27. Критерий за константност. Критерий за монотонност

Критерий за константност

Теорема 1 (критерий за константност)

Нека $f:(a,b)\to\mathbb{R}$ е диференцируема. Тогава $f(x)\equiv\mathrm{const}\iff f'(x)\equiv 0.$

Д-во: Ако $f(x) \equiv \mathrm{const}$, то $f'(x) \equiv 0$, защото $(\mathrm{const})' = 0$.

Обратно, нека $f'(x) \equiv 0$. Според формулата за крайните нараствания имаме, че за всеки $x_1, x_2 \in (a,b), x_1 < x_2, \exists c \in (x_1,x_2)$ такова, че

$$f(x_2) - f(x_1) = f'(c)(x_2 - x_1) = 0.$$
 (1)

Така установихме, че $f(x_1) = f(x_2)$ за всеки $x_1, x_2 \in (a, b)$. Следователно $f(x) \equiv \mathrm{const.}$

Следствие

Нека f(x) е непрекъсната в [a,b] и диференцируема в (a,b). Ако $f'(x) \equiv 0$ в (a,b), то $f(x) \equiv \text{const}$ в [a,b].

Пример

Ще докажем основното тригонометрично т-во:

$$\cos^2 x + \sin^2 x = 1 \quad \forall x \in \mathbb{R}. \tag{2}$$

Въвеждаме функцията $f(x):=\cos^2 x+\sin^2 x,\ x\in\mathbb{R}.$ Тя е диференцируема и

$$f'(x) = 2\cos x(-\sin x) + 2\sin x\cos x = 0 \quad \forall x.$$
 (3)

Сега от Критерия за константност следва, че $f(x) \equiv \text{const.}$

За да намерим тази константа, пресмятаме стойноста на f(x) в някоя удобна стойност на x.

 \mathbf{B} случая това лесно става при $\mathbf{x} = \mathbf{0}$.

Имаме $f(0) = \cos^2 0 + \sin^2 0 = 1 + 0 = 1$.

Така установихме, че f(x) = f(0) = 1 за всяко $x \in \mathbb{R}$.

Критерий за монотонност

Теорема 2 (критерий за монотонност)

Нека $f:(a,b) \to \mathbb{R}$ е диференцируема. Тогава:

- (a) f(x) е монотонно растяща в $(a,b) \iff f'(x) \ge 0$ в (a,b);
- (б) f(x) е монотонно намаляваща в $(a,b) \iff f'(x) \le 0$ в (a,b);
- (в) f(x) е строго монотонно растяща в (a,b), ако f'(x)>0 в (a,b);
- (г) f(x) е строго монотонно намаляваща в (a,b), ако f'(x) < 0 в (a,b).

Д-во: (а) Нека f(x) е монотонно растяща в (a,b). Тогава за произволно фиксирано $x_0 \in (a,b)$ имаме

$$\frac{f(x)-f(x_0)}{x-x_0}\geq 0 \quad \forall x\in (a,b), \ x\neq x_0. \tag{4}$$

Следователно

$$f'(x_0) \stackrel{\text{по}}{=} \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \ge 0.$$
 (5)

Тук $x_0 \in (a, b)$ бе произволно фиксирано.

Нека сега $f'(x) \ge 0$ за всяко $x \in (a, b)$. Нека $x_1, x_2 \in (a, b)$, $x_1 < x_2$, са произволно фиксирани. Според формулата за крайните нараствания имаме, че $\exists c \in (x_1, x_2)$ такова, че

$$f(x_2) - f(x_1) = f'(c)(x_2 - x_1).$$
 (6)

Понеже $f'(c) \geq 0$, оттук следва, че $f(x_2) - f(x_1) \geq 0$, т.е. $f(x_1) \leq f(x_2)$. Точките $x_1, x_2 \in (a, b)$, $x_1 < x_2$, бяха произволно фиксирани. Следователно така установихме, че $f(x_1) \leq f(x_2)$ за всеки $x_1, x_2 \in (a, b)$ такива, че $x_1 < x_2$. Това точно означава, че f(x) е монотонно растяща в (a, b).

- (б) Прилагаме (а) към ф-цията -f(x).
- (в) От (6) следва $f(x_1) < f(x_2)$ за всеки $x_1, x_2 \in (a, b)$ такива, че $x_1 < x_2$.
- (г) Прилагаме (в) към ф-цията -f(x).