

GRADE 12

PHYSICAL SCIENCES: PHYSICS P1

JUNE 2025

anmorephysics.com

MARKS: 150

TIME: 3 HOURS

This question paper consists of 18 pages including 3 information sheets.

Physical Sciences/P1 2

NSC

INSTRUCTIONS AND INFORMATION

- Write your name on the FOLIO PAPERS.
- 2. This question paper consists of NINE questions. Answer ALL the questions on the FOLIO PAPERS.

MDE/June 2025

- Start EACH question on a NEW page on the FOLIO PAPERS.
- Number the answers correctly according to the numbering system used in this
 question paper.
- Leave ONE line between two sub questions, e.g. between QUESTION 2.1 and QUESTION 2.2.
- 6. You may use a non-programmable calculator.
- You may use appropriate mathematical instruments.
- 8. Show ALL formulae and substitutions in ALL calculations.
- 9. Round off your FINAL numerical answer to a minimum of TWO decimal places.
- 10. Give brief motivations, discussions, etc. where required.
- You are advised to use the attached DATA SHEETS.
- Write neatly and legibly.

QUESTION 1: MULTIPLE CHOICE QUESTIONS

Various options are provided as possible answers to the following questions. Each question has only ONE correct answer. Choose the answer and write only the letter (A–D) next to the question number (1.1 to 1.10) on the FOLIO PAPER, e.g. 1.11 E.

1.1 A trolley moves on a flat horizontal surface while a constant force **F** is applied on it.

Which ONE of the following physical quantities will ALWAYS remain constant while the trolley is moving?

- A Momentum
- B Velocity
- C Kinetic energy
- D Gravitational potential energy

(2)

- 1.2 There is a gravitational force of **F** between objects **A** and **B** at a distance **R** apart. What will be the gravitational force in terms of **F**, if the mass of **A** doubles and the distance triples?
 - A F
 - B ²/₃ **F**
 - C $\frac{2}{9}$ F
 - D $3\mathbf{F}$ (2)

1.3 A ball is released from rest from a certain height above the floor and bounces off the floor a number of times. The position-time graph below represents the motion of the bouncing ball from the instant it is released from rest.

Neglecting air resistance, which point (A, B, C or D) on the graph represents the position-time coordinates of the maximum height reached by the ball after the SECOND bounce?

- A **A**
- B **B**
- C C
- D **D**

(2)

(2)

Physical Sciences/P1

1.4 An object moves from rest in a straight line under the influence of a constant net force.

NSC

Which one of the following momentum-time graphs represent the motion of the object best?

1.5 A box moves in a straight line on a ROUGH horizontal surface. If the net work done on the object is zero, then ...

- A the object has zero kinetic energy.
- B the object moves at constant speed.
- C the object moves at constant acceleration.
- D there is no frictional force acting on the object. (2)

Physical Sciences/P1 6 MDE/June 2025 NSC

1.6 The hooter of a car emits sound of constant frequency as the car moves away from a stationary listener holding a detector.

Which ONE of the following properties of the sound will NOT change?

- A Velocity
- B Frequency
- C Both wavelength and frequency
- D Both frequency and loudness (2)
- 1.7 Particle R has a charge Q and particle S has a charge 2Q. They are a distance r apart. Which ONE of the following statements regarding the electrostatic force, F_{RS}, that particle R exerts on particle S, and the electrostatic force, F_{SR}, that particle S exerts on particle R, is correct?

hmorephysics.com
FRS = - FSR
(2)

Physical Sciences/P1 7 MDE/June 2025 NSC

1.8 The magnitudes of electric fields caused by different point charges are measured at a fixed point. Which ONE of the following graphs is the correct representation of the relationship between the magnitude of the electric field (E) and the magnitude of the charge (Q)?

1.9 A cell, with an emf **E** and an internal resistance **r**, three identical resistors are connected in a circuit as shown in the diagram below. Initially the switch **S** is closed.

The switch **S** is now open.

Which ONE of the following represents the changes in the emf (\mathbf{E}) and the total resistance in the circuit correctly?

	EMF (E)	TOTAL RESISTANCE
Α	Stays the same	Increases
В	Stays the same	Decreases
С	Decreases	Decreases
D	Increases	Increases

(2)

Physical Sciences/P1 8 MDE/June 2025 NSC

1.10 Consider the following circuit diagram.

Which ONE of the switches must be closed to decrease the power dissipitated by the resistor R the most?

tanmorephysics.com

- A S₁
- B **S**₂
- C S₃
- $D \qquad \mathbf{S_4} \tag{2}$

[20]

NSC

MDE/June 2025

QUESTION 2 (Start on a new page.)

