

2007 European Society of Biomechanics thematic workshop on Finite Element Modelling in Biomechanics and Mechanobiology

Non-Linear Finite Element Analysis: Finite Element Solution Schemes I & II

Peter McHugh

Department of Mechanical and Biomedical Engineering National Centre for Biomedical Engineering Science National University of Ireland, Galway

Outline

- Basic Principles of FE
- Solid Mechanics BVP
- Linear Problems
- Non-linear Problems
- Solution Schemes
 - Implicit (Newton-Raphson)
 - Explicit Methods
 - Dynamic Explicit Methods
- Stress Update Algorithm
- Generalisations
- Summary

Introduction to FE

"The finite element method is a means of obtaining approximate numerical solutions to field problems"

- Discretise body into regions elements
- Elements connected at special points nodes
- Replace solution variable distribution with approximate distribution based on:
 - fixed solution "shapes" over elements
 - solution variable values at nodes

Continuous → Discrete

FE Approximation

- Temperature distribution $u(\mathbf{x})$
 - a single degree of freedom case (SDOF)

$$u(\mathbf{x}) \Rightarrow \sum_{a=1}^{n} N_a(\mathbf{x}) \cdot u_a$$

- Approximation: assumption of "shape" of solution throughout element – usually polynomial – linear, quadratic,...
- More nodes & elements → greater accuracy
- Generally quadratic better than linear

Basic Idea – One element

Nodal values:

- actual unknowns solved for in FEM since "shape" is assumed
- approximations to exact solution at nodes

Basic Idea – One element

Shape Functions

4-noded quad

$$u(\mathbf{x}) = \sum_{a=1}^{4} N_a(\mathbf{x}) \cdot u_a$$

SDOF → MDOF

Single degree of freedom case (SDOF)

$$u(\mathbf{x}) = \sum_{a=1}^{n} N_a(\mathbf{x}) \cdot u_a$$

Multi degree of freedom case (MDOF), e.g. displacements in 2D or 3D

$$\mathbf{u}(\mathbf{x}) = \sum_{a=1}^{n} N_a(\mathbf{x}) \cdot \mathbf{u}_a$$

Matrix/Vector notation

$$\mathbf{u} = \mathbf{N}\mathbf{u}_{e}^{\prime}$$

Vector of nodal displacements

One element → Mesh

- 2D: Quad/Triangle 3D: Hex./Tetrahedral
- Good idea to keep mesh reasonably regular

Field Problems

- Usually Field Problems are posed in the STRONG FORM
 - Partal differential equations PDEs + Boundary conditions BCs
 - PDEs + BCs → Boundary Value Problem (BVP)
 - "Pointwise" form
- FE solutions come from the WEAK FORM
 - Convert "pointwise" form to integral form over whole body
 - Principle of Virtual Work, Galerkin Method, etc.
 - Same information contained

Solid Mechanics BVP

Principle of Virtual Work (PVW)

$$\int_{V} \delta \mathbf{\varepsilon}^{\mathrm{T}} \mathbf{\sigma} dV = \int_{S} \delta \mathbf{u}^{\mathrm{T}} \mathbf{f} dS$$

For 2D case:

$$\begin{array}{c} \delta \boldsymbol{\epsilon} \\ \left(\begin{array}{c} \delta \boldsymbol{\epsilon}_{11} \\ \delta \boldsymbol{\epsilon}_{22} \\ 2 \delta \boldsymbol{\epsilon}_{12} \end{array} \right) \end{array}$$

$$egin{pmatrix} oldsymbol{\sigma}_{11} \ oldsymbol{\sigma}_{22} \ oldsymbol{\sigma}_{12} \end{pmatrix}$$

$$\begin{cases}
\delta \mathbf{u} & \mathbf{f} \\
\delta u_1 \\
\delta u_2
\end{cases} \qquad \begin{pmatrix}
f_1 \\
f_2
\end{pmatrix}$$

FE Approximation

$$\mathbf{u} = \mathbf{N}\mathbf{u}_{\rho}$$

$$\delta \mathbf{u} = \mathbf{N} \delta \mathbf{u}_e$$

$$\mathbf{\varepsilon} = \frac{1}{2} \left(\frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \frac{\partial \mathbf{u}}{\partial \mathbf{x}}^{\mathrm{T}} \right) = \mathbf{B} \mathbf{u}_{e} \qquad \delta \mathbf{\varepsilon} = \mathbf{B} \delta \mathbf{u}_{e}$$

$$\delta \mathbf{\varepsilon} = \mathbf{B} \delta \mathbf{u}_{e}$$

Principle of Virtual Work (PVW):

$$\int_{V} \delta \mathbf{\epsilon}^{\mathrm{T}} \mathbf{\sigma} dV = \int_{S} \delta \mathbf{u}^{\mathrm{T}} \mathbf{f} dS$$

$$\int_{V} \delta \mathbf{u}_{e}^{\mathrm{T}} \mathbf{B}^{\mathrm{T}} \mathbf{\sigma} dV = \int_{S} \delta \mathbf{u}_{e}^{\mathrm{T}} \mathbf{N}^{\mathrm{T}} \mathbf{f} dS$$

FE Approximation

$$\int_{V} \delta \mathbf{u}_{e}^{\mathrm{T}} \mathbf{B}^{\mathrm{T}} \mathbf{\sigma} dV = \int_{S} \delta \mathbf{u}_{e}^{\mathrm{T}} \mathbf{N}^{\mathrm{T}} \mathbf{f} dS$$

Eliminate virtual displacements:

$$\int_{V} \mathbf{B}^{\mathrm{T}} \mathbf{\sigma} dV = \int_{S} \mathbf{N}^{\mathrm{T}} \mathbf{f} dS$$

Fundamental FE Equations to solve:

$$\int_{V} \mathbf{B}^{\mathrm{T}} \mathbf{\sigma}(\mathbf{u}_{e}) dV = \mathbf{F}$$

Linear Problem

Linear Elasticity

$$\sigma = D\varepsilon = DBu_{\rho}$$

Input into FE equations:

$$\int_{V} \mathbf{B}^{\mathrm{T}} \mathbf{\sigma} dV = \mathbf{F} \qquad \longrightarrow \int_{V} \mathbf{B}^{\mathrm{T}} \mathbf{D} \mathbf{B} \mathbf{u}_{e} dV = \mathbf{F}$$

Reorganise and define stiffness matrix K:

$$\int_{V} \mathbf{B}^{\mathrm{T}} \mathbf{D} \mathbf{B} \mathbf{u}_{e} dV = \mathbf{F} \longrightarrow \left(\int_{V} \mathbf{B}^{\mathrm{T}} \mathbf{D} \mathbf{B} dV \right) \mathbf{u}_{e} = \mathbf{F}$$

Linear Problem

$$\left(\int_{V} \mathbf{B}^{\mathrm{T}} \mathbf{D} \mathbf{B} dV\right) \mathbf{u}_{e} = \mathbf{F}$$

Numerical Integration (for each element)

Assembly of global matrix/vectors

$$\mathbf{K}\mathbf{u}_{e}^{\mathsf{T}} = \mathbf{F}$$

- Solution usually "straightforward"
- Can be achieved in a single step
- Apply F, invert K, solve for u_e
- Go back and determine ε and σ

Non-Linear Problems

Non-linearities can arise for many reasons, e.g.

- geometric non-linearities
 - large deformation kinematics
 - non-linear ε-u relationship

$$\mathbf{\varepsilon} = \frac{1}{2} \left(\frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \frac{\partial \mathbf{u}}{\partial \mathbf{x}}^{\mathrm{T}} + \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}^{\mathrm{T}} \right)$$
$$= \mathbf{B}(\mathbf{u}_{\rho}) \mathbf{u}_{\rho}$$

- material non-linearities
 - non-linear constitutive law
 - non-linear σ-ε relationship
- non-linear boundary conditions
 - surface contact

$$\sigma = \sigma(\mathbf{u}_{\rho})$$

Non-linear Material

• Bi-linear elastic material

Non-linear Material

Elastic-plastic material

Non-Linear Problem

FE equations

$$\int_{V} \mathbf{B}(\mathbf{u}_{e})^{\mathrm{T}} \mathbf{\sigma}(\mathbf{u}_{e}) dV = \mathbf{F}$$

$$\int_{V} \mathbf{B}(\mathbf{u}_{e})^{\mathrm{T}} \mathbf{\sigma}(\mathbf{u}_{e}) dV - \mathbf{F} = \mathbf{G}(\mathbf{u}_{e}) = \mathbf{0}$$

- G is the out of balance/residual force
- $\mathbf{G} = \mathbf{0}$ is a set of non-linear equations in \mathbf{u}_e
- Solution usually by incremental methods
 - applying load in increments/steps: $t \rightarrow t + \Delta t$
 - stepping to final time t_{final} in time steps Δt and solving for each step
 - Implicit and Explicit methods used
 - drop "e" for convenience

Implicit

Solved for t, wish to solve for $t+\Delta t$

$$\mathbf{G}(\mathbf{u}^{t+\Delta t}) = \mathbf{0}$$

- **Implicit**: Solve for $t+\Delta t$ using state at t and $t+\Delta t$
 - don't know state at $t+\Delta t$ yet
 - Newton-Raphson method used typically –
 ABAQUS/Standard, ANSYS, MARC,...
 - take initial guess and iterate to convergence
 - end up solving "linear-like" equation for each iteration: $\mathbf{K}\mathbf{u} = \mathbf{F}$
 - very accurate
 - can use relatively large time steps

Explicit

- **Explicit**: Solve for $t+\Delta t$ using state at t
 - know state at t so can calculate \mathbf{K}_t
 - solve directly for incremental displacements:

$$\mathbf{K}_{t}\Delta\mathbf{u} = \Delta\mathbf{F}$$

- no iteration
- no convergence check
- usually used in purpose written codes
- method is very robust
- must use very small time steps $(x10 \rightarrow x1000)$

Implicit: Newton-Raphson

Material non-linearity

$$\mathbf{G}(\mathbf{u}^{t+\Delta t}) = \int_{V} \mathbf{B}^{\mathrm{T}} \mathbf{\sigma}(\mathbf{u}^{t+\Delta t}) dV - \mathbf{F} = \mathbf{0}$$

- Assume solved for state at t
- u^t are known
- Apply load increment
- Wish to update state to $t+\Delta t$
- $\mathbf{u}^{t+\Delta t}$ are main variables
- How does NR method work?

Look at 1D: Wish to solve f(x) = 0

Guess at root x_i : Better guess $x_{i+1} \rightarrow NR$ formula

Method applied iteratively:

$$x_{i+1} \rightarrow x_i$$
 and reapply NR formula

Method applied iteratively:
$$x_{i+1} = x_i - \left[\frac{df}{dx}\right]_{x_i}^{-1} \cdot f(x_i)$$
 $x_{i+1} \to x_i$ and reapply NR formula

Continue to iterate until convergence:

$$\left|x_{i+1} - x_i\right| < Tolerance$$

$$|f(x_{i+1})| < Tolerance$$

For FE same principle $G(\mathbf{u}^{t+\Delta t}) = \mathbf{0}$

For *i*th iteration

$$\mathbf{u}_{i+1}^{t+\Delta t} = \mathbf{u}_{i}^{t+\Delta t} - \left[\frac{\partial \mathbf{G}(\mathbf{u}_{i}^{t+\Delta t})}{\partial \mathbf{u}} \right]^{-1} \mathbf{G}(\mathbf{u}_{i}^{t+\Delta t})$$

Reorganise

$$\delta \mathbf{u}_{i+1} = \mathbf{u}_{i+1}^{t+\Delta t} - \mathbf{u}_{i}^{t+\Delta t} = - \left[\frac{\partial \mathbf{G}(\mathbf{u}_{i}^{t+\Delta t})}{\partial \mathbf{u}} \right]^{-1} \mathbf{G}(\mathbf{u}_{i}^{t+\Delta t})$$

K – tangent stiffness matrix

$$\delta \mathbf{u}_{i+1} = -\mathbf{K} \left(\mathbf{u}_i^{t+\Delta t} \right)^{-1} \mathbf{G} \left(\mathbf{u}_i^{t+\Delta t} \right)$$

$$\mathbf{K}\left(\mathbf{u}_{i}^{t+\Delta t}\right)\delta\mathbf{u}_{i+1} = -\mathbf{G}\left(\mathbf{u}_{i}^{t+\Delta t}\right)$$

$$\mathbf{K} \left(\mathbf{u}_{i}^{t+\Delta t} \right) \delta \mathbf{u}_{i+1} = -\mathbf{G} \left(\mathbf{u}_{i}^{t+\Delta t} \right)$$

- Must be solved for each iteration for change in incremental displacements
- K and G are different for each iteration
- Same form as for linear problems: Ku = F
- Initial guess is usually u^t

Convergence:
$$|\mathbf{G}(\mathbf{u}_{i+1}^{t+\Delta t})| < Tolerance$$

Current increment in displacements - for i^{th} iteration:

$$\mathbf{u}_{i}^{t+\Delta t} - \mathbf{u}^{t} = \Delta \mathbf{u}_{i} = \sum_{k=1}^{l} \delta \mathbf{u}_{k}$$

$$\mathbf{u}_{i}^{t+\Delta t} - \mathbf{u}^{t} = \Delta \mathbf{u}_{i} = \sum_{k=1}^{l} \delta \mathbf{u}_{k}$$

Schematic of iteration process:

Method requires accurate evaluation of For each iteration i

 $\mathbf{G}(\mathbf{u}_{i}^{t+\Delta t})$ $\mathbf{K}(\mathbf{u}_{i}^{t+\Delta t})$

G requires accurate σ for current estimate of $\mathbf{u}^{t+\Delta t}$

$$\mathbf{G}(\mathbf{u}_{i}^{t+\Delta t}) = \int_{V} \mathbf{B}^{\mathrm{T}} \mathbf{\sigma}(\mathbf{u}_{i}^{t+\Delta t}) dV - \mathbf{F}^{t+\Delta t} = \mathbf{0}$$

Requires a Stress Update Algorithm (SUA)

Look at **K**

$$\mathbf{K}\left(\mathbf{u}_{i}^{t+\Delta t}\right) = \frac{\partial \mathbf{G}\left(\mathbf{u}_{i}^{t+\Delta t}\right)}{\partial \mathbf{u}} = \int_{V} \mathbf{B}^{\mathrm{T}} \frac{\partial \boldsymbol{\sigma}}{\partial \mathbf{u}} \Big|_{\left(\mathbf{u}_{i}^{t+\Delta t}\right)} dV$$

$$= \int_{V} \mathbf{B}^{\mathrm{T}} \frac{\partial \mathbf{\sigma}}{\partial \mathbf{\epsilon}} \Big|_{\mathbf{u}_{i}^{t+\Delta t}} \frac{\partial \mathbf{\epsilon}}{\partial \mathbf{u}} dV = \int_{V} \mathbf{B}^{\mathrm{T}} \frac{\partial \mathbf{\sigma}}{\partial \mathbf{\epsilon}} \Big|_{\mathbf{u}_{i}^{t+\Delta t}} \mathbf{B} dV$$
Consistent
Tangent Matrix
$$\mathbf{D}^{tan} = \frac{\partial \mathbf{\sigma}}{\partial \mathbf{\epsilon}} \Big|_{\mathbf{u}_{i}^{t+\Delta t}} \mathbf{D}^{tan} = \frac{\partial \mathbf{\sigma}}{\partial \mathbf{\epsilon}} \Big|_{\mathbf{u}_{i}^{t+\Delta t}}$$

 $\mathbf{K} \left(\mathbf{u}_{i}^{t+\Delta t} \right) = \int \mathbf{B}^{\mathrm{T}} \mathbf{D}^{tan} \mathbf{B} dV$

Form of **K**

- Same form as for linear problem
- Different for each iteration
- Consistent tangent matrix can be difficult to evaluate for complex constitutive laws

Newton-Raphson Re-cap

- Load applied incrementally
- For each increment, iteration is performed until convergence is achieved
- Need to be able to calculate K and G accurately

Application: Linear Elasticity

- $\mathbf{D}^{tan} = \mathbf{D}$ (constant)
- K constant for each iteration
- Convergence reached in 1 iteration
- Can apply full load in one increment
- Same as simple linear one-step solution

- Accurate and displays rapid convergence
- However there are modified methods used
 - Simplified methods:
 - Constant K from first iteration in increment
 - Initial stress method K from first increment
 - Complex methods: BFGS, etc.
- Can modify K but still must calculate G accurately (SUA)

Non-Linear Solution Methods

- Implicit methods: Newton-Raphson
 - NR: Gold Standard
 - Rigorous convergence criterion
- Explicit methods: $\mathbf{K}_t \Delta \mathbf{u} = \Delta \mathbf{F}$
- \bullet Both involve formation and inversion of the global stiffness matrix K
- Major computational chore processing and storage
 - Huge efforts made in developing efficient storage and processing methods
 - Skyline solvers, element by element solvers, etc.
- Alternative?

Dynamic Explicit Methods

- Problems reformulated as dynamic
- Include nodal velocities, accelerations
- Include inertia → mass matrix M

$$\mathbf{M}\ddot{\mathbf{u}} + \mathbf{G}(\mathbf{u}, \dot{\mathbf{u}}) = \mathbf{0}$$

- Problems solved incrementally
- No need to form or invert K at all!
- LS-Dyna, ABAQUS/Explicit,...
- Method is very robust great for highly non-linear problems
- No convergence check must be careful about accuracy and stability
- Must use very small time steps $(x10 \rightarrow x1000)$
- Algorithms for determining Δt

Central Difference Method

- No formation of K, but accuracy in G still required
- M in diagonal form
- Method works in "half increments"
 i-1/2, i, i+1/2, i+1,...
- Solution "marches through time"
- For increment i:

$$\ddot{\mathbf{u}}_{i} = -\mathbf{M}^{-1}\mathbf{G}_{i}$$

$$\dot{\mathbf{u}}_{i+\frac{1}{2}} = \dot{\mathbf{u}}_{i-\frac{1}{2}} + \frac{\Delta t_{i+1} + \Delta t_{i}}{2} \ddot{\mathbf{u}}_{i}$$

$$\mathbf{u}_{i+1} = \mathbf{u}_{i} + \Delta t_{i+1} \dot{\mathbf{u}}_{i+\frac{1}{2}}$$

Stress Update Algorithm

• To get accurate solution for any iteration/increment, need accurate $\mathbf{G}^{t+\Delta t}$

$$\mathbf{G}(\mathbf{u}^{t+\Delta t}) = \int_{V} \mathbf{B}^{\mathrm{T}} \mathbf{\sigma}(\mathbf{u}^{t+\Delta t}) dV - \mathbf{F}^{t+\Delta t} = \mathbf{0}$$

Stress Update Algorithm

- Stress can depend on many variables/phenomena
 - displacement/strain, temperature/heat flux, diffusion, evolving porosity, etc...
 - relevant material properties for each phenomenon
- Need $\sigma^{t+\Delta t}$ to be accurately calculated as a function of changes in the independent variables: $t \to t + \Delta t$
- Not trivial for very complex (multi-physics) or non-linear systems

Stress Update Algorithm

Commerical codes (ANSYS, ABAQUS, MARC,...)

- Using standard material models available
 - elasticity, visco-elasticity, plasticity,....
 - accuracy usually "guaranteed"

Why Emphasis Here?

Commerical codes (ANSYS, ABAQUS, MARC,...)

- Using User Material modules (ABAQUS-UMAT)
- Now common in mechanics and biomechanics
- Great freedom in describing stress dependence on different variables σ (mech, therm, chem, bio)
 - Bio: protein synthesis, actin fibre/bundle formation,...
- Allow material properties to evolve through time
- ABAQUS: Δt , $\mathbf{u}^{t+\Delta t} \rightarrow \mathsf{UMAT}$
- UMAT: $\sigma^{t+\Delta t} \rightarrow \mathsf{ABAQUS}$
- ABAQUS believes correct it does not check!!

Why Emphasis Here?

Many constitutive laws are in rate form & non-linear

$$\dot{\mathbf{\sigma}} = \mathbf{f}(\mathbf{\epsilon}, \dot{\mathbf{\epsilon}}, T, T, \dots)$$

$$\mathbf{\sigma}^{t+\Delta t} = \mathbf{\sigma}^t + \Delta \mathbf{\sigma}$$

Not trivial to determine $\Delta \sigma$ based on Δt , $\mathbf{u}^{t+\Delta t}$

- Algorithms: Simple Euler, Backward Euler, Central Difference, Radial Return,...
- User need to ensure UMAT performing accurately before use

Other Observations 1

- Considered solid mechanics situation
 - Dealing with σ
 - Although generalised to multi-physics problems
- However, general methods and cautions hold true for other problem types
 - Thermal: heat flux and temperature
 - Convection+diffusion: mass transport and concentration

Other Observations 2

- Incremental solution methods vital for nonlinear problems
- However, also very important for any time/rate-dependent problem
 - Both linear and non-linear
 - Track how state is changing over time (transient)
 - Same methodologies used
 - Visco-elasticity
 - Creep and visco-plasticity

Summary

- Introduced FE Linear & Non-linear
- Linear single K matrix inversion
- Non-linear incremental methods
 - Implicit: Newton-Raphson iteration gold standard
 - Dynamic Explicit: No ${f K}$ no iteration small time steps
 - Must have accurate stress update algorithm
 - User modules for com. codes → great flexibility to deal with multi-physics problems
 - General principles applicable to other problem types thermal, mass transport, etc.
- Incremental methods
 - necessary for time dependent problems