Efficient Equivariant Network Supplementary Materials

Anonymous Author(s)

Affiliation Address email

1 A Detail Analysis of Data Efficiency

- 2 As shown in Table 5 and Figure 3, the test error of all models increase as training data size decreases.
- 3 Let's take a closer look at the gap between different models. First, the gap between R18 and p4-R18
- 4 is 2.17% at 5k and increases to 6.02% at 1k, while the gap between p4-R18 and p4m-R18 is 1.7% at
- 5k and increases to 3.69% at 1k. This indicates symmetry prior of model plays a more important
- 6 role when data is less. Then, we compare our models with their corresponding counterparts. The gap
- 7 between p4-R18(p4m-R18) and $p4-E^4\text{R18}(p4m-E^4\text{R18})$ is 1.11%(0.87%) at 5k, and it increases to
- 5.3%(5.22%) at 1k. Furthermore, in Figure 3, the red line($p4-E^4$ R18) and blue dash line(p4m-R18)
- 9 intersect, which means that $p4-E^4$ R18 is even more superior than p4m-R18 when data is less although
- the latter one has more capacity when we increase training data. The above results demonstrate
- greater data efficiency of E^4 model compared with G-CNNs, or it can better utilize the symmetry
- 12 prior of data.

Figure 3: Trend of test error(%) on various training data sizes.

Table 5: Test error(%) of models trained on different training data sizes

Module/Dataset size	1k	2k	3k	4k	5k
R18	28.43	19.25	14.07	12.04	9.70
<i>p</i> 4-R18	22.41	15.37	11.68	9.01	7.53
$p4-E^4$ R18(Ours)	17.11	12.54	8.75	7.55	6.42
p4m-R18	18.72	13.10	9.81	7.68	5.83
$p4m$ - E^4 R18(Ours)	13.50	9.79	7.01	6.02	4.96

B MNIST-rot Model Architecture

Please refer to Table 6.

Table 6: Architecture of E^4 -Net on Mnist-rot classification, p means dropout rate.

Layer	Kernel size	Output channels
Group convolution BatchNorm+ReLu	3×3	16
E^4 -layer BatchNorm+ReLu	5×5	16
Spatial-wise max pooling	2×2	
E^4 -layer BatchNorm+ReLu+Dropout(p =0.1)	5×5	16
E ⁴ -layer BatchNorm+ReLu+Dropout(p=0.1)	5×5	16
Spatial-wise max pooling	2×2	
E^4 -layer BatchNorm+ReLu+Dropout(p =0.1)	5×5	16
E^4 -layer BatchNorm+ReLu+Dropout(p =0.1)	5×5	16
E^4 -layer BatchNorm+ReLu+Dropout(p =0.1) Global max group pooling layer	5×5	16
Fully connected+Softmax		10

Here, Global max group pooling [1] is the operation act on each channel:

$$f_i = \max_{g \in \mathcal{G}} f_i(g), \tag{13}$$

and i denotes the channel index. The hyperparameters we use in this architecture are kernel size k=5, reduction ratio r=1, and the number of slices s=2. In the large model, we increase the channel dimension to 24, the number of slices to 3, and keep other hyperparameters the same.

19 C Details of CIFAR10 and CIFAR100 Experiments

We take standard ResNet-18 [2], which is composed of an initial convolution layer, followed by 4 stage Res-Blocks and one final classification layer. Each stage contain 2 Res-Blocks and each block contain 2 convolution layers. The channel dimensions of each stage of Res-Blocks are $64\rightarrow64\rightarrow128\rightarrow256\rightarrow512$. For p4-R18 (p4m-R18), we replace all the conventional layers with p4 (p4m) convolutions layers, and modify the channel dimensions at each stage Res-Blocks as $32\rightarrow32\rightarrow64\rightarrow128\rightarrow256$ ($22\rightarrow22\rightarrow44\rightarrow88\rightarrow176$) to keep the parameter almost invariant. Then, for building our model p4- E^4 R18 (p4m- E^4 R18), the second group convolution layer in each Res-Block of p4-R18 (p4m-R18) is replaced by our E^4 -layer with k=3, r=2, and $s=C_l/2$. Here, C_l is the channel dimension at that layer.

References

14

- 30 [1] Taco Cohen and Max Welling. Group equivariant convolutional networks. In *ICML*, pages 2990–2999, 2016.
- 32 [2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *CVPR*, pages 770–778, 2016.