A bakkie with a trailer drives up an incline with a constant acceleration of 2,5 m.s⁻² (the mass of the bakkie is 2 700kg and the trailer is 1 200kg). The incline makes an angle of 20° with the horizontal.

The coefficient of kinetic friction for the bakkie is 0,3 and for the trailer is 0,2.

The force that the bakkie exerts on the trailer is parallel to the surface.

2.1 State Newton's Second Law of Motion in words. (2)2.2 Draw a labelled free-body diagram indicating all the forces acting on the (4)trailer as it is pulled up the inclined plane. 2.3 Calculate the magnitude of the kinetic friction experiences by the trailer. (3)2.4 Is the frictional force opposing the motion of the trailer? Choose from YES or NO. (1)2.5 Calculate the force that the bakkie exerts on the trailer parallel to the surface. (5)2.6 State Newton's First Law of Motion in words. (2)The bakkie and trailer combination is moving up the incline at a constant velocity. 2.7 Calculate the magnitude of the applied force that the engin exerts on the bakkie. (5)[22]

QUESTION 3 (Start on a new page.)

A car stops on a bridge so that the tourist can take a photo of the scene. The tourist accidently drops her camera over the side of the bridge. The height that the camera falls, is 92,4 m as shown in the diagram below. Ignore the effects of air friction.

- 3.1 What is the acceleration of the camera at the instant that it is dropped? (2)
- 3.2 Define the term free fall.. (2)
- 3.3 Calculate:
 - 3.3.1 The speed at which the camera strikes the ground by using equations of motion only.
 - 3.3.2 How long does it take the camera to hit the ground (3)
- 3.4 Draw a sketch graph of velocity versus time for the entire motion of the camera.

Indicate the following on the graph:

- Final velocity
- Time at which it reaches the ground
- 3.5 If a stone with a different mass is dropped at the same time as the camera, will it take LONGER THAN, or SHORTER THAN or SAME time as the camera to hit the ground. Choose one of the answers and explain. (2)

[15]

(3)

QUESTION 4 (Start on a new page.)

The bounce of a cricket ball is tested before it is used. The standard test is to drop a ball from a certain height onto a hard surface and then measure how high it bounces. During such a test, a cricket ball of mass 0,15 kg is dropped from rest from a certain height and it strikes the floor at a speed of 6,5 m·s⁻¹. The ball bounces straight upwards at a velocity of 3,65 m·s⁻¹ to a height of 0,65 m, as shown in the diagram below. The effects of air friction may be ignored.

4.1 Define the term *impulse* in words.

- (2)
- 4.2 Calculate the magnitude of the impulse of the net force applied to the ball during its collision with the floor.
- (3)
- 4.3 To meet the requirements, a cricket ball must bounce to one third of the height that it is initially dropped from. Use ENERGY PRINCIPLES to determine whether this ball meets the minimum requirements.

(5) [**10**]

QUESTION 5 (Start on a new page.)

A 300 kg trolley A moves from rest from point **X** down a frictionless path towards trolley B where it collides against the stationary trolley B with a mass of 250 kg at point **Y**. The trolleys join and continue along the rough track from **Y** to **Z** and come to rest at point **Z**. Ignore rotational effect of the wheels.

- 5.1 State the *principal of conservation of mechanical energy* in words.
- 5.2 Draw a free body diagram for trolley B the instant that trolley A is in contact with trolley B.
- 5.3 Use the principle conservation of mechanical energy only to calculate the speed of the trolley A just before it collides with trolley B.
- 5.4 Calculate the velocity of the trolleys just after the collision at point Y. (5)

The combination of the trolleys move up the slope from point **Y** and come to rest at point **Z**. The trolleys experience 10 N frictional force.

5.5 Calculate the distance YZ. (5)

[19]

(2)

Physical Sciences/P1

13 NSC MDE/June 2025

QUESTION 6 (Start on a new page.)

- 6.1 A speedboat is moving towards a stationary listener. The siren of the boat is emitting a sound with a frequency of 850 Hz. The listener is observing another frequency. Take the speed of sound in air as 335 m·s⁻¹.
 - 6.1.1 State the Doppler effect in words.

(2)

6.1.2 How wil the frequency observed by the listener compare to the frequency released by the siren of the speedboat? Choose from HIGHER THAN, LOWER THAN or THE SAME.

(1)

6.1.3 If the speedboat is constantly moving at 20 m·s⁻¹, calculate the frequency of the siren that is detected by the listener.

