同倫類型論

JoJo

jojoid@duck.com

目录

1 λ 演算	4
1.1 項	4
1.2 自由和綁定變量	4
1.3 α 等價	5
1.4 代入	5
2 類型論	7
2.1 項	7
2.2 語境	7
2.3 結構規則	7
2.4 類型宇宙	7
2.5 依賴函數類型(Π-類型)	8
2.6 依賴序偶類型(Σ-類型)	8
2.7 餘積類型	9
2.8 空類型 0	
2.9 單元類型 1	
2.10 boolean 類型	
2.11 自然數類型	
2.12 恆等類型	11
2.13 定義	11
3 同倫類型論	
3.1 類型是高維羣胚	
3.2 函數是函子	
3.3 類型族是纖維化	
3.4 同倫和等價	
3.5 Σ-類型	
3.6 單元類型	
3.7 П-類型	
3.8 宇宙和泛等公理	
3.9 恆等類型	
3.10 自然數	
4 集合和邏輯	
4.1 集合和 n-類型	
4.2 命題	
4.3 子集	
4.4 命題截斷	
4.5 可縮性	
5 等價	24

5.	1 半伴隨等價	24
5.	2 雙可逆映射	25
5.	3 可縮纖維	25
6 範	☞論	26
6.	1 範疇和預範疇	26

1 入演算

1.1 項

定義 1.1 項

所有項的集合 Λ 的遞歸定義如下

- 1. (變量) / 中有無窮個變量;
- 2. (抽象)如果u是一個變量且 $M \in \Lambda$,則 $(u.M) \in \Lambda$;
- 3. (應用)如果 $M,N \in \Lambda$,則 $(MN) \in \Lambda$.

更簡短的表述是

$$\varLambda \coloneqq V \mid (V.\varLambda) \mid (\varLambda\varLambda)$$

或

$$M \coloneqq u \mid (u.M) \mid (MN)$$

其中 V 是變量集.

定義 1.2 子項

項M的所有子項的集合定義爲Sub(M),Sub的遞歸定義如下

- 1. (基礎)對於任何變量x, $Sub(x) := \{x\}$;
- 2. (抽象) $Sub(x.M) := Sub(M) \cup \{(x.M)\};$
- 3. (應用) $Sub(MN) \coloneqq Sub(M) \cup Sub(N) \cup \{(MN)\}.$

引理 1.1 1. (自反性) 對於任何項 M, 有 $M \in Sub(M)$;

2. (傳遞性) 如果 $L \in Sub(M)$ 且 $M \in Sub(N)$, 則 $L \in Sub(N)$.

引理 1.2 項可以以樹表示給出,如下圖中的例子

(y(x.(xz))) 的樹表示

項的子項對應於項的樹表示的子樹.

慣例 1.1 1. 最外層括號可以省略;

- 2. (抽象是右結合的) x.y.M 是 x.(y.M) 的一個縮寫;
- 3. (應用是左結合的) MNL 是 ((MN)L) 的一個縮寫;
- 4. (應用優先於抽象) x.MN 是 x.(MN) 的一個縮寫.

1.2 自由和綁定變量

定義 1.3 自由變量

項M的所有自由變量的集合定義爲FV(M),FV的遞歸定義如下

- 1. (變量) $FV(x) := \{x\};$
- 2. (抽象) $FV(x.M) := FV(M) \setminus \{x\};$
- 3. (應用) $FV(MN) := FV(M) \cup FV(N)$.

例子 1.1 (y(x.(xz))) 的樹表示如下圖所示

 $FV(y(x.(xz))) = \{y, z\}.$

定義 1.4 閉項

一個項 M 是**閉**的 : $\Leftrightarrow FV(M) = \emptyset$.

所有閉項的集合記爲 Λ^0 .

1.3 α 等價

定義 1.5 重命名

將項 M 中 x 的每個自由出現都替換爲 y, 結果記爲 $M^{x\to y}$.

定義 1.6 α 等價

定義 α 等價 = α 爲符合如下性質的關係

- 1. (重命名)如果 y 不在 M 中出現,則 $x.M =_{\alpha} y.M^{x \to y}$;
- 2. (兼容性) 如果 M = N, 則 ML = NL, LM = LN 且對於任何變量 z 有 z.M = Z.N;
- 3. (自反性) $M =_{\alpha} M$;
- 4. (對稱性)如果 $M =_{\alpha} N$,則 $N =_{\alpha} M$;
- 5. (傳遞性) 如果 $L =_{\alpha} M$ 且 $M =_{\alpha} N$, 則 $L =_{\alpha} N$.

1.4 代人

定義 1.7 代人

 $(1a) \ x[N/x] := N;$

- (1b) 如果 $x \neq y$,則 $y[N/x] \coloneqq y$;
- (2) (PQ)[N/x] := (P[N/x])(Q[N/x]);
- $(3) 如果 z.P^{y \rightarrow z} =_{\alpha} y.P 且 z \notin FV(N), 則 (y.P)[N/x] \coloneqq z.(P^{y \rightarrow z}[N/x]).$

引理 1.3 | 設 $x \neq y$ 且 $x \notin FV(N)$,則L[M, N/x, y] = L[N, M[N/y]/x, y].

定義 1.8 同時代人

 $M[N_1,...,N_n/x_1,...,x_n]$ 表示把項 $N_1,...,N_n$ 同時代人到變量 $x_1,...,x_n$.

2 類型論

2.1 項

定義 2.1 項

比入演算多了一些常量以及新的構造.

2.2 語境

定義 2.2 語境

一個語境是一個列表

$$x_1:A_1,x_2:A_2,...,x_n:A_n\\$$

其中 $x_1,...,x_n$ 是不同的變量,它們分別擁有類型 $A_1,...,A_n$. 我們用 Γ,Δ 等字母來縮寫語境.

定義 2.3 語境規則

 Γ ctx 是一個判斷,表示" Γ 是良構的語境."有如下規則

$$\frac{1}{\cot x} \cot x$$
-EMP

$$\frac{x_1:A_1,x_2:A_2,...,x_{n-1}:A_{n-1}\vdash A_n:\mathcal{U}_i}{(x_1:A_1,...,x_n:A_n)\ ctx}\ ctx\text{-}EXT$$

其中,變量 x_n 與變量 $x_1,...,x_n$ 中的任何一個都不同.

2.3 結構規則

定義 2.4 Vble 規則

$$\frac{(x_1:A_1,...,x_n:A_n)\ ctx}{x_1:A_1,...,x_n:A_n\vdash x_i:A_i}\ Vble$$

定義 2.5 判斷相等

如果
$$a =_{\alpha} b$$
, 則 $a \equiv b$.

$$\frac{\Gamma \vdash a : A}{\Gamma \vdash a \equiv a : A}$$
$$\frac{\Gamma \vdash a \equiv b : A}{\Gamma \vdash b \equiv a : A}$$

$$\frac{\Gamma \vdash a \equiv b : A \quad \Gamma \vdash b \equiv c : A}{\Gamma \vdash a \equiv c : A}$$

$$\frac{\varGamma \vdash a : A \quad \varGamma \vdash A \equiv B : \mathcal{U}_i}{\varGamma \vdash a : B}$$

$$\frac{\varGamma \vdash a \equiv b : A \quad \varGamma \vdash A \equiv B : \mathcal{U}_i}{\varGamma \vdash a \equiv b : B}$$

2.4 類型宇宙

定義 2.6 類型宇宙層級

有如下規則

$$\mathcal{U}_0,\mathcal{U}_1,\mathcal{U}_2,\dots$$

$$\frac{\Gamma \ ctx}{\Gamma \vdash \mathcal{U}_i : \mathcal{U}_{i+1}} \ \mathcal{U}\text{-}INTRO$$

$$\frac{\Gamma \vdash A : \mathcal{U}_i}{\Gamma \vdash A : \mathcal{U}_{i+1}} \ \mathcal{U}\text{-}CUMUL$$

2.5 依賴函數類型(Ⅱ-類型)

定義 2.7 依賴函數類型(Ⅱ-類型)

$$\frac{\Gamma \vdash A : \mathcal{U}_{i} \quad \Gamma, x : A \vdash B : \mathcal{U}_{i}}{\Gamma \vdash (x : A) \rightarrow B : \mathcal{U}_{i}} \ \Pi\text{-}FORM$$

$$\frac{\Gamma \vdash A_{1} \equiv A_{2} : \mathcal{U}_{i} \quad \Gamma, x : A_{1} \vdash B_{1} \equiv B_{2} : \mathcal{U}_{i}}{\Gamma \vdash (x : A_{1}) \rightarrow B_{1} \equiv (x : A_{2}) \rightarrow B_{2} : \mathcal{U}_{i}} \ \Pi\text{-}FORM\text{-}EQ$$

$$\frac{\Gamma, x : A \vdash b : B}{\Gamma \vdash (x : A) \mapsto b : (x : A) \rightarrow B} \ \Pi\text{-}INTRO$$

$$\frac{\Gamma, x : A \vdash b_{1} \equiv b_{2} : B}{\Gamma \vdash (x : A) \mapsto b_{1} \equiv (x : A) \mapsto b_{2} : (x : A) \rightarrow B} \ \Pi\text{-}INTRO\text{-}EQ$$

$$\frac{\Gamma \vdash f : (x : A) \rightarrow B \quad \Gamma \vdash a : A}{\Gamma \vdash f(a) : B[a/x]} \ \Pi\text{-}ELIM$$

$$\frac{\Gamma \vdash f_{1} \equiv f_{2} : (x : A) \rightarrow B \quad \Gamma \vdash a : A}{\Gamma \vdash f_{1}(a) \equiv f_{2}(a) : B[a/x]} \ \Pi\text{-}ELIM\text{-}EQ$$

$$\frac{\Gamma, x : A \vdash b : B \quad \Gamma \vdash a : A}{\Gamma \vdash ((x : A) \mapsto b)(a) \equiv b[a/x] : B[a/x]} \ \Pi\text{-}COMP$$

$$\frac{\Gamma \vdash f : (x : A) \rightarrow B}{\Gamma \vdash f \equiv (x \mapsto f(x)) : (x : A) \rightarrow B} \ \Pi\text{-}UNIQ$$

