6. TCP Congestion Control

- TCP congestion control prevents the sender from congesting the network with too much data
- Step 1. Sender probes the network capacity by dynamically adjusting its congestion window size (cwnd) estimated by sender
 - Sender makes sure: swnd ≤ cwnd
 - Combined with TCP flow control, we have

```
- swnd = min(rwnd, cwnd) -> swad & rwnd
-> informed by the receiver
```

- <u>১</u> ♦ Congestion detection
- Step 3 ▶ Upon detecting congestion, sender slows down its transmissions

Cpr E 489 -- D.Q.

TCP Congestion Control: Probing the Network Capacity

- Probing the network capacity in two phases: { عمل معلى معلى المعلى ا
 - Phase 1: Slow Start (SS)
 - Starts with cwnd = 1 (MSS) Max Segment Size
 - MSS (Maximum Segment Size) for TCP is 536 bytes by default
 - Each time a non-duplicate ACK is received, increment cwnd

Cpr E 489 -- D.Q.

TCP Congestion Control: Probing the Network Capacity

- Probing the network capacity in two phases:
 - ▶ Phase 2: Congestion Avoidance (CA)
 - Enters CA when cwnd ≥ ssthresh
 - Each time a non-duplicate ACK is received,

$$\mathsf{cwnd} \leftarrow \mathsf{cwnd} + 1/\lfloor \mathsf{cwnd} \rfloor$$

cond = 1

3]
$$(4.5,6.7]$$
 $(8.9,10,11/12]$

ss \leftrightarrow cA

2 4 5

Ex: Sothresh = 4

6

Cpr E 489 -- D.Q.

TCP Congestion Control: Congestion Detection

How to detect congestion?

- Interprets segment loss as congestion signal
- ▶ Retransmits the lost segment upon

 - Reception of the 4th ACK with the same sequence number
 - This is called Fast Retransmit

TCP Congestion Control: Slowing Down Transmission

Sender slows down its transmissions upon congestion detection

- * TCP Takee
- * TCP Reno
- * TCP New Reno

Cpr E 489 -- D.Q.

