A mathematical theory of Language

Heinrich Hartmann

April 27, 2014

Contents

L	\mathbf{Pre}	iminaries	1
	1.1	Spaces of Sequences	1
	1.2	Spaces of probability measures	2
	1.3	Probability measures on sequences	3
		1.3.1 Unigram measures	4
		1.3.2 N -gram measures	5
	1.4	Markov measures	5
		1.4.1 The case of $\langle undef \rangle$	6
		1.4.2 0-Markov measures	6

1 Preliminaries

1.1 Spaces of Sequences

Let A be a finite set. In Examples, this will be the set of characters or the set of words. We define the set of Sequences over A as

$$\Sigma A = \{(a_0, \dots, a_l) \mid a_i \in A, l \ge 0\}.$$

We introduce the following notation:

- The empty seuqence is denoted by () $\in \Sigma A$.
- The length function is denoted by

$$length: \Sigma A \longrightarrow \mathbb{N}_0, \quad (a_1, \dots, a_l) \mapsto l.$$

• We have the following canonical decomposition by sequence length

$$\Sigma A = A^0 \cup A^1 \cup A^2 \dots$$

and denote by $i_N:A^N\to\Sigma A$ the inclusion of the length-i sequences into ΣA .

Furthermore for each index $i \geq 0$ we have a projection

$$\pi_i: \Sigma A \longrightarrow A_+, \quad (a_1, \dots, a_l) \mapsto \begin{cases} a_i & l \ge i \\ \langle \text{undef} \rangle & l < i \end{cases}.$$

Here $A_+ := A \cup \{\langle \text{undef} \rangle\}$. This space allows π_i to be defined on whole of ΣA .

Furthermore if $N \geq 0$ and $i \geq 1$ are given, we define the *i*-th N-gram projection to be:

$$\pi_i^N : \Sigma A \longrightarrow A_+^N, \quad (a_1, \dots, a_l) \mapsto \begin{cases} (a_{i+0}, \dots, a_{i+N-1}) & l \ge i+N-1 \\ \langle \text{undef} \rangle & l < i+N-1 \end{cases}.$$

Note that we get back π_i as π_i^1 . Moreover π_i^0 is the canonical projection of ΣA to the one point space $A^0 \subset A^0_+$.

We have the following two filtrations of ΣA

$$A^0 = \Sigma^{\leq 0} A \subset \Sigma^{\leq 1} A \subset \Sigma^{\leq 2} A \subset \dots \subset \Sigma A$$

and

$$\Sigma A = \Sigma_{\geq 0} A \supset \Sigma_{\geq 1} A \supset \Sigma_{\geq 2} A \supset \cdots \supset \bigcap \Sigma_{\geq i} A = \emptyset$$

1.2 Spaces of probability measures

Let X be an at most countable 1 set. We denote by

$$\mathcal{M}(X) = \{\mu: X \longrightarrow \mathbb{R}_{\geq 0} \mid \sum_{x \in X} \mu(x) < \infty\}$$

the space of all finite measures on X. For $A \subset X$ we write $\mu[A] = \sum_{x \in A} \mu(x)$. This definition agrees with the usual definition, of measures in the case of discrete spaces with maximal σ -algebra.

¹The assumption of countability could be dropped, at the expense of a slightly more technical treatment of infinite sums.

The set of probability measures is defined as

$$\mathcal{P}(X) = \{\mu \,|\, \mu[X] = 1\} \subset \mathcal{M}(X).$$

We get a normalization map,

$$\mathcal{M}(X) \setminus \{0\} \longrightarrow \mathcal{P}(X), \quad \mu \mapsto \frac{1}{\mu[X]}\mu$$

which is defined for non-zero measures μ .

Let $f: X \longrightarrow Y$ be a map of sets, then we get a natural map

$$f_*: \mathcal{M}(X) \longrightarrow \mathcal{M}(Y), \quad f_*(\mu)(y) = \mu[f^{-1}(\{y\})] = \sum_{x: f(x) = y} \mu(x)$$

as well as $f_*: \mathcal{P}(X) \to \mathcal{P}(Y)$.

