### **PCT**

### WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



### INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

| (51) International Patent Classification <sup>5</sup> : A61K 37/02, 39/00, 39/395 C07K 13/00, C12N 5/10, 15/12 C12P 21/00 | A1         | -    | 1) International Publication Number:<br>3) International Publication Date: | WO 94/11019<br>26 May 1994 (26.05.94) |  |
|---------------------------------------------------------------------------------------------------------------------------|------------|------|----------------------------------------------------------------------------|---------------------------------------|--|
| (21) International Application Number:                                                                                    | PCT/US93/1 | 0851 | (74) Agent: CLOUGH, David, W.;                                             | Marshall, O'Toole, Gers-              |  |

(30) Priority data:

07/973,341 08/012,990

(22) International Filing Date:

9 November 1992 (09.11.92) US 29 January 1993 (29.01.93) US

6 November 1993 (06.11.93)

(71) Applicant: ZONAGEN, INC. [US/US]; 2408 Timberloch Place, B-4, The Woodlands, TX 77380 (US).

(72) Inventors: HARRIS, Jeffrey, D.; 15 Flatstone, The Woodlands, TX 77381 (US). HSU, Kuang, T.; 71 N. Misty Morning Trace, The Woodlands, TX 77381 (US). PODOLSKI, Joseph, S.; 3 Pebble Hollow Court, The Woodlands, Tx 77381 (US).

(74) Agent: CLOUGH, David, W.; Marshall, O'Toole, Gerstein, Murray & Borun, 6300 Sears Tower, 223 S. Wacker Drive, Chicago, 1L 60606-6402 (US).

(81) Designated States: AU, CA, JP, KR, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

**Published** 

With international search report.

(54) Title: MATERIALS AND METHODS FOR IMMUNOCONTRACEPTION

#### (57) Abstract

A method for specifically inducing transient infertility or permanent sterility in a host animal by selective vaccination with specific zona pellucida proteins or immunocontraceptively active fragments thereof. Novel zona pellucida DNA sequences encoding specific zona pellucida proteins are disclosed.

Group No. 1614
Confirmation No. 1056

### FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

| Austria       | GB                                                                                                                                             | United Kingdom                                                                                                                                                                                                                                                               | MR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mauritania                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Australia     | GE                                                                                                                                             | Georgia                                                                                                                                                                                                                                                                      | MW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Malawi '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Barbados      | GN                                                                                                                                             | Guinca                                                                                                                                                                                                                                                                       | NE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Niger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Belgium       | CR                                                                                                                                             | Greece                                                                                                                                                                                                                                                                       | NL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Netherlands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Burkina Faso  | HU                                                                                                                                             | Hungary                                                                                                                                                                                                                                                                      | NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Norway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Bulgaria      | IE                                                                                                                                             | Ireland                                                                                                                                                                                                                                                                      | N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | New Zealand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|               | łT                                                                                                                                             | Italy                                                                                                                                                                                                                                                                        | PL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Poland                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Brazil        | JP                                                                                                                                             |                                                                                                                                                                                                                                                                              | PT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Portugal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |                                                                                                                                                |                                                                                                                                                                                                                                                                              | RO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Romania                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|               |                                                                                                                                                |                                                                                                                                                                                                                                                                              | RU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Russian Federation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|               | KP                                                                                                                                             |                                                                                                                                                                                                                                                                              | SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sudan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               |                                                                                                                                                | of Korca                                                                                                                                                                                                                                                                     | SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sweden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Switzerland   | · KR                                                                                                                                           | Republic of Korea                                                                                                                                                                                                                                                            | SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Slovenia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Côte d'Ivoire | KZ                                                                                                                                             | Kazakhstan                                                                                                                                                                                                                                                                   | SK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Slovakia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Cameroon      | LI                                                                                                                                             | Liechtenstein                                                                                                                                                                                                                                                                | SN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Senegal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| China         | LK                                                                                                                                             | Sri Lanka                                                                                                                                                                                                                                                                    | TD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Chad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| *******       |                                                                                                                                                |                                                                                                                                                                                                                                                                              | TG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Togo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               | LV                                                                                                                                             | Latvia                                                                                                                                                                                                                                                                       | T.J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tajikistan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|               |                                                                                                                                                |                                                                                                                                                                                                                                                                              | TT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Trinidad and Tobago                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                                                                                                                                                |                                                                                                                                                                                                                                                                              | UA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ukraine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|               | MG                                                                                                                                             |                                                                                                                                                                                                                                                                              | US                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | United States of America                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |                                                                                                                                                |                                                                                                                                                                                                                                                                              | UZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Uzhekistan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|               |                                                                                                                                                |                                                                                                                                                                                                                                                                              | ٧N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Vict Nam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Gabon         |                                                                                                                                                | B                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|               | Australia Barbados Belgium Burkina Faso Bulgaria Benin Brazil Belarus Canada Central African Republic Congo Switzerland Câte d'Ivoire Cameroon | Australia GE Barbados GN Belgium GR Burkina Faso HU Bulgaria IE Benin IT Brazil JP Belarus KE Canada KG Central African Republic KP Congo Switzerland KR Côte d'Ivoire KZ Cameroon LI China LK Czechoslovakia LU Czech Republic LV Germany MC Denmark MD Spain MG Finland ML | Australia Barbados CN Guinca Belgium GR Greece Burkina Faso Bulgaria Benin Brazii Benin Brazii Belarus Canada KG Kyrgystan Central African Republic Congo Switzerland Côte d'Ivoire Cameroon China Czechoslovakia Czech Republic Cyech | Australia GE Georgia MW Barbados GN Guinca NE Belgium GR Greece NL Burkina Faso HU Hungary NO Bulgaria IE Ireland NZ Benin IT Italy PL Brazil JP Japan PT Belarus KE Kenya RO Canada KG Kyrgystan RU Central African Republic KP Democratic People's Republic SD Congo of Korea SE Switzerland KR Republic of Korea SI Côte d'Ivoire KZ Kazakhstan SK Cameroon LJ Liechtenstein SN China LK Sri Lanka TD Czechoslovakia LU Luxembourg TG Czech Republic LV Latvia TJ Germany MC Monaco TT Denmark MD Republic of Moldova UA Spain MC Madagascar SE SWISSERSENSENSENSENSENSENSENSENSENSENSENSENSENS |

5

10

15

20

- 1 -

TITLE:

MATERIALS AND METHODS FOR IMMUNOCONTRACEPTION

## CROSS REFERENCE TO RELATED APPLICATION

This application is a continuation-in-part of U.S. Application Serial No. 08/012,990, filed January 29, 1993, which is a continuation-in-part of U.S. Application Serial No. 07/973,341, filed on November 9, 1992.

### FIELD OF THE INVENTION

This invention relates generally to the production and use of zona pellucida proteins, and more particularly to novel DNA sequences encoding zona pellucida proteins, to recombinant materials and methods for producing such proteins and to materials and methods for selectively effecting either transient infertility or permanent sterility in mammals through use of naturally occurring and recombinant zona pellucida proteins.

### BACKGROUND OF THE INVENTION

The present invention relates to a method for inducing reproducible transient infertility or sterility in a mammal by inducing in that mammal antibodies directed to proteins found in the zona pellucida of that mammal's oocytes. The invention also relates to purified, isolated DNA sequences encoding the zona pellucida proteins herein designated "ZPA" and "ZPB" and "ZPC" from various mammalian species. The invention is further directed to pharmaceutical compositions capable of inducing antibody production in a subject mammal.

- 2 -

The zona pellucida (ZP) is a complex matrix surrounding the mammalian oocyte, formed of glycoproteins secreted by ovarian cells. Zona pellucida glycoproteins perform a variety of functions. For example, the mouse ZP proteins previously designated ZP2 and ZP3 are complexed into long filaments which are cross-linked by the protein designated ZP1 in the ZP matrix providing structural integrity to the matrix. Wassarman, P.M., Annu. Rev. Biochem. 57:415-442 (1988). In addition to its structural role, mouse ZP3 has been shown to be a sperm receptor in the ZP matrix. Bleil, J.P. and Wassarman, P.M., Cell 20: 873-882 (1980). Following binding of sperm to ZP3 and the subsequent induction of the sperm acrosome reaction on the surface of the ZP, ZP2 acts as a secondary sperm receptor that is necessary for the maintenance of sperm binding to the egg. Bleil et al., Dev. Biol. 128: 376-385 (1988). Because of its role in the maintenance of the oocyte and in sperm-oocyte interactions, the ZP represents a logical target for design of contraceptive agents which interfere with the fertilization process.

5

10

15

20

25

30

Various groups have undertaken an immunological approach in attempts to interfere with ZP functions and thus to decrease fertility in immunized animals. See, Dunbar et al. In: International Congress on Reproductive Immunology. T. Wegman and T. Gills (eds.). London: Oxford Press, pp. 505-528 (1983); and Dunbar et al. In: Mechanisms and Control of Animal Fertilization. J. Hartman (ed.) Academic Press, New York, pp. 139-166 (1983). These studies showed that active immunization of mammals with ovarian homogenates decreased fertility. However, the large number of components in such homogenates made the identification of antigens responsible for the decrease in fertility nearly impossible. In addition, the use of such a complex mixture creates a potential for unwanted and potentially harmful side-effects.

Research by various investigators using chromatographic methods including SDS polyacrylamide gel electrophoresis (PAGE) and high pressure liquid chromatography (HPLC) have resulted in the identification of

numerous zona pellucida proteins from a variety of mammalian species. Data compiled by Timmons and Dunbar in "Perspectives in Immunoreproduction: Conception and Contraception"; pp. 242-260, Mathur, S. and Fredericks, C.M. eds.; New York, Hemisphere Publishing Co (1988), as described below, illustrate examples of zona pellucida proteins that have been characterized.

5

10

15

20

25

30

Zona pellucida proteins isolated from pig include: PZI, a 40-110 kD protein isolated by Dunbar et al., Biol. Reprod. 24:1111 (1981); PZII, a 70-110 kD protein, PZIII, a 95-118 kD protein, and PZIV, an 18-25 kD protein, all isolated by Dunbar et al., Biol. Reprod. 32:619 (1985); 90K, a 89-119 kD protein, 65K, a 61-83 kD protein, 55K, a 47-66 kD protein, and 25K, an 18-26 kD protein, all isolated by Hedrick, J.L. and Wardrip, N.J. Biochem. 157: 63 (1986); ZP1, an 82-118 kD protein, ZP2, a 58-96 kD protein, ZP3 (PPZA), a 40-74 kD protein, and ZP4, a 21 kD protein, all isolated by Subramanian et al., Biol. Reprod. 24:933 (1981); 87K (ZP1/ZP2). a 77-97 kD protein, 58K, a 40-70 kD protein both isolated by Yurewicz et al., Biol. Reprod. 29: 511 (1983); deglycosylated PZI, a 35 kD protein; PZII, a 55 kD protein; and PZIII, an 80 kD protein all isolated by Skinner and Dunbar as described in Immunological Approaches to Contraception and the Promotion of Fertility, G. P. Talwar (ed.) New York: Plenum pp. 251-268 (1986); and deglycosylated ZP3 having a molecular weight of 45 kD isolated by Sacco et al., J. Reprod. Fertil. 76:575 (1986).

Isolated rabbit zona pellucida proteins include: RZI, RZII, and RZIII, having molecular weights of 68-125 kD, 80-100.5 kD, and 100-132 kD respectively, all isolated by Dunbar et al., Biol. Reprod. 24:1111 (1986); ZP1, ZP2, and ZP3 having molecular weights of 100-118 kD, 83-110 kD, and 80-92 kD respectively, all isolated by Sacco et al., Proc. Soc. Exp. Biol. Med. 167:318 (1981); deglycosylated RZI, and RZII having molecular weights of 65 kD, and 80kD respectively, both isolated by Skinner and Dunbar and described in Immunological Approaches to Contraception and Promotion of Fertility. G.P. Talwar (ed.). New York: Plenum, pp. 251-268 (1986); and

deglycosylated RZIII, a 90 kD protein isolated by Timmons and Dunbar, *Biol. Reprod.* 36: 1275 (1987).

A number of mouse zona pellucida proteins have been isolated including: ZP1, ZP2, and ZP3 having molecular weights of 200 kD, 120 kD, and 83 kD respectively, all isolated by Bleil and Wassarman *Dev. Biol.* 76:185 (1980); and ZP1 and ZP2 having molecular weights of 166-122 kD and 90-92 kD respectively, isolated by Sacco *et al.*, *Proc. Soc. Exp. Biol. Med.* 167: 318 (1981). The differences in the molecular weights of mouse ZP1 and ZP2 as reported by Bleil *et al.* and Sacco *et al.* may be due to the fact that Bleil used 2D-PAGE under non-reducing conditions while Sacco used 2D-PAGE under reducing conditions.

5

10

15

20

25

The cat zona pellucida proteins CZI and CZII were isolated by Maresh and Dunbar J. Exp. Zool. 244:299 (1987) and have molecular weights of 50-110 kD and 90-110 kD respectively.

Maresh and Dunbar J. Exp. Zool. 244:299 (1987), have also isolated the dog zona pellucida proteins DZI, DZII, and DZIII which have molecular weights of 50-110 kD, 70-95 kD, and 90-100 kD respectively.

Sacco et al., Proc. Soc. Exp. Biol. Med. 167:318 (1981) described squirrel monkey ZP1, ZP2, ZP3, and ZP4 having molecular weights of 63-78 kD, 63-70 kD, 47-51 kD, and 43-47 kD respectively. In the same publication

Sacco et al. described human ZP1, ZP2, and ZP3 having molecular weights of 80-120 kD, 73 kD, and 59-65 kD respectively.

To date, few mammalian zona pellucida genes or proteins have been isolated and sequenced. None has been successfully used to produce an effective immunocontraceptive. A lack of consensus among those of skill in the art regarding the number and characteristics (e.g. molecular weight) of proteins present in the zona pellucida of various mammalian species, and difficulties in purifying these heavily glycosylated proteins have hampered

attempts to utilize zona pellucida proteins to produce an effective immunocontraceptive with predictable function.

A number of groups have had success in cloning cDNAs or genes encoding various mammalian zona pellucida proteins.

5

10

15

20

25

Ringuette et al., Dev. Biol., 127:287-295 (1988) and Liang et al., Mol. Cell. Biol., 10:1507-1515 (1990), reported cloning of mouse DNA encoding zona pellucida proteins ZP3 and ZP2, respectively. The clones were obtained by screening mouse cDNA libraries with anti-ZP3 and anti-ZP2 antibodies. No sequence homology was found between mouse ZP3 and ZP2.

Ringuette et al., Proc. Natl. Acad. Sci. USA, 83:4341-4345 (1986), reported isolation of a partial cDNA clone for mouse ZP3, which clone hybridized with total genomic DNA of mouse, rat, dog, cow, and human, but not with pig or rabbit genomic DNA unless the hybridization was performed at very low stringency. The full length ZP3 cDNA characterized by Ringuette Dev. Biol. 127:287-295(1988) represents a germ-line specific mRNA having relatively short 5' and 3' untranslated regions and an open reading frame of about 1317 nucleotides with an additional 200-300 nucleotide poly-A tail. Ringuette also found that rat, rabbit, dog, and cow ovary transcribes mRNA which hybridized to the mouse ZP3 cDNA and that the ZP3 transcripts had similar molecular weights. Liang et al. Mol. Cell. Biol., 10:1507-1515 (1990), showed that the nucleic acid and deduced amino acid sequence of ZP2 is distinctly different from that of ZP3 although it had the same short motif of 5' and 3' untranslated regions. The ZP2 mRNA is

Chamberlin and Dean, *Dev. Biol.* 131:207-214 (1989) and Kinloch, R.A. *et al.*, *Proc. Nat. Acad. Sci. USA*, 85:6409-6413 (1988) have reported the cloning of the mouse ZP3 gene. The mouse ZP3 gene is reported to have 8 exons and 7 introns in a transcription unit of 8.6 kbp.

reported to have single open reading frame of 2,139 nucleotides which codes

for a polypeptide of 80,217 Daltons representing 713 amino acids.

- 6 -

Kinloch et al., Dev. Biol. 142:414-421 (1990), reported cloning of hamster genomic ZP3 DNA from a hamster genomic DNA library screened with mouse ZP3 DNA as a probe. The hamster ZP3 gene has a transcription unit of 7900 nucleotides and was found to contain 7 introns and 8 exons. The hamster ZP3 protein is approximately 81% homologous to mouse ZP3 protein. The hamster transcript contained 1266 nucleotides, six less than mouse ZP3 mRNA.

5

10

15

20

25

30

Chamberlain and Dean, *Proc. Natl. Acad. Sci. USA* 87:6014-6018 (1990), reported the cloning of human ZP3 from a human genomic DNA library using mouse ZP3 cDNA as a probe. The human ZP3 gene is composed of 8 exons in a transcription unit of 18.3 kbp. The exons are almost identical in size to the eight exons of mouse ZP3 and the nucleotide sequence of the coding region is 74% homologous. The human ZP3 transcript is very similar to mouse ZP3 mRNA. Both have short 5 and 3 untranslated regions, and both have a single open reading frame of 1272 nucleotides that encodes a 424-amino acid protein.

U.S. Patent No. 4,996,297, to Dunbar, reported the isolation of three rabbit zona pellucida clones encoding rabbit ZP1 and ZP2 proteins, using anti-ZP1 and anti-ZP2 antibodies as screening probes. The sequences designated as P2 and P3 in Figure 4 of the Dunbar patent represent rabbit ZP cDNAs of 812 and 1705 nucleotides respectively.

Schwoebel et al., J. Biol. Chem. 266:7214-7219 (1991), isolated and characterized a full length cDNA (designated rc 55) encoding the 55-kD rabbit zona pellucida protein using cross-species affinity purified antisera. The protein encoded by this cDNA has some similarity to the mouse ZP2 protein described by Liang. However, comparisons of rc 55 with the mouse ZP3 protein revealed no homology.

The functional activities of the cloned ZP DNAs and their encoded proteins have not been fully characterized and neither has their potential use as immunocontraceptives been demonstrated.

- 7 -

In order to develop a useful zona pellucida product for use in fertility control, particularly in the form of a vaccine, it is highly desirable to purify, isolate, and characterize zona pellucida proteins from a species of an animal of interest. Because of factors such as the purity of such proteins needed for vaccine production, and the high cost and numerous problems associated with purification of these proteins, it would be highly desirable to ascertain the DNA and amino acid sequences of zona pellucida proteins of a specific species of interest. Having such known, isolated and characterized zona pellucida proteins, the function of each zona pellucida protein may be understood and a fertility control product may be designed based upon the specific functional characteristics of a particular zona pellucida protein and for a particular mammalian species.

It would be thus highly useful and desirable to provide isolated, purified, sequenced, and characterized recombinant zona pellucida proteins which would permit the development of fertility control products possessing specific reproducible effects in eliciting transient and/or permanent infertility. Such products, where used to elicit transient infertility, would desirably have long lasting effects so as to minimize the number of times the immunocontraceptive agent must be administered to maintain infertility.

### 20 SUMMARY OF THE INVENTION

5

10

15

25

The present invention provides novel methods and materials for inducing either reproducible transient or permanent infertility effects in female mammals, including humans, by selective administration of homologous and/or heterologous mammalian species ZP proteins or immunocontraceptively active fragments thereof hereinafter designated as ZPA, ZPB and ZPC. By "reproducible" is meant that, unlike prior art attempts to induce transient infertility by administration of ZP proteins (in the form of mixtures of such proteins), this invention achieves its transient infertility effects by the administration of ZPA and/or ZPB in a form such that the duration of

- 8 -

transient infertility is controllable and can be maintained in an on or off condition in a controllable and/or predictable fashion. This is achieved primarily through administration of the highly pure ZPA and ZPB proteins or immunocontraceptively active fragments thereof of this invention, e.g., in recombinant form and thus essentially devoid of ZPC. By immunocontraceptively active fragments is meant a ZP protein fragment capable of inducing infertility.

5

10

15

20

25

30

In one of its aspects, the present invention provides methods for inducing reproducible transient infertility in a mammal by administering to a subject female mammal a zona pellucida protein (or fragment thereof) selected from the group consisting of mammalian ZPA, and ZPB, and combinations thereof in doses effective to stimulate production in said mammal of antibodies which recognize ZPA or ZPB proteins of said mammal. It is presently preferred that mammalian ZPA and ZPB for use in such methods be derived from the same mammalian species as the subject mammal although the use of heterologous species proteins is also contemplated. Use of purified isolates of mammalian ZPA or ZPB protein such as obtained by chromatographic separatory procedures is contemplated. Use of proteins produced by recombinant methods is expected to be most preferred.

According to another aspect of the invention, methods are provided for inducing permanent sterility in a female mammal by administering to a subject female mammal a recombinant mammalian ZPC protein (or fragment thereof) in a form essentially devoid of ZPA and/or ZPB, in a dose effective to stimulate production in said female mammal of antibodies which recognize the ZPC protein of said mammal. As is the case with induction of transient infertility, use of homologous species ZPC is preferred, but not required, and the protein may be derived from natural sources or produced by recombinant methods. Modified ZPC proteins including but not limited to palmitylated and chitosan modified proteins are also contemplated by the present invention.

- 9 -

Presently preferred ZPA, ZPB, and ZPC proteins for veterinary application of the transient infertility and sterility inducing methods include porcine, rabbit, canine, feline, bovine, and cynomolgus monkey ZP proteins.

In another of its aspects, the present invention provides pharmaceutical compositions for use in inducing reproducible transient infertility in a female mammal (including humans) comprising an effective dose of a zona pellucida protein (or fragment thereof) selected from the group consisting of mammalian ZPA, and ZPB (substantially free of ZPC), in combination with one or more pharmaceutically acceptable carriers, diluents and adjuvants. Modified ZPA and ZPB proteins (for example, palmitylated or chitosan modified) are also contemplated by the present invention.

5

10

15

20

25

30

According to another aspect of the present invention, novel purified and isolated DNA sequences are provided which encode porcine ZPA, ZPB, and ZPC, as illustrated by the DNA sequences set out in SEQ ID NOS. 1, 3, and 5. Also, provided are purified and isolated DNA sequences encoding: rabbit ZPC, as illustrated by the DNA sequence set out in SEQ ID NO. 7; canine ZPA and ZPC, as illustrated by the DNA sequences set out in SEQ ID NOS. 9 and 11; feline ZPA, ZPB, and ZPC, as illustrated by the DNA sequences set out in SEQ ID NOS. 13, 15, and 17; bovine ZPA, ZPB, and ZPC, as illustrated by the DNA sequences set out in SEQ ID NOS. 19, 21, and 23; human ZPA and ZPB as illustrated by sequences set out in SEQ ID NO. 42 and 40, respectively, and as contained as human DNA inserts in lambda phage clones A1 and A4, (ZPA) and as contained in human DNA inserts in lambda phage clones 1-1 and 4-9 (ZPB).

Polynucleotide sequences of the invention are useful for the production of ZPA, ZPB and ZPC proteins by recombinant methods and as probes for the isolation of heterologous species polynucleotides encoding corresponding zona pellucida proteins by hybridization methods.

Also provided by the present invention are novel host cells, especially unicellular eucaryotic and procaryotic cells, stably transformed or

transfected with polynucleotides of the invention in a manner allowing expression of the ZP proteins (or immunologically significant fragments thereof) in the host cells. Host cells expressing such ZP products, when grown in a suitable culture medium, and particularly useful for large scale production processes wherein the desired polypeptide products, in glycosylated or non-glycosylated form are isolated from the cells or the medium in which the cells are grown.

5

10

15

20

25

30

Recombinant polypeptides provided by the invention thus comprise ZPA, ZPB and ZPC, and full equivalents of such zona pellucida proteins including both glycosylated and non-glycosylated forms, variants and immunologically active fragments thereof which retain substantial biological activity, i.e., at least one of the biological activities of the zona pellucida protein discussed herein, e.g., the ability to stimulate the production of antibodies as discussed herein upon administration to a mammal. Such immunologically active fragments may be defined as containing at least one epitope effective to stimulate the production of antibodies upon administration to a mammal in accordance with this invention.

In another aspect of the invention, a method is provided for the isolation of nucleic acid sequences encoding other mammalian ZPA, ZPB, and ZPC proteins by hybridization under stringent conditions of heterologous species ZPA, ZPB, and/or ZPC probes to cDNA or genomic DNA libraries, derived from the mammalian species of interest.

More particularly, it is an aspect of the invention to provide a method for the isolation of nucleic acid sequences encoding human ZPA and ZPB by hybridization under stringent conditions of sequences encoding ZPA and/or ZPB from heterologous species.

Other aspects and advantages of the present invention will be readily understood upon consideration of the following detailed description of presently preferred embodiments thereof, reference being made to the figures wherein:

#### - 11 -

### DESCRIPTION OF THE FIGURES

Fig. 1 is a diagrammatic representation of the plasmid vector pZ90;

Fig. 2 is a diagrammatic representation of the plasmid vector pZ98; and

Fig. 3 is a diagrammatic representation of the plasmid vector  $\,$  pZ156.

Fig. 4 is a diagrammatic representation of the alignment of the Eco R1 fragments encoding human ZPB.

Fig. 5 is a diagrammatic representation of the plasmid vector pZ169.

5

Fig. 6 is a diagrammatic representation of the plasmid vector pZ145.

### DETAILED DESCRIPTION OF THE INVENTION

The present invention is directed to mammalian zona pellucida proteins characterized in three major classes: ZPA, ZPB, and ZPC. This classification scheme has resulted from repetitive screening of various mammalian ovarian cDNA libraries and retrieval of clones which encode proteins showing significant homology in three distinct groups, designated herein as ZPA, ZPB and ZPC. Although similarity is seen between DNA sequences encoding ZPA, ZPB, or ZPC between animal species, very little homology is found between the individual species' ZPA, ZPB, and ZPC proteins.

DNA sequences encoding zona pellucida proteins A, B, and C and their deduced amino acid sequences for various mammalian species ZPs are presented in SEQ ID NOS. 1-24. It is understood that the DNA sequence of a particular animal may vary slightly due to the phenomenon of allelic variation. Small differences in the precise DNA sequence between animals or slight errors due to the inefficiency of sequencing procedures are to be

expected. Such variants are included within the scope of the present invention.

The zona pellucida DNA sequences described above were obtained from ovarian cDNA libraries screened with specific zona pellucida antibodies or known zona pellucida DNA probes. Comparison of isolated sequences to published protein or DNA sequences and with other clones as they were isolated was used to classify and identify the clones as described above.

5

10

15

20

25

The term "zona pellucida protein" is meant to include full length proteins ZPA, ZPB, and ZPC, as well as expected variants, immunologically active fragments or peptides contained within these proteins. The term "zona pellucida DNA" is meant to include those nucleic acid sequences encoding zona pellucida protein or fragments thereof.

The three major classes of mammalian zona pellucida proteins have been determined on the basis of homology within the DNAs encoding ZP proteins of a variety of mammalian species. ZPA includes those peptides previously, variously described in the literature as ZP1, ZP2, and ZP4; ZPB includes those peptides previously, variously described as ZP3 $\alpha$  and rc 55; and ZPC includes those peptides previously variously described as ZP3 $\beta$  and ZP3.

The homology of various species of zona pellucida proteins within a specific class as compared with a consensus sequence for each class is shown in Table 1. The consensus sequence was derived using the Microgenie® Sequence Analysis Program (Beckman Instruments, Inc. Spinco Division, Palo Alto, CA). The minimum percent of aligned sequences which must have the same residue at a given position for that residue to be included in the consensus sequence was 50%. The DNA sequences corresponding to the amino acid consensus sequences for ZPA, ZPB, and ZPC proteins are set out in SEQ ID NOS 25, 26, and 27, respectively.

- 13 
<u>TABLE 1</u>

HOMOLOGY OF DEDUCED ZP PROTEINS AMINO ACIDS

|    |         | <u>ZPA</u> | ZPB   | <b>ZPC</b>    |
|----|---------|------------|-------|---------------|
|    | DOG     | 78.9%      |       | 77.3%         |
| 5  | CAT     | 78.4%      | 70.9% | 77.5%         |
|    | COW     | 77. 2%     | 80.4% | 77.2%         |
|    | PIG     | 73.0%      | 77.8% | 79.0%         |
|    | RABBIT  | 70.1%      | 74.6% | 71.3%         |
|    | MOUSE   | 61.6%      |       | 69.6%         |
| 10 | HUMAN   |            |       | 76.9%         |
|    | HAMSTER |            |       | 70.5 <i>%</i> |

The deduced amino acid sequences of the various species of zona pellucida proteins suggest approximate unglycosylated molecular weights of 75 kD, 55 kD, and 45 kD for ZPA, ZPB, and ZPC, respectively. A more detailed analysis of both DNA sequence homology and deduced amino acid sequence homology is set out as Examples 13, 14, and 15.

15

20

25

It has surprisingly been found that administration of a specific class of zona pellucida protein to a host animal results in a specific immunocontraceptive effect and that selection of the appropriate ZP protein for administration allows induction of desired contraceptive results, in terms of permanent sterility or transient infertility. For example, vaccination of an animal with zona pellucida protein C induces antibody titers in that animal which recognize endogenous ZPC resulting in loss of oocytes from the animal's ovary, thereby causing permanent sterility. In contrast, vaccination of an animal with zona pellucida protein A, B or combinations thereof induces antibody titers which do not recognize ZPC, but recognize ZPA and/or ZPB. This results in cycling, infertile animals for the time period during which

anti-ZPA and/or anti-ZPB antibody titers remain high. When such antibody titers fall, the infertility effect is diminished, and the animal regains fertility.

Vaccination with the purified, isolated, and characterized ZPA, ZPB, or ZPC proteins is seen to exert a specific effect on the immunized animal if an autoimmune response is triggered wherein the autoantibodies generated specifically recognize the immunized animals' own specific zona pellucida protein. This self-recognition for antibodies induced according to the present invention may be defined and characterized by the ability of serum antibodies to recognize at least one epitope present on a homologous species zona pellucida protein.

5

10

15

20

25

30

In the preferred method of the invention, an animal is immunized with a recombinant ZPA, ZPB, or ZPC or fragments thereof. The recombinant protein or peptide may be of homologous species or derived from a heterologous species zona pellucida which shares common epitopic determinants, with the proviso that such common epitopic determinants function to induce the desired autoimmune response.

The recombinant protein or peptide fragment may be chemically conjugated to immune enhancing agents such as Keyhole Limpet Hemocyanin (KLH), and Muramyl dipeptide (MDP), and the like, or alternatively may be provided in the form of a fusion protein, e.g., with foreign protein amino acids at the amino and/or carboxy terminus. Fully conventional methods for stimulating the production of antibodies upon administration of the proteins or fragments of this invention are well known; similarly, passive immunization techniques involving administration of antibodies per se, e.g., anti-ZPA antibodies, anti-ZPB antibodies, or anti-ZPC antibodies, to the zona pellucida proteins or fragments of this invention is also within the scope of the invention. For details, see Dean, PCT Application WO90/15624 whose disclosure is entirely incorporated by reference herein.

Thus, to induce permanent sterility in a dog, recombinant canine ZPC may be employed which is expressed as a bacterial fusion protein

- 15 -

(or conjugated to immune enhancing agents) wherein active canine ZPC protein is conserved and available for interaction with antigen presenting cells. The expressed protein is then administered to a host dog and induces an autoimmune response in which generated antibodies recognize canine zona pellucida protein C. This autoimmune effect, which specifically recognizes dog ZPC protein or its aggregates, induces permanent sterility in the vaccinated dog, which sterility is associated with a loss of oocytes from the dog's ovary.

5

10

15

20

25

30

Alternately, a non-homologous species ZPC, such as recombinant porcine ZPC or peptides thereof which are cross-reactive with canine ZPC, can be administered to a dog to achieve similar sterilizing effects. The sterilizing effect, however, is only realized when antibodies capable of recognizing the host's own native zona pellucida are induced (or administered in the context of passive immunization).

In an alternative embodiment of the present invention, the administration of a host species' own A and/or B class zona pellucida protein, or a related A and/or B protein from another species which induce antibodies against the host's ZPA and/or ZPB proteins results in an infertility effect which is distinct from that produced by ZPC class antigens. The physiological effect of vaccination with the ZPA and ZPB proteins is a transient one. "Transient infertility" is herein defined as infertility which is maintained when antibodies against self-zona pellucida proteins are sustained in the host animal's circulation at a contraceptively effective concentration (e.g., at titers of approximately 1:250 in the dog) and which infertility is diminished when antibodies against self fall below a contraceptively effective lower limit. The reduction in antibodies against self-zona pellucida results in restoration of fertility without evidence of major physiological changes in the ovary. Typically, the reduction in antibody titers occur by natural processes in the mammalian host, but other methods of reducing antibody titers are within the scope of the invention.

- 16 -

Contraceptively effective antibody titers against self zona pellucida proteins A and B required to maintain infertility will vary with the species of vaccinated animal as well as with the species of recombinant ZPA or ZPB peptide administered, but may readily be determined, for example, by testing a panel of the desired animal species with varying doses of the specific antigen, measuring the induced titer of anti-self antibodies by known ELISA techniques, and correlating the titers with reproductive indicators, e.g., cycling, hormone levels, and the like. In general, antibody titers greater than 1:250 are contraceptively effective.

10

15

20

25

30

5

Based on amino acid sequence homologies, it is expected that all zona pellucida proteins of a particular class contain functional epitopes which are cross-reactive between mammalian species. However, absent characterization and identification of such functional cross-reactive epitopes, a preferred, selective contraceptive agent is a homologous species zona pellucida protein or antibody thereto.

The present invention will be more completely understood upon consideration of the following illustrative examples of the practice thereof wherein: Example 1 addresses the isolation of DNAs encoding porcine species ZPA, ZPB and ZPC; Example 2 relates to isolation of rabbit ZPC DNA; Example 3 relates to isolation of DNAs encoding canine ZPA and ZPC; Example 4 addresses isolation of feline DNAs encoding ZPA, ZPB and ZPC; Example 5 relates to cloning and isolation of DNAs encoding bovine species ZPA, ZPB and ZPC; Examples 6 and 7 describe immunocontraceptive treatment of dogs with naturally-derived porcine zona pellucida proteins; Example 8 relates to serochemical studies on animals treated in Examples 6 and 7; and Examples 9 and 10 address recombinant production of a canine ZPC fusion protein and its immunocontraceptive use in dogs. Example 11 relates to the isolation of DNAs encoding human ZPA and ZPB by methods described herein. Example 12 relates to the isolation and sequencing of DNAs encoding cynomolgus monkey ZPA, ZPB and ZPC. Examples 13-15 relate

- 17 -

to the comparison of the DNA sequence and the deduced amino acid sequence of mammalian ZPA, ZPB, and ZPC, respectively. Example 16 relates to the immunization of cynomolgus monkey using HSPZ and fractionated HZPC. Example 17 relates to the mapping of mammalian zona pellucida protein epitopes. Example 18 describes the immunization of dogs using recombinant ZPC proteins. Example 19 relates to the vaccination of cows and cats with recombinant ZP proteins.

### Example 1

## Isolation of DNA Sequences Encoding

Porcine Zona Pellucida Proteins ZPA, ZPB, and ZPC.

5

15

20

25

A cDNA library in λgt11 was commercially prepared by Clone Tech, Palo Alto, CA, from an ovary isolated from a 14 week old pig and was screened using an anti-ZP3β antibody obtained from E.C. Yurewicz and described in Keenan *et al.*, *Biol. Reprod.*, 44:150-156 (1991). Eight candidate clones were identified.

A degenerate DNA oligonucleotide probe (19bps) was constructed to represent all possible sequences of a short portion of the N-terminus porcine  $\mathbb{Z}P3\beta$  as described in Yurewicz *et al.*, *J. Biol. Chem.*, **262**:564-571, (1987). The degenerate probe sequence is set out in SEQ ID NO. 28.

Southern analysis of the eight candidate clones isolated by expression screening with the degenerate DNA oligonucleotide probe resulted in hybridization with two of the eight candidates. The two clones recognized by the degenerate probe were then subcloned into the pBS KS plasmid (STRATAGENE Cloning Systems, La Jolla, CA) for sequence analysis using the sequence enzyme and the protocol described in the SEQUENASE® Manual (U.S. Biochemical, Cleveland, OH). One of the clones, B-8, having an insert size of approximately 1200 base pairs, included a sequence homologous to the

N-terminal sequence of mouse ZP3, previously identified by Ringuette et al., Dev. Biol., 127:287-295, (1988). The remaining clone, B-6, had an insert size of approximately 1000 base pairs. Neither hybridizing clone contained the C-terminal portion of the gene, as suggested by the lack of homology to the mouse ZP3 gene in this region.

5

10

15

20

25

30

The 14-week porcine ovarian library was then rescreened by DNA hybridization. Approximately 150,000 PFUs were plated on agar plates with *E. coli* Y1090. After overnight incubation at 37°C, nylon membrane lifts of plaques were prepared and screened using the B6 and B8 clones derived above isolated by screening with the degenerate oligonucleotide probe set out in SEQ ID NO. 28.

Filters were prehybridized in a solution containing 5X saline, sodium phosphate, EDTA buffer (SSPE), 5X Denhardt's Reagent, 100μg/ml salmon sperm DNA, 30% formamide and 0.5% SDS for three hours at 42°C. Approximately 50 ml of the prehybridization solution was used for 12 filters (132 mm). After prehybridization, 10 ng of freshly radiolabeled DNA probe in 30% formamide, 5X SSPE was added. The probes were heat denatured at 95°C for 3-5 minutes and hybridization with the DNA probes continued overnight at 42°C. The hybridized filters were then washed twice with 100 ml of 5X SSPE at 55°C, for approximately one hour each wash. The filters were then rinsed with 250 ml of 5X SSPE at room temperature and allowed to air dry. The dried filters were exposed to x-ray film at -70°C using intensifier screens for at least eight hours and the films were developed for visual analysis.

Among the additional clones isolated were two clones including the C-terminal portion of the porcine ZP3 $\beta$  gene. One clone,  $\lambda 5$ -1, was subcloned into plasmid pBS KS and sequenced. This plasmid, termed pZ57, contained a ZP DNA insert having 1266 base pairs and appeared to encode the full length amino acid sequence of porcine ZP3 $\beta$  as compared with known mouse ZP3. Alignment of the deduced amino acid sequence of the clone with

the known N-terminal amino acid sequence of ZP3 $\beta$  reported by Yurewicz et al., J. Biol. Chem., 262:564-571 (1987), and an internal peptide sequence of ZP3 $\beta$  corresponding to amino acids 255-274 as provided by E.C. Yurewicz confirmed the identity of this clone as encoding porcine ZP3 $\beta$ .

The DNA sequence of this clone, termed porcine ZPC, is set out in SEQ ID NO. 5 and its deduced amino acid sequence is set out in SEQ ID NO. 6.

5

10

15

20

25

The 14-week porcine ovarian cDNA library was further screened using rabbit zona pellucida rc 55 cDNA as a probe [described in Schwoebel et al., J. Biol. Chem, 266:7214-7219, (1991)].

One candidate clone of approximately 1700 base pairs,  $\lambda 2$ -1, was isolated and was transferred into the sequencing plasmid pBS KS. The DNA sequence and deduced amino acid sequence of the porcine DNA insert was determined using the method described in the SEQUENASE® manual (US Biochemical Corporation, Cleveland, Ohio). The sequenced clone contained 1620 base pairs and included a full length copy of the porcine ZP3 $\alpha$  gene as confirmed by alignment of the deduced amino acid sequence with portions of the known protein sequence of porcine ZP3 $\alpha$  provided by E.C. Yurewicz between amino acids 206-222, 271-279, and 328-344. The DNA sequence of this clone, termed porcine ZPB, is set out in SEQ ID NO. 3. Its deduced amino acid set out in SEQ ID NO. 4.

The 14-week porcine ovarian library was further screened using the procedure described above and using a DNA probe encoding canine ZPA protein (as obtained in Example 3 below, SEQ ID NO. 9). A single clone, λ3-5 having approximately 1300 base pairs, was obtained representing the N-terminal 60% of the theoretical porcine ZPA gene as estimated by the size of the clone in relation to the ZP2 gene isolated from mouse by Liang *et al.*, *Mol. Cell. Biol.* 10:1507-1515 (1990), and rabbit by Dunbar, U.S. Patent No. 4,996,297, and dog (see Example 3 below).

This clone was then used to rescreen the porcine ovarian library. Three additional clones were obtained, two small clones and one clone large enough to contain the full length sequence. The large candidate clone, λB, having approximately 2200 base pairs, was sequenced, and the data showed this ZPA clone to lack only approximately seven base pairs of the full length sequence including the ATG start codon when aligned with the mouse ZP2 gene and the canine ZPA gene described in Example 3. The DNA sequence of this clone, termed porcine ZPA, is set out in SEQ ID NO. 1. Its deduced amino acid sequence is set out in SEQ ID NO. 2.

5

10

15

20

This isolated porcine clone included sequences corresponding to published sequences of three identified porcine zona pellucida proteins, ZP1 (80kD), ZP2 (62kD) as disclosed in U.S. Patent No. 4,996,297 to Dunbar and ZP4 (21kD) as disclosed by Hasegawa et al., Abst. No. 382, Meeting Soc. Study Reprod. July, 1991. These results suggest that a singular clone encodes one zona pellucida protein which previously had been thought to exist as three separate proteins, i.e., ZP1, ZP2, and ZP4. This further suggests that only three major porcine zona pellucida genes encode three major zona pellucida proteins which here are termed ZPA, ZPB, and ZPC. ZPA includes those proteins previously identified as ZP1, ZP2, and ZP4. ZPB corresponds to ZP3α and ZPC corresponds to previously identified ZP3β. Yurewicz et al. J. Biol. Chem., 262:564-571, (1987).

### Example 2

# Isolation and Purification of DNA Sequences Encoding Rabbit ZPC Protein

Ovaries were removed from five week old rabbits and mRNA was prepared using the Fast Track<sup>TM</sup> mRNA isolation kit in accordance with the procedure described in the Fast Track<sup>TM</sup> instruction manual, version 3.1, catalog No. K1593-02 (Invitrogen, San Diego, CA). A Lambda Librarian<sup>TM</sup>

5

10

kit (Invitrogen, San Diego, CA) was used to prepare cDNA and to clone cDNAs into λgt10 according to the manufacturer's instructions. Approximately 150,000 PFUs were plated on agar plates with *E. coli* Y1090. After overnight incubation at 37°C, nylon membrane lifts of colonies were prepared and screened with a porcine ZPC DNA probe using the screening procedures described for Example 1. The probe used was the porcine ZPC sequence as set out in SEQ ID NO. 5.

Two positive clones,  $\lambda R4$  and  $\lambda R5$ , hybridized with the porcine ZPC DNA. The size of each of these clones as estimated in agarose gels was approximately 1300 base pairs. Both  $\lambda R4$  and  $\lambda R5$  were sequenced as described for Example 1. The sequences were identical except that  $\lambda R5$  contained four additional nucleotides at the 5' end. The determined DNA sequence was approximately 75% homologous to the DNA sequence encoding porcine ZPC.

The DNA sequence encoding rabbit ZPC protein is set out in SEQ ID NO. 7. Its deduced amino acid sequence is set out in SEQ ID NO. 8.

Rabbit ZPA and ZPB proteins have been previously identified by Dunbar in U.S. Patent No. 4,996,297 as P2 and P3, respectively.

20

25

### Example 3

# Isolation of DNA Sequences Encoding Canine Zona Pellucida Proteins ZPA and ZPC

A 16 week canine ovarian cDNA expression library was commercially prepared by Clone Tech, Palo Alto, CA, in \(\lambda\text{gt11}\) generally following the methods described in Example 1. The canine ovarian cDNA library was screened using antibodies raised against heat solubilized canine zona pellucida. Heat solubilized canine zona pellucida (HSDZ) was prepared generally following the procedures described in Dunbar et al. Biochemistry,

19:356-365, (1980) except ganged razor blades were used to mince the ovaries.

Rabbits were immunized with 250  $\mu$ g HSDZ and 250  $\mu$ g MDP. Two additional boosts followed at approximately three week intervals. The resultant rabbit serum was used to screen the canine ovarian cDNA expression library. Seven candidate clones were obtained. Cross-hybridization experiments were performed by Southern blot analysis as follows. The largest clone,  $\lambda$ 26-1, having approximately 1300 base pairs, was first used as a probe against all of the other clones in Southern blots. Three other clones were identified. The largest of the remaining clones,  $\lambda$ 20-1 and  $\lambda$ 7-1, having approximately 800 and 1000 base pairs respectively, were then used as probes in Southern blots. These probes identified no additional clones. This cross hybridization analysis of the seven candidate clones to each other indicated that four of these clones were related, e.g. four clones hybridized to  $\lambda$ 26-1 while the remaining three  $\lambda$ 20-1,  $\lambda$ 7-1, and  $\lambda$ 19-3 were independent.

5

10

15

20

25

30

The largest of the four related clones,  $\lambda 26$ -1, was subcloned into pBS KS plasmid for sequence analysis according to the procedure described in Example 1. The analyzed sequence demonstrated the presence of a long open reading frame of 1278 base pairs encoding a protein of approximately 426 amino acids. Comparison of the deduced amino acid sequence of this clone with the sequences of known zona pellucida proteins, indicated this clone encoded a protein related to mouse ZP3 (ZPC) as reported by Ringuette et al., Dev. Biol. 127:287-295 (1988), hamster ZP3 as reported by Kinloch et al., Dev. Biol., 142:414-421 (1990), human ZP3 as reported by Chamberlin et al., Proc. Natl. Acad. Sci. USA 87:6014- 6018 (1990) and porcine ZPC protein (see Example 1). The DNA sequence of this clone, termed canine ZPC, is set out in SEQ ID NO. 11. Its deduced amino acid sequence is set out in SEQ ID NO. 12.

The remaining three independent candidate clones were subcloned into the pBS KS plasmid for sequence analysis as described above.

The determined sequence of the 800 base pair clone,  $\lambda 20-1$ , was compared with known ZP sequences by computer analysis as described above and was found to be related to the mouse ZP2 (ZPA) [Liang et al., Mol. Cell. Biol. 10:1507-1515 (1990)] and porcine ZPA (see Example 1).

The 800 base pair fragment from  $\lambda$ 20-1, was then used as a hybridization probe to rescreen the canine cDNA library. Two additional candidate clones were identified, the larger of which,  $\lambda 7A$ , having approximately 2800 base pairs, was subcloned into pBS KS plasmid for sequence analysis. Comparison of this sequence with known sequences encoding zona pellucida proteins suggested the candidate clone  $\lambda 7A$  contained

5

10

15

20

25

30

a full length ZPA sequence, but an incorrect N-terminal sequence, e.g., the clone contained an additional 600 base pairs as determined by alignment with

known mouse ZP2 and rabbit ZPA sequences referenced in Example 1. The second candidate clone,  $\lambda 9-2$ , having approximately 1000 base pairs, was then subcloned into the plasmid pBS KS and sequenced. The sequence of the

second clone indicated the presence of a correct N-terminal sequence, but included only approximately the N-terminal 40% of the full length clone as

determined by alignment with the mouse ZP2 and rabbit ZPA genes. Overlap of the two cDNA clones, however, provided the full length sequence.

The appropriate pieces of each clone were subcloned as follows

to generate the correct full length zona pellucida clone containing a 2028 base pair open reading frame encoding a protein of approximately 676 amino acids. The  $\lambda 7A$  DNA was digested with Eco RI to yield two insert fragments (2000 bps and 800 bps). These two fragments were each subcloned into pBS KS yielding pZ36 and pZ37, respectively. Plasmid pZ37 carried the C-terminal portion of this sequence. The  $\lambda 9-2$  DNA insert was removed from the  $\lambda$ vector and subcloned into pBS KS to yield pZ38. Plasmid pZ36 was digested with Hind III to remove approximately 1350 bps of the N-terminal portion of the  $\lambda 7A$  gene fragment (about 850 bps of nonsense DNA and 500 bps of coding sequence). This digestion also removed one of the Eco RI insert ends

and left a single Eco RI site. The pZ37 Eco RI insert was then moved into the single remaining Eco RI site in the modified pZ36 (pZ36  $\Delta$ l) to reestablish the relative DNA structure orientation that existed in the  $\lambda$ 7A insert (1450/2800 bps). This combined plasmid was then opened with Hind III and the Hind III fragment from pZ38 carrying the N-terminal ZP DNA sequence was inserted to create plasmid pZ39 which is a pBS KS carrying the full length canine ZPA sequence. The DNA sequence of this canine ZPA gene is set out in SEQ ID NO. 9. Its deduced amino acid sequence set out in SEQ ID NO. 10.

10

15

20

25

5

### Example 4

## Isolation of DNA Sequences Encoding Feline Zona Pellucida Proteins ZPA, ZPB, and ZPC

Ovaries were isolated from five cats approximately three to four months in age. Messenger RNA was isolated from six ovaries using the Fast Track<sup>TM</sup> mRNA Isolation Kit (Invitrogen, San Diego, CA, Catalog No. K1593-02) using the protocol provided with the kit. cDNA was prepared using the protocol and cloned into λgt10 as described in Example 2.

Approximately 150,000 plaque forming units (PFUs) were plated on agar plates with *E. coli* Y1090. After overnight incubation at 37°C, nylon transfer membranes were used to prepare and screen plaque lifts. Plaques were screened using a mixture of DNA probes in equal proportions encoding porcine ZPA, ZPB, and ZPC proteins and using the hybridization procedure as described for Example 2. A total of 81 positive clones were identified. Twelve of these clones were plaque-purified. Southern analysis of these clones using porcine ZPA, ZPB, and ZPC DNAs individually as probes indicated that seven of these clones encoded ZPC proteins and one clone encoded a ZPA protein. Four of the clones contained inserts which could not be separated by Eco RI digestion

Five of the ZPC clones were between 1200-1350 base pairs in length. One clone, \( \lambda C-112 \), having approximately 1350 base pairs was subjected to sequence analysis as described above and its deduced amino acid sequence was found to be approximately 70% homologous to the canine ZPC protein obtained in Example 3. The DNA sequence of this feline ZPC clone is set out in SEQ ID NO. 17. Its deduced amino acid sequence is set out in SEQ ID NO. 18.

5

10

20

25

The single feline ZPA clone, \( \lambda C-116 \), was sequenced and found to be approximately 2215 base pairs in length. The deduced amino acid sequence was approximately 75% homologous to the canine ZPA protein characterized in Example 5. The DNA sequence of this feline ZPA clone is set out in SEQ ID NO. 13. Its deduced amino acid sequence is set out in SEQ ID NO. 14.

The remaining 69 positive clones were rescreened using porcine 15 ZPB DNA as a probe (SEQ ID NO. 3). Ten positive clones were obtained. The largest clone,  $\lambda C$ -1, contained approximately 1.7 kilobases as determined by agarose gel electrophoresis. This clone was sequenced, and its deduced amino acid sequence was found to be approximately 80% homologous to the porcine ZPB protein described in Example 1. The DNA sequence of this feline ZPB clone is set out in SEQ ID NO. 15. Its deduced amino acid sequence is set out in SEQ ID NO. 16.

#### Example 5

# Isolation of DNA Sequences Encoding Bovine Zona Pellucida-Proteins ZPA, ZPB, and ZPC

A cDNA library was constructed from a five month bovine ovary by the method described in Example 2. The bovine ovarian library was screened with DNA hybridization probes representing each of the classes of zona pellucida proteins using a mixture of equal proportions of porcine

DNA probes encoding ZPA (SEQ ID NO. 1), ZPB (SEQ ID NO. 3), and ZPC (SEQ ID NO. 5) proteins, as described for Example 2 and using the procedures described for Example 1. Initial screening yielded three candidate clones. Southern analysis of these clones with individual porcine ZPA, ZPB, and ZPC DNA probes used in the initial screening indicated that one of the clones,  $\lambda$ B2, having approximately 650 base pairs, encoded ZPA. A second clone,  $\lambda$ B-1 having approximately 1000 base pairs encoded ZPB. A third clone,  $\lambda$ B14, having approximately 1200 base pairs, encoded ZPC.

5

10

15

The bovine ovarian library was then rescreened with the mixed porcine ZP DNA probes. Two additional clones were obtained and identified by Southern analysis as encoding ZPC.

The Eco RI inserts of the ZPA, ZPB, and largest ZPC clone were subcloned and their DNA sequences analyzed. The sequences encoding these bovine ZPA, ZPB and ZPC fragments were set out in SEQ ID NOS. 19, 21, and 23, respectively. Their deduced amino acid sequences are set out in SEQ ID NOS. 20, 22, and 24, respectively.

# Example 6 Immunization of Dogs with Heat-Solubilized Fractionated Porcine Zona Pellucida

Heat-solubilized, porcine zona pellucida (HSPZ) was prepared generally following the procedures described by Dunbar et al. Biochemistry, 19:356-365, (1980) but using a hand powered meat grinder instead of the Zonamatic described. Following isolation, the zona pellucida protein was solubilized in 0.1 M sodium carbonate buffer, pH 9.6, and was dialyzed extensively against 6M urea. The resultant solution, a volume of 2-3ml containing approximately 12µg of HSPZ, was subjected to isoelectric-focusing in a BIORAD Rotofor isoelectric-focusing chamber as follows. An isoelectric gradient was established using 1% ampholytes having a pI range of 3-10. The

zona pellucida protein was introduced into the mid-range chamber (pI 7.0) and allowed to focus for approximately four hours at 4°C or until the voltage stabilized.

Twenty isoelectrically focused fractions were collected and analyzed by SDS PAGE and Western blot analysis for pig zona pellucida proteins. Acidic fractions having a pI range of approximately 3.5-5.5 and which contained the porcine zona pellucida proteins were combined. The fractions were dialyzed into 0.1M carbonate buffer, pH 9.6 and concentrated to approximately 3mg/ml. This antigenic preparation was used to vaccinate animals as described below. Analysis of this antigenic preparation by two-dimensional gel electrophoresis indicated the presence of ZPA and ZPB protein. However, ZPC was not revealed to be present in this preparation.

5

10

15

20

The HSPZ antigenic preparation was added to a 50/50 water oil emulsion with incomplete Freund's adjuvant (Sigma, St. Louis, MO) containing  $250\mu g$  of MDP per dose. One ml of the 50/50 water oil emulsion contained 0.425 ml paraffin oil, 0.075 ml mannide monooleate, and 0.5 ml PBS containing 250  $\mu g$  threonyl-MDP (SYNTEX Corporation) and the amount of HSPZ described in Table 3 below.

Four random breed dogs aged 10-12 weeks were immunized with HSPZ using the regimen described in Table 2.

TABLE 2 mg HSPZ Prime Time 0 0.1 Boost #1 Week 4 1.0 25 Boost #2 Week 8 0.25 Boost #3 Week 12 0.2 Boost #4 Week 16 1.0 Boost #5 Week 36 1.0

- 28 -

The antisera produced by these animals was monitored via ELISA methodology. By week 17 antibody titers against self, e.g. against canine zona pellucida proteins, had reached a maximum (8-16K by ELISA) and thereafter began to drop.

5

10

15

20

At week 36, one animal was unilaterally ovariectomized and the removed ovary was sectioned and stained with periodic acid schiff stain (PAS) for histological examination. The ovary appeared normal, as evidenced by the presence of follicles in all stages of development. At week 52, two of the four test animals were observed to exhibit estrus behavior. The remaining two test animals exhibited estrus behavior at approximately one and a half years when the first two test animals experienced their second heat. All test animals were bred repeatedly with competent males and by artificial insemination, however, none became pregnant. During this same period, animals in various test regimens in which no self titers were obtained, as described in Example 10, became pregnant when presented with the same males or artificial insemination techniques.

Two weeks following the breeding sessions, e.g. at 54 weeks, the two early cycling animals were unilaterally ovariectomized and the removed ovaries were sectioned for histological examination. The ovaries appeared normal for this stage of follicular activity despite the functional infertility demonstrated.

### Example 7

### Vaccination With Porcine ZPC Protein

A purified porcine ZPC protein (ZP3β) was obtained from E.

Yurewicz, prepared as described in J. Biol. Chem., 262:564-571, (1987).

