Diszkréten mintavételezett függvények

A függvény (jel) értéke csak rögzített pontokban ismert, de köztes pontokban is meg akarjuk becsülni

- ▶ időben mintavételezett jel
- pixelekből álló műholdkép
- rácson futtatott szimuláció

Ismert:

- $\{x_1, x_2, ..., x_N \}$
- $\{y_1 = f(x_1), y_2 = f(x_2), ..., y_N = f(x_N)\}$
- Az x_i-k közötti távolság tetszőleges, változhat is
- x_i lehet több dimenziós is

Interpoláció és extrapoláció

Ismert:

- $\blacktriangleright \{x_1, x_2, ..., x_N\}$
- $\{y_1 = f(x_1), y_2 = f(x_2), ..., y_N = f(x_N)\}$

Keressük:

- ► f(x) közelítő értékét tetszőleges x helyen
- ▶ f analitikus alakja nem ismert, és nem is érdekes

Fontos:

- ez nem függvényillesztés
- f alakját csak lokálisan, x körüli néhány x_i-ből becsüljük, és nem pedig az egész mérési tartományon
- nem törődünk az esetleges mérési hibákkal, az interpoláló görbe mindig egzaktul átmegy a pontokon

Interpoláció

Ha a keresett x-re igaz, hogy $x_k \le x \le x_l$.

- ▶ megkövetelhetjük, hogy ne csak egy, hanem több x-nél kisebb, illetve nagyobb x_i legyen ismert
 - ightarrow magasabb rendű interpoláció

Példák:

- nem egyenletes mintavételezésről áttérünk egyenletesre
- képek átméretezése és forgatása
- hibás pixelek kipótolása képen

Magas rendű görbe interpolálása

Szakaszokból álló függvény interpolálása

Eredeti mérési pontok

Lineáris interpoláció

Interpolált pontok

Interpolációs hiba

Interpolációs hiba köbös interpolációnál

Eredeti kép

Legközelebbi szomszéd interpoláció

Lineáris interpoláció

Köbös interpoláció

Extrapoláció

A függvény értékére nem köztes pontban vagyunk kíváncsiak, azaz $x < x_1$ vagy $x_{\mathcal{N}} < x$

Példák:

- Folyamat (áramfogyasztás, időjárás) jövőbeli becslése
- Differenciálás: egyre sűrűbb pontokkal közelítjük a folytonost, majd extrapolálunk 0-ra

Eredeti mérési pontok

Lineáris extrapoláció

A lineáris extrapoláció hibája

Feltételezések

Általában valamilyen egyszerű függvény segítségével interpolálunk

- legegyszerűbb: lineáris
- többnyire: valamilyen alacsony rendű polinom

Ehhez az kell, hogy az interpolálandó/extrapolálandó jel *jól viselkedjen*

- Legyen folytonos;
 ha két ismert pont között ugrása van, akkor nincs esélyünk jól interpolálni
- Legyen sima: legyen differenciálható, és a deriváltjai is legyenek folytonosak

Vannak nehezen vagy egyáltalán nem interpolálható függvények

pl. lökéshullámok hidrodinamikai szimulációkban

Érdekes analitikus példa

$$f(x) = 3x^3 + \frac{1}{2\pi^4 \ln(\pi - x)} + 1$$

Érdekes analitikus példa kinagyítva

Interpoláció függvényalakok

Legközelebbi szomszéd

nem közelítünk, hanem a legközelebbi ismert értéket vesszük

Polinom

- leső rendben a két ismert pontot összekötő egyenes
- magasabb rendben két oldalt több pontot kell venni

Több dimenziós lineáris

- képek stb. interpolálására
- bilineáris, trilineáris: síkot, hipersíkot kell illeszteni

Racionális függvény

- polinomok hányadosa
- ha az interpolálandó függvénynek pólusai vannak

Trigonometrikus függvények

Ekkor tulajdonképpen Fourier-térben dolgozunk

Lokális és globális interpoláció

Lokális interpoláció

- csak az x körüli k (páros) számú pontot használjuk
- \triangleright az interpoláció rendje k-1

A differenciálhatóság megkövetelése

- lokális interpolációnál az interpoláló függvény differenciálhatósága nem biztosított
- megkövetelhetjük a simaságot, pl. spline- (bütyök-) illesztés

Globális interpoláció

- az összes ismert pontot felhasználjuk
- ez tulajdonképpen függvényillesztés
- ightharpoonup a globális interpoláció rendje N-1, ahol N az összes ismert pont száma

Lokális vagy globális interpoláció?

