NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2213

AERODYNAMIC COEFFICIENTS FOR AN OSCILLATING AIRFOIL WITH

HINGED FLAP, WITH TABLES FOR A MACH NUMBER OF 0.7

By M. J. Turner and S. Rabinowitz

Chance Vought Aircraft
Division of United Aircraft Corporation

Washington tober 1950

Reproduced From Best Available Copy

20000816 173

DISTRIBUTION STATEMENT A

Approved for Public Release Distribution Unlimited

49M00-11-3534

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2213

AERODYNAMIC COEFFICIENTS FOR AN OSCILLATING AIRFOIL WITH

HINGED FLAP, WITH TABLES FOR A MACH NUMBER OF 0.7

By M. J. Turner and S. Rabinowitz

SUMMARY

Dietze's method for the solution of Possio's integral equation has been used to determine the chordwise distribution of lift on an oscillating airfoil with simple hinged flap in two-dimensional compressible flow (subsonic). The results of these calculations have been used to prepare tables of aerodynamic coefficients for lift, pitching moment (referred to quarter-chord point), and flap hinge moment for a Mach number of 0.7; the motions considered are vertical translation, airfoil rotation about the quarter-chord point, and rotation of the flap about its hinge line.

Aerodynamic coefficients are tabulated for 4 values of τ_R (ratio of flap chord to total chord) and for 12 values of reduced frequency ω_r , covering the range from 0 to 0.7. Results are given for one value of Mach number, M=0.7. Data of this kind have already been presented by Dietze for one value of the ratio of flap chord to total chord, $\tau_R=0.15$; these results have been checked independently, and calculations have been carried out for three additional values, $\tau_R=0.24$, 0.33, and 0.42. Certain auxiliary parameters, which will be needed in any further calculations of this type, are presented for future reference.

INTRODUCTION

The fundamental integral equation for the pressure distribution on an oscillating thin airfoil moving at subsonic speed has been derived by Possio in reference 1. Collocation procedures have been used by Possio, Frazer and Skan, and others to obtain lift and moment on an oscillating flat plate. An important contribution has been made by Dietze (see references 2 and 3), who has developed an iterative procedure for numerical solution of Possio's integral equation. This procedure is particularly well adapted to the calculation of aerodynamic loading on an oscillating airfoil with hinged flap.

It has been pointed out correctly by Karp and Weil (reference 4, p. 11) that Dietze's procedure does not properly account for the logarithmic singularity in pressure distribution at the flap hinge. However, for applications in flutter analysis the principal objective is to determine resultant lift and moments rather than pressure distribution. Mathematically exact solutions in closed form are available for the stationary thin airfoil with deflected flap, and it is found that lift and moments obtained by Dietze's iterative procedure are in excellent agreement with theoretically exact values. There is good reason to expect that equally satisfactory results will be obtained for the airfoil with oscillating flap. The existence of the singularity in pressure distribution is a consequence of the sharp corner in the idealized, broken-line profile, and of the associated discontinuity in downwash velocity at the flap hinge. The introduction of a finite cosine series for the downwash is in effect equivalent to a slight modification of the idealized profile by rounding off the corner at the flap hinge.

This work has been performed at Chance Vought Aircraft, under the sponsorship of the Bureau of Aeronautics, Navy Department, in order to provide data for the calculation of compressibility effects in control-surface flutter problems. It has been made available to the National Advisory Committee for Aeronautics for publication because of its general interest.

SYMBOLS

$^{ au}$ R	ratio of flap chord length to total chord length
Ra	airfoil region in x,z-plane
$\delta_y(x,t)$	vertical displacement of point on idealized profile, positive upward
δ̄ _y (ξ)	nondimensional representation of instantaneous chordwise distribution of vertical displacement $\left(\delta_y(x,t) = \frac{1}{2} \overline{\delta}_y(\xi) e^{i\omega t}\right)$
7	total chord length
ω	circular frequency
t	time
x	chordwise coordinate

```
vertical coordinate
 У
                   spanwise coordinate
                   dimensionless chordwise coordinate (2x/l)
v_y(x,t)
                   vertical component of fluid velocity adjacent to airfoil
 g(\xi)
                   function representing instantaneous distribution of
                      vertical fluid velocity adjacent to airfoil
                     (v_v(x,t) = g(\xi)e^{i\omega t})
                   reduced frequency (ωl/2V)
\omega_{\mathbf{r}}
 V
                   velocity of flight
\gamma(\xi)
                   function representing distribution of dipole lines
                   distribution of dipole lines for incompressible flow
\gamma_{\rm inc}
K(s,M)
                   kernel of Possio's integral equation
u,v ·
                   variables of integration
                   auxiliary variable (\omega_r(\xi - \xi_0))
M
                   Mach number
\mu = 1 - \sqrt{1 - M^2}
                   air density
a(x,t)
                   lift per unit area
T(\omega_r)
                   function defined by Küssner and Schwarz
\triangle K(s,M)
                   kernel difference (K(s,M) - K(s,0))
\triangle K_{7}(s,M)
                   singular part of kernel difference
\Delta K_2(s,M)
                   nonsingular part of kernel difference
kij
                   constant occurring in formula for \triangle K_1
k<sub>2n</sub>
                   coefficient in polynominal representation for AK2
```

α_i , β_{ik} , ϵ_{nv}	coefficients in recursion formulas for solution of Possio's integral equation
$\Delta P_{\mathbb{S}}$	lift force on airfoil strip of width Δz
$\triangle \mathbf{M}_{\mathbf{D}}$	pitching moment on airfoil strip of width Δz
$\triangle M_R$	hinge moment on flap for strip of width Δz
$q_{\mathbf{g}}$	downward displacement of quarter-chord point divided by semichord
\mathbf{q}_{D}	rotation of airfoil, positive in stalling direction
$q_{\mathbf{R}}$	rotation of flap, positive in stalling direction
cgh, kgh	aerodynamic coefficients, where g, h = S, D, R

BASIC THEORY

A very complete digest of the literature on aerodynamic theory of oscillating airfoils has been presented by Karp, Shu, and Weil in reference 5. Consequently, the basic theory is outlined briefly merely to exhibit the essential features of the computational scheme and to point out certain errors which have been discovered in Dietze's formulas.

