Consider the intersection of two circles. Fortunately, it is easy to reduce these two quadratic equations to the case handled in Exercise 5.3.4.

Exercise 1 (5.3.5). The equations of any two circles can be written in the form

$$(x-a)^{2} + (y-b)^{2} = r^{2}$$
$$(x-c)^{2} + (y-d)^{2} = s^{2}$$

Explain why. Now subtract one of these equations from the other, and hence show that their common solutions can be found by rational operations and square roots.

When a sequence of quadratic equations is solved, the solution may involve *nested* square roots, such as $\sqrt{(5+\sqrt{5})/2}$. This very number, in fact, occurs in the icosahedron, as one sees from Pacioli's construction in Section 2.2.

Exercise 2 (5.3.6). Show that the diagonal of a golden rectangle (which is also the diameter of an icosahedron of edge length 1) is $\sqrt{(5+\sqrt{5})/2}$.

We know from Exercise 5.4.1 that $\sqrt[3]{2}$ is not in F_0 , but if it is constructible it will occur in some F_{k+1} . A contradiction now ensues by considering (hypothetically) the first such F_{k+1} .

Exercise 3 (5.4.3). Show that if $a, b, c \in F_k$ but $\sqrt{c} \notin F_k$, then $a + b\sqrt{c} = 0 \Leftrightarrow a = b = 0$. (For k = 0 this is in the Elements, Book X, Prop. 79.)

Exercise 4 (5.4.4). Suppose $\sqrt[3]{2} = a + b\sqrt{c}$, where $a, b, c \in F_k$, but that $\sqrt[3]{2} \notin F_k$. (We know that $\sqrt[3]{2} \notin F_0$ from Exercise 5.4.1.) Cube both sides and deduce from Exercise 5.4.3 that

$$2 = a^3 + 3ab^2c$$
 and $0 = 3a^2b + b^3c$.

Exercise 5 (5.4.5). Deduce from Exercise 5.4.4 that $\sqrt[3]{2} = a - b\sqrt{c}$ also, and explain why this is a contradiction.