Cross Validation

June 25, 2013

David

Till Max

Outline

Cross Validation
Implementation
Efficient LOOCV
Profiling

Receiver operating characteristic

Classification

Outline

Cross Validation
Implementation
Efficient LOOCV
Profiling

Receiver operating characteristic

Classification

Implementation

Star operator

```
param_vals = [params[i] for i in np.arange(1,len(params),2)]
combs = list(it.product(*param_vals))
...
for i,c in enumerate(combs):
    method.fit(X_train,y_train,*c)
```

- extract each second entry of the parameters (the actual values)
- use cross product to list all possible combinations
- call the individual fit method with an arbitrary number of components

Implementation

eLOOCV

Thus, one can simply use

```
results[dataset_name]["regularization"] = cvkrr.regularization
```

in all cases.

setup

```
import cProfile

...

def run_profile(method):
    if method == "tenfold":
        params = [ ... , 'regularization', np.logspace(-2,2,10)]
    else:
        params = [ ... , 'regularization', [0]]
    krr = imp.krr()
    imp.cv( ... , nrepetitions=1000)
    cProfile.run("run_profile('tenfold')")
    cProfile.run("run_profile('efficientLOOCV')")
```

- run each method with 1000 repititions
- run LOOCV with the same parameter range

10 Folds Cross Validation: Total time

Efficient Cross Validation: Total time

critical computation: Total time

Profiling Console

10 fold CV

```
ncalls
                  percall
                                    percall filename: lineno(function)
         tottime
                           cumtime
                                      0.001 basic.py:253(inv)
1000001
         759, 195
                    0.001
                           871.458
2000001
         306.526
                    0.000 499.664
                                      0.000 ps3 implementation.pv:124(compute kernel)
         96.057
                   96.057 1615.387 1615.387 ps3 implementation.pv:39(cv)
                                      0.000 {scipy.spatial._distance_wrap.cdist_euclidean_wrap}
         94,235
                            94,235
2000001
                    0.000
1000001
         57.595
                    0.000 1337.970
                                      0.001 ps3_implementation.py:100(fit)
2000002
         40.103
                    0.000 40.103
                                      0.000 {method 'any' of 'numpy.ndarray' objects}
```

efficient LOOCV

```
ncalls
         tottime
                  percall
                           cumtime
                                    percall filename: lineno(function)
 17166
         483.351
                    0.028
                           626,219
                                      0.036 ps3 implementation.pv:148(efficient cv)
                                      0.000 {method 'dot' of 'numpy.ndarray' objects}
8016064
          88.382
                    0.000
                            88.382
  17166
          33.691
                    0.002
                            35.661
                                      0.002 decomp.py:196(eigh)
                            26,129
                                      0.002 basic.py:253(inv)
 17165
          24.105
                    0.001
                                      0.000 ps3 implementation.py:124(compute kernel)
  51496
          9.221
                    0.000
                            14.852
                                      0.000 {scipy.spatial. distance wrap.cdist euclidean wrap}
  51496
           2.913
                    0.000
                             2.913
```

Outline

Cross Validation Implementation Efficient LOOCV Profiling

Receiver operating characteristic

Classification

- ROC curve illustrates the quality of a binary classifier
- 2 Illustrates trade-off between false positive and false negative rate

- Given two distinct probability distributions dependent on some random variable
- 2 E.g. population with disease and without
- 3 p= true positive classification
- 4 n= true negative classification
- 5 p'= predicted positive classification6 n'= predicted negative classification

	р	n
p'	True Positive	False Positive
n'	False Negative	True Negative

Figure: source: wikipedia.org

- 1 Classification depends on discrimination threshold
- Classification quality is limited by the overlap of distributions
- This classification performance can be shown with help of BOC-Curve
- **4** True positive Rate: $TPR = \frac{TP}{TP+FN} = \frac{TP}{P}$
- **6** False positive Rate: $FPR = \frac{FP}{FP+TN} = \frac{FP}{N}$

From exercise sheet we have:

- - **1** $p(x|y=-1) \sim N(\mu=0, \sigma^2=1)$
 - **2** $p(x|y=-1) \sim N(\mu=2, \sigma^2=1)$
 - 3 p(y = -1) = 0.5

4 p(y = 1) = 0.5

Implementation

empirical

```
for xs in x:
    dtn[i]=np.size(np.where(dn<=xs))
    dfn[i]=np.size(np.where(dp<=xs))
    dtp[i]=np.size(np.where(dp>=xs))
    dfp[i]=np.size(np.where(dn>=xs))
```


Figure: n=10

Figure: n=100

Figure: n=1000

Figure: n=10000

Outline

Cross Validation
Implementation
Efficient LOOCV
Profiling

Receiver operating characteristic

Classification

Assignment 4

- Classification of data sets image, ringnorm, flare-solar, banana and diabetes using cv
- Cross-validation: nfolds = 10 and nrepetitions = 5
- Parameter ranges:

Kernel	Kernel parameter	Regularization
linear	[0]	np.logspace(-2,2,10)
polynomial	np.arange(1,10)	np.logspace(-2,2,10)
gaussian	np.logspace(-2,2,10)	np.logspace(-2,2,10)

KRR with LOOCV ⇒ regularization set to [0]

ROC-Curves banana

ROC-Curves ringnorm

ROC-Curves image

ROC-Curves diabetes

ROC-Curves flare-solar

banana in detail

Cross-validation results

Table: Normal CV

	Data set	cv loss	AUC	Kernel	Parameter	Regularization
_	image	0.0225	0.998	Gaussian	1.6681	0.0278
	ringnorm	0.0395	0.999	Gaussian	4.6416	0.0774
	flare-solar	0.3499	0.7	polynomial	1	0.01
	banana	0.0985	0.952	Gaussian	0.2154	1.6681
	diabetes	0.2385	0.805	Gaussian	4.6416	1.6681
	ringnorm flare-solar banana	0.0395 0.3499 0.0985	0.999 0.7 0.952	Gaussian polynomial Gaussian	4.6416 1 0.2154	0.0774 0.01 1.6681

Table: LOOCV

Data set	cv loss	AUC	Kernel	Parameter	Regularization
image	0.0283	0.996	Gaussian	0.5995	0.4043
ringnorm	0.0475	0.956	Gaussian	0.0774	1.0
flare-solar	0.3505	0.695	linear		3.7391
banana	0.106	0.959	Gaussian	0.5995	0.8431
diabetes	0.2431	0.805	Gaussian	4.6416	1.8293

Accuracy comparison

- Reference loss taken from Machine Learning 2 lecture
- Normal CV slightly better than LOOCV

cv loss	cv loss LOOCV	reference loss
0.0225	0.0283	0.028
0.0395	0.0475	0.047
0.3499	0.3505	0.341
0.0985	0.106	0.106
0.2385	0.2431	0.232
	0.0225 0.0395 0.3499 0.0985	cv loss cv loss LOOCV 0.0225 0.0283 0.0395 0.0475 0.3499 0.3505 0.0985 0.106 0.2385 0.2431

Runtime comparison

- Speed-up between 6 12
- flare-solar data set is an outlier
- Linear kernel has fewer parameter values

Data set	cv in s	cv with LOOCV in s	speed-up
image	46504	3920	11.9
ringnorm	1237	185	6.7
flare-solar	1843	56	33
banana	980	166	6
diabetes	2284	285	8
flare-solar banana	1843 980	56 166	33 6

Comparison test data set

Comparison test data set contd.

Comparison test data set contd.

