1. Download the data from here. You have to use data.csv file for this assignment

2. Code the model to classify data like below image. You can use any number of units in your Dense layers.

In [1]:

```
import pandas as pd
import tensorflow as tf
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import Normalizer
from tensorflow.keras import layers
from tensorflow import keras
# Make numpy values easier to read.
np.set_printoptions(precision=3, suppress=True)

from sklearn.metrics import roc_auc_score, fl_score
import numpy as np # importing numpy for numerical computation
from itertools import combinations
import os,datetime

print(tf.__version__)
```

2.9.1

```
In [2]:
data = pd.read csv("data.csv")
print(data.columns)
print("**"*15)
print(data.shape)
print("**"*15)
print(data.head(5))
Index(['f1', 'f2', 'label'], dtype='object')
(20000, 3)
********
         f1
                   f2
                      label
  0.450564
            1.074305
                         0.0
  0.085632
            0.967682
                         0.0
  0.117326 0.971521
                         1.0
  0.982179 -0.380408
                         0.0
4 -0.720352 0.955850
                         0.0
In [3]:
data['f1'].describe()
Out[3]:
         20000.000000
count
mean
             0.000630
std
             0.671165
min
            -1.649781
25%
            -0.589878
50%
             0.001795
75%
             0.586631
max
             1.629722
Name: f1, dtype: float64
In [4]:
data['f2'].describe()
Out[4]:
         20000.000000
count
            -0.000745
mean
             0.674704
std
            -1.600645
min
25%
            -0.596424
50%
            -0.003113
75%
             0.597803
             1.584291
max
Name: f2, dtype: float64
In [5]:
data['label'].describe()
Out[5]:
         20000.000000
count
mean
             0.500000
std
             0.500013
min
             0.00000
25%
             0.00000
50%
             0.500000
75%
             1.000000
             1.000000
max
Name: label, dtype: float64
In [6]:
data labels = data['label'].values
```

```
data features = data.drop(['label'], axis=1)
X_train, X_test, y_train, y_test = train_test_split( data features, data labels, test si
ze=0.25, random state=42)
print('After spliting the data the size of train and test becomes:')
print('Training data', X train.shape, y train.shape)
print('Testing data', X_test.shape ,y test.shape )
print('*'*20)
print(type(X train))
print(type(X_test))
print(type(y_train))
print(type(y test))
After spliting the data the size of train and test becomes:
Training data (15000, 2) (15000,)
Testing data (5000, 2) (5000,)
*******
<class 'pandas.core.frame.DataFrame'>
<class 'pandas.core.frame.DataFrame'>
<class 'numpy.ndarray'>
<class 'numpy.ndarray'>
In [7]:
X train = X train.to numpy()
X test = X test.to numpy()
print(type(X_train))
print(type(X test))
<class 'numpy.ndarray'>
<class 'numpy.ndarray'>
In [8]:
#ref: https://www.tensorflow.org/api docs/python/tf/keras/layers/Normalization
normalize = tf.keras.layers.Normalization(axis=-1)
normalize.adapt(X train)
normalize(X_train)
Out[8]:
<tf.Tensor: shape=(15000, 2), dtype=float32, numpy=
array([[ 1.413, 0.568],
       [-1.14, -0.264],
       [0.762, -0.677],
       . . . ,
       [-0.82, 0.702],
       [ 1.604, -0.43 ],
       [-0.612, -1.184]], dtype=float32)>
```

3. Writing Callbacks

You have to implement the following callbacks

- Write your own callback function, that has to print the micro F1 score and AUC score after each epoch.Do not use tf.keras.metrics for calculating AUC and F1 score.
- Save your model at every epoch if your validation accuracy is improved from previous epoch.
- · You have to decay learning based on below conditions

```
Cond1. If your validation accuracy at that epoch is less than previous epoch accuracy, you have to decrese the learning rate by 10\%. Cond2. For every 3rd epoch, decay your learning rate by 5\%.
```

• If you are getting any NaN values(either weigths or loss) while training, you have to terminate your training.

