Homework 1

Elliott Pryor

 $31~\mathrm{Jan}~2021$

Problem 1 6.2.4 Problem 6

Prove that if f is Riemann integrable on [a,b] and g(x)=f(x) for every x except for a finite number, then g is Riemann integrable.

Hint: Mimic the proof of Theorem 6.2.3

Problem 2 6.2.4 Problem 9, part b

If f is Riemann integrable on [a, b], prove it satisfies a Lipschitz condition

Problem 3 6.2.4 Problem 10

If f is Riemann integrable on [a, b] and continuous at x_0 , prove that $F(x) = \int_a^x f(t)dt$ is differentiable at x_0 and $F'(x_0) = f(x_0)$. Show that if f has a jump discontinuity at x_0 , then F is not differentiable at x_0 .

Hint: Refer to the proof of Theorem 6.1.2, note that f(x) being continuous at x_0 can be written as $\forall 1/m$, $\exists 1/n$ st. $\forall x \in [a,b]$, $|x-x_0| < 1/n$, we have $|f(x)-f(x_0)| < 1/m$ or $f(x_0) - 1/m < f(x) < f(x_0) + 1/m$