Introduction to dual methods

Daniil Merkulov

Optimization methods. MIPT

Definition

Recall that given $f:\mathbb{R}^n \to \mathbb{R}$, the function defined by

$$f^*(y) = \max_{x} \left[y^T x - f(x) \right]$$

is called its conjugate.

Geometrical intution

Geometrical intution

Conjugate function properties

Recall that given $f:\mathbb{R}^n \to \mathbb{R}$, the function defined by

$$f^*(y) = \max_{x} \left[y^T x - f(x) \right]$$

is called its conjugate.

Conjugates appear frequently in dual programs, since

$$-f^*(y) = \min_{x} \left[f(x) - y^T x \right]$$

Conjugate function properties

Recall that given $f: \mathbb{R}^n \to \mathbb{R}$, the function defined by

$$f^*(y) = \max_{x} \left[y^T x - f(x) \right]$$

is called its conjugate.

• Conjugates appear frequently in dual programs, since

$$-f^*(y) = \min_{x} \left[f(x) - y^T x \right]$$

• If f is closed and convex, then $f^{**} = f$. Also,

$$x \in \partial f^*(y) \Leftrightarrow y \in \partial f(x) \Leftrightarrow x \in \arg\min_{z} \left[f(z) - y^T z \right]$$

Conjugate function properties

Recall that given $f: \mathbb{R}^n \to \mathbb{R}$, the function defined by

$$f^*(y) = \max_{x} \left[y^T x - f(x) \right]$$

is called its conjugate.

• Conjugates appear frequently in dual programs, since

$$-f^*(y) = \min_{x} \left[f(x) - y^T x \right]$$

• If f is closed and convex, then $f^{**} = f$. Also,

$$x \in \partial f^*(y) \Leftrightarrow y \in \partial f(x) \Leftrightarrow x \in \arg\min_{z} \left[f(z) - y^T z \right]$$

• If *f* is strictly convex, then

$$\nabla f^*(y) = \arg\min_{z} \left[f(z) - y^T z \right]$$

We will show that $x \in \partial f^*(y) \Leftrightarrow y \in \partial f(x)$, assuming that f is convex and closed.

• **Proof of** \Leftarrow : Suppose $y \in \partial f(x)$. Then $x \in M_y$, the set of maximizers of $y^Tz - f(z)$ over z. But

$$f^*(y) = \max_z \{y^T z - f(z)\} \quad \text{ and } \quad \partial f^*(y) = \operatorname{cl}(\operatorname{conv}(\bigcup_{z \in M_z} \{z\})).$$

Thus $x \in \partial f^*(y)$.

 $f \to \min_{x,y,z}$ Reminder: conjugate functions

We will show that $x \in \partial f^*(y) \Leftrightarrow y \in \partial f(x)$, assuming that f is convex and closed.

• **Proof of** \Leftarrow : Suppose $y \in \partial f(x)$. Then $x \in M_y$, the set of maximizers of $y^Tz - f(z)$ over z. But

$$f^*(y) = \max_z \{y^T z - f(z)\} \quad \text{ and } \quad \partial f^*(y) = \operatorname{cl}(\operatorname{conv}(\bigcup_{z \in M_{\mathcal{V}}} \{z\})).$$

Thus $x \in \partial f^*(y)$.

• **Proof of** \Rightarrow : From what we showed above, if $x \in \partial f^*(y)$, then $y \in \partial f^*(x)$, but $f^{**} = f$.

We will show that $x \in \partial f^*(y) \Leftrightarrow y \in \partial f(x)$, assuming that f is convex and closed.

• **Proof of** \Leftarrow : Suppose $y \in \partial f(x)$. Then $x \in M_y$, the set of maximizers of $y^Tz - f(z)$ over z. But

$$f^*(y) = \max_z \{y^T z - f(z)\} \quad \text{ and } \quad \partial f^*(y) = \operatorname{cl}(\operatorname{conv}(\bigcup_{z \in M_{\mathcal{V}}} \{z\})).$$

Thus $x \in \partial f^*(y)$.

• **Proof of** \Rightarrow : From what we showed above, if $x \in \partial f^*(y)$, then $y \in \partial f^*(x)$, but $f^{**} = f$.

We will show that $x \in \partial f^*(y) \Leftrightarrow y \in \partial f(x)$, assuming that f is convex and closed.