Vaccines were prepared by adding  $167\mu g$  purified porcine ZPC protein (ZP3 $\beta$ ) to a 50/50 water-oil emulsion with complete Freund's adjuvant (Sigma No. F5881, St. Louis MO), for the priming dose or with Incomplete

- 29 -

Freund's Adjuvant (Sigma No. F5506, St. Louis, MO) containing MDP as described in Example 6 for the booster doses.

Five random breed dogs of approximately 10-12 weeks of age were injected with the ZPC vaccine preparation described above using the regimen described in Table 3.

### TABLE 3

|    |       |         | mg of ZPC |
|----|-------|---------|-----------|
|    | Prime | Time 0  | 0.167     |
|    | Boost | Week 3  | 0.167     |
| 10 | Boost | Week 6  | 0.167     |
|    | Boost | Week 28 | 0.167     |

5

15

20

25

Each animal's antibody titer versus self- zona proteins, e.g., versus canine zona pellucida proteins, was monitored by ELISA, using the method described in Dunbar, Two Dimensional Gel Electrophoresis and Immunological Techniques, 1987. ELISA microtiter plates were coated with HSDZ in antigen-coating buffer (0.1M sodium carbonate, pH 9.6). Biotinylated rabbit-antidog IgG was used as the second antibody. reagent (Avidin-biotinylated peroxidase complex) and O-phenylene diamine dihydrochloride with a peroxide substrate was used for visualization. Only two animals produced antibodies versus self achieving peak self-antibody titers of 16K by week 4. The other three animals produced no self-antibody titers but achieved peak antibody titers of 4K against porcine zona pellucida protein. During the period of time between week 20 and week 36, all dogs were observed to exhibit estrous behavior. The animals were bred repeatedly with proven males. Only the two animals having antibody titers versus self zona pellucida proteins remained infertile. All other animals in the study became pregnant.

- 30 -

Two weeks after estrous and breeding the two infertile dogs exhibiting self-antibody titers were unilaterally ovariectomized and the removed ovaries were sectioned and stained with PAS for histological examination. The histological examination revealed abnormal morphology in the ovaries of the infertile dogs. No evidence of ongoing folliculogenesis was seen and the ovaries were depleted of oocyte-containing follicles. In addition, no primordial oocytes were seen.

5

10

15

20

25

# Example 8 Western Analysis of Antisera Produced by Vaccinated Animals

In an attempt to better understand the immune response and different physiological effects obtained in the two studies described in Examples 6 and 7, antisera produced in each test group was analyzed by Western Analysis against a variety of antigens including natural porcine ZPC, heat-solubilized dog zona pellucida (HSDZ), recombinant dog ZPA and ZPC, and recombinant pig ZPC. Western blots were probed with antiserum obtained from the test animals of Example 6, e.g., animals immunized with isoelectric focused, heat-solubilized porcine zona pellucida, and with antiserum obtained from the two test animals of Example 7 which contained antibodies against self-zona proteins.

The data demonstrate no recognition of recombinant porcine or canine ZPC by antisera from infertile, but cycling dogs immunized with heat solubilized porcine zona pellucida which contained no demonstrable ZPC by PAGE analysis, however, natural ZPC, HSDZ and recombinant canine ZPA were recognized. In contrast, antisera obtained from infertile dogs whose ovaries were depleted of oocytes recognized recombinant ZPC protein, i.e., the polypeptide backbone.

- 31 -

A key difference in the antibody recognition of antigen was that only the antisera obtained from dogs having ovaries devoid of oocytes appeared to recognize the recombinant dog ZPC antigen. Infertile dogs whose antisera strongly recognized natural ZPC, HSDZ, and recombinant dog ZPA demonstrated no recognition of recombinant dog ZPC.

Given that autoimmunity is essential for a contraceptive effect, these data suggest that infertility without histologically evident ovarian dysfunction can be obtained in dogs via an autoimmune response against dog ZPA antigens. In contrast, histologically confirmed ovarian dysfunction, i.e., loss of oocytes, which would result in permanent sterility, requires the generation of antibodies which specifically recognize homologous species ZPC protein.

# Example 9 Expression of Recombinant ZP Proteins

15

20

25

5

10

### I. Construction of Expression Vectors

The plasmid vector pZ90 shown in Fig. 1 was constructed from fragments of the plasmids pUC9 (Vierra & Messing, Gene 19:259-268 (1982)) and p $\beta$ gal2 (Queen, J. Mol. App. Gen. 2:1-10 (1983)). The single Pvu II restriction site present in p $\beta$ gal2 was converted to a Sal I site using a Sal I polylinker adaptor purchased from New England Biolabs. The DNA sequences between the new Sal I site and a pre-existing Sal I site were excised by digestion with Sal I, religated and screened for the reduced size plasmid.

A Cla 1 - Nde I fragment of the modified p $\beta$ gal2 plasmid which carried the  $\lambda$ CI repressor gene, the  $\lambda$ pR promoter and the Lac Z gene ( $\beta$ -galactosidase) was inserted into pUC9 between its Acc I and Nde I restriction sites. The pUC9 plasmid carries the ampicillin resistance (Amp<sup>R</sup>) gene and col EI replication origin (ori) needed to maintain the plasmid in E. coli cells. The combination plasmid was further modified to convert the Bam

5

10

15

20

HI site 3' of the ATG initiation codon (ATG GAT CCN) to a Bgl II site 5' of the ATG initiation codon (AGATCTATG). This was accomplished by partially digesting the plasmid with Rsa I. One of the several digestion points was about 20 bps 5' of the Bam HI restriction site. When the partially digested plasmid was digested with Bam HI, some of the plasmids produced were nearly full length. A synthetic oligomer (GTACTAAGGAAGATCTATGGATCC) (SEQ ID NO. 29) was produced to replace the sequence that had been removed (GTACTAAGGAGGTTGTATGGATCC) (SEQ ID NO. 30). The net effect of this replacement was the substitution of 3 bps to create the Bgl II restriction site. A DNA fragment containing approximately 3000 base pairs of the Lac Z gene was then excised by restriction digestion with Bgl I and Ban II and was followed by insertion of a synthetic oligomer containing a Bam HI site. The plasmid was cut with Bgl I and Ban II, and then treated with nuclease S1 to create blunt ends. A Bam HI linker (New England Biolabs) was inserted at the blunt ends of the digested plasmid. Next a Pvu II restriction site between the \( \lambda CI \) repressor gene and the ori sequence was converted to a Hind III site using a synthetic linker. The Pvu II restriction site was cut with Pvu II, and a Hind III linker (New England Biolabs) was ligated to the blunted ends. Because the remaining lac Z sequence was missing the first 8 codons of the natural sequence, these 8 codons were replaced by synthesizing a synthetic oligomer that began with a Bgl II site and encoded the lac Z wild type gene product ( $\beta$ gal) N-terminal sequence.

The synthetic oligomer was prepared by synthesizing four oligomers having the sequences set out in SEQ ID NO. 31 (oligomer 1), SEQ ID NO. 32 (oligomer 2), SEQ ID NO. 33 (oligomer 3), and SEQ ID NO. 34 (Oligomer 4). Oligomers 2 and 3 were phosphorylated by treating with kinase and ATP to add phosphate to the 5' end. Oligomers 1 and 2 were then hybridized to oligomers 3 and 4, respectively, by incubation at 100°C followed by a slow cooling in 200µM NaCl. The resultant oligomer had the sequence

set out in SEQ ID NO. 35. The synthetic oligomer as set out in SEQ ID NO. 35 had Bgl II-Pvu II ends and was substituted for the Bgl II-Pvu II sequence of the plasmid by restriction digestion of the plasmid and ligation with the oligomer.

5 The resultant plasmid was termed pZ90 and is shown in Figure 1. The plasmid pZ90 can be used to express recombinant proteins by heat induction, using the heat labile \( \lambda CI \) repressor. The heat-inducible repressor and promoter of pZ90 was next replaced with the chemically inducible promoter ptac (Amann et al., Gene 25:167-178 (1983)). The ptac promoter is controlled by the lac repressor, a product of the lac I gene (Farabaugh, 10 Nature 279:765-769 (1978)). The Lac I gene was obtained from pMC9 (Miller et al., The EMBO Journal 3:3117-3121 (1984)) by use of PCR methodology as described by Innis and Gelfand, In: PCR Protocols: A Guide to Methods and Applications, Innis, M.A., Gelfand, D.H., Sninsky, J.J. and 15. White, T.J. (eds)., pgs 1-12, Academic Press, Inc., San Diego, CA. The primers used were complimentary to the Lac I promoter at one end and the Lac I gene termination codon at the opposite end. The N-terminal primer carried a Hind III site and the C-terminal primer carried a tac promoter sequence followed by a Bgl II site. The N-terminal primer had the sequence set out in SEQ ID NO. 36. The C-terminal primer had the sequence as set out in SEQ ID NO. 37 which includes a Dra 3 site having the sequence 5'-CACAATGTG-3'. The resulting lac I - ptac DNA fragment having Hind III and Bgl II restriction sites at its respective ends was then used to replace the Hind III - Bgl II fragment of pZ90 which carried the  $\lambda CI$  repressor and  $\lambda pR$ promotor. This replacement yielded the plasmid pZ98 shown in Fig. 2.

20

25

### II. Insertion of Recombinant ZP DNA

DNA sequences encoding porcine ZPC were prepared by the PCR procedures described above (Innis & Gelfand) from the plasmid pZ57 prepared in Example 1, which contains the full length porcine ZPC sequence

obtained from  $\lambda$ gt11 clone 5-1 described for Example 1. During the PCR procedure the porcine ZPC gene was modified by using primers that did not include the leader sequence and the hydrophobic tail. The N-terminal primer used had the sequence set out in SEQ ID NO. 38 which included an internal Bam HI restriction site having the sequence 5'-GGATCC-3'. The C-terminal primer used had the sequence as set in SEQ ID NO. 39 includes a Sal I restriction site having the sequence 5'-CTCGAG-3' and an internal Xho I restriction site having the sequence 5'-CTCGAG-3'. The modified ZPC gene contained base pairs 105 to 1154 encoding ZPC amino acids 1-350.

5

10

15

20

To the 5' end of the modified porcine ZPC gene was added a Bam HI restriction site, and to the 3' end was added an Xho I site, a Hexa-CAT-codon sequence (CAT)<sub>6</sub>, a termination codon, and a Sal I restriction site. This modified porcine ZPC gene was inserted into the Bam HI - Sal I restriction site of pZ98 to yield the porcine ZPC expression vector, plasmid pZ156 shown in Fig. 3. The (CAT)<sub>6</sub> sequence produces a C-terminal hexahistidine (His<sub>6</sub>) amino acid sequence in the recombinant fusion protein which permits purification of the fusion protein by immobilized metal in affinity chromatography.

In a similar manner as described above, the plasmid pZ156 when digested with Bam HI and Xho I, may be used to receive any other recombinant ZP gene or gene fragment for expression as a  $\beta$ gal fusion protein which can be purified by metal ion affinity chromatography.

### III. Expression of Porcine ZPC Fusion Protein in E. coli

The expression vector pZ156 (Fig. 3) was transformed into E. coli strain Top 10F' (Invitrogen, San Diego, CA) by the procedure of Chung et al., Proc. Natl. Acad. Sci. USA 86: 2172-2175 (1989). The transformed E. coli cell line was termed Strain ZI 156, and was used to express recombinant porcine ZPC-βgal fusion protein.

Bacterial cultures of ZI 156 were grown in Luria Broth (LB) containing 100  $\mu$ g/ml ampicillin at 30°C until the cell density reached an OD<sup>600</sup> of approximately 1.5. Isopropyl beta-D-thiogalactopyranoside (IPTG) (3m1 of 100mM solution/ l media) was added to induce expression from the tac promoter, and the cells were further incubated at 30°C for 2-3 hours. The cells were harvested by centrifugation, and the resulting cell pellet was frozen at -70°C.

5

10

15

20

25

The frozen cell pellets were suspended in 10 mM EDTA (1g/2-2.5 ml) and twice sonicated at 50% power for 3 minutes, cooling in an ice bath between each sonication. The cell lysate was then centrifuged at 3300 x g for one hour and the hard pellet was retained. This lysis procedure was repeated using the hard pellets.

In order to remove residual EDTA, the final hard cellular pellet was dispersed in a small volume of water by a brief burst of sonication, the suspension was centrifuged, and the supernatant discarded. The washed pellet was thoroughly resuspended in Buffer A, (6M guanidine hydrochloride (GuHCl), 100 mM Na H<sub>2</sub>PO<sub>4</sub>, 10 mM TRIS pH 8, at approximately 0.5 ml per original gram of cell pellet). The suspension was centrifuged at 10,000 x g for 45 seconds and the supernatant was retained while the pellet was discarded.

The retained supernatant was loaded onto a Ni column (in Buffer A) and the column was washed with 10 column volumes of Buffer A. The column was next washed with 5 volumes each Buffers B-D, each containing 8M urea, 100mM NaH<sub>2</sub>PO<sub>4</sub>, and 10 mM TRIS, and having successively reduced pH values of 8, 6.3, 5.9 for Buffers B, C, and D, respectively. The recombinant pZPC-βgal fusion protein eluted with Buffer E, at pH 4.5 as shown by screening by Western Blot analysis using rabbit anti-HSDZ and anti-HSPZ as probes. Further elution may be accomplished using Buffer F (pH 2.5) (8M GuHCl<sub>2</sub> 200 mM Acetic Acid).

- 36 -

The fusion protein obtained by this protocol was prepared in its final dose for injection into a host animal by adjusting the final volume to 0.5 ml in 8M urea, and adding it to 0.5 ml adjuvant as described above. Each dose was injected subcutaneously into a test animal.

5

10

15

20

25

## Example 10

# Vaccination of Dogs with Recombinant ZPC-β gal Fusion Protein

Eleven mixed breed dogs approximately 5-6 months of age were randomly selected from test animals previously treated at approximately 2 months of age with heat solubilized porcine zona pellucida or chromatographically purified porcine ZP3 $\beta$  in combination with various biopolymers as adjuvants and drug releasing vehicles. Six weeks post first injection, i.e., three and a half months of age, all test animals had achieved antibody titers versus HSPZ in the range of 2-16K as determined by ELISA. However, none of the test animals achieved antibody titers against self-antigen, e. g., HSDZ.

At 5-6 months of age, five of the test animals were then injected with a loading dose of the porcine ZPC- $\beta$  gal fusion protein prepared as described for Example 9. The recombinant ZPC- $\beta$  gal fusion protein produced in Example 9 was adjusted to the desired dose in a final volume of 0.5ml 8M urea and combined with 0.5 ml adjuvant. The adjuvant, N-acetyl-D-glucosaminyl- $\beta$ (1,4)-N-acetyl muramyl-L-alanyl-D-isoglutamine (GMDP), 250 $\mu$ g, was dispersed in 0.42 ml mineral oil, 0.157 ml L-121 block polymers, and 0.02 ml Tween 80. Each dose was injected subcutaneously into the five test animals. The remaining 6 animals were maintained as controls.

- 37 -

Following a total of four injections given at 2-3 week intervals, antibody titers versus self antigen, e.g., HSDZ, were obtained in all test animals, with peaks in the range of 2-8 K as measured by ELISA.

Some of the control animals began to cycle beginning at approximately 9 months of age, and by 11 months of age, 4 of 6 control animals had experienced their first estrus. In contrast, none of the 5 test animals which had received recombinant ZPC- $\beta$  gal fusion protein had cycled during this same time period. However, although the first estrus was delayed for several months in the test animals, they eventually began to cycle. Two of the five vaccinated dogs became pregnant during their second estrus after immunization while a third dog became pregnant during its third estrus after immunization; however, the two remaining test animals remain infertile through three estrus cycles and nearly two years after vaccination.

5

10

15

20

25

#### Example 11

# Isolation of Human DNA Sequences Encoding Human Zona Pellucida Proteins ZPA and ZPB

A human genomic DNA library purchased from Stratagene (catalog no. 946203) was used for the isolation of DNA sequences encoding human ZP proteins. The library consisted of 9-23 kb inserts of human DNA (from placenta tissue of a male caucasian) cloned into the Lambda Fix<sup>TM</sup>II vector (Stratagene). Approximately 40,000 pfus were plated on *E. coli* strain LE 392 (Stratagene, catalog no. 200266), as described in the Stratagene protocol, but replacing MgSO<sub>4</sub> with MgCl<sub>2</sub>. After overnight incubation, nylon membrane lifts of the plaques were prepared and screened with <sup>32</sup>P-labelled porcine ZPA cDNA (SEQ ID NO. 1) and with <sup>32</sup>P-labelled porcine ZPB cDNA (SEQ ID NO. 3) as described in Example 2.

Three clones 1-1, 2-2, and 4-9 were shown to hybridize to the porcine ZPB cDNA (SEQ ID NO. 3). Clones 1-1 and 4-9 were deposited

with the American Type Culture Collection, (ATCC) 12301 Parklawn Drive, Rockville, Maryland, on January 27, 1993 under ATCC Accession Nos. 75406 and 75405, respectively. Human DNA inserts were isolated from these clones and analyzed by restriction endonuclease digestion with Eco RI and Southern blot analysis as described in Example 1. Table 4 shows the results of Eco RI digestion of these clones.

Table 4 HUMAN GENOMIC ZPB EcoRI INSERTS

| CLONES   |        |        |        |  |  |  |  |  |  |  |  |  |
|----------|--------|--------|--------|--|--|--|--|--|--|--|--|--|
| Fragment | 1-1    | 2-2    | 4-9    |  |  |  |  |  |  |  |  |  |
| Α        |        | 2.8 kb | 2.8 kb |  |  |  |  |  |  |  |  |  |
| В        | 2.2 kb |        |        |  |  |  |  |  |  |  |  |  |
| С        | 2.0 kb |        |        |  |  |  |  |  |  |  |  |  |
| D        | 1.5 kb |        | 1.5 kb |  |  |  |  |  |  |  |  |  |
| E        | 0.2 kb |        | 0.2 kb |  |  |  |  |  |  |  |  |  |
| F        | 3.2 kb | 3.2 kb | 3.2 kb |  |  |  |  |  |  |  |  |  |
| G        | 0.7 kb |        |        |  |  |  |  |  |  |  |  |  |

Southern blot analysis revealed four Eco RI fragments which were judged to carry ZPB coding sequences based on hybridization to the porcine ZPB cDNA (SEQ ID NO. 3). Clone 1-1 DNA included a 2.2 kb, 2.0 kb, and 1.5 kb Eco RI fragments which so hybridized. Clone 2-2 DNA included a 2.8 kb Eco RI hybridizing fragment. Clone 4-9 DNA included a 2.8 kb and a 1.5 kb Eco RI fragment which hybridized to the porcine ZPB cDNA probe. All inserts additionally included a 3.2 kb non-hybridizing Eco RI fragment; inserts from clones 1-1 and 4-9 both provided 0.2 kb nonhybridizing fragments; and clone 1-1 additionally provided a 0.7 kb nonhybridizing fragment.

20

25

5

- 39 -

Further restriction analysis revealed the fragment alignment shown in Figure 4. Six of the fragments (A-F) were subcloned into pBSKS for sequence analysis, as described in Example 1. Preliminary sequence analysis confirmed the fragment alignment shown in Figure 4, and suggested that the complete coding sequence of the human ZPB gene may be from clones 1-1 and 4-9. This was confirmed by nucleotide sequence analysis of the inserts, and comparison of the sequences with the feline ZPB sequence (SEQ ID NO. 15) and porcine ZPB sequence (SEQ ID NO. 3). The DNA sequence and deduced amino acid sequences for human ZPB are set out as SEQ ID NO. 40 and 41, respectively.

5

10

15

20

25

Clones hybridizing to the porcine ZPA cDNA (SEQ ID NO. 1) under the conditions described in Example 1 were also isolated. Two positive clones, A1 and A4 were identified. The clones were deposited with the American Type Culture Collection, 12301 Parklawn Drive, Rockville, Maryland 20852, on January 27, 1993 under ATCC Accession Nos. 75404 and 75403 respectively. Southern blot analysis revealed that these clones contain all or part of the human ZPA gene. DNA was isolated from these clones and was analyzed by Bgl II, Hind III, and Not I restriction endonuclease digestion and Southern blot analysis as described in Example 1. The size of the A1 clone DNA insert is approximately 11.6 kb, and that of the A4 clone is approximately 13.2 kb. Two of the Bgl II fragments which hybridized with the porcine ZPA cDNA (SEQ ID NO 1) were subcloned into pBSKS for sequence analysis, as described in Example 1. Sequence analysis revealed that A1 and A4 collectively contain the human ZPA gene as supported by comparison to sequences with the porcine ZPA cDNA (SEQ ID NO. 1) and the canine ZPA cDNA (SEQ ID NO. 11). The complete DNA sequence and the deduced amino acid sequence are set out as SEQ ID NOS. 42 and 43, respectively.

- 40 -

#### Example 12

## Isolation and Sequencing of DNA Encoding Cynomolgus Monkey ZPA, ZPB, and ZPC

Cynomolgus monkey cDNA libraries were constructed in \( \lambda gt10 \) 5 as described below. Briefly, a set of ovaries were collected from two female cynomolgus monkeys aged 1.5 years and 2 years, and a second set from three females aged 3 years, 4 years, and 14 years of age. Messenger RNA was isolated using the Fast Track™ mRNA isolation kit following the manufacturer's instructions. The cDNA was prepared using the Lambda Librarian™ (Invitrogen, as described in Example 2) kit following the protocol provided with the kit. The cDNA was packaged into lambda phage heads using the Protoclone® (Promega, Madison, WI) \( \lambda gt10 \) EcoRI arms plus the Packagene® (Promega) lambda DNA packaging system following the manufacturer's instructions. This procedure generally produced libraries with a titer of greater than 1 x 106 pfu/ml. The monkey cDNA library was then screened using porcine ZPA, ZPB, and ZPC probes isolated from the porcine cDNA as described in Example 1. Screening was accomplished by preparing duplicate plaque lifts using Nytran® nylon filters (0.2µM pore size). The filters were prehybridized in a solution of 5x SSPE (43.83 g/l of NaCl, 6.9 g/l of NaH<sub>2</sub>PO<sub>4</sub>, H<sub>2</sub>O, 1.85 g/l of EDTA, pH 7.4), 5x Denhardts Reagent (1 g/l of Ficoll [type 400], 1 g/l of polyvinylpyrrolidone and 1 g/l bovine serum albumin), 100μg/ml sonicated, denatured salmon sperm testes DNA, 30% formamide, and 0.5% SDS, for 3 hrs. at 42°C. Radio-labelled probes were prepared using  $[\alpha - {}^{32}P]$  -dATP and the Prime-a-Gene® (Promega) labelling system. After prehybridization, 10 ng of freshly radio-labelled probe was heat denatured at 95°C for 5 minutes in 50% formamide and 100 µg/ml sonicated, denatured salmon testes DNA, and was added to the filters. The hybridization was carried out at 42°C for 15-24 hours. The hybridized filters were then washed twice with 100 ml of 5X SSPE at 55°C, for approximately one hour

10

15

20

25

each wash. The filters were then rinsed in 250 ml of 5X SSPE at 55°C and allowed to air dry. The dried filters were exposed to x-ray film (Kodak XAR5, Eastman Kodak, Rochester NY) at -70°C using two intensifying screens (Kodak X-OMATIC<sup>TM</sup>) for at least eight hours. The film was then developed for visual analysis.

5

10

15

20

25

30

Exhaustive screening of the two cynomolgus monkey ovarian cDNA libraries using all of the porcine probes yielded a total of 12 candidate clones. Southern hybridization revealed that only one of these clones (λ CM 4-2) hybridized to the porcine ZPA probe. This clone contained an insert of 560 bp. Sequencing of the insert was performed using the Sequenase® Version 2 kit (U.S. Biochemicals, Cleveland, Ohio) according to the manufacturer's instructions. Sequencing revealed that the 560 bp insert was homologous to the 3' end of other mammalian ZPA genes. The 560 bp fragment represents just under 25% bp of the full-length sequence and contains an open reading frame of 492 bp which would encode a protein of 164 amino acids. The DNA sequence and the deduced amino acid sequence of the cynomolgus monkey ZPA cDNA is set out as SEQ ID NOS. 44 and 45, respectively.

Exhaustive screening of the cynomolgus monkey ovarian cDNA libraries with the porcine ZPB probe yielded a single ZPB candidate clone having an insert of 866 bp. Sequence analysis suggests that the insert includes the C-terminal 50% of the expected full-length sequence. The DNA sequence and deduced amino acid sequence of the monkey ZPB insert are set out as SEQ ID NOS. 46 and 47, respectively. Screening of monkey ovarian cDNA libraries with the porcine ZPC DNA probe yielded only partial ZPC clones, the largest (λ CM1-1) having an insert of approximately 1300 bp which contains just over 50% of the C-terminal portion of the full-length sequence based on comparison to known ZPC clones, (particularly the human ZPC clone). The clone contains an open reading frame of 672 bp which would encode a protein of 224 amino acids. The clone also contains stop codons

- 42 -

immediately 5° to the coding sequence in all three reading frames. The DNA sequence and the deduced amino acid sequence of the cynomolgus monkey ZPC clones are set out as sequence ID NOS 48 and 49 respectively.

## Example 13

# Comparison of ZPA DNA and Deduced Amino Acid Sequences

5

Table 5 shows a comparison of the DNA and deduced amino-acid sequence of mammalian ZPAs.

TABLE 5
ZPA HOMOLOGY

| Mouse         Rabbit         Pig         Cow         Dog         Cat         Monkey         HI           Rabbit         73.0%         54.2%         60.8%         57.9%         56.9%         57.2%         58           Rabbit         73.0%          63.0%         69.8%         66.2%         64.6%         57.2%         58           Pig         69.0%         75.6%          79.9%         69.6%         70.2%         56.9%         63           Cow         70.5%         79.0%         86.2%          78.3%         77.8%         59.0%         63           Dog         70.4%         77.2%         80.4%         84.8%          83.1%         66.9%         67           Monkey         56.6%         77.5%         81.3%         84.7%         88.9%          65.5%         67           Human         68.4%         74.6%         77.3%         96.3%         77.3%         96.3%         96.3%         96.3%         96.3%         96.3%         96.3%         96.3%         96.3%         96.3%         96.3%         96.3%         96.3%         96.3%         96.3%         96.3%         96.3%         96.3%         96. |         |        |        |            |        |        |       | PROTEIN HOMOLOGY | OMOLOGY |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|--------|------------|--------|--------|-------|------------------|---------|
| 61.0%         54.2%         60.8%         57.9%         Cat         Monkey           73.0%          63.0%         69.8%         66.2%         56.9%         57.2%           69.0%         73.0%         69.8%         66.2%         64.6%         57.2%           70.5%         75.6%          79.9%         69.6%         70.2%         56.9%           70.4%         77.2%         86.2%          78.3%         77.8%         59.0%           69.6%         77.5%         81.3%         84.7%         88.9%          65.5%           56.7%         56.7%         57.0%         59.2%         58.4%          65.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | Mouse  | Rabbit | Dia        | ,      |        |       |                  |         |
| 61.0%         54.2%         60.8%         57.9%         56.9%         57.2%           73.0%          63.0%         69.8%         66.2%         64.6%         57.2%           69.0%         75.6%          79.9%         69.6%         70.2%         56.9%           70.5%         70.4%         77.2%         86.2%          78.3%         77.8%         59.0%           69.6%         77.5%         81.3%         84.7%         88.9%          65.5%           56.7%         56.6%         57.0%         59.2%         58.4%          65.5%           68.4%         74.6%         73.7%         63.1%         74.4%         75.3%         96.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |        |        | <u>2</u> 0 | Co≪    | Dog    | Cat   | Monkey           | Human   |
| 73.0%          63.0%         69.8%         57.9%         56.9%         57.2%           69.0%         75.6%          63.0%         69.8%         66.2%         64.6%         65.1%           70.5%         75.6%          79.9%         60.6%         70.2%         56.9%           70.4%         77.2%         86.2%          78.3%         77.8%         59.0%           69.6%         77.5%         81.3%         84.7%         88.9%          65.5%           56.7%         56.6%         73.7%         63.1%         74.4%         75.3%         96.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mouse   | ;      | 610%   | # C 7 3    |        |        |       |                  |         |
| 73.0%          63.0%         69.8%         66.2%         64.6%         65.1%           69.0%         75.6%          79.9%         69.6%         70.2%         56.9%           70.5%         79.0%         86.2%          78.3%         77.8%         59.0%           70.4%         77.2%         80.4%         84.8%          83.1%         66.9%           69.6%         77.5%         81.3%         84.7%         88.9%          65.5%           56.7%         56.6%         57.0%         59.2%         58.4%          65.5%           68.4%         74.6%         73.7%         63.1%         74.4%         75.3%         96.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |        | 01.070 | 34.2%      | 80.8%  | 27.9%  | 56.9% | 57.2%            | 58.00%  |
| 69.0%         75.6%          79.9%         66.2%         64.6%         65.1%           70.5%         75.6%          79.9%         69.6%         70.2%         56.9%           70.5%         79.0%         86.2%          78.3%         77.8%         59.0%           70.4%         77.2%         80.4%         84.8%          83.1%         66.9%           69.6%         77.5%         81.3%         84.7%         88.9%          65.5%           56.7%         56.6%         57.0%         59.2%         58.4%          65.5%           68.4%         74.6%         73.7%         63.1%         74.4%         75.3%         96.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Rabbit  | 73.0%  | ;      | 20029      | 200    |        |       |                  | 20.270  |
| 69.0%         75.6%          79.9%         69.6%         70.2%         56.9%           70.5%         79.0%         86.2%          78.3%         77.8%         59.0%           70.4%         77.2%         80.4%         84.8%          83.1%         66.9%           69.6%         77.5%         81.3%         84.7%         88.9%          65.5%           56.7%         59.6%         56.6%         57.0%         59.2%         58.4%            68.4%         74.6%         73.7%         63.1%         74.4%         75.3%         96.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |        |        | 0.50       | %8.60  | 66.2%  | 64.6% | 65.1%            | 68 0%   |
| 70.5%         79.0%         86.2%          79.9%         69.6%         70.2%         56.9%           70.4%         77.2%         86.2%          78.3%         77.8%         59.0%           69.6%         77.5%         81.3%         84.7%         88.9%          65.5%           56.7%         56.6%         57.0%         59.2%         58.4%          65.5%           68.4%         74.6%         73.7%         63.1%         74.4%         75.3%         96.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pig     | %0.69  | 75.60% |            |        |        |       |                  | 00.570  |
| 70.5%         79.0%         86.2%          78.3%         77.8%         59.0%           70.4%         77.2%         80.4%         84.8%          83.1%         66.9%           69.6%         77.5%         81.3%         84.7%         88.9%          65.5%           56.7%         56.6%         57.0%         59.2%         58.4%          65.5%           68.4%         74.6%         73.7%         63.1%         74.4%         75.3%         96.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |        | 9,0.6, | :          | 79.9%  | %9.69  | 70.2% | 26.9%            | 63.00   |
| 70.4%         77.2%         80.4%         84.8%          78.3%         77.8%         59.0%           69.6%         77.2%         80.4%         84.8%          83.1%         66.9%           56.7%         56.6%         57.0%         59.2%         58.4%          65.5%           68.4%         74.6%         73.7%         63.1%         74.4%         75.3%         96.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cow     | 70.5%  | 70 0%  | 200 70     |        |        |       |                  | 02.2%   |
| 70.4%         77.2%         80.4%         84.8%          83.1%         66.9%           69.6%         77.5%         81.3%         84.7%         88.9%          65.5%           56.7%         59.6%         56.6%         57.0%         59.2%         58.4%            68.4%         74.6%         73.7%         63.1%         74.4%         75.3%         96.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |        | 0,0.21 | %7.00      | ;      | 78.3%  | 77.8% | 59.0%            | W) 63   |
| 69.6%         77.5%         81.3%         84.8%          83.1%         66.9%           69.6%         77.5%         81.3%         84.7%         88.9%          65.5%           56.7%         59.6%         56.6%         57.0%         59.2%         58.4%            68.4%         74.6%         73.7%         63.1%         74.4%         75.3%         96.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dog     | 70 4 % | 77.00  |            |        |        |       | 20.00            | 02.0%   |
| 69.6%         77.5%         81.3%         84.7%         88.9%          65.5%           56.7%         59.6%         56.6%         57.0%         59.2%         58.4%            68.4%         74.6%         73.7%         63.1%         74.4%         75.3%         96.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0       | 0/1.0/ | %7.//  | 80.4%      | 84.8%  | ;      | 83 1% | # O 77           |         |
| 56.7%         59.6%         56.6%         57.0%         59.2%         59.2%         58.4%          65.5%           68.4%         74.6%         73.7%         63.1%         74.4%         75.3%         96.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Į.      | 60 60  | 201    |            |        |        | 2000  | 00.3%            | 67.5%   |
| 56.7%         59.6%         56.6%         57.0%         59.2%         58.4%            68.4%         74.6%         73.7%         63.1%         74.4%         75.3%         96.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | 07.070 | %5.//  | 81.3%      | 84.7%  | 88.9%  | :     | m 3 33           |         |
| 59.7%         59.6%         56.6%         57.0%         59.2%         58.4%            68.4%         74.6%         73.7%         63.1%         74.4%         75.3%         96.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Monkey  | WL 75  |        |            |        |        |       | 03.3%            | 67.4%   |
| 68.4%         74.6%         73.7%         63.1%         74.4%         75.3%         96.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ommey   | 20.7%  | 29.6%  | 26.6%      | 57.0%  | 80 20% | 50 10 |                  |         |
| 68.4% 74.6% 73.7% 63.1% 74.4% 75.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11      |        |        |            |        |        | 30.4% | ;                | 95.8%   |
| 75.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rammari | 68.4%  | 74.6%  | 73 7%      | W 1 63 |        |       |                  |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |        |        | ?          | 03.1%  | 74.4%  | 75.3% | 96 3%            |         |

DNA HOMOLOGY

- 44 -

Data is presented as a cross-wise comparison of the ZPA protein and DNA sequences. The comparison of the protein sequences are shown in the upper right hand side of the table, above the diagonal dashed lines. The comparison of the DNA sequences are shown in the lower left hand side of the table, below the diagonal dashed lines. The ZPA DNA and deduced amino acid sequences are highly homologous between species. The homology is highest between members of the same order within the class mammalia. For example, the human and cynomolgus monkey (primata), the pig and cow (ungulata), and the cat and dog (carnivora) sequences have the most similarity. The high degree of homology between the ZPA genes, as well as between the ZPB (see Example 14) and ZPC (Example 15) genes from a variety of mammalian species, implies a great deal of structural similarity in the ZP layers of these species. However, post-translational modification differences such as glycosylation and others, could represent a potential source of variation.

5

10

15

20

25

One protein processing site that all of these ZPA proteins have in common is a furin cleavage site (R-X-R/K-R; Hosaka et al. J. Biol. Chem, 266:12127 (1991)) near the C-terminal end of the protein. In fact, with only a few exceptions, all ZP proteins contain a furin processing site near the C-terminus This furin site could serve to cleave off a putative membrane anchor sequence which would allow the processed proteins to move toward the outer edge of the growing ZP layer.

The human ZPA gene contains an exon near the 3' end that is present in the cynomolgus monkey ZPA sequence, but not present in the ZPA genes from other species. This extra exon codes for an amino acid sequence that occurs after the furin processing site, which suggests that the C-terminal fragment generated by furin cleavage might still be important to the function of the ZP layer or to the oocyte in some way.

There are 20 conserved cysteine residues and one or two nonconserved cysteine residues in each of the full-length ZPA sequences. The

non-conserved cysteine residues occur either in the N-terminal leader sequence region, or in the extreme C-terminal region of the sequence, where a large amount of the variation between the ZPA sequences occurs. The high degree of homology and the large number of conserved cysteine residues suggests that the tertiary structures of the ZPA proteins are similar.

5

10

15

20

It has been noted previously that there are regions of homology between the ZPA and ZPB class proteins (Schwoebel et al. J. Biol. Chem., 266:7214 (1991); Lee et al. J. Biol. Chem, 268: 12412 (1993); Yurewicz et al. Biochem. Biophys. Acta 1174:211 (1993)). Comparison of the human ZPA genomic structure with the human ZPB genomic structure shows these regions to be confined to exons 12, 13, and 14 of the human ZPA gene and exons 5, 6, and 7 of the human ZPB gene. This suggests that this homology might be due to a partial ancestral gene duplication. The ZPB proteins contain 21 conserved cysteine residues. The first 11 of these do not align with those in the ZPA proteins, but the last 10 match well. This extends the homology to approximately 270 amino acids, covering exons 11-16 of the ZPA gene and exons 4-9 of the ZPB gene, although the overall homology of the expanded region is slightly lower (approximately 43%). The remainder of the ZPA and ZPB genes show very little homology with each other, and the ZPC genes also show no extensive homology to the ZPA genes. In addition, the ZPA gene has no extensive sequence similarity to non-ZP nucleic acid and protein sequences in Genbank and the SwissProt data banks.

#### Example 14

# Comparison of ZPB DNA and of Deduced Amino Acid Sequences

Table 6 shows the comparison of the six known ZPB DNA and protein sequences (the bovine and cynomolgus cDNA fragments are only compared to the corresponding regions of the other full-length ZPB sequences).

TABLE

ZPB HOMOLOGY

|          |         |        |         |        | PROTEIN   | PROTEIN HOMOLOGY |
|----------|---------|--------|---------|--------|-----------|------------------|
|          | Kabbit  | Bovine | Porcine | Feline | C Monkey  |                  |
| Rabbit   |         | # C 3L |         |        | C. MOHACY | Human            |
|          |         | 73.3%  | 65.3%   | 60.1%  | 70.7%     | mc 37            |
| Bovine   | 78 8%   |        |         |        |           | 03.2%            |
|          | 0.0.0   | :      | 82.3%   | 71.2%  | 60 0%     | 77.00            |
| Porcine  | 74 70   |        |         |        | 07:270    | 69.6%            |
|          | 14.4.70 | 86.2%  | :       | 63 7%  | m) ()     |                  |
| Feline   | 2000    |        |         | 200    | 02.0%     | 63.1%            |
| , cillic | 09.5%   | 78.7%  | 72.9%   |        |           |                  |
| C Monton |         |        |         |        | /0.3%     | 64.6%            |
| · monvey | /8.9%   | 78.5%  | 78.2%   | 78.6%  |           |                  |
| Hilman   | 50.75   |        |         |        | :         | 92.3%            |
|          | /4.3%   | 80.8%  | 73.3%   | 74 7%  | 200       |                  |

DNA HOMOLOGY

The data are presented as cross-wise comparison of the ZPB protein and DNA sequences. The comparison of the protein sequences are shown in the upper right hand side of the table, above the diagonal dashed lines. The comparison of the DNA sequences are shown in the lower left hand side of the table, below the diagonal dashed lines.

The data shows considerable ZPB homology among members of different mammalian species. As was the case with ZPA, this homology is most pronounced between members of the same order within the class mammalia. For example, the human and cynomolgus monkey sequences (primata) and the pig and cow sequences (ungulata) have the most homology to each other. With only a few exceptions (noted below), the ZPB sequences show no homology to other DNA or protein sequences in the GenBank or SwissProt databases. Hybridization experiments suggest that the ZPB transcripts are ovary specific.

15

10

5

Comparisons of the deduced amino acid sequences of the ZPB clones show more divergence within this genetic group than within the ZPA and ZPC groups. Comparison of the rabbit ZPB and porcine ZPB shows the sequences to be predominantly collinear (74% homologous) except that the rabbit has an additional upstream ATG codon which adds six codons to the rabbit sequence.

20

The feline ZPB sequence has two additional amino acid inserts, which total 38 additional codons, in the first quarter of the gene, compared to the porcine and rabbit sequences. Both inserts occur just after cysteine residues, which suggests that if the cysteines are involved in disulfide bridges, these regions might form unique epitopes. However, the feline gene is still 73% homologous to porcine gene and 70% homologous to the rabbit gene.

25

30

The human gene has a sequence homologous to the first of the inserts in the cat sequence, but not the second. However, there are consensus splice site donor and acceptor sequences adjacent to this extra region in the human sequence, which if used would leave the coding sequence in frame.

Therefore, the sequence representing exon 2 could actually be two small exons (122 and 103 bp) separated by a small intron (84 bp). This would make the human sequence in this region identical to the pig sequence. The first extra region in the cat sequence is also flanked by in frame splice site donor and acceptor signals. If the extra region was removed from the cat sequence, it would differ from the pig sequence by only a single amino acid. However, the cat sequence was obtained from a cDNA clone made from an mRNA that appears to be fully processed. The second extra region in the cat sequence does not contain in frame splice site donor or acceptor signals, and therefore is probably not due to the presence of an unprocessed intron.

5

10

15

20

25

The cynomolgus monkey and human sequences have an additional seven codons at the C-terminus when compared to the other ZPB sequences. In the cynomolgus monkey, this is due to a two-base pair deletion, which causes a frameshift mutation which puts the termination codon used by the other species out of frame. The human sequence also contains this deletion, but in addition, there is also a base change that eliminates this termination codon.

There are 21 conserved cysteine residues in the ZPB proteins, the final 10 of which occur in a region that has homology to the ZPA proteins. This homology was noted previously (Schwoebel et al., supra; Lee et al. supra, 1993; Yurewicz et al. supra, 1993), but examination of the genomic structure of the human ZPA and ZPB genes allowed the homology to be extended to approximately 270 amino acids. This homology could be due to a partial ancestral gene duplication. In addition to the conserved cysteine residues, the pig ZPB protein contains one additional cysteine residue in the putative leader sequence, and the human sequence contains four additional cysteine residues. The first of these is in the putative leader sequence (in a different location than pig), the second is in the region containing the additional insert, and the last two are in the C-terminal

extension caused by the mutated termination codon. These last two extra cysteine residues are conserved in the cynomolgus monkey sequence.

5

10

15

20

25

30

All of the ZP proteins contain a putative transmembrane domain near the C-terminus. However, the canonical furin proteolytic processing signal (R-X-R/K-R, Hosaka et al. supra, 1991), which occurs just prior to the transmembrane domain in all of the ZPA and ZPC proteins, is altered in the human (S-R-R-R), cynomolgus monkey (S-R-R-N) and rabbit (S-R-R-R) ZPB sequences. The significance of this is unknown, but it may indicate that these proteins are processed by a related system with specificity for di- or tribasic sequences, since the release of the putative transmembrane domain would be necessary for the ZPB protein to move as the ZP layer grows. There appears to be a great deal of proteolytic processing of the pig ZPA and ZPB (Yurewicz et al. supra,) proteins. There is no data concerning the posttranslational modification of the ZPB proteins of cat, cow, cynomolgus The physiologic significance of this processing is monkey or human. unknown, but differential processing would present an avenue of variation among species of the highly conserved ZP proteins.

There is a question of whether humans actually transcribe the ZPB gene. Since the amount of human ovarian mRNA recovered was so small, there was not enough RNA to both construct a cDNA library and perform a Northern analysis. However, since cynomolgus monkey transcribes the ZPB gene, it is probable that the highly homologous human ZPB gene is also transcribed.

The apparent lack of a ZPB cDNA in the dog cDNA library is another puzzle. All of the libraries screened which contained any zona pellucida gene contained all three genes, except the dog. However, mRNA isolated from the ovary of a six-month old dog (the library was made from the ovary of a four-month old dog), includes a ZPB mRNA that comigrates with the porcine and cynomolgus monkey ZPB mRNA on a Northern blot. One possibility to explain the lack of a canine ZPB cDNA is that the transcriptional

- 50 -

timing of the three ZP genes is spread out, and since the ovary used to make the library was young, the transcription of the ZPB gene occurs later than the ZPA and ZPC genes (Andersen and Simpson, 1973).

## Example 15

# 5 Comparison of ZPC DNA and Deduced Amino Acid Sequences

Table 7 shows the comparison of the DNA and deduced amino acid sequences from all of the ZPC cDNAs and genes.

TABLE 7

ZPC HOMOLOGY

|           |           |         |         |        |       |        | G      | PROTEIN HOMOLOGY | MOLOGY    |    |
|-----------|-----------|---------|---------|--------|-------|--------|--------|------------------|-----------|----|
|           | Mouse     | Hamster | Rabbit  | Pig    | Cow   | Dog    | Cat    | Monkey           | Luman     |    |
| Mouse     | 1         | 78.8%   | 65.9%   | 65.6%  | 64.00 |        |        | famous           | nullall   |    |
| Usmate    |           |         |         | 02:0%  | 04.0% | 64.7%  | 63.3%  | 64.4%            | 67.0%     |    |
| nallister | 84.1%     | :       | 62.9%   | 65.6%  | 63.5% | 65.1%  | 63.6%  | 68.2%            | 88.00%    | _  |
| Rabbit    | 70.1%     | 71.3%   | 1       | 68.2%  | 68.5% | %8 3%  | 67 19  |                  | 00.00     |    |
| Pie       | 71.5%     | 72.0%   |         |        |       |        | 04:1/9 | 39.4%            | 68.5%     | _  |
|           | 9/ C: 1 / | 72.0%   | /4.6%   | ;      | 83.6% | 75.7%  | 72.8%  | 69.2%            | 73.7%     | _  |
| Cow       | 70.5%     | 71.4%   | 70 S VL | W 2 70 |       |        |        |                  |           |    |
|           |           |         | 0/5.7   | 00.3%  | :     | 74.5%  | 72.8%  | 67.4%            | 71.1%     |    |
| Dog       | 70.1%     | 71.9%   | 71.5%   | 79.8%  | 80.3% | ;      | 70 70% | ш3 33            |           | 7  |
| Çat       | 70 00     | 2) 11   |         |        |       |        | 0/7:71 | 00.3%            | %1.0/     |    |
|           | 0.5.01    | /1.0%   | /3.0%   | 79.3%  | 80.0% | 84.3%  | +      | 71.1%            | 70 S OL . | +- |
| Monkey    | 72.4%     | 74 1%   | 71.30   | 2000   |       |        |        |                  | 0/ 0.07   | -  |
|           |           |         | 0.1.7   | /0.0%  | 77.2% | 73.8%  | 77.8%  | ŀ                | %9.06     |    |
| Human     | 74.1%     | 75.0%   | 76.2%   | 80.0%  | 79.6% | 77 70  | 8000   |                  |           | _  |
|           |           |         |         |        | 20.   | 0//:// | /8.8%  | 94.4%            | :         | _  |
|           |           |         |         |        |       |        |        |                  |           | =  |

DNA HOMOLOGY

The data are presented as a cross-wise comparison of the ZPC protein and DNA sequences. The comparison of the protein sequences are shown in the upper right hand side of the table, above the diagonal dashed lines. The comparison of the DNA sequences are shown in the lower left hand side of the table, below the diagonal dashed lines.

5

10

15

20

25

30

ZPC proteins and DNA sequences show a higher degree of homology than the ZPA and ZPB DNAs and proteins. As was the case with ZPA and ZPB, the homology is most pronounced in members of the same order within the class mammalia; the human and cynomolgus monkey sequences (primata), the cat and dog sequences (carnivora), the pig and cow sequences (ungulata), and the mouse and hamster sequences (rodenta). The ZPC transcripts are ovary specific, based on Northern blot analysis and comparison to the sequences in the GenBank and SwissProt databases detects no significant non-ZP homology. Comparison of the deduced amino acid sequences of the known ZPC genes detects three regions that contain large numbers of non-consensus sequences. These regions are: the putative leader sequences and the first 20-25 amino acids of the mature protein; the region containing the peptide that was identified as a sperm-binding region in the mouse (Millar et al. Science 216:935-938 (1989)); and the C-terminal region of the proteins that might be removed from the mature protein at the furin processing site (see below).

The epitope identified as a putative sperm-binding site (Millar et al. supra, 1989) occurs immediately before a furin proteolytic cleavage site (Hosaka et al., 1991). The furin site (R-X-R/K-R) is highly conserved in all of the ZPC sequences. However, it should be noted that the canine ZPC sequence contains a second furin site, 19 amino acids upstream from the first furin site. Also as is the case with ZPA and ZPB, cleavage by furin of the ZPC proteins would remove a putative membrane anchor sequence (Klein et al., 1985), which would allow the processed ZPC protein to move toward the outer layer of the expanding oocyte. Therefore, this sperm-binding site

- 53 -

probably represents the C-terminus of the mature proteins. However, there is very little homology (even between hamster and mouse) in the regions of the ZPC proteins corresponding to this epitope. This might indicate that this region contributes to the species specificity of sperm-egg binding.

The variation that is seen at the C-terminus of the ZPC proteins occurs in the putative transmembrane region. This variation could indicate that this amino acid sequence is less important than the overall hydrophobicity of the amino acids in this region, similar to the lack of homology seen in leader sequences. However, it is also possible that this variation signifies a species-specific function for this region.

5

10

15

25

Each ZPC sequence contains 14 conserved cysteine residues, but each sequence also has one or two extra cysteine residues that are shared only with one or a few other sequences. These extra cysteine residues are near the N- or C-terminus of the proteins, where the greatest sequence variation exists. However, the large number of conserved cysteine residues probably indicates that the overall structure of the central core of all of these proteins is quite conserved.

## Example 16 Immunization of Cynomolgus Monkeys With HSPZ

20 A sexually mature cynomolgus monkey was immunized with HSPZ to test the ability of HSPZ to induce infertility. HSPZ was prepared as described in Example 6. HSPZ was mixed with the following GMDP/oil adjuvant. 50 μg GMDP (N-acetyl-D-glucosaminyl-(β1-4)-N-acetylmuramyl-Disoglutamine) (CC. Biotech, Poway, CA); 42.1 of mineral oil, 15.8% pluronic VC-121 (block polymer polyols, BASF-Wyandotte, Parsippany, NJ). The animal received a series of 4 subcutaneous injections of 1 mg of HSPZ in the GMDP/oil adjuvant beginning with a priming dose followed four weeks later by a booster dose, which was followed by two booster doses five weeks apart

- 54 -

which were followed six weeks later by a final dose. This dosage regimen resulted in an anovulatory monkey having antibody titers against its cynomolgus monkey heat-solubilized zona pellucida prepared as described for HSPZ. The peak antibody titers to cynomolgus monkey HSPZ were 1:8000-1:16,000.

5

10

15

20

25

A fractionated preparation of HSPZ which is essentially native porcine ZPA and ZPB was prepared by isoelectric focusing, as described in Example 6 and was used to vaccinate cynomolgus monkeys using 1 mg of fractionated HSPZ in GMDP/oil injected subcutaneously according to the following schedule: a priming dose was given followed approximately 6 weeks later by a booster dose followed by a final booster dose 11 weeks after the previous booster dose. The immunized monkeys achieved peak antibody titers of 1:4,000-1:8,000 against monkey heat-solubilized zona pellucida while maintaining a regular ovulatory cycle. However, despite maintaining a regular ovulatory cycle, the monkeys remained infertile until their antibody titers to monkey heat-solubilized zona pellucida fell below 1:500 after which the animals became pregnant upon breeding.

Immunization of cynomolgus monkeys with recombinant baculovirus produced canine ZPC and porcine ZPC (prepared as described in Example 18) failed to induce infertility despite inducing antibody production against monkey heat-solubilized zona pellucida. One possible explanation for this is that the glycosylation pattern of ZP proteins produced in the baculovirus system may prevent recognition of the epitopes responsible for induction of infertility.

Bacterially produced porcine ZPA, ZPB, and ZPC described above administered to cynomolgus monkeys failed to induce detectable antibody titers against cynomolgus monkey heat-solubilized zona pellucida even though antibody titers against the presented antigens were produced.

- 55 -

#### Example 17

# Mapping of Mammalian Zona Pellucida Protein Epitopes

A Pin Technology™ Epitope Scanning Kit purchased from Chiron Mimotopes U.S., Emeryville, CA (Catalog No. PT-02-20000A) was used for mapping epitopes in Zona Pellucida proteins. The procedures described in the kit manual were followed, with the exception of modifications in the ELISA testing procedure (described below).

5

10

15

20

25

Briefly, Pin Technology software was installed in a United Business Machines 486/33 computer according to the manufacturer's instructions. The protein sequence was entered into the computer program, the desired peptide length, and degree of overlap between peptides were selected, and a protocol containing the daily requirements of activated protected amino acid derivatives and their location in the coupling tray wells was printed. Prior to use, the pins were first washed once with dimethylformamide (DMF), and then with methanol three times, each wash lasting for two minutes. The pin block was air dried and the pins were deprotected by agitation in a 20% mixture of piperidine in DMF at room temperature for 30 minutes. The pins were washed again as described above, except that the washes were for 5 minutes each, and the pin block was then air dried. The required amino acid derivative solutions were prepared and dispensed into the wells of the synthesis tray according to the protocol for the current cycle. The dried mimotope pins were washed once more in a DMF bath for 5 minutes and then positioned appropriately in the wells of the synthesis tray. The assembly was then sealed in a plastic bag and incubated at 30°C for approximately 22 hours. On the following day, the pin block was removed from the coupling tray and subjected to the same cycle of washing, deprotection, and coupling steps as outlined above; however, using the amino acid derivatives and their tray location appropriate to the next cycle. The

foregoing cycle of washing, deprotection, washing, and coupling was repeated until the peptide sequences were completed.

After coupling the terminal amino acids of the peptides, the pin block was washed, air dried, deprotected, washed and air dried as before. The terminal amino groups of the peptides were then acetylated by immersion of the pins in a mixture containing 5 parts DMF, 2 parts acetic anhydride, and 1 part triethylamine, by volume, dispensed in the wells of a polypropylene coupling tray, and incubating at 30°C for 90 minutes. The pin block was removed, subjected to another washing sequence as before, and air dried.

Side chain deprotection of the peptides was performed by agitating the pin block in a mixture containing 95 parts trifluoroacetic acid, 2.5 parts anisole, and 2.5 parts ethanedithiol, by volume, at room temperature for 4 hours. The pin block was then air dried for approximately 10 minutes, sonicated in a bath containing 0.1% hydrochloric acid in a mixture containing equal parts of methanol and deionized water, by volume, for 15 minutes, and finally air dried.

Prior to ELISA testing, the pins were subjected to a disruption procedure involving sonication in a bath consisting of a mixture containing 39 parts sodium dihydrogen orthophosphate, 25 parts sodium dodecyl sulfate, 0.1 part 2-mercaptoethanol, and 2500 parts deionized water, by weight, adjusted to pH 7.2 with 50% sodium hydroxide solution. The sonication was performed at 55 to 60°C for approximately 45 minutes. The pin block was then washed by immersion with gentle agitation in three sequential baths of deionized water at 60 degrees for three minutes each. Finally, the pin block was immersed in gently boiling methanol for approximately 4 minutes and then air dried.

## Preparation of Antisera

5

10

15

20

25

Antisera directed against zona pellucida proteins was prepared by immunizing the appropriate animals with the appropriate zona pellucida

protein using procedures well known in the art and described in E. Harlow and D. Lane in Antibodies, A Laboratory Manual, Chapter 5, Cold Spring Harbor Laboratory, 1988 which is incorporated herein by reference. Biotinylated antisera was prepared by a modification of the procedure described in Harlow supra (page 314). Briefly, to a solution containing between 1 and 3 mg per ml of the selected antibody IgG fraction in phosphate buffer with saline (PBS) at pH 7.2 was added a solution containing 25 to 250 micrograms biotinamidocaproate, N-hydroxysuccinimide ester (Sigma, Cat No. B2643) in dimethyl sulfoxide at a concentration of 10 mg/ml. The mixture was mixed well and then incubated at room temperature for 4 hours. One molar ammonium chloride solution in the amount corresponding to 20 microliters per 250 micrograms biotin ester was added, and the resulting mixture was incubated at room temperature for 10 minutes. Unreacted biotin ester was then removed by extensive diafiltration with PBS using a Centricon-30 (TM) microconcentrator devices (Amicon Division, W.R. Grace & Co., Inc., Beverly MA). The dilution factor for the resulting conjugate was determined by ELISA titration against the appropriate native protein.

## **ELISA Testing**

5

10

15

20

25

A modification of the procedure described in the Epitope Scanning Kit manual was employed.

After disruption, the mimotope pins were blocked by incubation with "supercocktail" (10 g ovalbumin, 10 g bovine serum albumin, and 1 ml Tween 20 detergent per liter of PBS) at room temperature for 1 hour. This was followed by incubation at room temperature for 2 hours with appropriately diluted biotinylated antisera. The pins were washed 4 times with PBS containing 0.5% Tween 20 (PBST) at room temperature for 10 minutes each time, with agitation.

