Second-order Probability, Accuracy and Weight of Evidence

Rafal Urbaniak and Marcello Di Bello

November 24, 2022

Contents

1	Intro	oduction	2	
2		probabilisms		
	2.1	Precise probabilism	6	
		Imprecise probabilism		
	2.3	Higher-order probabilism	9	
3	Objections 10			
	3.1	The Taroni-Sjerps debate	10	
		An ccuracy-based argument		
		Conceptual issues		
Re	eferen	ces	16	

DISCLAIMER: This is a draft of work in progress, please do not cite or distribute without permission.

need to write one when done

this is what a comment about what will go into book looks like; will be globally supressed when generating latex for the journal paper, don't worry about deleting them.

1 Introduction

A defendant in a criminal case may face multiple items of incriminating evidence whose strength can at least sometimes be assessed using probabilities. For example, consider a murder case in which the police recover trace evidence that matches the defendant. Hair found at the crime scene matches the defendant's hair (call this evidence hair). In addition, the defendant owns a dog whose fur matches the dog fur found in a carpet wrapped around one of the bodies (call this evidence dog). The two matches suggest that the defendant (and the defendant's dog) must be the source of the crime traces (call this hypothesis source). But how strong is this evidence, really? What are the fact-finders to make of it?

The standard story among legal probabilists goes something like this. To evaluate the strength of the two items of match evidence, we must find the value of the likelihood ratio:

$$\frac{\mathsf{P}(\mathsf{dog} \land \mathsf{hair}|\mathsf{source})}{\mathsf{P}(\mathsf{dog} \land \mathsf{hair}|\neg\mathsf{source})}$$

For simplicity, the numerator can be equated to one. To fill in the denominator, an expert provides the relevant random match probabilities. Suppose the expert testifies that the probability of a random person's hair matching the reference sample is about 0.0253, and the probability of a random dog's hair matching the reference sample happens to be about the same, 0.0256.² Presumably, the two matches are independent lines of evidence. In other words, their random match probabilities must be independent of each other conditional on the source hypothesis. Then, to evaluate the overall impact of the evidence on the source hypothesis, you calculate:

$$\begin{split} \mathsf{P}(\mathsf{dog} \land \mathsf{hair}|\neg\mathsf{source}) &= \mathsf{P}(\mathsf{dog}|\neg\mathsf{source}) \times \mathsf{P}(\mathsf{hair}|\neg\mathsf{source}) \\ &= 0.0252613 \times 0.025641 = 6.4772626 \times 10^{-4} \end{split}$$

This is a very low number. Two such random matches would be quite a coincidence. Following our advice from Chapter 5, the expert facilitates your understanding of how this low number should be interpreted. They show you how the items of match evidence change the probability of the source hypothesis given a range of possible priors (Figure 1). The posterior of .99 is reached as soon as the prior is higher than 0.061.³ While perhaps not sufficient for outright belief in the source hypothesis, the evidence seems extremely strong: a minor additional piece of evidence could make the case against the defendant overwhelming.

¹The hair evidence and the dog fur evidence are stylized after two items of evidence in the notorious 1981 Wayne Williams case (Deadman, 1984b, 1984a).

²Probabilities have been slightly but not unrealistically modified to be closer to each other in order to make a conceptual point. The original probabilities were 1/100 for the dog fur, and 29/1148 for Wayne Williams' hair. We modified the actual reported probabilities slightly to emphasize the point that we will elaborate further on: the same first-order probabilities, even when they sound precise, may come with different degrees of second-order uncertainty.

³These calculations assume that the probability of a match if the suspect and the suspect's dog are the sources is one.

Figure 1: Impact of dog fur and human hair evidence on the prior, point estimates.

Unfortunately, this analysis leaves out something crucial. You reflect on what you have been told and ask the expert: how can you know the random match probabilities with such precision? Shouldn't we also be mindful of the uncertainty that may affect these numbers? The expert agrees, and tells you that in fact the random match probability for the hair evidence is based on 29 matches found in a database of size 1148, while the random match probability for the dog evidence is based on finding two matches in a reference database of size 78.

The expert's answer makes apparent that the precise random match probabilities do not tell the whole story. Perhaps, the information about sample sizes is good enough and now you know how to use the evidence properly.⁴ But if you are like most human beings, you can't. What to do, then?

You ask the expert for guidance: what are reasonable ranges of the random match probabilities? What are the worst-case and best-case scenarios? The expert responds with 99% credible intervals—specifically, starting with uniform priors, the ranges of the random match probabilities are (.015,.037) for hair evidence and (.002, .103) for fur evidence. With this information, you redo your calculations using the upper bounds of the two intervals: .037 and .103. The rationale for choosing the upper bounds is that these numbers result in random match probabilities that are most favorable to the defendant. Your new calculation yields the following:

$$P(dog \land hair | \neg source) = .037 \times .103 = .003811.$$

This number is around 5.88 times greater than the original estimate. Now the prior probability of the source hypothesis needs to be higher than 0.274 for the posterior probability to be above .99 (Figure 2). So you are no longer convinced that the two items of match evidence are strongly incriminating.

added this bit to draw attention to this aspect of the Taroni debate, to come back to this

⁴This is what, effectively, CITE TARONI seem to suggest when they insist the fact-finders should be simply given point estimates and information about the study set-up, such as sample size. As will transpire, we disagree.

⁵Roughly, the 99% credible interval is the narrowest interval to which the expert thinks the true parameter belongs with probability .99. For a discussion of what credible intervals are, how they differ from confidence intervals, and why confidence intervals should not be used, see Chapter 3.

Figure 2: Impact of dog fur and human hair evidence on the prior, charitable reading.

This result is puzzling. Are the two items of match evidence strongly incriminating evidence (as you initially thought) or somewhat weaker (as the new calculation suggests)? For one thing, using precise random match probabilities might be too unfavorable toward the defendant. On the other hand, your new assessment of the evidence based on the upper bounds might be too *favorable* toward them. Is there a middle way that avoids overestimating and underestimating the strength of the evidence?

