2 + 9 m / = 0 4 det & gomn + 4 det & gomp (ston Il stop) 2

(gomn) stongs (ston Itstop) 2

I = {(V45 VT)} 4 det of (9 mn + 9 mp) (9 con withy Why does cot divided not lead to a pole gmn - Lyth not lead to a pole.

R Why do we use & DX picture to analye differential.

No. 15 1-Ve · Transistor is more power efficient when closer to cutoff.
Sulthershold ->
V. Vss bleak inversion naitorentos weak inversion strong inversion Vds > Vds, sat 3. (VGS - VT) This cht has love impldance at output but gain f = 1 so can be used as amplifier Z out $= \frac{1}{9}m$ & effective 1 transconductance = 9 m so 9 = 1

short clet the output & check

convert going into ground to get

while applying input

in differential picuture $Z \text{ in } = -\frac{1}{g_{\text{in}}} 2 \text{ in}$ CH spicture Zin = Im so on attaching this elet at output of preve chit we get love CM impedance so & stable output and a high gain. gain for combined ekt = Dgm(40,1190311 905) In Vop | 7 gm (Vop+Von)

Vep-In Von-In Source voltage?

Sm (Vop-Vx + Vom-Vn) looking down impedance M3 Non as at North A&B it is \$100 as at A&B it is \$\frac{1}{2} m \tag{1} \tag{1} \tag{1} \tag{1} \tag{1} \tag{1} \tag{1} \tag{2} \tag{1} \tag{1} \tag{1} \tag{1} \tag{1} \tag{1} \tag{1} \tag{2} \tag{1} \tag{ both PMOS is similar & of both

AD NHOS is same then we can

say A is short grounded in increment. incremental picture. As if & VB > VD then convert thou M, & My is 1 & three M2&M3 is I which is not possible to so $V_8 = V_D$ so extis ragain symmetric. is + 2 m vd = 9 m The effective gm for this case & effer Zout = ron 11 rop The output impedance at \$ B is love so successful swing is low so it can be incrementally considered ground.

TES STATES

-

 $\frac{-G_L}{C_0} = \frac{-g_m p}{C_M} = \frac{-2g_m p}{C_M}$ eroo presence of left half plane sero improves stability. Even after occurrence of 2 poles before UGB (unity gain pt.) we can have high athieubnail reubnad + 133 L-23 Vn = 4 k BTR, in = 4kBT (Thermal Noise) Danly real impedances have noise $\frac{R}{-W} \frac{q \times BTR = V_n^2}{F}$ $PSD (S_{V2}) = 4 \times TR \rightarrow \frac{V^2}{Hz}$ Rcomplete picture for noise consideration Si = 4kT 8gm ris lærge for short 8= = for long channel device channel device # If resistors are connected in parallel noise reduces Short cht input to get noise due to In & open -> Vn $V_{1} + V_{2} + V_{3} = \frac{(4 k T 8 g m_{2} + 4 k T 8 g m_{2})(9 c_{02} 11 9 c_{03})^{2}}{g^{2} m_{2} (9 c_{02} 11 9 c_{03})^{2}} = V_{in}^{2}$

Chopping for EEG signals -> then pass thou LPF 260 ±61 in sin Wot usin Wot + Win noise perofile for differential amplifier Noise analysis We do superposition of noise due to both NHOS looking up impedance BERDI at A is same as

BERDI at A is same as

BERDI at A is same as

BERDI at A is same as A = 1/2 m 2 = 1/2 m so coverent gets equally distributed. Coverent In moves upward in RD, & downwoord in RD 2 SO $V_{\text{out}} = \frac{In}{2} RD_1 + \frac{In}{2} RD_2$ SO $V_{in} = InR_D \left(if R_{D_i} = R_{D_2} \right)$ $V_n^2 = I_n^2, R_D^2 + I_{n_2}^2 R_D^2 \longrightarrow \text{output referred voltage}$ Input sufervied noise = $(I_{n_1}^2 + I_{n_2}^2)R_D^2 = \frac{8kTf}{fm}$ (thermal noise due to transisters) $f^2_m R_D^2 + f q_{kT}$ + (YLT R gim) x 2 (due to RD)

 $\frac{1}{\sqrt{1+A}} = \frac{1}{\sqrt{1+A}} = \frac{1}$ ideal opamp A is infinite so VCVS so use get a risitual pround $V_o = A (V_A - V_B)$ operational teransconductance amplifier (OTA) -If output un impedance isn't love then spamp beones # Cascoding done to increase gain - IN MINE Jm, (4019m29102 11 Hoy 9m - 11 May 9 m3 Mo3) - ISIN MI J.m, (401 11 2102) folded cascade gives greater swing output & reoltages ranges from 300 mv - 4.4 V Vcm D DVDS $V_{DS} - (V_{DD} - 2V_{DS})$ To I vos 2

Vos 2

Vos 3

Attiel load

Vos 4

Vos 4

Vos 4

Vos 4

Vos 5

Vos 5

Vos 6

Vos 7

Vos 7

Vos 8

Vos 8

Vos 9

Vos 9 5 Vip III Vim 5 VDS - VDSI - VDSI - VDSI - VDSI - VDSI

The extern stage causes moise so use get in higher out output swing at the cost of noise (from telescopic amp. to folded coursed canade OTA)

It if bias werent for amplifier is less than what is needed to achieve C& dvo (for higher step input) then amplifier is said to sleve sleve and it leads to a slower response at attent.

Jens location is

yell gm2 found by making

Vo total coverent 0.

R+ stc.

V SCc - gm - SRCc gm g=0 so $C_c - RC_c g_m = 0$ to eliminate Pzero

for R = 0 we have seve at 2 m in RHP then for R = 1 m we get zeve at a . Now on increasing R we get a LHP seve which is actually good for stability.

ckt for gm to touck track + In of this NHOS tracks ? it causes miller distribution of the capacitor but vo doesn't lead to 2 paths from input to output.

So the zero is climinated 19 41 2 (without the need of rusistar by applying unity gain voltage luffer.) could be made using common droin amp. The \mathbb{C} $\mathbb{C$ 9 The (WL), so 6 is also peroperly biased if 6 is identical to (& S). If only W/L reation is same but WAL are not some & it leads to higher order differences. ousistor is added to prevent saturation of vi to output. At high page of them R of them R of them R oused due to mismatch in NMOS parameters of like VT

Ho Nyquist sampling shearem - f = > 2 f m youth of norman the street of the posture of the po CT & DA DA digital (equare mare) is not will have that have higher order hormonics to sure to sample at a pay to prevent digital signal data noitesitray (Hy Nyguest) 1 Rondom # As were increase the no. of levels for quantistion the everer signal becomes more evandom Ideal LPF is not realisable as the function is non eausal & use can design only causal systems