The pins were then incubated at room temperature for 1 hour with the secondary antibody, horseradish peroxidase-streptavidin conjugate

(Zymed Laboratories, Inc., South San Francisco, CA) diluted 1:2500 with PBST. They were washed again as described above.

Substrate buffer was prepared by combining 200 ml 1.0 M. disodium hydrogen orthophosphate solution with 160 ml 1.0 M. citric acid solution, diluting the mixture with 1640 ml deionized water, and adjusting to pH 4.0 using either citric acid or sodium hydroxide solutions. Substrate solution was prepared by dissolving 10 mg 2,2'-azino-bis(3ethylbenzthiazoline-6-sulfonic acid) diammonium salt in 20 ml substrate buffer and adding 6 microliters 30% hydrogen peroxide. The mimotope pins were incubated at room temperature with this solution, using microtiter plates containing 150 microliters per well. When color development appeared to be appropriate for measurement by an ELISA plate reader, the pin block was removed and the plate was read at a wavelength of 450 nm. The pin block was then disrupted by the procedure described above.

5

10

15

20

25

30

The data were entered into the Pin Technology™ computer program, which performed statistical analysis and evaluation and furnished a print-out of the results identifying the strongest binding epitopes. Briefly, the 25% of the wells having the lowest optical density readings were assumed to represent background in each experiment. The mean value and the standard deviation of these readings were calculated. Significant recognition of peptides by antisera was attributed to the pins corresponding to those wells showing absorbance readings greater than the sum of the background mean and three standard deviations from the mean.

Human ZPA epitopes were examined for reactivity with mouse anti-human ZP antiserum prepared as described above. Peptides of 15 amino acids in length were synthesized beginning with amino acid number 1 as illustrated in SEQ ID NO. 43. Successive peptides having a 7-amino acid overlap with the preceding peptide of the series were synthesized. The following peptides were shown to bind mouse anti-human ZP antiserum: 1-15, 9-23, 25-39, 33-47, 65-79, 81-95, 89-103, 97-111, 105-119, 113-127,

- 59 -

121-135, 129-143, 145-159, 153-167, 161-175, 193-207, 209-223, 217-231, 225-239, 241-255, 249-263, 273-287, 281-295, 289-303, 305-319, 313-327, 321-335, 329-343, 337-351, 345-359, 385-399, 393-407, 401-415, 409-423, 417-431, 425-439, 441-455, 449-463, 457-471, 481-495, 489-503, 497-511, 505-519, 513-527, 521-535, 537-551, 545-559, 561-575, 569-583, 577-591, 585-599, 601-615, 609-623, 617-631, 625-639, 633-647, 641-655, 665-679, 697-711, 705-719, 713-727, 721-735, and 729-743.

5

30

Similarly, human ZPB epitopes were mapped using mouse antihuman ZP antiserum. In these experiments, 15 amino acid peptides were synthesized beginning with amino acid number 1 as set out in SEQ ID NO. 41. The overlap between successive peptides in this case was 9 amino acids. The following peptides were shown to bind mouse anti-human ZP antiserum: 7-21, 25-39, 31-45, 49-63, 67-81, 73-87, 79-93, 91-105, 103-117, 121-135, 193-207, 205-219, 211-225, 217-231, 223-237, 229-243, 253-267, 259-273, 265-279, 283-297, 289-303, 295-309, 301-315, 307-321, 313-327, 319-333, 343-357, 349-363, 355-369, 367-381, 373-387, 379-393, 385-399, 403-417, 409-423, 415-429, 421-435, 433-447, 439-453, 445-459, 451-465, 481-495, 487-501, 499-513, 505-519, 511-525, 523-537, 529-543, and 547-561.

Human ZPC epitopes were mapped using mouse anti-human ZP antiserum. In these experiments, the 15 amino acid peptides were synthesized beginning with amino acid number 1 as set out in Chamberlin et al., Proc. Nat'l Acad. Sci. USA 87:6014-6018 (1990) which is incorporated herein by reference. The overlap between successive peptides was 10 amino acids. The following peptides were shown to bind mouse anti-human ZP antiserum: 21-35, 51-65, 116-130, 146-160, 151-165, 181-195, 241-255, 251-265, 271-285, 296-310, 321-335, 401-415, and 411-425.

Canine ZPC epitopes were mapped using rabbit anti-canine ZP antiserum. In these experiments, the 15 amino acid peptides were synthesized beginning at amino acid number 1 set out in SEQ ID NO. 10. The overlap between successive peptides was 5 amino acids. The following peptides were

shown to bind rabbit anti-canine ZP antiserum: 51-65, 61-75, 81-95, 131-145, 181-195, and 301-315.

Feline ZPC epitopes were mapped using rabbit anti-feline ZP antiserum. In these experiments, the 15 amino acid peptides were synthesized beginning at amino acid number 1 as set out in SEQ ID NO. 18. The overlap between successive peptides was 5 amino acids. The following peptides were shown to bind rabbit anti-feline ZP: 36-50, 46-60, 56-70, 76-90, 96-110, 106-120, 116-130, 126-140, 136-150, 146-160, 156-170, 186-200, 196-210, 246-260, 266-280, 276-290, 286-300, 296-310, 316-330, 326-340, 336-350, 346-360, 376-390, 396-410, and 406-420.

5

10

15

20

Bovine ZPC epitopes were mapped using rabbit anti-bovine ZP antiserum. In these experiments, the overlapping 15 amino acid peptides were synthesized beginning at amino acid number 1 as set out in SEQ ID NO. 24. The overlap between peptides was 10 amino acids. The following peptides were shown to be reactive with rabbit anti-bovine ZP antiserum: 1-15, 31-45, 51-65, 56-70, 61-75, 76-90, 106-120, 111-125, 116-130, 121-135, 131-145, 136-150, 141-155, 146-160, 151-165, 161-175, 181-195, 186-200, 191-205, 196-210, 201-215, 206-220, 216-230, 226-240, 241-255, 246-260, 261-275, 266-280, 271-285, 276-290, 291-305, 296-310, 301-315, 316-330, 321-335, 326-340, 331-345, 336-350, 341-355, 356-370, 361-375, 376-390, 381-395, 386-400, 396-410, 401-415, and 406-420.

#### Example 18

## Immunization of Dogs with Recombinant ZPC Proteins

Dogs were immunized with various preparations of recombinant canine ZPC. The plasmid pZ169 bacterial expression vector (Figure 5) was constructed as follows. The parent vector pZ98 (described in Example 9) was digested with the restriction enzymes *Pvul* and *Bam* HI, and the large

- 61 -

fragment was gel purified. Into this vector was ligated a fragment created by annealing the following oligonucleotides:

- 5' CGCCCTTCCCAGCAACTGCACCATCACCACCATGGG 3' (SEQ ID NO. 50); and
- 5 5' GATCCCCATGGTGGTGGTGATGGTGCAGTTGCTGGGAAGGGCGAT 3' (SEQ ID NO. 51).

These oligonucleotides create a fragment with PvuI and BamHI ends, and codes for the hexapeptide sequence His<sub>6</sub>. This intermediate vector was digested with the restriction enzymes BamHI and EcoRI, and the large fragment was gel purified. Into this vector was ligated a fragment created by annealing the following oligonucleotides:

- 5' GATCCCTCGAGCCACCATCACCACCATCATG 3' (SEQ ID NO. 52); and
- 5' AATTCATGATGGTGGTGATGGTGGCTCGAGG 3' (SEQ ID NO. 53).

20

These oligonucleotides create a fragment with BamHI and EcoRI ends and an XhoI site just downstream of the BamHI site, and which codes for the hexapeptide sequence His<sub>6</sub>. This new vector was named pZ88, and contains unique BamHI and XhoI cloning sites between two His<sub>6</sub> sequences. To create pZ169, the pZ88 vector was digested with the restriction enzymes BamHI and XhoI, and the large fragment was gel purified. Into this vector was ligated a fragment generated by performing a PCR (polymerase chain reaction) of the canine ZPC cDNA using the following oligonucleotides:

- 62 -

- 5' CCCGGATCCGCAGACCATCTGGCCAACTGAG 3' (SEQ ID NO. 54); and
- 5' GCGCTCGAGGGCATATGGCTGCCAGTGTG 3' (SEQ ID NO. 55).
- This PCR creates a fragment containing amino acids 23-207 of the canine ZPC sequence, with BamHI and XhoI ends. This new vector is named pZ169, (Figure 5) and produces a protein containing amino acids 1-56 of the E. coli β-galactosidase sequence, His, amino acids 23-207 of the canine ZPC sequence, His, and amino acids 1006-1023 of the E. coli β-galactosidase sequence. This protein is referred to as N-terminal canine ZPC. In Figure 5, pTAC refers to the tac promoter described above; AmpR refers to an ampicillin resistance marker, ori is an E. coli origin of replication sequences and pLacI is the lacI promoter which drives expression of the lacI gene.

Recombinant canine ZPC was produced and purified as described in Example 9. A baculovirus expression vector pZ145 was constructed as follows. The parent vector pBlueBac2 (purchased from Invitrogen Corporation, San Diego, CA) was digested with the restriction enzymes *NheI* and *BamHI*, and the large fragment was gel purified. Into this vector was ligated a fragment generated by a PCR of the porcine ZPC cDNA using the following oligonucleotide:

5' CGCGCTAGCAGATCTATGGCGCCGAGCTGGAGGTTC 3' (SEQ ID NO. 56); and

15

20

- 5' CGCGGATCCTATTAATGGTGGTGATGGTGGTGACTAGTGGACCCTTCCA 3' (SEQ ID NO. 57).
- This PCR creates a fragment with NheI and BamHI ends, and contains amino acids 27-350 of the porcine ZPC sequence followed by an SpeI site and the hexapeptide His<sub>6</sub>. This new vector is named pZ147. To create the pZ145 vector, pZ147 is digested with NheI and SpeI and the large fragment is gel purified (this removes the pig ZPC sequence). Into this vector was ligated a

- 63 -

fragment generated by a PCR of the canine ZPC cDNA using the following oligonucleotides:

- 5' CCCGCTAGCAGATCTATGGGGCTGAGCTATGGAATTTTC 3' (SEQ ID NO. 58); and
- 5 5' CGCACTAGTTGACCCCTCTATACCATGATCACTA 3' (SEQ ID NO. 59).

10

15

20

25

This PCR creates a fragment with *Nhe*I and *Spe*I ends, and contains amino acids 1-379 of the canine sequence. Transformants of this ligation were screened for the presence of the inserted *Nhe*I/*Spe*I fragment in the correct orientation (since the *Nhe*I and *Spe*I sticky ends are identical). This new vector is named pZ145, (Figure 6) and produces a protein containing amino acids 1-379 of the DZPC sequence followed by His<sub>6</sub>. This protein is referred to as baculo-canine ZPC. In Figure 6, pP represents the baculovirus polyhedrin promoter, AmpR represents an ampicillin resistance marker, LacZ represents the gene for  $\beta$ -galactosidase, pE is a constituitive promoter which drives the expression of LacZ and ori is the *E. coli* origin of replication.

Recombinant baculovirus derived canine ZPC was produced by co-transfecting insect SF9 cells with pZ145 and Autographica californica multiply enveloped nuclear polyhedrosis virus (AcMNPV) using methods well known in the art as described in the MAXBACTM kit purchased from Invitrogen, San Diego, CA. Recombinant canine ZPC produced in SF9 cells was prepared from cotransfected SF9 cells as follows. Cotransfected cells were harvested and pelleted by centrifugation and recombinant canine ZPC was purified as was described in Example 9 for purification from a cell pellet. Recombinant canine ZPC may also be isolated from the culture medium and purified on a Ni-column as described in Example 9.

Other expression vectors which are capable of expressing zona pellucida encoding nucleotide sequences under the control of a variety of

regulatory sequences are within the scope of the present invention and are readily constructed using methods well known in the art.

Recombinant zona pellucida proteins may also be modified to increase their potential antigenicity by a variety of methods well known in the art. For example, a recombinant dog ZPC was modified by palmitylation was prepared as follows. Approximately 1 mg of recombinant ZPC produced using the plasmid pZ169 as described above was brought to a final concentration of 8M urea (total volume 0.2-0.3 mls.). A palmitylation solution (Pl<sub>2</sub>O/TEA) was then prepared by adding palmitic anhydride to triethylamine to give a final concentration of palmitic anhydride of 20 mg/ml of triethylamine.

5

10

15

20

25

30

Approximately 10  $\mu$ l of Pl<sub>2</sub>O/TEA solution was added to 1 mg of recombinant canine ZPC in 8M urea (described above). The mixture was allowed to stand at room temperature for a least two hours after which the preparation was ready for mixture with GMDP/oil adjuvant.

Chitosan modification is another useful modification of canine ZPC for the practice of the present invention. Briefly, 1.5 ml of sterile mineral oil was added to 1.5 ml of recombinant canine ZPC solution prepared as described above using the plasmid pZ169 (2 mg/ml ZPC, 3 mg total is 8M urea) was mixed with 5 drops of Arlacel A (mannide monooleate, Sigma, St, Louis, MO). Subsequently, 0.75 ml of Chitosan (2% wt/vol. is 0.5M sodium acetate, pH 5.0) was added, and the mixture was sonicated for 10-20 seconds, followed by the addition of 0.045 ml of 50% NaOH and another round of sonication for 10-20 seconds. Finally, 10μl of 10 mg/ml GMDP/8M urea was added.

A group of three dogs was immunized five times each at one-month intervals with subcutaneous injections of 1 mg doses of the N-terminal canine ZPC modified by the addition of chitosan prepared as described above. Immunized dogs developed antibody titers of 1:8000-1:16000 against heat solubilized dog zona pellucida (self-titers) using methods

described above. The estrus cycle of the dogs showing self-titers was anovulatory and prolonged (4-6 weeks instead of the normal 10-day to 14-day cycle for normal dogs). Of the three immunized dogs, two have experienced their first estrus; one of the two dogs exhibited estrus six months after the first immunization and was bred and found to be infertile. The second of the two dogs experienced estrus and remained infertile nine months after the first immunization. The third dog has yet to experience estrus more than nine months after immunization.

5

10

15

20

25

Another group of four dogs were immunized three times at one-month intervals using 1 mg doses of palmitylated canine ZPC (prepared as described above) in GMDP/oil adjuvant administered subcutaneously. These animals achieved self-titers (against heat solubilized dog zona pellucida) of 1:4000-1:8000. Nearly seven months after immunization, two of the four dogs experienced estrus and remain infertile. The remaining two dogs have yet to experience estrus.

Another set of dogs was immunized 3 times at one-month intervals, using subcutaneous injections of 1 mg of recombinant canine ZPC produced using pZ166, (a plasmid similar to pZ169 but containing a DNA sequence encoding amino acids 23-379 of the canine ZPC protein) in GMDP/oil adjuvant. These animals failed to develop self-titers and became pregnant after breeding. Similarly, dogs immunized with canine ZPC fragments produced using the baculovirus system failed to induce infertility.

#### Example 19

# Vaccination of Cows and Cats with Recombinant Zona Pellucida Proteins

Preliminary studies were undertaken to assess the ability of recombinant zona pellucida proteins to induce infertility in cows and cats.

- 66 -

Cows were injected with 3 or more doses (in GMDP (250  $\mu$ g) oil adjuvant) of 1 mg of a variety of recombinantly derived ZPC proteins from canine and porcine sources including canine ZPC produced using the plasmid pZ169 as shown in Figure 5. Recombinant proteins were administered in an unmodified form and in palmitylated and chitosan modified forms. None of the ZP protein preparations induced self-titers or infertility in the vaccinated cows. Further studies are underway using different recombinant preparations of zona pellucida proteins and differing dosage regimens in attempts to induce self-titers and infertility in cows.

5

20

Similarly, cats were vaccinated with the following recombinant zona pellucida proteins: a mixture of recombinant feline ZPA, ZPB, and ZPC; porcine ZPC produced using pZ156 as described above and shown in Figure 3; and canine ZPC produced using the plasmid pZ169 described above and shown in Figure 5. Cats vaccinated using these ZP protein preparations produced antibody to the vaccine proteins, but produced no self-titers and were consequently fertile. Studies are ongoing to determine the effects of

Studies are also ongoing to select other recombinantly derived zona pellucida protein fragments for testing as possible immunocontraceptives.

production of self-titers and to induce infertility.

modifying the recombinant zona pellucida proteins in attempts to stimulate the

Numerous modifications in variations in the practice of the invention as illustrated in the above examples are expected to occur to those of ordinary skill in the art. Consequently, the illustrative examples are not intended to limit the scope of the invention as set out in the appended claims.

#### SEQUENCE LISTING

#### (1) GENERAL INFORMATION:

- (i) APPLICANT:
  - (A) ADDRESSEE: ZONAGEN, Inc.
  - (B) STREET: 2408 Timberloch Place, B-4
  - (C) CITY: The Woodlands (D) STATE: Texas

  - (E) COUNTRY: United States of America
  - (F) POSTAL CODE: 77380
  - (A) ADDRESSEE: Harris Ph.D., Jeffrey D.
  - (B) STREET: 15 Flatstone
  - (C) CITY: The Woodlands
  - (D) STATE: Texas
  - (E) COUNTRY: United States of America (F) POSTAL CODE: 77381

  - (A) ADDRESSEE: Hsu, Kuang T.
  - (B) STREET: 71 N. Misty Morning Trace
  - (C) CITY: The Woodlands
  - (D) STATE: Texas
  - (E) COUNTRY: United States of America
  - (F) POSTAL CODE: 77381
  - (A) ADDRESSEE: Podolski, Joseph S.
  - (B) STREET: 3 Pebble Hollow Court (C) CITY: The Woodlands

  - (D) STATE: Texas
  - (E) COUNTRY: United States of America (F) POSTAL CODE: 77381
- (ii) TITLE OF INVENTION: Materials and Methods for Immunocontraception
- (iii) NUMBER OF SEQUENCES: 59
- (iv) CORRESPONDENCE ADDRESS:
  - (A) ADDRESSEE: Marshall, O'Toole, Gerstein, Murray & Borun (B) STREET: 6300 Sears Tower, 233 South Wacker Drive

  - (C) CITY: Chicago (D) STATE: Illinois
  - (E) COUNTRY: United States of America
  - (F) POSTAL CODE: 60606-6402
- (v) COMPUTER READABLE FORM:
  - (A) MEDIUM TYPE: Floppy disk

  - (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
- (vi) CURRENT APPLICATION DATA:
  - (A) APPLICATION NUMBER:
  - (B) FILING DATE: 09-NOV-1993
  - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
  - (A) APPLICATION NUMBER: 08/012,990
  - (B) FILING DATE: 29-JAN-1993
- (vii) PRIOR APPLICATION DATA:
  - (A) APPLICATION NUMBER: 07/973,341
  - (B) FILING DATE: 09-NOV-1992
- (viii) ATTORNEY/AGENT INFORMATION:

- 68 -

| <ul><li>(A) NAME: Clough, David W.</li><li>(B) REGISTRATION NUMBER: 36,107</li><li>(C) REFERENCE/DOCKET NUMBER: 31745</li></ul>                                                                                        |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| (ix) TELECOMMUNICATION INFORMATION:  (A) TELEPHONE: 312/474-6653  (B) TELEFAX: 312/474-0448  (C) TELEX: 25-3856                                                                                                        |     |
| (2) INFORMATION FOR SEQ ID NO:1:                                                                                                                                                                                       |     |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 2214 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: double  (D) TOPOLOGY: linear                                                                                     |     |
| (ii) MOLECULE TYPE: cDNA                                                                                                                                                                                               |     |
| (iii) HYPOTHETICAL: NO                                                                                                                                                                                                 |     |
| (iv) ANTI-SENSE: NO                                                                                                                                                                                                    |     |
| <ul> <li>(vi) ORIGINAL SOURCE:</li> <li>(A) ORGANISM: Sus scrofa</li> <li>(D) DEVELOPMENTAL STAGE: Juvenile</li> <li>(E) HAPLOTYPE: Diploidy</li> <li>(F) TISSUE TYPE: Ovary</li> <li>(G) CELL TYPE: Oocyte</li> </ul> |     |
| (ix) FEATURE:                                                                                                                                                                                                          |     |
| <pre>(A) NAME/KEY: sig_peptide    (B) LOCATION: 12119 (ix) FEATURE:</pre>                                                                                                                                              |     |
| (A) NAME/KEY: mat_peptide (B) LOCATION: 1202153                                                                                                                                                                        |     |
| (ix) FEATURE:                                                                                                                                                                                                          |     |
| (A) NAME/KEY: CDS (B) LOCATION: 122153                                                                                                                                                                                 |     |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:                                                                                                                                                                                |     |
| GAATTCCGGG C AGG CAC AGA GGA GAC AGT GGG AGA CCC TTA AGC TGG CTC Arg His Arg Gly Asp Ser Gly Arg Pro Leu Ser Trp Leu -36 -35 -30 -25                                                                                   | 50  |
| AGT GCA AGC TGG AGG TCA CTT CTT CTA TTT TTC CCC CTT GTG ACT TCA<br>Ser Ala Ser Trp Arg Ser Leu Leu Leu Phe Phe Pro Leu Val Thr Ser<br>-20 -15 -10                                                                      | 98  |
| GTG AAC TCC ATA GGT GTC AAT CAG TTG GTG AAT ACT GCC TTC CCA GGT Val Asn Ser Ile Gly Val Asn Gln Leu Val Asn Thr Ala Phe Pro Gly -5 1 5                                                                                 | 146 |
| ATT GTC ACT TGC CAT GAA AAT AGA ATG GTA GTG GAA TTT CCA AGA ATT Ile Val Thr Cys His Glu Asn Arg Met Val Val Glu Phe Pro Arg Ile 10 15 20 25                                                                            | 194 |
| CTT GGC ACT AAG ATA CAG TAC ACC TCT GTG GTG GAC CCT CTT GGT CTT<br>Leu Gly Thr Lys Ile Gln Tyr Thr Ser Val Val Asp Pro Leu Gly Leu<br>30 35 40                                                                         | 242 |
| GAA ATG ATG AAC TGT ACT TAT GTT CTG GAC CCA GAA AAC CTC ACC CTG                                                                                                                                                        | 290 |

- 69 -

| Glu Me                        | et Met                  | Asn C                  | ys Thr                    | Tyr Va                    | l Leu<br>50             | Asp Pro                   | o Glu A                   | sn Leu<br>55               | Thr Leu                   |      |
|-------------------------------|-------------------------|------------------------|---------------------------|---------------------------|-------------------------|---------------------------|---------------------------|----------------------------|---------------------------|------|
| Lys Al                        | CC CCA<br>a Pro<br>60   | TAT G                  | AA GCC<br>lu Ala          | TGT AC<br>Cys Th          | r Lys                   | AGA GTO<br>Arg Val        | Arg G                     | GC CAT (<br>ly His )<br>70 | CAC CAA<br>His Gln        | 338  |
| ATG AC<br>Met Th<br>7         | 1 116                   | AGA C'Arg Le           | TC ATA<br>eu Ile          | GAT GAO<br>Asp Asp<br>80  | C AAT<br>o Asn          | GCT GCT<br>Ala Ala        | TTA AC<br>Leu Ai<br>85    | GA CAA (<br>rg Gln (       | GAG GCT<br>Glu Ala        | 386  |
| CTC ATC<br>Leu Mei<br>90      | G TAT<br>t Tyr :        | CAC A1<br>His Il       | CC AGC<br>Le Ser<br>95    | TGT CCT<br>Cys Pro        | GTT .                   | ATG GGA<br>Met Gly<br>100 | GCA GA<br>Ala Gl          | AA GGC C<br>Lu Gly F       | CCT GAT<br>Pro Asp<br>105 | 434  |
| CAG CAT<br>Gln His            | TCG (<br>SSer (         | GGA TO<br>Gly Se<br>11 | r Thr                     | ATC TGC<br>Ile Cys        | Met 1                   | AAA GAT<br>Lys Asp<br>115 | TTC AT<br>Phe Me          | G TCT T<br>t Ser P<br>1    | TT ACC<br>he Thr<br>20    | 482  |
| TTT AAC<br>Phe Asn            | . Pne :                 | Phe Pr<br>25           | C GGG A                   | ATG GCT<br>Met Ala        | GAC G<br>Asp G<br>130   | AA AAT<br>lu Asn          | GTG AA<br>Val Ly          | A CGT G<br>s Arg G<br>135  | AG GAT<br>lu Asp          | 530  |
| TCG AAG<br>Ser Lys            | CAG C<br>Gln A<br>140   | GC ATO                 | G GGA T<br>t Gly T        | GG AGC<br>rp Ser<br>145   | CTT G<br>Leu V          | TA GTT<br>al Val          | GGT GAG<br>Gly Asp<br>150 |                            | AA AGA<br>lu Arg          | 578  |
| GCC CGA<br>Ala Arg<br>155     | INE L                   | eu in                  | Phe G                     | in Glu                    | Ala M                   | et Thr                    | Gln Gly<br>165            | y Tyr As                   | sn Phe                    | 626  |
| CTG ATA<br>Leu Ile<br>170     | GIU A                   | sn Gin                 | 175                       | et Asn                    | Ile G                   | ln Val :<br>180           | Ser Phe                   | His Al                     | a Thr<br>185              | 674  |
| GGA GTG<br>Gly Val            | IIIL AI                 | 190                    | ser G                     | in Gly                    | Asn Se<br>19            | er His I<br>95            | Leu Tyr                   | Met Va<br>20               | l Pro<br>O                | 722  |
| CTG AAG<br>Leu Lys            | 20                      | s His                  | Val Se                    | er His (                  | Gly Gl<br>210           | n Ser I                   | eu Ile                    | Leu Ala<br>215             | a Ser                     | 770  |
| CAA CTC<br>Gln Leu            | ATC TG<br>Ile Cy<br>220 | T GTG<br>s Val         | GCA GA<br>Ala As          | T CCT (<br>p Pro \<br>225 | GTG AC                  | C TGT A<br>r Cys A        | AT GCC<br>sn Ala<br>230   | ACA CAC                    | C GTG S                   | 818  |
| ACT CTT (<br>Thr Leu 2<br>235 | GCC AT.<br>Ala Il       | A CCA<br>e Pro         | GAG TT<br>Glu Pho<br>24   | e Pro G                   | GG AA                   | s Leu L                   | AA TCC<br>ys Ser<br>45    | GTG AAC<br>Val Asn         | TTG<br>Leu                | 866  |
| GGA AGT (<br>Gly Ser (<br>250 | GGG AA'<br>Gly Asi      | 1 TIE                  | GCT GTG<br>Ala Val<br>255 | G AGC C<br>L Ser G        | AG CTO                  | G CAC AM<br>His Ly<br>260 | AA CAC<br>ys His          | GGG ATT<br>Gly Ile         | GAA<br>Glu<br>265         | 914  |
| ATG GAA A<br>Met Glu T        | ACA ACA<br>Thr Thr      | A AAC<br>Asn<br>270    | GGC CTO                   | AGG T                     | TG CAT<br>eu His<br>275 | Phe As                    | AC CAA .                  | ACT CTT<br>Thr Leu<br>280  | CTC<br>Leu                | 962  |
| AAA ACA A<br>Lys Thr A        | AT GTC<br>sn Val<br>285 | ser (                  | GAA AAA<br>Glu Lys        | Cys Le                    | TA CCA<br>eu Pro<br>90  | CAT CA<br>His Gl          | n Leu 1                   | TAC TTA<br>Tyr Leu<br>295  | TCT<br>Ser                | 1010 |
| TCA CTC A<br>Ser Leu L        | AG CTG<br>ys Leu<br>00  | ACT 1                  | TTT CAC<br>Phe His        | AGT CA<br>Ser Gl<br>305   | AA CTA<br>.n Leu        | GAG GC<br>Glu Al          | A GTA 1<br>a Val S<br>310 | CC ATG<br>Ser Met          | GTG<br>Val                | 1058 |

| ATT<br>Ile                | TAT<br>Tyr<br>315  | CCT<br>Pro         | GAG<br>Glu                   | TGT<br>Cys          | CTC<br>Leu        | TGT<br>Cys<br>320     | GAG<br>Glu         | TCA<br>Ser         | ACA<br>Thr          | A GTO              | C TCT<br>l Ser<br>325 | Leu                  | GTT<br>Val            | TC/<br>Ser         | A GAG<br>Glu      | 1106 |
|---------------------------|--------------------|--------------------|------------------------------|---------------------|-------------------|-----------------------|--------------------|--------------------|---------------------|--------------------|-----------------------|----------------------|-----------------------|--------------------|-------------------|------|
| GAG<br>Glu<br>330         | CTA<br>Leu         | TGC<br>Cys         | ACT<br>Thr                   | CAG<br>Gln          | GAT<br>Asp<br>335 | GGG<br>Gly            | TTT<br>Phe         | ATG<br>Met         | GAC<br>Asp          | GTC<br>Val<br>340  | Lys                   | GTC<br>Val           | CAC<br>His            | AGC<br>Ser         | CAC<br>His<br>345 | 1154 |
| CAA<br>Gln                | ACA<br>Thr         | AAA<br>Lys         | CCA<br>Pro                   | GCT<br>Ala<br>350   | CTC<br>Leu        | AAC<br>Asn            | TTG<br>Leu         | GAT<br>Asp         | ACC<br>Thr<br>355   | CTC                | AGG<br>Arg            | GTG<br>Val           | GGA<br>Gly            | GAC<br>Asp<br>360  | Ser               | 1202 |
| TCC<br>Ser                | TGC<br>Cys         | CAG<br>Gln         | CCA<br>Pro<br>365            | ACC<br>Thr          | TTT<br>Phe        | AAA<br>Lys .          | Ala                | CCA<br>Pro<br>370  | GCT<br>Ala          | CAG<br>Gln         | GGG                   | CTG<br>Leu           | GTA<br>Val<br>375     | CAG<br>Gln         | TTT<br>Phe        | 1250 |
| CGC Arg                   | TTE                | CCC<br>Pro<br>380  | CTG .<br>Leu .               | AAT (<br>Asn (      | GGA '             | Cys (                 | GGA<br>Gly<br>385  | ACA<br>Thr         | AGA<br>Arg          | CAT<br>His         | AAG<br>Lys            | TTC<br>Phe<br>390    | AAG<br>Lys            | AAT<br>Asn         | GAC<br>Asp        | 1298 |
| AAA (<br>Lys \            | GTC<br>Val<br>395  | ATC<br>Ile         | TAT (                        | GAA A<br>Glu A      | sn (              | GAA A<br>Glu 1<br>400 | ATA (<br>le 1      | CAT<br>His         | GCT<br>Ala          | CTC<br>Leu         | TGG<br>Trp<br>405     | GCA<br>Ala           | GAT<br>Asp            | CCT<br>Pro         | CCA<br>Pro        | 1346 |
| AGC 0<br>Ser A<br>410     | SCC (              | GTT :<br>Val :     | rcc <i>l</i><br>Ser <i>l</i> | irg A               | AT A<br>sp S      | AGT G<br>Ser G        | AG 1               | Phe                | Arg                 | ATG<br>Met<br>420  | ACA<br>Thr            | GTG<br>Val           | AGG<br>Arg            | TGC<br>Cys         | TCT<br>Ser<br>425 | 1394 |
| TAC A<br>Tyr S            | GC P<br>Ser S      | AGC A<br>Ser S     | er A                         | AC A<br>sn M<br>30  | TG C<br>et I      | TA A<br>eu I          | TA A<br>le A       | sn '               | ACC<br>Thr<br>435   | AAT<br>Asn         | GTT<br>Val            | GAA .<br>Glu         | Ser 1                 | CTT<br>Leu<br>440  | CCT<br>Pro        | 1442 |
| TCT C<br>Ser P            | CA G               | Tu A               | CC T<br>la S<br>45           | CA G<br>er V        | TG A<br>al L      | AG C                  | ro G               | GT (<br>ly I<br>50 | CA (Pro )           | CTT<br>Leu         | ACC  <br>Thr          | Leu :                | ACT (<br>Thr I<br>155 | CTG<br>Leu (       | CAA<br>Gln        | 1490 |
| ACC T                     | yr P<br>4          | 60                 | sp A                         | sn A.               | la T              | yr Le<br>46           | eu G<br>55         | ln F               | ro 1                | Tyr (              | Gly 1                 | Asp I<br>470         | ys G                  | lu 7               | ſyr               | 1538 |
| CCT GO<br>Pro Va<br>47    | TG G<br>al V<br>75 | TG A<br>al L       | AA T<br>ys T                 | AT CT               | u Ai              | GC CA<br>rg G1<br>30  | AA Co<br>.n Pi     | CA A               | TT 1<br>le T        | yr I               | CTA C<br>Leu G<br>185 | GAA G<br>Glu V       | TG A                  | GA #               | ATC<br>:le        | 1586 |
| CTC AF<br>Leu As<br>490   | AC Ad              | GG AG              | or As                        | C CC<br>Sp Pr<br>49 | O As              | AC AT                 | C A                | AG C               | eu V                | TC 1<br>al I<br>00 | TTG G<br>Leu A        | AT G                 | AC To                 | ys T               | GG<br>TP<br>O5    | 1634 |
| GCA AC<br>Ala Th          | A TO               | CC AC              | A GA<br>ir Gl<br>51          | u As                | C CC<br>p Pr      | A GC<br>O Al          | C TC<br>a Se       | r Le               | rc c<br>eu P.<br>l5 | CC C<br>ro G       | AG T                  | GG A                 | sn Va                 | TT G<br>al V<br>20 | TC<br>al          | 1682 |
| ATG GA<br>Met As          | T GG<br>P Gl       | C TG<br>y Cy<br>52 | s GI                         | A TA                | C AA<br>c As      | C CTO                 | G GA<br>u As<br>53 | p As               | AC C                | AC A               | GA A                  | hr Tl                | oc TI<br>or Ph<br>35  | CC C               | AT<br>is          | 1730 |
| CCG GTG<br>Pro Va         | G GG<br>1 G1<br>54 | y se               | C TC                         | C GTC               | AC:               | C TA1                 | Pro                | T AA<br>o As       | C CA<br>n Hi        | AC CA              | is G                  | AG AG<br>Ln Ar<br>50 | G TT                  | T GA               | AT<br>Sp          | 1778 |
| GTG AAC<br>Val Lys<br>555 | 5 Th               | C TT               | r GC0<br>⊇ Ala               | TTI<br>Phe          | Val<br>560        | Ser                   | GC GLY             | G GC<br>/ Al       | C CA<br>a Gl        | A GC<br>n G1<br>56 | ly Va                 | C TO                 | T CA                  | A CI<br>n Le       | G<br>eu           | 1826 |
| GTC TAC<br>Val Tyr<br>570 | Phe                | C CAC<br>His       | TGC<br>Cys                   | Ser<br>575          | GTC<br>Val        | TTC<br>Phe            | ATC                | TG:<br>Cy:         | C AA<br>s As<br>58  | n Gl               | A CT<br>n Le          | C TC<br>u Se         | T CC                  | C AC<br>Th         | r                 | 1874 |

|                   |                   |                   |                   |                               |                   |                   |                   |                   | - 71              | -                 |                   |                   |                   |                   |                   |      |
|-------------------|-------------------|-------------------|-------------------|-------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| TTC               | TCT<br>Ser        | CTG<br>Leu        | TGT<br>Cys        | TCT<br>Ser<br>590             | Val               | ACT<br>Thr        | TGC<br>Cys        | CAT<br>His        | GGG<br>Gly<br>595 | Pro               | TCT               | AGG<br>Arg        | AGC<br>Ser        | CGG<br>Arg<br>600 | CGA<br>Arg        | 192  |
| GCT<br>Ala        | ACA<br>Thr        | GGG<br>Gly        | ACC<br>Thr<br>605 | ACT<br>Thr                    | GAG<br>Glu        | GAA<br>Glu        | GAG<br>Glu        | AAA<br>Lys<br>610 | Met               | ATA<br>Ile        | GTG<br>Val        | AGT<br>Ser        | CTC<br>Leu<br>615 | CCG<br>Pro        | GGC<br>Gly        | 197  |
| CCC<br>Pro        | ATC<br>Ile        | CTG<br>Leu<br>620 | CTG<br>Leu        | TTG<br>Leu                    | TCA<br>Ser        | GAT<br>Asp        | GGC<br>Gly<br>625 | TCT<br>Ser        | TCA<br>Ser        | CTC<br>Leu        | AGA<br>Arg        | GAT<br>Asp<br>630 | GCT<br>Ala        | GTG<br>Val        | AAC<br>Asn        | 2018 |
| TCT<br>Ser        | AAA<br>Lys<br>635 | GGA<br>Gly        | TCC<br>Ser        | AGA<br>Arg                    | ACC<br>Thr        | AAC<br>Asn<br>640 | GGA<br>Gly        | TAT<br>Tyr        | GTT<br>Val        | GCT<br>Ala        | TTT<br>Phe<br>645 | AAA<br>AAA        | ACT<br>Thr        | ATG<br>Met        | GTT<br>Val        | 2066 |
| GCT<br>Ala<br>650 | ATG<br>Met        | GTT<br>Val        | GCT<br>Ala        | TCA<br>Ser                    | GCA<br>Ala<br>655 | GGC<br>Gly        | ATC<br>Ile        | GTG<br>Val        | GCA<br>Ala        | ACT<br>Thr<br>660 | CTA<br>Leu        | GGC<br>Gly        | CTC<br>Leu        | ATC<br>Ile        | AGC<br>Ser<br>665 | 2114 |
| TAC<br>Tyr        | CTG<br>Leu        | CAC<br>His        | Lys               | AAA<br>Lys<br>670             | AGA<br>Arg        | ATC<br>Ile        | ATG<br>Met        | Met               | TTA<br>Leu<br>675 | AAT<br>Asn        | CAC<br>His        | TAAT              | TTGG              | AT                |                   | 2160 |
| TTTC              | AAAT              | AA A              | AGTG              | GAAG                          | T AA              | GCCT              | CTTC              | TAA               | AAAA              | AAA .             | AAAA              | ACCG              | GA A              | TTC               |                   | 2214 |
| (2)               | INFO              | RMAT:             | ION I             | FOR :                         | SEQ :             | ID N              | 0:2:              |                   |                   |                   |                   |                   |                   |                   |                   |      |
|                   | (;                | i) S1             | (A)<br>(B)        | NCE (<br>LENG<br>TYPI<br>TOP( | GTH:<br>C: an     | 713<br>nino       | ami               | no a:             | cids              |                   |                   |                   |                   |                   |                   |      |
|                   | (ii               | L) MC             | DLECU             | ILE 1                         | YPE:              | pro               | otei              | า                 |                   |                   |                   |                   |                   |                   |                   |      |
|                   | (xi               | .) SE             | QUEN              | ICE D                         | ESCR              | IPTI              | ON:               | SEQ               | ID N              | io:2:             |                   |                   |                   |                   |                   |      |
| rg F              | lis A             | rg G              | ly A              | sp S                          | er G              | ly A              | rg F              | ro I              | eu S              | er T              | rp L              | eu S              | er A              | la S              | er                |      |

Trp Arg Ser Leu Leu Phe Phe Pro Leu Val Thr Ser Val Asn Ser

Ile Gly Val Asn Gln Leu Val Asn Thr Ala Phe Pro Gly Ile Val Thr  $1 \hspace{1cm} 5 \hspace{1cm} 10$ 

Cys His Glu Asn Arg Met Val Val Glu Phe Pro Arg Ile Leu Gly Thr

Lys Ile Gln Tyr Thr Ser Val Val Asp Pro Leu Gly Leu Glu Met Met 30 35 40

Asn Cys Thr Tyr Val Leu Asp Pro Glu Asn Leu Thr Leu Lys Ala Pro

Tyr Glu Ala Cys Thr Lys Arg Val Arg Gly His His Gln Met Thr Ile 65 70 75

Arg Leu Ile Asp Asp Asn Ala Ala Leu Arg Gln Glu Ala Leu Met Tyr

His Ile Ser Cys Pro Val Met Gly Ala Glu Gly Pro Asp Gln His Ser 100

Gly Ser Thr Ile Cys Met Lys Asp Phe Met Ser Phe Thr Phe Asn Phe

- 72 -

Phe Pro Gly Met Ala Asp Glu Asn Val Lys Arg Glu Asp Ser Lys Gln Arg Met Gly Trp Ser Leu Val Val Gly Asp Gly Glu Arg Ala Arg Thr Leu Thr Phe Gln Glu Ala Met Thr Gln Gly Tyr Asn Phe Leu Ile Glu 165 Asn Gln Lys Met Asn Ile Gln Val Ser Phe His Ala Thr Gly Val Thr Arg Tyr Ser Gln Gly Asn Ser His Leu Tyr Met Val Pro Leu Lys Leu Lys His Val Ser His Gly Gln Ser Leu Ile Leu Ala Ser Gln Leu Ile Cys Val Ala Asp Pro Val Thr Cys Asn Ala Thr His Val Thr Leu Ala Ile Pro Glu Phe Pro Gly Lys Leu Lys Ser Val Asn Leu Gly Ser Gly Asn Ile Ala Val Ser Gln Leu His Lys His Gly Ile Glu Met Glu Thr Thr Asn Gly Leu Arg Leu His Phe Asn Gln Thr Leu Leu Lys Thr Asn 275 Val Ser Glu Lys Cys Leu Pro His Gln Leu Tyr Leu Ser Ser Leu Lys Leu Thr Phe His Ser Gln Leu Glu Ala Val Ser Met Val Ile Tyr Pro Glu Cys Leu Cys Glu Ser Thr Val Ser Leu Val Ser Glu Glu Leu Cys Thr Gln Asp Gly Phe Met Asp Val Lys Val His Ser His Gln Thr Lys Pro Ala Leu Asn Leu Asp Thr Leu Arg Val Gly Asp Ser Ser Cys Gln Pro Thr Phe Lys Ala Pro Ala Gln Gly Leu Val Gln Phe Arg Ile Pro Leu Asn Gly Cys Gly Thr Arg His Lys Phe Lys Asn Asp Lys Val Ile Tyr Glu Asn Glu Ile His Ala Leu Trp Ala Asp Pro Pro Ser Ala Val Ser Arg Asp Ser Glu Phe Arg Met Thr Val Arg Cys Ser Tyr Ser Ser Ser Asn Met Leu Ile Asn Thr Asn Val Glu Ser Leu Pro Ser Pro Glu 435 Ala Ser Val Lys Pro Gly Pro Leu Thr Leu Thr Leu Gln Thr Tyr Pro Asp Asn Ala Tyr Leu Gln Pro Tyr Gly Asp Lys Glu Tyr Pro Val Val Lys Tyr Leu Arg Gln Pro Ile Tyr Leu Glu Val Arg Ile Leu Asn Arg

- 73 -

480

490

Thr Asp Pro Asn Ile Lys Leu Val Leu Asp Asp Cys Trp Ala Thr Ser 500 505

485

Thr Glu Asp Pro Ala Ser Leu Pro Gln Trp Asn Val Val Met Asp Gly

Cys Glu Tyr Asn Leu Asp Asn His Arg Thr Thr Phe His Pro Val Gly 530 535

Ser Ser Val Thr Tyr Pro Asn His His Gln Arg Phe Asp Val Lys Thr 545

Phe Ala Phe Val Ser Gly Ala Gln Gly Val Ser Gln Leu Val Tyr Phe

His Cys Ser Val Phe Ile Cys Asn Gln Leu Ser Pro Thr Phe Ser Leu 580

Cys Ser Val Thr Cys His Gly Pro Ser Arg Ser Arg Arg Ala Thr Gly 590 600

Thr Thr Glu Glu Lys Met Ile Val Ser Leu Pro Gly Pro Ile Leu

Leu Leu Ser Asp Gly Ser Ser Leu Arg Asp Ala Val Asn Ser Lys Gly

Ser Arg Thr Asn Gly Tyr Val Ala Phe Lys Thr Met Val Ala Met Val 640 645

Ala Ser Ala Gly Ile Val Ala Thr Leu Gly Leu Ile Ser Tyr Leu His

Lys Lys Arg Ile Met Met Leu Asn His 670

#### (2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1699 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: double
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Sus scrofa
  - (D) DEVELOPMENTAL STAGE: Juvenile
  - (E) HAPLOTYPE: Diploidy
  - (F) TISSUE TYPE: Ovary
  - (G) CELL TYPE: Oocyte
- (ix) FEATURE:
  - (A) NAME/KEY: sig\_peptide
    (B) LOCATION: 38..445
- (ix) FEATURE:
  - (A) NAME/KEY: mat\_peptide
  - (B) LOCATION: 446..1648
- (ix) FEATURE:

- 74 -

(A) NAME/KEY: CDS
(B) LOCATION: 38..1648

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

| GAATTCCGGG TGGAAGTACC TGTTCTCCGC AGGCGCT ATG TGG TTG CGG CCG TCC<br>Met Trp Leu Arg Pro Ser<br>-136-135                                              | 55               |
|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| ATC TGG CTC TGC TTT CCG CTG TGT CTT GCT CTG CCA GGC CAG TCT CAG  Ile Trp Leu Cys Phe Pro Leu Cys Leu Ala Leu Pro Gly Gln Ser Gln -130 -125 -120 -115 | 103              |
| CCC AAA GCA GCA GAT GAC CTT GGT GGC CTC TAC TGT GGG CCA AGC AGC Pro Lys Ala Ala Asp Asp Leu Gly Gly Leu Tyr Cys Gly Pro Ser Ser -110 -105 -100       | <sub>.</sub> 151 |
| TTT CAT TTC TCC ATA AAT CTT CTC AGC CAG GAC ACA GCA ACT CCT CCT Phe His Phe Ser Ile Asn Leu Leu Ser Gln Asp Thr Ala Thr Pro Pro -95 -90 -85          | 199              |
| GCA CTG GTG GTT TGG GAC AGG CGC GGG CGG CTG CAC AAG CTG CAG AAT Ala Leu Val Val Trp Asp Arg Arg Gly Arg Leu His Lys Leu Gln Asn -80 -75 -70          | 247              |
| GAC TCT GGC TGT GGC ACG TGG GTC CAC AAG GGC CCA GGC AGC TCC ATG Asp Ser Gly Cys Gly Thr Trp Val His Lys Gly Pro Gly Ser Ser Met -65 -60 -55          | 295              |
| GGA GTG GAA GCA TCC TAC AGA GGC TGC TAT GTG ACT GAG TGG GAC TCT Gly Val Glu Ala Ser Tyr Arg Gly Cys Tyr Val Thr Glu Trp Asp Ser -50 -45 -40 -35      | 343              |
| CAC TAC CTC ATG CCC ATT GGA CTT GAA GAA GCA GAT GCA GGT GGA CAC<br>His Tyr Leu Met Pro Ile Gly Leu Glu Glu Ala Asp Ala Gly Gly His<br>-30 -25 -20    | 391              |
| AGA ACA GTC ACA GAG ACG AAA CTG TTT AAG TGC CCT GTG GAT TTC CTA<br>Arg Thr Val Thr Glu Thr Lys Leu Phe Lys Cys Pro Val Asp Phe Leu<br>-15 -10 -5     | 439              |
| GCT CTT GAT GTT CCA ACC ATT GGC CTT TGT GAT GCT GTC CCA GTG TGG<br>Ala Leu Asp Val Pro Thr Ile Gly Leu Cys Asp Ala Val Pro Val Trp<br>1 5 10         | 487              |
| GAC CGA TTG CCA TGT GCT CCT CCA CCC ATC ACT CAA GGA GAA TGC AAG<br>Asp Arg Leu Pro Cys Ala Pro Pro Pro Ile Thr Gln Gly Glu Cys Lys<br>15 20 25 30    | 535              |
| CAG CTT GGC TGC TGC TAC AAC TCG GAA GAG GTC CCT TCT TGT TAC TAT Gln Leu Gly Cys Cys Tyr Asn Ser Glu Glu Val Pro Ser Cys Tyr Tyr 35 40 45             | 583              |
| GGA AAC ACA GTG ACC TCA CGC TGT ACC CAA GAT GGC CAC TTC TCC ATC Gly Asn Thr Val Thr Ser Arg Cys Thr Gln Asp Gly His Phe Ser Ile 50 60                | 631              |
| GCT GTG TCT CGC AAT GTG ACC TCA CCT CCA CTG CTC TGG GAT TCT GTG Ala Val Ser Arg Asn Val Thr Ser Pro Pro Leu Leu Trp Asp Ser Val 65 70 75             | 679              |
| CAC CTG GCC TTC AGA AAT GAC AGT GAA TGT AAA CCT GTG ATG GAA ACA<br>His Leu Ala Phe Arg Asn Asp Ser Glu Cys Lys Pro Val Met Glu Thr<br>80 85 90       | 727              |
| CAC ACT TTT GTC CTC TTC CGG TTT CCA TTT AGT TCC TGT GGG ACT GCA                                                                                      | 775              |

- 75 -

| His<br>95               | Thr                | Phe                | e Val                 | l Le               | u Ph                |                       | g Ph              | ne Pi              | co P              |                    | Ser<br>105         | Ser                | Cys               | G G l             | у Т                   | hr              | Ala<br>110        |      |
|-------------------------|--------------------|--------------------|-----------------------|--------------------|---------------------|-----------------------|-------------------|--------------------|-------------------|--------------------|--------------------|--------------------|-------------------|-------------------|-----------------------|-----------------|-------------------|------|
| AAA<br>Lys              | CGG<br>Arg         | GTA<br>Val         | ACT<br>Thi            | GG(                | G AAG<br>Y Ası<br>5 | C CA<br>n Gl          | G GC<br>n Al      | G G1<br>a Va       | 1 T               | AT G<br>yr G<br>20 | AA .               | AAT<br>Asn         | GAG<br>Glu        | CT<br>Le          | u Va                  | ΓA<br>a 1<br>25 | GCA<br>Ala        | 823  |
| GCT<br>Ala              | CGG<br>Arg         | GAT<br>Asp         | GTG<br>Val<br>130     | . Ar               | G ACT               | TG<br>Tr              | G AG<br>p Se      | C CA<br>r Hi<br>13 | s G               | er r<br>Ly s       | CT :               | ATT<br>Ile         | ACC<br>Thr        | CG<br>Ar          | g As                  | AC<br>Sp        | AGC<br>Ser        | 871  |
| ATC<br>Ile              | TTC<br>Phe         | AGG<br>Arg<br>145  | Leu                   | CGA<br>Arg         | A GTO<br>Val        | AG'<br>Se             | T TG'<br>Cy:      | s Il               | C TA              | C T                | CT (               | /al                | AGT<br>Ser<br>155 | Se                | C AG                  | T               | GCT<br>Ala        | 919  |
| CTC<br>Leu              | CCA<br>Pro<br>160  | GTT<br>Val         | AAC<br>Asn            | ATC<br>Ile         | CAG<br>Gln          | GT1<br>Val<br>165     | Phe               | C AC<br>e Th       | T CI<br>r Le      | C Co<br>u P        | ro F               | ro<br>70           | CCG<br>Pro        | CT                | r cc<br>ı Pr          | G<br>O          | GAG<br>Glu        | 967  |
| ACC<br>Thr<br>175       | CAC<br>His         | CCT<br>Pro         | GGA<br>Gly            | CCT<br>Pro         | CTT<br>Leu<br>180   | Thr                   | CTC<br>Lev        | GA(                | G CT<br>u Le      | u G                | AG A<br>ln I<br>35 | TT (               | GCC<br>Ala        | AA#<br>Lys        | A GA                  | p (             | GAA<br>Glu<br>190 | 1015 |
| CGC<br>Arg              | TAT<br>Tyr         | GGC<br>Gly         | TCC<br>Ser            | TAC<br>Tyr<br>195  | TAC<br>Tyr          | AAT<br>Asn            | GCT<br>Ala        | AG1                | GA<br>As<br>20    | р Ту               | AC C               | cc (               | GTG<br>Val        | GTG<br>Val        | . AA:<br>. Ly:<br>20! | s 1             | rTG<br>Leu        | 1063 |
| CTT (                   | CGG<br>Arg         | GAG<br>Glu         | CCC<br>Pro<br>210     | ATC<br>Ile         | TAT<br>Tyr          | GTG<br>Val            | GAG<br>Glu        | Val<br>215         | . Se:             | r Al               | C C<br>e A         | GT C               | CAC               | CGA<br>Arg<br>220 | Thi                   | A (             | ASP               | 1111 |
| Pro S                   | Ser                | CTC<br>Leu<br>225  | GGG<br>Gly            | CTG<br>Leu         | CAC<br>His          | CTG<br>Leu            | CAC<br>His<br>230 | Gln                | Cys               | C TG               | g g<br>p A         | la T               | CA<br>Chr         | CCC<br>Pro        | GGC                   | C A             | TG<br>let         | 1159 |
| AGC (<br>Ser I          | Pro :              | CTG<br>Leu         | CTC<br>Leu            | CAG<br>Gln         | CCA<br>Pro          | CAG<br>Gln<br>245     | TGG<br>Trp        | CCC                | Met               | CT.                | A G7<br>u Va<br>25 | al A               | AT<br>sn          | GGA<br>Gly        | TGC                   | C P             | ro                | 1207 |
| TAC A<br>Tyr T<br>255   | ACT (              | GGA (              | GAC<br>Asp            | AAC<br>Asn         | TAC<br>Tyr<br>260   | CAG<br>Gln            | ACC<br>Thr        | AAA<br>Lys         | CTG<br>Leu        | 110<br>26          | e Pr               | CT G               | TC (              | CAG<br>Gln        | AAA<br>Lys            | A               | CC<br>la<br>70    | 1255 |
| TCA A<br>Ser A          | AC (               | CTG (<br>Leu 1     | Leu :                 | TTT<br>Phe<br>275  | CCT<br>Pro          | TCT<br>Ser            | CAC<br>His        | TAC<br>Tyr         | CAG<br>Gln<br>280 | Arg                | r TI<br>g Ph       | C A                | GT (<br>er \      | GTT<br>Val        | TCC<br>Ser<br>285     | A<br>T          | CC<br>hr          | 1303 |
| TTC A<br>Phe S          | GT T<br>er P       | he V               | GTG (<br>/al /<br>290 | GAC<br>Asp         | TCT (<br>Ser        | GTG<br>Val            | GCA<br>Ala        | AAG<br>Lys<br>295  | CAG<br>Gln        | GC#<br>Ala         | A CT<br>Le         | C AA               | ys G              | GA<br>Sly<br>SOO  | CCG<br>Pro            | G:<br>V:        | rg<br>al          | 1351 |
| TAT C                   | eu H               | AT I<br>is C<br>05 | GT /<br>Cys 1         | ACT (              | GCA :<br>Ala :      | Ser                   | GTC<br>Val<br>310 | TGC<br>Cys         | AAG<br>Lys        | Pro                | GC.                | A GG<br>a G1<br>31 | Ly A              | CA<br>la          | CCG<br>Pro            | A?              | C<br>Le           | 1399 |
| TGT G'<br>Cys Va<br>32  | TG A<br>al T<br>20 | CA A<br>hr T       | CC I                  | TGT (<br>Cys 1     | Pro P               | SCT (<br>Ala /<br>B25 | GCC .<br>Ala .    | AGA<br>Arg         | CGA<br>Arg        | AGA<br>Arg         | AG<br>Arc<br>330   | g Se               | T T               | CT<br>er          | GAC<br>Asp            | A1              | CC<br>.e          | 1447 |
| CAT TO<br>His Ph<br>335 | TT C               | AG A<br>ln A       | AT G<br>sn G          | ly 1               | ACT G<br>Thr A      | CT A                  | AGC :             | ATT<br>Ile         | TCT<br>Ser        | AGC<br>Ser<br>345  | AA(<br>Lys         | G GG<br>G Gl       | T C               | cc ;              | ATG<br>Met            | A1<br>11<br>35  | e.                | 1495 |
| CTA CT<br>Leu Le        | rc ca<br>eu Gi     | AA G               | la T                  | CT C<br>hr A<br>55 | GG G                | AC 1                  | CT :<br>Ser 8     | Ser                | GAA<br>Glu<br>360 | AGG<br>Arg         | CTC                | C CA<br>Hi         | T A               | ys :              | TAC<br>Tyr<br>365     | TC<br>Se        | A<br>r            | 1543 |

- 76 -

|            |   |      |      |      | TCC<br>Ser |       |      |      |      |     |      |     |      |      |    | 1591 |
|------------|---|------|------|------|------------|-------|------|------|------|-----|------|-----|------|------|----|------|
|            |   |      |      |      | GCC<br>Ala |       |      |      |      |     |      |     |      |      |    | 1639 |
| TGG<br>Trp |   | TGAG | TTAC | TC A | GACC       | CAAA: | G TG | TCAA | TAAA | ACC | AATA | AAA | CAAA | ACCG | GA | 1695 |
| ATTC       | ! |      |      |      |            |       |      |      |      |     |      |     |      |      |    | 1699 |

#### (2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 536 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Trp Leu Arg Pro Ser Ile Trp Leu Cys Phe Pro Leu Cys Leu Ala -136 -135 -130 -125

Leu Pro Gly Gln Ser Gln Pro Lys Ala Ala Asp Asp Leu Gly Gly Leu
-120 -115 -110 -105

Tyr Cys Gly Pro Ser Ser Phe His Phe Ser Ile Asn Leu Leu Ser Gln
-100 -95 -90

Asp Thr Ala Thr Pro Pro Ala Leu Val Val Trp Asp Arg Arg Gly Arg -85 -80 -75

Leu His Lys Leu Gln Asn Asp Ser Gly Cys Gly Thr Trp Val His Lys
-70 -65 -60

Gly Pro Gly Ser Ser Met Gly Val Glu Ala Ser Tyr Arg Gly Cys Tyr
-55 -50 -45

Val Thr Glu Trp Asp Ser His Tyr Leu Met Pro Ile Gly Leu Glu Glu -40 -35 -30 -25

Ala Asp Ala Gly Gly His Arg Thr Val Thr Glu Thr Lys Leu Phe Lys

Cys Pro Val Asp Phe Leu Ala Leu Asp Val Pro Thr Ile Gly Leu Cys

Asp Ala Val Pro Val Trp Asp Arg Leu Pro Cys Ala Pro Pro Pro Ile 10 15 20

Thr Gln Gly Glu Cys Lys Gln Leu Gly Cys Cys Tyr Asn Ser Glu Glu 25 30 35 40

Val Pro Ser Cys Tyr Tyr Gly Asn Thr Val Thr Ser Arg Cys Thr Gln
45 50

Asp Gly His Phe Ser Ile Ala Val Ser Arg Asn Val Thr Ser Pro Pro 60 65 70

Leu Leu Trp Asp Ser Val His Leu Ala Phe Arg Asn Asp Ser Glu Cys

- 77 -

75 80 85 Lys Pro Val Met Glu Thr His Thr Phe Val Leu Phe Arg Phe Pro Phe 95 Ser Ser Cys Gly Thr Ala Lys Arg Val Thr Gly Asn Gln Ala Val Tyr Glu Asn Glu Leu Val Ala Ala Arg Asp Val Arg Thr Trp Ser His Gly Ser Ile Thr Arg Asp Ser Ile Phe Arg Leu Arg Val Ser Cys Ile Tyr Ser Val Ser Ser Ser Ala Leu Pro Val Asn Ile Gln Val Phe Thr Leu 160 Pro Pro Pro Leu Pro Glu Thr His Pro Gly Pro Leu Thr Leu Glu Leu Gln Ile Ala Lys Asp Glu Arg Tyr Gly Ser Tyr Tyr Asn Ala Ser Asp Tyr Pro Val Val Lys Leu Leu Arg Glu Pro Ile Tyr Val Glu Val Ser Ile Arg His Arg Thr Asp Pro Ser Leu Gly Leu His Leu His Gln Cys Trp Ala Thr Pro Gly Met Ser Pro Leu Leu Gln Pro Gln Trp Pro Met 240 Leu Val Asn Gly Cys Pro Tyr Thr Gly Asp Asn Tyr Gln Thr Lys Leu Ile Pro Val Gln Lys Ala Ser Asn Leu Leu Phe Pro Ser His Tyr Gln Arg Phe Ser Val Ser Thr Phe Ser Phe Val Asp Ser Val Ala Lys Gln Ala Leu Lys Gly Pro Val Tyr Leu His Cys Thr Ala Ser Val Cys Lys Pro Ala Gly Ala Pro Ile Cys Val Thr Thr Cys Pro Ala Ala Arg Arg Arg Arg Ser Ser Asp Ile His Phe Gln Asn Gly Thr Ala Ser Ile Ser Ser Lys Gly Pro Met Ile Leu Leu Gln Ala Thr Arg Asp Ser Ser Glu Arg Leu His Lys Tyr Ser Arg Pro Pro Val Asp Ser His Ala Leu Trp Val Ala Gly Leu Leu Gly Ser Leu Ile Ile Gly Ala Leu Leu Val Ser

Tyr Leu Val Phe Arg Lys Trp Arg

#### (2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1326 base pairs

- 78 **-**

| (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear                                                                                                                                                   |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| (ii) MOLECULE TYPE: cDNA                                                                                                                                                                                               |     |
| (iii) HYPOTHETICAL: NO                                                                                                                                                                                                 |     |
| (iv) ANTI-SENSE: NO                                                                                                                                                                                                    |     |
| <ul> <li>(vi) ORIGINAL SOURCE:</li> <li>(A) ORGANISM: Sus scrofa</li> <li>(D) DEVELOPMENTAL STAGE: Juvenile</li> <li>(E) HAPLOTYPE: Diploidy</li> <li>(F) TISSUE TYPE: Ovary</li> <li>(G) CELL TYPE: Oocyte</li> </ul> |     |
| <pre>(ix) FEATURE:     (A) NAME/KEY: sig_peptide     (B) LOCATION: 25105</pre>                                                                                                                                         |     |
| <pre>(ix) FEATURE:     (A) NAME/KEY: mat_peptide     (B) LOCATION: 1061290</pre>                                                                                                                                       |     |
| (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 251290                                                                                                                                                                   |     |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:                                                                                                                                                                                |     |
| GAATTCCGGG GCCTTGTGAG TGCC ATG GCG CCG AGC TGG AGG TTC TTC GTC  Met Ala Pro Ser Trp Arg Phe Phe Val  -27 -25 -20                                                                                                       | 51  |
| TGC TTT CTG CTC TGG GGA GGT ACA GAG CTA TGC AGC CCG CAG CCC GTC Cys Phe Leu Leu Trp Gly Gly Thr Glu Leu Cys Ser Pro Gln Pro Val -15 -10 -5                                                                             | 99  |
| TGG CAG GAC GAA GGC CAG CGC TTG AGG CCC TCA AAG CCA CCC ACC GTA Trp Gln Asp Glu Gly Gln Arg Leu Arg Pro Ser Lys Pro Pro Thr Val 1 5 10                                                                                 | 147 |
| ATG GTG GAG TGT CAG GAG GCC CAG CTG GTG GTC ATT GTC AGC AAA GAC Met Val Glu Cys Gln Glu Ala Gln Leu Val Val Ile Val Ser Lys Asp 15 20 25 30                                                                            | 195 |
| CTT TTC GGT ACC GGG AAG CTC ATC AGG CCT GCA GAT CTC AGC CTG GGC Leu Phe Gly Thr Gly Lys Leu Ile Arg Pro Ala Asp Leu Ser Leu Gly 35 40 45                                                                               | 243 |
| CCT GCA AAG TGT GAG CCG CTG GTC TCT CAG GAC ACG GAC GCA GTG GTC Pro Ala Lys Cys Glu Pro Leu Val Ser Gln Asp Thr Asp Ala Val Val                                                                                        | 291 |
| 50 55 60                                                                                                                                                                                                               |     |
| AGG TTT GAG GTT GGG CTG CAC GAG TGT GGC AGC AGC TTG CAG GTG ACT Arg Phe Glu Val Gly Leu His Glu Cys Gly Ser Ser Leu Gln Val Thr 65                                                                                     | 339 |
| GAT GAT GCT CTG GTG TAC AGC ACC TTC CTG CGC CAT GAC CCC CGC CCT Asp Asp Ala Leu Val Tyr Ser Thr Phe Leu Arg His Asp Pro Arg Pro 80 90                                                                                  | 387 |
| GCA GGA AAC CTG TCC ATC CTG AGG ACG AAC CGT GCG GAG GTC CCC ATC Ala Gly Asn Leu Ser Ile Leu Arg Thr Asn Arg Ala Glu Val Pro Ile 95                                                                                     | 435 |

- 79 -

| GAG<br>Glu              | TGT<br>Cys            | CAC<br>His            | TAC<br>Tyr            | CCC<br>Pro<br>115     | AGG<br>Arg         | CAG<br>Gln           | GGC<br>Gly        | AAC<br>Asn         | GT(<br>Val<br>120     | Ser                   | Ser                   | TGG                   | GCC<br>Ala         | 11e               | CTG<br>Leu        | 483  |
|-------------------------|-----------------------|-----------------------|-----------------------|-----------------------|--------------------|----------------------|-------------------|--------------------|-----------------------|-----------------------|-----------------------|-----------------------|--------------------|-------------------|-------------------|------|
| CCC<br>Pro              | ACC<br>Thr            | TGG<br>Trp            | GTG<br>Val<br>130     | CCC<br>Pro            | TTC<br>Phe         | AGG<br>Arg           | ACC<br>Thr        | ACG<br>Thr<br>135  | Val                   | TTC<br>Phe            | TCC<br>Ser            | GAG<br>Glu            | GAG<br>Glu<br>140  | AAG<br>Lys        | CTG<br>Leu        | 531  |
| GTG<br>Val              | TTC<br>Phe            | TCT<br>Ser<br>145     | CTG<br>Leu            | CGC<br>Arg            | CTG<br>Leu         | ATG<br>Met           | GAG<br>Glu<br>150 | GAA<br>Glu         | AAC<br>Asn            | TGG<br>Trp            | AGT<br>Ser            | GCC<br>Ala<br>155     | GAG<br>Glu         | AAG<br>Lys        | ATG<br>Met        | 579  |
| ACG<br>Thr              | CCC<br>Pro<br>160     | ACC<br>Thr            | TTC<br>Phe            | CAG<br>Gln            | CTG<br>Leu         | GGG<br>Gly<br>165    | GAC<br>Asp        | AGA<br>Arg         | GCC<br>Ala            | CAC<br>His            | CTC<br>Leu<br>170     | CAG<br>Gln            | GCC<br>Ala         | CAA<br>Gln        | GTC<br>Val        | 627  |
| CAC<br>His<br>175       | ACC<br>Thr            | GGC<br>Gly            | AGC<br>Ser            | CAC<br>His            | GTG<br>Val<br>180  | CCA<br>Pro           | CTG<br>Leu        | AGG<br>Arg         | CTG<br>Leu            | TTT<br>Phe<br>185     | GTG<br>Val            | GAC<br>Asp            | CAC<br>His         | TGT<br>Cys        | GTG<br>Val<br>190 | 675  |
| GCC<br>Ala              | ACG<br>Thr            | CTG<br>Leu            | Thr                   | CCG (<br>Pro 1<br>195 | SAC<br>Asp         | TGG /                | AAC .<br>Asn '    | ACC<br>Thr         | TCC<br>Ser<br>200     | CCC<br>Pro            | TCT<br>Ser            | CAC<br>His            | Thr                | ATC<br>Ile<br>205 | GTG<br>Val        | 723  |
| GAC<br>Asp              | TTC<br>Phe            | His (                 | GGC<br>Gly<br>210     | TGT (<br>Cys I        | CTC (<br>Leu 1     | GTG (<br>/al /       | Asp (             | GGT<br>Gly<br>215  | CTC<br>Leu            | ACT<br>Thr            | GAG<br>Glu            | Ala :                 | TCA<br>Ser<br>220  | TCT<br>Ser        | GCT<br>Ala        | 771  |
| TTC Phe                 | Lys /                 | GCA (<br>Ala I<br>225 | CCT A                 | AGA C<br>Arg F        | CT (               | ly F                 | CA C              | GAG<br>Glu         | ACG<br>Thr            | CTC<br>Leu            | Gln :                 | TTC !<br>Phe 1<br>235 | ACC (<br>Thr       | GTG<br>Val        | GAT<br>Asp        | 819  |
| GTG ?<br>Val i          | TTC (<br>Phe I<br>240 | CAT 1<br>His F        | rrr (<br>Phe <i>P</i> | GCT A<br>Ala A        | sn A               | AT T<br>sp S<br>45   | CC A              | GA i               | AAC<br>Asn            | Thr                   | ATC 1<br>1le 1<br>250 | TAC A                 | ATC A              | ACC Thr           | TGC<br>Cys        | 867  |
| CAT C<br>His I<br>255   | CTG F<br>Leu I        | AAG G<br>Lys V        | TC A                  | hr P                  | CG G<br>ro A<br>60 | CT G<br>la A         | ap A              | GA (               | /al                   | CCG (<br>Pro 1<br>265 | Asp (                 | CAA C                 | TC A               | sn I              | AAA<br>Lys<br>270 | 915  |
| GCC T<br>Ala C          | GT I                  | CC T<br>er P          | he S                  | GC A<br>er L<br>75    | AG T<br>ys S       | CC To                | CC A<br>er A      | sn A               | AGG 1<br>Arg 1<br>180 | rgg 1<br>rp s         | CC C<br>Ser P         | ccg g<br>Pro V        | al G               | AA 0              | GGG<br>Ely        | 963  |
| CCT G<br>Pro A          | CT G<br>la V          | al I                  | TC T<br>le C<br>90    | GT CO<br>ys Ai        | T TO               | GC T(<br>ys C)       | s H               | AC A<br>is L<br>95 | AG G                  | GG C                  | AG T                  | ys G                  | GT A<br>ly T<br>00 | CC C              | CA<br>'ro         | 1011 |
| AGC C                   | eu S                  | CC Ader An            | GG A                  | AG CI<br>ys Le        | C TC               | CT AT<br>er Me<br>31 | t Pr              | CG A               | AG A<br>ys A          | GA C                  | ln S                  | CT GO<br>er Al        | CT Cola Pi         | CC C              | GC<br>rg          | 1059 |
| AGT Co<br>Ser A         | GC AG<br>rg Ai<br>20  | GG CA<br>rg Hi        | AC G1                 | rg Ac                 | A GA<br>r As<br>32 | p Gl                 | A GC<br>u Al      | CA G               | AT G<br>sp V          | al T                  | CA G<br>hr V<br>30    | TG GG<br>al Gl        | G Co               | CT C              | TG<br>eu          | 1107 |
| ATC TT<br>Ile Ph<br>335 | rc ci                 | rg gg<br>eu Gl        | C AA                  | G AC<br>s Th<br>34    | r Se               | T GA<br>r As         | C CA<br>p Hi      | C GC<br>s G]       | ly V                  | TG G<br>al G<br>45    | AA GO<br>lu Gl        | GG TC<br>ly Se        | C AC               | ır Se             | CC<br>er<br>50    | 1155 |
| TCC CC<br>Ser Pr        | C AC                  | C TC                  | G GT<br>r Va<br>35    | 1 Me                  | G GT<br>t Va       | G GG                 | C TT<br>y Le      | G GC<br>u G1<br>36 | Ly Le                 | rg go<br>eu Al        | CC AC                 | CC GT<br>ir Va        | G G1<br>1 Va<br>36 | 1 Th              | cc<br>nr          | 1203 |
| TTG AC<br>Leu Th        | T CT<br>r Le          | G GC                  | T AC<br>a Th          | C ATT                 | GT GT              | C CTO                | G GG              | T GT<br>y Va       | G CC                  | C AG                  | G AG                  | G CG                  | T CG<br>g Ar       | G GC<br>g Al      | CT<br>.a          | 1251 |

- 80 ~

1326

370 375 . 380 GCT GCC CAC CTT GTG TGC CCC GTG TCT GCT TCC CAA TAAAAGGAGA Ala Ala His Leu Val Cys Pro Val Ser Ala Ser Gln AACATGAAAA AAAAAAAAAA CCGGAATTC (2) INFORMATION FOR SEQ ID NO:6: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 421 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6: Met Ala Pro Ser Trp Arg Phe Phe Val Cys Phe Leu Leu Trp Gly Gly Thr Glu Leu Cys Ser Pro Gln Pro Val Trp Gln Asp Glu Gly Gln Arg Leu Arg Pro Ser Lys Pro Pro Thr Val Met Val Glu Cys Gln Glu Ala Gln Leu Val Val Ile Val Ser Lys Asp Leu Phe Gly Thr Gly Lys Leu Ile Arg Pro Ala Asp Leu Ser Leu Gly Pro Ala Lys Cys Glu Pro Leu Val Ser Gln Asp Thr Asp Ala Val Val Arg Phe Glu Val Gly Leu His Glu Cys Gly Ser Ser Leu Gln Val Thr Asp Asp Ala Leu Val Tyr Ser Thr Phe Leu Arg His Asp Pro Arg Pro Ala Gly Asn Leu Ser Ile Leu Arg Thr Asn Arg Ala Glu Val Pro Ile Glu Cys His Tyr Pro Arg Gln Gly Asn Val Ser Ser Trp Ala Ile Leu Pro Thr Trp Val Pro Phe Arg Thr Thr Val Phe Ser Glu Glu Lys Leu Val Phe Ser Leu Arg Leu Met Glu Glu Asn Trp Ser Ala Glu Lys Met Thr Pro Thr Phe Gln Leu Gly Asp Arg Ala His Leu Gln Ala Gln Val His Thr Gly Ser His Val Pro Leu Arg Leu Phe Val Asp His Cys Val Ala Thr Leu Thr Pro Asp Trp 190

Asn Thr Ser Pro Ser His Thr Ile Val Asp Phe His Gly Cys Leu Val

Asp Gly Leu Thr Glu Ala Ser Ser Ala Phe Lys Ala Pro Arg Pro Gly

215

- 81 ~

Pro Glu Thr Leu Gln Phe Thr Val Asp Val Phe His Phe Ala Asn Asp

Ser Arg Asn Thr Ile Tyr Ile Thr Cys His Leu Lys Val Thr Pro Ala 255

Asp Arg Val Pro Asp Gln Leu Asn Lys Ala Cys Ser Phe Ser Lys Ser

Ser Asn Arg Trp Ser Pro Val Glu Gly Pro Ala Val Ile Cys Arg Cys

Cys His Lys Gly Gln Cys Gly Thr Pro Ser Leu Ser Arg Lys Leu Ser

Met Pro Lys Arg Gln Ser Ala Pro Arg Ser Arg Arg His Val Thr Asp

Glu Ala Asp Val Thr Val Gly Pro Leu Ile Phe Leu Gly Lys Thr Ser

Asp His Gly Val Glu Gly Ser Thr Ser Ser Pro Thr Ser Val Met Val

Gly Leu Gly Leu Ala Thr Val Val Thr Leu Thr Leu Ala Thr Ile Val

Leu Gly Val Pro Arg Arg Arg Ala Ala Ala His Leu Val Cys Pro 380

Val Ser Ala Ser Gln 390

#### (2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1338 base pairs

  - (B) TYPE: nucleic acid (C) STRANDEDNESS: double
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Oryctolagus cuniculus
  - (D) DEVELOPMENTAL STAGE: Juvenile
  - (E) HAPLOTYPE: Diploidy (F) TISSUE TYPE: Ovary

  - (G) CELL TYPE: Oocyte
- (ix) FEATURE:
  - (A) NAME/KEY: CDS
  - (B) LOCATION: 17..1261
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

GAATTCGCGG CCGGCC TAC GGG CTC TTC GTT TGC CTA CTG CTC TGG GGA Tyr Gly Leu Phe Val Cys Leu Leu Leu Trp Gly

- 82 -

| G]                | GC I              | ccc<br>er         | GAG<br>Glu         | CTG<br>Leu<br>15   | Су               | C To              | gc (              | ro (               | CAG<br>Gln         | CCG<br>Pro<br>20   | Le               | C TO              | ep I              | rtc<br>Phe        | TGG<br>Trp        | Gl                | G G<br>n G<br>5   | GC<br>ly       | GGG<br>Gly       | 97         |
|-------------------|-------------------|-------------------|--------------------|--------------------|------------------|-------------------|-------------------|--------------------|--------------------|--------------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------|------------------|------------|
| AC<br>Th          | C C               | GC<br>.rg         | CAG<br>Gln<br>30   | Pro                | GC:<br>Ala       | G CC<br>a Pr      | CC I              | cc (               | GTG<br>Val<br>35   | ACG<br>Thr         | Pro              | C GT              | rg g              | TG<br>al          | GTG<br>Val<br>40  | G1                | G T<br>u C        | ys<br>GT       | CTG<br>Leu       | 145        |
| GA<br>G1          | u A               | CC<br>la<br>45    | CGG<br>Arg         | CTC<br>Leu         | GT(              | G G1<br>L Va      | 1 T               | CG (<br>hr \<br>50 | TC<br>al           | AGC<br>Ser         | AGC<br>Arc       | G GA<br>J As      | рL                | TT<br>eu<br>55    | TTT<br>Phe        | GG<br>Gl          | C A<br>y T        | CC<br>hr       | GGG<br>Gly       | 193        |
| AA<br>Ly<br>6     | 8 L               | TC :              | ATC<br>Ile         | CAG<br>Gln         | GA0              | G GC<br>Al<br>6   | a A               | AC C               | TC .               | AGC<br>Ser         | CTG<br>Leu       | Gl                | С С<br>у Р<br>О   | CC                | GAG<br>Glu        | GGG               | C TO              | ya<br>GC       | GAG<br>Glu<br>75 | 241        |
| Pro               | C CZ<br>D G       | AG (              | GCC<br>Ala         | TCC<br>Ser         | ACG<br>Thr<br>80 | As                | C GO<br>P A       | CC G<br>la V       | TG (               | GTC<br>Val         | AGG<br>Arg<br>85 | Ph                | C G               | AG (<br>lu '      | GTC<br>Val        | GGC<br>Gly        | , Le              | rG<br>eu<br>eo | CAT<br>His       | 289        |
| GA/<br>Glu        | A TO              | or o              | GT :               | AAC<br>Asn<br>95   | AGC<br>Ser       | GT(               | G CA              | iG G<br>.n V       | al 7               | ACT<br>Thr<br>100  | GAC<br>Asp       | GA(               | C TO<br>Se        | CC (er I          | CTG<br>Leu        | GTG<br>Val<br>105 | Ту                | c .            | AGC<br>Ser       | 337        |
| TCC               | Ph                | e L               | TG (<br>eu I<br>10 | CTC<br>Leu         | CAC<br>His       | GA(<br>Asp        | C CC              | O A                | GC C<br>rg P<br>15 | ro                 | GCG<br>Ala       | GG#<br>Gly        | A AA              | n I               | CTG<br>Leu<br>L20 | TCC<br>Ser        | AT<br>Il          | C (            | CTC<br>Leu       | 385        |
| AGG<br>Arg        | AC<br>Th<br>12    | r A               | AC C               | cgc<br>arg         | GCC<br>Ala       | GAG<br>Glu        | Va<br>13          | l Pr               | C A                | TC (               | GAG<br>Glu       | TGC<br>Cys        | CG<br>Ar<br>13    | g I               | AC (              | CCC<br>Pro        | AG                | g d            | CAG<br>Sln       | 433        |
| GGC<br>Gly<br>140 | AS                | C G'              | TG A               | GC :               | AGC<br>Ser       | CGG<br>Arg<br>145 | Al                | G AI               | C C                | TG (<br>eu ]       | CCG<br>Pro       | ACC<br>Thr<br>150 | Tr                | G G<br>p V        | TG (              | CCC<br>Pro        | TTO               | <b>⊋</b> T     | GG<br>rp<br>55   | 481        |
| ACC<br>Thr        | ACC<br>Thi        | G G:              | ra c               | eu S               | CA<br>Ser<br>160 | GAG<br>Glu        | GA0<br>Glu        | AG<br>1 Ar         | G C                | eu V               | TG<br>al<br>.65  | TTC<br>Phe        | TC:<br>Se:        | C C               | TG C              | cgc               | CTC<br>Leu<br>170 | ı M            | TG<br>et         | <b>529</b> |
| GAG<br>Glu        | GA0               | AA<br>1 As        | n T                | GG A<br>rp S<br>75 | GC<br>er         | CGA<br>Arg        | GAA<br>Glu        | AA<br>Ly:          | G AT<br>s Me<br>18 | et S               | cc<br>er         | CCC<br>Pro        | ACC<br>Thr        | C TT              | ne H              | AC<br>is<br>85    | CTG<br>Leu        | G              | GC<br>ly         | 577        |
| GAC<br>Asp        | ACG<br>Thr        | GC<br>Al<br>19    | a H                | AC C               | TG (             | CAG<br>Gln        | GCA<br>Ala        | GA0<br>Glu<br>195  | ı Va               | C C                | GC 1             | ACG<br>Chr        | GGC<br>Gly        | 2 AG              | er H              | AC<br>is          | CCG<br>Pro        | C(P)           | CC<br>CO         | 625        |
| CTG<br>Leu        | CTG<br>Leu<br>205 | CT                | G TI<br>u Ph       | C G                | TG (             | Asp               | CGC<br>Arg<br>210 | TGC<br>Cys         | C GT<br>Va         | G G                | CC A<br>la T     | hr                | CCG<br>Pro<br>215 | Th                | A Co              | GG (              | GAC<br>Asp        | CF<br>G1       | AG<br>. n        | 673        |
| AGC<br>Ser<br>220 | GGC<br>Gly        | TC:               | C CC               | C T                | yr H             | CAC<br>lis<br>25  | ACC<br>Thr        | ATC                | Va.                | G GA               | p L              | TG<br>eu<br>30    | CAC<br>His        | GG<br>G1          | с то<br>у су      | GT (              | CTT<br>Leu        | GT<br>Va<br>23 | 1                | 721        |
| CAT (             | GGC<br>Gly        | CTO               | C TC               | C GA<br>r As<br>24 | p G              | GG (              | GCT<br>Ala        | TCC<br>Ser         | AA(<br>Lys         | G T1<br>S Ph<br>24 | e L              | AA (              | GCC<br>Ala        | Pro               | C AG              | g P               | CG<br>ro          | AA<br>Ly       | G<br>s           | 769        |
| CCG (             | Asp               | GTG<br>Val        | Lei<br>25!         | a Gl               | G T              | TC A              | ATG<br>Met        | GTG<br>Val         | GCC<br>Ala<br>260  | va                 | G T              | TC (              | CAC               | TT(               | C GC<br>Al<br>26  | a A               | AT<br>sn          | GA:            | C<br>P           | 817        |
| TCC A             | ırg               | CAC<br>His<br>270 | Thr                | GT<br>Va           | C TA             | AC A              | le                | ACG<br>Thr<br>275  | TGT<br>Cys         | CA<br>Hi           | C CT             | rg A<br>eu A      | rg                | GTC<br>Val<br>280 | . Il              | T C<br>e P        | CT o              | GC(<br>Ala     | 2                | 865        |

| Glr.              | G CA/<br>Glr<br>285 | ı Ala             | CCC<br>Pro        | G GAC             | C CGC             | 290               | Asr.              | AAC<br>Lys        | G GCI<br>S Ala    | TG1<br>Cys        | TCT<br>Sex<br>295 | : Phe             | AAC<br>Asn        | CAC<br>Glr        | TCC<br>Ser        | 913  |
|-------------------|---------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| TCC<br>Ser<br>300 | Ser                 | AGC<br>Ser        | TGG               | GCC<br>Ala        | CCG<br>Pro<br>305 | Val               | GAA<br>Glu        | GGC               | AGT<br>Ser        | GCA<br>Ala<br>310 | Asp               | ATC<br>Ile        | Cys               | GAC<br>Glu        | TGT<br>Cys<br>315 | 961  |
| TGC<br>Cys        | GGC                 | AAC<br>Asn        | GGT<br>Gly        | GAC<br>Asp<br>320 | Cys               | GAC<br>Asp        | CTC<br>Leu        | ATC<br>Ile        | GCA<br>Ala<br>325 | GGC<br>Gly        | TCC               | CCC<br>Pro        | ATG<br>Met        | AAC<br>Aan        | CAG<br>Gln        | 1009 |
| AAC<br>Asn        | CAT<br>His          | GCT<br>Ala        | GCC<br>Ala<br>335 | CGG<br>Arg        | TCC<br>Ser        | TCT<br>Ser        | CTG<br>Leu        | CGA<br>Arg<br>340 | AGC<br>Ser        | CGC<br>Arg        | AGG<br>Arg        | CAC<br>His        | GTG<br>Val<br>345 | ACG<br>Thr        | GAA<br>Glu        | 1057 |
| GAA<br>Glu        | GCA<br>Ala          | GAC<br>Asp<br>350 | GTC<br>Val        | ACC<br>Thr        | GTG<br>Val        | GGC<br>Gly        | CCG<br>Pro<br>355 | CTG<br>Leu        | ATC<br>Ile        | TTC<br>Phe        | CTG<br>Leu        | GGG<br>Gly<br>360 | AAG<br>Lys        | GCT<br>Ala        | GGT<br>Gly        | 1105 |
| GAC<br>Asp        | CCT<br>Pro<br>365   | GCC<br>Ala        | GGC<br>Gly        | ACA<br>Thr        | GAG<br>Glu        | GGG<br>Gly<br>370 | CTG<br>Leu        | GCC<br>Ala        | TCT<br>Ser        | GCT<br>Ala        | GCG<br>Ala<br>375 | CAG<br>Gln        | GCG<br>Ala        | ACC<br>Thr        | CTG<br>Leu        | 1153 |
| GTG<br>Val<br>380 | CTG<br>Leu          | GGC<br>Gly        | CTT<br>Leu        | CGC<br>Arg        | ATG<br>Met<br>385 | GCC<br>Ala        | ACC<br>Thr        | ATT<br>Ile        | Val               | TTC<br>Phe<br>390 | CTG<br>Leu        | GCT<br>Ala        | GTG<br>Val        | GCT<br>Ala        | GCT<br>Ala<br>395 | 1201 |
| GTG<br>Val        | GTC<br>Val          | CTG<br>Leu        | Gly               | CTC<br>Leu<br>400 | ACC<br>Thr        | AGG<br>Arg        | GGG<br>Gly        | Arg               | CAC<br>His<br>405 | GCT<br>Ala        | GCT<br>Ala        | TCC<br>Ser        | His               | CCC<br>Pro<br>410 | AGG<br>Arg        | 1249 |
| TCT (             | GCT<br>Ala          | ser               | CAA<br>Gln<br>415 | TAAA              | АААТ              | CA T              | gact'             | ICAA              | A AA              | AAAA              | AAAA              | AAA               | AAAA              | AAA               |                   | 1301 |
| LAAA              | AAAA                | AA AA             | AAAA              | AAAA              | AAA A             | AGCG              | CCG               | CGA               | ATTC              |                   |                   |                   |                   |                   |                   | 1338 |

#### (2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 415 amino acids
  - (B) TYPE: amino acid(D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Tyr Gly Leu Phe Val Cys Leu Leu Leu Trp Gly Gly Ser Glu Leu Cys 1 5 15

Cys Pro Gln Pro Leu Trp Phe Trp Gln Gly Gly Thr Arg Gln Pro Ala

Pro Ser Val Thr Pro Val Val Val Glu Cys Leu Glu Ala Arg Leu Val

Val Thr Val Ser Arg Asp Leu Phe Gly Thr Gly Lys Leu Ile Gln Glu 50 55 60

Ala Asp Leu Ser Leu Gly Pro Glu Gly Cys Glu Pro Gln Ala Ser Thr 65 70 75 80

Asp Ala Val Val Arg Phe Glu Val Gly Leu His Glu Cys Gly Asn Ser

- 84 -

Val Gln Val Thr Asp Asp Ser Leu Val Tyr Ser Ser Phe Leu Leu His 100 105 110

Asp Pro Arg Pro Ala Gly Asn Leu Ser Ile Leu Arg Thr Asn Arg Ala 115 120 125

Glu Val Pro Ile Glu Cys Arg Tyr Pro Arg Gln Gly Asn Val Ser Ser 130 135 140

Arg Ala Ile Leu Pro Thr Trp Val Pro Phe Trp Thr Thr Val Leu Ser 145 150 155 160

Glu Glu Arg Leu Val Phe Ser Leu Arg Leu Met Glu Glu Asn Trp Ser 165 170 175

Arg Glu Lys Met Ser Pro Thr Phe His Leu Gly Asp Thr Ala His Leu 180 185 190

Gln Ala Glu Val Arg Thr Gly Ser His Pro Pro Leu Leu Leu Phe Val 195 200 205

Asp Arg Cys Val Ala Thr Pro Thr Arg Asp Gln Ser Gly Ser Pro Tyr 210 225

His Thr Ile Val Asp Leu His Gly Cys Leu Val Asp Gly Leu Ser Asp 225 230 235 240

Gly Ala Ser Lys Phe Lys Ala Pro Arg Pro Lys Pro Asp Val Leu Gln 245 250 255

Phe Met Val Ala Val Phe His Phe Ala Asn Asp Ser Arg His Thr Val 260 265 270

Tyr Ile Thr Cys His Leu Arg Val Ile Pro Ala Gln Gln Ala Pro Asp 275 280 285

Arg Leu Asn Lys Ala Cys Ser Phe Asn Gln Ser Ser Ser Ser Trp Ala 290 295 300

Pro Val Glu Gly Ser Ala Asp Ile Cys Glu Cys Cys Gly Asn Gly Asp 305 310 315 320

Cys Asp Leu Ile Ala Gly Ser Pro Met Asn Gln Asn His Ala Alá Arg 325 330 335

Ser Ser Leu Arg Ser Arg Arg His Val Thr Glu Glu Ala Asp Val Thr 340 345 350

Val Gly Pro Leu Ile Phe Leu Gly Lys Ala Gly Asp Pro Ala Gly Thr 355 360 365

Glu Gly Leu Ala Ser Ala Ala Gln Ala Thr Leu Val Leu Gly Leu Arg 370 375 380

Met Ala Thr Ile Val Phe Leu Ala Val Ala Ala Val Val Leu Gly Leu 385 390 395 400

Thr Arg Gly Arg His Ala Ala Ser His Pro Arg Ser Ala Ser Gln 405 410

#### (2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 2381 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: double
  - (D) TOPOLOGY: linear

- 85 -

| 1 | [ii] | MOLECULE | TYPE: | CDNA |
|---|------|----------|-------|------|
|   |      |          |       |      |

# (iii) HYPOTHETICAL: NO

## (iv) ANTI-SENSE: NO

## (vi) ORIGINAL SOURCE:

- ARIGINAL SOURCE:

  (A) ORGANISM: Canis familiaris

  (D) DEVELOPMENTAL STAGE: Juvenile

  (E) HAPLOTYPE: Diploidy

  (F) TISSUE TYPE: Ovary

  (G) CELL TYPE: Oocyte

#### (ix) FEATURE:

- (A) NAME/KEY: CDS
  (B) LOCATION: 206..2353

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

|            | _          |              |            |              |       |            |            |            |       |       |          |           |       |          |            |        |     |
|------------|------------|--------------|------------|--------------|-------|------------|------------|------------|-------|-------|----------|-----------|-------|----------|------------|--------|-----|
| GA.        | ATT        | CCGG         | G AG       | CCCT         | GAAG  | GAA        | GCCG       | CAA        | GAAC  | CCTG  | cc c     | GCAC      | CTCC  | G CG     | ACCT       | CAAG   | 60  |
| AT         | GTC        | CACT         | C CA       | CTGG         | AAGA  | CGG        | AGAA'      | TAC        | TGGA  | TTGA  | cc c     | CAAC      | CAAG  | G AT     | GCAA       | CCTG   | 120 |
| ATO        | GCC        | ATCA         | A GG       | TTTT         | CTGC  | AAC        | ATGG       | AGA        | CAGG  | TGAG  | AC C     | TGCG      | TATA  | c cc     | ACCT       | ACCT   | 180 |
| GGG        | CTGF       | TTT          | G GT       | GTAC         | GTT   | TGG        | C A        | rg G       | CA T  | GC A  | AA C     | AG A      | AA G  | GA G     | AC AG      | T      | 232 |
|            |            |              |            |              |       |            | Me         | et A.<br>1 | la C  | ys L  | ys G     | ln L<br>5 | ys G  | ly As    | sp Se      | r      |     |
| GGG        | AG         | T CC         | C TO       | A AG         | C AG  | G TI       | T AG       | T G        | CA G  | AT TO | G A      | GC A      | CC TA | C AG     | G TC       | Δ.     | 280 |
| 10         | )          |              | .0 56      | ı se         | 1     | .5<br>.5   | e Se       | r Al       | La As | ap Ti | cp Se    | er T      | hr Ty | r Ar     | g Se<br>2  | r<br>5 | 280 |
| CTT<br>Leu | TC<br>Se   | T TI<br>r Le | A TT       | C TT<br>e Ph | C AT  | C CT       | T GT       | G AC       | T TO  | A GI  | G AZ     | C TO      | CA GT | A GG     | T GT       | T      | 328 |
|            |            |              |            | 3            | 0     | - 20       | - 10       |            | 3     | 5     | IT WE    | 511 Se    | er va |          | y va.<br>O | 1      |     |
| ATG<br>Met | CA(        | G TT         | G GT       | G AA         | r cc  | C AT       | C TT       | c cc       | A GG  | T AC  | T GI     | C AI      | T TG  | C CA     | T GA       | A      | 376 |
|            |            |              | 4          | 5            | I FI  | 5 11       | e Pn       | 5<br>5     | 0     | y Th  | r Va     | 1 11      | e Cy  |          | s Glu      | 1      |     |
| AAT        | AA/        | A AT         | G AC       | A GTO        | GA    | A TT       | r ccz      | A AG       | G GA  | т ст  | T GG     | C AC      | C AA  | A AA     | A TGG      | ;      | 424 |
| ASII       | гÀг        | 6 Me         | C 1111     | c Val        | . Glu | ı Phe      | Pro<br>65  | ) Ar       | g As  | p Le  | u Gl     | y Th<br>7 | r Lys | E Ly     | s Trp      |        |     |
| CAT        | GCA        | TC           | r GTC      | GTG          | GAI   | CCA        | TTI        | ·<br>· AG  | r TT  | r gaz | A TT     | 3 TT      | G AAC | י יייביי | ቦ አውጥ      | 1      | 472 |
| His        | Ala<br>75  | Set          | . Val      | . Val        | Asp   | Pro<br>80  | Phe        | Sei        | Phe   | Glu   | Lei<br>8 | ı Le      | u Asr | Cys      | Thr        | •      | 472 |
| TCT<br>Ser | ATC        | CTG          | GAC        | CCA          | GAA   | AAG        | CTC        | ACC        | CTC   | AAG   | GCC      | CCI       | TAT   | GAG      | ACC        |        | 520 |
|            |            |              |            |              | 75    |            |            |            |       | 100   | )        |           | Tyr   |          | 105        |        |     |
| Cys :      | AGC<br>Ser | AGG<br>Arg   | AGA<br>Arg | GTG<br>Val   | CTT   | GGC<br>Glv | CAG<br>Gln | CAT        | CAG   | ATG   | GCC      | ATC       | AGA   | CTC      | ACG        |        | 568 |
|            |            |              | _          | 110          |       |            |            |            | 115   |       | A.L.     | . 116     | ALG   | 120      | Thr        |        |     |
| GAC A      | AAC        | AAT          | GCT        | GCT          | TCA   | AGA        | CAT        | AAG        | GCT   | TTC   | ATG      | TAT       | CAG   | ATC      | AGC        |        | 616 |
| Asp A      |            |              | 125        |              |       |            |            | 130        |       |       |          |           | 135   |          |            |        |     |
| TGT C      | CCA        | GTT<br>Val   | ATG<br>Met | CAA          | ACA   | GAA        | GAA        | ACC        | CAT   | GAG   | CAT      | GCA       | GGA   | TCC      | ACA        |        | 664 |
| -          |            | 140          |            | - <b></b>    |       |            | 145        | - 111L     | HIS   | GIU   | nıs      | 150       | GTÅ   | ser      | Thr        |        |     |
| ATC T      | :GC        | ACA          | AAA        | GAT          | TCC   | ATG        | TCT        | TTT        | ACC   | TTT   | AAC      | ATT       | ATT   | CCT      | GGC        |        | 712 |
|            |            |              |            |              |       |            |            |            |       |       |          |           |       |          |            |        |     |

- 86 -

| Ile Cys Thr Lys Asp Ser Met Ser Phe Thr Phe Asn Ile Ile 1<br>155 160 165                                                                  | Pro Gly                   |      |
|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------|
| ATG GCT GAT GAA AAT ACG AAT CCC AGT GGT GGG AAA TGG ATG AMET Ala Asp Glu Asn Thr Asn Pro Ser Gly Gly Lys Trp Met A                        | ATG GAG<br>Met Glu<br>185 | 760  |
|                                                                                                                                           | eu Met<br>00              | 808  |
| CAA GGA TAT AAT TTC CTG TTT GAT AGC CAC AGG CTC AGT GTC C Gln Gly Tyr Asn Phe Leu Phe Asp Ser His Arg Leu Ser Val G 215                   | ln Val                    | 856  |
| TCA TTC AAT GCC ACT GGA GTC ACT CAC TAC ATG CAA GGT AAC AG Ser Phe Asn Ala Thr Gly Val Thr His Tyr Met Gln Gly Asn Sc 220 230             | GT CAC<br>er His          | 904  |
| CTC TAC ACA GTG CCT CTG AAG CTT ATA CAC ACA TCT CCT GGG CA<br>Leu Tyr Thr Val Pro Leu Lys Leu Ile His Thr Ser Pro Gly Gl<br>235 240 245   | AG AAG<br>ln Lys          | 952  |
| ATC ATC TTA ACA ACA CGA GTA CTT TGT ATG TCA GAT CCC GTG ACT Ile Ile Leu Thr Thr Arg Val Leu Cys Met Ser Asp Pro Val Th                    | r Cys<br>265              | 1000 |
| AAC GCC ACA CAC ATG ACC CTC ACC ATA CCA GAG TTT CCT GGG AA<br>Asn Ala Thr His Met Thr Leu Thr Ile Pro Glu Phe Pro Gly Ly<br>270 275 28    | s Leu                     | 1048 |
| CAG TCT GTG AGA TTT GAA AAC ACG AAC TTT CGT GTA AGC CAG CTG Gln Ser Val Arg Phe Glu Asn Thr Asn Phe Arg Val Ser Gln Let 285               | u His                     | 1096 |
| AAC CAT GGG ATT GAT AAA GAA GAA TTA AAC GGC TTG AGG TTA CAG<br>Asn His Gly Ile Asp Lys Glu Glu Leu Asn Gly Leu Arg Leu His<br>300 305     | s Phe                     | 1144 |
| AGC AAA TCT CTT CTC AAA ATG AAC TCC TCT GAA AAA TGC CTA CTC<br>Ser Lys Ser Leu Leu Lys Met Asn Ser Ser Glu Lys Cys Leu Leu<br>315 320 325 | Tyr                       | 1192 |
| CAG TTC TAC TTA GCA TCT CTC AAG CTG ACC TTT GCC TTT GAA CGG<br>Gln Phe Tyr Leu Ala Ser Leu Lys Leu Thr Phe Ala Phe Glu Arg<br>330 340     | GAC<br>Asp<br>345         | 1240 |
| ACG GTT TCC ACA GTG GTT TAT CCT GAG TGT GTT TGT GAG CCA CCA Thr Val Ser Thr Val Val Tyr Pro Glu Cys Val Cys Glu Pro Pro 350 355 360       | Val                       | 1288 |
| ACT ATA GTT ACA GGT GAC CTG TGT ACC CAG GAT GGG TTT ATG GAT Thr Ile Val Thr Gly Asp Leu Cys Thr Gln Asp Gly Phe Met Asp 365               | GTC<br>Val                | 1336 |
| AAG GTC TAC AGC CAC CAA ACA AAA CCA GCT CTA AAC TTG GAT ACC<br>Lys Val Tyr Ser His Gln Thr Lys Pro Ala Leu Asn Leu Asp Thr<br>380 385 390 | CTC<br>Leu                | 1384 |
| AGA GTG GGA GAC TCC TCC TGC CAA CCT ACT TTC AAG GCT CCA TCA Arg Val Gly Asp Ser Ser Cys Gln Pro Thr Phe Lys Ala Pro Ser 395 400 405       | CAA<br>Gln                | 1432 |
| GGG TTG ACA CTG TTT CAC ATC CCC CTA AAT GGA TGT GGA ACA AGA Gly Leu Thr Leu Phe His Ile Pro Leu Asn Gly Cys Gly Thr Arg 410               | CTT<br>Leu<br>425         | 1480 |

| AAG TTC AAA GGT GAC ACA GTC ATC TAT GAA AAT GAA ATA CAT GCT CTC<br>Lys Phe Lys Gly Asp Thr Val Ile Tyr Glu Asn Glu Ile His Ala Leu<br>430 435 440     | 1528 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| TGG ACA GAT CTC CCT CCA AGC ACA ATT TCC AGA GAT AGT GAA TTC AGA Trp Thr Asp Leu Pro Pro Ser Thr Ile Ser Arg Asp Ser Glu Phe Arg 455 450 455           | 1576 |
| ATG ACT GTG AAG TGC CAT TAC AGC AGA GAT GAC CTG CTG ATA AAT ACC<br>Met Thr Val Lys Cys His Tyr Ser Arg Asp Asp Leu Leu Ile Asn Thr<br>460 465 470     | 1624 |
| AAT GTC CAA AGT CTT CCT CCC GTG GCC TCA GTG AGG CCT GGT CCA<br>Asn Val Gln Ser Leu Pro Pro Pro Val Ala Ser Val Arg Pro Gly Pro<br>475 480 485         | 1672 |
| CTT GCC TTA ATC CTG CAA ACC TAC CCA GAT AAA TCC TAT TTG CGA CCC<br>Leu Ala Leu Ile Leu Gln Thr Tyr Pro Asp Lys Ser Tyr Leu Arg Pro<br>490 495 500 505 | 1720 |
| TAT GGG GAT AAG GAG TAT CCT GTG GTG AGA TAC CTC CGC CAA CCA ATT Tyr Gly Asp Lys Glu Tyr Pro Val Val Arg Tyr Leu Arg Gln Pro Ile 510 520               | 1768 |
| TAC CTG GAA GTG AAA GTC CTA AAT AGG GCT GAC CCC AAC ATC AAG CTG Tyr Leu Glu Val Lys Val Leu Asn Arg Ala Asp Pro Asn Ile Lys Leu 525 530 535           | 1816 |
| GTC TTA GAT GAT TGC TGG GCA ACA CCC ACC ATG GAC CCA GCC TCA CTC Val Leu Asp Asp Cys Trp Ala Thr Pro Thr Met Asp Pro Ala Ser Leu 540 545 550           | 1864 |
| CCC CAG TGG AAT ATT GTC ATG GAT GGC TGT GAA TAC AAT CTG GAC AAC Pro Gln Trp Asn Ile Val Met Asp Gly Cys Glu Tyr Asn Leu Asp Asn 555 560 565           | 1912 |
| TAC AGA ACG ACC TTC CAT CCA GTT GGC TCC TCT GTG ACC TAC CCT ACT Tyr Arg Thr Thr Phe His Pro Val Gly Ser Ser Val Thr Tyr Pro Thr 570 580 585           | 1960 |
| CAC TAT CAG AGG TTT GAT GTG AAG ACC TTT GCC TTT ATA TCA GAG GCC<br>His Tyr Gln Arg Phe Asp Val Lys Thr Phe Ala Phe Ile Ser Glu Ala<br>590 595 600     | 2008 |
| CAA GTG CTT TCT AGC CTG GTC TAC TTC CAC TGC ACC GCA TTA ATC TGC Gln Val Leu Ser Ser Leu Val Tyr Phe His Cys Thr Ala Leu Ile Cys 610 615               | 2056 |
| AAT CGA CTG TCT CCT GAC TCC CCT CTG TGT TCT GTG ACT TGC CCT GTA Asn Arg Leu Ser Pro Asp Ser Pro Leu Cys Ser Val Thr Cys Pro Val 620 625 630           | 2104 |
| TCA TCC AGG CAC AGG CGA GCC ACA GGC AGT ACT GAA GAA GAG AAG ATG<br>Ser Ser Arg His Arg Arg Ala Thr Gly Ser Thr Glu Glu Glu Lys Met<br>635 640 645     | 2152 |
| ATA GTA AGT CTC CCG GGA CCC ATC CTC CTG TTG GCA GAC AGC TCT TCA  Ile Val Ser Leu Pro Gly Pro Ile Leu Leu Ala Asp Ser Ser Ser  650 665                 | 2200 |
| CTC AGA GAT GGT GTG GAC TCA AAA GGG CAC AGG GCT GCT GGA TAT GTT<br>Leu Arg Asp Gly Val Asp Ser Lys Gly His Arg Ala Ala Gly Tyr Val<br>670 675 680     | 2248 |
| GCT TTT AAA ACT GTA GTG GCT GTG GCT GCC TTA GCA GGC CTT GTG GCT Ala Phe Lys Thr Val Val Ala Val Ala Ala Leu Ala Gly Leu Val Ala 690 695               | 2296 |

- 88 -

GCT CTA GGT CTC ATC ATC TAC CTG CGT AAG AAA AGA ACC ATG GTG TTA 2344 Ala Leu Gly Leu Ile Ile Tyr Leu Arg Lys Lys Arg Thr Met Val Leu 705 AAT CAC TAAGGATTTT CAAATAAAGT GTCCGGAATT C 2381 Asn His

(2) INFORMATION FOR SEQ ID NO:10:

715

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 715 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Met Ala Cys Lys Gln Lys Gly Asp Ser Gly Ser Pro Ser Ser Arg Phe

Ser Ala Asp Trp Ser Thr Tyr Arg Ser Leu Ser Leu Phe Phe Ile Leu

Val Thr Ser Val Asn Ser Val Gly Val Met Gln Leu Val Asn Pro Ile

Phe Pro Gly Thr Val Ile Cys His Glu Asn Lys Met Thr Val Glu Phe

Pro Arg Asp Leu Gly Thr Lys Lys Trp His Ala Ser Val Val Asp Pro

Phe Ser Phe Glu Leu Leu Asn Cys Thr Ser Ile Leu Asp Pro Glu Lys

Leu Thr Leu Lys Ala Pro Tyr Glu Thr Cys Ser Arg Arg Val Leu Gly 105

Gln His Gln Met Ala Ile Arg Leu Thr Asp Asn Asn Ala Ala Ser Arg

His Lys Ala Phe Met Tyr Gln Ile Ser Cys Pro Val Met Gln Thr Glu

Glu Thr His Glu His Ala Gly Ser Thr Ile Cys Thr Lys Asp Ser Met

Ser Phe Thr Phe Asn Ile Ile Pro Gly Met Ala Asp Glu Asn Thr Asn

Pro Ser Gly Gly Lys Trp Met Met Glu Val Asp Asp Ala Lys Ala Gln

Asn Leu Thr Leu Arg Glu Ala Leu Met Gln Gly Tyr Asn Phe Leu Phe

Asp Ser His Arg Leu Ser Val Gln Val Ser Phe Asn Ala Thr Gly Val

Thr His Tyr Met Gln Gly Asn Ser His Leu Tyr Thr Val Pro Leu Lys 225

Leu Ile His Thr Ser Pro Gly Gln Lys Ile Ile Leu Thr Thr Arg Val

- 89 -

Leu Cys Met Ser Asp Pro Val Thr Cys Asn Ala Thr His Met Thr Leu 260 270

Thr Ile Pro Glu Phe Pro Gly Lys Leu Gln Ser Val Arg Phe Glu Asn 275 280 285

Thr Asn Phe Arg Val Ser Gln Leu His Asn His Gly Ile Asp Lys Glu 290 295 300

Glu Leu Asn Gly Leu Arg Leu His Phe Ser Lys Ser Leu Leu Lys Met 305 310 315 320

Asn Ser Ser Glu Lys Cys Leu Leu Tyr Gln Phe Tyr Leu Ala Ser Leu 325 330 335

Lys Leu Thr Phe Ala Phe Glu Arg Asp Thr Val Ser Thr Val Val Tyr 340 345 350

Pro Glu Cys Val Cys Glu Pro Pro Val Thr Ile Val Thr Gly Asp Leu 355 360 365

Cys Thr Gln Asp Gly Phe Met Asp Val Lys Val Tyr Ser His Gln Thr 370 380

Lys Pro Ala Leu Asn Leu Asp Thr Leu Arg Val Gly Asp Ser Ser Cys 385 395 400

Gln Pro Thr Phe Lys Ala Pro Ser Gln Gly Leu Thr Leu Phe His Ile 405 410 415

Pro Leu Asn Gly Cys Gly Thr Arg Leu Lys Phe Lys Gly Asp Thr Val 420 425 430

Ile Tyr Glu Asn Glu Ile His Ala Leu Trp Thr Asp Leu Pro Pro Ser 435 440 445

Thr Ile Ser Arg Asp Ser Glu Phe Arg Met Thr Val Lys Cys His Tyr 450 455 460

Ser Arg Asp Asp Leu Leu Ile Asn Thr Asn Val Gln Ser Leu Pro Pro 465 470 475 480

Pro Val Ala Ser Val Arg Pro Gly Pro Leu Ala Leu Ile Leu Gln Thr 485 490 495

Tyr Pro Asp Lys Ser Tyr Leu Arg Pro Tyr Gly Asp Lys Glu Tyr Pro 500 505 510

Val Val Arg Tyr Leu Arg Gln Pro Ile Tyr Leu Glu Val Lys Val Leu 515 520 525

Asn Arg Ala Asp Pro Asn Ile Lys Leu Val Leu Asp Asp Cys Trp Ala 530 540

Thr Pro Thr Met Asp Pro Ala Ser Leu Pro Gln Trp Asn Ile Val Met 545 550 555 560

Asp Gly Cys Glu Tyr Asn Leu Asp Asn Tyr Arg Thr Thr Phe His Pro 565 570 575

Val Gly Ser Ser Val Thr Tyr Pro Thr His Tyr Gln Arg Phe Asp Val 580 585 590

Lys Thr Phe Ala Phe Ile Ser Glu Ala Gln Val Leu Ser Ser Leu Val 595 600 605

| - | 90 | _ |
|---|----|---|
|---|----|---|

|                      |                |                             |                                                    |                                     |                                     |                               |                     |              | - 50         | _              |            |                  |            |            |            |     |
|----------------------|----------------|-----------------------------|----------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------|---------------------|--------------|--------------|----------------|------------|------------------|------------|------------|------------|-----|
| T                    | yr Pi<br>61    | ne Hi<br>.0                 | s Cys                                              | Thr                                 | Ala                                 | Leu<br>615                    | Ile                 | Cys          | Asn          | Arg            | Leu<br>620 | Ser              | Pro        | Asp        | Ser        |     |
| P1<br>62             | ro Le<br>25    | u Cy                        | s Ser                                              | Val                                 | Thr<br>630                          | Суз                           | Pro                 | Val          | Ser          | Ser<br>635     | Arg        | His              | Arg        | Arg        | Ala<br>640 |     |
| Th                   | nr Gl          | y Se                        | r Thr                                              | Glu<br>645                          | Glu                                 | Glu                           | Lys                 | Met          | Ile<br>650   | Val            | Ser        | Leu              | Pro        | Gly<br>655 | Pro        |     |
| 11                   | e Le           | u Lei                       | Leu<br>660                                         | Ala                                 | Asp                                 | Ser                           | Ser                 | Ser<br>665   | Leu          | Arg            | Asp        | Gly              | Val<br>670 | Asp        | Ser        |     |
| Ly                   | s Gl           | 9 His<br>675                | Arg                                                | Ala                                 | Ala                                 | Gly                           | Tyr<br>680          | Val          | Ala          | Phe            | Lys        | Thr<br>685       | Val        | Val        | Ala        |     |
| Va                   | 1 Ala<br>690   | a Ala                       | Leu                                                | Ala                                 | Gly                                 | Leu<br>695                    | Val                 | Ala          | Ala          | Leu            | Gly<br>700 | Leu              | Ile        | Ile        | Tyr        |     |
| Le:<br>70!           | u Arq<br>5     | , Lys                       | Lys                                                | Arg                                 | Thr<br>710                          | Met                           | Val                 | Leu          |              | His<br>715     |            |                  |            |            |            |     |
| (2)                  | ) INF          | ORMA                        | TION                                               | FOR                                 | SEQ                                 | ID N                          | 0:11                | :            |              |                |            |                  |            |            |            |     |
|                      | (i             | ()<br>()<br>()              | QUENC<br>A) LE<br>B) TY<br>C) ST                   | NGTH<br>PE: :<br>RANDI              | : 13:<br>nucle<br>EDNE:             | 25 ba<br>eic a<br>SS: c       | ase pacid           | pair         | 5            |                |            |                  | •          |            |            |     |
|                      | (ii            | ) моі                       | LECULI                                             | E TYI                               | PE: c                               | DNA                           |                     |              |              |                |            |                  |            |            |            |     |
|                      |                |                             | OTHE                                               |                                     |                                     |                               |                     |              |              |                |            |                  |            |            |            |     |
|                      |                |                             | I-SEN                                              |                                     |                                     |                               |                     |              |              |                |            |                  |            |            |            |     |
|                      |                | ORI<br>(A<br>(D<br>(E<br>(F | GINAI<br>) ORG<br>) DEV<br>) HAP<br>) TIS<br>) CEL | SOU<br>SANIS<br>ELOP<br>LOTY<br>SUE | RCE:<br>M: C<br>MENT<br>PE:<br>TYPE | anis<br>AL S<br>Diplo<br>: Ov | TAGE<br>oidy<br>ary | : Ju         | ris<br>veni  | le             |            |                  |            |            |            |     |
|                      | (ix)           | (A                          | TURE: ) NAM ) LOC                                  |                                     |                                     |                               | 293                 |              |              |                |            |                  |            |            |            |     |
|                      | (xi)           | SEQU                        | JENCE                                              | DESC                                | CRIPI                               | CION:                         | SEÇ                 | Q ID         | NO:1         | 1:             |            |                  |            |            |            |     |
| GAAT                 | TCCG           | GG CI                       | ATG<br>Met<br>1                                    | GGG<br>Gly                          | CTG<br>Leu                          | AGC<br>Ser                    | TAT<br>Tyr<br>5     | GGA<br>Gly   | ATT<br>Ile   | TTC<br>Phe     | ATC<br>Ile | TGT<br>Cys<br>10 | TTT<br>Phe | CTG<br>Leu |            | 48  |
| CTC (                | CTG (<br>Leu ( | GA G<br>ly G<br>15          | GC AI<br>ly Me                                     | G GA                                | G CT<br>u Le                        | G TG<br>u Cy<br>2             | s Cy                | c cc<br>s Pr | C CA<br>o Gl | G AC<br>n Th   | C ATO      | e Tr             | G CC       | A AC       | T<br>r     | 96  |
| GAG A                | ACC Thr T      | AC T.                       | AC CC<br>yr Pr                                     | A TT                                | G AC                                | r Sei                         | r Ag                | g CC         | C CC         | A GTA<br>O Val | l Met      | GT(              | G GAG      | C TG:      | r          | 144 |
| CTG G<br>Leu G<br>45 | AG T           | CC CA                       | AG CTO                                             | G GTO<br>u Val                      | ı val                               | C ACT                         | GT(                 | C AGO        | AAA<br>Lys   | a Asp          | CTI<br>Leu | TTI<br>Phe       | GGI<br>Gly | ACT<br>Thr | •          | 192 |

