1 Rachunek λ

Niech V będzie przeliczalnie nieskończonym zbiorem zmiennych przedmiotowych $x,\ y,\ \dots$ (indeksowanych być może liczbami naturalnymi). Elementy takiego zbioru będziemy nazywali λ -zmiennymi. Ponieważ V jest potencjalnie nieskończony, zastrzegamy sobie możliwość wybierania w razie potrzeby wcześniej nie użytej zmiennej.

Definicja 1. (Zbiór $\tilde{\Lambda}$ pretermów) Zbiorem pretermów będziemy nazywali najmniejszy (w sensie mnogościowym) zbiór wyrażeń $\tilde{\Lambda}$ taki, że:

- (P1) Jeśli $x \in V$, to $x \in \tilde{\Lambda}$.
- (P2) Jeśli $M, N \in \tilde{\Lambda}$, to $(MN) \in \tilde{\Lambda}$.
- (P3) Jeśli $x \in V$ i $M \in \tilde{\Lambda}$, to $(\lambda x. M) \in \tilde{\Lambda}$.

Definicję 1 można równoznacznie wyrazić przy pomocy notacji Backusa-Naura. Wówczas ma ona następującą, zwięzłą postać:

$$\tilde{\mathbf{\Lambda}} \leftarrow V \mid (\tilde{\mathbf{\Lambda}} \tilde{\mathbf{\Lambda}}) \mid (\lambda V. \tilde{\mathbf{\Lambda}})$$

Powiemy, że dwa λ -termy są syntaktycznie równe, jeśli rozumiane jako ciągi znaków są identyczne. Równość syntaktyczną będziemy oznaczali znakiem \equiv .

Elementy Λ będziemy oznaczali literami L, M, N, P, Q, R i ich wariantami z górnymi lub dolnymi indeksami. Wyrażenia postaci (P2) nazywamy aplikacjami M do N. Symbol λ występujący w (P3) nazywamy λ -abstraktorem, zaś wyrażenia powstałe przez zastosowanie tej reguły to λ -abstrakcje. W wyrażeniu postaci ($\lambda x.M$) preterm M jest w zasięgu λ -abstraktora, a zmienna x jest przez niego związana. Ponadto, będziemy stosowali następujące konwencje notacyjne:

- najbardziej zewnętrzne nawiasy beda pomijane,
- aplikacja wiąże lewostronnie; wyrażenia postaci (PQ)R będą zapisywane w postaci PQR,
- $-\lambda$ -abstrakcja wiaże prawostronnie: $\lambda x_1.(\lambda x_2.P)$ zapisujemy $\lambda x_1.\lambda x_2.P$,
- następujące po sobie λ -abstrakcje postaci $\lambda x_1. \lambda x_2....\lambda x_n. P$ zapisujemy pod wspólnym λ -abstraktorem: $\lambda x_1 x_2....x_n. P$.
- wspoinym λ -austraktorem. $\Delta x_1 x_2 \dots x_n$.

 n-krotną aplikację $P \in \tilde{\Lambda}$ do siebie zapisujemy skrótowo: $P^n \equiv \underbrace{PP \dots P}_{n\text{-razy}}$

Przykład 1. Podajmy kilka przykładów λ -pretermów pogrupowanych ze względu na ich konstrukcję.

(P1):
$$x, y, z$$
.

(P2):
$$xx$$
, yx , $x(xz)$, $(\lambda x.(xz))y$, $y(\lambda x.(xz))$, $(\lambda x.x)(\lambda x.x)$.

(P3):
$$\lambda x.(xz)$$
, $\lambda yz.x$, $\lambda x.(\lambda x.(xx))$.

Podwyrażenia λ -pretermu mogą być wzajemnie identyczne i występować wielokrotnie. Obserwację tę ujmuje następująca definicja.

Definicja 2. (Multizbiór Sub podtermów pretermu)

- (1) $Sub(x) = \{x\}$
- (2) $\operatorname{Sub}(MN) = \operatorname{Sub}(M) \cup \operatorname{Sub}(N) \cup \{MN\}$
- (3) $\operatorname{Sub}(\lambda x. M) = \operatorname{Sub}(M) \cup \{\lambda x. M\}$

Elementy multizbioru Sub(M) nazywamy podtermami M. Jeśli L jest podtermem M, ale $L \not\equiv M$, to L nazywamy podtermem wlaściwym.

Przykład 2. Podtermy wybranych λ -pretermów.

(a) Sub
$$(\lambda x. xx) = \{(\lambda x. xx)^1, (xx)^1, x^2\}$$

(b) Sub
$$((\lambda x. xx) (\lambda x. xx)) =$$

= $\{((\lambda x. xx) (\lambda x. xx))^1, (\lambda x. xx)^2, (xx)^2, x^4\}$

W powyższych przykładach użyliśmy standardowej notacji w górnym indeksie umieszczając krotność występowania elementu.

Definicja 3. (Zbiór FV zmiennych wolnych) Dla dowolnego pretermu M określamy zbiór FV(M) zmiennych wolnych w M w następujący sposób:

$$FV(x) = \{x\}$$

$$FV(\lambda x. P) = FV(P) \setminus \{x\}$$

$$FV(PQ) = FV(P) \cup FV(Q)$$

Jesli $FV(M) = \emptyset$, to mówimy, że M jest domknięty lub nazywamy M kombinatorem.

Przykład 3. (a) $FV(\lambda x. xy) = \{y\}$

- (b) $FV(x(\lambda x. xy)) = \{x, y\}$
- (c) $FV(\lambda xyz.xy) = \emptyset$

Definicja 4. (Podstawienie) Dla dowolnych M, N $\in \tilde{\Lambda}$ i $x \in V$ przez N[x/N] oznaczamy rezultat podstawienia termu N za wszystkie wolne wystąpienia zmiennej x w M, o ile w rezultacie podstawienia nie zostaną związane żadne zmienne wolne występujące w N. W takim wypadku:

(S1)
$$x[x/N] = N$$

- (S2) y[x/N] = y, o ile $x \not\equiv y$
- (S3) (PQ)[x/N] = P[x/N]Q[x/N]
- (S4) $(\lambda y. P)[x/N] = \lambda y. P[x/N]$, gdzie $x \neq y$ i $y \notin FV(N)$
- (S5) $(\lambda x. P)[x/N] = \lambda x. P$

Lemat 1. (O podstawieniu) Niech $M, N, L \in \tilde{\Lambda}$ i niech ponadto $x \not\equiv y$ oraz $x \not\in FV(L)$. Wówczas

$$M[x/N][y/L] \equiv M[y/L][x/N[y/L]]. \tag{1}$$

 $\mathbf{Dowód}$. Dowód przebiega przez indukcję strukturalną względem M. Rozważmy następujące przypadki:

- i) M jest zmienną. Wówczas:
 - a. Jeśli $M \equiv x$, to obie strony (1) po podstawieniu są postaci N[y/L].
 - b. Jeśli $M \equiv y$, to ponieważ $x \not\equiv y$ i $x \not\in FV(M)$, po wykonaniu podstawienia po lewej stronie (1) otrzymujemy $M[x/N][y/L] \equiv L$. Ponieważ $x \not\in FV(L)$, to po wykonaniu podstawienia po prawej stronie widzimy, że obydwie strony są identyczne.
 - c. Jeśli $M \equiv z$ i $z \not\equiv x$ oraz $z \not\equiv y$, to obydwie strony (1) sa identyczne.
- ii) $M\equiv PQ$ dla pewnych $P,\,Q\in\tilde{\bf\Lambda}.$ Wówczas korzystając z hipotezy indukcyjnej wnosimy, że

$$P[x/N][y/L] \equiv P[y/L][x/N[y/L]],$$

$$Q[x/N][y/L] \equiv Q[y/L][x/N[y/L]].$$

Mając na względzie (S3) widzimy, że twierdzenie zachodzi i w tym przypadku.

iii) Jeśli $M \equiv \lambda z$. P oraz $z \equiv x$ lub $z \equiv y$, to z (S'5) widzimy, że obydwie strony (1) sa identyczne. Przypuśćmy, że $z \not\equiv x$ i $z \not\equiv y$ i $z \not\in FV(L)$. Wówczas na podstawie hipotezy indukcyjnej mamy:

$$(\lambda z. P)[x/N][y/L] = \lambda z. P[x/N][y/L] =$$

$$= \lambda z. P[y/L][x/N[y/L]] =$$

$$= (\lambda z. P)[y/L][x/N[y/L]].$$

Wniosek 1. Jesli M[x/y] jest określone i $y \notin FV(M)$, to M[x/y][y/x] jest określone oraz M[x/y][y/x] = M.

Dowód. Mając na uwadze Lemat 4 dowód przebiega przez indukcję strukturalną względem M.

3

1.1 Wyrażenia λ

Na ogół chcielibyśmy utożsamiać pretermy, które różnią się wyłącznie zmiennymi związanymi, tak jak w przypadku wyrażeń $\lambda x. zx$ i $\lambda y. zy$. W takim wypadku powiemy o nich, że są swoimi α -wariantami lub że są ze sobą w relacji α -konwersji.

