Upravljanje vremenskim rasporedom projekta

6/12

Upravljanje vremenskim rasporedom projekta

Definiranje aktivnosti, usljeđivanje aktivnosti, određivanje trajanja aktivnosti, razvoj vremenskog rasporeda, kontrola vremenskog rasporeda

© J.Phillips: PMP Project Management Professional Study Guide, McGraw-Hill, 2004.

Određivanje aktivnosti projekta

- □ Ulazi
 - WBS
 - Izjava o dosegu
 - Povijesni podaci
 - Ograničenja
 - Pretpostavke
 - Stručna prosudba
- Kompilacija liste aktivnosti
- ☐ Ažuriranje WBS-a

Određivanje redoslijeda aktivnosti

- ☐ Usljeđivanje aktivnosti (Activity sequencing)
 - Kreiranje mrežnog dijagrama (Network diagram) prikazuje slijed projektnih aktivnosti od početka do kraja projekta i njihove međuovisnosti
- Metoda određivanja prethodnika Precedence Diagram Method (PDM), Polaris Missile Program, 50ih, varijante:
 - Activity-on-the-Arrow (AOA), izvorna
 - *Activity-on-the-Node (AON)*, na slici

Tipovi zavisnosti aktivnosti projekta

- ☐ Obavezne zavisnosti (mandatory dependencies), "hard logic"
 - Inherentne prirodi posla (npr. prvo se grade temelji, a zatim zidovi)
- Diskrecijske zavisnosti (discretionary dependencies), "soft logic"
 - Poželjni redoslijed radi bolje organizacije posla
 - Definiraju se na osnovu dobrih praksi za problemsko područje, iskustvu u vođenju sličnih projekata, specifičnosti projekta itd.
 - Mogu imati +/- utjecaj na projekt
- □ Vanjske zavisnosti (external dependencies)
 - Odnosi između aktivnosti unutar projekta i aktivnosti izvan projekta
 - Primjer: isporuka opreme, rezultati drugog projekta, zakon
- □ Kalendarska ograničenja (date constraints)
 - preciziraju rokove "najranije" (no earlier than), najkasnije (no later than), na određeni dan (on this date)
- ☐ Kontrolne točke projekta (milestones)
 - događaji o kojima također zavise aktivnosti (pogledati nastavak)

Međuzavisnost aktivnosti/zadataka

- Završetak Početak (*Finish-to-Start*) početak trenutne ovisi o završetku prethodne aktivnosti
- □ Početak Početak (Start-to-Start)
 početak trenutne ovisi o početku prethodne aktivnosti
- □ Završetak Završetak (Finish-to-Finish) - završetak trenutne ovisi o završetku prethodne aktivnosti
- □ Početak Završetak (Start-to-Finish) - završetak trenutne ovisi o početku prethodne aktivnosti

- Modifikator (lag variable)
 - npr. FS+2d, SS+10d
 - služi za uvođenje upravljačke rezerve (objašnjena kasnije)
 - rezerva ne troši resurse, kao što bi rastezanje aktivnosti

Kontrolne točke projekta

- ☐ Kontrolne točke projekta, prekretnice, miljokazi (milestones)
 - lat. milliarium
 - ključni događaj ili krajnji rok odnosno cilj koji treba postići
 - uvjetna aktivnost
 - događaj ili rezultat neke aktivnosti koji ukazuje na to je li projekt u skladu sa zadanim rokovima ili odstupa (kasni, žuri)
 - definira se KAD nastupa prekretnica i ŠTO se pri tome analizira
 - nema definirano trajanje, tj. trajanje = 0
 - pomak ključnog događaja izaziva vremenski preraspored

