Calcul intégral

Table des matières

I	Prir	tives	2
	I.1	Définitions	2
	I.2	Calculs de primitives	2
		.2.1 Primitives des fonctions usuelles	3
		.2.2 Opérations sur les primitives	
II	$\operatorname{Int} \epsilon$	rale d'une fonction	4
II:	$\mathbf{IInt}\epsilon$	prétation graphique : calcul d'aire	5
	III.1	Aire d'un fonction positive	5
	III.2	Aire d'une fonction négative	5
	III.3	Aire d'une fonction quelconque : découpage d'aire	6
IV	7 Pro	riétés de l'intégrale	6
		Relation de Chasles	6
	IV.2	inéarité	7
		négalités	
		négalité de la moyenne	
		négalité des accroissements finis	
\mathbf{V}	Mét	odes de calcul d'intégrales	9
		ntégration par partie	9
		Changement de variables	
		$V.2.1$ Changement de variable du type $x \to x + \beta$	
		7.2.2 Changement de variable du type $x \to \alpha x$ lorsque $\alpha \neq 0$	
		$V.2.3$ Cas général : changement de variable du type $x \to \varphi(x)$	

Dans tout le chapitre, a et b sont deux réels d'un intervalle I bornes incluses tels que $a \le b$.

I Primitives

I.1 Définitions

Définition 1

Soit f une fonction définie sur un intervalle I.

On appelle primitive de f sur I toute fonction F définie et dérivable sur I vérifiant

$$F'(x) = f(x)$$
 pour tout $x \in \mathbb{R}$.

Exemple 1

Considérons la fonction f définie sur \mathbb{R} par $f(x) = 3x^2$.

- ▶ La fonction F définie sur \mathbb{R} par $F(x) = x^3$ est une primitive de f sur \mathbb{R} puisque F'(x) = f(x).
- ▶ La fonction G définie sur \mathbb{R} par $G(x) = x^3 + 2$ est aussi une primitive de f sur \mathbb{R} puisque G'(x) = f(x).

Exemple 2

Soit f la fonction définie sur $\mathbb R$ par $f(x)=\frac{x}{\sqrt{x^2+3}}$, alors la fonction F définie sur R par $F(x)=\sqrt{x^2+3}+\pi$ est une primitive de f.

- ightharpoonup On calcule F', la dérivée de F et on vérifie que l'on obtient f :
- ► $F'(x) = \frac{2x}{2\sqrt{x^2 + 3}} + 0 = \frac{x}{\sqrt{x^2 + 3}} = f(x).$

Propriété 1

Soit f une fonction définie sur un intervalle I de \mathbb{R} , k un réel, $x_0 \in I$ et $y_0 \in \mathbb{R}$ fixés.

- \blacklozenge Si f est dérivable sur I, alors f possède au moins une primitive sur I.
- ♦ Si f admet une primitive F sur I, les primitives de f sont les fonctions du type F(x) + k
- ♦ Si f est dérivable sur I, il existe une unique primitive F de f sur I telle que $F(x_0) = y_0$.

Exemple 3

- Les fonctions $F_0(x)=\frac{1}{4}x^4$, $F_1(x)=\frac{1}{4}x^4+1$, $F_2(x)=\frac{1}{4}x^4+2$, ..., $F_k(x)=\frac{1}{4}x^4+k$ avec $k\in\mathbb{R}$ sont toutes des primitives de la fonctions f.
- lacktriangle Cependant, il n'existe qu'une unique primitive F de f vérifiant F(0)=1: il s'agit de F_1 .

I.2 Calculs de primitives

L'objet de ce paragraphe est de présenter quelques techniques simples permettant l'obtention de primitives de fonctions données sur un intervalle déterminé.

I.2.1 Primitives des fonctions usuelles

La lecture du tableau des primitive se fait en lisant celui des dérivées « à l'envers ». Les fonctions f suivantes sont définies, dérivables sur l'intervalle I, n est un entier relatif différent de -1.

