Практическое занятие 2

РАСЧЕТ АМПЛИТУДЫ ПУЛЬСИРУЮЩЕГО МОМЕНТА В АСИНХРОННОМ ДВИГАТЕЛЕ ПРИ НЕСИММЕТРИИ НАПРЯЖЕНИЯ В СЭЭС

Постановка задачи. Включение в состав судовой электроэнергетической системы (СЭЭС) нелинейных электрических элементов является одной из причин ухудшения качества электроэнергии. Нелинейные электрические аппараты (статические выпрямители, преобразователи частоты и др.) приводят к появлению высших гармоник напряжения в сетях постоянного и переменного тока, несимметрии напряжения СЭЭС. Пульсация электрической энергии является причиной существенного ухудшения вибрационных характеристик электрооборудования, в том числе электрических машин (ЭМ). Расчет вибрации судовых ЭМ с учетом заданных показателей качества электроэнергии в СЭЭС включает расчеты амплитуды пульсирующего момента и переменных радиальных электромагнитных сил в асинхронном двигателе при несимметрии и несинусоидальности напряжения в СЭЭС. На основе этих данных можно рассчитать ожидаемые уровни вибрации асинхронного двигателя (АД), возбуждаемой электромагнитными силами. Результаты таких расчетов позволяют выбрать и рассчитать эффективность амортизаторов с учетом судовых условий.

Uсходные данные. Амплитуда составляющих прямой и обратной последовательностей фазных напряжений U_1, U_2 , В; частота напряжения питания f_1 , Γ ц; скольжение S; число пар полюсов p; параметры схемы замещения АД:

- активное и индуктивное сопротивления рассеяния обмотки статора r_{st} , x_{st} , Ом;
- приведенные активные и индуктивные сопротивления рассеяния обмотки ротора r_{rt} , x_{rt} , Ом;
- активное и индуктивное сопротивление контура намагничивания r_m , x_m , Ом.

Требуется найти. Амплитуду пульсирующего момента M, $H \cdot M$; коэффициент обратной последовательности напряжения $K_{0.\,\Pi}$.

Алгоритм расчета. На рис. 4.1 приведены схемы замещения АД для напряжения прямой (a) и обратной (δ) последовательностей, где Z_1 – полное комплексное сопротивление схемы замещения АД для тока прямой последо-

вательности; Z_2 — полное комплексное сопротивление схемы замещения АД для тока обратной последовательности.

Проводимость цепи ротора:

$$Y_{rt1} = \frac{S}{r_{rt} + jSx_{rt}}; \ Y_{rt2} = \frac{2 - S}{r_{rt} + j(2 - S)x_{rt}}.$$

Проводимость цепи намагничивания при $r_m = 0$:

$$Y_m = \frac{1}{jx_m}.$$

Рис. 4.1

Проводимость параллельного участка цепи:

$$Y_{rm1} = Y_{rt1} + Y_m; Y_{rm2} = Y_{rt2} + Y_m.$$

Сопротивление параллельного участка цепи:

$$Z_{rm1} = \frac{1}{Y_{rm1}}; Z_{rm2} = \frac{1}{Y_{rm2}}.$$

Полное сопротивление схемы замещения:

$$Z_1 = Z_{st} + Z_{rm1}; Z_2 = Z_{st} + Z_{rm2}; Z_{st} = r_{st} + jx_{st}.$$

Полная проводимость схемы замещения:

$$Y_1 = \frac{1}{Z_1}; \ Y_2 = \frac{1}{Z_2}.$$

Амплитуда пульсирующего момента на частоте $2\omega_1$ при несимметрии напряжения питания:

$$M_{2\omega_{1}} = \frac{1}{\omega_{1}} 3 \, p \, \left. U_{1} \, U_{2} \, \middle| Y_{1} - Y_{2} \middle| \right. \, \text{или} \, \, M_{2\omega_{1}} = \frac{1}{\omega_{1}} 3 \, p \, \left. I_{1} \, I_{2} \, \middle| Z_{2} - Z_{1} \middle| \, ; \, K_{\text{o. п.}} = \frac{U_{2}}{U_{1}} \, ,$$

где ω_1 – угловая частота, рад/с.

Например, исходные данные: U_1 = 220 B, U_2 = 4,4 B, p = 2, r_{st} = 2,4 Ом, x_{st} = 2,8 Ом, r_{rt} = 1,35 Ом, x_{rt} = 3,45 Ом, x_m = 50 Ом, f_1 = 50 Гц, S = 0,05.

Для схемы замещения прямой последовательности получаем:

$$Y_{rt} = \frac{0,05}{1,35 + j0,05 \cdot 3,45} = \frac{1}{27 + j3,45}; Y_m = \frac{1}{50j} = -j0,02;$$

$$Y_{rm} = \frac{1}{27 + j3,45} + (-j0,02) = \frac{1,07 - j0,54}{27 + j3,45}; Z_{rm} = \frac{27 + j3,45}{1,07 - j0,54};$$

$$Z_1 = 2,4 + j2,8 + \frac{27 + j3,45}{1,07 - j0,54} = \frac{31,08 + 5,15}{1,07 - j0,54}; Y_1 = \frac{1,07 - j0,54}{31,08 + j5,15}.$$

Для схемы замещения обратной последовательности:

$$K_{\text{O. II.}} = \frac{4,4}{200} = 0,02; \ Y_{rt} = \frac{1}{0,69+j3,45}; \ Y_m = \frac{1}{50j} = -j0,02;$$

$$Y_{rm} = \frac{1}{0,69+j3,45} + (-j0,02) = \frac{1,07-j0,0014}{0,69+j3,45}; \ Z_{rm} = 0,64+j3,22;$$

$$Z_2 = 2,4+2,8+0,64+3,22j = 3,04+6,02j; \ Y_2 = \frac{1}{3,04+j6,02};$$

$$|Y_1 - Y_2| = 0,11; \ M_{2\omega} = \frac{1}{2\pi50} 3 \cdot 2 \cdot 220 \cdot 4,4 \cdot 0,11 = 2,03 \,\mathrm{H} \cdot \mathrm{M};$$

Таблица 4.1

Величина	Размерность	Вариант								
		1	2	3	4	5	6	7	8	9
U_1	В	220	220	220	220	220	220	220	220	220
U_2	В	4,5	5,2	4,3	4,8	4,9	4,7	5,1	5,2	4,4
f	Гц	50	50	50	50	50	50	50	50	50
S	_	005	005	005	005	005	005	005	005	005
p	_	2	2	2	2	2	2	2	2	2
Rst	Ом	2,4	2,3	2,4	2,5	2,5	2,4	2,6	2,4	2,4
Xst	Ом	2,8	2,7	2,8	2,7	2,8	2,9	2,7	2,8	2,7
Rrt	Ом	1,3	1,2	1,3	1,3	1,4	1,4	1,3	1,4	1,3
Xrt	Ом	4,6	3,5	3,5	3,5	3,4	3,5	3,4	3,5	3,5
Xm	Ом	50	51	52	50	61	53	52	51	53

Данные для расчета приведены в табл. 4.1. После расчета по заданному варианту необходимо проанализировать полученный результат.