In the claims:

1. (original) A process to produce polymers comprising contacting one or more monomer(s), a catalyst system, and a diluent comprising one or more hydrofluorocarbon(s) (HFC's) in a reactor comprising a bayonette.

- 2. (original) The process of claim 1, wherein the process is a slurry polymerization process and the reactor is a tubular reactor.
- 3. (currently amended) The process of any of the preceding claims claim 1, wherein the reactor further comprises a vertical cylindrical housing, an upper part, and a lower part.
- 4. (original) The process of claim 3, wherein the reactor further comprises connecting pipes for delivery of the catalyst system in the lower part, and connecting pipes for the removal of the polymer in the upper part.
- 5. (currently amended) The process of any of the preceding claims claim 1, wherein the reactor further comprises a shaft with blade mixers mounted along the height of the shaft.
- 6. (currently amended) The process of any of the preceding claims claim 1, wherein the bayonette comprises a plurality of tubes.
- 7. (original) The process of claim 6, wherein the tubes comprise sectors.
- 8. (currently amended) The process of any of the preceding claims claim 1, wherein the bayonette comprises tube disks and tube baffles.
- 9. (original) The process of claim 8, wherein the tube baffles comprise spaces between the sectors.

- 10. (currently amended) The process of elaim 8 or 9 claim 8, wherein the tube baffles comprise holes.
- 11. (currently amended) The process of any of claims 8-10 claim 8, wherein the reactor comprises a catalyst system delivery tube comprising an open end, the open end located in the space between the tube baffles.
- 12. (original) The process of claim 11, wherein the open end of the catalyst system delivery tube is angled in a downward direction toward a mixer.
- 13. (currently amended) The process of any of claims 8-10 claim 8, wherein the reactor comprises one or more catalyst system delivery tube(s) comprising open ends.
- 14. (original) The process of claim 13, wherein at least one open end is angled in a downward direction toward a mixer.
- 15. (currently amended) The process of any of the preceding claims claim 1, wherein the reactor comprises a mixer located adjacent to a tube baffle.
- 16. (currently amended) The process of any of the preceding claims claim 1, wherein the one or more monomer(s) comprise an-isoolefin, preferably isobutylene, and a multiolefin, preferably a conjugated diene, more preferably isoprene.
- 17. (currently amended) The process of any of the preceding claims claim 1, where the one or more monomer(s) comprise an isoolefin, preferably isobutylene, and an alkylstyrene, preferably methylstyrene, more preferably para-methylstyrene.
- 18. (currently amended) The process of any of the preceding claims claim 1, wherein one or more hydrofluorocarbon(s) is represented by the formula: $C_xH_yF_z$ wherein x is an integer from 1 to 40 and y and z are integers of one or more.
- 19. (original) The process of claim 18, wherein x is from 1 to 10.

