FOI 2023 B 班 Day4 练习题 (图论算法 I)

BY Bardisk

(请选手仔细阅读此页内容)

比赛时间: 2023-7-12

一、试题列表

试题名称	相聚	旅程	虚实	追忆
每个测试点时限	2000ms	2000ms	2000ms	2000ms
运行内存上限	128MB	128MB	128MB	128MB
评测方式	全文比较	Special Judge	全文比较	全文比较
测试点数目	20	20	20	20
测试点分值	照约定安排	照约定安排	照约定安排	照约定安排
试题类型	传统	传统	传统	传统

二、注意事项

- 1. 有问题找出题人。
- 2. 若文档和 0J 题面有冲突,以 0J 为准。
- 3. 题和数据都水,轻 D。

A:相聚

【题目背景】

「元丰六年十月十二日夜,解衣欲睡,月色入户,欣然起行。念无与为乐者,遂至承天寺寻张怀民。……何夜无月?何处无竹柏?但少闲人如吾两人者耳。」——苏轼《记承天寺夜游》

聚是一团火,散是满天星。两年前的今天,附中启明级创新班的同学们完 成了高中学业后,以优异的成绩报考了五湖四海的高等学府。

Bardisk 和 Barisore 的高考分数和兴趣都差不多,他们意向高校的集合是相同的。由于某种原因,他们不能报考同一城市的高校,但是他们希望他们所报考的学校所在城市的距离尽可能近。请你帮他们找到一对相距最近的拥有他们意向高校的城市。

【题目描述】

有 n 个点,编号从 1 到 n,其中有 k 个点是关键点,还有 m 条**有向边**,每条有向边连接一对点,问相距最近的一对关键点的距离。(单向可达即可)

【输入格式】

第一行三个正整数 n, m, k, 含义如题。

接下来 m 行,第 i 行三个正整数 u_i , v_i , l_i , 表示有向边的起点、终点和长度。

接下来一行 k 个正整数,表示关键点的编号。

【输出格式】

一行一个正整数,表示答案。

【样例输入】

5 5 3

1 3 10

2 3 9

3 5 4

2 4 1

4 5 20

1 4 5

【样例输出】

14

【数据范围与约定】

对于前 25% 的数据, n <= 200。本部分分考察 Floyd。

对于另外 10% 的数据, k = n。本部分分是送给你的。

对于另外 50% 的数据,保证给出的图是一个对称的有向图。本部分分考察 Dijkstra。

对于 100 % 的数据,2 <= k <= n <= 100000, m <= min(100000, n*(n-1)/2), l_i <= 1e9。考察 Dijkstra。

B:旅程

【题目背景】

「十旬休假, 胜友如云; 千里逢迎, 高朋满座。腾蛟起凤, 孟学士之词宗; 紫电青霜, 王将军之武库。家君作宰, 路出名区; 童子何知, 躬逢胜饯。」

——王勃《滕王阁序》

Bardisk 喜欢拜访朋友。趁一次长假,他想去拜访在各地的朋友们并回到出发地。Bardisk 当然希望他在路程上花费的时间最短,但是在算法理论课上他学到,这个问题是 NP 难的,即很难在多项式时间内解决。因此他不要求你给出一个精确的解,他会估计一个代价不超过最优解两倍的解,并希望你给出一个代价不超过这个估计解两倍的估计解。

【题目描述】

有 n 个点,编号从 1 到 n。每个点有一个坐标,点间的距离就是它们之间的曼哈顿距离。现需从 1 号点出发,经过一条哈密顿回路后返回一号点。请你给出经过的总距离的最小值的一个估计值和对应的解。你的估计值需要和你的方案相匹配,且不应超过最小值的四倍。

【输入格式】

第一行一个正整数 n, 含义如题。

接下来 n 行,每行两个整数 i,j,表示点的坐标。

【输出格式】

第一行输出一个非负整数,表示估计解的代价。

接下来一行 n-1 个正整数,表示解的路径上除了一号点以外的其他点。

【样例输入】

4

1 1

-1 -1

2 1

1 0

【样例输出】

10

3 2 4

【数据范围与约定】

对于前 50% 的数据, n <= 8。

对于前 60% 的数据, n <= 30。

对于前 70% 的数据, n <= 100。

对于 100% 的数据, 2 <= n <= 1000, i, i <= 1e9。

本题本意考察最小生成树,但你也可以试图乱搞。

C:虚实

【题目背景】

「能使敌自至者,利之也;能使敌不得至者,害之也。故敌佚能劳之,饱能饥之,安能动之。出其所不趋,趋其所不意。」

——《孙子兵法·虚实》

****年,白国和委国之间的战争爆发了!然而,在委国指挥官委兆的眼里,白国人不堪一击。

【题目描述】

现在他手上有一张白国的地图,发现白国有 n 个据点,m 条无向道路,他们有各自的长度。于是他决定按一定顺序破坏白国的一些据点,使得所有连接这些据点与其他据点的道路无法通行。同时,为了更有效率的攻城略地,也为了满足委兆的成就感,他有时还想知道<u>当前</u>某两个据点间的最短路径长。请编程满足他的要求。

【输入格式】

第一行两个正整数 n, m。

接下来 m 行,每行有三个数 a, b, v 表示一条连接 a, b 的无向边。

接下来一行一个正整数q。

接下来 q 行,每行是两个数"1 a"或是三个数"2 a b",含义如题面所述。

【输出格式】

对于每个"2 a b"操作,输出对应的结果。

若两点不连通,输出"-1"。

【样例输入】

- 4 4
- 1 2 6
- 3 4 1
- 1 3 4
- 1 4 9
- 3
- 2 1 4
- 1 3
- 2 1 4

【样例输出】

5

9

【数据范围与约定】

对于 10%的数据 n<=100, m<=1e4, q<=2e3。

另有 40%的数据 没有第一种操作。

另有 20%的数据 q<=20。

对于 100%的数据 n<=200, m<=n*(n-1)/2, q<=2e4, v<=1e3 保证所有的操作合法。

本题考察 Floyd 算法。

D:追忆

【题目背景】

「向晚意不适, 驱车登古原。夕阳无限好, 只是近黄昏。」

——李商隐《乐游原》

天下没有不散的宴席。时代中学 15 级 9 班的同学们在临近毕业时,希望记录下集体的共同记忆。但是,每个人只有他们自己视角的回忆,将它们合并起来恢复整体视角的原貌,也许也并不困难。我们把集体记忆抽象成一棵树,每个人的回忆抽象为他们遍历这棵树的 dfs 序,你需要从这些 dfs 序中还原树的本来面貌。

【题目描述】

有一个具有 n 个点的树,点从 1 到 n 编号。给出从每个点出发的 dfs 序,求每个点的度的乘上它们编号的累加和。

【输入格式】

第一行一个正整数 n。

接下来n行,第i行n个正整数,表示从i出发的dfs序。

【输出格式】

输出一行一个正整数,表示答案。

【样例输入】

3

1 2 3

2 1 3

3 1 2

【样例输出】

7

【数据范围与约定】

对于前 60% 的数据,没有额外的保证。

对于另外 20% 的数据, 保证树是一条链。

对于另外 20% 的数据, 保证树是一个菊花。

对于 100% 的数据, 有 n <= 1000。