Neural Network

Tuan Nguyen - Al4E

Machine Learning

Linear regression

Logistic regression

Logistic regression

Logistic regression

How?

- 1. Define the problem
- 2. Visualize the data
- 3. Choose the model
- 4. Define loss function
- 5. Minimize loss function
- 6. Use the model to predict new data.

XOR problem

How to solve XOR problem

A XOR B = (NOT(A AND B) AND (A OR B))

Α	В	A XOR B	A AND B	NOT(A AND B)	A OR B	(NOT(A AND B) AND (A OR B))
0	0	0	0	1	0	0
0	1	1	0	1	1	1
1	0	1	0	1	1	1
1	1	0	1	0	1	0

AND

NOT AND

AND

NOT AND

OR

XOR

A XOR B = (NOT(A AND B) AND (A OR B))

Neural network inspiration

Neuron Anatomy

Neural network

Notation

Feedforward

Với node thứ i trong layer l có bias $b_i^{(l)}$ thực hiện 2 bước:

- Tính tổng linear: $z_i^{(l)}=\sum_{j=1}^{l^{(l-1)}}a_j^{(l-1)}*w_{ji}^{(l)}+b_i^{(l)}$ Áp dụng activation function: $a_i^{(l)}=\sigma(z_i^{(l)})$

Feedforward

$$\begin{split} z^{(1)} &= \begin{bmatrix} z_1^{(1)} \\ z_2^{(1)} \\ z_3^{(1)} \end{bmatrix} = \begin{bmatrix} a_1^{(0)} * w_{11}^{(1)} + a_2^{(0)} * w_{21}^{(1)} + a_3^{(0)} * w_{31}^{(1)} + b_1^{(1)} \\ a_1^{(0)} * w_{12}^{(1)} + a_2^{(0)} * w_{22}^{(1)} + a_3^{(0)} * w_{32}^{(1)} + b_2^{(1)} \\ a_1^{(0)} * w_{13}^{(1)} + a_2^{(0)} * w_{23}^{(1)} + a_3^{(0)} * w_{33}^{(1)} + b_3^{(1)} \end{bmatrix} \\ &= (W^{(1)})^T * a^{(0)} + b^{(1)} \\ a^{(1)} &= \sigma(z^{(1)}) \\ z^{(2)} &= (W^{(2)})^T * a^{(1)} + b^{(2)}, a^{(2)} = \sigma(z^{(2)}) \end{split}$$

Feedforward

$$z^{(2)} = (W^{(2)})^T * a^{(1)} + b^{(2)}$$
 $a^{(2)} = \sigma(z^{(2)})$
 $z^{(3)} = (W^{(3)})^T * a^{(2)} + b^{(3)}$
 $\hat{y} = a^{(3)} = \sigma(z^{(3)})$

$$a^{(0)}$$
 $z^{(1)}$ $a^{(1)}$ $z^{(2)}$ $a^{(2)}$ $z^{(3)}$ $a^{(3)} = \hat{y}$

Dataset

Lương	Thời gian làm việc		
10	1		
5	2		
6	1.8		
7	1		

thì $n=4, d=2, x_1^{[1]}=10, x_2^{[1]}=1, x_1^{[3]}=6, x_2^{[2]}=2.$

$$X = \begin{bmatrix} x_1^{[1]} & x_2^{[1]} & \dots & x_d^{[1]} \\ x_1^{[2]} & x_2^{[2]} & \dots & x_d^{[2]} \\ \dots & \dots & \dots & \dots \\ x_1^{[n]} & x_2^{[n]} & \dots & x_d^{[n]} \end{bmatrix} = \begin{bmatrix} -(x^{[1]})^T - \\ -(x^{[2]})^T - \\ \dots & \dots \\ -(x^{[n]})^T - \end{bmatrix}$$

$$Z^{(i)} = \begin{bmatrix} z_1^{(i)[1]} & z_2^{(i)[1]} & \dots & z_{l^{(i)}}^{(i)[1]} \\ z_1^{(i)[2]} & z_2^{(i)[2]} & \dots & z_{l^{(i)}}^{(i)[2]} \\ \dots & & & & \\ z_1^{(i)[n]} & z_2^{(i)[n]} & \dots & z_{l^{(i)}}^{(i)[n]} \end{bmatrix} = \begin{bmatrix} -(z^{(i)[1]})^T - \\ -(z^{(i)[2]})^T - \\ \dots & & \\ -(z^{(i)[n]})^T - \end{bmatrix}$$

$$\begin{split} Z^{(1)} &= \begin{bmatrix} (z^{(1)[1]})^T \\ (z^{(1)[2]})^T \\ \dots \\ (z^{(1)[n]})^T \end{bmatrix} = \begin{bmatrix} (x^{[1]})^T * w^{(1)} + (b^{(1)})^T \\ (x^{[2]})^T * w^{(1)} + (b^{(1)})^T \\ \dots \\ (x^{[n]})^T * w^{(1)} + (b^{(1)})^T \end{bmatrix} \\ &= X * W^{(1)} + \begin{bmatrix} (b^{(1)})^T \\ (b^{(1)})^T \\ \dots \\ (b^{(1)})^T \end{bmatrix} \\ &= X * W^{(1)} + b^{(1)} \end{split}$$

$$A^{(1)} = \sigma(Z^{(1)})$$

$$Z^{(2)} = A^{(1)} * W^{(2)}, A^{(2)} = \sigma(Z^{(2)})$$

$$Z^{(3)} = A^{(2)} * W^{(3)}$$

$$\hat{Y} = A^{(3)} = \sigma(Z^{(3)})$$

Why non-linear activation?

Suppose we use linear activation function, what is the output?

Sigmoid

Tanh

Relu

y = max(x, 0)

Leaky ReLU

Training set/Validation set/Test set

Softmax function

One-hot encoding

Cross-entropy loss

$$L = -\sum_{i=1}^{10} y_i * log(\hat{y_i})$$

Similar to binary_crossentropy

Backpropagation

Q&A

The end