• **Proof of** \Leftarrow : Suppose $y \in \partial f(x)$. Then $x \in M_y$, the set of maximizers of $y^Tz - f(z)$ over z. But

$$f^*(y) = \max_z \{y^T z - f(z)\} \quad \text{ and } \quad \partial f^*(y) = \operatorname{cl}(\operatorname{conv}(\bigcup_{z \in M_y} \{z\})).$$

Thus $x \in \partial f^*(y)$.

• **Proof of** \Rightarrow : From what we showed above, if $x \in \partial f^*(y)$, then $y \in \partial f^*(x)$, but $f^{**} = f$.

Clearly $y \in \partial f(x) \Leftrightarrow x \in \arg\min_{z} \{f(z) - y^T z\}$

Lastly, if f is strictly convex, then we know that $f(z) - y^T z$ has a unique minimizer over z, and this must be $\nabla f^*(y)$.

 $f \to \min_{x,y,z}$ Reminder: conjugate functions

Even if we can't derive dual (conjugate) in closed form, we can still use dual-based gradient or subgradient methods.

Consider the problem:

$$\min_{x} f(x)$$
 subject to $Ax = b$

scent $f \Psi$

Even if we can't derive dual (conjugate) in closed form, we can still use dual-based gradient or subgradient methods.

Consider the problem:

$$\min_{x} f(x)$$
 subject to $Ax = b$

Its dual problem is:

$$\max_{u} \quad -f^*(-A^T u) - b^T u$$

where f^* is the conjugate of f. Defining $g(u) = -f^*(-A^Tu) - b^Tu$, note that:

$$\partial g(u) = A\partial f^*(-A^T u) - b$$

Even if we can't derive dual (conjugate) in closed form, we can still use dual-based gradient or subgradient methods.

Consider the problem:

$$\min_{x} \quad f(x) \quad \text{subject to} \quad Ax = b$$

Its dual problem is:

$$\max_{u} \quad -f^*(-A^T u) - b^T u$$

where f^* is the conjugate of f. Defining $g(u) = -f^*(-A^Tu) - b^Tu$, note that:

$$\partial g(u) = A\partial f^*(-A^T u) - b$$

Therefore, using what we know about conjugates

$$\partial g(u) = Ax - b$$
 where $x \in \arg\min_{z} \left[f(z) + u^{T} Az \right]$

Dual ascent

Even if we can't derive dual (conjugate) in closed form, we can still use dual-based gradient or subgradient methods.

Consider the problem:

$$\min_{x \in \mathcal{X}} f(x)$$
 subject to $Ax = b$

Its dual problem is:

$$\max_{u} \quad -f^*(-A^T u) - b^T u$$

where f^{*} is the conjugate of f. Defining $g(u)=-f^{*}(-A^{T}u)-b^{T}u$, note that: $\partial q(u) = A \partial f^*(-A^T u) - b$

$$\partial g(u) = A\partial f \ (-A \ u) -$$

Therefore, using what we know about conjugates

$$\partial g(u) = Ax - b$$
 where $x \in \arg\min\limits_{z} \left[f(z) + u^T Az
ight]$

Dual ascent method for maximizing dual objective:

 $x_k \in \arg\min_{x} \left[f(x) + (u_{k-1})^T Ax \right]$ $u_k = u_{k-1} + \alpha_k (Ax_k - b)$

• Step sizes α_k , $k = 1, 2, 3, \ldots$, are chosen in standard ways.

Even if we can't derive dual (conjugate) in closed form, we can still use dual-based gradient or subgradient methods.

Consider the problem:

$$\min_{x} \quad f(x) \quad \text{subject to} \quad Ax = b$$

Its dual problem is:

$$\max_{u} \quad -f^*(-A^T u) - b^T u$$

where f^* is the conjugate of f. Defining $g(u) = -f^*(-A^Tu) - b^Tu$, note that:

$$\partial g(u) = A\partial f^*(-A^T u) - b$$

Therefore, using what we know about conjugates

Dual ascent method for maximizing dual objective:

$$\partial g(u) = Ax - b$$
 where $x \in rg \min_{z} \left[f(z) + u^T Az
ight]$

$$x_k \in \arg\min_{x} \left[f(x) + (u_{k-1})^T Ax \right]$$
$$u_k = u_{k-1} + \alpha_k (Ax_k - b)$$

- Step sizes α_k , $k=1,2,3,\ldots$, are chosen in standard
 - Proximal gradients and acceleration can be applied as they would usually.