(5)

6.1.4 Calculate the distance travelled by the speedboat in 3 seconds.

(3)

6.2 A helium line from the spectrum of the sun has a frequency of 6,20 x 10¹⁴ Hz. The frequencies of the same helium line from the Earth, which was observed in the line emission spectrum of two stars, are:

Star X: 6.24 x 1014 Hz

Star Y: 6,04 x 1014 Hz

- 6.2.1 Which ONE of the stars (X or Y) has a red shift? (2)
- 6.2.2 In which direction does star **Y** move? Write only AWAY FROM the Earth or TOWARDS the Earth.

[15]

QUESTION 7 (Start on a new page.)

A 40 g polystyrene sphere Y that is covered with a thin layer of graphite, is positively charged and placed in the glass cylinder. An identical sphere X that is neutral, is dropped in the glass cylinder. X makes contact with Y. X is now repelled upward by Y to a distance of 30 cm above the centre of Y as shown in the diagram below. X is now stationary.

- 7.1 State Coulomb's law in words.
- 7.2 (2)Draw a labelled free-body diagram to show all the forces acting on sphere X.
- 7.3 Calculate the original charge on sphere Y.

[10]

(2)

(6)

(2)

QUESTION 8 (Start on a new page.)

The following point charges A, B and C are placed as shown in the diagram below.

- (3)
- 8.3 Were electrons ADDED TO or REMOVED FROM charge C? (1)
- 8.4 Calculate the:
 - 8.4.1 Number of electrons added or removed from charge C (3)
 - 8.4.2 Net electric field at point P (6)

[15]

Physical Sciences/P1

NSC

MDE/June 2025

QUESTION 9 (Start on a new page)

A battery is connected to three resistors in parallel, the voltmeter reading over the battery will be 10 V as shown in DIAGRAM **A** below. When the SAME battery is connected to a 5,5 Ω resistor, the voltmeter reading is 12 V as shown in DIAGRAM **B** below.

- 9.1 Define the term *emf*. (2)
- 9.2 Calculate the total resistance of the parallel connection in DIAGRAM A. (3)
- 9.3 Explain why the voltmeter reading is higher in DIAGRAM **B** than in DIAGRAM **A**. (3)
- 9.4 Calculate the:
 - 9.4.1 Reading on ammeter \mathbf{A}_1 (3)
 - 9.4.2 Internal resistance of the battery (5)
 - 9.4.3 Emf of the battery (2)
 - 9.4.4 Power dissipated in the 5,5 Ω resistor (3)
- 9.5 The 5 Ω resistor in diagram A is removed. What will be the effect on the internal voltage(V_{in})? Choose from INCREASES, DECREASES or REMAINS THE SAME. Explain the answer. (3)

[24]

TOTAL:150

16 NSC MDE/June 2025

DATA FOR PHYSICAL SCIENCES GRADE 12 PAPER 1 (PHYSICS)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 12 VRAESTEL 1 (FISIKA)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Acceleration due to gravity Swaartekragversnelling	g	9,8 m·s⁻²
Universal gravitational constant Universele gravitasiekonstant	G	6,67 x 10 ⁻¹¹ N·m ² ·kg ⁻²
Speed of light in a vacuum Spoed van lig in 'n vakuum	С	3,0 x 10 ⁸ m·s ⁻¹
Planck's constant Planck se konstante	hysics com	6,63 x 10 ⁻³⁴ J·s
Coulomb's constant Coulomb se konstante	k	9,0 x 10 ⁹ N·m ² ·C ⁻²
Charge on electron Lading op elektron	е	1,6 x 10 ⁻¹⁹ C
Electron mass Elektronmassa	me	9,11 x 10 ⁻³¹ kg
Mass of the Earth Massa van die Aarde	М	5,98 x 10 ²⁴ kg
Radius of the Earth Radius van die Aarde	Re	6,38 x 10 ⁶ m

TABLE 2: FORMULAE/TABEL 2: FORMULES

MOTION/BEWEGING

$v_f = v_i + a \Delta t$	$\Delta x = v_i \Delta t + \frac{1}{2} a \Delta t^2$ or/of $\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2$
$v_f^2 = v_i^2 + 2a\Delta x \text{ or/of } v_f^2 = v_i^2 + 2a\Delta y$	$\Delta x = \left(\frac{v_i + v_f}{2}\right) \Delta t \text{ or/of } \Delta y = \left(\frac{v_i + v_f}{2}\right) \Delta t$

FORCE/KRAG

		p=mv	AV/		F _{net} = ma
		$f_k = \mu_k N$			$f_s^{max} = \mu_s N$
					$F_{\text{net}}\Delta t = \Delta p$
		w=mg		/ ₁	$\Delta p = mv_f - mv$
<u>M</u>	or/of $g = G \frac{M}{r^2}$	$g = G \frac{M}{I^2}$	F=Gm ₁ m ₂ cs.co	or/of	$F=G\frac{m_1m_2}{m_1}$
ľ	or/of g =G	$g = G \frac{M}{d^2}$	$F = G \frac{m_1 m_2^{lcs.co}}{r^2}$		$F = G \frac{m_1 m_2}{d^2}$

