Summary

ODE Review

Separation of Variables

Linear First Order ODE

Constant Coefficients 2nd Order

Cauchy-Euler ODE

Power Series Method

Singular Points

- Classification of Singular Points
- Frobenius method for RSP
- Bessel Equation

PDES

Heat Equation

- Finite Difference Method
 - Discretizing
 - Difference Schemes
- Boundary conditions
 - Dirichlet

•
$$\lambda_n = - \left(rac{n\pi}{L}
ight)^2, \quad \phi_n = \sin \left(rac{n\pi x}{L}
ight)$$

Neumann

•
$$\lambda_n = -\left(\frac{n\pi}{L}\right)^2$$
, $\phi_n = \cos\left(\frac{n\pi x}{L}\right)$

Periodic

•
$$\lambda_n = -\left(\frac{n\pi}{L}\right)^2$$
, $\phi_n \begin{cases} \cos\left(\frac{n\pi x}{L}\right) \\ \sin\left(\frac{n\pi x}{T}\right) \end{cases}$

• Mixed Type A

$$ullet \lambda_n = -\Big(rac{(2n+1)\pi}{2L}\Big)^2, \quad \phi_n = \sin\Big(rac{(2n+1)\pi x}{2L}\Big)$$

• Mixed Type B

•
$$\lambda_n = -\Big(rac{(2n+1)\pi}{2L}\Big)^2, \quad \phi_n = \cos\Big(rac{(2n+1)\pi x}{2L}\Big)$$

- Separation of Variables
 - Fourier Series
 - Orthogonality
 - Heat Equation in a ring
 - Non homogeneous equations
 - Particular solutions
 - Steady state problems

Wave Equation

- Finite Difference Method
 - Discretizing
 - Difference Schemes
- Boundary conditions
 - Same as heat equation
- Separation of Variables
 - Fourier Series
 - Orthogonality
 - Heat Equation in a ring
 - Non homogeneous equations
 - Particular solutions
 - Steady state problems
- d'Almberts Solution

Laplace Equation

- Finite Difference Method
 - Discretizing
 - Difference Schemes
 - Jacobian Iteration Scheme
- Boundary conditions
 - Same as heat equation
- Domains
 - Rectangular domain
 - Disk
 - Semi Infinite Strip
- Separation of Variables
 - Fourier Series
 - Orthogonality

- Heat Equation in a ring
- Non homogeneous equations
 - Particular solutions
 - Steady state problems

Sturm-Liouville

- $ullet \mathcal{L}y = -rac{d}{dx} \Big(p(x) rac{dy}{dx} \Big) + q(x) y(x)$, the SL form
- Periodic boundary conditions are not SL problems
- Regular SL problems
 - Eigenvalues
 - Eigenfunctions
- Lagrange's Identity
- Robin Type Boundaries for Heat Equation