

NRL Memorandum Report 5792

A Collisional-Radiative Model and Saha Decrements for a Nonequilibrium Oxygen Plasma

R. D. TAYLOR* AND A. W. ALI

Plasma Physics Division

*Berkeley Research Associates Springfield, VA 22150

May 20, 1986

This work was supported by the Defense Advanced Research Projects Agency under ARPA Order 4395, Amendment #54, and monitored by the Naval Surface Weapons Center under Contract #N60921-85-WR-W0239.

NAVAL RESEARCH LABORATORY Washington, D.C.

Approved for public release; distribution unlimited.

		REPORT DOCU	MENTATION	PAGE			
14. REPORT SECURITY CLASSIFIC	CATION		16 RESTRICTIVE	MARKINGS			
UNCLASSIFIED 2a. SECURITY CLASSIFICATION A	ALITHORITY		3 DISTRIBUTION	/AVAHARHITY (DE REPO	RT	
Za. SECURITY CLASSIFICATION Z	AUTHORITT						
26 DECLASSIFICATION / DOWN	GRADING SCHED	ULE	Approved for	r public releas	e; distr	ibution u	nlimited.
4. PERFORMING ORGANIZATION REPORT NUMBER(S)			5. MONITORING	ORGANIZATION	REPORT	NUMBER(S)
NRL Memorandum Rep 6a. NAME OF PERFORMING OR		66 OFFICE SYMBOL	7a. NAME OF M	ONITORING ORG	ΔN:2ΔTI	ON	
64. NAME OF PERFORMING OR	GANIZATION	(If applicable)	7a. NAME OF MI	ON TORNA ONG	MINIZATI	OI4	
Naval Research Laborate	ory	Code 4700.1	Naval Surface	e Weapons Cer	nter		
6c. ADDRESS (City, State, and 2	(IP Code)		76. ADDRESS (Cri	ty, State, and ZII	Code)		
Washington, DC 20375	-5000		Silver Spring	, MD 20903			
8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOI (If applicable)			9. PROCUREMEN	T INSTRUMENT I	DENTIFIC	ATION NU	MBER
DARPA							
8c. ADDRESS (City, State, and Z	IP Code)		10 SOURCE OF	PROJECT	TASK		WORK UNIT
Arlington, VA 22209			ELEMENT NO	NO. NO.		ACCESSION NO	
11. TITLE (Include Security Class	ssification)		62707E	<u> </u>	1_		DN680-415
11. TITLE (Include Security Class A Collisional-Radiative I	Model and Sa	ha Decrements for a		Oxygen Plasm	ıa		DN680-415
11 TITLE (Include Security Class A Collisional-Radiative)	Model and Sa	ha Decrements for a covered to	Nonequilibrium			15. PAGE 48	
A Collisional-Radiative I 12. PERSONAL AUTHOR(S) Taylor, R. D.* and Ali, 13a. TYPE OF REPORT Interim 16. SUPPLEMENTARY NOTATION	A. W.	COVERED TO	Nonequilibrium	ORT (Year, Month			COUNT
11 TITLE (Include Security Class A Collisional-Radiative I 12 PERSONAL AUTHOR(S) Taylor, R. D.* and Ali, 13a. TYPE OF REPORT Interim	A. W.	COVERED TO	Nonequilibrium 14. DATE OF REPO	DRT (Year, Month 3 May 20	n, Day)	48	COUNT (Continues)
A Collisional-Radiative A Collisional-Radiative Day A Collisional Day A Collisio	A. W. 13b. TIME FROM ociates, Sprin	COVERED TO	Nonequilibrium 14. DATE OF REPO 1986	ORT (Year, Month May 20	n, Day)	48	COUNT (Continues)
A Collisional-Radiative A Collisional-Radiative Day A Collisional-Radiative Day A Collisional-Radiative Day A Collisional-Radiative Day Bersonal Author(5) Taylor, R. D.* and Ali, 13a. TYPE OF REPORT Interim 16. SUPPLEMENTARY NOTATION * Eierkeley Research Ass	A. W. 13b. TIME FROM ociates, Sprin	gfield, VA 22150 18. SUBJECT TERMS Collisional-radiat	Nonequilibrium 14. DATE OF REPO 1986	DRT (Year, Month 3 May 20	n, Day) nd ident	48	COUNT (Continues)
A Collisional-Radiative I A Collisional-Radiative I PERSONAL AUTHOR(S) Taylor, R. D.* and Ali, Taylor, R. D.* and Ali, Supplementary notation Fierkeley Research Ass COSATI	A. W. 13b. TIME FROM OCIATES, Sprin	gfield, VA 22150 18. SUBJECT TERMS Collisional-radiat Saha decrements	Nonequilibrium 14. DATE OF REPO 1986 (Continue on revenive model	ORT (Year, Month 6 May 20 se if necessary a Oxygen plasm	n, Day) nd ident	48	COUNT (Continues)
A Collisional-Radiative I A Collisional-Radiative I 2. PERSONAL AUTHOR(S) Taylor, R. D.* and Ali, 13a. TYPE OF REPORT Interim 16. SUPPLEMENTARY NOTATIO *Gerkeley Research Ass 17. COSATI CO FIELD GROUP 191 ABSTRACT (Continue on re	A. W. 13b. TIME FROM OCIATES, Sprin DDES SUB-GROUP	gfield, VA 22150 18. SUBJECT TERMS Collisional-radiat Saha decrements	Nonequilibrium 14. DATE OF REPO 1986 (Continue on revenive model	ORT (Year, Month 5 May 20 se if necessary a Oxygen plasn LTE and Non	n, Day) nd identina iLTE	48	(Continues)
A Collisional-Radiative A Collisional-Radiative Department of the Collisional-Radiative Department of the Collisional Radiative Department of the Collisional Radiativ	A. W. 13b. TIME FROM OCIATES, Sprin ODES SUB-GROUP Everse if necessary	gfield, VA 22150 18. SUBJECT TERMS Collisional-radiat Saha decrements ry and identify by block a collisional-radiative	Nonequilibrium 14. DATE OF REPO 1986 (Continue on revenive model number) model is develop	ORT (Year, Month 5 May 20 se if necessary a Oxygen plasn LTE and Non	nd identina LTE	48	(Continues) k number)
