Supervised Learning I

Christoph Kern

Mannheim Machine Learning Modules c.kern@uni-mannheim.de

October 20, 2017

Outline

- Introduction
- ML Basics
 - Training and test error
 - Validation set, test set, CV
 - Performance measures
- CART
 - Tree growing
 - Tree pruning
- References

Introduction

Machine Learning

- Algorithms based on statistical criteria which focus on making predictions based on a data-driven learning process
- "Machine Learning is the field of scientific study that concentrates on induction algorithms and on other algorithms that can be said to "learn"." (Kohavi / Provost 1998)
- Combines Computer Science and Statistics

Statistical Learning

• Machine Learning from a "statistical perspective"

ML Basics

Unsupervised Learning

ullet Finding patterns in data using a set of input variables X

Supervised Learning

- ullet Predicting an output variable Y based on a set of input variables X
 - Learn the relationship between input and output using training data (with X and Y)

$$Y = f(X) + \varepsilon$$

- ② Predict the output based on the prediction model (of step 1) for new test data (~only X available)
- continuous Y: regression, categorical Y: classification
- Focus on **prediction** (\neq causation)

Training and test error

Training error

$$\overline{\operatorname{err}} = \frac{1}{n} \sum_{i=1}^{n} L(y_i, \hat{f}(x_i))$$

Prediction error based on training data

Test error

$$\mathsf{Err}_{\mathcal{T}} = \mathsf{E}(\mathsf{L}(\mathsf{Y},\hat{f}(\mathsf{X}))|\mathcal{T})$$

ullet Prediction error using **test data** (given training data \mathcal{T})

Expected test error decomposition

$$\operatorname{Err}(x_0) = \operatorname{Bias}^2(\hat{f}(x_0)) + \operatorname{Var}(\hat{f}(x_0)) + \operatorname{Var}(\varepsilon)$$

- Minimizing the expected test error
 - Low bias (deviation between $\mathsf{E}(\hat{f}(x_0))$ and $f(x_0)$) and
 - Low variance $(Var(\hat{f}(x_0)))$ using different training data)

Figure: Bias-Variance Trade-Off: Training error and test error by model complexity

Hastie et al. 2009

MMLM

Validation set, test set, CV

Validation set approach

- Training set & validation set
 - Fit model using one part of training data
 - 2 Compute test error for the excluded section
- \rightarrow Model assessment
 - Training set, validation set & test set
 - Fit models using training part of training data
 - 2 Choose best model using validation set
 - 3 Evaluate final model using test set
- \rightarrow Model tuning & assessment

Cross-Validation

- LOOCV (Leave-One-Out Cross-Validation)
 - Fit model on training data while excluding one case
 - 2 Compute test error for the excluded case
 - Repeat step 1 & 2 n times

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} L(y_i, \hat{f}^{-\kappa(i)}(x_i))$$

- k-Fold Cross-Validation
 - Fit model on training data while excluding one group
 - Compute test error for the excluded group
 - **3** Repeat step 1 & 2 k times (e.g. k = 5, k = 10)

$$CV_{(k)} = \frac{1}{k} \sum_{i=1}^{k} L(y_i, \hat{f}^{-\kappa(i)}(x_i))$$

• Outlook: nested CV, repeated CV, ...

Performance measures

Performance metrics for regression problems

$$r^2 = 1 - RSS/TSS$$

Root mean squared error (RMSE):

$$\sqrt{\frac{1}{n}\sum_{i=1}^n(y_i-\hat{f}(x_i))^2}$$

Median of squared errors (MEDSE):

median
$$((y_1 - \hat{f}(x_1))^2, ..., (y_n - \hat{f}(x_n))^2)$$

Mean of absolute errors (MAE):

$$\frac{1}{n}\sum_{i=1}^n|(y_i-\hat{f}(x_i))|$$

Performance metrics for classification

Reference $\begin{array}{c|cccc} & Table: Confusion matrix \\ & & Prediction \\ \hline 0 & 1 \\ \hline \\ Reference \\ 1 & Negatives (TN) & Positives (FP) \\ & False & True \\ & Negatives (FN) & Positives (TP) \\ \hline \\ N & P \\ \end{array}$

Accuracy: $\frac{TP+TN}{TP+FP+TN+FN}$

Sensitivity / Recall: $\frac{TP}{TP+FN}$

Specificity: $\frac{TN}{TN+FP}$

Positive predictive value / Precision: $\frac{TP}{TP+FP}$

Negative predictive value: $\frac{TN}{TN+FN}$

Outlook: F_1 , κ , AUC-ROC, AUC-PR, ...