Slopes of f and f^{\ast}

 $f \to \min_{x,y,z}$ Dual ascent

P 0 0

Assume that f is a closed and convex function. Then f is strongly convex with parameter $\mu \Leftrightarrow \nabla f^*$ is Lipschitz with parameter $1/\mu$.

Assume that f is a closed and convex function. Then f is strongly convex with parameter $\mu\Leftrightarrow \nabla f^*$ is Lipschitz with parameter $1/\mu$.

Proof of "\Rightarrow": Recall, if g is strongly convex with minimizer x, then

$$g(y) \ge g(x) + \frac{\mu}{2} ||y - x||^2$$
, for all y

Assume that f is a closed and convex function. Then f is strongly convex with parameter $\mu\Leftrightarrow
abla f^*$ is Lipschitz with parameter $1/\mu$.

Proof of "\Rightarrow": Recall, if g is strongly convex with minimizer x, then

$$g(y) \ge g(x) + \frac{\mu}{2} ||y - x||^2$$
, for all y

Hence, defining $x_u = \nabla f^*(u)$ and $x_v = \nabla f^*(v)$,

$$f(x_v) - u^T x_v \ge f(x_u) - u^T x_u + \frac{\mu}{2} ||x_u - x_v||^2$$

$$f(x_u) - v^T x_u \ge f(x_v) - v^T x_v + \frac{\mu}{2} ||x_u - x_v||^2$$

 $f \to \min_{x,y,z}$ Dual ascent

Assume that f is a closed and convex function. Then f is strongly convex with parameter $\mu\Leftrightarrow
abla f^*$ is Lipschitz with parameter $1/\mu$.

Proof of "\Rightarrow": Recall, if g is strongly convex with minimizer x, then

$$g(y) \ge g(x) + \frac{\mu}{2} ||y - x||^2$$
, for all y

Hence, defining $x_u = \nabla f^*(u)$ and $x_v = \nabla f^*(v)$,

$$f(x_v) - u^T x_v \ge f(x_u) - u^T x_u + \frac{\mu}{2} ||x_u - x_v||^2$$

$$f(x_u) - v^T x_u \ge f(x_v) - v^T x_v + \frac{\mu}{2} ||x_u - x_v||^2$$

Adding these together, using the Cauchy-Schwarz inequality, and rearranging shows that

$$||x_u - x_v||^2 \le \frac{1}{u}||u - v||^2$$

Proof of "\Leftarrow": for simplicity, call $g = f^*$ and $L = \frac{1}{\mu}$. As ∇g is Lipschitz with constant L, so is $q_x(z) = q(z) - \nabla q(x)^T z$, hence

$$g_x(z) \le g_x(y) + \nabla g_x(y)^T (z - y) + \frac{L}{2} ||z - y||_2^2$$

u.z. Dual ascent

Proof of "\Leftarrow": for simplicity, call $g = f^*$ and $L = \frac{1}{\mu}$. As ∇g is Lipschitz with constant L, so is $q_x(z) = q(z) - \nabla q(x)^T z$, hence

$$g_x(z) \le g_x(y) + \nabla g_x(y)^T (z - y) + \frac{L}{2} ||z - y||_2^2$$

Minimizing each side over z, and rearranging, gives

$$\frac{1}{2L} \|\nabla g(x) - \nabla g(y)\|^2 \le g(y) - g(x) + \nabla g(x)^T (x - y)$$

... Dual ascent

Proof of "\Leftarrow": for simplicity, call $g = f^*$ and $L = \frac{1}{\mu}$. As ∇g is Lipschitz with constant L, so is $g_x(z) = g(z) - \nabla g(x)^T z$, hence

$$g_x(z) \le g_x(y) + \nabla g_x(y)^T (z - y) + \frac{L}{2} ||z - y||_2^2$$

Minimizing each side over z, and rearranging, gives

$$\frac{1}{2L} \|\nabla g(x) - \nabla g(y)\|^2 \le g(y) - g(x) + \nabla g(x)^T (x - y)$$

Exchanging roles of x, y, and adding together, gives

$$\frac{1}{L} \|\nabla g(x) - \nabla g(y)\|^2 \le (\nabla g(x) - \nabla g(y))^T (x - y)$$