A Collisional-Radiative A Collisional-Radiative 12. PERSONAL AUTHOR(S) Taylor, R. D.* and Ali, 13a. TYPE OF REPORT Interim 16. SUPPLEMENTARY NOTATIO *Terkeley Research Ass 17. COSATI CO FIELD GROUP 19. ABSTRACT (Continue on re Using a time depender recombination and ionic	A. W. 13b. TIME FROM OCIATES, Sprin DOES SUB-GROUP verse if necessarent approach a	gfield, VA 22150 18. SUBJECT TERMS Collisional-radiat Saha decrements ry and identify by block a collisional-radiative ients are calculated for	Nonequilibrium 14. DATE OF REPO 1986 (Continue on reversive model number) model is develop or two specific c	ORT (Year, Month of May 20 se if necessary a Oxygen plasn LTE and Non ped for an oxy ases, optically	nd identina LTE	48 tify by blocasma. Ef	(Continues) k number) fective lly thick in
A Collisional-Radiative A Collisional-Radiative Department of the incidence of the incidenc	A. W. 13b. TIME FROM OCIAtes, Sprin ODES SUB-GROUP verse if necessare ent approach a zation coefficient. The steel	gfield, VA 22150 18. SUBJECT TERMS Collisional-radiat Saha decrements ry and identify by block a collisional-radiative ients are calculated for day state population. The	Nonequilibrium 14. DATE OF REPO 1986 (Continue on revenive model number) model is develop or two specific cu	ORT (Year, Month May 20 se if necessary a Oxygen plasm LTE and Non ped for an oxy asses, optically tral and ionic the approach	n, Day) nd identina LLTE rgen plathin as states a of the	asma. Ef	(Continues) k number) fective lly thick in nted in terms of a state of
A Collisional-Radiative A Collisional-Radiative Dersonal Author(s) Taylor, R. D.* and Ali, 13a. TYPE OF REPORT Interim 16. SUPPLEMENTARY NOTATION* Serkeley Research Ass 17. COSATI CONTINUE OF THE CONTINUE O	A. W. 13b. TIME FROM OCIAtes, Sprin DDES SUB-GROUP Everse if necessal exation coeffication. The steal is Saha equilibrium (L'	gfield, VA 22150 18. SUBJECT TERMS Collisional-radiat Saha decrements ry and identify by block a collisional-radiative ients are calculated for a collisional for a collisio	Nonequilibrium 14. DATE OF REPO 1986 (Continue on revenive model number) model is develop or two specific cu	ORT (Year, Month May 20 se if necessary a Oxygen plasm LTE and Non ped for an oxy asses, optically tral and ionic the approach	n, Day) nd identina LLTE rgen plathin as states a of the	asma. Ef	(Continues) k number) fective lly thick in nted in terms o a state of
A Collisional-Radiative A Collisional-Radiative Department of the Collisional-Radiative Department of the Collisional-Radiative Department of the Collisional Part of the Collisional Department of the Collisional Depa	A. W. 13b. TIME FROM OCIAtes, Sprin DDES SUB-GROUP Everse if necessal exation coeffication. The steal is Saha equilibrium (L'	gfield, VA 22150 18. SUBJECT TERMS Collisional-radiat Saha decrements ry and identify by block a collisional-radiative ients are calculated for a collisional for a collisio	Nonequilibrium 14. DATE OF REPO 1986 (Continue on revenive model number) model is develop or two specific cu	ORT (Year, Month May 20 se if necessary a Oxygen plasm LTE and Non ped for an oxy asses, optically tral and ionic the approach	n, Day) nd identina LLTE rgen plathin as states a of the	asma. Ef	(Continues) k number) fective lly thick in tted in terms a state of
A Collisional-Radiative A Collisional-Radiative Department of the Interim 12. PERSONAL AUTHOR(S) Taylor, R. D.* and Ali, 13a. TYPE OF REPORT Interim 16. SUPPLEMENTARY NOTATION* Exerkeley Research Ass 17. COSATI CONTINUE OF THE INTERIOR	A. W. 13b. TIME FROM_ ON ociates, Sprin DDES SUB-GROUP verse if necessary extra approach a zation coefficion. The steat Saha equilibrium (L' and 1019 cm	gfield, VA 22150 18. SUBJECT TERMS Collisional-radiat Saha decrements ry and identify by block a collisional-radiative ients are calculated for a collisional from the productions. The properties of the production of the produc	Nonequilibrium 14. DATE OF REPO 1986 (Continue on revenive model number) model is develop or two specific cu	ORT (Year, Month is May 20 se if necessary a Oxygen plasn LTE and Non ped for an oxy ases, optically tral and ionic the approach tures between	nd identina LTE rgen plathin asstates a of the	asma. Ef nd optica are preser plasma to d 3.0 eV	(Continues) k number) fective lly thick in tted in terms a state of

