1 (c) Shaw-Mohler

The fitness of a mutant in a resident population is:

$$W(a, a_star) = m(a) v_male(a_star) + f(a) v_female(a_star)$$

To calculate the fitness of a mutant in a resident population, we'll need:

- m(a): number of surviving sons
- f(a): number of surviving daughters
- $v_male(a_star)$: male reproductive value in resident population
- $v_{-}female(a_{-}star)$: female reproductive value in resident population

1.1 (c.5) Fitness

As a reminder, the fitness formula for a mutant in a resident population is:

$$W\left(a, a_star\right) = m\left(a\right) v_male\left(a_star\right) + f\left(a\right) v_female\left(a_star\right)$$

Plugging in the four functions above:

$$W\left(a, \, a_star\right) = \frac{0.5\, \left(0.5 - 0.5\, a\right)\, \left(\left(1 - \, a_star\right)\, e_son + 0.5\, e_daughter + \, a_star\, e_abort\right)}{\left(0.5 - 0.5\, a_star\right)\, \left(\left(1 - a\right)\, e_son + 0.5\, e_daughter + \, a\, e_abort\right)}$$

The fitness of the resident population is:

$$W(a_star, a_star) = m(a_star) \ v_male(a_star) + f(a_star) \ v_female(a_star)$$

Plugging in the four functions (with $a = a_star$) above, this simplifies to:

$$W\left(a_star, a_star\right) = 0.5$$

The relative fitness of the mutant on the resident population:

$$dW(a, a_star) = W(a, a_star) - dW(a_star, a_star)$$

Filling in both fitness functions:

$$dW\left(a, a_star\right) = \frac{0.5\ (0.5 - 0.5\ a)\ ((1 - a_star)\ e_son + 0.5\ e_daughter + a_star\ e_abort)}{(0.5 - 0.5\ a_star)\ ((1 - a)\ e_son + 0.5\ e_daughter + a\ e_abort)} - 0.5$$

For an ESS, the fitness of a mutant must always be lower in a resident population. To calculate this, we need the partial derivative of the above fitness function to a.

$$\frac{0.25 \; ((1-a_star) \; e_son + 0.5 \; e_daughter + a_star \; e_abort)}{(0.5-0.5 \; a_star) \; ((1-a) \; e_son + 0.5 \; e_daughter + a \; e_abort)} - \frac{0.5 \; (0.5-0.5 \; a) \; (e_abort - e_son) \; ((1-a_star) \; e_son) \; ((1-a_star) \; e_son) \; ((1-a_star) \; e_son)}{(0.5-0.5 \; a_star) \; ((1-a) \; e_son)} - \frac{0.5 \; (0.5-0.5 \; a) \; (e_abort - e_son) \; ((1-a_star) \; e_son) \; ((1-$$

Which is equal to:

$$-\frac{((2\,a_star-2)\,\,e_daughter+(4\,a_star-4)\,\,e_aborder+(8\,a^2-16\,a+8)\,\,a_star-8\,a^2+16\,a-8)\,\,e_son^2+((8\,-8\,a)\,\,a_star+8\,a-8)\,\,e_daughter+((16\,a-16\,a^2-16\,a$$

Filling in $e_s on = 10$ and $e_d aughter = 10$:

$$-4 \, a_star \, e_abort^2 + 1 \\ \hline \left(8 \, a_star^3 - 8 \, a_star^2 \right) \, e_abort^2 + 10 \, \left(\left(16 \, a_star^2 + a_star \, \left(16 \, a_star - 16 \, a_star^2 \right) - 16 \, a_star \right) \, e_abort + 1 \right) \\ - \left(8 \, a_star^3 - 8 \, a_star^2 \right) \, e_abort^2 + 10 \, \left(\left(16 \, a_star^2 + a_star \, \left(16 \, a_star - 16 \, a_star^2 \right) - 16 \, a_star \right) \, e_abort + 1 \right) \\ - \left(8 \, a_star^3 - 8 \, a_star^2 \right) \, e_abort^2 + 10 \, \left(\left(16 \, a_star^2 + a_star \, \left(16 \, a_star - 16 \, a_star^2 \right) - 16 \, a_star \right) \, e_abort + 1 \right) \\ - \left(8 \, a_star^3 - 8 \, a_star^2 \right) \, e_abort^2 + 10 \, \left(\left(16 \, a_star^2 + a_star \, \left(16 \, a_star - 16 \, a_star^2 \right) - 16 \, a_star \right) \, e_abort + 1 \right) \\ - \left(8 \, a_star^3 - 8 \, a_star^2 \right) \, e_abort^2 + 10 \, \left(\left(16 \, a_star^2 + a_star \, \left(16 \, a_star - 16 \, a_star^2 \right) - 16 \, a_star \right) \, e_abort + 1 \right) \\ - \left(8 \, a_star^3 - 8 \, a_star^2 \right) \, e_abort^2 + 10 \, \left(\left(16 \, a_star^2 + a_star \, \left(16 \, a_star - 16 \, a_star^2 \right) - 16 \, a_star \right) \, e_abort + 1 \right) \\ - \left(8 \, a_star^3 - 8 \, a_star^2 \right) \, e_abort^2 + 10 \, \left(\left(16 \, a_star^2 + a_star \, \left(16 \, a_star - 16 \, a_star^2 \right) - 16 \, a_star \right) \, e_abort^2 + 1 \right) \\ - \left(8 \, a_star^2 - 8 \, a_star^2 \right) \, e_abort^2 + 1 \right) \\ - \left(8 \, a_star^2 - 8 \, a_star^2 \right) \, e_abort^2 + 1 \right) \\ - \left(8 \, a_star^2 - 8 \, a_star^2 \right) \, e_abort^2 + 1 \right) \\ - \left(8 \, a_star^2 - 8 \, a_star^2 \right) \, e_abort^2 + 1 \right) \\ - \left(8 \, a_star^2 - 8 \, a_star^2 \right) \, e_abort^2 + 1 \right) \\ - \left(8 \, a_star^2 - 8 \, a_star^2 \right) \, e_abort^2 + 1 \right) \\ - \left(8 \, a_star^2 - 8 \, a_star^2 \right) \, e_abort^2 + 1 \right) \\ - \left(8 \, a_star^2 - 8 \, a_star^2 \right) \, e_abort^2 + 1 \right) \\ - \left(8 \, a_star^2 - 8 \, a_star^2 \right) \, e_abort^2 + 1 \right) \\ - \left(8 \, a_star^2 - 8 \, a_star^2 \right) \, e_abort^2 + 1 \right) \\ - \left(8 \, a_star^2 - 8 \, a_star^2 \right) \, e_abort^2 + 1 \right) \\ - \left(8 \, a_star^2 - 8 \, a_star^2 \right) \, e_abort^2 + 1 \right) \\ - \left(8 \, a_star^2 - 8 \, a_star^2 \right) \, e_abort^2 + 1 \right) \\ - \left(8 \, a_star^2 - 8 \, a_star^2 \right) \, e_abort^2 + 1 \right) \\ - \left(8 \, a_star^2 - 8 \, a_star^2 \right) \, e_abort^2 + 1 \right) \\ - \left(8 \, a_star^2 - 8 \, a_star^2 \right) \, e_abort^2 + 1 \right) \\ - \left(8 \,$$

Which is equal to:

$$\frac{e_abort + 5}{\left(2\ a_star^2 - 2\ a_star\right)\ e_abort - 20\ a_star^2 + 50\ a_star - 30}$$

1.2 (c.1) Surviving sons

General formula of surviving sons:

$$m(s,a) = S(a) P_son C(s,a)$$

Plug in C(s, a):

$$m\left(s,a\right) =\frac{S\left(a\right) \,P_{son}\,E}{\left(e_{daughter}\,\left(1-s\right) +\left(1-a\right) \,e_{son}+a\,e_{abort}\right) \,s}$$

