

UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Laboratoire Électronique Informatique et Image Équipe « Connaissances et Intelligence Artificielle Distribuées »

Stéphane GALLAND – <u>stephane.galland@utbm.fr</u> Yassine Ruichek – <u>yassine.ruicheck@utbm.fr</u>

Genèse de l'équipe CIAD

UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

SET 1998-2012

- Équipe Informatique: Communication Agent Perception (ICAP)
- Systèmes multi-agents, Perception de l'environnement, Navigation autonome

IRTES-SET 2013-2015 • Intégration dans l'institut IRTES - EA 7274 de l'UTBM

LE2I 2016-2018

- Laboratoire « Électronique Informatique et Image », LE2I UMR CNRS 6306
 - Pôle 3 « environnement intelligent » (Belfort et Dijon)
 - Pôle 6 « vision pour la robotique » (Chalon-sur-Saône, Dijon, Belfort)

Évolution LE2I 2019-...

- Restructuration du LE2I ⇒ disparition des pôles préexistants
- Création des équipes CIAD, LIB et Vision

Membres de LE2I - CIAD

UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

■ Enseignants-chercheurs: 19

» 6 PU, 2 MC-HDR, 7 MC, 1 ECC, 1 PAST, 3 PostDoc (+4)

Personnel support : 12

» 1 IGR, 1 BIATS (25%), 10 Ing. sur projets (+4)

■ Doctorants: ~27

■ ~60 membres sur 3 sites (Belfort, Montbéliard, Dijon)

2018 [Bosch

Systèmes intelligents : un champs d'applications privilégiés

UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Eau

Extraction, traitement, transport

Mesure de l'eau et des gaz

Électricité

Génération énergie renouvelable

Génération énergie conventionnelle

Réponse à la demande

Grille intelligente

Mesure intelligente

Système de gestion des déchets

Gestion des déchets

Éclairage intelligent

Gestion de l'éclairage public

Sécurité individuelle

Détection de substances chimiques

Détection de feu

Services intelligents collectifs

- Santé
- Éducation
- Tourisme

Sécurité et sûreté publiques

- Services d'urgences
- Surveillance vidéo
- Contrôle des accès

Surveillance de l'infrastructure

Infrastructures santé

Surveillance de l'Environnement

- Pollution de l'air
- Détection de désastres naturels

Bâtiments

Commercial

- Industriel
- Institutionnel

Établissements recevant du public

- Aéroports, ports
- Gares routières et ferroviaires
- **Stades**

Mobilité et Transport Public

- Terrestre (véhicules et ferroviaire)
- Maritime
- Aérien

Infrastructure Transport

Résidences

Maison intelligente

- Gestion de trafic
- Péages routiers
- Parkings
- Stations de recharge/essence

Systèmes intelligents : Champs disciplinaires

UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD (1)(2)12 23 Interfaces et **Capteurs** Effecteurs **Processus** fusion des cognitif Architecture de Collecteurs **Emetteurs** données Stimulatio de données de données systèmes intelligents (Ré)action [ECSEL 2018] Base de connaissances 23 Composant du système intelligent Composant du Composant du Stimulation/(Ré)action système intelligent système intelligent **Description logics** Semantic networks Knowledge representation and reasoning Causal reasoning and diagnostics Ontology engineering Multi-agent systems Classification ACM Artificial Reasoning about belief and knowledge Intelligent agents des domaines Distributed artificial intelligence Intelligence Image segmentation Mobile agents scientifiques 2 Object detection Cooperation and coordination Computer vision Object recognition Object identification (1)

Tracking

Défis et verrous scientifiques principaux

UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

- Perception, qualification de la véracité et la valeur de la connaissance dans un environnement intelligent massif :
 - » Extraction des connaissances issues de savoir-faire métier ou par l'analyse de scènes à partir de données multi-capteurs/multi-sources.
 - » Analyse de données, fouilles de donnée, modélisation probabiliste et par fonctions de croyance, combinée à une analyse ontologique, voire une analyse multi-agents
- Raisonnement distribué sur une interopérabilité de systèmes d'information hétérogènes (e.g. systèmes cyber-physiques) :
 - » Définition de modèles et d'architectures, s'appuyant notamment sur les principes théoriques des systèmes multi-agents, des systèmes formels de raisonnement, de l'optimisation, et du machine learning.
- Recommandation et simulation prescriptives pour des systèmes complexes et distribués :
 - » Définition de modèles théoriques et pratiques permettant la simulation de systèmes complexes potentiellement cyber-physiques et multi-niveaux

Contrôle de véhicules autonomes

UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

■ Problèmes :

- » Comment permettre au véhicule de percevoir et comprendre son environnement ?
- » Comment contrôler le véhicule pour atteindre efficacement sa destination en garantissant sa sûreté?

Approche :

- » Instrumentation (LIDAR, GPS-RTK, Caméras...)
- » Détection et suivi d'objets
- » Fusion multi-capteurs
- » Contrôle intelligent par systèmes multi-agents

Caméra intelligentes fournissant des informations sémantiquement enrichies - Wisenet

UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Problèmes :

- » Comment améliorer les systèmes de vision par ordinateur et de deep learning en considérant l'information contextuelle ?
- » Comment fusionner et synthétiser les informations fournies par un réseau de caméras en temps réel ?

