Correção dos exercícios

Exercício 1.a

■ p → q, ~p |— ~q - Sofisma

р	q	~p	~q	p→q
V	V	F	F	V
V	F	F	V	F
F	V	V	F	V
F	F	V	V	V
		*		

Premissas

.

Exercício 1.b

 $\blacksquare p \leftrightarrow q, q | --- p$ Valido

р	q	$p \leftrightarrow q$
V	V	V
V	F	F
F	V	F
F	F	,V
		/

Premissas

Exercício 1.c

 \blacksquare p v q, ~q, p \rightarrow r |— r Valido

р	q	r	pvq	p→r	~q
V	V	V	V	V	Ŧ
V	V	F	V	F	F
V	F	V	V	V	V
V	F	F	V	F	V
F	V	V	V	V	F
F	V	F	V	V	F
F	F	V	F	V	V
F	F	F	F	V	V

Exercício 1.d

-p → q, p | -- ~q Sofisma

р	q	~p	~q	~p → q
V	V	F	F	V
V	F	F	V	V
F	V	V	F	V
F	F	V	V	F

Exercício 1.e

 $p \rightarrow q \mid -p \rightarrow q v r$ Valido

р	q	r	p→q	qvr	$p \rightarrow q v r$
V	V	V	V	V	V
V	V	H	V	V	V
V	F	V	F	V	V
V	F	F	F	F	F
F	V	V	V	V	V
F	V	F	V	V	V
F	F	V	V	V	V
F	F	F	V	F	V

Exercício 2

Construir a condicional associada

$$(p\rightarrow q) \land (\sim p) \rightarrow \sim q$$

- b) $p \leftrightarrow q, q \mid -p \mid$
- c) $p \vee q, \sim q, p \rightarrow r \mid ---- r \mid$
- d) $\sim p \rightarrow q$, p $\mid -- \sim q$
- e) $p \rightarrow q \mid --- p \rightarrow q \vee r$

Exercício 2

1. Construir a condicional associada

b)
$$p \leftrightarrow q, q \mid --p \mid$$

c)
$$p \vee q$$
, $\sim q$, $p \rightarrow r \mid ---- r \mid$

d)
$$\sim p \rightarrow q, p \mid -- \sim q$$

e)
$$p \rightarrow q \mid --- p \rightarrow q \vee r$$

$$(p\rightarrow q) \land (\sim p) \rightarrow \sim q$$

$$(p \leftrightarrow q) \land (q) \rightarrow p$$

Exercício 2

1. Construir a condicional associada

a)
$$p \rightarrow q$$
, $\sim p \mid -- \sim q$

b)
$$p \leftrightarrow q, q \mid --p \mid$$

c)
$$p \vee q$$
, $\sim q$, $p \rightarrow r \mid -r \mid$

e)
$$p \rightarrow q \mid --- p \rightarrow q \vee r$$

$$(p\rightarrow q) \land (\sim p) \rightarrow \sim q$$

$$(p \leftrightarrow q) \land (q) \rightarrow p$$

$$(p \vee q)^{(\sim q)}(p \rightarrow r) \rightarrow r$$

Exercício 2

Construir a condicional associada

a)
$$p \rightarrow q$$
, $\sim p \mid -- \sim q$

b)
$$p \leftrightarrow q, q \mid -p \mid$$

c)
$$p \vee q, \sim q, p \rightarrow r \mid -r \mid$$

d)
$$\sim p \rightarrow q, p \mid -- \sim q$$

e)
$$p \rightarrow q \mid --- p \rightarrow q \vee r$$

$$(p\rightarrow q) \land (\sim p) \rightarrow \sim q$$

$$(p \leftrightarrow q) \land (q) \rightarrow p$$

$$(p \vee q)^{(\sim q)}(p \rightarrow r) \rightarrow r$$

$$(\sim p \rightarrow q) \land (p) \rightarrow \sim q$$

Exercício 2

Construir a condicional associada

b)
$$p \leftrightarrow q, q \mid -p \mid$$

c)
$$p \vee q, \sim q, p \rightarrow r \mid -r \mid$$

e)
$$p \rightarrow q \mid --- p \rightarrow q \vee r$$

$$(p\rightarrow q) \wedge (\sim p) \rightarrow \sim q$$

$$(p \leftrightarrow q) \land (q) \rightarrow p$$

$$(p \vee q)^{(\sim q)}(p \rightarrow r) \rightarrow r$$

$$(\sim p \rightarrow q)^{\wedge}(p) \rightarrow \sim q$$

$$p \rightarrow q \rightarrow p \rightarrow q \vee r$$

M

Exercício 3

Construir o argumento (premissas e conclusão) correspondente a cada uma das seguintes condicionais.