To see what this middle path looks like, we should reconsider the calculations you just did. You made an important blunder: you assumed that because the worst-case probability for one event is x and the worst-case probability for another independent event is y, the worst-case probability for their conjunction is xy. But this conclusion does not follow if the margin of error (credible interval) is fixed. The intuitive reason is simple: just because the probability of an extreme (or larger absolute) value x for one variable X is .01, and so it is for the value y of another independent variable Y, it does not follow that the probability that those two independent variables take values x and y simultaneously is the same. This probability is actually much smaller. The interval presentation instead of doing us good led us into error.

In general, it is impossible to calculate the credible interval for the joint distribution based solely on the individual credible intervals corresponding to the individual events. We need additional information: the distributions that were used to calculate the intervals for the probabilities of the individual events. In our example, if you additionally knew, for instance, that the expert used beta distributions (as, arguably, they should in this context), you could in principle calculate the 99% credible interval for the joint distribution. It usually will not be the same as whatever the results of multiplication of individual interval edges, and it is unlikely that a human fact-finder would be able to correctly run such calculations in their head even if they knew the functional form of the distributions used. ⁶ So providing the fact-finder with individual intervals, even if further information about the distributions is provided, might easily mislead.⁷

As it turns out, given the reported sample sizes, the 99% credible interval for the probability $P(dog \land hair | \neg source)$ is (0.000023, 0.002760).

The upper bound of this interval would then require the prior probability of the source hypothesis to be above .215 for the posterior to be above .99. On this interpretation, the two items of match evidence are still not quite as strong as you initially thought, but stronger than what your second calculation indicated.

Still, the interval approach—even the corrected version just outlined—suffers from a more general problem. Working with intervals might be useful if the underlying distributions are fairly symmetrical. But in our case, they might not be. For instance, Figure 3 depicts beta densities for dog fur and human hair, together with sampling-approximated density for the joint evidence. The distribution for the joint evidence is not symmetric. If you were only informed about the edges of the interval, you would be

Can you google to see if there is any such study?

the fn was repetitive, compare to fn 5

⁶Also, in principle, in more complex contexts, we need further information about how the items of evidence are related if we cannot take them to be independent.

⁷Investigation of the extent to which the individual interval presentation is misleading would be an interesting psychological study.

oblivious to the fact that the most likely value (and the bulk of the distribution, really) does not simply lie in the middle between the edges. Just because the parameter lies in an interval with some posterior probability, it does not mean that the ranges near the edges of the interval are equally likely—the bulk of the density might very well be closer to one of the edges. Therefore, only relying on the edges can lead one to either overestimate or underestimate the probabilities at play. This also means that—following our advice on how to illustrate the impact of evidence on prior probabilities—a better representation of the dependence of the posterior on the prior should comprise multiple possible sampled lines whose density mirrors the density around the probability of the evidence (Figure 4).

Conditional densities for individual items of evidence if the source hypothesis is false

Figure 3: Beta densities for individual items of evidence and the resulting joint density with .99 and .9 highest posterior density intervals, assuming the sample sizes as discussed and independence, with uniform priors.

Figure 4: 300 lines illustrating the uncertainty about the dependence of the posterior on the prior given aleatory uncertainty about the evidence, with the distribution of the minimal priors required for the posterior to be above .99.

This, then, is the main claim of this chapter: whenever density estimates for the probabilities of interest are available (and they should be available for match evidence and many other items of scientific

evidence if the reliability of a given type of evidence has been properly studied), those densities should be reported for assessing the strength of the evidence. This approach avoids hiding actual aleatory uncertainties under the carpet. It also allows for a balanced assessment of the evidence, whereas using point estimates or intervals may exaggerate or underestimate the value of the evidence.

In what follows, we expand on this idea in different directions. Section 2 engages with the philosophical debate about precise and imprecise probabilism. We argue that both options are problematic and should be superseded by a higher-order approach to probability whenever possible. Section 3 revisits a recent discussion in the forensic science literature. A prominent view has it that trial experts, even when they use densities, should present only first-order probabilities. We disagree and show that reasons of accuracy maximization sometimes recommend relying on higher-order probabilities. Section ?? turns to some legal applications of higher-order probabilism. We focus on two topics: first, the role of higher-order probabilities and false positive rates in the evaluation of DNA evidence; second, how complex bodies of evidence can be represented by what we call higher-order Bayesian networks.

Before we dive in, one more remark: ost of the time, mathematically, we do not propose anything radically new—we just put together some of the items from the standard Bayesian toolkit. The novelty is rather in our arguing that that these tools are under-appreciated in the legal scholarship and should be properly used to incorporate second-order uncertainties in evidence evaluation and incorporation. Perhaps a minor exception is our explication of the notion of weight, but even here many related notions are available in information theory, and the novelty here is not technical, but rather in the argument that they also are under-appreciated in legal scholarship.

added this par to preemt Kadane's style pickiness

2 Three probabilisms

In introduction we sketched three probabilistic approaches that one might take for assessing the value of the evidence presented at trial. The first approach uses precise probabilities; the second uses intervals; the third uses distributions over probabilities. By relying on an example featuring two items of match evidence, we suggested that the third approach is preferable. This section buttresses this claim by providing principled, philosophical reasons in favor of the third approach.

The three approaches we considered correspond (roughly) to three ways in which probabilities can be deployed to model a rational agent's fallible and evidence-based beliefs about the world. The first approach, known in the philosophical literature as precise probabilism, posits that an agent's credal state is modeled by a single, precise probability measure. The second approach, known as imprecise probabilism, replaces precise probabilities by sets of probability measures. The third approach, what we call higher-order probabilism, relies on distributions over parameter values. There are good reasons to abandon precise probabilism and endorse higher-order probabilism. Imprecise probabilism is a step in the right direction, but also suffers from too many difficulties of its own.

2.1 Precise probabilism

Precise probabilism (PP) holds that a rational agent's uncertainty about a hypothesis is to be represented as a single, precise probability measure. This is an elegant and simple theory. But representing our uncertainty about a proposition in terms of a single, precise probability runs into a number of difficulties. Precise probabilism fails to capture an important dimension of how our fallible beliefs reflect the evidence we have (or have not) obtained. A couple of stylized examples should make the point clear. (For the sake of simplicity, we will use examples featuring coins, but biases of coins can be thought of as random match probabilities in the forensic context.)

