HW-2

MS -Business Intelligence & Analytics Fall 2015 BIA – 654 A

January 31, 2015

Mohit Ravi Ghatikar CWID - 10405877

Ethics Statement

I	pledge	on	my	honor	that	I	have	not	given	or	received	any	unautho	rized	assistan	ce on	this
ass	signmen	ıt/exa	amina	ation. I	furth	ner	pledge	e tha	t I hav	e n	ot copied	any	material	from	a book,	article.	, the
Internet or any other source except where I have expressly cited the source.																	

Signature	Mohit Ravi Ghatikar	Date: 01/31/2015

Assignment - 2

1a)

The sample size (N) = 750

S = 0.80 and $\bar{x} = 1.86$.

For a 95% confidence interval, $Z_{a/2} = 1.96$.

Since the sample size is large enough, Confidence Interval is: $\overline{x} + Z_{a/2} * (sigma / (N)^{0.5})$

We can substitute the Standard deviation of the population with sample standard deviation.

Therefore, C.I =
$$1.86 + 1.96 * (0.80 / (750)^{0.5})$$

= $1.86 + 0.572$

Average number of television sets lies between 1.288 and 1.917 with a 95% confidence interval.

1b)

Since sample size is less than 50, we need to know if the sample is coming from a population which is normally distributed. The assumption of normality in the population isn't mentioned in the question. Therefore we cannot calculate the confidence interval.

2a)

Here N=21

 \bar{x} = 5.92 and s = 1.413

Since the sample size is less, we need to confirm if this sample is coming from a population that is normally distributed. To check this, we run the shapiro-wilk test and inspect the Q-Q plot.

Tests for Normality								
Test	St	atistic	p Value					
Shapiro-Wilk	W	0.948231	Pr < W	0.3153				
Kolmogorov-Smirnov	D	0.140947	Pr > D	>0.1500				
Cramer-von Mises	W-Sq	0.056311	Pr > W-Sq	>0.2500				
Anderson-Darling	A-Sq	0.377208	Pr > A-Sq	>0.2500				

The underlying assumptions in the shapiro-wilk test are:

The null hypothesis for this test is that the data are normally distributed. The Prob < W value listed in the output is the p-value. If the chosen alpha level is 0.05 and the p-value is less than 0.05, then the null hypothesis that the data are normally distributed is rejected. If the p-value is greater than 0.05, then the null hypothesis is not rejected.

Since p-value is greater than 0.05, we cannot reject the null hypothesis for an alpha of 0.05. Therefore the sample came from a population that is normally distributed.

This can also be seen from the Q-Q plot. Most of the points are close to straight line, which suggests that the sample is close to a normal distribution.

The t value at 95% confidence interval at 20 degrees of freedom = 1.725

Therefore, the mean cleaning time is between 5.389 and 6.451 with a 95% confidence level. The original estimated time of 5.7 hours is a reasonable estimate.

2b)

Since the number of hours are normally distributed, we can use t-distribution.

Sample size = 8.

The t value at 95% confidence interval at 7 degrees of freedom = 1.895

Therefore, the mean cleaning time is between 4.974 and 6.866 with a 95% confidence level.