Constrained Optimization

Saurav Samantaray

Department of Mathematics

Indian Institute of Technology Madras

March 13, 2024

Motivation

Manufacturing

- Suppose we have m different materials; we have s_i units of each material i in stock.
- We can manufacture k different products; product j gives us profit p_j and uses c_{ii} amount of material i to make.
- To maximize profits, we can solve the following optimization problem for the total amount x_i we should manufacture of each item j:

$$\max_{x \in \mathbb{R}^n} \sum_{j=1}^k p_j x_j$$
 such that $x_j \geq 0 \ \forall \ j \in \{1, 2, \dots, k\}$
$$\sum_{i=1}^k c_{ij} x_j \leq s_i, \ \forall \ i \in \{1, 2, \dots, m\}$$

- The first constraint ensures that we do not make negative numbers of any product,
- and the second ensures that we do not use more than our stock of each material.

Constrained Problem

A general formulation of these problems is:

$$\min_{x \in \mathbb{R}^n} f(x)$$
 subject to
$$\begin{cases} c_i(x) = 0, & i \in \mathscr{E} \\ c_j(x) \geq 0, & j \in \mathscr{I} \end{cases}$$
 (2)

f and c_i are scalar valued functions of the vector of unknowns x and $\mathscr E$ and $\mathscr I$ are set of indices.

- x is a vector of variables, also called unknown or parameters;
- f is the objective function, a function of x that we want to optimise (minimise or maximise);
- *c* is the vector function of constraints that must be satisfied by the unknowns *x*.
- c_i , $i \in \mathscr{E}$ are the equality constraints.
- c_i , $i \in \mathcal{I}$ are the inequality constraints.

Compact form of Constrained Problem

Definition

Define the <u>feasible set</u> Ω to be the set of points x that satisfy the constraints; that is,

$$\Omega = \{x \mid c_i(x) = 0, \quad i \in \mathscr{E}; \quad c_i(x) \ge 0, \quad i \in \mathscr{I}\}, \quad (3)$$

Now (2) can be rewritten more compactly as:

Constrained Problem

$$\min_{x \in \Omega} f(x). \tag{4}$$

Characterizations of the Solutions

- For the unconstrained optimization problems the solution point x* was characterised in the following way:
- Necessary conditions: Local minima of unconstrained problems have

$$\nabla f(x^*) = 0$$

and,

$$\nabla^2 f(x^*)$$
 is positive semidefinite

• Sufficient conditions: Any point x^* at which $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive definite is a strong local minimiser of f.

- We have seen already that global solutions are difficult to find even when there are no constraints.
- The situation may improve when we add constraints.
- The feasible set might exclude many of the local minima.
- It might be comparatively easy to pick the global minimum from those that remain.

Consider the problem

$$\min_{x \in \mathbb{R}^n} ||x||_2^2$$
, subject to $||x||_2^2 \ge 1$. (5)

- Without the constraint, this is a convex quadratic problem with unique minimiser x = 0.
- When the constraint is added, any vector x with ||x|| = 1 solves the problem.
- There are infinitely many such vectors (hence, infinitely many local minima) whenever $n \ge 2$

- Addition of a constraint produces a large number of local solutions that do not form a connected set.
- Consider

$$\min_{x \in \mathbb{R}^2} (x_2 + 100)^2 + 0.01x_1^2, \quad \text{subject to } x_2 - \cos x_1 \ge 0, \quad \text{(6)}$$

- Without the constraint, the problem has the unique solution (-100,0).
- With the constraint there are local solutions near the points

$$(x_1, x_2) = (k\pi, -1), \text{ for } k = \pm 1, \pm 3, \pm 5, \dots$$

Figure Constrained problem with many isolated local solutions.

- Local and global solutions are defined in a very similar fashion as they were for the unconstrained case.
- The new caveat that comes into action in the definitions for the constrained case is the inclusion of constraints leading to a restriction imposed via a feasible set (space).

Definition

A vector x^* is a local solution of the constrained minimisation problem (4) if $x^* \in \Omega$ and there exists a neighbourhood $\mathscr N$ of x^* such that

$$f(x^*) \le f(x)$$
 for all $x \in \Omega \cap \mathcal{N}$

Definition

A vector x^* is called a strict local solution (also called a strong local solution) if $x^* \in \Omega$ and there is a neighbourhood $\mathscr N$ of x^* such that

$$f(x^*) < f(x)$$
 for all $x \in \mathcal{N} \cap \Omega$ with $x \neq x^*$

Definition

A point x^* is an isolated local solution if $x^* \in \Omega$ and there is a neighbourhood $\mathcal N$ of x^* such that x^* is the only local minimiser in $\mathcal N \cap \Omega$.