Математическое моделирование задач выбора с расплывчатой неопределенностью на основе методов представления и алгебры нечетких параметров

Я. А. Воронцов

Научный руководитель: М.Г.Матвеев, д.т.н., профессор.

Специальность 05.13.18— математическое моделирование,
численные методы и комплексы программ

ФГБОУ ВПО «Воронежский государственный университет»

Классификация нечётких моделей

- Исследуются модели, использующие чёткие отношения и нечёткие параметры (модели второго типа)
- Существующие подходы к нечётким вычислениям далеко не всегда применимы в моделях второго типа

Особенности существующих способов мягких вычислений

- требуются значительные вычислительные ресурсы;
- неоправданно расширяется носитель функции принадлежности;
- происходит выход за класс используемых в арифметике чисел из-за искажения формы функции принадлежности;
- ограничивается область определения функции принадлежности;
- нарушаются классические отношения равенства и частичного порядка.

Цель и задачи исследования

Цель: построение и исследование моделей учёта нечёткой неопределённости, обеспечивающих требуемые свойства решения различных прикладных задач, а также разработка методов эффективного численного решения на основе вводимых моделей

Задачи:

- анализ существующих методик нечётких вычислений с точки зрения сохранения свойств решения задач;
- разработка модели представления нечётких чисел, позволяющей максимально сохранять исходную экспертную информацию и обеспечить требуемые качественные свойства решений (устойчивость, сохранение чётких математических соотношений и т.п.);

Цель и задачи исследования

Задачи:

- разработка методики эффективной численной реализации решения задач с нечёткими параметрами, основанной на подходящих алгебраических структурах и её тестирование на примере задачи сетевого планирования с нечёткими параметрами;
- разработка и верификация программного обеспечения, реализущего предложенную модель представления нечётких параметров и методики численного решения задач с нечёткими параметрами.

Представление нечёткой информации

 нечёткие множества (подмножества предопределённого универсального множества X)

$$\tilde{A} = \{(x, \mu_{\tilde{A}}(x)) | x \in X\}; E(\mu_{\tilde{A}}(x)) = [0; 1]$$
 (1)

- ullet нечёткие числа (подмножества множества ${\mathbb R}$)
 - кусочная непрерывность $\mu_{\tilde{\mathbf{A}}}\left(\mathbf{x}\right)$;
 - выпуклость $\mu_{\tilde{\mathbf{A}}}(\mathbf{x})$

$$\forall x_{1}, x_{2} \in \mathbb{R}; \forall \gamma \in [0; 1]$$

$$\mu_{\tilde{A}}\left(\gamma x_{1} + (1 - \gamma) x_{2}\right) \geqslant \min\left\{\mu_{\tilde{A}}\left(x_{1}\right), \mu_{\tilde{A}}\left(x_{2}\right)\right\}$$
 (2)

• нормальность $\mu_{\tilde{A}}(x)$

$$\sup_{x\in\mathbb{R}}\left(\mu_{\tilde{A}}\left(x\right)\right)=1\tag{3}$$

Основные понятия

ullet Треугольное нечёткое число $ilde{oldsymbol{\mathcal{A}}} = \langle oldsymbol{m}, oldsymbol{a}, oldsymbol{b}
angle$

$$\mu_{ ilde{A}}\left(x
ight)=\left\{egin{array}{l} \dfrac{x-m+a}{a};\;x\in\left[m-a;m
ight]\ \dfrac{m+b-x}{b};\;x\in\left(m;m+b
ight]\ 0;\;\mathrm{B}\;\mathrm{octaльныx}\;\mathrm{cлучаяx} \end{array}
ight.$$

ullet Число как совокупность lpha-интервалов $extbf{\emph{X}}_lpha = ig[extbf{\emph{x}}^{ extbf{\emph{L}}}(lpha); extbf{\emph{x}}^{ extbf{\emph{R}}}(lpha)ig]$

$$\begin{bmatrix}
x^{L}(\alpha) = m - a + a\alpha \\
x^{R}(\alpha) = m + b - b\alpha
\end{bmatrix} (5)$$