The usual assumptions of thin-airfoil theory are adopted, leading to Possio's integral equation for the chordwise lift distribution on the oscillating airfoil. Rectangular coordinates are employed, with the x-axis alined in the direction of the undisturbed flow. The airfoil is replaced by a deformable sheet of zero thickness which, in its undisturbed position, occupies the region $R_{\rm a}$

$$-1/2 \le x \le 1/2, y = 0$$

of the x,z-plane.

The lifting surface executes sinusoidal oscillations in which each point moves along a line parallel to the vertical y-axis. Displacements are independent of the spanwise coordinate z, and may be represented in the form

$$\delta_y = \delta_y(x,t) = \frac{1}{2} \, \overline{\delta}_y(\xi) e^{i\omega t}$$

In accordance with the usual convention, it is the real part of equation (1) which has physical significance.

The y-component of velocity of a fluid particle adjacent to the lifting surface is related to $\delta_{\rm V}$ by the equation

$$\Lambda^{\lambda} = \frac{9f}{9g^{\lambda}} + \Lambda \frac{9x}{9g^{\lambda}} = \frac{9f}{9g^{\lambda}} + \frac{5}{5\Lambda} \frac{9f}{9g^{\lambda}}$$
 (5)

where $\xi = 2x/l$ and $-1 \le \xi \le 1$ inside R_a . From equations (1) and (2) it follows that

$$v_v = g(\xi)e^{i\omega t}$$
 (3)

where

$$g(\xi) = V\left(i\omega_{\mathbf{r}}\bar{\delta}_{\mathbf{y}} + \frac{d\bar{\delta}_{\mathbf{y}}}{d\xi}\right) \tag{4}$$

where

$$\omega_{\mathbf{r}} = \omega l/2V$$

In Dietze's derivation of the basic integral equation the region R_a is covered with dipole lines of density $V\gamma(x)e^{i\omega t}$ per unit length in the chordwise direction. By equating the vertical velocity induced by the dipole covering to that given by equation (3) the following integral equation is obtained for the determination of γ :

$$g(\xi) = \omega_{\mathbf{r}} \int_{-1}^{1} \gamma(\xi_0) K(s, M) d\xi_0$$
 (5)

subject to the condition that $\gamma(1)$ shall be finite; the kernel of the integral equation is given by

$$K(s,M) = -\frac{e^{is\lambda M}}{4\sqrt{1 - M^2}} \left\{ H_0^{(2)}(|s|\lambda) - iM \frac{s}{|s|} H_1^{(2)}(|s|\lambda) - i(1 - M^2)e^{-is\frac{\lambda}{M}} \left[\frac{2}{\pi\sqrt{1 - M^2}} \log_e \frac{M}{1 - \sqrt{1 - M^2}} + \int_0^{s\frac{\lambda}{M}} e^{iu} H_0^{(2)}(|u|M) du \right] \right\}$$
(6)

with

$$s = \omega_r(\xi - \xi_0)$$

$$\lambda = M/(1 - M^2)$$

The lift a per unit area (positive upward) is given by

$$a(x,t) = \rho V \gamma(x) e^{i\omega t}$$
 (7)

NUMERICAL SOLUTION OF POSSIO'S INTEGRAL EQUATION

Dietze's approximate solution of equation (5) (Possio's integral equation) is of the form

$$\gamma \approx \gamma_{\text{inc}} + \gamma_1 + \gamma_2 + \dots + \gamma_n \tag{8}$$

where $\gamma_{\rm inc}$ and $\gamma_{\rm V}$ (v = 1, 2, . . ., n) are solutions of the integral equations

$$g(\xi) = \omega_r \oint_{-1}^{1} \gamma_{inc}(\xi_0) K(s,0) d\xi_0$$
 (9)

$$g_{\nu}(\xi) = \omega_{r} \int_{-1}^{1} \gamma_{\nu}(\xi_{0})K(s,0) d\xi_{0}, \quad \nu = 1, 2, ..., n$$
 (10)

and where

$$g_{1}(\xi) = \omega_{r} \oint_{-1}^{1} \gamma_{inc}(\xi_{0}) \left[K(s,0) - K(s,M)\right] d\xi_{0}$$
 (11)

$$g_{\nu}(\xi) = \omega_{r} \oint_{-1}^{1} \gamma_{\nu-1}(\xi_{0}) [K(s,0) - K(s,M)] d\xi_{0}, \quad \nu = 2, 3, \dots, n$$
(12)

$$K(s,0) = \lim_{M \to 0} K(s,M)$$

The required solutions of equations (9) and (10) are obtained by the methods of reference 6. Convergence of the process has been proved only for the stationary case. However, computational experience furnishes convincing evidence that the process does converge in the more general case.

It will be observed that Dietze's process requires essentially the solution of a succession of integral equations with kernel K(s,0) from the incompressible problem. The functions $g_{\nu}(\xi)$ are obtained by direct integration in accordance with equations (11) and (12).

In case $g_{V}(\xi)$ can be represented by a cosine series of form

$$g_{\nu}(\xi) = V\left(A_0 + 2\sum_{n=1}^{\infty} A_n \cos n\emptyset\right), \quad 0 \leq \emptyset \leq \pi$$
 (13)

with

then it is known from the work of Küssner and Schwarz (reference 6) that

$$\gamma_{\nu}(\xi) = -2V\left(a_0 \cot \frac{\emptyset}{2} + 2 \sum_{n=1}^{\infty} a_n \sin n\emptyset\right)$$
 (14)

where

$$a_{0} = \left(\frac{1 + T}{2}\right)(A_{0} - A_{1}) + A_{1}$$

$$a_{n} = \frac{i\omega_{r}}{2n}(A_{n-1} - A_{n+1}) - A_{n}, n \ge 1$$
(15)

and $T(\omega_T)$ is the function of reduced frequency defined in reference 6. The T-function is related to Theodorsen's C-function by the equation T=2C-1.

