Mathématique MATH-F-112/1112 - Exercices

2017-2018

2 Suites et séries

2.1 Suites

- 1. Ecrire les 4 premiers termes des suites suivantes :
 - (a) $\frac{1}{3^n}$
 - (b) $\frac{n-2}{n+2}$
 - (c) $n \frac{1}{n}$
 - (d) $\sin \frac{n\pi}{n}$
 - (e) la suite définie par récurrence comme suit : $x_0 = 1, x_1 = 1, x_n = x_{n-1} + x_{n-2}$ pour n > 2
 - (f) $\frac{a^n}{n!}$ où a est un réel (fixé)
- 2. Parmi les suites suivantes, lesquelles sont croissantes ou décroissantes? Chercher leur supremum et infimum, et en déduire une conclusion au sujet de leur convergence (et de leur limite éventuelle).
 - (a) $1, \frac{1}{2}, \frac{1}{3}, ..., \frac{1}{n}, ...$
 - (b) 1, 2, 3, 4, 5, ..., n, ...
 - (c) $1, -1, 1, -1, ..., (-1)^n, ...$
 - (d) $0, \frac{1}{2}, \frac{\sqrt{3}}{6}, ..., \frac{1}{n}, \sin(\pi/n), ...$
 - (e) $-1, \frac{1}{2}, -\frac{1}{3}, ..., \frac{\cos(n\pi)}{n}, ...$
 - (f) $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, ..., \frac{1}{2^n}, ...$
- 3. Etudier la convergence des suites suivantes, en repartant de la définition de la convergence d'une suite :
 - (a) $\frac{1}{n^2+1}$
 - (b) $\frac{n}{n+1}$
 - (c) $\frac{n^4}{n^3+3n-1}$
- 4. On considère la suite $a_n = \sin(\frac{n\pi}{4})$. Montrer, en identifiant 2 sous-suites bien choisies, que cette suite ne converge vers aucune limite. Cette suite est-elle bornée?
- 5. On considère la suite dite de Fibonacci, définie par la récurrence suivante :

$$F_0 = 1, F_1 = 1, F_n = F_{n-1} + F_{n-2} \quad \forall n \ge 2$$

(a) Chercher les deux solutions de l'équation suivante :

$$x^2 = x + 1$$

(b) * Montrer que la suite (F_n) satisfait la formule suivante (formule de Binet) :

$$F_n = \frac{1}{\sqrt{5}} \left(\varphi^{n+1} - \left(\frac{-1}{\varphi} \right)^{n+1} \right) \, \forall n \in \mathbb{N}$$

où φ est la solution positive de l'équation $\varphi^2 = \varphi + 1$ (φ est appelé le nombre d'or)

(c) A partir de cette relation, montrer que le rapport entre deux nombres de Fibonacci consécutifs converge vers le nombre d'or φ :

$$\frac{F_{n+1}}{F_n} \to \varphi$$

- (d) En déduire la convergence de la suite $\frac{F_{n+2}}{F_n}$, puis de la suite $\frac{F_{n+3}}{F_n}$, et de manière générale de la suite $\frac{F_{n+k}}{F_n}$ où k est un naturel fixé.
- 6. Calculer les limites suivantes (en utilisant notamment les règles de calcul vues au cours)
 - (a) $\lim \frac{n}{n+2}$
 - (b) $\lim \frac{n^2+1}{4n^2+5}$
 - (c) $\lim \frac{\sqrt{n^2+1}}{2n}$
 - (d) $\lim \frac{\sqrt{n^2+1}-\sqrt{n^2+4}}{2}$
 - (e) $\lim n \sin \frac{1}{n^2}$
 - (f) $\lim \frac{\cos(\sqrt{n})}{n}$
 - (g) $\lim \sin n$
 - (h) $\lim_{n \to \infty} (1 + \frac{2}{n})^n$
 - (i) $\lim_{n \to \infty} (2^n e^{-2n})$
 - (j) $\lim \frac{2^n}{n!}$
 - (k) $\lim_{n \to \infty} n^3 \sin \frac{1}{n} (1 \cos \frac{1}{n})$

Calculer la limite des suites (x_n) définies par les récurrences suivantes :

- (a) $x_{n+1} = \frac{1}{4}(3x_n + 1), x_0 = 0$
- (b) $x_{n+1} = \frac{1}{4}(x_n + 4), x_0 = 0$
- (c) $x_{n+1} = \sqrt{3x_n}, x_0 = 1$

2.2 Séries

- 1. Proposez le terme général de la série suggérée ci-dessous. Cette série converge-t-elle ou diverge-t-elle ? Donner le cas échéant la valeur de sa somme.
 - (a) $1-2+1-3+1-4+\dots$
 - (b) $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$
 - (c) $2-3+2-3+2-3+\dots$

(d)
$$-1 + \frac{1}{6} - \frac{1}{36} + \frac{1}{216}$$

(e)
$$2+4+8+16+...$$

(f)
$$\frac{1}{9} + \frac{1}{9} \cdot \frac{2}{3} + \frac{1}{9} \left(\frac{2}{3}\right)^2 + \frac{1}{9} \left(\frac{2}{3}\right)^3 + \dots$$

(g) $\frac{3}{10} + \frac{3}{100} + \frac{3}{1000} + \dots$

(g)
$$\frac{3}{10} + \frac{3}{100} + \frac{3}{1000} + \dots$$

2. Déterminer, pour chacune des séries à termes positifs suivantes, si elle converge :

$$\sum_{n=1}^{\infty} \frac{1}{n2^n}$$

$$\sum_{n=0}^{\infty} \frac{1}{(2n)!}$$

$$\sum_{n=0}^{\infty} \frac{n-1}{2n+3}$$

$$\sum_{k=1}^{\infty} \frac{3}{k-1/2}$$

$$\sum_{\xi=0}^{\infty} \frac{\xi^2}{4^{\xi}}$$

$$\sum_{j=0}^{\infty} \frac{j}{2^j}$$

$$\sum_{n=1}^{\infty} \frac{n^2 + n + 1}{n^4 + 6}$$

3. Etudier la convergence et la convergence absolue des séries suivantes :

(a)

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n!}$$

(b)

$$\sum_{n=1}^{\infty} \frac{(-1)^n n!}{10^n}$$

(c)

$$\sum_{n=1}^{\infty} \frac{3}{n2^n}$$

$$\sum_{n=1}^{\infty} (-1)^n \frac{4}{10^n}$$

$$\sum_{k=1}^{\infty} (-1)^k \frac{(4/2)^k}{k^4}$$

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n+7}}$$

$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^2}$$

- 4. Soit $f(x) = \frac{1}{1-x}$. Ecrire la série de Taylor de cette fonction autour de x = 0. Cette série converge-t-elle pour tout x? Chercher son rayon de convergence.
- 5. En utilisant les séries de Taylor autour de 0 de e^x et $\ln(x)$:
 - (a) Approcher le nombre e avec une précision de 0.00001
 - (b) Approcher ln(2) avec une précision de 0.1
- 6. Calculer la série de Taylor autour de 0 de $\sin(x)$. La série correspondante converge-t-elle pour tout x? Quel est son rayon de convergence? En dérivant cette série, en déduire le développement de Taylor de la fonction $\cos x$.
- 7. Calculer la série de Taylor de la fonction $\ln(1+x)$ autout de x=0 et chercher son rayon de convergence. En dérivant terme à terme cette série, en déduire la série de Taylor de la
- 8. Chercher la série de Taylor de la fonction $\ln \frac{1+x}{1-x}$