Mestrado Integrado em Engenharia Biomédica Mestrado Integrado em Engenharia Física

Complementos de Electrónica e Sistemas Digitais

Guia Laboratorial

Índice

I LABORATORIOS DE ELECTRONICA	<u> 43</u>
1 Introdução	3
2 PREPARAÇÃO DAS EXPERIÊNCIAS LABORA	ATORIAIS3
2.1 Preparação Teórica	3
2.2 Preparação Prática	4
2.3 Resultados Experimentais	4
2.4 Preparação do relatório	4
3 AVALIAÇÃO	5
II GUIA LABORATORIAL	6
1 TP1 - CIRCUITOS ELECTRÓNICOS	8
1.1 Introdução	8
1.2 Estudo do Díodo	9

I Laboratórios de electrónica

1 Introdução

O presente documento serve de guia de apoio à execução dos trabalhos laboratoriais da Unidade Curricular designada por Complementos de Electrónica e Sistemas Digitais, leccionada no 2º ano do Mestrado Integrado em Engenharia Biomédica e do Mestrado Integrado em Engenharia Física, na Universidade do Minho.

Os trabalhos apresentados têm por objectivo ajudar a consolidar os conhecimentos adquiridos durante a frequência das aulas teóricas, pelo que se pressupõe que os conhecimentos adquiridos estão presentes. Pressupõe-se também que estão presentes os conhecimentos adquiridos durante a frequência da Unidade Curricular de Electrónica.

2 Preparação das experiências laboratoriais

Tal como o próprio nome indica, estamos perante a execução de experiências laboratoriais e, desta forma, é pressuposto que todo o esforço complementar à execução das experiências seja, preferencialmente, efectuado antes de tentar executar qualquer experiência.

2.1 Preparação Teórica

Durante a execução de cada experiência pretende-se que o aluno aplique os seus conhecimentos teóricos sobre os diversos elementos que constituem a experiência, de forma a obter o resultado prático pretendido. Desta forma, é necessário que o aluno se prepare do ponto de vista teórico para a execução das diversas experiências.

A preparação teórica deverá começar pela leitura do guia relativo à experiência e deve incidir sobre três componentes:

- Compreensão do funcionamento teórico de cada um dos elementos da experiência;
- Compreensão do funcionamento de todos os equipamentos de teste necessários à execução da experiência;
- **Efetuar todos os cálculos teóricos** e prever o tipo e número de componentes que irão ser necessários para a experiência.
- **Planear a execução da experiência**, isto é, prever os passos a efetuar no laboratório de forma a obter os resultados pretendidos de forma rápida e eficaz.

A preparação das experiências pressupõe que o aluno responde previamente às questões assinaladas nos guias como Ponto Teórico.

2.2 Preparação Prática

A execução das experiências propostas requer a implementação de diversos circuitos eléctricos e/ou electrónicos, bem como a utilização de ferramentas de simulação e programação.

Antes de cada aula, os alunos devem **preparar as experiências do ponto de vista prático**. Desta forma, será necessário que os alunos desenhem os esquemáticos sempre que necessário, que consultem os *datasheets* de forma a verificar o diagrama de pinos (*pinout*) e as especificações de funcionamento dos circuitos que terão que utilizar durante a aula.

As experiências devem ser também preparadas do ponto de vista da recolha dos dados de cada experiência. O aluno deve prever como vai medir as diversas grandezas, isto é, se vai utilizar o osciloscópio, o voltímetro ou o amperímetro. Além disso, deverá, sempre que necessário, rever os conceitos de como medir, por exemplo, o valor médio de um sinal.

2.3 Resultados Experimentais

Dado que as suas conclusões se irão basear na interpretação e comparação de resultados teóricos e experimentais, deverá tentar prever e planear o registo dos diversos valores experimentais.

As experiências deverão ser preparadas ao nível de que gráficos deverão ser registados e de que valores deverão ser registados em cada gráfico. Os valores a registar não devem ser escolhidos aleatoriamente. Devem ser escolhidos de forma que seja possível explicar uma determinada característica do sistema sob estudo.

2.4 Preparação do relatório

Um dos elementos de avaliação será a elaboração de relatórios. Desta forma, não deverá deixar a execução do relatório única e exclusivamente para depois da execução das experiências. Durante a preparação do trabalho, deverá tentar perceber quais os resultados que são fundamentais para cada uma das experiências. Esses resultados deverão ser registados com rigor e precisão. Além disso, deverá decidir com antecedência qual o é tipo de imagens, diagramas e fotografias que pretende apresentar no relatório, de forma a tornar o seu registo mais fácil, durante a execução das experiências.

3 Avaliação

A avaliação será o resultado da nota da avaliação escrita (que irá contemplar avaliação sobre aspectos das aulas práticas) e de uma componente obtida diretamente pelo desempenho durante as aulas. Além disso, no início de cada aula será verificado se o trabalho foi preparado (individualmente). Os pontos a preparar aparecerão identificados no guia de execução como pontos teóricos.

Cada aluno deverá registar todos os resultados num *log-book* (caderno que utiliza para registar os resultados das experiências), para referência futura.

O cálculo da nota final será efectuado como anunciado durante a aula de apresentação e pode ser consultado no ficheiro que está no blackboard.

