Independence of random variables

We say that random variables X and Y are **independent** if

$$p_{X,Y}(x,y) = p_X(x) p_Y(y)$$
 for all x, y ,

that is, if we can **factor** the joint pmf into a pmf that depends only on X and a pmf that depends only on Y.

This is the same as saying that the events $\{X = x\}$ and $\{Y = y\}$ are independent for all x, y.

Since we can always factor $p_{X,Y}(x,y) = p_{X|Y}(x|y)p_Y(y)$, independence means that

$$p_{X|Y}(x|y) = p_X(x)$$
 for all y with $p_Y(y) > 0$.

That is, learning the value of Y tells us nothing about X. (More precisely, learning the value of Y does not change the pmf for X.)

Exercise:

Suppose that the random variables X and Y can take three different values: -1, 0, 1. For each joint pmf below, decide whether X and Y are independent.

				_			
1	19	1/9	19	1	$\frac{1}{16}$	1/8	$\frac{1}{16}$
0	1 9	1/9	1 9	0	1/8	$\frac{1}{4}$	1/8
-1	1 9	1 9	1 9	-1	$\frac{1}{16}$	1/8	$\frac{1}{16}$
<i>y</i> / <i>x</i>	-1	0	1	y_x	-1	0	1
1							
1	0	0	$\frac{1}{3}$	1	0	$\frac{1}{6}$	0
0	0	1/3	0	0	<u>1</u>	$\frac{1}{3}$	1/6
-1	$\frac{1}{3}$	0	0	-1	0	1/6	0
y/x	-1	0	1	y/x	-1	0	1
1							
1	$\frac{1}{3}$	0	$\frac{1}{3}$	1	0	$\frac{1}{6}$	0
0	0	0	0	0	$\frac{1}{3}$	0	<u>1</u> 3
-1	1 6	0	1/6	-1	0	1/6	0
y/x	-1	0	1	y	-1	0	1

1	1/3	0	<u>1</u>	1	1/4	1/4	0
0	0	0	0	0	1/4	$\frac{1}{4}$	0
-1	<u>1</u>	0	1/3	-1	0	0	0
y/x	-1	0	1	y/x	-1	0	1
_	1	1			1	1	
1	1/4	$\frac{1}{4}$	0	1	1/4	1/4	0
0	0	0	0	0	0	$\frac{1}{4}$	$\frac{1}{4}$
-1	$\frac{1}{4}$	$\frac{1}{4}$	0	-1	0	0	0
y/x	-1	0	1	y/x	-1	0	1

Some consequences of independence

If X and Y are independent, then

1. E[XY] = E[X] E[Y]This is easy to show:

$$E[XY] = \sum_{x} \sum_{y} xyp_{X,Y}(x,y)$$

$$= \sum_{x} \sum_{y} xyp_{X}(x)p_{Y}(y)$$

$$= \left(\sum_{x} xp_{X}(x)\right) \left(\sum_{y} yp_{Y}(y)\right)$$

$$= E[X] E[Y]$$

2. Using the same line of reasoning:

$$E[g(X)h(Y)] = E[g(X)] E[h(Y)]$$

3. $\operatorname{var}(X+Y) = \operatorname{var}(X) + \operatorname{var}(Y)$

This follows directly from 1. above:

$$var(X + Y) = E[(X + Y)^{2}] - (E[X + Y])^{2}$$

$$= E[X^{2} + 2XY + Y^{2}] - (E[X])^{2} - 2 E[X] E[Y] - (E[Y])^{2}$$

$$= E[X^{2}] + 2 E[XY] + E[Y^{2}]$$

$$- (E[X])^{2} - 2 E[X] E[Y] - (E[Y])^{2}$$

$$= E[X^{2}] + 2 E[X] E[Y] + E[Y^{2}] \quad \text{(by 1.)}$$

$$- (E[X])^{2} - 2 E[X] E[Y] - (E[Y])^{2}$$

$$= E[X^{2}] - (E[X])^{2} + E[Y^{2}] - (E[Y])^{2}$$

$$= var(X) + var(Y)$$

Independence of many random variables

The definition of independence extends naturally to more than two random variables.

We say X_1, X_2, \ldots, X_n are independent if

$$p_{X_1,...,X_n}(x_1,...,x_n) = p_{X_1}(x_1) \cdot p_{X_2}(x_2) \cdot \cdots \cdot p_{X_n}(x_n)$$

Again, a consequence of this independence is that

$$var(X_1 + X_2 + \dots + X_n) = var(X_1) + var(X_2) + \dots + var(X_n)$$

Example. (Polling) Suppose we are trying to determine whether Candidate R or Candidate D is going to win the state of Florida in an upcoming election. We will let p be the proportion of voters that will vote for R; if p > 0.5, then R will win, if p < 0.5, then D will win.

We will try to determine p by randomly selecting a subset of size n of the population and polling them. A decent model for this process is treat the responses of the n people as independent Bernoulli random variables X_1, X_2, \ldots, X_n with pmfs

$$p_{X_i}(k) = \begin{cases} p & k = 1\\ 1 - p & k = 0 \end{cases},$$

so $X_i = 1$ if you plan to vote for R, and $X_i = 0$ if you plan to vote for D.

It is easy to see that since $E[X_i] = p$ we have that

$$E[X_1 + X_2 + \dots + X_n] = E[X_1] + E[X_2] + \dots + E[X_n] = np$$

and so a reasonable way to estimate p is by calculating the **sample mean**:

 $\widehat{P} = \frac{1}{n}(X_1 + X_2 + \dots + X_n).$

Notice that \widehat{P} is itself a random variable; its expectation is $E[\widehat{P}] = p$ no matter what n is. But as we will see below, the variance of \widehat{P} decreases as n gets bigger.

1. What is the variance of a single polling result X_i ?

$$var(X_i) =$$

2. What is the variance of \widehat{P} ?

$$var(\widehat{P}) =$$

3. How does $var(\widehat{P})$ behave as n gets large? What does this say (qualitatively) about how \widehat{P} concentrates around its mean p?

Exercise:

When I drive to work I pass through 27 traffic lights. Assume that each light is equally likely to be green or red when I arrive, independent of all others.

1. What is the pmf of the number of red lights that I hit?

2. What is the mean and variance of the number of red lights that I hit?

3. Suppose that each red light causes a 1.5 minute delay. What is the variance of my commuting time?