Section 02 : Régression et Moindres Carrés Ordinaires (Séance 4)

GSF-6053: Économétrie Financière

Simon-Pierre Boucher¹

¹Département de finance, assurance et immobilier Faculté des sciences de l'administration Université Laval

1 Février 2022

Références

Obligatoires:

- Notes de cours: Section 2 (Professeure: Marie-Hélène Gagnon)
- ► Woolridge: chapitres 2 à 7

Complémentaires:

- ► Gujarati et Porter: chapitres 1 à 9.
- ▶ **Greene:** chapitres 2, 3, 4, 5, 9, 14, 20, appendices C et D

Plan de la séance

Analyse de Variance

Coefficient de détermination (R^2)

Coefficient de détermination ajusté (R^2 ajusté)

Test d'hypothèse

Les contraintes linéaires

Test de Wald

Ratio de vraisemblance (LR)

Multiplicateur de Lagrange

Lien entre les Statistiques F, WALD, LR et LM

Coefficient de détermination (R^2)

Coefficient de détermination ajusté (R² ajusté)

Test d'hypothèse

Les contraintes linéaires

Test de Wald

Ratio de vraisemblance (LR)

Multiplicateur de Lagrange

Lien entre les Statistiques F. WALD, LR et LM

► Variation dans la variable expliquée (Y)

$$Y_t = \hat{Y}_t + \hat{u}_t$$

- ► Composantes de la variation de **Y**
 - $ightharpoonup \hat{Y}_t$ est la variation due à la partie expliquée
 - $ightharpoonup \hat{u}_t$ est induite par la partie de f Y non expliquée

Variation totale de Y

$$SS_{tot} = \sum_{t=1}^{T} (Y_t - \overline{Y})^2$$

Variation partie expliquée de Y

$$SS_{reg} = \sum_{t=1}^{T} (\hat{Y}_t - \overline{Y})^2$$

► Variation non expliquée de Y ou Résidus

$$SS_{err} = \sum_{t=1}^{T} (Y_t - \hat{Y}_t)^2 = \sum_{t=1}^{T} \hat{u}_t^2$$

ightharpoonup À l'aide des 3 dernières définitions, soit SS_{tot} , SS_{reg} et SS_{err} , nous allons maintenant prouver l'équation suivante:

$$SS_{tot} = SS_{reg} + SS_{err}$$

▶ On pose la définition de SS_{tot} qu'on sait déja:

$$SS_{tot} = \sum_{t=1}^{T} (Y_t - \overline{Y})^2$$

Sachant $Y_t = \hat{Y}_t + \hat{u}_t$

$$SS_{tot} = \sum_{t=1}^{T} (\hat{Y}_t + \hat{u}_t - \overline{Y})^2$$

Afin d'éliminer et de transformer certains termes, il nous faut distribuer les termes de notre parenthèse élevé au carré.

$$SS_{tot} = \sum_{t=1}^{T} (\hat{Y}_t + \hat{u}_t - \overline{Y}) imes (\hat{Y}_t + \hat{u}_t - \overline{Y})$$

$$=\sum_{t=1}^{T}\left[\hat{Y}_{t}^{2}+\hat{Y}_{t}\hat{u}_{t}-\hat{Y}_{t}\overline{Y}+\hat{u}_{t}\hat{Y}_{t}+\hat{u}_{t}^{2}-\hat{u}_{t}\overline{Y}-\overline{Y}\hat{Y}_{t}-\overline{Y}\hat{u}_{t}+\overline{Y}^{2}\right]$$

- Nous allons maintenant simplifier notre équation SS_{tot} , en utilisant l'identité remarquable.
 - Rappel: Si nous avons $(a^2 + 2ab + b^2)$, alors on peut écrire les 3 termes sous une forme polynomial $(a + b)^2$
- ▶ Dans le cas qui nous interesse, notre indentité remarquable sera composé de \hat{Y}_t et \overline{Y} . On peut donc isoler, dans notre dernière équation les termes nécessaires:

$$SS_{tot} = \sum_{t=1}^{T} \left[(\hat{Y}_t^2 + \overline{Y}^2 - 2\hat{Y}_t \overline{Y}) + 2\hat{Y}_t \hat{u}_t + \hat{u}_t^2 - 2\hat{u}_t \overline{Y} \right]$$

