0.1 Verifizierung der Testspezifikation

Nachdem im ?? alle Testfälle zu den aus der Anforderungsanalyse ermittelten Testspezifikationen modelliert wurden, müssen diese nun durchgeführt und in einem Testprotokoll dokumentiert werden.

Aus den Vorgehensweisen der einzelnen Testfälle sind bereits verschiedene Methoden zur Prüfung der Testspezifikationen zu erkennen. Das Vorgehen unterscheidet sich in der Komplexität der Durchführung. Aus den Testabläufen ist bereits zu erkennen, das die Durchführung und Bestätigung grundlegender Testfälle Voraussetzung für nachfolgende Testdurchführungen ist.

Es ergibt sich eine Methodische Abfolge, die in der Abbildung 1 dargestellt ist.

Abbildung 1: Ablauf zur schrittweisen Verifizierung der Testspezifikationen

Die Protokollierung der Tests erfolgt nach der vorgenommenen Einteilung des dargestellten Diagrammes. Die Einzelnen Punkte werden in den nachfolgenden Unterabschnitten abgearbeitet. Erneut kommt eine tabellarische darstellung zum einsatz, in der einzelne Testfälle mit den Schlüsselwörtern **bestanden**, **nicht bestanden** und **nicht getestet** protokolliert werden. Nicht durchgeführte Tests müssen nachgeholt werden. Ist ein Testfall nicht bestanden, so wird im anschließenden Unterkapitel die Korrektur der Implementierung diskutiert.

0.1.1 Sichtprüfung

Die Sichtprüfung stellt den ersten Schritt in der Verifizierung der Testspezifikationen dar. Ziel ist es die Laboranlage durch eine visuelle Inspektion auf das Vorhandensein von allen geforderten Hardwarekomponenten zu untersuchen. Der durchgeführte Test bezieht sich dabei auf den Testfall TF_01 (siehe ??). Die protokollierten Ergebnisse sind in der nachfolgenden Tabelle aufgeführt.

Nr.	Testfall	Ergebnis
1	Steuerung lmc! 400c wurde verbaut	bestanden
2	Netzteil lxm! 62P wurde verbaut	bestanden
3	Servoregler lxm! 62D wurde verbaut	bestanden
4	Steuerung Wago PFC200 wurde verbaut	bestanden
5	Sicherheitssteuerung slc! 100 wurde verbaut	bestanden
6	Modicon TM5 digitales Eingangsmodul wurde verbaut	bestanden
7	Modicon TM5 digitales Ausgangsmodul wurde verbaut	bestanden
8	Modicon TM5 analoges Eingangsmodul wurde verbaut	bestanden
9	Modicon TM5 analoges Ausgangsmodul wurde verbaut	bestanden
10	Modicon TM5 SERCOS III Bus-Interface wurde verbaut	bestanden
11	Wago Leistungsklemme wurde verbaut	bestanden
12	Ethernetswitch wurde verbaut	bestanden
13	Vier Endlagesensoren wurden verbaut	bestanden
14	Zwei Not-Halt Taster wurden verbaut	bestanden
15	XUS Lichtvorhang wurde verbaut	bestanden

16	Ampel (rot/grün) wurde verbaut	bestanden
17	Schaltschrank an Gehäuse montiert	bestanden
18	Schaltschrankforderseite besitzt geforderte Bedienelemente	bestanden
19	Seiten des Gehäuses sind mit Plexiglasscheiben	nicht bestanden
20	Kabel an den beweglichen Achsen sind in E-Ketten verlegt	bestanden
21	Die Laboranlage besitzt zwei bewegliche Achsen (x/z)	bestanden
22	An jeder Achse ist ein Servomotor verbaut	bestanden
23	Die z-Achse besitzt einen Greifarm	nicht bestanden
24	Am Greifarm ist ein Greifer montiert	nicht bestanden
25	24 V-Ebene ist über einen Leitungsschutzschalter abgesichert	bestanden
26	400 V-Ebene ist über einen Leitungsschutzschalter abgesichert	bestanden
27	Es wurde ein Netzschütz verbaut	nicht bestanden
28	Es wurde eine Netzdrossel verbaut	nicht bestanden