No evidence v. fair coin You are about to toss a coin, but have no evidence whatsoever about its bias. You are completely ignorant. Compare this to the situation in which you know, based on overwhelming evidence, that the coin is fair.

On precise probabilism, both scenarios are represented by assigning a probability of .5 to the outcome *heads*. If you are completely ignorant, the principle of insufficient evidence suggests that you assign .5 to both outcomes. Similarly, if you know for sure the coin is fair, assigning .5 seems the best way to quantify the uncertainty about the outcome. The agent's evidence in the two scenario is quite different, but precise probabilities cannot capture this difference.

Learning from ignorance You toss a coin with unknown bias. You toss it 10 times and

observe heads 5 times. Suppose you toss it further and observe 50 heads in 100 tosses.

Since the coin initially had unknown bias, you should presumably assign a probability of .5 to both outcomes. After the 10 tosses, you end up again with an estimate of .5. You must have learned something, but whatever that is, it is not modeled by precise probabilities. When you toss the coin 100 times and observe 50 heads, you learn something. But your precise probability assessment will again be .5.

These examples suggest that precise probabilism is not appropriately responsive to evidence. It ends up assigning the same probability in situations in which one's evidence is quite different: when no evidence is available about the coin's bias; when there is little evidence that the coin is fair (say, after only 10 tosses); and when there is strong evidence that the coin is fair (say, after 100 tosses). The general problem is, precise probability captures the value around which your uncertainty should be centered, but fails to capture how centered it should be given the evidence.⁸

2.2 Imprecise probabilism

What if we give up the assumption that probability assignments should be precise? Imprecise probabilism (IP) holds that an agent's credal stance towards a hypothesis is to be represented by means of a *set of probability measures*, typically called a representor \mathbb{P} , rather than a single measure \mathbb{P} . The representor should include all and only those probability measures which are compatible with the evidence. For instance, if an agent knows that the coin is fair, their credal state would be represented by the singleton set $\{\mathbb{P}\}$, where \mathbb{P} is a probability measure which assigns .5 to *heads*. If, on the other hand, the agent knows nothing about the coin's bias, their credal state would be represented by the set of all probabilistic measures, since none of them is excluded by the available evidence. Note that the set of probability measures does not represent admissible options that the agent could legitimately pick from. Rather, the agent's credal state is essentially imprecise and should be represented by means of the entire set of probability measures.

Imprecise probabilism, at least *prima facie*, offers a straightforward picture of learning from evidence, that is a natural extension of the classical Bayesian approach. When faced with new evidence E between time t_0 and t_1 , the representor set should be updated point-wise, running the standard Bayesian updating on each probability measure in the representor:

$$\mathbb{P}_{t_1} = \{ \mathsf{P}_{t_1} | \exists \, \mathsf{P}_{t_0} \in \mathbb{P}_{t_0} \, \forall \, H \, \, [\mathsf{P}_{t_1}(H) = \mathsf{P}_{t_0}(H|E)] \}.$$

The hope is that, if we start with a range of probabilities that is not extremely wide, point-wise learning will behave appropriately. For instance, if we start with a prior probability of *heads* equal to .4 or .6, then those measure should be updated to something closer to .5 once we learn that a given coin has already been tossed ten times with the observed number of heads equal 5 (call this evidence E). This would mean that if the initial range of values was [.4, .6] the posterior range of values should be more narrow. But even this seemingly straightforward piece of reasoning is hard to model without using densities. For to calculate P(heads|E) we need to calculate P(E|heads)P(heads) and divide it by P(E) = P(E|heads)P(heads) + P(E) = P(E|heads)P(¬heads). The tricky part is obtaining the conditional probabilities P(E|heads) and P(E|¬heads) in a principled manner without explicitly going second-order, estimating the parameter value and using beta distributions.

The situation is even more difficult if we start with complete lack of knowledge, as imprecise probabilism runs into the problem of **belief inertia** (Levi, 1980). Say you start tossing a coin knowing

⁸Precise probabilism suffers from other difficulties. For example, it has problems with formulating a sensible method of probabilistic opinion aggregation Stewart & Quintana (2018). A seemingly intuitive constraint is that if every member agrees that X and Y are probabilistically independent, the aggregated credence should respect this. But this is hard to achieve if we stick to PP (Dietrich & List, 2016). For instance, a *prima facie* obvious method of linear pooling does not respect this. Consider probabilistic measures p and q such that p(X) = p(Y) = p(X|Y) = 1/3 and q(X) = q(Y) = q(X|Y) = 2/3. On both measures, taken separately, X and Y are independent. Now take the average, r = p/2 + q/2. Then $r(X \cap Y) = 5/18 \neq r(X)r(Y) = 1/4$.

⁹For the development of imprecise probabilism, see Keynes (1921); Levi (1974); Gärdenfors & Sahlin (1982); Kaplan (1968); Joyce (2005); Fraassen (2006); Sturgeon (2008); Walley (1991). S. Bradley (2019) is a good source of further references. Imprecise probabilism shares some similarities with what we might call **interval probabilism** (Kyburg, 1961; Kyburg Jr & Teng, 2001). On interval probabilism, precise probabilities are replaced by intervals of probabilities. On imprecise probabilism, instead, precise probabilities are replaced by sets of probabilities. This makes imprecise probabilism more general, since the probabilities of a proposition in the representor set do not have to form a closed interval. As we have already noted, intervals do not contain probabilistic information sufficient to guide reasoning with multiple items of evidence. So we focus on IP, which is the more promising approach.

nothing about its bias. The range of possibilities is [0,1]. After a few tosses, if you observed at least one tail and one heads, you can exclude the measures assigning 0 or 1 to *heads*. But what else have you learned? If you are to update your representor set point-wise, you will end up with the same representor set. Consequently, the edges of your resulting interval will remain the same. In the end, it is not clear how you are supposed to learn anything if you start from complete ignorance. ¹⁰

Some downplay the problem of belief inertia. They insist that vacuous priors should not be used and that imprecise probabilism gives the right results when the priors are non-vacuous. After all, if you started with knowing truly nothing, then perhaps it is right to conclude that you will never learn anything. Another strategy is to say that, in a state of complete ignorance, a special updating rule should be deployed. But no matter what we think about belief inertia, other problems plague imprecise probabilism. Two more problems are particularly pressing.

