Paired sample t-test

A Paired/dependent sample t-test compares means from the same group at different times.

Here we will use a sample set of 10 performance scores of kids in the morning and evening on a certain game.

Load data

.import excel "student_t_test\data\t-test2.xls", sheet("Paired-sample t-test") firstrow

//Browse the imported dataset

.Browse

Let's summarize data

summarize Morni	ng Evening				
Variable	Obs	Mean	Std. Dev.	Min	Max
Morning	10	10.63	2.451326	6.6	14.3
Evening	10	11.04	2.518465	6.4	14.2

As seen above, the mean for morning performance is 10.63 and that for the evening is 11.04.

Question

Is there a statistically significant difference between the morning and evening performance?

Hypothesis

H0: There's no difference between morning and evening performance

Ha: There's a statistically significant difference between morning and evening performance

The level of significance

alpha = 0.05

Assumptions

Determine if data meets requirements to perform an dependent samples t-test.

Assumption #1: Your dependent variables should be measured on a continuous scale.

Assumption #2: You should have a dependence on observations.

Assumption #3: There should be no significant outliers.

Assumption #4: Your dependent variables should be approximately normally distributed.

Assumption #5: There needs to be homogeneity of variances.

CHECK FOR OUTLIERS

Check outliers by plotting a boxplot

As seen from the above boxplot we don't have outliers from our sample.

NORMALITY TEST

Normality Law test using Skewness Kurtosis test for normality

H0: The data follows a normal distribution.

Ha: The data does not follow a normal distribution.

sktest Morning	Evening				
	Skewne	ss/Kurtosis te	sts for Norma		
					oint —
Variable	Obs	Pr(Skewness)	Pr(Kurtosis)	adj chi2(2)	Prob>chi2
Morning	10	0.9784	0.6027	0.27	0.8730
Evening	10	0.5688	0.8643	0.34	0.8418

Normality Law test using Shapiro-Wilk W test for normal data

H0: The data follows a normal distribution.

Ha: The data does not follow a normal distribution.

	Shapiro-	Wilk W test	for normal	data	
Variable	Obs	W	V	Z	Prob>z
Morning	10	0.96240	0.579	-0.888	0.81286
Evening	10	0.94815	0.799	-0.376	0.64665

Normality Law test using Shapiro-Francia W' test for normal data

H0: The data follows a normal distribution.

Ha: The data does not follow a normal distribution.

francia Mornin	ng Evening				
	Shapiro-				
Variable	Obs	W	V,	Z	Prob>z
Morning	10	0.97022	0.498	-1.211	0.88698
Evening	10	0.95685	0.722	-0.566	0.71421

As you see in all the above 3 tests (off course you don't need all the 3), they all are NOT significant and so we have no evidence to reject the H0, that states that the data follow a normal distribution. We can plot a histogram to visualize;

Paired Sample T-test

With all data requirements for Paired Sample T-test satisfied, let us not run the test.

. ttest Eve	ning == Mor	ning				
Paired t te	st					
/ariable	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Evening	10	11.04	.7964086	2.518465	9.238399	12.8416
Morning	10	10.63	.7751774	2.451326	8.876427	12.38357
diff	10	.41	.1224291	.3871549	.1330461	.6869539
mean (d	iff) = mear	(Evening -	Morning)		t:	3.3489
Ho: mean(d	iff) = 0			degrees	of freedom	= 9
Ha: mean(d	iff) < 0	На	: mean(diff)	!= 0	Ha: mean	(diff) > 0
Pr(T < t)	= 0.9957	Pr(T > t) =	0.0085	Pr(T > t	= 0.0043

A paired sample t-test was used to analyze the performance of kids in the morning and evening to test if there was a significant difference. The Performance in the evening was higher (11.04 \pm 2.52 units) compared to the morning performance (10.63 \pm 2.45 units). The test was significant at alpha=0.05 and so there was enough evidence to reject the null hypothesis and conclude that there was a statistically significant improvement in performance (t(9)=-3.35, p= 0.0085) of 0.41(95% CI, 0.1330461 to 0.6869539) units.