a)
$$p^{(q \vee q)} \rightarrow q$$

$$p,(q \vee \neg q) \mid --- q$$

b)
$$(p \rightarrow q)^{p} \rightarrow s$$

c)
$$\sim$$
(x<0 $^y=x$) \rightarrow x >0 v y = x

Exercício 3

Construir o argumento (premissas e conclusão) correspondente a cada uma das seguintes condicionais.

a)
$$p \wedge (q \vee q) \rightarrow q$$

$$p,(q \vee \neg q) \mid --- q$$

b)
$$(p \rightarrow q)^{p} \rightarrow s$$

$$(p \rightarrow q), (p \land q) \mid -- s$$

c)
$$\sim$$
(x<0 $^y=x$) \rightarrow x >0 v y = x

Exercício 3

Construir o argumento (premissas e conclusão) correspondente a cada uma das seguintes condicionais.

a)
$$p \wedge (q \vee q) \rightarrow q$$

$$p,(q \vee \neg q) \mid --- q$$

b)
$$(p \rightarrow q)^{p} \rightarrow s$$

$$(p \rightarrow q), (p \land q) \mid -- s$$

c)
$$\sim$$
(x<0 ^y=x) \rightarrow x >0 v y = x \sim (x<0 ^y=x) \mid — x >0 v y = x

Como na equivalência, existem também alguns argumentos básicos.

- Como na equivalência, existem também alguns argumentos básicos.
- Estes argumentos básicos são usados para executar os passos de uma dedução ou demonstração.

- Como na equivalência, existem também alguns argumentos básicos.
- Estes argumentos básicos são usados para executar os passos de uma dedução ou demonstração.
- Estes argumentos são chamados de regras de inferência.

- Como na equivalência, existem também alguns argumentos básicos.
- Estes argumentos básicos são usados para executar os passos de uma dedução ou demonstração.
- Estes argumentos são chamados de regras de inferência.
- Tabela 1 da página 66 livro Rosen.

Modus Ponens

$$\square p \rightarrow q, p \mid -q$$

р	q	p→q
V	V	V
V	F	F
F	V	V
F	F	V

Sempre que p→q e p são verdades podemos concluir que q é verdade.

Aplicação da implicação lógica.

Modus Tollens

Sempre que p→q e ~q são verdades podemos concluir que ~p é verdade.

р	q	~p	~q	p→q
V	V	H	F	V
V	F	F	V	F
F	V	V	F	V
F	F	V	V	V

.

Regra de Inferência

Silogismo Hipotético

$$\Box p \rightarrow q, q \rightarrow r \mid p \rightarrow r$$

р	q	r	p→q	q→r	p→r
V	V	V	V	V	V
V	V	F	V	F	V
V	F	V	F	V	F
V	F	F	F	V	F
F	V	V	V	V	V
F	V	F	V	F	V
F	F	V	V	V	V
F	F	F	V	V	V

Regra de Inferência

Silogismo Disjuntivo

р	q	~p	~q	pvq
V	V	F	F	V
V	F	F	V	V
F	V	V	F	V
F	F	V	V	F

M

Regra de Inferência

Adição

р	q	~p	~q	pvq
V	V	F	F	V
V	F	F	V	V
F	V	V	F	V
F	F	V	V	F

Regra de Inferência

Simplificação

р	q	~p	~q	p ^ q
V	V	F	F	V
V	F	F	V	V
F	V	V	F	V
F	F	V	V	F

M

Regra de Inferência

Conjunção

р	q	~p	~q	p ^ q
V	V	F	F	V
V	F	F	V	V
F	V	V	F	V
F	F	V	V	F

M

Regra de Inferência

Resolução

$$\square$$
 p v q, ~p v r |— q v r

р	q	~p	r	pvq	~p v r	qvr
V	>	L	V	V	V	V
V	V	F	F	V	F	V
V	F	F	V	V	V	V
V	F	F	F	V	F	F
F	V	V	V	V	V	V
F	V	V	F	V	V	V
F	F	V	V	F	V	V
F	F	V	F	F	V	F

