

Modular Linear Brushless Motor Dynamics IIII

Massachusetts Institute of **Technology**

Andy Dequin

2.671 Measurement and Instrumentation

[1] "Japan's maglev train goes 374 mph, sets world record," CNN, https://www.cnn.com/videos/world/2015/04/22/ct japan-maglev-train-world-speed-record.cnn (accessed May 2, 2024).

Abstract

Linear brushless motors are used across a variety of industrial applications ranging from plant automation to superconducting maglev trains. The system for this study is a lightweight, low complexity, and low-cost magnetic linear brushless motor suitable for rapid prototyping or hobbyist applications. The open-loop control of the position is not straightforward due to end effects, friction, and nonlinearities in the magnetic interactions. By measuring the motor force as a function of distance between magnets and current, a linear regime was found 7 mm region around the equilibrium point between magnets.

Force Sensing Setup

INPUT SIGNAL

OUTPUT SIGNAL

Results

Conclusions

The motor's force can be modeled as the sum of current and position

The linear approximation is accurate for 70% of the range

Acknowledgements

I would like to thank Prof. Deng, Dr. Hughey, and Kevin DiGenova for their guidance