TEMA 1 - PARTE 3:

Representación de señales en el dominio del tiempo

¿Qué veremos?

- 7. Operaciones básicas.
- 8. Integración y derivación.
- 9. Multiplicación de señales.
- 10. Suma de señales.

7

Operaciones básicas

Escalado en amplitud y(t) = ax(t)

Escalado en tiempo y(t) = x(at)

- La operación de escalado en tiempo transforma una señal x(t) en otra señal y(t) = x(at) donde a es un número real positivo.
- Cuando a > 1 la señal x(t) se comprime en tiempo.
- Cuando a < 1 la señal x(t) se expande en tiempo.
- Un ejemplo de compresión en tiempo es cuando se reproduce música a una velocidad más rápida que la correcta. Si la música se reproduce a una velocidad más lenta se obtiene una expansión en tiempo.

Escalado en tiempo y(t) = x(at)

Inversión en tiempo y(t) = x(-t)

- Se realiza y(t) = x(-t).
- Ejemplo: música que se reproduce en sentido inverso.
- La inversión en tiempo sí modifica la forma de onda de una señal.

Simetría de una señal

• Señal simétrica o par x(t) = x(-t)

• Señal antisimétrica o impar x(t) = -x(-t)

x(t)

Fuente: A. Oppenheim, Signals and Systems, p. 13, Ed. Prentice-Hall, 1997.

Desplazamiento en tiempo $y(t) = x(t - t_0)$

 $y(t) = x(t - t_0)$ donde t_0 es un número real.

Si $t_0 > 0$, desplazamiento a la derecha (retardo).

Ejemplo: reproducción de música con un retardo.

Desplazamiento en tiempo $y(t) = x(t - t_0)$

Si $t_0 < 0$, desplazamiento a la izquierda (adelanto).

Ni el escalado en amplitud ni el desplazamiento en tiempo modifican la forma de onda de una señal.

Señales discretas

Escalado en amplitud

Desplazamiento en tiempo

Inversión en tiempo

8

Integración y derivación

Integración de señales en tiempo continuo

- Energía de una señal en un intervalo $E_x^T = \int_{-T/2}^{T/2} x^2(t) dt$
- Energía de una señal $E_x = \lim_{T o \infty} \int_{-T/2}^{T/2} x^2(t) dt = \int_{-\infty}^{\infty} x^2(t) dt$
- Potencia en un intervalo $P_x^T = rac{E_x^T}{T} = rac{1}{T} \int_{-T/2}^{T/2} x^2(t) dt$
- Potencia media de una señal $P_x=\lim_{T o\infty}rac{E_x^T}{T}=\lim_{T o\infty}rac{1}{T}\int_{-T/2}^{T/2}x^2(t)dt$

Integración en tiempo

• La operación de integración en tiempo transforma una señal x(t) en

$$y(t) = \int_{-\infty}^{t} x(\tau)d\tau$$

• Geométricamente, y(t) se puede interpretar como el área debajo de x(t) entre - ∞ y t

Ejemplo de integración en tiempo

• Escalón unidad

• La rampa de pendiente 1 es el resultado de integrar en tiempo el escalón unidad

$$r(t) = \int_{-\infty}^{t} u(\tau)d\tau = \begin{cases} 0 & t < 0 \\ t & t > 0 \end{cases} \quad \Box$$

Derivación en tiempo

- La operación de derivación en tiempo transforma una señal x(t) en otra señal y(t) = dx(t)/dt. La derivación es la operación inversa a la de integración.
- Ejemplo: el escalón unidad es el resultado de derivar respecto al tiempo una señal rampa con pendiente 1.

$$r(t) = \begin{cases} 0 & t < 0 \\ t & t > 0 \end{cases}$$

$$u(t) = \frac{dr(t)}{dt} = \begin{cases} 0 & t < 0\\ 1 & t > 0 \end{cases}$$

Discusión

- !Ojo! La derivación siempre invierte la operación de integración pero la integración no siempre invierte la operación de derivación.
- En efecto, la derivación en tiempo no es una operación invertible ya que dos señales distintas que se diferencien en una constante tienen la misma derivada

$$x_1(t) \qquad \qquad \frac{dx_1(t)}{dt} = y(t)$$

$$x_2(t) = x_1(t) + c \qquad \frac{dx_2(t)}{dt} = y(t)$$

• No es posible determinar a partir de y(t) si la señal que se derivó es $x_1(t)$ o $x_2(t)$.

Derivación del escalón unidad

- La pendiente es 0 para t < 0 y para t > 0.
- Existe una discontinuidad en t = 0.

$$\frac{du(t)}{dt} = \delta(t)$$

Integración en tiempo del impulso unidad

• El escalón unidad es el resultado de integrar en tiempo el impulso unidad.

Derivación del pulso rectangular

• Pulso rectangular

$$p(t) = \begin{cases} 1 & -T/2 < t < T/2 \\ 0 & \text{resto} \end{cases}$$

• Derivada del pulso rectangular

$$\frac{dp(t)}{dt} = \delta(t + \frac{T}{2}) - \delta(t - \frac{T}{2})$$

Señales en tiempo discreto

Derivación (substracción de dos valores consecutivos)

Integración (suma)

9

Multiplicación de señales

Producto de señales

Ejemplo de producto de señales

Multiplicación por una señal por $\delta(t)$

Multiplicación de una señal por $\delta(t)$

10

Suma de señales

Suma (resta) de señales

Ejemplo de suma de señales

• En un nodo de un circuito eléctrico, la corriente saliente es igual a la suma de las corrientes entrantes (primera ley de Kirchov).

Ejemplo de suma de señales

Ejemplo de suma (resta) de señales

• Pulso rectangular

$$p(t) = \begin{cases} 1 & -T/2 < t < T/2 \\ 0 & \text{resto} \end{cases}$$

• Escribir p(t) en función de u(t).

• Pulso rectangular

$$p(t) = \begin{cases} 1 & -T/2 < t < T/2 \\ 0 & \text{resto} \end{cases}$$

• Escribir p(t) en función de u(t).

$$p(t) = \begin{cases} 1 & -T/2 < t < T/2 \\ 0 & \text{resto} \end{cases}$$
$$= u(t + \frac{T}{2}) - u(t - \frac{T}{2})$$

Versiones desplazadas de u(t)

$$x(t) = \begin{cases} e^{at} & t < 0 \\ e^{-at} & t > 0 \end{cases}$$

• Escribir x(t) en función de $e^{-at}u(t)$.

$$x(t) = \begin{cases} e^{at} & t < 0 \\ e^{-at} & t > 0 \end{cases}$$

TEMA 1 - PARTE 3:

Representación de señales en el dominio del tiempo

