로봇학 실험4 Part 1

(Motor Modeling & Control)

MATLAB 기초

- 1. MATLAB 소개
- 2. 기본연산·함수·문법
- 3. MATLAB Graph

Motor Modeling

- 1. Dc Motor의 구조 및 구동원리
- 2. Motor관련 기초이론
- 3. DC Motor Modeling
- 4. Simulink
- 5. DC Motor simulation

Geared Motor

- 1. Geared Motor Modeling
- 2. Inertia
- 3. Geared Motor Simulink Model

Motor Control

- Motor control
- 2. PID 제어
- 3. 제어기 설계
- 4. 전류,속도,위치 제어기 Simulink Model

Geared Motor Modeling

♦ Gear modeling

• 기어비식

모터의 이동거리와 부하의 이동거리는 같다. $(N_1: N_2$ 는 기어 비)

$$N_2\dot{ heta}_G = N_1\dot{ heta}_M$$
 $\dot{ heta}_G = rac{N_1}{N_2}\dot{ heta}_M$

기어는 부하를 효과적으로 구동하기 위해 전동 기의 토크나 속도를 변환하는데 사용

부하 측 운동 방정식을 모터 측에서 본 운동 방정식으로 변환하면 모터 측에서 바라본 전체 기계방정식을 얻을 수 있다.

• 모터 운동 방정식

$$T = T_M + T_{GM}$$

$$= J_M \ddot{\theta}_M + B_M \dot{\theta}_M + J_{GM} \ddot{\theta}_M + B_{GM} \dot{\theta}_M$$

• 기어 측 운동 방정식

$$T_G = J_G \ddot{\theta}_G + B_G \dot{\theta}_G$$

손실이 없다고 가정하면 에너지 보존 법칙에 의해 Power는 같다. (But 손실은 항상 존재) → 기어의 효율을 α [%]라 가정!

$$P = T_G \dot{\theta}_G = T_{GM} \dot{\theta}_M \implies P = T_G \dot{\theta}_G = \alpha T_{GM} \dot{\theta}_M$$

$$T_G = J_G \ddot{\theta}_G + B_G \dot{\theta}_G \quad \cdots (1) \qquad \qquad T_G = \alpha T_{GM} \frac{\dot{\theta}_M}{\dot{\theta}_G} = \alpha T_{GM} \frac{N_2}{N_1} \quad (\dot{\theta}_G = \frac{N_1}{N_2} \dot{\theta}_M) \quad \cdots (2)$$

 \rightarrow 위의 수식들을 T_{GM} 에 대해 정리를 하면 Motor 측에서 바라본 기어 수식이 된다. (2)식을 (1)식에 대입

$$\alpha T_{GM} \frac{N_2}{N_1} = J_G \frac{N_1}{N_2} \ddot{\theta}_M + B_G \frac{N_1}{N_2} \dot{\theta}_M$$

$$T_{GM} = \frac{1}{\alpha} \left(\frac{N_1}{N_2} \right)^2 J_G \ddot{\theta}_M + \frac{1}{\alpha} \left(\frac{N_1}{N_2} \right)^2 B_G \dot{\theta}_M$$

→ 부하 수식을 모터의 수식에 더하면 모터+부하 수식을 얻을 수 있다.

$$T_M = J_M \ddot{\theta}_M + \dot{\theta}_M B_M \quad III \quad T_{GM} = \frac{1}{\alpha} \left(\frac{N_1}{N_2}\right)^2 J_G \ddot{\theta}_M + \frac{1}{\alpha} \left(\frac{N_1}{N_2}\right)^2 B_G \dot{\theta}_M$$

$$\Rightarrow T = (J_M + \frac{1}{\alpha} \left(\frac{N_1}{N_2}\right)^2 J_G) \ddot{\theta}_M + (B_M + \frac{1}{\alpha} \left(\frac{N_1}{N_2}\right)^2 B_G) \dot{\theta}_M$$

$$T = (J_M + \frac{1}{\alpha} \left(\frac{N_1}{N_2}\right)^2 J_G) \ddot{\theta}_M + (B_M + \frac{1}{\alpha} \left(\frac{N_1}{N_2}\right)^2 B_G) \dot{\theta}_M$$

→ 수식에서 볼 수 있듯이 기어비 N1 : N2 비율이 점점 더 커지게 되면 기어 측 수식이 0에 가까워 지므로 기어가 전체 모터 토크에 영향을 주지 않게 되므로 모터 입장에선 기어비에 대한 영향을 무시 할 수 있다.

