

FCC and IC Certification

Nemko Korea Co., Ltd.

 $155 \& 159, Osan-Ro, Mohyeon-Myeon, Cheoin-Gu, Yongin-Si, Gyeonggi-Do 449-852\ KOREA, REPUBLIC\ OF Cheological Control of the Control of Cheological Cheol$

TEL:+82 31 330-1700

FAX:+82 31 322 2332

FCC and IC EVALUATION REPORT FOR CERTIFICATION

Applicant:

Healcerion Co., Ltd Dates of Issue : December 18, 2017

804ho, 38-21, Digital-ro 31-gil, Guro-gu, Test Report No.: NK-17-R-218

Seoul, 08376, Republic of KOREA Test Site: Nemko Korea Co., Ltd.

Attn.: Minji Bang

FCC ID

Brand Name

Contact Person

2ADXVSWM500 12712A-SWM500

Healcerion Co., Ltd

Healcerion Co., Ltd 804ho, 38-21, Digital-ro 31-gil, Guro-gu, Seoul, 08376, Republic of KOREA Minji Bang Telephone No. : 82-2-6342-6326

Applied Standard: FCC 47 CFR Part 15.247 and IC RSS-247 Issue 2

Classification: Digital Transmission System (DTS)

EUT Type: Wifi Module

2 h Pec. 18.2017

The device bearing the brand name and model specified above has been shown to comply with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. The client should not use it to claim product endorsement by TAF or any government agencies. The test results in the report only apply to the tested sample.

I attest to the accuracy of data and all measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Tested By: Yonghwan Kim

Engineer

Reviewed By: Deokha Ryu

Destaka lec 18. 2019

Technical Manager

Healcerion Co., Ltd

Page 1 of 52

TABLE OF CONTENTS

1.	Scope	4
2.	Introduction (Site Description)	5
	2.1 Test facility	5
	2.2 Accreditation and listing	6
3.	Test Conditions & EUT Information	7
	3.1 Operation During Test	7
	3.1.1 Table of test power setting	7
	3.1.2 Table of test channels	7
	3.1.3 Antenna information	8
	3.1.4 Additional Information Related to Testing	8
	3.1.5 Table of test modes	8
	3.2 Support Equipment	9
	3.3 Setup Drawing	9
	3.4 EUT Information	10
4.	Summary of Test Results	11
5.	Recommendation / Conclusion	12
6.	Antenna Requirements	12
7.	Description of Test	13
	7.1 Radiated Emissions	13
	7.2 6 dB Bandwidth	14
	7.3 Maximum Conducted Output Power (average)	15
	7.4 Maximum Power Spectral Density (average)	16
	7.5 Conducted Spurious Emissions	17
	7.6 Duty Cycle	18
8.	Test Data	19
	8.1 Radiated Emissions	19

FCC and IC Certification

10.	Accuracy of Measurement	51
9.	Test Equipment	50
	8.7 Radiated Band Edge	47
	8.6 Radiated Spurious Emissions	43
	8.5 Conducted Spurious Emissions	34
	8.4 Maximum Power Spectral Density (average)	30
	8.3 Maximum Conducted Output Power (average) and E.I.R.P	25
	8.2 6 dB Modulated Bandwidth	21

1. SCOPE

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission under FCC part 15 and IC RSS-247 Issue2.

Responsible Party: Healcerion Co., Ltd

804ho, 38-21, Digital-ro 31-gil, Guro-gu, Seoul, 08376,

Republic of KOREA

Contact Person: Minji Bang

Manufacturer: Healcerion Co., Ltd

804ho, 38-21, Digital-ro 31-gil, Guro-gu, Seoul, 08376,

Republic of KOREA

FCC ID: 2ADXVSWM500IC: 12712A-SWM500

Model: SWM-500HVIN: SWM500

Brand Name: Healcerion Co., Ltd

EUT Type: Wifi Module

Classification: Digital Transmission System (DTS)

Applied Standard: FCC 47 CFR Part 15.247 and IC RSS-247 Issue 2

Test Procedure(s): ANSI C63.10-2013 and FCC guidance of Guidance 558074

D01 DTS Meas Guidance v04

Dates of Test: October 12, 2017 ~ December 11, 2017

Place of Test: Nemko Korea Co., Ltd.

FCC ID: 2ADXVSWM500 / IC: 12712A-SWM500

2. INTRODUCTION

2.1 Test facility

The measurement procedure described in American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz (ANSI C63.4-2014), the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2013) was used in determining radiated and conducted emissions emanating from **Healcerion Co., Ltd FCC ID**: **2ADXVSWM500** and **IC**: **12712A-SWM500**.

These measurement tests were conducted at **Nemko Korea Co., Ltd. EMC Laboratory**.

The site address 155 & 159, Osan-Ro, Mohyeon-Myeon, Cheoin-Gu, Yongin-Si, Gyeonggi-Do 16885 KOREA, REPULIC OF.

The area of Nemko Korea Corporation Ltd. EMC Test Site is located in a mountain area at 80 km (48 miles) southeast and Incheon International Airport (Incheon Airport), 30 km (18miles) south-southeast from central Seoul.

