序列和集合的算法II

Instructor: Shizhe Zhou

Course Code:00125401

排序算法

排序算法

桶排序和基数排序

Bucket and Radix Sort

```
算法 Straight_Radix (X, n, k)
输入:X(元素下标从 1 \le n 的整数数组,每个元素有 k 位)
输出: X (排序后的数组 )
begin
   We assume that all elements are initially in a global queue GQ;
   \{为简单起见,这里使用 GQ; 当然也可以通过 X 本身来实现\}
  for i := 1 to d do
  \{d 是可能的数制,比如对于十进制, d=10\}
     Initialize queue Q[I] to be empty;
                                      降序
  for i := k downto l do \leftarrow
     while GQ is not empty do
        pop x from GQ;
                                  分入桶
        d := the ith digit of x;
        insert x into Q[d];
     for t := 1 to d do
                                    收集
        insert Q[t] into GO:
  for i := 1 to n do
     pop X[i] from GO
end
```

图 6.6 算法 Straight_Radix

170, 45, 75, 90, 802, 2, 24, 66

2, 24, 45, 66, 75, 90, <u>1</u>70, <u>8</u>02

对最高位相同的任意两个元素,在最后一步之前,他们已经按正确顺序排列了。

170, 45, 75, 90, 802, 2, 24, 66

从高到低,如果直接按上一页slides的方法做,结果肯定是错的!必须要按 递归做,见下一页,..

170, 45, 75, 90, 802, 2, 24, 66

从高到低,必须按递归式,结果才正确。

Analysis

- 重收集桶的循环执行K次, K是最大数的位数(e.g.10进制下)
- 需要全局队列GQ和分桶队列Q[0]...Q[K-1].
- O((n+n)k) = O(nk);

缺点: 依赖于数据的结构性.

插入排序 insertion sort

example

```
6 5 3 1 8 7 2 4
```

Pseudocode

```
for i ← 1 to length(A)
    j ← i
    while j > 0 and A[j-1] > A[j]
        swap A[j] and A[j-1]
        j ← j - 1
```

插入排序的一个改进 Shell 排序

example

[Donald Shell 1959]

The running time of Shellsort is heavily dependent on the gap sequence it uses. Best interval? open questions!

Shellsort is <u>unstable</u>(changing relative order of equal elements) It is an <u>adaptive sorting algorithm</u> in that it executes faster when the input is partially sorted

the subarrays that Shellsort operates on are initially short; later they are longer but almost ordered:

In BOTH cases insertion sort works efficiently.

选择排序

selection sort

example

基本思想:

每次都从右边剩下的n-k个数中选最小(大)的插入到第k个位置处.

64 25 12 22 11

11 25 **12** 22 64

11 12 25 22 64

11 12 22 25 64

11 12 22 25 64

输入list被分 为两部分, 前一部分总 是排好序的 sublist.

将64换成24,则最 后一步也发生交换

```
/* a[0] to a[n-1] is the array to sort */
int i,j;
int iMin;
/* advance the position through the entire array */
/* (could do j < n-1 because single element is also min element) */
for (j = 0; j < n-1; j++) {
    /* find the min element in the unsorted a[j .. n-1] */
    /* assume the min is the first element */
    iMin = j;
    /* test against elements after j to find the smallest */
    for (i = j+1; i < n; i++) {
        /* if this element is less, then it is the new minimum */
        if (a[i] < a[iMin]) {</pre>
            /* found new minimum; remember its index */
            iMin = i;
    /* iMin is the index of the minimum element. Swap it with the current position */
    if ( iMin != j ) {
        swap(a[j], a[iMin]);
```

Another example

选择排序

• 如果输入数据结构是(linked)list,性能更好.

performance

- Finally, selection sort is greatly outperformed on larger arrays by Θ(n log n) divide-and-conquer algorithms such as mergesort.
- However, insertion sort or selection sort are both typically faster for small arrays (i.e. fewer than 10–20 elements).
- A useful optimization in practice for the recursive algorithms is to switch to insertion sort or selection sort for "small enough" sublists.

