PREVIOUS WORK

1. Linear Distortion

Given the three signals from section 1 in the document of this section, draw their frequency spectrum.

Compute the value of H (f) at frequencies $f_1 = 2$ Hz, $f_2 = 3f_1$, $f_3 = 5f_1$

Data: transfer function parameters: $K_0 = 1$ $K_1 = 0.3$, $t_0 = 1$ s, $t_1 = 1.7$ s

$$H(f) = K_0 e^{-j2\pi f t_0} + K_1 e^{-j2\pi f t_1}$$

2. Nonlinear Distortion

Analytically calculate the output of the function function:

$$y(t) = k_1 x(t) + k_2 x^2(t) + k_3 x^3(t)$$

being
$$k_1 = 10$$
, $k_2 = 4.3$ y $k_3 = -5$.

For

$$x(t) = x_1(t)$$
, where $V_1 = 1.5$, $f_1 = 20$.

And for

$$x(t) = x_1(t) + x_2(t)$$
, being $V_1 = 1.3$, $f_1 = 5$ Hz and $V_2 = 1/2$, $f_2 = 5 f_1$

Note:

$$x_1(t) = v_1 \cos(2\pi f_1 t)$$

$$x_2(t) = v_2 \cos(2\pi f_2 t)$$

Note: In the classroom (slides chapter 5), it is solved for the cubic term, missing only the quadratic in this case.

3. Noise

Given the signal $x(t) = x_1(t) + x_2(t)$ with $V_1 = 1.2$, $V_2 = 1.5$, $f_1 = 5$ y $f_2 = 5f_1$, draw the signal in the time domain between 0 and T = 0.4.

Note: Draw both signals independently ($x_1(t)$ and $x_2(t)$) and then, add them by taking values between 0 and 0.4 T, for example, the maximum, minimum and zero crossing points.