Advanced topics: Semi-static replication using ANNs

Group 4: Divya Gajera (14932644) & Nitai Nijholt (12709018)

Objectives

- Pricing: Calculate the fair value of the derivative at any timepoint
- Hedging: Construct a semi-static hedge using short-maturity European options that replicate the derivative's payoff.
- Estimate forward path sensitivities in complex derivatives

Bermudan Option

• Bermudan option:

• American option:

Binomial Method

Monte Carlo Approach

Monte Carlo Approach to approximate Bermudan option price consists of three main components:

Simulations - Simulate a large number of price paths for the underlying asset using stochastic processes (e.g., Geometric Brownian Motion)

Regression - It fits the simulated future payoffs (from Monte Carlo paths) to the state variables (e.g., current asset prices).

Dynamic Programming - backward induction process that determines the optimal exercise strategy.

Monte Carlo Approach

The Monte Carlo methods for pricing Bermudan style options can be broadly divided in two categories:

- 1. Regress Now Regression is performed at each exercise date using the current state variables (e.g., asset prices at that date) to approximate the continuation value. The continuation value at t_m is calculated directly based on the regression results.
- 2. Regress Later Regression is deferred to later times, estimating the continuation value in terms of future states (e.g., payoffs at a future time step). The regression result at t_{m+1} is used retrospectively to decide the exercise policy at t_m

Motivation RLNN

Challenges in pricing complex derivatives

- Finite difference or Tree methods suffers from Curse of dimensionality
- Monte Carlo performs better, but high computational cost
- Dynamic hedging breaks down in low liquidity environment

Motivation RLNN

Advantages RLLN:

- (Semi) Static Hedging
- Interpretability
- Lower Computational Cost
- Universal Approximation Theorem

RLNN Algorithm

<u>Main idea</u>: Approximate pay-off of complex derivative using linear combination of simple European Options

Algorithm Steps:

1. Generate simulations of N underlying asset paths using GBM: $dS_t = \mu S_t dt + \sigma S_t dW_t$

2. Compute option payoffs at maturity for each path: $V_T^{(n)} = \max(h(S_T^{(n)}), 0)$

3. Train Neural Network G(S) each time step to approx. option values: $\tilde{G}_{\beta_{t_m}}(S_{t_m}^{(n)}) \approx \tilde{V}_{t_m}^{(n)}$

4. Compute continuation value using the trained network: $Q_{t_{m-1}}^{(n)} = E\left[\tilde{G}_{\beta_{t_m}}(S_{t_m}) \mid S_{t_{m-1}}^{(n)}\right]$

5. Option Value Update: Update option values: $\tilde{V}_{t_{m-1}}^{(n)} = \max(h(S_{t_{m-1}}^{(n)}), Q_{t_{m-1}}^{(n)})$

6. Repeat step 3-5 backward to the initial time. m = M - 1, M - 2, ..., 1, moving backward in time.

RLNN Algorithm

<u>Main idea</u>: Approximate pay-off of complex derivative using linear combination of simple European Options

NN structure:

- Hidden Layer Uses ReLU activation functions
- Each neuron represents payoff of single European option
- Portfolio weights correspond to w_i ; biases b_i to strike

Regress later because it uses feed forward neural network for the regression at each time step

Expected value

$$Q_{t_{m-1}}^{(n)} = E\left[\tilde{G}_{\beta_{t_m}}(S_{t_m}) \mid S_{t_{m-1}}^{(n)}\right] \rightarrow \mathbb{E}\left[\varphi\left(\mathbf{w}_i^{\top}\mathbf{S}_{t_m} + b_i\right) \mid \mathbf{S}_{t_{m-1}}\right] \rightarrow \mathbb{E}\left[\max\left(w_i S_{t_m} + b_i, \mathbf{0}\right) \mid S_t\right]$$

Cases

Case 1: $w_i \geq 0$ and $b_i \geq 0$

The expected value simplifies to the price of a forward contract:

Expected Value =
$$w_i \cdot S_{t_{m-1}} \cdot e^{r \cdot \Delta t} + b_i$$

Case 2: $w_i > 0$ and $b_i < 0$

This case represents a European call option. The strike price is:

Strike =
$$-\frac{b_i}{w_i}$$

Expected Value = $w_i \cdot \text{Black-Scholes}(S_{t_{m-1}}, \text{Strike}, r, \sigma, \Delta t, \text{option_type='call'})$

Case 3: $w_i < 0 \text{ and } b_i > 0$

This case represents a European put option. The strike price is:

Strike =
$$-\frac{b_i}{w_i}$$

Expected Value = $-w_i \cdot \text{Black-Scholes}(S_{t_{m-1}}, \text{Strike}, r, \sigma, \Delta t, \text{option_type='put'})$

Case 4: $w_i \leq 0$ and $b_i \leq 0$

Initial Results

Initial Results

Results: Vega

Results: Vega

Error vs. Binomial Price as a Function of Volatility

Delta Hedging

• Step 1: Simulate Stock Paths

$$S_{t+1}^m = S_t^m \exp\left((r - \frac{\sigma^2}{2})\Delta t + \sigma\sqrt{\Delta t}Z_t^m\right), \quad Z_t^m \sim \mathcal{N}(0, 1)$$

• Step 2: Compute Option Deltas

$$\Delta_t = \frac{V_{t+1}^{\text{up}} - V_{t+1}^{\text{down}}}{S_{t+1}^{\text{up}} - S_{t+1}^{\text{down}}}$$

• Step 3: Hedge Adjustments

Adjustment Cost =
$$(\Delta_t - \Delta_{t-1}) \cdot S_t$$

$$Cost_{total} = \sum_{t=1}^{N} (\Delta_t - \Delta_{t-1}) S_t e^{-r(T-t)}$$

• Step 4: Profit and Loss (P&L)

$$P\&L = Payoff_{option} - Cost_{total}$$

$$\mu = \frac{1}{M} \sum_{m=1}^{M} \text{P\&L}^m$$

Results: Delta Hedging

Profit & Loss RLNN Statis Hedge vs. Binomial Tree Hedge

Extensions

Multi asset derivatives

Appendix: Further extensions if time allows

- GPU implementation (inc. computational efficiency assessment)
- Backtesting (assess feasibility of static hedge in practice)

Appendix: Bounds Computation

- Lower Bound:
 - * Simulate new paths.
 - * Use RLNN continuation values to determine stopping times.
 - * Compute discounted payoffs:

Lower Bound =
$$\frac{1}{N_L} \sum_{n=1}^{N_L} \frac{h(S_{\tau(n)})}{B_{\tau(n)}}$$

- Upper Bound:
 - * Use dual formulation with martingales:

$$M_t = \sum_{i=0}^{m-1} \left(\frac{\tilde{G}_{\beta_{t_i+1}}(S_{t_i+1})}{B_{t_i+1}} - \frac{Q_{t_i}(S_{t_i})}{B_{t_i}} \right)$$

* Construct the upper bound:

$$ext{Upper Bound} = \mathbb{E}\left[\max_t \left(rac{h(S_t)}{B_t} - M_t
ight)
ight]$$

Advantages:

- Efficient: Avoids costly sub-simulations.
- Accurate: Tighter bounds for Bermudan-style derivatives.
- Versatile: Handles multi-asset, path-dependent claims effectively.

References

[1] Lokeshwar, V., Bharadwaj, V., & Jain, S. (2022). Explainable neural network for pricing and universal static hedging of contingent claims. *Applied Mathematics and Computation*, *417*, 126775.

