第八	章:空间解析几何与向量代数		
1, 5	平面 π_1 : $x+2y-z+3=0$, π_2 : $x+2y-z=0$ 的位置关系是:	()

A. 双曲柱面

C. 平面 z=8 上的双曲线

A. 垂直	B. 平行但不重合	C. 重合	D. 不平行也不垂直			
2. 在空间直角	坐标系中,方程 $x^2 + y$,2 = 2 的图形是()			
A. 圆		B. 球面				
C. 圆柱面		D. 旋转抛物面				
3. 已知点 $A(7,1,3)$ 及点 $B(5,-1,4)$,则与向量 \overrightarrow{AB} 同向的单位向量是()						
A. $\left\{ \frac{2}{3}, \frac{2}{3}, \frac{-1}{3} \right\}$		B. $\left\{\frac{-2}{3}, \frac{-2}{3}, \frac{1}{3}\right\}$	>			
C. $\left\{ \frac{-2}{3}, \frac{2}{3}, \frac{-1}{3} \right\}$		D. $\left\{\frac{2}{3}, \frac{-2}{3}, \frac{1}{3}\right\}$				
4. 己知 \vec{a} =(1,	1, -2), $\vec{b} = (1, 2, 3)$	$(\vec{a} \times \vec{b} = (\vec{a} \times \vec{b})$)			
A. $(-7, -1, 3)$		B. $(7, -1, -3)$				
C. $(-7, 1, 3)$		D. $(7, -5, 1)$				
5. 方程 $x^2 + y^2$ -	$+z^2=9$ 表示的二次曲	面是()				
A. 球面	B. 抛物面	C. 锥面	D. 柱面			
6. 若向量 $\vec{a} = (1$	$(1,-1,k)$ 和向量 $\vec{b} = (2,4,0)$,2)垂直,则 k = ().			
A. 1	В. —1	C. 2	D2			
7. 两平行平面 π	$x_1 : 19x - 4y + 8z + 21 = 0$	$5 = \pi_2 : 19x - 4y + 8$	z+42=0的距离为()			
A. 1	B. $\frac{1}{2}$	C. 2	D. 21			
8. 方程 x+y-z	云=0表示的图形为().				
A. 锥面	B. 平面	C. 旋转抛物面	D. 椭球面			
9. 方程组 $\begin{cases} x^2 - 4 \\ z = 8 \end{cases}$	y ² = 8z 在空间表示()				

B. (0, 0, 0)

D. 椭圆

10. 设向量 $\bar{a} = (1,1,2), \bar{b}$	$\vec{b} = (2,0,-1)$, 则向	可量 \bar{a} 与 \bar{b} 的夹角为	().				
A. $\frac{\pi}{4}$ B. $\frac{\pi}{2}$		C. 0	D. $\frac{\pi}{6}$				
11. 设 \bar{a} 与 \bar{b} 均为非零向量,且 \bar{a} \perp \bar{b} ,则必有().							
A. $ \vec{a} + \vec{b} = \vec{a} + \vec{b} $		B. $ \vec{a} - \vec{b} = \vec{a} - \vec{b} $	5				
C. $\mid \vec{a} + \vec{b} \mid = \mid \vec{a} - \vec{b} \mid$		$\mathbf{D.} \vec{a} + \vec{b} = \vec{a} - \vec{b}$					
12. 若向量 $\bar{a} = (x_1, y_1, z_1), \bar{b} = (x_2, y_2, z_2), 则 \bar{a} \perp \bar{b}$ 的充要条件为().							
A. $\frac{x_1}{x_2} = \frac{y_1}{y_2} = \frac{z_1}{z_2}$		B. $x_1x_2 + y_1y_2 + z_1z_2$	=0				
C. $x_1 y_1 = x_2 y_2$		D. $x_1 z_1 = x_2 z_2$					
13. 设有直线 $\frac{x}{4} = \frac{y}{-3} =$	$=\frac{z}{0}$,则该直线业	公定 ().					
A. 过原点且垂直于z轴	·	B. 过原点且平行于z轴 D. 不过原点,但平行于z轴					
14. 平面 π_1 :2 x +3 y +4 z +4=0, π_2 :2 x +3 y +4 z -4=0的位置关系为().							
A. 相交且垂直 C. 平行但不重合		B. 相交但不重合 D. 重合					
15. 若平面 Ax+By+C	Cz+D=0平行于						
A. A=0 B.		C. C=0	D. D=0				
16. 下列曲面中,母线平	-						
A. $z = x^2$ B. $z = y^2$ C. $z = x^2 + y^2$ D. $x + y + z = 1$ 17. 在空间直角坐标系中,点 $(-1, 2, 4)$ 到 x 轴的距离为 B. 2							
C. $\sqrt{20}$		D. $\sqrt{21}$					
18、设空间三点的坐标分别为 M(1,1,1)、A(2,2,1)、B(2,1,2),∠AMB=()							
A. $\frac{\pi}{3}$	B. $\frac{\pi}{4}$	C. $\frac{\pi}{2}$	D. <i>π</i>				
19、方程 $x^2 + y^2 - z^2 = 0$ 表示的二次曲面是 ()							
A. 球面	B. 旋转抛物面	i C. 圆锥面	D. 圆柱面				

