CS 3313 Foundations of Computing:

Closure Properties of RE & Recursive Languages

Undecidable Problems

http://gw-cs3313.github.io

© Narahari 2022

© Some slides courtesy of Hopcroft & Ullman

1

Decidable/Solvable Problems

- A problem is decidable (solvable) if there is an algorithm to answer it.
 - Recall: An "algorithm," formally, is a TM that halts on all inputs, accepted or not.
 - Put another way, <u>"decidable problem" = "recursive language."</u>
- Otherwise, the problem is *undecidable (unsolvable)*.

Closure Properties of Recursive and RE Languages

- Next topic is Decidability
 - Review Lab notes on Math review diagonalization etc.
- First look at closure properties of these classes of languages
- Both are closed under union, concatenation, star, reversal, intersection, inverse homomorphism.
- Recursive closed under difference, complementation.
- RE closed under homomorphism.

3

Recall: Enumeration of strings and Encoding TMs

- Canonical ordering of strings defines the *j-th* string w_i
 - Ordering: first by length and then for same length by 'numeric value' 0, 1, 00, 01,....001,....,1100,...
- A Turing machine M can be encoded as a binary string <*M*>
 - 111...110ⁱ10^j10^k10^l10^m11...111
- Definition: Given an integer i, let M_j be the Turing machine whose code is binary representation of i denoted < i >
 - Many integers will not correspond to a TM code,
 - If \le is not a valid TM code, then we take M_i to be a TM with one state and no transitions i.e., M_i accepts empty set.
- Key takeaway: we can talk of the j-th string w_j and the i-th Turing machine M_i

Table of Machines accepting Strings

- Analogous to lab discussion (on diagonalization number of languages are not countable).....
- Construct an infinite table with entries (i, j) to denote whether TM M_i accepts string w_i

$$(i, j) = 1$$
 if $w_j \in L(M_i)$ (w_j is accepted by M_i)
 $(i, j) = 0$ otherwise (w_j is not accepted by M_i)

7

Diagonalization Argument and an undecidable language— (1)

• Consider the diagonalization language:

 $L_d = \{ w \mid w \text{ is the } i\text{-th string, and the } i\text{-th TM does not accept } w \}.$

- w_i is not accepted by M_i
- Diagonalization argument shows that L_d is not a recursively enumerable language; i.e., it has no TM !!!

9

9

L_d is undecidable (i.e., it is not recursive)– (2)

- Proof (by contradiction)
- Assume L_d is a recursive language (decidable problem)
- => there is a TM M^* that always halts that accepts this language.
- Every TM can be encoded as a binary string,

therefore $M^* = M_i$ for some j.

• Consider string w_i : w_i is in $L(M_i)$ or w_i is not in $L(M_i)$

L_d is undecidable (L_d is not recursive)

- Assume L_d is a recursive language (decidable problem)
- => there is a TM M^* that always halts that accepts this language.
- Every TM can be encoded as a binary string, therefore $M^*=M_i$ for some j.
- Consider string $w_i : w_i$ is in $L(M_i)$ or w_i is not in $L(M_i)$
- 1. If w_i is in $L(M_i)$ then entry (j,j)=0 which contradicts $w_i \in L(M_i)$
- 2. If w_i is not in $L(M_i)$ then entry (j,j)=1 which implies w_i is accepted by M_i , which contradicts w_i is not in $L(M_i)$
- Since for any string w_i , either w_i is in $L(M_i)$ or w_i is not in $L(M_i)$, (1) and (2) contradicts the assumption that $L_d=L(M^*)$ for some TM M*
- Therefore L_d is not accepted by any TM, i.e, it is not r.e.

11

From the Abstract to the Real

- While the fact that L_d is undecidable is interesting intellectually, it doesn't impact the real world directly....
 - What is the relevance of this language to a "real" problem?
- We first develop some TM-related problems that are undecidable, but our goal is to use the theory to show some real problems are undecidable.

Examples: Undecidable Problems

- Does a program halt on all inputs ?
 - Can we build a compiler that checks this.
- Can a particular line of code in a program ever be executed?
 - Version of question in Homework 8!
- Is a given context-free grammar ambiguous?
- Do two given CFG's generate the same language?
- Is the language a regular (context free) language?
 - Imagine how much better life in this course would be without the Pumping lemma!!

13

13

Another key proof technique: Reducability

- Remember key technique of Diagonalizationold hat ©
- Reducibility of a problem A to problem B
- Given two problems A and B,
 - problem A is <u>reducible</u> to problem B if an algorithm for solving B can be used to solve problem A
 - Therefore, solving A cannot be harder than solving B
 - If A is undecidable and A is reducible to B, then B is undecidable
- Idea: If you had a black box that can solve instances of B, can you solve instances of A using calls to this Black box.
 - The black box is the assumed Algorithm for B.

Reducibility: Why?

- Why is it useful: Find one undecidable problem A, and then to show B is undecidable we construct a solution for A if we assume B is solvable/decidable.
- In context of time complexity: if we can reduce problem A to B in polynomial time and A is NP-complete then B is NP-complete.
 - To show a problem B is NP-complete, start with a NPC problem A (such as SAT) and show a polynomial time reduction to B

15

Reducibility....Our first example

- An example of a recursively enumerable, but not recursive language is the language L_u of a *universal Turing machine UTM*.
- the UTM takes as input the code for some TM *M* and some binary string *w* and accepts *if and only if M* accepts *w*.
- Question: Given any arbitrary Turing machine M, does M halt on input w?
- $L_u = \{ \langle M, w \rangle \mid M \text{ accepts } w \}$
- We designed a TM (the UTM) for L_u , so it is surely RE.
- But is it recursive? (decidable)

17

Our current "collection" of undecidable languages

- 1. We proved that L_d is not decidable (it is not even r.e.)
 - $L_d = \{ w \mid w = w_i \text{ and } M_i \text{ does not accept } w_i \}.$
- 2. If L_d is not recursive then its complement L_d is not recursive, i.e, it is undecidable

$$\overline{L_d} = \{ w \mid w = w_i \text{ and } M_i \text{ accepts } w_i \}.$$

L_u is Recursively Enumerable, but not Recursive

- We designed a TM (the UTM) for L_u , so it is surely RE.
- Assume it is recursive, i.e., there is a TM M' that always halts on input $\langle M, w \rangle$.
- We now reduce $\overline{L_d}$ to L_u , i.e., if we had an algorithm for L_u then we could also design an algorithm for $\overline{L_d}$: contradiction.

```
if L_u is decidable (solvable) then \overline{L_d} is decidable \overline{L_d} is undecidable example of P \Rightarrow Q and Not Q therefore Not P
```

19

19

Lu is Recursively Enumerable, but not Recursive

- To reduce L_u to $\overline{L_d}$:
 - 1. Design an 'algorithm' R:

a TM that takes input w and generates $\langle M_i, w_i \rangle$

1. Feed $\langle M_i, w_i \rangle$ to M':

M' accepts/halts $\langle M_i, w_i \rangle$ if and only if w is in $\overline{L_d}$ -- contradiction.

Do you remember this algorithm?

- Generating sequences of strings/enumeration
- How to generate (i.e., enumerate) strings (numbers?) of increasing lengths from alphabet {0,1} ?
 - 0, 1, 00, 01, 10, 11, 000,
- Strings of increasing length of radix k, alphabet $\{1,1,...k\}$
 - In our case radix k = 2 the alphabet $\{0,1\}$
- Define: w_i is set of strings of length j
 - $w_{\theta} = \{ \text{ empty string } \}$
 - for each string w_j of length j /* j=1 to n. */
 for (radix k=2) x=0 to 1

 print x. w_j /* concatenation */

21

L_u is Recursively Enumerable, but not Recursive

- We have an algorithm that generates sequence (canonical ordering) of strings $w_1, w_2, ..., w_i$
- Question 1: Can you design an algorithm that takes input w and determines value i such that $w = w_i$
- Question 2: Given an integer *i*, do you have an algorithm to represent *i* in binary ?
- Therefore:

Proof: L_u is not Recursive: Proof – construct Algo R

- algorithm R (the reduction): Input is w and output is $\langle M_i w_i \rangle$
- 1. Use the canonical ordering algorithm to find i, where $w = w_i$
- 2. Generate binary representation of i, this is the code for M_i
- 3. Concatenate code for M_i and w_i to generate $\langle M_i, w_i \rangle$
- Send to hypothetical algorithm B for Halting Problem
 - B accepts if and only if w is in $\overline{L_d}$

23

Halting Problem? Other related problems....

- Does M halt on w? = is L_u decidable
 - Original statement of the halting problem was slightly different but shown to be equivalent.
- Can we check if a program halts on all inputs = Does M halt on all inputs ?
- Is L(M) empty?
- Is $L(M_1) = L(M_2) i.e.$, are two programs equivalent?
 - Is this what an autograder program does?
- Can we check if a program enters a 'checkpoint' = Does M enter a state q?
 - Variation of homework 8 question.

25

Summary.....

- Properties of Recursive and RE languages
- Concept of Decidability....
- Example of an Undecidable Problem
- Reducibility prove other problems are undecidable
- Next: More examples of undecidable problems
 - Will post video of a reducibility example
 - Read the examples and exercises in the textbook
- and (last result in course)...Rice's Theorem: a powerful result that can be used to show (easily) that many properties of RE languages are undecidable.