Sachant que selon l'identité remarquable

$$(\hat{Y}_t^2 + \overline{Y}^2 - 2\hat{Y}_t\overline{Y}) = (\hat{Y}_t - \overline{Y})^2$$

$$SS_{tot} = \sum_{t=1}^{T} \left[(\hat{Y}_t - \overline{Y})^2 + 2\hat{Y}_t \hat{u}_t + \hat{u}_t^2 - 2\hat{u}_t \overline{Y} \right]$$

▶ On doit maintenant distribuer notre opérateur sommation à tous les termes de l'équation exprimant SS_{tot} .

$$SS_{tot} = \sum_{t=1}^{T} (\hat{Y}_t - \overline{Y})^2 + \sum_{t=1}^{T} \hat{u}_t^2 + 2\sum_{t=1}^{T} \hat{Y}_t \hat{u}_t - 2\overline{Y} \sum_{t=1}^{T} \hat{u}_t$$

Sachant:

$$SS_{reg} = \sum_{\underline{t}=1}^{T} (\hat{Y}_t - \overline{Y})^2$$

$$SS_{err} = \sum_{t=1}^{T} \hat{u}_t^2$$

▶ Alors on peut écrire l'équation exprimant SS_{tot} comme suit:

$$SS_{tot} = SS_{reg} + SS_{err} + 2\sum_{t=1}^{T} \hat{Y}_t \hat{u}_t - 2\overline{Y} \sum_{t=1}^{T} \hat{u}_t$$

▶ Les résidus sont orthogonaux au sous-espace engendré par les colonnes de X

$$2\sum_{t=1}^{T} \hat{Y}_t \hat{u}_t = 0$$

La somme des résidus est nulle

$$2\overline{Y}\sum_{t=1}^{T}\hat{u}_{t}=0$$

Avec les deux dernières propriétés on très bien que dans l'éuation du SS_{tot}, les deux derniers termes s'annulent:

$$SS_{tot} = SS_{reg} + SS_{err}$$

Coefficient de détermination (R^2)

Coefficient de détermination ajusté (R^2 ajusté)

Test d'hypothèse

Les contraintes linéaires

Test de Wald

Ratio de vraisemblance (LR)

Multiplicateur de Lagrange

Lien entre les Statistiques F, WALD, LR et LN

Coefficient de détermination (R^2)

- Indique le pouvoir explicatif de la régression
- ▶ Proportion des variations de Y expliquées par les régresseurs du modèle par rapport aux variations total.
- On peut donc exprimer le R² comme étant le ratio entre la somme des résidus au carrés et somme des variations total au carrés.

$$R^2 = \frac{SS_{reg}}{SS_{tot}} = 1 - \frac{SS_{err}}{SS_{tot}}$$

ightharpoonup On voit clairement que notre R^2 sera compris entre 0 et 1

$$0 \le R^2 \le 1$$

Coefficient de détermination (R^2)

Coefficient de détermination ajusté (R² ajusté)

Test d'hypothèse

Les contraintes linéaires

Test de Wald

Ratio de vraisemblance (LR)

Multiplicateur de Lagrange

Lien entre les Statistiques F, WALD, LR et LM

- ► Contrairement au R² standard, le R² ajusté vient pénélisé l'ajout de variables explicatives inutiles.
- $ightharpoonup R^2
 ightarrow Si$ on ajoute un variable explicative à note modèle, il augmentera forcément
- ► R² ajusté → Si on ajoute un variable explicative à note modèle, il peut augmenté, mais si l'ajout de cette variable est inutile il pourra également diminuer.