Ha a függvény ismeretlen értékét csak *néhány x* helyen kell meghatározni

- ▶ lokálisan illesztünk egy függvény x körüli k darab pontra
- nagyobb numerikus pontosság érhető el
- ightharpoonup k
 ightarrow N módon finomítható az interpolációs, ha konvergál
- k fokozatos növelésének utolsó lépése ad egy becslést az interpoláció hibájára

Ha a függvény ismeretlen értékét sok x helyen kell meghatározni

- ightharpoonup az összes N pontra illesztünk, kiszámoljuk f(x)-et
- kisebb numerikus pontosság a kerekítések miatt
- ha bonyolult a függvény, nem elég hatékony numerikusan

Interpolációs modell választása

A függvényalak az interpolálandó adatoktól függ

- folytonosan differenciálható-e?
- vannak-e pólusai?
- milyen sűrűn van mintavételezve?
- periodikus-e?
- meg kell-e tartani a görbe alatti integrál értékét?
- mekkora a számítási igény?

Az interpolációs rend megválasztása

- túl magas rendben az interpoláció "ugrálni" fog
- a magasabb rendű függvények számításigényesebbek

Interpoláció és extrapoláció polinommal

Naiv megoldás:

- meghatározzuk a k ismert ponton átmenő polinom együtthatóit¹
- ightharpoonup ez egy k-1 rendű polinom, a k. ismeretlen a konstans tag
- behelyettesítünk a polinomba az keresett x helyen, és így becsüljük f(x) értékét

Jobb megoldás:

- a polinom x helyen felvett értékét közvetlenül állítjuk elő, a polinom együtthatóinak meghatározása nélkül
- ▶ fejezzük ki P(x)-et az ismert x_i és $y_i = f(x_i)$ értékekkel

¹Házi feladat: hogyan vezethető ez vissza lineáris problémára?

Lagrange-formula

$$P(x) = \frac{(x - x_2)(x - x_3) \cdot \dots \cdot (x - x_k)}{(x_1 - x_2)(x_1 - x_3) \cdot \dots \cdot (x_1 - x_k)} \cdot y_0 + \frac{(x - x_1)(x - x_3) \cdot \dots \cdot (x - x_k)}{(x_2 - x_1)(x_2 - x_3) \cdot \dots \cdot (x_2 - x_k)} \cdot y_1 + \dots + \frac{(x - x_1)(x - x_2) \cdot \dots \cdot (x - x_{k-1})}{(x_k - x_1)(x_k - x_2) \cdot (x_k - x_{k-1})} \cdot y_k$$

- ightharpoonup Kielégíti a $P(x_i) = y_i$ egyenlőséget, hiszen
- az i. tagban a számláló és nevező azonos
- a többi tagban a számláló 0

Szinusz interpolálása parabolával

Szinusz interpolálása negyedrendű polinommal

Túl magas rendű polinom használata

Interpoláló polinom iteratív meghatározása

Legyen $P_{(i)(i+1)\dots(i+k)}$ olyan polinom, ami átmegy az $i,i+1,\dots,i+k$ indexű pontokon.

