Assignment 6 Solutions:
Equations/statements marked in blue casey point each.
Alternate solutions are accepted (as long as they are well
heasoned). Message any of the TAS if you have a problem.
1. Let $A \in \mathbb{C}^{n \times n}$. Let $U \subseteq \mathbb{C}^n$ be an A -invasiont
enbepace, i.e., A.u.EU & n.E U.
@ Provee that $\exists a u \in V \text{ and } \lambda \in \mathbb{C}$ such that $Au = \lambda u \cdot -4$
that $Au = \lambda u$.
Ex, Az,, Akse 3 is a dependent set. Pronee that
V = span { x, Ax, Ax, A 23 is A-invagiant 1
A. @ Let {2,,, xa} be a basis for U.
$X = [x_1, \dots, x_n]$ has LI cols.
xiEU => Axi EU (Def. of invariant subspace)
\Rightarrow Azi = $\sum_{j=1}^{\infty}$ Gijzij (For some Cij)
$\exists \left[A_{2i}, A_{2i}, \dots, A_{2i}\right] = \left[\sum_{j} c_{ij} x_{j}, \sum_{j} c_{2j} x_{j}, \dots, \sum_{j} c_{nj} x_{j}\right]$
1 [21,11] 78]
$AX = \begin{bmatrix} 2, \dots, 2a \end{bmatrix} \begin{bmatrix} c_1 & c_{21} \dots & c_{M} \end{bmatrix}$
$AX = \begin{bmatrix} 2_1,, 2q \end{bmatrix} \begin{bmatrix} C_{11} & C_{21} & C_{21} \\ \vdots & \vdots & \vdots \\ C_{12} & C_{22} & & C_{21} \end{bmatrix}$ $AX = \begin{bmatrix} C_{11} & C_{21} & C_{21} \\ \vdots & \vdots & \vdots \\ C_{12} & C_{22} & & C_{21} \end{bmatrix}$
1
$\Rightarrow AX = XC$

Cis square \Rightarrow It has at least one $\exists Vec \cdot y$. Let this be $\exists Cy = \lambda y \cdot -3$ Also, $\exists Xy \neq 0$ since cols. $\exists X \text{ are } \exists I$. $\exists A \times y = X \cdot Cy \Rightarrow A(xy) = \lambda(xy)$ $\exists Au = \lambda u$.
Since $\{y_1, Ax_1, \dots, A^{k-1}x, A^kx\}$ is a LD set, $ \begin{array}{cccccccccccccccccccccccccccccccccc$
Let $y \in V$. Then $y = c_{x} + c_{y} A_{x} + \cdots + c_{y} A_{x}^{k-1}$. $Ay = c_{0} A_{x} + c_{1} A_{x}^{2} + \cdots + c_{k} A_{x}^{k}$ $Ay = c_{0} x + c_{1} A_{x} + \cdots + c_{k} A_{x}^{k-1}$ $Ay = c_{0} x + c_{1} A_{x} + \cdots + c_{k} A_{x}^{k-1}$ $Ay = c_{0} x + c_{1} A_{x} + \cdots + c_{k} A_{x}^{k-1}$
=> Ay E V => V is an A-investiant subspace (2)

2. PT
$$det(exp(C)) = exp(tx(C))$$
 for some Cet^{non}

A: $det(exp(C)) = det(T+C+\frac{C^2}{2!}+\cdots)$
 $= det(UU^{H}+UTU^{H}+\frac{UT^2U^{H}}{2!}+\cdots)$
 $= det(U(T+T+\frac{T^2}{2!}+\cdots)U^{H})$
 $= (det U)(det(exp(T)))(det U^{H})$
 $= det[T+T+\frac{T^2}{2!}+\cdots]det(UU^{H})-\frac{(2)}{2!}$
 $= TT(T+T+\frac{T^2}{2!}+\cdots)det(UU^{H})$
 $= tT(T$