Лабораторна робота № 2

«Генерування послідовності псевдовипадкових значень»

Мета роботи: ознайомитись з методами генерування випадкових чисел, а також формуванням та обробкою масивів даних.

Методичні вказівки

Поняття ймовірності події виникло як інтуїтивне поняття, яке дає кількісну оцінку можливості появи події і позначається літерою Р.

Випадкова величина - це величина, яка в результаті випробувань може приймати певні значення (із сукупності своїх значень) з певною ймовірністю. Випадковою можна назвати будь-яку (не обов'язково чисельну) змінну x, значення якої x створюють множину випадкових елементарних подій x.

Розрізняють дискретну і неперервну випадкові величини.

Дискретною випадковою величиною називається випадкова величина, що приймає скінчене число значень з множини, елементи якої можна пронумерувати. Неперервною випадковою величиною називається випадкова величина, можливі значення якої неперервно заповнюють деякий інтервал.

Рядок розподілу дискретної випадкової величини х може бути представлений як у табличній формі (у вигляді таблиці, де перераховано значення випадкової величини x_1 , x_2 , x_{π} з відповідними до них ймовірностями p_1 , p_2 , p_{π} (див. табл. 2.1)), так і у вигляді графічного зображення (рис. 2.1).

Таблиця 2.1

Значення (x_i)	x_1	x_2	<i>x</i> ₃	 x_n
Ймовірності (p_i)	p_1	p_2	p_3	 $p_{\rm n}$

Рисунок 2.1

Частота інтервалів – число, що показує скільки разів значення, що потрапляють в кожен інтервал групування, зустрічається у вибірці.

На практиці часто доводиться мати справу із статистичною ймовірністю. Її часто називають відносною частотою появи події і позначають

$$P = L/K$$
.

де L - кількість випробувань, в яких з'явилась певна подія, K - загальна кількість випробувань.

Математичне сподівання (середнє значення) — одна з основних числових характеристик кожної випадкової величини. Воно є узагальненим поняттям середнього значення сукупності чисел на той випадок, коли елементи множини значень цієї сукупності мають різну "вагу", ціну, важливість, пріоритет, що є характерним для значень випадкової змінної:

$$M(X) = \sum_{i=1}^{n} x_i p_i$$

Дисперсією випадкової величини X називають математичне сподівання квадрата відхилення випадкової величини від її математичного сподівання:

$$D(X) = \sum_{i=1}^{n} (x_i - M(X))^2 p_i$$

Числову характеристику закону розподілу випадкової величини

$$\sigma(X) = \sqrt{D(X)} ,$$

називають середньоквадратичним відхиленням, або стандартним відхиленням.

Пінійний конгруентний метод. Для отримання послідовності випадкових значень використовують наступний рекурентний вираз:

$$X_{k+1} = (aX_k + c) \bmod m$$

де m — модуль, m > 0, a — множник, $0 \le a < m$, c — приріст, $0 \le c < m$, X_0 — початкове значення, $0 \le X_0 < m$.

Модуль вибирають достатньо великим, оскільки період не може містить менше m чисел. В якості m рекомендується брати найбільше просте число, яке не перевищує розрядність машинного слова.

Вибір множника визначається наступною теоремою:

лінійна конгруентна послідовність, визначена числами m, a, c і X_0 має період m тоді і лише тоді, коли виконуються наступні три умови:

- 1) числа с і $m \in взаємно простими;$
- 2) число b = a 1 ϵ кратним числу р для кожного простого числа р, яке ϵ дільником числа m;
 - 3) число b ϵ кратним 4, якщо число m ϵ кратним 4.

Порядок виконання роботи

Розробити програму * генерування цілочислової послідовності псевдовипадкових значень (за допомогою конгруентного методу*) та виконати обробку отриманого масиву даних наступним чином:

- розрахувати частоту інтервалів появи випадкових величин (інтервал дорівнює 1);
- розрахувати статистичну імовірність появи випадкових величин;
- розрахувати математичне сподівання випадкових величин;
- розрахувати дисперсію випадкових величин;
- розрахувати середньоквадратичне відхилення випадкових величин.

Вхідні данні:

Блідін данін.	1			т.	
	Коефіцієнти			Діапазон	Довжина
Варіант			випадкових	послідовності	
	a	c	m	величин, n	чисел, К
1	1103515245	12345	2^{31}	[0, 100)	10000
2	1664525	1013904223	2^{32}	[0, 150	20000
3	16807	0	2^{31} -1	[0, 200)	30000
4	22695477	1	2^{32}	[0, 250)	40000
5	48271	0	2 ³¹ -1	[0, 300)	50000
6	214013	2531011	2^{32}	[0, 100)	50000
7	2147483629	2147483587	2^{31} -1	[0, 150)	40000
8	65539	0	2^{32}	[0, 200)	30000
9	1140671485	12820163	2^{24}	[0, 250)	20000
10	69069	1	$\frac{-}{2^{32}}$	[0, 300)	10000
11	1103515245	12345	2^{31}	[0, 300)	50000
12	1664525	1013904223	2^{32}	[0, 250)	40000
13	16807	0	2^{31} -1	[0, 200)	30000
14	22695477	1	2^{32}	[0, 150)	20000
15	48271	0	2^{31} -1	[0, 100)	10000
16	214013	2531011	2^{32}	[0, 300)	10000
17	2147483629	2147483587	2 ³¹ -1	[0, 250)	20000
18	65539	0	2^{32}	[0, 200)	30000
19	1140671485	12820163	2^{24}	[0, 150)	40000
20	134775813	1	2^{32}	[0, 100)	50000

^{*}Мова програмування за вільним вибором студента.

Список літератури

- 1. Вирт Н. Алгоритмы и структуры данных. 2001
- 2. Майкл Мейн, Уолтер Савитч. Структуры данных и другие объекты в C++. 2-е изд. М.: Вильямс, 2002
- 3. Седжвик Р. Фундаментальные алгоритмы на С++. Части 1-4. Анализ. Структуры данных. Сортировка. Поиск. 2001
 - 4. Седжвик Р. Фундаментальные алгоритмы на С++. Часть 5. Алгоритмы на графах.
 - Топп У., Форд У. Структуры данных в С++. 1999
- 6. Ахо Альфред В., Хопкрофт Джон Э., Ульман Джеффри Д. Структуры данных и алгоритмы. 2000
- 7. Хэзфилд Р., Кирби Л. Искусство программирования на С. Фундаментальные алгоритмы, структуры данных и примеры приложений. 2001
 - 8. Сибуя М., Ямамото Т. Алгоритмы обработки данных. М: Мир, 1986
- 9. Лэгсам Й, Огенстайн М. Структуры данных для персональных ЭВМ М: Мир, 1989
- 10. Кнут Д. Искусство программирования для ЭВМ. Том 1: Основные алгоритмы. : Пер. с англ. -М.: Мир,1976.
- 11. Кнут Д. Искусство программирования для ЭВМ. Том 2: Получисленные алгоритмы: Пер. с англ. -М.: Мир,1978.