A beginner's guide to variational inference

Haziq Jamil

Social Statistics London School of Economics and Political Science

1 February 2018

Social Statistics Meeting

http://socialstats.haziqj.ml

Outline

- 1 Introduction
- 2 Examples
- 3 Discussion

Exponential families
Zero-forcing vs Zero-avoiding
Quality of approximation
Advanced topics

- Introduction
- 2 Examples
- 3 Discussion

- Introduction
- 2 Examples
- 3 Discussion

 For the mean-field variational method, suppose that each complete conditional is in the exponential family:

$$p(\mathbf{z}^{(j)}|\mathbf{z}_{-j},\mathbf{y}) = h(\mathbf{z}^{(j)}) \exp \left(\eta_j(\mathbf{z}_{-j},\mathbf{y}) \cdot \mathbf{z}^{(j)} - A(\eta_j)\right).$$

 For the mean-field variational method, suppose that each complete conditional is in the exponential family:

$$p(\mathbf{z}^{(j)}|\mathbf{z}_{-j},\mathbf{y}) = h(\mathbf{z}^{(j)}) \exp \left(\eta_j(\mathbf{z}_{-j},\mathbf{y}) \cdot \mathbf{z}^{(j)} - A(\eta_j)\right).$$

• Then, from (??),

$$\begin{split} \tilde{q}_{j}(\mathbf{z}^{(j)}) &\propto \exp\left(\mathsf{E}_{-j}[\log p(\mathbf{z}^{(j)}|\mathbf{z}_{-j},\mathbf{y})]\right) \\ &= \exp\left(\log h(\mathbf{z}^{(j)}) + \mathsf{E}[\eta_{j}(\mathbf{z}_{-j},\mathbf{y})] \cdot \mathbf{z}^{(j)} - \mathsf{E}[A(\eta_{j})]\right) \\ &\propto h(\mathbf{z}^{(j)}) \exp\left(\mathsf{E}[\eta_{j}(\mathbf{z}_{-j},\mathbf{y})] \cdot \mathbf{z}^{(j)}\right) \end{split}$$

is also in the same exponential family.

 For the mean-field variational method, suppose that each complete conditional is in the exponential family:

$$p(\mathbf{z}^{(j)}|\mathbf{z}_{-j},\mathbf{y}) = h(\mathbf{z}^{(j)}) \exp \left(\eta_j(\mathbf{z}_{-j},\mathbf{y}) \cdot \mathbf{z}^{(j)} - A(\eta_j)\right).$$

• Then, from (??),

$$\begin{aligned} \tilde{q}_{j}(\mathbf{z}^{(j)}) &\propto \exp\left(\mathsf{E}_{-j}[\log p(\mathbf{z}^{(j)}|\mathbf{z}_{-j},\mathbf{y})]\right) \\ &= \exp\left(\log h(\mathbf{z}^{(j)}) + \mathsf{E}[\eta_{j}(\mathbf{z}_{-j},\mathbf{y})] \cdot \mathbf{z}^{(j)} - \mathsf{E}[A(\eta_{j})]\right) \\ &\propto h(\mathbf{z}^{(j)}) \exp\left(\mathsf{E}[\eta_{j}(\mathbf{z}_{-j},\mathbf{y})] \cdot \mathbf{z}^{(j)}\right) \end{aligned}$$

is also in the same exponential family.

C.f. Gibbs conditional densities.

 For the mean-field variational method, suppose that each complete conditional is in the exponential family:

$$p(\mathbf{z}^{(j)}|\mathbf{z}_{-j},\mathbf{y}) = h(\mathbf{z}^{(j)}) \exp \left(\eta_j(\mathbf{z}_{-j},\mathbf{y}) \cdot \mathbf{z}^{(j)} - A(\eta_j)\right).$$

Then, from (??),

$$\begin{split} \tilde{q}_{j}(\mathbf{z}^{(j)}) &\propto \exp\left(\mathsf{E}_{-j}[\log p(\mathbf{z}^{(j)}|\mathbf{z}_{-j},\mathbf{y})]\right) \\ &= \exp\left(\log h(\mathbf{z}^{(j)}) + \mathsf{E}[\eta_{j}(\mathbf{z}_{-j},\mathbf{y})] \cdot \mathbf{z}^{(j)} - \mathsf{E}[A(\eta_{j})]\right) \\ &\propto h(\mathbf{z}^{(j)}) \exp\left(\mathsf{E}[\eta_{j}(\mathbf{z}_{-j},\mathbf{y})] \cdot \mathbf{z}^{(j)}\right) \end{split}$$

is also in the same exponential family.

- C.f. Gibbs conditional densities.
- **ISSUE**: What if not in exponential family? Importance sampling or Metropolis sampling.

Non-convexity of ELBO

- CAVI only guarantees converges to a local optimum.
- Multiple local optima may exist.

Non-convexity of ELBO

- CAVI only guarantees converges to a local optimum.
- Multiple local optima may exist.

Zero-forcing vs Zero-avoiding

• Back to the KL divergence:

$$\mathsf{KL}(q\|p) = \int \log rac{q(\mathsf{z})}{p(\mathsf{z}|\mathsf{y})} q(\mathsf{z}) \, \mathsf{dz}$$

- KL(q||p) is large when $p(\mathbf{z}|\mathbf{y})$ is close to zero, unless $q(\mathbf{z})$ is also close to zero (*zero-forcing*).
- ISSUE: What about other measures of closeness? For instance,

$$\mathsf{KL}(p\|q) = \int \log rac{p(\mathsf{z}|\mathsf{y})}{q(\mathsf{z}|\mathsf{y})} p(\mathsf{z}|\mathsf{y}) \, \mathsf{dz}.$$

- This gives the Expectation Propagation (EP) algorithm.
- It is zero-avoiding, because KL(p||q) is small when both $p(\mathbf{z}|\mathbf{y})$ and $q(\mathbf{z})$ are non-zero.

Zero-forcing vs Zero-avoiding (cont.)

Zero-forcing vs Zero-avoiding (cont.)

Zero-forcing vs Zero-avoiding (cont.)

— p(z) — q(z)

Distortion of higher order moments

• Consider $\mathbf{z} = (z_1, z_2)^\top \sim \mathsf{N}_2(\boldsymbol{\mu}, \boldsymbol{\Psi}^{-1})$, $\mathsf{Cov}(z_1, z_2) \neq 0$.

Distortion of higher order moments

- Consider $\mathbf{z} = (z_1, z_2)^{\top} \sim N_2(\mu, \Psi^{-1})$, $Cov(z_1, z_2) \neq 0$.
- Approximating p(z) by $q(z) = q(z_1)q(z_2)$ yields

$$ilde{q}(z_1) = \mathsf{N}(z_1|\mu_1, \Psi_{11}^{-1}) \;\; \mathsf{and} \;\; ilde{q}(z_2) = \mathsf{N}(z_2|\mu_2, \Psi_{22}^{-1})$$

and by definition, $Cov(z_1, z_2) = 0$ under \tilde{q} .

Distortion of higher order moments

- Consider $\mathbf{z} = (z_1, z_2)^{\top} \sim \mathsf{N}_2(\boldsymbol{\mu}, \boldsymbol{\Psi}^{-1})$, $\mathsf{Cov}(z_1, z_2) \neq 0$.
- Approximating p(z) by $q(z) = q(z_1)q(z_2)$ yields

$$ilde{q}(z_1) = \mathsf{N}(z_1|\mu_1, \Psi_{11}^{-1}) \ \ \mathsf{and} \ \ ilde{q}(z_2) = \mathsf{N}(z_2|\mu_2, \Psi_{22}^{-1})$$

and by definition, $Cov(z_1, z_2) = 0$ under \tilde{q} .

• This leads to underestimation of variances (widely reported in the literature—Zhao and Marriott 2013).

 Variational inference converges to a different optimum than ML, except for certain models (Gunawardana and Byrne 2005).

- Variational inference converges to a different optimum than ML, except for certain models (Gunawardana and Byrne 2005).
- But not much can be said about the quality of approximation.

- Variational inference converges to a different optimum than ML, except for certain models (Gunawardana and Byrne 2005).
- But not much can be said about the quality of approximation.
- Statistical properties not well understood—what is its statistical profile relative to the exact posterior?

- Variational inference converges to a different optimum than ML, except for certain models (Gunawardana and Byrne 2005).
- But not much can be said about the quality of approximation.
- Statistical properties not well understood—what is its statistical profile relative to the exact posterior?
- Speed trumps accuracy?

Advanced topics

- Local variational bounds
 - ▶ Not using the mean-field assumption.
 - ▶ Instead, find a bound for the marginalising integral \mathcal{I} .
 - Used for Bayesian logistic regression as follows:

$$\mathcal{I} = \int \exp i \mathsf{t}(x^\top \beta) p(\beta) \, \mathrm{d}\beta \geq \int f(x^\top \beta, \xi) p(\beta) \, \mathrm{d}\beta.$$

Advanced topics

- Local variational bounds
 - ▶ Not using the mean-field assumption.
 - ▶ Instead, find a bound for the marginalising integral \mathcal{I} .
 - Used for Bayesian logistic regression as follows:

$$\mathcal{I} = \int \exp \mathrm{i} \mathsf{t}(x^\top \beta) \mathsf{p}(\beta) \, \mathrm{d}\beta \geq \int f(x^\top \beta, \xi) \mathsf{p}(\beta) \, \mathrm{d}\beta.$$

- Stochastic variational inference
 - ▶ VI on its own doesn't offer much computational advantages.
 - ▶ Use ideas from stochastic optimisation—gradient based improvement of ELBO from subsamples of the data.
 - Scales to massive data.

Advanced topics

- Local variational bounds
 - ▶ Not using the mean-field assumption.
 - ▶ Instead, find a bound for the marginalising integral \mathcal{I} .
 - Used for Bayesian logistic regression as follows:

$$\mathcal{I} = \int \exp i \mathsf{t}(x^\top \beta) \mathsf{p}(\beta) \, \mathrm{d}\beta \geq \int f(x^\top \beta, \xi) \mathsf{p}(\beta) \, \mathrm{d}\beta.$$

- Stochastic variational inference
 - ▶ VI on its own doesn't offer much computational advantages.
 - Use ideas from stochastic optimisation—gradient based improvement of ELBO from subsamples of the data.
 - Scales to massive data.
- Black box variational inference
 - ▶ Beyond exponential families and model-specific derivations.

End

Thank you!

References I

- Gunawardana, A. and W. Byrne (2005). "Convergence theorems for generalized alternating minimization procedures". *Journal of machine learning research* 6.Dec, pp. 2049–2073.
- Zhao, H. and P. Marriott (2013). "Diagnostics for Variational Bayes approximations". arXiv: 1309.5117.

4 Additional material