종합설계 계획서

2차원 횡단면의 3차원 복원

3조	
학번	이름
2014010786	김하은
2014010788	김홍관
2017010694	박나영
2018010702	박세영
2018010705	신영민

목차

I. 수행개요 …… 3p

Ⅱ. 수행내용 …… 4p

Ⅲ. 수행일정 ······ 6p

IV. 참고자료 …… 7p

I. 수행개요

1. 목적과 필요성

현대에는 2D에서 3D로의 복원기술이 많이 사용되고 있다. 3D프린터, 의료수학뿐만 아니라 건축설계에서도 이 개념이 많이 쓰이고 최근에는 서울시가 자율주행 시스템을 위해 서울시 전체를 3D로 구현하고 있다. 이를 위해 수학은 없어서는 안 될 중요한 학문이다.

위의 복원기술을 위해서는 수학 개념 중 수치해석 분야가 많이 응용된다. 우리는 수치해석 분야 중 보간법과 최소자승법을 사용해 횡단면을 이용한 3 차원 복원이라는 프로젝트를 진행하기로 하였다.

이 프로젝트에서는 3D 구현을 위한 수학적 개념을 학습하는 것이 목적이다. 최종적으로는 컴퓨터 언어를 이용해 구현하는 것이 목표이다. 이 과제를 통해 우리는 다양한 수치 해법들을 배우고 지금까지 배운 다양한 수학 전공을 실생활에 응용할 수 있을 것이다.

2. 목표

- 1) 2차원 횡단면을 이용해 3차원 물체를 재건하기 위한 수학적 내용과 컴퓨터 언어를 학습한다.
 - 2) 보간법, 최소자승법을 이해하고 이를 학습한다.
 - 3) 위 내용을 사용하여 MATLAB에서 모델을 구현한다.
 - 4) 최종 모델을 구현하고 다양한 도형의 단면을 사용하여 테스트한다.

Ⅱ. 수행내용

1. 선행 학습

- 2차원 횡단면을 이용해 3차원 물체를 재건하기 위해서는 수학적 내용과 컴퓨터 언어에 관한 선행 학습이 필요하다.
- 학습 방식: 각자 맡은 내용을 공부한 후 한주에 한 명씩 돌아가면서 발 표형식으로 설명해주며 피드백을 하며 학습하고, 발표에 사용했던 피피티를 사용하여 보고서를 작성한다.

1) 수학적 내용

- 보간법: 수치 해석학의 수학 분야에서 보간법은 알려진 데이터 지점의 고립점 내에서 새로운 데이터 지점을 구성하는 방식이다. 보간법에는 라그랑 주 보간법, 뉴턴 보간법, 스플라인 보간법이 있다. 우리는 이 중에서 스플라인 보간법에 집중한다. 스플라인 보간법은 전체구간을 소 구간별로 나누어저 차수의 다항식으로 매끄러운 함수를 구하는 방법이다.
- 최소자승법: 해 방정식을 근사적으로 구하는 방법으로, 근사적으로 구하려는 해와 실제 해의 오차의 제곱의 합이 최소가 되는 해를 구하는 방법이다. 이 방법은 값을 정확하게 측정할 수 없는 경우에 유용하게 사용될 수있으며, 특히 계의 방정식이 어떤 형태인지를 알고 있을 때 방정식의 상수값들을 추정하는 데에 사용된다.

2) 컴퓨터 언어

- MATLAB: MATLAB은 수식계산에 탁월한 기능과 간편성을 제공하는 컴퓨터 언어이다. 우리가 사용할 선형대수, 수치계산법 등 수학에서 풀기 어려운 복잡한 문제 풀이에 도움이 된다.

2. 재건 과정

- 여러 횡단면의 경계를 점으로 나눈다. 이때 각 면에 대한 점의 개수는 동일하게 한다. 각 면에 대한 점들에 대해 점들끼리 매치를 시킨다. 매치 된 점들을 사용해 보간법과 최소자승법을 사용하여 횡단면 사잇값을 예측한다. 횡단면 사잇값을 예측 후 이를 매트랩을 이용해 그래픽으로 나타낸다.

3. 오차 확인

-오차 확인: 다양한 도형의 단면을 재건하기 위해 보간법과 최소자승법을 이용해 보았다. 이 둘을 사용한 결과에 대해 원래의 도형과 비교해 오차를 구하고 어떤 방법이 더 오차가 작게 나오는지 효율이 높은가에 대해 이야기해본다.

Ⅲ. 수행일정

일시	내용
1주차	팀 구성 및 주제 설정
2주차	계획안 작성 및 발표
3주차	매트랩 기초 학습
(세영)	
4주차	수치 해석학 학습
(나영)	- 라그랑지 보간법 - 메트래 신승
5주차	- 매트랩 실습 수치 해석학 학습(2)
(하은)	- 스플라인 보간법
(아도)	- 매트랩 실습 수치 해석학 학습(3)
6주차	
(영민)	- 스플라인 보간법(2) - 매트랩 실습
7주차	수치 해석학 학습(4)
(홍관)	- 최소자승법
8주차	- 매트랩 실습 중간 보고서 작성 및 발표
	수치해석학 학습(5)
9주차	- 최소자승법(2)
(세영)	- 매트랩 실습
10주차	보간법을 이용한 3차원 복원
(나영)	그 단 다 된 기 한 기 한 기 한
11주차	최소자승법을 이용한 3차원 복원
(하은)	10 10 10 10 10 10
12주차	예제에 적용하기
(영민)	, , , , , , , , , , , , , , , , , , , ,
13주차	다양한 도형에 적용 및 오차 분석
(홍관)	
14주차	기말 보고서 작성 및 검토
15주차	기말 보고서 발표

IV. 참고자료

- [1] https://zdnet.co.kr/view/?no=20200618092955
- [2] https://ko.wikipedia.org/wiki/%EB%B3%B4%EA%B0%84%EB%B2%95
- [3] https://ko.wikipedia.org/wiki/%EC%B5%9C%EC%86%8C%EC%A0%9C%EA%B3%B1%EB%B2%95
- [3] 이공학을 위한 MATLAB 활용 수치해석(서적)
- [4] https://kr.mathworks.com/products/matlab.html