DD FORM 1473, 84 MAR

A. W. Ali

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT

QUINCLASSIFIED/UNLIMITED

SAME AS RPT.

22a NAME OF RESPONSIBLE INDIVIDUAL

225. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL (202) 767-3762 Code 4700.1 83 APR edition may be used until exhausted. All other editions are obsolete

DTIC USERS

SECURITY CLASSIFICATION OF THIS PAGE

いたのは、これでは、一般のこれには、一般のこれには、一般のこれには、一般のこれには、一般のこれには、一般のこれには、一般のこれには、一般のこれには、一般のこれには、一般のこれには、一般のこれには、一般のこれには、

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED

RITY CLASSIFICATION OF TH	
SUPPLEMENTARY NO	OTATION (Continued)
s work was supported by endment #54, and moni	the Defense Advanced Research Projects Agency under ARPA Order 4395, tored by the Naval Surface Weapons Center under Contract #N60921-85-WR-W0239
	•

CONTENTS

I.	INTRODUCTION	1
п.	COLLISIONAL-RADIATIVE MODEL	3
Ш.	SAHA DECREMENTS	7
IV.	CONCLUDING REMARKS	9
v.	ACKNOWLEDGMENTS	9
	REFERENCES	43

Accesio	n F or		_
NTIS		顨	1
DTIC			l
Unanno	ounced		1
Justific	ation		
Dist ib		y Codes	
-	I Avail a	a.d/or	
Dist		cial	
1 .			
10-1	1		
\mathcal{M}	1	·	

A COLLISIONAL-RADIATIVE MODEL AND SAHA DECREMENTS FOR A NONEQUILIBRIUM OXYGEN PLASMA

I. INTRODUCTION

when air is heated and becomes highly ionized, the primary constituents consist of nitrogen, oxygen and their ions. Emissions from this plasma provide diagnostic information as well as contribute to cooling the plasma. To describe such a plasma under nonequilibrium conditions one must know the population densities of various excited states. Previously, we developed 1,2 a collisional-radiative model for nitrogen and its ions to provide this information for electron temperatures Te = 1-3 eV and electron densities Te = 1-3 eV and electron densities Te = 1-3 eV and its ions over the same electron temperature and density regime, thereby providing the basis for a collisional-radiative model for air at these temperatures and densities.

The model was motivated by the earlier work of Bates et al. 3-6 on hydrogen and hydrogenic ions. In contrast to Bates et al. we solve the time dependent rate equations explicitly, for a fixed electron temperature, and calculate effective collisional-radiative recombination and ionization coefficients from the steady state results. The final state populations are compared to those expected if Saha equilibrium conditions are satisfied, giving a quantitative

Manuscript approved March 31, 1986.

measure of the extent to which the plasma is in LTE. A comprehensive description of the model can be found elsewhere. 1,2

The computations in this report are for an optically thin oxygen plasma and an optically thick case where bound-bound uv radiation is totally reabsorbed.

II. COLLISIONAL-RADIATIVE MODEL

A. Energy Level Model

For electron temperatures in the range 1-3 eV the important ions are 0^+ and 0^{++} . We have included in our calculation the lowest 17 levels for 0 I, the lowest 15 levels for 0 II, and two representative levels for 0 III. Details are presented in Tables 1 through 3.

Within this model the bound-bound radiation is listed in Table 4; each transition is described by its wavelength, the number given by Wiese et al. 7 , spectral character, transition index (e.g., 6+-1+ denotes emission from level 6 to level 1 in 0^+), and transition energy. This table shows, for example, that visible emission comes from both 0 and 0^+ . Therefore, one expects this radiation to be important as soon as excited 0 is produced.

The threshold values (excitation energies) for free-bound radiation are listed in Table 5.

B. Collisional and Radiative Processes

The coupled rate equations which describe the evolution of the oxygen plasma include the following collisional and radiative processes: collisional excitation and de-excitation of O and O⁺, collisional ionization of O and O⁺, two-body and three-body recombination of O⁺ and O⁺⁺, and spontaneous emission from O and O⁺ excited states. For the optically thin plasma photo-ionization and absorption are excluded. For the optically thick case complete absorption is assumed for the uv lines, while photo-ionization and absorption of the other lines are neglected.

The rate coefficients for these processes are computed using formulas analogous to those discussed in references [1,2] for the nitrogen plasma. They represent the most recent information available and where possible are scaled to experimental data. In addition, electron impact excitation coefficients for transitions amongst the ground state configurations of O and O⁺ are discussed by Ali et al. 8

The coupled rate equations are also modified to account for the reduction in ionization potential that occurs when an electron-ion pair resides in a plasma as opposed to an isolated environment. This effect is discussed in detail by Griem⁹; our modifications are discussed in references [1,2].

C. Collisional-Radiative Coefficients

The collisional-radiative recombination and ionization coefficients account for the net effect of collisional ionization, three-body recombination, and radiative recombination in a simple way. Denoting α_{Cr}^{0} and α_{CR}^{+} as the effective recombination coefficients for O^{+} -> O^{+} and O^{+} -> O^{+} and O^{+} and O^{+} and O^{+} as the effective ionization coefficients for the reverse processes, the rate equations for O^{+} , O^{+} , and Ne may be written compactly as

$$\frac{dO}{dt} = Ne O^{+} \alpha_{CR}^{O} - Ne O S_{CR}^{O}$$
 (1)

$$\frac{dO^{+}}{dt} = - \text{ Ne } O^{+} \alpha_{CR}^{O} + \text{ Ne } O S_{CR}^{O} + \text{ Ne } O^{++} \alpha_{CR}^{+} - \text{ Ne } O^{+} S_{CR}^{+}$$
 (2)

$$\frac{dO^{++}}{dt} = Ne O^{+} S_{CR}^{+} - Ne O^{++} \alpha_{CR}^{+}$$
 (3)

$$\frac{dNe}{dt} = Ne O S_{CR}^{O} + Ne O^{+} S_{CR}^{+} - Ne O^{+} \alpha_{CR}^{O} - Ne O^{++} \alpha_{CR}^{+}$$
 (4)

The steady state values of the coefficients are presented in Tables 6-9 for the thin case and 10-13 for the thick case as a function of the final electron density and electron temperature. Te is kept constant throughout the integration while Ne and the rest of the species evolve in time.