 Число LL (RR)-типа — правый (левый) коэффициент нечёткости числа равен нулю

Преобразование L

• Переход к интервальной неопределенности

$$\tilde{Y} = f\left(\tilde{X}, \tilde{A}\right) \rightarrow \bigcup_{\alpha=0}^{\infty} y_{\alpha} = f\left(X_{\alpha}, A_{\alpha}\right)$$
 (6)

• Переход к чётким значениям на каждом α -уровне

$$\bar{x}(\alpha) = L(X_{\alpha}) = \lambda x^{L}(\alpha) + (1 - \lambda) x^{R}(\alpha); \lambda \in [0; 1]$$
 (7)

Модифицированное решение

$$\tilde{Y}^* = \bigcup_{\alpha=0}^{\infty} f(L(X_{\alpha}), L(A_{\alpha})) = \{y_{\alpha} | \mu_{\tilde{Y}^*}(y) = \alpha\}$$
 (8)

• Модифицированное нечёткое число (LL/RR-типа)

$$\mu_{\tilde{\mathbf{A}}^*}(\mathbf{x}) = (\bar{\mathbf{x}}(\alpha))^{-1} \tag{9}$$

Преобразование L

Представление числа

• Не чувствительная к знаку нечёткого числа форма $\langle m_{\tilde{A}}, d_{\tilde{A}}, A\mathcal{S}_{\tilde{A}} \rangle; \ d_{\tilde{A}} = a + b; \ A\mathcal{S}_{\tilde{A}} = \frac{b-a}{2}.$

Свойства преобразования L

- 1. Преобразование L сохраняет моду нечёткого числа, т. е. $\forall \lambda \in [0;1]: \ m_{\tilde{A}} = m_{\tilde{A}^*}.$
- 2. При некоторых значениях параметра λ преобразование L сохраняет
 - 2.1 знак степени асимметрии: $\exists \lambda \in [0;1]: sign(AS_{\tilde{\Delta}}) = sign(AS_{\tilde{\Delta}*});$
 - 2.2 значение степени асимметрии: $\exists \hat{\lambda} \in [0;1]: \ \mathit{AS}_{\tilde{A}} = \mathit{AS}_{\tilde{A}^*}.$
 - $\lambda^* = rac{a}{a+b} = rac{a}{d_{ ilde{a}}}$ сохраняет значение степени асимметрии.
- 3. $\forall \lambda \in [0;1]: A_{\alpha}^* \subset A_{\alpha}; \ d_{\tilde{A}} \geqslant d_{\tilde{A}^*}$ преобразование L уменьшает длину носителя нечёткого числа и оставляет α -интервалы модифицированного числа внутри α -интервалов исходного числа.

Алгебра модифицированных нечётких чисел

• Алгебра $extbf{ extit{P}} = \langle extbf{ extit{K}}; \; +, *, \mathbf{0}, \mathbf{1}
angle$, $extbf{ extit{K}} = \{ ar{ extbf{x}}(lpha) \}$

$$\bar{x}(\alpha) = c + k\alpha, \tag{10}$$

• Коэффициенты в (10)

$$\begin{bmatrix} c = m + b - \lambda (a + b) \\ k = \lambda (a + b) - b \end{bmatrix}$$

$$\lambda \in [0; 1]; c, k \in \mathbb{R}$$
(11)

• Элементы множества K линейны; достаточно знать два значения — $\bar{x}_{\tilde{A}}\left(0\right)$ и $\bar{x}_{\tilde{A}}\left(1\right)=m_{\tilde{A}}$, чтобы найти \tilde{A} :

$$\bar{x}_{\tilde{A}}(\alpha) = \bar{x}_{\tilde{A}}(0) + \alpha \left(\bar{x}_{\tilde{A}}(1) - \bar{x}_{\tilde{A}}(0)\right) =
= \alpha \bar{x}_{\tilde{A}}(1) + (1 - \alpha) \bar{x}_{\tilde{A}}(0)$$
(12)