Obtention de primitives par lecture inverse du tableau des dérivées :

f(x)	une primitive $F(x)$	conditions
0	k	$I = \mathbb{R}$
a	ax	$I = \mathbb{R}$
x^n	$\frac{x^{n+1}}{n+1}$	$I = \mathbb{R} \text{ si } n > 0$ $I = \mathbb{R}^* \text{ si } n < 0$
$\frac{1}{x^2}$	$-\frac{1}{x}$	$I = \mathbb{R}^*$
$\frac{1}{\sqrt{x}}$	$2\sqrt{x}$	$I = \mathbb{R}_+^*$
$\cos x$	$\sin x$	$I=\mathbb{R}$
$\sin x$	$-\cos x$	$I = \mathbb{R}$
e^x	e^x	$I = \mathbb{R}$
$\frac{1}{x}$	$\ln x$	$I = \mathbb{R}_+^*$

Remarque 1

Pour obtenir toutes les primitives d'une fonction f donnée, il suffit de rajouter une constante.

Exemple 4

- The primitive de la fonction f définie sur $\mathbb R$ par $f(x)=x^8$ est $F(x)=\frac19\,x^9$.
- → Une primitive de la fonction f définie sur \mathbb{R}_+^* par $f(x) = \frac{1}{x^8}$ est $F(x) = -\frac{1}{7x^7}$.

I.2.2 Opérations sur les primitives

u et v sont des fonctions de primitives U et V sur un intervalle I.

Tableau des opérations sur les primitives :

Forme de la fonction	Une primitive	Conditions
u+v	U+V	
$k \times u$	$k \times U$	
$u' u^n$	$\frac{u^{n+1}}{n+1}$	$n \in \mathbb{N}$
$\frac{u'}{u^n}$	$-\frac{1}{(n-1)\ u^{n-1}}$	$n \in \mathbb{N}^*$
$\frac{u'}{\sqrt{u}}$	$2\sqrt{u}$	u(x) > 0
$u'\cos u$	$\sin u$	
$u'\sin u$	$-\cos u$	
$u'e^u$	e^u	
$\frac{u'}{u}$	$\ln u$	u(x) > 0

Exemple 5

On cherche à déterminer dans chacun des cas suivant une primitive F de le fonction f sur l'intervalle I:

→
$$f(x) = 4x^2$$
 et $I = \mathbb{R}$: $F(x) = 4 \times \frac{x^3}{3} = \frac{4x^3}{3}$.

→
$$f(x) = 2x(x^2 - 1)^5$$
 et $I = \mathbb{R}$: $f(x) = (x^2 - 1)'(x^2 - 1)^5$ donc $F(x) = \frac{(x - 1)^6}{6}$.

→
$$f(x) = \frac{3}{\sqrt{3x-6}}$$
 et $x > 2$: $f(x) = \frac{(3x-6)'}{\sqrt{3x-6}}$ donc $F(x) = 2\sqrt{3x-6}$.

→
$$f(x) = 2x + 2\cos(2x) - 6\sin(3x - 1)$$
 et $I = \mathbb{R}$: $f(x) = 2x + (2x)'\cos(2x) - 2(3x - 1)'\sin(3x - 1)$ donc $F(x) = x^2 + \sin(2x) + 2\cos(3x - 1)$.

→
$$f(x) = -9 e^{-3x-1}$$
 et $I = \mathbb{R} : f(x) = 3(-3x-1)'e^{-3x-1}$ donc : $F(x) = 3 e^{-3x-1}$.

→
$$f(x) = \frac{4x-2}{x^2-x+3}$$
 et $I = \mathbb{R}$: $f(x) = \frac{2(x^2-x+3)'}{x^2-x+3}$ donc : $F(x) = 2\ln(x^2-x+3)$.

IIIntégrale d'une fonction

Définition 2

On appelle intégrale de f sur [a; b] le nombre réel F(b) - F(a) où F est une primitive quelconque de fsur I. Il est noté

$$\int_{a}^{b} f(x) \ dx = F(b) - F(a).$$

Exemple 6 Calcul de l'intégrale : $\int_{2}^{3} x \ dx$:

- → Une primitive de f(x) = x est $F(x) = \frac{x^2}{2}$.
- \rightarrow donc, $\int_{2}^{3} x \ dx = F(3) F(2) = \frac{9}{2} \frac{4}{2} = \frac{5}{2}$.

Remarque 2

- L'intégrale d'une fonction f sur [a;b] est indépendante du choix de la primitive F.
- On note aussi $\int_a^b f(x) dx = [F(x)]_a^b = F(b) F(a)$.
- Dans l'écriture $\int_a^b f(x) dx$, la variable x est « muette », ce qui signifie que $\int_a^b f(x) dx = \int_a^b f(t) dt = \dots$ Le dx ou dt détermine la variable par rapport à laquelle on intègre la fonction : x, ou t.