The coefficients reveal the same behavior seen in the nitrogen cases. At high electron densities the recombination coefficient is linearly proportional to Ne, a consequence of the dominance of three-body recombination over two-body for Ne $> 10^{18}$ cm⁻³. For lower electron densities the effective coefficient approaches the two-body value. There is very little difference between the optically thin and thick recombination results. The optically thin collisional-radiative ionization coefficients show a rapid rise with Ne for low electron densities (Ne $< 10^{17} \text{ cm}^{-3}$) and a slower rise for higher densities (Ne > 10^{18} cm^{-3}) while approaching saturation. For high electron densities the optically thin and thick ionization coefficients are comparable, in this region the plasma is collision-dominated. However, at low densities the optically thick ionization coefficients exceed the thin values by as much as an order of magnitude if the temperature is low (e.g. Ne $\approx 10^{16}$ cm⁻³, Te ≈ 1.0 eV).

These are the first calculations of collisional—radiative coefficients for oxygen which use a time dependent approach. Contrasting these results to those of nitrogen^{1,2}, it is seen that at low temperatures the neutral recombination and ionization coefficients for oxygen are approximately a factor of 5 larger than those for nitrogen

for both thin and thick cases. This occurs because the slope of the ionization cross section near threshold is higher for oxygen and the ionization potential is lower by approximately $1.0 \text{ eV}.^{10}$ The ionization coefficients for 0^+ are less than those of N^+ for both thin and thick cases. This results because the ionization potential for N^+ is approximately 5.5 eV less than that for 0^+ . The recombination coefficients for 0^+ are also less than the corresponding N^+ values.

III. SAHA DECREMENTS

When collisional transition rates exceed the corresponding radiative transitions the plasma is collision-dominated. It is then possible to specify the populations of the constituent species by using the Boltzmann-Saha equation at the local electron temperature. This corresponds to a state of LTE, the onset of which depends on Ne and Te. For example, it was found 1,2 that for a nitrogen plasma LTE is valid for Ne $> 10^{18}$ cm⁻³ for Te = 1-3 eV. The Saha decrement proves to be a useful quantitative measure for the onset of LTE. In particular, the Saha decrement is defined as the ratio of the level population computed from solving the rate equations, $o^{z-1}(n)$, to the population obtained by solving the Saha equation for each stage of ionization, $O_{c}^{z-1}(n)$. The specific level is indicated by the index n and z-1 corresponds to the ionization stage (z=1 for neutral, z>1for ions). The Saha decrement is given by

$$\rho^{z-1}(n) = \frac{O^{z-1}(n)}{O_{s}^{z-1}(n)}$$
 (5)

As a working criteria equilibrium is achieved when the relevant Saha decrements are within 10% of unity.

The Saha decrements for an optically thin oxygen plasma for Te = 1-3 eV are presented in Figs. 1-20. The results show the following: First, for any given Te, as the number of electrons increases equilibrium is achieved for excited O I states before excited O II states and, as expected, for

the excited neutral and ionic states before the ground states. The onset of equilibrium depends only weakly on Te for oxygen. All O states are in equilibrium for Ne > $2.0 \times 10^{18} \text{ cm}^{-3}$ for the temperatures of interest. Excited O states are generally in equilibrium for Ne > $2.0 \times 10^{17} \text{ cm}^{-3}$, or slightly larger if Te = 1.0 eV. Griem⁹ and others require that the electron de-excitation rate of the resonance line must exceed ten times the radiative decay for LTE to exist. For the oxygen atom the 5-1 transition (see Table 4) satisfies this criteria for Ne > $2.7 \times 10^{18} \text{ cm}^{-3}$ for Te = 1.0 eV. For O⁺ equilibrium is not attained until Ne > $6.0 \times 10^{18} \text{ cm}^{-3}$; the highly excited states require Ne > $2.0 \times 10^{18} \text{ cm}^{-3}$.

IV. CONCLUDING REMARKS

The recombination and ionization processes for an optically thin, homogeneous, charge neutral oxygen plasma have been studied for electron densities between 10^{16} cm⁻³ and 10^{19} cm⁻³ and electron temperatures from 1.0 eV to 3.0 eV. Effective collisional-radiative recombination and ionization coefficients are calculated for both the optically thin case and a case where all bound-bound uv lines are assumed to be optically thick. These coefficients describe the net recombination and ionization and may be used in sophisticated plasma chemistry simulation codes.

Detailed results are presented showing the deviation of all population densities for all states within our model from those expected if Saha equilibrium conditions were satisfied. It has been shown that for electron densities greater than $6.0 \times 10^{18} \ \mathrm{cm}^{-3}$ a state of complete local thermodynamic equilibrium exists whereas exited states may be in equilibrium, collision-dominated, for electron densities as low as $2.0 \times 10^{18} \ \mathrm{cm}^{-3}$. Coupled to the results for a nitrogen plasma this has implications for simplifying the description of radiative transfer in heated air, in the manner discussed in references [1,2].

V. ACKNOWLEDGMENT

This work was supported by DARPA.

TABLE 1
Energy Levels for O I

Index	State	Configuration(1s ² 2s ²)	Energy(eV)	Weight
1	3 _P	2p4	0.01	9
2	1 _D	2p ⁴	1.97	5
3	1s	2p4	4.19	1
4	⁵ s o	2p ³ (⁴ s ^o)3s	9.15	5
5	3 _s o	2p ³ (⁴ s ^o)3s	9.52	3
6	5 p	2p ³ 3p	10.74	15
7	3 _p	2p ³ 3p	10.99	9
8	5 ₅ 0	2p ³ (⁴ s ^o)4s	11.84	5
9	3 ₅ 0	2p ³ (⁴ s ^o)4s	11.93	3
10	5 _D o	$2p^{3}(^{4}s^{0})3d$	12.08	25
11	3 _D 0	$2p^{3}(^{4}s^{0})3d$	12.09	15
12	5 _P	2p ³ (⁴ s ^o)4p	12.29	15
13	3 _P	2p ³ (⁴ s ^o)4p	12.36	9
14	300	$2p^3(^2p^0)3s$	12.54	15
15	5 ₅ 0	2p ³ (⁴ s ^o)5s	12.66	5
16	³ s o	2p ³ (⁴ s ^o)5s	12.70	3
17	1 _D o	2p ³ (² p ^o)3s	12.73	5