- You have to stop the training if your validation accuracy is not increased in last 2 epochs.
- Use tensorboard for every model and analyse your scalar plots and histograms. (you need to upload the screenshots and write the observations for each model for evaluation)

Tensorflow callbacks are functions or block of code which are executed during a specific instant

- 1. Callbacks can be passed to keras methods such as fit, evaluate, and predict in order to hook into the various stages of the model training and inference lifecycle .
- Callbacks can help you prevent overfitting, visualize training progress, debug your code, save checkpoints, generate logs, create a TensorBoard, etc. references: here, here, here, <a href="here

In [9]:

```
#Write your own callback function, that has to print the micro F1 score and AUC score aft
er each epoch
#Do not use tf.keras.metrics for calculating AUC and F1 score.
#ref:https://www.tensorflow.org/guide/keras/custom callback
class CustomCallback(tf.keras.callbacks.Callback):
   def init (self):
       self.validation data=(X test, y test)
   def on train begin(self, logs={}):
       self.val f1s = []
   def on epoch end(self, epoch, logs={}):
       val_predict = (np.asarray(self.model.predict(self.validation data[0]))).round()
       val targ = self.validation data[1]
       val f1 = f1 score(val targ, val predict.round(),average='micro')
       roc val= roc auc score(val targ, val predict)
       self.val fls.append(val fl)
       print("-f1 score :", val f1, "-ROCValue :", roc val)
custom callback = CustomCallback()
```

In [10]:

In [11]:

```
#Condl. If your validation accuracy at that epoch is less than previous epoch accuracy, y
ou have to decrese the
              #learning rate by 10%.
# If you want to change the learning rate in relation to some metric, use ReduceLROnPlate
reduce lr = tf.keras.callbacks.ReduceLROnPlateau(monitor='val accuracy',
                                                factor=0.90,
                                                patience=1,
                                                 verbose=1
#Cond2: For every 3rd epoch, decay your learning rate by 5%.
#If you want to change the learning rate in relation to number of epochs, use LearningRat
eScheduler:
def scheduler(epoch, lr):
   if ((epoch+1) % 3) == 0:
       lr = lr*0.95
   return lr
learning rate schedular = tf.keras.callbacks.LearningRateScheduler(scheduler,
                                                                    verbose=1
```

In [12]:

```
#- If you are getting any NaN values(either weigths or loss) while training, you have to
terminate your training.
# ref:https://www.tensorflow.org/api docs/python/tf/keras/callbacks/TerminateOnNaN
#writing callback when loss becomes nan
class TerminateNaNLoss(tf.keras.callbacks.Callback):
   def on epoch end(self, epoch, logs={}):
       loss = logs.get('loss')
       if loss is not None:
           if np.isnan(loss) or np.isinf(loss):
               print("Invalid loss and terminated at epoch {}".format(epoch))
                self.model.stop training = True
terminate nan loss = TerminateNaNLoss()
#writing callback when weights becomes nan
class TerminateNaNweights(tf.keras.callbacks.Callback):
   def on epoch end(self, epoch, logs=None):
       model weights = self.model.get weights()
       if model weights is not None:
            if np.any([np.any(np.isnan(x)) for x in model weights]):
               print("Invalid weights and terminate at epoch {}".format(epoch))
                self.model.stop training = True
terminate nan weights = TerminateNaNweights()
```

In [13]:

Model-1

- 1. Use tanh as an activation for every layer except output layer.
- 2. use SGD with momentum as optimizer.
- 3. use RandomUniform(0,1) as initilizer.
- 3. Analyze your output and training process.

Tanh is similar to sigmoid function but here the output range is [-1,1]

Momentum is an extension to gradient descent optimization algorithm that allows the search to build inertia in a direction of search space and overcome oscillations of noisy gradients and coast across flat sposts of search space

Stochastic Gradient Descent withhout Momentum

Stochastic Gradient Descent with Momentum

In [15]:

```
def model_1():
    normalize
    initializer = tf.keras.initializers.RandomUniform(minval=0., maxval=1.)

model = tf.keras.Sequential()
    model.add(layers.InputLayer(input_shape=(2,)))
    model.add(layers.Dense(128, activation='tanh', kernel_initializer=initializer))
    model.add(layers.Dense(64, activation="tanh", kernel_initializer=initializer))
    model.add(layers.Dense(64, activation="tanh", kernel_initializer=initializer))
    model.add(layers.Dense(32, activation="tanh", kernel_initializer=initializer))
    model.add(layers.Dense(16, activation="tanh", kernel_initializer=initializer))
    model.add(layers.Dense(1, activation="sigmoid", kernel_initializer=initializer))
    return model
```

```
tanh_model = model_1()
tanh_model.summary()
```

Model: "sequential"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 128)	384
dense_1 (Dense)	(None, 64)	8256
dense_2 (Dense)	(None, 64)	4160
dense_3 (Dense)	(None, 32)	2080
dense_4 (Dense)	(None, 16)	528
dense_5 (Dense)	(None, 1)	17