 $ightarrow N_1T_G=lpha N_2T_M$ 에서 알 수 있듯이 기어비가 크면 클수록 Load 각속도는 줄어들지만 토크는 더 $\dot{ heta}_GT_G=lpha\dot{ heta}_MT_M$ 커진다.

◆ Geared Motor Transfer Function(전기 방정식 + 기계 방정식)

$$T = K_T i_a = J_{eq} \ddot{\theta}_M + B_{eq} \dot{\theta}_M$$
 $(J_{eq} = J_M + \frac{1}{\alpha} \left(\frac{N_1}{N_2}\right)^2 J_G, B_{eq} = B_M + \frac{1}{\alpha} \left(\frac{N_1}{N_2}\right)^2 B_G)$

$$L_a \dot{i_a} + R_a i_a = v_a - K_e \dot{\theta}_M$$

→ Laplace transform

$$K_T I_a(s) = J_{eq} s \dot{\Theta}_M(s) + B_{eq} \dot{\Theta}_M(s)$$

$$L_a s I_a(s) + R_a I_a(s) = V_a(s) - K_e \dot{\Theta}_M(s)$$

$$\frac{\dot{\Theta}_M(s)}{V_a(s)} = ? \qquad \qquad \frac{\Theta_M(s)}{V_a(s)} = \frac{\dot{\Theta}_M(s)}{sV_a(s)} = ?$$

Maxon DCX35L Motor spec

Gearhead data		
Reduction	81:1	
Absolute reduction	2197/27	
Max. continuous transferable output	100	W
Max. short-time transferable output	125	W
Number of stages	3	
Max. continuous torque	15	Nm
Permissible intermittent torque	22.5	Nm
Direction of rotation, drive to drive	=	
Max. efficiency	72	%
Weight	460	g
Average no-load backlash	1	degree
Moment inertia	5	gcm^2
Gearhead length	70	mm

Technical data			
Output shaft bearing	Ball bearings		
Gearhead type	GPX		
Max. radial backlash	0.06	mm	
mm from flange	12	mm	
Max. axial play	0.3	mm	
Max. permissible radial load	150	N	
mm from flange	12	mm	
Max. permissible force for press fits	300	N	
Recommended motor speed	8000	rpm	
Max. short-term input speed	10000	rpm	
Min. recommended temperature range	-40100	°C	
Number of sterilization cycles	0		

$$N_2: N_1 = 81:1$$

$$\alpha = 0.72$$

$$J_{G}$$

* 모터에 부하를 연결한다면 J_{Load}

Load Inertia

♦ Inertia

관성 모멘트(Moment of Inertia)란 회전축을 중심으로 임의의 물체가 회전하려고 하는 성질의 크기.

J 기호로 표시되며 기본 단위는 [Kgm^2]이다.

관성 모멘트는 회전축을 중심으로 물체를 이루는 미소 질점의 체척을 적분하여 구한다. $J=\int r^2 dm$

예제1) 원판의 Inertia

$$\rho[density] = \frac{Mass}{Volume}$$

$$\rho = \frac{m}{\pi r^2}$$

$$m = \rho \pi r^2$$

$$dm = 2\rho \pi r dr$$

$$J = \int r^2 dm = \int_0^R r^2 2\rho \pi r dr = 2\rho \pi \left[\frac{1}{4} r^4 \right]_0^R = \frac{1}{2} \rho \pi R^4, (\rho = \frac{m}{\pi R^2})$$

♦ Stretch rule

물체가 주축 인 회전축과 평행하게 뻗어있을 때 강체의 관성 모멘트가 변하지 않는다. (물체가 회전 축을 따라 크기가 변할 때 강체의 관성 모멘트는 변하지 않는다.)

