Introduction to A4 Data

ATRI Biostatistics

Introduction

This document demonstrates how to reproduce some primary findings of the A4 trial (Sperling et al. 2023) using R.

Load required R packages

```
library(tidyverse)
library(arsenal)
library(kableExtra)
library(nlme)
library(emmeans)
library(splines)
library(clubSandwich)

formatp <- function(x) case_when(
    x < 0.001 ~ "p<0.001",
    x > 0.01 ~ Hmisc::format.pval(x, digits=2, eps=0.01, nsmall=2),
    TRUE ~ Hmisc::format.pval(x, digits=3, eps=0.001, nsmall=3))
```

Read data

```
# Participant characteristics data:
SUBJINFO_raw <- read_csv("SUBJINFO.csv")
# Longitudinal PACC data from Analysis Data Questionnaire Scores (ADQS):
ADQS_raw <- read_csv("ADQS.csv")</pre>
```

Data manipulations

```
# Outcomes collected at Visit 1
V10UTCOME <- ADQS_raw %>%
  filter(VISITCD == "001") %>%
  select(BID, QSTESTCD, QSSTRESN) %>%
  pivot_wider(values_from = QSSTRESN, names_from = QSTESTCD)
# Outcomes collected at Visit 6
V6OUTCOME <- ADQS raw %>%
  filter(VISITCD == "006") %>%
  select(BID, QSTESTCD, QSSTRESN) %>%
  pivot_wider(values_from = QSSTRESN, names_from = QSTESTCD)
SUBJINFO <- SUBJINFO_raw %>%
  left_join(V60UTCOME, by = "BID") %>%
  left_join(V10UTCOME %>%
     select(BID, CDRSB, CFITOTAL, CFISP, CFIPT, ADLPQPT, ADLPQSP),
    by = "BID") \%>\%
  mutate(
    AGECAT = case_when(AGEYR < 65 ~ "Age < 65",
      AGEYR >= 65 & AGEYR < 75 ~ "65 <= Age < 75",
```

```
AGEYR >= 75 & AGEYR < 85 ~ "75 <= Age < 85",
      AGEYR >= 85 \sim "Age >= 85"),
    SEX = factor(case when(
      SEX == 1 ~ "Female",
      SEX == 2 ~ "Male"), levels = c("Male", "Female")),
   RACE = case_when(RACE == 1 ~ "White",
      RACE == 2 ~ "Black or African American",
      RACE == 58 ~ "Asian",
     RACE == 79 ~ "Native Hawaiian or Other Pacific Islander",
      RACE == 84 ~ "American Indian or Alaskan Native",
     RACE == 97 ~ "Unknown or Not Reported",
     RACE == 100 ~ "More than one race"),
   MARITAL = case_when(MARITAL == 2 ~ "Divorced",
      MARITAL == 4 ~ "Never married",
     MARITAL == 5 ~ "Widowed",
     MARITAL == 11 ~ "Married"
     MARITAL == 97 ~ "Unknown or Not Reported"),
   ETHNIC = case_when(ETHNIC == 50 ~ "Hispanic or Latino",
     ETHNIC == 56 ~ "Not Hispanic or Latino",
     ETHNIC == 97 ~ "Unknown or Not reported"),
    ALCHLBL = case_when(ALCHLBL == 0 ~ "No",
     ALCHLBL == 1 ~ "Yes"),
   CFBL = case_when(CFBL == 0 ~ "No",
     CFBL == 1 \sim "Yes"),
   TBBL = case_when(TBBL == 0 ~ "No",
     TBBL == 1 \sim "Yes"),
   WRKRET = case_when(WRKRET == 1 ~ "Yes",
      WRKRET == 0 ~ "No",
      WRKRET == 96 ~ "Not Applicable"),
    APOEGNPRSNFLG = case_when(APOEGNPRSNFLG == 1 ~ "Yes",
      APOEGNPRSNFLG == 0 ~ "No"),
   AGEYR = as.numeric(AGEYR),
   SUVRCER = as.numeric(SUVRCER),
   AMYLCENT = as.numeric(AMYLCENT),
   EDCCNTU = as.numeric(EDCCNTU),
   COGDSSTTSV6 = as.numeric(COGDSSTTSV6),
    COGLMDRTSV6 = as.numeric(COGLMDRTSV6),
   TX = factor(TX, levels = c("Placebo", "Solanezumab")),
   COMPLETER_label = case_when(
     SUBJCOMPTR == 1 ~ "Completer",
     TRUE ~ "Dropout"))
# Filter ADQS_raw for PACC collected in the blinded phases among mITT population
ADQS_PACC <- ADQS_raw %>%
 filter(MITTFL== 1) %>%
 filter(EPOCH == "BLINDED TREATMENT" | AVISIT == "006") %>%
 filter(QSTESTCD == "PACC") %>%
 rename(PACC = QSSTRESN) %>%
 select(BID, ASEQNCS, TX, ADURW, TX, AGEYR,
    AAPOEGNPRSNFLG, EDCCNTU, SUVRCER, QSVERSION, PACC) %>%
 mutate(TX = factor(TX, levels = c("Placebo", "Solanezumab"))) %>%
 na.omit()
```

