EAIiIB	Marcin Nalepa		Rok II	Grupa 5	
Temat:			Numer ćwiczenia:		
Wahadło proste			0		
Data wykonania 07.10.2015r.	Data oddania 15.12.2015r.	Zwrot do poprawki	Data oddania	Data zaliczenia	Ocena

1 Cel ćwiczenia

Celem ćwiczenia jest wyznacznie wartości przyspieszenia grawitacyjnego Ziemi g za pomocą wahadła prostego na 2 różne sposoby.

2 Wstęp teoretyczny

Wahadło matematyczne to punktowa masa m zawieszona na nieważkiej i nierozciągliwej lince poruszająca w jednorodnym polu grawitacyjnym. W doświadczeniu wykorzystamy bardzo dobre przybliżenie takiego układu jakim jest ciężka metalowa kulka zawieszona na nitce.

Aby znacząco uprościć obliczenia przyjmiemy $\sin\theta\approx\theta$ co jest prawdą dla małych wartości kąta θ zgodnie z twierdzeniem Taylora. Dzięki temu ograniczamy wpływ oporu powietza na wyniki, a z uproszczonego równania ruchu wahadła uzyskujemy następujacą zależność

$$T = 2\pi \sqrt{\frac{l}{g}} \tag{1}$$

gdzie T - okres drgań, l - długość nici, g - przyspieszenie grawitacyjne. Po przekształceniu otrzymujemy wzór roboczy pozwalający na wyznaczenie wartości przyspieszenia grawitacyjnego dla Ziemi

$$g = \frac{4\pi^2 l}{T^2} \tag{2}$$

3 Opis doświadczenia

Rysunek 1: Zestaw użyty w doświadczeniu

Ćwiczenie składa się z 2 części, w pierwszej dokonujemy pomiarów dla ustalonej długości wahadła, a w drugiej wyznaczamy przyspieszenie grawitacyjne g za pomocą regresji liniowej.

Na statywie zawieszono metalową kulkę na nici. Przed rozpoczęciem doświadczenia została zmierzona długość powstałego w ten sposób wahadła za pomocą linijki. Następnie zmierzono stoperem czas trwania 10 okresów drgań wahadła. Wyniki umieszczono w tabeli.

Wyniki pomiarów 4

Tablica 1: Stała długość wahadła l=40,0cm

Numer	Czas	Czas	
pomiaru	10 okresów $[s]$	1 okresu $[s]$	
1	12,63	1,263	
2	$12,\!69$	1,269	
3	$12,\!81$	1,281	
4	12,75	$1,\!275$	
5	12,70	1,270	
6	12,73	$1,\!273$	
7	$12,\!65$	$1,\!265$	

Tablica 2: Zmienna długość wahadła

Długość	Średni czas	Średni czas	Wartość g	Niepewność
wahadła $\left[cm\right]$	10 okresów $\left[s\right]$	1 okresu $[s]$	$\left[\frac{m}{s^2}\right]$	$u(g) \left[\frac{m}{s^2} \right]$
16,1	08,07	0,807	9,75	0,25
28,1	10,60	1,060	9,86	0,19
34,0	11,66	1,166	9,86	0,17
39,8	$12,\!64$	$1,\!264$	9,82	0,16
40,0	12,72	1,272	9,75	0,16
48,5	$13,\!85$	1,385	9,97	0,15
54,0	14,72	$1,\!472$	9,83	0,13

Opracowanie wyników 5

Ustalamy i obliczamy niepewności dla poszczególnych pomiarów:

- długość wahadła u(l) = 1[mm]
- \bullet czas reakcji człowieka $u(T_{10})=10[ms]\Rightarrow u(t)=1,0[ms]$

Stała długość wahadła

Dla stałej długości wahadła stosujemy wartość średnią i odchylenie standardowe dla zestawu danych:

$$\bar{g} = 9,76 \left[\frac{m}{s^2} \right] \tag{3a}$$

$$\bar{g} = 9,76 \left[\frac{m}{s^2} \right] \tag{3a}$$

$$u(\bar{g}) = 0,09 \left[\frac{m}{s^2} \right] \tag{3b}$$

Po porównaniu z wartością tabelaryczną (Kraków $g_{krk}=9,811\left[\frac{m}{s^2}\right])$

$$|g - g_{krk}| = |9,76 - 9,811| = 0,051 < u(\bar{g}) = 0,090 \left\lceil \frac{m}{s^2} \right\rceil$$
 (4)

widać, że obliczona wartość mieści się w niepewności zwykłej.

5.2 Zmienna długość wahadła

Obliczamy niepewności ze wzoru na niepewność względną

$$\frac{u(g)}{g} = \sqrt{\left(\frac{u(l)}{l}\right)^2 + \left(\frac{-2*u(T)}{T}\right)^2} \tag{5}$$

i stąd na końcową niepewność każdego pomiaru

$$u(g) = g * \sqrt{\left(\frac{u(l)}{l}\right)^2 + \left(\frac{-2 * u(T)}{T}\right)^2}$$

$$\tag{6}$$

Rysunek 2: Wykres zależności długości okresu od długości wahadła

Rysunek 3: Wykres zależności kwadratu długości okresu od długości wahadła

Na wykresie (2) można zauważyć że dane nie ukłądają się do końca w lini prostej lecz delikatnie opadają. Aby zlinearyzować wykres i mieć możliwość zastosowania regresji liniowej, podnosimy czasy okresu do kwadratu, pozbywając się pierwiastka (3).

Za pomocą pakietu matematycznego wyznaczono wartość współczynnika a regresji liniowej, który wykorzystamy do oblicznia przyspieszenia grawitacyjnego g.

$$a = 3,98 \tag{7a}$$

$$u(a) = 0.04 \tag{7b}$$

Otrzymaną wartość wstawiamy do wzoru:

$$g = \frac{4\pi^2}{a} = 9,92 \ \left[\frac{m}{s^2}\right] \tag{8a}$$

$$u(g) = \left| -\frac{4\pi^2}{a^2} u(a) \right| = 0, 10 \left[\frac{m}{s^2} \right]$$
 (8b)

Porównujemy wartość z wielkością tabelaryczną

$$|g - g_{krk}| = |9,92 - 9,811| = 0,109 > u(g) = 0,100 \left[\frac{m}{s^2}\right]$$
 (9)

zauważamy, że obliczona wartość nie mieści się w niepewności zwykłej dlatego sprawdzamy dla niepewności rozszerzonej dla założenia k=2

$$U(g) = k * u(g) = 2 * 0,100 = 0,200 > 0,109 \left[\frac{m}{s^2}\right]$$
(10)

co okazuje się mieścić w spodziewanym przedziale.

6 Podsumowanie

Wyznaczone wartości g zgadzają się ze spodziewanymi wartościami tabelarycznymi. Dokładność obliczeń w obu metodach nie różni się znacząco, co może być spowodowane tym, że dostępnych było stosunkowo niewiele danych pomiarowych. Obie metody bardzo dobrze przybliżają wartość przyspieszenia grawitacyjnego Ziemi.