Menziao Yang.

Math 482: Linear Programming, Fall 2020

Due Friday, October 30, 6PM CST

Homework 7

1. Show that any $n \times n$ matrix following the pattern

$$\begin{bmatrix} 1 & 0 & 1 & \cdots & 0 & 1 \\ 0 & 1 & 0 & \cdots & 1 & 0 \\ 1 & 0 & 1 & \cdots & 0 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 1 & 0 & \cdots & 1 & 0 \\ 1 & 0 & 1 & \cdots & 0 & 1 \end{bmatrix}$$

is totally unimodular: any submatrix obtained by taking any k rows and any k columns has determinant -1, 0, or 1.

(It may help to consider the cases $k \leq 2$ and $k \geq 3$ separately.)

2. Consider the bipartite graph with vertices $\{a_1, a_2, \dots, a_{10}\}$ on one side, vertices $\{b_1, b_2, \dots, b_{10}\}$ on the other side, and an edge between a_i and b_j if the product ij is a multiple of 6.

Find a largest matching in this graph, and show that it cannot be any larger by finding a vertex cover of the same size.

- 3. A bipartite graph (X, Y, E) has |X| = |Y| = n and is r-regular: every vertex (in X or in Y) is the endpoint of exactly r edges.
 - (a) Determine |E|, the number of edges in the graph.
 - (b) Show that any vertex cover must contain at least n vertices.

(This implies that there is a matching of size n, which matches every vertex in X to a vertex in Y.)

- 4. Find examples of networks with the following properties:
 - (a) A network with a unique maximum flow, but multiple minimum cuts.
 - (b) A network with multiple maximum flows, but a unique minimum cut.
 - (c) A network with multiple maximum flows and multiple minimum cuts.

For each example, describe the maximum flow(s) and the minimum cut(s).

5. (Only 4-credit students need to do this problem.)

Consider a bipartite graph (X, Y, E) with $X = \{x_1, x_2, \dots, x_m\}$ and $Y = \{y_1, y_2, \dots, y_n\}$. The biadjacency matrix of this graph is the $m \times n$ matrix A where $A_{ij} = 1$ if there is an edge $(x_i, y_j) \in E$, and $A_{ij} = 0$ otherwise.

If m = n (so that the matrix A is square) and det(A) = -3, show that the graph contains a matching of size n.

1.
$$k=1$$
 $det=0$ or 1.
 $k=2$ $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ $det=1$ or -1.
 $k>3$, obviously we at least have two same rows $=$ $det=0$.
Hence det of submatrix is $0/(1-1)$ $=$ $totally unimodular.$
2. $M=\{(a_1,b_6), (a_2,b_3), (a_3,b_2), (a_6,b_1), (a_6,b_1), (a_8,b_9), (a_9,b_4)\}$
 $S=\{(a_3,a_6,a_9,b_3,b_6,b_9\}.$

3. (a) $|E| = n \cdot r$ (b) Since every vertex is the endpoint of exactly r edges, we can rearrange X and Y such that C iven i = 1, 2, ..., n - r $(X(i), Y(j)) \in E$, for all j = i, i + l - i + r. i = n - r + l, ---n $(X(i), Y(j)) \in E$, for all j = i, ---n, (1, 2 - i - n + r) (rearrange by order: X(i) Y(i) X(i) X(i Hence exist matching (Xii), Yii) i=1,2,...n}
Size is n. => Size of vertex over > n.

$$C_{sa}=3$$
, $C_{at}=5$, $C_{sb}=4$

Max flow is
$$7 : \{ \chi_{sa} = 3, \chi_{sb} = 4 = \chi_{bt} \}$$

Xab = 0, Xat = 3} Which is unique

Min cut : ((S), (a, b, t)) or $(\{S,b\},\{a,t\})$

$$C_{5a} = 3, C_{at} = 5, C_{8b} = 4$$

$$C_{bt} = 7, C_{ab} = 5$$

Max flow is 7 -

$$\{X_{sa}=3, X_{sb}=4, X_{bt}=k, X_{at}=7-k, X_{ab}=k-4 \mid k=4, 5, 6, 7\}$$

Min cut :(\{\infty\}, \{\alpha, b, t\})

$$\begin{array}{c} (C) & a \\ 3 & 3 \\ 3 & 3 \\ b & 5 \end{array}$$

Max flow is 6

$$X_{Sa} = X_{Sb} = 3 = X_{at} = X_{bt}$$
. $X_{ab} = X_{ba} = k | k = 0,3$.

$$(\{S,a,b\},\{t\})$$