Оптические линии связи ИКСС (ВОЛС)

Соединители волоконно-оптических линий связи

Оптические линии связи ИКСС. Преимущества.

- •Высокая пропускная способность за счёт высокой несущей частоты. Потенциальная возможность одного оптического волокна несколько терабит информации за 1 с.
- •Низкий уровень шума, что положительно сказывается на его пропускной способности.
- •Пожарная безопасность (пожароустойчивость). В отличие от других систем связи, ВОЛС может использоваться безо всяких ограничений на предприятиях повышенной опасности, в частности на нефтехимических производствах, благодаря отсутствию искрообразования.
- •Малое затухание светового сигнала. Оптические кабели могут объединять рабочие участки на значительных расстояниях (более 100 км) без использования дополнительных ретрансляторов (усилителей).

Информационная безопасность. Отсутствием излучений в радиодиапазоне, а также высокой чувствительностью к колебаниям.

Высокая надёжность и помехоустойчивость системы. ВОЛС не чувствительна к электромагнитным излучениям, не боится окисления и влаги.

Экономичность. Оптическое волокно стоит примерно в 2 раза дешевле медного кабеля. Требуется меньше регенераторов (усилителей).

ВОЛС. Окна прозрачности

Параметры ВОЛС

Затухание - уменьшение мощности оптического сигнала. Измеряется в децибелах

A=10lg (Рвх / Р вых)

Дисперсия – рассеивание во времени модовых и частотных составляющих сигнала. Дисперсия приводит к расширению импульсов. При достаточно большом расширении импульсы начинают перекрываться так, что становится невозможным их выделение на приеме.

Дисперсия имеет размерность времени и определяется как квадратичная разность длительностей импульсов на входе и выходе кабеля длины *L*

$$\tau(L) = \sqrt{t_{out}^2 - t_{in}^2}$$

Сигналы в инфокоммуникационных системах

Сигналом называется некоторая физическая величина (например, электрический ток, электромагнитное поле, световое излучение, звуковые волны и т. п.), отображающая сообщение. Зная закон, связывающий сообщение и сигнал, получатель может выявить содержащиеся в сообщении сведения.

Сигналы в СПД могут отличаться типом переносчика, формой и способом модуляции.

Модуляцией называется изменение параметра(ов) переносчика сигнала в соответствии с функцией, отображающей передаваемое сообщение. Целью модуляции является согласования параметров сигналов с характеристиками канала связи и обеспечение максимальной помехоустойчивости приема сигналов при наличии помех в канале.

В качестве переносчика обычно используется гармоническое (синусоидальное) колебание

$$u(t) = U_0 \sin(2\pi f + \varphi_0)$$

Немодулированные и модулированные сигналы

$$u(t) = U_0 \sin(2\pi f + \varphi_0)$$

Различают абсолютную (ФМ) и относительную (ОФМ) фазовую модуляцию. ОФМ носит также дифференциальная фазовая модуляция При абсолютной двухпозиционной фазовой манипуляции (англ. обозначение BPSK - Binary Phase Shift Keying) фаза модулированного колебания при значении входного сигнала равного уровню логического "0" совпадает со значением опорного (*несущего*) напряжения ($\Delta \Phi = 0^0$), поступлении "1" - меняется на противоположную $(\Delta \Phi = 180^{\circ})$. То есть, фаза модулированного колебания меняется всякий раз при изменении значения входного сигнала.

В случае дифференциальной фазовой манипуляции ДФМ (англ. DPSK - Differential Phase Shift Keying), фаза текущего колебания изменяется не по отношению к опорному колебанию, а по отношению к фазе предыдущей посылки.

Временные и энергетические параметры сигналов

Количество единичных элементов В, передаваемых в единицу времени, называется скоростью передачи сигналов или скоростью манипуляции. Эта величина получила размерность Бод.

$$B = 1/\tau_0$$
. $V = log m_c/\tau_0$.

В системах передачи данных периодическую последовательность импульсов (е. э.) записывают в виде τ_0 : (Т- τ_0) или 1: (α - 1). На рис. и показаны последовательности вида 1:1 (а) и 1:3 (б).

