Übung 3: Rosennachfrage, Teil I

Hintergrundinformation

Die wichtigsten Herkunftsländer für Rosenimporte nach

Deutschland nach Importvolumen im Jahr 2014 sind die Niederlande, Kenia, Sambia und Äthiopien. Im Jahr 2014 waren die Niederlande das wichtigste Bezugsland frischer Rosen. Deutschland importierte rund 1,06 Milliarden Stück.

Die grössten Produzenten von Nelken sind Indonesien, Madagaskar und Tansania. Die bekannteste Nelke ist Dianthus caryophyllus, die Gartennelke.

Betrachten Sie den Datensatz zum Verkauf von Rosen, abgespeichert unter Rosen.xls. Die Daten wurden vierteljährlich vom 3. Quartal 1971 bis zum 2. Quartal 1975 in der amerikanischen Stadt Detroit erhoben. Die einzelnen Variablen bezeichnen:

- y = Absatz von Rosen (in Dutzend)
- x₂ = durchschnittlicher Grosshandelspreis für Rosen (in \$/Dutzend) (wholesale price)
- x₃ = durchschnittlicher Grosshandelspreis für Nelken (in \$/Dutzend)
- x₄ = durchschnittliches Haushaltseinkommen (in \$/Woche)
- $x_5 = Zeitkomponente$.
- 1. Erklären Sie im Allgemeinen was Substitute (Substitutionsgüter) sind? Nennen Sie ein Beispiel.
- 2. Erklären Sie warum der Nelkenpreis einen Einfluss auf die Rosennachfrage hat und deshalb im Modell als Regressor aufgenommen werden sollte.
- 3. Importieren Sie die Daten aus der Excel-Datei, Tabellenblatt "Übung 3_Rosennachfrage.xls". Alternative: Doppelklicken Sie auf das gretl-Workfile "Übung 3_Rosennachfrage.gdt"
 - Gretl Hinweise: Datei/ öffne Daten / Benutzerdatei
 - Datentypen "Alle Dateien"
 - Zeitreihenfrequenz: Quartalsweise

• Startbeobachtung: 1971.3

4. Ändern Sie die Namen der Regressoren, um deren Interpretation zu erleichtern. gretl Hauptfenster: auf Variable recht klicken / Bearbeite Attribute

Klicken Sie auf den grünen Pfeil (nächste Reihe) rechts, um zum nächsten Regressor zu gelangen.

Variable	Benennung	Beschreibung
X2	PR	Rosenpreis
X3	PN	Nelkenpreis
X4	EINK	verfügbares Wocheneinkommen
X5	Τ	Zeittrend

5. Welche Korrelationsstruktur existiert zwischen Rosennachfrage, Rosenpreis und Nelkenpreis? Was stellen Sie fest?

gretl Hauptfenster: Ansicht / Korrelationsmatrix

6. Betrachten Sie die Entwicklung des Rosenabsatzes und des Rosenpreises im Zeitverlauf. gretl Hinweis: Ansicht / Mehrfache Graphen / Zeitreihen →zu plottende Variablen: Y, PR

- i. Was stellen Sie fest?
- ii. Wie erklären Sie den Anstieg des Rosenpreises?

2,6

8. Definieren Sie folgende neue Variable: RelP= PR / PN

gretl: Hinzufügen / Definiere neue Variable \rightarrow RelP = PR / PN

RelP = Relativer Preis

 Erstellen Sie ein Streudiagramm des Rosenabsatzes gegen den relativen Preis (RelP). gretl: Ansicht / Plotte spezifizierte Variablen / X-Y Streudiagramm / Variablen Y, RelP Was stellen Sie fest?

Durch Diskussionen mit anderen CAS-Teilnehmern haben Sie folgende Regressionsmodelle gesammelt:

1. Modell 1:
$$y_t = \beta_1 + \beta_2 PR_t + \beta_3 PN_t + u_t$$

$$t = 1,...,16$$

2. Modell 2:
$$y_t = \beta_1 + \beta_2 (PR_t / PN_t) + u_t$$

$$t = 1,...,16$$

3. Modell 3:
$$y_t = \beta_1 + \beta_2 PR_t + \beta_3 PN_t + \beta_4 EINK_t + u_t$$
 $t = 1,...,16$

4. Modell 4:
$$y_t = \beta_1 + \beta_2 PR_t + \beta_3 PN_t + \beta_4 EINK_t + \beta_5 T + u_t$$
 $t = 1,...,16$

Es gelte $u_t \sim iid \ N(0;\sigma^2)$. iid: independent and identically distributed (unabhängig identisch verteilten Zufallsvariablen)

10. Welche Vorzeichen für die Regressionskoeffizienten erwarten Sie für das Modell 4? Rosenpreis:

Nelkenpreis:

Einkommen:

Zeit:

11. Schätzen Sie die Regressionsmodelle 1-4.

Abhängige Va	riable: Y					
	Koeffizient	Stdfe	hler	t-Quotient	p-Wert	
const	9734,22	2888,0	6	3,371	0,0050	***
PR	-3782,20	572,4	55	-6,607	1,70e-0	5 ***
PN	2815,25	947,5	11	2,971	0,0108	**
Mittel d. ab	h. Var.	7645,000	Stdak	ow. d. abh. Va	ar. 20	42,814
Summe d. qua	d. Res.	14356623	Stdfe	hler d. Regre	ess. 10	50,883
R-Quadrat		0,770648	Korri	giertes R-Qua	adrat 0,	735363
F(2, 13)		21,84067	P-Wer	rt(F)	0,	000070
Log-Likeliho	ood -	132,3601	Akail	re-Kriterium	27	0,7202
Schwarz-Krit	erium	273,0379	Hanna	n-Quinn-Krite	erium 27	0,8389
rho	-	0,113813	Durbi	n-Watson-Stat	2,	209999

Modell 1

Abhängige Variable: Y Koeffizient Std.-fehler t-Quotient p-Wert const 20002,8 1759,19 11,37 1,86e-08 *** RelP -13638,7 1922,35 -7,095 5,38e-06 *** Mittel d. abh. Var. 7645,000 Stdabw. d. abh. Var. 2042,814 Summe d. quad. Res. 13621390 Stdfehler d. Regress. 986,3855 R-Quadrat 0,782393 Korrigiertes R-Quadrat 0,766850 F(1, 14) 50,33624 P-Wert(F) 5,38e-06 Log-Likelihood -131,9395 Akaike-Kriterium 267,8790 Schwarz-Kriterium 269,4242 Hannan-Quinn-Kriterium 267,9582 rho -0,197084 Durbin-Watson-Stat 2,385343

Modell 2

	Koeffizien	t Stdfe	hler	t-Quotient	p-We	rt
const	10816,0	5988,3	5	1,806	0,09	 83 *
PR	-2227,70	920,4	66	-2,420	0,03	40 **
PN	1251,14	1157,0	2	1,081	0,30	27
EINK	6,2829	9 30,6	217	0,2052	0,84	12
T	-197,400	101,5	61	-1,944	0,07	80 *
Mittel d. a	bh. Var.	7645,000	Stdal	ow. d. abh. V	ar.	2042,814
Summe d. qu	ad. Res.	10347220	Stdf	ehler d. Regr	ess.	969,8744
R-Quadrat		0,834699	Korr	igiertes R-Qu	adrat	0,774590
F(4, 11)		13,88635	P-We:	rt(F)		0,000281
Log-Likelih	ood	-129,7401	Akai:	ke-Kriterium		269,4803
Schwarz-Kri	terium	273,3432	Hann	an-Quinn-Krit	erium	269,6781

Modell 3

Abhängige V	Variable: Y						
	Koeffizient	Stdfe	hler	t-Quotient	p-We	rt	
const	13354,6	6485,4	2	2,059	0,061	9	*
PR	-3628,19	635,6	28	-5,708	9,79e	-05	***
PN	2633,75	1012,6	4	2,601	0,023	2	**
EINK	-19,2539	30,6	946	-0,6273	0,542	2	
Mittel d. a	abh. Var.	7645,000	Stdal	bw. d. abh. Va	ar.	2042	2,814
Summe d. qu	ad. Res.	13900824	Stdf	ehler d. Regre	ess.	1076	5,291
R-Quadrat		0,777929	Korr:	igiertes R-Qua	adrat	0,72	22411
F(3, 12)		14,01227	P-We:	rt(F)		0,00	00316
Log-Likelih	100d -	132,1020	Akai:	ke-Kriterium		272,	2040
Schwarz-Kri	terium	275,2943	Hann	an-Quinn-Krite	erium	272,	3622
rho	-	0,162079	Durb	in-Watson-Stat	;	2,31	16836

Hinweis: Speichern Sie ihre Regressionsergebnisse als Sitzungssymbol

Modell 4

- 12. Interpretieren Sie die Regressionskoeffizienten des Regressionsmodells 4 und beurteilen Sie, ob die Parameterschätzungen plausibel sind.
- 13. Sind die Koeffizienten des Modells 4 statistisch signifikant auf 5%-Niveau?

Hinweis: Direkt mit gretl-Output beantworten.

