

MOSFET - N-Channel, POWERTRENCH®

75 V, 58 A, 16 m Ω

FDP16AN08A0

Features

- $R_{DS(on)} = 13 \text{ m}\Omega \text{ (Typ.)} @ V_{GS} = 10 \text{ V}, I_D = 58 \text{ A}$
- $Q_{G(tot)} = 28 \text{ nC (Typ.)} @ V_{GS} = 10 \text{ V}$
- Low Miller Charge
- Low Q_{rr} Body Diode
- UIS Capability (Single Pulse and Repetitive Pulse)
- This Device is Pb-Free and Halide Free

Applications

- Synchronous Rectification for ATX / Server / Telecom PSU
- Battery Protection Circuit
- Motor Drives and Uninterruptible Power Supplies

MOSFET MAXIMUM RATINGS (T_C = 25°C, unless otherwise noted)

Symbol		Parameter	Value	Unit
V_{DSS}	Drain to Source Voltage		75	V
V _{GS}	Gate to Source Voltage		±20	V
I _D	Drain Current	Continuous $(T_C = 25^{\circ}C, V_{GS} = 10 \text{ V})$	58	Α
		Continuous $(T_C = 100^{\circ}C, V_{GS} = 10 \text{ V})$	44	Α
		Continuous $(T_{amb} = 25^{\circ}C, V_{GS} = 10 \text{ V}, R_{\theta JA} = 43^{\circ}C/W)$	9	А
		Pulsed	Figure 4	Α
E _{AS}	Single Pulse Avalanche Energy (Note 1)		117	mJ
P _D	Power Dissipation		135	W
	Derate above 25	0.9	W/°C	
T _J , T _{STG}	Operating and Storage Temperature		-55 to 175	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Symbol	Parameter	Value	Unit
R _θ JC	Thermal Resistance Junction to Case, Max.	1.11	°C/W
R _θ JA	Thermal Resistance Junction to Ambient, Max. (Note 2)	62	°C/W

V _{DS}	R _{DS(on)} MAX	I _D MAX
75 V	16 mΩ @ 10 V	58 A

TO-220-3LD CASE 340AT

MARKING DIAGRAM

&Z&3&K FDP16AN0 8A0

&Z = Assembly Plant Code &3 = 3-Digit Date Code

&K = 2-Digits Lot Run Traceability Code

FDP16AN08A0 = Specific Device Code

N-Channel

ORDERING INFORMATION

Device	Package	Shipping		
FDP16AN08A0	TO-220-3LD	800 Units / Tube		

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
OFF CHAR	ACTERISTICS	•		•		
B _{VDSS}	Drain to Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	75	-	-	V
I _{DSS}	Zero Gate Voltage Drain Current	V _{GS} = 0 V, V _{DS} = 60 V	-	-	1	μΑ
		V _{GS} = 0 V, V _{DS} = 60 V, T _C = 150°C	-	-	250	
I _{GSS}	Gate to Source Leakage Current	V _{GS} = ±20 V	-	-	±100	nA
ON CHARA	CTERISTICS					
V _{GS(TH)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	2	_	4	V
R _{DS(on)}	Drain to Source On Resistance	V _{GS} = 10 V, I _D = 58 A	-	0.013	0.016	Ω
		V _{GS} = 6 V, I _D = 29 A	-	0.019	0.029	
		V _{GS} = 10 V, I _D = 58 A, T _J = 175°C	-	0.032	0.037	
DYNAMIC C	CHARACTERISTICS					
C _{ISS}	Input Capacitance	V _{GS} = 0 V, V _{DS} = 25 V, f = 1 MHz	_	1857	_	pF
Coss	Output Capacitance	7	_	288	-	pF
C _{RSS}	Reverse Transfer Capacitance	7	-	88	-	pF
Q _{g(TOT)}	Total Gate Charge at 10 V	V _{DD} = 40 V, I _D = 58 A, I _g = 1.0 mA, V _{GS} = 0 V to 10 V	-	28	42	nC
Q _{g(TH)}	Threshold Gate Charge	V _{DD} = 40 V, I _D = 58 A, I _g = 1.0 mA, V _{GS} = 0 V to 2 V	-	3.5	5	nC
Q _{gs}	Gate to Source Gate Charge	V _{DD} = 40 V, I _D = 58 A, I _g = 1.0 mA	-	11	-	nC
Q _{gs2}	Gate Charge Threshold to Plateau	7	-	7.6	-	nC
Q _{gd}	Gate to Drain "Miller" Charge	7	-	6.4	-	nC
SWITCHING	CHARACTERISTICS (V _{GS} = 10 V)		•	•		
t _{ON}	Turn-On Time	$V_{DD} = 40 \text{ V}, I_D = 58 \text{ A}, V_{GS} = 10 \text{ V},$	-	_	135	ns
t _{d(ON)}	Turn-On Delay Time	$R_{GS} = 10 \Omega$	-	8	-	ns
t _r	Rise Time	7	-	82	-	ns
t _{d(OFF)}	Turn-Off Delay Time	7	_	28	-	ns
t _f	Fall Time	1	_	30	-	ns
t _{OFF}	Turn-Off Time	7	-	-	86	ns
DRAIN-SO	URCE DIODE CHARACTERISTICS	•				
V _{SD}	Source to Drain Diode Voltage	I _{SD} = 58 A	_	_	1.25	V
		I _{SD} = 29 A	-	-	1.0	V
t _{rr}	Reverse Recovery Time	I _{SD} = 58 A, dI _{SD} /dt = 100 A/μs	-	-	35	ns
Q _{RR}	Reverse Recovered Charge	I _{SD} = 58 A, dI _{SD} /dt = 100 A/μs	_	-	36	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. Starting T_J = 25°C, L = 260 µH, I_{AS} = 30 A.

TYPICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Figure 1. Normalized Power Dissipation vs. Ambient Temperature

Figure 2. Maximum Continuous Drain Current vs. Case Temperature

Figure 3. Normalized Maximum Transient Thermal Impedance

Figure 4. Peak Current Capability

TYPICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted) (continued)

50

Figure 5. Forward Bias Safe Operating Area

AN7514 and AN7515

Figure 6. Unclamped Inductive Switching

Figure 7. Transfer Characteristics

Capability

100

V_{GS} = 20 V

V_{GS} = 10 V

V_{GS} = 7 V

V_{GS} = 6 V

Figure 8. Saturation Characteristics

Figure 9. Drain to Source On Resistance vs. Drain Current

Figure 10. Normalized Drain to Source On Resistance vs. Junction Temperature

$\textbf{TYPICAL CHARACTERISTICS} \ (T_{C} = 25^{\circ}\text{C unless otherwise noted}) \ (\text{continued})$

Figure 11. Normalized Gate Threshold Voltage vs. Junction Temperature

Figure 12. Normalized Drain to Source Breakdown Voltage vs. Junction Temperature

Figure 13. Capacitance vs. Drain to Source Voltage

Figure 14. Gate Charge Waveforms for Constant Gate Currents

TEST CIRCUITS AND WAVEFORMS

Figure 15. Unclamped Energy Test Circuit

Figure 16. Unclamped Energy Waveforms

Figure 17. Gate Charge Test Circuit

Figure 18. Gate Charge Waveforms

Figure 19. Switching Time Test Circuit

Figure 20. Switching Time Waveforms

PSPICE Electrical Model

```
.SUBCKT FDB16AN08A0 2 1 3 ; rev March 2002
Ca 12 8 10e-10
                                                                                                           I DRAIN
                                                                        DPLCAP
                                                                                                                   DRAIN
Cb 15 14 8e-10
Cin 6 8 1.7e-9
                                                                     10
                                                                                                          RLDRAIN
                                                                                ₹RSLC1
Dbody 7 5 DbodyMOD
                                                                                             DBREAK 
                                                                                 51
Dbreak 5 11 DbreakMOD
                                                                      RSLC2<sup>₹</sup>
Dplcap 10 5 DplcapMOD
                                                                                   FSI C
                                                                                                   11
                                                                                  50
Ebreak 11 7 17 18 85.40
                                                                                 ₹RDRAIN
                                                                                                        DBODY
Eds 14 8 5 8 1
                                                                                            EBREAK
                                                               FSG
Egs 13 8 6 8 1
                                                                        EVTHRES
Esg 6 10 6 8 1
                                                                                             MWEAK
                                                 LGATE
                                                              EVTEMP
Evthres 6 21 19 8 1
                                                       RGATE
                                          GATE
                                                                18
22
                                                                                   ■MMED
Evtemp 20 6 18 22 1
