

МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ им. А. И. ГЕРЦЕНА»

ИНСТИТУТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И ТЕХНОЛОГИЧЕСКОГО ОБРАЗОВАНИЯ

Кафедра информационных технологий и электронного обучения

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №4

«Нелинейные уравнения»

По дисциплине: Вычислительная математика

(наименование учебной дисциплины согласно учебному плану)

Зав. кафедры ИТиЭО д-р пед.наук.:

Власова Е.З

Выполнили студенты 2 курса

Бережной М. Панасюженкова О. Вольных М. Щербинин А.

Цель: реализовать решение нелинейных уравнений численными методами касательных, дихотомии, хорд на языке программирования.

Оборудование: ПК, язык программирования JavaScript, HTML, CSS.

Математическая модель.

Метод хорд:

$$x_{i+1} = x_i - \frac{f(x_i)}{f(C) - f(x_i)} \cdot (C - x_i)$$

Метод касательных:

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)} = F(x_i)$$

Метод дихотомии:

$$x_0 = \frac{a+b}{2}$$
 $x_1 = \frac{a+x_0}{2}$ $x_1 = \frac{b+x_0}{2}$

Вариант 2

Бережной Михаил

Постановка задачи: вычислить $x^3 - cos(x) + 1$ на отрезке от -10 до 10 с точностью 10^{-6} .

Список идентификаторов:

Имя переменной	Тип	Значение	
inst	text	Вводимая функция	
A	number	Нижний предел	
В	number	Верхний предел	
Е	number	Вводимая точность	
F	function	Функция вычисления	
DF	function	Производная функции	
Meth	text	Выбираемый метод	
res	number	Результат производной функции	
i	number	Параметр цикла	
X	number	Промежуточная переменная, значения х	
x1	number	Промежуточная переменная, значения х	
R	number	Точность вычисления	
del_a	number	Изменяемый нижний предел	
del_b	number	Изменяемый верхний предел	
result1	number	Результат вычислений	

```
const MethDiv = document.getElementById("method")
const btn = document.querySelector("#bt")
const instDiv = document.querySelector('#inst');
const aDiv = document.querySelector('#a');
const bDiv = document.querySelector('#b');
```

```
const EDiv = document.querySelector('#E');
btn.addEventListener('click',()=>{
    document.querySelector('h1').textContent = document.title;
      /* извлечение данных */
     let inst = (instDiv.value.toString());
      let a = (aDiv.value.toString());
      let b = (bDiv.value.toString());
      /* перевод введённых данных */
      inst = inst.replaceAll('sin', 'Math.sin')
      inst = inst.replaceAll('cos', 'Math.cos')
      inst = inst.replaceAll('pi', 'Math.PI')
      inst = inst.replaceAll('abs', 'Math.abs')
      inst = inst.replaceAll('sqrt', 'Math.sqrt')
      inst = inst.replaceAll('pow', 'Math.pow')
      inst = inst.replaceAll('ln', 'Math.log')
      inst = inst.replaceAll('exp', 'Math.exp')
      inst = inst.replaceAll('^', '**')
      a = a.replaceAll('sin', 'Math.sin')
     a = a.replaceAll('cos', 'Math.cos')
     a = a.replaceAll('pi', 'Math.PI')
      a = a.replaceAll('abs', 'Math.abs')
      a = a.replaceAll('sqrt', 'Math.sqrt')
      a = a.replaceAll('pow', 'Math.pow')
     a = a.replaceAll('ln', 'Math.log')
      a = a.replaceAll('exp', 'Math.exp')
      a = a.replaceAll('^', '**')
      b = b.replaceAll('sin', 'Math.sin')
      b = b.replaceAll('cos', 'Math.cos')
      b = b.replaceAll('pi', 'Math.PI')
      b = b.replaceAll('abs', 'Math.abs')
      b = b.replaceAll('sqrt', 'Math.sqrt')
     b = b.replaceAll('pow', 'Math.pow')
      b = b.replaceAll('ln', 'Math.log')
     b = b.replaceAll('exp', 'Math.exp')
      b = b.replaceAll('^', '**')
      const A = eval(a);
      const B = eval(b);
      const E = Number(EDiv.value);
      const theInstructions = inst;
      const F = new Function('x', 'return ' + theInstructions);
      const Meth = (MethDiv.value.toString());
      function DF(x){
        let res = 3 * x * x + Math.sin(x)
```

```
return res
/* вычисления */
if(Meth === "type_Nio"){
  let i = 0;
 let x = A;
 let x1 = 0
 let R = 100000
 while(R > E){
   x1 = x - (F(x) / DF(x))
    R = Math.abs(x-x1)
   x = x1
   i += 1
const result1 = x;
document.querySelector('#result1').value = result1;
else{
 if(Meth === "type_Hord"){
    let i = 0;
    let x = A - (F(A) * (B - A)) / (F(B) - F(A));
    let x1 = 0
   let R = 100000
    while(R > E){
     x1 = x - (F(x) * (B - x)) / (F(B) - F(x))
      R = Math.abs(x-x1)
      x = x1
  const result1 = x;
  document.guerySelector('#result1').value = result1;
    if(Meth === "type_Del"){
     let i = 0;
      let x = 0;
      let R = 100000
      let del_a = A
      let del_b = B
      while(R > E){
        R = Math.abs(del_b - del_a)
        x = (del_a + del_b) / 2
        if(x === 0){
          x += 1
        let t = F(del_a) * F(x)
        if(t < 0){
         del_b = x
        } else{
          del_a = x
```

```
}
i += 1
}
const result1 = x;
document.querySelector('#result1').value = result1;
}
}
}
```