Tabelle 1: Testprotokoll - Sichtprüfung des mehrachsigen Positioniersystems

0.1.2 Prüfung der Elektrik

Nach Abschließen der Sichtprüfung des Systems kann mit der Prüfung der Elektronik fortgesetzt werden. Konkret soll über die nachfolgende Testung sichergestellt werden, dass alle Steuerungskomponenten sowie Sensoren und Aktuatoren richtig verdrahtet sind und eingesetzt werden können. Dazu wird der Testfall TF_02 herangezogen (siehe ??). Die durch die Nichterfüllung des ersten Testfalls betroffenen Testkriterien werden im Feld Ergebnis frei gelassen.

Nr.	Testfall	Ergebnis
1	lmc!400c fährt nach Einschalten des Systems über den Hauptschalter hoch	bestanden
2	Wago PFC200 fährt nach Einschalten des Systems über den Hauptschalter hoch	bestanden
3	Status-LED des Netzteils lxm! 62P aktiv	bestanden
4	Power-LED des Netzteils lxm! 62P aktiv	bestanden
5	Status-LED des Servoreglers lxm! 62D aktiv	bestanden
6	Power-LED des slc!100 aktiv	bestanden
7	Power-LED des Modicon TM5 Bus Interface aktiv	bestanden
8	LEDs der Modicon TM5 ea!-Module aktiv	bestanden
9	Ready-Relais-Output des Netzteils mit Netzschütz verdrahtet	_
10	Netzschütz schaltet 400 V Spannungsversorgung des Netzteils	_
11	Initiatorklemmen der Endlagesensoren leuchten im nicht geschalteten Zustand	bestanden
12	Initiatorklemmen des Lichtvorhangs leuchten im nicht ausgelösten Zustand	bestanden
13	LEDs der Not-Halt Sicherheitseingänge leuchten antivalent	bestanden
14	Initiatorklemmen der Bedienelemente leuchten entsprechend des Schaltzustandes	nicht bestanden
15	Leitungsschutzschalter für 400 V-Ebene kann diese schalten	bestanden

16	Leitungsschutzschalter für 24 V-Ebene kann diese schalten	bestanden
17	Iverter-Enable Eingang des Servoreglers lxm! 62D ist mit dem ersten Sicherheitsausgang verdrahtet	bestanden
18	Netzdrossel ist in 400 V-Ebene verdrahtet	_

Tabelle 2: Testprotokoll - Prüfung der Verdrahtung des Systems

0.1.3 Prüfung der Geräteparametrierung

Bevor konkrete Funktionen verifiziert werden können, müssen zunächst die eingestellten Geräteparameter geprüft werden. Dabei wird Bezug genommen auf den Testfall TF_03 (Siehe \ref{siehe}). Die Nichterfüllung voraussetzender Testkriterien führt auch in dieser Tabelle zu der Freilassung des Ergebnisfeldes. Die Überprüfung und Verifizierung der Geräteparameter erfolgt in der Software $MachineExpert\ LogicBuilder$. Sämtliche zu treffende Einstellungen sind Voraussetzung für die korrekte Inbetriebnahme. Ist ein Testkriterium nicht erfüllt, da eine Systemkomponente nicht vorhanden ist oder Änderungen am Aufbau der Anlage vorgenommen wurden, muss die Parametrierung angepasst werden, so dass der Testfall zu 100% bestanden wird. Ein Nichtbestehen sorgt zu einer Fehlermeldung im Programm oder verhindert die Ausführung von Systemfunktionen.