It is located in the valley surrounded by mountains in all directions where ambient radio signal conditions are quiet and a favorable area to measure the radio frequency interference on open field test site for the computing and ISM devices manufactures.

The detailed description of the measurement facility was found to be in compliance with the requirements of ANSI C63.4-2014 according to §2.948.

Fig. 1. The map above shows the Seoul in Korea vicinity area.

The map also shows Nemko Korea Corporation Ltd. EMC Lab. and Incheon Airport.

Healcerion Co., Ltd

FCC ID: 2ADXVSWM500 / IC: 12712A-SWM500

2.2 Accreditation and listing

	Accreditation type	Accreditation number	
CAB Accreditation for DOC		Designation No. KR0026	
KOLAS Accredited Lab. (Korea Laboratory Accreditation Scheme)		Registration No. 155	
Industry Canada	Canada IC Registered site	Site No. 2040E	
VEI	VCCI registration site(RE/CE/Telecom CE)	Member No. 2118	
IECEE SCHEME	EMC CBTL	-	
	KCC(RRL)Designated Lab.	Registration No. KR0026	

3. TEST CONDITIONS & EUT INFORMATION

3.1 Operation During Test

The EUT is the SISO transceiver which is module supporting the 802.11n mode (802.11n(20,40MHz) : 1TX/1RX).

The Laptop was used to control the EUT to transmit the wanted TX channel continuously (dutycycle 100%) by the testing program (TeraTerm) supported by manufacturer. The Laptop was removed after controlling the EUT to transmit the wanted signal.

The operating voltage of EUT was 3.3 Vdc, 1.8Vdc supplied from jig board.

The EUT was tested at the lowest, middle and the highest channels with the maximum output power in accordance with the manufacturer's specifications. The worst data were recorded in the report.

3.1.1 Table of test power setting

Frequency	Mode	Power setting Level	
2412 MHz ~ 2462 MHz	802.11n (20 MHz)	11	
	802.11n (40 MHz)	10	

3.1.2 Table of test channels

Frequency band	Mode	Test Channel (CH)	Frequency (MHz)
	802.11n (20 MHz) Hz 802.11n (40 MHz)	1	2412
		6	2437
2.4 GHz		11	2462
2.4 GHZ		3	2422
		6	2437
		9	2452

3.1.3 Antenna information:

Frequency band	Mode	Data rate	Antenna TX mode	Support CDD	Support MIMO
2.4 GHz	802.11n (20MHz)	MCS 0~7	■ 1TX, □ 2TX	☐ Yes, ■ No	☐ Yes, ■ No
2.4 GHZ	802.11n (40MHz)	MCS 0~7	■ 1TX, □ 2TX	☐ Yes, ■ No	☐ Yes, ■ No

3.1.4 Additional Information Related to Testing

The cable and attenuator loss from 30MHz to 26.5GHz was reflected in spectrum analyzer with correction factor for all conducted testing.

3.1.5 Table of test modes

Test Items	Mode	*Data rate (Mbps)	Test Channel (CH)
Radiated Emissions	802.11n	MCS0	11
0.10.0	802.11n (20 MHz)	MCS0	1/6/11
6 dB Bandwidth	802.11n (40 MHz)	MCS0	3/6/9
Marrian Carada da Cada da Barra	802.11n (20 MHz)	MCS0	1/6/11
Maximum Conducted Output Power	802.11n (40 MHz)	MCS0	3/6/9
David On a street David.	802.11n (20 MHz)	MCS0	1/6/11
Power Spectral Density	802.11n (40 MHz)	MCS0	3/6/9
Conducted Spurious Emission,	802.11n (20 MHz)	MCS0	1/6/11
Radiated Spurious Emission, Band edge Emission	802.11n (40 MHz)	MCS0	3/6/9

^{*}The worst data rate was determined by the conducted output power that generates the highest emission performing pre-scan testing in all data rates of each mode.

Healcerion Co., Ltd NKQF-27-18 (Rev. 00) FCC ID: 2ADXVSWM500 / IC: 12712A-SWM500

Page 9 of 52

FCC and IC Certification

3.2 Support Equipment

EUT	Healcerion Co., Ltd Model : SWM-500	S/N: N/A	
Laptop Computer	LG Model : 14Z970	FCC DOC S/N: 701NZFQ065883	
AC/DC Adapter	LG Model : LCAP48-WK 1.5 m unshielded power cable	FCC DOC S/N: N/A	

3.3 Setup Drawing

Healcerion Co., Ltd NKQF-27-18 (Rev. 00) FCC ID: 2ADXVSWM500 / IC: 12712A-SWM500

3.4 EUT Information

The EUT is the **Healcerion Co.**, **Ltd Wifi Module FCC ID**: **2ADXVSWM500**, **IC**: **12712A-SWM500**.

Specifications:

Wifi Module
SWM-500
Healcerion Co., Ltd.
802.11n (20 MHz) : 2412 MHz ~ 2462 MHz 802.11n (40 MHz) : 2422 MHz ~ 2452 MHz
802.11n (20 MHz) : 7.07 dBm 802.11n (40 MHz) : 6.68 dBm
Digital Transmission System (DTS)
802.11b,g,n (20 MHz): 11 CH 802.11n (40 MHz): 7 CH
OFDM(BPSK,QPSK,16QAM,64QAM) for 802.11n
2.5 dBi
802.11n (20, 40MHz) : 1TX / 1RX
3.3 Vdc, 1.8 Vdc
-20 °C ~ +50 °C
About 20 mm x 25 mm x 1 mm
About 1 g
SWM500
SWM500_1.0
-

4. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specification:

Name of Test	FCC	IC	Result	Remark
Name of Test	Paragraph No.	Paragraph No.	Nesuit	Nemark
Radiated Emission	15.209	RSS-GEN Issue 4 8.9	Complies	
6 dB Bandwidth	15.247(a)(2)	RSS-247 Issue 2 5.2	Complies	
Maximum Conducted Output Power	15.247(b)(3)	RSS-247 Issue 2 5.4	Complies	
Power Spectral Density	15.247(e)	RSS-247 Issue 2 5.2	Complies	
Conducted Spurious Emission	15.247(d)	RSS-247 Issue 2 5.5	Complies	
Radiated Spurious Emission	15.247(d)	RSS-247 Issue 2 5.5	Complies	
Maximum Permissible Exposure	1.1307(b)	RSS-102 Issue 5	Complies	

5. RECOMMENDATION/CONCLUSION

The data collected shows that the **Healcerion Co., Ltd Wifi Module FCC ID: 2ADXVSWM500, IC: 12712A-SWM500** is in compliance with Part 15.247 of the FCC Rule and RSS-247 Issue 2 of the IC Specification.

6. ANTENNA REQUIREMENTS

§15.203 of the FCC Rules part 15 Subpart C

: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

The antenna of the Healcerion Co., Ltd Wifi Module FCC ID: 2ADXVSWM500, IC: 12712A-SWM500 is permanently attached and there are no provisions for connection to an external antenna. It complies with the requirement of §15.203.

Healcerion Co., Ltd

FCC ID: 2ADXVSWM500 / IC: 12712A-SWM500

Page 12 of 52

7. DESCRIPTION OF TESTS

7.1 Radiated Emissions

The measurement was performed at the test site that is specified in accordance with ANSI C63.10-2013.

The spurious emission was scanned from 9 kHz to 30 MHz using Loop Antenna(Rohde&Schwarz, HFH2-Z2) and 30 to 1000 MHz using Trilog broadband test antenna(Schwarzbeck, VULB 9163). Above 1 GHz, Horn antenna (Schwarzbeck BBHA 9120D: up to 18 GHz, Q-par Angus QSH20S20: 18 to 26.5 GHz) was used.

For emissions testing at below 1GHz, The test equipment was placed on turntable with 0.8 m above ground. For emission measurements above 1 GHz, The test equipment was placed on turntable with 1.5 m above ground. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The EUT, cable, wire arrangement and mode of operation that has the highest amplitude relative to the limit was selected. Then, the turn table was rotated from 0° to 360° and an antenna mast was moved from 1 m to 4 m height to maximize the suspected highest amplitude signal. The final maximized level was recorded.

At frequencies below 1000 MHz, measurements performed using the CISPR quasi-peak detection. At frequencies above 1000 MHz, measurements performed using the peak and average measurement procedures described in KDB "558074 D01 DTS Meas Guidance v04" in section 12.2.4 and 12.2.5.3. Peak emission levels were measured by setting the analyzer RBW = 1 MHz, VBW = 3 MHz, Detector = Peak, Trace mode = max hold. Average emission levels were measured by setting the analyzer RBW = 1 MHz, VBW = 1kHz, Detector = Peak, Trace mode = max hold. Allow max hold to run for at least 50 times (1/duty cycle) traces.

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705–30.0	30	30
30–88	100	3
88–216	150	3
216–960	200	3
Above 960	500	3

Radiated Emissions Limits per 47 CFR 15.209(a) and RSS-GEN Issue 4 8.9

FCC and IC Certification

7.2 6 dB Bandwidth

Test Setup

Test Procedure

EUTs 6 dB bandwidth is measured at low, middle, high channels with a spectrum analyzer connected to the antenna terminal while the EUTs operating at its maximum power control level. The spectrum analyzer setting is as follows.

RBW = 100 kHz

 $VBW > 3 \times RBW$

Detector = Peak

Trace mode = max hold

Sweep = auto couple

The bandwidth measurement function on the spectrum analyzer is used to measure the 6 dB bandwidth.

Healcerion Co., Ltd
FCC ID: 2ADXVSWM500 / IC: 12712A-SWM500

Page 14 of 52

7.3 Maximum Conducted Output Power (average)

Test Setup

Test Procedure

EUTs Maximum Conducted Output Power (average) is measured at low, middle, high channels with a spectrum analyzer connected to the antenna terminal while the EUTs operating at its maximum power control level.

The spectrum analyzer setting is as follows.

Measure the duty cycle, x, of the transmitter output signal

Span to at least 1.5 times the OBW.

RBW = 1 - 5 % of the OBW, not to exceed 1MHz

VBW ≥ $3 \times RBW$.

Number of points in sweep ≥ 2 x span / RBW

Sweep time = auto couple

Detector = RMS

Trace average at least 100 traces in power averaging mode.

Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with band limits set equal to the OBW band edges.

FCC ID: 2ADXVSWM500 / IC: 12712A-SWM500

7.4 Maximum Power Spectral Density (average)

Test Setup

Test Procedure

EUTs Maximum Power Spectral Density (average) is measured at low, middle, high channels with a spectrum analyzer connected to the antenna terminal while the EUTs operating at its maximum power control level.

The spectrum analyzer setting is as follows.

Center frequency = DTS channel center frequency

Span = at least 1.5 times the DTS bandwidth

 $RBW: 3 kHz \leq RBW \leq 100 kHz$

 $VBW \ge 3 \times RBW$

Detector = power averaging (RMS)

Ensure that the number of measurement points = sweep ≥ 2 x span / RBW

Sweep time = auto couple

Employ trace averaging (RMS) = minimum of 100 traces

Use the peak marker function to determine the maximum amplitude level.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.5 Conducted Spurious Emissions

Test Setup

Test Procedure

EUTs Conducted spurious emissions are measured at low, middle, high channels with a spectrum analyzer connected to the antenna terminal while the EUTs operating at its maximum power control level. The spectrum analyzer setting is as follows.

1) Reference Level

Center frequency = DTS channel center frequency

Span \geq 1.5 x DTS bandwidth

RBW = 100 kHz

 $VBW \geq 3 \times RBW$

Detector = peak

Sweep time = auto couple

Trace mode = max hold

Allow trace to fully stabilize.

Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

2) Unwanted Emissions

Set the center frequency and span to encompass frequency range to be measured.

RBW = 100 kHz

 $VBW \geq 3 \times RBW$

Detector = peak

Sweep time = auto couple

Trace mode = max hold

Allow trace to fully stabilize.

Use the peak marker function to determine the maximum amplitude level.

Healcerion Co., Ltd

Page 17 of 52

FCC and IC Certification

7.6 Duty Cycle

Test Setup

Test Procedure

EUTs duty cycle are measured at middle channel with a spectrum analyzer connected to the antenna terminal while the EUTs operating at its maximum power control level. The spectrum analyzer setting is as follows.

Center frequency = Center frequency of the transmission

Span = zero

RBW = 8 MHz

VBW = 8 MHz

Detector = peak

Sweep time = at least 3 ms

Sweep mode = Single

The marker function on the spectrum analyzer is used to determine the duty cycle.

The results of the duty cycle measurement according to the above test procedure.

	Data rate	On time (ms)	On + Off time (ms)	Duty Cycle (%)	Duty Factor (dB)
n(20MHz)mode	MCS0	-	-	100	-
n(40MHz)mode	MCS0	-	-	100	-

Healcerion Co., Ltd
FCC ID: 2ADXVSWM500 / IC: 12712A-SWM500

FCC and IC Certification

8. TEST DATA

8.1 Radiated Emissions

FCC §15.209, IC RSS-Gen Issue 4 8.9

Frequency	Reading	Pol*	Antenna Heights	Turntable	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dBµV/m)	(H/V)	(cm)	Angles (°)	(dB)**	(dBµV/m)	(dBµV/m)	(dB)
395.96	51.05	Н	100	277	-18.3	32.8	46.0	13.3
483.96	57.26	Н	177	138	-16.5	40.8	46.0	5.2
571.96	54.70	Н	170	303	-14.4	40.3	46.0	5.7
659.96	45.49	Н	330	327	-13.1	32.4	46.0	13.6
748.02	46.37	Н	100	148	-12.3	34.1	46.0	11.9
881.88	49.24	Н	410	12	-10.6	38.6	46.0	7.4

Radiated Measurements at 3meters

Notes:

- 1. All modes were measured and the worst-case emission was reported.
- 2. The radiated limits are shown on Table 1. Above 1 GHz the limit is 500 μ V/m.
- 3. *Pol. H = Horizontal, V = Vertical
- 4. **AF + CL + Amp. = Antenna Factor + Cable Loss + Amplifier.
- 5. Measurements using CISPR quasi-peak mode below 1 GHz.
- 6. The radiated emissions testing were made by rotating EUT through three orthogonal axes and rotating the receive antenna with horizontal, Vertical polarization. The worst data was recorded.
- 7. Highest channel (2462MHz) in n (20MHz) mode is the worst case.
- 8. No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).
- 9. The limit is on the FCC §15.209 and RSS-Gen Issue4 8.9.

Healcerion Co., Ltd

Page 19 of 52

Radiated emission below 1GHz_ n mode 2462 MHz

8.2 6 dB Bandwidth

FCC §15.247(a)(2), IC RSS-247 Issue 2 5.2

Test Mode: Set to Lowest channel, Middle channel and Highest channel

802.11n (20 MHz) mode

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limit (MHz)	Margin (MHz)
Lowest	2412	17.62	0.50	17.12
Middle	2437	17.82	0.50	17.32
Highest	2462	17.80	0.50	17.30

802.11n (40 MHz) mode

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limit (MHz)	Margin (MHz)
Lowest	2412	36.55	0.50	36.05
Middle	2437	36.39	0.50	35.89
Highest	2462	36.48	0.50	35.98

802.11n (20 MHz) mode

6 dB Bandwidth, Lowest Channel (2412 MHz)

