Organizácia predmetu

Modelovanie a riadenie systémov (ZS, ak.r. 2025/2026)

Anotácia predmetu:

Kybernetika a jej význam. Statické a dynamické vlastnosti procesov. Kybernetický model procesu. Prenosová funkcia. Prechodové charakteristiky. Frekvenčné modely procesov. Stavové modely procesov. Stabilita systémov. Riadenie procesov - základný princíp kybernetiky. Základná štruktúra regulátorov PID štruktúra. Návrh optimálnych parametrov PID regulátorov. Problémy pri implementácii PID algoritmov. Korekčné členy s fázovým predstihom a zaostávaním. Návrh parametrov korekčných členov. Vlastnosti regulačných obvodov s korekčnými členmi.

Zodpovedný za predmet: Ing. Marián Tárník, PhD.

Výsledky vzdelávania (ECTS):

Študent po absolvovaní predmetu disponuje základnými vedomosťami o modelovaní a riadení dynamických systémov z hľadiska Kybernetiky ako vednej disciplíny. Pozná lineárne dynamické systémy a nástroje na ich modelovanie a analýzu. Je schopný analyzovať základné regulačné obvody a navrhovať parametre regulátorov. Získané vedomosti a zručnosti sú nevyhnutným základom pre ďalšiu prácu v oblastiach ako teória systémov a teória riadenia.

Predmet patrí medzi povinné predmety a študent po absolvovaní získa 6 kreditov. Týždenný rozsah predmetu: prednášky: 2 h, cvičenia: 2 h

Predmet zabezpečujú:

Ing. Marián Tárník, PhD. (prednášky, cvičenia) doc. Ing. Miroslav Halás, PhD. (cvičenia) Ing. Denis Vasko (cvičenia)

Oficiálne odkazy:

AIS: https://is.stuba.sk/katalog/syllabus.pl?predmet=429324 Štud. program: https://www.fei.stuba.sk/sk/aktuality-a-informacie/

studijne-programy.html?page_id=2570

GitHub: https://github.com/PracovnyBod/MRS

Podmienky absolvovania predmetu:

- 1. Aktívna účasť na vyučovacom procese.
- 2. Počas semestra je možné získať max. 60 bodov, pričom podmienkou pre vykonanie záverečnej skúšky je zisk aspoň 16 bodov.
- 3. Účasť na záverečnej skúške je nevyhnutná. Bez účasti na skúške nie je možné ukončiť predmet. Na skúške je možné získať max. 40 bodov.

Priebežné hodnotenie študentov počas semestra:

- Priebežná práca/účasť na cvičeniach: 12 bodov
- Vypracovanie semestrálneho referátu (zadania): 18 bodov
- Semestrálna písomka: 30 bodov, pričom:
 - Bude vopred stanovená možnosť dvoch termínov semestrálnej písomky (možnosť odmietnuť hodnotenie prvého termínu). Riadny termín semestrálnej písomky v 8. týždni, náhradný termín semestrálnej písomky v 12. týždni.

Harmonogram semestra

Týždeň		Obsah
1.	prednáška 17.09.2025	 Úvod, podmienky absolvovania predmetu. [dokument MRSoo] Uzavretý regulačný obvod – motivácia. Pojmy: kybernetika, spätná väzba, dynamický systém, signál, parametre, diferenciálna rovnica (schéma, sústava rovníc) Schematické znázornenie dynamického systému [dokument MRSo2]
	cvičenie	INTRO cv1 • Cvičenie úvodné. [1b] [dokument MRSo1]
2.	áška 2025	Obyčajné diferenciálne rovnice.
	prednáška 24.09.2025	 Analytické riešenie diferenciálnych rovníc – metóda charakteristickej rovnice. [MRSo4, KUToo6]
	enie	• Úlohy v dokumente MRSo3 (cvičenie druhé): [1b]
	cvičenie	 Ulohy v dokumente MRSo3 (cvičenie druhé): [1b] Schematické znázornenie dynamického systému. [KUToo7] Rozklad na sústavu dif. rovníc prvého rádu. [KUToo1] Numerické riešenie diferenciálnych rovníc – Simulink. Príklad s jednosmerným motorom. Numerické riešenie diferenciálnych rovníc – ODE solver (MATLAB).
3.	prednáška 01.10.2025	NUMr, SCHPCH • Názorné poznámky k téme numerické riešenie dif. rovníc (numerické simulácie). [MRS05] • Prevodová a prechodová charakteristika systému (statické a dynamické vlastnosti systému). [MRS06]
	cvičenie	• Úlohy v dokumente MRSo3 (cvičenie tretie): [2b] - Dokončenie úloh z predchádzajúceho cvičenia (ak treba). - Analytické riešenie dif. rovníc – metóda charakteristickej rovnice [MRSo4, KUTo10] - Numerické riešenie dif. rovníc (Simulink alebo ODE solver v skripte). Príklad s kyvadlom.
4.	prednáška 08.10.2025	SCHPCH, LTaTF • Prevodová a prechodová charakteristika systému (poznámky vzhľadom na semestrálne zadanie). [MRSo6] • Laplaceova transformácia. [MRS??]

