Lecture 20: How to Build a Classifier (LR) from Dataset, From Logistic Regression to Conditional Random Fields and Graphical Models in General, VC Dimensions, Neural Networks

Instructor: Prof. Ganesh Ramakrishnan

Illustrating Logistic Regression on Travel Mode Data

- Number of observations: 840 Observations On 4 Modes for 210 Individuals.
- Number of variables: 8
- Variable name definitions::
 - \bullet individual = 1 to 210
 - mode = 1 air, 2 train, 3 bus, 4 car
 - \odot choice = 0 no, 1 yes
 - ttme = terminal waiting time for plane, train and bus (minutes); 0 for car.
 - invc = in vehicle cost for all stages (dollars).
 - invt = travel time (in-vehicle time) for all stages (minutes).
 - \bigcirc gc = generalized cost measure:invc+(invt*value of travel time savings) (dollars).
 - inc = household income (\$1000s).
 - 9 psize = traveling group size in mode chosen (number).

]		1	4	M		C	Code		₹	E===4	CellToo	olbar	•	Ü					
f f f	<pre>trom sklearn.linear_model import Logistickegression from sklearn.cross_validation import train_test_split from sklearn import metrics from sklearn.cross_validation import cross_val_score # Load dataset</pre>																		
<i>c</i>	lta =	sm.o	datas ots i	ets in t	.mod he n	echo	oice.l	e.net/0 oad_pan				'gener	rated	d/mod	lecho	ic	e.h	tml	
#	t his prin	lotl: togra t(sm educ	am oj .data	ed Iset	ucat		noice.	Load_pa	ndi	as())									
		roupl			').m	ean	()												

	individual	choice	ttme	invc	invt	gc	hinc	psize
mode								
1.0	105.5	0.276190	61.009524	85.252381	133.709524	102.647619	34.547619	1.742857
2.0	105.5	0.300000	35.690476	51.338095	608.285714	130.200000	34.547619	1.742857
3.0	105.5	0.142857	41.657143	33.457143	629.461905	115.257143	34.547619	1.742857
4.0	105.5	0.280952	0.000000	20.995238	573.204762	95.414286	34.547619	1.742857

```
In [34]: dta.invt.hist()
plt.title('Histogram of Travel Time')
plt.valbel('Travel Time')
plt.ylabel('Frequency')
```

Out[34]: <matplotlib.text.Text at 0x1b974b6c2b0>

Out[43]: <matplotlib.text.Text at 0x1b9785421d0>


```
Classification 1 Last Checkpoint: 6 hours ago (autosaved)
          View
                 Insert
                         Cell
                                Kernel
                                         Widgets
                                                   Help
                        N ■ C Code
                                                  CellToolbar 🛕 👸 🖸
In [63]: # create dataframes with an intercept column and dummy variables for
         # occupation and occupation husb
         y, X = dmatrices('choice ~ ttme + invc + invt + gc + psize',
                           dta. return type="dataframe")
         print(X.columns)
         # flatten v into a 1-D array
         v = np.ravel(v)
         Index(['Intercept', 'ttme', 'invc', 'invt', 'gc', 'psize'], dtype='object')
In [64]: # instantiate a logistic regression model, and fit with X and y
         model = LogisticRegression()
         model = model.fit(X, v)
         # check the accuracy on the training set
         model.score(X, v)
Out[64]: 0.80119047619047623
In [65]: # what percentage got their choice?
         v.mean()
Out[65]: 0.25
In [66]: # evaluate the model by splitting into train and test sets
         X train, X test, v train, v test = train test split(X, v, test size=0.3, random state=0)
         model2 = LogisticRegression()
         model2.fit(X train, v train)
Out[66]: LogisticRegression(C=1.0, class weight=None, dual=False, fit intercept=True,
                   intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
                   penalty='12', random state=None, solver='liblinear'. tol=0.0001.
                   verbose=0, warm start=False)
```

Let us understand the results from our simulation on the test data:

Most common (not best) orthing class label

C Regression:

O·S = class 1 Accuracy = Diagonal sum

Sum of all elements = TP+TN TP+TN+FP+FN F, gives a lot of imp to min (Pr, Re) < GM < AM Accuracy gives more imp to masc (Pr, Re)

Logistic Regression Generalized to CRF

• Multi-class LR: $c \in [1 ... K]$ has weight vector $[w_{c,1} ... w_{c,p}]$

$$c \in [1 \dots K]$$
 has weight vector $[w_{c,1} \dots w_{c,p}]$

$$\Pr(y = c \mid x) = \frac{e^{-w_c^T \phi(\mathbf{x})}}{\sum\limits_{k=1}^K e^{-w_k^T \phi(\mathbf{x})}} = \underbrace{\sum\limits_{\mathbf{x} \in \mathbf{x}} e^{-\mathbf{w}^T \mathbf{x}} \mathbf{x}}_{\mathbf{x} \in \mathbf{x}}$$

An extra class will blow mymind off!