Approche :

- » Caméras intelligentes embarquant des algorithmes:
 - d'analyse des vidéos en temps réel
 - d'extraction des objets des vidéos
 - de qualification sémantique des informations liées aux objets
- » Les caméras envoient des informations sémantiques (type OWL) ⇒ pas de flux vidéo.

wisenet.checksem.fr

Modèle sémantiquement enrichi de bâtiments intelligents - Wittym

UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

■ Problèmes :

- » Comment modéliser un bâtiment tenant compte des différents métiers associés à sa construction, sa maintenance et son usage ?
- » Comment interroger un modèle d'information d'un bâtiment intelligent ?

Approche :

- » Building Information Model (BIM) enrichi avec des informations sémantiques
- » Langage d'interrogation proche du SQL.
- » Accès par web services

www.wittym.com

Convois de véhicules autonomes

UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

■ Problèmes :

- » Comment résoudre le problème du dernier kilomètre à l'aide d'un transport public innovant ?
- » Comment construire et faire évoluer dynamique un convoi de véhicule sans définition a priori ni mécanisme centralisé ?

Approche :

- » Accroches immatérielles par l'application de modèles inspirés de la Physique
- » Émergence du convoi de véhicules des interactions entre les véhicules
- » Validation par simulation sub-microscopique
- » Déploiement dans les véhicules réels

Simulation de mobilités urbaines et intra-bâtiment

UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

■ Problèmes :

- » Comment reproduire le flux de bus, véhicules particuliers, piétons en tenant compte de leurs comportements individuels ?
- » Est-ce que l'infrastructure est en adéquation avec les flux ?
- » Comment simuler des véhicules connectés?

Approches :

- » Systèmes multi-agents: du micro au macro
- » Modélisation et simulation multi-physique des véhicules
- » Modélisation d'environnements sémantiquement enrichis 1D, 2D et 3D

Simulation cyber-physique et interactives de trains – FLO / ASTRES

UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

■ Problèmes :

- » Comment valider les comportements des composants du train?
- » Comment former les conducteurs de train ?
- » Comment minimiser les coûts de création de scénarios de simulation/apprentissage?

Approche:

- » Simulation cyber-physique
- » Plate-forme immersive 3D
- » Génération automatique de l'univers à partir de règles métier

Aide au dépannage et à l'exploration du système train - Explorys

UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Outils de tests
électriques
(E/S et Défauts
électriques)

Informations
composants et
câbles
électriques

Plates-formes structurantes

UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

- Plate-forme Mobilitech
 - » 6 véhicules autonomes
- Plate-forme Eco-Campus
- Plate-forme de Réalité Virtuelle
- UTBM Crunch Lab (OpenLab)
- Plate-forme ferroviaire (Alstom)

- » Langage de programmation orientée agent SARL
- » Plate-forme d'exécution d'agent intelligents Janus
- » Simulateurs de véhicules autonomes VIVUS et VIPS
- » Middleware pour le raisonnement sémantique dans les modèles d'information de bâtiment Wittym
- » Plate-forme d'intelligence sémantique Checksem

Production scientifique 2014-2018

UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Ratios de publication

Période	Enseignants- chercheurs (17)	PR, MCF-HDR, MCF (15)	ETP Enseignants- chercheurs (8,5)	ETP PR, MCF- HDR, MCF (7,5)
5 ans	1,26	1,43	2,68	2,85
4,5 ans	1,40	1,59	2,97	3.17

Rayonnement et attractivité académique 2014-2018

UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Projets académiques :

» 17 projets académiques (Européen, ANR, PIA, Région)

Échanges de chercheurs :

- » 21 entrants
- » 19 sortants

Comités d'éditions, de rédaction ou de programme :

» 2 éditions de revues, 29 comités de rédaction, 28 présidences de conférences, 64 comités de programme, 3 organisations locales

21 collaborations internationales et nationales actives :

» IMOB Universiteit Hasselt (Belgique), CITAT (Argentine), CNR/ICAR (Italie), ENSM-SE (France), LORIA-MADYNES (France), Institut Pascal (France), ISAT-DRIVE (France), DISP-Lab (Lyon EA4570), IFSTTAR (France), CHRU Strasbourg (France), UHA-MIPS (France), UB-Le2i (France, avant 2018), Fondation Basque pour la Science (Espagne), Univ. Pays de Basque (Espagne), Univ. Ibn Tofail-LASTID (Maroc), FST Fès-LERSI (Maroc), UPB-SRCTCSAT (Roumanie), ISAE (France), Univ. Libanaise-LaMA (Liban), Univ. Lille 1-CRISTAL (France), Acadia University (Canada)

Interactions avec l'environnement socio-économique 2014-2018

UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Faits marquants :

- » Lauréat du concours mondial de l'innovation, catégorie BigData en 2014
- » Création de la spin-off Wittym (Dijon) en 2017
- » Soutien scientifique à la JEU Voxelia (Belfort) entre 2009 et 2016
- » Participation à la création de l'Innovation Crunch Lab depuis 2018

Projets partenariaux :

- » 26 projets partenariaux (CPER, FUI, Pôle Véhicule du Futur, Prestation)
- » Montant cumulé des budgets projet : ~3 M€

Production de logiciels:

- » 2 logiciels déposés à l'Agence Française de Protection des Programmes
- » 3 logiciels open-source
- » +10 logiciels créés dans le cadre des projets partenariaux

UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Merci pour votre attention

Pour plus d'informations: stephane.galland@utbm.fr yassine.ruichek@utbm.fr

