准考证号		姓名
	/ + 11. # L # E T # 1	

(在此卷上答题无效)

福建省部分地市 2024 届高中毕业班第一次质量检测

数学试题

2024.1

本试卷共4页,22小题,满分150分,考试用时120分钟. 注意事项:

- 1. 答卷前, 考生务必将自己的学校, 班级和姓名填在答题卡上, 正确粘贴条形码.
- 2. 作答选择题时, 用2B铅笔在答题卡上将对应答案的选项涂黑.
- 3. 非选择题的答案必须写在答题卡各题目的指定区域内相应位置上,不准使用铅笔和涂改液.
 - 4. 考试结束后, 考生上交答题卡.
- 一、单项选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。
- 1. 已知 $z \cdot i = z + 1$ (i 为虚数单位),则 |z| =A. $\frac{1}{2}$ B. $\frac{\sqrt{2}}{2}$ C. 1
 D. $\sqrt{2}$
- 2. 设集合 M={x|-2 ≤x≤2}, N={y|y=2*+1}, 则 M∪N=
 A. [-2,+∞)
 B. (1,2]
 C. [1,2]
 D. (1,+∞)
- 3. 已知直线 l 与曲线 $y=x^3-x$ 在原点处相切,则 l 的倾斜角为
- A. $\frac{\pi}{6}$ B. $\frac{\pi}{4}$ C. $\frac{3\pi}{4}$ D. $\frac{5\pi}{6}$ 4. 已知 a, b 为单位向量, \ddot{a} |a+b| = |a-b|, 则 a+b 与 a-b 的夹角为
- 4. $\Box \Lambda u$, b 为手位问重,石|u+b|=|u-b|,则 u+b 与 u-b 的夹用为
- A. $\frac{\pi}{3}$ B. $\frac{\pi}{2}$ C. $\frac{2\pi}{3}$ D. $\frac{3\pi}{4}$ 5. 已知f(x)为定义在**R**上的奇函数,当x<0时, $f(x)=x^2-2x+1$,则 $f(2)+f(0)=x^2+3x+1$
- A. 2 B. 1 C. -8 D. -9
- 6. 已知 $a=x+\frac{1}{x}$, $b=e^x+e^{-x}$, $c=\sin x+\sqrt{3}\cos x$, 则下列结论错误的为
 - A. $\exists x \in [-1,1], \ a > c$ B. $\exists x \in [-1,1], \ b > c$ C. $\exists x \in [-1,1], \ a < c$ D. $\exists x \in [-1,1], \ b < c$
- 7. 传说古希腊单达哥拉斯学派的数学家用沙粒和小石子来研究数,他们根据沙粒或小石子所排列的形状把数分成许多类,如图所示的1,5,12,22被称为五边形数,将所有的五边形数从小到大依次排列,则其第8个数为
 - A. 51 B. 70 C. 92 D. 117

数学试题 第1页 (共4页)

8. 已知函数f(x)的定义域为 $\mathbf{R}, \forall x, y \in \mathbf{R}, f(x+1)f(y+1) = f(x+y) - f(x-y)$, 若 $f(0) \neq 0$, 则f(2024) =

A. -2

B. -4

C. 2

D. 4

- 二、多项选择题:本题共 4 小题,每小题 5 分,共 20 分。在每小题给出的四个选项中,有多项符合题目要求。全部选对的得 5 分,部分选对的得 2 分,有选错的得 0 分。
- 9. 已知函数 $f(x)=2\sin(2x-\frac{\pi}{3})$,则

已知 $\triangle ABC$ 的内角 A , B , C 的对边分别为 a , b , c , 且 $a^2\cos B + a^2\cos A = \pi$, α , α

C. f(x)在区间 $\left[0, \frac{\pi}{3}\right]$ 上单调递增

D. 若f(x)的图象关于直线 $x=x_0$ 对称,则 $\sin 2x_0=\frac{1}{2}$

- 10. 已知甲、乙两组数据分别为:20,21,22,23,24,25 和 a,23,24,25,26,27,若乙组数据的平均数比甲组数据的平均数大 3,则
 - A. 甲组数据的第70百分位数为23
- B. 甲、乙两组数据的极差相同
- C. 乙组数据的中位数为 24.5
- D. 甲、乙两组数据的方差相同
- 11. 设椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 的左、右焦点分别为 F_1, F_2 , 过 F_1 的直线与 C 交于 A ,B 两点,若 $|F_1F_2| = 2$,且 $\triangle ABF_2$ 的周长为 8,则