U.Z Dual ascent

Proof of "\Leftarrow": for simplicity, call $g = f^*$ and $L = \frac{1}{\mu}$. As ∇g is Lipschitz with constant L, so is $q_x(z) = q(z) - \nabla q(x)^T z$, hence

$$g_x(z) \le g_x(y) + \nabla g_x(y)^T (z-y) + \frac{L}{2} ||z-y||_2^2$$

Minimizing each side over z, and rearranging, gives

$$\frac{1}{2L} \|\nabla g(x) - \nabla g(y)\|^2 \le g(y) - g(x) + \nabla g(x)^T (x - y)$$

Exchanging roles of x, y, and adding together, gives

$$\frac{1}{L} \|\nabla g(x) - \nabla g(y)\|^2 \le (\nabla g(x) - \nabla g(y))^T (x - y)$$

Let $u = \nabla f(x)$, $v = \nabla g(y)$; then $x \in \partial g^*(u)$, $y \in \partial g^*(v)$, and the above reads $(x-y)^T(u-v) \geq \frac{\|u-v\|^2}{L}$, implying the result.

 $f \to \min_{x,y,z}$ Du

⊕ O Ø

The following results hold from combining the last fact with what we already know about gradient descent: 1

• If f is strongly convex with parameter μ , then dual gradient ascent with constant step sizes $\alpha_k = \mu$ converges at sublinear rate $O(\frac{1}{\epsilon})$.

¹This is ignoring the role of A, and thus reflects the case when the singular values of A are all close to 1. To be more precise, the step sizes here should be: $\frac{\mu}{\sigma_{\max}(A)^2}$ (first case) and $\frac{2}{\frac{\sigma_{\max}(A)^2}{\mu} + \frac{\sigma_{\min}(A)^2}{L}}$ (second case).

The following results hold from combining the last fact with what we already know about gradient descent: 1

- If f is strongly convex with parameter μ , then dual gradient ascent with constant step sizes $\alpha_k = \mu$ converges at sublinear rate $O(\frac{1}{\epsilon})$.
- If f is strongly convex with parameter μ and ∇f is Lipschitz with parameter L, then dual gradient ascent with step sizes $\alpha_k = \frac{2}{\frac{1}{\mu} + \frac{1}{L}}$ converges at linear rate $O(\log(\frac{1}{\epsilon}))$.

¹This is ignoring the role of A, and thus reflects the case when the singular values of A are all close to 1. To be more precise, the step sizes here should be: $\frac{-\mu}{\sigma_{\max}(A)^2}$ (first case) and $\frac{2}{\frac{\sigma_{\max}(A)^2}{\sigma_{\max}(A)^2}}$ (second case).

The following results hold from combining the last fact with what we already know about gradient descent:1

- If f is strongly convex with parameter μ , then dual gradient ascent with constant step sizes $\alpha_k = \mu$ converges at sublinear rate $O(\frac{1}{z})$.
- If f is strongly convex with parameter μ and ∇f is Lipschitz with parameter L, then dual gradient ascent with step sizes $\alpha_k = \frac{2}{\frac{1}{\mu} + \frac{1}{L}}$ converges at linear rate $O(\log(\frac{1}{\epsilon}))$.

here should be: $\frac{\mu}{\sigma_{\max}(A)^2}$ (first case) and $\frac{2}{\frac{\sigma_{\max}(A)^2}{\sigma_{\min}(A)^2}}$ (second case).

¹This is ignoring the role of A, and thus reflects the case when the singular values of A are all close to 1. To be more precise, the step sizes here should be: $\frac{\mu}{\mu}$ (first case) and $\frac{2}{\mu}$ (second case).

The following results hold from combining the last fact with what we already know about gradient descent: 1

- If f is strongly convex with parameter μ , then dual gradient ascent with constant step sizes $\alpha_k = \mu$ converges at sublinear rate $O(\frac{1}{\epsilon})$.
- If f is strongly convex with parameter μ and ∇f is Lipschitz with parameter L, then dual gradient ascent with step sizes $\alpha_k = \frac{2}{1+\frac{1}{\epsilon}}$ converges at linear rate $O(\log(\frac{1}{\epsilon}))$.

