```
import numpy as np
import pandas as pd
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
```

loan_dataset=pd.read_csv('/datas.csv')

loan_dataset.head()

₹		Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Am
	0	LP001002	Male	No	0	Graduate	No	5849	0.0	NaN	
	1	LP001003	Male	Yes	1	Graduate	No	4583	1508.0	128.0	
	2	LP001005	Male	Yes	0	Graduate	Yes	3000	0.0	66.0	
	3	LP001006	Male	Yes	0	Not Graduate	No	2583	2358.0	120.0	
	4	LP001008	Male	No	0	Graduate	No	6000	0.0	141.0	

loan_dataset.shape

→ (614, 13)

loan_dataset.describe()

₹		ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History
	count	614.000000	614.000000	592.000000	600.00000	564.000000
	mean	5403.459283	1621.245798	146.412162	342.00000	0.842199
	std	6109.041673	2926.248369	85.587325	65.12041	0.364878
	min	150.000000	0.000000	9.000000	12.00000	0.000000
	25%	2877.500000	0.000000	100.000000	360.00000	1.000000
	50%	3812.500000	1188.500000	128.000000	360.00000	1.000000
	75%	5795.000000	2297.250000	168.000000	360.00000	1.000000
	max	81000.000000	41667.000000	700.000000	480.00000	1.000000

loan_dataset.isnull().sum()

$\rightarrow \overline{}$	Loan_ID	0
	Gender	13
	Married	3
	Dependents	15
	Education	0
	Self_Employed	32
	ApplicantIncome	0
	CoapplicantIncome	0
	LoanAmount	22
	Loan_Amount_Term	14
	Credit_History	50
	Property_Area	0
	Loan_Status	0
	dtype: int64	

loan_dataset=loan_dataset.dropna()

loan_dataset.isnull().sum()

```
Loan_ID 0
Gender 0
Married 0
Dependents 0
Education 0
Self_Employed 0
ApplicantIncome 0
CoapplicantIncome 0
LoanAmount 0
Loan_Amount_Term 0
```

Credit_History 0 Property_Area 0 Loan_Status 0 dtype: int64

Double-click (or enter) to edit

loan_dataset.replace({"Loan_Status":{'N':0,'Y':1}},inplace=True)

loan_dataset.head()

→		Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Am
	1	LP001003	Male	Yes	1	Graduate	No	4583	1508.0	128.0	
	2	LP001005	Male	Yes	0	Graduate	Yes	3000	0.0	66.0	
	3	LP001006	Male	Yes	0	Not Graduate	No	2583	2358.0	120.0	
	4	LP001008	Male	No	0	Graduate	No	6000	0.0	141.0	
	5	LP001011	Male	Yes	2	Graduate	Yes	5417	4196.0	267.0	

loan_dataset['Dependents'].value_counts()

Dependents
0 274
2 85
1 80
3+ 41

Name: count, dtype: int64

loan_dataset=loan_dataset.replace(to_replace ='3+',value=4)

loan_dataset['Dependents'].value_counts()

Dependents
0 274
2 85
1 80
4 41

Name: count, dtype: int64

sns.countplot(x='Education',hue='Loan_Status',data=loan_dataset)

sns.countplot(x='Married',hue='Loan_Status',data=loan_dataset)

 $\verb|sns.countplot(x='ApplicantIncome', hue='Loan_Status', data=loan_dataset)|\\$

ApplicantIncome

loan_dataset.head()

→ *		Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Am
	1	LP001003	Male	Yes	1	Graduate	No	4583	1508.0	128.0	
	2	LP001005	Male	Yes	0	Graduate	Yes	3000	0.0	66.0	
	3	LP001006	Male	Yes	0	Not Graduate	No	2583	2358.0	120.0	
	4	LP001008	Male	No	0	Graduate	No	6000	0.0	141.0	
	5	LP001011	Male	Yes	2	Graduate	Yes	5417	4196.0	267.0	

loan_dataset.replace({"Married":{'No':0,'Yes':1},"Gender":{'Male':1,'Female':0},"Education":{'Graduate':1,'Not Graduate':0},

loan_dataset.head()

		Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Am
	1	LP001003	1	1	1	1	0	4583	1508.0	128.0	
	2	LP001005	1	1	0	1	1	3000	0.0	66.0	
	3	LP001006	1	1	0	0	0	2583	2358.0	120.0	
	4	LP001008	1	0	0	1	0	6000	0.0	141.0	
	5	LP001011	1	1	2	1	1	5417	4196.0	267.0	

X=loan_dataset.drop(columns=['Loan_ID','Loan_Status'],axis=1)
Y=loan_dataset['Loan_Status']

 $X_train, X_test, Y_train, Y_test=train_test_split(X,Y, test_size=0.1, stratify=Y, random_state=2)$

classifier=svm.SVC(kernel='linear')

classifier.fit(X_train,Y_train)

 $\label{eq:continuous} X_train_predicition=classifier.predict(X_train) \\ training_data_accuracy=accuracy_score(X_train_predicition,Y_train) \\$

print(training_data_accuracy)

→ 0.798611111111111

X_test_prediction=classifier.predict(X_test)
test_data_accuracy=accuracy_score(X_test_prediction,Y_test)
print(test_data_accuracy)

→ 0.8333333333333334

Start coding or generate with AI.