A. a=2

B. C 的离心率为 $\frac{1}{4}$

C. | AB 可以为π

- D. ∠BAF。可以为直角
- 12. 如图所示,在五面体 ABCDEF 中,四边形 ABCD 是矩形, $\triangle ABF$ 和 $\triangle DCE$ 均是等边三角形, 且 $AB=2\sqrt{3}$, EF=x(x>0),则
 - A. EF//平面ABCD
 - B. 二面角 A-EF-B 随着 x 的减小而减小
 - C. 当 BC=2 时, 五面体 ABCDEF 的体积 V(x) 最大值为 $\frac{27}{2}$
 - D. 当 $BC = \frac{3}{2}$ 时,存在 x 使得半径为 $\frac{\sqrt{3}}{2}$ 的球能内含于五面 Φ ABCDEF

三、填空题:本大题共4小题,每小题5分,共20分。

- 13. 若 $\sin(\alpha + \frac{\pi}{4}) = -\frac{3}{5}$,则 $\cos(\alpha \frac{\pi}{4}) = ____.$
- 14.《九章算术》、《数书九章》、《周髀算经》是中国古代数学著作,甲、乙、丙三名同学计划每人从中选择一种来阅读,若三人选择的书不全相同,则不同的选法有______种.
- 15. 已知平面 α 的一个法向量为 n = (1,0,1), 且点 A(1,2,3) 在 α 内,则点 B(1,1,1)到 α 的距 离为 ______.

四、解答题:本大题共6小题,共70分。解答应写出文字说明,证明过程或演算步骤。

17. (10分)

已知 $\triangle ABC$ 的内角A,B,C 的对边分别为a,b,c,且 $a^2\cos B + ab\cos A = 2c$.

- (1) 求 a;
- (2) 若 $A = \frac{2\pi}{3}$,且 $\triangle ABC$ 的周长为 $2+\sqrt{5}$,求 $\triangle ABC$ 的面积.

18. (12分)

如图,在四棱锥 E-ABCD 中, AD//BC, 2AD=BC=2, AB= $\sqrt{2}$, AB \bot AD, EA \bot 平面 ABCD, 过点 B 作平面 α \bot BD.

- (1) 证明:平面 α//平面 EAC;
- (2) 已知点 F 为棱 EC 的中点,若 EA=2,求直线 AD 与平面 FBD 所成角的正弦值.

数学试题 第3页 (共4页)

19. (12分)

已知数列 $\{a_n\}$ 的前 n 项和为 S_n , $a_2=2a_1=4$, 当 $n \in \mathbb{N}^*$, 且 $n \ge 2$ 时, $S_{n+1}=3S_n-2S_{n-1}$.

- (2) 设 $b_n = \frac{a_n}{(a_n-1)(a_{n+1}-1)}$, 记数列 $\{b_n\}$ 的前 n 项和为 T_n , 若 $T_m + \frac{1}{7 \times 2^{m-2}} > 1$, 求正整数 m 的最小值.

20. (12分)

已知甲、乙两支登山队均有 n 名队员,现有新增的 4 名登山爱好者 a,b,c,d 将依次通过摸出小球的颜色来决定其加入哪支登山队,规则如下:在一个不透明的箱中放有红球和黑球各 2 个,小球除颜色不同之外,其余完全相同.先由第一名新增登山爱好者从箱中不放回地摸出 1 个小球,再另取完全相同的红球和黑球各 1 个放入箱中;接着由下一名新增登山爱好者摸出 1 个小球后,再放入完全相同的红球和黑球各 1 个,如此重复,直至所有新增登山爱好者均摸球和放球完毕.新增登山爱好者若摸出红球.则被分至甲队.否则被分至乙队.

- (1) 求 a,b,c 三人均被分至同一队的概率;
 - (2) 记甲、乙两队的最终人数分别为 n_1, n_2 , 设随机变量 $X=|n_1-n_2|$, 求 E(X),

21. (12分)

已知函数 $f(x)=a \ln x - \frac{x-1}{x+1}$ 有两个极值点 x_1, x_2 .

- (1) 求实数 a 的取值范围;
- (2) 证明: $\frac{f(x_1)-f(x_2)}{x_1-x_2} > \frac{a-2a^2}{a-1}$.

22. (12分)

在平面直角坐标系 xOy 中,点 P(1,0),点 A 为动点,以线段 AP 为直径的圆与 y 轴相切,记 A 的轨迹为 Γ ,直线 AP 交 Γ 于另一点 B.

- (1) 求 Γ 的方程;
- (2) $\triangle OAB$ 的外接圆交 Γ 于点 C(不与 O , A , B 重合) , 依次连接 O , A , C , B 构成凸四边形 OACB , 记其面积为 S .
 - (i) 证明: △ABC 的重心在定直线上:
 - (ii) 求 S 的取值范围.