FMI, Info, Anul I

Logică matematică și computațională

Seminar 4

(S4.1) Fie A, B mulțimi a.î. există $f: B \to A$ injectivă. Arătați, pe rând, următoarele:

- (i) Dacă B este infinită, atunci și A este infinită.
- (ii) Dacă B este infinită şi A este numărabilă, atunci B este numărabilă. În particular, orice submulțime infinită a unei mulțimi numărabile este numărabilă.

Demonstrație:

(i) Presupunem prin absurd că A este finită. Atunci există n astfel încât A are n elemente. Vom demonstra că există m astfel încât B are m elemente, ceea ce va contrazice ipoteza noastră.

Demonstrăm prin inducție după n.

Pentru n = 0, avem $A = \emptyset$. Dacă am avea un $x \in B$, atunci $f(x) \in A = \emptyset$, contradicție. Rămâne că $B = \emptyset$. Prin urmare B are 0 elemente, deci putem lua m := 0.

Presupunem că am arătat propoziția pentru mulțimi cu n elemente și considerăm acum că A are n+1 elemente. Luăm $g:\{1,...,n+1\}\to A$ bijecție. Notăm $C:=g(\{1,...,n\})$ și $D:=\{x\in B\mid f(x)\in C\}$.

Cum $f(D) \subseteq C$, putem atât restricționa cât și corestricționa pe f la o funcție $f': D \to C$ ce ia aceleași valori ca f și este deci tot injectivă. Facem același lucru pornind de la $g(\{1,...,n\}) = C$ și obținem o bijecție $g': \{1,...,n\} \to C$. Rezultă că C are n elemente. Aplicând ipoteza de inducție pentru f', obținem că există p astfel încât D are p elemente și deci există o bijecție $h: \{1,...,p\} \to D$.

Distingem două cazuri. Dacă nu există $a \in B$ cu f(a) = g(n+1), atunci B = D şi deci B are p elemente. Luăm așadar m := p. În celălalt caz, dacă există $a \in B$ cu f(a) = g(n+1), avem că $B = D \cup \{a\}$, iar reuniunea este disjunctă. Luăm acum funcția $h' : \{1, 2, ..., p+1\} \to B$, definită, pentru orice j, prin:

$$h'(j) := \begin{cases} h(j), & \text{dacă } j \leq p \\ a, & \text{dacă } j = p + 1. \end{cases}$$

Cum h' este bijectivă, B are p+1 elemente. Luăm, aşadar, în acest caz, m:=p+1.

(ii) Demonstrăm prima dată că orice submulţime infinită a lui ℕ este numărabilă.

Fie $B \subseteq \mathbb{N}$ infinită, deci nevidă. Construim inductiv o enumerare a sa

$$B = \{b_0, b_1, b_2, \ldots\},\$$

unde pentru orice n avem $b_n < b_{n+1}$ şi $b_n \ge n$.

Fie b_0 cel mai mic element al ei. Clar, $b_0 \ge 0$. Atunci, B fiind infinită, $B \setminus \{b_0\}$ rămâne infinită şi deci nevidă. Punem b_1 ca fiind minimul acelei mulţimi. Clar, $b_1 \ne b_0$ şi cum b_0 este minimul lui B, avem că $b_0 < b_1$. Rezultă şi că $b_1 > b_0 \ge 0$, deci $b_1 \ge 1$.

Presupunem că am fixat pe b_0, \ldots, b_n (pentru un $n \ge 1$) și vrem să îl alegem pe b_{n+1} , Îl punem ca fiind minimul lui $B \setminus \{b_0, \ldots, b_n\}$ și deci $b_{n+1} \ne b_n$. Dat fiind că b_n fusese ales ca minimul lui $B \setminus \{b_0, \ldots, b_{n-1}\}$, avem că $b_n < b_{n+1}$ și deci $b_{n+1} \ge n+1$.

Luăm funcția $g: \mathbb{N} \to B$, $g(n) = b_n$, pentru orice $n \in \mathbb{N}$. Funcția fiind strict crescătoare, este injectivă. Fie acum $m \in B$. Atunci $b_{m+1} \geq m+1 > m$. Cum b_{m+1} este minimul lui $B \setminus \{b_0, \ldots, b_m\}$, rezultă că $m \in \{b_0, \ldots, b_m\}$. Deci există $i \in \mathbb{N}$, $i \leq m$ cu $m = b_i = g(i)$. Am arătat așadar că g este surjectivă.

