

Effects of Packet Pacing for MPI Programs in a Grid Environment

Ryousei Takano^{1,2}, Motohiko Matsuda¹, Tomohiro Kudoh¹, Yuetsu Kodama¹, Fumihiro Okazaki¹, Yutaka Ishikawa^{3,1}

¹⁾Grid Technology Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Japan ²⁾AXE, Inc. ³⁾University of Tokyo

Cluster 2007, Sep. 19 2007, Austin Texas

- Motivation
 - GridMPI
- Traffic control method for MPI programs
- Implementation
- Evaluation
- Conclusion

MPI on the Grid

- MPI is widely used for parallel applications
- Some MPI systems are designed for the Grid
 - MPICH-G2, PACX-MPI, MPICH-Madeleine, ...
- GridMPI is focused on metropolitan-area networks:
 - ≥ 10 Gbps, ≤ 10 ms delay (roughly 1000km)

The performance of existing MPI systems is not scaled up to high bandwidth-delay product networks

te B

Single large-scale MPI program on a Grid environment

Motivation (1)

- TCP is used for the inter-cluster communication
- Optimizing the TCP performance is the key to successful deployment of MPI programs to the Grid
- Assumption:
 - inter-cluster BW > interconnect BW in cluster
 - inter-cluster BW < aggregate interconnect BW in cluster</p>

Motivation (2)

- How do we maximize use of the network?
 - We should use multiple connections without congestion
 - TCP performance can be degraded due to excessive contention (Especially, worse as the BDP increases)
- Traffic control is needed to fully utilize the intercluster network

- Motivation
- Traffic control method for MPI programs
 - MATB: Maximum Allowable Transmission
 Bandwidth
- Implementation
- Evaluation
- Conclusion

MATB: Maximum Allowable Transmission Bandwidth

- How do we decide the transmission bandwidth of each node in cluster to avoid congestion?
 - "Inter-cluster BW / #nodes" is not fully utilize network
- MATB: Maximum allowable transmission bandwidth
 - "Inter-cluster BW / # nodes participated in the intercluster communications"
 - Depends on the communication pattern of applications

Examples of inter-cluster communication

- NAS Parallel Benchmarks (BT, SP, and CG)
- Only half nodes of each cluster participate in the inter-cluster communication
 - MATB: 10 Gbps / 16 nodes

MATB for the NPB

Benchmarks	MATB	(B=10 G, N=32)
ВТ	$B/(2\sqrt{2N})$	625 Mbps
CG	B/(N/2)	625 Mbps
LU, MG	B/N	312.5 Mbps
IS, FT (all-to-all)	B/N	312.5 Mbps

- 2 clusters with the same number of nodes
 - B: Inter-cluster bandwidth
 - N: The number of nodes at each cluster

- Motivation
- Traffic control method for MPI programs
- Implementation
 - Rate control attributes
 - PSPacer: packet pacing software
- Evaluation
- Conclusion

Implementation

MPI-level API

- Rate control attributes
 - MPI attributes (MPI-1.2/2.0 standard)
 - Predefined attribute keys
 - YAMPI_PSP_MAXRATE (inter-cluster bandwidth)
 - YAMPI_PSP_MATB (MATB)
 - MPI program can explicitly set MATB

```
int *rate, *matb, flag;
    :
    MPI_Attr_get(comm, YAMPI_PSP_MAXRATE, &rate, &flag);
    *matb = *rate / n;
    MPI_Attr_put(comm, YAMPI_PSP_MATB, (void *)matb);
```


PSPacer: packet pacing software

- Existing method: timer interrupt driven
 - Precise control is difficult for high speed network
 - Token bucket cannot prevent microscopic bursty traffic
- PSPacer: byte clock
 - Transferred bytes (byte clock) are used as a timer
 - For GbE, 1 byte=8 nsec
 - If packets are sent back-to-back, transmission timing can be precisely controlled
 - For the purpose of padding between packets, dummy packets (gap packets) are inserted.

Implementation of a gap packet on Ethernet

- A PAUSE frame (IEEE 802.3x flow control) is used as a gap packet
 - No side effects
 - PAUSE time = 0
 - Discarded at the switch/router's input port
 - No special hardware

Real packet
Gap packet

Sender PC

Switch

R.Takano, et al, "Design and Evaluation of Precise Software Pacing Mechanisms for Fast Long-Distance Networks," PFLDnet2005

PSPacer + GridMPI

- Motivation
- Traffic control method for MPI programs
- Implementation
- Evaluation
 - NPB 3.2 in an emulated WAN environment
 - Analysis of effects of packet pacing
- Conclusion

Experimental Setting

Node PC		
CPU	Opteron/2.0GHz dual	
Memory	6GB DDR333	
Ethernet	Broadcom BCM5704	
Myrinet	Myricom M3F-PCIXD-2	
os	SuSE Enterprise Server 9 (Linux 2.6.17)	

Switch		
Ethernet	Huawei-3Com S5648 + optional 10 Gbps port	
Myrinet	Myricom M3-SW16-8F + M3-SPINE-8F	

CG Benchmark: problem size

(Relative performance normalized to the single 32-node cluster)

In class D, the results with MATB are better than the single cluster case even though the delay is 10 ms.

CG Benchmark: delay

Performance improvement ratio compared with w/o MATB (Class D)

The proposed method is effective on a Grid environment

other benchmarks, we observed the same trend)

Effects of packet pacing

- Observe aggregate output traffic between clusters in 1 msec resolution by GtrcNET-10
- Target: CG (Class C, 0 msec delay)

Inter-cluster traffic of CG

(Class C, 0 msec delay)

Inter-cluster traffic of CG

(Class C, 0 msec delay)

- Motivation
- Traffic control method for MPI programs
- Implementation
- Evaluation
- Conclusion

Conclusion

- Improving the TCP performance is the key to the successful deployment of MPI programs in a Grid environment
- We have proposed a traffic control method based on the communication pattern of applications
- The experimental results show that it is feasible to connect multiple clusters and run large-scale applications over distances up to 1000km

- GridMPI: http://www.gridmpi.org/
- PSPacer: http://www.gridmpi.org/gridtcp.jsp
- GtrcNET: http://projects.gtrc.aist.go.jp/gnet/

Part of this research was supported by a grant from the Ministry of Education, Sports, Culture, Science and Technology (MEXT) of Japan through the NAREGI (National Research Grid Initiative) Project.