TABLE 2
Energy Levels for O II

Index	State	Configuration(1s ²)	Energy(eV)	Weight
1	4s°	$2s^22p^3$	0.0	4
2	² D ⁰	2s ² 2p ³	3.32	10
3	2 _P 0	2s ² 2p ³	5.02	6
4	4 P	2s2p ⁴	14.87	12
5	² D	2s2p ⁴	20.58	10
6	4 p	$2s^22p^2(^3P)3s$	22.99	12
7	2 _P	2s ² 2p ² (³ P)3s	23.43	6
8	² s	2s2p ⁴	24.26	2
9	² s°	$2s^{2}2p^{2}(^{3}P)3p$	25.28	2
10	4 _D °	$2s^{2}2p^{2}(^{3}P)3p$	25.65	20
11	² D	$2s^22p^2(\frac{1}{D})3s$	25.66	10
12	4 _p o	2s ² 2p ² (³ P)3p	25.84	12
13	² D ⁰	$2s^22p^2(^3P)3p$	26.24	10
14	4 ₅ °	$2s^{2}2p^{2}(^{3}P)3p$	26.30	4
15	2 _p o	$2s^22p^2(^3P)3p$	26.56	6

TABLE 3
Energy Levels for O III

Index	State	Configuration(ls ²)	Energy(eV)	Weight
1	3 _P	$2s^22p^2$	0.0	9
2	3^{D_0}	2s2p ³	14.86	15

TABLE 4
Radiative Transitions (Bound-Bound)

Wavelength(Å)	#(Ref.[7])	Spectrum	Index	Energy(eV)
539.4	5	uv	6+ - 1+	22.99
555.1	8	uv	11+ - 2+	22.34
600.6	9	uv	11+ - 3+	20.64
616.6	6	uv	7+ - 2+	20.11
644.2	4	uv	8+ - 3+	19.24
673.2	7	uv	7+ - 3+	18.41
718.5	2	uv	5+ - 2+	17.26
796.7	3	υv	5+ - 3+	15.56
833.8	1	uv	4+ - 1+	14.87
989.5	3	иv	14 - 1	12.53
1026.6	8	uv	11 - 1	12.08
1152.2	4	uv	17 - 2	10.76
1303.5	2	uv	5 - 1	9.51
3735.9	73	uv	14+ - 6+	3.31
3947.3	25	vis	12 - 4	3.14
3966.9	30	vis	15+ - 7+	3.13
4341.3	79	vis	12+ - 6+	2.85
4368.3	26	vis	13 - 5	2.84
4418.1	28	vis	13+ - 7+	2.81
4651.5	23	vis	10+ - 6+	2.66
6455.0	37	vis	15 - 6	1.92
6694.4	75	vis	9+ - 7+	1.85
7254.4	38	vis	16 - 7	1.71
7773.4	11	ir	6 - 4	1.59
7989.9	27	ir	14 - 7	1.55
8446.5	12	ir	7 - 5	1.47
9263.9	28	ir	10 - 6	1.34
11287.0	29	ir	11 - 7	1.10
11299.0	30	ir	8 - 6	1.10
13164.0	31	ir	9 - 7	0.94

TABLE 5

Radiative Transitions (Free-Bound Thresholds)

Wavelength(Å)	Spectrum	Index	Energy(eV)
353.2	uv	1++ - 1+	35.10
353.32	uv	2++ - 4+	35.09
390.12	uv	1++ - 2+	31.78
412.17	uv	1++ - 3+	30.08
421.99	uv	2++ - 5+	29.38
482.41	uv	2++ - 8+	25.70
665.49	uv	3+ - 1	18.63
732.31	uv	2+ - 1	16.93
743.73	uv	3+ - 2	16.67
828.19	uv	2+ - 2	14.97
857.99	uv	3+ - 3	14.45
910.95	uv	1+ - 1	13.61
1023.78	uv	1++ - 6+	12.11
1062.38	uv	1++ - 7+	11.67
1262.53	uv	1++ - 9+	9.82
1311.96	uv	1++ - 10+	9.45
1313.35	uv	1++ - 11+	9.44
1338.88	uv	1++ - 12+	9.26
1399.32	uv	1++ - 13+	8.86
1408.86	uv	1++ - 14+	8.30
1451.76	uv	1++ - 15+	8.54
2773.60	uv	1+ - 4	4.47
2817.73	пA	2 + - 14	4.40
2944.89	uv	2+ - 17	4.21
3023.90	uv	1 5	4.10
4304.86	vis	1+ - 6	2.88
4714.07	vis	1+ - 7	2.63

TABLE 5 (Cont'd)

Radiative Transitions (Free-Bound Thresholds)

Wavelength(A)	Spectrum	Index	Energy(eV)
6965.17	vis	1+ - 8	1.78
7336.09	vis	1+ - 9	1.69
8050.65	ir	1+ - 10	1.54
8103.27	ir	1+ - 11	1.53
9321.80	ir	1+ - 12	1.33
9839.69	ir	1+ - 13	1.26
12914.58	ir	1+ - 15	0.96
13476.09	ir	1+ - 16	0.92

TABLE 6

Collisional-Radiative Recombination Coefficients

Optically Thin (All Wavelengths)

