9) Let $f: \mathbb{R}^d \to \mathbb{R}$ be a non-negative integrable function. If $\alpha > 0$ and $E_{\alpha} = \{x \in \mathbb{R}^d : f(x) > \alpha\}$, then

$$m(E_{\alpha}) \le \frac{1}{\alpha} \int_{E_{\alpha}} f(x) dx.$$

Proof: We can see that

$$m(E_{\alpha}) = \int_{E_{\alpha}} 1 \, dx.$$

Additionally, if $x \in E_{\alpha}$, then $f(x) > \alpha$, hence $f(x)/\alpha > 1$. Thus, by monotonicity, we have that

$$\int_{E_{\alpha}} 1 \, dx < \int_{E_{\alpha}} \frac{f(x)}{\alpha} \, dx = \frac{1}{\alpha} \int_{E_{\alpha}} f(x) \, dx,$$

which proves the inequality.

17) Given a positive convergent series $\sum_{n\in\mathbb{N}_0} b_n$, define $a_n = \sum_{0\leq k\leq n} b_k$, and let f be a function on \mathbb{R}^2 defined as follows:

$$f(x,y) = \begin{cases} a_n & \text{if } x \in [n, n+1) \text{ and } y \in [n, n+1) \\ -a_n & \text{if } x \in [n, n+1) \text{ and } y \in [n+1, n+2) \\ 0 & \text{otherwise }, \end{cases}$$

where n is always non-negative. Then we have that f^y and f_x are integrable over \mathbb{R} , and that $\int f_x(y) dy = 0$ for all $x \in \mathbb{R}$, showing that $\int (\int f(x,y) dy) dx = 0$.

However, we also have that $\int f^y(x) dx = a_0$ for $0 \le y < 1$, and $\int f^y(x) dx = a_n - a_{n-1}$ if $n \le y < n+1$ for some $n \in \mathbb{N}$. As a result, $\int_{(0,\infty)} \int f^y(x) dx dy = \sum_{k \in \mathbb{N}_0} b_k$.

Finally, we have that $\iint |f(x,y)| dx dy = \infty$.

Proof: Since n is always non-negative, we have that f(x,y) = 0 if either x or y is negative. Fix $x \ge 0$ and let $n = \lfloor x \rfloor$. If $n \le y < n+1$, then $f_x(y) = a_n$, and if $n+1 \le y < n+2$, then $f_x(y) = -a_n$. Otherwise, $f_x(y) = 0$. Thus, we have that

$$\int f_x(y) \, dy = \int_{[n,n+2)} f_x(y) \, dy = \int_{[n,n+1)} f_x(y) \, dy + \int_{[n+1,n+2)} f_x(y) \, dy = a_n - a_n = 0,$$

which shows that f_x is integrable and $\int f_x(y) dy = 0$. From this we also obtain

$$\iint f(x,y) \, dy \, dx = \iint f_x(y) \, dy \, dx = \int 0 \, dx = 0.$$

Fix $y \ge 0$ and redefine $n = \lfloor y \rfloor$. If y < 1, then $f^y(x) = a_0$ only when $0 \le x < 1$, and

is otherwise 0, thus we would have

$$\int f^{y}(x) dx = \int_{[0,1)} f^{y}(x) dx = \int_{[0,1)} a_{0} dx = a_{0}.$$

Now let $y \ge 1$. If $n \le x < n+1$, then $f^y(x) = a_n$, and if $n-1 \le x < n$, then $f^y(x) = -a_{n-1}$. This shows that

$$\int f^{y}(x) dx = \int_{[n,n+2)} f^{y}(x) dx = \int_{[n,n+1)} f^{y}(x) dx + \int_{[n+1,n+2)} f^{y}(x) dx$$
$$= a_{n} - a_{n-1} = b_{n},$$

thus f^y is integrable. Additionally, since $[0, \infty)$ is the union of the disjoint intervals $[0, 1), [1, 2), [2, 3), \ldots$ we have by additivity that

$$\int_{(0,\infty)} \int f^{y}(x) \, dx \, dy = \int_{[0,\infty)} \int f^{y}(x) \, dx \, dy = \sum_{k \in \mathbb{N}_{0}} \int_{[k,k+1)} \int f^{y}(x) \, dx \, dy$$

$$= a_{0} + \lim_{n \to \infty} \sum_{1 \le k \le n} \int_{[k,k+1)} a_{\lfloor y \rfloor} - a_{\lfloor y - 1 \rfloor} \, dy = b_{0} + \lim_{n \to \infty} \sum_{1 \le k \le n} a_{k} - a_{k-1} = b_{0} + \lim_{n \to \infty} \sum_{1 \le k \le n} b_{k}$$

$$= b_{0} + \sum_{k \in \mathbb{N}} b_{k} = \sum_{k \in \mathbb{N}_{0}} b_{k},$$

thus proving the first part of the theorem.

Finally, fix $n \le x < n+1$. If $n \le y < n+2$, then $|f_x(y)| = a_n$, otherwise $|f_x(y)| = 0$. Additionally, since $\{b_n\}$ is a positive sequence, we have that $n_1 < n_2$ implies $a_{n_1} < a_{n_2}$, thus using **Corollary 10** we find that

$$\iint |f(x,y)| \, dy \, dx = \iint |f_x(y)| \, dy \, dx = \int \sum_{k \in \mathbb{N}_0} \int_{[k,k+2)} a_k \, dy \, dx = \int \sum_{k \in \mathbb{N}_0} 2a_k \, dx$$
$$= \sum_{k \in \mathbb{N}_0} \int 2a_k dx.$$

The integral of a positive constant over \mathbb{R} is ∞ , which shows that

$$\iint |f(x,y)| \, dy \, dx = \sum_{k \in \mathbb{N}_0} \int 2a_k dx = \infty,$$

thus completing the proof.