Результаты работы программы

Метод Ньютона:

Метод хорд:

Метод дихотомии:

Вариант 22

Панасюженкова Ольга

Постановка задачи: вычислить $2x^3 - 9x^2 - 60x + 1$ на отрезке от -10 до 10 с точностью 10^{-6} .

Список идентификаторов:

Имя переменной	Тип	Значение	
inst	text	Вводимая функция	
A	number	Нижний предел	
В	number	Верхний предел	
Е	number	Вводимая точность	
F	function	Функция вычисления	
DF	function	Производная функции	
Meth	text	Выбираемый метод	
res	number	Результат производной функции	
i	number	Параметр цикла	
X	number	Промежуточная переменная, значения х	
x1	number	Промежуточная переменная, значения х	
R	number	Точность вычисления	
del_a	number	Изменяемый нижний предел	
del_b	number	Изменяемый верхний предел	
result1	number	Результат вычислений	

```
const MethDiv = document.getElementById("method")
const btn = document.querySelector("#bt")
const instDiv = document.querySelector('#inst');
const aDiv = document.querySelector('#a');
const bDiv = document.querySelector('#b');
const EDiv = document.querySelector('#E');
btn.addEventListener('click',()=>{
    document.querySelector('h1').textContent = document.title;
      /* извлечение данных */
      let inst = (instDiv.value.toString());
      let a = (aDiv.value.toString());
      let b = (bDiv.value.toString());
      /* перевод введённых данных */
      inst = inst.replaceAll('sin', 'Math.sin')
      inst = inst.replaceAll('cos', 'Math.cos')
      inst = inst.replaceAll('pi', 'Math.PI')
      inst = inst.replaceAll('abs', 'Math.abs')
      inst = inst.replaceAll('sqrt', 'Math.sqrt')
      inst = inst.replaceAll('pow', 'Math.pow')
```

```
inst = inst.replaceAll('ln', 'Math.log')
inst = inst.replaceAll('exp', 'Math.exp')
inst = inst.replaceAll('^', '**')
a = a.replaceAll('sin', 'Math.sin')
a = a.replaceAll('cos', 'Math.cos')
a = a.replaceAll('pi', 'Math.PI')
a = a.replaceAll('abs', 'Math.abs')
a = a.replaceAll('sqrt', 'Math.sqrt')
a = a.replaceAll('pow', 'Math.pow')
a = a.replaceAll('ln', 'Math.log')
a = a.replaceAll('exp', 'Math.exp')
a = a.replaceAll('^', '**')
b = b.replaceAll('sin', 'Math.sin')
b = b.replaceAll('cos', 'Math.cos')
b = b.replaceAll('pi', 'Math.PI')
b = b.replaceAll('abs', 'Math.abs')
b = b.replaceAll('sqrt', 'Math.sqrt')
b = b.replaceAll('pow', 'Math.pow')
b = b.replaceAll('ln', 'Math.log')
b = b.replaceAll('exp', 'Math.exp')
b = b.replaceAll('^', '**')
/* небольшие махинации */
const A = eval(a);
const B = eval(b);
const E = Number(EDiv.value);
const theInstructions = inst;
const F = new Function('x', 'return ' + theInstructions);
const Meth = (MethDiv.value.toString());
function DF(x){
 let res = 6 * x**2 - 18 * x - 60
  return res
if(Meth === "type Nio"){
 let i = 0;
 let x = A;
 let x1 = 0
  let R = 100000
  while (R > E) {
    x1 = x - (F(x) / DF(x))
   R = Math.abs(x-x1)
    x = x1
   i += 1
const result1 = x;
```

```
document.querySelector('#result1').value = result1;
else{
 if(Meth === "type_Hord"){
   let i = 0;
   let x = A - (F(A) * (B - A)) / (F(B) - F(A));
    let x1 = 0
    let R = 100000
   while(R > E){
     x1 = x - (F(x) * (B - x)) / (F(B) - F(x))
     R = Math.abs(x-x1)
     x = x1
  const result1 = x;
  document.querySelector('#result1').value = result1;
  } else{
    if(Meth === "type_Del"){
      let i = 0;
      let x = 0;
     let R = 100000
      let del a = A
     let del b = B
      while(R > E){
        R = Math.abs(del_b - del_a)
        x = (del_a + del_b) / 2
        if(x === 0){
         x += 1
        let t = F(del_a) * F(x)
        if(t < 0){
         del_b = x
        } else{
          del_a = x
        i += 1
    const result1 = x;
    document.querySelector('#result1').value = result1;
    }
```

