

NBP CEM: Hourly Data Summary

Period: 07/16/03 00:00:59 To 07/17/03 23:59:59, Records = 34

11

1

			. .				, -			_	_	_	_	_	-	_	_																	
		Eactor		1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	iĝŭ	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
	å			8	9	8	9	9	9	90	90	8	9	99	8	90	8	9	8	8	8	90	09	8	9	8	6	8	99	8	9	99	99	8
	•	Mthd	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	00	8	8	8	8	8	8	8	8	8	8	8	8
	C02	S MC		8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8 :	8
-		% C02	11.0	10.8	10.6	10.6	10.8	10.5	10.1	10.0	10.4	9.6	9.9	10.3	10.3	10.4	10.3	10.3	10.2	10.1	10.2	10.4	10.3	10.3	10.3	10.1	10.3	10.4	10.3	10.6	10.7	10.4	10.6	40.4
		Mthd	0	0	0	10	9	10	10	6	5	5	5	0	01	5	0	01	01	0	6	6	01	5	01	6	6	5	5	5	01	01	5 5	5
	Š	S S	8	8	8	8	8	8	8	8	8	8	8	8	8	60	8	8	8	8	8	8	00	8	8	8	8	8	8	8	8	0	8 8	3
		mdd	317.4	321.8	338.9	341.9	337.3	352.9	464.6	357.1	317.4	277.9	274.3	276.6	282.4	283.4	284.8	281.9	275.7	281.1	282.1	280.4	282.0	285.8	289.6	276.7	277.9	282.0	283.6	284.6			297.2	
		Bias	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	000.	000	000.	000	000	1.000	1.000	1.000	1.000	000.	000	000.	000	000	90	000	000	000	8	80	99. 8		000	
	scfh)	Avail	0.0	0.0	0.0	0.0	0.0		0.0		•	•	•	•	•						•	•	_	-	-	-	_	-	•		_ ,		0.0	
	Stack Flow (scfh)		_	_	,_	_	_									_	_	_	_	•	_	_	_	O	0	5 (o (•	0 (0 (5 (5 () c	;
	tack f	Mthd	2	0	00	0	.0											5	5			0	5	6	5 3	5 6	5 6	5 3	5 8	5 8	5 8	5 5	5 5	
	0	Adj.	3828000	3756000	3864000	3966000	396000	3960000	4962000	3852000	3798000	4116000	405000	402000	4050000	4068000	4093000	4194000	4470000	4050000	4056000	4088000	4053000	4068000	4062000	4014000	3900000	3978000	397.2000	4200000	0000000	4000000	4368000	
		Bias	1.000	000	000.1	000.1	000	1.000	1.000	000	000.	3 6	30.	000	000.	99.	000.	1.000	000											•			•	
					•	•	•	•						•	· `	•								•	•	•		- 1			•		_	
	NOx Ib/mBtu		0	5	5	5	·	. - ,	- ,	- -									•	<i>.</i>	, ر	-	5 C	>	> <	•	· c	Ò	5 6	2 6			0.0	
9		Σ								5 6								5 6		5 8					5 5	5 5	5	5 5	2 5	5 6	5	6	01	
	1						0.671	0.722	0.968	0.707	0.030	0.595	0.577	0.589	0.586	0.00	4.00.0	0 0	0.00	0.030	0.570	0.588	0.596	0.00	0.589	0.580	0.583	0.592	0.577	0.577	0.607	0.603	0.613	
Heat	Input	West C	7.34.U	225.0	228.0	234.0	234.0	228.0	214.0	219.0	220.0	223.0	230.0	232.0	235.0	234.0	240.0	253.0	222.0	230.0	235.0	233.0	233.0	232.0	225.0	227.0	230.0	227.0	251.0	255.0	235.0	238.0	252.0	
;	Š 4	500	0.020	0.040	0.007	0.033	0.07	0.080	0.767	0.656	0.622	0.595	0.577	0.589	0.586	0.594	0.588	0.581	598	0.594	0.579	0.588	0.596	0.604	0.589	0.580	0.583							
	Load										5	5	5	5	5	5 0								5		5 0.	5 0.5	5 0.5	5 0.577		0.607	0.603	0.613	
	Steam L		3 2	3 8	. 6	3 2	5 2	. 86	62	78	88	79	80	80	80		81	18	; <u>8</u>	80	82		81	80	6			on.		9	2 5	5		
		_				_											~	~		· w	æ	٣	∞	80	7	8	8	7	88	89	82	8	20	
Curi	E E	100	6	5	5	100	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	3	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
	r PC	80	80	08	80	80	98	98	8	90	08	90	80	08	88	8	80	90	90	08	08	80	08	88	80	80	98	90	80	80	80	80	80	
	Hour	0	-	2	٣	4	5	9	7	∞	6	2	Ξ	12	13	<u>::</u>	15	16	11	18	<u>6</u>	20	21	22	23	0		7	က	4	ς,	9	۸.	ر کارگ
	Date	07/16/03 0	07/16/03 0	07/16/03 0	07/16/03 0	07/16/03 0	07/16/03 0	07/16/03 0	07/16/03 0	07/16/03 0	07/16/03 0	07/16/03 1	07/16/03 1	07/16/03 1	07/16/03 1	07/16/03 1	07/16/03 1	07/16/03 1	07/16/03 1	07/16/03 1	07/16/03 1	07/16/03 2	07/16/03 2	07/16/03 2	07/16/03 2	07/17/03 0	07/17/03 0	07/17/03 0	07/17/03 0	02/11/030	07/17/03 0	07/17/03 0	07/17/03 0	PC - Process Codes

