CSP-J2022 入门组二轮补赛试题

考试时间: 2023年3月4日8:30-12:00

题目名称	植树节	宴会	部署	吟诗
题目类型	传统型	传统型	传统型	传统型
子文件夹名	planting	banquet	deploy	poetize
提交文件名	planting.cpp	banquet.cpp	deploy.cpp	poetize.cpp
输入文件名	planting.in	banquet.in	deploy.in	poetize.in
输出文件名	planting.out	banquety.out	deploy.out	poetize.out
时间限制	1s	2s	2s	2s
内存限制	512MB	512MB	512MB	512MB
测试点数目	10	10	10	10
测试点是否等分	是	是	是	是

注意事项

- 1、代码必须放在子文件夹内,子文件夹名与题目英文名一致。文件名(包括程序名和输入输出文件名)必须使用英文小写。
- 2、C++编译选项: -02 -std=c++14。C++ 中函数 main() 的返回值类型必须是 int,程序正常结束时的返回值必须是 0
- 3、若无特殊说明,输入文件中同一行内的多个整数、浮点数、字符串等均使用一个空格分隔。若无特殊说明,结果比较方式为忽略行末空格、文末回车后的全文比较。

第一题 植树节 (planting)

题目描述

植树节快要到了, 学校要组织志愿者去给树苗浇水。

有一排树苗,编号依次是0,1,2,...。

现有n个志愿者去给树苗浇水,第i个志愿者选定了一个区间 $[a_i,b_i]$,表示第i个志愿者将 $[a_i,b_i]$ 这一区间内的每一棵树都浇一次水。

如某个志愿者选择的浇水区间为[4,9],表示他将给编号为4,5,6,7,8,9的树各浇水一次。

当所有的志愿者完成各自所选区间的浇水后,可能有些树苗被不同的志愿者浇水多次,也 可能有的树苗一次也没被浇过水。

请你求出浇水最多的树苗被浇了多少次。

输入格式(输入文件为 planting.in)

第 1 行,一个整数 n ,表示志愿者的人数。

第 2 行到第 n+1 行,每行两个整数 a_i,b_i (i= 0,1,2,...n-1) ,表示志愿者 i 选择的浇水区间。

输出格式 (输出文件为 planting.out)

输出1行,1个整数,表示浇水最多的树苗被浇水的次数。

输入输出样例

样例一

Input

4

0 2

6 7

Output

3

样例说明

- 第1名志愿者给编号为0,1,2的树苗浇水;
- 第2名志愿者给编号2,3,4的树苗浇水;
- 第3名志愿者给编号1,2,3,4的树苗浇水;

第 4 名志愿者给编号 6,7 的树苗浇水;

编号 0 到 7 的树被浇水的次数依次为: 1,2,3,2,2,0,1,1。 所以,被浇水次数最多的是编号为 2 的树,被浇水 3 次。

样例二

Input

4 1000000 1000000 1000000 1000000 0 1000000

1 1000000

Output

4

样例三

见下发数据目录下的 planting/planting3.in 与 planting/planting3.ans

数据范围

• 对于所有的数据: $n \le 10^5$; $0 \le a_i \le b_i \le 10^6$ 。

测试点编号	$a_i \leq$	$b_i \leq$	$n \leq$	特殊性质
1,2,3	10^{3}	10 ³	10^{3}	无
4,5,6,7	10^{6}	10^{6}	10 ⁵	无
8	10^{6}	10 ⁶	10 ⁵	$a_i = b_i$
9	10^{6}	10 ⁶	10 ⁵	$a_i = 1, b_i = 10^3$
10	10^{6}	10^{6}	10^{5}	无

第二题 宴会(banquet)

题目描述

今人不见古时月,今月曾经照古人。梦回长安,大唐风华,十里长安花,一日看尽。

唐长安城是当时世界上规模最大、建筑最宏伟、规划布局最为规范化的一座都城。其营建制度规划布局的特点是规模空前、创设皇城、三城层环、六坡利用、布局对称、街衢宽阔、坊

里齐整、形制划一、渠水纵横、绿荫蔽城、郊环祀坛。而所谓的十里长安街,位于长安城的中轴线上,即唐长安城的朱雀大街,又称承天门大街。唐朝官员们住在各个"坊"里,上朝下朝都需要通过朱雀大街。

为了保持各大家族的联系和友谊,各官员往往会每月办一次宴会。为了方便描述,我们把 朱雀大街看成一个数轴,各官员所居住的"坊"缩略为数轴上的一个坐标点。大家决定选一处 地点(该地点是数轴上的某一个点,不一定坐标点)办宴会。由于唐朝宵禁严格,大家又都希 望交流时间尽可能长,因此想要使宴会开始时间尽可能早。又因为大唐注重礼仪,因此,参加 宴会的官员会花一定时间盛装打扮过后才前往宴会地点(不一定是坐标点)。

