CS60010: Deep Learning

Sudeshna Sarkar

Spring 2019

24 Jan 2019

Part1: Backpropagation Cont

Backprop: Chain Rule

- Backpropagation computes the chain rule, in a manner that is highly efficient
- Let $f, g : \mathbb{R} \to \mathbb{R}$
- Suppose y = g(x) and z = f(y) = f(g(x))
- Chain rule:

$$\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{dx}$$

Chain rule:
$$\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{dx}$$

4 FF >

Lecture 4 Backpropagation CMSC 3524

Multiple Paths:
$$\frac{dz}{dx} = \frac{dz}{dy_1} \frac{dy_1}{dx} + \frac{dz}{dy_2} \frac{dy_2}{dx}$$

Chain Rule

- Consider $\mathbf{x} \in \mathbb{R}^m, \mathbf{y} \in \mathbb{R}^n$
- Let $g: \mathbb{R}^m \to \mathbb{R}^n$ and $f: \mathbb{R}^n \to \mathbb{R}$
- Suppose $\mathbf{y} = g(\mathbf{x})$ and $z = f(\mathbf{y})$, then

$$\frac{\partial z}{\partial x_i} = \sum_j \frac{\partial z}{\partial y_j} \frac{\partial y_j}{\partial x_i}$$

In vector notation:

$$\begin{pmatrix} \frac{\partial z}{\partial x_1} \\ \vdots \\ \frac{\partial z}{\partial x_m} \end{pmatrix} = \begin{pmatrix} \sum_j \frac{\partial z}{\partial y_j} \frac{\partial y_j}{\partial x_1} \\ \vdots \\ \sum_j \frac{\partial z}{\partial y_j} \frac{\partial y_j}{\partial x_m} \end{pmatrix} = \nabla_{\mathbf{x}} z = \begin{pmatrix} \frac{\partial \mathbf{y}}{\partial \mathbf{x}} \end{pmatrix}^T \nabla_{\mathbf{y}} z$$

Chain Rule

$$abla_{\mathbf{x}}z = \left(\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right)^T
abla_{\mathbf{y}}z$$

- \bullet $\left(\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right)$ is the $n \times m$ Jacobian matrix of g
- Gradient of $\mathbf x$ is a multiplication of a Jacobian matrix $\left(\frac{\partial \mathbf y}{\partial \mathbf x}\right)$ with a vector i.e. the gradient $\nabla_{\mathbf v} z$
- Backpropagation consists of applying such Jacobian-gradient products to each operation in the computational graph
- In general this need not only apply to vectors, but can apply to tensors w.l.o.g

Chain Rule

- We can ofcourse also write this in terms of tensors
- Let the gradient of z with respect to a tensor X be $\nabla_{\mathbf{X}}z$
- If $\mathbf{Y} = g(\mathbf{X})$ and $z = f(\mathbf{Y})$, then:

$$\nabla_{\mathbf{X}} z = \sum_{j} (\nabla_{\mathbf{X}} Y_j) \frac{\partial z}{\partial Y_j}$$

Recursive application in a computation graph

- Writing an algebraic expression for the gradient of a scalar with respect to any node in the computational graph that produced that scalar is straightforward using the chain-rule
- Let for some node x the successors be: $\{y_1, y_2, \dots y_n\}$
- Node: Computation result
- Edge: Computation dependency

$$\frac{dz}{dx} = \sum_{i=1}^{n} \frac{dz}{dy_i} \frac{dy_i}{dx}$$

Lecture 4 Backpropagation

Flow Graph (for previous slide)

Recursive Application in a Computational Graph

- Fpropagation: Visit nodes in the order after a topological sort
- Compute the value of each node given its ancestors
- Bpropagation: Output gradient = 1
- Now visit nods in reverse order
- Compute gradient with respect to each node using gradient with respect to successors
- Successors of x in previous slide $\{y_1, y_2, \dots y_n\}$:

$$\frac{dz}{dx} = \sum_{i=1}^{n} \frac{dz}{dy_i} \frac{dy_i}{dx}$$

Automatic Differentiation

- Computation of the gradient can be automatically inferred from the symbolic expression of fprop
- Every node type needs to know:
 - How to compute its output
 - How to compute its gradients with respect to its inputs given the gradient w.r.t its outputs
- Makes for rapid prototyping