If f has finite fibers, then we also have the following map:

$$f^*: \mathcal{M}(Y) \longrightarrow \mathcal{M}(X), \quad \mu \mapsto \mu \circ f,$$

however the total volume of Y is not preserved, so that no map on \mathcal{P} is induced. In particular case, that $\iota:A\subset X$ is the inclusion of a subspace we write $\mu|_A$ for $\iota^*(\mu)$. If for $P\in\mathcal{P}(X)$ the restriction $P|_A$ is not necessary a probability measure. If $P[A]\neq 0$, then $P|_A$ can be normalized to

$$P[_|A] = \frac{1}{P[A]}P|_A,$$

the conditional probability measure on A.

If $\mu \in \mathcal{M}_f(X)$ and $f: X \to \mathbb{R}$, we define the expectation of f as:

$$E_{\mu}[f] := \sum_{x \in X} f(x)\mu(x).$$

This sum is well defined since μ is finitely supported.

1.3 Probability measures on sequences

In this section we study the relationship between $\mathcal{P}(A)$ and $\mathcal{P}(\Sigma A)$. For $i \geq 1$ and $N \geq 0$ we have the following maps:

$$\pi_{i*}: \mathcal{P}(\Sigma A) \longrightarrow \mathcal{P}(A_+), \quad \pi_{i*}^N: \mathcal{P}(\Sigma A) \longrightarrow \mathcal{P}(A_+^N),$$

as well as

$$length_*: \mathcal{P}(\Sigma A) \longrightarrow \mathcal{P}(\mathbb{N}_0).$$

1.3.1 Unigram measures

Hence, for each probability measure P on ΣA , we have $\pi_{i*}P$ which is a measure on A_+ . Note that

$$\pi_{i*}P(\langle \text{undef} \rangle) = P[\{s \mid length(s) < i\}] = P[length < i].$$

In the case, that $\pi_{i*}P(\langle \text{undef} \rangle) \neq 1$ we can normalize $\pi_{i*}P$ to the *i*-th element distribution

$$D_i P = \frac{1}{P[length \ge i]} \pi_{i*} P = \pi_{i*} P[_|length \ge i] \in \mathcal{P}(A)$$

on A.

To define a total distribution of all elements, we want to take the following infinite sum of i-th element distributions

$$\sum_{i>1} \pi_{i*} P$$

However, this sum is not necessarily finite for a general measure $P \in \mathcal{P}(A)$, therefore we make the additional assumption that P is finitely supported and define

$$M^1: \mathcal{M}_f(\Sigma A) \longrightarrow \mathcal{M}(A), \quad \mu \mapsto \sum_{i>1} \pi_{i*}\mu.$$

Note that the measure is only defined on $A \subset A_+$, since we have

$$\sum_{i>1} \pi_{i*}(\langle \text{undef} \rangle) = \sum_{i>1} P[length < i] = \infty.$$

We calculate the total volume to be

$$M^1\mu(A) = \sum_{i\geq 1} \mu[length \geq i] = E_{\mu}[length].$$

Hence, for $P \in \mathcal{P}_f(\Sigma)$ with $P[length = 0] \neq 1$, we can normalize the measure M^1P , and define unigram distribution on A as

$$D^1P := \frac{1}{E_P[length]} \sum_{i \ge 1} \pi_{i*}P \in \mathcal{P}(A).$$

1.3.2 N-gram measures

More generally, for integers $i \geq 1$ and $N \geq 0$ we get a measure $\pi_{i}^{N}(P)$ on A_{+}^{N} , for which

$$\pi_{i*}^{N} P(\langle \text{undef} \rangle) = P[length < i + N - 1].$$

If this number is not equal to one, we define the i-th N-gram distribution to be

$$D_i^N P = \frac{1}{P[length \ge i + N - 1]} \pi_{i*}^N P \in \mathcal{P}(A^N)$$

For the global N-gram distributions we take

$$M^N: \mathcal{M}_f(\Sigma A) \longrightarrow \mathcal{M}(A^N), \quad \mu \mapsto \sum_{i \geq 1} \pi_{i}^N \mu.$$

Again, this measure is only defined on $A^N \subset A_+^N$. We calculate the total volume as

$$M^{N}(\mu)(A^{N}) = \sum_{i \ge 1} \mu[length \ge i + (N-1)]$$
 (1)

$$= \sum_{j=N} (j - (N-1))\mu[length = j]$$
 (2)

$$= E_{\mu}[\max\{0, length - (N-1)\}] \tag{3}$$

Note that this number depends only on the length distribution $length_*(\mu) \in \mathcal{M}_f(\mathbb{N}_0)$ and is non-zero if and only if $\mu[length \geq N] \neq 0$.

