COMPLEMENTOS de MATEMÁTICA

Aula Teórico-Prática - Ficha 5

INTEGRAIS DE LINHA

- 1. Calcule os seguintes integrais ao longo da linha indicada:
 - a) $\int_C (2-y)dx + (x)dy$, sendo $C: \vec{r}(t) = (t \sin(t))\vec{i} + (1 \cos(t))\vec{j}$, $t \in [0, 2\pi]$.
 - **b**) $\int_C (2xy)dx + (x^2 + z)dy + (y)dz$, em que C é o segmento de recta que liga o ponto P = (1,0,2) ao ponto Q = (5,8,0).
 - c) $\int_C (x^2 + y^2) dx + (x^2 y^2) dy$, onde C é a linha que liga os pontos O = (0,0) e P = (3,-1), situada sobre o gráfico da função y = 1 |1 x|.
 - d) $\int_C \frac{(x+y)dx + (y-x)dy}{x^2 + y^2}$, sendo C a circunferência $x^2 + y^2 = a^2$, percorrida no sentido retrógrado.
 - e) $\int_C (y)dx + (z)dy + (x)dz$, onde C é a linha de intersecção das superfícies $x^2 + y^2 + z^2 = 4$ e x + y = 2, percorrida no sentido directo quando vista da origem do referencial.
 - f) $\int_C \frac{dx + dy}{|x| + |y|}$, em que C é o quadrado com vértices nos pontos A = (1,0), B = (0,1), C = (-1,0) e D = (0,-1), percorrido no sentido directo.
- 2. Considere o campo vectorial $\vec{f}(x,y) = x\vec{i} + y\vec{j}$ e a linha, L, parametrizada por $\vec{r}(t) = a\cos(t)\vec{i} + a\mathrm{sen}(t)\vec{j}$, $t \in [0,2\pi]$ e a > 0. Calcule, recorrendo à definição, o valor do integral de linha $\int_L \vec{f}(\vec{r}) \cdot d\vec{r}$, sendo L percorrida no sentido retrógrado.
- 3. Confirme o resultado obtido no exercício 2.:
 - a) Verificando que o campo vectorial $\vec{f}(x, y) = x\vec{i} + y\vec{j}$ é gradiente.
 - b) Usando o teorema de Green.

- **4.** Verifique que o campo vectorial $\vec{f}(x,y) = xy^2\vec{i} + x^2y\vec{j}$ é gradiente e determine o valor de $\int_{L} \vec{f}(\vec{r}) \cdot d\vec{r}$ ao longo do caminho, L, parametrizado por $\vec{r}(t) = t\vec{i} + t^2\vec{j}$, $t \in [0,2]$.
- 5. Confirme o resultado obtido no exercício 4. recorrendo à definição de integral de linha.
- 6. Verifique que o campo vectorial $\vec{f}(x,y) = 3x(x^2 + y^4)^{1/2}\vec{i} + 6y^3(x^2 + y^4)^{1/2}\vec{j}$ é gradiente e calcule o valor de $\int_L \vec{f}(\vec{r}) \cdot d\vec{r}$ ao longo da curva $y = -(1-x^2)^{1/2}$, entre os pontos P = (-1,0) e Q = (1,0).
- 7. Seja o campo vectorial $\vec{f}(x,y,z) = (2xy+z^2)\vec{i} + (x^2-2yz)\vec{j} + (2xz-y^2)\vec{k}$. Mostre que $\vec{f}(x,y,z)$ é gradiente e calcule o valor de $\int_C \vec{f}(\vec{r}) \cdot d\vec{r}$, em que C é uma linha que liga o ponto P = (1,0,1) ao ponto Q = (3,2,1).
- 8. Seja o campo vectorial $\vec{f}(x,y) = (e^{2y} 2xy)\vec{i} + (2xe^{2y} x^2 + 1)\vec{j}$ e a linha, C, parametrizada por $\vec{r}(u) = ue^{u}\vec{i} + (1+u)\vec{j}$, $u \in [0,1]$. Calcule o valor de $\int_C \vec{f}(\vec{r}) \cdot d\vec{r}$:
 - a) Usando a definição de integral de linha.
 - b) Verificando que o campo vectorial é gradiente e recorrendo ao teorema fundamental para o integral de linha.
- 9. Mostre que o integral de linha $\int_{(1,0,2)}^{(-2,1,3)} (6xy^3 + 2z^2) dx + (9x^2y^2) dy + (4xz+1) dz$ é independente do caminho e calcule-o.