第九章: 多元函数微分法及其应用

20. 己知函数
$$h(x, y) = x - y + f(x + y)$$
,且 $h(0,y) = y^2$,则 $f(x + y)$ 为 (

- A. y(y + 1)
- B. y(y-1) C. (x+y)(x+y-1) D. (x+y)(x+y+1)
- 21. 下列表达式是某函数 u(x,y)的全微分的为(
 - A. $x^2ydx + xy^2dy$
- B. xdx + xydy
- C. ydx xdy D. ydx + xdy

22. 设函数
$$z = f(x, y)$$
 在 (x_0, y_0) 某领域内有定义,则 $\frac{\partial z}{\partial x}|_{(x_0, y_0)} =$

A. $\lim_{h\to 0} \frac{f(x+h,y) - f(x,y)}{h}$

- B. $\lim_{h\to 0} \frac{f(x+h,y+h)-f(x,y)}{h}$
- C. $\lim_{h \to 0} \frac{f(x_0 + h, y_0 + h) f(x_0, y_0)}{h}$
- D. $\lim_{h\to 0} \frac{f(x_0+h,y_0)-f(x_0,y_0)}{h}$

23.已知函数
$$f(x-y,x+y) = x^2 - y^2, z = f(x,y), 则 \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = ($$
)

A.2x-2y

B.2x+2y

C.x+y

D.x-y

24.设函数
$$f(x, y) = x^3 y$$
, 则点 (0, 0) 是 $f(x, y)$ 的 ()

A. 间断点

B. 驻点

C. 极小值点

D. 极大值点

25、如果在点
$$(x_0, y_0)$$
的某邻域内 $\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x, y)$ 存在,则 $f(x, y)$ 在点 (x_0, y_0) ()

- A. 连续
- B. 可微
- C. 间断
- D. 不一定连续

26、如果
$$f(x,y)$$
有二阶连续偏导数,则 $\frac{\partial^2 f(x,y)}{\partial x \partial y}$ =

- B. $\frac{\partial^2 f(x,y)}{\partial x^2}$ C. $\frac{\partial^2 f(x,y)}{\partial y^2}$ D. $\frac{\partial^2 f(x,y)}{\partial y \partial x}$

$$27$$
、 $z = \ln \sqrt{x^2 - y^2}$ 的定义域为

- A. $x^2 y^2 \ge 1$ B. $x^2 y^2 \ge 0$ C. $x^2 y^2 > 1$ D. $x^2 y^2 > 0$

28. 设函数
$$f(x, y) = \sqrt[3]{x - y} - xy$$
,则 $f(y,1) = ($)

A. $\sqrt[3]{1-y^2}$

B. $\sqrt[3]{x-y} - xy$

C. $\sqrt[3]{y-x}-xy$

D. $\sqrt[3]{v-1} - v$

29. 设函数
$$f(x,y)$$
 在点 (x_0,y_0) 处偏导数存在,并且取得极大值,则有()

```
A. f_x(x_0, y_0) > 0, f_y(x_0, y_0) > 0 B. f_x(x_0, y_0) < 0, f_y(x_0, y_0) < 0
```

B.
$$f_{x}(x_{0}, y_{0}) < 0$$
, $f_{y}(x_{0}, y_{0}) < 0$

C.
$$f_x(x_0, y_0) > 0$$
, $f_y(x_0, y_0) < 0$ D. $f_x(x_0, y_0) = 0$, $f_y(x_0, y_0) = 0$

D.
$$f_x(x_0, y_0) = 0$$
, $f_y(x_0, y_0) = 0$

30. 极限
$$\lim_{\substack{x\to 0\\y\to 0}} \frac{\sin 3(x^2+y^2)}{x^2+y^2}$$
 ()

B. 等于
$$\frac{1}{3}$$

31. 设函数
$$z = f(x, y)$$
 由方程 $x^2 + y^2 - z^2 = 0$ 所确定,则 $\frac{\partial z}{\partial x} = ($).

A.
$$-\frac{x}{z}$$
 B. $\frac{x}{z}$ C. $-\frac{z}{x}$

B.
$$\frac{x}{7}$$

C.
$$-\frac{z}{x}$$

D.
$$\frac{z}{x}$$

32. 设
$$\frac{\partial f}{\partial x}\Big|_{\substack{x=x_0\\y=y_0}}$$
, $\frac{\partial f}{\partial y}\Big|_{\substack{x=x_0\\y=y_0}}$ 存在.则 $f(x,y)$ 在 (x_0,y_0) 为()

33. 曲面
$$x^2 + 2y^2 + 3z^2 = 12$$
 在 $(1, -2, 1)$ 处的切平面是 $($

A.
$$2x + 8y - 6z = 24$$

B.
$$2x - 8y + 6z = 0$$

C.
$$x+4y-3z=12$$

D.
$$x-4y+3z=12$$

34. 如果 (x_0, y_0) 为f(x, y)的极值点,且f(x, y)在 (x_0, y_0) 处的两个一阶偏导数存

在,则点 (x_0, y_0) 必为f(x, y)的(

D. 最小值点

35. 设
$$z = x^2 + y$$
,则 $\frac{\partial z}{\partial y} = ($).

