Attachment

SEQ ID NO 3: Wild-type glucanase from Teather et al, 1988.

- 1. 27 signal peptide sequence in the N-terminus (up-lined), which is not present in the truncated glucanase.
- 2. catalytic domain of glucanase (shaded) that is important and essential for the catalytic activity of the enzyme.
- 3. 78 residues (up-lined) are deleted in truncated glucanases (SEQ NO 1 & 2) at the C-terminus

ATG M	JAAC N	CATC I	CAAG K	AAA K	ACT T								GTA V				GCA A		GCC A	20
CTC L	CACC T												GAA E						GAA E	40
GTT V	CAC Q	STAC Y	GGT G	AAG K	TTT F	GAA E	GCC A	CGT R	ATG M	AAG K	ATC M	GGC <i>A</i> A	AGCC A	GCA A	TCC S	GGGA G	ACA T	GTC V	CAGT S	60
TCC S	ATC M	TTC F		TAC Y		AAT N	GGT G	TCC S	GAA E	ATC I	CGCC A	CGAT D	TGGA G	AGG R	CCC P	CTGC W	GTA V	GAA E	GTG V	80
GAT D				CTC L									STCC S						`AAG K	100
GCC A	GGC G		CAA Q		ACT T	AGC S		AAG K	CAC H		GCT A	rgti V		CCC P		CGCC A	GAT D	CAC Q	GCT A	120
TTC F			TAC Y										CCGC R					GGT G	`CAG Q	140
GAA E	GTC V		AAG K		GAA E				GTT V				GACA T		ACA T		GGA G	CTC L	CGT R	160
TTT F		CTT L		TCG S	TCT S	GAG E							CAG Q			GAA E		AAG K	CTT L	180
			CAG Q										TAT Y				CCAG	GGC G	GAA E	200
			-		ACG	СТТ	GAC	TGG		GAC	CAAT	TTT	GAC	ACG			•	Ť	CCGC R	220
TGG W	GGC	CAAG	GGT	GAC	TGG	ACA	TTT	`GAC	GGT	AAC	CG1	rgto	GAC	СТС	CACC	GAC	CAAG	AAC	CATC	
TAC	TCC	CAGA	GAT	GGC	ATG	TTG	ATC	СТС	GCC	CTC	CACC	CCGC		GGT	CAC	GA <i>P</i>			I CAAC	240
		GTT	CCG				GAA	ССТ	GCT	CCG	GCA/	ТСТ		AGC	AGC	GCT			N TCT	260
$\frac{G}{TCT}$		-		CCG		AGC	TCC	тст		GTC	CCT	rGCC			AGC	CAGC		A TTT	S GTT	280
$\frac{S}{CCG}$		S AGC											S ATG					F	V GTT	300
P	P	S	S	S	S	A	T	N	A	Ι	Н	G	M	R	T	T	P	A	V CAC	320
A	K	E		R			V						K					G	Н	340

349

SEQ ID NO 11:

78 residues composed of PXSSSS repeats and a basic terminal domain (BTD) (shaded) at the Cterminus of wild-type glucanase (SEQ ID: No 3 from Teather et al) are deleted in TF-glucanase (SEQ ID: No 1) and PCR-TF-glucanase (SEQ ID: No 2)

										•	CAATCTTCTAGCAGCGCTCCGGCATCT										
											Q	S	S	S	S	A	P	A	S	280	
TCT	AGC	AGT	GTT	CCG	GCA							GCC	TCC	TCG	AGC	AGC	GCA	TTT	GTT		
S	S	S	V	P	Α	S	S	S	S	V	Р	Α	S	S	S	S	A	F	V	300	
CCG	CCG	AGC	TCC	TCG	AGC	GCC			~ ~						ACA	ACT	'CCG	GCA	GTT		
Р	P	S	S	S	S	A	T	N	A	Ι	Н	G	M	R	T.	Τ,	P	A	V ,	320	
GCAAAGGAACACCGCAATCTCGTGAACGCCAAGGGTGCCAAGGTGAACCCGAATGGCCAC																					
, A	K	E	Н	R	N	L	V	N	<u>. A</u> .	_ K	_ G	Α.	K	V	N,	P	N	G	H	340	
AAG	AAGCGTTATCGCGTGAACTTTGAACACTAA																				
K	R	Y	R	V	N	F	Е	H	*											349	