AI Literacy Curriculum

Lessons 1-2: Understanding AI Basics

LESSON 1: What is AI? Demystifying Artificial Intelligence

@ Learning Goals

By the end of this lesson, you will be able to:

- Explain what artificial intelligence means in simple terms
- Tell the difference between AI, machine learning, and regular computer programs
- Spot AI in your everyday life
- Understand why AI is important to learn about

What Exactly IS Artificial Intelligence?

The Simple Answer

Imagine if your computer could think, learn, and make decisions like a human. That's essentially what artificial intelligence (AI) is - computer systems that can do tasks that normally need human smarts.

Think about it this way: When you see a photo of your friend, you instantly recognize them. When you hear a song, you know if you like it. When someone asks you a question, you can figure out an answer. Al tries to give computers these same abilities.

Real-World Example

Let's look at your smartphone's camera. When you point it at someone's face, it automatically draws a little box around their face and focuses on it. How does it know that's a face and not a tree or a car? That's Al at work! The camera has been taught to recognize patterns that make up human faces.

Breaking It Down Further

Regular Computer Programs:

- Follow exact instructions
- Do the same thing every time
- Can't adapt or learn
- Example: A calculator always adds 2+2=4

Al Programs:

- Can make decisions based on what they've learned
- Get better with practice
- Can handle new situations
- Example: A photo app that gets better at recognizing your friends' faces

Key Concepts Everyone Should Know

1. Artificial Intelligence (AI)

The big umbrella term for any computer system that can perform tasks requiring human-like intelligence.

Easy way to remember: If a computer is doing something that makes you think "wow, that's smart," it's probably AI.

2. Machine Learning (ML)

A specific type of AI where computers learn from examples instead of being programmed with specific rules.

Easy way to remember: Instead of telling the computer exactly what to do, you show it lots of examples and let it figure out the patterns.

3. Narrow Al vs. General Al

Narrow AI (What we have now):

- Really good at ONE specific task
- Can't transfer knowledge to other areas
- Examples: Netflix recommendations, voice assistants, game-playing Al

General AI (What we don't have yet):

- Could understand and learn any task a human can
- Would be flexible and adaptable like human intelligence
- This is still science fiction for now

Activity 1: Al Detective Challenge

Your Mission: Find AI hiding in your daily life!

Part A: The Hunt (20 minutes)

Look around your home, school, or daily routine and find 10 examples of Al. Here are some hints to get you started:

Easy Spots:

- Your phone's virtual assistant (Siri, Google Assistant)
- Netflix or YouTube recommendations
- Spam email filtering
- Maps showing traffic and routes
- Auto-correct when texting

Harder to Spot:

- Online shopping recommendations
- Social media feeds
- Credit card fraud detection
- Smart home devices
- Search engine results

Part B: Classification Game

For each AI example you found, decide:

- 1. What human-like task is it doing?
- 2. How do you think it learned to do this?
- 3. Rate its "smartness" from 1-10

Example:

- **Al Found:** Spotify recommending songs
- Human Task: Suggesting music you might like (like a friend would)
- How it learned: By analyzing millions of people's listening habits
- Smartness Rating: 7/10 (pretty good, but sometimes suggests weird stuff)

6 Activity 2: Al vs. Not Al

Instructions: Look at each scenario below and decide if it's AI or just a regular computer program. Explain your reasoning.

- 1. Your alarm clock going off at 7 AM every day
- 2. Google Photos automatically organizing pictures of your dog
- 3. A calculator solving math problems
- 4. Amazon suggesting products you might want to buy
- 5. Your car's GPS recalculating when you miss a turn
- 6. A stopwatch timing how fast you run
- 7. Grammarly fixing your spelling and grammar
- 8. A digital thermometer showing the temperature

Answer Key:

- 1. Not AI (follows simple programmed schedule)
- 2. Al (recognizes and categorizes images automatically)
- 3. Not AI (follows mathematical rules)
- 4. AI (learns from your behavior and millions of other users)
- 5. Al (adapts to new situations and finds alternative routes)
- 6. Not AI (simple time measurement)
- 7. Al (understands language context and suggests improvements)
- 8. Not AI (measures and displays temperature)

Think About It: Discussion Questions

For Individual Reflection:

- 1. Before this lesson, what did you think AI was? How has your understanding changed?
- 2. Which AI example from your detective hunt surprised you the most? Why?
- 3. Do you think AI makes your life better or more complicated? Give specific examples.

For Group Discussion:

- 4. If you could create an AI to help with one problem in your life, what would it be and why?
- 5. What's one thing humans can do that you think AI will never be able to do? Explain your reasoning.
- 6. Do you think there's too much AI in our lives, not enough, or just the right amount?

