

BLANK PAGE

IS 5464: 1995

भारतीय मानक

निम्बूवर्ण, मोनोहाइड्रेट — विशिष्टि

(पहला पुनरीक्षण)

Indian Standard

CITRIC ACID, MONOHYDRATE — SPECIFICATION

(First Revision)

ICS 71.080.40

© BIS 1995

BUREAU OF INDIAN STANDARDS MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG NEW DELHI 110002

FOREWORD

This Indian Standard (First Revision) was adopted by the Bureau of Indian Standards, after the draft finalized by the Organic Chemicals (Misc) Sectional Committee, had been approved by the Petroleum, Coal and Related Products Division Council.

Citric acid also known as 2-hydroxypropane-1, 2, 3-tricarboxylic acid $(C_6H_8O_7)$ occurs in many fruits, especially unripe fruits of the citrus family such as lemons and oranges. It is commercially manufactured by mould fermentation of carbohydrates in which a dilute solution of molasses is fermented by using certain moulds (citromycetes). This method is particularly suitable for India on account of huge quantities of molasses available from sugar mills. It is represented by the following structural formula:

Citric acid is extensively used in soft drinks and other food industries. The functional use in food is that of a sequestring agent, antioxidant, dispersing agent and acidifier. It is also put to pharmaceutical uses besides being used as analytical reagent and general industrial purposes such as mordant in dyeing or cleaning agent for boiler water in thermal power plants. Ferric ammonium citrate on exposure to sunlight changes to ferrous salt and is therefore used in making blue-print paper. Esters of citric acid (tributyl citrate) are good plasticizers for lacquers and varnises.

This standard was first issued in 1970 which prescribed the requirements and the methods of sampling and test for two grades of citric acid monohydrate namely, Grade 1—suitable for use as analytical reagent and Grade 2—intended for use in food additives. The Committee responsible for the preparation of this standard decided to revise it in order to retain the requirements of the material for general purpose. A separate standard has been formulated by the relevant committee under Agricultural and Food Division of the Bureau wherein requirements of the material used as food additives has been stipulated (see IS 13186: 1991).

For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated, expressing the result of a test or analysis, shall be rounded off in accordance with IS 2: 1960 'Rules for rounding off numerical values (revised)'. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.

Indian Standard

CITRIC ACID, MONOHYDRATE — SPECIFICATION

(First Revision)

1 SCOPE

- 1.1 This standard prescribes the requirements and the methods of sampling and test for citric acid, monohydrate.
- 1.2 This standard does not include the requirements of citric acid—used—for—pharmaceutical purposes or as food additives.

2 NORMATIVE REFERENCES

The following standards contain provisions which through reference in this text, constitute provisions of the standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on the standard are encouraged to investigate the possibility of applying the most recent edition of the standards indicated below:

IS No.	Title	
265 : 1987	Hydrochloric acid (third revision)	
266 : 1977	Sulphuric acid (second revision)	
324 : 1959	Ordinary denatural spirit (revised)	
915 : 1975	One-mark volumetric flasks (first revision)	
1070:1992	Water for general laboratory use (third revision)	
2088 : 1983	Methods for determination of arsenic (second revision)	

IS No. Title

2362 : 1973	Determination of water by the Kar Fischer method (first revision)	
4161 : 1967	Nessler cylinders	
4542 : 1968	Colorimetric method for deter-	
	mination of iron	

Methods for random sampling

3 REQUIREMENTS

3.1 Description

4905:1968

The material shall be colourless translucent crystals or a white granular to fine crystalline powder. It shall be odourless with a strong acid taste.

- 3.4.1 It shall be freely soluble in water, ethyl alcohol and sparingly soluble in ether. It shall form a clear solution in water.
- 3.2 The material shall also comply with the requirements prescribed in Table 1 when tested according to the method given in Annex A. Reference to the relevant clause of Annex A is given in col 4 of the Table 1.

4 PACKING AND MARKING

4.1 The material shall be packed in well-closed containers made of glass or in polyethylene liners within containers made of cardboard, fibreboard, plywood or tinplate.

