Comparisons Among Several Samples

MORE APPLICATIONS OF EXTRA-SUM-OF-SQUARES TEST

Spock Trial (Reminder)

- To test the claim, the Spock Judge's (which we will call S) recent venires are compared with 6 other Judge's recent venires (which we notate A to F)
- There are two key questions
 - 1. Is there evidence that women are unrepresented on S's venire relative to A to F's?
 - 2. Is there evidence in a difference in women's representation on A to F's venires?
- The question of interest is addressed by 1
- •The strength of the result in 1. would be substantially diminished if 2 is true

Reminder

equivalent)

New Notation for Hypothesis Tests

(ESS) **EXTRA SUM OF SQUARES** =

residual sum of squares(reduced) - residual sum of squares(full) RSS(reduced) RSS(full)

Large extra sum of squares indicates the full model fits much better

Did the data come from groups that all had the same mean?

$$^{\bullet}H_0$$
: $\mu_1 = \mu_2 = \cdots = \mu_I = \mu$

(The **REDUCED OR EQUAL MEANS MODEL**)

$$H_0$$
: $\mu_1 = \mu_2 = \cdots = \mu_I = \mu$

$$H_0$$
: μ, μ, \dots, μ (*I* times)

• Did the data come from groups that do not all have the same mean

$$H_A$$
: $\mu_k \neq \mu_l$ for some k, l

(The full or separate means model)

$$^{*}H_{A}: \mu_{1}, \mu_{2}, ..., \mu_{I}$$

Comparing Judges A-F: A First Take

In order to test if the A through F judges have the same mean, we can run:

```
H_0: \mu_A = \mu_B = \cdots = \mu_F = \mu

(equivalently, H_0: \mu, \mu, \dots, \mu)

H_A: \mu_k \neq \mu_l for some k, l

(equivalently, H_A: \mu_A, \mu_B, \dots, \mu_F)
```

```
DATA spock_AtoF;
    SET spock;
    IF judge = "S" THEN delete;
RUN;

PROC GLM DATA = spock_AtoF ORDER=DATA;
    CLASS judge;
    MODEL percFemale = judge;
RUN;
```

This would be an ANOVA on the 6 other judges and would ignore the Spock judge

But, we saw earlier that it is better to use **all** the data if possible (leading to a better estimate of the variance under equal variances assumption)

Let's add the Spock judge's data by including another parameter

```
H_0: \mu_S, \mu, \mu, \dots, \mu (The <u>REDUCED MODEL</u>)
H_A: \mu_S, \mu_A, \mu_B, \dots, \mu_F (The <u>FULL MODEL</u>)
```

```
DATA spock2;
    SET spock;
    IF judge ne "S" THEN OthersModel = "Others";
    ELSE OthersModel = "S";
RUN;
```

Let's add the Spock judge's data by including another parameter

```
DATA spock2;

SET spock;

IF judge ne "S" THEN OthersModel = "Others";

ELSE OthersModel = "S";

RUN;

H_0: \mu_S, \mu, \mu, \dots, \mu (The REDUCED MODEL)

H_A: \mu_S, \mu_A, \mu_B, \dots, \mu_F (The FULL MODEL)
```

Now, we need to test this hypothesis

→ Extra sum of squares test!

Obs	percFemale	judge	OthersModel
1	6.4	8	S
2	8.7	s /	S
3	13.3	3	S
4	13.6	S	S
5	15.0	S	S
6/	15.2	S	S
$/\nu$	17.7	S	S
8	18.6	S	S
9	23.1	S	S
10	16.8	Α	Others
11	30.8	Α	Others
12	33.6	Α	Others
13	40.5	Α	Others
14	48.9	Α	Others
15	27.0	В	Others
16	28.9	В	Others
17	32.0	В	Others
18	32.7	В	Others
19	35.5	В	Others
20	45.6	В	Others
21	21.0	С	Others
22	23.4	С	Others
23	27.5	С	Others
24	27.5	С	Others

Let's add the Spock judge's data by including another parameter

```
DATA spock2;

SET spock;

IF judge ne "S" THEN OthersModel = "Others";

ELSE OthersModel = "S";

RUN;

H_0: \mu_S, \mu, \mu, \dots, \mu (The REDUCED MODEL)

H_A: \mu_S, \mu_A, \mu_B, \dots, \mu_F (The FULL MODEL)
```

We need to compute:

- RSS(reduced)
- RSS(full)
- the degrees of freedom

Source	DF	SS	MS	F	Pr > F
Model (Between)	I-1	ESS	ESS/(I-1)	F-statistic	p-value
Error (Within)	n-I	RSS(full)	RSS(full)/(n-I)		
Corrected Total (Total)	n-1	RSS(reduced)			

1 6.4 S S
2 8.7 S S
3 13.3 S S
4 13.6 S S
5 15.0 S S
6 15.2 S S
7 17.7 S S

Obs percFemale judge OthersModel

```
A flexible way to do is via two calls to PROC GLM
```

```
H_0: \mu, \mu, \dots, \mu

H_A: \mu_S, \mu, \mu, \dots, \mu
```

```
PROC GLM DATA = spock2;
    CLASS OthersModel;
    MODEL percFemale = OthersModel;
RUN;
```

```
H_0: \mu, \mu, ..., \mu

H_A: \mu_S, \mu_A, \mu_B, ..., \mu_F
```

Combine the output to test:

$$H_0: \mu_S, \mu, \mu, \dots, \mu$$

(The **<u>REDUCED MODEL</u>**)

 H_A : μ_S , μ_A , μ_B , ..., μ_F

(The FULL MODEL)

judge;				
		28.9	В	Others
		32.0	В	Others
		32.7	В	Others
	19	35.5	В	Others
	20	45.6	В	Others
	21	21.0	С	Others
	22	23.4	С	Others
	23	27.5	С	Others
	24	27.5	С	Others

40.5 A 48.9 A

Comparing Judges A-F: Extra Sums of Squares

A flexible way to do is via two calls to **PROC GLM**

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	1600.622964	1600.622964	32.15	<.0001
Error	44	2190.903123	49.793253		
Corrected Total	45	3791.526087			

Source	DF	Sum of Squares	lean Square	F Value	Pr > F
Model	6	1927.080865	321.180144	6.72	<.0001
Error	39	1864.445222	47.806288		
Corrected Total	45	3791.526087			

Combine the output to test:

$$H_0: \mu_S, \mu, \mu, ..., \mu$$

 $H_A: \mu_S, \mu_A, \mu_B, ..., \mu_F$

	Source	DF		SS	MS	F	Pr > F	
	Model (ESS)	5		326.5	65.29	1.37	0.26	
	Error (Full)	39	L	1864.4	47.81			
4	Total (Reduced)	44		2190.9				

Summarizing

EXTRA SUM OF SQUARES =

residual sum of squares(reduced) - residual sum of squares(full)

RSS(reduced) RSS(full)

Large extra sum of squares indicates the full model fits much better

We can test "nested" hypothesis; that is, where one is a special case of the other

Run two tests: the alternatives are the new null and alternative hypotheses

 H_0 : something simple

 H_0 : something simple

 H_A : something even more complex

 H_A : something even more complex