Definicja 5. (Relacja α -konwersji) Relacją = $_{\alpha}$ (α -konwersji) nazywamy najmniejszy w sensie mnogościowym praporządek na $\tilde{\Lambda}$ taki, że

- (α 1) Jeśli $y \notin FV(M)$ oraz M[x/y] jest określone, to $\lambda x. M =_{\alpha} \lambda y. M[x/y]$
- $(\alpha 2)$ Jeśli $M =_{\alpha} N$, to dla dowolnego $x \in V$ zachodzi $\lambda x. M =_{\alpha} \lambda x. N$
- ($\alpha 3$) Jeśli $M =_{\alpha} N$, to dla dowolnego $Z \in \tilde{\Lambda}$ zachodzi $MZ =_{\alpha} NZ$
- $(\alpha 4)$ Jeśli $M =_{\alpha} N,$ to dla dowolnego $Z \in \tilde{\mathbf{\Lambda}}$ zachodzi $ZM =_{\alpha} ZN$

Przykład 4.

$$\lambda xy. x(xy) \equiv \lambda x. (\lambda y. x(xy))$$

$$\equiv_{\alpha} \lambda x. (\lambda z. x(xz))$$

$$\equiv_{\alpha} \lambda v. (\lambda z. v(vz))$$

$$\equiv \lambda vz. v(vz).$$

Wniosek 2. $Relacja =_{\alpha} jest \ relacją \ równoważności.$

Dowód. Wystarczy, że pokażemy, że relacja = $_{\alpha}$ jest symetryczna. Dowód przebiega przez indukcję względem Definicji 5. Rozważmy następujące przypadki:

- i) Jeśli $M =_{\alpha} N$ w konsekwencji zwrotności $=_{\alpha}$, to $M \equiv N$, a zatem również $N \equiv M$. Stąd $N =_{\alpha} M$.
- ii) Jeśli $M =_{\alpha} N$ w konsekwencji przechodniości $=_{\alpha}$, to istnieje $L \in \tilde{\Lambda}$ takie, że $M =_{\alpha} L$ i $L =_{\alpha} N$. Wówczas z hipotezy indukcyjnej $N =_{\alpha} L$ i $L =_{\alpha} M$. Z przechodniości relacji $=_{\alpha}$ otrzymujemy spodziewaną tezę.
- iii) Przypuśćmy, że $M =_{\alpha} N$ w konsekwencji ($\alpha 1$) dla $M \equiv \lambda x$. M' i $N \equiv \lambda y$. M'[x/y]. Ponieważ $x \notin FV(M'[x/y])$, to ze względu na Wniosek 1 mamy, że M'[x/y][y/x] = M'. Zatem, na podstawie ($\alpha 1$):

$$\lambda y. M'[x/y] =_{\alpha} \lambda x. M'[x/y][y/x].$$

iv) Jeśli $M=_{\alpha}N$ w konsekwencji ($\alpha 2$), gdzie $M=\lambda x.\,M'$ i $N=\lambda x.\,N'$ dla $M'=_{\alpha}N'$, to z hipotezy indukcyjnej $N'=_{\alpha}M'$ i w konsekwencji ($\alpha 2$) mamy, że $N=_{\alpha}M$.

- v) Jeśli $M =_{\alpha} N$ w konsekwencji (α 3) dla $M \equiv M'Z$ i $N \equiv N'Z$ takich, że $M' =_{\alpha} N'$, to z hipotezy indukcyjnej oczywiście $N' =_{\alpha} M'$, a zatem z (α 3) $N =_{\alpha} M$.
- vi) Jeśli $M =_{\alpha} N$ w konsekwencji (α 3), to postępujemy jak w przypadku (v). \square

Definicja 6. (Zbiór Λ λ-termów) Każdą klasę abstrakcji relacji =_α nazywamy λ-termem. Zbiór wszystkich λ-termów Λ to zbiór ilorazowy relacji α -konwersji:

$$\mathbf{\Lambda} = \left\{ [M]_{=_{\alpha}} \mid M \in \tilde{\mathbf{\Lambda}} \right\}$$

Konwencja. Wprowadzamy następujące konwencje notacyjne:

$$x = [x]_{=\alpha},$$

$$PQ = [M'N']_{=\alpha}, \quad gdzie \quad M = [M']_{=\alpha} \quad i \quad N = [N']_{=\alpha},$$

$$\lambda x. \quad M = [\lambda x. M']_{=\alpha}, \quad gdzie \quad N = [N']_{=\alpha}.$$

Twierdzenie 1. Każdy $M \in \Lambda$ ma jedną z poniższych postaci:

- (1) $M \equiv \lambda x_1 \dots x_n$. $y N_1 \dots N_m$, $gdzie n, m \ge 0$ $i y \in V$
- (2) $M \equiv \lambda x_1 \dots x_n$. $(\lambda y. N_0) N_1 \dots N_m$, $gdzie \ n \ge 0$ $i \ m \ge 1$

 $O \lambda$ -termach postaci (1) mówimy, że są w czołowej postaci normalnej (HNF, ang. head normal form).

Dowód. Z definicji λ -term M jest albo zmienną, albo aplikacją postaci PQ, albo abstrakcją postaci $(\lambda x. P)$. Wówczas mamy nastepujące przypadki:

- i) Jeśli M jest zmienną, to wówczas M jest postaci (1).
- ii) Jeśli M jest aplikacją, to wówczas $M \equiv P_0 P_1 \dots P_m$, gdzie P_0 nie jest aplikacją. Wówczas M jest postaci (1) albo postaci (2) dla n = 0, w zależności od tego czy P_0 jest zmienną (wówczas jest to przypadek (1)) czy abstrakcja (wówczas jest to przypadek (2)).
- iii) Jeśli M jest abstrakcją, to wówczas $M \equiv \lambda x_1 x_2 \dots x_m$. $P_0 P_1 \dots P_n$, gdzie P_0 abstrakcją już nie jest. Wówczas P_0 jest ablo zmienną (przypadek (1)) albo aplikacją (przypadek (2)).

Na zbiór Λ przenoszą się pojęcia podtermu, zmiennych wolnych i operacji podstawienia definiowane uprzednio dla pretermów.

Definicja 7. (Multizbiór Sub podtermów λ -termu) Dla dowolnego λ -termu $M = [M']_{=_{\alpha}}$ okreslamy

$$\mathrm{Sub}(M)=\mathrm{Sub}(M'),$$

gdzie $\operatorname{Sub}(M')$ jest multizbiorem podwyrażeń pretermu M' zdefiniowanym w myśl Definicji 2.

Definicja 8. (Zbiór zmiennych wolnych FV) Dla dowolnego λ-termu $M = [M']_{=_{\alpha}}$ określamy zbiór FV(M) zmiennych wolnych w M

$$FV(M) = FV(M'),$$

gdzie FV(M') jest zbiorem zmiennych wolnych pretermu M' zdefiniowanym w myśl Definicji 3.

Definicja 9. (Podstawienie) Niech $M = [M']_{=\alpha}$ i $N = [N']_{=\alpha}$ i niech M'[x/N'] będzie określone w myśl Definicji 4. Wówczas

$$M[x/N] = [M'[x/N']]_{=\alpha}$$
.

Operacja podstawienia wymaga jednak pewnej delikatności. Rozważmy następującą relację:

$$\lambda x. zx =_{\alpha} \lambda y. zy$$

Zauważmy, że traktując podstawienie w sposób naiwny, mamy, że $(\lambda x. zx)[z/x] \neq_{\alpha} (\lambda y. zy)[z/x]$, a więc tracimy pożądaną własność niezmienniczości α -konwersji względem podstawienia. Stąd w Definicji 4 wymóg, aby podstawienie nie prowadziło do uszczuplenia zbioru zmiennych wolnych. Alternatywnym rozwiązaniem jest określenie podstawienia, które wprowadzałoby do wyrażenia nową zmienną i prowadziło w konsekwencji do abstrahowania po wcześniej nie występujacych zmiennych:

$$(\lambda x.\,M)[y/N] = \lambda x'.\,M[x/x'][y/N],$$

w przypadku, gdy $x \not\equiv y$, gdzie $x' \not\in FV(M)$ i $x' \not\in FV(N)$. Rozstrzygnięcie takie przytacza się w [HS08]. Po uwzględneniu odpowiednich modyfikacji, Definicja 4 przyjmuje następującą postać:

Definicja 4'. (Podstawienie')

- (S'1) x[x/N] = N
- (S'2) y[x/N] = y, o ile $x \not\equiv y$
- (S'3) (PQ)[x/N] = P[x/N]Q[x/N]
- $(S'4) (\lambda x. P)[x/N] = \lambda x. P$
- $(S'5) (\lambda y. P)[x/N] = \lambda y. P, jeśli x \notin FV(P)$
- $(S'6) \ (\lambda y. P)[x/N] = \lambda y. P[x/N], \ gdzie \ x \in FV(P) \ i \ y \notin FV(N)$
- $(S'7) \ (\lambda y.\,P)[x/N] = \lambda z.\,P[y/z][x/N], \ gdzie \ x \in \mathrm{FV}(P) \ i \ y \in \mathrm{FV}(N)$

przy czym w (S'7) wymagamy, aby zmienna z nie występowała wcześniej w termach N i P jako zmienna wolna, zaś dla (S'5)-(S'7) dodatkowo $y \not\equiv x$.

Uwaga 1. Każde podstawienie [x/N] jest funkcją z $\Lambda \to \Lambda$, gdzie $x \in V$ i $N \in \Lambda$ są dowolnymi parametrami. Zbiór S podstawień ma strukturę monoidu z działaniem składania

$$M([x_2/N_2] \circ [x_1/N_1]) = (M[x_1/N_1])[x_2/N_2] \equiv M[x_1/N_1][x_2/N_2]$$

dla dowolnych $[x_1/N_1], [x_2/N_2] \in S$, o ile S posiada element neutralny ι taki, że

$$M\iota = M$$
, gdzie $[x/x] = \iota$ dla dowolnego $x \in V$.

W literaturze znajdujemy mnogość propozycji, które w ten czy inny sposób starają się ułatwić rzeczywistą implementację podstawienia. Na szczególną uwagę zasługują tutaj tak zwane indeksy de Bruijna. Zaproponowana przez N. G. de Brujina w [Bru72] notacja eliminuje bezpośrednie występowanie symboli zmiennych w λ -termach, zastępując je liczbą naturalną wyrażającą głębokość zagnieżdżenia odpowiedniej λ -abstrakcji przez którą jest związana, przykładowo:

$$\lambda f.(\lambda x.(f(xx))\lambda x.(f(xx))) \equiv_{deBruiin} \lambda(\lambda 2(11))\lambda 2(11)$$

Historycznie wiąże się ta notacja z jego pracami nad systemem komputerowo wspomaganego dowodzenia twierdzeń AUTOMATH. Rozwiązanie takie, podobnie jak w przypadku tzw. logik kombinatorów (np. rachunku SKI), eliminuje konieczność utożsamiania termów przez α -konwersję, ale istotnie zmniejsza ich czytelność.

