Wyznaczanie Ekstremów Funkcji Wielu Zmiennych

Gabriel Tyszka

22 czerwca 2025

Spis treści

1	Met	tody V	Vyznaczania Ekstremów Funkcji Wielu Zmiennych	1
	1.1	.1 Metoda z wykorzystaniem pochodnych cząstkowych (Macierz Hessego)		
		1.1.1	Kroki metody:	1
		1.1.2	Przykład 1: Klasyfikacja ekstremum	2
	1.2	Metod	la Mnożników Lagrange'a	2
		1.2.1	Kroki metody:	2
		1.2.2	Przykład: Zastosowanie Mnożników Lagrange'a	2

1 Metody Wyznaczania Ekstremów Funkcji Wielu Zmiennych

Istnieją dwie główne metody znajdowania ekstremów funkcji wielu zmiennych: metoda wykorzystująca pochodne cząstkowe (Test Drugiej Pochodnej Cząstkowej / Macierz Hessego) oraz Metoda Mnożników Lagrange'a.

1.1 Metoda z wykorzystaniem pochodnych cząstkowych (Macierz Hessego)

Aby znaleźć ekstrema funkcji wielu zmiennych, można użyć macierzy Hessego i jej wyznacznika.

1.1.1 Kroki metody:

- 1. **Znalezienie punktów krytycznych:** Najpierw identyfikuje się punkty krytyczne funkcji. Polega to na obliczeniu pierwszych pochodnych cząstkowych funkcji względem każdej zmiennej i przyrównaniu ich do zera. Ten krok pomaga zlokalizować punkty, w których szybkość zmian funkcji wynosi zero, co wskazuje na potencjalne ekstrema. Dla funkcji f(x,y), należy obliczyć $f_x = \frac{\partial f}{\partial x}$ i $f_y = \frac{\partial f}{\partial y}$ i przyrównać je do zera.
- 2. **Utworzenie Macierzy Hessego:** Następnie oblicza się drugie pochodne cząstkowe: $f_{xx} = \frac{\partial^2 f}{\partial x^2}$, $f_{yy} = \frac{\partial^2 f}{\partial y^2}$, oraz mieszaną pochodną $f_{xy} = \frac{\partial^2 f}{\partial x \partial y}$ (gdzie f_{yx} jest zwykle równe f_{xy}). Tworzy się Macierz Hessego (H):

$$H = \begin{bmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{bmatrix}$$

- 3. Obliczenie wyznacznika Macierzy Hessego (D): Wyznacznik Macierzy Hessego oblicza się jako $D = \det(H) = f_{xx}f_{yy} (f_{xy})^2$.
- 4. **Klasyfikacja punktów krytycznych:** Analizuje się wartość D i f_{xx} w każdym punkcie krytycznym:
 - Jeśli D>0 i $f_{xx}>0$, funkcja ma **minimum lokalne** w punkcie krytycznym.
 - Jeśli D > 0 i $f_{xx} < 0$, funkcja ma maksimum lokalne w punkcie krytycznym.
 - Jeśli D < 0, funkcja ma **punkt siodłowy** w punkcie krytycznym.
 - Jeśli D = 0, test jest **niejednoznaczny** (nierozstrzygający).

1.1.2 Przykład 1: Klasyfikacja ekstremum

Znajdź ekstrema funkcji $f(x,y) = x^2 + y^2 - 4x - 6y + 9$.

- 1. Obliczanie pierwszych pochodnych cząstkowych i znajdowanie punktów krytycznych: $f_x = 2x 4$ $f_y = 2y 6$ Przyrównując do zera: $2x 4 = 0 \Rightarrow x = 2$ $2y 6 = 0 \Rightarrow y = 3$ Punkt krytyczny to (2,3).
- 2. Obliczanie drugich pochodnych cząstkowych i tworzenie macierzy Hessego: $f_{xx}=2$ $f_{yy}=2$ $f_{xy}=0$ Macierz Hessego H to:

$$H = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

- 3. Obliczanie wyznacznika macierzy Hessego: $D = \det(H) = (2)(2) (0)^2 = 4$
- 4. Analiza wyznacznika i f_{xx} : Ponieważ D > 0 (konkretnie D = 4 > 0) i $f_{xx} = 2 > 0$, funkcja ma minimum lokalne w punkcie krytycznym (2,3).

