Parsing Techniques for Contex-Free Path Querying

Semyon Grigorev

s.v.grigoriev@spbu.ru Semen.Grigorev@jetbrains.com

JetBrains Research, Programming Languages and Tools Lab Saint Petersburg University

April 05, 2019

Formal language constrained path querying

- Finite directed edge-laballed graph $\mathcal{G} = (V, E, L)$
- The path is a world over L:

$$\omega(p) = \omega(v_0 \xrightarrow{l_0} v_1 \xrightarrow{l_1} \dots \xrightarrow{l_{n-1}} v_n) = l_0 \cdot l_1 \cdot \dots \cdot l_{n-1}$$

• The language \mathcal{L} (over L)

Formal language constrained path querying

- Finite directed edge-laballed graph $\mathcal{G} = (V, E, L)$
- The path is a world over L:

$$\omega(p) = \omega(v_0 \xrightarrow{l_0} v_1 \xrightarrow{l_1} \dots \xrightarrow{l_{n-1}} v_n) = l_0 \cdot l_1 \cdot \dots \cdot l_{n-1}$$

- The language \mathcal{L} (over L)
- Reachability problem: $Q = \{(v_i, v_j) \mid \exists p = v_i \dots v_j, \omega(p) \in \mathcal{L}\}$
- Path querying problem: $Q = \{p \mid \omega(p) \in \mathcal{L}\}$
 - ▶ Single path, all paths, shortest path . . .

Context-Free path querying

- ullet is a context-free language
- $G_{\mathcal{L}} = (N, \Sigma, R, S)$
- Reachability problem: $Q = \{(v_i, v_j) \mid \exists p = v_i \dots v_j, S \xrightarrow[G_i]{*} \omega(p)\}$
- Path querying problem: $Q = \{p \mid \omega(p) \in \mathcal{L}\}$

Example of CFPQ

Input graph

 $0: S \rightarrow a S b$ $1: S \rightarrow Middle$

 $2: Middle \rightarrow ab$

Query: language $\{a^nb^n \mid n > 0\}$

Paths: $2 \xrightarrow{a} 0 \xrightarrow{b} 3$ $1 \xrightarrow{a} 2 \xrightarrow{a} 0 \xrightarrow{b} 3 \xrightarrow{b} 0$ $p_1 = 0 \xrightarrow{a} 1 \xrightarrow{a} 2 \xrightarrow{a} 0 \xrightarrow{b} 3 \xrightarrow{b} 0 \xrightarrow{b} 3$ $p_2 = 0 \xrightarrow{a} 1 \xrightarrow{a} 2 \xrightarrow{a} 0 \xrightarrow{a} 1 \xrightarrow{a} 2 \xrightarrow{a} 0 \xrightarrow{b} 3 \xrightarrow{b} 0 \xrightarrow{b} 3 \xrightarrow{b} 0 \xrightarrow{b} 3 \xrightarrow{b} 0$

Applications

- Graph data bases querying Yann
- Static code analysis
 Reps CFL reachability
- CFL editing distance/Error recovery Aho

Graph data bases querying

Navigation through a graph

- Are nodes A and B on the same level of hierarchy?
- Is there a path of form Upⁿ Downⁿ?
- Find all paths of form
 Upⁿ Downⁿ which start from the node A

Static code analysis

```
int id(int u)
 v = u;
  return v;
int main()
 //taint
  int x;
  int z, y;
 //untaint
  int t;
  z = id(x);
  t = id(y);
```


Error recovery

• !!!!

Input graph

 $0: S \rightarrow a S b$

 $1: \ S \rightarrow \textit{Middle}$

 $2: Middle \rightarrow a b$

Grammar

Input graph

 $0: S \to a S b$

 $1: \ S \rightarrow \textit{Middle}$

2 : $Middle \rightarrow a b$ Grammar

Query result (SPPF)

 $0: S \rightarrow a S b$ $1: S \rightarrow Middle$

2 : $Middle \rightarrow a b$ Grammar

Input graph

Query result (SPPF)

Tree for p_1

 $0: S \rightarrow a S b$ $1: S \rightarrow Middle$

2 : $Middle \rightarrow a b$ Grammar

Input graph

Query result (SPPF)

Tree for p_1

Tree for p_2

Paths extraction

Path: $0 \xrightarrow{a} 1 \xrightarrow{a} 2 \xrightarrow{a} 0 \xrightarrow{b} 3 \xrightarrow{b} 0 \xrightarrow{b} 3$

Bar-Hillel theorem

Context-free languages are closed under intersection with regular languages

Regular language

 $0:\ S\to a\ S\ b$

 $1: \ S \rightarrow \textit{Middle}$

 $2: Middle \rightarrow a b$

Context-free language

Bar-Hillel theorem

Context-free languages are closed under intersection with regular languages

 $0: S \to a S b$ $1: S \to Middle$

 $2: Middle \rightarrow a b$

Regular language

Context-free language

Bar-Hillel theorem

Context-free languages are closed under intersection with regular languages

 $0: S \rightarrow a S b$

 $1: S \rightarrow \textit{Middle}$

2: $Middle \rightarrow a b$

Regular language

Context-free language

$$(0, S, 3) \rightarrow (0, a, 1) (1, S, 0) (0, b, 3)$$

$$(1, S, 0) \rightarrow (1, a, 2) (2, S, 3) (3, b, 0)$$

$$(2, S, 3) \rightarrow (2, a, 0) (0, S, 0) (0, b, 3)$$

$$(2, S, 3) \rightarrow (2, Middle, 3)$$

$$(0, S, 0) \rightarrow (0, a, 1) (1, S, 3) (3, b, 0)$$

$$(1, S, 3) \rightarrow (1, a, 2) (2, S, 0) (0, b, 3)$$

$$(2, S, 0) \rightarrow (2, a, 0) (0, S, 3) (3, b, 0)$$

$$(0, Middle, 3) \rightarrow (2, a, 0) (0, b, 3)$$

Our experiments

- Generalized LR for CFPQ
 - Based on Right Nulled Generalized LR: Scott E., Johnstone A. "Right Nulled GLR Parsers"
 - Ekaterina Verbitskaia, Semyon Grigorev, and Dmitry Avdyukhin.
 "Relaxed Parsing of Regular Approximations of String-Embedded Languages" 2015

Our experiments

- Generalized LR for CFPQ
 - Based on Right Nulled Generalized LR: Scott E., Johnstone A. "Right Nulled GLR Parsers"
 - Ekaterina Verbitskaia, Semyon Grigorev, and Dmitry Avdyukhin.
 "Relaxed Parsing of Regular Approximations of String-Embedded Languages" 2015
- Generalized LL for CFPQ (GLL)
 - Based on Generalized LL: Scott E., Johnstone A. "GLL parsing"
 - Semyon Grigorev and Anastasiya Ragozina. "Context-free path querying with structural representation of result." 2017

Query language integration

How to integrate query language into general-purpose programming language?

- Transparency
- Compositionality
- Static error checking

Query language integration

How to integrate query language into general-purpose programming language?

- Transparency
- Compositionality
- Static error checking
- String-embedded languages
- ORMs
- Combinators

Combinators for CFPQ

- Implemented in Scala
- Based on Meerkat parser combinator library: Anastasia Izmaylova, Ali Afroozeh, and Tijs van der Storm. "Practical, general parser combinators" 2016
- Ekaterina Verbitskaia, Ilya Kirillov, Ilya Nozkin, Semyon Grigorev. "Parser Combinators for Context-Free Path Querying" 2019

Supported combinators

${\sf Combinator}$	Description
a~b	sequential parsing: a then b
a b	choice: a or b

Supported combinators

Combinator	Description				
a~b	sequential parsing: a then b				
a b	choice: a or b				
a ?	optional parsing: a or nothing				
a *	repetition of zero or more a				
a +	repetition of at least one a				

Supported combinators

Combinator	Description					
a ~ b	sequential parsing: a then b					
a b	choice: a or b					
a ?	optional parsing: a or nothing					
a *	repetition of zero or more a					
a +	repetition of at least one a					
a ^ f	apply f function to a if a is a token					
a ^^	capture output of a if a is a token					
a & f	apply f function to a if a is a parser					
a &&	capture output of a if a is a parser					

A set of functions for edges and vertices values handling.

```
def LV(labels: String*) =
  V(e => labels.forall(e.hasLabel))
def outLE(label:String) = outE(_.label() == label)
def inLE (label:String) = inE (_.label() == label)
```

Basic example

Is there a path from vertex 0 to vertex 3 which has form $a^n b^n$?

Example of generalization

```
def sameGen(brs) =
  reduceChoice(
    brs.map {case (lbr, rbr) =>
        lbr ~ syn(sameGen(brs).?) ~ rbr})
```

Example of generalization

```
def sameGen(brs) =
  reduceChoice(
    brs.map {case (lbr, rbr) =>
        lbr ~ syn(sameGen(brs).?) ~ rbr})

val query1 = syn(sameGen(List(("a", "b"))))

val query2 = syn(
  sameGen(List((p1, p2),("(",")"))) ~ p3)
```

Example of values handling

```
Actors who played in some film
In Cypher
  MATCH (m: Movie { title : 'Forrest Gump'})
        <-[:ACTS\ IN]-(a:Actor)
  RETURN a.name, a.birthplace;
In Meerkat
  val query =
    syn((
       (LV("Movie")::V( .title == "Forrest_Gump")) \sim
       inLE("ACTS IN") ~
      syn(LV("Actor") ^
             (e \Rightarrow (e.name, e.birthplace)))) \&\&)
  executeQuery(query, input)
```

Limitations

- Overhead for the regular constraints
- Not exactly clear how to compute arbitrary semantics for the paths
 - ▶ Paths can be lazily extracted, but in what order?
 - Is it possible to compute some semantics in case of cycles?

The algorithm

Algorithm Context-free recognizer for graphs

- 1: **function** CONTEXTFREEPATHQUERYING(D, G)
- 2: $n \leftarrow$ the number of nodes in D
- 3: $E \leftarrow$ the directed edge-relation from D
- 4: $P \leftarrow$ the set of production rules in G
- 5: $T \leftarrow$ the matrix $n \times n$ in which each element is \emptyset
- 6: for all $(i, x, j) \in E$ do \triangleright Matrix initialization
- 7: $T_{i,i} \leftarrow T_{i,i} \cup \{A \mid (A \rightarrow x) \in P\}$
- 8: **while** matrix T is changing **do**
- 8: Write matrix i is changing do
- 9: $T \leftarrow T \cup (T \times T)$ \triangleright Transitive closure T^{cf} calculation
- 10: **return** *T*

Transitive Closure

- Subset multiplication, $N_1, N_2 \subseteq N$
 - ▶ $N_1 \cdot N_2 = \{A \mid \exists B \in N_1, \exists C \in N_2 \text{ such that } (A \rightarrow BC) \in P\}$
- Subset addition: set-theoretic union.
- Matrix multiplication
 - ▶ Matrix of size $|V| \times |V|$
 - Subsets of N are elements
 - $ightharpoonup c_{i,j} = \bigcup_{k=1}^n a_{i,k} \cdot b_{k,j}$
- Transitive closure
 - $a^{cf} = a^{(1)} \cup a^{(2)} \cup \cdots$
 - $a^{(1)} = a$
 - $a^{(i)} = a^{(i-1)} \cup (a^{(i-1)} \times a^{(i-1)}), i \ge 2$

Performance comparison setup

We use graphs from the classical set of ontologies: *skos, foaf, univ-bench, wine, pizza, etc.*

Queries are classical variants of the same-generation query

```
\begin{array}{llll} 0: & \mathsf{S} \to subClassOf^{-1} \; \mathsf{S} \; subClassOf: & \mathsf{S} \to \mathsf{B} \; subClassOf \\ 1: & \mathsf{S} \to type^{-1} \; \mathsf{S} \; type & 1: & \mathsf{S} \to subClassOf \\ 2: & \mathsf{S} \to subClassOf^{-1} \; subClassOf2: & \mathsf{B} \to subClassOf^{-1} \; \mathsf{B} \; subClassOf \\ 3: & \mathsf{S} \to type^{-1} \; type & 3: & \mathsf{B} \to subClassOf^{-1} \; subClassOf \\ \end{array}
```

Query 1

Query 2

Performance comparison results

Nº	#V	#E	Query 1 (ms)			Query 2 (ms)	
			CYK ¹	GLL	GPGPU	GLL	GPGPU
1	144	323	1044	10	12	1	1
2	129	351	6091	19	13	1	0
3	131	397	13971	24	30	1	10
4	179	413	20981	25	15	11	9
5	337	834	82081	89	32	3	6
6	291	685	515285	255	22	66	2
7	341	711	420604	261	20	45	24
8	671	2604	3233587	697	24	29	23
9	733	2450	4075319	819	54	8	6
10	6224	11840	_	1926	82	167	38
11	5864	19600	_	6246	185	46	21
12	5368	20832	_	7014	127	393	40

¹Zhang, et al. "Context-free path queries on RDF graphs."

Directions for research

- Parallel and distributed parsing
- O(BMM) complexity
- Incremental parsing