WORK, ENERGY AND POWER/ARBEID, ENERGIE EN DRYWING

W=FΔxcosθ	U= mgh	or/of	E _P = mgh
$K = \frac{1}{2} \text{ mv}^2$ or/of $E_k = \frac{1}{2} \text{ mv}^2$	$W_{net} = \Delta K$	or/of	$W_{net} = \Delta E_k$
2	$\Delta K = K_f - K_i$	or/of	$\Delta E_{k} = E_{kf} - E_{kf}$
$W_{nc} = \Delta K + \Delta U \text{ or/of } W_{nc} = \Delta E_k + \Delta E_p$	$P = \frac{W}{\Delta t}$		
$P_{ave} = Fv_{ave} / P_{gemid} = Fv_{gemid}$			

WAVES, SOUND AND LIGHT/GOLWE, KLANK EN LIG

$v = f \lambda$	$T = \frac{1}{f}$
$f_L = \frac{v \pm v_L}{v \pm v_s} f_s$ or/of $f_L = \frac{v \pm v_L}{v \pm v_b} f_b$	$E = hf$ or/of $E = h\frac{c}{\lambda}$
$E = W_o + E_{k(max)}$ or/of $E = W_o + K_{max}$ where	e/waar
$E = hf \text{ and/} en W_0 = hf_0 \text{ and/} en E_{k(max)} = \frac{1}{2}$	$\text{mv}_{\text{max}}^2 \text{or/of} \text{K}_{\text{max}} = \frac{1}{2} \text{mv}_{\text{max}}^2$

ELECTROSTATICS/ELEKTROSTATIKA

$F = \frac{kQ_1Q_2}{r^2}$	$E = \frac{kQ}{r^2}$
$V = \frac{W}{q}$	$E = \frac{F}{q}$
$n = \frac{Q}{e}$ or/of $n = \frac{Q}{q_e}$	

ELECTRIC CIRCUITS/ELEKTRIESE STROOMBANE

$R = \frac{V}{I}$	emf $(\xi) = I(R + r)$ emk $(\xi) = I(R + r)$
's ''1''2'''	morephysics.com
$\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$	$q=I \Delta t$
W = Vq	$P = \frac{W}{\Delta t}$
$W = VI \Delta t$	
$W = I^2R \Delta t$	P = VI
V²∧t	$P = I^2R$
$W = \frac{V^2 \Delta t}{R}$	$P = \frac{V^2}{R}$

ALTERNATING CURRENT/WISSELSTROOM

I I _{max}	y	I _ I _{maks}	$P_{ave} = V_{ms}I_{ms}$	1	$P_{\text{gemiddeld}} = V_{\text{wgk}} I_{\text{wgk}}$
$I_{\text{rms}} = \frac{1}{\sqrt{2}}$	1	$I_{\text{wgk}} = \frac{1}{\sqrt{2}}$	$P_{ave} = I_{ms}^2 R$	1	$P_{gemiddeld} = I_{wgk}^2 R$
$V_{ms} = \frac{V_{max}}{\sqrt{2}}$	T	$V_{wgk} = \frac{V_{maks}}{\sqrt{2}}$	$P_{ave} = \frac{V_{ms}^2}{R}$	1	$P_{gemiddeld} = \frac{V_{wgk}^2}{R}$

NATIONAL SENIOR CERTIFICATE NASIONALE SENIOR SERTIFIKAAT

Stanmorephysics.com

GRADE/GRAAD 12

PHYSICAL SCIENCES: PHYSICS P1

FISIESE WETENSKAPPE: FISIKA V1

JUNIE/JUNE 2025

MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 150

These marking guidelines consists of 17 pages Hierdie nasienriglyne bestaan uit 17 bladsye

Physica archoeodisiese freemskande anmore physics.com MDE/June Junie 2025 NSC/NSS-Marking Guideline/Nasienriglyn

QUESTION 1 / VRAAG 1

51 10 Ua	Inni		
1.1	D 🗸		(2)
1.2	C 🗸		(2)
1.3	DYY		(2)
1.4	B✓✓		(2)
1.5	B ✓✓		(2)
1.6	A		(2)
1.7	D✓✓		(2)
1.8	B✓✓		(2)
1.9	B✓✓	Stanmorephysics.com	(2)
1.10	D✓✓		(2) [20]

QUESTION 2 / VRAAG 2

2.1 Marking criteria/Nasienkriteria

If any one of the underlined key words/phrases in the **correct context** is omitted, deduct 1 mark. /Indien enige van die onderstreepte sleutelwoorde/frases in die **korrekte konteks** uitgelaat is, trek 1 punt af.

