IEEE-CIS Fraud Detection Data Analysis & Visualization

Nikhil Balwani, Zain Merchant, Qingcheng Yu, Haozhong Jia (Group 19)

Overview

- Initial Data Exploration
 - Imbalance of Target Variable (Fraud)
 - Proportion of Fraudulent Transactions
- Data Cleaning + Sampling
- Insights from Data Exploration
 - Central Tendency Plot
 - Drop columns with too many missing values
 - Correlation Matrix
 - o Feature importance via Random Forest
- Proposed ML Techniques to Implement

Background

Fraud Detection Module

Datatype Distribution

Initial Data Exploration

 The IEEE-CIS Fraud data set contains 433 feature:

Numerical: 402 columnsCategorical: 31 columns

- About half of the columns contain >70% missing values
- The dataset contains one target variable, describing if the transaction is fraud
 - o 1 represent fraud and 0 represent non-fraud
 - most of the samples are non-fraud
- Given the large number of features, but a few important ones were be chosen for EDA

Initial Data Exploration

- Mostly non-fraudulent data
- Distribution of target variable:
 - o Fraud: 3.5%
 - Non-fraud: 96.5%
- Categorical variable insights:
 - "Discover" vendor has the highest proportion of fraud followed by "Visa".
 - "Credit" cards tend to have a higher chance of fraud than "Debit" cards.
 - The product type "C" has the highest proportion of frauds.
 - The location encoded with 330.0 has the highest proportion of frauds.

Bar plot - frequency (left y-axis) Line plot - proportion of fraudulent transactions (right y-axis)

Central Tendency Plots

- Distribution and central tendencies for:
 - Transactiondt
 - Transactionamt
 - o C1
 - o **D**4
- Large difference between the mean and the median:
 - Suggests that the features are highly skewed (evident from the figures)

Data Cleaning, Sampling, and Preprocessing

- Some categorical features are encoded as float64
 - We convert them into int32 to save memory
- Filling Missing data
 - Dropping columns with more than 70% missing values
 - Numerical features: missing values replaced with the median
 - Categorical features: an extra "missing" category added
- Standardization
 - A separate dataset for softmax regression, feed forward neural network classifiers
- Resampling
 - SMOTE
 - Random Forest With Class Weighting

Dropping columns with too many missing values

Correlation Matrix

- According to the correlation heatmap, we figured out some highly correlated features exist in the original dataset, which may cause:
 - overfitting
 - make it harder to draw meaningful insights from data
- Therefore, we dropped highly correlated features based on correlation threshold of 0.9

Feature Importance in Random Forest

Top-10 most important features

Why do we calculate feature importance scores?

- Reduce dimensionality:
 - Reducing the time to train the model without reducing the performance
- Better interpretation:
 - Identifying which features are most closely related to the target variable

Proposed ML techniques

Models:

- Baselines
 - o One vs Rest logistic regression
 - Softmax classifier
 - K-NN classifier
- Tree based models
 - Random Forest
 - Histogram-based Gradient Boosting Classifier
 - Extreme Gradient Boosting (XGBoost)
- Neural Network
 - Feedforward Neural Network with Softmax activation

Metrics:

- Recall
 - special focus we want to prevent fraud aggressively
- F1 score
- Area Under Receiver Operating Characteristic Curve
- Area Under Precision Recall Curve