K энергетическим параметрам сигналов относится мощность P_{C} и энергия E_{C} сигнала, определяемые соответственно по формулам:

$$P_{C} = U^{2}_{\rightarrow \phi} / R \; ; \; \;$$
 при $R = 1 \;$ Ом $P_{C} = U^{2}_{\rightarrow \Phi} ; \; E_{C} = \int U^{2}_{\rightarrow \phi} \; dt = U^{2}_{\rightarrow \phi} \; \tau_{0} \; ($ (на единичном сопротивлении).

Спектры импульсов постоянного тока

Любой сложный периодический сигнал можно разложить в ряд Фурье по гармоническим составляющим, т.е. представить его в виде суммы гармонических колебаний с частотами, кратными частоте повторения этого сигнала:

$$u(t) = C_0 + \sum_{k=1}^{\infty} C_k \cos(k\Omega t - \varphi_k),$$

Совокупность амплитуд C_k и C_0 называют спектром амплитуд (или просто спектром), а совокупность фаз ϕ_k - фазовым спектром. Амплитуды гармоник вычисляются по формуле

Если функция непериодическая, то она может быть представлена интегралом Фурье $u(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S(\omega) e^{j\omega t} d\omega$,

где комплексный спектр равен
$$S(\omega) = |S(\omega)| e^{-j\varphi(\omega)}$$
 ,

где $|S(\omega)|$ - спектральная плотность амплитуд; $\phi(\omega)$ - спектр фаз

Спектры немодулированных сигналов

На основании формулы преобразования Фурье получим:

$$S(\omega) = U_0 \int_{-\tau_0/2}^{\tau_0/2} e^{-j\omega t} dt = U_0 \tau_0 \left| \frac{\sin \pi \tau_0 f}{\pi \tau_0 f} \right|,$$

Сигнал вида 1:1 типа "точки"

Спектр сигнала 1:1

$$C_k = \left| a_k \right| = \left| \frac{2}{T} \int_{-\tau_o/2}^{\tau_o/2} U_0 \cos k\Omega t dt \right| = U_0 \left| \frac{\sin \frac{\pi k}{2}}{\frac{\pi k}{2}} \right|.$$

$$C_0 = \frac{1}{T} \int_{-\tau_{o/2}}^{\tau_o/2} U_0 dt = \frac{U_0}{2}.$$

Закономерности спектров немодулированных сигналов:

Частота первой гармоники $F_1 = 1/T = 1/(\alpha \tau_0)$

Частота k-гармоники равна kF_1

Амплитуды гармоник с частотой F=kB равны нулю.

Спектры немодулированных сигналов вида $1:(\alpha-1)$

Спектр сигнала 1:5

$$C_{k} = \left| a_{k} \right| = \left| \frac{2}{T} \int_{-\tau_{o}/2}^{\tau_{o}/2} U_{0} \cos k\Omega t dt \right| = \frac{2U_{0}}{\alpha} \left| \frac{\sin \frac{\pi k}{\alpha}}{\frac{\pi k}{\alpha}} \right|, \qquad C_{0} = U_{0} / \alpha.$$

Закономерности спектра последовательности прямоугольных импульсов вида 1: (α –1):

- 1. Амплитуда спектральных составляющих спадает по закону функции | sin x / x |.
- 2. Амплитуда спектральных составляющих обращается в нуль на частотах $1/\tau_0$, $2/\tau_0$, $3/\tau_0$ и т.д.
- 3. В основной области частот от нуля до $1/\tau_0$ располагается α -1 гармоник через равные промежутки $1/(\alpha\tau_0)$.
- 4. Постоянная составляющая (компонента с нулевой частотой) равна: $C_0 = U_0/\alpha$.
- 5. Амплитуда гармоник при уменьшении частоты стремится к величине $2C_0$.

Требования к сигналам для передачи данных по физическим линиям

При передаче сигналов данных по ФЛ должны также выполняться следующие условия:

- передаваемая по линии цифровая последовательность должна обеспечивать возможность выделения синхронизирующего сигнала в каждом линейном регенераторе и на приемной стороне;
- необходимо обеспечивать возможность **постоянного контроля верности** передачи информации в линейном тракте без перерыва связи;
- в энергетическом спектре линейного сигнала **не должна содержаться постоянная составляющая**, а низкочастотные составляющие должны быть незначительными; это позволяет осуществлять дистанционное питание линейных регенераторов по физическим линиям, используемым для передачи линейного сигнала, а также снизить межсимвольные помехи в регенераторе, возникающие из-за подавления низкочастотных составляющих в спектре сигнала данных;
- спектр линейного сигнала должен быть компактным и с низким уровнем высокочастотных составляющих; сокращение полосы частот позволяет увеличить длину участка регенерации, а ослабление высокочастотных составляющих снижает переходные влияния между цепями кабеля;
- должна обеспечиваться возможность **безошибочной передачи произвольного числа следующих подряд друг за другом импульсов** или пробелов.

