МФТИ

Вопрос по выбору

Изучение падения пружины слинки (slinky)

Выполнили: Манро Эйден (Б01-308) Солодилов Михаил (Б01-307)

Введение

Цель работы: исследовать некоторые динамические параметры слинки: время шага, отношение массы пружинки, участвующей в движении к её полной массе; проверить схожесть теоретических и экспериментальных результатов.

Оборудование: слинки, лестница, сооруженная из коробок, секундомер, линейка.

Слинки — игрушка-пружина, созданная в 1943 году в США Ричардом Джеймсом. Это пружинка с очень малым коэффициентом упругости, диаметр ее витков — от 5 до 10 см, количество витков — от 30 до 100. А именно это свойство и позволяет проводить с ней интересные опыты, которые невозможны с обычной пружинкой. Самое любопытное заключается в том, что слинки может спускаться по ступенькам лестницы (или по наклонной плоскости). Достаточно, установив слинки в вертикальном положении на краю ступеньки, подтолкнуть ее верхний конец в направлении нижней ступеньки, и слинки зашагает. Пружинка будет как бы перетекать с верхней ступеньки на нижнюю. Когда вся пружинка перетечет, верхний конец, описав в воздухе дугу, шагнет на следующую ступеньку, и движение продолжится.

N	M , Γ	l_0, cm	L_0 , cm
38	35	6.1	120.0

Таблица 1: Данные системы

- N количество витков.
- \bullet M масса пружины.
- \bullet l_0 высота пружины в недеформированном состоянии.
- \bullet L_0 длина пружины растянутой под собственным весом.

Погрешности

• Линейка: $\sigma_{\text{лин}} = 0.5 \text{ мм}$

• Видеокамера: $\sigma_{\rm cek} = 0.008 \ {\rm c}$

• Электронные весы: $\sigma_{\text{вес}} = 1 \ \Gamma$

Подвесим свободно слинки за верхний конец и найдем зависимость линейной плотности пружинки, что пропорционально числу витков на единицу длины, от расстояния до нижнего конца.

Рассмотрим некоторый участок пружинки. Пусть он находится на n-й виток, считая от нижнего конца пружинки. Если длина этого витка равна Δx_n , то:

$$\Delta k \Delta x_n = \Delta mng,$$

где Δk жесткость одного витка, Δm его масса соответственно.

Тогда получаем, что средняя линейная плотность n-го витка равна:

$$\lambda_n = \frac{\Delta m}{\Delta x_n} = \frac{\Delta k}{ng}$$

Теперь найдем расстояние от этого витка до нижнего конца пружины:

$$x_n = \sum_{i=1}^n \frac{\Delta mg}{\Delta k} i = \frac{\Delta mg}{\Delta k} \frac{n(n+1)}{2}$$

Так как жесткость последовательно соединённых пружин равна обратной сумме обратных жетскостей, т.е.:

$$\frac{1}{k} = \sum_{i=1}^{n} \frac{1}{\Delta k_i} \to \Delta k \cdot n = k$$

Получаем, что:

$$x_n = \frac{Mg}{2k} \frac{n(n+1)}{N^2} \approx \frac{Mg}{2k} \frac{n^2}{N^2},$$

Если мы подставим в качестве n=N, то получим формулу для длины L_0 пружины:

$$L_0 = \frac{Mg}{2k}$$

Отсюда найдём жесткость пружины:

$$k = \frac{Mg}{2L_0}, \ \sigma_k = k\sqrt{\left(\frac{\sigma_M}{M}\right)^2 + \left(\frac{\sigma_{L_0}}{L_0}\right)^2}$$

Итого:
$$\underline{k = 0.1430 \pm 0.0037 \, [\frac{\mathrm{H}}{\mathrm{kr}}]} \, \, (\varepsilon = 2.6\%)$$

