Johns Hopkins Engineering

Molecular Biology

Receptor-ligand interactions

Outline

- Signal Transduction
- Receptor-ligand interactions
- Agonists and antagonists
- Signal Amplification

Signal Transduction Mechanisms

- All cells have some ability to sense and respond to their environments through chemical signals
- Receptors are located on receiving cells that can be quite distant from the secreting cell
- Cells produce signals, in some cases by displaying molecules on their surfaces or by releasing a chemical signal
- Multicellular organisms can control the activities of specialized cells through release of chemical messengers
- The ability of a cell to respond to ligand-receptor binding by altering its behavior or gene expression is called signal transduction

Different Types of Chemical Signals Can Be Received by Cells

- Signaling molecules are often classified based on the distance between the site of production and the target
 - Endocrine signals are produced far from the target tissues, which they reach via the circulatory system
 - Paracrine signals are diffusible and act over a short range
 - Juxtacrine signals require physical contact between sending and receiving cells
 - Autocrine signals act on the same cell that produces them

Hormones

Local mediators

© 2012 Pearson Education, Inc.

(a) The general flow of information during cell signaling

© 2012 Pearson Education, Inc.

Receptor Binding Involves Specific Interactions Between Ligands and Their Receptors

- Messengers bind to receptors in a highly specific way
- This is achieved through
 - The binding site (or binding pocket) on the receptor that fits the messenger very closely
 - The necessary amino acid side chains, positioned to form chemical bonds with the messenger

Receptor-ligand interactions

- In most cases the binding of a receptor and ligand resembles the binding of an enzyme and its substrate
- The receptor specific for a certain ligand is called the cognate receptor
- A receptor bound to its ligand is said to be occupied

Guryanov, et al., Volume 68, 1 November 2016, Pages 890-903

Receptor Affinity

- The relationship between the ligand in solution and the number of receptors occupied can be described in terms of receptor affinity
- When almost all the receptors are occupied at a low concentration of free ligand, we say that a receptor has a high affinity for its ligand and vice versa.
- The dissociation constant, K_d, is the [free ligand] needed to produce a state in which half the receptors are occupied
- Receptors with high ligand affinity have low K_d (and vice versa)

Coreceptors

- Receptor-ligand interactions can be affected by coreceptors on the cell surface
- They help to facilitate receptorligation interaction via physical interaction with the receptor
- Coreceptors are often clustered in lipid rafts (microdomains)
 - o E.g. Toll-like Receptors

One well-studied class of coreceptor molecules is heparan sulfate proteoglycans (HSPGs)

Adapted from Bishop et al., Nature Vol 446, 26 April 2007

Receptor Down-regulation

- Cells are geared to sense ligand concentration changes rather than fixed concentrations
- When receptors are occupied for prolonged periods, the cell adapts to no longer respond to the ligand
- Such changes are called receptor down-regulation, which can be accomplished in two ways:
 - Cells reduce the density of receptors on their cell surfaces via receptormediated endocytosis
 - Cells can adapt to signals by desensitization, alterations to the receptor that lower its affinity for the ligand
 - A common method of desensitization is phosphorylation (addition of a phosphate group to a molecule)

Agonists and Antagonists

- Agonists: drugs that activate the receptor they are bound to
- Antagonists: bind receptors without triggering a change, and prevent the naturally occurring messenger from activating the receptor
- It is possible to make synthetic ligands that bind even more tightly or selectively than the real ligand; This is the central mechanism of many treatments for human disease
 - e.g: Commercial product "Pepcid" acid controller (famotidine), selectively binds & inhibits a histamine receptor on cells in the stomach

Receptor Binding Activates a Sequence of Signal Transduction Events Within the Cell

- When a ligand binds to its cognate receptor it either induces a change in receptor conformation or causes receptors to cluster
- Once this takes place, a preprogrammed sequence of events is initiated inside the cell
- Cells can be exposed to a multitude of signals at any given moment
- Cells must integrate these signals to produce appropriate responses (i.e. signal integration)
- A single receptor can activate multiple pathways, or multiple pathways can converge onto the same molecules

(b) Different ways in which signals can be integrated

One receptor activates multiple pathways

activate the same pathway

2 Different receptors 3 Different receptors activate different pathways; one pathway affects the other

© 2012 Pearson Education, Inc.

- Example of a complex signal network: MAP kinase signaling
- MAPKs are activated in response to a cell signal to grow and divide, sometimes called a *mitogen*
- MAPKs phosphorylate transcription factors that enter the nucleus to alter gene expression

Signal Amplification

- Very small quantities of ligand are often sufficient to elicit a response from a target cell
- At each step in the resulting cascade of events, a signaling intermediate stimulates the production of many molecules needed for the next step
- This multiplication of the effect of the signal is called signal amplification

Signal Amplification

Example:

liver cell responding to one molecule of epinephrine; triggers hundreds of millions of glucose-1-phosphate molecules

Summary

- Signal Transduction
 - Types of signals
- Receptor-ligand interactions
 - Receptor affinity
 - Coreceptors
- Agonists and antagonists
- Signal Amplification

