Geometrie pentru informaticieni Seminarul 3

Paul A. Blaga

Probleme rezolvate

Problema 1. Determinați $\mathbf{a} \times \mathbf{b}$ dacă $\mathbf{a} = \mathbf{i} + 2\mathbf{j} - 2\mathbf{k}$ și $\mathbf{b} = 7\mathbf{i} + 4\mathbf{j} + 6\mathbf{k}$.

Soluție. Avem

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & -2 \\ 7 & 5 & 6 \end{vmatrix} = 22\mathbf{i} - 20\mathbf{j} - 9\mathbf{k}.$$

Problema 2. Se dau vectorii $\mathbf{a}(3,-1,-2)$ şi $\mathbf{b}(1,2,-1)$. Să se calculeze:

$$\mathbf{a} \times \mathbf{b}$$
, $(2\mathbf{a} + \mathbf{b}) \times \mathbf{b}$, $(2\mathbf{a} + \mathbf{b}) \times (2\mathbf{a} - \mathbf{b})$.

Soluție. Avem

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & -1 & -2 \\ 1 & 2 & -1 \end{vmatrix} = 5\mathbf{i} + \mathbf{j} + 7\mathbf{k}.$$

Pe de altă parte,

$$(2\mathbf{a} + \mathbf{b}) \times \mathbf{b} = 2(\mathbf{a} \times \mathbf{b}) + \underbrace{\mathbf{b} \times \mathbf{b}}_{=0} = 2(\mathbf{a} \times \mathbf{b}) = 10\mathbf{i} + 2\mathbf{j} + 14\mathbf{k}.$$

În sfârșit,

$$(2\mathbf{a} + \mathbf{b}) \times (2\mathbf{a} - \mathbf{b}) = 4\underbrace{(\mathbf{a} \times \mathbf{a})}_{=0} - 2(\mathbf{a} \times \mathbf{b}) + 2(\mathbf{b} \times \mathbf{a}) - \underbrace{\mathbf{b} \times \mathbf{b}}_{=0} = -4(\mathbf{a} \times \mathbf{b}) = -20\mathbf{i} - 4\mathbf{j} - 28\mathbf{k}.$$

Problema 3. Determinați distanțele dintre laturile paralele ale paralelogramului construit pe vectorii $\overrightarrow{AB}(6,0,2)$ și $\overrightarrow{AC}(1.5,2,1)$.

Soluție. Fie ABDC paralelogramul, h distanța dintre laturile AB și CD și g distanța dintre laturile AC și BD. Atunci

$$h = \frac{\|\overrightarrow{AB} \times \overrightarrow{AC}\|}{\|\overrightarrow{AB}\|}, \quad g = \frac{\|\overrightarrow{AB} \times \overrightarrow{AC}\|}{\|\overrightarrow{AC}\|}.$$

Mai departe,

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 6 & 0 & 2 \\ \frac{3}{2} & 2 & 1 \end{vmatrix} = -4\mathbf{i} - 3\mathbf{j} + 12\mathbf{k},$$

$$\|\overrightarrow{AB} \times \overrightarrow{AC}\| = \| -4\mathbf{i} - 3\mathbf{j} + 12\mathbf{k}\| = \sqrt{(-4)^2 + (-3)^2 + 12^2} = \sqrt{169} = 13,$$

$$\|\overrightarrow{AB}\| = \|6\mathbf{i} + 2\mathbf{k}\| = \sqrt{6^2 + 2^2} = \sqrt{40} = 2\sqrt{10},$$

$$\|\overrightarrow{AC}\| = \left\| \frac{3}{2}\mathbf{i} + 2\mathbf{j} + \mathbf{k} \right\| = \sqrt{\frac{9}{4} + 4 + 1} = \sqrt{\frac{29}{4}} = \frac{\sqrt{29}}{2}.$$

Prin urmare,

$$h = \frac{\|\overrightarrow{AB} \times \overrightarrow{AC}\|}{\|\overrightarrow{AB}\|} = \frac{13}{2\sqrt{10}} = \frac{13\sqrt{10}}{20},$$
$$g = \frac{\|\overrightarrow{AB} \times \overrightarrow{AC}\|}{\|\overrightarrow{AC}\|} = \frac{13}{\frac{\sqrt{29}}{2}} = \frac{26\sqrt{29}}{29}.$$