C.
$$2x+1$$

D. x^2

36. 函数
$$z = \frac{1}{\ln(x+y)}$$
 的定义域是().

A.
$$x + y \neq 0$$

B.
$$x + y > 0$$

C.
$$x + y > 0 \pm x + y \neq 1$$

D.
$$x + y \ge 1$$

37. 设
$$z = 2x^2 + 3xy - y^2$$
, 则 $\frac{\partial^2 z}{\partial x \partial y} = ($).
A. 6 B. 3 C. -2 D. 2
38. 函数 $z = x^2 + y^2 - x^2y^2$ 在点 (1.1)处的全微分 $dz|_{(1.1)} = ($).
A. 0 B. $dx + dy$ C. $2dx + 2dy$ D. $2dx - 2dy$
39. 函数 $z = \sin(x^2 + y)$ 在点 (0,0) 处 ().
A. 无定义 B. 无极限 C. 有极限但不连续 D. 连续 第十章: 重积分 40. $\iint_{\mathbb{R}} z^2 dv$ 在桂面坐标系下化为三次积分为(), 其中 Ω 为 $x^2 + y^2 + z^2 \le R^2$ 的 上半球体.
A. $\int_0^{2\pi} d\theta \int_0^R r dr \int_0^R z^2 dz$ B. $\int_0^{2\pi} d\theta \int_0^R r dr \int_0^R z^2 dz$ C. $\int_0^{\pi} d\theta \int_0^R r dr \int_0^{\sqrt{R^2-r^2}} z^2 dz$ D. $\int_0^{2\pi} d\theta \int_0^R r dr \int_0^{\sqrt{R^2-r^2}} z^2 dz$ 41. 设 D 是由 $1 \le x^2 + y^2 \le 4$ 所确定的 平面区域,则二重积分 $\int_0^D dx dy = ($) A. 3π B. 4π C. 15π D. 8π 42. 交换积分顺序,则 $\int_0^1 dy \int_0^{y^2} f(x, y) dx = ($)
A. $\int_0^1 dx \int_0^{x^2} f(x, y) dy$ B. $\int_0^1 dx \int_0^{x^2} f(x, y) dy$ C. $\int_0^1 dx \int_0^{x^2} f(x, y) dx$ B. $\int_0^1 dx \int_0^{x^2} f(x, y) dx$ 43. 设 $f(x, y)$ 连续且 $a > 0$, $\int_0^\pi dx \int_0^x f(x, y) dx$ B. $\int_0^a dy \int_0^a f(x, y) dx$ 44. D 由 $x^2 + y^2 = 4$ 围成,则 $\int_0^1 e^{x^2 + y^2} dx dy = ($)
A. $\frac{\pi}{2}(e^4 - 1)$ B. $\pi(e^4 - 1)$ C. $2\pi(e^4 - 1)$ D. e^4 45. 设 D 是 f 形域: $-1 \le x \le 1, 0 \le y \le 1$ 则 $\int_0^1 \sqrt{y} d\sigma = ($) .

A. 1	B. $\frac{1}{2}$	C. $\frac{2}{3}$	D. $\frac{4}{3}$
46. 设D是由 <i>y=k</i> .	x(k>0), y=0	所围成的三角形区域,	$\coprod \iiint xy^2 dx dy = \frac{1}{15},$
则 $k = ($).			15
A. 1	B. $\sqrt[3]{\frac{4}{5}}$	C. $\sqrt[3]{\frac{1}{15}}$	D. $\sqrt[3]{\frac{2}{5}}$
47. 设 D 是 第	第一象限内的	一个有界闭区域	,而且 0< y<1 记
	$I_1 = \iint\limits_D yxd\sigma, I_2 = \iint\limits_D$	$y^2xd\sigma, I_3 = \iint\limits_D y^{\frac{1}{2}}xd\sigma,$	
则 I_1 , I_2 , I_3 的大	小顺序是().		
$A. \ I_1 \leq I_2 \leq I_3$	$B. \ I_2 \leq I_1 \leq I_3$	$C. I_3 \leq I_1 \leq I_2$	$\mathbb{D}.\ I_3 \le I_2 \le I_1$
$48. \iint_{x^2+y^2 \le a^2} (x^2 + y^2)$	$dxdy = 8\pi(a \ge 0),$	則 a = ().	
A. $\sqrt{2}$	B. $2\sqrt{2}$	C. 1	D. 2
49.顶点坐标为(0,	0), (0, 1), (1, 1)	的三角形面积可以表示	为()
$A. \int_0^x dy \int_0^y dx$		$B. \int_0^1 dx \int_1^x dy$	
$C. \int_0^1 dx \int_x^1 dy$		$D. \int_0^1 dy \int_y^0 dx$	
第十一章: 曲线	积分与曲面积分		
50. 设积分曲线 L:	$x^2 + y^2 = 1$,则对弧长	的曲线积分 $\iint_L (x+y)ds =$	
A. 0 C. π		B. 1 D. 2π	
51. 设 <i>L</i> 是圆周.	$x^2 + y^2 = 2$,则对弧	瓜长的曲线积分 $\oint_L (x^2 +$	$y^2)ds = ()$
	B. 4π 中,与路径无关的	C. 8√2π 曲线积分为 ()	D. 8π
A. $\int_{L} (x-2y) dx + (2x-2y) dx$		B. $\int_{L} (x+2y) dx + (y+2y) $	-2x)dy
$C. \int_{L} (x+2y) dx + (x+2y) $		D. $\int_{L} (2x + y) dx + (2x + y) dx$	

