Let's go Markov

Markov Process

- Markov property: $P[s_{t+1}|s_t] = P[s_{t+1}|s_1, ..., s_t]$
- State transition probabilities
 - $P_{ss'} = P[S_{t+1} = s' | S_t = s]$
 - o Matrix rows have to sum to 1

Markov Reward Process

- Return: $R_t = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}$
- Bellman Equation for MRPs
- $v(s) = E[R_t|S_t = s] = E[r_{t+1} + \gamma v(S_{t+1})|S_t = s]$
- Sum notation: $v(s) = R_s + \gamma \sum_{s' \in S} P_{ss'} v(s')$
- Direct solution
 - \circ v = R + γ Pv
 - \circ v = $(1 \gamma P)^{-1}R$

Policy: $\pi_t(a, s) = P[A_t = a | S_t = s]$

Markov Decision Process

Immediate reward: $R_{ss'}^a = r(s, a, s')$

Value function

- $V^{\pi}(s) = \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \left| S_t = s \right| \right]$
- $= \mathbb{E}[r_{t+1}|S_t = s] + \gamma \mathbb{E}[\sum_{k=0}^{\infty} \gamma^k r_{t+k+2} | S_t = s]$
- $V^{\pi}(s) = \sum_{a \in A} \pi(s, a) \sum_{s' \in S} \mathcal{P}^{a}_{ss'} \left(\mathcal{R}^{a}_{ss'} + \gamma V^{\pi}(s') \right)$ Iterative Policy Evaluation Algorithm

- Input π, the policy to be evaluated
- Initialize V(s) = 0, for all s ∈ S+
- Repeat
 - \circ $\Delta \leftarrow 0$
 - For each $s \in S$:
 - $V(s) \leftarrow \sum_a \pi(s, a) \sum_{s'} \mathcal{P}^a_{ss'} \left[\mathcal{R}^a_{ss'} + \gamma V^\pi(s') \right]$
 - o $\Delta \leftarrow \max(\Delta, |v V(s)|)$
- until $\Delta < \theta$ (a small positive number)
- Output $V \approx V^{\pi}$

State-Action Value function

•
$$Q^{\pi}(s, a) = \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \left| S_t = s, A_t = a \right] \right]$$

•
$$V^{\pi}(s) = \sum_{a \in A} \pi(s, a) Q^{\pi}(s, a)$$

Optimal value function

- Optimal State-Action Value function
 - $\circ \quad Q^*(s,a) = \max Q^{\pi}(s,a)$

$$\circ \ \ Q^*(s,a) = E[r_{t+1} + \gamma V^*(s_{t+1}) | S_t = s, A_t = a]$$

Bellman Optimality

• Bellman Optimality Equation for V

$$V^*(s) = \max_{a} \sum_{s'} \mathcal{P}^a_{ss'} \left(\mathcal{R}^a_{ss'} + \gamma V^\pi(s') \right)$$

• Bellman optimality Equation for
$$Q^*$$
• Bellman optimality equation for Q^*
• $Q^*(s,a) = \sum_{s'} \mathcal{P}^a_{ss'} \left(\mathcal{R}^a_{ss'} + \gamma V^\pi(s') \right)$

Dynamic Programming

Policy Improvement

- · Policy Improvement Theorem
 - $\circ \quad Q^{\pi}\big(s,\pi'(s)\big) \geq V^{\pi}(s) \to V^{\pi'}(s) \geq V^{\pi}(s)$
- Bellman Optimality Equation (BOE)
- $\circ V^{\pi}(s) = \max_{\alpha \in A} Q^{\pi}(s, \alpha)$

Bellman's Principle of Optimality Theorem: A policy achieves the TD value function estimation Algorithm optimal value iff for any state s' reachable from s, π achieves the

optimal value from state s' Value Iteration Algorithm

- Initialize V arbitrarily, e.g., V(s) = 0, for all $s \in S^+$
- Repeat
 - ο Δ ← 0
 - o For each s ∈ S:
 - v ← V(s)

$$V(s) \leftarrow \max_{a} \sum_{s'} \mathcal{P}^{a}_{ss'} \big[\mathcal{R}^{a}_{ss'} + \gamma V(s') \big]$$

- $\Delta \leftarrow \max(\Delta, |v V(s)|)$
- until $\Delta < \theta$ (a small positive number)
- Output a deterministic policy π such that

$$\circ \quad \pi(s) = \arg\max_{a} \sum_{s'} \mathcal{P}_{ss'}^{a} \big[\mathcal{R}_{ss'}^{a} + \gamma V(s') \big]$$