II Guia Laboratorial

Mestrado Integrado em Engenharia Biomédica Mestrado Integrado em Engenharia Física

Complementos de Electrónica

(2° semestre / 2°ano)

TP1 – Circuitos electrónicos Guia de Execução

2018/2019

1 TP1 - Circuitos electrónicos

Como já foram estudados os díodos na UC de Electrónica, com este trabalho pretende-se compreender o funcionamento dos LEDS e a utilização dos díodos. Para o efeito, o aluno irá construir uma montagem para obter a curva característica de um de um díodo emissor de luz (LED). Irá depois usar o díodo como elemento retificador. Será implementado um retificador de onda completa.

1.1 Introdução

1.1.1 Objectivos

- Estudar a curva característica do díodo emissor de luz (LED)
- Estudar o funcionamento do díodo como elemento retificador

1.1.2 Pré-requisitos

- 1. O que é...
 - uma tensão eléctrica;
 - uma corrente eléctrica;
 - uma fonte de alimentação;
 - uma resistência;
 - o valor nominal de uma resistência;
 - a Lei de Ohm;
 - um voltímetro;
 - um amperímetro;
 - a resistência interna de um aparelho de medida;
 - o efeito de carga de um aparelho de medida.
- 2. Associar resistências em série;
- 3. Associar resistências em paralelo;
- 4. Calcular tensões e correntes em séries e paralelos de resistências;
- 5. Qual é a resistência interna de um voltímetro ideal;
- 6. Qual é a resistência interna de um amperímetro ideal;
- 7. Como se deve ligar um voltímetro a um circuito para medir uma tensão;
- 8. Como se deve ligar um amperímetro a um circuito para medir uma corrente;

1.1.3 Material

- Fonte de Alimentação (do Digital Lab)
- Multímetro
- Osciloscópio
- Resistências
- Díodos e LED
- Fios de ligação

1.1.4 Calendarização

2 Aulas

1.1.5 Bibliografia

- Guia do trabalho.
- Apontamentos das aulas de Electrónica, essencialmente os relacionados com díodos e transístores bipolares.

1.2 Estudo do Díodo

Como sabe, a energia eléctrica é distribuída ao consumidor através de uma linha de alimentação que fornece uma tensão alternada (AC), isto é, a tensão que é entregue no ponto de fornecimento varia com o tempo entre um valor máximo e um valor mínimo, com uma determinada frequência. Em Portugal, a frequência é de 50 Hz e a amplitude da tensão pode ser 240 V (monofásico) ou 400 V (trifásico). No entanto, a generalidade dos aparelhos electrónicos utiliza um valor de tensão contínua (DC). Desta forma, é necessário converter a tensão AC para tensão DC. Uma forma de conseguir esta transformação consiste em utilizar circuitos rectificadores formados por díodos.

A fig. 1 apresenta um díodo ligado a uma fonte de tensão contínua. Esta montagem permite obter a característica de transferência de um díodo.

Figura 1 – Circuito com díodo semicondutor.

Ponto Teórico

- 1 Considere a fig. 2. Desenhe a forma de onda num díodo à sua escolha.
- 2 Como poderia medir o valor médio dessa onda?
- 3 Como poderia medir o valor eficaz dessa onda?
 - **1 -** Faça a montagem da figura 1, usando $R=100\text{-}200~\Omega$, e substitua o díodo semicondutor pelo LED vermelho.
 - **2 -** Trace a característica do LED para valores de E = 0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2, 4, 6 V. Preencher a fig. E1.
 - **3 -** O que pode concluir a partir do último gráfico, quando comparado ao gráfico de um díodo convencional?
 - **4 -** A partir de que valor de tensão o LED começa a conduzir? Justifique.
 - **5 -** A partir de que valor de tensão o LED começa a brilhar? É diferente do valor em Q4? Justifique.

A fig 2. apresenta um circuito designado por rectificador de onda completa:

Figura 2 – Retificador de onda completa.

- **6 -** Implemente o circuito da fig. 2. Tenha atenção à polaridade dos díodos. Regule a fonte de sinal para uma frequência de 100 Hz e uma amplitude próxima de 5 V.
- **7 -** Registe a forma de onda, na figura E2 (considere a mesma referência de tempo nos dois sub-gráficos), aos <u>terminais da fonte</u>, aos <u>terminais da resistência</u> e aos <u>terminais de um dos díodos às sua escolha</u>. Explique resumidamente as formas de onda observadas.
- **8 -** Consegue observar simultaneamente o sinal de entrada (sinusoide) e o sinal de saída (onda retificada) usando um osciloscópio? Porquê?
- 9 Proponha uma solução para observar os dois sinais em simultâneo.
- 10 Teste essa solução e mostre o resultado ao docente.

Folha de resultados

A entregar no final da aula. No caso de trabalhos que necessite de duas aulas para preencher, a folha será entregue na 1ª aula e devolvida na 2ª para terminar o preenchimento.

Figura E1 – Característica I-V de um LED vermelho.

R Q4:		
R Q5:		

								Valor médio:
								Valor eficaz:
			+					Amplitude:
								Valor pico-a-pico:
								Valor médio:
								Valor eficaz:
								Amplitude:
								Valor pico-a-pico:

Figura E2 – Sinais em Q7.