53. L: $x^2 + y^2 = 1$ 的一周(逆时针方向), $\oint_L (2x - y)dx + (2y + x)dy = ($)

A. π B. $-\pi$ C. 2π D. -2π 54、若 Σ 为球面 $x^2+y^2+z^2=R^2$ 的外侧,则 $\iint_\Sigma x^2y^2zdxdy$ 等于 ()

A. $\iint_{D_{--}} x^2 y^2 \sqrt{R^2 - x^2 - y^2} dx dy$ B. $2 \iint_{D_{--}} x^2 y^2 \sqrt{R^2 - x^2 - y^2} dx dy$

C. 0

 $D. \iint_{D} x^2 (R^2 - x^2 - z^2) z dx dz$

第十二章: 无穷级数

55. 已知幂级数 $\sum_{n=1}^{\infty} \frac{2n-1}{2^n} x^n$,则其收敛半径 R 为().

A. 2

B. 1

 $D \sqrt{2}$

56. 设 $0 \le u_n \le v_n (n=1, 2, \cdots)$,且无穷级数 $\sum_{i=1}^{\infty} v_n$ 收敛,则无穷级数 $\sum_{i=1}^{\infty} u_n$ (

A. 条件收敛

B. 绝对收敛

C. 发散

D. 收敛性不确定

57. 下列级数中绝对收敛的是().

A. $\sum_{n=1}^{\infty} (-1)^n \frac{n}{n+1}$ B. $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$ C. $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$ D. $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^2}$

58. 幂级数 $\sum_{n=1}^{\infty} \frac{1}{n} x^n$ 收敛域为 ()

A. (-1, 1)

B. [-1, 1] C. [-1, 1] D. [-1, 1]

59. 设 $\sum_{i=1}^{\infty} u_n$ 与 $\sum_{i=1}^{\infty} v_n$ 都是正项级数,且 $u_n \le v_n (n=1,2,\cdots)$,则下列命题正确的是

A. 若 $\sum_{n=1}^{\infty} u_n$ 收敛,则 $\sum_{n=1}^{\infty} v_n$ 收敛 B. 若 $\sum_{n=1}^{\infty} u_n$ 收敛,则 $\sum_{n=1}^{\infty} v_n$ 发散

C. 若 $\sum_{n=0}^{\infty} v_n$ 发散,则 $\sum_{n=0}^{\infty} u_n$ 发散 D. 若 $\sum_{n=0}^{\infty} v_n$ 收敛,则 $\sum_{n=0}^{\infty} u_n$ 收敛

60. 设无穷级数 $\sum_{n=0}^{\infty} a_n$ 收敛, 无穷级数 $\sum_{n=0}^{\infty} b_n$ 发散, 则无穷级数 $\sum_{n=0}^{\infty} (a_n + b_n)$ (

A. 条件收敛

B. 绝对收敛

C. 发散

- D. 可能收敛也可能发散
- 61. 下列级数中为条件收敛的是() .
- A. $\sum_{n=1}^{\infty} (-1)^{n-1} (\frac{n}{2n+1})$

B. $\sum_{n=1}^{\infty} (-1)^{n-1} (\frac{1}{n\sqrt{n}})$

C. $\sum_{n=1}^{\infty} (-1)^n \left(\frac{1}{\sqrt{n}}\right)$

- D. $\sum_{1}^{\infty} (-1)^{n-1} \sin \frac{1}{n^2}$
- 62. 级数 $\sum_{n^{p+1}}^{\infty}$ 收敛,则有().
 - A. $p \leq 0$
- B. p > 0
- C. $p \le 1$ D. p < 1

- 63. 下列命题正确的是().
- A. 若 $\sum_{n=1}^{\infty} u_n$ 收敛,则必有 $\lim_{n\to\infty} u_n = 0$ B. 若 $\lim_{n\to\infty} u_n = 0$,则 $\sum_{n=1}^{\infty} u_n$ 必收敛
- C. 若 $\sum_{n\to\infty}^{\infty} u_n$ 发散,则必有 $\lim_{n\to\infty} u_n \neq 0$ D. 若 $\lim_{n\to\infty} u_n \neq 0$,则 $\sum_{n\to\infty}^{\infty} u_n$ 未必发散
- 64. 已知函数 f(x) 是周期为 2π 的周期函数,它在 $[-\pi,\pi)$ 上的表达式为

