EXAMPLES OF VECTOR VS TENSOR NOTATION

Quantity Scalar	Vector Notaion a	Tensor Notation a
Vector	\bar{a}	$oldsymbol{a_i}$
2 nd order tensor	= a	\mathbf{a}_{ij}
dot product (scalar)	$\overline{a} \bullet \overline{b}$	$\mathbf{a_i}\mathbf{b_i}$
cross product (vector)	$\overline{a} \times \overline{b}$	$\epsilon_{ijk}a_jb_k$
del operator (vector)	∇	$\frac{\partial}{\partial x_i}$
gradient (vector; tensor)	$\nabla a; \nabla \overline{a}$	$\frac{\partial a}{\partial x_i}$; $\frac{\partial a_i}{\partial x_j}$
divergence (scalar)	$\nabla \bullet \overset{-}{a}$	$rac{\partial a_{i}}{\partial x_{i}}$
curl (vector)	$\nabla \times \overline{a}$	$ \epsilon_{ijk} \frac{\partial a_k}{\partial x_j} $
Laplace operator (scalar)	$ abla^2$	$\frac{\partial^2}{\partial x_i \partial x_i}$
divergence of a 2 nd order ten	sor $\nabla \cdot \bar{a}$	$\frac{\partial a_{ij}}{\partial x_i}$ (vector)
dot product: vector & del	$\overline{a} \bullet \nabla$	$a_j \frac{\partial}{\partial x_j}$ (scalar)
dot product: vector & gradie	$\operatorname{nt} \qquad \overline{a} \bullet \nabla \overline{b}$	$a_j \frac{\partial b_i}{\partial x_j}$ (vector)
Material Derivative:	$\frac{\partial}{\partial t}$	$+\overline{u} \cdot \nabla$ or $\frac{D}{Dt}$
Vorticity: (pseudovector)	ω_{l}	$u_{k} = \nabla \times \overline{u} = \left(\frac{\partial u_{i}}{\partial x_{j}} - \frac{\partial u_{j}}{\partial x_{i}}\right) = \varepsilon_{ijk} \frac{\partial u_{k}}{\partial x_{j}}$
Rate of strain tensor: (2 nd ord		$\left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial u_i}\right)$