4.1. Реализовать методы Эйлера, Рунге-Кутты и Адамса 4-го порядка в виде программ, задавая в качестве входных данных шаг сетки h. С использованием разработанного программного обеспечения решить задачу Коши для ОДУ 2-го порядка на указанном отрезке. Оценить погрешность численного решения с использованием метода Рунге — Ромберга и путем сравнения с точным решением.

NºNº	Задача Коши	Точное решение		
1	$y''+y-\sin 3x = 0$, y(0) = 1, y'(0) = 1, $x \in [0,1], h = 0.1$	$y = \cos x + \frac{11}{8}\sin x - \frac{\sin 3x}{8}$		
2	$y''+y-2\cos x = 0,$ y(0) = 1, y'(0) = 0, $x \in [0,1], h = 0.1$	$y = x \sin x + \cos x$		
3	$y''-2y-4x^{2}e^{x^{2}} = 0,$ $y(0) = 3,$ $y'(0) = 0,$ $x \in [0,1], h = 0.1$	$y = e^{x^2} + e^{x\sqrt{2}} + e^{-x\sqrt{2}}$		
4	$x^{2}y''-x(x^{2}-1)y'-(x^{2}+1)y=0,$ $y(1) = 1 + e^{1/2},$ $y'(1) = 2e^{1/2} - 1,$ $x \in [1,2], h = 0.1$	$y = \frac{1}{x}(1 + e^{x^2/2})$		
5	$y''-(1+2tg^{2}x)y = 0,$ y(0) = 1, y'(0) = 2, $x \in [0,1], h = 0.1$	$y = \frac{1}{\cos x} + \sin x + \frac{x}{\cos x}$		
6	$y''+4xy'+(4x^2+2)y=0,$ y(0) = 1, y'(0) = 1, $x \in [0,1], h = 0.1$	$y = (1+x)e^{-x^2}$		
7	$y''-4xy'+(4x^{2}-2)y=0,$ $y(0) = 1,$ $y'(0) = 1,$ $x \in [0,1], h = 0.1$	$y = (1+x)e^{x^2}$		
8	$y''-4xy'+(4x^2-3)y-e^{x^2}=0,$ $y(0) = 1,$ $y'(0) = 0,$ $x \in [0,1], h = 0.1$	$y = (e^x + e^{-x} - 1)e^{x^2}$		

NºNº	Задача Коши	Точное решение		
9	$y''-(\frac{1}{x^{1/2}})y'+(\frac{1}{4x^2})(x+x^{1/2}-8)y=0$ $y(1) = 2e,$ $y'(1) = 2e,$ $x \in [1,2], h = 0.1$	$y = \left(x^2 + \frac{1}{x}\right)e^{x^{1/2}}$		
10	$y''+y'tg(x) + y\cos^{2} x = 0,$ y(0) = 0, y'(0) = 1, x \in [0,1], h = 0.1	$y = \cos(\sin x) + \sin(\cos x)$		
11	$y''+y'tgx - y\cos^{2} x = 0,$ y(0) = 2, y'(0) = 0, $x \in [0,1], h = 0.1$	$y = e^{\sin x} + e^{-\sin x}$		
12	$(x^{2}+1)y''-2xy'+2y=0,$ $y(0) = 1,$ $y'(0) = 1,$ $x \in [0,1], h = 0.1$	$y = x - x^2 + 1$		
13	y''-2(tgx)y'-3y = 0, y(0) = 1, y'(0) = 3, $x \in [0,1], h = 0.1$	$y = \cos^3 x + \sin x (1 + 2\cos^2 x)$		
14	$y''+2y'ctgx+3y = 0,$ $y(1) = 1,$ $y'(1) = 1,$ $x \in [1,2], h = 0.1$	$y = \frac{-0.9783\cos 2x + 0.4776\sin 2x}{\sin x}$		
15	xy''+y'=0, y(1) = 1, y'(1) = 1, $x \in [1,2], h = 0.1$	$y = 1 + \ln x $		
16	$(x^{2}-1)y''-2xy'+2y=0,$ $y(2) = 7,$ $y'(2) = 5,$ $x \in [2,3], h = 0.1$	$y = x^2 + x + 1$		
17	$xy''-(x+1)y'+y=0,$ $y(1) = 2 + e,$ $y'(1) = 1 + e,$ $x \in [1,2], h = 0.1$	$y = x + 1 + e^x$		