Table 1 Requirements for Citric Acid, Monohydrate (Clause 3.2)

St No.	Characteristic	Requirements	Method of Test (Ref to Cl No. in Annex A)
(1)	(2)	(3)	(4)
i)	Citric acid, percent by mass (as monohydrate), Min	98.5	A-2
ii)	Sulphate (as SO ₄), ppm, Max	100	A-3
iii)	Halides (as Cl), ppm, Max	100	A-4
iv)	Sulphated ash, percent by mass, Max	0.10	A-5
v)	Heavy metals (as Pb), ppm, Max	10	A-6
vi)	Iron (as Fe), ppm, Max	10	A-7
vii)	Oxalates (as C ₂ H ₂ O ₄)	To pass the test	A-8
viii)	Water, percent by mass, Max	8.8	A-9
ix)	Readily carbonizable substance	To pass the test	A-10
x)	Arsenic, ppm, Max	1	A-11

- **4.2** The containers shall be marked with the following information:
 - a) The name of the material;
 - b) Manufacturer's name and its recognized trade mark, if any;
 - c) Net mass of the material; and
 - d) Batch number and date of manufacture.

4.2.1 The containers may also be marked with the Standard Mark.

5 SAMPLING

5.1 The procedure for the sampling and the criteria for conformity of the material shall be as prescribed in Annex B.

ANNEX A

(Clause 3.2 and Table 1)

METHODS OF TEST FOR CITRIC ACID, MONOHYDRATE

A-1 QUALITY OF REAGENTS

A-1.1 Unless specified otherwise, pure chemicals and distilled water (*see* IS 1070 : 1992) shall be employed in tests.

NOTE — 'Pure chemicals' shall mean chemicals that do not contain impurities which affect the results of analysis.

A-2 DETERMINATION OF CITRIC ACID CONTENT

A-2.0 Outline of the Method

A known quantity of the material is dissolved in water and titrated with sodium hydroxide solution. Citric acid monohydrate content is calculated from the volume of sodium hydroxide solution used up.

A-2.1 Reagents

- a) Standard Sodium Hydroxide Solution 1 N.
- b) Thymol Blue Indicator Dissolve 0.04 g of thymol blue in 100 ml of 50 percent rectified spirit.

A-2.2 Procedure

Weigh accurately about 3 g of the material in a tared flask. Dissolve in 100 ml of water and titrate with standard sodium hydroxide solution using thymol blue indicator.

A-2.3 Calculation

Citric acid, monohydrate,

percent by mass $= \frac{0.070 \ 05 \ V \times N \times 100}{M}$

where

 V = volume in millilitres of standard sodium hydroxide solution required for neutralization,

N = normality of standard sodium hydroxide solution, and

M = mass in g of the material taken for the test.

A-3 TEST FOR SULPHATES (as SO₄)

A-3.0 Outline of the Method

The material is dissolved in water, denatured spirit and dilute hydrochloric acid added and mixed. Barium chloride solution is then added and turbidity compared with that produced by a known quantity of sulphate.

A-3.1 Apparatus

- a) One-Mark Graduated Flasks 100-ml and 1 000-ml (see IS 915 : 1975).
- b) Nessler Cylinders 50-ml (*see* IS 4161 : 1967).

A-3.2 Reagents

- a) Denatured Spirit (see 1S 324 : 1959).
- b) Dilute Hydrochloric Acid Approximately 5 N.
- c) Barium Chloride (BaCl₂. 2H₂O) 10 percent (m/v).
- d) Standard Sulphate Solution Dissolve 1.48 g of the ignited sodium sulphate (Na₂SO₄) in water. Transfer quantitatively to the 1 000-ml one-mark graduated flask and make up the volume with water up to the mark. Pipette 10 ml of this solution into the 100-ml one-mark graduated flask and make up the volume with water up to the mark. One millilitre of this solution contains 0.1 mg of sulphate (as SO₄).

