Neural Networks for Classifying Noise in Point Clouds

CS 752 / 852 Neural Networks

Justin Perkins (justin.perkins@unh.edu), Joe Wilder (joe.wilder@unh.edu)

Task Statement

- ☐ Point clouds are used in many domains, but commonly are polluted with inaccurate, noisy points
- □Input: a noisy point cloud of shape (N x 3), where N is the number of points
- □Output: N points classified as noise, or not noise (N x 1)

Data Set

Input Noisy Point Cloud Output Clean Point Cloud

- □ Dataset comprised of nearly 5,000 noisy point clouds
- ☐ Point clouds sampled from ModelNet10, which consists of objects like chairs and tables
- https://modelnet.cs.princeton.edu/

Methods

Multi-Layer Perceptron (MLP) Model

- ☐ Calculate the nearest neighbors
- □Compute logits
- ☐Generate output labels

Pointwise Convolution Model

- □Extract features with convolution
- □ Refine features using convolution
- ☐Generate output labels

MLP With Positionwise Pre Predictions

- ☐ Calculate the nearest neighbors
- □ Predict pre-predictions
- ☐Generate output labels

PointNet Model

- □Align point cloud via TNET layer
- □Extract features using shared MLP
- ☐Generate output labels

Evaluation Results

	Train	BCE	Test
	Accuracy		Accuracy
MLP	0.8038	0.4944	.8038 ± .0000
MLP with PFF Pre- Predictions	0.8038	0.5219	.8038 ± .0163
Pointwise Convolution	0.8669	0.3263	.8607±
PointNet MLP	0.9609	0.1037	.9628±

Code & Data

https://github.com/JoeWilder/DenoiseNet