Demonstrăm acum enunțul principal. Fie $h:A\to\mathbb{N}$ o bijecție. Atunci $B\sim g(B)\sim h(g(B))$, deci h(g(B)) e infinită și este submulțime a lui \mathbb{N} , deci numărabilă, din cele anterioare. Rezultă că și B este numărabilă.

(S4.2) Arătați, pe rând, următoarele:

- (i) Dacă A este finită și B este numărabilă, atunci $A \cup B$ este numărabilă.
- (ii) Dacă I este o mulțime numărabilă și $(A_i)_{i\in I}$ este o familie disjunctă de mulțimi numărabile, atunci $\bigcup_{i\in I} A_i$ este numărabilă.
- (iii) Dacă I este o mulțime numărabilă și $(A_i)_{i\in I}$ este o familie de mulțimi numărabile, atunci $\bigcup_{i\in I} A_i$ este numărabilă.
- (iv) \mathbb{Q} este numărabilă.

Demonstraţie:

(i) Dacă A este finită, atunci are un număr natural de elemente n. Demonstrăm prin inducție după acel n.

Dacă n=0, atunci $A=\emptyset$ și $A\cup B=B$, numărabilă.

Presupunem acum adevărată pentru un n şi demonstrăm pentru n+1. Putem deci scrie $A=\{a\}\cup A'$ unde |A'|=n şi $a\notin A'$. Atunci $A'\cup B$ e numărabilă, din ipoteza de inducție – în particular, $A'\cup B\sim \mathbb{N}^*$. Scriem $A\cup B=\{a\}\cup A'\cup B$. Dacă $a\in B$, atunci $\{a\}\cup A'\cup B=A'\cup B$, numărabilă. Dacă $a\notin B$, atunci $\{a\}\cup A'\cup B\sim \{0\}\cup \mathbb{N}^*=\mathbb{N}$.

(ii) Oferim mai întâi demonstrația pentru $I = \mathbb{N}$.

Pentru orice $n \in \mathbb{N}$, A_n este numărabilă, deci $A_n = \{a_{n,0}, a_{n,1}, a_{n,2}, \dots, a_{n,k}, \dots\}$. Definim

$$f: \mathbb{N} \times \mathbb{N} \to \bigcup_{n \in \mathbb{N}} A_n, \quad f(n, m) = a_{n, m}.$$

Se observă uşor, în felul următor, că f este bijecție. Pentru orice $a \in A$ există un unic $n_a \in \mathbb{N}$ a.î. $a \in A_{n_a}$ (deoarece $(A_n)_{n \in \mathbb{N}}$ este familie disjunctă), deci există un unic $m_a \in \mathbb{N}$ a.î. $a = a_{n_a,m_a}$. Inversa lui f se definește, așadar, astfel:

$$f^{-1}: \bigcup_{n\in\mathbb{N}} A_n \to \mathbb{N} \times \mathbb{N}, \quad f^{-1}(a) = (n_a, m_a).$$

Deoarece $\mathbb{N} \times \mathbb{N}$ este numărabilă, rezultă că $\bigcup_{n \in \mathbb{N}} A_n$ este numărabilă.

Considerăm acum cazul general, când I este mulțime numărabilă arbitrară și fie $F: \mathbb{N} \to I$ o bijecție. Notăm, pentru orice $n \in \mathbb{N}$, $B_n := A_{F(n)}$. Atunci $\bigcup_{n \in \mathbb{N}} B_n = \bigcup_{n \in \mathbb{N}} A_{F(n)} = \bigcup_{i \in I} A_i$. Însă, din cazul particular de mai sus, rezultă că $\bigcup_{n \in \mathbb{N}} B_n$ e numărabilă. Demonstrația este încheiată.

(iii) Oferim mai întâi demonstrația pentru $I = \mathbb{N}$.

