Proof. By Hölder's inequality (Corollary 9.2), for all $x, y \in \mathbb{C}^n$, we have

$$|\langle x, y \rangle| \le ||x||_p ||y||_q$$

SO

$$||y||_p^D = \sup_{\substack{x \in \mathbb{C}^n \\ ||x||_p = 1}} |\langle x, y \rangle| \le ||y||_q.$$

For the converse, we consider the cases $p=1, 1 , and <math>p=+\infty$. First assume p=1. The result is obvious for y=0, so assume $y \neq 0$. Given y, if we pick $x_j=1$ for some index j such that $\|y\|_{\infty} = \max_{1 \leq i \leq n} |y_i| = |y_j|$, and $x_k=0$ for $k \neq j$, then $|\langle x,y \rangle| = |y_j| = \|y\|_{\infty}$, so $\|y\|_1^D = \|y\|_{\infty}$.

Now we turn to the case $1 . Then we also have <math>1 < q < +\infty$, and the equation 1/p + 1/q = 1 is equivalent to pq = p + q, that is, p(q - 1) = q. Pick $z_j = y_j |y_j|^{q-2}$ for $j = 1, \ldots, n$, so that

$$||z||_p = \left(\sum_{j=1}^n |z_j|^p\right)^{1/p} = \left(\sum_{j=1}^n |y_j|^{(q-1)p}\right)^{1/p} = \left(\sum_{j=1}^n |y_j|^q\right)^{1/p}.$$

Then if $x = z/||z||_p$, we have

$$|\langle x,y\rangle| = \frac{\left|\sum_{j=1}^{n} z_{j}\overline{y_{j}}\right|}{\left\|z\right\|_{p}} = \frac{\left|\sum_{j=1}^{n} y_{j}\overline{y_{j}}|y_{j}|^{q-2}\right|}{\left\|z\right\|_{p}} = \frac{\sum_{j=1}^{n} |y_{j}|^{q}}{\left(\sum_{j=1}^{n} |y_{j}|^{q}\right)^{1/p}} = \left(\sum_{j=1}^{n} |y_{j}|^{q}\right)^{1/q} = \left\|y\right\|_{q}.$$

Thus $||y||_p^D = ||y||_q$.

Finally, if $p = \infty$, then pick $x_j = y_j/|y_j|$ if $y_j \neq 0$, and $x_j = 0$ if $y_j = 0$. Then

$$|\langle x, y \rangle| = \left| \sum_{y_j \neq 0}^n y_j \overline{y_j} / |y_j| \right| = \sum_{y_j \neq 0} |y_j| = ||y||_1.$$

Thus $||y||_{\infty}^{D} = ||y||_{1}$.

We can show that the dual of the spectral norm is the *trace norm* (or *nuclear norm*) also discussed in Section 22.5. Recall from Proposition 9.10 that the spectral norm $||A||_2$ of a matrix A is the square root of the largest eigenvalue of A^*A , that is, the largest singular value of A.

Proposition 14.31. The dual of the spectral norm is given by

$$||A||_2^D = \sigma_1 + \dots + \sigma_r,$$

where $\sigma_1 > \cdots > \sigma_r > 0$ are the singular values of $A \in M_n(\mathbb{C})$ (which has rank r).