- L'équation exprimant le R^2 ajusté contient comme pour le R^2 , le SS_{err} et le SS_{tot} .
- Cependant afin de tenir compte du nombre de régresseurs ajoutés au modèle, on aura besoin de la constante k, étant le nombre de variable indépendantes.
- Nous aurons également besoin du nombres d'observation dans notre échantillons, représenté par *n*.

Equation exprimation le R^2 ajusté:

$$R_{ADJ}^2 = 1 - rac{\left(rac{SS_{err}}{n-k}
ight)}{\left(rac{SS_{tot}}{n-1}
ight)}$$

$$= 1 - rac{SS_{err}(n-1)}{SS_{tot}(n-k)}$$

Ou k représente le nombre de régresseurs

- ➤ On peut également montrer qu'il est possible d'exprimer le R² ajusté en fonction du R² standard
- ▶ Si $\frac{SS_{reg}}{SS_{tot}} = R^2$ alors $\frac{SS_{err}}{SS_{tot}} = 1 R^2$ Comme montré ci-haut, le R^2 ajusté peut être exprimé comme suit:

$$R_{ADJ}^2 = 1 - \frac{SS_{err}}{SS_{tot}} \times \frac{(n-1)}{n-k}$$

Sachant $\frac{SS_{err}}{SS_{tot}}=1-R^2$, on peut écrire à nouveau le R^2 ajusté en fonction du R^2

$$R_{ADJ}^2 = 1 - (1 - R^2) \times \frac{(n-1)}{n-k}$$

Coefficient de détermination ajusté:

- Si nous avons uniquement 1 variables explicatives dans notre modèle, alors le R² sera égale au R²_{ADI}.
 - ▶ Dans ce cas, nous avons 1 régresseur, soit k = 1

$$R_{ADJ}^{2} = 1 - (1 - R^{2}) \times \frac{(n-1)}{n-k}$$

$$= 1 - (1 - R^{2}) \times \frac{(n-1)}{n-1}$$

$$= 1 - (1 - R^{2})$$

$$= R^{2}$$

Coefficient de détermination ajusté:

- Si nous avons uniquement plusieurs variables explicatives dans notre modèle, alors le R^2 sera plus grand ou égale au R^2_{ADJ} .
 - ▶ Dans ce cas, nous avons 2 régresseur et plus, soit $k \ge 2$
- S'il y a plusieurs variables explicatives alors

$$n - 1 > n - k$$

De facon équivalente:

$$\frac{(n-1)}{n-k} > 1$$

Le terme $\frac{(n-1)}{n-k}$ supérieurs à 1 est multiplié à ce qui n'est pas expliqué par le modèle $(1-R^2)$

Ce qui nous permet d'affirmer:

$$R_{ADI}^2 \le R^2 \text{ et } R_{ADI}^2 \le 1$$

Coefficient de détermination (R^2)

Coefficient de détermination ajusté (R^2 ajusté)

Test d'hypothèse

Les contraintes linéaires

Test de Wald

Ratio de vraisemblance (LR)

Multiplicateur de Lagrange

Lien entre les Statistiques F, WALD, LR et LN

Un test d'hypothese sur les parametres d'un modele econometrique requiert les etapes suivantes:

- Étape 1:
 - Ecrire l'hypothese nulle (H_0) et l'alternative (H_1) .
 - ► La plupart du temps, H₀ est l'hypothese que l'on veut rejeter.
 - Par exemple, qu'un parametre est non significatif ou egal a une certaine valeur.
 - L'hypothese alternative peut etre unilaterale (< et >) ou bilaterale (\neq).

Étape 2:

- ▶ Definir la statistique de test (student, F, Wald, LR, LM etc..)
- Determiner si possible, la distribution loi de cette statistique sous H₀.

Étape 3:

- Choisir le niveau de significativite du test α .
- On fixe donc la possibilite d'erreur de type 1 soit la probabilite de rejeter H₀ lorsque celle-ci est vraie.
- Generalement, on fixe le niveau a 5 % ou 1 % et plus rarement a 10 %.

