Bandits 2

Chen-Yu Wei

The Full-Information MAB

Given: set of actions $\mathcal{A} = \{1, ..., A\}$

For time t = 1, 2, ..., T:

Environment decides the reward of all actions $R_t(1)$, $R_t(2)$, ..., $R_t(A)$ without revealing

The learner chooses an action a_t

Environment reveals the noisy reward $r_t(a) = R_t(a) + w_t(a)$ of all actions

Regret =
$$\max_{a} \sum_{t=1}^{T} R_t(a) - \sum_{t=1}^{T} R_t(a_t)$$

 $\sum_{t=1}^{T} \max_{a} R_t(a) \left(\frac{1}{h} \right)$

KL-Regularized Policy Updates

$$\widehat{A}_{t} \sim 7t \rightarrow r_{t} = \begin{pmatrix} r_{t(1)} \\ \vdots \\ r_{t(A)} \end{pmatrix}$$

$$\pi_{t+1} = \underset{\pi \in \Delta(\mathcal{A})}{\operatorname{argmax}} \left\{ \langle \pi - \pi_t, r_t \rangle - \frac{1}{\eta} \operatorname{KL}(\pi, \pi_t) \right\}$$

$$= \underset{\pi \in \Delta(\mathcal{A})}{\operatorname{argmax}} \left\{ \sum_{a} (\pi(a) - \pi_t(a)) r_t(a) - \frac{1}{\eta} \sum_{a} \pi(a) \log \frac{\pi(a)}{\pi_t(a)} \right\}$$

$$(7, \ell_t)$$

The Improvement of π over π_t

Distance between π and π_t

Why regularize the update?

THE KL (T.T.)

KL-Regularized Policy Updates

Maintaining stability for stochastic or adversarial environments

Time	1	2	3	4	5	6	
$R_t(1)$	0.5	0	1	(0)	1	0	
$R_t(2)$	0	1	(0)	1	0	1	

Follow the leader:
$$a_t = \max_{a \in \mathcal{A}} \left\{ \sum_{i=1}^{t-1} r_i(a) \right\}$$

KL-Regularized Policy Updates

Exponential weight updates

$$\pi_{t+1} = \underset{\pi \in \Delta(\mathcal{A})}{\operatorname{argmax}} \left\{ \langle \pi - \pi_t, r_t \rangle - \frac{1}{\eta} \operatorname{KL}(\pi, \pi_t) \right\} \iff \pi_{t+1}(a) = \frac{\pi_t(a) e^{\eta r_t(a)}}{\sum_{b \in \mathcal{A}} \pi_t(b) e^{\eta r_t(b)}}$$

The equivalence is shown in HW0

Regret Bound for Exponential Weight Updates

Theorem.

Assume that $\eta r_t(a) \leq 1$ for all t, a. Then EWU

$$\pi_{t+1} = \operatorname*{argmax}_{\pi \in \Delta(\mathcal{A})} \left\{ \langle \pi - \pi_t, r_t \rangle - \frac{1}{\eta} \operatorname{KL}(\pi, \pi_t) \right\}$$

ensures for any $a^* \in \mathcal{A}$,

$$\sum_{t=1}^{T} (r_t(a^*) - \langle \pi_t, r_t \rangle) \le \frac{\log A}{\eta} + \eta \sum_{t=1}^{T} \sum_{a=1}^{A} \pi_t(a) r_t(a)^2$$

$$||f||r_t(a)| \le 1 \text{ and } \eta \le 1 \Rightarrow \mathbb{E}\left[\sum_{t=1}^T (R_t(a^*) - R_t(a_t))\right] \le \frac{\log A}{\eta} + \eta T \approx \sqrt[\Lambda]{(\log A)T}$$

Questions and Discussions

How is exponential weight update related to Boltzmann's exploration?

$$\mathcal{T}_{t+1}(\alpha) \propto \overline{\mathcal{T}_{t}(\alpha)} e^{2r_{t}(\alpha)} \propto \mathcal{T}_{t-1}(\alpha) e^{2r_{t-1}(\alpha)} e^{2r_{t}(\alpha)} \cdots \propto e^{2\frac{\tau}{5r_{t}}} r_{5}(\alpha) = e^{2\tau} \cdot \widehat{\mathcal{R}_{t}(\alpha)}$$

$$\mathcal{T}_{t+1}(\alpha) \propto e^{2\tau} e^{2r_{t}(\alpha)} \qquad \qquad \mathcal{T}_{t} = 2\tau$$

$$\mathcal{T}_{t+1}(\alpha) \propto e^{2\tau} e^{2r_{t}(\alpha)}$$

$$\mathcal{T}_{t+1}(\alpha) \propto e^{2\tau} e^{2r_{t}(\alpha)}$$

$$\mathcal{T}_{t+1}(\alpha) \propto e^{2\tau} e^{2r_{t}(\alpha)}$$

Questions and Discussions

- Why do we care about regret against a **fixed** action when the reward function is changing?
 - Environments where reward function is mostly stationary, but occasionally being changed adversarially
 - When we discuss about MDP, we will re-use this theorem but with R_t replaced by the "Q-function" of the policy used by the learner (and the policy of the learner changes over time)
 - This framework is suitable for a lot of other applications: game theory, constrained optimization, boosting, etc.