Fie $A'_n := \{n\} \times A_n$. Atunci, conform (S2.5), $(A'_n)_{n \in \mathbb{N}}$ este o familie disjunctă de mulțimi numărabile. Aplicăm (ii) pentru a concluziona că $\bigcup_{n \in \mathbb{N}} A'_n$ este numărabilă. Definim

$$f: \bigcup_{n\in\mathbb{N}} A_n \to \bigcup_{n\in\mathbb{N}} A'_n, \quad f(a) = (n_a, a),$$

unde $n_a = \min\{n \in \mathbb{N} \mid a \in A_n\}$. Este evident că f este bine definită (din faptul că $a \in \bigcup_{n \in \mathbb{N}} A_n$, rezultă că există $n \in \mathbb{N}$ cu $a \in A_n$, deci mulţimea căreia îi căutăm minimul este nevidă) și injectivă. De asemenea, din (S4.1).(i), $\bigcup_{n \in \mathbb{N}} A_n$ este infinită, deoarece A_0 este infinită și incluziunea

$$j: A_0 \to \bigcup_{n \in \mathbb{N}} A_n, \quad j(a) = a$$

este injecție. În sfârșit, putem aplica (S4.1).(ii) pentru a conchide că $\bigcup_{n\in\mathbb{N}} A_n$ este numărabilă.

Considerăm acum cazul general, când I este o mulțime numărabilă arbitrară și fie $F: \mathbb{N} \to I$ o bijecție. Considerăm familia $(B_n)_{n \in \mathbb{N}}$ definită, pentru orice $n \in \mathbb{N}$, prin:

$$B_n := A_{F(n)}$$

Atunci $\bigcup_{i \in I} A_i = \bigcup_{n \in \mathbb{N}} B_n$ și deci $\bigcup_{i \in I} A_i \sim \bigcup_{n \in \mathbb{N}} B_n \sim \mathbb{N}$.

(iv) Notăm, pentru orice $n \in \mathbb{N}$, $A_n := \{\frac{m}{n+1} \mid m \in \mathbb{Z}\}$. Arătăm că mulțimile ce compun această familie numărabilă sunt și ele numărabile. Luăm pentru orice $n \in \mathbb{N}$, bijecția $f_n : \mathbb{Z} \to A_n$, definită, pentru orice m, prin $f_n(m) = \frac{m}{n+1}$. Observăm acum că \mathbb{Q} este reuniunea familiei, deci este și ea numărabilă, aplicând (iii).

(S4.3) Fie (A, \leq) o multime partial ordonată și $\emptyset \neq S \subseteq A$. Atunci:

- (i) Dacă minimul lui S există, atunci acesta este unic.
- (ii) Orice minim (maxim) al lui S este element minimal (maximal).

Demonstraţie:

(i) Vom presupune că există două valori minime şi vom demonstra că acestea sunt egale. Fie x minim al lui S, deci pentru orice $y \in S$, $x \le y$. Fie x' minim al lui S, deci pentru orice $y' \in S$, $x' \le y'$. Cum $x \le y$ pentru orice $y \in S$, alegem y = x'. Rezultă că $x \le x'$. Cum $x' \le y'$ pentru orice $y' \in S$, alegem y' = x. Rezultă că $x' \le x$. Atunci obţinem că x' = x, deci minimul este unic.

Se procedează asemănător pentru maxim.

(ii) Fie x minimul mulţimii S. Pentru a demonstra că x este element minimal, vom presupune că există cel puţin un element $t \in S$ a.î. $t \le x$ şi vom arăta că t = x. Cum x este minim şi $t \in S$, rezultă că $x \le t$. Prin urmare, t = x, deci x este element minimal al lui S

Se procedează asemănător pentru maxim.

(S4.4) Fie $D(n) = \{d \in \mathbb{N} | d|n\}$ şi $P(n) = \{d \in \mathbb{N} | d|n, d \neq 1, d \neq n\}$. Demonstrați că (P(n), |) şi (D(n), |) sunt mulțimi parțial ordonate. Enumerați elementele minimale, elementele maximale, minimul şi maximul (dacă există) pentru următoarele mulțimi: P(12), P(32), P(72), D(72).

4

Demonstrație:

Definim relația de divizibilitate pe mulțimea P(n) astfel : $R = \{(a, b) \in P(n) \times P(n) | a|b\}$.

