Travelling Salesman Problem: Convergence Properties of Optimization Algorithms

Group 2

Zachary Estrada Chandini Jain Jonathan Lai

Introduction

Hierarchy of Optimization Methods

Hamiltonian Description

$$H(r_0...r_n, V_0...V_n) = k_b \sum_{i,j}^{n,n} (r_i - r_j)^2 + k_v \sum_{k}^{n} ||V_k - V_0||$$

Penalizes vertices with connections unequal to required connection

Where,

 r_i is the position of $particle_i$

 V_k is the number of vertices *particle*_i is connected to

 V_0 is the actual number of vertices $particle_i$ should be connected to

 $k_b = 1$, bond constant

 $k_v = 1024$, vertex constant

Test Systems

Code Implementation

- •Java Heavylifting
 - -Software Java 1.6
- \bullet Python *Analysis*
- \bullet Tcl *Analysis*

Simulated Annealing: Controlled Cooling

Ant Colony

Couple of Slides

Genetic Algorithms: Survival of the Fittest

[&]quot;A genetic algorithm tutorial", Darrell Whitley, Statistics and Computing, Volume 4, Number 2, 65-85, DOI: 10.1007/BF00175354

Genetic Algorithm: Generation Rules

• Selection:

• Fitness proportionate/roulette-wheel selection: Area of the wheel assigned to each parent in proportion to fitness

Crossover:

- Matrix Crossover Variant: Select a column *M* at random and interchange between parents
- After interchange, $V_k > V_0$ for any particle, disconnect from farthest neighbor

Mutation

- **2-Opt Operator Variant:** Connect all particles between two randomly chosen points i_1 and i_2 with a randomly chosen neighbour
- After interchange, $V_k > V_0$ for any particle, disconnect from farthest neighbor

Genetic Algorithm: Energy v/s Iterations

Go With The Winners

Go With The Winner

<u>GWTW – Simulated Annealing with survival of fittest</u>

- Moves are predetermined
 - Create/destroy bonds
 - Swap bonds to explore phase space faster
- Survival of the fittest
 - · Select single winner of system
 - Kill off lower half of population
 - Repopulate single winner clone

Honeycomb Lattice: Comparison

All Algorithms

	Simulated Annealing	Ant Colony Optimization	Genetic Algorithm	Go With the Winner
Avg Energy	535.967999	535.967999	703.6449	535.967999
Best Energy	535.967999	535.967999	535.967999	535.967999
Avg Run Time (s)	797	9	113	1422
Avg Iterations	800000	94	2800	400000

Square Lattice: Comparison

Simulated Annealing

Other Algorithms

	Simulated Annealing	Ant Colony Optimization	Genetic Algorithm	Go With the Winner
Avg Energy	1277	450	450	1518
Best Energy	1277	450	450	450
Avg Run Time (s)	1093	24	113	1713
Avg Iterations	800000	128	2800	400000

Sheared Hexagonal Lattice: Comparison

Simulated Annealing

Ant Colony Optimization

Genetic Algorithm

Go With the Winner

	Simulated Annealing	Ant Colony Optimization	Genetic Algorithm	Go With the Winner
Avg Energy		554.928	606.89764	
Best Energy		554.928	554.928	
Avg Run Time (s)		4	155	
Avg Iterations	800000	243	3100	400000

Square Lattice-Random Positions: Comparison

Genetic Algorithm

Go With the Winner

	Ant Colony Optimization	Genetic Algorithm	Go With the Winner
Avg Energy	463.1	672.762708	962.64
Best Energy	463.1	612.181165	962.64
Avg Run Time (s)	715	187	940
Avg Iterations	5101	4200	400000

Comparison Between Solutions

Square Lattice - Random Positions ACO

GA

Connections 634 similar 270 unique

138: 132 Left v/s Right

Conclusion

- . $ACO \sim GA >> GWTW > SA$
- Choice of move is essential for efficient computation
- Must highly tune code to run