

planetmath.org

Math for the people, by the people.

dual of Dilworth's theorem

 ${\bf Canonical\ name} \quad {\bf Dual Of Dilworths Theorem}$

Date of creation 2013-03-22 15:01:49 Last modified on 2013-03-22 15:01:49

Owner justice (4961) Last modified by justice (4961)

Numerical id 7

Author justice (4961) Entry type Theorem Classification msc 06A06

Related topic DilworthsTheorem

Theorem 1. Let P be a poset of height h. Then P can be partitioned into h antichains and furthermore at least h antichains are required.

Proof. Induction on h. If h=1, then no elements of P are comparable, so P is an antichain. Now suppose that P has height $h \geq 2$ and that the theorem is true for h-1. Let A_1 be the set of maximal elements of P. Then A_1 is an antichain in P and $P-A_1$ has height h-1 since we have removed precisely one element from every chain. Hence, $P-A_1$ can be partitioned into h-1 antichains $A_2, A_3, \ldots A_h$. Now we have the partition $A_1 \cup A_2 \cup \cdots \cup A_h$ of P into h antichains as desired.

The necessity of h antichains is trivial by the pigeonhole principle; since P has height h, it has a chain of length h, and each element of this chain must be placed in a different antichain of our partition.