Reactivities Of Acylation Agents

from chapter(s)	in the recommended to	ext

A. Introduction

B. Acylation Reactions

RCO

C. pH Dependence

Acylations Under Basic Conditions

readily receive displaced

does good (eg OMe⁻) bad (eg Cl).

Cl⁻, NO₃⁻, HSO₄⁻, H₂O, Br⁻ (add some more)

Me₂N⁻, HO⁻, HS⁻, OMe, CN⁻ (add some)

best

tetrahedral

moderately more

Acylations Under Acidic Conditions

increases

D. Reactivities Of Acylation Agents

Chemical Intuition

unreactive.

reactive

activate

reactive

cannot

less

more

retard

unfavorable

faster

Molecular Orbital Description Of Acylation

a

b

increase *lower* its LUMO energy. reactive low energy LUMOs. more stable less reactive

high good

lower excellent

Relative Reactivities Of Functional Groups In Acylation Reactions

Carbonyl Halides (Acid Halides) Are Hot

basic

acid conditions.

Carboxylic Acid Anhydrides Are Very Reactive lower

excellent leaving groups.

under basic conditions

under acidic conditions

2 carboxylic an electrophile carboxylate leaving group.

Esters Are Not Very Reactive

raises inferior

under basic conditions

under acidic conditions

ester hydrolysis transesterification

do not tend

Thioesters, Gentle Chemoselective Acylating Agents better

under basic conditions

tetrahedral intermediate

under acidic conditions

do tend to

Amides, Poor Acylating Agents

worse

poor

more

under basic conditions

tetrahedral intermediate

under acidic conditions

Carboxylic Acids Are Not Acylating Agents

(pKa = 3 - 5)

extremely basic and a very poor

Synopsis

cannot

O
$$\times$$
 X = OAc OMe O NH₂ CI OPh

 NH_2 OMe CI OPh O-OAc

most reactive least reactive

most reactive least reactive