Heroes Of Pymoli Data Analysis (Solved)

- Observed trend #1 Of the 573 people in the dataset, the vast majority are male (81.15%). There also exists, a smaller, but notable proportion of female players (17.45%).
- Observed trend #2 Our peak purchase over age demographics is in the age group of '20-24' which has 336 purchase count and \$978.77 of total purchase value.
- Observed trend #3 The total purchase value of Male (1,867.68 dollars) is more than female (382.91 dollars).

```
In [167]: import pandas as pd
    json_file = "purchase_data.json"
    df = pd.read_json(json_file)
    df.head()
```

Out[167]:

	Age	Gender	Item ID	Item Name	Price	SN
0	38	Male	165	Bone Crushing Silver Skewer	3.37	Aelalis34
1	21	Male	119	Stormbringer, Dark Blade of Ending Misery	2.32	Eolo46
2	34	Male	174	Primitive Blade	2.46	Assastnya25
3	21	Male	92	Final Critic	1.36	Pheusrical25
4	23	Male	63	Stormfury Mace	1.27	Aela59

Player Count

	Total Players
0	573

Purchasing Analysis (Total)

Out[169]:

	Number of Unique Items	Average Price	Number of Purchases	Total Revenue
0	183	\$2.93	780	\$2,286.33

Gender Demographics

```
In [170]: # use the built-in normalize in value_counts to get the percentage
    percents = removed_duplicates_df['Gender'].value_counts(normalize=True)*100
# total count
    total = removed_duplicates_df['Gender'].value_counts()

gender_demographics = total.to_frame()
gender_demographics= gender_demographics.rename(columns={'Gender':'Total Count'})
gender_demographics['Percentage of Player'] = percents.map(fmt)

# change the column order and display the df
gender_demographics = gender_demographics[['Percentage of Player','Total Count']]
gender_demographics
```

Out[170]:

	Percentage of Player	Total Count
Male	81.15	465
Female	17.45	100
Other / Non-Disclosed	1.40	8

Purchasing Analysis (Gender)

```
In [171]: # group by gender
          group by gender = df.groupby(['Gender'])
          purchase analysis df = pd.DataFrame()
          # purchase count
          purchase analysis df['Purchase Count']=group by gender['Item ID'].count()
          # total purchase value
          purchase analysis df['Total Purchase Value'] = group by gender['Price'].sum()
          # average purchase price
          purchase analysis df['Average Purchase Price'] = purchase analysis df['Total Purchase Value']/purchase analys
          is df['Purchase Count']
          # normalization
          purchase analysis df['Normalized Totals'] = purchase analysis df['Total Purchase Value']/gender demographics[
          'Total Count']
          # formatting
          purchase analysis df['Total Purchase Value'] = purchase analysis df['Total Purchase Value'].map(money fmt)
          purchase analysis df['Average Purchase Price'] = purchase analysis df['Average Purchase Price'].map(money fmt
          purchase analysis df['Normalized Totals'] = purchase analysis df['Normalized Totals'].map(money fmt)
          # change the column order and display
          purchase analysis df = purchase analysis df[['Purchase Count', 'Average Purchase Price', \
                                                        'Total Purchase Value', 'Normalized Totals']]
          purchase analysis df
```

Out[171]:

	Purchase Count	Average Purchase Price	Total Purchase Value	Normalized Totals
Gender				
Female	136	\$2.82	\$382.91	\$3.83
Male	633	\$2.95	\$1,867.68	\$4.02
Other / Non-Disclosed	11	\$3.25	\$35.74	\$4.47

Age Demographics

```
In [172]: max age = removed duplicates df['Age'].max()
          # create bins and categories
          bins = [0,9,14,19,24,29,34,39,max age]
          age_categories = ['<10','10-14','15-19','20-24','25-29','30-34','35-39','40+']
          # cerate a df for age demographics
          age demographics df = pd.DataFrame()
          # categorize
          categorized by age df = pd.cut(removed duplicates df['Age'], bins, labels=age categories, right=True)
          # add total count that is sorted by the index to the df
          age_demographics_df['Total Count'] = categorized_by_age_df.value_counts().sort_index()
          # percent and formatting
          age demographics df['Percentage of Players'] = (categorized by age df.value counts(normalize=True)*100).map(f
          mt)
          # change the column order and display
          age_demographics_df = age_demographics_df[['Percentage of Players', 'Total Count']]
          age demographics df
```

Out[172]:

	Percentage of Players	Total Count
<10	3.32	19
10-14	4.01	23
15-19	17.45	100
20-24	45.20	259
25-29	15.18	87
30-34	8.20	47
35-39	4.71	27
40+	1.92	11

Purchasing Analysis (Age)

```
In [173]: # create a df for this portion
          purchase analysis df = pd.DataFrame()
          max age in duplicates = df['Age'].max()
          # create new bins for this part
          bins in duplicates = [0,9,14,19,24,29,34,39,max age in duplicates]
          # reuse the age category
          age categories in duplicates = age categories
          # categorize
          categorized by age in duplicates df = pd.cut(df['Age'],bins=bins in duplicates, labels=age categories in dupl
          icates, right=True)
          # purchase count
          purchase analysis df['Purchase Count'] = categorized by age in duplicates df.value counts().sort index()
          # total purchase value by age categories
          purchase analysis df['Total Purchase Value'] = df.groupby(categorized by age in duplicates df)['Price'].sum()
          # average purchase price
          purchase analysis df['Average Purchase Price'] = purchase analysis df['Total Purchase Value']/purchase analys
          is df['Purchase Count']
          # normalized totals by age demographics
          purchase analysis df['Normalized Totals'] = purchase analysis df['Total Purchase Value']/age demographics df[
          'Total Count']
          # formatting
          purchase analysis df['Total Purchase Value'] = purchase analysis df['Total Purchase Value'].map(money fmt)
          purchase analysis df['Average Purchase Price'] = purchase analysis df['Average Purchase Price'].map(money fmt
          purchase analysis df['Normalized Totals'] = purchase analysis df['Normalized Totals'].map(money fmt)
          # change the column order and display
          purchase analysis df = purchase analysis df[['Purchase Count','Average Purchase Price', \
                                                       'Total Purchase Value', 'Normalized Totals']]
          purchase_analysis df
```