Z축을 회전축으로 할 때 원판과 원기둥의 Inertia는 같다.

원기둥 Inertia 계산해보기

♦ Parallel-axis theorem

질량이 M인 물체에 대하여 회전 축이 질량 중심(cm : center of momentum)에 있을 때 관성 모멘트를 Jcm, 축이 질량중심으로부터 d만큼 떨어져 있을 때의 관성 모멘트를 J라고 할 때 다음 수식이 성립한다.

$$J = J_{cm} + Md^2$$

* 증명(z 축을 회전축으로 원판을 회전)

$$J = \int r^2 dm = \int x^2 dm = \int (\widehat{x} + d)^2 dm$$
$$= \int \widehat{x}^2 dm + 2d \int \widehat{x} dm + d^2 \int dm$$

 $\rightarrow \hat{x}$ 축을 기준으로 질량 중심에서 점 x 의 관성 모멘트를 표현

$$J = \int \widehat{x}^2 dm + d^2 \int dm = J_{cm} + Md^2$$

물체의 질량중심 공식

$$0 = \widehat{x}_{cm} = \frac{1}{M} \int \widehat{x} dm \Rightarrow \int \widehat{x} dm = 0$$

♦ Perpendicular axis theorem

서로 수직한 세 회전축에 대한 관성모멘트의 관계

평면 위에 놓인 물체에 대해 각각 수직인 x,y,z축을 두고 축의 관성 모멘트를 Jx, Jy, Jz 라고 하면 다음의 관계가 성립한다.

$$J_z = J_x + J_y$$

* 증명 (피타고라스 정리)

$$J_z = \int r^2 dm = \int (x^2 + y^2) dm = \int x^2 dm + \int y^2 dm = J_x + J_y$$

◆ 구동 모듈 해석(1Link)

Н

L

Geared Motor

• 질량 m, 길이L, 높이 H인 bar plate의 z축 Moment of inertia(J_{bar})

bar의 Inertia(회전축 : z축)

$$\rho = \frac{m}{xy}$$

$$m = \rho xy$$

$$dm = \rho dx dy$$

$$\int r^{2}dm = \rho \int_{-\frac{H}{2}}^{\frac{H}{2}} \int_{0}^{L} r^{2}dxdy = \rho \int_{-\frac{H}{2}}^{\frac{H}{2}} \int_{0}^{L} (x^{2} + y^{2})dxdy$$

$$= \rho \int_{-\frac{H}{2}}^{\frac{H}{2}} \left[\frac{1}{3} x^3 + y^2 x \right]_0^L dy = \rho \int_{-\frac{H}{2}}^{\frac{H}{2}} \left(\frac{1}{3} L^3 + y^2 L \right) dy$$

$$= \rho \left[\frac{1}{3} L^3 y + \frac{1}{3} L y^3 \right]_{-\frac{H}{2}}^{\frac{H}{2}} = \rho \left(\frac{1}{3} L^3 \frac{H}{2} + \frac{1}{3} L \frac{H}{8}^3 + \frac{1}{3} L^3 \frac{H}{2} + \frac{1}{3} L \frac{H}{8}^3 \right)$$

$$= \rho(\frac{1}{3}L^3H + \frac{1}{12}LH^3) = \frac{1}{3}m(L^2 + \frac{1}{4}H^2), (\rho = \frac{m}{LH})$$

• 질량 m, 길이L, 높이 H인 bar plate의 z축 Moment of inertia(**J**circular)

→ 평행축 정리를 이용한 결과 L만큼 떨어져 있는 원판의 관성 모멘트는

$$J_{circular} = J_{cm} + Md^{2}$$

$$J_{circular} = \frac{1}{2}mR^{2} + mL^{2}$$

• 최종 부하의 Moment of inertia

$$J_{Load} = J_{bar} + J_{circular} = \frac{1}{3} m_{bar} \left(L_{bar}^2 + \frac{1}{4} H_{bar}^2 \right) + \frac{1}{2} m_{circular} R_{circular}^2 + m_{circular} L_{circular}^2$$

→ 부하의 관성 모멘트를 Geared Motor Modeling에 첨부하면 부하를 집어 넣었을 때 모델링이 끝나게 된다.