CART

Classification and Regression Trees (CART)

- Approach for partitioning the predictor space into smaller subregions via "recursive binary splitting"
- Results in a "top-down" tree structure with...
 - Internal nodes within the tree
 - Terminal nodes as endpoints
- Can be applied to regression and classification problems
- Can be used as base learner for ensemble methods

Figure: A small tree

James et al. 2013

Tree growing

Growing a regression tree

Define pairs of regions for all $X_1, X_2, ..., X_p$ predictors and cutpoints c

$$\tau_L(j, c) = \{X | X_j < c\} \text{ and } \tau_R(j, c) = \{X | X_j \ge c\}$$

Find split s which maximizes the reduction in RSS

$$\Delta RSS(s, \tau) = RSS(\tau) - RSS(\tau_L) - RSS(\tau_R)$$

$$RSS(\tau) = \sum_{i \in \tau} (y_i - \hat{y})^2$$

with \hat{y} being the mean of y in node τ_m

MMLM

Growing a classification tree

Define pairs of regions for all $X_1, X_2, ..., X_p$ predictors and cutpoints c

$$\tau_L(j, c) = \{X | X_j < c\} \text{ and } \tau_R(j, c) = \{X | X_j \ge c\}$$

Find split s which maximizes the reduction in node impurity

$$\Delta I(s,\tau) = I(\tau) - p(\tau_L)I(\tau_L) - p(\tau_R)I(\tau_R)$$

Impurity measures

$$I_{Gini}(au) = \sum_{k=1}^K \hat{p}_k (1-\hat{p}_k)$$

$$I_{entropy}(au) = -\sum_{k=1}^{K} \hat{p}_k \log \hat{p}_k$$

with \hat{p}_k being the proportion of observations from class k in node τ

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ②

Algorithm 1: Tree growing process

```
1 Define stopping criteria;
2 Assign training data to root node;
3 if stopping criterion is reached then
4 | end splitting;
5 else
6 | find the optimal split point;
7 split node into two subnodes at this split point;
8 for each node of the current tree do
9 | continue tree growing process;
10 | end
```

11 end

A given tree

$$\mathcal{T} = \sum_{m=1}^{M} \gamma_m \cdot 1_{(i \in \tau_m)}$$

consists of a set of m = 1, 2, ..., M nodes which can be used for prediction by...

- Regression
 - ullet ...using the mean of y for training observations in au_m
- Classification
 - ullet ...going with the majority class in $au_{\it m}$
- ightarrow Prediction surface: Block-wise relationship between features and outcome

4 D > 4 P > 4 E > 4 E > E 990

Tree pruning

Stopping rules

- Minimum number of cases in terminal nodes
- Decrease in impurity exceeds some threshold
- ightarrow However, worthless splits can be followed by good splits

Cost complexity pruning

$$R_{\alpha}(\mathcal{T}) = R(\mathcal{T}) + \alpha |\mathcal{T}|$$

- ullet Find the best subtree by balancing tree quality $R(\mathcal{T})$ and complexity $|\mathcal{T}|$
- ullet α controls the penalty on the number of terminal nodes
- ullet α can be chosen through CV

References

James, G., Witten, D., Hastie, T., Tibshirani, R. (2013). *An Introduction to Statistical Learning*. New York, NY: Springer.

Kohavi, R., Provost, F. (1998). Glossary of Terms. Machine Learning, 30(2): 271-274.

Hastie, T., Tibshirani, R., Friedman, J. (2009). *The Elements of Statistical Learning: Data Mining, Inference, and Prediction.* New York, NY: Springer.