6 dB Bandwidth, Middle Channel (2437 MHz)

FCC ID: 2ADXVSWM500 / IC: 12712A-SWM500

802.11n (40 MHz) mode

Healcerion Co., Ltd

FCC ID: 2ADXVSWM500 / IC: 12712A-SWM500

6 dB Bandwidth, Highest Channel (2452 MHz)

8.3 Maximum Conducted Output Power (average) and E.I.R.P

FCC §15.247(b)(3), IC RSS-247 Issue 2 5.4

Test Mode: Set to Lowest channel, Middle channel and Highest channel

802.11n (20MHz) mode

Channel	Frequency (MHz)	Maximum Conducted Power (dBm)	Limit (dBm)	Margin (dBm)	E.I.R.P (dBm)	E.I.R.P Limit (dBm)	E.I.R.P Margin (dBm)
Lowest	2412	7.07	30.00	22.93	9.57	36.00	26.43
Middle	2437	6.98	30.00	23.02	9.48	36.00	26.52
Highest	2462	6.98	30.00	23.02	9.48	36.00	26.52

802.11n (40MHz) mode

Channel	Frequency (MHz)	Maximum Conducted Power (dBm)	Limit (dBm)	Margin (dBm)	E.I.R.P (dBm)	E.I.R.P Limit (dBm)	E.I.R.P Margin (dBm)
Lowest	2422	6.44	30.00	23.56	8.94	36.00	27.06
Middle	2437	6.68	30.00	23.32	9.18	36.00	26.82
Highest	2452	6.33	30.00	23.67	8.83	36.00	27.17

Healcerion Co., Ltd NKQF-27-18 (Rev. 00) FCC ID: 2ADXVSWM500 / IC: 12712A-SWM500

TEST DATA

Note:

1. E.I.R.P was calculated by following equation according to KDB412172 D01 Determining ERP and EIRP v01r01.

$$E.I.R.P = P_T + G_T - Lc$$

 P_T = transmitter outputpower (dBm)

 G_T = Gain of the transmitting antenna in dBi, Peak antenna gain is **2.5 dBi**.

 L_C = Signal attenuation in the connecting cable between the transmitter and antenna in dB. This factor of an integral antenna is negligible.

2. The following equation was used for spectrum offset:

Spectrum offset (dB) = Attenuator (dB) + Cable Loss (dB) + SMA Type Connector Loss (dB)

802.11n (20 MHz) mode

Maximum Conducted Output Power, Lowest Channel (2412 MHz)

Maximum Conducted Output Power, Middle Channel (2437 MHz)

Healcerion Co., Ltd
FCC ID: 2ADXVSWM500 / IC: 12712A-SWM500

Page 27 of 52

802.11n (40 MHz) mode

Maximum Conducted Output Power, Lowest Channel (2422 MHz)

Healcerion Co., Ltd

Page 28 of 52

Maximum Conducted Output Power, Middle Channel (2437 MHz)

Maximum Conducted Output Power, Highest Channel (2452 MHz)

Healcerion Co., Ltd

FCC ID: 2ADXVSWM500 / IC: 12712A-SWM500

Page 29 of 52

8.4 Maximum Power Spectral Density (average)

FCC §15.247(e), IC RSS-247 Issue 2 5.2

Test Mode: Set to Lowest channel, Middle channel and Highest channel

802.11n (20 MHz) mode

Channel	Frequency (MHz)	Maximum PSD (dBm)	Limit (dBm)	Margin (dBm)
Lowest	2412	-13.05	8.00	21.05
Middle	2437	-13.35	8.00	21.35
Highest	2462	-13.37	8.00	21.37

802.11n (40 MHz) mode

Channel	Frequency (MHz)	Maximum PSD (dBm)	Limit (dBm)	Margin (dBm)
Lowest	2422	-16.77	8.00	24.77
Middle	2437	-16.70	8.00	24.70
Highest	2452	-16.90	8.00	24.90

Note:

The following equation was used for spectrum offset:

Spectrum offset (dB) = Attenuator (dB) + Cable Loss (dB) + SMA Type Connector Loss (dB)

Healcerion Co., Ltd NKQF-27-18 (Rev. 00) FCC ID: 2ADXVSWM500 / IC: 12712A-SWM500

802.11n (20 MHz) mode

Maximum Power Spectral Density, Lowest Channel (2412 MHz)

Maximum Power Spectral Density, Middle Channel (2437 MHz)

Healcerion Co., Ltd
FCC ID: 2ADXVSWM500 / IC: 12712A-SWM500

802.11n (40 MHz) mode

Maximum Power Spectral Density, Lowest Channel (2422 MHz)

Healcerion Co., Ltd

Page 32 of 52

Maximum Power Spectral Density, Middle Channel (2437 MHz)

Maximum Power Spectral Density, Highest Channel (2452 MHz)

8.5 Conducted Spurious Emissions

FCC §15.247(d), IC RSS-247 Issue 2 5.5

Test Mode: Set to Lowest channel, Middle channel and Highest channel

802.11n (20 MHz) mode

Channel	Frequency (MHz)	Reference Level (dBm)	Conducted Spurious Emissions (dBc)	Limit (dBc)
Low	2412	-6.70	More than 30 dBc	30
Middle	2437	-7.05	More than 30 dBc	30
High	2462	-6.93	More than 30 dBc	30

802.11n (40 MHz) mode

Channel	Frequency (MHz)	Reference Level (dBm)	Conducted Spurious Emissions (dBc)	Limit (dBc)
Low	2422	-11.01	More than 30 dBc	30
Middle	2437	-10.26	More than 30 dBc	30
High	2452	-8.17	More than 30 dBc	30

Notes:

The cable and attenuator loss from 30 MHz to 26.5 GHz was reflected in spectrum analyzer with correction factor for the spurious emissions test.

