Torhorst - Gesamtschule

mit gymnasialer Oberstufe

Klasse:	Fach:	Niveau:	Lehrkraft:	Datum:	Art:
12	Mathematik	Leistungskurs	Herr Herrys	29.05.2024	Test 2 (2. Sem.) XXXX-XXXX

Höhere Ableitungsregeln und Wachstum

Aufgabe 1

Vervollständigen Sie die folgenden Logarithmusgesetze.

$$\log_a 1 = a^{\log_a b} =$$

Aufgabe 2

Lösen Sie die Exponentialgleichungen.

a)
$$-1.5e^{-x} = -3.9e^{2x}$$
 b) $8^x = 32768$
c) $e^{2.5x-4} = 2.2$ d) $\ln(x^{-6}) = \ln(x^{-7}) + 7$

Aufgabe 3

Ein Patient nimmt ein Medikament ein. Anschließend wird die Konzentration des Medikaments im Blut jede Stunde in mg/l gemessen. Die Messwerte ergeben folgende Tabelle:

Konzentrations entwicklung:	Zeit in Stunden	0	1	2	3	4
	Wert in mg/l	110	101.2	93.10	85.66	78.80

- a) Weisen Sie nach, dass es sich um exponentielles Wachstum handelt.
- b) Stellen Sie die Wachstumsfunktion f(x) auf.
- c) Berechnen Sie die Zeit bis 61 mg/l erreicht werden.
- d) Berechnen Sie den Wert der nach 14 Stunden erreicht wird.

Aufgabe 4

Berechne die Ableitung der folgenden Funktionen mithilfe der elementaren Ableitungsregeln.

a)
$$f(x) = \sqrt[7]{x^2} \cdot e^x$$
 b) $f(x) = x^3 \cdot \ln(x)$ c) $f(x) = \sqrt[2]{8x^{-7} - 2}$

Probe 01 - bearbeitet von:

Punkteverteilung aller Aufgaben								
Aufgabe	1	2	3.a)	3.b)	3.c)	3.d)	4	Summe
Punkte	2	12	3	2	3	2	9	33
erhaltene								
Punkte								