

CLAIMS

1. A remotely interrogable SAW (surface acoustic wave) temperature sensor comprising, on the surface of a quartz substrate
 5 cut along the direction Y' making an angle θ with the direction Y:
 - at least two resonators ($T_{1,SAW}$, $T_{2,SAW}$) comprising transducers consisting of interdigitated electrodes connected to control buses of design such that they have different characteristic operating frequencies; and
 10 - a first resonator having a first surface acoustic wave propagation direction, parallel to one of the axes of the substrate, and a second resonator having a surface acoustic wave propagation direction making a nonzero angle (β) with the propagation direction of the first resonator,
 15 characterized in that the control buses (B_{21} , B_{22}) of the second transducer are inclined at a nonzero angle (γ) to the normal to the interdigitated electrodes of said second transducer so as to compensate for the power flow divergence of the acoustic waves relative to the direction of propagation of the surface acoustic waves
 20 along said second transducer and characterized in that the substrate is a quartz crystal cut along the crystallographic axes (X,Y',Z), the Y' axis making an angle θ with the Y axis, and in that the angle of the buses to the wave propagation direction within the second resonator satisfies the following formula to within ± 0.5 degrees:

$$\gamma(\beta, \theta) \approx A1(\theta)\beta + A2(\theta)\beta^3 + A3(\theta)\beta^5$$

$$A1(\theta) = 0.6259 - 0.014\theta + 1.9152 \times 10^{-4}\theta^2$$

$$A2(\theta) = -5.1796 \times 10^{-4} + 1.2673 \times 10^{-5}\theta - 1.397 \times 10^{-7}\theta^2$$

$$A3(\theta) = 4.3 \times 10^{-8} - 4.8611 \times 10^{-9}\theta + 4.5141 \times 10^{-11}\theta^2.$$

2. The sensor as claimed in claim 1, characterized in that, since the operating frequency band of said sensor is bounded between a lower frequency (F_l) and an upper frequency (F_u), the characteristic
 30 operating frequencies of each of said resonators lie within said band

and their difference is maximized in order to increase the sensitivity of said sensor.

3. The sensor as claimed in either of claims 1 and 2,
5 characterized in that, when the angle θ is between 30° and 40° and
the angle β is between 14° and 22° , the angle γ is between 5° and
 6° .

4. The sensor as claimed in one of claims 1 to 3,
10 characterized in that it includes at least one resonator comprising a
transducer with an aperture corresponding to the extent of overlap
between interdigitated electrodes, having a weighting function along
the acoustic wave propagation axis in order to couple as little as
possible the transverse propagation modes and therefore to reduce
15 their influence.

5. The sensor as claimed in claim 4, characterized in that
the weighting function is an arccosine function.

20 6. The sensor as claimed in one of the preceding claims,
characterized in that, since each resonator comprises a transducer
inserted between two reflector arrays, the periods of the arrays are
such that their reflection coefficient is centered on the central
frequency of said transducer.

25 7. The sensor as claimed in one of the preceding claims,
characterized in that the second resonator has nonsymmetrical
distances between reflector arrays and transducer.

30 8. The sensor as claimed in claim 7, characterized in that
the distances between the two reflector arrays and the transducer are
equal to $0.45\lambda + \frac{\lambda}{2} \cdot \frac{\varphi}{360}$ and $0.45\lambda - \frac{\lambda}{2} \cdot \frac{\varphi}{360}$, respectively, where λ
is the characteristic wavelength of the transducer and φ is the

directivity phase between the reflection coefficient and the transduction coefficient.

9. The sensor as claimed in one of the preceding claims,
5 characterized in that the resonators have an impedance close or equal
to 50 ohms.

10. A temperature/pressure sensor, characterized in that it
comprises a temperature sensor as claimed in one of the preceding
10 claims and, on the substrate of said temperature sensor, a third
resonator (P_{SAW}) and means for applying pressure to said third
resonator, said resonator having a surface acoustic wave propagation
direction parallel to the surface acoustic wave propagation direction of
the first resonator.

15 11. The sensor as claimed in one of the preceding claims,
characterized in that the resonators are connected to an antenna and
are in parallel.

20 12. The sensor as claimed in claim 10, characterized in that:
- the periods of the first, second and third reflector arrays
are equal to 3.62 μm , 3.69 μm and 3.62 μm , respectively, and the
periods of the first, second and third transducers are equal to 3.60,
3.67 and 3.60 μm , respectively;

25 - the distances between reflector arrays and transducers
are equal to 3.28 μm and 3.28 μm in the first resonator, 3.82 μm and
2.85 μm in the second resonator, and 3.27 μm and 3.27 μm in the
third resonator, respectively;

30 - the aperture of the transducers within the three
resonators is equal to 350 μm ;

- the number of electrodes within the reflector arrays is
equal to 270, 360 and 270, respectively; and

- the number of electrodes within the transducers is equal
to 136, 164 and 136, respectively.

**13. A pressure/temperature measurement device comprising,
a sensor as claimed in one of the preceding claims and a remote
interrogation system.**