► Étape 4:

- ▶ Determiner la regle de decision du test avec la region critique de confiance CR_{α} .
- La plupart du temps, cela demande de savoir la distribution de la statistique sous H_0 .
- Lorsque la valeur calculee pour la statistique de test se trouve dans la region critique: on rejette H_0 en faveur de H_1 au seuil de confiance α .

Étape 5:

Utiliser les valeurs obtenues de la regression pour calculer la statistique de test.

Étape 6:

Appliquer la regle de decision vue dans l'étape 4.

Note sur la p-value

- Parfois, on regarde la p-value au lieu de comparer CR_{α} a la valeur de la statistique.
- P-value : C'est le plus petit niveau auquel on petit rejeter l'hypothese nulle.
- ► En d'autres mots, c'est la probabilite d'avoir un evenement aussi extreme que celle observee en assumant que H₀ est vraie.
- Plus la p-value est faible, plus la probabilite que l'evenement observe soit faible, etant donne l'hypothese nulle.
 - plus il y a de chances que l'hypothese nulle est rejetee.

Test de significativité:

Significativité individuelle d'un paramètre

- On regarde si le régresseur est statistiquement non nul
- Utilise le test de student

Significativité conjointe des paramètres

- On regarde si au moins un des régresseurs est statistiquement non nul (un effet)
- Utilise le F-test

Test de Student:

Two-tailed test

- Hypothèse nulle est la non-significativité du coefficient de régression
- Hypothèses:
 - ► $H_0: \beta_k = 0 \rightarrow \text{Hypothèse nule}$
 - ► $H_1: \beta_k \neq 0 \rightarrow$ Hypothèse alternative
- ► Règle de décision: Rejeter *H*₀ si:

$$t = \frac{||\hat{\beta}_k - \beta_0||}{SE_{\hat{\beta}_k}} > t_{n-k,\alpha/2}$$

- Ou β_0 est la valeur du coefficient sous l'hypothèse nulle, soit 0
- $ightharpoonup SE_{\hat{\beta}_k}$ est l'écart-type associé à l'estimation de $\hat{\beta}_k$

Test de Student:

Right-tailed test

- Hypothèses:
 - ► $H_0: \beta_k \leq 0$ → Hypothèse nule
 - ▶ $H_1: \beta_k > 0 \rightarrow$ Hypothèse alternative
- ► Règle de décision: Rejeter *H*₀ si:

$$t = \frac{\hat{\beta}_k - \beta_0}{SE_{\hat{\beta}_k}} > t_{n-k,\alpha}$$

- Ou β_0 est la valeur du coefficient sous l'hypothèse nulle, soit 0
- \triangleright $SE_{\hat{\beta}_k}$ est l'écart-type associé à l'estimation de $\hat{\beta}_k$

Test de Student:

Left-tailed test

- Hypothèses:
 - ► $H_0: \beta_k \ge 0$ → Hypothèse nule
 - ▶ $H_1: \beta_k < 0 \rightarrow$ Hypothèse alternative
- ► Règle de décision: Rejeter *H*₀ si:

$$t = \frac{\hat{\beta}_k - \beta_0}{\mathsf{SE}_{\hat{\beta}_k}} < -t_{n-k,\alpha}$$

- Ou β_0 est la valeur du coefficient sous l'hypothèse nulle, soit 0
- $ightharpoonup SE_{\hat{eta}_k}$ est l'écart-type associé à l'estimation de \hat{eta}_k

F-test (significativité conjointe)

- Comparer la différence entre les résidus au carrés d'un modèle contraint et d'un modèle non contraint.
 - ► Si la différence est grande
 - Plus les résidus du modèle contraint sont grand par rapport au modèle contraint
 - Plus la contrainte coûte cher à appliquer en terme de performance
 - Plus la statistique F est grande
 - Passé un certain coût critique \rightarrow rejette H_0

F-test (significativité conjointe)

Hypothèses:

- $H_0: \beta_2 = \beta_3 = ... = \beta_k = 0$
- ▶ $H_1: \beta_2 \neq 0$ et $\beta_3 \neq 0$ et ... et/ou $\beta_k \neq 0$

