Last time: $p: E \rightarrow B$ fibration, B CW complex, σ section over B_n . $V_{nri} \in H^{nri}(B; \pi_n(F))$ varishes (=) there is a section over B_{nri} .

If $V_{nri} = 0$, V_{nr2} is defined. It all obstructions vanish, there is a section of $p: E \rightarrow B$.

If $\pi_n(F) = 0$ $n \le k-1$, and $\pi_n(F) \ne 0$, we call $\chi_{\mu_{+}} \in H^{h+1}(B; \pi_n(F))$ the primary obstruction.

Examples: $P: E \rightarrow B$ a vector bundle, $F = \mathbb{R}^d$, so $\pi_k(\mathbb{R}^d) = 0$.

All obstructions to the existence of a section vanish. So every vector bundle has a section (knew that already, e.g. zero section).

More generally, if $P: E \rightarrow B$ is a fibration with contractive C^{ij} .

More generally, if $p: E \rightarrow B$ is a fibration with contractible fibe F, then p has a section. For instance, for a vector bundle $V \rightarrow B$, $P_{GL(A,P)}(V) \rightarrow B$ has a Ros6 to O(d) (=) $P_{GL(A,P)}(V)/O(d) \rightarrow B$ has a Section (=) V admits a bundle metric. The fiber of $P_{GL(A,P)}(V)/O(d) \rightarrow B$ is $\frac{GL(A,P)}{O(d)}$ which is contractible since O(d) is a $P_{GL(A,P)}(V)/O(d) \rightarrow B$.

O(d) is a maximal compact subgroup of GL(d, \mathbb{R}). So every $V \rightarrow B$ admits a bundle metric.

· Para, m) (V) -B admin a Rosa to GL+(d, TR)

(=) Para, (V) / GL+(d, TR) -B has a section

(-) V is orientable

The fiber of Para, m) (V) / Grt(d, m) -B is \(\frac{GL(d, m)}{GL(d, m)} = \mathbb{Z}_2.

 $T_{o}(\mathbb{Z}_{v}) = \mathbb{Z}_{v}$, $T_{n}(\mathbb{Z}_{v}) = 0$ n > 0. There is one obstruction in

H'(B; To(F)) = H'(B; Zv). This is called the first Stiefel-Whitney class of

 \forall , denoted $w_1(v)$. So V is orientable Z=V $w_1(v)=0$.

· Pso(d) (V) -1 B admits a ROSG to SO(d-1)

L=) Psold) (V) /sold-1) - B has a section

(=) V has a nowhere - zero section

<=> V ≥ V, ⊕ E'

The fiber $P(SO(d))(V)/SO(d-1) \rightarrow B$ is $\frac{SO(d)}{SO(d-1)} = S^{d-1}$. The princy

obstruction belongs to $H^d(B; \pi_{d-1}(S^{d-1})) = H^d(B; \mathbb{Z})$. This is called

the Enler desi of V, dended e(V).

· Mª oriented admits can almost complex structure

(=) Pso(4) (7M) -+ M adwh 4 Rosa to U(2)

(-) /sa4) (7M)/U(2) -) M has a section.

The fiber is $\frac{50(4)}{11(2)} = 5^2$. So there are two obstructions to the

exitence of an ACS on M^4 : $y_3 \in H^3(M; \pi_2(S^2)) = H^3(M; \mathbb{Z})$

and 84 t H4 (M; 73 (52)) = H4 (M; 2). What are they?

How do we identity obstructions?

Class; fying Spaces

Motivating Example: Mn snorth nanifold, TM >M rank n

Whitney = embedding f: M - DN, so fx: TM - TRN = RN x RN. map $\phi: M \longrightarrow Gr_n(\mathbb{R}^N)$ We obtain a (Gauss mgs). P -> Pr2(f=(7pM)) The tautological bundle Vn To Gra (TN) Vn= 1 (W, V) & G-1 (MN) × MN | V & W}, \ \(\pi \ | W, V) = W \ \ \(\pi^{-1} (W) = W. \) \$ has the property that \$\$V_n = TM. Every tangent bundle is a It the tactological bundle. In fact, for N large enough, every over M is the pullback of Vn by some map \$: M > PRN. Returning to principal Gr-bundles, is there on analogue? Lemma: f, fz: X -> Y, Pa -> Y principal G-bundle If f, and for are homotopic, then f, * Por and for Por one is one sphere. Definition: A principal Go-budle Pa -> B is called a universal G-budle the map [x,B] - Pring(X) = 5 iso. classes of prin. G-bandlesy [f] - [f*PG] is a bijection. Given a principal G-bundle Q->X, a my \$:X->B Φ*P6 = B is called a classifing map. We call B classifying space for Theorem (Milner): Go top. group, I a universal G-burdle. The classifying space is unique up to homotopy equivalence, and

Universal G-bundle is unique up to isomorphism.

the

```
We denote the hometopy type of the classifying space by BG.

Proposition: P_{G} \rightarrow B universal Z=> P_{G} is nearly contractible (i.e. T_{h}(P_{0})=0 \forall h > 0)

Long exact sequence in hometopy groups \Rightarrow T_{h}(B_{G}) = T_{h-1}(G)
```

Examples: PGL(N, M) (Vn) -9 Gry (MN) is the Stiefel neithold GL(N, M)/GL(N-n) which is (N-n-1) - connected.

It follows that $P_{GL(n,\mathbb{R})}(V_n) \rightarrow G_{V_n}(\mathbb{R}^{\infty})$ is a universal $GL(n,\mathbb{R})$ - bundle.

Equip V_n with a bundle natric, $P_{O(n)}(V_n) \rightarrow G_{V_n}(\mathbb{R}^{\infty})$ is a universal O(n) - bundle.

Grn (1 0 0) = B GL(4, 1) = B O(n).

In general, li. H -> 6 cont. group homonorphism, Bp: BH -> BG and if p is a hom. eq., so is Bp.

e, g. Z-1 M - s' is the universal Z-bundle.

Criven a principal Go-bundle Q >X, $\phi: X \to BG$ classifying age.

Q admits a Rosch to $H \iff \phi: X \to BG$ lifts through $Bp: BH \to BG$ to a wap $\phi: X \to BH$.

If $\alpha \in H^{k}(Bb; \Omega)$ and $(Bp)^{\dagger} \alpha = 0$, then if ϕ has a lift $\overline{\phi}$, we have $\phi^{\dagger} \lambda = (Bp \circ \overline{\phi})^{\dagger} \lambda = \overline{\phi}^{*}(Bp)^{\dagger} \alpha = 0$. So $\phi^{*} \alpha = 0$ is a necessary condition for the existence of a lift $\overline{\phi}$ and hence q $\Omega \circ Sbr$ to H. This is related to the districtions we needled previously.

Tf H < G, Hen BH -BG is a f.be bundle with fiber G/H, and \$\$\psi^*BH -> \times is isomorphic to Q/H -> \times.

A lift & exists (=) a section of exists.