Problema 4. Determinați vectorul \mathbf{p} , știind că el este perpendicular pe vectorii $\mathbf{a}(2,3,-1)$ și $\mathbf{b}(1,-1,3)$ și verifică ecuația

$$\mathbf{p} \cdot (2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}) = 51.$$

Soluție. Vectorul p îndeplinește condițiile:

$$\begin{cases} \mathbf{p} \cdot (2\mathbf{i} + 3\mathbf{j} - \mathbf{k}) = 0, \\ \mathbf{p} \cdot (\mathbf{i} - \mathbf{j} + 3\mathbf{k}) = 0, \\ \mathbf{p} \cdot (2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}) = 51. \end{cases}$$

Dacă $\mathbf{p} = (p_1, p_2, p_3)$, atunci sistemul de mai sus devine

$$\begin{cases} 2p_1 + 3p_2 - p_3 = 0, \\ p_1 - p_2 + 3p_3 = 0, \\ 2p_1 - 3p_2 + 4p_3 = 51. \end{cases}$$

Se obține atunci că

$$\mathbf{p} = (24, -21, -15).$$

Altă soluție. Faptul că vectorul **p** este perpendicular pe vectorii **a** și **b** care, după cm se poate observa cu uşurință, nu sunt coliniari, înseamnă, de fapt, că vectorul este coliniar cu produsul vectorial al acestor vectori, cu alte cuvinte trebuie să avem

$$\mathbf{p} = \lambda \cdot (\mathbf{a} \times \mathbf{b})$$
,

prin urmare trebuie doar să determinăm scalarul λ . Începem prin a calcula produsul vectorial. Avem:

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 3 & -1 \\ 1 & -1 & 3 \end{vmatrix} = 8\mathbf{i} - 7\mathbf{j} - 5\mathbf{k}.$$

Aşadar, $\mathbf{p} = \lambda \cdot (8, -7, -5)$. λ se determină acum din ecuația

$$\mathbf{p} = \cdot (2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}) \equiv 17\lambda = 51,$$

de unde $\lambda=3$, deci, așa cum am obținut și mai sus

$$\mathbf{p} = (24, -21, -15).$$

Problema 5. Se dau punctele A(1,2,0), B(3,0,-3) și C(5,2,6). Să se calculeze aria triunghiului ABC.

Soluție. Fie A aria triunghiului ABC. Atunci

$$\mathcal{A} = \frac{1}{2} \left\| \overrightarrow{AB} \times \overrightarrow{AC} \right\|.$$

Dar,

$$\overrightarrow{AB} = 2\mathbf{i} - 2\mathbf{j} - 3\mathbf{k}, \quad \overrightarrow{AC} = 4\mathbf{i} + 6\mathbf{k},$$

deci

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -2 & -3 \\ 4 & 0 & 6 \end{vmatrix} = -12\mathbf{i} - 24\mathbf{j} + 8\mathbf{k},$$

prin urmare

$$\|\overrightarrow{AB} \times \overrightarrow{AC}\| = \sqrt{(-12)^2 + (-24)^2 + 8^2} = \sqrt{784} = 28.$$

Aşadar,

$$\mathcal{A} = \frac{1}{2} \left\| \overrightarrow{AB} \times \overrightarrow{AC} \right\| = \frac{1}{2} \cdot 28 = 14.$$

Problema 6. Se dau punctele A(1,-1,2), B(5,-6,2) și C(1,3,-1). Determinați lungimea înălțimii triunghiului ABC, coborâte din vârful B pe latura AC a triunghiului.

