Computer Animation & Physical Simulation

Lecture 12: Soft-Body Simulation – Deformable Solids

XIAOPEI LIU

School of Information Science and Technology ShanghaiTech University

Mass-Spring Simulation for Deformable Objects

Volumetric meshing

- Tetrahedral mesh
- Hexahedral mesh

(a) 3D tetrahedral; (b) 3D hexahedral.

Mass-Spring Simulation for Deformable Objects

Altitude spring

- Point-face altitude spring
- Edge-edge altitude spring

I. Basics for Deformable Solids

Notation

Partial differentiation

$$\mathbf{x}_{i} \equiv \partial \mathbf{x} / \partial \theta_{i}, \, \mathbf{u}_{ik} \equiv \frac{\partial^{2} \mathbf{u}}{\partial \theta_{i} \partial \theta_{k}}$$

Operators

• Vector dot product: $dot(\cdot)$

• Vector cross product: cross(x)

• Tensor double contraction: colon (:)

I.a Linear Elasticity

Commonly used in computer graphics

- Relatively simple formulation
- Resulting efficient simulations

Three essential parts

- Geometry: study of deformation a body can undergo
- Internal and external forces: how they affect an object's equilibrium or dynamics
- Constitutive relation: how deforming geometry relates to internal forces

Geometry

- Restrict to Lagrangian description
 - Undeformed positions

$$\bar{\mathbf{x}}(\boldsymbol{\theta}) \qquad \boldsymbol{\theta} = (\theta_1, \theta_2, \theta_3)^T$$

• Undergo a deformation

$$\mathbf{x}(\boldsymbol{\theta}) = \bar{\mathbf{x}}(\boldsymbol{\theta}) + \mathbf{u}(\boldsymbol{\theta})$$

Geometry

- Cauchy strain
 - Assuming only small displacements

$$\epsilon_{ij} = \frac{1}{2} \left(\mathbf{u}_{,i} \cdot \bar{\mathbf{x}}_{,j} + \bar{\mathbf{x}}_{,i} \cdot \mathbf{u}_{,j} \right)$$

- The main diagonal of the tensor
 - The amount of stretch in the three (normal) spatial directions
- Off-diagonal values
 - Amount of shear in the according planes
- Linearization of the more general strain (non-linear)

Forces, equilibrium and dynamics

- Cauchy stress
 - Introduce a virtual cut plane with normal **n**
 - Force distribution at a point can compactly be described by the product of the Cauchy stress tensor with the plane normal

$$\sigma \cdot \mathbf{n} = \mathbf{f_n}$$

- Main diagonal
 - Normal stress
- Off-diagonal
 - Shear stress

- Forces, equilibrium and dynamics
 - Total force
 - Summing up all traction forces on the side of the corresponding infinitesimal cube
 - Using the divergence (Gauss) theorem

$$\sigma \cdot \mathbf{n} = \mathbf{f_n}$$

$$\nabla \cdot \boldsymbol{\sigma} + \mathbf{f} = 0$$

- Forces, equilibrium and dynamics
 - Energy
 - Internal forces in an elastic body are conservative
 - Related to an underlying scalar energy potential characterizing the amount of work for deformation

$$W_{int}(\mathbf{u}) = \int_{\Omega} \boldsymbol{\epsilon}(\mathbf{u}) : \sigma(\mathbf{u}) \, d\Omega$$

Conservative forces

$$\mathbf{f}_{int} = -\frac{\partial W_{int}(\mathbf{u})}{\partial \mathbf{u}}$$

- Forces, equilibrium and dynamics
 - Static equilibrium
 - All internal and external forces need to cancel each other

$$\nabla \cdot \boldsymbol{\sigma} = \mathbf{f}_{ext}$$

Making use of the elastic potential

$$-\frac{\partial W_{int}(\mathbf{u})}{\partial \mathbf{u}} = \mathbf{f}_{ext}$$

• Better suited for setting up the corresponding discrete problems

Forces, equilibrium and dynamics

- Equations of motion
 - If an object is not in static equilibrium: difference between internal and external forces results in net forces
 - Acceleration of the material according to Newton's second law

$$\rho \ddot{\mathbf{u}} + \mathbf{f}_d(\dot{\mathbf{u}}) + \nabla \cdot \boldsymbol{\sigma} = \mathbf{f}_{ext}$$

- $\mathbf{f}_d(\dot{\mathbf{u}})$: a damping force
- Making use of the elastic energy potential

$$\rho \, \ddot{\mathbf{u}} + \mathbf{f}_d(\dot{\mathbf{u}}) - \frac{\partial W_{int}(\mathbf{u})}{\partial \mathbf{u}} = \mathbf{f}_{ext}$$

