MPC3 Sys Arch and 1V Application Process

YAO Xingkai

10/17/2022

MPC3 Sys Arch and 1V Application Process

Topics

- > MPC3 System Architecture
- > MPC3 Software Architecture
- > 1V Application Process
- > Q&A

MPC3 Sys Introduction

MPC3 Main Pillars for Success

New and cutting edge algorithms

Deep Learning based semantic segmentation

Dense Optical Flow IP for generic object detection

Multi-path approach

Combination of AI methods & classic computer vision techniques.

High performance Bosch SoC

- Integrated RB IP
- latest 16nm technology, max performance with highest power efficiency
- SoC defines state of the art safety/security
- Positive market feedback: Chip already sold to other Tier1 (license RB-IP in open market mode)

MPC3 Sys Arch and 1V Application Process

Topics

- > MPC3 System Architecture
- > MPC3 Software Architecture
- > vACC based on ACF
- > Q&A

Signal Chain:

Complexity:

- 2,1 MP, 45Hz => 185 MB/s input-stream
- ~25 processing cores on SoC, full parallel and asynchronous calculation
- 87 independent tasks on μC
- 4,3 Mio lines of code
- 1000 SW-builds per day
- >130 SW-Module

Radical and "full" change: SoC, Imager, Optics, SW-architecture, algorithm, tooling,

Algorithm Elements and Distribution

Chassis Systems Control | XC-DX/EDA3-CN | 04/20/2022

© Bosch Automotive Products (Suzhou) Co. Ltd 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Major Processing Unit

- ► ARM Cortex R7 DualCore Lockstep running on 800 MHz
- Software will be designed for
 - Most parts of Basic Software
 - ► Common UBK Basic Software (CUBAS)
 - CUBAS adapter to middleware
 - Master of "standard peripherals"
 - Safety Controller (Safe Island)
 - ► Hardware lockstep implementation
 - ► Only basic algorithmic

- No execute from Flash (because of EEPROM Emulation)
- No L2 Cache, but 32kB dTCM and 32kb iTCM
- ► Must run on 800kB internal RAM (200kB used by SPU)
- Communication only via middleware to APU Application (shared memory)
- Safety Level: ASIL B/C
- No direct access to Flash memory (only via security controller)

ARM Cortex A53 QuadCore running on 1000 MHz

- ► 64-bit ARMv8-A Architecture
- Software will be designed for
 - Video specific low lever driver
 - ► ISP, IMR, BoschIP, ...
 - Image proccessing algorithmic
 - Computer Vision stack
 - DA-Core / Functions

Limitations

- Asymmetric multiprocessing (AMP): One OS, but static tasks for cores
- Runs from external DDR only
- Communication only via middleware to RPU Application (shared memory)
- ▶ Safety Level: ASIL B
- ▶ Powered off in degradation: High temperature, Safety, ...

► Renesas RH850 / ICU-MX

- Software will be designed for
 - Security only
- Limitations
 - Must fit into 200kB internal RAM
 - Master of the external Flash

Detailed HW Block Diagram - MPC3 PCB

SoC	4 x ARM Cortex A53 Safe Island: R7 Lockstep Hardware-Security-Module(HSM) ISP, Rectification-Module CV DSP Engines Bosch IP 16nm FFC TSMC
RAM	1x 1GB (512MB) LPDDR4 @ 3200MT w/ ECC interleaved
ROM	NOR via QSPI 64MB
Power supply	Size & eff. optimized; Voltage monitoring; Challenge-Response WD
Functional Safety	Safe Island: core lockstep (up to ASIL-C); Other: periodic HW testing (up to ASIL-B)
Image Output	LVDS or encoding via integrated H.264 enc 10bit@1080p@30fps as option
Communic ation	2 x CAN FD1 x EthernetFlexray as option
Security	•HSM module; secure boot, authenticated and encrypted messaging, symmetric & assymetric keys,
Boot	 250ms until 1st CAN default message (including safe & secure b oot) 3s until algorithms are running

MPC distance estimation (option1)

- ► Distance estimation by glancing intersection
- ► Necessary inputs:
 - ► (Dynamic) pitch angle
 - ▶ Surface model
 - ► Footpoint of vehicle bounding box

Mpc distance estimation (option1)

Reference: https://zhuanlan.zhihu.com/p/419816311

Influencing factors on distance estimation

- ► Caused by glancing intersection, small errors result in large errors in the distance estimate
- ► Influencing factors
 - ► Pitch angle (calibration and ego-motion)
 - ▶ Bottom edge of bounding box in the image
 - ▶ Surface estimate
 - Main error source in Gen2
 - Optimized on optical flow in Gen3

Distance estimation (option 2)

- ► Estimate using measured width in the image
- ▶ Prerequisite: Assumption on class-specific widths, e.g. 1.80m for cars and 2.40m for trucks
 - ► Deviations from typical object class widths cause distance errors

Distance estimation (option 2)

- ▶ Deviations from typical object class widths cause distance errors
- **Examples:**
 - ▶ Golf 1.735
 - ► Corsa 1.646
 - ▶ Q7: 1.983
 - ► SL500 1.820
 - ► Toyota hilux 1.760–1.835
- ► Similar errors are caused if width estimation in image is erroneous

Summary distance estimation

- ▶ Distance estimation with mono video possible using
 - surface model and pitch angle estimation and/or
 - vehicle model assumptions
- ► In practice: Combine both approaches to minimize error
- ▶ Rule of thumb: The closer the object, the more reliable the estimate with option 1.

