AD-778 461

DEVELOPMENT OF FATIGUE TEST STANDARDS AND MECHANICAL PROPERTY DATA ON INTERFERENCE FIT FASTENER SYSTEMS

Robert B. Urzi

Lockheed-California Company

Prepared for:

Air Force Materials Laboratory

August 1973

DISTRIBUTED BY:

5285 Port Royal Road, Springfield Va. 22151

Security Classification

DOCUMENT CONT		//~	overall report is classified)
1. ORIGINATING ACTIVITY (Corporate suthor)			ECURITY CLASSIFICATION
Lockheed-California Company	/ 1	Unclass	ified
Division of Lockheed Aircraft Corporation	V	20. GROUP	
3. REPORT TITLE			
Development of Fatigue Test Standards and M Interference Fit Fastener Systems	Mechanical Pr	coperty Da	ta on
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)			
Final Report July 1972 - June 1973		<u> </u>	
Robert B. Urzi			
. REPORT DATE	70. TOTAL NO. OI	FPAGES	76. NO. OF REFS
Angust 1973		276	11
August 1973	90. ORIGINATOR'S	REPORT NUM	
F33615-72-C-1838 /V	LR 25988		
7381		-	
c.	9b. OTHER REPOR	RT NO(5) (Any o	ther numbers that may be exsigned
d,	AFML-TR-7	3 - 195 <i>U</i>	
10, DISTRIBUTION STATEMENT			
Approved for Public Release, Distribution	Unlimited		
11. SUPPLEMENTARY NOTES	12. SPONSORING	MILITARY ACT	IVITY
	Air Force	Materials	Laboratory
	Wright-Pa	tterson AF	FB, Ohio 45433
13. ABSTRACT			· · · · · · · · · · · · · · · · · · ·

A multiple task program was conducted aiding the establishment of proposed test No. 21, Shear Joint Fatigue Test Specification, of MIL-STD-1312 "Fastener Test Methods," and to generate joint fatigue data utilizing two commonly used "fatigue rated" fastener systems, the Hi Iok/Hi Tigue and Taper Lok. Fatigue testing of 1008 elemental joints considered high, medium, and low load transfer joints. Six important fastener system variables were investigated consisting of fastener configuration, fastener material, amount of interference fit, faying surface treatment, sheet thickness/fastener diameter ratio, and fastener hole fabrication methods. Tests were also conducted to investigate effect on fatigue characteristics due to loading frequency, type of test machine, and specimen fixturing.

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
U S Department of Commerce
Springfield VA 22151

DD FORM 1473 (PAGE 1)

S/N 0101-807-6801

UNCLASSIFIED

Security Classification

UNCLASSIFIED
Security Classification

14. KEY WORDS		FIN	K A	LIN	КВ	LIN	кс
		ROLE	WT	ROLE	WT	ROLE	w,
fatigue rated fasteners				*			
aerospace fasteners							•
elemental structural joints					,;		
joint fatigue .						ĺĺ	
hole conditioning					.,		
load transfer							
constant amplitude fatigue	·		, •				
joint failure modes				-			
	- 1			-			
	.				_		
					-		
		j			ŀ	,	
				-			
• .	-	_]		<u>.</u> 1			
		- - -					
		1					
	~.	-				- 1	
*				,		İ	
,		=					
			-		l		
•		-					
,		-		;		-	
	-	•					
	.		ľ				
	ŀ	_ [
					-	-	
				ľ			
		1					
		-					
•		l ₌					
		-				-	
		- - - - -		İ			
·						İ	
					-		i

DD FORM 1473 (BACK)
(PAGE 2)

ia.

UNCLASSIFIED
Security Classification

DEVELOPMENT OF FATIGUE TEST STANDARDS AND MECHANICAL PROPERTY DATA ON INTERFERENCE FIT FASTENER SYSTEMS

Robert B. Urzi Lockheed-California Company Lockheed Aircraft Corporation-

Approved for Public-Release, Distribution Unlimited

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

ACCESSION 1	ж-
NTIS DDC UNANYOUNCI	ı
JUSTIFICATI -BY	ION/AVAILABILITY CODES
Dist.	AVAIL, and/or SPECIAL
8	-

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

id

FOREWORD

This contract with the Lockheed-California Company (a Division of Lockheed Aircraft Corporation) of Burbank, California was initiated under Air Force Contract No. F33615-72-C-1838, Project No. 7381 "Materials Applications," Task No. 738106 "Engineering and Design Data." The work was accomplished under the technical direction of Messers. Alton Brisbane and Clay Harmsworth of the Air Force Materials Laboratory, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio.

This report covers work performed from July 1972 through June 1973.

Mr. Robert B. Urzi, Research Engineer Sr. was the Engineer in charge of the project and principal investigator for the program at the Lockheed-California Company. Others who cooperated in this program were Mr. Richard C. Smith and Mr. Jack C. Ekvall, Dept. 78/22, Structural Methods; Mr. Dwayne Black and Mr. W. F. Bush of Dept. 74/42, Structures Laboratory. A program of this nature would not have been possible without the encouragement and support of many individuals from all segments of government and industry. To list all the participants in this program would be to chance an error of omission. It cannot be overstated that the cooperation afforded by each organization or individual contacted was outstanding. Your comments are solicited on the potential utilization of the information contained herein as applied to your present and/or future fastener evaluation and application programs. Suggestions concerning additions and/or modification to the test methods reported herein will be appreciated.

The report was released by the author in August 1973 for publication.

This technical report has been reviewed and is approved.

Albert Olevitch

Chief, Materials Engineering Branch

Systems Support Division

albert Obwitch

Air Force Materials Laboratory

ABSTRACT

A multiple task program was implemented to aid in the establishment of a Military Test Standard (part of MIL-STD-1312) needed to evaluate joint fatigue life improvement fasteners in fatigue and to generate joint fatigue data utilizing the two most commonly used "fatigue rated" fastener systems:

- The Hi Lok/Hi Tigue System (Hi Shear Corp)
- The Taper Lok System (Omark Industries)

The major task consisted of fatigue testing 1008 elemental joint specimen using two basic types of elemental joint specimen:

- High load transfer where all the load is transferred from one joint member to the other
- Low load transfer where a small portion of the load (approximately 5 percent) is transferred from one joint member to the other.

Within this program, six important fastener system variables were investigated:

- 1. Fastener configuration
- 2. Fastener material
- 3. Amount of interference fit
- 4. Faying surface treatment
- 5. Sheet thickness/fastener diameter ratio
- 6. Fastener hole fabrication methods

Included in the program scope were tests to investigate the effect on joint fatigue characteristics due to:

- Loading frequency (strain rate)
- Type of test machine (constant amplitude vs. constant load)
- Special specimen fixturing

The test methods used were those proposed for insertion into MIL-STD-1312, "Fastener Test Methods". These method, were in general satisfactory in the assessment of the fatigue behavior of the joint system tested. The joint fatigue behavior patterns identified in this program included:

- Increase in fatigue life with increase in interference fit
- Decrease in fatigue life with increase in the amount of the load transferred by the fastener in the joint
- Insensitivity to fastener material
- Insensitivity to hole preparation methods
- Differences in the mode of failure associated with faying surface treatment, amount of load transferred by the fastener and number of load cycles endured.

TABLE OF CONTENTS

<u>Section</u>			<u>Title</u>	Page
	INTE	ODUCTIO	N	1
	CÓNC	LUSIONS		3
1	ASSE	SSMENT	OF FASTENER TEST METHODS	5
	1.1	BACKGR	OUND	5
	1.2	MATERI.	AL ACQUISITION AND PREPARATION	7
		1.2.1	Sheet Material Selection	7
		1.2.2	Hole Fabrication and Fastener Definition and Installation	8
		1.2.3	Faying Surface Treatment	12
	1.3	BASELI	NE DATA GENERATION	13
		1.3.1	General Description of Data Generated	13
		1.3.2	Influence of Test Machine on Data Generated	14
		1.3.3	Lap Joint Specimen Support Methods	15
		1.3.4	Effect of Test Frequency on Fatigue Characteristics	15
		1.3.5	Failure Modes of the Joint	16
		1.3.6	Effect of Joint Geometry on Fatigue Life	17
		1.3.7	Influence of Fastener Material on Fatigue	19
	1.4	EVALUA	TION OF THE PROPOSED STANDARD	19
		1.4.1	Effect of Fastener Fit	19
		1.4.2	Effect of Fastener Hole Conditioning	20
		1.4.3	Effect of Sheet Thickness/Fastener Diameter	r 21

TABLE OF CONTENTS (Continued)

Section	Title	Page
	1.5 PREPARATION OF THE TEST STANDARD	21
2	STATISTICAL SIGNIFICANCE OF DATA	22
	2.1 COMPUTER PLOTTING AND FIT OF DATA	22
	2.2 SURVIVABILITY AND PERCENT CONFIDENCE VALUES	23
3	REFERENCES	25
	APPENDIX I SHEET MATERIAL CERTIFICATION FOR 7075 ALUMINUM ALLOY	205
	APPENDIX II SHEET MATERIAL CERTIFICATION FOR TITANIUM 6A1-4V ALLOY	207
	APPENDIX III HOLE FABRICATION AND FASTENER INSTALLATION DETAILS	209
	APPTNDIX IV HI SHEAR CORPORATION REPORT 4-33002 EFFECT OF TEST FREQUENCY ON AMOUNT OF LOAD TRANSFER IN A REVERSE DOG BONE FATIGUE SPECIMEN	233
	APPENDIX V VARIABLES BELIEVED TO INFLUENCE THE FATIGUE LIFE OF JOINTS	239
	APPENDIX VI PERTINENT EXCERPTS FROM THE PROPOSED SHEAR JOINT FATIGUE TEST SPECIFICATION FOR MIL-STD-1312 "FASTENER TEST METHODS"	241

LIST OF ILLUSTRATIONS

Figure	<u>Title</u>	Page
1	Specimen Geometry Simple Lap Joint Specimen High Load Transfer Joint	27
2	Specimen Geometry One and One Half Dogbone Specimen Medium Load Transfer Joint	29
3	Specimen Geometry Reverse Dogbone Specimen Low Load Transfer Joint	31
14	Typical Low Load Transfer Joint Specimen Installation In Constant Load (Servo-Hydraulic) Fatigue Test Machine	33
5	Low Load Transfer Specimen Installed In Constant Amplitude (Resonant) Fatigue Test Machine	33
6	Illustration of "Sandwich" Support Fixture Installed On Simple Lap Joint Specimen	34
7	Illustration of Flexure Support Fixture Installed On Simple Lap Joint Specimen	34
8	Details of "Sandwich" Type Specimen Restraint Fixture	35
9	Details of Flexure Pivot (90° Offset) Test Specimen Restraint Fixture	36
10	Instrumented Reverse Dogbone Specimen Used Only For Load Transfer and Test Frequency Response Tests	37
11:	Example of Sheet Metal Failures Occurring Away From The Fastener Holes In The CSK Sheet	37
1.2	Example of Sheet Metal Failure Ocurring Away From The Fastener Holes In The Non-Countersunk Sheet	38
13	Example of Sheet Metal Failures Occurring Through The Fastener Holes In The CSK Sheet	38
14	Example of Sheet Metal Failure Occurring Through The Fastener Hole In The Non-Countersunk Sheet	39
15	Typical Failure Occurring In Both Sheets Of The Joint Specimen Through The Fastener Hole	39

Figure	Title	Page
16	Simple Lap Jt .100 7075-T76CLAD Hll (220) Hi Tigue (Int. Fit903) Spec Configuration X16136-1A T/D=0.53 Axial S/N Amb. Air R=0.1 High Load Transfer Joint	40
17	Simple Lap Jt .100 7075-T76CLAD Hll (260) Hi Tigue (Int. Fit003) Spec Configuration X16136-1B T/D=0.53 Axial S/N Amb. Air R=0.1 High Load Transfer Joint	41
18	Simple Lap Jt .100 7075-T76CLAD TI-6-4 Sta Hi Tigue (I. Fit003) Spec Configuration X16136-1E T/D=0.53 Axial S/N Amb. Air R=0.1 High Load Transfer Joint	42
19	Simple Lap Jt .100 TI-6-4 M.A. Hll (220) Hi Tigue (HLE FIT003) Spec Configuration X16136-4A T/D=0.53 Axial S/N Amb. Air R=0.1 High Load Transfer Joint	43
20	Simple Lap Jt .100 TI-6-4 M.A. Hll (260) Hi Tigue (Int. Fit003) Spec Configuration X16136-4B T/D=0.53 Axial S/N Amb. Air R=0.1 High Load Transfer Joint	44
21	Simple Lap Jt .100 TI-6-4 M.A. TI-6-4 Sta Hi Tigue (I. Fit003) Spec Configuration X16136-4E T/D=0.53 Axial S/N Amb. Air R=0.1 High Load Transfer Joint	45
22	Simple Lap Jt .100 7075-T76 Clad H11 (220) Taper Lok (I.F.=003) Spec Configuration X16136-LH T/D=0.53 Axial S/N Amb. Air R=0.1 High Load Transfer Joint	46
23	Simple Lap Jt .100 7075-T76 Clad Hl1 (260) Taper lok (I.F.=003) Spec Configuration XI6136-1J T/D=0.53 Axial S/N Amb Air R=0.1 High Load Transfer Joint	47
24	Simple Lap Jt .100 7075-T76 Clad TI-6-4 Sta Taper Lok (I.F003) Spec Configuration X16136-1M T/D=0.53 Axial S/N Amb Air R=0.1 High Load Transfer Joint	48
25	Simple Lap Jt .100 7075-T76 (11 (220) Taper Lok (I.F.=003) Spec Configuration X16136-4H T/D=0.53 Axial S/N Amb Air R=0.1 High Load Transfer Joint	49
26	Simple Lap Jt .100 TI-6-4 M.A. Hll (260) Taper Lok (I.F.=003) Spec Configuration X16136-4J T/D=0.53 Axial S/N Amb Air R=0.1 High Load Transfer Joint	50
27	Simple Lap Jt .100 TI-6-4 M.A. TI-6-4 Sta Taper Lok (I.F003) Spec Configuration X16136-4M T/D=0.53 Axial S/N Amb. Air R=0.1 High Load Transfer Joint	51
28	1 & 1/2 Dogbone .100 7075-T76CIAD H11 (220) Hi Tigue (I.F003) Spec Configuration XL6137-1A T/D=0.53 Axial S/N Amb Air R=0.1 Medium Load Transfer Joint	52

Figure	<u>Title</u>	rage
29	1 & 1/2 Dogbone .100 7075-T76 Clad Hll (260) Hi Tigue (I.F.=003) Spec Configuration X16137-1B T/D=0.53 Axial S/N Amb Air R=0.1 Medium Load Transfer Joint	53
30	1 & 1/2 Dogbone .100 7075-T76 Clad TI-6-4 Sta Hi Tigue (I. Fit003) Spec Configuration X16137-LE T/D=0.53 Axial S/N Amb Air R=0.1 Medium Load Transfer Joint	54
31	1 & 1/2 Dogbone .100 TI-6AL-4V MA HIR (220) Hi Tigue (I.F.=003) Spec Configuration X16137-4A T/D=0.53 Axial S/N Amb Air R=0.1 Medium Load Transfer Joint	55
32	1 & 1/2 Dogbone .100 TT-6AL-4V MA Hll (260) Hi Tigue (I.F.=003) Spec Configuration X16137-4B T/D=0.53 Axial S/N Amb Air R=0.1 Medium Load Transfer Joint	56
33	1 & 1/2 Dogbone .100 TI-6AL-4V MA TI-6-4 Sta Hi Tigue (I.F.=003) Spec Configuration X16137-4E T/D=0.53 Axial S/N Amb Air R=0.1 Medium Load Transfer Joint	57
3 ¹ 4	1 & 1/2 Dogbone .100 7075-T76 Clad H11 (220) Taper Lok (I.F.=003) Spec Configuration X16137-LH T/D=0.53 Axial S/N Amb Air R=0.1 Medium Load Transfer	58
35	1 & 1/2 Dogbone .100 7075-T76 Clad H11 (260) Taper Lok (I.F.=003) Spec C nfiguration X16137-LJ T/D=0.53 Axial S/N Amb Air R=0.1 Medium Load Transfer Joint	59
36	1 & 1/2 Dogbone .100 7075-T76 Clad TI-6-4 Sta Taper Lok (I.F003) Spec Configuration X16137-IM T/D=0.53 Axial 3/N Amb Air R=0.1 Medium Load Transfer Joint	60
37	1 & 1/2 Dogbone .100 TI-6AL-4V MA H11 (220) Taper Lok (I.F.=003) Spec Configuration X16137-4H T/D=0.53 Axial S/N Amb Air R=0.1 Medium Load Transfer Joint	61
38	1 & 1/2 Dogbone .100 TI-6AL-4V MA H11 (260) Taper Lok (I.F.=003) Spec Configuration X16137-4J T/D=0.53 Axial S/N Amb Air R=0.1 Medium Load Transfer Joint	62
39	1 & 1/2 Dogbone .100 TI-6AL-4V MA TI-6-4 Sta Taper Lok (I.F003) Spec Configuration X16137-4M T/D=0.53 Axial S/N Amb Air R=0.1 Medium Load Transfer Joint	63
40	Rev Dogbone .100 7075-T76 Clad Hll (220) Hi Tigue (I.F. =003) Spec Configuration X16138-1A T/D=0.53 Axial S/N Amb Air R=0.1 Low Load Transfer Joint	64
41	Rev Dogbone .100 7075-T76 Clad Hll (260) Hi Tigue (I.F.=003) Spec Configuration X16138-1B T/D=0.53 Axial S/N Amb Air R=0.1 Low Load Transfer Joint	65

Figure	Title	Page
42	Rev Dogbone .100 7075-T76 Clad TI-6-4 Sta Hi Tigue (I.F.=003) Spec Configuration X16138-1E T/D=C.53 Axial S/N Amb Air R=0.1 Low Load Transfer Joint	66
43	Rev Dogbone .100 TI-6AL-4V M.A. Hll (220) Hi Tigue (Int. Fit003) Spec Configuration X16138-4A T/D=0.53 Axial S/N Amb. Air R=0.1 Low Load Transfer Joint	67
ት ት	Rev Dogbone .100 TI-6AL-4V M.A. H11 (260) Hi Tigue (Int. Fit003) Spec Configuration X16138-45 T/D=0.53 Axial S/N Amb. Air R=0.1 Low Load Transfer Joint	68
45	Rev Dogbone .100 TI-6AL-4V M.A. TI-6-4 Sta Hi Tigue (I.F.=003) Spec Configuration X16138-4E T/D=0.53 Axial S/N Amb Air R=0.1 Low Load Transfer Joint	69
46	Rev Dogbone .100 7075-T76 Clad Hll (220) Taper Lok (I.F.=003) Spec Configuration X16138-1H T/D=0.53 Axial S/N Amb Air R=0.1 Low Load Transfer Joint	70
47	Rev Dogbone .100 7075-T76 Clad H11 (260) Taper Lok (I.F.=003) Spec Configuration X16138-1J T/D=0.53 Axial S/N Amb Air R=0.1 Low Load Transfer Joint	71
48	Rev Dogbone .100 7075-T76 Clad TI-6-4 Sta Taper lok (I.F003) Spec Configuration X16138-1M T/D=0.53 Axial S/N Amb Air R=0.1 Low Load Transfer Joint	72
49	Rev Dogbone .100 TI-6AL-4V M.A. Hll (220) Taper Lok (I.F.=003) Spec Configuration X16138-4H T/D=0.53 Axial S/N Amb. Air R=0.1 Low Load Transfer Joint	73
50	Rev Dogbone .100 TI-6AL-4V M.A. Hll (260) Taper Lok (I.F.=003) Spec Configuration X16138-4J T/D=0.53 Axial S/N Amb Air R=0.1 Low Load Transfer Joint	7 ¹ 4
51	Rev Dogbone .100 TI-6AL-4V M.A. TI-6-4 Sta Taper Lok (I.F003) Spec Configuration X16138-4M T/D=0.53 Axial S/N Amb Air R=0.1 Low Load Transfer Joint	75
52	Simple Lap Jt .100 7075-T76 Clad Hll (220) Hi Tigue (I.F.=00151 Spec Configuration X16136-IAA T/D=0.53 Axial S/N Amb Air R=0.1 High Load Transfer Joint	76
53	Simple Lap Jt .10D 7075-T76 Clad Hll (220) Hi Tigue (I.F.=0045) Spec Configuration X16136-1AAA T/D=0.53 Axial S/N Amb Air R=0.1 High Load Transfer Joint	77
.5 ⁴	Simple Lap Jt .100 7075-T76 Clad TI-6-4 Sta Hi Tigue (I.F0015) Spec Configuration X16136-1EE T/D=0.53 Axial S/N Amb Air R=0.1 High Load Transfer Joint	78

Figure	<u>Title</u>	Page
55	Simple Lap Jt .100 7075-T76 Clad TI-G-4 Sta Hi Tigue I.F0045) Spec Configuration X16136-1EEE T/D=0.53 Axial S/N AMB Air R=0.1 High Load Transfer Joint	79
56	Simple Lap Jt .100 7075-T76 Clad Hll (220) Taper Lok (I.F.=.0015) Spec Configuration X16136-1HH T/D-0.53 Axial S/N AMB Air R=0.1 High Load Transfer Joint	80
57	Simple Lap Joint .100 7075-T76 Hll (220) Taper Lok (I.F0045) Spec Configuration X16136-1HHH T/D=0.53 Axial S/N AMB Air R=0.1 High Load Transfer Joint	8.2
58	Simple Lap Jt .100 7075-T76 Clad TI-G-4 Sta Taper Lok (I.F0015) Spec Configuration X16136-1MM T/D=0.53 Axial S/N AMB Air R=0.1 High Load Transfer Joint	82
59	Simple Lap Jt .100 7075-T75 Clad TI-G-4 Sta Taper Lok (I.F0045 Spec Configuration X16136-1MM T/D=0.53 Axial S/N AMB Air R=0.1 High Load Transfer Joint	83
60-	Rev. Dogbone .100 7075-T75 Clad Hll (220) Hi Tigue (Int. Fit0015 Spec Configuration X16138-1AA T/D=0.53 Axial S/N AMB Air R=0.1 Low Load Transfer Joint	84
61	Rev. Dogbone .100 7075-T76 Clad Hll (229) Hi Tigue (Int. Fit0045 Spec Configuration X16138-1AAA T/D=0.53 Axial S/N AMB Air R=0.1 Low Load Transfer Joint	85
62	Rev. Dogbone .100 7075-T76 Clad TI-G-4 Sta Hi Tigue (I.F0015) Spec Configuration X16138-1EE T/D=0.53 Axial S/N AMB Air R=0.1 Low Load Transfer Joint	86
63	Rev. Dogbone .100 7075-T76 Clad TI-G-4 Sta Hi Tigue (I.F0045) Spec Configuration X16138-IEEE T/D= 0.53 Axial S/N AMB Air R=0.1 Low Load Transfer Joint	-87
64	Rev. Dogbone .100 7075-T76 Clad Hll (220) Taper Lok (I.F.=.0015) Spec Configuration X16138-1HH T/D=0.53 Axial S/N AMB Air R=0.1 Low Load Transfer Joint	88
65	Rev. Dogbone .100 7075T-76 Clad Hll (220) Taper Lok II.F.=0045) Spec Configuration X16138-1HHH T/D=0.53 Axial S/N AMB Air R=0.1 Low Load Transfer Joint	89
66	Rev. Dogbone .100 7075-T76 Cald TI-G-4 Sta Taper Lok (I.F0015) Spec Configuration X16138-1MM T/D=0.53 Axial S/N AMB Air R=0.1 Low Load Transfer Joint	90
67	Rev. Dogbone .100 7075-T76 Clad TI-G-4 Sta Taper Lok (I.F00+5) Spec Configuration X16138=1MM T/D=0.53 Axial S/N AMB Air R=0.1 Low Load Transfer Joint	91

Figure	<u> Title</u>	Page
68	Effect on Fatigue Characteristic Due to Amount of Interference Fit 7075-T76 Simple Lap Joint 3/16 H11 (220) Hi Tigue $T/D = .53$ Axial S/N AMB Air R = 0.1	92
69	Effect on Fatigue Characteristic Due to Amount of Interference Fit 7075-T76 Simple Lap Joint $3/16$ Ti-6-4 Sta Hi Tigue T/D = .53 Axial S/N AMB Air R = 0.1	93
70	Effect on Fatigue Characteristic Due to Amt of Interference Fit 7075-T76 Simple Lap Joint 3/16 Hll (220) Taper Lok T/D = .53 Axial S/N AMB Air R = 0.1	94
71	Effect on Fatigue Characteristic Due to Amt of Interference Fit 7075-T76 Simple Lap Joint $3/16$ Ti-6-4 Sta Taper Lok $T/D = .53$ Axial S/N AMB Air R = 0.1	95
72	Effect on Fatigue Characteristic Due to Amt of Interference Fit 7075 -T76 Reverse Dogbone Joint 3/16 H11 (220) Hi Tigue T/D = .53 Axial S/N AMB Air R = 0.1	96
73	Effect on Fatigue Characteristic Due to Amt of Interference Fit 7075-T76 Reverse Dogbone Joint 3/16 Ti-6-4 Sta Hi Tigue T/D = .53 Axial S/N AMB Air R = 0.1	97
7 ¹ 4	Effect on Fatigue Characteristic Due to Amt of Interference Fit 7075-T76 Reverse Dogbone Joint 3/16 H11 (220) Taper Lok T/D = .53 Axial S/N AMB Air R = 0.1	98
75	Effect on Fatigue Characteristic Due to Amt of Interference Fit 7075-T76 Reverse Dogbone Joint 3/16 Ti-6-4 Sta Taper Lok T/D = .53 Axial S/N AMB Air R = 0.1	99
76	Effect of Fastnr Mtrl and Hole Prep. Techniques on Fatigue 7075-T76 Simple Lap Joint 3/16 Dia. Hi Tigue $T/D = .53$ Axial S/N AMB Air R = 0.1	100
77	Effect of Fstar Mtrl and Hole Prep Techniques on Fatigue $Ti-6-4$ Ma Simple Lap Joints 3/16 Dia Hi Tigue $T/D = .53$ Axial S/N AMB Air R = 0.1	101
78	Effect on Fstnr Mtrl and Hole Prep Techniques on Fatigue 7075-T76 Reverse Dogbone Joint 3/16 Dia Hi Tigue T/D = .53 Axial S/N AMB Air R = 0.1	102
79	Effect of Fstnr Mtrl and Hole Prep Techniques on Fatigue Ti-6-4 Ma Reverse Dogbone Joint 3/16 Dia Hi Tigue T/D = .53 Axial S/N AMB Air R = 0.1	103

Figure	<u>Title</u>	Page
80	Effect of Fstnr. Dia and Hole Prep Techniques on Fatigue 7075-T76 Simple Lap Joint 3/16 Dia Taper Lok T/D=.53 Axial S/N Amb Air R=0.1	104
81	Effect of Fstnr. Dia and Hole Prep Techniques on Fatigue TI-6-4 MA Simple Lap Joint 3/16 Dia Taper Lok T/D=.53 Axial S/N Amb Air R=0.1	105
82	Effect of Fstnr. Dia and Hole Prep Techniques on Fatigue 7075-T76 Reverse Dogbone Joint 3/16 Dia Taper Lok T/D=.53 Axial S/N Amb Air R=0.1	106
83	Effect of Fstnr. Dia and Hole Prep Techniques on Fatigue TI-6-4 MA Reverse Dogbone Joint 3/16 Dia Taper Lok T/D=.53 Axial S/N Amb Air R=0.1	107
84	Sheet Thickness/Fstnr Dia Ratio Effect on Fatigue Character- istic of 7075-T76 Simple Lap Joint Hll (220) Hi Tigue (Int. Fit=003) Axial S/N Amb Air R=0.1	108
85	Sheet Thickness/Fstnr. Dia Ratio Effect on Fatigue Characteristic of 7075-T76 Simple Lap Joints TI-6-4 Sta Hi Tigue (I. Fit003) Axial S/N Amb. Air R=-0.1	109
86	Sheet Thickness/Fstnr. Dia Ratio Effect on Fatigue Characteristic of 7075-T76 Simple Lap Joints Hll (220) Taper Lok (I.F.=003) Axial S/N Amb. Air R=+0.1	110
87	Sheet Thickness/Fstnr. Dia. Ratio Effect on Fatigue Characteristic of 7075-T76 Simple Lap Joints TI-6-4 Sta Taper Lok (I.F003) Axial S/N Amb. Air R=+0.1	111
88	Sheet Thickness/Fstnr. Dia Ratio Effect on Fatigue Characteristic of 7075-T76 Rev. Dogbone Joints Hll (220) Hi Tigue (I.F.=003) Axial S/N Amb. Air R=+0.1	112
89	Sheet Thickness/Fstnr. Dia Ratio Effect on Fatigue Characteristic of 7075-T76 Rev. Dogbone foints TI-6-4 Sta Hi Tigue (I.F.=003) Axial S/N Amb. Air R=0.1	113
90	Sheet Thickness/Fstnr. Dia Ratio Effect on Fatigue Characteristic of 7075-T76 Rev. Dogbone Joints Hll (220) Taper Lok (I.F.=003) Axial S/N Amb. Air R=0.1	114
91	Sheet Thickness/Fstnr. Dia Ratio Effect on Fatigue Characteristic of 7075-T76 Rev. Dogbone Joints TI-6-4 Sta Taper Lok (I.F.=003) Axial S/N Amb. Air R=0.1	115
92	Lap Joint Specimen - Single Shear 100% Load Transfer	247
93	Specimen Detail, Low Load Transfer Test Specimen Joint	248
94	Specimen Detail, No Load Transfer Test Specimen Joint	249

LIST OF TABLES

Table	Title	Page
I	INDEX TO BASELINE DATA GENERATION	116
II	INDEX TO TABULAR DATA AND FIGURES	117
III	INDEX TO TABULAR DATA AND FIGURES (EFFECT OF FASTENER HOLE CONDITIONING)	118
IV	INDEX TO TABULAR DATA AND FIGURES (EFFECT OF SHEET THICKNESS/FASTENER DIAMETER RATIO)	119
v	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT HI-TIGUE, 7075-T76 CLAD HIGH LOAD TRANSFER JOINT	120
ΛĪ	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT HI TIGUE, 7075-T76 CLAD HIGH LOAD TRANSFER JOINT	ıŝī
VII	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT HI TIGUE, 7075-T76 CLAD HIGH LOAD TRANSFER JOINT	122
VIÌI	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT HI TIGUE, T1-6A1-4V M.A. HIGH LOAD TRANSFER JOINT	123
IX	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT HI TIGUE, Ti-6A1-4V M.A. HIGH LOAD TRANSFER JOINT	124
х	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT HI TIGUE, Ti-6Al-4V M.A. HIGH LOAD TRANSFER JOINT	125
XI	AXIAL FATIGUE STRENCTH - INTERPERENCE FIT TAPER LOK, 7075-T76 CLAD HIGH LOAD TRANSFER JOINT	126
XII	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TAPER LOK, 7075-176 CLAD HIGH LOAD TRANSFER JOINT	127
XIII	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TAPER LOK, 7075-T76 CLAD HIGH LOAD TRANSFER JOINT	128
XIV	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TAPER LOK, T1-6A1-4V M.A. HIGH LOAD TRANSFER JOINT	129
xv	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TAPER LOK, Ti-6A1-4V M.A. HIGH LOAD TRANSFER JOINT	130
XVI	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TAPER LOK,	131

Table	Title	Page
XVII	AXIAL FATIGUE STRENGTH - INFERFERENCE FIT HI TIGUE, 7075-T76 CLAD MEDIUM LOAD TRANSFER JOINT	134
XVIII	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT HI TIGUE, 7075-T76 CLAD MEDIUM LOAD TRANSFER JOINT	135
XIX	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT HI TIGUE, 7075-T76 CLAD MEDIUM LOAD TRANSFER JOINT	136
XX	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT HI TIGUE, Ti-6A1-4V M.A. MEDIUM LOAD TRANSFER JOINT	137
XXI	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT HI TIGUE, Ti-6Al-4V M.A. MEDIUM LOAD TRANSFER JOINT	138
XXII	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT HI TIGUE, Ti-6Al-4V M.A. MEDIUM LOAD TRANSFER JOINT	139
XXIII	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TAPER LOK, 7075-T76 CLAD MEDIUM LOAD TRANSFER JOINT	2.40
VXIV	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TAPER LOK, 7075-T76 CLAD MEDIUM LOAD TRANSFER JOINT	141
XXV	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TAPER LOK, 7075-T76 CLAD MEDIUM LOAD TRANSFER JOINT	142
XXVI	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TAPER LOK, Ti-6A1-4V M.A. MEDIUM LOAD TRANSFER JOINT	143
XXVII	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TAPER LOK, Ti-6A1-4V M.A. MEDIUM LOAD TRANSFER JOINT	144
XXVIII	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TAPER LOK, Ti-6Al-4V M.A. MEDIUM LOAD TRANSFER JOINT	145
XXIX	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT HI TIGUE, 7075-T76 CLAD LOW LOAD TRANSFER JOINT	146
XXX	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT HI TIGUE, 7075-176 CLAD LOW LOAD TRANSFER JOINT	147
XXXI	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT HI TIGUE, 7075-T76 CLAD LOW LOAD TRANSFER JOINT	148
XXXII	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT HI TIGUE, Ti-6Al-4V M.A. LOW LOAD TRANSFER JOINT	149
XXXIII	AXIAL FATIGUE STRENGTH - INTERFERENCF FIT TI TIGUE, Ti-6Al-4V M.A. LOW LOAD TRANSFER JOINT	150
XXXIV	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT HI TIGUE,	151

Table	Title	Page
XXXV	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TAPER LOK, 7075-T76 CLAD LOW LOAD TRANSFER JOINT	152
IVXXX	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TAPER LOK, 7075-T76 CLAD LOW LOAD TRANSFER JOINT	153
XXXVII	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TAPER LOK, 7075-T76 CLAD LOW LOAD TENNSFER JOINT	154
XXXVIII	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TAPER LOK, Ti-6Al-4V M.A. LOW LOAD TRANSFER JOINT	155
XXXXX	AXIAL FATICUE STRENGTH - INTERFERENCE FIT TAPER LOK, Ti-6Al-4V M.A. LOW LOAD TRANSFER JOINT	156
ХГ	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TAPER LOK, T1-6AL-4V M.A. LOW LCAD TRANSFER JOINT	157
XLI	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT ALLOY STEEL HI TIGUE, 7075-176 CLAD HIGH LOAD TRANSFER JOINT - LOW INTERFERENCE FIT	158
XLII	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT ALLOY STEEL HI TIGUE, 7075-T76 CLAD HIGH LOAD TRANSFER JOINT - HIGH INTERFERENCE FIT	159
XLIII	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TITANIUM HI TIGUE, 7075-T76 CLAD HIGH LOAD TRANSFER JOINT - LOW INTERFERENCE FIT	160
XLIV	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TITANIUM HI TIGUE, 7075-T76 CLAD HIGH LOAD TRANSFER JOINT - HIGH INTERFERENCE FIT	161
XLV	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT ALLOY STEEL TAPER LOK, 7075-T76 CLAD HIGH LOAD TRANSFER JOINT - LOW INTERFERENCE FIT	162
XLVI	AXIAL FATIQUE STRENGTH - INTERFERENCE FIT ALLOY STEEL TAPER LOK, 7075-T76 CLAD HIGH LOAD TRANSFER JOINT - HIGH INTERFERENCE FIT	163
XLVII	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TITANIUM TAPER LOK, 7075-T76 CLAD HIGH LOAD TRANSFER JOINT - LOW INTERFERENCE FIT	164
XLVIIĪ	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TITANIUM TAPER LOK, 7075-T76 CLAD HIGH LOAD TRANSFER JOINT - HIGH INTERFERENCE FIT	165
XTIX	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT ALLOY STEEL HI TIGUE, 7075-T76 CLAD LOW LOAD TRANSFER JOINT -	166

Table	Title	Page
L	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT ALLOY STEEL HI TIGUE, 7075-T76 CLAD LOW LOAD TRANSFER JOINT - HIGH INTERFERENCE FIT	165
LI	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TITANIUM HI TIGUE, 7075-T76 CLAD LOW LOAD TRANSFER JOINT - LOW INTERFERENCE FIT	166
LII	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TITANIUM HI TIGUE, 7075-T76 CLAD LOW LOAD TRANSFER JOINT - HIGH INTERFERENCE FIT	167
LIII	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT ALLOY STEEL TAPER LOK, 7075-T76 CLAD LOW LOAD TRANSFER JOINT - LOW INTERFERENCE FIT	168
LIV	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT ALLOY STEEL TAPER LOK, 7075-T76 CIAD LOW LOAD TRANSFER JOINT - HIGH INTERFERENCE FIT	169
LV	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TITANIUM TAPER LOK, 7075-T76 CLAD LOW LOAD TRANSFER JOINT - LOW INTERFERENCE FIT	179
LVI	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TITANIUM TAPER LOK, 7075-T76 CLAD LOW LOAD TRANSFER JOINT - HIGH INTERFERENCE FIT	171
LVII	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT STEEL HI TIGUE, 7075-T76 CIAD HIGH LOAD TRANSFER JOINT - PRECISION HOLE FABRICATION	172
TA11 <u>Ī</u>	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT STEEL HI TIGUE, Ti-6A1-4V, M.A. HIGH LOAD TRANSFER JOINT - PRECISION HOLE FABRICATION	173
LVIX	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TITANIUM HI TIGUE, 7075-T76 CLAD HIGH LOAD TRANSFER JOINT - PRECISION HOLE FABRICATION	174
LX	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TITANIUM HI TIGUE, Ti-6Al-4V M.A. HIGH LOAD TRANSFER JOINT - PRECISION HOLE FABRICATION	175
LXI	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT STEEL HI TIGUE, 7075-T76 CLAD LOW LOAD TRANSFER JOINT - PRECISION HOLE FABRICATION	176
IXII	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT STEEL HI TIGUE, Ti-6A1-4V M.A. LOW LOAD TRANSFER JOINT - PRECISION HOLE FABRICATION	177

Table	Title	Page
IXIII	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TITANIUM HI TIGUE, 7075-T76 CLAD LOW LOAD TRANSFER JOINT - PRECISION HOLE FABRICATION	178
TXIA ·	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TITANIUM HI TIGUE, Ti-6A1-4V M.A. LOW LOAD TRANSFER JOINT - PRECISION HOLE FABRICATION	179
TXA	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT STEEL TAPER LOK, 7075-T76 CIAD HIGH LOAD TRANSFER JOINT - PRECISION HOLE FABRICATION	180
LXVI	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT STEEL TAPER LOK, Ti-6A1-4V N.A. HIGH LOAD TRANSFER JOINT - PRECISION HOLE FABRICATION	181
IXVII	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TITANIUM TAPER LOK, 7075-T76 CLAD HIGH LOAD TRANSFER JOINT - PRECISION HOLE FABRICATION	182
IXVIII	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TITANIUM TAPER LOK, Ti-6A1-4V M.A. HIGH LOAD TRANSFER JOINT - PRECISION HOLE FABRICATION	183
TXAIX	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT STEEL TAPER LOK, 7075-T76 CLAD LOW LOAD TRANSFER JOINT - PRECISION HOLE FABRICATION	184
LXX	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT STEEL TAPER LOK. Ti-6A1-4V M.A. LOW LOAD TRANSFER JOINT - PRECISION HOLE FABRICATION	185
LXXI	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TITANIUM TAPER LOK, 7075-T76 CLAD LOW LOAD TRANSFER JOINT - PRECISION HOLE FABRICATION	186
IXXII	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TITANIUM TAPER LOK, T1-6A1-4V M.A. LOW LOAD TRANSFER JOINT PRECISION HOLE FARBICATION	187
IXXIII	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT STEEL HI TIGUE, 7075-T76 CLAD HIGH LOAD TRANSFER JOINT - T/D = .33	188
TXXIA-	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT STEEL HI TIGUE, 7075-T76 CLAD, HIGH LOAD TRANSFER JOINT T/D = .85	189
LXXV	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TITANIUM HI TIGUE, 7075-T76 CLAD, HIGH LOAD TRANSFER JOINT T/D = .33	190

Table	<u>Title</u>	Pag
TXXAI	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TITANIUM HI TIGUE, 7075 -T76 CLAD, HIGH LOAD TRANSFER JOINT T/D = .85	191
TXXAII	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT STEEL TAPER LOK, 7075-T76 CLAD, HIGH LOAD TRANSFER JOINT - T/D = .33	192
TXXAIII	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT STEEL TAPER LOK, $7075-176$ CLAD, HIGH LOAD TRANSFER JOINT - $1/10 = 1.85$	193
TXXIX	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TITANIUM TAPER LOK, 7075-T76 CLAD, HIGH LOAD TRANSFER JOINT - T/D = .33	194
TXXX	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TITANIUM TAPER LOK, 7075-T76 CLAD, HIGH LOAD TRANSFER JOINT - T/D = .85	195
IXXXI	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT STEEL HI TIGUE, 7075-I76 CLAD, LOW LOAD TRANSFER JOINT - I/D = .33	196
ĪXXXII	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT STEEL HI TIGUE, 7075-T76 CLAD, LOW LOAD TRANSFER JOINT - T/D = .85	197
FXXXIII	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TITANIUM HI TIGUE, 7075-T76 CLAD, LOW LOAD TRANSFER JOINT - T/D = .33	198
TXXXIA	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TITANIUM HI TIGUE, 7075-T76 CLAD, LOW LOAD TRANSFER JOINT - T/D = .85	199
TXXXA	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT STEEL TAPER LOK, 7075-T76 CLAD, LOW LOAD TRANSFER JOINT - $T/D = .33$	200-
TXXXAI	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT STEEL TAPER LOK, 7075-T76 CIAD, LOW LOAD TRANSFER JOINT - T/D = .85	201
TXXXXII	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TITANIUM TAPER LOK, 7075-T76 CIAD, LOW LOAD TRANSFER JOINT - T/D = .33	202
TXXXAIII	AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TITANIUM TAPER LOK, 7075-T76 CLAD, LOW LOAD TRANSFER JOINT -	203

Table	Title	Page
LXXXIX	HOLE FABRICATION DETAILS	211
XC	FASTENER HOLES SIZES, HIGH LOAD TRANSFER JOINTS, TAPERED FASTENER PROTRUSION BEFORE INSTALLATION (INCHES)	212
XCI	FASTENER HOLES SIZES, HIGH LOAD TRANSFER JOINTS, HOLE DIAMETER FOR STRAIGHT SHANK FASTENERS (INCHES)	51 8
XCII	FASTENER HOLE SIZES, MEDIUM LOAD TRANSFER JOINTS, TAPERED FASTENER PROTRUSION BEFORE INSTALLATION (INCHES)	224
XCIII	FASTENER HOLE SIZES, MEDIUM LOAD TRANSFER JOINTS, HOLE DIAMETER FOR STRAIGHT SHANK FASTENERS (INCHES)	225
XCIV	FASTENER HOLE SIZES, LOW LOAD TRANSFER JOINTS, TAPERED FASTENER PROTRUSION BEFORE INSTALLATION (INCHES)	226
XCV	FASTENER HOLES SIZES, LOW LOAD TRANSFER JOINTS, HOLE DIAMETER FOR STRAIGHT SHANK FASTENERS (INCHES)	229
XCVI	RANDOM SAMPLING OF STRUCTURAL FASTENERS (FINISHED DIAMETERS IN INCHES)	232

INTRODUCTION

With modern aircraft designs utilizing thousands of different types of fasteners, the problem of fastener evaluation is one of ever increasing complexity. While there are standards for fastener fabrication and evaluation, they are often confusing, overlapping and fail to identify and standardize those parameters that are most critical to the actual performance of the entire installed fastener system. Consequently, each manufacturer has continued to expand and propagate his own line of fasteners employing his own fastener evaluation procedures. As a result it has been difficult to evaluate and compare realistically the performance of various fasteners in the "installed" condition. The task of establishing a test standard fell to the Fastener Testing and Development Group (FTDG) an Industry-Government Committee.

