CPSC 121 Midterm 2 Monday November 14th, 2016

[15] 1. Consider the theorem

For any integer n, if $2^n - 1$ is a prime, then n is also prime.

[3] a. Translate the theorem statement into predicate logic. You can use the predicate Prime(x) which is true when x is a prime.

Solution: $\forall n \in \mathbf{Z}, Prime(2^n - 1) \rightarrow Prime(n).$

[4] b. Suppose that you decide to prove this theorem using a **direct proof**. Write down what you would assume and what you would need to show. You can use the predicate Prime(x). **Do not prove the theorem.**

Solution: You would consider an unspecified integer n, and assume that $2^n - 1$ is prime. You would need to prove that n is prime.

[4] c. Suppose that you decide to prove this theorem using a **proof by contrapositive**. Write down what you would assume and what you would need to show. You can use the predicate Prime(x). **Do not prove the theorem.**

Solution: You would consider an unspecified integer n, and assume that n is **not** prime. You would need to prove that $2^n - 1$ is not prime.

[4] d. Suppose that you decide to prove this theorem using a **proof by contradiction**. Write down what you would assume and what you would need to show. You can use the predicate Prime(x). **Do not prove the theorem.**

Solution: You would assume that some integer n is not prime, but that $2^n - 1$ is prime. Then you would need to prove a contradiction (any contradiction will work).

[15] 2. Your friend designed an algorithm whose execution requires $4n^3 + 2n^2$ steps where n is the size of the input.

Hint: Suppose that an algorithm runs in f(n) steps where n is the size of the input. Recall that the number of steps of this algorithm is in O(g) if the following proposition is true:

$$\exists c \in \mathbf{R}^+ \ \exists n_0 \in \mathbf{N} \ \forall n \in \mathbf{N}, n \ge n_0 \to f(n) \le cg(n).$$
 (*)

[6] a. Prove that the number of steps of your friend's algorithm is in $O(n^4)$.

Solution: Choose $n_0 = 1$ and c = 6, and consider an unspecified positive integer $n \ge n_0$. For this n,

$$4n^3 + 2n^2 \le 4n^3 + 2n^3$$
 because $n \ge 1$
= $6n^3$
 $\le 6n^4$ because $n \ge 1$

Therefore $4n^3 + 2n^3 \in O(n^4)$.

[3] b. Negate the proposition in (*) and bring the negation all the way to the right so that there is no negation in front of any quantifier.

Solution: The negation is:

$$\sim \exists c \in \mathbf{R}^+ \exists n_0 \in \mathbf{N} \ \forall n \in \mathbf{N}, n \geq n_0 \to f(n) \leq cg(n) \\
\equiv \forall c \in \mathbf{R}^+ \sim \exists n_0 \in \mathbf{N} \ \forall n \in \mathbf{N}, n \geq n_0 \to f(n) \leq cg(n) \\
\equiv \forall c \in \mathbf{R}^+ \ \forall n_0 \in \mathbf{N} \sim \forall n \in \mathbf{N}, n \geq n_0 \to f(n) \leq cg(n) \\
\equiv \forall c \in \mathbf{R}^+ \ \forall n_0 \in \mathbf{N} \ \exists n \in \mathbf{N}, \sim (n \geq n_0 \to f(n) \leq cg(n)) \\
\equiv \forall c \in \mathbf{R}^+ \ \forall n_0 \in \mathbf{N} \ \exists n \in \mathbf{N}, \sim (n \geq n_0) \lor f(n) \leq cg(n)) \\
\equiv \forall c \in \mathbf{R}^+ \ \forall n_0 \in \mathbf{N} \ \exists n \in \mathbf{N}, \sim (n \geq n_0) \land \sim (f(n) \leq cg(n)) \\
\equiv \forall c \in \mathbf{R}^+ \ \forall n_0 \in \mathbf{N} \ \exists n \in \mathbf{N}, (n \geq n_0) \land f(n) > cg(n))$$

[6] c. Using the proposition in part b, prove that the number of steps of your friend's algorithm is NOT in $O(n^2)$.

Solution: We use a direct proof using the result of part (b). Consider an unspecified positive real number c, and an unspecified natural number n_0 . Choose any natural number n_0 larger than both n_0 and c, for instance $n = \max\{n_0 + 1, \lceil c \rceil + 1\}$. Then

$$4n^3 + 2n^2 \ge 4n^3$$
 $4n^3$ is positive $> n^3$ dividing a positive integer by 4 makes it smaller $= n \cdot n^2$ $> c \cdot n^2$ because $n > c$

Therefore $4n^3 + 2n^2 > cn^2$ as required.

[10] 3. Consider the following theorem:

For any integers a, b and c, if $a^2+b^2=c^2$, then at least one of a and b is even. (*)

To guide you through proving this theorem, we broke down the proof into 3 steps below.

[3] a. First, prove that for any integers a, b and c, if $a^2 + b^2 = c^2$ and a and b are both odd, then c^2 is even.

Solution: Consider any two unspecified integers a, and b. Assume a and b are both odd, which means we can write a=2i+1 for some integer i and b=2j+1 for some integer j. Then $a^2+b^2=(2i+1)^2+(2j+1)^2=4i^2+4i+1+4j^2+4j+1=2(2i^2+2j^2+2i+2j+1)$. Because i and j are integers, so is $2i^2+2j^2+2i+2j+1$, and therefore a^2+b^2 is even.

[3] b. Second, prove that for any integer c, if c^2 is even, then c^2 is divisible by 4. Hint: we proved in class that if the square n^2 of an integer n is even, then n is even. **Solution:** Consider an unspecified integer c. If c^2 is even, then by the hint c is even. Thus c = 2k where k is an integer. The integer c^2 is therefore equal to $4k^2$. Since k is an integer, so is k^2 , and hence c^2 is divisible by 4.

[4] c. Prove theorem (*) using the results from part (a) and (b) above.

Hint 1: a **proof by contradiction** works well here.

Hint 2: it may be useful to show that $(a^2 + b^2)$ is not divisible by 4.

Solution: We use a proof by contradiction. Suppose that there are integers a, b and c such that $a^2+b^2=c^2$ and both a and b are odd. On the one hand, from part (a) we know that c^2 is even, and thus from part (b) it must be divisible by 4. On the other hand, our calculation from part (a) shows that $c^2=a^2+b^2=4i^2+4i+1+4j^2+4j+1=4(i^2+j^2+i+j)+2$, and so c^2 is not divisible by 4. These two facts contradict one another, which means that at least one of a or b must be even.

[9] 4. Consider the following deterministic finite-state automaton. Assume that every input is a string of 0's and 1's.

[4] a. Which of the following words will this finite-state automaton accept? Circle one of Yes/No for each string.

Solution:

• 01010	Yes	No
• 11001	Yes	No
• 110110	Yes	No
• 101111	Yes	No
• 1101101	Yes	No
• 111101100	Yes	No

• 110111011 Yes No
• 111101111 Yes No

[3] b. Describe as simply as possible the set of inputs that will lead you to each state.

Solution: Let k be the number of 1's in the input string. The states have the following meanings:

- State s0: k is divisible by 4.
- State s1: k divided by 4 has a remainder of 1.
- State s2: k divided by 4 has a remainder of 2.
- State s3: k divided by 4 has a remainder of 3.
- [2] c. Describe as simply as you can the set of strings that this finite-state automaton accepts.

Solution: The DFA accepts any string of bits for which the number of 1's in the string is divisible by 4.

[6] 5. Convert the DFA to a sequential circuit. We have given you several components of the sequential circuit below. Please fill in the missing parts.

Solution:

