[Project Review] Sub PJT II 평가 & Network #2

진행자: 최인국 컨설턴트님

날짜: 2021-01-29

목차

- 1. Sub PJT II 평가 구분
 - 1-1. <u>상호 평가 (팀 간)</u>
 - 1-2. <u>상호 평가 (팀 내)</u>
- 2. <u>상호 평가 준비</u>
- 3. 상호 평가 입력 방법
- 4. <u>상호 평가 항목</u>
 - 4-1. <u>팀 간 평가 항목</u>
 - 4-2. <u>팀 내 평가 항목</u>
- 5. Network
 - 5-1. ARP request
 - 5-2. ICMP request
 - 5-3. L2 Switch에 L2 Switch 연결하기
 - 5-4. <u>L2 Switch의 모습</u>
 - 5-5. Switch vs Hub vs Bridge
 - 5-6. Switch vs 공유기
- 6. <u>Q&A</u>

1. Sub PJT II 평가 구분

공통 프로젝트의 Sub-PJT II 평가는 다음 2가지 방식으로 진행됩니다.

수행 평가

컨설턴트▶팀/교육생

상호 평가

팀▶팀

팀 內 팀원▶팀원

요구사항분석/설계, SW 개발 코드 관리 의사소통 협업/참여

프로그래밍, 코드 품질 기여도, 학습태도

1-1. 상호 평가 (팀 간)

팀 간 상호 평가 는 공통 프로젝트의 동일 평가그룹 內 다른 팀을 대상 으로 프로젝트의 결과물을 보고 평가합니다.

- 평가 그룹 내 상호 팀간 평가 진행 ※ 평가 그룹은 반별 별도 안내
- (프로그래밍), (코드 품질) 2개 항목에 대한 평가 입력
- 평가 입력 시, 평가근거도 반드시 같이 기입 필요
- 팀의 의견을 종합하여 팀 별 대표자가 팀 대 팀으로 평가 ※ 팀장 부재 시, 팀장 대행자 정보를 교수님께 알려드릴 것
- 평가 완료 시 수정이 불가 함으로 신중한 평가 필요
- 최고점 부여 제한 이 있음으로 유의해서 평가 필요

1-2. 상호 평가 (팀 내)

팀 내 상호 평가 는 공통 프로젝트의 같은 팀을 이루는 팀원들을 대상 으로 프로젝트 수행 과정을 평가합니다.

- 같은 팀의 팀원들을 대상으로 평가 진행
- (기여도), (학습태도) 2개 항목에 대한 평가 입력
- 평가 입력 시, 평가근거 도 반드시 같이 기입 필요
- 팀 내 상호 평가 점수는 각 반의 컨설턴트 평가 점수에 따라 가감 점수 적용
- 평가 완료 시 수정이 불가 함으로 신중한 평가 필요
- 최고점 부여 제한 이 있음으로 유의해서 평가 필요

2. 상호 평가 준비

상호 평가를 하기 위해 평가자가 본인의 GitLab Project를 볼 수 있도록 설정합니다.

project.ssafy.com > [GitLab] 클릭 > Settings > Members > Invite member

3. 상호 평가 입력 방법

project.ssafy.com > 평가 > 평가 목록

프로젝트 평가 > 평가 대상자 확인 후 [평가하기] 클릭

프로젝트 평가 > 평가 대상자 확인 후 [평가하기] 클릭

SSAFY GIT \rightarrow 평가 \rightarrow 평가 목록 \rightarrow 모든 [평가] 탭 완료 여부 확인 必

SSAFY 평가					
팀원 평기	가 프로젝트 평가	발표평가		1	진행 평가 5
5 8 건					
상태	팀명	단계	프로젝트	평가기간	평가현황
· 기종료	광주1반1조	자율 - 심화 PJT 최종	[자율] 포트폴리오 프로젝트 개발	2020.06.0910:00 - 2020.06.0918:00	
가종료	광주1반1조	자율 - 심화PJT 중간	[자율] 포트폴리오 프로젝트 개발	2020.05.1514:00 ~ 2020.05.1518:00	
경가 중료	광주1반4조	특화 - Sub PJT III 최중	[인공지능] 이미지 캡셔닝 고도화 및 서비스 확장	2020.05.01 08:00 ~ 2020.05.0118:00	-
경기 종료	광주1반 4조	특화-Sub PJTIII 중간	[인공지능] 이미지 캡셔닝 고도화 및 서비스 확장	2020.04.17 08:00 - 2020.04.20 12:00	
가종료	광주1반 4조	특화 - Sub PJT II 최종	[인공지능] 이미지 캡셔닝 기능 구현	2020.04.1013:00~2020.04.1018:00	
가증로	광주1반 02조	공통 - Sub PJT III 최종	[웹 디자인] SNS 심화기능 및 웹 큐레이션 기능 구현	2020.03.04.09:00 ~ 2020.03.0418:00	

