

Archives of Agronomy and Soil Science

ISSN: 0365-0340 (Print) 1476-3567 (Online) Journal homepage: http://www.tandfonline.com/loi/gags20

Landbau und treibhauseffekt-quellen und senken für CO₂ bei unterschiedlicher landbewirtschaftung

Jutta Rogasik, Ewald Schnug & Helmut Rogasik

To cite this article: Jutta Rogasik , Ewald Schnug & Helmut Rogasik (2000) Landbau und treibhauseffekt#quellen und senken für CO_2 bei unterschiedlicher landbewirtschaftung, Archives of Agronomy and Soil Science, 45:2, 105-121, DOI: 10.1080/03650340009366116

To link to this article: http://dx.doi.org/10.1080/03650340009366116

	Published online: 15 Dec 2008.
	Submit your article to this journal $oldsymbol{oldsymbol{\mathcal{G}}}$
hil	Article views: 18
Q	View related articles 🗗
4	Citing articles: 1 View citing articles 🗹

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=gags20

Arch. Acker- Pfl. Boden., 2000, Vol. 45, pp. 105-121 Reprints available directly from the publisher Photocopying permitted by license only © 2000 OPA (Overseas Publishers Association) N.V.
Published by license under
the Harwood Academic Publishers imprint,
part of The Gordon and Breach Publishing Group.
Printed in Malaysia.

LANDBAU UND TREIBHAUSEFFEKT-QUELLEN UND SENKEN FÜR CO₂ BEI UNTERSCHIEDLICHER LANDBEWIRTSCHAFTUNG

JUTTA ROGASIK^a,*, EWALD SCHNUG^a and HELMUT ROGASIK^b

 Bundesforschungsanstalt für Landwirtschaft Braunschweig-Völkenrode, Institut für Pflanzenernährung und Bodenkunde, Germany;
 Zentrum für Agrarlandschafts- und Landnutzungsforschung (ZALF) e. V., Institut für Bodenlandschaftsforschung, Müncheberg, Germany

(Eingegangen 20 August' 1999)

Die Ergebnisse der Müncheberger Dauerversuche sind eine geeignete Datenbasis zur Bewertung der CO₂-Senke im Landbau (produzierter Gesamtertrag und Akkumulation von organischer Bodensubstanz) sowie der CO₂-Quelle (Verlust an organischer Bodensubstanz und Einsatz fossiler Energie). Durch diese Parameter sind wesentliche Größen für die Quantifizierung des C- bzw. CO₂-Haushaltes gegeben. Sie sind Indikatoren für den Vergleich unterschiedlicher Bewirtschaftungsintensitäten und charakterisieren die Umweltverträglichkeit der Pflanzenproduktion.

Ein reduzierter Faktoreinsatz kann die CO₂-Emission im Vorleistungsbereich der Landwirtschaft nur dann mindern, wenn dieser geringere Faktoreinsatz nicht mit deutlich geringerem Energiegewinn (CO₂-Bindung im Ernteertrag) verbunden ist.

Ziel landwirtschaftlicher Bodennutzung ist es u.a., die Erhaltung standorttypischer C-Gehalte im Boden zu gewährleisten. Langfristig kann durch kombinierte organischmineralische Düngung sowie konservierende Bodenbearbeitungsverfahren auf sandigen Böden eine Erhöhung des C-Pools im Boden um ca. 10% erreicht werden.

Die CO₂-Emissionen im Vorleistungsbereich der Landwirtschaft sollten auf sandigen Ackerstandorten 9 bis 10% der in der Biomasse gespeicherten CO₂-Menge nicht übersteigen.

Stichwörter: CO2; Senke; Quelle; Pflanze; Boden; Energieverbrauch; Management

^{*}Address for correspondence: Bundesforschungsanstalt für Landwirtschaft Braunschweig-Völkenrode, Institut für Pflanzenernährung und Bodenkunde, Bundesallee 50, 38116 Braunschweig, Germany.

Land Use and Greenhouse Effect-Sources and Sinks of CO₂ as Influenced by Soil Properties and Crop Management

The results of the Müncheberg Long Term Experiments are a suitable data base to estimate the sinks of CO_2 in agricultural production (crop yield related CO_2 sequestration and accumulation of soil organic matter) as well as the sources of CO_2 (loss of soil organic matter and CO_2 emission due to energy input). These parameters are important indicators for assessing the sustainability of crop production and to quantify the C or CO_2 budget.

Reduced energy input in management practices may result in reduced CO₂ emission per ton of harvested products (if the reduced energy input is not correlated with considerable yield losses).

In addition organic manuring in combination with mineral fertilization and conservation tillage systems are main measures to ensure optimal carbon contents in soils. In the long term an increase of the soil carbon pool of about 10% is possible on sandy soils.

CO₂ emission due to energy input must not exceed more than 9 or 10% of the crop and soil related CO₂ accumulation.

Keywords: CO2; sink; source; plant; soil; energy; management

EINLEITUNG

Die Landwirtschaft trägt signifikant zum anthropogen verursachten Treibhauseffekt bei. Nach Angaben des IPCC (Cole et al., 1996) wird ihr Anteil auf ca. 20% geschätzt; an der Produktion von Kohlendioxid ist sie mit ca. 3% beteiligt. Zu einer Minderung der CO₂-Emission kann die Landwirtschaft selbst durch veränderten Faktoreinsatz beitragen. Eine Änderung des Managements hin zu einer als nachhaltig zu bezeichnenden Wirtschaftsweise würde den CO₂-Ausstoß beim direkten und indirekten Energieeinsatz verringern. Sie würde die CO₂-Freisetzung aus der Mineralisierung der organischen Bodensubstanz mindern und die Senkenstärke des Bodens für CO₂ erhöhen (Dämmgen und Rogasik, 1996).

Dieser Feststellung folgend, sollen anhand ausgewählter Ergebnisse Müncheberger Dauerversuche die Wirkungen einer unterschiedlichen Intensität der Landbewirtschaftung auf

- die Biomasseproduktion als temporäre Senke für CO₂,
- die Quellen- und Senkenstärke des Bodens für CO2 sowie
- den Energieverbrauch im Vorleistungsbereich der Landwirtschaft und die CO₂-Emission quantifiziert werden.

METHODIK

Die Quantifizierung der Quellen und Senken für das klimarelevante Spurengas CO₂ erfordert die Bilanzierung der CO₂-Flüsse zwischen den Kompartimenten Boden, Vegetation und Atmosphäre. Ein- und Austräge müssen in räumlich und zeitlich abgegrenzten Systemen erfaßt werden. Die CO₂-Senke wird durch den produzierten Gesamtertrag und die Akkumulation organischer Bodensubstanz abgebildet. Als CO₂-Quellen werden der Verlust an organischer Bodensubstanz und die durch den Einsatz fossiler Energie im Vorleistungsbereich der Landwirtschaft verursachten CO₂-Emissionen berücksichtigt. Die Bewertung der CO₂-Effizienz erfolgt durch Berechnung des Anteils der CO₂-Quelle an der CO₂-Senkenfunktion als Quotient Q:

Quotient Q=

CO₂ – Emissionen im Vorleistungsbereich der Landwirtschaft

CO₂ - Senke Ertrag sowie Veränderung der CO₂ - Akkumulation im Boden

Berechnungsgrundlagen für die CO₂-Senken in Pflanzenbeständen und Boden

Die Untersuchungen basieren auf Versuchsergebnissen aus 2 Dauerversuchen in Müncheberg, Land Brandenburg (52° 30, 35 N; 14° 8, 32 E). Die Bodenbedingungen können wie folgt charakterisiert werden:

Körnungsart: schwach schluffiger, schwach leh-

miger Sand (Su2, S12)

Bodenformenvergesellschaftung: Rosterde, Braunerde, Sandtieflehm-

Fahlerde

FAO-Bodenklassifikation: Leptic Podzol, Luvic und Cambic

Arenosol

Der Müncheberger Nährstoffsteigerungsversuch wurde 1963 angelegt. Der Versuch umfaßt 21 Prüfgliedkombinationen; ungedüngt, 4 Stufen organische Düngung kombiniert mit 5 Mineral-N-Stufen.

Der Dauerversuch zum integrierten Landbau wurde 1978 angelegt. Geprüft werden Bodenbearbeitung (reduziert und konventionell), mineralische N-Düngung (Entzug und 1/3 reduziert), organische Düngung (bilanzorientiert und 50% erhöht). Auf Grund ihrer langen Laufzeit stellen die Versuche eine ideale experimentelle Grundlage dar, die Quellen- und Senkenstärke des Bodens für CO₂ zu bewerten.

N-Einsatz, organische Düngung und Bodenbearbeitung der ausgewählten Prüfgliedkombinationen werden im Ergebnisteil beschrieben (siehe auch Rogasik et al., 1997). Die CO₂-Bindung im Ernteprodukt (CO₂-Senke Pflanze) sowie die C-Speicherung im Boden (CO₂-Senke Boden) werden über die Analyse der C-Konzentrationen berechnet. Der Konversionsfaktor für CO₂ beträgt: 3,6642.

Berechnungsgrundlagen für Energieverbrauch und CO₂-Emission

Energiewerte

Die Energieaufwendungen für die einzelnen landwirtschaftlichen Input-Größen wurden auf der Basis der Datensammlungen von van Dasselaar und Pothoven (1994) kalkuliert. Die Energiewerte der Inputgrößen wurden als Bruttoenergie definiert. Sie beinhaltet die direkte Energie als Verbrauch von Diesel, Heizöl und elektrischem Strom sowie die indirekte Energie als Energieverbrauch für die Produktion der Input-Größen (Tab. I).

