1. 证明: \mathbb{R}^2 的子空间恰有 $\{0\}$, \mathbb{R}^2 中所有过原点的直线,以及 \mathbb{R}^2 本身.

Proof.

设U为 \mathbb{R}^2 的子空间,那么dim U=0,1,2.

若dim U = 0,那么显然有 $U = \{0\}$.

若dim U = 2,又dim $\mathbb{R}^2 = 2$,于是 $U = \mathbb{R}^2$.

若 $\dim U = 1$,那么对于任意非零的 $x \in U$ 都有 $U = \{kx : k \in \mathbb{R}\}$,即过原点的直线.

综上,命题得证.

2. 证明: \mathbb{R}^3 的子空间恰有 $\{0\}$, \mathbb{R}^3 中所有过原点的直线, \mathbb{R}^3 中所有过原点的平面,以及 \mathbb{R}^3 本身.

Proof.

设U为 \mathbb{R}^2 的子空间,那么dim U=0,1,2,3.

若 $\dim U = 0, 1, 3,$ 则情况与**1.**类似,不再赘述.

若 $\dim U = 2$,那么存在两个线性无关的 $x, y \in U$ 使得 $U = \{k_1x + k_2y : k_1, k_2 \in \mathbb{R}\}$,即 \mathbb{R}^3 中过原点的平面. 综上,命题得证.

3.

- (a) $\diamondsuit U = \{ p \in \mathcal{P}_4(\mathbb{F}) : p(6) = 0 \}$,求U的一个基.
- (b) 将(a)中的基扩充为 $\mathcal{P}_4(\mathbb{F})$ 的一个基.
- (c) 求 $\mathcal{P}_4(\mathbb{F})$ 的一个子空间W使得 $\mathcal{P}_4(\mathbb{F}) = U \oplus W$.