Constitutive relation

- Establish the relation between internal deformation and force
- The simplest is the linear relation
 - a Hookean material

$$\sigma = \mathbf{C} : \boldsymbol{\epsilon}$$

- Young modulus: material's stiffness
- Poisson's ratio: how much (linearized) change in volume (compression) is penalized during deformation

Strong form

Derivation results in a point-wise description

$$\sigma \cdot \mathbf{n} = \mathbf{f_n} \qquad \nabla \cdot \sigma = \mathbf{f}_{ext}$$

$$\rho \, \ddot{\mathbf{u}} + \mathbf{f}_d(\dot{\mathbf{u}}) - \frac{\partial W_{int}(\mathbf{u})}{\partial \mathbf{u}} = \mathbf{f}_{ext}$$

- Taking variational viewpoint on the problem
- Other forms are better for discrimination and for handling discontinuous problems

Energy formulation

- From the point of view of variational calculus $\nabla \cdot \sigma = \mathbf{f}_{ext}$
- Euler-Lagrange equation of a corresponding energy functional
 - · Necessary condition for being at the minimum of the potential energy

$$W_{tot}(\mathbf{u}) = \frac{1}{2} \int_{\Omega} (\boldsymbol{\epsilon}(\mathbf{u}) : \boldsymbol{\sigma}(\mathbf{u}) - \mathbf{f}_{ext} \cdot \mathbf{u}) d\Omega$$

$$\boldsymbol{\sigma} = \mathbf{C} : \boldsymbol{\epsilon}$$

$$W_{tot}(\mathbf{u}) = \frac{1}{2} \int_{\Omega} (\boldsymbol{\epsilon}(\mathbf{u}) : \mathbf{C} : \boldsymbol{\epsilon}(\mathbf{u}) - \mathbf{f}_{ext} \cdot \mathbf{u}) d\Omega$$

Handle large deformations

- More common in computer graphics
- More complex but also allow for a much more realistic description of a wide variety of scenarios
- Geometric measures and constitutive relations are more versatile

Geometry

- Describe the deformed geometry directly by
 - The mapping: $\mathbf{x}(\bar{\mathbf{x}})$
 - Deforming domain points: $\bar{\mathbf{x}} \in \Omega \subset \mathbb{R}^3$
 - · Do not refer to a displacement field

Geometry

Deformation gradient tensor

$$\mathbf{F} = \frac{\partial \mathbf{x}}{\partial \bar{\mathbf{x}}}$$

- · How neighboring material particles are deformed relative to each other
 - For a given particle at position \bar{x}

$$\bar{\mathbf{x}} + d\bar{\mathbf{x}}$$
 $\mathbf{x}(\bar{\mathbf{x}} + d\bar{\mathbf{x}})$
 $\mathbf{x}(\bar{\mathbf{x}} + d\bar{\mathbf{x}}) \approx \mathbf{x}(\bar{\mathbf{x}}) + \mathbf{F}d\bar{\mathbf{x}} = \mathbf{x}(\bar{\mathbf{x}}) + d\mathbf{x}$

$$\mathbf{d}\mathbf{x} = \mathbf{F}d\bar{\mathbf{x}}$$

Geometry

- Green strain
 - Consider the scalar products of two arbitrary direction vectors $d\bar{\mathbf{x}}_1$ and $d\bar{\mathbf{x}}_2$ after deformation

$$d\mathbf{x}_1 \cdot d\mathbf{x}_2 = d\bar{\mathbf{x}}_1 \cdot \mathbf{F}^T \mathbf{F} d\bar{\mathbf{x}}_2 = d\bar{\mathbf{x}}_1 \cdot \mathbf{C} d\bar{\mathbf{x}}_2$$

Right Cauchy-Green deformation tensor

$$\mathbf{C} = \mathbf{F}^T \mathbf{F}$$

Green strain tensor

$$\mathbf{E} = \frac{1}{2}(\mathbf{C} - \mathbf{I})$$

Constitutive relation

- Saint-Venant Kirchhoff
 - Simplest nonlinear material models
 - Extend the linear stress-strain relation of linear elasticity

$$\Psi_{StVK} = \frac{\lambda}{2} tr(\mathbf{E})^2 + \mu tr(\mathbf{E}^2)$$

- Lamé constants: λ and μ
- λ : isotropic stiffness
- μ : (linearized) volume preservation properties of the modeled material

Constitutive relation

- Neo-Hookean
 - Compressible Neo-Hookean model
 - Share characteristics and material parameters that are known from linear elasticity

$$\Psi_{NH} = \frac{\mu}{2}(tr(\mathbf{C}) - 3) - \mu \ln J + \frac{\lambda}{2}(\ln J)^2$$