Out[173]:

	Purchase Count	Average Purchase Price	Total Purchase Value	Normalized Totals
<10	28	\$2.98	\$83.46	\$4.39
10-14	35	\$2.77	\$96.95	\$4.22
15-19	133	\$2.91	\$386.42	\$3.86
20-24	336	\$2.91	\$978.77	\$3.78
25-29	125	\$2.96	\$370.33	\$4.26
30-34	64	\$3.08	\$197.25	\$4.20
35-39	42	\$2.84	\$119.40	\$4.42
40+	17	\$3.16	\$53.75	\$4.89

Top Spenders

```
In [174]: # create a new df
          top spenders df = pd.DataFrame()
          # group by SN
          group by SN df = df.groupby(['SN'])
          # total purchase value
          total_purchase_value = group_by_SN_df['Price'].sum().sort_values(ascending=False).head(5)
          top spenders df['Total Purchase Value'] = total purchase value
          # purchase count
          top total purchase sns =df[df['SN'].isin(total purchase value.index)]
          group by sns =top total purchase sns.groupby(['SN'])
          purchase_count = group_by_sns['Item ID'].count()
          top spenders df['Purchase Count'] = purchase count
          # average purchase price
          top spenders df['Average Purchase Price'] = total purchase value/purchase count
          # formatting
          top spenders df['Average Purchase Price'] = top spenders df['Average Purchase Price'].map(money fmt)
          top spenders df['Total Purchase Value'] = top spenders df['Total Purchase Value'] .map(money fmt)
          # change the column order and display
          top spenders df = top spenders df[['Purchase Count', 'Average Purchase Price', 'Total Purchase Value']]
          top spenders df
```

Out[174]:

	Purchase Count	Average Purchase Price	Total Purchase Value
SN			
Undirrala66	5	\$3.41	\$17.06
Saedue76	4	\$3.39	\$13.56
Mindimnya67	4	\$3.18	\$12.74
Haellysu29	3	\$4.24	\$12.73
Eoda93	3	\$3.86	\$11.58

Most Popular Items

```
In [175]: group_by_id_and_name = df.groupby(['Item ID','Item Name'])
          # create a new df for this portion of code
          most_popular_items = pd.DataFrame()
          # purchase count
          purchase_count = group_by_id_and_name.count().sort_values('Price',ascending=False)['SN']
          most popular items['Purchase Count'] = purchase count
          # total purchase value
          top total purchase sns =df[df['Item ID'].isin(purchase count.index.get level values(0))]
          group_by_sns =top_total_purchase_sns.groupby(['Item ID', 'Item Name'])
          total_purchase_value = group_by_sns['Price'].sum()
          # item price
          item price = total purchase value/purchase count
          # formatting
          most popular items['Item Price'] = item price.map(money fmt)
          most popular items['Total Purchase Value'] = total purchase value.map(money fmt)
          # display top 5
          most popular items.head(5)
```

Out[175]:

		Purchase Count	Item Price	Total Purchase Value
Item ID	Item Name			
39	Betrayal, Whisper of Grieving Widows	11	\$2.35	\$25.85
84	Arcane Gem	11	\$2.23	\$24.53
31	Trickster	9	\$2.07	\$18.63
175	Woeful Adamantite Claymore	9	\$1.24	\$11.16
13	Serenity	9	\$1.49	\$13.41

Most Profitable Items

```
In [176]: # create a new df
          most profitable items = pd.DataFrame()
          # purchase count
          top total purchase sns =df[df['Item ID'].isin(most profitable total purchase value.index.get level values(0
          ))] # 0 --> Item ID
          group by sns =top total purchase sns.groupby(['Item ID', 'Item Name'])
          purchase count = group by sns['Item ID'].count()
          # total purchase value
          most profitable total purchase value = group by id and name['Price'].sum().sort values(ascending=False)
          most profitable items['Total Purchase Value'] = most profitable total purchase value
          # item price
          most profitable items['Item Price'] = most profitable total purchase value/purchase count
          # formatting
          most profitable items['Purchase Count'] = purchase count
          most profitable items['Item Price'] = most profitable items['Item Price'].map(money fmt)
          most profitable items['Total Purchase Value'] = most profitable items['Total Purchase Value'].map(money fmt)
          # change the column order and display the top 5
          most profitable items = most profitable items[['Purchase Count','Item Price','Total Purchase Value']]
          most profitable items.head(5)
```

Out[176]:

		Purchase Count	Item Price	Total Purchase Value
Item ID	Item Name			
34	Retribution Axe	9	\$4.14	\$37.26
115	Spectral Diamond Doomblade	7	\$4.25	\$29.75
32	Orenmir	6	\$4.95	\$29.70
103	Singed Scalpel	6	\$4.87	\$29.22
107	Splitter, Foe Of Subtlety	8	\$3.61	\$28.88