CO2-Emissionsfaktoren

Die CO₂-Produktion wurde nach Van Dasselaar und Pothoven (1994) auf der Basis folgender Emissionsfaktoren (kg·CO₂ je GJ) berechnet:

Benzin, Diesel	73	Pflanzenschutzmittel	77	
Strom	67	Stickstoff	56	
Erdgas	56	Phosphat	67	
Feldarbeiten	73	Kali	67	

TABELLE I Energiewerte für landwirtschaftliche Input-Faktoren (Auszug aus: van Dasselaar und Pothoven, 1994)
TABLE I Energy values for agricultural inputs (according to van Dasselaar and

TABLE I Energy values for agricultural inputs (according to van Dasselaar and Pothoven, 1994)

Input-Faktor		Energiewerte		
Mineraldüngung				
Stickstoff	38,9	$MJ \cdot kg^{-1}N$		
Phosphat	4,3	$MJ \cdot kg^{-1} P_2O_5$		
Kali	2,6	$MJ \cdot kg^{-1} P_2O_5$ $MJ \cdot kg^{-1} K_2O$		
organische Düngung				
Stalldung-TM	709	$MJ \cdot t^{-1} TM$		
•		Mit 1 t Stalldung-TM	f werden gedi	ingt: 23 kg N, 25 kg
		P_2O_5 , 25 kg K_2O ; Wi		
•		(0,6*23*38,9) + (25	*4,3) + (25*	2,6) = 709
Energieträger				
Diesel	44,5	$MJ \cdot l^{-1}$		
Erdgas	32,0			
Strom	11,0	$MJ \cdot kWh^{-1}$		
Saat- und Pflanzgut				
Getreide	10	$MJ \cdot kg^{-1}$		
Zuckerrüben	500	MJ⋅kg ⁻¹		
Kartoffeln	2	$MJ \cdot kg^{-1}$		
Pflanzenschutzmittel		_		
	101	MJ·kg-1 Produkt		
Feldarbeiten ¹ (Sandböden)				
spritzen	84	MJ⋅ha ⁻¹	direkt 46	indirekt 38
Dünger streuen	75		57	18
pflügen	1115		688	427
Stoppelbearbeitung	445		275	170
grubbern	572	MJ⋅ha ⁻¹	464	108
hacken	613		464	149
eggen	446		294	152
Saatbettbereitung	243		184	
Kartoffeln (Speise-) pflanzen	1456	MJ⋅ha ⁻¹	634	822
Kraut schlagen	708		481	
Kartoffeln roden	1875		470	
Getreideaussaat	292		171	121
Getreidedrusch	1315		452	
Stroh pressen	323		150	
Zuckerrübenaussaat	422		195	
ZR-roden	1773	MJ⋅ha ⁻¹	614	1159

¹direkter Energieverbrauch: Treibstoff; indirekter Energieverbrauch: Herstellung und Unterhalt der Maschinen und Geräte.

Energiewerte und CO₂-Emissionsfaktoren ermöglichen nach Abschätzung des durchschnittlichen Faktoreinsatzes in der Bundesrepublik Deutschland die Kalkulation der CO₂-Emission aus dem Vorleistungsbereich der Landwirtschaft.

ERGEBNISSE UND DISKUSSION

Biomasseproduktion-temporäre Senke für CO₂

Einfluß von Düngungsintensität und Bodenbearbeitung

Im Müncheberger Nährstoffsteigerungsversuch (Versuchsdauer 34 Jahre) wurden im Bereich optimaler Nährstoffversorgung Erträge von $9-10\,t\cdot ha^{-1}\cdot a^{-1}$ GE (Getreide Einheiten) erzielt (vergl. Tab. II). Die über die C-Konzentration in der Trockenmasse berechnete temporäre CO_2 -Bindung erreicht Optimalwerte von $14-15\,t\cdot ha^{-1}\cdot a^{-1}$ CO_2 .

In den Versuchsparzellen mit praktisch ausschließlicher organischer Düngung (PK + Stm 2) sind die GE-Leistung der Fruchtfolge und die temporäre Senke für CO₂ um mehr als 30% geringer im Vergleich zu den Varianten mit kombinierter organisch-mineralischer Düngung (Tab. II). Zu vergleichbaren Ergebnissen kommen Köpke und Haas (1995) bei einem Systemvergleich von konventionellem und organischem Landbau. Geringer Faktoreinsatz ist also noch keine Garantie für eine

TABELLE II GE-Erträge [dt·ha⁻¹ GE] und temporäre Senken für CO₂ [t·ha⁻¹ CO₂] in Abhängigkeit von der Mineraldüngung bei differenzierter organischer Düngung (Müncheberger Nährstoffsteigerungsversuch V140/00, 1963...1996)

TABLE II Yields of cereal units [dt·ha⁻¹GE] and temporary CO₂ sinks [t·ha⁻¹] in relation to fertilization and organic manuring (Muencheberg Long Term Fertilizer Experiment V140/00, 1963...1996)

	N -Düngung $[kg \cdot ha^{-1}]$		GE-Ertrag*	CO2-Bindung*
	mineralisch	min. + org.	$[dt \cdot ha^{-1}]$	$[t \cdot ha^{-1}]$
ungedüngt	0	0	36	5,4
NPK	88	88	86	12,7
	117	117	95	14,2
	156	156	99	14,7
NPK + Stm1	68	100	90	13,5
	116	144	97	14,4
	140	169	100	14,9
PK + Stm2	8	81	63	9,9
NPK + Stm2	51	124	88	13,2
	76	152	96	14,5
	117	192	101	14,9
NPK + Stroh	99	111	88	13,3
	135	148	100	15,2
	160	171	101	15,4

^{*}GE Erträge und CO₂-Bindung als Summe Haupt- und Nebenprodukt für die mittlere Fruchtfolgeleistung von Zuckerrüben, Sommergerste, Kartoffeln und Wnterweizen.

