## Summarizing Visual Data Using Bidirectional Similarity

By Hema Sailaja

### Visual Summary

#### Goal:

Produce a smaller image that summarizes the content of the larger image



### Comparing two images

- Completeness
- Coherence



### Similarity Distance



#### Bidirectional similarity measure

Error or dissimilarity measure

$$d(S,T) = \underbrace{\frac{1}{N_S} \sum_{P \subset S} \min_{Q \subset T} D(P,Q)}_{\substack{d \in S,T \\ Q \subset T}} + \underbrace{\frac{1}{N_T} \sum_{Q \subset T} \min_{P \subset S} D(Q,P)}_{\substack{d \in S,T \\ Q \subset T}}$$

Where,

S and T are the source and Target images, P and Q are the patches of fixed size of S and T. D is the Sum of Squared Difference between the patches.

# The Summarization (Retargeting) Algorithm

# The Iterative Update rule: contribution of a pixel to the coherence measure

- Let q be a pixel of T, q lies inside m neighboring patches Q<sub>1</sub>,Q<sub>2</sub>,....Q<sub>m</sub>
- These patches are matched to P<sub>1</sub>, P<sub>2</sub>, ....P<sub>m</sub> in source image S
- The positions corresponding to q in P<sub>1</sub>, P<sub>2</sub>, ....P<sub>m</sub> are p<sub>1</sub>, p<sub>2</sub>, ....p<sub>m</sub>

Hence, the contribution is

$$\frac{1}{N_T} \sum_{i=1}^{m} \|S(p_i) - T(q)\|^2$$

# The Iterative Update rule: contribution of a pixel to the completeness measure

- Let q be a pixel of T,
- q lies inside n neighboring patches  $\hat{Q}_1, \hat{Q}_2, \cdots, \hat{Q}_n$  that are the nearest patch to some patches of S  $\hat{P}_1, \hat{P}_2, \cdots \hat{P}_n$
- The positions corresponding to q in  $\hat{P}_1, \hat{P}_2, \dots, \hat{P}_m$  are  $\hat{p}_1, \dots, \hat{p}_m$

Hence, the contribution is

$$\frac{1}{N_S} \sum_{i=1}^{n} \|S(\hat{p}_i) - T(q)\|^2$$

#### **Color Update**

The best T(q) should minimise

$$\frac{1}{N_S} \sum_{j=1}^n (S(\hat{p}_j) - T(q))^2 + \frac{1}{N_T} \sum_{i=1}^m (S(p_i) - T(q))^2$$

**Color Update:** 

$$T(q) = \frac{\frac{1}{N_S} \sum_{j=1}^{n} S(\hat{p}_j) + \frac{1}{N_T} \sum_{i=1}^{m} S(p_i)}{\frac{n}{N_S} + \frac{m}{N_T}}$$

### Iterative Update rule

Given a source signal S, we want to reconstruct a target signal T that optimizes the similarity measure

$$T_{output} = \arg\min_{T} d(S, T).$$

### **Gradual Resizing**

- When the target has a very different size from the source: what is a good initial guess?
- Iterative process: downsample the image and apply the reconstruction



#### Visual Summary



## **Applications**

### Image Montage



### Image Completion and Synthesis



### Photo Reshuffling



#### **Automated Optimal Cropping**



#### **Incorporating Non Uniform Importance**







Our summary without weights







Wolf et al.



# Summarization with object removal constraints



## Thank you