Cours 6 Incertitudes dans les systèmes de connaissances

Version 2.5a

Dominique Fontaine

Table des matières

Obje	ectifs	
I - Iı	ntroduction Générale	7
	A. Qualificatifs	
	B. Imprécisions	
	C. Incertitude	
II - F	Representation & Traitement des incertitudes	9
	A. Panorama	9
	B. Cadre classique	10
	C. Approches Bayésiennes	10
	1. Théorème de Bayes	12 12
	D. Approche Inférentielle	13
	Système de règles probabilistes	13
	E. Problème de l'ignorance	14
	F. Mesure de l'incertain	
	G. Théorie de l'évidence	1 <i>7</i>
	1. Les évènements 2. Treillis des événements 3. Approche 4. Distribution de masse de croyance 5. Mesure de croyance	17 18 18
	6. Mesure de plausibilité	20 22 23 23

H. Logiqu	e floue	29
1.	. Ensemble ordinaire	29
	. Ensemble flou	
3.	. Variable floue	30
4.	. Relation floue	31
	. Règle de production floue	
	. Règle compositionnelle	
7.	. Modus ponens généralisé	33
8.	. Raisonnement incertain	34

Comment représenter les informations liées à l'incertitude?

- Expression puis représentation de l'incertitude, des croyances, de l'imprécision.
- Sémantique des modes de représentation.
- Intégration à une approche symbolique .

Comment les traiter?

- Quelles inférences mener à partir d'informa-tions incertaines ou imprécises.
- · Combinaison des informations incertaines.
- · Interprétation des résultats inférés.

Introduction Générale

Qualificatifs	7
Imprécisions	7
Incertitude	8

A. Qualificatifs

Des connaissances peuvent être :

- **Incomplètes**: certaines informations ne sont pas disponibles
- Imprécises : le contenu de l'information est imprécis
- Floues : le contenu de certaines propositions est flou, énoncé de façon vague
- **Incertaines** : la valeur de vérité d'une connaissance est connue avec plus ou moins de précision
- Inconsistantes : des informations peuvent être contradictoires

Chacune de ces « imperfections » engendre de l'incertitude (ou du doute)

B. Imprécisions

Typologie

Proposition : « x satisfait la propriété P »

• Alain mesure 1.72 m

Proposition nette, et propriété précise

Alain mesure entre 1.70 m et 1.75 m

Proposition nette, et propriété imprécise

• P: appartenance à l'intervalle [1.70, 1.75]

Plusieurs valeurs sont possibles

Alain mesure aux alentours de 1.72 m

Proposition floue, dont la propriété est floue

- P: appartenance à l'ensemble des valeurs « aux alentours de 1.72 m »
- On ne sait pas nettement si une valeur donnée vérifie ou non P

C. Incertitude

Exemples

- « Alain mesure probablement 1,72 m »
 - Il est probable que Alain mesure 1,72 m
- « Prendre le train devrait être une bonne solution »
 - La proposition « prendre le train est une bonne solution » est assortie d'un degré de confiance
- « Il est vraisemblable que l'adversaire ait la dame de pique »
 - Compte-tenu des éléments connus, on peut penser, sans certitude, que « l'adversaire a la dame de pique ».

Panorama	9
Cadre classique	10
Approches Bayésiennes	10
Approche Inférentielle	13
Problème de l'ignorance	14
Mesure de l'incertain	17
Théorie de l'évidence	17
Logique floue	29

A. Panorama

Traitement de l'incertitude:

- Logiques
 - Non classiques (purement symboliques)
 - Multi-valuées
- Approches probabilistes
 - Probabilités
 - Approches bayésiennes
 - Approches inférentielles
- Mesures de l'incertain
 - Mesures de possibilité et de nécessité
 - Théorie de l'évidence

Traitement de l'imprécis:

- Logique floue

Traitement mixte de l'incertain et de l'imprécis :

- Raisonnement flou

B. Cadre classique

1. Probabilités : Définitions

Définition

Définition classique :

P(A) = rapport du nombre de cas favorables sur le nombre de cas possibles

Définition fréquentiste :

P(A) = limite vers laquelle tend la fréquence relative de l'événement A au cours d'une suite d'épreuves indépendantes

Interprétation subjectiviste :

P(A) = degré de croyance d'un agent rationnel dans le fait que l'événement A puisse se réaliser

Définition axiomatique :

2. Probabilités: Rappel

Rappel: Axiome d'additivité ne probabilités:

 $\Omega = \{w1; ...; wn \}$, ensemble fini des éventualités.

 $B \subseteq \Omega$: événement, hypothèse, proposition.

Soit T un ensemble d'événements (tribu). Alors :

 $P: T \rightarrow [0,1]$ est une mesure de probabilité si :

• $P(\Omega) = 1$

• $\forall A, B \in T ; A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)$

Conséquences :

• $P(\emptyset) = 0$

• $P(A \cap B) = P(A) + P(B) - P(A \cup B)$

• $P(\neg A) = 1 - P(A)$

Remarque : A savoir :

¬A représente l'événement contraire de A.

C. Approches Bayésiennes

1. Théorème de Bayes

- Probabilités → un moyen de décrire et de manipuler des connaissances incertaines
- Le théorème de Bayes (1763) → moyen de calculer la probabilité d'une hypothèse étant donné un ensemble d'observations

Fondamental: Théorème:

La probabilité conditionnelle d'une hypothèse H étant donnée E est définie par $P(H / E) = P(H \land E) / P(E)$

Soient des hypothèses Hi exclusives. Alors :

$$P(H_i/E) = \frac{P(E/H_i) * P(H_i)}{\sum_{k=1}^{n} P(E/H_k) * P(H_k)}$$

Théorème de Bayes

2. Extension du Théorème de Bayes

Problème:

Soit E une conjonction d'observations :

E₁ Λ... ΛΕ_m

→ il faut connaître trop de probabilités conditionelles a priori...

Définition : Extension du théorème

Condition supplémentaire :

En présence de toute hypothèse H_i , les $E_1,...,E_m$ sont indépendants.

On a alors:

$$P(H_i/E) = \frac{P(E_1/H_i) * ... P(E_m/H_i) * P(H_i)}{\sum_{k=1}^{n} P(E_1/H_k) * ... P(E_m/H_k) * P(H_k)}$$

Extension du théorème de Bayes

3. Un exemple: Prospector

Supposons connues:

- Les probabilités de trouver des minerais : les P(H_k))
- Les probabilités pour que, si un minerai est présent, des observations soient faites : les P(Ej / Hk))

Alors grâce au théorème de Bayes :

ightarrow étant données des observations E, on peut calculer les probabilités qu'un minerai soit présent : les P(Hi / E))

Représentation des connaissances : un réseau de dépendances (réseau bayésien)

4. Postulats

Voici 3 postulats utilisés mais souvent irréalistes :

Fondamental

Les hypothèses H_i sont mutuellement exclusives

Fondamental

Les hypothèses H_i sont exhaustives

Fondamental

• Il y a indépendance conditionnelle des Ei vis-à- vis des H_k

Attention

Le théorème de Bayes, certes souvent utilisé, n'est pas la réponse à tous les

problèmes réels où s'immisce l'incertitude!

D. Approche Inférentielle

1. Système de règles probabilistes

De l'intérêt d'utiliser un système de règles probabiliste :

- Guidage par les règles (heuristiques) en cas d'information incomplète
- Evaluation des hypothèses par un processus de calcul pas-à-pas
- Possibilité de combiner les conclusions
- Traitement par une approche similaire des faits avérés et des faits incertains

Remarque

C'est une alternative à la démarche bayésienne

2. Exemple: Domaine médical

Domaine médical:

- Complexité combinatoire
- · Connaissances incomplètes

Le cas de Mycin:

- · Raisonnement abductif
- Corpus de règles incertaines, affectées d'un coefficient compris entre 0 et 1
- Faits affectés d'un coefficient de vraisemblance compris entre -1 et 1
- Propagation de l'incertitude sur les faits au travers des inférences

3. Mécanisme de propagation

Fondamental

Soit une règle R de la forme :

P1 & (P2 ou P3) alors Q

Evaluation des prémisses:

Cprém = min (CP1, max (CP2,CP3))

Application de la règle :

CQ = Cprém x cR

Exemple : Données :

CP1 = 0.8, CP2 = 0.9, CP3 = 0.7CR = 0.7

4. Mécanisme de renforcement

Soit une même conclusion Q affectée de deux coefficients C et C' par l'application de R et R'.

Fondamental: Principes: 3 cas possibles

Deux coefficients positifs

• $C'' = C + C' - C \times C'$

Deux coefficients négatifs

• $C'' = C + C' + C \times C'$

L'un positif, l'autre négatif

• C'' = (C + C') / (1 - min(|C|, |C'|))

E. Problème de l'ignorance

1. Insuffisances des probabilités

a) Cas des règles expertes

Si A alors B: confiance de 0.5

Donc, si A alors ¬B: confiance de 0.5

Remarque

Généralement en désaccord avec le point de vue de l'expert

b) Distorsion de l'ignorance

Soit un médecin. Son prochain patient est un enfant (p), un adolescent (q), ou un adulte (r).

P(p) = P(q) = P(r) = 1/3.

D'où : $P(\neg p) = P(\neg q) = P(\neg r) = 2/3$, alors que p et $\neg p$ sont également inconnus !!!

2. Paradoxe de Bertrand

Une bouteille contient de l'eau et du vin :

- · Au moins autant d'eau que de vin,
- Au plus deux fois plus d'eau que de vin.

Exemple

Soit R le rapport eau/vin : 1 < R < 2

donc P(1 < R < 1.5) = 0.5

Soit R' le rapport vin/eau : 0.5 < R' < 1

Donc P(2/3 < R' < 1) = 2/3

Or: 1 < R < 1.5 équivalent à 2/3 < R' < 1

Attention

Au même événement sont attribuées deux probabilités différentes!

F. Mesure de l'incertain

1. Modifications majeures

Deux modifications majeures à noter :

Définition : Une approche par intervalles :

- · La confiance en un fait est circonscrite par un intervalle.
- Plus l'information se précise, plus la largeur de l'intervalle se réduit.

Définition : Axiomatisation moins contraignante

 $G: T \rightarrow [0,1]$ est une mesure d'incertitude si :

- $G(\Omega) = 1, G(\emptyset) = 0$
- $\forall A, B \in T, A \subseteq B = \emptyset \Rightarrow G(A) \leq G(B)$

Complément : Conséquences

- $G(A \cup B) \ge max (G(A),G(B))$
- $G(A \cap B) \le min(G(A),G(B))$

G. Théorie de l'évidence

1. Les évènements

Univers $\Theta = \{H1 \; ; \; ... \; ; \; Hn\}$: ensemble exhaustif d'hypothèses élémentaires supposées mutuel-lement exclusives

Evénement $A \subseteq \Theta$: sous-ensemble d'hypothèses élémentaires (équivalent à une disjonction d'hypothèses)

Exemple: Identification d'une affection:

 $\Theta = \{grippe ; pneumonie ; allergie\}$ Evénement : A = $\{grippe ; allergie\}$

2. Treillis des événements

Treillis des événements

Treillis des événements

3. Approche

But : attacher une mesure de confiance à chaque hypothèse élémentaire de $\Theta \rightarrow$ difficile en pratique

Alternative : supporter certains événements plutôt que d'autres

Exemple

• La présence de fièvre peut supporter l'événement {grippe ; allergie}

Méthode

• Affecter à chaque événement un nombre compris entre 0 et 1

Rappel

Pas de risque combinatoire : ne sont considérés que les événements ayant une signification pour le problème

4. Distribution de masse de croyance

Généralisation d'une distribution de probabilité

$$m: 2^{\Theta} \to [0,1]$$

$$- m(\emptyset) = 0$$

$$- \sum_{A \subseteq \Theta} m(A) = 1$$

Distribution généralisée

Complément

m(A): part de croyance selon laquelle la solution est en A.

 $m(A) \neq 0$: A élément focal de la fonction m.

 $m(\emptyset) = 0 : \Theta$ est exhaustif (cas du « monde clos »).

Exemple: Exemple d'application

Etape 0:

Pas d'information du tout sur des caractéristiques de l'affection

 \rightarrow traduction de l'ignorance : m(Θ) = 1

Etape 1:

Puis, il y a une indication de fièvre :

m ({grippe ; pneumonie}) = 0.7

• $m(\Theta) = 0.3$

5. Mesure de croyance

Bel:
$$2^{\Theta} \rightarrow [0,1]$$

$$A \mapsto \sum_{\mathbf{B} \subseteq \mathbf{A}} m(\mathbf{B})$$

Mesure de croyance

Univers des événements

Fondamental

• Bel(A) est la quantité de croyance allouée à A, en raison des informations disponibles.

H. A. 19
 A. 19

6. Mesure de plausibilité

$$\forall A \subseteq \Theta$$
: $Pl(A) = 1 - Bel(\overline{A})$
= $\sum m(B)$
 $B \cap A \neq \emptyset$

Mesure de plausibilité

Univers des événements

Fondamental

• PI(A) est la quantité de croyance potentiellement allouable à A

7. Un exemple

Α	m(A)	bel(A)	pl(A)
Ø	0	0	0
{grippe}	0	0	1
{pneu}	0	0	1
{allergie}	0	0	0.3
{grippe; pneu}	0.7	0.7	1
{grippe; allerg}	0	0	1
{pneu ; aller}	0	0	1
Θ	0.3	1	1

Tableau 1 Exemple

8. Cas de l'ignorance totale

Soit un médecin. Son prochain patient est un enfant (A), un adolescent (B), ou un adulte (C)

- Bel(A) = 0 = Bel(B) = Bel(C)
- Bel(A) = 0 = Bel(B) = Bel(C)
- PI(A) = 1 = PI(B) = PI(C)
- PI(A) = 1 = PI(B) = PI(C)

Attention

 Pas de raisons particulières pour croire en l'une d'elles ou en leurs négations, mais toutes sont encore plausibles!!

9. Quelques propriétés

Définition

Si A ⊆B Alors:

- $Bel(A) \leq Bel(B)$
- $PI(A) \leq PI(B)$

Définition

A et B quelconques :

- Bel(A) + Bel(\neg B) ≤ 1
- $PI(A) + PI(\neg B) \ge 1$
- Bel(A) \leq P(A)
- Bel(A \cup B) \geq Bel(A) + Bel(B) Bel(A \cap B)
- $PI(A \cup B) \le PI(A) + PI(B) PI(A \cap B)$

Lien avec les probabilités

Définition : Degré d'incertitude sur la valeur de p(A) : INC(A)

• INC(A) = PI(A) - BeI(A)

Définition

Bel(A) ≤ p(A) ≤ Pl(A)
 Plus INC(A) est petit, plus la probabilité de A est connue avec précision.

Si les éléments focaux sont les singletons :

Définition

- $\forall A \in \Theta \text{ Bel}(A) = Pl(A) = p(A)$
- Dès lors : Bel(A) + Bel(A) = 1

10. Combinaisons et distributions

La règle de combinaison permet de calculer la somme orthogonale m de deux distributions de masse m1 et m2 :

Pour
$$A \subseteq \Theta$$
 et $A \neq \emptyset$:
 $m(A) = m_1(A) \oplus m_2(A)$
 $= K \times \sum_{i,j/A_i \cap A_j = A} m_2(A_j)$

avec K =
$$\frac{1}{1 - \sum_{i,j/A_i \cap A_j = \emptyset} m_2(A_j)}$$

$$m(\varnothing) = 0$$

Distributions et combinaisons

Exemple : Exemple de combinaison de distributions

Première information : « le malade a de la fièvre »

m1 ({grippe; pneumonie}) = 0.7

 $m1 (\Theta) = 0.3$

Deuxième information : « son nez est irrité »

 $m2 (\{grippe ; allergie\}) = 0.6$

 $m2 (\Theta) = 0.4$

Combinaison des deux distributions :

m = m1 ⊕ m2

m ({grippe; pneumonie}) = 0.28

 $m (\{grippe ; allergie\}) = 0.18$

 $m (\{grippe\}) = 0.42$

 $m(\Theta) = 0.12$

Remarque

On a noté ici \oplus pour la somme directe (ou orthogonale) des deux ensembles.

Exemple : Suite de l'exemple :

 $Bel(\Theta) = 1$

Bel ({grippe ; pneumonie}) = 0.70 Bel ({grippe ; allergie}) = 0.60

Bel ($\{grippe\}$) = 0.42

Bel ({pneumonie; allergie}) = 0

```
Bel ({pneumonie}) = 0
Bel ({allergie}) = 0
Pl ({grippe}) = 1
Pl ({pneumonie}) = 0.4
Pl ({pneumonie ; allergie}) = 0.58
etc....
```

11. Représentation géométrique

Représentation géométrique

* *

Application de cette théorie dans divers domaines :

Reconnaissance des formes

- · Fusion de données
- · Théorie de la décision
- Systèmes experts
- Interprétation d'images