		Task Name	Duration	Start	Finish
		- Faza analize	110 days	Fri 29.12.06	Fri 1.6.07
		- Uspostava projekta	15.5 days	Fri 29.12.06	Fri 19.1.07
		Određivanje interesnih skupina	1 wk	Fri 29.12.06	Thu 4.1.07
		Određivanje dosega	1 wk	Fri 5.1.07	Thu 11.1.07
Š		Izrada plana prikupljanja informacija	1.5 wks	Fri 5.1.07	Tue 16.1.07
tc		Uspostava projektnog poslužitelja	3 days	Tue 16.1.07	Fri 19.1.07
_		Dovršetak uspostave projekta	0 days	Fri 19.1.07	Fri 19.1.07
kontrolnih točki		- Analiza i specifikacija zahtjeva	32 days	Fri 19.1.07	Tue 6.3.07
0		Intervjuiranje korisnika	30 days	Fri 19.1.07	Fri 2.3.07
ţ		Prikupljanje dodatnih informacija	15 days	Tue 30.1.07	Tue 20.2.07
		Proučavanje evidencija i aplikacija	15 days	Fri 2.2.07	Fri 23.2.07
δ		Analiza i specifikacija zahtjeva	15 days	Fri 9.2.07	Fri 2.3.07
_		Ažuriranje plana razvoja	2 days	Fri 2.3.07	Tue 6.3.07
<u>6</u>		Završetak analize	0 days	Tue 6.3.07	Tue 6.3.07
Primje		- Projektiranje sustava	62.5 days	Tue 6.3.07	Fri 1.6.07
-		Izrada integralnog modela podataka	2 wks	Tue 6.3.07	Tue 20.3.07
		Razvoj funkcionalnih specifikacija	2 wks	Tue 20.3.07	Tue 3.4.07
		Izrada prototipova i određivanje arhitektur	2 wks	Tue 3.4.07	Tue 17.4.07
		Definiranje distribucije aplikacija i pristupa	2 wks	Tue 17.4.07	Tue 1.5.07
		Specifikacija opreme i sistemskog softver	1 wk	Tue 1.5.07	Tue 8.5.07
		Završatak projektiranja	0 days	Tue 8.5.07	Tue 8.5.07
@ <u>0</u> <u>0</u> <u>0</u> <u>0</u>	FER \ F	Primopredaja projekta projektiranja	0 days	Fri 1.6.07	Fri 1.6.07

Izrada i analiza vremenskog rasporeda

Gruba procjena trajanja iz procjene napora

- ☐ Iskustveno pravilo za optimalnu procjenu trajanja temeljem napora:
 - optimalno trajanje u mjesecima = 3.0·(čovjek-mjeseci)^{1/3}
 trajanje u mjesecima = 3.0·(čovjek-mjeseci)^{1/3}
- ☐ Za procjenu projekta koji zahtijeva napor 65 čm,
 - optimalno trajanje je 3.0·65^{1/3}, tj 12 mjeseci
- ☐ To dalje znači da je optimalna veličina tima
 - 65/12, tj.okvirno no 5-6 članova
- Što se događa kada projekt treba dovršiti brže ili sporije?
 - prema različitim izvorima faktor 3.0 može varirati od 4.0 do 2.5.
 - angažmanom više članova povećavamo komunikaciju pa će biti manje produktivni
 - možemo angažirati manje članova, ali će nas dulje koštati

Određivanje vremenskog rasporeda

- Nakon početne grube procjene slijedi preciznija, analizom mrežnog dijagrama
- Planiranje početka i završetka aktivnosti unutar projekta
- **Detaljnost vremenskih rasporeda**
 - Općenito (sveobuhvatno) planiranje rokova aktivnosti
 - Planiranje rokova pojedinih miljokaza
 - Detaljno planiranje rokova aktivnosti

Izrada vremenskog rasporeda

- eng. schedule vremenski raspored, satnica, vremenski plan
- eng. scheduling vremensko planiranje, raspoređivanje redoslijeda poslova, određivanje rokova

Iterativni proces određivanja rokova (aktivnosti, a posljedično projekta)
Određuje se planirani datum početka i datum završetka aktivnosti
Temelji se na procjeni trajanja aktivnosti i procjeni resursa
Neki rokovi podložni promjenama (napretkom projekta, promjenama
plana, realiziranim rizicima i sl.)

