Midterm II Solutions

MATH 100

- [1] Let R be a relation on the set of all real numbers \mathbb{R} so that $R \subseteq \mathbb{R} \times \mathbb{R}$. For each of the relation below, draw the picture of R in the plane, and determine if it is reflexive, symmetric, or transitive. Explain your answer.
 - (1) $R = \{(x, y) \in \mathbb{R}^2 \mid xy \ge -2\}$
 - (2) $R = \{(x, y) \in \mathbb{R}^2 \mid |x| \le 1, |y| \le 1\}$
 - (3) $R = \{(x, y) \in \mathbb{R}^2 \mid x \le y\}$

Proof.

(1) When drawn out as a subset of \mathbb{R}^2 the relation takes the shape:

Now to check which properties the relation satisfies:

- * For any $x \in \mathbb{R}$ we have $x^2 \ge -2$ simply because x^2 is always non-negative. It follows that $x = x^2$ showing that R is reflexive.
- * For any $x, y \in \mathbb{R}$ we have $xy = yx \ge -2$. It follows that $xR_y \implies {}_yR_x$ showing that R is symmetric.
- * Consider the setup where $_{-3}R_0$ and $_0R_1$. If the relation were transitive, then it would require that $_{-3}R_1$ which is simply not true as $-3 \ngeq -2$. It follows that R is not transitive.
- (2) When drawn out as a subset of \mathbb{R}^2 the relation takes the shape:

Now to check which properties the relation satisfies:

- * Consider the value $x = 3 \in \mathbb{R}$. By the condition on the relation, we see $|3| \not \leq 1$ implying that $(3,3) \notin \mathbb{R}$. It follows that \mathbb{R} is not reflexive.
- * For any $x, y \in \mathbb{R}$ we see that if $|x| \le 1$ and $|y| \le 1$, then this is equivalent to saying $|y| \le 1$ and $|x| \le 1$. It follows that ${}_xR_y \implies {}_yR_x$ showing that R is symmetric.
- * For any $x,y,z\in\mathbb{R}$ such that ${}_x\mathrm{R}_y$ and ${}_y\mathbb{R}_z$ we have the setup $|x|\leq |y|$ and $|y|\leq |z|$. It directly follows that $|x|\leq |z|$ with the result ${}_x\mathrm{R}_y$ & ${}_y\mathrm{R}_z$ \Longrightarrow ${}_x\mathrm{R}_z$ showing that R is transitive.

(3) When drawn out as a subset of \mathbb{R}^2 the relation takes the shape:

Now to check which properties the relation satisfies:

- * For any $x \in \mathbb{R}$ we have $x \leq x$. It follows that $x \in \mathbb{R}_x$ showing that R is reflexive.
- * Consider the setup where ${}_{1}R_{2}$. If the relation were symmetric, then it would require that ${}_{2}R_{1}$ which is simply not true as $2 \le 1$. It follows that R is not symmetric.
- * Consider the setup where $_{-3}R_0$ and $_0R_1$. If the relation were transitive, then it would require that $_{-3}R_1$ which is simply not true as $-3 \ngeq -2$. It follows that R is not transitive.

[2] A sequence $\{a_n\}$ is defined recursively by $a_1 = 1$, $a_2 = 3$, and

$$a_n = 3a_{n-1} - 2a_{n-2}$$
 for $n \ge 3$

- (1) Compute a_3 and a_4 and conjecture a formula for a_n .
- (2) Prove the formula for a_n conjectured in (1) by (some version of) mathematical induction, or by other methods. *Proof.*
 - (1) To compute the next two terms we have:

$$a_3 = 3a_2 - 2a_1 = 3(3) - 2(1) = 7$$

 $a_4 = 3a_3 - 2a_2 = 3(7) - 2(3) = 15$

The sequence thus far takes the form $\{1, 3, 7, 15, \dots\}$. This motivates the conjecture $a_n = 2^n - 1$.

(2) We proceed via proof by induction. For the base consider n = 1 which provides $a_1 = 2^1 - 1 = 1$. Now assuming $a_n = 2^n - 1$ we check that it satisfies the recurrence relation for n + 1:

$$3a_n - 2a_{n-1} = 3(2^n - 1) - 2(2^{n-1} - 1)$$

$$= 3 \cdot 2^n - 3 - 2^n + 2$$

$$= 2 \cdot 2^n - 1$$

$$= 2^{n+1} - 1$$

$$= a_{n+1}$$

[3] Show that for every positive integer n, $49 \mid (8^{n+1} - 7n - 8)$.

Proof. We proceed via proof by induction. For the base case consider n=1 which reduces down to saying $49 \mid 49$, clearly a true statement. Now assuming that the statement holds true for n we can restate it as:

$$8^{n+1} - 7n - 8 \equiv 0 \pmod{49}$$

 $8^{n+1} \equiv 7n + 8 \pmod{49}$

Now to check that it holds true for n + 1:

$$8^{n+2} - 7(n+1) - 8 \equiv 8 \cdot 8^{n+1} - 7n - 15 \pmod{49}$$
$$\equiv 8(7n+8) - 7n - 15 \pmod{49}$$
$$\equiv 56n + 64 - 7n - 15 \mod{49}$$
$$\equiv 49(n+1) \pmod{49}$$
$$\equiv 0 \pmod{49}$$

With $49 \mid (8^{n+2} - 7(n+1) - 8)$ we have completed the inductive step.

[4] For every positive integer n, prove the following formula:

$$\sum_{i=1}^{n} \left(\sum_{i=1}^{j} i \right) = \frac{n(n+1)(n+2)}{6}$$

Proof. We approach via direct proof. Recall the following formulas:

$$\sum_{i=1}^{k} i = \frac{k(k+1)}{2} \quad \text{and} \quad \sum_{i=1}^{k} i^2 = \frac{k(k+1)(2k+1)}{6}$$

Plugging this in provides:

$$\sum_{j=1}^{n} \left(\sum_{i=1}^{j} i \right) = \sum_{j=1}^{n} \left(\frac{j(j+1)}{2} \right) = \frac{1}{2} \left(\sum_{j=1}^{n} j^2 + \sum_{j=1}^{n} j \right) = \frac{1}{2} \left(\frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} \right)$$
$$= \frac{n(n+1)}{4} \left(\frac{2n+1}{3} + 1 \right) = \frac{n(n+1)(n+2)}{6}$$

- [5] Prove or disprove:
 - (1) There exist integers m and n such that $m^2 + m = n^2$.
 - (2) There exist positive integers m and n such that $m^2 + m = n^2$.

Proof

- (1) If we take m = n = 0, then the equation trivially holds true. Thus, the statement is proven.
- (2) Assuming the equation holds true, we can use it to deduce that:

$$m^2 + m \equiv n^2 \pmod{n}$$

 $m(m+1) \equiv 0 \pmod{n}$

The last line only holds true if $m \equiv 0 \pmod{n}$ or $m \equiv n-1 \pmod{n}$. The first scenario has to be disregarded due to the fact that m and n have to be positive integers. In the second scenario we can deduce m = (n-1) + kn for some $k \in \mathbb{Z}_{\geq 0}$. Plugging this in provides:

$$m^{2} + m = ((k+1)n - 1)^{2} + ((k+1)n - 1) = (k+1)^{2}n^{2} - 2(k+1)n + 1 - (k+1)n - 1$$
$$= (k+1)^{2}n^{2} - (k+1)n = n(k+1)((k+1)n - 1)$$

For the last equality to equate to n^2 we must have (k+1)((k+1)n-1)=n for at least one value of k. Note that the factor of k+1 is strictly a natural number, which forces us to only consider k=0:

$$m^2 + m = n(n-1) = n^2 - n$$

For $n^2 - n = n^2$ we conclude that n = 0, thereby forcing us to disregard the scenario because m and n have to be positive integers. Since none of the possible scenarios provide a solution, it follows that there is no solution to $m^2 + m = n^2$ for positive integers m and n.