

SUBJECT INDEX

b = Book or Video Review; *c* = Correspondence

- Accident risk, and posture control 505–515
Acenaphthene, quantification in mixtures of PAHs 603–611
Acetone, lung kinetics 324–336
Acrolein exposure, firefighters 581–602
Agriculture, gases in slurry stores 139–151
Air sampling
 size-selective 357–358(*corr.*)
 strategy 61–121
Air sampling instruments
 bag samplers 581–602
 cyclone 485–504
 diffusive 273–285, 581–602
 direct-reading meters 581–602
 for firefighters' exposure 581–602
 horizontal elutriator 485–504
 impingers 619–631
 penetration curves 485–504
 personal 485–504, 619–631
Aircraft riveters' vibration exposure 287–298
Airflow
 and worker exposure 35–50
 on coalfaces, scale models for 359–376
Alcohol consumption
 and posture control 505–515
 effect on metabolism of trichloroethylene 525–541
American Society for the Testing of Materials (ASTM), chemical permeation test 153–166
Ammonia, in slurry stores 139–151
Amosite, fibre-cell interaction 25–35
Anaesthetic gases, in veterinary surgeries 377–388
Animal surgery, waste anaesthetic gases 377–388
Asbestos
 amosite 25–35
 chrysotile 517–524
 crocidolite 433–438, 517–524
 fibre count-to-mass conversion 517–524
 fibre emission limit 517–524
 fibre-cell interaction 25–35
 lung clearance 433–438
Asthma, structure-activity hypotheses in 129–137
Automobile Association (AA), recommendations for compliance with COSHH 439–442
Back pain, prevention 427–432
Bacterial contamination, operating theatre equipment 341–346
Bag samplers, for firefighters' exposure 581–602
Barium, environmental health criteria 448–450^b
Barium sulphate dust, in shale shaker houses 651–657
BCIRA cyclone samplers, penetration efficiency curves 485–504
Benzene
 effect on metabolism of toluene 525–541
 exposure
 firefighters 581–602
 petrol pump attendants 346–352
Benzoc(b)fluoranthene, quantification in mixtures of PAHs 603–611
Biological exposure
 German criteria 443–445^b
 limits 79–91
Biological monitoring, metal exposure 445–447^b
Boundary layer separation, effect on exposure 35–50
Brass industry, soldering fume exposure 299–307
Breathing apparatus, for firefighters 581–602
Breathing zone concentration, estimation 35–50
British Examining Board in Occupational Hygiene (BEBOH), Joint BOHS/IOH/BEBOH Education and Training Committee 665–670
British Occupational Hygiene Society (BOHS)
 1989 Conference 233–237
 1990 Conference 129–137, 201–221, 287–298, 427–432, 439–442
 1991 Conference 457–468
 1991 Warner Lecture 457–468
 Joint BOHS/IOH/BEBOH Education and Training Committee 665–670
 Occupational Hygiene Information Systems Special Interest Group 247–248
 Occupational Hygiene Standards Committee 353–356
 Technical Guide 676–678^b
Cancer
 lung, and passive smoking 241^c, 245^b
 primary prevention 563–564^b
 renal, risk from petrol exposure 543–560
Carbon dioxide
 in slurry stores 139–151
 lung kinetics 331–335

