Default Models

Ryan Levy

 $Physics\ Department,\ University\ of\ Michigan,\ Ann\ Arbor,\ MI$

Abstract

The Maxent method uses entropy S of a spectral function $A(\omega)$, defined with respect to an underlying default model $D(\omega)$ such that $S=-\int d\omega A(\omega) \ln \frac{A(\omega)}{D(\omega)}$. This document provides several plots of available default models for use in the Maxent program.

Contents

I :	Flat	2
II	Gaussian	3
III	Lorentzian	7
IV	(Linear/Quadratic) Exponential Decay	8

Part I Flat

DEFAULT_MODEL="flat"

Part II Gaussian

DEFAULT_MODEL="gaussian"
SIGMA=__

SIGMA=__

SHIFT=__

SIGMA1=__

SIGMA2=__

DEFAULT_MODEL="Two gaussians"

SIGMA1=__

SIGMA2=__

SHIFT1=__

SHIFT2=__

NORM1=__

Part III Lorentzian

DEFAULT_MODEL="Lorentzian"

GAMMA=__

See Gaussian for similar models (replace gaussian with lorentzian)

Part IV (Linear/Quadratic) Exponential Decay

DEFAULT_MODEL="linear rise exp decay"

LAMBDA=__

Linear Rise Exponential Decay

DEFAULT_MODEL="quadratic rise exp decay"

LAMBDA=__

Quadratic Rise Exponential Decay