- 20. (original) The process of claim 18, wherein x is from 1 to 6.
- 21. (original) The process of claim 18, wherein x is from 1 to 3.
- 22. (currently amended) The process of any of claims 1-17 claim 1, wherein the one or more hydrofluorocarbon(s) is independently selected from the group consisting of fluoromethane; difluoromethane; trifluoromethane; fluoroethane; 1,1-difluoroethane; 1,2-difluoroethane; 1,1,1-trifluoroethane; 1,1,2-trifluoroethane; 1,1,1,2tetrafluoroethane; 1,1,2,2-tetrafluoroethane; 1,1,1,2,2-pentafluoroethane; 1fluoropropane; 2-fluoropropane; 1,1-difluoropropane; 1,2-difluoropropane; 1,3difluoropropane; 2,2-difluoropropane; 1,1,2-trifluoropropane; 1,1,3-trifluoropropane; 1,2,2-trifluoropropane; 1,2,3-trifluoropropane; tetrafluoropropane; 1,1,1,3-tetrafluoropropane; 1,1,2,2-tetrafluoropropane; 1,1,2,3tetrafluoropropane; 1,1,3,3-tetrafluoropropane; 1,2,2,3-tetrafluoropropane; 1,1,1,2,2-1,1,1,2,3-pentafluoropropane; 1,1,1,3,3-pentafluoropropane; pentafluoropropane; 1,1,2,2,3-pentafluoropropane; 1,1,2,3,3-pentafluoropropane; 1,1,1,2,2,3hexafluoropropane; 1,1,1,2,3,3-hexafluoropropane; 1,1,1,3,3,3-hexafluoropropane; 1,1,1,2,2,3,3-heptafluoropropane; 1,1,1,2,3,3,3-heptafluoropropane; 1-fluorobutane; 2-fluorobutane; 1,1-difluorobutane; 1,2-difluorobutane; 1,4difluorobutane; 2,2-difluorobutane; 2,3-difluorobutane; 1,1,1-trifluorobutane; 1,1,2trifluorobutane; 1,1,3-trifluorobutane; 1,1,4-trifluorobutane; 1,2,2-trifluorobutane; 1,2,3-trifluorobutane; 1,3,3-trifluorobutane; 2,2,3-trifluorobutane; 1,1,1,2tetrafluorobutane; 1,1,1,3-tetrafluorobutane; 1,1,1,4-tetrafluorobutane; 1,1,2,2-1,1,2,4-tetrafluorobutane; tetrafluorobutane; 1,1,2,3-tetrafluorobutane; 1,1,3,3tetrafluorobutane; 1,1,3,4-tetrafluorobutane; 1,1,4,4-tetrafluorobutane; 1,2,2,3tetrafluorobutane; 1,2,2,4-tetrafluorobutane; 1,2,3,3-tetrafluorobutane; 1,2,3,4tetrafluorobutane; 2,2,3,3-tetrafluorobutane; 1,1,1,2,2-pentafluorobutane; 1,1,1,2,3pentafluorobutane; 1,1,1,2,4-pentafluorobutane; 1,1,1,3,3-pentafluorobutane; 1,1,1,3,4-pentafluorobutane; 1,1,1,4,4-pentafluorobutane; 1,1,2,2,3pentafluorobutane; 1,1,2,2,4-pentafluorobutane; 1,1,2,3,3-pentafluorobutane; 1,1,2,4,4-pentafluorobutane; 1,1,3,3,4-pentafluorobutane; 1,2,2,3,3pentafluorobutane; 1,2,2,3,4-pentafluorobutane; 1,1,1,2,2,3-hexafluorobutane; 1,1,1,2,2,4-hexafluorobutane; 1,1,1,2,3,3-hexafluorobutane, 1,1,1,2,3,4-