	cvičenie	REF1:prevod1 • Semestrálny referát – konkrétne znenie zadania. [MRS??]
	υ	Odovzdanie do: (bude upresnené, cca koniec 11. týždňa) [18b] • Práca na zadaní (na semestrálnom referáte): Meranie prevodovej charakteristiky. [1b]
5.	cvičenie prednáška ut., str. 15.10.2025	• Prepočítavam
	cvičenie ut., str.	REF2:prevod2 • Práca na zadaní: Meranie prevodovej charakteristiky, voľba pracovného bodu. [1b]
	cvičenie štv.	Študijné voľno 16.10.2025.
6.	cvičenie prednáška ut., str. 22.10.2025	• Prepočítavam
	cvičenie ut., str.	Analytické riešenie dif. rovníc – využitie Laplaceovej transformácie (prípadne aj metóda charakteristickej rovnice). [2b] [MRS??, KUT010] • MATLAB Control System Toolbox – tf, impulse, step (ako riešenie špecifických nehomogénnych dif. rovníc s využitím LT), • Možné prídavky: príkazy pole, zero, pzmap a generovanie signálov v Simulinku (subknižnica sources)
	cvičenie štv.	REF2:prevod2 • Práca na zadaní: Meranie prevodovej charakteristiky, voľba pracovného bodu. [1b]
7.	cvičenie prednáška ut., str. 29.10.2025	• Dokončenie predchádzajúcich tém a opakovanie pred semestrálnou písomkou.
	cvičenie ut., str.	• Práca na zadaní: Meranie prechodovej charakteristiky. [1b]
	cvičenie štv.	ANAr via LT, DRtoLT cv6 • Analytické riešenie dif. rovníc – využitie Laplaceovej transformácie (prípadne aj metóda charakteristickej rovnice). [2b] [MRS??, KUT010] • MATLAB Control System Toolbox – tf, impulse, step (ako riešenie špecifických nehomogénnych dif. rovníc s využitím LT), • Možné prídavky: príkazy pole, zero, pzmap a generovanie signálov v Simulinku (subknižnica sources)

8.	• Semestrálna písomka Plánuje sa Rozdelenie na 2 skupiny, trvanie písomky cca 1h (jedna prvú hodinu prednášky, druhá druhú).		
	cvičenie ut., str.	REF4:pch2 • Práca na zadaní: Meranie prechodovej charakteristiky. Určenie hodnôt parametrov systému prvého rádu. [1b]	
	cvičenie štv.	Práca na zadaní: Meranie prechodovej charakteristiky. [1b]	
9.	cvičenie prednáška ut., str. 12.11.2025	• Prepočítavam	
	cvičenie ut., str.	• Prepočítavam [1b]	
	cvičenie štv.	REF4:pch2 • Práca na zadaní: Meranie prechodovej charakteristiky. Určenie hodnôt parametrov systému prvého rádu. [1b]	
10.	cvičenie prednáška ut. 19.11.2025	• Prepočítavam	
	cvičenie ut.	18.11.2025 – vyučuje sa podľa rozvrhu na pondelok, cvičenie MRS nie je.	
	cvičenie str.	PID2 sim/real cv10 • Prepočítavam [1b]	
	cvičenie štv.	Prepočítavam [1b]	
11.	cvičenie prednáška str. 26.11.2025	• Prepočítavam	
	cvičenie str.	PID3 real cv11	

	cvičenie ut, štv.	• Prepočítavam	ID2 sim/real cv10 [1b]
12.	cvičenie prednáška str. 03.12.2025	Priestor pre náhradný termín semestrálnej písomk	y
	cvičenie str.	• Časová rezerva, priestor pre konzultácie	
	cvičenie ut, štv.	• Prepočítavam	PID3 real cv11
13.	cvičenie ut.	• Časová rezerva, priestor pre konzultácie	
	cvičenie str	 10.12.2025 – vyučuje sa podľa rozvrhu na štvrtok. Časová rezerva, priestor pre konzultácie 	
		Odhad termínu skúšky: prvý týždeň skúškového o	obdobia
		(začína 15.12.2025)	