Statistique de test:

- ▶ Modèle non contraint $\rightarrow (\hat{u}'\hat{u})$
- ▶ Modèle contraint $\rightarrow (\hat{u}'_0\hat{u}_0)$

$$F = \frac{\hat{u}_0'\hat{u}_0 - \hat{u}'\hat{u}}{\hat{u}'\hat{u}} \times \frac{t-k}{q} \sim (q, t-k)$$

F-test (significativité conjointe)

Décision:

On rejette H_0 à un seuil de α si

$$F = \frac{\hat{u}_0'\hat{u}_0 - \hat{u}'\hat{u}}{\hat{u}'\hat{u}} \times \frac{t-k}{q} > F(q, t-k; \alpha)$$

Coefficient de détermination (R^2)

Coefficient de détermination ajusté (R² ajusté)

Test d'hypothèse

Les contraintes linéaires

Test de Wald

Ratio de vraisemblance (LR)

Multiplicateur de Lagrange

Lien entre les Statistiques F, WALD, LR et LM

Les contraintes linéaires

Format général:

$$H_0: R\beta = r$$

- ► *R* = matrice de sélection contenant une ligne pour chaque contrainte non redondante *q*
- Vecteur de réel constants

Les contraintes linéaires

- ▶ On cherche à maximiser notre log-vraisemblance afin de trouver une solution pour β , tout en respectant une contrainte linéaire.
- Il s'agit essentiellement d'une optimization sous contrainte à l'aide d'un multiplicateur de lagrange.
- ▶ On représente l'estimateur β obtenus avec la méthode des moindres carrés ordinaire est représenté par β^{OLS} .
- L'estimateur β obtenus sous une contrainte linéaire est représenté par β^{LC}

Les contraintes linéaires

- Nous voulons minimiser la somme des carrés des résidus, mais cette fois, nous posons la contrainte : $R\beta = r$
- Cela conduit à la fonction de Lagrange suivante:

$$L(\beta, \lambda) = (Y - X\beta)'(Y - X\beta) + 2\lambda'(R\beta - r)$$

= $Y'Y - 2Y'X\beta + \beta'X'X\beta + 2\lambda'R\beta - 2\lambda'r$

▶ On dérive ensuite la fonction $L(\beta, \lambda)$ par rapport à β et λ

Dérivé par rapport à β

$$\frac{\partial L(\beta, \lambda)}{\partial \beta} = -2X'Y + 2X'X\beta + 2\lambda'R = 0$$
$$X'X\beta + R'\lambda = X'Y$$

Dérivé par rapport à λ

$$\frac{\partial L(\beta,\lambda)}{\partial \lambda} = 2R\beta - 2r = 0$$

$$R\beta = r$$

Format matricielle

► Équation 1:

$$X'X \times \beta + R' \times \lambda = X'Y$$

► Équation 2:

$$R \times \beta + 0 \times \lambda = r$$

Ce qui nous permet d'obtenir la représentation suivante:

$$\begin{bmatrix} X'X & R' \\ R & 0 \end{bmatrix} \begin{bmatrix} \beta \\ \lambda \end{bmatrix} = \begin{bmatrix} X'Y \\ r \end{bmatrix}$$

lacktriangle On peut ensuite obtenir une solution pour eta et λ

$$\begin{bmatrix} \beta \\ \lambda \end{bmatrix} = \begin{bmatrix} X'X & R' \\ R & 0 \end{bmatrix}^{-1} \begin{bmatrix} X'Y \\ r \end{bmatrix}$$

Pour obtenir une solution de β^{LC} , il nous suffit de trouver la solution pour β dans l'équation 1.