• $J = det \mathbf{F}$ measures the change in volume

I.c Handling Boundary and Collisions

Boundary Conditions and Collisions

Boundary conditions

$$\mathbf{u}(\boldsymbol{\theta}) = \mathbf{u}_{BC}(\boldsymbol{\theta})$$
, $\boldsymbol{\theta} \in \Gamma_{BC} \subset \Gamma = \partial \Omega$

• Modeled as an additional elastic energy $W_{BC}(\mathbf{u}) = \frac{\beta}{2} \int_{\Gamma_{BC}} |\mathbf{u} - \mathbf{u}_{BC}|^2$

Boundary Conditions and Collisions

Collisions

Define the simple quadratic penalty potential

$$W_{plane} = \frac{\gamma}{2} ((\mathbf{x} - \mathbf{b}) \cdot \mathbf{n})^2$$

II. Resultant-Based Formulations

Thin geometries

- Specialized variants of the theory
- More efficient and numerically better suited

Resultant-based models

- Material has only small extent in certain spatial directions
- Simplified by making certain assumption on how the material can deform in these directions
- Thin shell theory: reduction along one direction
- Rod theory: reduction along two directions

Shells

- Consider a volumetric surface-like solid
- Extent along tangent directions is much greater than along normal direction

Shells

- Strain about middle surface
 - Middle surface parameterized by the material-domain surface

$$\theta_0 = (\theta_1, \theta_2, 0)$$

Assuming the shell to be sufficiently thin in normal direction

$$\bar{\mathbf{x}}(\boldsymbol{\theta}) \approx \bar{\mathbf{x}}(\boldsymbol{\theta}_0) + \theta_3 \bar{\mathbf{x}}_{,3}(\boldsymbol{\theta}_0)$$

$$\mathbf{u}(\boldsymbol{\theta}) \approx \mathbf{u}(\boldsymbol{\theta}_0) + \theta_3 \mathbf{u}_3(\boldsymbol{\theta}_0)$$

Shells

- In the view of the linear elasticity theory
 - Substitute into the linear Cauchy strain

$$\boldsymbol{\epsilon}_{ij} = \frac{1}{2} (\mathbf{u}_{,i} \cdot \bar{\mathbf{x}}_{,j} + \bar{\mathbf{x}}_{,i} \cdot \mathbf{u}_{,j}) \qquad \qquad \mathbf{\bar{x}}(\boldsymbol{\theta}) \approx \bar{\mathbf{x}}(\boldsymbol{\theta}_0) + \theta_3 \bar{\mathbf{x}}_{,3}(\boldsymbol{\theta}_0) \\ \mathbf{u}(\boldsymbol{\theta}) \approx \mathbf{u}(\boldsymbol{\theta}_0) + \theta_3 \mathbf{u}_{,3}(\boldsymbol{\theta}_0)$$

$$\epsilon(\theta) \approx \alpha(\theta_0) + \theta_3 \beta^3(\theta_0)$$

- Membrane strain $\mathbf{\alpha}_{ij} = rac{1}{2} \left(\mathbf{u}_{,i} \cdot ar{\mathbf{x}}_{,j} + ar{\mathbf{x}}_{,i} \cdot \mathbf{u}_{,j}
 ight)$
- Bending strain $eta_{ij}^k = rac{1}{2} \left(\mathbf{u}_{,ik} \cdot ar{\mathbf{x}}_{,j} + ar{\mathbf{x}}_{,i} \cdot \mathbf{u}_{,jk} + \mathbf{u}_{,i} \cdot ar{\mathbf{x}}_{,jk} + ar{\mathbf{x}}_{,ik} \cdot \mathbf{u}_{,j}
 ight)$

Shells

- Energy integration
 - Elastic energy of the volumetric shell model

$$W_{tot}(\mathbf{u}) = \frac{1}{2} \int_{\Omega} (\boldsymbol{\epsilon}(\mathbf{u}) : \mathbf{C} : \boldsymbol{\epsilon}(\mathbf{u}) - \mathbf{f}_{ext} \cdot \mathbf{u}) d\Omega \qquad \boldsymbol{\epsilon}(\boldsymbol{\theta}) \approx \boldsymbol{\alpha}(\boldsymbol{\theta}_0) + \theta_3 \boldsymbol{\beta}^3(\boldsymbol{\theta}_0)$$

$$W = \frac{1}{2} \int_{\Omega} (\boldsymbol{\alpha}(\boldsymbol{\theta}_0) + \theta_3 \boldsymbol{\beta}^3(\boldsymbol{\theta}_0)) : \mathbf{C} : (\boldsymbol{\alpha}(\boldsymbol{\theta}_0) + \theta_3 \boldsymbol{\beta}^3(\boldsymbol{\theta}_0)) d\Omega$$