- **10.** Seja o campo vectorial $\vec{f}(x,y,z) = (2xy+z^2)\vec{i} + x^2\vec{j} + 2xz\vec{k}$ e a linha, C, parametrizada por $\vec{r}(u) = 2u\vec{i} + (u^2+2)\vec{j} u\vec{k}$, $u \in [0,1]$. Calcule o valor de $\int_C \vec{f}(\vec{r}) \cdot d\vec{r}$:
 - a) Usando a definição de integral de linha.
 - b) Verificando que o campo vectorial é gradiente e recorrendo ao teorema fundamental para o integral de linha.
- 11. Considere o campo vectorial $\vec{f}(x,y,z) = (2xz + \text{sen}(y))\vec{i} + x\cos(y)\vec{j} + x^2\vec{k}$ e a linha, C, parametrizada por $\vec{r}(u) = \cos(u)\vec{i} + \text{sen}(u)\vec{j} + u\vec{k}$, $u \in [0,2\pi]$. Verifique que o campo vectorial é gradiente e calcule o valor de $\int_C \vec{f}(\vec{r}) \cdot d\vec{r}$, recorrendo ao teorema fundamental para o integral de linha.
- 12. Calcule o valor de $\int_C (x^2y)dx + (y)dy + (xz)dz$, sendo C a parcela da curva de intersecção da superfície cilíndrica $y 2z^2 = 1$ com o plano z = x + 1, definida entre os pontos P = (0,3,1) e Q = (1,9,2).
- 13. Calcule, usando o teorema de Green, o integral de linha $\oint_C (3xy + y^2) dx + (2xy + 5x^2) dy$, sendo C a circunferência de raio unitário e com centro no ponto P = (1, -2).
- 14. Verifique o resultado obtido no exercício 13. recorrendo à definição de integral de linha.
- **15.** Recorrendo ao teorema de Green, determine o integral de linha $\oint_C (2x^2 + xy y^2) dx + (3x^2 xy + 2y^2) dy$, em que $C: (x a)^2 + y^2 = r^2$.
- 16. Recorrendo ao teorema de Green, calcule o integral de linha $\int_C (y) dx + (3x) dy$, sendo C a fronteira da região, Ω , limitada pelos gráficos das funções y = 2x e $y = x^2$, percorrida no sentido retrógrado. Verifique o teorema de Green.

- 17. Usando o teorema de Green, calcule o integral de linha $\oint_C (x+y)dx + (y^2-x)dy$, sendo $C = C_1 \cup C_2$, tal que $C_1 : y = 0$, $x \in [-1,1]$ e $C_2 : x^2 + y^2 = 1$, $y \ge 0$. Verifique o teorema de Green.
- 18. Seja o campo vectorial $\vec{f}(x,y,z) = y\vec{i} + (z+y)\vec{j} y\vec{k}$ e a curva, C, que é a intersecção das superfícies $y^2 + z^2 = 1$ e x = y.
 - a) Obtenha uma parametrização para a curva C.
 - b) Calcule o integral de linha $\int_C \vec{f}(\vec{r}) \cdot d\vec{r}$, se a curva for percorrida no sentido directo quando vista do ponto P = (1,0,0).
- 19. Considere a curva, C, que é a intersecção das superfícies $z = x^2 + y^2$ e $z = 8 x^2 y^2$.
 - a) Obtenha uma parametrização para a curva ${\cal C}.$
 - **b**) Calcule o integral de linha $\int_C (x)dx + (-y)dy + (xyz)dz$, se a curva for percorrida no sentido retrógrado quando vista da origem do referencial.
- **20.** Seja o campo vectorial $\vec{f}(x,y,z) = z^2\vec{i} + y^2\vec{j} + xz\vec{k}$ e a curva, C, que é a intersecção das superficies $x^2 + z^2 = a^2$, a > 0 e z = y. Esboce a curva C e determine $\int_C \vec{f}(\vec{r}) \cdot d\vec{r}$, se a curva for percorrida no sentido directo quando vista do ponto P = (0,1,0).
- 21. Usando o teorema de Green, calcule o integral de linha $\int_C (x)dx + (x)dy$, sendo C a fronteira da região, Ω , limitada pelos gráficos das funções y = 1 x e $y = (x 1)^2$, percorrida no sentido retrógrado. Verifique o teorema de Green.