Set s = 1/2:

$$m\left(a\right) = \frac{2.0\,S\left(a\right)\,P_son\,E}{\left(1-a\right)\,e_son + 0.5\,e_daughter + a\,e_abort}$$

Also plug in S(a):

$$m\left(a\right) = \frac{2.0\,\left(0.5 - 0.5\,a\right)\,P_son\,E}{\left(1 - a\right)\,e_son + 0.5\,e_daughter + a\,e_abort}$$

1.3 (c.2) Surviving daughters

General formula of surviving daughters:

$$f(s, a) = (1 - S(a)) P_{-}daughter C(s, a)$$

Plug in C(s, a):

$$f\left(s,a\right) = \frac{\left(1 - S\left(a\right)\right) \, P_daughter \, E}{\left(e_daughter \, \left(1 - s\right) + \left(1 - a\right) \, e_son + a \, e_abort\right) \, s}$$

Set s = 1/2:

$$f\left(a\right) = \frac{2.0 \, \left(1 - S\left(a\right)\right) \, P_daughter \, E}{\left(1 - a\right) \, e_son + 0.5 \, e_daughter + a \, e_abort}$$

Also plug in S(a):

$$f\left(a\right) = \frac{2.0 \; (0.5 \, a + 0.5) \; P_daughter \, E}{(1 - a) \; e_son + 0.5 \; e_daughter + a \; e_abort}$$

1.4 (c.3) Male reproductive value

General formula for male reproductive value:

$$v_male\left(a_star\right) = \frac{\alpha}{m\left(a_star\right)}$$

Filling in alpha = 1/2:

$$v_male\left(a_star\right) = \frac{0.5}{m\left(a_star\right)}$$

Filling in $m(a_star)$:

$$v_male\left(a_star\right) = \frac{0.25\;\left(\left(1-a_star\right)\;e_son + 0.5\;e_daughter + a_star\;e_abort\right)}{\left(0.5 - 0.5\;a_star\right)\;P_son\;E}$$

1.5 (c.4) Female reproductive value

General formula for female reproductive value:

$$v_female\left(a_star\right) = \frac{\alpha}{f\left(a_star\right)}$$

Filling in alpha = 1/2:

$$v$$
_female $(a_star) = \frac{0.5}{f(a_star)}$

Filling in $f(a_star)$:

$$v_female\left(a_star\right) = \frac{0.25\;((1-a_star)\;e_son + 0.5\;e_daughter + a_star\;e_abort)}{(0.5\;a_star + 0.5)\;P_daughter\;E}$$

2 (b) Secondary sex ratio

Secondary sex ratio with no sons aborted:

$$S(a=0) = 1/2$$

Secondary sex ratio with all aborted:

$$S(a=1) = 0$$

Secondary sex ratio in general:

$$S(a) = 0.5 - 0.5 a$$

Plotted:

3 (a) Clutch size

Clutch size is dependent on multiple variables:

Symbol	description
a	fraction of sons aborted
C	clutch size
E	total energy invested in clutch
$e_daughter$	energy investment to produce one healthy daughter
e_son	energy investment to produce one healthy son
s	primary sex ratio

Clutch size general formula without abortion:

$$C\left(s\right) = \frac{E}{e_son \ s + e_daughter \ (1 - s)}$$

Clutch size general formula with all sons aborted:

$$C\left(s\right) = \frac{E}{e_abort\,s + e_daughter\,\left(1 - s\right)}$$

Clutch general formula, where a denotes the fraction of sons that are aborted:

$$C\left(s,a\right) = \frac{E}{\left(e_daughter\left(1-s\right) + \left(1-a\right)\ e_son + a\ e_abort\right)\ s}$$

Assuming s=0.5, this results in:

$$C\left(0.5,a\right) = \frac{2.0\,E}{\left(1-a\right)\,e_son + 0.5\,e_daughter + a\,e_abort}$$