

ATAL BIHARI VAJPAYEE-INDIAN INSTITUTE OF INFORMATION TECHNOLOGY AND MANAGEMENT (ABV-IIITM), GWALIOR

BEHAVIOR-DRIVEN MALICIOUS NODE DETECTION AND MITIGATION IN IOT NETWORKS USING ENHANCED IOTDEVID FRAMEWORK

Base research paper

IoTDevID: A Behavior-Based Device Identification Method for the IoT by Kahraman Kosta, Mike Just and Michael A. Lones https://ieeexplore.ieee.org/document/9832419/

IEEE Internet of Things Journal 2022

PRESENTED BY:

Swapnil Sontakke

Dr. W Wilfred Godfrey

Prof. Shashikala Tapaswi

SUBMITTED TO:

CONTENTS

- 1. Background of the Problem
- 2. Motivation
- 3. Literatur Survey: Related work
- 4. Research Gaps
- 5. Problem Statement
- 6. Objective
- 7. Proposed Methodology
- 8. Refrences

BACKGROUND OF THE PROBLEM

- The Internet of Things (IoT) ecosystem is rapidly expanding across homes, industries, and critical infrastructure.
- Most IoT devices have limited computational power, heterogeneity nature and weak authentication, making them highly vulnerable to cyber threats.
- Traditional Intrusion Detection Systems (IDS) depend on static signatures, failing to detect behavioral changes or new attacks.
- Existing frameworks like IoTDevID can identify devices but cannot recognize behavioral deviations once a node is compromised.
- This necessitates a dynamic, drift driven adaptive security mechanism that continuously monitors device behavior.

MOTIVATION

- Increasing IoT attacks (botnets, data tampering, DDoS)
 highlight the urgent need for proactive defense.
- Static device identification cannot detect changes postcompromise.
- Adaptive, behavior-drift-driven analysis allows detection of early compromise indicators.
- Whale Optimization Algorithm (WOA) offers an efficient way to optimize features in resource-limited environments.
- The goal: design a lightweight, explainable, adaptive malicious node detection and mitigation framework for real-world IoT networks.

LITERATURE SURVEY

This section reviews related works on:

- IoT device identification (IoTDevID, IoTSense)
- Anomaly detection (N-BaloT, DïoT)
- Optimization algorithms (GA, WOA, GWO)
- Concept drift adaptation (ADWIN, EWMA)

Purpose: Identify the limitations and motivate the proposed enhanced framework.

LITERATURE SURVEY

Author & Year	Paper / Approach	Key Contribution	Major Limitation
Kostas et al., 2022	IoTDevID: Behavior-Based Device Identification (IEEE IoT J.)	Introduced packet-level behavioral fingerprinting using Decision Tree	Assumes static behavior; cannot detect drift or post-compromise deviation.
		for accurate IoT device ID.	
Nguyen et al., 2019	DÏoT: Federated Self-Learning	Developed a privacy-preserving	High computational cost; lacks per-
	Anomaly Detection (ICDCS)	federated anomaly detection system for IoT gateways.	device behavioral profiling.
Meidan et al., 2018	N-BaloT: Network-Based Botnet	Used deep autoencoders to detect	Requires heavy computation and large//
	Detection (Elsevier)	botnet-infected IoT devices like	data; lacks explainability and
		Mirai.	adaptability.
Bezawada et al., 2018	IoTSense: Behavioral Fingerprinting	Modeled static traffic patterns for	Focuses only on static identity; cannot
	(IEEE CNS)	IoT device identification.	distinguish malicious or benign drifts

LITERATURE SURVEY

Author & Year	Paper / Approach	Key Contribution	Major Limitation
Xu et al., 2023	Detecting Compromised IoT Devices (Elsevier Review)	Provided comprehensive survey of compromised device detection methods.	Identified lack of adaptive, lightweight, explainable IDS frameworks.
Xu et al., 2024	Addressing Concept Drift in IoT Anomaly Detection (IEEE)	Integrated ADWIN/EWMA to adapt to evolving IoT data distributions.	Focused only on data drift; ignored context-aware behavioral drift.
Shan et al., 2025	Hybrid WOA–GWO for Intrusion Detection (Nature Sci. Rep.)	Combined WOA and GWO for faster and accurate IDS feature selection.	Not IoT-specific; lacks drift-awareness and online adaptability.
Mirjalili & Lewis, 2016	Whale Optimization Algorithm (Elsevier)	Introduced WOA for efficient global optimization using bubble-net hunting strategy.	Not applied to IoT security; needs adaptation for binary feature selection.

RESEARCHGAPS

- 1. No unified adaptive malicious detection and mitigation system combining device ID + anomaly detection.
- 2. Static identification fails to track post-compromise drift.
- 3. High computational overhead in GA-based feature selection.
- 4. Lack of explainability in deep-learning-based IDS.
- 5. Absence of lightweight edge-deployable models.
- 6. No trust scoring or automated mitigation mechanism.

