Aula 1 (1/Fer)

Ne oula loje:

- * Apresenteção disciplino.
- * Revisão Mecânica Clássica.

Capitulo (1) ? Tépicos de Mécânice Cléssice

(1.1) Mecênica Newtoniana

A trajectória de um corps Com col

Referêncies:

- * Cohen-Tommondji, afen
- * Goldstein, "Classical" Mechanics".

Leis Newton

$$2 \overrightarrow{F} = \frac{d\overrightarrow{p}}{dt} = m \frac{d\overrightarrow{v}}{dt} = m \frac{d^2 \overrightarrow{n}}{dt^2}$$

Notocoo:
$$\overrightarrow{S} = \frac{d\overrightarrow{\pi}}{dt} = \overrightarrow{\pi}$$

$$\overrightarrow{Q} = \frac{d^{2}\overrightarrow{\pi}}{dt} = \overrightarrow{\pi}$$

$$\vec{Q} = \frac{d^2 \vec{R}}{dt} = \frac{\vec{R}}{R}$$

Dados condições iniciais, 2º lei Newton determine a fosição e relocidade do corpo em qualquer 1 Ebecraf brutuf

Determinisons

Exempla: Oscilator Harmónica 1D

$$\overrightarrow{F} = -K \Delta \overrightarrow{\pi} \implies F = -K \Delta \times \frac{\Delta \times}{\parallel}$$

$$\times - \times_{o}$$

$$\overrightarrow{r} = -\overrightarrow{r} \sqrt{(\overrightarrow{n})} \implies r = -\frac{2}{2x} \sqrt{(x)}$$

$$= - K (x - x^{\circ}) = - K \nabla x$$

$$= - \frac{9^{\times}}{3} \Lambda(x)$$

Egg modimento:

$$f = m\ddot{x} = -\kappa(x-x_0) = m\ddot{x}$$

$$(\Rightarrow) \dot{x} + \frac{k}{m} x = 0$$

$$x = x(t)$$

$$(=) \frac{qt_s}{q_s \times} + \frac{km}{k} \times = 0$$

Ansatz, $\times(t) = A. \cos(\alpha t + \beta)$ $\Rightarrow - \chi^2 A \cos(\alpha t + \beta) + \frac{\kappa}{m} A \cos(\alpha t + \beta) = 0$ $(=) - \alpha^2 + \frac{\kappa}{m} = 0 \iff \alpha = \pm \sqrt{\frac{\kappa}{m}} \equiv \omega$ $x(t) = A \cdot cos \left(\sqrt{\frac{K}{m}} + B \right)$ (somplitude of pose inicial The state of the s 27/JK/m Note: A, B determineday felos condições miciois.

(1.2) Mecônica La greana

Pore um dodo potencial (=) porça) podemos en contrar algumos trajectórios da partícula refidamente. Les trajectories constantes correspondende extremos de V $\Rightarrow - \overrightarrow{7}V = 0 = \overrightarrow{7}$

 $\frac{4\times}{4} = 0 \implies x = x^{0}$

He teré alguma quantidade escalor que quando extremizada mos dará todas as traje dárias reais?

Funcional ? La méquina que recese funções e de volte números

 $S[...]_{t_{i}}^{t_{b}}: \xrightarrow{f} \longrightarrow \mathbb{R}$ $q(t) \longrightarrow S[q(t)]_{t_{i}}^{t_{b}}$

1.2.1) Principio de "Acçoi Minima"
Homilton

Num sist físico com d(q,q,t), es trejectórios reais, qued(t), extremigam o funcional accai

onde o la prenceano é da do fela diferença da Econ e Epot,

 $\mathcal{L}(q,\dot{q},t) = \mathcal{L}(\dot{q}) - \mathcal{L}(q,t)$

1.2.2) Eggs de Euler-Legnempe

Peracifio acçoi oni ai ma => equi do motionento equi volenter as de Newton.

