

Heaps

- *Def*: A **heap** is a <u>complete</u> binary tree with the following two properties:
 - Structural property: all levels are full, except possibly the last one, which is filled from left to right
 - Order (heap) property: for any node xParent(x) $\ge x$ (max heap), Parent(x)<=x(Min heap)

Array Representation of Heaps

- A heap can be stored as an array A.
 - Root of tree is A[1]
 - Left child of A[i] = A[2i]
 - Right child of A[i] = A[2i + 1]
 - Parent of $A[i] = A[\lfloor i/2 \rfloor]$
 - Heapsize[A] \leq length[A]
- The elements in the subarray $A[(\lfloor n/2 \rfloor + 1) ... n]$ are leaves

Heaps

• A *max tree* is a tree in which the key value in each node is greater than(equal to) the key values in its children. A *max heap* is a complete binary tree that is also a max tree.

• A *min tree* is a tree in which the key value in each node is smaller than(equal to) the key values in its children. A *min heap* is a complete binary tree that is also a min tree.

Max heap

Property:

The root of max heap (min heap) contains the largest (smallest).

Min heap

Steps to construct max heap

- Step 1 Create a new node at the end of heap.
- Step 2 Assign new value to the node.
- Step 3 Compare the value of this child node with its parent.
- Step 4 If value of parent is less than child, then swap them.
- Step 5 Repeat step 3 & 4 until Heap property holds.

□ Put the new node in the next available spot.

■ Push the new node upward, swapping with its parent until the new node reaches an acceptable location.

■ Put the new node in the next available spot.

□ Push the new node upward, swapping with its parent until the new node reaches an acceptable location

Put the new node in the next available spot.

□ Push the new node upward, swapping with its parent until the new node reaches an acceptable location

☐ The parent has a key that is >= new node, or

- □ The node reaches the root.
- □ The process of pushing the new node upward is called reheapification

upward.

Deletion algorithm-Max - heap

- Step 1 Remove root node.
- Step 2 Move the last element of last level to root.
- Step 3 Compare the value of this node with its child nodes.
- Step 4 If value of the node is less than child nodes, then swap it with larger child.
- Step 5 Repeat step 3 & 4 until Heap property holds.

■ Move the last node onto the root.

- Move the last node onto the root.
- Push the out-of-place node downward, swapping with its larger child until the new node reaches an acceptable location.

19

- Move the last node onto the root.
- Push the out-of-place node downward, swapping with its larger child until the new node reaches an acceptable location.

- Move the last node onto the root.
- □ Push the out-of-place node downward, swapping with its larger child until the new node reaches an acceptable location.

18

□ The children all have keys <= the out-of-place node, or

□ The node reaches the leaf.

10-Nov-23

□ The process of pushing the new node downward is called reheapification downward.

Dept of I&CT

Data from the next row goes in the next two array locations.

this part of the array.23

35 42 21 23 27 We don't care what's in

Important Points about the Implementation

The only way we "know" that "the array is a tree" is from the way we manipulate the data

Important Points about the Implementation

If you know the index of a node, then it is easy to figure out the indexes of that node's parent and children. Formulas are given in already.

42 35 23 27 21

Heap code 1/3


```
#define MAX 25
int insertheap(int item, int a[], int n)
  int c=n, p;
if(c==MAX)
   printf("Heap is full\n"); return n; }
c=n+1; //c is child index
p=c/2; // p is parent index
while(c!=1 && item>a[p])//reheapification upward.
   a[c]=a[p]; c=p; p=c/2;
a[c]=item;
return n+1;
```

Heap code 2/3


```
int delHeap(int a[], int n)
{ int c,p,temp;
if(n==0) { printf("Heap is empty\n"); return 0; }
printf("Item deleted is: %d",a[1]);
temp=a[n--]; p=1; c=2*p;
while(c<=n) //reheapification downward
\{ if(a[c] < a[c+1]) c++; \}
 if(temp>=a[c]) break;
 a[p]=a[c]; p=c; c=2*p;
a[p]=temp;
return n;
```

Heap code 3/3


```
void print(int a∏,int n)
   for(int i=1;i<=n;i++) printf(" %d ",a[i]); }
int main()
{ int a[20],ch=1,n=0,item;
while(ch!=4)
  printf("\n1.Insert 2. Delete 3.Print 4. Exit \n");
   scanf("%d",&ch);
 switch(ch)
    case 1: printf("Enter the element of the heap\n");
        scanf("%d",&item);
          n=insertheap(item,a,n);
                                          break;
 case 2: n=delHeap(a,n);
                                          break;
 case 3: print(a,n);
                                          break;
return 0;
```


- □ A heap is a complete binary tree, where the entry at each node is greater than/less than or equal to the entries in its children.
- To add an entry to a heap, place the new entry at the next available spot, and perform a reheapification upward.
- □ To remove the biggest entry, move the last node onto the root, and perform a reheapification downward.