Soluție. Fie A aria triunghiului ABC. Atunci

$$\mathcal{A} = \frac{1}{2} \left\| \overrightarrow{AB} \times \overrightarrow{AC} \right\|.$$

Pe de altă parte, dacă notăm cu h_B înălțimea corespunzătoare vârfului B, avem

$$\mathcal{A} = \frac{1}{2} \left\| \overrightarrow{AC} \right\| \cdot h_B,$$

prin urmare,

$$h_B = \frac{\left\|\overrightarrow{AB} \times \overrightarrow{AC}\right\|}{\left\|\overrightarrow{AC}\right\|}.$$

Avem

$$\overrightarrow{AB} = 4\mathbf{i} - 5\mathbf{j}, \quad \overrightarrow{AC} = 4\mathbf{j} - 3\mathbf{k},$$

deci

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 4 & -5 & 0 \\ 0 & 4 & -3 \end{vmatrix} = 15\mathbf{i} + 12\mathbf{j} + 16\mathbf{k},$$

aşadar

$$\left\|\overrightarrow{AB} \times \overrightarrow{AC}\right\| = \sqrt{15^2 + 12^2 + 16^2} = \sqrt{625} = 25$$

şi

$$\|\overrightarrow{AC}\| = \sqrt{4^2 + 3^2} = \sqrt{25} = 5.$$

În final, obținem

$$h_B = \frac{\left\| \overrightarrow{AB} \times \overrightarrow{AC} \right\|}{\left\| \overrightarrow{AC} \right\|} = \frac{25}{5} = 5.$$

Problema 7. Se dau vectorii $\mathbf{a}(2, -3, 1)$, $\mathbf{b}(-3, 1, 2)$ şi $\mathbf{c}(1, 2, 3)$. Să se calculeze $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$ şi $\mathbf{a} \times (\mathbf{b} \times \mathbf{c})$.

Soluție. Avem

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -3 & 1 \\ -3 & 1 & 2 \end{vmatrix} = -7\mathbf{i} - 7\mathbf{j} - 7\mathbf{k},$$

deci

$$(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -7 & -7 & -7 \\ 1 & 2 & 3 \end{vmatrix} = -7\mathbf{i} + 14\mathbf{j} - 7\mathbf{k}.$$

Pe de altă parte,

$$\mathbf{b} \times \mathbf{c} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -3 & 1 & 2 \\ 1 & 2 & 3 \end{vmatrix} = -\mathbf{i} + 11\mathbf{j} - 7\mathbf{k},$$

deci

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -3 & 1 \\ -1 & 11 & -7 \end{vmatrix} = 10\mathbf{i} + 13\mathbf{j} + 19\mathbf{k}.$$

Se observă imediat că

$$(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} \neq \mathbf{a} \times (\mathbf{b} \times \mathbf{c}),$$

adică, așa cum știam, produsul vectorial nu este asociativ.

Problema 8. Fie ABCD un patrulater convex. Demonstrați că dacă diagonala AC înjumătățește diagonala BD, atunci triunghiurile ACB și ACD au arii egale.

Soluție. Facem, mai întâi, următoarele notații:

$$\overrightarrow{AB} = \mathbf{a}, \ \overrightarrow{AC} = \mathbf{b}, \ \overrightarrow{AD} = \mathbf{c}.$$

Conform ipotezei, mijlocul O al diagonalei BD se află pe diagonala AC, adică este chiar punctul de intersecție al diagonalei. Aceasta înseamnă că $\overrightarrow{AO} \equiv \frac{\mathbf{a} + \mathbf{c}}{2}$ este coliniar cu b. Aceasta înseamnă, la rândul său, că există un număr real α astfel încât să avem

$$\frac{\mathbf{a} + \mathbf{c}}{2} = \alpha \mathbf{b}$$

sau

$$\mathbf{a} + \mathbf{c} = 2\alpha \mathbf{b}$$
.

Dacă înmulțim vectorial ambii membri ai ecuației de mai sus cu b, obținem

$$(\mathbf{a} + \mathbf{c}) \times \mathbf{b} = 2\alpha (\mathbf{b} \times \mathbf{b}) = 0,$$

de unde

$$\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{c}$$

sau

$$\frac{1}{2}\mathbf{a} \times \mathbf{b} = \frac{1}{2}\mathbf{b} \times \mathbf{c}.$$

Dacă trecem la norme, ecuația de mai sus ne conduce la

$$\frac{1}{2}\|\mathbf{a}\times\mathbf{b}\| = \frac{1}{2}\|\mathbf{b}\times\mathbf{c}\|$$

sau

$$\frac{1}{2} \left\| \overrightarrow{AB} \times \overrightarrow{AC} \right\| = \frac{1}{2} \left\| \overrightarrow{AC} \times \overrightarrow{AD} \right\|,$$

adică

aria
$$ACB = aria ACD$$
.