Computational Graph for a MLP

Figure: Goodfellow et al.

ullet To train we want to compute $abla_{W^{(1)}}J$ and $abla_{W^{(2)}}J$

Two paths lead backwards from J to weights: Through cross entropy and through regularization cost Weight decay cost is relatively simple: Will always contribute 2W(i) to gradient on W(i)

CS60010: Deep Learning

Sudeshna Sarkar

Spring 2018

24 Jan 2019

Part 2

REGULARIZATION

Hyperparameters

Visualize the accuracy

Based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Monitor and visualize the accuracy:

big gap = overfitting

⇒ increase regularization strength?

no gap

=> increase model capacity?

Regularization

- In general: any method to prevent overfitting or help the optimization
- Overfitting: Empirical loss and expected loss are different
 - When does it happen?
 - Smaller data set
 - Larger the hypothesis class
- Regularization strategies:
 - 1. Extra constraints on ML model, eg adding restrictions on the par values.
 - 2. Extra terms in the objective function soft constraint on parameter values.
 - Ensemble method

Sometimes penalties and constraints are necessary to make an underdetermined problem determined.

 Regularization of an estimator works by trading increased bias for reduced variance.

Bias variance trade off

Regularization of an estimator works by trading increased bias for reduced variance

Source: http://www.kdnuggets.com/2016/08/bias-variance-tradeoff-overview.html

Norms (Definition)

A way to measure the size of vector

$$\|x\|_p = \left(\sum_i x_i^p\right)^{\frac{1}{p}}$$

Thus, L1 norm and L2 norm are?

Norms (Example)

$$x^T = [1, 1]$$

Squared L2 Norm

- Squared L2 norm is used instead of original L2 norm for regularization in machine learning task
- All of the derivatives of the L2 norm depend on the entire vector

The derivatives of the squared L2 norm with respect to each element of x each depend only on the corresponding element of x

Squared L2 Norm

- $x^T = [x_1, x_2]$
- L2 norm

$$f(x) = \sqrt{\frac{x_1^2 + x_2^2}{1 + x_2^2}}$$
$$f'(x) = x_1(x_1^2 + x_2^2)^{\frac{1}{2}}$$

Squared L2 norm

$$f(x) = x_1^2 + x_2^2$$
$$f'(x) = 2x_1$$

Norms (Matrix norm)

- L1 norm and L2 norm are defined for the way to measure size of vector
- Sometimes machine learning task would require a size of matrix as well
- Frobenius norm is :
 - A way to measure the size of matrix
 - Known as 'Matrix norm'

$$||A||_F = \sqrt{\sum_{i,j} A_{i,j}^2},$$

Norm penalties

• Limiting the capacity of models by adding norm penalty $\Omega(\Theta)$ to the objective function J

$$\begin{split} \widetilde{J}(\boldsymbol{\theta}; \boldsymbol{X}, \boldsymbol{y}) &= J(\boldsymbol{\theta}; \boldsymbol{X}, \boldsymbol{y}) + \alpha \Omega(\boldsymbol{\theta}) \\ &\text{Original objective function} \end{split}$$

- Not modifying the model in inference phase, but adding penalties to the objective function in learning phase
- Also known as weight decay

L2 norm Regularization

Substituting squared L2 norm to the $\Omega(\Theta)$

$$\begin{split} \tilde{J}(\boldsymbol{\theta}; \boldsymbol{X}, \boldsymbol{y}) &= J(\boldsymbol{\theta}; \boldsymbol{X}, \boldsymbol{y}) + \alpha \Omega(\boldsymbol{\theta}) \\ \tilde{J}(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y}) &= \frac{\alpha}{2} \boldsymbol{w}^{\top} \boldsymbol{w} + J(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y}), \end{split}$$

Calculating gradient

$$\nabla_{\boldsymbol{w}} \tilde{J}(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y}) = \alpha \boldsymbol{w} + \nabla_{\boldsymbol{w}} J(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y}).$$

Applying weight update

$$\boldsymbol{w} \leftarrow \boldsymbol{w} - \epsilon \left(\alpha \boldsymbol{w} + \nabla_{\boldsymbol{w}} J(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y}) \right).$$

$$\boldsymbol{w} \leftarrow (1 - \epsilon \alpha) \boldsymbol{w} - \epsilon \nabla_{\boldsymbol{w}} J(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y}).$$