Note that this describes convergence in the dual. (Convergence in the primal requires more assumptions)

 $^{^{1}}$ This is ignoring the role of A, and thus reflects the case when the singular values of A are all close to 1. To be more precise, the step sizes here should be: $\frac{-\mu}{\sigma_{\max}(A)^2}$ (first case) and $\frac{2}{\frac{\sigma_{\max}(A)^2}{\sigma_{\max}(A)^2}}$ (second case).

Dual decomposition

Consider

$$\min_{x} \sum_{i=1}^{B} f_i(x_i)$$
 subject to $Ax = b$

Dual ascent

Dual decomposition

Consider

$$\min_{x} \sum_{i=1}^{B} f_i(x_i) \quad \text{subject to} \quad Ax = b$$

Here $x=(x_1,\ldots,x_B)\in\mathbb{R}^n$ divides into B blocks of variables, with each $x_i\in\mathbb{R}^{n_i}$. We can also partition A accordingly:

$$A = [A_1 \dots A_B], \text{ where } A_i \in \mathbb{R}^{m \times n_i}$$

Dual decomposition

Consider

$$\min_{x} \sum_{i=1}^{B} f_i(x_i) \quad \text{subject to} \quad Ax = b$$

Here $x=(x_1,\ldots,x_B)\in\mathbb{R}^n$ divides into B blocks of variables, with each $x_i\in\mathbb{R}^{n_i}$. We can also partition A accordingly:

$$A = [A_1 \dots A_B], \text{ where } A_i \in \mathbb{R}^{m \times n_i}$$

Simple but powerful observation, in calculation of subgradient, is that the minimization decomposes into B separate problems:

$$x^{\mathsf{new}} \in \arg\min_{x} \left(\sum_{i=1}^{B} f_i(x_i) + u^T A x \right)$$

 $\Rightarrow x_i^{\mathsf{new}} \in \arg\min_{x_i} \left(f_i(x_i) + u^T A_i x_i \right), \quad i = 1, \dots, B$

$$x_i^k \in \arg\min_{x_i} (f_i(x_i) + (u^{k-1})^T A_i x_i), \quad i = 1, \dots, B$$

$$u^{k} = u^{k-1} + \alpha_{k} \left(\sum_{i=1}^{B} A_{i} x_{i}^{k} - b \right)$$

Dual decomposition

Consider

$$\min_{x} \sum_{i=1}^{L} f_i(x_i) \quad \text{subject to} \quad Ax = b$$

Here $x=(x_1,\ldots,x_B)\in\mathbb{R}^n$ divides into B blocks of variables, with each $x_i\in\mathbb{R}^{n_i}$. We can also partition A accordingly:

$$A = [A_1 \dots A_B], \text{ where } A_i \in \mathbb{R}^{m \times n_i}$$

Simple but powerful observation, in calculation of subgradient, is that the minimization decomposes into B separate problems:

$$x^{\mathsf{new}} \in \arg\min_{x} \left(\sum_{i=1}^{B} f_i(x_i) + u^T A x \right)$$

 $\Rightarrow x^{\mathsf{new}}_i \in \arg\min\left(f_i(x_i) + u^T A_i x_i \right), \quad i = 1, \dots, B$

Can think of these steps as:

• Broadcast: Send
$$u$$
 to each of the B processors, each optimizes in parallel to find x_i .

$$u^{k} = u^{k-1} + \alpha_{k} \left(\sum_{i=1}^{B} A_{i} x_{i}^{k} - b \right)$$

 $x_i^k \in \arg\min_{x} (f_i(x_i) + (u^{k-1})^T A_i x_i), \quad i = 1, \dots, B$

Dual decomposition

Consider

$$\min_{x} \sum_{i=1}^{B} f_i(x_i) \quad \text{subject to} \quad Ax = b$$

Here $x = (x_1, \dots, x_B) \in \mathbb{R}^n$ divides into B blocks of variables, with each $x_i \in \mathbb{R}^{n_i}$. We can also partition A accordingly:

$$A = [A_1 \dots A_B], \text{ where } A_i \in \mathbb{R}^{m \times n_i}$$

 $x_i^k \in \arg\min_{x} (f_i(x_i) + (u^{k-1})^T A_i x_i), \quad i = 1, \dots, B$

Simple but powerful observation, in calculation of subgradient, is that the minimization decomposes into B separate problems:

$$x^{\mathsf{new}} \in \arg\min_{x} \left(\sum_{i=1}^{B} f_i(x_i) + u^T A x \right)$$

