Análise Combinatória, Probabilidades e Aplicações - Lista 01

Arthur C. Leite, Cleibson Aparecido de Almeida 18 de janeiro de 2017

Exercício 03

Dados $A, B_1, ..., B_n \ge 1$, subconjuntos de $\mathcal{U} = \mathbb{Z}$, mostre que: a) $(A^c)^c = A$ Seja: $A^c = 1 - A$; Então: $(1 - A)^c = (1 - (1 - A)) = 1 - 1 + A = A$ b) $(\bigcup_{i=1}^n B_i)^c = \bigcap_{i=1}^n B_i^c$ e $(\bigcap_{i=1}^n B_i)^c = \bigcup_{i=1}^n B_i^c$ Seja: $(\bigcup_{i=1}^n B_i)^c$ $= (B_1 \cup B_2 \cup ... \cup B_n)^c$ $= B_1^c \cup B_2^c \cup ... \cup B_n^c$ $= B_1 \cap B_2 \cap ... \cap B_n$ $= \bigcap_{i=1}^n B_i^c$ e seja: $(\bigcap_{i=1}^n B_i)^c$ $= (B_1 \cap B_2 \cap ... \cap B_n)^c$ $= B_1^c \cap B_2^c \cap ... \cap B_n^c$ $= B_1 \cup B_2 \cup ... \cup B_n$ $= \bigcup_{i=1}^n B_i^c$

c) Se $\mathcal{B} = \{B_1, ..., B_n\}$ é uma partição de \mathcal{U} , então a coleção $\{B_1 \cap A, ..., B_n \cap A\}$ é uma partição de A.

Aplicando a propriedade $(\cup A_i) \cup B = \bigcup\limits_{i \in I} (A_i \cup B)$ ao problema, temos que:

```
(\bigcup_{i \in I} B_i) \cup A
= \bigcup_{i \in I} (B_i \cup A)
= (B_1 \cap A) \cup (B_2 \cap A) \cup \dots \cup (B_n \cap A)
= \{B_1 \cap A, B_2 \cap A, \dots, B_n \cap A\}
```

Exercício 09

De quantas maneiras podemos distribuir n objetos em duas caixas de modo que nenhuma caixa fique vazia, quando:

- a) Os objetos e as caixas são diferentes?
- b) Os objetos são iguais e as caixas diferentes?

Exercício 11

- a) Um químico possui 10 tipos de substâncias: $/A_1, A_2, ..., A_n/$. De quantos modos poderá combinar 6 dessas substâncias se, entre as dez, duas não podem estar juntas?
- b) O mesmo químico tem a hipótese de que ao dissolver 5 doses de 2 ml das substâncias $/A_1, ..., A_10/$ (as doses podem ser repetidas) em 5 ml de água, obterá uma solução útil ao combate da dengue. O químico precisa fazer um experimento no laboratório com todas as soluções possíveis. Qualé o número máximo de testes a serem feitos pelo químico? (suponha que a ordem de dissolução não afeta a solução final).

Exercício 13

Seja \mathcal{F} a classe das funções que associam o conjunto $\{1,2,...,2n+1\}$ ao conjunto $\{1,2,...,2n\}, n \geq 1$, isto é:

$$\mathcal{F} = \{f : \{1, 2, ..., 2n + 1\} \rightarrow \{1, 2, ..., 2n\}\}\$$

Sejam ainda os seguintes subconjuntos de \mathcal{F} :

 \mathcal{I} : constituído pelas funções de \mathcal{F} que associam a cada número ímpar um número par,

 ${\mathcal S}$: constituído pelas funções sobrejetoras de ${\mathcal F}$.

Determine $|\mathcal{F}|$, $|\mathcal{I}|e|\mathcal{S}|$.

Exercício 15

Determine os números de possíveis anagramas das palavras SUSSURRO, VESTIBULAR e BATATA.

a) SUSSURRO - Esta palavra possui repetição de letras, portanto será aplicada a regra da *permutação com elementos nem todos distintos*.

Temos então a seguinte organização das 8 letras: SSS UU RR O (3 S, 2 U, 2 R e 1 O), e com isso a fórmula será P_8^{3221}

$$= C_8^3 \times C_5^2 \times C_3^2 \times C_1^1$$

$$=56\times10\times3\times1=1680$$
anagramas

b) VESTIBULAR - Esta palavra não possui letras repetidas,
portanto trata-se de uma $permutação\ simples.$

Temos então P_{10}

$$= 10!$$

$$=10\times9\times...\times1$$

$$= 3628800$$
 anagramas

c) BATATA - Esta palavra possui repetição de letras,portanto será aplicada a regra da permutação com elementos nem todos distintos.

Temos então a seguinte organização das 6 letras: AAA TT B (3 A, 2 T e 1 B), e com isso a fórmula será P_6^{321}

$$= C_6^3 \times C_3^2 \times C_1^1$$

$$=20 \times 3 \times 1 = 60$$
 anagramas

Exercício 20

Quantas são as soluções não negativas da inequação $x + y + z \le 2$?