In[20]:

```
# fit the pipeline defined before to the cancer dataset
    pipe.fit(cancer.data)
    # extract the first two principal components from the "pca" step
    components = pipe.named steps["pca"].components
    print("components.shape: {}".format(components.shape))
Out[20]:
    components.shape: (2, 30)
```

Accessing Attributes in a Grid-Searched Pipeline

As we discussed earlier in this chapter, one of the main reasons to use pipelines is for doing grid searches. A common task is to access some of the steps of a pipeline inside a grid search. Let's grid search a LogisticRegression classifier on the cancer dataset, using Pipeline and StandardScaler to scale the data before passing it to the Logisti cRegression classifier. First we create a pipeline using the make_pipeline function:

In[21]:

```
from sklearn.linear_model import LogisticRegression
pipe = make_pipeline(StandardScaler(), LogisticRegression())
```

Next, we create a parameter grid. As explained in Chapter 2, the regularization parameter to tune for LogisticRegression is the parameter C. We use a logarithmic grid for this parameter, searching between 0.01 and 100. Because we used the make pipeline function, the name of the LogisticRegression step in the pipeline is the lowercased class name, logisticregression. To tune the parameter C, we therefore have to specify a parameter grid for logisticregression__C:

In[22]:

```
param_grid = {'logisticregression__C': [0.01, 0.1, 1, 10, 100]}
```

As usual, we split the cancer dataset into training and test sets, and fit a grid search:

In[23]:

```
X_train, X_test, y_train, y_test = train_test_split(
   cancer.data, cancer.target, random_state=4)
grid = GridSearchCV(pipe, param_grid, cv=5)
grid.fit(X_train, y_train)
```

So how do we access the coefficients of the best LogisticRegression model that was found by GridSearchCV? From Chapter 5 we know that the best model found by GridSearchCV, trained on all the training data, is stored in grid.best_estimator_:

```
In[24]:
```

```
print("Best estimator:\n{}".format(grid.best_estimator_))
Out[24]:
    Best estimator:
    Pipeline(steps=[
        ('standardscaler', StandardScaler(copy=True, with mean=True, with std=True)),
        ('logisticregression', LogisticRegression(C=0.1, class weight=None,
        dual=False, fit_intercept=True, intercept_scaling=1, max_iter=100,
        multi class='ovr', n jobs=1, penalty='l2', random state=None,
        solver='liblinear', tol=0.0001, verbose=0, warm start=False))])
```

This best_estimator_ in our case is a pipeline with two steps, standardscaler and logisticregression. To access the logisticregression step, we can use the named steps attribute of the pipeline, as explained earlier:

In[25]:

```
print("Logistic regression step:\n{}".format(
          grid.best_estimator_.named_steps["logisticregression"]))
Out[25]:
    Logistic regression step:
    LogisticRegression(C=0.1, class_weight=None, dual=False, fit_intercept=True,
                      intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
                      penalty='l2', random_state=None, solver='liblinear', tol=0.0001,
                      verbose=0, warm start=False)
```

Now that we have the trained LogisticRegression instance, we can access the coefficients (weights) associated with each input feature:

In[26]:

```
print("Logistic regression coefficients:\n{}".format(
         grid.best_estimator_.named_steps["logisticregression"].coef_))
Out[26]:
   Logistic regression coefficients:
    [[-0.389 -0.375 -0.376 -0.396 -0.115 0.017 -0.355 -0.39 -0.058 0.209
     -0.495 -0.004 -0.371 -0.383 -0.045 0.198 0.004 -0.049 0.21
     -0.547 -0.525 -0.499 -0.515 -0.393 -0.123 -0.388 -0.417 -0.325 -0.139]]
```

This might be a somewhat lengthy expression, but often it comes in handy in understanding your models.

Grid-Searching Preprocessing Steps and Model Parameters

Using pipelines, we can encapsulate all the processing steps in our machine learning workflow in a single scikit-learn estimator. Another benefit of doing this is that we can now adjust the parameters of the preprocessing using the outcome of a supervised task like regression or classification. In previous chapters, we used polynomial features on the boston dataset before applying the ridge regressor. Let's model that using a pipeline instead. The pipeline contains three steps—scaling the data, computing polynomial features, and ridge regression:

In[27]:

How do we know which degrees of polynomials to choose, or whether to choose any polynomials or interactions at all? Ideally we want to select the degree parameter based on the outcome of the classification. Using our pipeline, we can search over the degree parameter together with the parameter alpha of Ridge. To do this, we define a param_grid that contains both, appropriately prefixed by the step names:

In[28]:

Now we can run our grid search again:

In[29]:

```
grid = GridSearchCV(pipe, param_grid=param_grid, cv=5, n_jobs=-1)
grid.fit(X_train, y_train)
```

We can visualize the outcome of the cross-validation using a heat map (Figure 6-4), as we did in Chapter 5:

In[30]: