Преобразование Фурье, пространство Шварца

Упр. 1. Доказать, что для любого многочлена $P_m(x)$, $x \in \mathbb{R}^n$, со значениями в \mathbb{R}^m функция $P_m(x)e^{-|x|^2}$ лежит в пространстве Шварца $\mathcal{S}(\mathbb{R}^n)$.

Упр. 2 (Коммутационные соотношения). Показать, что для любой функции $u \in \mathcal{S}(\mathbb{R}^n)$ и мультииндекса $\alpha \in \mathbb{Z}_+^n$ выполняются равенства

$$\mathcal{F}_{x \to \xi} \partial_x^{\alpha} u(x) = (i\xi)^{\alpha} \mathcal{F}_{x \to \xi} u(x) ,$$

$$\mathcal{F}_{x \to \xi} \left[x^{\alpha} u(x) \right] = \left[i \frac{\partial}{\partial \xi} \right]^{\alpha} \mathcal{F}_{x \to \xi} u(x) .$$

Упр. 3. Рассмотреть последовательность функций $\{h_p(x)\}, x \in \mathbb{R}^1$, где

$$h_p(x) = \begin{cases} p, & |x| < \frac{1}{2p}, \\ 0, & |x| > \frac{1}{2p}. \end{cases}$$

Доказать, что последовательность $\{h_p(x)\}$ фундаментальна по норме пространства $H^{-1}(\mathbb{R}^1)$ и что для всякой функции $\varphi(x) \in S(\mathbb{R}^1)$ справедливо равенство

$$\lim_{p \to \infty} \int_{\mathbb{R}^1} h_p(x) \varphi(x) \, dx = \varphi(0) \, .$$

Упр. 4. Вычислить преобразование Фурье для следующих функций:

1.
$$f(x) = \frac{1}{\pi} \cdot \frac{\varepsilon}{x^2 + \varepsilon^2}$$
 $(\varepsilon > 0);$

2.
$$f(x) = \sqrt{\frac{n}{4\pi}}e^{-nx^2/4}$$
;

$$3. \ f(x) = \frac{1}{\pi} \frac{\sin nx}{x}.$$

Пространства Соболева

Упр. 5. Определить для какого максимального k функция $\varphi(x)$ принадлежит пространству $H^k(\mathbb{R}^1)$, где

$$\varphi(x) = \begin{cases} 0 \,, & x \leqslant 0 \text{ или } x \geqslant 2 \,, \\ x \,, & 0 \leqslant x \leqslant 1 \,, \\ 2 - x \,, & 1 \leqslant x \leqslant 2 \,. \end{cases}$$

Упр. 6. Дана функция $f(x) \in \mathcal{S}(\mathbb{R}^1)$ такая, что $\int_{\mathbb{R}^1} f(x) \, dx = 1$. Доказать, что последовательность $n \cdot f(nx)$ при $n \to \infty$ сходится в $H^{-1}(\mathbb{R}^1)$ к $\delta(x)$.

Упр. 7. Найти преобразование Фурье функции $f(x) = \frac{1}{x^2 - k^2 - i\varepsilon}, x \in \mathbb{R}^3, k \in \mathbb{R}^1, \varepsilon > 0.$

Упр. 8. Обобщённая функция $\delta(|x|-a), x \in \mathbb{R}^n$ из $H^{-[n/2]-1}(\mathbb{R}^n)$ определяется с помощью функционала, задаваемого равенством

$$\int_{\mathbb{R}^n} \delta(|x| - a) \varphi(x) \, dx = \int_{|x| = a} \varphi(\xi) \, d\sigma_{\xi} \,,$$

где $\varphi(x) \in H^{[n/2]-1}(\mathbb{R}^n)$, $d\sigma_{\xi}$ - элемент поверхности сферы радиуса a в \mathbb{R}^n с центром в начале координат. Доказать ограниченность функционала задачи и найти преобразование Фурье функции $\delta(|x|-a)$.

Упр. 9. Найти производную функции $\theta(x)e^{-\alpha x}$, $\alpha > 0$, где

$$\theta(x) = \begin{cases} 1, & x > 0, \\ 0, & x < 0. \end{cases}$$

Упр. 10. Упростить выражения, вычислив входящие в них производные 1 :

1.
$$\frac{1}{4\pi}(-\Delta+1)\frac{e^{-|x|}}{|x|}, x \in \mathbb{R}^3;$$

2.
$$\left(\frac{\partial}{\partial t} - a^2 \Delta\right) \frac{\theta(t) e^{-\frac{x^2}{4t}}}{2a\sqrt{\pi t}}, x, t \in \mathbb{R}^1;$$

3.
$$(\Delta + k^2) \frac{e^{ik|x|}}{2ik}, x \in \mathbb{R}^1;$$

4.
$$\Delta\left(\frac{1}{|x|}\right), x \in \mathbb{R}^3$$
.

Упр. 11. Пусть $u\in C^\infty(\mathbb{R}^n)$ и $u(x)\equiv 0$ при $|x|>\frac{\pi}{2}$. Доказать, что норма

$$||u||_s' \stackrel{\text{def}}{=} \sqrt{\sum |\hat{u}(k)|^2 (1+k^2)^s}$$
,

где $\hat{u}(k)$ есть k-ый коэффициент разложения функции u в ряд Фурье

$$u(x) = \sum \hat{u}(k)e^{ikx},$$

эквивалентна норме $||u||_s$ пространства $H^k(\mathbb{R}^n)$.

$$\frac{\partial}{\partial x_j} f(x) = \mathcal{F}_{\xi \to x}^{-1} (i\xi_j \mathcal{F}_{x \to \xi} f(x)).$$

 $^{^1\}Pi$ ри вычислении производных от функций $f(x)\in H^k(\mathbb{R}^n)$ полезно использовать тождество

Псевдодифференциальные операторы

Упр. 12. Даны символы $a = f(x_1, x_2)\xi_1^2 + \xi_2^2$ и $b = (f(x_1, x_2)\xi_1^2 + \xi_2^2)^{-1}$. Вычислить 3 первых слагаемых² символа оператора Op(a) Op(b).

Упр. 13. Дан символ $b(x,\xi) = \xi_1^2 + x_1^3 \xi_2^2$. Найти первые 2 слагаемых символа a такого, что $\operatorname{Op}(a)^2 = \operatorname{Op}(b)$.

Понятие гладкого многообразия

Упр. 14. Показать, что две стереографические проекции единичной сферы в \mathbb{R}^3 на плоскость, проходящую через центр этой сферы, определяют на ней гладкий атлас.

Теория Фредгольма

Упр. 15. Пусть H - комплексное гильбертово пространство и $x, y \in H$. Обозначим через $\widehat{(x,y)}$ угол между x и y относительно естественно индуцированного скалярного произведения в овеществлении пространства H. Верно ли, что $\cos(\widehat{x,y}) = \frac{\operatorname{Re}(x,y)}{|x|\cdot|y|}$?

Упр. 16. Пусть $\{\lambda_j\}_{j=0}^{\infty}$ - фиксированная последовательность комплексных чисел и оператор A в пространстве $\ell^2(\mathbb{Z}_+)$ определяется формулой

$$A(x_0, x_1, \dots, x_n, \dots) = (\lambda_0 x_0, \lambda_1 x_1, \dots, \lambda_n x_n, \dots).$$

Показать, что

- 1. $||A|| = \sup_{i} |\lambda_{i}|;$
- 2. A оператор конечного ранга \iff последовательность $\{\lambda_j\}$ финитна;
- 3. если $\lambda_j\mapsto 0$ при $j\to\infty,$ то A компактный оператор.