Requerendo que loriação do S face a loriação da trajectória seja jaro, isto é, SS=0,

$$\Rightarrow SS = S[q(t) + Sq(t)]_{t_{i}}^{t_{i}} - S[q(t)]_{t_{i}}^{t_{i}}$$

9(1)+5 g(1) $= \int_{t}^{t} d(q + Sq, \dot{q} + S\dot{q}, t) - \int_{t}^{t} d(q, \dot{q}, t)$ (t;,q;)

 $= \int_{1}^{1} \left[\int_{1}^{1} \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2} \right) + \frac{\partial \mathcal{L}}{\partial q} \int_{1}^{1} \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2} \right) - \left(\frac{\partial \mathcal{L}}{\partial q} \right) \right] - \left(\frac{\partial \mathcal{L}}{\partial q} \right)$

 $= \int_{1}^{1} dt \left[\frac{\partial \mathcal{L}}{\partial q} \mathcal{L}_{q} + \frac{\partial \mathcal{L}}{\partial \dot{q}} \mathcal{L}_{\dot{q}} \right]$

notendo que $Sq = S[\frac{dq}{dt}] = \frac{d}{dt}[Sq]$ entos

 $\mathcal{S} = \left(\begin{array}{c} t \\ \end{array}\right) \left(\begin{array}{c} t \\$

$$= \int_{1}^{1} dt \left[\frac{\partial \mathcal{L}}{\partial q} - \frac{1}{2} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}} \right) \right] dq$$

Como queremos SS = 0

$$\frac{\partial \mathcal{L}}{\partial q} - \frac{\partial}{\partial t} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}} \right) = 0$$

Los eges de Euler-Lagrange

$$q = (x_1, x_2, x_3, ...) \rightarrow N$$
 porticular
 $\dot{q} = (\dot{x}_1, \dot{x}_2, ...)$

$$\frac{\partial \mathcal{L}}{\partial x_i} - \frac{\partial}{\partial t} = 0, \text{ siste}$$

$$N = 0$$

$$N = 0$$

$$N = 0$$

Exemplo: Oscilator Horamónico 1)

$$\mathcal{I}(x,\dot{x},t) = \frac{m}{2}\dot{x}^2 - \frac{\kappa}{2}x^2$$

que usando Euler-bagrange

$$\frac{\partial \mathcal{L}}{\partial \times} - \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{x}} \right) = 0$$

$$(=) - K \times - \frac{d}{dt} (m \dot{x}) = 0$$

1.2.3) Teoremo de Noether

Qual a épeits de simetrion de L(q, q, t)?

T. Noether: Se o d(2,2,1) é inhoriente pele acçoir de transpormeçois

$$\vec{q}(t) \longrightarrow \vec{q}(t) + \vec{q}(t)$$

disecções (\$\overline{\pi}\), então existe quentidade conserbedo no modimento essociada a esta simeterna.

Se
$$\frac{\partial \mathcal{L}}{\partial y} = 0$$
 enter de E-L

$$O - \frac{1}{2!} \left(\frac{\partial \mathcal{L}}{\partial \dot{y}} \right) = 0$$

$$\Rightarrow \frac{\partial \mathcal{L}}{\partial \dot{y}} = \text{constante no tempo}$$

 \Box

(1.3) Mecânica Hamiltoniana

As eges Neuton e eges la parange son de 2° ordens que son meis diférceir de resolver. Existiné sistema de (2N) eges dif. de 1º ordem que resultem em eges moviments aquillenter?

No paronalismo le grange es variáleis indepenter ser (q,\dot{q},t) ,

$$L(q,\dot{q},t)$$

As eggs modimento serão 2º ordem em t delido ao termo $\frac{d}{dt} \left(\frac{\partial d}{\partial \dot{q}} \right)$. Se usar mos o momento conónico conjuezado, $P = \frac{\partial d}{\partial \dot{q}}$, expressando o possema em tor mos de modo conjunto doricideis indet. (q,p,t) ire mos o ster eggs dif. de 1º ordem.

1.3.1) Equeções de Hamilton

Variéveis indefendentes soi aporte (q,P,t) teremos que exprimir

$$\dot{q} = \dot{q} (q, p, t)$$

e entre o la grangeans picaré

$$\mathcal{L}(q,\dot{q},t) \longrightarrow \mathcal{L}(q,\dot{q}(q,p,t),t) = \widetilde{\mathcal{L}}(q,p,t)$$

As eggs E-L picom

$$\frac{\partial \mathcal{L}}{\partial q} - \frac{\partial}{\partial t} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}} \right) = 0 \implies \frac{\partial \mathcal{L}}{\partial q} - \frac{\partial \mathcal{L}}{\partial t} = 0$$

$$\implies \dot{\mathcal{P}} = \frac{\partial \mathcal{L}}{\partial q}$$

que têm que ser expressos em termos Le (q,p,t) como I.