BRESENHAM'S LINE ALGORITHM

(Algorithm For All Cases)

Input

• Start point (x_0,y_0) and end point (x_1,y_1) .

Steps

- 1. Calculate differences:
 - $\triangle x = |x_1 x_0|$
 - $\circ \quad \Delta y = |y_1 y_0|$
- 2. Determine the Dominant Axis:
 - o If $\Delta x \ge \Delta y$, the line has a shallow slope ($|m| \le 1$).
 - o If $\Delta x < \Delta y$, the line has a sleep slope (|m| > 1).
- 3. Set step Directions:
 - o $S_x = 1$ if $x_1 > x_0$, otherwise $S_x = -1$.
 - o $S_y = 1$ if $y_1 > y_0$, otherwise $S_y = -1$.
- 4. <u>Initialize Decision parameter:</u>
 - \circ For shallow slopes ($|m| \le 1$):

$$P_0 = 2\Delta y$$
 - Δx

 \circ For steep slopes (|m|>1):

Swap role of x and y, and set:

$$P_0 = 2\Delta x - \Delta y$$

- 5. Plot the Initial point:
 - $\circ \ \ Plot\left(x_{0}\,,\,y_{0}\,\right)$
- 6. <u>Iterate until the end point is Reached:</u>
 - o For k=0 to the dominant axis length (Δx or Δy):

- o For **shallow slopes** ($|m| \le 1$):
 - Increment x0 by S_x
 - If $P_k >= 0$:
 - Increment y₀ by S_y
 - Update : $P_{k+1} = P_k + 2\Delta y 2\Delta x$
 - Else:
 - Update : $P_{k+1} = P_k + 2\Delta y$
- o For steep slopes (|m| > 1):
 - Increment y0 by Sy
 - If Pk >= 0:
 - Increment x_0 by S_x
 - Update : $P_{k+1} = P_k + 2\Delta x 2\Delta y$
 - Else:
 - Update : $P_{k+1} = P_k + 2\Delta x$
- o Plot the new point (x_0, y_0) .

7. Terminate:

o Stop when the end-point (x_1, y_1) is plotted.

Output

 \circ A sequence of plottes points (x , y) forming the rasterized line.