1.2 Metoda Mnożników Lagrange'a

Metoda mnożników Lagrange'a to strategia używana do znajdowania lokalnych maksimów i minimów funkcji **związanych z ograniczeniami równościowymi**. Metoda ta przekształca problem optymalizacji z ograniczeniami w system równań, który można rozwiązać, aby znaleźć punkty optymalne.

1.2.1 Kroki metody:

- 1. **Zdefiniowanie funkcji celu i ograniczenia:** Niech f(x, y, ...) będzie funkcją celu, która ma być maksymalizowana lub minimalizowana. Niech g(x, y, ...) = 0 będzie funkcją ograniczenia.
- 2. **Utworzenie funkcji Lagrange'a:** Konstruuje się funkcję Lagrange'a L poprzez połączenie funkcji celu i ograniczenia za pomocą mnożnika Lagrange'a λ : $L(x, y, \lambda) = f(x, y) \lambda(g(x, y) c)$. (Uwaga: jeśli ograniczenie jest już w formie g(x, y) = 0, to c jest równe 0, a funkcja Lagrange'a to $L = f \lambda g$).
- 3. **Obliczenie pochodnych cząstkowych:** Znajduje się pochodne cząstkowe funkcji L względem każdej zmiennej (x,y,\dots) oraz mnożnika Lagrange'a λ , i przyrównuje się je do zera: $\frac{\partial L}{\partial x} = 0$, $\frac{\partial L}{\partial \lambda} = 0$, $\frac{\partial L}{\partial \lambda} = 0$.
- 4. Rozwiązanie układu równań: Rozwiązuje się powstały układ równań, aby znaleźć punkty krytyczne (x, y, λ) .
- 5. **Weryfikacja i klasyfikacja punktów krytycznych:** Podstawia się punkty krytyczne z powrotem do oryginalnej funkcji celu i funkcji ograniczenia, aby sprawdzić, czy spełniają ograniczenie i określić, czy odpowiadają maksimum czy minimum.

1.2.2 Przykład: Zastosowanie Mnożników Lagrange'a

Funkcja celu: $f(x,y) = x^2 + y^2$ Ograniczenie: g(x,y) = x + y - 1 = 0

- 1. Zdefiniowanie funkcji celu i ograniczenia: $f(x,y) = x^2 + y^2$ g(x,y) = x + y 1 = 0
- 2. Utworzenie funkcji Lagrange'a: $L(x, y, \lambda) = x^2 + y^2 \lambda(x + y 1)$
- 3. Obliczenie pochodnych cząstkowych: $\frac{\partial L}{\partial x} = 2x \lambda = 0 \quad \Rightarrow \quad \lambda = 2x \; \frac{\partial L}{\partial y} = 2y \lambda = 0 \quad \Rightarrow \quad \lambda = 2y \; \frac{\partial L}{\partial \lambda} = x + y 1 = 0$
- 4. Rozwiązanie układu równań: Z $\lambda = 2x$ i $\lambda = 2y$, wynika $2x = 2y \Rightarrow x = y$. Podstawiając x = y do równania ograniczenia: $x + y = 1 \Rightarrow x + x = 1 \Rightarrow 2x = 1 \Rightarrow x = \frac{1}{2}$ Stąd, $y = \frac{1}{2}$. Punkt krytyczny to $(\frac{1}{2}, \frac{1}{2})$.
- 5. Weryfikacja i klasyfikacja punktów krytycznych: Podstawiając $x=\frac{1}{2}$ i $y=\frac{1}{2}$ do funkcji celu: $f\left(\frac{1}{2},\frac{1}{2}\right)=\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^2=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}$. Punkt $\left(\frac{1}{2},\frac{1}{2}\right)$ jest minimum funkcji $f(x,y)=x^2+y^2$ z ograniczeniem x+y=1.

2