                                                      1 9
                                                  AAA
                                                             20
                                                                                -MSTR
                                                RLGATE
It 8 17 1
                                                                                                          LSOURCE
                                                                             CIN
                                                                                                                  SOURCE
Lgate 1 9 5.96e-9
                                                                                             RSOURCE
Ldrain 2 5 1.0e-9
                                                                                                          RLSOURCE
Lsource 3 7 5.75e-9
                                                                                                RBREAK
                                                                                             17
                                                                                                         18
RLgate 1 9 59.6
RLdrain 2 5 10
                                                                                                         RVTEMP
RLsource 3 7 57.5
                                                                            CB
                                                                                                         19
                                                                                            ΙT
                                                                                 14
Mmed 16 6 8 8 MmedMOD
                                                                                                          VBAT
                                                                 EGS
Mstro 16 6 8 8 MstroMOD
                                                                                          8
Mweak 16 21 8 8 MweakMOD
                                                                                                        22
                                                                                                RVTHRES
Rbreak 17 18 RbreakMOD 1
Rdrain 50 16 RdrainMOD 3.3e-3
Rgate 9 20 3.31
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
Rsource 8 7 RsourceMOD 7e-3
Rvthres 22 8 RvthresMOD 1
Rvtemp 18 19 RvtempMOD 1
S1a 6 12 13 8 S1AMOD
S1b 13 12 13 8 S1BMOD
S2a 6 15 14 13 S2AMOD
S2b 13 15 14 13 S2BMOD
Vbat 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*200),3))}
.MODEL DbodyMOD D (IS=2.4E-11 N=1.08 RS=3.3e-3 TRS1=2.2e-3 TRS2=2.5e-9
+ CJO=1.2e-9 M=5.6e-1 TT=1.3e-8 XTI=3.9)
.MODEL DbreakMOD D (RS=1.5e-1 TRS1=1e-3 TRS2=-8.9e-6)
.MODEL DplcapMOD D (CJO=5e-10 IS=1e-30 N=10 M=0.52)
.MODEL MmedMOD NMOS (VTO=3.2 KP=4 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=3.31)
.MODEL MstroMOD NMOS (VTO=3.85 KP=70 IS=1e-30 N=10 TOX=1 L=1u W=1u)
.MODEL MweakMOD NMOS (VTO=2.7 KP=0.06 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=3.31e+1 RS=0.1)
.MODEL RbreakMOD RES (TC1=9e-4 TC2=-5e-7)
.MODEL RdrainMOD RES (TC1=1.9e-2 TC2=4e-5)
.MODEL RSLCMOD RES (TC1=1.5e-3 TC2=3e-5)
.MODEL RsourceMOD RES (TC1=1e-3 TC2=1e-6)
.MODEL RvthresMOD RES (TC1=-5.3e-3 TC2=-1.3e-5)
.MODEL RvtempMOD RES (TC1=-2.7e-3 TC2=1e-6)
MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-4 VOFF=-1.5)
.MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-1.5 VOFF=-4)
.MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-1 VOFF=.5)
.MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=.5 VOFF=-1)
.ENDS
```

NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. FrankWheatley.