□ Tehnike:

- 1. Analiza mrežnog dijagrama aktivnosti projekta
- 2. Metoda kritičnog puta
- 3. Sažimanje vremenskog rasporeda
- 4. Analiza različitih scenarija
- 5. Metoda kritičnog lanca (Critical Chain Method)
- 6. Metoda raspodjele resursa

1. Analiza mrežnog dijagrama

- ☐ Cilj je postići konvergenciju putova i optimalno trajanje
 - analiza petlji i otvorenih dijelova podešavanje
 - sažimanje rasporeda
 - uravnoteženje resursa
- □ Analitičke tehnike
 - za računanje ranih i kasnih datuma početka i završetka projekta
 - Metoda kritičnog puta (eng. *Critical Path Method*, CPM)
 - CPM se koristi u situacijama gdje su vremena trajanja aktivnosti izvjesna.
 - PERT (eng. Program Evaluation and Review Technique)
 - koristi se u situacijama gdje su vremena trajanja aktivnosti neizvjesna
 - očekivano trajanje aktivnosti TE = (O + 4M + P) \ 6

Primjer studentskog projekta

Problem: Otvoreni kraj u mrežnom dijagramu

Problem: Petlja u mrežnom dijagramu

Rješenje: Ispravan mrežni dijagram

Mrežni dijagram vremenskog rasporeda

Za svaku aktivnost procjenjuje se njezino trajanje

2. Određivanje kritičnog puta

- ☐ Mrežni put (*network path*)
 - neprekidni niz međusobno povezanih aktivnosti između početne i završne aktivnosti projekta, bez višekratnog prolaska po jednog grani
- ☐ Kritični put (*critical path*) kronološki najduži mrežni put
 - određuje ukupno (kalendarsko) trajanje projekta
 - kašnjenja na tom putu odgađaju završetak projekta
 - aktivnosti na tom putu kritične aktivnosti (s obzirom na vrijeme)

Primjer: Određivanje kritičnog puta

1. Istraž. – Analiza PI – R/p. SW – Opis rješenja – Anal.rez PP	16 tj.
2. Istraž. – Analiza PI – R/p. SW – Opis rješenja – Anal.rez. – Os.	17 tj.
3. Istraž. – Analiza PI – Opis rješenja – Anal.rez PP	9 tj.
4. Istraž. – Analiza PI – Opis rješenja – Anal.rez Ostalo	10 tj.
5. Istraž. – Opis dom/prob Opis rješenja – Anal.rez. – PP	8 tj.
6. Istraž. – Opis dom/prob Opis rješenja – Anal.rez. – Ostalo	9 tj.
7. Opis dom/prob Opis rješenja – Anal.rez. – PP	5 tj.
8. Opis dom/prob Opis rješenja – Anal.rez. – Ostalo	6 tj.

Kritični put u mrežnom dijagramu

Klizanje aktivnosti

☐ Klizanje aktivnosti (float, slack)

 Ubrzanje ili usporavanje (unutar određenih granica) aktivnosti koje nisu na kritičnom putu neće izazvati kašnjenje projekta

slobodno klizanje (free float)

- kašnjenje neke aktivnosti koje ne odgađa najraniji početak aktivnosti koje neposredno slijede tu aktivnost
- slučaj kad sve prethodne aktivnosti započinju u <u>najranija</u> moguća vremena, a sve sljedeće započinju u <u>najranija</u> moguća vremena

ukupno klizanje (total float)

- ukupno kašnjenje koje neće odgoditi završetak projekta ili kršiti kalendarska ograničenja
- razlika između najranijeg i najkasnijeg završetka neke aktivnosti
- slučaj kad sve prethodne aktivnosti započinju u <u>najranija</u> moguća vremena, a sve sljedeće započinju u <u>najkasnija</u> moguća vremena
- kritična aktivnost ukupno klizanje = 0, nalazi se na kritičnom putu

Analiza vremenske rezerve

□ Varijante

- neiskorišteno vrijeme (NV) raspoloživo za klizanje početka
 - aktivnost smije početi i ranije, ovisno o prethodnicima
- vremenska rezerva (VR) preostalo vrijeme za klizanje završetka
 - · kašnjenje aktivnosti u trajanju rezerve neće utjecati na projekt

Analiza aktivnosti nekritičnog puta

Analiza aktivnosti nekritičnog puta (2)

- ☐ ES najranije vrijeme početka
 - ES = 1 za početnu aktivnost
 - ES = MAX (EF prethodnih) + 1
- □ EF najranije vrijeme završetka
 - EF = ES + d 1
 - d trajanje pojedine aktivnosti

- LF = LS za završnu aktivnost kritičnog puta
- LF = MIN (LS nasljednika) 1
- LS najkasnije vrijeme početka

☐ Slack, free slack - jedne aktivnosti

- □ Total slack nekog puta
 - TS = SUM (FS na putu)

Analiza aktivnosti nekritičnog puta (3)

Analiza aktivnosti nekritičnog puta (4)

0. 3. 5.

