TD 1

Gyrolock ★ – Corrigé

Centrale Supélec PSI 2022. Corrigé proposé par l'UPSTI.

C1-05

 $\theta_3 = 0$

Comportement dynamique du stabilisateur

FIGURE 1 – Modèle cinématique du système GyroLock (représenté pour θ_2 =

Dans la modélisation retenue (figure 1), une liaison pivot non parfaite permet de représenter la flexibilité de l'attache reconfigurable. La table d'opération (0) est supposée fixe et le référentiel \mathcal{R}_0 $(O_0, \vec{x}_0, \vec{y}_0, \vec{z}_0)$ lié à la table (0) est galiléen. Au stabilisateur (1) est associé le repère \mathcal{R}_1 $(O_0, \vec{x}_0 = \vec{x}_1, \vec{y}_1, \vec{z}_1)$ avec $\theta_1 = (\vec{y}_0, \vec{y}_1) = (\vec{z}_0, \vec{z}_1)$. Le point P tel que $O_0P = L$ représente le bout du stabilisateur (1) en contact

Paramétrage, notations et hypothèses

avec la zone à opérer.

- ► La liaison pivot d'axe (O_0, \vec{x}_0) entre les solides (0) et (1) possède une raideur k et un coefficient de frottement visqueux f, d'où \vec{M} $(O_0, 0 \rightarrow 1) \cdot \vec{x}_0 = -(k\theta_1 + f\dot{\theta}_1)$;
- ▶ les autres liaisons sont supposées parfaites;
- ▶ l'action du cœur sur le stabilisateur (1) est modélisée par $\{\mathcal{T}_{c\to 1}\}=\left\{\begin{array}{c}f_c\vec{y}_1\\0\end{array}\right\}_p$;
- ▶ seul le déplacement vertical du point P est pris en compte. On note $y(t) = -\overrightarrow{O_0P} \cdot \overrightarrow{y_0}$;
- ▶ le stabilisateur (1) est de masse m_1 et possède un centre d'inertie G_1 tel que $\overrightarrow{O_0G_1} = L_{G_1}\overrightarrow{z}_1$ et l'opérateur d'inertie est $\mathcal{J}(G_1,1) = \begin{bmatrix} A_1 & 0 & 0 \\ 0 & A_1 & 0 \\ 0 & 0 & C_1 \end{bmatrix}$;
- ▶ la masse et l'inertie de l'étrier (2) sont négligeables;
- ▶ la toupie (3) est de masse m_3 et possède un centre d'inertie G_3 tel que $\overrightarrow{O_0G_3} = L_{G_3}\vec{z}_1 + H_{G_3}\vec{y}_1$;
- ▶ les figures de changement de base sont données figures 6 et 9;
- les actions mécaniques dues à la pesanteur sont négligées devant les effets dynamiques. Q 14. Sans détailler les calculs, donner la méthode permettant de déterminer la loi de mouvement du stabilisateur (équation différentielle en $\theta_1(t)$). L'ensemble isolé, l'inventaire des actions mécaniques extérieures, le théorème utilisé et sa projection scalaire sont à préciser clairement.

Question 1 Exprimer $\vec{\delta}(O_0, 1/0) \cdot \vec{x}_0$, la projection sur \vec{x}_0 du moment dynamique au point O_0 du solide (1) en mouvement dans le référentiel \mathcal{R}_0 .

Correction

Par formule de Varignon:

$$\overrightarrow{\delta}(O_0,1/0) \cdot \overrightarrow{x}_0 = \overrightarrow{\delta}(G_1,1/0) \cdot \overrightarrow{x}_0 + \left(\overrightarrow{O_0G_1} \wedge m_1 \overrightarrow{\Gamma}(G_1,1/0)\right) \cdot \overrightarrow{x}_0$$
 avec
$$\overrightarrow{\Gamma}(G_1,1/0) = \left. \frac{\mathrm{d}^2 \overrightarrow{O_0G_1}}{\mathrm{d}t^2} \right|_0 = -L_{G_1} \ddot{\theta}_1 \overrightarrow{y}_1 - L_{G_1} \dot{\theta}_1^2 \overrightarrow{z}_1 \operatorname{donc}\left(\overrightarrow{O_0G_1} \wedge m_1 \overrightarrow{\Gamma}(G_1,1/0)\right) \cdot \overrightarrow{x}_0 = m_1 L_{G_1}^2 \ddot{\theta}_1.$$