SABER Electrical Model

```
rev March 2002
template FDB16AN08A0 n2,n1,n3
electrical n2,n1,n3
var i iscl
dp..model dbodymod = (isl=2.4e-11, nl=1.08, rs=3.3e-3, trs1=2.2e-3, trs2=2.5e-9, cjo=1.2e-9, m=5.6e-1, tt=1.3e-8, xti=3.9)
dp..model dbreakmod = (rs=1.5e-1, trs1=1e-3, trs2=-8.9e-6)
dp..model dplcapmod = (cjo=5e-10,isl=10e-30,nl=10,m=0.52)
m..model mmedmod = (type= n, vto=3.2, kp=4, is=1e-30, tox=1)
m..model mstrongmod = (type=_n, vto=3.85, kp=70, is=1e-30, tox=1)
                                                                                                           LDRAIN
m..model mweakmod = (type= n, vto=2.7, kp=0.06, is=1e-30, tox=1, rs=0.1)
                                                                         DPLCAP
                                                                                                                   DRAIN
                                                                                                            sw vcsp..model s1bmod = (ron=1e-5, roff=0.1, von=-1.5, voff=-4)
                                                                      10
sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-1,voff=.5)
                                                                                                           RLDRAIN
sw vcsp..model s2bmod = (ron=1e-5, roff=0.1, von=.5, voff=-1)
                                                                                 ≹RSLC1
                                                                                  51
c.ca n12 n8 = 10e-10
                                                                       RSLC2 ₹
c.cb n15 n14 = 8e-10
                                                                                    ISCL
c.cin n6 n8 = 1.7e-9
                                                                                             DBREAK
                                                                                   50
dp.dbody n7 n5 = model=dbodymod
                                                                                 ≨rdrain
                                                                ESG
                                                                                                   11
dp.dbreak n5 n11 = model=dbreakmod
                                                                                                           DBODY
                                                                         FVTHRES
dp.dplcap n10 n5 = model=dplcapmod
                                                                           (19
8
                                                                                              MWEAK
                                                 LGATE
                                                               EVTEMP
                                                        RGATE
spe.ebreak n11 n7 n17 n18 = 85.40
                                                                                    MMED
                                                                                               EBREAK
spe.eds n14 n8 n5 n8 = 1
                                                        9
                                                              20
                                                                              MSTRO
spe.egs n13 n8 n6 n8 = 1
                                                 RLGATE
                                                                                                           LSOURCE
spe.esg n6 n10 n6 n8 = 1
                                                                              CIN
                                                                                                                  SOURCE
                                                                                      8
spe.evthres n6 n21 n19 n8 = 1
                                                                                                                   -o 3
spe.evtemp n20 n6 n18 n22 = 1
                                                                                            RSOURCE
                                                                                                           BLSOURCE
i.it.n8.n17 = 1
                                                                                                 RBREAK
                                                                                                         18
1.1gate n1 n9 = 5.96e-9
                                                                                                        ₹RVTEMP
                                                                       oS2B
1.1drain n2 n5 = 1.0e-9
                                                                              CB:
                                                                                                          19
                                                          CA
1.1source n3 n7 = 5.75e-9
                                                                                             л (♠
                                                                                  14
                                                                                                           VBAT
                                                                       <u>6</u>
8
res.rlgate n1 n9 = 59.6
                                                                  EGS
                                                                           EDS
res.rldrain n2 n5 = 10
res.rlsource n3 n7 = 57.5
                                                                                                 RVTHRES
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u
res.rbreak n17 n18 = 1, tc1=9e-4, tc2=-5e-7
res.rdrain n50 n16 = 3.3e-3, tc1=1.9e-2,tc2=4e-5
res.rgate n9 n20 = 3.31
res.rslc1 n5 n51 = 1e-6, tc1=1.5e-3, tc2=3e-5
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 7e-3, tc1=1e-3, tc2=1e-6
res.rvthres n22 n8 = 1, tc1=-5.3e-3,tc2=-1.3e-5
res.rvtemp n18 n19 = 1, tc1=-2.7e-3, tc2=1e-6
sw vcsp.sla n6 n12 n13 n8 = model=s1amod
sw\_vcsp.slb n13 n12 n13 n8 = model=slbmod
sw vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
equations {
i (n51->n50) +=isc1
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/200))** 3))
```

SABER Electrical Model

```
REV 23 March 2002

FDB16AN08AOT

CTHERM1 th 6 0.002

CTHERM2 6 5 0.004

CTHERM3 5 4 0.006

CTHERM4 4 3 0.01

CTHERM5 3 2 0.03

CTHERM6 2 tl 0.08

RTHERM1 th 6 0.075

RTHERM2 6 5 0.09

RTHERM3 5 4 0.1

RTHERM4 4 3 0.15

RTHERM4 4 3 0.15

RTHERM5 3 2 0.2

RTHERM5 2 tl 0.25
```

SABER Thermal Model

```
SABER thermal model FDD16AN08AOT template thermal_model th t1 thermal_c th, t1 {
    ctherm.ctherm1 th 6 = 0.002 ctherm.ctherm2 6 5 = 0.004 ctherm.ctherm3 5 4 = 0.006 ctherm.ctherm4 4 3 = 0.01 ctherm.ctherm5 3 2 = 0.03 ctherm.ctherm6 2 t1 = 0.08

rtherm.rtherm1 th 6 = 0.075 rtherm.rtherm2 6 5 = 0.09 rtherm.rtherm3 5 4 = 0.1 rtherm.rtherm4 4 3 = 0.15 rtherm.rtherm5 3 2 = 0.2 rtherm.rtherm6 2 t1 = 0.25
```


POWERTRENCH is a registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

TO-220-3LD CASE 340AT ISSUE B

DATE 08 AUG 2022

DOCUMENT NUMBER: 98AON13818G		Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-220-3LD		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales