

Week-4 Lecture

Neural Network in details

Outline

- Logistic Regression Recap
- Back Propagation
- Gradient Descent and intuitions
- Types of Gradient Descent
- Activations Functions
- Logistic Regression with Back Propagation
- Multi-Layered Neural Network

Logistic Regression – Recap

Problem of Binary Classification:

Dog? \rightarrow 1 Cat (\approx not Dog)? \rightarrow 0

Input (x)

Problem of Binary Classification \rightarrow Logistic Regression ($Dog? \rightarrow 1 \mid Not Dog? \rightarrow 0$)

Parameters:

- 1. w (weight)
- 2. b (bias)
- 3. Output a = $O(w^T x + b)$

Loss function for Logistic Regression:

$$\mathcal{L}(a, y) = -(y \log a + (1 - y) \log(1 - a))$$

Logistic Regression pipeline with the math looks like:

$$w = w^T x + b$$

$$a = \sigma(w^T x + b)$$

$$\mathcal{L}(a, y)$$

Logistic Regression pipeline with the math looks like:

Activation function

$$a = \sigma = \left(\frac{1}{1 + e^{-x}}\right)$$

Loss function for Logistic Regression:

$$\mathcal{L}(a, y) = -(y \log a + (1 - y)\log(1 - a))$$

Where,

W → Weights

 $X \rightarrow Inputs$

b → Bias term

 $\sigma \rightarrow$ Activation function

Parameters:

- 1. w (weight)
- 2. b (bias)
- 3. Output a = $\sigma(w^T x + b)$

Logistic Regression pipeline with the math looks like:

Activation function

$$\mathcal{A} = \sigma = \left(\frac{1}{1 + e^{-x}}\right)$$

Loss function for Logistic Regression:

$$\mathcal{L}(a, y) = -(y \log a + (1 - y) \log(1 - a))$$

If y = 1:
$$\mathcal{L}(a, y) = -log a$$

If y = 0:
$$\mathcal{L}(a, y) = -log(1 - a)$$

Logistic Regression pipeline with the math looks like:

Activation function

$$a = \sigma = \left(\frac{1}{1 + e^{-x}}\right)$$

repeatedly adjust the weights to minimize the difference between actual output and desired output

Where,

W → Weights

 $X \rightarrow Inputs$

b → Bias term

 $\sigma \rightarrow$ Activation function

Parameters:

- 1. w (weight)
- 2. b (bias)
- 3. Output a = $\sigma(w^T x + b)$

Loss function for Logistic Regression:

$$\mathcal{L}(a, y) = -(y \log a + (1 - y) \log(1 - a))$$

Gradient Descent

Gradient Descent for learning parameters:

It is an iterative approach for error correction in a machine learning model.

Question: Find w and b that will minimize $\mathcal{GD}(w, b)$

Required: Loss/cost function

Generic Algorithm:

Step 1: Initialize w and b

Step 2: Perform Forward pass operation/calculations

Step 3: Compute Loss/Cost function \mathcal{L} (a, y)

Step 4: Compute change in w and b

(Take the partial derivative of the cost function with respect to Weights and bias (**dw** and **db**).

Step 5: Update w and b

$$w := w - \alpha dw$$

$$b := b - \alpha db$$

Step 6: Repeat from Step 2 with new values of **w** and **b** for 'n' number of iterations.

Example the loss function is:

$$\mathcal{L}(a, y) = -(y \log a + (1 - y) \log(1 - a))$$

 $\alpha \rightarrow$ Learning rate

Gradient Descent

Gradient Descent for learning parameters:

Learning rate(α) issues:

- It is a *hyper-parameter*

Large learning rate: Overshooting.

Small learning rate: Many iterations until convergence and trapping in local minima.

Gradient Descent

Learning rate(α): more intuitions

Gradient Descent Types

There are three main types of Gradient Descent Algorithms:

1. Batch Gradient Descent (BGD)

2. Stochastic Gradient Descent (SGD)

3. Mini-Batch Gradient Descent (MBGD)

Batch Gradient Descent (BGD)

Generic steps:

- -Process each input sample and find the cost
- -Find the average cost over all input samples
- -Update w and b, and
- -repeat the steps for 'n' epochs(iterations)

Issues:

- It uses the complete dataset to calculate the gradients at every steps
- 2. Slow when training set is large
- 3. Difficult to find the learning rate
- 4. Difficult to ascertain the number of epochs(iterations)

Stochastic Gradient Descent (SGD)

Stochastic → Random

Due to the random nature, the Algorithm is much less regular than BGD

Generic steps:

- -Process a random input sample and find the cost
- -Update w and b, and
- -repeat the steps for 'n' iterations on the training samples

Advantage:

- 1. Computes gradient based on single input sample: memory efficient
- 2. Much faster compared to BGD
- 3. Possible to train on large dataset
- 4. Randomness is a good escape from local minima problem

Issues:

1. Might not reach the optimal value, but very close to it.

Stochastic Gradient Descent (SGD)

Issues: Might not reach the optimal value, but very close to it.

