Course Notes

Real Functions and Measures

Alex Rutar

Contents

1	Basi	sics of Abstract Measure Theory		3
	1.1	Review of Topology		3
		1.1.1 Basic Definitions		3
			aces	3
				4
		1.1.4 Functions and Continuity .		5
	1.2			6
				6
		1.2.2 Sequences of Measurable Fu	nctions	9
		1.2.3 Measures		9
	1.3	Towards Integration		l 1
		1.3.1 Simple Functions		l 1
		1.3.2 Integration of Positive Funct	tions	1 2
		1.3.3 Lebesgue's Monotone Conve	ergence Theorem	14
	1.4	Integration of Complex Valued Fun	actions	17
		1.4.1 Basic Properties		17
		1.4.2 More Dominated Convergen	nce 1	18
2	The	e Lebesgue measure	1	19
	2.1			19
				19
				20
			ie measure	21
	2.2			
	2.3	Regularity Properties of Borel Meas	sures	27

Chapter 1

Basics of Abstract Measure Theory

Prof contact: simonp@caesar.elte.hu Grading: HW each week for 25% Midterm 30% Final 45%

1.1 Review of Topology

1.1.1 Basic Definitions

Def'n. 1.1.1 Let $X \neq \emptyset$ and $\tau \subseteq \mathcal{P}(X)$. We say that (X,τ) is a **topological space** if τ satisfies the following conditions:

- 1. $\emptyset \in \tau \ X \in \tau$
- 2. $V_1, V_2 \in \tau \Rightarrow V_1 \cap V_2 \in \tau$
- 3. $V_{\alpha} \in \tau$ for all $\alpha \in I \Rightarrow \bigcap_{\alpha \in I} V_{\alpha} \in \tau$

We call the elements of τ open sets.

Def'n. 1.1.2 $U \subseteq X$ is a **neighbourhood** of $x \in X$ if there is some $G \in \tau$ such that $x \in G \subset U$.

Def'n. 1.1.3 $F \subseteq X$ is **closed** if F^c is open.

Def'n. 1.1.4 The closure of a set $E \subset X$ is the smallest closed set containing E (denoted \overline{E}).

Def'n. 1.1.5 x is an accumulation point of H if all neighbourhoods of x contains infinitely points of H. Equivalently, x is a limit point of $H \setminus \{x\}$.

Def'n. 1.1.6 *If* $H \subseteq X$, we have a natural subspace topology $\tau|_H = \{G \cap H : G \in \tau\}$.

1.1.2 Examples of Topological Spaces

Topological spaces are a very general construction, so here are some of the standard examples:

- 1. \mathbb{R} along with the open sets (denoted τ_e , the Euclidean topology).
- 2. The discrete topology, $\tau = \mathcal{P}(X)$ for any $X \neq \emptyset$. This is the "finest" topology.

- 3. The antidiscrete topology, $\tau = \{\emptyset, X\}$ for any $X \neq \emptyset$ This is the "coarsest" topology.
- 4. One can define the extended real line, $X = \mathbb{R} \cup \{-\infty, +\infty\}$. Then

$$G \in \tau \Leftrightarrow \begin{cases} \forall x \in G \cap \mathbb{R} & \exists r > 0 \text{ s.t. } (x - r, x + r) \subset G \\ -\infty \in G & \exists b \in \mathbb{R} \text{ s.t. } (-\infty, b) \subset G \\ +\infty \in G & \exists a \in \mathbb{R} \text{ s.t. } (a, \infty) \subset G \end{cases}$$

The same can be done with a single symbol as well. In either case, the extended real line is a compact set.

- 5. Any metric spaces induces a topology. Consider a set $X \neq 0$ arbitrary, and let $d: X \times X \rightarrow \mathbb{R}$ such that
 - (a) $0 \le d(x, y)$ for all $x, y \in X$ and $d(x, y) = 0 \Leftrightarrow x = y$.
 - (b) d(x,y) = d(y,x) for all $x, y \in X$
 - (c) $d(x,y) \le d(x,z) + d(z,y)$ for any $x,y,z \in X$

Then $G \in \tau$ if and only if for any $x \in G$, there exists r so that $B_r(x) \subset G$. There are many examples of metric spaces:

- (a) $X = \mathbb{R}, d(x, y) = |x y|$
- (b) $X = \mathbb{R}, d(x, y) = |\tan^{-1}(x) \tan^{-1}(y)|$
- (c) $X = \mathbb{R}^2$, $d(x, y) = \sqrt{(x_1 y_1)^2 + (x_2 y_2)^2}$
- (d) $X = \mathbb{R}^2$, $d(x, y) = (|x_1 y_1|^p + |x_2 y_2|^p)^{1/p}$ for $p \ge 1$.
- (e) and similarly for $X = \mathbb{R}^n$
- (f) X = C[0,1], $d(f,g) = \max_{x \in [0,1]} |f(x) g(x)|$.
- (g) normed space: X is a vector space over \mathbb{R} , $\|\cdot\|: X \to \mathbb{R}$ such that
 - i. ||x|| = 0 if and only if X = 0
 - ii. ||cx|| = |c| ||x||
 - iii. $||x + y|| \le ||x|| + ||y||$

If $\|\cdot\|$ is a norm, then $d(x,y) = \|x-y\|$ is a metric.

6. The cofinite topology: $\tau = \{U \in \mathcal{P}(X) : U^c \text{ is finite}\}.$

1.1.3 Other Definitions

Def'n. 1.1.7 $K \subset X$ is **compact** if every open cover of K contains a finite subcover.

Def'n. 1.1.8 A topological space is called **locally compact** if every point has a compact neighbourhood.

Prop. 1.1.9 C[0,1] with the sup norm is not locally compact.

Proof I'll do this later.

Def'n. 1.1.10 A topological space is called **Hausdorff** if for any $x \neq y$, there exists neighbourhoods $U \ni x$, $V \ni y$ so that $U \cap V = \emptyset$.

The anti-discrete topology is not Hausdorff.

- 1. On the discrete topology, *K* is compact if and only if *K* is finite.
- 2. On the anti-discrete topology, everything is compact (the only possible open cover consists of *X*).
- 3. On (\mathbb{R}, τ_e) , K is compact if and only if K is closed and bounded.
- 4. On (X, d) metric space, K is compact if and only if K is complete and totally bounded.

Prop. 1.1.11 1. Let $K \subset X$ be compact, let $F \subset K$ closed. Then F is also compact.

2. Compact sets in a Hausdorff space are closed.

PROOF 1. Let $F \subset \bigcup V_{\alpha}$. Then $K \subset F^{c} \cup (\bigcup V_{\alpha})$ is an open cover for K, so it has a finite subcover $F^{c} \cup V_{\alpha_{1}} \cup \cdots V_{\alpha_{n}}$. But then since $F \cap F^{c} = \emptyset$, $F \subset V_{\alpha_{1}} \cup \cdots V_{\alpha_{n}}$ is a finite subcover.

2. Let $K \subset X$ be compact, and prove that K^c is open. Thus let $x \in K^c$. For any $y \in K$, there exist U_y, V_y disjoint neighbourhoods of x and y respectively. Now consider the open cover $K \subset \bigcup_{y \in K} V_y$, and get our finite subcover $K \subset V_{y_1} \cup \cdots \cup V_{y_n}$. But then $U_{v_1} \cap \cdots \cap U_{v_n} \cap K = \emptyset$ and is open since it is a finite intersection.

Def'n. 1.1.12 $\Gamma \subseteq \tau$ *is a base for* τ *if every* $U \in \tau$ *can be written as a countable union of the elements of* Γ . Γ *is a countable base if* Γ *is countable.*

Prop. 1.1.13 \mathbb{R} has a countable base of intervals.

Proof Consider the collection $\{B_r(q): (r,q) \in \mathbb{Q} \times \mathbb{Q}\}$. To see this, for any open set U, one can write

$$S := \bigcup_{r \in U \cap \mathbb{Q}} \left(\bigcup_{\{r: B_r(q) \subseteq U\}} B_r(q) \right)$$

 $U \supseteq S$ is obvious, so let $x \in U$ be arbitrary, and let s be maximal so that $B_s(x) \subseteq U$. Then choose $q \in \mathbb{Q}$ so that |x - q| < s/3 and $r \in \mathbb{Q}$ so that 0 < r < s/2. Then by construction $B_r(q) \ni x$ and by the triangle inequality $B_{r/2}(q) \subseteq U$, so $x \in S$. Thus U = S as desired.

Note that the exact same argument (with some work) can be generalized to show that \mathbb{R}^n has a countable base of open hyperrectangles.

Prop. 1.1.14 Every metric space which is a countable union of compact sets has a countable base.

PROOF See my PMATH 351 notes.

1.1.4 Functions and Continuity

Many of the standard notions of limits and continuity extend naturally to topological spaces.

Def'n. 1.1.15 Let $(x_n) \subset X$ be a sequence and let $x \in X$. Then x is the **limit** of (x_n) if for any neighbourhood U of X, there exists $N \in \mathbb{N}$ such that $n > N \Rightarrow x_n \in U$.

Prop. 1.1.16 *If* $F \subset X$ *is closed, then for all convergent sequences in* F*, the limit is also in* F*.*

Proof See Homework.

Def'n. 1.1.17 Let $f: X \to Y$ be a function, and $x \in X$ an accumulation point of D(f). The limit of f at x is $y \in Y$ if for any neighbourhood V of y there exists a neighbourhood U of x such that $f(U \cap D(f) \setminus \{x\}) \subseteq V$.

Def'n. 1.1.18 Let $f: X \to Y$ be a function, and let $x \in D(f)$. Then f is **continuous at** x if for any neighbourhood V of f(x), then $f^{-1}(V)$ is a neighbourhood of x.

Def'n. 1.1.19 $f: X \to Y$ is called **continuous** if it is continuous at every point.

Prop. 1.1.20 $f: X \to Y$ is continuous if and only if $f^{-1}(G)$ is open for all G open.

Proof Exercise.

Thm. 1.1.21 *Let* $f: X \to Y$ *be continuous and* $K \subset X$ *be compact. Then* f(K) *is compact.*

Proof Recall that continuous functions pull back open sets. Let $f(K) \subset \bigcup U_{\alpha}$ be an open cover. Then $\bigcup f^{-1}(U_{\alpha})$ is an open cover for K, and has a finite subcover $U_{\alpha_1} \cup \cdots \cup U_{\alpha_n}$. But then $f(f^{-1}(U_{\alpha_1})) \cup \cdots \cup f(f^{-1}(U_{\alpha_n}))$ is a subcover of f(K).

1.2 Measure Theory

1.2.1 σ -algebras

Def'n. 1.2.1 Let $X \neq \emptyset$ be a set. $\mathcal{M} \subset \mathcal{P}(X)$ is called a σ -algebra if

- 1. $X \in \mathcal{M}$
- 2. $A \in \mathcal{M} \Rightarrow A^c \in \mathcal{M}$
- 3. If $A_n \in \mathcal{M}$ for all $n \in \mathbb{N}$, then $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{M}$

The pair (X, \mathcal{M}) is called a **measurable space**. The elements of \mathcal{M} are called **measurable sets**.

