The Processor Status And The FLAGS Register

The FLAGS Register

- In 8086, the processor state is implemented as **nine** individual bits called flags
- Each decision made by 8086 is based on the values of these flags
- The flags are placed in the FLAGS register
- Two types of flags: Status flags and control flags
- Status flags reflect the result of a computation. They are located in bits 0,2,4,6,7 and 11
- Control flags enable or disable certain operations of the processor. They are located in bits 8,9 and 10
- The other bits have no significance

The FLAGS Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				OF	DF	IF	TF	SF	ZF		AF		PF		CF

Bit	Name	Symbol	
0	Carry Flag	CF	
2	Parity Flag	PF	
4	Auxiliary Carry Flag	AF	
6	Zero Flag	ZF	Status Flag
7	Sign Flag	SF	
11	Overflow Flag	OF	
8	Trap Flag	TF	
9	Interrupt Flag	IF	Control Flag
10	Direction Flag	DF	

The Status Flags

Carry Flag(CF)

- **CF=1** if there is a **carry out in the MSB on addition**, if there is a **borrow into the MSB on subtraction**
- Otherwise CF=0
- It is also affected by **shift and rotate instructions**

Parity Flag(PF)

- PF=1 if the low byte of a result has even parity
- PF=0 if the low byte of a result has odd parity

Auxiliary Carry Flag(AF)

- AF=1 if there is a carry out from bit 3 on addition or a borrow into bit 3 on subtraction
- Otherwise AF=0
- AF is used in BCD operations

The Status Flags

Zero Flag(ZF)

- ZF=1 for a zero result
- ZF=0 for a non-zero result

Sign Flag(SF)

- SF=1 if the **MSB of a result is 1** that means the result is **negative**
- SF=0 if the MSB of a result is 0 that means the result is positive

Overflow Flag(OF)

- OF=1 if signed overflow occurred
- Otherwise OF=0

Overflow

- The **range of signed numbers** that can be represented by a
 - 16-bit word is -32768 to 32767
 - **8-bit** byte is **-128 to 127**
- The range of unsigned numbers that can be represented by a
 - 16-bit word is 0 to 65535
 - **8-bit** byte is **0 to 255**
- If the result of an operation falls out of these ranges, then overflow occurs and the truncated result that is saved will be incorrect
- When we perform an arithmetic operation such as addition there are **four possible outcomes**:
 - No overflow
 - Signed overflow only
 - Unsigned overflow only
 - Both signed and unsigned overflows

Example of Unsigned Overflow Only

- Suppose AX contains FFFFh(-1), BX contains 0001h(1). Add the contents of AX and BX
- Solution
 ADD AX,BX

- If it is an unsigned interpretation the correct answer 10000h=65535 but this is out of range for a word operation
- A 1 is carried out of the MSB and the answer stored in AX is 0000h which is wrong so unsigned overflow occurs
- But signed overflow does not occur as the stored answer is correct as a signed number

Example of Signed Overflow Only

- Suppose AX contains 7FFFh(32767), BX contains 7FFFh(32767). Add the contents of AX and BX
- Solution ADD AX,BX

	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
+	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	

- If it is a signed interpretation the answer is FFFEh =-2 but this incorrect as the result should be 65534. So signed overflow occurs
- The unsigned interpretation of FFFEh is 65534, which is the right answer. So unsigned overflow does not occur

Overflow Indicates by Processor

- The processor sets OF=1 for signed overflow
- The processor sets CF=1 for unsigned overflow

Overflow Occur Determination by Processor

Unsigned overflow

- On addition when there is a carry out in the MSB. This means the result is larger than the biggest unsigned number
- On subtraction when there is a borrow in the MSB. This means the correct answer is smaller than 0

Signed overflow

- On addition the numbers with the same sign produces result of different sign
- On subtraction the result has a different sign than expected
 - Subtraction of numbers with different signs means addition of number with same sign.