Análise Numérica – ANN0001

Universidade do Estado de Santa Catarina Centro de Ciências Tecnológicas

Prof. Fernando Deeke Sasse Acadêmico Marlon Henry Schweigert

2017/1

Representação Numérica com Complemento de 2

Obs.: A menos que especificado ao contrário, nos problemas abaixo use representação binária de 8-bits.

- 1. Considere os números +37 e +18 usando a representação binária com complemento de 2, some estes números.
- 2. Repita o problema anterior somando +37 + (-18).
- 3. Idem, com +18+(-37).
- 4. Idem para (-18)+(-37).
- 5. Some -118 e -32 usando:
 - i. representação de 8 bits.
 - ii. Representação de 16 bits.

Resolução

1.

Valores iniciais em binário:

37 = Ob 0 010 0101 18 = Ob 0 001 0010

Realizando a soma:

O resultado é 55 = Ob 0 011 0111

Valores iniciais em binário:

Encontrando o valor de -18

-18:

Realizando Flip de bits:

Adicionando flip com 1:

Somando 37 com -18:

O resultado é 19 = Ob 0 001 0011.

3.

Valores iniciais em Binário:

Encontrando -37, primeiro flip e após soma de -38 com 1

Encontrando o valor final de 18 -37

O resultado \acute{e} -19 = Ob 1 110 1101.

4.

Valores iniciais em Binário:

```
+37 = Ob 0 010 0101

-37 = Ob 1 101 1011

+18 = Ob 0 001 0010

-18 = Ob 1 110 1110
```

Realizando a adição.

5.

Valores iniciais em binário

i) Soma com 8 bits:

Overflow. 8 bits podem representar somente entre 127 e -128. O Overflow retornou um erro, dando como resposta 106, ao invés de -150.

i) Soma com 16 bits:

Resolvendo a adição:

-118 +	Ob 1 111 1111 1000 1010
- 32	Ob 1 111 1111 1110 0000
 -150	Ob 1 111 1111 0110 1010

O resultado \acute{e} -150 = Ob 1 111 1111 0110 1010, sem overflow pela quantia de bits para descrever o número.