De plus **au centre d'inertie** $G_1 : \overrightarrow{\delta}(G_1, 1/0) \cdot \overrightarrow{x}_0 = \frac{d\overrightarrow{\sigma}(G_1, 1/0) \cdot \overrightarrow{x}_0}{dt} \bigg|_0$ avec $\overrightarrow{\sigma}(G_1, 1/0) \cdot \overrightarrow{x}_0 = \mathcal{F}(G_1, 1)\overrightarrow{\Omega}(1/0) \cdot \overrightarrow{x}_0$.

Donc $\overrightarrow{\sigma}(G_1, 1/0) \cdot \overrightarrow{x}_0 = A_1 \dot{\theta}_1 \text{ et } \overrightarrow{\delta}(G_1, 1/0) \cdot \overrightarrow{x}_0 = A_1 \ddot{\theta}_1.$

Finalement $\overrightarrow{\delta}(O_0, 1/0) \cdot \overrightarrow{x}_0 = (A_1 + m_1 L_{G_1}^2) \ddot{\Theta}_1$

Question 2 Exprimer littéralement la vitesse $\vec{V}(G_3, 3/0)$ dans la base \mathfrak{B}_1 , puis l'accélération $\vec{\Gamma}(G_3, 3/0)$ dans la base \mathfrak{B}_1 .

Correction

Le point G_3 étant **physiquement rattaché à (3)** on peut écrire

$$\overrightarrow{V}(G_3, 3/0) = \left. \frac{d\overrightarrow{O_0G_3}}{dt} \right|_0 = -L_{G_3} \dot{\theta}_1 \overrightarrow{y}_1 + H_{G_3} \dot{\theta}_1 \overrightarrow{z}_1$$

Ensuite
$$\left| \overrightarrow{\Gamma}(G_3, 3/0) = \frac{d\overrightarrow{V}(G_3, 3/0)}{dt} \right|_0 = -\left(L_{G_3} \ddot{\theta}_1 + H_{G_3} \dot{\theta}_1^2 \right) \overrightarrow{y}_1 + \left(H_{G_3} \ddot{\theta}_1 - L_{G_3} \dot{\theta}_1^2 \right) \overrightarrow{z}_1$$

1: $\ddot{\theta}_2 \approx 0$, $\theta_2 \approx 0$ et $\dot{\theta}_3 = \omega_3$ constante.

Question 3 En conservant les conditions de fonctionnement ci-contre ¹, il est possible de montrer que $\vec{\delta}$ (G_3 , 3/0) $\cdot \vec{x}_0 = A_3 \ddot{\theta}_1 - c_x(t)$ avec $c_x(t) = B_3 \omega_3 \dot{\theta}_2$ (résultat admis sans démonstration). En déduire $\vec{\delta}$ (O_0 , 3/0) $\cdot \vec{x}_0$, en fonction de A_3 , $c_x(t)$, m_3 , L_{G_3} , H_{G_3} et $\ddot{\theta}_1(t)$.

Correction

Par formule de Varignon:

$$\begin{split} \overrightarrow{\delta}(O_0, 3/0) \cdot \overrightarrow{x}_0 &= \overrightarrow{\delta}(G_3, 3/0) \cdot \overrightarrow{x}_0 + \left(\overrightarrow{O_0 G_3} \wedge m_3 \overrightarrow{\Gamma}(G_3, 3/0) \right) \cdot \overrightarrow{x}_0 \\ &= A_3 \ddot{\theta}_1 - c_x(t) + m_3 L_{G_3} \left(L_{G_3} \ddot{\theta}_1 + H_{G_3} \dot{\theta}_1^2 \right) + m_3 H_{G_3} \left(H_{G_3} \ddot{\theta}_1 - L_{G_3} \dot{\theta}_1^2 \right) \\ &= \left(A_3 + m_3 L_{G_3}^2 + m_3 H_{G_3}^2 \right) \ddot{\theta}_1 - c_x(t) \end{split}$$

Question 4 Exprimer J_x en fonction de A_1 , A_3 , m_1 , m_3 , L_{G_1} , L_{G_3} et H_{G_3} permettant d'écrire la loi de mouvement du stabilisateur (1) sous la forme suivante :

$$J_x \ddot{\theta}_1(t) + f \dot{\theta}_1(t) + k\theta_1(t) = c_x(t) - Lf_c(t)$$

