Reg. No

B.Tech DEGREE EXAMINATION, JUNE 2024

Third & Fifth Semester

18CSC203J - COMPUTER ORGANIZATION AND ARCHITECTURE

(For the candidates admitted during the academic year 2018-2019 to 2021-2022)

Note:

i. Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.

ii. Pa	art - B and Part - C should be answered in a	answer booklet.			
Time	e: 3 Hours		Max.	Marks	: 100
	PART - A (20 × 1 = Answer all Que		Mar	ks BL	CC
1.	The program counter is used to store the _ (A) Next (C) Last	instruction address to be executed. (B) Previous (D) Present	1	1	1
2.	The condition flag C is set to 1 to indicate (A) There is no empty register available		1	2	1
	(C) The result has a carry output	(D) The operation has resulted in an error			
3.	Which of the following contains circuitry multiplication, etc? (A) Arithmetic and logic unit (C) Memory unit	(B) Input / Output unit (D) Control unit	, 1	1	1
4.	The addressing mode/s, which uses the P (A) Indirect (C) Relative	PC instead of a general-purpose register is (B) Direct (D) Indexed with offset	1 -	2	1
5.	from location 2000h using little endian for are	byte addressable memory system starting rmat. The memory locations 2000h, 2001h (B) A1h, and 54h respectively (D) 45h, and 1Ah respectively		3	1
6.	Subtracting -5 and -2 using 2'complement (A) 11001 (C) 1101	method gives (B) 1011 (D) 1001	1	3	2
7.	Consider multiplication of two-bit number gates required in the circuit while implementate (A) 5 (C) 8	ers B1B0 and A1A0. The number of AND nenting the design in paper pencil method (B) 10 (D) 4	1	3	2
8.	In shift and add multiplication, consider A and Multiplicand (B) = 1001. The shift rig (A) 0110 (C) 1100	ht A to Q operation changes the Q as (B) 1111 (D) 0000	, 1	3	2
9.	Number of Half-adders required in the des (A) 4 (C) 2	ign of 2-bit ripple carry adder is (B) 6 (D) 8	1	1	2

10.	Ripple carry adder, each adder has to wait for the carry from the previous stage; s leads to			2	2
	(A) Low power consumption of adder (C) Increased propagation delay	(B) decreased propagation delay(D) High speed of the ripple adder			
11.	The two phases of executing an instruction (A) Instruction decoding and storage	(B) Instruction fetch and Instruction	1	1	3
	(C) Instruction execution and storage	processing (D) Instruction fetch and instruction execution			
12.	When using Branching, the usual sequencing of the PC is altered. A new instruction is loaded which is called as			2	3
	(A) Branch target (C) Forward target	(B) Jump instruction (D) Loop target			
13.	In micro-programmed approach, the signal (A) Utility tools (C) Machine instructions	s are generated by (B) Assembly language (D) System programs	1	2	3
14.	are the different type/s of general (A) Micro-programmed		Ĭ	1	4
	(C) Micro-instruction	(D) Hardwired			
15.	The disadvantages of the hardwired approa (A) It is less flexible	(B) less flexible & cannot be used for	1	1	4
	(11) to 15 1655 Heatote	complex instructions			
	(C) It is costly	(D) It cannot be used for complex instructions			
16.	taxonomy distinguishes according to instruction and data stream.	multi-processor computer architecture	1	2	4
	(A) Reader-writer classification(C) Philosopher's classification	(B) Banker's classification(D) Flynn's classification			
17.	SIMD represents an organization that	(D) Yd., d	1	1	5
	(A) Refer to a system capable of processing single program at a same time	(B) Includes many processing units under the supervision of common control unit			
	(C) Represents organization of single computer containing a control unit, and processor unit	(D) A computer system that is capable of processing several programs at a same time			
18.	The access time of static RAM's are in the		1	2	5
	(A) Seconds (C) Pico seconds	(B) Milli seconds (D) Nano seconds			
19.	The latency that measures the time taken memory is		1	2	5
	(A) Data delay (C) Memory latency	(B) Clock period (D) Memory bandwidth			
20.	MFC is used to		1	1	6
	(A) Assign a device to perform the read operation	(B) Signal the processor the memory operation is complete			
	(C) Signal to the device that the memory read operation is complete	(D) Issue a read signal			
PART - B ($5 \times 4 = 20$ Marks) Answer any 5 Questions				s BL	co

	21.	What is the role of a control unit in the execution of an instruction?	4	2	1
	22.	Compute A=010111 B=101100 using fast multiplication	4	3	2
	23.	Differentiate the performance of various hazards.	4	2	3
	24.	List the applications of parallelism.	4	1	4
	25.	Explain the significance of replacement algorithm in Cache Management System.	4	2	5
	26.	Sketch the Uniform Memory Access (UMA). Also mention its use.	4	1	6
	27.	Explain about the role of cache memory in pipelining	4	2	3
PART - C (5 × 12 = 60 Marks) Answer all Questions				s BL	CO
	28.	(a) Relate the various functional units of a computer and explain their significance with a neat sketch (OR)	12	2	1
		(b) Explain about the bus structures in computer organization along with the diagram			
	29.	(a) Compute multiplication of positive numbers for given numbers 1. B=1101 and Q=1011 (6 Mark) 2. B=0101 and Q=0100 (6 Mark) (OR)	12	3	2
		 (b) 1. Explain in detail about the floating point numbers and its operation (6 mark) 2. Convert the decimal number (-0.75) to single and double precision for floating point representation. (6 Mark) 			•
	30.	(a) Explain about the execution of complete instruction with neat diagram (OR)	12	1	3
		(b) Explain in detail about the multiple bus organization and a complete processor			
	31.	(a) What is parallelism? What are the types of parallelism? Explain them in detail with neat diagram.	12	2	4
		(OR) (b) Explain in detail about the Flynn's Classification along with its category.			
	32.	(a) Explain in detail about the Internal Organization of Memory Chips with neat diagram	12	2	5
		(OR)			
		(b) Explain in detail about the Read only memory and cache memory			
