1 Robust Inference for Risk Price $\zeta = 1 - \phi^2$ The reduced-form parameters are $\omega = (\rho, c, \gamma, \beta, \psi, \phi^2)$. Using the conditional mean and conditional variance derived in the paper, we estimate $\omega_1 = (\rho, c)$ by the GMM estimator, estimate $\omega_2 =$ (ψ, β, γ) by the GLS estimator, and estimate $\omega_3 = \phi^2$ by the method of moments estimator for the variance. We can show that the estimator $\widehat{\omega}$ satisfies

$$n^{1/2}(\widehat{\omega} - \omega_0) \to_d \xi_\omega \sim N(0, V). \tag{1.1}$$

See the next section for details. Note that these estimators do not involve the structural parameters θ and π . We do not plug in β, γ, ψ as functions of θ and π . Instead, we treat β, γ, ψ just as linear coefficients and estimate them by GLS.

We estimate the structural parameters θ and π using $\widehat{\omega}$ and the link functions specified below.

First, we know that
$$\psi_0 = \phi_0 (c_0 (1 + \rho_0))^{-1/2} + (1 - \phi_0^2)/2 - (1 - \phi_0^2)\theta_0$$
 (1.2)

when all parameters are evaluated at the true values. This equation strongly identifies θ_0 because ϕ_0^2 is assumed to be bounded away from 1. It follows from (1.2) that

$$\theta_0 = L(\omega_0) = (1 - \phi_0^2)^{-1} \left[\psi_0 - \phi_0 \left(c_0 \left(1 + \rho_0 \right) \right)^{-1/2} - \left(1 - \phi_0^2 \right) / 2 \right]. \tag{1.3}$$

Thus, we estimate θ_0 by

$$\widehat{\theta} = L(\widehat{\omega}). \tag{1.4}$$

By the delta method, we know that

$$n^{1/2}(\widehat{\theta} - \theta_0) \to_d L_{\omega}(\omega_0)' \xi_{\omega},$$
 (1.5)

where $L_{\omega}(\omega) \in \mathbb{R}^{d_{\omega}}$ denote the derivative of $L(\omega)$ wrt to ω . The inference for θ is standard. A confidence interval for θ can be obtained by inverting the t statistic with a critical value obtained from the standard normal distribution.

Next, we consider inference for the structural parameter π . This is a non-standard problem

because π is potentially weakly identified. Define

$$g(\pi,\omega) = \begin{pmatrix} \chi - [B(\pi + C(\theta_{L} - 1)) - B(\pi + C(\theta_{L}))] \\ \beta - [A(\pi + C(\theta_{L} - 1)) - A(\pi + C(\theta_{L}))] \end{pmatrix}, \text{ where } \theta_{L} = L(\omega)$$

$$(1.6)$$

We know that

$$g(\pi_0, \omega_0) = 0 \in \mathbb{R}^2. \tag{1.7}$$

Inference on π is based on the function $g(\pi,\widehat{\omega})$ because $\widehat{\omega}$ is a consistent estimator of ω_0 .

By the consistency of $\widehat{\omega}$,

$$T^{1/2}\left[g(\pi,\widehat{\omega}) - g(\pi,\omega_0)\right] \Rightarrow \xi(\pi) = G(\pi,\omega_0)'\xi_\omega,\tag{1.8}$$

where $G(\pi, \omega)$ denote the derivative of $g(\pi, \omega)$ wrt to ω . The Gaussian process $\xi(\pi)$ has covariance kernel

$$\Sigma(\pi_1, \pi_2) = G(\pi_1, \omega_0)' V G(\pi_2, \omega_0). \tag{1.9}$$

We can estimate $\Sigma(\pi_1, \pi_2)$ by

$$\widehat{\Sigma}(\pi_1, \pi_2) = G(\pi_1, \widehat{\omega})' \widehat{V} G(\pi_2, \widehat{\omega}), \tag{1.10}$$

where \widehat{V} is a consistent estimator of V.

