Solid Mechanics Coursework

(Three-Point Bending/ Flexural Test)

Zhan RuiXin 710082148

2 December, 2022

Abstract

Abstrac/Outline

- 1 Section 1
- 1.1 Subsection 1.1
- 2 Section 2
- 2.1 Subsection 2.1
- 2.2 Subsection 2.2
- 3 Section 3
- 3.1 Subsection 3.1
- 3.2 Subsection 3.1
- 4 Section 4
- 4.1 Subsection 4.1
- 4.2 Subsection 4.2
- 5 Section 5
- 5.1 Subsection 5.1
- 5.2 Subsection 5.2

References

- [1] Text
- [2] URL

6 Example

This section includes some examples that are not commonly used

6.1 Enumerate

- 1. 1
- 2. 2
- 3. 3
- 4. 4

itemize

- 1
- 2
- 3
- 4

6.2 Table

6.2.1 Tables side by side

Table 6.1: Difference of Mild Steel

Loading	Difference	Difference rate
50N	0.01906 mm	16.5681%
100N	0.03803 mm	16.5298%
150N	0.05709 mm	16.5426%
Average		16.55%

Table 6.2: Difference of Alminium

Loading	Difference	Difference rate
50N	0.03944 mm	12.1856%
100N	0.07887 mm	12.1839%
150N	0.11831 mm	12.1845%
Average		12.18%

6.2.2 General table

Table 6.3: The value of C_L

Value\Degree	0	5	10	15	17.5	20	22.5	25
C_L	0.034	-0.378	-0.658	-0.892	-0.954	-0.747	-0.717	-0.702

6.3 Picture

6.3.1 Pictures side by side

Images side-by-side, each with its own subheading but sharing large headings and tags

Figure 6.1: Results of experiments with Steel and Aluminium

6.3.2 picture name adjust

Table 2.1 Result of the maximum bending displacements

Bending Displacement	Mild Steel	Aluminium
$\delta_{AN_{-1}}$ (P = 50 N)	0.1341 mm	0.3631 mm
$\delta_{AN_2} (P = 100 N)$	0.2681 mm	0.7262 mm
$\delta_{AN_3} (P = 150 N)$	0.4022 mm	1.0893 mm

6.4 Equation

Editing by Axmath or python pix2tex (cmd input latexocr if you have been install pix2tex in your system)

$$\delta_{An_{1}} = \frac{P_{50N}L^{3}}{48E_{s}I} = \frac{50\times0.1^{3}}{48\times172.6698\times10^{9}\times4.5\times10^{-11}} = 0.1341\times10^{-3}m$$

$$\delta_{An_{2}} = \frac{P_{100N}L^{3}}{48E_{s}I} = \frac{100\times0.1^{3}}{48\times172.6698\times10^{9}\times4.5\times10^{-11}} = 0.2681\times10^{-3}m$$

$$\delta_{An_{3}} = \frac{P_{150N}L^{3}}{48E_{s}I} = \frac{150\times0.1^{3}}{48\times172.6698\times10^{9}\times4.5\times10^{-11}} = 0.4022\times10^{-3}m$$
(6.1)