H. Logique floue

1. Ensemble ordinaire

Définition : Fonction caractéristique d'un ensemble E

 $\mu_{E}: U \to \{0,1\}$

- $\mu_E(x) = 1$ si et seulement si $x \in E$
- $\mu_E(x) = 0$ si et seulement si $x \notin E$

Exemple

U univers des entiers naturels

E ensemble des nombres pairs

si x = 6,
$$\mu_E E(x) = 1$$
; si x = 5, $\mu_E(x) = 0$

2. Ensemble flou

Définition : Fonction caractéristique d'un ensemble E

 $\mu_E:\,U\to[0,1]$

 $x \mapsto \mu_E(x)$

• $\mu_E(x) = \text{degr\'e d'appartenance de } x \text{ à l'ensemble E.}$

Exemple

```
Soit U = {160; 170; 175; 180; 185; 190; 200}
A = { 160(0); 170(0.1); 175(0.3); 180(0.5); 185(0.75); 190(0.9); 200(1)}
```

Ce sous-ensemble flou A pourrait représenter le mot « grand »

3. Variable floue

Fondamental

• Variable floue : variable dont les valeurs sont des ensembles flous

Taille prend la valeur "grand"

 Représentation par un vecteur de dimension égale au nombre d'éléments de U

"grand": [0 0.1 0.3 0.5 0.75 0.9 1]

• Domaine d'une variable floue :

Dtaille = { grand ; petit ; moyen ; géant ; nain }

4. Relation floue

Définition

Une relation floue R est un sous-ensemble flou de l'univers du discours U1 x U2 : $\mu_R: \ U1 \ x \ U2 \to [0,1] \\ (x,y) \ \mapsto \mu_R(x,y)$

Exemple

$$U1 = \{x1 ; x2 ; x3\}$$

 $U2 = \{y1 ; y2\}$

	у1	у2
x1	0.6	1
x2	0.3	0.4
хЗ	1	0.7

Relation floue, illustration

5. Règle de production floue

Définition

• Si x est A alors y est B

A et B désignent des sous-ensembles flous d'univers respectifs U et V x, y variables floues

Notation: A ⇒ B

Exemple

« si la température est très élevée, alors le chauffage devrait baisser légèrement » Représentation : par une relation floue définie sur U x V, dont l'expression varie selon le choix de l'opérateur d'implication.

6. Règle compositionnelle

Soient A, R et B des sous-ensembles flous d'uni- vers respectifs U, U x V et V

Fondamental

L'inférence compositionnelle de A et de R est le sous-ensemble flou B = A o R, avec :

 $\mu_B(v) = \max [\min(\mu_A(u), \mu_R(u,v)] u \in U$

Complément

• Cette règle joue un rôle fondamental dans le raisonnement approximatif

Exemple

```
U = V = { 1 ; 2 ; 3 ; 4 }

Soit A = "petit" = { 1 (1) ; 2 (0.6) ; 3 (0.2) }

Soit R = "approximativement égal" = { (1,1) (1) ; (2,2) (1) ; (3,3) (1) ; (4,4) (1) ; (1,2) (0.5) ; (2,1) (0.5) ; (2,3) (0.5) ; (3,2) (0.5) ; (3,4) (0.5) ; (4,3) (0.5) }

D'où :B = { 1 (1) ; 2 (0.6) ; 3 (0.5) ; 4 (0.2) }

Synthèse:

« x est petit »

« x et y sont approximativement égaux »

« y est plus ou moins petit »
```

7. Modus ponens généralisé

y est B	y est B'
x est A	x est A'
si x est A alors y est B	six est A alors y est B
Modus ponens	Modus ponens généralisé

Modus ponens généralisé

Définition : Calcul de B' par la règle compositionnelle :

• $B' = A' \circ (A \Rightarrow B)$

Exemple

Si la tomate est rouge alors elle est mûre La tomate est très rouge DONC la tomate est très mûre.

8. Raisonnement incertain

Définition

• « x est \mathbb{P} » est vraie avec une valeur de vérité $\mu_P(x) \Leftrightarrow x \in P$ avec un degré d'appartenance $\mu_P(x)$

où ₱ est un prédicat flou et P l'ensemble flou associé.

Exemple

- Proposition : « La taille de Jean est grande »
- Prédicat flou : « est grand »
- Ensemble flou: « grand »
- Variable floue : « la taille de Jean »
- Degré d'appartenance de « la taille de Jean » à « grand » : 0.7
- Valeur de vérité de « la taille de Jean est grande » : 0.7