Linear Algebra – Second Midterm May 4, 2022

1. (10%) Answer true or false for the following statement. If true, explain or prove tour answer. If false, give an example to show that the statement is not always true

Statement: If U,V,W are subspaces of R^3 and if $U\perp V$ and $V\perp W$, then $U\perp W$.

- 2. (10%) Let x and y be nonzero vectors in R^m and R^n , respectively, and let $A = xy^T$. Show that $\{x\}$ is a basis for the column space of A and that $\{y^T\}$ is a basis for the row space of A.
- 3. Let L be the linear operator on \mathbb{R}^3 defined by

$$L(\mathbf{x}) = \begin{bmatrix} x_2 - x_1 \\ x_3 - x_2 \\ x_3 - x_1 \end{bmatrix}$$

and let $S = Span((1,0,1)^T)$.

- (a) (5%) Find the kernel of L.
- (b) (5%) Determine L(S)
- 4. (10%) Show that if v is orthogonal to both w_1 and w_2 , then v is orthogonal to $k_1w_1 + k_2w_2$ for all scalars k_1 and k_2 .
- 5. (10%) Consider the matrix

$$P = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 2 \\ 0 & 2 & 1 \end{bmatrix}$$

P is the transition matrix from the standard basis $S = \{e_1, e_2, e_3\}$ to what basis B for R^3 ?

- 6. Let A be a 5 by 7 matrix with rank 4.
 - (a) (5%) What is the dimension of the solution space of Ax = 0?
 - (b) (5%) Is Ax = b consistent for all vectors b in R^5 ? Explain.
- 7. Suppose A is the sum of two matrices of rank one: $A = uv^T + wz^T$
 - (a) (5%) Which vectors span the column space of A?
 - (b) (5%) Which vectors span the row space of A?

- 8. (30%) True of false. You can get 5 points for each correct answer. However, you will be deducted 5 points for each wrong answer.
- (a) All solution vectors of the linear system Ax = b are orthogonal to the row vectors of the matrix A if and only if b = 0.
- (b) If B_1 and B_2 are bases for a vector space V, then there exists a transition matrix from B_1 to B_2 .
- (c) There is an invertible matrix $\,A\,$ and a singular matrix $\,B\,$ such that the row spaces of $\,A\,$ and $\,B\,$ are the same.
- (d) The nullity of a square matrix with linearly dependent rows is at least one.
- (e) If v_0 is a nonzero vector in V, then $T(v) = v_0 + v$ defines a linear operator on V.
- (f) If two matrices A and B are invertible and similar, then A^{-1} and B^{-1} are similar.