Total params: 15,425 Trainable params: 15,425 Non-trainable params: 0

In [30]:

```
def train model():
   model = model 1()
   model.compile(optimizer=tf.keras.optimizers.SGD(learning rate=0.01,momentum=0.0),
                   loss = tf.keras.losses.BinaryCrossentropy(),
                  metrics = tf.keras.metrics.Accuracy()
   log dir = os.path.join("logs",'fits', datetime.datetime.now().strftime("%Y%m%d-%H%M%
S"))
   tensorboard callback = tf.keras.callbacks.TensorBoard(log dir=log dir,histogram freq
=1, write graph=True)
   model.fit(x=X train,
              y=y train,
              validation data=(X test, y test),
              epochs=15,
              verbose=1,
              callbacks=[custom callback,
                          learning rate schedular,
                         checkpoint,
                         reduce lr,
                         terminate nan loss,
                         terminate nan weights,
                         early_stopping,
                         tensorboard callback])
train model()
```

```
-f1 score : 0.5094 -ROCValue : 0.5093763375481517
Epoch 2: val accuracy did not improve from 0.00000
Epoch 2: ReduceLROnPlateau reducing learning rate to 0.008999999798834325.
+00 - val_loss: 0.6930 - val_accuracy: 0.0000e+00 - lr: 0.0100
Epoch 3: LearningRateScheduler setting learning rate to 0.008549999631941318.
Epoch 3/15
```

157/157 [==============] - 0s 2ms/steposs: 0.6936 - accuracy:

157/157 [===============] - 0s 2ms/steposs: 0.6936 - accura

Epoch 3: val accuracy did not improve from 0.00000

-f1 score : 0.5094 -ROCValue : 0.5093763375481517

Epoch 3: ReduceLROnPlateau reducing learning rate to 0.007694999501109123. 469/469 [==============] - 3s 6ms/step - loss: 0.6936 - accuracy: 0.0000e +00 - val_loss: 0.6930 - val_accuracy: 0.0000e+00 - 1r: 0.0085 Epoch 3: early stopping

Descent with

Momentum

Model-2

- 1. Use relu as an activation for every layer except output layer.
- 2. use SGD with momentum as optimizer.
- 3. use RandomUniform(0,1) as initilizer.
- 3. Analyze your output and training process.

In [19]:

```
def model_2():
    initializer = tf.keras.initializers.RandomUniform(minval=0., maxval=1.)
    model = tf.keras.Sequential()
    model.add(layers.InputLayer(input_shape=(2,)))
    model.add(layers.Dense(128, activation="relu", kernel_initializer=initializer))
    model.add(layers.Dense(128, activation="relu", kernel_initializer=initializer))
    model.add(layers.Dense(64, activation="relu", kernel_initializer=initializer))
    model.add(layers.Dense(64, activation="relu", kernel_initializer=initializer))
    model.add(layers.Dense(32, activation="relu", kernel_initializer=initializer))
    model.add(layers.Dense(1, activation="relu", kernel_initializer=initializer))
    return model
```

In [20]:

```
relu_model = model_2()
relu_model.summary()
```

Model: "sequential 2"

Layer (type)	Output Shape	Param #
dense_12 (Dense)	(None, 128)	384
dense_13 (Dense)	(None, 128)	16512
dense_14 (Dense)	(None, 64)	8256
dense_15 (Dense)	(None, 64)	4160
dense_16 (Dense)	(None, 32)	2080
dense_17 (Dense)	(None, 1)	33

