

1 CLAIMS

2 We claim:

3 1. A method comprising:

4 receiving a plurality of task containers representing a plurality of tasks,
5 where each task container is a grouping of either task containers or resource
6 containers, which describe one or more resources required for the represented task;
7 generating a cost for each task based on probabilities that the task will
8 influence each other task in the plurality of tasks using the containers; and
9 scheduling the task with the least cost.

10
11 2. A method as recited in claim 1 wherein the resources information
12 comprises container information describing how to select the one or more tasks or
13 resources.

14
15 3. A method as recited in claim 2 wherein the container information
16 comprises at least one of:

17 an “AND” relationship indicating that all of the one or more tasks or
18 resources are required;

19 an “XOR” relationship indicating that only one of the one or more tasks or
20 resources is required; and

21 an “OR” relationship indicating that one or more of the one or more tasks or
22 resources are required.

23
24 4. A method as recited in claim 1 further comprising:

1 receiving a timeslot definition associated with each of the plurality of tasks
2 or resources, the timeslot definition defining a required timeslot for the associated
3 task or resource.

4

5 5. A method as recited in claim 4 wherein the timeslot definition
6 comprises an early start indicator, a late finish indicator, and a duration indicator.

7

8 6. A method as recited in claim 1 further comprising:
9 receiving a constraint describing a time constraint between two tasks in the
10 plurality of tasks; and
11 scheduling the two tasks based on the constraint.

12

13 7. A method as recited in claim 1 wherein the generating comprises:
14 determining a probability that a first task in the plurality of tasks influences
15 a second task in the plurality of tasks based on the resource information; and
16 adjusting the cost of the first tasks based on a function of the probability
17 that the first task in the plurality of tasks influences the second task in the plurality
18 of tasks.

19

20 8. A method as recited in claim 1 wherein the generating comprises:
21 determining a probability that a first task in the plurality of tasks supports a
22 second task in the plurality of tasks based on the resource information; and
23 if the first task supports the second task, reducing the cost of the first task
24 based on a function of the probability that the first task supports the second task.

1 9. A method as recited in claim 1 wherein the generating comprises:
2 determining a probability that a first task in the plurality of tasks competes
3 with a second task in the plurality of tasks based on the resource information; and
4 if the first task competes with the second task, increasing the cost of the
5 first task based on a function of the probability that the first task competes with the
6 second task.

7
8 10. A method as recited in claim 1 wherein the generating comprises:
9 selecting a first task from among the plurality of task;
10 for each of the other tasks in the plurality of tasks, determining a pair-wise
11 probability, the pair-wise probability representing a probability that the first task
12 will compete with the other task; and
13 summing the pair-wise probabilities to form a total cost associated with the
14 first task.

15
16 11. A method as recited in claim 1 wherein the resource information
17 comprises preference information describing preferences of the one or more
18 resources.

19
20 12. A method as recited in claim 1 wherein the generating comprises
21 applying preference values to the tasks.

22
23 13. A method as recited in claim 1 wherein the generating comprises
24 tabulating a cost associated with each pair of tasks.

1 14. A method as recited in claim 1 further comprising:
2 removing the scheduled task from a main task log;
3 adjusting probabilities associated with resources remaining in the main task
4 log based on the scheduled task; and
5 re-generating a cost for each task based on probabilities that the task will
6 influence each other task in the plurality of tasks using the resource containers.
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

1 15. A processor-readable medium having processor-executable
2 instructions for performing a method comprising:

3 receiving a plurality of first resource descriptors describing first resources
4 associated with a first candidate task and selection criteria defining how the first
5 resources are to be selected from the plurality of first resources;

6 receiving a second resource descriptor describing a resource associated with
7 a second candidate task; and

8 scheduling one or more of the first candidate task and the second candidate
9 task, wherein one or more of the first resources are allocated to the first candidate
10 task in accordance with the selection criteria.

11
12 16. A processor-readable medium as recited in claim 15 wherein the
13 scheduling comprising:

14 identifying one or more of the first resources that are not the same as the
15 second resource and that satisfy the selection criteria.

16
17 17. A processor-readable medium as recited in claim 15 further
18 comprising:

19 receiving a current schedule state having currently scheduled tasks and
20 currently scheduled resources;

21 determining whether the first candidate task and the second candidate task
22 are viable based on the current schedule state; and

23 eliminating one or more of the first or second candidate task from
24 consideration if the one or more of the first or second candidate task is not viable.

1 18. A system for scheduling a plurality of tasks, the system comprising:
2 a task log including a plurality of task objects representing tasks, the task
3 objects having resource objects representing a resource required for the associated
4 task, each of the task objects operable to return a probability that scheduling of the
5 task will influence another task;

6 a cost generator operable to generate a cost for each of the tasks based on
7 probabilities that the task will influence each other task; and

8 a scheduling engine operable to schedule the task with the least cost.

9
10 19. A system as recited in claim 18 wherein the task log further
11 comprises a resource container defining a function of a plurality of resources.

12
13 20. A system as recited in claim 19 wherein the function comprises one
14 of:

15 an “AND” function indicating that all of the plurality of resources are
16 required;

17 an “XOR” function indicating that one and only one of the plurality of
18 resources is required; and

19 an “OR” function indicating that at least one of the plurality of resources is
20 required.

21
22 21. A system as recited in claim 18 wherein the cost generator is further
23 operable to calculate pair-wise costs representing a cost of scheduling a first task
24 relative to a second task.

1 22. A system as recited in claim 18 wherein the cost generator is further
2 operable to tabulate pair-wise costs representing a cost of scheduling a first task
3 relative to a second task and generate a total cost associated with each of the tasks.

4

5 23. A system as recited in claim 18 wherein the task object further
6 comprises time constraint information indicating at least one time constraint
7 between two of the tasks.

8

9 24. A system as recited in claim 18 wherein the task log further
10 comprises a hierarchical arrangement of the task objects and the resource objects.

11

12 25. A system as recited in claim 18 wherein each task object is operable
13 to return a probability that the task object competes with another task object.

25

1 26. A method comprising:

2 generating a cost associated with each of a plurality of tasks to be
3 scheduled;

4 executing a minimum cost task; and
5 scheduling the minimum cost task if the minimum cost task successfully
6 executes.

7

8 27. A method as recited in claim 26 wherein the generating comprises
9 determining a pair-wise probability representing a probability that a first task in the
10 plurality of tasks conflicts with a second task in the plurality of tasks.

11

12 28. A method as recited in claim 27 further comprising adjusting the
13 pair-wise probability in response to scheduling the minimum cost task.

14

15 29. A method as recited in claim 26 wherein the generating comprises
16 determining the costs based upon preference weights assigned to the plurality of
17 tasks.

18

19 30. A method as recited in claim 26 further comprising determining
20 viability of each task in the plurality of tasks.