Для получения ансамбля линейных сигналов, удовлетворяющих вышеизложенным требованиям, осуществляют преобразования входной последовательности данных по определенным правилам. Эта процедура называется *линейным кодированием*.

Подача питания на удаленное устройство по физическим линиям (PoE)

Подача питания по сигнальным парам.

Подача питания по свободным парам.

Виды сигналов для передачи данных по физическим линиям

а) биполярные импульсы (NRZ-Non Return to Zero); б) без возврата к нулю с инверсией при единице (NRZI - Non Return to Zero with ones Inverted); в) манчестерский код; г) дифференциальный манчестерский код; д) AMI-сигналы (Alternative Mark Inversion); е) квазитроичные сигналы для оптических линий

Сигналы с улучшенными синхронизирующими свойствами

Для улучшения процедуры формирования на приемной стороне тактовых импульсов на основе входных информационных сигналов разработаны линейные коды вида **CHDB** (*Compatible High Density Binary*). После следования *п* периодов значения "0" они обеспечивают обязательную смену полярности сигнала. Так код **CHDB3** (обычно называемый просто **HDB3**) предполагает, что после трех "0" в линию связи обязательно передается импульс. Для того чтобы на приемной стороне он не был воспринят как единица, применяется *нарушение* правила перехода, которое требует обязательного чередования положительных и отрицательных импульсов. Поэтому при кодировании по методу HDB3 после трех значений "0" передается импульс того же знака (так называемый **V**-импульс), что и у последнего импульса, представлявшего значение "1"

Однако в связи с введением дополнительного импульса в ЛС появляется постоянная составляющая. Чтобы обеспечить смену полярностей следующих друг за другом дополнительно вводимых импульсов, производится замена первого нуля группы четырех "0" так называемым В-битом, полярность которого противоположна полярности предшествующего линейного импульса. Приемник декодирует группу **B00V** как четыре нулевых элемента. В ЛС группа **B00V** чередуется с последовательностью **000V**. На рисунке для сравнения показана также последовательность **AMI**-сигналов. Любая одиночная ошибка при использовании **HDB3**-сигналов либо создает новое нарушение чередования полярностей, либо уничтожает ранее введенное нарушение этого закона. В том и другом случаях возникает некомпенсированное нарушение полярностей сигнальных импульсов, что сравнительно просто обнаруживается устройствами контроля на приемной стороне.

Сигналы с улучшенными синхронизирующими свойствами

В цифровых системах передачи данных широко используются методы линейного кодирования, которые обозначаются в общем виде **хВуВ**, **хВуТ** или **хВуQ**. Их суть состоит в том, что группа, состоящая из **х** битов (B—binary), заменяется группой **у** троичных (**T**-ternary), четверичных (**Q**-quaternary) или двоичных (**B**) элементов.

Так, например, в локальных компьютерных сетях Fast-Ethernet 100BASE-FX и сетях FDDI применяется преобразование кодов вида **4B/5B**. При таком кодировании из 32–х возможных двоичных комбинаций выбираются только 16, в которых имеется максимально возможное число смены позиций двоичных элементов. Этим достигается более равномерное распределение спектральных составляющих сигнала, а также обеспечивается высокая частота смены его позиций, что облегчает процесс тактовой синхронизации. При высокоскоростной передаче по **оптическим линиям** также применяется код **8B10B**, в котором полностью устранена постоянная составляющая. Применение этого кода не только улучшает процесс синхронизации, но и исключает перегрев лазерного диода при поступлении от источника многих "единиц" подряд.

В коде **4ВЗТ** производится замена четырех битов двоичной последовательности комбинацией, состоящей из трех троичных (*тернарных*) элементов (+, 0 и –). В этом коде для передачи 16 двоичных комбинаций может быть использовано 3³ =27 комбинаций из трех троичных символов. Повышение избыточности применяется для защиты от ошибок и улучшения условий синхронизации. Скорость манипуляции в линии уменьшается при этом на 25%, соответственно снижается затухание сигнала в линии связи, которое пропорционально корню квадратному из частоты передачи сигналов.