· Integration in normal direction can be performed analytically

$$W = \frac{h_3}{2} \int_{\mathcal{S}} \boldsymbol{\alpha} : \mathbf{C} : \boldsymbol{\alpha} + \frac{h_3^2}{12} \boldsymbol{\beta}^3 : \mathbf{C} : \boldsymbol{\beta}^3 \, \mathrm{d} \mathcal{S}$$

Rods

- A volumetric curve-like solid
- Extent along tangent direction is much greater than along normal directions

Rods

- Strain about centerline
 - Let the centerline curve Γ be parameterized by

$$\boldsymbol{\theta}_0 = (\theta_1, 0, 0)$$

$$\bar{\mathbf{x}}(\boldsymbol{\theta}) \approx \bar{\mathbf{x}}(\boldsymbol{\theta}_0) + \theta_2 \bar{\mathbf{x}}_{,2}(\boldsymbol{\theta}_0) + \theta_3 \bar{\mathbf{x}}_{,3}(\boldsymbol{\theta}_0)
\mathbf{u}(\boldsymbol{\theta}) \approx \mathbf{u}(\boldsymbol{\theta}_0) + \theta_2 \mathbf{u}_{,2}(\boldsymbol{\theta}_0) + \theta_3 \mathbf{u}_{,3}(\boldsymbol{\theta}_0)$$

• The same steps for the derivation of the small strain

$$\epsilon(\boldsymbol{\theta}) \approx \boldsymbol{\alpha}(\boldsymbol{\theta}_0) + \theta_2 \boldsymbol{\beta}^2(\boldsymbol{\theta}_0) + \theta_3 \boldsymbol{\beta}^3(\boldsymbol{\theta}_0)$$

Rods

- Energy integration
 - Analytic integration in the normal directions yields the one-dimensional integral of axial energy density over the rod's centerline

$$W = \frac{h_2 h_3}{2} \int_{\Gamma} \alpha : \mathbf{C} : \alpha + \frac{h_2^2}{12} \beta^2 : \mathbf{C} : \beta^2 + \frac{h_3^2}{12} \beta^3 : \mathbf{C} : \beta^3 d\Gamma$$

III. Spatial and Temporal Discretization

Discrete formulation

- Representation of the finite dimensional space
 - Using a basis of shape functions

$$\mathbf{u}_N(\bar{\mathbf{x}}) = \sum_{i=1}^{N} \mathbf{u}_i N_i(\bar{\mathbf{x}}) \in V_N$$

- Basis functions must also fulfill the completeness property
 - Constant reproduction: In order to represent arbitrary translations of the body
 - Partition of unity $\sum_{i} N_i(\bar{\mathbf{x}}) = 1$
 - Linear reproduction: necessary for a basis to represent constant strain fields as well as arbitrary rigid body motions

- Energy-based approach
 - Inserting solution representation

$$W_N(\mathbf{u}_N) = \frac{1}{2} a(\sum_i \mathbf{u}_i N_i, \sum_j \mathbf{u}_j N_j) - f(\sum_i \mathbf{u}_i N_i)$$

$$= \sum_{ij} \mathbf{u}_i \mathbf{u}_j a(N_i, N_j) - \sum_i \mathbf{u}_i f(N_i)$$

$$= \mathbf{u}^T \mathbf{K} \mathbf{u} - \mathbf{u}^T \mathbf{f}_{ext},$$

$$\mathbf{K}_{ij} = a(N_i, N_j), \, \mathbf{f}_{ext,i} = f(N_i)$$

Energy-based approach

- Taking gradient to yield equation to solve
 - Static case

$$\mathbf{K}\mathbf{u} = \mathbf{f}_{ext}$$

• Dynamic case

$$M\ddot{\mathbf{u}} + K\mathbf{u} = \mathbf{f}_{ext}$$

$$\mathbf{M}_{ij} = \mathbf{I} \cdot \int_{\Omega} \rho N_i N_j \, d\Omega$$

Finite-element method (FEM)

- A specific instantiation of the Galerkin methodology
- The object is partitioned into finite elements

$$\bigcup e = \Omega$$

• $\mathbf{u}(\bar{\mathbf{x}})$ is approximated by interpolating the displacements of the nodes within elements

$$|\mathbf{u}(\bar{\mathbf{x}})|_e \approx \mathbf{u}^e(\bar{\mathbf{x}}) := \sum_{i=1}^k \mathbf{u}_i N_i^e(\bar{\mathbf{x}})$$

Finite-Element Method (FEM)