归并排序 merge sort

6 5 3 1 8 7 2 4

这是自顶向下递归,因此会分裂到长度为1的sublist再开始merge!

Major drawback: Need a B for the merged list!

io

主函数 TopDownMergeSort(A[], B[], n) TopDownSplitMerge(A, 0, n, B); CopyArray(B[], iBegin, iEnd, A[]) Merge into B for(k = iBegin; k < iEnd; k++)</pre> A[k] = B[k];// iBegin is inclusive; iEnd is exclusive (A[iEnd] is not in the set) TopDownSplitMerge(A[], iBegin, iEnd, B[]) if(iEnd - iBegin < 2)</pre> // if run size == 1 // consider it sorted // recursively split runs into two halves until run size == 1, // then merge them and return back up the call chain iMiddle = (iEnd + iBegin) / 2; // iMiddle = mid point TopDownSplitMerge(A, iBegin, iMiddle, B); // split / merge left half TopDownSplitMerge(A, iMiddle, iEnd, B); // split / merge right half TopDownMerge(A, iBegin, iMiddle, iEnd, B); // merge the two half runs // copy the merged runs back to A CopyArray(B, iBegin, iEnd, A); // left half is A[iBegin :iMiddle-1] // right half is A[iMiddle:iEnd-1 TopDownMerge(A[], iBegin, iMiddle, iEnd, B[]) i0 = iBegin, i1 = iMiddle; // While there are elements in the left or right runs for (j = iBegin; j < iEnd; j++) {</pre> // If left run head exists and is <= existing right run head. if (i0 < iMiddle && (i1 >= iEnd || A[i0] <= A[i1]))</pre> B[j] = A[i0];i0 = i0 + 1;else B[j] = A[i1];i1 = i1 + 1;

<u>Top-Bottom</u>

Merge sort

Bottom-Top

bottom up merge sort algorithm:

1 treats the list as an array of *n* sublists (called *runs* in this example) of size 1,

2 .iteratively merges sub-lists back and forth between two buffers.

```
'* array A[] has the items to sort; array B[] is a work array */
BottomUpSort(int n, int A[], int B[])
                                                 主函数
 int width;
 /* Each 1-element run in A is already "sorted". */
 /* Make successively longer sorted runs of length 2, 4, 8, 16... until whole array is sorted. */
 for (width = 1; width < n; width = 2 * width)</pre>
      int i;
     /* Array A is full of runs of length width. */
     for (i = 0; i < n; i = i + 2 * width)
          /* Merge two runs: A[i:i+width-1] and A[i+width:i+2*width-1] to B[] */
         /* or copy A[i:n-1] to B[] ( if(i+width >= n) ) */
          BottomUpMerge(A, i, min(i+width, n), min(i+2*width, n), B);
     /* Now work array B is full of runs of length 2*width. */
     /* Copy array B to array A for next iteration. */
     /* A more efficient implementation would swap the roles of A and B */
     CopyArray(A, B, n);
     /* Now array A is full of runs of length 2*width. */
BottomUpMerge(int A[], int iLeft, int iRight, int iEnd, int B[])
  int i0 = iLeft:
  int i1 = iRight;
  int j;
  /* While there are elements in the left or right lists */
  for (j = iLeft; j < iEnd; j++)</pre>
      /* If left list head exists and is <= existing right list head */</pre>
      if (i0 < iRight && (i1 >= iEnd | | A[i0] <= A[i1]))
          B[j] = A[i0];
          i0 = i0 + 1;
      else
          B[j] = A[i1];
          i1 = i1 + 1;
```

Merge Sort的一个改进

Natural merge sort

```
Start : 3--4--2--1--7--5--8--9--0--6
Select runs : 3--4 2 1--7 5--8--9 0--6
Merge : 2--3--4 1--5--7--8--9 0--6
Merge : 1--2--3--4--5--6--7--8--9
```

any naturally occurring runs (sorted sequences) in the input are exploited!

Adavantage: 不需要像标准merge sort那样非得pass Ibn 次.