Szerszy komentarz dotyczący dotychczasowych prób uchwycenia operacji podstawienia można prześledzić w [Alt02]. Nasze rozważania opierają się w tej materii przeważająco na [SU06]. Samo podejście do definiowania λ -termow przez operację α -konwersji nie jest powszechne w literaturze przedmiotu. Analogiczną konstrukcję należałoby powtarzać wprowadzając każdy kolejny system, dlatego w dalszej części tej pracy będziemy poprzestawali na nieformalnym traktowaniu wyrażeń danego systemu jako odpowiednich klas α -konwersji.

Definicja 10. (Podstawienie jednoczesne) Dla dowolnego $M \in \Lambda$, ciągu λ -zmiennych \vec{x} i ciągu λ -termów \vec{N} określamy:

- $(\vec{s}1) \ x_i[\vec{x}/\vec{N}] = N_i \ dla \ i \in \mathbb{N}.$
- $(\vec{s}2) \ y[\vec{x}/\vec{N}] = y$ o ile dla dowolnego $i \in \mathbb{N}, \ y \not\equiv x_i$.
- $(\vec{s}3) \ (PQ)[\vec{x}/\vec{N}] = P[\vec{x}/\vec{N}]Q[\vec{x}/\vec{N}]$
- $(\vec{s}4) \ (\lambda y.\, P)[\vec{x}/\vec{N}] = \lambda y.\, P[\vec{x}/\vec{N}], jeśli \, y \neq x_i \, \text{dla wszystkich} \, i \in \mathbb{N} \, \text{i} \, y \notin \bigcup_{i \in \mathbb{N}} FV(N_i)$

Konwencja. Jeśli $N_i \equiv x_i$ dla wszystkich poza skończenie wieloma $i_1, i_2, \ldots, i_n \in \mathbb{N}$, to $[x_{i_1}/N_{i_1}, x_{i_2}/N_{i_2}, \ldots, x_{i_n}/N_{i_n}] \equiv [\vec{x}/\vec{N}]$.

Przykład 5. Zauważmy, że podstawienia w myśl Definicji 4 i Definicji 10 mogą, ale nie muszą, prowadzić do różnych rezultatów.

a)
$$(xy)[y/x][x/u] = uu$$
, b) $(\lambda x. yx)[x/y][y/z] = \lambda x. zx$, $(xy)[y/x, x/u] = ux$. $(\lambda x. yx)[x/y, y/z] = \lambda x. zx$.

1.2 Redukcja

Sens obliczeniowy λ -termom nadajemy przez określenie na Λ operacji β - i η -redukcji. Pożądane jest, żeby operacje te wykonywane na podtermach pozostowały w zgodzie ze strukturą całego λ -termu.

Definicja 11. (Relacja zgodna) Relację binarną \mathcal{R} na zbiorze Λ nazywamy zgodną, jeśli dla dowolnych $M, N, P \in \Lambda$ zachodzą następujące warunki:

- (c1) Jeśli $M\mathcal{R}N$, to $(\lambda x. M)\mathcal{R}(\lambda x. N)$ dla dowolnej λ -zmiennej x.
- (c2) Jeśli $M\mathcal{R}N$, to $(MP)\mathcal{R}(NP)$.
- (c3) Jeśli MRN, to (PM)R(PN).

Przez domknięcie relacji \mathcal{R}_1 będziemy rozumieli najmniejszą (w sensie mnogościowym) relację \mathcal{R}_2 taką, że $\mathcal{R}_1 \subset \mathcal{R}_2$. Z pewnego rodzaju domknięciami, ze względu na ich szczególną rolę, wiążemy następującą notację:

- (a) Przez \mathcal{R}^+ oznaczamy przechodnie domknięcie relacji \mathcal{R} .
- (b) Przez \mathcal{R}^* oznaczamy zwrotnie domkniecie relacji \mathcal{R}^+ .
- (c) Przez = $_{\mathcal{R}}$ oznaczamy symetryczne domknięcie relacji \mathcal{R}^* .

Dla lepszego zrozumienia powyższych operacji warto zauważyć, że (b) wyznacza praporzadek, który w odniesieniu do redukcji określonych na Λ można rozumieć jako graf skierowany (w przypadku Λ być może nieskończony) w którym krawędzie odpowiadają możliwym krokom obliczenia, zaś (c) – kongruencję, która znów w szczególnym odniesieniu do λ -termów, będzie dokonywała podziału w Λ ze względu na rezultat obliczenia.

Definicja 12. Niech \rightarrow będzie relacją binarną w zbiorze A.

(CR) Powiemy, że \rightarrow ma własność Churcha-Rossera, jeśli dla dowolnych $a, b, c \in A$ takich, że $a \rightarrow^* b$ oraz $a \rightarrow^* c$ istnieje $d \in A$ takie, że $b \rightarrow^* d$ i $c \rightarrow^* d$. Innymi słowy, przemienny jest diagram:

$$\begin{array}{ccc}
a & \xrightarrow{*} & b \\
\downarrow^* & & \downarrow^* \\
c & \xrightarrow{*} & d
\end{array}$$

(WCR) Powiemy, że \rightarrow ma stabą wtasność Churcha-Rossera, jesli dla dowolnych $a, b, c \in A$ takich, że $a \rightarrow b$ oraz $a \rightarrow c$ istnieje $d \in A$ takie, że $b \rightarrow^* d$ i $c \rightarrow^* d$. Innymi słowy, przemienny jest diagram:

Rysunek 1: Rozważmy graf skierowany, w którym krawędzie odpowiadają relacji \rightarrow w zbiorze $\{a,b,c,d\}$. Widzimy, że relacja \rightarrow ma własnosność WCR, ale nie ma własności CR.

Definicja 13. (Postać normalna) Powiemy, że $x \in A$ jest redukowalny, jeśli istnieje $y \in A$ takie, że $x \to y$. W przeciwnym wypadku powiemy, że x jest w postaci normalnej i będziemy pisali $x \in NF$.

Element $y \in A$ nazywamy postacią normalną $x \in A$, jesli $x \to^* y$ i $y \in NF$. Jeśli y jest postacią normalną x i y jest jedyną postacią normalną x, to piszemy $x \downarrow y$. W przeciwnym wypadku, czyli jeśli istnieją $y, z \in NF$, $y \neq z$ takie, że $x \to^* y$ i $x \to^* z$, powiemy, że x jest niejednoznaczny.

Definicja 14. Niech \rightarrow będzie relacją binarną na zbiorze A.

- (WN) Powiemy, że relacja \rightarrow jest slabo normalizująca, jeśli dla dowolnego $a \in A$ istnieje $a' \in NF$ taki, że $a \rightarrow^* a'$. W takim wypadku o $a \in A$ będziemy mówili, że jest slabo normalizowalny i pisali $a \in WN$.
 - (SN) Powiemy, że relacja \rightarrow jest silnie normalizująca, jeśli nie istnieje nieskończony ciąg relacji $a_0 \rightarrow a_1 \rightarrow a_2 \rightarrow \dots$ W takim wypadku o $a \in A$ będziemy mówili, że jest silnie normalizowalny i pisali $a \in SN$.

Twierdzenie 2. (Lemat Newmana) Niech \rightarrow bedzie relacją binarną mającą własność SN. Jeśli \rightarrow ma własność WCR, to \rightarrow ma własność CR.

Dowód. Niech \rightarrow będzie relacją binarną na A o własności SN i WCR. Ponieważ \rightarrow jest SN, to każdy a jest normalizowalny.

Jeśli A nie zawiera elementów niejednoznacznych, to twierdzenie zachodzi w sposób trywialny. Przypuśćmy, że $a \in A$ jest niejednoznaczny. Twierdzimy, że istnieje $a' \in A$ taki, że $a \to a'$ i a' jest niejednoznaczny. Niech $b_1, b_2 \in NF$, $b_1 \neq b_2$ i $a \to^* b_1$ oraz $a \to^* b_2$. Ponieważ $b_1 \neq b_2$, to istnieją $a_1, a_2 \in A$ takie, że:

$$a \rightarrow a_1 \rightarrow^* b_1$$
 oraz $a \rightarrow a_2 \rightarrow^* b_2$

Jeśli $a_1 = a_2$, to $a' = a_1 = a_2$ i wystarczy wybrać $a' = a_1$. Jeśli jednak $a_1 \neq a_2$, to z własności WCR istnieje $b_3 \in A$ taka, że $a_1 \to^* b_3$ oraz $a_2 \to^* b_3$. Z własności SN możemy przyjąć, że b_3 jest w postaci normalnej. Zachodzą więc dwa przypadki:

- i) $a_1 = a_2$. Wówczas wystarczy ustalić $a' = a_1$ albo $a' = a_2$ (Rysunek 2a).
- ii) $a_1 \neq a_2$ (Rysunek 2b). Wówczas z WCR istnieje $b_3 \in A$ takie, że $a_1 \rightarrow^* b_3$ oraz $a_2 \rightarrow^* b_3$ (Rysunek 2c). Przypuśćmy, że $b_3 \in NF$. Ponieważ $b_1 \neq b_3$, to $b_3 \neq b_1$ lub $b_3 \neq b_2$, zatem możemy wybrać $a' = a_1$ albo $a' = a_2$.

Rysunek 2: Warianty konstruowania redukcji.

Stosując powyższe rozumowanie do a' otrzymujemy kolejny element niejednoznaczny. a zatem możemy skontruować nieskończony ciąg redukcji, wbrew zalożeniu, że relacja \rightarrow jest SN. Zatem A nie zawiera elementów niejednoznacznych.