Total params: 31,425 Trainable params: 31,425 Non-trainable params: 0

```
def train model relu():
   model = model_2()
   model.compile(optimizer=tf.keras.optimizers.SGD(learning rate=0.1, momentum=0.95),
                loss = tf.keras.losses.BinaryCrossentropy(),
                metrics = tf.keras.metrics.Accuracy()
   log dir = os.path.join("logs",'fits', datetime.datetime.now().strftime("%Y%m%d-%H%M%
S"))
   tensorboard callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir,histogram_freq
=1, write graph=True)
   model.fit(x=X train,
            y=y train,
            validation data=(X test, y_test),
            epochs=15,
            verbose=1,
            callbacks=[custom callback,
                     checkpoint,
                     reduce lr,
                     learning rate schedular,
                     terminate_nan_loss,
                     terminate nan weights,
                     early stopping,
                     tensorboard callback])
train model relu()
Epoch 1: LearningRateScheduler setting learning rate to 0.10000000149011612.
Epoch 1/15
 1/469 [.....] - ETA: 12:46 - loss: 215100.7344 - accuracy: 0.3
750WARNING:tensorflow:Callback method `on train batch end` is slow compared to the batch
time (batch time: 0.0014s vs `on train batch end` time: 0.0443s). Check your callbacks.
-f1 score : 0.497 -ROCValue : 0.5
Epoch 1: val accuracy did not improve from 0.00000
021 - val loss: 0.6991 - val accuracy: 0.0000e+00 - lr: 0.1000
Epoch 2: LearningRateScheduler setting learning rate to 0.10000000149011612.
Epoch 2/15
-f1 score : 0.497 -ROCValue : 0.5
Epoch 2: val accuracy did not improve from 0.00000
Epoch 2: ReduceLROnPlateau reducing learning rate to 0.09000000134110452.
469/469 [============== ] - 3s 6ms/step - loss: 0.6970 - accuracy: 0.0000e
+00 - val loss: 0.6954 - val accuracy: 0.0000e+00 - lr: 0.0900
Epoch 3: LearningRateScheduler setting learning rate to 0.08550000339746475.
Epoch 3/15
-f1 score : 0.503 -ROCValue : 0.5
Epoch 3: val accuracy did not improve from 0.00000
Epoch 3: ReduceLROnPlateau reducing learning rate to 0.07695000171661377.
469/469 [=============== ] - 3s 7ms/step - loss: 0.6953 - accuracy: 0.0000e
+00 - val loss: 0.6932 - val accuracy: 0.0000e+00 - lr: 0.0769
Epoch 3: early stopping
                                                            6 C # @
        TensorBoard
                  SCALARS GRAPHS DISTRIBUTIONS HIST > INACTIVE
```


Model-3

- 1. Use relu as an activation for every layer except output layer.
- 2. use SGD with momentum as optimizer.
- 3. use he_uniform() as initilizer.
- 3. Analyze your output and training process.

In [23]:

```
def model_3():
    normalize
    initializer = tf.keras.initializers.HeUniform()
    model = tf.keras.Sequential()
    model.add(layers.InputLayer(input_shape=(2,)))
    model.add(layers.Dense(128, activation="relu", kernel_initializer=initializer))
    model.add(layers.Dense(128, activation="relu", kernel_initializer=initializer))
    model.add(layers.Dense(64, activation="relu", kernel_initializer=initializer))
    model.add(layers.Dense(64, activation="relu", kernel_initializer=initializer))
    model.add(layers.Dense(32, activation="relu", kernel_initializer=initializer))
    model.add(layers.Dense(1, activation="relu", kernel_initializer=initializer))
    return model
```

In [24]:

```
relu_model_1 = model_3()
relu_model_1.summary()
```

Model: "sequential 4"

Layer (ty	vpe)	Output	Shape	Param #
dense_24	(Dense)	(None,	128)	384
dense_25	(Dense)	(None,	128)	16512
dense_26	(Dense)	(None,	64)	8256
dense_27	(Dense)	(None,	64)	4160
dense_28	(Dense)	(None,	32)	2080
dense 29	(Dense)	(None,	1)	33

Total params: 31,425 Trainable params: 31,425 Non-trainable params: 0

In [33]:

```
def train model relu 1():
   model = model 3()
   model.compile(optimizer=tf.keras.optimizers.SGD(learning rate=0.1, momentum=0.95),
               loss = tf.keras.losses.BinaryCrossentropy(),
              metrics = tf.keras.metrics.Accuracy()
   log dir = os.path.join("logs",'fits', datetime.datetime.now().strftime("%Y%m%d-%H%M%
S"))
   tensorboard callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir,histogram_freq
=1, write graph=True)
   model.fit(x=X train,
           y=y train,
           validation data=(X test, y test),
           epochs=15,
           verbose=1,
           callbacks=[custom_callback,
                   checkpoint,
                   reduce lr,
                   learning rate schedular,
                   terminate nan loss,
                   terminate nan weights,
                   early stopping,
                   tensorboard callback])
train_model_relu_1()
Epoch 1: LearningRateScheduler setting learning rate to 0.10000000149011612.
 1/469 [.....] - ETA: 11:18 - loss: 0.9559 - accuracy: 0.0000e+
00WARNING:tensorflow:Callback method `on train batch end` is slow compared to the batch t
ime (batch time: 0.0036s vs `on train batch end` time: 0.0391s). Check your callbacks.
-f1 score : 0.5622 -ROCValue : 0.5645111224004065
Epoch 1: val accuracy did not improve from 0.00000
+00 - val loss: 0.6694 - val accuracy: 0.0000e+00 - lr: 0.1000
Epoch 2: LearningRateScheduler setting learning rate to 0.10000000149011612.
Epoch 2/15
-f1 score : 0.6188 -ROCValue : 0.6171878187614754
Epoch 2: val accuracy did not improve from 0.00000
Epoch 2: ReduceLROnPlateau reducing learning rate to 0.09000000134110452.
+00 - val loss: 0.6863 - val accuracy: 0.0000e+00 - lr: 0.0900
Epoch 3: LearningRateScheduler setting learning rate to 0.08550000339746475.
Epoch 3/15
-f1 score : 0.6508 -ROCValue : 0.6500506018216655
Epoch 3: val accuracy did not improve from 0.00000
Epoch 3: ReduceLROnPlateau reducing learning rate to 0.07695000171661377.
+00 - val_loss: 0.6331 - val_accuracy: 0.0000e+00 - lr: 0.0769
Epoch 3: early stopping
```