Absorção

$$\Box p \rightarrow q | -p \rightarrow (p^q)$$

р	q	p→q	p ^ q	p → p ^ q
V	V	V	V	V
V	F	F	F	F
F	V	V	F	V
F	F	V	F	V

Exercícios

Usar a regra "Modus Ponens" para deduzir a conclusão de cada um dos seguintes pares de premissas:

Modus Ponens

$$\square p \rightarrow q, p \mid -q$$

Exercícios

Modus Ponens

$$\square$$
 p \rightarrow q, p $|$ —q

1.
$$x=y \wedge y=z$$

2.
$$(x=y \land y=z) \rightarrow x=z$$

Exercícios

Modus Ponens

$$\square$$
 p \rightarrow q, p |— q

- 1. $X=y \wedge y=z$
- 2. $(x=y \land y=z) \rightarrow x=z$

Conclusão: x = z

.

Exercícios

Modus Ponens

$$\square p \rightarrow q, p \mid -q$$

- 1. $x,y \in R \rightarrow xy \in R$
- 2. $x,y \in R$

М

Exercícios

Modus Ponens

$$\square p \rightarrow q, p \mid -q$$

- 1. $x,y \in R \rightarrow xy \in R$
- 2. $x,y \in R$

Conclusão: xy ∈ R

Exercícios

Modus Ponens

$$\square$$
 p \rightarrow q, p |— q

- 1. $(x>y \land y>z) \rightarrow x>z$
- 2. X>y ^ y>Z

Exercícios

- Modus Ponens
 - $\square p \rightarrow q, p \mid -q$

- 1. $(x>y \land y>z) \rightarrow x>z$
- 2. X>y ^ y>Z

Conclusão: x > z

.

Exercícios

Modus Ponens

$$\square p \rightarrow q, p \mid -q$$

1.
$$2 > 1 \rightarrow 3 > 1$$

.

Exercícios

- Modus Ponens
 - $\square p \rightarrow q, p \mid -q$

- 1. $2 > 1 \rightarrow 3 > 1$
- 2. 2 > 1

Conclusão: 3 > 1

.

Exercícios

Modus Ponens

$$\square p \rightarrow q, p \mid -q$$

1.
$$x+1=2$$

2.
$$x+1 = 2 \rightarrow y+1=2$$

M

Exercícios

Modus Ponens

$$\square p \rightarrow q, p \mid -q$$

1.
$$x+1=2$$

2.
$$x+1 = 2 \rightarrow y+1=2$$

Conclusão: y+1=2

10

Exercícios

Modus Ponens

$$\square p \rightarrow q, p \mid -q$$

1.
$$x+0 = y$$

2.
$$x+0 = y \rightarrow x=y$$

Exercícios

Modus Ponens

$$\square p \rightarrow q, p \mid -q$$

- 1. x+0 = y
- 2. $x+0 = y \rightarrow x=y$

Conclusão: x=y

Exercícios

Usar a regra "Modus Tollens" para deduzir a conclusão de cada um dos seguintes pares de premissas:

Modus Tollens

10

Exercícios

Modus Tollens

- 1. $x\neq 0 \rightarrow x+y\neq y$
- 2. X+y = y

Exercícios

- Modus Tollens
 - □ p → q, ~q |— ~p

- 1. $x\neq 0 \rightarrow x+y\neq y$
- 2. X+y = y

Conclusão: x=0

Exercícios

Modus Tollens

1.
$$x=z \rightarrow x=6$$

2. x≠6

М

Exercícios

- Modus Tollens
 - □ p → q, ~q |— ~p

- 1. $x=z \rightarrow x=6$
- 2. **x**≠6

Conclusão: x≠z

Exercícios

Modus Tollens

- 1. $(p \leftrightarrow q) \rightarrow \sim (r \land s)$
- 2. ~~(r ^ s)