Exponential Weight Update ∈ Mirror Ascent

General form of Mirror Ascent:

Usually, $r_t = \nabla f_t(x_t)$ for some function f_t that we want to maximize

$$x_{t+1} = \underset{x \in \Omega}{\operatorname{argmax}} \left\{ \langle x - x_t, r_t \rangle - \frac{1}{\eta} D_{\psi}(x, x_t) \right\}$$

Bregman divergence with respect to a convex function ψ

$$D_{\psi}(x, y) = \psi(x) - \psi(y) - \langle \nabla \psi(y), x - y \rangle$$

Exponential Weight Update ∈ Mirror Ascent

Special cases of Mirror Ascent: $x_{t+1} = \operatorname*{argmax}_{x \in \Omega} \left\{ \langle x - x_t, r_t \rangle - \frac{1}{\eta} D_{\psi}(x, x_t) \right\}$

$\psi(x)$	$D_{\psi}(x,y)$	Update Rule	
$\frac{1}{2} \ x\ _2^2$	$\frac{1}{2} \ x - y\ _2^2$	$\begin{aligned} x_{t+1} &= \mathcal{P}_{\Omega}(x_t + \eta r_t) \\ & \text{Gradient ascent} \end{aligned}$	
$\sum_{a} x(a) \log x(a)$ Negative entropy	$\sum_{a} x(a) \log \frac{x(a)}{y(a)}$	$x_{t+1}(a) = \frac{x_t(a)e^{\eta r_t(a)}}{\sum_b x_t(b) e^{\eta r_t(b)}}$ —	(for distributions)
$\sum_{a} \log \frac{1}{x(a)}$	$\sum_{a} \left(\frac{x(a)}{y(a)} - \log \frac{x(a)}{y(a)} - 1 \right)$	$\frac{1}{x_{t+1}(a)} = \frac{1}{x_t(a)} - \eta r_t(a) + \gamma_t$	(for distributions)

Regret Analysis for Exponential Weights

Theorem.

Assume that $\eta r_t(a) \leq 1$ for all t, a. Then EWU

$$\pi_{t+1} = \operatorname*{argmax}_{\pi \in \Delta(\mathcal{A})} \left\{ \langle \pi - \pi_t, r_t \rangle - \frac{1}{\eta} \operatorname{KL}(\pi, \pi_t) \right\}$$

ensures for any $a^* \in \mathcal{A}$,

$$\sum_{t=1}^{T} (r_t(a^*) - \langle \pi_t, r_t \rangle) \leq \frac{\log A}{\eta} + \eta \sum_{t=1}^{T} \sum_{a=1}^{A} \pi_t(a) r_t(a)^2$$

$$\uparrow \chi^* = \left(\int_{0}^{t} \int_{0}^{t} dt \, \int_{0}^{t} \int_{0}^{t} dt \, \int_{0}^{t} \int_{0}^{$$

Regret Analysis for Exponential Weights

Useful Lemma

For fixed π_{ref} and v, define

We will apply this lemma with
$$\pi_{\mathrm{ref}} = \pi_t$$
, $v = \eta r_t$, $\hat{\pi} = \pi_{t+1}$

$$F(\pi) = \langle \pi - \pi_{\text{ref}}, v \rangle - \text{KL}(\pi, \pi_{\text{ref}})$$

and let $\hat{\pi} = \max_{\pi} F(\pi)$

(1)
$$F(\hat{\pi}) \ge F(\pi) + KL(\pi, \hat{\pi})$$
 for any π

(2) If
$$v(a) \le 1$$
 for all a , then $F(\hat{\pi}) \le \langle \pi_{\text{ref}}, v^2 \rangle = \sum_a \pi_{\text{ref}}(a) v(a)^2$

- (1) holds for all Bregman divergence
- (2) is specific to KL divergence (but has counterpart for other divergence)

Regret Analysis for Exponential Weights

$$F(\lambda) = \langle \overline{\lambda} - \overline{\lambda}_{t} | \gamma r_{t} \rangle - K L (\lambda, \overline{\lambda}_{t})$$

$$\overline{\lambda}_{t+1} = \operatorname{argmax} F(\lambda)$$

$$T_{t+1} = \langle \overline{\lambda}_{t+1} - \overline{\lambda}_{t} | \gamma r_{t} \rangle - K L (\overline{\lambda}_{t+1}, \overline{\lambda}_{t})$$

$$F(\overline{\lambda}_{t+1}) = \langle \overline{\lambda}_{t+1} - \overline{\lambda}_{t} | \gamma r_{t} \rangle - K L (\overline{\lambda}_{t+1}, \overline{\lambda}_{t})$$

$$F(\overline{\lambda}_{t+1}) = \langle \overline{\lambda}_{t+1} - \overline{\lambda}_{t} | \gamma r_{t} \rangle - K L (\overline{\lambda}_{t}, \overline{\lambda}_{t}) + K L (\overline{\lambda}_{t}, \overline{\lambda}_{t+1})$$

$$F(\overline{\lambda}_{t+1}) = \langle \overline{\lambda}_{t+1} - \overline{\lambda}_{t} | \gamma r_{t} \rangle - K L (\overline{\lambda}_{t}, \overline{\lambda}_{t+1}) = F(\overline{\lambda}_{t}) + K L (\overline{\lambda}_{t}, \overline{\lambda}_{t+1})$$

