Федеральное государстве	енное бюджетно	е образовательное	е учреждение
B	высшего образоі	вания	

"Уфимский государственный авиационный технический университет"

Кафедра Высокопроизводительных вычислительных технологий и систем

Дисциплина: Математическая статистика

Отчет по лабораторной работе № 1

Тема: «Линейный корреляционный и регрессионный анализ многомерного временного сигнала»

Группа ПМ-453	Фамилия И.О.	Подпись	Дата	Оценка
Студент	Шамаев И.Р.			
Принял	Маякова С.А.			

Цель работы: изучить методы линейного регрессионного корреляционного анализа многомерного временного сигнала.

Практическая часть

Задача 1. Результаты наблюдений за характеристиками канала представлены в табл.1.

	Пропускная способность	Соотношение сигнал/шум,		Остаточное затухание, дБ,		
No	канала,		H	іа частоте, Г	Ц	
пп	кбит/с	дБ	1020	1800	2400	
	X_1	X_2	X_3	X_4	X_5	
1	26,37	41,98	17,66	16,05	22,85	
2	28,00	43,83	17,15	15,47	23,25	
3	27,83	42,83	15,38	17,59	24,55	
4	31,67	47,28	18,39	16,92	26,59	
5	23,50	38,75	18,32	15,66	26,22	
6	21,04	35,12	17,81	17,00	27,52	
7	16,94	32,07	21,42	16,77	25,76	
8	37,56	54,25	26,42	15,68	23,10	
9	18,84	32,70	17,23	15,92	23,41	
10	25,77	40,51	30,43	15,29	25,17	
11	33,52	49,78	21,71	15,61	25,39	
12	28,21	43,84	28,33	15,70	24,56	
13	28,76	44,03	30,42	16,87	24,45	

14	24,60	39,46	21,66	15,25	23,81
15	24,51	38,78	25,77	16,05	24,48

Найдем выборочное мат. ожидание μ_1 , выборочную дисперсию μ_2 и среднеквадратическое отклонение σ .

Решение:

Вычислим для каждого столбца выборочное среднее и дисперсию

$$\mu_{1}(x_{j}) = \frac{1}{n} \sum_{i=1}^{n} x_{ij}$$

$$\mu_{2}(x_{j}) = \sigma^{2}(x_{j}) = \frac{1}{n-1} \sum_{i=1}^{n} (x_{ij} - \mu_{1}(x_{j}))^{2}$$

Оценка параметра	Варианта				
распределения	X_1	X_2	X_3	X_4	X_5
1	26,47	41,68	21,87	16,12	24,74
2	29,10	36,47	26,37	0,52	1,88
	5,39	6,04	5,13	0,72	1,37

Вычислим новую матрицу U ($u_{ij} = \frac{\left(x_{ij} - \mu_1(x_j)\right)}{\sigma(x_j)}$)

No	2	Пропускная	Соотношение	Остаточное затухание, дБ
		способность	сигнал/шум,	

			на частоте,	Гц	
пп	канала, кбит/с	дБ	1020	1800	2400
	U_1	U_2	U_3	U_4	U_5
1	-0,019	0,050	-0,821	-0,100	-1,379
2	0,283	0,356	-0,920	-0,902	-1,087
3	0,251	0,190	-1,265	2,030	-0,139
4	0,963	0,927	-0,678	1,104	1,349
5	-0,551	-0,485	-0,692	-0,639	1,079
6	-1,007	-1,086	-0,791	1,214	2,027
7	-1,768	-1,592	-0,088	0,896	0,743
8	2,055	2,081	0,885	-0,611	-1,196
9	-1,415	-1,487	-0,904	-0,279	-0,970
10	-0,131	-0,194	1,666	-1,151	0,313
11	1,306	1,341	-0,032	-0,708	0,474
12	0,322	0,358	1,257	-0,584	-0,132
13	0,424	0,389	1,664	1,034	-0,212
14	-0,348	-0,368	-0,042	-1,206	-0,679
15	-0,364	-0,480	0,759	-0,100	-0,190

Теперь вычислим корреляции
$$\rho_{1k} = \frac{1}{15} \sum_{i=1}^{15} u_{i1} u_{ik}, k = 2, 3, 4, 5$$

и значения статистик критерия Стьюдента

$$t = \mathcal{L} \rho_{1k} \vee \frac{\sqrt{n-2}}{\sqrt{1-\rho_{1k}^2}}$$

	X_2	X_3	X_4	X_5
1 <i>j</i>	0,931	0,254	-0,138	-0,220
t	9,161	0,946	0,501	0,814

Проверка гипотезы о значимости оценок коэффициентов корреляции с уровнем значимости , равным 0,1. Т.к. $t_{\kappa\rho}(13,0.1)=1,77$, то при условии $t < t_{\kappa\rho}(13,0.1)$ можно отбросить третий, четвертый и пятые столбцы. И только с X_2 X_1 имеет линейную положительную взаимосвязь, так как $\rho_{12} \approx 1$.

