Submitted by-Aditya Gautam

Roll No-12

M.sc. 3rd semester

Date of Assignment-03/11/2020

Date of Submission-10/11/2020

Experiment No -04

Topic- Tracing of Power curve for testing variance of a Normal Population.

Problem – A random sample of size 50 is drawn from a normal population with mean 9 and variance σ^2 , where σ^2 is unknown. Draw the Power curves for testing H_0 : $\sigma^2 = 6$ against

i)
$$H_1: \sigma^2 > 6$$

ii)
$$H_1: \sigma^2 < \epsilon$$

i)
$$H_1: \sigma^2 > 6$$
 ii) $H_1: \sigma^2 < 6$ iii) $H_1: \sigma^2 \neq 6$

Assume that, $\alpha = 0.01$

Theory and Calculation-

Using Neyman's pearson fundamental lemma, the critical region is given by-

$$W = \{x : \frac{L(x, \theta_1)}{L(x, \theta_0)} \ge k\}$$

Here,
$$f(x, \mu, \sigma^2) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}; \quad -\infty < x < \infty, -\infty < \mu < \infty, \sigma > 0$$

$$\therefore \frac{L(x,\sigma_{1}^{2})}{L(x,\sigma_{0}^{2})} = \frac{\prod_{i=1}^{n} f(x_{i}, \mu, \sigma_{1}^{2})}{\prod_{i=1}^{n} f(x_{i}, \mu, \sigma_{0}^{2})} \ge k$$

$$\Rightarrow \frac{\left(\frac{1}{\sigma_{1}\sqrt{2\pi}}\right)^{n} e^{-\frac{1}{2\sigma_{1}^{2}}\sum_{i=1}^{n}(x_{i}-\mu)^{2}}}{\left(\frac{1}{\sigma_{0}\sqrt{2\pi}}\right)^{n} e^{-\frac{1}{2\sigma_{0}^{2}}\sum_{i=1}^{n}(x_{i}-\mu)^{2}}} \geq k$$

$$\Rightarrow \left(\frac{\sigma_0}{\sigma_1}\right)^n e^{\frac{1}{2}\sum_{i=1}^n (x_i - \mu)^2 \left(\frac{1}{\sigma_0^2} - \frac{1}{\sigma_1^2}\right)} \ge k$$

$$\Rightarrow n \log \left(\frac{\sigma_0}{\sigma_1}\right) + \frac{1}{2} \sum_{i=1}^n (x_i - \mu)^2 \left(\frac{1}{\sigma_0^2} - \frac{1}{\sigma_1^2}\right) \ge \log k$$

$$\Rightarrow \frac{1}{2} \sum_{i=1}^{n} \left(x_i - \mu \right)^2 \left(\frac{{\sigma_1}^2 - {\sigma_0}^2}{{\sigma_0}^2 {\sigma_1}^2} \right) \ge \log k - n \log \left(\frac{{\sigma_0}}{{\sigma_1}} \right)$$

$$\Rightarrow \sum_{i=1}^{n} (x_i - \mu)^2 (\sigma_1^2 - \sigma_0^2) \ge 2\sigma_0^2 \sigma_1^2 [\log k - n \log \left(\frac{\sigma_0}{\sigma_1}\right)]$$

$$\Rightarrow \sum_{i=1}^{n} (x_i - \mu)^2 (\sigma_1^2 - \sigma_0^2) \ge k'$$
 (say)

Where,

$$k' = 2\sigma_0^2 \sigma_1^2 [\log k - n \log \left(\frac{\sigma_0}{\sigma_1}\right)]$$

Case 1:

When $\sigma_1^2 > \sigma_0^2$, then the C.R. is,

$$W_1 = \{ \underset{\sim}{x} : \sum_{i=1}^{n} (x_i - \mu)^2 \ge k_1 \}$$

Case 2:

When $\sigma_1^2 < \sigma_0^2$, then the C.R. is,

$$W_2 = \{ x : \sum_{i=1}^{n} (x_i - \mu)^2 < k_2 \}$$

(i) The C.R. for testing $H_0: \sigma^2 = 6$ against $H_1: \sigma^2 > 6$ is given by

$$W_1 = \{ x : \sum_{i=1}^{50} (x_i - 9)^2 > k_1 \}$$

where k_{1} is a constant to be determined such that the size of the C.R. is equal to $\,\alpha\,$,

i.e.,
$$P(x \in W_1 | H_0) = \alpha$$

$$\Rightarrow P\{\sum_{i=1}^{50} (x_i - 9)^2 > k_1 \mid H_0\} = .01$$

$$\Rightarrow P\{\frac{\sum_{i=1}^{50} (x_i - 9)^2}{\sigma_0^2} > \frac{k_1}{\sigma_0^2}\} = .01$$

$$\Rightarrow P\{\chi_{(n)}^2 > \frac{k_1}{\sigma_0^2}\} = .01$$

$$\Rightarrow 1 - P\{\chi_{(n)}^2 > \frac{k_1}{\sigma_0^2}\} = 1 - .01$$

$$\Rightarrow P\{\chi_{(n)}^2 < \frac{k_1}{\sigma_0^2}\} = .99$$

To find the value of k_1 , we use the following R-command:

a = qchisq(0.99,50,0) (0 is the non-centrality parameter)

This gives us the value $\frac{k_1}{\sigma_0^2} = 76.15389$

$$\therefore k_1 = 76.15389 \times \sigma_0^2 = 76.15389 \times 6 = 456.92334$$

Thus the C.R. is given by,

$$W_1 = \{x : \sum_{i=1}^{50} (x_i - 9)^2 > 456.92334\}$$

Now, the Power of the test is given by,

Power=1- β

$$=P\{Reject H_0|H_1 \text{ is true}\}$$

$$= P(x \in W_1 \mid H_1)$$

$$= P\{\sum_{i=1}^{50} (x_i - 9)^2 > 456.92334 \mid H_1\}$$

$$= P\{\frac{\sum_{i=1}^{50} (x_i - 9)^2}{\sigma_1^2} > \frac{456.92334}{\sigma_1^2}\}$$

$$= P\{\chi_{(n)}^2 > \frac{456.92334}{\sigma_1^2}\}$$

$$=1-P\{\chi_{(n)}^{2}<\frac{456.92334}{\sigma_{1}^{2}}\}$$

Where, $P\{\chi_{(n)}^2 < \frac{456.92334}{\sigma_1^2}\}$ is the distribution function of the chi-square distribution with 'n' d.f.

Now to trace the power curve we consider different trial values of $\sigma_1^2 > 6$ and construct the following table using R-Programming.

Programming in R for case 1

```
a = qchisq(0.99,50,0)

a

var = 6

k1 = var*a

k1

sigma1 =

c(6.3,6.4,6.5,6.6,6.7,6.8,6.9,7.0,7.1,7.2,7.3,7.4,7.5,7.6,7.7,7.8,7.9,8.0,8.1,8.2,8.3,8.4,8.5,8.6,8.7,8

.8,8.9,9.0,9.1,9.2)

sigma11 = k1/sigma1

power = mat.or.vec(30,1)

power1 = mat.or.vec(30,1)

for(i in 1:30){

power[i] = pchisq(sigma11[i],50,0)
```

power1[i] = 1-power[i]}
power1
plot(sigma1,power1)

TABLE: 1

Trial values of σ_1^2 (>6)	$\boxed{ \underline{\mathbf{Power}} = 1 - P\{\chi_{(n)}^{2} < \frac{0.375}{\sigma_{1}^{2}} \} }$
6.3	0.02032695
6.4	0.02511999
6.5	0.03069667
6.6	0.03711564
6.7	0.04442920
6.8	0.05268202
6.9	0.06190997
7.0	0.07213921
7.1	0.08338554
7.2	0.09565397
7.3	0.10893859
7.4	0.12322264
7.5	0.13847889
7.6	0.15467016
7.7	0.17175003
7.8	0.18966377
7.9	0.20834932
8.0	0.22773833
8.1	0.24775739
8.2	0.26832909
8.3	0.28937324
8.4	0.31080797
8.5	0.33255078
8.6	0.35451955
8.7	0.37663348
8.8	0.39881386
8.9	0.42098483
9.0	0.44307400
9.1	0.46501294
9.2	0.48673762

Power curve for case 1

(ii) The C.R. for testing H_0 : $\sigma^2 = 6$ against H_1 : $\sigma^2 < 6$ is given by

$$W_2 = \{ x : \sum_{i=1}^{50} (x_i - 9)^2 < k_2 \}$$

where k_2 is a constant to be determined such that the size of the C.R. is equal to α ,

i.e., $P(x \in W_2 \mid H_0) = \alpha$

$$\Rightarrow P\{\sum_{i=1}^{50} (x_i - 9)^2 < k_2 \mid H_0\} = .01$$

$$\Rightarrow P\{\frac{\sum_{i=1}^{50} (x_i - 9)^2}{\sigma_0^2} < \frac{k_2}{\sigma_0^2}\} = .01$$

$$\Rightarrow P\{\chi_{(n)}^2 < \frac{k_2}{\sigma_0^2}\} = .01$$

To find the value of k₂,we use the following R-command:

a = qchisq(0.01,50,0) (0 is the non-centrality parameter)

