Cálculo Diferencial e Integral I

LEA, LEM, LEAN, MEAer, MEMec 2º Semestre de 2006/2007 5ª Aula Prática

1. (Exercício 1.34 de [2]) Das sucessões de termos gerais

$$u_n = \frac{(-1)^{n+1}}{n}, \quad v_n = \frac{n^{n+1}}{n^n+1}, \quad w_n = u_n v_n$$

indique, justificando abreviadamente as respostas, quais as que são limitadas e as que são convergentes.

2. (Exercício 1.40 de [2]) Estude quanto à convergência as sucessões de termos gerais:

$$u_n = \cos(n!\pi), \quad v_n = \frac{n\cos(n\pi)}{2n+1}, \quad w_n = \frac{1+a^n}{1+a^{2n}} \quad (a \in \mathbb{R}).$$

- 3. Calcule o limite (em \mathbb{R}) ou justifique a sua não existência para cada uma das sucessões de termo geral
 - a) $\frac{1}{(-1)^n n^2 + 2}$
 - b) $(1+(-1)^n)(1+\frac{1}{n})$
 - $c) \frac{n(1+(-1)^n)}{2}$
 - d) $\frac{2n^2 + (-1)^n}{n^2 1}$
 - e) $\frac{n+\cos(n)}{2n-1}$
 - f) $(-1 \frac{1}{n})^n$
- 4. Mostre que se (u_n) é uma sucessão convergente tal que $u_{2n} \in]0,1[$ e $u_{2n+1} \in \mathbb{R} \setminus]0,1[$ então $\lim u_n \in \{0,1\}.$
- 5. Considere a sucessão real (u_n) definida por recorrência por:

$$\begin{cases} u_1 = a, \\ u_{n+1} = (-1)^n u_n + \frac{u_n}{n+1}, \end{cases}$$

com $a \in \mathbb{R}$. Mostre que se (u_n) é convergente então $\lim u_n = 0$.

6. Identifique os conjuntos dos sublimites em $\mathbb R$ (e em $\overline{\mathbb R})$ da sucessão:

- (a) de termo geral $u_n = \frac{1}{n} + 2\cos n\pi$,
- (b) (u_n) tal que $u_n = 0$ se n é par, $u_n = n$ se n é impar.
- (c) $1, 2, 3, 4, 5, 6, 7, 8, \dots$
- (d) $1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, \dots$

Será possível o conjunto dos sublimites em \mathbb{R} de uma sucessão (u_n) ser um conjunto singular e (u_n) ser divergente? Justifique. E se os sublimites e a convergência da sucessão forem considerados em $\overline{\mathbb{R}}$? (Sugestão: veja um dos casos acima).

7. (Teste 12/11/05) Considere os seguintes subconjuntos de \mathbb{R} :

$$A = \{x \in \mathbb{R} : |2x+1| < |x|\}, \quad B = \left\{\frac{(-1)^n}{n} : n \in \mathbb{N}_1\right\},$$

$$C = [-1, +\infty[.$$

- a) Mostre que $A =]-1, -\frac{1}{3}[.$
- b) Indique (caso existam em \mathbb{R}), $\inf C$, $\min(C \setminus A)$, $\sup(A \setminus \mathbb{Q})$, $\max(A \cup B)$, $\inf B$, $\max(B \setminus \mathbb{Q})$.
- c) Diga, justificando, se cada uma das proposições seguintes é verdadeira ou falsa:
 - (i) Toda a sucessão decrescente de termos em A é convergente.
 - (ii) Toda a sucessão decrescente de termos em A é convergente para um elemento de A.
 - (iii) Toda a sucessão estritamente crescente em C é divergente.
 - (iv) O conjunto dos sublimites de qualquer sucessão de termos em B é não-vazio.
 - (v) O conjunto dos sublimites de qualquer sucessão de termos em B está contido em $\{-1,0\}$.
- 8. (Exame de 1/3/2001) Considere os conjuntos definidos por:

$$A = \left\{ x \in \mathbb{R} : \frac{x^2 + 1}{x - 2} \ge x \right\}, \qquad B = \left\{ x \in \mathbb{R} : \log(2x^2 + x) \ge 0 \right\}.$$

- a) Identifique o conjunto A, e mostre que $B =]-\infty, -1] \cup [\frac{1}{2}, +\infty[$.
- b) Determine, se existirem em \mathbb{R} :

$$\min A$$
, $\sup B \cap \mathbb{Q}$, $\inf A \cap B$, $\sup B \cap \mathbb{R}^- \setminus \mathbb{Q}$, $\max A \cap \mathbb{Q}^-$.

- c) Mostre que, se (x_n) é uma sucessão crescente em $A \cap B \cap \mathbb{R}^-$, então (x_n) é convergente.
- d) Mostre que, se (x_n) é uma sucessão em $B \cap \mathbb{R}^+$, então a sucessão (y_n) dada por $y_n = (-1)^n x_n$ é divergente.
- e) Dê um exemplo de uma sucessão (x_n) de irracionais em A que convirja para um elemento do complementar de A.
- 9. (Exame 19/1/2000) Sejam $A \in B$ os conjuntos considerados no Exercício 2, Aula 3, $A = \mathbb{R}^+ \setminus \{1\}$, $B = \{-\frac{1}{n}, n \in \mathbb{N}_1\}$. Diga, justificando, quais das seguintes proposições são verdadeiras. Para as que forem falsas forneça um contra-exemplo:
 - a) Toda a sucessão de termos em A que seja limitada é convergente.
 - b) Qualquer sucessão monótona de termos em $A \cap V_{1/2}(0)$ tem limite real.
 - c) Qualquer sucessão de termos em $A \cup B$ que seja estritamente decrescente tem limite em \mathbb{R}_0^+ .
- 10. (Exame de 30/11/2002) Considere os seguintes subconjuntos de $\mathbb R$ (Ex.6 Aula 3):

$$A = \left\{ x : |x^2 - 2| \le 2x + 1 \right\} = \left[-1 + \sqrt{2}, 3 \right], \quad C = \left\{ \frac{1}{k^2} : k \in \mathbb{N}_1 \right\}.$$