Effect of L2 norm Regularization

Only directions along which the parameters contribute significantly to reducing the objective function are preserved relatively intact

L1 norm Regularization

• Substituting L1 norm to the $\Omega(\Theta)$

$$\tilde{J}(\boldsymbol{\theta}; \boldsymbol{X}, \boldsymbol{y}) = J(\boldsymbol{\theta}; \boldsymbol{X}, \boldsymbol{y}) + \alpha \Omega(\boldsymbol{\theta})$$

$$\tilde{J}(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y}) = \alpha ||\boldsymbol{w}||_1 + J(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y}),$$

Calculating gradient

$$\nabla_{\boldsymbol{w}} \tilde{J}(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y}) = \alpha \operatorname{sign}(\boldsymbol{w}) + \nabla_{\boldsymbol{w}} J(\boldsymbol{X}, \boldsymbol{y}; \boldsymbol{w})$$

L1 norm Regularization

• Substituting L1 norm to the Ω (Θ_{-})

$$\tilde{J}(\boldsymbol{\theta}; \boldsymbol{X}, \boldsymbol{y}) = J(\boldsymbol{\theta}; \boldsymbol{X}, \boldsymbol{y}) + \alpha \Omega(\boldsymbol{\theta})$$

$$\tilde{J}(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y}) = \alpha ||\boldsymbol{w}||_1 + J(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y})$$

Calculating gradient

$$\nabla_{\boldsymbol{w}} \tilde{J}(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y}) = \alpha \operatorname{sign}(\boldsymbol{w}) + \nabla_{\boldsymbol{w}} J(\boldsymbol{X}, \boldsymbol{y}; \boldsymbol{w})$$

L1 regularization may cause the parameters to become zero for large enough $\boldsymbol{\alpha}$

Norm Regularization without bias

Usually, bias of each weight is excluded in penalty terms

$$\tilde{J}(\boldsymbol{\theta}; \boldsymbol{X}, \boldsymbol{y}) = J(\boldsymbol{\theta}; \boldsymbol{X}, \boldsymbol{y}) + \alpha \Omega(\boldsymbol{y})$$

The reason is :

- The biases typically require less data to fit than the weights
- Each weight specifies how two variables interact while biases specify interaction of one variables
- Regularizing the bias parameters can cause underfitting

Norm Penalties as Constrained Optimization

Constrained optimization

Sometimes one may wish to find the maximal or minimal value of f(x) for value of x in some set S

Expression of constrained function

To express function with constrained condition is difficult

Generalized Lagrange function

A possible approach is to design a different, unconstrained optimization problem whose solution can be converted into a solution to the original constrained problem

The unconstrained optimization function is called "Generalized Lagrange function"

Generalized Lagrange function

Generalized Lagrange function is defined as:

$$L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\alpha}) = f(\boldsymbol{x}) + \sum_{i} \lambda_{i} g^{(i)}(\boldsymbol{x}) + \sum_{j} \alpha_{j} h^{(j)}(\boldsymbol{x}).$$

Where the constrained region is:

$$\mathbb{S} = \{x | \forall i, g^{(i)}(x) = 0 \text{ and } \forall j, h^{(j)} \leq 0\}$$

We can find optimal x in region S by solving:

$$\min_{\boldsymbol{x}} \max_{\boldsymbol{\lambda}} \max_{\boldsymbol{\alpha}, \boldsymbol{\alpha} \geq 0} L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\alpha}).$$

Norm Penalties with respect to Constrained Optimization

Cost function regularized by a parameter norm penalty

$$ilde{J}(m{ heta}; m{X}, m{y}) = \underline{J}(m{ heta}; m{X}, m{y}) + \underline{\alpha}\Omega(m{ heta}).$$
 Original cost function norm penalty, constrained term

If we wanted to constrain $\Omega(\theta)$ to be less than some constant k, we could construct a generalized Lagrange function

$$\mathcal{L}(\boldsymbol{\theta}, \alpha; \boldsymbol{X}, \boldsymbol{y}) = J(\boldsymbol{\theta}; \boldsymbol{X}, \boldsymbol{y}) + \alpha(\Omega(\boldsymbol{\theta}) - k).$$

