GAYATRI VIDYA PARISHAD COLLEGE OF ENGINEERING (Autonomous) MCA I SEMESTER

Mathematical Foundations of Computer Applications (MFCA) (20BM3101)

UNIT 1: Mathematical Logic

- 1. Show that $(\neg P \land [\neg Q \land R]) \lor (Q \land R) \lor (P \land R) \Leftrightarrow R$
- 2. Determine whether $[\neg P \land (\neg Q \land R)] \lor (Q \land R) \lor (P \land R)$ is a tautology
- 3. Determine the PDNF and PCNF of the formula $(\neg P \rightarrow R) \land (Q \leftrightarrow P)$
- 4. Show that $R \land (P \lor Q)$ is a valid conclusion from the premises $P \lor Q, Q \to R, P \to M$ and $\neg M$
- 5. Show that $R \to S$ is a valid conclusion from the premises $P \to (Q \to S)$, $\neg R \lor P$ and Q
- 6. Prove that $(\exists x)M(x)$ follows logically from the premises $(\exists x)H(x)$ and $(x)[H(x) \rightarrow M(x)]$

UNIT 2: Relations

- 7. Let $A = \{1, 2, 3, 4, 5\}, R = \{(1, 1), (1, 4), (2, 2), (2, 5), (3, 3), (4, 1), (4, 4), (5, 2), (5, 5)\}$. Write the matrix and draw the graph of the relation R.
- 8. Let $R = \{(1,2),(2,2),(3,4)\}$ and $S = \{(1,3),(2,5),(3,1),(4,2)\}$ be the relations on $A = \{1,2,3,4,5\}$. Find (i) $R \circ S$ (ii) $S \circ R$ (iii) $R \circ R$ (iv) R^3 (v) $S \circ S$ (vi) $R \circ (S \circ R)$ (vii) $(R \circ S) \circ R$
- 9. Let $A = \{a,b,c\}$ and $R = \{(a,b),(b,c),(c,a)\}$ be a relation on A. Find the transitive closure of R
- 10. Let $R = \{(1,1), (1,2), (2,1), (3,2), (3,3)\}$ and $S = \{(1,2), (2,1), (2,2)\}$ be relations on the set $A = \{1,2,3\}$. Find (i) M_R (ii) M_S (iii) $M_R \circ M_S$ (iv) $R \circ S$ (v) $M_{R \circ S}$
- 11. Prove that $R = \{(x, y) | x y \text{ is divisible by } 3\}$ is an equivalence relation on the set $A = \{1, 2, 3, 4\}$.
- 12. If R and S are both equivalence relations, show that $R \cap S$ is also equivalence relation
- 13. Prove that $\leq = \{(x, y) | x \text{ divides } y \}$ is a partial order relation on the set $P = \{1, 2, 3, 6\}$
- 14. Draw the Hasse diagram for the poset (P, \leq) , where $P = \{1, 2, 3, 4, 6, 12\}$ and \leq is divides relation

UNIT 3: Lattice and Boolean algebra

- 15. Define and give an example (i) Lattice (ii) Bounded lattice (iii) Distributive lattice
- 16. In a lattice (L, \leq) , prove that (i) $a \leq b \Leftrightarrow a \wedge b = a$ (ii) $a \leq b \Leftrightarrow a \vee b = b$
- 17. In a lattice (L, \leq) , prove that (i) $b \leq c \Rightarrow a \land b \leq a \land c$ (ii) $b \leq c \Rightarrow a \lor b \leq a \lor c$
- 18. Define Boolean algebra and write the properties
- 19. In a distributive lattice, prove the following. $a \wedge b = a \wedge c$ and $a \vee b = a \vee c \implies b = c$
- 20. Determine (i) the sum of products canonical form (ii) the product of sums canonical form of the Boolean expression $(x_1 * x_2') \oplus x_3$

UNIT 4: Recurrence relations

- 21. Determine a generating function for the sequence a_r given by the number of integer solutions to the equation $e_1 + e_2 + e_3 = r$ with $0 \le e_1 \le 6$, $2 < e_2 \le 7$, $5 \le e_3 \le 7$, e_1 is even and e_2 is odd.
- 22. Find the generating function for the sequence a_r given by the number of integer solutions to the equation $e_1 + e_2 + e_3 + e_4 + e_5 = r$ with $0 \le e_1 \le 3$, $0 \le e_2 \le 3$, $2 \le e_3 \le 6$, $2 \le e_4 \le 6$, $0 \le e_5 \le 9$ and e_5 is odd.

- 23. Determine the coefficient of x^r in the expansion of $\frac{1}{x^2 5x + 6}$
- 24. Find the coefficient of (i) x^{16} (ii) x^{18} (iii) x^{20} in the product $(x+x^2+x^3+x^4+x^5)(x^2+x^3+\cdots)^5$
- 25. Solve the recurrence relation $a_n = a_{n-1} + n(n-2)$ for $n \ge 1$, $a_0 = 2$ by the substitution method
- 26. Solve the recurrence relation $a_n 7a_{n-1} + 12a_{n-2} = 0$ for $n \ge 2$, $a_0 = 2$, $a_1 = 5$ by using the method of characteristic roots
- 27. Solve the recurrence relation $a_n 10a_{n-1} + 21a_{n-2} = 0$ for $n \ge 2$, $a_0 = \frac{10}{21}$, $a_1 = 2$ using generating functions

UNIT 5: Graph Theory

- 28. Define and give an example for each (i) Graph (ii) Directed graph (iii) Subgraph (iv) Spanning subgraph
- 29. Define and give an example for each (i) Complete graph (ii) Regular graph (iii) Complete bipartite graph (iv) Connected graph
- 30. Show that in any non directed graph there is even number of vertices of odd degree
- 31. Define isomorphism of graphs and show that the following graphs are isomorphic

- 32. Show that a tree with n vertices has exactly n-1 edges
- 33. Determine a spanning tree from the following graph by using (i) BFS algorithm (ii) DFS algorithm

34. Using Kruskal's algorithm, determine a minimal spanning tree from the following graph

