Elementos de Cálculo Numérico (M) / Cálculo Numérico (F)

Primer parcialito MATLAB - Turno Tarde

Entrega: Los archivos deberán ser enviados como adjuntos en un mail dirigido a la dirección: ecn.matlab@gmail.com, con asunto: Nombre Apellido, LU, Turno.

Ejercicio: Dada una función $F: \mathbb{R}^n \to \mathbb{R}^n$, se quiere hallar un cero de F, esto es, un $v \in \mathbb{R}^n$ tal que $F(v) = (0, 0, \dots, 0)^t \in \mathbb{R}^n$. Para ello se implementa el metodo de Newton-Raphson dado por:

$$x_{k+1} = x_k - J(x_k)^{-1} F(x_k),$$

donde J es la matriz jacobiana de F, dada por $(J)_{i,j} = \frac{\partial f_i}{\partial x_i}$.

- a) Escribir una función de nombre newton que reciba como input:
 - Una función $F: \mathbb{R}^2 \to \mathbb{R}^2$ dada por $F(x,y) = (f(x,y),g(x,y))^t$ y su matriz Jacobiana. Sugerencia: utilice $F = \mathfrak{Q}(x,y)$ [f(x,y),g(x,y)] para definir las funciones o pida al programa que se ingrese cada componente.
 - Un vector x_0 .
 - Una tolerancia T.

y luego aplique el metodo de Newton-Raphson a F con dato inicial x_0 . El programa debe detenerse cuando suceda alguno de los siguientes:

- Se alcancen 50 iteraciones.
- El error relativo entre x_k y x_{k+1} en norma infinito sea menor que T, es decir

$$\frac{\|x_{k+1} - x_k\|_{\infty}}{\|x_{k+1}\|_{\infty}} < T.$$

Por último, el programa debe devolver dos datos:

- El resultado de la última iteración del método (el último x_k).
- La cantidad de iteraciones realizadas.
- b) Se quieren hallar los puntos de intersección entre las dos parábolas C_1 y C_2 dadas por ecuaciones $y = x^2 2$ y $x = y^2 2$. Para esto se empleará el método del inciso anterior con la función

$$F(x,y) = (y - x^2 + 2, x - y^2 + 2).$$

Escribir un script de nombre testnewton que:

- Para cada punto $(x, y) \in \mathbb{R}^2$ con x e y enteros de módulo menor a 3 aplique la función newton con dato inicial $x_0 = (x, y)$.
- Si el método se detiene antes de llegar a las 50 iteraciones, imprima el resultado de la última iteración.

¿Halló este programa todos los puntos de intersección?.