Spread of Infectious Diseases with Finite Infectious Period on Temporal Networks

A. Koher, L. Willareth, H. Lentz, I.M. Sokolov

Humboldt-Universität zu Berlin Institut für Physik

9. Dezember 2014

What is a Temporal Network?

 $\{A_0, A_1, ..., A_T\}$

An Epidemiological Toy-Model

Rules for an SIR-Model:

An Epidemiological Toy-Model

Rules for an SIR-Model:

One possible Realisation

An Epidemiological Toy-Model

Rules for an SIR-Model:

One possible Realisation

Finte Waiting Time

$$I^*(T+1) = \sum_{t=0}^N A_{T+1} \cdot I(T-t)$$

Finte Waiting Time

$$I^*(T+1) = \sum_{t=0}^{N} A_{T+1} \cdot I(T-t)$$

$$I^*(T+1) = \bigvee_{t=0}^{N} A_{T+1} \cdot I(T-t)$$

No Loops

```
I_{ij}(T) = \left\{egin{array}{ll} 1 & 	ext{if } I_{ij}(t < T) 
eq 1 \ 0 & 	ext{otherwise} \end{array}
ight.
```

No Loops

$$I_{ij}(T) = \begin{cases} 1 & \text{if } I_{ij}(t < T) \neq 1 \\ 0 & \text{otherwise} \end{cases}$$

$$I_{ij}(T) \wedge \overline{I_{ij}(T-1)} \wedge ... \wedge \overline{I_{ij}(0)}$$

No Loops

$$I_{ij}(T) = \left\{ egin{array}{ll} 1 & ext{if } I_{ij}(t < T)
eq 1 \ 0 & ext{otherwise} \end{array}
ight. \quad I_{ij}(T) \wedge \overline{I_{ij}(T-1)} \wedge ... \wedge \overline{I_{ij}(0)}
ight.$$

$$I(T+1) = I^*(T+1) \wedge \bigwedge_{t=0}^T \overline{I(T-t)}$$

$$I(T+1) = \bigvee_{t=0}^{N} A_{T+1} \cdot I(T-t) \wedge \bigwedge_{t=0}^{T} \overline{I(T-t)}$$
 $I(0) = 1$

Visualization

$$\rho(I_T) = \frac{\mathsf{nnz}(I_T)}{\mathsf{dim}^2(I_T)}$$

 $\langle \#$ of newly infected individuals \rangle

Incidence

 $\frac{\#\ \underline{\text{newly}}\ \text{infected}}{\text{individuals}}$

I(T)

Accumulated Incidence

 $\begin{tabular}{ll} \# \mbox{ of infected individuals} \\ \mbox{ up to time } T \end{tabular}$

$$C(T) = \bigvee_{t=0}^{T} I(t)$$

Accumulated Incidence

of infected individuals up to time T

$$C(T) = \bigvee_{t=0}^{T} I(t)$$

Prevalence

of infected individuals at time T

$$P(T) = \bigvee_{t=0}^{N} I(T-t)$$

Prevalence

of infected individuals at time T

$$P(T) = \bigvee_{t=0}^{N} I(T-t)$$

Summary

We present a compact matrix formalism:

$$(A_1,A_2,...,A_T)$$
 $ightarrow$ $ightharpoonup Model $ightharpoonup A$ Reachability Matrix $ightharpoonup SIR$, $ightharpoonup Infectious$ $ightharpoonup A$ $ightharpoonup A$$

Thank you!