Задача 2.

Построить уравнение регрессии для пропускной способности канала по выборке, заданной в табл. 1.

Применительно к указанной выборке построение аналитической зависимости в основной своей части выполнено в рамках примера 1. Осталось лишь выбрать вид регрессии, представив графически зависимость X_1 от X_2 , найти коэффициенты регрессии.

Решение:

Решение будем искать в виде

$$\hat{y} = \mu_1(x_1) - a_2 \mu_1(x_2) \frac{\sigma(x_1)}{\sigma(x_2)} + a_2 \frac{\sigma(x_1)}{\sigma(x_2)} x_2.$$

Коэффициент регрессии a_2 найдем из уравнения $\rho_{y2}-a_2\rho_{22}=0$, $\rho_{y2}=\rho_{12}$, $\rho_{22}=0,9333$, тогда $a_2=0,99699$.

$$\hat{y} = -10,6463 + 0,890604 x_2$$
.

Nº ⊓⊓	Пропускная способность канала, кбит/с	Соотношени е сигнал/шум, дБ	Значение функции, кбит/с	Погрешность, кбит/с
	Y	X	ŷ	e
1	26,37	41,98	26,74125	0,371254
2	28,00	43,83	28,38887	0,388871
3	27,83	42,83	27,49827	0,331733
4	31,67	47,28	31,46145	0,208547
5	23,50	38,75	23,8646	0,364604
6	21,04	35,12	20,63171	0,408287
7	16,94	32,07	17,91537	0,975372
8	37,56	54,25	37,66896	0,10896
9	18,84	32,70	18,47645	0,363547

10	25,77	40,51	25,43207	0,337933
11	33,52	49,78	33,68796	0,167962
12	28,21	43,84	28,39778	0,187777
13	28,76	44,03	28,56699	0,193009
14	24,60	39,46	24,49693	0,103067
15	24,51	38,78	23,89132	0,618678

Построим графически зависимость X_1 от X_2

Рисунок 1. График зависимости

По графику видим, что X_1 и X_2 имеют положительную линейную связь.

Задача 3.

акций Выяснить коррелированность компаний курсов «Газпром», «Роснефть», ТНК, «РУСАЛ». Определить, есть ли $\alpha = 0,1;0,5$ значимости существенные СВЯЗИ при уровне существенные связи есть, оставить 3 курса акций с наиболее сильными связями. Построить уравнение двумерной линейной регрессии $Y=aX_1+bX_2+c$, рассчитав неизвестные коэффициенты a, b,с методом наименьших квадратов. Построить график плоскости У, указав на том же графике экспериментальные точки выборок (по которым был реализован метод наименьших квадратов). Оценить максимальное отклонение экспериментальных точек от плоскости.

Решение:

В качестве выборки возьмем 15 значений курсов акций за последние 3 месяца (в одни и те же даты).

No	«Газпром»	«Роснефть»	THK	«РУСАЛ»
112	X_1	X_2	X_3	X_4
1	191,65	371,15	15,47	30,69
2	189,81	387,25	14,11	30,7
3	186,99	388,5	12,9	32,15
4	183,51	372,3	12,23	30,59
5	178,36	371,45	11,98	31,68
6	177,94	379,1	12,19	32,16
7	184,5	373,2	10,42	32,4
8	177,96	384,2	10,84	32,38
9	170,95	390,7	11,25	31,07
10	167,78	383,15	11,05	32,05
11	168,62	382,45	10,9	32,52
12	163,92	380,4	10,23	32,84
13	164,66	351,8	9,35	30,63
14	155,0	384,35	10,4	31,89
15	165,27	425,1	11,09	32,3

Оценка	Варианты				
параметра распределения	X_1	X_2	X_3	X_4	
μ_1	175,128	381,673	11,6273	31,736667	
μ_2	118,930574	10086,3	2,52641	0,6165238	
σ	10,9055295	100,43	1,58947	0,7851903	

