벡터 부동 소수점 명령어 세트 빠른 참조 카드

표기 규칙 풀이			
{C}	조건 필드 표 참조	<fpconst></fpconst>	+/- m * 2 ⁻ⁿ 여기서 m 및 n은 정수, 16 <= m <= 31, 0 <= n <=7
<p></p>	F32(단정밀도) 또는 F64(배정밀도)	Fd, Fn, Fm	Sd, Sn, Sm(단정밀도) 또는 Dd, Dn, Dm(배정밀도)
S, D, H	단정밀도, 배정밀도 또는 반정밀도(F16)	{E}	E가 있는 경우: 모든 NaN에 대해 예외 발생. E가 없는 경우: NaN 신호에 대해서만 예외 발생
F	단정밀도 또는 배정밀도 부동 소수점	{R}	FPSCR 반올림 모드 사용하고 그렇지 않으면 0으로 반올림
SI, UI	부호 있는 정수 또는 부호 없는 정수	<vfpregs></vfpregs>	콤마로 구분되고 중괄호 { 및 }로 묶인 consecutive VFP 레지스터 목록
<vfpsysreg></vfpsysreg>	FPSCR 또는 FPSID	<fbits></fbits>	고정 소수점 숫자에 있는 소수 비트 수, 0-16 또는 1-32
§	2: VFPv2 이상. 3: VFPv3 이상. 3H: VFPv3 이상(반정밀도 확장)	<type></type>	부호가 있거나 부호가 없는 16비트 또는 32비트의 경우 S16, S32, U16 또는 U32

연산		§	어셈블러	예외	동작	메모
벡터 산술	곱하기		VMUL{C}. <p> Fd, Fn, Fm</p>	IO, OF, UF, IX	Fd := Fn * Fm	
	및 부정		VNMUL{C}. <p> Fd, Fn, Fm</p>	IO, OF, UF, IX	Fd := -(Fn * Fm)	
	및 누산		VMLA{C}. <p> Fd, Fn, Fm</p>	IO, OF, UF, IX	Fd := Fd + (Fn * Fm)	
	부정 및 누산		VMLS{C}. <p> Fd, Fn, Fm</p>	IO, OF, UF, IX	Fd := Fd - (Fn * Fm)	
	및 뺴기		VNMLS{C}. <p> Fd, Fn, Fm</p>	IO, OF, UF, IX	Fd := -Fd + (Fn * Fm)	
	부정 및 빼기		VNMLA{C}. <p> Fd, Fn, Fm</p>	IO, OF, UF, IX	Fd := -Fd - (Fn * Fm)	
	더하기		VADD{C}. <p> Fd, Fn, Fm</p>	IO, OF, IX	Fd := Fn + Fm	
	ᄤᄀ		VSUB{C}. <p> Fd, Fn, Fm</p>	IO, OF, IX	Fd := Fn - Fm	
	나누기		VDIV{C}. <p> Fd, Fn, Fm</p>	IO, DZ, OF, UF, IX	Fd := Fn / Fm	
	절대값		VABS{C}. <p> Fd, Fm</p>		Fd := abs(Fm)	
	음수		VNEG{C}. <p> Fd, Fm</p>		Fd := -Fm	
	제곱근		VSQRT{C}. <p> Fd, Fm</p>	IO, IX	Fd := sqrt(Fm)	
스칼라 비교	두 개의 값		VCMP{E}{C}. <p> Fd, Fm</p>	IO	Fd – Fm에서 FPSCR 플래그 설정	VMRS APSR_nzcv, FPSCR을 사용하여 플래
	0 포함 값		VCMP{E}{C}. <p> Fd, #0.0</p>	IO	Fd = 0에서 FPSCR 플래그 설정	그전송
스칼라 변환	단정밀도에서 배정밀도로 변환		VCVT{C}.F64.F32 Dd, Sm	IO	Dd := convertStoD(Sm)	
	배정밀도에서 단정밀도로 변환		VCVT{C}.F32.F64 Sd, Dm	IO, OF, UF, IX	Sd := convertDtoS(Dm)	