Definicja 15. (β-redukcja) β-redukcją nazywamy najmniejszą (w sensie mnogościowym) zgodną na Λ relację binarną \rightarrow_{β} taką, że

$$(\lambda x. M)N \rightarrow_{\beta} M[x/N].$$

 β -redeksami bedziemy nazywali wyrażenia postaci $(\lambda x. M)N$, zaś rezultat ich β -redukcji w postaci termu $M[x/N] - \beta$ -reduktem. Przez $\rightarrow_{\beta}^+, \rightarrow_{\beta}^*, =_{\beta}$ oznaczamy odpowiednie domknięcia relacji β -redukcji. Symbolem \leftarrow_{β} oznaczać będziemy relację odwrotną do β -redukcji, zaś przez \leftrightarrow_{β} jej symetryczne domknięcie.

 $Ciqgiem~\beta$ -redukcji nazywamy kazdy skończony lub nieskończony ciąg λ -termów $M_0,~M_1,~\dots$ taki, że $M_0\to_\beta M_1\to_\beta\dots$

Relację = $_{\beta}$ nazywamy β -konwersją. Zauważmy, że M = $_{\beta}$ N wtedy i tylko wtedy, gdy istnieje skończony ciąg λ -termów M \equiv M_0, M_1, \ldots, M_n \equiv N taki, że $M_i \rightarrow_{\beta} M_{i+1}$ lub $M_{i+1} \rightarrow_{\beta} M_i$ dla $0 \le i \le n$.

Przykład 6. Wszystkie pary λ -termów ze zbioru

$$\{(\lambda x.(\lambda y.yx)z)v, (\lambda y.yv)z, (\lambda x.zx)v, zv\}$$

są swoimi β -konwersami. Mamy:

staci

$$(\lambda y. yv)z \to_{\beta} zv \leftarrow_{\beta} (\lambda x. zx)v,$$

$$(\lambda y. yv)z \leftarrow_{\beta} (\lambda x. (\lambda y. yx)z)v \to_{\beta} (\lambda x. zx)v.$$

Lemat 2. Dla dowolnych $N, Q \in \Lambda$, jeśli $N[y/Q] \in SN_{\beta}$, to $N \in SN_{\beta}$. Jeśli dodatkowo $y \in FV(N)$, to także $Q \in SN_{\beta}$.

Dowód. Dowód przeprowadzamy przez indukcję względem definicji 4'. □

Definicja 16. (Strategia redukcji) Strategią redukcji nazywamy każde odwzorowanie $S: \Lambda \to \Lambda$ postaci

$$S(M) = \begin{cases} M, & \text{jeśli } M \in NF_{\beta}, \\ M', & \text{jeśli } M \rightarrow_{\beta} M'. \end{cases}$$

Strategię S nazywamy normalizującą, jeśli dla każdego $M \in WN_{\beta}$ istnieje $i \in \mathbb{N}$ takie, że $F^{i}(M) \equiv \underbrace{F(F(\ldots(F(M))\ldots))}_{\in NF_{\beta}}$.

Przykład 7. (a) Oznaczmy Y = $\lambda f.(\lambda x.(f(xx))\lambda x.(f(xx)))$ i niech F będzie dowolnym λ -termem. Wówczas otrzymujemy nieskończony ciąg redukcji po-

$$YF = (\lambda f. (\lambda x. (f(xx))\lambda x. (f(xx))))F$$

$$\rightarrow_{\beta} (\lambda x. F(xx))\lambda x. F(xx)$$

$$\rightarrow_{\beta} F((\lambda x. F(xx))\lambda x. F(xx))$$

$$\rightarrow_{\beta} F(\underbrace{F((\lambda x. F(xx))\lambda x. F(xx))}_{=_{\beta}YF})$$

$$\rightarrow_{\beta} \dots$$

Y nazywamy kombinatorem punktu stałego. Widzimy, że relacja β -redukcji w rachunku λ nie jest ani słabo, ani silnie normalizująca.

(b) Niech $\Omega \equiv (\lambda x. xx)(\lambda x. xx)$. Ω jest β -redeksem, którego redukcja prowadzi do ponownego otrzymania termu Ω i w konsekwencji do stałego ciągu redukcji postaci:

$$\Omega \to_{\beta} \Omega \to_{\beta} \Omega \to_{\beta} \dots$$

(c) Niech $\Delta \equiv \lambda x$. xxx. Wówczas:

$$\Delta\Delta \rightarrow_{\beta} \Delta\Delta\Delta \rightarrow_{\beta} \Delta\Delta\Delta\Delta \rightarrow_{\beta} \dots$$

Ponownie, ponieważ każda redukcja powoduje wydłużenie termu, $\Delta\Delta$ nie ma postaci normalnej i w konsekwencji każdy powstały ciąg redukcji termu $\Delta\Delta$ jest nieskończony.

(d) Redukcja λ -termu posiadającego więcej niż jeden redeks może prowadzić do różnych (choć β -równowaznych) reduktów. Zależy to od wyboru strategii redukcji. Rozważmy następujący term: $(\lambda u. v) \Omega$. Konsekwentne redukowanie podtermu Ω prowadzić musi do niekończącego się stałego ciągu redukcji

$$(\lambda u. \ v) \Omega \rightarrow_{\beta} (\lambda u. \ v) \Omega \rightarrow_{\beta} \dots$$

Wybierając strategię polegającą na aplikacji Ω do $(\lambda u. v)$ otrzymujemy natychmiastowo redeks w postaci normalnej.

Definicja 17. (η-redukcja) η-redukcją nazywamy najmniejszą (w sensie mnogościowym) zgodną na Λ relację binarną \rightarrow_{η} taką, że

$$\lambda x. Mx \rightarrow_n M$$
, o ile $x \notin FV(M)$.

 η -redukcja pozwala na pominięcie niczego nie wnoszącej λ -abstrakcji. Operację odwrotną nazywamy η -abstrakcją, zaś λ -termy będące w którejkolwiek z tych relacji nazywamy η -konwersami. Operacja ta nie ma wpływu na rezultat obliczenia, jedynie optymializuje zapis λ -termów i stąd ma duże znaczenie stylistyczne w programowaniu funkcyjnym.

Przykład 8. Przypuśćmy, że (+1) $\in \Lambda$. Wówczas $\lambda x.((+1)x) =_{\eta} (+1)$.

Widzieliśmy, że β -redukcja może prowadzić do uzyskania rezultatu lub nie. Fakt 1 i następujące po nim Wniosek 3 i Wniosek 4 stwierdzają, że jeśli tylko mamy pewność, że λ -term ma postać normalną, to jest ona wyznaczona jednoznacznie i doprowadzi nas do niej każda strategia normalizująca. Fakt 1 to klasyczne twierdzenie, którego dowód można znaleźć w [Bar92] i ze względu na jego obszerność pozwalamy sobie go pominąć.

Fakt 1. (Twierdzenie Churcha-Rossera). β -redukcja ma własność CR.

Wniosek 3. Jeśli $M =_{\beta} N$, to istnieje $L \in \Lambda$ takie, że $M \to_{\beta}^{*} L$ i $N \to_{\beta}^{*} L$.

Dowód. Niech $M, N \in \Lambda$ będą takie, że $M =_{\beta} N$. Wówczas istnieje ciąg λ -termów $M_0, M_1, \ldots, M_{n-1}, M_n$ taki, że

$$M_0 \underset{\beta}{\leftrightarrow} M_1 \underset{\beta}{\leftrightarrow} \dots \underset{\beta}{\leftrightarrow} M_{n-1} \underset{\beta}{\leftrightarrow} M_n,$$

gdzie $M_0 \equiv M$ i $M_n \equiv N$. Dowód przeprowadzimy przez indukcję względem n. Rozważmy następujące przypadki:

- (1) Jeśli n=0, to $M\equiv N$. Ustalając $L\equiv M(\equiv N)$ w oczywisty sposób $M\to_\beta^* L$ i $N\to_\beta^* L$.
- (2) Jeśli n = k > 0, to istnieje $M_{k-1} \in \Lambda$ takie, że

$$M \equiv M_0 \underset{\beta}{\leftrightarrow} M_1 \underset{\beta}{\leftrightarrow} \dots \underset{\beta}{\longleftrightarrow} M_{k-1} \underset{\beta}{\leftrightarrow} M_k \equiv N$$

Z założenia indukcyjnego wiemy, że istnieje $L' \in \Lambda$ takie, że $M_0 \to_{\beta}^* L'$ i $M_{k-1} \to_{\beta}^* L'$. Ponieważ $\underset{\beta}{\leftrightarrow}$ jest symetryczna, rozważmy osobno przypadki $M_{k-1} \to_{\beta} M_k$ i $M_k \to_{\beta} M_{k-1}$.

(a) Jeśli $M_{k-1} \to_{\beta} M_k$, to tym bardziej $M_{k-1} \to_{\beta}^* M_k$. Ponieważ $M_{k-1} \to_{\beta}^* L'$, to korzystając Faktu 1 wnosimy, że istnieje $L \in \Lambda$ taki, że $L' \to_{\beta}^* L$ i $M_k \to_{\beta}^* L$, czyli

(b) Jeśli $M_k \to_{\beta} M_{k-1}$, to ponieważ $M_{k-1} \to_{\beta}^* L'$, natychmiast otrzymujemy, że $M_k \to_{\beta}^* L'$. Ustalając $L \equiv L'$ otrzymujemy tezę.

Wniosek 4. (1) Jeśli N to postać normalna M, to $M \to_{\beta}^* N$.

(2) Każdy λ-term ma co najwyżej jedną postać normalną.