In order to facilitate the evaluation of the integral occurring in equation (12) the kernel difference

$$\triangle K(s,M) = K(s,M) - K(s,0)$$

is expressed in the form

$$\Delta K(s,M) = \Delta K_1(s,M) + \Delta K_2(s,M)$$
 (16)

where

$$\Delta K_{1}(s,M) = \frac{k_{10}}{s} + k_{11} + k_{12} \log_{\theta} |s| + s(k_{13} + k_{14} \log_{\theta} |s|)$$

$$k_{10} = \frac{1}{2\pi} (1 - \sqrt{1 - M^{2}})$$

$$k_{11} = -\frac{1}{4} (\frac{1}{\sqrt{1 - M^{2}}} - 1) - \frac{i}{2\pi} (\frac{1}{\sqrt{1 - M^{2}}} M^{2} - \log_{\theta} \frac{\gamma M}{2(1 - M^{2})}) + \log_{\theta} \frac{\gamma M}{1 + \sqrt{1 - M^{2}}}$$

$$k_{12} = -\frac{i}{2\pi} (1 - \frac{1}{\sqrt{1 - M^{2}}})$$

$$k_{23} = -\frac{1}{2\pi} (1 + \log_{\theta} \frac{\gamma M}{1 +$$

$$k_{13} = -\frac{1}{2\pi} \left\{ -1 + \log_{e} \frac{\gamma M}{1 + \sqrt{1 - M^{2}}} + \frac{1}{(1 - M^{2})^{3/2}} \left[1 - \frac{3}{4} M^{2} - \frac{1}{2} M^{4} - \left(1 - \frac{3}{2} M^{2} \right) \log_{e} \frac{\gamma M}{2(1 - M^{2})} \right] \right\} - \frac{1}{4} \left[1 + \frac{3M^{2} - 2}{2(1 - M^{2})^{3/2}} \right]$$

$$k_{14} = -\frac{1}{2\pi} \left[1 + \frac{3M^2 - 2}{2(1 - M^2)^{3/2}} \right]$$

 $log_e \gamma = 0.57722$ (Euler's constant)

The nonsingular part $\Delta K_2(s,M)$ is replaced by a polynomial of ninth degree 1

$$\Delta K_2(s,M) \approx -\sum_{n=2}^{9} k_{2n} s^n$$
 (18)

whose coefficients are determined separately for each Mach number by fitting the polynomial to tabulated values in the interval $|s| \le 1.8$.

Equation (12) may be written in the form

$$g_{\nu}(\xi) = -\omega_{\mathbf{r}} \oint_{-1}^{1} \gamma_{\nu-1} \Delta K(s, \mathbf{M}) d\xi_{0}$$
 (19)

If it be assumed that

$$\gamma_{v-1} = -2V \left(p_0 \cot \frac{\emptyset}{2} + 2 \sum_{n=1}^{\infty} p_n \sin n\emptyset \right)$$
 (20)

then it follows that (upon carrying out the required integrals defining g_V , in accordance with equations (17), (18), and (19) and applying equations (15) to solve equation (10)),

$$\gamma_{v} = -2V \left(q_{0} \cot \frac{\phi}{2} + 2 \sum_{n=1}^{\infty} q_{n} \sin n \phi \right)$$
 (21)

where

$$q_n = q_{ln} + q_{2n} \tag{22}$$

Dietze's definition of the approximating polynomial (table 3 of reference 2) differs in sign from that given here. However, it has been found by carefully checking the derivations that the minus sign is required in equation (18) in order to justify the recursion formulas for calculating γ_V from γ_{V-1} . It is believed that this is merely an error of presentation, since Dietze's numerical results are found to be substantially correct.

and

$$q_{10} = \mu \left(-p_{1} + \beta_{00}p_{0}' + \beta_{01}p_{1}' + \beta_{02}p_{2}' \right)$$

$$q_{11} = \mu \left(p_{1} + \beta_{10}p_{0}' + \beta_{11}p_{1}' + \beta_{12}p_{2}' + \beta_{13}p_{2}'' \right)$$

$$q_{12} = \mu \left(p_{2} + \beta_{20}p_{0}' + \beta_{21}p_{2}' + \beta_{22}p_{2}'' + \beta_{23}p_{3}'' \right)$$

$$q_{1n} = \mu \left(p_{n} + \alpha_{1}p_{n}' + \alpha_{2}p_{n}'' + \alpha_{3}p_{n}''' \right), n \geq 3$$

$$q_{20} = 2\pi \sum_{v=0}^{9} p_{v}'\epsilon_{0v}$$

$$q_{2n} = (-1)^{n+1}2\pi \sum_{v=0}^{10-n} p_{v}'\epsilon_{nv}, n \geq 1$$
with
$$p_{0}' = -\frac{1}{2} \left(p_{0} + p_{1} \right)$$

$$p_{1}' = -\frac{1}{2} \left(p_{0} + p_{2} \right)$$

$$p_{n}'' = \frac{1}{2n} \left(p_{n-1} - p_{n+1} \right), n \geq 2$$

$$p_{n}''' = \frac{1}{2n} \left(p_{n-1}' - p_{n+1}'' \right), n \geq 3$$

The quantities α_i , β_{ik} , and ϵ_{nV} are defined in the translation of reference 2 (see table 5, p. 28, and tables 6 and 7, pp. 30-32). It was found that the formula for ϵ_{OV} is given incorrectly by Dietze; it should read

$$\epsilon_{OV} = \left(\frac{1 + T}{2}\right) \left(\delta_{OV} + \delta_{IV}\right) - \delta_{IV}$$
 (24)

Presumably this is merely an error in presentation, since, as already noted, Dietze's numerical results have been verified by independent calculations. Numerical values of the parameters α_i , β_{ik} for M = 0.7 and reduced frequencies ranging from 0 to 0.7 are given in table I.