定義 2.8 函數類型

設 $B: \mathcal{U}, x \mapsto B: A \to \mathcal{U}$. 我們定義函數類型

$$A \to B :\equiv (x : A) \to B.$$

2.6 依賴序偶類型 (Σ-類型)

定義 2.9 依賴序偶類型(Σ-類型)

$$\frac{\varGamma \vdash A : \mathcal{U}_i \quad \varGamma, x : A \vdash B : \mathcal{U}_i}{\varGamma \vdash (x : A) \times B : \mathcal{U}_i} \ \varSigma\text{-}FORM$$

$$\frac{\varGamma \vdash A_1 \equiv A_2 : \mathcal{U}_i \quad \varGamma, x : A_1 \vdash B_1 \equiv B_2 : \mathcal{U}_i}{\varGamma \vdash (x : A_1) \times B_1 \equiv (x : A_2) \times B_2 : \mathcal{U}_i} \ \varSigma\text{-FORM-EQ}$$

構造子 (引入規則): $\langle _, _ \rangle$: $\{B: A \to \mathcal{U}\} \to (a:A) \to b: B(a) \to (x:A) \times B$

$$\frac{\varGamma, x : A \vdash B : \mathcal{U}_i \quad \varGamma \vdash a_1 \equiv a_2 : A \quad \varGamma \vdash b_1 \equiv b_2 : B[a/x]}{\varGamma \vdash (a_1, b_1) \equiv (a_2, b_2) : (x : A) \times B} \ \varSigma\text{-INTRO-EQ}$$

消除器 (消除規則): $ind_{(x:A)\times B}: [C:((x:A)\times B(x))\rightarrow \mathcal{U}]\rightarrow [(a:A)\rightarrow (b:B(a))\rightarrow C(\langle a,b\rangle)]\rightarrow [p:(x:A)\times B(x)]\rightarrow C(p)$

$$\frac{\varGamma,z:(x:A)\times B\vdash C:\mathcal{U}_i \quad \varGamma,x:A,y:B\vdash g:C[(x,y)/z] \quad \varGamma\vdash p_1\equiv p_2:(x:A)\times B}{\varGamma\vdash ind_{(x:A)\times B}(z.C,x.y.g,p_1)\equiv ind_{(x:A)\times B}(z.C,x.y.g,p_2):C[p_1/z]\equiv C[p_2/z]} \ \varSigma\text{-}ELIM\text{-}EQ$$

計算規則: $ind_{(x:A)\times B}(C, g, \langle a, b \rangle) :\equiv g(a)(b)$

定義 2.10 cartesian 類型

設 $B: \mathcal{U}, x \mapsto B: A \to \mathcal{U}$. 我們定義 cartesian 類型

$$A \times B :\equiv (x : A) \times B.$$

引理 2.1 投影函數

對於任何 Σ -類型 $(x:A) \times B(x)$, 我們有函數

$$pr_1: ((x:A) \times B(x)) \to A, pr_1(\langle a, b \rangle) :\equiv a$$

和

$$pr_2: (p:(x:A) \times B(x)) \rightarrow B(pr_1(p)), pr_2(\langle a,b \rangle) :\equiv b.$$

Proof. 略.

2.7 餘積類型

定義 2.11 餘積類型

$$\frac{\varGamma \vdash A : \mathcal{U}_i \quad \varGamma \vdash B : \mathcal{U}_i}{\varGamma \vdash A + B : \mathcal{U}_i} + FORM$$

$$\frac{\Gamma \vdash A_1 \equiv A_2 : \mathcal{U}_i \quad \Gamma \vdash B_1 \equiv B_2 : \mathcal{U}_i}{\Gamma \vdash A_1 + B_1 \equiv A_2 + B_2 : \mathcal{U}_i} + FORM-EQ$$

П

構造子 1: $inl: \{A, B: \mathcal{U}\} \rightarrow A \rightarrow A+B$

構造子 2: $inl: \{A, B: \mathcal{U}\} \rightarrow B \rightarrow A+B$

$$\frac{\varGamma \vdash A : \mathcal{U}_i \quad \varGamma \vdash B : \mathcal{U}_i \quad \varGamma \vdash a_1 \equiv a_2 : A}{\varGamma \vdash inl(a_1) \equiv inl(a_2) : A + B} + -INTRO_1 - EQ$$

$$\frac{\varGamma \vdash A : \mathcal{U}_i \quad \varGamma \vdash B : \mathcal{U}_i \quad \varGamma \vdash b_1 \equiv b_2 : B}{\varGamma \vdash inr(b_1) \equiv inr(b_2) : A + B} + -INTRO_2 - EQ$$

消除器: $ind_{A+B}: [C:(A+B) \rightarrow \mathcal{U}] \rightarrow [(a:A) \rightarrow C(inl(a))] \rightarrow [(b:B) \rightarrow C(inr(b))] \rightarrow (e:A+B) \rightarrow C(e)$

$$\frac{\varGamma,z:(A+B) \vdash C:\mathcal{U}_i \quad \varGamma,x:A \vdash c:C[inl(x)/z] \quad \varGamma,y:B \vdash d:C[inr(y)/z] \quad \varGamma \vdash e_1 \equiv e_2:(A+B)}{\varGamma \vdash ind_{A+B}(z.C,x.c,y.d,e_1) \equiv ind_{A+B}(z.C,x.c,y.d,e_2):C[e_1/z] \equiv C[e_2/z]} + -ELIM-EQ$$

計算規則 1: $ind_{A+B}(C, g_0, g_1, inl(a)) :\equiv g_0(a)$

計算規則 2: $ind_{A+B}(C, g_0, g_1, inr(b)) :\equiv g_1(b)$

2.8 空類型 0

定義 2.12 空類型 0

$$\frac{\varGamma \ ctx}{\varGamma \vdash \mathbf{0} : \mathcal{U}_i} \ \mathbf{0} \text{-} FORM$$

消除器: $ind_{\mathbf{0}}: (C: \mathbf{0} \to \mathcal{U}) \to (a: \mathbf{0}) \to C(a)$

$$\frac{\varGamma,x:\mathbf{0} \vdash C:\mathcal{U}_i \quad \varGamma \vdash a_1 \equiv a_2:\mathbf{0}}{\varGamma \vdash ind_{\mathbf{0}}(x.C,a_1) \equiv ind_{\mathbf{0}}(x.C,a_2):C[a_1/x] \equiv C[a_2/x]} \ \mathbf{0}\text{-}ELIM\text{-}EQ$$

2.9 單元類型 1

定義 2.13 單元類型 1

$$\frac{\varGamma \ ctx}{\varGamma \vdash \mathbf{1} : \mathcal{U}_i} \ \mathbf{1}\text{-}FORM$$

構造子: ★:1

消除器: $ind_1:(C:\mathbf{1}\to\mathcal{U})\to C(\star)\to (x:\mathbf{1})\to C(x)$

$$\frac{\varGamma,x:\mathbf{1}\vdash\varGamma:\mathcal{U}_i\quad\varGamma\vdash c:\varGamma[\;\star\,/x]\quad\varGamma\vdash a_1\equiv a_2:\mathbf{1}}{\varGamma\vdash ind_1(x.C,c,a_1)\equiv ind_1(x.C,c,a_2):\varGamma[a_1/x]\equiv \varGamma[a_2/x]}\;\mathbf{1}\text{-}ELIM\text{-}EQ$$

計算規則: $ind_1(C, c, \star) :\equiv c$

2.10 boolean 類型

定義 2.14 boolean 類型

$$\frac{\Gamma \ ctx}{\Gamma \vdash \mathbf{2} : \mathcal{U}_i} \ \mathbf{2}\text{-}FORM$$

構造子1: 0₂:2

構造子 2: 12:2

消除器: $ind_{\mathbf{2}}: (C: \mathbf{2} \to \mathcal{U}) \to C(0_{\mathbf{2}}) \to C(1_{\mathbf{2}}) \to (x: \mathbf{2}) \to C(x)$

$$\frac{\varGamma,x:\mathbf{2} \vdash \varGamma:\mathcal{U}_i \quad \varGamma\vdash c_0: \varGamma[0_\mathbf{2}/x] \quad \varGamma\vdash c_1: \varGamma[1_\mathbf{2}/x] \quad \varGamma\vdash a_1 \equiv a_2:\mathbf{2}}{\varGamma\vdash ind_\mathbf{2}(x.\varGamma,c_0,c_1,a_1) \equiv ind_\mathbf{2}(x.\varGamma,c_0,c_1,a_2): \varGamma[a_1/x] \equiv \varGamma[a_2/x]} \mathbf{2}\text{-}ELIM\text{-}EQ$$

計算規則 1: $ind_2(C, c_0, c_1, 0_2) :\equiv c_0$

計算規則 2: $ind_{\mathbf{2}}(C, c_0, c_1, 1_{\mathbf{2}}) :\equiv c_1$

2.11 自然數類型

定義 2.15 自然數類型

$$\frac{\Gamma \ ctx}{\Gamma \vdash \mathbb{N} : \mathcal{U}_i} \ \mathbb{N}\text{-}FORM$$

構造子1:0:№

構造子 2: $succ: \mathbb{N} \to \mathbb{N}$

$$\frac{\varGamma \vdash n_1 \equiv n_2 : \mathbb{N}}{\varGamma \vdash succ(n_1) \equiv succ(n_2) : \mathbb{N}} \ \mathbb{N}\text{-}INTRO_2\text{-}EQ$$

消除器: $ind_{\mathbb{N}}: (C:\mathbb{N} \to \mathcal{U}) \to C(0) \to [(n:N) \to C(n) \to C(succ(n))] \to (n:\mathbb{N}) \to C(n)$

$$\frac{\varGamma,x:\mathbb{N} \vdash C:\mathcal{U}_i \quad \varGamma \vdash c_0:C[0/x] \quad \varGamma,x:\mathbb{N},y:C \vdash c_s:C[succ(x)/x] \quad \varGamma \vdash n_1 \equiv n_2:\mathbb{N}}{\varGamma \vdash ind_{\mathbb{N}}(x.C,c_0,x.y.c_s,n_1) \equiv ind_{\mathbb{N}}(x.C,c_0,x.y.c_s,n_2):C[n_1/x] \equiv C[n_2/x]} \; \mathbb{N}\text{-}ELIM\text{-}EQ$$

計算規則 1: $ind_{\mathbb{N}}(C, c_0, c_s, 0) :\equiv c_0$

計算規則 2: $ind_{\mathbb{N}}(C, c_0, c_s, succ(n)) :\equiv c_s(n, ind_{\mathbb{N}}(C, c_0, c_s, n))$

2.12 恆等類型

定義 2.16 恆等類型

$$\frac{\Gamma \vdash A : \mathcal{U}_{i} \quad \Gamma \vdash a : A \quad \Gamma \vdash b : A}{\Gamma \vdash a = A \quad b : \mathcal{U}_{i}} = -FORM$$

$$\frac{\varGamma \vdash A: \mathcal{U}_i \quad \varGamma \vdash a_1 \equiv a_2: A \quad \varGamma \vdash b_1 \equiv b_2: A}{\varGamma \vdash a_1 =_A \ b_1 \equiv a_2 =_A \ b_2: \mathcal{U}_i} = \text{-FORM-EQ}$$

構造子: $refl: \{A: \mathcal{U}\} \rightarrow (a:A) \rightarrow (a=a)$

$$\frac{\varGamma \vdash A: \mathcal{U}_i \quad \varGamma \vdash a_1 \equiv a_2: A}{\varGamma \vdash refl_{a_1} \equiv refl_{a_2}: a_1 =_A a_1 \equiv a_2 =_A a_2} \ = \textit{-INTRO-EQ}$$

消除器: $ind_{=_A}: [C:(x,y:A) \rightarrow (x=y) \rightarrow \mathcal{U}] \rightarrow [(x:A) \rightarrow C(x,x,refl_x)] \rightarrow (x,y:A) \rightarrow (p:x=y) \rightarrow C(x,y,p)$

$$\frac{\Gamma, x: A, y: A, p: x =_A y \vdash C: \mathcal{U}_i \quad \Gamma, z: A \vdash c: C[z, z, refl_z/x, y, p] \quad \Gamma \vdash a: A \quad \Gamma \vdash b: A \quad \Gamma \vdash q_1 \equiv q_2: a =_A b}{\Gamma \vdash ind_{=_A}(x.y.p.C, z.c, a, b, q_1) \equiv ind_{=_A}(x.y.p.C, z.c, a, b, q_2): C[a, b, q_1/x, y, p] \equiv C[a, b, q_2/x, y, p]} = -ELIM-EQ$$

計算規則: $ind_{=_A}(C, c, x, x, refl_x) :\equiv c(x)$

恆等類型的項稱爲道路; 恆等類型的消除規則稱爲道路歸納.

2.13 定義

例子 2.1 $\circ := (A:\mathcal{U}_i) \mapsto (B:\mathcal{U}_i) \mapsto (C:\mathcal{U}_i) \mapsto (g:B \to C) \mapsto (f:A \to B) \mapsto (x:A) \mapsto g(f(x)).$

3 同倫類型論

3.1 類型是高維羣胚

引理 3.1 對於任何 $A:\mathcal{U}_i,x,y:A$,都能構造一個函數 $_{-}^{-1}:(x=_Ay) \to (y=_Ax)$ 使得 $(refl_x)^{-1}\equiv refl_x.$

 p^{-1} 稱爲 p 的**逆**.

Proof. 第一種證明

設 $A: \mathcal{U}_i, D: (x,y:A) \to (x=Ay) \to \mathcal{U}_i, D(x,y,p) :\equiv (y=Ax).$

隨即我們就能構造一個函數 $d := x \mapsto \operatorname{refl}_x : (x : A) \to D(x, x, \operatorname{refl}_x)$.

然後根據恆等類型的消除規則我們有,對於任何 $x,y:A,p:(x=_Ay)$, 可以構造項 $\operatorname{ind}_{=,\cdot}(D,d,x,y,p):(y=_Ax)$.

現在對於任何 x,y:A 我們可以定義期望得到的函數 $_^{-1}:\equiv p\mapsto \mathrm{ind}_{=_4}(D,d,x,y,p).$

由恆等類型的計算規則, $(\operatorname{refl}_x)^{-1} \equiv \operatorname{refl}_x$.

Proof. 第二種證明

對於每個 x,y:A 和 p:x=y,我們想要構造一個項 $p^{-1}:y=x$. 根據 p 的道路歸納,我們只需要給出 y 是 x 且 p 是 refl_x 時的構造. 在該情况下, refl_x 和 refl_x^{-1} 的類型都是 x=x. 因此我們可以簡單地定義 $\mathrm{refl}_x^{-1}:\equiv \mathrm{refl}_x$. 於是根據道路歸納,我們完成了構造.

引理 3.2 對於任何 $A: \mathcal{U}_i, x, y, z: A$,都能構造一個函數 • : $(x =_A y) \to (y =_A z) \to (x =_A z)$ 使得 $refl_x$ • $refl_x:\equiv refl_x$.

p•q稱爲p和q的連接.

Proof. 第一種證明

期望得到的函數擁有類型 $(x,y,z:A) \rightarrow (x=_A y) \rightarrow (y=_A z) \rightarrow (x=_A z).$

我們將改爲定義一個函數, 擁有和預期等價的類型 $(x,y:A) \to (x=_A y) \to (z:A) \to (y=_A z) \to (x=_A z)$, 這允許我們使用兩次恆等類型的消除規則.

設 $D:(x,y:A)\to (x=_A y)\to \mathcal{U}_i, D(x,y,p):\equiv (z:A)\to (q:y=_A z)\to (x=_A z).$

然後,爲了對 D 應用恆等類型的消除規則,我們需要類型爲 $(x:A) \to D(x,x,\mathrm{refl}_x)$ 的函數,也就是類型爲 $(x,z:A) \to (q:x=_Az) \to (x=_Az)$.

現在設 $E:(x,z:A) \rightarrow (q:x=_Az) \rightarrow \mathcal{U}_i, E(x,z,q) :\equiv (x=_Az).$

隨即我們能構造函數 $e := x \mapsto \operatorname{refl}_r : (x : A) \to E(x, x, \operatorname{refl}_r)$.

對 E 應用恆等類型的消除規則,我們得到函數 $d:(x,z:A) \to (q:x=_Az) \to E(x,z,q), x \mapsto z \mapsto q \mapsto \operatorname{ind}_{=+}(E,e,x,z,q).$

因爲 $E(x,z,q)\equiv(x=_Az)$,所以 $d:(x:A)\to D(x,x,\mathrm{refl}_x)$.

然後對 D 應用恆等類型的消除規則我們有,對於任何 $x,y:A,p:(x=_Ay)$,可以構造項 $\operatorname{ind}_{=_A}(D,d,x,y,p) \equiv \operatorname{ind}_{=_A}(D,(x,z:A) \mapsto (q:y=_Az) \mapsto \operatorname{ind}_{=_A}(E,e,x,z,q), x,y,p):(z:A) \to (q:y=_Az) \to (x=_Az).$

於是我們有

$$(x,y:A) \mapsto (p:x=_A y) \mapsto \operatorname{ind}_{=_A} \left(D, (x,z:A) \mapsto (q:y=_A z) \mapsto \operatorname{ind}_{=_A} (E,e,x,z,q), x,y,p\right):$$

$$(x,y:A) \rightarrow (x=_A y) \rightarrow (z:A) \rightarrow (y=_A z) \rightarrow (x=_A z)$$

現在對於任何 a,b,c:A 我們可以定義期望得到的函數

$$\bullet : \equiv (p:a=_Ab) \mapsto \operatorname{ind}_{=_A} \left(D, (x:A) \mapsto (q:b=_Ac) \mapsto \operatorname{ind}_{=_A} (E,e,x,c,q), a,b,p \right) :$$

$$(a,b,c:A) \rightarrow (a =_A b) \rightarrow (b =_A c) \rightarrow (a =_A c).$$

由恆等映射的計算規則,得

$$\operatorname{refl}_a \bullet \operatorname{refl}_a \equiv \operatorname{ind}_{=_A} \left(D, (x:A) \mapsto \operatorname{ind}_{=_A} (E,e,x,a,\operatorname{refl}_a), a,a,\operatorname{refl}_a \right) \equiv \operatorname{ind}_{=_A} (E,e,a,a,\operatorname{refl}_a) \equiv e(a) \equiv \operatorname{refl}_a.$$

Proof. 第二種證明

對於每個 x,y,z:A, p:x=y 和 q:y=z, 我們想要構造一個項 $p \cdot q:x=z$. 根據 p 的道路歸納, 我們只需要給出 $y \in \mathbb{R}$ 水 且 $p \in \mathbb{R}$ 時的構造,即對於每個 x,z:A 和 q:x=z, 構造一個項 $\operatorname{refl}_x \cdot q:x=z$. 根據 q 的道路歸納,只需給出 $z \in \mathbb{R}$ 水 且 $q \in \mathbb{R}$ 時的構造,即對於每個 x:A,構造一個項 $\operatorname{refl}_x \cdot \operatorname{refl}_x : x=x$. 因此我們可以簡單地定義 $\operatorname{refl}_x \cdot \operatorname{refl}_x : x=x$. 因此我們可以簡單地定義 $\operatorname{refl}_x \cdot \operatorname{refl}_x : x=x$. 因此我們可以簡單地定義 $\operatorname{refl}_x \cdot \operatorname{refl}_x : x=x$.