Problema 9. Fie P şi Q mijloacele laturilor neparalele BC şi AD ale unui trapez ABCD. Demonstrați că triunghiurile APD şi CQB au aceeași arie.

Soluție. Fie $\overrightarrow{AB}=\mathbf{b}$ și $\overrightarrow{AD}=\mathbf{d}$. Cum dreapta DC este paralelă cu dreapta AB, rezultă că există un scalar (pozitiv) astfel încât să avem $\overrightarrow{DC}=t\overrightarrow{AB}=t\mathbf{b}$. Prin urmare,

$$\overrightarrow{AC} = \overrightarrow{AD} + \overrightarrow{CD} = \mathbf{d} + t\mathbf{b}.$$

Pentru a calcula aria triunghiului APD, trebuie să calculăm și vectorul \overrightarrow{AP} . Se observă imediat că

$$\overrightarrow{AP} = \frac{1}{2} \left(\overrightarrow{AB} + \overrightarrow{AC} \right) = \frac{1}{2} \left((1+t)\mathbf{b} + \mathbf{d} \right).$$

Atunci,

$$\overrightarrow{AP} \times \overrightarrow{AD} = \frac{1}{2} \left((1+t)\mathbf{b} + \mathbf{d} \right) \times \mathbf{d} = \frac{1}{2} (1+t)(\mathbf{b} \times \mathbf{d}).$$

Prin urmare,

$$\operatorname{Aria} \Delta APD = \frac{1}{2} \left\| \overrightarrow{AP} \times \overrightarrow{AD} \right\| = \frac{1}{4} (1+t) \| \mathbf{b} \times \mathbf{d} \|.$$

Trecem acum la calculul ariei triunghiului CQB. Observăm imediat că

$$\overrightarrow{CQ} = \overrightarrow{CD} + \overrightarrow{DQ} = -t\mathbf{b} - \frac{1}{2}\mathbf{d},$$

în timp ce

$$\overrightarrow{CB} = \overrightarrow{CA} + \overrightarrow{AB} = -\overrightarrow{AC} + \overrightarrow{AB} = -\mathbf{d} - t\mathbf{b} + \mathbf{b} = (1-t)\mathbf{b} - \mathbf{d}.$$

Prin urmare,

$$\overrightarrow{CQ} \times \overrightarrow{CB} = \left(-t\mathbf{b} - \frac{1}{2}\mathbf{d}\right) \times \left((1-t)\mathbf{b} - \mathbf{d}\right) = t\left(\mathbf{b} \times \mathbf{d}\right) - \frac{1}{2}(1-t)\left(\mathbf{d} \times \mathbf{b}\right) = \frac{1}{2}(1+t)(\mathbf{b} \times \mathbf{d}).$$

Aşadar,

$$\operatorname{Aria} \Delta CQB = \frac{1}{2} \left\| \overrightarrow{CQ} \times \overrightarrow{CB} \right\| = \frac{1}{4} (1+t) \| \mathbf{b} \times \mathbf{d} \| = \operatorname{Aria} \Delta APD.$$

Problema 10. Vectorii \mathbf{a}, \mathbf{b} şi \mathbf{c} sunt vectorii de poziție ai vârfurilor unui triunghi ABC relativ la un punct O. Determinați aria triunghiului ABC în funcție de acești vectori.

Soluție. Aria triunghiului ABC este

Aria
$$\triangle ABC = \frac{1}{2} \left\| \overrightarrow{AB} \times \overrightarrow{AC} \right\|$$
.

Dar $\overrightarrow{AB} = \mathbf{b} - \mathbf{a}$, iar $\overrightarrow{AC} = \mathbf{c} - \mathbf{a}$, prin urmare

$$\operatorname{Aria} \Delta ABC = \frac{1}{2} \| (\mathbf{b} - \mathbf{a}) \times (\mathbf{c} - \mathbf{a}) \| = \frac{1}{2} \| \mathbf{b} \times \mathbf{c} - \mathbf{b} \times \mathbf{a} - \mathbf{a} \times \mathbf{c} \| = \frac{1}{2} \| \mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a} \|.$$

Problema 11. Stabiliți dacă tripletul de vectori {a, b, c} este drept sau stâng, dacă

$$\mathbf{a} = \mathbf{i} + \mathbf{j}, \ \mathbf{b} = \mathbf{i} - \mathbf{j}, \ \mathbf{c} = \mathbf{k}.$$

Soluție. Tot ce avem de făcut este să stabilim semnul produsului mixt al celor trei vectori. Avem:

$$(\mathbf{a}, \mathbf{b}, \mathbf{c}) = \begin{vmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = -2.$$

Cum -2 < 0, tripletul este stâng.

Problema 12. Demonstrați că punctele A(1,2,-1), B(0,1,5), C(-1,2,1) și D(2,1,3) sunt situate într-un același plan.

Soluție. Afirmația este echivalentă cu afirmația că vectorii \overrightarrow{AB} , \overrightarrow{AC} și \overrightarrow{AD} sunt coplanari (adică *liniar dependenți*) cu condiția ca produl mixt al acestor trei vectori să fie egal cu zero.

$$\overrightarrow{AB} = (-1, -1, 6), \ \overrightarrow{AC} = (-2, 0, 2), \ \overrightarrow{AD} = (1, -1, 4),$$

deci

$$\left(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}\right) = \begin{vmatrix} -1 & -1 & 6 \\ -2 & 0 & 2 \\ 1 & -1 & 4 \end{vmatrix} = 0,$$

ceea ce înseamnă că cele patru puncte sunt coplanare.

Problema 13. Determinați volumul tetraedrului care are vârfurile în punctele A(2,-1,1), B(5,5,4), C(3,2,-1) și D(4,1,3).

Soluție. Fie V volumul tetraedrului. Atunci

$$\mathcal{V} = \pm \frac{1}{6} \left(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD} \right),$$

unde semnul se alege astfel încât volumul să fie un număr pozitiv. Dar

$$\overrightarrow{AB} = (3,6,3), \ \overrightarrow{AC} = (1,3,-2), \ \overrightarrow{AD} = (2,2,2),$$

deci

$$\left(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}\right) = \begin{vmatrix} 3 & 6 & 3 \\ 1 & 3 & -2 \\ 2 & 2 & 2 \end{vmatrix} = -18.$$

Aşadar

$$\mathcal{V} = \pm \frac{1}{6} \left(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD} \right) = \frac{1}{6} \cdot 18 = 3.$$

Problema 14. Un tetraedru de volum 5 are ca trei dintre vârfuri punctele A(2,1,-1), B(3,0,1) şi C(2,-1,3). Al patrulea vârf, D, este situat pe axa Oy. Determinați coordonatele punctului D.

Soluție. Vârful D va avea coordonatele (0,a,0), unde a este un parametru care urmează a fi determinat. Volumul tetraedrului este

$$\mathcal{V} = \frac{1}{6} \left| \left(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD} \right) \right|.$$

Avem

$$\overrightarrow{AB} = (1, -1, 2), \ \overrightarrow{AC} = (0, -2, 4), \ \overrightarrow{AD} = (-2, a - 1, 1),$$

prin urmare

$$(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}) = \begin{vmatrix} 1 & -1 & 2 \\ 0 & -2 & 4 \\ -2 & a-1 & 1 \end{vmatrix} = -4a+2.$$

Aşadar,

$$\mathcal{V} = \frac{1}{6} \cdot |4a - 2| = \frac{1}{3} \cdot |2a - 1|.$$

Cum volumul tetraedrului este 5, pentru a determina parametrul a trebuie să rezolvăm ecuația

$$\frac{1}{3} \cdot |2a - 1| = 5$$

sau

$$|2a - 1| = 15.$$

Dacă modulul este pozitiv, suntem conduși la ecuația

$$2a - 1 = 15$$
.

de unde obținem prima soluție, $a_1 = 8$. Dacă modulul este negativ, găsim ecuația

$$2a - 1 = -15$$
,

care ne conduce la cea de-a doua soluţie, $a_2 = -7$.

