Non-regular languages

Non-regular languages

$$\{a^n b^n : n \ge 0\}$$

 $\{vv^R : v \in \{a,b\}^*\}$

Regular languages

$$a*b$$
 $b*c+a$ $b+c(a+b)*$ $etc...$

How can we prove that a language L is not regular?

Prove that there is no DFA that accepts L

Problem: this is not easy to prove

Solution: the Pumping Lemma!!!

The Pigeonhole Principle

4 pigeons

3 pigeonholes

A pigeonhole must contain at least two pigeons

n pigeons

The Pigeonhole Principle

n pigeons

m pigeonholes

n > m

There is a pigeonhole with at least 2 pigeons

The Pigeonhole Principle

and

DFAs

DFA with 4 states

In walks of strings: a no state aa is repeated aab

In walks of strings: aabb

bbaa

abbabb

abbabbabbabb...

If string w has length $|w| \ge 4$:

Then the transitions of string w are more than the states of the DFA

Thus, a state must be repeated

In general, for any DFA:

String w has length \geq number of states

A state q must be repeated in the walk of w

In other words for a string w:

 $a \rightarrow transitions$ are pigeons

(q) states are pigeonholes

The Pumping Lemma

Take an infinite regular language L

There exists a DFA that accepts L

Take string w with $w \in L$

There is a walk with label w:

$$\longrightarrow$$
 walk w

If string
$$w$$
 has length $|w| \ge m$ (number of states of DFA)

then, from the pigeonhole principle:

a state is repeated in the walk w

Let q be the first state repeated in the walk of w

Write w = x y z

Observations:

$$| length | x y | \leq m \text{ number}$$
 of states
$$| length | y | \geq 1 \quad \text{of DFA}$$

Observation: The string xz is accepted

Observation: The string x y y z is accepted

Observation: The string x y y y z is accepted

In General: The string $x y^i z$ is accepted i = 0, 1, 2, ...

In General: $x\ y^i\ z\ \Box$, L i=0,1,2,... Language accepted by the DFA

In other words, we described:

The Pumping Lemma!!!

The Pumping Lemma:

- \cdot Given a infinite regular language L
- there exists an integer m
- for any string $w \in L$ with length $|w| \ge m$
- we can write w = x y z
- with $|xy| \le m$ and $|y| \ge 1$
- such that: $x y^i z \in L$ i = 0, 1, 2, ...

Nonregular languages

"A language is called a regular language if some finite automaton recognizes it"

The pumping lemma for regular languages

A special property that all regular languages have

There exists certain languages that can not be recognized by any finite automaton

B = $\{0^n1^n | n \ge 0\}$

 $C = \{w \mid w \text{ has an equal number of 0s and 1s}\}.$

Nonregular languages do not have the special property

The Pumping Lemma

If A is a regular language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying conditions:

- 1. for each $i \ge =0$, $xy^iz \in A$,
- 2. |y| > 0, and
- 3. $|xy| \le p$.

Examples:

```
0001*, {0}
```

Proof of Pumping Lemma

Now we divide s into 3 pieces xyz

- Condition 1: $xy^iz \in A$
- Condition 2: |y| > 0
- Condition 3: $|xy| \le k$, (q_9) is the first repetition in the sequence)

Proof of Pumping Lemma

Proof: let $M = \{Q, \Sigma, \delta, q_1, F\}$ be a DFA recognizing A and k be the number of states of M.

let $s = s_1 s_2 ... s_n$ be a string in A of length n, where $n \ge k$.

The sequence has length n+1, which is at least k+1 states. Along the first k+1 elements, two must be the same state.

We call the first r_i , and the second r_l . The $j \le k$, $l \le k+1$.

Now let $x = s_1...s_{j-1}$, $y = s_j...s_{l-1}$, $z = s_l...s_n$

As x takes M from r_1 to r_j , y takes M from r_j to r_l , and z takes M from r_l to r_{n+1} which is an accept state, M must accept xy^iz for $i \ge 0$.

We know that $j\neq l$. so |y|>0, and $l\leq p+1$, so $|xy|\leq k$. Thus we have satisfied all three conditions of the pumping lemma.

The use of Pumping Lemma

Use the pumping lemma to prove a language A is not regular

First assume that language A is regular in order to obtain a contradiction

The use of pumping lemma guarantees the existence of a pumping length such that all strings in A of length at least k can be pumped

Next find a string s in A of length at least k, but can't be pumped

Finally, demonstrate that s can not be pumped by considering all ways of dividing s into x, y and z

Example 1

Let $A = \{0^n1^n | n \ge 0\}$, prove that A is not regular Proof:

Assume that A is regular, let K be the pumping length given by the pumping lemma. Chose $s = 0^K 1^k$. Because s is a member of B and has length more than k, the pumping lemma guarantees that s can be broken into xyz, where for any $i \ge =0$, $xy^iz \in A$. We consider three cases to show that this result is impossible

- (1). The string y only consists of only 0s. In this case xyyz will have more 0s than 1s. So xyyz is not in A
- (2). The string y only consists of 1 s, then xyyz will have more 1s than 0s
- (3). The string y consists of both 0s and 1s. In this case, xyyz may have same number of 0s and 1s, but they will be out of order. So xyyz is not in A

Thus a contradiction is unavoidable if we make the assumption that A is regular, so A is not regular

Example 2

Let the language $B = \{0^i1^j | 1 > j\}$, prove that B is not regular. Proof:

Assume that B is regular, let p be the pumping length given by the pumping lemma. Chose

$$s = 0^{p+1} 1^p$$

Because s is a member of B and has length more than p, the pumping lemma guarantees that s can be broken into xyz, where for any $i \ge 0$, $xy^iz \in B$. We show that this result is impossible.

Because $|xy| \le p$, y must consists of only 0s. Consider the string $xy^0z = xz$. Removing y decreases the number of 0s. xyz has only 1 more 0s than 1s. So xz is not in B.

Thus a contradiction is unavoidable if we make the assumption that B is regular, so B is not regular.