

Bridging Theory and Practice: An Interactive Workshop on Control Theory using a Robotic Arm

Neha Sardesai

Sr. Education Application Engineer

Noah Roberts

Product Marketing Engineer

29th July 2024

Workshop trial setup

- URL to download Simulink: https://tinyurl.com/FYEEMWQworkshop
- Click on 'Download Software' and follow next steps as prompted.

MATLAB & Simulink

Access MATLAB for your Hands-On Workshop

MathWorks is pleased to provide a special license to you as a course participant to use for your Hands-On Workshop. This is a limited license for the duration of your course and is intended to be used only for course work and not for government, research, commercial, or other organization use.

Course Name:	Workshop on Simulink at ASEE-FYEE conference
Organization:	ASEE
Starting:	29 Jul 2024
Ending:	30 Jul 2024

₹ Download Software

Link to exercise files: https://tinyurl.com/FYEEMWQExFiles

Workshop Agenda

- Quanser Introduction
- MathWorks Introduction
- Simulink workshop
 - Exercise 1 Introduction to Simulink
 - Exercise 2 Build a PID controller
- Quanser Exercises

Our Products MATLAB® SIMULINK®

- MATLAB Programming environment for algorithm development, data analysis, visualization, and numeric computation.
- Simulink Block diagram environment for simulation and Model-Based Design of multidomain and embedded engineering systems.
- 130+ add-on products for specialized tasks.

Comput Toolbox

Our Customers / Key Industries

Aerospace and Defense

Automotive

Biological Sciences

Biotech and Pharmaceutical

Communications

Electronics

Energy Production

Financial Services

Industrial Machinery

Medical Devices

Neuroscience

Process Industries

Railway Systems

Semiconductors

Software and Internet

Our Customers / German Aerospace Center (DLR)

SIMULINK®

Simulation and Model-Based Design

Model and simulate your system

- Use one multi-domain environment
- Model the system under test and the plant
- Simulate closed-loop system behavior

Test early and often

- Test your system under all conditions
- Validate your design with real-time testing
- Trace from requirements to design to code

Automatically generate code

- Generate production-quality C and HDL code
- Deploy directly to embedded processors or FPGA's/ASIC's

Exercise 1: Getting our feet wet with Simulink (10 mins)

- Go to Folder and open the file named:
 Simulink_Intro_1_24a.slx
- Connect any one of the 'Input Signal Blocks' to the Gain.
- Decide if you want to integrate or differentiate and connect to the corresponding block
- Add a scope block and connect.
 You can also connect the input block to see both signals

From Concepts to Practice

PID Controller – Proportional, Integral, Differential Controller

$$u(t) = k_p e(t) + k_i \int_0^t e(\tau)d\tau + k_d \frac{d e(t)}{dt}$$

$$U(s) = \left(k_p + \frac{k_i}{s} + k_d s\right) E(s)$$

A PID controller continuously adjusts a system's output to minimize the error between a desired setpoint and a measured variable using proportional, integral, and derivative actions.

Exercise 2: Build a PID controller in Simulink (10 mins)

- Go to Folder and open the file named: Simulink_Intro_2_24a.slx
- Add a desired value block as input
- Decide the P, I, D values
- Edit the plant parameters by adding a transfer function
- Add a scope block