Áll.: Ez előáll a következő alakban:

$$P_{(i)(i+1)...(i+k)} = \frac{(x - x_{i+k})P_{(i)(i+1)...(i+k-1)} + (x_i - x)P_{(i+1)(i+2)...(i+k)}}{x_i - x_{i+k}}$$

Valóban:

- ightharpoonup mindkét elődpolinom átmegy az i+1,...,i+k-1 indexű pontokon
- a két szélső ponton pedig egyikük illetve másikuk

Kiindulás:

 $ightharpoonup P_{(i)} = y_i$ konstans függvény

Rekurzív formulák meghatározása

Két polinom különbsége:

$$C_{k,i} = P_{(i)(i+1)...(i+k)} - P_{(i)(i+1)...(i+k-1)}$$

$$D_{k,i} = P_{(i)(i+1)...(i+k)} - P_{(i+1)(i+2)...(i+k)}$$

Ezekkel:

$$C_{k+1,i} = \frac{(x_i - x)(C_{m,i+1} - D_{m_i})}{x_i - x_{i+k+1}}$$

$$D_{k+1,i} = \frac{(x_{i+k+1} - x)(C_{m,i+1} - D_{m_i})}{x_i - x_{i+k+1}}$$

 $C_{k,i}$ és $D_{k,i}$ korrekciót ad a polinomhoz.

- ha a korrekciók nem csökkennek, akkor a függvényt nem jó polinommal interpolálni
- a legutolsó lépésben kiszámolt korrekciót tekinthetjük hibabecslésnek

Interpolációs polinom együtthatói

Eddig csak a polinom x-ben felvett értékét kerestük

- Ez jó, ha kevés x-re kell kiértékelni
- ► Ha sok ismeretlen f(x)-et keresünk, akkor jobb kiszámolni az együtthatókat, majd behelyettesíteni a polinomba.

Adottak az $x_1, x_2, ..., x_N$ pontok és $y_1 = f(x_1), y_2 = f(x_2), ..., y_N = f(x_N)$ pontokban felvett értékek, ezeket szeretnénk polinommal interpolálni.

- Nem illesztés, tehát a polinomnak az összes (x_i, y_i) ponton át kell mennie
- Írjuk fel az egyenletet
- ▶ Polinom fokszáma: N-1, ahol N a pontok száma.

Egyenletrendszer a polinom c_i együtthatóira

$$y_1 = c_1 + c_2 x_1 + c_3 x_1^2 + \dots + c_N x_1^{N-1}$$

$$y_2 = c_1 + c_2 x_2 + c_3 x_2^2 + \dots + c_N x_2^{N-1}$$

$$\vdots$$

$$y_N = c_1 + c_2 x_N + c_3 x_N^2 + \dots + c_N x_N^{N-1}$$

Ezt kell megoldani a c_i polinom-együtthatókra. x_i -k ismertek. Vegyük észre, hogy az x_i -k hatványaiból alkotott mátrix speciális (Vandermonde-mátrix)! Erre létezik majd speciális megoldó módszer.

Az együtthatókra felírt egyenletrendszer megoldása

A Vandermonde-mátrixokra létező speciális eljárás gyors: O(N)

- A Vandermonde-mátrixok többnyire numerikusan problémásak
- ► Ha z gyors módszer instabil lenne, akkor használható lassabb megoldó is.
- A polinom x pontban felvett értéke a korábbi iteratív módszer szerint meghatározható a polinom együtthatóinak kiszámítása nélkül is, és az a módszer stabil.

Polinom együtthatóinak iteratív meghatározása

Az együtthatókat meghatározhatjuk a korábbi iteratív módszer segítségével is:

- Az iteratív módszer ugyan csak egy adott x pontban adja meg az interpolált eredményt, de
- ightharpoonup válaszuk x-et x=0-nak. Ekkor a polinom értéke pontosan c_0 .
- Vonjuk le az összes y_i -ből c_0 -t, osszuk le az egyenletrendszer sorait a megfelelő x_i -kkel, majd
- **b** dobjunk el egy (x_i, y_i) pontot.
- ▶ Tetszőleges pont eldobható, de a legkisebb x_i mindig jó választás.
- Ekkor hasonló problémára jutunk, csak eggyel csökkent az ismeretlenek száma.
- A módszer addig folytatandó, míg az összes *c_i*-t ki nem számoltuk.
- Ez a módszer stabil, de végigcsinálva kiderül, hogy $O(N^3)$ -ös.

