Analysis of the implementation of the Stipula legal calculus using Distributed Ledger Technologies

Master's degree thesis

Supervisor

Professor Silvia Crafa

Graduand Federico Zanardo

Research question

- What is a platform for running Stipula contracts?
- 1. Architectural analysis
 - Proposal of a distributed platform scalable from a server to a peer-to-peer network
 - Asset definition and UTXO model

Research question

- 2. Specific implementation
 - Compiler and Virtual Machine
 - Asset transfers
 - Obligations and event scheduling

```
stipula BikeRental {
1
        asset wallet:stipula_coin_asd345
2
        field cost, rentingTime, use_code
3
4
        agreement (Lender, Borrower)(cost, rentingTime){
5
            Lender, Borrower: cost, rentingTime
6
        } ==> @Inactive
7
8
        @Inactive Lender : offer(z)[] {
9
            z -> use_code
10
        } ==> @Proposal
11
12
        @Proposal Borrower : accept()[y]
13
            (y == cost) {
14
                y -o wallet
15
                use code -> Borrower
16
                now + rentingTime >>
17
                     @Using {
18
                         "End_Reached" -> Borrower
19
                         wallet -o Lender
20
                     } ==> @End
21
        } ==> @Using
22
23
        QUsing Borrower : end()[] {
24
            wallet -o Lender
25
        } ==> @End
26
27
```

UNIVERSITY

OF PADUA

Possible configurations

Stipula server

Server Stipula Server Stipula

Blockchain L1/L2

Possible configurations

Stipula node

Proposed architecture

Proposed architecture

- Compiler
 - Efficiency
 - Correctness of contract
 - Interoperability
- Virtual Machine
 - Contract execution
 - Event scheduling
 - Safety of asset transfers

Server Stipula

> Server Stipula Blockchain L1/L2

Asset models

- Account-balance-based and UTXO (Unspent Transaction Output)
- The UTXO model fits better the needs for the implementation

UTXO model

- A UTXO is a box that contains a certain amount of an asset
- This box is close by a single-use-seal which can only be broken by the owner of the quantity of assets in question
- Advantages:
 - Parallelization
 - Partially solves the double-spending problem
 - Security

Limitations of naive UTXO model

- Simply using public and private keys is limiting
- Examples of advanced transaction types not supported:
 - Using multisig wallets
 - Funds timelock

Adopted solution

- Definition of a Script language to specify the conditions under which a transaction can be spent in the network
- Inspired from Bitcoin Script language
- A program in Script language allows a party to provide a cryptographic proof of ownership of a UTXO

Script

- Pay-to-Public-Key-Hash (P2PKH) in Bitcoin
- lockScript: lock the funds
- unlockScript: cryptographic proof provided by the owner of the funds
- script = unlockScript + lockScript

Script

Script

Contracts

storage

Ownerships

storage

Asset

storage

Contracts

instances

storage

Stipula bytecode

- Compiler (ANTLR tool): lexer, parser, semantic analyzer and code generator
- This language was designed to mirror the features of the highlevel language and to run on a stack-based virtual machine