Correction

En appliquant la stratégie vue en question 14 on a l'équation (effets dynamiques de (2) négligés et actions de la pesanteur négligées) :

$$\overrightarrow{\delta}(O_0,1/0)\cdot\overrightarrow{x}_0+\overrightarrow{\delta}(O_0,3/0)\cdot\overrightarrow{x}_0=-(k\theta_1+f\dot{\theta}_1)+\left(\overrightarrow{O_0P}\wedge f_c\overrightarrow{y}_1\right)\cdot\overrightarrow{x}_0$$

Tout calcul fait avec $\overrightarrow{O_0P} = L\overrightarrow{z}_1$:

$$\boxed{\left(A_1+A_3+m_1L_{G_1}^2+m_3L_{G_3}^2+m_3H_{G_3}^2\right)\ddot{\theta}_1+f\dot{\theta}_1+k\theta_1=c_x(t)-Lf_c(t)}$$

On identifie
$$J_x = A_1 + A_3 + m_1 L_{G_1}^2 + m_3 L_{G_3}^2 + m_3 H_{G_3}^2$$

En supposant que θ_1 reste proche de 0, la relation $y(t) = L\theta_1(t)$ sera utilisée.

Les transformées de Laplace de y(t), $c_x(t)$ et $f_c(t)$ sont notées Y(p), $C_x(p)$ et $F_c(p)$.

Question 5 En déduire les expressions littérales des fonctions de transfert $H_{pert}(p)$ et $H_1(p)$ du schéma-blocs figure 2 en fonction de L, J_x , f et k.

Correction

Le schéma-bloc donne $\frac{Y(p)}{H_1(p)} = C_x(p) - H_{pert}(p)F_c(p)$. L'équation différentielle précédente rapportée dans le domaine de Laplace (conditions initiales nulles) s'écrit (avec Y(p) = $L\theta_1(p)$:

$$\left(J_{x}p^{2}+fp+k\right)\frac{Y(p)}{L}=C_{x}(p)-LF_{c}(p)$$
 On identifie
$$H_{1}(p)=\frac{L}{J_{x}p^{2}+fp+k}\text{ et }H_{pert}(p)=L.$$

On rappelle que L = 0.3 m et les valeurs retenues pour J_x , f et k sont :

- ► $J_x = 1,14 \times 10^{-2} \text{ kg} \cdot \text{m}^2$; ► $-f = 64 \times 10^{-3} \text{ N} \cdot \text{m} \cdot \text{s} \cdot \text{rad}^{-1}$;
- $-\vec{k} = 95 \text{ N} \cdot \text{m} \cdot \text{rad}^{-1}$.

Question 6 Écrire $H_1(p)$ sous forme canonique, puis calculer les valeurs de ses paramètres caractéristiques : gain statique K_1 , amortissement ξ_1 et pulsation propre ω_1 . Commenter le comportement associé (fréquentiel ou temporel).

FIGURE 2 – Schéma bloc du stabilisateur

Correction

On a $H_1(p) = \frac{\frac{L}{k}}{1 + \frac{f}{L}p + \frac{J_x}{L}p^2}$, on identifie alors :

- le gain statique $K_1 = \frac{L}{k} = \frac{0.3}{95} = 3.2 \cdot 10^{-3} \text{rad/N};$ la pulsation propre $\omega_1 = \sqrt{\frac{k}{J_x}} = \sqrt{\frac{95}{1.14 \cdot 10^{-2}}} = 91.3 \text{rad/s};$ l'amortissement $\xi_1 = \frac{1}{2} \cdot \frac{f}{\sqrt{kJ_x}} = \frac{1}{2} \cdot \frac{64 \cdot 10^{-3}}{\sqrt{95 \times 1.14 \cdot 10^{-2}}} = 0.03.$

On choisit de décrire le comportement dans le domaine fréquentiel. On a un système d'ordre 2 avec résonance (car $\xi_1 < \frac{\sqrt{2}}{2}$) à la pulsation $\omega_r = \omega_1 \sqrt{1 - 2\xi_1^2}$. Le diagramme de Bode associé est le suivant :

