D-観光スポット

OBうめざわ

問題概要

- ・道がN(≦500)本
- ・道の上に観光スポットがM(≦2500)箇所
- ・観光スポットを指定された順番でS(≦12500)箇所訪れる
- •S箇所を順番に訪れる最短距離を求めよ

テストケース1

テストケース2

方針

- ・訪れる順番が決まっている
 - →各観光スポット間を全て最短路で移動したものが答え
 - →観光スポット->観光スポットの最短路を計算する方法を考える

解法1

・道路の端点と観光スポットを頂点としたグラフ上で 全頂点間の最短距離を求める

解法1

・道路の端点と観光スポットを頂点としたグラフ上で 全頂点間の最短距離を求める

- →N=500,M=2500のとき、最大で辺と頂点が3000個のグラフとなる
- →Dijkstraでも(3000*log(3000))*3000になってやばい
- →データセット125個を撒き切れない
- →こんなグラフを作成するコードの実装が面倒

解法2(想定解法)

- ・観光スポットは全て道路上にある
 - →同じ道路上にあるときは引き算するだけ
 - →違う道路上にあるときは、必ず道路のどちらかの端点を通ることになる

解法2(想定解法)

- ・観光スポットは全て道路上にある
 - →同じ道路上にあるときは引き算するだけ
 - →違う道路上にあるときは、必ず道路のどちらかの端点を通ることになる
 - ・道路A,Bとその道路上の観光スポットa,bがあるとき、
 - a->A左端->B右端->bというような移動になる
 - ・Aの左/右端からBの左/右端へ移動する4通りのどれかが最短路

計算量

- ・各道路の端点毎に他の端点までの距離をDijkstraで求め、クエリごとに4回計算
 - → N * ((N + N) * logN) + S * 4
 - → 最大で 500 * 1000 * 10 + 12500 * 4 ≒ 5,000,000
 - データセット5個あるので*5=25,000,000
 - ・大体10,000,000くらいまでは1秒以内でできるはずなのでいけるっしょ