 $f(x) = \begin{cases} 0, -\pi \le x < 0 \\ 1, 0 \le x < \pi \end{cases}$, S(x) 是 f(x) 傅里叶级数的和函数,则 $S(2\pi) = x < 0$

A. 0

B. $\frac{1}{2}$

C. 1

- 65. 已知函数 f(x) 是周期为 2π 的周期函数,它在 $[-\pi,\pi)$ 上的表达式为

 $f(x) = \begin{cases} 0, -\pi \le x < 0 \\ 1, 0 \le x < \pi \end{cases}, \quad S(x) \neq f(x)$ 傅里叶级数的和函数,则 $S(\frac{\pi}{2}) = \frac{\pi}{2}$

A. 0

B. $\frac{1}{2}$

C. 1

D. 2

66. 无穷级数 $\sum_{n=0}^{\infty} \frac{1}{n!}$ 的和为 ()

- A. e+1 B. e-1 C. e-2 D. e+2

- 17. 函数 $f(x,y) = 4x 4y x^2 y^2$ 的极值是______.
- 18. 若函数 $z = 2x^2 + 2y^2 + 3xy + ax + by + c$ 在点 (-2,3) 处取得极小值-3,则常数 a,b,c 之积 $abc = ______$.

- 20. 已知函数 $z = e^x \cos y$,则 $\frac{\partial^2 z}{\partial x \partial y} =$ _____.
- 21. 函数 $z=\sqrt{4-x^2-y^2} \ln(x^2+y^2-1)$ 的定义域为_____.

第十章: 重积分

- 22. 交换积分次序, $\int_1^e dx \int_0^{\ln x} f(x,y) dy = \underline{\qquad}$.
- 23. 设 D: $4 \le x^2 + y^2 \le 9$ 则 $\iint_D dxdy =$ ______.
- 24. 已知D是长方形区域: $a \le x \le b, 0 \le y \le 1$,则 $\iint_D dxdy =$ ______.
- 25. $\int_0^2 dx \int_x^2 e^{-y^2} dy$ 的值等于______.
- 26. $\iiint_{x^2+y^2+z^2 \le R^2} dv = \underline{\hspace{1cm}}.$
- 27. f(x,y)为连续函数,则二次积分 $\int_0^1 dy \int_{\sqrt{y}}^1 f(x,y) dx$ 交换积分次序后为_____.
- 28. 二次积分 $I = \int_{-1}^{1} dy \int_{0}^{\sqrt{1-y^2}} f(x, y) dx$,交换积分次序后 I =_____.

第十一章: 曲线积分与曲面积分

- 29. 设∑为球面 $x^2 + y^2 + z^2 = a^2$, 则对面积的曲面积分 $\oint_{\Sigma} dS =$ ______.
- 30. 设 L 为一条按段光滑的闭曲线,P、Q 在 L 所围成的单连通闭区域内连续,且具有一阶连续偏导数,则积分 $\int_{\Gamma} P dx + Q dy$ 与路径无关的条件是______.

第十二章: 无穷级数

- 31. 无穷级数 $\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{n(n+1)} + \dots$ 的和为______.
- 32. $\sum_{n=1}^{\infty} \frac{1}{3^n} (x-1)^n$ 的收敛区间为______.

33. 若级数
$$\sum_{n=1}^{\infty} u_n$$
 绝对收敛,则 $\sum_{n=1}^{\infty} |u_n|$ 必定______,若级数 $\sum_{n=1}^{\infty} u_n$ 条件收敛,

则
$$\sum_{n=1}^{\infty} |u_n|$$
 必定______.

34. 幂级数
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$$
 的收敛区间为______.

35. 幂级数
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{(x-1)^n}{n}$$
 的收敛域_______.

36. 已知无穷级数
$$\sum_{n=1}^{\infty} u_n = 1 + \frac{2}{3} + \frac{3}{3^2} + \frac{4}{3^3} + \cdots$$
,则通项 $u_n = \underline{\qquad}$

37. 幂级数
$$\sum_{n=0}^{\infty} \frac{x^{n+1}}{3^n}$$
 的收敛半径 $R =$ _____.

计算题

第八章:空间解析几何与向量代数

- 1. 设平面 π 过点(1,0,-1), 且与平面 $\pi_1:4x-y+2x-8=0$ 平行, 求平面 π 的方程.
- 2. 求过点 (1, 0, 2) 且平行直线 $\frac{x-1}{1} = \frac{y+2}{-2} = \frac{z}{3}$ 的直线方程。
- 3. 求过点M(1,2,-1), 且平行于向量 $\vec{s} = (2,-1,1)$ 的直线方程.
- 4. 求过点 M(1,2,3) 且与直线 $\frac{x-1}{2} = \frac{y-2}{-1} = \frac{z+3}{-2}$ 垂直的平面方程。
- 5. 已知平面过原点O,且垂直于两平面

$$\Pi_1: x+2y+3z-2=0$$

$$\Pi_2$$
: $6x - y - 5z + 23 = 0$,

求此平面方程.