Policy Iteration Algorithm

- 1 Initialization
 - \circ V(s) \in R and π (s) \in A(s) arbitrarily for all s \in S
- 2 Policy evaluation
 - o Repeat
 - $\Delta \leftarrow 0$
 - For each $s \in S$:
 - \neg $v \leftarrow V(s)$
 - $\quad \Box \quad V(s) \leftarrow \textstyle \sum_{s'} \mathcal{P}_{ss'}^{\pi(s)} \left[\mathcal{R}_{ss'}^{\pi(s)} + \right.$
 - $\Delta \leftarrow \max(\Delta, |v V(s)|)$
 - o until $\Delta < \theta$ (a small positive number)
- 3 Policy improvement
 - o Policy-stable ← true
 - o For each s ∈ S:
 - b ← π(s)
 - π(s)

$$\leftarrow \arg\max_{a} \sum_{s'} \mathcal{P}^a_{ss'} \big[\mathcal{R}^a_{ss'} + \gamma V(s') \big]$$

- If b $\neq \pi(s)$, then policy-stable \leftarrow false
- o If policy-stable, then stop; else go to 2

Generalized Policy Iteration Algorithm

- Evaluation: $\pi \rightarrow V$
 - \circ V \rightarrow V $^{\Lambda}$
- Improvement: $V \rightarrow \pi$
 - $\circ \quad \pi \to \mathsf{greedy}(\mathsf{V})$

Model-Free Control

MC Policy Evaluation

- procedure MonteCarloEstimation(π)
 - o Init
 - V-hat(s) \leftarrow arbitrary value, for all $s \in S$
 - Returns(s) ← an empty list, for all s ∈ S
- EndInit
- · repeat
 - $\circ \quad \text{Get trace, } \tau \text{, using } \pi.$
 - o for all s appearing in τ do

 - Append R to Returns(s)
 - V-hat(s) ← average(Returns(s))
- · until forever

MC Batch averaging

•
$$\mu = \frac{1}{k} \sum_{j} x_{j}$$
MC Online averaging

•
$$\mu_k = \mu_{k-1} + \frac{1}{k}(x_k - \mu_{k-1})$$

remental Monte-Carlo Updates

MC Online averaging

•
$$\mu_k = \mu_{k-1} + \frac{1}{k}(x_k - \mu_{k-1})$$
Incremental Monte-Carlo Updates

• $V(s_t) \leftarrow V(s_t) + \frac{1}{N(s_t)}(R_t - V(s_t))$

• non-stationary $V(s_t) \leftarrow V(s_t) + \alpha(R_t)$

• non-stationary: $V(s_t) \leftarrow V(s_t) + \alpha \left(R_t - V(s_t) \right)$

Monte-Carlo update $V(s_t) += \alpha(R_t - V(s_t))$

Temporal Difference update every time-step • $V(s_t) += \alpha(r_{t+1} + \gamma V(s_{t+1}) - V(s_t))$

Temporal Difference Error: $r_{t+1} + \gamma V(s_{t+1}) - V(s_t)$

Temporal Difference Target: $r_{t+1} + \gamma V(s_{t+1})$

- procedure TD-Estimation(π)
 - o Init
 - V-hat(s) <- arbitrary value, for all s ∈ S
 - o EndInit
 - o repeat(For each episode)
 - Initialize s
 - repeat(For each step of episode)
 - □ a action chosen from t at s
 - ☐ Take action a; observe r, and next
 - state. s' \Box $\delta < -r + \gamma V - hat(s) - V - hat(s)$
 - \Box V-hat(s) <- V-hat(s) + $\alpha\delta$
 - □ s <- s' until s is absorbing state
 - o until Done
- end procedure

Greedy policy improvement

- $\pi'(s) = \arg\max_{s,s} \mathcal{R}_{sa}^{s'} + \mathcal{P}_{ss'}^{a} V(s')$
- π'(s) = argmax_a Q(s, a)

On-Policy

• Soft control, ∈-greedy, SARSA

Off-Policy

• Importance sampling, Q-Learning

ϵ -greedy policy with $\epsilon \in [0, 1]$

- π(s, a) =
- $1 \epsilon + \epsilon/|A(s)|$, if $a = a^* = \operatorname{argmax}_a Q(s, a)$
- ϵ/|A(s)|, if a ≠ a*

