תרגיל מסכם

Big Data 2019 פברואר

רון לוי

exploratory analysis

<u>הגדרות המשתנים</u>

שבזמן נתון uber- ספירת ההזמנות מ-<u>number of pickups</u>

האם מדובר ביום חול או בסוף-שבוע -wDay

ספירת השכרות האופניים בזמן נתון -bikes pickups

. האם ירד גשם או לא ירד גשם. 0 אומר שלא ירד גשם, 1 אומר שירד $\underline{-Rain}$

<u>בכדי לארגן את הנתונים, ביצעתי את הפעולות הבאות:</u>

- 1. השארתי רק תצפיות מהרדיוס הרלוונטי
- 2. חילקתי את הדאטה לאינטרוולים של רבע שעה
- 3. מיזגתי את החודשים יולי, אוגוסט וספטמבר (השבועיים הראשונים)
 - 4. הבדלתי בין ימי חול לסופי-שבוע, והגדרתי חגים כסופי-שבוע
 - 5. הוספתי דאטה של השכרות אופניים ושל תנועת הרכבות

של הדאטה summary

number_of_pickups	wDay	bikes_pickups
Min. : 1.00	weekday:5144	Min. : 1.00
1st Qu.: 11.00	weekend:2298	1st Qu.: 13.00
Median: 22.00	NA	Median : 44.00
Mean: 24.98	NA	Mean : 47.47
3rd Qu.: 35.00	NA	3rd Qu.: 68.00
Max. :105.00	NA	Max. :244.00

<u>כמות הימים הגשומים</u>

ירד גשם	לא ירד גשם
23,821	162,064

מה הקשר של המשתנים שבחרתי למשתנה התלוי?

יום עבודה מול יום חופש -wDay

בתחילת העבודה העליתי השערה כי יש קשר בין אופי היום לבין הביקוש ל-uber. האינטואיציה שלי אמרה שאנשים משתמשים ב-uber לצרכי היום-יום, וממעיטים בשימוש בימי מנוחה.

-bikes pickups השכרות אופניים

אחת ההשערות שרציתי לבדוק, היא האם יש קשר בין השימוש ב-uber לבין השימוש באופניים שכורות. הנחתי כי ישנו קשר, גם אם לא סיבתי, בין שני המשתנים. כאשר בחנתי את הקורלציה ביניהם הבנתי כי ייתכן וזו תהיה תוספת טובה למודל.

bikes pickups לבין number of pickups הקורלציה בין

0.59

Rain

רציתי לבדוק האם יש השפעה לכך שיורד גשם על כמות ההזמנות מ-uber.

נבדוק - האם קיים הבדל בשימוש ב-uber ביום חול ובסופ"ש?

ביצעתי t-test לרגרסיה שבה השימוש ב-uber הוא המשתנה התלוי, ו-wDay הוא המשתנה הבלתי תלוי.

קיבלתי שה- p-value < 2.2e-16, כלומר:

קיים הבדל מובהק!

השכרות אופניים לפי שעה

ניתן לראות את השוני בהשכרת האופניים בין ימי חול לסופי-שבוע. **השימוש בימי חול** עולה בצורה חדה החל מ-6:00, ומגיע לשיא בשעה 9:00 שעת תחילת העבודה. השיא הנוסף הוא בשעה 18:00, אז מרבית האנשים עוזבים את המשרד.

השימוש בסופי-שבוע שונה מאשר בימי חול. הביקוש עולה בצורה מתונה לאורך הבוקר, ומגיע לשיא בסביבות 15:00. הביקוש בסופי-שבוע הרבה יותר "חלק", אין שינויים דרסטיים כמו בימי חול.

גם כאן ישנו הבדל די ברור בין הימים השונים. **השימוש בימי חול** עולה החל מ4:30 בבוקר, ומגיע לשיא בשעה 9:00. כמו אצל השימוש באופניים, גם כאן ניתן לראות עלייה חדה בשימוש בשעה 18:00, שעת סיום העבודה. במקרה של uber, העלייה אף יותר קיצונית.

השימוש בסופי-שבוע שונה מביום חול. ישנו ביקוש ל-uber גם באמצע הלילה, והוא הולך ונחלש לקראת הבוקר. הביקוש מגיע למינימום בשעה 6:00 לערך, ואז עולה בצורה מתונה עד השעה 18:00. בניגוד ליום חול ובדומה לאופניים, העלייה הרבה יותר מתונה.

<u>מסקנות</u>

- 1. ככל הנראה, אנשים משתמשים ב-uber בעיקר למטרות עבודה
 - 2. ככל הנראה, אנשים משכירים אופניים בעיקר למטרות עבודה
- 3. גם אם אנשים אינם משתמשים ב-uber ומשכירים אופניים בעיקר למטרות עבודה, נוכל להניח כי סיבה משותפת אחרת להרגלי הצריכה של uber ושל האופניים; זאת מכיוון שההתפלגות של שני המשתנים נראית דומה
 - 4. יש הבדל די משמעותי בין יום חול לסוף-שבוע
- יש ביקוש גם בשעות מאוחרת בלילה, אך בעיקר בסופי שבוע. ככל הנראה uber. 5 בגלל בליינים
- 6. על כל יום גשום ישנם כשבעה ימים ללא גשם (בתקופה המדוברת על-פי מדגם זה)

<u>תיאור המודל שנבחר</u>

בכדי לבחון את מידת הדיוק של המודלים השתמשתי בהגדרה הבאה:

$$ACCURACY = 1 - (\frac{RMSE}{Mean\ Hourly\ Demand})$$

המודל הראשון אותו בחנתי הוא:

$$uber_{count} = Hour + wDay + bikes_{count} + Rain$$

רמת הדיוק שלו היא:

0.5635747

המודל

הנבחר!

 $uber_{count} = Hour * wDay + Hour + wDay + bikes_{count} + Rain$

רמת הדיוק שלו היא:

המודל השני שבדקתי:

0.5987158

:השלישי

$$log(uber_{count}) = +Hour + wDay + bikes_{count} + Rain$$

לאחר שקיבלתי את התחזית, הפעלתי אקספוננט. רמת הדיוק:

0.561969

:הרביעי

$$\log(uber_{count}) = Hour*wDay + Hour+wDay + bikes_{count} + Rain$$
 רמת הדיוק:

0.5881397

נבדוק מודל בלי משתנה האופניים:

$$uber_{count} = Hour * wDay + Hour + wDay + Rain$$

רמת הדיוק:

0.5968815

<u>קיבלתי שהמודל השני הגיעה לדיוק המרבי, ולכן אבחר בו.</u>

עקב הגבלת העמודים בעבודה זו, לא יכולתי להוסיף את ערכי המקדמים עבור המודל הנבחר. אציין כי המשתנים "Rain", "bikes_pickups", "Rain" הינם מובהקים. האינטראקציה בין "weekend" לבין "hour" הינה מובהקת, מלבד בשעות הלילה המאוחרות (בין 0:00 ל-02:00). "hour" מובהק אחרי השעה 06:00.

<u>נתונים נוספים לגבי הרגרסיה:</u>

Adjusted $R^2 = 0.7072$

 $P-value < \frac{2.2e-16}{2}$