MPC3 Sys Introduction

Topics

- > MPC3 System Architecture
- > MPC3 Software Architecture
- > 1V Application Process
- > Q&A

Overall SW Information

► Heterogeneous Architecture

- ► Renesas RH850 / ICU-MX
- ► ARM Cortex R7 runs on 32-bit ARMv7-R Architecture
- ► ARM Cortex A53 runs on 64-bit ARMv8-A Architecture

Overall Software Architecture

- ► Functions:
 - ► Controlling the behaviour of the vehicle
- ► DACore:
 - ► Driver Assistence Core: Situation Analysis, Perception, ...
- ► ComputerVision:
 - ► Algorithmic calculation
- ► Infrastructure:
 - Basic Software, Hardware Driver, Operating System
- ▶ Hardware

Hierarchical structre

Folder structure

Project Folder	Content
_metadata	Metadata
arch	Toplevel architecture folder (e.g. overall software requirements)
c_cv	Common Computer Vision (CV) components, which are shared between different products lines (e.g. NRCS and FV)
c_if	Common Infrastructure (IF) components, which are shared between different products lines (e.g. NRCS and FV)
cpj_xxx	Customer project implementations (open variations and customer specific components)
dcv	Integration point for DaCore
doc	Additional documents
fv_cv	Platform computer vision integration point for front video
fv_fct	Platform functions integration point for front video (preliminary)
fv_hw	Platform hardware integration point for front video
fv_if	Platform infrastructure integration point for front video
jenkins	Jenkins related files
ppj_xxx	Platform project implementations (open variations and platform project specific components)
templates	Templates (e.g. component template)
thirdparty	Third party content
tools	Tools (e.g. cantata, less,)

MPC3 Sys Introduction

Topics

- > MPC3 System Architecture
- > MPC3 Software Architecture
- > 1V Application Process
- > Q&A

> ADTF User guideline

ADTF 2.14.2 安装

How to extract CAN data from MF4

preconditions: ADTF has been installed on your personal PC

Run cmd in below path: C:\TOOLS\COMMON\MDF\exe\x64, write command: mdf -input=D:\08717C_MPC3_20220323_094444_001.mf4 -name=CAN_00 - output=stream data.asc asc

```
C:\TOOLS\common\MDF\ADTF_2.13.3\exe\x64>mdf -input=C:\Users\YXACSZH\Desktop\Chery_8717C_20220112_100513_003.mf4 -name=CAN_00 -output=stre am_data.asc asc

Opening file: C:\Users\YXACSZH\Desktop\Chery_8717C_20220112_100513_003.mf4

Exporting .asc file(s)

Exported stream CAN_00 to C:\TOOLS\common\MDF\ADTF_2.13.3\exe\x64\stream_data_CAN_00.asc

C:\TOOLS\common\MDF\ADTF_2.13.3\exe\x64>mdf -input=C:\Users\YXACSZH\Desktop\Chery_8717C_20220112_162010_005.mf4 -name=CAN_00 -output=stre am_data.asc asc

Opening file: C:\Users\YXACSZH\Desktop\Chery_8717C_20220112_162010_005.mf4

Exporting .asc file(s)

Exported stream CAN_00 to C:\TOOLS\common\MDF\ADTF_2.13.3\exe\x64\stream_data_CAN_00.asc

C:\TOOLS\common\MDF\ADTF_2.13.3\exe\x64>
```


> Trigger mode setting for ADTF recording

If u want set trigger mode for ADTF2.13.3, u can change XML in MEA folder, detailed info like this, already verified on Chery 1V project:

```
<Options>
```

- <SplitAfter>60</SplitAfter>
- <StopOnDiskSpaceUsage>90</StopOnDiskSpaceUsage>
- <PreTriggerDuration>X</PreTriggerDuration>
- <PostTriggerDuration>Y</PostTriggerDuration>
- </Options>

U can adapt the time u want, if u press 'A' the recording starts with the time u set before and after, recording should stop automatically.

Note:

- 1. For ER vehicles, 5 is highly recommended for Diskspaceusage (rbcopy is mandatory for ER vehicles). For APP vehicle, 90 is good.
- 2.If ADTF data need to run HIL simulation or LESS, VVS check is mandatory, especially for CV simulation.

➤ ADTF MF4 change to CANape MDF

> Brief data analyze based on Watch

> Brief data analyze based on Watch

EX NV FN EP and SA are conditions which need to be met in order to issue an emergency brake.

EX = Is execution time for an aeb reached?

NV = Is the necessity valid?

FN = Is the feature specific necessity behavior valid?

EP = Is existence probability high enough?

SA = Is self assessment high enough?

> Online Calibration based on XCP on CANFD

AEB Function Chain

AEB Function Chain:

vAEB ER Simulation Result

Chery Brazil ER Summary(200hs)						
Simulation hours	164.8					
Event	Activation/FP					
AEB	5/0					
FCW	71/2					
EBA	1/0					

Chery CN ER Summary(1000hs)					
Simulation hours	458.7				
Event	Activation/FP				
AEB	1/0				
FCW	142/7				
EBA	1/0				

ACC Function Chain

ACC Function Chain:

TOS2D Architecture

2D OCA – Object-Corridor Association

- ► 2D Object Corridor Association (OCA) describes the relation of an object to a reference lane
- ► Based on image based 2D measurements
- ▶ Provides additional information
 - ▶ Oncoming
 - ► Cut-in/Cut-out
 - Overlap
 - **.**..
- ▶ Input for functional system parts, e.g., ACC, AEB
- ► Single frame based
- ► Input: Object list and lane environment
- Output: Object list per reference lane (ego, left, right)

vACC overall logic

The ACF contains two parts, the platform and the customer code. The customer code supplies specific and additional functionalities to each customer project. Furthermore in the customer code parameters can overwrite the platform parameter values.

1V TOL logic

Code path:C:\01work\Code\chery_1v_mpc\fvg3_chery\dcv\dc_pj1v\acf_base\modules\foc\foclib.c

vACC KPI

	Distance overall (in m)	2498207.0						
							180	
	TOL [/10	000km]			NLD [/1000km]			
	a)	b)		a)	b)	c)	160	
	stationary	situations		stationary situations	distance < 30 m	special situations	440	
	0	265		0	8	21	140	
	265			29		120		
ACF	11	1	ACF		-		120	
		4005 504004			440.404540		E 100	
	total duration:	1286.681221 s		total duration:	110.184642	S	<u> </u>	
							Abstand in 08	
							Ab	
	Cutln o	Cutln overall		CutOut	overall		60	
	Mean	1.415506419		Mean	2.421640507		40	
	Standard deviation	0.685888544		Standard deviation	1.170128166		40	
	Minimum	0.132675		Minimum	0.131832		20	
	Maximum	3.869519		Maximum	6.655631		20	
	Number	346		Number	540		0	
							0	200000
	Cutln overlap			CutOut overlap				
	Mean	0.456691545		Mean	0.303792445			
	Standard deviation	0.210585949		Standard deviation	0.245166735			
	Minimum	0.025508326		Minimum	0		Approa	
	Maximum	1		Maximum	0.969561727		Mean	117.22
	Number	346		Number	540		Standard deviation	20.7838
							Minimum	42.7891
							Maximum	141.156
							Number	306

Lane Function Chain

Lane Function Chain:

Function debug port in ADTF

vAEB debug

- · dcv_spp_sppVmcPostprocessing_sppVmcPostprocessing_m_vmcPostSenderPin
- · cpj_ov_fct_fdm_ov_fct_fdm_m_portSelectedBehavior
- · cpj_ov_fct_fsm_ov_fct_fsm_m_portFctFsmDaFunsStates
- · cpj_ov_fct_fsm_ov_fct_fsm_m_portFctFsmDebugOut
- · cpj_ov_fct_fsm_ov_fct_fsm_m_portFctFsmInternalOut
- · cpj_ov_fct_hmi_ov_fct_hmi_m_portFctHmiDafunctionLane
- · cpj_ov_fct_hmi_ov_fct_hmi_m_portFctHmiInternalOut
- · cpj_ov_valin_ov_valin_runnable_m_ov_valin_DriverInput_SenderPort
- · sit2d_m_SIT2DDebugInfoSenderPin
- · sit2d_m_SIT2DOutputSenderPin
- · RunnableTiplForwardCollisionAvoidance_m_evaluatedBehaviors_out
- $\cdot \ Runnable Cfm Front Traffic CoDriver Lon_m_evaluated Behaviors_out$
- · PerPmeRunnable_m_pmePort_out

LDS debug port

- · lds_lds_runnable_m_ldsCfgCustOutputSenderPort
- · lds_lds_runnable_m_ldsCfgPfOutputSenderPort
- $\cdot \ lds_lds_runnable_m_ldsBaseDbgOutputSenderPort$
- $\cdot \ lds_lds_runnable_m_ldsBaseFctOutputSenderPort$

vACC debug port

- · AcfControllerValues
- · AcfXDebug
- · AcfXGeneral
- · VMCPsostProcessing

1V Tools releated

- ADTF User guideline
- CAN data extract from MF4
- Trigger mode setting for ADTF recording
- vAEB sequence tagging tips
- ADTF MF4 change to MDF

Reference tip: https://inside-

docupedia.bosch.com/confluence/display/EDACN/07+1V+Tools+releated

