3.- La figura muestra a un bloque de 3 Kg. que se apoya sin deslizar sobre otro de 6 Kg. que a su vez' desliza sobre una superficie lisa horizontal. El coeficiente de roce estático entre los bloques vale 0.1. módulo de la fuerza de roce, en Newton, entre los bloques es

(B) 9

(C) 2

(D) 1

(E) 0

4.- Un carro de una montaña rusa realiza un giro vertical completo de radio R. Calcule la normal que siente un pasajero de masa M cuando estando en el punto mas bajo su rapidez es V.

$$\dot{A}) \dot{N} = Mg$$

B)
$$N = M(g+V^2/R)$$

C)
$$N = M(g - V^2/R)$$

A)
$$N = M(g - 2V^2/R)$$

B)
$$N = MV^2/R$$

5.- Inicialmente de una polea fija cuelgan dos pesas idénticas a cada lado. ¿Cuál será la aceleración cuando traspasamos una pesa desde el lado izquierdo al lado derecho?

- (B) (1/2)g
- (C)(1/4)g
- (D)(1/3)g
- (E)(2/3)g

6. (2 pts) La posición de una masa que oscila unida a un resorte está dada por $x(t) = x_m \cos(\omega t - \phi)$. Si la posición inicial es negativa y la velocidad inicial es positiva, entonces la constante de fase ϕ está entre :

() $\pi/2!y \pi$

 $(j \pi y 3\pi/2)$

() $3\pi/2 \text{ y } 2\pi$

() $0 \text{ y } \pi/2$

() ninguno de los anteriores: (ϕ es exactamente 0, $\pi/2$, π , $3\pi/2$).

7. (2 pts) Dos partículas de masas $m_1 = m$ y $m_2 = 2m$ tienen exactamente la misma energía cinética. ¿Cuál es el cociente P_1/P_2 entre las magnitudes de sus cantidades de movimiento?

() 1

 $() 1/\sqrt{2}$

 $(\)\ \sqrt{2}$

() 1/2.

() 2

8. (2 pts) Una partícula que se desplaza bajo la acción de varias fuerzas por una trayectoria formada por el segmento que une el origen y el punto (1,0) y el segmento que une el punto (1,0), con el punto (1,1). Una de las fuerzas es $F = Ax\hat{\mathbf{x}} + By\hat{\mathbf{y}}$. El trabajo realizado por F es:

 $() W = \frac{1}{2}(A^2 + B^2)$

() $W = \frac{1}{2}(A - B)$

() W = 0

() $W = \frac{1}{2}(A + B)$

() Ninguna de las anteriores.

.

- 9. (12 pts) Una partícula con masa m puede deslizar sin roce sobre un plano inclinado y dentro de un lazo circular con radio R. Se suelta la partícula desde una altura h medida desde el tope del lazo, tal y como se indica en la figura.
 - a) Calcule el valor mínimo h_{min} de la altura para el cual la partícula puede alcanzar la parte superior del lazo circular (4 pts).
 - b) Para $h=2h_{min}$ determine el módulo de la fuerza N con la cual el lazo actúa sobre la partícula cuando ésta se encuentra a una altura R por encima del punto más bajo del lazo. Determine el vector aceleración en ese punto (8 Pts).

V2

Universidad Simón Bolívar Departamento de Física

FISICA I. FS1111
Examen Parcial 40 %
Enero- Marzo 2002
Examen Tipo B
Bloque B

Preguntas	1-8	9	10	Total
Nota		•		

Nombre:

Carnet:

Sección:

Firma:

Las preguntas de la 1 a la 8 son preguntas de selección simple. Indique con una X visible y muy clara la respuesta que Ud. considere correcta. Una respuesta correcta tiene un valor de 2 puntos. Una respuesta incorrecta tiene un puntaje negativo de -0.5. Las preguntas 9 y 10 son preguntas de desarrollo.

1.	(2	pt	ts) Una fuerza actuando sobre una partícula es una fuerza conservativa si
	()	su trabajo es igual a cambio en energía cinética de la partícula .
	()	obedece la segunda ley de Newton.
	()	obedece la tercera ley de Newton.
	()	su trabajo es cero cuando la partícula se mueve exactamente una vez alrededo
			de cualquier trayectoria cerrada.

- () no es una fuerza de fricción.
- 2. (2 pts) Se estira un resorte con una masa m hasta que su elongación es d y se la suelta. ¿Cual será la rapidez de la masa cuando la elongación es d/2, si la rapidez de la misma cuando pasa por la posición de equilibrio es V_{eq} ?
 - () $3V_{eq}/4$
 - $() 2V_{eq}/3$
 - () $\sqrt{2}V_{eq}/3$
 - () $\sqrt{3}V_{eq}/2$
 - () Ninguna de los anteriores.