Titanic_EDA_Project

Titanic_EDA_Project.ipynb

```
import pandas as pd
df = pd.read_csv("/content/train (1).csv")
display(df.head())
```

$\overline{\Rightarrow}$		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily	female	35 N	1	Λ	113803	53 1000	C123	9

Import Visualization Libraries
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('whitegrid')

Survival Count

Explanation: This plot shows the number of passengers who survived vs. those who did not. It helps us see the overall survival rate on the Titanic.

```
# Plot Survival Count
sns.countplot(x='Survived', data=df)
plt.title("Survival Count (0 = Died, 1 = Survived)")
plt.show()
```


Observation: A significantly higher number of passengers did not survive compared to those who did, highlighting the tragedy of the Titanic disaster.

→ Gender Distribution

Explanation: This plot shows the number of male and female passengers on the Titanic. It helps us understand the gender balance in the dataset.

```
# Plot Gender Distribution
sns.countplot(x='Sex', data=df)
```

```
plt.title("Gender Distribution")
plt.show()
```


Observation: There were significantly more male passengers than female passengers on board the Titanic.

Passenger Class Distribution

Explanation: This plot shows how many passengers were in each class (1st, 2nd, 3rd). It gives an idea of the Titanic's class structure and how passengers were distributed.

```
# Plot Passenger Class Distribution
sns.countplot(x='Pclass', data=df)
plt.title("Passenger Class Distribution")
plt.show()
```


Observation: Most passengers were in 3rd class, followed by 1st and 2nd. This shows that the Titanic carried a large number of lower-class passengers.

→ Survival by Gender

Explanation: This plot shows survival rates grouped by gender. It helps us understand whether men or women had higher chances of survival on the Titanic.

```
# Survival by Gender
sns.countplot(x='Sex', hue='Survived', data=df)
```

plt.title("Survival by Gender")
plt.show()

Observation: A much higher proportion of women survived compared to men. This suggests that gender played a major role in survival — possibly due to the "women and children first" evacuation policy.

Survival by Passenger Class

Explanation: This plot shows survival counts across different passenger classes (1st, 2nd, 3rd). It helps us understand whether class had an impact on survival rates.

```
# Survival by Passenger Class
sns.countplot(x='Pclass', hue='Survived', data=df)
plt.title("Survival by Passenger Class")
plt.show()
```


Observation: Passengers in 1st class had a much higher survival rate than those in 2nd or 3rd class. Survival chances dropped significantly for 3rd class passengers.

Boxplot: Fare vs Survival

Explanation: This boxplot compares the distribution of fares for passengers who survived and those who didn't. It helps reveal if paying higher fares increased the chance of survival.

```
# Boxplot: Fare vs. Survival
sns.boxplot(x='Survived', y='Fare', data=df)
plt.title("Fare Amount vs. Survival")
plt.show()
```


Observation: Passengers who paid higher fares had a higher chance of survival. This indicates that people in higher classes (who paid more) were more likely to survive.

→ Boxplot: Age vs Survival

Explanation: This boxplot displays the age distribution for passengers who survived vs those who didn't. It can reveal if younger passengers had better survival chances.

```
sns.boxplot(x='Survived', y='Age', data=df)
plt.title("Boxplot: Age vs Survival")
plt.xlabel("Survived (0 = No, 1 = Yes)")
plt.ylabel("Age")
plt.show()
```


Observation: The age distribution of survivors shows a mix, but there may be a slightly higher concentration of younger survivors. Some children and young adults had better chances.

Checking for Missing Values

We identify columns with missing data before handling them.

df.isnull().sum()

Data Preprocessing (Clean Start)

Dropping Irrelevant Columns

Removed columns that do not contribute meaningfully to survival prediction.

We identify columns with missing data before handling them.

Filling Missing Values

- Age filled with median
- · Embarked filled with most frequent value

```
df['Age'] = df['Age'].fillna(df['Age'].median())
```

Encoding Categorical Columns

• 'Sex' and 'Embarked' converted into numerical labels for modeling.