bessere Umweltverträglichkeit, da er oft mit geringem Energiegewinn (CO₂-Bindung im Ernteertrag) verbunden ist (siehe auch Eckert und Breitschuh, 1997). Der Nährstoffeinsatz in der Landwirtschaft muß also das Ziel verfolgen, hohe GE-Erträge bei gleichzeitig geringen C- und N-Verlusten zu erzeugen. Die N-Optima für die Erzeugung hoher GE-Erträge und damit für die Gewährleistung einer hohen temporären Senke für CO₂ wurden für die Prüfgliedkombinationen des Müncheberger Nährstoffsteigerungsversuches berechnet. Sie betragen in den Varianten

NPK	157 kg · ha ⁻¹ N,
NPK + Stalldung (1,2 t · ha ⁻¹ · a ⁻¹ TM) NPK + Stalldung (3,2 t · ha ⁻¹ · a ⁻¹ TM) NPK + Stroh (2,0 t · ha ⁻¹ · a ⁻¹ TM)	$125 \mathrm{kg \cdot ha^{-1} \ N,} \ 103 \mathrm{kg \cdot ha^{-1} \ N} \ \mathrm{und} \ 119 \mathrm{kg \cdot ha^{-1} \ N.}$

Ebenso wie die Düngungsintensität hat die Intensität der Bodenbearbeitung einen entscheidenden Einfluß auf die Biomasseproduktion und damit auf die temporäre Senke für CO₂. Auf dem Standort des nordostdeutschen Tieflandes ist eine Reduzierung der Bodenbearbeitung ohne Ertragsverluste möglich. Durch konservierende Bodenbearbeitung kombiniert mit einem Nährstoffeinsatz entsprechend dem Entzug der Pflanzen werden GE-Leistung und damit die temporäre Senke für CO₂ auf gleichem Niveau gehalten wie bei konventioneller Bodenbearbeitung und erhöhtem Nährstoffeinsatz (Tab. III). Damit ist es möglich, langfristig den Aufwand des agronomischen Managements zu reduzieren. Der verminderte Energieverbrauch für den Faktoreinsatz führt zur Einschränkung der CO₂-Emission im Vorleistungsbereich der Landwirtschaft.

Boden-Senke und Quelle für CO2

Die Speicherfähigkeit des Bodens für CO₂ stellt, verglichen mit der temporären CO₂-Bindung in der pflanzlichen Biomasse, ein bedeutend größeres Reservoir dar.

Das Ausmaß der Senkenstärke des Bodens für CO₂ wird bestimmt durch Standortfaktoren sowie Management und Landnutzung. Einen dominierenden Einfluß auf die Veränderung der organischen

TABELLE III Einfluß reduzierter Bewirtschaftungsintensität auf GE-Leistung der Fruchtfolge [dt \cdot ha $^{-1}$] und temporäre Senken für CO_2 [t \cdot ha $^{-1}$] – Berechnung für Haupt- und Nebenprodukt

TABLE III Influence of reduced management intensity on the yields of crop rotations $[dt \cdot ha^{-1}GE]$ and temporary CO_2 sinks $[t \cdot ha^{-1}]$ -calculation for primary and byproducts

Bodenbearbeitung	Nährstoffeinsatz					
		öht	nach Entzug			
	$GE [dt \cdot ha^{-1}]$	$CO_2[t \cdot ha^{-1}]$	$GE [dt \cdot ha^{-1}]$	$CO_2[t \cdot ha^{-1}]$		
konventionell	106	16,0	99	14,8		
konservierend	109	16,5	107	16,0		

Nährstoffeinsatz erhöht: $143 \text{ kg} \cdot ha^{-1} \cdot a^{-1} \text{ N}$, $22,5 \text{ dt} \cdot ha^{-1} \cdot a^{-1}$ organische Substanz Nährstoffeinsatz nach Entzug: $98 \text{ kg} \cdot ha^{-1} \cdot a^{-1} \text{ N}$, $15,0 \text{ dt} \cdot ha^{-1} \cdot a^{-1}$ organische Substanz Fruchtfolge: Zuckerrüben, Sommergerste, Kartoffeln, Winterweizen.

Bodensubstanz haben der C-Input in den Boden durch die Zufuhr organischer Düngetrockenmasse, die mineralische und organische N-Düngung und die Ertragsleistung der Fruchtarten. Durch Klassifizierung der im Müncheberger Nährstoffsteigerungsversuch gemessenen C-Vorräte bis 0,5 m Bodentiefe kann diese Abhängigkeit verdeutlicht werden (Tab. IV). Nur durch eine ausgewogene organisch-mineralische Düngung bei hoher Biomasseproduktion wird ein Absinken

TABELLE IV Differenzierung der organischen Bodensubstanz in Abhängigkeit von der Düngungsintensität im Müncheberger Nährstoffsteigerungsversuch TABLE IV Modification of soil organic matter in dependence on fertilization intensity of the Muencheberg long term fertilizer experiment

Variante	N-Düngun mineralisch	$g [kg \cdot ha^{-1}]$ $min. + org.$	C -Input ¹ $[t \cdot ha^{-1} C]$	C_{org} - $Pool^2$ $[t \cdot ha^{-1} C]$
PK + Stm2	8	81	47	25,4
NPK	88	88	0	25,2
	117	117	0	23,6
	156	156	0	24,4
NPK + Stroh	99	111	36	24,4
	135	148	36	27,6
	160	171	32	27,5
NPK + Stm1	68	100	20	25,8
	116	144	17	25,9
	140	169	18	27,9
NPK + Stm2	51	124	47	30,1
	76	152	49	28,9
	117	192	49	30,4

C-Input der organischen Düngung kumulativ über Versuchszeitraum 1963 – 1996.