$$X'X\beta^{LC} + R'\lambda = X'Y$$

$$X'X\beta^{LC} = X'Y - R'\lambda$$

$$\beta^{LC} = (X'X)^{-1}X'Y - (X'X)^{-1}R'\lambda$$

Estimateur sous contrainte linéaire (β^{LC})

$$\beta^{LC} = (X'X)^{-1}X'Y - (X'X)^{-1}R'\lambda$$

Estimateur OLS (β^{OLS})

$$\beta^{OLS} = (X'X)^{-1}X'Y$$

On voit donc facilement qu'il nous est possible d'exprimer l'estimateur β^{LC} en fonction de l'estimateur β^{OLS}

$$\beta^{LC} = \beta^{OLS} - (X'X)^{-1}R'\lambda$$

- ▶ On doit également trouver une solution pour λ afin de pouvoir l'incorporer dans la solution de β^{LC}
- \blacktriangleright On commence par multiplier chaque coté l'équation de la solution de β^{LC} par R

$$R\beta^{LC} = R\beta^{OLS} - R(X'X)^{-1}R'\lambda$$

• On sait déja que $R\beta^{LC}=r$, étant donné la contrainte linéaire posée

$$r = R\beta^{OLS} - R(X'X)^{-1}R'\lambda$$

Pour finalement isoler β^{OLS}

$$\lambda = (R(X'X)^{-1}R')^{-1}(R\beta^{OLS} - r)$$

• On substitut la solution de λ dans l'équation de la solution de β^{LC}

$$\beta^{LC} = \beta^{OLS} - (X'X)^{-1}R'(R(X'X)^{-1}R')^{-1}(R\beta^{OLS} - r)$$

- ▶ On voit que β^{LC} (Contraint) est exprimé en fonction de β^{OLS} (Non-Contraint).
- Le test de Fisher (F-Test) est une spécification d'un contrainte linéaire.
 - Le modèle non-contraint est le modèle que nous souhaitons estimer et vérifier la significativité.
 - Le modèle contraint est simplement un modèle dans lequel nous allons contraindre tous les coefficients d'être égale à 0.

Représentation du F-test sous le format de contrainte linéaire

- ▶ On suppose un modèle avec un intercept β_0 et une pente β_1 .
- On cherche à tester une contrainte linéaire ayant le format $R\beta=r$
- La matrice R:

$$R = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

▶ La matrice β :

$$\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$$

Représentation du F-test sous le format de contrainte linéaire

La matrice r

$$r = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

► Ce qui nous donne la contrainte linéaire $(R\beta = r)$ dans le cas du F-Test:

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

- Nous regardons maintenant trois classes de tests qui peuvent être utilisées dans des contextes plus généraux:
 - Test d'hypothèse de restrictions non linéaires sur les paramètres
 - ► Test d'hypothèse sur la matrice de variance-covariance
 - ► Tests dans des modèles sans normalités des erreurs
- Les tests présentés sont
 - Multiplicateur de Lagrange (LM)
 - ► Test de Wald
 - Ratio de vraisemblance (LR)

Analyse de Variance

Coefficient de détermination (R^2)

Coefficient de détermination ajusté (R² ajusté)

Test d'hypothèse

Les contraintes linéaires

Test de Wald

Ratio de vraisemblance (LR)

Multiplicateur de Lagrange

Test de Wald

- Le test de Wald est une forme quadratique basé sur la distance entre $(R\beta r)$ et zéro.
- C'est-à-dire si l'estimé non contraint vérifie la contrainte.
- ► On rejette l'hypothèse nulle si la statistique est suffisamment grande.

Hypothèses

 $ightharpoonup H_0: R\beta = r$

 $ightharpoonup H_1: R\beta \neq r$

Statistique W

$$W = (R\beta - r)'[V(R\beta - r)]^{-1}(R\beta - r)$$

Où $V(R\beta - r)$ est la variance entre les deux termes.

Test de Wald

Statistique W

► En décomposant la variance, on trouve une solution pour la statistique de Wald.

$$W = \frac{1}{\hat{\sigma}^2} (R\beta - r)' [R(X'X)^{-1}R']^{-1} (R\beta - r)$$

- Sous l'hypothèse nulle, W suit aussi une khi carré (q).
- Le Wald est intéressant, car tous les estimés nécessaires sont non contraints.
- On ne fait pas d'estimation contrainte, car on s'intéresse à savoir si le modèle non contraint rejette l'hypothèse nulle d'être assez prêt de la contrainte.