When a <u>net force</u> acts on an object, the object will accelerate in the direction of the force and the <u>acceleration is directly proportional to the resultant/net force</u> and inversely proportional to the mass of the object.

✓

Wanneer 'n <u>resulterende/netto krag</u> op 'n voorwerp inwerk, versnel die voorwerp in die rigting van die <u>krag</u> teen <u>'n versnelling direk eweredig aan die resultante/netto krag</u> en <u>omgekeerd eweredig aan die massa van die voorwerp.</u>

OR/OF

The resultant/net force acting on an object is equal to the rate of change of momentum of the object. (2 or 0)

Die resulterende/netto krag wat op 'n voorwerp inwerk is gelyk aan die tempo van verandering van momentum. (2 of 0)

(2)

2.2

(4)

Accepted labels / Aanvaarde benoemings

w F_g / F_w / force of earth on block / weight / mg / gravitational force / 11760N

T Tension / FT

f F_{friction} / F_f / frictional force /wrywing

N Normal force / F_N

Notes/Aantekeninge:

- · Mark awarded for label and arrow.
- Any additional forces: deduct 1 mark: max ³/₄
- No labels: deduct 1 mark: max ³/₄
- If everything correct, but no arrows: deduct 1 mark: ³/₄
- Force(s) not touching object: deduct 1 mark: max ³/₄
- Ignore relative sizes of the vectors

NSC/NSS-Marking Guideline/Nasienriglyn

2.3
$$f = \mu N \checkmark$$

= $(0.2)(1200)(9.8)\cos 20^{\circ} \checkmark$
= 2 210,16 N \checkmark (3)

2.5 For trailer:

F_{net} = ma

$$T + (-f) + ((-F_{gl}) = ma)$$
 Any one/Enige een \checkmark
 $T - 2210,16 \checkmark - (1200)(9,8)\sin 20^{\circ} \checkmark = (1200)(2,5) \checkmark$
 $T - 6232,317 = 3000$
 $T = 9232,22N\checkmark$

2.6 Marking criteria/Nasienkriteria

> If any one of the underlined key words/phrases in the correct context is omitted, deduct 1 mark. /Indien enige van die onderstreepte sleutelwoorde/frases in die korrekte konteks uitgelaat is, trek 1 punt af. A body will remain in its state of rest or motion at constant velocity unless a non-zero resultant/net force acts on it. ✓ ✓

'n Liggaam sal in sy toestand van rus of beweging teen konstante snelheid volhard, tensy 'n nie-nul resulterende/netto krag daarop inwerk. (2)

```
2.7
        For trailer:
        F<sub>net</sub> = ma
        T + (-f) + ((-F_{ql}) = ma
        T - 2210,16 - (1200)(9,8)\sin 20^{\circ} \sqrt{= 0}
        T - 6232.317 = 0
        T = 6232,32 N
        For bakkie:
        F_{net} = ma
        F + (-f) + ((-F_{gil}) + (-T) = ma
        F - (0.3)(2700)(9.8) \cos 20^{\circ} \sqrt{-(2700)(9.8)} \sin 20^{\circ} \sqrt{-6232.32} = 0
        F - 7459,28 = 9049,85 - 6232,32 = 0
        F = 22 741.45 NV
```

(5)[22]

(5)

QUESTION 3 / VRAAG 3

3.1 9,8 m·s⁻² \checkmark downwards/afwaarts \checkmark (2)

3.2 Free fall is the motion during which the only force acting on an object is the gravitational force.. \checkmark \checkmark (2 or 0)

Vryval is die beweging waartydens die enigste krag wat op 'n voorwerp inwerk, die gravitasiekrag is. (2 or 0)

(2)

3.3.1 **OPTION 1/OPSIE 1**

Upwards positive/Opwaarts positief

$$v_f^2 = v_i^2 + 2a\Delta y$$
 $v_f^2 = (0)^2 + 2(-9.8)(-92.4)$ $v_f = 42.56 \text{ m} \cdot \text{s}^{-1}$

Downwards positive/Afwaarts positief

$$v_f^2 = v_i^2 + 2a\Delta y$$

 $v_f^2 = \underline{(0)^2 + 2(9,8)(92,4)}$
 $v_f = 42.56 \text{ m} \cdot \text{s}^{-1}$

(3)

