Expectation-Maximization and Clustering Machine Learning

Overview

- Expectation-Maximization Framework.
- Clustering framework.
- Expectation-Maximization Clustering.
- Clustering and Dimensionality Reduction.

Expectation-Maximization Algorithm

- TL;DR: An algorithm to efficiently iteratively find maximum likelihood estimators.
- Given:
 - A family of distributions $\mathcal{M} = \{\mu_{\lambda} : \lambda \in \Lambda\}$ over \mathcal{Z} with known densities $p_{Z|\Lambda}(z \mid \lambda)$.
 - A dataset $s_{X:\text{train}} \sim \mu_{\lambda_{+}:X}$ with hidden labels.
- Idea: Use $\mathbb{E}_y[\log(p_{Z|\Lambda}(x,y|\lambda))]$ as a proxy for $\log(p_{X|\Lambda}(x|\lambda))$. (Provably good.)
- "Simple" alternating optimization scheme:

Input: A distribution family \mathcal{M} , a dataset $s_{X:\text{train}}$, a large integer horizon T.

Output: An estimate $\widehat{\lambda}$ for λ_{\star} .

 $\lambda_1 \leftarrow$ any element of Λ .

for
$$t \in [T]$$
 do

$$Q(\lambda \mid \lambda_t) \leftarrow \sum_{i=1}^n \mathbb{E}_{y \sim \mu_{Y\mid X, \Lambda}(\cdot \mid x_i, \lambda_t)} \Big[\log \big(p_{Z\mid \Lambda}(x_i, y \mid \lambda) \big) \mid x_i, \lambda \Big] \qquad \triangleright \text{ Expectation.}$$

$$\lambda_{t+1} \leftarrow \operatorname{argmax}_{\lambda \in \Lambda} Q(\lambda \mid \lambda_t) \qquad \qquad \triangleright \text{ Maximization.}$$

return
$$\lambda_{T+1}$$

Clustering

Clustering Setting

- Have data $s_{\text{train};X} \sim \mu_X$.
- Want to place data into clusters (sets of data points).
- Then we can say things about:
 - Existing data, based on which cluster it is in.
 - New data, by placing it into a cluster and making the same inference.
- Useful for:
 - Prediction (i.e. predict based on average prediction in the cluster)
 - Multi-modal statistics (learning the modes of the distribution in an unsupervised way).

EM For Mixture Model Clustering

- Let's introduce a hidden "label" such that y_i denotes the cluster of x_i .
- Let each μ_{λ} be a distribution with known density. Normal distribution is popular.
- Furthermore, let's let \mathcal{M} be a family of mixtures of k distributions:

$$\mathcal{M} = \left\{ \sum_{i=1}^k \alpha_i \mu_{\lambda_i} : \lambda_1, \dots, \lambda_k \in \Lambda, \alpha_1, \dots, \alpha_k \in [0, 1], \sum_{i=1}^k \alpha_i = 1 \right\}.$$

If $x \sim \sum_{i=1}^k \alpha_i \mu_{\lambda_i}$ then $p_Y(y_i) = \alpha_i$ and $p_{X|Y}(x \mid y_i) \sim \mu_{\lambda_i}$. Thus we jointly estimate the parameters α and λ . This is a **mixture model**.

• Apply EM algorithm to recover the estimated $\widehat{\alpha}$, $\widehat{\lambda}$ that allows us to estimate a new y for a given x by maximizing $p_{Y|X}(y \mid x, \widehat{\alpha}, \widehat{\lambda})$.

Clustering and Dimensionality Reduction

Curse of Dimensionality

A phenomenon where in high-dimensional space, not all regions of space are represented, even by a huge data set. The amount of training data to ensure "good" generalization is often exponential in the feature dimension.

- Hence, EM clustering might fail to work well (Gaussian/Laplace dimensions have density as a monotone function of distance in \mathbb{R}^d).
- Solution: Do smart, data-driven dimensionality reduction, such as PCA.
 - Random projections fail because most likely we get a random direction with sparse variation.
- Then, cluster the projections onto the principal components.