- 6. 直线 L 过点 A(-2,1,3) 与 B(0,-1,2) , 求点 C(10,5,10) 到直线 L 的距离.
- 7. 己知两直线的方程为:

$$L_1: \frac{x-1}{1} = \frac{y-2}{0} = \frac{z-3}{-1}$$

$$L_2: \frac{x+2}{2} = \frac{y-1}{1} = \frac{z}{1}$$
,

求过 L, 且平行于 L, 的平面方程.

8. 求曲线
$$\begin{cases} x^2 - z = 0 \\ 3x + 2y + 1 = 0 \end{cases}$$
 上一点 (1,-2,1) 处的切线与直线
$$\begin{cases} 9x - 7y - 21 = 0 \\ x - y - z = 0 \end{cases}$$
 间的夹

角余弦.

9. 求直线
$$l_1: \frac{x-9}{4} = \frac{y+2}{-3} = \frac{z}{1}$$
 与直线 $l_2: \frac{x}{-2} = \frac{y+7}{9} = \frac{z-7}{2}$ 的公垂线方程。

10. 将直线
$$\begin{cases} 3x + 2y + z = 0 \\ x + 2y + 3z - 4 = 0 \end{cases}$$
 化为参数式和对称式方程.

11. 求直线
$$\frac{x-1}{-2} = \frac{y}{1} = \frac{z+9}{-1}$$
 与直线 $\frac{x}{1} = \frac{y-4}{1} = \frac{z-2}{2}$ 的夹角.

第九章: 多元函数微分法及其应用

12. 已知
$$z = f(\sin x \cos y, e^{x+y})$$
,求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$.

13. 计算
$$z = x^y$$
 的全微分 $dz =$

14. 设函数
$$z = e^{x^2 \sin y}$$
, 求 $\frac{\partial^2 z}{\partial x \partial y}$.

15. 已知方程
$$x^2 + y^2 + z^2 - e^z = 0$$
 确定了函数 $z = z(x, y)$,求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$

17. 求
$$z = x^3y - 3x^2y^3$$
 的全微分.

19. 求函数
$$z = x \sin(x^2 + y^2)$$
的全微分.

20. 设函数
$$z = e^{x^2 \sin y}$$
,求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$, $\frac{\partial^2 z}{\partial x \partial y}$.

21. 求椭球面
$$x^2 + 2y^2 + z^2 = 1$$
上平行于平面 $x - y + 2z = 0$ 的切平面方程.

22. 设
$$z = z(x, y)$$
 是由 $x^2 - 6xy + 10y^2 - 2yz - z^2 + 18 = 0$ 确定的函数,求 $z = z(x, y)$ 的极值点和极值。

23. 设
$$z = x \ln(xy)$$
, 求 $\frac{\partial^2 z}{\partial x^2}$, $\frac{\partial^2 z}{\partial x \partial y}$.

24. 设
$$z = e^{\ln \sqrt{x^2 + y^2}} \arctan \frac{x}{y}$$
, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$.

25. 设方程组
$$\begin{cases} x+y+z+z^2=0\\ x+y^2+z+z^3=0 \end{cases}$$
, 求 $\frac{dy}{dx}$, $\frac{dz}{dx}$.

26. 求二元函数
$$f(x, y) = x^2(2 + y^2) + y \ln y$$
 的极值..

27.设方程
$$f(x+y+z, x, x+y)=0$$
 确定函数 $z=z(x,y)$,其中 f 为可微函数,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$.

28.求曲面
$$z = 2y + \ln \frac{x}{y}$$
 在点(1, 1, 2)处的切平面方程.

29.求函数 $z = x^2 - y^2$ 在点(2, 3)处,沿从点 A(2, 3)到点 B(3, $3+\sqrt{3}$)的方向 l 的方向导数.

- 30. 设f是可微的二元函数,并且 $z = f(x y, x^2 + y^2)$,求全微分 dz.
- 31. 已知方程 $e^{xy} x + 2y z^2 z = 5$ 确定函数 z = z(x, y),求 $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$.
- 32. 设函数 $f(x,y) = \arctan \frac{y}{x}$, 求梯度 **grad** f(x,y).

33. 设函数
$$z=\ln(\sqrt{x}+\sqrt{y})$$
, 证明 $2x\frac{\partial z}{\partial x}+2y\frac{\partial z}{\partial y}=1$.

34.求函数 $f(x, y)=3+14y+32x-8xy-2y^2-10x^2$ 的极值.

35. 求函数 $f(x, y) = 6xy - 5x^2 - 4y^2 + 16x - 14y - 15$ 的极值.

第十章: 重积分

36. 求由平面 z = 0, x + y = 1 及曲面 z = xy 所围立体的体积.

