Benchmarking Intensity

Anna Pavlova and Taisiya Sikorskaya

解读: 雷印如

2023年2月23日

Motivation

- ► The asset management industry has been growing in size and importance over time.
- ▶ Benchmarks convey to fund investors information about the types of stocks the fund invests in and act as a useful tool for performance evaluation of fund managers
- ▶ Our objective is to link membership in multiple benchmarks to stock prices and expected returns, as well as the demand by fund managers

Literature

- ▶ This paper is related to several strands of literature, including equilibrium asset pricing with benchmarked fund managers, index effect, and empirical research on the effects of institutional ownership.
 - ▶ Benchmark: None of these works, however, considers heterogeneous benchmarks (Brennan, 1993; Cuoco and Kaniel, 2011; Basak and Pavlova, 2013); Buffa et al., Forthcoming).
 - ▶ Index effect: This literature typically measures the average size of index effect (Shleifer, 1986; Harris and Gurel, 1986). The existence of the index effect challenges the standard theories which predict that demand curves for each stock are very elastic (Gabaix and Koijen, 2020).

Contribution

- Among theoretical contributions, heterogeneous habitats of fund managers arise because of the heterogeneity in benchmarks. Our preferred habitat model provides a microfoundation for why stocks are imperfect substitutes.
- ▶ Both theoretical and empirical results are related to the index effect literature, we show how it varies in the cross-section with the change in BMI.
- ▶ Among empirical contributions, Our analysis delivers an alternative estimate of stock price elasticity of demand and implications of passive ownership for corporate governance.

Model - Basic Setting

There are two periods, t = 0, 1. The financial market consists of a riskless asset with an exogenous interest rate normalized to zero. The cash flows of the risky assets are given by

$$D_i = \bar{D}_i + \beta_i Z + \epsilon_i, \beta_i > 0, i = 1, ..., N,$$

where $Z \sim N(0, \sigma_z^2)$ is common shock and $\epsilon_i \sim N(0, \sigma_z^2)$ is idiosyncratic.

- ▶ The terminal wealth of a direct investor is given by $W = W_0 + \theta_D'(D-S)$,
- \triangleright A fund manager's j compensation w_i consists of three parts

$$w_i = aR_i + b(R_i - B_i) + c, a \ge 0, b > 0$$

where $R_j \equiv \theta'_j(D-S)$ is the performance of the fund's portfolio and

$$B_j \equiv \omega_j'(D-S)$$
 is the performance of benchmark j

Model - Portfolio choice and asset prices

➤ The portfolio demand of the direct investors is the standard mean-variance portfolio

$$\theta_D = \frac{1}{\gamma} \Sigma^{-1} (\bar{D}_i - S)$$

► The portfolio demand of manager j is given by,

$$\theta_j = \frac{1}{\gamma(a+b)} \Sigma^{-1} (\bar{D}_i - S) + \frac{b}{a+b} \omega_j$$

▶ The fund manager splits his risky asset holdings across two portfolios: the mean-variance portoflio and the benchmark portfolio. The latter portfolio arises because the manager hedges against underperforming the benchmark.

Model - Market Clear

▶ By clearing markets for the risky assets, $\lambda_D \theta_D + \sum_{j=1}^J \lambda_j \theta_j = \bar{\theta}$, we compute equilibrium asset prices.

$$S = \bar{D} - \gamma A \Sigma \left(\bar{\theta} - \frac{b}{a+b} \sum_{j=1}^{J} \lambda_j \omega_j \right)$$

The index effect manifests itself through the benchmarking-induced price pressure term $\frac{b}{a+b} \sum_{i=1}^{J} \lambda_i \omega_i$.

▶ The expected return of stock i, expressed as

$$E[\Delta S_i] = \gamma A \beta_i \sigma_z^2 \beta' \left(\bar{\theta} - \frac{b}{a+b} \sum_{i=1}^J \lambda_j \omega_j \right) + \gamma A \sigma_\epsilon^2 \left(\bar{\theta}_i - \frac{b}{a+b} \sum_{i=1}^J \lambda_j \omega_{ij} \right)$$

◆□ ト ◆□ ト ◆ 豊 ト ◆ 豊 ト ◆ 曳 ・ り へ ○

Model Prediction

- ▶ Stocks with higher benchmarking intensities have lower expected returns.
- ▶ If a stock's benchmarking intensity goes up (e.g., because of an index inclusion), its price should rise.
- ▶ If a stock's benchmarking intensity goes up, the funds' ownership of the stock $(\sum_i \theta_{ij})$ should rise.
- ▶ If a stock enters benchmark j and exits benchmark k, funds benchmarked to index j increase their demand for the stock (θ_{ij}) while those benchmarked to index k decrease their demand (θ_{ik}) .

Data

- The main sample is an annual panel of stocks which were the Russell 3000 constituents in 1998-2018. All the constituent weights for 22 Russell benchmark indexes are from FTSE Russell
- ► The main three pillars of data are historical benchmark weights, fund and institutional holdings, and stock characteristics
- ► Focus on U.S. domestic equity mutual funds and ETFs and their prospectus benchmarks to build a measure of benchmarking intensity

Empirical measure of benchmarking intensity

• we calculate the benchmarking intensity (BMI) for stock i in month t as

$$BMI_{it} = \frac{\sum_{j=1}^{J} \lambda_{jt} \omega_{ijt}}{MV_{it}}$$

where λ_{it} is AUM of mutual funds and ETFs benchmarked to index j in month t, ω_{ijt} is the weight of stock i in index j in month t and MV_{it} is the market capitalization of stock i in month t

Furthermore, stock weight in any value-weighted index j is

$$\omega_{ijt} = \frac{MV_{it}1_{ijt}}{\sum_{k=1}^{N} MV_{kt}1_{kit}} = \frac{MV_{it}1_{ijt}}{IndexMV_{jt}}$$

Hence, an additional advantage of this scaling of our theoretical measure

$$BMI_{it} = \sum_{j=1}^J rac{\lambda_{it} \mathbf{1}_{ijt}}{\sum_{\substack{k=1 \ \mathrm{i}
eq i}}^N MV_{kt} \mathbf{1}_{kjt}} = rac{\lambda_{it} \mathbf{1}_{ijt}}{Index MV_{jt}}$$

BMI and index effect

• we show stocks with larger changes in BMI have higher returns in June

$$Ret_{it}^{June} = \alpha \Delta BMI_{it} + \xi log MV_{it} + \phi^{'}Controls_{it} + \tau Float_{it} + \delta^{'}\bar{X}_{it} + \mu_{t} + \epsilon_{it}$$

 Ret_{it}^{June} is the return of stock i in June of year t, winsorized at 1%. BMI_{it} is the difference between the BMI of stock i in May of year t and its BMI in June of the same year

▶ Consistent with our model's Prediction 2, price pressure is the highest for stocks experiencing the largest increase in BMI, all else equal

BMI change and return in June

- ▶ Price pressure is the highest for stocks having the largest increase in BMI
- ▶ The size of index effect is proportional to the stock's BMI change

	Return in June					$\Delta BMI,\%$
	(1)	(2)	(3)	(4)	(5)	(6)
ΔBMI	0.26** (2.55)	0.27**	0.28** (2.74)			
$1(\Delta BMI \text{ quartile } 1)$	(=:==)	(====)	(=::-,	-0.010*** (-3.41)	-0.010*** (-3.39)	-3.02
$1(\Delta BMI \text{ quartile } 2)$				-0.004** (-2.16)	-0.005*** (-2.67)	-0.39
$1(\Delta BMI \text{ quartile } 3)$				0.006***	0.005***	0.49
$1(\Delta BMI \text{ quartile 4})$				0.008** (2.26)	0.009*** (2.64)	3.24
Fixed effect	Year	Year	Stock & year	N	N	
\bar{X} controls	N	Y	Y	N	Y	
Observations	14,549	14,549	14,549	14,549	14,549	
Adj. R^2 , %	17.1	17.5	19.2	1.3	1.8	

Implications for the price elasticity of demand

- ▶ Most of the existing literature implicitly assumes that active investor demand is fully elastic. Using the change in passive benchmarked assets to measure the price elasticity of demand as $(\tilde{\theta_1} - \tilde{\theta_0})/(S_1 - S_0) \times S_0/\tilde{\theta_0}$
- ▶ The demand of passive managers benchmarked to index j for any particular stock is fully inelastic. Then, the effective supply of shares available to benchmarked active managers and direct investors is $\tilde{\theta} = \bar{\theta} - \sum_{i} \lambda_{i}^{P} \omega_{i}$
- ▶ Aggregate demand function of benchmarked active managers and direct investors

$$\Theta^{Active+Direct} = \frac{1}{\gamma} A^{-1} \Sigma^{-1} (\bar{D} - S) + \frac{b}{a+b} \sum_{j} \lambda_j^A \omega_j$$

