INTRODUCTION TO MACHINE LEARNING

BEYOND BINARY CLASSIFICATION

Elisa Ricci

FROM BINARY TO MULTICLASS CLASSIFICATION

LINEAR MODEL

A **linear model** is a model assumes that the data are linearly separable

in questo caso restringo lo spazio delle ipotesi ad una linea retta

Assume a specific <u>hypothesis</u> space, i.e. linear functions

WHICH LINE WILL THE PERCEPTRON FIND?

Only guaranteed to find some line that separates the data!

WHAT IS A LINEAR CLASSIFIER FOR?

How flexible is it? Can we apply it to other problems?

SO FAR...

K-NN

PERCEPTRON

BINARY CLASSIFICATION

Formally...

TASK: BINARY CLASSIFICATION

Given:

- 1. An input space \mathcal{X} input space output space
- 2. An unknown distribution \mathcal{D} over $\mathcal{X} \times \{-1, +1\}$ cartesian product data generating distribution
- 3. A training set D sampled from D

Compute: A function f minimizing: $\mathbb{E}_{(x,y)\sim\mathcal{D}}[f(x)\neq y]$

indicator function che conta quante volte la prediciton differisce dal label

MULTI-CLASS CLASSIFICATION

Multiclass classification is a natural extension of binary classification.

The goal is still to assign a discrete label to examples.

The difference is that you have K > 2 classes to choose from.

REAL WORLD MULTICLASS CLASSIFICATION

Most real-world applications involve multiclass predictions

handwriting recognition

face recognition

autonomous vehicles

emotion recognition

MULTI-CLASS CLASSIFICATION

Formally...

TASK: MULTICLASS CLASSIFICATION

Given:

- 1. An input space \mathcal{X} and number of classes K set of #k labels
- 2. An unknown distribution \mathcal{D} over $\mathcal{X} \times [K]$
- 3. A training set D sampled from D

Compute: A function f minimizing: $\mathbb{E}_{(x,y)\sim\mathcal{D}}[f(x)\neq y]$

MULTICLASS: CURRENT CLASSIFIERS

Any of these work out of the box? With small modifications?

KNN funziona out of the box

PERCEPTRON con modifiche

K-NEAREST NEIGHBOR (K-NN)

To classify an example d:

- Find k nearest neighbors of d
- Choose as the label the majority label within the k nearest neighbors

No algorithmic changes!

PERCEPTRON LEARNING

Hard to separate three classes with just one line

BLACK BOX APPROACH TO MULTICLASS

I give you a binary classifier and you have to use it to solve the multiclass classification problem.

BLACK BOX APPROACH TO MULTICLASS

Given a generic binary classifier, how can we use it to solve the new problem.

Can we solve our multiclass problem with this?

PERCEPTRON LEARNING

... we can combine more lines!!!

Binary classification:

x_2 x_2 x_1

Multi-class classification:

ONE VS ALL (OVA) & ALL VS ALL (AVA)

APPROACH 1: ONE VS ALL (OVA)

- Training: for each label L define a binary problem
 - all examples with label L are positive
 - o all other examples are negative
- In practice, learn L different classification models

APPROACH 1: ONE VS. ALL (OVA)

Training: for each label L define a binary problem

- o all examples with label L are positive
- all other examples are negative

OVA: CLASSIFY

How do we classify?

- If classifier does not provide confidence and there is ambiguity, pick one of the ones in conflict
- In general classifiers provide confidence.
- O Then:
 - Pick the most confident positive
 - If none vote positive, pick least confident negative

decision boundary rapresentation

OVA: CLASSIFY

How do we classify?

- If classifier does not provide confidence and there is ambiguity, pick one of the ones in conflict
- In general classifiers provide confidence.
- Then:
 - Pick the most confident positive
 - If none vote positive, pick least confident negative

$$prediction = b + \sum_{i=1}^{n} w_i f_i$$

Distance from the hyperplane

OVA: SUMMARY

Algorithm 13 OneVersusAllTrain(D^{multiclass}, BinaryTrain)

```
for i = 1 to K do

Dim \leftarrow relabel \mathbf{D}^{multiclass} so class i is positive and \neg i is negative

f_i \leftarrow \mathbf{BINARYTRAIN}(\mathbf{D}^{bin})

end for

return f_1, \dots, f_K
```

Algorithm 14 ONEVERSUSALLTEST $(f_1, \ldots, f_K, \hat{x})$

```
1: score \leftarrow \langle o, o, \ldots, o \rangle  // initialize K-many scores to zero
2: for i = 1 to K do
3: y \leftarrow f_i(\hat{x})
4: score_i \leftarrow score_i + y
5: end for
6: return argmax_k \ score_k  argmax = index \ corresponding to the max class ???
```

- An alternative approach is handling the multiclass classification problem decomposing it into binary classification problems like in sport tournaments.
- You have K teams entering a tournament, but unfortunately the sport they are playing only allows two to compete at a time.
- You want to set up a way of pairing the teams and having them compete so that you can figure out which team is best.
- In our analogy the teams are the classes and you want to know which class is best.
- In practice, every team compete against every other team.
- The team that wins the majority of its matches is the best.