IIIInterprétation graphique : calcul d'aire

III.1 Aire d'un fonction positive

Propriété 2

Si f est une fonction positive sur [a;b], alors $\int_a^b f(x) dx$ est égal à l'aire du domaine compris entre la courbe de f, l'axe des abcsisses et les droites d'équations x = a et x = b exprimée en unité d'aire.

Exemple 7

Calcul de l'aire du domaine compris entre la courbe d'équation $\frac{1}{x}$, l'axe des abcsisses, et les droites d'équations $x=\frac{1}{2}$ et x=4 dans un repère orthonormé $(O;\overrightarrow{i};\overrightarrow{j})$ d'unité graphique 1 cm:

$$\int_{\frac{1}{2}}^{4} \frac{1}{x} dx = [\ln(x)]_{\frac{1}{2}}^{4} = \ln 4 - \ln \frac{1}{2} = \ln 4 + \ln 2$$

$$\int_{\frac{1}{2}}^{4} \frac{1}{x} dx = \ln 8 = 3 \ln 2 \text{ U.A. } \approx 2,08 \text{ cm}^2.$$

Aire d'une fonction négative III.2

Si la fonction f est négative, alors la fonction -f est positive et les courbes sont symétriques par rapport à l'axe des abscisses.

Dans ce cas, $\mathcal{A} = \int_{a}^{b} [-f(x)] dx$.

On considère la fonction f définie sur \mathbb{R} par $f(x) = \frac{x^3}{27} - \frac{x^2}{3}$.

f est négative sur l'intervalle [0; 9]. Pour calculer l'aire du domaine compris entre la courbe de f, l'axe des abcsisses, et les droites d'équation x=0 et x=9, il suffit de calculer l'aire du domaine compris entre la courbe de -f, l'axe des abcsisses, et les droites d'équation x = 0 et x = 9 :

$$\mathcal{A}_1 = \mathcal{A}_2 = \int_0^9 \left[-f(x) \right] dx = \int_0^9 \left(-\frac{x^3}{27} + \frac{x^2}{3} \right) dx = \left[-\frac{x^4}{108} + \frac{x^3}{9} \right]_1^9 = \frac{81}{4} \text{ U.A.}$$

III.3 Aire d'une fonction quelconque : découpage d'aire

Pour calculer l'aire d'un domaine définie par une fonction changeant de signe, il faut découper l'intervalle en plusieurs intervalles sur lesquels la fonction est de signe constant.

Exemple 9

On considère la fonction f définie par $f(x)=x^2-x-2$. On note $\mathcal A$ l'aire du domaine compris entre la courbe de f, l'axe des abcsisses, et les droites d'équation x=-1 et x=3: $\mathcal A=\mathcal A_1+\mathcal A_2$

$$\begin{split} \mathcal{A} &= \int_{-1}^{2} \ [-f(x)] \ dx + \int_{2}^{3} \ [f(x)] \ dx \\ \mathcal{A} &= \int_{-1}^{2} \ (-x^{2} + x + 2) \ dx + \int_{2}^{3} \ (x^{2} - x - 2) \ dx \\ \mathcal{A} &= \left[-\frac{x^{3}}{3} + \frac{x^{2}}{2} + 2x \right]_{-1}^{2} + \left[\frac{x^{3}}{3} - \frac{x^{2}}{2} - 2x \right]_{2}^{3} \\ \mathcal{A} &= \left(\frac{10}{3} + \frac{7}{6} \right) + \left(-\frac{3}{2} + \frac{10}{3} \right) \\ \mathcal{A} &= \frac{19}{3} \approx 6,33 \text{ U.A.} \end{split}$$

IV Propriétés de l'intégrale

IV.1 Relation de Chasles

Propriété 3

Soit f une fonction dérivable sur \mathbb{R} et $c \in [a; b]$, alors

$$\int_{a}^{b} f(x) \ dx = \int_{a}^{c} f(x) \ dx + \int_{c}^{b} f(x) \ dx.$$

Interprétation graphique:

IV.2Linéarité

Propriété 4

Soient $f, g : [a; b] \to \mathbb{R}$ deux fonctions dérivables et λ un réel, alors :

•
$$\int_a^b [f(x) + g(x)] dx = \int_a^b f(x) dx + \int_a^b g(x) dx.$$

Ce théorème permet en pratique de ramener le calcul d'une intégrale d'une fonction complexe à une succession d'intégrations de fonctions plus élémentaires.

