- 1. (1) Proof. By the fundamental theorem of algebra, the irreducible elements in R are polynomials of degree one. So we assume that f = ax + b, where $a, b \in \mathbb{C}$ and a is nonzero. Now for any $g \in R$, note that R is an Euclidean domain, we can write $g = f \cdot h + r$, where $h, r \in R$ and $\deg(r) < \deg(f)$. Since $\deg(f) = 1$, r is a constant. Thus we have $R/\langle f \rangle$ is a subfield of \mathbb{C} . Consider the set $\{ax + c : c \in C\}$. The projection of this set under f is exactly the set \mathbb{C} . Therefore we have $R/\langle f \rangle = \mathbb{C}$.
 - (2) *Proof.* By the fundamental theorem of algebra, f is of degree one or of degree two and has delta $\Delta < 0$.

Case 1: f = ax + b, where $a, b \in \mathbb{R}$ and a is nonzero. Consider the set $\{ax + c : c \in \mathbb{R}\} \subset R$, the projection of this set under f is exactly the set \mathbb{R} . So \mathbb{R} is a subfield of a field isomorphic to $R/\langle f \rangle$. Note that R is a Euclidean domain, so every $g \in R$ can be written as $g = f \cdot h + r$, where $h, r \in R$ and $\deg(r) < \deg(f) = 1$. Thus $\deg(r) = 0$, r is a constant. Therefore $R/\langle f \rangle \cong \mathbb{R}$.

Case 2: $f = ax^2 + bx + c$, where $a, b, c \in \mathbb{R}$, a is nonzero and $\Delta = b^2 - 4ac < 0$. Since R is a Euclidean domain, any $g \in R$ can be written as $g = f \cdot h + r$, where $h, r \in R$ and $\deg(r) < \deg(f) = 2$. So r has degree one or two. Thus $R/\langle f \rangle$ is isomorphic to a subfield of \mathbb{C} . And the set $\{ax^+bx+d:d\in\mathbb{R}\}$ and the set $\{ax^2+ex+c:e\in\mathbb{R}\}$ shows that $R/\langle f \rangle$ is isomorphic to \mathbb{C} itself. Therefore either $R/\langle f \rangle \cong \mathbb{R}$ or $R/\langle f \rangle \cong \mathbb{C}$. \square

- 2. (1) *Proof.* Assume to the contrary that f is reducible. Then f has a linear factor since f is a cubic function. However f(0) = f(1) = f(2) = 1, which means f does not have linear factor. Thus f is irreducible. This field has $3^3 = 27$ elements.
 - (2) Solution.

	x^2	$x^2 + 1$	$x^2 + 2$	$x^2 + x$	$x^2 + x + 1$	$x^2 + x + 2$	$x^2 + 2x$	$x^2 + 2x + 1$	$x^2 + 2x + 2$
x^2	$x^2 + 2x$	$2x^2 + 2x$	2x	$x^2 + x + 2$	$2x^2 + x + 2$	x+2	$x^2 + x + 1$	$2x^2 + x + 1$	x+1
$x^2 + 1$		2x+1	$x^2 + 2x + 2$	$2x^2 + x + 2$	x	$x^2 + x + 1$	$2x^2 + 1$	2	x^2
$x^2 + 2$			$2x^2 + 2x + 1$	2x+2	$x^2 + 2x + 1$	$2x^2 + 2x$	2x+1	$x^2 + 2x$	$2x^2 + 2x + 2$
$x^2 + x$				$2x^2 + x + 1$	2x + 1	$x^2 + 1$	2x	x^2	$2x^{2} + x$
$x^2 + x + 1$					$x^2 + 2$	$2x^2 + x$	$x^2 + x$	$2x^2 + 2x + 1$	2
$x^2 + x + 2$						2x+2	$2x^2$	x+2	$x^2 + 2x + 1$
$x^2 + 2x$							$2x^2 + 2$	2x+2	$x^2 + x + 2$
$x^2 + 2x + 1$								$x^2 + x$	$2x^2 + 1$
$x^2 + 2x + 2$									2x

