3 上限・下限、最大値・最小値、それから上極限・下極限

演習 3.1 次の条件を満たす実数の集合 A の例を挙げよ.

- (1) 上限 $\sup A$ は存在するが、最大値 $\max A$ は存在しない.
- (2) 下限 $\inf A$ は存在するが、最小値 $\min A$ は存在しない.
- (3) 任意の $a,b \in A$ に対し、ある $x \in A$ が存在して a < x < b を満たし、さらに、A の元でないある実数 y が存在して a < y < b を満たす.

演習 3.2 実数の集合 A, B で, $A \cap B = \emptyset$ かつ次の条件を満たす例を挙げよ (\emptyset は空集合の意¹).

- (1) $\min A$, $\max A$, $\inf B$, $\sup B$ が存在し, $\inf B < \min A$ かつ $\max A < \sup B$.
- (2) A, B ともに上限と下限が存在し, $\inf A = \inf B$ かつ $\sup A = \sup B$.

演習 3.3 次の集合の上限・下限と (もしあれば) 最大値・最小値を求めよ. 最大値や 最小値が存在しない場合はそのことも明記すること.

$$(1) \left\{ 1 - \frac{1}{n} \mid n \text{ は 1 以上の整数} \right\}$$

(2)
$$\left\{ (-1)^{n+1} + \frac{(-1)^n}{n} \mid n \text{ は 1 以上の整数} \right\}$$

演習 3.4 数列 $a_n = (-1)^n - \frac{1}{n}$ の上極限が 1, 下極限が -1 になることを定義に従って証明せよ.

演習 3.5 数列 $a_n = \sin\left(\frac{n}{6} + \frac{1}{n}\right)$ の上極限と下極限を求めよ.

演習 3.6 有界な数列 $\{a_n\}$ について, $\{a_n\}$ が収束するための必要十分条件は $\overline{\lim_{n\to\infty}}$ $a_n=\underline{\lim_{n\to\infty}}$ a_n であることを証明せよ.

 $^{^{1}}$ つまり A と B は共通部分を持たないようにとること