Struttura sottosistemi I/O:

- caratteristiche periferiche:
 - direzione I/O R/W/RW
 - o condivisione mutua esclusine o condivisibile
 - metodo di accesso sequenziale o diretto
 - o trasferimento dei dati a carattere o a blocchi
 - o schedulazione trasferimento sincrono o asincrono
 - o velocita' dispositivi latenza, tempo di ricerca, tempo di trasferimento, ritardo tra operazioni
- software gestione periferiche:
 - o interfaccia unica con astrazione e virtualizzazione delle periferiche
 - standardizzazione della gestione
 - o strato di gestione del canale di comunicazione:
 - garantice che le comunicazioni CPU-periferica siano trasparenti
 - strato di device dependent driver:
 - standardizzare il linguaggio di comando e trattamento di periferiche dello stesso tipo
 - strato di device independent driver:
 - strazione per mostrare tutte le tipologie di periferiche allo stesso modo
- realizzione sottosistema I/O:
 - schedulazione operazioni:
 - ordinamento delle richiestte tramite una coda FIFO/priorita'/scadenza
 - o bufferizzazione:
 - adattare le velocita' e la dimensione dei dati durante la comunicazione CPU-periferica
 - caching
 - o spooling:
 - bufferizzazione in area di spooling
 - separazione richiesta emissione dei dati / effettiva emissione da parte della periferica
 - o locking:
 - prenotazione delle periferiche tramite coda di attesa
 - gestione errori
- strutture dati:
 - o tabella di tutti i file aperti e periferiche in uso

Gestione memorie di massa:

- access time = seek time + rotational latency
- bandwidth = byte traferiti / tempo totale trasferimento

1 of 3 2/19/21, 9:21 AM

- algoritmi di schedulazione degli accessi:
 - First Come / First Served coda, testina a zigzag
 - Shortest Seek Time First tempo di accesso minore, percorso ottimo
 - Scan coda, processamento delle richieste lungo il percorso [0, estremo del disco]
 - Circular Scan effetto pacman, tempo di attesa uniforme, spostamento della testina senza letture
 - Ricerca/Look effetto pacman anche se non si sono raggiunti gli estremi del disco
- organizzazione disco:
 - formattazione fisica:
 - formattazione di basso livello
 - suddivisione in settori, ogni settore ha header/dati/terminatore
 - checksum nel terminatore per controllo errori
 - partizionamento:
 - disco in porzioni gestite come dischi logici
 - un disco = una partizione
 - formattazione logica di ogni partizione:
 - formattazione ad alto livello
 - permette creazione file ssytem (oppure raw disk come in area di swap)
 - blocco di avvio Boot Block:
 - contiene os o un loader
- blocchi difettosi Bad Block:
 - techinche di sostituzione dei settori guasti:
 - in maniera automatica durante la formattazione
 - Sector Sparing sostituzione con un blocco spare
 - Sector Forwarding spare blocks in fondo, spostamento di tutto il disco in avanti
 - Sector slipping spostamento porzioni di disco in blocco
- gestione area swap:
 - raw disk che contiene processi/pagine/segmenti
 - locazione partizione dedicata / file regolato dal file system
 - strutturata con una mappa con indici ai blocchi all'interno del disco
- RAID:
 - o ridondanza
 - o mean time between failure
 - o parallelismo negli accessi data striping:
 - bit level striping
 - block level striping

2 of 3 2/19/21, 9:21 AM

- o 0 striping non ridondante
- o 1 mirroring dei dischi
- o 2 error correcting codes
- 3 bit interleaved parity
- 4 block interleaved parity
- o 5 block interleaved distributed parity
- ∘ 6 P + Q redundancy
- ∘ 0+1 mirror di stripe
- ∘ 1+0 stripe di mirror
- memoria terziaria:
 - o veloci/affidabili/basso costo
 - o hierarchical storage management:
 - estensione del file system per includere la memoria terziaria
 - univoca denominazione nel file system

3 of 3 2/19/21, 9:21 AM