Exemple 10

Calcul de l'intégrale : $I = \int_{1}^{2} \left(6x + \frac{5}{x}\right) dx$:

→
$$I = 3 \int_{1}^{2} 2x \ dx + 5 \int_{1}^{2} \frac{1}{x} \ dx$$

$$I = 3 \left[x^2 \right]_1^2 + 5 \left[\ln x \right]_1^2$$

$$I = 3(4-1) + 5(\ln 2 - \ln 1)$$

→
$$I = 9 + 5 \ln 2$$
.

IV.3Inégalités

Propriété 5

Soient $f, g : [a ; b] \to \mathbb{R}$ deux fonctions dérivables.

- ♦ <u>Inégalité</u>: si, pour tout $x \in [a; b]$, on a $f(x) \leq g(x)$, alors $\int_a^b f(x) dx \leq \int_a^b g(x) dx$.
- Positivité: si, pour tout $x \in [a; b]$, on a $f(x) \ge 0$, alors $\int_a^b f(x) dx \ge 0$.
- ♦ <u>Valeur absolue</u>: $\left| \int_a^b f(x) \ dx \right| \le \int_a^b |f(x)| \ dx$.

ATTENTION!

La réciproque de la positivité n'est pas forcément vraie, on peut avoit $\int_a^b f(x)dx \ge 0$ sans avoir f positive

• $\int_0^3 (2x-1) \ dx = [x^2-x]_0^3 = 6$. Donc, $\int_0^3 (2x-1) \ dx \ge 0$. • Cependant, la fonction $x \to 2x-1$ n'est pas positive sur [0; 3].

Graphiquement, toutes ces propriétés peuvent se « voir » assez facilement en considérant les aires obtenues pour chacune des intégrales.

IV.4Inégalité de la moyenne

Propriété 6

Soit f une fonction dérivable sur un intervalle [a; b].

S'il existe des réels m, M et k tels que pour tout $x \in [a; b]$, on ait :

$$\bullet$$
 $m \le f(x) \le M$, alors $m(b-a) \le \int_a^b f(x) \ dx \le M(b-a)$.

$$\blacklozenge |f| \le k, \quad \text{alors} \quad \int_a^b |f(x)| \ dx \le k(b-a).$$

Interprétation graphique:

Dans le cas où f est positive sur [a; b] et où $m \ge 0$, l'aire de la partie égale à $\int_a^b f(x) \, dx$ est comprise entre l'aire du rectangle de base AB de hauteur m et l'aire du rectangle de base AB de hauteur M.

Définition 3

Soit $f:[a;b]\to\mathbb{R}$ une fonction dérivable. Si $a\neq b$, on appelle valeur moyenne de f sur [a;b] le nombre réel μ_f défini par

$$\mu_f = \frac{1}{b-a} \int_a^b f(x) \ dx.$$

Interprétation graphique :

La droite d'équation $y = \mu_f$ est la droite horizontale telle l'aire des partie de plan délimitées par l'axe des abscisses, les droites d'équation x = a et x = b d'une part et les courbes d'équation y = f(x) et $y = m_f$ soient de même valeur.

Exemple 11

La valeur moyenne sur $\begin{bmatrix} 0 \ ; \ 1 \end{bmatrix}$ de la fonction carré est : $\mu = \int_0^1 x^2 \ dx = \left[\frac{x^3}{3}\right]_0^3 = \frac{1}{3}$.

IV.5 Inégalité des accroissements finis

Les théorèmes de comparaison d'intégrales permettent d'obtenir des encadrements d'une fonction lorsqu'on sait encadrer sa dérivée.

Propriété 7 (Inégalité des accroissements finis)

Soit f une fonction dont la dérivée f' est dérivable sur un intervalle [a, b]. S'il existe trois réels m, M et k tels que, pour tout x de [a, b], on ait

- \bullet $m \le f'(x) \le M$ alors $m(b-a) \le f(b) f(a) \le M(b-a)$.
- $|f'(x)| \le k$ alors $|f(b) f(a)| \le k(b-a)$.

V Méthodes de calcul d'intégrales

V.1 Intégration par partie

Soit u et v deux fonctions dérivables sur un intervalle I. La dérivée du produit uv est

$$(uv)' = u'v + uv'$$
 d'où $u'v = (uv)' - uv'$.

