Machine code was the language of early programs, written in the instruction set of the particular machine, often in binary notation. However, because an assembly language is little more than a different notation for a machine language, two machines with different instruction sets also have different assembly languages. As early as the 9th century, a programmable music sequencer was invented by the Persian Banu Musa brothers, who described an automated mechanical flute player in the Book of Ingenious Devices. Programmable devices have existed for centuries. High-level languages made the process of developing a program simpler and more understandable, and less bound to the underlying hardware. Assembly languages were soon developed that let the programmer specify instruction in a text format (e.g., ADD X, TOTAL), with abbreviations for each operation code and meaningful names for specifying addresses. Languages form an approximate spectrum from "low-level" to "high-level"; "low-level" languages are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and easier to use but execute less quickly. Many programmers use forms of Agile software development where the various stages of formal software development are more integrated together into short cycles that take a few weeks rather than years. Programmable devices have existed for centuries. Also, specific user environment and usage history can make it difficult to reproduce the problem. Unreadable code often leads to bugs, inefficiencies, and duplicated code. The first computer program is generally dated to 1843, when mathematician Ada Lovelace published an algorithm to calculate a sequence of Bernoulli numbers, intended to be carried out by Charles Babbage's Analytical Engine. Unreadable code often leads to bugs, inefficiencies, and duplicated code. Later a control panel (plug board) added to his 1906 Type I Tabulator allowed it to be programmed for different jobs, and by the late 1940s, unit record equipment such as the IBM 602 and IBM 604, were programmed by control panels in a similar way, as were the first electronic computers. For example, when a bug in a compiler can make it crash when parsing some large source file, a simplification of the test case that results in only few lines from the original source file can be sufficient to reproduce the same crash. By the late 1960s, data storage devices and computer terminals became inexpensive enough that programs could be created by typing directly into the computers. Implementation techniques include imperative languages (object-oriented or procedural), functional languages, and logic languages. New languages are generally designed around the syntax of a prior language with new functionality added, (for example C++ adds object-orientation to C, and Java adds memory management and bytecode to C++, but as a result, loses efficiency and the ability for low-level manipulation). Techniques like Code refactoring can enhance readability. By the late 1960s, data storage devices and computer terminals became inexpensive enough that programs could be created by typing directly into the computers. The first computer program is generally dated to 1843. when mathematician Ada Lovelace published an algorithm to calculate a sequence of Bernoulli numbers, intended to be carried out by Charles Babbage's Analytical Engine. Different programming languages support different styles of programming (called programming paradigms). However, Charles Babbage had already written his first program for the Analytical Engine in 1837. As early as the 9th century, a programmable music sequencer was invented by the Persian Banu Musa brothers, who described an automated mechanical flute player in the Book of Ingenious Devices.