Higher Order Differential Equations – Cheat Sheet

1. Linear Differential Equations (Constant Coefficients)

General Form:

 $any(n) + an - 1y(n-1) + ... + a1y' + a0y = f(x)a_n y^{(n)} + a_{n-1} y^{(n-1)} + ... + a_1 y' + a_0 y = f(x)any(n) + an - 1y(n-1) + ... + a1y' + a0y = f(x)$

Steps to Solve:

1st

2ndFind Complementary Function (CF):

- Solve the characteristic equation:
- $anrn+an-1rn-1+...+a0=0a_n r^n + a_\{n-1\} r^{n-1} + ... + a_0 = 0anrn+an-1rn-1+...+a0=0$
- Based on roots:
- **Distinct roots** \rightarrow yc=C1er1x+C2er2x+...y_c = C_1 e^{r_1 x} + C_2 e^{r_2 x} + ...yc=C1er1x+C2er2 x+...
- Repeated roots \rightarrow yc=(C1+C2x)er1xy_c = (C_1 + C_2x)e^{r_1}x}yc=(C1+C2x)er1x
- Complex roots \rightarrow yc=eax(C1cos $(x+C2\sin(x))$ y_c = e^{ax} (C_1 \cos bx + C_2 \sin bx)yc=eax(C1 cosbx+C2sinbx)

•

3rd Find Particular Integral (PI):

- •
- If f(x)f(x)f(x) is of the form eax,xn,sinx,cosx,exe^{(ax)}, x^n, \sin x, \cos xeax,xn,sinx,cosx, use standard formulas.
- If f(x)f(x)f(x) is already a solution of CF, multiply by xxx.

_

2. Euler's Linear Equation (Variable Coefficients)

General Form:

 $xny(n) + an - 1xn - 1y(n-1) + ... + a1xy' + a0y = f(x)x^n y^{(n)} + a_{n-1} x^{(n-1)} y^{(n-1)} + ... + a_1 xy' + a_0 y = f(x)xny(n) + an - 1xn - 1y(n-1) + ... + a1xy' + a0y = f(x)$

Steps to Solve:

1st Assume $y=xry = x^ry=xr$.

2ndSolve the characteristic equation for rrr.

3rdForm the general solution using roots rrr.

3. Method of Variation of Parameters

Used when the standard method fails.

Steps to Solve:

1st Solve the homogeneous equation to get CF.

```
2ndAssume Particular Integral (PI) as: yp = u1y1 + u2y2y \_p = u\_1 \ y\_1 + u\_2 \ y\_2yp = u1y1 + u2y2 3rdSolve for u1u_1u1 and u2u_2u2 using: u1'y1 + u2'y2 = 0u\_1' \ y\_1 + u\_2' \ y\_2 = 0u1'y1 + u2'y2 = 0 u1'y1' + u2'y2' = f(x)u\_1' \ y\_1' + u\_2' \ y\_2' = f(x)u1'y1' + u2'y2' = f(x) 4th Integrate to find u1u_1u1 and u2u_2u2. 5th General solution: y = yc + ypy = y\_c + y\_py = yc + yp.
```

Quick Summary Table

TopicKey StepsHigher Order LDESolve characteristic equation, find CF & PIEuler's EquationUse y=xry = x^ry=xr, solve for rrrVariation of ParametersUse known solutions to construct PI

This formatted version is ready to copy and paste into a document. Let me know if you need any modifications!