Factorisation QR

AnaNum – Chapitre 4

I. Factorisation QR

1. Les matrices orthogonales

$$Q$$
 orthogonale \Leftrightarrow $Q^TQ = QQ^T = I \Leftrightarrow Q^T = Q^{-1}$

2. Principe

$$A = QR = \hat{Q}\hat{R}$$
 Q orthogonale R tri. sup.
$$Q^TQ = QQ^T = \hat{Q}^T\hat{Q} = I \quad \hat{Q}\hat{Q}^T \neq I$$

a. Matrice de Householder

$$H_v = I - \frac{2}{\underbrace{v^T v}_{\beta}} v v^T$$

Orthogonale, symétrique, $H_v = K_{\gamma v} \ (\gamma \in \mathbb{R}^*)$

b. Utilisation pour QR

$$H_v x = -\alpha e_1 \Rightarrow v = x + \alpha e_1$$
 et $\alpha = \pm ||x||$ $(US: -||x||)$ $Fr: signe(x_1) ||x||$

Note: Pour avoir $v_1 = 1$ ou peut prendre $v = v/v_1$

c. Calcul de QR

$$H_p \dots H_1 A = R \Rightarrow A = \underbrace{\left(H_1 \dots H_p\right)^T}_{Q} R = QR$$

3. Algorithmes

a. Calcul du vecteur de House

fonction [v, β] = vecteurDeHouse(x)

b. Produit House-vecteur

$$H_{v}x = \left(I - \frac{2}{v^{T}v}vv^{T}\right)x = x - \frac{2}{\underbrace{v^{T}v}_{\beta}}\underbrace{v^{T}x}_{w} v$$

fonction $x = House_vecteur(x, v, \beta)$

$$W = V' * X$$

 $X = X - \beta * W * V$

c. Transformation d'une matrice

fonction [A,
$$\beta$$
] = House_matrice(A)

d. Factorisation QR

e. Calcul Qb

fonction A = qr(A)

fonction b = Qb(A, b)

Factorisation QR

AnaNum – Chapitre 4

II. Les moindres carrés pour résoudre Bx = d

1. Définition et condition d'optimalité

$$\min_{x} \underbrace{\|Bx - d\|^2 = x^T Ax - 2x^T b}_{I(x)} \iff \boxed{\nabla_x J(x) = 2Ax - 2b = 0} \Leftrightarrow \boxed{Ax = b} \qquad \underline{A = B^T B} \quad \underline{b = B^T d}$$

Formules de gradient :
$$\nabla_x(x^Ta) = a$$
 $\nabla_x(x^TAx) = Ax + A^Tx$

2. Utilisation de QR

$$B = QR A = R^T R \Leftrightarrow Ax - b = \hat{R}^T (\hat{R}x - \hat{Q}^T d) = 0 \Leftrightarrow x = \hat{R}^{-1} \underbrace{\hat{Q}^T d}_{z}$$

fonction $x = moindres_carres_chol(B, d)$ **fonction** $x = moindres_carres_qr(B, d)$

Note : QR permet d'éviter que A ne soit pas définie positive si B n'est pas de plein rang