Analyse de Variance

Coefficient de détermination (R^2)

Coefficient de détermination ajusté (R² ajusté)

Test d'hypothèse

Les contraintes linéaires

Test de Wald

Ratio de vraisemblance (LR)

Multiplicateur de Lagrange

- ► Intuition: comparer la valeur de la vraisemblance aux maximum contraint et non contraint.
- Si ces deux valeurs sont proches l'une de l'autre, cela implique que la contrainte est aisément satisfaite par les observations et non couteuse en termes de maximisation de la vraisemblance.
- La vraissemblance du modèle non-contraint est représenté par \hat{L} , alors que la vraissemblance du modèle contraint est représenté par \hat{L}_c
- L'estimateur \hat{L} sera une fonction des estimateurs $\hat{\beta}$ et $\hat{\sigma}^2$ du modèle non contraint $\rightarrow \hat{L}(\hat{\beta}, \hat{\sigma}^2)$
- L'estimateur \hat{L}_c sera une fonction des estimateurs $\hat{\beta}_c$ et $\hat{\sigma}_c^2$ du modèle non contraint $\rightarrow \hat{L}_c(\hat{\beta}_c, \hat{\sigma}_c^2)$

Afin de pouvoir simplifier la vraissemblance, nous poserons l'hypothèse de normalité des résidus.

$$\begin{split} \hat{L} &= -\frac{T}{2} \log(2\pi) - \frac{T}{2} \log(\hat{\sigma}^2) - \frac{1}{2} \times \frac{(Y - X\hat{\beta})'(Y - X\hat{\beta})}{\hat{\sigma}^2} \\ &= -\frac{T}{2} \log(2\pi) - \frac{T}{2} \log(\hat{\sigma}^2) - \frac{1}{2} \times \frac{\hat{u}'\hat{u}}{\hat{\sigma}^2} \\ &= -\frac{T}{2} \log(2\pi) - \frac{T}{2} \log(\hat{\sigma}^2) - \frac{1}{2} \times \frac{T\hat{\sigma}^2}{\hat{\sigma}^2} \\ &= -\frac{T}{2} \log(2\pi) - \frac{T}{2} \log(\hat{\sigma}^2) - \frac{T}{2} \end{split}$$

Vraissemblance du modèle non-contraint

$$\hat{L} = -\frac{T}{2}\log(2\pi) - \frac{T}{2}\log(\hat{\sigma}^2) - \frac{T}{2}$$

Vraissemblance du modèle contraint

$$\hat{L}_c = -\frac{T}{2}\log(2\pi) - \frac{T}{2}\log(\hat{\sigma}_c^2) - \frac{T}{2}$$

- lacktriangle On veut comparer la valeur de la vraisemblance \hat{L} et \hat{L}_c
- La statistique LR s'écrit donc comme la différence entre les estimés contraints et non-contraints de σ^2

$$\begin{split} LR &= 2[\hat{L} - \hat{L}_c] \\ &= 2\left[-\frac{T}{2}\log(2\pi) - \frac{T}{2}\log(\hat{\sigma}^2) - \frac{T}{2} \right] \\ &- 2\left[-\frac{T}{2}\log(2\pi) - \frac{T}{2}\log(\hat{\sigma}_c^2) - \frac{T}{2} \right] \\ &= T\log(\hat{\sigma}_c^2) - T\log(\hat{\sigma}^2) \\ &= T\log\left(\frac{\hat{\sigma}_c^2}{\hat{\sigma}^2}\right) = T\log\left(\frac{\hat{u}_c'\hat{u}_c}{\hat{u}'\hat{u}}\right) \end{split}$$

► La statistique suit donc une loi Khi carré (q) asymptotiquement

Analyse de Variance

Coefficient de détermination (R^2)

Coefficient de détermination ajusté (R² ajusté)

Test d'hypothèse

Les contraintes linéaires

Test de Wald

Ratio de vraisemblance (LR)