² Mittelwert der Probenahmen 94, 96, 98 aus je 8 Wiederholungen.

des Humusvorrates (Startwert zu Versuchsbeginn ca. $30\,t\cdot ha^{-1}$ C_{org}) verhindert. Alleinige organische Düngung im Sinne des organischen Landbaus (Prüfglied PK + Stm2) konnte langfristig den C-Spiegel im Boden nicht halten. Die Verluste liegen mit $0,12\,t\cdot ha^{-1}\cdot a^{-1}$ C in gleicher Größenordnung wie bei ausschließlicher Mineraldüngung (Tab. V).

Die regressionsanalytische Auswertung des Datenmaterials vom Müncheberger Nährstoffsteigerungsversuch erlaubt auch eine Schätzung des C_{org} -Vorrates im Boden aus den Variablen Ertrag, mineralische und organische N-Düngung sowie dem C-Input in den Boden. Da zwischen Ertragsleistung und mineralischem N-Einsatz eine hohe Interkorrelation besteht, das heißt, der C_{org} -Vorrat im Boden durch die Kombination beider Variablen variiert wird, wird der Ertrag aus der Regressionsgleichung eliminiert. Für die Gleichung $y = b_0 + b_1x_1 + b_2x_2 + b_3x_3$ ergeben sich folgende Modellparameter:

Variable	Regressionskoeffi	Pfadkoeffizienten	
C-Input-Boden	b_1	0,0455	0,3739
N-mineralisch	b_2	0,0159	0,4011
N-organisch	b_3^-	0.0372	0,4667
Konstante r^2 : 0,69 r : 0,83	b_0°	22,6	

TABELLE V Einfluß organischer bzw. mineralischer Düngung auf die Veränderung des Kohlenstoff-Pools im Boden (Müncheberger Nährstoffsteigerungsversuch, Ergebnisse der Untersuchungen von 1994/96)

TABLE V Influence of organic manure and mineral fertilization on changes in organic carbon content (Muencheberg Long-Term Fertilizer Experiment, results from 1994/96)

	Düng organisch	gung mineralisch	C _{org} -Pool	Ertrag	C _{org} -Verlust
	$[kg \cdot ha^{-1} \cdot a^{-1} N]$		$[t \cdot ha^{-1} C] [dt \cdot ha^{-1} GE] [t \cdot ha^{-1}]$		$] [t \cdot ha^{-1} \cdot a^{-1} C]$
PK + Stm2	73	8	25,5	62,8	-0,12
NPK	0	88	25,6	85,8	-0,12

Eine Wichtung der Variablen hinsichtlich ihres Einflusses auf den C_{org}-Vorrat des Bodens ist durch den standardisierten Regressions-koeffizienten (Pfadkoeffizient) möglich. Danach ergibt sich die

ABBILDUNG 1 Einfluß unterschiedlicher Bodenbearbeitungsverfahren auf die Kompartimentierung der C_{org}-Konzentration im Boden (Dauerversuch Müncheberg, 1996/97).

FIGURE 1 Effect of soil tillage intensity on the distribution of soil organic matter (C_{org}) within topsoil (long-term field experiment at the Muencheberg site, 1996/97).

Rangfolge: organische N-Düngung > mineralische N-Düngung > C-Input in den Boden

Neben der organischen und mineralischen Düngung ist die konservierende Bodenbearbeitung eine geeignete Maßnahme, die Senkenwirkung des Bodens für CO₂ zu erhöhen (Abb. 1). Im oberen Krumenbodenbereich tritt eine deutliche Erhöhung der C-Konzentration ein. Langfristig kann nach Erreichen des Fließgleichgewichtes mit einer Erhöhung des C-Pools im Boden um ca. 10 bis 15% gerechnet werden.

Energieverbrauch durch Managementeinsatz-Quelle für CO2

Die Berechnung des Energieverbrauchs wurde-basierend auf Ergebnissen der Dauerversuche-für unterschiedliche Intensitäten der Land-

bewirtschaftung (intensiv, extensiv, ökologisch) vorgenommen (Abb. 2). Der Anteil des Energieaufwandes für mineralische Düngung und Feldarbeiten beträgt bis zu 3/4 des Gesamtenergieverbrauchs. Durch ressourcenschonenden Managementeinsatz können die Energieaufwendungen ohne signifikante Auswirkungen auf das Ertragsgeschehen reduziert werden (vgl. Tabs. II, III).