MergeSort Performance

Class Sorting algorithm

Data structure Array

Worst case performance $O(n \log n)$

Best case performance $O(n \log n)$ typical,

O(n) natural variant

Average case performance $O(n \log n)$

Worst case space complexity O(n) auxiliary

Quick Sort

- Best sorting algo! Proposed by C.A.R Hoare in 1962
- Divide-&-Conquer algo
- In place (as insertion sort), comparison based
- Very practical (need a bit tuning though)

Partition (相向而行版本)

```
Algorithm Partition (X, Left, Right);
Input: X (an array), Left (the left boundary of the array), and Right
   (the right boundary).
Output: X and Middle such that X[i] \le X[Middle] for all i \le Middle
   and X[j] > X[Middle] for all j > Middle.
begin
   pivot := X[Left]:
   L := Left ; R := Right ;
   while L < R do
       while X[L] \le pivot and L \le Right do L := L + 1;
       while X[R] > pivot and R \ge Left do R := R - 1;
       if L < R then
          exchange X[L] with X[R]:
   Middle := R :
   exchange X [Left] with X [Middle]
end
```

Figure 6.9 Algorithm Partition.

Analysis

- Worst Case input sorted(reversed sorted) –
 O(n²)
- Best Case: uniform split 1:1 O(nlgn)
- 2nd-Worst Case: 1:9 split, using recursion tree
 O(nlgn)
- Lucky-Unlucky switch case: O(nlgn)
- Average case(Randomized QuickSort):
 Substitution method O(nlgn).

To make things more practical

- Randomized QuickSort
 - Rearranging the element randomly
 - Selecting the pivot randomly
 - ->=3 times faster than mergeSort!
 - Works well with cache and virtual mem.

Analysis of Randomized QuickSort

We don't know which exactly split is made.
 Each recursive step uses random pivot!

 So, we compute the Expectation of the T(n) in terms of a random variable X_k.

$$X_k = \begin{cases} 1 & \text{if Partition generates a } k : n-k-1 \text{ split,} \\ 0 & \text{otherwise.} \end{cases}$$

 $E[X_k] = \Pr\{X_k = 1\} = 1/n$, since all splits are equally likely, assuming elements are distinct.

Expectation of T(n)

$$T(n) = \begin{cases} T(0) + T(n-1) + \Theta(n) & \text{if } 0 : n-1 \text{ split,} \\ T(1) + T(n-2) + \Theta(n) & \text{if } 1 : n-2 \text{ split,} \\ \vdots & & & \\ T(n-1) + T(0) + \Theta(n) & \text{if } n-1 : 0 \text{ split,} \end{cases}$$

$$n-1$$

$$= \sum_{k=0}^{n-1} X_k (T(k) + T(n-k-1) + \Theta(n))$$

$$E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k (T(k) + T(n-k-1) + \Theta(n))\right]$$

$$\underline{\text{Linearity of expectation.}} = \sum_{k=0}^{n-1} E[X_k] \cdot E[T(k) + T(n-k-1) + \Theta(n)]$$

Independence of X_k from other random choices.

Prove by substitution method

$$E[T(n)] = \frac{2}{n} \sum_{k=2}^{n-1} E[T(k)] + \Theta(n)$$

(The k = 0, 1 terms can be absorbed in the $\Theta(n)$.)

Prove: $E[T(n)] \le an \lg n$ for constant a > 0.

• Choose *a* large enough so that $an \lg n$ dominates E[T(n)] for sufficiently small $n \ge 2$.

Use fact:
$$\sum_{k=2}^{n-1} k \lg k \le \frac{1}{2} n^2 \lg n - \frac{1}{8} n^2$$
 (exercise).

Prove by substitution method

$$E[T(n)] \le \frac{2}{n} \sum_{k=2}^{n-1} ak \lg k + \Theta(n)$$

$$\le \frac{2a}{n} \left(\frac{1}{2} n^2 \lg n - \frac{1}{8} n^2 \right) + \Theta(n)$$

$$= an \lg n - \left(\frac{an}{4} - \Theta(n) \right)$$

Express as *desired – residual*.