更具体地,一条纵向的街道上(相当于一维坐标)有n个人居住,其中第i个人居住在 x_i (非负整数)位置(坐标点)上。每月他们会选择在 x_0 (数轴上的某一个点,不一定坐标点)出举办宴会。

已知第 i 个人从 x_i 出发前往宴会地点 x_0 处需要花费 $|x_i - x_0|$ 的时间,另外,他还需要花费 t_i 的时间进行打扮,换言之,他共需要花费 $|x_i - x_0| + t_i$ 的时间到达宴会举办处。

假设**初始时刻为 0**。这 n 个人开始打扮和出发前往宴会处,他们想要使得宴会的开始时间 尽可能早,于是向你求助,请你帮助他们确定好最优的宴会举办地点 x_0 。

注: $|x_i - x_0|$ 表示 x_i 与 x_0 之差的绝对值,且题目中 n 个人的居住地点坐标均为整数。

输入格式(输入文件为 banquet.in)。

第一行一个正整数 T,表示测试数据的组数。

接下来对于每组测试数据(注意:每组测试数据有3行数据,以下共3*T行数据):

第一行一个正整数 n, 表示总官员人数。

第二行共n个非负整数 $x_1, x_2, ..., x_n$ 分别表示这n个人在数轴上的坐标。

第三行共n个非负整数 t_1, t_2, \ldots, t_n 分别表示这n个人出发前的打扮时间。

输出格式(输出文件为 banquet.out)。

共输出 T 行数据,对于每组测试数据,输出一行一个**实数**(如果是整数按整数输出,如果有小数,保留 1 位小数输出),表示使宴会开始时间最早的最优举办地点坐标 x_0 。(很显然, x_0 都是唯一的)

输入输出样例

Input 7 1 0 3 2 3 1

```
0 0
2
1 4
0 0
3
1 2 3
0 0 0
3
1 2 3
4 1 2
3
4 1 2
3
3 3 3 3
5 3 3
6
5 4 7 2 10 4
3 2 5 1 4 6
```

Output

样例说明

初始时刻为0。

对于第一组测试数据只有 1 个人,坐标为 0,打扮时间为 3,很显然 x_0 就定在坐标 0 处,使得宴会开始时间为 3 且最早。

对于第二组测试数据有 2 个人,坐标分别为 3、1,打扮时间均为 0,很显然 x_0 定在坐标 2 处,使得宴会开始时间为 1 且最早。

对于第三组测试数据有 2 个人,坐标分别为 1、4,打扮时间均为 0,很显然 x_0 定在坐标 2.5 处,使得宴会开始时间为 1.5 且最早。

数据范围

对于 30% 的数据, $T = 1,1 \le n \le 100,0 \le x_i, t_i \le 1000$;

对于 60% 的数据, $1 \le n \le 10^4$, $0 \le x_i$, $t_i \le 10^5$;

对于 100% 的数据, $1 \le T \le 10^3$, $1 \le n \le 10^5$, $0 \le x_i$, $t_i \le 10^8$, 且保证所有测试数据的 n 加起来不超过 $2*10^5$ 。

第三题 部署 (deploy)

题目描述

"万里羽书来未绝, 五关烽火昼仍传。"

古时候没有现代信息化战争的技术,只能靠烽火传信和将军运筹帷幄的调兵遣将来取得战争的优势。

为了使消耗最低,现在 A 国已经在 n 个城市之间建好了道路和行军部署渠道,使得这 n 个城市都能互相到达且不存在环(即构成以 1 号城市为根节点的树型结构)。每个城市都驻扎了一定数量的兵力。

为了清晰的描述问题,我们给这n个城市进行1到n的编号,且1号城市为树的根节点(数据保证:构成以1号城市为根节点的一棵树)。初始时,第i座城市拥有初始兵力 a_i 。

现在为测试战争部署速度,将军进行了 m 次测试,每次测试可能为以下两种命令的某一种:

【1xy】(三个数间均用 1 个空格分开): 向 x 号城市和以它为根的子树中的所有城市全部增兵 y 的数量。

【2xy】(三个数间均用 1 个空格分开):向 x 号城市**和**与它直接相连(含父结点和子结点)的城市全部增兵 y 的数量。

m条命令发布出去后,将军喊来参谋,进行了q次询问,每次询问第x座城市的最终兵力情况。

该参谋就是小虾米,他又向你求助了,请你帮助他解决问题(q次询问的结果)。

输入格式(输入文件为 deploy.in)