We construct a confidence interval for π by inverting tests $H_0: \pi = \pi_0$ vs $H_0: \pi \neq \pi_0$. The test statistic is the QLR statistic

$$QLR = Tg(\pi_0, \widehat{\omega})'\widehat{\Sigma}(\pi_0, \pi_0)^{-1}g(\pi_0, \widehat{\omega}) - \min_{\pi \in \Pi} Tg(\pi, \widehat{\omega})'\widehat{\Sigma}(\pi, \pi)^{-1}g(\pi, \widehat{\omega}).$$
(1.11)

To obtain the critical value, we follow the conditional inference approach in Andrews and Mikusheva (2016). To this end, first construct a projection residual process

$$h(\pi,\widehat{\omega}) = g(\pi,\widehat{\omega}) - \widehat{\Sigma}(\pi,\pi_0)\widehat{\Sigma}(\pi_0,\pi_0)^{-1}g(\pi_0,\widehat{\omega}). \tag{1.12}$$
 By construction, $h(\pi,\widehat{\omega})$ and $g(\pi_0,\widehat{\omega})$ are independent asymptotically. Conditional on $h(\pi,\widehat{\omega})$,

we obtain the $1-\alpha$ quantile of the QLR statistic, denoted by $c_{\alpha}(h)$, by sampling from the asymptotic distributions of $g(\pi_0, \widehat{\omega})$ under the null. Specifically, we take independent draws $\xi^* \sim$

$$N(0, \widehat{\Sigma}(\pi_0, \pi_0))$$
 and produce simulated process realization in sample,
$$g^*(\pi, \widehat{\omega}) = h(\pi, \widehat{\omega}) + \widehat{\Sigma}(\pi, \pi_0) \widehat{\Sigma}(\pi_0, \pi_0)^{-1} \xi^*. \tag{1.13}$$

We then calculate

$$QLR^* = Tg^*(\pi_0, \widehat{\omega})'\widehat{\Sigma}(\pi_0, \pi_0)^{-1}g^*(\pi_0, \widehat{\omega}) - \min_{\pi \in \Pi} Tg^*(\pi, \widehat{\omega})'\widehat{\Sigma}(\pi, \pi)^{-1}g^*(\pi, \widehat{\omega}), \tag{1.14}$$

which is a random drawn from the conditional distribution of the QLR statistic given $h_T(\pi, \widehat{\omega})$, when $g(\pi_0, \widehat{\omega})$ is drawn from its asymptotic distribution. In practice, we repeat this process for a large number of times and obtain $c_{\alpha}(h)$ by simulation.

We reject the null $H_0: \pi = \pi_0$ if $QLR \ge c_{\alpha}(h)$. The confidence interval for π is the collection of null values that are not rejected as the null value. Note that the construction of this CI does not involve estimation of π .

2 Asymptotic Distribution of the Reduced-Form Parameter

This section gives the asymptotic distribution of the reduced-form parameter. This will be given before the CLR session in the paper.

Write $\omega = (\omega_1, \omega_2, \omega_3)$, where $\omega_1 = (\rho, c)$, $\omega_2 = (\gamma, \beta, \psi)$, and $\omega_3 = \phi^2$. Below we describe the estimator $\widehat{\omega}_1, \widehat{\omega}_2, \widehat{\omega}_3$ and provide the asymptotic distribution of $\widehat{\omega} = (\widehat{\omega}_1, \widehat{\omega}_2, \widehat{\omega}_3)$. We estimate these parameters separately because ω_1 only shows up in the conditional mean and variance of r_{t+1} ; ω_2 only shows up in the conditional mean of σ_{t+1}^2 ; and ϕ only shows up in the conditional variance of σ_{t+1}^2 .

We estimate ω_1 by GMM based on the moment condition

$$h_{t}(\omega_{1,0}) = 0, \text{ where}$$

$$\sigma_{t+1}^{2} - (c\delta + \rho\sigma_{t}^{2})$$

$$\sigma_{t}^{2} \left(\sigma_{t+1}^{2} - (c\delta + \rho\sigma_{t}^{2})\right)$$

$$\sigma_{t+1}^{4} - \left(c^{2}\delta + 2c\rho\sigma_{t}^{2} + \left(c\delta + \sigma_{t+1}^{2} - \left(c\delta + \rho\sigma_{t}^{2}\right)^{2}\right)\right)$$

$$\sigma_{t}^{2} \left(\sigma_{t+1}^{4} - \left(c^{2}\delta + 2c\rho\sigma_{t}^{2} + \left(c\delta + \sigma_{t+1}^{2} - \left(c\delta + \rho\sigma_{t}^{2}\right)^{2}\right)\right)\right)$$

$$\sigma_{t}^{4} \left(\sigma_{t+1}^{4} - \left(c^{2}\delta + 2c\rho\sigma_{t}^{2} + \left(c\delta + \sigma_{t+1}^{2} - \left(c\delta + \rho\sigma_{t}^{2}\right)^{2}\right)\right)\right)$$

$$\sigma_{t}^{4} \left(\sigma_{t+1}^{4} - \left(c^{2}\delta + 2c\rho\sigma_{t}^{2} + \left(c\delta + \sigma_{t+1}^{2} - \left(c\delta + \rho\sigma_{t}^{2}\right)^{2}\right)\right)\right)$$

