Teorema

Sejam $\mathcal{F}_1 = A + F_1$ e $\mathcal{F}_2 = B + F_2$ subespaços afins de \mathbb{R}^n . Então

$$\langle \mathcal{F}_1, \mathcal{F}_2 \rangle = A + \langle \overrightarrow{AB} \rangle + F_1 + F_2.$$

Teorema

Sejam $\mathcal{F}_1 = A + F_1$ e $\mathcal{F}_2 = B + F_2$ subespaços afins de \mathbb{R}^n . São equivalentes as afirmações:

- (a) $\mathcal{F}_1 \cap \mathcal{F}_2 \neq \emptyset$
- (b) $dim \langle \mathcal{F}_1, \mathcal{F}_2 \rangle = dim (F_1 + F_2)$
- (c) $B-A=\overrightarrow{AB}\in F_1+F_2$

subespaços afins paralelos

Definição

Sejam $\mathcal{F} = P + F$ e $\mathcal{G} = Q + G$ subespaços afins de \mathbb{R}^n . Diz-se que \mathcal{F} e \mathcal{G} são paralelos, e escreve-se $\mathcal{F}//\mathcal{G}$, se $F \subseteq G$ ou $G \subseteq F$.

Proposição

Se $\mathcal{F} = P + F$ e $\mathcal{G} = Q + G$ são subespaços afins de \mathbb{R}^n paralelos, tem-se

$$\mathcal{F} \cap \mathcal{G} = \emptyset$$
 ou $\mathcal{F} \subseteq \mathcal{G}$ ou $\mathcal{G} \subseteq \mathcal{F}$.

Incidência

 \mathbb{R}^2 , o subespaço afim definido por dois pontos distintos é uma reta.

Proposição

Sejam $r = P + \langle \overrightarrow{u} \rangle$ e $s = Q + \langle \overrightarrow{v} \rangle$ duas retas não paralelas de \mathbb{R}^2 . Então r e s intersetam-se num ponto.

Observação

Neste resultado é essencial a condição dim \mathbb{R}^2 = 2. Em \mathbb{R}^3 , a interseção de retas não paralelas pode ser vazia (ver um exemplo anterior).

Definição

 $Em \mathbb{R}^n$, $n \ge 3$, diz-se que

- (a) duas retas são concorrentes se não são paralelas e a sua interseção é não vazia;
- (b) duas retas são complanares se existe um plano que contém ambas.

Teorema

 $Em \mathbb{R}^3$,

- (a) a interseção de dois planos não paralelos é uma reta;
- (b) duas retas concorrentes definem um plano;
- (c) a interseção de duas retas não paralelas e complanares é um ponto;
- (d) duas retas paralelas e distintas definem um plano;
- (e) uma reta e um ponto n\(\tilde{a}\) pertencente \(\tilde{a}\) reta definem um plano;
- (f) a interseção de um plano com uma reta não paralela ao plano é um ponto.

Equações paramétricas

Definição

Seja $\mathcal{F}=P+F$ um subespaço afim de \mathbb{R}^n de dimensão $m\leq n$. Diz-se que uma função

$$f: \mathbb{R}^m \longrightarrow \mathbb{R}^n$$

$$(t_1, \dots, t_m) \mapsto (f_1(t_1, \dots, t_m), \dots, f_n(t_1, \dots, t_m))$$

 \acute{e} uma representação paramétrica de \mathcal{F} se

$$\mathcal{F} = \{(f_1(t_1,\ldots,t_m),\ldots,f_n(t_1,\ldots,t_m)): (t_1,\ldots,t_m) \in \mathbb{R}^m\}.$$

Exemplo

Seja a reta de
$$\mathbb{R}^3$$
, $r = (2, 1, -3) + \langle (1, 1, 1) \rangle$.
 $(x, y, z) \in r$ sse $\exists t \in \mathbb{R}$ tal que $\begin{cases} x = 2 + t \\ y = 1 + t \\ z = -3 + t \end{cases}$

Portanto

$$f: \mathbb{R} \longrightarrow \mathbb{R}^3$$

 $t \mapsto (2+t, 1+t, -3+t)$

é uma representação paramétrica de r.

Exemplo

Seja o plano de
$$\mathbb{R}^3$$
, $\pi = (0, 2, -1) + \langle (1, 1, 0), (0, 1, 1) \rangle$.
 $(x, y, z) \in \pi$ sse $\exists \alpha, \beta \in \mathbb{R}$ tal que $\begin{cases} x = \alpha \\ y = 2 + \alpha + \beta \\ z = -1 + \beta \end{cases}$

Portanto

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$
$$(\alpha, \beta) \mapsto (\alpha, 2 + \alpha + \beta, -1 + \beta)$$

é uma representação paramétrica de π .

Teorema

Seja $\mathcal{F} = P + F$ um subespaço afim de \mathbb{R}^n de dimensão $m \le n$. Existe uma representação paramétrica

$$f: \mathbb{R}^m \longrightarrow \mathbb{R}^n$$
$$(t_1, \dots, t_m) \mapsto (f_1(t_1, \dots, t_m), \dots, f_n(t_1, \dots, t_m))$$

de \mathcal{F} tal que cada aplicação $f_i, j = 1, \dots, n$

$$f_j: \mathbb{R}^m \longrightarrow \mathbb{R}$$

 $(t_1, \dots, t_m) \mapsto f_j(t_1, \dots, t_m)$

é da forma

$$f_j(t_1,\ldots,t_m) = \beta_j + \alpha_{j1}t_1 + \cdots + \alpha_{jm}t_m$$

para alguns $\alpha_{j1}, \ldots, \alpha_{jm}, \beta_j \in \mathbb{R}$