• [Term Project] 구동 모듈 물성치

Bar Plate

Circular Plate

❖ Geared Motor Simulink Model

Geared Motor Simulink Model

Peq

Peq

Beared Motor Simulink Model

Peq

$$A = \left(J_M + \frac{1}{\alpha} \left(\frac{N_1}{N_2}\right)^2 J_G\right) \ddot{\theta}_M + \left(B_M + \frac{1}{\alpha} \left(\frac{N_1}{N_2}\right)^2 B_G\right) \dot{\theta}_M$$

$B_{eq}=rac{J_{eq}}{t}$ (t : 시정수	·)
---	----

Values at nominal voltage		
Nominal voltage	48	V
No load speed	6670	rpm
No load current	58.6	mA
Nominal speed	6140	rpm
Nominal torque (max. continuous torque	e) 138	mNm
Nominal current (max. continuous	2.08	A
current)		
Stall torque	1860	mNm
Starting current	27.3	A
Max. efficiency	90.1	%

	Characteristics Max. output power	132	w
ı	Terminal resistance	1.76	Ohm
ı	Terminal inductance	0.658	mH
ı	Torque constant	68.3	mNm/A
ı	Speed constant		rpm/V
ı	Speed/torque gradient	3.61	rpm/mNm
ı	Mechanical time constant	3.76	ms
ı	Rotor inertia	99.5	gcm^2

Gearhead data		
Reduction	81:1	
Absolute reduction	2197/27	
Max. continuous transferable output	100	W
Max. short-time transferable output	125	W
Number of stages	3	
Max. continuous torque	15	Nm
Permissible intermittent torque	22.5	Nm
Direction of rotation, drive to drive	=	
Max. efficiency	72	%
Weight	460	g
Average no-load backlash	1	degree
Moment inertia	5	gcm^2
Gearhead length	70	mm

N2:N1 = 81:1

◆ 부하 system

$$T - T_L = J_{eq} \ddot{\theta}_M + B_{eq} \dot{\theta}_M$$

$$\Rightarrow T - \left(\frac{1}{\alpha} \left(\frac{N_1}{N_2}\right)^2 J_{Load} \ddot{\theta}_M - \frac{1}{\alpha} \left(\frac{N_1}{N_2}\right)^2 B_{Load} \dot{\theta}_M \right) = J_{eq} \ddot{\theta}_M + B_{eq} \dot{\theta}_M$$

$$B = B_{eq} \ddot{\theta}_M + B_{eq} \dot{\theta}_M$$

$$B = B_{eq} \ddot{\theta}_M + B_{eq} \dot{\theta}_M$$

$$C = \frac{N_1}{N_2} \dot{\theta}_M$$

$$B=B_{eq}+rac{1}{lpha}\Big(rac{N_1}{N_2}\Big)^2B_{Load}$$
 $=rac{J_{eq}}{t}+rac{1}{lpha}\Big(rac{N_1}{N_2}\Big)^2J_{Load}$ t $(t: 시정수)$

❖ Homework2

- ◆ 전압 48[V]를 인가했을 때 DC모터와 Geared모터의 전류,각속도,각도 비교 분석
- ◆ 전압 48[V]를 인가하고 Geared모터에 부하가 부착되어 있을 때 Geared모터 의 전류,각속도,각도를 simulation하시오

(각속도 단위는 rad/sec → RPM, 각도 단위는 rad → degree)