Polyhedral Elements

Traditional FEM simulations in computer graphics

- Rely on strictly tetrahedral or hexahedral meshes
- Require complex remeshing in case of topological changes
- Support more general convex polyhedral elements in finite element simulations
- Using harmonic coordinates

Harmonic Basis Functions

A generalization of

- Linear barycentric basis functions to general polyhedral elements
- A shape function is harmonic if its Laplacian vanishes in e

$$\Delta N_i^e(\bar{\mathbf{x}}) = 0,$$
 for $\bar{\mathbf{x}} \in e,$ $N_i^e(\bar{\mathbf{x}}) = b_i(\bar{\mathbf{x}}),$ for $\bar{\mathbf{x}} \in \partial e.$

$$N_i^e(\bar{\mathbf{x}}_j) = \delta_{ij} \quad \forall i, j = 1, ..., k$$
 $N_i^{e_1}(\bar{\mathbf{x}}) = N_i^{e_2}(\bar{\mathbf{x}}) \quad \text{for} \quad \bar{\mathbf{x}} \in e_1 \cap e_2$

Harmonic Basis Functions

Illustration

• Different element boundary conditions

Numerical Approximation

- Closed form expressions for harmonic basis functions
 - Exist for simple element shapes only
- For more general elements
 - Have to be computed numerically
 - Method of Fundamental Solutions

$$N(\bar{\mathbf{x}}) = \sum_{j=1}^{n} w_j \cdot \psi(\|\bar{\mathbf{x}} - \mathbf{k}_j\|) + \mathbf{a}_1^T \bar{\mathbf{x}} + a_0$$

• The kernel function ψ is chosen as fundamental solution of the Laplace PDE

$$\psi(r) = \log r$$
 in 2D and $\psi(r) = 1/r$ in 3D

IV. Unifying Resultant-based Models

Unifying Resultant-based Models

Resultant-based models

- Only valid for single types of geometry (thin shell or rod)
- Handle all three types in an unified manner?

Consider a volumetric point-like solid

- Extent along all three directions is small
- Strain in the vicinity of this point will measure
 - Linear deformations: stretch and shear at the center
 - Quadratic deformations: bending and twist along all three "normal" directions

Linearizing strain

Employ curvilinear coordinates describe an elaston centered at

$$\theta_0 = (0,0,0)$$

- First-order Taylor approximation of positions and displacements
 - In all three normal directions

$$\bar{\mathbf{x}}(\boldsymbol{\theta}) \approx \bar{\mathbf{x}}(\boldsymbol{\theta}_0) + \sum_{k=1}^{3} \theta_k \bar{\mathbf{x}}_{,k}(\boldsymbol{\theta}_0)$$

$$\mathbf{u}(\boldsymbol{\theta}) \approx \mathbf{u}(\boldsymbol{\theta}_0) + \sum_{k=1}^{3} \theta_k \mathbf{u}_{,k}(\boldsymbol{\theta}_0)$$

Linearizing strain

Strain centered about the elaston

In centered about the elaston
$$\bar{\mathbf{x}}(\boldsymbol{\theta}) \approx \bar{\mathbf{x}}(\boldsymbol{\theta}_0) + \sum_{k=1}^3 \theta_k \bar{\mathbf{x}}_{,k}(\boldsymbol{\theta}_0)$$

$$\bar{\mathbf{e}}_{ij} = \frac{1}{2} \left(\mathbf{u}_{,i} \cdot \bar{\mathbf{x}}_{,j} + \bar{\mathbf{x}}_{,i} \cdot \mathbf{u}_{,j} \right) + \mathbf{u}(\boldsymbol{\theta}) \approx \mathbf{u}(\boldsymbol{\theta}_0) + \sum_{k=1}^3 \theta_k \mathbf{u}_{,k}(\boldsymbol{\theta}_0)$$

$$\bar{\boldsymbol{e}}(\boldsymbol{\theta}) \approx \boldsymbol{\alpha}(\boldsymbol{\theta}_0) + \sum_{k=1}^3 \theta_k \boldsymbol{\beta}^k(\boldsymbol{\theta}_0)$$
 laturally generalizes its shell and rod analogues.