Dowód. (1) Przypuśćmy, że $N \in \operatorname{NF}_{\beta}$ i $M =_{\beta} N$. Wówczas z Wniosku 3 istnieje L takie, że $M \to_{\beta}^* L$ i $N \to_{\beta}^* L$. Ponieważ $N \in \operatorname{NF}_{\beta}$ i $N \to_{\beta}^* L$, to $N \equiv L$. Ponieważ $M \to_{\beta}^* L$, to $M \to_{\beta}^* N$.

(2) Przypuśćmy, że M ma dwie różne postacie normalne, N_1, N_2 . Wówczas z cześci (1) tego twierdzenia, $M \to_{\beta}^* N_1$ i $M \to_{\beta}^* N_2$. Z Faktu 1 istnieje $L \in \Lambda$ taki, że $N_1 \to_{\beta}^* L$ i $N_2 \to_{\beta}^* L$. Ponieważ $N_1, N_2 \in \operatorname{NF}_{\beta}$, to $N_1 \equiv L \equiv N_2$.

1.3 Kodowanie typów danych

Prosta składnia języka rachunku λ pozwala wyrazić zaskakująco wiele struktur danych reprezentując je i operacje na nich jako funkcje. Z tego powodu, stanowiąc inspirację dla wielu projektantów języków programowania, uchodzi za protoplastę rodziny języków funkcyjnych, chociaż bezpośrednio nie ma on praktycznego zastosowania w praktyce programistycznej. Rozwój tej legendy dobrze oddaje cykl

klasycznych artykułów (tzw. *Lambda Papers*) zapoczątkowany przez dokumentację języka Scheme [SS75].

Najpopularniejszym sposobem reprezentacji danych przez funkcje w rachunku λ oparty jest na kodowaniu liczb Peano za pomocą tzw. liczebników Churcha. Metoda ta, ze względu na wynikające zeń problemy natury złożonościowej [KPJ14], ma obecnie wyłącznie walory edukacyjne, dlatego w dalszej cześci pracy pokażemy tzw. kodowanie Scotta. Jest ona interesująca ze względu na praktyczną możliwość reprezentacji algebraicznych typów danych (ADT¹) znanych ze współczesnych języków funkcyjnych [Jan13], pozwalając tym samym zaimplementować te konstrukcje na przykład w paradygmacie imperatywnym. Fakt, że każdy typ danych można zastąpić tym sposobem odpowiadającą mu funkcją, wskazuje na metodę konstruowania prostych języków funkcyjnych [JKP06] oraz na uniwersalność rachunku λ jako języka przejściowego dla kompilatorów języków funkcyjnych [PL92, Rozdział 3].

1.3.1 Algebraiczne typy danych

Algebraiczne typy danych są podstawowym środkiem współczesnych języków funkcyjnych do wyrażania struktur danych. Powstają one przy użyciu tzw. typów sumacyjnych i typów produktowych, jednak pojęcia te na gruncie formalnym będą szczegółowo omówione w późniejszej części pracy. Na potrzeby prezentacji poszczególnych kodowań wystarczą nam w tym rozdziale intuicje o ADT zbudowane na gruncie następujących definicji w języku Haskell:

```
data Boolean
                 = True
                  | False
                 = Tuple a b
data Tuple a b
data Temperature = Fahrenheit Int
                  | Celsius Int
                 = Nothing
data Maybe a
                  | Just a
data Nat
                 = Zero
                  | Succ Nat
data List t
                 = Nil
                  | Cons t (List t)
```

Definicja typu rozpoczynają się od słowa kluczowego data² po którym występuje konstruktor typu. Na wzór notacji BNF, typy przyjmują jedną z wartości odzie-

¹Skrót od angielskojęzycznego *Algebraic Data Types*; nie należy mylić z *Abstract Data Types*.

²Dyskusja ta ma na celu wyłącznie ustalenie uwagi; świadomi jesteśmy niuansów związanych z określaniem synonimów typów lub definiowaniem typów przy pomocy słowa kluczowego newtype.

lonych znakiem "|". Każda z wartości składa się z konstruktora wartości i ewentualnie występujących po nim parametrów typowych. Zauważmy, że umożliwia to rekurencyjnie konstruowanie typów, tak jak w wypadku Nat i List.

Pokażemy, że algebraiczne typy danych możemy reprezentować w zwięzły sposób w rachunku λ bez typów. Przedstawione tutaj koncepcje w zaskakujący sposób przenoszą się do bardziej złożonych typowanych systemów rachunku λ .

1.3.2 Proste typy wyliczeniowe

Typy wyliczeniowe to typy, które reprezentują możliwe warianty przyjmowanej wartości. Najprostrzym nietrywialnym przykładem takiego typu jest Boolean. Ma on dwa konstruktory wartości: True, False. Praca z tego rodzaju typami wymaga mechanizmu dopasowywania wzorców (ang. pattern-matching) [PL92, Rozdział IV], który pozwala na wybór częściowej definicji funkcji w zależności od zadanego konstruktora wartości. Ponieważ w rachunku λ wyrażenia nie mają typów (lub, przyjmując perspektywę systemów z typami: wszystkie wyrażenia mają jeden, ten sam typ), interesowało nas będzie nie bezpośrednie kodowanie typu, ale kodowanie mechanizmu, który odpowiada za dopasowywanie wzorców. Posłużmy się znowu przykładem z języka Haskell i określmy funkcję odpowiadającą wykonaniu instrukcji warunkowej:

```
if True a b = a if False a b = b
```

gdzie True i False są wartościami typu Boolean. Właśnie ze względu na nie, mechanizm dopasowywania wzorca wybiera odpowiednią implementację instrukcji warunkowej. Ten sam efekt osiągnęlibyśmy kodując True i False w rachunku λ w następujący sposób:

```
True \equiv \lambda ab. a
False \equiv \lambda ab. b
```

Wówczas funkcję if możemy reprezentować wyrażeniem if $\equiv \lambda cte.cte$ lub jego η -reduktem: $\lambda c.c.$

1.3.3 Pary w rachunku λ

Parą nazywamy każdy nierekurencyjny typ, który posiada jeden konstruktor wartości parametryzowany przez dwa typy. W takim wypadku potrzebujemy dwóch projekcji zwracających odpowiednio pierwszy i drugi element pary. Przykładem takiego typu jest Tuple. Mamy wówczas:

```
fst (Tuple a b) = a
snd (Tuple a b) = b
```

Tego rodzaju typy możemy reprezentować przez tak zwane domknięcie (ang. closure), czyli cześciową aplikację termu. Standardowym sposobem reprezentacji pary w rachunku λ jest:

Tuple
$$\equiv \lambda abf. fab$$

Aplikując Tuple tylko do dwóch termów (domykając term Tuple) otrzymujemy reprezentację pary. Pozostały, trzeci argument f nazywamy kontynuacją, gdyż aplikując (Tuple x y) dla dowolnych $x,y\in \mathbf{\Lambda}$ do pewnego $f\in \mathbf{\Lambda}$, w konsekwencji x i y zostają zaaplikowane do f. Zauważmy, że wówczas reprezentacja \mathtt{fst} i \mathtt{snd} ma postać:

fst
$$\equiv \lambda t. t(\lambda ab. a)$$

snd $\equiv \lambda t. t(\lambda ab. b)$

Przykład 9. Wprowadzone konstrukcje pozwalają nam na definicję skończonych (w sensie liczby konstruktorów) typów. Rozważmy następujące przykłady:

a) Konstruktory wartości typu Maybe możemy reprezentować przez

Nothing
$$\equiv \lambda n j. n$$

Just $\equiv \lambda a n j. j a$

Rozważmy następującą funkcję:

```
maybe :: b \rightarrow (a \rightarrow b) \rightarrow Maybe a \rightarrow b
maybe n _ Nothing = n
maybe _ f (Just x) = f x
```

Odpowiadająca jej reprezentacja to

maybe
$$\equiv \lambda b f t. t b(\lambda a. f a)$$

b) Rozważmy następującą funkcję

```
fromTemperature :: Temperature -> Int
fromTemperature (Fahrenheit a) = a
fromTemperature (Celsius a) = a
```

Ustalając reprezentację konstruktorów Fahrenheit i Celsius:

Fahrenheit
$$\equiv \lambda t f c. f t$$

Celsius $\equiv \lambda t f c. c t$

otrzymujemy reprezentację funkcji formTemperature postaci:

from Temperature
$$\equiv \lambda t. t(\lambda f. f)(\lambda c. c)$$

1.3.4 Kodowanie rekurencji

Rozważmy następującą funkcję dodawania liczb Peano w języku Haskell:

```
add Zero m = m
add (Succ n) m = Succ (add n m)
```

Funkcję tę możemy wyrazić w rachunku λ przy pomocy kodowania Scotta w następujący sposób:

$$add_0 \equiv \lambda nm. n m (\lambda n. Succ(add_0 n m))$$

Formalizm rachunku λ nie pozwala na okreslanie nowych nazw i rekurencyjne odnoszenie się przez nie do nich samych. Standardową techniką w rachunku λ do określania funkcji w ten sposób jest użycie operatora punktu stałego Y. Przypomnijmy:

$$Y \equiv \lambda f. (\lambda x. (f(xx))\lambda x. (f(xx)))$$

Wówczas określamy

$$add_{Y} \equiv Y (\lambda a n m. nm (\lambda n. Succ(a n m)))$$

Mając na uwadze możliwość przeprowadzenia powyższej konstrukcji przy użyciu rekurencji, będziemy dopuszczali w notacji odnoszenie się wprowadzanych λ -termów do nich samych.