No	U_1	$egin{array}{c c} U_1 & U_2 \end{array}$		U_4
1	1,515011257	-0,10478	2,417581	-1,33301
2	1,34628951	0,055528	1,561949	-1,32027
3	1,087705092	0,067974	0,800687	0,526412
4	0,768600917	-0,09333	0,379163	-1,46037
5	0,296363417	-0,1018	0,221877	-0,07217
6	0,257850845	-0,02562	0,353997	0,539147
7	0,859380553	-0,08437	-0,75958	0,844806
8	0,259684777	0,025158	-0,49534	0,819334
9	-0,383108403	0,08988	-0,2374	-0,84905
10	-0,673786631	0,014703	-0,36322	0,399054
11	-0,596761485	0,007733	-0,4576	0,997635
12	-1,027735514	-0,01268	-0,87912	1,40518
13	-0,959880029	-0,29745	-1,43277	-1,40942
14	-1,845669204	0,026652	-0,77217	0,195282
15	-0,903945102	0,432406	-0,33806	0,717448

Теперь вычислим матрицу парных корреляций

$$\rho_{jk} = \frac{1}{15} \sum_{i=1}^{15} u_{ij} u_{ik}.$$

$ ho_{1\mathrm{k}}$	-0,025	0,728117	-0,32864
ρ_{2k}	-0,025	0,007518	0,055696

ρ _{3k}	0,728117	0,007518	-0,41993
$\rho_{ m 4k}$	-0,32864	0,055696	-0,41993

и значения статистик критерия Стьюдента

$$t = \mathcal{L} \rho_{jk} \vee \frac{\sqrt{n-2}}{\sqrt{1-\rho_{jk}^2}}.$$

t ₁	0,090168	3,829973	1,254624
t ₂	0,090168	0,027107	0,201127
t ₃	3,829973	0,027107	1,86831
t ₄	1,254624	0,201127	1,86831

Критическое значение $t_{\kappa p}(n-2;a)=(13;0,1)=1,77$

Критическое значение $t_{\kappa p}(n-2;a)=(13;0,5)=0,69$.

Сравнив значения t, приходим к выводу, что столбец X_2 можно отбросить. Оставим 3 курса акций с наиболее сильными связями, это $X_1, X_3 u \ X_4$. $X_3 u \ X_1$ имеют линейную положительную взаимосвязь, так как $t_{13} > t_{\kappa p} u \rho_{13} \approx 1$.

Далее построим уравнение двумерной линейной регрессии. Решение будем искать в виде

$$\hat{y}(X_3) = c + a X_1 + b X_4.$$

Коэффициенты регрессии найдем методом наименьших квадратов. из уравнения

$$\sum_{i=1}^{n} \varepsilon_{i}^{2} = \sum_{i=1}^{n} (y_{i} - \widehat{y}_{i})^{2} = \sum_{i=1}^{n} (y_{i} - c - a X_{1i} - b X_{4i})^{2} \rightarrow min.$$

Частные производные функции приравниваем к нулю

i

Из системы получаем
$$c$$
=6,364, a =0,103, b =-0,405, тогда
$$\hat{y}(X_3)$$
=6,364+0,103 X_1 -0,405 X_4 .

No	Y	X_1	X_4	ŷ	е
1	15,47	91,65	30,69	13,6745	1,7955

2	14,11	189,81	30,7	13,48093	0,62907
3	12,9	186,99	32,15	12,60322	0,29678
4	12,23	183,51	30,59	12,87658	0,64658
5	11,98	178,36	31,68	11,90468	0,07532
6	12,19	177,94	32,16	11,66702	0,52298
7	10,42	184,5	32,4	12,2455	1,8255
8	10,84	177,96	32,38	11,57998	0,73998
9	11,25	170, 195	31,07	11,3885	0,1385
10	11,05	167,78	32,05	10,66509	0,38491
11	10,9	168,62	32,52	10,56126	0,33874
12	10,23	163,92	32,84	9,94756	0,28244
13	9,35	164,66	30,63	10,91883	1,56883
14	10,4	155,0	31,89	9,41355	0,98645
15	11,09	165,27	32,3	10,30531	0,78469

Построим график плоскости Ү

Рисунок 2. График зависимости

Максимальная погрешность равна 1,7955.

Вывод

Таким образом, в ходе лабораторной работы был изучен линейный корреляционный и регрессионный анализ многомерного временного сигнала.