# Astro 9: Introduction to Scientific Programming (w/ Python)

Day 1: Introduction

### Classic Examples of Scientific Programming: Classification

```
0000000000000000
/ | | | / / / / / / / | / / / / / /
2222222222222
4444444444444
555555555555555
66666666666666
ファチィファファファファファ
88888888888888888
99999999999999
```

Classic Examples of Scientific Programming:

Regression



### Classic Examples of Scientific Programming: Modelling/Simulation



#### Overview of Course: Goals

- Be knowledgeable of the common techniques used in analysis of real world data.
- Recognizing the limitations and strengths of a given method.
- 3) Be able to visualize and present the results.
- 4) Develop a "critical eye" towards data and techniques.

### How much theory?

Focus of the course is on implementation, not theoretical underpinnings, but some math will be needed!



### How much theory?

Focus of the course is on implementation, not theoretical underpinnings, but some math will be needed!

Following knowledge assumed:

- 1) High comfort with single variable calculus.
- 2) At least some knowledge of multivariable calculus.
- 3) Some statistics (mean, standard deviation, ...)

### **Basic Logistics**

Instructor: Ben Horowitz (bhorowitz@berkeley.edu)

Lectures: M/W/F

Office Hours: TBD!

No text (see website for readings)

### **Basic Logistics: Grading**

Homeworks (30%): Assigned weekly (due Friday)

Final Projects (60%): Independent creations

Participation (10%): In-class group work

### Basic Logistics: Course Format

First 20-40 minutes will be short lecture-style presentation.

Rest of course will be focused groupwork exploring topics and beginning the homework.

### Basic Logistics: Homework Policies

- Submission will be via Github Classroom
- Working in (small) groups allowed
- No late submissions allowed
- Googling for resources allowed; don't google the problem exact problem statements though!

Due dates TBD!

### Basic Logistics: Final Project

Application of the tools and techniques we learned in class to some topic that interests you!

- Analysis Rigor
- Presentation
- Creativity

Start thinking about project early!

- "Proposal" due July 28th
- Project due last day of course

### My Motivation...

Course Success => My Success

Please give me continual feedback!

### Topics Covered: Numpy and Matplotlib





### Topics Covered: Data Manipulation/Visualization



## Topics Covered: Bayesian Analysis (Hypothesis Testing)



### **Topics Covered: Optimization**





### **Topics Covered: Sampling**



### **Topics Covered: Agent-Based Modelling**



### **Topics Covered: Differential Equations Solving**



### Topics Covered: Image Analysis



### **Topics Covered: Machine Learning**



### Themes: Thinking Probabilistically



### Themes: Understanding Correlated Errors

#### Chance of winning



Five Thirty Eight (2016)

### Themes: Being Resourceful...







Five Thirty Eight (2016)

### Temporary Course Home

### bhorowitz.github.io/astro9