GRUBLEGRUPPE - UKE 3. Tirsdag 14.september 16.15-18.00

Oppgave 1. En funksjon $f : \mathbb{R} \longrightarrow \mathbb{R}$ er *Lipschitz* hvis det finnes en $M \ge 0$ slik at $|f(x) - f(y)| \le M|x - y|$, for alle $x, y \in \mathbb{R}$. Lag noen eksempler på slike funksjoner og vis at alle Lipschitz funksjoner er kontinuerlige funksjoner.

Oppgave 2. La $f: \mathbb{R} \longrightarrow \mathbb{R}$ og la $g: \mathbb{R} \longrightarrow \mathbb{R}$. Diskuter kontinuiteten til funksjonene

$$f(x) = \inf\{n \in \mathbb{Z} \mid x \le n\}$$

$$g(x) = \begin{cases} 2010 - x & x \in \mathbb{Q} \\ 2010x - 1 & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

ved å bruke definisjonen av kontinuitet og/eller ekvivalente definisjoner

Oppgave 3. En funksjon $f: \mathbb{R} \longrightarrow \mathbb{R}$ er uniformt kontinuerlig hvis det for enhver $\epsilon > 0$ finnes en $\delta(\epsilon) > 0$ slik at $|f(x) - f(y)| < \epsilon$ når $|x - y| < \delta$, for alle x, y.

- (a). Forklar forskjellen mellom uniform kontinuerlige funksjoner og kontinuerlige funksjoner.
- (b). Gi en geometrisk tolkning av definisjonen.
- (c). Finn eksempler på uniformt kontinuerlige funksjoner og kontinuerlige funksjoner som ikke er uniformt kontinuerlige.

Oppgave 4. La $f: \mathbb{R} \setminus \{0\} \longrightarrow \mathbb{R}$. Finn ut om grenseverdien $\lim_{x \to 0} f(x)$ eksisterer når

$$f(x) = \frac{x + |x|(1+x)}{x} \sin\left(\frac{1}{x}\right).$$

Oppgave 5. La $f: \mathbb{R} \longrightarrow \mathbb{R}$. Tro det eller ei men funksjonen

$$f(x) = \sqrt{x + 2\sqrt{x - 1}} + \sqrt{x - 2\sqrt{x - 1}}$$

er konstant på et intervall [a, b]. Bestem intervallet der funksjonen er konstant og finn funksjonsverdien i intervallet.

Oppgave 6. Hvordan kan man plassere 5 punkter p_1, \ldots, p_5 på sirkelen $x^2 + y^2 = 1$ slik at summen av linjestykkene mellom punktene maksimeres?

Oppgave 7. En kalkulator er delvis ødelagt og de eneste knappene som fungerer er cos, sin, tan, \cos^{-1} , \sin^{-1} og \tan^{-1} . På skjermen av kalkulatoren står tallet 0. Vis at du kan skrive enhver positiv rasjonal tall ved hjelp av endelige mange tastetrykk på kalkulatoren.