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
df['Sex'] = le.fit_transform(df['Sex'])
df.head()
```

₹

	PassengerId	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	1	0	3	1	22.0	1	0	7.2500	S
1	2	1	1	0	38.0	1	0	71.2833	С
2	3	1	3	0	26.0	0	0	7.9250	S
3	4	1	1	0	35.0	1	0	53.1000	S
4	5	0	3	1	35.0	0	0	8.0500	S

Splitting Dataset

- 80% for training, 20% for testing
- random_state=42 ensures reproducibility

```
df.select_dtypes(include='object').columns
→ Index(['Embarked'], dtype='object')
# Drop text columns that are not useful for model
df = df.drop(columns=[col for col in ['Name', 'Ticket', 'Cabin'] if col in df.columns])
# Encode 'Sex' and 'Embarked' if they're still strings
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
if df['Sex'].dtype == 'object':
   df['Sex'] = le.fit_transform(df['Sex'])
if 'Embarked' in df.columns and df['Embarked'].dtype == 'object':
    df['Embarked'] = le.fit_transform(df['Embarked'])
from sklearn.model_selection import train_test_split
X = df.drop('Survived', axis=1)
y = df['Survived']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Train models
# a.Logistic Regression
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression(max_iter=200)
lr.fit(X_train, y_train)
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
# Prediction
y_pred_lr = lr.predict(X_test)
# Evaluation performance
print("Logistic Regression Accuracy:", accuracy_score(y_test, y_pred_lr))
print("\nClassification Report:\n", classification\_report(y\_test, y\_pred\_lr))
print("\nConfusion Matrix:\n", confusion_matrix(y_test, y_pred_lr))
# b.Decision Tree
from sklearn.tree import DecisionTreeClassifier
dt = DecisionTreeClassifier()
dt.fit(X_train, y_train)
# Predictions
y_pred_dt = dt.predict(X_test)
# Evaluation performance
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
print("Decision Tree Accuracy:", accuracy_score(y_test, y_pred_dt))
print("\nClassification Report:\n", classification_report(y_test, y_pred_dt))
```

print("\nConfusion Matrix:\n", confusion_matrix(y_test, y_pred_dt))

```
# c.Random Forest
from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier()
rf.fit(X_train, y_train)
# Predictions
y_pred_rf = rf.predict(X_test)
# Evaluation
print("Random Forest Accuracy:", accuracy_score(y_test, y_pred_rf))
print("\nClassification Report:\n", classification_report(y_test, y_pred_rf))
print("\nConfusion Matrix:\n", confusion_matrix(y_test, y_pred_rf))
→ Logistic Regression Accuracy: 0.8100558659217877
     Classification Report:
                    precision
                                 recall f1-score
                                                    support
                0
                        0.83
                                  0.86
                                            0.84
                                                        105
                        0.79
                                            0.76
                                  0.74
                                                         74
                                                        179
        accuracy
                                            0.81
                        0.81
                                  0.80
        macro avg
                                            0.80
                                                        179
     weighted avg
                        0.81
                                  0.81
                                            0.81
                                                        179
     Confusion Matrix:
      [[90 15]
      [19 55]]
     Decision Tree Accuracy: 0.7597765363128491
     Classification Report:
                                 recall f1-score
                    precision
                                                     support
                        0.79
                a
                                  0.80
                                            0.80
                                                        105
                1
                        0.71
                                  0.70
                                            0.71
                                                         74
        accuracy
                                             0.76
                                                        179
                        0.75
                                  0.75
                                             0.75
                                                        179
        macro avg
                        0.76
                                  0.76
                                            0.76
                                                        179
     weighted avg
     Confusion Matrix:
      [[84 21]
      [22 52]]
     /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_logistic.py:465: ConvergenceWarning: lbfgs failed to converge (status-
     STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT.
     Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
     Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
     n_iter_i = _check_optimize_result(
Random Forest Accuracy: 0.8212290502793296
     Classification Report:
                    precision
                                 recall f1-score
                                                     support
                0
                        0.82
                                  0.89
                                             0.85
                                                        105
                                  0.73
                                             0.77
                        0.82
                                                         74
                                                        179
                                             0.82
        accuracy
                                  0.81
                        0.82
                                             0.81
                                                        179
        macro avg
                                            0.82
                                                        179
     weighted avg
                        0.82
                                  0.82
     Confusion Matrix:
      [[93 12]
      [20 54]]
```

Support Vector Machine (SVM)

Support Vector Machine (SVM)

from sklearn.svm import SVC

