Representação de Curvas e Superfícies

Sistemas Gráficos/ Computação Gráfica e Interfaces

Representação de Curvas e Superfícies

Representação de superfícies: permitem descrever objectos através das suas faces. As três representações mais comuns são:

- Malha poligonal
- Superfícies paramétricas bicúbicas
- Superfícies quadráticas

Representação paramétricas de curvas: importantes na computação gráfica 2D e pelo facto das superfícies paramétricas serem uma generalização destas curvas.

"Tea-pot" modelado por superfícies curvas suaves (bicúbicas).

Modelo de referência na Computação Gráfica, nomeadamente para teste de novas técnicas de realismo de textura e superfície.

Criado por Martin Newel (1975)

Malha Poligonal: é uma colecção de arestas, vértices e polígonos interligados de modo que cada aresta é apenas partilhado no máximo por dois polígonos.

Objecto 3D representado por malha de polígonos.

Curva ←→ linha poligonal
 Secção de um objecto curvo.
 O erro de aproximação pode ser reduzindo aumentando o número de polígonos.

Características da malha poligonal:

- Uma aresta liga 2 vértices.
- Um polígono é definido por uma sequência fechada de arestas.
- Uma aresta é partilhada por 1 ou 2 polígonos adjacentes.
- Um vértice é partilhado pelo menos por 2 arestas.
- Todas as arestas fazem parte de algum polígono.

A estrutura de dados para **representar a malha poligonal** pode ter várias configurações, que são avaliadas pelo **espaço de memória** e **tempo de processamento** necessário para obter resposta, por exemplo, a:

- Obter todas as arestas que se unem num dado vértice.
- Determinar os polígonos que partilham uma aresta ou um vértice.
- Determinar os vértices ligados a uma aresta.
- Determinar as arestas de um polígono.
- Representar graficamente a malha.
- Identificar erros na representação, como falta de uma aresta, vértice ou polígono.

1. Representação Explicita: cada polígono é representado por uma lista de coordenadas dos vértices que o constituem.

Uma aresta é definida por dois vértices consecutivos e entre o último e primeiro da lista.

$$P=((x1,y1,z1),(x2,y2,z2),\ldots,(xn,yn,zn)) \tag{x2,y2,z2} \tag{x3,y3,z3}$$
 Avaliação da estrutura de dados:
$$(x1,y1,z1) \tag{x4,y4,z4}$$

- Consumo de memória (vértices repetidos).
- Não há uma representação explicita das arestas e vértices partilhados.
- Na representação gráfica a mesma aresta é "clipped" e desenhada mais do que uma vez.
- Ao arrastar um vértice é necessário conhecer todas as arestas que partilham aquele vértice.

2. Representação por Apontadores para Lista de Vértices: cada polígono é representado por uma lista de índices (ou apontadores) para uma lista de vértices.

Lista de Vértices
$$V=((x1,y1,z1),(x2,y2,z2),\ldots,(xn,yn,zn))$$

Vantagens:

- Cada vértice da malha poligonal é guardado uma única vez na memória.
- A coordenada de um vértice é facilmente alterada.

Desvantagens:

- Difícil obter os polígonos que partilham uma dada aresta.
- As arestas continuam a ser "clipped" e desenhada mais do que uma vez.

3. Representação por Apontadores para Lista de Arestas: cada polígono é representado por uma lista de apontadores para uma lista de arestas, na qual cada aresta aparece uma única vez. Por sua vez, cada aresta aponta para os dois vértices que a definem e guarda também quais os polígonos a que pertence.

Um polígono é representado por P=(E1,E2,...,En) e uma aresta como E=(V1,V2,P1,P2). Se a aresta pertence apenas a um polígono então P2 é *null*.

Vantagens:

- O desenho gráfico é facilmente obtido percorrendo a lista de arestas. Não ocorre a repetição de clipping nem de desenho.
- Para o preenchimento (colorir) dos polígonos trabalha-se com a lista de polígonos.
 Fácil efectuar a operação de clipping sobre os polígonos.

Desvantagens:

 Continua a n\u00e3o ser imediato determinar quais as arestas que incidem sobre o mesmo v\u00e9rtice.

Solução de Baumgart

- Cada vértice tem um apontador para uma das arestas (aleatório) que incide nesse vértice.
- Cada aresta apresenta apontadores para as arestas que incidem num vértice.

Curvas Cúbicas

Motivação: Representar curvas suaves do mundo real.