Possible solution: Reduce the learning rate gradually → Stimulated annealing

Create a Learning Schedule to determine the learning at each iteration.

Epoch: One round through the complete training set.

Iterations: Process in multiple subsets of the training set, say, 'm' iterations my form 1 epoch

Mini-Batch Gradient Descent (MBGD)

Generic steps:

- -Divide the training set into mini-batches (set of random samples on fixed number)
- -Process all the samples in a Mini-batch and find the average cost
- -Update w and b, and
- -repeat the steps for 'n' iterations/epochs on the training samples

Advantage:

- Computes gradient based on small sets of input sample
- 2. Much faster compared to BGD
- 3. Possible to train on large dataset
- 4. Performance boost on matrix operations using GPUs!
- Might not reach the optimal value, but very close to it, and possibly better than SGD

Issues:

1. It may be harder to escape the local minima.

Gradient Descent (SGD) - intuition

- Batch gradient descent
- Mini-batch gradient Descent
- Stochastic gradient descent

Sigmoid function:
$$\sigma = \left(\frac{1}{1+e^{-x}}\right)$$

Characteristics:

- Non-linear in nature
- Range(0, 1)
- Tends to bring the activations to either side of the curve: good for a classifier
- Suffers from vanishing gradient problem

Vanishing Gradient: Towards to the end of the curve, the value of Y change very less to the changes in X values. Hence gradient at the region will be very small. The network will refuse or learning extremely slowly.

Hyperbolic tangent:

$$\tanh(x) = \frac{2}{1 + e^{-2x}} - 1$$

Characteristics:

- Non-linear in nature
- Range(-1, 1)
- Stronger gradient than sigmoid
- Also suffers from vanishing gradient problem

Rectified Linear Unit (ReLu) $A(x) = \max(0, x)$

i.e. : if
$$x < 0$$
, $A(x) = 0$, if $x > 0$, $A(x) = x$

Characteristics:

- Non-linear in nature
- Range[0, inf]
- Stronger gradient than sigmoid
- Computationally less expensive than Sigmoid and Tanh
- Best used in hidden layers
- Dying ReLu problem

Avoids and rectifies vanishing gradient problem

Leaky Rectified Linear Unit (Leaky ReLu) $A(x) = \max(0.01x, x)$

i.e. : if
$$x < 0$$
, $A(x) = 0.01x$, if $x > 0$, $A(x) = x$

- Non-linear in nature
- Range[0, inf]
- Leaky ReLUs are one attempt to fix the "dying ReLU" problem

Softmax
$$S(y_i) = \frac{e^{y_i}}{\sum_j (e^{y_j})}$$
 for $j = 1, ..., K$.

Characteristics:

- Non-linear in nature
- Turns numbers in probabilities that sum to one.
- Useful when we have more than one output
- Used for classification in the output layer
- Less computationally expensive than
 Sigmoid and Tanh

Illustration:

$$Y = [2.0, 1.0, 0.1]$$

Softmax(Y) = [0.7, 0.2, 0.1] (approx.)

Logistic Regression with Backpropagation

Logistic Regression pipeline with the math looks like:

Batch GD

Step 1: Initialize w and b

Step 2: Perform Forward pass operation/calculations

Step 2: Compute Loss/Cost function \mathcal{L} (a, y)

Step 3: Find the average cost over all input samples

(Take the partial derivative of the cost function with respect to Weights and bias (dw and db).

Step 4: Update w and b

$$w := w - \alpha dw$$

b := b - \alpha db

Step 5: Repeat from Step 2 with new values of **w** and **b** for 'n' number of iterations.

Average cost over all training 'm' samples

Avg Loss(J) =
$$\frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(a_i, y_i)$$

$$dw = \frac{\partial J}{\partial w}, \qquad db = \frac{\partial J}{\partial b}$$

$$w \coloneqq w - \alpha dw$$
$$b := b - \alpha db$$

Single layer perceptron

3-layered neural network with 2 hidden layers

Image Source: https://towardsdatascience.com/multi-layer-neural-networks-with-sigmoid-function-deep-learning-for-rookies-2-bf464f09eb7f

Example:

2-layered architecture for multi-class classification (e.g. Fashion MNIST dataset)

input layer: **784** (28x28) neurons, each with values between 0 and 255

Intuition:

In a multi-layer neural network, the first hidden layer will be able to learn some very simple patterns. Each additional hidden layer will somehow be able to learn progressively more complicated patterns.

Example:

2-layered architecture for multi-class classification

(e.g: MNIST digit dataset) intuition