Baseline demographics

```
A4labels <- list(TX = "Treatment group", AGEYR = "Age (y)",
  EDCCNTU = "Education (y)", SUVRCER = "FBP SUVr", AMYLCENT = "FBP Centiloid",
  LMIIa = "LM Delayed Recall", MMSE = "MMSE",
  CFITOTAL = "CFI Combined", ADLPQSP = "ADL Partner", CDRSB = "CDR-SB",
  SEX = "Sex", RACE = "Racial categories", ETHNIC = "Ethnicity",
  MARITAL = "Marital Status", WRKRET = "Retirement Status",
  APOEGNPRSNFLG = "APOE e4", APOEGN = "APOE Genotype")
table1 <- tableby(TX ~ AGEYR + EDCCNTU + SEX + RACE + ETHNIC + MARITAL + WRKRET +
    SUVRCER + AMYLCENT + chisq(APOEGN) + chisq(APOEGNPRSNFLG) +
    PACC + LMIIa + MMSE + CFITOTAL + ADLPQSP + CDRSB,
  data = SUBJINFO %>% filter(MITTFL== 1),
  control = tableby.control(test=TRUE,
    stats.labels = list(Nmiss = "Missing")))
if(knitr::opts_knit$get("rmarkdown.pandoc.to") == 'latex'){
  # format table for pdf document
  table1 %>%
    summary(labelTranslations = A4labels, digits = 1, text = "latex") %>%
    kable(format="latex", escape = FALSE, longtable = T, booktabs = TRUE,
      linesep = "", row.names = FALSE,
      caption = "Baseline characteristics.") %>%
    kable_styling(latex_options = c("HOLD_position", "repeat_header")) %>%
    column_spec(1, width = "17 em") %>%
    column_spec(2:4, width = "6 em")
}
```

Table 1: Baseline characteristics.

	Placebo (N=583)	Solanezumab (N=564)	Total (N=1147)	p value
Age (y)				0.923
Mean (SD)	71.9 (5.0)	72.0 (4.7)	72.0 (4.8)	
Range	65.0 - 85.7	65.0 - 85.5	65.0 - 85.7	
Education (y)				0.785
Mean (SD)	16.6 (2.9)	16.6 (2.7)	16.6 (2.8)	
Range	8.0 - 30.Ó	7.0 - 30.Ó	7.0 - 30.Ó	
Sex				0.481
Male	231 (39.6%)	235 (41.7%)	466 (40.6%)	
Female	352 (60.4%)	329 (58.3%)	681 (59.4%)	
Racial categories	,	,	,	0.831
American Indian or Alaskan Native	0 (0.0%)	1 (0.2%)	1 (0.1%)	
Asian	13 (2.2%)	11 (2.0%)	24 (2.1%)	
Black or African American	15 (2.6%)	12 (2.1%)	27 (2.4%)	
More than one race	3 (0.5%)	5 (0.9%)	8 (0.7%)	
Unknown or Not Reported	3 (0.5%)	4 (0.7%)	7 (0.6%)	
White	549 (94.2%)	531 (94.1%)	1080 (94.2%)	
Ethnicity	, ,	,	, ,	0.910
Hispanic or Latino	18 (3.1%)	16 (2.8%)	34 (3.0%)	
Not Hispanic or Latino	560 (96.1%)	542 (96.1%)	1102 (96.1%)	
Unknown or Not reported	5 (0.9%)	6 (1.1%)	11 (1.0%)	
Marital Status	, ,	,	,	0.208
Divorced	80 (13.7%)	89 (15.8%)	169 (14.7%)	
Married	415 (71.2%)	405 (71.8%)	820 (71.5%)	
Never married	26 (4.5%)	14 (2.5%)	40 (3.5%)	
Unknown or Not Reported	12 (2.1%)	6 (1.1%) [´]	18 (1.6%)	
Widowed	50 (8.6%)	50 (8.9%)	100 (8.7%)	
Retirement Status	, ,	, ,	, ,	0.722
No	142 (24.4%)	126 (22.3%)	268 (23.4%)	

Table 1: Baseline characteristics. (continued)

