

SEQUENCE LISTING

<110> Hooper, Douglas
Dietzschold, Bernhard

<120> RABIES VIRUS-SPECIFIC NEUTRALIZING HUMAN
MONOCLONAL ANTIBODIES AND NUCLEIC ACIDS AND RELATED METHODS

<130> H0001.NP0002

<150> 60/204,518
<151> 2000-05-16

<160> 8

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 1430
<212> DNA
<213> Homo sapien

<400> 1
accatggagt ttgggctgag ctggctttt cttgtggcta ttttaaaagg tgtccagtgt 60
gaggtgcagc tggggagtc tgggggaggc ttgtacagc ctggggggtc cctgagactc 120
tcctgtgcag cctctggatt caccttagc aactatgcc aactatgcc tgagctgggt ccgcaggc 180
ccagggaaagg ggctggagtg ggtctcagct attatgtcta gtggtcatacg cacatatttgc 240
gcagactccg tgaaggggccg gttcaccatc tccagagaca attccaagaa cacgctgttat 300
ctgcaaatga acaggcctgag accggaggac acggccgtat attactgtgc gaaagatcga 360
gagggtacta tgatagttgt acttaatggg ggcttgcact actggggcca gggAACCCGG 420
gtcaccgtct cctccgcctc caccaggc ccatcggtct tccccctggc accctccctcc 480
aagagcacct ctgggggcac agcgccctg ggctgcctgg tcaaggacta cttcccccga 540
ccggtgacgg tgcgtggaa ctcaaggcgc ctgaccagcg gcgtgcacac cttcccggt 600
gtcctacagt ctcaggact ctactccctc agcagcgtgg tgaccgtgcc ctccagcagc 660
ttgggcaccc agacctacat ctgcaacgtg aatcacaagc ccagcaacac caaggtggac 720
aagaggttg agcccaaatac ttgtgacaaa actcacacat gcccacccgtg cccagcacct 780
gaacttctgg ggggacccgtc agtcttcctc ttccccccaa aacccaagga caccctcatg 840
atctcccgga cccctgaggt cacaatgcgtg tggtggacg tgagccacga agaccctgag 900
gtcaagttca actggtacgt ggacggcgtg gaggtgcata atgccaagac aaaggccgg 960
gaggagcagt acaacagcac gtaccgtgt gtcagcgtcc tcaccgtct gcaccaggac 1020
tggctgaatg gcaaggagta caagtgcac agtctccaaca aagccctccc agccccatc 1080
gagaaaaacca tctccaaagc caaaggccag ccccgagaac cacaggtgtt caccctgccc 1140
ccatcccggtt aggatgtac caagaaccag gtcagcgtca cctgcctgtt caaaggcttc 1200
tatcccagcg acatcgccgt ggagtggag agcaatggc agccggagaa caactacaag 1260
accaacgcctc ccgtgcttga ctccgacggc tccttcttcc tctatagcaa gtcaccgtg 1320
gacaagagca ggtggcagca ggggaacgtc ttctcatgtt ccgtgatgca tgaggctctg 1380
cacaaccact acacgcagaa gagcctctcc ctgtccccgg gtaaatgagt 1430