	부호 없는 정수에서 부동 소수점 숫자로 변환		VCVT{C}. <p>.U32 Fd, Sm</p>	IX	Fd := convertUItoF(Sm)	
	부호 있는 정수에서 부동 소수점 숫자로 변환		VCVT{C}. <p>.S32 Fd, Sm</p>	IX	Fd := convertSItoF(Sm)	
	부동 소수점 숫자에서 부호 없는 정수로 변환		VCVT{R}{C}.U32. <p> Sd, Fm</p>	IO, IX	Sd := convertFtoUI(Fm)	
	부동 소수점 숫자에서 부호 있는 정수로 변환		VCVT{R}{C}.S32. <p> Sd, Fm</p>	IO, IX	Sd := convertFtoSI(Fm)	
	고정 소수점 숫자에서 부동 소수점 숫자로 변환	3	VCVT{C}. <p>.<type> Fd, Fd, #<fbits></fbits></type></p>	IO, IX	Fd := convert < type > toF(Fd)	소스는 Fd의 아래쪽 16비트나 32비트에 있음
	부동 소수점 숫자에서 고정 소수점 숫자로 변환	3	VCVT{C}. <type>.<p> Fd, Fd, #<fbits></fbits></p></type>	IO, IX	Fd := convertFto < type > (Fd)	대상은 Fd의 아래쪽 16비트나 32비트에 있음
	단정밀도에서 반정밀도로	3H	VCVTT{C}.F16.F32 Sd,Sm	ID, IO, OF, UF, IX	Sd:=convertStoH(Sm)	대상은 Sd의 맨 위 16비트에 있음
	단정밀도에서 반정밀도로	3H	VCVTB{C}.F16.F32 Sd,Sm	ID, IO, OF, UF, IX	Sd:=convertStoH(Sm)	대상은 Sd의 맨 아래 16비트에 있음
	반정밀도에서 단정밀도로	3H	VCVTT{C}.F32.F16 Sd,Sm	ID, IO, OF, UF, IX	Sd:=convertHtoS(Sm)	소스는 Sm의 맨 위 16비트에 있음
	반정밀도에서 단정밀도로	3H	VCVTB{C}.F32.F16 Sd,Sm	ID, IO, OF, UF, IX	Sd:=convertHtoS(Sm)	소스는 Sm의 맨 아래 16비트에 있음
상수 삽입	레지스터에 상수 삽입	3	VMOV{C}. <p> Fd, #<fpconst></fpconst></p>		Fd := <fpconst></fpconst>	
레지스터 전송	VFP 레지스터 복사		VMOV{C}. <p> Fd, Fm</p>		Fd := Fm	
	ARM 레지스터를 단정밀도 레지스터로		VMOV{C} Sn, Rd		Sn := Rd	
	단정밀도 레지스터를 ARM 레지스터로		VMOV{C} Rd, Sn		Rd := Sn	
	두 개의 ARM 레지스터를 두 개의 단정밀도 레 지스터로	2	VMOV{C} Sn, Sm, Rd, Rn		Sn := Rd, Sm := Rn	Sm [♠] S(n+1)이어야 함
	두 개의 ARM 레지스터를 두 개의 단정밀도 레 지스터로	2	VMOV{C} Rd, Rn, Sn, Sm		Rd := Sn, Rn := Sm	Sm은 S(n+1)이어야 함
	두 개의 ARM 레지스터를 배정밀도 레지스터로	2	VMOV{C} Dm, Rd, Rn		Dm[31:0] := Rd, Dm[63:32] := Rn	
	배정밀도 레지스터를 두 개의 ARM 레지스터로	2	VMOV{C} Rd, Rn, Dm		Rd := Dm[31:0], Rn := Dm[63:32]	
	ARM 레지스터를 배정밀도 레지스터의 하위 반으로		VMOV{C} Dn[0], Rd		Dn[31:0] := Rd	
	배정밀도 레지스터의 하위 반을 ARM 레지스터 로		VMOV{C} Rd, Dn[0]		Rd := Dn[31:0]	