EVALUATION OF KERNEL AND KERNEL DIFFERENCE

By making use of the relations among Bessel, Hankel, and Neumann functions and by separating the kernel into real and imaginary parts an expression of the following form is obtained:

$$K(s,M) = K'(s,M) + iK''(s,M) = \frac{-A(s,M) \cos(s\lambda M) + B(s,M) \sin(s\lambda M)}{4\sqrt{1 - M^2}} + \frac{B(s,M) \cos(s\lambda M) - A(s,M) \sin(s\lambda M)}{4\sqrt{1 - M^2}}$$

$$i \frac{B(s,M) \cos(s\lambda M) - A(s,M) \sin(s\lambda M)}{4\sqrt{1 - M^2}}$$
(25)

where

$$A = J_{0}(|s|\lambda) - M \frac{s}{|s|} N_{1}(|s|\lambda) - \frac{2}{\pi} \sqrt{1 - M^{2}} \log_{e} \frac{M}{1 - \sqrt{1 - M^{2}}} \sin\left(s \frac{\lambda}{M}\right) - \left(1 - M^{2}\right) \sin\left(s \frac{\lambda}{M}\right) \int_{0}^{s \frac{\lambda}{M}} \left[\cos u J_{0}(|u|M) + \sin u N_{0}(|u|M)\right] du - \left(1 - M^{2}\right) \cos\left(s \frac{\lambda}{M}\right) \int_{0}^{s \frac{\lambda}{M}} \left[\cos u N_{0}(|u|M) - \sin u J_{0}(|u|M)\right] du$$

$$B = N_{0}(|s|\lambda) + M \frac{s}{|s|} J_{1}(|s|\lambda) + \frac{2}{\pi} \sqrt{1 - M^{2}} \log_{e} \frac{M}{1 - \sqrt{1 - M^{2}}} \cos\left(s \frac{\lambda}{M}\right) + \left(1 - M^{2}\right) \cos\left(s \frac{\lambda}{M}\right) \int_{0}^{s \frac{\lambda}{M}} \left[\cos u J_{0}(|u|M) + \sin u N_{0}(|u|M)\right] du - \left(1 - M^{2}\right) \sin\left(s \frac{\lambda}{M}\right) \int_{0}^{s \frac{\lambda}{M}} \left[\cos u N_{0}(|u|M) - \sin u J_{0}(|u|M)\right] du$$

By introducing a new variable of integration

$$v = \frac{M}{\lambda} u$$

equations (26) are transformed into

$$A = J_0(|s|\lambda) - M \frac{s}{|s|} N_1(|s|\lambda) - \frac{2}{\pi} \sqrt{1 - M^2} \log_e \frac{M}{1 - \sqrt{1 - M^2}} \sin\left(s \frac{\lambda}{M}\right) - \sin\left(s \frac{\lambda}{M}\right) \int_0^s \left[\cos\left(v \frac{\lambda}{M}\right) J_0(|v|\lambda) + \sin\left(v \frac{\lambda}{M}\right) N_0(|v|\lambda)\right] dv - \cos\left(s \frac{\lambda}{M}\right) \int_0^s \left[\cos\left(v \frac{\lambda}{M}\right) N_0(|v|\lambda) - \sin\left(v \frac{\lambda}{M}\right) J_0(|v|\lambda)\right] dv$$
 (27)

$$B = N_0(|s|\lambda) + M \frac{s}{|s|} J_1(|s|\lambda) + \frac{2}{\pi} \sqrt{1 - M^2} \log_e \frac{M}{1 - \sqrt{1 - M^2}} \cos\left(s \frac{\lambda}{M}\right) +$$

$$\sin\left(s\,\frac{\lambda}{M}\right)\int_{0}^{s}\left[\cos\left(v\,\frac{\lambda}{M}\right)N_{0}(|v|\lambda)-\sin\left(v\,\frac{\lambda}{M}\right)J_{0}(|v|\lambda)\right]dv\tag{28}$$

Numerical values of the following integrals are required:

$$I_{1}(s) = \int_{0}^{s} \cos\left(v \frac{\lambda}{M}\right) J_{0}(|v|\lambda) dv$$

$$I_{2}(s) = \int_{0}^{s} \sin\left(v \frac{\lambda}{M}\right) J_{0}(|v|\lambda) dv$$

$$I_{3}(s) = \int_{0}^{s} \cos\left(v \frac{\lambda}{M}\right) N_{0}(|v|\lambda) dv$$

$$I_{4}(s) = \int_{0}^{s} \sin\left(v \frac{\lambda}{M}\right) N_{0}(|v|\lambda) dv$$

$$I_{4}(s) = \int_{0}^{s} \sin\left(v \frac{\lambda}{M}\right) N_{0}(|v|\lambda) dv$$

The evaluation of I_1 and I_2 can be obtained by numerical integration in a straightforward manner. However, since $N_0(x)$ has a logarithmic singularity at x=0, it is necessary to express I_3 and I_4 in different form. Upon making the substitution (reference 7, pp. 130, 132)

$$\frac{\pi}{2} N_0(x) = J_0(x) \log_e \frac{\gamma x}{2} - B_0(x)$$

where

$$B_0(x) = -\left(\frac{x}{2}\right)^2 + \frac{1 + \frac{1}{2}}{(2!)^2} \left(\frac{x}{2}\right)^4 - \frac{1 + \frac{1}{2} + \frac{1}{3}}{(3!)^2} \left(\frac{x}{2}\right)^6 + \dots$$

and integrating by parts, the following equations are obtained:

$$\frac{\pi}{2} I_3(s) = I_1(s) \log_e \frac{\gamma s \lambda}{2} - \int_0^s \frac{I_1(v)}{v} dv - \int_0^s \cos\left(v \frac{\lambda}{M}\right) B_0(v\lambda) dv \quad (30)$$

$$\frac{\pi}{2} I_{\downarrow}(s) = I_{2}(s) \log_{e} \frac{\gamma s \lambda}{2} - \int_{0}^{s} \frac{I_{2}(v)}{v} dv - \int_{0}^{s} \sin\left(v \frac{\lambda}{M}\right) B_{0}(v\lambda) dv \quad (31)$$

It follows from equations (29) that I_1 and I_3 are odd functions, while I_2 and I_4 are even. The integrals occurring in equations (30) and (31) can be evaluated numerically without difficulty; it should be noted that

$$\lim_{v \to 0} \frac{I_1(v)}{v} = 1$$

$$\lim_{v \to 0} \frac{I_2(v)}{v} = 0$$

In computing numerical values of the kernel Dietze has used the tables of Bessel and Neumann functions given in reference 7, which do not permit a satisfactory determination of BO since NO is tabulated to only four (in some cases three) places. In recalculating the kernel the seven-place tables given in reference 8 have been used.

