الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية الديوان الوطني للامتحانات والمسابقات

ليم الثانوي دورة: 2023

امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

الحتبار في مادة: الرياضيات المدة: 03 سا و30 د

على المترشح أن يختار أحد الموضوعين الآتيين:

الموضوع الأول

التمرين الأول: (04 نقاط)

يحتوي صندوق U_1 على 5 كريات تحمل الأرقام 1 ، 1 ، 1 ، 1 ، 3 ويحتوي صندوق U_2 على 4 كريات تحمل الأرقام 1 ، 1 ، 2 ، 2 ، 2 ، 1 ، 1 وكل الكريات متماثلة ولا نفرق بينها عند اللمس).

نختار عشوائيا أحد الصندوقين ونسحب منه عشوائيا كريتين في آن واحد.

"نعتبر الحوادث : A " سحب كريتين تحملان رقمين فرديين " B " سحب كريتين تحملان رقمين زوجيين (1

" سحب كريتين إحداهما تحمل رقما فرديا والأخرى تحمل رقما زوجيا " C

أ) أنجز الشجرة التي تُنمذج هذه التجربة.

$$P(C)$$
 بين أنّ $P(A) = \frac{1}{12}$ و $P(A) = \frac{23}{60}$ ثمّ احسب (ب

ينفرغ محتوى الصندوقين U_1 و U_2 في صندوق جديد U_3 ثمّ نسحب منه عشوائيا كريتين في آن واحد. $\mathbf{2}$

المتغيّر العشوائي الذي يرفق بكل عملية سحب لكريتين جُداء الرقمين المسجلين عليهما. X

 $\{1;2;3;4;6\}$ هي X هي المتغيّر العشوائي المجموعة قيم المتغيّر العشوائي

 $E\left(X
ight)$ عيّن قانون الاحتمال للمتغيّر العشوائي X ثمّ احسب أمله الرياضياتي $\left(Y
ight)$

التمرين الثاني: (04 نقاط)

أجب بصحيح أو خاطئ مع التبرير في كل حالة من الحالات الآتية:

 $h(x) = 7e^{2x} - 3$ بـ: \mathbb{R} بالذي يحقّق $y(\ln 2) = 25$ هو الدالة y' = 2y + 6 الذي يحقّق y' = 2y + 6 الذي يحقّق (1

 $\lim_{x\to+\infty} \left[x - \ln(e^x - 1) \right] = +\infty$ (2

31 هي [0;2] على المجال (3 $x\mapsto x(x^2+1)^2$ هي (3

 $v_n = \int_n^{n+1} e^{-x+3} dx$ بالمتتالية المعرّفة على \mathbb{N} بالمتتالية المعرّفة على (v_n) (4

 $v_0 + v_1 + \dots + v_n = e^3 - e^{-n+2}$, $n_0 = e^3 - e^{-n+2}$

التمرين الثالث: (05 نقاط)

$$u_{n+1} = -1 + \frac{2}{2 - u_n}$$
 ، n ومن أجل كل عدد طبيعي $u_0 = \frac{1}{2}$: المتتالية المعرّفة ب $u_0 = \frac{1}{2}$

$$0 < u_n \leq \frac{1}{2}$$
 ، n برهن بالتراجع أنّه: من أجل كلّ عدد طبيعي (أ (1

(D)

اختبار في مادة: الرياضيات / الشعبة: علوم تجريبية / بكالوريا 2023

بيّن أنّ المتتالية
$$(u_n)$$
 متناقصة تماما.

$$v_n = \frac{1}{u_n} - 1$$
 ، n نضع: من أجل كلّ عدد طبيعي (2

$$n$$
 بدلالة v_n بدلالة v_n بدلالة v_n بدلالة أ) أثبت أنّ المتتالية v_n بدلالة المتتالية أ

$$\lim_{n\to+\infty}u_n$$
 بستنتج أنّه: من أجل كلّ عدد طبيعي ، $n=\frac{1}{2^n+1}$ ، n عدد عدد عدد عدد عدد البيعي (ب

$$T_n = \frac{1}{u_0} + \frac{1}{u_1} + \dots + \frac{1}{u_n}$$
 و $S_n = v_0 + v_1 + \dots + v_n$ ، n نضع: من أجل كلّ عدد طبيعي (3

 $T_n = 2^{n+1} + n$ ، n بدلالة n ثمّ بيّن أنّه من أجل كلّ عدد طبيعي S_n بدلالة الم

التمرين الرابع: (07 نقاط)

$$x\mapsto (2x-1)e^{2x}$$
 بـ \mathbb{R} بـ التمثيل البياني للدالة المعرّفة على \mathbb{R}

و
$$(D)$$
 المستقيم ذو المعادلة $y=1$ ، y هي فاصلة نقطة

تقاطع
$$(\Gamma)$$
 و (D) و (Γ)

$$(D)$$
 بقراءة بيانية ، حدّد وضعية (Γ) بالنسبة إلى $(1$

$$g(x) = (2x-1)e^{2x}-1:$$
 الدالة المعرّفة على \mathbb{R} بالدالة المعرّفة على $g(x) = (2x-1)e^{2x}$

