

CSE301 - DATABASE

Normalization (Conts)

- A given relation is called in Boyce-Codd Normal Form (BCNF) if and only if
 - ✓ Relation already exists in 3NF.
 - \checkmark For each non-trivial functional dependency A \rightarrow B, A is a super key of the relation.

- Example: The following relation is in BCNF:
- \square R (A, B, C) FD: {A \to B, B \to C, C \to A}
- ☐ Find candidate key =?
 - So, Candidate keys are A, B, C.
- Now, we can observe that LHS of each given functional dependency is a candidate key.
- ☐ Thus, we conclude that the given relation is in BCNF.

- Example: The following relation is not in BCNF:
- \square R(ABC), FD: {AB \rightarrow C, C \rightarrow B}
- ☐ Find candidate key =?
 - \triangleright So, Candidate key is = AB, AC
- □ Now, we can observe that LHS of each given functional dependency.
- \square In AB \rightarrow C, AB is a candidate key but C \rightarrow B, C is not a candidate key.
- So this relation is not in BCNF.

- Example: How to decompose this relation into BCNF?
- ☐ If a given functional dependency LHS is not a candidate key,
- we remove the given functional dependency from the relation by placing them in a new relation (Create a new table for each functional dependency which is not in BCNF).
- \square R(ABC), FD: {AB \rightarrow C, C \rightarrow B} will be,
 - $ightharpoonup R_1(\underline{ABC}), \qquad FD: \{AB \rightarrow C\} \text{ here AB is candidate key}$
 - $ightharpoonup R_2(\underline{CB}), \qquad FD: \{C \rightarrow B\} \text{ here C is candidate key}$

- \square R(ABC), FD: {AB \rightarrow C, C \rightarrow B} will be,
 - $ightharpoonup R_1(\underline{ABC}), \qquad FD: \{AB \rightarrow C\} \text{ here AB is candidate key}$
 - $ightharpoonup R_2(\underline{C}B)$, FD: $\{C \to B\}$ here C is candidate key

4	В	C		A	В	C
A	1	X		A	1	X
В	2	Y		В	2	Y
C	2	Z		C	2	Z
C	3	W		C	3	W
D	3	W		D	3	W
C	3	W		C	3	W

1NF, 2NF, 3NF, BCNF

- Steps to find a relation in which normal form:
 - First Check a relation is in BCNF or not?
 - ➤ If it is not in BCNF then, Check it is in 3NF or not?
 - ➤ If it is not in 3NF then, Check it is in 2NF or not?
 - > If it is not in 2NF then, it is definitely in 1NF.

Find the Normal Forms

- \square Example: R(ABCDEFGH), FD's: {AB \rightarrow C, A \rightarrow DE, B \rightarrow F, F \rightarrow GH}
- ☐ Candidate key: AB, Prime attributes: A, B and Non- prime attributes: C, D, E, F, G, H
- ☐ First step, check given relation is in BCNF or not?
 - Check LSH of all FD's: Is it a super key or not?
 - ightharpoonup In AB \rightarrow C, LSH is a super key.
 - ightharpoonup But, in $\{A \rightarrow DE, B \rightarrow F, F \rightarrow GH\}$ LSH is not a super key.
 - So, the relation is not in BCNF. (If an FD fails, the whole relationship fails.)

If the relation is not in BCNF, then check given relation is in 3NF or not?

Find the Normal Forms

- Example: R(ABCDEFGH), FD's: $\{AB \rightarrow C, A \rightarrow DE, B \rightarrow F, F \rightarrow GH\}$
- ☐ Candidate key: AB, Prime attributes: A, B and Non- prime attributes: C, D, E, F, G, H
- ☐ Second step, If the relation is not in BCNF, then check given relation is in 3NF or not?
 - Check all FD's: either LHS is a super key or RHS is a prime attributes?
 - ightharpoonup In AB \rightarrow C, LSH is a super key.
 - In $\{A \to DE, B \to F, F \to GH\}$ LSH of every FD's are not a super key or RHS are not a prime attribute.
 - > So, the relation is **not in** 3NF.
 - ➤ If the relation is not in 3NF, then check given relation is in 2NF or not?

Find the Normal Forms

- \square Example: R(ABCDEFGH), FD's: {AB \rightarrow C, A \rightarrow DE, B \rightarrow F, F \rightarrow GH}
- ☐ Candidate key: AB, Prime attributes: A, B and Non- prime attributes: C, D, E, F, G, H
- ☐ Third step, If the relation is not in 3NF, then check given relation is in 2NF or not?
 - ➤ Check all FD's: Is there any Prime → Non-prime exist or not? If exist then, it is not in 2NF
 - ightharpoonup In A ightharpoonup Prime ightharpoonup Non-prime exist. A is prime attribute and D and E are non-prime attributes. So, the relation is not in 2NF.
 - > If the relation is not in 2NF, then check given relation is in 1NF.

Find the Normal Forms: Exercises

- \square R(ABCDE), FD: {CE \rightarrow D, D \rightarrow B, C \rightarrow A}
- \square R(ABCDEF), FD: {AB \rightarrow C, DC \rightarrow AE, E \rightarrow F}
- \square R(ABCDE), FD: {AB \rightarrow CD, D \rightarrow A, BC \rightarrow DE}
- \square R(ABCDE), FD: {BC \rightarrow ADE, D \rightarrow B}
- \square R(ABCDEGHI), FD: {AB \rightarrow D, BD \rightarrow B, AD \rightarrow GH, A \rightarrow I}
- \square R(VWXYZ), FD: {X \rightarrow YV, Y \rightarrow Z, Z \rightarrow Y, VW \rightarrow X}
- \square R(ABCDEF), FD: {ABC \rightarrow D, ABD \rightarrow E, CD \rightarrow F, CDF \rightarrow B, BF \rightarrow D}
- \square R(ABC), FD: {A \rightarrow B, B \rightarrow C, C \rightarrow A}