Linear-Time Suffix-Sorting Proseminar Datenkompression

WS 16/17 - Clemens Damke

Problemstellung

Problemstellung

Lösungsansätze

Problemstellung

Lösungsansätze

GSACA

Problemstellung

Lösungsansätze

GSACA

Performance

Problemstellung

Lösungsansätze

GSACA

Performance

Rückblick

Problemstellung

Konstruktion eines Suffix Arrays mit

einem rekursionsfreien Linearzeit-Algorithmus.

Konstruktion eines Suffix Arrays mit

einem rekursionsfreien Linearzeit-Algorithmus.

P A R A L L E L

Substringsuche

Ist *alle* in *parallel* enthalten?

Substringsuche

Ist *alle* in *parallel* enthalten?

Ja, an Stelle 4.

Verwendet in Implementationen

des LZ77-Kompressionsalgorithmus

Konstruktion eines Suffix Arrays mit

einem rekursionsfreien Linearzeit-Algorithmus.

Konstruktion eines Suffix Arrays mit

einem rekursionsfreien Linearzeit-Algorithmus)

Lösungsansätze

Naiver Ansatz

Verwendung eines allgemeinen Sortierverfahrens (z. B. Quicksort)

$$O(n \log n) \cdot O(n) = O(n^2 \log n)$$

Naiver Ansatz

Verwendung eines allgemeinen Sortierverfahrens (z. B. Quicksort)

$$O(n \log n) \cdot O(n) = O(n^2 \log n) \neq O(n)$$

Linearzeit Ansätze

Linearzeit Ansätze

	Skew	SA-IS	?		
Art	rekursiv	rekursiv	iterativ		
Zeit	O(n)	O(n)	O(n)		
Speicher	$O(\log n) + \max 24n$	$O(\log n) + \max 2n$	<i>O</i> (1) + ?		

?

iterativ

O(n)

O(1) +?

GSACA

iterativ

O(n)

O(1) +?

GSACA

Greedy Suffix Array Construction Algorithm

Definitionen

Р	Α	R	Α	L	L	Е	L	\$
1	2	3	4	5	6	7	8	9

Definitionen

S := Eingabe, eine mit \$ terminierte Zeichenkette der Länge n

Definitionen

S[4]

S := Eingabe, eine mit \$ terminierte Zeichenkette der Länge n

S[i] := i-tes Zeichen von S

S =	Р	Α	R	Α	L	L	Е	L	\$	
	1	2	3	4	5	6	7	8 1	7 = 9	
			S[48)							

S := Eingabe, eine mit \$ terminierte Zeichenkette der Länge n

S[i] := i-tes Zeichen von S

$$S[i ... j + 1) := S[i ... j] := S[i] ... S[j]$$

S₄

S =	Р	Α	R	Α	L	L	Е	L	\$
	1	2	3	4	5	6	7	8 n	= 9

S := Eingabe, eine mit \$ terminierte Zeichenkette der Länge n

$$S[i ... j + 1) := S[i ... j] := S[i] ... S[j]$$

$$S_i := S[i ... n]$$

S =	Р	Α	R	Α	L	L	Е	L	\$
	1	2	3	4	5	6	7	8 n	= 9

S := Eingabe, eine mit \$ terminierte Zeichenkette der Länge n

S[i] := i-tes Zeichen von S

$$S[i ... j + 1) := S[i ... j] := S[i] ... S[j]$$

$$S_i := S[i ... n]$$

$$\hat{i} := min \{ j \in [i .. n]: S_j <_{lex} S_i \}$$

 $\hat{\mathbf{i}} := min \{ \mathbf{j} \in [\mathbf{i} .. \mathbf{n}] : \mathbf{S}_{\mathbf{j}} <_{lex} \mathbf{S}_{\mathbf{i}} \}$

 $\hat{\mathbf{i}} := min \{ \mathbf{j} \in [\mathbf{i} .. \mathbf{n}] : \mathbf{S}_{\mathbf{j}} <_{lex} \mathbf{S}_{\mathbf{i}} \}$

 $\hat{i} := min \{ j \in [i .. n] : S_j <_{lex} S_i \}$

 $\hat{i} := min \{ j \in [i .. n] : S_j <_{lex} S_i \}$

 $\hat{\mathbf{i}} := min \{ \mathbf{j} \in [\mathbf{i} .. \mathbf{n}] : \mathbf{S}_{\mathbf{j}} <_{lex} \mathbf{S}_{\mathbf{i}} \}$

 $\hat{\mathbf{i}} := min \{ \mathbf{j} \in [\mathbf{i} .. \mathbf{n}] : \mathbf{S}_{\mathbf{j}} <_{lex} \mathbf{S}_{\mathbf{i}} \}$

Problemstellung

Lösungsansätze

GSACA

Performance

Rückblick

Gruppenkontext von $S_i := S[i .. \hat{i})$

Gruppenkontext von $S_i := S[i .. \hat{i})$

Gruppe von $S_i := \{ S_j : Gr.kontext S_j = Gr.kontext S_i \}$

Eingabe

1 2 3 4 5 6 7 8 9

P A R A L L E L \$

Problemstellung Lösungsansätze GSACA Performance Rückblick

Problemstellung Lösungsansätze GSACA Performance Rückblick

Problemstellung Lösungsansätze

GSACA

Problemstellung Lösungsansätze

Phase 2 Suffixe innerhalb der Gruppen sortieren

Problemstellung Lösungsansätze GSACA Performance Rückblick

Sortierte Folge von Gruppen berechnen

Problemstellung Lösungsansätze GSACA Performance Rückblick

Sortierte Folge von Gruppen berechnen

Problemstellung

Lösungsansätze

GSACA

Performance

Rückblick

Problemstellung

Lösungsansätze

GSACA

Performance

Rückblick

 $prev(i) := max \{ j \in [1 .. i]: Gr.kontext S_j <_{lex} Gr.kontext S_i \}$

Problemstellung Lösungsansätze

GSACA

Performance

 $prev(i) := max \{ j \in [1 .. i]: Gr.kontext S_j <_{lex} Gr.kontext S_i \}$

Problemstellung Lösungsansätze

GSACA

Performance

 $prev(i) := max \{ j \in [1 .. i]: Gr.kontext S_j <_{lex} Gr.kontext S_i \}$

Problemstellung Li

Lösungsansätze

GSACA

Performance

 $prev(i) := max \{ j \in [1 .. i]: Gr.kontext S_j <_{lex} Gr.kontext S_i \}$

 $prev(i) := max \{ j \in [1 .. i]: Gr.kontext S_j <_{lex} Gr.kontext S_i \}$

Suffixe innerhalb der Gruppen sortieren

Problemstellung

Lösungsansätze

GSACA

Performance

Problemstellung

Lösungsansätze

GSACA

Performance

Problemstellung

Lösungsansätze

GSACA

Performance

Problemstellung

Lösungsansätze

GSACA

Performance

Problemstellung

Lösungsansätze

GSACA

Performance

Problemstellung

Lösungsansätze

GSACA

Performance

Problemstellung

Lösungsansätze

GSACA

Performance

Problemstellung

Lösungsansätze

GSACA

Performance

```
$ ALLEL$ ARALLEL$ EL$ L$ LEL$ LLEL$ PARALLEL$ RALLEL$

SA = 9 4 2 7 8 6 5 1 3
```

Linearzeit Ansätze

	Skew	SA-IS	GSACA
Art	rekursiv	rekursiv	iterativ
Zeit	O(n)	O(n)	O(n)
Speicher	$O(\log n) + \max 24n$	$O(\log n) + \max 2n$	<i>O</i> (1) + ?

Linearzeit Ansätze

	Skew	SA-IS	GSACA
Art	rekursiv	rekursiv	iterativ
Zeit	O(n)	O(n)	O(n)
Speicher	$O(\log n) + \max 24n$	$O(\log n) + \max 2n$	O(1) + 12n

GSACA im Vergleich

Testdaten: <u>Silesia Corpus</u>

GSACA im Vergleich

Testdaten: <u>Silesia Corpus</u>

GSACA im Vergleich

Testdaten: <u>Silesia Corpus</u>

Einsatzgebiete

Substringsuche

LZ77 Kompression

GSACA

Noch nicht praxistauglich.

Noch nicht praxistauglich.

Noch nicht praxistauglich.

Neuartiges Konzept mit vielen spannenden noch zu lösenden Problemen...

Danke!