Problema 15. Se dau trei vectori $\mathbf{a}(8,4,1)$, $\mathbf{b}(2,2,1)$ şi $\mathbf{c}(1,1,1)$. Să se determine vectorul \mathbf{d} , de lungime 1, care formează cu vectorii \mathbf{a} şi \mathbf{b} unghiuri egale, este perpendicular pe vectorul \mathbf{c} şi este orientat în aşa fel încât tripletele de vectori $\{\mathbf{a},\mathbf{b},\mathbf{c}\}$ şi $\{\mathbf{a},\mathbf{b},\mathbf{d}\}$ au aceeaşi orientare (sunt ambele drepte sau ambele stângi).

Soluție. Presupunem că vectorul \mathbf{d} are componentele (d_1,d_2,d_3) . Pentru a determina vectorul \mathbf{d} (prin componentele sale), inventariem, mai întâi, condițiile pe care trebuie să le verifice aceste componente. Mai întâi, faptul că vectorul \mathbf{d} este unitar înseamnă că

$$d_1^2 + d_2^2 + d_3^2 = 1.$$

Mai departe, condiția ca acest vector să formeze unghiuri egale cu vectorii a și b este (ținând cont și de condiția precedentă):

$$\frac{\mathbf{a}}{\|\mathbf{a}\|} \cdot \mathbf{d} = \frac{\mathbf{b}}{\|\mathbf{b}\|} \cdot \mathbf{d}.$$

Dar $\|\mathbf{a}\| = 9$, iar $\|\mathbf{b}\| = 3$, deci relația precedentă ne conduce la

$$\frac{1}{9} \cdot (8d_1 + 4d_2 + d_3) = \frac{1}{3} \cdot (2d_1 + 2d_2 + d_3)$$

sau

$$8d_1 + 4d_2 + d_3 = 6d_1 + 6d_2 + 3d_3$$

sau, în fine,

$$d_1 - d_2 - d_3 = 0.$$

În sfârșit, condiția ca vectorii c și d să fie perpendiculari se traduce prin ecuația

$$d_1 + d_2 + d_3 = 0.$$

Aşadar, componentele vectorului d trebuie să verifice sistemul de ecuații

$$\begin{cases} d_1^2 + d_2^2 + d_3^2 = 1, \\ d_1 - d_2 - d_3 = 0, \\ d_1 + d_2 + d_3 = 0. \end{cases}$$

Se obțin imediat soluțiile

$$\left(0, \frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right), \left(0, -\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right).$$

Doar una dintre aceste două condiții este acceptabilă. Pentru a stabili care, trebuie să stabilim, mai întâi cum este orientat tripletul $\{a, b, c\}$. Avem

$$(\mathbf{a}, \mathbf{b}, \mathbf{c}) = \begin{vmatrix} 8 & 4 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 1 \end{vmatrix} = 4 > 0,$$

deci reperul este direct și la fel trebuie să fie și reperul {a, b, d}. Avem

$$(\mathbf{a}, \mathbf{b}, \mathbf{d}_1) = \begin{vmatrix} 8 & 4 & 1 \\ 2 & 2 & 1 \\ 0 & \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{vmatrix} = -7\sqrt{2},$$

care este negativă, deci nu convine. Pe de altă parte, în mod evident,

$$(\mathbf{a}, \mathbf{b}, \mathbf{d}_2) = 7\sqrt{2} > 0,$$

aşadar vectorul d pe care îl căutăm este

$$\mathbf{d} = \left(0, -\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right).$$

Problema 16. Se dau doi vectori $\mathbf{a}(11, 10, 2)$ și $\mathbf{b}(4, 0, 3)$. Să se găsească un vector unitar \mathbf{c} , ortogonal la vectorii \mathbf{a} și \mathbf{b} , astfel încât tripletul de vectori $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ să fie drept.

Soluție. În mod evident, există doar doi candidați, anume

$$\mathbf{c}_1 = \frac{\mathbf{a} \times \mathbf{b}}{\|\mathbf{a} \times \mathbf{b}\|}$$

şi

$$\mathbf{c}_2 = -\frac{\mathbf{a} \times \mathbf{b}}{\|\mathbf{a} \times \mathbf{b}\|}$$