Exercícios

- Modus Tollens
 - □ p → q, ~q |— ~p

- 1. $(p \leftrightarrow q) \rightarrow \sim (r \land s)$
- 2. ~~(r ^ s)

Conclusão: ~(p↔q)

M

Exercícios

Modus Tollens

- 1. $x>3 \rightarrow x>y$
- 2. X ≤ y

Exercícios

- Modus Tollens
 - □ p → q, ~q |— ~p

- 1. $x>3 \rightarrow x>y$
- 2. X ≤ y

Conclusão: x≤3

Exercícios

Usar a regra "Silogismo Disjuntivo" para deduzir a conclusão de cada um dos seguintes pares de premissas:

Silogismo Disjuntivo

□ p v q, ~p |— q

Exercícios

Silogismo Disjuntivo

1.
$$x+8 = 12 \lor x \neq 4$$

Exercícios

- Silogismo Disjuntivo
 - □ p v q, ~p | q

- 1. $x+8 = 12 \lor x \neq 4$
- 2. $x+8 \neq 12$
- 1. Conclusão: x ≠ 4

w

Exercícios

Silogismo Disjuntivo

- 1. $y < 6 \lor x + y < 10$
- 2. x+y ≥ 10

Exercícios

- Silogismo Disjuntivo
 - □ p v q, ~p |— q

- 1. $y < 6 \lor x + y < 10$
- 2. x+y ≥ 10
- 1. Conclusão: y < 6

Exercícios

- Silogismo Disjuntivo
 - □ p v q, ~p |— q

- 1. $s v (r \wedge t)$
- 2. ~S

Exercícios

- Silogismo Disjuntivo
 - □ p v q, ~p |— q

- 1. **S** V (r ^ t)
- 2. ~S

Conclusão: (r ^ t)

Exercícios

- Silogismo Disjuntivo
 - □ p v q, ~p |— q

- 1. ~p v ~q
- 2. ~~q

M

Exercícios

- Silogismo Disjuntivo
 - □ p v q, ~p |— q

- 1. ~p v ~q
- 2. ~~Q

Conclusão: ~p

Exercícios

Usar a regra "Silogismo Hipotético" para deduzir a conclusão de cada um dos seguintes pares de premissas:

Silogismo Hipotético

$$\square p \rightarrow q, q \rightarrow r \mid p \rightarrow r$$

.

Exercícios

- Silogismo Hipotético
 - $\square p \rightarrow q, q \rightarrow r \mid p \rightarrow r$

- 1. $p \rightarrow r v \sim s$
- 2. $r v \sim s \rightarrow t$

.

Exercícios

- Silogismo Hipotético
 - $\square p \rightarrow q, q \rightarrow r \mid p \rightarrow r$

- 1. $p \rightarrow r v \sim s$
- 2. $r v \sim s \rightarrow t$

Conclusão: p → t

Exercícios

Silogismo Hipotético

$$\square p \rightarrow q, q \rightarrow r \mid p \rightarrow r$$

1.
$$x=3 \rightarrow x$$

2.
$$X < y \rightarrow X = Z$$

M

Exercícios

Silogismo Hipotético

$$\square p \rightarrow q, q \rightarrow r \mid p \rightarrow r$$

- 1. $x=3 \rightarrow x<y$
- 2. $X < y \rightarrow X = Z$

Conclusão: x=3 → x=z

w

Exercícios

Silogismo Hipotético

$$\square p \rightarrow q, q \rightarrow r \mid p \rightarrow r$$

- 1. $svt \rightarrow r^q$
- 2. $r \land q \rightarrow \sim p$

Exercícios

- Silogismo Hipotético
 - $\square p \rightarrow q, q \rightarrow r \mid p \rightarrow r$

- 1. $s v t \rightarrow r \wedge q$
- 2. $r \wedge q \rightarrow \sim p$

Conclusão: s v t → ~p

Exercícios

Silogismo Hipotético

$$\square p \rightarrow q, q \rightarrow r \mid p \rightarrow r$$

1.
$$xy=6 \rightarrow xy+5=11$$

2.
$$xy+5=11 \rightarrow x=2$$

Exercícios

Silogismo Hipotético

$$\square p \rightarrow q, q \rightarrow r \mid p \rightarrow r$$

- 1. $xy=6 \rightarrow xy+5=11$
- 2. $xy+5=11 \rightarrow x=2$

Conclusão: xy=6→ x=2

Exercícios

Usar a regra "Conjunção" para deduzir a conclusão de cada um dos seguintes pares de premissas:

Conjunção

□ p , q |— p ^ q

Exercícios

- Conjunção
 - □ p , q |— p ^ q

- 1. xy=6
- 2. X=2

Conclusão:

v.

Exercícios

Conjunção

- 1. xy=6
- 2. X=2

Conclusão: xy=6 ^ x=2

ĸ.

Exercícios

- Conjunção
 - □ p , q |— p ^ q

- 1. X > 1
- 2. x < 3

Conclusão:

Exercícios

Conjunção

- 1. X > 1
- 2. x < 3

Conclusão: $x > 1 ^ x < 3$

- Conjunção
 - □ p , q |— p ^ q

- 1. $x \rightarrow y$
- 2. X V Y

- Conjunção
 - □ p , q |— p ^ q

- 1. $x \rightarrow y$
- 2. X V Y

Conclusão: (x → y) ^ (x v y)

- Conjunção
 - □ p , q |— p ^ q

- 1. X V Y
- 2. X V ~ Y

- Conjunção
 - □ p , q |— p ^ q

- 1. X V Y
- 2. X V ~ Y

Conclusão: (x v y) ^ (x v ~y)

M

Exercícios

Usar a regra "Resolução" para deduzir a conclusão de cada um dos seguintes pares de premissas:

Resolução

 \square p v q, ~p v r |— q v r

Exercícios

- Resolução
 - \square p v q, ~p v r |— q v r

- 1. X V Y
- 2. Z V ~Y

Exercícios

- Resolução
 - \square p v q, ~p v r |— q v r

- 1. X V Y
- 2. Z V ~Y

Conclusão: x v z

Exercícios

- Resolução
 - \square p v q, ~p v r |— q v r

- 1. (p ^ q) v r
- 2. $t \vee \sim (p \land q)$

Exercícios

- Resolução
 - \square p v q, ~p v r |— q v r

- 1. (p ^ q) v r
- 2. $t \vee \sim (p \land q)$

Conclusão: t v r

Usar a regra "Simplificação" para deduzir a conclusão de cada um dos seguintes pares de premissas:

Simplificação

Exercícios

- Simplificação
 - □ p ^ q |— p

$$x > 1 ^ x < 3$$

М

Exercícios

- Simplificação
 - □ p ^ q |— p

$$x > 1 ^ x < 3$$

Conclusão: x > 1

Exercícios

- Simplificação
 - □ p ^ q |— p

$$x > 1 ^ x < 3$$

Conclusão: x < 3

Exercícios

- Simplificação
 - □ p ^ q |— p

$$(p \rightarrow q) \land \sim (p \lor q)$$

Exercícios

- Simplificação
 - □ p ^ q |— p

$$(p \rightarrow q) \land \sim (p \lor q)$$

Conclusão: p→q

Exercícios

Simplificação

$$(p \rightarrow q) \land \sim (p \lor q)$$

Conclusão: ~(p v q)

Usar a regra "Adição" para deduzir a conclusão de cada um dos seguintes pares de premissas:

Adição

 $\square p \mid -p \lor q$

100

Indicar a Regra de Inferência que justifica a validade dos seguintes argumentos

- $p \rightarrow q \vdash (p \rightarrow q) \vee r$
- $-p \wedge (q \rightarrow r) \vdash -p$

- $(q \vee r) \rightarrow \sim p, \sim \sim p \vdash \sim (q \vee r)$
- $p \rightarrow q, r \rightarrow \sim s \vdash (p \rightarrow q) \land (r \rightarrow \sim s)$
- $(p^q)v(\sim p^r), \sim (\sim p^r) \mid p^q$
- $x+y=z \rightarrow y+x=z$, $x+y=z \mid y+x=z$