A-3.3 Procedure

Dissolve 5.0 g of the material in 40 ml of water and transfer quantitatively into one of the Nessler cylinders. Add 10 ml of denatured spirit and 1 ml of dilute hydrochloric acid; mix and add 1 ml of barium chloride solution. Allow to stand for 1 h. In another Nessler cylinder carry out control test under same conditions using 1 ml of standard sulphate solution, 37 ml of water, 10 ml of denatured spirit, 1 ml of dilute hydrochloric acid, and 1 ml of barium chloride solution.

A-3.3.1 The material shall be taken to have not exceeded the limit prescribed in Table 1 if the turbidity produced with the material is not greater than that obtained in the control test.

A-4 TEST FOR HALIDES (as CI)

A-4.0 Outline of the Method

The material is dissolved in water and acidified with nitric acid. Silver nitrate is then added and turbidity compared with that produced by a known quantity of chloride.

A-4.1 Apparatus

- a) One-Mark Graduated Flasks 1 000-ml (see IS 915: 1975), and
- b) Nessler Cylinders 50-ml (see IS 4161: 1967).

A-4.2 Reagents

- a) Dilute Nitric Acid approximately 5 N.
- b) Silver Nitrate Solution 10 percent (m/v)
- c) Standard Sodium Chloride Solution dissolve 1.65 g of sodium chloride in water and transfer quantitatively to one of the 1 000-ml one-mark graduated flasks. Make up the volume with water up to the mark. Pipette out 10-ml of this solution into the second one-mark graduated flask and again dilute with water to 1 000-ml mark. One millilitre of this solution contains 0.01 mg of chloride (as CI).

A-4.3 Procedure

A-4.3.1 Dissolve 5.00 g of the material in 30-ml of water and transfer this solution quantitatively to one of the Nessler cylinders. Add 5 ml of dilute nitric acid and 1 ml of silver nitrate solution. Dilute with water to 50-ml mark and mix well. In the second Nessler cylinder carry out a control test under the same conditions using 5 ml of standard chloride solution in place of the material. Dilute the contents with water to 50-ml mark and mix well.

The material shall be taken to have not exceeded the limits prescribed in Table 1 if the opalescence or turbidity produced with the material is not greater than that obtained in the control test.

A-5 DETERMINATION OF SULPHATED ASH

A-5.0 Outline of the Method

A known quantity of the material is ignited and burnt until only ash and carbon remain. After cooling the residue is moistened with sulphuric acid, ignited and finally the mass of the sulphated ash is determined.

A-5.1 Apparatus

a) Crucible — of suitable capacity, squat form and made of silica on platinum.

A-5.2 Reagent

a) Sulphuric Acid — relative density 1.836 (see IS 266: 1977).

A-5.3 Procedure

Weigh accurately about 5 g of the material in the crucible and dry at $105^{\circ} \pm 2^{\circ}$ C for four hours. Ignite completely and to the ash add 2-3 drops of sulphuric acid. Re-ignite. Conduct the ignition in a place protected from air currents, and use as low temperature as possible to effect the combustion of the carbon. When the carbon has completely disappeared; continue heating till no more sulphuric acid fumes are evolved; cool the crucible in a desiccator and weigh.

A-5.4 Calculation

Sulphated ash, percent by mass =
$$\frac{100 (M_1 - M_2)}{(M_3 - M_2)}$$

where

 M_1 = mass in g of the crucible with the ignited residue;

 M_2 = mass in g of the crucible; and

 M_3 = mass in g of the crucible with the material.

A-6 TEST FOR HEAVY METALS (as Pb)

A-6.0 Outline of the Method

The material is dissolved in ammonium hydroxide and then heated with sodium sulphide. The colour produced by the heavy metals present in the material is compared with that produced by a known quantity of lead in a freshly prepared standard lead solution.

A-6.1 Apparatus

- a) One-Mark Graduated Flasks 1 000-ml (see IS 915: 1975).
- b) Nessler Cylinders 50-ml (*see* IS 4161 : 1967).

