Calcolabilità e linguaggi formali Compito con soluzione3

Esercizio 1

Un programma si aspetta in input una sequenza non banale di stringhe decimali non banali. Ciascuna è racchiusa tra parentesi quadre e non vi sono spaziature superflue.

Es: [1052][41][0] oppure [903]...

- (a) dare una grammatica per descrivere l'input del programma.
- (b) classificare la grammatica data.
- (c) classificare il linguaggio in input. Se il linguaggio è tipo 3, dare un'espressione regolare o un automa finito corrispondente. Se il linguaggio è tipo 2, dimostrare tramite il pumping lemma tipo 3 che non è un linguaggio regolare.

Soluzione

(a) Diamo una grammatica per l'input del programma. Le produzioni sono:

$$S \to [X]|[X]S$$

$$X \to 0|...|9|0X|...|9X$$

- (b) La grammatica é tipo 2.
- (c) Il linguaggio in input é tipo 3 (regolare). Infatti possiamo descriverlo con un'espressione regolare: sia $R = (0 + ... + 9)(0 + ... + 9)^*$, allora il linguaggio in input é $L = [R]([R])^*$

Esercizio 2

- (a) Dare la definizione formale di automa finito deterministico e di automa finito non deterministico.
- (b) Dare un esempio di automa finito deterministico e di uno non deterministico.

Esercizio 3

Applicare i teoremi di Rice all'insieme $I = \{x : dom(\phi_x) \text{ è finito}\}.$

Soluzione

L'insieme I rispetta le funzioni perché $\phi_x = \phi_y$ implica $dom(\phi_x) = dom(\phi_y)$. Allora i domini sono o entrambi finiti oppure entrambi infiniti. $I \neq \emptyset$ perché i programmi della funzione f_{\emptyset} stanno in I. $\bar{I} \neq \emptyset$ perché i programmi della funzione identica stanno in \bar{I} . Dal primo teorema di Rice segue che I non è semidecidibile. \bar{I} non è decidibile per Rice1, mentre \bar{I} non è semidecidibile per Rice3.

Esercizio 4

Enunciare e dimostrare il secondo teorema di Rice.

Soluzione

Ricordiamo che, se $f, g: N \to N$ sono funzioni parziali, allora $f \le g$ sse grafico $(f) = \{(x, y): y = f(x)\}$ è contenuto o uguale a grafico $(g) = \{(x, y): y = g(x)\}$.

Teorema. Sia I un insieme che rispetta le funzioni. Se esistono due funzioni calcolabili f e q tali che

- 1. $\{x: \phi_x = f\} \subseteq I$;
- 2. $\{x: \phi_x = g\} \subseteq \bar{I};$
- 3. $f \leq g$

allora I non è semidecidibile.

Prova. Come prima cosa osserviamo che $f \neq g$ (altrimenti $I \cap \bar{I} \neq \emptyset$!). Proviamo a ridurre \bar{K} ad I. Definiamo la seguente funzione h.

$$h(x,y) = \begin{cases} g(y), & \text{if } x \in K \text{ oppure } y \in dom(f) \\ \uparrow, & \text{altrimenti} \end{cases}$$

Nota che

- (a) Se $x \in K$, allora f(x,y) = g(y) per ogni y.
- (b) Se $y \in dom(f)$, allora h(x,y) = f(y) per ogni x.

La funzione h è calcolabile: Consideriamo tre programmi P_f , P_g e P_K tali che (i) P_f calcola f; (ii) P_g calcola g; (iii) P_K semidecide K. Facciamo partire in parallelo l'esecuzione di P_f con input g e l'esecuzione di g0 con input g1, per verificare se g2 domg3.

- (1) Termina prima P_f , da cui $y \in dom(f)$ e $f(y) \in N$. Allora interrompiamo l'esecuzione di P_K con input x. Il risultato è h(x,y) = f(y) = g(y) (ricordiamo che $f \leq g!$);
- (2) Termina prima P_K . Allora $x \in K$, interrompiamo l'esecuzione di P_f e facciamo partire il programma P_g con input y. Se quest'ultimo termina allora h(x,y) = g(y), altrimenti $h(x,y) = \uparrow$.
- (3) Non terminano P_f con input $y \in P_K$ con input x. Allora $h(x,y) = \uparrow$.

Applichiamo il teorema del parametro ad h per ottenere una funzione calcolabile totale s tale che

$$\phi_{s(x)}(y) = h(x,y).$$

Proviamo che s riduce \bar{K} ad I.

$$x \in \bar{K} \Rightarrow \phi_{s(x)}(y) = g(y)$$
 per ogni $y \in dom(f)$ e $\phi_{s(x)}(y) = \uparrow$ per ogni $y \notin dom(f)$
 $\Rightarrow \phi_{s(x)}(y) = f(y)$ per ogni y (perché $f(y) = g(y)$ per ogni $y \in dom(f)$) $\Rightarrow s(x) \in I$

Inoltre,

$$x \in K \Rightarrow \phi_{s(x)}(y) = g(y)$$
per ogni $y \Rightarrow s(x) \in \bar{I}$

Esercizio 5

Definire per ricorsione primitiva la seguente funzione $f(x,y) = x^2 + y^2$. Determinare le funzioni g e h associate allo schema di ricorsione primitiva f = REC(g,h).

Soluzione

$$f(x,0)=x^2$$
 e $f(x,y+1)=x^2+(y+1)^2=x^2+y^2+2y+1=f(x,y)+2y+1$. Allora abbiamo $g(x)=x^2$ e $h(x,y,z)=z+2y+1$.