Nr.	Testfall	Ergebnis
1	Steuerung lmc!400c des Positioniersystems wurde in Steuerungsauswahl selektiert	bestanden
2	Jeder SERCOS III Busteilnehmer besitz eine eigene topologische Adresse entsprechend der realen Verdrahtungsreihenfolge	bestanden
3	Der SERCOS III Bus befindet sich in Phase 4 (Ring- kommunikations) und ermöglicht Datentransfer zwi- schen allen Busteilnehmern	bestanden
4	Physikalische Parameter der Achsen wurden in den Servoreglereinstallungen aufgenommen	bestanden

5	Das Netzteil ist auf 400 V und 3-phasige Überwachung eingestellt ($PhaseCheckMode,\ MainsVoltageMode$)	bestanden
6	Diagnosemaske für offene Ausgänge des $\mathbf{lmc!}$ wurde gesetzt $(OpenDiagMask)$	bestanden
7	Addressbereiche des slc! wurden für den Datenaustausch mit dem lmc! Freigegeben $(LMC2SLCNumberOfBOOLs)$	bestanden
8	ea!-Abbild wurde in einer globalen Variablenliste angelegt	bestanden
9	Sichere ea!-Module wurden entsprechend der zeitlichen Anforderungen parametriert	bestanden

Tabelle 3: Testprotokoll - Prüfung der Geräteparametrierung in der Steuerungskonfiguration

0.1.4 Prüfung der Programmfunktionen

Zuletzt werden die eigentlichen Funktionen des mehrachsigen Positioniersystems verifiziert. Anders als die bisherigen Tabellen im Testprotokoll sind nun nicht mehrere Testkriterien in einer Tabelle aufgeführt. Jeder Testfall eine Funktion betreffend besitzt eine eigene Tabelle mit allen geforderten Kiterien für die Erfüllung des jeweiligen Testfalls. Die nachfolgenden Tabellen beziehen sich auf die Testfälle TF_04 bis TF_12 . Der betrachtete Testfall wird im Titel der jeweiligen Tabelle referenziert.

Nr.	Testfall	Ergebnis
1	Weiße Taster leuchten nach Handmodusauswahl	nicht bestanden
2	Handmodus-Button wird nach Handmodusauswahl in gui! grün hinterlegt	bestanden
3	Bestätigung der Auswahl führt zur Aktivierung der grünen LED des Start-Tasters	nicht bestanden

4	Bestätigung der Auswahl führt zum Anlagen der Aufgabe in der gui!	bestanden
5	Tasten der Vier-Wege-Richtungsgebers führt zu Bewegungen der jeweiligen Achse	nicht bestanden
6	Drücken der Jog+ und Jog- Buttons führt nach Auswahl der Achse zu Bewegungen an dieser Achse	bestanden
7	Tasten der Weißen Bedienelemente bewegt den Greifer bzw. den Greifarm	nicht bestanden

Tabelle 4: Testprotokoll - Prüfung der Handmodusfunktionalität siehe ??

Nr.	Testfall	Ergebnis
1	Positioniersystem arbeitet absolut-Positionieraufgaben nach Programmvorgaben ohne Nutzereingaben ab	nicht getestet
2	Positioniersystem fährt programmatisch vorgegebene Trajektorien ohne Nutzereingaben ab	nicht getestet
3	System führt automatische Greifoperationen zur Aufnahme und Ablage von Transportobjekten durch	_
4	System fährt leer nach Betätigung des Stop-Tasters	nicht getestet

Tabelle 5: Testprotokoll - Prüfung des Automatikmodus siehe ??

Nr.	Testfall	Ergebnis
1	x-Achse bewegt sich langsam bei niedrigster Geschwindigkeitseinstellung am oberen poti!	
2	z-Achse bewegt sich langsam bei niedrigster Geschwindigkeitseinstellung am unteren poti!	_

3	x-Achse bewegt sich schnell bei höchster Geschwindig- keitseinstellung am oberen poti!	_
4	z-Achse bewegt sich schnell bei höchster Geschwindig- keitseinstellung am unteren poti!	_

Tabelle 6: Testprotokoll - Prüfung der Geschwindigkeitsvorgabe siehe ??