A-6.2 Reagents

- a) Ammonium Hydroxide approximately 6N, free from lead.
- b) Potassium Cyanide Solution approximately 10 percent (m/v).
- c) Sodium Sulphide Solution approximately 10 percent (m/v).

d) Standard Lead Solution — Dissolve 1.600 g of lead nitrate in water and transfer to one of the 1 000-ml one-mark graduated flasks. Make up the solution to 1 000-ml mark. Pipette 10 ml of the solution into the second 1 000-ml one-mark graduated flask, and dilute it again with water to 1 000-ml mark. One millilitre of this solution contains 0.01 mg of lead (as Pb). This solution shall be freshly prepared before use.

A-6.3 Procedure

Weigh 2.000 g of the material and transfer to a Nessler cylinder. Dissolve it in 10-ml of ammonium hydroxide and then dilute with water to 50-ml. Add two drops of sodium sulphide solution. Carry out a control test in another Nessler cylinder, using 2 ml of standard lead solution and the same quantities of the other reagents to make the volume up to 50 ml. Allow both the cylinders to stand for 10 minutes on a white surface and then compare the colour viewing downwards.

The limits for heavy metals shall be taken as not having been exceeded if the intensity of the colour produced in the test with the material is not greater than that produced in the control test.

A-7 DETERMINATION OF IRON CONTENT

A-7.1 Procedure

Dissolve 5.0 g of the material in 10-ml of water and 1 ml of dilute hydrochloric acid (approximately 5 N). Carry out the test by the 2,2'-bipyridyl method as prescribed in 7 of IS 4542: 1968.

A-8 TEST FOR OXALATES (as C₂H₂O₄)

A-8.0 Outline of the Method

The material is dissolved in water and neutralized with dilute ammonium hydroxide; dilute acetic acid and calcium chloride solution are then added. Turbidity produced, if any, is noted.

A-8.1 Reagents

- a) Hydrochloric Acid conforming to IS 265: 1987.
- b) Zinc granulated.
- c) Phenyl Hydrazinium Chloride Solution 1 percent (m/v).
- d) Potassium Ferricyanide Solution 5 percent (*m/v*).
- e) Dilute Ammonium Hydroxide approximately 5 N.
- f) Dilute Acetic Acid approximately 5 N.
- g) Calcium Chloride Solution 10 percent (m/v).

A-8.2 Procedure

Neutralize 10 ml of a 5-percent (m/v) solution of the material with dilute ammonium hydroxide. Add 5 drops of dilute acetic acid, cool and add 2 ml of calcium chloride solution.

The material shall be regarded to have passed the test if no turbidity is produced.

A-9 DETERMINATION OF WATER CONTENT

A-9.1 Procedure

Weigh 0.5 g of the material and determine the moisture content using Karl Fishcher method as described in IS 2362: 1973.

A-10 TEST FOR READILY CARBONIZABLE SUBSTANCES

A-10.0 Outline of the Method

The colour produced by the material with sulphuric acid is compared with that of the matching fluid.

A-10.1 Apparatus

a) Nessler Cylinders — 50-ml (see IS 4161: 1967).

A-10.2 Reagents

- a) Hydrochloric Acid See IS 265 : 1987 percent (m/v).
- b) Hydrogen Peroxide Solution 30 percent (m/v).
- c) Sodium Hydroxide Solution 1:5 (m/v).
- d) Potassium Iodide solid.
- e) Dilute Sulphuric Acid 1:4(v/v).
- Standard Sodium Thiosulphate Solution 0.1 N.
- g) Starch Solution Saturate 5 g of starch and 0.01 g of mercuric iodide with 30 ml of cold water and slowly pour it with stirring into one litre of boiling water. Boil for 3 minutes. Allow to cool and decant off the supernatant clear liquid.
- h) Sulphuric Acid relative density 1.836 (see IS 266: 1977).
- about 65 g of cobaltous chloride (CoCl₂. 6H₂O) in enough of a mixture of 25 ml of hydrochloric acid and 975 ml of water to make 1 000 ml. Pipette 5 ml of this solution into a 250 ml iodine flask, add 5 ml of hydrogen peroxide solution and 15 ml of sodium hydroxide solution. Boil for 10 minutes, cool and add 2 g of potassium iodide and 20 ml of dilute sulphuric acid.

