Funções reais de variável real

Definição

Chamamos função real de variável real a uma função $f: X \longrightarrow Y$, em que X e Y são subconjuntos não vazios de \mathbb{R} .

Definição

Dado um subconjunto X, não vazio, de \mathbb{R} , diz-se que X é simétrico relativamente a 0 se X = -X.

Definição

Seja $f: X \longrightarrow Y$ uma função. Diz-se que:

- ▶ f é uma função par se X é simétrico relativamente a 0 e $\forall x \in X \ f(-x) = f(x)$;
- ▶ f é uma função ímpar se X é simétrico relativamente a 0 e $\forall x \in X$ f(-x) = -f(x).

Definição

Dadas duas funções $f, g: X \longrightarrow \mathbb{R}$, define-se

ightharpoonup soma de f e g:

$$f+g: X \longrightarrow \mathbb{R}$$

 $x \longmapsto f(x) + g(x)$

▶ produto de f e g:

$$fg: X \longrightarrow \mathbb{R}$$

 $x \longmapsto f(x)g(x)$

▶ quociente de f e g (supondo que $g(x) \neq 0$, $\forall x \in X$):

$$\frac{f}{g}: X \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{f(x)}{g(x)}$$

Definição

Dada uma função $f: X \longrightarrow Y$, diz-se que

- ▶ f é majorada se $\exists M \in \mathbb{R} \ \forall x \in X$ $f(x) \leq M$;
- ▶ f é minorada se $\exists m \in \mathbb{R} \ \forall x \in X$ $m \leq f(x)$;
- ightharpoonup f é **limitada** se f é majorada e minorada.

Definicão

Uma função $f: X \longrightarrow Y$ diz-se

estritamente crescente se

$$\forall x_1, x_2 \in X \qquad x_1 < x_2 \Longrightarrow f(x_1) < f(x_2);$$

- ▶ crescente se $\forall x_1, x_2 \in X$ $x_1 \leq x_2 \Longrightarrow f(x_1) \leq f(x_2)$;
- ▶ estritamente decrescente se

$$\forall x_1, x_2 \in X \qquad x_1 < x_2 \Longrightarrow f(x_1) > f(x_2);$$

decrescente se

$$\forall x_1, x_2 \in X \qquad x_1 \le x_2 \Longrightarrow f(x_1) \ge f(x_2);$$

- **monótona** se for crescente ou decrescente;
- estritamente monótona se for estritamente crescente ou estritamente decrescente.

Definicão

Seja $f: X \longrightarrow Y$ uma função. Um ponto $x_0 \in X$ diz-se

▶ um ponto de máximo local ou maximizante local de f se

$$\exists \, \delta > 0 \,\, \forall \,\, x \in \,]x_0 - \delta, x_0 + \delta[\,\, \cap X \,\, f(x) \leq f(x_0)$$

 $e\ f(x_0)\ diz$ -se máximo local $de\ f$;

▶ um ponto de mínimo local ou minimizante local de f se

$$\exists \, \delta > 0 \,\, \forall \,\, x \in \,]x_0 - \delta, x_0 + \delta[\,\, \cap X \qquad f(x_0) \leq f(x)$$

e $f(x_0)$ diz-se mínimo local de f;

▶ um ponto de máximo local estrito de f se

▶ um **ponto de mínimo local estrito** de f se

 $\exists \, \delta > 0 \,\, \forall \, x \in |x_0 - \delta, x_0 + \delta| \cap X \setminus \{x_0\} \quad f(x_0) < f(x)$

e $f(x_0)$ diz-se **mínimo local estrito** de f;

e $f(x_0)$ diz-se **máximo local estrito** de f;

 $\exists \delta > 0 \ \forall x \in]x_0 - \delta, x_0 + \delta[\cap X \setminus \{x_0\}] \quad f(x) < f(x_0)$

um ponto de máximo absoluto ou maximizante absoluto de f se

$$\forall x \in X \qquad f(x) \le f(x_0),$$

- e $f(x_0)$ diz-se **máximo absoluto** de f ;
- ▶ um ponto de mínimo absoluto ou minimizante absoluto de f) se

$$\forall x \in X \qquad f(x_0) \le f(x),$$

- e $f(x_0)$ diz-se **mínimo absoluto** de f;
- um ponto de extremo (local ou absoluto) se for ponto de máximo ou de mínimo (local ou absoluto) de f.

A partir de uma representação gráfica da função f podemos obter uma representação gráfica de f^{-1} , procedendo como se indica na figura seguinte:

Nota

Se uma função $f: X \longrightarrow Y$ real de variável real é injectiva mas não sobrejectiva, é usual falar da inversa de f. Na realidade, cometemos um abuso de notação, chamando ainda f à função bijectiva que se obtém substituindo Y pelo contradomínio de f.

Definição

Sejam $f: X \longrightarrow Y$ e $g: A \longrightarrow Y$, funções tais que $A \subseteq X$ e g(x) = f(x), $\forall x \in A$. A função g diz-se uma **restrição** de f e denota-se $g = f_{|_A}$. A função f diz-se um **prolongamento** de g.