Def'n. 1.2.2 Let (X, \mathcal{M}) be a measurable space, (Y, τ) be a topological space. Then $f: X \to Y$ is called **measurable** if $f^{-1}(V) \in \mathcal{M}$ for all $V \in \tau$.

Here are some simple examples of σ -algebras.

Ex. 1.2.3 1. $\mathcal{M} = \{\emptyset, X\}$ is a σ -algebra.

- 2. $\mathcal{P}(X) = \mathcal{M}$ is a σ -algebra.
- 3. $\mathcal{M} = \{A \subset X : A \text{ or } A^c \text{ is countable.} \}$. To see this, given $A_n \in \mathcal{M}$, if everything is countable, then $\bigcup A_n$ is countable. If some A_i is countable, then $(\bigcup A_n)^c = \bigcap A_n^c$ is countable, so $\bigcup A_n \in \mathcal{M}$.

We will later see some proper exaples, like the σ -algebra of Lebesgue measurable sets.

We have the following properties of σ -algebras.

Prop. 1.2.4 1. $\emptyset \in \mathcal{M}$

- 2. $A_1, A_2, \dots, A_n \in \mathcal{M} \Rightarrow A_1 \cup A_2 \cup \dots \cup A_n \in \mathcal{M}$
- 3. $A_n \in \mathcal{M}$ for all $n \in \mathbb{N}$ then $\bigcap_{n=1}^{\infty} A_n \in \mathcal{M}$
- 4. $A, B \in \mathcal{M} \Rightarrow A \setminus B \in \mathcal{M}$
- 5. f is measurable, $H \subset Y$ is closed, then $f^{-1}(H) \in \mathcal{M}$.

Proof 1. $X \in \mathcal{M} \Rightarrow X^c \in \mathcal{M}$.

- 2. We can extend this to a countable union by introduction $A_{n+i} = \emptyset$ for $i \in \mathbb{N}$.
- 3. By DeMorgan's identities, $(\bigcap A_n)^c = \bigcup A_n^c \in \mathcal{M}$.
- 4. $A \setminus B = A \cap B^c \in \mathcal{M}$.
- 5. H^c is open implies $f^{-1}(H^c) \in \mathcal{M}$. Then $f^{-1}(H) = (f^{-1}(H^c))^c \in \mathcal{M}$.

Prop. 1.2.5 Let $f: X \to Y$ be measurable, let $g: Y \to Z$ be continuous, then $g \circ f: X \to Z$ is measurable.

PROOF Let $V \subset Z$ be open, so $g^{-1}(V) \subset Y$ is open, so $f^{-1}(g^{-1}(V)) \in \mathcal{M}$ which is $(g \circ f)^{-1}(V)$. \square

Prop. 1.2.6 Let (X, \mathcal{M}) be a measurable space, Y be a topological space. Let $\phi : \mathbb{R}^2 \to Y$ be continuous. If $u, v : X \to \mathbb{R}$ are measurable, then $h(x) = \phi(u(x), v(x))$ is measurable.

Proof Define $f: X \to \mathbb{R}^2$ by f(x) = (u(x), v(x)) We will see that f is measurable, so that $h = \phi \circ f$ is measurable since ϕ is continuous. Let $I_1, I_2 \subset \mathbb{R}$ be open intervals, so $R = I_1 \times I_2$ is an open rectangle. Then $f^{-1}(R) = u^{-1}(I_1) \cap v^{-1}(I_2) \in \mathcal{M}$. Let $G \subset \mathbb{R}^2$ be an open set, so there exist R_n open rectangles so that

$$G = \bigcup_{n=1}^{\infty} R_n \Rightarrow f^{-1}(G) = \bigcup_{n=1}^{\infty} f^{-1}(R_n) \in \mathcal{M}$$

so that *f* is measurable.

Cor. 1.2.7 1. If $u, v : X \to \mathbb{R}$ are measurable, then u + v and $u \cdot v$ are measurable.

- 2. $u + iv : X \to \mathbb{C}$ is measurable.
- 3. $f: X \to \mathbb{C}$ is measurable, $f = u + iv \Rightarrow u, v, |f|$ are measurable.

Prop. 1.2.8 Define

$$\chi_E(x) = \begin{cases} 1 & \text{if } x \in E \\ 0 & \text{if } x \notin E \end{cases}$$

Then χ_E is measurable if and only if $E \in \mathcal{M}$.

PROOF Naturally, $\chi_E^{-1}(1) = E$ and $\chi_E^{-1}(0) = E^c$, so χ_E is measurable if and only if $E, E^c \in \mathcal{M}$. \square

Thm. 1.2.9 Let $\mathcal{F} \subset \mathcal{P}(X)$, then there exists a smallest σ -algebra containing \mathcal{F} . This is denoted by $S(\mathcal{F})$, the σ -algebra generated by \mathcal{F} .

Proof Let $\Omega = \{ \mathcal{M} : \mathcal{M} \text{ is a } \sigma\text{-algebra}, \mathcal{F} \subset M \}$. Certainly $\Omega \neq \emptyset$ since $\mathcal{P}(X) \in \Omega$. Let $S(\mathcal{F}) = \bigcap_{M \in \Omega} \mathcal{M}$. We will see that $S(\mathcal{F})$ is a σ -algebra.

(i) Since $X \in \mathcal{M}$, it follows that $X \in \cap \mathcal{M}$.

- (ii) If $A \in S(\mathcal{F})$, then $A \in \mathcal{M}$ for all \mathcal{M} . Thus $A^c \in \mathcal{M}$ for all \mathcal{M} and $A^c \in \cap \mathcal{M}$.
- (iii) In the same way, of $A_n \in S(\mathcal{F} \text{ for all } n, \text{ then } A_n \in \mathcal{M} \text{ for all } n, \mathcal{M}.$ Thus $\bigcup A_n \in \mathcal{M} \text{ for all } \mathcal{M} \text{ so } \bigcup A_n \in \mathcal{M} \in \bigcap \mathcal{M} = S(\mathcal{F}).$

By definition, $\mathcal{F} \subset \bigcap \mathcal{M}$. Finally, $S(\mathcal{F})$ is minimal, since if $\mathcal{F} \subset \mathcal{N}$ is a σ -algebra, then $\mathcal{N} \in \Omega \Rightarrow S(\mathcal{F}) \subset \mathcal{N}$, so we are done.

Def'n. 1.2.10 Let (X,τ) be a topological space. Then $\mathcal{B} = S(\tau)$ is called the **Borel** σ -algebra. Borel sets are the elements of $S(\tau)$. A function $f: X \to Y$ is Borel measurable if $f^{-1}(G) \in \mathcal{B}$ for all $G \subset Y$ open.

Prop. 1.2.11 1. If $F \subset X$ is closed, then $F \in \mathcal{B}$.

- 2. $G_n \subset X$ are open, then $\bigcap_{n=1}^{\infty} G_n \in B$. These are called G_{δ} -sets.
- 3. $F_n \subset X$ are closed, then $\bigcup_{n=1}^{\infty} F_n \in B$. These are called F_{σ} -sets.

Proof These follow directly from the definition of a σ -algebra.

Ex. 1.2.12 $X = \mathbb{R}$, τ_e , then $\mathcal{B} = S(\tau_e)$. Let $\Gamma_0 = \{(a,b) : a < b\}$ be a family of open intervals. We see that $S(\Gamma_0) = \mathcal{B}$. Since $\Gamma_0 \subset \tau$, $S(\Gamma_0) \subset S(\tau) = \mathcal{B}$. Conversely, let $G \in \tau$, then we have open intervals $G = \bigcup_{n=1}^{\infty} I_n$ so that $G \in S(\Gamma_0)$. Thus $S(\tau) \subset S(\Gamma_0)$ and $S(\Gamma_0) = \beta$.

Ex. 1.2.13 Let $\Gamma_{\infty} = \{(a, \infty) : a \in \mathbb{R}\}$. I claim that $S(\Gamma_{\infty}) = \mathcal{B}$. Certainly $S(\Gamma_{\infty}) \subset S(\tau) = \mathcal{B}$. Then $(-\infty, a] = (a_1, \infty)^c \in S(\Gamma_{\infty})$. Similarly, $(-\infty, a) = \bigcup_{n=1}^{\infty} (-\infty, a-1/n] \in S(\Gamma_{\infty})$. Thus $(a, \infty) \cap (-\infty, b) = (a, b) \in S(\gamma_0)$, and using the previous example, $\mathcal{B} = S(\Gamma_{\infty})$.

Prop. 1.2.14 Let (X, \mathcal{M}) be a measurable space, and let $f: X \to \overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\}$ with the eucildean topology. If $f^{-1}((\alpha, \infty]) \in \mathcal{M}$ for any $\alpha \in \mathbb{R}$, then f is measurable.

Proof Recall that f is measurable if its inverse image takes open sets to measurable sets. We have $f^{-1}([-\infty, \alpha]) = (f^{-1}((\alpha, \infty])^c \in \mathcal{M}$. Similarly,

$$f^{-1}([-\infty,\alpha)) = f^{-1}\left(\bigcap_{n=1}^{\infty} [-\infty,\alpha-1/n]\right) = \bigcup_{n=1}^{\infty} f^{-1}([-\infty,\alpha-1/n]) \in \mathcal{M}$$

We then have

$$f^{-1}((\alpha,\beta)=f^{-1}([-\infty,\beta)\cap(\alpha,\infty])=f^{-1}([-\infty,\beta))\cap f^{-1}((\alpha,\infty])\in\mathcal{M}$$

Recall that the open intervals are a base for τ_e . Thus if $G \subset \overline{\mathbb{R}}$ is open, then there exists open intervals so that $G = \bigcup_{n=1}^{\infty} I_n$ and

$$f^{-1}(G) = f^{-1}\left(\bigcup_{n=1}^{\infty} I_n\right) = \bigcup_{n=1}^{\infty} f^{-1}(I_n) \in \mathcal{M}$$

as desired.

1.2.2 Sequences of Measurable Functions

Our goal is to prove that the pointwise limit of measurable functions is measurable. This does not hold for Riemann integrability! For example, a function with a finite number of discontinuities is Riemann integrable, but the dirichlet function is not Riemann integrable and is discontinuous only at a countable number of points.

Def'n. 1.2.15 Let $(a_n)_{n\in\mathbb{N}}\subset\overline{R}$ be a sequence, and $b_k=\sup\{a_k,a_{k+1},\ldots\}$. Then $\beta=\inf_{k\in\mathbb{N}}b_k$ is called the \limsup of (a_n) . We can similarly define $c_k=\inf\{a_k,a_{k+1},\ldots\}$ and \liminf = $\sup_{k\in\mathbb{N}}c_k$.

Def'n. 1.2.16 Let $f_n: X \to \overline{\mathbb{R}}$ be a sequence of functions. Then $(\sup f_n): X \to \overline{\mathbb{R}}$, $(\sup f_n)(x) = \sup f_n(x)$ for all $x \in X$. Similarly, $(\inf f_n): X \to \overline{\mathbb{R}}$, $(\inf f_n)(x) = \inf f_n(x)$ for all $x \in X$. Then $(\liminf f_n)(x) = \liminf f_n(x)$. If $\lim f_n(x)$ exists for all x, then we say $(\liminf f_n)(x) = \lim f_n(x)$.

Thm. 1.2.17 Let $f_n: X \to \overline{R}$ be measurable. Then $\sup f_n$, $\inf f_n$, $\limsup f_n$, $\liminf f_n$ are measurable.

Proof Let $g = \sup f_n$. It is enough to prove that $g^{-1}((\alpha, +\infty]) \in \mathcal{M}$ for all α . Let $H = g^{-1}((\alpha, +\infty]) = \{x \in X : \sup f_n(x) > \alpha\}$. Let $H_n = f_n^{-1}((\alpha, +\infty]) = \{x \in X : f_n(x) > \alpha\} \in \mathcal{M}$. We show that $H = \bigcup_{n=1}^{\infty} H_n$.

First let $x \in H$, so $\sup f_n(x) > \alpha$. Thus get N so that $f_N(x) > \alpha$, so $x \in H_N$ and x is in the union. The converse is obvious.

Thus g is measureable. In the exact same way, $\inf f_n$ is measurable. As well,

$$\limsup f_n = \inf_i \sup_{k \ge i} f_k$$

is measurable.

Cor. 1.2.18 *If* $\lim f_n$ *exists, then it is measurable.*

PROOF If $\lim f_n$ exists, then $\lim f_n = \limsup f_n$.

Cor. 1.2.19 If f, g are measurable, then $\max\{f,g\}$, $\min\{f,g\}$ are measurable.

Cor. 1.2.20 Let f be a function. Then $f_+ = \max\{f, 0\}$ and $f_- = -\min\{f, 0\}$ (the positive and negative parts of f) are measurable. Similarly, $|f| = f_+ + f_i$ is measurable.

1.2.3 Measures

Def'n. 1.2.21 Let (X, \mathcal{M}) be a measurable space. A function $\mu : \mathcal{M} \to [0, +\infty]$ is called a **(positive)** measure if it is countably additive and not constant $+\infty$. In other words,

1.
$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mu(A_n) \text{ if } A_i \cap A_j = \emptyset$$

2. $\exists A \in \mathcal{M} \text{ so that } \mu(A) < \infty$

 (X, \mathcal{M}, μ) is called a **measure space**.

Prop. 1.2.22 1. $\mu(\emptyset) = 0$

2. If
$$A_i \cap A_j = \emptyset$$
 then $\mu\left(\sum_{i=1}^n A_i\right) = \sum_{i=1}^n \mu(A_i)$

- 3. $A \subset B$ implies $\mu(A) \leq \mu(B)$
- 4. $A_1 \subset A_2 \subset A_3 \cdots$ then $\lim_{n \to \infty} \mu A_n = \mu \left(\bigcup_{n=1}^{\infty} A_n \right)$
- 5. $A_1 \supset A_2 \supset A_3 \cdots$ and $\mu(A_i) < \infty$ then $|\lim_{n \to \infty} \mu(A_n) = \mu \left(\bigcap_{n=1}^{\infty} A_n \right)$

PROOF 1. Let $A \in \mathcal{M}$ so that $\mu(A) < \infty$, and fix $A_1 = A$, $A_2 = A_3 = \cdots = \emptyset$. Then $\bigcup A_n = A$ so $\mu(A) = \mu(A) + \sum_{i=2}^{\infty} \mu(\emptyset)$ so $\mu(\emptyset) = 0$.

- 2. Obvious
- 3. Note that $B = A \cup (B \setminus A)$ is a disjoint union.
- 4. Define $B_1 := A_1$ and $B_i = A_i \setminus A_{i-1}$ for $i \ge 2$. Then $B_i \cap B_j = \emptyset$ and $\mu(A_n) = \mu\left(\bigcup_{i=1}^n B_i\right) = \sum_{i=1}^\infty \mu(B_i)$. Similarly, $\mu\left(\bigcup_{n=1}^\infty A_n\right) = \mu\left(\bigcup_{n=1}^\infty B_n\right) = \sum_{n=1}^\infty \mu(B_n)$ Therefore, $\lim_{n\to\infty} \sum_{i=1}^n \mu(B_i) = \sum_{n=1}^\infty \mu(B_n)$.
- 5. Let $C_n = A_1 \setminus A_n$, $C_1 = \emptyset$. Then $C_1 \subset C_2 \subset \cdots$ and $\mu(C_n) + \mu(A_n) = \mu(A_1)$. Let $A = \bigcap_{n=1}^{\infty} A_n$ so $A_1 \setminus A = \bigcup_{n=1}^{\infty} C_n$ and $(\bigcup C_n) \cup A = A_1$ is a disjoint union. But then $\mu(\bigcup A_n) + \mu(A) = \mu(A_1)$ so that

$$\mu(A_1) - \mu(A) = \mu(\bigcup C_n) = \lim_{n \to \infty} \mu(C_n) = \mu(A_n) - \lim \mu(A_n)$$

Since $\mu(A_1)$ is finite, we have $\mu(A) = \lim \mu(A_n)$.

Ex. 1.2.23 Here are a few examples of measures that exist on arbitrary sets.

1. X arbitrary, $\mathcal{M} = \mathcal{P}(X)$, and

$$\mu(E) = \begin{cases} |E| & \text{if } E \text{ is finite} \\ +\infty & \text{if } E \text{ is not finite} \end{cases}$$

It is easy to verify it is countably additive.

2. *X* arbitrary, $\mathcal{M} = \mathcal{P}(X)$. Fix $x_0 \in X$. Then

$$\mu(E) = \begin{cases} 1 & \text{if } x_0 \in E \\ 0 & \text{if } x_0 \notin E \end{cases}$$

1.3 Towards Integration

1.3.1 Simple Functions

Def'n. 1.3.1 $s: X \to \mathbb{R}$ or \mathbb{C} is called a simple function if its range is finite.

Prop. 1.3.2 Let s be a simple function, so that $R(s) = \{\alpha_1, \alpha_2, ..., \alpha_n\}$. Then $s = \sum_{i=1}^n \alpha_i \chi_{A_i}$ where $A_i = s^{-1}(\{\alpha_i\})$ and s is measurable if and only if $A_i \in \mathcal{M}$.

Proof Obvious.

The following theorem is used later to define the integral. It is clear that we should define the integral of a simple function as the sum of the integrals of its characteristic functions, and this allows us to extend the integral by limits to the function f.

Thm. 1.3.3 *Let* $f: X \to [0, +\infty]$ *be nonnegative measurable functions. Then there exists a sequence* $s_n: X \to [0, +\infty]$ *of simple measurable functions with*

- 1. (s_n) is increasing and bounded above by f
- 2. $\lim s_n = f$ pointwise.

PROOF Let $n \in \mathbb{N}$, $t \ge 0$, and $k_n(t) = [2^n \cdot t]$ (i.e. $k_n(t) \le 2^n \cdot t < k_n(t) + 1$). Then define

$$\phi_n(t) = \begin{cases} k_n(t) \cdot 2^{-n} & \text{if } t \le n \\ n & \text{if } t > n \end{cases}$$

I've drawn ϕ_1 below:

Then $t - 2^{-n} \le \phi_n(t) \le t$, $\lim \phi_n(t) = t$, and $\phi_n \le \phi_{n+1}$. Define $s_n = \phi_n \circ f$, so for any $x \in X$, $\lim s_n(x) = \lim \phi_n \circ f(x) = f(x)$. Note that s_n is simple since it has finite range (from ϕ_n), and $s_n \le s_{n+1}$ because $\phi_n \le \phi_{n+1}$, and $s_n \le f$ since $\phi_n(t) \le t$. Furthermore, ϕ_n is measurable since its level sets are intervals, so $\phi_n \circ f$ is measurable.

1.3.2 Integration of Positive Functions

Let (X, \mathcal{M}, μ) be a measure space.

Def'n. 1.3.4 Let $S: X \to [0, +\infty)$ be a measurable simple function $s = \sum_{n=1}^{n} \alpha_i X_{A_i}$. Let $E \in \mathcal{M}$. Then define the **integral of** s over E be with respect to μ as

$$\int_{E} s \, \mathrm{d}\mu = \sum_{n=1}^{n} \alpha_{i} \mu(A_{i} \cap E)$$

where we define $0 \cdot \infty = 0$.

Def'n. 1.3.5 Let $f: X \to [0, +\infty]$ be a measurable function. Let $E \in \mathcal{M}$. Then the (**Lebesgue**) integral of f over E with respect to μ is

$$\int_{E} f \, d\mu = \sup \left\{ \int_{E} s \, d\mu : 0 \le s \le f; \text{ s is simple measurable} \right\}$$

Unlike the Riemann integral, we take the supremum over lower sums only.

Prop. 1.3.6 Let $f,g:X\to [0,+\infty]$ be measurable functions. Let $E,A,B\in\mathcal{M}$.

- 1. If $f \leq g$ then $\int_E f d\mu$ and $\int_E g d\mu$
- 2. If $A \subset B$, then $\int_A f d\mu \leq \int_B f d\mu$
- 3. $\int_{E} c \cdot f \, d\mu = c \cdot \int_{E} f \, d\mu \text{ for all } c \ge 0$
- 4. If f(x) = 0 for all $x \in E$, then $\int_E f d\mu = 0$
- 5. If $\mu(E) = 0$, then $\int_{E} f \, d\mu = 0$
- 6. $\int_E f \, \mathrm{d}\mu = \int_X f \cdot \chi_E \, \mathrm{d}\mu.$

Proof 1. Note that

$$\left\{ \int_{E} s \, \mathrm{d}\mu : 0 \le s \le f \right\} \subset \left\{ \int_{E} s \, \mathrm{d}\mu : 0 \le s \le g \right\} Let$$

 $0 \le s \le f$ be simple measurable. Then

$$\int_{A} s \, \mathrm{d}\mu = \sum \alpha_{i} \mu(A \cap A_{i}) \le \sum \alpha_{i} \mu(B \cap A_{i}) = \int_{B} s \, \mathrm{d}mu$$

Take the supremum for all $0 \le s \le f$, then the result follows.

3. Let *S* be simple and measurable, so $s = \sum \alpha_i \chi_{A_i}$. Then

$$\int_{E} c \cdot s \, \mathrm{d}\mu = \sum_{i=1}^{n} \alpha_{I} \cdot c \cdot \mu(E \cap A_{i}) = c \cdot \sum_{i=1}^{n} \alpha_{i} \mu(E \cap A_{i}) = c \int_{E} s \, \mathrm{d}\mu$$

Thus

$$\int_{E} c \cdot f \, d\mu = \sup \left\{ \int_{E} s \, d\mu : 0 \le s \le cf \right\}$$

$$= \sup \left\{ \int_{E} c \cdot t \, d\mu : 0 \le t \le f \right\}$$

$$= c \cdot \sup \left\{ \int_{E} t \, d\mu : 0 \le t \le f \right\}$$

$$= c \cdot \int_{E} f \, d\mu$$

- 4. If $0 \le s \le f$, then $s = \sum \alpha_i \chi_{A_i}$. If $x \in A_i \cap E$, then $s(x) = \alpha_i$ and $\alpha_i = 0$. Then $\alpha_i \mu(A_i \cap E) = 0$ for all i: either $A_i \cap E = \emptyset$, or $A_i \cap E$ is not empty, and $\alpha_i = 0$. This is true for any $0 \le s \le f$, and taking supremums yields the result.
- 5. If $\mu(E) = 0$ then $\mu(A_i \cap E) = 0$, and $\int_E s \, d\mu = \sum \alpha_i \mu(A_i \cap E) = 0$ and taking supremums, the result holds.
- 6. Exercise. First prove if $0 \le s \le f \cdot \chi_E$, then $\int_X s \, d\{\mu\} = \int_E s \, d\mu$. Then prove $\left\{ \int_E s \, d\mu : 0 \le s \le f \cdot \chi_E \right\} = \left\{ \left| \int_E s \, d\mu : 0 \le s \le f \right\}.$

Prop. 1.3.7 Let s be a simple and measurable. Then $\phi(E) = \int_{e} s \, d\mu$ is a measure.

Proof $\phi(\emptyset) = 0$, so ϕ is not constant $+\infty$. Let $E = \bigcup_{n=1}^{\infty} E_n$ be a disjoint union. Then

$$\phi(E) = \sum_{i=1}^{m} \alpha_{i} \mu(A_{i} \cap E)$$

$$= \sum_{i=1}^{m} \alpha_{i} \mu \left(A_{i} \cap \left(\bigcup_{n=1}^{\infty} E_{n} \right) \right) = \sum_{i=1}^{m} \alpha_{i} \mu \left(\bigcup_{n=1}^{\infty} (A_{i} \cap E_{n}) \right)$$

$$= \sum_{i=1}^{m} \alpha_{i} \sum_{n=1}^{\infty} \mu(A_{i} \cap E_{n}) = \sum_{n=1}^{\infty} \sum_{i=1}^{m} \alpha_{i} \mu(A_{i} \cap E_{n})$$

$$= \sum_{n=1}^{\infty} \int_{E_{n}} s \, d\mu = \sum_{n=1}^{\infty} \phi(E_{n})$$

Prop. 1.3.8 Let s, t be nonnegative, measurable simple functions. Then

$$\int_{X} (s+t) \, \mathrm{d}\mu = \int_{X} s \, \mathrm{d}\mu + \int_{X} t \, \mathrm{d}\mu$$

Proof Write

$$s = \sum_{i=1}^{m} \alpha_i X_{A_i}, \quad t = \sum_{i=1}^{n} \beta_i X_{\beta_i}$$

and let $E_{ij} = A_i \cap B_j$, so $X = \bigcup_{i,j} E_{ij}$ is a disjoint union. We now have

$$\int_{E_{ij}} (s+t) d\mu = (\alpha_i + \beta_j) \mu(E_{ij}) = \alpha_i \mu(E_{ij}) + \beta_j \mu(E_{ij}) = \int_{E_{ij}} s d\mu + \int_{E_{ij}} t d\mu$$

Let $\mu(E) = \int_{E} (s+t) d\mu$, which is a measure as above. Thus

$$\int_{X} (s+t) d\mu = \phi(X) = \phi\left(\bigcup_{i,j} E_{ij}\right)$$

$$= \sum_{i,j} \phi(E_{ij}) = \sum_{i,j} \int_{E_{ij}} (s+t) d\mu$$

$$= \sum_{i,j} \left(\int_{E_{ij}} s d\mu + \int_{E_{ij}} t d\mu\right)$$

$$= \sum_{i,j} \phi(E_{ij}) + \sum_{i,j} \theta(E_{ij})$$

$$= \int_{X} s d\mu + \int_{X} t d\mu$$

where $\varphi(E) = \int_E s \, d\mu$, $\theta(X) = \int_E t \, d\mu$.

1.3.3 Lebesgue's Monotone Convergence Theorem

Thm. 1.3.9 (Lebesgue's Monotone Convergence) Let $f_n: X \to [0, +\infty]$ be measurable, such that

(i)
$$0 \le f_1 \le f_2 \le \cdots$$

(ii)
$$f(x) := \lim_{n \to \infty} f_n(x)$$
 for all $x \in X$

Then f is measurable, and $\int_X f d\mu = \lim \int_X f_n d\mu$.

Proof It was already proven that f is measurable. We have $\int_X f_n \, \mathrm{d}\mu \le \int_x f_{n+1} \, \mathrm{d}\mu$ for all n, so $\alpha := \lim_{n \to \infty} \int_X f_n \, \mathrm{d}\mu$ exists. We also have $f_n \le f$, so $\int f_n \le \int f$ and $\alpha \le \int_X f_n \, \mathrm{d}\mu$. Thus we wish to show $\alpha \ge \int_X f \, \mathrm{d}\mu$. It suffices to prove that $\alpha \ge \int_X s \, \mathrm{d}\mu$ for any simple $s \le f$. Let $c \in (0,1)$; it suffices to show that $\alpha \ge \int_X c \cdot s \, \mathrm{d}\mu$. Define $E_n = \{x \in X : f_n(x) \ge c \cdot s(x)\}$. We have $E_1 \subset E_2 \subset \cdots$ so that $\bigcup E_n = X$. Then

$$\int_X f_n \, \mathrm{d}\mu \ge \int_{E_n} f_n \, \mathrm{d}\mu \ge \int_{E_n} c \cdot s \, \mathrm{d}\mu$$

Let $\phi(E) = \int_E s \, d\mu$, so $\int_{E_n} s \, d\mu = \phi(E_n) \rightarrow \phi(\cup E_n) = \phi(X) = \int_X s \, d\mu$. Thus

$$\alpha \ge c \cdot \lim_{n \to \infty} \phi(E_n) = c \cdot \int_X s \, \mathrm{d}\mu = \int_X cs \, \mathrm{d}\mu$$

as desired.

Ex. 1.3.10 Consider the function consisting of a triangle with base 2/n and height n. Then $\int_0^1 f_n = 1$ as a Riemannian integral. However, $\lim_{n \to \infty} f_n(x) = 0$ for any x, so $\int_0^1 f = 0 \neq 1 = \lim_{n \to \infty} \int_0^1 f_n$.

Thm. 1.3.11 Let $f,g:X\to [0,+\infty]$ measurable, then $\int_X (f+g) d\mu = \int_X f d\mu + \int_X g d\mu$.

PROOF We proved that there exists increasing sequences of simple functions s_n , t_n such that $\lim s_n(x) = f(x)$, $\lim t_n(x) = g(x)$. Then $s_n(x) + t_n(x) \to f(x) + g(x)$ monotonically. But then

$$\int_{X} (f+g) d\mu = \int_{X} \lim_{n \to \infty} (s_{n} + t_{n}) d\mu$$

$$= \lim_{n \to \infty} \int_{X} (s_{n} + t_{n}) d\mu$$

$$= \lim_{n \to \infty} \left(\int_{X} s_{n} d\mu + \int_{X} t_{n} d\mu \right)$$

$$= \int_{X} \lim_{n \to \infty} s_{n} d\mu + \int_{X} \lim_{n \to \infty} t_{n} d\mu$$

$$= \int_{X} f d\mu + \int_{X} g(d\mu)$$

Cor. 1.3.12 *If* $f_n: X \to [0, +\infty]$ *is a sequence of measurable functions, then*

$$\sum_{n=1}^{\infty} \int_{X} f_n \, \mathrm{d}\mu = \int_{X} \sum_{n=1}^{\infty} f_n \, \mathrm{d}\mu$$

Ex. 1.3.13 Let $X = \mathbb{N}$, $\mathcal{M} = \mathcal{P}(X)$, $\mu(E)$ is the counting measure. Let $a: X \to [0, \infty)$ be a function. This is a sequence. Every function is measurable. Let $s_n(i) = a(i)$ for $i \le n$ and 0 otherwise, which is a simple function, and $s_n \le s_{n+1}$. Then $\lim_{n\to\infty} s_n(i) = a(i)$ so $s_n \to a$ pointwise, so by LMC $\int_X s_n d\mu = \int_X a d\mu$. Also,

$$\int_{X} s_n \, \mathrm{d}\mu = \sum_{i=1}^{n} a(i)\mu(\{i\}) = \sum_{i=1}^{n} a(i)$$

so
$$\int_X a \, \mathrm{d}\mu = \sum_{n=1}^\infty a(n)$$
.

Lemma 1.3.14 (Fatou) Let $f_n: X \to [0, \infty)$ be a sequence of measurable functions. Then

$$\int_X \liminf f_n \, \mathrm{d}\mu \le \liminf \int_X f_n \, \mathrm{d}\mu$$

Proof Let $g_k = \inf\{f_k, f_{k+1}, \ldots\}$ so $\liminf f_n = \lim_{n \to \infty}$ and g_n is increasing. Note that $g_k \le f_k$ for any k, so $\int_X g_k \, \mathrm{d}\mu \le \int_X f_k \, \mathrm{d}\mu$. Thus

$$\int_{X} \liminf f_{n} d\mu = \int_{X} \lim g_{n} d\mu$$

$$= \lim \int_{X} g_{n} d\mu$$

$$= \lim \inf \int_{X} g_{n} d\mu$$

$$\leq \lim \inf \int_{X} f_{n} d\mu$$

Ex. 1.3.15 It is possible for the inequality to be strict. Define $f_{2n} = \chi_{[0,1]}$ and $f_{2n+1} = \chi_{[1,2]}$. Thus $\liminf f_n(x) = 0$ so $\int_{[0,2]} \liminf f_n \, d\mu = 0$ but $\inf_{[0,2]} \int_{[0,2]} f_n \, d\mu = 1$

Thm. 1.3.16 Let $f: X \to [0, \infty]$ be measurable. Let $\phi(E) = \int_E f \, d\mu$, $E \in \mathcal{M}$. Then ϕ is a measure and $\int_X g \, d\phi = \int_X g \cdot f \, d\mu$.

PROOF Certainly $\phi(\emptyset) = 0$, so $\phi \neq +\infty$. Thus let $E = \bigcup_{i=1}^{\infty} E_i$ be a disjoint union. Then $\chi_E f = \sum_{i=1}^{\infty} \chi_{E_i} f$. Thus we have

$$\phi(E) = \int_{E} f \, d\mu$$

$$= \int_{X} \chi_{E} f \, d\mu$$

$$= \int_{X} \sum_{i=1}^{\infty} \chi_{E_{i}} f \, d\mu$$

$$= \sum_{i=1}^{\infty} \int_{X} \chi_{E_{i}} f \, d\mu$$

$$= \sum_{i=1}^{\infty} \int_{E_{i}} d\mu$$

$$= \sum_{i=1}^{\infty} \phi(E_{i})$$

Now, we prove that $\int_X g \, d\mu = \int_X g f \, d\mu$.