Auf der Grundlage des Energieverbrauches wurden die CO_2 -Emissionsfaktoren E (Faktor) für landwirtschaftlich relevante Input-Faktoren (Tab. VI) sowie die flächenbezogenen CO_2 -Emissionsraten $q_m(CO_2)$ abgeschätzt (Tabs. VII, VIII). Ableitend aus diesen Ergebnissen kann verallgemeinert werden, daß der flächenbezogene Ausstoß von CO_2 bei extensiver Bewirtschaftung um 25, bei ökologischer Bewirtschaftung bis zu 50% geringer ist als bei intensiver Bewirtschaftung. Reduzierter Faktoreinsatz ist jedoch oft mit abnehmendem Ertragsniveau korreliert. Wie Ergebnisse der Müncheberger Dauerversuche belegen, sinkt die temporäre CO_2 -Senke "Ertrag" von 14,4 $t \cdot ha^{-1}$ CO_2 bei kombinierter organisch-mineralischer Düngung auf 9,9 $t \cdot ha^{-1}$ CO_2 bei alleiniger organischer Düngung (vgl. Tab. II).

ABBILDUNG 2 Kalkulation des Energieeinsatzes für Getreide und Hackfrüchte bei unterschiedlicher Landnutzungsintensität.

FIGURE 2 Calculation of energy input for cereals and fallow crops for different farming systems.

TABELLE VI CO₂-Emissionsfaktoren E(Faktor) für landwirtschaftlich relevante Input-Faktoren (berechnet nach Energiewerten und CO₂-Emissionsfaktoren, aus einer Zusammenstellung von van Dasselaar und Pothoven, 1994)

TABLE VI CO_2 emission factors E(Faktor) of agricultural inputs (calculated according to van Dasselaar and Pothoven, 1994)

Parameter, Arbeitsverfahren	Emissionsfaktor in kg CO ₂ je Einheit der Bezugsgröβe	Einheit der Bezugsgröße	
Mineraldüngung			
Stickstoff	2,18	kg N	
Phosphat	0,29	$kg P_2O_5$	
Kali	0,17	kg K ₂ O	
organische Düngung Stalldung-TM	52	t TM	
Saat- und Pflanzgut			
Getreide	0,67	kg	
Zuckerrüben	33,5	kg	
Kartoffeln	0,13	kg	
Pflanzenschutzmittel			
	7,8	kg Produkt	
Feldarbeiten (Sandböden)			
spritzen	6,1	Arbeitsgang je ha	
Dünger streuen	5,5	Arbeitsgang je ha	
pflügen	81,4	Arbeitsgang je ha	
Stoppelbearbeitung	32,5	Arbeitsgang je ha	
grubbern	41,8	Arbeitsgang je ha	
hacken	44,7	Arbeitsgang je ha	
eggen	32,6	Arbeitsgang je ha	
Saatbettbereitung	17,7	Arbeitsgang je ha	
Kartoffeln (Speise-) pflanzen	106,3	Arbeitsgang je ha	
Kraut schlagen	51,7	Arbeitsgang je ha	
Kartoffeln roden	137	Arbeitsgang je ha	
Getreideaussaat	21,3	Arbeitsgang je ha	
Getreidedrusch	96,0	Arbeitsgang je ha	
Stroh pressen	23,6	Arbeitsgang je ha	
Zuckerrübenaussaat	30,8	Arbeitsgang je ha	
Zuckerrüben roden	129,4	Arbeitsgang je ha	

Die CO₂-Freisetzung bezogen auf das erzeugte Produkt steigt an (Tab. IX). Im Vergleich zur mineralischen N-Düngung wird durch überwiegend organische Düngung bei vergleichbarem Gesamt-N-Einsatz eine um den Faktor 1,3 höhere CO₂-Emission bezogen auf das erzeugte Produkt verursacht. Über das Düngungsoptimum hinaus verabreichte N-Düngung erhöht allerdings die CO₂-Emission, da die temporäre Senke "Ertrag" sich nicht signifikant ändert (Tab. X).

Energetisch betrachtet ist demzufolge der ökologische dem konventionellen bzw. integrierten Landbau nicht generell überlegen (Kalk

TABELLE VII CO₂-Emissionsrate q_m (CO₂) für unterschiedliche Bewirtschaftungsintensitäten und Kulturen (nach Dämmgen und Rogasik, 1995)
TABLE VII CO₂ emission rate q_m (CO₂) calculated for different management intensities and crops (according to Dämmgen and Rogasik, 1995)

Nutzung	CO ₂ -En	nissionsrate [kg·ha ⁻¹ ·a	$r^{-1} CO_2$
	intensiv	Bewirtschaftung extensiv	ökologisch
Getreide	826	665	443
Körner-, CCM-Mais	1.123	884	_
Silomais	1.102	927	870
Futtererbsen	586	471	448
Ackerbohnen	636	575	568
Kartoffeln	1.661	1.498	1452
Zuckerrüben	1.043	833	698
Ölfrüchte ¹	828	466	459
Klee-Grasanbau .	_	673	573
Luzerne	453	326	281
Feld-Grasanbau	1.111	_	_
Wiesen, Weiden	642	390	202

¹ intensiv-vorrangig Raps, extensiv und ökologisch-vorrangig Öllein.

