β 吸收 1 实验数据处理

何金铭 PB21020660

1 测量 G-M 计数管的坪曲线

电压/V	260	270	280	290	300	310	320	330	340	350	360	370
计数 N	0	332	4331	4207	4406	4160	3949	4868	5006	5106	5297	4910
电压/V	380	390	400	410	420	430	440	450	460	470	480	490
计数 N	5677(5288)	4491(5140)	5245	5070	5444	5469	5588	5533	5648	5522	5538	5581

表 1: 不同电压下 G-M 计数值记录表

注: 由于在电压值为 380V 与 390V 处认为结果不太符合,可能受涨落影响比较大,所以重新测量了一次,为于"()"中的值

将上述数据画为坪曲线

图 1: G-M 计数管的坪曲线

取刚开始变平缓的电压值为 V_1 , 平缓变化快结束的电压值为 V_2 , 计算得工作电压为 $V=\frac{V_1+V_2}{2}=\frac{230+490}{2}=360V$

2023.4.3 USTC

测量铝片的质量厚度 2

	1	2	3	4	5
m/g	1.55	1.50	1.65	1.55	1.54
a/cm	6.23	6.18	6.45	6.21	6.22
b/cm	4.98	5.00	5.09	5.10	4.94
质量厚度 g/cm ²	0.04996	0.04854	0.05026	0.04894	0.05012

表 2: GM 记录表

计算得平均质量厚度为 $0.04956g/cm^2$

测量铝片对 β 射线的吸收曲线

注: 以下测量均放入了准直孔

	铝片数	0	1	2	3	4	5	6	7	8	9	10	11
	计数 N	4200	3301	2575	3220	2613	2124	1785	1289	1270	1176	1292	1274
	时间/s	30	30	30	40	40	40	40	40	50	60	80	100
1	强度 <i>I/s</i> ⁻¹	140	110.03	85.83	80.5	65.325	53.1	44.625	32.225	25.4	19.6	16.15	12.74
	铝片数	12	13	14	15	16	17	18					
	计数 N	1122	766	719	641	645	632	648					
	时间/s	120	120	150	200	320	440	760					
1	强度 <i>I/s</i> ⁻¹	9.35	6.38	4.79	3.205	2.02	1.44	0.85					

表 3: GM 记录表

本底测量时间 300s,**计数为 53** 计算得本底强度为: $I' = \frac{53}{300} = 0.177$ 。对上表中的强度进行修正得:

铝片数	0	1	2	3	4	5	6	7	8	9	10	11
强度 I/s^{-1}	140	110.03	85.83	80.5	65.325	53.1	44.625	32.225	25.4	19.6	16.15	12.74
铝片数	12	13	14	15	16	17	18					
强度 I/s^{-1}	9.35	6.38	4.79	3.205	2.02	1.44	0.85					

表 4: GM 记录表

USTC 2023.4.3

图 2: $\log_{10} \frac{I}{I_0}$ -质量厚度图

拟合曲线为:

$$\log_{10} \frac{I}{I_0} = -0.1213d + 0.1461 \tag{1}$$

用前四个点计算得: h = 0.0504

用最后 4 个点计算得:g(x) = -4.2848x + 1.5273联立后可以解得: $R = \frac{4 + 1.5273 + 0.05}{4.2848} = 1.30g/cm^2$ 最终解得: $E = 1.85 \times R + 0.245 = 2.65MeV$

USTC2023.4.3