第一行一个正整数n表示城市数量。

第二行一共n个正整数 $a_1, a_2, \ldots a_n$ 表示每座城市的初始兵力。

接下来 n-1 行,每行两个整数 x, y,表示 x 和 y 城市之间有直接相连的道路。

接下来一行一个正整数 m,表示 m 次命令。

接下来 m 行,每行三个正整数 p, x, y 表示两种命令其中一种,其中 p=1 时表示第一种命令,p=2 时表示第二种命令。

接下来一行一个正整数q,表示q次询问。

接下来q行,每行一个正整数x,表示询问编号为x的城市最后的兵力值。

输出格式(输出文件为 deploy.out)

一共 q 行,每行一个正整数分别对应于每次询问的答案。

输入输出样例

样例一

```
Input
5
1 2 3 4 5
1 2
1 3
2 4
3 5
4
1 1 2
2 2 3
1 3 3
2 5 1
4
1
```

Output

2 3 4

6 7 9

样例二

Input

Output

2 2

数据范围

对于 30% 的数据, $1 \le n \le 1000, 1 \le m \le 1000, 1 \le q \le 1000$;

对于 60% 的数据, $1 \le n \le 10^5$, $1 \le m \le 10^5$, $1 \le q \le 10^5$;

其中10%的数据树是一条链,另外10%的数据只有1操作,另外10%的数据只有2操作。

对于 100% 的数据,数据保证给定的城市和道路能形成树,且 1 号城市为根节点。 $1 \le n \le 10^6, 1 \le m \le 10^6, 1 \le q \le 10^6, 1 \le a_i \le 10^9, 1 \le x \le n, 1 \le y \le 10$,

第四题 吟诗(poetize)

题目描述

"文章本天成,妙手偶得之。"

吟诗是表达情怀的常用手段,战争落下了帷幕,常年的军旅生活使得小虾米喜欢上了豪放派的诗歌。

这一天,小虾米突然想吟诗了。著名的豪放派诗人苏轼有"老夫聊发少年狂,左牵黄,右擎苍。"的豪放,又有"十年生死两茫茫,不思量,自难忘。"的悲怆。小虾米心向往之,于是也想用《江城子》词牌名作诗。

小虾米想作出能流传千古的诗,根据经验,如果一首诗存在妙手就能流传千古。

具体来说,一首 N 个字的诗,每个字可以用 **1 到 10** 之间的某个正整数来表示。同时存在 三个正整数 X,Y,Z($1 \le X \le 7, 1 \le Y \le 5, 1 \le Z \le 5$),如果诗中出现了三个连续的片段使得第一个片段之和为 X,第二个片段之和为 Y,第三个片段之和为 Z,则小虾米认为这首诗出现了**妙手**。

即长度为 n 的序列 $a_1, a_2...a_n$ ($1 \le a_i \le 10$),如果存在 i, j, k, l($1 \le i < j < k < l \le n$) 使得 $a_i + a_{i+1} + ...a_{j-1} = X$ 且 $a_j + a_{j+1} + ...a_{k-1} = Y$ 且 $a_k + a_{k+1} + ...a_{l-1} = Z$ 同时成立,则认为序列 出现了妙手(注:第二个片段紧接第一个片段,第三个片段紧接第二个片段)。

举例来说,如果 N=7, X=7,Y=3,Z=3,则所有长度为 7 的序列中,很显然共有 10^7 种序列,其中一种序列 [1, 5, 2, 2, 1, 3, 4] 出现了**妙手**,因为**存在**三个连续的区间 [2, 3]、[4, 5]、[6, 6] 满足它们的和分别为 X=7,Y=3,Z=3。

小虾米想知道在给定 N, X, Y, Z 的前提下(共计 10^n 种序列,即共 10^n 种诗),计算有多少种存在妙手的诗,请你帮他计算出答案。

由于答案可能很大,请你将结果对998244353取模。

输入格式(输入文件为 poetize.in)

一行,以空格隔开的 4 个正整数 N, X, Y, Z, 分别表示序列长度和题目中 X, Y, Z 的值。

输出格式(输出文件为 poetize.out)

一行,一个整数,表示答案对998244353取模的结果。

输入输出样例

样例一

Input

3 2 3 3

Output

1

样例一说明

在所有可能的序列中,只能构造出一种序列 [2,3,3] 满足题意,因此答案为 1。

样例二

Input

4 7 5 5

Output

34

样例三

Input

23 7 3 5

Output

824896638

数据范围

对于 30% 的数据, $3 \le N \le 5$;

对于 60% 的数据, $3 \le N \le 20$;

对于 100% 的数据, $3 \le N \le 40,1 \le X \le 7,1 \le Y \le 5,1 \le Z \le 5$ 。