引理 3.3 設 $A: \mathcal{U}_i$, x, y, z, w: A, p: x = y, q: y = z 且 r: z = w. 我們有以下結論:

1. $p = p \cdot refl_u \perp p = refl_x \cdot p$;

 $2. \ p \bullet p^{-1} = refl_x \ \mathbb{L} \ p^{-1} \bullet p = refl_y;$

3. $(p^{-1})^{-1} = p$;

4. $p \cdot (q \cdot r) = (p \cdot q) \cdot r$.

Proof. 所有證明都使用道路歸納.

 $1. \ \text{第一種證明:} \ \text{設} \ D: (x,y:A) \rightarrow (p:x=y) \rightarrow \mathcal{U}, D(x,y,p) :\equiv \left(p = p \cdot \operatorname{refl}_y\right). \ \text{那麼} \ D(x,x,\operatorname{refl}_x) \ \text{是 refl}_x = \operatorname{refl}_x \cdot \operatorname{refl}_x \ \text{因爲 refl}_x \equiv \operatorname{refl}_x, \ \text{我們有} \ D(x,x,\operatorname{refl}_1) \equiv \left(\operatorname{refl}_x = \operatorname{refl}_x\right). \ \text{因此可以構造函數} \ d:\equiv x \mapsto \operatorname{refl}_{\operatorname{refl}_x} : (x:A) \rightarrow D(x,x,\operatorname{refl}_1). \ \text{根據道路歸納, 對於每個} \ x,y:A \ \text{和} \ p:x=y, \ \text{我們有項} \ \operatorname{ind}_{=_A}(D,d,x,y,p) : p = p \cdot \operatorname{refl}_y.$

本書後面將把 $\operatorname{ind}_{=_A} \left((x,y,p) \mapsto \left(p = p \cdot \operatorname{refl}_y \right), x \mapsto \operatorname{refl}_{\operatorname{refl}_x}, x, y, p \right)$ 記爲 $\operatorname{\mathbf{ru}}_{\boldsymbol{p}}$,把 $\operatorname{ind}_{=_A} \left((x,y,p) \mapsto \left(p = \operatorname{refl}_y \cdot p \right), x \mapsto \operatorname{refl}_{\operatorname{refl}_x}, x, y, p \right)$ 記爲 $\operatorname{\mathbf{lu}}_{\boldsymbol{p}}$. 第二種證明:根據 p 的道路歸納,只需要假設 y 是 x 且 p 是 refl_x . 在該情況下, $p \cdot \operatorname{refl}_y \equiv \operatorname{refl}_x \cdot \operatorname{refl}_x \equiv \operatorname{refl}_x$. 因此只需證明 $\operatorname{refl}_x = \operatorname{refl}_x$, 這是簡單的,即 $\operatorname{refl}_{\operatorname{refl}_x} = \operatorname{refl}_x$.

2. 第一種證明: 設 $D:(x,y:A) \to (p:x=y) \to \mathcal{U}, D(x,y,p) \coloneqq (p \bullet p^{-1} = \operatorname{refl}_x)$. 那麼 $D(x,x,\operatorname{refl}_x)$ 是 $\operatorname{refl}_x \bullet \operatorname{refl}_x^{-1} = \operatorname{refl}_x$. 因爲 $\operatorname{refl}_x^{-1} \equiv \operatorname{refl}_x$ 且 $\operatorname{refl}_x \bullet \operatorname{refl}_x = \operatorname{refl}_x$,我們有 $D(x,x,\operatorname{refl}_x) \equiv (\operatorname{refl}_x = \operatorname{refl}_x)$. 因此可以構造函數 $d:\equiv x \mapsto \operatorname{refl}_{\operatorname{refl}_x} : (x:A) \to D(x,x,\operatorname{refl}_x)$. 根據道路歸納,對於每個 x,y:A 和 p:x=y,我們有項 $\operatorname{ind}_{\equiv_x}(D,d,x,y,p):p \bullet p^{-1} = \operatorname{refl}_x$.

第二種證明:根據 p 的道路歸納,只需要假設 y 是 x 且 p 是 refl_x. 在該情況下, p • p⁻¹ ≡ refl_x • refl⁻¹ ≡ refl_x.

3. 第一種證明: 設 $D:(x,y:A) \to (p:x=y) \to \mathcal{U}, D(x,y,p) :\equiv \left(p^{-1}\right)^{-1} = p$. 那麼 D(x,x,p) 是 $\left(\operatorname{refl}_x^{-1}\right)^{-1} = \operatorname{refl}_x$. 因爲 $\operatorname{refl}_x^{-1} \equiv \operatorname{refl}_x$,所以 $\left(\operatorname{refl}_x^{-1}\right)^{-1} \equiv \operatorname{refl}_x^{-1} \equiv \operatorname{refl}_x$,那麼 $D(x,x,\operatorname{refl}_x) \equiv \left(\operatorname{refl}_x = \operatorname{refl}_x\right)$. 因此我們能構造函數 $d:\equiv x \mapsto \operatorname{refl}_{\operatorname{refl}_x} : (x:A) \to D(x,x,\operatorname{refl}_x)$. 根據道路歸納,對於每個 x,y:A 和 p:x=y,我們有項 $\operatorname{ind}_{=_x}(D,d,x,y,p) : \left(p^{-1}\right)^{-1} = p$.

第二種證明: 根據 p 的道路歸納, 只需要假設 $y \in x$ 且 $p \in refl_x$. 在該情況下, $(p^{-1})^{-1} \equiv (refl_x^{-1})^{-1} \equiv refl_x$.

4. 我們想要構造的函數的類型是 $(x,y,z,w:A) \rightarrow (p:x=y) \rightarrow (q:y=z) \rightarrow (r:z=w) \rightarrow (p \bullet (q \bullet r) = (p \bullet q) \bullet r)$, 我們改爲證明 $(x,y:A) \rightarrow (p:x=y) \rightarrow (z:A) \rightarrow (q:y=z) \rightarrow (w:A) \rightarrow (r:z=w) \rightarrow (p \bullet (q \bullet r) = (p \bullet q) \bullet r)$.

設 $D_1:(x,y:A) \rightarrow (p:x=y) \rightarrow \mathcal{U}, D_1(x,y,p):\equiv (z:A) \rightarrow (q:y=z) \rightarrow (w:A) \rightarrow (r:z=w) \rightarrow (p \bullet (q \bullet r) = (p \bullet q) \bullet r).$ 根據 p 的道路歸納,只需要構造類型爲 $(x:A) \rightarrow D_1(x,x,\mathrm{refl}_x) \equiv (x,z:A) \rightarrow (q:x=z) \rightarrow (w:A) \rightarrow (r:z=w) \rightarrow (\mathrm{refl}_x \bullet (q \bullet r) = (\mathrm{refl}_x \bullet q) \bullet r)$ 的函數.

爲了構造這個類型的函數,我們設 $D_2:(x,z:A) \to (q:x=z) \to \mathcal{U}, D_2(x,z,q):\equiv (w:A) \to (r:z=w) \to (\mathrm{refl}_x \bullet (q \bullet r) = (\mathrm{refl}_x \bullet q) \bullet r).$ 根據 q 的 道路歸納,只需要構造類型爲 $(x:A) \to D(x,x,\mathrm{refl}_r) \equiv (x,w:A) \to (r:x=w) \to (\mathrm{refl}_r \bullet (\mathrm{refl}_r \bullet r) = (\mathrm{refl}_r \bullet r) \bullet r)$ 的函數.

爲了構造這個類型的函數,我們設 $D_3:(x,w:A) \to (r:x=w) \to \mathcal{U}, D_3(x,w,r) :\equiv (\mathrm{refl}_x \bullet (\mathrm{refl}_x \bullet r) = (\mathrm{refl}_x \bullet \mathrm{refl}_x) \bullet r).$ 根據 r 的道路歸納,只需要構造類型爲 $(x:A) \to D_3(x,x,\mathrm{refl}_x) \equiv (x:A) \to (\mathrm{refl}_x \bullet (\mathrm{refl}_x \bullet \mathrm{refl}_x) = (\mathrm{refl}_x \bullet \mathrm{refl}_x) \bullet \mathrm{refl}_x) \equiv (x:A) \to \mathrm{refl}_x = \mathrm{refl}_x$ 的函數. 這是簡單的,即 $\mathrm{refl}_{\mathrm{refl}_x}$.

因此,應用3此道路歸納,我們就得到了想要的類型的函數.

引理 3.4 加鬚

- 1. 對於任何 a,b,c:A,p,q:a=b,我們可以構造函數 $_\bullet_r=(p=q)\to (r:b=c)\to (p\bullet r=q\bullet r), \alpha\bullet_r refl_b:\equiv ru_n^{-1}\bullet\alpha\bullet ru_a;$
- 2. 對於任何 a,b,c:A,r,s:b=c,我們可以構造函數 $_{-\mathbf{l}_{-}}:(p:a=b) \rightarrow (r=s) \rightarrow (p \bullet r=p \bullet s), refl_{b} \bullet_{l} \beta :\equiv lu_{r}^{-1} \bullet \beta \bullet lu_{s}.$

Proof. 略.

引理 3.5 横合成

對於任何 a,b,c:A, p,q:a=b, r,s:b=c, 我們可以構造函數 $_ \bullet _:(p=q) \to (r=s) \to (p \bullet r=q \bullet s).$

Proof. 略.

引理 3.6 剪鬚

- 1. 對於任何 a,b,c:A,p,q:a=b, 我們可以構造函數 $(r:b=c) \rightarrow (p \cdot r=q \cdot r) \rightarrow (p=q)$;
- 2. 對於任何 a,b,c:A,r,s:b=c,我們可以構造函數 $(p:a=b) \to (p \bullet r=p \bullet s) \to (r=s)$.

Proof. 略.

引理 3.7 對於任何 $a,b,c:A,p,q:a=b,r,s:b=c,\alpha:p=q,\beta:r=s$, 我們有 $(\alpha \bullet_r r) \bullet (q \bullet_l \beta) = (p \bullet_l \beta) \bullet (\alpha \bullet_r s)$.