One problem is that imprecise probabilism fails to capture intuitions we have about evidence and uncertainty in a number of scenarios. Consider this example:

Even v. uneven bias: You have two coins and you know, for sure, that the probability of getting heads is .4, if you toss one coin, and .6, if you toss the other coin. But you do not know which is which. You pick one of the two at random and toss it. Contrast this with an uneven case. You have four coins and you know that three of them have bias .4 and one of them has bias .6. You pick a coin at random and plan to toss it. You should be three times more confident that the probability of getting heads is .4. rather than .6.

The first situation can be easily represented by imprecise probabilism. The representor would contain two probability measures, one that assigns .4. and the other that assigns .6 to the hypothesis 'this coin lands heads'. But imprecise probabilism cannot represent the second situation, at least not without moving to higher-order probabilities or assigning probabilities to chance hypotheses, in which case it is no longer clear whether the object-level imprecision performs any valuable task.¹²

Second, besides descriptive inadequacy, an even deeper, foundational problem exists for imprecise probabilism. This problem arises when we attempt to measure the accuracy of a representor set of probability measures. Workable scoring rules exists for measuring the accuracy of a single, precise credence function, such as the Brier score. These rules measure the distance between one's credence function (or probability measure) and the actual value. A requirement of scoring rules is that they be proper: any agent will score their own credence function to be more accurate than every other credence function. After all, if an agent thought a different credence was more accurate, they should switch to it. Proper scoring rules are then used to formulate accuracy-based arguments for precise probabilism. These arguments show (roughly) that, if your precise credence follows the axioms of probability theory, no other credence is going to be more accurate than yours whatever the facts are. Can the same be done for imprecise probabilism? It seems not. Impossibility theorems demonstrate that no proper scoring rules are available for representor sets. So, as many have noted, the prospects for an accuracy-based argument for imprecise probabilism look dim (Campbell-Moore, 2020; Mayo-Wilson & Wheeler, 2016; Schoenfield, 2017; Seidenfeld, Schervish, & Kadane, 2012). Moreover, as shown by Schoenfield (2017), if an accuracy measure satisfies certain plausible formal constraints, it will never strictly recommend an imprecise stance, as for any imprecise stance there will be a precise one with at least the same accuracy.

¹⁰Here's another example from Rinard (2013). Either all the marbles in the urn are green (H_1) , or exactly one tenth of the marbles are green (H_2) . Your initial credence [0,1] in each. Then you learn that a marble drawn at random from the urn is green (E). After conditionalizing each function in your representor on this evidence, you end up with the the same spread of values for H_1 that you had before learning E, and no matter how many marbles are sampled from the urn and found to be green

¹¹Elkin (2017) suggests the rule of *credal set replacement* that recommends that upon receiving evidence the agent should drop measures rendered implausible, and add all non-extreme plausible probability measures. This, however, is tricky. One needs a separate account of what makes a distribution plausible or not, as well as a principled account of why one should use a separate special update rule when starting with complete ignorance.

¹²Other scenarios can be constructed in which imprecise probabilism fails to capture distinctive intuitions about evidence and uncertainty; see, for example, (Rinard, 2013). Suppose you know of two urns, GREEN and MYSTERY. You are certain GREEN contains only green marbles, but have no information about MYSTERY. A marble will be drawn at random from each. You should be certain that the marble drawn from GREEN will be green (G), and you should be more confident about this than about the proposition that the marble from MYSTERY will be green (M). In line with how lack of information is to be represented on IP, for each $r \in [0,1]$ your representor contains a P with P(M) = r. But then, it also contains one with P(M) = 1. This means that it is not the case that for any probability measure P in your representor, P(G) > P(M), that is, it is not the case that RA is more confident of G than of M. This is highly counter-intuitive.

2.3 Higher-order probabilism

There is, however, a view in the neighborhood that fares better: a second-order perspective. In fact, some of the comments by the proponents of imprecise probabilism tend to go in this direction. For instance, Seamus Bradley compares the measures in a representor to committee members, each voting on a particular issue, say the true bias of a coin. As they acquire more evidence, the committee members will often converge on a specific chance hypothesis. He writes (S. Bradley, 2012, p. 157):

... the committee members are "bunching up". Whatever measure you put over the set of probability functions—whatever "second order probability" you use—the "mass" of this measure gets more and more concentrated around the true chance hypothesis'.

Note, however, that such bunching up cannot be modeled by imprecise probabilism. Joyce (2005), in a paper defending imprecise probabilism, in fact uses a density over chance hypotheses to account for the notion of evidential weight. The idea that one should use higher-order probabilities has also been suggested by critics of imprecise probabilism. For example, Carr (2020) argues that sometimes evidence requires uncertainty about what credences to have. Carr, however, does not articulate this suggestion more fully, does not develop it formally, and does not explain how her approach would fare against the difficulties affecting precise ad imprecise probabilism.

The key idea of the higher-order approach we propose is that uncertainty is not a single-dimensional thing to be mapped on a single one-dimensional scale such as a real line. It is the whole shape of the whole distribution over parameter values that should be taken under consideration. From this perspective, when an agent is asked about their credal stance towards X, they can refuse to summarize it in terms of a point value P(X). They can instead express their credal stance in terms of a probability (density) distribution f_x treating P(X) as a random variable. To be sure, an agent's credal state toward X could sometimes be usefully represented by the expectation

$$\int_0^1 x f(x) \, dx$$

as the precise, object-level credence in X, where f is the probability density over possible object-level probability values. But this need not always be the case. If the probability density f is not sufficiently concentrated around a single value, a one-point summary might fail to do justice to the nuances of the agent's credal state. For example, consider again the scenario in which the agent knows that the bias of the coin is either .4 or .6 but the former is three times more likely. Representing the agent's credal state with the expectation $P(X) = .75 \times .4 + .25 \times .6 = .45$ would be inadequate as it would fail to capture the agent's belief that the two biases are uneven.

The higher-order approach can easily model all the challenging scenarios we discussed so far in the manner illustrated in Figure 5. In particular, the scenario in which the two biases of the coin are not equally likely—which imprecise probabilism cannot model—can be easily modeled within high-order probabilism by assigning different probabilities to the two biases.

Besides its flexibility in modelling uncertainty, higher-order probabilism does not fall prey to belief inertia. Consider a situation in which you have no idea about the bias of a coin. So you start with a uniform density over [0,1] as your prior. By using binomial probabilities as likelihoods, observing any non-zero number of heads will exclude 0 and observing any non-zero number of tails will exclude 1 from the basis of the posterior. The posterior distribution will become more centered around the parameter estimate as the observations come in. Figure 6 shows—starting with a uniform prior distribution— how the posterior distribution changes after successive observations of heads, heads again, and then tails.¹⁵

A further advantage of high-order probabilism over imprecise probabilism is that the prospects for

¹³Bradley admits this much (S. Bradley, 2012, p. 90), and so does Konek (Konek, 2013, p. 59). For instance, Konek disagrees with: (1) X is more probable than Y just in case p(X) > p(Y), (2) D positively supports H if $p_D(H) > p(H)$, or (3) A is preferable to B just in case the expected utility of A w.r.t. p is larger than that of B.

¹⁴This approach lines up with common practice in Bayesian statistics, where the primary role of uncertainty representation is assigned to the whole distribution. Summaries such as the mean, mode standard deviation, mean absolute deviation, or highest posterior density intervals are only succinct ways for representing the uncertainty of a given scenario. Whether the expectation should be used in betting behavior is a separate problem. Here we focus on epistemic issues.

¹⁵More generally, learning about frequencies, assuming independence and constant probability for all the observations, is modeled the Bayes way. You start with some prior density p over the parameter values. If you start with complete lack of information, p should be uniform. Then, you observe the data p which is the number of successes p in a certain number of observations p. For each particular possible value p of the parameter, the probability of p conditional on p follows the

Figure 5: Examples of higher-order distributions for scenarios brought up in the literature.

accuracy-based arguments are not foreclosed. This is a significant shortcoming of imprecise probabilism, especially because such arguments exist for precise probabilism. One can show that there exist proper scoring rules for higher-order probabilism. These rules can then be used to formulate accuracy-based arguments. Another interesting feature of the framework is that the point made by Schoenfield against imprecise probabilism does not apply: there are cases in which accuracy considerations recommend an imprecise stance (that is, a multi-modal distribution) over a precise one (Urbaniak, 2022 manuscript).

All in all, higher-order probabilism outperforms both precise and imprecise probabilism, at the descriptive as well as the normative level. From a descriptive standpoint, higher-order probabilism can easily model a variety of scenarios that cannot be adequately modeled by the other versions of probabilism. From a normative standpoint, accuracy maximization may sometimes recommend that a rational agent represent their credal state with a distribution over probability values rather than a precise probability measure (more on this in the next section).

3 Objections

This section addresses a number of conceptual difficulties that may arise in using higher-order probabilities, with focus on those brought up by prominent legal evidence scholars. In discussing these conceptual issues, we will formulate an accuracy-based argument that higher-order probabilities are preferable to precise probabilities.

3.1 The Taroni-Sjerps debate

Our treatment will be centered around a discussion initiated by Taroni, Bozza, Biedermann, & Aitken (2015), who argue extensively that trial experts should avoid report higher-order densities, and should only report point estimates. Their point of departure is a reflection on match evidence.

binomial distribution. The probability of D is obtained by integration. That is:

$$p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)}$$
$$= \frac{\theta^{s}(1-\theta)^{(n-s)}p(\theta)}{\int (\theta')^{s}(1-\theta')^{(n-s)}p(\theta') d\theta'}.$$

Figure 6: As observations of heads, heads and tails come in, extreme parameter values drop out of the picture and the posterior is shaped by the evidence.

Say an expert reports at trial that the sample from the crime scene matches the defendant. The significance of this match should be evaluated in light of the population frequency θ of the matching profile. This frequency, however, cannot be known for sure and must instead be estimated.

The expert will estimate the true parameter θ by means of a probability distribution $p(\theta)$ over its possible values. For example, if the observations are realizations of independent and identically distributed Bernoulli trails given θ , the expert's uncertainty about θ can be modeled as $\text{beta}(\alpha+s+1,\beta+n-s)$, where s is the number of observed successes, n the number of observations in the database (1 is added to the first shape parameter to include the match with the suspect), and α and β reflect the expert's priors.

Nothing so far should be controversial. However, the question arises of how the expert should report their own uncertainty about θ , especially in the light of the usual practice of reporting likelihood ratios.

To fix the notation, let the prosecution hypothesis H_p be that the suspect is the source of the trace, and the defense hypothesis H_d that another person, unrelated to the suspect, is the source. For simplicity, assume that if H_p holds, the laboratory will surely report a match M, so that $\mathsf{P}(M|H_p)=1$. The likelihood ratio, then, reduces to $1/\mathsf{P}(M|H_d)$ —but given that θ was estimated using density over its possible values, it is not obvious how a single value $\mathsf{P}(M|H_d)$ is to be obtained and whether its use in the reporting does not hide the uncertainty involved in the estimation of θ under the carpet.

Taroni et al. (2015) claim that the point estimate for the match evidence given the defense hypothesis should be calculated as follows:

$$P(M|H_d) = \int_{\theta} P(M|\theta)P(\theta) \ d\theta$$
$$= \int_{\theta} \theta P(\theta) \ d\theta$$

In case of a DNA match, they recommend that the expert report the expected value of the beta distribution, which reduces to $\alpha+s+1/\alpha+\beta+n+1$. They claim that this number satisfactorily expresses the posterior uncertainty about θ . For them, it is this probability alone that should be used in the denominator in the calculation and reporting of the likelihood ratio.

Sjerps et al. (2015) disagree. In reporting a single value, the expert would refrain from providing the fact-finders with relevant information that can make a difference in the proper evaluation of the evidence. There is a difference between (a) an expert who is certain θ is .1; (b) an expert whose best estimate of θ is .1 based on thousands of observations; and (c) an expert whose best estimate of θ is

again .1 but based on only ten observations.

These three scenarios mirror scenarios we discussed earlier: (a) the bias of a coin is known for sure; (b) the bias is estimated on the basis of a large number of tosses; and (c) the bias is estimated using a small set of observations. As our critique of precise probabilism makes clear, a simple point estimate (or precise probability) would fail to capture the differences among the three scenarios. This concern might be slightly mitigated by the fact that Taroni et al. (2015) admits that the expert, besides providing a point estimate, should also informally explain how the estimate was arrived at. They grant that this additional information can be helpful so long as the recipients are instructed on "the nature of probability, the importance of an understanding of it and its proper use in dealing with uncertainty" [p. 16]. But why stop at an informal presentation? It is unclear why the fact-finders should be deprived of quantifiable information about the aleatory uncertainty of the parameter of interest and only be given an informal description of what the expert did, along with some remarks about the nature of probability. It is wildly optimistic to assume that an informal description of how the point estimate has been arrived at is enough to secure a proper assessment of the evidence. We hope to have convinced the reader already in the introduction that informal treatment and bare intuitions are not good enough even when it comes to the evaluation of the impact of a rather simple combination of two items of evidence if all the fact-finder has to go by is point estimates and and informal description of how the estimates have been obtained.

Somewhat surprisingly, most of the concerns raised by Taroni et al. (2015) are philosophical. They argue that if probabilities express an agent's epistemic attitude towards a proposition probabilities are not states of nature, but states of mind associated with individuals. They think this claim has two consequences. First, it makes no sense sense to talk about second-order uncertainty about subjective probabilities, as there is no "underlying state of the nature" to estimate. Second, if these subjective probabilities can be elicited by examining an agent's betting preferences, a proper elicitation will lead to a single number. ¹⁶

In response to the philosophical argument, Dahlman & Nordgaard (2022) have also emphasized that the distinction is not so clear-cut. They argue that, if a probability assessment is a subjective attitude that is elicited via a betting preference, a probability assessment is itself a state of nature, "the formation of a betting preference by a certain person at a certain time" [p. 15]. While we will have something to say about the philosophical dimension of this debate, let us first develop a less philosophically involved argument for the position taken by Sjerps et al. (2015).

3.2 An ccuracy-based argument

With this argument, we hope to break the stalemate in the debate by proving an argument to which both parties should be receptive. It is an accuracy-based argument in favor of using higher-order probabilities—roughly, it says, if you discard relevant information that you already have contained in the densities resulting from the estimation and rely on point estimates only, your predictions about the world will be less accurate in a very precise and quantifiable sense.

First, let us go over a particular example. Suppose we randomly draw a true population frequency from the uniform distribution. In our particular case, we obtained 0.632. Then, we randomly draw a sample size as a natural number between 10 and 20. In our particular case, it is 16. Next, we simulate an experiment in which we draw that number of observations from the true distribution. We observe 8 successes and use this number to calculate the point estimate of the parameter, which is 0.5.

What is the probability mass function (PMF) for all possible outcomes of an observation of the same size? Two PMF are initially relevant: first, the true probability mass based on the true parameter; second, the probability mass function based on the point estimate which is binomial around the point estimate. This latter PMF, however, does not take into account the uncertainty about the point estimate. To take this uncertainty seriously, continuing our example, we take a sample distribution of size 16 of possible parameter values from the posterior beta(1 + successes, 1 + samplesize - successes) distribution (we assume uniform prior for the sake of an example). Then, we use this sample of parameter values to simulate observations, one simulation for each parameter value in the sample. This

¹⁶They write: "Clearly, one can adjust the measure of belief of success in the reference gamble in such a way that one will be indifferent with respect to the truth of the event about which one needs to give one's probability. This understanding is fundamental, as it implies that probability is given by a single number. It may be hard to define, but that does not mean that probability does not exist in an individual's mind. One cannot logically have two different numbers because they would reflect different measures of belief." (Taroni et al., 2015, p. 7)

simulation yields the so-called *posterior predictive distribution* (or posterior predictive PMF), which instead of a point estimate, propagates the uncertainty about the parameter value into the predictions about the outcomes of possible observations. Finally, we take simulated frequencies as our estimates of probabilities. This distribution is more honest about uncertainty and wider than the one obtained using the point estimate. The three PMFs are displayed in Figure 7.

Figure 7: Real probability mass, probability mass calculated using a point estimate, sampling distribution from the posterior, and the posterior predictive distribution based on this sampling distribution.

The PMF based on a point estimate is further off from the real PMF than the posterior predictive distribution. For instance, if we ask about the probability of the outcome being at least 9 successes, the true answer is 0.7984, the point estimate PMF tells us it is 0.4056, while the posterior predictive distribution gives a somewhat better guess at 0.4277. A similar thing happens when we ask about the probability of the outcome being at most 9 successes. The true answer is 0.3681, the point-estimate-based answer is 0.778, while the posterior predictive distribution yields 0.7051. More generally, we can use an information-theoretic measure, Kullback-Leibler divergence, to quantify how far the point-estimate PMF and the posterior predictive PMF are from the true PMF.¹⁷

$$\begin{aligned} \mathsf{DKL}(p,q) &= H(p,q) - H(p) \\ &= -\sum p_i \log q_i - \left(-\sum p_i \log p_i \right) \\ &= -\sum p_i \left(\log q_i - \log p_i \right) \\ &= \sum p_i \left(\log p_i - \log q_i \right) \\ &= \sum p_i \log \left(\frac{p_i}{q_i} \right) \end{aligned}$$

As it turns out, KL divergence is also the expected difference in log probabilities. In particular, if p=q we get $DKL(p,p)=\sum p_i(\log p_i-\log p_i)=0$, which works out as it intuitively should be.

¹⁷A bit of explanation of this divergence measure. Suppose we are dealing with a variable X with n distinct possible discrete states x_1, \ldots, x_n and consider two probability mass functions p and q which express uncertainty about the true value of X so that, say, on p, $P(X = x_i) = p_i$. First, the uncertainty of a given distribution p, its entropy, is given by the sum of the logarithms of surprise $1/p_i$ for all the possible values, $H(p) = \sum x_i \log \frac{1}{p_i} = -\sum p_i \log p_i$. Next, suppose events arise according to p, but we predict them using q. The cross-entropy is then $H(p,q) = \sum p_i \log(q_i)$. This value is going to be higher than the entropy of p if q is different from it. Think of it as the uncertainty involved in using q to predict events that arise according to p. Third, Kullback-Leibler divergence is the additional entropy introduced by using q instead of p itself, that is, the difference between cross-entropy and entropy:

In our particular case, the former distance is 0.7905638 and the latter is 0.5681121. The posterior predictive distribution is information-theoretically closer to the true distribution.

This was just one example, but the phenomenon generalizes. We repeat the simulation 1000 times, each time with a new true parameter, a new sample size, and a new sample. Every time the three PMFs are constructed using the methods we described and their KL divergence from the true distribution is calculated. Figure 8 displays the empirical distribution of the results of such a simulation. A positive value indicates that the distribution based on the point-estimate was further from the true PMF than the posterior predictive distribution based on the same observed sample. Notably, the mean difference is 0.865, the median difference is 0.044, and the distribution is asymmetrical, as there are multiple cases of large differences favoring posterior predictive distributions over point-based predictions. All in all, accuracy-wise, point-estimate-based PMFs are systematically worse than the posterior predictive distribution.

Point-estimates vs. posterior predictive distributions Differences in Kullback-Leibler divergencies from true PMFs

Figure 8: Differences in Kullback-Leibler divergencies from the true distributions, comparing the distributions obtained using point estimates and posterior predictive distributions. Positive values indicate the point-estimate-based PMF was further from the true distribution than the posterior predictive distribution.

3.3 Conceptual issues

Accuracy considerations aside, we will now engage with the more conceptual points. Taroni et al. (2015) argue that since first-order probabilities capture your uncertainty about a proposition of interest, second-order probabilities are supposed to capture your uncertainty about how uncertain you are, and that "estimating" your first-order uncertainties is unnecessary. They think that you can simply figure out your fair odds in a suitable bet on the proposition in question, and the fair odds track your unique, first-order uncertainty without any uncertainty about it. But this point can be questioned. For one thing, the betting interpretation of probability is not uncontroversial. Even assuming the betting interpretation, there seems to be nothing wrong in saying that sometimes we are uncertain about what we think the fair bets are. But admittedly, this answer while undermines the betting argument for the sufficiency of point estimates, does not cast much light on what the appropriate relatively uncontroversial interpretation of higher-order uncertainty should be.

Think again about an expert who gathers information about the allelic frequency f of DNA matches in an available database, and starts with a defensible beta prior with parameters α, β . Say the expert observes s matches in a database of size n. So the population relative frequency the experts is estimat-

add ref to Williamson

 $^{^{18}\}mbox{See}$ textbooks in formal epistemology (D. Bradley, 2015; Titelbaum, 2020).

¹⁹On a related note, the introspective axioms in epistemic logic—that is, if an agent knows (or doesn't know) p, they also know that they (don't) know p—are by no means uncontroversial. See, for example, Williamson 2000 (chapter 5)'s argument against the KK principle of positive introspection.

ing should follow the beta $(\alpha+s+1,\beta+n-s)$ distribution. So far, nothing controversial happens—the expert is estimating the relevant population frequency.

But subjective uncertainty that is to be reported by the expert, Taroni et al. (2015) complain, is not about the frequency about their attitude towards a proposition (supposedly expressing a "state of nature"), and, they insist, it makes no sense for an agent to attach uncertainty to their own uncertainty about a proposition.

Assuming the conditions are pristine (the expert has no modeling uncertainty, rules out laboratory errors, and so on), the beta distribution can be used to pretty directly inform the expert's subjective uncertainty. But uncertainty about what? The (estimated) population frequency, for instance, can underlie a probability assignment to the proposition a match is observed if another person, unrelated to the suspect, is the source of the trace. Admittedly, if only this proposition is being considered, it is yet not clear what second-order uncertainties would be uncertainties about. But the expert also considers a continuum of propositions, each of the form the true population frequency is θ for each $\theta \in [0,1]$. A density over θ models the comparative plausibility that the expert assigns to such propositions in light of the evidence.²⁰ So if one were worried that there were no propositions that the expert could be "second-order" uncertain about, there actually are plenty. In particular, if θ is a population frequency, gauging which density captures the extent to which the evidence justifies various estimates of that frequency is the same as gauging the comparative plausibility of the corresponding propositions about possible population frequencies.²¹

More generally, in many contexts, evidence justifies first-order probability assignments (population frequency estimates) to various degrees. Suppose there is no evidence about the bias of a coin. Then, each first-order uncertainty about it would be equally (un)-justified. (If you like to think in terms of bets, the evidence would give no reason to prefer any particular odds as fair.) If, instead, we know the coin is fair, the evidence clearly selects one preferred value, .5. (Again, if you like the betting metaphor, 1:1 would be the unique recommended betting odds.) But often the evidence is stronger than the former case and weaker than the latter case. Consider, for example, propositions about population frequencies in light of the results of observations. In such circumstances, the evidence justifies different values of first-order uncertainty to various degrees, and densities simply capture the extent to which different first-order uncertainties are supported by the evidence.

We conclude this section by examining two additional points raised by Taroni et al. (2015). The first—which we already alluded to earlier—is that first-order probabilities are not "states of nature" and so cannot be estimated. It is unclear why the authors insist that only states of nature can be estimated. Mathematicians use approximate methods to estimate answers to fairly abstract questions, not obviously related to "states of nature", whatever these are. So, estimation should make sense whenever there are some objective answers that we can approximate to a greater or lesser extent. If there is some objectivity to what the ideal evidence would support, or to the extent to which the actual evidence supports various competing hypotheses, we can be more or less wrong about such things, and so it is not implausible to say that there is a clear sense in which we can estimate them.²²

Second, Taroni et al. (2015) argue that once we allow second-order probability, we run into the threat of infinite regress. But do we? Surely, they would agree that one can be uncertain about a statistical model. But this can be the case even if this model spits out a point estimate rather than a density. If you think the possibility of putting uncertainty on top of propositions about possible values of a first-order parameter leaves us in an epistemically hopeless situation, you might have hard time explaining why your point estimation is in a better situation. After all, if asking further questions about probabilities up the hierarchy is always justified, we can keep asking about the probability of a point-estimate-spitting model, the probability of that probability, and so on.

Perhaps the problem at issue is just one of complexity. Admittedly, second-order estimation is more

added back the claim about not worrying about BMI, as some readers might be sensitive to anyone bringing BMI up

²⁰Moreover, and normalization allows them to calculate their subjective probabilities for θ belonging to various sub-intervals of [0,1].

²¹ Perhaps, this should no longer be called "estimation", but the the connection with estimation is strong enough to justify this terminology. In the end, this is a verbal discussion that we will not get into.

²²Taroni et al. (2015) make the same point for likelihood ratios. They argue that there is no "meaningful state of nature equivalent for the likelihood ratio in its entirety, as it is given by a ratio of two conditional probabilities?" But if it is meaningful to estimate two conditional probabilities (that is, frequencies in the population), or to compare the relative plausibility of various propositions about them in terms of density, it is equally meaningful to estimate any function of the numbers involved. Otherwise it would also be meaningless to try to estimate the body mass index (BMI) of an average 21 years old male student in the USA just because BMI is a ratio of other quantities. There are reasons not to care about BMI, but it not being a state of nature because it is a function is not one of them.

complex than relying on point estimates. But we hope to have convinced the reader this complexity is worth the effort. What about more complex models going third-order? If a workable approach can accomplish that—and the additional complexity pays off—we are all for going third-order. The fact that more complex models can always be built hardly lead us into a vicious infinite regress. Rather, it is an indication that our models of uncertainty can—in principle—always be improved.

References

- Bradley, D. (2015). A critical introduction to formal epistemology. Bloomsbury Publishing.
- Bradley, S. (2012). *Scientific uncertainty and decision making* (PhD thesis). London School of Economics; Political Science (University of London).
- Bradley, S. (2019). Imprecise Probabilities. In E. N. Zalta (Ed.), *The Stanford encyclopedia of philosophy* (Spring 2019). https://plato.stanford.edu/archives/spr2019/entries/imprecise-probabilities/; Metaphysics Research Lab, Stanford University.
- Campbell-Moore, C. (2020). Accuracy and imprecise probabilities.
- Carr, J. R. (2020). Imprecise evidence without imprecise credences. *Philosophical Studies*, 177(9), 2735–2758. https://doi.org/10.1007/s11098-019-01336-7
- Dahlman, C., & Nordgaard, A. (2022). Information economics in the criminal standard of proof.
- Deadman, H. A. (1984a). Fiber evidence and the wayne williams trial (conclusion). *FBI L. Enforcement Bull.*, *53*, 10–19.
- Deadman, H. A. (1984b). Fiber evidence and the wayne williams trial (part i). *FBI L. Enforcement Bull.*, 53, 12–20.
- Dietrich, F., & List, C. (2016). Probabilistic opinion pooling. In A. Hajek & C. Hitchcock (Eds.), *Oxford handbook of philosophy and probability*. Oxford: Oxford University Press.
- Elkin, L. (2017). *Imprecise probability in epistemology* (PhD thesis). Ludwig-Maximilians-Universität; Ludwig-Maximilians-Universität München.
- Elkin, L., & Wheeler, G. (2018). Resolving peer disagreements through imprecise probabilities. *Noûs*, 52(2), 260–278. https://doi.org/10.1111/nous.12143
- Fraassen, B. C. V. (2006). Vague expectation value loss. *Philosophical Studies*, 127(3), 483–491. https://doi.org/10.1007/s11098-004-7821-2
- Gärdenfors, P., & Sahlin, N.-E. (1982). Unreliable probabilities, risk taking, and decision making. *Synthese*, *53*(3), 361–386. https://doi.org/10.1007/bf00486156
- Joyce, J. M. (2005). How probabilities reflect evidence. Philosophical Perspectives, 19(1), 153-178.
- Kaplan, J. (1968). Decision theory and the fact-finding process. *Stanford Law Review*, 20(6), 1065–1092.
- Keynes, J. M. (1921). A treatise on probability, 1921. London: Macmillan.
- Konek, J. (2013). New foundations for imprecise bayesianism (PhD thesis). University of Michigan.
- Kyburg, H. E. (1961). Probability and the logic of rational belief. Wesleyan University Press.
- Kyburg Jr, H. E., & Teng, C. M. (2001). Uncertain inference. Cambridge University Press.
- Levi, I. (1974). On indeterminate probabilities. The Journal of Philosophy, 71(13), 391. https://doi.org/10.2307/2025161
- Levi, I. (1980). The enterprise of knowledge: An essay on knowledge, credal probability, and chance. MIT Press.
- Mayo-Wilson, C., & Wheeler, G. (2016). Scoring imprecise credences: A mildly immodest proposal. *Philosophy and Phenomenological Research*, 92(1), 55–78. https://doi.org/10.1111/phpr.12256
- Rinard, S. (2013). Against radical credal imprecision. *Thought: A Journal of Philosophy*, 2(1), 157–165. https://doi.org/10.1002/tht3.84
- Schoenfield, M. (2017). The accuracy and rationality of imprecise credences. *Noûs*, *51*(4), 667–685. https://doi.org/10.1111/nous.12105
- Seidenfeld, T., Schervish, M., & Kadane, J. (2012). Forecasting with imprecise probabilities. *International Journal of Approximate Reasoning*, *53*, 1248–1261. https://doi.org/10.1016/j.ijar.2012.06.
- Sjerps, M. J., Alberink, I., Bolck, A., Stoel, R. D., Vergeer, P., & Zanten, J. H. van. (2015). Uncertainty and LR: to integrate or not to integrate, that's the question. *Law, Probability and Risk*, 15(1), 23–29. https://doi.org/10.1093/lpr/mgv005
- Stewart, R. T., & Quintana, I. O. (2018). Learning and pooling, pooling and learning. Erkenntnis,

83(3), 1-21. https://doi.org/10.1007/s10670-017-9894-2

Sturgeon, S. (2008). Reason and the grain of belief. *Noûs*, 42(1), 139–165. Retrieved from http://www.jstor.org/stable/25177157

Taroni, F., Bozza, S., Biedermann, A., & Aitken, C. (2015). Dismissal of the illusion of uncertainty in the assessment of a likelihood ratio. *Law, Probability and Risk*, *15*(1), 1–16. https://doi.org/10. 1093/lpr/mgv008

Titelbaum, M. G. (2020). Fundamentals of bayesian epistemology.

Walley, P. (1991). Statistical reasoning with imprecise probabilities. Chapman; Hall London.