- A representação por malha poligonal é uma aproximação de primeira ordem:
 - A curva é aproximada por uma sequência de segmentos lineares.
 - Grande quantidade de dados (vértices) para obter a curva com precisão.
 - Difícil manipulação para mudar a forma da curva, i.e. necessário posicionar vários pontos com precisão.
- Geralmente utilizam-se polinómios de grau 3 (Curvas Cúbicas), sendo a curva completa formada por um conjunto de curvas cúbicas.
 - grau < 3 oferecem pequena flexibilidade no controlo da forma das curvas e não permitem uma interpolação entre dois pontos com a definição da derivada nos pontos extremos. Um polinómio de grau 2 é especificado por 3 pontos que definem o plano onde a curva toma lugar.
 - grau > 3 podem introduzir oscilações indesejáveis e exigir maior cálculo computacional.

Curvas Cúbicas

A representação das curvas é feita na forma PARAMÉTRICA:

$$x = f_x(t), y = f_y(t)$$

ex:
$$x=3t^3 + t^2$$
 $y=2t^3+t$

A forma Explicita:

$$y=f(x)$$
 ex: $y=x^3+2x^2$

- 1. Não podemos ter vários valores de **y** para o mesmo **x**
- 2. Não podemos descrever curvas com tangentes verticais

A forma Implícita:

$$f(x,y)=0$$
 ex: $x^2+y^2-r^2=0$

- 1. Necessita de restrições para poder modelar apenas uma parte da curva
- 2. Difícil juntar duas curvas de forma suave

A figura mostra uma curva formada por duas curvas cúbicas paramétricas em 2D.

Forma geral de representação da curva:

$$x(t) = a_x t^3 + b_x t^2 + c_x t + d_x$$

$$y(t) = a_y t^3 + b_y t^2 + c_y t + d_y$$

$$z(t) = a_z t^3 + b_z t^2 + c_z t + d_z$$
 $0 \le t \le 1$

$$0 \le t \le 1$$

Sendo:
$$T = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \\ d_x & d_y & d_z \end{bmatrix}$$

$$Q(t) = \begin{bmatrix} x(t) & y(t) & z(t) \end{bmatrix} = T.C$$

A representação anterior é usada para representar uma única curva. **Como** juntar os vários segmentos de curva ?

Pretendemos a junção num ponto → continuidade geométrica e,

Que tenham o mesmo declive na junção → suavidade (continuidade da derivada).

A garantia de continuidade e suavidade na junção é garantida fazendo coincidir as derivadas (tangentes) das curvas no ponto de junção. Para isso calcula-se:

$$\frac{\partial Q(t)}{\partial t} = \begin{pmatrix} \frac{\partial x(t)}{\partial t} & \frac{\partial y(t)}{\partial t} & \frac{\partial z(t)}{\partial t} \end{pmatrix} = \frac{\partial (CT)}{\partial t} = C \frac{\partial T}{\partial t}$$

Com:
$$\frac{\partial T}{\partial t} = \begin{bmatrix} 3t^2 & 2t & 1 & 0 \end{bmatrix}$$

Tipos de Continuidade:

- **G**⁰ continuidade geométrica zero → as curvas juntam-se num ponto.
- G¹ continuidade geométrica um → a direcção dos vectores tangentes é igual.
- C¹ continuidade paramétrica 1 → as tangentes no ponto de junção têm a mesma direcção e amplitude (primeira derivada igual).
- Cⁿ continuidade paramétrica n → as curvas têm no ponto de junção todas as derivadas iguais até à ordem n.

Se considerarmos t como t como t continuidade C^1 significa que a velocidade de um objecto que se desloque ao longo da curva se mantém contínua

A continuidade C^2 implicaria que a aceleração seria também contínua.

No ponto de junção da curva \mathbf{S} com as curvas \mathbf{C}_0 , \mathbf{C}_1 e \mathbf{C}_2 temos:

Continuidade G^0 entre S e C_0 Continuidade C^1 entre S e C_1 Continuidade C^2 entre S e C_2

A continuidade paramétrica é mais restritiva que a continuidade geométrica:

Por exemplo: C¹ implica G¹

No ponto de junção P₂ temos:

 Q_2 e Q_3 são G^1 com Q_1

Só Q_2 é C^1 com Q_1 ($TV_1=TV_2$)

Curvas Cúbicas Paramétricas – Tipos de Curvas

1. Curvas de Hermite

- Continuidade G¹ nos pontos de junção
- Vector geométrico:
 - 2 pontos extremos e
 - Os vectores tangentes nesses pontos