NºNº	Задача Коши	Точное решение		
18	$y'' - \frac{x+1}{x}y' - 2\frac{x-1}{x}y = 0,$ $y(1) = 1,$ $y'(1) = 1,$ $x \in [1,2], h = 0.1$	$y = \frac{e^{2x}}{3e^2} + \frac{(3x+1)e^{-x}}{3e}$		
19	$y'' + \frac{1}{x}y' + \frac{2}{x}y = 0,$ $y(1) = 1,$ $y'(1) = 1,$ $x \in [1,2], h = 0.1$	$y = (\cos 2 - \sin 2)\cos(2x^{1/2}) + (\cos 2 + \sin 2)\sin(2x^{1/2})$		
20	$x(x-1)y'' + \frac{1}{2}y' - \frac{3}{4}y = 0,$ $y(2) = \sqrt{2},$ $y'(2) = \frac{3}{2}\sqrt{2},$ $x \in [2,3], h = 0.1$	$y = x ^{3/2}$		
21	$x^{2}y''-12y=0$, y(1) = 2, y'(1) = 1, $x \in [1,2], h = 0.1$	$y = x^4 + x^{-3}$		
22	$x^{2}y''+(x^{2}-2)y=0,$ y(1) = 1, y'(1) = 0, $x \in [1,2], h = 0.1$	$y = \sin(x-1) + \frac{1}{x}\cos(x-1)$		
23	$x^{2}y''+xy'-y-3x^{2} = 0,$ $y(1) = 3,$ $y'(1) = 2,$ $x \in [1,2], h = 0.1$	$y = x^2 + x + \frac{1}{x}$		
24	$x^{2}y''+(x+1)y'-y=0,$ $y(1) = 2 + e,$ $y'(1) = 1,$ $x \in [1,2], h = 0.1$	$y = x + 1 + xe^{1/x}$		
25	$(x-2)^{2} y''-(x-2)y'-3y=0,$ $y(3) = 2,$ $y'(3) = 2,$ $x \in [3,4], h = 0.1$	$y = (x-2)^3 + \frac{1}{x-2}$		

NºNº	Задача Коши	Точное решение		
26	$x^{4}y''+2x^{3}y'+y=0,$ $y(1) = 1,$ $y'(1) = 1,$ $x \in [1,2], h = 0.1$	$y = (\sin 1 + \cos 1)\cos \frac{1}{x} + (\sin 1 - \cos 1)\sin \frac{1}{x}$		
27	$x^{2}y''-2xy'+(x^{2}+2)y=0,$ $y(\pi/2) = \pi/2,$ $y'(\pi/2) = 1 - \pi/2,$ $x \in [\pi/2, \pi/2+1], h = 0.1$	$y = x\cos x + x\sin x$		
28	$x^{2}y''+3xy'+4y-5x=0,$ $y(1) = 6,$ $y'(1) = 8,$ $x \in [1,2], h = 0.1$	$y = 5x + x^2 + x^2 \ln x $		
29	$x^{2}y''-3xy'-5y-x^{2} \ln x = 0,$ $y(1) = 1,$ $y'(1) = 1,$ $x \in [1,2], h = 0.1$	$y = \frac{19}{54}x^5 + \frac{35}{54}\frac{1}{x} - \frac{x^2}{9}\ln x $		
30	$x^{2}(x+1)y''-x(2x+1)y'+(2x+1)y=0$ $y(1) = 2,$ $y'(1) = 4,$ $x \in [1,2], h = 0.1$	$y = x^2 + x + x \ln x$		