4. 상호 평가 항목

4-1. 팀 간 평가 항목

프로그래밍

구분	명세서의 요구사항을 잘 이해하고 개발하였는가? 프로젝트의 구조, 디렉토리, 파일 구조가 체계적인가?	
매우부족	요구사항파악또는 프로젝트목표설정부족	
부족	요구사항 파악 또는 프로젝트 목표 설정 충분	
보통	프로젝트목표에 맞게 프로젝트를 적절히 수행	
우수	프로젝트목표가분명하고프로젝트수행결과가우수함	
매우우수	프로젝트목표가분명하고프로젝트수행결과가매우훌륭함	

※ "매우 우수" 평가는 최대 1팀 지정 가능

코드 품질

구분	코드의 품질이 간결하고 우수한가? 코드의 재사용성이 높고 유지보수에 용이한가?
매우부족	코드의 가독성이 떨어지거나 스타일이 일관되지 않음
부족	코드의 가독성은 준수하나 중복 또는 불필요한 부분이 존재
보통	코드의 품질이 간결하고 우수함
우수	코드의 품질이 우수 하고 재사용성이 높음
매우우수	코드의 품질이 매우 우수하고 유지보수에 용이함

※ "매우 우수" 평가는 최대 1팀 지정 가능

4-2. 팀 내 평가 항목

기여도

구분	필요한 기술 요소를 먼저 선행학습 後 팀원들에게 전파하였는가? 팀의 일원으로서 프로젝트 진행에 많은 기여를 하였는가?
매우부족	학습의욕이부족하거나협업태도결여
부족	프로젝트필요기술을잘학습하고이해하려노력
보통	필요 기술을 선행 학습하고 다른 교육생들에게 공유
우수	필요기술을 선행 학습하고 다른 교육생을 적극적으로 도움
매우우수	필요 기술을 선행 학습하고 헌신적인 태도로 팀에 기여

※ "매우 우수" 평가는 최대 1명 지정 가능

학습태도

구분	프로젝트에 집중하고 올바른 개발 분위기를 조성하였는가? 프로젝트의 취지와 내용을 이해하고 목표의식을 갖고 임하였는가?
매우부족	프로젝트에 관심이 없거나 팀 분위기를 저해
부족	프로젝트에 대한 집중력이 다소 미흡
보통	프로젝트에 집중하고 성실히 참여
우수	분명한목표의식을 갖고 올비른 개발 분위기 조성
매우우수	분명한목표의식을 갖고 프로젝트에 전적으로 몰입

※ "매우 우수" 평가는 최대 1명 지정 가능

5. Network

- ARP와 ICMP
 - o **ARP (Address Resolution Protocol)**: Local Area Network (LAN)에 있는 특정 IP를 가진 Host MAC을 얻어온다.
 - ICMP (Internet Control Message Protocol): 특정 IP를 가진 Host가 존재하는지 확인한다.
 - ex) ping 192.233.33.35 와 같은 ping 명령어가 ICMP 명령어에 해당한다.

5-1. ARP request

• 위 그림은 LAN의 구성 모습을 나타낸다. 여기서 1.1.2.11 IP 주소를 가진 호스트가 1.1.2.9 IP 주소를 가진 호스트에게 ICMP request, 즉 ping 을 보내본다고 가정한다. ICMP request는 L2 Switch를 거쳐서 보내지게 될 것이며, L3 계층의 프로토콜이기 때문에 데이터 패킷이 아래와 같은 모습을 가지고 있을 것이다.

ICMP request

L2		L3		Body
Src Dst		Src	Dst	Request Msg
~BB:BB	?	~2.11	~2.9	Message

- 패킷의 L2 계층에는 출발지(Src)와 도착지(Dst)의 MAC 주소 정보가 담길 것이며, L3 계층에는 출발 지와 도착지의 IP 주소가 담길 것이다. 하지만 우리는 아직 도착지의 MAC 주소를 모른다. (ping 을할 때 IP 주소를 사용하기 때문에 도착지의 IP 주소는 알고있다.)
- 그럼 도착지의 MAC 주소는 어떻게 알아낼 수 있을까?

ARP table

IP	MAC
~2.1	~AA:AA
~2.13	~CC:CC
~2.9	~EE:EE

• 호스트는 **ARP 테이블**이라는 것을 커널 메모리 상에 가지고 있는데, 여기에는 같은 LAN에 있는 호 스트들에 대한 IP와 MAC 주소 정보를 담고 있다. 하지만 처음에 LAN에 접속했을 때는 정보가 없어 빈 테이블의 모습을 하고 있다.