Indique, justificando, se cada uma das proposições seguintes é verdadeira ou falsa:

- (i) Toda a sucessão monótona de termos em A é convergente.
- (ii) Existem sucessões (a_n) de termos em $\mathbb{R} \setminus A$ convergentes e tais que $a_{n+1}a_n < 0$, para qualquer $n \in \mathbb{N}$.
- (iii) Seja (a_n) uma sucessão de termos em C. Então qualquer subsucessão de (a_n) é convergente.
- 11. Prove, recorrendo à definição de limite em $\overline{\mathbb{R}}$ que
 - a) $1 \sqrt{n} \to -\infty$.
 - b) $\frac{n^2+1}{n} \to +\infty$.
- 12. Determine, se existirem, os limites em $\overline{\mathbb{R}}$ das sucessões que têm por termo de ordem n:

- a) $\frac{n^n}{1000^n}$
- b) $n^{n+1} n^n$
- c) $3^n (2n)!$
- d) $(n! n^{1000})^n$
- e) $\frac{(2n)!}{n!}$
- f) $\sqrt[n]{\frac{n+2}{n+1}}$
- h) $\sqrt[n]{\frac{n}{n^2+1}}$
- i) $\sqrt[n]{3^n + 2}$
- j) $\sqrt[n]{n!}$,
- $k) \left(2 \frac{1}{n}\right)^n$
- l) $\left(1 \frac{1}{2^{n-1}}\right)^{2^n}$
- $m) \left(1 + \frac{1}{n}\right)^{n^2}$
- 13. (Exercício II.5 de [1]) Determine, se existirem, os limites em $\overline{\mathbb{R}}$ das sucessões que têm por termo de ordem n:
 - a) $\frac{2n+3}{3n-1}$,
 - b) $\frac{n^2-1}{n^4+3}$,
 - c) $\frac{2^n+1}{2^{n+1}-1}$,
 - d) $\frac{n^3+1}{n^2+2n-1}$,
 - e) $\frac{(-1)^n n^3 + 1}{n^2 + 2}$,
 - f) $\frac{n^p}{n!}$ $(p \in \mathbb{N}_1)$,
 - $g) \sqrt[n]{1+\frac{1}{n}},$

 - h) $\frac{\left(\frac{1}{2}\right)^n}{n^3}$, i) $\frac{3^n}{n^2}$, j) $\sqrt[n]{\frac{n^2+n-1}{n+3}}$,
 - k) $\sqrt[n]{2^n+1}$,
 - 1) $\sqrt[n]{(n+1)! n!}$,

m)
$$\left(1 + \frac{1}{n^2}\right)^{n^3}$$
,

n)
$$\left(1 - \frac{1}{n!}\right)^{n!}$$
,

o)
$$\left(1 + \frac{1}{n^3}\right)^{n^2}$$
.

14. Decida sobre a existência dos seguintes limites em \mathbb{R} e $\overline{\mathbb{R}}$, calculando os seus valores nos casos de existência:

a)
$$\lim \frac{n!}{n^{1000}}$$
,

b)
$$\lim \frac{(2n)!+2}{(3n)!+3}$$
,

c)
$$\lim \frac{(2n)!}{(2n)^n}$$
,

d)
$$\lim \frac{(n!)^2}{(2n)!+2}$$
,

e)
$$\lim \frac{2^n n!}{n^n}$$
,

f)
$$\lim \frac{3^n n!}{n^n}$$
,

g)
$$\lim n^{\frac{1}{n}}$$
,

h)
$$\lim \left(\frac{1}{n}\right)^{\frac{1}{n}}$$

i)
$$\lim_{n \to \infty} \left(\frac{1}{n}\right)^n$$
,

j)
$$\lim \left(2 - \frac{1}{n}\right)^n$$
,

k)
$$\lim \left(\frac{n-1}{2n^2+1}\right)^{\frac{2}{n}}$$
,

l)
$$\lim \frac{2^{(n^2)}}{15^n}$$
.

15. a) Mostre que:

i) se
$$u_n \to +\infty$$
 em $\overline{\mathbb{R}}$ então $\frac{1}{u_n} \to 0$.

i) se
$$u_n \to +\infty$$
 em $\overline{\mathbb{R}}$ então $\frac{1}{u_n} \to 0$,
ii) se $u_n > 0$ e $u_n \to 0$ então $\frac{1}{u_n} \to +\infty$ em $\overline{\mathbb{R}}$.

b) Será verdade que
$$u_n \to 0 \Rightarrow \left(\frac{1}{u_n} \to +\infty \lor \frac{1}{u_n} \to -\infty\right)$$
?

Outros exercícios: 1.22, 1.23, 1.25, 1.27, 1.29, 1.32, 1.33, 1.42, 1.44, 1.46, 1.51, 1.52 de [2].

- [1] J. Campos Ferreira. Introdução à Análise Matemática, Fundação Calouste Gulbenkian, 8^a ed., 2005.
 - [2] Exercícios de Análise Matemática I e II, IST Press, 2003.