LABORATORY WORK REPORT №4

« Simple digital circuits design and simulation »

Principles of Circuits

Student: CAO Xinyang Program of Computer Science and Technology

 $\begin{array}{c} \text{group } N_{\!\!\!\,^{\underline{0}}} \\ \text{Name Surname} \end{array}$

1. Work purpose: to study transistor switch, logic families and simple logic schemes

Goals:

- 1) Design transistor switch
- 2) Simulate transistor switch in LtSpice
- 3) Design simple logic scheme
- 4) Additional task logic element design in LtSpice

2. Starting data

2.1 Parameters of the voltage source:

$$V_{cc} = 5 V$$

2.2 Transistor type – FZT849

3. Transistor switch mode

- 3.1 Parameters of scheme element (with calculations)
- 3.1.1 Collector current you choose $I_C = 7$ A
- 3.1.2 Collector resistor value

$$R_C = \frac{V_{CC} - V_{CE_{sat}}}{I_C} = 0.664 \Omega$$

3.1.3 Base current (minimum value)

$$I_{B_{sat}} = \frac{v_{CC} - v_{CE_{sat}}}{\beta R_C} = 0.047 \text{ A}$$

- 3.1.4 Saturation base current you choose $I_{B_{sat}} = 0.047 \text{ A}$
- 3.1.5 Base resistor value

$$R_B = \frac{V_i - V_{BE}}{I_B} = 80.85 \Omega$$

 $Fig.\ 1-Output\ volt-ampere\ characteristic$

Fig.2 - Inverter circuit

Fig. 3 – Time diagram for BJT switch

Conclusions on the first part of the laboratory work - We set different parameters according to different triode models.

4. Combinational Logic Circuits

The combination logic circuit and true table are shown on figure 4.

Nº	Α	В	С	D	Υ
1	1	1	1	1	1
2	0	1	1	1	1
3	1	0	1	1	1
4	0	0	1	1	1
5	1	1	0	1	1
6	0	1	0	1	1
7	1	0	0	1	1
8	0	0	0	1	1
9	1	1	1	0	1
10	0	1	1	0	1
11	1	0	1	0	1
12	0	0	1	0	1
13	1	1	0	0	1
14	0	1	0	0	1
15	1	0	0	0	1
16	0	0	0	0	0

Fig. 4 - The combination logic circuit and true table

Fig.5 – Simulation model from LtSpice

Fig. 6 – Simulation results

Conclusions on the second part of the laboratory work - We judge the truth table corresponding to the logic gate according to the output waveform.

5. Logic families

Logic element is shown in fig. 7.

Fig. 7 – Logic element scheme and true table

Fig. 8 – Simulation model from LtSpice

Fig. 9 – Simulation results

Conclusions on the third part of the laboratory work - We drew the corresponding logic circuit and recorded its output results.