TABELLE VIII Abschätzung der CO₂-Emissionen bei Acker- und Grünlandbewirtschaftung (Vorleistungsbereich und Management, ohne temporäre Senken und Quellen) für die BR Deutschland (nach Dämmgen und Rogasik, 1995)
TABLE VIII Estimation of CO₂ emissions of arable land and grassland in Germany (production and use of agricultural inputs; see: Dämmgen and Rogasik, 1995)

Nutzung	Anbaufläche 93 [10 ³ ha]	3 CO ₂ -Emission in der BRD [10 ⁶ kg · Bewirtschaftung		
	·	intensiv	extensiv	ökologisch
Getreide	5 892,5	4.867	3.919	2.610
Körner-, CCM-Mais	331,1	372	293	_
Silomais	1 264,4	1.393	1.172	1.100
Futtererbsen	44,4	26	21	20
Ackerbohnen	22,3	14	13	13
Kartoffeln	312,3	519	468	453
Zuckerrüben	521,7	544	435	364
Ölfrüchte ¹	1 006,7	834	469	462
Klee-Grasanbau	238,0	-	160	136
Luzerne	67,5	31	22	19
Feld-Grasanbau	226,5	252	_	_
Wiesen, Weiden	4011,1	2.575	1.564	810
Summe (Summe in %)		11.427 (100)	8.536 (75)	5.987 (52)

¹ intensiv-vorrangig Raps, extensiv und ökologisch-vorrangig Öllein.

Die CO₂-Emissionsraten wurden berechnet nach.

 $q_m(CO_2) = E(Faktor) \cdot Q_{m,E}(Faktor).$

q_m(CO₂) Emissions rate (Massenstrom dichte) von CO₂ (in kg·ha⁻¹). E(Faktor) Emissions faktor (in kg CO₂ ie Einheit der Bezugsgröße).

E(Faktor) Emissionsfaktor (in kg CO₂ je Einheit der Bezugsgröße). $Q_{m,E}(\text{Faktor})$ Faktoreinsatz (in Einheiten der Bezugsgröße).

TABELLE IX Produktmengenbezogene CO₂ Emission bei differenziertem Nährstoffeinsatz (berechnet für mittlere Fruchtfolgeleistung des Müncheberger Nährstoffsteigerungsversuches, 1963–1996)

TABLE IX Crop yield related CO₂ production for different fertilizer inputs (estimated for yields of crop rotation, Muencheberg Long-Term Fertilizer Experiment, 1963–1996)

Variante	N-Düngun	$g[kg \cdot ha^{-1}]$	CO2-Emission			
	mineralisch	min. + org.	t CO ₂ je t Produkt	[%]		
PK + Stm2	8	81	0,113	130		
NPK	88	88	0,086	99		
	117	117	0,083	95		
	156	156	0,086	99		
NPK + Stroh	99	111	0,081	93		
	135	148	0,077	88		
	160	171	0,082	94		
NPK + Stm1	68	100	0,086	99		
	116	144	0,087	100		
	140	169	0,090	103		
NPK + Stm2	51	124	0,092	106		
	76	152	0,089	102		
	117	192	0,092	106		

TABELLE X Matrix für produktmengenbezogene CO₂ Emission als Funktion von Nährstoffeinsatz und CO₂-Bindung im Ernteprodukt (Datenbasis: Müncheberger Nährstoffsteigerungsversuch)

TABLE X Crop yield related CO₂ production as a function of different fertilizer input and CO₂ accumulation in yield (data base: Muencheberg Long-Term Fertilizer Experiment)

N-Düngung	CO_2 -Bindung im Ernteprodukt $[t \cdot ha^{-1}]$							
$(mineral. + organ.)$ $[kg \cdot ha^{-1}]$	10	11	12	13	14	15	16	
	Tonne	CO ₂ -Emiss				je Tonne	CO ₂ -	
	gebunden im Ertrag							
40	0,10	9.09	0,08	0,07	0,06	0,05	0,05	
80	0,11	0,10	0.09	0,08	0,07	0,07	0,06	
120	0,12	0,11	0,10	0.09	0,08	0,08	0,07	
160	0,13	0,12	0,11	0,10	0.09	0,09	0,08	
200	0,14	0,13	0.12	0,11	0,10	0.09	0,09	
240	0,14	0,13	0,12	0,11	0,11	0,10	0,09	

und Hülsbergen, 1997), da oft mit erheblichen Ertragseinbußen von > 30% gerechnet werden muß. Das bestätigen auch die Ergebnisse aus den dargestellten Müncheberger Dauerfeldversuchen.

Zur Bewertung der CO₂-Effizienz wurden in ein X-Y-Diagramm (Abb. 3) mit der Ordinate "Quotient Q" (vergl. Kap. Methodik) sowie der Abzisse "CO₂-Senke Ertrag + Δ C_{org} Boden" zusätzlich Isolinien

ABBILDUNG 3 CO₂-Quellen und Senken bei unterschiedlichem Managementeinsatz auf sandigen Ackerstandorten.