For evaluation of the integrals I_n the formulas given in reference 9, page 227, have been extended to include fifth differences. These formulas have been used with an interval $\Delta(s\lambda)=0.05$, and the results have been checked up to $s\lambda=0.30$ by using an interval $\Delta(s\lambda)=0.02$. Recalculated values of K(s,0.7), K(s,0), $\Delta K(s,0.7)$, $\Delta K_1(s,0.7)$, and $\Delta K_2(s,0.7)$ are given in table II. These values are found to be in close agreement with those given by Dietze; where differences exist, the new values are believed to be more accurate. In making comparisons it should be noted that Dietze has tabulated -K(s,M).

The coefficients k_{2n} are obtained by fitting a ninth-degree polynomial (see equation (18)) to the tabulated values of $\triangle K_2$ in the

interval $|s| \le 1.8$ by the method of least squares. The values obtained in this way for M = 0.7 are

 $k_{22} = -0.046728 - 0.045974i$ $k_{23} = 0.023019 - 0.023491i$ $k_{24} = 0.009818 + 0.052855i$ $k_{25} = -0.020228 + 0.003488i$ $k_{26} = -0.001040 - 0.021510i$ $k_{27} = 0.007272 - 0.000283i$ $k_{28} = 0.000053 + 0.003117i$ $k_{29} = -0.000997 + 0.000012i$

Since $|s| = \omega_r(\xi - \xi_0)$ and $|\xi - \xi_0| \stackrel{\leq}{=} 2$ the approximate representation for ΔK_2 is valid for reduced frequencies in the range $0 \stackrel{\leq}{=} \omega_r \stackrel{\leq}{=} 0.9$. Although the values of the coefficients k_{2n} given here differ from those given by Dietze (see translation of reference 2, p. 26), there is reasonable agreement of coefficients for lower powers of s. Also the algebraic signs agree; this gives further indication that Dietze must have introduced a minus sign in his definition of the approximate representation for ΔK_2 .

NOTATION FOR AERODYNAMIC LIFT AND MOMENTS

In presenting his numerical results Dietze has introduced representations of lift force and moments involving only real quantities. Complex notation is used in the present report in order to conform more nearly to current American practice; however the essential features of Dietze's notation (translation of reference 3) are retained. Lift and moments on an airfoil strip of width Δz for an airfoil with simple hinged flap are as follows:

$$\begin{split} & \triangle P_{S} = \pi \rho V^{2} \left(\frac{1}{2}\right) \triangle z \left[\left(\omega_{\mathbf{r}}^{2} c_{SS} - k_{SS}\right) q_{S} + \left(\omega_{\mathbf{r}}^{2} c_{SD} - k_{SD}\right) q_{D} + \left(\omega_{\mathbf{r}}^{2} c_{SR} - k_{SR}\right) q_{R}\right] \\ & \Delta M_{D} = \pi \rho V^{2} \left(\frac{1}{2}\right)^{2} \triangle z \left[\left(\omega_{\mathbf{r}}^{2} c_{DS} - k_{DS}\right) q_{S} + \left(\omega_{\mathbf{r}}^{2} c_{DD} - k_{DD}\right) q_{D} + \left(\omega_{\mathbf{r}}^{2} c_{DR} - k_{DR}\right) q_{R}\right] \\ & \Delta M_{R} = \pi \rho V^{2} \left(\frac{1}{2}\right)^{2} \triangle z \left[\left(\omega_{\mathbf{r}}^{2} c_{RS} - k_{RS}\right) q_{S} + \left(\omega_{\mathbf{r}}^{2} c_{RD} - k_{RD}\right) q_{D} + \left(\omega_{\mathbf{r}}^{2} c_{RR} - k_{RR}\right) q_{R}\right] \end{split}$$

where

 $\triangle P_{S}$ lift force, positive upward

 $\Delta M_{\rm D}$ stalling moment on airfoil plus flap, referred to quarter-chord point

 $\Delta M_{
m R}$ hinge moment on flap, positive in same sense as $\Delta M_{
m D}$

 $\left(\frac{l}{2}\right)q_{S}$ downward displacement of quarter-chord point

 \mathbf{q}_{D} rotation of airfoil in stalling direction

q_R rotation of flap in stalling direction

$$k_{gh} = k_{gh}' + ik_{gh}''$$
 $q_h = (q_h' + iq_h'')e^{i\omega t}$
 $g, h = S, D, R$

The quantities c_{gh} may be expressed in terms of the functions Φ_4 , Φ_7 , and Φ_{12} defined in reference 6 as follows:

	cg	h	
gh	S	D	R
S	1	1/2	Φ4/2π
D	1/2	3/8	Φ ₇ /4π
R	Φ4/2π	Φ7/4π	$\Phi_{12}/4\pi^2$

DISCUSSION OF NUMERICAL RESULTS

The coefficients k_{SS} , k_{DS} , k_{SD} , and k_{DD} , which do not depend on the ratio of flap chord to total chord τ_R , are presented in table III and in figures 1 to 8 for M=0.7 and a range of ω_r from 0 to 0.7.