Reflexivitate

Pentru orice $a \in P(n)$, $a = a \cdot 1 \Rightarrow a | a$ pentru orice $a \in P(n)$

Antisimetrie

Pentru orice $a, b \in P(n)$, dacă $(a, b) \in R$ şi $(b, a) \in R$, atunci: $a|b \Rightarrow \text{există } r \in \mathbb{N} \quad \text{a.î.} \quad b = a \cdot r \mid \Rightarrow a = a \cdot r \cdot t, \, r, t \in \mathbb{N} \Rightarrow r \cdot t = 1, \, r, t \in \mathbb{N} \Rightarrow b|a \Rightarrow \text{există } t \in \mathbb{N} \quad \text{a.î.} \quad a = b \cdot t \mid \Rightarrow a = a \cdot r \cdot t, \, r, t \in \mathbb{N} \Rightarrow r \cdot t = 1, \, r, t \in \mathbb{N} \Rightarrow t = \frac{1}{r} \in \mathbb{N}$. Deci r este divizor al lui 1. Rezultă $r = 1 \Rightarrow t = 1 \Rightarrow a = b \cdot 1 \Rightarrow a = b$.

Tranzitivitate

Pentru orice $a, b, c \in P(n)$, dacă $(a, b) \in P(n)$ şi $(b, c) \in P(n)$, atunci: $a|b \Rightarrow \text{ există } r \in \mathbb{N} \ \text{ a.î. } b = a \cdot r \ b|c \Rightarrow \text{ există } t \in \mathbb{N} \ \text{ a.î. } c = b \cdot t \ \Rightarrow c = a \cdot r \cdot t, \, r, t \in \mathbb{N} \Rightarrow a|c, \, \text{unde } a, c \in P(n) \Rightarrow (a, c) \in R.$

În concluzie, R este o relație de ordine parțială, deci (P(n), |) este mulțime parțial ordonată. Asemător se demonstrează și că (D(n), |) este mulțime parțial ordonată.

Definiția 1. Fie (A, \leq) o mulțime parțial ordonată. Construim diagrama Hasse corespunzătoare sub forma unui graf orientat în modul următor:

- (i) vârfurile grafului reprezintă toate elementele mulțimii A.
- (ii) există muchie $x \to y$ dacă x < y și nu există $z \in A$ a.î. x < z < y

Folosim diagrama Hasse pentru a observa diferența dintre elementele minimale(maximale) și minimul(maximul) unei mulțimi parțial ordonate.

$$P(12) = \{2, 3, 4, 6\}.$$

Observăm că pentru toate elementele $y \in S$ care se află într-o relație de divizibilitate, dacă y|2, rezultă y=2, sau dacă y|3, rezultă y=3. Deci, 2 și 3 sunt elemente minimale.

Asemănător, pentru toate elementele $y \in S$ care se află într-o relație de divizibilitate, dacă 4|y, rezultă y = 4, sau dacă y|6, rezultă y = 6. Deci, 4 și 6 sunt elemente maximale.

Nu avem element minim, deoarece 2 și 3 nu sunt într-o relație. Nu avem element maxim, deoarece 4 și 6 nu sunt într-o relație. Observăm că dacă un element este minimal(maximal), nu implică faptul că el este minim(maxim).

 $P(32) = \{2, 4, 8, 16\}.$

2 este element minimal, deoarece pentru toate elementele $y \in S$ care se află într-o relație de divizibilitate, dacă y|2, rezultă y=2. Exemplu: 4 nu este maximal, deoarece pentru y|4, unde $y \in S$, avem $y \in \{2,4\}$, deci nu implică y=4.

2 este și minim, deoarece pentru toate elementele $y \in S$ avem 2|y. 16 este element maximal, deoarece pentru toate elementele $y \in S$ care se află într-o relație de divizibilitate, dacă 16|y, rezultă y = 16. Dar 16 este și maxim, deoarece pentru toate elementele $y \in S$ avem y|16.

 $P(72) = \{2,3,4,6,8,9,12,18,24,36\}.$ 2 și 3 sunt elemente minimale. 24 și 36 sunt elemente maximale. Nu avem minim, deoarece 2 și 3 nu sunt într-o relație de divizibilitate și nici maxim, deoarece 24 și 36 nu sunt într-o relație de divizibilitate.

 $D(72) = \{1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72\}.$ 1 este element minimal, dar şi minim. 72 este element maximal, dar şi maxim.