- Naturally generalizes its shell and rod analogues
- Capture stretching, shearing, bending, and twisting along all three axes

Energy integration

Integral over the elaston's volume

$$\boldsymbol{\epsilon}(\boldsymbol{\theta}) \approx \boldsymbol{\alpha}(\boldsymbol{\theta}_0) + \sum_{k=1}^{3} \theta_k \boldsymbol{\beta}^k(\boldsymbol{\theta}_0) \quad \boldsymbol{\sigma} = \mathbf{C} : \boldsymbol{\epsilon} \quad W_{int}(\mathbf{u}) = \int_{\Omega} \boldsymbol{\epsilon}(\mathbf{u}) : \boldsymbol{\sigma}(\mathbf{u}) d\Omega$$

$$\boldsymbol{W} = \frac{1}{2} \int_{\Omega_e} \left(\boldsymbol{\alpha}(\boldsymbol{\theta}_0) + \sum_{k=1}^{3} \theta_k \boldsymbol{\beta}^k(\boldsymbol{\theta}_0) \right) : \mathbf{C} : \left(\boldsymbol{\alpha}(\boldsymbol{\theta}_0) + \sum_{k=1}^{3} \theta_k \boldsymbol{\beta}^k(\boldsymbol{\theta}_0) \right) d\Omega$$

- All three directions have thin extent
 - Analytically integrate

$$W = \frac{V}{2} \left(\boldsymbol{\alpha}(\boldsymbol{\theta}_0) : \mathbf{C} : \boldsymbol{\alpha}(\boldsymbol{\theta}_0) + \sum_{k=1}^{3} \frac{h_k^2}{12} \boldsymbol{\beta}^k(\boldsymbol{\theta}_0) : \mathbf{C} : \boldsymbol{\beta}^k(\boldsymbol{\theta}_0) \right) \qquad V = h_1 h_2 h_3$$

Basic building blocks

• For assembling the elastic energy of any deformable object, independent of its form

Summing up: a new integration rule

- The classical goal of resultant-based model
 - Reduce the dimensionality of the model
 - Simplify its numerical treatment
 - Energy integration can be performed analytically
- Elastons offer the most general integration rule
 - Approximate the stored elastic energy of rods, shells, or solids, respectively

$$W_{int}(\mathbf{u}) = \int_{\Omega} \boldsymbol{\epsilon}(\mathbf{u}) : \sigma(\mathbf{u}) d\Omega \quad \longrightarrow \quad W = \sum_{e \in \mathcal{E}} \frac{V^e}{2} \left(\boldsymbol{\alpha}^e : \mathbf{C} : \boldsymbol{\alpha}^e + \sum_{k=1}^3 \frac{(h_k^e)^2}{12} \boldsymbol{\beta}^{ke} : \mathbf{C} : \boldsymbol{\beta}^{ke} \right)$$

- Summing up: a new integration rule
 - Further requirements for integration rule in simulations
 - The elastons have to sample the material sufficiently densely
 - · All relevant deformations are measured
 - An admissible basis of the solution space
 - Basis functions must now be twice differentiable in order to be able to measure bending strains
 - Reproduce constant and linear functions for accurate preservation of linear and angular momenta

V. Mesh-Free Methods

Meshfree Method

Drawback of FEM mesh-based approach

- Not always the optimal choice
 - Undergoes large, possibly plastic, deformations
 - Distorted meshes need to be adapted in order to maintain quality and accuracy

Point-based discretization

- Allow for the simplest possible discretization structure (sampling)
- Use of moving least squares (MLS) as scattered data interpolation procedure

- A method for scattered data interpolation
 - Assume sample points $\bar{\mathbf{x}}_1, \dots, \bar{\mathbf{x}}_n$
 - Each with an associated function value $\mathbf{u}_i \in \mathbb{R}^3$
 - Around a given point
 - Local polynomial approximation of displacement field

$$\mathbf{a}(\mathbf{\hat{x}})^T\mathbf{p}(\mathbf{\bar{x}})$$

• Using a weight function of the form $w(\bar{\mathbf{x}} - \bar{\mathbf{x}}_i)$ $w(\mathbf{d}) = (1 - \|\mathbf{d}\|^2)^3$

- A method for scattered data interpolation
 - Define error function

$$J(\mathbf{a}(\hat{\mathbf{x}})) = \frac{1}{2} \sum_{i=1}^{n} w(\hat{\mathbf{x}} - \bar{\mathbf{x}}_i) \left\| \mathbf{a}^T \mathbf{p}(\bar{\mathbf{x}}_i) - \mathbf{u}_i \right\|^2$$

The derivative of the error function is

$$\frac{\partial J}{\partial \mathbf{a}(\hat{\mathbf{x}})} = \sum_{i=1}^{n} w(\hat{\mathbf{x}} - \bar{\mathbf{x}}_i) \mathbf{p}(\bar{\mathbf{x}}_i) (\mathbf{a}(\hat{\mathbf{x}})^T \mathbf{p}(\bar{\mathbf{x}}_i) - \mathbf{u}_i)$$