802.11n (20 MHz) mode

Reference Power Spectral Density, Lowest Channel (2412 MHz)

Band Edge, Lowest Channel (2412 MHz)

Reference Power Spectral Density, Middle Channel (2437 MHz)

Conducted Spurious Emissions, 30 MHz ~ 26.5 GHz (2437 MHz)

Reference Power Spectral Density, Highest Channel (2462 MHz)

Conducted Spurious Emissions, 30 MHz ~ 26.5 GHz (2462 MHz)

802.11n (40 MHz) mode

Reference Power Spectral Density, Lowest Channel (2422 MHz)

Conducted Spurious Emissions, 30 MHz ~ 26.5 GHz (2422 MHz)

Reference Power Spectral Density, Middle Channel (2437 MHz)

Conducted Spurious Emissions, 30 MHz ~ 26.5 GHz (2437 MHz)

Reference Power Spectral Density, Highest Channel (2452 MHz)

Conducted Spurious Emissions, 30 MHz ~ 26.5 GHz (2452 MHz)

8.6 Radiated Spurious Emissions

FCC §15.247(d), IC RSS-247 Issue 2 5.5

Test Mode: Set to Lowest channel, Middle channel and Highest channel

802.11n (20 MHz) mode

Lowest Channel

Frequency	Reading	Pol*	modo	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dBµV)	(H/V)	mode	(dB)**	(dBµV/m)	(dBµV/m)	(dB)
4378.17	43.3	Н	peak	2.0	45.3	74.0	28.7

Middle Channel

Frequency	Reading	Pol*	modo	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dBµV)	(H/V)	mode	(dB)**	(dBµV/m)	(dBµV/m)	(dB)
4897.17	40.9	Н	peak	2.2	43.1	74.0	30.9

Highest Channel

Frequency	Reading	Pol*	mode	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dBµV)	(H/V)	mode	(dB)**	(dBµV/m)	(dBµV/m)	(dB)
4927.83	43.6	Н	peak	2.4	46.0	74.0	28.0

FCC and IC Certification

TEST DATA

802.11n (40 MHz) mode

Lowest Channel

LOWCSt Ona							
Frequency	Reading	Pol*	modo	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dBµV)	(H/V)	mode	(dB)**	(dBµV/m)	(dBµV/m)	(dB)
1100.00	53.9	V	peak	-10.4	43.5	74.0	30.5

Middle Channel

F	Frequency	Reading	Pol*	modo	AF+CL+Amp	Result	Limit	Margin
	(MHz)	(dBµV)	(H/V)	mode	(dB)**	(dBµV/m)	(dBµV/m)	(dB)
	1099.75	54.4	V	peak	-10.4	44.0	74.0	30.0

Highest Channel

Frequency	Reading	Pol*	mada	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dBµV)	(H/V)	mode	(dB)**	(dBµV/m)	(dBµV/m)	(dB)
4916.17	41.1	V	peak	2.4	43.5	74.0	30.5

Note:

- 1. *Pol. H = Horizontal V = Vertical
- 2. **AF + CL + Amp. = Antenna Factor + Cable Loss + Amplifier.
- Average measurement was not performed because peak-detected emission complies with the average limit.
- 4. Other spurious was under 30 dB below Fundamental.
- 5. Highest channel (2462MHz) in n (20MHz) mode was the worst condition.
- 6. The radiated emissions testing were made by rotating EUT through three orthogonal axes and rotating the receive antenna with horizontal, Vertical polarization. The worst data was recorded.
- 7. Peak emissions were measured using RBW = 1 MHz, VBW = 3 MHz, Detector = Peak.
- 8. The spectrum was measured from 9 kHz to 10th harmonic and the worst-case emissions were reported. No significant emissions were found beyond the 3nd harmonic for this device.

PLOTS OF EMISSIONS

Worst Case

802.11n (20 MHz) mode

Highest channel: 1 GHz to 8 GHz_Peak

Highest channel: 8 GHz to 18 GHz_Peak

PLOTS OF EMISSIONS

Highest channel: 8 GHz to 18 GHz_Average

Highest channel: 18 GHz to 26.5 GHz_Peak

8.7 Radiated Band Edge

FCC §15.247(d), IC RSS-247 Issue 2 5.5

Test Mode: Set to Lowest channel and Highest channel

802.11n (20 MHz) mode

Lowest Channel

Frequency	Reading	Pol*	mode	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dBµV)	(H/V)	mode	(dB)**	(dBµV/m)	(dBµV/m)	(dB)
2389.48	73.4	Н	peak	-8.3	65.1	74.0	8.9
2389.48	52.3	Н	average	-8.3	44.0	54.0	10.0
2390.00	70.5	Н	peak	-8.3	62.2	74.0	11.8
2390.00	54.1	Н	average	-8.3	45.8	54.0	8.2

Highest Channel

Frequency	Reading	Pol*	mode	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dBµV)	(H/V)	mode	(dB)**	(dBµV/m)	(dBµV/m)	(dB)
2483.50	69.2	Н	peak	-8.1	61.1	74.0	12.9
2483.50	51.9	Н	average	-8.1	43.8	54.0	10.3
2484.70	69.6	Н	peak	-8.1	61.5	74.0	12.5
2484.70	50.2	Н	average	-8.1	42.1	54.0	11.9

TEST DATA

802.11n (40 MHz) mode

Lowest Channel

Frequency	Reading	Pol*	mode	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dBµV)	(H/V)	mode	(dB)**	(dBµV/m)	(dBµV/m)	(dB)
2388.73	72.3	Η	peak	-8.4	63.9	74.0	10.1
2388.73	54.6	Н	average	-8.4	46.2	54.0	7.8
2390.00	66.0	Н	peak	-8.3	57.7	74.0	16.3
2390.00	55.2	Н	average	-8.3	46.9	54.0	7.1

Highest Channel

nightest channel								
Frequency	Reading	Pol*	mada	AF+CL+Amp	Result	Limit	Margin	
(MHz)	(dBµV)	(H/V)	mode	(dB)**	(dBµV/m)	(dBµV/m)	(dB)	
2483.50	66.6	Н	peak	-8.1	58.5	74.0	15.6	
2483.50	54.6	Н	average	-8.1	46.5	54.0	7.5	
2487.53	70.1	Н	peak	-8.1	62.0	74.0	12.0	
2487.53	52.6	Н	average	-8.1	44.5	54.0	9.5	

Note:

- 1. *Pol. H = Horizontal V = Vertical
- 2. **AF + CL + Amp. = Antenna Factor + Cable Loss + Amplifier.
- 3. Other spurious was under 30 dB below Fundamental.
- 4. Lowest channel (2422MHz) in n (40MHz) mode was the worst condition.
- 5. The radiated emissions testing were made by rotating EUT through three orthogonal axes and rotating the receive antenna with horizontal, Vertical polarization. The worst data was recorded.
- 6. Peak emissions were measured using RBW = 1 MHz, VBW = 3 MHz, Detector = Peak.
- 7. Average emissions were measured using RBW = 1 MHz, VBW = 1 kHz, Detector = Peak, as specified in "12.2.5.3 Average Power Measurement Procedures" in "558074 D01 DTS Meas Guidance v04".

Healcerion Co., Ltd FCC ID: 2ADXVSWM500 / IC: 12712A-SWM500

Worst Case

802.11n (40 MHz) mode

Lowest channel _Peak

Lowest channel _Average

9. TEST EQUIPMENT

No.	Instrument	Manufacturer	Model	Serial No.	Calibration Date	Calibration Interval
1	*Test Receiver	R&S	ESU 40	100202	Apr. 04 2017	1 year
2	Test Receiver	R&S	ESCS30	100302	Oct. 12 2017	1 year
3	*Attenuator	PASTERNACK	PE7395-10	1441-1	Jul. 13 2017	1 year
4	*Attenuator	FAIRVIEW	SA3N5W-06	N/A	Jan. 09 2017	1 year
5	*Attenuator	FAIRVIEW	SA3N5W-10	N/A	Apr. 03 2017	1 year
6	*Attenuator	WEINSCHEL	56-10	58765	Oct. 10 2017	1 year
7	*Amplifier	R&S	SCU 01	10029	Apr. 03 2017	1 year
8	*Amplifier	R&S	SCU18F	180025	Apr. 03 2017	1 year
9	*Amplifier	R&S	SCU26	10011	Jul. 13 2017	1 year
10	Amplifier	R&S	SCU40	100380	Jul. 13 2017	1 year
11	Pre Amplifier	HP	8449B	3008A00107	Jan. 10 2017	1 year
12	Spectrum Analyzer	R&S	FSW43	100732	Apr. 11 2017	1 year
13	*Spectrum Analyzer	Agilent	E4440A	MY44303257	Oct. 13 2017	1 year
14	*Spectrum Analyzer	R&S	FSW43	104084	Apr. 04 2017	1 year
15	*Loop Antenna	R&S	HFH2-Z2	100279	Feb. 22 2016	2 year
16	*Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-508	Feb. 13 2017	2 year
17	*Horn Antenna	Q-par Angus	QSH20S20	8179	Aug. 01 2017	2 year
18	Horn Antenna	Q-par Angus	QSH22K20	8180	Aug. 02 2017	2 year
19	*Trilog-Broadband Antenna	SCHWARZBECK	VULB 9163	9163-454	Feb. 11 2016	2 year
20	LISN	R&S	ESH3-Z5	833874/006	Oct. 12 2017	1 year
21	ESH2-Z5 Artiticial Mains Network	R&S	ESH2-Z5	100227	Apr. 04 2017	1 year
22	*Position Controller	INNCO	CO2000	12480406/L	N/A	N/A
23	*Controller	INNCO	CO3000	CO3000/937/38330516/L	N/A	N/A
24	*Turn Table	INNCO	DS1200S	N/A	N/A	N/A
25	*Turn Table	INNCO	DT2000-2t	N/A	N/A	N/A
26	*Antenna Mast	INNCO	MA4000	N/A	N/A	N/A
27	*TILT Antenna Mast	INNCO	MA4640-XP-EP	N/A	N/A	N/A
28	*Open Switch And Control Unit	R&S	OSP-120	100081	N/A	N/A
29	*Open Switch And Control Unit	R&S	OSP-120	101766	N/A	N/A
30	*Shielded Room	Seo-Young EMC	N/A	N/A	N/A	N/A
31	*Anechoic Chamber	Seo-Young EMC	N/A	N/A	N/A	N/A
32	*WiFi Filter Bank	R&S	U083	N/A	N/A	N/A
33	*WiFi Filter Bank	R&S	U082	N/A	N/A	N/A