A research and development program was implemented in April 1971 under Navy Contract N62269-71-C-0450, Reference 1, which aided the FTDG in developing a proposed Military Test Standard (part of MIL-STD-1312) to evaluate the fatigue behavior of installed mechanical fasteners. The Navy program was divided into two tasks.

Task I consisted of a survey of twenty-two different aerospace fastener manufacturers and users to provide a basis for defining optimum requirements for an installed fastener fatigue test standard. Elemental joint configurations used in ad hoc standards ranged from simple lap joints to complicated multiple member box beams. The fatigue testing methods ranged from complex spectrum loading to simple constant amplitude. Task II was a fatigue test program to determine the suitability of six different elemental fastener joint specimens for use in the test standard.

The objectives of the current program funded by AFML under Contract F33615-72-C-1838 included the following:

- 1. To further develop and refine fatigue test methods proposed for insertion into MIL-STD-1312, "Fastener Test Methods".
- 2. To determine the suitability of proposed test standards as applied to interference fit fastener systems.
- 3. To provide the Air Force with joint fatigue data generated by utilizing the proposed test standard in tests of fasteners which reflect current usage.

The work reported herein provides an assessment of the proposed MIL-STD-1312 test method for establishing performance characteristics of installed interference fit fastener systems. This assessment has been implemented through the generation of fatigue data utilizing a large number of mechanically fastened joints with variations in geometric, production, and environmental parameters. In addition, the statistical significance and reproducibility of the test data was investigated. The following pages summarizes the conclusions reached. Section 1 presents the procedures used and results obtained. Section 2 discusses the presentation of the data, the computer techniques used, and statistical manipulation of the data.

CONCLUSIONS

From the data generated in this test program the following logical conclusions can be made:

- 1. The test method, as proposed for insertion into MIL-STD-1312, appears to be an effective experimental tool for the evaluation of behavior of fatigue installed interference fit fastener systems. The use of these methods would result in the generation of data which could characterize the fatigue behavior of elemental joint types utilized in airplane construction.
- 2. The specimen test lives and failure modes appear to be influenced by the joint geometry and the faying surface condition. Use of an effective antifretting coating on one series of test specimens resulted in a uniform failure mode and increased confidence that the test lives experienced were accounted for by the variables under investigation and not by fretting parameters.
- 3. In reviewing the individual test variables there seem to be:
 - (a) no effect on fatigue characteristics of the joints tested when subjected to loading frequencies ranging from 400 to 4500 cycles per minute.
 - (b) no effect on the fatigue characteristic of the simple lap joint specimens when using the "sandwich" restraint/guides as compared to using the flexure, 90° (offset) restraints.
 - (c) no effect on the fatigue characteristic of the joints tested when testing at either constant amplitude or at constant load.

- 4. With reference to the data generated where basic fastener system variables were changed the following relationships were noted:
 - (a) increasing the fastener interference fit generally increased the fatigue life. This trend was evident in both high load and low load transfer joint specimens.
 - (b) the data gained was inconclusive in respect to the effect on fatigue characteristic due to the type of hole fabrication methods used. The use of hole fabrication techniques simulating production line practices and hole fabrication methods simulating either experimental shop or model shop practices resulted in the data falling within the same scatter band.
 - (c) the test methods used were very effective in showing the effect on the fatigue characteristic of both high load and low load transfer specimens due to sheet material thickness/fastener diameter ratio. As the t/d ratio increased the fatigue lives decreased.

SECTION 1

ASSESSMENT OF FASTENER TEST METHODS

1.1 BACKGROUND

At the Fall 1969 meeting of the Fastener Testing Development Group (FTDG), a newly formed sub-group was given the task of defining a test method to characterize the fatigue properties of installed permanent type airframe structural fasteners with the ultimate objective of developing a test standard suitable for insertion into MIL-STD-1312, "Fastener Test Method", Reference 2. Concurrently, there were several programs being actively pursued in industry investigating suitable test methods to be used in the fatigue evaluation of an installed mechanical fastener, (Refs. 3-6). At succeeding FTDG meetings, discussions continued concerning a proposed MIL-STD test method. The subgroup assigned the responsibility for developing the test standards became acutely aware of the lack of data and the diverse test methods used in generating data. It became apparent that a program was needed with the objective of identifying the required information and criteria for a unified test standard. A contract was awarded to the Lockheed-California Company in April 1971 to develop the information needed. The information that was gathered and the results that were obtained in that initial government funded program are reported in Reference 1. One important task accomplished in the initial program was a government-industry survey of ad hoc standards being used by various organizations which was presented in a separate report, Reference 7. The results of the survey showed generally two basic types of joint configurations being used in the evaluation of "fatigue rated" fasteners. These were:

1. High load transfer where all the load is transferred from one joint member to the other of the type shown in Figure 1.

2. Low load transfer of the type shown in Figure 3, where the object of the test is to determine the influence of the fastener on the fatigue characteristics of the sheet material in which it is installed.

The survey determined that the one and one-half "dogbone" specimen, shown in Figure 2, classified as a medium load transfer specimen, which was being considered by the FTDG Joint Fatigue Sub-Group as a test standard, found only limited acceptance by the fastener testing community.

The test program conducted per Reference 1 did arrive at certain conclusions:

- The simple lap joint/single shear specimen, fully supported (restrained from rotating), emerged as the most consistent joint geometry for the prediction of fatigue characteristics of the installed fastener system. However, fretting fatigue failures were experienced in a significant percentage of the tests placing some question on the validity of the test method as a true evaluation of the installed fastener and its influence on the joint fatigue life.
- The test data generated using the one and one-half "dogbone" geometry appeared to result in a definite discrimination between the fastener systems compared, but not with the confidence and consistency of the simple lap joint.
- The low load transfer specimens tested in the program reported in Reference 1 did not generate data exhibiting a consistent high order of confidence in the ability to discriminate between the different fastener systems tested. However, the data did indicate a sensitivity to particular fastener system/joint configuration variables such as sheet metal stackup, type of fastener fit, and the amount of torque applied to the nut. Another item of importance was that the majority of the fatigue failures experienced occurred through the fastener holes. The low load transfer joint is a highly sensitive

joint responding to the fastener system variable. This greater sensitivity would account for the greater amount of test scatter in the data and correspondingly an inability, when analyzed statistically, to discern differences to the same confidence level, as, for example, in using the t-statistic to test for equality of the means of two samples (Reference 10, 11).

It should be noted that the program reported in Reference 1 and that reported herein differ in one important aspect. The referenced program objective was to assess candidate joint geometries and ad hoc standards in order to consolidate and reduce their number. Therefore, the fastener systems used in that program were chosen to provide divergence in the test data. By measuring the difference between the two mean values (one for each set of data for each fastener system) it was relatively simple to determine the discriminatory ability afforded by each of the candidate joint geometries considered. In the current program the test specimen geometries were previously defined. The objectives in this program were to obtain possible refinements and modifications to the proposed test method and to assess the proposed test standard in terms of applying it to generate design data.

1.2 MATERIAL ACQUISITION AND PREPARATION

1.2.1 Sheet Material Selection

Three aluminum alloys were considered for use in this program:

- a. 7075
- b. 7475
- c. 7050

The 7050 material was not used as sheet material because it offers no advantage over 7075 as a sheet form. Initially 7475-T76 clad was selected, but due to procurement lead time and minimum quantity requirement established by the producer it was not used. Therefore, 7075 sheet material was used in

the T76 clad condition per Federal Specification QQ-A-00250/25ASG dated 14 October 1969. The T76 temper represents the current and projected industry-wide usage of the 7075 alloy as a sheet material for airframe construction. The aluminum alloy sheet material was bought in the T6 condition and was re-heat treated to the T76 condition per MIL-H-6088-E dated February 1971. The mill certification received with the material is included in this report as Appendix I.

The titanium alloy sheet material chosen for the program was Titanium-6Al-4V in the mill annealed (MA) condition. The composition and mechanical properties of the material ordered were governed by Military Specification MIL-T-9046F, Amendment dated 15 March 1968, with the added limitation that the oxygen content, 02, be kept to a maximum of 0.13 percent by weight. Material certification on the alloy used is attached to this report as Appendix II.

The sheet materials were sheared and contour machined to the proper dimensions using a conventional profile milling machine. The detail test specimen drawings have been reproduced for this report and are included as Figures 1, 2, and 3. The identification numbering system is also shown in Figures 1, 2, and 3. Each specimen had its identification number electric penciled on it along with an crientation reference marked "top" or "bottom". Each individual specimen identification number also codes the particular fastener system used.

1.2.2 Hole Fabrication and Fastener Definition and Installation

The two types of hole fabrication techniques utilized in this program were "production" and "precise". The "production" technique covers joint specimens required for test conditions outlined in Tables 1, 2, and 4 and the "precise" treatment is used for fastener holes of specimens defined in Table 3. Definitive data for both the fasteners and the holes are given in Figures 1 through 3. Table IXXXIX in Appendix III lists the tooling and specification used in the fabrication of holes, both "production" and "precise". The methods of hole fabrication and fastener installation for the two fastener systems used also are given in Appendix III. It should be noted that every fastener hole was

inspected and recorded. These records are given in Table XC. In cases where a straight shank fastener was used the hole diameter was measured and recorded; in cases where a tapered fastener was used, the fastener protrusion was measured and recorded. Fastener protrusion is the height of the fastener shank (including head height for flush fasteners) remaining to be forced into the hole when the fastener is placed into the hole using finger pressure (30 lbs approx). This height (in inches) then divided by 48 gives the interference fit of the fastener when fully installed.

1.2.2.1 Resolution of Interference Fits Used in Test Program

A tabulation of fastener interference fits used in this program is given below. Initially in the program a different range of interference fits were to be used in the installation of the straight shank fastener system as compared to the installation of the tapered shank fastener system. Based on continued investigation, the Air Force and the contractor decided that in consideration of the size fastener used in this program, the gross amount of interference fit should be the same for both the straight shank and tapered shank fastener systems. This concurrence of fastener fit for both systems would not necessarily hold true for larger fastener diameters.

Test Program Interference Fits (3/16 Nominal Fastener)

Tut	Production Quality Holes	Precise Holes	
Interference Fit Range	Taper Lok and Hi Lok/Hi Tigue	Taper Lok	Hi Lok/Hi Tigue
Low	.0000 0030 mean0015	Not Applicable	
Std	0015 0045 mean0030	0032 0028	0035 0025
High	0030 0060 mean0045	Not Applicable	

Care was taken during the selective assembly of test specimens so that no overlap of interference fit occurred between specimen groups representing the low, standard, and high interference fit ranges.

1.2.2.2 Changes in Hll Fastener Coating

It had been recognized that an incompatibility problem might exist between the diffused nickel-cadmium plating on the Hll steel fasteners and the titanium-6Al-4V sheet, in which the fasteners are installed, if there is any free cadmium interface. One recommendation was to install the Hll fasteners bare in the titanium sheet. This would have added another variable to the program. The additional variable of a bare surface condition within the Hll fastener group could foreseeably cause variations in fretting conditions occurring in the fastener holes. This in turn would effect changes in test life of the various elemental joints being evaluated for a test standard. The objectives of the current program did not include an assessment of joint fatigue life due to variations in fastener surface finish or coatings. The contractor proposed that all steel fasteners installed in titanium material contain the same coating.

Elimination of the diffused nickel-cadmium coating and substitution of an alternate material as a fastener finish avoided the Hll fastener and 6Al-4V sheet material incompatibility. The coating also was required to minimize galling during fastener installation. The substituted material was selected from three candidate coatings:

- 1. Hi Kote I (aluminum coating)
- 2. Hi Kote II (inorganic coating)
- 3. Lubeco 2123 Type 2 (inorganic coating)

Bench tests were conducted utilizing straight shank fasteners made of steel and titanium stripped of their production coating and subsequently coated with one of the coatings listed above. Fasteners chosen for coating were taken from the same production lot, heat, and size. After coating, fasteners were installed in a three-fastener diameter thick plate of 7075 aluminum or

titanium-6Al-4V (ma) material. All fasteners (steel and titanium) were installed with a minimum interference fit of -.0040 inch and a maximum interference fit of -.0043 inch based on bare fastener dimensions. Fasteners were forced into the interference fit holes using a 5X rivet gun and pushed out with a hydraulic press. The fasteners were visually examined at 20X magnification to determine the amount of fastener coating scraped off during the installation and removal process. Although the Hi Kote II and Lubeco 2123 coatings possess similar fastener adherence characteristics, the Lubeco-coated fastener sustained the installation process better than did the Hi Kote II. Based on these tests, the Lubeco 2123 was selected as the fastener coating material.

Steel fasteners which utilized the Lubeco coating had been reordered so that the Lubeco coating would be applied to a manufactured bare fastener containing pre-plating dimensions. Steel fasteners for the aluminum sheet material specimens had the standard diffused nickel-cadmium coating while the titanium fasteners for the aluminum sheet material specimens used standard cetyl alcohol lubr cation.

1.2.2.3 Nut Configuration and Torque-Up

The work statement of the contract did not define the nut configuration and amount of torque applied to the nut. The Taper lok and Hi Tigue fasteners chosen for this program may, on occasion, utilize different nut configurations with variations in torqueup. The variable of nut configuration and amount of torqueup was not considered in this program. The nut configuration normally associated with each fastener type was used, i.e. washernut with Taper Lok and "torque off" collars with Hi Lok/Hi Tigue. Both nut configurations were made of alloy steel with both fastener systems torqued to the same value, 45 ±5 inch-pounds.

1.2.3 Faying Surface Treatment

In an attempt to preclude the influence of fretting on the fatigue strength characteristics of the various joint specimens chosen for this program, the following faying surface treatments were used:

• Aluminum Alloy Sheet Specimens

Following the machining, hole fabricating and identifying processes, all aluminum joint specimens tested in this program received a faying surface treatment. This treatment consisted of cleaning (degrease), spray paint with epoxy primer that meets Lockheed Specification LCM 37-1035 and Boeing Specification BMS 10-11F and cure at room temperature for 24 hours. The epoxy primer used was Finch Paint and Chemical Company #463-6-3 Corrosion Resistant Primer. It is a chemically cured epoxy primer coating especially designed to provide protection for ferrous and nonferrous metals against fresh and salt water, aircraft fuels, hydraulic fluids, engine oils and corrosion causing media. It was applied using a standard spraygun at a line pressure of 35 to 45 psi. The dry film thickness was approximately 0.7 mil.

After curing the primer and upon assembly, the faying surfaces of the joint specimens were coated with Products Research and Chemical Corporation (PRC) PR-1431-G Corrosion Inhibitive Sealant. PR-1431-G is a two-part dichromate cured, polysulfide sealant with an increased soluble chormate content to inhibit corrosion in areas subjected to galvanic action. The mixed material was applied using a standard short nap paint roller. It should be noted that all fasteners were installed dry (not coated with sealant).

• Titanium Sheet Specimens

All titanium joint specimens received faying surface treatment consisting of the following operations.

• The surfaces to be coated were cleaned by grit blasting using 150-180 grit aluminum oxide. Immediately after cleaning the parts were spray painted with Dow Corning Molykote 106 thermosetting resin bonded lubricant. The parts were cured in an oven at 300 ±10°F for sixty minutes before assembly operations were initiated. The Molykote 106 coating is designed to meet the requirements of MIL-L-8937 (ASG).

1.3 BASELINE DATA GENERATION

1.3.1 General Description of Data Generated

Four hundred and thirty-two specimens (out of a total of 1008) were used to generate the baseline data. These 432 specimens were further divided into 36 groups of 12 specimens for each test condition for defining the S/N curves. The test requirements and conditions of the baseline data are given in Table I. Table I also serves as an index to the individual Tables and Figures where the particular sets of baseline data are presented.

The lap joint, one and one-half "dogbone" and reverse "dogbone" elemental joint specimens referred to in Table I, and subsequent Tables, are detailed in Figures 1, 2, and 3 respectively. The alpha-numeric joint geometry designation referred to in Tables V through XCVI define completely all the particulars of the joint investigated. or example, joint part number X16138-LEEE, Figure 3, identifies the specimen geometry as follows:

- X16138 is the production joint design drawing shown in Figure 3.
- The first dash number identifies the stock material (1 indicates .100 stock 7075-T76 clad aluminum alloy).
- The single, double, or triple letter designates the fastener system and interference fit (EEE indicates a HLT411-6-4 Hi Tigue Fastener utilizing a fastener material of Titanium-6A1-4V, solution treat and aged (STA), installed in a high interference fit condition (-0.0045 inch).
- Absence of the letter "P" indicates a production quality hole.

The terms "precision" and "production" quality holes are defined in Section 1.4.2 and Appendix III of this report.

1.3.2 <u>Influence of Test Machine on Data Generated</u>

Two types of fatigue test machines were utilized in this program. principal machine used was a closed loop electro, hydraulic servo controlled type. In this machine the load sensing device (force transducer) is located in series with the test machine and provides the feed back signal in the servo loop. Inherent in this design is that the applied cyclic loads are continuously controlled during the test maintain a given stress level. Conversely, utilization of the machine where the identical cyclic loads are repeated until specimen failure occurs is referred to as a constant load fatigue test. The second type of fatigue test machine used was of the resonant type. This machine, consisting of a spring-mass system, is operated near its natural frequency resulting in a sinusoidal loading of constant amplitude. The output of a load transducer in series with the specimen is monitored through appropriate electronic hardware and software on a digital computer. The maximum and minimum load magnitudes of the loading cycle were recorded. These records indicate that both the maximum and minimum applied loads were within two percent of the calculated or desired values with the accuracy of readout being ±0.5 percent. This accuracy in loading was experienced in both types of fatigue test machines. The test frequency ranged between 600 and 2300 cycles per minute (cpm) with the majority of tests conducted at 1800 cpm. Furthermore, six constant amplitude and eight constant load machines were used during the course of the program with the test specimens randomly distributed among the machines.

In the course of the program, data were generated utilizing both types of test machines. Referring to Tables VI, XII, XIII, XXX, XXXI, XLII, XLIX, L, LIII, LVIII, LIX, IX, IXVI, and LXVIII comparisons can be made between specimens tested at constant amplitude and specimens tested at constant load with all other variables being equal. From the data in these tables it is concluded that neither the test frequency nor the variations in test machine characteristics had any significant or large effect on the test results.

A low load transfer joint specimen is shown installed in a constant load (servo-hydraulic) test machine in Figure 4. Figure 5 shows the same specimen geometry installed in a constant amplitude (resonant) fatigue machine.

1.3.3 Lap Joint Specimen Support Methods

Two types of joint guide arrangements were used during testing of the simple lap joint specimen. Eight percent of these specimens were tested utilizing the "sandwich" type guides. The remaining specimens were tested using the 90° "offset" flexure rod supports. Each type of guide arrangement is shown installed on a lap joint specimen in Figures 6 and 7. The design details of these guide fixtures are given in Figures 8 and 9. The need for using guides or joint rotation restraints is well established. Their design evolution and technical data substantiation is given in References 6 and 8.

During the Fall 1972 meeting of the FTDG a detail discussion was held on stiffening the simple lap joint (to reduce bending stresses). It was concluded that the stabilizing method described in the contracted program (see work statement, Attachment A, of Reference 8) may cause difficulty during set-up in certain types of fatigue test machines. A "sandwich" fixture (outside plates lined with teflon, etc. saddled around the joint) was proposed by several FTDG members. Therefore, this alternate method of stiffening the lap joint was utilized for a small portion of the lap joint tests conducted under this program for comparison purposes.

The data generated that lends itself to this comparison is presented in Tables V through XVI. In reviewing these data it did appear that the "sandwich" supported specimens sustained longer fatigue lives than specimens tested using the flexure supports. However, the limited amount of data generated does not lend itself to a high confidence statistical judgement and it appears that the individual data points of specimens tested with the "sandwich" support fall within the scatter band exhibited by the total sample tested.

1.3.4 Effect of Test Frequency on Fatigue Characteristics

A cursory investigation was undertaken to determine the effect on fatigue resulting from variance in testing frequencies. Data that are presented in

Table LXXVIII were generated using high load transfer joints. The test frequencies used for the comparison were 1800 and 500 cycles per minute. No significant difference was noted in the test lives experienced at these two frequencies with all other factors being equal.

Data are presented in Table XXXVII generated on low load transfer joints tested at 1800 or 500 cycles per minute. No significant difference in test lives was noted. In a previous program, Reference (6), a reverse "dogbone (low load transfer) specimen was instrumented with eight strain gages as shown in Figure 10. This specimen was of the same design as given in Figure 3. The instrumented specimen was submitted to the Hi Shear Corporation which conducted an independently funded test program to investigate the effect of test frequency on the amount of load transfer in a reverse "dogbone" fatigue specimen. This Hi Shear Study (Appendix IV) covered cycling the instrumented specimen at five frequencies between 400 and 4500 cycles per minute. It is reported that there was no variation in output of any of the strain gages throughout this testing.

1.3.5 Failure Modes of the Joint

The fatigue tests were continued until failure of the specimen occurred. The fracture surfaces of the failed specimens were visually inspected and the apparent failure mode recorded. These observations are presented, along with other pertinent data, in Tables V through IXXXVIII. The appearance of the fracture surface and location of a given characteristic determined the failure mode designation assigned to the individual specimen. Four failure modes exhibiting major phenomenoligical differences were identified.

- Sheet metal failure away from the countersunk fastener holes. This is the sheet metal portion of the test specimen that supports the manufactured head of the fasteners. This failure mode is illustrated in Figure 11.
- Sheet metal failures occurring away from the plain (non-CSK) fastener holes. This is the sheet metal portion of the joint bearing against the nut. See Figure 12.

- Sheet metal failure occurring through the fastener hole with a high degree of probability that the fracture initiated in the fastener hole portion of the test specimen. This type of failure occurred in the CSK hole as shown in Figure 13.
- Sheet metal failure occurring through the fastener hole in the plain hole (nut side) as illustrated in Figure 14.

Several generalizations can be made about the failure modes experienced by the aluminum alloy joint specimens tested in this program. In the high load transfer joints, Figure 1, the failure occurred through the fastener hole when subjected to a high level of applied stress resulting in relatively short test lives. On the other hand, the same type joints failed away from the fastener hole when testing at low stress intensity levels leading to relatively long test lives. The low load transfer specimens, Figure 3, experienced the majority of the failures through the fastener holes regardless of the magnitude of the applied stress. The reason for this occurrence is not a simple one. It is related to the amount of bending stress occurring in the joint and the degree of fretting located at the faying surface in the vicinity of the fastener holes. During long test lives fretting pits are established and the peak stresses resulting from these pits (sharp notches) are higher than those occurring at the fastener hole. Exception to this behavior pattern was exhibited by all titanium specimens, which failed through the fastener holes. A typical example is shown in Figure 15. The reason for this apparent discrepency is that a special faying surface treatment was used on the titanium specimens that eliminated the fretting experienced by the aluminum joints. The titanium coating used was one that was previously investigated in an Air Force sponsored program (Ref. 9).

1.3.6 Effect of Joint Geometry on Fatigue Life

In the following discussions the terms high, medium, and low load transfer joints are used. The description high, medium and low define the amount of the total tension or compression load applied to the joint that is transferred by the installed fastener from one joint member to the other.

Figure 1 is a 100 percent load transfer specimen, i.e., the fasteners transfer, in shear, all the load from one joint member to the other joint member. This type is commonly referred to as a simple lap joint and is described in MIL-R-7885B. It is the simplest and most economical specimen to fabricate.

The one and one-half dogbone specimen, Figure 2, is considered a medium load transfer joint. Per Reference 3, this configuration transfers approximately 30 percent of the load from the continuous dogbone sheet to the half dogbone sheet. Only one fastener is used with the manufactured head of the fastener normally installed in the continuous sheet. If pin-loaded during fatigue testing, a precise location and alignment of the holes is required on the grip ends of the specimen.

The reverse dogbone specimen, Figure 3, is considered a low load transfer joint and, per Reference 5, approximately 5 percent of the axial load is transferred at each fastener location. Two fasteners are used in this configuration with both fastener-manufactured head locations occurring on the same side of the sp-cimen.

The relationship between the amount of load transferred and the fatigue strength of the joint is that increasing load transfer decreases the fatigue strength. The obvious reason for this fatigue behavior is that the bearing, shear, bending, and tear-out stresses increase as a function of the increase in shear load across the fastener. In reviewing the S/N curves, Figures 16 through 51, the relationship appears true only for the fatigue data generated utilizing titanium sheet material joint specimens. For example, at 10 cycles, utilizing titanium taper shank fasteners installed in Ti-6A1-4V sheet (Tables XVI, XXVIII, and XL), the fatigue strength is; 25.0 ksi for the high load transfer joint; 38.0 ksi for the medium load transfer joint; and 43.0 ksi for the low load transfer joint. This trend was essentially the same for all fastener systems tested with titanium sheet material. The failure mode experienced for the titanium joint was fatigue cracking initiating at the fastener hole.

In contrast to the relationship observed in the titanium specimens, the aluminum specimens were not consistent in exhibiting decreasing fatigue strength with increasing load transfer capability. In general, the high and low load transfer specimens exhibited the same fatigue strength at 10⁷ cycles while the medium load transfer specimens exhibited a higher value. This pattern was repeated for essentially all the baseline data generated utilizing aluminum alloy joints. The only explanation offered is that fatigue strength is related to failure mode and the failure modes experienced by the aluminum alloy and titanium alloy joint specimens were different.

1.3.7 Influence of Fastener Material on Fatigue

The influence the fastener material has on fatigue properties of the joint is in part evident from the data of Figures 16, 17 and 18. It appears, from the data plotted, that the fatigue strength of the aluminum alloy joint specimens were not affected by the fastener material used. On the other hand, the data generated utilizing titanium alloy joint specimens indicate that the use of stiffer fastener material (HLL steel) results in improved fatigue properties.

1.4 EVALUATION OF THE PROPOSED STANDARD

One of the major objectives of the test program was to establish the suitability of the proposed test standard to evaluate fasteners in the installed condition. In order to achieve this objective it became necessary to conduct fatigue tests varying several fundamental fastener system parameters. Of the 48 variables listed in Appendix V the three most influential parameters are:

- (1) Interference Fit
- (2) Hole fabrication processes/quality control
- (3) Sheet thickness to fastener diameter ratio

1.4.1 Effect of Fastener Fit

Table II provides an index to the data generated investigating this effect of fastener fit on fatigue characteristic. Figures 52 through 67 are the

individual plots of the data generated. For comparison purposes, Figures 68 through 75 are multiple data plots in which the joint configuration was kept constant and the condition of the fastener fit varied.

As shown in Figures 68 through 75 the effect of interference fit on fatigue performance was not consistent. In general the specimens with fasteners installed with the greatest amount of interference fit exhibited the longest fatigue test lifetimes.

The high load transfer joints were more sensitive to the effect of interference fit than were the low load transfer joints. This was surprising since data generated in earlier programs, Reference 5 and 6, had shown the low load transfer joint sensitive to fastener fit. The fastener material did not seem to have any significant effect on the influence of the interference fit on fatigue life.

1.4.2 Effect of Fastener Hole Conditioning

Table III provides an index to the data generated investigating fastener hole conditioning. The test data were generated utilizing two different fastener materials and two different hole fabrication methods. The hole fabrication method referred to as a "production" hole simulated current airframe production practices and represented drilling procedures generally used in the mass fabrication of fastener holes. The other hole fabrication method investigated, referred to as a "precision" hole, was introduced to simulate fastener holes usually realized in experimental test programs where time is taken to pilot drill and ream, resulting in holes of close tolerance and high quality.

In the aluminum alloy specimens tested, the effect of the hole fabrication variables appeared to be negligible. However, it should be noted that even the "production" holes were good quality holes. Experience has shown that fastener holes in aluminum which do not meet production quality can result in very poor fatigue properties.

In the titanium alloy specimen tested the effect of the hole fabrication method was difficult to ascertain and no conclusions were drawn. The reason for difficulty in reaching any conclusion was:

The S/N curves plotted from the data were inconsistent.

- The magnitude of test scatter in this series of tests was greater than in any other series of tests conducted within the program.
- The fracture or initiation of fatigue cracking was identified to two different sources.
 - (1) Fatigue due to high local stresses such as root of sharp notches and;
 - (2) Fretting fatigue where the fastener experienced relative motion with the sides of the hole in which it was installed creating pits and abrasions.

1.4.3 Effect of Sheet Thickness/Fastener Diameter Ratio

The sheet material thickness, fastener diameter ratio (t/d) referred to as minimum, nominal, and maximum in this test program were arbitrarily chosen. The t/d value of .53 reflects good design practice; t/d = .33 is a marginal value approaching a feather edge condition; and the value of .85 reflects a design situation in which the sheet material can develop the full shear strength of the fastener.

Table IV provides an index to the data and the plotted S/N curves. From Figures 84 through 91, it can be concluded that keeping all the other variables constant the fatigue strength decreases with increase in sheet material thickness. This relationship appears to be valid for both the high and low load transfer joints. The degree of reproducibility experienced in this series of tests, considering the small amount of test scatter, was very encouraging.

1.5 PREPARATION OF THE TEST STANDARD

A draft of the tentative test standard was submitted to the FTDG in May 1973. The proposed specification, if approved, will become a part of MIL-STD-1312, "Fastener Test Methods". All the test procedures and specimen configurations used in this program conformed to the proposed MIL-STD-1312 test format. A great deal of the information gained in this program was applied in the drafting of the MIL-STD-1312 Specification. Pertinent sections of the proposed specification have been made available for insertion into this report. These sections have been reproduced and are presented in Appendix VI.

SECTION 2 STATISTICAL SIGNIFICANCE OF DATA

2.1 COMPUTER PLOTTING AND FIT OF DATA

Each set of data generated in this program was plotted into a standard Stress/Life (S/N) curve format utilizing an existing FORTRAN computer program especially written to provide best fit S/N curves from submitted constant amplitude fatigue data. The computer program utilizes the Least Mean Square (LMS) method of determining the best straight line fit through the data points.

The S-N curve fitting program provides the best fit curve(s) for the data points input by considering one line, all possible two line or all possible three line fits on a log stress (f) - log cycles to failure (N) basis. The best fit curves to the constant amplitude fatigue data are based on the use of equations of the form: $f = AN^B$ or log $f = \log A + B \log N$ in log-log space. The quantities f and N are the variables, and A and B are constants determined by the program.

The two line fits to the data points are obtained by first obtaining a one line fit to the first three data points and then a one line fit thru the remaining data points. The next two line fit is obtained by taking the first four data points for a one line fit and then a one line fit thru the remaining points. This procedure continues until all possible two line fits have been obtained. The last two line fit contains only three points for the second line. A similar procedure is followed for three line fits, e.g., first line - three points, second line - three points, third line remaining points; first line three points, second line - four points, third line remaining points, etc.

For each curve fit obtained, the program computes the following:

$$S_{yx} = \sqrt{\sum_{i=1}^{E=n} \frac{\sum [(+y_i)^2 - (-y_i)^2]}{\sum [(+y_i)^2 - (-y_i)^2]}}$$

where

+y = the log stress distance from the fitted curve to data points above the curve

-y_i = the log stress distance from the fitted curve to data points below the line

The program selects the best fit curve which is the curve yielding the lowest value of S and is referred to as "sigma" in the printout. If all the data points lie on the line, sigma = 0. The coefficients A and B for each fitted line are printed as part of the output. In addition to the best fit curve, the cycle value of the intersections of the first and second line and the second and third line are printed out if the best fit curve is a 2 line or 3 line curve. Also the following interpolated values of N which are within the range of the data, are printed out, $10\frac{1}{10}$, $10\frac{2}{10}$, $10\frac{3}{10}$, $10\frac{4}{10}$, $10\frac{5}{10}$, $10\frac{4}{10}$, $10\frac{5}{10}$, $10\frac{6}{10}$, $10\frac{8}{10}$, $10\frac{9}{10}$, $10\frac{10}{10}$.

2.2 SURVIVABILITY AND PERCENT CONFIDENCE VALUES

The computer generated best fit curve, which represents the constant amplitude fatigue data generated, can be considered as an analytically derived relationship between applied stress and joint fatigue life. The "best fit" curve can be defined as the boundary at which at least 50 percent of any future test specimens can be expected to survive when the specimens are taken from the same population, i.e., same specimen configuration under similar test conditions. The 50 percent survivability curve (best fit curve) is inherently plotted with 50 percent confidence. A second plot of the data usually shown as two straight lines to the left of the "best fit" curve is shown in Figures 16 through 67. This "second" plot is a lower bound which represents test conditions for 90 percent chance of survivability with 95 percent confidence. This lower bound is similar to the "B" basis now used in presenting static mechanical property data in MIL-HDBK-5.

The coordinates to which the lower bound 90 percent survivability with 95 percent confidence lines were drawn to were determined by utilizing techniques given in ASTM, STP91A, "Analysis of Fatigue Data", Section VB, pages 39 through 42 inclusive. The mechanics of constructing a point to which the 90 percent survivability, 95 percent confidence curve (in this report, straight line connections) can be plotted to is as follows:

Given a sample of n cycle lives for a fixed stress level S, compute the mean, \bar{x} , and standard deviation, s, of the transformed cycle lives. From Table 33, ASTM STP91A, read the value of k corresponding to the percent survival, p, the confidence level, and the sample size, n, that are being considered, in this case 90 percent and 95 percent. The value \bar{x} - ks is then the appropriate abscissa for the ordinate, S, on the S-N curve. The value of "k" is called a one-sided statistical tolerence limit.

The above procedures describing the 50 percent survivability with 50 percent confidence boundary curve and 90 percent survivability with 95 percent confidence boundary lines were incorporated as part of the existing software program developed for the computer plotting of S/N curves.

The statistical techniques described in the previous paragraphs were applied to a relatively small number of test data points obtained in this program. The sparse number of test points does limit the usefulness of the statistical and computer methods used. If the number of test points were increased, the effectiveness of the computer program and the statistical manipulation of the data would have been greatly enhanced. The reported test program called for three replicates at any one test condition and this number of replicates is the minimum requirement for the statistical operations performed.

SECTION 3 REFERENCES

- 1. R. B. Urzi, Navy Contract N62269-71-C-0450, Report No. LR 25280, "Standardization of Fatigue Tests of Installed Fastener Systems".
- 2. MIL-STD-1312, "Military Standard, Fastener Test Methods," 31 May 1967.
- 3. C. R. Smith, "Design Tips for Preventing Fatigue Failures", Assembly Engineering, May 1968.
- 4. R. B. Urzi, "Standardization of Fastener Tests", Lockheed-California Company Report LR 22950, December 1969.
- 5. W. E. Duncan, J. S. Sekhon, L. F. Ecker, "Test Methods for Fastened Assemblies", Assembly Engineering, January 1970.
- 6. R. B. Urzi, "Standardization of Fastener Tests", Lockheed-California Company, Report LR 24328, December 1970.
- 7. R. B. Urzi, "Standardization of Fatigue Tests of Installed Fastener Systems-Interim Report on Task I", Lockheed-California Report LR 24773, 16 September 1971.
- 8. LAC/030494, dtd. 15 August 1972, "Monthly Status Report #1, Exploratory Development of Standards and Mechanical Property Data of Interference Fit Fasteners".
- 9. AFML-TR-71-184, Air Force Materials Laboratory, September 1971, "Fretting Resistant Coatings for Titanium Alloys".
- 10. W. Volk, "Industrial Statistics", Chemical Engineering, March 1956.

11. E. L. Crow, F. A. Davis, M. W. Maxfield, Statistics Manual, Dover Publication 486-60599X, New York, New York.

TAPER LOK MMM TLV 100-3-4 MM TLV 100-3-4 TAPER LOK TAPER LOK TLV100-3-4 м TLH100-3-6 TAPER LOK TAPER LOK K TLH100-3-2 TAPER LOK TLHC100-3-4 ı ннн TLH100-3-4 TAPER LOK TLH100-3-4 TAPER LOK НН TLH100-3-4 TAPER LOK Н TLN1001-3 WASHER NUT-FASTENER SYSTEM IDENT, LETTER FASTENER DESCRIPTION PART NO.

TAPER LOK

TAPER LOK

TLV100-3-6

TLV 100-3-2

0

N

PROTRUSION MEASURED WITH FASTENER HAND PUSHED INTO THE HOLE.

ALL STEEL AND TITANIUM FASTENERS INSTALLED IN TITANIUM SHEET MTRL MUST NOT HAVE RECEIVED CADMIUM PLATING. THESE FASTENERS TO HAVE SOLID DRY FILM WUBRICANT PLUS CETYL ALCOHOL ONLY.

- 13. ALL FSTNR, HEADS FLUSH + .004
- 2. TAPERED HOLES MUST CHECKED DURING HOLE FABRICATION SETUP USING "BLUED" TAPER PINS
- 11. UNLESS OTHERWISE NOTED FAB. TAPERED HOLES USING COMBINATION TOOL (DRILL-REAMER-CSK)
- 10. UNLESS OTHERWISE NOTED FAB. STRAIGHT HOLES USING DOUBLE MARGIN DRILL, ETC. (NO REAMING)
- 9. RECORD ALL PROTRUSION MEASUREMENTS FOR TAPER LOK FSTNRS.
- 8. RECORD ALL HOLE DIAMETERS FOR HI TIQUE FASTENERS
- ALL TITANIUM SHEET SPECIMENS TO CONTAIN "MOLYKOTE 108" BONDED LUBRICANT IN FAYING SURFACE
- 6. ALL ALUMINUM SHEET SPECIMENS TO HAVE ZINC CHROMATE PRIMER PLUS PR 1431 GT SEALANT IN FAYING SURFACES
- 5. NO SCRATCHES, GOUGES, OR SCRIBE MARKS ALLOWED ANYW: "RE"ON SPECIMENS (SPECIMENS MUST BE INDIVIDUALLY WRAPPED)
- 4. BREAK ALL SHARP CORNERS
- 3. DEBURR ALL HOLES (INCLUDING FAYING SURFACE) 45° X .005
- FABRICATE HOLES ON ASSEMBLY. KEEP SPECIMEN PAIRS TOGETHER USING MASKING TAPE

TI-6A1-4V MATERIAL PER MIL-T-9046F WITH EXCEPTION THAT OXYGEN CONTENT BE KEPT TO 0.13% MAXIMUM (BY WEIGHT)

NOTE:

G	HLT411-6-6	HITIGUE	
F	HL1411-6-2	HI TIGUE	
-EEE	HLT411-6-4	HI TIGUE	
EE	HLT411-6-4-	HI TIGUE	
£	HLT411-6-4	HI TIGUE	
D	HLT315-6-6	HI TIGUE	
С	HLT315-6-2	HI TIGUE	
ð	HLT15-6-4	HI TIGUE	
AAA	HLT315-6-4	HI TIGUE	
- 🗛	HLT315-6-4	HI TIGUE	
A	HLT315-6-4	HI TIGUE	
_	HL1386-6	COLLAR	
FASIENER SYSTEM	FASTENER	DESCRIPTION	
IDENT. LETTER	PART NO.		