Сложение и его свойства

• Операция сложения на множестве К

$$\bar{x}_{1}(\alpha)+\bar{x}_{2}(\alpha)=r_{1}(\alpha)=c_{1}+c_{2}+\left(k_{1}+k_{2}\right)\alpha,\ r_{1}(\alpha)\in\mathcal{K}$$
 (14)

• Нейтральный по сложению элемент

$$ar{\mathbf{0}} = \mathbf{0} + \mathbf{0}\alpha \in \mathbf{K} : \forall \bar{\mathbf{x}}(\alpha) \in \mathbf{K} : \\ \bar{\mathbf{x}}(\alpha) + \bar{\mathbf{0}} = \mathbf{c} + \mathbf{k}\alpha + \mathbf{0} + \mathbf{0}\alpha = \bar{\mathbf{x}}(\alpha)$$
 (15)

• Противоположный по сложению элемент (16)

$$-\bar{x}(\alpha) = -c - k\alpha \in K : \bar{x}(\alpha) + (-\bar{x}(\alpha)) = \bar{0}$$
 (16)

• Алгебра $\langle K, +, 0 \rangle$ — абелева группа

Умножение и его свойства

• Операция умножения на множестве К

$$r_2(\alpha) = c_1c_2 + (c_1k_2 + c_2k_1 + k_1k_2)\alpha; r_2(\alpha) \in K$$
 (17)

• Нейтральный по умножению элемент

$$\bar{1} = 1 + 0\alpha \in K : \forall \bar{x}(\alpha) \in K \quad \bar{x}(\alpha) \cdot \bar{1} = \bar{x}(\alpha)$$
 (18)

• Обратный по умножению элемент

$$\bar{x}^{-1}(\alpha) = \frac{1}{c} - \frac{k}{c(c+k)} \alpha \in K, \ c \neq 0 : \ \bar{x}(\alpha) \bar{x}^{-1}(\alpha) = \bar{1}$$
 (19)

- При c+k=m=0 (11) обратного элемента для $ar{x}\left(lpha
 ight)$ не существует
- Алгебра ненулевых элементов $\langle K, *, 1 \rangle$ абелева группа
- Умножение дистрибутивно относительно сложения

Двухточечные вычисления

Для произвольной алгебраической операции *

$$\begin{split} &\bar{\boldsymbol{x}}_{\tilde{\boldsymbol{A}}}\left(\boldsymbol{\alpha}\right)*\bar{\boldsymbol{x}}_{\tilde{\boldsymbol{B}}}\left(\boldsymbol{\alpha}\right) = \\ &= \alpha\left(\bar{\boldsymbol{x}}_{\tilde{\boldsymbol{A}}}\left(\mathbf{1}\right)*\bar{\boldsymbol{x}}_{\tilde{\boldsymbol{B}}}\left(\mathbf{1}\right)\right) + \left(\mathbf{1} - \boldsymbol{\alpha}\right)\left(\bar{\boldsymbol{x}}_{\tilde{\boldsymbol{A}}}\left(\mathbf{0}\right)*\bar{\boldsymbol{x}}_{\tilde{\boldsymbol{B}}}\left(\mathbf{0}\right)\right) \end{split} \tag{20}$$

Решение системы $\mathbf{A}\mathbf{x} = \mathbf{B}$

$$\begin{split} \tilde{A}_{11} = \left\langle 3; 2; 1 \right\rangle; \tilde{A}_{12} = \left\langle -2; 2; 1 \right\rangle; \tilde{A}_{21} = \left\langle 3; 1; 1 \right\rangle; \tilde{A}_{22} = \left\langle -1; 4; 1 \right\rangle; \\ \tilde{B}_{1} = \left\langle 1; 1; 1 \right\rangle; \tilde{B}_{2} = \left\langle 2; 1; 3 \right\rangle. \end{split}$$

Преобразование L с параметрами λ^* приводит к системе:

$$\begin{cases} (2+\alpha)x_1 + (-3+\alpha)x_2 = 1\\ 3x_1 + (-4+3\alpha)x_2 = 4-2\alpha \end{cases}$$
 (21)

