if X has average >> then
$$P(x=k]=e^{-\lambda}\frac{(\Delta)^k}{k!}$$
 $P(\Delta t)=e^{-\lambda t}\frac{(\Delta t)^k}{k!}$

when $\lambda=100$, $t=\frac{1}{20}$, $k=0$
 $P=e^{-5}$

(2) Ej: the jth student have the same seat in the two room

 $P(N=0)=1-P(\int_0^{\infty}E)$
 $=1-\left[(P(E)+P(E)+\cdots+P(E)+0)-P(E)E)+P(E)E=0\}\cdots+P(E)E=0$
 $=1-\left[(P(E)+P(E)+\cdots+P(E)+0)-P(E)E)+P(E)E=0\}\cdots+P(E)E=0$
 $=1+\left[\int_0^{\infty}(-1)^{\frac{1}{2}}\left(\frac{100}{100}\right)P(E,E)-\left(\frac{3}{100}\right)P(E,E)E=0$
 $=1+\left[\int_0^{\infty}(-1)^{\frac{1}{2}}\left(\frac{100}{100}\right)P(E,E)-\left(\frac{3}{100}\right)P(E,E)E=0$
 $=1+\left[\int_0^{\infty}(-1)^{\frac{1}{2}}\left(\frac{100}{100}\right)P(E,E)-\left(\frac{3}{100}\right)P(E,E)E=0$
 $=1+\left[\int_0^{\infty}(-1)^{\frac{1}{2}}\left(\frac{100}{100}\right)P(E,E)-\left(\frac{3}{100}\right)P(E,E)E=0$
 $=1+\left[\int_0^{\infty}(-1)^{\frac{1}{2}}\left(\frac{100}{100}\right)P(E,E)-\left(\frac{3}{100}\right)P(E,E)E=0$
 $=1+\left[\int_0^{\infty}(-1)^{\frac{1}{2}}\left(\frac{100}{100}\right)P(E,E)-\left(\frac{3}{100}\right)P(E,E)-$

(c)
$$P(x=1) = e^{-1}$$

 $P(x=2) = 1 - \frac{2}{e}$

$$P(SZ \leq X) = P(SZ \leq X | S=1) P(S=1) + P(SZ \leq X | S=-1) P(S=1)$$

$$= \frac{1}{2} (P(Z \leq X) + P(Z \approx -X)) = P(Z \leq 1)$$

$$Qz : Yes, because X & Y is symmetric

No, it depends on $P(X = Y) = 0$?$$

 $P(G-x)=m)=P(x=n-m)=\binom{n}{n-m}P^{n-m}(PP)^{m}=\binom{n}{m}(PP)^{m}P^{n-m}$ Q4: $\frac{1}{2}: \text{ there won't be } 2-99 \text{ seats because if it is empty}$ then somebody will sit there

nen somebody will sit there

$$P(Y \leq y) = P(x \leq l_{1}y) = \overline{P}(\frac{l_{1}y - u}{6})$$

$$Q_{2}(X = -\frac{1}{2}l_{1}l_{1})$$

$$Q_{3}(F(x) \sim U_{1}if(0,1))$$

Q, ,

Q₁
$$E(XI)^{2} e^{\lambda} \stackrel{\text{N}}{\not=} kI \stackrel{\text{N}}{\not=} kI = \frac{e^{\lambda}}{F^{\lambda}}$$
Q₁ $E(I)^{2} = e^{\lambda} \stackrel{\text{N}}{\not=} kI = \frac{e^{\lambda}}{F^{\lambda}}$
Q₂ $E(I)^{2} = \frac{e^{\lambda}}{F^{\lambda}} (I) = \frac{e^{\lambda}}$