- 3. (1) Solution. f is irreducible over \mathbb{Q} . By Eisenstein's Criteria, $3|a_0, a_1, \ldots, a_8$, but $3 \nmid a_9$ and $9 \nmid a_0$.
 - (2) Solution. f is irreducible over \mathbb{Q} . Take p=2, note that $\pi_2(f)=x^4+x+1$ has no root over $\mathbb{Z}[x]$, thus it has no proper factorization over $\mathbb{Z}[x]$, and therefore is irreducible over $\mathbb{Q}[x]$.
 - (3) Solution. f is irreducible over \mathbb{Q} . Take p=3, note that $\pi_2(f)=x^4+x^3+2x+1$ has no root over $Z_3[x]$ ($\pi_2(f)(0)=1,\pi_2(f)(1)=2,\pi_2(f)(2)=2$), thus it has no proper factorization over $\mathbb{Z}[x]$, and therefore is irreducible over $\mathbb{Q}[x]$.
- 4. (1) Proof. For any $a \in \mathbb{Z}$, $f = x a \in \mathbb{Z}[x]$ is a monic polynomial such that a is its root, so $\mathbb{Z} \subset \mathbb{Q} \cap \overline{\mathbb{Z}}$. If a rational number $\frac{b}{a}$ is in $\overline{\mathbb{Z}}$ where $\gcd(a,b) = 1$ and $a \neq 1$, assume that $f = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ is a monic function which has $\frac{b}{a}$ as its root. Then

$$f(\frac{b}{a}) = \frac{b^n}{a^n} + a_{n-1}\frac{b^{n-1}}{a^{n-1}} + \dots + a_1\frac{b}{a} + a_0 = 0,$$

$$b^{n} + a_{n-1}b^{n-1}a + \dots + a_{1}ba^{n-1} + a_{0}a^{n} = 0.$$

So $a|b^n = -a_{n-1}b^{n-1}a + \cdots + a_1ba^{n-1} + a_0a^n$, contradicts the assumption that gcd(a,b) = 1.

Recall that the intersection of two field is again a field, we deduce that $\bar{\mathbb{Z}}$ is not a field since \mathbb{Z} is not a field.

(2) (a) Solution.

$$R(f,g) = \det \begin{bmatrix} 2 & 2 & 1 & 0 \\ 0 & 2 & 2 & 1 \\ -2 & 0 & 1 & 0 \\ 0 & -2 & 0 & 1 \end{bmatrix} = 8.$$

(b) Solution.

$$R(f,g) = \det \begin{bmatrix} b & a & 1 \\ a & 2 & 0 \\ 0 & a & 2 \end{bmatrix} = 4b - a^2.$$

(c) Solution.

$$R(f,g) = \det \begin{bmatrix} b & a & 0 & 1 & 0 \\ 0 & b & a & 0 & 1 \\ a & 0 & 3 & 0 & 0 \\ 0 & a & 0 & 3 & 0 \\ 0 & 0 & a & 0 & 3 \end{bmatrix} = 27b^2 + 4a^3.$$

- (3) Proof. Since f(x) has a root α and g(z-x) has a root $z-\beta$, the resultant has $\alpha (z-\beta) = \alpha + \beta z$ as its factor. Therefore P(z) has a root $\alpha + \beta$. Since f(x) has a root α and $x^n g(\frac{z}{x})$ has a root $\frac{z}{\beta}$, the resultant has $\alpha \frac{z}{\beta} = \beta(\alpha\beta z)$ as its factor. Therefore Q(z) has a root $\alpha\beta$. Here we multiply x^n in front of $g(\frac{z}{x})$ in order to make Q(z) monic.
 - (a) Solution. $f(x) = x^2 + 2x + 2$ has $\alpha = 1 + i$ as its root and $g(x) = x^2 2$ has $\beta = \sqrt{2}$ as its root. Therefore

$$P(z) = z^4 - 4z^3 + 4z^2 + 8,$$

$$Q(z) = z^4 + 16.$$

(b) Solution. $f(x) = x^2 - 2$ has $\alpha = \sqrt{2}$ as its root and $g(x) = x^2 + 3$ has $\beta = i\sqrt{2}$ as its root. Therefore

$$P(z) = z^4 + 2z^2 + 25,$$

$$Q(z) = z^2 + 6.$$