

REINFORCEMENT LEARNING

Lecture 3: Monte Carlo and Temporal Difference

Ibrahim Sammour

December | 2023

Types of Reinforcement Learning

- Model-Based
 - Uses an explicit model of the environment.
 - Example: Grid World
- Model-Free
 - Learn by directly interacting with the environment without prior knowledge
 - Example: Robot navigation
- On-Policy and Off-Policy.. (Later)

Monte Carlo Methods

- Based on experience sampling
- Sequence of state, action, reward pairs from direct interaction with the environment
- No prior knowledge of the Model of the environment
 - We do not know the probability distribution of the actions environment.
 - We do not necessarily have static rewards.

Monte Carlo Methods

- Solving reinforcement learning based on averaging returns
- They work on an episode to episode sense and only applicable for episodic tasks
- Aims to learn the state-value $V_{\pi}(s)$ or action-value $Q_{\pi}(s,a)$ functions

Recap

- Value function:
 - Value of a state or the expected return from a state
- Action value function:
 - Value of each action in a state
- Cumulative reward (return)
 - Discounted future reward starting from a state

RL Prediction and Control

- RL Prediction
 - We already have a policy and we need to figure out how does it perform
 - Predict the expected return of a state
- RL Control
 - We are learning the policy until reaching an optimal one
 - Find π that maximizes the expected return in any state

Monte Carlo Prediction

- Model-free method.
- Value of a state = mean of the returns (return === Cumulative reward).
- Applies only to episodic tasks.
- Steps:
 - 1. Policy evaluation.
 - 2. Policy improvement.
 - 3. Control.

Monte Carlo Prediction

First Visit Method

```
Input: a policy π
```

Initialize:

Initialize V(s), for all s in S

Returns(s) \leftarrow an empty list, for all s in \mathcal{S}

Loop over episodes:

- Generate an episode following π : s_0 , a_0 , r_0 , s_1 , a_1 , r_1 , ..., s_{t+1} , a_{t+1} , r_{t+1}
- $-\bar{r} \leftarrow 0$
 - Loop for each step of the episode, t = T-1, T-2, ..., 0:

If we did not pass through s_t before in this episode:

$$-\bar{\mathbf{r}}_{\mathrm{st}} \leftarrow \mathbf{r}_{\mathrm{t}} + \gamma \bar{\mathbf{r}}_{\mathrm{st+1}}$$

- Append \bar{r} to Returns(s_t)

 $V(s_t) \leftarrow average(Returns(s_t))$

Monte Carlo Prediction

Every Visit Method

```
Input: a policy \pi Initialize: Initialize V(s), for all s in \mathcal{S}
```

Returns(s) \leftarrow an empty list, for all s in \mathcal{S}

Loop over episodes:

- Generate an episode following π : s_0 , a_0 , r_0 , s_1 , a_1 , r_1 , ..., s_{t+1} , a_{t+1} , r_{t+1}
- $-\bar{r} \leftarrow 0$
 - Loop for each step of the episode, t = T-1, T-2, ..., 0:
 - $-\bar{r}_{st} \leftarrow r_t + \gamma \bar{r}_{st+1}$
 - Append \bar{r} to Returns(s_t)
 - Average $\bar{\mathbf{r}}$ for each state in the episode
 - $V(s_t) \leftarrow average(Returns(s_t))$

Monte Carlo Control

Exploring Starts Method

Initialize:

Initialize π **arbitrarly**

Initialize Q(s,a), for all states and actions

Returns(s,a) \leftarrow an empty list, for all states and actions

Loop over episodes:

- Start from a random state so and pick a random action ao
- Generate an episode following π : s_0 , a_0 , r_0 , s_1 , a_1 , r_1 , ..., s_{t+1} , a_{t+1} , r_{t+1}
- $-\bar{r} \leftarrow 0$
 - Loop for each step of the episode, t = T-1, T-2, ..., 0:
 If we did not pass through s_t before in this episode:
 - $-\bar{\mathbf{r}}_{\mathrm{st}} \leftarrow \mathbf{r}_{\mathrm{t}} + \gamma \bar{\mathbf{r}}_{\mathrm{st+1}}$
 - Append $\bar{\mathbf{r}}$ to Returns(s_t, a_t)
 - $Q(s_t, a_t) \leftarrow average(Returns(s_t, a_t))$
 - Update policy as the best action given a state