库划分对宫颈癌IMRT剂量预测的影响

基于深度学习的剂量预测研究

刘耀颖

3、基于多中心宫颈癌VMAT进行剂量预测的研究

Figure 1. Diagram of our model-agnostic meta-learning algorithm (MAML), which optimizes for a representation θ that can quickly adapt to new tasks.

测试数据: A中心

训练数据: A中心

训练数据: A中心+B中心

训练数据:B中心

基于深度学习的剂量增强研究

刘耀颖

1、基于ROI勾画的深度学习AAA剂量增强算法

方法与结果

、基于深度学习的剂量增强研究

刘耀颖

2、计划剂量的超分辨算法研究

基于深度学习通量预测研究

刘耀颖

1、基于深度学习实现患者IMRT射野通量的预测研究

基于深度学习方法的MRI生成合成CT

张志磊

CT在放射治疗中起到了较为重要的作用,MRI有诸多优点但无法直接用于放疗

- 可以通过深度学习方法,将MRI影像转化为CT影像,将合成CT应用于放疗流程
- 研究中发展了对于临床数据的系统性处理方法,包括数据挑选与统计分析等
- 对临床数据选取多个模型进行了训练与测试

放射治疗关键步骤的质控

放射治疗关键步骤的质控

02

03

制模 CT定位 模拟机验证

放射治疗关键步骤的质控

放射治疗关键步骤的质控

04

治疗床上的摆位

05

二维矩阵剂量验证系统

06

三维水箱剂量验证系统

质量控制剂量监测设备

电离室

- ▶ 晨检/日检:
 - > 密封电离室
 - ➤ 每日QA
- > Linac QA:
 - ➤ 开放式电离室(T & P修正)
 - ➤ Monthly QA 输出剂量检测
 - ➤ Annual QA 输出剂量检测
 - > 束流离轴曲线扫描
- ➤ 后装治疗 (HDR, LDR):
 - ➢ 开放式井型电离室

Farmer 型电离室

质量控制剂量监测设备

半导体探测器

▶ 无偏转电压:

- 辐射过程中产生电子-空穴对
- 自由电子迁移到"正电荷"半导体
- 检测到相反方向的电流
- 临床应用中最佳模式

▶ 优点

- ✓ 高灵敏度(是电离室18000倍)
- ✓ 线性响应
- ✓ 无偏转电压
- ✓ 可以测量高剂量梯度区域

▶ 缺点

- ✓ 具有角度依赖
- ✓ 能量响应
- ✓ 辐射损伤
- ✓ 相对剂量测量

质量控制剂量监测设备

免洗胶片

▶ 体部成像:

- ✓ TBI肺挡铅位置
- ✓ 当EPID无效时射野成像
- ▶ 个人剂量监测:
 - ✓ 胶片个人剂量牌
- ▶ Linac与患者QA:
 - ✓ 星形照射
 - ✓ Picket fences (MLC QA)
 - ✓ Tomotherapy IMRT QA
- ➤ FLASH放疗剂量监测
 - ✓ 总剂量

质量控制剂量监测设备

FLASH剂量测量

	FLASH-RT	CONV-RT
射线	电子、X射线、质子	电子、X和γ射线、质子、重离子等
Ray	Electron, X-ray, proton	Electron, X andγ-ray, proton, heavy ion, etc
设备	改良直线加速器、ESRF、某些质子加速器	医用直线加速器、X-刀、γ-刀、质子重离子加速器等
Equipment	Improved linear accelerator, ESRF, some proton accelerators	Medical linear accelerator, X-knife, γ -knife, proton heaver ion accelerator, etc
剂量率	一般≥2 400 Gy/min	0.1~1.0 Gy/min
Dose rate	Generally ≥ 2 400 Gy/min	Sec. 348. 34.
照射时间	一般<1 s	数分钟
Radiation time	Generally < 1 s	Several minutes
正常组织损伤程度	低	高
Damage degree of normal tissue	Low	High
肿瘤组织控制效果	相似	相似
Effect of tumor tissue control	Similarity	Similarity
生物学机制	氧耗竭假说、免疫假说等	放射生物学4R
Biological mechanism	Oxygen depletion hypothesis, immune hypothesis, etc	Radiobiology 4R
主要影响因素	剂量、脉冲率、组织含氧量等	剂量分割、组织放射敏感性等
Main factors	Dose, pulse rate, tissue oxygen content, etc	Dose fractionation, tissue radiosensitivity, etc

质量控制剂量监测设备

FLASH剂量测量

flashDiamond Detector T60025

周婉仪等. 金刚石探测器在Flash照射实时剂量测量中的应用. 中华放射医学与防护杂志, 2023, 43(9): 729-735.