Найдём зависимость для линейной плотности λ_n и расстояния x_n :

$$\lambda_n = \frac{kN}{gn} = \sqrt{\frac{Mk}{2gx_n}}$$

Перейдя от дискретной записи распределения линейной плотности к непрерывной получаем:

$$\lambda(x) = \sqrt{\frac{Mk}{2gx}}$$

Рис. 1: График зависимости $\lambda(x)$

Теперь мы можем оценить массу пружины, участвующей в движении. Будем считать, что искомая часть пружины эквивалентна свободно подвешенной пружине, длина которой - высота ступеньки h. Используя только что полученную зависимость, оценим массу:

$$m = \int_0^h \lambda(x)dx = \int_0^h \sqrt{\frac{Mk}{2gx}}dx = \sqrt{\frac{2Mkh}{g}}$$

Таким образом отношение массы, участвующей в движении, к полной:

$$\frac{m}{M} = \sqrt{\frac{2kh}{Mg}} = \sqrt{\frac{h}{L_0}}$$

Чтобы определить время одного шага слинки, воспользуемся вторым законом Ньютона. Пусть начальная скорость верхнего витка v. Тогда

$$v\Delta m = F\Delta t$$
,

где F — сила натяжения пружинки в верхней точке, Δm — масса пружинки, которая пришла в движение за время Δt . Если λ_0 — линейная плотность пружинки в месте начала движения, то $\Delta m = \lambda_0 v \Delta t$, и

$$\lambda_0 v^2 = F$$

Очевидно, что:

$$\lambda_0 = \sqrt{\frac{Mk}{2gh}}$$
, a $F = m_0 g = \sqrt{2Mgkh}$

Поэтому для скорости «разматывания» получаем

$$v = \sqrt{\frac{F}{\lambda_0}} = \sqrt{2gh}.$$

Пусть за время Δt «размоталась» часть пружинки массой $\Delta m = \lambda_0 v \Delta t$. Подставив значения λ_0 и v, имеем:

$$\Delta t = \frac{\Delta m}{\sqrt{Mk}}.$$

Откуда получаем время одного шага слинки:

$$T = \sum \Delta t_i = \frac{1}{\sqrt{Mk}} \sum \Delta m_i = \sqrt{\frac{M}{k}} = \sqrt{\frac{2L_0}{g}}.$$

Эксперимент

Для проверки этой формулы мы построили лестницу из 5 ступенёк, используя коробки и книги, и стали запускать пружинку, записывая этот процесс на видео. Затем в видеоредакторе мы измерили, сколько времени занимало весь спуск, таким образом получая среднее время шага. Однако мы измеряли рассматривали лишь 4 шага, так как на первый шаг мог сильно влиять запуск пружинки.

N	Время спуска, с	Время одного шага T , с
1	1.97	0.49
2	1.90	0.48
3	1.90	0.48
4	1.88	0.47
5	1.93	0.48
6	1.90	0.48
7	1.93	0.48
8	1.93	0.48
9	1.95	0.49
10	1.92	0.48

Таблица 2: Спуски пружинки

Вычислим стандратное отклонение:

$$\sigma_{Tcn} = \sqrt{\frac{\sum (T_i - \overline{T})^2}{N}} = 0.007c$$

Получим погрешность времени шага:

$$\sigma_T = \sqrt{\sigma_{T\text{c.t.}}^2 + \sigma_t^2} = 0.011c$$

Итого:
$$T = 0.48 \pm 0.011 \text{ [c] } (\varepsilon = 2.2\%)$$

По нашей формуле $T = \sqrt{\frac{2L_0}{g}} = 0.49 \ {\rm c}$

$$\Delta_T = 0.01 \; (\varepsilon_T = 2.96\%)$$

Вывод

Мы с достаточно хорошей точностью ($\varepsilon=2.96\%$) проверили зависимость времени шага пружинки слинки, выяснили, что оно не зависит от высоты ступенек, а также нашли зависимость удлинения физической пружины от её коэффициента упругости.