Don. + PANIC! Multiple comparisons. Ho ray Ho is rej H. TRUE Ho FALSE M= U+V+T1S FWER = family wix everor rate = P(V>0) Second goal: [goal: FWER & L FDR = false obs coverey rate.

FDR = E(V/U+5) $FDR = E\left(\frac{V_{1}S_{1}}{\text{mode}(V_{1}S_{1})}\right)$ I = { 1 | V > 1 | V = 0 theorem: (EWER) FDR prod FWER = E(I(V>1)) E (I(V31)) VS E (MS,1) I(V>1) us more (VIS,1) Cose A: V=0 LHS=0 > RHS=0 cox 3: V31 LHS = 1 > RnS = 1 FWER & FDR

<u>"</u> (8.

	Benjanin-rochberg procedere.
	Benjanin-rochberg procederce. control FDR
	goal: FDR ≤ L
	Skyp!
	Test: H_0 , H_0^2 H_0^M
	ve obtain pralues
	ue sout them:
	$p_{(n)} \leq p_{(2)} \leq \dots \leq p_{(m)}$
	10 la /111, mun
	Ko rej Ho not reject
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	(Step?)
	12 Ken (4 1) 14 > K
	receled I not rejected.
	F= Fred the firest P(a) above the true y(a).
(le p 3
	Do not reject MF HFHI HM
	Do not reject 16, 17, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16
_	
	proof is noce involved!
	•

Horej general volca.

Horej general volca.

Vi

movo(1,V+S) = 5 movo(1,V+S)

i e-Ino movo(1,V+S) THO HO - . . THO M null-lype in lotal. In = the set of inclines of true to The = {2, 4, ... 9 }

Vi = {1 if the hypo di was rejected. $\begin{array}{ccc}
\chi &= & \sum_{i \in I_{Ro}} \chi_{i} & & & & \\
i \in I_{Ro} & & & & \\
\end{array}$ Claim): for $i \in I_{Ro} \left(\frac{E(\chi_{i})}{F(\chi_{i})} - \frac{\chi_{i}}{M} \right) \left(\frac{1}{M} \right) \left($ FDR = E(Nunx(1, VIS)) = E(SX;) = $\underbrace{\mathcal{E}(\chi_i)} = M_0 \cdot \frac{\lambda}{M} = \frac{M_0}{N} \cdot \lambda \cdot \underbrace{\lambda}_{\underline{\lambda}}$

Ex.

three hypo Ho, Ho, indep. Ill ho, Ho, to are true P(1), P(2), (P(3)) a) poll for each sorted p(k)? $P(p_0) \ge \frac{\sqrt{1}}{3} = \frac{\sqrt{1}}{1}$ c) $P(p_1) < \frac{2^{1}}{3}, p_{(2)} > \frac{2^{1}}{3} = p_{(2)}$ ex. one poll $p_{(2)}$ will be very d) $P(p_{(1)} < \frac{\lambda}{3}, p_{(2)} < \frac{\lambda \cdot 2}{3}, p_3 < \frac{\lambda \cdot 3}{3})$? e) FDR? (a) (P(A), P(C) ~ U[oil) per = min (par per, pres) × U[0:1] $colf.: P(p_{(1)} \leq t) = 1 - P(p_{(1)} > t) =$ $= 1 - p(p_{(A)} > t, p_{(B)} > t, p_{(c)} > t) =$ rafpe (t) $P(p_{\alpha}) \leq t = P(p_{A}, p_{B}, p_{C}) \leq t$ po4 = 66-61²=66(1-t)

135 mos (pa, pa, pe) cdf. P(p3) = f) = P(pa, et, pa, et, pe, et)= $= t^{3}$ $polf p(3) = 3t^{2} \text{ an } [0il]$ polf p(3)(t) $cdf_{p(t)}(t) = [-(1-t)^3]$ b) P(kel three will not be rej.) = $P(p_{(1)} \ge \frac{\cancel{3}}{3}) = 1$ $P(p_{(1)} \ge \frac{\cancel{3}}{3}) = 1$ $P(P(1) \ge \frac{x \cdot 1}{3}) = \frac{\sqrt{x} \cdot 1}{\sqrt{x}} =$ $=1-(1-\frac{1}{3})^{3}-(1-\frac{1}{3})^{3}$ P(ex. one rull hyper vill be eij) = $= p(p_0) < \frac{1}{3}, p_0 > \frac{2\lambda}{3} = \frac{2\lambda}{3} \cdot \left(1 - \frac{2\lambda}{3}\right) \times 3$ PaeL, PaeR, PceR) = &. (1-26)2.3 P(PAER, PBEL, PCER) P(-11-PEL)

6) P(no null hypo is reject) =
$$(1-x)^3$$
 $P(V=0) = (1-x)^3$
 $P(V=1) = 2(1-x)^2$

d) $P(V=2) = (1-x)^3$
 $P(V=3) = (1-x)^3$

