# techolution {Al done right}





#### **Trigger Word Detection**

- Aashish
- Shashi
- Mihir
- Kathyayani
- Snigdha





### 1.Application Focus: Web app for touch-free interaction. Single-button activation.

- 2. Functionality: Identifies three door-related commands: open, close, stop. Provides visual feedback based on recognized command.
- 3. Edge Device Deployment: Model optimized for low-power devices. We focused on deployment on Raspberry Pi.
- 4. User-Friendly Design: Simple button-driven interface for accessibility.





#### **FRONTEND:**

- The Webpage is built using ReactJS which establishes a real-time WebSocket connection using the socket.io-client library, allowing seamless communication with a server.
- It utilizes the **Web Audio API** to access the user's microphone and initiate audio recording.
- It sends recorded audio chunks to the server via WebSocket for real-time processing.
- The client stores server-emitted responses and reacts to trigger command words like "door open," "door close," and "door stop."
- This MVP, showcasing door actions through animations, is primed for real-time integration with Raspberry Pi for practical applications.





#### **BACKEND:**

- Flask and Flask\_SocketIO are used for creating a web server and handling socket communication in real-time.
- The server receives audio data from the client as a blob and saves it into an .wav file to load using librosa.
- We extract MFCC features from the .wav file.
- The pre-trained model uses the MFCC features extracted from client-sent audio signals and makes a prediction.
- The result is then **emitted back** to the client through web socket connection.





#### **Audio Preprocessing:**

#### Short time Fourier transform:

 computes STFT of an audio signal to analyze its frequency content over time, providing a time-frequency representation essential for extracting features like Mel spectrograms or Mel-Frequency Cepstral Coefficients (MFCCs) in audio signal processing tasks.

#### MFCC Feature Extraction:

The extract\_mfcc\_features function is called to extract
Mel-Frequency Cepstral Coefficients (MFCC) features from the raw
audio. The concatenated array of extracted\_mfcc\_features are the
input to our model.





#### **MODEL: CNN**

- Two layer CNN model is used here
- **First Conv2D** layer with 8 filters, kernel size (3, 3), and ReLU activation.
- Second Conv2D layer with 16 filters, kernel size (3, 3), and ReLU activation.
- MaxPooling2D layer with pool size (2, 2) and Dropout layer with a dropout rate of 0.25 for regularization for both layers.
- Flatten and Dense layer with softmax activation.
- Compilation
  - Adams optimizer
  - Loss function Sparse categorical crossentropy (suitable for integer-encoded class labels)

#### techolution





#### **MODEL: CNN**

- Accuracy 95.56%
- Precision 95.62%
- Recall 95.56%
- F1 Score 95.57%







#### **MODEL: LSTM**

- One layer used
- LSTM layer with 64 units, ReLU activation, and L2 regularization is used for sequence modeling.
- Dropout layer with a dropout rate of 0.2 is added for regularization.
- Dense layer with a sigmoid activation function is used for the output layer with the number of units equal to the number of classes.





#### **MODEL**: LSTM

- Accuracy 93.37%
- Precision 93.48%
- Recall 93.37%
- F1 Score 93.35%





### { Architecture }







In this section you will be providing a live demo of the working of your application.

### Raspberry Pi Compatibility







The versatility of these models renders them applicable across a spectrum of contexts:

- Home Automation:
  - Implementing voice-activated systems enables users to control smart home devices seamlessly without necessitating physical interaction.
- In-Car Voice Control:
  - Integration of the application into automotive systems facilitates safer and more convenient driving experiences, allowing drivers to adjust settings, make calls, or manage entertainment through voice commands.



## Let's do it right