Table A. Test accuracy (%) of PLL methods under extreme ambiguity (90% candidate labels) on uniform PLL settings, comparing UMiP with and without renormalization. The best results are highlighted in bold.

		PRODEN	LWS	CAVL	CRDPLL	PiCO	ABLE	DIRK
CIFAR-10	Baseline w/ renorm. w/o renorm.	44.97±0.23 51.42±0.19 11.73±0.47	59.94±0.45 67.92 ± 0.42 34.61±0.55	10.06±0.18 11.32±0.20 10.00±0.22	62.23±0.56 62.86±0.49 11.26±0.58	14.02 ± 0.25 16.69 ± 0.19 14.02 ± 0.33	18.14±0.37 19.37 ± 0.31 17.31±0.29	10.76 ± 0.12 12.21 ± 0.13 10.76 ± 0.17
SVHN	Baseline w/ renorm. w/o renorm.	70.66±0.60 75.02±0.39 20.90±1.03	86.04±0.48 94.89 ± 0.45 22.44±0.66	16.01 ± 0.26 27.27 ± 0.23 14.83 ± 0.31	95.01±0.71 96.57 ± 0.68 19.73±0.94	12.41 ± 0.35 14.83 ± 0.28 12.41 ± 0.42	88.90±0.52 90.28 ± 0.37 33.54±0.80	34.09 ± 0.19 34.58 ± 0.14 32.94 ± 0.36

Table B. Test accuracy (%) on CIFAR-10 under instance-dependent PLL settings with the dynamically adjusted mix ratio λ . The gray rows indicate the PLL method using UMiP, boldface highlights better results, and \uparrow/\downarrow denote better or worse performance compared to the original strategy.

Dataset	q_2	PRODEN	LWS	CAVL	CRDPLL	PiCO	ABLE	DIRK
	0.6	77.41±1.96 77.53±2.11↓	81.65±0.23 80.47±0.45↓	44.32±2.14 49.15 ±2.23↑	73.40±1.27 73.97 ± 0.95 ↓	77.33±1.54 77.94 ± 0.46 ↓	76.93 ± 1.23 $75.01\pm1.03\downarrow$	47.80±3.92 44.98±3.39↓
CIFAR-10	0.8	66.48±1.24 66.37±0.40↓	73.88±1.11 74.45 ± 0.88 ↓	38.60±1.54 39.14 ± 0.11 ↓	50.08±1.56 38.99±2.07↓	66.57±0.27 68.51 ± 0.10 ↓	65.62±2.69 60.83±0.18↓	34.72±2.25 38.78 ± 0.15 ↑
	1.0	55.41±0.54 47.93±0.17↓	66.08±0.88 66.27 ± 0.85 ↓	37.50±1.08 44.08 ± 0.15 ↑	43.86±0.46 58.35 ± 0.70 ↑	53.42±1.94 49.46±0.25↓	51.13±1.61 45.64±0.06↓	30.30±1.33 30.46 ±1.10↓

Table C. Test accuracy (%) on SVHN under instance-dependent PLL settings with $q_2 = 0.6$. Results for $\alpha = 2$ and $\alpha = 0.5$ are newly included. The best results are highlighted in bold.

	PRODEN	LWS	CAVL	CRDPLL	PiCO	ABLE	DIRK
Baseline	91.79±0.16	90.42 ± 1.09	71.76 ± 6.82	79.45 ± 0.10	93.71 ± 0.22	94.92 ± 0.23	54.25±6.28
$\lambda \sim \text{Beta}_{[0.5,1]}(1.0,1.0)$	95.82 ± 0.16	95.76 ± 0.22	77.84 ± 3.39	79.70 ± 0.31	95.34 ± 0.33	95.34 ± 0.26	56.69 ± 1.61
$\lambda \sim \text{Beta}_{[0.5,1]}(0.5,0.5)$	95.33±0.23	95.47 ± 0.12	76.15 ± 3.43	79.63 ± 0.21	95.13 ± 0.30	33.22 ± 0.48	49.30 ± 3.74
$\lambda \sim \text{Beta}_{[0.5,1]}(2.0,2.0)$	95.80±0.16	95.74 ± 0.15	74.07 ± 3.33	79.50 ± 0.28	95.31 ± 0.15	34.48 ± 1.29	55.33 ± 0.72

Table D. Test accuracy (%) comparison on ABLE † , DIRK † and PaPi under instance-dependent PLL settings († indicates use of the exponential moving-average strategy). The gray rows indicate the PLL method using UMiP, and boldface indicates better results.

