Codage des nombres

1 Codage des entiers naturels

Soit $b \in \mathbb{N} \setminus \{0,1\}$. On note $\Sigma = [0..b-1]$. Les éléments de Σ seront appelés les chiffres et les mots sur Σ seront appelés des nombres.

1.1 Codage en base b

1.1.1 Définition

$$val_b = \begin{pmatrix} \Sigma^* & \to & \mathbb{N} \\ a_{l-1}a_{l-2}...a_0 & \mapsto & \sum_{i=0}^{l-1}a_ib^i \end{pmatrix} \text{ où } \Sigma^* = \bigcup_{i\in\mathbb{N}}\Sigma^i, \text{ c'est-à-dire l'ensemble des suites de longueur } i \text{ dans } \Sigma \text{ pour } i\in\mathbb{N}.$$

Remarque: le mot vide sera noté ε ($\Sigma^0 = {\varepsilon}$) et on a $val_b(\varepsilon) = 0$.

Exemple: $val_{10}(123) = 1 \times 10^2 + 2 \times 10^1 + 3 \times 10^0 = 100 + 20 + 3 = 123$

$$val_2(100) = 1 \times 2^2 + 0 \times 2^1 + 0 \times 2^0$$

1.1.2 Taille du codage

Lemme: Soit $l \in \mathbb{N}$. $\forall a \in \Sigma^l$, $val_b(a) \in [0..b^l[$.

 $\begin{array}{l} \rhd \ \, \mathrm{Soit} \,\, (a_{l-1}, a_{l-2}, ..., a_0) \in \Sigma^l. \\ val_b(a_{l-1}a_{l-2}...a_0) = \sum_{i=0}^{l-1} a_i b^i. \,\, \mathrm{Or} \,\, \forall i \in [0..l-1], a_i \leqslant (b-1). \end{array}$

Donc
$$val_b(a_{l-1}a_{l-2}...a_0) \le \sum_{i=0}^{l-1} (b-1)b^i = \sum_{i=0}^{l-1} b^{i+1} - \sum_{i=0}^{l-1} b^i = \sum_{i=1}^{l} b^i - \sum_{i=0}^{l-1} b^i = b^l - b^0 = b^l - 1$$

Propriété: Soit $n \in \mathbb{N}$.

Il faut $\lceil log_b(n+1) \rceil$ chiffres au minimum pour écrire n en base b.

 \triangleright On note $l = \lceil log_b(n+1) \rceil$.

Par l'absurde, supposons que $a_{l-1}...a_0 \in \Sigma^{l'}$ représente n en base b avec l' < l chiffres.

On a $l' < log_b(n+1)$ par définition de la partie entière supérieure comme plus petit majorant entier. $n = val_b(a_{l'-1}a_{l'-2}...a_0) \le b^{l'} - 1 < n+1$. Or $b^{l'} < b^{log_b(n+1)} = n+1$. Donc $n < n+1-1 \iff n < n$. ABSURDE.

1.1.3 Existence

Remarque: Pour tout $n \in \mathbb{N}$, il existe $a_{l-1}a_{l-2}...a_0 \in \Sigma^l$ tel que $val_b(a_{l-1}...a_0) = n$. Plus précisément, tout entier $n \in \mathbb{N}$ admet une écriture en base b à $\lceil lob_b(n+1) \rceil$ chiffres".

 \triangleright Montrons par récurrence sur $l \in \mathbb{N}$ la propriété \mathcal{P}_l : " $\forall n \in [0..b^l - 1], n$ admet une écriture en base b à l chiffres.

 $\forall n \in [0..b^l - 1]$, c'est-à-dire $\forall n \in [0..0], n$ admet une écriture en base b à 0 chiffres. En effet, le seul nombre à 0 chiffre est le mot vide ε . Par convention, $val_b(\varepsilon) = 0 \in [0..0]$. Donc \mathcal{P}_0 est vraie.

Pour un l fixé, supposons \mathcal{P}_l . Soit $n \in [0..b^{l+1}-1[$. Par définition de la division euclidienne, il existe $(q,r) \in \mathbb{N}^2$ tel que $n = b^l q + r$ et $r < b^l$, i.e. $r \in [0..b^l - 1[$. Par \mathcal{P}_l , on en déduit que r admet une écriture en base b à l chiffres qu'on note $(a_i)_{i \in [0..l[}$. On a alors $r = \sum_{i=0}^{l-1} a_i b^i$, et donc $n = qb^l + \sum_{i=0}^{l-1} a_i b^i$.

Puisque $n < b^{l+1}$, on a nécessairement q < b (sinon on aurait $n \ge qb^l > b \times b^l = b^{l+1}$). Ainsi, en posant $a_l = q$, on a $(a_i)_{i \in [0..l+1]} \in \Sigma^{l+1}$ et $n = a_l b^l + \sum_{i=0}^{l-1} a_i b^i$.

Donc n admet bien une écriture en base b à l+1 chiffres. Donc \mathcal{P}_{l+1} est vraie.

1.1.4 Quasi-unicité

Propriété: Soit $n \in \mathbb{N}$. Si $a_{l-1}a_{l-2}...a_0 \in \Sigma^l$ est une écriture de n en base b (c'est-à-dire si $val_b(a_{l-1}...a_0) = n$) alors $\forall k \in [0..l-1], a_k$ est le reste modulo b du quotient de n par b^k .

Exemple: $b = 10, n = 123, a_2 = 1, a_1 = 2 = (n//10)\%10, a_0 = 3 = n\%10$

 \triangleright Soit $n \in \mathbb{N}$, soit $a_{l-1}...a_0$ une écriture de n en base b. Soit $k \in [0..l-1]$. On a :

$$n = val_b(a_{l-1}...a_0) = \sum_{i=0}^{l-1} a_i b^i = \sum_{i=0}^{k-1} a_i b^i + \sum_{i=k}^{l-1} a_i b^i = \sum_{i=0}^{k-1} a_i b^i + \sum_{i=k}^{l-1} a_i (b^k \times b^{i-k}) = \underbrace{\sum_{i=0}^{k-1} a_i b^i}_{=r_k} + b^k \underbrace{\sum_{i=k}^{l-1} b^{i-l}}_{=q_k}$$

On note $r_k = \sum_{i=0}^{k-1} a_i b^i$. On a $r_k \in \mathbb{N}$ et puisque $\forall i \in [0..l[, a_i \in [0..b[, \text{ on a aussi}]])$

$$r_k \le \sum_{i=0}^{k-1} (b-1)b^i = \sum_{i=0}^{k-1} b^{i+1} - \sum_{i=0}^{k-1} b^i = b^k - 1 < b^k$$

.

On note $q_k = \sum_{i=0}^{k-1} a_i b^{i-k}$. Puisque $i-k \geqslant 0 \forall i \in [k..l[$, alors $b^{i-k} \in \mathbb{N}$, ainsi q_k est une somme d'entiers positifs donc $q_k \in \mathbb{N}$. On en déduit de la première égalité que q_k est le quotient et r_k le reste dans la division euclidienne de n par b^k . On cherche donc à montrer que a_k est le reste modulo b de q_k . On a :

$$q_k = \sum_{i=k}^{l-1} a_i b^{i-k} = a_k \underbrace{b^{k-k}}_{=1} + \sum_{i=k+1}^{l-1} a_i (b^{i-k-1} \times b) = a_k + b \left(\sum_{i=k+1}^{l-1} a_i b^{i-k-1} \right)$$

D'une part on sait que $a_k < b$ car $a_k \in \Sigma$. D'autre part, comme $i - k - 1 \geqslant 0 \forall i \in [k+1..l-1], \sum_{i=k+1}^{l-1} a_i b^{i-k-1} \in \mathbb{N}$. On en déduit donc de l'égalité précédente que a_k est bien le reste de q_k modulo b.

1.1.5 Conclusion

Pour $l \in \mathbb{N}$, on note ec_b^l la fonction qui à un entier de $[0..b^l]$ associe son écriture en base b à l chiffres.

1.2 Addition en base 2

cf. fig 2

1.3 Application

Pour $u \in \mathbb{N}^{\mathbb{N}}$, on note

$$\mathcal{P}_u \left\| \begin{array}{cc} \text{Entr\'ee:} & n \in \mathbb{N} \\ \hline \text{Sortie:} & u_n \end{array} \right.$$

 $\underbrace{A}_{\text{un algo}} \iff \text{suite finie de caractère} \iff \text{suite finie d'entiers entre 0 et 255}$

 \iff un entier écrit en base 256.

On note φ la fonction qui a un algorithme A associe un entier écrit en base 256 en remplaçant les caractères de l'algorithme pour un entier entre 1 et 255.