3.3.2 POSITIVE MARKING FROM Q3.2

POSITIEWE MERK VANAF Q3.2
OPTION 1/OPSIE 1

Upwards positive/Opwaarts positief

vf = vi +
$$a\Delta t \checkmark$$

-42,56 = 0 + (-9,8) $\Delta t \checkmark$
 $\Delta t = 4,34 s \checkmark$

Downwards positive/Afwaarts positief

$$vf = vi + a\Delta t$$

 $42,56 = 0 + (9,8)\Delta t$
 $\Delta t = 4,34 s$

OPTION 2/OPSIE 2
Upwards positive/Opwaarts positief

$$\Delta x = vi\Delta t + \frac{1}{2} a\Delta t^2 \checkmark$$

-92,4 = 0\Delta t + \frac{1}{2} (-9,8)\Delta t^2 \qquad \Delta t = 4,34 s

Downwards positive/Afwaarts positief

$$\Delta x = vi\Delta t + \frac{1}{2} a\Delta t^2$$

 $92.4 = 0\Delta t + \frac{1}{2} (9.8)\Delta t^2$
 $\Delta t = 4.34 s$

(3)

3.4 POSITIVE MARKING FROM Q3.2 & 3.3 POSITIEWE MERK VANAF Q3.2 & 3.3

3.5 Same/Dieselfde ✓

Mass has no influence/Gravitational acceleration is the same/it is in a free fall ✓ Massa het geen invloed nie/Gravitasie versnelling is dieselfde/dit is in vryval

(2)[15]

(3)

QUESTION 4 / VRAAG 4

NSC/NSS-Marking Guideline/Nasienriglyn

✓ Any one/enige een

4.1 Impulse is the <u>product of the resultant/net force acting</u> on an object and <u>the time</u> the net force acts on the object. ✓✓ (2 or 0)

Impuls is <u>die produk van die resulterende/netto krag</u> wat op 'n voorwerp inwerk en die <u>tyd wat die netto krag</u> op die voorwerp inwerk.. **(2 of 0)**

(2)

4.2
$$F_{\text{net}} \cdot \Delta t = \Delta p$$

 $F_{\text{net}} \cdot \Delta t = mv_f - mv_i$
 $Impulse = mv_f - mv_i$
 $= (0,15)(3,65) - (0,15)(-6,5) \checkmark$
 $= 1,52 \text{ kg· m·s}^{-1}/\text{N·s} \checkmark$ (3)

4.3 EMTOP = EMBOTTOM

EKTOP + EPTOP = EKBOTTOM + EPBOTTOM

 $\frac{1}{2}$ mv² + mgh = $\frac{1}{2}$ mv² + mgh

 $0 + (0.15)(9.8)h \checkmark = \frac{1}{2}(0.15)(6.5)^2 \checkmark + 0$

h = 2,16 m

Initial height dropped from is 2,16 m.

$$\frac{1}{3} h = \frac{1}{3} \times 2,16 \checkmark = 0,72 m$$

The ball <u>does not meet minimum requirements</u>√ because it only reached 0,65 m.

(5) **[10]**

5.1 Marking criteria/Nasienkriteria

If any one of the underlined key words/phrases in the **correct context** is omitted, deduct 1 mark. /Indien enige van die onderstreepte sleutelwoorde/frases in die **korrekte konteks** uitgelaat is, trek 1 punt af.

The <u>total mechanical energy</u> (sum of gravitational potential energy and kinetic energy) in an isolated system remains constant.

Die <u>totale meganiese energie</u> (som van gravitasie- potensiële energie en kinetiese energie) <u>in 'n geslote sisteem bly konstant.</u>

(2)

(3)

5.2

Accepted labels / Aanvaarde benoemings

w F_g / F_w / force of earth on block / weight / mg / gravitational force /2450 N

F Applied force / Force of trolley A on trolley B

N Normal force / F_N

Notes/Aantekeninge:

- Mark awarded for label and arrow.
- Any additional forces: deduct 1 mark: max ²/₃
- No labels: deduct 1 mark: max ²/₃
- If everything correct, but no arrows: deduct 1 mark: ²/₃
- Force(s) not touching object: deduct 1 mark: max ²/₃
- · Ignore relative sizes of the vectors

5.3 | EMTOP = EMBOTTOM

EKTOP + EPTOP = EKBOTTOM + EPBOTTOM $\frac{1}{2}$ mv² + mgh = $\frac{1}{2}$ mv² + mgh

 $\frac{1}{2}$ mv² + mgh = $\frac{1}{2}$ mv² + mgh 0 + (300)(9,8)(30) \checkmark = $\frac{1}{2}$ (300)v² \checkmark + 0