Multiplicateur de Lagrange

Multiplicateur de Lagrange

- ► Il s'agit d'une régression auxiliaire.
- ▶ La statistique de test sera : $T \times R^2$
- Cette statistique suit alors une khi-carré avec q degré de liberté.
- Intuition de ce test : vérifier si le score (la dérivé première du Lagrangien en fonction des paramètres) est proche de zéro évalué en $\hat{\beta}_c$.
- Si oui, la contrainte n'est pas très couteuse en termes d'optimisation et il est probable que les paramètres prennent les valeurs définies par l'hypothèse nulle.

Multiplicateur de Lagrange

Statistique LM

$$LM = \left[\frac{\partial L}{\partial \beta}(\hat{\beta}_c)\right]' \left[V \frac{\partial L}{\partial \beta}(\hat{\beta}_c)\right]^{-1} \left[\frac{\partial L}{\partial \beta}(\hat{\beta}_c)\right]$$

En effectuant les dérivés premières et quelques manipulations, on obtient la solution pour la statistique LM.

$$LM = \frac{1}{\sigma^2} (\hat{\beta} - \hat{\beta}_c)' R' CR (\hat{\beta} - \hat{\beta}_c)$$

Multiplicateur de Lagrange

Statistique LM

On peut aussi réécrire cette statistique comme une fonction des résidus contraints et non contraints.

$$LM = \frac{\hat{u}_c' \hat{u}_c - \hat{u}' \hat{u}}{\frac{\hat{u}_c' \hat{u}_c}{T}}$$

- ➤ Cette statistique suit une loi Chi carré avec q degré de liberté asymptotiquement sous l'hypothèse nulle.
- ▶ Le LM exploite le fait que la maximisation du log vraisemblance sous la contrainte de l'hypothèse nulle revient à maximiser sans contrainte la fonction Lagrangienne associée.
- ► Le test est alors basé sur le fait que si la contrainte sous *H*₀ est respectée par les données, le vecteur de Lagrange devrait être nul.

Analyse de Variance

Coefficient de détermination (R^2)

Coefficient de détermination ajusté (R² ajusté)

Test d'hypothèse

Les contraintes linéaires

Test de Wald

Ratio de vraisemblance (LR)

Multiplicateur de Lagrange

Lien entre les Statistiques F, WALD, LR et LM

- ► Toutes ces statistiques se calculent à partir de la somme des résidus au carré.
- ► Il est possible d'exprimer les trois statistiques présentées comme une transformation de la statistique F dans le cas de contraintes linéaires et du modèle linéaire simple.

Statistique F

$$F = \frac{\hat{u}'_0 \hat{u}_0 - \hat{u}' \hat{u}}{\hat{u}' \hat{u}} \times \frac{t - k}{q} > F(q, t - k; \alpha)$$

➤ On rejette H₀ si la statistique de test est plus grande que le point critique associé

Lien entre les Statistiques F, WALD, LR et LM

Statistique Wald

Wald =
$$T \frac{\hat{u}_c' \hat{u}_c - \hat{u}' \hat{u}}{\hat{u}' \hat{u}} = \frac{Tq}{T - K} F$$

Statistique LR

$$LR = T \log \left[\frac{\hat{u}_c' \hat{u}_c}{\hat{u}' \hat{u}} \right] = T \log \left[F \frac{q}{T - K} + 1 \right]$$

Statistique LM

$$LM = \frac{\hat{u}_c' \hat{u}_c - \hat{u}' \hat{u}}{\frac{\hat{u}_c' \hat{u}_c}{T}} = \frac{T}{\left[\frac{1}{F}\right] \left[\frac{T - K}{q}\right] + 1}$$

- ► Rejette si la statistique de test est plus grande que le point critique d'une Chi-carré avec q degrés de liberté.
- Bien que toutes ses statistiques soient maintenant exprimées en fonction des résidus contraints et non contraints, elles ne donnent pas la même valeur.
- L'inférence pourrait donc potentiellement être différente.