Математические основы теории вероятностей, часть 2

Палагашвили Аби

17 февраля 2019 г.

1 Конечные произведения измеримых пространств

 $(X,S,\mu)(Y,T,\nu)$ - пространства с мерами Рассмотрим вопрос о построении пространства $(X\times Y,S\times T,\mu\times \nu)$

Определение 1.1. Пусть $A \subset X, B \subset Y$. Прямоугольником $A \times B$ называется совокупность пар $(x, y), x \in A, y \in B$

Пемма 1.1. Класс всех измеримых $(A \in S, B \in T)$ прямоугольников образует полуалгебру

Доказательство.
$$(A_1 \times B_1) \subset (A_2 \times B_2) \Rightarrow (A_2 \times B_2) \setminus (A_1 \times B_1) = \bigcup_{i=1}^k (C_i \times D_i) = A_2(B_2 \setminus B_1) \bigcup B_1(A_2 \setminus A_1)$$

Определение 1.2. Произведение σ - алгебр $S \times T$ - σ - алгебра, порожденная классом измеримых прямоугольников.

Определение 1.3. Пусть $E \subset X \times Y$. Тогда **х-сечением** Множества E называется множество $E_x = \{y \in Y : (x,y) \in E\}$

Определение 1.4. Пусть f-измеримая функция со значениями в $\overline{\mathbb{R}}$. Тогда x-сечением функции f называется $f_x(y):Y\to \overline{\mathbb{R}}$ такая, что $f_x(y)=f(x,y)$

Теорема 1.1. Если $E \in S \times T$, то $E_x \in T$ и $E_y \in S$ $\forall x \in X, y \in Y$

Доказательство. Для измеримых прямоугольников утверждение верно. Далее, заметим, что

$$(\bigcup_{i} A_{i})_{x} = \bigcup_{i} (A_{i})_{x} \tag{1}$$

И

$$(A_1 \setminus A_2)_x = (A_1)_x \setminus (A_2)_x \tag{2}$$

Зафиксируем х.Обозначим через \mathcal{F} класс множеств $A \in S \times T$,для которых х-сечение $\in T$.В силу (1) и (2) получаем,что \mathcal{F} является σ -алгеброй,содержащей все измеримые прямоугольники.По определению $\mathcal{F} \subset S \times T$, но из доказательства имеем $S \times T \subset \mathcal{F}$

Лемма 1.2. Пусть f - измеримая функция на $(X \times Y, S \times T)$. Тогда x-сечение f_x есть измеримая функция на (Y,T)

Доказательство. Для
$$\forall B \in \mathcal{B}$$
 имеем $f_x^{-1}(B) = \{y: f(x,y) \in B\} = \{y: (x,y) \in f^{-1}(B)\} = (f^{-1}(B))_x \in T$