PROBLEM STATEMENT

- Existing IoT identification systems are static and cannot detect malicious behavior once a legitimate device is compromised.
- There is a need for an adaptive, lightweight, behavior-driven IoT device monitoring framework that detects and mitigates compromised nodes efficiently.

OBJECTIVES

- 1. Replace Genetic Algorithm (GA) with Whale Optimization Algorithm (WOA) for robust and efficient feature selection.
- 2. Integrate Decision Tree + Drift Detection Layer (ADWIN/EWMA) for adaptive monitoring.
- 3. Continuously track behavioral deviations in IoT devices for anomaly and malicious nide detection and mitigation.
- 4. Develop a trust scoring mechanism for real-time reliability assessment.
- 5. Validate performance using Aalto and UNSW IoT datasets.

PROPOSED METHODOLOGY - OVERVIEW

Enhanced IoTDevID Framework:

- Combines WOA-based feature optimization, Decision Tree classification, and drift detection.
- Implements trust-based mitigation (e.g., isolation or throttling).
- Designed for edge gateway deployment.

System architecture

Modules:

- 1.Feature Selection (WOA)
 Selects optimal subset using fitness score.
- Device Classification (DT)
 Identifies device type using behavioral features.
- 3.Drift Detection (ADWIN/EWMA)

Detects behavioral deviations over time and adapt to network changes.

4.Trust Scoring Engine
Quantifies reliability; triggers mitigation.

Behavior-Driven Malicious Node Detection and Mitigation in IoT Networks using enhanced IoTDevID framework

IOTDEVID: CURRENT APPROACH

FEATURE EXTRACTION

All Individual

Packet Features

FEATURE SELECTION

IoTDevID Workflow
Packet Capture (Aalto & UNSW dataset)

Feature Extraction

Feature Selection (Voting based selection & GA)

Model Training (DT)

Packet Classification (Using DT)

Aggregation

Final Device Identification

MODEL SELECTION

01101111 01110110

01100101

Isolated
Test Data

FINAL IMPLEMENTATION

IOTDEVID: PROPOSED APPROACH

FEATURE EXTRACTION

Isolated

Train Data

01101111

01110110 01100101

01101100

01101111 01110110

01100101

Isolated

Test Data

NETWORK

All Individual

Packet Features

FEATURE SELECTION

MODEL SELECTION

FINAL IMPLEMENTATION

IoTDevID Workflow
Packet Capture (Aalto & UNSW dataset)

Feature Extraction

Feature Selection (Voting & Whale optimization)

Model Training (DT)

Packet Classification (Using DT)

Aggregation

Final Device Identification

Drift detection Layer for deviation detection

Adaptive Update (Learning from changes in network)
ADWIN/EWMA

Trust Scoring and Mitigation

ADVANTAGES OVER EXISTING WORK

Aspect	Existing Models	Enhanced IoTDevID
Feature Optimization	GA/manual	WOA (stable, fast)
Adaptivity	Static	Drift-aware (ADWIN/EWMA)
Interpretability	Partial	Fully explainable DT
Resource Use	High	Lightweight (Edge-ready)
Compromise Detection	Absent	Early-stage detection

ADDRESSING RESEARCH GAPS

Gap	Solution
Lack of adaptive detection	Integrated DT + Drift Detection Layer
High GA overhead	WOA-based optimization
Disjoint identity & anomaly detection	Unified IoTDevDrift pipeline
Weak early compromise response	Dynamic trust scoring + mitigation
Edge unsuitability	Lightweight architecture
No mitigation	Automated firewall/SDN actions

METHODOLOGY: EXPECTED OUTCOMES & AIM

- +2% improvement in identification accuracy over IoTDevID
- 30–40% faster convergence in feature selection
- 45 vs 52 features (reduced set)
- Early compromise detection
- <1% false positives, <2 ms inference delay
- Suitable for real-time IoT edge deployment

REFERENCES

- Kostas et al., IoTDevID: Behavior-Based Device Identification, IEEE IoT Journal, 2022.
- Nguyen et al., DÏoT: Federated Self-Learning Anomaly Detection, ICDCS, 2019.
- Meidan et al., N-BaloT, Elsevier, 2018.
- Xu et al., Addressing Concept Drift in IoT Anomaly Detection, IEEE TNSM, 2024.
- Mirjalili & Lewis, Whale Optimization Algorithm, Elsevier, 2016.
- Shan et al., Hybrid WOA-GWO for IDS, Nature Sci. Rep., 2025.
- Bezawada et al., IoTSense, IEEE CNS, 2018.
- Xu et al., Detecting Compromised IoT Devices, Elsevier, 2023.

