Pour info, sur la slide 5 il y a une animation qui cache le texte en dessous donc si possible plutôt regarder le ppt en mode diaporama pour voir le texte sur cette slide.

Segmentation clients

Sommaire

- 1. Rappel de la problématique
- 2. Présentation de l'analyse exploratoire et des manipulations sur les données
- 3. Pistes de modélisation effectuées et modèle retenu
- 4. Analyse du délai de maintenance du modèle
- 5. Conclusion

Rappel de la problématique

- Olist, entreprise brésilienne qui propose une solution de vente sur les marketplaces en ligne.
- Demande de l'équipe marketing.
- Objectif: créer une segmentation clients actionnable pour optimiser les campagnes de communication.
- Proposer un contrat de maintenance de cette segmentation.

Analyse exploratoire

Manipulations sur les données

- Création d'un pivot table pour obtenir un détail par client.
- Variables retenues pour les modèles :
 - Nombre de commandes par client
 - La récence de la dernière commande par client
 - La moyenne du montant payé par commande par client
 - La moyenne des échéances de paiement par client
 - La moyenne des notes de satisfaction par client
 - La moyenne des % de 'vouchers' utilisés pour payer une commande par client

Manipulations sur les données

Ordre de grandeur des différentes variables retenues :

	mean_payment_installments	number_of_orders	last_order_purchase_recency_in_months	mean_ratio_voucher	mean_review_score	mean_order_value
count	95377.000000	95377.000000	95377.000000	95377.000000	95377.000000	95377.000000
mean	2.915372	1.040293	9.463576	0.030167	4.085066	161.140262
std	2.691178	0.254925	5.040478	0.159668	1.341513	221.010681
min	1.000000	1.000000	0.000000	0.000000	1.000000	9.590000
25%	1.000000	1.000000	5.377375	0.000000	4.000000	62.410000
50%	2.000000	1.000000	8.830819	0.000000	5.000000	105.740000
75%	4.000000	1.000000	13.052159	0.000000	5.000000	176.990000
max	24.000000	17.000000	25.391691	1.000000	5.000000	13664.080000

- Variables uniquement numériques : utilisation d'un StandardScaler pour la normalisation.
- Choix de la valeur de k grâce au coefficient de silhouette et à l'inertie :

→ Valeur retenue k=7

Clustering obtenu avec k=7:

count mean_last_order_purchase_recency_in_months mean_review_score mean_ratio_voucher mean_payment_installments mean_order_value mean_number_of_orders

kmeans_	la	be	ļ
---------	----	----	---

0 12149	9.751611	4.292370	0.002687	8.284386	258.503092	1.000082
1 35733	5.619686	4.662357	0.001383	1.860297	118.528441	1.000000
2 14384	9.558620	1.535943	0.001763	2.444869	142.637125	1.000000
3 2930	9.998658	4.035836	0.895242	1.146075	114.706766	1.020819
4 1510	9.514848	3.832119	0.006131	6.449669	1413.842394	1.007285
5 2962	8.874368	4.116405	0.031066	3.340810	143.060039	2.272789
6 25709	14.620809	4.627796	0.001769	2.052939	118.507713	1.000000

<u>Cluster 0</u> \rightarrow clients d'un niveau économique plus faible car ils paient en 8 fois des montants beaucoup plus faibles que par exemple le groupe 4 dont les clients paient en 6 fois.

<u>Cluster 1</u> → clients qui ont passé leur dernière commande récemment et qui sont très satisfaits.

<u>Cluster 2</u> → clients mécontents.

<u>Cluster 3</u> → clients qui utilisent quasiment à 100% des vouchers pour payer.

<u>Cluster 4</u> → clients qui ont passé une commande d'un montant élevé et qui sont assez satisfaits.

<u>Cluster 5</u> → clients qui ont passé plusieurs commandes.

<u>Cluster 6</u> → clients qui ont passé leur dernière commande il y a longtemps et qui sont très satisfaits.

• Illustration sur un radar plot :

Comparaison des clusters

■ Analyse de la stabilité à l'initialisation du k-means → on compare les clusters obtenus précédemment avec 10 nouvelles itérations du k-means grâce à l'indice de Rand ajusté (ARI).

```
Itération 1 : ARI = 0.995
Itération 2 : ARI = 0.716
Itération 3 : ARI = 0.999
Itération 4 : ARI = 0.999
Itération 5 : ARI = 0.997
Itération 6 : ARI = 0.998
Itération 7 : ARI = 0.998
Itération 8 : ARI = 0.956
Itération 9 : ARI = 0.958
Itération 10 : ARI = 0.999
```

→ ARI proche de 1 pour quasiment toutes les itérations donc la stabilité à l'initialisation du k-means est bonne.

