华中科技大学物理学院 2011~2012 学年第1学期

《大学物理(二)》课程考试试卷(A卷)

(闭卷)

考试日期: 2011.12.25.上午

考试时间: 150 分钟

			三				统分	教师	
题号		1	1	2	3	4	总分	签名	签名
得分									

得 分	
评卷人	

一. 选择题(单选题,每题3分,共30分)

(A)
$$\sqrt{\frac{p}{3\rho}}$$

(B)
$$\sqrt{\frac{3p}{\rho}}$$

(C)
$$\sqrt{\frac{p}{2\rho}}$$

(A)
$$\sqrt{\frac{p}{3\rho}}$$
 (B) $\sqrt{\frac{3p}{\rho}}$ (C) $\sqrt{\frac{p}{2\rho}}$ (D) $\sqrt{\frac{2p}{\rho}}$

2. 根据热力学第二定律,以下说法正确的是

- (A) 不可能从单一热源吸热使之全部变为有用的功
- (B) 任何热机的效率都总是小于卡诺热机的效率
- (C) 有规则运动的能量能够变为无规则运动的能量, 但无规则运动的能 量不能变为有规则运动的能量
- (D) 在孤立系统内,一切实际过程都向着热力学概率增大的方向进行

3. 对如图所示的平面简谐波 t 时刻的波形曲 线,下列各结论哪个是正确的?

(B) B 处质元回到平衡位置的过程中,它把自己

1

的能量传给相邻的质元,其能量逐渐减小

- (C) C 处质元振动动能减小,则 D 处质元振动动能一定增大
- (D) D 处质元 t 时刻波的能量是 $10 \, \text{J}$,则此时刻该处质元振动动能一定是 $5 \, \text{J}$

4. 如图所示,两列波长为 λ 的相干波在P点相遇。 波在 S_1 点振动的初相是 φ_1 , S_1 到 P 点的距离是 r_i ; 波 在 S_2 点的初相是 φ_3 , S_2 到 P 点的距离是 r_3 , 以 k 代表 零或正、负整数,则 P 点是干涉极大的条件为:

1

- (A) $r_2 r_1 = k\lambda$
- (B) $\varphi_2 \varphi_1 = 2k\pi$

(C)
$$\varphi_2 - \varphi_1 + 2\pi \frac{(r_2 - r_1)}{\lambda} = 2k\pi$$

(D)
$$\varphi_2 - \varphi_1 + 2\pi \frac{(r_1 - r_2)}{\lambda} = 2k\pi$$

5. 在电磁波的发射和接收课堂演示实验中, 当实验仪器正常工作时, 对如图 (1)、(2)、(3)所示的三种操作方式,接在铜环中的小灯泡最亮的是

1

- (A) (1)
- (B) (2)
- (C) (3)
- (D) 不能判定

1

6. 在迈克耳孙干涉仪的一臂中引入 5 cm 长的玻璃管,并充以一个大气压的空 气,用波长 500 nm 的光照射,如将玻璃管逐渐抽成真空,观察到有 60 条干涉 条纹的移动,则空气的折射率为

- (A) 1.0001 (B) 1.0002 (C) 1.0003
- (D) 1.0004

1

7. 一字肌负声和 nm 的点光源,设字	球,他恰能分辨在他 就员的瞳孔直径为			
(A) 10.5 m	(B) 21.5 m	n (C)	31.0 m	(D) 42.0 m
8. 在起偏与检伽 偏器一周,在检偏器	扁演示实验中,用自 器的出射方向观察3			3偏器,转动检
(A) 1	(B) 2	(C) 3	(D) 4	
				[]
9. 在康普顿效应 子能量 ε 与反冲电子	Σ 实验中,若散射 f \mathcal{E} 动能 E_k 之比 $rac{\mathcal{E}}{E_k}$		光波长的 1.2 倍	,则散射光光
(A) 2	(B) 3	(C) 4	(D)	5
10.n 型半导体	中杂质原子所形成	的局部能级	(也称受主能级	·),在能带结
构中处于	1 21/2/21 7 1/1/2/2			
(A) 满带中		(B) 导	 特中	
	但接近满带顶		•	₽ 帯底 「
				l J
得 分 评卷人	二. 填空题(每	题3分,共3	0分)	
1. 分子数为 N f	的理想气体,在温度	度T ₁ 和温度	f(v)	
$T_2(T_2 \neq T_1)$ 时的速率	分布曲线如图所表	示,设两曲		
线在 v > 0 区间交点	的速率为 v _o 。若图	月影部分的	S	
面积为 S,则在两种	 	运动速率小	0	v_0
于 v ₀ 的分子数之差之	为	°		
2. 加果氢和氧	【的温度相同, 》	擎尔数相同,	,这两种气体	的内能之比

为_____。

- 4. 一质点沿 x 轴作简谐振动,振动方程为 $x = 4 \times 10^{-2} \cos(2\pi t + \frac{\pi}{3})$ (SI)。从 t=0 时刻起,到质点位置在 x=-2 cm 处,且向 x 轴正方向运动的最短时间为_____。
- 5. 如图所示,在双缝干涉实验中, $SS_1 = SS_2$,入射光波长为 λ ,已知 P 点处为第 3 级明条纹,则 S_1 和 S_2 到 P 点的光程差为______。

填空题第5题图

填空题第6题图

- - 8. 已知光子的波长为 λ ,则其动量的大小为_____。
- 9. 一波长为 300 nm 的光子,假定其波长的测量精确度为百万分之一,若用不确定关系 $\Delta x \cdot \Delta p_x \ge \frac{\Box}{2}$ 估算,该光子的位置不确定量为_____。 (普朗克常数 $h=6.626\times 10^{-34}\,\mathrm{J\cdot s}$)
- 10. 当氢原子中电子处于 n = 4, l = 3, $m_l = 3$ 的状态时,该电子轨道角动量的大小为______,角动量与 z 的夹角为______。

三. 计算题 (每题 10 分, 共 40 分)

得 分	
评卷人	

1. 一定量的刚性双原子分子理想气体经历如图所示循环过程,已知 $V_b=2V_a$, $V_c=4V_a$,

 $T_a = 400 \text{ K}$,菜:

- (1) c 态的温度;
- (2) 循环的效率。

得 分	
评卷人	

2. 如图所示,在x轴的原点 O 处有一振动方程为 $y = A\cos \omega t$ 的平面波波源,产生的波沿 x 轴负方向传播。MN 为波密介质反射面,距波源 $\frac{5}{4}\lambda$ 。求:

- (1) 在 MN-yO 区间叠加波的波函数;
- (2) 最靠近0点因干涉而静止的点的位置。

得 分	
评卷人	

3. 一東具有两种波长 λ_1 和 λ_2 的平行光垂直照射到一衍射光栅上,测得波长 λ_1 的第三级主极大和 λ_2 的第四级主极大衍射角均为 30° 。已知 $\lambda_1=560\,\mathrm{nm}$,试求:

(1) 波长 \(\lambda_2\);

(2) 若光栅常数 d 与缝宽 a 的比值 $\frac{d}{a} = 5$,则对 λ_2 的光,屏上可能看到的全部 主极大的级次。

得 分	
评卷人	

4. 已知粒子在一维无限深方势阱中运动,其波函数为

$$\psi(x) = A \sin \frac{2\pi x}{a}, \quad 0 \le x \le a$$

- 求: (1) 归一化常数 A;
 - (2) 在何处找到粒子的概率最大。