12. 14. 15. 17. tjedan

Istr. API. Razvoj/primjena SW OR. AR Ost.

kritični put: 17 tjedana

klizanje: 8+1=9 tjedana

8 tjedana za aktivnost OP

1 tjedan za aktivnost PP

3. Sažimanje vremenskog rasporeda

- Sažimanje rasporeda (Schedule Compression)
 - Skraćuje se trajanje projekta bez promjene njegovog opsega
- □ tehnike:
 - Rušenje (crashing) rokova, rasporeda
 - Rušenje kritičnog puta (crashing the critical path)
 - Brzo praćenje (fast tracking)

3. Sažimanje vremenskog rasporeda (1)

- ☐ Rušenje (crashing) rokova, rasporeda
 - bolje rečeno optimizacija neiskorištenog vremena i vremenske rezerve (lead-lag times)
 - Kalkuliraju se troškovi i rokovi kako bi se dobilo maksimalno sažimanje uz minimalni porast troška projekta
 - Ne rezultira uvijek efikasnim rješenjem
 - Povećani rizici
- Modifikacija logičkih veza između slijednih aktivnosti
- lead omogućavanje ubrzanja nasljednika
 - pr. S-S: testiranje aplikacija započinje 5 dana nakon testiranja
 - pr. S-F: stari sustav isključuje se 25 dana nakon početka testiranja
 - pr. F-F: pisanje uputa završava 7 dana nakon završetka testiranja
- □ lag određuje kašnjenje nasljednika
 - pr. F-S, slijedna mora čekati lag nakon što prethodna završi
 - strategija stvaranja umjetne vremenske rezerve na kritičnom putu

3. Sažimanje vremenskog rasporeda (2)

- □ Rušenje kritičnog puta najčešće primjenjivana tehnika
 - kad je rok važniji od troška, a nije dozvoljeno preklapanje aktivnosti
 - Skraćenje trajanja aktivnosti na kritičnom putu
 - Planiranje novih članova tima (prije početka projekta)
 - Korištenje vanjske usluge (outsourcing)
 - Prekovremeni plaćeni rad (smoothing)

crashpoint

 povećanje (ljudskih) resursa moguće je do neke mjere nakon čega postane kontraproduktivno, tj. može produljiti trajanje

3. Sažimanje vremenskog rasporeda (3)

☐ Primjer, rušenje kritičnog puta:

Duljina kritičnog puta: 60 dana

■ Trajanje projekta: 60 dana

Rušenje kritičnog puta:

Aktivnost 2 10 dana

Aktivnost 3 13 dana

3. Sažimanje vremenskog rasporeda (4)

- ☐ Rušenje kritičnog puta izaziva pojavu novog kritičnog puta
- Primjer:

- Skraćenje starog kritičnog puta: 17 dana
- Duljina novog kritičnog puta : 45 dana
- Skraćenje projekta: 15 dana
- Novi kritični put ne mora produljiti rokove u odnosu na izvorni plan, ali može izazvati probleme s raspodjelom resursa!

3. Sažimanje vremenskog rasporeda (5)

- □ Brzo praćenje (fast tracking)
 - Konkurentnost faza/aktivnosti koje bi se inače izvršavale slijedno
 - ukidanje zavisnosti (potpuni paralelizam)
 - alternativa, u F-S, slijedna može početi lead prije nego prethodna završi
 - Može rezultirati dodatnim poslom (pripreme)
 - Može zahtijevati izvršavanje aktivnosti prije nego su prikupljene sve potrebne ulazne informacije (razvoj prije temeljnog dizajna)
 - Rizično preklapanje bi trebalo biti u okviru dozvoljenog rizika
 - Primjer: RAD metode (brzog razvoja aplikacija)

33

4. Analiza različitih scenarija

- Analiza mrežnog dijagrama aktivnosti na koji se primjenjuju različiti scenariji (npr. kasni nabava elementa proizvoda, produljenje i skraćivanje trajanja pojedinih aktivnosti, vanjski faktori)
- Simulacija primjena programskih pomagala
- □ Analiza scenarija može se koristiti i za određivanje rokova i za sažimanje rasporeda

