MAT02026 - Inferência B

LISTA 5 - TRV E IC PARA COMPARAÇÕES DE GRUPOS

Exercício 1 Seja $X = (X_1, ..., X_n)$ uma a. a. de $X \sim Normal(\mu_X, \sigma_X^2)$ e $Y = (Y_1, ..., Y_m)$ uma a.a. de $Y \sim Normal(\mu_Y, \sigma_Y^2)$, tal que X e Y são independentes. Encontre o TRV para testar:

- a) $H_0: \mu_X = \mu_Y$ contra $H_1: \mu_X \neq \mu_Y$ assumindo que $\sigma_X^2 = \sigma_Y^2 = \sigma^2$;
- b) (Behrens-Fisher problem) $H_0: \mu_X = \mu_Y$ contra $H_1: \mu_X \neq \mu_Y$ assumindo que $\sigma_X^2 \neq \sigma_Y^2$;
- c) $H_0: \sigma_X^2 = \sigma_Y^2$ contra $H_1: \sigma_X^2 \neq \sigma_Y^2$.

Exercício 2 (Teste t pareado) Seja $(X_1, Y_1), \ldots (X_n, Y_n)$ uma a.a. de $(X, Y) \sim Normal_2(\mu_X, \mu_Y, \sigma_X^2, \sigma_Y^2, \rho)$ e $\mathbf{Y} = (Y_1, \ldots, Y_m)$ uma a.a. de $Y \sim Normal(\mu_Y, \sigma_Y^2)$. Use o TRV para testar $H_0 : \mu_X = \mu_Y$. Dica: mostre que $W_i = X_i - Y_i \sim Normal(\mu_W, \sigma_W^2)$.

Exercício 3 Seja $X = (X_1, ..., X_n)$ uma a.a. de $X \sim Bernoulli(\pi_1)$ e $Y = (Y_1, ..., Y_m)$ uma a.a. de $Y \sim Bernoulli(\pi_2)$, tal que X e Y são independentes. Encontre o TRV para testar $H_0 : \pi_1 = \pi_2$ contra $H_0 : \pi_1 \neq \pi_2$.

Exercício 4 (Equilíbrio de Hardy-Weinberg) Seja $\mathbf{X} = (X_1, \dots, X_n)$ uma a. a. de $X \sim Multinomial(N, \pi_1, \pi_2, \pi_3)$ Use o TRV para testar $H_0: \pi_1 = \pi_2 = \pi_3$.

Exercício 5 (Tabelas $r \times c$) Suponha que temos uma tabela de contingência $r \times c$ com n indivíduos independentemente selecionados, sendo n_{ij} o número de unidades classificadas na linha i e na coluna j, para todo $i = 1, \ldots, r$ e $j = 1, \ldots, c$. Seja π_{ij} a probabilidade de um indivíduo ser classificado na linha i e coluna j, tal que $\pi_{ij} \geq 0$ e $\sum_{i=1}^{r} \sum_{j=1}^{c} \pi_{ij} = 1$.

- a) Encontre o TRV para testar $H_0: \pi_{ij} = a_i b_j$, para algum $a_i > 0$ e $b_j > 0$ tais que $\sum_{i=1}^r a_i = 1$ e $\sum_{j=1}^c b_j = 1$, contra a alternativa $H_1: \pi_{ij} \neq a_i b_j$ para pelo menos um par (i, j).
- b) Compare o teste do ítem (a) com o teste qui quadrado para independência, para tesar se a variável da linha e da coluna são independentes.

Exercício 6 Teste Exato de Fisher (Tabela 2×2 restrita) Seja $S_1 \sim Binomial(n_1, \pi_1)$ independente de $S_2 \sim Binomial(n_2, \pi_2)$. Para testar as hipóteses $H_0: \pi_1 = \pi_2$ contra $H_1: \pi_1 > \pi_2$:

- a) Mostre que sob H_0 temos que $S = S_1 + S_2$ é estatística suficiente e $S_1 | S = s \sim Hipergeométrica(n_1 + n_2, n_1, s)$.
- b) Calcule o valor p (condicional) para o teste exato de Fisher.
- c) Compare com o valor p do TRV assintótico.
- d) Compare com os valores p do TRV e do teste qui quadrado do exercício 5.

Exercício 7 Seja $\boldsymbol{X}=(X_1,\ldots,X_n)$ uma a. a. de $X\sim Normal(\mu_X,\sigma_X^2)$ e $\boldsymbol{Y}=(Y_1,\ldots,Y_m)$ uma a.a. de $Y\sim Normal(\mu_Y,\sigma_Y^2)$, tal que \boldsymbol{X} e \boldsymbol{Y} são independentes.

- a) Encontre o TRV para testar $H_0: \mu_X = \mu_Y$ contra $H_1: \mu_X \neq \mu_Y$ assumindo que σ_X^2 e σ_Y^2 são conhecidos;
- b) Sendo as variâncias conhecidas, $\sigma_X^2 = 9$ e $\sigma_Y^2 = 25$, foi observado n = 9, $\sum x_i = 3, 4$, m = 16 e $\sum y_i = 4, 3$. Qual sua conclusão ao nível de significância 5%?

Exercício 8 Considere variações dos exercícios acima para outras distribuições como $Poisson(\lambda)$, $Exponencial(\lambda)$, $Gama(\alpha, \beta)$, $Beta(\alpha, \beta)$, $Uniforme(0, \theta)$, ...