2. Curvas de Bézier

- Continuidade G¹ nos pontos de junção
- Vector geométrico:
 - 2 pontos extremos e
 - 2 pontos que controlam os vectores tangentes nesses extremos

3. Curvas Splines

- Família de curvas muito alargada
- Maior controlo da continuidade nos pontos de junção (Continuidade C¹ e C²)

Notação comum

$$Q(t) = \begin{bmatrix} x(t) & y(t) & z(t) \end{bmatrix} = T.C$$

$$Q(t) = T.M.G$$

$$\begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix}$$

$$\begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ m_{41} & m_{42} & m_{43} & m_{44} \end{bmatrix}$$

$$egin{bmatrix} G_1 \ G_2 \ G_3 \ G_4 \end{bmatrix}$$

Matriz T

Matriz de Base

Matriz Geométrica

Matriz de Base: Caracteriza o tipo de curva

<u>Matriz Geométrica</u>: Condiciona geometricamente uma dada curva e contém valores relacionados com a geometria da curva.

Notação comum

$$Q(t) = T.M.G$$

$$Q(t) = T.M.G$$

$$Q(t) = \begin{bmatrix} t^3 & t^2 & t \end{bmatrix} \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ m_{41} & m_{42} & m_{43} & m_{44} \end{bmatrix} \begin{bmatrix} G_1 \\ G_2 \\ G_3 \\ G_4 \end{bmatrix}$$

$$Q(t) = (t^{3}m_{11} + t^{2}m_{21} + tm_{31} + m_{41}).G_{1} + (t^{3}m_{12} + t^{2}m_{22} + tm_{32} + m_{2}).G_{2} + (t^{3}m_{13} + t^{2}m_{23} + tm_{33} + m_{43}).G_{3} + (t^{3}m_{14} + t^{2}m_{24} + tm_{34} + m_{44}).G_{4}$$

Conclusão 1: Q(t) é uma soma pesada dos elementos do vector geométrico

Conclusão 2: Os pesos são polinomiais cúbicas em t → FUNÇÕES DE MISTURA

(Blending functions)
$$Q(t) = T.C = T.M.G = B.G$$

Curvas de Hermite

$$Q(t) = T.M_H.G_H = \begin{bmatrix} t^3 & t^2 & t \end{bmatrix} M_H.G_H = B_H.G_H$$

$$Q'(t) = \begin{bmatrix} 3t^2 & 2t & 1 & 0 \end{bmatrix} M_H.G_H$$

Vector geométrico:
$$G_H = \begin{bmatrix} P_1 \\ P_4 \\ R_1 \\ R_4 \end{bmatrix}$$

$$Q(0) = \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix} M_H . G_H = P_1$$

$$Q(1) = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} M_H . G_H = P_4$$

$$Q'(0) = \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix} M_H . G_H = R_1$$

$$Q'(1) = \begin{bmatrix} 3 & 2 & 1 & 0 \end{bmatrix} M_H . G_H = R_4$$

$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix} M_H . G_H = \begin{bmatrix} P_1 \\ P_2 \\ R_1 \\ R_4 \end{bmatrix} = G_H$$

$$M_H = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

$$M_{H} = \begin{vmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{vmatrix} = \begin{vmatrix} -1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{vmatrix}$$

$$= \begin{vmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{vmatrix}$$

Curvas de Hermite Funções de Mistura (Blending functions)

$$Q(t) = T.M_H.G_H = \begin{bmatrix} t^3 & t^2 & t \end{bmatrix} M_H.G_H = B_H.G_H$$

$$M_{H} = \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \qquad G_{H} = \begin{bmatrix} P_{1} \\ P_{4} \\ R_{1} \\ R_{4} \end{bmatrix}$$

$$G_H = egin{bmatrix} P_1 \ P_4 \ R_1 \ R_4 \end{bmatrix}$$

Q(t)=
$$(2t^3-3t^2+1)P_1 + (-2t^3+3t^2)P_4 + (t^3-2t^2+t)R_1 + (t^3-t^2)R_4$$

Funções de Mistura das curvas de Hermite, referenciadas pelo elemento do vector geométrico que as multiplica, respectivamente.

Curvas de Hermite - Exemplo

Esquerda: Funções de mistura pesadas pelo factor correspondente do vector geométrico.

Centro: y(t) = soma das quatro funções da esquerda

Direita: Curva de Hermite

Curvas de Hermite - Exemplos

- P₁ e P₄ fixos
- R₄ fixo
- R₁ varia em amplitude

- P₁ e P₄ fixos
- R₄ fixo
- R₁ varia em direcção

Curvas de Hermite Exemplo de Desenho Interactivo

- Os pontos extremos podem ser reposicionados
- Os vectores tangentes podem ser alterados puxando as setas
- Os vectores tangentes são forçados a serem colineares (continuidade G¹) e R₄ é visualizado em sentido contrário (maior visibilidade)
- É comum dispor de comandos para forçar continuidade G⁰, G¹ ou C¹

Continuidade na junção:

$$\begin{bmatrix} P_1 \\ P_4 \\ R_1 \\ R_4 \end{bmatrix} \longrightarrow \begin{bmatrix} P_4 \\ P_7 \\ K.R_4 \\ R_7 \end{bmatrix}$$

- $K > 0 \rightarrow G^1$
- $K = 1 \rightarrow C^1$

Curvas de Hermite

3. Seja a sucessão C1,C2,C3,C4 de curvas de Hermite representadas pelos vectores geométricos juntos. Complete estes com os valores em falta, de forma a obter continuidade do tipo C^1 em todos os pontos de junção e justifique os casos em que isso não seja possível, de acordo com os dados fornecidos.

$$C1 = \begin{bmatrix} 0,0 \\ 3,3 \\ 0,2 \\ ?,? \end{bmatrix}; \quad C2 = \begin{bmatrix} ?,? \\ ?,? \\ 2,0 \\ 0,2 \end{bmatrix}; \quad C3 = \begin{bmatrix} 6,6 \\ 3,6 \\ 0,1 \\ 0,-1 \end{bmatrix}; \quad C4 = \begin{bmatrix} 3,3 \\ 6,3 \\ ?,? \\ 2,0 \end{bmatrix}$$

Vector Geométrico: $G_B = \begin{bmatrix} P_1 \\ P_2 \\ P_3 \\ P_4 \end{bmatrix}$

Para uma mesma curva, demonstra-se que, comparando com G_H:

$$R_1 = Q'(0) = 3.(P_2 - P_1)$$

$$R_4 = Q'(1) = 3.(P_4 - P_3)$$

$$Q(t) = T.M_H.G_H = T.M_H.(M_{HB}.G_B) = T.(M_H.M_{HB}).G_B$$

A mesma curva em representação Bézier: Q(t) = T . M_B . G_B

$$M_{B} = M_{H}.M_{HB} = \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$
 $f(t)$

Q(t) =
$$(1-t)^3 P_1 + 3t(1-t)^2 P_2 + 3t^2(1-t) P_3 + t^3 P_4$$

Q(t)=
$$(1-t)^3 P_1 +$$

 $3t(1-t)^2 P_2 +$
 $3t^2(1-t) P_3 +$
 $t^3 P_4$

Observações sobre as funções de Mistura:

- Para t=0 $Q(t)=P_1$, para t=1 $Q(t)=P_4$ \rightarrow A curva passa em P_1 e P_4
- A soma em qualquer ponto é 1.
- Verifica-se que Q(t) é uma média pesada dos 4 pontos de controlo, logo a curva está contida no interior do polígono convexo (2D) ou poliedro convexo (3D) definido por esses pontos, designado de "convex hull".

Que vantagem podemos extrair daqui?

Junção de curvas de Bézier

Continuidade G1:

$$P_4 - P_3 = K(P_5 - P_4)$$
 com $K > 0$ i.e. $P_3, P_4 \in P_5$ devem ser colineares

Continuidade C¹:

$$P_4 - P_3 = K(P_5 - P_4)$$
 restringindo K = 1

Desenho de Curvas Cúbicas

Dois algoritmos:

- 1. Avaliação de x(t), y(t) e z(t) para valores incrementais de t entre 0 e 1.
- 2. Subdivisão da curva: Algoritmo de Casteljau
- 1. Avaliação de x(t), y(t) e z(t)

Regra de Horner permite reduzir o número de operações de 11 multiplicações e 10 adições para 9 e 10, respectivamente.

$$f(t) = at^3 + bt^2 + ct + d = ((at + b).t + c).t + d$$

2. Algoritmo de Casteljau

Efectua a subdivisão recursiva da curva, parando apenas quando a curva em questão é suficientemente "plana" para poder ser aproximada por um segmento de recta.

Algoritmo eficiente: requer apenas 6 shifts e 6 adições em cada divisão.

Desenho de Curvas Cúbicas - Algoritmo de Casteljau

Critérios possíveis de paragem:

- A curva em questão é suficientemente "plana" para poder ser aproximada por um segmento de recta.
- Os 4 pontos de controlo estão no mesmo pixel.

$$L_2 = (P_1 + P_2)/2$$
, $H = (P_2 + P_3)/2$, $L_3 = (L_2 + H)/2$, $R_3 = (P_3 + P_4)/2$

$$R_2 = (H+R_3)/2$$
, $L_4 = R_1 = (L_3 + R_2)/2$

Desenho de Curvas Cúbicas

Algoritmo de Calteljau

```
void DrawCurveRecSub(curve, ε)
{
   if (Straight(curve, ε))
        DrawLine(curve);
   else {
        SubdivideCurve(curve, leftCurve, rightCurve);
        DrawCurveRecSub(leftCurve, ε);
        DrawCurveRecSub(rightCurve, ε);
}
```

Exercício

6. Determine as posições dos quatro pontos de controlo de uma curva de Bézier equivalente à elipse da figura junta:

- a)- Analiticamente.
- b)- Usando métodos baseados no algoritmo de Casteljou.

Superfícies Cúbicas

As superfícies cúbicas são uma generalização das curvas cúbicas. A equação da superfície é obtida a partir da equação da curva:

$$Q(t) = T \cdot M \cdot G$$
, sendo G constante.

Mudar para a variável s: $Q(s) = S \cdot M \cdot G$

Fazendo variar os pontos do vector Geométrico em 3D ao longo de um percurso parametrizado por *t* obtém-se:

$$Q(s,t) = S.M.G(t) = S.M. \begin{bmatrix} G_1(t) \\ G_2(t) \\ G_3(t) \\ G_4(t) \end{bmatrix}$$

A matriz geométrica é composta por 16 pontos.

Superfície de Hermite

Para a coordenada x:

$$x(s,t) = S.M_H.G_{Hx}(t) = S.M_H.\begin{bmatrix} P_1(t) \\ P_4(t) \\ R_1(t) \\ R_4(t) \end{bmatrix}_x$$

$$P_{1x}(t) = T.M_{H}.\begin{bmatrix} g_{11} \\ g_{12} \\ g_{13} \\ g_{14} \end{bmatrix}_{x} P_{4x}(t) = T.M_{H}.\begin{bmatrix} g_{21} \\ g_{22} \\ g_{23} \\ g_{24} \end{bmatrix}_{x} R_{1x}(t) = T.M_{H}.\begin{bmatrix} g_{31} \\ g_{32} \\ g_{33} \\ g_{34} \end{bmatrix}_{x} R_{4x}(t) = T.M_{H}.\begin{bmatrix} g_{41} \\ g_{42} \\ g_{43} \\ g_{44} \end{bmatrix}_{x}$$

$$\begin{bmatrix} P_1(t) \\ P_4(t) \\ R_1(t) \\ R_4(t) \end{bmatrix}_x = \begin{bmatrix} g_{11} & g_{12} & g_{13} & g_{14} \\ g_{21} & g_{22} & g_{23} & g_{24} \\ g_{31} & g_{32} & g_{33} & g_{24} \\ g_{41} & g_{42} & g_{43} & g_{24} \end{bmatrix} M_H^T T^T = G_{Hx} M_H^T T^T$$

 $G_{\scriptscriptstyle H}$

Conclui-se que: $x(s,t) = S.M_H.G_{Hx}.M_H^T.T^T$

Superfície de Hermite

Superfície de Bézier

As equações para a superfície de Bézier podem ser obtidas da mesma forma que as de Hermite, resultando:

$$x(s,t) = S.M_B.G_{Bx}.M_B^T.T^T$$

$$y(s,t) = S.M_B.G_{By}.M_B^T.T^T$$

$$z(s,t) = S.M_B.G_{Bz}.M_B^T.T^T$$

A matriz geométrica tem 16 pontos de controlo.

Superfície de Bézier

Continuidade C^0 e G^0 é obtida fazendo coincidir os quatro pontos de controlo de fronteira: P_{14} , P_{24} , P_{34} , P_{44}

Para obter *G*¹ devem ser colineares:

$$P_{33}$$
, P_{34} e P_{35}

e

$$(P_{14}-P_{13})/(P_{15}-P_{14}) = K$$

$$(P_{24}-P_{23}) / (P_{25}-P_{24}) = K$$

$$(P_{34}-P_{33}) / (P_{35}-P_{34}) = K$$

$$(P_{44}-P_{43}) / (P_{45}-P_{44}) = K$$