Uravnoteženje resursa

- ☐ Uravnoteženje resursa (resource leveling)
 - provjera iskorištenja (ljudskih) resursa na mrežnom putu
 - uvažavajući vremenski okvir najranijeg početka (ES) i najkasnijeg završetka aktivnosti (LF)

Problemi

- preopterećenje pojedinih resursa (over-allocation) u okviru ES-LF
- fluktuacija resursa pretjerana "šetnja" između projekata/aktivnosti
 - potreba da resursi budu kontinuirano raspoređeni
 - primjer: konzultanti u projektu informatizacije sveučilišta

□ Rješenja

- produljenje rokova (trajanja) uslijed nedostatka resursa (shifting)
 - postizanje vremenske rezerve uz jednako opterećenje tijekom trajanja aktivnosti
- prekovremeni plaćeni rad (smoothing)
- rastezanje aktivnosti (*stretching activities*)
 - manjim opterećenjem resursa, npr. 80% umjesto 100%
- nadomještanje resursa
 - korištenje manje kompetentnog osoblja umjesto zamišljenog
 - produljuje trajanje !!

Rezultati vremenskog planiranja

☐ Rokovi pojedinih aktivnosti:

Identifikator	Opis aktivnosti	Vremenska jedinica	Period 1	Roko Period 2	ovi Period 3	
WP1.1	Istraživanje	3 tj				
WP2.1	Opis dom. i i probl.	1 tj				
WP1.2	Analiza PI	2 tj				
WP1.3	Razvoj/primjena SW-a	8 tj				
WP2.2	Opis rješenja	2 tj				
WP2.3	Analiza rezultata	1 tj				
WP3	PP prezentacija	1 tj				
WP4	Ostalo	2 tj				
					l	l

Gantt-ov dijagram

☐ Henry Gantt, američki inženjer, 1917.

Prvi dijagrami korišteni za brodogradnju tijekom Prvog svjetskog rata

Projektne aktivnosti predstavljene su na vodoravnoj vremenskoj osi

🔳 Omogućuje učinkovitu usporedbu planiranih i realiziranih aktivnosti u

projektu

 □ Koristi se umjesto mrežnog dijagrama za lakše praćenje napretka i efikasnije izvještavanje

Prikaz kritičnog puta i vremenske rezerve

□ Gantogram

☐ Mrežni dijagram

Diskusija

- □ Nakon izrade mrežnog dijagrama planirani rok završetka premašuje očekivani rok (ugovoreni, nametnut od strane naručitelja, zakona...)
 - Provedene su tehnike sažimanja rasporeda uvođenjem paralelnih aktivnosti (promjenom zavisnosti sa FS na SS)
 - Planirani rok i dalje je kasnije od očekivanog, što učiniti ?

□ Upravljačka rezerva

- Pri izradi početnog plana procijenjena je vremenska rezerva 20%
- Nakon izrade početnog plana napravljeno je usklađivanje resursa
- Kolika bi trebala biti ukupna procijenjena vremenska rezerva s obzirom na kritični put ?

□ Parkinsonov zakon

 uloženi rad se povećava tako da potroši čitavo planirano ili raspoloživo vrijeme

Reference

- □ A Quick Guide to Crashing a Project Schedule
 - http://www.brighthub.com/office/project-management/articles/5055.aspx
- ☐ How to Compress Project Schedules
 - http://www.projectmgt.com/Files/Article-How%20to%20Compress%20Project%20Schedules.pdf
- □ Brooks, F.P. The Mythical Man Month. Addison Wesley, 1975.
 - http://en.wikipedia.org/wiki/Brooks's_law
 - dovođenje osoblja u projekt koji kasni izaziva još veće kašnjenje
- □ McConnell S.: Rapid Development: Taming Wild Software Schedules. Redmond, Wa.: Microsoft Press, 1996.
 - softverska jednadžba, Jonesova first-order procjena
- ☐ Paretovo načelo pravilo 80/20
 - http://en.wikipedia.org/wiki/Pareto principle
 - 80% događaja izazvano je s 20% uzroka
 - u prijevodu, 20% problema izaziva 80% posla
- □ Parkinsonov zakon izvornik i izvedenice
 - http://en.wikipedia.org/wiki/Parkinson's Law

