Exponential and Logarithmic Functions

Outline

- 5.1 Composite Functions
- **5.2** One-to-One Functions; Inverse Functions
- 5.3 Exponential Functions
- 5.4 Logarithmic Functions
- 5.5 Properties of Logarithms
- 5.6 Logarithmic and Exponential Equations
- 5.7 Financial Models
- 5.8 Exponential Growth and Decay Models; Newton's Law; Logistic Growth and Decay Models
- 5.9 Building Exponential, Logarithmic, and Logistic Models from Data
 - · Chapter Review
 - Chapter Test
 - Cumulative Review
 - Chapter Projects

5.3 Exponential Functions

PREPARING FOR THIS SECTION Before getting started, review the following:

- Exponents (Appendix A, Section A.1, pp. A7–A9, and Section A.10, pp. A81–A87)
- Graphing Techniques: Transformations (Section 2.5, pp. 90–99)
- Solving Equations (Appendix A, Section A.6, pp. A44–A51)
- Average Rate of Change (Section 2.3, pp. 74–76)
- · Quadratic Functions (Section 3.3, pp. 134-142)
- Linear Functions (Section 3.1, pp. 118–121)
- Horizontal Asymptotes (Section 4.2, pp. 191–192)

Now Work the 'Are You Prepared?' problems on page 278.

- OBJECTIVES 1 Evaluate Exponential Functions (p. 267)
 - 2 Graph Exponential Functions (p.271)
 - 3 Define the Number e (p. 274)
 - 4 Solve Exponential Equations (p. 276)

THEOREM

Laws of Exponents

If s, t, a, and b are real numbers with a > 0 and b > 0, then

$$a^{s} \cdot a^{t} = a^{s+t}$$
 $(a^{s})^{t} = a^{st}$ $(ab)^{s} = a^{s} \cdot b^{s}$
 $1^{s} = 1$ $a^{-s} = \frac{1}{a^{s}} = \left(\frac{1}{a}\right)^{s}$ $a^{0} = 1$ (1)

DEFINITION

An exponential function is a function of the form

$$f(x) = Ca^x$$

where a is a positive real number (a > 0), $a \ne 1$, and $C \ne 0$ is a real number. The domain of f is the set of all real numbers. The base a is the **growth factor**, and because $f(0) = Ca^0 = C$, we call C the **initial value**.

WARNING It is important to distinguish a power function, $g(x) = ax^n$, $n \ge 2$, an integer, from an exponential function, $f(x) = C \cdot a^x$, $a \ne 1$, a > 0. In a power function, the base is a variable and the exponent is a constant. In an exponential function, the base is a constant and the exponent is a variable.

THEOREM

For an exponential function $f(x) = Ca^x$, where a > 0 and $a \ne 1$, if x is any real number, then

$$\frac{f(x+1)}{f(x)} = a \quad \text{or} \quad f(x+1) = af(x)$$

Proof

$$\frac{f(x+1)}{f(x)} = \frac{Ca^{x+1}}{Ca^x} = a^{x+1-x} = a^1 = a$$

In Words

For 1-unit changes in the input x of an exponential function $f(x) = C \cdot a^x$, the ratio of consecutive outputs is the constant a.

x	y Average Rate of Change	Ratio of Consecutive Outputs
-1	5	
	$\frac{\Delta y}{\Delta x} = \frac{2-5}{0-(-1)} = -3$	2 5
0	2<	1
	-3	- ' 2
1	-1 >-3	4
2	-4	
	>-3	$\frac{7}{4}$
3	-7	7
	(a)	

(a) See Table 2(a). The average rate of change for every 1-unit increase in x is -3. Therefore, the function is a linear function. In a linear function the average rate of change is the slope m, so m = -3. The y-intercept b is the value of the function at x = 0, so b = 2. The linear function that models the data is f(x) = mx + b = -3x + 2.

x	y Average Rate of Change	Ratio of Consecutive Outputs
-1	32	16 1
	$\frac{1}{\Delta x} = \frac{1}{0 - (-1)} = -16$	$\frac{76}{32} = \frac{7}{2}$
0	16	$\frac{8}{16} = \frac{1}{2}$
1	8	$\frac{4}{1} = \frac{1}{1}$
2	4	8 2
3	2 >-2	$\frac{2}{4} = \frac{1}{2}$
	(b)	

