BABIII

METODE PENELITIAN

3.1. Metodologi Penelitian

Metode penelitian yang digunakan yaitu metode penelitian deskriptif – kualitatif yaitu jenis penelitian yang bersifat mendeskripsikan (menggambarkan) variabel-variabel penelitian yang terukur. Terdapat beberapa tahapan dalam penelitian ini yaitu studi literatur, perancangan, unit check, Implementasi dan Pengujian. Untuk lebih jelas nya dapat di lihat pada gambar sebagai berikut.

Gambar 8 Tahapan Penelitian

1. Studi Literatur

Studi literatur adalah tahapan yang dilakukan untuk mencari sumber atau referensi untuk mempelajari komponen utama perancangan sistem pemberi makan ikan otomatis didalam aquarium.

2. Perancangan

Perencanaan adalah gambaran umum tentang cara kerja sistem yang dijelaskan melalui model-model yang terkait satu sama lain. Perancangan terbagi menjadi beberapa bagian diantaranya:

a. Flowchart System

Flowchart *System* merupakan alur pembuatan mikro kontroler untuk memberikan perintah ke alat pemberi makan ikan otomatis berbasis IoT.

b. Arsitektur Hardware

Pembuatan rankaian *hardware* yang akan diterapkan untuk sistem pemberi makan ikan otomatis didalam aquarium.

c. Perancangan Interface System

Perancangan *interface* merupakan pembuatan antarmuka atau tampilan untuk mikro kontroler ke alat pemberi makan ikan otomatis.

3. Unit Check

Unit check adalah proses memastikan bahwa suatu unit atau komponen dalam suatu sistem berfungsi dengan benar dan sesuai dengan spesifikasi yang ditetapkan.

4. Implementasi

Setelah melakukan perancangan maka selanjutnya membangun alat-alat dan sistem yang akan digunakan pada penelitian ini. Pada proses implementasi dibagi menjadi beberapa langkah yaitu:

a. Implementasi System

Implementasi *System* merupakan hasil dari peracangan flowchart yang sebelum nya dibuat sehingga menjadi sistem yang dapat saling terkoneksi satu sama lain.

b. Implementasi Hardware

Implementasi *Hardware* merupakan hasil dari perancangan hardware sebelumnya menjadi sebuah sistem yang terhubung dengan yang lain nya.

c. Implementasi Interface System

Implementasi *Interface System* hasil dari perancangan *interface* yang telah disesuaikan dengan *interface user*, sistem koneksi ke alat, dan cara kerja *system*.

5. Pengujian

Pengujian adalah tahap di mana sistem sistem pemberi makan ikan otomatis yang telah dibangun akan dijalankan untuk mengevaluasi apakah implementasi perancangan berjalan dengan baik atau tidak. Tujuan dari pengujian ini adalah untuk memverifikasi kinerja sistem dan memastikan bahwa sistem dapat beroperasi dengan benar sesuai dengan spesifikasi yang telah ditetapkan sebelumnya.

3.2 Gambaran Umum Sistem

Secara umum alat ini digunakan untuk memberikan pakan ikan secaa otomatis dengan memanfaatkan mikro kontroler. Pada perancangan alat ini

menggunakan mikrokontroler ESP8266 sebagai kendali seluruh komponen yang terhubung. Cara kerja mikrikontroller ESP8266 dengan aplikasi berbasis web yaitu menggunakan bantuan internet dimana ESP8266 akan terhubung ke wifi untuk mengakes web yang telah di deploy kepublic server. Dengan terhubungnya ke internet dapat memudahkan pengguna untuk mengatur jam memberi makan ikan dan memberikan makan ikan secara realtime tanpa harus berada di tempat tersebut.

3.3 Blok Diagram

Blok Diagram merupakan bagian terpenting dalam perancangan dan pembuatan alat ini, dengan adanya blok diagram dapat mempermudah mengetahui prisip kerja dari rankaian sistem. Pada perancangan alat terdapat komponen yang di kelompokan menjadi tiga komponen yaitu input, proses, dan output. Perancangan sistem dapat dilihat pada blok diagram dibawah ini.

Gambar 9 Blok Diagram

Berikut ini adalah keterangan dari blok diagram diatas.