Proof. 略.

定理 3.1 Eckmann-Hilton

 $(\alpha, \beta : \Omega^2(A, a)) \to (\alpha \cdot \beta = \beta \cdot \alpha)$

Proof. 略.

定義 3.1 有點類型

設 $A:\mathcal{U},a:A$. 序偶 $(A,a):(A:\mathcal{U})\times A$ 稱爲一個有點類型, a 稱爲它的基點. 類型 $(A:\mathcal{U})\times A$ 記爲 \mathcal{U}_{\bullet} .

定義 3.2 迴路空間

對於 $n: \mathbb{N}$, 一個有點類型 (A,a) 的 n 重迭代迴路空間 $\Omega^n(A,a)$ 遞歸地定義爲

$$\Omega^0(A,a) :\equiv (A,a)$$
,

$$\Omega^1(A,a) :\equiv ((a =_A a), refl_a),$$

$$\Omega^{n+1}(A,a) :\equiv \Omega^n(\Omega(A,a))$$
 ,

它的一個項稱爲點a的一個n維迴路.

慣例 3.1 設 $\Omega^n(A,a) \equiv (B,b)$. 則 $x:\Omega^n(A,a)$ 表示 x:B.

3.2 函數是函子

引理 3.8 對於任何 $A,B:\mathcal{U},f:A\to B,x,y:A$,都能構造函數 $\mathbf{ap}_f:(x=_Ay)\to (f(x)=_Bf(y)),\mathbf{ap}_f(refl_x)\equiv refl_{f(x)}.$

Proof. 第一種證明: 設 $D:(x,y:A) \to (x=_Ay) \to \mathcal{U}, D(x,y,p) \coloneqq (f(x)=_Bf(y)).$ 那麼我們有 $d:\equiv (x:A) \mapsto \operatorname{refl}_{f(x)}:(x:A) \to (f(x)=_Bf(y)).$ 根據 p 的道路歸納,我們得到函數 $\operatorname{ap}_f:(x=_Ay) \to (f(x)=_Bf(y)).$ 根據恆等類型的計算規則,對於任何 x:A,有 $\operatorname{ap}_f(\operatorname{refl}_x) \equiv \operatorname{refl}_{f(x)}.$ 第二種證明:爲了對任何 p:x=y 定義 $\operatorname{ap}_f(p)$,根據 p 的道路歸納,只需要構造 p 是 refl_x 的情况。在該情况下,我們定義 $\operatorname{ap}_f(\operatorname{refl}_x) :\equiv \operatorname{refl}_{f(x)}:f(x)=f(x).$

慣例 3.2 | 我們將經常將 $ap_f(p)$ 簡寫爲 f(p).

引理 3.9 對於任何函數 $f:A\to B, g:B\to C$ 和道路 $p:x=_Ay, q:y=_Az$,我們有:

- 1. $ap_f(p \cdot q) = ap_f(p) \cdot ap_f(q)$;
- $2. \ ap_f(p^{-1}) = \left(ap_f(p)\right)^{-1};$
- 3. $ap_{a}(ap_{f}(p)) = ap_{g \circ f}(p);$
- $4.\ ap_{id_A}(p)=p.$

 $Proof.\ 1.\ 根據的道路歸納,\ 只需要證明\ \mathrm{ap}_f(\mathrm{refl}_xullet\cdot\mathrm{refl}_x) = \mathrm{ap}_f(\mathrm{refl}_x)ullet\,\mathrm{ap}_f(\mathrm{refl}_x),\ ict to the constant of the$

- 2. 根據道路歸納,只需要證明 $\operatorname{ap}_f(\operatorname{refl}_x^{-1}) = (\operatorname{ap}_f(\operatorname{refl}_x))^{-1}$,略.
- 3. 根據道路歸納,只需證明 $\operatorname{ap}_q(\operatorname{ap}_f(\operatorname{refl}_x)) = \operatorname{ap}_{g \circ f}(\operatorname{refl}_x)$,即 $\operatorname{ap}_q(\operatorname{refl}_{f(x)}) = \operatorname{refl}_{g \circ f}$,略.
- 4. 根據道路歸納,只需證明 $\operatorname{ap}_{\operatorname{id}_A}(\operatorname{refl}_x) = \operatorname{refl}_x$,略.

3.3 類型族是纖維化

定義 3.3 纖維化

我們把類型族 $P: A \to \mathcal{U}$ 視爲一個纖維化,A 稱爲它的底空間,P(x) 稱爲 x 上的纖維, $(x:A) \times P(x)$ 稱爲它的全空間,如果存在函數 $f: (x:A) \to P(x)$,則稱該函數爲 P 的一個截面.

有時也稱全空間爲 A 上的纖維化.

引理 3.10 傳送

設 $B: A \to \mathcal{U}, x, y: A$, 則存在函數 $transport^B(_,_): (x =_A y) \to B(x) \to B(y), transport^B(refl_x,_) \equiv id_{B(x)}.$

Proof. 第一種證明: 設 $D:(x,y:A) \rightarrow (p:x=y) \rightarrow \mathcal{U}, D(x,y,p) \coloneqq B(x) \rightarrow B(y).$ 那麼我們有函數 $d:\equiv (x:A) \mapsto \operatorname{id}_{B(x)}: D(x,x,\operatorname{refl}_x).$ 根據道路歸納,對於任何 x,y:A,p:x=y,我們有函數 $\operatorname{ind}_{=_A}(D,d,x,y,p):B(x) \rightarrow B(y).$ 於是我們可以定義,對於任何 p:x=y,函數 $\operatorname{transport}^B(p,_) \coloneqq \operatorname{ind}_{=_A}(D,d,x,y,p).$ 根據計算規則, $\operatorname{transport}^B(\operatorname{refl}_x,_) \equiv \operatorname{id}_{B(x)}.$

第二種證明:根據道路歸納,只需假設 p 是 refl_x. 在該情況下,對於任何 b: B(x),我們定義 transport $B(refl_x, b) :\equiv b$.

引理 3.11 道路提升

設 $P:A \rightarrow \mathcal{U}, x,y:A$. 則對於任何 u:P(x),p:x=y,我們有 $\pmb{lift}(u,p):(x,u)=_{(x:A)\times P(x)}(y,transport^P(p,u)), \pmb{lift}(u,refl_x)\equiv refl_{(x,u)}$.

Proof. 根據道路歸納,只需證明 $(x,u) = (x, \mathrm{id}_{P(x)}(u))$,略.

引理 3.12 依賴映射

設 $B: A \to \mathcal{U}, f: (x:A) \to B(x), x,y:A$. 我們有映射 $\operatorname{\boldsymbol{apd}}_f: (p:x=_A y) \to \left(\operatorname{transport}^B(p,f(x)) =_{B(y)} f(y)\right), \operatorname{\boldsymbol{apd}}_f(\operatorname{refl}_x) :\equiv \operatorname{refl}_{f(x)}.$

Proof. 第 一 種 證 明 : 設 $D:(x,y:A) \to (x=y) \to \mathcal{U}, D(x,y,p) :\equiv \operatorname{transport}^B(p,f(x)) =_{B(y)} f(y).$ 於 是 我 們 有 函 數 $d:\equiv (x:A) \mapsto \operatorname{refl}_{f(x)}:(x:A) \to D(x,x,\operatorname{refl}_x).$ 根 據 道 路 歸 納 , 對 於 任 何 x,y:A,p:x=y, 我 們 有 函 數 $\operatorname{ind}_{=_A}(D,d,x,y,p) : \operatorname{transport}^B(p,f(x)) =_{B(y)} f(y).$ 於是我們可以定義,對於任何 p:x=y,函數 $\operatorname{apd}_f(p) :\equiv \operatorname{ind}_{=_A}(D,d,x,y,p).$ 根據計算規則, $\operatorname{apd}_f(\operatorname{refl}_x) :\equiv \operatorname{refl}_{f(x)}.$

第二種證明:根據道路歸納,只需假設 p 是 refl_x . 在該情況下,我們定義 $\operatorname{apd}_f(\operatorname{refl}_x) :\equiv \operatorname{refl}_{f(x)}$: $\operatorname{transport}^B(\operatorname{refl}_x, f(x)) = {}_{B(x)} f(x)$.

引理 3.13 設 $B:A\to\mathcal{U}, B(x):\equiv B, x,y:A$. 則能構造函數 $transportconst^B(_,_):(p:x=y)\to b:B\to b=transport^B(p,b)$.

Proof. 根據道路歸納,只需證明 $(b:B) \to b = \operatorname{transport}^B(\operatorname{refl}_r, b)$,即 $(b:B) \to b = b$. 顯然只需定義 $\operatorname{transportconst}^B(\operatorname{refl}_r, b) := \operatorname{refl}_b$.

引理 3.14 設 $f:A\to B, x,y:A$. 則對於任何道路 p:x=y,我們有類型爲 $ap_f(p)=transportconst^B(p,f(x)) \bullet apd_f(p)$ 的道路.

Proof. 根據道路歸納,只需證明 $\operatorname{ap}_f(\operatorname{refl}_x) = \operatorname{transportconst}^B(\operatorname{refl}_x, f(x)) \cdot \operatorname{apd}_f(\operatorname{refl}_x)$,即 $\operatorname{refl}_{f(x)} = \operatorname{refl}_{f(x)} \cdot \operatorname{refl}_{f(x)}$,這是顯然的.

 $(P:A \rightarrow \mathcal{U}) \rightarrow (x,y:A) \rightarrow (p:x=y) \rightarrow (q:y=z) \rightarrow (u:P(x)) \rightarrow transport^{P}(q,transport^{P}(p,u)) = transport^{P}(p \bullet q,u).$

Proof. 咯.

引起 3.16 $(f:A\rightarrow B)\rightarrow (P:B\rightarrow \mathcal{U})\rightarrow (x,y:A)\rightarrow (p:x=y)\rightarrow (u:P(f(x)))\rightarrow transport^{P\circ f}(p,u)=transport^{P}(ap_{f}(p),u).$

Proof. 略.