- Carbon disulphide exposure, viscose rayon plant 619–631
 Carbon monoxide exposure, firefighters 581–602
 Carcinogens, short-term *in vivo* tests 675–676^b
 Cataract formation, threshold infrared irradiances 6–12
 Ceramic dusts, cytotoxicity 469–483
 Chemical exposure, viscose rayon plant 619–631
 Chemical permeation tests 153–166, 167–180
 Chromate pigments manufacture, respiratory protection in 181–187
 Chrysotile, fibre count-to-mass conversion 517–524
 Classification, Packaging and Labelling Directives, risk phrases 51–59
 Clearance of inhaled particles
 crocidolite fibres from lung 433–438
 human respiratory tract 249–259
 Coalfaces, scale model studies 359–376
 Commission of the European Communities, Scientific Expert Group on Occupational Exposure Limits 453–455, 567(*corr.*)
 Compliance testing 104–106
 Computer model, uptake rates of diffusive samplers 273–285
Control of Substances Hazardous to Health Regulations (COSHH)
 applied to workshops and garages 439–442
 assessments by non-hygienists 233–237
 Council of the European Communities (CEC), environmental asbestos pollution Directive 517–524
 Crane operators, effect of vibration on judgement 613–618
 Crocidolite
 fibre count-to-mass conversion 517–524
 lung clearance 433–438
 Cutting fluids, nitrite-free, N-nitroso-diethanolamine in 659–663
 Cyclone samplers, penetration efficiency curves 485–504
 Cytotoxicity, *in vitro* cf. *in vivo* tests 469–483
 Data, integration and extrapolation 123–125^b
 Dental caries, petrol pump attendants 349–350
 Deposition of inhaled particles, human respiratory tract 249–259
 Diethyl ether, lung kinetics 331–335
 Diffusive air samplers
 effective uptake rate 273–285
 for firefighters' exposure 581–602
 tube-type 273–285
 Dioxins, health risks 243–244^b
 Discrete vortex method 35–50
 Dose-response relationships, from pharmacokinetic models 543–560
 Dust control, vacuum cleaners for 201–221
 Dusts, toxicity prediction from *in vitro* tests 469–483
 Ear muffs, for low-frequency noise 189–199
 Education, in occupational hygiene, UK 665–670
 Environmental health criteria, barium 448–450^b
 Environmental tobacco smoke (ETS), and lung cancer 241^c, 245^b
 Environmental toxicology 243–244^b
 Ergonomics, for prevention of low back injuries 427–432
 Ethanol, lung kinetics 324–336
 European Economic Community, risk phrases, related to OELs 51–59
 Exposure
 assessment
 biological considerations 79–91
 long-term, toxic substances in air 61–121, 671–673^c, 674^c
 review 61–121, 671–673^c, 674^c
 statistical methods 68–79
 effect of airflow on 35–50
 indicators, from pharmacokinetic models 543–560
 limits, *See* Occupational Exposure Limits
 Exposure-control concentrations 51–59
 Eye, infrared radiation effect, model 1–12
 Farm workers, exposure during slurry handling 139–151
 Fibre evaluation, count-to-mass conversion 517–524
 Fibre pathogenicity 25–35
 Fibronectin, in fibre-cell interaction 25–35
 Firefighters, environmental exposures 581–602
 Fluorene, quantification in mixtures of PAHs 603–611
 Fluorescence detection of mixed PAHs 603–611
 Formaldehyde exposure, firefighters 581–602
 Garages, COSHH Regulations applied to 439–442
 Gilson, John, Chair of Occupational Medicine 561^c
 Gloves, protective, resistance to chemicals 153–166, 167–180
 Halothane, waste anaesthetic gas in veterinary surgeries 377–388
 Hand-arm vibration syndrome, aircraft industry 295–296
 Health care workers, equipment contamination hazard 341–346
 Health surveillance, in garages and workshops 440–441
 Hearing loss, and posture control 505–515
 Hearing protectors, for low-frequency noise 189–199
 Heat stress
 analysis and control 261–272
 index 262–268
 See also Thermal environment