On-policy ε-greedy first-visit MC control algorithm

- Code
 - Initialize, for all $s \in S$, $a \in A(s)$:
 - Q(s,a) ← arbitrary
 - Returns(s,a) \leftarrow empty list
 - $\pi(a|s) \leftarrow$ an arbitrary ϵ -soft policy
 - Repeat forever:
 - (a) Generate an episode using π
 - (b) For each pair s, a appearing in the episode:

 - ☐ Append G to Returns(s.a)
 - \Box Q(s,a) \leftarrow average(Returns(s,a))
 - (c) For each s in the episode:
 - $□ a^* \leftarrow argmax_a Q(s,a)$
 - □ For all $a \in A(s)$:
 - π(a | s) ←
 - \Diamond 1 ϵ + ϵ /|A(s)|, if a = a*
 - $\diamond \epsilon/|A(s)|$, if $a \neq a^*$

Greedy in the Limit with Infinite Exploration (GLIE)

- · All state-action pairs are explored infinitely many times,
 - $\lim_{k\to} N_k(s, a) = \infty$
 - The policy converges on a greedy policy,

 - $\circ \ lim_{k \rightarrow} \ \pi_k(a,s)$ $= (a == \operatorname{argmax}_{a'} Q_k(s, a'))$
 - \circ '==' evaluates to 1 if true and 0 else
- R ← return from first appearance of s in e.g. if ϵ reduces to zero with $\epsilon_k = 1/k$
 - MC Batch Learning to Control • procedure MonteCarloBatchOptimization(n)
 - o Init
 - Q-hat(s, a) <- arbitrary value, for all s∈S, a∈A. ■ π <- ε-greedy(Q-hat)
 - o EndInit
 - o repeat (For each batch)
 - Returns(s, a) <- an empty list, for all s∈S
 - for i = 1 to n do
 - $\hfill\Box$ Get trace, τ , using π
 - □ for all (s,a) appearing in T do • R <- return from first appearance of (s,
 - a) in τ.
 - ◆ Append R to Returns(s, a)
 - for all ses aeA do
 - ☐ Q-hat(s, a) <- average(Returns(s, a))
 - π <- ε-greedy(Q-hat) o until Done
 - o return greedy(Q-hat)
 - MC Iterative Learning to Control algorithm procedure MonteCarloIterativeOptimization(n)

 - o Init
 - Q-hat(s, a) <- arbitrary value, for all s∈S, a∈A.
 - π <- ε-greedy(Q-hat)
 - o EndInit
 - o for i = 1 to n do
 - Get trace, τ, using π • for all (s,a) appearing in T do
 - $\ \square$ R <- return from first appearance of (s, a) in τ . \Box Q-hat(s, a) <- Q-hat(s_t, a_t) + α [R - Q-
 - hat(s_t, a_t)] ■ π <- ε-greedy(Q-hat)
 - o return greedy(Q-hat)

Sarsa: Q(S,A) \leftarrow Q(S,A) + α (r + γ Q(S',A') - Q(S, A)) Sarsa algorithm

- Initialize Q(s,a), ∀s∈S, a∈A(s), arbitrarily, and Q(terminal-state, \cdot) = 0
- Repeat (for each episode):
 - o Initialize S
 - Choose A from S using policy derived from 0 Q (e.g., ε-greedy)
 - Repeat (for each step of episode):
 - Take action A, observe R, S'
 - Choose A' from S' using policy derived from Q (e.g, e-greedy)
 - $Q(S,A) \leftarrow Q(S,A) + \alpha(R + \gamma Q(S', A') -$ Q(S, A))
 - $S \leftarrow S'$; $A \leftarrow A'$;
 - o until S is terminal

Robbins-Munro sequence of step-sizes α_t :

- $\sum_{t=1}^{\infty} \alpha_t = \infty \wedge \sum_{t=1}^{\infty} \alpha_t^2 < \infty$
- e.g. $\alpha t = \alpha/t$ for $\alpha > 0$

Q-Learning:

- $Q(S, A) \leftarrow Q(S, A) + \alpha(R + \gamma \max_{a'} (S', a') Q(S, A))$ Q-Learning algorithm
 - Initialize Q(s,a), ∀s∈S, a∈A(s), arbitrarily, and $Q(terminal-state, \cdot) = 0$
 - Repeat (for each episode):
 - o Initialize S
 - Repeat (for each step of episode):
 - Choose A from S using policy derived from Q (e.g., ∈-greedy)
 - Take action A, observe R, S'
 - $Q(S,A) \leftarrow Q(S,A) + \alpha[R + \gamma \max_a]$ Q(S', a) - Q(S, A)
 - $S \leftarrow S'$;
 - o until S is terminal