GGG AAG CTC ATC AGG CCA GCA GAC CTC ACC CTG GGT CCA GAG AAC TGT

240

- 91 -

| Gl                    | y Lys                 | Leu                   | Ile                   | Arg<br>65            | Pro .              | Ala i               | Asp               | Leu                | Thr<br>70          | Leu                  | Gly                        | Pro                   | Glu              | Asr<br>75          |                   |      |
|-----------------------|-----------------------|-----------------------|-----------------------|----------------------|--------------------|---------------------|-------------------|--------------------|--------------------|----------------------|----------------------------|-----------------------|------------------|--------------------|-------------------|------|
| GA(<br>Glu            | G CCC                 | CTG<br>Leu            | GTC<br>Val<br>80      | TCC I                | ATG (<br>Met )     | GAC A               | ACG<br>Thr        | GAT<br>Asp<br>85   | GAT<br>Asp         | GTG<br>Val           | GTC<br>Val                 | AGG<br>Arg            | TTT<br>Phe<br>90 | GAG<br>Glu         | GTT<br>Val        | 288  |
| GGG<br>Gly            | CTG<br>Leu            | CAC<br>His<br>95      | GAG<br>Glu            | TGT (                | GC P               | Ser A               | AGG (<br>Arg 1    | GTG<br>Val         | CAG<br>Gln         | GTG<br>Val           | ACT<br>Thr                 | GAC<br>Asp<br>105     | AAT<br>Asn       | GCT<br>Ala         | CTG<br>Leu        | 336  |
| GTG<br>Val            | TAC<br>Tyr<br>110     | AGC<br>Ser            | ACC Thr               | ITC C<br>Phe L       | eu I               | TC C<br>le H<br>15  | AC A              | AGC<br>Ser         | CCC<br>Pro         | CGC<br>Arg           | CCT<br>Pro<br>120          | GCG<br>Ala            | GGC<br>Gly       | AAC<br>Asn         | CTG<br>Leu        | 384  |
| TCC<br>Ser<br>125     | TTE                   | CTG<br>Leu            | AGA 1<br>Arg 1        | Chr A                | AT C<br>30         | GT G<br>rg A        | CC G              | SAG<br>Slu         | GTT<br>Val         | CCC<br>Pro<br>135    | ATC<br>Ile                 | GAG<br>Glu            | TGC<br>Cys       | CAC<br>His         | TAC<br>Tyr<br>140 | 432  |
| CCC<br>Pro            | AGG<br>Arg            | CAC .<br>His          | AGC A<br>Ser A        | AT G<br>sn V<br>45   | TG A               | GC AG<br>er Se      | GC C<br>er G      | ln A               | GCC<br>Ala<br>150  | ATC<br>Ile           | CTG (<br>Leu )             | CCC /<br>Pro /        | Thr              | TGG<br>Trp<br>155  | GTG<br>Val        | 480  |
| CCC<br>Pro            | TTC<br>Phe            | Arg :                 | ACC A<br>Thr T<br>160 | CA A                 | rg c:<br>et Le     | rc Ti<br>eu Ph      | ie G              | AG (<br>lu (<br>65 | GAG .              | AAG<br>Lys           | CTA (<br>Leu \             | Val E                 | TTC S<br>he s    | TCT<br>Ser         | CTC<br>Leu        | 528  |
| CGC<br>Arg            | ren 1                 | ATG (<br>Met (<br>175 | GAG G<br>Glu G        | AG GA<br>lu As       | C TO               | GG GG<br>p Gl<br>18 | y S               | CC G<br>er G       | AG I               | AAG (<br>Lys (       | Gln S                      | rcc c<br>Ser P<br>185 | cc /             | ACA<br>Thr         | TTC<br>Phe        | 576  |
| GIII                  | CTG (<br>Leu (<br>190 | GGA G<br>Gly A        | AC A'                 | TA GC<br>le Al       | C CA<br>a Hi<br>19 | s Le                | C CA              | AG G<br>Ln A       | CT (               | Slu Y                | GTC C<br>/al H<br>200      | AC A<br>lis T         | CT G             | GC :               | AGC<br>Ser        | 624  |
| CAT<br>His<br>205     | ATG C<br>Met P        | CCA C                 | TG CO                 | GA CT<br>rg Le<br>21 | u Ph               | T GT<br>e Va        | G GA<br>l As      | AC C.<br>Sp H      | is C               | GT G<br>ys V<br>15   | TG G<br>al A               | CC A                  | CG C<br>hr L     | eu 1               | ACA<br>Thr<br>220 | 672  |
| CCA (                 | GAT C<br>Asp A        | GG A                  | AT GC<br>sn Al<br>22  | a Ph                 | C CT               | P CA'               | T CA<br>s Hi      | C AZ               | ys I               | TT G<br>le V         | TG G                       | AC T                  | ne H             | AT G<br>is G       | GC<br>1y          | 720  |
| TGT (<br>Cys I        | CTT G<br>Leu V        | al As                 | AT GG<br>sp Gl<br>40  | T CTO<br>y Leo       | TAC<br>Ty          | AAT<br>Ası          | TC<br>Se<br>24    | r Se               | er S               | CA G<br>er A         | CC TI<br>la Pi             | rc Az<br>ne Ly<br>25  | s A              | CC C               | cc<br>ro          | 768  |
| AGA C<br>Arg P        | ro A                  | GG CC<br>rg Pr<br>55  | CA GA                 | G ACI                | CTI                | CAG<br>Gln<br>260   | Phe               | C AC               | A G                | rg ga<br>al As       | AT GI<br>sp Va<br>26       | al Ph                 | C CA             | AC T               | TT<br>he          | 816  |
| GCT A<br>Ala L<br>2   | AG GA<br>ys As<br>70  | AC TO<br>Sp Se        | A AG                  | A AAC<br>g Asn       | ACG<br>Thr<br>275  | ATC                 | TAT               | T AT               | C AC               | CC TC<br>or Cy<br>28 | 's Hi                      | T CT<br>S Le          | G AA<br>u Ly     | G G'               | rc<br>al          | 864  |
| ACT C<br>Thr P<br>285 | CG GC<br>ro Al        | CT GA<br>.a As        | C CG/<br>p Arg        | GTC<br>Val<br>290    | CCA<br>Pro         | GAC<br>Asp          | CAG<br>Gln        | CT:                | A AA<br>u As<br>29 | n Ly                 | A GC                       | T TG<br>a Cy          | T TC<br>s Se     | C T7<br>r Pl<br>30 | 1e                | 912  |
| ATC AM                | AG TC<br>ys Se        | T AC                  | C AAG<br>Lys<br>305   | Arg                  | TGG<br>Trp         | TAC<br>Tyr          | CCT<br>Pro        | GT/<br>Val<br>310  | L G1               | A GG<br>u Gl         | C TC                       | G GC:                 | GA<br>AS<br>31   | p Il               | T<br>e            | 960  |
| TGT CO                | GC TG                 | T TG:<br>s Cys<br>320 | 3 Asn                 | AAA<br>Lys           | GGC<br>Gly         | AGC<br>Ser          | TGT<br>Cys<br>325 | GGC                | CT<br>Le           | T CC.                | A GG(<br>o Gl <sub>y</sub> | C CGC<br>Arg<br>330   | , Se             | C AG               | G<br>g            | 1008 |

- 92 -

| AGG<br>Arg        | CTG<br>Leu        | TCC<br>Ser<br>335 | His               | CTA<br>Leu        | GAG<br>Glu        | AGA<br>Arg        | GGG<br>Gly<br>340 | Trp               | CGC<br>Arg        | AAG<br>Lys        | TCI<br>Ser        | GTT<br>Val        | Ser               | CAC<br>His        | ACT<br>Thr        | 1056 |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| AGA<br>Arg        | AAT<br>Asn<br>350 | CGC<br>Arg        | AGG<br>Arg        | CAC<br>His        | GTG<br>Val        | ACT<br>Thr<br>355 | GAA<br>Glu        | GAA<br>Glu        | GCA<br>Ala        | GAG<br>Glu        | ATC<br>Ile<br>360 | ACC               | GTG<br>Val        | GGG<br>Gly        | CCT<br>Pro        | 1104 |
| CTG<br>Leu<br>365 | ATC<br>Ile        | TTC<br>Phe        | CTG<br>Leu        | GGA<br>Gly        | AAG<br>Lys<br>370 | GCT<br>Ala        | AGT<br>Ser        | GAT<br>Asp        | CAT<br>His        | GGT<br>Gly<br>375 | ATA<br>Ile        | GAG<br>Glu        | GGG<br>Gly        | TCA<br>Ser        | ACC<br>Thr<br>380 | 1152 |
| TCT<br>Ser        | CCT<br>Pro        | CAC<br>His        | ACC<br>Thr        | TCT<br>Ser<br>385 | GTG<br>Val        | ATG<br>Met        | TTG<br>Leu        | GGC<br>Gly        | TTA<br>Leu<br>390 | GGC<br>Gly        | CTG<br>Leu        | GCC<br>Ala        | ACG<br>Thr        | GTG<br>Val<br>395 | GTA<br>Val        | 1200 |
| TCC<br>Ser        | CTG<br>Leu        | Thr               | CTA<br>Leu<br>400 | GCT<br>Ala        | ACC<br>Thr        | ATT<br>Ile        | Val               | CTG<br>Leu<br>405 | GTC<br>Val        | CTT<br>Leu        | GCC<br>Ala        | AAG<br>Lys        | AGG<br>Arg<br>410 | CAT<br>His        | CGT<br>Arg        | 1248 |
| ACT (             | 11g               | TCC<br>Ser<br>415 | CAC<br>His        | CCT<br>Pro        | GTG<br>Val        | Ile               | TGC<br>Cys<br>420 | CCT<br>Pro        | GCA<br>Ala        | TCT<br>Ser        | Val               | TCC<br>Ser<br>425 | CAA<br>Gln        | TAAA              | AGAATA            | 1300 |
| AGCAZ             | AAA               | AA A              | AAAA              | ACCG              | G AA              | TTC               |                   |                   |                   |                   |                   |                   |                   |                   |                   | 1325 |

#### (2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 426 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

Met Gly Leu Ser Tyr Gly Ile Phe Ile Cys Phe Leu Leu Gly Gly 1 5 10 15

Met Glu Leu Cys Cys Pro Gln Thr Ile Trp Pro Thr Glu Thr Tyr Tyr
20 25 30

Pro Leu Thr Ser Arg Pro Pro Val Met Val Asp Cys Leu Glu Ser Gln 35 40 45

Leu Val Val Thr Val Ser Lys Asp Leu Phe Gly Thr Gly Lys Leu Ile 50 60

Arg Pro Ala Asp Leu Thr Leu Gly Pro Glu Asn Cys Glu Pro Leu Val 65 70 75 80

Ser Met Asp Thr Asp Asp Val Val Arg Phe Glu Val Gly Leu His Glu 85 90 95

Cys Gly Ser Arg Val Gln Val Thr Asp Asn Ala Leu Val Tyr Ser Thr

Phe Leu Ile His Ser Pro Arg Pro Ala Gly Asn Leu Ser Ile Leu Arg

Thr Asn Arg Ala Glu Val Pro Ile Glu Cys His Tyr Pro Arg His Ser 130 135 140

Asn Val Ser Ser Gln Ala Ile Leu Pro Thr Trp Val Pro Phe Arg Thr 145 150 155 160 Thr Met Leu Phe Glu Glu Lys Leu Val Phe Ser Leu Arg Leu Met Glu 165 170 175

Glu Asp Trp Gly Ser Glu Lys Gln Ser Pro Thr Phe Gln Leu Gly Asp 180 185 190

Ile Ala His Leu Gln Ala Glu Val His Thr Gly Ser His Met Pro Leu 195 200 205

Arg Leu Phe Val Asp His Cys Val Ala Thr Leu Thr Pro Asp Arg Asn 210 215 220

Ala Phe Leu His His Lys Ile Val Asp Phe His Gly Cys Leu Val Asp 225 230 235 240

Gly Leu Tyr Asn Ser Ser Ser Ala Phe Lys Ala Pro Arg Pro 245 250 255

Glu Thr Leu Gln Phe Thr Val Asp Val Phe His Phe Ala Lys Asp Ser 260 265 270

Arg Asn Thr Ile Tyr Ile Thr Cys His Leu Lys Val Thr Pro Ala Asp 275 280 285

Arg Val Pro Asp Gln Leu Asn Lys Ala Cys Ser Phe Ile Lys Ser Thr 290 295 300

Lys Arg Trp Tyr Pro Val Glu Gly Ser Ala Asp Ile Cys Arg Cys Cys 305 310 315 320

Asn Lys Gly Ser Cys Gly Leu Pro Gly Arg Ser Arg Arg Leu Ser His 325 330 335

Leu Glu Arg Gly Trp Arg Lys Ser Val Ser His Thr Arg Asn Arg Arg 340 345 350

His Val Thr Glu Glu Ala Glu Ile Thr Val Gly Pro Leu Ile Phe Leu 355 360 365

Gly Lys Ala Ser Asp His Gly Ile Glu Gly Ser Thr Ser Pro His Thr 370 380

Ser Val Met Leu Gly Leu Gly Leu Ala Thr Val Val Ser Leu Thr Leu 385 390 395 400

Ala Thr Ile Val Leu Val Leu Ala Lys Arg His Arg Thr Ala Ser His 405 410 415

Pro Val Ile Cys Pro Ala Ser Val Ser Gln 420 425

## (2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 2236 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:

- 94 -

| (A) | ORGANISM: F  | elis  | dome: | sticus |    |
|-----|--------------|-------|-------|--------|----|
| (D) | DEVELOPMENT! | AL ST | PAGE: | Juveni | le |

(E) HAPLOTYPE: Diploidy
(F) TISSUE TYPE: Ovary
(G) CELL TYPE: Oocyte

#### (ix) FEATURE:

(A) NAME/KEY: CDS
(B) LOCATION: 28..2175

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

| GAATTCGCGG CCGCGATACT TTTGGCT ATG GCC TCC AGA CAG AAA GGA GAT<br>Met Ala Ser Arg Gln Lys Gly Asp<br>1 5                                           | 51  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| AGT GGG AGT CCT TCA AGC TGG TTT AAT GCA GAT TGG AGC ACC TAC AGG<br>Ser Gly Ser Pro Ser Ser Trp Phe Asn Ala Asp Trp Ser Thr Tyr Arg<br>10 15 20    | 99  |
| TCA CTT TTT CTA CTC TTT ATC CTC GTG ACT TCA GTG AAT TCC ATA GGT<br>Ser Leu Phe Leu Leu Phe Ile Leu Val Thr Ser Val Asn Ser Ile Gly<br>25 30 35 40 | 147 |
| GTT TTG CAG TTG GTG AAT CCT GTC TTC CCA GGT ACT GTC ACT TGC TAT Val Leu Gln Leu Val Asn Pro Val Phe Pro Gly Thr Val Thr Cys Tyr 45 50 55          | 195 |
| GAA ACT AGA ATG GCA GTG GAA TTT CCA AGT GAT TTT GGC ACC AAA AAA<br>Glu Thr Arg Met Ala Val Glu Phe Pro Ser Asp Phe Gly Thr Lys Lys<br>60 65 70    | 243 |
| TGG CAT ACA TCT GTG GTG GAT CCC TTT AGT TTT GAA TTG TTG AAC TGC Trp His Thr Ser Val Val Asp Pro Phe Ser Phe Glu Leu Leu Asn Cys 80 85             | 291 |
| ACT TAC ATC TTG GAT CCA GAA AAT CTC ACC TTA AAG GCC CCA TAT GAG<br>Thr Tyr Ile Leu Asp Pro Glu Asn Leu Thr Leu Lys Ala Pro Tyr Glu<br>90 95 100   | 339 |
| ACC TGT ACC AGA AGA ACG CTT GGC CAG CAC CGG ATG ATC ATC AGA CTC Thr Cys Thr Arg Arg Thr Leu Gly Gln His Arg Met Ile Ile Arg Leu 105 110 120       | 387 |
| AAG GAC CAC AAT GCT GCT TCA AGA CAT AAC AGT TTG ATG TAT CAG ATC<br>Lys Asp His Asn Ala Ala Ser Arg His Asn Ser Leu Met Tyr Gln Ile<br>125 130 135 | 435 |
| AAC TGT CCA GTT ATG CAA GCA GAA GAA ACC CAT GAG CAT GCA GGA TCC<br>Asn Cys Pro Val Met Gln Ala Glu Glu Thr His Glu His Ala Gly Ser<br>140 145 150 | 483 |
| ACT ATC TGC ACA AAG GAT TCC ATG TCT TTT ACC TTT AAT GTC ATT CCT<br>Thr Ile Cys Thr Lys Asp Ser Met Ser Phe Thr Phe Asn Val Ile Pro<br>155 160 165 | 531 |
| GGC CTG GCT GAT GAA AAT ACG GAT ATC AAG AAT CCG ATG GGA TGG AGC Gly Leu Ala Asp Glu Asn Thr Asp Ile Lys Asn Pro Met Gly Trp Ser 170 180           | 579 |
| ATT GAG GTT GGT GAT GGT ACA AAA GCC AAA ACT CTG ACT CTT CAG GAT Ile Glu Val Gly Asp Gly Thr Lys Ala Lys Thr Leu Thr Leu Gln Asp 195 200           | 627 |
| GTC TTG AGA CAA GGA TAC AAT ATC CTG TTT GAT AAC CAC AAG ATC ACC Val Leu Arg Gln Gly Tyr Asn Ile Leu Phe Asp Asn His Lys Ile Thr                   | 675 |

- 95 ~

| 205                                                                 | 210                                                                   | 215                                         |
|---------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------|
| TTC CAG GTG TCA TTC AA<br>Phe Gln Val Ser Phe Ass<br>220            | F GCC ACT GGA GTG ACT CAC T<br>Ala Thr Gly Val Thr His T<br>225       | AC ATG CAA GGT 723<br>yr Met Gln Gly<br>230 |
| AAC AGT CAC CTC TAC ATO<br>Asn Ser His Leu Tyr Met<br>235           | GTG CCT CTG AAG TTG ATA CA<br>Val Pro Leu Lys Leu Ile Hi<br>240       | s Glu Ser Leu                               |
| GGG CAG AAG ATC ATC TTA<br>Gly Gln Lys Ile Ile Leu<br>250           | ACA ACA CGA GTG CTT TGT AT<br>Thr Thr Arg Val Leu Cys Me<br>255 260   | TG TCA GAT GCT 819                          |
| GTG ACC TGT AAT GCC ACA<br>Val Thr Cys Asn Ala Thr<br>265 270       | CAT GTG ACT CTG ACC ATA CC<br>His Val Thr Leu Thr Ile Pr<br>275       | A GAG TTT CCT 867<br>o Glu Phe Pro<br>280   |
| GGG AAG TTA AAA TCT GTG<br>Gly Lys Leu Lys Ser Val<br>285           | AGC TCT GAA AAT AGG AAC TT<br>Ser Ser Glu Asn Arg Asn Pho<br>290      | T GCT GTA AGC 915<br>e Ala Val Ser<br>295   |
| CAG CTG CAC AAC AAT GGG<br>Gln Leu His Asn Asn Gly<br>300           | ATT GAT AAA GAA GAA TCA AG<br>Ile Asp Lys Glu Glu Ser Sei<br>305      | GGC TTG ACA 963<br>Gly Leu Thr<br>310       |
| 315                                                                 | CTT CTC AAA ATG GAA TTC TCT<br>Leu Leu Lys Met Glu Phe Ser<br>320 325 | Glu Lys Cys                                 |
| 330                                                                 | TTA GCT TCA CTC AAG CTG ACC<br>Leu Ala Ser Leu Lys Leu Thr<br>335 340 | Phe Ala Phe                                 |
| 345 350                                                             | ACG GTG CTT TAT CCT GAG TGT<br>Thr Val Leu Tyr Pro Glu Cys<br>355     | Val Cys Glu<br>360                          |
| 365                                                                 | CA GGT GAC CTG TGT ACT CAG<br>Thr Gly Asp Leu Cys Thr Gln<br>370      | Asp Gly Phe<br>375                          |
| 380                                                                 | GT CAC CAG ACA AAA CCA GCT<br>er His Gln Thr Lys Pro Ala<br>385       | Leu Asn Leu<br>390                          |
| GAA ACC CTA AGG GTG GGA G<br>Glu Thr Leu Arg Val Gly A<br>395       | AC TCA TCC TGC CAA CCT ACC<br>sp Ser Ser Cys Gln Pro Thr<br>400 405   | TTC CAG GCT 1251<br>Phe Gln Ala             |
| GCA TCT CAA GGG CTG ATA CT<br>Ala Ser Gln Gly Leu Ile Le<br>410     | TG TTT CAC ATA CCC CTG AAT (c) Phe His Ile Pro Leu Asn (c) 420        | GGA TGC GGG 1299<br>Gly Cys Gly             |
| ACA AGA CAT AAG TTC AAG GA<br>Thr Arg His Lys Phe Lys GI<br>425 430 | A GGC AAA GTC ATC TAT GAA A<br>u Gly Lys Val Ile Tyr Glu A<br>435     | AAT GAA ATA 1347<br>Asn Glu Ile<br>440      |
| CAT GCT GTC TGG GCG GAT CT<br>His Ala Val Trp Ala Asp Le<br>445     | T CCT CCA AGC ACA ATT TCT A<br>u Pro Pro Ser Thr Ile Ser A<br>450     | GA GAT AGT 1395<br>rg Asp Ser<br>455        |
| GAA TTC AGA ATG ACA GTG CA<br>Glu Phe Arg Met Thr Val Gl<br>460     | Cys His Tyr Ser Lys Gly A                                             | AC CTG CTA 1443<br>sp Leu Leu<br>70         |
| ATA AAT ACC AGA GTC CAA AG                                          | CTT CCT CCT CTA GAG GCC T                                             | CA GTG AGG 1491                             |

- 96 -

| Ilo han mha ha an ha                                                                                                                              |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Ile Asn Thr Arg Val Gln Ser Leu Pro Pro Leu Glu Ala Ser Val Ar<br>475 480 485                                                                     | -    |
| CCA GGT CCA CTT GCC TTA ATC CTG CAA ACC TAC CCA GAT AAA TCC TA Pro Gly Pro Leu Ala Leu Ile Leu Gln Thr Tyr Pro Asp Lys Ser Ty 490 495 500         | r    |
| CTC CAA CCT TAC GGG GAG AAG GAG TAC CCT GTG GTG AGA TAC CTC CGG<br>Leu Gln Pro Tyr Gly Glu Lys Glu Tyr Pro Val Val Arg Tyr Leu Arg<br>505 510 515 |      |
| CAA CCA ATT TAT CTG GAA GTG AGA GTC CTA AAT AGG TCT GAC CCC AAC<br>Gln Pro Ile Tyr Leu Glu Val Arg Val Leu Asn Arg Ser Asp Pro Asn<br>525 530 535 | 1    |
| ATC AAG CTG GTC TTA GAT GAC TGC TGG GCA ACA CCC ACG ATG GAC CCA  Ile Lys Leu Val Leu Asp Asp Cys Trp Ala Thr Pro Thr Met Asp Pro  540  545  550   |      |
| GCC TCC GTC CCC CAG TGG AAT ATT ATC ATG GAT GGC TGT GAA TAC AAC Ala Ser Val Pro Gln Trp Asn Ile Ile Met Asp Gly Cys Glu Tyr Asn 560 565           | 1731 |
| CTG GAC AAC CAC AGA ACC ACC TTC CAT CCA GTT GGC TCC TCT GTG ACC Leu Asp Asn His Arg Thr Thr Phe His Pro Val Gly Ser Ser Val Thr 570 580           | 1779 |
| TAT CCT ACT CAC TAT CGG AGG TTT GAT GTG AAG ACC TTT GCC TTT GTA Tyr Pro Thr His Tyr Arg Arg Phe Asp Val Lys Thr Phe Ala Phe Val 585 595 600       | 1827 |
| TCA GAG GCC CAA GTG CTT TCT AGT CTG GTC TAC TTC CAC TGC AGT GTC Ser Glu Ala Gln Val Leu Ser Ser Leu Val Tyr Phe His Cys Ser Val 605 610 615       | 1875 |
| TTA ATC TGC AGT CGA CTG TCT GCT GAC TCC CCT CTG TGT TCC GTG ACT<br>Leu Ile Cys Ser Arg Leu Ser Ala Asp Ser Pro Leu Cys Ser Val Thr<br>620 630     | 1923 |
| TGC CCT GTG TCA TTC AGA CAC AGG AGA GCC ACA GGC ACC ACT GAA GAA<br>Cys Pro Val Ser Phe Arg His Arg Arg Ala Thr Gly Thr Thr Glu Glu<br>635 640 645 | 1971 |
| GAG AAA ATG ATA GTG AGT CTT CCA GGA CCC ATC CTC CTG CTG TCA GAT Glu Lys Met Ile Val Ser Leu Pro Gly Pro Ile Leu Leu Leu Ser Asp 650 660           | 2019 |
| AGC TCT TCA CTC AGA GAT GTG GTG GAC TCA AAA GGG TAT GGG GCT GCC<br>Ser Ser Ser Leu Arg Asp Val Val Asp Ser Lys Gly Tyr Gly Ala Ala<br>670 675 680 | 2067 |
| GGA TAT GTT GCT TTT AAG ACT GTG GTA GCT GTG GCT GCC TTA GCA GGC Gly Tyr Val Ala Phe Lys Thr Val Val Ala Val Ala Ala Leu Ala Gly 685 690 695       | 2115 |
| CTC GTG GCA ACG CTA GGC TTC ATC ACC TAC CTG CGC AAG AAC AGA ACC<br>Leu Val Ala Thr Leu Gly Phe Ile Thr Tyr Leu Arg Lys Asn Arg Thr<br>700 705 710 | 2163 |
| ATG ATA AAT CAC TAAGGATTTT CAAATAAAAT GGTTGAAGTA AAAAAAAAA<br>Met Ile Asn His<br>715                                                              | 2215 |
| AAAAAAAGCG GCCGCGAATT C                                                                                                                           | 2236 |

- (i) SEQUENCE CHARACTERISTICS:
  (A) LENGTH: 716 amino acids

  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:
- Met Ala Ser Arg Gln Lys Gly Asp Ser Gly Ser Pro Ser Ser Trp Phe
- Asn Ala Asp Trp Ser Thr Tyr Arg Ser Leu Phe Leu Leu Phe Ile Leu
- Val Thr Ser Val Asn Ser Ile Gly Val Leu Gln Leu Val Asn Pro Val
- Phe Pro Gly Thr Val Thr Cys Tyr Glu Thr Arg Met Ala Val Glu Phe 50 60
- Pro Ser Asp Phe Gly Thr Lys Lys Trp His Thr Ser Val Val Asp Pro
- Phe Ser Phe Glu Leu Asn Cys Thr Tyr Ile Leu Asp Pro Glu Asn
- Leu Thr Leu Lys Ala Pro Tyr Glu Thr Cys Thr Arg Arg Thr Leu Gly
- Gln His Arg Met Ile Ile Arg Leu Lys Asp His Asn Ala Ala Ser Arg
- His Asn Ser Leu Met Tyr Gln Ile Asn Cys Pro Val Met Gln Ala Glu
- Glu Thr His Glu His Ala Gly Ser Thr Ile Cys Thr Lys Asp Ser Met
- Ser Phe Thr Phe Asn Val Ile Pro Gly Leu Ala Asp Glu Asn Thr Asp
- Ile Lys Asn Pro Met Gly Trp Ser Ile Glu Val Gly Asp Gly Thr Lys
- Ala Lys Thr Leu Thr Leu Gln Asp Val Leu Arg Gln Gly Tyr Asn Ile
- Leu Phe Asp Asn His Lys Ile Thr Phe Gln Val Ser Phe Asn Ala Thr
- Gly Val Thr His Tyr Met Gln Gly Asn Ser His Leu Tyr Met Val Pro
- Leu Lys Leu Ile His Glu Ser Leu Gly Gln Lys Ile Ile Leu Thr Thr
- Arg Val Leu Cys Met Ser Asp Ala Val Thr Cys Asn Ala Thr His Val
- Thr Leu Thr Ile Pro Glu Phe Pro Gly Lys Leu Lys Ser Val Ser Ser
- Glu Asn Arg Asn Phe Ala Val Ser Gln Leu His Asn Asn Gly Ile Asp
- Lys Glu Glu Ser Ser Gly Leu Thr Leu His Phe Ser Lys Thr Leu Leu

- 98 -

| 305                       | 310                    | 3                     | 15                    | 320            |
|---------------------------|------------------------|-----------------------|-----------------------|----------------|
| Lys Met Glu Ph            | ne Ser Glu Lys<br>325  | Cys Leu Pro T<br>330  | yr Gln Phe Tyr        | Leu Ala<br>335 |
| Ser Leu Lys Le<br>34      | u Thr Phe Ala<br>O     | Phe Asn Gln G<br>345  | lu Thr Ile Ser<br>350 | Thr Val        |
| Leu Tyr Pro Gl<br>355     | u Cys Val Cys          | Glu Ser Pro Va<br>360 | al Ser Ile Val<br>365 | Thr Gly        |
| Asp Leu Cys Th            | r Gln Asp Gly :<br>375 | Phe Met Asp Il        | le Lys Val Tyr<br>380 | Ser His        |
| Gln Thr Lys Pro<br>385    | Ala Leu Asn 1<br>390   | Leu Glu Thr Le<br>39  | u Arg Val Gly         | Asp Ser<br>400 |
| Ser Cys Gln Pro           | Thr Phe Gln A          | Ala Ala Ser Gl<br>410 |                       | Leu Phe<br>415 |
| His Ile Pro Leu<br>420    |                        | 425                   | 430                   |                |
| Lys Val Ile Tyr<br>435    | 4                      | 40                    | 445                   |                |
| Pro Ser Thr Ile<br>450    | 455                    |                       | 460                   |                |
| His Tyr Ser Lys<br>465    | 470                    | 475                   |                       | 480            |
| Pro Pro Leu Glu           | 403                    | 490                   | 4                     | 95             |
| Gln Thr Tyr Pro<br>500    |                        | 505                   | 510                   |                |
| Tyr Pro Val Val<br>515    | 52                     | U                     | 525                   |                |
| Val Leu Asn Arg<br>530    | 232                    |                       | 540                   |                |
| Trp Ala Thr Pro           | 350                    | 555                   |                       | 560            |
|                           | 565                    | 570                   | 57                    | 5              |
| His Pro Val Gly S         |                        | 303                   | 590                   |                |
| Asp Val Lys Thr F         | 600                    |                       | 605                   |                |
| Leu Val Tyr Phe H         | 615                    | •                     | 520                   |                |
| Asp Ser Pro Leu C         | 630                    | 635                   |                       | 640            |
|                           | *-                     | 650                   | 655                   |                |
| Gly Pro Ile Leu Le<br>660 | eu Leu Ser Asp         | Ser Ser Ser L<br>665  | eu Arg Asp Val<br>670 | Val            |

- 99 -

Asp Ser Lys Gly Tyr Gly Ala Ala Gly Tyr Val Ala Phe Lys Thr Val 680 685

Val Ala Val Ala Ala Leu Ala Gly Leu Val Ala Thr Leu Gly Phe Ile

Thr Tyr Leu Arg Lys Asn Arg Thr Met Ile Asn His 710

#### (2) INFORMATION FOR SEQ ID NO:15:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1840 base pairs (B) TYPE: nucleic acid

  - (C) STRANDEDNESS: double
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Felis domesticus
  - (D) DEVELOPMENTAL STAGE: Juvenile
  - (E) HAPLOTYPE: Diploidy (F) TISSUE TYPE: Ovary

  - (G) CELL TYPE: Oocyte

#### (ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 57..1766

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

| GAA              | TTCC             | CGCG             | GCCC              | CAAC             | TA C             | AGGI             | CTTG             | C AC              | CCAG             | TGGC             | GGC              | CTCCC            | GAT               | GGC              | ATC              | 56  |
|------------------|------------------|------------------|-------------------|------------------|------------------|------------------|------------------|-------------------|------------------|------------------|------------------|------------------|-------------------|------------------|------------------|-----|
| ATG<br>Met<br>1  | TGG              | CTO<br>Leu       | CTC<br>Lev        | CAG<br>Gln<br>5  | Pro              | CTC<br>Leu       | TTG<br>Leu       | CTC<br>Leu        | TGT<br>Cys<br>10 | Val              | CCC<br>Pro       | TTG<br>Leu       | TCT<br>Ser        | CTC<br>Leu<br>15 | GCT              | 104 |
| GTG<br>Val       | CAT              | Gly<br>Gly       | Gln<br>20         | Gin              | AAG<br>Lys       | CCC<br>Pro       | CAG<br>Gln       | GTA<br>Val<br>25  | Pro              | GAT<br>Asp       | TAT<br>Tyr       | CCC<br>Pro       | GGT<br>Gly<br>30  | Glu              | CTC              | 152 |
| CAT<br>His       | TGT<br>Cys       | GGG<br>Gly<br>35 | Leu               | CAG<br>Gln       | AGC<br>Ser       | CTT<br>Leu       | CAG<br>Gln<br>40 | TTT<br>Phe        | GCC<br>Ala       | ATA<br>Ile       | AAC<br>Asn       | CCG<br>Pro<br>45 | AGC<br>Ser        | CCC<br>Pro       | GGG              | 200 |
| AAA<br>Lys       | GCG<br>Ala<br>50 | ACT<br>Thr       | CCT<br>Pro        | GCA<br>Ala       | CTC<br>Leu       | ATA<br>Ile<br>55 | GTC<br>Val       | TGG<br>Trp        | GAC<br>Asp       | AAT<br>Asn       | CGC<br>Arg<br>60 | GGG<br>Gly       | CTG<br>Leu        | CCA<br>Pro       | CAC<br>His       | 248 |
| AAG<br>Lys<br>65 | CTG<br>Leu       | CAG<br>Gln       | AAC<br>Asn        | AAC<br>Asn       | TCT<br>Ser<br>70 | GGC              | TGC<br>Cys       | GGT<br>Gly        | ACC<br>Thr       | TGG<br>Trp<br>75 | GTA<br>Val       | AGG<br>Arg       | GAG<br>Glu        | AGC<br>Ser       | CCG<br>Pro<br>80 | 296 |
| GGG<br>Gly       | GGC<br>Gly       | TCC<br>Ser       | GTG<br>Val        | CTG<br>Leu<br>85 | TTA<br>Leu       | GAC<br>Asp       | GCC<br>Ala       | TCT<br>Ser        | TAC<br>Tyr<br>90 | AGC<br>Ser       | AGC<br>Ser       | TGC<br>Cys       | TAT<br>Tyr        | GTC<br>Val<br>95 | AAC<br>Asn       | 344 |
| GAG<br>Glu       | TGG<br>Trp       | GTG<br>Val       | AGC<br>Ser<br>100 | ACG<br>Thr       | ACC<br>Thr       | CAA<br>Gln       | Ser              | CCA<br>Pro<br>105 | GGA<br>Gly       | ACG<br>Thr       | TCG<br>Ser       | Arg              | CCC<br>Pro<br>110 | CCC<br>Pro       | ACC<br>Thr       | 392 |

- 100 -

| CCA GCA TCC AGG GTG ACT CCC CAG GAC TCC CAC TAC GTC ATA GTC ATA GTC Pro Ala Ser Arg Val Thr Pro Gln Asp Ser His Tyv Val Met Ile Val 115 120 120 125 125 125 125 125 125 125 125 125 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                 |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------|
| 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Fro Ala Ser Arg Val Thr Pro Gln Asp Ser His Tyr Val Met Ile Val | 440  |
| TABLE AND CLYS PRO APG AS PRO APG AS GIN AND LEU VAL SER SER 145  THA ACT CCC TCT CCT CTT CAA AAC GTA GCA CTA GAA GCT CCA AAC GCT LEU SER PRO SER PRO LEU GIN ASN VAL AND ALE LEU GIU AND PRO ASN AND ALE 155  TAR ACT CCC TCT GTC CCA AAG TGG GAC ACG CTT CCG TGT GCT TCT ASP LEU Cys Asp Ser Val Pro Lys Trp Asp Arg Leu Pro Cys Ala Ser 180  TCA CCC ATC ACT CAG GGA GAC TCC AAT AAG CTT GGT TGC TGC TAC AAA SER PRO 11e Thr GIN Gly Asp Cys Asn Lys Leu Gly Cys Cys Tyr Lys 200  TCA GAG GCA AAT TCC TGT TAC TAT GGA AAC ACA GTG ACC TCA CAG TGT SER GIU ALA ASN SER CYS TYR TYR Gly Asn Thr Val Thr Ser Arg Cys 210  ACC CAA GAC GGC CAC TTC TCC ATC GCC GTG TCT CGG AAC GTG ACC TCA TAR GAL ASN SER ILE ALA VAL SER AND VAL THR SER 2250  CCC CCA GTG CTC TTA AAT TCT CTG CGC TTG GCC TTC GGG AAG GAC CGC PRO PRO Leu Leu Leu Asn Ser Leu Arg Leu Ala Phe Gly Lys Asp Arg 255  GAA TGT AAC CCT GTG AAA GCA ACA CGT GCC TTT GCC TTG TTT TTT GLU Cys Asn Pro Val Lys Ala Thr Arg Ala Phe Ala Leu Phe Phe Phe 260  CCA TTT AAT TCC TGT GGC ACC ACA ACA CGT GCC TGT TG TTT TTT GLU Cys Asn Pro Val Lys Ala Thr Arg Try Val Thr Gly Asp Gln Ala 285  GTA TAT GAA AAT GAC CTG GTG GCA CAC ACA AGA GAT GG GTC ACT GGA GAC CAG GCA Pro Phe Asn Ser Cys Gly Thr Thr Arg Try Val Thr Gly Asp Gln Ala 285  GTA TAT GAA AAT GAC CTG GTG GCA GCA GCA GAT GGT CAC GAG ACC TTG GAC CAC GAT TY GLU Asn Glu Leu Val Ala Ala Arg Asp Val Arg Thr Try Ser 290  CAT GGT TCT ATT ACC CGT GAC AGT ACT TTC AGG CTT CAG GAC CAG GCA Pro Phe Asn Ser Cys Gly Thr Thr Arg Try Val Thr Gly Asp Gln Ala 285  GTA TAT GAA AAT GAC CTG GTG GCA GCT AGA GAT CTG AGA ACT TGG ACC Val Tyr Glu Asn Glu Leu Val Ala Ala Arg Asp Val Arg Thr Try Ser 295  CAT GGT TCT ATT ACC CGT GAC AGT ACT TTC AGG CTT CAG GTT TTT TTT SER 295  CAT GGT TCT ATT ACC CTT GAC ACT ACT CCC CTT ACC CTT CAC GTT TTT TTT SER TYR Ser Val Arg Ser Asn Ala Phe Pro Leu Ser Val Gln Val Phe 325  ACC TAC CCA CCC CAT CTG AAA ACC CAG CAT GGA CCC CTC ACT CTG TTT Leu 340  ACC ATC CCA CAC CCC CAT CTG AAA CCA CAC TT GCC TTA CCC TTAC ACT TTT Leu 340  GAA CTC AAG ATT CCC AAA GA | 130 Car Gir Gry Thr Asp Ala Ala Gly Arg Arg Val Thr Asn Thr Lys | 488  |
| GAC TGG CCC ATC TTA AAT TCC TGG CGC TTG GCC TTC GGG AAG GAC CGC CCA CTG CTC TAAT TCC TGG CAA AAC CGG GCC TTT GCC CTG TTC TTT TAT GAA AAT GAG CCC GCA CGC AAA GCA GGC CTT CGG TAC TTT TTT GAL CAC TGT CTG CAAA ACC CTG CTG TTC TAAT TCC TGT CAAA ACC CTG ACC ACC CTG TGT AAA ACC CTG CTG TAAA ACC CTG CTG TAAA ACC CTG CTG TAAA TCC TGG CAC ACC ACC CTG TTC TAAT TCC TGT CAAA ACC CTG ACC TGG ACC CCC ATC ACC CTG CGC ACC ATC ACC CTG CGC CTG CGC CCC CCC CTG CTG CAAA ACC CTG ACC CTG CGC CTG CGC CCC CCC CTG CTG CAAA ACC CTG CCC CCC CCC CCC CCC CCC CCC CCC C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 145 145 Pro Arg Ash Pro Pro Asp Gln Ala Leu Val Ser Ser         | 536  |
| TEAL CCC ATC ACT CAG GGA GAC TGC AAT AAG CTT GGT TGC TGC TAC AAA SER PTO 11e Thr Gln Gly Asp Cys Asn Lys Leu Gly Cys Cys Tyr Lys 200 200 200 200 200 200 200 200 200 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Led Ser Pro Ser Pro Leu Gin Asn Val Ala Leu Glu Ala Pro Asn Ala | 584  |
| TCA GAG GCA AAT TCC TGT TAC TAT GGA AAC ACA GTG ACC TCA CCC TGT Ser Glu Ala Asn Ser Cys Tyr Tyr Gly Asn Thr Val Thr Ser Arg Cys 210  ACC CAA GAC GGC CAC TTC TCC ATC GCC GTG TCT CGG AAC GTG ACC TCA CCC TGT Thr Gln Asp Gly His Phe Ser Ile Ala Val Ser Arg Asn Val Thr Ser 240  CCC CCA CTG CTC TTA AAT TCT CTG CGC TTG GCC TTC GGG AAG GAC CGC PTO Pro Leu Leu Leu Asn Ser Leu Arg Leu Ala Phe Gly Lys Asp Arg 255  GAA TGT AAC CCT GTG AAA GCA ACA CGT GCC TTT GCC CTG TTC TTT TTT Glu Cys Asn Pro Val Lys Ala Thr Arg Ala Phe Ala Leu Phe Phe Phe Phe 260  CCA TTT AAT TCC TGT GGC ACC ACC ACA GAC TGG GTC ACT GGA CAC CGG GCA Pro Phe Asn Ser Cys Gly Thr Thr Arg Try Val Thr Gly Asp Gln Ala 275  GTA TAT GAA AAT GAG CTG GTG GCA GCT AGG GAT CTG AGA ACT TGG AGC CAC GTG TCT TTT TTT TYT Gly Asn Glu Leu Val Ala Ala Arg Asp Val Arg Thr Trp Ser 290  CAT GGT TCT ATT ACC CGT GAC AGT ACT ATC TC AGG CTT CGA GTT AGC TCC His Gly Ser Ile Thr Arg Asp Ser Ile Phe Arg Leu Arg Val Ser Cys 330  AGC TAC TCT GTA AGG AGT AAT GCC TTC CGC CTT AGC GTT CAG GTT TTT Ser 320  AGC TAC TCT GTA AGG AGT AAT GCC TTC CCG CTT AGC GTT CAG GTT TTT Ser 320  AGC TAC TCT GTA AGG AGT AAT GCC TTC CCG CTT AGC GTT CAG GTT TTT Ser 320  AGC TAC TCT GTA AGG AGT AAT GCC TTC CCG CTT AGC GTT CAG GTT TTT Ser 320  AGC TAC TCT GTA AGG AGT AAT GCC TTC CCG CTT AGC GTT CAG GTT TTT Ser 320  AGC TAC TCT GTA AGG AGT AAT GCC TTC CCG CTT AGC GTT CAG GTT TTT Ser Tyr Ser Val Arg Ser Asn Ala Phe Pro Leu Ser Val Gln Val Phe 325  ACC ATC CCA CCA CCC CAT CTG AAA ACC CAG CAT GGA CCC CTC ACT CTG TTT Ile Pro Pro Pro His Leu Lys Thr Gln His Gly Pro Leu Thr Leu 340  GAA CTC AAG ATT GCC AAA GAT AAG CAC TAT GGC TCC TAC TAC ACT ATT Thr Ile 355  GGT GAC TAC CCA GTG GTA AAG CTC TTC CGG GAT CCC ATT TAT GTG GAG GAG ARG TACC GAG GAT GAC CAC CCC CTC CTC CTC TTC TTT TTT TTT Ile 355  GGT GAC TAC CCA GTG GTA AAG TTG CTT CGG GAT CCC ATT TAT GTG GAG GAG GAG GAC CAC GAC GAC CAC GAC CCC CTC CTC TTC TTT TTT TTT TTT TTT T                                                                                                          | Asp Led Cys Asp Ser Val Pro Lys Trp Asp Arg Leu Pro Cys Ala Ser | 632  |
| ACC CAA GAC GGC CAC TTC TCC ATC GCC GTG TCT CGG AAC GTG ACC TCA Thr Gln Asp Gly His Phe Ser Ile Ala Val Ser Arg Asn Val Thr Ser 230  CCC CCA CTG CTC TTA AAT TCT CTG CGC TTG GCC TTC GGG AAG GAC GCC Pro Pro Leu Leu Leu Asn Ser Leu Arg Leu Ala Phe Gly Lys Asp Arg 245  GAA TGT AAC CCT GTG AAA GCA ACA CGT GCC TTT GCC CTG TTC TTT TTT Glu Cys Asn Pro Val Lys Ala Thr Arg Ala Phe Ala Leu Phe Phe Phe 265  CCA TTT AAT TCC TGT GGC ACC ACG AGA TGG GTC ACT GGA GAC CAG GCA Pro Phe Asn Ser Cys Gly Thr Thr Arg Trp Val Thr Gly Asp Gln Ala 275  GTA TAT GAA AAT GAG CTG GTG GCA GCT AGA GAT GGT AGA ACT TGG AGC Val Tyr Glu Asn Glu Leu Val Ala Ala Arg Asp Val Arg Thr Trp Ser 290  CAT GGT TCT ATT ACC CGT GAC AGT ATC TTC AGG CTT CGA GTT AGC TGC His Gly Ser Ile Thr Arg Asp Ser Ile Phe Arg Leu Arg Val Ser Cys 305  AGC TAC TCT GTA AGG AGT AAT GCC TTC CGC CTT AGC GTT CAG GTG TTT Ser Tyr Ser Val Arg Ser Asn Ala Phe Pro Leu Ser Val Gln Val Phe 325  ACC ATC CCA CCA CCC CAT CTG AAA ACC CAG CAG CAG CAG CAG CAG CAG CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ser Pro lie Thr Gin Gly Asp Cys Asn Lys Leu Gly Cys Cys Tyr Lys | 680  |
| 225 230 235 Arg Asn Val Thr Ser 240  CCC CCA CTG CTC TTA AAT TCT CTG CGC TTG GCC TTC GGG AAG GAC CGC Pro Pro Leu Leu Leu Asn Ser Leu Arg Leu Ala Phe Gly Lys Asp Arg 245  GAA TGT AAC CCT GTG AAA GCA ACA CGT GCC TTT GCC CTG TTC TTT TTT Glu Cys Asn Pro Val Lys Ala Thr Arg Ala Phe Ala Leu Phe Phe Phe Phe 260  CCA TTT AAT TCC TGT GGC ACC ACG AGA TGG GTC ACT GGA GAC CAG GCA Pro Phe Asn Ser Cys Gly Thr Thr Arg Trp Val Thr Gly Asp Gln Ala 285  GTA TAT GAA AAT GAG CTG GTG GCA GCT AGA GAT GTG AGA ACT TGG AGC Yal Tyr Glu Asn Glu Leu Val Ala Ala Arg Asp Val Arg Thr Trp Ser 290  CAT GGT TCT ATT ACC CGT GAC AGT ATC TTC AGG CTT CGA GTT AGC TGC His Gly Ser Ile Thr Arg Asp Ser Ile Phe Arg Leu Arg Val Ser Cys 310  AGC TAC TCT GTA AGG AGT AAT GCC TTC CCG CTT AGC GTT CAG GTG TTT Ser Tyr Ser Val Arg Ser Asn Ala Phe Pro Leu Ser Val Gln Val Phe 325  ACC ATC CCA CCA CCC CAT CTG AAA ACC CAG CAT GGA CCC CTC ACT CTG Thr Ile Pro Pro Pro His Leu Lys Thr Gln His Gly Pro Leu Thr Leu 340  GAA CTC AAG ATT GCC AAA GAT AAG CAC TAT GGC TCC TAC TAC ACT CTG Thr Ile Pro Pro Pro His Leu Lys Thr Gln His Gly Pro Leu Thr Leu 340  GGT GAC TAC CCA CGC GTG GTA AAG TTC CTC CGG GAT CCC ATT TAT GTG GAG GGAG ACG GAC GAC GAC GAC GAC CAC TAT GAC TCC TAC TATT THE TILE 355  GGT GAC TAC CCA CCC GTG GTA AAG TTC CTC CGG GAT CCC ATT TAT GTG GAG GGAC CAC GAC GAC GAC GAC GAC GAC CAC ATT TAT GTG GAG GGAC CAC GAC GAC GAC GAC GAC GAC G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 210 210 Ara Ash Ser Cys Tyr Tyr Gly Ash Thr Val Thr Ser Arg Cys | 728  |
| CAT GGT TCT ATT ACC CGT GAC ACT ATC TCC AGG CTT CGA GTT TTT Ser 310  CAT GGT TCT ATT ACC CGT GAC ACT ACT ACT CTG AGA ACT ACT TTG CTG CTT CAG GTG TTT TTT Ser 310  CAT GGT TCT ATT ACC CGT GCC ACT ACT ACT CTG AGA ACT TCC ACT CTG TTC TTT TTT Ser 320  CAT GGT TCT ATT ACC CGT GAC ACT ACT ACT CTG AGG ACC ACT GCA GCC ACT TTG CAG CTT ACT CTG TTG ACT ACT CTG ACC ACT ACT ACT ACT ACT ACT ACT ACT ACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 225 230                                                         | 776  |
| CCA TTT AAT TCC TGT GGC ACC ACG AGA TGG GTC ACT GGA GAC CAG GCA Pro Phe Asn Ser Cys Gly Thr Thr Arg Trp Val Thr Gly Asp Gln Ala 285  GTA TAT GAA AAT GAG CTG GTG GCA GCT AGA GAT GTG AGA ACT TGG AGC Val Tyr Glu Asn Glu Leu Val Ala Ala Arg Asp Val Arg Thr Trp Ser 290  CAT GGT TCT ATT ACC CGT GAC AGT ATC TTC AGG CTT CGA GTT AGC TGC His Gly Ser Ile Thr Arg Asp Ser Ile Phe Arg Leu Arg Val Ser Cys 305  AGC TAC TCT GTA AGG AGT AAT GCC TTC CCG CTT AGC GTT CAG GTG TTT Ser Tyr Ser Val Arg Ser Asn Ala Phe Pro Leu Ser Val Gln Val Phe 325  ACC ATC CCA CCA CCC CAT CTG AAA ACC CAG CAT GGA CCC CTC ACT CTG Thr Ile Pro Pro Pro His Leu Lys Thr Gln His Gly Pro Leu Thr Leu 340  GAA CTC AAG ATT GCC AAA GAT AAG CAC TAT GGC TCC TAC TAC ACT ATT GLU Leu Lys Ile Ala Lys Asp Lys His Tyr Gly Ser Tyr Tyr Thr Ile 355  GGT GAC TAC CCA GTG GTA AAG TTG CTT CGG GAT CCC ATT TAT GTG GAG GGG Ly Asp Tyr Pro Val Val Lys Leu Leu Arg Asp Pro Ile Tyr Val Glu 1208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 245 Ash Ser Leu Arg Leu Ala Phe Gly Lys Asp Arg                 | 824  |
| GTA TAT GAA AAT GAG CTG GTG GCA GCT AGA GAT GTG AGA ACT TGG AGC 290  CAT GGT TCT ATT ACC CGT GAC AGT ATC TTC AGG CTT CGA GTT AGC TGC 1016  His Gly Ser Ile Thr Arg Asp Ser Ile Phe Arg Leu Arg Val Ser Cys 310  AGC TAC TCT GTA AGG AGT AAT GCC TTC CCG CTT AGC GTT CAG GTG TTT 1064  Ser Tyr Ser Val Arg Ser Asn Ala Phe Pro Leu Ser Val Gln Val Phe 325  ACC ATC CCA CCA CCC CAT CTG AAA ACC CAG CAT GGA CCC CTC ACT CTG Thr Ile Pro Pro Pro His Leu Lys Thr Gln His Gly Pro Leu Thr Leu 340  GAA CTC AAG ATT GCC AAA GAT AAG CAC TAT GGC TCC TAC TAC ACT ATT Glu Leu Lys Ile Ala Lys Asp Lys His Tyr Gly Ser Tyr Tyr Thr Ile 355  GGT GAC TAC CCA GTG GTA AAG TTG CTT CGG GAT CCC ATT TAT GTG GAG GTG GAG GIG GAG GAS AAG CAC TAC CTG GAT CTC CAG GTG TTT TAT GTG GAG GAG GIG GAT AAG CAC TAC CTC CTC CTC TACT TAT TAT GTG GAG CAC TAC CTC CTC TACT CTC GAG CAC TAC CTC CTC TACT CTC GAG CAC TAC CTC CTC TACT CTC GAG CAC CAC CAC CAC CAC CAC CAC CAC CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 250 250 250 250 250 250 250 250 250 250                         | 872  |
| CAT GGT TCT ATT ACC CGT GAC AGT ATC TTC AGG CTT CGA GTT AGC TGC His Gly Ser Ile Thr Arg Asp Ser Ile Phe Arg Leu Arg Val Ser Cys 310  AGC TAC TCT GTA AGG AGT AAT GCC TTC CCG CTT AGC GTT CAG GTG TTT Ser Tyr Ser Val Arg Ser Asn Ala Phe Pro Leu Ser Val Gln Val Phe 325  ACC ATC CCA CCA CCC CAT CTG AAA ACC CAG CAT GGA CCC CTC ACT CTG Thr Ile Pro Pro Pro His Leu Lys Thr Gln His Gly Pro Leu Thr Leu 340  GAA CTC AAG ATT GCC AAA GAT AAG CAC TAT GGC TCC TAC TAC ACT ATT Glu Leu Lys Ile Ala Lys Asp Lys His Tyr Gly Ser Tyr Tyr Thr Ile 355  GGT GAC TAC CCA GTG GTA AAG TTG CTT CGG GAT CCC ATT TAT GTG GAG Gly Asp Tyr Pro Val Val Lys Leu Leu Arg Asp Pro Ile Tyr Val Glu  1208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 275 The Asi Set Cys Gly The The Arg Trp Val The Gly Asp Gln Ala | 920  |
| AGC TAC TCT GTA AGG AGT AAT GCC TTC CCG CTT AGC GTT CAG GTG TTT Ser Tyr Ser Val Arg Ser Asn Ala Phe Pro Leu Ser Val Gln Val Phe 325  ACC ATC CCA CCA CCC CAT CTG AAA ACC CAG CAT GGA CCC CTC ACT CTG Thr Ile Pro Pro Pro His Leu Lys Thr Gln His Gly Pro Leu Thr Leu 340  GAA CTC AAG ATT GCC AAA GAT AAG CAC TAT GGC TCC TAC TAC ACT ATT Glu Leu Lys Ile Ala Lys Asp Lys His Tyr Gly Ser Tyr Thr Ile 355  GGT GAC TAC CCA GTG GTA AAG TTG CTT CGG GAT CCC ATT TAT GTG GAG GLY Asp Tyr Pro Val Val Lys Leu Leu Arg Asp Pro Ile Tyr Val Glu  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064  1064 | 290 Ash Glu Leu val Ala Ala Arg Asp Val Arg Thr Trp Ser         | 968  |
| ACC ATC CCA CCC CAT CTG AAA ACC CAG CAT GGA CCC CTC ACT CTG Thr Ile Pro Pro Pro His Leu Lys Thr Gln His Gly Pro Leu Thr Leu 340 345 350  GAA CTC AAG ATT GCC AAA GAT AAG CAC TAT GGC TCC TAC TAC ACT ATT Glu Leu Lys Ile Ala Lys Asp Lys His Tyr Gly Ser Tyr Tyr Thr Ile 355 360 365  GGT GAC TAC CCA GTG GTA AAG TTG CTT CGG GAT CCC ATT TAT GTG GAG Gly Asp Tyr Pro Val Val Lys Leu Leu Arg Asp Pro Ile Tyr Val Glu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 305 310 Arg Leu Arg Val Ser Cys                                 | 1016 |
| GAA CTC AAG ATT GCC AAA GAT AAG CAC TAT GGC TCC TAC TAC ACT ATT Glu Leu Lys Ile Ala Lys Asp Lys His Tyr Gly Ser Tyr Tyr Thr Ile 355  GGT GAC TAC CCA GTG GTA AAG TTG CTT CGG GAT CCC ATT TAT GTG GAG Gly Asp Tyr Pro Val Val Lys Leu Leu Arg Asp Pro Ile Tyr Val Glu  1208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ary Ser Ash Ala Phe Pro Leu Ser Val Gin Val Phe                 | 1064 |
| GGT GAC TAC CCA GTG GTA AAG TTG CTT CGG GAT CCC ATT TAT GTG GAG Gly Asp Tyr Pro Val Val Lys Leu Leu Arg Asp Pro Ile Tyr Val Glu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 340                                                             | 1112 |
| 370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 355 Tie Ald Lys Asp Lys His Tyr Gly Ser Tyr Tyr Thr Ile         | 1160 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 370 370 Val Val Lys Leu Leu Arg Asp Pro Ile Tyr Val Glu         | 1208 |