First, we do this for $g = \chi_E$. Then $\int_X \chi_E d\mu = \phi(E)$ on the left, and $\int_X \chi_E f d\mu = \int_E f d\mu = \phi(E)$ and equality holds.

Now, let $g = \sum_{i=1}^n \alpha_i \chi_{A_i}$ be a simple function. Then $\int_X \sum \alpha_i \chi_{A_i} \, \mathrm{d}\phi = \sum \alpha_i \int_X \chi_{A_i} \, \mathrm{d}\phi$ on the left and $\int_X \sum \alpha_i \chi_{A_i} f \, \mathrm{d}\mu = \sum \alpha_i \int_X \chi_{A_i} f \, \mathrm{d}\mu$.

Finally, let g be an arbitrary measurable function, and let $(s_n) \to g$ be an increasing sequence of simple functions. Note that $s_n f \to g f$. Thus

$$\int_{X} g \, d\phi = \int_{X} \lim s_{n} \, d\phi = \lim \int_{X} s_{n} \, d\phi$$

$$= \lim \int_{X} s_{n} f \, d\mu = \int_{X} \lim (s_{n} f) \, d\mu$$

$$= \int_{X} g \cdot f \, d\mu$$

as desired.

1.4 Integration of Complex Valued Functions

Def'n. 1.4.1 A function $f: X \to \mathbb{C}$ is called **Lebesgue integrable** if $\int_X |f| d\mu < \infty$. The collection of such functions is $L^1(\mu)$.

1.4.1 Basic Properties

Def'n. 1.4.2 Let $f \in L^1(\mu)$. Then f = u + iv and denote u = Re f, v = Im f. Let $E \in \mathcal{M}$; then the integral of f over E with respect to μ is

$$\int_{E} f \, \mathrm{d}\mu = \int_{E} u^{+} \, \mathrm{d}\mu - \int_{E} u^{-} \, \mathrm{d}\mu i \left(\int_{E} v^{+} \, \mathrm{d}\mu - \int_{E} v^{-} \, \mathrm{d}\mu \right)$$

Thm. 1.4.3 Let $f, g \in L^1(\mu)$, $\alpha, \beta \in \mathbb{C}$, so $\alpha f + = L^1(\mu)$ and

$$\int_{X} (\alpha f + \beta g) d\mu = \alpha \int_{X} f d\mu + \beta \int_{X} g d\mu$$

Proof Note that $\alpha f + \beta g$ is measurable, so $\int_X |\alpha f + \beta g| \, \mathrm{d}\mu \le |\alpha| \int_X |f| \, \mathrm{d}\mu + |\beta| \int_X |g| \, \mathrm{d}\mu < \infty$. For real measurable functions, $\int_X (f+g) \, \mathrm{d}\mu = \int_X f \, \mathrm{d}\mu + \int_X g \, \mathrm{d}\mu$ directly by expanding the definition and using additivity over positive functions. We thus show $\int_X \alpha f \, \mathrm{d}\mu = \alpha \int_X f \, \mathrm{d}\mu$. If $\alpha \ge 0$, then

$$\int_{X} \alpha f \, \mathrm{d}\mu = \int_{X} \alpha(u+iv) = \int_{X} (\alpha u^{+} - \alpha u^{-} + i\alpha v^{+} - i\alpha v^{-}) \, \mathrm{d}\mu$$

$$= \int_{X} ((\alpha u)^{+} - (\alpha u)^{-} + (i\alpha v)^{+} - (i\alpha v)^{-}) \, \mathrm{d}\mu$$

$$= \int_{X} (\alpha u)^{+} \, \mathrm{d}\mu - \int_{X} (\alpha u)^{-} \, \mathrm{d}\mu + \int_{X} i(\alpha v)^{+} \, \mathrm{d}\mu - \int_{X} i(\alpha v)^{-} \, \mathrm{d}\mu$$

$$= \alpha \int_{X} u^{+} \, \mathrm{d}\mu - \alpha \int_{X} u^{-} \, \mathrm{d}\mu + \alpha \int_{X} iv^{+} \, \mathrm{d}\mu - \alpha \int_{X} iv^{-} \, \mathrm{d}\mu$$

$$= \alpha \int_{X} f \, \mathrm{d}\mu$$

and similarly for $\alpha = -1$, $\alpha = i$.

Thm. 1.4.4 Let $f \in L^1(\mu)$. Then $\left| \int_X f \, \mathrm{d}\mu \right| \leq \int_X |f| \, \mathrm{d}\mu$.

PROOF Let $z = \int_X f \, d\mu$. Let $\alpha = \frac{|z|}{z}$ if $z \neq 0$, and $\alpha = 1$ otherwise. Then $\alpha \int_X f \, d\mu = |z|$. Let $u = \text{Re}(\alpha \cdot f) \leq |\alpha \cdot f| \leq |f|$ since $|\alpha| = 1$. Thus

$$\left| \int_{X} f \, \mathrm{d}\mu \right| = \alpha \cdot \int_{X} f \, \mathrm{d}\mu$$

$$= \int_{X} \alpha f \, \mathrm{d}\mu$$

$$= \int_{X} \operatorname{Re}(\alpha f) \, \mathrm{d}\mu$$

$$\leq \int_{X} |f| \, \mathrm{d}\mu$$

1.4.2 More Dominated Convergence

Naturally, we want similar results as we have before. Indeed, we have the following theorem:

Thm. 1.4.5 (Lebesgue's Dominated Convergence) Let $f_n: X \to \mathbb{C}$ be measurable functions such that $f = \lim f_n$. Assume that there is some $g \in L^1(\mu)$ such that $|f_n| \le g$ for all n. Then $f \in L^1(\mu)$ and $\int_X f \, \mathrm{d}\mu = \lim_{n \to \infty} \int_X f_n \, \mathrm{d}\mu$.

Proof We certainly know that f is measurable, and $|f| \le g$, so $f \in L^1(\mu)$. As well, the triangle inequality show that $|f - f_n| \le 2g$ for any n. We will see that $0 \le \liminf_X |f - f_n| \, \mathrm{d}\mu \le \limsup_X |f - f_n| \, \mathrm{d}\mu \le 0$. Assuming that this holds, then $\lim_X |f - f_n| \, \mathrm{d}\mu = 0$ and

$$0 \le \lim \left| \int_X f \, \mathrm{d}\mu - \int_X f_n \, \mathrm{d}\mu \right| \le \int_X |f - f_n| \, \mathrm{d}\mu = 0$$

The first two inequalities are obvious: we must show that $\limsup \int_X |f_{fn}| d\mu \le 0$. Firstly, we have

$$\int_{X} 2g \, \mathrm{d}\mu = \int_{X} \left(2g - \lim_{n \to \infty} |f - f_{n}| \right) \mathrm{d}\mu$$

$$= \int_{X} \liminf(2g - |f - f_{n}|) \, \mathrm{d}\mu$$

$$\leq \lim \int_{X} \int_{X} (2g - |f - f_{n}|) \, \mathrm{d}\mu$$
By Fatou's Lemma
$$= \int_{X} 2g + \liminf \left(-\int_{X} |f - f_{n}| \, \mathrm{d}\mu \right)$$

$$= \int_{X} 2g - \limsup \int_{X} |f - f_{n}| \, \mathrm{d}\mu$$

and since $\int_X 2g \, d\mu$ is finite, we subtract and $\limsup \int_X |f - f_n| \, d\mu \le 0$.

Ex. 1.4.6 Consider $\lim_{n\to\infty}\int_0^n e^{-nx} dx$. Define

$$f_n(x) = \begin{cases} e^{-nx} & \text{if } x \le n \\ 0 & \text{if } x > n \end{cases}$$

Note that $f_n(x) \le g(x) = e^{-x}$ and $\int_0^\infty e^{-x} dx < \infty$. Thus

$$\lim_{n \to \infty} \int_0^n e^{-nx} dx = \int_{[0,\infty)} \lim_{n \to \infty} f_n(x) dx$$
$$= \int_{[0,\infty)]} \chi_{\{0\}} dx$$
$$= 0$$

Rmk. 1.4.7 For the Riemann integral, we have $\int \lim f_n = \lim \int f_n$ as long as the convergence of f_n is uniform.

Chapter 2

The Lebesgue measure

2.1 The Vector Space $L^1(\mu)$

2.1.1 Almost Everywhere

Let (X, \mathcal{M}, μ) be a measure space.

Def'n. 2.1.1 Let $E \in \mathcal{M}$. We say that property P holds almost everywhere in E if there exists $N \in \mathcal{M}$ such that $\mu(N) = 0$, $N \subset E$, and P holds in $E \setminus N$.

Ex. 2.1.2 Two functions $f,g:X\to\mathbb{C}$ are equal almost everywhere if $\exists N\subset X$ such that $\mu(N)$ and f(x)=g(x) on $X\setminus N$.

Prop. 2.1.3 Let $E \subset X$ be such that $A_1, A_2, B_1, B_2 \in \mathcal{M}$ for which $\int_X f d\mu = \int_X g d\mu$. Then $A_1 \subset E \subset B_1$, $A_2 \subset E \subset B_2$, and $\mu(B_1 \setminus A_1) = 0$ and $\mu(B_2 \setminus A_2) = 0$. Then $\mu(A_1) = \mu(A_2)$.

Proof Note that $A_1 \setminus A_2 \subset E \setminus A_2 \subset B_2 \setminus A_2$. As well, $\mu(A_1 \setminus A_2) \leq \mu(B_2 \setminus A_2) = 0$. Then

$$\mu(A_1) = \mu(A_1 \cap A_2^c) + \mu(A_1 \cap A_2) = \mu(A_1 \setminus A_2) + \mu(A_1 \cap A_2) = \mu(A_1 \cap A_2)$$

$$\mu(A_2) = \mu(A_2 \cap A_1^c) + \mu(A_2 \cap A_1) = \mu(A_2 \setminus A_1) + \mu(A_2 \cap A_1) = \mu(A_1 \cap A_2)$$

Prop. 2.1.4 Let (X, \mathcal{M}, μ) be a measure space. Let

$$\mathcal{M}^* = \{ E \subset X : \exists A, B \in \mathcal{M}, A \subset E \subset B, \mu(B \setminus A) = 0 \}$$

Then \mathcal{M}^* is a σ -algebra, and $\mu^*: \mathcal{M}^* \to [0, +\infty]$ defined by $\mu^*(E) = \mu(A)$.

PROOF We show that \mathcal{M}^* is a σ -algebra, and μ is countably additive.