Demand curves and index effect

▶ One could separate elastic and inelastic components of active managers' demand and subtract the latter from the effective supply

$$\tilde{\theta}' = \bar{\theta} - \left[\sum_{j} \lambda_{j}^{P} \omega_{j} + \frac{b}{a+b} \sum_{j} \lambda_{j}^{A} \omega_{j} \right]$$

BMI as an IV

▶ We estimate price impact of benchmarked investors' trades by examining directly how changes in their ownership of a stock affect the stock's price.

$$Ret_{it}^{June} = \alpha \Delta IO_{it} + \epsilon_{it}$$

The change in IO is an equilibrium object and hence is endogenous

▶ The skewness increases with the return measurement horizon, and the percentage of funds that outperform the SPY declines

$$\Delta IO_{it}^{June} = \alpha \Delta BMI_{it} + \xi_1 log MV_{it} + \phi_1' Control_{it} + \tau_1 Float_{it} + \delta_1' \bar{X}_{it} + \mu_{1t} + \epsilon_i$$

$$Ret_{it}^{June} = \alpha \Delta \hat{I}O_{it} + \xi log MV_{it} + \phi' Control_{it} + \tau Float_{it} + \delta' \bar{X}_{it} + \mu_{2t} + \epsilon_{it}$$

2023年2月23日 15/23

BMI as an IV

► To further alleviate concerns about the possible endogeneity of BMI, we conduct overidentifying restrictions tests

Change in BMI as an instrument for change in institutional ownership

0				-	
		Return i	Return in April-June, %		
	OLS			2SLS	
	(1)	(2)	(3)	(4)	(5)
A. Second-stage estimates					
ΔIO , %	0.09***	2.27	1.46**	1.47**	2.26**
	(3.75)	(1.44)	(2.55)	(2.57)	(2.80)
B. First-stage estimates	(()	, , ,	, , ,
ΔBMI , %			0.20***	0.19***	0.19***
, .			(5.90)	(6.34)	(6.43)
D^{R2000}		0.85***	-0.15	,	()
_		(2.78)	(-0.54)		
F-stat (excl. instruments)		7.73	20.07	40.20	41.41
Hansen J test, p-value		7.75	.19	10.20	
Controls	Y	Y	Y	Y	N
Observations	12,862	12,862	12,862	12,862	12,862

BMI adjusted for fund activeness

▶ Our model, however, implies that passive and active funds should contribute to BMI differently

$$BMI^{w} = BMI^{Passive} + \frac{b}{a+b}BMI^{Active}$$

	α estimate		t-statistic	Adj. R^2 , %	Implied elasticity	
$\frac{b}{a+b}$	$\frac{\Delta BMI^w}{(1)}$	$0.5 \times \Delta BMI^{w}$ (2)	(3)	(4)	$ \frac{\Delta BMI^w}{(5)} $	$0.5 \times \Delta BMI^{w}$ (6)
1.0	0.27**	0.54**	(2.66)	17.53	-3.69	-1.85
0.8	0.32**	0.65**	(2.64)	17.51	-3.09	-1.54
0.6	0.40**	0.81**	(2.62)	17.49	-2.48	-1.23
0.4	0.53**	1.06**	(2.58)	17.44	-1.89	-0.94
0.2	0.74**	1.47**	(2.50)	17.34	-1.36	-0.68
0.0	0.72**	1.45**	(2.29)	17.04	-1.38	-0.69

Net purchases of index additions and deletions

➤ To see which funds rebalance additions and deletions, we estimate the following equations

$$\Delta Own_{ijt} = \alpha_{1j} D_{it}^{R1000 - R2000} + \alpha_{2j} D_{it}^{R2000 - R1000} + \xi_1 log M V_{it} + \tau_1 Float_{it} + \delta_1' \bar{X}_{it}$$

$$Own_{ijt} = \alpha_j D_{it}^{R2000} + \phi_j Own_{ijt-1} + \xi_1 log M V_{it} + \tau_1 Float_{it} + \delta_1' \bar{X}_{it} + \mu_{1t} + \epsilon_{it}$$

In the above equations, $D_{it}^{R1000-R2000}$ equals one when stock i is moved from the Russell 1000 to Russell 2000 on the reconstitution day in June of year t.

Net purchases of index additions and deletions

▶ Russell benchmarks serve as both active and passive funds' preferred habitats.

