DIVISION ROLLNO: DIAD/4 Vivekanand's Edweation Society's Institute of Technology (Heademic year 2020-21) Subject - Engineering Mathematics 2 Semester I Tutorial Covor Page. TUTORIAL NO: 3. TUTORIAL TOPIC: Beta and Gamma Functions. Date of Performance - 29/06/2021. Name of the Student : Jash Jarlang. Signature of the Teacher:

1)
$$\int_{0}^{\infty} y^{4}e^{-y^{6}} dy$$

Let $y^{6} = t$, $y = t^{16}$, $dy = 1 + t^{-16} dt$.

when $y = 0$, $t = 0$ and $y = \infty$, $t = \infty$.

$$I = \int_{0}^{\infty} (t^{16})^{4} e^{-t} \times 1 t^{-5/6} dt$$

$$= 1 \int_{0}^{\infty} t^{-1/6} \cdot e^{-t} dt$$

a)
$$\sqrt{\log 1}$$
 $\sqrt{n-1}$ $dy = \sqrt{n}$ $\sqrt{\log 1}$ \sqrt{n} $dy = \sqrt{n}$ $dy = e^{-x}$ $dy = e^{x$

I =
$$\begin{cases} \sin^{2}x \cdot dx = I \\ -\frac{1}{2} \sin^{2}x \cdot dx = I \end{cases}$$

The sin's and sin's we have

$$I = \begin{cases} \sin^{2}x \cdot dx - \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{cases}$$

put $x = \sin \theta$: $du = (\cos \theta) d\theta$.

$$I = \frac{1}{2} - \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{2} = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{2} = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{2} \times \frac{1}{2} \times$$