Nr.	Testfall	Ergebnis
1	Erreichen der rechten Endlage stoppt/verhindert Bewegung der x-Achse nach rechts	bestanden
2	Erreichen der linken Endlage stoppt/verhindert Bewegung der x-Achse nach links	bestanden
3	Erreichen der oberen Endlage stoppt/verhindert Bewegung der z-Achse nach oben	bestanden
4	Erreichen der unteren Endlage stoppt/verhindert Bewegung der z-Achse nach unten	bestanden
5	Bewegungen in Endlagennähe sind gedämpft (verringerte Geschwindigkeit, Beschleunigung)	nicht bestanden

Tabelle 7: Testprotokoll - Prüfung der Endlagenfunktionalität siehe $\ref{eq:protokoll}$

Nr.	Testfall	Ergebnis
1	Erster sicherer Eingang detektiert Lichtvorhangauslösung nach spätestens 50ms	bestanden
2	Zweiter sicherer Eingang detektiert Lichtvorhangauslösung nach spätestens 50ms	bestanden
3	Not-Halt Auslösung stoppt jegliche Bewegung nach spätestens 200ms	nicht getestet

4	Not-Halt Auslösung schaltet Servoregler nach spätestens 250ms ab	bestanden
5	Der zurückgelegte Weg einer Achse nach Not-Halt Auslösung ist kleiner als 5cm	bestanden

Tabelle 8: Testprotokoll - Prüfung der funktionalen Sicherheit siehe $\ref{eq:protokoll}$

Nr.	Testfall	Ergebnis
1	Bewegungsbefehle führen nach Not-Halt Auslösung zu keiner Bewegung	bestanden
2	Betätigung des Reset-Tasters ermöglicht die erneute Ausführung von Bewegungsbefehlen	_
3	Quittieren des Fehlers aus der gui! ermöglicht die erneute Ausführung von Bewegungsbefehlen	bestanden

Tabelle 9: Testprotokoll - Prüfung der Reset-Funktion siehe ??

Nr.	Testfall	Ergebnis
1	Software MachineExpert LogicBuilder auf jedem Laborrechner installiert	bestanden
2	Steuerung lmc! 400c des Positioniersystems kann bei Steuerungsauswahl von jedem Laborcomputer gefunden werden	bestanden
3	Betätigung des Buttons "Visuelles Signalisieren" in Steuerungsauswahloberfläche lässt Status-LED am lmc! blinken	bestanden
4	Es können Programme von jedem Rechner im Labor auf die Steuerung gespielt werden	bestanden

5	Jeder Laborcomputer kann sich auf der Steuerung	bestanden	
	einloggen		

Tabelle 10: Testprotokoll - Prüfung der Programmierschnittstelle ??

Nr.	Testfall	Ergebnis
1	OPC Server auf lmc! kann über die Software <i>OPC-Watch</i> gefunden werden	bestanden
2	OPC Server auf PFC200 kann über die Software OPC-Watch gefunden werden	nicht getestet
3	Es können Daten vom lmc! über den OPC Client der OPC-Watch Software ausgelesen werden	bestanden
4	Es können Daten vom PFC200 über den OPC Client der OPC-Watch Software ausgelesen werden	nicht getestet
5	Es können Daten aus dem OPC Client angepasst und zurück an den lmc! übertragen werden	bestanden
6	Es können Daten aus dem OPC Client angepasst und zurück an den PFC200 übertragen werden	nicht getestet

Tabelle 11: Testprotokoll - Prüfung der OPC UA Schnittstelle $\ref{eq:condition}$

Nr.	Testfall	Ergebnis
1	Ampel leuchtet dauerhaft grün, wenn das System im Leerlauf ist (keine Bewegungen der Achsen)	bestanden
2	Ampel leuchtet dauerhaft rot, wenn das System im Fehlerzustand ist (Not-Halt ausgelöst)	bestanden
3	Ampel blinkt abwechselnd rot und grün, wenn das System Achsbewegungen durchführt	bestanden

Tabelle 12: Testprotokoll - Prüfung der Signalampel $\ref{eq:condition}$