Formelsammlung

Vorwort

Vorsätze für Maßeinheiten

Symbol	Name	Wert
Υ	Yotta	10^{24}
Z	Zetta	10^{21}
E	Exa	10^{18}
Р	Peta	10^{15}
Т	Tera	10^{12}
G	Giga	10^{9}
М	Mega	10^6
k	Kilo	10^3
h	Hekto	10^2
da	Deka	10^1
_	-	10^{0}
d	Dezi	10^{-1}
С	Zenti	10^{-2}
m	Milli	10^{-3}
μ	Mikro	10^{-6}
n	Nano	10^{-9}
р	Piko	10^{-12}
f	Femto	10^{-15}
а	Atto	10^{-18}
Z	Zepto	10^{-21}
у	Yokto	10^{-24}

Umrechnungsfaktor von Einheiten

$$1\,Bar = 100000\,Pascal$$
 $y\,Kelvin = x\,Celsius + 273.15$

Atomkern und Atomhülle

Konstanten

Permittivität des Vakuums:

$$\epsilon_0 = 8.854 \cdot 10^{-12} \, rac{As}{Vm}$$

Planck'sche Konstante:

$$h = 6.626 \cdot 10^{-34} \, Ws^2$$

Dirac'sche Konstante:

$$\hbar=rac{h}{2\pi}$$

Elektronenmasse:

$$m_e = 9.109 \cdot 10^{-31} \, kg$$

Elektronenladung:

$$Q_e = -1.602 \cdot 10^{-19} \, C$$

Lichtgeschwindigkeit:

$$c_0 = 299\,792\,458\,rac{m}{s}$$

Formeln

Gleichgewicht für ein Elektron, in der Umlaufbahn um ein Proton:

$$F_c = F_z$$

Zentrifugalkraft einer Kreisbahn:

$$F_z = m_e \cdot rac{v^2}{r}$$

Coulomb'sche Anziehungskraft:

$$F_c = rac{Q_1}{4 \cdot \pi \cdot \epsilon_0} \cdot rac{Q_2}{r^2}$$

Gesamtenergie:

$$E_n = E_{kin} + E_{pot} = -rac{e^4 \cdot m_e}{8 \cdot \epsilon_0^2 \cdot h^2} \cdot rac{1}{n^2}$$

Kinetische Energie:

$$E_{kin}=rac{m\cdot v^2}{2}$$

Potentielle Energie:

$$E_{pot} = \int_{\infty}^{r} F_{c} \, dr$$

Photonenenergie:

$$E_{Photon} = E_n - E_m = \Delta E = h \cdot f$$

De Broglie Beziehung für die Wellenlänge:

$$\lambda = \frac{h}{m \cdot v} = \frac{c}{f}$$

Impuls:

$$ec{p} = m \cdot ec{v}$$

Bahnradius:

$$r = rac{1}{4\pi \cdot \epsilon_0} \cdot rac{e^2}{m_e \cdot v^2}$$

Bahndrehimpuls:

$$ec{L} = ec{r} imes ec{p} = (m \cdot ec{v}) imes ec{r} = n \cdot rac{h}{2\pi}$$

Elektronen-Drehimpuls:

$$L_e = rac{1}{2} \cdot rac{h}{2\pi}$$

%%Anzahl der Umläufe eines Elektrons in einem Energieniveau:

$$n_{um} = rac{e^4 \cdot m_e}{4 \cdot \epsilon_0 \cdot n^3 \cdot h^3} \cdot T^2$$

%%

Energieniveaus des Wasserstoffatoms:

Kapazität eines Plattenkondensators (mit Plattenfläche A und Plattenabstand d):

$$C = \epsilon_0 \cdot \epsilon_r \cdot rac{A}{d}$$

Ladung eines Kondensators (mit Kapazität C und angelegter Spannung U):

$$Q = C \cdot U$$

Feldstärke:

$$E = \frac{U}{d}$$

Kraft zwischen zwei Kondensatorplatten:

$$F = \frac{1}{2} \cdot E \cdot Q$$

Bindungskräfte

Ionenbindung

- Zwischen Metall (z.B. Na) und Nichtmetall (z.B. Cl).
- Immer zwischen ungleichen Partnern.
- Elektronen gehen **komplett auf Partner** über. (**Vollstände** Abgabe bzw. Aufnahme der Außenelektronen der Partner.)
- Elektrostatische Anziehung.
- Die Bindungspartner haben Edelgaskonfiguration.
- Unterschiedliche Elektronegativität.
- Die Bindungspartner weisen kugelsymmetrische Ladungsverteilungen auf.
- Die Kräfte wirken richtungsunabhängig gleichermaßen auf alle Nachbarn.
- Es entsteht ein kontinuierliches Netzwerk: Der Ionenkristall.
- Gittertyp hängt von Verhältnis der Ionenradien und Ladungszahl ab.
- Ionenkristalle sind Isolatoren.
- Ionenkristalle sind hart, spröde, nicht verformbar.
- Ionenkristalle weisen einen hohen Schmelzpunkt auf.

Kovalente Bindung

- Zwischen Nichtmetall (z.B. H) und Nichtmetall (z.B. H).
- Immer zwischen gleichen Partnern. (können auch gleichartig sein z.B. H und H)
- Die Bindungspartner teilen sich ihre Außenelektronen paarweise. (Teilweise Abgabe bzw. Aufnahme der Außenelektronen der Partner.)
- · Elektrostatische Anziehung.

- Die Bindungspartner haben Edelgaskonfiguration.
- Die Bindung entsteht durch die erhöhte Aufenthaltswahrscheinlichkeit der Elektronen zwischen den Bindungspartnern. (durch negativen Ladungsschwerpunkt zwischen den Molekülatomen.)

- Die Elektronenorbitale der Atome überlappen sich.
- Aufgrund der Richtungsabhängigkeit der Bindung zu den Nachbaratomen sind komplexe Molekülgeometrien möglich.
- Tendenziell sind kovalente Bindungen elektrische Isolatoren.
- Kovalente Bindungen haben hohe mechanische Stärke, hohe Steifigkeit und sind spröde.
- Kovalente Bindungen sind im Festkörperverbund ähnlich zu der Ionenbindung. Der Übergang zwischen beiden ist charakterisiert durch die Elektronennegativitätsdifferenz.

Partieller Ionenbindungscharakter

Metallische Bindung

- Zwischen Metall (z.B.) und Metall (z.B.).
- Die Außenelektronen sind schwach gebunden und leicht von den Atomrümpfen ablösbar.
- Die positiven Atomrümpfe sind von einem Elektronengas umgeben. Die Atomrümpfe können sich regelmäßig zu Gittern anordnern.
- Die Bindung der Elektronen wechselt zwischen Atomen.
- Frei bewegliche Elektronen: Hohe Stromleitfähigkeit, hohe thermische Leitfähigkeit, metallischer Glanz

- **Delokalisierte Elektronen**: Scherungen im Gitter sind möglich, Hohe Duktilität (plastische Verformbarkeit),
- Die Beschreibung folgt durch das Bändermodell.
- Die Bindungen weisen eine geringe Elektronegativität auf. (Elektronen können leicht abgegeben werden.)
- Die Bindungen sind ungerichtet und unpolar.

Zusammenfassung der Bindungsarten

Ionische Bindung	Kovalente Bindung	Metallische Bindung
zw. Metall und Nichtmetall	zw. Nichtmetall und Nichtmetall	zw. Metall und Metall
Außenelektronen gehen komplett auf den Bindundspartner über.	Die Bindungspartner teilen sich die Außenelektronen.	Die positiven Atomrümpfe sind von einem Elektronengas umgeben.
Hohe Elektronegativitätsdifferenz	Niedrigere Elektronegativitätsdifferenz	Geringe Elektronegativitätsdifferenz
lonengitter.	Komplexe Molekülgeometrien möglich.	Gitter aus Atomrümpfen, mit Elektronengas dazwischen.
Elektrische Isolatoren	Tendenziell elektrische Isolatoren	Elektrische Leiter
Hart, spröde, nicht verformbar.	Hohe mechanische Stärke, steif, spröde.	Hohe Verformbarkeit, hohe Stromleitfähigkeit, thermisch Leitfähig.
Ungerichtete Bindungen.	Gerichtete Bindungen.	Ungerichtete Bindungen.

Begriffe

Richtungsabhängigkeit:

- Voraussetzung ist ein Dipolmoment.
- Tritt üblicherweise bei nicht-symmetrischen Molekülen auf.

Koordinationszahl:

Anzahl der nächsten Nachbarn einer Struktureinheit in einem Kristall. (z.B. lonenkristall, Metallgitter)

Masseverhältnis:

$$rac{m}{m_{ges}}$$

Gase und Flüssigkeiten

Konstanten

Boltzmann-Konstante:

$$k_B = 1.38 \cdot 10^{-38} \, rac{J}{K}$$

Universelle Gaskonstante:

$$R = k_B \cdot N_A = 8.314 \, rac{J}{mol \cdot K}$$

Avogadro-Konstante:

$$N_A = 6.022 \cdot 10^{23} \, rac{1}{mol}$$

Formeln

Ideale Gasgleichung (mit der Stoffmenge n in Mol, dem Druck p in Pascal, der Temperatur T in Kelvin, dem Volumen V, der universelle Gaskonstante R in $\frac{J}{mol K}$):

$$p \cdot V = n \cdot R \cdot T$$

Dichte:

$$ho = rac{m}{V}$$

Anzahl der Teilchen (mit der Stoffmenge n):

$$N = n \cdot N_A$$

Masse (mit Molekülmasse M, Stoffmenge n und Anzahl der Teilchen N):

$$m = M \cdot n = M \cdot rac{N}{N_A}$$

Volumen für ein Molekül (mit Molekülmasse M, Dichte ρ und Anzahl der Teilchen N=1):

$$V = rac{m}{
ho} = rac{M \cdot rac{N}{N_A}}{
ho} = rac{M \cdot N}{N_A \cdot
ho} = \Big|_{N=1} rac{M}{N_A \cdot
ho}$$

Kristalle

Konstanten

Formeln

Primitiv

kubisch

Kubisch raumzentriert

Kubisch flächenzentriert

Packungsdichte:

$$p = rac{Volumen\, der\, Atome}{Volumen\, der\, Einheitszelle}$$

Volumen einer Kugel / eines Atoms (mit Radius r):

$$V_{Kugel} = rac{4}{3} \cdot \pi \cdot r^3$$

Volumen der Einheitszelle (mit Kantenlänge a):

$$V_{Einheitszelle} = a^3$$