Fie Ta

0 20 00 1800	P75 - Method Codes: 19 - Sample Interface Malfunction 01 - Primary Monitoring System 20 - Corrective Maintenance Greater than 01 indicates the 21 - Blowback Data Substitution Method used 22 - Analyzer Under/Over Range 99 - Software Adjust
3	lfunction ice Range
3	face Malaintenan
> -	ole Interi ctive Ma back zer Und natic Ca
;	19 - Sample Interface Malfunction 20 - Corrective Maintenance 21 - Blowback 22 - Analyzer Under/Over Range on 98 - Automatic Calibration 99 - Software Adjust
,	Ęj
	14 - Recalibration 19 - Sample Interface Malfulate 15 - Preventive Maintenance 20 - Corrective Maintenance 21 - Blowback 2er 17 - Ancillary Analyzer Malfunction 22 - Analyzer Under/Over R 18 - Data Handling System Malfunction 98 - Automatic Calibration 99 - Software Adjust
	g Codes: justment Not Made Primary Aralyzer Ancillary Analyzer vn
	MC - Monitoring 06 - Clean Process Equipment 00 - Data Valid Malfunction 07 - Clean Control Equipment 10 - Required Ac 08 - Normal Operation 11 - Excess Drift 09 - Other 13 - Process Dov
	Pro- Process Codes: 01- Changing Fuels 02 - Control Equipment Malfunction 07 03 - Startup 04 - Shutdown 05 - Process Down Rannet aninted an 177/17/03 10.01.05

:

Page 2

		n. Factor 0 1800			F16 78	P75 - Method Codes: 01 - Primary Monitoring System Greater than 01 indicates the Data Substitution Method used
	CO2	00 01 10.1 00 00 60	00 01 10.2 00 00 60	10.3	1.0	19 - Sample Interface Malfunction 20 - Corrective Maintenance 21 - Blowback 22 - Analyzer Under/Over Range 198 - Automatic Calibration 99 - Software Adjust
Stack Flow (soft)	Bias pom	01 0.0 1.000 276.9	01 0.0 1.000 278.4		464.6 · · · · · · · · · · · · · · · · · · ·	14 - Recalibration Made 15 - Preventive Maintenance 20 - Corrective Maintenan lyzer 16 - Primary Analyzer Malfunction 21 - Blowback lyzer 17 - Ancillary Analyzer Malfunction 22 - Analyzer Under/Over 18 - Data Handling System Malfunction 98 - Automatic Calibration eports\s1_Hour751.frx 99 - Software Adjust
near Input NOx lb/mBtu	Adj. Mthd Avail	222.0 0.589 01 0.0 1.000 232.0 0.587 01 0.0 1.000	0.625		•	MC - Monitoring Codes: 00 - Data Valid 10 - Required Adjustment Nr 11 - Excess Orfit Primary An 12 - Excess Onfit Ancillary Ar 13 - Process Down C:\CEMLink
Steam Load NOx Input	Bin Lbs	80 5 0.589 22 81 5 0.587 23		0.989	,	MC - Monitorir 06 - Clean Process Equipment 00 - Data Valid 07 - Clean Control Equipment 10 - Required A 08 - Normal Operation 11 - Excess Dri 09 - Other 12 - Excess Dri 13 - Process Dc
	Date Hour PC (Hr)	80 5 6	Report Average:	Report Max Values:	.*	PC - Process Codes: 01 - Changing Fuets 02 - Control Equipment Malfunction 07 - Clean Process Equipment 03 - Startup 04 - Shutdown 05 - Process Down Report printed on: 07/17/03 10:21:05