	Full Backup (DP)	Sample Backup (TD)
Bellman Expectation Equation for $v_{\perp}\pi(s)$	Iterative policy evaluation $V(s) \leftarrow E[R + \gamma V(S') s]$	TD Learning $V(s) \leftarrow \alpha R + \gamma V(S')$
Bellman Expectation Equation for $q_{\perp}\pi(s, a)$	Q-Policy Iteration $Q(s,a) \leftarrow E[R + \gamma Q(S',A') s,a]$	Sarsa Q(S,A) $\leftarrow \alpha$ R + γ Q(S',A')
Bellman Optimality Equation for q*(s, a)	Q-Value Iteration $Q(s,a) \leftarrow E[R + \gamma \max_a a'] Q(s',a') s,a]$	Q-Learning Q(S,A) \leftarrow R + γ max_a' Q(S',a')

Function Approximation

Estimate value function with function approximation

- $V^{\pi}(s) \approx V hat(s, w)$
- $Q^{\pi}(s, a) \approx Q-hat(s, a, w)$

Stochastic Gradient Descent

- $J(w) = E[V^{\pi}(s) V-hat(s,w)^2]$
- $\Delta w = -1/2 \alpha \nabla_w J(w)$
 - $\circ = \alpha(V^{\pi}(s) V-hat(s, w))\nabla_w V-hat(s, w)$

Represent state by a feature vector

- $x(s) = (x_1(s) ... x_n(s))^T$
- v-hat(s, w) = x(s)^Tw

Radial Basis Functions: $\phi_s(i) = \exp\left(-\frac{|s-c_i|^2}{2c^2}\right)$ Update rule: $\Delta w = \alpha(V^{\pi}(s) - V - hat(s, w))x(s)$

∇_wV-hat(s,w) = x(s)

Value function estimation using linear function approximation

- Initialize w = 0, k = 1
- loop
 - Sample tuple (s_k, a_k, k, s_(k+1)) given π
 - Update weights:
 - $w = w + a(r + \gamma x(s)^T w x(s)^T w)x(s)$
 - o k = k + 1
- end loop

Deep Q Learning

Q-Learning vs Lin FA Q-Learning

- Initialize Q(s,a), ∀s∈S, a∈A(s), arbitrarily, and $Q(terminal-state, \cdot) = 0$
- Repeat (for each episode):
 - o Initialize S
 - o Repeat (for each step of episode):
 - Choose A from S using policy derived from Q (e.g., ϵ -greedy)
 - Take action A, observe R, S'
 - $Q(S,A) \leftarrow Q(S,A) + \alpha[R + \gamma \max_a Q(S', a)]$ Q(S, A)1
 - $S \leftarrow S'$;
 - o until S is terminal

DQN TD error(w) = $r_{t+1} + \gamma \max_{a'} Q(S_{t+1}, a'; w) Q(s_t,a;w)$ $\Delta w = \alpha \left[r + \gamma \max_{a'} Q(S_{t+1}, a'; w) - \right]$ $Q(s_t, a; w) | \nabla_w Q(S_t, a; w)$

DQN algorithm

- · Initialize replay memory D to capacity N
- Initialize action-value function Q with random weights
- for episode = 1, M do
 - Initialize state st
 - o for t = 1, T do
 - With probability ∈ select a random action a_t
 - otherwise select $a_t = \max_a Q^*(s_t, a; \theta)$
 - Execute action at and observe reward rt and state st+1
 - Store transition (st, at, rt, st+1) in D
 - Set $s_{t+1} = s_t$
 - Sample random minibatch of transitions (s_t, a_t, r_t, s_{t+1}) from D
 - Set y_j =
 - \Box r_j for terminal s_{t+1}
 - $r_i + \gamma \max_{a'} Q(s_{t+1}, a'; \theta)$ for nonterminal s_{t+1}
 - Perform a gradient descent step on (y_i - $(s_t, a_j; \theta))^2$
 - o end for
- · end for

DDQN: $Q^*(s_t, a_t) \approx r_t +$

 $\gamma Q'(s_{t+1}, \operatorname{arg\,max}_{a'} Q(s_{t+1}, a'))$

Tricks of the Trade

Formatting inputs

- Frame Stacking
- Input normalization
- Frames of reference/Coordinate Systems

Control of training

- Bootstrapping
- Reward normalization or Reward standardization
- Target networks
- Weight initialization
- Gradient clipping
- Considering (mini-)batch sizes
- Revisiting continuous actions