Результаты работы программы

Метод Ньютона:

Метод хорд:

Метод дихотомии:

Вариант 13

Щербинин Артем

Постановка задачи: вычислить $\frac{ln(1+x)}{x} - \frac{2}{\pi}$ на отрезке от 0 до 10 с точностью 10^{-6} .

Список идентификаторов:

Имя переменной	Тип	Значение	
inst	text	Вводимая функция	
A	number	Нижний предел	
В	number	Верхний предел	
Е	number	Вводимая точность	
F	function	Функция вычисления	
DF	function	Производная функции	
Meth	text	Выбираемый метод	
res	number	Результат производной функции	
i	number	Параметр цикла	
X	number	Промежуточная переменная, значения х	
x1	number	Промежуточная переменная, значения х	
R	number	Точность вычисления	
del_a	number	Изменяемый нижний предел	
del_b	number	Изменяемый верхний предел	
result1	number	Результат вычислений	

```
const MethDiv = document.getElementById("method")
const btn = document.querySelector("#bt")
const instDiv = document.querySelector('#inst');
const aDiv = document.querySelector('#a');
const bDiv = document.querySelector('#b');
const EDiv = document.querySelector('#E');
btn.addEventListener('click',()=>{
    document.querySelector('h1').textContent = document.title;
      /* извлечение данных */
      let inst = (instDiv.value.toString());
      let a = (aDiv.value.toString());
      let b = (bDiv.value.toString());
      /* перевод введённых данных */
      inst = inst.replaceAll('sin', 'Math.sin')
      inst = inst.replaceAll('cos', 'Math.cos')
      inst = inst.replaceAll('pi', 'Math.PI')
      inst = inst.replaceAll('abs', 'Math.abs')
      inst = inst.replaceAll('sqrt', 'Math.sqrt')
      inst = inst.replaceAll('pow', 'Math.pow')
      inst = inst.replaceAll('ln', 'Math.log')
```

```
inst = inst.replaceAll('exp', 'Math.exp')
inst = inst.replaceAll('^', '**')
a = a.replaceAll('sin', 'Math.sin')
a = a.replaceAll('cos', 'Math.cos')
a = a.replaceAll('pi', 'Math.PI')
a = a.replaceAll('abs', 'Math.abs')
a = a.replaceAll('sqrt', 'Math.sqrt')
a = a.replaceAll('pow', 'Math.pow')
a = a.replaceAll('ln', 'Math.log')
a = a.replaceAll('exp', 'Math.exp')
a = a.replaceAll('^', '**')
b = b.replaceAll('sin', 'Math.sin')
b = b.replaceAll('cos', 'Math.cos')
b = b.replaceAll('pi', 'Math.PI')
b = b.replaceAll('abs', 'Math.abs')
b = b.replaceAll('sqrt', 'Math.sqrt')
b = b.replaceAll('pow', 'Math.pow')
b = b.replaceAll('ln', 'Math.log')
b = b.replaceAll('exp', 'Math.exp')
b = b.replaceAll('^', '**')
/* небольшие махинации */
let A = eval(a);
const B = eval(b);
const E = Number(EDiv.value);
const theInstructions = inst;
const F = new Function('x', 'return ' + theInstructions);
const Meth = (MethDiv.value.toString());
function DF(x){
  let res = (1 / (x * (1 + x))) - (Math.log(1 + x) / (x * x))
  return res
/* вычисления */
if(Meth === "type_Nio"){
 let i = 0;
 let x = A;
  x += 0.000001
  let x1 = 0
  let R = 100000
  while (R > E) {
    x1 = x - (F(x) / DF(x))
   R = Math.abs(x-x1)
    x = x1
   i += 1
const result1 = x;
```

```
document.querySelector('#result1').value = result1;
else{
 if(Meth === "type_Hord"){
    let i = 0;
    let x = A - (F(A) * (B - A)) / (F(B) - F(A));
    let x1 = 0
    let R = 100000
    while(R > E){
     x1 = x - (F(x) * (B - x)) / (F(B) - F(x))
     R = Math.abs(x-x1)
     x = x1
    if(x !== x){
      alert("Невозможно решить на данном отрезке")
    } else {
      const result1 = x;
      document.querySelector('#result1').value = result1;
  } else{
    if(Meth === "type_Del"){
     let i = 0;
      let x = 0;
      let R = 100000
      let del a = A + 1
     let del b = B
      while(R > E){
        R = Math.abs(del_b - del_a)
        x = (del_a + del_b) / 2
        if(x === 0){
          x += 1
        let t = F(del_a) * F(x)
        if(t < 0){
         del b = x
        } else{
          del_a = x
        i += 1
    const result1 = x;
    document.querySelector('#result1').value = result1;
    }
```