-4	LAP-JOINT ASS
-3	LAP JOINT AS
-2	LAP-JOINT AS
-1	LAP JOINT AS
FIRST DASH NUMBER	DESCRIPTIO

A

							_	
0	TLV100-3-6	TAPER LOK	-0.0030	.072216	: Ti-6AI-4V	AMS 4928	95 KSI SHEAR	45 <u>*</u> 5
N	TLV100-3-2	TAPER LOK	-0.0030	.072-,216	Ti-6AI-4V	AMS 4928	- 55 KSI SHEAR	45 ⁺⁵
ммм	1LV100-3-4	TAPER LOK	-0.0045	. 144288	Ti-6AI-4V	AA\S-4928	95 KSI SHEAR	45 ⁺ 5
MM	TLV100-3-4	TAPER LOK	-0.0015	.000-,144	Ti-6AI-4V	AMS 4928	95 KSI SHEAR	45 <u>*</u> 5
м	TLV100-3-4	TAPER LOK	-0.0030	.072216	Ti-6AI-4V	AMS 4928	95 KSI SHEAR	45 ⁺ 5
ι	TLH100-3-6	TAPER LOK	-0.0030	.072216	HII STL	AMS 6487	132 KSI SHEAR	45 <u>*</u> 5
к	TLH100-3-2	TAPER LOK	-0.0030	.072216	HII STL	AMS 6487	-132 KSI SHEAR	45 [*] .5
J	TLHC100-3-4	TAPER LOK	-0,0030	.072216	HII STL	AMS 6487	156 KSI SHEAR	45 ⁺ 5
ннн	TLH100-3-4	TAPER LOK	-0,0045	, 144-, 288	HII STL	AMS 6487	132 KSI SHEAR	45 <u>*</u> 5
нн	TLH100-3-4	TAPER LOK	-0,0015	.000144	HII STL	AMS 6487	132 KSI SHEAR	45 ⁺ 5
н	TLH100-3-4	TAPER LOK	-0,0030	.072216	HII STL	AMS 6487	132 KS1 SHEAR	45 ⁴ .5
	TLN1001-3	WASHER NUT			ALLOY STEEL	MIL-S-6049	-	
FASTENER SYSTEM IDENT. LETTER	FASTENER PART NO.	DESCRIPTION	NOMINAL INTERFERENCE FIT	PROTRUSION/15	FSTNR MTRL	MATERIAL SPECIFICATION	NOMINAL SHEAR STRENGTH	INSTALLATION TORQUE IN-LBS

HLT411-6-6	HITIGUE	-0.0030	. 1840 001	.1895 .1890	Ti-6AI-4V	AMS 4928	95 KS1 SHEAR	- 45 ² 5
HLT411-6-2	HI TIGUE	-0.0030	1860 .001	. 1895 1890	Ti-6AI-4V	AMS 4928	95 KS1 SHEAR	45*_5
HLT411-6-4	HI TIGUE	-0,0045	.1845 .001	. 1895 . 1890	Ti-6AI-4V	AMS 4928	95 KS1 SHEAR	45 [*] _5
HLT411-6-4	HI TIGUE	-0,0015	. 1875	. 1895 . 1890	Ti-6Al-4V	AMS 4928	95 KSI SHEAR	45 5
HLT411-6-4	HI TIGUE	-0.0030	. 1860 001	. 1895 . 1890	Ti-6AI-4V	AMS 4928	95 KS1 - SHEAR	45.5
HLT315-6-6	HI TIGUE	-0.0030	.1860 .001	. 1895 . 1885	HII STL	AMS 6487	132 KSI SHEAR	45 5
HL1315-6-2	HI TIGUE	-0,0030	.1860 .001	. 1895 . 1885	HII ŞTL	AMS 6487	132 KSI SHEAR	45 5
HLT15-6-4	HI TIGUE	-0.0030	. 1860	.1895 .1885	HII STL	AMS 6487	156 KSI SHEAR	45 5
HLT315_6-4	HI TIGUE	-0.0045	.1845 .001	.1895	HII STL	AMS 6487	132 KSI SHEAR	45 5
HLT315-6-4	HI TIGUE	-0.0015	. 1875	. 1895 . 1885	HII STL	AMS 6487	132 KS1 SHEAR	45 5
HL1315-6-4	HI TIGUE	-0.0030	.1860,.001	. 1895 . 1885	HII STL	AMS 6487	132 KSI SHEAR	45 5
HL1366-6	COLLAR			_	ALLOY STEEL	MIL-5-6049	* ====================================	
FASTENER	DESCRIPTION	NOMINAL INTERFERENCE FIT	HC/LE DIAMETER	FSTNR DIA,	FSTNR MTRL.	MATERIAL SPECIFICATION	NOMINAL SHEAR STRENGTH	INSTALLATION TORQUE IN-LBS
	HLT411-6-2 HLT411-6-4 HLT411-6-4 HLT411-6-6 HLT315-6-6 HLT315-6-2 HLT315-6-4 HLT315-6-4 HLT315-6-4 HLT315-6-4 HLT315-6-4 HLT315-6-6	HLT411-6-2 HI TIGUE HLT411-6-4 HI TIGUE HLT411-6-4 HI TIGUE HLT411-6-4 HI TIGUE HLT315-6-6 HI TIGUE HLT315-6-2 HI TIGUE HLT315-6-4 HI TIGUE HLT315-6-4 HI TIGUE HLT315-6-4 HI TIGUE HLT315-6-4 HI TIGUE HLT315-6-4 HI TIGUE HLT315-6-4 HI TIGUE FASTENER DESCRIPTION	HLT411-6-2 HI TIGUE -0.0030 HLT411-6-4 HI TIGUE -0.0045 HLT411-6-4 HI TIGUE -0.0015 HLT411-6-4 HI TIGUE -0.0030 HLT315-6-6 HI TIGUE -0.0030 HLT315-6-2 HI TIGUE -0.0030 HLT315-6-4 HI TIGUE -0.0030 HLT315-6-4 HI TIGUE -0.0045 HLT315-6-4 HI TIGUE -0.0045 HLT315-6-4 HI TIGUE -0.0015 HLT315-6-4 HI TIGUE -0.0030 HLT315-6-4 HI TIGUE -0.0030 HLT315-6-4 HI TIGUE -0.0030 HLT315-6-4 HI TIGUE -0.0030 HLT315-6-4 HI TIGUE -0.0030	HLT411-6-2 HI TIGUE -0.0030 .1860001 HLT411-6-4 HI TIGUE -0.0045 .1845001 HLT411-6-4 HI TIGUE -0.0015 .1875001 HLT411-6-4 HI TIGUE -0.0030 .1860001 HLT315-6-6 HI TIGUE -0.0030 .1860001 HLT315-6-2 HI TIGUE -0.0030 .1860001 HLT315-6-4 HI TIGUE -0.0030 .1860001 HLT315-6-4 HI TIGUE -0.0045 .1845001 HLT315-6-4 HI TIGUE -0.0015 .1875001 HLT315-6-4 HI TIGUE -0.0015 .1875001 HLT315-6-4 HI TIGUE -0.0030 .1860001 HLT315-6-4 HI TIGUE -0.0030 .1860001 HLT315-6-4 HI TIGUE -0.0030 .1860001	HLT411-6-2 HI TIGUE -0.0030 1.860°001 1895 HLT411-6-4 HI TIGUE -0.0045 .1845°001 1895 HLT411-6-4 HI TIGUE -0.0015 1.875°001 1.890 HLT411-6-4 HI TIGUE -0.0015 1.860°001 1.890 HLT411-6-4 HI TIGUE -0.0030 .1860°001 1.890 HLT315-6-6 HI TIGUE -0.0030 .1860°001 1.895 HLT315-6-2 HI TIGUE -0.0030 .1860°001 1.885 HLT315-6-4 HI TIGUE -0.0030 .1860°001 1.885 HLT315-6-4 HI TIGUE -0.0030 .1860°001 1.885 HLT315-6-4 HI TIGUE -0.0030 .1860°001 1.885 HLT315-6-4 HI TIGUE -0.0030 .1860°001 1.885 HLT315-6-4 HI TIGUE -0.0045 .1845°001 1.885 HLT315-6-4 HI TIGUE -0.0015 .1875°001 1.885 HLT315-6-4 HI TIGUE -0.0015 .1875°001 1.885 HLT315-6-4 HI TIGUE -0.0030 .1860°001 1.885 HLT315-6-4 HI TIGUE -0.0030 .1860°001 1.885 HLT315-6-4 HI TIGUE -0.0030 .1860°001 1.885	HITTIGUE	HLT411-6-2 HI TIGUE -0.0030 .1860001 .1895 Ti-6AI-4V AMS 4928 HLT411-6-4 HI TIGUE -0.0045 .1845001 .1895 Ti-6AI-4V AMS 4928 HLT411-6-4 HI TIGUE -0.0015 .1875001 .1895 Ti-6AI-4V AMS 4928 HLT411-6-4 HI TIGUE -0.0030 .1860001 .1890 Ti-6AI-4V AMS 4928 HLT411-6-4 HI TIGUE -0.0030 .1860001 .1895 Ti-6AI-4V AMS 4928 HLT315-6-6 HI TIGUE -0.0030 .1860001 .1895 HII STL AMS 6487 HLT315-6-2 HI TIGUE -0.0030 .1860001 .1895 HII STL AMS 6487 HLT315-6-4 HI TIGUE -0.0030 .1860001 .1895 HII STL AMS 6487 HLT315-6-4 HI TIGUE -0.0030 .1860001 .1895 HII STL AMS 6487 HLT315-6-4 HI TIGUE -0.0030 .1860001 .1895 HII STL AMS 6487 HLT315-6-4 HI TIGUE -0.0030 .1860001 .1895 HII STL AMS 6487 HLT315-6-4 HI TIGUE -0.0030 .1860001 .1895 HII STL AMS 6487 HLT315-6-4 HI TIGUE -0.0030 .1860001 .1895 HII STL AMS 6487 HLT315-6-4 HI TIGUE -0.0030 .1860001 .1895 HII STL AMS 6487 HLT315-6-4 HI TIGUE -0.0030 .1860001 .1895 HII STL AMS 6487 HLT315-6-4 HI TIGUE -0.0030 .1860001 .1895 HII STL AMS 6487 HLT315-6-4 HI TIGUE -0.0030 .1860001 .1895 HII STL AMS 6487 HLT315-6-4 HI TIGUE -0.0030 .1860001 .1895 HII STL AMS 6487 HLT315-6-4 HI TIGUE -0.0030 .1860001 .1895 HII STL AMS 6487 HLT315-6-4 HI TIGUE -0.0030 .1860001 .1895 HII STL AMS 6487 HLT315-6-4 HI TIGUE -0.0030 .1860001 .1895 HII STL AMS 6487 HLT315-6-4 HI TIGUE -0.0030 .1860001 .1895 HII STL AMS 6487 HLT315-6-4 HI TIGUE -0.0030 .1860001 .1895 HII STL AMS 6487 HLT315-6-4 HI TIGUE -0.0030 .1860001 .1895 HII STL AMS 6487	HITIGUE

-4	LAP JOINT ASSY	A11L-T-9046F	Ti-6A1-4V (14) .100 STOCK	MILL ANNEALED
-3	LAP JOINT ASSY-	(2Q-A-250/25	7075 CLAD	. 160 STOCK	176
-2	LAP JOINT ASSY	120 A-250/25	7075 CLAD	.063 STOCK	176
-1	LAP JOINT ASSY	(2Q-A-250/25	7075 CLAD	, 100 STOCK	176
FIRST DASH NUMBER	DESCRIPTION	SHEET MATERIAL ! PECIFICATION	SHEET MATERIAL	\$126	HEAT TREAT COND.

i.			
4AI-4V	AMS 4928	95 KSI SHEAR	45 <u>*</u> 5
4AI-4V	AMS 4923	55 KSI SHEAP	45 ⁺⁵
4 41-4V	AMS 4928	95 KSI SHEAR	45 [*] _5
4AI-4V	AMS 4928	95 KSI SHEAR	45 <u>*</u> 5
AAI-4V	AMS 4928	95 KSI SHEAR	45 5
STL	AMS 6187	132 KSI SHEAR	45 5
51L	AMS 6487	132 KSI SHEAR	45 ⁺ 5
STL	AMS 6487	156 K\$1 SHEAR	45 <u>*</u> 5
STL	AMS 6487	132 KSI SHEAR	45 ¹ _5
I STL	AMS 6487	132 KS1 SHEAR	45 [*] _5
STL	_ AMS 6487	132 KSI SHEAR	45 5
LOY	MIL-S-6049		
TNR TRL	MATERIAL SPECIFICATION	NOMINAL SHEAR STRENGTH-	INSTALLATION TORQUE IN-LBS
Ti-6A1-4	V AMS 4928	95 KSI SHEAR	45*5
Ti-6AI-4	W AMS 4928	95 KSI SHEAR	45 .5
Ti-6A1-4	W AMS 4928	95 KSI SHEAR	45.5
Ti-6Al-4	W AMS 4928	95 KSI SHEAR	45 5
Ti-6Al-4	V AMS 4928	95 KSI SHEAR	45 5
HII STL	AMS 6487	132 KS1 SHEAR	45 5

132 KSI SHEAR

156 KSI SHEAR

132 KSI SHEAR

132 KSI SHEAR

132 KSI SHEAR

NGMINAL SHEAR STRENGTH **45** 5

45 5

45 5

45° 5

45 5

INSTALLATION TORQUE IN-LBS

A	.100 STOCK	MILL ANNEALED
	.160 STOCK	176
	.063 STOCK	176
Т	.100 STOCK	176
T	\$128	HEAT TREAT COND.

AMS 6487

AMS 6487

AMS 6487

AMS 6487

AMS 6487

MIL-5-6049

MATERIAL SPECIFICATION

HII STL

HII STL

HII STL

HII STL

HII STL

ALLOY STEEL

FSTNR MTRL.

SPECIMEN IDENTIFICATION CODING

Figure 1. Specimen Geometry Simple
Lap Joint Specimen High
Load Transfer Joint

PROTRUSION MEASURED WITH FASTENER HAND PUSHED INTO THE HOLE.

ALL STEEL AND TITANIUM FASTENERS INSTALLED IN
TITANIUM SHEET MTRL MUST NOT HAVE RECEIVED
CADMIUM PLATING. THESE FASTENERS TO HAVE
SOLID DRY FILM WIBRICANT PLUS CETYL ALCOHOL ONLY.

- 13. ALL FSTNR, HEADS FLUSH .004
- 12. TAPERED HOLES MUST-CHECKED DURING HOLE FABRICATION SETUP USING BLUED" TAPER PINS
- 11. UNLESS OTHERWISE NOTED FAB. TAPERED HOLES USING COMBINATION TOOL (DRILL-REAMER-CSK)
- 10, UNLESS OTHERWISE NOTED FAB. STRAIGHT HOLES USING DOUBLE MARGIN DRILL, ETC. (NO REAMING)
- 9. RECORD ALL PROTRUSION MEASUREMENTS FOR TAPER LOK FSTNRS.
- 8. RECORD ALL HOLE DIAMETERS FOR HI TIGUE FASTENERS
- ALL TITANIUM SHEST SPECIMENS TO CONTAIN "MOLYKOTE 106" BONDED LUBRICANT IN FAYING SUBFACE
- ALL ALUMINUM SHEET-SPECIMENS TO HAVE ZINC CHROMATE PRIMER PLUS PR 1431 GT SEALANT-IN FAYING SURFACES
- NO SCRATCHES, GOUGES, OR SCRIBE MARKS ALLOWED ANYWHERE ON SPECIMENS ISPECIMENS MUST BE INDIVIDUALLY WRAPPED)
- 4. BREAK ALL SHARP CORNERS
- 3. DEBURR ALL HOLES (INCLUDING FAYING SURFACE) 45° X :005
- 2. FABRICATE HOLES ON ASSEMBLY. KEEP SPECIMEN PAIRS TOGETHER USING MASKING TAPE

NOTE:

0	71.V100-3-6	TAPER LOI
И	TLV109-3-2	TAPER LOI
MMM	TLV100-3-4	TAPER LOI
MM	TLV100-3-4	TAPER LOI
м	TLV100-3-4	TAPER LOI
- L	TLH100-3-6	TAPER LO
K	TLH100-3-2	TAPER LO
- ر	TLHC100-3-4	TAPER LO
ннн	1LH109-3-4	TAPER LO
. нн	TLH100-3-4	TAPER LOS
н	TLH100-3-4	TAPER LO
	1LN1001-3	WASHER 1
FASTENER SYSTEM IDENT. LETTER	FASTENER PART NO.	DESCRIPTI

G	HLT411-6-6	HITIGUE
F	HLT411-6-2	HI TIGUE
EEE	HLT4[1-6:4	HI TIGUE
££	HLT411-6-4	HI TIGUE
: E	HLT411-6-4	HI TIGUE
D	HLT315-6-6	HI TIGUE
С	HLT315-6-2	HI TIGUE
	HLT15-6-4	HI TIGUE
AAA	HLT315-6-4	HI TIGUZ
_ ^^	HLT315-6-4	HI TIGUE
Α	HLT315 <u>-6</u> -4-	HI TIGUE
	HL1386-6	COLLAR
FASTENER	FASTENER	DESCRIPT
SYSTEM IDENT, LETTER	PART NO.	

-
1 1/2 D
11/2 D
- DESCAI

0	TLV100-3-6	TAPER LOK	-0.0030	.072216	Ti-6AI-4V	AMS 4928	95 KSI SHEAR	45*,5
N	TLV100-3-2	TAPER LOK	-0.0030	.072216	Ti-6A1-4V	AMS 1928	55 KSI SHEAR	45 ^{+,5}
MMM	TLV100-3-4	TAPER LOK	-0,0045	,144- ,288	Ti-6AI-4V	AMS 4928	95 KSI SHEAR	45 ⁺ 5
MM	TLV100-3-4	TAPER LOK	-0,0015	.000144	Ti-6AI-4V	AMS 4928	95 KSI SHEAR	45 ¹ ,5
м	TLV100-3-4	TAPER LOK	-0.0030	.072216	Ti-6Al-4V	ANS 4928	95 KSI SHEAR	45 5
L	TLH100-3-6	TAPER LOK	-0.3030	.072216	HII STL	AMS 6487	132 KSI - SHEAR	45 _ 5
K	TLH100-3-2	TAPER LOK	-0.7 ~ ~	.072216	HII STL	AMS 6487	132 KSI SHEAR	45_5
J	TLHC100-3-4	TAPER LOK	0.0030	.072216	HII STL	AMS 6487	156 KSI SHEAR	45 ⁺ 5
ннн	TL**100-3-4	TAPER LOK	-0,0045	,144288	HII STL	AMS 6487	132 KSI SHEAR	45 5
нн	TLH100-3-4	TAPER LOK	-0.0015	,000144	HII STL	AMS 6487	132 KSI SHEAR	45 ¹ .5
н	TLH100-3-4	TAPER LOK	-0.0030	.072216	HII STL	AMS 6407	132 KSI SHEAR	45_5
	TLN1001-3	WASHER NUT			ALLOY STEEL	M1L-S-6049		
FASTENER SYSTEM IDENT. LETTER	FASTENER PART NO.	DESCRIPTION	NOMINAL INTERFERENCE FIT	FASTENER PROTRUSION <u>AS</u>	FSTNR MTRL	MATERIAL SPECIFICATION	NOMINAL SHEAR STRENGTH	INSTALLATION TORQUE IN-LBS

G :	HLT411-6-6	HITIGUE	-0 <u>.</u> 030	.1860001	. 1895 . 1890	Ti-6Al <u>-</u> 4V	AMS 4928	95 KSI SHEAR	45-5
F	HLT411-6-2	HI TIGUE	-0.0)30	.1860001	, 1895 , 1890	Ti-6Al-4V	AMS 4928	95 KSI SHEAR	45*.5
EEE	HLT411-6-4	HI TIGUE	-0.0)45	. 1845 . 401	. 1895 . 1890	Ti-64I-4Y	AMS 4928	95 KST SHEAR	45 5
EE	HLT411-6-4	HI TIGUE	-0.0015	.1875 .001	. 1895 . 1890	Ti-5AI-4V	AMS 4928	95 KSI SHEAR	45 5
E	HLT411-6-4	HI TIGUE	-0.0030	1660001	, 1895 . 1890	Ti-6A1-4V	AMS 4928	95 KSI SHEAR	45_5
D -	HLT315-6-6	-HI TIGUE	-0.0)30	1860 .001	.1895 .1885	HII STL	AMS 6487	132 KS1 SHEAR	45 5
r	HLT315-6-2	ḤI TIGUE	-0.0130	.1860*.001	.1895 .1885	HII STL	AMS 6487	132 KSI SHEAR	45.5
	-HLT15-6-4	HI TIGUE	-0.0)30	.1860 .001	.1895 .1885	HII STL	AMS 6:87	156 KSI SHEAR	45 5
AAA	HLT315-6-4	HI TIGUÉ	-0.0)45	.1845 .001	.1895 .1885	HII STL	AMS 64E7	132 KSI SHEAR	45 5
M	HLT315-6-4	HI TIGUE	-0,0015	1875 .001	.1895 .1885	HII STL	AMS 6487	132 KSI SHEAR	45 5
A .	HLT315-6-4	HI TIGUE	-0.0030	.1840 .001	.1895 .1885	HII STE	AMS 6487	132 KSI _SHEAR	45 5
	= HL1386-6	COLLAR	1			ALLOY	MIL-S-6049		_
FASTENER SYSTEM IDENT.	FASTENER	DESCRIPTION	NOMINAL INTERFERENCE FIT	HOL DIAMETER	FSTNR DIA.	FSTNR MTRL.	MATERIAL SPECIFICATION -	NOMINAL SHEAR STRENGTH	INSTALLATION TORQUE IN-LBS
LETTER	PART NO.	l L			11		<u> </u>		

-4	1 1/2 DOG BONE ASSY	A:IL-T-9046	Ti-6AI-4V	1 .100 STOCK	MILL ANNEALFD.
-1	1 1/2 DOG BONE ASSY	QQ-A-250/25	7075 CLAD	. ICU STOCK	T-74
FIPST DASH	DESCRIPTION	SHEET MATERIAL SPECIFICATION	SHEET MATERIAL	S1ZE-	HEAT TREAT COND,

 \mathcal{B}

Prec

	Ti-6AI-4V	AMS 4928	95 KSI SHEAR	45°,5
	Ti-6AI-4V	AMS 4928	55 KSI SHEAR	45 ^{*,5}
	Ti-6Al-4V	AMS 4928	95 KSI SHEAR	45°5
-	Ti-6Al-4V	AMS 4928	95 KSI SHEAR	45.5
	Ti-6A1-4V	AMS 4928-	95 KSI SHEAR	45 5
	HII STL	AMS 6487	132 KSI SHEAR	- 45 <u>°</u> 5
	HII STL	AMS 6487	132 KSI SHEAR	45 <u>*</u> 5
	HII STL	AMS 6487	156 KSI SHEAR	45*5
	HII STL	AMS 6487	132 KS1 SHEAR	45° 5
	HII STL	AMS 6487	132 KSI SHEAR	45 ⁺ 5
	HII STL	AMS 6487	132 KS1 SHEAR	45 <u>*</u> 5
	ALLOY STEEL	MIL-S-6049		
in the same	FSTNR MTRL	MATERIAL SPECIFICATION	NOMINAL SHEAR STRENGTH	INSTALLATION TORQUE IN-L9S

1895 1890	Ti-6AI-4V	AMS 4928=	95 KSI SHEAR	45-5
1895 1890	Ti-6AI-4V	AMS 4928	95 KSI SHEAR	45 ⁺ -5
1895 1890	Ti-6Al-4V	AMS 4928	95 KSI SHEAR	45 [*] 5
1895 1890	Ti-6Al-4V	AMS 4928	95 KSI SHEAR	45 5
1095 1090	Ti-6AI-4V	AMS 4928	95 KSI SHEAR	45 5
1995 1985	HII STL	AMS 6487	132 KSI SHEAR	45 5
1095 1005	HII STL	AMS 6487	132 KSI SHEAR	45°5
1895 1885	KII STL	AMS 6487	156 KSI SHEAR	45 ⁴ .5
1095 1065	HII SŢL	AMS 6487	132 KSI SHEAR	45 5
1095 1005	HII STL	AMS 6487	132 KSI SHEAR	45 5
1095 1085	HII STL	AMS 6487	132 KS1 SHEAR	45 5
	ALLOY	MIL-S-6049		
12 ×	FSTNR MTRL,	MATERIAL SPECIFICATION	NOMINAL SHEAR STRENGTH	INSTALLATION TORQUE IN-LBS

 .100 STOCK	MILL
,100 STOCK	T-76
SIZE	MEAT TREAT COND,

DIMENSIONS - INCHES

SPECIMEN INDENTIFICATION CODING X16137-XXX-X

Figure 2. Specimen Geometry One and One Half Dogbone Specimen Medium Load Transfer Joint

0

Preceding page blank

29

PROTRUSION MEASURED WITH FASTENER HAND PUSHED INTO THE HOLE.

ALL STEEL AND TITANIUM FASTENERS INSTALLED IN TITANIUM SHEET MTRL MUST NOT HAVE RECEIVED CADMIUM PLATING. THESE FASTENERS TO HAVE SOLID DRY FILM WIPPICANT PLUS CETYL ALCOHOL ONLY.

13. ALL FSTNR, HEADS FLUSH - .004

12. TAPERED HOLES MUST CHECKED DURING HOLE FABRICATION SETUP USING "BLUED" TAPER PINS

11. UNLESS OTHERWISE NOTED FAB. TAPERED HOLES USING COMBINATION TOOL (DRILL-REAMER-CSK)

10. UNLESS OTHERWISE NOTED FAB. STRAIGHT HOLES USING DOUBLE MARGIN DRILL, ETC. (NO FEAMING)

9. RECORDIALL PROTRUSION MEASUREMENTS FOR TAPER LOK FSTNRS.

8. RECORD ALL HOLE DIAMETERS FOR HITIGUE FASTENERS

7. ALL TITANIUM SHEET SPECIMENS TO CONTAIN "MOLYKOTE 106" BONDED LUBRICANT IN FAYING SURFACE

6. ALL ALUMINUM SHEET SPECIMENS TO HAVE ZING CHROMATE PRIMER PLUS PR 1431 GT SEALANT IN FAYING SURFACES

5. NO SCRATCHES, GCUGES, OR SCRIBE MARKS ALLOWED ANYWHERE ON SPECIMENS (SPECIMENS MUST BE INDIVIDUALLY WRAPPED)

4. PREAK ALL SHARP CORNERS

3. DEBURR ALL HOLES (INCLUDING FAYING SURFACE) 45° X :003

2. FARRICATE HOLES ON ASSEMBLY, KEEP SPECIMEN PAIRS TOGETHER USING MASKING TAPE

11-641-4V MATERIAL PER MIL-T-9046F WITH EXCEPTION THAT OXYGEN CONTENT BE KEPT TO 0.13% MAXIMUM (BY WEIGHT)

NOTE:

A

0	1LV100-3-6	TAPER LOK	
7	TLV 100-3-2	TAPER LOK	
ммм	TLV 100-3-4	TAPER LOK	
M M	TLV100-3-4	TAPER LOK	
м	1LV100-3-4	TAPER LOK	
L	1LH100-3-6	TAPER LOK	
ĸ	TLH100-3-2	3-2 TAPER LOK	
J	1LHC100-3-4	TAPER LOK	
ннн	TLH100-3-4	TAPER LOK	
нн _	TLH100-3-4	TAPER LOK	
н	TLH100-3-4	TAPER LOK	
	TLN1001-3	WASHER NUT	
FASTENER SYSTEM IDENT, LETTER	FASTENER PART NO.	DESCRIPTION	

G	HLT411-6-6	HITIGUE
F	HLT411-6-2	HI TIGUE
EEE	HLT411-4-4	HITIGUE
EE	HLT411-6-4_	HI TIGUE
E	HLT411-6-4	HI TIGUE
D	HLT315-6-6	HI TIGUE
С	HLT315-6-2	HI TIGUE
3	HLT15-6-4	HI TIGUE
AAA	HLT315-6-4	HI TIGUE
M .	HLT315-6-4	HI TIGUE
^	HLT315-6-4	HI TIGUE
	HL1386-6	COLLAR
FASTENER SYSTEM	FASTENER	DESCRIPTION
IDENG". LETTER	PART NO.	

-4	REV. DOGSOI
-3	REV, DOGIO
-2	REV. DOGIO
-1	REV. DOGIO
FIRST DASH	DESCRIPTION
NUMBEX	

ASTENER YSTEM DENT. LETTER	FASTENER PART NO.	DESCRIPTION	NOMINAL INTERFERENCE FIT	FASTENER PPOTRUSION 15	FSTNR MTRL	MATERIAL SPECIFICATION	-NOMINAL SHEAR HTDMBRTE	INSTALLATION TORQUE IN-LBS
	TLN1001-3	WASHER NUT			ALLOY STEEL	MIL-5-6047		
н	TLH100-3-4	TAPER LOK	-0.0030	.072216	HII STL	AMS 6487	132 KS1 SHEAR	45 5
нн	TLH100-3-4	TAPER LOK	-0.0015	.000-, 144	HII STL	AMS 6487	132 KSI SHEAR	45 ` 5
ннн	1LH100-3-4	TAPER LOK	-0.0045	,144-,288	HII STL	AMS 6487	132 KS1 SHEAR	45 [*] 5
J	TLHC100-3-4	TAPER LOK	-0,0030	.072216	HII STL	AMS 6487	156 KSI SHEAR	45 <u>*</u> 5
K	TLH100-3-2	TAPER LOK	-0.0030	.072216	HII STL	AMS 6487	132 KSI SHEAR	45 5
l	TLH100-2-6	TAPER LOK	-0.0030	.072216	HII STL	AMS 6487	132 KS1 SHEAR	45_5
м	TLV100-3-4	TAPER LOK	-0.0030	.072216	Ti-6A1-4V	AMS 4928	95 KSI SHEAR	45 5
ww	1LV100-3-4	TAPER LOK	-0.0015	.000~,144	Ti-6AI-4V	AMS 4928	95 KSI SHEAR	45 [*] 5
ммм	TLV 100-3-4	TAPER LOK	-0.0045	.144288	Ti-6AI-4V	AMS 4928	95 KSI SHEAR	45*5
N	TLV 100-3-2	TAPER LOK	-0.0030	.072-,216	Ti-¢AI-4V	AMS 4928	55 KSI SHEAR	45* ⁵
0	TLV100-3-6	TAPER LOK	-0.0030	.072216	Ti-6Al-4V	AMS 4928	95 KSI SHEAR	45*_5

G	HLT411-4-6	HITIGUE	-0.0030	.1860001	.1895 .1890	Ti-6AI-4V	AMS 4928	95 KST SHEAR	45-5
F	HLT411~4~2	HI TIGUE	-0.0030	.1860*001	.1895 .1890	Ti-6AI-4V	AMS 4928	95 KSI SHEAR	45 ⁺ -5
EEE	HLT411-4-4	HI TIGUE	-0.0045	. 1845 € . 001	.1895 .1890	Ti-6AI-4V	AMS 4928	95 KSI SHEAR	45 ⁴ .5
EE	HLT411-4-4	HI TIGUE	-0.0015	.1875 .001	.1895 .1890	Ti-6Al-4V	AMS 4928	95 KSI SHEAR	45 [*] .5
E	HLT411-6-4-	HI TIGUE	-0.0030	.1860001	.1895 .1890	Ti-6AI-4V	AMS 4928	95 KSI SHEAR	45 [*] _5
D	HLT315-4-4	HI TIGUE	-0.0030	.1860*.001	.1895 .1885	HII STL	AMS 6487	132 KSI SHEAR	45 ⁺ 5
С	HLT315-6-2	HI TIGUE	-0.0030	.1850*.001	.1895 .1885	HII STL	AMS 6487	132 KSI SHEAR	45 ⁺ _5
,	HLT15-6-4	HI TIGUE	-0.0030	.1860001	.1895 .1885	HII STL	AMS 6487	156 KSI SHEAR	45 [*] .5
AAA	HLT315-6-4	HI TIGUE	-0.0045	.1845001	.1895 .1885	HII STL	AMS 6487	132 KSI SHEAR	45 <u>*</u> 5
A	HLT315-4-4	HI TIGUE	-0.0015	,1875*,001	.1895 .1885	HII STL	AMS 6487	132 KSI SHEAR	45°5
A	HLT315-6-4	HI TIGUE	-0.0030	.1860001	,1895 ,1885	HII STL	AMS 6487	132 KSI SHEAR	45 ⁺ 5
	HL1366-6	COLLAR				ALLOY STEEL	MIL-5-6049		
FASTENER SYSTEM IDENT. LETTER	FASTENER PART NO.	DESCRIPTION	NOMINAL INTERFERENCE FIT	HOLE DIAMETER	FSTNR DIA.	FSTNR MTRL.	MATERIAL SPECIFICATION	NOMINAL SHEAR STRENGTH	INSTALLATION TORQUE IN-LBS

-4	REV. DOGBONE ASSY	MIL-1-9046	Ti-6AL-4V	.100 STOCK	MILL ANNEALED
	REV. DOGIONE ASSY	QQ-A-250/25	7075 CLAD	.160 STOCK	176
-2	REV. DOGBONE ASSY	QQ-A-25075	7075 CLAD	.063 STOCK	176
-1	REV. DOGIONE ASSY	QQ-A-250/25	7075 CLAD	, 100 STOCK	176
FIRST DASH NUMBER	DESCRIPTION	SHEET MATERIAL SPECIFICATION	SHEET MATERIAL	SIZE	HEAT TREAT COND.

1.00 TYP

1.00 TYP

1.00 TYP

1.00 TYP

1.00 TYP

Fi

Ti-6Al-4V		AMS 4928	95 KSI SHEAR	45 ¹ ,5
Ti-6Al-4	<u>/</u>	AMS 4928	55 KSI SHEAR	45* ⁵
Ti-6AI-4V		AMS 4913	95 KSI SHEAR	45° 5
Ti-6Al-4	v	AMS 4928	95 KSI SHEAR	45°5
Ti-6Al-4	v	AMS 4928	95 KSI SHEAR	45_5
HII STL		AMS 6487	132 KSI SHEAR	45 5
HII STL		AMS 6487	132 KSI SHEAR	45°_5
HII STL		AMS 6487	156 KSI SHEAR	45 5
HII STL		AMS 6487	132 KSI SHEAR	45 5
HII STL		AMS 6487	132 KSI SHEAR	45 <u>*</u> 5
HII STL		AMS 6487	132 KS1 SHEAR	45_5
ALLOY STEEL		MIL-\$-6049		
FSTNR MTRL			NOMINAL SHEAR STRENGTH	INSTALLATION TORQUE IN-LBS
			De vei	
Ti-6	AI-4V	AMS 4928	95 KSI SHEAR 95 KSI	45-5
Ti-d	A1-4 <u>V</u>	AMS 4928	SHEAR _	45* ₋₅
Ti-6	AI-4V	AMS 4928	95 KSI SHEAR	4525
Ti-6	AI-4V	AMS 4928	95 KSI SHEAR	45.5
Ti-6	AI-4V	AMS 4928	95 KSI SHEAR	45 5
HII	STL	AMS 6487	132 KSI SHEAR	45 5
HII	STL	AMS 6487	132 KS1 SHEAR	45 <u>.</u> 5
HII	STL	AMS 6487	156 KS1 SHEAR	45*5
HII	STL	AMS 6487	132 KSI SHEAR	45 [*] _5
HII	STL	AMS 6487	132 KSI SHEAR	45 <u>*</u> 5
HII STL		AMS 6487	132 KSI SHEAR	45 <u>*</u> 5
ALLOY STEEL		MIL-S-6049		
FSTNR /		MATERIAL SPECIFICATION	NOMINAL SHEAR STRENGTH	INSTALLATION: TORQUE IN-LBS

.100 STOCK	MILL ANNEALED
. 160 STOCK	176
.063 STOCK	176
, 100 STOCK	176
SIZE	HEAT TREAT COND.

Figure 3. Specimen Geometry Reverse Dogbone Specimen Low Load Transfer Joint

31

BASIC IDENTIFICATION NUMBER

FIRST DASH NO INDICATES JOINT SHEET MATERIAL

Preceding page blank

Figure 4. Typical Low Load Transfer Joint Specimen Installation In Constant Load (Servo-Hydraulic) Fatigue Test Machine

Figure 5. Low Load Transfer Specimen Installed In Constant Amplitude (Resonant) Fatigue Test Machine

Figure 6. Illustration of "Sandwich"
Support Fixture Installed
On Simple Lap Joint Specimen

Figure 7. Illustration of Flexure
Support Fixture Installed
On Simple Lap Joint
Specimen

- TIGHTEN WING NUTS ONLY FINGER TIGHT.
 TEFLON, NYLON, MICARTA, ETC. MATERIAL MUST BE INTERFACED BETWEEN STIFFENER
 PLATES AND TEST SPECIMEN SURFACES.
 STIFFENER PLATE AND BOLT MATERIAL MILD STEEL.
 D = NOMINAL FASTENER DIAMETER UNDER TEST.
- 2. 1. NOTE:

Figure 8. Details of "Sandwich" Type Specimen Restraint Fixture

- 4. TEFLON, NYLON, MICARTA, ETC. MUST BE INTERFACED BETWEEN BARS AND TEST SPECIMEN SURFACES.

 3. ROD AND BAR MATERIAL MILD STEEL.

 2. **D MINIMUM FOR THESE DIMENSIONS = 3/14*.

 1. D = NOMINAL FASTENER DIAMETER UNDER TEST.

Details of Flexure Pivot (90° Offset) Test Specimen Figure 9. Restraint Fixture

Figure 10. Instrumented Reverse Dogbone Specimen Used Only For Load Transfer and Test Frequency Response Tests

Figure 11. Example of Sheet Metal Failures Occurring Away From The Fastener Holes In The CSK Sheet

Figure 12. Example of Sheet Metal Failure Occurring Away From The Fastener Holes In The Non-Countersunk Sheet

Figure 13. Example of Sheet Metal Failures Occurring Through The Fastener Holes In The CSK Sheet

Figure 14. Example of Sheet Metal Failure Occurring Through The Fastener Hole In The Non-Countersunk Sheet

Figure 15. Typical Failure Occurring In Both Sheets Of The Joint Specimen Through The Fastener Hole

•	۰	9	ļ:		5		,				* X	* *	•	- , -	•0	
	5-176CLA	FIT=-00 16136-18	HIR R-O						1		,	٠	•		10,	
FIGURE 16	.100 7075-T76CLAD	HTT (220) HT TIGUE (INT FIT = 003) SPEC CONFIGURATION X16136-1A	170=0-53-8XIAL S/N-AMB;AIR-R=0- HIGH LORD THRNSFER JOINT				•	*		Ĭ		N N W N P P P N P P P P P P P P P P P P P P P P P P P	10 200 E	, X , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 4	K Fr. West Material	
FI	SIMPLE LAP JT	HIT (220) HI TICUE - SPEC CONFICURATION	.53-9×1A			50% SURVIVABILITY 50% CONFIDENCE					E FEE	# # # # # # # # # # # # # # # # # # #	V 1 -	1 74 1 H 2 4 4 44 2 5 6 7 6 7 6 7 6	10°	
•	SIMPL	SPEC	HIGH LORD		1	1 50% SU	<u>.</u>			** **	rman	de se v de di senso	и ямь. савице г рума к		• <u>•</u> 01	
and and and and and and and and and and	# # # # # # # # # # # # # # # # # # #		•						7 8 8 7 7 7 4 78 7 7 7 7 8		E Y Y Y Y Y Y Y Y Y	A man To	, ,	- WHO W	נייון	
* * * * * * * * * * * * * * * * * * *	0 74 277 0 4 00 to 0	- · · ·		1				THE TO SECOND SE	2 2 4			XX ZX Y BYS Y	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	SMAN N N S S S S S S S S S S S S S S S S S	10° C	,
		-				90% SURVIVABILITY 95% CONFIDENCE	× va			7	2.25	UDED	90.00 95.00		5 01	* * * * * * * * * * * * * * * * * * *
# - # - # - # - # - # - # - # - # - # -	* # * ********************************	, - , , , , , , , , , , , , , , , , , ,				* • • • • • • • • • • • • • • • • • • •		200 / Wa	F IN TANK		SIDM	DINT INC		-	# 9 ** 00 ** 0	
	.=	:		-:		-	N	A AND A	***	-	- 0.10	UNFRILED F	SURVIVABILI CONFIDENCE		, O	
arv v						•	* ****		* * ·		6	÷*	38		* 	÷ x era

L) 					<u></u>
5-T76CLAD FIT-:003)6136-18	AIR R-0.1			<u>Ji</u>			10,
FIGURE 17 OF JT . 100 7075-T76CLAD HITTICUE—(INT.FIT=.003) FICURATION X16136-18	TRANSFER JOI	ABILITY DENCE		5		I-	10
SIMPLE LAP	170-0:53 R	50% SURVIVABILITY 50% CONFIDENCE					0
							10 CYCLES
		90% SURVIVABILITY 95% CONFIDENCE			Assess to produce the second s	00°08	01
		6. ts			SIGNA	POINT EX	01
					LORRIC	SURVIVEBIL CONFIDENCE	Fo
35.	8 8	Kel)	XHIS			R.	0.0

<u></u>	· · · · ·		1			·	·	 10			· 1		т	•	" 0	,
	1075-176CLAD	XI6136-1E	AIR"R=Ort					2		-		-				
1 1	JT . 100 7	SPEC CONFIGURATION XL	T7D=O∵S3~AXIAC~S/N~HMB,AIR~R=O∵ HIGH LOAD TRANSFER JOINT				50% SURVIVABILITY 50% CONFIDENCE	3	/			 			10°	
-	SIMPLE LAP	SPEC CONF	HIGH LORD	-	=	* *-	50% SURV 50% CON	2	90000		·	TANK A			10.	-
	-								\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Marker or and a second or and a second or	28 - 18 - 18 - 18 - 18 - 18 - 18 - 18 -		## ## WIT ## ## ## ## ## ## ## ## ## ## ## ## #	*	10 CYCLES	=
						90% SURVIVABILITY 95% CONFIDENCE	- -		hop are series of the series o		1.47	0300	90.00		" O	- x
			-	-	-	90% St 95% C	-	- 4	-		10 SIGMA =	DINT INC	N V		10*	***
		C						3 6 4			. G.R = 0.	LINFRIC	· SURVIVÁBILIT CONFIDENCE =		0	- •
35.0		30.	3	25.	(IS) S	T XA	HS I		<u> </u>		u U	5	<u> </u>	<u>. </u>	

		· · · · · · · · · · · · · · · · · · ·					T	•	<u>•0</u>	
-6-4 M.A.	TI_FIT003} 16136-48 18:AIR R=0:1* INT			5					107	
FIGURE 20	HT1-(2601-HI-TICUE-(INT:FIT-,003) SPEC CONFIGURATION X16136-48 T70-0,53-AXIAC S/N'AMB,AIR R=0; HIGH LOAD TRANSFEK JOINT		VABILITY IDENCE					A man of the state	10	
SIMPLE L	#11-(260) SPEC CON 17/0=0:53 HIGH LOR	:	50% SURVIVABILITY 50% CONFIDENCE		. ,				10	
									וס כינמרבא בינמרבא	, 1
			2	95% CONFIDENCE		2.96	INCLUDED 5.00 95.00	- x x x :	10	. *
			a se	95% COL		O SICMA =	POINT LPGIN	- -	10	
				10		0 R = 0.10	UNFRILED SURVIVABIL CONFIDENCE	-		
5 6	60.09	OS (IS	(x) $\stackrel{\circ}{=}$ X	₩ _S		50.0	10.0		<u>-0</u>	

			<u>-</u> -
21	PLE LAP JY .100 TI-6-4 M.A. S-4 STA-HI-11GUE (L.FIT003) C CONFIGURATION X15136-4E =0:53-AXTAL S/N AMB.AIR A=0:1- H LOAD TRANSFEK JOINT	*	107
FIGURE 21	THITION COURATION XTAL S/	BILLITY ENGE	10°
6 6	SIMPLE LAP JT. SPEC CONFIGURAT TYD=0:53 AXTRL HIGH LORD TRANS	50% SURVIVABILITY 50% CONFIDENCE	5 0
6			10 CYCLES 1
10 8 -6 -4		S SURVIVABILITY SCONFIDENCE GMR = 4.04 IT INCLUDED INT. EXCLUDED SO.00 SO.00 SO.00	10
5 5 4		Sign Sign Sign Sign Sign Sign Sign Sign	103
13		σ R = 0,10 - UNFRILED F SURYIVABIL CONFIDENCE	
 	0.09	CKSI) Si Si Si Si Si Si Si Si Si Si Si Si Si	0 0

				1		i			1				1 1	
3136-1H	S.AIR-R=O.T	2											10,	
TAPER LOK 11 IGURATION X1	AXIME SZN-HM TRANSFER JO	2		FOR CHRYNABILITY	50% CN		•		•		-		រូ០	
SPEC CONF	170=0:53 HIGH LOR	2 					8			## # # # # # #			103	
							# 1	-			W I W W I W I W I W I W I W I W I W I W		io crales	
	1		T A T A T A T A T A T A T A T A T A T A	% SURVIVABILITY % CONFIDENCE	•	*	B W SV V = S W W W W W W W W W W W W W W W W W W		1.27	רתספם	95. 00 95. 00	H AND STORY	្វែ	* * *
				98 98			E A	I y	10 SIGMA =	LED POINT IN	[L [T Y =]]E = =		2 0	
				.11:	*** * * * * * * * * * * * * * * * * *				. a B ≠ . 0,	- VUNFRI	SURVIVE CONTROL		- 0	ب ا ا ا
	HII (220) TRPER LOK (1. F.=., 003) SPEC CONFIGURATION X16136-1H				90% SURVIVABILITY 95% CONFIDENCE	90% SURVIVABILITY 95% CONFIDENCE	90% SURVIVABILITY 95% CONFIDENCE	90% SURVIVABILITY 95% CONFIDENCE	90% SURVIVABILITY 95% CONFIDENCE	SON SURVIVABILITY 95% CONFIDENCE 1.27	90% SURVIVABILITY 90% SURVIVABILITY 95% CONFIDENCE 1.27 B R = 0.10 SIGMR = 1.27	B = 0.10 SIGM = 1.27 "LUNFRILED POINT INCLUDED SURVINBILITY = 90.00 CONSTRUCT = 95.00	B R = 0.10 SIGMR = 1.27;	D R = '0.10 SIGM = 1.27

			·	- 0 0 0 0000000000000000000000000000000		* 0
5-176 CLAD	6136-1J HR R-0-1-		4	/ <u>*</u>		1107
FIGURE 23	SPEC CONFIGURATION X16136-1J TYD-0:53 AXIRL SYN RWB RIR R-0:1 HIGH LOAD TRANSFER JOINT	50% SURVIVABILITY 50% CONFIDENCE	6			10
SIMPLE LE	SPEC CONF	50% SUR 50% COI		-		10°
			2			10 CYCLES
		90% SURVIVABILITY 95% CONFIDENCE	4	1,43		103
	-	- 1	3		LEO POINT INCLUDED LEO POINT EXCLUDED BILITY = 90.00 NCE = 95.00	10
0			2		SURY I VABIL I CONF I DENCE	10,
S.S.	e l	Keri) K	XRMS	100	ທ໌	т <u>ь</u> —

														0	
	,	6136-4H	B, AIR. R=C:T [NT				# h	1	¥			3 2		[10]	
j FIGURE 25	ODI. INIDO HE	SPEC CONFIGURATION X16136-44	T/D=0:53 AXIAL S/N HWB.AIR R=0:1 HIGH LOAD TRANSFER JOINT			50% SURVIVABILITY 50% CONFIDENCE	<u> </u> :					5 4 2	1	10	
2 	SIMPLE	NDO DES	HIGH LORD		-	50% SUF 50% CO						2		10\$	
2	- - - -	,		9 00	·				. -		-	2		10° CYCLES	
4			- · ·			ZI III	ENGE	-		-	ı, 79°	LUDED CLUDED 90,00 95,00		្សា	
				-	-	AVIVer 12 Apple	95% CONFIDENCE				10 SIGMB'	LED POINT INCLUDED HILED POINT EXCLUDED HOLLTY = 90.00		10	-
: ? \$	- - - - - - - -									•	øR ≖ O	- UNFRILED SURVIVERILE CONFIDENCE		10,	
	<u>.</u>	<u>' </u>	2	<u></u>	(IS	ָ נאכ	⊋ x	uns c)))	<u>י</u> כ	<u> </u>	10.0	<u>'</u>	<u>} = </u>	L

						,		10					,		<u>.</u> 0	
	ЭО	معر	1.0=					t 4			×		* * 4 _	`:.	, a * , a *	
	12921-s	X16137-18	HIN H									-			10,	-
FIGURE 28	707 001	ION XI	SZN-HMB NSFER J		Հ ա			5 5				•		x		
FIG	141/2 DOGGONE .10D 7075-176CLAD	SPEC CONFIGURATION	T7U=U:S3-HXIHL-S/N-HMB'HIK-K≐U. MEDIUM LOAD TRANSFER JØINT		50% SURVIVABILITY 50% CONFIDENCE	g.,-> 		, , , , , , , , , , , , , , , , , , ,							01	
-	1/2 000	T (Z Z U) EC CONF	DIUM LC		50% SUR 50% CO			,			* * * * * * * * * * * * * * * * * * *	* *		-	-x	,
- - -	18	IH SPI	F.		1			2			*	- - - -	-	,		
						,	* **		, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , ,	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *		· ·	CYCLES	- u - W A V - E N
	 B _/				**			10			-	=			10. CY	
** * ***	.		<i>/</i>	VABILITY IDENCE			•	,	# # # # # # # # # # # # # # # # # # #		#	я - + + + + + + + + + + + + + + + + + +		,) - w x
- * * **** * ****			=	90% SURVIVABILITY 95% CONFIDENCE				v		•	1.70	1.00ED	90.00 85.00		,01 0	-
* *-		: : :	-	88				-		# / W	≠ BNJ]					- Pr - A - P - P - M - M - P M - M - B
-		- - - - - - -	-	-				:			S 01	ובס הסו ובס הסו	HBIL ITY		102	
* * * *		 			-			- 1		• ;-	R = 0.	V UNFRI	SURVIVE CONFIDE	-		*
						 c						TT	¥-m-v	-	101	-
5	y T	Č	000	0	(19	آ (الاد	i XI	₩ _S '	χ	1.0	Ů.	ď	ó		2	-

						-			-				* :	- <u>0</u>	
	5-T76 CLA	:FIT=_003 137-1E	48 AIR R=0. JOINT			-							,	10,	
FIGURE 30	ONE . 100 7075-T76 CLAD	1=6=4-51A-HI 11GUE-(11F17=1003) 8PEC CONF1GURATION X16137-1E	770≅0.59-AXIAL-37N-AMB_AIR-R≅0. MEDIUM LOAD IRANSFER JÖINI	IVABILITY FIDENCE			9 8 9				* *	·		10	* * '
*	141/2 DBGBONE	SPEC CONF	TZD=0.53-A MEDIUM LOA	50% SURVIVABILITY 50% CONFIDENCE		9/	6		¥ ¥4	V		N A	A A A	10.	*
	6.6						= * * * * * * * * * * * * * * * * * * *	*		# # # # # # # # # # # # # # # # # # #	* - * * * * * * * * * * * * * * * * * *	2 74 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	AND AND AND AND AND AND AND AND AND AND	10° crales.	
			::	99% SURVIVABILITY 95% CONFIDENCE	-					1.31	UDED	90.00 95.00	ME P P TA	10	
	7	1			e e	2	2	-	THE THE PERSON OF THE PERSON O	= BW91S OI	POINT INC		* * * * * * * * * * * * * * * * * * *	10*	* * *
	·								-	9 R = 0.10	UNFRI	SURVIVABIL I CONFIDENCE		-	

						" 0
6AL-4V MB =003)	AIR-R=0-1		9-0			16
FIGURE 32 141/2 ODGBONE .100 TI-6AL-4V MA H11 (260)-H1 TICUE-(I.F.=003) SPEC CANETCHROTTON YIE137-48	MEDIUM LOAD TRANSFER JOINT			-		10
	MEDIUM LO	% SUR.	9.		-	**************************************
						10 crales
				1.8.1	10.00 10.00 15.00	0
		20% SURVIVABILITY 95% CONFIGENCE		S	LED POINT INCLUDED ILED POINT EXCLUDED BILLITY = 90.00 NCE = 95.00	
		17.05		8. 8. 0.	SURVIVEBILE CONFIDENCE	- 1
1 th	2 6	KSI)	XHMS &		12,51	0

\\ <u>\</u>			10
141/2 DBCBONE .10D 7075-776 CLAD HTT (220) TAPER-LOK-11: F003) SPEC CONFIGURATION X16137-1H T70-0.53-RXIRL S/N HMB RIR-R-0.1		***************************************	2 201
FIGURE 34 SBONE 100 70 THPER-COK-11 IGURATION X18 FXIRL-S/N-HM	HU ITHINGER		100
141/2 DBC H11 (220) SPEC CONF	50% SURVIVABILITY 50% CONFIDENCE		S ₀
		ABILITY DENCE	O CYCLES
B		90% SURVIVABILITY 95% CONFIDENCE	
			SIGMR. = OINT INC
			D R .= 0,10
36.9	ਲ (ISM) ਨੇ	XPH ² S. S. S. S. S. S. S. S. S. S. S. S. S.	<i>i i</i>

-								19	:	_	,				° 0	
***************************************	75-176 CLAD	5137-1M	S HIR R=U.I	,,							•	•	*		10,	
FIGURE 36	1&1/2 DBCBONE .100 7075-176 CLAD	SPEC CONFIGURATION X16137-1M	NEDIUM LOAD TRANSFER JOINT			50% SURVIVABILITY 50% CONFIDENCE		: : :	,	8	*	-		,	10	
	141/2 000	SPEC CONF	MEDIUM LO	-		809 809		9	=	Line Course of		- 1- - 1			10*	
	- 1									S. S. S. S. S. S. S. S. S. S. S. S. S. S		# # # # # # # # # # # # # # # # # #	A A A A A A A A A A A A A A A A A A A	, -, -, -, -, -, -, -, -, -, -, -, -, -,	io* crales	•
					90% SURVIVABILITY 95% CONFIDENCE	-	- * : : : : : : : : : : : : : : : : : :			EN PINCE	2.37	INDUDED FYCH LIDED	90.00 95.00	* * *	10	10 10 10 10 10 10 10 10 10 10 10 10 10 1
				-4 	606	- * · ·	= - - - - - -	-	- K	-	10 SIGMR =	OINT IN	.: 		10*	
					-						B R = 0.	UNFRI WED	SURVIVABILI CONFIDENCE	-	.0	
, ch		a.	000	ני	, (IS	ik) ä	χ	M _S	Σ.	Ç	v V		,	C	5	

]	* C
37 11-6AL-4V MA 11.F.=-:003) (16137-4H AMB: AIR R=0.1 3 JØINT	107
FIGURE TOO TOO TOO TOO TOO TOO TOO TOO TOO TO	10
141/2 DØGBØNE HTT-12201 TRPE SPEC CØNF JGUR T/O=0.53 AXIE MEDIUM LØAD T 50% CONFIDENCE	105
	10° CYALES
8.00 6.00 Ludeo	90.00 95.00 10.
1	,, , , , ,
	SURVIVABILI CONFIDENCE 0' 102
KEI) SO KEI) SO SO SO SO SO SO SO SO SO SO SO SO SO	5 5

·			r	! 1·				" O
1; -T76 CLAO F.e-:003)	6138-18 B AIR R-0-1-NI			ice -				[0]
FIGURE 41 NE . 100 7075-7	SPEC CONFIGURATION XIGI38-18 T/D=0.53 AXIAL S/N AMB AIR R=0:1 LØH LØRD TRANSFER JØINT	"	50% SURVIVABII	50% CONFIDENCE	9			10
REV DOGE	SPEC CON 1/0=0.53 LOW LORD		:	8				10.
		:		90% SURVIVABILITY 95% CONFIDENCE				10 CYCLES
		4		90% SUR 95% CON		2.64	1, UDE 0 10, 00 15, 00	
		2				2	LEG_POINT_EXCLUDED_ 3[LITY = 90.00 4CE = 85.00	°0
		3		-	•	G R = 0.1	SURVIVABIL CONFIDENCE	10
6	<u>ਹ</u> -ਟਜ	(KZI)	K XAHS C	<u> </u>	14. 0			<u> </u>

				- -	·;		-,				·				<u>°</u> 0	
		E .					İ				.:		* ×			
	A.	90.8	"R=0.								-			*		
<u> </u>	.100 TI-6AL-4V M.A.	-tint-F IT003 X16138-48	3-AXIAL-S/N AMB AIR R=O.T												, ₀ 1	
4	-6AL	INT- X161	AMB GINT	T				1			1					T
FIGURE 44	11 0	H S	SYN .									. *	-			
Ē		TICUE JRATION	I.H.		LI1	<u></u>		/			., .	• • •		* * *		
		HTTC2601-NI-TICUE-SPEC CONFIGURATION	X = 0	 	50% SURVIVABILITY		 	 	 			* 7	<u> </u>	-	° 0	
	000	Ht.t-(260) SPEC CON	1770=0::S3-		SURV	Z 0 0	./	.				* * * * * * * * * * * * * * * * * * *		· .		
	REV	HTT SPEC	140H		50%	8	9		. , ,			108# 3 4 8 Ho				
			ļ	ļ,							<u> </u>	· ·			30.	
			-	ز . ا		[:	· .	-4.4	70 /4 X # 27 B 2 R M 7800 WW. M M	**************************************					:	
	• *						* • • •		, .v						CYCLES	
								-			-	****	* * +		7 0.	
=	•		٠.					-4 78 8 X X X 2 20 8448 -				* * * * * * * * * * * * * * * * * * *			-	
	سرن		-				, i					1 de 1 de 1 de 1 de 1 de 1 de 1 de 1 de		* * * *		:
				Z Z				.,		*******	4.06	. DEC	90.00			
-	* * * * * * * * * * * * * * * * * * *	·.		95% CONFIDENCE		• •		-		<u>.</u>	- 11:	NCLU	0 0 0 0		° 0	
		٠,	, i			,	* * * * * * * * * * * * * * * * * * *	·•	* ## * * # # -* ## -##	* * * *	. E	INT IN		.:•.:		::.
			. 8	959	. *		- - -	* * * •			SI	POIN	[] - -			•
		=		ļ,		- - - • •		7 7 - 1		Ţ,	9	LED 11 FD	88 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13		10	
		,	' · '	,		-	7 10 km2 - 6 x - - - - - - - - -	. * : 2	* * * * * * * * * * * * * * * * * * *	* *	0	UNFAIL	SURVIVEBIL CONFIDENCE			
		-					** * * *	** · · ·			G P	++	SG	* n #.	, ,	•
		c		.:				· ·	->- <i>y</i>	,,		۰ ۱۱-۰		a - a-	 0	•
£4.9		۲	ÿ	C	S (IS	0	5	Ms S		<u></u> ੋ ਨੌ			<u>; </u>	<u>'</u>		

						k									° 0	
								-			•			, ,		
	5	16037 1H	AXIACS/N-AMB, AIR. R-0-1 TAGNSFER JOINT	: :	-		-									
	REV DOCEMIE . 100 7075-T76 CLAD	SPEC CONFIGURATION XISTSE-IH	.E.		!						•	•	***		~ <u>.</u> .	-
	1.	50 S	S S	<u> </u>	- 								<u> </u>		, O	
ZE 46	20	2		! .						•			:			-
FIGURE 46	8	7 LD	FEB.		<u> </u> 						6				- 1	
4	m L		A SEE	1	ENC!	<u> </u>		•	· · · ·			' ' '	*	-	10	,
1	- S	Z Z	6.F-	<u></u>	50% SURVIVABILITY 50% CONFIDENCE	!				·	· ".			-,-,		
	000	1850 1860	5.5 E	•	20				* · **		•		********		,	=
,	REV	HI1 SPE(170-0:53) 1	\$ \$!\			# xd	* .					1 .000 x	·	- × -
			=	-		•				=	-			-	10	-
	:::							, x, x,	-94× 8 28 - 3 500 800 91 91	, ,- 1	<i>.</i>			* .		·
	* . *-					\	• • ,	F 1			*: ****		*** *=		CYCLES'	·
-	• 2	•				\ '>''			·• ·	-:	, .	•			1 '	: :*
		/	<u></u>	ļ		90% SURVIVABILITY 95% CONFIDENCE			1 to 100-01		-	• • • •			0	- *
* ***	* * *	-Val == -	;-	-		VIV ZFID		* , 3x ***	ANTERNA E A				78.0 T. T.	# ## ## ## ## ## # ## X	·	
	• • •					\$ <u>0</u>					-1 		x		-	7* 5.
						8 8		***			1.7		80.00		20	
1 12	* *		-		.				, v . z	, , , , ,	.	INC. UDED			2	
		- ; •							********	1 1 1 1 1	~ 😤	1 5	I	•	-	
	1 ~* ¥										35	Por	-	-		
					1	'		****			0	0			*0	
		<u> </u>		<i>'</i>			:			ļ .	0.70	UNFRILE	1068			
	***********		-					** ***	 		Œ	3	SERVE			-
	****]: -			,	,				* * **-		T		- x .		
											, ,		-	-	-0	
46h	2	9	N N	ě	in It	(ka	S XI	Ms ?	V	=	1. 1.	1	9.		3. 3	-

												10			<u>•</u> 0	
3 6	5	(60)	1.0=		-					* •		. 4	-	* * * * * * * * * * * * * * * * * * * *	. A #	x x
		138-1M	AIR R			>	<u> </u> - 				1	2			10'	. *
FIGURE 48	-100 707S-	GURRION XISI38-IM	70≈0.53-RXIAC-S7N-AMB AIR…R≖0. OW LOAD TRANSFER JOIN				50% CONFIDENCE			8	 	4		* * *	, , , , , , , , , , , , , , , , , , ,	
	<u>и</u>		A BANK		•	ğ	. % . % 	ļ,		* *	- 1 1	19			10	
4	REV DOCECNE	SPEC CONF	T/D=0.53- LOW LOAD	٨		:/·					* * * * * * * * * * * * * * * * * * *	- 4	* *		* X X * * * * * * * * * * * * * * * * *	*
		- 07		R		•	/					10		. * 1	10	
• a	9				· · /				***	***	2 1 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		TAN E		prales ::	** ha a *** ** **
2	•				•	NCE NCE		· 			* * ***		1111 1		اں <mark>'</mark> ز	
					· · ·	90% SURVIVABIUTY 95% CONFIDENCE							**************************************	y /2 and a partners of the control o		
		• •				88		· ,		:	- 5	LOCO	88 88	***	10	
		: : :		·		; ;		** * * * * * * * * * * * * * * * * * *		**************************************	- BKD1S	INT INC		2 2 00 00 00 00 00 00 00 00 00 00 00 00		
. ,					•		:		. :	, ,	9	E0 P	BIL NCE		102	<u></u>
6	• •			****	*** ** ** ** ** ** ** ** ** **	•		**** * **	THE H	X 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0 R = 0.	WIENE TINED			* * * * * * * * * * * * * * * * * * * *	
				٠	• • • •					'		• • • •		•	10,	
19 E	-	9	Ž	Ų	; (IS	<u></u>	χ X	MS. C	Š	-	<u>.</u>	ſ		Č	5	

	œ	£ -				-				, .		y x		0
2	PIUV M.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	BAIR 'R		<u></u>		!				10			107
FIGURE 50	REV DOGBONE .100 TI-6RI-4V M.R.	HPEN LOK TITE - DUS GURATION XI 6138-4J	AXIAC SYN AMB TRANSFEH JOINT		50% SURVIVABILITY 50% CONFIDENCE 1		و			* * *	. 4	*		10
\$ 6 4 2 2	REV DOGBO		170±0:53-6 LOW LOAD	ارو"	\$ 55	•.		-	**		4	. : 	*****	ا0 ء
6 4	. 8			· G			* * * * * * * * * * * * * * * * * * * *		- 9 4	7- 4		*	1	CYCLES
	•		Ling Williams						The second of th	3.71	10E0 :	90.00	* * * * * * * * * * * * * * * * * * *	10
-8			90% SURVIVABILITY 95% CONFIDENCE					V 1	# V 7	=: BN91S OI	ED POINT' INC	# <u>}]]</u>		~ 0
-19				 				*		0 R = 0.1	UNFAIL	SURVIVABIL CONFIDENCE		, , , , , , , , , , , , , , , , , , ,

												- 0_	10
	.100 7075-T76 CLAD	X16136-19A X16136-19A PMB: AIR : R-0: 1 JOINT	3 6 7			-		•				10,	.4 ^
FIGURE 52	7	COURNT ION XIRC-S/N TRANSFER	1	/ABILITY		-		/	-			10	2
	SIMPLE LAP	SPEC CONF T70=0:53. HIGH LORD	2	50% SURVIVABILITY 50% CONFIDENCE	,	<i>/</i> .			- 1	7 • •		10	2
* * * * * * * * * * * * * * * * * * *				,		•	-		-	#		10° crales	8 6 1
			10 3 2	90% SURVIVABILITY -				0.59	-10E0 ' .	35.00	- * * * * * * * * * * * * * * * * * * *	10	8
	-		3 5 4			-		≠ BM31S 01	۳(BIL [17 = 90.00 NCE = 95.00		~ 0	2
:.			2					0 R = 0.10	- UNFRI	SURVIVABIL CONFIDENCE		0	4
, ,	<u> </u>	30.	25, (I	K SS (KS	JHS ;	15-4-	<u> </u>		<u>ا</u> ن	, ,	<u>!</u>	<u>, </u>	<u></u> ,

1¢r_			,	,		, ,	·					10			° 0	
FIGURE 54	100	GURATION X16136-1EE	170=0-53-AXIAL-S/N'AMB PIR-R=0-1		-		UTY ICE			,	•	2 13 5	-		10,	
F16	7	CURRIT	XTH X				IVABII FIDEN			-		2			0	
	SIMPLE LAP	SPEC CONF	770=0-53-9 HIGH LORD		-		- 50% SURVIVABIUTY 50% CONFIDENCE	;		=	·	10 2 6 4	-	- *_ *		- :
2	Š	S. S.	F		-			,	*	= - !	* *	2	-	 -	105	* *
10	***	* * * * * * * * * * * * * * * * * * *					TILS TO THE TIES			=	22.				CYCLES	- 4 4 2 7
- 10	1.	•••					VIVABIL VFIDEN		•		*	· ÷ -2	****		່າດເ	
		* ; *			- 10		99% SÜRVIVABILITY 95% CONFIDENCE		, e.		Constitution of the consti		# # # # # # # # # # # # # # # # # # #		<i></i>	Part A B
-	* ·	ı . Lı.	:				i	*	* .		0.76	LUDED	90.00 95.00		0١,	
6 4 4	, , , , , , , , , , , , , , , , , , ,	- # - # - # - # - # - # - # - # - #		# # # # # # # # # # # # # # # # # # #	pet 2 wy dr ' 'mar a '		-		,	To view v	SIGMA.=	TN S	.	• .	***	*
- 2	** A se			: ' : : : : : : : : : : : : : : : : : :				-	,	• x	0.10	ILEO PO	VABIL IT	_	201	X 17 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
4	*	* * *	*		-				, , -	. 	0 R = 0	- UNFRILE	SURVIV	-	-	* v * ,
.								٠ ا		٠		2	-	,	0	3 -3-7
SE			e P P	<u> - </u>	(IS			M _S	<u> </u>	<u></u> -		u	, b		5	

;	,		т	۰,	·	,			·····	r	Ţ	_r		,	0	,
FIGURE 55	00 7075-176 CLAD	SPEC CONFIGURATION X15136-1EEE	170=0:53 AXIAL-S/N-AMB AIR R-0:1 HIGH LØAD TRANSFEH JOINT				ABILITY			6					107	
FIGU	٠. :	THANK	(IPL -S IRANSF	: :	× i	! !	50% SURVIVABILITY 50% CONFIDENCE	!	þ	ſ				-	9 0	
	E L	CONF 10	53 A) LOBD	. , !	,	 	50% 50%		/				 			
	SIMPL	SPEC	H21H H16H	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		' د د د		•						-		
			<u> </u>	<u> </u> :		. هجر	1			<u>-</u>					°o_	
		,		,		\								- ×	ES	
		•		,			BILITY							,	10 CYCLES	
				3 6			90% SURVIVABILITY 95% CONFIDENCE		-				*			
-		-	•	. 4			90% S 95% C		*		33					•
	-										1.39		000		°01	
		:		ė t						_	IGMR =	INC	Y ≈ 90.00 95.00	-	٠,	•
		-		2						,	SIG	ى ق	· 11	-		
											0	E0	BIL	Ī	201	
				•				-			۵.	UNFAILED	SURVIVABILI CONFIDENCE	; - ; =		
		a T		,				,		*	0. B	+ +	S	-		
														-	0	:
35-	· = 		5	ς. γ	i (IS)	אי)	i Xt	HS L		10.		ı	5	C	2	

							*								•01	
			*:	-					*			: : :				
	2:	S .		-			1			-	*	· · · · ·) .	• • •
	CL RD	5 王 3	∩ +			[[-	*				
	971-	6-1	<u> </u>					؛ ا			•					
		X16136-1НН	<u> </u>				<u> </u>	,;							, O	
9	207		TYD=0:53"HXIHK"S/N"HMB HIH"H=0: HIGH LORD TARNSFER JOINT				<u> </u>] ;						j] [,
FIGURE 56		K Z	بر چو ح		-		ببر≾ا	,			*****		,			
H.	100		-5/ 3FE						•	9					l	
E	5	HPEH COK CURATION	IN THE STATE THE THE STATE	ļ	! !	<u> </u>	ΣË	:	<i>s</i> /	[, .				
		SPEC CONFIGURATION	X ::	<u> </u>	 		50% SURVIVABILITY 50% CONFIDENCE	<u> </u> :		-					g	ļ
	å,	_ <u></u>	HIGH LORD			İ	% % O	1				:		;	. .	::
	<u> </u>				٠.		हरू इ		" .		##A X_				İ	٠.
	SIMPLE	SPEC CON	수류			ł	$ \lambda\rangle$					****		İ		
	· ν.	E 13	F	1	-	•	1	2	· •*			#/ Xeg.				
								10		-		,	ļ	<u> </u>	°0_	
* * *		•	,	1		/				**		20 20 X X 40 X 20 X 40 AM 20 20 1	٠.:.			
		,							* * * *				4 F 70 70 200 757 750	, 	ES	
••			,			/	1	,	9- 9 - 9		.,, , , , , , , , , , , , , , , , , , ,	• / · · · · · · · · · · · · · · · · · ·	** **** -		CYCLES	/ "
		x	··/		-	/	1	\ '				.,, ,	" '']:	1	
 .						/_	<u></u> ≥ u -		<u> </u>			·	L	<u> </u>	* 0	
177			ļ		! . /		90% SURVIVABILITY 95% CONFIDENCE							3 3		*
ۇند. دارى]	* * *			i. /		Ž₽			** ***	x 2 4 4	,,,,,,,,				
_!	1			x]	≥ Z 3 O				9		.:	'-	\	
	. 1		1		Y		% % O O	. 2	• • •		2.06	LIDEO	90.00	·		
<u>'::</u>	, ,		<u> </u>			· 	8 8	10		<u>:</u>		3	88		°o	
				:/:		.			•	# # 7 m # #	2 (1) <u>1</u>	N.	:	ļ.; ·		2 4 4 5 34
· · · · · ·	·	* *	:	/				4	••		SICHR	INT	N			i
		, . ,	. /	[·· ·	-	١.	-		٠.		SI	POIN	<u>'</u> ∟ .:	-	• • ··	:
1:		٠.	:/		 -		1	.2		;;	;		بريا	1	<u>.</u>	
	<u> </u>		/_	<u> </u>				L13			2	E	VEBI		20	
		, :	ľ.,			l	:		:		0	UNFAIL			ļ ·	l:
		; ; ·	·					: .:		•		. 5.	SURVI	,		
!			·	ŀ							::•	* † ¥	នៃប	-		
-			·	1		<u> </u>		. 2	, ·		• • •		• **	**	,	
		عر	<u> </u>		<u>. </u>	٥	<u> </u>			عا					<u>-0</u>	<u> </u>
Ų,	505	- 6	, ,	שני		8	i X	#S				U	ָ מי			
•		•		·	21)	, ik	A1	- 5								

١,

HNSTER JOIN	≧ ₩		20,
┋┼╾┈┼┈┈┼	50% SURVIVABILITY	2	•0
המא רמא	\$65 5.05 5.05 5.05 5.05 5.05 5.05 5.05 5.	4	• • • • • • • • • • • • • • • • • • • •
8			10 CYCLES
		2.18 UDED	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
		SIGNE -	
	 	R = 0.10	SURVIVED CONFIDENCE

				·	• <u>°</u> 2
GURE 62 .100 7075+T76 CLR0 T1GUE (1 F: 0015) TT 10N X16138-1EE		4			107
FI CONE	TRANSFER JOIN	50% SURVIVABILITY 50% CONFIDENCE			110
REV. DOCEBONE TI-S-H-SIGHH SPEC CONFICUR	רפא רפשם	888			10°
		LITY ICE			O CYCLES
	_	90% SURVIVABILITY 95% CONFIDENCE	<u> </u>		•0
			- Sighi	D POINT INC	102
		10		LNFAILE SURY IVABI	.0
6	i Š.	K XWMS		, 	9 3 1

	r ₁	l		ا:''		···	,i								° 0	<u>د</u> اا
	-176 сця	16138-1HH	BIRIR R-0:1		SOUTHERN ST							فر			10,	-10
FIGURE 64	REV. DOGBONE . 100 7075-176 CLAD	SPEC CONFIGURATION X16138-1HH	170=0:53 AXIAL S7N AMB'AIR R=01 LOW LOAD TRANSFER JOINT	,	•		50% SURVIVABILITY 50% CONFIDENCE		•	5/	9				10	. 2
	REV. DOGBC	SPEC CONF	170=0:53 LOW LOAD				50% SUR 50% CO	, /2		98	• =			+-	10*	2
		-	•	•		•					,			7	10° CYCLES:	
			-	1	=		90% SURVIVABILITY 95% CONFIDENCE	-	y va		1.56	0301	90.00 95.00		10	
		•		10 2 6 4	-		90% SURV 95% CON	-			=: BLQ1S	POINT INC	L [T Y =			
		-		:E- 0 0 -4			• • • • • • • • • • • • • • • • • • • •				0 R = 0.10	- UNFRILED	:W. 스.	-	201	
0			2	, c	(19	S C(K)	S XI	M _S ?		=) F	ر ا			- <u>o</u>	

	r	-1	-;·· · · -	· '	*;	****** ***** *					· 	, ———		~~~	• <u>0</u>	 1
	5-T76 CLAD	'(I"F"-: 0045 16138-1MM	B FIB R-0.1-		 										107	
FIGURE 67	REV. DOGBANE .100 7075-T75 CLAD	TH THEEK LEK	TYD=0.53 RXIAL S/N AMB FIR A-0.1. LOW LCAO JRANSFEH JUINI		:	50% SURVIVABILITY 50% CONFIDENCE				§/				,	10	
	REV. DOG	SPEC CON	LOW LCAD			50% SUI			*		-				10°	
							=	90% SURVIVABILITY 95% CONFIDENCE			,		•		10 CYCLES	
		-			, ,		-	%S6			1.56	.U0E0	30.00 35.00	* • •	0,	
-	-	-						* *		žv	- втфте от	Ď ď	BILITY = 90.00 N.E = 95.00		0 °	
						٠		•		•	U H = 0.10	+ UNFRI	SURVIVABILI CONFIDENCE	•	. 0.	15 3 6 4
ron.		S	<u> </u> i	35.	(IS	—— 0.8 82	Х У	H _S	i i	=======================================		ر م			5	:6

	·	" C
##CTERISTIC RENCE FIT————————————————————————————————————		107
EFFECT ON FATICUE CHARACTERISTIC OUE TO-AMT-UF INTERFERENCE FIT 7075-176 \$1M-LE LAP JOINT 3/16-11-6-4 STA HI 116LE 1/0.53 AXIRL S/N RMB A1R 9=0.1		10°
EFFECT 0 00E -T0-P 7075-176 3/16 -T1-	. F. =	20.
,		10" CYCLES
2	1.60 1.80 1.39	10ED
2	10 SIGNA FINAL STONE	LED FOINT INC
	0 R = 0.	WERICED - VUNFRICED 10 10 10
30.00	K, C, KHMZ K, C, C, C, C, C, C, C, C, C, C, C, C, C,	ກໍ່ ວ່

	 -		ı ——		 -	, 	T		,			10		0.	
PAPCTERISTIC	7075-176 \$IMPLE LRP JOINT 3-745-111-13-301-10850 1-88-11-13-1-8-1-8-1-8-1-8-1-8-1-8-1-8-1	R=0,1			-				•			2 2 3		10,	
FIGURE 70	OF INTESPERENCE FITTH SIMPLE LAP JOINT	AMB AIR R							, , , , , , , , , , , , , , , , , , ,			4		10	
EFFECT ON	7075-176	AXIAL S/N						8		F. =003	.F. =0015 .F. =0045	5	7	10°	
6								* * **	/» «·		=		***	יס נימרבי יי	# **** *** *** ***
4				1 · ·			! . ! .	***		1.27	1.25	1,050 1,050	*	103	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
0			* * * * * * * * * * * * * * * * * * *							•	WOIS OF	ED POINT INC		10	V H Nee 2 resided 6 res 2 v manus 2 v ma
				· · · · · · · · · · · · · · · · · · ·					y y y y y A			- UNFAIL		-	
35.	30 <u>°D</u>		25,0	(]5)) (K)	XOI	15.	!	q	-	ń.			O.	-

:3F	 -	<u> </u>	Г	· · · · · ·	-	·				 1		1°			• <u>o</u>	
	ARACTERISTIC	REVERSE DICERNE JOINT	0.1			-						3 6 4 2 12 8			10,	
FIGURE 72	ON FATICUE CH	REVERSE DEC	AXIN S/N AMB AIR R-0.1			-				F/2	,,,	-2		- -	10	
2	EFFECT (7075-176	AXIAL SA	-	•				××	- 20 B	1.F. =003	3.1 - 1.0045			no.	-
4		•	3,7			: :				-				-	10 CYCLES	٠
4 4 4 4		;	* :			- - - - - -			• • • • • • • • • • • • • • • • • • • •		3.85	4,33 4,33	INCLUDED	.w W	10	
- 10 8 8								* 1			လွ	# BWSIS O	ED POINT INCLED POINT EX		10 2	
- 15 - 6 4	-	-						-		-	-11-	6 R = 0.10	+ UNFAIL	r.si		
G.			<u>,</u>	<u>۔</u> پر		<u> </u>	S X	M _S \bar{c}			<u> </u>		<u>.</u>	L	0	<u> </u>

Ţ	T	Τ	 		 -		γ			1	;		<u>-</u> 2	
SENCE-FIT	7K-170=;53	-						¥	† •	<u></u>		-	10,	
T-CF-INTERFER REVERSE O'CBU	2201TAPER LE	-						-y-	// ","				•o	
7075-176	AXIA S/N		9	رز		,,,,	1900	e Exx 8	1.F. =003	.F. =0045		**	10	,
			,,,		_			•			,	-	IO CYELES	
	Y-Y -			.,,,,		;• ~ [·			1.58.	2.99	UDED			* * * * * * * * * * * * * * * * * * *
								, - - - -			ED POINT INC	-	0,	- Page 2
	ч .	- - - - - - - - - - - - - - - - - - -	- *I	•			y # w p.a. v #	-	÷ 0.	0	- UNFAIL			-
	707S-176 REVERSE DAGBONE JAINT	7075-176 REVERSE OFGBONE JOINT 3/16 HIT (220) TRPER LOK-170=:53 AXIAL S/N RMB AIR R=0.1								R = 0.10 SICHR = 1.58	R = 0.10 SIGNR = 1.58 R = 0.10 SIGNR = 2.89	R = 0.10 SIGNR = 1.58 R = 0.10 SIGNR = 1.48 R = 0.10 SIGNR = 2.89 CUNFRILED POINT INCLUED * UNFRILED POINT EXCLUED	R = 0.10 SIGNR = 1.58 R = 0.10 SIGNR = 1.48 R = 0.10 SIGNR = 2.89 VUNFRILED POINT INCLUDED	R = 0.10 SICHA = 1.58 1.48

FIGURE 78 EFFECT OF FSTNR MTRL RNO HOLE PREPTECHNIOUSE - PATOLE 7075-176 REVERSE D3080K- J31M 87.16-014-H-T10UE-T/O-, S3 RXIAL S/N RNB RIR R-0 1 RXIAL S/N RNB RIR RNO HOLE 81GM = 3.70 S1GM = 1.48 S1GM = 1
= 0,10 SI UNFAILED POI

			* <u>°</u> 0
AND HOLE ATIGUE SBONE JOINT53	44 X		107
EFFECT OF FSTNR MTRL. RND HOLE PREP-TECHNIQUES AN FATIGUE TI-6-4 MR REVENSE O'GBONE JOINT 3/16 DIR HI TIGUE T/D53 AXIAL S/N RNB HIR R-0.1	Y X X Y OD. HOLE)	C. HOLE) HOLE) HOLE)	100
EFFECT PREP-TE 11-6-4 AXIAL S	EL FASTENER (PRC	STEEL FASTENER (PREC. HOLE) TI FASTENER (PREC. HOLE) TI FASTENER (PREC. HOLE)	102
	315	TE TITE TO THE TENT OF THE TEN	10 CYCLES
2	3.28 3.72 3.97		103
5	= BASICAB	S EF	103
***************************************	0 B = 0.	H CN C	
64.00 St. 27	SHRX LAST) SO	5년 	<u>.</u>

MTRL RND HOLE ON FATIGUETT LAP JOINT	1/D=R							Α			
FSTNR VIQUES SIMPLE	APER LOK AMB AIR							HOLE) HOLE) JLE)		2 2 0 1	
4117	3716 DIR AXIAL S/N					22/2		L FASTENER (PROD L FASTENER (PREC. ISTENER (PROD. H REC. HOLE)		108	
			4	= - - - -	* * * * * * * * * * * * * * * * * * *	•	*	21E			CICES
	4					- we ve	11.	0.89 0.83	UDED	200	
	4							10 SIGMR = 10 SIGMR =	ED POINT INC	0.5	X
	15			: -	,	X-31 X		0 × 8 ×	- UNFRI	e t 4	- . ,
1	- 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	PREP TECH 7075-T76 S 3716 DIR 1	0.0 7075-T76 \$ 7075-T76 \$ 3716 DIR AXIAL S/N	PREP-TECH OF 7075-176 S 3/16 OIR AXIAL S/N	5.0 S.0 S.0 S.0 S.16 EFFECT OF 7075-T76 S SY16 DIR RXIAL S/N O.0	OrD St.O	5.0 5.0 5.0 5.0 5.0 5.0	S.0 S.0 S.0 S.0 S.0 S.0 S.0 S.0	5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	5.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0	S-00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

	•	r		<u>*o</u>
RND HOLE TIGUE JFINT Y/D=-53		¥ ***	16	, or
FIGURE 81 EFFECT DF FSTNR MTRL AND HOLE PREPTECHNIQUES-ON FATIGUE TI-6-4 MA SIMPLE LAP JFINT 3/16-DIR TAPER-LOK- T/D=.53— RXIAL S/N AMB AIR A-0.1			HOLE)	10°
EFFECT OF PREPTECT OF TECT OF			STEEL FASTENER (PROD. HOLE) STEEL FASTENER (PREC. HOLE) TI FASTENER (PROD. HOLE) TI FASTENER (PREC. HOLE)	10
3 6			STEEL STEEL	10 CYCLES
10 8 4			4,45 2,89 3,75 1,02 00ED	-
			ILGMA = SIGMA	0
, , , , , , , , , , , , , , , , , , ,			R = 0,10 8 R = 0,10 8 R = 0,10 7 R = 0,10 Y UNFAILED PO	20
0.07	K E (KSI)	M _S 28		701

AND HOLE FRIGUE	:0.					701
EFFECT OF FSTAN MTRL AND HOLE PREP-TECHNIQUES ON FATICUE	AXIAL S/N AMB AIR R-0.1				D. HOLE) 1. HOLE) 1. HOLE) 1. HOLE) 1. HOLE) 1. HOLE)	10
EFFECT 0 PREP TEC 7075-176	AXIAL S/		www.iii		STEEL FASTENER (PROD. HOLE) STEEL FASTENER (PREC. HOLE) TI FASTENER (PROD. HOLE) TI FASTENER (PREC. HOLE)	10°
		A CONTRACTOR OF THE PARTY OF TH			7 1 FA	o cyales
	4				1.54 1.11 2.01	CUOEU
	4				SIGNA SIGNA SIGNA SIGNA INC	TNIC
	2				A B = 0.2 8 B = 0.2 7 B = 0.2	* CUNFA
<u>တို့</u>		(KSI)	XUH _S	7 - 1 - 1		

TABLE I. INDEX TO BASELINE DATA GENERATION

	Property.	VECULT . L'AUEA	2	PASELLINE DAIA GENERALION	אום מוני	NOT TONE			
				Fe	Fastener	Material	1		
				(220)	HIII	(260)	Ti-6-4-STA	4-STA	
Joint	Amount of	Taxtoner	132 KS Shear	KSI ar	156 Sh	156 KSI Shear	95 KSI Shear	KS1 ar	
5 1000000000000000000000000000000000000	Load Transfer	System	Tab.le	Figure	Table	Figure	Table	Figure	Sheet Material
Lap Joint	%00T	Hi Tigue	5	16	ڥ	17	2	18	7075-T76 Clad
Lap Joint	%001	Hi Tigue	8	19	0	20	10	77	Ti-6Al-4V M.A.
Lap Joint	%00T	Taper Lok	น	22	12	23	13	†₹	7075-T76 Clad
Lap Joint	300T	Taper Lok	1,4	25	15	56	J 6	22	Ti-6Al-4V M.A.
1-1/2 Dogbone	Approx. 30%	Hi Tigue	17	58	18	53	61	30	7075-T76 Clad
1-1/2 Dogbone	Approx. 30%	Hi Tigue	20	31	21	35	22	33	Ti-6A1-4V M.A.
1-1/2 Dogbone	Approx. 30%	Taper Lok	23	34	1 72	35	25	36	7075-T76 Clad
1-1/2 Dogbone	Approx. 30%	Taper Lok	56	37	22	38	28	39	Ti-6A1-4V M.A.
Reverse Dogbone	Approx. 5%	Hi Tigue	29	710	30	1 41	31	745	7075-I76 Clad
Reverse Dogbone	Approx. 5%	Hi Tigue	32	£‡	33	ተተ	34	45	Ti-6A1-4V M.A.
Reverse Dogbone	Approx. 5%	Taper Lok	35	917	36	$L^{\dagger \eta}$	37	94	7075-I76 Clad
Reverse Dogbone	Approx. 5%	Taper Lok	38	64	39	50	0†	辽	Ti-6A1-4V M.A.
1. R = +0.1 =	1 = S Min/S Max		- = -	- - -	- - -				
2. Test En	Test Environment: Lab	Laboratory Air							
3. Fastene	Fastener Diameter: No	Nominal 3/16 inch	inch						
4. Fastene	Fastener Coating: For	For Alum. Structure:	cture:	Titanium	m Faste	Fasteners, ac	acetyl/al	(alcohol; S	Steel
	For	Titanium Structure:	tructur	g Q	Titanium and	-	w w	Tag.	co 2123 Type 2
5. Fastene	Fastener Interference:	Production Tolerances	n Toler	ances					
6. Faying	Faying Surface Condition:		um Shee ting Se	Aluminum Sheet-Epoxy Zinc Chromate Primer plus Corrosion Inhibiting Sealant; Titanium Sheet - Molykote 106 Lubric	Zinc Ch itanium	romate I	rimer p Molyko	lus Corr te 106 I	Primer plus Corrosion - Molykote 106 Lubricant
7. Standar	Standard Production, Equipment	Squipment and	d Proce	Procedures we	were used	for Hole		Fabrication.	
1									

TABLE II. INDEX TO TABULAR DATA AND FIGURES

	-	Comparison	Shown In	Figure 68	Figure 69	Figure 70	Figure 71	Figure 72	Figure 73	Figure 74	Figure 75				erial.	
	-	gh 3	Figure	53	55	22	59	[9]	63	65	29				made from .100 stock 7075-T76 Clad Material.	
	nce	High 3	Table	742	†††	9†	84	50	52	54	56				75- T 76	
2	Interference	Production 2	Figure	16	18	55	5 †	04	42	9†	84				tock 70	
-	of	Produ. 2	Table	5	7	H	13	53	31	35	37	limits	limits	limits	s 001. 1	
-	Amount	Low 1	Figure	52	54	56	58	09	62	† ₇ 9	99	0000	0015	0030	ade from	
		ָ קַרָּ	Table	41	143	1,5	24	647	51	53	55				tests me	
	-	۲'n	1 (220) -6A1-4V	- Stl.	- Ti.	k - Stl.	k - Ti.	- Stl.	- H:	k - Stl.	k – Tî.	-0.0015 mean	-0.0030 mean	-0.0045 mean	series of t	
1	-	Fastener	Steel HLI (220) Titanium-6Al-4V	Hi-Tigue	Hi-Tigue	Taper Lok	Taper Lok	Hi-Tigue	Hi-Tigue	Taper Lok	Taper Lok	Hi-Tigue Taper Lok	Hi-Tigue Taper Lok	High Tigue Taper Lok	for this ser	
		(of Ser					2%	5%	5%	2%		Hi -T Tape	_		
i		•	Amount o Load Trans	7001	700%	7007	100%	Approx.	Approx.	Approx.	Approx.	Low Interference:	on:	High Interference:	All specimens used	
							*	ogpone	ogbone	ogbone	ogbone	Low Inte	Production:	High Int	All spec	
			Joint Geometry ⁴	Lap Joint	Lap Joint	Lap Joint	Lap Joint	Reverse Dogbone	Reverse Dogbone	Reverse Dogbone	Reverse Dogbone	٦.	∾์ ∾่	m m	. 4	
				Ľ	<u> </u>	<u> </u>	<u> </u>	짪	<u> </u>	<u>~~</u>	Ä					

TABLE III. INDEX TO TABULAR DATA AND FIGURES (EFFECT OF FASTENER HOLE CONDITIONING)

			Hole Prepa	Preparation		
		Fastener System	Standard Production	Precise	Comparison	
Joint Geometry	Amount of Load Transfer	Steel, HL1 (220) Titanium-6Al-4V	Тар1е	Table	Curves Shown In	Sheet Material
Lap Joint	100%	Hi Tigue - Stl.	2	25	Figure 76	7075-T76 Clad
Lap Joint	7001	Hi Tigue - Stl.	80	23	Figure 77	Ti-6Al-4V M.A.
Lap Joint	100%	Hi Tigue - Ti.		26	Figure 76	7075-T76 Clad
Lap Joint	7001	Hi Tigue - Ti.	10	9	Figure 77	Ti-6Al-4V M.A.
Reverse Dogbone	5%	Hi Tigue - Stl.	59	61	Figure 78	7075-T76 Clad
Reverse Dogbone	5%	Hi Tigue - Stl.	32	62	Figure 79	Ti-6A1-4V M.A.
Reverse Dogbone	5%	Hi Tigue - Ti.	31	63	Figure 78	7075-T76 Clad
Reverse Dogbone	5%	Hi Tigue - Ti.	34	\$	Figure 79	Ti-6Al-4V M.A.
Lap Joint	100%	Taper Lok - Stl.	1.1	65	Figure 80	7075-T'76 Clad
Lap Joint	7COT	Taper Lok - Stl.	†T	99	Figure 81	Ti-6Al-4V M.A.
Lap Joint	7001	Taper Lok - Ti.	13	29	Figure 80	7075-T76 Clad
Lap Joint	7007	Taper Lok - Ti.	16	88	Figure 81	Ti-6A1-4V M.A.
Reverse Dogbone	5.5	Taper Lok - Stl.	35	69	Figure 82	7075-T76 Clad
Reverse Dogbone	5%	Taper Lok - Stl.	38	2	Figure 83	Ti-6A1-4V M.A.
Reverse Dogbone	50	Taper Lok - Ti.	37	77	Figure 82	7075-T76 Clad
Reverse Dogbone	Ω. 86⊤	Taper Lok - Ti.	04	72	Figure 83	Ti-6A1-4V M.A.