The hinge-moment coefficients k_{RS} and k_{RD} associated with airfoil flapping and rotational motions are presented in table IV and figures 9 to 12 for M = 0.7, reduced frequencies from $\omega_{\mathbf{r}}$ = 0 to 0.7, and ratios $\tau_{\mathbf{R}}$ = 0.15, 0.24, 0.33, and 0.42. Coefficients P_n in the series representation for γ

$$\gamma \approx -2V \left(P_0 \cot \frac{\phi}{2} + 2 \sum_{n=1}^{l_4} P_n \sin n\phi \right)$$

are presented in table V for both flapping and rotational motions. It is noted that the coefficients $\,{\rm k}_{RS}\,$ and $\,{\rm k}_{RD}\,$ may be computed for any ratio of flap chord to total chord without further iterations by inserting the coefficients $\,P_n\,$ for the appropriate type of airfoil motion into the formula

$$k_{Rh} = \left(c_{Rh}\omega_{\mathbf{r}}^2 + \frac{1}{\pi}\sum_{n} P_n'Q_n\right) + i\left(\frac{1}{\pi}\sum_{n} P_n''Q_n\right), \quad h = S, D$$

The quantities Q_n are expressed as functions of τ_R as follows:

$$\cos \theta = 2\tau_R - 1$$
, $0 \le \theta \le \pi$

$$Q_0 = (\pi - \theta)(-1 + 2\cos\theta) + 2\sin\theta - \frac{1}{2}\sin 2\theta$$

$$Q_1 = 2(\pi - \theta) \cos \theta + \frac{3}{2} \sin \theta + \frac{1}{6} \sin 3\theta$$

$$Q_2 = -(\pi - \theta) - \frac{2}{3} \sin 2\theta + \frac{1}{12} \sin 4\theta$$

$$Q_{n} = \frac{\sin (n-2)\theta}{(n-1)(n-2)} - \frac{2 \sin n\theta}{(n-1)(n+1)} + \frac{\sin (n+2)\theta}{(n+1)(n+2)}, \quad n > 2$$

The aerodynamic coefficients associated with rotational motion of the flap k_{SR} , k_{DR} , and k_{RR} are presented in table VI and figures 13 to 18 for M = 0.7, reduced frequencies ranging from ω_{r} = 0 to 0.7, and ratios of flap chord to total chord τ_{R} = 0.15, 0.24, 0.33, and 0.42.

From five to eight iterations have been employed in the calculation of γ . In computing the coefficient k_{RR} the accuracy depends on the number of coefficients used as a starting basis for γ_{inc} . The number of coefficients is reduced by 3 in each successive iteration; in the calculations described in this report 22 coefficients have been used as a starting basis. All coefficients available at a given stage of the iteration have been used to calculate the contribution of γ_n to γ and the contribution of γ_{inc} has been obtained in closed form from the results of reference 6.

In recalculating the coefficients which are independent of τ_R and of the remaining coefficients for $\tau_R=0.15$, values have been obtained which differ in general by less than 1 percent from those given by Dietze. There are a few isolated exceptions, however. An error of 7 percent has been found in the imaginary part of k_{DS} for $\omega_r=0.10$. Also there are errors in Dietze's values of the imaginary part of k_{RS} at $\omega_r=0.02$ for all Mach numbers tabulated, including M = 0. The entry for M = 0 should read $10^{4}k_{RS}$ '' = 1.18 instead of 1.03. Apparently the same error has been carried through for all Mach numbers. A similar error occurs in the imaginary part of k_{RD} at $\omega_r=0.60$; the entry for M = 0 should be $10^{4}k_{RD}$ '' = 131.8 instead of 132.8, and this error has been carried through for other values of Mach number as well.

Chance Vought Aircraft
Division of United Aircraft Corporation
Dallas, Tex., July 19, 1949

REFERENCES

- 1. Possio, C.: L'Azione Aerodinamica sul Profilo Oscillante alle Velocità Ultrasonore. Acta, Pontificia Acad. Scientiarum, vol. I, n. 11, 1937, pp. 93-106.
- 2. Dietze, [F.]: Die Luftkräfte des harmonisch schwingenden Flügels im kompressiblen Medium bei Unterschallgeschwindigkeit (Ebenes Problem). Teil I: Berechnungsverfahren. Deutsche Luftfahrtforschung, Forschungsbericht Nr. 1733, Jan. 20, 1943. (Also available from CADO, Wright-Patterson Air Force Base, as AAF Translation No. F-TS-506-RE (ATI 6961), Nov. 1946.)
- 3. Dietze, [F.]: Die Luftkräfte des harmonisch schwingenden Flügels im kompressiblen Medium bei Unterschallgeschwindigkeit (Ebenes Problem). Teil II: Zahlen- und Kurventafeln. Deutsche Luftfahrtforschung, Forschungsbericht Nr. 1733/2, Jan. 24, 1944. (Also available from CADO, Wright-Patterson Air Force Base, as Translation No. F-TS-948-RE (ATI 9876), March 1947.)
- 4. Karp, S. N., and Weil, H.: The Oscillating Airfoil in Compressible Flow. Monograph III, Part II A Review of Graphical and Numerical Data. Tech. Rep. No. F-TR-1195-ND, Air Materiel Command, U. S. Air Force, June 1948.
- 5. Karp, S. N., Shu, S. S., and Weil, H.: Monograph III Aerodynamics of the Oscillating Airfoil in Compressible Flow. Tech. Rep. No. F-TR-1167-ND, Air Materiel Command, Army Air Forces, Oct. 1947.
- 6. Küssner, H. G., and Schwarz, L.: Der schwingende Flügel mit aerodynamisch ausgeglichenem Ruder. Luftfahrtforschung, Bd. 17, Nr. 11/12, Dec. 10, 1940, pp. 337-354. (Also available as NACA TM 991, 1941.)
- 7. Jahnke, E., and Emde, F.: Tables of Functions with Formulae and Curves. Dover Publications, 1943.
- 8. Watson, G. N.: A Treatise on the Theory of Bessel Functions. Second ed., The Macmillan Co., 1944.
- 9. Scarborough, James B.: Numerical Mathematical Analysis. The Johns Hopkins Press (Baltimore), 1930.