1.3.5 Kodowanie Scotta typów rekursywnych

Stosując metody kodowania prostych typów wyliczeniowych i par, łatwo odnajdujemy reprezentację konstruktorów wartości dla typów Nat i List:

Zero
$$\equiv \lambda z s. z$$
 Nil $\equiv \lambda n c. n$
Succ $\equiv \lambda n z s. s n$ Cons $\equiv \lambda x x_s n c. c x x_s$

Zwróćmy uwagę, że konstruktory Nat i Maybe są swoimi α -konwersami. Podobieństwo nie jest przypadkowe: na poziomie typów konstrukcja Maybe jest odpowiednikiem brania następnika. Określając dodatkowo Void $\equiv \lambda x.x$ jako element neutralny działania łącznego, otrzymujemy na poziomie typów strukturę półpierścienia z działaniem mnożenia okresloną przez konstrukcję par i dzałaniem dodawania określonego przez konstrukcję typów wyliczeniowych. Stąd algebraicze typy danych biorą swoją nazwę.

Z łatwością możemy określić teraz operacje brania poprzednika, głowy i ogona listy, odpowiednio:

pred
$$\equiv \lambda n. n \text{ undef } (\lambda m. m)$$

head $\equiv \lambda x_s. x_s \text{ undef } (\lambda x_s. x)$
tail $\equiv \lambda x_s. \text{ undef } (\lambda x_s. x_s)$

gdzie undef jest stałą o którą rozszerzamy rachunek λ celem sygnalizowania błędnej aplikacji.

Celem lepszego porównania kodowania Churcha i Scotta podamy reprezentacje funkcji foldl dla typu Nat. Określmy:

```
foldl f x Zero = x
foldl f x (Succ n) = f (foldl f x n)
```

foldl może być przy pomocy kodowania Scotta zapisane jako

foldl
$$\equiv \lambda f x n. n x (\lambda n. (foldl f x n))$$

Ogólnie, przy pomocy foldl wyabstrahowujemy pojęcie tzw. rekursji od strony ogona (ang. tail recrusion), w teorii obliczalności nazywane rekursją prostą lub, popularnie, zwijaniem od lewej. Operator foldl spełnia następującą własność [Hut99]

$$f = \text{foldl } \varphi \ a \iff \begin{cases} f \text{ Zero } = a \\ f \text{ (Succ } n) = \varphi \text{ } (f \text{ } n) \end{cases}$$
 (2)

1.3.6 Kodowanie Churcha typów rekursywnych

Przedstawimy teraz klasyczny sposób kodowania typów po raz pierwszy zaprezentowany dla liczb naturalnych przez A. Churcha w [Chu41]. Różni się on od kodowania Scotta tylko w przypadku typów rekursywnych, w pozostałych przypadkach obydwa kodowania dają te same rezultaty. Typ Nat ma dwa konstruktory: Zero i Succ. W kodowaniu Churcha reprezentujemy je w następujący sposób:

$$Zero_{Ch} \equiv \lambda f x. x$$

 $Succ_{Ch} \equiv \lambda n f x. f (n f x)$

Wyrażenia będące skutkiem konsekwentnej aplikacji Succ do Zero w literaturze popularnie nazywa się *liczebnikami Churcha* i oznacza następująco:

$$\bar{1} \equiv \operatorname{Succ}_{Ch} \operatorname{Zero}_{Ch} =_{\beta} \lambda f x. f x$$

$$\bar{2} \equiv \operatorname{Succ}_{Ch} \operatorname{Succ}_{Ch} \operatorname{Zero}_{Ch} =_{\beta} \lambda f x. f f x$$

$$\vdots$$

$$\bar{n} \equiv \operatorname{Succ}_{Ch}^{n} \operatorname{Zero}_{Ch} =_{\beta} \lambda f x. f^{n} x$$

Liczba naturalna n jest kodowana przez funkcję w której jej pierwszy argument jest aplikowany n razy do drugiego argumentu. Porównując je do kodowania Scotta widzimy, że różnica polega na aplikowaniu do kontynuacji termu (n f x) w przypadku brania następnika. Da się pokazać [HIN05], że liczebniki Churcha są w istocie operacją foldl na argumentach Succ i Zero. Istotnie, niech nat $\equiv \lambda c.~c$ Succ Zero. Wówczas nat $\bar{n} =_{\beta} \bar{n}$. Z tego powodu kodowanie operacji na liczebnikach Churcha, lub ogólnie – funkcji opartych na rekursji prostej po zbiorze liczb naturalnych – jest wyjątkowo proste przy użyciu tej metody. Przykładowo, używając metody Churcha, operację dodawania kodujemy w następujący sposób:

$$\operatorname{add}_{Ch} \equiv \lambda n \, m. \, n \, \operatorname{Succ}_{Ch} \, m$$

Dla porównania, używając kodowania Scotta:

$$\operatorname{add}_S \equiv \lambda n \, m$$
. foldl Succ $n \, m$

1.3.7 Ogólny schemat kodowania Scotta typów ADT

W ogólnym przypadku, mając następującą definicję ADT:

dla $m, n \in \mathbb{N}$, wiążemy z nią reprezentację każdego z konstruktorów:

$$C_{1} \equiv \lambda t_{11} t_{12} \dots t_{1n_{1}} f_{1} f_{2} \dots f_{m}. f_{1} t_{11} t_{12} \dots t_{1n_{1}}$$

$$C_{2} \equiv \lambda t_{21} t_{22} \dots t_{2n_{2}} f_{1} f_{2} \dots f_{m}. f_{2} t_{21} t_{22} \dots t_{2n_{2}}$$

$$\vdots$$

$$C_{m} \equiv \lambda t_{m1} t_{m2} \dots t_{mn_{m}} f_{1} f_{m} \dots f_{m}. f_{1} t_{m1} t_{m2} \dots t_{mn_{m}}$$

Wówczas następującą definicję cześciową funkcji f:

```
f (C1 v11 ... v1n1) = y1 ... f (Cm vm1 ... vmnm) = ym
```

kodujemy przy za pomocą następujego λ -termu:

$$\lambda x. \ x (\lambda v_{11} \dots v_{1n_1}. \ y_1)$$

$$\vdots$$

$$(\lambda v_{m1} \dots v_{mn_m}. \ y_m)$$

gdzie y_1 są kodowaniami Scotta yi dla $i \in \mathbb{N}$.

2 Rachunek λ z typami prostymi

2.1 Typy proste

Niech U będzie przeliczalnie nieskończonym zbiorem zmiennych przedmiotowych $p,\ q,\ \dots$ (być może indeksowanych liczbami naturalnymi), które będziemy nazywali $zmiennymi\ typowymi.$

Definicja 18. (Typy proste) *Typami prostymi* będziemy określali najmniejszy w sensie mnogościowym zbiór wyrażeń taki, że:

- (S1) Jeśli p jest zmienną typową, to p jest typem prostym.
- (S2) Jeśli σ i τ są typami prostymi, to $(\sigma \to \tau)$ jest typem prostym.

Typy proste zbudowane tylko wedle reguły (S1) nazywamy typami atomowymi, zaś wyrażenia zbudowe wedle reguły (S2) – typami funkcyjnymi. Zbiór typów prostych określony w myśl powyższej definicji będziemy oznaczali przez \mathbb{T} . Definicję 18 można równoznacznie wyrazić przy pomocy notacji Backusa-Naura. Wówczas ma ona następującą, zwięzłą postać:

$$\mathbb{T} \leftarrow U \mid (\mathbb{T} \to \mathbb{T})$$

Późniejsze litery alfabetu greckiego $(\sigma, \tau, \rho, ...)$, być może z indeksami, będą służyły nam za zmienne metasyntaktyczne do oznaczania typów prostych. Dla lepszej czytelności będziemy pomijali najbardziej zewnętrzne nawiasy. Konstruktor typu \rightarrow wiąże prawostronnie; oznacza to, że typy $\sigma \rightarrow \tau \rightarrow \rho$ oraz $\sigma \rightarrow (\tau \rightarrow \rho)$ będziemy uznawali za tożsame.

Zauważmy, że obiekty skonstruowane w myśl Definicji 18 mają strukturę drzewa binarnego. Wysokość takiego drzewa będziemy nazywali *stopniem* typu.

Definicja 19. (Stopień typu) Stopniem typu nazywamy następująco określoną funkcje $\delta: \mathbb{T} \to \mathbb{N}$

$$\delta(p) = 0$$
, gdzie p jest typem atomowym, $\delta(\sigma \to \sigma) = 1 + \max(\delta(\sigma), \delta(\sigma))$.

Definicja 20. (Stwierdzenie, deklaracja, kontekst, sąd)

- (1) Stwierdzeniem (ang. statement) nazywamy każdy napis postaci $M : \sigma$, gdzie $M \in \Lambda$ i $\sigma \in \mathbb{T}$. W stwierdzeniu $M : \sigma$ λ -term M nazwamy podmiotem (ang. subject), zaś σ predykatem.
- (2) Deklaracją (ang. declaration) nazywamy każde stwierdzenie w którym podmot jest zmienną termową.

- (3) Kontekstem (ang. context) nazywamy skończony liniowo uporządkowany zbiór (listę) deklaracji, w którym wszystkie podmioty są wzajemnie różne.
- (4) Sądem (ang. judgement) nazywamy kazdy napis postaci $\Gamma \vdash M : \sigma$, gdzie Γ jest kontekstem, zaś $M : \sigma$ stwierdzeniem.
- **Definicja 21.** (1) Jeśli $\Gamma = (x_1 : \sigma_1, \ldots, x_n : \sigma_n)$, to liniowo uporządkowany zbiór dom $\Gamma = (x_1, \ldots, x_n)$ nazywamy *dziedziną* kontekstu Γ.
 - (2) Kontekst Γ' nazywamy podkontekstem Γ i piszemy $\Gamma' \subseteq \Gamma$, jeśli wszystkie deklaracje występujące w Γ występują również w Γ z zachowaniem tego samego porządku.
 - (3) Kontekst Γ' nazywamy permutacjq kontekstu Γ , jeśli wszystkie deklaracje w Γ' występują w Γ i odwrotnie.
 - (4) Jeśli Γ jest kontekstem i Φ jest zbiorem λ -zmiennych, wówczas projekcją Γ na Φ (symbolicznie $\Gamma \upharpoonright \Phi$) nazywamy podkontekst Γ' kontekstu Γ taki, że $\text{dom}\Gamma' = (\text{dom}\Gamma) \cap \Phi$

Wprowadzamy następujące reguły wyprowadzania typu:

$$\frac{\Gamma, x : \sigma \vdash x : \sigma}{\Gamma, x : \sigma \vdash x : \sigma} \text{ (Var)}, \qquad \frac{\Gamma \vdash M : \varphi \to \psi \qquad \Gamma \vdash N : \varphi}{\Gamma \vdash (MN) : \psi} \text{ (App)},$$

$$\frac{\Gamma, x \vdash M : \psi}{\Gamma \vdash (\lambda x : \varphi . M) : \varphi \to \psi} \text{ (Abs)}.$$

Definicja 22. (Typowalność)

Mówimy, że λ -term M jest typu σ w kontekście Γ (jest typowalny), jeśli istnieje skończone drzewo sądów spełniające poniższe warunki:

- (D1) W korzeniu drzewa znajduje się sąd $\Gamma \vdash M : \sigma$.
- (D2) Liście są aksjomatami, czyli sądzie postaci $\Gamma, x : \sigma \vdash x : \sigma$.
- (D3) Każdego rodzica można otrzymać z jego dzieci przez zastosowanie którejś z reguł wyprowadzania typu.