 Réalisation d'une analyse en composantes principales (PCA) pour permettre d'afficher les clusters en 2 dimensions :

Modélisation: DBSCAN

- Echantillonnage du jeu de données en ne prenant que 20% pour des questions de temps de calcul.
- StandardScaler également utilisé pour normaliser les données.
- Application du DBSCAN avec valeurs des hyperparamètres par défaut :
 - > 32 clusters retenus par l'algo dont la majorité contiennent moins de 25 clients.
 - Coefficient de silhouette égal à -0,016
- → Différentes valeurs des hyperparamètres 'eps' et 'min_samples' testées pour essayer d'améliorer le clustering.

Modélisation: DBSCAN

	eps	min_samples	number_of_clusters	silhouette_score
0	0.5	5.0	32.0	-0.016089
1	0.5	10.0	15.0	-0.005176
2	0.5	20.0	8.0	0.031040
3	0.5	50.0	7.0	0.000620
4	0.6	5.0	28.0	0.000316
5	0.6	10.0	12.0	0.068183
6	0.6	20.0	9.0	0.016060
7	0.6	50.0	8.0	-0.018355
8	8.0	5.0	9.0	0.282222
9	8.0	10.0	8.0	0.401169
10	8.0	20.0	3.0	0.423027
11	0.8	50.0	3.0	0.405879

dbsc	an_10_labels	
0	0.917274 0.033761	dbscan_20_labels 0 0.910826
1 2 3	0.025583 0.019030 0.002307	-1 0.051009 1 0.021547
4	0.000629	2 0.016619
6 5	0.000629 0.000524	
7	0.000324	

- → Les clusters sont très déséquilibrés que ce soit avec 8 ou 3 clusters.
- → L'algo DBSCAN ne semble pas approprié pour ce jeu de données.

Modélisation: Clustering hiérarchique

 Echantillonnage du jeu de données en ne prenant que 20% pour des questions de temps de calcul.

- → Couper vers l'ordonnée 80 semble être une bonne coupe.
- →On obtiendrait 7 clusters.

Modélisation: Clustering hiérarchique

Analyse théorique par l'intermédiaire du coefficient de silhouette :

→On analyse les profils des clusters avec 2, 4 et 7 clusters.

Modélisation: Clustering hiérarchique

Proportion de clients par cluster :

```
0.963722
> Pour 2 clusters:
                                       → Très déséquilibré.
                            0.036278
                            0.804509
Pour 4 clusters :
                            0.129279
                                       →Assez déséquilibré également.
                            0.036278
                            0.029934
                            0.454364
> Pour 7 clusters:
                            0.205033
                                       → Mieux équilibré et on remarque en analysant les profils des clusters que l'on
                            0.145111
                                        retrouve le même clustering que celui obtenu avec le k-means et k=7.
                            0.105269
                            0.036278
                            0.029934
                            0.024010
```

Modèle retenu

- D'un point de vue métier, la segmentation en <u>7 groupes</u> semble être la plus pertinente dans la perspective de faire ensuite des <u>campagnes marketing ciblées</u> <u>par rapport au niveau économique des clients, de leur satisfaction ou de leur</u> <u>appétence pour des bons de réduction</u> par exemple.
- Modèle retenu : k-means avec k=7.

Délai de maintenance du modèle

Analyse de la stabilité temporelle de la segmentation retenue.

Méthode utilisée :

- > Entrainement du k-means avec k=7 sur les 12 premiers mois de commandes.
- A chaque ajout d'un nouveau mois de commande, comparaison des résultats grâce au Adjusted Rand Index (ARI) de la prédiction du k-means initialement entrainé et d'un nouveau k-means réentrainé sur la nouvelle base de données.
- > Affichage des résultats sur un graphique et recherche du point d'inflexion du ARI.

Délai de maintenance du modèle

Résultats :

 \rightarrow Diminution continue du ARI dans le temps. Donc la 1^{ière} maintenance devrait intervenir à la fin du 1^{er} mois.

Délai de maintenance du modèle

 Résultats en utilisant un nouveau StandardScaler après chaque ajout de mois avant l'utilisation du k-means initial :

 \rightarrow ARI plus stable avec de plus grandes valeurs. Dans ce cas la 1^{ière} maintenance devrait plutôt avoir lieu à la fin du 3^{ième} mois.

Conclusion

- Modèle retenu : k-means avec k=7.
- Segmentation en <u>7 groupes.</u>
- Campagnes marketing ciblées notamment par rapport au niveau économique des clients, de leur satisfaction ou de leur appétence pour des bons de réduction.
- Délai de maintenance : tous les mois.
- Tous les 3 mois s'il est possible pour l'entreprise de réextraire facilement chaque mois la nouvelle base de données clients et que l'on applique à chaque fois un nouveau StandardScaler aux données avant d'utiliser le modèle.