ARP table

IP	MAC	

• 이 테이블을 참조해서 ICMP request를 보내야하는데, 비어있어서 도착지 정보를 알 수 없기 때문에 OS 커널의 설계에 따라 ARP request를 먼저 보내게 된다.

ARP request (broadcast)

L	2	Body
Src	Dst	Request Msg
~BB:BB	~FF:FF	MAC of ~2.9 ?

• ARP request는 L2 계층의 프로토콜이기 때문에 패킷에는 도착지와 출발지의 MAC 주소와 1.1.2.9 IP 주소에 해당하는 호스트의 MAC 주소를 요청하는 내용의 body로 이루어져 있다. 아직은 도착지의 MAC 주소를 모르기 때문에 **Broadcast용 MAC 주소**인 ~FF:FF를 적어서 보낸다.

Forwarding Table

Port	MAC
2	~BB:BB

• L2 Switch가 ARP request를 받게되면 우선 **Forwarding 테이블**에 출발지 정보, 즉 request를 보낸 호스트에 대한 정보를 입력한다. 이후 패킷에 명시되어 있는 도착지의 MAC 주소를 확인한다. 보내 진 request는 도착지 정보에 Broadcast용 MAC 주소가 기입되어있기 때문에 L2 Switch는 **자신에** 게 연결된 모든 호스트들에게 패킷을 전달한다.

ARP response

L	2	Body
Src Dst		Response Msg
~EE:EE	~BB:BB	~EE:EE of ~2.9

• request를 받은 호스트들 중 request에 해당하는 호스트는 자신의 MAC 주소를 담은 **ARP** response 패킷을 만들어서 다시 L2 Switch로 보낸다.

Forwarding Table

Port	MAC
2	~BB:BB
4	~EE:EE

• 패킷을 받은 L2 Switch는 Forwarding 테이블을 업데이트하고 response 패킷의 도착지인 ~BB:BB 호스트에게 보내준다.

ARP table

IP	MAC
~2.9	~EE:EE

• 비로소 ~BB:BB 호스트는 ARP 테이블을 업데이트하고 ICMP request를 보낼 수 있다.

```
C:\Users\saffy>arp -a
인터페이스: 70.12.247.144 --- 0x9
 인터넷 주소
                        물리적 주소
 70.12.240.1
                       00-00-5e-00-01-f0
 70.12.240.2
                       94-3f-c2-3a-3e-01
 70.12.240.3
                       94-3f-c2-3a-10-01
 70.12.240.4
                       f4-d9-fb-e3-cf-b5
 70.12.247.255
                       ff-ff-ff-ff-ff
 224.0.0.22
                       01-00-5e-00-00-16
 224.0.0.251
                       01-00-5e-00-00-fb
 224.0.0.252
                       01-00-5e-00-00-fc
                                              정적
 239.255.255.250
                       01-00-5e-7f-ff-fa
```

• arp -a 명령어를 통해 ARP 테이블을 실제로 확인할 수 있다. 컴퓨터를 재부팅할 때마다 사라지며, 네트워크에 새로 접속할 때마다 갱신된다.

5-2. ICMP request

ICMP request

L2		L3		Body
Src	Dst	Src	Dst	Request Msg
~BB:BB	~EE:EE	~2.11	~2.9	Message

• 이제는 도착지의 MAC 주소를 알게 되었으니 ICMP request를 보낸다.

Forwarding Table

Port	MAC
1	~AA:AA
2	~BB:BB
3	~CC:CC
4	~EE:EE

request가 L2 switch로 가면 L2 switch는 Forwarding 테이블을 참고해서 도착지로 패킷을 보낸다.

ICMP re	sponse
---------	--------

	L2		L3		Body
	Src	Dst	Src	Dst	Response Msg
1	~EE:EE	~BB:BB	~2.9	~2.11	Message

• request를 받은 호스트는 response 패킷을 만들어서 다시 보낸다.

5-3. L2 Switch에 L2 Switch 연결하기

- L2 switch 아래 L2 switch를 연결 할 수도 있다.
- 상단의 L2 switch에서 3번 포트는 아래의 L2 switch에 연결되어있는데, 이는 아래의 L2 switch에 연결된 두 개의 호스트와 연결된 것이랑 기술적으로 동일하다고 볼 수 있다. 따라서 forwarding 테이블에 포트 3번에 대해서 mac 주소 2개가 등록될 수 있다. 아래 L2 switch에서도 마찬가지로 1번 포트에 호스트가 2개 등록되어 있다.
- L2 switch는 MAC 주소가 없다. 왜냐하면 MAC 주소는 도착지에 대한 정보인데, **L2 switch가 도착 지가 되는 경우는 없기 때문이다**. 만약 L2 switch가 도착지가 되어야하는 상황이 있으면 MAC 주소 를 가지고 있을 수도 있다.