Tak określony obiekt będziemy nazywali wyprowadzeniem typu i pisali $\Gamma \vdash_{\mathbb{T}} M : \sigma$. O sądzie $\Gamma \vdash M : \sigma$ będziemy mówili, że jest wyprowadzalne.

Definicja 23. (Poprawność) λ-term $M \in \Lambda$ nazywamy poprawnym (ang. legal), jeśli istnieje wyprowadzenie $\Gamma \vdash M : \rho$ dla pewnego kontekstu Γ i typu $\rho \in \mathbb{T}$.

Lemat 3. (O podtermie) Podterm poprawnego λ -termu jest poprawny.

Dowód. Załóżmy, że sąd $J: \Gamma \vdash M: \sigma$ jest wyprowadzalne. Dowód przebiega przez indukcję wględem długosci wyprowadzenia J. Rozważmy następujące przypadki:

- (a) Jeśli J jest konsekwencją reguły var, to $Sub(M) = \{M\}$ (Definicja 2.1), a zatem teza jest trywialnie spełniona.
- (b) Jesli J jest konsekwencją reguły app, to $M \equiv PQ$ dla P, Q dla których twierdzenie zachodzi. Ponieważ $Sub(M) = Sub(P) \cup Sub(Q) \cup \{PQ\}$ (Definicja 2.2), to teza również zachodzi.
- (c) Jeśli J jest konsekwencją reguły abs, to $M \equiv \lambda x. P$ dla pewnego P dla którego twierdzenie zachodzi. Ponieważ $\mathrm{Sub}(\lambda x. M) = \mathrm{Sub}(M) \cup \{\lambda x. M\}$, (Definicja 2.3) to teza zachodzi również w tym przypadku.

Lemat 4. (O zmiennych wolnych) Jeśli sad $J : \Gamma \vdash L : \sigma$ jest wyprowadzalne, to $FV(L) \subseteq \text{dom } \Gamma$.

Dowód. Prosty dowód przeprowadzamy przez indukcję względem długości wyprowadzenia sądu J. Rozważmy następujące przypadki:

- (a) Jeśli J jest konsekwencą reguły var, to $L \equiv x$ dla pewnej λ -zmiennej x. Wobec tego $x : \sigma \in \Gamma$, a zatem $FV(x) \subseteq \text{dom }\Gamma$.
- (b) Jesli J jest konsekwencją reguły app, to J musi mieć postać $\Gamma \vdash MN : \sigma$. Z założenia indukcyjnego: $FV(M) \subseteq \text{dom } \Gamma$ i $FV(N) \subseteq \text{dom } \Gamma$. Z Definicji 3: $FV(MN) = FV(M) \cup FV(N)$. Stąd $FV(MN) \subseteq \text{dom } \Gamma$.
- (c) Jesli J jest konsekwencją reguły abs, to J musi mieć postać $\Gamma \vdash \lambda x. M : \sigma$. Z założenia indukcyjnego $FV(M) \subseteq \text{dom } \Gamma$. Ponieważ $FV(\lambda x. M) = FV(M) \setminus \{x\} \subseteq FV(M)$ (z Definicji 3), to $FV(M) \subseteq \text{dom } \Gamma$.

Lemat 5. (a) Niech Γ' i Γ'' bedą kontekstami takimi, że $\Gamma' \subseteq \Gamma''$. Jeśli $\Gamma' \vdash M : \sigma$, to $\Gamma'' \vdash M : \sigma$.

- (b) Jeśli $\Gamma \vdash M : \sigma$, to $\Gamma \upharpoonright FV(M) \vdash M : \sigma$.
- (c) $Jeśli \Gamma \vdash M : \sigma \ i \Gamma' \ jest \ permutacja \Gamma, \ to \Gamma' \vdash M : \sigma.$

Dowód. Dowody przebiegają przez indukcję względem długości wyprowadzenia. Czytelnika zainteresowanego szczegółami odsyłamy do [Bar92, Tw. 3.1.7].

Lemat 6. (O generowaniu)

(a)

22

Lemat 7. (Redukcja podmiotu) Jeśli $\Gamma \vdash_{\mathbb{T}} L : \rho \ i \ L \to_{\beta}^* L'$, to $\Gamma \vdash_{\mathbb{T}} L' : \rho$.

Dowód. □

Lemat 8. (O podstawieniu) Załóżmy, że

- (a) $\Gamma', x : \sigma, \Gamma'' \vdash M : \tau$
- (b) $\Gamma' \vdash N : \sigma$

 $W\'owczas \Gamma', \Gamma'' \vdash M[x/N] : \tau.$

Dowód.

2.2 Silna normalizacja

Lemat 9. Niech $\tau \in \mathbb{T}$ bedzie dowolnym typem prostym. Wówczas:

- (1) $\llbracket \tau \rrbracket \subseteq SN$.
- (2) Jeśli $N_1, N_2, ..., N_k \in SN$, to $xN_1N_2...N_k \in [\![\tau]\!]$.

Dowód. Dowód przeprowadzimy przez indukcję strukturalną względem τ . Mamy do rozważenia następujące dwa przypadki:

- (a) τ jest zmienną typową.
 - (1) Wynika bezpośrednio z definicji $[\tau] \in SN$.
 - (2) Niech $N_1, N_2, \ldots, N_k \in SN$. Wówczas $N_1, N_2, \ldots, N_k \in SN$. Z definicji $\llbracket \tau \rrbracket \text{ mamy, } \dot{z}e \ x N_1 N_2 \ldots N_k \in \llbracket \tau \rrbracket$.
- (b) Przypuśćmy, że $\tau = \sigma \rightarrow \rho$ oraz twierdzenie zachodzi dla σ i ρ .
 - (1) Niech $M \in \llbracket \sigma \to \rho \rrbracket$ i niech x bedzie dowolną λ -zmienną. Z części (2) założenia indukcyjnego mamy $x \in \llbracket \sigma \rrbracket$, zatem z definicji $\llbracket \sigma \to \rho \rrbracket$ mamy $Mx \in \llbracket p \rrbracket$. Ponieważ z części (1) założenia indukcyjnego $\llbracket \rho \rrbracket \in SN$, to $Mx \in SN$ i w konsekwencji $\llbracket \sigma \to \rho \rrbracket \subseteq SN$.
 - (2) Niech $P \in \llbracket \sigma \rrbracket$. Wówczas z części (1) założenia indukcyjnego $P \in SN$. Chcemy pokazać, że $xN_1N_2...N_k \in \llbracket \rho \rrbracket$. Z części (2) założenia indukcyjnego

$$xN_1N_2\dots N_kN_{k+1}\in \llbracket\rho\rrbracket.$$

Ustalając $N_{k+1} \equiv P$ otrzymujemy tezę.

Lemat 10. Załóżmy, że:

- (a) $M[x/N_0]N_1...N_k \in SN$,
- (b) $N_0 \in SN$.

 $W \acute{o} w czas (\lambda x. M) N_0 N_1 ... N_k \in SN.$

Dowód. (Ad absurdum) Przypuśćmy, że $P_0 \equiv (\lambda x. M) N_0 N_1 \dots N_k \notin SN$. Wówczas istnieje nieskończony ciąg redukcji

$$P_0 \rightarrow P_1 \rightarrow \dots$$

Każdy podterm λ -termu silnie normalizowalnego jest silnie normalizowalny. Ponieważ $P_0 \equiv M[x/N_0]N_0N_1...N_k \in SN$, to $M[x/N_0], N_0, N_1, ..., N_k \in SN$. Na podstawie Lematu 2 mamy ponadto, że $M \in SN$. Wobec tego dla pewnego $n \in \mathbb{N}$ redukcji ulega redeks czołowy:

$$P_n \equiv (\lambda x. M') N_0' N_1' \dots N_k' \to_{\beta} M' [x/N_0'] N_0' N_1' \dots N_k' \equiv P_{n+1},$$

gdzie $M \to_{\beta}^* M'$ oraz $N_i \to_{\beta}^* N_i'$ dla $i \leq k$. Ale skoro tak, to prawdą jest również, że $M[x/N_0]N_1 \dots N_k \to_{\beta}^* P_{n+1}$, zaś $M[x/N_0]N_1 \dots N_k \in SN$. Zatem $P_{n+1} \in SN$, co prowadzi do sprzeczonści.

Lemat 11. Załóżmy, że:

- (a) $M[x/N_0]N_1...N_k \in [\![\tau]\!],$
- (b) $N_0 \in SN$.