When the precipitate has dissolved, titrate the liberated iodine with standard sodium thiosulphate solution, adding starch solution as the indicator. Perform a blank determination with the same quantities of the same reagents, and make the necessary correction. Taking each millilitre of standard sodium thiosulphate solution as equivalent to 23.79 mg of cobaltous chloride, adjust the final solution by the addition of enough of the mixture of hydrochloric acid and water to make each millilitre contain 59.5 mg of cobaltous chloride (CoCl₂. 6H₂O).

- Dilute Ferric Chloride Solution Dissolve about 55 g of ferric chloride (FeCl₃, 6H₂O) in enough of a mixture of 25 ml of hydrochloric acid and 975 ml of water to make 1 000 ml. Pipette 10 ml of this solution into a 250 ml iodine flask, add 15 ml of water, 3 g of potassium iodide and 5 ml of hydrochloric acid, and allow the mixture to stand for 15 minutes. Dilute with 100 ml of water, and titrate the liberated jodine with standard sodium thiosulphate solution adding starch solution as the indicator. Perform a blank determination with the same quantities of the same reagents, and make any necessary correction. Taking each millilitre of standard sodium thiosulphate solution as equivalent to 27.03 mg of ferric chloride, adjust the final volume of the solution by the addition of enough of the mixture of hydrochloric acid and water to make each millilitre contain 45.0 mg of ferric chloride (FeCl₃. 6H₂O).
- m) Matching Fluid Prepare the matching fluid by mixing together 1.0 ml of cobaltous chloride solution and 9 ml of dilute ferric chloride solution.

A-10.3 Procedure

Heat 1.00g of the material with 10 ml of sulphuric acid in a water-bath at $90 \pm 1^{\circ}$ C in the dark; maintaining the level of the water in the bath above the level of the sulphuric acid. Shake to mix after one minute intervals and continue heating for a total of 60 minutes. Cool to the room temperature. Transfer quantitatively to one of the Nessler cylinders and dilute with water to the mark. In the second Nessler cylinder transfer the matching fluid and dilute with water to the mark. Compare the intensity of colour of the solutions in the two Nessler cylinders.

The material shall be regarded to have passed the test if the intensity of the colour of the test solution is not deeper than the colour of the matching fluid.

A-11 TEST FOR ARSENIC CONTENT (as As)

A-11.1 Procedure

Dissolve 1.000 g of the material in 15 ml of water. Carry out the test for arsenic as prescribed in IS 2088: 1983 except that the following standard arsenic solution shall be used in place of the standard arsenic trioxide solution defined in IS 2088: 1983.

Standard Arsenic Solution — Dissolve 1.32 g of resublimed arsenic trioxide (As₂O₃) in 25 ml of sodium hydroxide solution and neutralize with dilute sulphuric acid. Dilute with freshly distilled water containing 10 ml of concentrated sulphuric acid per litre and make up the volume to 1 000 ml. Again dilute 10 ml of this solution to 1 litre with water containing sulphuric acid and finally dilute 100 ml of this solution to 1 litre with water containing sulphuric acid. One millilitre of this solution contains 0.001 mg of arsenic. The dilute solution shall be prepared freshly when required.

ANNEX B

(*Clause* 5.1)

SAMPLING OF CITRIC ACID, MONOHYDRATE

B-1 GENERAL REQUIREMENTS FOR SAMPLING

- **B-1.1** Samples shall be taken in a protected place not exposed to damp air, dust or soot.
- **B-1.2** The sampling instrument shall be clean and dry.
- **B-1.3** Precautions shall be taken to protect the samples, the material being sampled, the sampling

instrument and the sample containers from adventitious contamination.