- 1. $X \in \mathcal{M}$ so $X \in \mathcal{M}^*$.
- 2. If $E \in \mathcal{M}^*$, get $A \subset E \subset B$ so $B^c \subset E^c \subset A^c$, A^c , $B^c \in \mathcal{M}$. As well, $\mu(A^c \setminus B^c) = \mu(A^c \cap B) = \mu(B \setminus A) = 0$, so $E^c \in \mathcal{M}^*$.
- 3. If $E_i \in \mathcal{M}^*$ is a countable collection, then get $A_i \subset E_i \subset B_i$. Fix $A = \bigcup A_i$ and $B = \bigcup B_i$. Then $B \setminus A = \bigcup (B_i \setminus A) \subset U(B_i \subset A_i)$ so $\mu(B \setminus A) = 0$ and $A \subset \bigcup E_i \subset B$ so $\bigcup E_i \in \mathcal{M}^*$.
- 4. Let E_i be disjoint, $E = \bigcup E_i$, and $E_i \in \mathcal{M}^*$. Get $A_i \subset E_i \subset B_i$. Then $\mu^*(\bigcup E_i) = \mu(\bigcup A_i) = \sum \mu(A_i) = \sum \mu(E_i)$.

Def'n. 2.1.5 We call the space $(X, \mathcal{M}^*, \mu^*)$ the **completion** of (X, \mathcal{M}, μ) .

In particular, every subset of a set with measure 0 is measurable.

2.1.2 $L^1(\mu)$ as a normed space

Prop. 2.1.6 1. Let $f: X \to [0, +\infty)$ be measurable, $E \in \mathcal{M}$. If $\int_E f d\mu = 0$, then f = 0 almost everywhere in E.

2. Let $f \in L^1(\mu)$. If $\int_E f d\mu = 0$ for all $E \in \mathcal{M}$, then f = 0 almost everywhere in X.

PROOF 1. Let $A_n = \{x \in E : f(x) > 1/n\}$, so that

$$\frac{1}{n}\mu(A_n) \le \int_{A_n} \mathrm{d}\mu \le \int_E f \, \mathrm{d}\mu = 0 \Longrightarrow \mu(A_n) = 0$$

for all n. But then

$$N = \{x \in E : f(x) > 0\} = \bigcup_{n=1}^{\infty} A_n \to \mu(N) \le \sum \mu(A_n) = 0$$

2. Write f = u + iv so that

$$\int_{E} f \, \mathrm{d}\mu = \int_{E} u^{+} \, \mathrm{d}\mu - \int_{E} u^{-} \, \mathrm{d}\mu + i \int_{E} v^{+} \, \mathrm{d}\mu - i \int_{E} v^{-} \, \mathrm{d}\mu$$

We show that $u^+ = 0$ almost everywhere (the other terms are identical). Let $E = \{x \in X : u(x) \ge 0\}$, so $\int_E f \, d\mu = 0$, so its real part is zero and $\int_E u^+ \, d\mu = 0$. Thus $u^+ = 0$ almost everywhere in E. The result follows.

Def'n. 2.1.7 A normed space over \mathbb{R} is a vector space V over \mathbb{R} with a map $\|\cdot\|: V \to \mathbb{R}$ such that

- (i) $x \in V \Rightarrow ||x|| \ge 0$ and ||x|| = 0 if and only if x = 0.
- (ii) $||\lambda x|| \le |\lambda| ||x||$ for all $\lambda \in \mathbb{R}$ and $x \in V$
- (iii) $||x + y|| \le ||x|| + ||y||$ for all $x, y \in V$.

Now $L^1(\mu) = \{f : X \to \mathbb{C} \text{ measurable and } \int_X |f| d\mu < \infty \}$. We certainly have that $L^1(\mu)$ is a vector space. We wish to define $||f|| = \int_X |f| d\mu$. The only problem is that

$$\int_{X} |f| d\mu = 0 \Longrightarrow f = 0 \text{ almost everywhere}$$

To deal with this problem, we quotient our space by the equivalence relation $f \sim g$ if and only if f = g almost everywhere. With this in mind, define $V = L^1(\mu)/\sim$ denote the set of equivalence classes. We need to define $+,\cdot,\|\cdot\|$ on V. Let [f] denote the class of f. Then

$$[f] + [g] = [f + g]$$

$$c[f] = [cf]$$

$$||[f]|| = \int_X |f| d\mu$$

Let's verify that this is well defined: if $f_1 \sim f_2$ and $g_1 \sim g_2$, then $f_1 + g_1 \sim f_2 + g_2$. Indeed, this is true since the sums are equal except perhaps on a union of measure zero sets, so equality holds almost everywhere. The second definition is obviously well defined. Finally, by a homework assignment, $\|[f]\|$ is also well defined. Now, let's verify the properties of the norm.

- (i) Certainly $||[f]|| \ge 0$, and ||[f]|| = 0 implies f = 0 almost everywhere, so [f] = [0] = 0.
- (ii) We have $\|\lambda \cdot [f]\| = \int_X |\lambda f| d\mu = |\lambda| \int_X |f| d\mu = |\lambda| \|[f]\|$
- (iii) We have $||[f] + [g]|| = \int_X |f + g| d\mu \le \int_X |f| + \int_X |g| = ||[f]|| + ||[g]||$

In $L^1(\mu)$, two functions are the same if they are equal almost everywhere. However, this can be a challenge: if $f \in L^1(\mu)$ and $x_0 \in X$, then $f(x_0)$ is not well defined. For example, it is challenging to give meaning to boundary conditions of functions.

2.1.3 Construction of the Lebesgue measure

We begin from the Riemann integral $\int_a^b f(x) dx$ for a continuous function f. Define supp $f = \overline{\{x \in \mathbb{R} : f(x) \neq 0\}}$. For continuous functions with compact (bounded) support, define $\Lambda f = \int_{\mathbb{R} f(x) dx}$ is the Riemann integral, which is a functional. In particular,

 $measure((a,b)) = length((a,b)) = sup{\Lambda f : f \text{ is continuous, compact support, } 0 \le f \le 1, supp f \subset (a,b)}$

We will extend this to a σ -algebra containing the Borel sets. In order to define these, for open sets, $\mu(G) = \sup\{\Lambda f : 0 \le f \le 1, \sup f \subset G\}$, where Λ is the Riemann integral. For an arbitrary set, $\mu(E) = \inf\{\mu(G) : E \subset G \in \tau\}$. However, this "measure" is not countably additive: the σ -algebra $\mathcal{P}(X)$ is too large (Vitali's construction). Instead, we will define $\mathcal{M} = \{E \subset X : E \text{ is locally regular}\}$, which means that $E \cap K$ is regular for any K compact, and regular means that the outer measure and inner measure are equal. The outer measure is $\sup\{\mu(K) : K \subset E \text{ compact}\} = \mu(E)$.

2.2 The Riesz Representation Theorem

In this section, we assume that (X, τ) be a locally compact, Hausdorff topological space.

Def'n. 2.2.1 We denote the space of continuous functions with compact support by $C_c(X) = \{f : X \to \mathbb{C} \mid f \in C(X), \text{supp } f \text{ is compact} \}.$

Def'n. 2.2.2 *Let* $\Lambda : C_c(X) \to \mathbb{C}$ *be a linear functional, i.e.* $\Lambda(cf + g) = c\Lambda f + \Lambda g$. Λ *is called a positive linear functional if* $f \ge 0 \Rightarrow \Lambda f \ge 0$.

Def'n. 2.2.3 We say that K < f if K is compact and $f \in C_c(X)$, $0 \le f \le 1$ implies that $x \in K \Rightarrow f(x) = 1$. We say that f < G if G is open, $f \in C_c(X)$, $0 \le f \le 1$, and $\operatorname{supp} f \subset G$.

Lemma 2.2.4 (Urysohn) *Let* $G \in \tau$, $K \subset G$ *compact. Then there exists* $f \in C_c(X)$ *such that* K < f < G.

Proof Will do later. It's pretty fun - it's a construction using the Dyadic rationals.

Lemma 2.2.5 (Partition of Unity) Let $G_1, G_2, ..., G_n \in \tau$, an let $K \subset G_1 \cup \cdots \cup G_n$ be compact. Then there are functions $h_i \in C_c(X)$ such that $h_i < G_i$ and $K < \sum h_i$.

Proof Also will do later.

How can we create a positive linear functional on $C_c(X)$? If μ is a measure, and functions on $C_c(X)$ are measurable, then $\Lambda f = \int_X f \, d\mu$ is a positive linear functional. The representation theorem says that there are no other examples.

Thm. 2.2.6 (Riesz Representation) Let (X, τ) be as above. If $\Lambda : C_c(X) \to \mathbb{C}$ is a positive linear functional, then there exists a unique measure space (X, \mathcal{M}, μ) such that $\Lambda f = \int_X f \, d\mu$ for any $f \in C_c(X)$, $\mathcal{M} \supset \tau$, and

- (i) $\mu(E) = \inf{\{\mu(G) : E \subset G \text{ open}\}} \text{ for all } E \in \mathcal{M}.$
- (ii) $\mu(E) = \sup \{ \mu(K) : K \subset E \text{ compact} \} \text{ for all } E \in \mathcal{M} \text{ with } \mu(E) < \infty.$
- (iii) $\mu(K) < \infty$ for any K compact.
- (iv) M is complete.

First, let's get some definitions out of the way. Fix the notation as above.

Def'n. 2.2.7 *Fix a Borel measure* μ . *The* **Lebesgue outer measure** *is defined* $\mu(E) = \inf{\{\mu(G) : E \subset G \text{ open}\}}$.

Def'n. 2.2.8 We say that $E \subset X$ is **regular** if $\mu(E) = \sup\{\mu(K) : K \subset E \text{ compact}\}$. Similarly, $E \subset X$ is **locally regular** if there exists a compact K so that $K \cap E$ is regular.

Proof For an open set $G \in \tau$, let $\mu(G) = \sup\{\Lambda f : f < G\}$. Then $\mu(\emptyset) = 0$ and $G_1 \subset G_2$ implies that $\mu(G_1) \le \mu(G_2)$. Then extend μ to arbitrary $E \subset X$ as an outer measure.

Now let $\mathcal{M} = \{E \subset X : E \text{ is locally regular}\}$. Let's first see that \mathcal{M} satisfies the desired properties. We first see that \mathcal{M} is complete. Let $E \in \mathcal{M}$, $\mu(E) = 0$ and $A \subset E$. We want to show that $A \in \mathcal{M}$. Let K be compact, and consider $K \cap A$ so that $\mu(K \cap A) = 0$. Then if $F \subset K \cap A$ is compact, $\mu(F) = 0$ implies $\sup\{\mu(F) : F \subset K \cap A \text{ compact}\} = 0$.

Claim 1: μ is σ -subadditive.

PROOF If $\mu(E_j) = \infty$ for some j, then we are done. Thus assume $\mu(E_j) < \infty$ for all j. Let $\epsilon > 0$, $\gamma < \mu\left(\bigcup_{j=1}^{\infty} E_j\right)$ be arbitrary. Let $G_j \supset E_j$ be open, such that $\mu(G_j) \le \mu(E_j) + \frac{\epsilon}{2^j}$. Then

$$j < \mu \left(\bigcup_{j=1}^{\infty} E_j \right) \le \mu \left(\bigcup_{j=1}^{\infty} G_j \right)$$

so there exists some $f < \bigcup_{j=1}^{\infty} G_j$ so $j < \Lambda f$. Let $K = \operatorname{supp} f$ and $K \subset \bigcup_{j=1}^{\infty} G_j$ and by compactness

there exists some n so $K \subset \bigcup_{j=1}^{n} G_j$. Apply our partition of unity and get some $h_j < G_j$ for each

$$j = 1, ..., n$$
 such that if $x \in K$, then $\sum_{j=1}^{n} h_j(x) = 1$. Then $f \cdot h_j < G_j$ so $f = f \cdot \sum_{j=1}^{n} h_j$.

