Data Analytics I

Create a Linear Regression Model using Python/R to predict home prices using Boston Housing Dataset (https://www.kaggle.com/c/boston-housing). The Boston Housing dataset contains information about various houses in Boston through different parameters. There are 506 samples and 14 feature variables in this dataset.

The objective is to predict the value of prices of the house using the given features

```
In [9]: import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         from sklearn.datasets import fetch california housing
         boston = fetch california housing()
In [10]: boston.data.shape
Out[10]: (20640, 8)
In [11]: boston.feature names
Out[11]: ['MedInc',
           'HouseAge',
           'AveRooms',
           'AveBedrms',
           'Population',
           'AveOccup',
           'Latitude',
           'Longitude']
In [12]: data = pd.DataFrame(boston.data)
         data.columns = boston.feature names
In [13]: data.head(15)
```

Out[13]:		MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitu
	0	8.3252	41.0	6.984127	1.023810	322.0	2.555556	37.
	1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.
	2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.
	3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.
	4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.
	5	4.0368	52.0	4.761658	1.103627	413.0	2.139896	37.
	6	3.6591	52.0	4.931907	0.951362	1094.0	2.128405	37.
	7	3.1200	52.0	4.797527	1.061824	1157.0	1.788253	37.
	8	2.0804	42.0	4.294118	1.117647	1206.0	2.026891	37.
	9	3.6912	52.0	4.970588	0.990196	1551.0	2.172269	37.
	10	3.2031	52.0	5.477612	1.079602	910.0	2.263682	37.
	11	3.2705	52.0	4.772480	1.024523	1504.0	2.049046	37.
	12	3.0750	52.0	5.322650	1.012821	1098.0	2.346154	37.
	13	2.6736	52.0	4.000000	1.097701	345.0	1.982759	37.
	14	1.9167	52.0	4.262903	1.009677	1212.0	1.954839	37.
In [14]:	bos	ton.targe	et.shape					
Out[14]:	(20	0640,)						
In [15]:		a[' <mark>Price</mark> a.head()	'] = boston.	target				
Out[15]:		MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude
	_	0.2252	41.0	6.004107	1 000010	222.0	2.55556	27.04

Out[15]:		MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude
	0	8.3252	41.0	6.984127	1.023810	322.0	2.555556	37.88
	1	0.2014	21.0	6 220127	0.071000	2401.0	2 100042	27.00

C	8.3252	41.0	6.984127	1.023810	322.0	2.555556	37.8
1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.80
2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.8!
3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.8!
4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.8!

In [16]: data.describe()

Out[16]:		MedInc	HouseAge	AveRooms	AveBedrms	Population			
-	count	20640.000000	20640.000000	20640.000000	20640.000000	20640.000000			
	mean	3.870671	28.639486	5.429000	1.096675	1425.476744			
	std	1.899822	12.585558	2.474173	0.473911	1132.462122			
	min	0.499900	1.000000	0.846154	0.333333	3.000000			
	25%	2.563400	18.000000	4.440716	1.006079	787.000000			
	50 %	3.534800	29.000000	5.229129	1.048780	1166.000000			
	75 %	4.743250	37.000000	6.052381	1.099526	1725.000000			
	max	15.000100	52.000000	141.909091	34.066667	35682.000000			
-	# Column Non-Null Count Dtype O MedInc 20640 non-null float64 HouseAge 20640 non-null float64 AveRooms 20640 non-null float64 AveBedrms 20640 non-null float64 Population 20640 non-null float64 AveOccup 20640 non-null float64 Latitude 20640 non-null float64 Longitude 20640 non-null float64 Price 20640 non-null float64								
	x=bosto y=bosto from si	on.target klearn.model_s		t train_test_s		0.2)			
	<pre>print("xtrain shape :",xtrain.shape) print("xtest shape :",xtest.shape) print("ytrain shape :",ytrain.shape) print("ytest shape :", ytest.shape)</pre>								
X	test sh	shape : (16512 nape : (4128,	8)						
-		shape : (16512 nape : (4128,)	,)						
У	regress	nape : (4128,)	model import L gression()	inearRegressio	on				

```
y_pred = regressor.predict(xtest)
```

```
In [20]: plt.scatter(ytest,y_pred, c = 'orange')
    plt.xlabel("Price : in $1000's")
    plt.ylabel("Predicted value")
    plt.title("True value vs Predicted value : Linear Regression")
    plt.show()
```



```
In [21]: from sklearn.metrics import mean_squared_error
    mse = mean_squared_error(ytest,y_pred)
    print("Mean Square Error :",mse)
```

Mean Square Error : 0.5074335030836559

In []: