111110100010010 Термин Informatik ввёл немецкий специалист Карл Штейнбух в статье Informatik: Automatische Informationsverarbeitung (Информатика: Автоматическая обработка информации) 1957 года Термин «Computer science» («Компьютерная наука») появился в 1959 году в научном журнале Communications of the ACM Информатика методология алгоритмы и компьютерные теория вычислений структуры программирования элементы и данных и языков архитектура разработка программного компьютерные сети и искусственный интеллект обеспечения телекоммуникации распределённые системы управления параллельные вычисления базами данных вычисления

компьютерная графика

Курс «Основы программирования». НГУ, ФФ, 2017

взаимодействия

человек- компьютер

Лысаков К.Ф.

операционные системы

Десятичная система счисления

Существует версия, что она зародилась в **Китае**. Есть также предположение, что ее изобрел **Аль-Хорезми**. Распространенная версия состоит в том, что история возникновения десятичной системы началась <u>в Индии</u>.

Европейцы заимствовали ее у арабов, и назвали арабской. Сами арабы называют эти цифры индийскими.

Іочтовые конверть

В **1642** году французский ученый **Блез Паскаль** создал первую вычислительную машину («**суммирующую**»).

Механическое счетное колесо имело десять зубьев.

1946 году Дж. Преспер Экерт и Джон Мочли создали электронную цифровую машину ЭНИАК

- Десятичная система счисления
- 17 468 ламп
- Частота 100 000 импульсов / сек
- Размеры 6 х 26 метров

Двоичная система счисления

«диадическая система»

Современная двоичная система была полностью описана **Лейбницем в XVII веке** в работе Explication de l'Arithmétique Binaire.

«вычисление с помощью двоек … является для науки основным и порождает новые открытия … При сведении чисел к простейшим началам, каковы 0 и 1, везде появляется чудесный порядок»

В 1937 году Клод Шеннон представил к защите кандидатскую диссертацию «Символический анализ релейных и переключательных схем в МІТ», в которой булева алгебра и двоичная арифметика были использованы применительно к электронным реле и переключателям. На диссертации Шеннона основана вся современная цифровая техника.

На фронтоне здания Института вычислительных технологий СО РАН присутствует двоичное число 1000110, равное 70(10) что символизирует дату постройки здания (1970 год).

Лампы - транзисторы

Электронная лампа, радиолампа — вакуумный электронный прибор, работающий за счёт управления интенсивностью потока электронов, движущихся в вакууме или разрежённом газе между электродами.

23 декабря 1947 г. три учёных в лабораториях компании **Bell Labs**, Уильям Шокли, Уолтер Браттейн и Джон Бардин изобрели точечный транзисторный усилитель.

Транзистор (англ. transistor), полупроводниковый триод — радиоэлектронный компонент, позволяющий входным сигналом управлять током в электрической цепи.

В 1956 году за изобретение биполярного транзистора удостоено Нобелевской премии по физике.

В 1959 г. Роберт Нойс (будущий основатель фирмы Intel) изобрел способ, позволяющий создавать на одной пластине кремния транзисторы и все необходимые соединения между ними. Полученные электронные схемы стали называться **интегральными схемами**, **или чипами**.

Компьютеры - становление

1940 - 1948 - разработка теории информации Клода Шеннона, нашедшей применение в современных высокотехнологических системах связи. Шеннон внес огромный вклад в теорию вероятностных схем, теорию автоматов и теорию систем управления — области наук, входящие в понятие «кибернетика». В 1948 году предложил использовать слово «бит» для обозначения наименьшей единицы информации.

Середина 1940х - **Архитектура фон Неймана** — принцип совместного хранения команд и данных в памяти компьютера.

«машина фон Неймана» - принцип хранения данных и инструкций в одной памяти.

«Марк I» (автоматический вычислитель, управляемый последовательностями) — первый программируемый компьютер. Разработан и построен в 1941 году по контракту с <u>IBM</u> Говардом Эйкеном на основе идей Чарльза Бэббиджа.

Формально запущен в Гарвардском университете 7 августа 1944 г.

765 000 деталей, длина 17 м, высота 2,5 м, вес 4,5 тн. Общая протяжённость соединительных проводов 800 км. Вычислительные модули синхронизировались при помощи 15-м. вала, приводимого в движение двигателем (5 л. с.)

Компьютеры – поколения

<u>Первое поколение ЭВМ</u> - ламповые машины. Производительность до 20 000 оп. / сек. Для ввода программ и данных использовались перфоленты и перфокарты.

Второе поколение ЭВМ — машины на транзисторной элементной базе. Производительность до 100 000 оп. / сек. Развитие магнитных лент в качестве носителей информации

Третье поколение ЭВМ (вторая половина 1960-х) — машины на базе интегральных схем. Появился мультипрограммный режим. Производительность более 1 млн. оп. / сек. Появление магнитных дисков и дисплеев. Развитие АСУ и САПР.

<u>Четвертое поколение ЭВМ (с 1970-х)</u> – вычислительные машины на базе микропроцессора.

РОЗНИЧНАЯ ПРОДАЖА!

Современные «компьютеры»

- Intel® Core™ i7-7700K
 - 4 200 МГц
 - 4 ядра
 - 8 МБ Кэш
 - Intel® HD Graphics 630
- 32 ГБ RAM
- 4 ТБ (HDD) + 1000 МБ (SSD)

- Exynos 8 Octa 8890
 - 1800 MГц
 - 8 ядер
 - 8 МБ Кэш
 - Mali-T880 MP12 GPU
- 4 ГБ RAM

Программирование ЭВМ

<u>Перфокарты и перфоленты</u> – носитель информации в виде бумажной ленты с отверстиями.

Программа для ЭВМ I поколения зависела от модели.

Составление программы перестало зависеть от модели машины, сделалось проще, понятнее, доступнее. Программирование как элемент грамотности стало распространяться среди людей с высшим образованием.

Фортра́н (Fortran, FORmula TRANslator) — первый язык программирования высокого уровня. Создан в период с 1954 по 1957 год группой программистов под руководством **Джона Бэкуса** в корпорации **IBM**.

Имеется большое количество написанных на Фортране различных математических библиотек для матричной алгебры и решения систем линейных уравнений, библиотеки для решения дифференциальных уравнений, интегральных уравнений и их систем, аппроксимации функций, специальных функций, быстрых преобразований Фурье, математической статистики, и других математических дисциплин. Большинство таких библиотек является фактически достоянием человечества: они доступны в исходных кодах, хорошо документированы, отлажены и весьма эффективны.

do k=1,10 do j=1,20 do i=1,100 arr(i,j,k)=25 end do; end do; end do

Языки программирования

Jobs Tractor language trends July 2013

Language	Jobs
Java	272
PHP	261
Objective-C	177
Java (Android)	108
SQL	98
JavaScript	88
Ruby	87
C#	80
Python	42
C++	38
ASP.net	24
ActionScript	23
С	19
Perl	8
Scala	6

Язык программирования С (Си)

Язык С (Си) — компилируемый статически типизированный язык программирования общего назначения, разработанный в **1969—1973** годах сотрудником Bell Labs **Деннисом Ритчи**. Первоначально был разработан для реализации операционной системы **UNIX**.

Язык программирования Си оказал существенное влияние на развитие индустрии программного обеспечения, а его синтаксис стал основой для таких языков, как C++, C#, Java и Objective-C.

Язык Си уникален с той точки зрения, что именно он стал первым языком высокого уровня, всерьёз потеснившим ассемблер в разработке системного программного обеспечения. Он остаётся языком, реализованным на максимальном количестве аппаратных платформ, и одним из самых популярных языков программирования.

Недостатки язык Си:

- достаточно высокий порог вхождения, что затрудняет его использование в обучении в качестве первого языка программирования.
- Является небезопасным и может приводить написанию запутанного кода.
- Почти за 50 лет существования, язык успел несколько устареть, и в нём достаточно проблематично использовать многие современные приёмы и парадигмы программирования.

```
int a;
double b;

scanf ("%d", &a);
printf("%d", a);

scanf ("%lf", &b);
printf("%f", b);
```

Программирование и физика

Физика — это наука о природе (естествознание) в самом общем смысле (часть природоведения). Предмет её изучения составляет материя (в виде вещества и полей) и наиболее общие формы её движения, а также фундаментальные взаимодействия природы, управляющие движением материи.

Физика тесно связана с математикой: математика предоставляет аппарат, с помощью которого физические законы могут быть точно сформулированы. Физические теории почти всегда формулируются в виде математических уравнений, причём используются более сложные разделы математики, чем обычно в других науках. И наоборот, развитие многих областей математики стимулировалось потребностями физической науки.

Теоретическая физика

Прикладная физика

компьютерная графика

САПР

взаимодействия человек- компьютер

компьютерные сети и телекоммуникации

Курс «Основы программирования»

Цели дисциплины «Основы программирования»:

- получение базовых знаний об устройстве ПК;
- изучение языка программирования С;
- приобретение навыков написания простых программ;
- усвоение основных принципов структурного программирования.

Трудоемкость:

- занятия лекционного типа 16 часов;
- лабораторные работы 48 часов;
- самостоятельная работа 44 часа.

Для достижения поставленной цели выделяются следующие задачи:

- обзор эволюции ПК и его архитектуры;
- изучение основ языка программирования С;
- знакомство с визуальной средой разработки и отладки программ;
- обзор существующих систем счисления, принципов хранения различных типов данных и бинарных операций;
- усвоение основных принципов структурного программирования;
- освоение особенностей работы с динамической памятью, указателями и ссылками.

Знать:

- архитектуру и устройство ПК;
- основы структурного подхода в программировании;
- принципы построения программ на языке С.

Уметь:

- применять различные типы данных в программах;
- использовать различные системы счисления и бинарные операции.

Владеть:

- навыками реализации программ на языке С;
- использованием динамической памяти, указателями и ссылками;
- навыками разработки и отладки программ.

Курс «Основы программирования»

	Тема лекций	Неделя	Дата
1	Информатика и программирование: история и настоящее. Программирование в физике.	2	16 февраля
	Устройство компьютера. Основы языка С.		
2	Локальные и глобальные переменные. Пространство имен. Функции. Массивы данных.	4	2 марта
	Динамическая память и указатели. Выделение и освобождение памяти.		
3	Символьные тип данных и строки. Таблица ASCII. Системы счисления. Бинарные операции.	6	16 марта
	Хранение данных в ПК. Точность и погрешность.		
4	Работа с файлами. Структуры данных. Многомерные массивы. Рекурсивные функции. Стек.	8	30 марта
	Генераторы случайных чисел.		
5	Списки данных. Деревья. Системы счисления.	10	13 апреля
6	Обзор стандартных библиотек языка С. Математические функции, функции работы со строками.	12	27 апреля
7	Рассказ про кафедры АФТИ и ФТИ.	14	11 мая
	Контрольная работа.		

Удовлетворительно

- 1. Программа решения квадратного уравнения (усвоение оператора ветвления и контроля типов).
- 2. Печать всех простых чисел не превышающих N (усвоение вложенных операторов цикла)
- 3. Вычислить число π с заданной точностью (кол-во знаков после запятой), используя ряд Грегори
- 4. Программа для решения уравнения вида F(x) = 0 методом Ньютона.
- 5. Вычисление интеграла функции F(x) методом трапеций
- 6. Программа по вычислению максимума, минимума, среднего значения, среднеквадратичного отклонения во введенном статическом массиве
- 7. Программа по вычислению максимума, минимума, среднего значения, среднеквадратичного отклонения во введенном динамическом массиве
- 8. Работа с матрицами 3х3

ХОРОШО

- 1. Сортировка введенного динамического массива
- 2. Обработка текста введенного пользователем
- 3. Реализация функции ввода текста произвольного размера: char* GetTextromConsole()

ОТЛИЧНО

- 1. Телефонная книга
- 2. (*) Работа с матрицами NxM
 - (*) «Бродилка» в случайном лабиринте

Курс «Основы программирования». НГУ, ФФ, 2017

Лысаков К.Ф.

Цикл «Информатика» на ФФ НГУ

Основы программирования

Кафедры АФТИ / ФТИ

Основы программного конструирования

Основы объектно-ориентированного программирования

Практическое программирование

Компьютерная графика

Компьютерные архитектуры

Операционные системы

Компьютерные сети

Базы данных

Физические основы микроэлектроники

Обработка сигналов и изображений

Физические основы информатики

Практическое программирование

Моделирование физических процессов

ТСАНИ

(технические средства автоматизации научных исследований)

Объектноориентированное программирование (C++)

Курс «Основы программирования». НГУ, ФФ, 2017

Лысаков К.Ф.