Norm Penalties with respect to Constrained Optimization

To gain some insight into the effect of the constraint, we can fix α^* and view the problem as just a function of θ :

$$\theta^* = argmin_{\theta} \mathcal{L}(\theta, \alpha^*) = argmin_{\theta} [J(\theta; X, y) + \alpha^*\Omega(\theta)]$$

This is exactly the same as the regularized training problem of minimizing J

Data Augmentation and Noise Robustness

Introduction to Dataset Augmentation

The best way to make a machine learning model generalize better is to train it on more data

Dataset augmentation is a technique that creating fake data and adding it to the training set

Original data

Artificial data

Image source : https://www.pexels.com/photo

Injecting noise (Training data)

Injecting random noise into input data to improve robustness

Injecting noise (Weight)

- Injecting random noise into weight to improve robustness
- This makes the model relatively insensitive to small variations in the weights

Injecting noise (Label)

Most datasets have some amount of mistakes in the y labels

Early Stopping

Necessity of early stopping

Learning too much iterations causes overfitting

Feature of early stopping

- Early stopping regards iteration number as hyper parameter and find optimal value of it
- Computation cost to find optimal iteration number is negligible
 - This can be parallelized while training process on separate machine
- Early stopping doesn't affect the formula of cost function

PARAMETER TYING AND PARAMETER SHARING

Parameter Tying

Parameter dependency

- Other ways to express prior knowledge of parameters
- We may know from domain and model architecture that there should be some dependencies between model parameters

The goal of parameter tying

- We want to express that certain parameters should be close to one another

A scenario of parameter tying

- Two models performing the same classification task (with same set of classes) but with somewhat different input distributions
 - Model A with parameters w(A)
 - Model B with parameters w(B)
- The two models will map the input to two different, but related output
- If the tasks are similar enough (perhaps with similar input and output distributions) then we believe that the model parameters should be close to each other:
- We can leverage this information via regularization Use a parameter norm penalty

$$\Omega(wA, wB) = \|wA - wB\|^2$$

penalty for parameter tying

Regularized objective function Penalty term
$$\tilde{J}(\boldsymbol{\theta};\boldsymbol{X},\boldsymbol{y}) = J(\boldsymbol{\theta};\boldsymbol{X},\boldsymbol{y}) + \alpha\Omega(\boldsymbol{\theta})$$
 Original objective function

Multi-Task Learning (MTL)

- Sharing the representation between related tasks
 - We can enable out model to generalize better on our original task
 - Another approach of bagging (with different cost functions)
- MTL is also known as:
 - Joint learning, Learning to learn, learning with auxiliary tasks
- Optimizing more than one loss function
- Improves generalization by leveraging the domainspecific information contained in the training data
 - Even if the problem optimizing one loss functions, there might be the chances to improve performance by adding an auxiliary task upon the major task
- Motivated by human learning process

Two MTL Methods

- Hard parameter sharing
 - Greatly reduce the risk of overfitting
 - Similar concept of bagging

- Soft parameter sharing
 - Take a role of regularization

Learning task relationship with Regularization

Notation

- Task T, for each task t, we have a model m_t with parameters a_t of dimensionality d
- The parameter vector a_t and parameter matrix A is:

$$a_t = \begin{bmatrix} a_{1,t}, \cdots, a_{d,t} \end{bmatrix}$$

$$A = \begin{bmatrix} \vdots & \vdots & \vdots \\ a_{.1} & \cdots & a_{.T} \\ \vdots & \vdots & \vdots \end{bmatrix}$$
 i-th features of the model for every task
$$A = \begin{bmatrix} a_{.1} & \cdots & a_{.T} \\ \vdots & \vdots & \vdots \end{bmatrix}$$
 Parameter a_i corresponding to the j-th model

Learning task relationship

$$\Omega = \|ar{a}\|^2 + rac{\lambda}{T} \sum_{t=1}^T \|a_{\cdot,t} - ar{a}\|^2$$
 where, $ar{a} = (\sum_{t=1}^T a_{\cdot,t})/T$

Regularized objective function Penalty term
$$\tilde{J}(\boldsymbol{\theta}; \boldsymbol{X}, \boldsymbol{y}) = J(\boldsymbol{\theta}; \boldsymbol{X}, \boldsymbol{y}) + \alpha \Omega(\boldsymbol{\theta})$$
 Original objective function