37. 设 D =
$$\{(x, y) | x^2 + y^2 \le 1, 0 \le y \le x \}$$
,利用极坐标计算 $\iint_D \arctan \frac{y}{x} dx dy$.

38. 计算二重积分
$$\iint_{\mathbb{D}} e^{-x^2-y^2} dxdy$$
,其中积分区域 D: $x^2 + y^2 \le 2$

39. 计算三重积分
$$I=\iint_{\Omega}(x^2+y^2)dxdydz$$
,其中 Ω 是由曲面 $x^2+y^2=1,z=0,z=1$ 所围成的闭区域.

40.
$$\iint_{D} \sin \sqrt{x^2 + y^2} dxdy$$
 $D: \pi^2 \le x^2 + y^2 \le 4\pi^2$ $\Re \mathbb{E}$

41. 计算积分
$$\iint_{\Sigma} e^x dxdy$$
, 其中 D 由 $x = 0$, $y = x$ 和 $y = 2$ 所围成。

42. 计算二重积分
$$\iint_D (x-y)dxdy$$
, 其中 $D = \{(x,y) | (x-1)^2 + (y-1)^2 \le 2, y \ge x\}$.

- 43. 计算三重积分 $I = \iint_{\Omega} z dv$,其中 Ω 为 $z^2 = x^2 + y^2$ 与 z = 1围成的立体.
- 44. 求球体 $x^2 + y^2 + z^2 \le R^2$ 与 $x^2 + y^2 + z^2 \le 2Rz$ 的公共部分的体积.
- 45. 设D是由x=1,y=x及y=2所围成的闭区域,求 $\iint_D xyd\sigma$.
- 46. 利用极坐标系计算积分 $\iint\limits_{D}e^{-(x^2+y^2)}d\sigma$, 其中 $D: x^2+y^2 \leq 1$.
- 47. 计算三重积分 $I = \iint_{\Omega} (x^2 + y^2) dv$,其中积分区域 Ω 为平面曲线 $\begin{cases} y^2 = 2z \\ x = 0 \end{cases}$ 绕 z 轴 旋转一周形成的曲面与平面 z = 8 所围成.
 - 48. 求曲面 $z = x^2 y^2$ 被柱面 $x^2 + y^2 = 1$ 所围部分的曲面面积.
 - 49. 求解 $\iint_{\Omega} (x^2 + y^2) dv$, 其中 Ω 是由曲面 $4z^2 = 25(x^2 + y^2)$ 及平面 z = 5 所围成的闭区域。
 - 50. 计算密度函数 $\rho=x^2+y^2+z^2$ 的立体 Ω 的质量 M ,这里 Ω 是由平面 z=1 与 锥面 $z=\sqrt{x^2+y^2}$ 所围成的区域(锥面的内部)。
 - 51.计算二重积分 $\iint_D (3y^2 + \sin x) dxdy$, 其中积分区域 D 是由 y = /x/和 y = 1 所围成.
 - 52.计算三重积分 I= $\iiint_{\Omega} xy dx dy dz$,其中积分区域 Ω 是由 $x^2+y^2=4$ 及平面 z=0,z=2 所围的在第一卦限内的区域.
 - 53. 计算二重积分 $\iint_D \frac{1}{x^2 + y^2} dx dy$, 其中积分区域 $D: 1 \le x^2 + y^2 \le 2$.
 - 54. 计算三重积分 $\iint_{\Omega} x dv$,其中积分区域 Ω 是由 x=0, x=1, y=0, y=1, z=0 及 x+2y+z=4 所围.

第十一章: 曲线积分与曲面积分

- 55. 利用格林公式计算 $\int_{L} (e^x \sin y 2y) dx + (e^x \cos y 2) dy$, 其中 L 为沿上半圆周 $(x-a)^2 + y^2 = a^2$ (y > 0),从 A(2a,0) 到 O(0,0) 的弧段.
- 56. 计算对弧长的曲线积分 $\int_C (x+y)ds$,其中 C 是连接 A(2,0)及 B(0,2)两点的直线段.
- 57. 验证 (2x+y)dx+(x+2y)dy 在整个 oxy 平面内是某个二元函数 u(x,y) 的全微分,并求这样一个 u(x,y) .

58. 计算对坐标的曲线积分 $\int_C x dx + (y+x) dy$,其中 C 为从点(1,0)到点(2,

1) 的直线段.