벡터 부동 소수점 명령어 세트 빠른 참조 카드

연산		§	어셈블러	예외	동작	메모
레지스터 전송	ARM 레지스터를 배정밀도 레지스터의 상위 반으로		VMOV{C} Dn[1], Rd		Dn[63:32] := Rd	
(계속)	배정밀도 레지스터의 상위 반을 ARM 레지스터로		VMOV{C} Rd, Dn[1]		Rd := Dn[63:32]	
	ARM 레지스터를 VFP 시스템 레지스터로		VMSR{C} <vfpsysreg>, Rd</vfpsysreg>		VFPsysreg := Rd	
	VFP 시스템 레지스터를 ARM으로		VMRS{C} Rd, <vfpsysreg></vfpsysreg>		Rd := VFPsysreg	
	FPSCR 플래그를 APSR로		VMRS{C} APSR_nzcv, FPSCR		APSR flags := FPSCR flags	

연산		w	어셈블러	동의어	동작
VFP 레지스터 저장	단일 레지스터		VSTR{C} Fd, [Rn{, # <immed>}]</immed>		[address] := Fd. 즉치값 범위 0 ~ 1020, 4의 배수
	단일, PC 기준		VSTR{C} Fd, <label></label>		
	다중 레지스터, 인덱싱되지 않음 / 이후 증가		VSTM{C} Rn{!}, <vfpregs></vfpregs>	VSTMIA, VSTMEA	Rn의 주소에서 시작하여 VFP 레지스터 목록 저장
	이전 감소		VSTMDB{C} Rn!, <vfpregs></vfpregs>	VSTMFD (full descending)	
	스택에 푸시		<pre>VPUSH{C} <vfpregs></vfpregs></pre>	VSTMFD SP!	
VFP 레지스터 로드	단일 레지스터		VLDR{C} Fd, [Rn{, # <immed>}]</immed>		Fd := [address]. 즉치값 범위 0 ~ 1020, 4의 배수
	단일, PC 기준		VLDR{C} Fd, <label></label>		
	다중 레지스터, 인덱싱되지 않음 / 이후 증가		<pre>VLDM{C} Rn{!}, <vfpregs></vfpregs></pre>	VLDMIA, VLDMFD	Rn의 주소에서 시작하여 VFP 레지스터 목록 로드
	이전 감소		VLDMDB{C} Rn!, <vfpregs></vfpregs>	VLDMEA (빈 오름차순)	
	스택에서 팝		<pre>VPOP{C} <vfpregs></vfpregs></pre>	VLDM SP!	

FPSCF	9 형식							반을	- 림	(스트라이	드-1)*3	벡	터 길이 -	- 1			예외 트립	에서 비	트 활성호	}				누즈	예외 1	비트	
31	30	29	28	27	26	25	24	23	22	21	20	18	17	16	15	12	11	10	9	8	7		4	3	2	1	0
N	Z	С	V	QC	AHP	DB	FZ	RMO	ODE	STR	IDE		LEN		IDE	IXE	UFE	OFE	DZE	IOE	IDC		IXC	UFC	OFC	DZC	IOC
E7.	D7:1_00로 프리샤 미디 바오리:0_그샤가이로 바오리 1_ w로 바오리 2_ w로 바오리 2_00로 바오리 (베디 기이 * 스트라이트\노 베저미드 교여샤가이 겨오 4를 호고쳤지 아이나 하 (계고디지 아스)																										

조건 필드					
니모닉	설명(VFP)	설명(ARM 또는 Thumb)	니모닉	설명(VFP)	설명(ARM 또는 Thumb)
EQ	같음	같음	HI	보다 큼 또는 순서가 지정되지 않음	부호 없는 높음
NE	같지 않음 또는 순서가 지정되지 않음	같지 않음	LS	작거나 같음	부호 없는 낮거나 같음
CS / HS	크거나 같음 또는 순서가 지정되지 않음	carry 설정/부호 없는 높거나 같음	GE	크거나 같음	부호 있으면서 크거나 같음
CC / LO	보다 작음	carry 지우기/부호 없는 낮음	LT	보다 작음 또는 순서가 지정되지 않 음	부호 있으면서 보다 작음
MI	보다 작음	음수	GT	보다 큼	부호 있으면서 보다 큼
PL	크거나 같음 또는 순서가 지정되지 않음	양수 또는 0	LE	작거나 같음 또는 순서가 지정되지 않음	부호 있으면서 작거나 같음
VS	순서가 지정되지 않음(하나 이상의 NaN 피연산자)	오버플로	AL	항상(대개 생략됨)	항상(대개 생략됨)
VC	순서가 지정됨	오버플로 없음			

아야	함 (제공되지 않음)
예외	
ID	비정규 입력
IO	잘못된 연산
0F	오버플로
UF	언더플로
IX	정확하지 않은 결 과
DZ	0으로 나누기

소유권 고지 사항

이 소유권 고지 사항의 아랫부분에서 달리 명시되지 않는 한 [®] 또는 [™] 표시가 있는 단어와 로고는 EU, 대한민국 및 기타 국가에서 ARM Limited의 등록 상표 또는 상표입니다. 이 설명서에 언급된 기타 브랜드와 이름은 해당 소 유자의 상표일 수 있습니다.

이 설명서에 포함된 전체 또는 일부 정보나 설명된 제품은 해당 저작권 소유자의 사전 서면 승인 없이는 어떤 형 태로도 개조되거나 복제될 수 없습니다.

이 설명서에 설명된 제품은 지속적으로 개발 및 개선될 수 있습니다. 이 설명서에 포함된 모든 제품 명세와 해당 사용법은 ARM의 신뢰하에 제공됩니다. 그러나 ARM에서는 상품성 또는 특정 목적에의 적합성을 비롯하여 그 밖 의 묵시적이거나 명시적인 모든 보증을 부인합니다.

이 참조 카드는 제품 사용자를 지원하는 용도로만 만들어졌습니다. ARM Ltd는 이 설명서 정보의 사용, 정보의 오류나 누락 또는 제품의 잘못된 사용에 따른 어떠한 손실이나 손상도 책임지지 않습니다.

설명서 번호

ARM QRC 0007E

변경 내역

날짜	변경된 내용
	첫 번째 릴리스
	RVCT 2.2 SP1용 릴리
2006년 3월	RVCT 3.0용 릴리스
2007년 3월	RVCT 3.1용 릴리스
2008 9월	RVCT 4.0용 릴리스
	2004년 11월 2005년 5월 2006년 3월 2007년 3월