0,6 < lpha < 0,7 استنتج حسب قیم x إشارة $g\left(x
ight)$ ثمّ تحقق أنّ

$$f\left(x
ight)$$
 = $\left(x-1
ight)\left(e^{2x}-1
ight)$:ب $f\left(\mathbf{H}\right)$ الدالة المعرّفة على $f\left(\mathbf{H}\right)$

(
$$2~cm$$
 وحدة الطول) ($0; \vec{i}, \vec{j}$ وحدة الطول) وحدة الطول (C_f

$$\lim_{X\to +\infty} f(X)$$
 و $\lim_{X\to -\infty} f(X)$ احسب (1

$$-\infty$$
 عند (C_f) مقارب مائل لـ $y=-x+1$ عند Δ عند (Δ) مقارب مائل المعادلة (Δ) عند (Δ)

$$\left(\Delta
ight)$$
 ادرس وضعية ا $\left(C_{f}
ight)$ بالنسبة إلى

$$f'(x) = g(x)$$
 ، x عدد حقیقی عدد من أجل كل عدد من أجل كل عدد عقیقی

ب) استنتج أنّ
$$[\alpha\,;+\infty]$$
 ثم شكّل جدول تغيّراتها. $]-\infty\,;\,\alpha$ متناقصة تماما على $[\alpha\,;+\infty]$ ثم شكّل جدول تغيّراتها.

بيّن أنّ
$$(C_f)$$
 يقبل مماسا (T) موازيا لـ (Δ) ، يُطلب تعيين معادلة له.

. فواصل نقط تقاطع
$$(C_f)$$
 مع حامل محور الفواصل (4

$$(f(lpha) \simeq -0.9$$
 و $f(1,4) \simeq 6.2$: (C_f) و (T) ، (Δ) رناخذ (T)

$$f\left(x\right) = -x + m$$
 ناقش بيانيا، حسب قيم الوسيط الحقيقي m ، عدد حلول المعادلة

$$\int_0^{\frac{1}{2}} (x-1) e^{2x} dx = \frac{3-2e}{4}$$
 : نين أنّ بين أنّ بين أنّ (5) باستعمال المكاملة بالتجزئة، بيّن أنّ

$$m{\psi}$$
 استنتج، بالسنتيمتر المربع، مساحة الحيّز المستوي المحدّد بالمنحني (C_f) والمستقيمات التي معادلاتها:

انتهى الموضوع الأول y=-x+1 و $x=\frac{1}{2}$ ، x=0

اختبار في مادة: الرياضيات / الشعبة: علوم تجريبية / بكالوريا 2023

الموضوع الثانى

التمرين الأول: (04 نقاط)

يحتوي كيس على 10 كريات متماثلة ولا نفرق بينها باللّمس، موزعة كما يلي: 3 كريات بيضاء مرقمة بـ: 1 ، 1 ، 2

و 3 كريات حمراء مرقمة بـ: 1 ، 2 ، 2 و 4 كريات خضراء مرقمة بـ: 1 ، 2 ، 2 ، 2

نسحب عشوائيا وفي آن واحد كريتين من الكيس ونعتبر الحوادث C ، B ، A الآتية:

" الحصول على كريتين من نفس اللون " B ، " الحصول على كرية خضراء على الأقل A

" الحصول على كريتين تحملان رقمين زوجيين C

$$\frac{2}{3}$$
 يساوي $\frac{4}{15}$ وأنّ احتمال الحدث $\frac{4}{15}$ يساوي (أ (1

ب) احسب الاحتمالين P(C) و $P(A \cap C)$ هل الحدثان P(C) مستقلان؟

ج) استنتج احتمال الحصول على كريتين من نفس اللون علما أنّهما تحملان رقمين زوجيين.

2 نعتبر المتغيّر العشوائي X الذي يرفق بكل عملية سحب لكريتين مجموع الرقمين المسجلين عليهما.

أ) برّر أنّ مجموعة قيم المتغيّر العشوائي X هي $\{2;3;4\}$

 $E\left(X
ight)$ عين قانون احتمال المتغيّر العشوائي X ثمّ احسب أمله الرياضياتي $\left(X
ight)$

التمرين الثاني: (04 نقاط)

عين الاقتراح الصحيح الوحيد من بين الاقتراحات الثلاثة في كل حالة من الحالات الآتية مع التبرير.