 $v = 24.25 \text{ m} \cdot \text{s}^{-1} \checkmark$

✓ Any one/enige een

5.4 POSITIVE MARKING FROM Q5.3 POSITIEWE MERK VANAF Q5.3

TAKE TO THE RIGHT AS POSITIVE/NEEM REGS AS POSITIEF

(5)

(4)

```
\Sigma p_i = \Sigma p_f

√ Any one/enige een

(mv_i)_A + (mv_i)_B = (mv_f)_1 + (mv_f)_2
(300)(24,25) \checkmark + 0 = (300 + 250)v<sub>f</sub> \checkmark
v<sub>f</sub> = 13,23 m·s<sup>-1</sup> ✓ to the right/na regs ✓
```

5.5 POSITIVE MARKING FROM Q5.3 & Q5.4 **POSITIEWE MERK VANAF Q5.3 & Q5.4**

 $W_{net} = \Delta E k$ } Any one ✓ $f\Delta x \cos\Theta + fg_{\parallel}\Delta x \cos\Theta = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2$ (10) $\Delta x \cos 180^{\circ} \checkmark + (550)(9.8) \sin 30^{\circ} \Delta x \cos 180^{\circ} \checkmark = 0 - [\frac{1}{2}(550)(13.23)^{2}] \checkmark$ $\Delta x = 17,79 \text{ m} \checkmark$

(5)[19]

Doppler effect as the change in frequency (or pitch) of the sound detected by a listener, because the sound source and the listener have different velocities relative to the medium of sound propagation.

Doppler-effek neer as die verandering in frekwensie (of toonhoogte) van die klank waargeneem deur 'n luisteraar omdat die klankbron en die luisteraar verskillende snelhede relatief tot die medium waarin die klank voortgeplant word, het. (2 of 0)

(2)

6.1.2 Higher than ✓ Hoër as

(1)

6.1.3

6.1.4

$$v = \frac{d}{t} \checkmark Accept : V = \frac{\Delta \times}{\Delta t}$$

$$20 = \frac{d}{3} \checkmark$$

6.2.1 Y ✓ ✓

6.2.2 Away from the Earth/Weg van die Aarde ✓✓

(2)[15]

(3)

(2)

QUESTION 7 / VRAAG 7

NSC/NSS-Marking Guideline/Nasienriglyn

If any one of the underlined key words/phrases in the **correct context** is omitted, deduct 1 mark. /Indien enige van die onderstreepte sleutelwoorde/frases in die **korrekte konteks** uitgelaat is, trek 1 punt af.

Note: If masses used ($^{0}/_{2}$)

The magnitude of the <u>electrostatic force</u> exerted by one point charge (Q_1) on another point charge (Q_2) is <u>directly proportional to the product of the magnitudes of the charges</u> \checkmark and <u>inversely proportional to the square of the distance</u> (r) between them \checkmark

Die grootte van die elektrostatiese krag wat een puntlading (Q₁) op 'n ander puntlading (Q₂) uitoefen, is direk eweredig aan die produk van die groottes van die ladings en omgekeerd eweredig aan die kwadraat van die afstand (r) tussen hulle.

(2)

7.2

Accep	oted labels / Aanvaarde benoemings	
FE	Electrostatic force between charges X and Y	
	Elektrostatiese krag tussen ladings X en Y	
Fg	Gravitational force on X	
	Gravitasiekrag op X	

(2)

Notes/Aantekeninge:

- Any additional forces: deduct 1 mark: max ¹/₂
- No labels: deduct 1 mark: max ¹/₂
- No arrows: 0/2
- Force(s) not touching object: deduct 1 mark: max $\frac{1}{2}$
- · Ignore relative sizes of the vectors

$$F_g = mg$$

$$F = \frac{kQ_1Q_2}{r^2} \checkmark$$

(6)

[10]

tanmorephysics.com

8.1 The electric field at a point is the electrostatic force experienced per unit positive charge placed at that point. </ (2 or 0)

Die elektriese veld by 'n punt is die elektrostatiese krag wat per eenheidspositiewe-lading wat by daardie punt geplaas is, ondervind word. (2 or 0)

(2)

8.2

Criteria for sketch/Kriteria vir skets	Marks/Punte
Correct shape as shown.	✓
Korrekte vorm soos getoon.	
Direction away from positive to negative.	✓
Rigting weg van positief na negatief.	
Field lines start on spheres and do not cross for correct	✓
diagram.	
Veldlyne begin op elke sfeer en kruis nie vir korrekte diagram.	