59.
$$\int_L (x^2 - y) dx - (x + \sin^2 y) dy$$
 L 为圆周 $y = \sqrt{2x - x^2}$ 上由点 $(0, 0)$ 到点 $(1, 1)$ 的一段弧

- 60. $\iint_{\Sigma} x dy dz + y dz dx + z dx dy$ 其中 Σ 是介于 z = 0 和 z = 3 之间的圆柱体 $x^2 + y^2 \le 9$ 的整个表面的外侧.
- 61.计算对弧长的曲线积分 $I = \int_L y^2 ds$,其中 L 为圆周 $x^2 + y^2 = 9$ 的左半圆.
- 62.计算对坐标的曲线积分 $I = \oint_L y(1+x^2) dx + x(1-y^2) dy$, 其中 L 是平面区域 D: $x^2 + y^2 \le 4$ 的正向边界.
- 63. 验证对坐标的曲线积分 $\int_{L} xy^2 dx + x^2 y dy$ 与路径无关,并计算 $I = \int_{(1,1)}^{(2,2)} xy^2 dx + x^2 y dy$.
- 64. 计算对坐标的曲面积分 $I = \coprod_{\Sigma} (x^2 yz) dy dz + (y^2 xz) dx dz + (z^2 xy) dx dy$, 其中 Σ 是柱面 $x^2 + y^2 = 1$ 及 z = 0, z = 2 所围柱体表面的外侧.

第十二章: 无穷级数

- 65. 判别级数 $\sum_{n=1}^{\infty} \frac{n^2}{3^n}$ 的敛散性;
- 66. 判别级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\sqrt{n}}$ 的敛散性:
- 67. 求幂级数 $\sum_{n=1}^{\infty} \frac{(x-1)^n}{n+1}$ 的收敛区间.
- 68. 求幂级数 $\sum_{n=1}^{\infty} \frac{x^n}{n \ 2^n}$ 收敛域
- 69. 将函数 $f(x) = \frac{1}{x}$ 展成 x 2 的幂级数
- 70. 求幂级数 $\sum_{n=1}^{\infty} \frac{x^n}{n}$ 的收敛半径与收敛区间.
- 71. 判定级数 $\sum_{n=1}^{\infty} \frac{n!}{2^n}$ 的敛散性。
- 72.设 α 为任意实数,判断无穷级数 $\sum_{n=1}^{\infty} \frac{\sin(n\alpha)}{n^2}$ 的敛散性,若收敛,是绝对收敛还是条件收敛?

- 73. 设函数 $f(x)=x^2\cos x$ 的麦克劳林级数为 $\sum_{n=0}^{\infty}a_nx^n$,求系数 a_6 .
- 74.将函数 $f(x) = \frac{x}{x^2 2x 3}$ 展开为x的幂级数.
- 75. 判断无穷级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}$ 的敛散性,若收敛,是条件收敛还是绝对收敛?
- 76. 求幂级数 $\sum_{n=1}^{\infty} \frac{x^n}{2n+1}$ 的收敛半径和收敛域.
- 77. 将函数 $f(x) = \sin 2x$ 展开为 x 的幂级数.

证明与应用

第八章:空间解析几何与向量代数 第九章:多元函数微分法及其应用

- 1. 求函数 $f(x, y) = x^2 + 5y^2 6x + 10y + 6$ 的极值.
- 2. 求函数 $f(x, y) = 8x^3 12xy + y^3$ 的极值.
- 3. 周长为2p的矩形绕它的一边旋转构成一个圆柱体,矩形的边长各为多少时,,能使圆柱体体积达到最大值。(用拉格朗日乘数法)
- 4. 求函数 $f(x, y) = x^3 + y^3 9xy + 27$ 的极值.
- 5. 设 F(x-az,y-bz)=0 (a,b 为常数), F(u,v) 为可微函数, $F_z\neq 0$,证明由方

程所确定的函数 z = z(x, y) 满足方程 $a \frac{\partial z}{\partial x} + b \frac{\partial z}{\partial y} = 1$.

6. 求函数 $z = x^2 - xy + y^2 - 2x + y$ 的极值。

第十章: 重积分

- 7. 求平面 x+y+z=2在第一卦限部分的面积
- 8. 设平面 x=1, x=-1, y=1和 y=-1围成的柱体被坐标平面 z=0和平面

x+y+z=3所截,求所截下部分立体的体积.

- 9. 求由曲面 $z = 6 x^2 y^2$ 及 $z = \sqrt{x^2 + y^2}$ 所围的立体的体积
- 10. 求三重积分 $\iint_{\Omega} xydv$, 其中 Ω 为柱面 $x^2 + y^2 = 1$ 及平面 z = 1, z = 0, x = 0, y = 0 所围成的在第一卦限内的闭区域.

第十一章: 曲线积分与曲面积分

 $\iint_{\Sigma} 2x dy dz + y dz dx + z dx dy$ 11. 利用高斯公式计算 Σ , Σ 为抛物面 $z = x^2 + y^2$ ($0 \le z \le 1$)

的下侧

12. 证明积分 $\int_{(1,1)}^{(2,3)} (x+2y) dx + (2x-y) dy$ 在整个 xoy 平面上与路线无关,并计算积分值。

13. 计算曲线积分 $\int_{\Gamma} x dx + y dy + (x + y - 1) dz$,其中 Γ 是从点(1,1,1)到点(2,3,4)的一段直线.

第十二章: 无穷级数

14. 在区间 (-1,1) 内求幂级数 $\sum_{n=1}^{\infty} \frac{x^n}{n}$ 的和函数