دات المجهول z في z هما: 8 $z^2-4z+1=0$ هما:

$$\frac{1}{4} - \frac{1}{4}i \quad \text{9} \quad \frac{1}{4} + \frac{1}{4}i \quad \text{(\Rightarrow} \qquad -\frac{1}{4} + \frac{1}{4}i \quad \text{9} \quad -\frac{1}{4} - \frac{1}{4}i \quad \text{(\Rightarrow} \qquad -\frac{1}{4} + \frac{1}{4}i \quad \text{9} \quad \frac{1}{4} - \frac{1}{4}i \quad \text{(\Rightarrow} \qquad -\frac{1}{4} + \frac{1}{4}i \quad \text{9} \quad \frac{1}{4} - \frac{1}{4}i \quad \text{(\Rightarrow} \qquad -\frac{1}{4} + \frac$$

الشكل الجبري للعدد المركب $\frac{1+\sqrt{3}+i}{1-i}$ هو:

$$\frac{\sqrt{3}}{2} + i \left(\frac{-2 + \sqrt{3}}{2} \right) \left(\div \frac{\sqrt{3}}{2} - i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2 + \sqrt{3}}{2} \right) \right) \left(\div \frac{\sqrt{3}}{2} + i \left(\frac{2$$

الجذران التربيعيان للعدد المركب -8+6i هما:

$$-3-i$$
 g $3+i$ g $1-3i$ g $1+3i$ g $1+3i$

: هو $\frac{1+i}{\sqrt{3}-i}$ الشكل المثلثي للعدد المركب (4

$$\frac{\sqrt{2}}{2} \left(\cos \frac{7\pi}{12} + i \sin \frac{7\pi}{12} \right) \left(\div \frac{\sqrt{2}}{2} \left(\cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right) \right) \left(\div \sqrt{2} \left$$

التمرين الثالث: (05 نقاط)

$$u_{n+1}=rac{4}{5}u_n+1$$
 ، u_n عدد طبیعي عدد $u_0=0$... عدد المعرّفة ب $u_0=0$

 $u_n < 5$ ، n عدد طبیعي (أ (1

بيّن أنّ (u_n) متزايدة تماما.

اختبار في مادة: الرياضيات / الشعبة: علوم تجريبية / بكالوريا 2023

 $v_n = u_n - 5$ ، نضع: من أجل كلّ عدد طبيعي (2

$$v_0$$
 الأول عندسية أساسها $\frac{4}{5}$ ، يطلب تعيين حدّها الأول أ

$$u_n=-5igg(rac{4}{5}igg)^n+5$$
 ، n عبارة عبارة v_n بدلالة v_n اكتب عبارة v_n اكتب عبارة التج أنّه: من أجل كلّ عدد طبيعي

 $\lim_{n\to+\infty}u_n$ (=

$$T_n=u_0+u_1+\dots+u_n$$
 و $S_n=v_0+v_1+\dots+v_n$ ، n نضع: من أجل كلّ عدد طبيعي (3 $T_n=5n-20$ ل عدد طبيعي $S_n=v_0+v_1+\dots+v_n$ احسب $S_n=5n-20$ بدلالة $S_n=5n-20$ بدلالة $S_n=5n-20$

التمرين الرابع: (07 نقاط)

$$f(x) = \left(\left(\ln x\right)^2 - 3\right)\ln x$$
 الدالة المعرّفة على المجال $g(x) = \left(\left(\ln x\right)^2 - 3\right)\ln x$ الدالة المعرّفة على المجال

 $\left(O; \overrightarrow{i}, \overrightarrow{j} \,
ight)$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس $\left(C_f \,
ight)$

المسب النتيجة هندسيا. $\lim_{x \to 0} f(x)$ احسب (أ (1

 $\lim_{x\to +\infty} f(x)$ باحسب (ب

$$f'(x) = \frac{3(-1+\ln x)(1+\ln x)}{x}$$
 ، $]0;+\infty[$ من المجال x عدد حقیقی x من المجال عدد عقیقی x من المجال (1)

$$(-1+\ln x)(1+\ln x)>0$$
 : x المتراجحة ذات المجهول $(-1+\ln x)(1+\ln x)>0$ المجال $(-1+\ln x)(1+\ln x)>0$

- - 1 عيّن معادلة لـ (C_f) مماس معادلة لـ (T) عيّن معادلة الفاصلة الفاصلة عيّن معادلة الفاصلة الفاصلة (T)
 - . عيّن فواصل نقط تقاطع (C_f) مع حامل محور الفواصل.
 - $\left[0\,;e^{2}
 ight]$ ارسم $\left(C_{f}
 ight)$ و $\left(C_{f}
 ight)$ على المجال $\left(T
 ight)$

$$F(x) = x \left((\ln x)^3 - 3(\ln x)^2 + 3\ln x - 3 \right)$$
 بالدالة المعرّفة على المجال $f(x) = x \left((\ln x)^3 - 3(\ln x)^2 + 3\ln x - 3 \right)$ بالدالة المعرّفة على المجال $f(x) = x \left((\ln x)^3 - 3(\ln x)^2 + 3\ln x - 3 \right)$ بالدالة المعرّفة على المجال $f(x) = x \left((\ln x)^3 - 3(\ln x)^2 + 3\ln x - 3 \right)$

- ب) احسب مساحة الحيّز المستوي المحدّد بالمنحني (C_f) وحامل محور الفواصل والمستقيمين اللذين معادلتا هما: x=e و x=1
- . الدالة المعرّفة على $0;+\infty$ بياني في المعلم السابق. $h(x)=\left((\ln x)^2-3\right)\left|\ln x\right|$ بياني في المعلم السابق.