Subject Index

- Helium, tracer gas for ventilation studies 405–417
- Heptane, uptake by diffusive sampler 281
- n*-Hexane, uptake by diffusive sampler 281
- High-performance liquid chromatography, quantification of mixed PAHs 603–611
- Hydrogen chloride exposure, firefighters 581–602
- Hydrogen cyanide exposure, firefighters 581–602
- Hydrogen fluoride exposure, firefighters 581–602
- Hydrogen sulphide exposure
in slurry stores 139–151
viscose rayon plant 619–631
- Hydroquinone, and asthma 137
- Impingers, for hydrogen sulphide 619–631
- Indoor Air Quality and Ventilation, 1990 Conference 239–240^c, 241^c, 244–246^b
- Inductively-coupled plasma-mass spectrometry 651–657
- Inflammation, pathogenesis of 389–396
- Infrared radiation, thermal effect on eye 1–12
- Inhalation hazards, assessment 123–125^b
- Inhaled particles, retention in human respiratory tract 249–259
- Institute of Occupational Hygienists (IOH)
Joint BOHS/IOH/BEBOH Education and Training Committee 665–670
Occupational Hygiene Standards Committee 353–356
- International Organization for Standardization (ISO), chemical permeation test 153–166
- International Workshop on Pharmacokinetic Modelling in Occupational Health, Leysin 525–541, 543–560
- Joint stiffness, in riveters 296–297
- Kidney cancer, from petrol exposure 543–560
- Lifting, prevention of back pain from 427–432
- d*-Limonene, allergenic effect on guineapig skin 419–426
- Linear systems dynamics, in toxicokinetics 633–649
- Lisbon Conference (1990) 239–240^c, 241^c, 244–246^b
- Local exhaust ventilation (LEV), tracer gases for testing 405–417
- Lung, inflammatory response to particles, rats 389–396
- Lung cancer, and environmental tobacco smoke 241^c, 245^b
- Lung clearance, crocidolite fibres 433–438
- Lung function, soldering fume exposure 299–307
- Lung kinetics, polar solvents 323–339
- Lungs, pathogenesis of inflammation in 389–396
- Maintenance, operating theatre equipment 341–346
- Management, occupational health and safety 679^b
- Manual handling, prevention of back pain from 427–432
- Maximum air concentration (MAK) values 443–445^b
- Metals
biological monitoring 445–447^b
in welding fume 223–232
- Meters, direct-reading, for firefighters' exposure 581–602
- Methane, in slurry stores 139–151
- MRE 113A elutriator, penetration efficiency curves 485–504
- N*-nitrosodiethanolamine, in nitrite-free cutting fluids 659–663
- Naphthalene, quantification in mixtures of PAHs 603–611
- Naval shipyard, accident risk and posture control 505–515
- Nitrous oxide
occupational exposure and control in veterinary surgeries 377–388
tracer gas for ventilation studies 405–417
- Noise
and posture control 505–515
low-frequency, helmets for 189–199
- Obituary: Mrs SM Coppock 128
- Occupation hygiene, education and training, UK 665–670
- Occupational exposure limits
CEC Scientific Expert Group on 453–455, 567(*corr.*)
exposure variability 91–97
extrapolation from toxicity data 569–580
German 443–445^b
indicative criteria 579
related to EEC Risk Phrases 51–59
- Occupational health
costs and benefits 457–468
management 679^b
protection programmes 466–468
- Occupational hygiene
assessments by non-hygienists 233–237
BOHS Standards Committee 353–356
costs and benefits 457–468
information systems, BOHS Special Interest Group 247–248
statistics in 125–126^b
viscose rayon plant survey 619–631
- Occupational hygienist, changing role 669
- Occupational medicine, John Gilson Chair 561^c
- Occupational safety, management 679^b