NBP CEM: Hourly Data Summary

Period: 07/16/03 00:00:59 To 07/17/03 23:59:59, Records = 34

1 1

thirting 1 to 1 t																																				
P.C.		i	Factor	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1500	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	
P.C. Chee Signature Linear Li		Č	בָּ בַּ בַ	9	9	09	9	9	9	9	09	9	9	9	99	8	99	8	9	8	9	9	99	09	8	90	09	9	99	99	8	9	9	90	8	
P.C. CH7, NEDA. CASA CAS			Mthd	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	00	90	8	6	8	8	8	8	8	8	8	8	8	8	8	8.	
Part Total Heat NON Input Heat NON Inpu		C02								8						8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	
Part Total Control Linear Load NOX Input NOX Input I			% CO2	11.0	10.8	10.6	10.6	10.8	10.5	10.1	10.0	10.4	9.6	9.6	10.3	10.3	10.4	10.3	10.3	10.2	10.1	10.2	10.4	10.3	10.3	10.3	10.1	10.3	10.4	10.3	10.6	10.7	10.4	10.6	10.4	
Coper Site Site Cook Ling Local Most Bird M			Mthd	0	0	10	01	01	0	01	0	5	5	0	0	0	5	5	10	01	0	6	6	10	6	0	5	6	01	5	5	01	01	01	5	
Unit Total Heat NOX Ibin Blu Acid MINA MINA Acid		Š	MC								8			8	8	8	8	8	8	00	00	8	00	9	8	8	8	8	00	8	8	00	8	8	8	
Note			mdd.	317.4	321.8	338.9	341.9	337.3	352.9	464.6	357.1	317.4	277.9	274.3	276.6	282.4	283.4	284.8	281.9	275.7	281.1	282.1	280.4	282.0	285.8	289.6	276.7	277.9	282.0	283.6	284.6	287.5	293.6	297.2	296.5	
Note			Bias	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	000.1	000.	900	000	000	000	000	000	000	000	000	80.	8	000	000	8	8	8	8	00	000	
Perc Head NOx Input Add Avail Bias Adj 0Per Steam Load NOx Input Adj Mthd Avail Bias Adj 08 1.00 84 5 0.620 234.0 0.620 0.1 1.00 38280 08 1.00 84 5 0.620 234.0 0.620 0.1 0.0 1.00 38280 08 1.00 84 5 0.640 2.28.0 0.640 0.1 0.0 1.00 38280 0.8 1.00 84 5 0.641 0.657 0.641 0.1 0.0 1.00 38280 0.8 1.00 84 5 0.657 234.0 0.659 0.1 0.0 1.00 39280 0.8 1.00 81 5 0.657 214.0 0.757 0.1 0.0 1.00 39280 0.8 1.00 9.8 6 0.69		(scfh)	ı		0.0						0.0	0.0	0.0	•	•	•							•	•	•	•	•	•	_	_	-	-	-	•		
Perc Head NOx Input Add Avail Bias Adj 0Per Steam Load NOx Input Adj Mthd Avail Bias Adj 08 1.00 84 5 0.620 234.0 0.620 0.1 1.00 38280 08 1.00 84 5 0.620 234.0 0.620 0.1 0.0 1.00 38280 08 1.00 84 5 0.640 2.28.0 0.640 0.1 0.0 1.00 38280 0.8 1.00 84 5 0.641 0.657 0.641 0.1 0.0 1.00 38280 0.8 1.00 84 5 0.657 234.0 0.659 0.1 0.0 1.00 39280 0.8 1.00 81 5 0.657 214.0 0.757 0.1 0.0 1.00 39280 0.8 1.00 9.8 6 0.69		K Flow	l	01	0	10	5	5	5	5	01	70	01	10	5	5	5	10	10	5	5	01	6	5	5	5 3	5 8	5 7	5 3	5	5 (5 3	5 3	5 ;	5	
Unit		Stac		3828000	3756000	3864000	0009968	0000968	0000968	1962000	852000	1798000	1116000	020000	020000	020000	068000	000860	194000	470000	020000	026000	0000890	000890	000890	062000	014000	20000	978000	37.2000	260000	00006	00000	38000	00000	