	q_2	$ABLE^{\dagger}$	$DIRK^{\dagger}$	PaPi		q_2	$ABLE^{\dagger}$	$DIRK^{\dagger}$	PaPi
	0.6	80.13±0.92 82.08 ± 0.42	76.98±1.22 79.68 ± 0.81	81.23±0.76 82.81 ± 0.29		0.6	95.02±0.13 95.96 ± 0.10	92.64±0.32 94.58 ± 0.22	89.25±0.54 93.89 ± 0.13
CIFAR-10	0.8	67.21±0.89 72.62 ± 0.88	68.96±1.12 74.50 ± 0.43	62.86±1.25 69.04±0.98	SVHN	0.8	94.35±0.14 94.36 ± 0.09	92.11±0.44 93.83 ± 0.25	86.47±0.42 89.14 ± 0.15
	1.0	58.34±0.49 62.98 ± 0.11	62.48±0.41 68.23±0.33	52.25±0.35 60.02 ± 0.35		1.0	92.92±0.13 93.97 ± 0.14	91.72±0.84 92.72 ± 0.72	82.36±0.37 88.34 ± 0.38
	0.01	63.36±0.35 63.57±0.32	62.66±0.27 63.86±0.25	64.48±0.57 64.52 ± 0.18		0.01	58.12±0.92 60.21 ± 0.34	65.59±0.31 66.45±0.21	61.23±1.12 64.36±0.45
CIFAR-100	0.05	60.82±0.25 60.88 ± 0.27	59.73±0.04 61.37 ± 0.05	60.98±0.24 61.96±0.21	CUB-200	0.02	49.41±1.21 52.89 ± 0.70	57.35±0.81 59.09 ± 0.66	56.63±1.23 59.44 ± 0.38
-	0.1	55.88±0.36 56.24 ± 0.3 1	52.67±0.46 53.73 ± 0.26	54.78±0.23 54.91 ± 0.13		0.03	48.25±1.10 52.43 ± 0.65	53.27±1.24 54.24 ± 0.66	47.85±1.12 52.32 ± 0.41

Table E. Test accuracy (%) comparison on ABLE † , DIRK † , and PaPi under class-dependent PLL settings († indicates use of the exponential moving-average strategy). The gray rows indicate the PLL method using UMiP, and boldface indicates better results.

	q_1	$ABLE^{\dagger}$	$DIRK^{\dagger}$	PaPi		q_1	$ABLE^\dagger$	$DIRK^{\dagger}$	PaPi
CIFAR-10	0.7	88.04±0.31 88.92 ± 0.30	83.24±0.46 86.17 ± 0.24	89.02±0.39 89.52 ± 0.22		0.7	94.68±0.33 95.44 ± 0.34	93.23±0.43 94.32 ± 0.35	96.71 ± 0.16 96.84 ± 0.14
	0.8	86.10±0.24 86.42 ± 0.23	82.48±0.32 85.12 ± 0.18	86.23±0.42 86.83 ± 0.27	SVHN	0.8	94.65±0.14 95.15 ± 0.12	93.15±0.49 94.08 ± 0.28	95.87±0.27 96.15 ± 0.10
	0.9	82.32±0.21 83.22±0.17	80.89±0.28 81.89 ± 0.24	78.98±0.58 80.03 ± 0.18		0.9	94.45±0.20 95.05 ± 0.14	93.45±0.24 93.84 ± 0.14	95.81±0.12 96.05±0.11

Table F. The magnitude change of **traditional ambiguity degree** before and after data augmentation on the CIFAR-10 dataset.

Ambianity Laval	Class-dependent (0.7 / 0.8 / 0.9)					Instance-dependent (0.6 / 0.8 / 1.0)					
Ambiguity Level	Baseline	UMiP	RandAugment	Cutout	Mixup	Baseline	UMiP	RandAugment	Cutout	Mixup	
Low level	0.715	0.713	0.716	0.718	0.818	0.955	0.951	0.951	0.953	0.974	
Medium level	0.810	0.810	0.815	0.814	0.887	0.972	0.975	0.972	0.971	0.986	
High level	0.907	0.909	0.907	0.907	0.950	0.986	0.983	0.983	0.984	0.992	

Table G. The magnitude change of **local ambiguity degree** (LAD \downarrow) and Accuracy (Acc \uparrow) before and after UMiP augmentation on the CIFAR-10 dataset with PRODEN.

Ambiguity Level	Baseline		UMiP		RandAugment		Mixup		Cutout	
g,	LAD	Acc	LAD	Acc	LAD	Acc	LAD	Acc	LAD	Acc
$q_1 = 0.7 q_1 = 0.8 q_1 = 0.9$	0.780 0.869 0.978	88.18±0.48 86.73±0.55 75.95±0.96	0.851	89.19 ± 0.31 87.90 ± 0.51 80.19 ± 0.39	0.845	80.12±0.42 79.28±0.41 66.99±0.21	0.854	81.02 ± 0.54	0.860	83.19 ± 0.18 82.91 ± 0.28 72.23 ± 0.34