<210> 2
<211> 708
<212> DNA
<213> Homo sapien

<400> 2
 agcatggaaag ccccaagctca gcttctttc ctctgtac tctggctccc agataccacc 60
 ggagaaaattg tggtgacaca gtctccagcc accctgtct tgcctccagg gaaagagcc 120
 accctcgccct gcagggccag tcagactgct agcaggtaact tagcctggta ccaacagaaa 180
 cctggccagg ctcccagact cctcatctat gatacatcca acagggccac tggatcccc 240
 gccaggttca gtggcagtgg gtctggaca gacttcactc tctccatca cagcctggag 300
 cctgaagatt ttgcagtttta ttactgttag cagcgttca actggccgtg gacgttcggc 360
 caagggacca aggtggaaatt caaacgaact gtggctgcac catctgtctt catcttcccg 420
 ccatctgtat agcagttgaa atctggaaact gcctctgtt tgcctgtct gaataacttc 480
 tatcccgag aggccaaagt acagtggaaag gtggataacg ccctccaaatc gggtaactcc 540
 caggagatg tcacagagca ggacagcaag gacagcacct acagccttag cagcaccctg 600
 acgctgagca aagcagacta cgagaaacac aaagtctacg cctgcgaagt caccatcag 660
 ggcctgagct cgcccggtcac aaagagcttc aacagggag agtgttag 708

<210> 3
 <211> 474
 <212> PRT
 <213> Homo sapien

<400> 3
 Met Glu Phe Gly Leu Ser Trp Leu Phe Leu Val Ala Ile Leu Lys Gly
 1 5 10 15
 Val Gln Cys Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln
 20 25 30
 Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe
 35 40 45
 Ser Asn Tyr Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu
 50 55 60
 Glu Trp Val Ser Ala Ile Ser Ala Ser Gly His Ser Thr Tyr Leu Ala
 65 70 75 80
 Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn
 85 90 95
 Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val
 100 105 110
 Tyr Tyr Cys Ala Lys Asp Arg Glu Val Thr Met Ile Val Val Leu Asn
 115 120 125
 Gly Gly Phe Asp Tyr Trp Gly Gln Gly Thr Arg Val Thr Val Ser Ser
 130 135 140
 Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys
 145 150 155 160
 Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr
 165 170 175
 Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser
 180 185 190
 Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser
 195 200 205
 Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr
 210 215 220
 Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys
 225 230 235 240
 Arg Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys
 245 250 255
 Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro
 260 265 270
 Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys

275	280	285
Val Val Val Asp Val Ser His	Glu Asp Pro Glu Val Lys	Phe Asn Trp
290	295	300
Tyr Val Asp Gly Val Glu Val His Asn Ala Lys	Thr Lys Pro Arg Glu	
305	310	315
Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu		320
325	330	335
His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn		350
340	345	
Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly		365
355	360	
Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu		380
370	375	
Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr		400
385	390	395
Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn		415
405	410	
Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe		430
420	425	
Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn		445
435	440	
Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr		460
450	455	
Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys		
465	470	

<210> 4
<211> 234
<212> PRT
<213> Homo sapien

<400> 4		
Met Glu Ala Pro Ala Gln Leu Leu Phe Leu Leu Leu Leu Trp Leu Pro		
1	5	10 15
Asp Thr Thr Gly Glu Ile Val Leu Thr Gln Ser Pro Ala Thr Leu Ser		
20	25	30
Leu Ser Pro Gly Glu Arg Ala Thr Leu Ala Cys Arg Ala Ser Gln Thr		
35	40	45
Ala Ser Arg Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro		
50	55	60
Arg Leu Leu Ile Tyr Asp Thr Ser Asn Arg Ala Thr Gly Ile Pro Ala		
65	70	75 80
Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Ser Ile Ser		
85	90	95
Ser Leu Glu Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Arg Phe		
100	105	110
Asn Trp Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Phe Lys Arg		
115	120	125
Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln		
130	135	140
Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr		
145	150	155 160
Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser		
165	170	175
Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr		

180 185 190
Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys
195 200 205
His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro
210 215 220
Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
225 230

<210> 5
<211> 20
<212> DNA
<213> Homo sapien

<400> 5
accatggagt ttgggctgag

20

<210> 6
<211> 20
<212> DNA
<213> Homo sapien

<400> 6
actcatttac ccggggacag

20

<210> 7
<211> 20
<212> DNA
<213> Homo sapien

<400> 7
agcatggaag ccccagctca

20

<210> 8
<211> 21
<212> DNA
<213> Homo sapien

<400> 8
ctctaacaact ctccccctgtt g

21