Példa numerikus problémákra polinomok kapcsán.

Együtthatók:

c_0	=	0.0000
c_1	=	0.0000
<i>c</i> ₂	=	0.0002
<i>c</i> ₃	=	-0.0017
<i>C</i> 4	=	-0.0023
<i>C</i> 5	=	0.0278
<i>c</i> ₆	=	0.0060
<i>C</i> ₇	=	-0.1713
<i>c</i> ₈	=	0.0497
C 9	=	0.3386
<i>c</i> ₁₀	=	0.2109

A nagyobb hatványokhoz egyre nagyobb, egymást sokszor pont kiejtő együtthatók tartoznak. Ez teszi a magas rendű polinomokon alapuló interpolációt nagyon instabillá.

Interpoláció és extrapoláció racionális függvényekkel

Racionális függvény: két polinom hányadosa.

$$R_{(i)(i+1)\dots(i+m)} = \frac{P_{\mu}(x)}{Q_{\nu}(x)} = \frac{p_0 + p_1x + p_2x^2 + \dots + p_{\mu}x^{\mu}}{q_0 + q_1x + q_2x^2 + \dots + q_{\nu}x^{\nu}}$$

- ightharpoonup Összesen $\mu + \nu + 1$ ismeretlen van
- A +1 onnan jön, hogy két konstans tag van ugyan, de a számlálót és a nevezőt is ugyanazzal a számmal osztva az egyik 1-gyé tehető.
- ightharpoonup Összesen m+1 pontunk van
- ▶ Ha meg akarjuk tudni oldani az egyenletrendszert, akkor az $m+1=\mu+\nu+1$ feltételt teljesíteni kell

Miért jobbak a racionális függvények a polinomoknál?

Ha az interpolálandó függvénynek pólusai vannak

- Adott x_i értékeknél a függvény divergál
- ightharpoonup Ekkor $Q_{\nu}(x)$ ott zérus lesz
- A polinomok ilyet nem tudnak
- Előfordulhat, hogy magának a függvénynek nincsen pólusa a valós számok mentén, de a komplex síkon igen.
- ► A polinomok ilyenkor is rosszul viselkednek
- Ok: ugyanaz, amiért a hatványsorok is nagyon rosszul konvergálnak ilyen esetekben.
- Ezek nem feltétlen különleges függvények!

Példa komplex pólussal rendelkező függvényre

$$f(x)=\frac{1}{x^2+1}$$

Lineáris interpoláció még egyszer

Két pont közötti legegyszerűbb interpolációs függvény az egyenes:

$$y = Ay_j + By_{j+1},$$

ahol

$$A = \frac{x_{j+1} - x}{x_{j+1} - x_j}$$
 $B = 1 - A = \frac{x - x_j}{x_{j+1} - x_j}$

Ezek amúgy a korábbi bonyolult Lagrange-formulák a legegyszerűbb polinom esetére, de kijön az egyenes egyenletéből is:

$$y = y_j + (x - x_j) \frac{y_{j+1} - y_j}{x_{j+1} - x_j}$$

Probléma:

A második deriváltja ugyan két pont között nulla, de az x_j pontokban nem meghatározott (vagy végtelen)

Köbös spline

Előírjuk, hogy az ismert x_j pontokban az interpoláló f függvény sima legyen, azaz

- létezzen a második deriváltja, és az legyen folytonos
- ebből következik, hogy az első deriváltja is folytonos.

Köbös spline: feltételek a deriváltakra

Az x_i pontban a következő feltételek írhatók fel:

$$y_A(x_j) = y_B(x_j) = y_i$$
$$f'_A(x_j) = f'_B(x_j)$$
$$(f'_A(x_j) = f_B(x_j))$$

További feltételeket kapunk y_A -ra és y_B -re az x_{j-1} , x_j illetve az x_{j+1} pontokban

- Összesen szakaszonként 4-4 egyenlet: harmadfokú spline-t szeretnénk
- Ezekből közvetlenül nem szemléletes kihozni egyenleteket a spline-ra.