Neutral

Te(eV)	1.0	1.5	2.0	2.5	3.0
Ne					
1.0E+16 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0	1.8E-11 3.0 4.1 5.2 6.4 7.5 8.6 9.7 1.1E-10	6.8E-12 1.3E-11 1.8 2.4 3.0 3.6 4.1 4.7 5.4	4.4E-12 7.9 1.2E-11 1.5 1.9 2.3 2.6 3.0 3.4	3.0E-12 5.1 7.4 9.9 1.2E-11 1.4 1.7 1.9 2.2	1.5E-12 2.8 4.1 5.3 6.5 7.8 9.1 1.0E-11 1.2
1.0E+17 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0	1.2 2.3 3.5 4.6 5.8 7.0 8.1 9.3 1.0E-09	6.5 1.2E-10 1.8 2.4 3.0 3.6 4.2 4.9 5.5	3.7 7.6 1.1E-10 1.5 1.9 2.2 2.6 3.0 3.4	2.4 4.8 7.4 9.8 1.2E-10 1.5 1.7 2.0 2.2	1.3 3.0 4.4 6.0 7.7 9.4 1.1E-10 1.3
1.0E+18 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0	1.2 2.3 3.5 4.7 5.9 7.1 8.2 9.6 1.1E-08	6.1 1.2E-09 1.9 2.5 3.1 3.8 4.4 5.0 5.7	3.7 7.4 1.1E-09 1.5 1.9 2.2 2.6 3.0 3.4	2.5 4.9 7.4 1.0E-09 1.2 1.5 1.7 2.0	1.6 3.3 5.1 6.9 8.6 1.0E-09 1.2 1.4
1.0E+19	1.2	6.3	3.8	2.5	1.7

TABLE 7

Collisional-Radiative Recombination Coefficients

Optically Thin (All Wavelengths)

Ion

Te(eV)	1.0	1.5	2.0	2.5	3.0
Ne					
1.0E+16 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0	3.2E-12 3.4 3.7 4.0 4.4 4.7 5.0 5.4 5.7	2.0E-12 2.2 2.4 2.7 2.9 3.2 3.4 3.6 3.9	1.6E-12 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2	1.5E-12 1.6 1.7 1.9 2.0 2.2 2.3 2.5 2.6	1.1E-12 1.2 1.3 1.4 1.5 1.6 1.7
1.0E+17 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0	6.0 9.6 1.4E-11 1.7 2.1 2.5 2.9 3.3 3.6	4.5 6.7 9.2 1.2E-11 1.4 1.7 1.9 2.2	3.4 5.5 7.4 9.3 1.1E-11 1.3 1.5	2.9 4.4 6.1 7.6 9.3 1.1E-11 1.3 1.4	2.0 3.3 4.4 5.7 7.0 8.3 9.6 1.1E-11
1.0E+18 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0	4.0 7.9 1.2E-10 1.6 2.0 2.4 2.7 3.1 3.5	2.7 5.3 8.0 1.1E-10 1.3 1.6 1.8 2.1 2.4	2.1 4.1 6.0 8.1 1.0E-10 1.2 1.4 1.6 1.8	1.7 3.4 5.0 6.6 8.4 1.0E-10 1.1 1.3	1.3 2.7 4.1 5.4 6.8 8.2 9.5 1.1E-10 1.2
1.0E+19	3.8	2.6	2.0	1.7	1.4

TABLE 8

Collisional-Radiative Ionization Coefficients

Optically Thin (All Wavelengths)

Neutral

Te(eV)	1.0	1.5	2.0	2.5	3.0
Ne					
1.0E+16 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0	2.9E-13 4.3 5.6 6.8 8.0 9.1 1.0E-12 1.1 1.2	2.7E-11 4.7 6.5 8.1 9.6 1.1E-10 1.2 1.4	3.1E-10 5.2 7.3 9.0 1.1E-09 1.2 1.4 1.5	1.0E-09 1.9 2.7 3.4 4.0 4.5 5.1 5.5 6.0	2.1E-09 3.6 5.1 6.3 7.4 8.4 9.4 1.0E-08 1.1
1.0E+17 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0	1.3 2.0 2.5 2.8 3.1 3.3 3.5 3.6	1.7 2.3 2.8 3.1 3.3 3.4 3.6 3.7	1.7 2.4 2.8 3.1 3.3 3.4 3.5 3.6 3.7	6.4 9.0 1.1E-08 1.2 1.3 1.3	1.2 1.9 2.2 2.4 2.6 2.7 2.8 2.9 3.0
1.0E+18 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0	3.9 4.7 5.1 5.5 5.9 6.2 6.4 6.6	3.9 4.3 4.6 4.8 5.0 5.1 5.3 5.4 5.5	3.8 4.1 4.3 4.4 4.5 4.6 4.7 4.8 4.9	1.4 1.5 1.6 1.6 1.7 1.7	3.0 3.3 3.5 3.6 3.6 3.7 3.7 3.8
1.0E+19	7.1	5.6	4.9	1.7	3.8

TABLE 9

Collisional-Radiative Ionization Coefficients

Optically Thin (All Wavelengths)

Ion

Te(eV)	1.0	1.5	2.0	2.5	3.0
Ne 1.0E+16 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0	2.7E-23 3.0 3.5 3.9 4.4 4.8 5.2 5.6 6.0	2.5E-18 2.9 3.3 3.8 4.2 4.7 5.1 5.5 6.0	8.2E-16 9.5 1.1E-15 1.2 1.4 1.5 1.6 1.8	2.3E-14 2.9 3.4 3.8 4.1 4.5 4.9 5.3 5.7	2.2E-13 2.5 2.8 3.1 3.4 3.7 3.9 4.2 4.5
1.0E+17 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0	6.4 1.0E-22 1.3 1.6 1.8 2.0 2.2 2.4 2.5	6.9 1.0E-17 1.3 1.6 1.8 2.0 2.2 2.3 2.5	2.0 3.2 4.1 4.8 5.5 6.1 6.6 7.0 7.4	6.1 9.3 1.2E-13 1.5 1.7 1.8 2.0 2.1 2.3	4.8 8.0 1.0E-12 1.3 1.5 1.7 1.8 1.9 2.1
1.0E+18 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0	2.6 3.7 4.5 5.2 5.8 6.4 7.0 7.6 8.1	2.6 3.5 4.0 4.5 4.8 5.1 5.4 5.7 6.0	7.8 1.0E-14 1.2 1.3 1.4 1.5	2.4 3.1 3.5 3.8 4.0 4.2 4.4 4.5	2.2 2.9 3.4 3.6 3.8 4.0 4.1 4.2 4.3
1.0E+19	8.6	6.2	1.7	4.7	4.4