- B-1.4 To draw a representative sample, the contents of each container selected for sampling shall be mixed as throughly as possible by suitable means.
- B-1.5 The samples shall be placed in suitable, clean, dry and air-tight glass bottles or other suitable containers on which the material has no action.

B-1.6 Sample containers shall be of such a size that they are almost completely filled by the sample.

B-1.7 The sample containers shall be sealed airtight after filling and marked with full identification particulars of the lot and consignment and the date of sampling.

B-2 SCALE OF SAMPLING

B-2.1 Lot

In a single consignment, all the containers of the same size, containing material from the same batch of manufacture, shall constitute a lot.

B-2.2 For ascertaining type conformity of the material to the requirements of this specification, samples shall be tested for each lot seperatly. The number of containers to be selected from a lot shall depend on the size of the lot and shall be in accordance with col 1 and 2 of Table 2.

Table 2 Number of Containers to be Selected for Sampling

Number of Containers in the Lot	Number of Containers to be Selected
(1)	(2)
Up to 25	3
26 to 50	4
51 to 100	. 5
101 to 300	6
301 to 500	7
501 to 800	8
801 to 1 300	9
1 301 and above	10

B-2.3 These containers shall be chosen at random from the lot and in order to ensure randomness of selection, procedure given in IS 4905: 1968 may be followed.

B-3 TEST SAMPLES AND REFEREE SAMPLE

B-3.1 From each of the containers selected according to B-2.2, a representative portion of the material, about 200 g, shall be drawn. These samples shall constitute individual samples.

B-3.2 From each of these individual samples (B-3.1), an equal quantity of the material shall be drawn and thoroughly mixed to constitute a composite sample not less than 600 g. The composite sample shall be transferred to clean bottles and labelled with full identification particulars of the sample. This composite sample shall be divided into three equal parts, one for the purchaser, another for the supplier and the third to be used as referee sample.

B-4 TESTS

B-4.1 Tests for the determination of all the characteristics of this specification shall be carried out on the composite samples.

B-5 CRITERIA FOR CONFORMITY

B-5.1 For determining the conformity of the lot to this specification, the test results on the composite samples shall meet the corresponding requirements specified in this standard.

Bureau of Indian Standards

BIS is a statutory institution established under the *Bureau of Indian Standards Act*, 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publications), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the latest issue of 'BIS Handbook' and 'Standards Monthly Additions'.

This Indian Standard has been developed from Doc: No. PCD 9 (1019).

Amendments Issued Since Publication

Amendments 1880en Direct aubitention				
Amend No.	Date of Issue	Text Affected		
	BUREAU OF INDIAN STANDARI	OS .		
Headquarters:				
Manak Bhavan, 9 Bahadur Sh Telephones: 331 01 31, 331 1	nah Zafar Marg, New Delhi 110002 3 75	Telegrams: Manaksanstha (Common to all offices)		
Regional Offices:		Telephone		
Central: Manak Bhavan, 9 NEW DELHI 110	Bahadur Shah Zafar Marg 1002	$ \left\{ \begin{array}{l} 331\ 01\ 31 \\ 331\ 13\ 75 \end{array} \right. $		
Eastern: 1/14 C. I.T. Schem CALCUTTA 700	ne VII M, V. I. P. Road, Maniktola 054	{ 37 84 99, 37 85 61 37 86 26, 37 86 62		
Northern: SCO 335-336, Sec	tor 34-A, CHANDIGARH 160022	$\begin{cases} 603843 \\ 602025 \end{cases}$		
Southern: C. I. T. Campus, I	V Cross Road, MADRAS 600113	{ 235 02 16, 235 04 42 235 15 19, 235 23 15		
Western: Manakalaya, E9 N BOMBAY 40009		632 92 95, 632 78 58 632 78 91, 632 78 92		
Branches: AHMADABAD. COIMBATORE.	BANGALORE. BHOPAL. FARIDABAD. GHAZIABAD. GUWA	BHUBANESHWAR. MATI. HYDERABAD.		

JAIPUR, KANPUR, LUCKNOW, PATNA, THIRUVANANTHAPURAM.