TABLE I.- VALUES OF α_i AND β_{ik} FOR M = 0.7 $\left[\alpha_i = \alpha_i' + i\alpha_i''; \quad \beta_{ik} = \beta_{ik}' + i\beta_{ik}'' \right]$

		α_1		α ₂			α3
w _r	α1'	α1''		α ₂ '	α2''	α3'	α3''
0.02 .04 .06 .08 .10 .20 .30 .40 .50 .60	0000000000	-0.0480096014402400480072009601 -1.2001 -1.6802	122369258	-0.00094 00376 00847 01506 02353 09418 21179 37652 58831 84716 -1.15308	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0.00001 .00006 .00021 .00049 .00095 .00762 .02573 .06099 .11912 .20584 .32686
ω _r		βο	00			β _O	1
or		β ₀₀ '		β ₀₀ ''	β ₀₁	†	β ₀₁ ''
0.02 .04 .06 .08 .10 .20 .30 .40 .50 .60	-1 -1 -1 -1 -1	.82233 .63609 .45768 .29103 .13670 .52194 .07794 .27370 .57113 .83322 .06903		0.40415 .64055 .80639 .92767 1.01832 1.23247 1.27472 1.24893 1.18299 1.08608 .96176	-0.00 01 03 08 11 13 12 09	.064 .952 .957 .8904 .8348 .434 .3107 .8419 .2388	0.00169 .00688 .01519 .02624 .03961 .13074 .24736 .38037 .52669 .68538 .85624

TABLE I.- VALUES OF α_i AND β_{ik} FOR M = 0.7 - Continued

$\omega_{\mathbf{r}}$	βο	2	β1	0
	β ₀₂ '	β ₀₂ ''	β ₁₀ '	β ₁₀ ''
0.02 .04 .06 .08 .10 .20 .30 .40 .50 .60	-0.00001 00004 00018 00042 00079 00519 01438 02896 04790 07225 10161	-0.00001 00009 00024 00081 00360 00769 01257 01796 02363 02952	-0.0041601401028090456106601198793614053416703358583799061	0.00148 .00591 .01331 .02366 .03696 .14786 .33268 .59143 .92411 1.33071 1.81125
$\omega_{\mathbf{r}}$	β	1	β1	2
	β ₁₁ '	β ₁₁ ''	β ₁₂ '	β ₁₂ ''
0.04 .06 .08 .10 .20 .30 .50 .60 .70	-0.00001 00005 00016 00038 00075 00599 02020 04790 09356 16166 25672	-0.04802 09611 14430 19262 24108 48583 73434 98513 -1.23571 -1.48287 -1.72280	0.00047 .00188 .00424 .00753 .01177 .04706 .10590 .18826 .29416 .42358	0 0 0 0 0 0 0 0 0

TABLE I.- VALUES OF α_i AND β_{ik} FOR M = 0.7 - Concluded

$\omega_{\mathbf{r}}$			β ₁₃				β ₂₀)
r	β ₁	3	β	13''		β ₂₀ '		β20''
0.02 .04 .06 .08 .10 .20 .30 .40 .50 .60	000000000000000000000000000000000000000			000004 00003 00010 00024 00048 00381 01286 03049 05956 10292 16343		0.0000 .0000 .0001 .0003 .0029 .0101 .0239 .0467 .0808	289790583	0.00001 .00005 .00014 .00030 .00053 .00288 .00713 .01251 .01778 .02134
ω _r		β ₂₁		β2	22			β ₂₃
r	β ₂₁ '	β2	21''	β ₂₂ '		β ₂₂ ''	β ₂₃ '	β23''
0.02 .04 .06 .08 .10 .20 .30 .40 .50 .60	0 0 0 0 0 0 0 0	0 1 2 1 5 -1.2	04801 09602 14404 19208 24015 18101 72331 96774 21504 16591 72106	-0.0009 ¹ 003760084'0150602355094121179376565883	6 76 339216	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	-0.000002 00002 00005 00012 00024 00191 00643 01525 02978 05146 08171

TABLE II.- VALUES OF KERNEL, AND KERNEL DIFFERENCE

	Γ-						_											_							
$K^{11}(s,0) \Delta K^{1}(s,0.7) \Delta K^{11}(s,0.7) \Delta K_{1}^{11}(s,0.7) \Delta K_{2}^{11}(s,0.7) \Delta K_{2}^{11}(s,$	-0.135752	050083	909260-	011400	.001546	.005873	407500.	.003913	.002710	.001504	764000.	.000210	4000514	.000516	.001650	.003197	.005062	.009520	.014720	.023542	.031379	.043702	054660	1069921	.085757
∆K2'(s,0.7)	0.074101	.073896	.063105	.047542	.032996	.018443	.010516	-004632	.002566	.001113	.000267	960000.	-000082	.000228	.000862	.001854	.003165	249900.	.011121	.019460	.030652	·040975	.053762	.072605	.093274
AK1 ''(s,0.7)	0.170551	.109422	.084184	.056930	.026681	-,008492	036742	072497	095786	126578	175698	210226	216180	185622	146425	125556	112190	096282	087878	082475	081996	084512	440880	097275	107301
ΔK ₁ '(s,0.7)	096170.0-	120836	136632	153120	171854	197094	223823	+274424	324627	425794	733459	-1.147150	010746.	.533319	.225654	.124487	.074284	.023683	940800-	028286	047020	063508	079314	100433	122180
ΔK''(s,0.7)	0.034799	.057339	.056578	.045530	.028227	002619	031038	068583	093076	125074	175201 .	210016	215966	185106	144775	122358	107128	086762	073158	058933	050618	040811	034383	027354	021544
∆K¹(s,0.7)	-0.003858	046930	073528	105577	138858	178651	213307	269791	-, 322060	424681	733192	-1.147054	-947092	•	•	•	644770.	.030324	-008075	008826	016369	022532	025552	027827	028906
K''(s,0)	-0.022375			053466	069077	093655	119616	161756	195116			416610	Ĭ.	305307	173580	086699	018096	.092060	.181551	.290098	.372588	1,429897	.461734	7464475	.423589
K'(s,0)	0.015418	.030307	.041122	.058209	1.087487	.144397	.220011	.381832	976046	.899102	1.970378	3.415745	-3.915267	-2,469051	-1.393803	-1.039050	647.098.	672994	561844	435327	319892	204195	087011	.067247	.210670
K'(s,0,7) K''(s,0.7)	0.012424	.022300	.013815	007936	040850	096274	I50654	- 230339	200192	3(1253	516904	020020	610725	490413	318355	209057	IZ7224	.005298	.108392	.231165	.321970	• 389086	.427351.	437118	.402045
K'(s,0.7)			032406	047369	051371	034254	50,000.	T#02TT•	. 220000	024474	1.237186	T60002.2			i .	912709	- (03300	642669	553769	- 444153	336260	226.728	112563	039420	.181763
ω	-2.040000 -1.748571	-1.457143	-1.238571	-1.020000	801429	- 562657	43(143 0011:00	マンサー イン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	T) / OT / -	-147(14	7.07.0	1.040.1	4043714	0.7205.7	#1/C#1.	1) COTZ.	C7.1467	. 43(143	70207.	.001429	1.020000	1.2302/1	1.47/143	1.(482.(1	2.040000

