Chaos-Based Symmetric Key Cryptosystems

Christopher A. Wood

July 19, 2011

Outline

- 1 Outline
- 2 Introduction
 - History of symmetric key ciphers
 - Advanced Encryption Standard (Rijndael)
- 3 Chaos-based cipher design
 - Chaos dynamics and the logistic map
 - Mapping chaos theory to cryptography
 - Chaos-based cipher design
 - Cipher evaluation
- 4 Case studies
 - Simple and Advanced Ciphers
 - Advanced Cipher
 - Rabbit
- 5 Conclusion

History of symmetric key ciphers

- Data Encryption Standard (DES) selected as an official FIPS standard in 1976
 - Brute force attacks require a minimum of 2⁵⁶ steps due to key sizes of 56 bits - now feasible thanks to Moore's Law
 - Cryptanalysis revealed weaknesses in the design that could reduce the time complexity of a successful attack to 2^{29.2}
 - Several replacement ciphers were proposed, including 2DES, 3DES, Blowfish, RC5, and IDEA

History of symmetric key ciphers

- Data Encryption Standard (DES) selected as an official FIPS standard in 1976
 - Brute force attacks require a minimum of 2⁵⁶ steps due to key sizes of 56 bits - now feasible thanks to Moore's Law
 - Cryptanalysis revealed weaknesses in the design that could reduce the time complexity of a successful attack to 2^{29.2}
 - Several replacement ciphers were proposed, including 2DES, 3DES, Blowfish, RC5, and IDEA
- Advanced Encryption Standard (AES) competition held to replace the aging DES cipher
 - 5 year competition with 15 different symmetric key design proposals, including Rijndael, Twofish, RC6, and Serpent
 - Rijndael selected as the winner deemed to have the best balance between speed, security, and simplicity

AES (Rijndael)

- Round-based symmetric key cipher that operates on blocks of 128 bits
- Key sizes of 128, 192, and 256 bits for varying security
 - Makes brute force attacks infeasible given current computing limitations
- Operates on elements in $GF(2^8)$ defined by the irreducible polynomial $x^8 + x^4 + x^3 + x + 1$
- Four internal operations: 1) AddRoundKey, 2) SubBytes, 3)
 ShiftRows, and 4) MixColumns

Chaos dynamics

Chaotic systems are characterized by the following properties:

- Sensitivity to initial conditions
- Dense period trajectory orbits
- 3 Topologically mixing

Logistic map

$$x_{n+1} = rx_n(1-(x_n))$$

- Discrete time-based recurrence relation derived from the differential logistic equation
- lacksquare Operates in a continuous domain (usually $\mathbb R$)
- $lue{r}$ and x_0 are the initial conditions of the system

Mapping chaos theory to cryptography

Chaos Theory	Cryptography
Mixing	Diffusion
Iterations	Rounds
Initial conditions	Keys

Biggest difference: chaos only truly has meaning in continuous domains, whereas symmetric key cryptosystems operate in finite domains

Chaos-based cipher design

- Chaotic maps are non-linear transformations
 - Can be used to replace other non-linear transformation steps in the cipher (e.g. S-box substitution)
- Chaotic maps are topologically mixing
 - Add diffusion to mixing transformations in the cipher (e.g. MixColumns in AES)
- Chaotic maps are sensitive to initial conditions
 - Can be exploited to provide pseudorandomness to cipher operations (e.g. key generation, non-linear confusion routines)

Limitations

- No formal definition for discrete chaos in finite domains
- Chaotic behavior is approximated using one or more non-linear maps in space-discretized (finite) domains
- Proper security analysis must include Hamming and Euclidean distance measures for chaotic maps

Cipher evaluation

- Security is measured from a theoretical and practical perspective
 - Theoretical ciphers possess "randomness increasing" and "computationally unpredictable" characteristics
 - Practical ciphers are resistant to known attacks
- An analysis of the entropy of a cipher is a good indication of its pseudorandom properties
- Resistance to differential and linear cryptanalysis attacks is necessary

Cipher evaluation

- Security is measured from a theoretical and practical perspective
 - Theoretical ciphers possess "randomness increasing" and "computationally unpredictable" characteristics
 - Practical ciphers are resistant to known attacks
- An analysis of the entropy of a cipher is a good indication of its pseudorandom properties
- Resistance to differential and linear cryptanalysis attacks is necessary
 - Ciphers should also be strong against trajectory-based, loss of information, and memory attacks
 - Statistical tests can be conducted to determine a PDF for elements of a trajectory

Case studies

- Simple and Advanced Ciphers
- Rabbit Cipher
- Chaotic Feistel Cipher (not included in this talk)

Simple Cipher

- Design concepts
 - Based on the logistic map for its non-linear transformation
 - Uses the secret key to generate initial conditions for the map
 - Translates elements from the set of keys (2^8) to elements in (0,1] for the map

Simple Cipher

- Design concepts
 - Based on the logistic map for its non-linear transformation
 - Uses the secret key to generate initial conditions for the map
 - Translates elements from the set of keys (2^8) to elements in (0,1] for the map
- Design flaws
 - Uses "real" numbers in the logistic map expensive FLOPS lead to poor performance
 - Level of chaotic behavior tied to the amount of precision in which real numbers are stored
 - Periodic behavior induced by system reliance on keys alone leads to information leakage

Advanced Cipher

- Enhancement to the Simple Cipher
- Provides a feedback element for increased pseudorandomness and diminished periodic behavior
- Was shown that a single bit change in the encryption key effected approximately 49.6% of the ciphertext bits

Rabbit

 Approximates chaos with a system of eight coupled non-linear maps (combined into the next-state function)

Rabbit

- Works with a phase space of 2³² bits
- Does not rely on real number approximations only uses integers
- Hamming distance analysis revealed high levels of entropy for the chaotic map
- Periodic behavior and algebraic analysis efforts were also done
 - Approached the analysis from a cryptographic perspective and dynamical systems perspective

Conclusion

Chaos-based symmetric key ciphers struggle for success:

- Lack of definition for discrete chaos in finite domains
- Inefficiencies of current implementations (typically related to FLOPS and real number representations)
- Thorough security analysis is difficult and often times indicates that chaos-based ciphers are not comparable in security to standardized ciphers