 $W\acute{o}wczas\ (\lambda x.M)N_0N_1...N_k \in \llbracket \tau \rrbracket.$

Dowód. Dowód przebiega przez indukcję strukturalną względem τ . Rozważmy następujące przypadki:

- (a) Jeśli τ jest zmienną typową, to $\llbracket \tau \rrbracket = SN$. Wobec tego problem sprowadza się do Lematu 10.
- (b) Przypuśćmy, że $\tau \equiv \sigma \to \rho$ i niech $M[x/N_0]N_1 \dots N_k \in [\![\sigma \to \rho]\!]$. Wybierzmy dowolny $P \in [\![\sigma]\!]$. Wówczas $M[x/N_0]N_1 \dots N_k N_{k+1} \in [\![\rho]\!]$. Z założenia indukcyjnego mamy jednak, że $(\lambda x. M)N_0N_1 \dots N_k N_{k+1} \in [\![\rho]\!]$. Wystarczy więc przyjąć $N_{k+1} \equiv P$ i z definicji $[\![\sigma \to \rho]\!]$ mamy, że $(\lambda x. M)N_0N_1 \dots N_k \in [\![\sigma \to \rho]\!]$.

Definicja 24. Powiemy, że kontekst $\Gamma = \{x_1 : \sigma_1, x_2 : \sigma_2, \dots, x_n : \sigma_n\}$ spełnia stwierdzenie $M : \sigma$ i będziemy pisali $\Gamma \models M : \sigma$, jeśli dla dowolnych $N_1 \in \llbracket \sigma_1 \rrbracket$, $N_2 \in \llbracket \sigma_2 \rrbracket, \dots, N_n \in \llbracket \sigma_n \rrbracket$ mamy, że:

$$M[x_1/N_1, x_2/N_2, \dots, x_n/N_n] \in [\![\tau]\!].$$

Lemat 12. Jeśli $\Gamma \vdash_{\mathbb{T}} M : \tau$, to $\Gamma \vDash M : \tau$.

Dowód. Dowód będzie przebiegał przez indukcję względem wyprowadzenia $\Gamma \vdash M : \tau$. Niech $\Gamma = (x_1 : \tau_1, x_2 : \tau_2, \ldots, x_n : \tau_n)$ będzie kontekstem dla którego istnieje wyprowadzenie $J : \Gamma \vdash M : \tau$. Wybierzmy $N_1 \in [\![\tau_1]\!], N_2 \in [\![\tau_2]\!], \ldots, N_n \in [\![\tau_n]\!]$. Rozważmy następujące przypadki:

- (a) J jest konsekwencją reguły var. Wówczas J jest postaci $\Gamma \vdash x_i : \tau$ dla pewnego $i \in \mathbb{N}, \ 1 \le i \le n$, gdzie $x_i : \tau \in \Gamma$. Stąd $M[\vec{x}/\vec{N}] = x_i[x_i/N_i] = N_i \in [\![\tau]\!]$. Z dowolności $N_i, \ \Gamma \models M : \tau$.
- (b) J jest konsekwencją reguły app. Wówczas J jest postaci $\Gamma \vdash PQ : \tau$. Z założenia indukcyjnego istnieje $\sigma \in \mathbb{T}$ takie, że $\Gamma \vDash P : \sigma \to \tau$ i $\Gamma \vDash Q : \sigma$. Wobec tego $P[\vec{x}/\vec{N}] \in \llbracket \sigma \to \tau \rrbracket$ i $Q[\![\vec{x}/\vec{N}]\!] \in \llbracket \sigma \rrbracket$. Z definicji jednoczesnego podstawienia (Definicja 10) mamy:

$$PQ[\vec{x}/\vec{N}] = P[\vec{x}/\vec{N}]Q[\vec{x}/\vec{N}]$$

Z definicji $\llbracket \sigma \to \tau \rrbracket$ wówczas $M \in \llbracket \tau \rrbracket$.

(c) J jest konsekwencją reguły abs. Wówczas J jest postaci $\Gamma \vdash \lambda y. P : \sigma \rightarrow \rho$, gdzie $y \notin \text{dom}\Gamma$. Z założenia indukcyjnego mamy, że $\Gamma, y : \sigma \models P : \rho$. Oznacza to, że dla dowolnych $N_1 \in \llbracket \tau_1 \rrbracket$, $N_2 \in \llbracket \tau_2 \rrbracket$, ..., $N_n \in \llbracket \tau_n \rrbracket$ mamy

$$\forall N \in \llbracket \sigma \rrbracket \left(P[\vec{x}, y/\vec{N}, N] \in \llbracket \rho \rrbracket \right) \tag{*}$$

Ustalmy $P' \equiv P[y/y'][\vec{x}/\vec{N}]$, gdzie $y' \notin \text{dom}\Gamma$ i $y' \notin \text{FV}(N_i)$ dla $i \in \mathbb{N}, 1 \le i \le n$. Wówczas z (*):

$$\forall N \in \llbracket \sigma \rrbracket \ (P'[y'/N] \in \llbracket \rho \rrbracket)$$

Ustalmy $N_0 \in \llbracket \sigma \rrbracket$. Wówczas z cześci (1) Lematu 9 $N_0 \in SN$. Wobec tego z Lematu 11 wnioskujemy, że:

$$(\lambda y'. P') N_0 \in \llbracket \rho \rrbracket \tag{**}$$

Zauważmy teraz, że ponieważ $\forall i \ y_i \notin FV(N_i)$

$$(\lambda y'. P') = (\lambda y'. P[y/y'][\vec{x}/\vec{N}])$$

$$= (\lambda y'. P[y/y'])[\vec{x}/\vec{N}] = (\lambda y. P)[\vec{x}/\vec{N}]$$
(***)

Z (**) i (***) otrzymujemy

$$((\lambda y. P)[\vec{x}/\vec{N}]) N_0 \in [\![\rho]\!].$$

Ponieważ $N_0 \in \llbracket \sigma \rrbracket$, to z definicji $\llbracket \sigma \to \rho \rrbracket$ mamy, że

$$(\lambda y. P)[\vec{x}/\vec{N}] \in [\sigma \to \rho].$$

Z dowolności \vec{N} otrzymujemy ostatecznie, że $\Gamma \vDash \lambda y. P.$

Twierdzenie 3. (O silnej normalizacji) Jeżeli $\Gamma \vdash_{\mathbb{T}} M : \tau$, to $M \in SN_{\beta}$.

Dowód. Na podstawie Lematu 12, jeśli $\Gamma \vdash_{\mathbb{T}} M : \tau$, to $M \in \llbracket \tau \rrbracket$. Stosując Lemat 9 otrzymujemy teze.

Literatura

- [Alt02] Thorsten Altenkirch. "α-conversion is easy". Under Revision. 2002. URL: https://www.cs.nott.ac.uk/~psztxa/publ/alpha-draft.pdf.
- [Bar92] Henk (Hendrik Barendregt. "Lambda Calculi with Types". In: vol. 2. Jan. 1992, pp. 117–309. ISBN: 0198537611.
- [Bru72] N.G. de Bruijn. "Lambda Calculus Notation with Nameless Dummies, a Tool for Automatic Formula Manipulation, with Application to the Church-Rosser Theorem". In: *Indagationes Mathematicae (Proceedings)* 75 (Dec. 1972), pp. 381–392. DOI: 10.1016/1385-7258(72)90034-0.
- [Chu41] Alonzo Church. The Calculi of Lambda-Conversion. Princeton University Press, 1941.
- [HIN05] RALF HINZE. "THEORETICAL PEARL Church numerals, twice!" In: Journal of Functional Programming 15.1 (2005), pp. 1–13. DOI: 10. 1017/S0956796804005313.
- [HS08] J. Roger Hindley and Jonathan P. Seldin. Lambda-Calculus and Combinators: An Introduction. 2nd ed. New York, NY, USA: Cambridge University Press, 2008. ISBN: 0521898854, 9780521898850.
- [Hut99] Graham Hutton. "A Tutorial on the Universality and Expressiveness of Fold". In: *J. Funct. Program.* 9.4 (July 1999), pp. 355–372. ISSN: 0956-7968. DOI: 10.1017/S0956796899003500. URL: http://dx.doi.org/10.1017/S0956796899003500.
- [Jan13] Jan Martin Jansen. "Programming in the λ-Calculus: From Church to Scott and Back". In: Essays Dedicated to Rinus Plasmeijer on the Occasion of His 61st Birthday on The Beauty of Functional Code Volume 8106. Berlin, Heidelberg: Springer-Verlag, 2013, pp. 168–180. ISBN: 978-3-642-40354-5. DOI: 10.1007/978-3-642-40355-2_12. URL: https://doi.org/10.1007/978-3-642-40355-2_12.
- [JKP06] Jan Martin Jansen, Pieter Koopman, and Rinus Plasmeijer. "Efficient Interpretation by Transforming Data Types and Patterns to Functions". In: Jan. 2006, pp. 73–90.

- [KPJ14] Pieter Koopman, Rinus Plasmeijer, and Jan Martin Jansen. "Church Encoding of Data Types Considered Harmful for Implementations: Functional Pearl". In: Proceedings of the 26Nd 2014 International Symposium on Implementation and Application of Functional Languages. IFL '14. Boston, MA, USA: ACM, 2014, 4:1–4:12. ISBN: 978-1-4503-3284-2. DOI: 10.1145/2746325.2746330. URL: http://doi.acm.org/10.1145/2746325.2746330.
- [PL92] Simon L. Peyton Jones and David R. Lester. Implementing Functional Languages. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1992. ISBN: 0-13-721952-0.
- [SS75] Gerald J. Sussman and Guy L. Steele Jr. An Interpreter for Extended Lambda Calculus. Tech. rep. Cambridge, MA, USA, 1975.
- [SU06] Morten Heine Sørensen and Pawel Urzyczyn. Lectures on the Curry-Howard Isomorphism, Volume 149 (Studies in Logic and the Foundations of Mathematics). New York, NY, USA: Elsevier Science Inc., 2006. ISBN: 0444520775.