On peut donc énoncer la propriété suivante :

Propriété 8

Si a et b sont deux éléments de I, on a alors

$$\int_{a}^{b} u'(x)v(x) \ dx = \int_{a}^{b} (uv)'(x) \ dx - \int_{a}^{b} u(x)v'(x) \ dx.$$

soit encore, si on choisit uv comme primitive de (uv)',

$$\int_{a}^{b} u'(x)v(x) \ dx = [u(x)v(x)]_{a}^{b} - \int_{a}^{b} u(x)v'(x) \ dx.$$

Exemple 12

On désire calculer l'intégrale $I = \int_0^1 xe^x dx$.

→ On pose
$$\left\{ \begin{array}{ll} u'(x) = e^x \\ v(x) = x \end{array} \right. \ \, \mathrm{d'où} \left\{ \begin{array}{ll} u(x) = e^x \\ v'(x) = 1 \end{array} \right. .$$

→ Donc:
$$\int_0^1 xe^x dx = [xe^x]_0^1 - \int_0^1 e^x dx = (1e^1 - 0 e^0) - [e^x]_0^1 = e - e + 1 = 1.$$

V.2 Changement de variables

V.2.1 Changement de variable du type $x \to x + \beta$

Propriété 9

Soit f une fonction dérivable sur un intervalle du type $[a + \beta, b + \beta]$ où a, b et $\beta \in \mathbb{R}$ avec $a \leq b$, alors

$$\int_{a}^{b} f(x+\beta) \ dx = \int_{a+\beta}^{b+\beta} f(t) \ dt.$$

Exemple 13

On se propose de calculer l'intégrale $I = \int_{-3}^{-2} (x+3)^2 dx$.

- → On peut faire le calcul directement en remarquant qu'une primitive de $(x+3)^2$ sur [-3,-2] est $\frac{1}{3}(x+3)^3$.
- lacktriangle On peut également effectuer une translation de vecteur $3\overrightarrow{i}$ de manière à effectuer un calcul plus simple :

$$I = \int_{-3}^{-2} (x+3)^2 dx = \int_{0}^{1} t^2 dt = \left[\frac{1}{3}x^3\right]_{0}^{1} = \frac{1}{3}.$$

V.2.2Changement de variable du type $x \to \alpha x$ lorsque $\alpha \neq 0$

Propriété 10

Soit f une fonction dérivable sur l'intervalle [αa , αb], où $\alpha \neq 0$, alors

$$\int_{a}^{b} f(\alpha x) \ dx = \frac{1}{\alpha} \int_{\alpha a}^{\alpha b} f(x) \ dx.$$

Exemple 14

On se propose de calculer $I = \int_{\hat{x}}^{1} e^{2x} dx$:

→
$$I = \int_0^1 e^{2x} dx = \frac{1}{2} \int_0^2 e^t dt = \frac{1}{2} \left[e^t \right]_0^2 = \frac{1}{2} \left(e^2 - 1 \right).$$

Cas général : changement de variable du type $x \to \varphi(x)$

Propriété 11

Soit φ une fonction dérivable sur un intervalle I = [a, b] dont la dérivée est dérivable sur I. Pour toute fonction f définie et continue sur l'intervalle f(I), on a :

$$\int_{\varphi(a)}^{\varphi(b)} f(x) \ dx = \int_{a}^{b} f[\varphi(t)] \varphi'(t) \ dt.$$

Exemple 15 Calculons l'intégrale $\int_1^4 \frac{dx}{x+\sqrt{x}}$ en posant $t=\sqrt{x}$, ce qui équivaut à $x=t^2=\varphi(t)$:

- → On calcule les nouvelles bornes d'intégration : Pour $x \in [\ 1\ ,\ 4\]$, on obtient $t \in [\ 1\ ,\ 2\]$
- → On exprime l'expression à intégrer par rapport à la nouvelle variable : on a $\frac{1}{x+\sqrt{x}} \ dx = \frac{1}{\varphi(t)+\sqrt{\varphi(t)}} \varphi'(t) \ dt = \frac{1}{t^2+t} \times 2t \ dt.$

→ donc :
$$\int_{1}^{4} \frac{dx}{x + \sqrt{x}} = \int_{1}^{2} \frac{2t \ dt}{t^{2} + t}$$
$$= 2 \int_{1}^{2} \frac{1}{t + 1} \ dt$$
$$= 2 \left[\ln(1 + t) \right]_{1}^{2}$$
$$= 2 \ln(3 - \ln 2)$$
$$= 2 \ln(\frac{3}{2}).$$