Mergeable Heaps

A mergeable heap is any data structure that supports the following five operations, in which each element has a key:

MAKE-HEAP (): Creates and returns a new heap containing no elements.

INSERT(H, x): Inserts element x, whose key has already been filled in, into heap H.

MINIMUM(H): Returns a pointer to the element in heap H whose key is minimum.

EXTRACT-MIN(H): Deletes the element from heap H whose key is minimum, returning a pointer to the element.

UNION(H1, H2): Creates and returns a new heap that contains all the elements of heaps H1 and H2. Heaps H1 and H2 are "destroyed" by this operation.

Mergeable Heaps

In addition to the mergeable-heap operations above, Fibonacci heaps also support the following two operations:

DECREASE-KEY(H.x, k): Assigns to element x within heap H the new key value k, which we assume to be no greater than its current key value.

DELETE(H, x): Deletes element x from heap H.

Mergeable Heaps Implementation Cost

Operations	Binary heap (Worst)	Fibonacci heap(amortized)
Make-Heap	θ(1)	θ(1)
Insert	θ(log n)	θ(1)
Minimum	θ(1)	θ(1)
Extract-Min	θ(log n)	θ(log n)
Union	$\theta(n)$	θ(1)
Decrease-Key	θ(log n)	θ(1)
Delete	θ(log n)	θ(log n)

Fibonacci Heaps: Structure

Fibonacci heap.

each parent larger than its children

- Set of heap-ordered trees.
- Maintain pointer to minimum element.
- Set of marked nodes.

Fibonacci Heaps: Structure

Fibonacci heap.

- Set of heap-ordered trees.
- Maintain pointer to minimum element.
- Set of marked nodes.
 find-min takes O(1) time

Fibonacci Heaps: Structure

Fibonacci heap.

- Set of heap-ordered trees.
- Maintain pointer to minimum element.
- Set of marked nodes.

use to keep heaps flat

Fibonacci Heaps: Structure Implementation

Fibonacci Heaps: Notation

Notation.

- = number of nodes in heap. n
- rank(x) = number of children of node x.
- rank(H) = max rank of any node in heap H.
- trees(H) = number of trees in heap H.
- marks(H) = number of marked nodes in heap H.

Fibonacci Heaps: Potential Function

$$\Phi(H) = trees(H) + 2 \cdot marks(H)$$

potential of heap H

Make-Heap (Fibonacci heap)

To make an empty Fibonacci heap, the MAKE-FIB-HEAP procedure allocates and returns the Fibonacci heap object H, where H.n=0 and H.min=NIL; there are no trees in H. Because t(H)=0 and m(H)=0, the potential of the empty Fibonacci heap is $\Phi(H)=0$. The amortized cost of MAKE-FIB-HEAP is thus equal to its O(1) actual cost.

Insert

Fibonacci Heaps: Insert

Insert.

- Create a new singleton tree.
- Add to root list; update min pointer (if necessary).

Fibonacci Heaps: Insert

Insert.

- Create a new singleton tree.
- Add to root list; update min pointer (if necessary).

insert 21

Fibonacci Heaps: Insert Analysis

Actual cost. O(1)

$$\Phi(H) = trees(H) + 2 \cdot marks(H)$$

Change in potential. +1

potential of heap H

Amortized cost. O(1)

Delete Min

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

Delete min.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

link 23 into 17

Delete min.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

link 17 into 7

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

link 24 into 7

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

Decrease Key

Intuition for decreasing the key of node x.

- If heap-order is not violated, just decrease the key of x.
- Otherwise, cut tree rooted at x and meld into root list.
- To keep trees flat: as soon as a node has its second child cut, cut it off and meld into root list (and unmark it).

Case 1. [heap order not violated]

- Decrease key of x.
- Change heap min pointer (if necessary).

Case 1. [heap order not violated]

- Decrease key of x.
- Change heap min pointer (if necessary).

Case 2a. [heap order violated]

- Decrease key of x.
- Cut tree rooted at x, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it;
 Otherwise, cut p, meld into root list, and unmark
 (and do so recursively for all ancestors that lose a second child).

- Decrease key of x.
- Cut tree rooted at x, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it;
 Otherwise, cut p, meld into root list, and unmark
 (and do so recursively for all ancestors that lose a second child).

- Decrease key of x.
- Cut tree rooted at x, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it;
 Otherwise, cut p, meld into root list, and unmark
 (and do so recursively for all ancestors that lose a second child).

- Decrease key of x.
- Cut tree rooted at x, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it;
 Otherwise, cut p, meld into root list, and unmark
 (and do so recursively for all ancestors that lose a second child).

- Decrease key of x.
- Cut tree rooted at x, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it;
 Otherwise, cut p, meld into root list, and unmark
 (and do so recursively for all ancestors that lose a second child).

- Decrease key of x.
- Cut tree rooted at x, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it;
 Otherwise, cut p, meld into root list, and unmark
 (and do so recursively for all ancestors that lose a second child).

- Decrease key of x.
- Cut tree rooted at x, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it;
 Otherwise, cut p, meld into root list, and unmark
 (and do so recursively for all ancestors that lose a second child).

- Decrease key of x.
- Cut tree rooted at x, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it;
 Otherwise, cut p, meld into root list, and unmark

 (and do so recursively for all ancestors that lose a second child).

- Decrease key of x.
- Cut tree rooted at x, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it;
 Otherwise, cut p, meld into root list, and unmark

 (and do so recursively for all ancestors that lose a second child).

- Decrease key of x.
- Cut tree rooted at x, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it;
 Otherwise, cut p, meld into root list, and unmark
 (and do so recursively for all ancestors that lose a second child).

Case 2b. [heap order violated]

- Decrease key of x.
- Cut tree rooted at x, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it;
 Otherwise, cut p, meld into root list, and unmark

(and do so recursively for all ancestors that lose a second child).

Analysis

Analysis Summary

Insert. O(1)

Delete-min. O(rank(H)) †

Decrease-key. O(1) †

† amortized

Key lemma. $rank(H) = O(\log n)$.

number of nodes is exponential in rank

Union

Fibonacci Heaps: Union

Union. Combine two Fibonacci heaps.

Representation. Root lists are circular, doubly linked lists.

Fibonacci Heaps: Union

Union. Combine two Fibonacci heaps.

Representation. Root lists are circular, doubly linked lists.

Fibonacci Heaps: Union

Actual cost. O(1)

 $\Phi(H) = trees(H) + 2 \cdot marks(H)$

Change in potential. 0

potential function

Amortized cost. O(1)

Delete

Fibonacci Heaps: Delete

Delete node x.

- *decrease-key* of x to $-\infty$.
- delete-min element in heap.

$$\Phi(H) = trees(H) + 2 \cdot marks(H)$$

potential function

Amortized cost. O(rank(H))

- O(1) amortized for decrease-key.
- O(rank(H)) amortized for delete-min.

Priority Queues Performance Cost Summary

Operation	Linked List	Binary Heap	Binomial Heap	Fibonacci Heap †	Relaxed Heap
make-heap	1	1	1	1	1
is-empty	1	1	1	1	1
insert	1	log n	log n	1	1
delete-min	n	log n	log n	log n	log n
decrease-key	n	log n	log n	1	1
delete	n	log n	log n	log n	log n
union	1	n	log n	1	1
find-min	n	1	log n	1	1

n = number of elements in priority queue

† amortized