Subject Index

- Offshore oil drilling, airborne dust in shaker houses 651–657
Operating theatre equipment, maintenance 341–346
Organic compounds, physiological modelling 309–321
Organic solvents, effect of environmental factors on metabolism of 525–541
Organic volatiles *See* Volatile organic compounds
- n*-Pentane, uptake by diffusive sampler 281–283
Permeation, chemical, test methods 153–166, 167–180
Personal samplers, charcoal tubes 619–631
Petrol exposure, and renal cancer 543–560
Petrol pump attendants, exposure 346–352
Pharmacokinetics
 linear systems dynamics 633–649
 models
 in epidemiological studies 543–560
 inhaled polar solvents 323–339
 organic compounds 309–321
Phenol, urine levels in petrol pump attendants 346–352
Photoionisable dust exposure, petrol pump attendants 346–352
Physiological modelling
 inhaled polar solvents 323–339
 organic compounds 309–321
Pigment manufacture, respiratory protection in 181–187
Pollutants, airborne transport on coalfaces 359–376
Polycyclic aromatic hydrocarbons, exposure, firefighters 595–597
 quantification of mixtures 603–611
Posture control, and accident risk 505–515
Potters, assessment of vacuum cleaners for 201–221
Power tools, vibration effects 287–298
Pragmatic exposure-control concentrations (PECCs) 51–59
Prevention, primary, of cancer 563–564^b
Protective clothing, resistance to chemicals 153–166, 167–180
Proton-induced X-ray emission, airborne dust analysis 651–657
- Quantitative structure-activity relationships (QSARs), in occupational asthma 134–135
Quartz dusts
 cytotoxicity 469–483
 pathological effect, rat lung 389–396
Questionnaire, self-reported vibration effects 288–290
- Radon, in homes 564–565^c
Respirator filter cartridges, for leakage measurement 13–24
Respiratory protective equipment (RPE) field tests 181–187
- protection factor from test of fit 13–24
Respiratory symptoms, soldering fume exposure 299–307
Risk phrases, related to OELs 51–59
Riveters, vibration exposure 287–298
- Sanding machines, wood dust emission 397–403
Scale models, for airflow on coalfaces 359–376
Screening
 for prevention of low back injuries 427–432
 in vitro cf. in vivo tests 469–483
Shale shaker houses, airborne dust composition in 651–657
Shock, effect on judgement, crane drivers 613–618
Silicosis, pathogenesis 389–396
SIMPEDS samplers, penetration efficiency curves 485–504
Size-selective sampling 357–358(*corr.*)
Slurry, gas evolution during handling 139–151
Smoking, and soldering fume exposure 299–307
Soldering fumes, long term effects 299–307
Solvents, respiratory exchange model 323–339
Stabilography, as indicator of accident risk 505–515
Stack emissions, asbestos fibre measurement 517–524
Statistics, in occupational hygiene 125–126^b
Stochastic effects, toxic hazards 571–577
Structure-activity hypotheses, occupational asthma 129–137
Sulphur dioxide exposure, petrol pump attendants 346–352
Sulphur hexafluoride, tracer gas for ventilation studies 405–417
Sulphuric acid exposure, firefighters 581–602
System for Advising on the Regulations for Assessing Hazards (SARAH) 233–237
- Thermal environment
 effect on workers 261–272
 investigation and assessment 676–678^b
- Thermal stress
 analysis and control 261–272
 index 262–268
- Toluene
 effect on metabolism of benzene 525–541
 uptake by diffusive sampler 281
- Toxic substances in air, long-term exposure assessment 61–121, 671–673^c, 674^c
- Toxicity data, extrapolation to occupational exposure limits 569–580
Toxicokinetics, linear systems dynamics in 633–649
Toxicology, environmental 243–244^b
Tracer gases, for ventilation studies 405–417

Subject Index

Training

- expert system for non-hygienists 233-237
- for prevention of low back injuries 427-432
- in occupational hygiene, UK 665-670

Trichloroethylene, effect of alcohol on metabolism of 525-541

Vacuum cleaners, assessment for use in potteries 201-221

Ventilation

- and indoor air quality 239-240^c, 241^c, 244-246^b
- tracer gases for testing 405-417
- use of scale models to investigate 359-376

Veterinary surgeries, waste anaesthetic gases in 377-388

Vibration

- effect on judgement 613-618
- exposure, of riveters 287-298
- Vibration white finger (VWF), aircraft industry 295-296
- Viscose rayon plant, chemical exposure in 619-631
- Volatile organic compounds, exposure-control concentrations 51-59

Waste anaesthetic gases, in veterinary surgeries 377-388

Welding, flux cored arc 223-232

Welding fume, model to predict metallic composition 223-232

Wood dust, exposure levels 397-403

Woodworking machinery, dust emission 397-403

AUTHOR INDEX

b = Book or Video Review; *c* = Correspondence

- | | | |
|---|--|---|
| <p>Adamis, Z. 469
 Agius, R.M. 129
 Aitken, R.J. 359
 Andersen, M.E. 309
 Aubertin, G. 405

 Bhargava, S.K. 347
 Bharti, R.S. 347
 Boman, A. 419
 Bord, B.S. 665
 Botham, R.A. 359
 Bowring, C.S. 564^b
 Brown, D.M. 389
 Brown, G.M. 389
 Brown, R.C. 25, 201
 Burdorf, A. 287
 Burema, J. 671^c
 Burgess, C.D. 453, 567(<i>corr.</i>)
 Burkhardt, J. 581