Spline egyenleteinek származtatása

Tegyük fel, hogy nem csak y_j -t, hanem y_j'' -t, azaz a második deriváltakat is ismerjük minden pontban.

- Így minden szakaszra négy lineáris egyenletet kapunk
- Bízunk benne, hogy lesz megoldásuk

Keressük az interpolációs függvényt x_j és x_{j+1} között a következő alakban:

$$y = Ay_j + By_{j+1} + Cy'_j + Dy''_{j+1},$$

ahol A, B, C és D az x_j és x_{j+1} legfeljebb harmad rendű polinomja.

Megoldás harmadfokú spline-okra

A harmadfokú spline formulája:

$$y = Ay_j + By_{j+1} + Cy'_j + Dy''_{j+1},$$

ahol

$$A = \frac{x_{j+1} - x}{x_{j+1} - x_j}$$
 $B = 1 - A = \frac{x - x_j}{x_{j+1} - x_j}$

a korábbiak, továbbá

$$C = \frac{1}{6}(A^3 - A)(x_{j+1} - x_j)^2$$
$$D = \frac{1}{6}(B^3 - B)(x_{j+1} - x_j)^2$$

Erről belátható, hogy kielégíti a korábbi feltételeket, viszont y_j'' -k most még tetszőlegesek.

Spline együtthatók meghatározása

Ha N az illesztendő pontok száma, akkor az y_j'' -kra adódó egyenletrendszer is N ismeretlenes.

- Megköveteljük, hogy minden pontban megegyezzenek a mindkét oldali második deriváltak.
- Így kapunk N-2 egyenletet a N ismeretlenre.
- A két szélső pontban a deriváltak értéke szabadon megadható, legyen mondjuk 0.

$$\frac{x_j - x_{j-1}}{6} y''_{j-1} + \frac{x_{j+1} - x_{j-1}}{3} y''_j + \frac{x_{j+1} - x_j}{6} y''_{j+1} = \frac{y_{j+1} - y_j}{x_{j+1} - x_j} - \frac{y_j - y_{j-1}}{x_j - x_{j-1}}$$
$$y''_1 = y''_N = 0$$

Az egyenletrendszer megoldása

Az egyenlet megoldása O(N) műveletet igényel

- ► Nem csak lineáris, de
- a felírt mátrix tridiagonális
- csak a főátlóban és a közvetlenül mellette levő átlóban vannak elemek, hiszen
- ▶ minden egyenletben csak y''_{i-1} , y''_i és y''_{i+1} szerepel.

Tridiagonális egyenletrendszer

Az alábbi egyenletben x_i-k ismeretlenek.

Megoldási javaslat: LU dekompozíció

- ► Maga a dekompozíció és a visszahelyettesítés is összesen O(N) műveletet igényel.
- Nem kell az egész N × N mátrixot tárolni, elég a három átlót három tömbben.
- Emiatt sok-sok pontra is megoldható.
- $ightharpoonup a_1$ és c_N nem szerepel az egyenletben.

A spline-ok jobbak, mint a polinomok

- A pontok között a köbös spline jól viselkedik
- Extrapolációra ez sem sokkal jobb

Interpoláció több dimenzióban, rácson, rács nélkül

Csak két dimenziót tárgyalunk, magasabb dimenziókra általánosítható.

Szabályos rácson:

- \blacktriangleright Az ismert $(x, y)_i$ pontok lehetnek egy szabályos rácson.
- Ekkor a pontok indexelhetők x_i, y_i módon is.
- \blacktriangleright 1 \leq i \leq M, 1 \leq j \leq N
- Szabályos rács: két vektor definiálja, de nem muszáj, hogy négyzetrács legyen.