Hence, for $P \in \mathcal{P}_f(\Sigma A)$, with $P[length \geq N] > 0$ we can define the total N-gram distribution as

$$D^{N}P = \frac{1}{E[\max\{0, length - (N-1)\}]} \sum_{i \ge 1} \pi_{i}^{N} P \in \mathcal{P}(A^{N}).$$

Note, that the special case of N=1 reduces to our earlier definition.

1.4 Markov measures

A probability measure P on ΣA is called K-Markov if for all $l \geq K$, $b_0, \ldots, b_l \in A$ and n > l the condition

$$P[\pi_n = b_0 \mid \pi_{n-1} = b_1, \dots, \pi_{n-K} = b_K, \dots, \pi_{n-l} = b_l]$$

= $P[\pi_n = b_0 \mid \pi_{n-1} = b_1, \dots, \pi_{n-K} = b_K]$

holds whenever both sides are well-defined, i.e. $P[\pi_{n-1} = b_1, \dots, \pi_{n-l} = b_l]$ is non-zero.

1.4.1 The case of $\langle undef \rangle$

The above definition, does not specify a condition in the case one ore more of the b_i are $\langle \text{undef} \rangle$. For $b_0 = \langle \text{undef} \rangle$ is unproblematic. In the case that $b_0 \in A$ and $b_j = \langle \text{undef} \rangle$ for one j > 0, the condition is empty since $\pi_{i-j} = \langle \text{undef} \rangle$ implies $\pi_i = \langle \text{undef} \rangle$. For the remaining case of $b_0 = \langle \text{undef} \rangle$ and $b_j = \langle \text{undef} \rangle$ for one or more j > 0, the naive-condition does not extend. To see this, we take K = 0 and l = 1 with $b_1 = \langle \text{undef} \rangle$, so that the extended condition reads

$$P[\pi_n = \langle \text{undef} \rangle \mid \pi_{n-1} = \langle \text{undef} \rangle] = P[\pi_n = \langle \text{undef} \rangle]. \tag{4}$$

This implies $P[\pi_{n-1} = \langle \text{undef} \rangle] = 1$, which does not always hold.

1.4.2 0-Markov measures

In the special case of K=0 we find

$$P[\pi_n = b_0] = P[\pi_n = b_0 \,|\, \pi_{n-1} = b_1]$$

$$\Leftrightarrow P[\pi_n = b_0, \pi_{n-1} = b_1] = P[\pi_n = b_0] P[\pi_{n-1} = b_1]$$

which is the definition of P-independent between π_n and π_{n-1} random variables, except that the case $\langle \text{undef} \rangle$ is excluded. We can account for that by using conditional probabilities. Assume that $P[length \geq n] > 0$ then, π_n, π_{n-1} are $P[_|length \geq n]$ independent random variables on $\Sigma_{\geq n}A$.

Similarly, we see that the full collection $\{\pi_i\}_{i\leq n}$ is $P[_|length\geq n]$ -independent on $\Sigma_{\geq n}A$. Indeed,

$$P[\pi_0 = a_0, \dots, \pi_n = a_n | length \ge n] = \frac{1}{P[length \ge n]} P[\pi_0 = a_0, \dots, \pi_n = a_n]$$

and

$$P[\pi_0 = a_0, \dots, \pi_n = a_n] = P[\pi_0 = a_0, \dots, \pi_n = a_n]$$

$$= P[\pi_n = a_n | \pi_{n-1} = a_{n-1}, \dots, \pi_0 = a_0]$$

$$P[\pi_{n-1} = a_{n-1} | \pi_{n-2} = a_{n-1}, \dots, \pi_0 = a_0]$$

$$\dots$$

$$P[\pi_0 = a_0]$$