Stipula bytecode – Instructions

Instruction	Behavior		
PUSH	$- \rightarrow *$		
HALT	$- \rightarrow -$		
ADD	$(\mathtt{int},\mathtt{int}) o \mathtt{int},$		
	$(\mathtt{real},\mathtt{real}) o \mathtt{real},$		
	$(\mathtt{asset},\mathtt{asset}) o \mathtt{real},$		
	$ig (\mathtt{asset}, \mathtt{real}) o \mathtt{real},$		
	$(\mathtt{real},\mathtt{asset}) o \mathtt{real},$		
	$(\mathtt{time},\mathtt{time}) o \mathtt{time}$		
SUB	$(\mathtt{int},\mathtt{int})\to\mathtt{int},$		
	$(\mathtt{real},\mathtt{real}) o \mathtt{real},$		
	$ig (exttt{asset}, exttt{asset}) ightarrow exttt{real},$		
	$(\mathtt{asset},\mathtt{real}) o \mathtt{real},$		
	$(\mathtt{real},\mathtt{asset}) o \mathtt{real}$		
MUL	$(\mathtt{int},\mathtt{int}) o \mathtt{int},$		
	$(\mathtt{real},\mathtt{real}) o \mathtt{real},$		
	$(\mathtt{asset},\mathtt{asset}) o \mathtt{real},$		
	$(\mathtt{asset},\mathtt{real}) o \mathtt{real},$		
	$(\mathtt{real},\mathtt{asset}) o \mathtt{real}$		
DIV	$(\mathtt{int},\mathtt{int}) o \mathtt{int},$		
	$(\mathtt{real},\mathtt{real}) o\mathtt{real},$		
	$(\mathtt{asset},\mathtt{asset}) o \mathtt{real},$		
	$(\mathtt{asset},\mathtt{real}) o \mathtt{real},$		
	$(\mathtt{real},\mathtt{asset}) o \mathtt{real}$		

INST	$- \rightarrow -$		
AINST	$- \rightarrow -$		
GINST	$- \rightarrow -$		
LOAD	$- \rightarrow *$		
ALOAD	$- \rightarrow *$		
GLOAD	$- \rightarrow *$		
STORE	$* \rightarrow -$		
ASTORE	$* \rightarrow -$		
GSTORE	$* \rightarrow -$		
AND	$(\mathtt{bool},\mathtt{bool}) o \mathtt{bool}$		
OR	$(\mathtt{bool},\mathtt{bool}) o \mathtt{bool}$		
NOT	$\texttt{bool} \to \texttt{bool}$		
JMP	$- \rightarrow -$		
JMPIF	$ \hspace{.08cm} exttt{bool} ightarrow - \hspace{.08cm} exttt{bool} $		
ISEQ	$* o exttt{bool}$		
ISLE	$* o exttt{bool}$		
ISLT	$* o \mathtt{bool}$		
DEPOSIT	$(\mathtt{asset},\mathtt{asset}) o -$		
WITHDRAW	$(\mathtt{real},\mathtt{asset},\mathtt{party}) o -$		
RAISE	$- o \mathtt{str}$		
TRIGGER	$\mathtt{time} \to -$		


```
fn Proposal Borrower accept Using asset
31
      args:
32
      PUSH asset :y
33
      AINST asset :y
34
      ASTORE y
35
      start:
36
      ALOAD y
37
      GLOAD cost
38
      ISEQ
39
      JMPIF if_branch
40
      RAISE AMOUNT_NOT_EQUAL
41
      JMP end
      if_branch:
43
      ALOAD y
44
      GLOAD wallet
      DEPOSIT wallet
      GLOAD rentingTime
47
      PUSH time now
48
      ADD
49
      TRIGGER obligation_1
50
      end:
51
      HALT
52
```



```
now + rentingTime >>
    @Using {
        "End_Reached" -> Borrower
        wallet -o Lender
} ==> @End
```

19

21

22

23


```
obligation Using obligation_1 End
61
      start:
62
      PUSH real 100 2
63
      GLOAD wallet
64
      GLOAD Lender
65
      WITHDRAW wallet
66
      end:
67
      HALT
68
```

Missing features

Single-use-seal merge

- In order to make a payment, the user must have available a single-use-seal of the exact quantity required by the contract
- If the user does not have a single-use-seal of the requested quantity, the user cannot make the payment

Missing features

Single-use-seal merge

Conclusions

Future improvements

- Implementation of the consensus module and communication protocols
- Implementation of the commitment module
- Script language extension
- Creation of assets and their distribution
- Implementation of additional software (i.e., SDK, wallet, ...)

Conclusions

Challenges

- Research question: what is a platform for running Stipula contracts?
 - 1. Architectural analysis
 - 2. Specific implementation
- Mapped out a project direction
- Desgin an implementation-agnostic architecture

Conclusions

Challenges

	Research	Design	Implementation
Virtual Machine, compiler and Stipula bytecode			
Asset management and Script language			
Distributed context and consent			

Thank you for your attention!