LESSON 2: The Building Blocks - How AI Actually Works

@ Learning Goals

By the end of this lesson, you will be able to:

- Explain how machines "learn" from data
- Understand the basic process of training an AI system
- Identify different types of learning approaches
- Recognize what makes AI systems work well or poorly

The Foundation: Data, Patterns, and Learning

Think Like a Detective

Imagine you're a detective trying to solve crimes. How would you get better at your job?

- 1. **Study lots of solved cases** (learn from examples)
- 2. **Look for patterns** (what clues usually mean what?)
- 3. **Practice on new cases** (test your theories)
- 4. **Learn from mistakes** (when you're wrong, figure out why)

This is exactly how AI learns! Let's break it down:

The Al Learning Recipe

Ingredient 1: Data (The Examples) Just like a detective needs cases to study, Al needs data to learn from. The more examples, the better the Al becomes.

Examples of AI Data:

- Photos (millions of cat pictures to learn what cats look like)
- Text (thousands of books to understand language)
- Behavior (your Netflix viewing history to recommend shows)
- Sounds (recordings of speech to understand what you're saying)

Ingredient 2: Patterns (The Clues) Al systems are incredibly good at finding patterns that humans might miss.

Example: An Al analyzing thousands of medical scans might notice that tiny spots in a certain location often indicate early disease - even before human doctors see the pattern.

Ingredient 3: Algorithms (The Detective Methods) These are the mathematical "thinking processes" that help AI find patterns and make decisions.

How Al Goes to School: The Training Process

Step 1: Show and Tell (Supervised Learning)

This is like having a teacher show you examples with the right answers.

Example: Teaching AI to Recognize Dogs

- 1. Show the AI 100,000 photos labeled "dog" or "not dog"
- 2. Al learns what features make something a dog (ears, tail, fur patterns, etc.)
- 3. Test with new photos to see if it can correctly identify dogs
- 4. If it makes mistakes, adjust and try again

Real-World Uses:

- Email spam detection
- Medical diagnosis
- Voice recognition
- Fraud detection

Step 2: Trial and Error (Reinforcement Learning)

This is like learning to ride a bike - you try, fall down, adjust, and try again.

Example: Teaching AI to Play Games

- 1. Al tries random moves at first
- 2. Gets rewards for good moves, penalties for bad ones
- 3. Gradually learns which strategies work best
- 4. Eventually becomes expert through millions of practice rounds

Real-World Uses:

- Self-driving cars
- Game-playing AI (like AlphaGo)
- Robot control
- Trading algorithms

Step 3: Finding Hidden Patterns (Unsupervised Learning)

This is like being given a puzzle with no picture on the box - you have to figure out what it's supposed to look like.

Example: Analyzing Customer Behavior

- 1. Give AI data about what people buy, when, and where
- 2. Al finds hidden groups (maybe "weekend shoppers," "health-conscious buyers," etc.)
- 3. These patterns help businesses understand their customers better

Real-World Uses:

- Market research
- Recommendation systems
- Scientific research
- Social media analysis

Meet the Neural Network: Al's "Brain"

What's a Neural Network?

Imagine your brain as a huge network of connected lightbulbs. When you see something, different combinations of bulbs light up to help you recognize what it is. Neural networks work similarly!

Simple Neural Network Example: Recognizing Handwritten Numbers

Layer 1: The Eyes

- Receives the image (like a photo of someone's handwriting)
- Breaks it down into tiny dots (pixels)

Layer 2: The Pattern Detectors

- Some "neurons" look for curves
- Others look for straight lines
- Others look for corners and angles

Layer 3: The Shape Recognizers

- Combines simple patterns into more complex shapes
- Recognizes loops, lines, and connections

Layer 4: The Decision Maker

- Puts all the information together
- Decides: "This looks most like the number 7"

③ Activity 1: Be a Human Neural Network

Setup: Work in groups of 4-5 people. You're going to simulate how a neural network learns to categorize music.

Round 1: Initial Training

- 1. Input Layer Person: Plays 10 different 30-second song clips
- Feature Detector People: Each person listens for ONE thing:
 - Person A: Is it fast or slow?
 - Person B: Does it have singing or just instruments?
 - Person C: Is it loud or quiet?
- 3. **Output Person:** Based on the three reports, guesses the genre (rock, pop, classical, hip-hop, country)

Round 2: Learning from Mistakes

- 1. Reveal the correct genres
- 2. Discuss which features were most helpful
- 3. Adjust your listening strategy

Round 3: Test Your Network

- 1. Play 5 new songs
- 2. See how much better your "neural network" performs

Debrief Questions:

- Which features were most useful for identifying genres?
- How did working together improve your accuracy?
- What would happen if you had more people listening for different features?