- 14. Was könnte der Grund dafür sein, dass die erklärenden Variablen Nelkenpreis (b₃) und Einkommen (b₄) nicht statistisch signifikant sind?
- 15. Berechnen Sie den Standardfehler des Regressionsmodells 4. Wo sehen Sie diese Zahl im gretl Output-Fenster?
- 16. Welches lineare Regressionsmodell würden Sie auswählen. Begründen Sie Ihre Auswahl. Folgende Tabelle enthält eine Zusammenstellung der zur vergleichenden Kennzahlen

	Modell 1	Modell 2	Modell 3	Modell 4
# Regressoren	K = 3	K = 2	K = 4	K = 5
Regressoren	PR, PN	PR/PN	PR, PN, EINK	PR, PN, EINK, T
\overline{R}^{2}	0.7353	0.7668	0.7224	0.7745
Akaike	270.72	267.88	272.20	269.48
SIC	273.03	269.42	275.29	273.34

17. Erklären Sie was das Ziel eines F-Tests für eine Mehrfachregression ist.

Sie wollen jetzt das Regressionsmodell 4 mittels F-Test prüfen!

18. Stellen Sie die Nullhypothese und alternative Hypothese auf.

19. Bestimmen Sie den kritischen F-Wert (Fc) auf dem 5%-Signifikanzniveau mittels gretl.

Zähler-Freiheitsgrade	K-1 = 5 - 1 = 4
Nenner-Freiheitsgrade	N – K = 16 -5 = 11

gretl Hauptfenster: Werkzeuge/Statistische Tabellen/ F/

Kritischer Wert $F_c(0.95,4,11) =$

- 20. Berechnen Sie den F-test mittels Bestimmtheitsmass $F = \frac{R^2}{1 R^2} \frac{N k}{L}$
- 21. Wie lautet die Entscheidungsregel, auf deren Basis Sie Ihre Testentscheidung treffen?
- 22. Wie lautet die Entscheidungsregel mit dem p-Wert?
- 23. Öffnen Sie das Varianzanalyse-Fenster im gretl. Welche Formel wurde benutzt, um den F-Wert zu berechnen?

gretl Output-Fenster: Analyse / ANOVA

	Quadratsumme	FG	quad. Mittel
Regression	5,22491e+007	4	1,30623e+007
Residuum	1,03472e+007	11	940656
Total	6,25964e+007	15	4,17309e+006
R^2 = 5,22491e+007		0,834699	Mont 0 00021

Analyse LaTeX

Zeige tatsächliche, gesch
Prognosen...
Konfidenzintervalle für Ki
Konfidenzellipse...
Kovarianzmatrix der Koef
Kollinearität
Einflussreiche Beobachtu
ANOVA

24. Schätzen Sie das restringierte Modell (Nullhypothesenmodell) um RSS_r zu bestimmen. Hinweis: Das restringierte Modell stellt das Modell mit den Restriktionen $b_2 = b_3 = b_4 = b_5 = 0$ dar.

K	oeffizient	Stdfehle	r t-Quotient	p-Wert	
const	7645,00	510,704	14,97	2,00e-010	***
Mittel d. abh. Summe d. quad. R-Quadrat		62596356 St	dabw. d. abh. V dfehler d. Regi rrigiertes R-Qu	ress. 2042	,814

- 25. Berechnen Sie den F-Test mittels Formel: $F = \frac{(RSS_r RSS)}{RSS} \frac{\left(N K\right)}{L} \approx F_{(L,N-K)}$
- 26. Erklären Sie die Intuition hinter dieser Formel
- 27. Testen Sie die Nullhypothese H_0 : $b_3 = b_4 = 0$ im Modell 4. Benutzen Sie dazu den eingebauten gretl -Test "Weglassen der Variablen". Was ist Ihre Schlussfolgerung?

gretl Output-Fenster: Test/ Variablen weglassen/

28. Interpretieren Sie konkret folgende Restriktion im Modell 4: β_2 = - β_3

- 29. Schreiben Sie diese Restriktion in Matrixform.
- 30. Testen Sie anhand des t-Tests auf dem 5%-Signifikanzniveau, ob die Restriktion falsch ist.
- 31. Stellen Sie das restringierte Modell auf und schätzen Sie es.
- 32. Testen Sie die Restriktion anhand des t-Tests
- 33. Testen Sie anhand des F-Tests auf dem 5%-Signifikanzniveau, ob die Restriktion falsch ist.

Berechnen Sie den F-Wert mittels
$$F = \frac{(RSS_r - RSS)}{RSS} \frac{(N - K)}{L}$$

34. Testen Sie diese Restriktion mittels gretl.
gretl output-Fenster: Test / lineare Restriktionen / b[2] + b[3] = 0

35. Testen Sie im Regressionsmodel 4, ob die Variablen PN, EINK und T gemeinsam statistisch signifikant sind.

gretl: Tests / Variablen weglassen →PN, EINK und T auswählen