Две чёткие системы при $\alpha=1$ и $\alpha=0$:

$$\begin{cases} 3x_1 - 2x_2 = 1 \\ 3x_1 - x_2 = 2 \end{cases} \quad \mathsf{u} \quad \begin{cases} 2x_1 - 3x_2 = 1 \\ 3x_1 - 4x_2 = 4 \end{cases} \tag{22}$$

При
$$\alpha=1$$
 $x_1=1, x_2=1;$ при $\alpha=0$ $x_1=8, x_2=5,$ так что $\bar{x}_1(\alpha)=8-7\alpha;$ $\bar{x}_2(\alpha)=5-4\alpha$ (23)

Устойчивость задачи линейного программирования (ЗЛП)

• Задача линейного программирования с нечёткими параметрами

$$\begin{cases} f(\mathbf{x}) = \mathbf{C}\mathbf{x} \to \min; \\ \mathbf{A}\mathbf{x} = \mathbf{B}, \end{cases} \to \begin{cases} f(\mathbf{x}) = \mathbf{C}^*\mathbf{x} \to \min; \\ \mathbf{A}^*\mathbf{x} = \mathbf{B}^*, \end{cases}$$
(24)

$$\mathbf{A}^* = \left\{ ar{x}_{ ilde{A}_{ij}}\left(lpha
ight)
ight\}, \ \mathbf{B}^* = \left\{ ar{x}_{ ilde{B}_i}\left(lpha
ight)
ight\}, \ \mathbf{C}^* = \left\{ ar{x}_{ ilde{C}_i}\left(lpha
ight)
ight\}$$

- Невозмущённое решение при $\alpha = 1$ (свойство сохранения моды)
- Задача устойчива, если

$$\forall \varepsilon > 0 \,\exists \delta > 0 : \forall \alpha \in [0; 1) \, |\alpha - 1| < \delta \Rightarrow \|\mathbf{x}(1) - \mathbf{x}(\alpha)\| < \varepsilon \tag{25}$$

Устойчивость ЗЛП

- При $\alpha = 0$, все значения λ_{S} (S индекс \tilde{A}_{ij} , \tilde{B}_{i} , \tilde{C}_{i}) принимают граничные значения (0 или 1).
- Ограничения на λ для минимизации потерь экспертной информации

$$(\lambda_{\mathcal{S}}^{\star} - \lambda_{\mathcal{S}})^2 \to \min$$
 (26)

- Задача векторной оптимизации ввиду противоречивости критерия (26) и целевой функции задачи (24)
- Применяется аддитивная свёртка критериев в целевой функции (27)

$$f^*(\mathbf{x}, \lambda) = \mathbf{C}^*\mathbf{x} + \gamma \sum_{\mathcal{S}} (\lambda_{\mathcal{S}}^* - \lambda_{\mathcal{S}})^2 \to \min$$
 (27)

Задача сетевого планирования

$$G=(V,E)$$
, $|V|=n$, $|E|=m$; дуги e_j — работы w_j , длительностью τ_j , $j=\overline{1,m}$; вершины v_i — события z_i с временами наступления t_i , $i=\overline{1,n}$

Модифицированная задача сетевого планирования

• ЗЛП с нечёткими временными оценками

$$\begin{cases} T(\alpha) = t_n - t_1 \to \min \\ t_{j_s} - t_{i_s} \geqslant \bar{\tau}_s (\alpha, \lambda_s), \ \forall s = \overline{1, m}. \end{cases}$$
 (28)

• При lpha=0 решается возмущённая задача

$$\begin{cases}
T^* (\alpha, \lambda) = t_n - t_1 + \gamma \sum_{s=1}^m (\lambda_s^* - \lambda_s)^2 \to \min; \\
t_{j_{s_1}} - t_{j_{s_1}} = \bar{\tau}_{s_1} (\alpha, \lambda_{s_1}), \forall s_1 \in S_1 (1); \\
t_{j_s} - t_{j_s} \geqslant \bar{\tau}_s (\alpha, \lambda_s), \forall s \notin S_1 (1), s = \overline{1, m}.
\end{cases} (29)$$