http://www.tzi.de/~edelkamp/lectures/ml/scripts/loglinearcrfs.pdf

Logistic Regression Generalized to CRF

1 Multi-class LR: $c \in [1 ... K]$ has weight vector $[w_{c,1} ... w_{c,p}]$

Pr(
$$y = c \mid x$$
) = $\frac{e^{-w_c^T\phi(x)}}{K}$ = $\frac{e^{-\tilde{w}^T\phi(x,y=c)}}{Z(x,\tilde{w})}$ where $\tilde{w} = [w_{1,1} \dots w_{1,p}, \dots w_{c,1} \dots w_{c,p}, \dots w_{K,1} \dots w_{K,p}]$ and $\phi(x,y) = [\delta(y,1)\phi(x), \dots, \delta(y,c)\phi(x) \dots \delta(y,K)\phi(x)]$ and $\delta(a,b) = 1$ if $a = b$ and $= 0$ otherwise $\phi(x)$ if $y = C$ others $\phi(x)$ set $\phi(x)$ if $y = C$ others $\phi(x)$ if $\phi(x$

Logistic Regression Generalized to CRF

• Multi-class LR: $c \in [1...K]$ has weight vector $[w_{c,1}...w_{c,p}]$

$$\Pr(y = c \mid x) = \frac{e^{-w_c^T \phi(\mathbf{x})}}{\sum_{k=1}^K e^{-w_k^T \phi(\mathbf{x})}} = \frac{e^{-\tilde{w}^T \phi(\mathbf{x}, y = c)}}{Z(\mathbf{x}, \tilde{w})}$$

where $\tilde{w} = [w_{1,1} \dots w_{1,p}, \dots w_{c,1} \dots w_{c,p}, \dots w_{K,1} \dots w_{K,p}]$ and $\phi(\mathbf{x}, y) = [\delta(y, 1)\phi(\mathbf{x}), \dots, \delta(y, c)\phi(\mathbf{x}) \dots \delta(y, K)\phi(\mathbf{x})]$ and $\delta(a, b) = 1$ if a = band = 0 otherwise

 $\Pr(\mathbf{y} \mid \mathbf{x}) = \frac{e^{-\mathbf{w}^T \phi(\mathbf{x}, \mathbf{y})}}{Z(\mathbf{x}, \mathbf{w})} \begin{cases} \text{enumeration of } \mathbf{y} \\ \text{possible } \mathbf{y} \end{cases}$ $\text{Since each } \mathbf{y} \in \mathcal{X}$ Extended to non-iid inference in Conditional Random Fields¹ with $\mathbf{x} = [\mathbf{x}^{(1)} \dots \mathbf{x}^{(n)}]$ and $\mathbf{v} = [v^{(1)} \dots v^{(n)}]$:

$$\Pr(\mathbf{y} \mid \mathbf{x}) = \frac{e^{-\mathbf{w}^T \phi(\mathbf{x}, \mathbf{y})}}{Z(\mathbf{x}, \mathbf{w})}$$

[.]de/~edelkamp/lectures/ml/scripts/loglinearcrfs.pdf

Conditional Random Fields (Linear)^a

^aCRF is an instance of Graphical Models (detailed notes at https://www.cse.iitb.ac.in/ rcs725/notes/classNotes/misc/CaseStudyWithProbabilisticModels.pdf

rwise interactions n ime decision making p

Non-linear perceptron?

- ear perceptron!

 Kernelized perceptron: $f(x) = sign\left(\sum_{i} \alpha_{i} y_{i} K(x, x_{i}) + b\right)$ Committee the larger of the lar
 - - then, $\alpha_i = \alpha_i + 1$
 - endif
 - Oli sigmoidal Neural Networks: Cascade of layers of perceptrons giving you non-linearity
 - $sign((w^*)^T\phi(x))$ replaced by $g((w^*)^T\phi(x))$ where g(s) is a
 - **1** step function: g(s) = 1 if $s \in [\theta, \infty)$ and g(s) = 0 otherwise OR
 - ② sigmoid function: $g(s) = \frac{1}{1+s-s}$ with possible thresholding using some θ (such as $\frac{1}{2}$).
 - 8 Rectified Linear Unit (ReLU): g(s) = max(0, s): A most popular activation function
 - O Softplus: $g(s) = \ln(1 + e^s)$

Options 2, 3 and 4 have the thresholding step deferred. Threshold changes as bias is changed.

• Aspect 1: Number of functions that can be represented Recall from Tutorial 6, Problem 1: Given n boolean variables how many of 2^{2^n} boolean functions can be represented by a perceptron? Ans: For 2 it is 14, for 3 it is 104, for 4 it is 1882