- 1. Web merupakan user interface yang digunakan oleh pengguna untuk mengatur komponen Arduino.
- 2. RTC (Real time clock) adalah jam elektronik berupa chip yang dapat menghitung waktu (mulai detik hingga tahun) dengan akurat dan menjaga/menyimpan data waktu tersebut secara real time.

- 3. ESP8266 sebagai pengelola data dan sebagai kendali atas semua alat yang terhubung.
- 4. Wifi sebagai penghubung Mikrokontroller ESP8266 ke jaringan internet
- 5. Firebase digunakan untuk menyimpan data jadwal untuk memberikan makanan ikan.

3.4 Use Case

Gambar 10 Use case diagram

Use case tersebut menjelaskan sistem pada website dan alat pemberi pakan ikan melalui web. Aktor tersebut ditunjukkan untuk pengguna sistem dan berperan untuk mengoperasikan web. Selanjutnya, website fish feeder adalah use case utama dari sistem yang berfungsi sebagai user interface, website tersebut mempunyai 2 fungsi yaitu *Feed Now* dan *Feed Stop*. Sesuai dengan nama, tombol tersebut untuk melakukan aksi menjalankan alat agar mengeluarkan pakan ikan dan memberhentikan alat agar tidak mengeluarkan pakan ikan. Lalu, website tersebut sudah terkoneksi dengan ESP8266 sebagai alat untuk memberikan pakan ikan.

3.5 Peralatan Yang Digunakan

Pada penelitian ini terdapat alat dan bahan yang dibutuhkan, serta beberapa aplikasi. Terdapat tiga bagian yaitu perangkat keras, perangkat lunak, dan beberapa alat bantu. Perangkat keras yang dibutuhkan antara lain:

- 1. Laptop.
- 2. Mikrokontroler ESP8266.
- 3. Motor Servo.
- 4. Kabel jumper.

Perangkat lunak yang dibutuhkan:

- 1. Mac OS.
- 2. Arduino IDE.
- 3. Browser.

3.5 Rancangan Komponen Fisik

Gambar 11 Rancangan Komponen

Pada gambar diatas merupakan rankaian perangkat yang sudah digabungkan antara Mikrocontroler ESP8266/Arduino UNO dengan komponen pendukung lainya, dan akan menerangkan sistem cara jarka serta proses dari "Perancangan Web Pemberi Makan Ikan Peliharaan".

3.6 Perancangan Perangkat Lunak

Pada gambar diatas merupakan source code untuk mikrokontroller ESP8266 dengan menggunakan bahasa pemrograman c++ serta di buat dengan menggunakan aplikasi Arduino IDE. Untuk dapat memasukan program ke ESP8266 perlu menambakan *library* kedalam Arduino IDE. Untuk dapat mengirim data ke aplikasi berbasis web perlu menambahkan Rest Api dari web dan beberapa *library* seperti wifi dan HTTPClient.

Gambar 12 Perancangan Program Micro Controller

3.7 Perancangan Web

Gambar 13 Perancangan Program Web

Pada gambar diatas merupakan source code HTML, CSS, Javascript untuk menampilkan user interface yang telah dikoneksikan dengan mikrokontroller. Pada program diatas terdapat fitur untuk mengatur alat mikro kontroler.

3.8 Perancangan User Interface

Gambar 14 Web Interface

Pada gambar diatas merupakan perancangan antarmuka untuk menampilkan tombol jadwal pakan ikan serta tombol untuk memberi makan ikan yang telah dikoneksikan dengan mikrokontroller.

3.9 Uraian Prosedur

Gambar 15 Flowchart Micro Controller

Flowchart diatas menjelaskan cara kerja *mikrocontroller* ESP8266 dengan Motor servo. Pada flowchart di atas pada pertama kali alat menerima power sehingga semua alat akan berfungsi dan bekerja sesuai dengan perannya masingmasing.

Ketika semua alat sudah terinisialisai, dan *microcontroller* ESP8266 telah terkoneksi dengan baik dengan jaringan internet, maka micro controller akan melakukan koneksi ke firebase dan siap memutar servo jika dilakukan perintah pada user interface. Apabila pengguna menekan tombol "feednow", maka micro controller akan melakukan perintah ke servo, dan servo akan berputar untuk

memberikan makanan pada aquarium. Lalu jika pengguna menekan tombol "feed stop" maka servo akan berhenti berputar.