FECS 16B Module 3, Lecture 4 Apr 13, 2021. Today. - Unsupervised classifications
- Compression. · PCA continued. · Classification (other ways) Lo 16A: Max Correlation. · Lincarization $Q = \sum_{i=1}^{r} \sigma_i \vec{u}_i \vec{v}_i^{r} = U \sum V^{r} Q_i \vec{q}_i.$ are principal components along columns

X

Say we care about data along the columns of a.

To find the lower dimensional structur, find $\overline{\omega}$, such that, you project $\overline{2}$, 's onto $\overline{\omega}$ you have the minimum error. $||\overline{w}||^2=1$

Piffrant augmin $\sum_{i=1}^{n} \| \overline{q}_{i}^{2} - \langle \overline{q}_{i}, \overline{\omega} \rangle \overline{\omega} \|^{2} = \overline{u},$

Similarly! 2nd most imprompnent? : 4

If instead we did the same derivation, wing sonos of Da,

argmin $\sum_{i=1}^{m})) \vec{\ell}_{i} - \langle \vec{\ell}_{i}, \vec{\omega} \rangle, \vec{\omega})|^{2} = \vec{\ell}_{i}$

To find the lower dim structure of our data, project $9, 92 \cdots 9_n$ along 4, Consider: $(9, 1) \cdot 1, (9, 1) \cdot 1, (9, 1) \cdot 1, \cdots$ Consider of data along the 4 axis.

Summary: $\overline{2}_1, \overline{2}_2, \ldots, \overline{2}_n$

Find the principal components of this data.

(i) Arronge data into 0 matrix $X = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & - & \frac{1}{2} \\ 1 & 1 & 1 \end{bmatrix}$

—> "Mean removal" → depending on application. Scope

(2) Compute $X = U \ge V^T = \sum_i \sigma_i U_i U_i^T$ (68)

(3) For E principal components along the Columns: Choose U, (42 --- U)

nows: choose: U, Q, . Q

(4) (optimal step): Project data onto $\overline{u_1}, \overline{u_2}, ... \overline{u_k}$ to set lower dim structure.

- use this for clustering classifications

Classification using the mean

-> Map new data point to whichever contoid is closer.

In genual:
$$\overline{z_1}, \overline{z_2} - \overline{z_n}$$

Want! labels:
$$l_1, l_2, \dots l_n \in \{+1, -1\}$$

Data:
$$(\overline{\chi}, l)$$

$$(\overline{\chi}_2, \ell_2)$$
.

$$(\overrightarrow{\chi_n}, \overrightarrow{Q_n})$$

Find a classifier:

-> learn w, b.

new point;
$$\overrightarrow{\chi}_{n+1}$$
 \overrightarrow{w} + b =

$$Sgn(x) = +1$$
 if $x \neq 0$
 $Sgn(x) = -1$ if $x \neq 0$

Least squares: minimize: \[\langle \langle \rangle \langle \langle \langle \rangle \langle \langle \langle \rangle \rangle \langle \rangle \langle \rangle \rangle \rangle \langle \rangle \r

Xi "augmented data point"

L+ 2 is appended to each dala point.

classifen $\overrightarrow{w}_{x} = \underset{\overrightarrow{w}}{\operatorname{argmin}} \sum_{i=1}^{N} ||\overrightarrow{a}_{i} \overrightarrow{w} - \mathcal{L}_{i}||^{2}$