Результаты работы программы

		<u>Обратно в меню</u>	
		Метод Ньютона	~
Вычислить уравнение: In(1+x) / x - 2/pi		
На отрезке от: 0	до: 10		
Точность: 0,000001	\Rightarrow		
Otvet = 1,3259624368646408	Выполнить задание		

Результат не был получен, как и в данной лабораторной работе, так и при использовании уже готовых калькуляторов. Это может быть связано с тем, что отрезок начинается с 0, а в самой функции присутствует деление на x.

Вариант 3

Вольных Мария

Постановка задачи: вычислить $x^4 - 1 - cos(x)$ на отрезке от -15 до 15 с точностью 10^{-6} .

Список идентификаторов:

Имя переменной	Тип	Значение	
inst	text	Вводимая функция	
A	number	Нижний предел	
В	number	Верхний предел	
Е	number	Вводимая точность	
F	function	Функция вычисления	
DF	function	Производная функции	
Meth	text	Выбираемый метод	
res	number	Результат производной функции	
i	number	Параметр цикла	
X	number	Промежуточная переменная, значения х	
x1	number	Промежуточная переменная, значения х	
R	number	Точность вычисления	
del_a	number	Изменяемый нижний предел	
del_b	number	Изменяемый верхний предел	
result1	number	Результат вычислений	

```
const MethDiv = document.getElementById("method")
const btn = document.querySelector("#bt")
const instDiv = document.querySelector('#inst');
const aDiv = document.querySelector('#a');
const bDiv = document.querySelector('#b');
const EDiv = document.querySelector('#E');
btn.addEventListener('click',()=>{
    document.querySelector('h1').textContent = document.title;
      /* извлечение данных */
      let inst = (instDiv.value.toString());
      let a = (aDiv.value.toString());
      let b = (bDiv.value.toString());
      /* перевод введённых данных */
      inst = inst.replaceAll('sin', 'Math.sin')
      inst = inst.replaceAll('cos', 'Math.cos')
      inst = inst.replaceAll('pi', 'Math.PI')
      inst = inst.replaceAll('abs', 'Math.abs')
      inst = inst.replaceAll('sqrt', 'Math.sqrt')
      inst = inst.replaceAll('pow', 'Math.pow')
      inst = inst.replaceAll('ln', 'Math.log')
```

```
inst = inst.replaceAll('exp', 'Math.exp')
inst = inst.replaceAll('^', '**')
a = a.replaceAll('sin', 'Math.sin')
a = a.replaceAll('cos', 'Math.cos')
a = a.replaceAll('pi', 'Math.PI')
a = a.replaceAll('abs', 'Math.abs')
a = a.replaceAll('sqrt', 'Math.sqrt')
a = a.replaceAll('pow', 'Math.pow')
a = a.replaceAll('ln', 'Math.log')
a = a.replaceAll('exp', 'Math.exp')
a = a.replaceAll('^', '**')
b = b.replaceAll('sin', 'Math.sin')
b = b.replaceAll('cos', 'Math.cos')
b = b.replaceAll('pi', 'Math.PI')
b = b.replaceAll('abs', 'Math.abs')
b = b.replaceAll('sqrt', 'Math.sqrt')
b = b.replaceAll('pow', 'Math.pow')
b = b.replaceAll('ln', 'Math.log')
b = b.replaceAll('exp', 'Math.exp')
b = b.replaceAll('^', '**')