Thus

$$\gamma < \Lambda f = \Lambda \left(\sum_{j=1}^{n} f h_{j} \right) = \sum_{j=1}^{n} \Lambda (f h_{j})$$

$$\leq \sum_{j=1}^{n} \mu(G_{j}) \leq \sum_{j=1}^{n} \left(\mu(E_{j}) + \frac{\epsilon}{2^{j}} \right)$$

$$\leq \sum_{j=1}^{\infty} \left(\mu(E_{j}) \right) + \epsilon$$

which holds for all $\epsilon > 0$ if and only if

$$\gamma \le \sum_{j=1}^{\infty} \mu(E_j)$$

for all $\gamma \leq \mu \left(\bigcup_{j=1}^{\infty} E_j \right)$ and the result follows.

Claim 2: If K < f < G, then $\mu(K) \le \Lambda f \le \mu(G)$. Thus if K is compact, $\mu(K) = \inf\{\Lambda f : K < f\}$, so $\mu(K) < \infty$.

PROOF It is obvoius that $\Lambda f \leq \mu(G)$. Thus let $\gamma < \mu(K)$ and $\alpha \in (0,1)$. Let $V_{\alpha} := \{x \in X : f(x) > \alpha\}$ and $K \subset V_{\alpha}$. Now $\gamma < \mu(K) \leq \mu(V_{\alpha})$, so we have some $h < V_{\alpha}$ such that $\gamma < \Lambda h$. Then $\alpha \cdot h \leq f$ since in V_{α} , $\alpha \cdot h \leq \alpha < f$ and in V_{α}^{c} , $\alpha \cdot h = 0 \leq f$. Now $\alpha \cdot \Lambda h = \Lambda(\alpha h) \leq \Lambda f$ so $\gamma < \Lambda f/\alpha$. This is true for all $\alpha \in (0,1)$ and $\gamma \leq \Lambda f$. Since this holds for all $\gamma < \mu(K)$, we have $\mu(K) \leq \Lambda f$ as required.

Now, let K be compact. Since $\mu(K) \le \Lambda f$ for all K < f. Let $\epsilon > 0$, so we have $G \in \tau$, $G \supset K$ such that $\mu(G) \le \mu(K) + \epsilon$. Then by Urysohn's lemma, get some f so that $\mu(K) \le \Lambda f \le \mu(G)$, so $\Lambda f \le \mu(K) + \epsilon$ and the result holds.

Claim 3: If $0 \le f \le 1$, then $\Lambda f \le \mu(\text{supp } f)$.

Proof Let $G \supset \operatorname{supp} f$ be open, so f < G and $\mu(G) \ge \Lambda f$. Then $\mu(\operatorname{supp} f) = \inf\{\mu(G) : E \subset G \in \tau\} \ge \Lambda f$.

Claim 4: If $G \in \tau$, then G is regular.

PROOF We must show $\mu(G) = \sup\{\mu(K) : K \subset E \text{ compact}\}\$. Take $\gamma < \mu(G)$. We know that $\sup\{\mu(K) : K \subset G \text{ compact}\} \le \mu(G)$, so we prove the \ge case. We need K compact so that $\mu(K) > \gamma$. Let f < G be such that $\Lambda f > \gamma$. Then $\mu(\text{supp } f) > \gamma$ is compact, as desired. \square

Claim 5: If
$$E_i$$
 are disjoint regular, then $\mu\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} \mu(E_i)$.

PROOF We first prove this for two compact sets. Thus let K_1 , K_2 be disjoint compact sets. Then K_2^c is open and $K_2^c \supset K_1$. By Urysohn's lemma, get $f \in C_c(X)$ so that $K_1 < f < K_2^c$ and $x \in K_1$ implies f(x) = 1, and $x \in K_2$ implies f(x) = 0. Since $K_1 \cup K_2$ is compact, for all $\epsilon > 0$,

get $g < K_1 \cup K_2$ such that $\mu(K_1 \cup K_2) + \epsilon > \Lambda g$. Note that $K_1 < f \cdot g$ and $K_2 < (1 - f) \cdot g$. Thus $\mu(K_1) + \mu(K_2) \le \Lambda(f \cdot g) + \Lambda((1 - f) \cdot g = \Lambda g < \mu(K_1 \cup K_2) + \epsilon$ which is true for any $\epsilon > 0$. Thus $\mu(K_1) + \mu(K_2) \le \mu(K_1 \cup K_2) \le \mu(K_1) + \mu(K_2)$ as required.

We now prove that $\mu(\cup E_i) \ge \sum \mu(E_i)$. If $\mu(\cup E_i) = +\infty$, we are done, so assume $\mu(\cup E_i) < +\infty$. If the E_i are regular, then there is a compact set $H_i \subset E_i$ so that

$$\mu(H_i) > \mu(E_i) - \frac{\epsilon}{2^i}$$

Let $K_n = \bigcup_{i=1}^n H_i$. Now

$$\mu\left(\bigcup_{i=1}^{\infty} E_i\right) \ge \mu(K_n)$$

$$= \sum_{i=1}^{n} \mu(H_i)$$

$$> \sum_{i=1}^{n} \mu(E_i) - \epsilon$$

As well, this holds for any $\epsilon > 0$ and $n \in \mathbb{N}$, so we are done.

Claim 6: If the E_i are regular, then $\bigcup_{i=1}^{\infty} E_i$ is regular when $\mu(\cup E_i) < \infty$.

Proof We have

$$\mu\left(\bigcup_{i=1}^{\infty} E_i\right) \le \sum_{i=1}^{N} \mu(E_i) + \epsilon$$
$$\le \mu(K_N) + 2\epsilon$$

Thus for any $\epsilon > 0$, get N so that

$$\mu\left(\bigcup_{i=1}^{\infty} E_i\right) - 2\epsilon \le \mu(K_n)$$

so $\cup E_i$ is regular.

Claim 6(?): E is regular and $\mu(E) < \infty$ if and only if for any $\epsilon > 0$, there exists K compact, G open so that $K \subset E \subset G$ and $\mu(G \setminus K) < \epsilon$.

Proof There exists by regularity (and the definition of the outer measure) *K*, *G* so that

$$\mu(E) - \frac{\epsilon}{2} \le \mu(K) \le \mu(G) \le \mu(E) + \epsilon/2$$

As well, $\mu(G) = \mu(K \cup (G \setminus K)) = \mu(K) + \mu(G \setminus K)$ and $\mu(G \setminus K) = \mu(G) - \mu(K) < \epsilon$. Conversely, let $K \subset E \subset G$ and $\mu(G \setminus K) < \epsilon$. Then

$$\mu(E) \le \mu(G) = \mu(K) + \mu(G \setminus K) < \mu(K) + \epsilon$$

so $\mu(E) < \infty$ and $\mu(E) = \sup \{ \mu(K) : K \subset E \text{ compact} \}$, and E is regular.

Claim 7:

- 1. Let A, B be regular with $\mu(A), \mu(B) < \infty$. Then $A \setminus B$, $A \cup B$, $A \cap B$ are regular and have finite measure.
- 2. If E is regular and $\mu(E) < \infty$, then E is locally regular.
- 3. If E_i are regular, then $\bigcup_{i=1}^{\infty} E_i$ is regular.

PROOF Recall that for any $\epsilon > 0$, there exists $K_1 \subset A \subset G_1$ and $K_2 \subset B \subset G_2$ such that $\mu(G_1 \setminus K_1) < \epsilon$ and $\mu(G_2 \setminus K_2) < \epsilon$.

- 1. Note that $A \setminus B \subset G_1 \setminus K_2 \subset (G_1 \setminus K_1) \cup (K_1 \setminus G_2) \cup (G_2 \setminus K_2)$, where $K_1 \setminus G_2$ is compact. Thus $\mu(A \setminus B) \leq \epsilon + \mu(K_1 \setminus G_1) + \epsilon < \infty$ and $\mu(A \setminus B) 2\epsilon \leq \mu(K_1 \setminus G_2)$ so $A \setminus B$ is regular. Finally since $A \cup B = (A \setminus B) \cup B$, $A \cup B$ is regular and $\mu(A \cup B) < \infty$. Thus $A \cap B = (A \cup B) \setminus ((A \setminus B) \cup (B \setminus A))$ is regular and has measure less than infinity.
- 2. Let *E* be regular, $\mu(E) < \infty$, and *K* be a compact set. Then $\mu(K) < \infty$, *K* is regular, $E \cap K$ is regular and *E* is locally regular.
- 3. Set $F_1 = E_1$, $F_n = E_n \setminus \left(\bigcup_{i=1}^{n-1} E_i\right)$ so $\bigcup_{i=1}^{\infty} F_i = \bigcup_{i=1}^{\infty} E_i$ and the F_i as disjoint. By Claim 5, $\cup F_i$ is regular and F_i are regular.

Claim 8: If E is locally regular and $\mu(E) < \infty$, then E is regular.

PROOF Let $\epsilon > 0$ and $G \supset E$ be open so that $\mu(G) < \mu(E) + 1 < \infty$. As well, G is regular, so there exists K with $\mu(G) < \mu(K) + \epsilon/2$. Now,

$$\mu(E) = \mu((E \setminus K) \cup (E \cap K)) \le \mu(E \setminus K) + \mu(E \cap K)$$

$$\le \mu(G \setminus K) + \mu(E \cap K)$$

$$< \frac{\epsilon}{2} + \mu(E \cap K)$$

so $\mu(E \cap K) > \mu(E) - \epsilon/2$. Then since *E* is locally regular, $E \cap K$ is regular and get a compact set $L \subset E \cap K$ such that $\mu(L) > \mu(E \cap K) - \epsilon/2 > \mu(E) - \epsilon$. Thus *E* is regular.

Claim 9: \mathcal{M} is a σ -algebra, $M \subset \tau$, and μ is countably additive on \mathcal{M} .

PROOF Let $A \in \mathcal{M}$: we see that $A^c \in \mathcal{M}$. For any K compact, $A \cap K$ is regular. Let K be compact and take $A^c \cap K = K \setminus (A \cap K)$ is regular by Claim 7.

Now let $A_n \in \mathcal{M}$: we see that $A := \bigcup_{n=1}^{\infty} A_n \in \mathcal{M}$. Let K be an arbitrary compact set, so

$$A \cap K = \bigcup_{n=1}^{\infty} (A_n \cap K)$$

is regular by Claim 7.

We now show $\mathcal{M} \supset \tau$. It suffices by closure under complement that all the closed sets are in \mathcal{M} . If A is closed, then $A \cap K$ is compact and thus regular, so $A \in \mathcal{M}$.