^{*)} Test equipment used during the test

Page 51 of 52

FCC and IC Certification

10. ACCURACY OF MEASUREMENT

The Measurement Uncertainties stated were calculated in accordance with the requirements of measurement uncertainty contained in CISPR 16-4-2 with the confidence level of 95%

1. Conducted Uncertainty Calculation

		Uncerta	ainty of <i>Xi</i>	Coverage			
Source of Uncertainty	Χi	Value (dB)	Probability Distribution	factor k	<i>u(Xi)</i> (dB)	Ci	Ci u(Xi) (dB)
Receiver reading	RI	± 0.1	normal 1	1.000	0.1	1	0.1
Attenuation AMN-Receiver	LC	± 0.08	normal 2	2.000	0.04	1	0.04
AMN Voltage division factor	LAMN	± 0.8	normal 2	2.000	0.4	1	0.4
Sine wave voltage	dVSW	± 2.00	normal 2	2.000	1.00	1	1.00
Pulse amplitude response	dVPA	± 1.50	rectangular	1.732	0.87	1	0.87
Pulse repetition rate response	dVPR	± 1.50	rectangular	1.732	0.87	1	0.87
Noise floor proximity	dVNF	± 0.00	-	-	0.00	1	0.00
AMN Impedance	dZ	± 1.80	triangular	2.449	0.73	1	0.73
(a) Mismatch	М	+ 0.70	U-Shaped	1.414	0.49	1	0.49
Mismatch	М	- 0.80	U-Shaped	1.414	- 0.56	1	- 0.56
Measurement System Repeatability	RS	0.05	normal 1	1.000	0.05	1	0.05
Remark	(a): AMN-Receiver Mismatch : + (b): AMN-Receiver Mismatch : -						
Combined Standard Uncertainty		Normal			± 1.8	88	
Expended Uncertainty U		Normal (k =	: 2)		± 3.	76	

Healcerion Co., Ltd NKQF-27-18 (Rev. 00) FCC ID: 2ADXVSWM500 / IC: 12712A-SWM500

2. Radiation Uncertainty Calculation

	Xi	Uncertainty of <i>Xi</i>		Coverage			
Source of Uncertainty		Value (dB)	Probability Distribution	factor k	u(Xi) (dB)	Ci	Ci u(Xi) (dB)
Measurement System Repeatability	RS	0.34	normal 1	1.00	0.34	1	0.34
Receiver reading	Ri	± 0.02	normal 2	2.00	0.01	1	0.01
Sine wave voltage	dVsw	± 0.17	normal 2	2.00	0.09	1	0.09
Pulse amplitude response	dVpa	± 0.92	normal 2	2.00	0.46	1	0.46
Pulse repetition rate response	dVpr	± 0.35	normal 2	2.00	0.18	1	0.18
Noise floor proximity	dVnf	± 0.50	normal 2	2.00	0.25	1	0.25
Antenna Factor Calibration	AF	± 2.00	rectangular	√3	1.15	1	1.15
Cable Loss	CL	± 1.00	normal 2	2.00	0.50	1	0.50
Antenna Directivity	AD	± 0.00	rectangular	√3	0.00	1	0.00
Antenna Factor Height Dependence	AH	± 2.00	rectangular	√3	1.15	1	1.15
Antenna Phase Centre Variation	AP	± 0.20	rectangular	√3	0.12	1	0.12
Antenna Factor Frequency Interpolation	Ai	± 0.25	rectangular	√3	0.14	1	0.14
Site Imperfections	Si	± 4.00	triangular	√6	1.63	1	1.63
Measurement Distance Variation	DV	± 0.60	rectangular	√3	0.35	1	0.35
Antenna Balance	Dbal	± 0.90	rectangular	√3	0.52	1	0.52
Cross Polarisation	DCross	± 0.00	rectangular	√3	0.00	1	0.18
Mismatch	М	+ 0.98 - 1.11	U-Shaped	√2	0.74	1	0.74
EUT Volume Diameter	Vd	0.33	normal 1	1.00	0.33	1	0.11
Remark							
Combined Standard Uncertainty	Normal						
Expended Uncertainty U	Normal (<i>k</i> = 2)						