The optimal GMM estimator is

$$\widehat{\omega}_{1} = \underset{\omega_{1} \in \Lambda_{1}}{\operatorname{arg \, min}} \overline{h}_{T}(\omega_{1})' W_{T} \overline{h}_{T}(\omega_{1}), \text{ where}$$

$$\overline{h}_{T}(\omega_{1}) = T^{-1} \sum_{t=1}^{T} h_{t}(\omega_{1}),$$

$$W_{T} = T^{-1} \sum_{t=1}^{T} h_{t}(\widetilde{\omega}_{1}) h_{t}(\widetilde{\omega}_{1})' - \overline{h}_{T}(\widetilde{\omega}_{1}) \overline{h}_{T}(\widetilde{\omega}_{1})', \tag{2.2}$$

where $\widetilde{\omega}_1$ is the preliminary GMM estimator based on the identify covariance matrix.

We estimate ω_2 by the GLS estimator because γ, β, ψ are the intercept and linear coefficients of the conditional mean function and the conditional variance is proportional to σ_{t+1}^2 . Define $x_t = \sigma_{t+1}^{-1}(1, \sigma_t^2, \sigma_{t+1}^2)$ and $y_t = \sigma_{t+1}^{-1}r_{t+1}$. The GLS estimator of ω_2 is

$$\widehat{\omega}_2 = \left(\sum_{t=1}^T x_t x_t'\right)^{-1} \sum_{t=1}^T x_t y_t.$$
 (2.3)

We estimate ω_3 by the sample variance estimator. Define

$$\widehat{y}_{t} = x_{t}\widehat{\omega}_{2} = \sigma_{t+1}^{-1}(\widehat{\gamma} + \widehat{\beta}\sigma_{t}^{2} + \widehat{\psi}\sigma_{t+1}^{2}).$$

$$(2.4)$$

The estimator of ω_3 is

$$\widehat{\omega}_3 = \max\{1 - T^{-1} \sum_{t=1}^{T} (y_t - \widehat{y}_t)^2, 0\}.$$
(2.5)

[**XC. In practice, do we need to impose the estimator is positive?]

The next lemma provides the asymptotic distribution of the estimator $\widehat{\omega}$. Let $h_{\omega,t}(\omega_1) \in \mathbb{R}^{5\times 2}$ denote the derivative of $h_t(\omega_1)$ wrt ω_1 . Define

$$\Omega_{1} = \left\{ \mathbb{E} \left[h_{\omega,t} (\omega_{1,0}) \right]' \mathbb{E} \left[h_{t}(\omega_{1,0}) h_{t}(\omega_{1,0})' \right]^{-1} \mathbb{E} \left[h_{\omega,t} (\omega_{1,0}) \right] \right\}^{-1},
\Omega_{2} = \mathbb{E} \left[x_{t} x_{t}' \right]^{-1} \mathbb{E} \left[(y_{t} - x_{t}' \omega_{2,0})^{2} \right],
\Omega_{3} = \mathbb{V} \left[(y_{t} - x_{t}' \omega_{2,0})^{2} \right]$$
(2.6)

Lemma 2.1 Suppose Assumptions *** hold. Then,

$$T^{1/2} \begin{pmatrix} \widehat{\omega}_1 - \omega_{1,0} \\ \widehat{\omega}_2 - \omega_{2,0} \\ \widehat{\omega}_3 - \omega_{3,0} \end{pmatrix} \rightarrow_d \xi_{\omega} = \begin{pmatrix} \xi_{\omega 1} \\ \xi_{\omega 2} \\ \xi_{\omega 3} \end{pmatrix} \sim N \begin{pmatrix} \Omega_1 & 0 & 0 \\ 0, & 0 & \Omega_2 & 0 \\ 0 & 0 & \Omega_3 \end{pmatrix}.$$

Proof. Will be added later.

 $\frac{-\sqrt{b^{2}}}{\left(-\frac{1}{2}(\phi^{2})^{-\frac{1}{2}}\right)} \lesssim_{\phi^{2}}$

Var = 1-82