 $\Rightarrow x_i^{\mathsf{new}} \in \arg\min_{x} \left(f_i(x_i) + u^T A_i x_i \right), \quad i = 1, \dots, B$

Can think of these steps as:

• **Broadcast:** Send u to each of the B processors, each optimizes in parallel to find x_i . • **Gather:** Collect $A_i x_i$ from each processor. update the global dual variable u.

$$u^{k} = u^{k-1} + \alpha_{k} \left(\sum_{i=1}^{B} A_{i} x_{i}^{k} - b \right)$$

Inequality constraints

Consider the optimization problem:

$$\min_{x} \sum_{i=1}^{B} f_i(x_i)$$
 subject to $\sum_{i=1}^{B} A_i x_i \leq b$

Inequality constraints

Consider the optimization problem:

$$\min_{x} \sum_{i=1}^{B} f_i(x_i)$$
 subject to $\sum_{i=1}^{B} A_i x_i \leq b$

Using dual decomposition, specifically the projected subgradient method, the iterative steps can be expressed as:

• The primal update step:

$$x_i^k \in \arg\min_{x} \left[f_i(x_i) + \left(u^{k-1} \right)^T A_i x_i \right], \quad i = 1, \dots, B$$

Inequality constraints

Consider the optimization problem:

$$\min_{x} \sum_{i=1}^{B} f_i(x_i) \quad \text{subject to} \quad \sum_{i=1}^{B} A_i x_i \leq b$$

Using dual decomposition, specifically the projected subgradient method, the iterative steps can be expressed as:

• The primal update step:

$$x_i^k \in \arg\min_{x_i} \left[f_i(x_i) + \left(u^{k-1} \right)^T A_i x_i \right], \quad i = 1, \dots, B$$

• The dual update step:

$$u^{k} = \left(u^{k-1} + \alpha_{k} \left(\sum_{i=1}^{B} A_{i} x_{i}^{k} - b\right)\right)_{+}$$

where $(u)_+$ denotes the positive part of u, i.e., $(u_+)_i = \max\{0, u_i\}$, for $i = 1, \dots, m$.

Dual ascent

• System Overview: Consider a system with B units, where each unit independently chooses its decision variable x_i , which determines how to allocate its goods.

- System Overview: Consider a system with B units, where each unit independently chooses its decision variable x_i , which determines how to allocate its goods.
- Resource Constraints: These are limits on shared resources, represented by the rows of A. Each component of the dual variable u_j represents the price of resource j.

Dual ascent

- System Overview: Consider a system with B units, where each unit independently chooses its decision variable x_i , which determines how to allocate its goods.
- Resource Constraints: These are limits on shared resources, represented by the rows of A. Each component of the dual variable u_j represents the price of resource j.
- Dual Update Rule:

$$u_j^{\mathsf{new}} = (u_j - ts_j)_+, \quad j = 1, \dots, m$$

where $s = b - \sum_{i=1}^{B} A_i x_i$ represents the slacks.

Dual ascent

- System Overview: Consider a system with B units, where each unit independently chooses its decision variable x_i , which determines how to allocate its goods.
- Resource Constraints: These are limits on shared resources, represented by the rows of A. Each component of the dual variable u_j represents the price of resource j.
- Dual Update Rule:

$$u_j^{\mathsf{new}} = (u_j - ts_j)_+, \quad j = 1, \dots, m$$

where $s = b - \sum_{i=1}^{B} A_i x_i$ represents the slacks.

• Price Adjustments:

- System Overview: Consider a system with B units, where each unit independently chooses its decision variable x_i , which determines how to allocate its goods.
- Resource Constraints: These are limits on shared resources, represented by the rows of A. Each component of the dual variable u_j represents the price of resource j.
- Dual Update Rule:

$$u_j^{\mathsf{new}} = (u_j - ts_j)_+, \quad j = 1, \dots, m$$

where $s = b - \sum_{i=1}^{B} A_i x_i$ represents the slacks.

- Price Adjustments:
 - Increase price u_j if resource j is over-utilized $(s_j < 0)$.

