9-frequency-domain

goal: tools for analysis using transfer functions, root lows plots

1. Frequency domain analysis

1' seisitivity functions 12. root locus

[AMV2 ch 12.1, 12.2] [Nv7 not carered] [AMU2 Ch 12.5] [NV7 ch 9]

* general comment: these techniques were Leveloped before we had cheap computers, so there are many graphing heuristics that are traditionally taught; -> we'll rely an computers to graph, but still extract intuition

1º frequercy damain analysis

1! seisitivity functions owe now return to the general feedback diagram with 3 external inputs:

- r: reference

- v: input disturbance -w: cutput disturbance

-note that the process input used output y are nit what our controller commands (u) or measures (y)

У	и	e	μ	η	
PCF	CF	$_F$	CF	PCF	r
1+PC	1 + PC	1 + PC	1 + PC	1 + PC	
$\frac{P}{1 + PG}$	$\frac{-PC}{1 + PC}$	$\frac{-P}{1+PC}$	1	$\frac{P}{1 + PC}$	v
1+PC	1+PC	1+PC	1+PC	$\frac{1 + PC}{-PC}$	
$\frac{1}{1+PC}$	$\frac{-C}{1+PC}$	$\frac{-1}{1+PC}$	$\frac{-C}{1+PC}$	$\frac{-1C}{1+PC}$	w

* we're particularly concerned with how input & output disturbences v, w map to controller input & output u, y

- neglecting signs, we're focused an:

L> note: $S+T=\frac{1+PC}{1+PC}=1$, thus name - makes sense

PS = P input
1+PC sensitivity
$$CS = \frac{C}{1+PC}$$
 sensitivity

-> suppose (open-) loop transfer function

L(s) = P(s) C(s) -> 0 as s-> 00

(i.e. L is <u>strictly proper</u>),

what can you say about how:

a) high-frequency input distorbance
affects output

b) high-frequency output distorbance

b) high-frequency output disturbance affects input

? •

• the sensitivity transfer functions S, T, PS, CS can be used to assess (or specify) performance of a closed-loop system - for example, the maximum gain M_S of the sensitivity function S is related to the stability margin S_m via $M_S = \frac{1}{S_m}$

- specifications may be based on peak gain or corresponding frequency wms, crossover frequency wsc (smallest freq for which gain equals are (1)), bondwidth,
- -> have would you measure these performance specifications empirically?

 (suppose you have access to signals r, u, y in the block diagram, i.e. you can measure and/or after additively)

^{12.} root locus

o the main control design technique
we've used so for is eigenvalue
assignment via full-state feedback

- the resulting controller is complex,
since it requires constructing
an observer with the same
complexity as the original system

o we'll now investigate how much
can be accomplished with the
simplest possible controller: a
single gain (i.e. proportional control)

- vext week well elaborate to a gain, an integrator, and a differentiator (i.e. proportional—integral—derivative cantrol, PID)

o consider the system transfer function $P(s) = \frac{b(s)}{a(s)} = \frac{b_0 s^m + b_1 s^{m-1} + \dots + b_m}{s^m + a_1 s^{m-1} + \dots + a_n}$ $= b_0 \frac{(s-3_1)(s-3_2) \cdots (s-3_m)}{(s-p_1)(s-p_2) \cdots (s-p_n)}$

-assure P is proper, i.e. N7, m

-consider negative feedback with pure gain controller C(s) = R

othe closed-loop transfer function is

LP, which has characteristic polynomial

 $a_{k}(s) = a(s) + kb(s)$

- closed-loop stability is determined by the roots of ar, which vary with k

-the graph of the roots of ak in the complex plane C as k varies is termed the root locus

- since $a_0 = a_1$ the roots of a determine the starting point

Figure 12.18: Examples of root loci for processes with the transfer functions $P_a(s)$, $P_b(s)$, $P_c(s)$, and $P_d(s)$ given by equation (12.18).

-> which of these systems can be stabilized by proportional feedback?

(can the gain be arbitrarily large?)

(a) yes - only le>0 works

(b) yes - k con't be too large, otherwise two poles have Re >0

(c) no - two poles have Re >0 for all & >0

(d) yes - not clear from diagram whether small k works, but -> how world you se the root loars to determine all k sufficiently large to

whether a system can be stabilized with proportional feedback?

-> hav would you use the root loans to determine whether a stable system can track a,

von-zero reference with integral feedback?

- before computation was cheap, many houristics were developed to enable control engineers to draw root locus diagrams by hand
- now, we can rely on the computer to draw the diagram, and focus our effort an interpreting the diagram