TMT4110 KJEMI

ØVING NR. 8, VÅR 2011

Veiledning: Tirsdag 08.03.2011 kl. 1215 – 1400 Grupperom

Innleveringsfrist: Torsdag 10.03.2011 kl. 1315

Løsningsforslag legges ut på it's learning

OPPGAVE 1 (Kap. 10)

Ved vannets normale kokepunkt (100 °C) er den molare fordampningsentalpien $\Delta H_{\rm v}^{\rm o} = 40.7$ kJ mol. Beregn den molare fordampningsentropien $\Delta S_{\rm vap}^{\rm o}$ når fordampningen av vann skjer reversibelt ved 100 °C.

Ifølge den såkalte "Troutons regel" er den molare fordampningsentropien for de fleste normale væsker ca. 88 J/mol K. Vil du si at denne regel gjelder for vann?

OPPGAVE 2 (Kap. 10)

- a) 3 mol Xe (g) varmes opp fra 300 til 500 K ved 1 atm. Beregn ΔS . (Hvilke(n) antakelse(r) vil du gjøre?)
- b) Hva vil ΔS bli dersom Xe (g) varmes opp fra 300 til 500 K ved konstant volum?
- c) Anta at Xe (s) varmes opp fra T_1 til T_2 . (Xe er fremdeles i fast form ved T_2 .) Vil du forvente noen forskjell mellom ΔS beregnet ved henholdsvis konstant trykk og volum?

OPPGAVE 3 (Kap. 10)

- a) Formuler termodynamikkens 2. lov.
- b) Hvilke av følgende hendelser øker universets entropi?: i) Varme går fra en varm til en kald flate. ii) Vann renner oppover en bakke. iii) En stein ruller oppover en bakke og blir kald. iv) NaCl løses i vann.
- c) Hva betyr de enkelte leddene i uttrykket $\Delta G = \Delta H T\Delta S$?
- d) Hva er forskjellen mellom ΔG og ΔG° ?
- e) Hva betyr det at $\Delta G = \Delta G^{\circ}$ for reaksjonen H₂O (l) = H₂O (g)?
- f) Hvorfor er $\Delta G = \Delta G^{\circ}$ for denne reaksjonen ved 100 °C?
- g) Hva er ΔG ved likevekt? Hvilken verdi har ΔG° for H_2O (l) = H_2O (g) ved 100 °C?
- h) Bruk ligningen $\Delta G^{\circ} = \Delta H^{\circ} T\Delta S^{\circ}$ til å beregne kokepunktet for vann.
- i) For hvilke temperaturer vil koking av vann øke universets entropi dersom P = 1 atm?

OPPGAVE 4 (Kap. 10)

- a) Utled van't Hoffs ligning: $\ln K = -\frac{\Delta H^{\circ}}{RT} + \frac{\Delta S^{\circ}}{R}$
- b) Bruk denne ligningen til å vise at: $\ln \left(\frac{K_1}{K_2} \right) = \frac{\Delta H^{\circ}}{R} \left(\frac{1}{T_2} \frac{1}{T_1} \right)$ $K_1 = K \text{ ved } T = T_1.$
- c) Likevektskonstanten for en gitt reaksjon er 1.2×10^{-3} ved 25 °C. Hva er likevektskonstanten ved 100 °C hvis $\Delta H^{\circ} = -81$ kJ?
- d) Hva er likevektskonstanten ved 100 °C hvis $\Delta H^{\circ} = 81 \text{ kJ}$?
- e) Hva er likevektsreaksjonen for fordampning av vann?
- f) Skriv opp uttrykket for likevektskonstanten for reaksjonen i e).
- g) Hva er likevektskonstanten for fordampning av vann ved 100 °C?
- h) Vis at ligningen i b) kan omformes til $\ln \frac{P_1}{P_2} = \left(\frac{\Delta H_{\text{vap}}}{R}\right) \left(\frac{1}{T_2} \frac{1}{T_1}\right)$ hvor P_{T_1} er damptrykket ved $T = T_1$, og ΔH_{vap} er fordampningsvarmen.

OPPGAVE 5 (Kap. 9 og 10)

a) Beregn ΔH° og ΔG° ved 25 °C for reaksjonen:

$$2 Ag(s) + \frac{1}{2} O_2(g) = Ag_2O(s)$$

b) Til hvilken temperatur må vi varme opp sølvoksidet for at det skal spaltes til elementene, Ag (s) og O₂ (g), i luft? Vi regner med at lufttrykket er 1,00 atm og at O₂-innholdet i luften er 21 vol%.

Vi antar også at ΔH° og ΔS° for reaksjonen ovenfor er uavhengig av temperaturen.

OPPGAVE 6 (Kap. 10)

Beregn entropiendringen ved kokepunktet for fordampning av følgende væsker:

	ΔH_{vap} (kJ mol ⁻¹)	Kokepunkt (K)
Cl ₂ (l)	20,4	238,5
$C_6H_6(1)$	30,8	353
$CHCl_3(l)$	29,4	334
$PbCl_{2}(1)$	104,0	1145
$H_2O(l)$	40,7	373

Kommenter resultatet!

Fasit:

2a) 32 J/K, 2b) 19 J/K, 4d) 0,86, 5b) 421 K