- 22. Relativamente aos integrais de linha seguintes, verifique o teorema de Green:
 - a) $\oint_C (y^2)dx + (x)dy$, sendo C a fronteira da região quadrada, Ω , com vértices nos pontos O = (0,0), A = (2,0), B = (2,2) e C = (0,2).
 - b) $\oint_C (x^2) dy$, sendo C a fronteira da região rectangular, Ω , com vértices nos pontos O = (0,0), A = (a,0), B = (a,b) e C = (0,b).
 - c) $\oint_C (4x^3 + 2y^2) dx + (4xy + e^y) dy$, sendo C a fronteira da região, Ω , limitada pelos gráficos das funções $y = x^2$ e $y = \sqrt{x}$.
- 23. Recorrendo ao teorema de Green, calcule o integral de linha $\int_C (2xy+3x^2)dx + (2y)dy$, sendo C a fronteira da região, Ω , do 1º quadrante limitada pelos gráficos das funções y=2, y=3-2x e $y=x^2$, percorrida no sentido directo. Verifique o teorema de Green.
- 29. Calcule os seguintes integrais de linha em relação ao comprimento de arco:
 - a) $\int_C (x-y)ds$, onde C é a curva parametrizada por $\vec{r}(t) = 4t\vec{i} + 3t\vec{j}$, $t \in [0,2]$.
 - b) $\int_C (x^2 + y^2) ds$, em que C é o segmento de recta percorrido entre o ponto O = (0,0) e o ponto P = (3,9).
 - c) $\int_C (x^2 + y^2) ds$, sendo C o arco da circunferência $x^2 + y^2 = 1$, percorrido entre o ponto P = (1,0) e o ponto Q = (0,1).
 - d) $\int_C (x+4\sqrt{y})ds$, sendo C o triângulo com vértices nos pontos O=(0,0), A=(1,0) e C=(0,1), percorrido no sentido retrógrado.
 - e) $\int_C (z)ds$, onde C é a curva parametrizada por $\vec{r}(t) = t\cos(t)\vec{i} + t\sin(t)\vec{j} + t\vec{k}$, $t \in [0, t_1]$.
- 30. Usando o teorema de Green, calcule o integral de linha

$$\oint_{C_1} (2x^3 - y^3) dx + (x^3 + y^3) dy - \oint_{C_2} (2x^3 - y^3) dx + (x^3 + y^3) dy$$

onde C_1 é a circunferência $x^2 + y^2 = b^2$ e C_2 é a circunferência $x^2 + y^2 = a^2$, tal que 0 < a < b.

31. Seja C a linha de intersecção das superfícies $x^2 + y^2 = 2y$ e z = 1 + y, percorrida no sentido retrógrado quando vista da origem do referencial. Calcule:

a)
$$\int_C (yz)dx + (xz)dy$$
.

b)
$$\int_C (yz)dx + (xz)dy + (xy)dz$$
.

- 32. Calcule o integral de linha $\int_C (z)dx + (y^2)dy + (xy)dz$, em que C é a linha de intersecção das superfícies $x^2 + y^2 = 1$ e x + z = 1, percorrida no sentido directo quando vista do ponto P = (0,0,3).
- 33. Seja o campo vectorial $\vec{f}(x,y,z) = x^2y\vec{i} + y^2z\vec{j} + xz^2\vec{k}$ e a linha, C, que é a intersecção das superfícies $x^2 + y^2 4 = 0$ e z = 3, percorrida no sentido retrógrado quando vista da origem do referencial. Determine o integral de linha $\int_C \vec{f}(\vec{r}) \cdot d\vec{r}$.
- **34.** Seja C a linha parametrizada por $\vec{r}(t) = \operatorname{sen}(t)\vec{i} \cos(t)\vec{j} + \frac{1}{2}\operatorname{sen}(2t)\vec{k}$, $t \in \left[0, \frac{\pi}{2}\right]$. Calcule o integral de linha $\int_C (yz+z^2)dx + (xz)dy + (xy+2xz)dz$, se C é percorrida na direcção oposta à definida pela sua parametrização.
- **36.** Calcule o trabalho realizado pelo campo de forças $\vec{f}(x, y, z) = x^3 \vec{i} + y \vec{j}$ aplicado a um ponto material que se desloca ao longo da parábola $y = 3x^2$, entre o ponto O = (0,0) e o ponto P = (1,3).
- 37. Calcule o trabalho realizado pelo campo de forças $\vec{f}(x,y,z) = x\vec{i} + xy\vec{j} + xyz\vec{k}$ aplicado a um ponto material que se desloca ao longo do segmento de recta que liga o ponto P = (0,1,4) ao ponto Q = (1,0,-4).
- **38.** Calcule o trabalho realizado pelo campo de forças $\vec{f}(x,y,z) = x^2\vec{i} + xy\vec{j} + z^2\vec{k}$ aplicado a um ponto material que se desloca ao longo da hélice $\vec{r}(t) = \cos(t)\vec{i} + \sin(t)\vec{j} + t\vec{k}$, entre o ponto P = (1,0,0) e o ponto $Q = (1,0,2\pi)$.

- **40.** Calcule o trabalho realizado pelo campo de forças $\vec{f}(x,y,z) = (x+e^{2y})\vec{i} + (2y+2xe^{2y})\vec{j}$ aplicado a um ponto material que se desloca ao longo da linha, C, parametrizada por $\vec{r}(t) = 3\cos(t)\vec{i} + 4\sin(t)\vec{j}$, $t \in [0,2\pi]$. Comece por verificar se o campo de forças é gradiente.
- 41. Determine o trabalho realizado pelo campo de forças $\vec{f}(x,y,z) = (2x\ln(y) yz)\vec{i} + (x^2y^{-1} xz)\vec{j} xy\vec{k}$ aplicado a um ponto material que se desloca ao longo do segmento de recta, C, que liga o ponto A = (1,2,1) ao ponto B = (3,2,2). Comece por verificar se o campo de forças é gradiente.
- **45.** Seja o campo vectorial $\vec{f}(x,y,z) = xy\vec{i} + yz\vec{j} + x^2\vec{k}$ e a linha C que é a fronteira da região rectangular com vértices nos pontos A = (1,0,0), B = (0,1,0), C = (0,1,1) e D = (1,0,1). Determine o integral de linha $\int_C \vec{f}(\vec{r}) \cdot d\vec{r}$, se a linha C é percorrida no sentido retrógrado quando vista da origem do referencial.
- **46.** Calcule o integral de linha $\int_C (2xe^y)dx + (x^2e^y)dy + dz$, sendo C a linha parametrizada por $\vec{r}(t) = t\vec{i} + (4-t^2)\vec{j} + \mathrm{sen}\left(\frac{\pi}{4}t\right)\vec{k}$, $t \in [0,2]$, percorrida na direcção oposta à definida pela sua parametrização.
- 47. Seja C a linha que liga o ponto P=(1,0,0) ao ponto Q=(0,-1,2) e que pertence à intersecção das superfícies $x^2+y^2-1=0$ e x+y+z=1. Calcule o integral de linha $\int_C \vec{f}(\vec{r}) \cdot d\vec{r}$, em que $\vec{f}(x,y,z)=(2xz+y^2)\vec{i}+2xy\vec{j}+(x^2+3z^2)\vec{k}$.
- **Soluções:** Consultar o manual "Noções sobre Análise Matemática", Efeitos Gráficos, 2019. ISBN: 978-989-54350-0-5.

Soluções dos Exercícios Propostos

Integrais de Linha

1. a)
$$\int_C (2-y)dx + (x)dy = -2\pi$$
.

c)
$$\int_C (x^2 + y^2) dx + (x^2 - y^2) dy = 2$$
.

$$e) \int_C (y)dx + (z)dy + (x)dz = 2\sqrt{2}\pi.$$

d)
$$\int_C \frac{(x+y)dx + (y-x)dy}{x^2 + y^2} = 2\pi$$
.

b) $\int_C (2xy)dx + (x^2 + z)dy + (y)dz = 200$.

f)
$$\int_C \frac{dx + dy}{|x| + |y|} = 0$$
.

2.
$$\int_{L} \vec{f}(\vec{r}) \cdot d\vec{r} = 0.$$

$$\mathbf{4.} \quad \int_{L} \vec{f}(\vec{r}) \cdot d\vec{r} = 32.$$

6.
$$\int_C \vec{f}(\vec{r}) \cdot d\vec{r} = 0.$$

8. a)
$$\int_C \vec{f}(\vec{r}) \cdot d\vec{r} = e^5 - 2e^2 + 1$$
.

7.
$$\int_C \vec{f}(\vec{r}) \cdot d\vec{r} = 16.$$

9. Dado que o campo vectorial
$$\vec{f}(x,y,z) = (6xy^3 + 2z^2)\vec{i} + (9x^2y^2)\vec{j} + (4xz+1)\vec{k}$$
 é gradiente, então o integral de linha é independente do caminho que liga o ponto $P = (1,0,2)$ ao ponto $Q = (-2,1,3)$. O seu valor é:

$$\int_{(1,0,2)}^{(-2,1,3)} (6xy^3 + 2z^2) dx + (9x^2y^2) dy + (4xz+1) dz = -31.$$

10. a)
$$\int_C \vec{f}(\vec{r}) \cdot d\vec{r} = 14$$
.

11.
$$\int_C \vec{f}(\vec{r}) \cdot d\vec{r} = 2\pi.$$

12.
$$\int_C (x^2 y) dx + (y) dy + (xz) dz = \frac{1177}{30}.$$

13.
$$\oint_C (3xy + y^2)dx + (2xy + 5x^2)dy = 7\pi$$
.

15.
$$\oint_C (2x^2 + xy - y^2)dx + (3x^2 - xy + 2y^2)dy = 5a\pi r^2$$
.

16.
$$\oint_C (y)dx + (3x)dy = -2\iint_{\Omega} dxdy = -\frac{8}{3}$$
. **17.** $\oint_C (x+y)dx + (y^2-x)dy = -\pi$.

17.
$$\oint_C (x+y)dx + (y^2 - x)dy = -\pi$$

18. a)
$$\vec{r}(\theta) = \cos(\theta)\vec{i} + \cos(\theta)\vec{j} + \sin(\theta)\vec{k}$$
, $\theta \in [0, 2\pi]$.

b)
$$\int_C \vec{f}(\vec{r}) \cdot d\vec{r} = -2\pi$$
.

19. a)
$$\vec{r}(\theta) = 2\cos(\theta)\vec{i} + 2\sin(\theta)\vec{j} + 4\vec{k}$$
, $\theta \in [0, 2\pi]$.

b)
$$\int_C (x)dx + (-y)dy + (xyz)dz = 0$$
.

20.
$$\int_C \vec{f}(\vec{r}) \cdot d\vec{r} = 0$$
.

21.
$$\oint_C (x)dx + (x)dy = -\iint_{\Omega} dxdy = -\frac{1}{6}.$$

22. a)
$$\oint_C (y^2) dx + (x) dy = \iint_{\Omega} (1 - 2y) dx dy = -4$$
.

b)
$$\oint_C (x^2) dy = \iint_{\Omega} (2x) dx dy = a^2 b$$
.

c)
$$\oint_C (4x^3 + 2y^2)dx + (4xy + e^y)dy = -\iint_C (0)dxdy = 0$$
.

23.
$$\oint_C (2xy + 3x^2)dx + (2y)dy = -\iint_{\Omega} (2x)dxdy = -\frac{11}{12}$$
.

24.
$$\oint_C (2xy)dx + (x^2)dy = 0$$
.

25.
$$A(\Omega) = \pi ab \text{ m}^2$$
.

26.
$$A(\Omega) = \frac{15}{2} - 8\ln(2) \text{ m}^2$$
.

27.
$$A(\Omega) = 3\pi a^2 \text{ m}^2$$
.

28. ----

29. a)
$$\int_C (x-y)ds = 10$$
.

b)
$$\int_C (x^2 + y^2) ds = 90\sqrt{10}$$
.

c)
$$\int_C (x^2 + y^2) ds = \frac{\pi}{2}$$
.

d)
$$\int_C (x+4\sqrt{y})ds = -\frac{19}{6}(1+\sqrt{2})$$
.

e)
$$\int_C (z)ds = \frac{1}{3} \left[(2 + t_1)^{3/2} - 2\sqrt{2} \right].$$

30.
$$\oint_{C_1} (2x^3 - y^3) dx + (x^3 + y^3) dy - \oint_{C_2} (2x^3 - y^3) dx + (x^3 + y^3) dy = \frac{3\pi}{2} (b^4 - a^4)$$
.

31. a)
$$\int_C (yz)dx + (xz)dy = -\pi$$
.

b)
$$\int_C (yz)dx + (xz)dy + (xy)dz = 0$$
, já que o campo vectorial é gradiente.

32.
$$\int_C (z)dx + (y^2)dy + (xy)dz = 0$$
.

33.
$$\int_C \vec{f}(\vec{r}) \cdot d\vec{r} = -4\pi$$
.

34.
$$\int_C (yz+z^2)dx + (xz)dy + (xy+2xz)dz = 0$$
, já que o campo vectorial é gradiente.

36.
$$\int_C \vec{f}(\vec{r}) \cdot d\vec{r} = \frac{19}{4} \text{ J}.$$

37.
$$\int_C \vec{f}(\vec{r}) \cdot d\vec{r} = \frac{1}{3} J.$$

38.
$$\int_C \vec{f}(\vec{r}) \cdot d\vec{r} = \frac{8\pi^3}{3} \text{ J}.$$

39.
$$\int_C \vec{f}(\vec{r}) \cdot d\vec{r} = 2\pi \text{ J}.$$

40. Dado que o campo de forças é gradiente e a linha é fechada, então $\int_C \vec{f}(\vec{r}) \cdot d\vec{r} = 0$ J .

- **41.** Dado que o campo de forças é gradiente, é possível aplicar o teorema fundamental para o integral de linha, obtendo-se $\int_C \vec{f}(\vec{r}) \cdot d\vec{r} = 8\ln(2) 10 \text{ J}$.
- **42.** a) $\vec{f}(t) = M\vec{a}(t) = M\vec{r}''(t) = M(2\beta\vec{j} + 6\gamma t\vec{k}) \text{ N}$.

b)
$$W = \int_C \vec{f}(\vec{r}) \cdot d\vec{r} = \left(2\beta^2 + \frac{9}{2}\gamma^2\right) M J$$
.

43.
$$\alpha = \frac{5}{2}$$
.

44.
$$\varphi(x, y, z) = \frac{MGr_t^2}{r_t + z}$$
.

45.
$$\int_C \vec{f}(\vec{r}) \cdot d\vec{r} = -\frac{3}{2}$$
.

46.
$$\int_C (2xe^y)dx + (x^2e^y)dy + dz = -5.$$

47.
$$\int_C \vec{f}(\vec{r}) \cdot d\vec{r} = 8$$
.

48. a) $\vec{r}(\theta) = a\cos(\theta)\vec{i} + asen(\theta)\vec{j}$, $\theta \in [0,\pi]$.

b)
$$\rho(\theta) = \begin{cases} a\cos(\theta) - \frac{a}{\sqrt{2}}, \text{ se } \theta \le \frac{\pi}{4} \\ -a\cos(\theta) + \frac{a}{\sqrt{2}}, \text{ se } \theta > \frac{\pi}{4} \end{cases}$$

$$\mathbf{c}) \ M = \int_{C} \rho(x, y) ds = \int_{C} \rho(\theta) \|\vec{r}'(\theta)\| d\theta =$$

$$= \int_{0}^{\pi/4} \left(a\cos(\theta) - \frac{a}{\sqrt{2}} \right) ad\theta + \int_{\pi/4}^{\pi} \left(-a\cos(\theta) + \frac{a}{\sqrt{2}} \right) ad\theta = \sqrt{2}a^{2} \left(1 + \frac{\pi}{4} \right) \operatorname{Kg}.$$

49. a)
$$M = \int_{C} \rho(x, y) ds = \int_{C} \rho(u) \|\vec{r}'(u)\| du = 2ka^{2} \text{ Kg}.$$

b) O seu centro de massa é $C_M = (x_M, y_M) = \frac{1}{8}a(\pi + 2)(1,1)$.

c)
$$I_x = ka^4 = \frac{Ma^2}{2} \text{ Kgm}^2$$
.

d)
$$I_z = 2ka^4 = Ma^2 \text{ Kgm}^2$$
.

e)
$$I_{y=x} = \frac{ka^4}{3} = \frac{Ma^2}{6} \text{ Kgm}^2$$
.

50. a)
$$L = \int_C ds = \int_C \|\vec{r}'(u)\| du = 2\pi \sqrt{a^2 + b^2}$$
 m.

b) O seu centro de massa é $C_M = (x_M, y_M, z_M) = (0, 0, \pi b)$.

c)
$$I_x = \frac{M}{6} (3a^2 + 8\pi^2 b^2) \text{ Kgm}^2$$
.

d)
$$I_y = \frac{M}{6} (3a^2 + 8\pi^2 b^2) \text{ Kgm}^2$$
.

e)
$$I_z = Ma^2 \text{ Kgm}^2$$
.

51.
$$M = \int_C \rho(x, y) ds = \int_C \rho(u) \|\vec{r}'(u)\| du = \frac{2k\pi}{3} \sqrt{a^2 + b^2} (3a^2 + 4\pi^2 b^2) \text{ Kg}.$$

Superfícies

1. a) $\vec{r}(u,v) = 2\sqrt{2}\cos(u)\cos(v)\vec{i} + 2\sin(u)\cos(v)\vec{j} + 4\sin(v)\vec{k}$, $u \in [0,2\pi]$, $v \in [0,\pi/2]$.

b)
$$\vec{r}(u,v) = 3\cos(u)\vec{i} + 3\sin(u)\vec{j} + v\vec{k}$$
, $u \in [0,2\pi]$, $v \in [-1,3]$.

c)
$$\vec{r}(u,v) = 2\cos(u)\cos(v)\vec{i} + 2\sin(u)\cos(v)\vec{j} + 2\sin(v)\vec{k}$$
, $u \in [0,2\pi]$, $v \in (-\pi/4,\pi/2]$.

d)
$$\vec{r}(r,v) = r\cos(v)\vec{i} + r\sin(v)\vec{j} + (r\cos(v) - 1)\vec{k}$$
, $r \in [0,1]$, $v \in [0,2\pi]$.

2. a) Elipsoide com a equação cartesiana
$$x^2 + \frac{y^2}{4} + \frac{z^2}{9} = 1$$
.

b) Paraboloide elíptico com a equação cartesiana
$$z = -\frac{x^2}{a^2} - \frac{y^2}{b^2}$$
.

c) Paraboloide hiperbólico com a equação cartesiana
$$z = \frac{x^2}{a^2} - \frac{y^2}{b^2}$$
.

3. a)
$$\vec{N}(u,v) = 4(u^2 - v^2)\vec{i} - 4(u^2 + v^2)\vec{j} + 2uv\vec{k}$$
. **b)** $y - z = 0$.

4. a)
$$\vec{N}(u,v) = \text{sen}(u)\text{sen}(v)\vec{i} + \cos(u)\cos(v)\vec{j} + \left(\text{sen}^2(u) - \cos^2(v)\right)\vec{k}$$
.

b)
$$y + z = 3$$
.