Setting it to zero and solving the system for the coefficient vector yields

$$\mathbf{a}(\hat{\mathbf{x}}) = (\sum_{i=1}^{n} w(\hat{\mathbf{x}} - \bar{\mathbf{x}}_i) \mathbf{p}(\bar{\mathbf{x}}_i) \mathbf{p}(\bar{\mathbf{x}}_i)^T)^{-1} \sum_{i=1}^{n} w(\hat{\mathbf{x}} - \bar{\mathbf{x}}_i) \mathbf{p}(\bar{\mathbf{x}}_i) \mathbf{u}_i$$

- A method for scattered data interpolation
 - Insert into the polynomial to obtain the approximation

$$\mathbf{a}(\hat{\mathbf{x}})^T \mathbf{p}(\bar{\mathbf{x}}) \longleftarrow \mathbf{a}(\hat{\bar{\mathbf{x}}}) = (\sum_{i=1}^n w(\hat{\bar{\mathbf{x}}} - \bar{\mathbf{x}}_i) \mathbf{p}(\bar{\mathbf{x}}_i) \mathbf{p}(\bar{\mathbf{x}}_i)^T)^{-1} \sum_{i=1}^n w(\hat{\bar{\mathbf{x}}} - \bar{\mathbf{x}}_i) \mathbf{p}(\bar{\mathbf{x}}_i) \mathbf{u}_i$$

$$\mathbf{u}(\bar{\mathbf{x}}) = \mathbf{p}(\bar{\mathbf{x}})^T (\sum_{i=1}^n w(\hat{\bar{\mathbf{x}}} - \bar{\mathbf{x}}_i) \mathbf{p}(\bar{\mathbf{x}}_i) \mathbf{p}(\bar{\mathbf{x}}_i)^T)^{-1} \sum_{i=1}^n w(\hat{\bar{\mathbf{x}}} - \bar{\mathbf{x}}_i) \mathbf{p}(\bar{\mathbf{x}}_i) \mathbf{u}_i$$

A simple example of a linear 1D MLS fit

A point-based discretization

- Compatible with our thinking of elastons as "elastic points"
- Take advantage of elastons to local form, topology, etc.

Limitation of the classical MLS

- To guarantee an invertible matrix $G(\bar{x})$
 - Sufficiently many samples
 - Must not be co-linear or co-planar

Motivation for GMLS

- Pursue a simpler approach
- An extension of classical MLS

Linear GMLS

- Linear polynomial fitting
- Fit also to the additional first derivative

$$J(\mathbf{a}(\hat{\bar{\mathbf{x}}})) = \frac{1}{2} \sum_{i=1}^{n} w(\hat{\bar{\mathbf{x}}} - \bar{\mathbf{x}}_i) \left\| \mathbf{a}^T \mathbf{p}(\bar{\mathbf{x}}_i) - \mathbf{u}_i \right\|^2 + \sum_{i=1}^{n} \sum_{j=1}^{3} w(\bar{\mathbf{x}} - \bar{\mathbf{x}}_i) \left\| \mathbf{a}^T \mathbf{p}_{,j}(\bar{\mathbf{x}}_i) - \mathbf{u}_{i,j} \right\|^2$$

$$\sum_{i=1}^{n} \sum_{j=1}^{3} w(\bar{\mathbf{x}} - \bar{\mathbf{x}}_i) \left\| \mathbf{a}^T \mathbf{p}_{,j}(\bar{\mathbf{x}}_i) - \mathbf{u}_{i,j} \right\|^2$$

$$\mathbf{u}(\bar{\mathbf{x}}) = \sum_{i=1}^{n} \left[\mathbf{u}_i N_i(\bar{\mathbf{x}}) + \sum_{j=1}^{3} \mathbf{u}_{i,j} N_i^j(\bar{\mathbf{x}}) \right]$$

$$\mathbf{u}(\bar{\mathbf{x}}) = \sum_{i=1}^{n} \left[\mathbf{u}_{i} N_{i}(\bar{\mathbf{x}}) + \sum_{j=1}^{3} \mathbf{u}_{i,j} N_{i}^{j}(\bar{\mathbf{x}}) \right]$$

$$\mathbf{G}(\bar{\mathbf{x}}) = \sum_{i=1}^{n} w(\bar{\mathbf{x}} - \bar{\mathbf{x}}_{i}) \left[\mathbf{p}(\bar{\mathbf{x}}_{i}) \mathbf{p}(\bar{\mathbf{x}}_{i})^{T} + \sum_{j=1}^{3} \mathbf{p}_{,j}(\bar{\mathbf{x}}_{i}) \mathbf{p}_{,j}(\bar{\mathbf{x}}_{i})^{T} \right]$$

