CSC236H, Winter 2016 Assignment 2

Sample Solutions

- 1. Let T be a set of rooted trees such that for each $t \in T$:
 - nodes are labeled with positive integers. That is, each node v is labeled with an integer a_v ;
 - if w is a child of v, then $a_w < a_v$.

Prove that for all $t \in T$, the root of t has the largest label of all nodes in the tree.

Solution: We will prove the claim by using induction over the structure of the trees in T. P(t): The root node of t has the largest label in t.

Base Case: Let t be a single node.

Then t is the root node and has the largest label. So, P(t).

Induction Step: Let $t \in T$. Let r be the root of a tree t.

Assume that for each sub-tree t' of t, P(t'), i.e., the root node of t' has the largest label in t'. **[IH]** WTP: P(t), i.e., the root of t has the largest label in t.

Let r be the root node of t.

If r has no children, then t = r and we're done by the base case. Otherwise, let $r_1, ..., r_n$ be all the children of r, and $t_1, ..., t_n$ be the sub-trees of t with roots $r_1, ..., r_n$.

By IH, a_{r_i} is the largest label in t_i , for all $1 \le i \le n$.

By the definition of T, $a_{r_i} < a_r$, for all $1 \le i \le n$.

Therefore, a_r is the largest label in t, and so P(t) holds.

- 2. Let $M \subseteq \mathbb{Z}^2$ be a set defined as follows:
 - $(3,2) \in M$,
 - for all $(x, y) \in M$, $(3x 2y, x) \in M$,
 - nothing else belongs to M.

Use structural induction to prove that for all $(x,y) \in M$, there exists $k \in \mathbb{N}$, such that

$$(x,y) = (2^{k+1} + 1, 2^k + 1).$$

Solution: P((x,y)): there exists $k \in \mathbb{N}$ s.t. $(x,y) = (2^{k+1} + 1, 2^k + 1)$. The goal is to prove for all $(x,y) \in M$, P((x,y)).

Base Case: Let (x, y) = (3, 2).

Let k = 0.

Then $2^{k+1} + 1 = 2^1 + 1 = 3$ and $2^k + 1 = 2^0 + 1 = 2$.

Then there exists $k \in \mathbb{N}$, such that $(x,y) = (2^{k+1} + 1, 2^k + 1)$ and so P((x,y)).

Induction Step: Let $(x,y) \in M$. By definition, M includes (3x-2y,x). Suppose P((x,y)), i.e., there exists $k \in \mathbb{N}$ such that $(x,y) = (2^{k+1}+1,2^k+1)$. **[IH] WTP:** P((3x-2y,x)), i.e., there exists k' such that $(3x-2y,x) = (2^{k'+1}+1,2^{k'}+1)$.

$$3x - 2y = 3(2^{k+1} + 1) - 2(2^k + 1)$$
 # By IH
= $3 * 2^{k+1} + 3 - 2^{k+1} - 2$
= $2 * 2^{k+1} + 1$
= $2^{k+2} + 1$

Let k' = k + 1. Then $k' \in \mathbb{N}$.

Then $3x - 2y = 2^{k'+1} + 1$.

Also, by IH, $x = 2^{k+1} + 1$. So, $x = 2^{k'} + 1$.

Then, there exists $k' \in \mathbb{N}$ such that $(3x - 2y, x) = (2^{k'+1} + 1, 2^{k'} + 1)$

Thus P((3x-2y,x)).

- 3. Let G be a set defined as follows:
 - if x is a propositional variable, then $x \in G$;
 - if $f_1, f_2 \in G$, then $\neg f_1 \in G$, and $(f_1 \land f_2) \in G$;
 - nothing else belongs to G.

For a formula $f \in G$, let $c_{not}(f)$ be the number of occurrences of \neg in f, and $c_{and}(f)$ be the number of occurrences of \wedge in f. Let $H = \{f \in G : c_{not}(f) = c_{and}(f)\}$. That is, H is the set of formulas in G with equal number of \neg 's and \wedge 's.

Prove that for any formula $f \in G$, there is a formula f' such that $f' \in H$ and f' and f are logically equivalent.

Solution: P(f): There exists f' such that $f' \in H$ and f' and f are logically equivalent. We use structural induction (on G) to prove that for all $f \in G$, P(f) holds.

Base Case: For f = x, where x is a propositional variable, let f' = x. Then f' uses no connectives at all. So $f' \in G$ and $c_{not}(f') = 0 = c_{and}(f')$. Thus $f' \in H$. Also, f' and f are logically equivalent. Therefore P(f) holds.

Induction Step: Assume $f_1, f_2 \in G$. By definition, $\neg f_1 \in G$, and $(f_1 \land f_2) \in G$.

Suppose $P(f_1)$ and $P(f_2)$, i.e., there exist f'_1, f'_2 such that $f'_1, f'_2 \in H$ and f'_1 is logically equivalent to f_1 , and f'_2 is logically equivalent to f_2 . **IH**

WTP: P(f) holds for (A) $f = \neg f_1$ and (B) $f = (f_1 \land f_2)$.

Case (A): For
$$f = \neg f_1$$
, let $f' = \neg (f'_1 \land f'_1)$. Then
$$c_{not}(f') = 1 + 2 * c_{not}(f'_1)$$
$$= 1 + 2 * c_{and}(f'_1) \qquad \text{# By IH, } c_{not}(f'_1) = c_{and}(f'_1)$$
$$= c_{and}(f').$$

By the IH, $f_1' \in G$, and so, considering the inductive rules, $\neg (f_1' \land f_1') \in G$.

By the IH, $\neg(f_1' \land f_1')$ is logically equivalent to $\neg(f_1 \land f_1)$, which is logically equivalent to $\neg f_1$, which by assumption is f.

Therefore P(f).

Case (B): For $f = (f_1 \wedge f_2)$, let $f' = (\neg \neg f'_1 \wedge (f'_2 \wedge f'_2))$. Then

$$c_{not}(f') = 2 + c_{not}(f'_1) + 2 * c_{not}(f'_2)$$

$$= 2 + c_{and}(f'_1) + 2 * c_{and}(f'_2) \quad \text{# By IH, } c_{not}(f'_1) = c_{and}(f'_1) \text{ and } c_{not}(f'_2) = c_{and}(f'_2)$$

$$= c_{and}(f').$$

By the IH, $f'_1, f'_2 \in G$, and so, considering the inductive rules, $(\neg \neg f'_1 \land (f'_2 \land f'_2)) \in G$. By the IH, $(\neg \neg f'_1 \land (f'_2 \land f'_2))$ is logically equivalent to $(\neg \neg f_1 \land (f_2 \land f_2))$, which is logically equivalent to $(f_1 \land (f_2 \land f_2))$, which is logically equivalent to $(f_1 \land f_2)$, which by assumption is f. Therefore P(f).