Canonical Forms

Logic Design

Canonical Forms

- It is useful to specify Boolean functions in a form that:
 - Allows comparison for equality.
 - Has a correspondence to the truth tables
- Canonical Forms in common usage:
- Sum of Minterms (SOM)
- Product of Maxterms (POM)

Minterms

- Minterms are AND terms with every variable present in either true or complemented form.
- There are 2ⁿ minterms for n variables.
- Example: Two variables (X and Y) produce 2 x 2 = 4 combinations:

```
XY (both normal)
XY'(X normal, Y complemented)
X'Y (X complemented, Y normal)
X'Y' (both complemented)
```

Thus there are four minterms of two variables.

Maxterms

- Maxterms are OR terms with every variable in true or complemented form.
- There are 2ⁿ maxterms for n variables.
- Example: Two variables (X and Y) produce 2 x 2 = 4 combinations:

```
X+Y (both normal)
X+Y' (X normal, Y complemented)
X'+Y (X complemented, Y normal)
X'+Y' (both complemented)
```

Maxterms and Minterms

Examples: Two variable minterms and maxterms.

Index	Minterm	Maxterm
0	$\overline{x}\overline{y}$	x + y
1	x y	x + y
2	х ӯ	x + y
3	ху	-x + y

• The index above is important for describing which variables in the terms are true and which are complemented.

Purpose of the Index

 The index is used to determine whether the variable is shown in the true form or complemented form.

• For **Minterms**:

- —"1" means the variable is "Not Complemented" and
- -"0" means the variable is "Complemented".

• For Maxterms:

- "0" means the variable is "Not Complemented" and
- -"1" means the variable is "Complemented".

Index Example

- Example: (for three variables)
 - Assume the variables are called X, Y, and Z.
 - -The standard order is X, then Y, then Z.
 - -Minterm 0, called m_0 is X'Y'Z'
 - Maxterm 0, called M_0 is (X + Y + Z).
 - -Minterm 6?
 - -Maxterm 7?
- Example: (for four variables)
 - Assume the variables are called A,B,C and D
 - -Minterm 0, called m₀ is A'B'C'D'
 - Maxterm 0, called M_0 is (A+B+C+D)
 - -Minterm 7?
 - Maxterm 15?

DeMorgan's Theorem

#	Theorem	Dual	Name
T12	$B_0 \bullet B_1 \bullet B_2 \dots =$	$B_0 + B_1 + B_2 \dots =$	DeMorgan's
	$B_0 + B_1 + B_2$	$B_0 \bullet B_1 \bullet B_2 \dots$	Theorem

The complement of the product is the sum of the complements.

Dual: The complement of the sum is the product of the complements.

DeMorgan's Theorem Example 1

$$Y = \overline{(A + \overline{BD})\overline{C}}$$

DeMorgan's Theorem Example 2

$$Y = \overline{(\overline{ACE} + \overline{D}) + B}$$

Minterm and Maxterm Relationship

Review: DeMorgans Theorem

$$(XY)' = X'+Y'$$

 $(X+Y)' = X'Y'$

Two_variable example:

$$M_2 = X' + Y \Leftrightarrow m_2 = X.Y'$$

$$M_i = \overline{M}_i$$
 $m_i = \overline{M}_i$

Thus M_i is the complement of m_i

Canonical Sum of Minterms

- Any Boolean function can be expressed as a sum of minterms (SOM)
 - -The minterms used are the terms corresponding to the 1's
- Example: Implement F = X+X'Y' as a sum of minterms.
 - First expand terms:

$$F = X(Y+Y') + X'Y' = XY + XY' + X'Y'$$

– Express as SOM:

F=
$$m_3+m_2+m_0$$

F(X,Y) = $\Sigma_m(0,2,3)$

SOM Example

• Show that $F = A+B'C => F(A,B,C) = \sum_{m} (1,4,5,6,7)$

Canonical Product of Maxterms

- Any Boolean Function can be expressed as a Product of Maxterms (POM).
 - For the function table, the maxterms used are the terms corresponding to the 0's.
- Example: F(X,Y,Z)=X+X'Y'

$$X+X'Y' = (X+X')(X+Y') = X+Y' = X+Y'+Z.Z' = (X+Y'+Z')(X+Y'+Z)$$

= $M_2.M_3$

POM Example

Convert the following to product of maxterms:

$$F(A,B,C) = AC' + BC + A'B'$$

Function Complements

 Select the minterms missing in the sum-of-minterms canonical forms.

$$F(X,Y,Z) = \sum_{m} (1,3,5,7)$$

$$F'(X,Y,Z) = \sum_{m} (0,2,4,6)$$

 Alternatively, the complement of the function is the product of maxterms with the same indices.

$$F'(X,Y,Z)=\Pi_{M}(1,3,5,7)$$

From Logic to Gates

Two-level logic: ANDs followed by ORs

Example: $Y = \overline{ABC} + A\overline{BC} + A\overline{BC}$