Odporúčaná literatúra

- [1] Karl Johan Åström a Richard M. Murray. Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press, jan. 2020. ISBN: 978-0-691-13576-2. URL: https://fbswiki.org/wiki/index.php/Main_Page.
- [2] Mikuláš Huba, Katarína Žáková a Peter Hubinský. Teória systémov. Dec. 2002. ISBN: SK- 80-227-1820-3. URL: https://www.researchgate.net/profile/Mikulas-Huba-3/publication/336119804_Teoria_systemov_Systems'_Theory/links/5d8f64c092851c33e9437d34/Teoria-systemov-Systems-Theory.pdf.
- [3] Božena Mihalíková a Ivan Mojsej. *Diferenciálne rovnice*. 2012. URL: https://umv.science.upjs.sk/analyza/texty/predmety/MAN2c/dif_rovnice.pdf.
- [4] Farid Golnaraghi a Benjamin C. Kuo. *Automatic Control Systems*. 9th. Wiley, 2009. ISBN: 0470048964,9780470048962.

Krátke učebné texty

Repozitár KUT na GitHub: https://github.com/OkoliePracovnehoBodu/KUT

Ďalšia literatúra

[5] Shlomo Engelberg. A mathematical introduction to control theory. Series in electrical and computer engineering 2. Imperial College Press; Distrubited by World Scientific, 2005. ISBN: 9781860945700,1-86094-570-8.

- [6] Robert H. Bishop; Richard C. Dorf. Modern control systems. 14. vyd. Pearson, 2022. ISBN: 9780137307258.
- [7] Abbas Emami-Naeini Gene Franklin J. Powell. Feedback Control of Dynamic Systems (What's New in Engineering). 8. vyd. Pearson, 2018. ISBN: 9780134685717.
- [8] Ján Mikleš a Miroslav Fikar. *Process modelling, identification, and control.* 1. vyd. Springer, 2007. ISBN: 3540719695,9783540719694.
- [9] Stephen Boyd a Lieven Vandenberghe. *Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares.* Cambridge University Press, 2018. ISBN: 1316518965,9781316518960. URL: https://web.stanford.edu/~boyd/vmls/.
- [10] Jaromír Kuben. Obyčejné diferenciální rovnice. 1995.
- [11] Josef Diblík et al. Diferenciální rovnice a jejich použití v elektrotechnice. 2010. URL: https://www.umat.fekt.vut.cz/~svobodaz/MKC-DRE/.
- [12] David E Edwards Charles Henry; Penney. Elementary differential equations with boundary value problems. 6. vyd. Pearson new international edition. Pearson Education, 2013. ISBN: 1292025336,9781292025339.

Ďalšie zdroje

- Matematika:
- https://math.libretexts.org/Bookshelves
- https://www.youtube.com/playlist?list=PLZHQObOWTQDNPOjrT6KVlfJuKtYTftqH6
- https://web.stanford.edu/~boyd/books.html
- https://bvanderlei.github.io/jupyter-guide-to-linear-algebra/intro.html
- https://cs.wikipedia.org/wiki/Charakteristick%C3%A1_rovnice
- https://www.math.sk/skripta2/node88.html
- http://thales.doa.fmph.uniba.sk/sleziak/texty/gyurki/diferaky/dif.pdf
- https://math.libretexts.org/Courses/Monroe_Community_College/MTH_225_Differential_Equations/9%3A_Linear_Higher_Order_Differential_Equations/9.2%3A_Higher_Order_Constant_Coefficient_Homogeneous_Equations
- https://www.youtube.com/watch?v=0850WBJ2ayo&ab_channel=3Blue1Brown
- https://www.youtube.com/watch?v=7UvtU75NXTg&ab_channel=SteveBrunton
- https://www.youtube.com/watch?v=5hPD7CF0_54&ab_channel=SteveBrunton
- $\quad \verb|https://www.youtube.com/watch?v=iBde8q0W0h0\&ab_channel=SteveBrunton|\\$
- https://ocw.mit.edu/resources/res-18-008-calculus-revisited-complex-variables-differential-equations-and-linear-algebra-fall-2011/
- https://ocw.mit.edu/courses/mathematics/18-03sc-differential-equations-fall-2011/index.htm
- Softvér:
- https://stuba.sk/matlab
- http://www.cds.caltech.edu/~murray/amwiki/index.php?title=Software
- https://scipy.org/
- https://jupyter.org/
- https://www.anaconda.com/products/distribution
- https://python-programming.quantecon.org/intro.html
- MATLAB (onramp kurz):
- https://matlabacademy.mathworks.com/details/matlab-onramp/gettingstarted
- Control Engineering:
- https://www.youtube.com/user/ControlLectures/playlists
- https://engineeringmedia.com/
- https://www.analog.com/en/education/education-library/scientist_engineers_guide.html
- http://matlab.fei.tuke.sk/zar/subory/literatura/Dorcak_TAR.pdf