Finally, let $E_i \in \mathcal{M}$ be disjoint: we see that $\mu\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} \mu(E_i)$. It suffices to show \geq . If $\mu(E_i) = +\infty$, we are done, so assume $\mu(E_i) < \infty$ for all i. But then by Claim 8, E_i are regular, and the result holds by Claim 5.

Claim 10: $\Lambda f = \int_X f \, d\mu$ for all $f \in C_c(X)$.

Proof It suffices to prove this for real valued functions. If f = u + iv, then $\Lambda f = \Lambda u + i\Lambda v = \int_X u \, \mathrm{d}\mu + i \int_X v \, \mathrm{d}\mu = \int_X f \, \mathrm{d}\mu$. Furthermore, it suffices to show $\Lambda f \leq \int_X f \, \mathrm{d}\mu$ since $\Lambda(-f) \leq \int_X -f \, \mathrm{d}\mu$ so that $-\Lambda f \leq -\int_X f \, \mathrm{d}\mu$ and $\Lambda f \geq \int_X f \, \mathrm{d}\mu$, implying equality.

As well, it is enough to prove that $\Lambda \leq \int f$ for $f \geq 0$. Let $K = \operatorname{supp} f$ be compact, and $a = \min f$, $b = \max f$. Let $\epsilon > 0$ be arbitrary. For every K, there exists $G \supset K$ so that $\mu(G) \leq \mu(K) + \epsilon$. Then by Urysohn's lemma, there exists $h \in C_c(X)$ so that K < g < G. Thus $|a| \cdot h(x) = |a|$ for all $x \in K$, so $F = f + |a|h \geq 0$ since $f \geq -|a|$. Now

$$\Lambda f \le \int_X F \, \mathrm{d}\mu = \int_X f + |a| \int_X h$$

so $\Lambda f \leq \int_X f + |a| (\int_X h - \Lambda g)$. As well, by Claim 2,

$$\mu(K) \le \Lambda h \le \mu(G)$$

so that

$$\int_X \chi_K \le \int_X h \, \mathrm{d}\mu] \le \int_X \chi_G = \mu(G)$$

and $|\Lambda h - \int h| < \epsilon$. Thus $\Lambda f \le \int f + |a|\epsilon$ for all $\epsilon > 0$, so $\Lambda f \le \int f$.

It now remains to show $\Lambda f \leq \int_X f \, \mathrm{d} \mu$ for $f \geq 0$. Since f = Mf/M where $M = \max f$, we can assume $0 \leq f \leq 1$. Fix $K = \mathrm{supp} f$, let $\epsilon > 0$ be arbitrary. Let $0 = c_0 < c_1 < c_2 < \cdots < c_n = 1$ with $c_k - c_{k-1} < \epsilon$ for all k and $\mu(f^{-1}(c_k)) = 0$ for all $k = 1, \ldots, n-1$. The existence of such a set follows from Assignment 6. Let $K_j = K \cap f^{-1}([c_{j-1}, c_j])$ for $j = 1, 2, \ldots, n$ and $L_j = K \cap f^{-1}([c_{j-1}, c_j])$ for $j = 1, 2, \ldots, n-1$. To K_j and ϵ , there exists $G_j \supset K_j$ such that $\mu(G_j) \leq \mu(K_j) + \frac{\epsilon}{2^j}$. By Urysohn's lemma, get h_j so that $K_h < h_j < G_j$, so $f \leq \sum_{j=1}^n c_j h_j$ since for $x \notin \mathrm{supp} f = K$, f = 0, and otherwise, there exists j so that $x \in K_j$ implies $h_j = 1$ and $f(x) \leq c_j = c_j h_j(x) \leq \sum c_i h_i$. Then

$$\Lambda f \leq \Lambda(\sum c_{j}h_{j}) = \sum_{i=1}^{n} c_{j}\Lambda h_{j}$$

$$\leq \sum_{j=1}^{n} c_{j}\mu(G_{j})$$

$$\leq \sum_{j=1}^{n} c_{j}\mu(K_{j}) + \sum c_{j}\frac{\epsilon}{2^{j}}$$

$$\leq \sum_{j=1}^{n} (c_{j-1} + c_{j} - c_{j-1})\mu(L_{j}) + \epsilon$$

$$\leq \sum_{j=1}^{n} c_{j-1}\mu(L_{j}) + \epsilon \cdot \mu(K) + \epsilon$$

where *g* is a simple function such that $g(x) = c_{j-1}$ if $x \in L_j$ and $g \le f$. Then

$$= \int_{X} g \, \mathrm{d}\mu + \epsilon (1 + \mu(K))$$

$$\leq \int_{X} f \, \mathrm{d}\mu + \epsilon (1 + \mu(K))$$

for any $\epsilon > 0$, and we are done!

2.3 Regularity Properties of Borel Measures

We have the Riesz representation theorem in a locally compact Hausdorff space. Our aim is to intruduce the Lebesgue measure in \mathbb{R}^k which respects translation as well.

Def'n. 2.3.1 A measure defined on the family of Borel sets is called a **Borel measure**.

Def'n. 2.3.2 Let $\mu: \mathcal{B} \to [0, +\infty]$ be a Borel measure.

- 1. *E* is called **outer regular** if $\mu(E) = \inf{\{\mu(G) : E \subset G \in \tau\}}$.
- 2. *E* is called **inner regular** if $\mu(E) = \sup{\{\mu(K) : K \subset E, K \text{ compact}\}}$
- 3. μ is called **regular** if every $E \in \mathcal{B}$ is inner and outer regular.

Def'n. 2.3.3 A set $E \subset X$ is called σ -compact if $E = \bigcup_{n=1}^{\infty} E_n$, for E_n compact.

Def'n. 2.3.4 A G_{δ} set is one of the form $\bigcap_{n=1}^{\infty} A_n$ with A_n open, and a F_{σ} set is one of the form $\bigcup_{n=1}^{\infty} B_n$ for B_n closed.

Thm. 2.3.5 Let X be a locally compact, σ -compact Hausdorff space. Let $\mathcal{M} \supset \mathcal{B}$ be a σ -algebra, $\mu : \mathcal{M} \to [0, +\infty]$ be a measure such that

- (i) $\mu(E) = \inf{\{\mu(G) : E \subset G \in \tau\}}$
- (ii) $\mu(E) = \sup{\{\mu(K) : K \subset E \text{ compact}\}, \mu(E) < \infty}$
- (iii) $\mu(K) < \infty$ for K compact.

Then

- 1. For all $E \in \mathcal{M}$ and $\epsilon > 0$, there exists F closed and G open so that $F \subset E \subset G$ and $\mu(G \setminus F) < \infty$.
- 2. µ is regular
- 3. For all $E \in \mathcal{M}$, there exists a F_{σ} set A and a G_{δ} set B so $A \subset E \subset B$ and $\mu(B \setminus A) = 0$.

Proof Since *X* is σ -compact, $X = \bigcup_{n=1}^{\infty} K_n$, K_n compact.

1. By (iii), we have $\mu(K_n \cap E) < \infty$. Thus by (i), get G_n open so that $G_n \supset K_n \cap E$ with $\mu(G_n \setminus (K_n \cap E)) < \frac{\epsilon}{2^{n+1}}$. Let $G = \bigcup_{n=1}^{\infty} G_n$ be open, so that $G \setminus E \subset \bigcup (G_n \setminus (K_n \cap E))$ and $\mu(G \setminus U) < \frac{\epsilon}{2}$. Repeat this for E^c : get an open set H such that $\mu(H \setminus E^c) < \frac{\epsilon}{2}$. Then $F = H^c E$ satisfies $\mu(E \setminus F) = \mu(F^c \setminus E^c) = \mu(H \setminus E^c) < \frac{\epsilon}{2}$. Then $\mu(G \setminus F) \leq \mu(G \setminus E) + \mu(E \setminus F) < \epsilon$. Then $\mu(G \setminus F) \leq \mu(G \setminus E) + \mu(E \setminus F) < \epsilon$.

- 2. E is outer regular by (i). If $\mu < \infty$, then E is inner regular by (ii). If $\mu(E) = \infty$, let $F \subset E$ be given by 1. Then $\mu(F) = +\infty$, or $\mu(E)$ would be finite. Let $H_n = \bigcup_{k=1}^n (F \cap K_k)$ compact, $H_n \subset F$. Then $\bigcup_{n=1}^\infty H_n = F$, and $\mu(H_n) \to \mu(F) = \infty$. Thus $\mu(E) = \sup\{\mu(K) : K \subset E \text{ compact}\}$.
- 3. Apply 1 wih $\epsilon = 1/j$ for $j \in \mathbb{N}$. Then there exists $F_j \subset E \subset G_j$ so $\mu(G_j \setminus F_j) < \frac{1}{j}$. Let $A = \bigcup_{j=1}^{\infty} F_j$ and $B = \bigcap_{j=1}^{\infty} G_j$. Then $A \subset E \subset B$ and $\mu(B \setminus A) \leq \mu(G_j \setminus F_j) < \frac{1}{j}$, so $\mu(B \setminus A) = 0$. \square

Thm. 2.3.6 Let X be locally compact and Hausdorff, and assume that every open set is σ -compact. Let $\lambda: \mathcal{B} \to [0,\infty]$ be a Borel measure such that $\lambda(K) < \infty$. Then λ is regular.

PROOF Let $\Lambda f = \int_X f \, d\lambda$. Then $\Lambda : C_c(X) \to \mathbb{C}$ is a positive linear functional. By the Riesz representation theorem, there exists $\mu : \mathcal{M} \to [0, \infty]$ such that $\int_X f \, d\mu = \Lambda f = \int_X f \, d\lambda$. We see that $\lambda = \mu$ on \mathcal{B} . We first prove this for open sets. Let $G \in \tau$; then there exists K_n so $G = \bigcup_{n=1}^{\infty} K_n$. By Urysohn's lemma, there exists f_i such that $K_i < f_i < G$. Let $g_n = \max\{f_1, f_2, \dots, f_n\}$, so $g_n \in C_c(X)$, and $g_n \to \chi_G$ pointwise. But then

$$\lambda(G) = \int_{X} \chi_{G} d\lambda$$

$$= \int_{X} \lim_{n \to \infty} g_{n} d\lambda$$

$$= \lim_{n \to \infty} \int_{X} g_{n} d\lambda$$

$$= \lim_{n \to \infty} \int_{X} g_{n} d\mu$$

$$= \int_{X} \lim_{n \to \infty} g_{n} d\mu$$

$$= \int_{X} \chi_{G} d\mu$$

$$= \mu(G)$$

Now for any $E \in \mathcal{B}$, apply (i). Then $F \subset E \subset G$, $\mu(G \setminus F) < \epsilon$. Since $G \setminus F$ is open, $\lambda(G \setminus F) = \mu(G \setminus F) < \epsilon$ so $\lambda(G) \le \lambda(E) + \epsilon$. Thus $|\mu(E) - \lambda(E)| < \epsilon$ for all $\epsilon > 0$ so $\lambda(E) = \mu(E)$.