TABLE 10

Collisional-Radiative Recombination Coefficients

Optically Thick (All Bound-Bound UV Wavelengths)

Neutral

Te(eV) 1.5 1.0 2.0 2.5 3.0 Ne 1.0E+16 1.8E-11 6.9E-12 4.2E-12 1.8E-12 1.0E-12 2.0 2.0 3.0 1.3E-11 7.9 3.8 3.0 4.1 1.8 5.8 1.2E-11 4.0 5.3 2.4 1.5 7.7 5.0 6.4 3.0 1.9 9.7 5.4 6.0 7.5 3.6 2.3 1.2E-11 6.6 7.0 4.2 8.6 2.6 1.4 7.8 4.8 8.0 9.6 3.0 1.6 8.9 9.0 1.1E-10 5.4 1.8 1.0E-11 1.0E+17 6.1 1.2 3.7 2.1 2.0 2.3 1.2E-10 4.5 2.5 7.6 3.0 3.4 1.8 1.1E-10 7.0 4.0 4.6 2.4 1.5 9.5 5.0 3.0 5.8 1.9 1.2E-10 6.0 7.0 3.7 2.2 1.4 9.0 7.0 8.2 4.3 2.6 1.7 1.1E-10 8.0 9.4 4.9 3.0 1.9 1.2 9.0 1.0E-09 5.5 3.3 1.0E+18 6.1 3.7 2.5 2.0 1.2E-09 7.4 4.9 3.0 3.5 1.9 1.1E-09 7.4 5.1 4.0 4.7 2.5 1.5 9.9 6.9 5.0 3.2 1.9 1.2E-09 3.8 2.3 1.5 1.0E-09 8.2 4.4 2.6 1.7 1.2 9.4 5.0 3.0 2.0 1.0E-08

3.8

2.5

1.8

6.3

1.0E+19

1.2

TABLE 11

Collisional-Radiative Recombination Coefficients

Optically Thick (All Bound-Bound UV Wavelengths)

Ion						
Te(eV)	1.0	1.5	2.0	2.5	3.0	
Ne						
1.0E+16 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0	3.1E-12 3.5 3.8 4.0 4.4 4.7 5.0 5.3	2.0E-12 2.2 2.5 2.7 2.9 3.2 3.4 3.7	1.7E-12 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2	1.2E-12 1.3 1.4 1.6 1.7 1.9 2.0 2.2 2.3	8.2E-13 9.6 1.1E-12 1.2 1.3 1.4 1.5 1.6 1.7	
1.0E+17 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0	6.0 9.9 1.3E-11 1.7 2.1 2.5 2.9 3.3 3.7	4.2 6.8 9.3 1.2E-11 1.4 1.7 2.0 2.2 2.5	3.4 5.5 7.4 9.3 1.1E-11 1.3 1.5 1.7	2.5 4.1 5.8 7.4 9.1 1.1E-11 1.2 1.4	1.8 2.9 4.1 5.3 6.6 8.0 9.4 1.1E-11 1.2	
1.0E+18 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0	4.0 8.0 1.2E-10 1.6 2.0 2.3 2.7 3.1 3.5	2.7 5.3 8.0 1.1E-10 1.3 1.5 1.9 2.1 2.4	2.1 4.1 5.8 8.1 1.0E-10 1.2 1.4 1.6 1.8	1.7 3.4 5.0 6.7 8.4 1.0E-10 1.1 1.3	1.4 2.7 4.1 5.5 6.8 8.2 9.5 1.1E-10 1.2	
1.0E+19	3.9	2.7	2.0	1.7	1.4	

TABLE 12

Collisional-Radiative Ionization Coefficients

Optically Thick (All Bound-Bound Wavelengths)

Neutral

Te(eV)	1.0	1.5	2.0	2.5	3.0
Ne					
1.0E+16 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0	3.0E-12 3.2 3.4 3.5 3.5 3.6 3.6 3.7	9.2E-11 1.4E-10 1.8 2.0 2.3 2.4 2.6 2.7 2.8	5.8E-10 9.5 1.3E-09 1.5 1.7 1.9 2.1 2.2	1.5E-09 2.3 3.1 3.9 4.6 5.2 5.8 6.3 6.8	2.5E-09 4.1 5.4 6.7 8.0 9.1 1.0E-08 1.1
1.0E+17 2.0 3.0 4.0 5.0 6.0 7.0 3.0 9.0	3.8 4.1 4.2 4.4 4.5 4.6 4.6 4.7	2.9 3.5 3.7 3.9 4.0 4.1 4.2 4.2	2.4 3.1 3.4 3.6 3.7 3.8 3.9 4.0	7.2 1.0E-08 1.2 1.3 1.4 1.4	1.3 1.9 2.2 2.5 2.7 2.8 2.9 2.9
1.0E+18 2.0 3.0 4.0 5.0 5.0 7.0 8.0 9.0	4.8 5.2 5.6 5.9 6.2 6.4 5.7 6.9	4.3 4.6 4.8 5.0 5.1 5.3 5.4 5.5	4.0 4.3 4.3 4.5 4.6 4.7 4.8 4.8	1.4 1.5 1.6 1.6 1.7 1.7 1.7	3.1 3.4 3.5 3.6 3.6 3.7 3.7 3.8
1.0£+19	7.4	5.7	5.0	1.8	3.9

TABLE 13

Collisional-Radiative Ionization Coefficients

Optically Thick (All Bound-Bound UV Wavelengths)