 Carter, J.T. 457
 Carter, T. 443^b
 Causton, J.S. 377
 Cherrie, J.W. 665
 Colby, P.J. 233

 Das, M. 347
 Devreese, A. 619
 Donaldson, K. 389
 du Toit, R.S.J. 433

 Ellwood, P.A. 139
 Evans, C.E. 25

 Fletcher, C. 561^c
 Flynn, M.R. 35

 Gardner, R.J. 51, 377
 Garg, N. 299
 Gill, F. 244^b
 Gilson, M. 561^c
 Gilson, R. 561^c
 Gradoff, L. 249
 Graveling, R.A. 427
 Gray, R. 201
 Groves, J.A. 139
 Gupta, B.N. 299

 Hamill, A. 397
 Hampton, J. 377
 Han, D. 13
 Hangal, S. 13
 Hansen, A.B. 651
 Hansen, Å.M. 603
 Hansen, L.V. 651
 Hedley Williams, D. 676^b</p> | <p>Heederik, D. 671^c
 Hery, M. 181
 Hewitt, P.J. 223
 Hirst, A.A. 223
 Hodgson, E.S. 341
 Holst, E. 603
 Hoskins, J.A. 25
 Hubert, G. 181
 Husain, T. 299

 Illing, H.P.A. 569
 Ingle, J. 397

 Jankovic, J. 581
 Järvholt, B. 659
 Johanson, G. 323
 Jones, W. 581

 Karlberg, A-T. 419
 Kenny, L.C. 485
 Khan, A. 347
 King, E. 445^b, 448^b
 Kirkwood, P. 233
 Krass, B.K. 469
 Kromhout, H. 671^c
 Kumar, A. 347
 Kunze, H. 651

 Larsen, E. 651
 Lefevre, A. 405
 Levy, L.S. 453, 567(<i>corr.</i>)
 Lidén, G. 485
 Lunau, F.W. 239^c
 Lyngsaae, M. 651

 McCallum, R.I. 123
 McGovern, B. 129
 Mairiaux, P. 261
 Malchaire, J. 261, 613
 Marconi, A. 517
 Mark, D. 359
 Martin, P. 181
 Melin, B. 419
 Mellström, G.A. 153, 167
 Miller, C.T. 35
 Moll van Charante, A.W. 505
 Monster, A. 287
 Mulder, P.G.H. 505
 Muller, J.P. 405

 Nee, J. 129
 Niemela, R. 405
 Noonan, G. 581

 Okuno, T. 1
 Oldershaw, P. 679^b</p> | <p>Oldershaw, P.J. 51
 Olsen, I.L.B. 603
 Opdam, J.J.G. 633
 Østerdahl, B.-G. 659

 Pääkkönen, R. 189
 Pandya, K.P. 347
 Pangtey, B.S. 299, 347
 Piette, A. 613
 Podgórski, A. 249
 Poulsen, O.M. 603
 Puledda, S. 517

 Rao, G.S. 347
 Rapaport S.M. 61, 125^b, 674^c
 Rastogi, S.K. 299
 Robertson, A. 129
 Roe, F.J.C. 241^c, 243^b, 563^b, 675^b
 Ruis-Frutos, C. 341

 Sanderson, R.J. 353-356
 Sara, E.A. 25
 Sato, A. 525
 Schilling, R. 561^c
 Searle, S. 397
 Sherwood, R.J. 353
 Smith, T.J. 543
 Snijders, C.J. 505
 Soderholm, S.C. 357(<i>corr.</i>)
 Srivastava, S. 299
 Stansbury, T.D. 439

 Tijtgat, E. 619
 Tikkainen, J. 189
 Trenchard, P.J. 233

 Uzel, A.R. 233

 van Asselen, O.L.J. 273
 van den Berge, L. 619
 van den Hoed, N. 273
 van Peteghem, C. 619
 van Poucke, L. 619
 Vanhoorne, M. 619
 Villa, M. 181
 Vincent, J.H. 359

 Wake, D. 201
 West, N. 443^b
 Willeke, K. 13
 Williams, K. 397

 Xu, M. 13

 Zingmark, P.-A. 659</p> |
|---|--|---|