FIGURE 3 CO₂ sources and sinks in relation to management intensity on sandy soils.

der CO₂-Emission im Vorleistungsbereich sowie der quadratische Regressionsansatz ($y = 0.3138 - 0.03266x + 0.001184x^2$, $r^2 = 0.94$) eingetragen. Es ist zu erkennen, daß die CO₂-Effizienz bei

CO₂-Senke Ertrag +
$$\Delta$$
C_{org} Boden 13,4...14,2 t · ha⁻¹ · a⁻¹ CO₂ CO₂-Emission im Vorleistungsbereich 1,2 t · ha⁻¹ · a⁻¹ CO₂ Quotient Q 0,09

am größten ist. Der Quotient Q nähert sich seinem Minimum. Eine weitere Erhöhung der Aufwendungen im Vorleistungsbereich spiegelt sich nicht in einer Erhöhung der CO₂-Senke Ertrag-Boden wider. Der Quotient Q steigt an.

SCHLUBFOLGERUNGEN

- Die Versuchsdaten der Müncheberger Dauerversuche sind eine relevante Datenbasis, eine Bewertung der CO₂-Senke im Landbau (produzierter Gesamtertrag und Akkumulation von organischer Bodensubstanz) sowie der CO₂-Quellen (Verlust an organischer Bodensubstanz und Einsatz fossiler Energie) vorzunehmen.
- Geringer Faktoreinsatz ist keine Garantie für eine bessere Umweltverträglichkeit, da er oft mit geringem Energiegewinn (CO₂-Bindung im Ernteertrag) verbunden ist.

- Die Nachhaltigkeit von Landbausystemen sollte auch anhand der CO₂-Emissionen aus dem Vorleistungsbereich der Landwirtschaft, der temporären CO₂-Senke "Ertrag" und der Veränderungen der C-Senke "Boden" bewertet werden. Diese Parameter sind wesentliche Größen für die Quantifizierung des C-bzw. CO₂-Haushaltes und damit Indikatoren für eine umweltverträgliche Pflanzenproduktion.
- Auf der Basis von Dauerversuchen lassen sich quantitative Kennziffern zur Bewertung der Umweltverträglichkeit differenzierter Landnutzungsintensitäten ableiten. Danach ist durch den agronomischen Managementeinsatz die Erhaltung standorttypischer C-Gehalte im Boden zu gewährleisten. Ein Absinken aber auch überhöhtes Ansteigen sind zu vermeiden.
- Die CO₂-Emissionen im Vorleistungsbereich der Landwirtschaft sollten 9 bis 10% der in der Biomasse gespeicherten CO₂-Menge nicht übersteigen.
- Die Quantifizierung der Quellen und Senken für CO₂ bei unterschiedlicher Landbewirtschaftung ermöglicht Aussagen zum Anteil der Landwirtschaft am Treibhauseffekt.

Literatur

Cole, V. (1995) Agricultural options for mitigation of greenhouse gas emissions. In: Climate Change 1995-Impacts, Adaptions and Mitigation of Climate Change: Scientific-Technical Analyses. Watson, R. T., M. C. and Zinyowera, Moss, R. H. Eds. Contribution of Working Group II to the Second Assessment Report of the Intergovernmental Panel on Climate Change, pp. 744-771.

Dämmgen, U. und Rogasik, J. (1996) Einfluß der Land- und Forstbewirtschaftung auf Luft und Klima. In: Linckh, G., Sprich, H., Flaig, H. und Mohr, H. (Hrsg.) Nachhaltige Land- und Forstwirtschaft. Expertisen. Akademie für Technikfol-

geabschätzungen Stuttgart, Springer-Verlag, 850 Seiten.

Eckert, H. und Breitschuh, G. (1997) Kritische Umweltbelastungen Landwirtschaft (KUL): Ein Verfahren zur Erfassung und Bewertung landwirtschaftlicher Umweltwirkungen. Umweltverträgliche Landwirtschaft: Indikatoren, Bilanzierungsansätze und ihre Einbindung in Ökobilanzen; Fachtagung am 11. und 12. Juli 1996 in Wittenberg; schriftliche Fassung der Beiträge/[Hrsg. W. Diepenbrock...]. Osnabrück: Zeller (Initiativen zum Umweltschutz; Bd. 5), pp. 185-195.

Kalk, W.-D. und Hülsbergen, K.-J. (1997) Energiebilanz-Methode und Anwendung als Agrar-Umweltindikator. Umweltverträgliche Landwirtschaft: Indikatoren, Bilanzierungsansätze und ihre Einbindung in Ökobilanzen; Fachtagung am 11. und 12. Juli 1996 in Wittenberg; schriftliche Fassung der Beiträge/[Hrsg. W. Diepenbrock...]. Osnabrück: Zeller (Initiativen zum Umweltschutz; Bd. 5), pp. 31-42.

Köpke, U. und Haas, G. (1995) Vergleich konventioneller und organischer Landbau-Teil II: Klimarelevante Kohlendioxid-Senken von Pflanzen und Boden. Ber. Ldw.,

73, 416-434.

- Rogasik, J., Obenauf, S., Lüttich, M. und Ellerbrock, R. (1997) Faktoreinsatz in der Landwirtschaft-ein Beitrag zur Ressourcenschonung (Daten und Analysen aus dem Müncheberger Nährstoffsteigerungsversuch). Arch. Acker- Pflanzenbau und Bodenkd., 42, 247-263.
- Van Dasselaar, A. und Pothoven, R. (1994) Energieverbruik in de Nederlandse landbouw. Vergelijking verschillende bemestingsstrategien. NMI, Wageningen. 85 Seiten.