

Generic Timer Module (GTM)

Alternatively, clock source six and seven (CMU_CLK6 and CMU_CLK7) may provide the signal SUB_INC1 and SUB_INC2 coming from module DPLL as clock enable signal depending on the bit field CLK_SEL(1:0) of the register CMU_CLK_6_CTRL and on the bit field CLK_SEL(1:0) of the register CMU_CLK_7_CTRL.

CMU_CLK8 is switched by CLK8_EXT_DIVIDER of the register CMU_CLK_CTRL between CLS0_CLK and CMU_ECLK0.

To switch the clock reference CMU_GCLK_EN with CMU_ECLK1_EN an input selector are used in all Clock Source Divider. The CMU_ECLK1_EN source is enabled by setting the appropriate bit field CMU[x]_EXT_DIVIDER in the register CMU_CLK_CTRL.

To avoid unexpected behavior of the hardware, the configuration of register **CMU_CLK_[x]_CTRL** and **CMU_CLK_CTRL** can only be changed, when the corresponding clock signal *CMU_CLK[x]* and *CMU_ECLK[1]* is disabled.

Further, any changes to the registers **CMU_GCLK_NUM** and **CMU_GCLK_DEN** can only be performed, when all clock enable signals *CMU_CLK[x]* and the **EN_FXCLK** bit inside the **CMU_CLK_EN** register are disabled.

The clock source signals $CMU_CLK[x]$ (x: 0...7) and $CMU_FXCLK[y]$ are implemented in form of enable signals for the corresponding registers, which means that the actual clock signal of all registers always use the $CLSO_CLK$ signal.

The hardware guarantees that all clock signals $CMU_CLK[x]$ (x: 0...7), which were enabled simultaneous, are synchronized to each other. Simultaneous enabling does mean that the bits $EN_CLK[x]$ in the register CMU_CLK_EN are set by the same write access.

Figure 28 Wave Form of Generated Clock Signal CMU_CLK[x]

28.10.4 Fixed Clock Generation (FXU)

The FXU sub-unit generates fixed clock enables out of the *CMU_GCLK_EN* or one of the eight *CMU_CLK[x]* enable signal depending on the **FXCLK_SEL** bit field of the **CMU_FXCLK_CTRL** register. These clock enables are used for the PWM generation inside the TOM modules.

All clock enables *CMU_FXCLK[y]* can be enabled or disabled simultaneous by setting the appropriate bit field **EN_FXCLK** in the register **CMU_CLK_EN**.

The dividing factors are defined as 2^0 , 2^4 , 2^8 , 2^{12} , and 2^{16} . The signals $CMU_FXCLK[y]$ are implemented in form of enable signals for the corresponding registers (see also **Figure 28**)

28.10.5 External Generation Unit (EGU)

The EGU sub-unit generate up to three separate clock output signals CMU_ECLK[z] (z: 0...2).

Each of these clock signals is derived from the corresponding External Clock Divider z sub block, which generates a clock signal derived from the GTM input clock *CLSO_CLK*.

In contrast to the signals $CMU_CLK[x]$ and $CMU_FXCLK[y]$, which are treated as simple enable signals for the registers, the signals $CMU_ECLK[z]$ have a duty cycle of about 50% that is used as a true clock signal for external peripheral components.