- Aspect 1: Number of functions that can be represented Recall from Tutorial 6. Problem 1: Given n boolean variables how many of 2^{2^n} boolean functions can be represented by a perceptron? Ans: For 2 it is 14, for 3 it is 104, for 4 it is 1882
- Aspect 2: Cardinality of largest set of points that can be shattered From With only VC (VapnikChervonenkis) dimension ⇒ A measure of the richness of a space of functions that can be learned by a statistical classification algorithm.
 - A classification function $f(\mathbf{w})$ is said to shatter a set of data points (x_1, x_2, \dots, x_n) if, for all assignments of labels to those points, there exists a \mathbf{w} such that $f(\mathbf{w})$ makes no errors when evaluating that set of data points.
 - Cardinality of the largest set of points that $f(\mathbf{w})$ can **shatter** is its VC-dimension.
 - Eg: For f as a threshold interval. **VC=(** for n=1, if $y_1=fve$ choose $0=x_1-\frac{1}{2}$ = $0=\omega$ if $y_1=-ve$ that

 choose $0=x_1+\frac{1}{2}$ correctly

For n=2, 2,=1 4=1

- Aspect 1: Number of functions that can be represented Recall from Tutorial 6, Problem 1: Given n boolean variables how many of 2^{2^n} boolean functions can be represented by a perceptron? Ans: For 2 it is 14, for 3 it is 104, for 4 it is 1882
- Aspect 2: Cardinality of largest set of points that can be shattered VC (VapnikChervonenkis) dimension ⇒ A measure of the richness of a space of functions that can be learned by a statistical classification algorithm.
 - A classification function $f(\mathbf{w})$ is said to shatter a set of data points (x_1, x_2, \dots, x_n) if, for all assignments of labels to those points, there exists a \mathbf{w} such that $f(\mathbf{w})$ makes no errors when evaluating that set of data points.
 - Cardinality of the largest set of points that $f(\mathbf{w})$ can **shatter** is its VC-dimension.
 - Eg: For f as a threshold interval, VC dimension = 1
 - Eg: For f as an interval classifier, VC = 2 C = 2, C = 1 C = 2 C = 2C = 2

- Aspect 1: Number of functions that can be represented Recall from Tutorial 6, Problem 1: Given n boolean variables how many of 2^{2^n} boolean functions can be represented by a perceptron? Ans: For 2 it is 14, for 3 it is 104, for 4 it is 1882
- Aspect 2: Cardinality of largest set of points that can be shattered VC (VapnikChervonenkis) dimension ⇒ A measure of the richness of a space of functions that can be learned by a statistical classification algorithm.
 - A classification function $f(\mathbf{w})$ is said to shatter a set of data points (x_1, x_2, \dots, x_n) if, for all assignments of labels to those points, there exists a \mathbf{w} such that $f(\mathbf{w})$ makes no errors when evaluating that set of data points.
 - Cardinality of the largest set of points that $f(\mathbf{w})$ can **shatter** is its VC-dimension.
 - Eg: For f as a threshold interval, VC dimension = 1
 - Eg: For f as an interval classifier, VC dimension = 2
 - Eg: For f as linear classifier (in 2 dimensions), \sqrt{c} 3

- Aspect 1: Number of functions that can be represented Recall from Tutorial 6, Problem 1: Given n boolean variables how many of 2^{2^n} boolean functions can be represented by a perceptron? Ans: For 2 it is 14, for 3 it is 104, for 4 it is 1882
- Aspect 2: Cardinality of largest set of points that can be shattered VC (VapnikChervonenkis) dimension ⇒ A measure of the richness of a space of functions that can be learned by a statistical classification algorithm.
 - A classification function $f(\mathbf{w})$ is said to shatter a set of data points (x_1, x_2, \dots, x_n) if, for all assignments of labels to those points, there exists a \mathbf{w} such that $f(\mathbf{w})$ makes no errors when evaluating that set of data points.
 - Cardinality of the largest set of points that $f(\mathbf{w})$ can **shatter** is its VC-dimension.
 - Eg: For f as a threshold interval, VC dimension = 1
 - ullet Eg: For f as an interval classifier, VC dimension =2
 - Eg: For f as linear classifier (in 2 dimensions), VC dimension = 3
 - Eg: For f as linear classifier (in \Re^n), \bigvee

- Aspect 1: Number of functions that can be represented Recall from Tutorial 6, Problem 1: Given n boolean variables how many of 2^{2^n} boolean functions can be represented by a perceptron? Ans: For 2 it is 14, for 3 it is 104, for 4 it is 1882
- Aspect 2: Cardinality of largest set of points that can be shattered
 VC (VapnikChervonenkis) dimension ⇒ A measure of the richness of a space of functions that can be learned by a statistical classification algorithm.
 - A classification function $f(\mathbf{w})$ is said to shatter a set of data points (x_1, x_2, \dots, x_n) if, for all assignments of labels to those points, there exists a \mathbf{w} such that $f(\mathbf{w})$ makes no errors when evaluating that set of data points.
 - Cardinality of the largest set of points that $f(\mathbf{w})$ can **shatter** is its VC-dimension.
 - ullet Eg: For f as a threshold interval, VC dimension =1
 - ullet Eg: For f as an interval classifier, VC dimension =2
 - Eg: For f as linear classifier (in 2 dimensions), VC dimension = 3
 - Eg: For f as linear classifier (in \Re^n), VC dimension = n+ 1
 - Eg: For f as a neural network with sigmoid function, V nodes and E edges, then the VC dimension is at least $\Omega(|E|^2)$ and at most $O(|E|^2 \cdot |V|^2)$

OR using (step) perceptron

AND using (step) perceptron

NOT using perceptron

Feed-forward Neural Nets

