||| Appendix A

Collection of formulas and R commands

Contents

A	Coll	ection of formulas and R commands			
	A.1	Introduction, descriptive statistics, R and data visualization	1		
	A.2	Probability and Simulation	3		
		A.2.1 Distributions	5		
	A.3	Statistics for one and two samples	9		
	A.4	Simulation based statistics	11		
	A.5	Simple linear regression	12		
		Multiple linear regression	14		
		Inference for proportions	15		
	A.8	Comparing means of multiple groups - ANOVA	16		
Gl	ossaı	ries	18		
Ac	Acronyms 1				

This appendix chapter holds a collection of formulas. All the relevant equations from definitions, methods and theorems are included – along with associated R functions. All are in included in the same order as in the book, except for the distributions which are listed together.

A.1 Introduction, descriptive statistics, R and data visualization

	Description	Formula	R command
1.4	Sample mean The mean of a sample.	$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$	mean(x)
1.5	Sample median The value that divides a sample in two halves with equal number of observations in each.	$Q_2 = \begin{cases} x_{\left(\frac{n+1}{2}\right)} & \text{for odd } n \\ \frac{x_{\left(\frac{n}{2}\right)} + x_{\left(\frac{n+2}{2}\right)}}{2} & \text{for even } n \end{cases}$	median(x)
1.7	Sample quantile The value that divide a sample such that <i>p</i> of the observations are less that the value. The 0.5 quantile is the Median.	$q_p = egin{cases} rac{x_{(np)} + x_{(np+1)}}{2} & ext{for } pn ext{ integer} \\ x_{(\lceil np \rceil)} & ext{for } pn ext{ non-integer} \end{cases}$	quantile(x,p,type=2),
1.8	Sample quartiles The quartiles are the five quantiles dividing the sample in four parts, such that each part holds an equal number of observations	$Q_0 = q_0 =$ "minimum" $Q_1 = q_{0.25} =$ "lower quartile" $Q_2 = q_{0.5} =$ "median" $Q_3 = q_{0.75} =$ "upper quartile" $Q_4 = q_1 =$ "maximum"	quantile(x,
1.10	Sample variance The sum of squared differences from the mean divided by $n-1$.	$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$	var(x)
1.11	Sample standard deviation The square root of the sample variance.	$s = \sqrt{s^2} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$	sd(x)
1.12	Sample coefficient of variance The sample standard deviation seen relative to the sample mean.	$V=rac{s}{ar{x}}$	sd(x)/mean(x)
1.15	Sample Inter Quartile Range IQR: The middle 50% range of data	$IQR = Q_3 - Q_1$	IQR(x)

	Description	Formula	R command
1.18	Sample covariance Measure of linear strength of relation between two samples	$s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})$	cov(x,y)
1.19	Sample correlation Measure of the linear strength of relation between two sam- ples between -1 and 1.	$r = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right) = \frac{s_{xy}}{s_x \cdot s_y}$	cor(x,y)

A.2 Probability and Simulation

	Description	Formula	R command
2.6	Probability density function (pdf) for a discrete variable fulfills two conditions: $f(x) \ge 0$ and $\sum_{\text{all } x} f(x) = 1$ and finds the probality for one x value.	f(x) = P(X = x)	dnorm,dbinom,dhyper, dpois
2.9	Cumulated function (cdf)distributiongives the probability in a range of x values where $P(a < X \le b) = F(b) - F(a)$.	$F(x) = P(X \le x)$	pnorm,pbinom,phyper, ppois
2.13	Mean of a discrete random variable	$\mu = E(X) = \sum_{i=1}^{\infty} x_i f(x_i)$	
2.16	Variance of a discrete random variable \boldsymbol{X}	$\sigma^2 = \operatorname{Var}(X) = E[(X - \mu)^2]$	
2.32	Pdf of a continuous random variable is a non-negative function for all possible outcomes and has an area below the function of one	$P(a < X \le b) = \int_a^b f(x) dx$	
2.33	Cdf of a continuous randomvariableisnon-decreasingand $\lim_{x\to-\infty} F(x)$ =0 and $\lim_{x\to\infty} F(x)$ 1	$F(x) = P(X \le x) = \int_{-\infty}^{x} f(u) du$	
2.34	Mean and variance for a continuous random variable X	$\begin{vmatrix} \mu = E(X) = \int_{-\infty}^{\infty} x f(x) dx \\ \sigma^2 = E[(X - \mu)^2] = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx \end{vmatrix}$	
2.54	Mean and variance of a linear function The mean and variance of a linear function of a random variable <i>X</i> .	$E(aX + b) = a E(X) + b$ $V(aX + b) = a^{2} V(X)$	
2.56	Mean and variance of a linear combination The mean and variance of a linear combination of random variables.	$E(a_1X_1 + a_2X_2 + \dots + a_nX_n) =$ $a_1 E(X_1) + a_2 E(X_2) + \dots + a_n E(X_n)$ $V(a_1X_1 + a_2X_2 + \dots + a_nX_n) =$ $a_1^2 V(X_1) + a_2^2 V(X_2) + \dots + a_n^2 V(X_n)$	