This gives us the value $\frac{k_2}{\sigma_0^2} = 29.70668$

$$\therefore k_2 = 29.70668 \times \sigma_0^2 = 2.70668 \times 6 = 178.24008$$

Thus the C.R. is given by,

$$W_2 = \{ \underset{\sim}{x} : \sum_{i=1}^{50} (x_i - 9)^2 < 178.24008 \}$$

Now, the Power of the test is given by,

Power=1- β

=P{Reject H₀|H₁ is true}
=
$$P(x \in W_2 \mid H_1)$$

= $P\{\sum_{i=1}^{50} (x_i - 9)^2 < 178.24008 \mid H_1\}$
= $P\{\frac{\sum_{i=1}^{50} (x_i - 9)^2}{\sigma_1^2} < \frac{178.24008}{\sigma_1^2}\}$

$$= P\{\chi_{(n)}^{2} < \frac{178.24008}{\sigma_{1}^{2}}\}$$

Where, $P\{\chi_{(n)}^2 < \frac{178.24008}{\sigma_1^2}\}$ is the distribution function of the chi-square distribution

with 'n' d.f.

Now to trace the power curve we consider different trial values of $\sigma_1^2 < 6$ and construct the following table using R-Programming.

Programming in R for case 2

```
a = qchisq(0.01,50,0)

a

var = 6

k1 = var*a

k1

sigma1 =

c(2.5,2.6,2.7,2.8,2.9,3.0,3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,4.0,4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,5
.0,5.1,5.2,5.3,5.4)

sigma11 = k1/sigma1

power = mat.or.vec(30,1)
```

```
for(i in 1:30){
power[i] = pchisq(sigma11[i],50,0)}
power
plot(sigma1,power)
```

TABLE: 2

Trial values of σ_1^2 (<6)	Power
	$= P\{\chi_{(n)}^{2} < \frac{178.24008}{\sigma_{1}^{2}}\}$
2.5	0.97442065
2.6	0.95822254
2.7	0.93597359
2.8	0.90714817
2.9	0.87166304
3.0	0.82989506
3.1	0.78263377
3.2	0.73098620
3.3	0.67625642
3.4	0.61982173
3.5	0.56302247
3.6	0.50707584
3.7	0.45301798
3.8	0.40167334
3.9	0.35364745
4.0	0.30933744
4.1	0.26895451
4.2	0.23255314
4.3	0.20006264
4.4	0.17131809
4.5	0.14608845

4.6	0.12410084
4.7	0.10506047
4.8	0.08866628
4.9	0.07462258
5.0	0.06264738
5.1	0.05247773
5.2	0.04387292
5.3	0.03661580
5.4	0.03051300

Power curve for case 2

(iii) The C.R. for testing H_0 : $\sigma^2 = 6$ against H_1 : $\sigma^2 \neq 6$ is given by

W₃={
$$x: \sum_{i=1}^{50} (x_i - 9)^2 < k_3 \text{ or } \sum_{i=1}^{50} (x_i - 9)^2 > k_4 }$$

where k₃ and k₄ are constants to be determined such that,

$$P(x \in W_3 \mid H_0) = \alpha$$

$$\Rightarrow P\{\sum_{i=1}^{50} (x_i - 9)^2 < k_3 \text{ or } \sum_{i=1}^{50} (x_i - 9)^2 > k_4 | H_0 \} = .01$$

$$\Rightarrow P\{\frac{\sum_{i=1}^{50} (x_i - 9)^2}{\sigma_0^2} < \frac{k_3}{\sigma_0^2}\} + P\{\frac{\sum_{i=1}^{50} (x_i - 9)^2}{\sigma_0^2} > \frac{k_4}{\sigma_0^2}\} = .01$$

Since, both are mutually exclusive

Assuming that the test is equitailed we have,

$$P\{\frac{\sum_{i=1}^{50} (x_i - 9)^2}{\sigma_0^2} < \frac{k_3}{\sigma_0^2}\} = .01/2 = .005 \Rightarrow P\{\chi_{(n)}^2 < c\} = .005$$

$$P\{\frac{\sum_{i=1}^{50} (x_i - 9)^2}{\sigma_0^2} > \frac{k_4}{\sigma_0^2}\} = .01/2 = .005 \Rightarrow P\{\chi_{(n)}^2 > d\} = .005 \Rightarrow P\{\chi_{(n)}^2 < d\} = .995$$

To calculate the value of c and d,we use the following R-command:

$$c = qchisq(0.005,50,0)$$

$$var = 6$$

$$k3 = var*c$$

$$d = qchisq(0.995,50,0)$$

$$var = 6$$

$$k4 = var*d$$

$$\therefore k_3 = 167.9445$$

$$k_4 = 476.9399$$

Thus the C.R. is given by,

W₃={
$$x: \sum_{i=1}^{50} (x_i - 9)^2 < 167.9445 \text{ or } \sum_{i=1}^{50} (x_i - 9)^2 > 476.9399}$$

Now, the Power of the test is given by,

$$Power = P(x \in W_3 \mid H_1)$$

=
$$P\{x : \sum_{i=1}^{50} (x_i - 9)^2 < 167.9445 \text{ or } \sum_{i=1}^{50} (x_i - 9)^2 > 476.9399 | H_1 \}$$

$$= P\{\frac{\sum_{i=1}^{50} (x_i - 9)^2}{\sigma_1^2} < \frac{167.9445}{\sigma_1^2}\} + P\{\frac{\sum_{i=1}^{50} (x_i - 9)^2}{\sigma_1^2} > \frac{476.9399}{\sigma_1^2}\}$$

$$=P\{\chi_{\scriptscriptstyle(n)}^{2}<\frac{167.9445}{\sigma_{\scriptscriptstyle 1}^{2}}\}+[1-P\{\chi_{\scriptscriptstyle(n)}^{2}<\frac{476.9399}{\sigma_{\scriptscriptstyle 1}^{2}}\}]$$

Now to trace the power curve we consider different trial values of $\sigma_1^2 \neq 6$ and construct the following table using R-Programming.

Programming in R for case 3

```
c = qchisq(0.005,50,0)
d = qchisq(0.995,50,0)
var = 6
k3 = var*c
k4 = var*d
k3
k4
sigma1 =
.6,6.7,6.8,6.9,7.0,7.1,7.2,7.3,7.4,7.5,7.6,7.7,7.8,7.9,8.0
sigma11 = k3/sigma1
sigma11
sigma22 = k4/sigma1
sigma22
power1 = mat.or.vec(40,1)
for(i in 1:40){
power1[i] = pchisq(sigma11[i],16,0)+(1-pchisq(sigma22[i],50,0))
power1
plot(sigma1,power1)
```

TABLE: 3

Trial values of $\sigma_1^2 (\neq 6)$	$ \underline{\mathbf{Power}} = P\{\chi_{(n)}^{2} < \frac{167.9445}{\sigma_{1}^{2}}\} + [1 - P\{\chi_{(n)}^{2} < \frac{476.9399}{\sigma_{1}^{2}}\}] $
4.0	0.9996037
4.1	0.9994379
4.2	0.9992187
4.3	0.9989344
4.4	0.9985719
4.5	0.9981172
4.6	0.9975557
4.7	0.9968723
4.8	0.9960522
4.9	0.9950813
5.0	0.9939468
5.1	0.9926384
5.2	0.9911482
5.3	0.9894724
5.4	0.9876113
5.5	0.9855708
5.6	0.9833622
5.7	0.9810032
5.8	0.9785182
5.9	0.9759379
6.1	0.9706473
6.2	0.9680295
6.3	0.9655001
6.4	0.9631163
6.5	0.9609381
6.6	0.9590267
6.7	0.9574429
6.8	0.9562462
6.9	0.9554934
7.0	0.9552368
7.1	0.9555239
7.2	0.9563955
7.3	0.9578856
7.4	0.9600201
7.5	0.9628170

7.6	0.9662855
7.7	0.9704265
7.8	0.9752323
7.9	0.9806872
8.0	0.9867679

power curve for case 3

Conclusion-

Thus we get three different power curves for testing H_0 : $\sigma^2 = 6$ against

i) H_1 : $\sigma^2 > 6$, ii) H_1 : $\sigma^2 < 6$ and iii) H_1 : $\sigma^2 \neq 6$ respectively at the level of significance $\alpha = 0.01$

.