Policy Gradients

 $p_{\tau}(\theta) = p_{\theta}(s_1, a_1, ..., s_T, a_T)$

$$p_{\tau}(\theta) = p(s_1) \prod_{t=1}^{T} \pi_{\theta}(a_t|s_t) p(s_{t+1}|s_t, a_t)$$

Infinite horizon: $\theta^* =$

 $arg \max_{\theta} \mathbb{E}\left[\sum_{t=1}^{T} r(s_t, a_t)\right]_{\tau \propto p_{\theta}(\tau)}$

Finite horizon: $\theta^* =$

 $\arg\max_{\theta} \sum_{t=0}^{T} \mathbb{E}[r(s_t, a_t)]_{(s_t, a_t) \sim p_{\theta}(\tau)}$ Finite Difference Policy Gradient update rule:

• $\theta_k += \alpha((J(\theta + u_k \epsilon) - J(\theta)) / \epsilon)$

Direct Policy gradients

•
$$\theta^* = \arg\max_{\theta} \mathbb{E}\left[\sum_{t} r(s_t, a_t)\right]_{\tau \sim p_{\theta}(\tau)}$$

$$J(\theta) = \mathbb{E}\left[\sum_{t} r(s_{t}, a_{t})\right]_{\tau \sim p_{\theta}(\tau)}$$

$$N \underset{i=1}{\overset{N}{\sum}} \underset{t}{\overset{L}{\sum}} V(t,t) W_{t}$$
• $J(\theta) = \sum_{s} p^{\pi}(s) V^{\pi}(s)$

 $\nabla_{\theta}J(\theta)$

$$= E_{\tau \sim \pi_{\theta}(\tau)} \left[\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \right) \left(\sum_{t=1}^{T} r(s_{t}, a_{t}) \right) \right]$$

REINFORCE algorithm:

- Sample $\{\tau^i\}$ from $\pi_\theta(a_t|s_t)$ (run the policy)
- $\nabla_{-}\theta J(\theta) \approx$

$$\circ \sum_{i} \left(\sum_{t} \nabla_{\theta} \log \pi_{\theta} \left(a_{t}^{i} \middle| s_{t}^{i} \right) \right) \left(\sum_{t} r(s_{t}^{i}, a_{t}^{i}) \right)$$

• $\theta < -\theta + \alpha \nabla \theta J(\theta)$

Gaussian Distribution

- $p(x | \mu, \Sigma) = (2\pi)^{D/2} |\Sigma|^{1/2} exp(-1/2 (x \mu)^{T} \Sigma$ $^{1}(x - \mu))$

$$\approx \frac{1}{N} \sum_{i}^{N} \left(\sum_{t} \nabla_{\theta} \log \pi_{\theta} \left(a_{t}^{i} | s_{t}^{i} \right) \right) \left(\sum_{t} r(s_{t}^{i}, a_{t}^{i}) \right)$$

Example: $\pi\theta(at|st) = N(fneural network(st);$

•
$$\nabla_{\theta} \log \pi_{\theta}(a_t|s_t) = -\frac{1}{2} \Sigma^{-1}(f(s_t) - a_t) \frac{\mathrm{d}f}{\mathrm{d}\theta}$$

Maximum likelihood

•
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log \pi_{\theta}(\tau_{i}) r(\tau_{i})$$

• $\nabla_{\theta} J_{\text{ML}}(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log \pi_{\theta}(\tau_{i})$

•
$$\nabla_{\theta} J_{\text{ML}}(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log \pi_{\theta}(\tau_{i})$$

Actor-Critic Methods

Actor: policy-based learning Critic: value-based learning

Advantage Actor-Critic (A2C) Algorithm

- Sample {s_i, a_i} from $\pi_{\theta}(a|s)$ (run it on the robot)
- Fit $\hat{V}_{\phi}^{\pi}(s)$ to sampled reward sums

$$\begin{aligned} &\circ \quad y_{i,t} \approx r(s_{i,t}, a_{i,t}) + \hat{V}^{\pi}_{\phi}(s_{i,t+1}) \\ &\circ \quad \mathcal{L}(\phi) = \frac{1}{2} \sum \left\| \hat{V}^{\pi}_{\phi}(s_i) - y_i \right\|^2 \end{aligned}$$

- Evaluate $\hat{A}^{\pi}(s_i, a_i) = r(s_i, a_i) + \hat{V}^{\pi}_{\phi}(s_i') -$
- $\nabla_{\theta} J(\theta) \approx \sum_{i} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \hat{A}^{\pi}(s_{i}, a_{i})$

Advantage element: Q(s, a) = V(s) + A(s, a)