	Placebo (N=583)	Solanezumab (N=564)	Total (N=1147)	p value
Not Applicable	9 (1.5%)	9 (1.6%)	18 (1.6%)	
Yes	432 (74.1%)	429 (76.1%)	861 (75.1%)	
FBP SUVr				0.903
Mean (SD)	1.3 (0.2)	1.3 (0.2)	1.3 (0.2)	
Range	1.0 - 2.1	1.0 - 2.1	1.0 - 2.1	
FBP Centiloid				0.903
Mean (SD)	65.9 (32.1)	66.2 (33.5)	66.0 (32.8)	
Range	0.3 - 205.4	0.3 - 201.7	0.3 - 205.4	
APOE Genotype				0.624
E2/E2	0 (0.0%)	1 (0.2%)	1 (0.1%)	
E2/E3	33 (5.7%)	28 (5.0%)	61 (5.3%)	
E2/E4	22 (3.8%)	13 (2.3%)	35 (3.1%)	
E3/E3	208 (35.7%)	202 (35.8%)	410 (35.7%)	
E3/E4	273 (46.8%)	273 (48.4%)	546 (47.6%)	
E4/E4	47 (8.1%)	47 (8.3%)	94 (8.2%)	
APOE e4				0.896
No	241 (41.3%)	231 (41.0%)	472 (41.2%)	
Yes	342 (58.7%)	333 (59.0%)	675 (58.8%)	
PACC				0.831
Mean (SD)	-0.0 (2.6)	0.0 (2.7)	0.0 (2.7)	
Range	-12.5 - 7.8	-10.3 - 6.4	-12.5 - 7.8	
LM Delayed Recall				0.757
Missing	1	0	1	
Mean (SD)	12.7 (3.5)	12.6 (3.8)	12.6 (3.7)	
Range	2.0 - 22.0	0.0 - 23.0	0.0 - 23.0	
MMSE				0.763
Mean (SD)	28.8 (1.2)	28.8 (1.3)	28.8 (1.3)	
Range	24.0 - 30.0	22.0 - 30.0	22.0 - 30.0	
CFI Combined				0.045
Missing	2	0	2	
Mean (SD)	3.6 (3.3)	4.0 (3.6)	3.8 (3.5)	
Range	0.0 - 20.0	0.0 - 22.0	0.0 - 22.0	
ADL Partner				0.266
Mean (SD)	43.5 (2.6)	43.4 (2.7)	43.4 (2.6)	
Range	26.8 - 45.0	25.0 - 45.0	25.0 - 45.0	
CDR-SB				0.154
Mean (SD)	0.0 (0.2)	0.1 (0.2)	0.1 (0.2)	
Range	0.0 - 2.0	0.0 - 1.Ó	0.0 - 2.0	

```
if(knitr::opts_knit$get("rmarkdown.pandoc.to") == 'html'){
    # format table for html
    summary(table1, labelTranslations = A4labels, digits = 1,
    title = "Baseline characteristics.")
}
```

PACC Data

Preclinical Alzheimer Cognitive Composite (PACC, @donohue2014preclinical) data was modelled using natural cubic splines as described in @donohue2023natural. The fixed effects included the following terms: (i) spline basis expansion terms (two terms), (ii) spline basis expansion terms-by-treatment interaction (two terms), (iii) PACC test version administered, (iv) baseline age, (v) education, (vi) APOE4 Carrier Status (yes/no), and (vii) baseline florbetapir cortical SUVr. The model is constrained to not allow a difference between treatment group means at baseline. The following variance-covariance structures were assumed in sequence until a model converged: (i) heterogeneous unstructured, (ii) heterogeneous Toeplitz, (iii) heterogeneous autoregressive order 1, (iv) heterogeneous compound symmetry, and (v) compound symmetry. The first structure, heterogeneous unstructured, did not converge. Here we fit the second, heterogeneous Toeplitz, which did converge.

```
ggplot(ADQS_PACC, aes(x=ADURW, y=PACC, color=TX)) +
  geom_line(aes(group = BID), alpha=0.2) +
  theme(legend.position = "inside", legend.position.inside = c(0.2, 0.2)) +
  xlab("Weeks since Randomization") +
  scale_x_continuous(breaks = seq(0, max(ADQS_PACC$ADURW), by = 24))
```


Figure 1: Spaghetti plot of PACC data over time by treatment group.

```
# Spline basis expansion functions
# CAUTION: these function depend on the ADQS_PACC data frame object in the
# global environment. If ADQS_PACC changes, so do these funtions
ns21 <- function(t){
   as.numeric(predict(splines::ns(ADQS_PACC$ADURW, df=2,
        Boundary.knots = c(0, max(ADQS_PACC$ADURW))), t)[,1])
}
ns22 <- function(t){
   as.numeric(predict(splines::ns(ADQS_PACC$ADURW, df=2,
        Boundary.knots = c(0, max(ADQS_PACC$ADURW))), t)[,2])
}
# GLS model fit:
pacc_fit <- gls(PACC ~</pre>
```

```
I(ns21(ADURW)) + I(ns22(ADURW)) +
    (I(ns21(ADURW)) + I(ns22(ADURW))):TX +
    AGEYR + AAPOEGNPRSNFLG + EDCCNTU + SUVRCER + QSVERSION,
 data = ADQS_PACC,
 weights = varIdent(form = ~ 1 | ASEQNCS),
 correlation = corARMA(form = ~ ASEQNCS | BID, p = 10))
ref_grid(pacc_fit,
 at = list(ADURW = c(0,240), TX = levels(ADQS_PACC$TX)),
 vcov. = clubSandwich::vcovCR(pacc_fit, type = "CR2") %>% as.matrix(),
 mode = "satterthwaite") %>%
 emmeans (~ ADURW | TX) %>%
 pairs(reverse = TRUE) %>%
 as_tibble() %>%
 mutate(p.value = formatp(p.value)) %>%
 kable(caption = "Mean PACC change from baseline at week 240 by treatment
    group estimated from spline model.", digits = 2, booktabs = TRUE) %>%
 kableExtra::kable_styling(latex_options = "HOLD_position")
```

Table 2: Mean PACC change from baseline at week 240 by treatment group estimated from spline model.

contrast	TX	estimate	SE	df	t.ratio	p.value
ADURW240 - ADURW0 ADURW240 - ADURW0						p<0.001 p<0.001

```
contrast240 <- ref_grid(pacc_fit,</pre>
 at = list(ADURW = 240, TX = levels(ADQS_PACC$TX)),
 vcov. = clubSandwich::vcovCR(pacc_fit, type = "CR2") %>% as.matrix(),
 data = ADQS_PACC,
 mode = "satterthwaite") %>%
 emmeans(specs = "TX", by = "ADURW") %>%
 pairs(reverse = TRUE, adjust = "none")
contrast240 %>%
 as tibble() %>%
 left_join(contrast240 %>%
     confint() %>%
     as_tibble() %>%
      select(contrast, lower.CL, upper.CL), by="contrast") %>%
 relocate(p.value, .after = last_col()) %>%
 mutate(p.value = formatp(p.value)) %>%
 kable(caption = "Mean PACC group change from baseline at week 240 by treatment
    group estimated from spline model.", digits = 2, booktabs = TRUE) %>%
 kableExtra::kable_styling(latex_options = "HOLD_position")
```

Table 3: Mean PACC group change from baseline at week 240 by treatment group estimated from spline model.

contrast	ADURW	estimate	SE	df	t.ratio	lower.CL	upper.CL	p.value
Solanezumab - Placebo	240	-0.3	0.26	10775	-1.14	-0.82	0.22	0.25

```
ref_grid(pacc_fit,
  at = list(ADURW = seq(0, 312, by=12), TX = levels(ADQS_PACC$TX)),
  vcov. = clubSandwich::vcovCR(pacc_fit, type = "CR2") %>% as.matrix(),
  data = ADQS_PACC,
  mode = "satterthwaite") %>%
  emmeans(specs = "TX", by = "ADURW") %>%
  as_tibble() %>%
  ggplot(aes(x=ADURW, y=emmean)) +
  geom_line(aes(color=TX)) +
  geom_ribbon(aes(ymin = lower.CL, ymax = upper.CL, fill = TX), alpha = 0.2) +
  scale_x_continuous(breaks = seq(0, 312, by=24)) +
  ylab("Mean PACC with 95% confidence intervals") +
  xlab("Weeks since Randomization") +
  theme(legend.position = 'inside', legend.position.inside = c(0.2, 0.2))
```


Figure 2: Mean PACC per treatment group over time as estimated by spline model. Shaded region depicts 95% confidence intervals.

References

Donohue, Michael C, Oliver Langford, Philip S Insel, Christopher H van Dyck, Ronald C Petersen, Suzanne Craft, Gopalan Sethuraman, Rema Raman, Paul S Aisen, and Alzheimer's Disease Neuroimaging Initiative. 2023. "Natural Cubic Splines for the Analysis of Alzheimer's Clinical Trials." *Pharmaceutical Statistics* 22 (3): 508–19.

Donohue, Michael C, Reisa A Sperling, David P Salmon, Dorene M Rentz, Rema Raman, Ronald G Thomas, Michael Weiner, Paul S Aisen, et al. 2014. "The Preclinical Alzheimer Cognitive Composite: Measuring Amyloid-Related Decline." JAMA Neurology 71 (8): 961–70.

R Core Team. 2019. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org.

Sperling, Reisa A, Michael C Donohue, Rema Raman, Michael S Rafii, Keith Johnson, Colin L Masters, Christopher H van Dyck, et al. 2023. "Trial of Solanezumab in Preclinical Alzheimer's Disease." *New England Journal of Medicine* 389 (12): 1096–1107.