Standard Production - All holes were prepared using std. drill jig; No Reaming. ᆟ

Precise Hole Generation - All holes were fabricated using tool and die maker equipment. All holes were inspected for roundness and taper. તં

TABLE IV. INDEX TO TABULAR DATA AND FIGURES (EFFECT OF SHEET THICKNESS/FASTENER DIAMETER RATIO)

			Thickne	Thickness/Diameter Ratio t/d	Ratio t/d	
	Amonnt of	Fastener System	Min. 0.33	Nominal 0.53	Max. 0.85	Comparison
Joint Geometry	+ سد	Titanium-641-4V	Table	Table	Table	Curves Shown In
Lap Joint	7001	Hi Tigue - Stl.	73	2	77.	Figure 84
Lap Joint	%00T	Hi Tigue - Ti.	75	2	92	Figure 85
Lap Joint	%0CT	Taper Lok - Stl.	2.2	11	78	Figure 86
Lap Joint	7001	Taper Lok - Ti.	Œ	13	80	Figure 87
Reverse Logbone	Approx. 5%	Hi Tigue - Stl.	81	. 29	82	Figure 88
Reverse Dogbone	Approx. 5%	Hi Tigue - Ti.	83	31	₩8	Figure 89
Reverse Dogoone	Approx. 5%	Taper Lc Stl.	85	35	98	Figure 90
Reverse Dogbone	Approx. 5%	Taper Lok - Ti.	87	37	88	Figure 91
	-					

- All Specimens used for this series of tests made from .100 stock 7075-T76 Clad Material.
- All Specimens used for this series of tests made from .063 stock 7075-T76 Clad Material. તં
- All Specimens used for this series of tests made from .160 stock 7075-T76 Clad Material. ÷

TABLE V

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT HI-TIGUE, 7075-T76 CIAD HIGH LOAD TRANSFER JOINT

JOINT GEOMETRY: X16136-1A, Figure 1

FASTENER SYSTEM: HLT 315-6-4 Pin, HL 1386-6 Collar

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Hll (220) 132 ksi Shear

FASTEMER COATING: Diffused Nickel-Cadmium

HOLE FABRICATION: Production HSS Double Margin Drill

STRESS RATIO, S_{min}/S_{max} : R = 0.1, Constant Amplitude Unless Otherwise Noted

TEST SPEED: 1800-2400 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	SPEC. SUPPORT METHOD 1,2	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 3,4,5,6	REMARKS
1A11 1A7 1A3 1A4 1A1 1A9 1A2 1A12; 1A6 1A10 1A5 1A8 1A7	30 30 30 18 18 18 15 15 15 15 15 12	Flexure Flexure Sandwich Flexure Sandwich Flexure Sandwich Sandwich Flexure Flexure Flexure Flexure	13,520 16,929 44,676 111,672 161,680 175,367 235,000 130,000 196,700 364,700 429,780 5,500,000 N.F. 10,200,000 N.F.	CSKH CSKH PIA PIA PIA PIA PIA PIA PIA	

- 1. Four flexures (90° offset), see Figure 7
- 2. "Sandwich" guide and restraint, see Figure 6
- 3. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 4. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 5. PLH = Sheet metal failure through the fastener holes in the plain sheet.
- 6. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE VI

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT HI TIGUE, 7075-T76 CIAD HIGH LOAD TRANSFER JOINT

JOINT GEOMETRY: X16136-1B, Figure 1

FASTENER SYSTEM: HLT 15-6-4 Pin, HL 1386 Collar

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Hll (260) 156 ksi Shear

FASTENER COATING: Diffused Nickel Cadmium

HOLE FABRICATION: Production HSS Double Margin Drill

STRESS RATIO, s_{min}/s_{max} : R = 0.1, Constant Amplitude Unless Otherwise Noted

TEST SPEED: 1800-2400 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	SPEC. SUPPORT METHOD 1,2	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 3,4,5,6	REMARKS
1B7 1B5 1B3 1B11 1B1 1B6 1B2 1B9 , 1B12 1B5 1B10	35 30 30 30 18 18 18 13 13 13 11.5	Flexure Flexure Sandwich Flexure Flexure Sandwich Flexure Sandwich Flexure Flexure Flexure	5,080 11,500 26,160 26,750 194,000 200,000 250,700 673,943 773,000 1,522,000 10,580,000 N.F.	CSKH CSKH PIH PIH PIA, PLH PIA, PLH PIA, PLH PIA, PLH PIA, PLH PIA, PLH	Constant Load Constant Load Constant Load Constant Load Constant Load Constant Ampl. Constant Load Constant Load Constant Load Constant Load Constant Load Constant Load Constant Load Constant Load

- 1. Four flexures (90° offset), see Figure 7
- 2. "Sandwich" guide and restraint, see Figure 6
- 3. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 4. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 5. PLH = Sheet metal failure through the fastener holes in the plain sheet.
- 6. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE VII

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT HI TIGUE, 7075-T76 CIAD HIGH LOAD TRANSFER JOINT

JOINT GEOMETRY: X16136-1E, Figure 1 '.

FASTENER SYSTEM: HLT 411-6-4 Pin, HL 1386-6 Collar

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Titanium-6Al-4V STA, 95 ksi Shear

FASTENER COATING: Cetyl Alcohol Lube

HOLE FABRICATION: Production HSS Double Margin Drill

STRESS RATIO, S_{min}/S_{max}: R = 0.1, Constant Amplitude Unless Otherwise Noted

TEST SPEED: 1800-2400 cpm Unless Otherwise Noted

·	 		· · · · · · · · · · · · · · · · · · ·	 	
SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	SPEC. SUPPORT METHOD 1,2	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 3,4,5,6	REMARKS
1E10 1E9 1E11 1E2 1E1 1E3 1E6 1E12 1E4 1E5 1E8 1E7	30 30 30 20 20 20 14 14 14 11.5	Flexure Sandwich Flexure Flexure Flexure Sandwich Sandwich Flexure Flexure Flexure Flexure Flexure Flexure	12,994 19,260 19,992 77,970 101,000 160,500 195,312 261,500 493,350 589,200 9,110,800 9,863,200	PLH CSKA PIA PIA PIA PIA PIA PIA PIA	

- 1. Four flexures (90° offset), see Figure 7
- 2. "Sandwich" guide and restraint, see Figure 6
- 3. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 4. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 5. PLH = Sheet metal failure through the fastener holes in the plain sheet.
- 6. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE VIII

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT HI TIGUE, Ti-6Al-4V M.A. HIGH LOAD TRANSFER JOINT

JOINT GEOMETRY: X16136-4A, Figure 1

FASTENER SYSTEM: HLT 315-6-4 No Ni-Cad, HL 1386-6 Collar

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Hll (220) 132 ksi Shear

FASTENER COATING: Inorganic Solid Dry Film Lube

NOIE FABRICATION: Production Cobalt Double Margin Drill

STRESS RATIO, S_{min}/S_{max} : R = 0.1, Constant Amplitude Unless Otherwise Noted

TEST SPEED: 1800-2400 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KS1	SPEC. SUPPORT METHOD 1,2	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 3,4,5,6	REMARKS
4A1 4A2 4A4 4A7 4A8 4A6 4A10 4A12 4A9 4A11	50 50 40 30 30 26 20 20	Flexure Sandwich Flexure Flexure Flexure Sandwich Flexure Flexure Sandwich Flexure	12,800 22,800 24,700 40,000 66,400 89,200 246,900 210,330 10,150,000 N.F. 10,000,000 N.F.	CSKH CSKH CSKH CSKH CSKH PLH CSKH	

- 1. Four flexures (90° offset), see Figure 7
- 2. "Sandwich" guide and restraint, see Figure 6
- 3. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 4. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 5. PLH = Sheet metal failure through the fastener holes in the plain sheet.
- 6. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE IX

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT HI TIGUE, T1-6A1-4V M.A. HIGH LOAD TRANSFER JOINT

JOINT GEOMETRY: X16136-4B, Figure 1

FASTENER SYSTEM: HLT 15-6-4 No Ni-Cad, HL 1386-6 Collar

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Hll (260) 156 ksi Shear

FASTENER COAFING: Inorganic Solid Dry Film Lube

HOLE FABRICATION: Production Cobalt Double Margin Drill

STRESS RATIO, S_{min}/S_{max} : R = 0.1, Constant Amplitude Unless Otherwise Noted

TEST SPEED: 1800-2400 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	SPEC. SUPPORT METIOD 1,2	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 3,4,5,6	REMARKS
4B1 4B2 4B3 4B7 4B12 4B6 4B4 4B8 4B10 4B11 4B9 4B5	50 50 50 33 33 33 30 25 22.5 22.5 22.5	Flexure Flexure Sandwich Flexure Sandwich Flexure Flexure Flexure Flexure Flexure Flexure Sandwich Flexure	16,400 19,700 51,800 120,500 123,900 127,300 267,900 230,000 381,100 580,800 1,520,000 11,668,000 N.F.	CSKH CSKH CSKH CSKH CSKH CSKH CSKH CSKH	

- 1. Four flexures (90° offset), see Figure 7
- 2. "Sandwich" guide and restraint, see Figure 6
- 3. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 4. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 5. PLH = Sheet metal failure through the fastener holes in the plain sheet.
- 6. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE X

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT HI TIGUE, Ti-6Al-4V M.A. HIGH LOAD TRANSFER JOINT

JOINT GEOMETRY: X16136-4E, Figure 1

FASTEMER SYSTEM: HLT 411-6-4 Pin, HL 1386-6 Collar

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Titanium-6A1-4V STA, 95 ksi Shear

FASTENER COATING: Inorganic Solid Dry Film Lube

HOLE FABRICATION: Production Cobalt Double Margin Drill

STRESS RATIO, S_{min}/S_{max} : R = 0.1, Constant Amplitude Unless Otherwise Noted

TEST SPEED: 1800-2400 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	SPEC. SUPPORT METHOD 1,2	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 3,4,5,6	REMARKS
4E4 4E2 4E3 4E5 4E6 4E1 4E1 4E1 4E1 4E12	55 55 55 55 55 56 50 30 30 30 30 24	Flexure Flexure Sandwich Flexure Sandwich Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure	13,900 15,700 23,400 42,000 42,800 49,800 70,500 143,625 380,475 1,550,800 10,000,000 N.F. 324,800 1,385,200	CSKI CSKH CSKH CSKH CSKH PLH PLH PLH PLH PLH	_

- 1. Four flexures (90° offset), see Figure 7
- 2. "Sandwich" guide and restraint, see Figure 6
- 3. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 4. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 5. PLH = Sheet metal failure through the fastener holes in the plain sheet.
- 6. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE XI

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TAFER LOK, 7075-T76 CIAD HIGH LOAD TRANSFER JOINT

JOINT GEOMETRY: X16136-1H, Figure 1

FASTEMER SYSTEM: TLH 100-3-4 Pin, TLN 1001-3 Washernut

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Hll (220) 132 ksi Shear

FASTENER COATING: Diffused Nickel Cadmium

HOLE FABRICATION: Production HSS Taper Lok Drill-Reamer

STRESS RATIO, S /S : R = O.1, Constant Amplitude Unless Otherwise Noted

TEST SPEED: 1800-2400 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	SPEC. SUPPORT METHOD 1,2	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 3,4,5,6	REMARKS
1H7 1H8 1H9 1H3 1H2 1H1 1H5 1H4 1H10 1H11	30 30 30 20 20 20 14 14 14 11.5 10.5	Flexure Flexure Sandwich Sandwich Flexure Sandwich Flexure Flexure Flexure Flexure Flexure	14,555 20,050 24,875 126,250 150,150 231,000 779,300 825,630 1,548,300 5,931,700 2,777,900	CSKH CSKH PIA PIA PIA PIA PIA PIA PIA PIA	

- 1. Four flexures (90° offset), see Figure 7
- 2. "Sandwich" guide and restraint, see Figure 6
- 3. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 4. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 5. PLH = Sheet metal failure through the fastener holes in the plain sheet.
- 6. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE XII

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TAPER LOK, 7075-T76 CIAD HIGH LOAD TRANSFER JOINT

JOINT GEOMETRY: X16136-1J, Figure 1

FASTEMER SYSTEM: TLHU 100-3-4 Pin, TLN 1001-3 Washernut

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Hll (260) 156 ksi Shear

FASTENER COATLIG: Diffused Nickel Cadmium

HOLE FABRICATION: Froduction HSS Japar lok Drill-Reamer

STRESS RATIO, S_{min}/S_{max} : R = 0.1, Constant Amplitude Unless Otherwise Note1

TEST SPEED: 1800-2400 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	SPEC. SUPPORT METHOD 1,2	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 3,4,5,6	REMARKS
1J1 1J3 1J2 1J4 1J5 1J6 1J7 - 1J9 1J8 1J12 1J10 Lj11	30 30 30 20 20 20 14 14 14 14 11 9.5	Flexure Sandwich Flexure Flexure Sandwich Flexure Sandwich Flexurc Flexure Lexure Lexure	11,800 18,800 22,650 186,420 200,460 297,850 2,591,100 4,100,600 5,445,180 9,555,250 6,375,810 11,211,000 N.F.	CSKH CSKH PIA CSKH PIA PIA CSKA CSKH PIA CSKH	Constant Load Constant Load Constant Load Constant Load Constant Load Constant Load Constant Load Constant Load Constant Load Constant Load Constant Load Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl.

- 1. Four flexures (90° offset), see Figure 7
- 2. "Sandwich" guide and restraint, see Figure 6
- 3. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 4. CSKA = Sheet metal failure away from the fastener holes i. the CSK sheet.
- 5. PLH = Sheet metal failure through the fastener holes in the plain sheet.
- 6. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE XIII

AXIAL FATIGUE STRENGTH ~ INTERFERENCE FIT TAPER LOK, 7075-T76 CIAD HIGH LOAD TRANSFER JOINT

JOINT GEOMETRY: X16136-1M, Figure 1

FASTENER SYSTEM: TLV 100-3-4 Pin, TLN 1001-3 Washernut

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Titanium-6A1-4V, STA 95 ksi Shear

FASTENER COATING: Cetyl Alcohol Lube

HOLE FABRICATION: Production HSS Taper Lok Drill-Reamer

STRESS RATIO, Smin/Smax: R = 0.1, Constant Amplitude Unless Otherwise Noted

TEST SPEED: 1800-2400 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	SPEC. SUPPORT METHOD 1,2	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 3,4,5,6	REMARKS
1M5 1M4 1M3 1M2 1M1 1M6 1M7 1M8 • 1M9 1M12 1M10 1M11	30 30 30 20 20 20 14 14 14 14 11	Flexure Flexure Sandwich Flexure Sandwich Flexure Flexure Sandwich Flexure Flexure Flexure Flexure	9,130 15,980 22,880 64,980 159,570 215,215 825,160 1,292,230 1,335,500 2,107,500 2,981,500 6,555,100	CSKH PLH CSKH CSKH PIH PIA PIA CSKH PIA CSKH PIA	Constant Load Constant Load

- 1. Four flexures (90° offset), see Figure 7
- 2. "Sandwich" guide and restraint, see Figure 6
- 3. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 4. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 5. PLH = Sheet metal failure through the fastener holes in the plain sheet.
- 6. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE XIV

AXIAL FATIGUE STRENGTH - UNTERFERENCE FIT "APER LOK, Ti-6Al-4V M.A. HIGH LOAD TRANSFER JOINT

JOINT GEOMETRY: X16136-4H, Figure 1

FASTENER SYSTEM: TLH 100-3-4 No Ni-Cod, TLN 1001-3 Washernut

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Hll (220) 132 ksi Shear

FASTENER COATING: Inorganic Solid Dry Film Lube

HOLE FABRICATION: Production Cobalt Taper Lok Drill-Reamer

STRESS RATIO, s_{min}/s_{max} : R = 0.1, Constant Amplitude Unless Otherwise Noted

TEST SPEED: 1800-2400 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	SPEC. SUPPORT METHOD 1,2	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 3,4,5,6	remarks
4112 4111 4113 4115 4117 416 4118 41112 41110 4119 4114 414	54 54 45 45 45 45 45 45 45 45 45 45 45 4	Flexure Flexure Sindwich Flexure Flexure Sandwich Flexure Flexure Flexure Sandwich Flexure Flexure Sandwich Flexure	17,150 19,960 30,500 45,100 79,500 136,000 272,000 83,300 101,400 125,300 552,600 11,620,000 N.F. 12,800,000 N.F.	CSKH CSKH CSKH CSKH CSKH CSKH CSKH CSKH	Rerun

- 1. Four flexures (90° offset), see Figure 7
- 2. "Sandwich" guide and restraint, see Figure 6
- 3. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 4. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 5. PLH = Sheet metal failure through the fastener holes in the plain sheet.
- 6. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE XV

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TAPER IOK, T1-6A1-4V M.A. HIGH LOAD TRANSFER JOINT

JOINT GEOMETRY: X16136-4J, Figure 1

FASTEMER SYSTEM: TIHC 100-3-4 No. Ni-Cad, TIN 1001-3 Washernut

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Hll (260) 156 ksi Shear

FASTENER COATING: Inorganic Solid Dry Film Lube

HOLE FABRICATION: Production Cobalt Taper Lok Drill-Reamer

STRESS RATIO, s_{min}/s_{max} : R = 0.1, Constant Amplitude Unless Otherwise Noted

TEST SPEED: 1800-2400 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	SPEC. SUPPORT METHOD 1,2	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 3,4,5,6	REMARKS
4J1 4J2 14J3 14J12 14J5 14J6 14J6 14J9 14J7	53 53 54 34 34 34 38 20	Floxure Floxure Sandwich Flexure Floxure Flexure Sandwich Sandwich Flexure	10,800 11,910 21,855 59,520 126,200 173,200 1,003,300 1,436,170 10,000,000 N.F. 10,000,000 N.F.	CSKH CSKH CSKH CSKH CSKH CSKH CSKH	

- 1. Four flexures (90° offset), see Figure 7
- 2. "Sandwich" guide and restraint, see Figure 6
- 3. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 4. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 5. PLH = Sheet metal failure through the fastener holes in the plain sheet.
- 6. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE XVI

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TAPER LOK, Ti-6A1-4V M.A. HIGH LOAD TRANSFER JOINT

JOINT GEOMETRY: X16136-4M, Figure 1

FASTENER SYSTEM: TLV 100-3-4 STA, TIN 1001-3 Washernut

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Titanium-6A1-4V, 95 ksi shear

FASTENER COATING: Inorganic Solid Dry Film Lubc

HOLE FABRICATION: Production Cobalt Taper Lok Drill-Reamer

STRESS RATIO, Smin/Smax: R = 0.1, Constant Amplitude Unless Otherwise Noted

TEST SPEED: 1800-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	SPEC. SUPPORT METIOD 1,2	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 3,4,5,6	REMARKS
4M5 4M8 4M7 4M4 4M9 4M11 4M10= 4M2 4M3 4M1 4M12 4M12	50 50 50 50 40 40 30 30 30 30	Flexure Flexure Flexure Flexure Sandwich Flexure Flexure Sandwich Flexure Flexure Flexure Sandwich	10,000 17,460 28,900 47,000 58,700 109,600 143,200 276,000 700,200 3,072,500 10,000,000 N.F.	CSKH CSKH CSKH CSKH CSKH CSKH CSKH CSKH	

- 1. Four flexures (90° offset), see Figure 7
- 2. "Sandwich" guide and restraint, see Figure 6
- 3. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 4. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 5. PLH = Sheet metal failure through the fastener holes in the plain sheet.
- 6. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE XVII

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT HI TIGUE, 7075-T76 CIAD MEDIUM LOAD TRANSFER JOINT

JOINT GEOMETRY: X16137-1A, Figure 2

FASTENER SYSTEM: HLT 315-6-4 Pin, HL 1386-6 Collar

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Hll (220), 132 ksi Shear

FASTENER COATING: Diffused Nickel-Cadmium

HOLE FABRICATION: Production HSS Double Margin Drill

STRESS RATIO, S_{min}/S_{max} : R = 0.1, Constant Amplitude Unless Otherwise Noted

TEST SPEED: 1800-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	CYCIES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 1,2,3,4	REMARKS
1A2 1A1 1A9 1A7 1A10 1A4 1A3 1A6 1A11 1A5 1A8	40 40 40 33 30 30 30 20 20 20	5,900 10,900 11,850 78,760 119,400 136,800 166,300 796,000 919,000 3,095,250 3,011,000	CSKH CSKH CSKH Not Noted CSKA CSKA CSKA CSKH Not Noted CSKA	

- 1. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 2. CSK4 = Sheet metal failure away from the fastener holes in the CSK sheet.
- 3. PHI = Sheet metal failure through the fastener holes in the plain sheet.
- 4. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE XVIII

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT HI TIGUE, 7075-T76 CIAD MEDIUM LOAD TRANSFER JOINT

JOINT GEOMETRY: X16137-1B, Figure 2

FASTENER SYSTEM: HLE 15-6-4 Pin, HL 1386 Collar

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: H11 (260) 156 ksi Shear

FASTENER COATING: Diffused Nickel Cadmium

HOIE FABRICATION: Production HSS Double Margin Drill

STRESS RATIO, Smin/Smax: R = 0.1, Constant Amplitude Unless Otherwise Noted

TEST SPEED: 1800-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 1,2,3,4	REMARKS
183 182 1E1 1B10 1B12 1B9 1B8 1B4 1B6 1B5 1B11	40 40 40 26 26 26 20 20 20 17.5 12.5	3,980 9,200 12,700 179,100 193,700 303,000 345,700 709,000 1,001,100 1,497,600 7,438,700 10,059,000 N.F.	CSKH CSKH CSKA CSKA CSKH CSKA CSKH CSKA CSKH CSKH CSKH	·

- 1. CSKH = Sheet motal failure through the fastener holes in the CSK sheet.
- 2. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 3. PIM = Sheet metal failure through the fastener holes in the plain sheet.
- 4. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE XIX

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT HI TIGUE, 7075-T76 CLAD MEDIUM ICAD TRANSFER JOINT

JOINT GEOMETRY: X16137-1E, Figure 2

FASTENER SYSTEM: HLT 411-6-4 Pin, HL 1386-6 Collar

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Titanium-6Al-4V STA, 95 ksi Shear

FASTENER COATING: Cetyl Alcohol Lube

HOLE FABRICATION: Production HSS Double Margin Drill

STRESS RATIO, Smin/Smax: R = 0.1, Constant Amplitude Unless Otherwise Noted

TEST SPEED: 1800-2300 cpm Unless Otherwise Noted

			<u> </u>	
SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 1,2,3,4	REMARKS
1E1 1E5 1E4 1E9 1E8 1E3 1E12 1E2 1E10 1E7 1E6 1E11	40 40 40 30 30 30 22.5 20 20 20 20 18	16,700 21,790 30,400 102,600 105,800 137,200 589,500 597,100 2,356,200 3,005,200 6,862,100 19,400,000 N.F.	CSKH. CSKH. CSKA Not Noted CSKH CSKH CSKH Not Noted CSKH	

- 1. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 2. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 3. PIH = Sheet metal failure through the fastener holes in the plain sheet.
- 4. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE XX

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT HI TIGUE, Ti-6Al-4V M.A. MEDIUM LOAD TRANSFER JOINT

JOINT GEOMETRY: X16137-4A, Figure 2

FASTENER SYSTEM: HLT 315-6-4 No Ni-Cad, HL 1386-6 Collar

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Hll (220), 132 ksi Shear

FASTENER COATING: Inorganic Solid Dry Film Lube

HOLE FABRICATION: Production Cobalt Double Margin Drill

STRESS RATIO, Smin/Smax: R = 0.1, Constant Amplitude Unless Otherwise Noted

TEST SFEED: 1800-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 1,2,3,4	REMARKS
4A1 4A2 4A9 4A7 4A4 4A3 4A12 1:A5 4A11 4A10 4A8 4A6	85 85 86 60 60 40 40 38 35 30	4,430 4,700 4,750 32,900 36,000 38,300 189,200 346,000 356,400 10,087,800 N.F. 10,400,000 N.F.	CSKH CSKH CSKH CSKH CSKH CSKH CSKH	

- 1. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 2. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 3. PIH = Sheet metal failure through the fastener holes in the plain sheet.
- 4. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE XXI

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT HI TIGUE, Ti-6Al-4V M.A. MEDIUM LOAD TRANSFER JOINT

JOINT GEOMETRY: X16137-4B, Figure 2

FASTENER SYSTEM: HLT 15-6-4, No Ni-Cad, HL 1386-6 Collar

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Hll (260), 156 ksi Shear

FASTENER COATING: Inorganic Solid Dry Film Lube

HOIE FABRICATION: Production Cobalt Double Margin Drill

STRESS RATIO, S_{min}/S_{max} : R = 0.1, Constant Amplitude Unless Otherwise Noted

TEST SPEED: 1800-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 1,2,3,4	REMARKS
4B7 4B2 4B1 4B6 4B8 4B3 4B9 4B4 4B12 4B11 4B10	85 85 85 60 60 40 40 40 38.5 37.5 34	2,900 4,000 6,900 28,000 30,500 54,270 108,500 301,500 725,100 422,000 13,765,000 N.F. 7,817,400	CSKH CSKH CSKH CSKH CSKH CSKH CSKH CSKH	

- 1. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 2. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 3. PIH = Sheet metal failure through the fastener holes in the plain sheet.
- 14. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE XXII

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT HI TIGUE, Ti-6A1-4V M.A. MEDIUM LOAD TRANSFER JOINT

JOINT GEOMETRY: X16137-4E, Figure 2

FASTENER SYSTEM: HLT 411-6-4 Pin, HL 1386-6 Collar

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Titanium-SA1-4V STA, 95 ksi Shear

FASTENER COATING: Inorganic Solid Dry Film Lube

HOIE FABRICATION: Production Cobalt Double Margin Drill

STRESS RATIO, S_{min}/S_{max}: R = 0.1, Constant Amplitude Unless Otherwise Noted

TEST SPEED: 1800-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 1,2,3,4	REMARKS
4E8 4E1 4E5 4E2 4E11 4E10 4E12 4E3 4E4 4E9 4E6	85 85 70 60 60 50 40 40 32	7,000 12,000 15,780 28,800 59,900 73,600 75,200 266,400 279,800 643,500 1,571,500 10,000,000 N.F.	CSKH CSKH CSKH CSKH CSKH CSKH CSKH CSKH	·

- 1. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 2. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 3. PM = Sheet metal failure through the fastener holes in the plain sheet.
- 4. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE XXIII

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TAPER IOK, 7075-T76 CIAD MEDIUM IOAD TRANSFER JOINT

JOINT GEOMETRY: X16137-1H, Figure 2

FASTENER SYSTEM: TLH 100-3-4 Pin, TLN 1001-3 Washernut

INTERFERENCE FIT: -0.003 inch

FASTEMER MATERIAL: Hll (220), 132 ksi Shear

FASTENER COATING: Diffused Nickel Cadmium

HMIE FABRICATION: Production HSS Taper Lok Drill-Reamer

STRESS RATIO, Smin/Smax: R = 0.1, Constant Amplitude Unless Otherwise Noted

TEST SPEED: 1800-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 1,2,3,4	REMARKS
1H2 1H1 1H6 1H3 1H4 1H5 1H7 1H12 1H11 1H10	40 40 30 30 30 20 20 18 16 13.5 13.5	2,500 3,800 33,400 57,600 144,500 186,700 202,000 1,170,900 11,000,000 N.F. 10,365,100 10,900,000 N.F.	CSKH CSKH CSKH CSKA CSKA CSKA CSKH	

- 1. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 2. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 3. PIN = Sheet metal failure through the fastener holes in the plain sheet.
- 4. PIA = Shect metal failure away from the fastener holes in the plain sheet.

TABLE XXIV

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TAPER IOK, 7075-T76 CIAD MEDIU! IOAD TRATSFER JOINT

JOINT GEOMETRY: X16137-1J, Figure 2

FASTENER SYSTEM: TLHC 100-3-4 Pin, TLN 1001-3 Washernut

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Hll (260), 156 ksi Shear

FASTENER COATING: Diffused Wickel Cadmium

HOLE FABRICATION: Production HSS Taper Lok Drill-Reamer

STRESS RATIO, S_{min}/S_{max} : R = 0.1, Constant Amplitude Unless Otherwise Noted

TEST SPEED: 1800-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 1,2,3,4	REMARKS
1J2 1J1 1J3 1J5 1J4 1J6 1J7 1J12 1J8 1J10 1J9	42 42 30 30 30 20 20 20 17.5 17.5	4,700 5,400 32,600 47,200 144,700 298,000 351,000 853,600 2,469,000 3,241,000 10,900,000 N.F.	CSKH CSKH CSKH CSKH CSKH CSKH CSKH CSKH	

- 1. CSKM = Sheet metal failure through the fastener holes in the CSK sheet.
- 2. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 3. PIH = Sheet metal failure through the fastener holes in the plain sheet.
- 4. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE XXV

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TAPER LOK, 7075-T76 CIAD MEDIUM LOAD TRANSFER JOINT

JOINT GEOMETRY: X16137-1M, Figure 2

FASTENER SYSTEM: TLV 100-3-4 Pin, TLN 1001-3 Washernut

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Titanium-6A1-4V, STA, 95 ksi Shear

FASTENER COATING: Cetyl Alcohol Lube

HOLE FABRICATION: Production HSS Taper Lok Drill-Reamer

STRESS RATIO, S in Smin Smax: R = 0.1, Constant Amplitude Unless Otherwise Moted

TEST SPEED: 1800-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 1,2,3,4	REMARKS
1M1 1M9 1M2 1M3 1M8 1M4 1M10 1M5 1M6 1M7 1M11	38 38 38 28 28 28 20 20 20 16 14.5 12	8,500 17,600 33,000 151,700 182,500 188,400 386,400 554,800 782,300 3,493,500 1,398,000 9,712,800	CSKH CSKH CSKA CSKA CSKH CSKH CSKH CSKH CSKH	

- 1. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 2. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 3. PLH = Sheet metal failure through the fastener holes in the plain sheet.
- 4. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE XXVI

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TAPER IOK, Ti-6Al-4V M. A. MEDIUM ICAD TRANSFER JOINT

JOINT GEOMETRY: X16137-4H, Figure 2

FASTENER SYSTEM: TLH 100-3-4, No Ni-Cad, TLN 1001-3 Washernut

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Hll (220), 132 ksi Shear

FASTENER COATING: Inorganic Solid Dry Film Lube

HOLE FABRICATION: ProductionCobalt Taper Lok Drill-Reamer

STRESS RATIO, s_{min}/s_{max} : R = 0.1, Constant Amplitude Unless Otherwise Noted

TEST SFEED: 1800-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	CYCIES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 1,2,3,4	REMARKS
4H2 4H1 4H11 4H7 4H10 4H6 4H12 4H5 4H8	82 82 60 60 60 46 46 46 40 38	5,000 5,500 19,750 28,200 47,000 312,350 459,700 10,000,000 N.F. 452,000 10,000,000 N.F.	CSKH CSKH CSKH CSKH CSKH CSKH	

- 1. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 2. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 3. PIH = Sheet metal failure through the fastener holes in the plain sheet.
- 4. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE XXVII

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TAPER IOK, Ti-6Al-4V M.A. MEDIUM IOAD TRANSFER JOINT

JOINT GEOMETRY: X16137-4J, Figure 2

FASTENER SYSTEM: TIHC 100-3-4, No Ni-Cad, TLN 1001-3 Washernut

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Hll (260), 156 ksi Shear

FASTENER COATING: Inorganic Solid Dry Film Lube

HOLE FABRICATION: Production Cobalt Taper lok Drill Reamer

STRESS RATIO, s_{min}/s_{max} : R = 0.1, Constant Amplitude Unless Otherwise Noted

TEST SPEED: 1800-2300 cpm Unless Otherwise Noved

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 1,2,3,4	REMARKS
4JI 4J2 4J3 4J4 4J5 4J1 4J1 4J9 4J10 4J10	82 76.5 78.58 40.40 4.44 3.44 28.28 28.28	3,790 3,250 11,150 13,600 94,200 169,300 251,550 258,200 1,518,750 1,492,750 10,004,000 N.F. 11,700,000 N.F.	CSKH CSKH CSKH CSKH CSKH CSKH CSKH	

- 1. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 2. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 3. PLH = Sheet metal failure through the fastener holes in the plain sheet.
- 4. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE XXVIII

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TAPER LOK, Ti-6Al-4V M.A. MEDIUM LOAD TRANSFER JOINT

JOINT GEOMETRY: X16137-4M, Figure 2

FASTENER SYSTEM: TLV 100-3-4, STA, TLN 1001-3 Washernut

INTERFERENCE FIT: -0.003 inch

FASTEMER MATERIAL: Titanium-6A1-4V, 95 ksi Shear

FASTENER COATING: Inorganic Solid Dry Film Lube

HOIE FABRICATION: Production Cobalt Taper Lok Drill-Reamer

STRESS RATIO, S_{min}/S_{max} : R = 0.1, Constant Amplitude Unless Otherwise Noted

TEST SPEED: 1800-2300 cpm Unlcss Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 1,2,3,4	REMARKS
4M1 4M2 4M9 4M3 4M4 4M7 4M11 4M12 4M6 4M10 4M8 4M5	82 58 58 58 50 48 48 42 42 38	3,000 3,760 15,250 17,250 24,000 38,400 39,400 99,900 123,100 2,098,500 2,104,600 7,083,700	CSKH CSKH CSKH CSKH CSKH CSKH CSKH CSKH	

- 1. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 2. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 3. PIH = Sheet metal failure through the fastener holes in the plain sheet.
- 4. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE XXIX

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT HI TIGUE, 7075-T76 CLAD LOW LOAD TRANSFER JOINT

JOINT GEOMETRY: X16138-1A, Figure 3

FASTENER SYSTEM: HLT 315-6-4 Pin, HL 1386-6 Collar

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Hll (220), 132 ksi Shear

FASTENER COATING: Diffused Nickel Cadmium

HOIE FABRICATION: Production HSS Double Margin Drill

STRESS RATIO, S_{min}/S_{max} : R = 0.1, Constant Load Unless Otherwise Noted

TEST SPEED: 600-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 2,3,4,5	REMARKS
1A11 1A9 1A6 1A5 1A2 1A10 1A1 1A4 1A3 1A12 1A8 1A7	45 40 40 40 30 30 30 16 16 16 16 13.5	12,840 27,120 27,600 47,100 95,720 164,460 292,230 533,920 600,250 724,940 3,424,000 10,247,000 N.F.	CSKH, PLH CSKH, PLH CSKH, PLH CSKA, PLH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH	

- 1. Test specimen installation shown in Figure 4
- 2. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 3. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 4. PIH = Sheet metal failure through the fastener holes in the plain sheet.
- 5. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE XXX

AXIAL FATIGUE STRENGTH - INTERFERENCE FITH HI TIGUE, 7075-T76 CLAD LOW LOAD TRANSFER JOINT

JOINT GEOMETRY: X16138-1B, Figure 3

FASTENER SYSTEM: HLT 15-6-4 Pin, HL 1386-6 Collar

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Hll (260), 156 ksi Shear

FASTEMER COATING: Diffused Nickel Cadmium

HOLE FABRICATION: Production ISS Double Margin Drill

STRESS RATIO, S_{min}/S_{max} : R = 0.1, Constant Load Unless Otherwise Noted

TEST SPEED: 600-2300 cpm Unless Otherwis. Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 2,3,4,5	REMARKS
1P1 1B9 1B2 1B8 1B11 1B3 1B6 1B12 1B4 1B7 1B10 1B5	30 30 23 23 23 18.5 18.5 18.5 14 14 14	137,000 206,100 276,500 470,300 565,750 369,200 404,000 483,600 1,101,200 1,379,100 4,613,100 10,000,000 N.F.	CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH	Constant Ampl.

- 1. Test specimen installation shown in Figure 4
- 2. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 3. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 4. PIH = Sheet metal failure through the fastener holes in the plain sheet.
- 5. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE XXXI

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT HI TIGUE, 7075-T76 CLAD LOW LOAD TRANSFER JOINT

JOINT GEOMETRY: X16138-1E, Figure 3

FASTENER SYSTEM: HLT 411-6-4 Pin, HL 1386-6 Collar

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Titanium-6A1-4V STA, 95 ksi Shear

FASTENER COATING: Cetyl Alcohol Lube

HOLE FABRICATION: Production HSS Double Margin Drill

STRESS RATIO, S_{min}/S_{max} : R = 0.1, Constant Load Unless Otherwise Noted

TEST SPEED: 600-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS ARTA KSI	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 2,3,4,5	REMARKS
1E9 1E1 1E8 1E11 1E2 1E3 ,1E12 1E6 1E4 1E7 1E10 1E5	30 30 23 23 25 18.5 18.5 14 14 14	120,200 124,300 425,100 450,300 458,500 585,200 610,100 931,500 1,115,500 1,301,400 10,000,000 N.F. 9,325,500	CSKH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH	Constant Ampl. Constant Ampl.

- 1. Test specimen installation shown in Figure 4
- 2. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 3. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 4. PIH = Sheet metal failure through the fastener holes in the plain sheet.
- 5. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE XXXII

AXTAL FATIGUE STRENGTH - INTERFERENCE FIT HI TIGUE, Ti-6A1-4V M.A. LOW LOAD TRANSFER JOINT

JOINT GEOMETRY: X16138-4A, Figure 3

FASTENER SYSTEM: HLT 315-6-14, No Ni-Cad, HL 1386-5 Collar

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Hll (220), 132 ksi Shear

FASTENER COATING: Inorganic Solid Dry Film Lube

HOLE FABRICATION: Production Cobalt Double Margin Drill

STRESS RATIO, S_{min}/S_{max} : R = 0.1, Constant Load Unless Otherwise Noted

TEST SPEED: 500-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 2,3,4,5	REMARKS
4A8 4A9 4A12 4A6 4A1 4A1 4A3 4A10 4A2 4A11 4A7 4A5	82 82 80 60 46 46 40 40 32	5,100 10,000 13,500 45,400 52,100 110,000 163,155 232,000 259,900 306,900 10,000,000 N.F.	CSKII CSKH CSKII CSKII CSKII CSKII CSKII CSKII, PLH CSKII, PLH CSKII, PLH	

- 1. Test specimen installation shown in Figure 4
- 2. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 3. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 4. PIH = Sheet metal failure through the fastener holes in the plain sheet.
- 5. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE XXXIII

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT HI TIGUE, Ti-6Al-4V M.A. LOW LOAD TRANSFER JOINT

JOINT GEOMETRY: X16138-4B, Figure 3

FASTENER SYSTEM: HIT 15-6-4, No Ni-Cad, HL 1386-6 Collar

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Hll (260), 156 ksi Shear

FASTENER COATING: Inorganic Solid Dry Film Lube

HOLE FABRICATION: Production Cobalt Double Margin Drill

STRESS RATIO, S_{min}/S_{max} : R = 0.1, Constant Load Unless Otherwise Noted

TEST SPEED: 600-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	CYCLES TO FATLURE N.F. = NO FATLURE	MODE OF FAILURE 2,3,4,5	REMARKS
4B1 4B11 4B2 4B4 4B7 4B3 4B9 4B5 4B12 4B6 4B8 4B10	82 82 80 60 60 49. 46 46 41 38	9,720 12,700 16,800 53,700 53,800 93,400 171,600 111,600 306,100 428,900 550,000 10,000,000 N.F.	CSKH CSKH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH	

- 1. Test specimen installation shown in Figure 4
- 2. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 3. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 4. PIH = Sheet metal failure through the fastener holes in the plain sheet.
- 5. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE XXXIV

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT HI TIQUE, Ti-6Al-4V M.A. LOW LOAD TRANSFER JOINT

JOINT GEOMETRY: X16138-4E, Figure 3

FASTENER SYSTEM: HIT 411-6-4 Pin, HL 1386-6 Collar

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Titanium-6A1-4V STA, 95 ksi Shear

FASTENER COATING: Inorganic Solid Dry Film Lube

HOLE FABRICATION: Production Cobalt Double Margin Drill

STRESS RATIO, s_{min}/s_{max} : R = 0.1, Constant Load Unless Otherwise Noted

TEST SPEED: 600-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 2,3,4,5	REMARKS
455 455 456 451 451 451 451 451 451	82 82 82 70 60 60 60 60 45 45 40	21,500 22,300 32,100 29,500 50,900 59,100 118,500 124,200 300,460 361,950 536,400 10,200,000 N.F.	CSKH, PLH CSKH, PLH CSKH, PLH CSKH CSKH, PLH PLH CSKH, PLH CSKH, PLH CSKH	Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl.

- 1. Test specimen installation shown in Figure $\,^{1\!\!4}$
- 2. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 3. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 4. PIH = Sheet metal failure through the fastener holes in the plain sheet.
- 5. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE XXXV

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TAPER LOK, 7075-T76 CIAD LOW LOAD TRANSFER JOINT

JOINT GEOMETRY: X16138-1H, Figure 3

FASTENER SYSTEM: TLH 100-3-4 Pin, TLN 1001-3 Washernut

INTERFERENCE FIT: -0.003

FASTENER MATERIAL: Hll (220), 132 ksi Shear

FASTENER COATING: Diffused Nickel Cadmium

HOLE FABRICATION: Production HSS Taper Lok Drill-Reamer

STRESS RATIO, S_{min}/S_{mex} : R = 0.1, Constant Load Unless Otherwise Noted

TEST SPEED: 600-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 2,3,4,5	REMARKS
116 1H10 1H11 1H5 1H1 1F3 1:8 114 1H7 1H2 1H9 1H12	45 45 45 30 30 18 18 18 15 13.5 12	20,300 25,200 26,100 142,100 148,200 181,700 640,800 977,500 1,006,000 4,640,000 3,465,000 10,230,000 N.F.	CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLA CSKH, PIA	

- 1. Test specimen installation shown in Figure 4
- 2. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 3. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 4. PIH = Sheet metal failure through the fastener holes in the plain sheet.
- 5. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE XXXVI

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TAPER LOK, 7075-T76 CIAD LOW LOAD TRANSFER JOINT

JOINT GEOMETRY: X16138-1J, Figure 3

FASTENER SYSTEM: TLHC 100-3-4 Pin, TLN 1001-3 Washernut

INTERFERENCE FIT: -0.003 inch

FASTEMER MATERIAL: Hll (260), 156 ksi Shear

FASTENER COATING: Diffused Nickel Cadmium

HOLE FABRICATION: Production HSS Taper lok Drill-Reamer

STRESS RATIO, S_{min}/S_{max} : R = 0.1, Constant Load Unless Otherwise Noted

TEST SPEED: 600-2300 cpm Unless Otherwise Note:

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 2,3,4,5	REMARKS
1J9 1J10 1J11 1J5 1J1 1J2 1J12 1J4 1J5 1J3 1J7 1J8	45 45 20 30 30 22 16 16 16 13.5 11.5	24,300 25,800 42,400 131,300 146,500 165,800 264,200 713,100 722,100 798,500 1,948,500 10,437,000 N.F.	PLH CSKH, PLH CSKH CSKH CSKH, PLH CSKH CSKH CSKH CSKH	Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl.

- 1. Test specimen installation shown in Figure 4
- 2. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 3. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 4. PIH = Sheet metal failure through the fastener holes in the plain sheet.
- 5. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE XXXVII

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TAPER IOK, 7075-T76 CIAD IOW IOAD TRANSFER COINT

JOINT GEOMETRY: X16138-1M, Figure 3

FASTENER SYSTEM: TLV 100-3-4 Pin, TLN 1001-3 Washernut

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Titanium-6A1-4V, 95 ksi Shear

FASTENER COATING: Cetyl Alcohol Lube

HOLE FABRICATION: Production HSS Tap : Lok Drill-Reamer

STRESS RATIO, S_{min}/S_{max} : R = C.1, Constant Load Unless Otherwise Noted

TEST SPEFD: 600-2300 cpm Unless Otherwise Noted

S PECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 2,3,4,5	REMARKS
1M9 1M12 1M10 1M7 1M1 1M2 2M3 1M4 1M5 1M11 1M8	46 46 46 38 30 30 16 16 16 16	21,800 25,000 34,700 112,200 188,500 220,200 270,200 2,450,300 3,314,000 3,721,000 10,000,000 N.F.	CSKH PIA CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH	500 cpm 1800 cpm

- 1. Test specimen installation shown in Figure 4
- 2. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 3. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 4. PLH = Sheet metal railure through the fastener holes in the plain sheet.
- 5, PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE XXXVIII

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TAPER LOK, Ti-6Al-4V M.A. LOW LOAD TRANSFER JOINT

JOINT GEOMETRY: X16138-4H, Figure 3

FASTENER SYSTEM: TIH 100-3-4, No Ni-Ctd, TIN 1001-3 Washernut

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Hll (220), 132 ksi Shear

FASTENER COATING: Inorganic Solid Dry Film Lube

HOLE FABRICATION: Production Cobalt Tapor Lok Drill-Reamer

STRESS RATIO, S_{min}/S_{max} : k = 0.1, Constant Load Unless Otherwise Noted

TEST SPEED: COO-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 2,3,4,5	REMARKS
4H2. 4H2 4H3 4H4 4H3 4H3 4H10 4H11	88886666545544488	13,900 20,000 58,900 82,000 94,200 380,400 1,100,000 2,364,700 4,683,500 8,877,430 10,000,000 N.F.	CSKH CSKH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH PLH	

- 1. Test specimen installation shown in Figure 4
- 2. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 3. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 4. PIH = Sheet metal railure through the fastener holes in the plain sheet.
- 5. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE XXXIX

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TAPER IOK, Ti-6Al-4V M.A. LOW LOAD TRANSFER JOINT

JOINT GEOMETRY: X16138-4J, Figure 3

FASTENER SYSTEM: TLHC 100-3-4, No Ni-Cad, TLN 1001-3 Washernut

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Hll (260, 156 ksi Shear

FASTENER COATING: Inorganic Solid Dry Film Lube

HOLE FARRICATION: Production Cobalt Raper Tok Drill-Reamer

STRESS RATIO, S_{min}/S_{max} : R = 0.1, Constant Load Unless Otherwise Noted

TEST SPEED: 600-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 2,3,4,5	REMARKS
4.16 4.15 4.10 4.12 4.17 4.11.1 4.11.0 4.11.2	80 80 80 58 58 58 46 46 39	11,700 21,000 23,500 81,600 112,200 167,350 238,200 564,500 2,172,000	CSKH, PLH CSKH CSKH CSKH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH	

- 1. Test specimen installation shown in Figure 4
- 2. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 3. CSKA = Sheet metal Tailure away from the Tastener holes in the CSK sheet.
- 4. PIH = Sheet metal failure through the fastener holes in the plain sheet,
- 5. PIA = Sheet metal failure away from the fastener holes in the plain sheet,

TABLE XL

AXIAL FATITUE STRENGTH - INTERFERENCE FIT TAPER LOK, Ti-6A1-4V M.A. LOW LOAD TRANSFER JOINT

JOINT GEOMETRY: X16138-4M, Figure 3

FASTENER SYSTEM: ILV 100-3-4 STA, TLN 1001-3 Washernut

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Titanium-6Al-4V, 95 ksi Shear

FASTENER COATING: Inorganic Solid Dry Film Lube

HOLE FABRICATION: ProductionCobalt Paper Lok Drill-Reamer

STRESS RATIO, s_{min}/s_{max} : R = 0.1, Constant Load Unless Otherwise Noted

TEST SPEED: 600-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 2,3,4,5	REMARKS
4M2 4M12 4M1 4M4 4M6 4M11 4M5 4M5 4M9 4M6 4M7	82 82 82 60 60 48 48 48 43	14,800 14,900 20,500 80,370 102,370 119,500 124,000 160,700 359,600 760,800 10,000,000 N.F.	CSKH CSKH CSKH, PLH CSKH CSKH CSKH, PLH CSKH, PLH CSKH, PLH	

- 1. Test specimen installation shown in Figure 4
- 2. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 3. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 4. PLH = Sheet metal failure through the fastener holes in the plain sheet.
- 5. PIA = Sheet metal failure away from the fastener holes in the plain shect.

TABLE XLI

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT ALIOY STEEL HI TIGUE, 7075-T76 CIAD HIGH LOAD TRANSFER JOINT LOW INTERFERENCE FIT

JOINT GEOMETRY: X16136-1AA, Figure 1

FASTENER SYSTEM: HLT 315-6-4 Pin, HL 1386 Collar

INTERFERENCE FIT: -0.0015 inch

FASTENER MATERIAL: Hll (220) 132 ksi Shear

FASTENER COATING: Diffused Nickel-Cadmium

HOLE FABRICATION: Production HSS Double Margin Drill

STRESS RATIO, S_{min}/S_{max} : R = 0.1, Constant Amplitude Unless Otherwise Noted

TEST SPEED: 1800-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KST.	SPEC. SUPPORT METIOD 1,2	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 3,4,5,6	REMARKS
1AA12 1AA10 1AA11 1AA2 1AA9 1AA1 1AA3 1AA4 ⁺ 1AA5 1AA6 1AA7	25 25 18 18 18 15 15 19.5	Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure	14,600 18,000 20,000 69,700 83,500 84,500 235,200 250,200 341,600 2,160,000 10,000,000 N.F.	CSKH CSKH CSKH PIA PIA PIA PIA PIA	

- 1. Four flexures (90° offset), see Figure 7
- 2. "Sandwich" guide and restraint, see Figure 6
- 3. CSKH = Sheet metal failure through the fastener holes in the Cok sheet.
- 4. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 5. PLH = Sheet metal failure through the fastener holes in the plain sheet.
- 6. PIA = Shect metal failure away from the fastener holes in the plain sheet.

TABLE XLII

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT ALLOY STEEL HI TIGUE, 7075-T76 CLAD HIGH LOAD TRANSFER JOINT HIGH INTERFERENCE FIT

JOINT GEOMETRY: X16136-1AAA, Figure 1

FASTENER SYSTEM: HLT 315-6-4 Pin, HL 1386 Collar

INTERFERENCE FIT: -0.0045 inch

FASTENER MATERIAL: Hll (220) 132 ksi Shear

FASTENER COATING: Diffused Nickel Cadmium

HOLE FABRICATION: Production HSS Double Margin Drill

STRESS RATIO, s_{min}/s_{max} : R = 0.1, Constant Amplitude Unless Otherwise Noted

TEST SPEED: 1800-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	SPEC. SUPPORT METHOD 1,2	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 3,4,5,6	REMARKS
1AAA5 1AAA11 1AAA8 1AAA1 1AAA12 1AAA2 1AAA3 1AAA4 1AAA7 1AAA10 1AAA9	30 30 30 18 18 18 15 15 15 15 12	Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure	19,400 25,600 32,300 178,000 190,800 202,500 348,200 182,200 305,600 1,290,300 861,000 10,000,000 N.F.	CSKH CSKH CSKH PIA PIA PIA PIA PIA PIA PIA	Constent Load

- 1. Four flexures (90° offset), see Figure 7
- 2. "Sandwich" guide and restraint, see Figure 6
- 3. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 4. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 5. PLH = Sheet metal failure through the fastener holes in the plain sheet.
- 6. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE XLIII

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TITANIUM HI TIGUE, 7075-T76 CIAD HIGH LOAD TRANSFER JOINT LOW INTERFERENCE FIT

JOINT GEOMETRY: X16136-1EE, Figure 1

FASTENER SYSTEM: HLT 411-6-4 Pin, HL 1386 Collar

INTERFERENCE FIT: -0.0015 inch

FASTENER MATERIAL: Titanium-6A1-4V STA, 95 ksi Shear

FASTENER COATING: Cetyl Alcohol Lube

HOLE FABRICATION: Production HSS Double Margin Drill

STRESS RATIO, S_{min}/S_{max} ; R = 0.1, Constant Amplitude Unless Otherwise Noted

TEST SPEED: 1800-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	SPEC. SUPPORT METHOD 1,2	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 3,4,5,6	REMARKS
1EE10 1EE9 1EE11 1EE3 1EE5 1EE4 1EE1 1EE2 1EE12 1EE12 1EE8	30 30 18 18 18 15 15 15 13 12 10	Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure	26,200 26,400 28,700 157,700 161,800 202,600 215,900 412,900 508,300 3,278,000 10,000,000 N.F.	CSKH CSKH CSKH CSKH PIA PIA PIA CSKH, PIA	

- 1. Four flexures (90° offset), see Figure 7
- 2. "Sandwich" guide and restraint, see Figure 6
- 3. CSKH = Sheet metal failure through the fastener hole. in the CSK sheet.
- 4. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 5. PLH = Sheet metal failure through the fastener holes in the plain sheet.
- 6. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE XLIV

AXIAL FATIGUE STRENGTH - INTEFERENCE FIT TIFANIUM HI TIGUE, 7075-T76 CIAD HIGH LOAD TRANSFER JOINT HIGH INTERFERENCE FIT

JOINT GEOMETRY: X16136-1EEE, Figure 1

FASTENER SYSTEM: HLT 411-6-4 Pin, HL 1386 Collar

INTERFERENCE FIT: -0.0045 inch

FASTENER MATERIAL: Titanium-6Al-4V STA, 95 ksi shear

FASTENER COATING: Cetyl Alcohol Lube

HOLE FABRICATION: Production HSS Double Margin Drill

STRESS RATIO, S_{min}/S_{max} : R = 0:1, Constant Amplitude Unless Otherwise Noted

TEST SPEED: 1800-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	SPEC. SUPPORT METHOD 1,2	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 3,4,5,6	REMARKS
IEFE10 IEEE11 IEEE5 IEEE7 IEEE6 IEEE2 IEEE3 IEEE1 IEEE4 IEEE9 IEEE8 IEEE12	30 30 21 21 21 15 15 15 13 12 11	Floxure Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure	16,100 41,200 137,100 147,700 174,400 372,600 820,000 1,123,900 1,966,500 3,069,400 5,200,300 8,207,000	CSKH CSKH CSKA PIA PIA PIA PIA PIH PLH CSKA	

- 1. Four flexures (90° offset), see Figure 7
- 2. "Sandwich" guide and restraint, see Figure 6
- 3. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 4. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 5. PLH = Sheet metal failure through the fastener holes in the plain sheet.
- 6. PLA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE XLV

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT ALIOY STEEL TAPER IOK, 7075-T76 CIAD HIGH IOAD TRANSFER JOINT IOW INTERFERENCE FIT

JOINT GEOMETRY: X16136-1HH, Figure 1

FASTEMER SYSTEM: TIH 100-3-4 Pin, TLN 1001-3 Washernut

INTERFERENCE FIT: -0.0015 inch

FASTENER MATERIAL: Hll (220) 132 ksi Shear

FASTENER COATING: Diffused Nickel-Cadmium

HOLE FABRICATION: Production HSS Taper Lok Drill-Reamer

STRESS RATIO, S_{min}/S_{max} : R = 0.1, Constant Amplitude Unless Otherwise Noted

TEST SPEED: 1800-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	SPEC. SUPPORT METHOD 1,2	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 3,4,5,6	REMARKS
18H1 1HH7 1HH2 1HH3 1HH4 1HH8 1HH9 1HH5* 1HH6 1HH10 1HH11 1HH12	30 30 30 20 20 20 14 14 14 12 10.5	Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure	6,000 11,000 31,500 126,100 137,000 197,000 607,000 1,093,600 3,018,500 1,696,000 3,174,000 1,406,200	CSKH CSKH CSKA PIA PIA PIA PIA CSKA CSKA CSKA	

- 1. Four flexures (90° offset), see Figure 7
- 2. "Sandwich" guide and restraint, see Figure 6
- 3. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 4. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 5. PIH = Sheet metal failure through the fastener holes in the plain sheet.
- 6. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE XLVI

AXIAL FATIGUE STRENGTH - INTEFERENCE FIT ALLOY STEEL TAPER LOK, 7075-T76 CIAD HIGH LOAD TRANSFER JOINT HIGH INTERFERENCE FIT

JOINT GEOMETRY: X16136-1HHH, Figure 1

FASTEMER SYSTEM: TLH 100-3-4 Pin, TLN 1001-3 Washernut

INTERFERENCE FIT: -0.0045 inch

FASTENER MATERIAL: Hll (220) 132 ksi Shear

FASTENER COATING: Diffused Nickel Cadmium

HOLE FABRICATION: Production HSS Taper Lok Drill-Keamer

STRESS RATIO, S_{min}/S_{max} : R = 0.1, Constant Amplitude Unless Otherwise Noted

TEST SPEED: 1800-2300 cpm Unless Otherwise Noted

	,	 	,		,
SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	SPEC. SUPPORT METHOD 1,2	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 3,4,5,6	REMARKS
1 HH7 1 HH2 1 HH13 1 HH18 1 L 4 1 HH11 1 HH6 1 HH10 1 HH15 1 HH12 1 HH19	32 32 32 22 22 24 14 14 14 13.5 12	Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure	9,500 14,100 18,100 94,200 123,400 180,000 935,300 1,135,300 1,290,300 4,470,800 2,039,600 8,273,600	CSKH CSKH PIA PIA CSKA CSKA PIA CSKH PIA PIA	

- 1. Four flexures (90° offset), see Figure 7
- 2. "Sandwich" guide and restraint, see Figure 6
- 3. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 4. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 5. PLH = Sheet metal failure through the fastener holes in the plain sheet.
- 6. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE XLVII

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TITANIUM TAPER LOK, 7075-T76 CIAD HIGH LOAD TRANSFER JOINT LOW INTERFERENCE FIT

JOINT GEOMETRY: X16136-1MM, Figure 1

FASTENER SYSTEM: TLV 100-3-4 Pin, TIN 1001-3 Washernut

INTERFERENCE FIT: -0.0015 inch

FASTENER MATERIAL: Titanium-GAl-4V, STA, 95 ksi Shear

FASTENER COATING: Cetyl Alcohol Lube

HOLE FABRICATION: Production HSS Taper Lok Drill-Reamer

STRESS RATIO, S_{min}/S_{max} : R = 0.1, Constant Amplitude Unless Otherwise Noted

TEST SPEED: 1800-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	SPEC. SUPPORT METHOD 1,2	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 3,4,5,6	REMARKS
IMM11 1MM3 1MM7 1MM2 1MM1 1MM9 1MM5 1MM4 1MM6 1MM12 1MM8 1MM10	35 35 35 30 30 22 21 22 15 13.5	Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure	7,300 12,200 12,800 26,500 42,900 101,900 135,600 138,000 206,200 1,886,000 805,500 9,904,100	CSKH PLH CSKH PLH PIA PIA PIA CSKH CSKA PIA	

- 1. Four flexures (90° offset), see Figure 7
- 2. "Sandwich" guide and restraint, see Figure 6
- 3. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 4. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 5. PLH = Sheet metal failure through the fastener holes in the plain sheet.
- 6. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE XLVIII

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TITANIUM TAPER LOK, 7075-T76 CIAD HIGH LOAD TRANSFER JOINT - HIGH INTERFERENCE FIT

JOINT GEOMETRY: X16136-1MMM, Figure 1

FASTENER SYSTEM: TLV100-3-4 Pin, TLN 1001-3 Washernut

INTERFERENCE FIT: -0.0045 inch

FASTENER MATERIAL: Titanium-6A1-4V, STA, 95 ksi Shear

FASTENER COATING: Ceytl Alcohol Lube

HOLE FABRICATION: Production HSS Taper Lok Drill-Reamer

STRESS RATIO, S_{min}/S_{max} : R = 0.1, Constant Amplitude Unless Otherwise Noted

TEST SPEED: 1800-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	SPEC. SUPPORT METHOD 1,2	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 3,4,5,6	REMARKS
IMM4 IMM5 IMM6 IMM1 IMM3 IMM2 IMM7 IMM12 IMM8 IMM8	30 30 30 20 20 20 14 14 11 9•5	Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure	9,700 17,200 57,300 168,300 189,300 206,100 924,700 2,080,300 3,796,600 6,845,000 10,000,000 N.F.	CSKH CSKA PIA PIA PIA CSKA PIA CSKA	

- 1. Four flexures (90° offset), see Figure 7
- 2. "Sandwich" guide and restraint, see Figure 6
- 3. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 4. CSKA = Sheet metal failure away from the fastener holes in the <math>CSK sheet.
- 5. PLH = Sheet metal failure through the fastener holes in the plain sheet.
- 6. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE XLIX

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT ALLOY STEEL HI TIGUE, 7075-T76 CLAD LOW LOAD TRANSFER JOINT - LOW INTERFERENCE FIT

JOINT GEOMETRY: X16138-1AA, Figure 3

FASTENER SYSTEM: HLT 315-6-4 Pin, HL 1386-6 Collar

INTERFERENCE FIT: -0.0015 inch

FASTENER MATERIAL: Hll (220), 132 ksi Shear

FASTENER COATING: Diffused Nickel Cadmium

HOIE FABRICATION: Production HSS Double Margin Drill

STRESS RATIO, S_{min}/S_{max} : R = 0.1, Constant Load Unless Otherwise Noted

TEST SPEED: 600-2300 cpm Unless Otherwise Noted

				
SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 2,3,4,5	REMARKS
1AA11 1AA6 1AA2 1AA3 1AA1 1AA4 1AA8 1AA10 1AA12 1AA7	40 40 30 30 30 20 18 18 15.5 14	18,600 20,500 87,900 127,000 135,600 143,800 391,300 468,500 627,800 1,636,500 11,600,000 N.F.	CSKH, PLH CSKH, CSKH CSKH CSKH CSKH, PLH CSKH CSKH CSKH, PLH CSKH	Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl.

- 1. Test specimen installation shown in Figure 4 and 5
- 2. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 3. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 4. PIH = Sheet metal failure through the fastener holes in the plain sheet.
- 5. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE L

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT ALLOY STEEL HI TI JUE, 7075-T76 CLAD LOW LOAD TRANSFER JOINT - HIGH INTERFERENCE FIT

JOINT GEOMETRY: X16138-1AAA, Figure 3

FASTENER SYSTEM: HLT 315-6-4 Pin, HL 1366 Collar

INTERFERENCE FIT: -0.0045 inch

FASTENER MATERIAL: Hll (220), 132 ksi Shear

FASTENER COATING: Diffused Nickel Cadmium

HOLE FABRICATION: Production HSS Double Margin Drill

STRESS RATIO, Smin/Smax: R = 0.1, Constant Load Unless Otherwise Noted

TEST SPEED: 500-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	CYCIES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 2,3,4,5	REMARKS
1A4A12 1AAA10 1AAA2 1AAA11. 1AAA1 1AAA4 1AAA3 1AAA6 1AAA5 1AAA8	50 50 32 32 32 16 16 13.5 13.5 11	2,600 3,100 86,000 85,900 91,200 150,300 456,300 1,088,600 2,107,500 1,270,700 10,000,000 N.F. 3,082,500	CSKH CSKA CSKH CSKH CSKH CSKH CSKH CSKH	Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl.

- 1. Test specimen installation shown in Figure 4 and 5
- 2. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 3. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 4. PIH = Sheet metal failure through the fastener holes in the plain sheet.
- 5. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE LI

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TITANIUM HI TIGUE, 7075-T76 CIAD IOW LOAD TRANSFER JOINT - IOW INTERFERENCE FIT

JOINT GEOMETRY: X16138-1EE, Figure 3

FASTENER SYSTEM: HLT 411-6-4 Pin, HL 1386 Collar

INTERFERENCE FIT: -0.0015 inch

FASTENER MATERIAL: Titanium-GA1-4V, STA, 95 ksi Shear

FASTENER COATING: Cetyl Alcohol Lube

HOLE FABRICATION: Production HSS Double Margin Drill

STRESS RATIO, S_{min}/S_{max} : R = 0.1, Constant Load Unless Otherwise Noted

TEST SPEED: 600-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 2,3,4,5	REMARKS
lee11 lee10 lee8 lee12 lee7 lee2 lee1 flee3 lee4 lee9 lee5	45 45 30 30 23 23 23 16 16 16 16	15,400 19,800 118,600 138,000 193,000 315,200 648,000 568,000 813,200 2,077,200 3,511,000 10,000,000 N.F.	CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH	

- 1. Test specimen installation shown in Figure 4
- 2. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 3. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 4. PIH = Sheet metal failure through the fastener holes in the plain sheet.
- 5. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE LII

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TITANIUM HI TIGUE, 7075-T76 CIAD LOW LOAD TRANSFER JOINT - HIGH INTERFERENCE FIT

JOINT GEOMETRY: X16138-1EEE, Figure 3

FASTENER SYSTEM: HLT 411-6-4 Pin, HL 1386-6 Collar

INTERFERENCE FIT: -0.0045 inch

FASTENER MATERIAL: Titanium-6A1-4V, STA, 95 ksi Shear

FASTENER COATING: Cetyl Alcohol Lube

HOLE FABRICATION: Production HSS Double Margin Drill

STRESS RATIO, S_{min}/S_{max} : R = 0.1, Constant Load Unless Otherwise Noted

TEST SPEED: 600-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 2,3,4,5	REMARKS
ICEE11 IEEE3 IEEE4 IEEE7 IEEE2 IEEE1 IEEE5 IEEE9 IEEE6 IEEE8	45 45 45 30 30 30 16 16 16 13 10.5	4,000 9,100 9,300 45,700 47,600 136,500 792,300 832,100 1,481,300 2,859,600 10,000,000 N.F.	CSKH PLH PLH PLH CSKH,PLH CSKH,PLH CSKH,PLH CSKH,PLH CSKH,PLH	

- 1. Test specimen installation shown in Figure 4
- 2. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 3. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 4. PIN = Sheet metal failure through the fastener holes in the plain sheet.
- 5. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE LIII

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT ALLOY STEEL TAPER LOK, 7075-T76 CLAD LOW LOAD TRANSFER JOINT LOW INTERFERENCE FIT

JOINT GEOMETRY: X16138-1HH Figure 3

FASTENER SYSTEM: TLH100-3-4 Pin, TIN1001-3 Washernut

INTERFERENCE FIT: -0.0015 inch

FASTENER MATERIAL: Hll(220) 132 ksi Snear

FASTENER COATING: Diffused Nickel Cadmium

HOLE FABRICATION: Production HSS Taper Lok Drill-Reamer

STRESS RATIO, S_{min}/S_{max} : R = 0.1, Constant Load Unless Otherwise Noted

TEST SPEED: 600-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 2,3,4,5	REMARKS
1HH8 1HH12 1HH19 1HH1 1HH2 1HH10 1HH3 -1HH6 1HH4 1HH11	40 40 40 30 30 30 16 16 16 19•5	12,900 16,000 18,400 49,000 51,000 101,000 633,200 761,900 1,648,000 2,624,400 10,000,000 N.F.	PIH PLH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH CSKH	Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl.

- 1. Test specimen installation shown in Figure 4 and 5
- 2. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 3. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 4. PIH = Sheet metal failure through the fastener holes in the plain sheet.
- 5. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE LIV

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT ALLOY STEEL TAPER IOK, 7075-T76 CIAD IOW LOAD TRANSFER JOINT HIGH INTERFERENCE FIT

JOINT GEOMETRY: X16138-1HHH Figure 3

FASTENER SYSTEM: TLH100-3-4 Pin, TLN 1001-3 Washernut

INTERFERENCE FIT: -0.0045 inch

FASTENER MATERIAL: Hll(220) 132 ksi Shear

FASTENER COATING: Diffused Nickel Cadmium

HOIE FABRIC'TION: Production MSS Taper lok Drill-Reamer

STRESS RATIO, S_{min}/S_{max} : R = 0.1, Constant Load Unless Otherwise Noted

TEST SPEED: 600-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 2,3,4,5	REMARKS
1HHH12 1HHH1 1HHH2 1HHH9 1HHH4 1'HH7 -1HHH10 1HHI3 1HH66 1HH68 1HH68	45 45 32 32 32 16 16 16 16 14 5 13.5	12,400 21,600 97,000 110,100 134,500 390,800 858,000 1,039,300 1,618,400 10,177,000 N.F. 914,600 10,100,000 U.F.	CSKH, PLH CSKH PLH CSKH CSKH CSKH CSKH CSKH	Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl.

- 1. Test specimen installation shown in Figure 4 and 5
- 2. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 3. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 4. PIH = Sheet metal failure through the fastener holes in the plain sheet.
- 5. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE LV

AXIAL FATIGUF STRENGTH - INTERFERENCE FIT TITANIUM TAPER IOK, 7075-T76 CIAD IOW IOAD TRANSFER JOINT LOW INTERFERENCE FIT

JOINT GEOMETRY: X16138-1MM Figure 3

FASTENER SYSTEM: TLV100-3-4 Pin, TLN1001-3 Washernut

INTERFERENCE FIT: -9.0015 inch

FASTENER MATERIAL: Titanium-6A1-4V, STA, 95 ksi Shear

FASTENER COAFING: Cetyl Alcohol Lube

HOLE FABRICATION: Production HSS Taper Lok Drill-Reamer

STRESS RATIO, S_{min}/S_{max} : R = 0.1, Constant Load Unless Otherwise Noted

TEST SPEED: 500-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 2,3,4,5	REMARKS
1MM2 1MM10 1MM1 1MM6 1MM5 1MM5 1MM5 1MM8 1MM7 1MM4 1MM11 1MM9	48 48 48 30 30 30 15 15 12.5 10.5	5,750 8,500 9,800 30,200 56,400 78,700 88,500 855,800 988,300 1,491,500 1,731,500 10,000,000 N.F.	PLH PLH CSKH, PLH CSKH, PLH CSKH, PLH PLH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH	

- 1. Test specimen installation shown in Figure 4
- 2. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 3. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 4. PIH = Sheet metal failure through the fastener holes in the plain sheet.
- 5. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE LVI

AXIAL FATIGUE SOMENGTH - INTERFERENCE FIT TITANIUM TAPER LOK, 7075-T76 CIAD LOW LOAD TRANSFER JOINT HIGH INTERFERENCE FIT

JOINT GEOMETRY: X16138-1MMM Figure 3

FASTENER SYSTEM: TLV100-3-4 Pin, TLN 1001-3 Washernut

INTERFERENCE Fit: -0.0045 inch

FASTENER MATERIAL: Titanium-EA1-4V, STA, 95 ksi Shcar

FASTENER COATING: Ceytl Alcohol Tube

HOLE FABRICATION: Production HSS Taper Lok Drill-Reamer

STRESS RATIO, Smin/Smax: R = 0.1, Constant Load Unless Otherwise Noted

TEST SPEED: 600-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 2,3,4,5	REMARKS
IMMM10 IMMM5 IMMM5 IMMM1 IMMM2 IMMM8 IMMM4 IMMM3 IMMM7 IMMM1 IMMM9 IMMM9	50 50 42 32 32 18 18 15 15 15	9,200 11,800 47,300 107,300 123,100 129,300 652,500 750,600 1,198,000 1,360,700 1,783,000 10,000,000 N.F.	PIH PIH CSKH, PIA CSKH, PIH CSKH, PIH CSKH, PIH CSKH, PIH CSKH, PIH CSKH, PIH	

- 1. Test specimen installation shown in Figure 4
- 2. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 3. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 4. PIH = Sheet metal failure through the fastener holes in the plain sheet.
- 5. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE LVII

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT STEEL HI TIGUE, 7075-T76 CIAD HIGH LOAD TRANSFER JOINT PRECISION HOLE FABRICATION

JOINT GEOMETRY: X16136-1AP, Figure 1

FASTENER SYSTEM: HLT 315-6-4 Pin, HL 1386-6 Collar

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Hll (220) 132 ksi Shear

FASTENER COATING: Diffused Nickel Cadmium

HOLE FABRICATION: 11/64 Pilot, 4 Flute (Straight) HSS Reemer

SIRESS RATIO, S_{min}/S_{mex} : R = 0.1, Constant Amplitude Unless Otherwise Noted

TEST SPEED: 1800-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	SPEC. SUPPORT METHOD 1,2	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 3,4,5,6	REMARKS
1AP2 1AP1 1AP3 1AP4 1AP6 1AP5 1AP9 1AP7 1AP10 1AP11 1AP12	30 30 30 15 15 13.5 13.5 13.5 13.5 13.5 8.5	Flexure Flexure Sandwich Flexure Sandwich Flexure Flexure Sandwich Flexure Flexure Flexure Flexure	11,900 12,000 32,000 202,800 243,000 655,000 615,200 879,700 1,568,500 5,201,800 4,795,000 10,000,000 N.F.	CSKH CSKH PIA PIA PIA PIA PIA PIA CSKA	

- 1. Four flexures (90° offset), see Figure 7
- 2. "Sandwich" guide and restraint, see Figure 6
- 3. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 4. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 5. PLH = Sheet metal failure through the fastener holes in the plain sheet.
- 6. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE LVIII

AXIAL FATIG'E STRENGTH - INTERFERENCE FIT STEEL HI TIGUE, Ti-6A1-4V, M.A. HIGH LOAD TRANSFER JOINT PRECISION HOLE FABRICATION

JOINT GEOMETRY: X16136-4AP, Figure 1

FASTENER SYSTEM: HLT 315-6-4 Pin, HL 1386-6 Collar

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Hll (220) 132 ksi Shear

FASTENER COATING: Inorganic Solid Dry Film Lube

HOLE FABRICATION: 11/64 Pilot, 6 Flute (Straight) Cobalt Reamer

STRESS RATIO, S /S min/S max: R = 0.1, Constant Amplitude Unless Otherwise Noted

TEST SPEED: 1800-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	SPEC. SUPPORT METHOD 1,2	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 3,4,5,6	REMAR KS
4AP1 4AP3 4AP3 4AP4 4AP4 4AP6 4AP10 4AP10 4AP11 4AP12 4AP8	50 50 50 30 30 30 25 25 25 20 20	Flexure Flexure Sandwich Flexure Sandwich Sandwich Flexure Flexure Flexure Flexure Flexure Flexure	14,600 18,300 19,300 79,100 127,800 196,200 201,700 281,200 560,300 284,800 490,100 10,000,000 N.F.	CSKH CSKH CSKH CSKH CSKH CSKH CSKH CSKH	Constant Load Constant Load Constant Load Constant Load Constant Load Constant Load Constant Load

- 1. Four flexures (90° offset), see Figure 7
- 2. "Sandwich" guide and restraint, see Figure 6
- 3. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 4. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 5. PLH = Sheet metal failure through the fastener holes in the plain sheet.
- 6. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE LVIX

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TITANIUM HI TIGUE, 7075-176 CIAD HIGH LOAD TRANSFER JOINT PRECISION HOLE FABRICATION

JOINT GEOMETRY: X16136-1EP, Figure 1

FASTENER SYSTEM: HLT 411-6-4 Pin, HL 1386-6 Collar

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Titanium-6A1-4V, STA, 95 ksi Shear

FASTENER COATING: Cetyl Alcohol Lube

HOLE FABRICATION: 11/64 Pilot, 4 Flute (Straight) HSS Reamer

STRESS RATIO, \tilde{S}_{min}/S_{max} : R = 0.1, Constant Amplitude Unless Otherwise Noted

TEST SPEED: 1800-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	SPEC. SUPPORT METHOD 1,2	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 3,4,5,6	REMARKS
1EP1 1EP3 1EP2 1EP6 1EP5 1EP4 1EP7 1EP9 = 1EP8 1EP10 1EP11 1EP12	30 30 30 20 20 20 14 14 14 11 9 7.5	Flexure Sandwich Flexure Sandwich Flexure Flexure Flexure Sondwich Flexure Flexure Flexure Flexure Flexure	11,800 16,600 20,600 54,600 96,900 149,000 272,400 325,200 505,500 3,154,200 3,402,500 10,000,000 N.F.	PLH CSKH CSKH PLH PIA PIA PIA PIA PIA PIA	Constant Load Constant Load Constant Load Constant Load Constant Load Constant Load Constant Load Constant Load Constant Load Constant Load Constant Load

- 1. Four flexures (90° offset), see Figure 7
- 2. "Sandwich" guide and restraint, see Figure 6
- 3. CSKH = Sheet meta_ failure through the fastener holes in the CSK sheet.
- 4. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 5. PLH = Sheet metal failure through the fastener holes in the plain sheet.
- 6. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE IX

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TITANIUM HI TIGUE, Ti-6A1-4V M.A. HIGH LOAD TRANSFER JOINT PRECISION HOLE FABRICATION

JOINT GEOMETRY: X16136-4EP, Figure 1

FASTEMER SYSTEM: HLT 411-6-4 Fin, HL 1386-5 Collar

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Titanium-6A1-4V, STA, 95 ksi Shear

FASTENER COATING: Inorganic Solid Dry Film Lube

HOLE FABRICATION: 11/64 Pilot, 6 Flute (Straight) Cobalt Reamer

STRESS RATIO, Smin/Smax: R = 0.1, Constant Amplitude Unless Otherwise Noted

TEST SPEED: 1800-2300 cpm Unless Otherwise Noted

	SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	SPEC. SUPPORT METIOD 1,2	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 3,4,5,6	REMARKS
AND THE PERSON OF THE PERSON O	4EP3 4EP2 4EP1 4EP4 4EP5 4EP6 4EP12 4EP8 4EP7 4EP9 4EP11 -4EP10	55 55 55 45 45 40 30 30 32 24	Sandwich Flexure Flexure Flexure Sandwich Flexure Flexure Flexure Sandwich Flexure Flexure	5,400 6,500 9,000 14,500 15,100 42,100 69,000 58,700 161,800 181,200 953,200 1,043,100	CSKH CSKH CSKH CSKH CSKH CSKH CSKH CSKH	Constant Load Constant Load

- 1. Four flexures (90° offset), see Figure 7
- 2. "Sendwich" guide and restraint, see Figure 6
- 3. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 4. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 5. PLH = Sheet metal failure through the fastener holes in the plain sheet.
- 6. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE LXI

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT

STEEL HI TIGUE, 7075-T76 CIAD

IOW LOAD TRANSFER JOINT -

PRECISION HOLE FABRICATION

JOINT GEOMETRY: X16138-

X16138-1AP, Figure 3

FASTENER SYSTEM:

HLT 315-6 Pin, HL 1386-6 Collar

INTERFERENCE FIT:

-0.003 inch

FASTENER MATERIAL:

Hll (220), 132 ksi Shear

FASTENER COATING:

Diffused Nickel Caamium

HOLE FABRICATION:

11/64 Pilot, 4 Flute (Straight) HSS Reamer

STRESS RATIO, Smin/Smax:

R = 0.1, Constant Load Unless Otherwise Noted

TEST SPEED:

600-2300 cpm Unless Otherwise Noted

TEST ENVIRONMENT:

Laboratory Air

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 2,3,4,5	REMARKS
1AP3 1AP2 1AP1 1AP4 1AP5 1AP6 1AP12 *1AP9 1AP7 1AP8 1AP11 1AP10	40 40 40 30 30 30 16 16 16 16	12,300 15,700 22,500 94,900 123,300 151,400 175,100 2,229,800 3,819,400 10,460,000 N.F. 10,468,000 N.F.	PLH PLH CSKH, PLH CSKH GRIP GRIP CSKH, PLH PLH	Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl.

- 1. Test specimen installation shown in Figure 4 and 5
- 2. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 3. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 4. PIH = Sheet metal failure through the fastener holes in the plain sheet.
- 5. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE IXII

AXIAL PATIGUE STRENGTH - INVERFERENCE FIT
STEEL HI TIQUE, T1-6A1-4V M.A. LOW LOAD TRANSFER JOINT PRECISION HOLE FABRICATION

JOINT GEOMETRY: X16138-4AP, Figure 3

FASTENER SYSTEM: HLT 315-6-4 Pin, HL 1386-6 Collar

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: ILL1 (220), 132 ksi Shear

FASTENER COATING: Inorganic Solid Dry Film Lube

HOIE FABRICATION: 11/64 Pilot, 6 Flute (Straight) Cobalt Reamer

STRESS RATIO, s_{min}/s_{max} : R = 0.1, Constant load Unless Otherwise Noted

TEST SPEED: 600-2300 cpm Unlcss Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	CYCIES TO FAILURE N.F. = NO FAILURE	MODE OF FATLURE 2,3,4,5	REMARKS
4AP3 4AP2 4AP1 4AP5 4AP5 4AP4 4AP9 4AP12 4AP11 4AP7 4AP8 4AP10	82 82 82 60 60 48 46 46 46 46	3,800 10,700 12,000 39,000 41,800 54,300 76,800 440,900 746,000 1,724,600 2,370,000 10,076,000 N.F.	CSKH CSKH CSKH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH	

- 1. Test specimen installation shown in Figure 4
- 2. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 3. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 4. PIH = Sheet metal failure through the fastener holes in the plain sheet.
- 5. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE LXIII

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TITANIUM HI TIGUE, 7075-T76 CIAD 100 IOAD TRANSFER JOINT - PRECISION HOLE FABRICATION

JOINT GEOMETRY: X16138-LEP, Figure 3

FASTENER SYSTEM: HIT 411-6-4 Pin, HL 1386-6 Collar

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Titanium-6A1-4V, STA, 95 ksi Shear

FASTENER COATING: Cetyl Alcohol Lube

HOLE FABRICATION: 11/64 Pilot, 4 Flute (Straight) HSS Reamer

STRESS RATIO, Smin/Smax: R = 0.1, Constant Load Unless Otherwise Noted

TEST SPEED: 600-2300 cpm Unless Otherwise Noted

	- Tr. M			
SPECIMEN IDENTIFICATION	MAX SALLYS GROST AREA KSI	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 2,3,4,5	REMARKS
1EP2 1EP10 1EP3 1EP1 1EP11 1EP5 1EP6 -1EP4 1EP8 1EP7 1EP9 1EP12 1EP11	30 30 30 30 23 23 23 23 18.5 18.5 18.5	19,400 19,700 20,000 22,309 41,3000 Rerun 114,500 156,500 268,300 177,300 320,500 487,200 10,800,000 N.F.	CSKH, PLH PLH CSKH, PLH CSKH, PLH CSKH, PLH CSKH CSKH PLH CSKH PLH	Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl.

- 1. Test specimen installation shown in Figure 5
- 2. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 3. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 4. PIH = Sheet metal failure through the fastener holes in the plain sheet.
- 5. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE IXIV

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TITANIUM HI TIGUE, Ti-6A1-4V M.A. LOW LOAD TRANSFER JOINT PRECISION HOLE FABRICATION

JOINT GEOMETRY: X16138-4EP, Figure 3

FASTENER SYSTEM: HLT 411-6-4 Pin, HL 1386- Collar

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Titanium-6A1-4V, STA, 95 ksi Shear

FASTENER COATING: Inorganic Solid Dry Film Lube

HOLE FABRICATION: 11/64 Pilot, 6 Flute (Straight) Cobalt Reamer

STRESS RATIO, S_{min}/S_{max} : R = 0.1, Constant Load Unless Otherwise Noted

TEST SPEED: 600-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 2,3,4,5	REMARKS
1:2P2 1:2P3 1:2P3 1:2P5 1:2P6 1:2P6 1:2P9 1:2P8 1:2P7 1:2P12 1:2P10	82 82 60 60 60 65 45 43 41	14,500 16,100 17,900 30,400 56,700 76,500 94,800 251,700 389,100 761,400 661,500 10,200,000 N.F.	CSKH, PIH CSKH CSKH, PIH CSKH CSKH CSKH CSKH CSKH, PIH CSKH, PIH CSKH, PIH	

- 1. Test specimen installation shown in Figure 4
- 2. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 3. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 4. PIH = Sheet metal failure through the fastener holes in the plain sheet.
- 5. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE LXV

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT STEEL TAPER IOK, 7075-T76 CIAD HIGH LOAD TRANSFER JOINT PRECISION HOLE FABRICATION

JOINT GEOMETRY: X16136-1HP, Figure 1

FASTENER SYSTEM: TLH 100-3-4 Pin, TLN 1001-3 Washernut

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Ill (220), 132 ksi Shear

FASTENER COATING: Diffused Nickel Cadmium

HOLE FABRICATION: 11/54 Pilot, 3 Flute (Spiral) OMARK 2030 AR Reamer

STRESS RATIO, S_{min}/S_{max} : R = 0.1, Constant Amplitude Unless Otherwise Noted

TEST SPEED: 1800-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	SPEC. SUPPORT METHOD 1,2	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 3,4,5,6	REMARKS
14P2 14P1 14P3 14P6 14P4 14P5 14P9 14P8 14P7 14P12 14P12 14P11	30 30 30 20 20 20 14 14 14 19	Flexure Flexure Sandwich Sandwich Flexure Sandwich Flexure Flexure Flexure Flexure Flexure Flexure	21,800 35,900 60,000 85,500 199,100 248,600 289,700 990,000 1,431,600 3,087,600 5,126,200 10,000,000 N.F.	CSKH CSKH PLH PIA PIA PIA CSKA CSKH PLH, PIA CSKA	

- 1. Four flexures (90° offset), see Figure 7
- 2. "Sandwich" guide and restraint, see Figure 6
- 3. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 4. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 5. PLH = Sheet metal failure through the fastener holes in the plain sheet.
- 6. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE LXVI

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT STEEL TAPER IOK, Ti-6A1-4V, N.A. HIGH LOAD TRANSFER JOINT - PRECISION HOLE FABRICATION

JOINT GEOMETRY: X16136-4HP, Figure 1

FASTEMER SYSTEM: TLH100-3-4 Pin, TLN 1001-3 Washernut

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Hll (220), 132 ksi Shear

FASTENER COATING: Inorganic Solid Dry Film Lube

HOLE FABRICATION: 11/64 Pilot, & Flute (Straight) OMARK 2060 AR

Cobalt Reamer

STRESS RATIO, S_{min}/S_{max} : R = 0.1, Constant Amplitude Unless Otherwise Noted

TEST SPEED: 1800-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	SPEC. SUPPORT METHOD 1,2	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 3,4,5,6	REMARKS
4 1P3 4 1P1 4 1P2 4 1P3 4 1P4 4 1P7 4 1P9; 4 1P6 4 1P10 4 1P11 4 1P12	54 54 55 35 35 32 32 24 20 18	Sandwich Flexure Flexure Sandwich Flexure Flexure Sandwich Flexure Flexure Flexure Flexure Flexure	7,500 15,100 25,300 90,600 130,700 274,300 156,000 191,300 388,000 709,700 5,730,700 10,000,000 N.F.	CSKH CSKH CSKH CSKH CSKH CSKH CSKH PLH	Constant Load Constant Load Constant Load Constant Load Constant Load Constant Load Constant Load Constant Load Constant Load Constant Load Constant Load Constant Load

- 1. Four flexures (90° offset), see Figure 7
- 2. "Sandwich" guide and restraint, see Figure 6
- 3. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 4. CSKA = Sheet metal failure away from the festener holes in the CSK sheet.
- 5. PLH = Sheet metal failure through the fastener holes in the plain sheet.
- 6. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE IXVII

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TITANIUM TAPER LOK. 7075-T76 CIAD HIGH LOAD TRANSFER JOINT PRECISION HOLE FABRICATION

JOINT GEOMETRY: X16136-1MP, Figure 1

FASTEMER SYSTEM: TLV 100-3-4 Pin, TLN 1001-3 Washernut

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Titanium-SA1-4V, STA, 95 ksi Shear

FASTENER COATING: Cetyl Alcohol Lube

HOLE FABRICATION: 11/64 Pilot, 3 Flute (Spiral) OMARK 2030 AR,

Reamer

STRESS RATIO, S_{min}/S_{max} : R = 0.1, Constant Amplitude Unless Otherwise Noted

TEST SPEED: 1800-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	SPEC. SUPPORT METHOD 1,2	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 3,4,5,6	REMARKS
1MP2 1MP1 1MP3 1MP4 1MP5 1MP6 1MP7 1MP9= 1MP8 1MP11 1MP10 1MP12	30 30 30 20 20 14 14 12 10	Flexure Flexure Sandwich Flexure Flexure Sandwich Flexure Sandwich Flexure Flexure Flexure Flexure	27,100 33,800 37,900 59,500 80,500 102,100 251,100 457,700 549,500 9,382,800 4,534,350 6,002,200	PIA, PLH PIA PIA, PLH PIA, PLH PIA, PLH PIA, PLH PIA, PLH PIA, PLH PIA, PLH	

- 1. Four flexures (90° offset), see Figure 7
- 2. "Sandwich" guide and restraint, see Figure 6
- 3. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 4. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 5. PLH = Sheet metal failure through the fastener holes in the plain sheet.
- 6. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE LXVIII

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TITANIUM TAPER LOK, Ti-6Al-4V M.A. HIGH LOAD TRANSFER JOINT PRECISION HOLE FABRICATION

JOINT GEOMETRY: X16136-4MP, Figure 1

FASTEMER SYSTEM: TLV 100-3-4 Pin, TLN 1001-3 Washernut

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Titanium-6A1-4V, STA, 95 ksi Shear

FASTENER COATING: Inorganic Solid Dry Film Lube

HOLE FABRICATION: 11/54 Filot, 6 Flute (Straight) OMARK 2060 AP.

Cobalt Reamer

STRESS RATIO, S_{min}/S_{max} : R = 0.1, Constant Amplitude Unless Otherwise Noted

TEST SPEED: 1800-2300 cpm Unloss Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	SPEC. SUPPORT METHOD 1,2	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 3,4,5,6	REMARKS
4MP1 4MP2 4MP3 4MP4 4MP5 4MP5 4MP9 4MP7 4MP8 4MP10 4MP11	50 50 50 40 40 30 30 36 23	Flexure Flexure Sandwich Flexure Flexure Sandwich Sandwich Flexure Flexure Flexure Flexure	15,100 19,200 50,700 48,800 51,800 71,400 192,700 231,600 1,604,100 383,300 10,197,900 N.F.	CSKH CSKH CSKH CSKH CSKH CSKH CSKH CSKH	Constant Load Constant Load Constant Load Constant Load Constant Load Constant Load Constant Load Constant Load Constant Load Constant Load Constant Load

- 1. Four flexures (90° offset), see Figure 7
- 2. "Sandwich" guide and restraint, see Figure 6
- 3. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 4. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 5. PLH = Sheet metal failure through the fastener holes in the plain sheet.
- 6. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE LXVIX

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT STEEL TAPER LOK, 7075-176 CLAD

IOW LOAD TRANSFER JOINT - PRECISION HOLE FABRICATION

JOINT GEOMETRY: X16138-14.P, Figure 3

FASTENER SYSTEM: TLH 100-3-4 Pin, TLN 1001-3 Washernut

INTERFERENCE FIT: "0.003 inch

FASTENER MATERIAL: Hll (220), 132 ksi Shear

FASTENER COATING: Diffused Nickel Cadmium

HOLE FABRICATION: 11/64 Pilot, 3 Flute (Spiral) OMARK 2030 AR Reamer

STRESS RATIO, S_{min}/S_{max} : R = 0.1, Constant Load Unless Otherwise Noted

TEST SPEED: 600-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 2,3,4,5	REMARKS
1HP1 1HP2 1HP3 1HP6 1HP5 1HP4 1HP9 "1HP7 1HP8 1HP10 1HP12 1HP11	45 45 30 30 38 18 18 14 14 11	22,500 31,300 32,300 £4,000 120,200 156,200 600,300 1,181,000 2,253,700 2,000,500 10,000,000 N.F. 10,438,000 N.F.	CSKH, PLH CSKH, PLH CSKH PIA CSKH CSKA CSKA, PLH CSKH, PLH CSKH, PLA	Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl.

- 1. Test specimen installation shown in Figure 5
- 2. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 3. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 4. PIH = Sheet metal failure through the fastener holes in the plain sheet.
- 5. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE IXX

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT STEEL TAPER LOK, T1-6A1-4V M.A. LOW LOAD TRANSFER JOINT PRECISION HOLE FABRICATION

JOINT GEOMETRY: X16138-4HP, Figure 3

FASTENER SYSTEM: TLH 100-3-4 Pin, TLN 1001-3 Washernut

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Hll (220), 132 ksi Shear

FASTENER COATING: Inorganic Solid Dry Film Lube

HOIE FABRICATION: 11/64 Pilot, 6 Flute (Straight) OMARK 2060 AR,

Cobalt Rcamer

STRESS RATIO, S_{min}/S_{max} : R = 0.1, Constant Load Unless Otherwise Noted

TEST SPEED: 600-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 2,3,4,5	REMARKS
44P1 44P2 44P2 44P6 44P5 44P5 44P7 44P9 44P12 44P11 44P10	83 83 60 60 45 45 43 41	14,900 15,000 16,900 137,300 188,500 240,900 672,300 1,844,000 4,598,000 10,000,000 N.F. 10,000,000 N.F.	CSKH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH	

- 1. Test specimen installation shown in Figure 4
- 2. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 3. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 4. PIH = Sheet metal failure through the fastener holes in the plain sheet.
- 5. PLA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE LXXI

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TITANIUM TAPER LOK, 7C75-T76 CIAD LOW LOAD TRANSFER JOINT PRECISION HOLE FABRICATION

JOINT GEOMETRY: X16138-1MP, Figure 3

FASTENER SYSTEM: TLV 100-3-4 Pin, TLN 1001-3 Washernut

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Titanium-6A1-4V, STA, 95 ksi Shear

FASTENER COATING: Ceytl Alcohol Lube

HOLE FABRICATION: 11/64 Pilot, 3 Flute (Spiral) OMARK 2030 AR

Reumer

STRESS RATIO, S_{min}/S_{max} : R = 0.1, Constant Load Unless Otherwise Noted

TEST SPEED: 600-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	CYCLES TO FAILURE N.F. = NO FAILURE	MODE CE FAILURE 2,3,4,5	REMARKS
1MP3 1MP2 1MP1 1MP5 1MP6 1MP7 1MP9 1MP8 1MP12 1MP10 1MP11	46 46 30 30 30 16 16 13 13 10.5	20,300 23,600 34,200 83,100 164,400 171,400 734,200 795,600 1,197,500 3,833,100 4,503,000 10,000,000 N.F.	CSKH CSKH PIA CSKH CSKH CSKH CSKH CSKH CSKH, PIH CSKH, PIH	Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl.

- 1. Test specimen installation shown in Figure 5
- 2. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 3. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 4. PIH Sheet metal failure through the fastener holes in the plain sheet.
- 5. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE LXXII

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TITANIUM TAPER LOK, Ti-6Al-4V, M.A. LOW LOAD TRANSFER JOINT PRECISION HOLE FABRICATION

JOINT GEOMETRY: X16138-4MP, Figure 3

FASTENER SYSTEM: TLV 100-3-4 Pin, TLN 1001-3 Washernut

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Titanium-6A1-4V, STA, 95 ksi Shear

FASTENER COATING: Inorganic Solid Dry Film Lube

HOLE FABRICATION: 11/64 Pilot, 6 Flute (Straight) OMARK 2060 AR,

Cobalt Reamer

STRESS RATIO, S_{min}/S_{max} : R = 0.1, Constant Load Unless Otherwise Noted

TEST SPEED: 600-2300 cpm Unlcss Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 2,3,4,5	REMARKS
4MP3 4MP1 4MP2 4MP5 4MP4 4MP7 4MP12 4MP8 4MP9	82 82 82 60 60 48 48 48 42	15,000 15,800 20,600 75,000 91,600 454,000 1,129,300 2,752,200 7,901,000 10,000,000 N.F.	CSKH CSKH, PLH CSKH CSKH CSKH, PLH CSKH, PLH CSKH, PLH	

- 1. Test specimen installation shown in Figure 4
- 2. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 3. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 4. PIH = Sheet metal failure through the fastener holes in the plain sheet.
- 5. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE LXXIII

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT STEEL HI TIGUE, 7075-T76 CIAD HIGH LOAD TRANSFER JOINT - T/D = .33

JOINT GEOMETRY: X16136-2C, Figure 1

FASTENER SYSTEM: HIJT 315-6-2 Pin, HL 1386-6 Collar

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: H11 (220), 132 ksi Shear

FASTENER COATING: Diffused Nickel Cadmium

HOIE FABRICATION: Production HSS Double Margin Drill

STRESS RATIO, Smin/Smax: R = 0.1, Constant Amplitude Unless Otherwise Noted

TEST SPEED: 1800-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	SPEC. SUPPORT METHOD 1,2	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 3,4,5,6	REMARKS
205 201 203 206 2011 208 202 2010 209 2012 207	30 30 30 20 20 20 17.5 17.5 17.5	Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure	14,200 56,300 59,800 188,700 259,000 372,400 713,500 1,903,500 2,258,000 3,694,500 10,900,000 N.F.	PIA PIA PIA PIA PIA PIA PIA PIA	

- 1. Four flexures (90° offset), see Figure 7
- 2. "Sandwich" guide and restraint, see Figure 6
- 3. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 4. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 5. PLH = Sheet metal failure through the fastener holes in the plain sheet.
- 6. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE LXXIV

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT STEEL HI TIGUE, 7075-T76 CLAD, HIGH LOAD TRANSFER JOINT T/D = .85

JOINT GEOMETRY: X16126-3D, Figure 1

FASTENER SYSTEM: HLT 315-6-6 Pin, HL 1386-6 Collar

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Hll (220), 135 ksi Shear

FASTENER COATING: Diffused Nickel Cadmium

HOLE FABRICATION: Production HSS Double Margin Drill

STRESS RATIO, S_{min}/S_{max} : R = 0:1, Constant Amplitude Unless Otherwise Noted

TEST SPEED: 1800-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	SPEC. SUPPORT METHOD 1,2	-CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 3,4,5,6	REMARKS
3D1 3D2 3D5 3D4 3D10 3D3 3D9 3D7 3D6 3D8 3D11 3D12	20 20 20 16 14 14 12 12 9.5 7.5 6	Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure	11,000 16,900 31,500 57,100 300,600 312,000 344,500 627,600 680,900 2,703,600 4,991,500 10,000,000 N.F.	PLH PLH CSKH PLH PIA CSKA CSKA PIA PIA	Constant Load Constant Load Constant Load Constant Load Constant Load Constant Load Constant Load Constant Load Constant Load Constant Load Constant Load Constant Load Constant Load Constant Load Constant Load Constant Load Constant Load

- 1. Four flexures (90° offset), see Figure 7
- 2. "Sandwich" guide and restraint, see Figure 6
- 3. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 4. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 5. PLH = Sheet metal failure through the fastener holes in the plain sheet.
- 6. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE LXXV

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TITANIUM HI TIGUE, 7075-T76 CIAD, HIGH LOAD TRANSFER JOINT T/D = .33

JOINT GEOMETRY: X16136-2F, Figure 1

FASTEMER SYSTEM: HLT 411-6-2 Pin, HL 1386-6 Collar

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Titanium-6A1-4V, STA, 95 ksi Shear

FASTENER COATING: Cetyl Alcohol Lube

HOLE FABRICATION: Production HSS Double Margin Drill

STRESS RATIO, S_{min}/S_{max} : R = 0.1, Constant Amplitude Unless Otherwise Noted

TEST SPEED: 1800-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	SPEC. SUPPORT METHOD 1,2	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 3,4,5,6	REMARKS
2F7 2F2 2F1 2F12 2F4 2F3 2F6 2F5 2F8 2F10 2F9	39 33 33 33 22 22 22 18 18 16 16 16	Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure	3,650 19,900 34,600 35,900 208,300 254,700 712,400 206,500 618,900 1,532,400 5,488,700 10,000,000 N.F.	CSKH CSKH PIA PIA CSKH CSKI CSKA CSKH PIA PIA	

- 1. Four flexures (90° offset), see Figure 7
- 2. "Sandwich" guide and restraint, see Figure 6
- 3. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 4. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 5. PLH = Sheet metal failure through the fastener holes in the plain sheet.
- 6. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE LXXVI

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TITANIUM HI TIGUE, 7075-T76 CLAD, HIGH LOAD TRANSFER JOINT T/D = .85

JOINT GEOMETRY: X16136-3G, Figure 1 '

FASTENER SYSTEM: HLT 411-6-6 Pin, HL 1386-6 Collar

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Titanium-6Al-4V, STA, 95 ksi Shear

FASTENER COATING: Cetyl Alcohol Lube

HOLE FABRICATION: Production HSS Double Margin Drill

STRESS RATIO, S_{min}/S_{max} : R = 0.1, Constant Amplitude Unless Otherwise Noted

TEST SPEED: 1800-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	SPEC. SUPPORT METHOD 1,2	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 3,4,5,6	remarks
3%1 3%2 3%3 3%5 3%6 3%7 368 3%2* 3%9 3310 3611	30 30 20 16 15 15 12 10.5 10.5 8.5 7.5	Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure	3,700 7,100 46,200 34,500 160,500 202,000 408,500 1,077,000 2,173,100 5,249,600 10,000,000 N.F.	PLH CSKH PLH PLA PIA PIA PIA PIA CSKA	

- 1. Four flexures (90° offset), see Figure 7
- 2. "Sandwich" guide and restraint, see Figure 6
- 3. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 4. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 5. PLH = Sheet metal failure through the fastener holes in the plain sheet.
- 6. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE LXXVII

AXIAL FATIGUE STRENGTH - HETERFERENCE FIT STEEL TAPER LOK, 7075-T76 CLAD, TIGH LOAD TRAUSFER JOINT - T/D = .33

JOINT GEOMETRY: %16136-2K, Figure 1

FASTEMER SYSTEM: TL: 100-3-2 Pin, TL: 1001-3 Washernut

INTERFERENCE FIT. -0.003 inch

FASTENER MATERIAL: All (220), 132 ksi Chear

FASTENER COATING: Diffused Mickel Cadmium

HOLE FABRICATION: Production Taper lok NUS Drill-Reamer

STRESS RATIO, S /S : R = C.1, Constant Amplitude Unless Ctherwise : oted

TEST SPEED: 1800-2300 cpm Unless Otherwise Toted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	SPEC. SUPPORT METHOD 1,2	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 3,4,5,6	REMARKS
2K6 2K12 2K2 2K3 2K5 2K8 2K6 2K10 2K11	37 32 32 32 22 19 19 19 17.5 15.5	Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure	8,600 64,500 72,800 73,200 355,900 810,800 889,900 1,017,800 2,897,000 2,280,300 4,741,500	CSKT PIA PIA PIA PIA PIA PIA CSKI PIA	

- 1. Four flexures (90° offset), see Figure 7
- 2. "Sandwich" guide and restraint, see Figure 6
- 3. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 4. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 5. PLH = Sheet metal failure through the fastener holes in the plain sheet.
- 6. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE LXXVIII

AXIAL FATICUE STRENCTH - INTERFERENCE FIT STEEL TAPER LOK, 7075-T76 CIAD, HIGH LOAD TRANSFER JOINT - T/D = .85

JOINT TEOMETRY: X16136-3L, Figure 1

FASTENER SYSTEM: TLH 100-3-6 Pin, TLN 1001-3 Washernut

INTERPERENCE FIT: -0.003 inch

PASTEMER MATERIAL: Hll (220), 132 ksi Shear

FASTENER COATING: Diffused Nickel Cadmium

OLE FABRICATION: Production-Taper Lok HSS Drill-Reamer

STYESS RATIO, S_{min}/S_{max} : R = 0.1, Constant Amplitude Unless Otherwise Note:

TEST SPEED: 1800-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS CROSS AREA KSI	SPEC. SUPPORT METIOD 1,2	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 3,4,5,6	REMARKS
312 311 314 313 315 317 316 3110 318 319 3111 3112	30 30 20 20 20 16 16 12 12 10.5 8.5 6.5	Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure	3,800 9,900 59,100 79,100 95,200 149,000 157,600 804,900 1,165,600 1,026,000 2,242,200 10,000,000 N.F.	CSKII CSKH CSKH CSKH PLH PLI PIA PIA PIA CSKA	1800 epm 500 epm 1800 epm 500 epm

- 1. Four flexures (90° offset), see Figure 7
- 2. "Sandwich" guide and restraint, see Figure 6
- 3. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 4. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 5. PLH = Sheet metal failure through the fastener holes in the plain sheet.
- 6. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE LXXIX

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TITANIUM TAPER LOK, 7075-T76 CLAD, HIGH LOAD TRANSFER JOINT -

T/D = .33

JOINT GEOMETRY: X16136-2N, Figure 1

FASTENER SYSTEM: TLV 100-3-2 Pin, TLN 1001-3 Washernut

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Titanium-6A1-4V, STA, 95 ksi Shear

FASTENER COATING: Cetyl Alcohol Lube

HOLE FABRICATION: Production Taper Lok HSS Drill-Reamer

STRESS RATIO, Smin/Smax: R = 0.1, Constant Amplitude Unless Otherwise Noted

TEST SPEED: 1800-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	SPEC. SUPPORT METHOD 1,2	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 3,4,5,6	REMARKS
2N4 2N11 2N2 2N1 2N12 2N8 2N3 2N4 2 N7 2N6 2N5 2N10	38 38 30 30 30 21 21 21 25 15 15 15	Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure	4,000 34,000 49,000 49,200 51,700 103,800 153,200 181,000 267,000 540,000 1,903,500 10,200,000 H.F.	PIA PIA PIA PIA PIA PIA PIA PIA PIA	

- 1. Four flexures (90° offset), see Figure 7
- 2. "Sandwich" guide and restraint, see Figure 6
- 3. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 4. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 5. PLH = Sheet metal failure through the fastener holes in the plain sheet.
- 6. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE LXXX

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TITANIUM TAPER IOK, 7075-T76 CIAD, HIGH IOAD TRANSFER JOINT - T/D = .85

JOINT GEOMETRY: X16136-3"0", Figure 1

FASTENER SYSTEM: TLV 100-3-6 Pin, TLN 1001-3 Washernut

INTERFERENCE FIT: -0.000 inch

FASTENER MATERIAL: Titanium-6Al-4V, STA, 95 ksi Shear

FASTENER COATING: Cetyl Alcohol Lube

HOLE FABRICATION: Production Taper lok 'SS Drill-Reamer

STRESS RATIO, S_{min}/S_{max} : R = 0.1, Constant Amplitude Unless Otherwise Noted

TEST SPEED: 1800-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	SPEC. SUPPORT METHOD 1,2	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 3,4,5,6	REMARKS
3"0"12 3"0"0"3; 3"0"0"3"0"12 3"0"0"12 3"0"0"18	28 28 18 18 18 12 10 10 10	Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure Flexure	4,500 5,000 34,400 35,000 49,300 757,000 1,078,800 1,271,700 1,495,200 2,083,500 9,501,900	CSKH CSKH CSKH CSKH PIA CSKH PLH CSKH CSKH CSKH	

- 1. Four flexures (90° offset), see Figure 7
- 2. "Sandwich" guide and restraint, see Figure 6
- 3. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 4. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 5. PLH = Sheet metal failure through the fastener holes in the plain sheet.
- 6. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE LXXXI

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT STEEL HI TIGUE, 7075-T76 CIAD, IOW IOAD TRANSFER JOINT - T/D = .33

JOINT GEOMETRY: X16138-2C, Figure 3

FASTENER SYSTEM: HLT 315-6-2 Pin, HL 1386-6 Collar

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Hll (220), 132 ksi Shear

FASTENER COATING: Diffused Nickel Cadmium

HOLE FABRICATION: Production HSS Double Margin Drill

STRESS RATIO, S_{min}/S_{max} : R = 0.1, Constant Load Unless Otherwise Noted

TEST SPEED: 600-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 2,3,4,5	REMARKS
206 2010 201 202 204 203 207 208 209 2011 2012	38 38 30 25 25 15 13.5 11.5 9	16,700 19,000 32,300 172,600 365,300 3,334,400 751,300 1,048,300 1,688,300 953,300 10,000,000 N.F.	CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PLH	

- 1. Test specimen installation shown in Figure 4
- 2. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 3. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 4. PIH = Sheet metal failure through the fastener holes in the plain sheet.
- 5. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE LXXXII

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT STEEL HI TIGUE, 7075-T76 CLAD, LOW LOAD TRANSFER JOINT - T/D = .85

JOINT GEOMETRY:

X16138-3D, Figure 3

FASTENER SYSTEM:

HLT 315-6-6 Pin, HL 1386-6 Collar

INTERFERENCE FIT:

-0.003 inch

FASTENER MATERIAL:

Hll (220), 132 ksi Shear

FASTENER COATING:

Diffused Nickel Cadmium

HOLE FAPRICATION:

Production HSS Double Margin Drill

STRESS RATIO, Smin/Smax:

R = 0.1, Constant Load Unless Otherwise Noted

TEST SFEED:

600-2300 cpm Unless Otherwise Noted

TEST ENVIRONMENT:

Laboratory Air

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 2,3,4,5	REMARKS
3DE 3D11 3D12 3D1 3D5 3D4 3D2 3D6 3D3 3D9 7D10	45. 43 30 30 30 22 16 16 16 9.5	7,100 8,900 12,000 39,900 65,500 130,900 395,900 499,200 1,639,000 2,472,300 10,000,000 N.F.	PLH USKI! CSKI, PLH CSKH, PLH CSKH, PLA CSKH, PLH CSKH, PLH CSKH, PLH	

- 1. Test specimen installation shown in Figure μ
- 2. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 3. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 4. PIH = Sheet metal failure through the fastener holes in the plain sheet.
- 5. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE LXXXIII

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TITANIUM HI TIGUE, 7075-T76 CIAD, LOW LOAD TRANSFER JOINT - T/D = .33

JOINT GEOMETRY: X16138-2F, Figure 3

FASTENER SYSTEM: HLT 411-6-2 Pin, HL 1386-6 Collar

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Titanium-6A1-4V, STA, 95 ksi Shear

FASTENER COATING: Cetyl Alcohol Lube

HOLE FABRICATION: Production HSS Double Margin Drill

STRESS RATIO, S_{min}/S_{max}: R = 0.1, Constant Load Unless Otherwise Noted

TEST SPEED: 600-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 2,3,4,5	REMARKS
2F2 2F1 2F6 2F12 2F3 2F8 2F10 2F 5 0F11 2F4 2F7 2F7	40 40 30 25 25 25 13.5 13.5 13.5	8,300 18,500 35,800 72,100 164,000 220,000 231,000 963,900 1,490,000 1,704,200 10,000,000 N.F. 10,000,000 N.F.	CSKH CSKH CSKH, PLH CSKH, PLH CSKH, PLH CSKH, PIA Not Noted CSKH, PLH	

- 1. Test specimen installation shown in Figure 4
- 2. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 3. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 4. PIH = Sheet metal failure through the fastener holes in the plain sheet.
- 5. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE LXXXIV

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TINNIUM HI TIGUE, 7075-T76 CLAD, LOW LOAD TRANSFER JOINT - T/D = .85

JOINT GEOMETRY: X16138-3G, Figure 3

FASTENER SYSTEM: HUT 411-6-6 Pin, HL 1386-6 Collar

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Titanium-6Al-4V, STA, 95 ksi Shear

FASTENER COATING. ... Cetyl Alcohol Lube

HOLE FABRICATION: Production HSS Double Margin Drill

STRESS RATIO, S_{min}/S_{max} : R = 0.1, Constant Load Unless Otherwise Noted

TEST SPEED: 600-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 2,3,4,5	REMARKS
3G11 3G12 3G10 3G7 3G9 3G8 3G2 3G1 3G5 3G3 3G6	48 48 48 27.5 27.5 27.5 19 16 16 16 11.5 9	5,500 5,600 16,700 99,000 108,900 143,300 507,600 1,042,900 1,298,300 2,293,600 3,108,000 10,000,000 N.F.	PLH PLH PIA CSKH CSKH CSKH CSKH CSKH CSKH	Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl. Constant Ampl.

- 1. Test specimen installation shown in Figure 4 and 5
- 2. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 3. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 4. PLH = Sheet metal failure through the fastener holes in the plain sheet.
- 5. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE LXXXV

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT STEEL TAPER LOK, 7075-T76 CLAD, LOW LOAD TRANSFER JOINT - T/D = .33

JOINT GEOMETRY: X16138-2K, Figure 3

FASTENER SYSTEM: TLH 100-3-2 Pin, TIN 1001-3 Washernut

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Hll (220), 132 ksi Shear

FASTENER COATING: Diffused Nickel Cadmium

HOLE FABRICATION: Production Taper lok Drill-Reamer

STRESS RATIO, S_{min}/S_{max} : R = 0.1, Constant Load Unless Otherwise Noted

TEST SPEED: 600-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 2,3,4,5	REMARKS
2K11 2K7 2K1 2K2 2K5 2K4 2K8 2K3 2K12 2K10 2K9 2K6	50 50 40 40 26.5 26.5 25 15 15 15	4,600 8,200 44,100 51,900 173,600 327,400 430,300 262,100 545,200 1,446,500 1,450,700 10,000,000 N.F.	CSKI CSKI, PLII CSKI, PLH CSKI, PLH CSKI, PLH CSKI, PLH CSKI, PLH CSKI, PLH CSKI, PLH	•

- 1. Test specimen installation shown in Figure 4
- 2. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 3. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 4. PIH = Sheet metal failure through the fastener holes in the plain sheet.
- 5. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE LXXXVI

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT STEEL TAPER LOK, 7075-U76 CIAD, LOW LOAD TRANSFER JOINT - T/D = .85

JOINT GEOMETRY: X16138-3L, Figure 3

FASTENER SYSTEM: TL-1 100-3-6 Pin, WIN 1001-3 Washernut

INTERFERENCE FIT: -0.000 inch

FASTENER MATERIAL: Hll (220), 132 ksi Shear

FASTENER COATING: Diffused Nickel Cadmium

HOLE FABRICATION: Production Taper Lok Drill-Roamer

STRESS RATIO, S _min/S max: R = 0.1, Constant Load Unless Otherwise Noted

TEST SPEED: 600-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	CYCIES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 2,3,4,5	REMARKS
3111 3110 319 319 311 313 314 314	46 46 42 27 27 27 27 19 19 19	10,700 14,200 22,500 110,500 156,500 175,200 194,800 937,600 1,093,200 1,151,600 10,000,000 N.F.	CSKH CSKH CSKH,PL CSKH,PLH CSKH,PLH CSKH,PLH CSKH,PLH CSKH,PLH	

- 1. Test specimen installation shown in Figure 4
- 2. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 3. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 4. PIH = Sheet metal failure through the fastener holes in the plain sheet.
- 5. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE IXXXVII

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TITANIUM TAPER IOK, 7075-T76 CIAD, IOW IOAD TRANSFER JOINT - T/D = .33

JOINT GEOMETRY: X16138-2N, Figure 3

FASTENER SYSTEM: TLV 100-3-2 Pin, TLN 1001-3 Washernut

INTERFERENCE FIT: -0.003 inch

FASTENER MATERIAL: Titanium-5A1-4V, STA, 95 ksi Shear

FASTENER COATING: Cetyl Alcohol Lube

HOLE FABRICATION: Production Taper lok Drill-Reamer

STRESS RATIO, Smin/Smax: R = 0.1, Constant Load Unless Otherwise Noted

TEST SPEED: 600-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 2,3,4,5	REMARKS
2N12 2N10 2N7 2N8 2N3 2N2 2N1 2N4 2N5 2N11 2N9 2N6	43 38 38 35 25 25 16 16 13.5 12	28,700 36,000 37,700 39,900 106,100 233,000 251,100 502,800 822,800 4,122,700 1,551,400 10,166,000 N.F.	CSKH CSKA CSKI,PLH CSKI,PLH CSKH,PLH CSKH,PLH CSKH,PLH CSKI,PLH	

- 1. Test specimen installation shown in Figure 4
- 2. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 3. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 4. PIH = Sheet metal failure through the fastener holes in the plain sheet.
- 5. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

TABLE IXXXVIII

AXIAL FATIGUE STRENGTH - INTERFERENCE FIT TITANIUM TAPER LOK, 7075-T76 CLAD, LOW LOAD TRANSFER JOINT - T/D = .85

JOINT GEOMETRY: X16138-3"0", Figure 3

FASTENER SYSTEM: TLV 100-3-6 Pin, TLN 1001-3 Washernut

INTERFERENCE FIT: -0.003 inch

FASTENEP MATERIAL: Titanium-6Al-47, STA, 95 ksi Shear

FASTENER COATING: Cetyl Alcohol Lube

HOLE FABRICATION: Production Taper Lok Drill-Reamer

STRESS RATIO. s_{min}/s_{max} : R = 0.1, Constant Load Unless Otherwise Noted

TEST SPEED: 600-2300 cpm Unless Otherwise Noted

SPECIMEN IDENTIFICATION	MAX STRESS GROSS AREA KSI	CYCLES TO FAILURE N.F. = NO FAILURE	MODE OF FAILURE 2,3,4,5	REMARKS
3"0"9 3"0"8 3"0"6 3"0"2 3"0"1 3"0"1 3"0"12 3"0"3 3"0"10 3"0"5	45 45 37 27 27 27 19 19 19 19	14,400 15,100 42,600 54,300 148,400 210,800 641,900 691,100 745,800 919,600 2,482,900 10,579,400 N.F.	PLI CSKI, PLI PLH CSKI, PLI CSKI, PLI CSKI, PLI CSKI, PLI CSKI, PLI CSKI, PLI CSKA, PIA	

- 1. Test specimen installation shown in Figure 4
- 2. CSKH = Sheet metal failure through the fastener holes in the CSK sheet.
- 3. CSKA = Sheet metal failure away from the fastener holes in the CSK sheet.
- 4. PIH = Sheet metal failure through the fastener holes in the plain sheet.
- 5. PIA = Sheet metal failure away from the fastener holes in the plain sheet.

APPENDIX I

SHEET MATERIAL CERTIFICATION FOR 7075 ALUMINUM ALLOY

WIL NO CITY . THE MINIMUM MAXIMUM DESCRIPTION NATED RENEGRATING NO DESCRIPTION OF THE COMPANY OF THE A CAMPAGE AND A I certify that thesa are correct copies of reports on file at Proneer Mutals, Inc. O/D CUSTOMER P.O. NO. PRODUCTION ORDER NO. , i PIONEER METALS, INC. 10 ", VER: AL Day: Net 30 12 3. TEST REPORT—PACKING SLIP N 4) PICETS OHE ST ELONGATION & 2" 0 0 WL 1.111 7 We hereby certify that the melecial cuvered by this certification has been frend in accordance with the above specifications and has been found to each the description. Test reports are on file wib act to each annialism. Test reports are on file wib act to each including any specifications to find with reference or the wib act to each including any specifications. ,9/6/72 10/5/72 HOUTING SHELT HOME & BRANCH OFFICE CODE

(L) Home office: Les Angeles, Calif. (213) 268 3561

(M) Marretts, Coorgis, (2046) 422 2110

(W) Wichits, Kanest (316) 682-1521

(K) Kent, Washington; (206) 854-1500 5 11. ..160 X 48 X 102" ALCLAD ALUM 7075-T6 QQA250/13 PC 12 .100 X 48 X 144 ALCLAD SHEET 7075-TGM QQA250/13 PC 12 .063 X 48 X 144 ALCLAD ALUM 7075-T6 QQA250/13 PC 12C ALL 3 ITEMS MUST BE SCRATCH FREE AS POSSIBLE. STENCIL & INTERLEAVE 1621. ULTIMATE STRENGTH H.S.1 VIELD STRENGTH K.S.1
REST. MINIMUM MAXIMUM MINIMUM MAXIMUM DESCRIPTION MECHANICAL PROPERTIES PIONEER METALE, INC.
Subdayoff Lindshier, inc.
2001-1475in Sirer to Angret, Calvana 9023
4 C15T No. 21 SALESMAN 24 TAX
45653 N SP IN ATS ATS ATS M.E.N MACHINE COMPANY 11625 VAN OWEN NO. HOLLYWOOD, CA POUNCS | PI LOT NO 413 158 88 FORM PIPOD 20M.00101 TEM PIECES TEN ST ~ 04 0100

CAR

	_	_			_	_($\overline{\mathbb{C}}$	_	_			
	28	2014	202	2000	Zene	280	1909	6063	7075	9202		Alloy Nos.
	0.15 Max	-		-					 -	-		Total
	.05 A.tax	 	-	-	1				 	-	•	Each
		.15 Max			1	TO MON	TOM CT	×e. 01.	.20 Max	.10 Max	20 Max	F
	YOM OT.	.25 Max	25 Max	10 Max	26 Mar.	1	Y	×5.40 D.	5.1-6.1	3.8-4.8	6.3-7.3	ZN
-			-									ž
		.10 Max	.10 Mex	.1535	25-25	2		XFE OI	.1835	.1025	.1855	85
		2 2	1.2-1.8	2.2-2.8	4.0-4.9	.80-1.20	46 90	2	2.1-2.9	2.9-3.7	2.4-3.1	MG
1 Per 1		40-1.2	3090	.10 Max	.30-1.0	15 Max	30 Mar.		.30 Max	.1030	.30 Max	NW
20 Max		3.85.0	3.8-4.5	.10 Max	.10 Max	.1540	10 Max		1.2-2.0	.4080	1.6-2.4	ລ
1.0 Mex		Y MEX	.50 Max	.45 Mex	.40 Mex	.70 Max	JS Max		Xem oc.	.40 Max	.50 Max	7.
1.0 Mex	5	2	.50 Mex	.45 Max	.40 Mex	.4080	20-60		THE COLUMN	NO MON	.40 PAsx	z,
					CHEMICAL	ANALYSIS	=	PER CENT				

NOTE: () Min.mum chromium content for bar, sheet, place and drawn tube in 6061 alloy is .15

APPENDIX II

SHEET MATERIAL CERTIFICATION FOR TITANIUM-6A1-4V ALLOY

Continental Matals Inc. CERTIFIED TEST REPORT

13496 Saticoy St., No. Hollywood, Ca. 91605

Telephone (213) 373-7411 997-0022

32-15 Lawrence Street, Flushing, New York 11354
Tel. 212-961-2750 - TWX-710-582-2960

SOLD TO

M & N Machine Company 11625 Van Owen Street North Hollywood, Calif. 91605

SHIP TO

Same

Page 1 of 2

This is to certify that the material shipped to you on September 14, 1972 on the listed purchase order numbers complies with the following-chemical analysis and physical properties:

HEAT NO.	TOUR DADER NO	OUT OFCETAO	SIZF	SPEC	OUAN _	TEST NO.
321290	1631		.100 x 3-3/4" x 15-1/4" 6AL-4V Titanium (grain with 15-1/4")	MIL T 9046 F Type 3 Comp C	252 Pcs.	321290R i
321.290	1631	163767	.100 x 1-3/4" x 10" 6AL-4V Titanium -(Grain PHYSICAL PROPERTIE		252 Pcs.	321290R

MEAT NO	TIELD STRENGTH	*EASILE-5************************************	ELONGATION	AFE CF .	MARCHESS REMARKS
321290	147,700	156.200	13.5	· •	Bend OK
	•	•			!

CHEMICAL ANALYSIS

| HEAT NO | C | MONTH | NAME | N

this Till And Till An

Continental Metals Inc

Continental Matals Inc. CERTIFIED TEST REPORT

13496 Saticoy St., No. Hollywood, Ca. 91605

Telephone (213) 873-7411 997-002

32-15 Lawrence Street, Flushing, New York 11354 Tel. 212-961-2750 • TWX 710-582-2960

M & N Machine Company 11625 Van Owen Street North Hollywood, Calif. 91605

SHIP TO SAME

Page 2 of 2

This is to certify that the material shipped to you on <u>September 14, 1972</u> on the listed purchase order numbers complies with the following chemical analysis and physical properties:

HEAT NO.	-	OUR ORDER NO	size	SPEC	QUAN.	TEST NO.
291203	1631	163767	.100 x 1/3/4" x 7-3/4" (Grain with 7-3/4")	MIL T 9046 F Type 3 Comp C	78 Pcs.	291203R
•	' 		.100 x 1-3/4" x 4-1/2" (Grain with 4-1/2")			

6AL-4V Titanium PHYSICAL PROPERTIES

HEAT NO	YIELD STRFNGTH	TENSILE STEENSTH	ELONGATION	AFO. C	HAMONESS	REMARKS
291203	129,500	138,500	14.5			Bend OK
1		1	ì	1 ;		1

N Fe Al CHEMICAL ANALYSIS

неат но. С мижижиххижиххижиххижиххижиххи Сu Me Ti Cb

291203 .02 .01 .17 5.1 4.1 10.9 47 ppm:

this to be seen the seen to be se

Continental Metals In

4

APPENDIX III

HOLE FABRICATION AND FASTENER INSTALLATION DETAILS

Hole fabrication details are given in Table LXXXIX. Fastener hole diameter (Hi Tigue) or fastener protrusion (Taper Lok) measurements are given in Table XC. Measurements of straight shank Hi Tigue fastener diameter obtained by random sampling are given in Table XCVI.

General Instructions: Hi Tigue Installed in Aluminum and Titanium Alloy (3/16 Dia.)

Drill and/or ream holes as required in parts. Countersink holes in top sheet using fastener head to ensure correct countersink diameter depth is achieved. Parts to be tightly clamped during hole preparation. Holes to be deburred on both entrance and exit side (0.001-0.005 x 450 chamfer). On completion of hole preparation each hole diameter shall be measured using calibrated equipment and recorded. Hole surface to be inspected. Fastener to be installed will be a 100 degree flush shear head H-11 steel Hi-Tigue, with a diffused nickel cadmium plating and acetyl alcohol coating. Check and record pin diameter prior to installation. Pin shall be inserted in the hole and driven continuously unit1 head is fully seated using a medium size (3X) rivet gun. Rivet gun shall keep pin moving continuously until seated. Gun shall be held perpendicular to the pin axis throughout the driving sequence. At all times during the pin installation, a hollow backup surface shall be provided. Muts shall be installed while parts are firmly clamped. If a 0.0015 inch feeler can be inserted between the parts, at the faying surface on either side, until it touches the pin surface the part shall be scrapped. Record operations to be performed on a planning sheet or suitable alternative document and provide space for inspection at each operation.

General Instructions: Taperlok Installed in Aluminum and Titanium Alloy (3/16 Dia.)

Hole preparation shall not be done until test holes have been made in equivalent thickness scrap material. Taperloks shall be "blued" and inserted into the holes until the acceptable protrusion condition has been reached. Measurement of the protrusion shall be made using calibrated depth micrometer. The Taperlok fastener shall then be withdrawn from the test hole and the extent of surface contact between the Taperlok shank and the hole surface shall be measured. If the surface contact is less than 80 percent of the total contact involved, the hole is unacceptable and further test holes shall be made.

When the technique for making the tapered holes has been developed on scrap material, use data and make holes in test specimens. After nuts have been installed to the approved torque, check the gap between the plates with a 0.0015 inch feeler gage. If the feeler gage can touch the fastener shank, the parts shall be scrapped. Record protrusion height of Taperloks before torqueing up and record torque value used to assemble parts on a planning sheet or equivalent engineering document.

TABLE LXXXIX HOLE FABRICATION DETAILS

							-		
			-	А	RILL	-		REAM	-
Fastener	Hole Quality	Sheet Material	Pilot	RPM	Feed inch/rev.	Tool	Speed/Feed	Tool	Coolant
	Production	Aluminum	No	960	• 005	Dbl. Margin H.S. Steel	None		Soluble Oil
	Production	Titanium	No	240	.001	135° Cobalt	None		Soluble Oil
Hi Tigue	Precise A Aluminum	_	19/π	860	.002	std. 118° H.S. Stl.	860/.002	4 Flute (Straight) HS Steel Reamer	Soluble Oil
=	Precise	Titanium	η9/τι	240	.001	135° Cobalt	240/.001	6 Flute (Straight) Cobalt Reamer	Soluble Oil
	Production Aluminum	Aluminum		1500	.002	TID2040AR.1\	None		Dry
	Production	Titanium	5/32	375	.001	TID2030AR 🐴	None		Dry
Taper Lok	Precise 🛐	Aluminum	49/TT	1500	-002	STD 118° H.S. Stl.	1500/.002	3 Flute Spiral TID2030 R	Soluble Oil
	Precise 🖄	Titanium	17/64	375	.001	1350 Cobalt	375/.001	6 Flute Spiral TI2060R 2	Soluble Oil
_	-								

TIDXXXX is a Drill-Reamer-CSK Combination Tool designation for tapered holes by OMARK Industries, El Segundo, California.

These tools are tapered reamers and must be used in conjunction with pilot holes. **@@**

Precise hole fabrication process used only for specimens called out in Table III

TABLE XC HIGH LOAD TRANSFER JOINTS

Tapered Fastener Protrusion Before Installation (inches)

0	#1	0	#2	Q.
0	#3	0	#4	TOP

L				
Part Number	Hole #1	Hole #2	Hole #3	Hole #4
X16136-4HP-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11	.118 .120 .118 .115 .119 .117 .115 .113 .112 .114 .116	.116 .121 .116 .118 .116 .117 .115 .113 .115 .114 .116	.116 .120 .118 .115 .119 .117 .116 .115 .115 .116	.114 .121 .116 .118 .116 .118 .116 .115 .115 .112
X16136-4MP-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11	.142 .147 .148 .143 .145 .145 .147 .146 .145 .148 .147	.144 .146 .148 .143 .145 .148 .147 .146 .146 .146	.142 .147 .149 .143 .145 .149 .146 .146 .146 .148	.144 .146 .149 .143 .145 .149 .144 .146 .146 .146
X16136-1HP-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12	.136 .139 .137 .139 .131 .129 .132 .133 .133 .132 .134	.135 .138 .137 .137 .134 .128 .134 .133 .132 .133 .135 .135	.136 .139 .137 .139 .131 .129 .133 .132 .133 .134 .135	.135 .137 .137 .137 .134 .128 .133 .133 .134 .136 .134

TABLE XC (Continued)

O #1	0	#2	OP
O #3	0	#4	T'OP

			" "-	
Part Number	Hole #1	Hole #2	Hole #3	Hole #4
X16136-3L-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11	.153 .151 .155 .159 .157 .158 .159 .158 .159 .157	.153 .150 .154 .159 .157 .157 .159 .158 .159 .158	.153 .150 .154 .159 .157 .159 .159 .159 .158 .161	.153 .150 .154 .158 .158 .159 .159 .159 .158 .158 .161
X16136-2K-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12	.069 .071 .070 .072 .069 .068 .071 .073 .068 .069	.069 .071 .070 .072 .069 .072 .073 .068 .067	.070 .071 .070 .072 .069 .069 .072 .073 .068 .067	.070 .071 .070 .072 .069 .068 .072 .073 .069 .069
X16136-3"0"-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11	.138 .136 .136 .138 .139 .133 .134 .136 .137 .135	.138 .136 .136 .138 .139 .133 .134 .136 .137 .135	.138 .136 .136 .137 .138 .133 .134 .134 .136 .137 .136	.139 .136 .137 .138 .139 .134 .135 .137 .137 .137

TABLE XC (Continued)

O #1	0	#2
O #1 O #3	0	#4

<u></u>					
Part Number		Hole #1	Hole #2	Hole #3	Hole #4
X16136-4H-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12		.119 .120 .118 .120 .123 .121 .124 .124 .125 .126 .126	.121 .120 .118 .120 .123 .121 .124 .124 .125 .123 .126 .124	.121 .119 .118 .120 .123 .121 .124 .124 .125 .126 .124	.121 .119 .120 .124 .121 .124 .124 .124 .123 .126
X16136-4M-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12	-	.147 .148 .146 .143 .144 .143 .145 .143 .142 .144	.147 .148 .146 .143 .144 .143 .145 .145 .142 .144	.148 .149 .145 .144 .144 .143 .145 .144 .147	.149 .149 .145 .144 .143 .146 .143 .144 .146
16136-1M-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11		.143 .140 .139 .141 .142 .145 .143 .143 .142 .140 .141	.143 .140 .139 .140 .142 .145 .143 .142 .142 .140 .141	.14 .140 .139 .140 .142 .143 .142 .142 .140 .141	.143 .140 .140 .142 .145 .143 .142 .142 .141

TABLE XC (Continued)

O #1	O #2
O #3	O #ri

Part Number	Hole #1	Hole #2	Hole #3	Hole #4
X16136-1H-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11	.124 .123 .122 .125 .117 .124 .123 .121 .122 .111	.124 .123 .122 .125 .119 .124 .123 .121 .122 .111 .119	.124 .123 .125 .119 .124 .123 .122 .122 .112	.123 .123 .125 .118 .124 .123 .122 .122 .122 .122
X16136-1HHH-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11	.206 .205 .203 .205 .205 .206 .207 .208 .207 .209	.206 .205 .205 .205 .206 .208 .209 .207 .209	.206 .205 .203 .205 .204 .207 .208 .209 .207 .209 .210	.206 .205 .203 .204 .204 .207 .208 .209 .207 .209
X16136-1J-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12	.128 .126 .126 .125 .126 .122 .123 .125 .123 .124 .126	.128 .126 .125 .125 .124 .123 .126 .126 .126 .126	.127 .126 .125 .126 .124 .124 .126 .126 .122 .123 .124 .123	.127 .125 .126 .126 .123 .124 .124 .122 .126 .123

TABLE XC (Continued)

O#1	O ·#2	,	
O #3	O #4		

					
Part Number	Hole #1	Hole #2	Hole #3	Hole #4	
X16136-1MMM-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12	.209 .211 .209 .211 .213 .209 .210 .211 .209 .210	.209 .211 .211 .212 .213 .209 .210 .211 .209 .210	.210 .209 .211 .212 .212 .211 .210 .210 .212 .209 .210	.209 .209 .211 .212 .212 .211 .210 .211 .210 .210	
X13136-4J-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12	.130 .130 .131 .127 .130 .125 .127 .130 .127 .130 .129 .128	.130 .129 .130 .128 .130 .125 .128 .129 .127 .131 .128	.130 .129 .130 .128 .130 .125 .128 .129 .127 .131 .129	.130 .130 .131 .127 .130 .125 .127 .130 .127 .130 .129	
X16136-2N-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12	.073 .094 .096 .099 .095 .092 .089 .090 .073 .070	.073 .092 .098 .099 .095 .092 .089 .090 .072 .072	.073 .094 .098 .099 .096 .092 .086 .089 .072 .072	.074 .094 .098 .099 .096 .086 .089 .072 .073 .070	

TABLE XC (Continued)

O #1	O #2	
O #3	O #4	

· · · · · · · · · · · · · · · · · · ·				
Part Number	Hole #1	Hole #2	Hole #3	Hole #4
X16±36-1MP-1 =2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12	.138 .139 .137 .137 .133 .132 .135 .135 .133 .132	.138 .136 .136 .133 .133 .134 .136 .134 .136 .135	.138 .137 .138 .132 .132 .134 .138 .133 .133 .133	.138 .138 .137 .133 .134 .137 .134 .133 .136
X16136-1HH-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12	.027 .026 .031 .029 .029 .024 .026 .025 .027 .028 .030	.027 .025 .030 .029 .029 .024 .026 .024 .027 .027	.028 .025 .031 .029 .029 .024 .026 .024 .027 .028 .031 .029	.027 .025 .031 .029 .029 .024 .026 .024 .027 .028 .031
X16136-1MM-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12	.039 .037 .036 .035 .037 .035 .033 .036 .030 .030	.039 .037 .036 .035 .037 .035 .036 .031 .030 .033	.040 .038 .036 .035 .037 .035 .033 .036 .031 .031	.040 .038 .036 .035 .037 .035 .034 .037 .031 .031

TABLE XCI

FASTENER HOLES SIZES

HIGH LOAD TRANSFER JOINTS

Hole Diameter For Straight Shank Fasteners (inches)

O #1	O #2	BOLLOM
O #3	O #4	BOL

•				
Part Number	Hole #1	Hole #2	Hole #3	Hole #4
X16136-4E-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11	.1853 .1854 .1855 .1857 .1858 .1856 .1854 .1856 .1857	.1853 .1858 .1857 .1855 .1854 .1856 .1853 .1855 .1857 .1853 .1855	.1853 .1858 .1859 .1857 .1856 .1853 .1852 .1854 .1854 .1857	.1854 .1856 .1857 .1856 .1855 .1855 .1852 .1857 .1854 .1858
X16136-4A-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -21	.1858 .1857 .1861 .1856 .1858 .1858 .1860 .1861 .1862 .1858 .1859	.1854 .1856 859 .1857 .1860 .1857 .1859 .1861 .1862 .1860	.1856 .1858 .1858 .1858 .1858 .1859 .1860 .1862 .1862 .1859	.1860 .1857 .1860 .1859 .1860 .1856 .1860 .1861 .1861
X16136-4B-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11	.1857 .1856 .1851 .1859 .1857 .1858 .1857 .1852 .1856 .1855 .1858	.1856 .1856 .1856 .1856 .1856 .1857 .1855 .1857 .1857 .1857	.1858 .1855 .1859 .1857 .1855 .1858 .1855 .1848 .1857 .1857 .1859	.1859 .1856 .1857 .1856 .1855 .1853 .1853 .1855 .1855 .1855 .1859 .1852

TABLE XCI (Continued)

O #1	Q	#2	Moj	-1
O #3	0	#4	BOT	

Part Number	Hole #1	Hole #2	Hole #3	Hole #4
X16136-1EP-1 -2 -3 -4 -5 -6 -73 -9 -10 -11 -12	.1865 .1864 .1864 .1867 .1864 .1865 .1865 .1867 .1868	.1866 .1864 .1866 .1867 .1864 .1866 .1867 .1868 .1868	.1865 .1864 .1866 .1868 .1865 .1867 .1868 .1867 .1867	.1865 .1866 .1866 .1867 .1867 .1865 .1865 .1868 .1867 .1868
X16136-4AP-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11	.1862 .1858 .1859 .1860 .1858 .1859 .1858 .1859 .1859 .1859	.1861 .1858 .1860 .1858 .1858 .1859 .1859 .1860 .1860	.1861 .1858 .1860 .1860 .1858 .1859 .1858 .1859 .1859 .1859	.1862 .1858 .1860 .1860 .1858 .1859 .1858 .1859 .1859 .1859
X16136-1AP-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12	.1868 .1865 .1867 .1863 .1867 .1866 .1866 .1866 .1866 .1863 .1865 .1867	.1868 .1867 .1868 .1863 .1867 .1867 .1865 .1864 .1865 .1863 .1862	.1867 .1865 .1867 .1863 .1867 .1867 .1865 .1864 .1863 .1863 .1863	.1866 .1867 .1863 .1867 .1867 .1865 .1865 .1865 .1863 .1864 .1867

TABLE XCI (Continued)

O #1	O #2	POM
O#3	O #4	BOTTOM

Part Number	Hole #1	Hole #2	Hole #3	Hole#4
X16136-4EP-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11	.1863	.1863	.1865	.1863
	.1864	.1865	.1864	.1864
	.1865	.1865	.1865	.1865
	.1864	.1864	.1864	.1866
	.1864	.1864	.1864	.1865
	.1865	.1865	.1865	.1865
	.1865	.1865	.1865	.1865
	.1865	.1865	.1865	.1867
	.1867	.1867	.1867	.1867
	.1875	.1875	.1872	.1872
X16136-1A-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12	.1853	.1856	.1855	.1856
	.1857	.1859	.1858	.1858
	.1858	.1857	.1855	.1856
	.1855	.1857	.1857	.1854
	.1856	.1856	.1856	.1857
	.1855	.1855	.1857	.1855
	.1857	.1856	.1856	.1857
	.1855	.1856	.1856	.1856
	.1856	.1856	.1859	.1856
	.1858	.1857	.1859	.1858
X16136-1AA-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12	.1871 .1869 .1871 .1871 .1870 .1868 .1867 .1866 .1871 .1872 .1870	.1871 .1870 .1872 .1872 .1871 .1868 .1868 .1865 .1873 .1872 .1870	.1871 .1868 .1871 .1872 .1872 .1869 .1867 .1870 .1870 .1871	.1873 .1868 .1871 .1872 .1871 .1869 .1868 .1867 .1872 .1872 .1872

TABLE XCI (Continued)

O #1	O #2	WO
O #3	O #4	BOTTOM

Part Number	Hole #1	Hole #2	Hole #3	Hole #4
X16136-3D-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11	.1855 .1856 .1853 .1853 .1856 .1855 .1855 .1855 .1856 .1857 .1854	.1854 .1855 .1856 .1856 .1858 .1858 .1855 .1854 .1854 .1854 .1854	.1855 .1854 .1856 .1856 .1857 .1856 .1856 .1856 .1857 .1854	.1858 .1856 .1855 .1854 .1857 .1856 .1855 .1855 .1854 .1854 .1856
X16136-3G-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12	.1856 .1860 .1856 .1857 .1857 .1857 .1858 .1857 .1859 .1857	.1856 .1860 .1856 .1858 .1858 .1858 .1858 .1858 .1856 .1860	.1857 .1859 .1856 .1855 .1858 .1860 .1857 .1857 .1860 .1858 .1861	.1857 .1861 .1855 .1857 .1856 .1858 .1859 .1858 .1855 .1860 .1860
X16136-1EE-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12	.1869 .1870 .1870 .1869 .1870 .1870 .1871 .1871 .1871	.1869 .1870 .1871 .1869 .1872 .1871 .1871 .1870 .1872 .1872	.1870 .1870 .1871 .1870 .1873 .1871 .1870 .1870 .1869 .1858 .1870	.1869 .1872 .1870 .1869 .1872 .1870 .1871 .1872 .1870 .1872 .1872

TABLE XC1 (Continued)

O #1	O #2	¥
O #3	O #4	BOTTOM

Part Number	Hole #1.	Hole #2	Hole #3	Hole #4
X16136-1B-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12	.1856 .1858 .1856 .1857 .1857 .1858 .1857 .1857 .1858 .1857	.1857 .1856 .1856 .1856 .1857 .1857 .1857 .1856 .1855	.1858 .1857 .1856 .1858 .1858 .1856 .1856 .1857 .1858 .1857	.1857 .1856 .1857 .1857 .1858 .1857 .1856 .1858 .1857 .1856
X16136-1E-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12	.1856 .1858 .1856 .1860 .1862 .1859 .1861 .1857 .1857 .1858	.1856 .1858 .1857 .1860 .1862 .1860 .1856 .1858 .1858 .1858	.1858 .1857 .1857 .1859 .1861 .1859 .1862 .1858 .1857 .1857	.1858 .1857 .1858 .1861 .1860 .1864 .1858 .1857 .1858
X16136-2F-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12	.1855 .1854 .1855 .1855 .1854 .1856 .1855 .1856 .1858 .1856	.1854 .1854 .1856 .1855 .1854 .1854 .1854 .1854 .1855 .1855	.1855 .1855 .1855 .1855 .1857 .1854 .1856 .1855 .1855 .1854 .1856	.1855 .1855 .1854 .1855 .1854 .1856 .1856 .1856 .1855 .1855

. TABLE XCI (Continued)

O#1	O #2	МО
O #3	#4	BOTTOM

Part Number	Hole #1	Hole #2	Hole #3	Hole #4
X16136-1AAA-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12	.1844 .1845 .1846 .1844 .1844 .1844 .1844 .1844 .1845	.1843 .1844 .1844 .1844 .1844 .1845 .1848 .1848 .1843	.1845 .1844 .1844 .1845 .1845 .1843 .1843 .1845 .1845 .1844	.1845 .1846 .1845 .1845 .1845 .1845 .1846 .1844 .1844
X16136-2C-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12	.1856 .1857 .1855 .1856 .1857 .1855 .1855 .1855 .1855 .1856	.1856 .1855 .1857 .1855 .1856 .1854 .1856 .1856 .1856	.1856 .1856 .1855 .1855 .1855 .1854 .1854 .1854 .1856 .1856	.1856 .1856 .1855 .1855 .1856 .1855 .1855 .1857 .1857
X16136-1EEE-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12	.1846 .1847 .1849 .1846 .1846 .1846 .1847 .1847 .1847 .1847	.1848 .1848 .1848 .1845 .1847 .1848 .1846 .1847 .1847 .1846 .1849	.1850 .1845 .1846 .1849 .1844 .1847 .1845 .1847 .1849 .1848 .1847	.1849 .1847 .1849 .1849 .1845 .1847 .1850 .1847 .1848 .1849 .1847

TABLE XCII

FASTENER HOLE SIZES

MEDIUM LOAD TRANSFER JOINTS

Tapered Fastener Protrusion Before Installation (inches)

	#10) do	
Part Number	Hole #1	Part Number	Hole #1
X16137-4M-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11	.144 .144 .143 .144 .144 .144 .145 .145 .145	X16137-1M-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11	.132 .136 .138 .137 .139 .133 .137 .139 .137 .138
X16137-4J-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12	.139 .134 .144 .142 .141 .143 .139 .142 .143 .140 .139	X16137-1J-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12	.139 .141 .138 .139 .137 .140 .139 .141 .138 .140
X16137-4H-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11	.141 .137 .139 .142 .139 .144 .142 .140 .141 .143	X16137-1H-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11	.137 .138 .136 .139 .141 .136 .137 .138 .140 .141

TABLE XCIII

FASTENER HOLE SIZES

MEDIUM LOAD TRANSFER JOINTS

Hole Diameter For Straight Shank Fasteners (inches)

#1 O ...

Part Number	Hole #1	Part Number	Hole #1
X16137-4A-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12	.1853 .1854 .1854 .1856 .1853 .1855 .1854 .1853 .1857 .1854 .1856	X16137-1A-1 -2 -34 -5 -6 -7 -8 -9 -10 -11 -12	.1853 .1856 .1852 .1851 .1853 .1851 .1851 .1851 .1851 .1857 .1856
X16137-4B-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12	.1853 .1854 .1851 .1852 .1853 .1856 .1853 .1854 .1853 .1855	X16137-1B-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11	.1852 .1859 .1854 .1856 .1852 .1854 .1852 .1851 .1853 .1853
X16137-4E-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12	.1856 .1857 .1855 .1855 .1856 .1854 .1854 .1855 .1855 .1855	X16137-1E-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11	.1853 .1857 .1856 .1857 .1856 .1857 .1852 .1854 .1855 .1860 .1854

225

TABLE XCIV

FASTENER HOLE SIZES

LOW LOAD TRANSFER JOINTS

Tapered Fastener Protrusion Before Installation (inches)

		······			
Part Number	Hole #1	Hole #2	Part Number	Hole #1	Hole #2
X16138-1HHH-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11	.218 .216 .216 .218 .211 .215 .217 .219 .216 .216 .218	.217 .218 .216 .219 .212 .216 .218 .217 .217 .218 .217	X16138-1MM-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11	.215 .214 .216 .213 .212 .212 .215 .216 .212 .214 .216	.213 .214 .214 .213 .210 .214 .213 .215 .213 .215 .216 .214
X16138-3"0"-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11	.135 .138 .136 .139 .138 .138 .136 .136 .136 .137	.136 .138 .136 .138 .137 .138 .136 .137 .136	X16138-1H-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11	.107 .106 .105 .109 .107 .109 .108 .108 .107 .106 .108	.109 .107 .108 .108 .109 .107 .109 .107 .106 .107 .108
X16138-1M-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11	.148 .146 .144 .140 .139 .140 .139 .141 .143 .141	.148 .147 .144 .143 .139 .140 .140 .141 .141 .141	X16138-1HH-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12	.027 .028 .026 .024 .024 .024 .024 .027 .028 .024	.027 .026 .024 .025 .024 .025 .027 .027 .027

TABLE XCIV (Continued)

//-		잎
#l o	o #2	0
		E

Part Number	Hole #1	Hole #2	Part Number	Hole #1	Hole #2
X16138-4HP-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11	.137 .127 .129 .131 .132 .129 .134 .128 .129 .131	.137 .127 .129 .131 .133 .130 .133 .129 .127 .129 .133	X16138-2K-1 -2 -3 -4. -5 -6 -7 -8 -9 -10 -11	.067 .073 .067 .071 .073 .075 .070 .071 .069	.070 .075 .072 .070 .072 .072 .072 .073 .073
X16138-4J-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11	.130 .131 .129 .129 .125 .127 .128 .133 .129 .128	.130 .131 .129 .129 .125 .128 .128 .133 .129 .128	X16138-2N-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11	.070 .069 .074 .073 .071 .073 .076 .076 .076	.070 .069 .074 .073 .071 .076 .075 .076 .075
X16138-4M-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11	.156 .158 .160 .162 .159 .157 .158 .159 .160 .157 .159	.161 .158 .160 .162 .159 .159 .160 .157 .159 .160	X16138-4H-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11	.124 .127 .125 .127 .128 .126 .125 .126 .128 .127 .129	.124 .127 .125 .127 .128 .126 .124 .125 .127 .127 .129

TABLE XCIV (Continued)

#1 0	- 4h	TOP
#1 >	o #2	오

Part Number	Hole #1	Hole #2	Part Number	Hole #1	Hole #2
X16138-1J-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11	.146 .145 .144 .145 .146 .146 .143 .144 .147	.146 .147 .145 .146 .145 .145 .144 .145 .148 .148	X16138-3L-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11	.142 .144 .145 .144 .146 .150 .145 .147 .146 .150	.143 .150 .146 .144 .145 .150 .146 .146 .145 .148 .147
X16138-1MM-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12	.037 .037 .038 .038 .041 .039 .039 .038 .037 .038 .018	.037 .036 .038 .039 .041 .039 .039 .038 .038 .039 .029	X16138-1HP-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11	.101 .130 .133 .122 .113 .115 .117 .122 .124 .129 .133	.101 .130 .133 .122 .113 .115 .117 .122 .124 .118 .129
X16138-4MP-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12	.122 .138 .132 .129 .129 .130 .134 .127 .130 .128 .131	.122 .138 .132 .129 .129 .131 .132 .130 .133 .130	X16138-1MP-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11	.129 .127 .129 .129 .133 .129 .124 .126 .126 .124 .130	.129 .127 .129 .129 .133 .129 .124 .126 .126 .124

TABLE XCV

FASTENER HOLES SIZES

LOW LOAD TRANSFER JOINTS

Hole Diameter for Straight Shank Fasteners (inches)

r	ноте	Diam	eter	ior	Straight	Snank	rasteners	(inches)
		#1	0		O #2	BOT.		
Į								

Part Number	Hole #1	Hole #2	Part Number	Hole #1	Hole #2
X16138-1AA-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12	.1867 .1870 .1872 .1874 .1875 .1873 .1869 .1869 .1870 .1871 .1868	.1872 .1868 .1869 .1870 .1872 .1872 .1870 .1870 .1870 .1870 .1869	X16138-1E-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11	.1851 .1852 .1856 .1854 .1853 .1854 .1854 .1856 .1855 .1853	.1852 .1855 .1855 .1855 .1856 .1854 .1856 .1854 .1852 .1852 .1855
X16138-1A-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12	.1853 .1853 .1855 .1855 .1854 .1855 .1850 .1855 .1853 .1854 .1854 .1854	.1855 .1852 .1853 .1856 .1853 .1853 .1855 .1855 .1852 .1856 .1852 .1848	X16138-1EE-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11	.1873 .1871 .1873 .1869 .1870 .1875 .1869 .1874 .1871 .1873 .1870	.1872 .1872 .1872 .1871 .1871 .1872 .1869 .1872 .1870 .1873 .1870
X16138-1B-1 =2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12	.1850 .1852 .1853 .1852 .1852 .1852 .1851 .1852 .1854 .1852 .1852 .1852	.1852 .1851 .1852 .1854 .1853 .1851 .1852 .1855 .1857 .1850 .1851	X16138-2F-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12	.1852 .1853 .1852 .1853 .1852 .1853 .1850 .1851 .1849 .1851	.1852 .1851 .1852 .1852 .1852 .1849 .1850 .1851 .1850 .1851

TABLE XCV (Continued)

					
Part Number	Hole #1	Hole #2	Part Number	Hole #1	Hole #2
X16138-4A-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11	.1855 .1853 .1856 .1856 .1856 .1856 .1856 .1858 .1858	.1854 .1853 .1855 .1856 .1859 .1857 .1854 .1857 .1859 .1855	X16138-4EP-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11	.1863 .1859 .1861 .1862 .1861 .1862 .1861 .1860 .1860 .1860	.1863 .1859 .1861 .1861 .1862 .1861 .1862 .1861 .1860 .1860
X16138-4E-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12	.1854 .1856 .1855 .1858 .1858 .1854 .1855 .1859 .1854 .1854	.1854 .1855 .1856 .1855 .1857 .1858 .1855 .1855 .1855 .1859 .1854 .1855	X16138-4AP-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11	.1871 .1869 .1870 .1871 .1870 .1871 .1872 .1871 .1869 .1870 .1869	.1871 .1869 .1871 .1870 .1870 .1871 .1872 .1871 .1869 .1871 .1869
X16138-1EP-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12	.1851 .1853 .1852 .1855 .1851 .1853 .1850 .1855 .1851 .1851 .1854 .1854	.1852 .1851 .1854 .1853 .1850 .1853 .1850 .1851 .1853 .1853	X16138-1AP-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12	.1852 .1851 .1852 .1852 .1853 .1852 .1850 .1851 .1853 .1851	.1853 .1852 .1853 .1852 .1852 .1852 .1850 .1851 .1852 .1851

TABLE XCV (Continued)

		^{#1} O	O#2 B		
Part Number	Hole #1	Hole #2	Part Number	Hole #1	Hole #2
X16138-2C-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12	.1853 .1851 .1652 .1850 .1853 .1853 .1850 .1851 .1852 .1850 .1850 .1850	.1850 .1848 .1850 .1851 .1850 .1851 .1851 .1849 .1851	X16138-3D-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11	.1853 .1855 .1855 .1853 .1854 .1852 .1853 .1852 .1852 .1850 .1854 .1856	.1851 .1856 .1852 .1852 .1852 .1855 .1851 .1851 .1851
X16138-3G-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11	.1853 .1852 .1853 .1851 .1852 .1857 .1850 .1852 .1854 .1851 .1851	.1857 .1853 .1851 .1851 .1852 .1852 .1852 .1850 .1852	X16138-1AAA-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12	.1844 .1844 .1845 .1847 .1843 .1846 .1848 .1846 .1844 .1844	.1843 .1843 .1845 .1845 .1845 .1847 .1845 .1844 .1844 .1843
X16138-4B-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12	.1854 .1854 .1852 .1856 .1857 .1853 .1853 .1854 .1857 .1858 .1854	.1853 .1855 .1852 .1856 .1854 .1853 .1854 .1856 .1856	X16138~1EEE-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12	.1845 .1844 .1845 .1846 .1846 .1843 .1843 .1844 .1843 .1843 .1845	.1845 .1844 .1844 .1845 .1844 .1843 .1845 .1845 .1843 .1845

TABLE XCVI RANDOM SAMPLING OF STRUCTURAL FASTENERS (FINISHED DIAMETERS IN INCHES)

		ніл з	15-6-4 N	ickel Ca	d Std.		
.1894	.1892	.1893	.1893	.1892	.1892	.1890	.1892
	ніл	411-6-4	Plain I	i with C	eytl Alc	ohol	
.1891	.1891	.1893	.1890	.1891	.1891	,1890	.1890
	HLI	411-6-2	Plain T	i with C	eytl Alc	ohol	
.1891	.1892	.1890	.1891	.1895	.1890	.1890	.1889
	шл	411-6-6	Plain T	i with C	Ceytl Alc	ohol	
.1891	.1890	.1890	.1891	.1890	.1892	.1890	.1890
	HLT	15-6-4 I	ubeco 21	.23 with	Ceytl Al	cohol	
.1891	.1890	.1892	.1890	.1889	.1890	.1888	.1890
	HĻT	315-6-4	Lubeco 2	2123 with	n Ceytl A	lcohol	
.1893	.1893	.1890	.1892	.1889	.1890	.1890	.1890
	н	л 411-6-	4 Plain	Ti with	Lubeco 2	2123	
.1896	.1895	.1893	.1897	.1896	.1895	.1897	.1898
		HIA 3	315-6 - 2 1	Vickel C	ad Std		
.1888	.1888	.1890	.1887	.1887	.1888	.1885	.1886
HLT 15-6-4 Nickel Cad Std							
.1888	.1889	.1890	.1889	.1890	.1890	.1888	.1889

APPENDIX IV

HI SHEAR CORPORATION REPORT 4-33002 EFFECT OF TEST FREQUENCY ON AMOUNT OF LOAD TRANSFER IN A REVERSE DOG BONE FATIGUE SPECIMEN

hi-shear corporation

ON AMOUNT OF LOAD TRANSFER IN A REVERSE DOG BONE FATIGUE SPECIMEN

Report No. 4-33002

Issue Date: February 15, 1973

J. A. Tanyi, Project Engineer

J. Bill

F. L. Gill, Chief Development Engineer

TORRANCE CALIFORNIA 90509 AREA CODE 213 . 326-8110 . 775-3181

4-33002 Report No.: Issue Date: 2/15/73

ABSTRACT

This study investigates load transfer in a strain gaged reverse dogbone specimen versus various fatigue test frequencies.

KEY WORDS

Fatigue Test Frequency Low load transfer

4 766 12-70

Page

•f

234

Report No.: 4-33002 Issue Date: 2/15/73

TABLE OF CONTENTS

Paragraph	Description	Page
1.0	Introduction	1
2.0	Conclusions	1
3.0	Test Specimen	1
4.0	Strain Gages	1
5.0	Test Machine	2
6.0	Instrumentation	2
7.0	Test Procedure	2
8.0	Test Results	3

Report No.: 4
Issue Date: 2

4-33002 2/15/73

1.0 INTRODUCTION

Questions have come up in the past regarding the effect on load transfer in reverse dogbone type fatigue specimens due to variations in test machine operating frequency. Lockheed-California Company supplied a strain gaged low load transfer reverse dog bone specimen to investigate this phenomena. This specimen was cycled at five frequencies between 5 HZ and 76 HZ. Strain gage readings were recorded at each frequency.

2.0 CONCLUSIONS

The oscillograph recordings of all gages indicate no apparent change in strain magnitude with test machine frequency changes. The strain gage recordings taken on this specimen would indicate no effect on load transfer in the range of test frequencies explored.

3.0 TEST SPECIMEN

The aluminum fatigue test specimen is a typical reverse dog bone type low load transfer specimen.

The specimen reduced section dimensions are 1.128 wide x .378 thick. Two sheets are each .189 thick. Two 3/16" diameter HL51 pins were installed with Hi-Lok collars along the C/L of the load axis.

4.0 STRAIN GAGES

Eight strain gages-were installed on the specimen.

Four gages were bonded to each sheet in a symetrical manner. Two gages were placed 1/2 inch above and below the Hi-Loks on each sheet.

All the strain gages were wired in the three wire convention technique for individual readout.

Report No.: 4-33002 Issue Date: 2/15/73

5.0 TEST MACHINE

The fatigue test machine used is an MTS electrohydraulic resonant fatigue test machine. Tests were run on 25 KIP load range. Test frequencies were 5, 10, 48, 62 and 76 HZ. The two low frequencies were achieved operating the test machine in the standard electrohydraulic closed loop test mode.

The three high speed runs were made in the resonant mode. In this mode the operating frequency is dictated by the specimen spring rate and the weight of the test machine moving mass.

6.6 INSTRUMENTATION

- 6.1 W. T. Bean, Model 206B Digital Strain Indicator
- 5.2 W. T. Bean, Model 306B Switch and Balance Unit
- 6.3 Systems Research Incorporated, Model 2531 Bridge Signal Conditioner
- 6.4 Ectron, Model A614, Differential DC Amplifier
- 6.5 Honeywell, Model 2106, Visicorder Light Beam Oscillograph

7.0 TEST PROCEDURE

7.1 Static Loading

Before dynamically running the specimen, we took static strain reading from each gage. The Bean strain indicator and switch and balance units were used for read out. The specimen was loaded to 6340 pounds (approximately 15,000 psi gross area stress). This data is tabulated in the Test Result section. (Section 8.0)

7.2 Dynamic Loading

For dynamic operation, the strain gages were mated with the instruments listed in 6.3, 6.4, and 6.5. Only two channels are available on the oscillograph for recording. Therefore, a pair of gages were mated with the instrumentation and readings taken at each frequency. This was repeated for each pair of strain gages. The specimen was cycled between 6340 pounds and 634 pounds for all runs.

1 :14 . 2

Report No.: 4-33002 Issue Date: 2/15/73

Bridge supply voltage and amplifier gain was fixed in all-cases. The amount of oscillograph deflection was arbitrarily selected. The distance at 6340 pounds will vary between different gages, just as the static strain readings indicated.

8.0 TEST RESULTS

8.1 Static Load

Strain Gage	Position	Strain (X10-6)
1	Collar side bottom left	1424
2	Collar side bottom right	1401
3	Head side bottom left	1413
4	Head-side bottom right	1426
5	Collar side bottom left	1546
6	Collar side bottom right	1527
7	Head-side top left	1271
8	Head side top right	1299

Notes

- 1. Applied load 6340 pounds.
- 2. Gage factor was assumed to be 2.00
 Shunt calibration resistor 29,800 Ohms
 Equivalent micro strain = 2000

8.2 Dynamic Loading

The oscillograph strip charts were identified with strain gage number and test conditions. These charts are being submitted to Lockheed-California Company.

APPENDIX V

VARIABLES BELIEVED TO INFLUENCE THE FATIGUE LIFE OF JOINTS

Table XCVII is a compilation of joint variables known to or assumed to effect the fatigue characteristics of mechanically fastened joints. This list, dated 6 August 1973, was obtained from Major Thomas K. Moore, ASD/ENFSS, Wright-Patterson AFB, Ohio. An earlier listing of variables believed to influence fatigue life of mechanically fastened joints which includes many of the variables listed in Table XCVII was given by R. B. Urzi in Lockheed-California Company Report LR 25183 dated 20 March 1972 which was the proposal leading to contract F33615-72-C-1838 being reported in this document. this document.

TABLE XCVII. VARIABLES BELIEVED TO INFLUENCE THE FATIGUE LIFE OF MECHANICALLY FASTENED SHEAR JOINTS

NO.	VARIABLE	RANGE
1.	Amount of Load Transfer	0-100%
2.	Stress Level in Material Fastened	0-100% Ultimate Strength
3.	Stress Ratio "R"	-1.0 to 1.0
4.	Physical Environment	Vacuum to Severely Corrosive
3. 4. 5.	Countersink Depth/Sheet Thick- ness Ratio	O to More Than 1.0
G.	Head Sheet Material	Al, Ti, or Steel Alloys
7. 8.	Nut/Collar Sheet Material	Al, Ti, or Steel Alloys
8.	Stack-up Thickness/Shank	0.1 to 10.0
	Diameter Ratio	
9.	Type of Loading	Constant Amplitude or Spectrum
10.	Sheet Corrosion Protection	Bare, Clad, Primed, Anodized, Alodined
11.	Degree of Cold Work of Sheet Material	None to Severe
12.	Sealing	None to Heavy
13.	Fretting Protection	None, Shims, Lubricants, Adhesives
	Shim Materials	Soft Al, Hard Al, CRES, Brass, Bronze
	Paint/Primer Thickness	0 to 0.010"
16.	Gap Batween Sheets	0 to 0.050"

TABLE XCVII. VARLABLES BELIEVED TO INFLUENCE THE FATIGUE LIFE OF MECHANICALLY FASTENED SHEAR JOINTS (Continued)

NO.	VARIABLE	RA NGE
17.	Corrosion Protection at Installation	None, Dry, Wet Primer
18.	Test Temperature	Any Desired
19.	Temperature Cycling	Any Desired
20.	Edge Distance/Diameter Ratio	0 to 4.0+
21.	Fastener Spacing and Pattern	Any Desired
22.	Hole Smoothness	25 to 300 Microinches
23.	Hole-countersink Concentricity	0 to 1/4 Diameter Error
24.	Hole Perpendicularity	0° to 2.0° Error
25.	Countersink Perpendicularity	0° to 2.0° Error
26.	Hole Circularity	Circular, Oval, Lobed
27.	Countersink Circularity	Circular, Oval, Lobed
28.	Hole Taper	0° to 2.0° Taper
29.	Degree of Clamp-up (Fastener Preload)	0 to 100% Fastener Ultimate Strength
30.	Interference Level	O to 5% of Fastener Diameter
31.	Degree of Hole Cold Work	O to 8% of Hole Diameter
32.	Amount of Fastener Shank Contact	0 to 100%
33•	Hole Cleam-up	None or Destack and Deburr
34.	Radius Under the Head or Countersink	O to 1.0 Fastener Diameter
35.	Fastener Finish Smoothness	25 to 300 Microinches
36.	Fastener Driving Method	Pulled, Squeezed, Driven, Upset
37₌•	Fastener Corrosion Protection	None, Plated, Sealed, Primed, Anodized
38.	Type of Fastener Material	Steel, Ti, Al, Monel, MP35N, etc.
39•	Nut/Collar Material	Steel, Ti, Al, Monel, MP35N, etc.
40.	Nut/Collar Configuration	Coining or Non-coining
41.	Type of Nut	Threaded or Upset
42.	Type of Shank	Straight, Tapered, or Lobed
43.	Countersink Angle	60°, 70°, 82°, 100°
44.	Strength of Fastener Material	50 to 300 KSI
45.	Type of Head	Countersunk or Protruding
46.	Type of Recess	Hi-Torque, Torque-Set, Triwing, etc.
47:	Hole Straightness	O to O.1 D Error
48.	Number of Times the Fastener is Removed	Any Number
49.	Fastener Head to Shank Perpendicularity	O to 1.0° Error
50.	Metalurgical Microstructure and Grainsize	Any
51.	Precrack or Flaw Size and Orientation	Any

APPENDIX VI

PERTINENT EXCERPTS FROM THE PROPOSED SHEAR JOINT FATIGUE TEST SPECIFICATION FOR MIL-STD-1312 "FASTENER TEST METHODS"

4. SPECIMEN CONFIGURATION

One of the three specimens shown in Figure 92, Figure 93, or Figure 94 may be used depending on the load characteristic to be investigated. The specimen shown in Figure 92 shall be used for high-load transfer testing; the Figure 93 specimen shall be used for low-load transfer testing; and the Figure 94 specimen shall be used for no-load transfer testing.

4.1 Method for Loading

The configuration of the joint specimen outside the lap area is optional. Certain parent sheet materials may be relatively low strength or thin enough to permit satisfactory gripping in standard friction type holding fixtures. However, for higher strength parent sheet materials and for cases where grip slipping may be encountered, the use of pin loading holes is recommended. When pin loading holes are used, they shall be located so that the load will pass through the centerline of the fastener hole pattern within 0.005 inch.

4.2 PREPARATION

Unless otherwise specified, specimens shall be fabricated from either 2024-T3 (or 2024-T351) or 6Al-4V titanium. Tooling holes must be confined to the grip area.

4.2.1 Sheet Thickness

Unless otherwise specified, the sheet thickness (t) shall be

0.75D where D is the value shown on Figure 92, Figure 93, and Figure 94.

4.2.2 Sheet Surface Preparation

Unless otherwise specified, the faying sheet surface shall be prepared by degreasing for the full-load transfer joint and the no-load transfer joint, and prepared with zinc chromate in accordance with TT-P-1757 for the low-load specimen.

4.3 STRIP MATERIAL MECHANICAL PROPERTIES

Three samples of each sheet or plate material employed in the actual joint strength evaluation shall be tested for tensile properties. Test procedures and method for determination of strip mechanical properties shall be in accordance with ASTM E8. The values for ultimate, yield and elongation shall be determined. The grain direction shall be the same as the lap joint specimen.

4.4 FASTENER HOLES

Fastener holes shall be line drilled perpendicular to the sheet surface within 1/2 degree. Holes shall be deburred on both sides of each sheet not to exceed .005 radius or chamfer. Surface finish of the hole shall be RHR 63 or better.

4.4.1 Countersink Fastener Holes

Holes for countersink fastener shall be prepared with an integral drill - countersink tool in order to maintain concentricity of the countersink with the hole. The depth of countersink shall be maintained such that the installed fastener is flush within +.002" - .005".

4.4.2 Protruding Fastener Holes

The holes for protruding fasteners shall be relieved on the head side the minimum amount necessary to clear the fastener head-to-shank fillet radius. There shall be no gap between the head and the sheet.

4.4.3 Hole Straightness

Holes shall be straight within .0016 inch per inch diameter.

4.4.4 Fastener Orientation

The manufactured heads of the fastener shall be on the same side of the sheet material.

4.5 ASSEMBLY

4.5.1 Fastener Installation

If the fastener installation requires a torquing procedure, the applied torque shall be the minimum specified value for the particular fastener. If the fastener installation requires controlled material deformation, the deformation shall be the minimum specified value for the particular fastener.

If these techniques are used, they shall be reported.

Unless otherwise specified, <u>lubrication</u> and corrosion protection media, except as part of the product specification, shall not be used.

4.5.2 Sheet Gap

Particular care shall be taken to assure no gap exists between the sheets subsequent to assembly. The gap shall

be considered excessive if a .002" thick gage can be slid between the sheets and contact any fastener.

5. PROCEDURE

5.1 Installation

The specimen shall be installed in the holding fixture and clamped in position. The load shall be transmitted along a line passing through the centerline of the faying surface of the specimen within .005 inch.

5.2.1 Joint Static Strength

5.2 Test Conditions

In order to establish the joint static ultimate strength a specimen similar to that used for the fatigue test shall be prepared and tested. The ultimate strength shall be the value indicated at the first peak of the stress-strain curve.

5.2.2 Load Level

Four load levels shall be used to establish an S-N curve. One value shall be chosen which does not fail at less than 3,000,000 cycles; the other three shall be 67, 50, and 30 percent of the joint static strength. A minimum of three specimens shall be tested at each load level.

5.2.3 Fatigue Test Type

The load applied shall be sinusoidal constant amplitude.

5.2.4 Load Ratio

Unless otherwise specified, the low load shall be 10 percent of the maximum load.

5.2.5 Test Speed

The maximum test speed shall be selected so as not to cause the specimen temperature to exceed 150°F.

5.2.6 Specimen Restraints

In order to preserve the initial alignment, a restraint of the type shown in Figure 8 or Figure 9 shall be used with the high load transfer specimen shown in Figure 92. Care shall be taken in the use of either device to assure that the restraint does not transfer a portion of the load.

5.2.7 Failure

The specimen will be considered to have failed when the test machine will no longer maintain the load due to the failure of the specimen.

6. TEST REPORT

- 6.1 The test report shall contain the following data:
 - (a) Description of the fastener and part number (and components if more than one piece).
 - (b) Fastener material by alloy and condition.
 - (c) Fastener lot identification.
 - (d) Sheet material by alloy and condition.
 - (e) Sheet thickness (actual).
 - (f) Hole size individual measurements of each hole.
 - (g) Radius of sheet to hole for protruding head fasteners.
 - (h) Specimen configuration.

- (i) Primer thickness.
- (j) Static data of sheet and joint determined by Paragraph 4.3 and Paragraph 5.2.1.2.
- (k) Gross area stress level.
- (1) Actual interference level and the method used in determination.
- (m) Type of test restraint.
- (n) Description of actual test installation such as special techniques, installation torque, special tools and conformance to any applicable specification.
- (o) Actual value of cycles to failure.
- (p) Description and location of failure mode.
- (q) Machine tes speed.
- (r) Machine manufacturer and type.
- (s) Machine Calibration data.

6.2 S-N Presentation

The data shall be plotted on semi-log paper with the load as the ordinate, expressed as percent of ultimate joint static strength on a linear scale, and cycles to failure on a logarithmic scale as the abscissa.

NOM DIAM	D
3/32	.093
1/8	.125
5/32	.156-
3/16	.188
7/32	.219
1/4	.250
5/16	.313
3/8	.375
7/16	.438=
1/2	. 50

NOTE: 1. ALL EDGES MACHINE 63 OR BEITER
2. NO SCRATCHES, GOUGES, OR SCRIBE MARKS
IN 240 AREA
3: TCLERANCE ON 2D-AND 4D DIMENSIONS
SHALL BE 1,005
4. CHAMFER OR RADIUS HOLES ,005 MAX.

Figure 92. Lap Joint Specimen - Single Shear 100% Load Transfer

FASTENER	υ	H 4.005	¥ĝ	υ <mark>ξ</mark>	-	٠	~	8.4.	7. 20.
?	2.50	.750	3, 190	2.370	1.570	8,	0,0	800	.250
26/32	2.50	85.	3,800	2,705	2.83	82	2.5	.625	Ę.
3/6	2.50	1.125	4.237	3.037	2.325	1,125	9.0	750	.375
≥	3.8	3.500	5,345	4/145	2.700	1.530	0.4	1.000	s.
\$:6	3.50	1,875	5,990	4,790	3.075	1.875	5.0	1.250	.625
\$	3.55	2.250	6/116	4.916	3,450	2.250	6.0	 88.	2,750
2	5.00	3.000	8.442	4.317	5.125	3.000	0.0	2.000	1.00

Figure 93. Specimen Detail, Low Load Transfer Test Specimen Joint

LOADING

FASTENCE	O.	Н 4.305	¥	O (E)		· <		30, 17	\$00° ¥ X
5	2.56	.750	3,190	2.370	1.570	8	2.0	8	ă
\$/32	2.50	£.	3.800	2,705	2.033	864.	2.5	.625	E.
3/16	2.50	1.125	4.237	3.037	2.325	1,125	3.0	255.	.375
7.4	3.50	1,500	5,345	4,145	2,700	- 38	000	1.000	200
5/16	3.50	1.875	5.990	4.790	3.075	1.075	5.0	1.250	.625
2	3.8	2,250	6,116	4.916	3.450	2.230	6.0	.500	82.
2	5.00	3,000	8.442	6.317	5,125	3.000	3,6	2.000	200.

Figure 94. Specimen Detail, No Load Transfer Test Specimen Joint