Added / Bygevoeg ✓ 8.3

(1)

$$n = \frac{Q}{e} \checkmark$$

$$n = \frac{-4 \times 10^{-9}}{-1.6 \times 10^{-19}} \checkmark$$

= 2,5 x 10¹³ electrons/elektrone ✓

(3)

8.4.2 Marking criteria/Merk kriteria

- Mark for correct formula to calculate E
- Mark for substituting into formula for charge A
- Mark for substituting into formula for charge C

Physica archaeolasiese from kaptanmore physics.com MDE/J NSC/NSS-Marking Guideline/Nasienriglyn

MDE/June Junie2025

- Mark for correct use of positive and negative signs
- Mark for the final answer
- Mark for correct direction

$$E = \frac{kQ}{r^2} \checkmark$$

$$E_{\text{net}} = E_A + E_B + E_C$$

$$(0 \times 10^9)(1 \times 10^{-6})$$

$$= \frac{(9 \times 10^{9})(1 \times 10^{-6})}{(0,016)^{2}} \checkmark + \frac{(9 \times 10^{9})(2,5 \times 10^{-6})}{(0,014)^{2}} \checkmark - \frac{(9 \times 10^{9})(4 \times 10^{-6})}{(0,01)^{2}} \checkmark$$

$$(9 \times 10^9)(2.5 \times 10^{-6})$$

$$-\frac{(9\times10^9)(4\times10^{-6})}{(0.01)^2}$$

QUESTION 9 / VRAAG 9

9.1 The maximum energy provided by a battery per unit charge passing through it. VV (2 or 0)

NSC/NSS-Marking Guideline/Nasienriglyn

Die maksimum energie wat 'n battery lewer per eenheidslading wat daardeur vloei. (2 of 0)

$$\frac{1}{R\parallel} = \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} \checkmark$$

$$= \frac{1}{5} + \frac{1}{10} + \frac{1}{20} \checkmark$$

$$R = 2,86 \Omega \checkmark$$

(3)

9.3 OPTION 1/OPSIE 1

Diagram B

- The total resistance of the circuit increases√
- Total current decreases√
- The Vint decreases
- therefore Vext increases

OPTION 2/OPSIE 2

Diagram A

The total resistance of the circuit decreases√

Stanmorephysics.com

- Total current increases√
- The Vint increases√
- therefore Vext decreases

(3)

9.4.1 POSITIVE MARKING FROM Q9.2 POSITIEWE MERK VANAF Q9.2

$$R = \frac{V}{I} \checkmark$$

$$2,86 = \frac{10}{I} \checkmark$$

$$I = 3,50 \text{ A} \checkmark$$

(3)

9.4.2 POSITIVE MARKING FROM Q9.2 & 9.4.1 POSITIEWE MERK VANAF Q9.2 & 9.4.1

Diagram A

E = I (R + r) ✓

 $\varepsilon = 3.5 (2.86 + r) \checkmark \dots 1$

Diagram B

$$I = \frac{12}{5.5} = 2,18 \text{ A}$$

$$\varepsilon = I(R + r)$$

$$\varepsilon = 2.18 (5.5 + r)$$
2

Equation 1 = Equation 2
$$\checkmark$$

3,5 (2,86 + r) = 2,18(5,5 + r)
 $r = 1.5 \Omega \checkmark$

(5)

POSITIVE MARKING FROM Q9.2 & 9.4.1 & 9.4.2 9.4.3 **POSITIEWE MERK VANAF Q9.2 & 9.4.1 & 9.4.2**

$$\mathcal{E} = 1 (R + r)$$

= 3,5 (2,86 +1,5) \checkmark
= 15,26 \lor \checkmark

OR

$$\mathcal{E} = I (R + r)$$

= 2,18 (5,5 +1,5) \checkmark
= 15,26 \lor

(2)

NSC/NSS-Marking Guideline/Nasienriglyn

9.4.4 POSITIVE MARKING FROM Q9.2 & 9.4.1 & 9.4.2 & 9.4.3 POSITIEWE MERK VANAF Q9.2 & 9.4.1 & 9.4.2 & 9.4.3

OPTION 1/OPSIE 1

P = I2R ✓ $=(2,18)^2(5,5)$ = 26,14 W

OPTION 2/OPSIE 2

$$P = \frac{V^2}{R} \checkmark$$

$$P = \frac{12^2}{5.5} \checkmark$$

$$P = 26.18W \checkmark$$

OPTION 3/OPSIE 3

(3)

9.5

- The voltmeter reading INCREASES. ✓
- Total resistance increases and total current decreases, ✓
- Vint decreases ✓
- Die voltmeterlesing NEEM TOE
- · Totale weerstand neem toe en totale stroom neem af
- · Vint neem af

(3)

[24]

TOTAL/TOTAAL 150