质量控制剂量监测设备

FLASH剂量测量

超薄电离室

- •缩短电子-离子对漂移距离,减少复合效应
- •100µm空腔距离

施加电压后电离室内电场强度分布

收集极和保护极缝隙等势线

质量控制剂量监测设备

闪烁体探测器

- ▶ 通过辐射引起的闪烁(即发光)实现对剂量 的测量
- ➤ 光电倍增管(PM) 实现光的探测
- > 广泛应用于核医学或辐射防护的辐射剂量 的探测
- > 广泛用于光子能谱的探测
- > 闪烁体类型:
 - 有机塑料(e.g., NE-102)
 - 有机液体(e.g., NE-213)碳和氢材料
- > 灵敏度比电离室更高

质量控制剂量监测设备

胶片

□ 后装机质控

后装剂量三要素:

- 源活度
- 到位精度
- 驻留时间

RIT胶片分析软件

缺点:

- (1) 主观判断
- (2)运行时间长

胶片

台 首创近距离放疗质控系统

功能

· 一键质控,提升质控效率

・ 图像算法, 位置精度≤0.11mm; 时间精度≤ 0.13s

・活度范围: 0.1mCi~15Ci

优势

・相比与胶片精度 (0.6 mm) 提高6倍

• 免胶片,降低成本

・ 减少胶片读取,提高效率

核医学质控

核素探针 (能谱+核素识别)

基于碲锌镉的核素探针

- □ 能量分辨率2.5% (@662keV)
- □ 识别核素种类不低于10种

高信噪比微弱信号处理

- 功率谱密度
- CR-(RC) m (m=2)

核素识别

- •全谱解析
- •响应函数库

技术指标

No trade de vita	_ t to wit m
关键参数	对标型号PTW 30011
标称灵敏体积	0.6 cm ³
年稳定性	≤0.5%
能量响应	≤±4% (200keV ^{~60} Co)
角响应	绕电离室轴旋转≤±0.5%。
漏电	≤±10fA
极化电压	±(100~400) V
极化效应	≤±0.3%
响应 (典型值)	(20.0-22.2) nC/Gy
最大剂量率 (99%收集效率)	10 Gy/s

适用于高剂量、脉冲型(<1µs响应)辐射场

个人剂量监测

腕式个人剂量计

技术指标:

显示屏: 1.6英寸, 360×360像素

定位方式: 北斗+GPS+WiFi+BT

传感器:第三代半导体-碲锌镉(CdZnTe)+光电传感器

辐射探测射线: X射线、γ射线

能量范围: 30 keV- 3 MeV

探测精度: $\pm 10\%$ (137Cs, 662keV) 剂量率范围: $0.1\,\mu\text{Sv/h} - 20\,\text{mSv/h}$

剂量: 0-10 Sv

报警响应时间: <0.5s;

报警方式:光、振动;

报警类型:剂量或剂量率超阈值(自定义阈值)

个人剂量监测

智能放射源追踪管理

技术指标:

显示屏: 1.6英寸, 360×360像素

定位方式: 北斗+GPS+WiFi+BT

传感器:第三代半导体-碲锌镉(CdZnTe)

辐射探测射线: X射线、γ射线

能量范围: 30 keV- 3 MeV

探测精度: ±10% (¹³⁷Cs, 662keV)

实现功能:

- 1、绑定铅罐
- 2、设定送达目的地
- 3、设定行程开始/结束
- 4、运输路径地图刻画
- 5、报警信息判定(剂量率)报警信息触发
- 6、客户端请求实时位置

谢谢