Ha az ismert pontok elszórtan helyezkednek el:

- Bonyolultabb az interpoláció
- Ponthármasok által alkotott háromszögeken kell dolgozni
- Delaunay-háromszögelés, ld. később

Interpoláció több dimenzióban rácson

Egy dimenzióban:

- ► A legegyszerűbb interpoláció: lineáris
- Két pont között mindig húzható egyenes

Két dimenzióban:

- A rács egy celláját négy pont definiálja
- Ezeken át általában nem fektethető sík
- Essünk neki rögtön magasabb rendű görbékkel?
- Dolgozzunk mindig háromszögekkel?

Ismertek az (x_i, y_j) pontpárok egy rácson és a $z(x_i, y_j)$ értékek. Az (x, y) pontban a függvény értéke ismeretlen, viszont tudjuk, hogy

 $x_i < x < x_{i+1}$ és $y_i < y < y_{i+1}$

Visszavezetjük a problémát a lineáris esetre:

- Interpoláljunk először az egyik index szerint: $z(x, y_i)$ -t becsüljük $z(x_i, y_i)$ és $z(x_{i+1}, y_i)$ -ből, és $z(x, y_{i+1})$ -t becsüljük $z(x_i, y_{i+1})$ és $z(x_{i+1}, y_{i+1})$ -ből.
- Majd a másik irányban: z(x, y)-t becsüljük $z(x, y_i)$ és $z(x, y_{i+1})$ -ből
- Jól újrahasznosíthatók az egy dimenziós módszerek
- Módszertől függően az eredmény függhet az irányok sorrendjétől

Bilineáris interpoláció

Nézzük, hogy (x, y) hogyan viszonyul az öt bekeretező négy pont koordinátáihoz:

$$t = \frac{x - x_i}{x_{i+1} - x_i}$$
$$u = \frac{y - y_j}{y_{j+1} - y_j}$$

Ebből a függvény interpolált z(x, y) értéke:

$$z(x,y) = (1-t)(1-u)z_{ij} + t(1-u)z_{(i+1)j} + (1-t)uz_{i(j+1)} + tuz_{(i+1)(j+1)}$$

- Ez lineáris kifejezés, de a síknál általánosabb
- "Nyeregfelület" is lehet

Bilineáris interpoláció

Bilineáris interpoláció

Kép interpolálása bilineáris interpolációval

Interpoláció két dimenzióban spline-okkal

A bilineáris interpoláció folytonos felületet ad, de nem sima.

Használhatunk köbös spline-okat, de

- Nem elegendő megkövetelni a második deriváltak azonosságát az ismert pontokban
- Itt most parciális deriváltak vannak
- Ki kell róni feltételeket az első deriváltakra és a vegyes deriváltakra is
- Minden pontban szükséges a deriváltak explicit megadása:

$$\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, \frac{\partial^2 z}{\partial x \partial y}, \frac{\partial^2 z}{\partial x^2}, \frac{\partial^2 z}{\partial y^2}$$

 A deriváltak értékétől függetlenül a felület sima lesz, de nem garantált, hogy jól közelíti a függvényt

Kép interpolálása "bicubic spline" interpolációval

Interpoláció szétszórt pontok esetén

Most a pontok már nem rácson helyezkednek el

- korábban egy x pont körül éppen négy környező pont bolt
- a környező pontok itt nem jól definiáltak
- a bilineáris és spline módszerek nem működnek

Ötlet egy lehetséges megoldásra:

- Minden pontból húzzunk szakaszokat a környező pontokba úgy, hogy háromszögeket kapjunk
- Van olyan "háromszögelés" (trianguláció), ami egyértelmű
- Interpoláljuk a függvény értékét a háromszögön felvett értékével

Delaunay-trianguláció

Delaunay-trianguláció definíciója

Úgy rajzoljuk be a háromszögeket, hogy egyik \mathbf{x}_i se essen háromszög köré írt körön belülre. Ekkor a háromszögelés egyértelmű.

Voronoi-csempézés

Ha tekintjük a körül írt körök középpontját, akkor azok megadják az ún. Voronoi-csempézés (vagy cellázás) csomópontjait