$$F(\overline{\lambda}_{t+1}) = \langle \overline{\lambda}_{t+1} - \overline{\lambda}_{t} | \gamma r_{t} \rangle - K L (\overline{\lambda}_{t}, \overline{\lambda}_{t+1}) = F(\overline{\lambda}_{t}) + K L (\overline{\lambda}_{t}, \overline{\lambda}_{t+1})$$

$$F(\overline{\lambda}_{t+1}) = \langle \overline{\lambda}_{t+1} - \overline{\lambda}_{t} | \gamma r_{t} \rangle - K L (\overline{\lambda}_{t}, \overline{\lambda}_{t+1}) = F(\overline{\lambda}_{t}) + K L (\overline{\lambda}_{t}, \overline{\lambda}_{t+1})$$

$$F(\overline{\lambda}_{t+1}) = \langle \overline{\lambda}_{t+1} - \overline{\lambda}_{t} | \gamma r_{t} \rangle - K L (\overline{\lambda}_{t}, \overline{\lambda}_{t+1}) = F(\overline{\lambda}_{t}) + K L (\overline{\lambda}_{t}, \overline{\lambda}_{t+1})$$

$$F(\overline{\lambda}_{t+1}) = \langle \overline{\lambda}_{t+1} - \overline{\lambda}_{t} | \gamma r_{t} \rangle - K L (\overline{\lambda}_{t}, \overline{\lambda}_{t+1}) = F(\overline{\lambda}_{t+1})$$

$$F(\overline{\lambda}_{t+1}) = \langle \overline{\lambda}_{t+1} - \overline{\lambda}_{t} | \gamma r_{t} \rangle - K L (\overline{\lambda}_{t}, \overline{\lambda}_{t+1}) = F(\overline{\lambda}_{t+1})$$

$$F(\overline{\lambda}_{t+1}) = \langle \overline{\lambda}_{t+1} - \overline{\lambda}_{t} | \gamma r_{t} \rangle - K L (\overline{\lambda}_{t}, \overline{\lambda}_{t+1}) = F(\overline{\lambda}_{t+1})$$

$$F(\overline{\lambda}_{t+1}) = \langle \overline{\lambda}_{t+1} - \overline{\lambda}_{t} | \gamma r_{t} \rangle - K L (\overline{\lambda}_{t}, \overline{\lambda}_{t+1}) = F(\overline{\lambda}_{t+1})$$

$$F(\overline{\lambda}_{t+1}) = \langle \overline{\lambda}_{t+1} - \overline{\lambda}_{t} | \gamma r_{t} \rangle - K L (\overline{\lambda}_{t}, \overline{\lambda}_{t+1}) = F(\overline{\lambda}_{t+1})$$

$$F(\overline{\lambda}_{t+1}) = \langle \overline{\lambda}_{t+1} - \overline{\lambda}_{t} | \gamma r_{t} \rangle + K L (\overline{\lambda}_{t}, \overline{\lambda}_{t+1}) = F(\overline{\lambda}_{t+1})$$

$$F(\overline{\lambda}_{t+1}) = \langle \overline{\lambda}_{t+1} - \overline{\lambda}_{t} | \gamma r_{t} \rangle + K L (\overline{\lambda}_{t}, \overline{\lambda}_{t+1})$$

$$F(\overline{\lambda}_{t+1}) = \langle \overline{\lambda}_{t+1} - \overline{\lambda}_{t} | \gamma r_{t} \rangle + K L (\overline{\lambda}_{t}, \overline{\lambda}_{t+1})$$

$$F(\overline{\lambda}_{t+1}) = \langle \overline{\lambda}_{t+1} - \overline{\lambda}_{t} | \gamma r_{t} \rangle + K L (\overline{\lambda}_{t}, \overline{\lambda}_{t+1})$$

$$F(\overline{\lambda}_{t+1}) = \langle \overline{\lambda}_{t+1} - \overline{\lambda}_{t} | \gamma r_{t} \rangle + K L (\overline{\lambda}_{t}, \overline{\lambda}_{t+1})$$

$$F(\overline{\lambda}_{t+1}) = \langle \overline{\lambda}_{t+1} - \overline{\lambda}_{t} | \gamma r_{t} \rangle + K L (\overline{\lambda}_{t}, \overline{\lambda}_{t+1})$$

$$F(\overline{\lambda}_{t+1}) = \langle \overline{\lambda}_{t+1} - \overline{\lambda}_{t} | \gamma r_{t} \rangle + K L (\overline{\lambda}_{t}, \overline{\lambda}_{t+1})$$

$$F(\overline{\lambda}_{t+1}) = \langle \overline{\lambda}_{t+1} - \overline{\lambda}_{t} | \gamma r_{t} \rangle + K L (\overline{\lambda}_{t+1})$$

$$F(\overline{\lambda}_{t+1}) =$$

Adversarial Multi-Armed Bandits

Adversarial MAB

Given: set of arms $\mathcal{A} = \{1, ..., A\}$

For time t = 1, 2, ..., T:

Environment decides the reward vector $R_t = (R_t(1), ..., R_t(A))$ (not revealing)