(b) See Table 2(b). For this function, the average rate of change from -1 to 0 is -16, and the average rate of change from 0 to 1 is -8. Because the average rate of change is not constant, the function is not a linear function. The ratio of consecutive outputs for a 1-unit increase in the inputs is a constant, \(\frac{1}{2}\). Because the ratio of consecutive outputs is constant, the function is an exponential function with growth factor \(a = \frac{1}{2}\). The initial value of the exponential function is \(C = 16\). Therefore, the exponential function that models the data is \(g(x) = Ca^x = 16 \cdot \left(\frac{1}{2}\right)^x\).

x	y Average Rate of Change	Ratio of Consecutive Outputs
-1	2 Δy 4 – 2	
	$\frac{\Delta y}{\Delta x} = \frac{4-2}{0-(-1)} = 2$	2
0	4 >3	7
1	7 <	11
2	11 < 4	7
	5	16 11
3	16 - (c)	

(c) See Table 2(c). For this function, the average rate of change from −1 to 0 is 2, and the average rate of change from 0 to 1 is 3. Because the average rate of change is not constant, the function is not a linear function. The ratio of consecutive outputs from -1 to 0 is 2, and the ratio of consecutive outputs from 0 to 1 is $\frac{7}{4}$. Because the ratio of consecutive outputs is not a constant, the function is not an exponential function. ı

8

Exploring Exponential Functions

https://www.desmos.com/calculator/3namqjnhhf

Properties of the Exponential Function $f(x) = a^x$, a > 1

- The domain is the set of all real numbers or (-∞,∞) using interval notation; the range is the set of positive real numbers or (0,∞) using interval notation.
- 2. There are no x-intercepts; the y-intercept is 1.
- 3. The x-axis (y = 0) is a horizontal asymptote as $x \to -\infty$ $\left[\lim_{x \to -\infty} a^x = 0\right]$.
- **4.** $f(x) = a^x$, where a > 1, is an increasing function and is one-to-one.
- 5. The graph of f contains the points $(0, 1), (1, a), \text{ and } \left(-1, \frac{1}{a}\right)$.
- The graph of f is smooth and continuous, with no corners or gaps. See Figure 21.

Figure 21

Properties of the Exponential Function $f(x) = a^x$, 0 < a < 1

- The domain is the set of all real numbers or (-∞,∞) using interval notation; the range is the set of positive real numbers or (0,∞) using interval notation.
- 2. There are no x-intercepts; the y-intercept is 1.
- 3. The x-axis (y = 0) is a horizontal asymptote as $x \to \infty$ $\left[\lim_{x \to 0} a^x = 0\right]$.
- **4.** $f(x) = a^x$, 0 < a < 1, is a decreasing function and is one-to-one.
- 5. The graph of f contains the points $\left(-1, \frac{1}{a}\right)$, (0, 1), and (1, a).
- The graph of f is smooth and continuous, with no corners or gaps. See Figure 25.

Figure 25

Consider the following summation formula built by the given pattern.

$$1 + \frac{1}{1!} = 1 + \frac{1}{1} =$$

$$1 + \frac{1}{1!} + \frac{1}{2!} = 1 + \frac{1}{1} + \frac{1}{1 \cdot 2} = \left(1 + \frac{1}{1}\right) + \frac{1}{2} = \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} = \frac{1}{1} + \frac{1}{1} + \frac{1}{1} = \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} = \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} = \frac{1}{1} + \frac{$$

$$1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} = 1 + \frac{1}{1} + \frac{1}{1 \cdot 2} + \frac{1}{1 \cdot 2 \cdot 3} = \left(1 + \frac{1}{1} + \frac{1}{2}\right) + \frac{1}{6} =$$

Continuing this pattern on excel ...

n	1+1/1!+1/2!+1/3!+
1	2.000000000000000
2	2.500000000000000
3	2.66666666666670
4	2.708333333333333
5	2.71666666666670
6	2.71805555555560
7	2.718253968253970
8	2.718278769841270
9	2.718281525573190
10	2.718281801146380
11	2.718281826198490
12	2.718281828286170
13	2.718281828446760
14	2.718281828458230
15	2.718281828458990
16	2.718281828459040
17	2.718281828459050
18	2.718281828459050
19	2.718281828459050
20	2.718281828459050

logarithm is 1. There are also more alternative characterizations.

