Übung 1

Alexander Mattick Kennung: qi69dube

Kapitel 1

29. April 2020

Leitungsorientiert:

aufteilen in effektive Übertragunsrate $R_{eff} = \frac{R}{\#channels}$

Dann schauen wie viele "schritte" man für die Daten braucht:

$$t_{transfer} = t_{connect} + \frac{\#data}{R_{eff}}$$

Es ist hierbei egal, ob man Frequenzorientiert (Frequency division multiplex, FDM) oder Zeitoriert (Temporal division multiple, TDM).

Paketvermittlung: Statistisches multiplexing.

Jeder bekommt einen verhältnissmäßigen anteil an Datenrate R.

Bei 16 kanälen, die 15% der Zeit aktiv sind, gilt:

Gegeben:
$$R_{ges} = 10Mbit/s$$
 $R_{user} = 626kbit/s$ $\frac{t_{user}}{t_{des}} = 15\%$

ges.: $n_{nutzer\ leitungsvermittlung},\ p_{user},\ p_k,p_{k>16}$

$$n_{nutzer\ leitungsvermittlung} = \frac{10Mbit/s}{626kbit/s} = 16.$$

 $p_{user} = 0.15$

Wahrscheinlichkeit ist binomialverteilung:

$$p_k = p(X = k) = {50 \choose k} 0.15^k \cdot (1 - 0.15)^{50 - k} = B(15, 0.15, k)$$

$$p_{k>16} = p(X > 16) = 1 - P(X \le 16) = 1 - \sum_{i=0}^{1} 6_{i=0} p_i = 1 - F(50, 0.15, 16) = 1 - 0.999339 = 0.000661$$

Routing:

virtuelle Verbindungen: Jedes Paket erhält eine virtual circuit ID mit Kennzeichnung des nächsten Knotens.

Pfad bleibt während der gesamten Sitzung gleich. Die router müssen für jede virtuelle Verbindung Zustandsinfos speichern.

Datagram-Netzwerke: Zieladresse im Paket bestimmt nächsten Knoten. Die Route kann sich während der Sitzung verändern (dynamische Wegfindung). (e.g. Fahren und immer wieder nach weg fragen)

4 Paketverzögerunsquellen:

1. Übertragungsverzögerung d_{trans} L/R bei langsamer verbindung signifikant

Zeit, um bits auf den Link zu legen L=paketlänge, R=bitrate $\frac{L}{R}$

2. Ausbreitungsverzögerung d_{prop} wenige micro bis milisekunden

Zeit zum traversieren des Links l=weglänge, v=geschwindigkeit $\frac{l}{v}$

1&2 sind besonders Wichtig.

Dazu: Autos fahren nach Mautstation 100km zur nächsten.

Die mautstation hat delay $t_{trans} = 1Min$ und die Autos haben eine geschwindigkeit von v = 1000km/h

Frage: kommen die ersten Autos an 2. Mautstation an, bevor die letzten durch die erste station sind.

Eine Kolonne besteht aus 10 Autos, also 10 Autos * 1min = 10min bis zum ende.

 $d_{trans} = \frac{100km}{1000km/h} = 0.1h = 6min$ also kommt das erste Auto an, wenn das 6. gerade durch die Mautstation gekommen ist (und das 7. davor steht).

Oder alternativ $d_{kolonne} = \frac{10A}{10A/min} + \frac{100km}{1000km/h} = 16min$

$$d_{Auto} = \frac{1A}{1A/min} + \frac{100km}{1000km/h} = 7min.$$

3. Verarabeitungsverzone d_{proc} in ms

Prüfung auf Bitfehler, Bestimmung ausgehender Links.

Wenn betrachtet, dann als konstant angesehen.

4. Warteschlangenverzögerung d_{queue} lastabhängig

Wartezeit auf den ausgehenden Link. hängt von der Routerbelastung ab.

abhängig von Verkehrsintensität $\rho = \frac{L\lambda}{R}$, wobei R=bitrate [bps], L = Paketlänge [bit] und λ = durchschnittliche Paketankunftsrate[pakete/s] ist. (Also: was reinkommt/was rausgeht)

Wenn $\rho \approx 0$ verzögerung klein

 $\rho \to 1$ verzögerung wird groß.

 $\rho > 1$ Es kommt mehr arbeit an, als rausgeht, durchschnittliche verzögerung geht gegen unendlich.

 \rightarrow Paketverlust

Router hat endliche kapazität.

Wenn warteschlange voll ist, werden neue Pakete verworfen, die entweder von der Quelle, dem vorherigen Netzwerkknoten, oder gar nicht neuübertragen werden.

$$d_{nodal} = d_{proc} + d_{queue} + d_{trans} + d_{prop}$$

Paketvermittlung:

Cut-Through-Vermittlung: Knoten wartet nur den Header ab, um weiterleitungsziel herauszufinden. Danach fließend weitergeschickt.

Store-and-Forward (Speichervermittlung): das ganze Paket wird beim Router gespeichert und dann erst auf den nächsten link weitergeschickt (bessere fehlerüberprüfung, ist der Standard)

Übertragungsverzögerung: übertragung von $N \cdot L$ bist über 3 Links mit Store-and-Forward

nach $t = \frac{L}{R}$ ist man beim ersten Router.

nach 2t erstes paket beim zweiten Router, zweites beim ersten.

3t erstes Paket im Ziel.

4t zweites im ziel

. . .

Hochseeleitung vs Containerschiff voller 2TB festplatten.

Containerschiff 60km/h 14.000TEU mit je $1TEU = 2.5m \times 2.5m \times 6m = 37.5m^3$

Hochseeleitung mit l=12315km, $R_{AP} = 3.2 \frac{TB}{s}$

Volumen 2TB festplatte = $0.1m \times 0.2m \times 0.05m = 0.001m^3$ ges R_{Schiff} :

 $\#festplatten/TEU = \tfrac{37.5m^3}{0.001m^3} = 37500 \tfrac{festplatten}{TEU} \rightarrow 525000000 festplatten = 525mio\ festplatten/schiff \rightarrow 1050000000TB/schiff \rightarrow 8400000000Tbit/schiff$

 $t_{fahrt} = \frac{12315km}{60km/h} = 205.25h$ also $R_{schiff} = \frac{8400000000Tbit}{205.25h} = \frac{8400000000Tbit}{738900s} = 11368.250101502234 \frac{Tbit}{s} >> 3.2Tbit/shochsee.$

 $d_{prop,schiff} = 205.3h$ also das als minimale Wartezeit bei schiff.

$$d_{prop} = \frac{12315}{2*10^8 m/s} = 62 ms$$

Besser zuhause oder in der Uni runterladen?

fahrtzeit t=20min, downloadgeschwindigkeit $R_{uni}=1Gb/s, R_{forchheim}=10Mb/s$

ges.: O ab der es sich lohnt in die Uni zu fahren.

$$t_{uni} = 2 * 20min + \frac{O}{1GB/s}$$

$$t_{Forch} = \frac{O}{10Mbit/s}$$

$$t_{uni} = t_{Forch} \implies 40min + \frac{O}{1GB/s} \le \frac{O}{10Mbit/s} \implies 2400s \le \frac{O}{10Mbit/s} - \frac{O}{1000Mbit/s} \implies 2400s \le \frac{100*O}{1000Mbit/s} - \frac{O}{1000Mbit/s} \implies 2400s \le \frac{99*O}{1000Mbit/s} \implies \frac{2400s \cdot 1Gbit/s}{99} \le O \implies 24.24Gbit \le O \implies 3GB \le O \text{ es}$$
 lohnt sich also ab 3GB