§6.1—§6.2 Eigenvalues and Eigenvectors, Diagonalizability I

illusion

Especially made for smy

School of Mathematical Science, XMU

Wednesday 26th March, 2025

http://illusion-hope.github.io/25-Spring-SMY-Discussion-Session/

Chapter 5 Exam

例 1

设
$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
, 非零数 c_1, c_2, \dots, c_n 是 $f(x)$ 的根。

- (1) 证明 $a_0 \neq 0$;
- (2) 证明 $c_1, c_2, ..., c_n$ 两两互异,求 $\frac{1}{c_1}, \frac{1}{c_2}, ..., \frac{1}{c_n}$ 为根的 n 次多项式,并证明;
- (3) 若 (2) 中的根不是全互异(重根按重数计),求以 $\frac{1}{c_1}, \frac{1}{c_2}, \dots, \frac{1}{c_n}$ 为根的 n 次 多项式,并证明。

(illusion) Lecture 5 Wednesday 26th March, 2025

Chapter 5 Exam

例 2

设 p 是素数,整数 $n \geq 3$,证明:

- (1) √p 是无理数;
- (2) 对任意不全为 0 的有理数 $a_1, a_2, ..., a_{n-1}$, 都有

$$1 + a_1 \sqrt[n]{p} + a_2 \sqrt[n]{p^2} + \dots + a_{n-1} \sqrt[n]{p^{n-1}} \notin \mathbb{Q}.$$

- (2)* $\sqrt[n]{p}$ 在 \mathbb{Q} 上的极小多项式为 n 次的,也即无理数 $\sqrt[n]{p}$, $\sqrt[n]{p^2}$, \cdots , $\sqrt[n]{p^{n-1}}$ 在 \mathbb{Q} 上线性无关;
- (3)* $\mathbb{Q}[\sqrt[n]{p}]$ 为一个数域,若将其看作 \mathbb{Q} 上的线性空间,有 $\dim \mathbb{Q}[\sqrt[n]{p}] = n = [\mathbb{Q}[\sqrt[n]{p}]:\mathbb{Q}] = \deg m(x)$,其中 $m(x) = x^n p$.

注记:我们在 §6.3 节还会继续讨论矩阵和向量的极小多项式。

Chapter 5 Exam

例 3

证明多项式 $f(x) = (x-1)^2(x-2)^2 \dots (x-2024)^2 + 2025$ 在 \mathbb{Q} 上不可约。

例 4

设整数 n>0, f(x), g(x) 是数域 F 上首一的 n 次多项式,定义不超过 n-1 次多项式的线性空间 V 上的线性变换 φ_1, φ_2 分别为:

- (i) 对任意 $h(x) \in V$, φ_1 表示 h(x)f(x) 除 g(x) 的余式;
- (ii) 对任意 $h(x) \in V$, φ_2 表示 h(x)g(x) 除 f(x) 的余式。

证明: $\det \varphi_1 = (-1)^n \det \varphi_2$.

(illusion) Lecture 5 Wednesday 26th March, 2025 4

Outline of Chapter 6: Eigenvalue and Eigenvectors

Goal

认识一类最简单的相似标准型: 可对角化

基础概念的准备:

- 特征值和特征向量;
- 几何重数和代数重数;
- 矩阵, 向量的的零化多项式和极小多项式;
- 相似初等变换,一些相似的必要条件.
- 一些相似标准型的刻画:
 - 复上三角化 → 观察特征值;
 - 实分块上三角化;
 - 对角矩阵.

Outline of Chapter 6: Eigenvalue and Eigenvectors

交换矩阵带来的性质:

- 特征子空间互为不变子空间;
- 公共特征向量;
- 同时上三角,对角化;
- 多项式表示.

Outline of Chapter 6: Eigenvalue and Eigenvectors

可对角化的9大等价命题 1:

- n 个特征向量:
- 全空间成为特征子空间的直和;
- 有完全的特征向量系, i.e., 几何重数=代数重数;
- 极小多项式无重根;
- 在不变子空间上的限制仍然可对角化;
- 只有 0 级的广义特征向量 → Jordan 块全是1阶的,初等因子组全为一次的.
- o . . .

§6.1 Preparation

Common Properties:

- $\lambda_1 \lambda_2 \cdots \lambda_n = \det A$, $\lambda_1 + \cdots + \lambda_n = \operatorname{tr}(A)$;
- $f_A(\lambda) = f_{AT}(\lambda), f_{P^{-1}AP}(\lambda) = f_A(\lambda)$:
- $A \in F^{m \times n}, B \in F^{n \times m}, m \ge n \leadsto f_{AB}(\lambda) = \lambda^{m-n} f_{BA}(\lambda)$:
- (Laplace) $A = \begin{bmatrix} B & D \\ O & C \end{bmatrix} \Rightarrow f_A(\lambda) = f_B(\lambda) f_C(\lambda).$

Note: 上, 下三角矩阵可以帮助我们看出特征值

$$A = \begin{bmatrix} \lambda_1 & * & * & * \\ & \lambda_2 & * & * \\ & & \ddots & * \\ & & & \lambda_n \end{bmatrix} \Rightarrow f_A(\lambda) = (\lambda - \lambda_1) \cdots (\lambda - \lambda_n).$$

Upper Triangularization Over C

Thm 5

 $\mathbb C$ 上任意方阵 A 都相似到一个上三角矩阵,且对角元为 A 的全部特征值.

Notes:

- (Cor.) 若 F 上一方阵 A 的特征值全落在 F 内,也可上三角化 \checkmark
- $A^{-1}, f(A), A^*$ 的全部特征值?
- 实方阵在 ℝ 上也可以上三角化吗?
- (Chapter 8) 事实上,这个相似可以加强为酉相似.

Examples

例 6

Given $A \in M(3,F)$ such that $\det A = \det(A+E) = \det(A+2E) = a \in F$, Figure out $\det g(A)$ under following conditions:

- (1) a = 0, g(x) = x(x+1)(x+2);
- (2) $a \neq 0$, g(x) = x + 2025.

例 7

If $A\in GL(n,\mathbb{Z})$ has an eigenvalue λ in \mathbb{Z} , prove that A^* has at least an integer eigenvalue and try to find one.

Eigen Subspace

$$V_{\lambda_0} = \{ X \in F^n \mid AX = \lambda_0 X \}.$$

- $A \leadsto \varphi \Rightarrow \dim V_{\lambda_0} = \dim \operatorname{Ker}(\lambda_0 \operatorname{id}_{F^n} \varphi) = n r(\lambda_0 E A);$
- $\varphi|_{V_{\lambda_0}} \in \mathcal{L}(V_{\lambda_0});$
- $\operatorname{tr}(A|_{V_{\lambda_0}}) = \operatorname{tr}(\varphi|_{V_{\lambda_0}}) = \lambda_0 \cdot \dim V_{\lambda_0}$.

Thm 8

Suppose $\lambda_1, \dots, \lambda_s$ are all the eigenvalues of a $n \times n$ matrix A, then it holds

$$V_{\lambda_1} + V_{\lambda_2} + \cdots + V_{\lambda_s} = V_{\lambda_1} \oplus V_{\lambda_2} \oplus \cdots \oplus V_{\lambda_s}.$$

When $V_{\lambda_1} \oplus V_{\lambda_2} \oplus \cdots \oplus V_{\lambda_s} = V \leadsto$ what happens? Diagonalizability!

(illusion) Lecture 5 Wednesday 26th March, 2025

§6.2 Diagonalizability

If A has n distinct eigenvalues $\lambda_1, \dots, \lambda_n$, it follows that

$$\dim V_{\lambda_1} \oplus V_{\lambda_2} \oplus \cdots \oplus V_{\lambda_n} \ge n.$$

However, the sum of subspaces cannot exceed the dimension of the entire space V. In other words,

$$\dim V_{\lambda_1} \oplus V_{\lambda_2} \oplus \cdots \oplus V_{\lambda_n} \le n \leadsto \dim V_{\lambda_1} \oplus V_{\lambda_2} \oplus \cdots \oplus V_{\lambda_n} = n.$$

Thus, from the equality of dimensions and the natural inclusion relationship, we obtain

$$V_{\lambda_1} \oplus V_{\lambda_2} \oplus \cdots \oplus V_{\lambda_n} = V_{\cdot} \leadsto \mathsf{Diagonalizability!}$$

The next question that arises is that what happens if the number of distinct eigenvalues is smaller than n?

12/16

(illusion) Lecture 5 Wednesday 26th March, 2025

§6.2 Diagonalizability

Goal: The criterion for diagonalizability in general case

Suppose
$$f_A(\lambda) = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_t)^{n_t}, n_i \ge 1, t < n$$
. We have
$$F^n = V_{\lambda_1} \oplus V_{\lambda_2} \oplus \cdots \oplus V_{\lambda_s}.$$

Then, we denote $\dim V_{\lambda_i} = s_i$, which implies

$$n_1 + \dots + n_t = s_1 + \dots + s_t = n, \ t < n, \ n_i, s_i \ge 1.$$

Q: Could $n_i > s_i$ and $n_j < s_j$ hold at the same time for some i, j? \leadsto No!

Lemma 9

For λ_i , we always have the geometric multiplicity s_i is smaller than the algebraic multiplicity n_i .

Then, we obtain $n=n_1+\cdots+n_t\leq s_1+\cdots+s_t=n \rightsquigarrow n_i\equiv s_i$.

§6.2 Diagonalizability

Thm 10

The following statements are equivalent:

- (1) A is diagonalizable.
- (2) A has n linearly independent eigenvectors.
- (3) F^n becomes the direct sum of eigen subspace.
- (4) For any eigenvalue λ_i , we always have $n_i \equiv s_i$.

Notes: Keep these statements in mind!

- Compute P such that $P^{-1}AP$ is diagonal matrix \leadsto easy!
- Translate these statements into the language of linear transformations $\varphi\in\mathcal{L}(V)\leadsto$ a good exercise for you.

14 / 16

An Example

例 11

Suppose
$$A = \begin{bmatrix} B & D \\ O & C \end{bmatrix}$$
 is diagonalizable, where B, C, D are $n \times n$ matrices.

Prove that

- (1) B, C are diagonalizable;
- (2) $A \leftrightarrow \varphi$, V_1 is φ -subspace, then $\varphi|_{V_1}, \varphi|_{V/V_1}$ are diagonalizable.

Notes:

- If φ has n distinct eigenvalues, find out all the $\varphi-$ subspace.
- ullet If B,C are diagonalizable, can we conclude that A is diagonalizable?
- \bullet Additionally, if B,C do not share the same eigenvalues, how does that affect diagonalizability?

Equivalent Characterizations of Diagonalizability

Thm 12

The following statements are equivalent:

- (1) A is diagonalizable.
- (2) A has n linearly independent eigenvectors.
- (3) F^n becomes the direct sum of eigen subspace.
- (4) For any eigenvalue λ_i , we always have $n_i \equiv s_i$.
- (5) For any \mathscr{A} –subspace V, we have $\mathscr{A}|_V$ is diagonalizable.
- (6) For any $\mathscr{A}-\text{subspace }V$, we can find another $\mathscr{A}-\text{subspace }W$ such that

$$F^n = V \oplus W$$
.

Notes: Keep these statements in mind!