DEFINITION

The number e is defined as the number that the expression

$$\left(1+\frac{1}{n}\right)^n$$
 (2)

Ø

approaches as $n \to \infty$. In calculus, this is expressed using limit notation as

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$$

Table 5

n	1 n	$1 + \frac{1}{n}$	$\left(1+\frac{1}{n}\right)^n$
1	1	2	2
2	0.5	1.5	2.25
5	0.2	1.2	2.48832
10	0.1	1.1	2.59374246
100	0.01	1.01	2.704813829
1,000	0.001	1.001	2.716923932
10,000	0.0001	1.0001	2.718145927
100,000	0.00001	1.00001	2.718268237
1,000,000	0.000001	1.000001	2.718280469
1,000,000,000	10 ⁻⁹	1 + 10 ⁻⁹	2.718281827

Solve Exponential Equations

If
$$a^u = a^v$$
, then $u = v$. (3)

In Words

When two exponential expressions with the same base are equal,

then their exponents are equal.

SUMMARY Properties of the Exponential Function

 $f(x) = a^x$, a > 1 Domain: the interval $(-\infty, \infty)$; range: the interval $(0, \infty)$

x-intercepts: none; y-intercept: 1

Horizontal asymptote: x-axis (y = 0) as $x \rightarrow -\infty$

Increasing; one-to-one; smooth; continuous

See Figure 21 for a typical graph.

 $f(x) = a^x$, 0 < a < 1 Domain: the interval $(-\infty, \infty)$; range: the interval $(0, \infty)$

x-intercepts: none; y-intercept: 1

Horizontal asymptote: x-axis (y = 0) as $x \to \infty$

Decreasing; one-to-one; smooth; continuous

See Figure 25 for a typical graph.

If $a^u = a^v$, then u = v.

In Problems 15-24, approximate each number using a calculator. Express your answer rounded to three decimal places.

https://www.google.com/#q=calculator

http://www.wolframalpha.com/

16.

(a) 5^{1.7}

(b) 5^{1.73}

(c) 51.732

(d) $5^{\sqrt{3}}$

20.

(a) 2.7^{3.1}

(b) 2.71^{3.14}

(c) 2.7183.141

(d) e^v

In Problems 25–32, determine whether the given function is linear, exponential, or neither. For those that are linear functions, find a linear function that models the data; for those that are exponential, find an exponential function that models the data.

26.

х	g(x)
-1	2
0	5
1	8
2	11
3	14

28.

x	F(x)
-1	<u>2</u> 3
0	1
1	3 2
2	9 4
3	27 8

In Problems 33-40, the graph of an exponential function is given. Match each graph to one of the following functions.

(a)
$$y = 3^x$$

(b)
$$y = 3^{-x}$$

(c)
$$y = -3^x$$

(d)
$$y = -3^{-x}$$

(e)
$$y = 3^x - 1$$

(f)
$$y = 3^{x-1}$$

$$(g)\ y=3^{1-x}$$

(h)
$$y = 1 - 3$$

33.

34.

35.

26

37.

38.

39.

40.

In Problems 41-52, use transformations to graph each function. Determine the domain, range, and horizontal asymptote of each function.

50.
$$f(x) = 1 - 2^{x+3}$$

In Problems 53–60, begin with the graph of $y = e^x$ [Figure 27] and use transformations to graph each function. Determine the domain, range, and horizontal asymptote of each function.

58.
$$f(x) = 9 - 3e^{-x}$$

In Problems 61-80, solve each equation.

64.
$$3^{-x} = 81$$

72.
$$9^{-x+15} = 27^x$$

In Problems 85-88, determine the exponential function whose graph is given.

88.

114. Current in a RC Circuit The equation governing the amount of current I (in amperes) after time t (in microseconds) in a single RC circuit consisting of a resistance R (in ohms), a capacitance C (in microfarads), and an electromotive force E (in volts) is

$$I = \frac{E}{R}e^{-i/(RC)}$$

- (a) If E = 120 volts, R = 2000 ohms, and C = 1.0 microfarad, how much current I₁ is flowing initially (t = 0)? After 1000 microseconds? After 3000 microseconds?
- (b) What is the maximum current?
- (c) Graph the function I = I₁(t), measuring I along the y-axis and t along the x-axis.
- (d) If E = 120 volts, R = 1000 ohms, and C = 2.0 microfarads, how much current I₂ is flowing initially? After 1000 microseconds? After 3000 microseconds?
- (e) What is the maximum current?
- (f) Graph the function I = I₂(t) on the same coordinate axes as I₁(t).