5-4. L2 Switch의 모습

- * Backpressure for Half-duplex mode and Flow control for Full-duplex mode
- * Store-and-forward switching architecture
- * 4K entry MAC address table and automatic address learning
- * Jumbo Frame support (9KByte)
- 시중에 파는 L2 Switch의 예시다.
- 장비 스펙에 명시된 4k entry MAC address table 은 4000개의 MAC 주소를 등록할 수 있는 Forwarding 테이블이 있다는 것을 의미한다.
 - 포트는 8개 밖에 없지만 MAC 주소를 4000개까지 등록할 수 있도록 만든 이유는 위의 예시처럼 L2 Switch가 다른 L2 switch에 연결되어 같은 포트에 대해 여러 개의 MAC 주소가 등록되어 있을 수도 있기 때문이다.
- 대부분의 장비들은 automatic address learning 을 지원하는데, 이는 날아오는 패킷의 정보를 보고 자동으로 forwarding 테이블에 MAC 주소 정보를 입력해주는 기능을 말한다.

5-5. Switch vs Hub vs Bridge

- 세 장비 모두 LAN 내에서 MAC 통신을 위한 장비다.
- 하지만 세부 기술은 모두 다르다.
- Hub와 Bridge는 옛날 기술로, 최근에는 거의 Switch만 사용한다. 현업에서는 L2 Switch를 칭할 때 용어를 교차해서 사용하기도 한다.

5-6. Switch vs 공유기

- 공유기는 L2 Switch + NAPT(NAT) 기술이 결합된 것이다.
- NAPT(Network Address Port Translation)는 한 개의 IP를 여러 Host가 공유해서 사용할 수 있게 해주는 기술이다.
- 공유기는 기본적인 L2 Switch 기능을 제공하는 것에 더해서 한 개의 IP를 여러 Host가 공유 사용할 수 있게 해준다.

6. Q&A

- 1. 포트는 임의 지정 되는 건가요?
 - o 오늘 방송에서 언급한 포트는 L4 계층 것이 아닌, L2 Switch의 물리적으로 LAN 선을 연결하는 Port를 말합니다.
 - 대부분 장비에서 이미 지정(Fix) 되어 있을 것으로 예상합니다. 하지만 모든 장비가 그렇다는 보장은 없습니다.

- 2. 같은 LAN이라면 누구나 같은 LAN 상의 IP주소를 알 수 있는건가요?
 - o IP를 알 수 있습니다. Art table을 보거나, Wire Shark를 통해 동일 LAN 상의 다른 Host의 IP들을 쉽게 확인 할 수 있습니다.
- 3. LAN 환경에서 subnetting으로 네트워크를 분리했을 경우 통신이 어떻게 진행되나요?
 - o 다른 LAN으로 통신하기 위해서는 L3 Router가 필요합니다. 다음 시간에 방송 예정입니다.
- 4. 만약 중간에 포트 번호가 달라지면 그전의 ARP 테이블은 어떻게 갱신되나요?
 - LAN의 연결되는 Host는 변경이 될 수 있으므로, ARP 테이블은 갱신됩니다.
- 5. ARP 테이블은 사이즈가 정해져있나요?
 - o OS 종류, 버전, HW 사양 등에 따라 사이즈가 결정이 될 수 있습니다. MAC, IP의 정보량은 요즘 컴퓨터 사양에 비하면 너무 작기 때문에, 용량이 모자라는 걱정은 할 필요 없습니다.
- 6. 스위치를 현업에서 통상적으로 허브라고 부르는 경우도 있나요?
 - 허브와 스위치는 기술적으로 분명이 다르지만, 현업에서 스위치를 허브라고 혼용에서 부릅니다. 허브는 요즘 거의 사용하지 않고, 요즘은 다 스위치를 사용합니다. 따라서 허브라고 하면 곧 스위치라고 판단하시면 됩니다.
- 7. 와이파이에 연결해도 같은 LAN에 속하게 될거 같은데 그럼 악의적 의도를 가진 사용자가 있다면 쉽게 IP 주소를 알아낼 수 있을거 같은데 맞을까요?
 - 원래 IP는 쉽게 알아 낼 수 있습니다. 숨길 수 있으면 더 좋기는 하겠지만, IP만 안다고 해서 악의적 의도(해킹)가 되지는 않습니다.
- 8. 스위치는 포트에 연결되어 있다면 다른 network mask를 가진 노드에도 broadcast 신호를 보내나요?
 - o network mask를 가진다는 다른 LAN, 즉 WAN 영역에 해당합니다. ARP broadcast는 L3 Router이 받아도 다른 LAN으로 보내지 않습니다.