Change in the aggregate ownership of funds with the same benchmark

	Citati	ge in the aggre	gate owner sing	or runus with	tire sume seme	Allian K	
		Stocks rar	nked < 1000		Stocks rai	nked > 1000	
Benchmark	Russe	11 1000	Russell	Midcap	Russe	ell 2000	
Fund type	Active	Passive	Active	Passive	Active	Passive	
A. Change in own	ership share						
$D^{R2000} \rightarrow R1000$	0.122***	0.105***	0.394***	0.113***	-0.546***	-0.840***	
	(2.97)	(3.60)	(4.41)	(3.16)	(-4.95)	(-4.18)	
$D^{R1000 \to R2000}$	-0.101**	-0.100***	-0.264***	-0.103***	0.123	0.771***	
	(-2.22)	(-3.29)	(-3.69)	(-2.90)	(1.47)	(3.61)	
B. Change in hold	ling status						
$D^{R2000 \to R1000}$	0.356***	0.459***	0.288***	0.437***	-0.319***	-0.921***	
	(7.05)	(7.93)	(5.02)	(5.20)	(-7.13)	(-11.47)	
$D^{R1000 \to R2000}$	-0.298***	-0.828***	-0.237***	-0.694***	0.113**	0.829***	
	(-4.68)	(-5.84)	(-5.62)	(-4.27)	(2.39)	(6.87)	
C. Ownership sha	ire						
D^{R2000}	-0.032	-0.067**	-0.136**	-0.065*	0.267**	0.653***	
	(-1.05)	(-2.42)	(-2.24)	(-1.90)	(2.50)	(3.01)	
D. Holding status							
D^{R2000}	-0.177***	-0.351***	-0.057***	-0.651***	0.002	0.613***	
	(-8.91)	(-6.72)	(-4.92)	(-4.72)	(0.45)	(13,06) → ← ≣ → ← ≣ → □	Q (
rt or)			>A → Art >+:				_

BMI and long-run returns

- ▶ In this section, we show that a higher benchmarking intensity leads to lower returns in the long run.
- \triangleright As earlier, we employ a stock-level specification to estimate α :

$$Y_{it+h} = \alpha \Delta BMI_{it} + \xi_1 log MV_{it} + \phi_1' Control_{it} + \tau_1 Float_{it} + \delta_1' \bar{X}_{it} + \mu_t + \mu_i + \epsilon_{it}$$

Specifically, we consider the 12-, 24-, 36-, 48-, and 60-month excess returns, which are not risk-adjusted

BMI and long-run returns

- ▶ As the coefficient on BMI is significantly negative, stocks with an increase in benchmarking intensities have lower returns in the future.
- ▶ Inelastic demand from the benchmarked institutions lowers the stock risk premium.

	Excess returns, average over horizon								
Horizon (months)	12	24	36	48	60				
A: All baseline contre	ols								
ΔBMI	-0.045**	-0.037***	-0.020***	-0.016**	-0.009**				
	(-2.81)	(-3.63)	(-3.87)	(-2.75)	(-2.16)				
Observations	13,813	12,318	10,928	9,731	8,633				
B: Baseline controls	without stock fixed	effects							
ΔBMI	-0.039*	-0.034**	-0.016**	-0.015**	-0.010				
	(-1.86)	(-2.50)	(-2.31)	(-2.18)	(-1.58)				
Observations	14,351	12,800	11,388	10,091	8,988				
C: LogMV, Float a	nd BandingContr	ols only							
ΔBMI	-0.039**	-0.034***	-0.020***	-0.016***	-0.011***				
	(-2.69)	(-3.63)	(-4.52)	(-3.23)	(-3.15)				
Observations	14,700	13,124	11,605	10,279	9,082				

Robustness

- ▶ Arbitrage limitation: Suppose that there is not enough arbitrage capital in June to prevent the index effect.
- ► Cash flow channel: Our model assumes that firms' cash flows are fixed and a change in BMI affects firm value through the discount rate.
- ▶ Liquidity premium: Stocks added to the Russell 2000 benefit from improved liquidity.
- ► Financial distress: Firms that have transitioned to the Russell 2000 are lower because these firms have fallen on hard times and their cash flows are deteriorating

Conclusions

- ▶ In this paper, we propose a measure that captures inelastic demand for a stock —benchmarking intensity, and document the effects of a change in BMI on stock prices, expected returns, ownership, and demand elasticities.
 - According to our preferred habitat view, active funds are not genuinely active investors.
 - ▶ We find evidence of the inelastic demand of active managers in the ownership data
 - ▶ Price pressure is the highest for stocks having the largest increase in BMI