- 101 -

| ٧.                | rc ro<br>al Se<br>35  | CT A               | rc co<br>le Ai     | GC CA                | AC AC<br>is Ar<br>39   | g Th              | G GA                  | c cc<br>p Pr      | C TC               | C CT<br>r Le<br>39    | u Gl              | G CTO<br>y Leu    | G CTO             | C CTO             | C CAT<br>His<br>400 | 1256 |
|-------------------|-----------------------|--------------------|--------------------|----------------------|------------------------|-------------------|-----------------------|-------------------|--------------------|-----------------------|-------------------|-------------------|-------------------|-------------------|---------------------|------|
| A.A<br>As         | in Cy                 | T TO               | G GC               | CC AC<br>la Th<br>40 | r Pr                   | C GG              | C AA<br>y Ly          | G AA<br>s As      | C TC<br>n Se<br>41 | r Gl                  | G AG<br>n Se      | T CTC             | TCC<br>Ser        | CAC<br>Glr<br>415 | TGG<br>Trp          | 1304 |
| CC<br>Pr          | C AT                  | T CI<br>e Le       | G GT<br>u Va<br>42 | I Ly                 | A GG<br>s Gl           | A TG              | C CC                  | C TA              | r Va               | T GG?<br>1 Gly        | A GAO             | C AAC<br>O Asn    | TAT<br>Tyr<br>430 | Glr               | ACC<br>Thr          | 1352 |
| CA<br>G1          | G CT<br>n Le          | G AT<br>u Il<br>43 | e Pr               | T GT<br>o Va         | C CAG                  | G AAO<br>n Lys    | G GC:<br>B Ala<br>440 | a Lei             | G GA:              | F ACA                 | CCF<br>Pro        | TTT<br>Phe<br>445 | CCA<br>Pro        | TCT               | TAC<br>Tyr          | 1400 |
| TAC<br>Ty:        | C AAC<br>r Ly:<br>450 | 3 Ar               | C TT<br>g Ph       | C AG:<br>e Sei       | r ATT                  | TTC<br>Phe<br>455 | Thr                   | TTC<br>Phe        | C AGO              | TTT<br>Phe            | GTG<br>Val<br>460 | GAC<br>Asp        | ACC<br>Thr        | ATG<br>Met        | GCA<br>Ala          | 1448 |
| AAC<br>Lys<br>465 | s Tri                 | G GC               | A CTO              | C AGO                | G GG#<br>G G Ly<br>470 | Pro               | GTG<br>Val            | TAT<br>Tyr        | CTG<br>Leu         | CAC<br>His<br>475     | TGT               | AAT<br>Asn        | GTA<br>Val        | TCC<br>Ser        | ATC<br>Ile<br>480   | 1496 |
| TGC<br>Cys        | CAG<br>Glr            | Pro                | GCT<br>Ala         | GGG<br>Gly<br>485    | Thr                    | TCC<br>Ser        | TCC<br>Ser            | TGT<br>Cys        | AGG<br>Arg<br>490  | lle                   | ACC<br>Thr        | TGT<br>Cys        | CCT<br>Pro        | GTT<br>Val<br>495 | GCC<br>Ala          | 1544 |
| AGG<br>Arg        | CGA<br>Arg            | AGA<br>Arg         | AGA<br>Arg<br>500  | His                  | TCT<br>Ser             | GAC<br>Asp        | CTC<br>Leu            | CAT<br>His<br>505 | CAT<br>His         | CAC<br>His            | AGC<br>Ser        | AGT<br>Ser        | ACT<br>Thr<br>510 | GCG<br>Ala        | AGC<br>Ser          | 1592 |
| ATC<br>Ile        | TCT<br>Ser            | AGC<br>Ser<br>515  | Lys                | GGT<br>Gly           | CCC<br>Pro             | ATG<br>Met        | ATT<br>Ile<br>520     | CTA<br>Leu        | CTC<br>Leu         | CAA<br>Gln            | GCC<br>Ala        | ACT I             | ATG<br>Met        | GAC<br>Asp        | TCT<br>Ser          | 1640 |
| GCA<br>Ala        | GAG<br>Glu<br>530     | AAG<br>Lys         | CTC<br>Leu         | CAC<br>His           | AAA<br>Lys             | AAC<br>Asn<br>535 | TCA<br>Ser            | AGT<br>Ser        | TCT<br>Ser         | Pro                   | ATA<br>Ile<br>540 | GAC :             | ICC (<br>Ser (    | CAA (<br>Gln )    | GCT<br>Ala          | 1688 |
| CTG<br>Leu<br>545 | TGG<br>Trp            | ATG<br>Met         | GCA<br>Ala         | GGC<br>Gly           | CTT<br>Leu<br>550      | TCC<br>Ser        | GGG<br>Gly            | ACC<br>Thr        | Leu                | ATC 1<br>Ile 1<br>555 | TTT  <br>Phe      | GGA 1<br>Gly I    | TTC :             | Leu 1             | TTA<br>Leu<br>560   | 1736 |
| GTG<br>Val        | TCC<br>Ser            | TAC<br>Tyr         | TTG<br>Leu         | GCT<br>Ala<br>565    | ATC<br>Ile             | AGG<br>Arg        | AAA<br>Lys            | Arg .             | AGG<br>Arg<br>570  | TGAA:                 | FTAT:             | TC CA             | GTTC              | GTGT              | r                   | 1786 |
| AATA              | AAAC                  | CA G               | ATTG               | CATT                 | A CC                   | AAAA              | AAAA                  | AAA               | AAAA               | AAA G                 | CGG               | CCCCG             | A AI              | TC                |                     | 1840 |

# (2) INFORMATION FOR SEQ ID NO:16:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 570 amino acids
    (B) TYPE: amino acid
    (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

Met Trp Leu Leu Gln Pro Leu Leu Cys Val Pro Leu Ser Leu Ala 10

Val His Gly Gln Gln Lys Pro Gln Val Pro Asp Tyr Pro Gly Glu Leu 20 25 30

His Cys Gly Leu Gln Ser Leu Gln Phe Ala Ile Asn Pro Ser Pro Gly 35 40 45

Lys Ala Thr Pro Ala Leu Ile Val Trp Asp Asn Arg Gly Leu Pro His 50 55 60

Lys Leu Gln Asn Asn Ser Gly Cys Gly Thr Trp Val Arg Glu Ser Pro 65 70 75 80

Gly Gly Ser Val Leu Leu Asp Ala Ser Tyr Ser Ser Cys Tyr Val Asn 85 90 95

Glu Trp Val Ser Thr Thr Gln Ser Pro Gly Thr Ser Arg Pro Pro Thr 100 105 110

Pro Ala Ser Arg Val Thr Pro Gln Asp Ser His Tyr Val Met Ile Val 115 120 125

Gly Val Glu Gly Thr Asp Ala Ala Gly Arg Arg Val Thr Asn Thr Lys
130 135 140

Val Leu Arg Cys Pro Arg Asn Pro Pro Asp Gln Ala Leu Val Ser Ser 145 150 155 160

Leu Ser Pro Ser Pro Leu Gln Asn Val Ala Leu Glu Ala Pro Asn Ala 165 170 175

Asp Leu Cys Asp Ser Val Pro Lys Trp Asp Arg Leu Pro Cys Ala Ser 180 185 190

Ser Pro Ile Thr Gln Gly Asp Cys Asn Lys Leu Gly Cys Cys Tyr Lys
195 200 205

Ser Glu Ala Asn Ser Cys Tyr Tyr Gly Asn Thr Val Thr Ser Arg Cys 210 215 220

Thr Gln Asp Gly His Phe Ser Ile Ala Val Ser Arg Asn Val Thr Ser 225 230 235 240

Pro Pro Leu Leu Asn Ser Leu Arg Leu Ala Phe Gly Lys Asp Arg 245 250 255

Glu Cys Asn Pro Val Lys Ala Thr Arg Ala Phe Ala Leu Phe Phe Phe 260 265 270

Pro Phe Asn Ser Cys Gly Thr Thr Arg Trp Val Thr Gly Asp Gln Ala 275 280 285

Val Tyr Glu Asn Glu Leu Val Ala Ala Arg Asp Val Arg Thr Trp Ser 290 295 300

His Gly Ser Ile Thr Arg Asp Ser Ile Phe Arg Leu Arg Val Ser Cys 305 310 315 320

Ser Tyr Ser Val Arg Ser Asn Ala Phe Pro Leu Ser Val Gln Val Phe 325 330 335

Thr Ile Pro Pro Pro His Leu Lys Thr Gln His Gly Pro Leu Thr Leu 340 345 350

Glu Leu Lys Ile Ala Lys Asp Lys His Tyr Gly Ser Tyr Tyr Thr Ile 355 360 365

Gly Asp Tyr Pro Val Val Lys Leu Leu Arg Asp Pro Ile Tyr Val Glu 370 375 380

Val Ser Ile Arg His Arg Thr Asp Pro Ser Leu Gly Leu Leu His

- 103 -

385 390 395 400

Asn Cys Trp Ala Thr Pro Gly Lys Asn Ser Gln Ser Leu Ser Gln Trp 405 410

Pro Ile Leu Val Lys Gly Cys Pro Tyr Val Gly Asp Asn Tyr Gln Thr 420

Gln Leu Ile Pro Val Gln Lys Ala Leu Asp Thr Pro Phe Pro Ser Tyr 435

Tyr Lys Arg Phe Ser Ile Phe Thr Phe Ser Phe Val Asp Thr Met Ala 455

Lys Trp Ala Leu Arg Gly Pro Val Tyr Leu His Cys Asn Val Ser Ile

Cys Gln Pro Ala Gly Thr Ser Ser Cys Arg Ile Thr Cys Pro Val Ala 485

Arg Arg Arg His Ser Asp Leu His His His Ser Ser Thr Ala Ser 505

Ile Ser Ser Lys Gly Pro Met Ile Leu Leu Gln Ala Thr Met Asp Ser

Ala Glu Lys Leu His Lys Asn Ser Ser Ser Pro Ile Asp Ser Gln Ala

Leu Trp Met Ala Gly Leu Ser Gly Thr Leu Ile Phe Gly Phe Leu Leu 550 555

Val Ser Tyr Leu Ala Ile Arg Lys Arg Arg 565

- (2) INFORMATION FOR SEQ ID NO:17:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 1319 base pairs (B) TYPE: nucleic acid

    - (C) STRANDEDNESS: double
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: cDNA
  - (iii) HYPOTHETICAL: NO
  - (iv) ANTI-SENSE: NO
  - (vi) ORIGINAL SOURCE:
    - (A) ORGANISM: Felis domesticus
    - (D) DEVELOPMENTAL STAGE: Juvenile
    - (E) HAPLOTYPE: Diploidy (F) TISSUE TYPE: Ovary

    - (G) CELL TYPE: Oocyte
  - (ix) FEATURE:
    - (A) NAME/KEY: CDS
    - (B) LOCATION: 26..1297
- . (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

GAATTCGCGG CCGCGCGTAG GCCGC ATG GGG CTG AGC TAC GGG CTT TTC ATC Met Gly Leu Ser Tyr Gly Leu Phe Ile - 104 -

| TGT TTT CTG CTT TGG GCA GGC ACG GGG CTG TGC TAT CCC CCA ACC ACC Cys Phe Leu Leu Trp Ala Gly Thr Gly Leu Cys Tyr Pro Pro Thr Thr 10 15 20 25           | 100 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| ACC GAG GAT AAG ACC CAC CCC TCG TTG CCA TCA AGC CCC TCT GTG GTG Thr Glu Asp Lys Thr His Pro Ser Leu Pro Ser Ser Pro Ser Val Val 30 35 40              | 148 |
| GTA GAG TGT CGG CAT GCC TGG CTG GTG GTC AAC GTC AGC AAA AAC CTT<br>Val Glu Cys Arg His Ala Trp Leu Val Val Asn Val Ser Lys Asn Leu<br>45 50 55        | 196 |
| TTT GGT ACT GGG AGG CTT GTG AGG CCT GCA GAC CTC ACC CTG GGT CCG Phe Gly Thr Gly Arg Leu Val Arg Pro Ala Asp Leu Thr Leu Gly Pro 60 65 70              | 244 |
| GAG AAC TGT GAG CCC CTG ATC TCT GGG GAC TCA GAT GAT ACG GTC AGG Glu Asn Cys Glu Pro Leu Ile Ser Gly Asp Ser Asp Asp Thr Val Arg 75 80 85              | 292 |
| TTT GAA GTC GAG CTC CAC AAG TGT GGC AAC AGC GTG CAG GTG ACC GAA Phe Glu Val Glu Leu His Lys Cys Gly Asn Ser Val Gln Val Thr Glu 90 95 100 105         | 340 |
| GAT GCC CTG GTG TAT AGC ACC TTC CTG CTC CAC AAC CCC CGC CCC ATG Asp Ala Leu Val Tyr Ser Thr Phe Leu Leu His Asn Pro Arg Pro Met 110 115               | 388 |
| GGA AAC CTG TCC ATC CTG AGG ACC AAC CGC GCG GAA GTT CCC ATT GAG<br>Gly Asn Leu Ser Ile Leu Arg Thr Asn Arg Ala Glu Val Pro Ile Glu<br>125 130 135     | 436 |
| TGC CGT TAC CCC AGG CAT AGC AAC GTG AGC AGC GAG GCC ATC CTG CCC Cys Arg Tyr Pro Arg His Ser Asn Val Ser Ser Glu Ala Ile Leu Pro 140 145 150           | 484 |
| ACC TGG GTG CCC TTC AGG ACC ACA ATG CTC TCA GAG GAG AAG CTG GCT Thr Trp Val Pro Phe Arg Thr Thr Met Leu Ser Glu Glu Lys Leu Ala 155 160 165           | 532 |
| TTC TCT CTG CGC CTG ATG GAG GAG GAC TGG GGC TCC GAG AAG CAG TCC Phe Ser Leu Arg Leu Met Glu Glu Asp Trp Gly Ser Glu Lys Gln Ser 170 180 185           | 580 |
| CCC ACT TTC CAG TTG GGA GAC CTA GCC CAC CTC CAG GCC GAA GTC CAC<br>Pro Thr Phe Gln Leu Gly Asp Leu Ala His Leu Gln Ala Glu Val His<br>190 195 200     | 628 |
| ACC GGC CGC CAC ATA CCA CTG CGA CTG TTT GTG GAC TAC TGT GTG GCC<br>Thr Gly Arg His Ile Pro Leu Arg Leu Phe Val Asp Tyr Cys Val Ala<br>205 210         | 676 |
| ACG CTG ACA CCA GAC CAG AAC GCC TCC CCT CAT CAC ACC ATC GTG GAC Thr Leu Thr Pro Asp Gln Asn Ala Ser Pro His His Thr Ile Val Asp 220 225 230           | 724 |
| TTC CAC GGC TGT CTC GTG GAT GGT CTC TCT GAT GCC TCT TCT GCC TTC  Phe His Gly Cys Leu Val Asp Gly Leu Ser Asp Ala Ser Ser Ala Phe  235 240 245         | 772 |
| AAA GCC CCC AGA CCC AGG CCG GAG ACT CTC CAG TTT ACA GTA GAC ACG<br>Lys Ala Pro Arg Pro Arg Pro Glu Thr Leu Gln Phe Thr Val Asp Thr<br>250 255 260 265 | 820 |
| TTC CAC TTT GCT AAT GAC CCC AGA AAC ATG ATC TAT ATC ACC TGC CAT Phe His Phe Ala Asn Asp Pro Arg Asn Met Ile Tyr Ile Thr Cys His 270 275 280           | 868 |

- 105 -

| CT                | G AA.<br>u Ly:               | A GT<br>s Va         | C AC<br>1 Th<br>28 | r Pr              | A GC              | T AGO<br>a Ser    | C CG              | A GT0<br>g Val<br>290 | l Pro             | A GAO             | C CA              | G CT                | A AA<br>u Ası<br>29 | n Ly:             | A GCC<br>s Ala    | 916  |
|-------------------|------------------------------|----------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-----------------------|-------------------|-------------------|-------------------|---------------------|---------------------|-------------------|-------------------|------|
| TG?<br>Cys        | TC(                          | 2 TT<br>2 Pho<br>300 | 5 TT6              | C AAG<br>E Lys    | G TC1             | TCT<br>Ser        | AAC<br>Asr<br>305 | ı Arç                 | TG<br>Tr          | TTC<br>Phe        | C CCI             | A GTA<br>Val<br>310 | l Gli               | A GGG             | C CCT             | 964  |
| GCT<br>Ala        | GAC<br>Asp<br>315            | 116                  | C TGT              | AA 7<br>a Asr     | TGI<br>Cys        | TGT<br>Cys<br>320 | Asn               | Lys                   | GGT<br>Gly        | AGC<br>Ser        | Cys<br>325        | Gly                 | CTI<br>Leu          | CAC<br>Glr        | GGC<br>Gly        | 1012 |
| CGT<br>Arg<br>330 | Ser                          | TGG                  | AGG<br>Arg         | CTG<br>Leu        | Ser<br>335        | His               | CTA<br>Leu        | GAC                   | AGA<br>Arg        | CCG<br>Pro<br>340 | Trp               | CAC<br>His          | Lys                 | ATG<br>Met        | GCT<br>Ala<br>345 | 1060 |
| TCC<br>Ser        | CGA<br>Arg                   | AAT<br>Asn           | CGC<br>Arg         | AGG<br>Arg<br>350 | CAT<br>His        | GTG<br>Val        | ACC<br>Thr        | GAA<br>Glu            | GAA<br>Glu<br>355 | GCG<br>Ala        | GAT<br>Asp        | ATC<br>Ile          | ACC<br>Thr          | GTG<br>Val<br>360 | GGG<br>Gly        | 1108 |
| CCT<br>Pro        | CTG<br>Leu                   | ATC<br>Ile           | TTC<br>Phe<br>365  | CTG<br>Leu        | GGA<br>Gly        | AAG<br>Lys        | GCT<br>Ala        | GCC<br>Ala<br>370     | GAT<br>Asp        | CGT<br>Arg        | GGT<br>Gly        | GTG<br>Val          | GAG<br>Glu<br>375   | GGG<br>Gly        | TCG<br>Ser        | 1156 |
| ACC<br>Thr        | TCG<br>Ser                   | CCT<br>Pro<br>380    | CAC<br>His         | ACC<br>Thr        | TCT<br>Ser        | GTG<br>Val        | ATG<br>Met<br>385 | GTG<br>Val            | GGC<br>Gly        | ATA<br>Ile        | GGC<br>Gly        | CTG<br>Leu<br>390   | GCC<br>Ala          | ACG<br>Thr        | GTG<br>Val        | 1204 |
| TTG<br>Leu        | TCC<br>Ser<br>395            | CTG<br>Leu           | ACT<br>Thr         | CTG<br>Leu        | GCT<br>Ala        | ACC<br>Thr<br>400 | ATT<br>Ile        | GTC<br>Val            | CTG<br>Leu        | Gly               | CTC<br>Leu<br>405 | GCC<br>Ala          | AGG<br>Arg          | AGG<br>Arg        | CAT<br>His        | 1252 |
| CAC<br>His<br>410 | ACT<br>Thr                   | GCT<br>Ala           | TCC<br>Ser         | CGT<br>Arg        | CCT<br>Pro<br>415 | ATG :<br>Met :    | ATC<br>Ile        | TGC<br>Cys            | Pro               | GTG<br>Val<br>420 | TCT<br>Ser        | GCT<br>Ala          | TCC<br>Ser          | CAA<br>Gln        |                   | 1297 |
| AAA               | AAAAGAAGC GGCCGCGAAT TC 1319 |                      |                    |                   |                   |                   |                   |                       |                   |                   |                   |                     |                     |                   |                   |      |

# (2) INFORMATION FOR SEQ ID NO:18:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 424 amino acids
  - (B) TYPE: amino acid
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

Met Gly Leu Ser Tyr Gly Leu Phe Ile Cys Phe Leu Leu Trp Ala Gly  $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$ 

Thr Gly Leu Cys Tyr Pro Pro Thr Thr Thr Glu Asp Lys Thr His Pro 20 25 30

Ser Leu Pro Ser Ser Pro Ser Val Val Val Glu Cys Arg His Ala Trp 35 40 45

Leu Val Val Asn Val Ser Lys Asn Leu Phe Gly Thr Gly Arg Leu Val 50 55 60

Arg Pro Ala Asp Leu Thr Leu Gly Pro Glu Asn Cys Glu Pro Leu Ile 65 70 75 80

Ser Gly Asp Ser Asp Asp Thr Val Arg Phe Glu Val Glu Leu His Lys

Cys Gly Asn Ser Val Gln Val Thr Glu Asp Ala Leu Val Tyr Ser Thr 100 105 110

Phe Leu Leu His Asn Pro Arg Pro Met Gly Asn Leu Ser Ile Leu Arg 115 120 125

Thr Asn Arg Ala Glu Val Pro Ile Glu Cys Arg Tyr Pro Arg His Ser 130 135 140

Asn Val Ser Ser Glu Ala Ile Leu Pro Thr Trp Val Pro Phe Arg Thr 145 150 155 160

Thr Met Leu Ser Glu Glu Lys Leu Ala Phe Ser Leu Arg Leu Met Glu 165 170 175

Glu Asp Trp Gly Ser Glu Lys Gln Ser Pro Thr Phe Gln Leu Gly Asp 180 185 190

Leu Ala His Leu Gln Ala Glu Val His Thr Gly Arg His Ile Pro Leu 195 200 205

Arg Leu Phe Val Asp Tyr Cys Val Ala Thr Leu Thr Pro Asp Gln Asn 210 220

Ala Ser Pro His His Thr Ile Val Asp Phe His Gly Cys Leu Val Asp 225 230 235 240

Gly Leu Ser Asp Ala Ser Ser Ala Phe Lys Ala Pro Arg Pro 245 250 255

Glu Thr Leu Gln Phe Thr Val Asp Thr Phe His Phe Ala Asn Asp Pro 260 265 270

Arg Asn Met Ile Tyr Ile Thr Cys His Leu Lys Val Thr Pro Ala Ser 275 280 285

Arg Val Pro Asp Gln Leu Asn Lys Ala Cys Ser Phe Ile Lys Ser Ser 290 295 300 .

Asn Arg Trp Phe Pro Val Glu Gly Pro Ala Asp Ile Cys Asn Cys Cys 305 310 315 320

Asn Lys Gly Ser Cys Gly Leu Gln Gly Arg Ser Trp Arg Leu Ser His 325 330 335

Leu Asp Arg Pro Trp His Lys Met Ala Ser Arg Asn Arg His Val 340 345 350

Thr Glu Glu Ala Asp Ile Thr Val Gly Pro Leu Ile Phe Leu Gly Lys 355 360 365

Ala Ala Asp Arg Gly Val Glu Gly Ser Thr Ser Pro His Thr Ser Val 370 380

Met Val Gly Ile Gly Leu Ala Thr Val Leu Ser Leu Thr Leu Ala Thr 385 390 395 400

Ile Val Leu Gly Leu Ala Arg Arg His His Thr Ala Ser Arg Pro Met
405 410 415

Ile Cys Pro Val Ser Ala Ser Gln 420

## (2) INFORMATION FOR SEQ ID NO:19:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 643 base pairs

- 107 -

| (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear                                                               |     |
|------------------------------------------------------------------------------------------------------------------------------------|-----|
| (ii) MOLECULE TYPE: cDNA                                                                                                           |     |
| (iii) HYPOTHETICAL: NO                                                                                                             |     |
| (iv) ANTI-SENSE: NO                                                                                                                |     |
| (vi) ORIGINAL SOURCE:                                                                                                              |     |
| (A) ORGANISM: Bos taurus (D) DEVELOPMENTAL STAGE: Juvenile                                                                         |     |
| (E) HAPLOTYPE: Diploidy (F) TISSUE TYPE: Ovary                                                                                     |     |
| (G) CELL TYPE: Oocyte                                                                                                              |     |
| (ix) FEATURE:                                                                                                                      |     |
| (A) NAME/KEY: CDS (B) LOCATION: 16582                                                                                              |     |
|                                                                                                                                    |     |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:                                                                                           |     |
| GAATTCGCGG CCGCC CTA AAC AGG ACT GAC CCC AAC ATC AAG TTG GTC TTA<br>Leu Asn Arg Thr Asp Pro Asn Ile Lys Leu Val Leu                | 51  |
| 1 5 10                                                                                                                             |     |
| GAT GAT TGC TGG GCA ACA TCC ACC ATG GAC CCA GCC TCT CTC CCT CAG<br>Asp Asp Cys Trp Ala Thr Ser Thr Met Asp Pro Ala Ser Leu Pro Gln | 99  |
| 15 20 25                                                                                                                           |     |
| TIGG AAT ATT ATC GTG GAT GGC TGT GAA TAC AAC TTG GAC AAC CAC AGA                                                                   | 147 |
| Trp Asn Ile Ile Val Asp Gly Cys Glu Tyr Asn Leu Asp Asn His Arg 30 35 40                                                           |     |
| ACC ACC TTC CAT CCG GTT GGC TCC TCG GTG GCC TAT CCT AAT CAC TAC                                                                    | 195 |
| Thr Thr Phe His Pro Val Gly Ser Ser Val Ala Tyr Pro Asn His Tyr 45 50 55 60                                                        | ••  |
| CAG AGG TTT GCT GTG AAG ACC TTT GCC TTT GTG TCA GAG GAC CCG GCG                                                                    | 243 |
| Gln Arg Phe Ala Val Lys Thr Phe Ala Phe Val Ser Glu Asp Pro Ala 65 70 75                                                           |     |
| TTC TCT CAC TTG GTC TAC TTC CAC TGC AGC GCC TTA ATC TGC GAT CAA                                                                    | 291 |
| Phe Ser His Leu Val Tyr Phe His Cys Ser Ala Leu Ile Cys Asp Gln 80 85                                                              |     |
| CTT TCT TCT AAC TTC CCC CTG TGT TCT GCG TCT TGC CTT GTG TCA TCC                                                                    | 339 |
| Leu Ser Ser Asn Phe Pro Leu Cys Ser Ala Ser Cys Leu Val Ser Ser<br>95 100 105                                                      | 339 |
| AGA AGC AGG CGA GCC ACA GGG GCC ACT GAG GAA GAG AAG ATG ATA GTG                                                                    | 205 |
| 110 Ser Arg Arg Ala Thr Gly Ala Thr Glu Glu Lys Met Ile Val                                                                        | 387 |
| AGT CTC CCG GGC CCC ATC CTC CTG TTG TCA GAT GGC TCT TCA TTC AGA                                                                    |     |
| Led Pro Gly Pro lie Leu Leu Ser Asp Gly Ser Ser Phe Arg                                                                            | 435 |
| 135 140                                                                                                                            |     |
| AT GCT GTG GAT TCT AAA GGG CAT GGG ACT TCT GGA TAT GCT GCT TTT SP Ala Val Asp Ser Lys Gly His Gly Thr Ser Gly Tyr Ala Ala Phe      | 483 |
| 145 150 155                                                                                                                        |     |
| AA ACT ATG GTT GCT GTA GTT GCC TTA GCA GGT GTT GTG GCA ACT CTA<br>ys Thr Met Val Ala Val Val Ala Leu Ala Gly Val Val Ala Thr Leu   | 531 |
| 160 165 170                                                                                                                        |     |

- 108 -

579

639 643

| AGC<br>Ser    | ren 1        | TC AC<br>le Se<br>.75 | GC T       | AC C<br>yr L      | TG Co       | rg L       | AG A<br>ys I<br>80 | AAA A<br>Jys A | GA A<br>rg I | TC A<br>le T | hr V       | TG C<br>al L<br>85 | TA A<br>eu A | AC CAC<br>sn His |
|---------------|--------------|-----------------------|------------|-------------------|-------------|------------|--------------------|----------------|--------------|--------------|------------|--------------------|--------------|------------------|
| TAAT          | TGGAT        | T TTC                 | CAAT       | AAAA              | TGT         | GGAA       | GTA                | AAAA           | AAAA         | AA A         | AAAA       | AAAA               | A GC         | GGCCGCGA         |
| ATTC          |              |                       |            |                   |             |            |                    |                |              |              |            |                    |              |                  |
| (2)           | INFOR        | MATIC                 | N FC       | OR SE             | Q II        | ОИО        | :20:               |                |              |              |            |                    |              |                  |
|               | (i           | (                     |            | ENGT              | H: 1<br>ami | .88 a      | amin<br>acid       | CS:<br>o aci   | ids          |              |            |                    |              |                  |
|               | (ii)         | MOL                   | ECUL       | E TY              | PE:         | prot       | ein                |                |              |              |            |                    |              |                  |
|               |              | SEQ                   |            |                   |             |            |                    |                |              |              |            |                    |              |                  |
| Leu A         | sn Ar        | g Th                  | r As       | p Pro             | o As        | n Il       | e Ly               | s Le<br>1      | u Va<br>O    | l Le         | u As       | p As               | р Су<br>1    | s Trp<br>5       |
| Ala T         | hr Se        | r Thi                 | r Met      | t As <sub>l</sub> | o Pro       | o Al       | a Se               | r Le           | u Pr         | o Gl         | n Tr       | p Ası              |              | e Ile            |
| Val A         | ab GJ        | у Су <u>я</u><br>5    | Glu        | туз               | . Asr       | Le<br>4    | u As<br>O          | p As           | n Hi         | s Ar         | Th:        |                    | r Phe        | ≥ His            |
| Pro V         | al G1;<br>50 | y Ser                 | Ser        | · Val             | Ala<br>55   | Ту         | r Pr               | o Ası          | n His        | 3 Ty:        |            | n Arg              | g Phe        | a Ala            |
| Val L         | ys Th        | r Phe                 | Ala        | Phe<br>70         | Val         | . Se       | c Gl               | u Asp          | Pro<br>75    | Ala          | Phe        | e Ser              | His          | Leu<br>80        |
| Val Ty        | r Phe        | His                   | Cys<br>85  | Ser               | Ala         | Leu        | 116                | e Cys          | Asp          | Gln          | Leu        | Ser                | Ser<br>95    |                  |
| Phe Pr        | o Leu        | Cys<br>100            | Ser        | Ala               | Ser         | Cys        | Le:<br>105         | val            | Ser          | Ser          | Arg        | Ser<br>110         |              | Arg              |
| Ala Th        | r Gly<br>115 | Ala                   | Thr        | Glu               | Glu         | Glu<br>120 | Lys                | Met            | Ile          | Val          | Ser<br>125 | Leu                | Pro          | Gly              |
| Pro Il<br>13  | e Leu<br>O   | Leu                   | Leu        | Ser               | Asp<br>135  | Gly        | Ser                | Ser            | Phe          | Arg<br>140   | Aap        | Ala                | Val          | Asp              |
| Ser Ly<br>145 | в Gly        | His                   | Gly        | Thr<br>150        | Ser         | Gly        | Tyr                | Ala            | Ala<br>155   | Phe          | Lys        | Thr                | Met          | Val<br>160       |
| Ala Va        | l Val        | Ala                   | Leu<br>165 | Ala               | Gly         | Val        | Val                | Ala<br>170     | Thr          | Leu          | Ser        | Leu                | Ile<br>175   | Ser              |
| Tyr Le        | Arg          | Lys                   | Lys        | Arg               | Ile         | Thr        | Val                | Leu            | Asn          | His          |            |                    |              |                  |

# (2) INFORMATION FOR SEQ ID NO:21:

180

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1029 base pairs
    (B) TYPE: nucleic acid
    (C) STRANDEDNESS: double
    (D) TOPOLOGY: linear

185

- (ii) MOLECULE TYPE: cDNA

- 109 -

| ( . | iii | .) HY | POT | HET | ICA | L: | NO |
|-----|-----|-------|-----|-----|-----|----|----|
|-----|-----|-------|-----|-----|-----|----|----|

### (iv) ANTI-SENSE: NO

- (vi) ORIGINAL SOURCE:

  (A) ORGANISM: Bos taurus

  (D) DEVELOPMENTAL STAGE: Juvenile

  (E) HAPLOTYPE: Diploidy

  (F) TISSUE TYPE: Ovary

  (G) CELL TYPE: Oocyte

### (ix) FEATURE:

- (A) NAME/KEY: CDS
  (B) LOCATION: 2..976

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

|            | 1          | Ser        | vai    | CAC<br>His        | 5<br>Leu   | Ala            | Phe         | Arg        | Asn               | Asp<br>10  | Ser        | Glu        | Cys        | Lys               | Pro<br>15          |   | 46  |
|------------|------------|------------|--------|-------------------|------------|----------------|-------------|------------|-------------------|------------|------------|------------|------------|-------------------|--------------------|---|-----|
| •          | T ME       | ec A       | Let II | 2                 | o<br>O     | r Ph           | e Va        | ıl Le      | eu Ph<br>2        | e Ar       | g Pł       | ne Pi      | co Pi      | ne Th<br>3        | T ACT<br>or Thr    | , | 94  |
| O,         | 3 61       | .y 11.     | 3      | 5<br>5            | s GI       | n 11           | e Th        | r G1<br>4  | y Ly              | s Gl       | n Al       | a Va       | 11 Ty<br>4 | r Gl              | A AAT<br>u Asn     |   | 142 |
| <b>J</b> 1 | u De       | 5          | 0      | a Al              | a Ar       | g Ası          | 9 Va.<br>5: | l Ar       | g Th              | r Tr       | o Se       | r Ar<br>6  | g G1<br>0  | y Se              | T ATT<br>r Ile     |   | 190 |
|            | 6          | 5          | p se   |                   | . Pne      | 70             | )<br>L Ter  | ı Gli      | n va.             | l Ser      | 7 Cy       | s Se<br>5  | г Ту       | r Se              | T GCA<br>r Ala     |   | 238 |
| 80         | )          | . sei      | C Ala  | a Leu             | 85         | val            | Asn         | ı Val      | l Glr             | 90         | Let        | ı Th       | r Lei      | ı Pro             | A CCA<br>Pro<br>95 |   | 286 |
| 710        | , rec      | Pro        | GIU    | 100               | reu        | Pro            | Gly         | Asn        | 105               | Thr        | Leu        | Glu        | ı Leu      | Lys<br>110        |                    |   | 334 |
|            | Буз        | nsp        | 115    | Pro               | Tyr        | Arg            | Ser         | Tyr<br>120 | Tyr               | Thr        | Ala        | Ser        | Asp<br>125 | Tyr               | CCA<br>Pro         |   | 382 |
| 441        | Vai        | 130        | rea    | CTT<br>Leu        | Arg        | Asp            | Pro<br>135  | Ile        | Tyr               | Val        | Glu        | Val<br>140 | Ser        | Ile               | His                |   | 430 |
| GIII       | 145        | Inr        | Asp    | CCC<br>Pro        | ser        | 150            | GIu         | Leu        | Arg               | Leu        | Asp<br>155 | Gln        | Cys        | Trp               | Ala                |   | 478 |
| 160        | PIO        | GIY        | Ala    | GAT<br>Asp        | 165        | Leu            | Leu         | Gln        | Pro               | Gln<br>170 | Trp        | Pro        | Leu        | Leu               | Val<br>175         |   | 526 |
| AAT<br>Asn | GGG<br>Gly | TGC<br>Cys | Pro    | TAC<br>Tyr<br>180 | ACA<br>Thr | GGA (<br>Gly ) | GAC<br>Asp  | Asn        | TAT<br>Tyr<br>185 | CAG :      | ACA<br>Thr | AAA<br>Lys | CTG<br>Leu | ATC<br>Ile<br>190 | CCT<br>Pro         |   | 574 |

- 110 -

| GTC<br>Val        | TG(               | G GA              | A GCC<br>1 Ala<br>195 | ı Ser             | GAC<br>Asp        | CTG<br>Leu            | Pro               | Phe 200           | ? Pro             | TC1               | CAC<br>His        | TAC<br>Tyr        | CAG<br>Gln<br>205 | Arg               | TTC<br>Phe        | 622  |
|-------------------|-------------------|-------------------|-----------------------|-------------------|-------------------|-----------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| AGC<br>Ser        | ATT<br>Ile        | TCC<br>Ser<br>210 | Thr                   | TTC<br>Phe        | AGC<br>Ser        | TTT<br>Phe            | GTG<br>Val<br>215 | GAC<br>Asp        | TCA<br>Ser        | GTG<br>Val        | GCA<br>Ala        | AAG<br>Lys<br>220 | Arg               | GCC<br>Ala        | CTC<br>Leu        | 670  |
| AAG<br>Lys        | GGA<br>Gly<br>225 | Pro               | GTG<br>Val            | TAT<br>Tyr        | CTG<br>Leu        | CAC<br>His<br>230     | TGC<br>Cys        | AGT<br>Ser        | GCA<br>Ala        | TCG<br>Ser        | GTC<br>Val<br>235 | TGC<br>Cys        | CAG<br>Gln        | CCT<br>Pro        | GCC<br>Ala        | 718  |
| GGG<br>Gly<br>240 | ACA<br>Thr        | CCA<br>Pro        | TCC<br>Ser            | TGT<br>Cys        | GTG<br>Val<br>245 | ACA<br>Thr            | CTC<br>Leu        | TGT<br>Cys        | CCT<br>Pro        | GCC<br>Ala<br>250 | AGA<br>Arg        | CGA<br>Arg        | AGA<br>Arg        | AGA<br>Arg        | AGC<br>Ser<br>255 | 766  |
| TCT<br>Ser        | Asp               | ATC<br>Ile        | CAT<br>His            | TTT<br>Phe<br>260 | CAG<br>Gln        | AAC<br>Asn            | AAA<br>Lys        | ACG<br>Thr        | GCT<br>Ala<br>265 | AGC<br>Ser        | ATT<br>Ile        | TCT<br>Ser        | AGC<br>Ser        | AAG<br>Lys<br>270 | GGT<br>Gly        | 814  |
| CCC<br>Pro        | TTG<br>Leu        | ATT<br>Ile        | CTA<br>Leu<br>275     | CTC<br>Leu        | CAA<br>Gln        | GCC<br>Ala            | ATT<br>Ile        | CAA<br>Gln<br>280 | GAC<br>Asp        | TCT<br>Ser        | TCA<br>Ser        | GAA<br>Glu        | AAG<br>Lys<br>285 | CTC<br>Leu        | CAC<br>His        | 862  |
| AAA<br>Lys        | TAC<br>Tyr        | TCA<br>Ser<br>290 | AGG<br>Arg            | TCT<br>Ser        | CCT<br>Pro        | Val .                 | GAC<br>Asp<br>295 | TCT<br>Ser        | CAA<br>Gln        | GCT<br>Ala        | Leu               | TGG<br>Trp<br>300 | GTG<br>Val        | GCT<br>Ala        | GGC<br>Gly        | 910  |
| Leu               | TCT<br>Ser<br>305 | GGA<br>Gly        | ATC<br>Ile            | TTA .<br>Leu      | Ile               | GTT (<br>Val (<br>310 | GGA (<br>Gly )    | GCC<br>Ala        | TTG<br>Leu        | Phe               | ATG Met :         | TCC Ser           | TAC (             | CTG (<br>Leu )    | GCC<br>Ala        | 958  |
| lle 2<br>320      | AGG<br>Arg        | AAA<br>Lys        | TGG /                 | AGA '             | rgag'             | rtgc:                 | IC A              | GCCC.             | AAAT              | G TG              | TTAA:             | AAA               | ACC               | AGAT'             | rgc               | 1013 |
| GCC               | GCC               | GC G              | AATTO                 | 2                 |                   |                       |                   |                   |                   |                   |                   |                   |                   |                   |                   | 1029 |

# (2) INFORMATION FOR SEQ ID NO:22:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 324 amino acids
    (B) TYPE: amino acid
    (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

Asn Ser Val His Leu Ala Phe Arg Asn Asp Ser Glu Cys Lys Pro Val

Met Ala Thr His Thr Phe Val Leu Phe Arg Phe Pro Phe Thr Thr Cys 25

Gly Thr Thr Lys Gln Ile Thr Gly Lys Gln Ala Val Tyr Glu Asn Glu 35 40 45

Leu Val Ala Ala Arg Asp Val Arg Thr Trp Ser Arg Gly Ser Ile Thr

Arg Asp Ser Thr Phe Arg Leu Gln Val Ser Cys Ser Tyr Ser Ala Ser 65 70 75 80

Ser Ser Ala Leu Pro Val Asn Val Gln Val Leu Thr Leu Pro Pro

- 111 -

Leu Pro Glu Thr Leu Pro Gly Asn Leu Thr Leu Glu Leu Lys Ile Ala 100 105 110

Lys Asp Lys Pro Tyr Arg Ser Tyr Tyr Thr Ala Ser Asp Tyr Pro Val 115 120 125

Val Lys Leu Leu Arg Asp Pro Ile Tyr Val Glu Val Ser Ile His Gln
130 135 140

Arg Thr Asp Pro Ser Leu Glu Leu Arg Leu Asp Gln Cys Trp Ala Thr 145 150 155 160

Pro Gly Ala Asp Ala Leu Leu Gln Pro Gln Trp Pro Leu Leu Val Asn 165 170 175

Gly Cys Pro Tyr Thr Gly Asp Asn Tyr Gln Thr Lys Leu Ile Pro Val 180 185 190

Trp Glu Ala Ser Asp Leu Pro Phe Pro Ser His Tyr Gln Arg Phe Ser 195 200 205

Ile Ser Thr Phe Ser Phe Val Asp Ser Val Ala Lys Arg Ala Leu Lys 210 215 220

Gly Pro Val Tyr Leu His Cys Ser Ala Ser Val Cys Gln Pro Ala Gly
225 230 235 240

Thr Pro Ser Cys Val Thr Leu Cys Pro Ala Arg Arg Arg Arg Ser Ser 245 250 255

Asp Ile His Phe Gln Asn Lys Thr Ala Ser Ile Ser Ser Lys Gly Pro 260 265 270

Leu Ile Leu Leu Gln Ala Ile Gln Asp Ser Ser Glu Lys Leu His Lys 275 280 285

Tyr Ser Arg Ser Pro Val Asp Ser Gln Ala Leu Trp Val Ala Gly Leu 290 295 300

Ser Gly Ile Leu Ile Val Gly Ala Leu Phe Met Ser Tyr Leu Ala Ile 305 310 315 320

Arg Lys Trp Arg

### (2) INFORMATION FOR SEQ ID NO:23:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1457 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: double
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
  - (A) ORGANISM: Bos taurus
  - (D) DEVELOPMENTAL STAGE: Juvenile
  - (E) HAPLOTYPE: Diploidy
  - (F) TISSUE TYPE: Ovary
  - (G) CELL TYPE: Oocyte

- 112 -

(ix) FEATURE:
(A) NAME/KEY: CDS
(B) LOCATION: 149..1411

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

| CCCGGGCCTC CCTACTCTCA GGAAGGCACC CGCTCACCTC CTCAAGTTCT CGATCTCGGC                                                                                     |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|                                                                                                                                                       | 60  |
| CGGGATGCTC TGAAGCTGGT TGCCGCCGAG GCTGAGGGTC TGCAGCGGCG CAGTCCAGCA                                                                                     | 120 |
| GCGAGGTGGG AGTGGCTTCG TGGGCACC ATG GGG CCG TGC TCT AGG CTG TTC  Met Gly Pro Cys Ser Arg Leu Phe  1 5                                                  | 172 |
| GTC TGC TTT CTG CTC TGG GGA AGC ACA GAG CTC TGC AGC CCC CAG CCC Val Cys Phe Leu Leu Trp Gly Ser Thr Glu Leu Cys Ser Pro Gln Pro  10 15 20             | 220 |
| TTC TGG GAT GAT GAA ACC GAG CGC TTC AGG CCA TCA AAG CCG CCC GCC Phe Trp Asp Asp Glu Thr Glu Arg Phe Arg Pro Ser Lys Pro Pro Ala 25 30 35 40           | 268 |
| GTG ATG GTG GAG TGT CAG GAG GCC CAG CTG GTG GTC ACA GTC GAC AAA<br>Val Met Val Glu Cys Gln Glu Ala Gln Leu Val Val Thr Val Asp Lys<br>45 50 55        | 316 |
| GAC CTT TTC GGC ACA GGG AAG CTC ATC CGG CCT GCG GAC CTC ACC CTG Asp Leu Phe Gly Thr Gly Lys Leu Ile Arg Pro Ala Asp Leu Thr Leu 60 65 70              | 364 |
| GGC CCC GAC AAC TGT GAG CCG CTG GCC TCC GCG GAC ACG GAT GGC GTG<br>Gly Pro Asp Asn Cys Glu Pro Leu Ala Ser Ala Asp Thr Asp Gly Val<br>75 80 85        | 412 |
| GTT AGG TTT GCG GTC GGG CTG CAC GAG TGT GGC AAC ATC TTG CAG GTG<br>Val Arg Phe Ala Val Gly Leu His Glu Cys Gly Asn Ile Leu Gln Val<br>95 100          | 460 |
| ACC GAC AAT GCC CTG GTG TAC AGC ACC TTC CTG CTC CAC AAC CCC CGC Thr Asp Asn Ala Leu Val Tyr Ser Thr Phe Leu Leu His Asn Pro Arg 115 120               | 508 |
| CCT GCA GGA AAC CTG TCC ATC CTG AGG ACT AAC CGC GCA GAG GTC CCC<br>Pro Ala Gly Asn Leu Ser Ile Leu Arg Thr Asn Arg Ala Glu Val Pro<br>125 130 135     | 556 |
| ATC GAG TGC CAC TAC CCC AGG CAG GGC AAT GTG AGT AGC TGG GCC ATC Ile Glu Cys His Tyr Pro Arg Gln Gly Asn Val Ser Ser Trp Ala Ile 140 145               | 604 |
| CAG CCC ACC TGG GTG CCA TTC AGG ACC ACA GTG TTC TCG GAG GAG AAG<br>Gln Pro Thr Trp Val Pro Phe Arg Thr Thr Val Phe Ser Glu Glu Lys<br>155 160 165     | 652 |
| CTG GTT TTC TCT CTG CGC CTG ATG GAG GAG AAC TGG AGC GCC GAG AAG<br>Leu Val Phe Ser Leu Arg Leu Met Glu Glu Asn Trp Ser Ala Glu Lys<br>170 180         | 700 |
| ATG ACG CCC ACC TTC CAG CTG GGA GAC AGA GCC CAC CTC CAG GCC CAA<br>Met Thr Pro Thr Phe Gln Leu Gly Asp Arg Ala His Leu Gln Ala Gln<br>185 190 195 200 | 748 |
| GTG CAC ACT GGC AGC CAC GTG CCC CTG CGG CTG TTC GTG GAC CAC TGC Val His Thr Gly Ser His Val Pro Leu Arg Leu Phe Val Asp His Cys 205 210 215           | 796 |

- 113 -

| GTG G<br>Val A            | CC AG<br>la Se          | C CTG<br>r Leu<br>220 | Thr                   | CCA<br>Pro            | GAC<br>Asp            | TGG                | S AGO<br>Ser<br>225  | r Th              | C TC<br>r Se          | C CC<br>r Pr      | T TAC                 | C CAC<br>His<br>230   | Th                | C ATC             | : | 844  |
|---------------------------|-------------------------|-----------------------|-----------------------|-----------------------|-----------------------|--------------------|----------------------|-------------------|-----------------------|-------------------|-----------------------|-----------------------|-------------------|-------------------|---|------|
| GTG G<br>Val A            | AC TTO<br>SP Pho<br>23! | s HIR                 | GGT                   | TGT<br>Cys            | CTC<br>Leu            | GTC<br>Val<br>240  | Ası                  | GG<br>Gl          | T CT                  | C AC<br>u Th      | C GAT                 | ) Ala                 | TC:<br>Se:        | c TCT<br>r Ser    |   | 892  |
| GCT TT<br>Ala Pi<br>25    | TC AAM<br>ne Lys<br>50  | A GCA<br>B Ala        | CCC<br>Pro            | AGA<br>Arg            | CCC<br>Pro<br>255     | AGA<br>Arg         | Pro                  | GA(               | G ATO                 | C CT<br>E Le      | u Glr                 | TTC<br>Phe            | AC!<br>Thi        | A GTG<br>Val      |   | 940  |
| GAT G1<br>Asp Va<br>265   | rg TTC                  | CGT<br>Arg            | TTT<br>Phe            | GCT<br>Ala<br>270     | AAT<br>Asn            | GAC<br>Asp         | TCC                  | AGA               | A AAC<br>J Asr<br>275 | Met               | G ATA<br>t Ile        | TAT                   | ATO               | ACC<br>Thr<br>280 |   | 988  |
| TGC CA<br>Cys Hi          | C CTG                   | AAG<br>Lys            | GTC<br>Val<br>285     | ACT<br>Thr            | CCG<br>Pro            | GTT<br>Val         | GAC<br>Asp           | CGA<br>Arg<br>290 | , Val                 | CCC<br>Pro        | G GAC                 | CAA<br>Gln            | CTA<br>Leu<br>295 | Asn               |   | 1036 |
| AAA GC<br>Lys Al          | C TGT<br>a Cys          | TCC<br>Ser<br>300     | TTC<br>Phe            | AGC<br>Ser            | AAG<br>Lys            | TCC<br>Ser         | TCC<br>Ser<br>305    | AAC<br>Asn        | AGG<br>Arg            | TGG               | TCC<br>Ser            | CCG<br>Pro<br>310     | GTT<br>Val        | GAA<br>Glu        |   | 1084 |
| GGC CC<br>Gly Pro         | C ACT<br>o Thr<br>315   | GAC<br>Asp            | ATC (                 | TGT<br>Cys            | Arg (                 | TGC<br>Cys<br>320  | TGT<br>Cys           | AGC<br>Ser        | AAG<br>Lys            | GGG<br>Gly        | CGC<br>Arg<br>325     | TGT<br>Cys            | GGC<br>Gly        | ATT<br>Ile        |   | 1132 |
| TCA GGG<br>Ser Gly<br>330 | y Arg                   | TCC  <br>Ser          | ATG 1<br>Met 1        | Arg I                 | CTG 7<br>Leu S<br>335 | rcc<br>Ser 1       | CAC<br>His           | CGG<br>Arg        | GAG<br>Glu            | GGC<br>Gly<br>340 | AGG<br>Arg            | CCT<br>Pro            | GTT<br>Val        | CCC<br>Pro        |   | 1180 |
| CGA AG1<br>Arg Ser<br>345 | CGC<br>Arg              | AGG (<br>Arg H        | ils V                 | STG P<br>Val T<br>S50 | CG C                  | AG (               | GAA<br>Glu           | GCA<br>Ala        | GAT<br>Asp<br>355     | GTC<br>Val        | ACC<br>Thr            | GTG<br>Val            | GGG<br>Gly        | CCG<br>Pro<br>360 |   | 1228 |
| TTG ATC<br>Leu Ile        | TTC<br>Phe              | ren b                 | AGG A<br>Arg L<br>865 | AG A<br>ys M          | TG A<br>et A          | AT (               | Asp .                | CGT<br>Arg<br>370 | GCC<br>Gly            | GTG<br>Val        | GAA<br>Glu            | Gly 1                 | CCC<br>Pro<br>375 | ACC<br>Thr        |   | 1276 |
| TCC TCT<br>Ser Ser        | Pro                     | CCT C<br>Pro L<br>380 | TG G<br>eu V          | TG A<br>al M          | TG C<br>et L          | eu G               | GC 1<br>31y 1<br>185 | TTA<br>Leu        | GGC<br>Gly            | CTG<br>Leu        | Ala :                 | ACT (<br>Thr \<br>390 | TG .<br>/al       | ATG<br>Met        |   | 1324 |
| ACC TTG<br>Thr Leu        | ACT (Thr )              | CTG G<br>Leu A        | CT G                  | CC A                  | le V                  | rc c<br>al L<br>DO | TG (                 | GGT (             | CTC /                 | Thr               | GGG #<br>Gly #<br>405 | AGG C                 | TT (              | CGG<br>Arg        | : | 1372 |
| GCT GCT<br>Ala Ala<br>410 | TCT (                   | CAC CO                | CC G?<br>ro Va        | rg ro<br>al Cy<br>41  | s Pr                  | CT G               | TG T<br>al S         | CT (<br>er /      | Ala S                 | rcc<br>Ser (      | CAA T<br>Gln          | 'AAAA                 | GAAG              | <b>GA</b>         |   | 1421 |
| AAGTGAAA                  | AA AA                   | LAAAA                 | AAAA                  | AAGO                  | GGCC                  | GC (               | GAAT                 | TC                |                       |                   |                       |                       |                   |                   | 1 | 457  |

# (2) INFORMATION FOR SEQ ID NO:24:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 421 amino acids
    (B) TYPE: amino acid
    (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

Met Gly Pro Cys Ser Arg Leu Phe Val Cys Phe Leu Leu Trp Gly Ser

- 114 -

|            | 1         |            |            |          |            | 5          |           |            |      |          |         |     | ΤÒ       |            |          |            |          |     |          | 15     |           |
|------------|-----------|------------|------------|----------|------------|------------|-----------|------------|------|----------|---------|-----|----------|------------|----------|------------|----------|-----|----------|--------|-----------|
| T          | hr (      | ilu        | Le         | ı Cy     | ys S<br>20 | er         | Pro       | Gl         | n P  | ro       | Ph<br>2 |     | 'rp      | As         | p A      | sp G       | lu       |     | r G<br>O | lu     | Arg       |
| Pl         | he A      | ırg        | Pro<br>35  | S S S    | er L       | ys :       | Pro       | Pr         |      | 1a<br>40 | Va      | 1 M | et       | Va.        | 1 G      | lu C       | ys<br>45 | Gl  | n G      | lu     | Ala       |
| G)         | ln L      | eu<br>50   | Val        | . Va     | l T        | hr 1       | /al       | As;        |      | ys       | As      | рL  | eu       | Phe        |          | ly T<br>50 | hr       | G1  | y L      | /s     | Leu       |
| 11         | le A      | rg         | Pro        | Al       | a As       | sp I       | Jeu<br>70 | Th         | r Le | eu       | G1      | y P | ro       | Asp<br>75  |          | n C        | ys       | Gl  | u Pi     | 0      | Leu<br>80 |
| Al         | a S       | er         | Ala        | As       | p Ti       | nr A<br>35 | sp        | Gly        | y Va | al       | Val     |     | rg<br>90 | Phe        | Al       | a V        | al       | Gly |          | 5<br>5 | His       |
| Gl         | u C       | уs         | Gly        | As<br>10 | n Il<br>O  | e L        | .eu       | Glr        | n Va | 1        | Th:     |     | sp.      | Asn        | Al       | a Le       |          | Val |          | r      | Ser       |
| Th         | r Pl      | ne :       | Leu<br>115 | Le       | u Hi       | s A        | .sn       | Pro        | 12   | g        | Pro     | A]  | a (      | Gly        | As       | n Le       |          | Ser | 11       | e 1    | Leu       |
| Ar         | g Tl      | hr 1<br>30 | Asn        | Ar       | g Al       | a G        |           | Val<br>135 |      | 0        | Ile     | G1  | .u (     | Cys        | Hi<br>14 |            | r :      | Pro | Ar       | g (    | Sln       |
| G1:<br>14: | y As<br>5 | in (       | Val        | Sei      | : Se       | r T        | rp<br>50  | Ala        | 11   | e (      | Gln     | Pr  |          | Thr<br>155 | Tr       | p Va       | 1 1      | Pro | Ph       |        | rg<br>.60 |
|            |           |            |            |          | Se.<br>16  | 5          |           |            |      |          |         | 17  | 0        |            |          |            |          |     | 17       | 5      |           |
|            |           |            |            | 180      |            |            |           |            |      | 1        | 185     |     |          |            |          |            | 1        | 190 |          |        |           |
|            |           | 1          | .95        |          | Let        |            |           |            | 200  | )        |         |     |          |            |          | 20         | 5        |     |          |        | `         |
|            | 21        | 0          |            |          | Va]        |            | 2         | 215        |      |          |         |     |          |            | 220      |            |          |     | _        |        | •         |
| 225        |           |            |            |          | Tyr        | 23         | 0         |            |      |          |         |     | 2.       | 35         |          |            |          |     |          | 24     | 10        |
|            |           |            |            |          | Asp<br>245 |            |           |            |      |          |         | 250 | 1        |            |          |            |          |     | 255      |        | _         |
|            |           |            | •          | 260      | Gln        |            |           |            |      | 2        | 65      |     |          |            |          |            | 2.       | 70  |          |        |           |
|            |           | 27         | 75         |          | Ile        |            |           |            | 280  |          |         |     |          |            |          | 285        |          |     |          |        |           |
| Asp        | 290       | l          |            |          |            |            | 29        | 95         |      |          |         |     |          | 3          | 300      |            |          |     |          |        |           |
| Ser<br>305 |           |            |            |          |            | 310        | )         |            |      |          |         |     | 31       | 5          |          |            |          |     | _        | 32     | 0         |
| Cys        |           |            |            |          | 325        |            |           |            |      |          | 3       | 30  |          |            |          |            |          | 3   | 335      |        |           |
| His        |           |            | 3          | 40       |            |            |           |            |      | 34       | 5       |     |          |            |          |            | 35       | 0   |          |        |           |
| Glu .      | Ala       | As;        | p Va<br>5  | al :     | Thr        | Val        | Gl        | y P        | ro   | Le       | u I     | le  | Phe      | e L        | eu .     | Arg        | Ly       | s M | let      | Ası    | נ         |

| - 115 -                                                                                                                           |     |
|-----------------------------------------------------------------------------------------------------------------------------------|-----|
| Asp Arg Gly Val Glu Gly Pro Thr Ser Ser Pro Pro Leu Val Met Leu<br>370 375 380                                                    |     |
| Gly Leu Gly Leu Ala Thr Val Met Thr Leu Thr Leu Ala Ala Ile Val<br>385 390 395 400                                                |     |
| Leu Gly Leu Thr Gly Arg Leu Arg Ala Ala Ser His Pro Val Cys Pro<br>405 410 415                                                    |     |
| Val Ser Ala Ser Gln<br>420                                                                                                        |     |
| (2) INFORMATION FOR SEQ ID NO:25:                                                                                                 |     |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 125 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear |     |
| (ii) MOLECULE TYPE: cDNA                                                                                                          |     |
|                                                                                                                                   |     |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:                                                                                          |     |
| AGTTCGTGCT TATCTGAACA TGTCTTGAGG GATTAGTATG TGTGCTCATT TGGGTTCTTT                                                                 | 60  |
| CCGCTGTATG CTAGGCGTAT CTAGATGCAT TAGCTTGTTA ACACCTCATG TGGAGTAAAA                                                                 | 120 |
| GATGT                                                                                                                             | 125 |
| (2) INFORMATION FOR SEQ ID NO:26:                                                                                                 |     |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 111 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear |     |
| (ii) MOLECULE TYPE: cDNA                                                                                                          |     |
|                                                                                                                                   |     |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:                                                                                          |     |
| CAGGCGTAGG CGTGGACTGA AGTTCAAAGC CATGCGCCCG TTCTGATAGC ATACGTTTGA                                                                 | 60  |
| AATGTCATTG TAGTTGCATG GCTGTATAAG CCAGTCTCAT AGATAAGGGA A                                                                          | 111 |
| (2) INFORMATION FOR SEQ ID NO:27:                                                                                                 |     |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 96 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear  |     |
| (ii) MOLECULE TYPE: cDNA                                                                                                          |     |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:                                                                                          |     |
| GCGGTCGGTC ATGTGATGCT GCGTATAGTA CGATTTTGAA TGCATTATGC GAAATTATTC                                                                 | 60  |
| TAACGACCCG CGATATGGAG GTTGGATTAA GTTACA                                                                                           | 96  |
|                                                                                                                                   |     |

- 116 -

| (2) INFORMATION FOR SEQ ID NO:28:                                                                                                                                                    |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 19 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul> |    |
| (ii) MOLECULE TYPE: cDNA                                                                                                                                                             |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:                                                                                                                                             |    |
| ATGGARAGRT GYCAMGARG                                                                                                                                                                 | 19 |
| (2) INFORMATION FOR SEQ ID NO:29:                                                                                                                                                    |    |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 24 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear                                                     |    |
| (ii) MOLECULE TYPE: cDNA                                                                                                                                                             |    |
|                                                                                                                                                                                      |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:                                                                                                                                             |    |
| GATCTAAGGA AGATCTATGG ATCC                                                                                                                                                           | 24 |
| (2) INFORMATION FOR SEQ ID NO:30:                                                                                                                                                    |    |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 24 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear                                                     |    |
| (ii) MOLECULE TYPE: cDNA                                                                                                                                                             |    |
|                                                                                                                                                                                      |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:                                                                                                                                             |    |
| GATCTAAGGA GGTTGTATGG ATCC                                                                                                                                                           | 24 |
| (2) INFORMATION FOR SEQ ID NO:31:                                                                                                                                                    |    |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 55 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear                                                     |    |
| (ii) MOLECULE TYPE: cDNA                                                                                                                                                             |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:                                                                                                                                             |    |
| GATCTATGAC CATGATTACG GATTCGCGTA GCCGTCGTCC TGCAGCGTCG CGACT                                                                                                                         | 55 |
| (2) INFORMATION FOR SEQ ID NO:32:                                                                                                                                                    |    |

(i) SEQUENCE CHARACTERISTICS:

WO 94/11019

- 117 -

| <ul><li>(A) LENGTH: 57 base pairs</li><li>(B) TYPE: nucleic acid</li><li>(C) STRANDEDNESS: single</li><li>(D) TOPOLOGY: linear</li></ul>                                             |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| (ii) MOLECULE TYPE: cDNA                                                                                                                                                             |     |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:                                                                                                                                             |     |
| GGGAAAACCC GGGCGTTACC CAACTTAATC GATTAGCAGC ACATCCCCCT TCGCCAG                                                                                                                       | 57  |
| (2) INFORMATION FOR SEQ ID NO:33:                                                                                                                                                    |     |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 54 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear                                                     |     |
| (ii) MOLECULE TYPE: cDNA                                                                                                                                                             |     |
| (vi) SPOURNCE DECORPORTOR OF THE CO.                                                                                                                                                 |     |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:                                                                                                                                             |     |
| TTTTCCCAGT CGCGCTGCAG AACGACGGCT AGCGAATCCG TAATCATGGT CATA                                                                                                                          | 54  |
| (2) INFORMATION FOR SEQ ID NO:34:                                                                                                                                                    |     |
| <ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 52 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul> |     |
| (ii) MOLECULE TYPE: cDNA                                                                                                                                                             |     |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:                                                                                                                                             |     |
| CTGGCCAAAG GGGGATGTGG CTGCTAATCG ATTAAGTTGG GTAACGCCCG GG                                                                                                                            | 52  |
| (2) INFORMATION FOR SEQ ID NO:35:                                                                                                                                                    |     |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 120 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: double  (D) TOPOLOGY: linear                                                    |     |
| (ii) MOLECULE TYPE: cDNA                                                                                                                                                             |     |
|                                                                                                                                                                                      |     |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:                                                                                                                                             |     |
| GATCTATGAC CATGATTACG GATTCGCTAG CCGTCGTTCT GCAGCGTCGC GACTGGGAAA                                                                                                                    | 60  |
| ATACTGGTAC TAATGCCTAA GCGATCGGCA GCAAGACGTC GGAGCGCTGAC CCTTTACCC                                                                                                                    | 120 |
| GGGCGTTACC CAACTTAATC GATTAGCAGC ACATCCCCCT TTCGCCAGTGG GCCCGCAAT                                                                                                                    | 180 |
| CCCTTGAATT AGCAAATCGT CGTGTAGGGG GAAAGCGGTC                                                                                                                                          | 120 |

- 118 -

| (2) INFORMATION FOR SEQ ID NO:36:                                                                                                                                                    |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 29 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul> |    |
| (ii) MOLECULE TYPE: cDNA                                                                                                                                                             |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:                                                                                                                                             |    |
| GCGAAGCTTC CGACACCATC GAACGGCGC                                                                                                                                                      | 29 |
| (2) INFORMATION FOR SEQ ID NO:37:                                                                                                                                                    |    |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 30 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear                                                     |    |
| (ii) MOLECULE TYPE: cDNA                                                                                                                                                             |    |
|                                                                                                                                                                                      |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:                                                                                                                                             |    |
| GCGCACAATG TGCCTAATGA GTGAGCTAAC                                                                                                                                                     | 30 |
| (2) INFORMATION FOR SEQ ID NO:38:                                                                                                                                                    |    |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 28 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear                                                     |    |
| (ii) MOLECULE TYPE: CDNA                                                                                                                                                             |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:                                                                                                                                             |    |
| CGCGGATCCG GACGAAGGCC AGCGCTTG                                                                                                                                                       | 28 |
| (2) INFORMATION FOR SEQ ID NO:39:                                                                                                                                                    |    |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 58 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear                                                     |    |
| (ii) MOLECULE TYPE: CDNA                                                                                                                                                             |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:                                                                                                                                             |    |
| GCGGTCGACT CATTAATGAT GATGATGATG ATGCGGGCTC GAGGTGGACC CTTCCACC                                                                                                                      | 58 |
| (2) INFORMATION FOR SEQ ID NO:40:                                                                                                                                                    |    |
| (i) SEQUENCE CHARACTERISTICS:                                                                                                                                                        |    |

- 119 -

| (A) | LENGTH: 1701 base pairs |
|-----|-------------------------|
| (B) | TYPE: nucleic acid      |
| (C) | STRANDEDNESS: single    |
| (D) | TOPOLOGY: linear        |
|     |                         |

### (ii) MOLECULE TYPE: cDNA

### (ix) FEATURE:

- (A) NAME/KEY: CDS (B) LOCATION: 1..1698

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

| met              | G TG<br>t Tr<br>l | p L               | TG<br>eu           | CTG<br>Leu       | Arg              | g Cy              | C G               | TT T<br>al L      | TG<br>eu            | CTG<br>Leu       | TG<br>Cy<br>1    | s Va              | rr 1              | CA<br>Ser      | TTA              | A TC              | r Le              | rT<br>≥u<br>l5 | GCT<br>Ala       | 48  |
|------------------|-------------------|-------------------|--------------------|------------------|------------------|-------------------|-------------------|-------------------|---------------------|------------------|------------------|-------------------|-------------------|----------------|------------------|-------------------|-------------------|----------------|------------------|-----|
| GTO<br>Val       | G AG<br>L Se      | T G               | GC (               | CAG<br>Gln<br>20 | CAT              | r AA<br>s Ly      | G Co              | CT G              | AG<br>lu            | GCA<br>Ala<br>25 | CC.<br>Pr        | A GA<br>O As      | T T<br>sp T       | 'AT<br>'yr     | TCC              | AG<br>Se:         | r Va              | G<br>1         | CTC<br>Leu       | 96  |
| CAC<br>His       | TG<br>Cy          | SG.               | GG (<br>ly 1<br>35 | ccg<br>Pro       | TGG<br>Trp       | AG<br>Se          | C TI<br>r Ph      | CC C              | AG 1<br>ln 1<br>40  | TTT<br>Phe       | GC:              | T GI<br>a Va      | A A<br>l A        | AC<br>sn       | CTC<br>Leu<br>45 | AA(<br>Ası        | C CA              | G              | GAG<br>Glu       | 144 |
| GCA<br>Ala       | ACC<br>Thi        | 5                 | er F               | Pro              | CCT<br>Pro       | GT.               | l Le              | A A:<br>u II      | ra c<br>le <i>a</i> | SCT<br>Ala       | TGC              | G GA<br>O As      | P A               | AC<br>sn<br>60 | CAA<br>Gln       | GG(<br>Gly        | CT<br>Le          | G<br>u :       | CTG<br>Leu       | 192 |
| CAC<br>His<br>65 | GIL               | CI<br>Le          | 'G C               | AG<br>ln         | AAT<br>Asn       | GAG<br>Asp<br>70  | e Se              | C GA              | C T                 | GT<br>Ys         | GGC<br>Gly       | AC<br>Th:         | r Tı              | GG /           | ATA<br>Ile       | AGA<br>Arg        | AA.<br>Ly:        | A (            | GGT<br>Gly<br>80 | 240 |
| CCA<br>Pro       | GGC<br>Gly        | AG<br>Se          | C T<br>r S         | cc (             | GTG<br>Val<br>85 | GT(               | TT<br>Le          | G GA<br>u Gl      | G G<br>u A          | CA<br>la         | ACC<br>Thr<br>90 | Tyı               | r Ac              | sc z           | AGC<br>Ser       | TGC<br>Cys        | TA:<br>Ty:        | : 1            | GTC<br>Val       | 288 |
| ACT<br>Thr       | GAG<br>Glu        | TG                | pν                 | rg z<br>al s     | AGT<br>Ser       | ATG<br>Met        | Thi               | C CA              | n T                 | GG<br>rp<br>05   | CCA<br>Pro       | GC                | AG<br>Ar          | A (            | CTG<br>Leu       | TGT<br>Cys<br>110 | GA#               | A G            | CG<br>la         | 336 |
| CCT<br>Pro       | CAT<br>His        | GC:<br>Ala<br>11! | a TI               | cc A             | ATC<br>[le       | CAG<br>Gln        | GCT<br>Ala        | GA<br>Asj<br>120  | p Pı                | cc (             | CAA<br>Gln       | GGC<br>Gly        | CT<br>Le          | u S            | er<br>25         | CTC<br>Leu        | CAG<br>Gln        | G<br>A         | AC<br>sp         | 384 |
| TCC<br>Ser       | CAC<br>His<br>130 | TAC               | II :               | C A              | TG<br>let        | CCA<br>Pro        | GTI<br>Val<br>135 | GI                | A GI<br>y Va        | TT (             | GAA<br>Glu       | GGA<br>Gly        | GC:<br>Al:<br>140 | a G            | GC (             | GCG<br>Ala        | GCT<br>Ala        | G<br>G         | AA<br>lu         | 432 |
| CAC His 1        | AAG<br>Lys        | GTG<br>Val        | GI<br>Va           | T A              | hr (             | GAG<br>Glu<br>150 | AGG<br>Arg        | AAG<br>Lys        | CT<br>Le            | G C<br>u I       | CTC<br>Leu       | AAG<br>Lys<br>155 | TG7<br>Cys        | r c            | CT /             | ATG<br>Met        | GAT<br>Asp        | L              | TT<br>⊇u<br>50   | 480 |
| CTA (            | GAT<br>Asp        | GCT<br>Ala        | Pr                 | O A              | AT A<br>sp 1     | ACT<br>Thr        | GAC<br>Asp        | TGG<br>Trp        | TG<br>Cy            | s A              | AC<br>sp<br>70   | TCC<br>Ser        | ATO               | C CC           | CA G             | la.               | CGG<br>Arg<br>175 | G#<br>As       | AC<br>Sp         | 528 |
| AGA (            | CTG<br>Leu        | CCA<br>Pro        | TG:<br>Cy:         | 5 A.             | CA C             | Pro               | TCA<br>Ser        | CCC<br>Pro        | AT<br>11:           | e S              | CT er            | CGA<br>Arg        | GGA<br>Gly        | GA<br>As       | p C              | GT (<br>ys (      | GAA<br>Glu        | GG<br>G1       | G<br>.y          | 576 |
| CTA G<br>Leu G   | TA                | TGT<br>Cys<br>195 | TG?<br>Cys         | T TA             | AT A             | GC<br>er          | TCT<br>Ser        | GAA<br>Glu<br>200 | GA0<br>Glu          | G Gʻ             | TG Z             | AAT<br>Asn        | TCC<br>Ser        | TG<br>Cy<br>20 | 's T             | AC :              | TAT<br>Tyr        | GG<br>G1       | A<br>Y           | 624 |
|                  |                   |                   |                    |                  |                  |                   |                   |                   |                     |                  |                  |                   |                   |                |                  |                   |                   |                |                  |     |

- 120 -

| Asn                       | ACT<br>Thr           | GTG #<br>Val 1             | ACC T              | TTG C<br>Leu H      | is C               | GT /<br>ys 1        | ACC<br>Thr         | CGA<br>Arg         | GAG<br>Glu         | GGC<br>Gly         | CAT<br>His            | Phe                   | TC1                   | ATT                | GCT<br>Ala        | 672          |
|---------------------------|----------------------|----------------------------|--------------------|---------------------|--------------------|---------------------|--------------------|--------------------|--------------------|--------------------|-----------------------|-----------------------|-----------------------|--------------------|-------------------|--------------|
| GTG<br>Val<br>225         | TCT (<br>Ser )       | CGG A<br>Arg A             | AC G<br>sn V       | al T                | CC T<br>hr S<br>30 | CG C<br>er P        | CA (               | CCA<br>Pro         | CTG<br>Leu         | CTC<br>Leu<br>235  | Leu                   | GAT<br>Asp            | TCT<br>Ser            | GTC<br>Val         | CGC<br>Arg<br>240 | 720          |
| TTG (<br>Leu )            | GCC (<br>Ala I       | CTT A<br>Leu A             | rg A               | AT G.<br>sn A<br>45 | AC A<br>sp S       | GT G<br>er A        | CG :               | rgt<br>Cys         | AAC<br>Asn<br>250  | CCT<br>Pro         | GTG<br>Val            | ATG<br>Met            | GCA<br>Ala            | ACA<br>Thr<br>255  | Gln               | 768          |
| GCT :<br>Ala I            | TTT G<br>Phe V       | al L                       | TG T<br>eu P<br>60 | TC C<br>he G        | AG T               | rt C<br>ne P:       | ro F               | TTT<br>Phe<br>165  | ACT<br>Thr         | TCC<br>Ser         | TGT<br>Cys            | GGC<br>Gly            | ACC<br>Thr<br>270     | ACA<br>Thr         | AGA<br>Arg        | 816          |
| CAG A                     | lle T                | CT GG<br>hr G:<br>75       | GA GA              | AC CO               | GA GO              | a Va                | TA T<br>al T<br>30 | 'AT<br>'yr         | GAA<br>Glu         | AAT<br>Asn         | GAA<br>Glu            | CTG<br>Leu<br>285     | G <b>TG</b><br>Val    | GCA<br>Ala         | ACT<br>Thr        | 864          |
| AGG G<br>Arg A<br>2       | AT G<br>sp V<br>90   | TG A/<br>al L <sub>}</sub> | AA AA'             | AT GG               | G AG<br>y Se<br>29 | r Ar                | GT G               | GC<br>ly           | TCT<br>Ser         | GTC<br>Val         | ACT<br>Thr<br>300     | CGT<br>Arg            | GAC<br>Asp            | AGC<br>Ser         | ATC<br>Ile        | 912          |
| TTC A<br>Phe A<br>305     | GG C'                | TC CA<br>⊇u Hi             | T GI<br>s Va       | C AG<br>1 Se<br>31  | r Cy               | C AG<br>S Se        | C T                | AC S               | TCA<br>Ser         | GTA<br>Val<br>315  | AGT<br>Ser            | AGC<br>Ser            | AAC<br>Asn            | TCT<br>Ser         | CTC<br>Leu<br>320 | 960          |
| CCA A                     | TC A/<br>le As       | AT GT<br>sn Va             | C CA<br>1 Gl<br>32 | n Va                | T TT<br>1 Ph       | C AC<br>e Th        | T C                | eu 1               | CCA<br>Pro<br>330  | CCA<br>Pro         | CCC<br>Pro            | TTT<br>Phe            | Pro                   | GAG<br>Glu<br>335  | ACC<br>Thr        | 1008         |
| CAG CO<br>Gln Pi          | CT GG<br>ro Gl       | A CC<br>y Pro<br>34        | o re               | C AC                | r CTC              | G GA                | A C1<br>u Le<br>34 | eu G               | AG A               | ATT (              | GCC A                 | Lys 1                 | GAT A<br>Asp 1<br>350 | AAA<br>Lys         | AAC<br>Asn        | 1056         |
| TAT GO                    | GC TC<br>ly Se<br>35 | r Ty                       | TAC<br>TY          | C GG?<br>r Gly      | r GTT              | GG:<br>1 Gl;<br>360 | y As               | C T                | AC (               | CCA (<br>Pro V     | /al \                 | GTG #<br>/al I<br>865 | AAG 1<br>ys I         | TTG (<br>Leu )     | CTT<br>Leu        | 1 <b>104</b> |
| CGG GA<br>Arg As<br>37    | p Pr                 | C ATT                      | TAC<br>Tyr         | C GTG               | GA0<br>Glu<br>375  | Val                 | C TC<br>L Se       | C A<br>r I         | TC C               | eu E               | CAC A<br>Nis A<br>180 | GA A                  | CA G                  | AC (               | ccc<br>Pro        | 1152         |
| TAC CT<br>Tyr Le<br>385   | G GGG<br>u Gly       | G CTG<br>Y Leu             | CTC<br>Leu         | CTA<br>Leu<br>390   | Gln                | CAG<br>Gln          | TG:<br>Cy:         | T TO               | rp A               | CA A<br>la T<br>95 | CA C                  | CC A                  | GC A<br>er T          | hr A               | AC<br>SAC<br>SOO  | 1200         |
| CCC CTO                   | G AG1<br>u Ser       | CAG<br>Gln                 | CCA<br>Pro<br>405  | CAG<br>Gln          | TGG<br>Trp         | CCC<br>Pro          | ATC<br>Ile         | C CT<br>= Le<br>41 | eu V               | TA A<br>al L       | AG G<br>ys G          | GC TO                 | ys P                  | CC T<br>ro T<br>15 | AC<br>yr          | 1248         |
| ATT GGA                   | A GAC<br>y Asp       | AAC<br>Asn<br>420          | TAT<br>Tyr         | CAG<br>Gln          | ACC<br>Thr         | CAG<br>Gln          | CTO<br>Leu<br>425  | ıIl                | C C<br>e P         | CT G               | rc ca<br>al Gi        | ln Ly                 | AA G<br>/s A:<br>30   | CC T               | TG<br>eu          | 1296         |
| GAT CTT<br>Asp Leu        | CCA<br>Pro<br>435    | Phe                        | CCC<br>Pro         | TCT<br>Ser          | CAC<br>His         | CAC<br>His<br>440   | CAG<br>Gln         | CG<br>Ar           | C TI<br>g Pi       | TC AC              | GC AT<br>er Il<br>44  | le Ph                 | TC AC                 | C T                | rc<br>ne          | 1344         |
| AGC TTT<br>Ser Phe<br>450 | val                  | AAC<br>Asn                 | CCT<br>Pro         | ACA<br>Thr          | GTG<br>Val<br>455  | GAG<br>Glu          | AAA<br>Lys         | CA<br>Gl           | G GC<br>n Al       | C CI<br>a Le       | u Ar                  | G GG                  | A CC<br>y Pr          | G GT               | rg<br>11          | 1392         |
| CAT CTG<br>His Leu<br>465 | CAC<br>His           | TGC<br>Cys                 | AGC<br>Ser         | GTG<br>Val<br>470   | TCA<br>Ser         | GTC<br>Val          | TGC<br>Cys         | CA(<br>Gl          | G CC<br>n Pr<br>47 | o Al               | T GA<br>a Gl          | G AC<br>u Th          | A CC<br>r Pr          | A TC<br>O Se<br>48 | r                 | 1440         |

#### - 121 -

| TGT<br>Cys        | GTG<br>Val        | GTG<br>Val        | ACC<br>Thr        | TGT<br>Cys<br>485 | CCT<br>Pro        | GAT<br>Asp        | CTC<br>Leu        | AGT<br>Ser        | CGA<br>Arg<br>490 | Arg               | AGA<br>Arg        | AAT<br>Asn        | TTT<br>Phe        | GAC<br>Asp<br>495 | AAC<br>Asn        | 1488 | í |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|---|
| AGT<br>Ser        | TCT<br>Ser        | CAG<br>Gln        | AAC<br>Asn<br>500 | ACT<br>Thr        | ACT<br>Thr        | GCT<br>Ala        | AGT<br>Ser        | GTT<br>Val<br>505 | TCT<br>Ser        | AGC<br>Ser        | AAA<br>Lys        | GGC<br>Gly        | CCC<br>Pro<br>510 | ATG<br>Met        | ATT<br>Ile        | 1536 |   |
| CTA<br>Leu        | CTC<br>Leu        | CAA<br>Gln<br>515 | GCC<br>Ala        | ACT<br>Thr        | AAG<br>Lys        | GAC<br>Asp        | CCT<br>Pro<br>520 | CCA<br>Pro        | GAA<br>Glu        | AAG<br>Lys        | CTC<br>Leu        | CGT<br>Arg<br>525 | GTT<br>Val        | CCT<br>Pro        | GTA<br>Val        | 1584 |   |
| GAC<br>Asp        | TCG<br>Ser<br>530 | AAA<br>Lys        | GTT<br>Val        | CTG<br>Leu        | TGG<br>Trp        | GTG<br>Val<br>535 | GCA<br>Ala        | GGC<br>Gly        | CTT<br>Leu        | TCT<br>Ser        | GGG<br>Gly<br>540 | ACC<br>Thr        | TTA<br>Leu        | ATC<br>Ile        | CTT<br>Leu        | 1632 |   |
| GGA<br>Gly<br>545 | GCC<br>Ala        | TTG<br>Leu        | TTA<br>Leu        | GTA<br>Val        | TCC<br>Ser<br>550 | TAC<br>Tyr        | TTG<br>Leu        | GCT<br>Ala        | GTC<br>Val        | AAG<br>Lys<br>555 | AAA<br>Lys        | CAG<br>Gln        | AAG<br>Lys        | Ser               | TGC<br>Cys<br>560 | 1680 |   |
|                   |                   |                   | ATG<br>Met        |                   |                   | TAA               |                   |                   |                   |                   |                   |                   |                   |                   |                   | 1701 |   |

### (2) INFORMATION FOR SEQ ID NO:41:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 566 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:

Met Trp Leu Leu Arg Cys Val Leu Leu Cys Val Ser Leu Ser Leu Ala 1 5 10

Val Ser Gly Gln His Lys Pro Glu Ala Pro Asp Tyr Ser Ser Val Leu

His Cys Gly Pro Trp Ser Phe Gln Phe Ala Val Asn Leu Asn Gln Glu

Ala Thr Ser Pro Pro Val Leu Ile Ala Trp Asp Asn Gln Gly Leu Leu

His Glu Leu Gln Asn Asp Ser Asp Cys Gly Thr Trp Ile Arg Lys Gly

Pro Gly Ser Ser Val Val Leu Glu Ala Thr Tyr Ser Ser Cys Tyr Val

Thr Glu Trp Val Ser Met Thr Gln Trp Pro Gly Arg Leu Cys Glu Ala

Pro His Ala Thr Ile Gln Ala Asp Pro Gln Gly Leu Ser Leu Gln Asp

Ser His Tyr Ile Met Pro Val Gly Val Glu Gly Ala Gly Ala Ala Glu

His Lys Val Val Thr Glu Arg Lys Leu Leu Lys Cys Pro Met Asp Leu

Leu Asp Ala Pro Asp Thr Asp Trp Cys Asp Ser Ile Pro Ala Arg Asp

- 122 -

165 170 Arg Leu Pro Cys Ala Pro Ser Pro Ile Ser Arg Gly Asp Cys Glu Gly 185 Leu Gly Cys Cys Tyr Ser Ser Glu Glu Val Asn Ser Cys Tyr Tyr Gly Asn Thr Val Thr Leu His Cys Thr Arg Glu Gly His Phe Ser Ile Ala 215 Val Ser Arg Asn Val Thr Ser Pro Pro Leu Leu Leu Asp Ser Val Arg Leu Ala Leu Arg Asn Asp Ser Ala Cys Asn Pro Val Met Ala Thr Gln Ala Phe Val Leu Phe Gln Phe Pro Phe Thr Ser Cys Gly Thr Thr Arg Gln Ile Thr Gly Asp Arg Ala Val Tyr Glu Asn Glu Leu Val Ala Thr Arg Asp Val Lys Asn Gly Ser Arg Gly Ser Val Thr Arg Asp Ser Ile 295 Phe Arg Leu His Val Ser Cys Ser Tyr Ser Val Ser Ser Asn Ser Leu 315 Pro Ile Asn Val Gln Val Phe Thr Leu Pro Pro Pro Phe Pro Glu Thr Gln Pro Gly Pro Leu Thr Leu Glu Leu Gln Ile Ala Lys Asp Lys Asn Tyr Gly Ser Tyr Tyr Gly Val Gly Asp Tyr Pro Val Val Lys Leu Leu Arg Asp Pro Ile Tyr Val Glu Val Ser Ile Leu His Arg Thr Asp Pro Tyr Leu Gly Leu Leu Gln Gln Cys Trp Ala Thr Pro Ser Thr Asp 395 Pro Leu Ser Gln Pro Gln Trp Pro Ile Leu Val Lys Gly Cys Pro Tyr Ile Gly Asp Asn Tyr Gln Thr Gln Leu Ile Pro Val Gln Lys Ala Leu Asp Leu Pro Phe Pro Ser His His Gln Arg Phe Ser Ile Phe Thr Phe Ser Phe Val Asn Pro Thr Val Glu Lys Gln Ala Leu Arg Gly Pro Val His Leu His Cys Ser Val Ser Val Cys Gln Pro Ala Glu Thr Pro Ser Cys Val Val Thr Cys Pro Asp Leu Ser Arg Arg Arg Asn Phe Asp Asn Ser Ser Gln Asn Thr Thr Ala Ser Val Ser Ser Lys Gly Pro Met Ile 505 Leu Leu Gln Ala Thr Lys Asp Pro Pro Glu Lys Leu Arg Val Pro Val 520

- 123 -

Asp Ser Lys Val Leu Trp Val Ala Gly Leu Ser Gly Thr Leu Ile Leu 530

Gly Ala Leu Leu Val Ser Tyr Leu Ala Val Lys Lys Gln Lys Ser Cys 545 550 555 560

Pro Asp Gln Met Cys Gln 565

- (2) INFORMATION FOR SEQ ID NO:42:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 2266 base pairs
    - (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: cDNA
  - (ix) FEATURE:
    - (A) NAME/KEY: CDS
    - (B) LOCATION: 1..2235
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:

| AT<br>Me          | G GC<br>t Al      | G TG<br>a Cy      | C AG<br>s Ar         | G CA             | G AGA<br>n Arq<br>5 | A GGP<br>g Gly    | A GGO             | C TC:             | T TGO<br>T Tri   | Se                | r cc              | C TC              | A GG(             | TGG<br>Tr        | G TTC<br>p Phe    | 48  |
|-------------------|-------------------|-------------------|----------------------|------------------|---------------------|-------------------|-------------------|-------------------|------------------|-------------------|-------------------|-------------------|-------------------|------------------|-------------------|-----|
| AA!<br>Ası        | r GC              | A GG<br>a Gl      | C TGG<br>y Trj<br>20 | p Se             | C ACC               | TAC<br>Tyr        | AGG<br>Arg        | Ser<br>25         | : Ile            | TC1               | CTC               | C TTC             | TTC<br>Phe<br>30  | Ala              | CTT<br>Leu        | 96  |
| GT(<br>Va]        | ACI<br>Thi        | TC<br>Sei         | c Gly                | G AAC<br>y Asr   | TCC<br>Ser          | : ATA             | GAT<br>Asp<br>40  | Val               | TCT<br>Ser       | CAG<br>Gln        | TTC<br>Lev        | GTA<br>Val<br>45  | Asn               | CCI<br>Pro       | GCC<br>Ala        | 144 |
| TT1<br>Phe        | CCF<br>Pro        | O GI              | C ACT                | GTC<br>Val       | ACT<br>Thr          | TGC<br>Cys<br>55  | GAT<br>Asp        | GAA<br>Glu        | AGG<br>Arg       | GAA<br>Glu        | ATA<br>Ile<br>60  | Thr               | GTG<br>Val        | GAG<br>Glu       | TTC<br>Phe        | 192 |
| CCA<br>Pro<br>65  | Ser               | AG1<br>Ser        | CCI<br>Pro           | GGC<br>Gly       | ACC<br>Thr<br>70    | AAG<br>Lys        | AAA<br>Lys        | TGG<br>Trp        | CAT<br>His       | GCA<br>Ala<br>75  | TCT<br>Ser        | GTG<br>Val        | GTG<br>Val        | GAT<br>Asp       | CCT<br>Pro<br>80  | 240 |
| CTT<br>Leu        | GGT<br>Gly        | CTC               | GAC<br>Asp           | ATG<br>Met<br>85 | CCG<br>Pro          | AAC<br>Asn        | TGC<br>Cys        | ACT<br>Thr        | TAC<br>Tyr<br>90 | ATC<br>Ile        | CTG<br>Leu        | GAC<br>Asp        | CCA<br>Pro        | GAA<br>Glu<br>95 | AAG<br>Lys        | 288 |
| CTC<br>Leu        | ACC<br>Thr        | CTG<br>Leu        | AGG<br>Arg<br>100    | GCT<br>Ala       | ACC<br>Thr          | TAT<br>Tyr        | GAT<br>Asp        | AAC<br>Asn<br>105 | TGT<br>Cys       | ACC<br>Thr        | AGG<br>Arg        | AGA<br>Arg        | GTG<br>Val<br>110 | CAT<br>His       | GGT<br>Gly        | 336 |
| GGA<br>Gly        | CAC<br>His        | CAG<br>Gln<br>115 | ATG<br>Met           | ACC<br>Thr       | ATC<br>Ile          | AGA<br>Arg        | GTC<br>Val<br>120 | ATG<br>Met        | AAC<br>Asn       | AAC<br>Asn        | AGT<br>Ser        | GCT<br>Ala<br>125 | GCC<br>Ala        | TTA<br>Leu       | AGA<br>Arg        | 384 |
| CAC<br>His        | GGA<br>Gly<br>130 | GCT<br>Ala        | GTC<br>Val           | ATG<br>Met       | Tyr                 | CAG<br>Gln<br>135 | TTC<br>Phe        | TTC<br>Phe        | TGT<br>Cys       | Pro               | GCT<br>Ala<br>140 | ATG<br>Met        | CAA<br>Gln        | GTA<br>Val       | GAA<br>Glu        | 432 |
| GAG<br>Glu<br>145 | ACC<br>Thr        | CAG<br>Gln        | GGG<br>Gly           | Leu              | TCA<br>Ser<br>150   | GCA '             | TCT :<br>Ser '    | ACA<br>Thr        | ATC              | TGC<br>Cys<br>155 | CAG<br>Gln        | AAG<br>Lys        | GAT Asp           | Phe              | ATG<br>Met<br>160 | 480 |

- 124 -

| TC:<br>Se:            | r TT:                 | r TCC<br>e Ser        | TTC<br>Leu            | CCA<br>Pro         | ) Arc              | GTC<br>J Val       | TTC<br>Phe        | C TC               | T GG<br>r Gl<br>17 | y Le                  | rg go<br>eu Al     | CT GA                 | AC G<br>Sp A       | sp S               | GT<br>Ser<br>175 | AAG<br>Lys        | 528  |
|-----------------------|-----------------------|-----------------------|-----------------------|--------------------|--------------------|--------------------|-------------------|--------------------|--------------------|-----------------------|--------------------|-----------------------|--------------------|--------------------|------------------|-------------------|------|
| GGG<br>Gly            | ACC<br>Thr            | AAA<br>Lys            | GTT<br>Val<br>180     | Glr                | ATO<br>Met         | GGA<br>Gly         | TGC               | S AG<br>Se:<br>18  | r Il               | T GA<br>e Gl          | iG G1<br>.u Va     | TT GO                 | Ly A               | AT G<br>sp G<br>90 | GT<br>1y         | GCA<br>Ala        | 576  |
| AGA<br>Arg            | GCC<br>Ala            | AAA<br>Lys<br>195     | Thr                   | CTG<br>Leu         | ACC<br>Thr         | CTG<br>Leu         | CCA<br>Pro<br>200 | Gli                | G GC               | C AT<br>a Me          | G AA<br>t Ly       | AG GA<br>'s Gl<br>20  | u G                | GC I<br>ly P       | TC<br>he         | AGC<br>Ser        | 624  |
| CTC<br>Leu            | TTG<br>Leu<br>210     | ATT                   | GAC<br>Asp            | AAC<br>Asn         | CAC                | AGG<br>Arg<br>215  | ATG<br>Met        | ACC<br>Thr         | TTO<br>Pho         | C CA<br>e Hi          | T GT<br>s Va<br>22 | l Pr                  | A TI               | rc A               | AT<br>sn         | GCC<br>Ala        | 672  |
| ACT<br>Thr<br>225     | GGA<br>Gly            | GTG<br>Val            | ACT<br>Thr            | CAC<br>His         | TAT<br>Tyr<br>230  | GTG<br>Val         | CAA<br>Gln        | GGI<br>Gly         | AAC<br>Asi         | C AG'<br>n Sei<br>23! | r Hi               | T CT<br>s Le          | C TA<br>u Ty       | C A                | TG<br>et         | GTG<br>Val<br>240 | 720  |
| TCT<br>Ser            | CTG<br>Leu            | AAG<br>Lys            | CTT<br>Leu            | ACA<br>Thr<br>245  | TTT<br>Phe         | ATA<br>Ile         | TCT<br>Ser        | CCT<br>Pro         | GG#<br>Gly<br>250  | , Gl                  | AA<br>Ly:          | G GT                  | G AT<br>l Il       | C T<br>e Pi<br>2!  | ne               | TCT<br>Ser        | 768  |
| TCA<br>Ser            | CAA<br>Gln            | GCT<br>Ala            | ATT<br>Ile<br>260     | TGT<br>Cys         | GCA<br>Ala         | CCA<br>Pro         | GAT<br>Asp        | CCT<br>Pro<br>265  | GTG<br>Val         | ACC<br>Thr            | C TGG              | C AA'<br>s Asi        | r GC<br>n Al<br>27 | a Ti               | CA               | CAC<br>His        | 816  |
| ATG<br>Met            | ACT<br>Thr            | CTC<br>Leu<br>275     | ACC<br>Thr            | ATA<br>Ile         | CCA<br>Pro         | GAG<br>Glu         | TTT<br>Phe<br>280 | CCT<br>Pro         | GGG<br>Gly         | AAG<br>Lys            | CT?                | T AAC<br>1 Lys<br>285 | s Se               | T GI<br>r Va       | G .              | AGC<br>Ser        | 864  |
| Phe                   | GAA<br>Glu<br>290     | AAC<br>Asn            | CAG<br>Gln            | AAC<br>Asn         | ATT<br>Ile         | GAT<br>Asp<br>295  | GTG<br>Val        | AGC<br>Ser         | CAG<br>Gln         | CTG<br>Leu            | CAT<br>His         | Asp                   | AA!                | r GG<br>n Gl       | A I              | ATT<br>Ile        | 912  |
| GAT<br>Asp<br>305     | CTA<br>Leu            | GAA<br>Glu            | GCA .<br>Ala          | Thr                | AAT<br>Asn<br>310  | GGC .<br>Gly .     | ATG<br>Met        | AAA<br>Lys         | TTG<br>Leu         | CAT<br>His<br>315     | TTC<br>Phe         | AGC<br>Ser            | Lys                | A AC               | r I              | CTG<br>Leu<br>320 | 960  |
| CTC<br>Leu            | AAA<br>Lys            | ACG :                 | Lys 1                 | TTA<br>Leu<br>325  | TCT  <br>Ser       | GAA A              | AAA<br>Lys        | TGC<br>Cys         | CTA<br>Leu<br>330  | CTC<br>Leu            | CAT<br>His         | CAG<br>Gln            | TTC<br>Phe         | TA:<br>Ty:         | r I              | TA<br>.eu         | 1008 |
| GCT :                 | TCA<br>Ser            | Leu 1                 | AAG (<br>Lys I<br>340 | CTG :<br>Leu :     | ACC f              | ITT (<br>Phe I     | Leu :             | CTT<br>Leu<br>345  | CGG<br>Arg         | CCA<br>Pro            | GAG<br>Glu         | ACA<br>Thr            | GTA<br>Val<br>350  | Se                 | C A              | TG<br>et          | 1056 |
| GTG A                 | [le :                 | TAT (<br>Tyr I<br>355 | ero G                 | GAG ?<br>Glu (     | TGT (<br>Cys I     | Leu C              | Cys (<br>160      | GAG<br>Glu         | TCA<br>Ser         | CCC<br>Pro            | GTT<br>Val         | TCT<br>Ser<br>365     | ATA<br>Ile         | GT7<br>Val         | T A              | CA<br>hr          | 1104 |
| GGG G<br>Gly G        | GAG (<br>Glu I<br>170 | CTG T<br>Leu C        | GC A<br>ys T          | CC C               | in A               | AT G<br>sp G<br>75 | GG 1              | rrr i<br>Phe i     | ATG<br>Met         | Asp                   | GTC<br>Val<br>380  | GAG<br>Glu            | GTC<br>Val         | TAC                | S                | GC<br>er          | 1152 |
| TAC C<br>Tyr G<br>385 | AA A                  | ACA C                 | AA C<br>ln P          | ro A               | CT C<br>la L<br>90 | TT G<br>eu A       | AC C<br>sp L      | TG (<br>eu (       | Gly '              | ACT<br>Thr<br>395     | CTG<br>Leu         | AGG<br>Arg            | GTG<br>Val         | GGA<br>Gly         | A:               | AC<br>en<br>00    | 1200 |
| TCA T<br>Ser S        | cc I<br>er C          | GC C<br>ys G          | ln P                  | CT G<br>ro V<br>05 | TC T<br>al P       | TT G<br>he G       | AG G<br>lu A      | la G               | CAG (<br>Sln (     | TCT (                 | CAG<br>Gln         | GGG<br>Gly            | CTG<br>Leu         | GTA<br>Val<br>415  | C(<br>Ar         | sG<br>:g          | 1248 |
| TTC C.                | AC A<br>is I          | le P                  | CC C:<br>ro Le<br>20  | TG A               | AT G               | GA TO<br>ly Cy     | ys G              | GA A<br>ly T<br>25 | CG P               | AGA (                 | TAT<br>Tyr         | Lys                   | TTC<br>Phe<br>430  | GAA<br>Glu         | GA<br>As         | T<br>p            | 1296 |

| GAT AAA GTC GTC TAT GAA AAC GAA ATA CAT GCT CTC TGG ACG GAT TTT Asp Lys Val Val Tyr Glu Asn Glu Ile His Ala Leu Trp Thr Asp Phe 435 440 445           | 1344     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| CCT CCA AGC AAA ATA TCT AGA GAC AGT GAG TTC AGA ATG ACA GTG AAG<br>Pro Pro Ser Lys Ile Ser Arg Asp Ser Glu Phe Arg Met Thr Val Lys<br>450 455 460     | 1392     |
| TGT TCT TAT AGC AGG AAT GAC ATG CTA CTA AAC ATC AAC GTT GAA AGC Cys Ser Tyr Ser Arg Asn Asp Met Leu Leu Asn Ile Asn Val Glu Ser 470 475 480           | 1440     |
| CTT ACT CCT CCA GTG GCC TCA GTG AAG TTG GGT CCA TTT ACC TTG ATC Leu Thr Pro Pro Val Ala Ser Val Lys Leu Gly Pro Phe Thr Leu Ile 485 490 495           | 1488     |
| CTG CAA AGC TAC CCA GAT AAT TCC TAC CAA CAA CCT TAT GGG GAA AAC<br>Leu Gln Ser Tyr Pro Asp Asn Ser Tyr Gln Gln Pro Tyr Gly Glu Asn<br>500 505 510     | 1536     |
| GAG TAC CCT CTA GTG AGA TTC CTC CGC CAA CCA ATT TAC ATG GAA GTG Glu Tyr Pro Leu Val Arg Phe Leu Arg Gln Pro Ile Tyr Met Glu Val 515 520 525           | 1584     |
| AGA GTC CTA AAC AGG GAT GAC CCC AAC ATC AAG CTG GTC TTA GAT GAC<br>Arg Val Leu Asn Arg Asp Asp Pro Asn Ile Lys Leu Val Leu Asp Asp<br>530 535 540     | 1632     |
| TGC TGG GCG ACG TCC ACC ATG GAT CCA GAC TCT TTC CCC CAG TGG AAC<br>Cys Trp Ala Thr Ser Thr Met Asp Pro Asp Ser Phe Pro Gln Trp Asn<br>545 550 550     | 1680     |
| GTT GTC GTG GAT GGC TGT GCA TAT GAC CTG GAC AAC TAC CAG ACC ACC Val Val Val Asp Gly Cys Ala Tyr Asp Leu Asp Asn Tyr Gln Thr Thr 565 570 575           | 1728     |
| TTC CAT CCA GTC GGC TCC TCT GTG ACC CAT CCT GAT CAC TAT CAG AGG Phe His Pro Val Gly Ser Ser Val Thr His Pro Asp His Tyr Gln Arg 580 585 590           | 1776<br> |
| TTT GAC ATG AAG GCT TTT GCC TTT GTA TCA GAA GCC CAC GTG CTC TCT<br>Phe Asp Met Lys Ala Phe Ala Phe Val Ser Glu Ala His Val Leu Ser<br>595 600 605     | 1824     |
| AGC CTG GTC TAC TTC CAC TGC AGT GCC TTA ATC TGT AAT CGA CTC TCC<br>Ser Leu Val Tyr Phe His Cys Ser Ala Leu Ile Cys Asn Arg Leu Ser<br>610 615 620     | 1872     |
| CCT GAC TCC CCA CTG TGT TCT GTG ACC TGC CCT GTG TCC TCT AGG CAC<br>Pro Asp Ser Pro Leu Cys Ser Val Thr Cys Pro Val Ser Ser Arg His<br>625 630 635 640 | 1920     |
| AGG CGA GCC ACA GGG GCC ACT GAA GCA GAG AAA ATG ACA GTC AGC CTC<br>Arg Arg Ala Thr Gly Ala Thr Glu Ala Glu Lys Met Thr Val Ser Leu<br>655             | 1968     |
| CCA GGA CCC ATT CTC CTG TTG TCA GAT GAC TCC TCA TTC AGA GGT GTC Pro Gly Pro Ile Leu Leu Ser Asp Asp Ser Ser Phe Arg Gly Val 660 665 670               | 2016     |
| GGC TCA TCT GAT CTA AAA GCA AGT GGG AGC AGT GGG GAG AAG AGT AGG Gly Ser Ser Asp Leu Lys Ala Ser Gly Ser Ser Gly Glu Lys Ser Arg 675 680 685           | 2064     |
| AGT GAA ACA GGG GAG GAG GTT GGC TCA CGA GGT GCT ATG GAC ACC AAA<br>Ser Glu Thr Gly Glu Glu Val Gly Ser Arg Gly Ala Met Asp Thr Lys<br>690 695 700     | 2112     |

- 126 -

| - 126 <b>-</b>                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------|
| GGG CAC AAG ACT GCT GGA GAT GTT GGT TCC AAA GCT GTG GCT GTG GLY His Lys Thr Ala Gly Asp Val Gly Ser Lys Ala Val Ala Ala Val 705 710 715 720   |
| GCT GCC TTT GCA GGT GTG GTG GCA ACT CTA GGC TTC ATC TAC CTG<br>Ala Ala Phe Ala Gly Val Val Ala Thr Leu Gly Phe Ile Tyr Tyr Leu<br>725 730 735 |
| TAC GAG AAA AGG ACT GTG TCA AAT CAC TAAATGGGCT TCTAAATAAA Tyr Glu Lys Arg Thr Val Ser Asn His 740 745                                         |
| GCAGTCAAAA T                                                                                                                                  |
| (2) INFORMATION FOR SEQ ID NO:43:                                                                                                             |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 745 amino acids  (B) TYPE: amino acid  (D) TOPOLOGY: linear                                        |
| (ii) MOLECULE TYPE: protein                                                                                                                   |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:                                                                                                      |
| Met Ala Cys Arg Gln Arg Gly Gly Ser Trp Ser Pro Ser Gly Trp Phe 1 5 10                                                                        |
| Asn Ala Gly Trp Ser Thr Tyr Arg Ser Ile Ser Leu Phe Phe Ala Leu<br>20 25 30                                                                   |
| Val Thr Ser Gly Asn Ser Ile Asp Val Ser Gln Leu Val Asn Pro Ala<br>35 40                                                                      |
| Phe Pro Gly Thr Val Thr Cys Asp Glu Arg Glu Ile Thr Val Glu Phe 50 60                                                                         |
| Pro Ser Ser Pro Gly Thr Lys Lys Trp His Ala Ser Val Val Asp Pro<br>65 70 75 80                                                                |
| Leu Gly Leu Asp Met Pro Asn Cys Thr Tyr Ile Leu Asp Pro Glu Lys<br>85 90 95                                                                   |
| Leu Thr Leu Arg Ala Thr Tyr Asp Asn Cys Thr Arg Arg Val His Gly<br>100 105 110                                                                |
| Gly His Gln Met Thr Ile Arg Val Met Asn Ash Ser Ala Ala Leu Arg<br>115 120 125                                                                |
| His Gly Ala Val Met Tyr Gln Phe Phe Cys Pro Ala Met Gln Val Glu<br>130 135 140                                                                |
| Glu Thr Gln Gly Leu Ser Ala Ser Thr Ile Cys Gln Lys Asp Phe Met<br>145 150 155 160                                                            |
| Ser Phe Ser Leu Pro Arg Val Phe Ser Gly Leu Ala Asp Asp Ser Lys<br>165 170 175                                                                |
| Gly Thr Lys Val Gln Met Gly Trp Ser Ile Glu Val Gly Asp Gly Ala<br>180 185 190                                                                |
| Arg Ala Lys Thr Leu Thr Leu Pro Glu Ala Met Lys Glu Gly Phe Ser<br>195 200 205                                                                |
| Leu Leu Ile Asp Asn His Arg Met Thr Phe His Val Pro Phe Asn Ala<br>210 220                                                                    |

- 127 -

Thr Gly Val Thr His Tyr Val Gln Gly Asn Ser His Leu Tyr Met Val 225 230 235 240

Ser Leu Lys Leu Thr Phe Ile Ser Pro Gly Gln Lys Val Ile Phe Ser 245 250 255

Ser Gln Ala Ile Cys Ala Pro Asp Pro Val Thr Cys Asn Ala Thr His 260 265 270

Met Thr Leu Thr Ile Pro Glu Phe Pro Gly Lys Leu Lys Ser Val Ser 275 280 285

Phe Glu Asn Gln Asn Ile Asp Val Ser Gln Leu His Asp Asn Gly Ile 290 295 300

Asp Leu Glu Ala Thr Asn Gly Met Lys Leu His Phe Ser Lys Thr Leu 305 310 315 320

Leu Lys Thr Lys Leu Ser Glu Lys Cys Leu Leu His Gln Phe Tyr Leu 325 330 335

Ala Ser Leu Lys Leu Thr Phe Leu Leu Arg Pro Glu Thr Val Ser Met 340 345 350

Val Ile Tyr Pro Glu Cys Leu Cys Glu Ser Pro Val Ser Ile Val Thr 355 360 365

Gly Glu Leu Cys Thr Gln Asp Gly Phe Met Asp Val Glu Val Tyr Ser 370 380

Tyr Gln Thr Gln Pro Ala Leu Asp Leu Gly Thr Leu Arg Val Gly Asn 390 395 400

Ser Ser Cys Gln Pro Val Phe Glu Ala Gln Ser Gln Gly Leu Val Arg 405 410 415

Phe His Ile Pro Leu Asn Gly Cys Gly Thr Arg Tyr Lys Phe Glu Asp 420 425 430

Asp Lys Val Val Tyr Glu Asn Glu Ile His Ala Leu Trp Thr Asp Phe 435 440 445

Pro Pro Ser Lys Ile Ser Arg Asp Ser Glu Phe Arg Met Thr Val Lys 450 455 460

Cys Ser Tyr Ser Arg Asn Asp Met Leu Leu Asn Ile Asn Val Glu Ser 470 475 480

Leu Thr Pro Pro Val Ala Ser Val Lys Leu Gly Pro Phe Thr Leu Ile 485 490 495

Leu Gln Ser Tyr Pro Asp Asn Ser Tyr Gln Gln Pro Tyr Gly Glu Asn 500 505 510

Glu Tyr Pro Leu Val Arg Phe Leu Arg Gln Pro Ile Tyr Met Glu Val 515 520 525

Arg Val Leu Asn Arg Asp Asp Pro Asn Ile Lys Leu Val Leu Asp Asp 530 540

Cys Trp Ala Thr Ser Thr Met Asp Pro Asp Ser Phe Pro Gln Trp Asn 545 550 555 560

Val Val Val Asp Gly Cys Ala Tyr Asp Leu Asp Asn Tyr Gln Thr Thr 565 570 575

Phe His Pro Val Gly Ser Ser Val Thr His Pro Asp His Tyr Gln Arg

- 128 -

|                        |              |                      | 580          | )                                         |                      |                         |                        | 585               | 5                 |                |                   |              | 590            | )          |             |     |
|------------------------|--------------|----------------------|--------------|-------------------------------------------|----------------------|-------------------------|------------------------|-------------------|-------------------|----------------|-------------------|--------------|----------------|------------|-------------|-----|
| Phe                    | yat          | Met<br>595           | Lys          | Ala                                       | Phe                  | . Ala                   | Phe<br>600             | val               | Ser               | Glu            | Ala               | His<br>605   |                | Lev        | Ser         | •   |
| Ser                    | Leu<br>610   | Val                  | Tyr          | Phe                                       | His                  | Cys<br>615              | Ser                    | Ala               | Leu               | Ile            | Cys<br>620        |              | Arg            | Leu        | Ser         |     |
| Pro<br>625             | Asp          | Ser                  | Pro          | Leu                                       | Cys<br>630           | Ser                     | Val                    | Thr               | Cys               | Pro<br>635     | Val               | Ser          | Ser            | Arg        | His<br>640  |     |
| Arg                    | Arg          | Ala                  | Thr          | Gly<br>645                                | Ala                  | Thr                     | Glu                    | Ala               | Glu<br>650        | Lys            | Met               | Thr          | Val            | Ser<br>655 | Leu         |     |
| Pro                    | Gly          | Pro                  | Ile<br>660   | Leu                                       | Leu                  | Leu                     | Ser                    | Asp<br>665        | Asp               | Ser            | Ser               | Phe          | Arg<br>670     | Gly        | Val         |     |
| Gly                    | Ser          | Ser<br>675           | Asp          | Leu                                       | Lys                  | Ala                     | Ser<br>680             | Gly               | Ser               | Ser            | Gly               | Glu<br>685   | Lys            | Ser        | Arg         |     |
| Ser                    | Glu<br>690   | Thr                  | Gly          | Glu                                       | Glu                  | Val<br>695              | Gly                    | Ser               | Arg               | Gly            | Ala<br>700        | Met          | Asp            | Thr        | Lys         |     |
| Gly<br>705             | His          | Lys                  | Thr          | Ala                                       | Gly<br>710           | Asp                     | Val                    | Gly               | Ser               | Lys<br>715     | Ala               | Val          | Ala            | Ala        | Val<br>720  |     |
| Ala                    | Ala          | Phe .                | Ala          | Gly<br>725                                | Val                  | Val                     | Ala                    | Thr               | Leu<br>730        | Gly            | Phe               | Ile          |                | Tyr<br>735 | Leu         |     |
| Tyr (                  | Glu :        |                      | Arg '        | Thr                                       | Val                  | Ser .                   |                        | His<br>745        |                   |                |                   |              |                |            |             |     |
| (2) 1                  | (NFO         | RMAT:                | ION I        | FOR S                                     | SEQ :                | ID N                    | D: 44                  | :                 |                   |                |                   |              |                |            |             |     |
|                        | (i)          | (B)<br>(C)           | TYI<br>STF   | E CHA<br>NGTH:<br>PE: M<br>RANDE<br>POLOG | 560<br>nucle<br>DNES | ) bas<br>eic a<br>SS: s | se pa<br>acid<br>singl | airs              |                   |                |                   |              |                |            |             |     |
| (                      | ii)          | MOLE                 | CULE         | TYF                                       | E: c                 | DNA                     |                        |                   |                   |                |                   |              |                |            |             |     |
| ,                      | ix)          | FEAT                 | URE:         |                                           |                      |                         |                        |                   |                   |                |                   |              |                |            |             |     |
| •                      | ,            | (A)                  | NAM          | E/KE<br>ATIO                              |                      |                         | 06                     |                   |                   |                |                   |              |                |            |             |     |
| (2                     | ĸi)          | SEQUI                | ENCE         | DES                                       | CRIP                 | TION                    | : SE                   | Q ID              | NO:               | 44:            |                   |              |                |            |             |     |
| GAATTO                 | CGCG         | G CC                 | GC TO<br>Se  | CC TO<br>er Se<br>1                       | CT G:<br>∋r Va       | IG Ad                   | CC C                   | AT C<br>is P<br>5 | CT G              | AT CA          | AC TA             | /r G]        | AG AG<br>In Ai | GG T       | TT<br>he    | 50  |
| GAC AT<br>Asp Me       | נת הי        | AG GC<br>7s Al<br>15 | T TT<br>a Ph | T GO                                      | CC TT                | ie Va                   | TA TO                  | CA G              | AG GO<br>lu Al    | CC CA<br>.a Hi | .s Va             | G CI<br>1 Le | C TO           | er Se      | GC<br>er    | 98  |
| CTG GT<br>Leu Va<br>3  | T LA         | C TT                 | C CA<br>e Hi | C TG<br>s Cy                              | s se                 | T GC<br>r Al<br>5       | C TI                   | A AT              | C TG              | s As           | T CG<br>n Ar<br>O | A CT<br>g Le | C TC<br>u Se   | T CC       | CA<br>co    | 146 |
| GAC TC<br>Asp Se<br>45 | C CC<br>r Pr | T CT<br>o Le         | G TG<br>u Cy | T TC<br>s Se<br>5                         | r va                 | G AC<br>l Th            | C TG<br>r Cy           | C CC<br>s Pr      | T GT<br>O Va<br>5 | l Se           | A TC<br>r Se      | T AG         | G CA<br>g Hi   | s Ar       | G<br>g<br>0 | 194 |

CGA GCC ACA GGG GCC ACT GAA GCA GAG AAA ATG ACA GTC AGC CTC CCA 242

- 129 -

| 7         | Arg          | Ala               | Thr              | Gly               | Ala<br>65                     | Thr               | Glu               | Ala               | Glu              | Lys<br>70         |                   | Thr               | . Val             | Ser              | Leu<br>75         | Pro               |     |
|-----------|--------------|-------------------|------------------|-------------------|-------------------------------|-------------------|-------------------|-------------------|------------------|-------------------|-------------------|-------------------|-------------------|------------------|-------------------|-------------------|-----|
| G         | GA<br>ly     | CCC<br>Pro        | ATT              | CTC<br>Leu<br>80  | CTG<br>Leu                    | TTG<br>Leu        | TCA<br>Ser        | GAC<br>Asp        | GAC<br>Asp<br>85 | Ser               | TCA<br>Ser        | TTC<br>Phe        | AGA<br>Arg        | GGT<br>Gly<br>90 | Val               | GGC<br>Gly        | 290 |
| T<br>S    | CA<br>er     | TCT<br>Ser        | GAT<br>Asp<br>95 | CTA<br>Leu        | AAA<br>Lys                    | GCA<br>Ala        | AGT<br>Ser        | GGG<br>Gly<br>100 | AGC<br>Ser       | AGT<br>Ser        | GGG<br>Gly        | GAG<br>Glu        | AAC<br>Asn<br>105 | AGT<br>Ser       | AGG<br>Arg        | AGC<br>Ser        | 338 |
| G<br>G    | Iu .         | ACA<br>Thr<br>110 | GGG<br>Gly       | GAG<br>Glu        | GAG<br>Glu                    | GTT<br>Val        | GGC<br>Gly<br>115 | TCA<br>Ser        | CGA<br>Arg       | GAT<br>Asp        | GTT<br>Val        | ATG<br>Met<br>120 | GAC<br>Asp        | ACC<br>Thr       | AAA<br>Lys        | GGG<br>Gly        | 386 |
| H.        | AC I<br>is I | AGG<br>Arg        | ACT<br>Thr       | GCT<br>Ala        | GGA (                         | GAT<br>Asp<br>130 | GTT<br>Val        | GGT<br>Gly        | TCC<br>Ser       | AAA<br>Lys        | GCT<br>Ala<br>135 | GTG<br>Val        | GCT<br>Ala        | GCT<br>Ala       | GTG<br>Val        | GCT<br>Ala<br>140 | 434 |
| G(<br>A)  | CC 1         | TTG<br>Leu        | GCA<br>Ala       | Gly               | GTG (<br>Val V<br>145         | GTG<br>/al        | GCA<br>Ala        | ACT<br>Thr        | CTA<br>Leu       | GGC<br>Gly<br>150 | TTC<br>Phe        | ATC<br>Ile        | TGT<br>Cys        | TAC<br>Tyr       | CTG<br>Leu<br>155 | TAT<br>Tyr        | 482 |
| AA<br>Ly  | G A          | AA<br>ys          | AGG<br>Arg       | ACT<br>Thr<br>160 | GTG 7                         | CA Ser            | AAT (<br>Asn )    | CAC His           | TAAA             | TGGG              | СТ Т              | CTAA              | ATAA              | A GC             | AGTC              | AAAA              | 536 |
| TA        | AAA          | AAA               | AA G             | CGGC              | CGCGA                         | AT:               | rc                |                   |                  |                   |                   |                   |                   |                  |                   |                   | 560 |
| (2        | ) I          | NFO               | RMAT             | ION E             | FOR S                         | EQ 1              | ID NO             | ): 45             | :                |                   |                   |                   |                   |                  |                   |                   |     |
|           |              | ( 3               | i) si            | (A)<br>(B)        | ICE C<br>LENG<br>TYPE<br>TOPO | TH:<br>: am       | 164<br>nino       | amir<br>acid      | no a             | cids              |                   |                   |                   |                  |                   |                   |     |
|           |              | (ii               | .) MC            |                   | LE T                          |                   |                   |                   |                  |                   |                   |                   |                   |                  |                   |                   |     |
|           |              | (xi               | ) SE             | QUEN              | CE D                          | ESCR              | IPTI              | ON:               | SEQ              | ID N              | 10:45             | i :               |                   |                  |                   |                   |     |
| Ser       | : S∈         | er V              | al I             | hr H              | is Pı<br>5                    | :0 A              | sp H              | is T              | yr C             | ln A              | rg F              | he A              | sp M              | et L             | ys A<br>15        | la                |     |
| Phe       | Al           | a P               | he V             | al S<br>20        | er Gl                         | u A               | la H              |                   | al L<br>25       | eu S              | er S              | er L              |                   | al T<br>30       | yr P              | he                |     |
| His       | Су           | s S               | er A<br>35       | la L              | eu Il                         | e C               | ys A:             | sn A:             | rg L             | eu S              | er P              |                   | sp Se<br>45       | er P             | ro L              | eu                |     |
| Cys       | Se<br>5      | r Va              | al T             | hr Cy             | ys Pr                         | o Va              | al Se<br>55       | er Se             | er A             | rg H              |                   | rg A:             | rg Al             | la T             | hr G              | ly                |     |
| Ala<br>65 | Th           | r Gl              | Lu A             | la Gl             | u Ly<br>7                     | s Me<br>O         | et Th             | r Va              | al S             |                   | eu P:<br>75       | ro Gi             | ly Pr             | o I              |                   | ≘u<br>30          |     |
| Leu       | Le           | ı Se              | r As             | p As<br>8         | p Se                          | r Se              | er Ph             | e Ar              |                  | ly Va<br>90       | al G              | ly Se             | er Se             |                  | sp Le             | <b>9u</b>         |     |
| Lys       | Ala          | a Se              | r G1             | y Se<br>0         | r Se                          | r Gl              | y Gl              | u As<br>10        |                  | er Ar             | g Se              | er Gl             | lu Th             |                  | y G1              | Lu                |     |
| Glu       | Val          | Gl<br>11          | y Se<br>5        | r Ar              | g Ası                         | V a               | 1 Me<br>12        | t As<br>O         | p Th             | r Ly              | s Gl              | у Ні<br>12        |                   | g Th             | r Al              | .a                |     |
| Gly       | Asp<br>130   | Va                | 1 G1             | y Se              | r Lys                         | Al.<br>13:        | a Vai             | l Al              | a Al             | a Va              | 1 Al<br>14        |                   | a Le              | u Al             | a Gl              | У                 |     |

- 130 -

Val Val Ala Thr Leu Gly Phe Ile Cys Tyr Leu Tyr Lys Lys Arg Thr 145 15Ō 155 160

Val Ser Asn His

### (2) INFORMATION FOR SEQ ID NO:46:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 866 base pairs
    (B) TYPE: nucleic acid

  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: cDNA

- (ix) FEATURE:
  - (A) NAME/KEY: CDS
  - (B) LOCATION: 12..821

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:

| G.F               | ATTO             | CGCGC              | 3 C (                | arg A               | GT G              | GC I              | CT G<br>er V     | TC F<br>al T<br>5 | ACT C                | GT G<br>rg A      | AC A<br>sp S      | GC A<br>Ser 1     | ATC 1<br>le F<br>10 | TTC A             | AGG CI<br>Arg Le     | CC 50 |
|-------------------|------------------|--------------------|----------------------|---------------------|-------------------|-------------------|------------------|-------------------|----------------------|-------------------|-------------------|-------------------|---------------------|-------------------|----------------------|-------|
| CA<br>Hi          | s va             | C AG<br>1 Se<br>5  | C TO                 | C AG                | C TA              | C TC<br>r Se<br>2 | r Va             | A AG<br>l Se      | T AG                 | C AA              | n Se              | T CT<br>r Le<br>5 | C CC                | A AI              | C AAG<br>e Lys       | 98    |
| GT<br>Va<br>3     | T GI             | G GT<br>n Va       | T TI<br>1 Ph         | T AC<br>e Th        | T CT<br>r Le      | u Pr              | A CC.            | A CC<br>o Pr      | C TT                 | r cc:<br>Pro      | G1                | G AC<br>u Th      | C CA<br>r Gl        | G CC<br>n Pr      | T GGA<br>o Gly<br>45 | 146   |
| Pro               | C CT             | C AC               | T CT<br>r Le         | G GA<br>u Gli<br>50 | u Lei             | r cad             | AT:              | r gc              | C AAA<br>a Lys<br>55 | Asp               | Ly:               | A AA<br>s As:     | C TA                | T GG<br>r Gl      | C TCC<br>y Ser       | 194   |
| TAC<br>Tyr        | TA:              | r GG               | T GT:<br>y Va:<br>6! | r GT                | GAC<br>Asp        | TAC<br>Tyr        | Pro              | C GTC<br>Val      | l Val                | AAG<br>Lys        | TTC<br>Lev        | G CT              | r cgc<br>1 Arc      | ) As              | r ccc<br>Pro         | 242   |
| ATC<br>Ile        | TAT              | C GTC<br>Val<br>80 | LGI                  | GTC<br>Val          | C TCC<br>Ser      | ATC<br>Ile        | CTI<br>Leu<br>85 | His               | AGA<br>Arg           | ACA<br>Thr        | GAC               | CCC<br>Pro        | Ser                 | CTC<br>Leu        | G GGG                | 290   |
| CTG<br>Leu        | CTC<br>Leu<br>95 | ren                | CAT<br>His           | CAG<br>Gln          | TGT<br>Cys        | TGG<br>Trp<br>100 | GCA<br>Ala       | ACA<br>Thr        | CCC<br>Pro           | AGC<br>Ser        | ACA<br>Thr<br>105 | GAC<br>Asp        | CCA<br>Pro          | CTG<br>Leu        | AGT<br>Ser           | 338   |
| CAG<br>Gln<br>110 | CCA<br>Pro       | CAG<br>Gln         | TGG<br>Trp           | CCC                 | ATC<br>Ile<br>115 | CTG<br>Leu        | GTA<br>Val       | AAG<br>Lys        | GGC<br>Gly           | TGC<br>Cys<br>120 | CCC<br>Pro        | TAC<br>Tyr        | ATT                 | GGA<br>Gly        | GAC<br>Asp<br>125    | 386   |
| AAC<br>Asn        | TAT<br>Tyr       | CAG<br>Gln         | ACC<br>Thr           | CAG<br>Gln<br>130   | CTG<br>Leu        | ATC<br>Ile        | CCT<br>Pro       | GTC<br>Val        | CAG<br>Gln<br>135    | AAA<br>Lys        | GCC<br>Ala        | TTG<br>Leu        | GAT<br>Asp          | CTT<br>Leu<br>140 | CCA<br>Pro           | 434   |
| TTT<br>Phe        | CCC<br>Pro       | TCT<br>Ser         | CAC<br>His<br>145    | TAC<br>Tyr          | CAG<br>Gln        | CGC<br>Arg        | TTC<br>Phe       | AGC<br>Ser<br>150 | ATC<br>Ile           | TTC<br>Phe        | ACC<br>Thr        | TTC<br>Phe        | AGC<br>Ser<br>155   | TTT<br>Phe        | GTG<br>Val           | 482   |
| GAC<br>Asp        | Pro              | ACA<br>Thr         | Ala                  | Glu                 | AAA<br>Lys        | Gln               | Ala              | Leu               | AGG<br>Arg           | GGA (             | CCG<br>Pro        | GTG<br>Val        | CAT<br>His          | CTG<br>Leu        | CAC<br>His           | 530   |

- 131 -

| C              | GC               | AGT<br>Ser<br>175 | GTG<br>Val        | TCA<br>Ser        | GTC<br>Val        | TGC<br>Cys        | CAG<br>Gln<br>180    | CCT<br>Pro        | GCT<br>Ala        | GAG<br>Glu        | ACA<br>Thr        | CCA<br>Pro<br>185 | Ser               | TGT<br>Cys        | GCG<br>Ala        | GTA<br>Val        | 578 |
|----------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----|
| T              | cc<br>hr<br>90   | TGT<br>Cys        | CCT<br>Pro        | GAT<br>Asp        | CTC<br>Leu        | AGT<br>Ser<br>195 | CGA<br>Arg           | AGA<br>Arg        | AAT<br>Asn        | TCA<br>Ser        | GGC<br>Gly<br>200 | Thr               | ATT               | TTT<br>Phe        | CAG<br>Gln        | AAC<br>Asn<br>205 | 626 |
| A.<br>Ti       | CT hr            | ACT<br>Thr        | GCT<br>Ala        | AGT<br>Ser        | GTT<br>Val<br>210 | TCT<br>Ser        | AGC<br>Ser           | AAA<br>Lys        | GGC<br>Gly        | CCC<br>Pro<br>215 | ATG<br>Met        | ATT<br>Ile        | CTA<br>Leu        | CTC<br>Leu        | CAA<br>Gln<br>220 | GCC<br>Ala        | 674 |
| A)<br>Tì       | CT i             | AAG<br>Lys        | GAC<br>Asp        | CCT<br>Pro<br>225 | CCA<br>Pro        | GAA<br>Glu        | AAG<br>Lys           | CTC<br>Leu        | CGT<br>Arg<br>230 | GCT<br>Ala        | CCT<br>Pro        | GTA<br>Val        | GAC<br>Asp        | TCA<br>Ser<br>235 | AAA<br>Lys        | GTT<br>Val        | 722 |
| C7<br>Le       | rg 7<br>eu 7     | rp                | GTG<br>Val<br>240 | GCA<br>Ala        | GGC<br>Gly        | CTT<br>Leu        | TCT<br>Ser           | GGG<br>Gly<br>245 | ACC<br>Thr        | TTA<br>Leu        | ATC<br>Ile        | CTT<br>Leu        | GGA<br>Gly<br>250 | GGC<br>Gly        | TTA<br>Leu        | GTA<br>Val        | 770 |
| G1<br>Va       | II S             | CCC<br>Ser        | TAC<br>Tyr        | TTG<br>Leu        | GCT<br>Ala        | Ile               | AAA<br>Lys<br>260    | CAG<br>Gln        | CTG<br>Leu        | AAT<br>Asn        | TGT<br>Cys        | CCA<br>Pro<br>265 | GAC<br>Asp        | CAA<br>Gln        | ACA<br>Thr        | TGT<br>Cys        | 818 |
| CA<br>G1<br>27 | n                | 'AAA              | ACCA              | GA C              | TGTA              | CTCC              | C AA                 | AAAA              | AAAA              | AGC               | GGCC              | GCG               | AATT              | С                 |                   |                   | 866 |
| 12             | \ T              | NFOI              | יימאכ             | TON               | POD 6             | ero -             | ID NO                | . 47.             |                   |                   |                   |                   |                   |                   |                   |                   |     |
| \~             | , -              |                   |                   |                   |                   |                   | ACTEF                |                   |                   |                   |                   |                   |                   |                   |                   |                   |     |
|                |                  | , -               | .,                | (A)               | LENG              | TH:<br>E: an      | 270<br>nino<br>Y: li | amir<br>acid      | o a               | cids              |                   |                   |                   |                   |                   |                   |     |
|                |                  | (ii               | .) MC             | DLECU             | ILE I             | YPE:              | pro                  | tein              | ı                 |                   |                   |                   |                   |                   |                   |                   |     |
|                |                  | (xi               | ) SE              | QUEN              | ICE D             | ESCR              | IPTI                 | ON:               | SEQ               | ID 1              | NO:47             | 7:                |                   |                   |                   |                   |     |
| 1              | •                |                   |                   |                   | 5                 |                   | rg A                 |                   |                   | 10                |                   |                   |                   |                   | 15                |                   |     |
| Cys            | Se               | r T               | yr S              | er V<br>20        | al S              | er S              | er A                 |                   | er L<br>25        | eu F              | ro I              | le L              |                   | al G<br>30        | ln V              | 'al               |     |
| Phe            | Th               | r Le              | eu P<br>35        | ro P              | ro P              | ro P              | he Pi                | ro G:             | lu T              | hr G              | ln P              |                   | ly P.<br>45       | ro L              | eu T              | hr                |     |
| Leu            | G <sub>.</sub> 1 | u Le<br>O         | eu G              | ln I              | le A              | la L              | ys As<br>55          | sp Ly             | /s A              | sn T              |                   | ly s              | er T              | yr T              | yr G              | ly                |     |
| Val<br>65      | Gl               | y As              | sp T              | yr P              | co Va             | al Va<br>70       | al Ly                | s Le              | eu Le             | ≘u A              | rg A:<br>75       | sp P              | ro I              | le Ty             |                   | al<br>80          |     |
| Glu            | Va:              | l Se              | r I               | le Le             | eu Hi<br>85       | .s Ar             | g Th                 | r As              |                   | co S              | er Le             | eu Gl             | ly Le             |                   | eu Le             | eu                |     |
| His            | Glr              | ı Cy              | s Tr              | p Al              | a Th              | r Pr              | o Se                 | r Th<br>10        |                   | sp Pı             | o Le              | eu Se             | er Gl             | n Pr              |                   | ln                |     |
| Trp            | Pro              | ) Il<br>11        | e Le<br>5         | eu Va             | l Ly              | s Gl              | у Су<br>12           | s Pr<br>O         | о Ту              | r Il              | e Gl              | y As              |                   | n Ty              | r Gl              | ın                |     |

Thr Gln Leu Ile Pro Val Gln Lys Ala Leu Asp Leu Pro Phe Pro Ser 130

|            |            |          |              |                   |            |              |               |              | -          | - 132        | 2 -            |                |            |              |              |                |     |
|------------|------------|----------|--------------|-------------------|------------|--------------|---------------|--------------|------------|--------------|----------------|----------------|------------|--------------|--------------|----------------|-----|
| F          | lis<br>145 | Тух      | Glr          | n Arg             | Phe        | Ser<br>150   | Ile           | Phe          | Thr        | Ph∈          | Ser<br>155     |                | Val        | Asp          | Pro          | Thr<br>160     |     |
| P          | la         | Glu      | Lys          | Gln               | Ala<br>165 | Leu          | Arg           | Gly          | Pro        | Val<br>170   |                | Leu            | His        | Cys          | Ser<br>175   |                |     |
| S          | er         | Val      | Сув          | Gln<br>180        | Pro        | Ala          | Glu           | Thr          | Pro<br>185 |              | Cys            | Ala            | Val        | Thr<br>190   | Cys          | Pro            |     |
| A          | ga         | Leu      | Ser<br>195   | Arg               | Arg        | Asn          | Ser           | Gly<br>200   | Thr        | Ile          | Phe            | Gln            | Asn<br>205 | Thr          | Thr          | Ala            |     |
|            | •          | 210      |              | Ser               |            |              | 215           |              |            |              |                | 220            |            |              | _            |                |     |
| P:         | ro 1<br>25 | Pro      | Glu          | Lys               | Leu        | Arg<br>230   | Ala           | Pro          | Val        | Asp          | Ser<br>235     | Lys            | Val        | Leu          | Trp          | Val<br>240     |     |
| A.         | la (       | Gly      | Leu          | Ser               | Gly<br>245 | Thr          | Leu           | Ile          | Leu        | Gly<br>250   | Gly            | Leu            | Val        | Val          | Ser<br>255   | Tyr            |     |
| Le         | eu F       | lla      | Ile          | Lys<br>260        | Gln        | Leu          | Asn (         | Cys          | Pro<br>265 | Asp          | Gln            | Thr            | Cys        | Gln<br>270   |              |                |     |
| (2         | ?) I       | NFO      | RMAI         | NOI               | FOR        | SEQ          | ID NO         | ):48         | :          |              |                |                |            |              |              |                |     |
|            |            | (i)      | SEC          | UENC              | E CH       | ARAC'        | reris         | TIC          | s:         |              |                |                |            |              |              |                |     |
|            |            |          | (B           | ) LE              | PE: 1      | nucle        | eic a         | cid          |            |              |                |                |            |              |              |                |     |
|            |            |          | (C<br>(D     | ) STI             | RANDI      | EDNES        | SS: s<br>inea | ing<br>r     | le         |              |                |                |            |              |              |                |     |
|            | (          | ii)      | MOL          | ECULI             | TYF        | E: c         | ANG           |              |            |              |                |                |            |              |              |                |     |
|            | •          | ,        |              |                   |            |              | .DIIA         |              |            |              |                |                |            |              |              |                |     |
|            | (:         | ix)      |              | TURE:             |            |              |               |              |            |              |                |                |            |              |              |                |     |
|            |            |          |              | ) NAM<br>) LOC    |            |              |               | 83           |            |              |                |                |            |              |              |                |     |
|            |            |          |              |                   |            |              |               |              |            |              |                |                |            |              |              |                |     |
|            | ( >        | (i)      | SEQU         | JENCE             | DES        | CRIP         | TION          | : SE         | Q II       | NO:          | 48:            |                |            |              |              |                |     |
| GA         | TTC        | CGCG     | G CC         | GC A              | TC C       | AC A         | CT G          | GC A         | GC C       | AC G         | TG C           | CA C           | TG C       | GG T         | TG T         | TT             | 5   |
|            |            |          |              | Ι                 | le H<br>1  | is T         | hr G.         | ly s         | er H<br>5  | is V         | al P           | ro L           |            | rg L<br>10   | eu P         | he             |     |
| GTG        | GA         | cc       | AC I         | GC G              | TG G       | CC A         | CA CO         | CA A         | CA C       | CA G         | AC C           | AG A           | ልጥ ሬ       | רר זיי       | CC C         | C-up           | 9   |
| Val        | As         | рн       | is C<br>15   | ys V              | al A       | la Ti        | ir Pr         | 0 T          | hr P       | ro A         | sp G           | ln A           | sn A<br>25 | la S         | er P         | ro             | 7   |
| TAT<br>Tyr | CA<br>Hi:  | s T      | CC A<br>hr I | TC GT<br>le Va    | rg ga      | sp Ph        | C CA<br>e Hi  | T G          | GC TO      | GT C<br>ys L | eu Va          | TC GA<br>al As | AT GO      | GT CT        | C Ac         | CT<br>nr       | 14  |
| GAT        | GC         | י ידר    | יים יים      | מיי כר            | יכי יחייו  |              |               | m .c.        | -m -c-     |              |                |                |            |              | _            |                |     |
| Asp<br>45  | Ala        | a Se     | er Se        | CT GC<br>er Al    | a Pr       | e Ly         | s Va          | l Pr         | 1 CC       | g Pi         | ro Gl          | ly Pr          | O As       | T AC         | r Le         | rc<br>eu<br>50 | 194 |
| CAG<br>Gln | TTC<br>Phe | AC<br>Th | A GI         | G GA<br>1 As<br>6 | p va       | C TT<br>l Ph | C CA          | C TI<br>S Ph | e Al       | T AF         | AT GA<br>sn As | C TC           | C AG       | g As         | n Me         | G<br>t         | 242 |
| ልሞአ        | ጥአብ        | יי א     | C 30         |                   |            |              |               |              |            |              |                | _              |            | 7            |              |                |     |
| Ile        | Tyr        | Il       | e Tn         | C TG<br>r Cy:     | s Hi       | s Le         | Lys           | G GC         | a Il       | e Pr         | A GC           | T GA           | G CA       | G GA<br>n Gl | A CC<br>u Pr | A<br>O         | 290 |

GAC GAA CTC AAC AAA GCC TGT TCC TTC AGC AAG TCT TCC AAC AGC TGG 338

- 133 -

| Asp               | Glu               | Lev<br>95         | Asn               | Lys               | Ala                   | Cys               | Ser<br>100        | Phe               | Ser               | : Lys             | Ser               | Ser<br>105        |                   | Ser               | Trp               |     |
|-------------------|-------------------|-------------------|-------------------|-------------------|-----------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----|
| TTC               | Pro               | Val               | GAA<br>Glu        | GGC               | CCA<br>Pro            | GCT<br>Ala<br>115 | GAC<br>Asp        | ATC               | TG1<br>Cys        | CAA<br>Gln        | TGC<br>Cys<br>120 | Cys               | AGC<br>Ser        | Lys<br>Lys        | GGT               | 386 |
| GAC<br>Asp<br>125 | Cys               | GGC               | ACT<br>Thr        | CCA<br>Pro        | AGC<br>Ser<br>130     | CAT<br>His        | TCC<br>Ser        | AGG<br>Arg        | AGG<br>Arg        | CAG<br>Gln<br>135 | CCC<br>Pro        | CAT               | GTC<br>Val        | GTG<br>Val        | AGC<br>Ser<br>140 | 434 |
| CAG<br>Gln        | TGG<br>Trp        | TCC<br>Ser        | AGG<br>Arg        | TCT<br>Ser<br>145 | GCT<br>Ala            | TCT<br>Ser        | CGT<br>Arg        | AAC<br>Asn        | CGC<br>Arg<br>150 | AGG<br>Arg        | CAT<br>His        | GTG<br>Val        | ACA<br>Thr        | GAA<br>Glu<br>155 | GAA<br>Glu        | 482 |
| GCA<br>Ala        | GAT<br>Asp        | ATC<br>Ile        | ACC<br>Thr<br>160 | GTG<br>Val        | GGG<br>Gly            | CCA<br>Pro        | CTG<br>Leu        | ATC<br>Ile<br>165 | TTC<br>Phe        | CTG<br>Leu        | GAC<br>Asp        | AGG<br>Arg        | AGT<br>Ser<br>170 | GCT<br>Ala        | GAC<br>Asp        | 530 |
| TAT<br>Tyr        | GAA<br>Glu        | GTA<br>Val<br>175 | GAA<br>Glu        | CAG<br>Gln        | TGG<br>Trp            | GCC<br>Ala        | TTG<br>Leu<br>180 | CCG<br>Pro        | ACT<br>Thr        | GAC<br>Asp        | ACC<br>Thr        | TCC<br>Ser<br>185 | GTG<br>Val        | CTG<br>Leu        | CTG<br>Leú        | 578 |
| CTG<br>Leu        | GGC<br>Gly<br>190 | ATA<br>Ile        | Gly               | CTG<br>Leu        | Ala                   | GTG<br>Val<br>195 | GTG<br>Val        | GCA<br>Ala        | TCT<br>Ser        | Leu               | ACT<br>Thr<br>200 | CTG<br>Leu        | ACC<br>Thr        | GCT<br>Ala        | GTT<br>Val        | 626 |
| TC<br>le          | CTG<br>Leu        | ATT<br>Ile        | TTC<br>Phe        | Thr               | AGG .<br>Arg .<br>210 | AGG '<br>Arg '    | TGG<br>Trp        | CGC<br>Arg        | Thr               | GCC<br>Ala<br>215 | TCC<br>Ser        | CGC<br>Arg        | CCT<br>Pro        | Val               | TCT<br>Ser<br>220 | 674 |
| TT<br>al          | TCC<br>Ser        | CAA<br>Gln        | TAAA              | AGAA              | GA A                  | AGCA              | GTAA              | A AA              | AAAG              | CGGC              | CGC               | GAAT'             | rc                |                   |                   | 722 |

### (2) INFORMATION FOR SEQ ID NO:49:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 223 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:

Ile His Thr Gly Ser His Val Pro Leu Arg Leu Phe Val Asp His Cys 1 5 10 15

Val Ala Thr Pro Thr Pro Asp Gln Asn Ala Ser Pro Tyr His Thr Ile 25

Val Asp Phe His Gly Cys Leu Val Asp Gly Leu Thr Asp Ala Ser Ser

Ala Phe Lys Val Pro Arg Pro Gly Pro Asp Thr Leu Gln Phe Thr Val

Asp Val Phe His Phe Ala Asn Asp Ser Arg Asn Met Ile Tyr Ile Thr

Cys His Leu Lys Ala Ile Pro Ala Glu Gln Glu Pro Asp Glu Leu Asn

Lys Ala Cys Ser Phe Ser Lys Ser Ser Asn Ser Trp Phe Pro Val Glu 105

- 134 -

| Gly | Pro | Ala | Asp | Ile | Cys | Gln | Cys | Cys | Ser | Lys | Gly | Asp | Cvs | Gly | Thr |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|     |     | 115 |     |     | _   |     | 120 | •   |     | -   | •   | 125 | - 1 | 1   |     |

- Pro Ser His Ser Arg Arg Gln Pro His Val Val Ser Gln Trp Ser Arg 130 135 140
- Ser Ala Ser Arg Asn Arg Arg His Val Thr Glu Glu Ala Asp Ile Thr 145 150 155 160
- Val Gly Pro Leu Ile Phe Leu Asp Arg Ser Ala Asp Tyr Glu Val Glu 165 170 175
- Gln Trp Ala Leu Pro Thr Asp Thr Ser Val Leu Leu Gly Ile Gly 180 185 190
- Leu Ala Val Val Ala Ser Leu Thr Leu Thr Ala Val Ile Leu Ile Phe 195 200 205
- Thr Arg Arg Trp Arg Thr Ala Ser Arg Pro Val Ser Val Ser Gln 210 220
- (2) INFORMATION FOR SEQ ID NO:50:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 28 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:

CGCCCTTCCC AGCAACTGCA CCATCACCAC CATGGG

36

- (2) INFORMATION FOR SEQ ID NO:51:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 45 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: DNA
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:

GATCCCCATG GTGGTGGTGA TGGTGCAGTT GCTGGGAAGG GCGAT

45

- (2) INFORMATION FOR SEQ ID NO:52:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 31 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: DNA

WO 94/11019

| - | 135 | _ |
|---|-----|---|
|---|-----|---|

| 155                                                                                                                                                                                  |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:                                                                                                                                             |    |
| GATCCCTCGA GCCACCATCA CCACCATCAT G                                                                                                                                                   | 31 |
| (2) INFORMATION FOR SEQ ID NO:53:                                                                                                                                                    |    |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 31 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear                                                     |    |
| (ii) MOLECULE TYPE: DNA                                                                                                                                                              |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:                                                                                                                                             |    |
| AATTCATGAT GGTGGTGATG GTGGCTCGAG G                                                                                                                                                   | 31 |
| (2) INFORMATION FOR SEQ ID NO:54:                                                                                                                                                    |    |
| <ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 31 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul> |    |
| (ii) MOLECULE TYPE: DNA                                                                                                                                                              |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:                                                                                                                                             |    |
| CCCGGATCCG CAGACCATCT GGCCAACTGA G                                                                                                                                                   | 31 |
| (2) INFORMATION FOR SEQ ID NO:55:                                                                                                                                                    | •  |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 29 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear                                                     |    |
| (ii) MOLECULE TYPE: DNA                                                                                                                                                              |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:                                                                                                                                             |    |
| GCGCTCGAGG GCATATGGCT GCCAGTGTG                                                                                                                                                      | 29 |
| (2) INFORMATION FOR SEQ ID NO:56:                                                                                                                                                    |    |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 36 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear                                                     |    |
| (ii) MOLECULE TYPE: DNA                                                                                                                                                              |    |

- 136 -

| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:                                                                                                                                             |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| CGCGCTAGCA GATCTATGGC GCCGAGCTGG AGGTTC                                                                                                                                              | 36 |
| (2) INFORMATION FOR SEQ ID NO:57:                                                                                                                                                    |    |
| <ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 49 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul> |    |
| (ii) MOLECULE TYPE: DNA                                                                                                                                                              |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:                                                                                                                                             |    |
| CGCGGATCCT ATTAATGGTG GTGATGGTGG TGACTAGTGG ACCCTTCCA                                                                                                                                | 49 |
| (2) INFORMATION FOR SEQ ID NO:58:                                                                                                                                                    |    |
| <ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 39 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul> |    |
| (ii) MOLECULE TYPE: DNA                                                                                                                                                              |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:                                                                                                                                             |    |
| CCCGCTAGCA GATCTATGGG GCTGAGCTAT GGAATTTTC                                                                                                                                           | 39 |
| (2) INFORMATION FOR SEQ ID NO:59:                                                                                                                                                    |    |
| (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 34 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear                                                     |    |
| (ii) MOLECULE TYPE: DNA                                                                                                                                                              |    |
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:                                                                                                                                             |    |
| CGCACTAGTT GACCCCTCTA TACCATGATC ACTA                                                                                                                                                | 34 |

# INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

(PCT Rule 13bis)

| A. The indications made below relate to the microorganism rel<br>on page 37 line 28 and page 38, lines 1-3                                                                                                                                                                                                                                                                                                                                                                                                                                          | ferred to in the description                                                   |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|--|--|--|--|--|
| B. IDENTIFICATION OF DEPOSIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Further deposits are identified on an additional sheet X                       |  |  |  |  |  |  |
| Name of depositary institution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                |  |  |  |  |  |  |
| American Type Culture Collection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                |  |  |  |  |  |  |
| Address of depositary institution (including postal code and country                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | )                                                                              |  |  |  |  |  |  |
| 12301 Parklawn Drive<br>Rockville, Maryland 20852<br>United States of America                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                |  |  |  |  |  |  |
| Date of deposit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Accession Numbers                                                              |  |  |  |  |  |  |
| January 27, 1993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 75406 and 75405                                                                |  |  |  |  |  |  |
| C. ADDITIONAL INDICATIONS (leave blank if not applicab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | le) This information is continued on an additional sheet                       |  |  |  |  |  |  |
| "In respect of those designations in which a European patent is sought, a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which the application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 23(4) EPC)."  D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States) |                                                                                |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                |  |  |  |  |  |  |
| E. SEPARATE FURNISHING OF INDICATIONS (leave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e blank if not applicable)                                                     |  |  |  |  |  |  |
| The indications listed below will be submitted to the International Number of Deposit*)                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Buteau later (specify the general nature of the indications e.g., *Accession . |  |  |  |  |  |  |
| For receiving Office use only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | For International Bureau use only                                              |  |  |  |  |  |  |
| This sheet was received with the international application                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | This sheet was received by the International Bureau on:                        |  |  |  |  |  |  |
| Authorized officer /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Authorized officer                                                             |  |  |  |  |  |  |
| Prohen Vessels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                |  |  |  |  |  |  |

Form BCT/RO/134 (July 1992)

# INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

(PCT Rule 13bis)

| B. IDENTIFICATION OF DEPOSIT  Further deposits are identified on an additional sheet  Name of depositary institution  American Type Culture Collection  Address of depositary institution (including postal code and country)  12301 Parklawn Drive Rockville, Maryland 20852 United States of America  Date of deposit January 27, 1993  C. ADDITIONAL INDICATIONS (leave blank if not applicable)  This information is continued on an additional sheet  "In respect of those designations in which a European patent is sought, a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which the application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 23(4) EPC)." |           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Name of depositary institution  American Type Culture Collection  Address of depositary institution (including postal code and country)  12301 Parklawn Drive Rockville, Maryland 20852 United States of America  Date of deposit January 27, 1993  C. ADDITIONAL INDICATIONS (leave blank if not applicable)  This information is continued on an additional sheet  "In respect of those designations in which a European patent is sought, a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which the application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 23(4) EPC)."                                                                                       |           |
| Address of depositary institution (including postal code and country)  12301 Parklawn Drive Rockville, Maryland 20852 United States of America  Date of deposit January 27, 1993  C. ADDITIONAL INDICATIONS (leave blank if not applicable)  "In respect of those designations in which a European patent is sought, a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which the application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 23(4) EPC)."                                                                                                                                                                                                               |           |
| Address of depositary institution (including postal code and country)  12301 Parklawn Drive Rockville, Maryland 20852 United States of America  Date of deposit January 27, 1993  C. ADDITIONAL INDICATIONS (leave blank if not applicable)  "In respect of those designations in which a European patent is sought, a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which the application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 23(4) EPC)."                                                                                                                                                                                                               |           |
| 12301 Parklawn Drive Rockville, Maryland 20852 United States of America  Date of deposit January 27, 1993  C. ADDITIONAL INDICATIONS (leave blank if not applicable)  "In respect of those designations in which a European patent is sought, a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which the application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 23(4) EPC)."                                                                                                                                                                                                                                                                                      |           |
| Rockville, Maryland 20852 United States of America  Date of deposit  January 27, 1993  C. ADDITIONAL INDICATIONS (leave blank if not applicable)  This information is continued on an additional sheet  "In respect of those designations in which a European patent is sought, a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which the application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 23(4) EPC)."                                                                                                                                                                                                                                                    |           |
| January 27, 1993  75404 and 75403  C. ADDITIONAL INDICATIONS (leave blank if not applicable)  This information is continued on an additional sheet  "In respect of those designations in which a European patent is sought, a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which the application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 23(4) EPC)."                                                                                                                                                                                                                                                                                                        |           |
| "In respect of those designations in which a European patent is sought, a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which the application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 23(4) EPC)."                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
| "In respect of those designations in which a European patent is sought, a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which the application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 23(4) EPC)."                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
| a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which the application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 23(4) EPC)."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>3)</b> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
| The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications e.g., *Accessi Number of Deposit*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | on        |
| For receiving Office use only For International Bureau use only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| This sheet was received with the international application  This sheet was received by the International Bureau o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a:        |
| Authorized officer  Authorized officer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |

5

### WE CLAIM:

- 1. A method for inducing reproducible transient infertility in a mammal which comprises administering to a subject mammal a dose of a zona pellucida protein or fragment thereof, said proteins being selected from the group consisting of mammalian ZPA, mammalian ZPB, and combinations thereof, effective to stimulate production in said mammal of antibodies which recognize ZPA or ZPB protein of said mammal.
- 2. The method of claim 1, wherein said mammalian ZPA and ZPB are derived from the same mammalian species as the subject mammal.
  - 3. The method of claim 1 wherein said mammalian ZPA and ZPB are derived from a mammalian species other than the subject mammal.
- 4. The method of claim 1, wherein said mammalian ZPA or ZPB protein is selected from the group consisting of porcine, canine, feline, bovine, cynomolgus monkey, and human ZPA and ZPB.
  - 5. The method of claim 1 wherein said mammalian ZPA and mammalian ZPB are essentially devoid of ZPC.
- 6. The method of claim 1 wherein said zona pellucida protein is substantially only ZPA.
  - 7. The method of claim 1 wherein said zona pellucida protein is substantially only ZPB.

- 8. The method of claim 1 wherein said mammalian ZPA and ZPB is recombinant ZPA and ZPB.
- 9. The method of claim 1 wherein said antibodies have a titer of at least 1:250.
- 5 10. A method for inducing permanent sterility in a mammal which comprises administering to a subject mammal a dose of a recombinant mammalian ZPC protein or fragment thereof, effective to stimulate production in said mammal of antibodies which recognize the ZPC protein of said mammal.
- 10 11. The method of claim 10, wherein said mammalian ZPC protein is derived from the same species as the subject mammal.
  - 12. The method of claim 10 wherein said ZPC is derived from a mammalian species other than the subject mammal.
- 13. The method of claim 10, wherein said mammalian ZPCprotein is selected from the group consisting of porcine, rabbit, canine, feline, cynomolgus monkey, and bovine ZPC.
  - 14. The method of claim 10 wherein said ZPC protein is essentially devoid of ZPA and ZPB.
- 15. A pharmaceutical composition comprising, an effective contraceptive dose of a recombinant ZPC protein or an immunocontraceptively active fragment thereof.

- 16. A pharmaceutical composition comprising an effective contraceptive dose of a zona pellucida protein selected from the group consisting of mammalian ZPA and ZPB, and fragments thereof, and pharmaceutically acceptable carriers, diluents and adjuvants.
- 5 17. The pharmaceutical composition of claim 16 wherein said mammalian ZPA and ZPB are derived from the same mammalian species as the subject mammal.
- 18. The pharmaceutical composition of claim 16, wherein said mammalian ZPA and ZPB are selected from the group consisting of porcine, feline, canine, bovine, cynomolgus monkey, and human ZPA and ZPB.
  - 19. The pharmaceutical composition of claim 16 wherein said mammalian ZPA and ZPB are essentially devoid of ZPC.
- 20. The pharmaceutical composition of claim 16, wherein said mammalian ZPA and ZPB is recombinant ZPA and ZPB.
  - 21. A purified and isolated DNA sequence encoding porcine ZPA, ZPB, ZPC, or immunocontraceptively active fragments thereof, said DNA sequences being essentially as set out in SEQ ID NOS. 1, 3, and 5.
- 22. A purified and isolated DNA sequence encoding rabbit
   20 ZPC or an immunocontraceptively active fragment thereof, said DNA sequences being essentially as set out in SEQ ID NO. 7.

20

- 23. A purified and isolated DNA sequence encoding canine ZPA or ZPC, or immunocontraceptively active fragments thereof, said DNA sequences being essentially as set out in SEQ ID NOS. 9 and 11.
- A purified and isolated DNA sequence encoding feline
   ZPA, ZPB, or ZPC, or immunocontraceptively active fragments thereof, said
   DNA sequences being essentially as set out in SEQ ID NOS. 13, 15, and 17.
  - 25. A purified and isolated DNA sequence encoding bovine ZPA, ZPB, or ZPC, or immunocontraceptively active fragments thereof, said DNA sequences being essentially as set out in SEQ ID NOS. 19, 21, and 23.
- 10 26. A purified and isolated DNA encoding human ZPA or immunocontraceptively active fragments thereof, comprising DNA present in the human DNA inserts in lambda phage clones A1 (ATCC No. 75404) and A4 (ATCC No. 75403).
- 27. A purified and isolated DNA encoding human ZPA or an immunocontraceptively active fragment thereof, said sequence being essentially as set out as SEQ ID NO. 42.
  - 28. A purified isolated DNA encoding human ZPB or immunocontraceptively active fragments thereof, comprising human DNA present in the DNA inserts in lambda phage clones 1-1 (ATCC No. 75406) and 4-9 (ATCC No. 75405).
  - 29. A purified and isolated DNA encoding human ZPB or an immunocontraceptively active fragments thereof, said sequence being essentially as set out in SEQ ID NO. 40.

- 30. A vector containing the DNA sequence of claim 21.
- 31. A vector containing the DNA sequence of claim 22.
- 32. A vector containing the DNA sequence of claim 23.
- 33. A vector containing the DNA sequence of claim 24.
- 5 34. A vector containing the DNA sequence of claim 25.
  - 35. A vector containing the DNA sequence claim 26.
  - 36. A vector containing the DNA sequence of claim 27.
  - 37. A vector containing the DNA sequence of claim 28.
  - 38. A vector containing the DNA sequence of claim 29.
- 39. A procaryotic or eucaryotic host cell stably transformed or transfected with a vector according to claims 30, 31, 32, 33, 34, 35, 36, 37, or 38.
- 40. A polypeptide product of the expression in a procaryotic or eucaryotic host cell of a DNA sequence according to claims 21, 22, 23, 24, 25, 26, 27, 28 or 29.
  - 41. A process for the production of a recombinant mammalian zona pellucida protein or fragment thereof, said process comprising:

growing, under suitable nutrient conditions, procaryotic or eucaryotic host cells transformed or transfected with a DNA vector according to claims 30, 31, 32, 33, 34, 35, 36, or 37 and isolating desired polypeptide products of the expression of DNA sequences in said vector.

- 42. A method for inducing reproducible transient infertility in a mammal, the method comprising, administering to a subject mammal a contraceptively effective dose of an antibody directed to a zona pellucida protein, said antibody selected from the group consisting of anti-ZPA antibodies and anti-ZPB antibodies.
- 43. A method for inducing permanent sterility in a mammal, the method comprising administering to a subject mammal a contraceptively effective dose of an antibody directed to ZPC.









FIGURE, 4





# INTERNATIONAL SEARCH REPORT

Ir sational application No. PCT/US93/10851

| IPC(5)<br>US CL<br>According | ASSIFICATION OF SUBJECT MATTER  :A61K 37/02, 39/00, 39/395; CO7K 13/00; C12N :424/85.8, 88; 435/69.1, 69.3, 320.1; 536/23.1, 23 to International Patent Classification (IPC) or to bot | 3.5                                                                                                                                  |                                                          |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| B. FIEI                      | LDS SEARCHED                                                                                                                                                                           |                                                                                                                                      |                                                          |
| Minimum d                    | locumentation searched (classification system follow                                                                                                                                   | ed by classification symbols)                                                                                                        |                                                          |
| U.S. :                       | 424/85.8, 88; 435/69.1, 69.3, 320.1; 536/23.1, 23                                                                                                                                      | 5                                                                                                                                    |                                                          |
| Documenta                    | tion searched other than minimum documentation to t                                                                                                                                    | he extent that such documents are included                                                                                           | in the fields searched                                   |
| Electronic o                 | iata base consulted during the international search (                                                                                                                                  | name of data base and, where practicable                                                                                             | . search terms used)                                     |
| APS, DIA                     | ALOG, BIOSIS, EMBASE, MEDLINE, WPI<br>erms: harris, zona pellucida, ZP3, ZPA,ZPB, Z                                                                                                    | V                                                                                                                                    | , , , , , , , , , , , , , , , , , , , ,                  |
| C. DOC                       | UMENTS CONSIDERED TO BE RELEVANT                                                                                                                                                       |                                                                                                                                      |                                                          |
| Category*                    | Citation of document, with indication, where a                                                                                                                                         | appropriate, of the relevant passages                                                                                                | Relevant to claim No.                                    |
| Y                            | US,A, 4,996,297 (Dunbar) 26 f<br>document.                                                                                                                                             | February 1991, see entire                                                                                                            | 1-43                                                     |
| Y                            | WO 90/15624 (Dean) 27 Dec<br>document.                                                                                                                                                 | ember 1990, see entire                                                                                                               | 1-43                                                     |
| Y                            | WO 92/03548 (Van Duin) 05 document.                                                                                                                                                    | March 1992, see entire                                                                                                               | 1-43                                                     |
| Υ .                          | Proc. Natl. Acad. Sci., Volume M.E. Chamberlin et al., "Human Sperm Receptor", pages 6014-60                                                                                           | Homolog of the Mouse                                                                                                                 | 1-43                                                     |
|                              |                                                                                                                                                                                        |                                                                                                                                      |                                                          |
| X Furthe                     | er documents are listed in the continuation of Box C                                                                                                                                   | See patent family annex.                                                                                                             |                                                          |
| A* doct                      | cial categories of cited documents:  ument defining the general state of the art which is not considered e part of particular relevance                                                | "T" later document published after the inte-<br>date and not in conflict with the applica<br>principle or theory underlying the inve | tion but cited to understand the                         |
|                              | ier document published on or after the international filing date                                                                                                                       | "X" document of particular relevance; the considered novel or cannot be consider                                                     | claimed invention cannot be                              |
| cited                        | ument which may throw doubts on priority claim(s) or which is<br>d to establish the publication date of another citation or other<br>ial reason (as specified)                         | when the document is taken alone  'Y' document of particular relevance; the                                                          | ·                                                        |
| •                            | ament referring to an oral disclosure, use, exhibition or other                                                                                                                        | considered to involve an inventive<br>combined with one or more other such<br>being obvious to a person skilled in the               | step when the document is<br>documents, such combination |
| the                          | ament published prior to the international filing date but later than<br>priority date claimed                                                                                         | '&' document member of the same patent i                                                                                             |                                                          |
| ate of the a                 | ctual completion of the international search 1994                                                                                                                                      | MAR 11 1994                                                                                                                          | rch report                                               |
| Commission<br>Box PCT        | ailing address of the ISA/US<br>er of Patents and Trademarks                                                                                                                           | Authorized officer PHILLIP GAMBEL                                                                                                    | Varden for                                               |
| wamingwii,                   | D.C. 20231                                                                                                                                                                             | Telephone No. (702) 200 0106                                                                                                         | $\nu$                                                    |

### INTERNATIONAL SEARCH REPORT

I: national application No.
PCT/US93/10851

| C (Continu | ation). DOCUMENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                                      |                      |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Category*  | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                               | Relevant to claim No |
| Y          | Developmental Biology, Volume 127, issued October 1988, M.J. Ringuette et al., "Molecular Analysis of cDNA Coding for ZP3, a Sperm Binding Protein of the Mouse Zona Pellucida", page 287-295, see entire document.                              | 1-43                 |
| Y          | Biology of Reproduction, Volume 44, issued April 1992, J.A. Keenan et al., "Endocrine Response in Rabbits Immunized with Native Versus Deglycosylated Porcine Zona Pellucida Antigens, page 150-156, see entire document.                        | 1-43                 |
| ?          | Biology of Reproduction, Volume 41, issued December 1989, A.G. Sacco et al., "Porcine Zona Pellucida: Association of Sperm Receptor Activity with the alpha-Glycoprotein Component of the Mr=55,000 Family", pages 523-532, see entire document. | 1-43                 |
| Č          | J. Biol. Chem., Volume 262, issued 15 January 1987, E.C. Yurewicz et al., "Structural Characterization of the Mr=55,000 Antigen (ZP3) of Porcine Oocyte Zona Pellucida", pages 564-571, see entire document.                                     | 1-43                 |
|            |                                                                                                                                                                                                                                                  |                      |
|            |                                                                                                                                                                                                                                                  |                      |
|            |                                                                                                                                                                                                                                                  |                      |
|            |                                                                                                                                                                                                                                                  |                      |
|            |                                                                                                                                                                                                                                                  |                      |
|            | •                                                                                                                                                                                                                                                |                      |
|            |                                                                                                                                                                                                                                                  |                      |

### INTERNATIONAL SEARCH REPORT

Ir national application No. PCT/US93/10851

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

- I. Claims 1-9, 16-20, 40 and 42 drawn to a method of inducing transient infertility and pharmaceutical compositions comprising ZPA or ZPB proteins, classified in Class 424, subclass 88 and 85.8.
- II. Claims 10-15, 40 and 43 drawn to a method of inducing permanent sterility and pharmaceutical compositions with ZPC proteins, classified in Class 424, subclass 88 and 85.8.
- III. Claims 21-39 and 41, drawn to DNA and expression vectors for zona pellucida proteins and a process of producing recombinant proteins, classified in Class 435, subclasses 69.1 and 69.3, 320.1 and Class 536, subclasses 22.1 and 23.5.

The inventions listed as Groups I/II/III do not meet the requirements for Unity of Invention for the following reasons:

Group I is drawn to a first product and a first method of use, Group II is drawn to second product and a second method of use; and Group III is drawn to a third product. PCT Rule 13 does not provide for multiple products or methods within a single application. These inventions require different ingredients and process steps to accomplish the use of ZPA-, ZPB-, ZPC-specific proteins and ZPA-, ZPB-, ZPC-specific antibodies. Proteins (pharmaceutical compositions) and DNA (and its vectors) are distinct because their structures and modes of action are different. Purthermore, this application contains claims directed to the following patentably distinct species of the claimed inventions I, II and III: wherein the zona pellucida protein specificity is (a) ZPA, (b) ZPB or (c) ZPC. These species are distinct because their structures and modes of action are different; the substitution of one for another would not lead to the same effects.