Дифференциальные формы в \mathbb{R}^n

Упр. 17. Пусть V — конечномерное векторное пространство. Показать, что для любых $a \in \Lambda^k(V)$ и $b \in \Lambda^l(V)$ выполняется

$$ab = ba \cdot (-1)^{kl} .$$

 $^{^2}$ Имеются в виду первые слагаемые ряда, эквивалентого символу композиции операторов по теореме Кона-Ниренберга.

Упр. 18. Пусть $\{e_j\}_{j=1}^n$ - базис в линейном пространстве V и $a_i = \sum_j a_{ij} e_j$ для $i \in \overline{1,n}$. Показать, что

$$a_1 \cdots a_n = k \cdot e_1 \cdots e_n \in \Lambda^n(V)$$
,

где $k = \det(a_{ij})$.

Упр. 19. Пусть на сфере $\mathbb{S}^2 \subseteq \mathbb{R}^3$ вне северного и южного полюсов выбраны стандартные сферические координаты

$$x = \cos \varphi \sin \theta ,$$

$$y = \sin \varphi \sin \theta ,$$

$$z = \cos \theta .$$

Показать, что дифференциальная 1-форма $\omega := \sin \theta \ d\varphi \ d\theta$, продолженная по непрерывности на полюса, гладка в каждой точке сферы.

Упр. 20. Найти числа Бетти и Эйлерову характеристику для следующих многообразий:

- 1. [0, 1],
- 2. \mathbb{S}^{1} ,
- 3. $[0,1] \times [0,1]$,
- $4 \mathbb{S}^1 \times \mathbb{S}^1$

Упр. 21. Вычислить когомологии де Рама с компактным носителем для многообразия $M = \mathbb{R}$.

Упр. 22. Показать, что

- 1. сфера ориентируема;
- 2. лист Мёбиуса не ориентируем.

Расслоения, связности

Упр. 23. Пусть $\nabla = d + a$ — связность. Вычислить кривизну ∇^2 .

Упр. 24. Пусть S и N - южный и северный полюса сферы \mathbb{S}^2 и $U_+ := \mathbb{S}^2 \setminus \{S\}$, $U_- := \mathbb{S}^2 \setminus \{N\}$. Тогда для любого отображения

$$A: U_+ \cap U_- \to \mathrm{Gl}(k, \mathbb{C})$$

имеем векторное расслоение $E = \begin{bmatrix} U_+ \times \mathbb{C}^k \end{bmatrix} \coprod \begin{bmatrix} U_- \times \mathbb{C}^k \end{bmatrix}$, в котором отождествляются элементы $(x,v) \in U_+ \times \mathbb{C}^k$ и $(x,A(x)v) \in U_- \times \mathbb{C}^k$ для всех $x \in U_+ \cap U_-$. Найти отображение A(x) такое, что $E \simeq T\mathbb{S}^2$, где $T\mathbb{S}^2$ есть касательное расслоение сферы с комплексной структурой, определяемой поворотом на $\frac{\pi}{2}$.

Упр. 25. Пусть $E=\operatorname{Im} P$, где $P:X\to\operatorname{Mat}(N,\mathbb{C})$ есть гладкое семейство проекторов³. Доказать, что отображение

$$\nabla = Pd : C^{\infty}(X, E) \to \Omega^{1}(X, E)$$

есть связность в расслоении E. Найти кривизну этой связности.

Упр. 26. В условиях упражнения 25 вычислить кривизну связности ∇ для проектора Ботта $P:\mathbb{C} \to \mathrm{Mat}(2,\mathbb{C}),$ определяемого соотношением

$$P(z) = \frac{1}{1+|z|^2} \begin{pmatrix} 1 & z \\ \bar{z} & |z|^2 \end{pmatrix}$$
.

 $^{^3}$ Матрица $A \in \mathrm{Mat}(N,\mathbb{C})$ называется проектором, если $A^2 = A$.