Learner chooses an arm $a_t \in \mathcal{A}$

Learner observes $r_t(a_t) = R_t(a_t) + w_t(a_t)$

Regret =
$$\max_{a \in \mathcal{A}} \sum_{t=1}^{T} R_t(a) - \sum_{t=1}^{T} R_t(a_t)$$

Recall: Exponential Weight Updates

$$\pi_{t+1} = \operatorname*{argmax}_{\pi \in \Delta(\mathcal{A})} \left\{ \langle \pi - \pi_t, r_t \rangle - \frac{1}{\eta} \operatorname{KL}(\pi, \pi_t) \right\} \qquad \qquad \pi_{t+1}(a) = \frac{\pi_t(a) \ e^{\eta r_t(a)}}{\sum_{b \in \mathcal{A}} \pi_t(b) \ e^{\eta r_t(b)}}$$

$$\pi_{t+1}(a) = \frac{\pi_t(a) e^{\eta r_t(a)}}{\sum_{b \in \mathcal{A}} \pi_t(b) e^{\eta r_t(b)}}$$

Exponential Weight Updates for Bandits?

No longer observable

Only update the arm that we choose?

Exponential Weight Updates for Bandits?

$$\pi_{t+1} = \underset{\pi \in \Delta(\mathcal{A})}{\operatorname{argmax}} \left\{ \langle \pi - \pi_t, \hat{\mathbf{r}}_t \rangle - \frac{1}{\eta} \operatorname{KL}(\pi, \pi_t) \right\} \iff \pi_{t+1}(a) = \frac{\pi_t(a) \, e^{\eta \hat{\mathbf{r}}_t(a)}}{\sum_{b \in \mathcal{A}} \pi_t(b) \, e^{\eta \mathbf{r}_t(b)}}$$

- $\hat{r}_t(a)$ is an "estimator" for $r_t(a)$
- But we can only observe the reward of one arm
- Furthermore, $r_t(a)$ is different in every round (If we do not sample arm a in round t, we'll never be able to estimate $r_t(a)$ in the future)

Unbiased Reward / Gradient Estimator

$$\overline{H} \left(\widehat{r_t}(\alpha) \right) = \underbrace{P_r \left(\alpha_t = \alpha \right)}_{T_t(\alpha)} \cdot \underbrace{\frac{P_t(\alpha)}{T_t(\alpha)}}_{T_t(\alpha)} + \underbrace{P_r \left(\alpha_t \neq \alpha \right)}_{T_t(\alpha)} \cdot \underbrace{O}_{T_t(\alpha)}$$

Weight a sample by the inverse of the probability we observe it

$$\hat{r}_t(a) = \frac{r_t(a)}{\pi_t(a)} \mathbb{I}\{a_t = a\} = \begin{cases} \frac{r_t(a)}{\pi_t(a)} & \text{if } a_t = a \\ 0 & \text{otherwise} \end{cases}$$

Inverse Propensity Weighting / Inverse Probability Weighting / Importance Weighting

Directly Applying Exponential Weights

$$\pi_1(a) = 1/A$$
 for all a

For t = 1, 2, ..., T:

Sample $a_t \sim \pi_t$, and observe $r_t(a_t)$

Define for all *a*:

$$\hat{r}_t(a) = \frac{r_t(a)}{\pi_t(a)} \mathbb{I}\{a_t = a\}$$

Update policy:

$$\pi_{t+1}(a) = \frac{\pi_t(a) \exp(\eta \hat{r}_t(a))}{\sum_{a' \in \mathcal{A}} \pi_t(a') \exp(\eta \hat{r}_t(a'))}$$

Simple Experiment

- A = 2, T = 1500, $\eta = 1/\sqrt{T}$
- For $t \le 500$, $r_t = [Bernoulli(0.2), Bernoulli(0.8)]$
- For $500 < t \le 1500$, $r_t = [Bernoulli(0.8), Bernoulli(0.2)]$

Recall the Theorem

Does this still hold? Theorem.

Assume that $\eta \hat{r}_t(a) \leq 1$ for all t, a. Then EWU

$$\pi_{t+1}(a) = \frac{\pi_t(a) \exp(\eta \hat{r}_t(a))}{\sum_{a' \in \mathcal{A}} \pi_t(a') \exp(\eta \hat{r}_t(a'))}$$

ensures for any a^* ,

For any
$$a^*$$
,
$$\frac{1}{H} \left(\sum_{t=1}^{T} (\hat{r}_t(a^*) - \langle \pi_t, \hat{r}_t \rangle) \right) \leq \frac{\ln A}{\eta} + \eta \sum_{t=1}^{T} \sum_{a=1}^{A} \pi_t(a) \hat{r}_t(a)^2 \leq \frac{\ln A}{\eta} + \eta \Lambda T \right)$$
How to relate the regret with this?

How to relate the regret with this?

Is this still well-bounded?

$$\mathbb{E}\left[\sum_{k=1}^{T}\left(\widehat{Y}_{k}(\alpha^{k})-\left(\pi_{k},\widehat{Y}_{k}\right)\right)\right]=\mathbb{E}\left[\sum_{k=1}^{T}\left(Y_{k}(\alpha^{k})-\left(\pi_{k},Y_{k}\right)\right)\right]$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad$$

$$\sum_{\alpha} \pi_{t}(\alpha) \widehat{r}_{t}(\alpha)^{2} = \sum_{\alpha} \pi_{t}(\alpha) \left(\frac{r_{t}(\alpha)}{\pi_{t}(\alpha)} \mathbb{1}_{\{a_{t}=a\}} \right)^{2} = \sum_{\alpha} \pi_{t}(\alpha) \cdot \frac{r_{t}(\alpha)^{2}}{\pi_{t}(\alpha)^{2}} \mathbb{1}_{\{a_{t}=a\}}$$

$$= \sum_{\alpha} \frac{r_{t}(\alpha)^{2}}{\pi_{t}(\alpha)} \mathbb{1}_{\{a_{t}=a\}}$$

$$\mathbb{H} \left(\sum_{\alpha} \pi_{t}(\alpha) \widehat{r}_{t}(\alpha) \right) = \mathbb{E} \left(\sum_{\alpha} \frac{r_{t}(\alpha)^{2}}{\pi_{t}(\alpha)} \mathbb{1}_{\{a_{t}=a\}} \right) = \sum_{\alpha} r_{t}(\alpha)^{2} \leq A$$

$$\sum_{\ell=1}^{T} \left(\widehat{r_{\ell}}(\alpha^{t}) - \left(\overline{A_{\ell}}, \widehat{r_{\ell}} \right) \right)$$

$$\sum_{\ell=1}^{T} \overline{A_{\ell}(\alpha)} \widehat{r_{\ell}}(\alpha) = \sum_{\alpha} \overline{A_{\ell}(\alpha)} \cdot \frac{V_{\ell}(\alpha)}{\overline{A_{\ell}(\alpha)}} \mathbb{1}_{\left\{\alpha_{\ell} = \alpha\right\}} = V_{\ell}(\alpha_{\ell})$$

Solution 1: Adding Extra Exploration

• **Idea:** use at least η probability to choose each arm

• Instead of sampling a_t according to π_t , use

$$\pi'_t(a) = (1 - A\eta)\pi_t(a) + \eta$$

 $\pi'_t(a) = (1 - A\eta)\pi_t(a) + \eta \qquad \text{w.p.} \qquad l-A\eta \implies \text{uniform exploration}$ and estimator becomes

Then the unbiased reward estimator becomes

$$\hat{r}_{t}(a) = \frac{r_{t}(a)}{\pi'_{t}(a)} \mathbb{I}\{a_{t} = a\} = \frac{r_{t}(a)}{(1 - A\eta)\pi_{t}(a) + \eta} \mathbb{I}\{a_{t} = a\}$$

$$\Rightarrow 2 \hat{r}_{t}(a) = 2 \frac{r_{t}(a)}{(1 - A\eta)\pi_{t}(a) + \eta} \mathbb{I}\{a_{t} = a\}$$

Applying Solution 1

$$\pi_1(a) = 1/A$$
 for all a

For t = 1, 2, ..., T:

Sample a_t from $\pi'_t = (1 - A\eta)\pi_t + A\eta$ uniform(\mathcal{A}), and observe $r_t(a_t)$

Define for all *a*:

$$\hat{r}_t(a) = \frac{r_t(a)}{\pi'_t(a)} \mathbb{I}\{a_t = a\}$$

Update policy:

$$\pi_{t+1}(a) = \frac{\pi_t(a) \exp(\eta \hat{r}_t(a))}{\sum_{a' \in \mathcal{A}} \pi_t(a') \exp(\eta \hat{r}_t(a'))}$$

Solution 1: Adding Extra Exploration

Regret Bound for Solution 1

Theorem. Exponential weights with Solution 1 ensures

$$\max_{a^*} \mathbb{E}\left[\sum_{t=1}^T (r_t(a^*) - r_t(a_t))\right] \le O\left(\frac{\ln A}{\eta} + \eta AT\right) \qquad \sqrt{ATMA}$$

Solution 2: Reward Estimator with a Baseline

- Notice that the condition is only $\eta \hat{r}_t(a) \leq 1$. The reward estimator is allowed to be **very negative**! (Check our proof)
- Still sample a_t from π_t , but construct the reward estimator as

$$\hat{r}_{t}(a) = \frac{r_{t}(a) - 1}{\pi_{t}(a)} \mathbb{I}\{a_{t} = a\} + 1 \qquad \frac{r_{t}(a)}{\pi_{t}(a)} \left(\frac{r_{t}(a) - 1}{\pi_{t}(a)} + 1\right)$$

Why this resolves the issue?

$$= \frac{r(r_{t-\alpha})}{\pi_{t}(\alpha)} \cdot \frac{1}{\pi_{t}(\alpha)}$$

$$= \frac{\pi_{t}(\alpha)}{\pi_{t}(\alpha)} \cdot \frac{1}{\pi_{t}(\alpha)} \cdot \frac$$

Applying Solution 2

arg max
$$\left\{ \left\langle \pi - \pi_t, Y_t \right\rangle - \frac{1}{2} \left| \left\langle \left(\pi, \pi_t \right) \right\rangle \right| \right\}$$

$$\left\{ \left\langle \left(\pi, \pi_t \right) \right\rangle - \left\langle \left(\pi, \pi_t \right) \right\rangle \right\} = 0$$

$$\pi_1(a) = 1/A$$
 for all a

For
$$t = 1, 2, ..., T$$
:

Sample a_t from π_t , and observe $r_t(a_t)$

Define for all *a*:

$$\hat{r}_t(a) = \frac{r_t(a) - 1}{\pi_t(a)} \mathbb{I}\{a_t = a\} + 1 \text{ or equivalently } \hat{r}_t(a) = \frac{r_t(a) - 1}{\pi_t(a)} \mathbb{I}\{a_t = a\}$$

Update policy:

$$\pi_{t+1}(a) = \frac{\pi_t(a) \exp(\eta \hat{r}_t(a))}{\sum_{a' \in \mathcal{A}} \pi_t(a') \exp(\eta \hat{r}_t(a'))}$$

Solution 2: Reward Estimator with a Baseline

Regret Bound for Solution 2

Theorem. Exponential weights with Solution 2 ensures

$$\max_{a^*} \mathbb{E}\left[\sum_{t=1}^T (r_t(a^*) - r_t(a_t))\right] \le O\left(\frac{\ln A}{\eta} + \eta AT\right)$$

EXP3 Algorithm

"Exponential weight algorithm for Exploration and Exploitation"

Exponential weights + either of the two solutions

Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, Robert Schapire. The Nonstochastic Multiarmed Bandit Problem. 2002.

Biasing

To keep $\eta \hat{r}_t(a) \leq 1$, we may also use "biased" reward estimator

$$\hat{r}_t(a) = \frac{r_t(a)}{\pi_t(a) + \eta} \mathbb{I}\{a_t = a\}$$
 or $\hat{r}_t(a) = \frac{r_t(a) - 1}{\pi_t(a) + \eta} \mathbb{I}\{a_t = a\}$

Different from Solution 1 (adding an extra uniform exploration), here we do not add exploration. Therefore, the reward estimator is **biased.**

Biasing

To keep $\eta \hat{r}_t(a) \leq 1$, we may also use "biased" reward estimator

$$\hat{r}_t(a) = \frac{r_t(a)}{\pi_t(a) + \eta} \mathbb{I}\{a_t = a\}$$
 or $\hat{r}_t(a) = \frac{r_t(a) - 1}{\pi_t(a) + \eta} \mathbb{I}\{a_t = a\}$

$$\mathbb{E}[\hat{r}_t(a)] - r_t(a) = r_t(a) \left(\frac{-\eta}{\pi_t(a) + \eta} \right) \qquad \mathbb{E}[\hat{r}_t(a)] - r_t(a) = (r_t(a) - 1) \left(\frac{-\eta}{\pi_t(a) + \eta} \right)$$

Small bias for often-picked arms

More negative bias for seldom-picked arms

Small bias for often-picked arms

More positive bias for seldom-picked arms

EXP3-IX

 $\pi_1(a) = 1/A$ for all a

For t = 1, 2, ..., T:

Sample a_t from π_t and observe $r_t(a_t)$

Define for all *a*:

$$\hat{r}_t(a) = \frac{r_t(a) - 1}{\pi_t(a) + \eta} \mathbb{I}\{a_t = a\}$$

Update policy:

$$\pi_{t+1}(a) = \frac{\pi_t(a) \exp(\eta \hat{r}_t(a))}{\sum_{a' \in \mathcal{A}} \pi_t(a') \exp(\eta \hat{r}_t(a'))}$$

EXP3-IX

$$\hat{r}_t(a) = \frac{r_t(a) - 1}{\pi_t(a) + \eta} \mathbb{I}\{a_t = a\}$$

If Biasing in a Wrong Way

$$\hat{r}_t(a) = \frac{r_t(a)}{\pi_t(a) + \eta} \mathbb{I}\{a_t = a\}$$

Regret Bound for EXP3-IX

Theorem. EXP3-IX ensures with high probability,

$$\max_{a^{\star}} \sum_{t=1}^{T} (r_t(a^{\star}) - r_t(a_t)) \le \tilde{O}\left(\frac{\ln A}{\eta} + \eta AT\right)$$

Gergely Neu. Explore no more: Improved high-probability regret bounds for non-stochastic bandits. 2015.

The Role of Baseline

$$\hat{r}_{t}(a) = \frac{r_{t}(a) - b_{t}}{\pi_{t}(a)} \mathbb{I}\{a_{t} = a\}$$

$$\pi_{t+1}(a) = \frac{\pi_{t}(a) \exp(\eta \hat{r}_{t}(a))}{\sum_{a' \in \mathcal{A}} \pi_{t}(a') \exp(\eta \hat{r}_{t}(a'))}$$

Larger b_t : More exploratory (tends to decrease the probability of the action just chosen) – needed to detect changes in the environment.

Some moderate b_t : smaller variance and slight improvement in the regret bound

$$\sum_{a=1}^{A} \pi_t(a) \hat{r}_t(a)^2 = \sum_{a=1}^{A} \pi_t(a) \left(\frac{r_t(a) - b_t}{\pi_t(a)} \mathbb{I}\{a_t = a\} \right)^2$$

Summary

 Exponential weight update (EWU) is an effective algorithm for full-information setting. It guarantees sublinear regret even when the environment changes over time.

- Extending EWU to bandit with naïve unbiased reward estimator does not work (lack of exploration). Two ways to fix it:
 - Adding extra uniform exploration with probability $\geq A\eta$
 - Adding a baseline in the reward estimator to encourage exploration
- High-probability bounds can be achieved by adding baseline and bias (EXP3-IX).

Review: Bandit Techniques

x: context, a: action, r: reward

MAB

CB

Value-based

Mean estimation

EG, BE, IGW

EG, BE, IGW

Regression

(context, action) to reward

Policy-based

context to action distribution

KL-regularized update with reward estimators (EXP3)

+

baseline, bias, or uniform exploration

Next

Contextual Bandits

Contextual Bandits

For time t = 1, 2, ..., T:

Environment generates a context $x_t \in \mathcal{X}$

Learner chooses an action $a_t \in \mathcal{A}$

Learner observes $r_t(x_t, a_t) = R(x_t, a_t) + w_t$

KL-Regularized Policy Updates

$$\pi_{t+1} = \underset{\pi \in \Delta(\mathcal{A})}{\operatorname{argmax}} \left\{ \sum_{a} \pi(a) \hat{r}_{t}(a) - \frac{1}{\eta} \sum_{a} \pi(a) \log \frac{\pi(a)}{\pi_{t}(a)} \right\}$$

$$\hat{r}_t(a) = \frac{r_t(a) - b_t}{\pi_t(a)} \mathbb{I}\{a_t = a\}$$

$$\theta_{t+1} = \underset{\theta}{\operatorname{argmax}} \left\{ \sum_{a} \pi_{\theta}(a|x_t) \, \hat{r}_t(x_t, a) - \frac{1}{\eta} \sum_{a} \pi_{\theta}(a|x_t) \log \frac{\pi_{\theta}(a|x_t)}{\pi_{\theta_t}(a|x_t)} \right\}$$

$$\hat{r}_t(x_t, a) = \frac{r_t(x_t, a) - b_t(x_t)}{\pi_{\theta_t}(a|x_t)} \, \mathbb{I}\{a_t = a\}$$

KL-Regularized Policy Updates

For t = 1, 2, ..., T:

Receive context x_t

Take action $a_t \sim \pi_{\theta_t}(\cdot|x_t)$ and receive reward $r_t(x_t, a_t)$

Create reward estimator $\hat{r}_t(x_t, a) = \frac{r_t(x_t, a) - b_t(x_t)}{\pi_{\theta_t}(a|x_t)} \mathbb{I}\{a_t = a\}$

Update

$$\theta_{t+1} = \operatorname{argmax} \left\{ \sum_{a} \pi_{\theta}(a|x_t) \, \hat{r}_t(x_t, a) - \frac{1}{\eta} \sum_{a} \pi_{\theta}(a|x_t) \log \frac{\pi_{\theta}(a|x_t)}{\pi_{\theta_t}(a|x_t)} \right\}$$

Proximal Policy Optimization (PPO) for CB

```
For t = 1, 2, ..., T:
```

For i = 1, ..., N:

Receive context x_i

Take action $a_i \sim \pi_{\theta_t}(\cdot|x_i)$ and receive reward $r_i(x_i, a_i)$

Create reward estimator $\hat{r}_i(x_i, a) = \frac{r_i(x_i, a) - b_t(x_i)}{\pi_{\theta_t}(a|x_i)} \mathbb{I}\{a_i = a\}$

For j = 1, ..., M:

one iteration of mirror ascent

For minibatch $\mathcal{B} \subset \{1, 2, ..., N\}$ of size B:

$$\theta \leftarrow \theta - \nabla_{\theta} \frac{1}{B} \sum_{i \in \mathcal{B}} \left(\sum_{a} \pi_{\theta}(a|x_{i}) \, \hat{r}_{i}(x_{i}, a) - \frac{1}{\eta} \sum_{a} \pi_{\theta}(a|x_{i}) \log \frac{\pi_{\theta}(a|x_{i})}{\pi_{\theta_{t}}(a|x_{i})} \right)$$

$$= \theta - \nabla_{\theta} \frac{1}{B} \sum_{i \in \mathcal{B}} \left(\frac{\pi_{\theta}(a_{i}|x_{i})}{\pi_{\theta_{t}}(a_{i}|x_{i})} (r_{i}(x_{i}, a_{i}) - b_{t}(x_{i})) - \frac{1}{\eta} \sum_{a} \pi_{\theta}(a|x_{i}) \log \frac{\pi_{\theta}(a|x_{i})}{\pi_{\theta_{t}}(a|x_{i})} \right)$$

$$\Rightarrow \epsilon \in \theta$$

Proximal Policy Optimization (PPO) for CB

$$\theta \leftarrow \theta - \nabla_{\theta} \frac{1}{B} \sum_{i \in \mathbb{B}} \left(\frac{\pi_{\theta}(a_i|x_i)}{\pi_{\theta_t}(a_i|x_i)} (r_i(x_i, a_i) - b_t(x_i)) - \frac{1}{\eta} \sum_{a} \pi_{\theta}(a|x_i) \log \frac{\pi_{\theta}(a|x_i)}{\pi_{\theta_t}(a|x_i)} \right)$$

$$\text{KL} \left(\pi_{\theta}(\cdot |x_i), \pi_{\theta_t}(\cdot |x_i) \right)$$

- May replace $\mathrm{KL}\left(\pi_{\theta}(\cdot \mid x_i), \pi_{\theta_t}(\cdot \mid x_i)\right)$ by $\mathrm{KL}\left(\pi_{\theta_t}(\cdot \mid x_i), \pi_{\theta}(\cdot \mid x_i)\right)$
- Although this term can be calculated exactly, we often use samples to estimate it (so we do not need to sum over *a*)