Model-4

1. Try with any values to get better accuracy/f1 score.

In [27]:

```
def model_4():
    normalize
    initializer = tf.keras.initializers.GlorotNormal()
    model = tf.keras.Sequential()
    model.add(layers.InputLayer(input_shape=(2,)))
    model.add(layers.Dense(32, activation="LeakyReLU", kernel_initializer=initializer))
    model.add(layers.Dense(16, activation="LeakyReLU", kernel_initializer=initializer))
    model.add(layers.Dense(16, activation="LeakyReLU", kernel_initializer=initializer))
    model.add(layers.Dense(8, activation="LeakyReLU", kernel_initializer=initializer))
    model.add(layers.Dense(8, activation="LeakyReLU", kernel_initializer=initializer))
    model.add(layers.Dense(1, activation="LeakyReLU", kernel_initializer=initializer))
    return model
```

In [28]:

```
reduce lr,
                  learning rate schedular,
                  terminate nan loss,
                  terminate nan weights,
                  early stopping,
                  tensorboard callback])
Epoch 1: LearningRateScheduler setting learning rate to 0.009999999776482582.
Epoch 1/15
 1/469 [.....] - ETA: 18:21 - loss: 0.7093 - accuracy: 0.0000e+
00WARNING:tensorflow:Callback method `on train batch end` is slow compared to the batch t
ime (batch time: 0.0031s vs `on train batch end` time: 0.0635s). Check your callbacks.
-f1 score : 0.6358 -ROCValue : 0.634801652859503
Epoch 1: val accuracy did not improve from 0.00000
+00 - val loss: 0.6403 - val accuracy: 0.0000e+00 - lr: 0.0100
Epoch 2: LearningRateScheduler setting learning rate to 0.009999999776482582.
-f1 score : 0.658 -ROCValue : 0.658573308639111
Epoch 2: val accuracy did not improve from 0.00000
Epoch 2: ReduceLROnPlateau reducing learning rate to 0.008999999798834325.
469/469 [============== ] - 3s 6ms/step - loss: 0.6164 - accuracy: 0.0000e
+00 - val loss: 0.6234 - val accuracy: 0.0000e+00 - lr: 0.0090
Epoch 3: LearningRateScheduler setting learning rate to 0.008549999631941318.
Epoch 3/15
-f1 score : 0.6582 -ROCValue : 0.657735278470025
Epoch 3: val accuracy did not improve from 0.00000
Epoch 3: ReduceLROnPlateau reducing learning rate to 0.007694999501109123.
+00 - val_loss: 0.6167 - val_accuracy: 0.0000e+00 - 1r: 0.0077
```

Out[28]:

Epoch 3: early stopping

<keras.callbacks.History at 0x1cbe773b880>

epochs=15, verbose=1,

callbacks=[custom_callback,

checkpoint,

In []:

1. We define and use a callback when we want to automate some tasks after every training/epoch that helps us to have controls over the training process.

This includes stopping training when you reach a certain accuracy/loss score, saving your model as a checkpoint after each successful epoch, adjusting the learning rates over time ,and more.

2. Early stopping:

helps us to terimate the process early to avoid overfitting the model

3. Model checkpoint:

saves mode after every epoch/any other metric defines (here we save only model weights but not the architecture)

4. Learning Rate Scheduler:

it adjusts the learning rate over time using a schedule that we already write beforehand. This function returns the desired learning rate (output) based on the current epoch (epoch index as input).

5. ReduceLR on Plateau:

it changes learning rate when metrics have stopped improving

6. TensorBoard:

writes a log for TensorBoard, which is TensorFlow's excellent visualization tool.

7. TerminateOnNaN:

>terminates process when metrics become NaN. Here we implemented custom Callback for NaN which terminates process when weights/loss becomes NaN(NotANumber)

we can conculde that Callbacks give control over our model by monitoring and improving the model

In []: