NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS

with credits to Teo Wei Hao

MA2202 Algebra I

AY 2003/2004 Sem 2

Question 1

Let $(a_1, b_1), (a_2, b_2), (a_3, b_3) \in A$. We have,

$$[(a_1,b_1)*(a_2,b_2)]*(a_3,b_3) = (a_1a_2,b_1a_2+a_1^{-1}b_2)*(a_3,b_3) = (a_1a_2a_3,b_1a_2a_3+a_1^{-1}b_2a_3+a_1^{-1}a_2^{-1}b_3), (a_1,b_1)*[(a_2,b_2)*(a_3,b_3)] = (a_1,b_1)*(a_2a_3,b_2a_3+a_2^{-1}b_3) = (a_1a_2a_3,b_1a_2a_3+a_1^{-1}b_2a_3+a_1^{-1}a_2^{-1}b_3).$$

Thus $[(a_1,b_1)*(a_2,b_2)]*(a_3,b_3) = (a_1,b_1)*[(a_2,b_2)*(a_3,b_3)]$, i.e. (A,*) is associative. (1,0)*(a,b) = (a,b)*(1,0) = (a,b) for all $(a,b) \in A$, thus $(1,0) \in A$ is the identity in (A,*). For all $(a,b) \in A$, as $a \neq 0$, we have $(a^{-1},-b) \in A$. Since $(a,b)*(a^{-1},-b) = (a^{-1},-b)*(a,b) = (1,0)$, it is the inverse of (a,b) in (A,*).

Therefore, (A, *) is a group.

We have $(2,1), (2,0) \in A$. Now (2,1)*(2,0) = (4,2) but $(2,0)*(2,1) = (4,\frac{1}{2})$. Thus (A,*) is not abelian.

Question 2

H is non-empty since $1_{S_n} \in H$.

Let $\sigma_1, \sigma_2 \in H$, this give us $\sigma_2^{-1}(n) = n$. Thus we have $\sigma_1 \sigma_2^{-1}(n) = \sigma_1(n) = n$, and thus $\sigma_1 \sigma_2^{-1} \in H$. Therefore $H \leq S_n$.

Question 3

Since G is non-cyclic, $G \neq 1_G$, and so there exists $a \in G - \{1_G\}$ with $\{1_G\} < \langle a \rangle < G$.

Thus there exists $b \in G - \langle a \rangle$.

This give us $\langle b \rangle \neq \langle a \rangle$, and since $b \neq 1_G$, we can get $\{1_G\} < \langle b \rangle < G$.

Now by Lagrange's Theorem, $|\langle a \rangle| | |G|$ and $|\langle b \rangle| | |G|$.

However $|\langle a \rangle|, |\langle b \rangle| \neq |G|$, and thus $|\langle a \rangle| \leq \frac{1}{2}|G|$ and $|\langle b \rangle| \leq \frac{1}{2}|G|$.

As $\langle a \rangle$ and $\langle b \rangle$ are subgroups of G, we get $\{1_G\} \leq \langle a \rangle \cap \langle b \rangle$.

Thus by Principle of Inclusion-Exclusion, we have

$$\begin{split} |\langle a \rangle \cup \langle b \rangle| &= |\langle a \rangle| + |\langle b \rangle| - |\langle a \rangle \cap \langle b \rangle| \\ &\leq \frac{1}{2}|G| + \frac{1}{2}|G| - 1 \\ &< |G|. \end{split}$$

Thus $G - (\langle a \rangle \cup \langle b \rangle)$ is non-empty, i.e. there exists $c \in G - (\langle a \rangle \cup \langle b \rangle)$.

We have $\langle c \rangle \neq \langle a \rangle$ and $\langle c \rangle \neq \langle b \rangle$ and $c \neq 1_G$, which lead us to conclude that $\{1_G\} < \langle c \rangle < G$.

Therefore for any group G, we can construct 3 non-trivial subgroups, namely $\langle a \rangle$, $\langle b \rangle$ and $\langle c \rangle$.

Question 4

Since G is cyclic, there is exactly one subgroup, say H, of G such that |H| = m. H is also cyclic. Thus for all $g \in G$ such that $\circ(g) = m$, we must have $\langle g \rangle = H$, i.e. $g \in H$.

Since H is cyclic, there exists $a \in H$ such that $\langle a \rangle = H$.

Let $k, d \in \mathbb{Z}^+$ be such that $\gcd(k, m) = d$. Thus $a^{\frac{k}{d}} \in H$ and $\left(a^k\right)^{\frac{m}{d}} = \left(a^{\frac{k}{d}}\right)^m = 1_H$.

This implies that if d > 1, then $\circ (a^k) \leq \frac{m}{d} < m$.

If d=1, then we let $r \in \mathbb{Z}^+$ be such that $(a^k)^r = 1_H$. This implies that $m \mid kr$.

By consequence of Euclid's Lemma, $m \mid r$. Thus from what we have established, $\circ (a^k) = m$.

Therefore \circ $(a^k) = m$ iff gcd(k, m) = 1, and thus there are $\varphi(m)$ such elements in G.

Question 5

Let $G_n = \langle \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 2 & 3 & 4 \end{pmatrix}, \dots, \begin{pmatrix} n-2 & n-1 & n \end{pmatrix} \rangle, n \in \mathbb{Z}^+.$

It is direct that $G_n \subseteq A_n$.

Let P_n be the statement that $A_n \subseteq G_n$, $n \in \mathbb{Z}^+$.

 $A_1 = A_2 = \{1_{S_n}\} = G_1 = G_2$. Thus P_1 and P_2 are trivially true.

Consider P_3 . We have $A_3 = \{ \begin{pmatrix} 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 3 & 2 & 1 \end{pmatrix} \} = G_3$. Thus P_3 is true.

Now assume that P_k is true for some $k \in \mathbb{Z}^+$, $k \geq 3$. Consider P_{k+1} .

Let $\alpha \in A_{k+1}$, and $\alpha(k+1) = i$.

If i = k + 1, then we let $\beta = \alpha$, and so $\beta(k + 1) = k + 1$.

If i = k, then we let $\beta = (k-1 \ k \ k+1) \alpha$, which give us $\beta(k+1) = k+1$.

If i < k, then we let

$$\beta = \left(\begin{array}{cccc} k-1 & k & k+1 \end{array} \right) \left(\begin{array}{cccc} k-1 & k & k+1 \end{array} \right) \left(\begin{array}{ccccc} k-2 & k-1 & k \end{array} \right) \cdots \left(\begin{array}{ccccc} i & i+1 & i+2 \end{array} \right) \alpha,$$

which give us $\beta(k+1) = k+1$.

Notice that β is a product of elements in G_{k+1} and α , thus to get $\alpha \in G_{k+1}$, it suffice to show that $\beta \in G_{k+1}$. Now β does not move k+1, thus $\beta \in S_k$. Since α is an even permutation, β is a product of even permutations, and thus is also an even permutation. This give us $\beta \in A_k$.

Thus by induction hypothesis, $\beta \in G_k \subseteq G_{k+1}$. Hence $\alpha \in G_{k+1}$, i.e. $A_{k+1} \subseteq G_{k+1}$.

Therefore $A_n = G_n$ for all $n \in \mathbb{Z}^+$.

Question 6

Let $a \in G \setminus \{1_G\}$.

By Lagrange's Theorem, $\circ(a) \mid p^n$, and thus we can write $\circ(a) = p^k$ for some $k \in \mathbb{Z}^+$, $k \leq n$.

Now notice that $\left(a^{p^{k-1}}\right)^p = a^{p^k} = 1_G$, i.e. $\circ \left(a^{p^{k-1}}\right) \mid p$.

However $a^{p^{k-1}} \neq 1_G$ as $\circ(a) \nmid p^{k-1}$, and so $\circ(a^{p^{k-1}}) \neq 1$.

This give us $\circ (a^{p^{k-1}}) = p$, i.e. we can always constructed an element of order p from G.

Question 7

Let $\circ(g) = p$ be prime, and let there exists $a \in \langle g \rangle \cap H$ such that $a \neq 1_G$.

Then there exists $k \in \mathbb{Z}^+$ such that $a = g^k \in H$. Since $a \neq 1_G$, we have $p \nmid k$, and thus $\gcd(p, k) = 1$.

Page: 2 of 3

This give us $s, t \in \mathbb{Z}$ such that sp + tk = 1. Since H is a group, we have

$$g = g^{sp+tk}$$

$$= (g^p)^s (g^k)^t$$

$$= (g^k)^t \in H.$$

Question 8

Let $h \in H$ and $g \in G$. We denote $a = ghg^{-1}$.

By condition given, there exists $h_1, h_2 \in H$ such that $g^2 = h_1$ and $(gh)^2 = h_2$. Thus,

$$(gh)(gh) = (ag)(gh)$$

$$h_2 = ag^2h$$

$$= ah_1h$$

$$a = h_2h^{-1}h_1^{-1} \in H.$$

Therefore $H \triangleleft G$.

Question 9

(a) Since $(a^{m-1})(a) + (-1)(M) = a^m - M = 1$, we have $\gcd(a, M) = 1$. Thus $a \in \mathbb{Z}_M^*$. For all $1 \le i \le m$, we have $(a^{m-i})(a^i) + (-1)(M) = a^m - M = 1$, which give us $\gcd(a^i, M) = 1$. Thus $a^i \in \mathbb{Z}_M^*$. We notice that $a^m \equiv 1 \mod M$, thus $a^m = 1_{\mathbb{Z}_M^*}$.

Now since $a^m \ge 3$, we have $M \ge 2$ and $a \ge 2$. Hence for $1 \le i < m$, $1 < a^i < M+1$, i.e. $a^i \ne 1_{\mathbb{Z}_M^*}$. Thus $\circ(a) = m$ (as a by-product, we also can conclude that $\langle a \rangle \le \mathbb{Z}_M^*$).

(b) From $M \mid a^n - 1$, we get $a^n \equiv 1 \mod M$, i.e. $a^n = 1_{\mathbb{Z}_M^*}$. Since $\circ(a) = m$, we have $m \mid n$.

Question 10

There are $\varphi(\varphi(19)) = \varphi(18) = 6$ primitive roots of 19. Now, $18 = 2 \times 3^2$. Since,

$$2^6 = 64 \not\equiv 1 \mod 19;$$

 $2^9 = 512 \not\equiv 1 \mod 19,$

we conclude that 2 is a primitive root of unity modulo 19.

Now $(\mathbb{Z}/18\mathbb{Z})^* = \{[1]_{19}, [5]_{19}, [7]_{19}, [11]_{19}, [13]_{19}, [17]_{19}\}.$ Since,

$$2^{5} \equiv 13 \mod 19;$$
 $2^{7} \equiv 14 \mod 19;$
 $2^{11} \equiv 15 \mod 19;$
 $2^{13} \equiv 3 \mod 19;$
 $2^{17} \equiv 10 \mod 19,$

we have the primitive roots of unity modulo 19 to be 2, 3, 10, 13, 14, 15.