ECE-301-204

Lab10 Counter Design

Marcus Domingo

04/20/2016

Objective:

Understand the design and operation of clocked sequential circuits to implement a 3-bit counter from discrete logic.

Preparation:

\mathbf{U}	Q0	Q1	J 0	J1	J2	K0	K1	K2
0	0	0	1	1	1	1	1	1
0	0	1	1	1	0	1	1	0
0	1	0	1	0	0	1	0	0
0	1	1	1	0	0	1	0	0
1	0	0	1	0	0	1	0	0
1	0	1	1	0	0	1	0	0
1	1	0	1	1	0	1	1	0
1	1	1	1	1	1	1	1	1

Materials and Equipment:

- ET-1000 Trainer
- Wires
- Breadboard
- JK flip-flop ICs

Laboratory Data:

J 0		U		
_		0	1	
Q0Q1	00	/1	1	
	01	1	1	
	11	1	1	
	10	1	1/	

K 0		U		
		0	1	
	00	/1	1	
Q0Q1	01	1	1	
	11	\ 1	1	
	10	1	1	

J1		U		
	_	0	1	
Q0Q1	00	1	1)	
	01	0	$/\!\!\!/$	
	11	1	1	
	10	0	0	

K 1		U	
	_	0	1
Q0Q1	00	1	1)
	01	0	$/\!\!\!/$
	11	1	1
	10	0	0

J2		U		
_		0	1	
	00	$\begin{pmatrix} 1 \end{pmatrix}$	0	
Q0Q1	01	0	0	
	11	0	$\begin{pmatrix} 1 \end{pmatrix}$	
	10	0	0	

K2		U		
	_	0	1	
Q0Q1	00	$\begin{pmatrix} 1 \end{pmatrix}$	0	
	01	9	0	
	11	0	$\begin{pmatrix} 1 \end{pmatrix}$	
	10	0	0	

Comments and Conclusion:

This lab was pretty neat using JK flip-flops to count up from 0 to 7 or count down from 7 to 0. Either way it kept a continuous loop counting through the numbers both ways. Another thing I noticed is that even though you turn the power supply off it takes about half a second to a second for the current to go all the way through all the JK flip-flops and then turn off the LED lights. Seems like a simple implementation of a counter of some sort for timing device. And it also seems that the more JK flip-flops you add the more numbers you can count through.