Course Code	Course Title	L	Т	Р	С	
BECE306L	Digital Communication Systems	3	0	0	3	
Pre-requisite	BECE206L, BECE206P	Syllabus version				
		1.0				

Course Objectives:

- 1. To understand the transmitter and receiver blocks of various waveform coding techniques.
- 2. To analyze various line coding techniques in time and frequency domains.
- 3. To identify the role of baseband, bandpass formats and information theory for effective transmission of signals, combat ISI and to increase the reliability of transmission.
- 4. To understand the principles and importance of spread spectrum and multiple access in the context of communication.

Course Outcomes:

Students will be able to

- 1. Comprehend the sampling and quantization process to recover the original signal
- 2. Analyse the performance of various waveform and Line coding techniques.
- 3. Design the various baseband pulses for ISI free transmission over finite bandwidth channels.
- 4. Examine the BER and bandwidth efficiency of the Bandpass modulation techniques.
- 5. Analyse the digital communication system with spread spectrum modulation.
- 6. Infer the elements of information theory.

Module:1 | Sampling Process

4 hours

Block diagram of a digital communication system, bandwidth of signals. Sampling theorem - quadrature sampling of bandpass signals, Reconstruction of a message from its samples, Practical aspects of sampling and signal recovery.

Module:2 | Waveform Coding Techniques

6 hours

Pulse Code Modulation (PCM) - Uniform quantization, Quantization noise, Signal-to-Noise Ratio, Robust quantization. Differential pulse code modulation (DPCM), Delta Modulation (DM) - Quantization noise in DM, Adaptive Delta Modulation.

Module:3 | Line Codes

6 hours

Representation of line codes – Unipolar, Polar, Bipolar using NRZ and RZ, Manchester, Polar Quaternary codes, Differential encoding, Properties and applications of line codes – Power spectral density of line codes.

Module:4 Baseband System

5 hours

Baseband data transmission of binary data - Inter Symbol Interference (ISI), Nyquist criterion for zero ISI, Raised cosine filtering, correlative coding (duo binary and modified duo binary coding), eye pattern – Equalization.

Module:5 | Bandpass system

12 hours

Gram-Schmidt Orthogonalization Procedure. Correlation and Matched filter receiver. Coherent modulation techniques - BASK, BPSK, BFSK, QPSK, MSK, Higher-order PSK and QAM, BER and Bandwidth efficiency analysis. Non-coherent modulation techniques – BASK, BFSK, DPSK.

Module:6 | Spread Spectrum and Multiple Access Techniques

5 hours

Principles of spread spectrum - Generation of PN sequence and its properties, Direct Sequence Spread Spectrum (DSSS), Processing gain, Probability of error, Anti-jam characteristics, Frequency- Hop Spread Spectrum (FHSS). Multiple access techniques - TDMA, FDMA, CDMA, SDMA.

Module:7		Introduction to Informa	tion Theory			5 hours			
	Entropy, Mutual information and channel capacity theorem. Fundamentals of error correction - Hamming codes.								
Module:8 Contemporary issues			2 hours						
1010	module.0 Contemporary issues 2 modis								
			Т	otal lecture h	nours:	45 hours			
Tex	Text Book(s)								
1.	ot —								
Reference Books									
1.	1. John G. Proakis, Masoud Salehi, Digital Communication, 2018, 5 th Edition (Indian edition), Mc Graw Hill Education, India.								
2.	2. Bernard Sklar and Fredric J. Harris, Digital Communications: Fundamentals and Applications, 2020, 3 rd Edition, Pearson, UK.								
3.									
Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final									
Assessment Test									
Recommended by Board of Studies 14-05-2022									
App	Approved by Academic Council No. 66 Date 16-06-2022								