• Результат — совокупность $\left\langle ilde{\mathcal{T}}, \mathcal{S}_1, \lambda \right
angle$

Решение примера (с. 19)

	A	В	C	D	E	F	G	H	1	J	K		M	N
2	Операция			Параметры			Лямбда идеал	Тау(Альфа)		бда поиск	Тау(Альфа)	Гамма	06	
2	Операция	XL	M	XR	Α	В	лямода идеал	1	ЛЯМО	ода поиск	0	100	Лямбда diff	
3	A	1	2	9	1	3	0,2500	2	LA	0,2500	3,99999708		LA*-LA	0,0000
4	В	2	4	. 5	2	1	0,6667	4	LB	0,6817	2,9550035		LB*-LB	0,0002
5	С	3	7	9	4	. 2	0,6667	7	LC	0,6667	4,99999766		LC*-LC	0,000
6	D	4		9		3	0,4000	6	LD	0,4000	7,00000351		LD*-LD	0,0000
7	E	9	10	12	1	. 2	0,3333	10	LE	0,3483	10,9550016		LE*-LE	0,000
8	F	4	5	6	1	. 1	0,5000	5	LF	0,5000	5,00000421		LF*-LF	0,000
9	G	1	5	(4	1	0,8000	5	LG	0,8250	1,87500284		LG*-LG	0,000
10	н	2	4	7	2	3	0,4000	4	LH	0,4250	4,8750047		LH*-LH	0,000
11	Φ1	0	0	C		0	0,0000	0	LΦ1	0,0000	0		LΦ1*-LΦ1	0,0000
12														
13	События	Время	Усло	вия	Резервы	Оптимум			События	Время	Условия		Резервы	Оптимум
14	1		t2-t1>tauA	7	5				1		t2-t1>tauA	4,2195		
15			t3-t1>tauB	4					2		t3-t1=tauB	2,9550		
16			t6-t2>tauC	7					3		t6-t2>tauC	5,7413		
17	4		t4-t3>tauD	10					4		t4-t3>tauD	10,9550		
18			t5-t3>tauE	10					5		t5-t3=tauE	10,9550		
19		14	t7-t6>tauF	5					6	9,9698	t7-t6>tauF	5,8242		
20	1		t7-t5>tauG	5	C				7	15,7940	t7-t5=tauG	1,8750		
21		3 23	t8-t7>tauH	4					8	20,6690	t8-t7=tauH	4,8750		
22			t5-t4>tauΦ1								t5-t4>tauΦ1	0,0000	0,0000	

Окончательный результат: $\mathcal{S}_1 = \{B, E, G, H\}$,

$$T(\alpha) = 20,67 + 2,33\alpha$$
,

 $\lambda = \{0, 25; 0, 68; 0, 67; 0, 4; 0, 35; 0, 5; 0, 83; 0; 43\}$

Программное обеспечение

Приложение «CSBusinessGraph» выполняет все вычисления только с использованием действительных переменных

Результаты работы

- Комплекс методов для моделей с чёткими отношениями и нечёткими параметрами
 - применение классических методы решения
 - достижение требуемых качественных свойств решения
- Параметрическая модель представления нечёткого числа
 - максимальное сохранение экспертной информации
 - двухточечные вычисления эффективная численная реализации решения
- Устойчивость решения задачи линейного программирования с нечёткими параметрами
 - свёртка критериев для управления устойчивостью
 - алгоритм получения устойчивого решения задачи
- Апробация методов задача сетевого планирования
- Программный комплекс решение задачи оценки сроков разработки программного обеспечения

Апробация работы и публикации

Основные положения работы докладывались на конференциях:

- Современные проблемы прикладной математики, теории управления и математического моделирования (Воронеж, 2012 г.)
- Информатика: проблемы, методология, технологии (Воронеж, 2013–2014 гг.);
- Современные технологии в задачах управления, автоматики и обработки информации (Алушта, 2013–2014 гг.);
- Радиоэлектроника, электротехника и энергетика (Москва, 2014).

Основное содержание диссертационного исследования изложено в 11 научных работах, из них 4 статьи в изданиях, рекомендованных ВАК РФ.