```
svm = SVC()
svm.fit(X_train, y_train)
# Predict and evaluate
y_pred_svm = svm.predict(X_test)
print("SVM Accuracy:", accuracy_score(y_test, y_pred_svm))
print("\nClassification Report:\n", classification_report(y_test, y_pred_svm))
print("\nConfusion Matrix:\n", confusion_matrix(y_test, y_pred_svm))
→ SVM Accuracy: 0.5977653631284916
    Classification Report:
                               recall f1-score
                   precision
                                                 support
                       0.60
                                0.98
                                          0 74
               0
                                                    105
               1
                       0.67
                                0.05
                                          0.10
                                                     74
        accuracy
                                          0.60
                                                    179
                       0.63
                                0.52
                                          0.42
                                                    179
       macro avg
    weighted avg
                       0.62
                                0.60
                                          0.48
                                                    179
    Confusion Matrix:
     [[103 2]
     [70 4]]
K-Nearest Neighbors (KNN)
# K-Nearest Neighbours(KNN)
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier()
knn.fit(X_train, y_train)
# Predict and evaluate
y_pred_knn = knn.predict(X_test)
print("KNN Accuracy:", accuracy_score(y_test, y_pred_knn))
print("\nClassification Report:\n", classification_report(y_test, y_pred_knn))
print("\nConfusion Matrix:\n", confusion_matrix(y_test, y_pred_knn))
→ KNN Accuracy: 0.659217877094972
    Classification Report:
                   precision
                             recall f1-score
                                                 support
                                          0.74
               0
                       0.67
                                0.84
                                                    105
               1
                       0.64
                                0.41
                                         0.50
                                                     74
        accuracy
                                          0.66
                                                    179
       macro avg
                       0.65
                                0.62
                                          0.62
                                                    179
    weighted avg
                       0.65
                                0.66
                                          0.64
                                                    179
    Confusion Matrix:
     [[88 17]
     [44 30]]
Naive Bayes
# Naive Bayes
from sklearn.naive_bayes import GaussianNB
nb = GaussianNB()
nb.fit(X_train, y_train)
# Predict and evaluate
y_pred_nb = nb.predict(X_test)
print("Naive Bayes Accuracy:", accuracy_score(y_test, y_pred_nb))
print("\nClassification Report:\n", classification_report(y_test, y_pred_nb))
print("\nConfusion Matrix:\n", confusion_matrix(y_test, y_pred_nb))
```

```
Naive Bayes Accuracy: 0.776536312849162
    Classification Report:
                             recall f1-score
                   precision
                                                 support
                       0.83
                               0.78
                                         0.80
               0
                                                    105
                      0.71
                               0.77
                                         0.74
                                                     74
                                         0.78
                                                    179
        accuracy
                      0.77
                                0.78
       macro avg
                                         0.77
                                                    179
    weighted avg
                      0.78
                                0.78
                                         0.78
                                                    179
    Confusion Matrix:
     [[82 23]
     [17 57]]
Model Comparison
# Model Comparison and Selection
models = {
    "Logistic Regression": accuracy_score(y_test, y_pred_lr),
    "Decision Tree": accuracy_score(y_test, y_pred_dt),
    "Random Forest": accuracy_score(y_test, y_pred_rf),
    "SVM": accuracy_score(y_test, y_pred_svm),
   "KNN": accuracy_score(y_test, y_pred_knn),
    "Naive Bayes": accuracy_score(y_test, y_pred_nb)
# Display model accuracies
for model_name, acc in models.items():
 print(f"{model_name}: {acc:.4f}")
→ Logistic Regression: 0.8101
    Decision Tree: 0.7598
    Random Forest: 0.8212
    SVM: 0.5978
    KNN: 0.6592
    Naive Bayes: 0.7765
Visualize Comparison
# Visualize Comparison
import matplotlib.pyplot as plt
model_names = list(models.keys())
accuracy_scores = list(models.values())
plt.figure(figsize=(10, 6))
plt.bar(model_names, accuracy_scores, color='skyblue')
plt.xlabel('Model')
plt.ylabel('Accuracy')
plt.title('Model Accuracy Comparison')
plt.xlim(0.5, 1)
plt.grid(axis='x')
plt.show()
```


Best Model

prediction = model.predict(X_test)

```
best_model = rf # assuming Random Forest performed best
import joblib
joblib.dump(best_model, 'titanic_model.pkl') # saves your model to file
model = joblib.load("titanic_model.pkl")
```