CpE111 Introduction to Computer Engineering

Dr. Minsu Choi CH 5: VHDL

Introduction to VHDL

- VHDL: VHSIC
 - Hardware Description Language
- VHSIC: Very High Speed Integrated Circuit; Dept of Defense first used it.
- VHDL is pronounced by just reading the letters. VHSIC, on the other hand, is pronounced as vis-hic.
- VHDL is a CAD (Computer Aded Decign) tool for digital logic networks.

How to Describe a Module (or a Unit) in VHDL?

- Define the block itself by giving it a name, and by specifying the input and output ports -> called "entity" statement.
- Specify what the module actually does
 (i.e., how the outputs are related to the
 inputs) -> called <u>"architecture"</u> statement.
- Reserved words and defined symbols for VHDL are shown in next slide.

abs	file	of	sra	Symbol	Meaning
access	for	on	sri sri	+	Addition, or positive number
after	function	open	subtype		Subtraction, or negative nur
alias		or	CODINA	.1	Division
ali	generate	others	then	<i>-</i>	
and	generic	out	to	4	Equality
architecture	group		transport	<	Less than
array	guarded	package	type	>	Greater than
assert	•	port	7,00	&	Concatenator
attribute	if	postponed	unaffected	1	Vertical bar
	impure	procedure	units	:	Terminator
begin	in	process	until	# *	Enclosing based literals
block	inertial	pure	use	í	Left parenthesis
body	inout			ì	Right parenthesis
buffer	is	range	variable		Dot notation
bus		record		:	
	label	register	wait	τ.	Separates data object from t
case	library	reject	when		Double quote
component	linkage	rem	while	2. 2.	Single quote or tick mark
configuration	literal	report	with	**	Exponentiation
constant	loop	return		=>	Arrow meaning "then"
		roi	xor	=>	Arrow meaning "gets"
disconnect	map	ror	xnor		
downto	mod			;=	Variable assignment
	nand	select	į.	/=	Inequality
else	nano	severity	5	>=	Greater than or equal to
elseif	next	shared		<=	Less than or equal to
end	nor	signal	· .	. <≃	Classian or equal to
entity	not	sla			Signal assignment
exit	null	sli		<>	Box
					Comment

■ Identifies the module as a distinct logic block and also defines the input and output ports.

Outity statement defines entity

pont statement defines I 10 ports ■ EX) In UHDL.

— entity Simple-gate is imput

port (a,b,C: in bit)

f: out bit)

end Simple - State;

Pends entity statement.

Architecture Declaration

- Describes exactly what the block does.
- Three major classifications for architectural declaration are:
 - Behavioral descriptions where we provide an exact relationship between the inputs and the outputs.
 - Structural listings that construct logic functions by combining more primitive elements, such as gates.
 - Dataflow models that describe modules by defining the "flow" of the data signals. This can be viewed as a type of behavioral model.

General VHDL Architectural Description Format

architecture type_of_description of gate_name is Declaration 1; Declaration 2;

begin

Statement 1; Statement 2;

end type_of_description;

Convaent

c+d x xnor y

gate name

c·d

u+v

 $\overline{a \cdot b}$

name of declaration.

end Gate-1; architecture Logic of Rate-1 is

f: out bit);

assemment operator

predefined togic operator

should be same

Duedefined

operators.

$$a = 6ae - 2 - 8$$
 $y = 6ae - 3 - 8$
 $y = 6ae - 3 - 8$

More Examples

Concurrent Operations

- The keyword operators not, and, or, xor, nand, nor, and xnor – are used to describe what are called "concurrent" operations -> operations are performed without regarding to any timing constraint.
- f <= x and y and z; <- the value of f is updated whenever there is a change in the status of the inputs x, y and z.

Euse parentheses to avoid miss interpretation.

VHDL Identifier Rules

- Upper and lower case letters + digits + underscore symbol "_" can be used.
- 2. Single string of characters of any length.
- 3. Case sensitive: Or_gate_3 is not the same as OR_GATE_3.
- 4. The underscore "_" cannot be used as the first & last character and not two or more "_"s in a row.

How to Specify Propagation Delay & Transport Delay?

- No propagation delay is considered in concurrent operations.
- To specify propagation delay, use "after" keyword along with the value of the delay in the concurrent operation statement.

 | To specify propagation delay, use "after" keyword along with the value of the delay in the concurrent operation statement.
- Result <= not x after 2ns)
- Transport delay: time delay associated with an interconnect wire.
- Ex) output <= transport(x) after 10ps;
- This describes a signal x that is moved to the output after a delay of 10 pico seconds (1ps = 10^-12 sec).

Structural Modeling

- Basic units can be combined to build more complex logic networks. (M Structural worlding technique)
- Building blocks are called components.
- Ex) f = ab + cd -> two basic components can be used to build this function: AND2 and OR2.

Construct two AND2 terms
$$X_1 = a \cdot b$$

$$X_2 = C \cdot d$$
then OR them together
$$f = X_1 + X_2$$

VHDL Listing entity Network_exis -- define internal signals port (a,b,c,de; in bit; Formal XI, X2: bit) fig : out bit); - Pent maps and Network _ex; architecture structural of Network-exis begin component Gen-1
point (x,y: in bit) MI= Gen-1 port map (b.c.XI); Mz: Gen-z pont map (d,e, xx); Gz: DRz pont map (a, X, f); G1: AND-z pont map (X1,Xx,9); 9: out bit); AND-2 Structural; end OR-L

Binary Words

- n-bit binary word represent 2ⁿ distinct bit patterns.
- VHDL allows us to handle words using arrays of bits.
- Ex) 4-bit word In_a = $a_3a_2a_1a_0$

In-a

Attay of bits

uelex-from 3 to 0.

Ex) ORing Two 4-bit Words

Libraries

- Library: collection of predefined <u>quantities</u> and <u>procedures</u> that are used by the VHDL compiler to interpret user's code.
- Packages: <u>subgroups</u> of a library.
- Ex) To introduce the ieee library and IEEE 1164 package, we initiate a VHDL description by;

library ieee; use ieee.std_logic_1164.all;

More advanced topics covered in USI courses.

