

United International University

A Complete Guideline for Graphical Phase Change analysis in Simple Harmonic Motion

Let us consider the displacement of a simple harmonic oscillator is, $y = A \sin \omega t$ Let's see the graph can be represented as

We can also plot this $\mathbf{y} = \mathbf{A} \sin \omega t$ graph for y vs. t and the graph will be like the figure below

Now if we consider 2^{nd} particle with $y = A \sin(\omega t + \phi)$

Displacement, $y = A \sin(\omega t + \varphi)$

Now if we want to calculate the value of wt for which the value of y=0

For
$$y = 0$$
, $sin(\omega t + \varphi) = 0$

$$(\omega t + \varphi) = 0$$

$$\omega t = -\varphi.....(1)$$

So the wave pattern of the particle will originates from an angle, $\omega t = -\phi$ if we consider four cases of displacements for graphical representation

(i)
$$y = A \sin(\omega t + \frac{\pi}{4})$$

(ii) $y = A \sin(\omega t - \frac{\pi}{4})$
(iii) $y = A \sin(\omega t + \frac{\pi}{2})$
(iv) $y = A \sin(\omega t + \frac{\pi}{3})$

Please note that, you must plot the graph from $\omega t = 0$ position. We have only provided the negative value of ωt for primary understanding and practice purpose. But you must start the graph from $\omega t = 0$ when you understand the patterns.

Case (i)

$$y = A \sin(\omega t + \frac{\pi}{4})$$

From Eqⁿ (1), the graph will start from $\omega t = -\frac{\pi}{4}$

Displacement y vs. Angle wt

Displacement y vs. Time t

$$\omega t = -\frac{\pi}{4} \qquad \qquad \varphi = \frac{\pi}{4}$$

Displacement, y

Case (ii)

$$y = A \sin(\omega t - \frac{\pi}{4})$$

From Eqⁿ(1), the graph will start from $\omega t = -(-\frac{\pi}{4}) = \frac{\pi}{4}$

Displacement y vs. Angle ωt

Displacement y vs. Time t

$$\omega t = \frac{\pi}{4} \qquad \varphi =$$

Displacement, y

Case (iii)

$$y = A \sin(\omega t + \frac{\pi}{2})$$

From Eqⁿ(1), the graph will start from $\omega t = -(\frac{\pi}{2})$

Displacement y vs. Angle ωt

Displacement y vs. Time t

$$\omega t = -\frac{\pi}{2} \qquad \qquad \varphi = \frac{\pi}{2}$$

Displacement, y

Case (iv):

Now if we consider the particle with $\mathbf{y} = \mathbf{A} \sin(\omega t + \frac{\pi}{3})$ graph for \mathbf{y} vs. ωt and the graph will be like the figure below

Displacement y vs. Angle ωt

Displacement y vs. time t

 $\varphi = \frac{\pi}{3}$

Displacement, y

Some Practice Problems

(i)
$$y = A \sin(\omega t - \frac{\pi}{3})$$

(ii) $y = A \sin(\omega t - \frac{\pi}{2})$
(iii) $y = A \sin(\omega t + \pi)$
(iv) $y = A \sin(\omega t - \pi)$
(v) $y = A \sin(\omega t - \frac{3\pi}{4})$
(vi) $y = A \sin(\omega t - \frac{3\pi}{4})$
(vii) $y = A \sin(\omega t + \frac{3\pi}{4})$
(viii) $y = A \sin(\omega t + 2\pi)$

Please try these figures. If you face any problem please contact me in the counseling hours