Activity 2: The Pattern Detective Challenge

Challenge 1: Number Patterns

Look at these sequences and predict the next number:

- 1. 2, 4, 6, 8, ___ 2. 1, 1, 2, 3, 5, 8, ___
- 3. 100, 90, 81, 73, 66, ___

Challenge 2: Image Patterns

[In a real classroom, you'd show visual patterns] Describe what patterns you notice in:

- A collection of photos labeled "sunrise" vs "sunset"
- Handwriting samples from different people
- Pictures of healthy vs unhealthy plants

Challenge 3: Behavior Patterns

If you were an AI trying to recommend movies, what patterns would you look for in this data?

User A: Loves action movies, watches mostly on weekends, prefers newer films User B: Enjoys comedies and romantic films, watches daily, likes both old and new User C: Only watches documentaries and sci-fi, binges entire series, prefers critically acclaimed films

Your Mission: Based on these patterns, what would you recommend to each person and why?

Activity 3: Build Your Own Simple AI Decision Tree

Let's create a simple AI system that decides whether someone should wear a jacket or not.

Step 1: Gather Your Training Data

Survey 10 people and ask:

- What's the temperature outside?
- Are you wearing a jacket? (Yes/No)
- Is it raining? (Yes/No)
- Are you going to be outside long? (Yes/No)

Step 2: Look for Patterns

Create a simple decision tree:

```
Is the temperature below 60°F?

YES → Is it raining?

PYES → Definitely wear a jacket

NO → Probably wear a jacket

NO → Is it raining?

PYES → Light jacket or umbrella

NO → Are you outside for more than 30 minutes?

PYES → Maybe bring a light layer

NO → No jacket needed
```

Step 3: Test Your AI

Give your decision tree to friends and see how accurate it is!

What Makes AI Smart (or Not So Smart)?

Al Superpowers:

- 1. **Processing Speed:** Can analyze millions of examples in seconds
- 2. Pattern Recognition: Finds patterns humans would never notice
- 3. Consistency: Doesn't get tired, distracted, or have bad days
- 4. Memory: Never forgets what it has learned

AI Weaknesses:

- 1. Limited Understanding: Doesn't truly "understand" just recognizes patterns
- 2. Needs Lots of Data: Can't learn from just a few examples like humans
- 3. **Brittle:** Small changes can completely confuse the system
- 4. No Common Sense: Might make obvious mistakes humans wouldn't

Real Example: Image Recognition Fails

Al trained to recognize school buses might:

- Correctly identify yellow buses
- X Fail when the bus is painted a different color
- X Identify a yellow Volkswagen van as a school bus
- X Miss a school bus photographed from an unusual angle

Reflection Questions

Understanding Check:

- 1. In your own words, explain how AI learns from data. Use an example that's not from this lesson.
- 2. What's the difference between supervised and unsupervised learning? Give an example of each.
- 3. Why do AI systems need so much data to work well?

Critical Thinking:

- 4. If you were training an AI to detect fake news, what patterns do you think it should look for?
- 5. What are some problems that could happen if an AI system is trained on biased data?
- 6. Why might an AI that works perfectly in a lab fail in the real world?

Personal Connection:

- 7. Think about something you learned recently. How was your learning process similar to or different from how AI learns?
- 8. What's one task that you think would be easy for AI to learn? What's one that would be very difficult? Explain your reasoning.

♦ Key Takeaways from Lessons 1-2

By now, you should understand that:

- Al is everywhere in our daily lives, often working behind the scenes
- ✓ Al learns from patterns in large amounts of data, similar to how humans learn from experience
- ☑ **Different types of learning** (supervised, unsupervised, reinforcement) are used for different problems
- Al has both amazing abilities and significant limitations it's powerful but not magic
- ✓ Understanding how AI works helps us use it better and recognize its limitations

Want to Learn More?

Try These Activities:

- **Teachable Machine by Google:** Train your own Al models with your camera and microphone
- Scratch for Machine Learning: Create simple Al projects with visual programming
- Al Dungeon: Experience creative Al storytelling

Questions for Further Exploration:

- How do recommendation algorithms on social media affect what we see and believe?
- What happens when AI systems make mistakes in important situations like healthcare or law enforcement?
- How can we make sure AI systems are fair and don't discriminate against certain groups?

Coming Next: In Lessons 3-4, we'll explore real-world AI applications and dive deep into the ethical considerations of AI in society.