MAT 301. FIRST AND SECOND DERIVATIVE TESTS: PRACTICE PROBLEMS.

In each of the following problems you will get *extra credit* if you offer a detailed sketch of the function f(x).

Problem 1. Consider the function $f(x) = x^3 + x^2 - x$ on the interval [-2, 4]. Find the two critical values and the one possible inflection point of f(x).

Problem 2. Consider the function $f(x) = x^2 e^{-3x}$ on the interval [-1, 1]. How many critical points does f(x) have in the interval (-1, 1)? Find the global maximum and minimum of the function f(x) on [-1, 1]. Hint: You do not need to use the 1st or 2nd derivative test for this problem (although you can if you would like).

Problem 3. Consider the function $f(x) = \frac{x^2}{x^2-1}$. By applying the quotient rule, the 1st derivative of this function is $f'(x) = \frac{-2x}{(x^2-1)^2}$. Use the 1st derivative test to find the local maximum and minimums of f(x). Hint: There is only one of them.

Problem 4. The second derivative of the function f(x) in Problem 3 is $f''(x) = \frac{2(3x^2+1)}{(x^2-1)^3}$. Use this second derivative to apply the 2nd derivative test of the function f(x). Does your answer agree with your answer in Problem 3?

Problem 5. Given the second derivative f''(x) in Problem 4 above, solve the equation f''(x) = 0 to find potential inflection points and look at the sign changes of f''(x) around them to see if they are truly inflection points.

Problem 6. Calculate the second derivative of the function $f(x) = \frac{x^2 - 2x + 4}{x - 2}$ and use this to show that it has f(x) has no inflection points.

Problem 7. Consider the function $f(x) = \frac{(x-1)^2}{x^2+3}$ defined for all real numbers. Use the first derivative test to find the local maximums and minimums. <u>Hint</u>: There is only one of each.

Problem 8. Consider the function $f(x) = x^{2/3} - \frac{9x}{4}$ defined for all real numbers (note that $\sqrt[3]{-a} = -\sqrt[3]{a}$ since $\sqrt[3]{-1} = -1$ because $(-1)^3 = -1$). Use the 2nd derivative test, to find the local maximums and minimums of this function. <u>Hint</u>: Just apply the power rule twice using fractional exponents.

Problem 9. Consider the function $f(x) = x^{4/5}(x-1)$ defined for all real numbers. Use the 1st derivative test to find the local maximums and minimums. Hint: Note that one critical value is given by x = 0 because the first derivative f'(x) is not defined there.

Problem 10. Consider the function $f(x) = \sin(x) + \cos(x)$ defined on the interval $[0, 2\pi]$. Use the 1st derivative test to find the local maximums and minimums of this function.