Estimating KL by Samples

http://joschu.net/blog/kl-approx.html

Sample
$$a_i \sim \pi_{\theta_t}(\cdot | x_i)$$
 and define $kl_i(\theta_t, \theta) = \frac{\pi_{\theta}(a_i | x_i)}{\pi_{\theta_t}(a_i | x_i)} - 1 - \log \frac{\pi_{\theta}(a_i | x_i)}{\pi_{\theta_t}(a_i | x_i)}$
Then $\mathbb{E}_{a_i \sim \pi_{\theta_t}(\cdot | x_i)}[kl_i(\theta_t, \theta)] = \mathrm{KL}\left(\pi_{\theta_t}(\cdot | x_i), \pi_{\theta}(\cdot | x_i)\right)$ Just need one sample of a_i

Then
$$\mathbb{E}_{a_i \sim \pi_{\theta_t}(\cdot|x_i)}[kl_i(\theta_t, \theta)] = \mathrm{KL}\left(\pi_{\theta_t}(\cdot|x_i), \pi_{\theta}(\cdot|x_i)\right)$$
 Just need one sample of a_i

As we see before, there are many ways to construct an unbiased estimator.

This is a good one with low variance.

PPO with KL Estimator

For t = 1, 2, ..., T:

For i = 1, ..., N:

$$kl_i(\theta_t, \theta) = \frac{\pi_{\theta}(a_i|x_i)}{\pi_{\theta_t}(a_i|x_i)} - 1 - \log \frac{\pi_{\theta}(a_i|x_i)}{\pi_{\theta_t}(a_i|x_i)}$$

Receive context x_i

Take action $a_i \sim \pi_{\theta_t}(\cdot|x_i)$ and receive reward $r_i(x_i, a_i)$

Create reward estimator $\hat{r}_i(x_i, a) = \frac{r_i(x_i, a) - b_t(x_i)}{\pi_{\theta_t}(a|x_i)} \mathbb{I}\{a_i = a\}$

For j = 1, ..., M:

For minibatch $\mathcal{B} \subset \{1, 2, ..., N\}$ of size B:

$$\theta \leftarrow \theta - \nabla_{\theta} \frac{1}{B} \sum_{i \in \mathcal{B}} \left(\frac{\pi_{\theta}(a_i|x_i)}{\pi_{\theta_t}(a_i|x_i)} (r_i(x_i, a_i) - b_t(x_i)) - \frac{1}{\eta} k l_i(\theta_t, \theta) \right)$$

$$\theta_{t+1} \leftarrow \theta$$

Additional Technique for PPO: Clipped Estimator

$$\rho = \frac{\pi_{\theta}(a|x)}{\pi_{\theta}(a|x)} \qquad A = r(x,a) - b(x)$$

Instead of using ρA as the estimator, use $\min\{\rho A, \operatorname{clip}_{[1-\epsilon,1+\epsilon]}(\rho)A\}$

algorithm	avg.	normalized score
No clipping or penalty		-0.39
Clipping, $\epsilon = 0.1$		0.76
Clipping, $\epsilon = 0.2$		0.82
Clipping, $\epsilon = 0.3$		0.70
Adaptive KL $d_{\text{targ}} = 0.003$		0.68
Adaptive KL $d_{\text{targ}} = 0.01$		0.74
Adaptive KL $d_{\text{targ}} = 0.03$		0.71
Fixed KL, $\beta = 0.3$		0.62
Fixed KL, $\beta = 1$.		0.71
Fixed KL, $\beta = 3$.		0.72
Fixed KL, $\beta = 10$.		0.69

Schulman et al., Proximal Policy Optimization Algorithms. 2017.

Summary: PPO

- PPO-CB can be viewed as an extension of EXP3 to contextual bandits. The central idea is KL-regularized policy updates
- Common techniques: baselines, avoiding overly positive reward estimator.
 These techniques prevent over exploitation
- PPO additional uses batching and KL estimators for computational efficiency

Natural Policy Gradient

(PPO)
$$\theta_{t+1} = \underset{\theta}{\operatorname{argmax}} \ \mathbb{E}_{x} \left[\sum_{a} \pi_{\theta}(a|x) \, \hat{r}_{t}(x,a) - \frac{1}{\eta} \sum_{a} \pi_{\theta}(a|x) \log \frac{\pi_{\theta}(a|x)}{\pi_{\theta_{t}}(a|x)} \right]$$

$$\eta \to 0$$

(NPG)
$$\theta_{t+1} = \theta_t + \eta F_t^{-1} \left(\mathbb{E}_x \left[\sum_a \nabla_\theta \pi_\theta(a|x) \, \hat{r}_t(x,a) \right] \right) \bigg|_{\theta = \theta_t}$$
 where $F_t = \mathbb{E}_x \left[\left(\nabla_\theta \log \pi_\theta(a|x) \right) \left(\nabla_\theta \log \pi_\theta(a|x) \right)^\top \right] \bigg|_{\theta = \theta_t}$