/* небольшие махинации */
const A = eval(a);
const B = eval(b);
const E = Number(EDiv.value);
const theInstructions = inst;
const F = new Function('x', 'return ' + theInstructions);
const Meth = (MethDiv.value.toString());
function DF(x){
 let res = 4 * x * x * x + Math.sin(x)
 return res
/* вычисления */
if(Meth === "type_Nio"){
 let i = 0;
 let x = A;
 let x1 = 0
 let R = 100000
 while(R > E){
   x1 = x - (F(x) / DF(x))
   R = Math.abs(x-x1)
   x = x1
    i += 1
const result1 = x;
document.querySelector('#result1').value = result1;
```

```
else{
  if(Meth === "type_Hord"){
   let i = 0;
   let x = A + 1 - (F(A + 1) * (B - A + 1)) / (F(B) - F(A + 1));
   let R = 100000
   while(R > E){
     x1 = x - (F(x) * (B - x)) / (F(B) - F(x))
     R = Math.abs(x-x1)
     x = x1
      i += 1
   if(x !== x){
      alert("Невозможно решить на данном отрезке")
    } else {
     const result1 = x;
      document.querySelector('#result1').value = result1;
  } else{
   if(Meth === "type_Del"){
     let i = 0;
     let x = 0;
     let R = 100000
      let del_a = A
     let del_b = B
     while(R > E){
        R = Math.abs(del_b - del_a)
        x = (del_a + del_b) / 2
        if(x === 0){
          x += 1
        let t = F(del_a) * F(x)
        if(t < 0){
         del b = x
        } else{
          del a = x
        i += 1
    const result1 = x;
    document.querySelector('#result1').value = result1;
    }
```

N	Тето :	л На	, IOT	она.

		<u>Обратно в меню</u>	
		Метод Ньютона	~
Вычислить уравнение: х^4 - 1	I - cos(x)		
На отрезке от: -15	до: 15		
Точность: 0,000001	\Rightarrow		
Otvet = -1,0983065200370403	Выполнить задание		

Метод хорд:

		<u>Обратно в ме</u>	<u>Обратно в меню</u>	
		Метод Хорд	~	
вычислить уравнение: х^4 -	1 - cos(x)			
la отрезке от: -15	до: 15			
очность: 0,000001	\Rightarrow			
Otvet = 1,0988933846735625	Выполнить задание			

Метод дихотомии:

		<u>Обратно в меню</u>	
		Метод Деления отрезка пополам ✔	
Вычислить уравнение: x^4 - 1	- cos(x)		
На отрезке от: -15	до: 15		
Гочность: 0,000001			
Otvet = -1,0983061790466309	Выполнить задание		

Вывод: в ходе выполнения лабораторной работы были изучены следующие методы решения нелинейных уравнений: метод Ньютона, метод хорд и метод дихотомии.

В вариантах работ 2 и 13 корни, полученные тремя различными методами, практически равны между собой, но в вариантах 3 и 22 эти корни имеют большие отличия. Это связано с тем, что при применении каждого из методов, имеющего свою специфику, для любой функции, могут находиться разные корни одного и того же уравнения, которые будут являться правильным решением. Метод хорд в 13-ом варианте сработал некорректно, что говорит о том, что не во всех случаях удобно использовать все три метода.