Definitions and Formulae:

The algebraic sum of two or more angles is called a compound angle. i.e.,

A+B, A-B, A+B+C, A+B-C, ...etc., are called compound angles.

- > If A and B are any two angles then
 - i) $\sin (A+B) = \sin A \cos B + \cos A \sin B$
 - ii) $\sin (A-B) = \sin A \cos B \cos A \sin B$
 - iii) $\cos (A+B) = \cos A \cos B \sin A \sin B$
 - iv) $\cos (A-B) = \cos A \cos B + \sin A \sin B$
- For If A, B, A+B, A-B are not odd multiples of $\pi/2$, then

i)
$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$ii)$$
 $tan(A-B) = \frac{tan A - tan B}{1 + tan A tan B}$

> If A, B, A + B and A - B are not integral multiples of π , then

i)
$$\cot(A+B) = \frac{\cot A \cot B - 1}{\cot B + \cot A}$$

$$ii) \cot(A-B) = \frac{\cot A \cot B + 1}{\cot B - \cot A}$$

- \Rightarrow i) $\sin(A+B) + \sin(A-B) = 2\sin A\cos B$
 - ii) $\sin(A+B)-\sin(A-B)=2\cos A\sin B$
 - iii) $\cos(A+B) + \cos(A-B) = 2\cos A\cos B$
 - iv) $\cos(A+B)-\cos(A-B)=-2\sin A\sin B$
 - v) $\cos(A-B)-\cos(A+B)=2\sin A\sin B$
- i) $\sin (A+B) \sin (A-B) = \sin^2 A \sin^2 B$ = $\cos^2 B - \cos^2 A$
 - ii) $cos (A+B) cos (A-B) = cos^2 A sin^2 B$ = $cos^2 B - sin^2 A$

i)
$$\sin \theta + \sin (120^{\circ} + \theta) - \sin (120^{\circ} - \theta) = 0$$

ii) $\sin \theta + \sin (240^{\circ} + \theta) - \sin (240^{\circ} - \theta) = 0$
iii) $\cos \theta + \cos (120^{\circ} + \theta) + \cos (120^{\circ} - \theta) = 0$
iv) $\cos \theta + \cos (240^{\circ} + \theta) + \cos (240^{\circ} - \theta) = 0$

If $A + B = 45^{\circ}$ or 225° then

i)
$$(1 + \tan A)(1 + \tan B) = 2$$

ii)
$$(1 - \cot A)(1 - \cot B) = 2$$

iii)
$$(1 + \cot A)(1 + \cot B) = 2 \cot A \cot B$$

If $A + B = 135^{\circ}$ or 315° then

i)
$$(1 - \tan A)(1 - \tan B) = 2$$

ii)
$$(1 + \cot A)(1 + \cot B) = 2$$

iii)
$$(1 + \tan A)(1 + \tan B) = 2 \tan A \tan B$$

> Some standard trigonometric values

i)
$$\sin 15^\circ = \frac{\sqrt{3} - 1}{2\sqrt{2}} = \cos 75^\circ$$

ii)
$$\cos 15^{\circ} = \frac{\sqrt{3} + 1}{2\sqrt{2}} = \sin 75^{\circ}$$

iii) tan
$$15^{\circ} = 2 - \sqrt{3} = \cot 75^{\circ}$$

iv) cot
$$15^{\circ} = 2 + \sqrt{3} = \tan 75^{\circ}$$

v)
$$\sec 15^{\circ} = \sqrt{6} - \sqrt{2} = \cos ec 75^{\circ}$$

vi)
$$\cos ec15^{\circ} = \sqrt{6} + \sqrt{2} = \sec 75^{\circ}$$

vii)
$$\tan 22\frac{1}{2}^0 = \sqrt{2} - 1 = \cot 67\frac{1}{2}^0$$

viii)
$$\cot 22\frac{1}{2}^0 = \sqrt{2} + 1 = \tan 67\frac{1}{2}^0$$