Ion

Te(eV)	1.0	1.5	2.0	2.5	3.0
Ne					
1.0E+16 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0	3.0E-22 3.0 3.0 3.0 3.0 3.0 3.0 3.0	3.2E-17 3.2 3.3 3.3 3.4 3.4 3.5 3.5	9.9E-15 1.0E-14 1.1 1.1 1.1 1.1 1.1	2.3E-13 2.4 2.5 2.6 2.7 2.8 2.8 2.9 2.9	1.7E-12 1.7 1.8 1.9 1.9 2.0 2.1 2.1
1.0E+17 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0	3.0 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9	3.5 3.7 3.7 3.8 3.9 4.0 4.0	1.1 1.2 1.2 1.2 1.2 1.3 1.3	3.0 3.3 3.5 3.7 3.7 3.8 3.9 3.9	2.2 2.6 2.9 3.0 3.2 3.3 3.4 3.5
1.0E+18 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0	4.0 4.7 5.3 5.8 6.4 7.0 7.5 8.1	4.1 4.5 4.9 5.2 5.4 5.7 5.9 6.2 6.4	1.3 1.4 1.5 1.6 1.6 1.7	4.0 4.2 4.4 4.5 4.6 4.7 4.8 4.9 5.0	3.6 3.9 4.1 4.2 4.3 4.4 4.5 4.6 4.7
1.0E+19	9.2	6.6	1.8	5.1	4.8

Fig. 1. Saha decrements, Te=1.0 eV. The initial order from top to bottom is $\rho(1,2,3)$, $\rho(4,6,8)$ and $\rho(5,7)$. $\rho(1,2,3)$ denotes $\rho(1)=\rho(2)=\rho(3)$ to the resolution of the figure.

Fig. 2. Saha decrements, Te=1.0 eV. The initial order from top to bottom is $\rho(10)$, $\rho(12-16)$, $\rho(9,11)$ and $\rho(17)$.

Fig. 3. Saha decrements, Te=1.0 eV. The initial order from top to bottom is $\rho^+(1,2,3)$, $\rho^+(7)$, $\rho^+(6)$, $\rho^+(4)$, $\rho^+(5)$ and $\rho^+(8)$.

Fig. 4. Saha decrements, Te=1.0 eV. The initial order from top to bottom is $\rho^+(9)$, $\rho^+(13)$, $\rho^+(15)$, $\rho^+(11)$, $\rho^+(10)$, $\rho^+(12)$ and $\rho^+(14)$.

Fig. 5. Saha decrements, Te=1.5 eV; as in Fig. 1.

Fig. 6. Saha decrements, Te=1.5 eV. The initial order from top to bottom is $\rho(10)$, $\rho(9,11-16)$ and $\rho(17)$.

Fig. 7. Saha decrements, Te=1.5 eV. The initial order from top to bottom is $\rho^+(1,2,3)$, $\rho^+(4)$, $\rho^+(5)$, $\rho^+(8)$, $\rho^+(7)$ and $\rho^+(6)$.

Fig. 8. Saha decrements, Te=1.5 eV. The initial order from top to bottom is $\rho^+(9)$, $\rho^+(13)$, $\rho^+(15)$, $\rho^+(11)$, $\rho^+(10,12)$ and $\rho^+(14)$.

Fig. 9. Saha decrements, Te=2.0 eV. The initial order from top to bottom is $\rho(1,2,3)$ and $\rho(4-8)$.

Fig. 10. Saha decrements, Te=2.0 eV. The initial order from top to bottom is $\rho(9-17)$.

Fig. 11. Saha decrements, Te=2.0 eV; as in Fig. 7.

Fig. 12. Saha decrements, Te=2.0 eV; as in Fig. 8.

Fig. 13. Saha decrements, Te=2.5 eV; as in Fig. 9.

Fig. 14. Saha decrements, Te=2.5 eV. The initial order from top to bottom is $\rho(17)$ and $\rho(9-16)$.

Fig. 15. Saha decrements, Te=2.5 eV; as in Fig. 7.

Fig. 16. Saha decrements, Te=2.5 eV. The initial order from top to bottom is $\rho^+(9)$, $\rho^+(13,15)$, $\rho^+(11)$ and $\rho^+(10,12,14)$.

Fig. 17. Saha decrements, Te=3.0 eV; as in Fig. 9.

Fig. 18. Saha decrements, Te=3.0 eV; as in Fig. 14.

Fig. 19. Saha decrements, Te=3.0 eV; as in Fig. 7.

Fig. 20. Saha decrements, Te=3.0 eV. The initial order from top to bottom is $\rho^+(9)$, $\rho^+(13,15)$, $\rho^+(11)$, $\rho^+(14)$, and $\rho^+(10,12)$.

REFERENCES

- 1. R.D. Taylor and A.W. Ali, "Recombination and Ionization in a Nitrogen Plasma", NRL Memorandum Report 5594, Washington, D.C. (1985). ADA155426
- 2. Ronald D. Taylor and A.W. Ali, J. Quant. Spectrosc. Radiat. Transfer 34, xxxx (1985).
- 3. D.R. Bates, A.E. Kingston, and R.W.P. McWhirter, Proc. Roy. Soc. A267, 297 (1962); ibid. A270, 155 (1962).
- 4. D.R. Bates and A.E. Kingston, Planet. Space Sci. 11, 1 (1963).
- 5. D.R. Bates and A. Dalgarno, in Atomic and Molecular Processes, D.R. Bates, ed. Academic Press, New York (1962).
- 6. D.R. Bates and A.E. Kingston, Proc. Roy. Soc. <u>A279</u>, 10 (1964); ibid. 32 (1964).
- 7. W.L. Wiese, M.W. Smith, and B.M. Glennon, "Atomic Transition Probabilities", NBS Publication #NSRDS-NBS4, Washington, D.C. (1966).
- 8. A.W. Ali, R.H. Kummler, F.R. Gilmore, and J. William McGowan, Defense Nuclear Agency Reaction Rate Handbook (Edited by Bortner and Bauerer), DNA1948H, chapt. 20, DASIAC, DOD Nuclear Information and Analysis Center, Kaman Tempo, Santa Barbara, California, 2nd edition (1972) and revision 9 (1983).
- 9. H. Griem, Plasma Spectroscopy, McGraw-Hill Book Co., New York(1964).
- 10. L.J. Kieffer and G.H. Dunn, Rev. Mcd. Phys. <u>38</u>, 1 (1966).