și numai unul dintre acești doi vectori este soluția problemei. Avem

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 11 & 20 & 2 \\ 4 & 0 & 3 \end{vmatrix} = 60\mathbf{i} - 25\mathbf{j} - 80\mathbf{k},$$

prin urmare

$$\|\mathbf{a} \times \mathbf{b}\| = 25\sqrt{17}.$$

Aşadar,

$$\mathbf{c}_1 = \frac{\mathbf{a} \times \mathbf{b}}{\|\mathbf{a} \times \mathbf{b}\|} = \frac{12\sqrt{17}}{65}\mathbf{i} - \frac{\sqrt{17}}{17}\mathbf{j} - \frac{16\sqrt{17}}{65}\mathbf{k}.$$

De aici rezultă că

$$(\mathbf{a}, \mathbf{b}, \mathbf{c}_1) = \begin{vmatrix} 11 & 20 & 2\\ 4 & 0 & 3\\ \frac{12\sqrt{17}}{65} & -\frac{\sqrt{17}}{17} & -\frac{16\sqrt{17}}{65} \end{vmatrix} = \frac{7125\sqrt{17}}{221} > 0,$$

deci vectorul căutat este $\mathbf{c} = \mathbf{c_1}$

Probleme propuse

Problema 17. Fie ABC un triunghi și fie E și F mijloacele laturilor AB, respectiv AC. Prin C se duce o paralelă la AB care întâlnește BE în P. Demonstrați că

Aria
$$\triangle FEP = \text{Aria } \triangle FCE = \frac{1}{2} \triangle ABC.$$

Problema 18. Fie ABCD un patrulater convex plan. Demonstrați că

Aria
$$ABCD = \frac{1}{2} \left\| \overrightarrow{AC} \times \overrightarrow{BD} \right\|$$
.

Problema 19. Fie ABCD un patrulater convex plan astfel încât

$$\overrightarrow{AB} = \mathbf{b}, \ \overrightarrow{AD} = \mathbf{d}, \ \overrightarrow{AC} = m\mathbf{b} + p\mathbf{d},$$

unde m și p sunt două numere reale. Demonstrați că aria patrulaterului este dată de formula

Aria
$$ABCD = \frac{1}{2}|m+p| \cdot ||\mathbf{b} \times \mathbf{d}||.$$

Problema 20. Fie ABCD un patrulater convex plan astfel încât $\overrightarrow{AB} = \mathbf{a}$, $\overrightarrow{BC} = \mathbf{b}$ și $\overrightarrow{CD} = \mathbf{c}$, atunci aria patrulaterului este dată de formula

Aria
$$ABCD = \frac{1}{2} \|\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} - \mathbf{c} \times \mathbf{a}\|.$$

Problema 21. Determinați ariile triunghiurilor cu vârfurile în punctele de coordonate:

- (a) (0,0,0),(1,2,3) și (2,-1,4);
- (b) (1,0,0),(0,1,0) şi (1,1,1);
- (c) (-1,2,3), (2,-1,-1) şi (1,1,-1);
- (d) (a,0,0), (0,b,0) și (0,0,c).

Problema 22. Determinați volumele tetraedrelor cu vârfurile în punctele de coordonate:

- (a) (0,0,0),(1,1,-1),(1,-1,1) şi (-1,1,1);
- (b) (-1,0,1), (2,-1,0), (3,2,5) si (1,2,1).

Problema 23. Demonstrați că volumul tetraedrului cu vârfurile în punctele de coordonate (x_1, y_1, z_1) , (x_2, y_2, z_2) , (x_3, y_3, z_2) și (x_4, y_4, z_4) este egal cu valoarea absolută a numărului

$$\frac{1}{6} \begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \\ x_4 - x_1 & y_4 - y_1 & z_4 - z_1 \end{vmatrix}.$$

Problema 24. Demonstrați că volumul tetraedrului ale căror vârfuri au vectorii de poziție $\mathbf{a}, \mathbf{b}, \mathbf{c}$ și \mathbf{d} este dat de formula

$$Vol = \frac{1}{6} \left| (\mathbf{b}, \mathbf{c}, \mathbf{d}) + (\mathbf{c}, \mathbf{a}, \mathbf{d}) + (\mathbf{a}, \mathbf{b}, \mathbf{d}) - (\mathbf{a}.\mathbf{b}, \mathbf{c}) \right|.$$

Deduceți, de aici, un criteriu pentru coplanaritatea punctelor cu vectorii de poziție a, b, c și d.