引理 3.17

 $(P,Q:A\rightarrow \mathcal{U})\rightarrow (f:(x:A)\rightarrow P(x)\rightarrow Q(x))\rightarrow (x,y:A)\rightarrow (p:x=y)\rightarrow (u:P(x))\rightarrow transport^Q(p,f_x(u))=_{Q(u)}f_y(transport^P(p,u)).$

Proof. 略.

3.4 同倫和等價

定義 3.4 同倫

設 $P:A \rightarrow \mathcal{U}, f,g:(x:A) \rightarrow P(x)$. 從 f 到 g 的一個**同倫**定義爲一個類型爲 $(f \sim g) :\equiv (x:A) \rightarrow f(x) = g(x)$ 的函數.

引理 3.18 | 設 $f: A \to B$. 則 $(x:A) \mapsto refl_{f(x)}: f \sim f$.

Proof. 略.

引理 3.19 | 設 $P: A \rightarrow \mathcal{U}$. 我們有:

1. $(f:(x:A)\to P(x))\to (f\sim f)$;

2. $(f,g:(x:A) \rightarrow P(x)) \rightarrow (f \sim g) \rightarrow (g \sim f)$;

 $3.\; (f,g,h:(x:A)\to P(x))\to (f\sim g)\to (g\sim h)\to (f\sim h).$

Proof. 略.

引理 3.20 設 $f,g:A\to B,H:f\sim g$. 則對於任何 x,y:A,p:x=y 我們有 $H(x)\bullet g(p)=f(p)\bullet H(y)$,即下圖交換

Proof. 略.

推論 3.1 設 $f: A \to A, H: f \sim id_A$. 則對於任何 x: A 我們有 H(f(x)) = f(H(x)).

Proof. 根據 H 的自然性, 我們有 $f(Hx) \cdot Hx = H(fx) \cdot Hx$, 即下圖交換

我們可以用 $(Hx)^{-1}$ 加鬚來消除 Hx, 得到 $f(Hx) = f(Hx) \cdot Hx \cdot (Hx)^{-1} = H(fx) \cdot Hx \cdot (Hx)^{-1} = H(fx)$.

定義 3.5 擬逆

對於一個函數 $f:A \to B$,它的一個擬進是一個三元組 $(g,\alpha,\beta): \mathbf{qinv}(f) :\equiv (g:B \to A) \times [(g \circ f \sim id_A) \times (f \circ g \sim id_B)].$

定義 3.6 等價

對 於 任 何 函 數 $f:A \rightarrow B$, 定 義 $isequiv(f) :\equiv [(g:B \rightarrow A) \times (g \circ f \sim id_A)] \times [(h:B \rightarrow A) \times (f \circ h \sim id_B)]$, $(A \simeq B) :\equiv (f:A \rightarrow B) \times isequiv(f)$.

引理 3.21 1. 對於任何 $f: A \to B$, 存在函數 $qinv(f) \to isequiv(f)$;

2. 對於任何 $f: A \rightarrow B$,存在函數 $isequiv(f) \rightarrow qinv(f)$.

Proof. 1. 略.

2. 給 定 四 元 組 (g,α,h,β) : isequiv(f), 我 們 有 $\alpha:(x:A)\to (g\circ f)(x)=x,\beta:(y:B)\to (f\circ h)(y)=y$, 那 麼 我 們 有 同 倫 $g\circ \beta^{-1}:(y:B)\to g(y)=(g\circ f\circ h)(y)\equiv g\sim (g\circ f\circ h)$ 和 $\alpha\circ h:(y:B)\to (g\circ f\circ h)(y)=h(y)\equiv (g\circ f\circ h)\sim h$. 於 是 我 們 可 以 定 義 同 倫 $\gamma:\equiv (g\circ \beta^{-1})\bullet(\alpha\circ h):g\sim h\equiv (y:B)\to g(y)=h(y)$. 那 麼 $f\circ \gamma:(y:B)\to (f\circ g)(y)=(f\circ h)(y)\equiv (f\circ g)\sim (f\circ h)$. 於 是 有 $(f\circ \gamma)\bullet\beta:(f\circ g)\sim \mathrm{id}_B$. 所以有 $(g,\alpha,(f\circ \gamma)\bullet\beta):\mathrm{qinv}(f)$.

引理 3.22 1. 對於任何類型 $A: \mathcal{U}$, 我們有 $isequiv(id_A)$, 即 $A \simeq A$;

- 2. 對於任何函數 $f: A \to B$ 使得 isequiv(f), 即 $A \simeq B$, 我們有一個函數 $f^{-1}: B \to A$ 使得 $isequiv(f^{-1})$, 即 $B \simeq A$;
- 3. 對於任何函數 $f:A \to B$ 使得 isequiv(f) (即 $A \simeq B$) 和 $g:B \to C$ 使得 isequiv(g) (即 $B \simeq C$), 我們有 $isequiv(g \circ f)$ (即 $A \simeq C$).

Proof. 1. 我們要證明對於任何類型 $A: \mathcal{U}$ 有 $[(g:B \to A) \times (g \circ \mathrm{id}_A \sim \mathrm{id}_A)] \times [(h:B \to A) \times (\mathrm{id}_A \circ h \sim \mathrm{id}_B)]$, 略.

2. f 的擬逆.

 $3. f^{-1} \circ g^{-1}$ 是 $g \circ f$ 的一個擬逆.

3.5 Σ-類型

定理 3.2 設 $P: A \to \mathcal{U}, w, w': (x:A) \times P(x)$.

則我們有一個等價 $(w = w') \simeq (p : pr_1(w) = pr_1(w')) \times (transport^P(p, pr_2(w)) = pr_2(w')).$

Proof. 略.

3.6 單元類型

定理 3.3

$$(x,y:\mathbf{1}) \to ((x=y) \simeq \mathbf{1}).$$

Proof. 根據單元類型和恆等類型的歸納原理,我們只需要證明 (* = *) \simeq 1. 設函數 f: (* = *) \to 1, $x \mapsto$ * 和 g: 1 \to (* = *), $x \mapsto$ refl $_*$. 那麼我們只需證明對於任何 x: * = * 有 $(g \circ f)(x) = \mathrm{id}_{*=*}(x)$ 和對於任何 x: 1 有 $(f \circ g)(x) = \mathrm{id}_{1}(x)$. 根據單元類型和恆等類型的歸納原理,我們只需要證明 $(g \circ f)(\mathrm{refl}_{*}) = \mathrm{id}_{*=*}(\mathrm{refl}_{*})$ 和 $(f \circ g)(*) = \mathrm{id}_{1}(*)$,略.

定理 3.4

$$(x, y : \mathbf{1}) \rightarrow (x = y).$$

Proof. 略.

3.7 Ⅱ-類型

引理 3.23 happly

對於任何函數 $f,g:(x:A)\to B(x)$, 我們有函數

$$happly: (f = g) \rightarrow (x:A) \rightarrow (f(x) = g(x)),$$

$$\boldsymbol{happly}\big(refl_f\big) :\equiv (x:A) \mapsto refl_{f(x)}.$$

Proof. 略.

Proof. 略.

3.8 宇宙和泛等公理

引理 3.24 對於任何類型 $A, B: \mathcal{U}$,我們有一個函數 $idtoeqv_{A,B}: (A =_{\mathcal{U}} B) \rightarrow (A \simeq B)$.

Proof. 函數 $\operatorname{transport}^{\operatorname{id}_{\mathcal{U}}}(_,_): (A =_{\mathcal{U}} B) \to A \to B$. 我們要證明 $(p: A =_{\mathcal{U}} B) \to \operatorname{isequiv}(\operatorname{transport}^{\operatorname{id}_{\mathcal{U}}}(p,_))$. 根據 p 的道路歸納,只需證明 $\operatorname{isequiv}(\operatorname{transport}^{\operatorname{id}_{\mathcal{U}}}(\operatorname{refl}_A,_))$,即證明 $\operatorname{isequiv}(\operatorname{id}_A)$,略.

定義 $idtoeqv_{A,B}(p) := (transport^{id_{\mathcal{U}}}(p,_), a) : A \simeq B$,其中 $a : isequiv(transport^{id_{\mathcal{U}}}(p,_))$.

引理 3.25 $(id_A, a) = idtoeqv_{A,B}(refl_A)$, 其中 $a : isequiv(id_A)$.

(A) IA,B (A)

引理 3.26 對於任何 $x,y:A,p:x=y,B:A\to \mathcal{U},u:B(x)$,我們有 $transport^B(p,u)=transport^{id_\mathcal{U}}(ap_B(p),u)=pr_1(idtoeqv(ap_B(p)))(u)$.

Proof. 根據歸納原理,只需證明 $transport^B(refl_x, u) = transport^{id_u}(ap_B(refl_x), u) = pr_1(idtoeqv(ap_B(refl_x)))(u)$, 略.

定義 3.7 泛等公理(不常用)

$$\frac{\varGamma \vdash A: \mathcal{U}_i \quad \varGamma \vdash B: \mathcal{U}_i}{\varGamma \vdash \boldsymbol{univalence}(A,B): isequiv(idtoeqv_{A,B})} \; \mathcal{U}_i\text{-}UNIV$$

引理 3.27 $(idtoeqv_{A,B}, univalence(A,B)): (A =_{\mathcal{U}} B) \simeq (A \simeq B).$

Proof. 略.