1,1,1,2,4,4-hexafluorobutane; 1,1,1,3,3,4-hexafluorobutane; hexafluorobutane; 1,1,1,3,4,4-hexafluorobutane; 1,1,1,4,4,4-hexafluorobutane; 1,1,2,2,3,3hexafluorobutane; 1,1,2,2,3,4-hexafluorobutane; 1,1,2,2,4,4-hexafluorobutane; 1,1,2,3,3,4-hexafluorobutane; 1,1,2,3,4,4-hexafluorobutane; 1,2,2,3,3,4hexafluorobutane; 1,1,1,2,2,3,3-heptafluorobutane; 1,1,1,2,2,4,4-heptafluorobutane; 1,1,1,2,2,3,4-heptafluorobutane; 1,1,1,2,3,3,4-heptafluorobutane; 1,1,1,2,3,4,4heptafluorobutane; 1,1,1,2,4,4,4-heptafluorobutane; 1,1,1,3,3,4,4-heptafluorobutane; 1,1,1,2,2,3,3,4-octafluorobutane; 1,1,1,2,2,3,4,4-octafluorobutane; 1,1,1,2,3,3,4,4octafluorobutane; 1,1,1,2,2,4,4,4-octafluorobutane; 1,1,1,2,3,4,4,4-octafluorobutane; 1.1.1.2.2.3.3.4.4-nonafluorobutane; 1,1,1,2,2,3,4,4,4-nonafluorobutane; 1-fluoro-2methylpropane; 1,1-difluoro-2-methylpropane; 1,3-difluoro-2-methylpropane; 1,1,1trifluoro-2-methylpropane; 1.1.3-trifluoro-2-methylpropane; 1.3-difluoro-2-(fluoromethyl)propane; 1,1,1,3-tetrafluoro-2-methylpropane; 1,1,3,3-tetrafluoro-2-1,1,3-trifluoro-2-(fluoromethyl)propane; 1,1,1,3,3-pentafluoro-2methylpropane; methylpropane; 1,1,3,3-tetrafluoro-2-(fluoromethyl)propane; 1,1,1,3-tetrafluoro-2-(fluoromethyl)propane; fluorocyclobutane; 1,1-difluorocyclobutane; 1,2difluorocyclobutane; 1,3-difluorocyclobutane; 1,1,2-trifluorocyclobutane; 1,1,3trifluorocyclobutane; 1,2,3-trifluorocyclobutane; 1,1,2,2-tetrafluorocyclobutane; 1,1,3,3-tetrafluorocyclobutane; 1,1,2,2,3-pentafluorocyclobutane; 1,1,2,3,3pentafluorocyclobutane; 1,1,2,2,3,3-hexafluorocyclobutane; 1,1,2,2,3,4hexafluorocyclobutane; 1,1,2,3,3,4-hexafluorocyclobutane; 1,1,2,2,3,3,4heptafluorocyclobutane and mixtures thereof.

- 23. (currently amended) The process of any of claims 1-17 claim 1, wherein the one or more hydrofluorocarbon(s) is independently selected from monofluoromethane, difluoromethane, trifluoromethane, monofluoroethane, 1,1-difluoroethane, 1,1,1-trifluoroethane, 1,1,1,2-tetrafluoroethane, 1,1,1,2,2, pentafluoroethane, and mixtures thereof.
- 24. (currently amended) The process of any of the preceding claims claim 1, wherein the diluent comprises from 15 to 100 volume % HFC based upon the total volume of the diluent.

- 25. (currently amended) The process of any of the preceding claims claim 1, wherein the diluent comprises from 20 to 100 volume % HFC based upon the total volume of the diluent.
- 26. (currently amended) The process of any of the preceding claims claim 1, wherein the diluent comprises from 25 to 100 volume % HFC based upon the total volume of the diluent.
- 27. (currently amended) The process of any of the preceding claims claim 1, wherein the diluent further comprises a hydrocarbon, a non-reactive olefin, and/or an inert gas.
- 28. (original) The process of claim 27, wherein the hydrocarbon is a halogenated hydrocarbon other than an HFC.
- 29. (original) The process of claim 28, wherein the halogenated hydrocarbon is methyl chloride.
- 30. (currently amended) The process of any of the preceding claims claim 1, wherein the catalyst system comprises one or more Lewis acid(s) represented by the formula MX₄; wherein M is a Group 4, 5, or 14 metal; and each X is a halogen.
- 31. (currently amended) The process of any of claims 1-29 claim 1, wherein the catalyst system comprises one or more Lewis acid(s) represented by the formula MR_nX_{4-n}; wherein M is Group 4, 5, or 14 metal; each R is a monovalent C₁ to C₁₂ hydrocarbon radical independently selected from the group consisting of an alkyl, aryl, arylalkyl, alkylaryl and cycloalkyl radicals; n is an integer from 0 to 4; and each X is a halogen.
- 32. (currently amended) The process of any of claims 1-29 claim 1, wherein the catalyst system comprises one or more Lewis acid(s) represented by the formula $M(RO)_nR'_mX_{4-(m+n)}$;

wherein M is Group 4, 5, or 14 metal;

each RO is a monovalent C_1 to C_{30} hydrocarboxy radical independently selected from the group consisting of an alkoxy, aryloxy, arylalkoxy, alkylaryloxy radicals; each R' is a monovalent C_1 to C_{12} hydrocarbon radical independently selected from the group consisting of an alkyl, aryl, arylalkyl, alkylaryl and cycloalkyl radicals; n is an integer from 0 to 4; m is an integer from 0 to 4, wherein the sum of n and m is not more than 4; and

m is an integer from 0 to 4, wherein the sum of n and m is not more than 4; and each X is a halogen.

33. (currently amended) The process of any of claims 1-29 claim 1, wherein the catalyst system comprises one or more Lewis acid(s) represented by the formula $M(RC=OO)_nR'_mX_{4-(m+n)};$

wherein M is Group 4, 5, or 14 metal;

each RC=OO is a monovalent C₂ to C₃₀ hydrocarbacyl radical independently selected from the group consisting of an alkacyloxy, arylacyloxy, arylacyloxy, alkylarylacyloxy radicals;

each R' is a monovalent C_1 to C_{12} hydrocarbon radical independently selected from the group consisting of an alkyl, aryl, arylalkyl, alkylaryl and cycloalkyl radicals; n is an integer from 0 to 4;

m is an integer from 0 to 4, wherein the sum of n and m is not more than 4; and each X is a halogen.

- 34. (currently amended) The process of any of claims 1-29 claim 1, wherein the catalyst system comprises one or more Lewis acid(s) represented by the formula MOX₃; wherein M is a Group 5 metal; and each X is a halogen.
- 35. (currently amended) The process of any of claims 1-29 claim 1, wherein the catalyst system comprises one or more Lewis acid(s) represented by the formula MX₃; wherein M is a Group 13 metal; and each X is a halogen.

36. (currently amended) The process of any of claims 1-29 claim 1, wherein the catalyst system comprises one or more Lewis acid(s) represented by the formula MR_nX_{3-n}; wherein M is a Group 13 metal; each R is a monovalent C₁ to C₁₂ hydrocarbon radical independently selected from the group consisting of an alkyl, aryl, arylalkyl, alkylaryl and cycloalkyl radicals; n is an integer from 1 to 3; and each X is a halogen.

37. (currently amended) The process of any of claims 1-29 claim 1, wherein the catalyst system comprises one or more Lewis acid(s) represented by the formula $M(RO)_nR'_mX_{3-(m+n)}$;

wherein M is a Group 13 metal;

n is an integer from 0 to 3;

each RO is a monovalent C_1 to C_{30} hydrocarboxy radical independently selected from the group consisting of an alkoxy, aryloxy, arylalkoxy, alkylaryloxy radicals; each R' is a monovalent C_1 to C_{12} hydrocarbon radical independently selected from the group consisting of an alkyl, aryl, arylalkyl, alkylaryl and cycloalkyl radicals;

m is an integer from 0 to 3, wherein the sum of n and m is from 1 to 3; and each X is a halogen.

38. (currently amended) The process of any of claims 1-29 claim 1, wherein the catalyst system comprises one or more Lewis acid(s) represented by the formula M(RC=OO)_nR'_mX_{3-(m+n)}:

wherein M is a Group 13 metal;

each RC=OO is a monovalent hydrocarbacyl radical independently selected from the group independently selected from the C₂ to C₃₀ group consisting of an alkacyloxy, arylacyloxy, arylacyloxy, alkylarylacyloxy radicals;

each R' is a monovalent C_1 to C_{12} hydrocarbon radical independently selected from the group consisting of an alkyl, aryl, arylalkyl, alkylaryl and cycloalkyl radicals; n is an integer from 0 to 3;

m is a integer from 0 to 3, wherein the sum of n and m is from 1 to 3; and each X is a halogen.

39. (currently amended) The process of any of claims 1-29 claim 1, wherein the catalyst system comprises one or more Lewis acid(s) represented by the formula MX_y; wherein M is a Group 15 metal; each X is a halogen; and y is 3, 4 or 5.

- 40. (currently amended) The process of any of claims 1-29 claim 1, wherein the catalyst system comprises one or more Lewis acid(s) represented by the formula MR_nX_{y-n}; wherein M is a Group 15 metal; each R is a monovalent C₁ to C₁₂ hydrocarbon radical independently selected from the group consisting of an alkyl, aryl, arylalkyl, alkylaryl and cycloalkyl radicals; n is an integer from 0 to 4; y is 3, 4 or 5, wherein n is less than y; and each X is a halogen.
- 41. (currently amended) The process of any of claims 1-29 claim 1, wherein the catalyst system comprises one or more Lewis acid(s) represented by the formula M(RO)_nR'_mX_{y-(m+n)}; wherein M is a Group 15 metal, each RO is a monovalent C₁ to C₃₀ hydrocarboxy radical independently selected from the group consisting of an alkoxy, aryloxy, arylalkoxy, alkylaryloxy radicals; each R' is a monovalent C₁ to C₁₂ hydrocarbon radical independently selected from the group consisting of an alkyl, aryl, arylalkyl, alkylaryl and cycloalkyl radicals; n is an integer from 0 to 4; m is an integer from 0 to 4; y is 3, 4 or 5, wherein the sum of n and m is less than y; and each X is a halogen.
- 42. (currently amended) The process of any of claims 1-29 claim 1, wherein the catalyst system comprises one or more Lewis acid(s) represented by the formula $M(RC=OO)_nR'_mX_{y-(m+n)};$ wherein M is a Group 15 metal;

each RC=OO is a monovalent C_2 to C_{30} hydrocarbacyloxy radical independently selected from the group consisting of an alkacyloxy, arylacyloxy, arylacyloxy, alkylarylacyloxy radicals;

each R' is a monovalent C_1 to C_{12} hydrocarbon radical independently selected from the group consisting of an alkyl, aryl, arylalkyl, alkylaryl and cycloalkyl radicals;

n is an integer from 0 to 4;

m is an integer from 0 to 4;

y is 3, 4 or 5, wherein the sum of n and m is less than y; and each X is a halogen.

(currently amended) The process of any of claims 1-29 claim 1, wherein the catalyst 43. system comprises one or more Lewis acid(s) independently selected from the group consisting of titanium tetrachloride, titanium tetrabromide, vanadium tetrachloride, tin tetrachloride, zirconium tetrachloride, titanium bromide trichloride, titanium dibromide dichloride, vanadium bromide trichloride, tin chloride trifluoride, benzyltitanium trichloride, dibenzyltitanium dichloride, benzylzirconium trichloride, methyltitanium dibenzylzirconium dibromide, trichloride, dimethyltitanium difluoride, dimethyltin dichloride, phenylvanadium trichloride, methoxytitanium trichloride. n-butoxytitanium trichloride, di(isopropoxy)titanium dichloride, phenoxytitanium tribromide, phenylmethoxyzirconium trifluoride, methyl methoxytitanium dichloride, methyl methoxytin dichloride, benzyl isopropoxyvanadium dichloride, acetoxytitanium trichloride, benzoylzirconium tribromide, benzoyloxytitanium trifluoride, isopropoyloxytin trichloride, methyl acetoxytitanium dichloride, benzyl benzoyloxyvanadium chloride, vanadium oxytrichloride, aluminum trichloride, boron trifluoride, gallium trichloride, indium trifluoride, ethylaluminum dichloride, methylaluminum dichloride, benzylaluminum dichloride, isobutylgallium dichloride, diethylaluminum chloride, dimethylaluminum chloride, ethylaluminum sesquichloride, methylaluminum sesquichloride triethylaluminum, methoxyaluminum trimethylaluminum, dichloride, ethoxyaluminum dichloride, 2,6-di-tert-butylphenoxyaluminum dichloride, methoxy methylaluminum chloride, 2,6-di-tert-butylphenoxy methylaluminum chloride, isopropoxygallium dichloride, phenoxy methylindium fluoride, acetoxyaluminum dichloride, benzoyloxyaluminum dibromide, benzoyloxygallium difluoride, methyl

acetoxyaluminum chloride, isopropoyloxyindium trichloride, antimony hexachloride, antimony hexafluoride, arsenic pentafluoride, antimony chloride pentafluoride, trifluoride, bismuth trichloride arsenic fluoride tetrachloride, arsenic tetraphenylantimony chloride, triphenylantimony dichloride, tetrachloromethoxyantimony, dimethoxytrichloroantimony, dichloromethoxyarsine, chlorodimethoxyarsine, difluoromethoxyarsine, acetatotetrachloroantimony, (benzoato) tetrachloroantimony, and bismuth acetate chloride.

- 44. (currently amended) The process of any of claims 1-29 claim 1, wherein the catalyst system comprises one or more Lewis acid(s) independently selected from the group consisting of aluminum trichloride, aluminum tribromide, ethylaluminum dichloride, ethylaluminum sesquichloride, diethylaluminum chloride, methylaluminum dichloride, methylaluminum sesquichloride, dimethylaluminum chloride, boron trifluoride, and titanium tetrachloride.
- 45. (currently amended) The process of any of claims 1-29 claim 1, wherein the catalyst system comprises a Lewis acid that is not a compound represented by formula MX₃, where M is a group 13 metal, X is a halogen.
- 46. (currently amended) The process of any of the preceding claims claim 1, wherein the catalyst system comprises a hydrogen halide, a carboxylic acid, a carboxylic acid halide, a sulfonic acid, an alcohol, a phenol, a polymeric halide, a tertiary alkyl halide, a tertiary aralkyl halide, a tertiary alkyl ester, a tertiary aralkyl ester, a tertiary alkyl ether, a tertiary aralkyl ether, an alkyl halide, an aryl halide, an alkylaryl halide or an arylalkylacid halide.
- 47. (currently amended) The process of any of claims 1-45 claim 1, wherein the catalyst system comprises one or more initiator(s) independently selected from the group consisting of HCl, H₂O, methanol, (CH₃)₃CCl, C₆H₅C(CH₃)₂Cl, (2-Chloro-2,4,4-trimethylpentane) and 2-chloro-2-methylpropane.
- 48. (currently amended) The process of any of claims 1-45 claim 1, wherein the catalyst system comprises one or more initiator(s) independently selected from the group

consisting of hydrogen chloride, hydrogen bromide, hydrogen iodide, acetic acid, propanoic acid, butanoic acid; cinnamic acid, benzoic acid, 1-chloroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoroacetic acid, p-chlorobenzoic acid, pfluorobenzoic acid, acetyl chloride, acetyl bromide, cinnamyl chloride, benzoyl chloride, benzoyl bromide, trichloroacetylchloride, trifluoroacetylchloride, pfluorobenzoylchloride, methanesulfonic acid, trifluoromethanesulfonic trichloromethanesulfonic acid, p-toluenesulfonic acid, methanesulfonyl chloride, methanesulfonyl bromide. trichloromethanesulfonyl chloride, trifluoromethanesulfonyl chloride, p-toluenesulfonyl chloride, methanol, ethanol, propanol, 2-propanol, 2-methylpropan-2-ol, cyclohexanol, benzyl alcohol, phenol, 2methylphenol, 2,6-dimethylphenol, p-chlorophenol, p-fluorophenol, 2,3,4,5,6pentafluorophenol, and 2-hydroxynaphthalene.

49. (currently amended) The process of any of claims 1-45 claim 1, wherein the catalyst system comprises one or more initiator(s) independently selected from the group consisting of 2-chloro-2,4,4-trimethylpentane; 2-bromo-2,4,4-trimethylpentane; 2-2-bromo-2-methylpropane; 2-chloro-2,4,4,6,6chloro-2-methylpropane; 2-bromo-2,4,4,6,6-pentamethylheptane; pentamethylheptane; 1-chloro-1methylethylbenzene; 1-chloroadamantane; 1-chloroethylbenzene; 1, 4-bis(1-chloro-1methylethyl) benzene; 5-tert-butyl-1,3-bis(1-chloro-1-methylethyl) benzene; 2acetoxy-2,4,4-trimethylpentane; 2-benzoyloxy-2,4,4-trimethylpentane; 2-acetoxy-2methylpropane; 2-benzoyloxy-2-methylpropane; 2-acetoxy-2,4,4,6,6pentamethylheptane; 2-benzoyl-2,4,4,6,6-pentamethylheptane; 1-acetoxy-1methylethylbenzene; 1-aceotxyadamantane; 1-benzoyloxyethylbenzene; 1,4-bis(1acetoxy-1-methylethyl) benzene; 5-tert-butyl-1,3-bis(1-acetoxy-1-methylethyl) benzene; 2-methoxy-2,4,4-trimethylpentane; 2-isopropoxy-2,4,4-trimethylpentane; 2methoxy-2-methylpropane; 2-benzyloxy-2-methylpropane; 2-methoxy-2,4,4,6,6pentamethylheptane; 2-isopropoxy-2,4,4,6,6-pentamethylheptane; 1-methoxy-1methylethylbenzene; 1-methoxyadamantane; 1-methoxyethylbenzene; 1,4-bis(1-5-tert-butyl-1,3-bis(1-methoxy-1-methylethyl) methoxy-1-methylethyl) benzene; benzene, and 1,3,5-tris(1-chloro-1-methylethyl) benzene.

50. (currently amended) The process of any of the preceding claims claim 1, wherein the catalyst system comprises a weakly-coordinating anion.

- 51. (currently amended) The process of any of the preceding claims claim 1, wherein the catalyst system comprises one or more initiator(s) comprise comprising greater than 30 ppm water (based upon weight).
- 52. (currently amended) The process of any of the preceding claims claim 1, wherein the one or more monomer(s) is independently selected from the group consisting of olefins, alpha-olefins, disubstituted olefins, isoolefins, conjugated dienes, non-conjugated dienes, styrenics, substituted styrenics, and vinyl ethers.
- 53. (currently amended) The process of any of the preceding claims claim 1, wherein the one or more monomer(s) is independently selected from the group consisting of isobutylene, styrene, para-alkylstyrene, para-methylstyrene, alpha-methyl styrene, divinylbenzene, diisopropenylbenzene, isobutylene, 2-methyl-1-butene, 3-methyl-1-butene, 2-methyl-2-pentene, isoprene, butadiene, 2,3-dimethyl-1,3-butadiene, β-pinene, myrcene, 6,6-dimethyl-fulvene, hexadiene, cyclopentadiene, methyl cyclopentadiene, piperylene, methyl vinyl ether, ethyl vinyl ether, and isobutyl vinyl ether.
- 54. (currently amended) The process of any of the preceding claims claim 1, wherein the one or more monomer(s) comprise at least 80 wt% isobutylene based upon the total weight of the one or more monomer(s).
- 55. (currently amended) The process of any of the preceding claims claim 1, wherein the polymerization temperature is from 15°C to -100°C.
- 56. (currently amended) The process of any of the preceding claims claim 1, wherein the polymerization temperature is from -30°C to -70°C.

57.	(currently amended)	The process of any of the preceding claims claim 1, wherein the	e
	polymerization temperature is from -40°C to -60°C.		

- 58. (cancelled)
- 59. (cancelled)