- System Overview: Consider a system with B units, where each unit independently chooses its decision variable x_i , which determines how to allocate its goods.
- Resource Constraints: These are limits on shared resources, represented by the rows of A. Each component of the dual variable u_i represents the price of resource j.
- Dual Update Rule:

$$u_j^{\mathsf{new}} = (u_j - ts_j)_+, \quad j = 1, \dots, m$$

where $s = b - \sum_{i=1}^{B} A_i x_i$ represents the slacks.

- Price Adjustments:
 - Increase price u_i if resource i is over-utilized ($s_i < 0$).
 - **Decrease price** u_j if resource j is under-utilized $(s_j > 0)$.

- System Overview: Consider a system with B units, where each unit independently chooses its decision variable x_i , which determines how to allocate its goods.
- Resource Constraints: These are limits on shared resources, represented by the rows of A. Each component of the dual variable u_i represents the price of resource j.
- Dual Update Rule:

$$u_j^{\mathsf{new}} = (u_j - ts_j)_+, \quad j = 1, \dots, m$$

where $s = b - \sum_{i=1}^{B} A_i x_i$ represents the slacks.

- Price Adjustments:
 - Increase price u_i if resource j is over-utilized ($s_i < 0$).
 - Decrease price u_i if resource j is under-utilized $(s_i > 0)$.
 - Never let prices get negative; hence the use of the positive part notation (.)+.

Dual ascent disadvantage: convergence requires strong conditions. Augmented Lagrangian method transforms the primal problem:

$$\min_{x} f(x) + \frac{\rho}{2} \|Ax - b\|^{2}$$
 s.t. $Ax = b$

Dual ascent disadvantage: convergence requires strong conditions. Augmented Lagrangian method transforms the primal problem:

$$\min_{x} f(x) + \frac{\rho}{2} ||Ax - b||^{2}$$
s.t. $Ax = b$

where $\rho > 0$ is a parameter. This formulation is clearly equivalent to the original problem. The problem is strongly convex if matrix A has full column rank.

Dual ascent disadvantage: convergence requires strong conditions. Augmented Lagrangian method transforms the primal problem:

$$\min_{x} f(x) + \frac{\rho}{2} ||Ax - b||^{2}$$
s.t. $Ax = b$

where $\rho>0$ is a parameter. This formulation is clearly equivalent to the original problem. The problem is strongly convex if matrix A has full column rank.

Dual gradient ascent: The iterative updates are given by:

$$x_k = \arg\min_{x} \left[f(x) + (u_{k-1})^T A x + \frac{\rho}{2} ||Ax - b||^2 \right]$$

$$u_k = u_{k-1} + \rho (Ax_k - b)$$

Notice step size choice $\alpha_k = \rho$ in dual algorithm. Why?

Since x_k minimizes the function:

$$f(x) + (u_{k-1})^T A x + \frac{\rho}{2} ||Ax - b||^2$$

over x, we have the stationarity condition:

$$0 \in \partial f(x_k) + A^T \left(u_{k-1} + \rho (Ax_k - b) \right)$$

which simplifies to:

$$\partial f(x_k) + A^T u_k$$

Notice step size choice $\alpha_k = \rho$ in dual algorithm. Why?

Since x_k minimizes the function:

$$f(x) + (u_{k-1})^T A x + \frac{\rho}{2} ||Ax - b||^2$$

over x, we have the stationarity condition:

$$0 \in \partial f(x_k) + A^T \left(u_{k-1} + \rho (Ax_k - b) \right)$$

which simplifies to:

$$\partial f(x_k) + A^T u_k$$

This represents the stationarity condition for the original primal problem; under mild conditions, $Ax_k - b \to 0$ as $k \to \infty$, so the KKT conditions are satisfied in the limit and x_k , u_k converge to the solutions.

Advantage: The augmented Lagrangian gives better convergence.

Notice step size choice $\alpha_k = \rho$ in dual algorithm. Why?

Since x_k minimizes the function:

$$f(x) + (u_{k-1})^T A x + \frac{\rho}{2} ||Ax - b||^2$$

over x, we have the stationarity condition:

$$0 \in \partial f(x_k) + A^T \left(u_{k-1} + \rho (Ax_k - b) \right)$$

which simplifies to:

$$\partial f(x_k) + A^T u_k$$

This represents the stationarity condition for the original primal problem; under mild conditions, $Ax_k - b \to 0$ as $k \to \infty$, so the KKT conditions are satisfied in the limit and x_k , u_k converge to the solutions.