定義 3.8 运等公理(常用)

- 1. 對於任何類型 $A, B: \mathcal{U}$, 我們有一個函數 $ua: (A \simeq B) \to (A =_{\mathcal{U}} B)$;
- 2. 對於任何 $(f,a): A \simeq B$, 我們有 $idtoeqv_{A,B}(\boldsymbol{ua}(f,a)) = (f,a)$;
- 3. 對於任何 $p: A =_{\mathcal{U}} B$, 我們有 $p = ua(idtoeqv_{A,B}(p))$.
- 引理 3.28 1. 對於任何類型 $A:\mathcal{U}$,我們有 $refl_A=ua(id_A,a)$,其中 $a:isequiv(id_A)$;
- 2. 對於任何 $(f,a): A \simeq B, (g,b): B \simeq C$, 我們有 $ua(f,a) \cdot ua(g,b) = ua(g \circ f,c)$.
- 3. 對於任何 $(f,a):A\simeq B$ 和它的一個擬逆 (f^{-1},b) ,我們有 $(ua(f,a))^{-1}=ua(f^{-1},b)$.

Proof. 略.

3.9 恆等類型

定理 3.5 如果 $(f,a):A\simeq B$,則對於任何 x,x':A,函數 $ap_f:(x=x')\to (f(x)=f(x'))$ 也是一個等價.

Proof. 要 構 造 一 個 四 元 組 (g, γ, h, δ) : isequiv(ap_f), $g: (f(x) = f(x')) \rightarrow (x = x'), \gamma: (p: x = x') \rightarrow \left(g\left(\operatorname{ap}_f(p)\right) = p\right), h: (f(x) = f(x')) \rightarrow (x = x'), \delta: (q: f(x) = f(x')) \rightarrow \left(\operatorname{ap}_f(g(q))\right).$ $\ \, \text{ \ensuremath{\mbox{$\not$$}$}$} \ \, (f^{-1},\alpha,\beta): \mbox{qinv}(f), \ \, \mbox{$\mbox{$\not$$}$} \ \, f^{-1}: B \rightarrow A, \\ \alpha: (x:A) \rightarrow \big(f^{-1}(f(x)) = x\big), \\ \beta: (y:B) \rightarrow \big(f\big(f^{-1}(y)\big) = y\big).$ 那麼對於任何 x, x' : A,我們有 $\operatorname{ap}_{f^{-1}} : (f(x) = f(x')) \to (f^{-1}(f(x)) = f^{-1}(f(x'))).$ 於是對於任何 p: x = x', 我們有 $\alpha_x^{-1} \bullet \mathrm{ap}_{f^{-1}} \big(\mathrm{ap}_f(p) \big) \bullet \alpha_{x'}$ $=\alpha_x^{-1} \bullet \operatorname{ap}_{f^{-1} \circ f}(p) \bullet \alpha_{x'}$ $=\mathrm{ap}_{\mathrm{id}_A}(p)$ = p. 且對於任何 q: f(x) = f(x'), 我們有 $\operatorname{ap}_{f}(\alpha_{x}^{-1} \bullet \operatorname{ap}_{f^{-1}}(q) \bullet \alpha_{x'})$ $=\beta_{f(x)}^{-1} \bullet \beta_{f(x)} \bullet \operatorname{ap}_f \left(\alpha_x^{-1} \bullet \operatorname{ap}_{f^{-1}}(q) \bullet \alpha_{x'}\right) \bullet \beta_{f(x')}^{-1} \bullet \beta_{f(x')}$ $= \beta_{f(x)}^{-1} \cdot \operatorname{ap}_f \left(\operatorname{ap}_f^{-1} \left(\operatorname{ap}_f \left(\alpha_x^{-1} \cdot \operatorname{ap}_{f^{-1}}(q) \cdot \alpha_{x'} \right) \right) \right) \cdot \beta_{f(x')}$ $=\beta_{f(x)}^{-1} \bullet \mathrm{ap}_f \big(\alpha_x \bullet \alpha_x^{-1} \bullet \mathrm{ap}_{f^{-1}}(q) \bullet \alpha_{x'} \bullet \alpha_{x'}^{-1}\big) \bullet \beta_{f(x')}$ $=\beta_{f(x)}^{-1} \bullet \operatorname{ap}_f (\operatorname{ap}_{f^{-1}}(q)) \bullet \beta_{f(x')}$ = q.

引理 3.29 對於任何 $a, x_1, x_2 : A$ 和 $p: x_1 = x_2$, 我們有

- 1. $(q: a = x_1) \rightarrow transport^{x \mapsto (a = x)}(p, q) = q \cdot p$;
- $2.\ (q:x_1=a) \rightarrow transport^{x \mapsto (x=a)}(p,q) = p^{-1} \bullet q;$
- $3. \; (q:x_1=x_2) \rightarrow transport^{x \mapsto (x=x)}(p,q) = p^{-1} \bullet q \bullet p.$

Proof. 略.

3.10 自然數

定義 3.9 code

定義函數

 $code: \mathbb{N} \to \mathbb{N} \to \mathcal{U}$,

模式匹配

 $\boldsymbol{code}(0,0) :\equiv \mathbf{1}$

 $\boldsymbol{code}(succ(m),0) :\equiv \mathbf{0}$

 $code(0, succ(n)) :\equiv 0$

 $code(succ(m), succ(n)) :\equiv code(m, n).$

定義 3.10 r

定義函數

 $r:(n:\mathbb{N})\to code(n,n)$

模式匹配

$$r(0) :\equiv \star$$

$$r(succ(n)) :\equiv r(n).$$

定理 3.6 對於任何 $m, n : \mathbb{N}$ 我們有 $(m = n) \simeq code(m, n)$.

Proof. 定義函數

encode: $(m, n : \mathbb{N}) \to (m = n) \to \operatorname{code}(m, n)$,

 $encode(m, n, p) := transport^{code(m, p)}(p, r(m)),$

和函數

decode: $(m, n : \mathbb{N}) \to \operatorname{code}(m, n) \to (m = n)$,

模式匹配

$$\mathbf{decode}(0,0, \star) := \mathrm{refl}_0$$

 $\mathbf{decode}(\mathrm{succ}(m),0,\underline{\ }):\equiv\mathrm{ind}_{\mathbf{0}}((x:\mathbf{0})\mapsto(m=n),\underline{\ })$

 $\mathbf{decode}(0, \mathrm{succ}(n), _) :\equiv \mathrm{ind}_{\mathbf{0}}((x : \mathbf{0}) \mapsto (m = n), _)$

 $\mathbf{decode}(\operatorname{succ}(m),\operatorname{succ}(n),_) :\equiv \operatorname{ap}_{\operatorname{succ}} \circ \mathbf{decode}(m,n,_).$

接下來我們要證明對於任何 $m,n:\mathbb{N}$ 有 $\operatorname{encode}(m,n,_)$ 和 $\operatorname{decode}(m,n,_)$ 互爲擬逆.

我們先證明對於任何 p:m=n 有 $\operatorname{decode}(m,n,\operatorname{encode}(m,n,p))=p$. 根據 p 的道路歸納,只需證明 $\operatorname{decode}(m,m,\operatorname{encode}(m,m,\operatorname{refl}_m))=\operatorname{refl}_m$,即 $\operatorname{decode}(m,m,r(m))=\operatorname{refl}_m$.對 m 使 用 歸 納 法 ,如果 $m\equiv 0$,那麼 $\operatorname{decode}(0,0,r(0))=\operatorname{decode}(0,0,\star)=\operatorname{refl}_0$; 設 $x:\mathbb{N},y:\operatorname{decode}(x,x,r(x))=\operatorname{refl}_x$,則 $\operatorname{decode}(\operatorname{succ}(x),\operatorname{succ}(x),r(\operatorname{succ}(x)))=\operatorname{ap}_{\operatorname{succ}}(\operatorname{decode}(x,x,r(x)))=\operatorname{ap}_{\operatorname{succ}}(\operatorname{refl}_x)=\operatorname{refl}_{\operatorname{succ}(x)}$.

然後我們證明對於任何 $c: \operatorname{code}(m,n)$ 有 $\operatorname{encode}(m,n,\operatorname{decode}(m,n,c)) = c$. 我們對 m,n 進行雙歸納. 如果都是 0, 那麼 $\operatorname{encode}(0,0,\operatorname{decode}(0,0,c)) = \operatorname{encode}(0,0,\operatorname{decode}(0,0,\operatorname{refl}_0)) = r(0) = r(0) = r(0) = r(0) = r(0)$ 最後是兩個後繼的情況,根據歸納假設我們有

 $\mathit{encode}(\mathit{succ}(m),\mathit{succ}(n),\mathit{decode}(\mathit{succ}(m),\mathit{succ}(n),c))$

 $= \operatorname{encode}(\operatorname{succ}(m), \operatorname{succ}(n), \operatorname{ap}_{\operatorname{succ}}(\operatorname{decode}(m, n, c)))$

 $= \mathsf{transport}^{\mathsf{code}(\mathsf{succ}(m),_)}(\mathsf{ap}_{\mathsf{succ}}(\mathsf{decode}(m,n,c)), r(\mathsf{succ}(m)))$

 $= \operatorname{transport}^{\operatorname{code}(\operatorname{succ}(m),\,\operatorname{succ}(_))}(\operatorname{decode}(m,n,c),r(\operatorname{succ}(m)))$

= transport^{code(m, -)}(decode(m, n, c), r(m))

 $= \operatorname{encode}(m, n, \operatorname{decode}(m, n, c))$

= c

推論 3.2 1. 對於任何 $m: \mathbb{N}$, 我們有 $encode(succ(m), 0, _): (succ(m) = 0) \to \mathbf{0}$;

 $2. \ {\rm 對於任何} \ m,n:\mathbb{N},\ \ {\rm 我們有} \ encode(succ(m),succ(n),decode(succ(m),succ(n),_)): (succ(m)=succ(n)) \to (m=n).$

Proof. №.

4 集合和邏輯

4.1 集合和 n-類型

定義 4.1 集合(0-類型)

設 A: U.

$$isSet(A) :\equiv (x,y:A) \rightarrow (p,q:x=y) \rightarrow (p=q).$$

定義 4.2 1-類型

一個類型 A 是一個 **1-類型** 如果 $(x,y:A) \rightarrow (p,q:x=y) \rightarrow (\alpha,\beta:p=q) \rightarrow (\alpha=\beta).$

引理 4.1 如果 A 是一個集合,則 A 是一個 1-類型.

Proof. 我們想證明 $[(x,y:A) \rightarrow (p,q:x=y) \rightarrow (p=q)] \rightarrow (x,y:A) \rightarrow (p,q:x=y) \rightarrow (\alpha,\beta:p=q) \rightarrow (\alpha=\beta).$

設 f: isSet(A). 那麼對於任何 x,y:A 和 p,q:x=y 我們有 p=q. 給定 x,y 和 p,定義 $g:(q:x=y)\to (p=q), g:\equiv f(x,y,p,_)$. 那麼對於任何 q,q':x=y 和 $\alpha:q=q'$,我們有 $\mathrm{apd}_q(\alpha):$ transport $^{q\mapsto (p=q)}(\alpha,g(q))=g(q')$,也就有 $g(q)\bullet\alpha=g(q')$.

因此對於任何 $x,y:A,p,q:x=y,\alpha,\beta:p=q$,我們有 $g(p)\bullet\alpha=g(q)$ 且 $g(p)\bullet\beta=g(q)$,也就有 $g(p)\bullet\alpha=g(p)\bullet\beta$,也就有 $\alpha=\beta$.

4.2 命題

定義 4.3 命題 (-1-類型)

設 A: U.

Proof. 略.

$$isProp(A) :\equiv (x, y : A) \rightarrow (x = y).$$

引理 4.2 如果 P,Q 是命題使得 $P \to Q$ 且 $Q \to P$,則 $P \simeq Q$.

如果 P 是一個命題且 $x_0: P$,則 $P \simeq 1$.

·

Proof. 咯.

引理 4.4 如果 P 和 Q 是命題,且有 $P \rightarrow Q$ 和 $Q \rightarrow P$,則我們有 $P \simeq Q$.

Proof. 設 $f:P \to Q,\ g:Q \to P.$ 那麼由於 P 是命題,則對於任何 x:P 我們有 g(f(x))=x. 同理,對於任何 y:Q 我們有 f(g(y))=y. 因此 f 和 g 互爲擬逆.

引理 4.5 每個命題都是一個集合.

Proof. 我們想證明 $[(x,y:A) \rightarrow (x=y)] \rightarrow (x,y:A) \rightarrow (p,q:x=y) \rightarrow (p=q).$

設 f: isProp(A). 那麼對於任何 x,y:A 我們有 f(x,y):x=y. 給定 x,定義 $g:(y:A)\to x=y,g:\equiv f(x,_)$. 那麼對於任何 y,z:A 和 p:y=z,我們有 $\operatorname{apd}_g(p): \operatorname{transport}^{y\mapsto x=y}(p,g(y))=g(z)$,也就有 $g(y)\bullet p=g(z)$,也就有 $p=(g(y))^{-1}\bullet g(z)$.

因此對於任何 x, y : A, p, q : x = y, 我們有 $p = (g(x))^{-1} \cdot g(y) = q$.

4.3 子集

引理 4.6 / 設 $P:A o \mathcal{U}$ 且對於任何 x:A,P(x) 是一個命題. 則對於任何 u,v:(x:A) imes P(x),若 $pr_1(u)=pr_1(v)$,則有 u=v.

Proof. 設 $p: \operatorname{pr}_1(u) = \operatorname{pr}_1(v)$. 則爲了證明 u=v,我們只需證明 $\operatorname{transport}^P(p,\operatorname{pr}_2(u)) = \operatorname{pr}_2(v)$. 因爲 $\operatorname{transport}^P(p,\operatorname{pr}_2(u)),\operatorname{pr}_2(v):P(\operatorname{pr}_1(v))$ 且該類型是一個命題,所以證畢.

定義 4.4 子類型,子集

設 $P: A \to \mathcal{U}$ 是一個命題族 (即每個 P(x) 是一個命題) .

$$\{x:A\mid P(x)\}:\equiv (x:A)\times P(x);$$

$$a \in \{x : A \mid P(x)\} :\equiv P(a).$$

 $\{x:A\mid P(x)\}$ 稱爲 A 的一個子類型;如果 A 是集合,則 $\{x:A\mid P(x)\}$ 稱爲 A 的一個子集.

定義 4.5 Set_u

定義 U 的一個"子宇宙":

$$Set_{\mathcal{U}} := \{A : \mathcal{U} \mid isSet(A)\}.$$

4.4 命題截斷

定義 4.6 命題截斷 (-1-截斷)

命題截斷系如下資料:

- 1. 類型形成器: $\| _{-} \|$: \mathcal{U} → \mathcal{U} ;
- 2. 構造子 1: | _ |: A → ||A||;
- 3. 構造子 2: 對於任何 x, y: ||A||, 我們有 x = y;
- 4. 消除器: 如果有 isProp(B), 則有 $rec_{\|_\|}:(A \to B) \to \|A\| \to B$;
- 5. 計算規則: $rec_{\|_\|}(f)(|a|) := f(a)$

定義 4.7 傳統邏輯記號

給定類型 A 和 B.

$$A$$
和 B 是邏輯等價的 := $(A \rightarrow B) \times (B \rightarrow A)$

給定命題P和Q.

4.5 可縮性

定義 4.8 可縮的

 $isContr(A) :\equiv (a:A) \times ((x:A) \rightarrow (a=x)).$

引理 4.7 對於任何類型 A, 以下是邏輯等價的:

- 1. isContr(A);
- 2. isProp(A) 且 我們有一個點 a:A;
- 3. $A \simeq \mathbf{1}$.

Proof. 略.

引理 4.8 對於任何類型 A, 類型 isContr(A) 是命題.

Proof. 略.

5 等價

5.1 半伴隨等價

對於任何函數 $f:A\to B$, 定義 $isequiv(f):\equiv [(g:B\to A)\times (gf\sim id_A)]\times [(h:B\to A)\times (fh\sim id_B)]$, $(A\simeq B):\equiv (f:A\to B)\times isequiv(f)$.

對於一個函數 $f: A \to B$, 它的一個擬逆是一個三元組 $(g, \alpha, \beta): qinv(f) :\equiv (g: B \to A) \times (gf \sim id_A) \times (fg \sim id_B)$.

定義 5.1 半伴隨等價

$$\begin{split} \textbf{ishae}(f) &:\equiv (g:B \to A) \times (\eta:g\,f \sim id_A) \times (\varepsilon:f\,g \sim id_B) \times (f\,\eta \sim \varepsilon\,f);\\ \textbf{ishae}'(f) &:\equiv (g:B \to A) \times (\eta:g\,f \sim id_A) \times (\varepsilon:f\,g \sim id_B) \times (g\,\varepsilon \sim \eta\,g). \end{split}$$

引理 5.1 ishae(f) 和 ishae'(f) 是邏輯等價的.

Proof. 我們先證明 $ishae(f) \rightarrow ishae'(f)$.

設 (g,η,ε, au) : ishae(f). 我們要構造一個四元組 $(g',\eta',\varepsilon', au')$: ishae'(f). 設 $g':\equiv g,\ \eta':\equiv \eta,\ \varepsilon':\equiv \varepsilon$.

由 $g\varepsilon$ 的自然性, 我們有路徑的交換圖如下:

從而有:

從而有:

根據 η 的自然性, 我們有:

所以我們有 $g \in y = \eta g y$, 證畢.

反方向類似, 略.

定理 5.1

$$(f:A \to B) \to qinv(f) \to ishae(f).$$

Proof. 設 (g, η, ε) : qinv(f). 我們要構造一個四元組 $(g', \eta', \varepsilon', \tau)$: ishae(f). 設 $g' :\equiv g$, $\eta' :\equiv \eta$. 我們要構造合適的 ε' 的定義,使得對於任何 a: A 有 $f \eta a = \varepsilon' f a$.

根據 ε 的自然性,我們有如下交換圖:

$$\begin{array}{c|c} fgfgfa & \xrightarrow{fgf\eta a} & fgfa \\ \hline \varepsilon fgfa & & & & & & & & & & & \\ fgfa & \xrightarrow{f\eta a} & fa & & & & & & \end{array}$$

所以有 $(fgf\eta a) \bullet (\varepsilon fa) = (\varepsilon fgfa) \bullet (f\eta a)$,於是有 $(\varepsilon fgfa)^{-1} \bullet (fgf\eta a) \bullet (\varepsilon fa) = f\eta a$. 於是我們可以定義 $\varepsilon' :\equiv (\varepsilon fgf)^{-1} \bullet (fgf\eta) \bullet (\varepsilon f)$,證畢.

定義 5.2 同倫纖維

一個函數 $f: A \to B$ 在一個點 y: B 的一個**同倫纖維**定義爲:

$$fib_f(f) :\equiv (x : A) \times (f(x) = y).$$

5.2 雙可逆映射

5.3 可縮纖維

定義 5.3 可縮映射

設 $f: A \to B$. 我們定義:

$$isContr(f) :\equiv (y:B) \rightarrow isContr\big(fib_f(y)\big).$$

6 範疇論

6.1 範疇和預範疇

定義 6.1 預範疇

- 一個預範疇 A 系如下資料:
- 1. 一個類型 A_0 , 它的項稱爲**對象**;
- 2. 一個函數 $hom_A: A_0 \rightarrow A_0 \rightarrow Set$,集合 $hom_A(a,b)$ 的元素稱爲態射;
- 3. 一個函數 $1:(a:A_0) \rightarrow hom_A(a,a)$, 1_a 稱爲恆等態射;
- 4. 一個函數 $_\circ_:hom_A(b,c)\to hom_A(a,b)\to hom_A(a,c)$ 稱爲**合成**;
- 5. 對於任何 $a,b:A_0$ 和 $f:hom_A(a,b)$, 我們有 $f=1_b\circ f$ 且 $f=f\circ 1_a$;
- $6. \ {\rm \#} 於任何 \ a,b,c,d:A \ {\rm \ } f:hom_A(a,b),g:hom_A(b,c),h:hom_A(c,d),\ {\rm \ } {\rm \$