	Description	Formula	R command
2.58	Covariance The covariance between be two random variables <i>X</i> and <i>Y</i> .	Cov(X,Y) = E[(X - E[X])(Y - E[Y])]	

A.2.1 Distributions

Here all the included distributions are listed including some important theorems and definitions related specifically with a distribution.

	Description	Formula	R command
2.20	Binominal distribution n is the number of independent draws and p is the probability of a success in each draw. The Binominal pdf describes the probability of x successes.	$f(x; n, p) = P(X = x)$ $= \binom{n}{x} p^{x} (1 - p)^{n - x}$ where $\binom{n}{x} = \frac{n!}{x!(n - x)!}$	<pre>dbinom(x,size, prob) pbinom(q,size, prob) qbinom(p,size, prob) rbinom(n,size, prob) where size=n, prob=p</pre>
2.21	Mean and variance of a binomial distributed random variable.	$\mu = np$ $\sigma^2 = np(1-p)$	
2.24	Hypergeometric distribution n is the number of draws without replacement, a is number of successes and N is the population size.	$f(x; n, a, N) = P(X = x)$ $= \frac{\binom{a}{x}\binom{N-a}{n-x}}{\binom{N}{n}}$ where $\binom{a}{b} = \frac{a!}{b!(a-b)!}$	<pre>dhyper(x,m,n,k) phyper(q,m,n,k) qhyper(p,m,n,k) rhyper(nn,m,n,k) where m=a, n=N-a, k=n</pre>
2.25	Mean and variance of a hyper- geometric distributed random variable.	$\mu = n \frac{a}{N}$ $\sigma^2 = n \frac{a(N-a)}{N^2} \frac{N-n}{N-1}$	
2.27	Poisson distribution λ is the rate (or intensity) i.e. the average number of events per interval. The Poisson pdf describes the probability of x events in an interval.	$f(x;\lambda) = \frac{\lambda^x}{x!}e^{-\lambda}$	dpois(x,lambda) ppois(q,lambda) qpois(p,lambda) rpois(n,lambda) where lambda= λ
2.28	Mean and variance of a Poisson distributed random variable.	$\mu = \lambda$ $\sigma^2 = \lambda$	
2.35	Uniform distribution α and β defines the range of possible outcomes. random variable following the uniform distribution has equal density at any value within a defined range.	$f(x; \alpha, \beta) = \begin{cases} 0 & \text{for } x < \alpha \\ \frac{1}{\beta - \alpha} & \text{for } x \in [\alpha, \beta] \\ 0 & \text{for } x > \beta \end{cases}$ $F(x; \alpha, \beta) = \begin{cases} 0 & \text{for } x < \alpha \\ \frac{x - \alpha}{\beta - \alpha} & \text{for } x \in [\alpha, \beta] \\ 0 & \text{for } x > \beta \end{cases}$	<pre>dunif(x,min,max) punif(q,min,max) qunif(p,min,max) runif(n,min,max) where min=α, max=β</pre>

	Description	Formula	R command
2.36	Mean and variance of a uniform distributed random variable <i>X</i> .	$\mu = \frac{1}{2}(\alpha + \beta)$ $\sigma^2 = \frac{1}{12}(\beta - \alpha)^2$	
2.37	Normal distribution Often also called the Gaussian distribution.	$f(x;\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	<pre>dnorm(x,mean,sd) pnorm(q,mean,sd) qnorm(p,mean,sd) rnorm(n,mean,sd) where mean=\mu, sd=\sigma.</pre>
2.38	Mean and variance of a normal distributed random variable.	μ σ^2	
2.43	Transformation of a normal distributed random variable <i>X</i> into a standardized normal random variable.	$Z = \frac{X - \mu}{\sigma}$	
2.46	Log-normal distribution α is the mean and β^2 is the variance of the normal distribution obtained when taking the natural logarithm to X .	$f(x) = \frac{1}{x\sqrt{2\pi}\beta}e^{-\frac{(\ln x - \alpha)^2}{2\beta^2}}$	dlnorm(x,meanlog,sdlog) plnorm(q,meanlog,sdlog) qlnorm(p,meanlog,sdlog) rlnorm(n,meanlog,sdlog) where meanlog= α , sdlog= β .
2.47	Mean and variance of a log- normal distributed random variable.	$\mu = e^{\alpha + \beta^2/2}$ $\sigma^2 = e^{2\alpha + \beta^2} (e^{\beta^2} - 1)$	
2.48	Exponential distribution λ is the mean rate of events.	$f(x;\lambda) = \begin{cases} \lambda e^{-\lambda x} & \text{for } x \ge 0\\ 0 & \text{for } x < 0 \end{cases}$	dexp(x,rate) pexp(q,rate) qexp(p,rate) rexp(n,rate) where rate=λ.
2.49	Mean and variance of a exponential distributed random variable.	$\mu = \frac{1}{\lambda}$ $\sigma^2 = \frac{1}{\lambda^2}$	
2.78	χ^2 -distribution $\Gamma\left(\frac{\nu}{2}\right)$ is the Γ -function and ν is the degrees of freedom.	$f(x) = \frac{1}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} x^{\frac{\nu}{2} - 1} e^{-\frac{x}{2}}; x \ge 0$	<pre>dchisq(x,df) pchisq(q,df) qchisq(p,df) rchisq(n,df) where df=v.</pre>

	Description	Formula	R command
2.81	Given a sample of size n from the normal distributed random variables X_i with variance σ^2 , then the sample variance S^2 (viewed as random variable) can be transformed to follow the χ^2 distribution with the degrees of freedom $\nu = n - 1$.	$\chi^2 = \frac{(n-1)S^2}{\sigma^2}$	
2.83	Mean and variance of a χ^2 distributed random variable.	$E(X) = \nu$ $V(X) = 2\nu$	
2.86	ν is the degrees of freedom and $\Gamma()$ is the Gamma function.	$f_T(t) = rac{\Gamma\left(rac{ u+1}{2} ight)}{\sqrt{ u\pi}\Gamma\left(rac{ u}{2} ight)}\left(1+rac{t^2}{ u} ight)^{-rac{ u+1}{2}}$	
2.87	Relation between normal random variables and χ^2 -distributed random variables. $Z \sim N(0,1)$ and $Y \sim \chi^2(\nu)$.	$X = \frac{Z}{\sqrt{Y/\nu}} \sim t(\nu)$	<pre>dt(x,df) pt(q,df) qt(p,df) rt(n,df) where df=\nu.</pre>
2.89	For normal distributed random variables $X_1,, X_n$, the random variable follows the t -distribution, where \overline{X} is the sample mean, μ is the mean of X , n is the sample size and S is the sample standard deviation.	$T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$	
2.93	Mean and variance of a <i>t</i> -distributed variable <i>X</i> .	$\mu = 0; \nu > 1$ $\sigma^2 = \frac{\nu}{\nu - 2}; \nu > 2$	
2.95	F-distribution v_1 an v_2 are the degrees of freedom and $B(\cdot, \cdot)$ is the Beta function.	$f_F(x) = \frac{1}{B\left(\frac{\nu_1}{2}, \frac{\nu_2}{2}\right)} \left(\frac{\nu_1}{\nu_2}\right)^{\frac{\nu_1}{2}} \cdot x^{\frac{\nu_1}{2} - 1} \left(1 + \frac{\nu_1}{\nu_2}x\right)^{-\frac{\nu_1 + \nu_2}{2}}$	df(x,df1,df2) pf(q,df1,df2) qf(p,df1,df2) rf(n,df1,df2) where df1=v ₁ ,df2=µ ₂ .
2.96	The <i>F</i> -distribution appears as the ratio between two independent χ^2 -distributed random variables with $U \sim \chi^2(\nu_1)$ and $V \sim \chi^2(\nu_2)$.	$\frac{U/\nu_1}{V/\nu_2} \sim F(\nu_1, \nu_2)$	

	Description	Formula	R command
2.98	X_1, \ldots, X_{n_1} and Y_1, \ldots, Y_{n_2} with the mean μ_1 and μ_2 and the variance σ_1^2 and σ_2^2 is independent and sampled from a normal distribution.	$\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(n_1 - 1, n_2 - 1)$	
2.101	Mean and variance of a <i>F</i> -distributed variable <i>X</i> .	$\mu = \frac{\nu_2}{\nu_2 - 2}; \nu_2 > 2$ $\sigma = \frac{2\nu_2^2(\nu_1 + \nu_2 - 2)}{\nu_1(\nu_2 - 2)^2(\nu_2 - 4)}; \nu_2 > 4$	

A.3 Statistics for one and two samples

	Description	Formula	R command
3.3	The distribution of the mean of normal random variables.	$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N\left(\mu, \frac{\sigma^2}{n}\right)$	
3.5	The distribution of the σ - $standardized$ mean of normal random variables	$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N\left(0, 1^2\right)$	
3.5	The distribution of the <i>S-standardized</i> mean of normal random variables	$T = \frac{\bar{X} - \mu}{S / \sqrt{n}} \sim t(n - 1)$	
3.7	Standard Error of the mean	$SE_{\bar{x}} = \frac{s}{\sqrt{n}}$	
3.9	The one sample confidence interval for μ	$SE_{\bar{x}} = \frac{s}{\sqrt{n}}$ $\bar{x} \pm t_{1-\alpha/2} \cdot \frac{s}{\sqrt{n}}$	
3.14	Central Limit Theorem (CLT)	$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$	
3.19	Confidence interval for the variance and standard deviation	$\sigma^2 : \left[\frac{(n-1)s^2}{\chi_{1-\alpha/2}^2}; \frac{(n-1)s^2}{\chi_{\alpha/2}^2} \right]$ $\sigma : \left[\sqrt{\frac{(n-1)s^2}{\chi_{1-\alpha/2}^2}}; \sqrt{\frac{(n-1)s^2}{\chi_{\alpha/2}^2}} \right]$	
3.22	The <i>p</i> -value	The <i>p</i> -value is the probability of obtaining a test statistic that is at least as extreme as the test statistic that was actually observed. This probability is calculated under the assumption that the null hypothesis is true.	P(T>x)=2(1-pt(x,n-1))
3.23	The one-sample t -test statistic and p -value	$p ext{-value} = 2 \cdot P(T > t_{obs})$ $t_{obs} = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$ $H_0: \mu = \mu_0$	
3.24	The hypothesis test	Rejected: <i>p</i> -value < <i>α</i> Accepted: <i>otherwise</i>	
3.29	Significant effect	An effect is significant if the p -value< α	
3.31	The critical values: $\alpha/2$ - and $1 - \alpha/2$ -quantiles of the <i>t</i> -distribution with $n-1$ degrees of freedom	$t_{lpha/2}$ and $t_{1-lpha/2}$	
3.32	The one-sample hypothesis test by the critical value	Reject: $ t_{\rm obs} > t_{1-\alpha/2}$ accept: $otherwise$	

	Description	Formula	R command
3.33	Confidence interval for μ	$\bar{x} \pm t_{1-\alpha/2} \cdot \frac{s}{\sqrt{n}}$ acceptance region/CI: $H_0: \mu = \mu_0$	
3.36	The level α one-sample t -test	Test: $H_0: \mu = \mu_0$ and $H_1: \mu \neq \mu_0$ by $p ext{-value} = 2 \cdot P(T > t_{obs})$ Reject: $p ext{-value} < \alpha$ or $ t_{obs} > t_{1-\alpha/2}$ Accept: $Otherwise$	
3.63	The one-sample confidence interval (CI) sample size formula	$n = \left(\frac{z_{1-\alpha/2} \cdot \sigma}{ME}\right)^2$	
3.65	The one-sample sample size formula	$n = \left(\sigma^{\frac{z_{1-\beta}+z_{1-\alpha/2}}{(\mu_0-\mu_1)}}\right)^2$	
3.42	The Normal q-q plot with $n > 10$	naive approach: $p_i = \frac{i}{n}$, $i = 1,, n$ commonly approach: $p_i = \frac{i-0.5}{n+1}$, $i = 1,, n$	
3.49	The (Welch) two-sample <i>t</i> -test statistic	$\delta = \mu_2 - \mu_1 H_0: \ \delta = \delta_0 t_{\text{obs}} = \frac{(\bar{x}_1 - \bar{x}_2) - \delta_0}{\sqrt{s_1^2/n_1 + s_2^2/n_2}}$	
3.50	The distribution of the (Welch) two-sample statistic	$T = \frac{(\bar{X}_1 - \bar{X}_2) - \delta_0}{\sqrt{S_1^2/n_1 + S_2^2/n_2}}$ $\nu = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{(s_1^2/n_1)^2}{n_1 - 1} + \frac{(s_2^2/n_2)^2}{n_2 - 1}}$	
3.51	The level α two-sample t-test	Test: $H_0: \mu_1 - \mu_2 = \delta_0$ and $H_1: \mu_1 - \mu_2 \neq \delta_0$ by p -value $= 2 \cdot P(T > t_{\rm obs})$ Reject: p -value $< \alpha$ or $ t_{\rm obs} > t_{1-\alpha/2}$ Accept: $Otherwise$	
3.52	The pooled two-sample estimate of variance	$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$	
3.53	The pooled two-sample t-test statistic	$\begin{cases} \delta = \mu_1 - \mu_2 \\ H_0: \ \delta = \delta_0 \\ t_{\text{obs}} = \frac{(\bar{x}_1 - \bar{x}_2) - \delta_0}{\sqrt{s_p^2/n_1 + s_p^2/n_2}} \end{cases}$	
3.54	The distribution of the pooled two-sample t-test statistic	$T = \frac{(\bar{X}_1 - \bar{X}_2) - \delta_0}{\sqrt{S_p^2/n_1 + S_p^2/n_2}}$	
3.47	The two-sample confidence interval for $\mu_1 - \mu_2$	$\bar{x} - \bar{y} \pm t_{1-\alpha/2} \cdot \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$ $\nu = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{(s_1^2/n_1)^2}{n_1 - 1} + \frac{(s_2^2/n_2)^2}{n_2 - 1}}$	

A.4 Simulation based statistics

	Description	Formula	R command
4.3	The non-linear approximative error propagation rule	$\sigma_{f(X_1,,X_n)}^2 = \sum_{i=1}^n \left(\frac{\partial f}{\partial x_i}\right)^2 \sigma_i^2$	
4.4	Non-linear error propagation by simulation	1. Simulate k outcomes 2. Calculate the standard deviation by $s_{f(X_1,,X_n)}^{\text{sim}} = \sqrt{\frac{1}{k-1}\sum_{i=1}^k (f_j - \bar{f})^2}$	
4.7	Confidence interval for any feature θ by parametric bootstrap	1.Simulate k samples 2.Calculate the statistic $\hat{\theta}$ 3.Calculate CI: $\left[q_{100(\alpha/2)\%}^*, q_{100(1-\alpha/2)\%}^*\right]$	
4.10	Two-sample confidence interval for any feature comparison $\theta_1 - \theta_2$ by parametric bootstrap	1.Simulate k sets of 2 samples 2.Calculate the statistic $\hat{\theta}_{xk}^* - \hat{\theta}_{yk}^*$ 3.Calculate CI: $\left[q_{100(\alpha/2)\%'}^* q_{100(1-\alpha/2)\%}^*\right]$	

A.5 Simple linear regression

	Description	Formula	R command
5.4	Least square estimators	$\hat{\beta}_1 = \frac{\sum_{i=1}^n (Y_i - \bar{Y})(x_i - \bar{x})}{S_{xx}}$ $\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{x}$ where $S_{xx} = \sum_{i=1}^n (x_i - \bar{x})^2$	
5.8	Variance of estimators	$V[\hat{\beta}_0] = \frac{\sigma^2}{n} + \frac{\bar{x}^2 \sigma^2}{S_{xx}}$ $V[\hat{\beta}_1] = \frac{\sigma^2}{S_{xx}}$ $Cov[\hat{\beta}_0, \hat{\beta}_1] = -\frac{\bar{x}\sigma^2}{S_{xx}}$	
5.12	Tests statistics for $H_0: \beta_0 = 0$ and $H_0: \beta_1 = 0$	$egin{align} T_{eta_0} &= rac{\hat{eta}_0 - eta_{0,0}}{\hat{\sigma}_{eta_0}} \ T_{eta_1} &= rac{\hat{eta}_1 - eta_{0,1}}{\hat{\sigma}_{eta_1}} \ \end{aligned}$	
5.14	Level α <i>t</i> -tests for parameter	Test $H_{0,i}: \beta_i = \beta_{0,i} \text{ vs. } H_{1,i}: \beta_i \neq \beta_{0,i}$ with $p\text{-value} = 2 \cdot P(T > t_{\text{obs},\beta_i})$ where $t_{\text{obs},\beta_i} = \frac{\hat{\beta}_i - \beta_{0,i}}{\hat{\sigma}_{\beta_i}}$. If $p\text{-value} < \alpha$ then $reject\ H_0$, otherwise $accept\ H_0$	<pre>D <- data.frame(x=c(), y=c()) fit <- lm(y~x, data=D) summary(fit)</pre>
5.15	Parameter confidence intervals	$egin{aligned} \hat{eta}_0 \pm t_{1-lpha/2} \hat{\sigma}_{eta_0} \ \hat{eta}_1 \pm t_{1-lpha/2} \hat{\sigma}_{eta_1} \end{aligned}$	confint(fit,level=0.95)
5.18	Confident and prediction interval	Confidence interval for the line: $\hat{\beta}_0 + \hat{\beta}_1 x_{\text{new}} \pm t_{1-\alpha/2} \hat{\sigma} \sqrt{\frac{1}{n} + \frac{(x_{\text{new}} - \bar{x})^2}{S_{xx}}}$ Interval for a new point prediction: $\hat{\beta}_0 + \hat{\beta}_1 x_{\text{new}} \pm t_{1-\alpha/2} \hat{\sigma} \sqrt{1 + \frac{1}{n} + \frac{(x_{\text{new}} - \bar{x})^2}{S_{xx}}}$	<pre>predict(fit, newdata=data.frame(), interval="confidence", level=0.95) predict(fit, newdata=data.frame(), interval="prediction", level=0.95)</pre>
5.23	The matrix formulation of the parameter estimators in the simple linear regression model	$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{Y}$ $V[\hat{\boldsymbol{\beta}}] = \sigma^2 (\boldsymbol{X}^T \boldsymbol{X})^{-1}$ $\hat{\sigma}^2 = \frac{RSS}{n-2}$	
5.25	Coefficient of determination \mathbb{R}^2	$r^2 = 1 - \frac{\sum_i (y_i - \hat{y}_i)^2}{\sum_i (y_i - \bar{y})^2}$	

	Description	Formula	R command
5.7	Model validation of assumptions	> Check the normality assumption with a q-q plot of the residuals. > Check the systematic behavior by plotting the residuals e_i as a function of fitted values \hat{y}_i	<pre>qqnorm(fit\$residuals) qqline(fit\$residuals) plot(fit\$fitted.values, fit\$residuals)</pre>

A.6 Multiple linear regression

	Description	Formula	R command
6.2	Level α <i>t</i> -tests for parameter	Test $H_{0,i}: \beta_i = \beta_{0,i} \text{ vs. } H_{1,i}: \beta_i \neq \beta_{0,i}$ with $p\text{-value} = 2 \cdot P(T > t_{\text{obs},\beta_i})$ where $t_{\text{obs},\beta_i} = \frac{\hat{\beta}_i - \beta_{0,i}}{\hat{\sigma}_{\beta_i}}$. If $p\text{-value} < \alpha$ the $reject\ H_0$, otherwise $accept\ H_0$	<pre>D<-data.frame(x1=c(), x2=c(),y=c()) fit <- lm(y~x1+x2, data=D) summary(fit)</pre>
6.5	Parameter confidence intervals	$\hat{eta}_i \pm t_{1-lpha/2} \hat{\sigma}_{eta_i}$	<pre>confint(fit,level=0.95)</pre>
6.9	Confident and prediction interval (in R)	Confident interval for the line $\hat{\beta}_0 + \hat{\beta}_1 x_{1,\text{new}} + \cdots + \hat{\beta}_p x_{p,\text{new}}$ Interval for a new point prediction $\hat{\beta}_0 + \hat{\beta}_1 x_{1,\text{new}} + \cdots + \hat{\beta}_p x_{p,\text{new}} + \varepsilon_{\text{new}}$	<pre>predict(fit, newdata=data.frame(), interval="confidence", level=0.95) predict(fit, newdata=data.frame(), interval="prediction", level=0.95)</pre>
6.17	The matrix formulation of the parameter estimators in the multiple linear regression model	$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{Y}$ $V[\hat{\boldsymbol{\beta}}] = \sigma^2 (\boldsymbol{X}^T \boldsymbol{X})^{-1}$ $\hat{\sigma}^2 = \frac{RSS}{n - (p+1)}$	
6.16	Model selection procedure	Backward selection: start with full model and stepwise remove insignificant terms	

A.7 Inference for proportions

	Description	Formula	R command
7.3	Proportion estimate and confidence interval	$\hat{p} = \frac{x}{n}$ $\hat{p} \pm z_{1-\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$	<pre>prop.test(x=, n=, correct=FALSE)</pre>
7.10	Approximate proportion with Z	$Z = \frac{X - np_0}{\sqrt{np_0(1 - p_0)}} \sim N(0, 1)$	
7.11	The level α one-sample proportion hypothesis test	Test: $H_0: p = p_0$, vs. $H_1: p \neq p_0$ by p -value = $2 \cdot P(Z > z_{obs})$ where $Z \sim N(0, 1^2)$ If p -value < α the $reject\ H_0$, otherwise $accept\ H_0$	<pre>prop.test(x=, n=, correct=FALSE)</pre>
7.13	Sample size formula for the CI of a proportion	Guessed p (with prior knowledge): $n = p(1-p)(\frac{z_{1-\alpha/2}}{ME})^2$ Unknown p : $n = \frac{1}{4}(\frac{z_{1-\alpha/2}}{ME})^2$	
7.15	Difference of two proportions estimator $\hat{p}_1 - \hat{p}_2$ and confidence interval for the difference	$\hat{\sigma}_{\hat{p}_1 - \hat{p}_2} = \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$ $(\hat{p}_1 - \hat{p}_2) \pm z_{1 - \alpha/2} \cdot \hat{\sigma}_{\hat{p}_1 - \hat{p}_2}$	
7.18	The level α one-sample t -test	Test: $H_0: p_1 = p_2$, vs. $H_1: p_1 \neq p_2$ by p -value = $2 \cdot P(Z > z_{obs})$ where $Z \sim N(0, 1^2)$ If p -value < α the $reject\ H_0$, otherwise $accept\ H_0$	<pre>prop.test(x=, n=, correct=FALSE)</pre>
7.20	The multi-sample proportions χ^2 -test	Test: $H_0: p_1 = p_2 = \dots = p_c = p$ by $\chi^2_{\text{obs}} = \sum_{i=1}^2 \sum_{j=1}^c \frac{(o_{ij} - e_{ij})^2}{e_{ij}}$	<pre>chisq.test(X, correct = FALSE)</pre>
7.22	The $r \times c$ frequency table χ^2 -test	Test: $H_0: p_{i1} = p_{i2} = \dots = p_{ic} = p_i$ for all rows $i = 1, 2, \dots, r$ by $\chi^2_{\text{obs}} = \sum_{i=1}^r \sum_{j=1}^c \frac{(o_{ij} - e_{ij})^2}{e_{ij}}$ Reject if $\chi^2_{\text{obs}} > \chi^2_{1-\alpha} ((r-1)(c-1))$ Otherwise accept	<pre>chisq.test(X, correct = FALSE)</pre>

A.8 Comparing means of multiple groups - ANOVA

	Description	Formula	R command
8.2	One-way ANOVA variation decomposition	$\sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y})^2 = \underbrace{\sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_i)^2}_{\text{SSE}} + \underbrace{\sum_{i=1}^{k} n_i (\bar{y}_i - \bar{y})^2}_{\text{SS(Tr)}}$	
8.4	One-way within group variability	$MSE = \frac{SSE}{n-k} = \frac{(n_1 - 1)s_1^2 + \dots + (n_k - 1)s_k^2}{n-k}$ $s_i^2 = \frac{1}{n_i - 1} \sum_{i=1}^{n_i} (y_{ij} - \bar{y}_i)^2$	
8.6	One-way test for difference in mean for k groups	$H_0: \alpha_i = 0; i = 1, 2, \dots, k,$ $F = \frac{SS(Tr)/(k-1)}{SSE/(n-k)}$ F -distribution with $k-1$ and $n-k$ degrees of freedom	anova(lm(y~treatm))
8.9	Post hoc pairwise confidence intervals		
8.10	Post hoc pairwise hypothesis tests	Test: $H_0: \mu_i = \mu_j \text{ vs. } H_1: \mu_i \neq \mu_j$ by $p\text{-value} = 2 \cdot P(T > t_{\text{obs}})$ where $t_{\text{obs}} = \frac{\bar{y}_i - \bar{y}_j}{\sqrt{MSE\left(\frac{1}{n_i} + \frac{1}{n_j}\right)}}$ Test $M = k(k-1)/2$ times, but each time with $\alpha_{\text{Bonferroni}} = \alpha/M$	
8.13	Least Significant Difference (LSD) values	$LSD_{\alpha} = t_{1-\alpha/2} \sqrt{2 \cdot MSE/m}$	
8.20	Two-way ANOVA variation decomposition	$ \underbrace{\sum_{i=1}^{k} \sum_{j=1}^{l} (y_{ij} - \hat{\mu})^{2}}_{SST} = \underbrace{\sum_{i=1}^{k} \sum_{j=1}^{l} (y_{ij} - \hat{\alpha}_{i} - \hat{\beta}_{j} - \hat{\mu})^{2} + \underbrace{\sum_{i=1}^{k} \sum_{j=1}^{l} (y_{ij} - \hat{\alpha}_{i} - \hat{\beta}_{j} - \hat{\mu})^{2} + \underbrace{\sum_{i=1}^{k} \hat{\alpha}_{i}^{2} + k \cdot \sum_{j=1}^{l} \hat{\beta}_{j}^{2}}_{SS(Tr)} $	

	Description	Formula	R command
8.22	Test for difference in means in two-way ANOVA grouped in treatments and in blocks	$H_{0,Tr}: \alpha_i = 0, i = 1, 2, \dots, k$ $F_{Tr} = \frac{SS(Tr)/(k-1)}{SSE/((k-1)(l-1))}$ $H_{0,Bl}: \beta_j = 0, j = 1, 2, \dots, l$ $F_{Bl} = \frac{SS(Bl)/(l-1)}{SSE/((k-1)(l-1))}$	<pre>fit<-lm(y~treatm+block) anova(fit)</pre>

One-way ANOVA

Source of	Degrees of	Sums of	Mean sum of	Test-	<i>p</i> -
variation	freedom	squares	squares	statistic F	value
Treatment	k-1	SS(Tr)	$MS(Tr) = \frac{SS(Tr)}{k-1}$	$F_{\rm obs} = \frac{MS(Tr)}{MSE}$	$P(F > F_{\rm obs})$
Residual	n-k	SSE	$MSE = \frac{SSE}{n-k}$		
Total	n-1	SST			

Two-way ANOVA

Source of	Degrees of	Sums of	Mean sums of	Test	<i>p</i> -
variation	freedom	squares	squares	statistic F	value
Treatment	k-1	SS(Tr)	$MS(Tr) = \frac{SS(Tr)}{k-1}$	$F_{Tr} = \frac{MS(Tr)}{MSE}$	$P(F > F_{Tr})$
Block	l-1	SS(Bl)	$MS(Bl) = \frac{SS(Bl)}{l-1}$	$F_{Bl} = \frac{MS(Bl)}{MSE}$	$P(F > F_{Bl})$
Residual	(l-1)(k-1)	SSE	$MSE = \frac{SSE}{(k-1)(l-1)}$		
Total	n-1	SST			

Glossaries

- **cumulated distribution function** [Fordelingsfunktion]The cdf is the function which determines the probability of observing an outcome of a random variable below a given value 3
- **Continuous random variable** [Kontinuert stokastisk variabel] If an outcome of an experiment takes a continuous value, for example: a distance, a temperature, a weight, etc., then it is represented by a continuous random variable 3
- **Correlation** [Korrelation] The sample correlation coefficient are a summary statistic that can be calculated for two (related) sets of observations. It quantifies the (linear) strength of the relation between the two. See also: Covariance 2
- **Covariance** [Kovarians] The sample covariance coefficient are a summary statistic that can be calculated for two (related) sets of observations. It quantifies the (linear) strength of the relation between the two. See also: Correlation 2, 4
- *F*-distribution [*F*-fordelingen] The *F*-distribution appears as the ratio between two independent χ^2 -distributed random variables 16
- **Inter Quartile Range** [Interkvartil bredde] The Inter Quartile Range (IQR) is the middle 50% range of data 1
- **Median** [Median, stikprøvemedian] The median of population or sample (note, in text no distinguishment between *population median* and *sample median*) 1
- **probability density function** The pdf is the function which determines the probability of every possible outcome of a random variable 3
- **Quantile** [Fraktil, stikprøvefraktil] The quantiles of population or sample (note, in text no distinguishment between *population quantile* and *sample quantile*) 1
- **Quartile** [Fraktil, stikprøvefraktil] The quartiles of population or sample (note, in text no distinguishment between *population quartile* and *sample quartile*) 1
- **Sample variance** [Empirisk varians, stikprøvevarians] 1
- **Sample mean** [Stikprøvegennemsnit] The average of a sample 1
- Standard deviation [Standard afvigelse] 1

Acronyms

ANOVA Analysis of Variance Glossary: Analysis of Variance

cdf cumulated distribution function 3, Glossary: cumulated distribution function

CI confidence interval 10–12, 15, Glossary: confidence interval

CLT Central Limit Theorem Glossary: Central Limit Theorem

IQR Inter Quartile Range 1, Glossary: Inter Quartile Range

LSD Least Significant Difference Glossary: Least Significant Difference

pdf probability density function 3, Glossary: probability density function