Unit Total Heat NOx Ib/m Btu Oper Steam Losd NG Input Adj. Mithd Avaii 09 1.00 84 5 0.620 234.0 0.620 01 0.0 08 1.00 80 5 0.640 225.0 0.640 0.7 0.0 08 1.00 83 5 0.692 234.0 0.620 0.1 0.0 08 1.00 83 5 0.692 234.0 0.687 0.1 0.0 08 1.00 83 5 0.692 234.0 0.693 0.1 0.0 08 1.00 84 5 0.692 234.0 0.693 0.1 0.0 08 1.00 89 6 0.989 278.0 0.989 0.1 0.0 1.00 80 5 0.650 232.0 0.596 0.1 0.0 1.00 80																																		•		
PC Cher Steam Load NOx Input 0 Per Steam Load NOx Input 0 Per Steam Load NOx Input 0 1.00 84 5 0.640 225.0 0 1.00 83 5 0.640 225.0 0 1.00 83 5 0.640 225.0 0 1.00 83 5 0.640 225.0 0 1.00 83 5 0.640 225.0 0 1.00 83 5 0.693 234.0 0 1.00 84 5 0.693 234.0 0 1.00 84 5 0.595 270.0 0 1.00 80 5 0.596 270.0 0 1.00 80 5 0.586 232.0 0 1.00 80 5 0.586 232.0 0 1.00 80 5 0.586 232.0 0 1.00 80 5 0.586		章																•-									•	-	- •	_ `	_ ,	- '	- '	_ •		.pope.
PC Cher Steam Load NOx Input 0 Per Steam Load NOx Input 0 Per Steam Load NOx Input 0 1.00 84 5 0.640 225.0 0 1.00 83 5 0.640 225.0 0 1.00 83 5 0.640 225.0 0 1.00 83 5 0.640 225.0 0 1.00 83 5 0.640 225.0 0 1.00 83 5 0.693 234.0 0 1.00 84 5 0.693 234.0 0 1.00 84 5 0.595 270.0 0 1.00 80 5 0.596 270.0 0 1.00 80 5 0.586 232.0 0 1.00 80 5 0.586 232.0 0 1.00 80 5 0.586 232.0 0 1.00 80 5 0.586		k lb/mB		5	01	7	5	5	10	5	01	5 5	5 3	5 3	5 8	5 8																				orina
PC Cher Steam Load NOx Input 0 Per Steam Load NOx Input 0 Per Steam Load NOx Input 0 1.00 84 5 0.640 225.0 0 1.00 83 5 0.640 225.0 0 1.00 83 5 0.640 225.0 0 1.00 83 5 0.640 225.0 0 1.00 83 5 0.640 225.0 0 1.00 83 5 0.693 234.0 0 1.00 84 5 0.693 234.0 0 1.00 84 5 0.595 270.0 0 1.00 80 5 0.596 270.0 0 1.00 80 5 0.586 232.0 0 1.00 80 5 0.586 232.0 0 1.00 80 5 0.586 232.0 0 1.00 80 5 0.586				.620	.640	687	. 693	671	722	686	767																									- Monit
Unit Total Nox Oper Steam Load NOx 08 1.00 84 5 0.620 08 1.00 83 5 0.640 08 1.00 83 5 0.640 08 1.00 83 5 0.693 08 1.00 83 5 0.693 08 1.00 83 5 0.693 08 1.00 84 5 0.693 08 1.00 84 5 0.652 08 1.00 86 0.989 5 0.656 08 1.00 80 5 0.589 2 08 1.00 80 5 0.589 2 08 1.00 80 5 0.589 2 08 1.00 80 5 0.596 2 08 1.00 80 5 0.580 2	,	•																																		Ş
Unit Total Oper Steam Load 0 Unit Steam Load 08 1.00 84 5 08 1.00 83 5 08 1.00 79 5 08 1.00 83 5 08 1.00 83 5 08 1.00 83 5 08 1.00 84 5 08 1.00 79 5 08 1.00 80 5 08 1.00 80 5 08 1.00 81 5 08 1.00 80 5 08 1.00 81 5 08 1.00 81 5 08 1.00 81 5 08 1.00 81 5 08 1.00 80 5 08 1.00 80 5 08 1.00 80 5 08 1.00 88 5 08 1.00 89 5 08 1.00 80 5 08 1.00 <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>225.0</td> <td>227 (</td> <td>230.0</td> <td>227.0</td> <td>251.0</td> <td>255.0</td> <td>235.0</td> <td>238.0</td> <td>252.0</td> <td></td> <td></td>			_							_																225.0	227 (230.0	227.0	251.0	255.0	235.0	238.0	252.0		
PC (Hr) Klb/hr 09 1.00 84 08 1.00 89 08 1.00 79 08 1.00 83 08 1.00 84 08 1.00 81 08 1.00 80 08 1.00 80 08 1.00 80 08 1.00 80 08 1.00 80 08 1.00 80 08 1.00 80 08 1.00 80 08 1.00 80 08 1.00 80 08 1.00 80 08 1.00 80 08 1.00 80 08 1.00 80 08 1.00 80 08 1.00 80 08 1.00 80 08 1.00 80											0.76	50.00	0.02	0.57	0.580	0.586	2 2		20.00	0.00	0.790	0.579	0.588	0.596	0.504	0.589	0.580	0.583	0.592	0.577	0.577	0.607	0.603	0.613		
Huit Oper (Hr) 08 1.00 08 1.00		ı Loa											י ער	ט נט	ı ın	יט י) L	יט נ	י ע	י ער	יט כ) LC	47	· vo	, r.	ស	2	S	5	S	S	2	2	S		
7 P.C 908 908 908 908 908 908 908 908 908 908		Steam		5 8	8 8	א כ	3 &	\$ &	5 8	9 6	2 A	2 2	2) (2)	8	£ &	2	? &	- 25	5 €	8 8	82	81	8	8	79	8	80	79	88	89	82	8	8		
7		Unit Oper	000	3 5	3 5	5 6	5 5	3 5	3 5	8 6	3 5	00.1	1.00	8.	1.00	1.00	8	1.00	1.00	1.00	9.	1.00	1.00	1.00	1.0	1.00	1.00	1.00	1.00	1.00	00.1	00.1	00.	8.		
Date Houn 07/16/03 0 0 07/16/03 0 1 07/16/03 0 3 07/16/03 0 4 07/16/03 0 6 07/16/03 0 6 07/16/03 0 6 07/16/03 0 1 07/16/03 1 11 07/16/03 1 12 07/16/03 1 14 07/16/03 1 15 07/16/03 1 15 07/16/03 1 16 07/16/03 1 16 07/16/03 1 16 07/16/03 1 16 07/16/03 1 16 07/16/03 2 21 07/16/03 2 22 07/16/03 2 22 07/16/03 2 22 07/16/03 2 22 07/16/03 2 23 07/17/03 0 0 07/17/03 0 0 07/17/03 0 5 07/17/03 0 5 07/17/03 0 6 07/17/03 0 7 PC - Process Codes:			•	2	8 6	8 8	80	80	8 8	8 8	3 8	80	80	89	90	80	80	90	80	80	80	90	98	98	80	80	80	80	90	80	80	90	·	•		
Date 07/16/03 0 07/16/03 0 07/16/03 0 07/16/03 0 07/16/03 0 07/16/03 0 07/16/03 0 07/16/03 0 07/16/03 0 07/16/03 1 07/16/03 1 07/16/03 1 07/16/03 1 07/16/03 1 07/16/03 1 07/16/03 1 07/16/03 1 07/16/03 1 07/16/03 2 07/16/03 2 07/16/03 2 07/16/03 2 07/16/03 2 07/16/03 2 07/16/03 2 07/16/03 2 07/16/03 2 07/16/03 2 07/16/03 2 07/16/03 0 07/17/03 0 07/17/03 0 07/17/03 0 07/17/03 0 07/17/03 0		Hour	0	-		‡ €7	4	· 10	9 9	^	- co	6	5	11	12	13	4	15	16	17	18	61	50	21	22	23	0		7	က	4	ς.	9	~		odes:
		Date	07/16/03 0	07/16/03 0	07/16/03 0	07/16/03 0	07/16/03 0	07/16/03 0	07/16/03 0	07/16/03 0	07/16/03 0	07/16/03 0	07/16/03 1	07/16/03 1	07/16/03 1	07/16/03 1	07/16/03 1	07/16/03 1	07/16/03 1	07/16/03 1	07/16/03 1	07/16/03 1	07/16/03 2	07/16/03 2	07/16/03 2	07/16/03 2	07/17/03 0	07/17/03 0	07/17/03 0	07/17/03 0	07/17/03 0	07/17/03 0	07/17/03 0	07/17/03 0	i d	FL - Process C

P75 - Method Codes: 19 - Sample Interface Malfunction 01 - Primary Monitoring System 20 - Corrective Maintenance Greater than 01 indicates the 21 - Blowback Data Substitution Method used 22 - Analyzer Under/Over Range
14 - Recalibration 19 - Sample Interface Maintenance 15 - Preventive Maintenance 16 - Primary Analyzer Malfunction 17 - Ancilary Analyzer Malfunction 18 - Data Handling System Malfunction
Codes: Istment Not Madi Primary Aralyzer Ancillary Analyzer
MC - Monitoring 06 - Clean Process Equipment 00 - Data Valid alfunction 07 - Clean Control Equipment 10 - Required Adji 08 - Normal Operation 11 - Excess Drift A 13 - Process Down
01 Changing Fuels 02 Control Equipment M 03 Startup 04 Shutdown 05 - Process Down

Renort nginted on 07/17/03 10.91.05

California Carrest Carrest Carrest Carrest

n 22 - Analyzer Under/Over Range votion 98 - Automatic Calibration

99 - Software Adjust

Benefuel Product Performance Coal Based Synfuel

Produced by Chemical Change Reagent J-316
Pulverized Coal-Fired Boiler
0.92% Application Rate July 2003

Benefuel Product Performance Coal Based Synfuel

Produced by Chemical Change Reagent J-316
Pulverized Coal-Fired Boiler Low NOX Burner
0.92% Application Rate November 2003

Untreated

■ Treated

FIG 10

Table I.

Test	Burner	Tons of Coal Treated	Treatment Location	Application Rate	Benefuel Product
July 2003	Standard	136	Utility plant coal yard	0.8 wt%	67%
November 2003	Low-NOx	400	Norton, VA	0.9 wt%	53%

F16 11

Table II

	Average						
	Steam	Average	Average	Stack			Average Coal
	Generated	NOx	Heat Input	Flow	NOx		Consumption
Data Set	k lb/hr	lbs/MBTU	MBTU/hr	SCFH	ppm	% CO2	Tons/hr
Control	82.0	0.662	232	3874800	332	10.8%	9.7
Benefuel	80.2	0.590	233	4091857	279	10.2%	9.7
Change %	-2.20%	-10.95%	0.43%	5.60%	-15.96%	-5.56%	0.00%

F16 12

Figure 1.

F16 13

Table III

	Average						
1	Steam	Average	Average	Stack			Average Coal
	Generated		Heat Input		NOx		Consumption
Data Set	k lb/hr	lbs/MBTU	MBTU/hr	SCFH	ppm	% CO2	Tons/hr
Untreated	110.4	0.426	160.74	2739600	209.4	10.6	6.5
Treated	117	0.377	169.75	2686500	199.5	11.4	
	5.6%	-12.9%	5.3%	-2.0%	-5.0%	7.2%	5.3%

F16 14