Quadratic GMLS

- For higher accuracy and faster convergence, consider second order derivative
- Use a quadratic polynomial $\mathbf{p}(\bar{\mathbf{x}}) = (1, \bar{x}, \bar{y}, \bar{z}, \bar{x}\bar{x}, \bar{x}\bar{y}, \bar{x}\bar{z}, \bar{y}\bar{y}, \bar{y}\bar{z}, \bar{z}\bar{z})^T$
- Add a third error term to the objective

$$\sum_{i=1}^{n} \sum_{j,k=1}^{3} w(\bar{\mathbf{x}} - \bar{\mathbf{x}}_i) \left\| \mathbf{a}^T \mathbf{p}_{,jk}(\bar{\mathbf{x}}_i) - \mathbf{u}_{i,jk} \right\|^2$$

$$\mathbf{u}(\bar{\mathbf{x}}) = \sum_{i=1}^{n} \left[\mathbf{u}_i N_i(\bar{\mathbf{x}}) + \sum_{j=1}^{3} \mathbf{u}_{i,j} N_i^j(\bar{\mathbf{x}}) + \sum_{j,k=1}^{3} \mathbf{u}_{i,jk} N_i^{jk}(\bar{\mathbf{x}}) \right]$$

$$N_i^{jk}(\bar{\mathbf{x}}) = \mathbf{p}(\bar{\mathbf{x}})^T \mathbf{G}^{-1}(\bar{\mathbf{x}}) \mathbf{p}_{,jk}(\bar{\mathbf{x}}_i) w(\bar{\mathbf{x}} - \bar{\mathbf{x}}_i)$$

Implementation

Sampling

- Given an input cloud
 - Generate the positions of GMLS sample points

$$\left\{ \mathbf{\bar{x}}_{1},\ldots\mathbf{\bar{x}}_{n}\right\}$$

Generate the positions of elaston centers

$$\{\mathbf{e}_1,\ldots,\mathbf{e}_m\}$$

- Sub-sampling the dense material point set
- The material is partitioned into

$$\mathcal{M}_1 \cup \cdots \cup \mathcal{M}_n$$

- Associate each material point $\mathbf{m}_j \in \mathcal{M}$ to its closest sample
- Iterate until convergence $\bar{\mathbf{x}}_i$

Extensions

Plasticity

- Plasticity model
 - Define plastic membrane and bending strain variables for each elaston
 - Define the effective elastic strain
- $\boldsymbol{\alpha}_p, \boldsymbol{\beta}_p^k$
- Taking the difference between the measured geometric strains and the stored plastic strains

$$\boldsymbol{\alpha}_e = \boldsymbol{\alpha}_g - \boldsymbol{\alpha}_p$$
, $\boldsymbol{\beta}_e^k = \boldsymbol{\beta}_g^k - \boldsymbol{\beta}_p^k$

• New elastic energy stored in a single elaston $W_e = \frac{V}{2} \left(\alpha_e : \mathbf{C} : \alpha_e + \sum_{k=1}^3 \frac{(h_k^e)^2}{12} \beta_e^k : \mathbf{C} : \beta_e^k \right)$

Cylinder compression

 A cylinder shows the typical buckling patterns as it is getting more and more compressed.

Twisting a thin rod

Complex interaction between different types of geometry

Ball drop and elasto-plastic cuboid

• Fish model and elasto-plastic bunnies

VI. Art-Directable Elastic Potentials

Art-Directable Elastic Potentials

Control the deformation

- Classical deformation mainly driven by the chosen material model and its parameter values
- Often, an artist starts with a vision on how an object should deform
- Setting up a specialized elastic model to follow the preferred example poses

Example Manifold

- Example manifold by example interpolation
 - Interpolate between these examples by interpolating their descriptors

Example Manifold

Example manifold by example interpolation

- The interpolated descriptor is generally not realizable
 - Find the closest realizable strain $\mathbf{E}(\mathbf{x}_w) \in \mathcal{F}$ and corresponding configuration
 - Solve the least squares minimization

$$\min_{\mathbf{x}_w} W_I(\mathbf{x}_w, w) = \min_{\mathbf{x}_w} \frac{1}{2} |\mathbf{E}(\mathbf{x}_w) - \mathbf{E}(w)|_F^2$$

- $|\cdot|_F$: Frobenius norms of the elemental strain tensors
- Generalize to an arbitrary number of poses n

$$\mathbf{E}(\mathbf{w}) = \sum_{i}^{n} w_{i} \mathbf{E}_{i}$$

- Compressed sneaker simulated as a coarse solid
 - Without examples (left) and augmented with two local examples (right)

Example-Based Elastic Materials

Sebastian Martin¹, Bernhard Thomaszewski^{1,2}, Eitan Grinspun³, Markus Gross^{1,2}

¹ETH Zurich ²Disney Research Zurich ³Columbia University

Next Lecture: Fluid Simulation I