- All versus All (or AVA) approach (sometimes called all pairs).
- We training K(K-1)/2 classifiers.
 - \circ $F_{ii'}$, $1 \le i \le j \le K$, is the classifier that discriminates class i against class j.
- This classifier receives all the examples of class i as "positive" and all the examples of class j as "negative."
- ullet When a test point arrives, we evaluate it on all the F_{ij} classifiers.
- Every time F_{ij} predicts positive, class i gets a vote; otherwise, class j gets a vote. After running all K(K-1)/2 classifiers, the class with the most votes wins.

apple vs banana

+1

+1

-1

```
apple vs orange
                orange
                            orange vs banana
          -1
                                       +1
apple vs banana
                                            orange
                                                       What class?
          +1
              apple
         -1
```

AVA TRAINING

Training:

For each pair of labels, train a classifier to distinguish between them

for i = 1 to number of labels: k labels

for j = i+1 to number of labels:

 ${\rm train\ a\ classifier}\ F_{ij}\ {\rm to\ distinguish\ between}\ label_{j}\ {\rm and}\ label_{j};$

- create a dataset with all examples with label $_{\!j}$ labeled positive and all examples with label $_{\!j}$ labeled negative
 - train classifier \boldsymbol{F}_{ij} on this subset of the data

AVA CLASSIFICATION

To classify example \emph{x} , classify with each classifier $F_{\it ij}$

We have a few options to choose the final class:

- Take a majority vote
- Take a weighted vote based on confidence

$$\circ \quad y = F_{ij}(x)$$

- \circ score += y
- \circ score_k -= y

AVA CLASSIFICATION

To classify example \emph{x} , classify with each classifier $F_{\it ij}$

We have a few options to choose the final class:

- Take a majority vote
- Take a weighted vote based on confidence

$$\circ \quad y = F_{ij}(x)$$

- \circ score_i += y
- \circ $score_i = y$

If y is positive, classifier thought it was of type j:

- raise the score for j
- lower the score for i

if y is negative, classifier thought it was of type i:

- lower the score for j
- raise the score for i

AVA: SUMMARY

Algorithm 15 ALLVERSUSALLTRAIN(D^{multiclass}, BINARYTRAIN)

```
1. f_{ij} \leftarrow \emptyset, \forall 1 \leq i < j \leq K
2. for i = 1 to K-1 do
3. \mathbf{D}^{pos} \leftarrow \text{all } x \in \mathbf{D}^{multiclass} \text{ labeled } i extract all samples of label i
4. for j = i+1 to K do
5. \mathbf{D}^{neg} \leftarrow \text{all } x \in \mathbf{D}^{multiclass} \text{ labeled } j extract all samples of label j
6. \mathbf{D}^{bin} \leftarrow \{(x, +1) : x \in \mathbf{D}^{pos}\} \cup \{(x, -1) : x \in \mathbf{D}^{neg}\} relabel the samples
7. f_{ij} \leftarrow \text{BINARYTRAIN}(\mathbf{D}^{bin})
8. end for
9. end for
10. return all f_{ij}s tutti i classifier
```

Algorithm 16 AllVersusAllTest(all f_{ij} , \hat{x})

```
1: score \leftarrow \langle o, o, \dots, o \rangle  // initialize K-many scores to zero
2: for i = 1 to K-1 do
3: for j = i+1 to K do
4: y \leftarrow f_{ij}(\hat{x})
5: score_i \leftarrow score_i + y
6: score_j \leftarrow score_j - y
7: end for
8: end for
9: return argmax_k score_k
```

OVA VS. AVA

- Train time:
 - AVA learns more classifiers, however, they are trained on much smaller data this tends to make it faster if the labels are equally balanced
- Test time:
 - AVA has more classifiers, so often is slower
- Error:
 - AVA trains on more balanced data sets
 - AVA tests with more classifiers and therefore has more chances for errors

MULTICLASS SUMMARY

If using a binary classifier, the most common thing to do is OVA

Otherwise, use a classifier that allows for multiple labels:

- DT and k-NN work reasonably well
- Other more sophisticated methods work better (we will see them later in the course)

Class	1	2	3	4	Total
1	70	10	15	5	100
2	8	67	20	5	100
3	0	11	88	1	100
4	4	10	14	72	100

EVALUATION

MULTICLASS EVALUATION

label prediction

apple orange

orange orange

apple apple

banana pineapple

banana banana

pineapple pineapple

How should we evaluate?

Accuracy: 4/6

non funziona bene un accuracy globale perchè non mi da informazioni sulla performance per le singole classi

MACROAVERAGING VS. MICROAVERAGING

Microaveraging: average over examples (this is the "normal" way of calculating)

Macroaveraging: calculate evaluation score (e.g. accuracy) for each label, then average over labels

- Puts more weight/emphasis on rarer labels
- Allows another dimension of analysis

MACROAVERAGING VS. MICROAVERAGING

microaveraging: 4/6

macroaveraging:

apple =
$$1/2$$

orange = $1/1$
banana = $1/2$
pineapple = $1/1$
total = $(1/2 + 1 + 1/2 + 1)/4$

CONFUSION MATRIX

- Entry (i, j) represents the number of examples with label i that were predicted to have label j
- Often in percentage

QUESTIONS?

Some slides are taken from David Kauchak