- Advantage: The augmented Lagrangian gives better convergence.
- **Disadvantage:** We lose decomposability! (Separability is ruined)

Alternating direction method of multipliers or ADMM aims for the best of both worlds. Consider the following optimization problem:

Minimize the function:

$$\min_{x,z} f(x) + g(z)$$

$$\text{s.t. } Ax + Bz = c$$

Alternating direction method of multipliers or ADMM aims for the best of both worlds. Consider the following optimization problem:

Minimize the function:

$$\min_{x,z} f(x) + g(z)$$

$$\text{s.t. } Ax + Bz = c$$

We augment the objective to include a penalty term for constraint violation:

$$\min_{x,z} f(x) + g(z) + \frac{\rho}{2} ||Ax + Bz - c||^2$$

$$\text{s.t. } Ax + Bz = c$$

Alternating direction method of multipliers or ADMM aims for the best of both worlds. Consider the following optimization problem:

Minimize the function:

$$\min_{x,z} f(x) + g(z)$$

s.t. Ax + Bz = c

We augment the objective to include a penalty term for constraint violation:

$$\min_{x,z} f(x) + g(z) + \frac{\rho}{2} ||Ax + Bz - c||^2$$
s.t. $Ax + Bz = c$

where $\rho > 0$ is a parameter. The augmented Lagrangian for this problem is defined as:

$$L_{\rho}(x,z,u) = f(x) + g(z) + u^{T}(Ax + Bz - c) + \frac{\rho}{2} ||Ax + Bz - c||^{2}$$

⊕ ດ **ø**

ADMM repeats the following steps, for $k=1,2,3,\ldots$:

1. Update *x*:

$$x_k = \arg\min_{x} L_{\rho}(x, z_{k-1}, u_{k-1})$$

ADMM repeats the following steps, for k = 1, 2, 3, ...:

1. Update *x*:

$$x_k = \arg\min_{x} L_{\rho}(x, z_{k-1}, u_{k-1})$$

2. Update z:

$$z_k = \arg\min_{z} L_{\rho}(x_k, z, u_{k-1})$$

ADMM repeats the following steps, for k = 1, 2, 3, ...:

1. Update *x*:

$$x_k = \arg\min_{x} L_{\rho}(x, z_{k-1}, u_{k-1})$$

2. Update z:

$$z_k = \arg\min_{z} L_{\rho}(x_k, z, u_{k-1})$$

3. Update u:

$$u_k = u_{k-1} + \rho(Ax_k + Bz_k - c)$$

Introduction to ADMM

ADMM repeats the following steps, for k = 1, 2, 3, ...:

1. Update *x*:

$$x_k = \arg\min_{x} L_{\rho}(x, z_{k-1}, u_{k-1})$$

2. Update z:

$$z_k = \arg\min_{z} L_{\rho}(x_k, z, u_{k-1})$$

3. Update u:

$$u_k = u_{k-1} + \rho(Ax_k + Bz_k - c)$$

Introduction to ADMM

ADMM repeats the following steps, for k = 1, 2, 3, ...:

1. Update *x*:

$$x_k = \arg\min_{x} L_{\rho}(x, z_{k-1}, u_{k-1})$$

2. Update z:

$$z_k = \arg\min_{z} L_{\rho}(x_k, z, u_{k-1})$$

3. Update u:

$$u_k = u_{k-1} + \rho(Ax_k + Bz_k - c)$$

Note: The usual method of multipliers would replace the first two steps by a joint minimization:

$$(x^{(k)}, z^{(k)}) = \arg\min_{x, z} L_{\rho}(x, z, u^{(k-1)})$$

Introduction to ADMM

Example: Alternating Projections

Consider finding a point in the intersection of convex sets $U, V \subseteq \mathbb{R}^n$:

$$\min_{x} I_{U}(x) + I_{V}(x)$$

To transform this problem into ADMM form, we express it as:

$$\min_{x,z} I_U(x) + I_V(z)$$
 subject to $x-z=0$

Each ADMM cycle involves two projections:

$$x_k = \arg\min_{x} P_U (z_{k-1} - w_{k-1})$$

$$z_k = \arg\min_{z} P_V (x_k + w_{k-1})$$

$$w_k = w_{k-1} + x_k - z_k$$

Sources

• Ryan Tibshirani. Convex Optimization 10-725