TABLE III. - AERODYNAMIC COEFFICIENTS, INDEPENDENT OF RATIO OF FLAP

CHORD TO TOTAL CHORD

 $[\mathbf{M} = \mathbf{0.7}]$

T. O. T. G. C. F.	0	0.02	40.0	90.0	0.08	0.1	0.0	0.3	4.0	0.5	9.0	0.7
kss' × 10 ⁴	0	75.0	216.2	373.8	534.6	688.6 1347	1347	1893	2432	3034	3798	1914
$k_{SS}^{11} \times 10^{4}$	0	517.0	952.4	1323	1650	1944	3188	4334	5530	6838	8252	9789
$^{k}_{DS}$ ' \times 10^{4}	0	-3.0	-11.4	-23.5	-38.6	i .	-173.3	-337.4	-56.1 -173.3 -337.4 -546.2 -791.2	-791.2	-1010	-1173
$k_{\rm DS}^{\rm l} \times 10^{\rm l}$	0	0.5	3.4	8.2	16.3	56.9	115.3	271.8	522.2	904.7 1459	1459	2222
$k_{\mathrm{SD}}^{\prime} \times 10^{4}$	28,006 25,		24,025	22,430	21,191	20,186	17,461	16,676	16,802	17,487	937 24,025 22,430 21,191 20,186 17,461 16,676 16,802 17,487 18,569 19,909	19,909
$^{\mathrm{k}_{\mathrm{SD}}}$ " $ imes$ $10^{\mathrm{l}_{\mathrm{t}}}$	0	-3046	-4058	-4323	-4253	-3969	-1659	750.5	2929	4851	8949	7757
_{kpp} ' × 10 ⁴	0	25.5	72.8	125.6	179.1	236.9	6.803	838.0	1301	1972	2883	98'14
$^{k}_{\mathrm{DD}}$ " \times 10 $^{\mathrm{h}}$	0	399.4	770.9	1122	1460	1792	3402	5044	6760	8532	10,302 11,973	11,973

TABLE IV. - HINGE-MOMENT COEFFICIENTS FOR FLAPPING AND ROTATION OF AIRFOIL

	0.7	-19.1	49.1	-53.9	167.9	-100.3	389.4	-145.2	738.2	64.2	240.9	239.8	760.0	597.2	1631	1200	2863
L]	9.0	-13.0	37.7	-36.9	127.7	0.69-	295.0	-100.8	558.3	57.3	200.8	209.1	633.5	512.3	1360	1019	2365
AIRFOI	0.5	6.7-	28.8	-22.2	0.79	-40.9	222.8	-58.2	420.2	53.8	163.2	191.5	513.3	t.094	1100	903.0	1935
TION OF	4.0	-3.6	21.9	4.6-	73.0	-15.4	166.7	-17.7	313.0	53.1	125.2	183.4	392.9	431.0	840.5	830.8	1476
IABLE IV HINGE-MOMENT COEFFICIENTS FOR FLAPPING AND ROTATION OF AIRFOIL	0.3	9.0-	16.2	9.0-	53.6	1.8	7.121	9.6	227.7	54.0	88.5	182.4	276.5	421.3	589.2	800.6	1031
PPING A	0.2	1.0	2.11	3.9	36.9	10.5	83.5	22.5	156.0	57.0	52.8	189.9	163.4	433.2	345.1	815.0	597.3
FOR FLA	0.1	1.2	6.3	4.1	20.8	9.6	7.5	18.6	4.88	4.49	18.1	213.2	54.1	483.8	109.3	906.3	179.1
CIENTS	0.08	1.0	5.3	3.4	17.4	6.7	39.5	15.4	74.0	67.0	11.6	221.6	33.6	502.8	65.3	941.7	101.5
COEFFI	90.0	7.0	4.2	2.5	13.8	0.9	31.2	11.5	58.5	70.2	5.7	232.4	15.1	527.1	25.9	4.786	32.5
-MOMENT	0.04	0.5	3.0	1.6	9.8	3.7	22.2	7.1	41.6	74.5	0.5	246.5	7.0-	559.3	4.2	1048	-24.8
- n.l.v.c	0.02	0.2	1.6	9.0	5.3	1.4	11.9	2.6	22.4	79.7	-2.6	263.8	-10.0	598.9	-25.6	1122	-53.6
VI GLIC	0	0	0	0	0	0	0	0	0	85.7	0	283.7	0	644.0	0	1207	0
4	TR TR	0.15		0.24		0.33		0.42		0.15		₁2.0		0.33		0.42	
	Coefficient	$k_{RS}' \times 10^4$	k_{RS} " \times 10^4	$^{\mathrm{k}_{\mathrm{RS}}}$ * * 10 $^{\mathrm{t}}$	k_{RS} " \times 10 4	$^{ m k_{RS}}$ ' $ imes$ 10 $^{ m t}$	k_{RS} " × 10^4	$^{\mathrm{k}}_{\mathrm{RS}}$ ' $ imes$ 10 $^{\mathrm{4}}$	$^{\mathrm{k}_{\mathrm{RS}}}$ " \times 10 $^{\mathrm{h}}$	$^{\mathrm{k}_{\mathrm{RD}}}$ ' $ imes$ 10 $^{\mathrm{l}}$	$^{k}_{RD}$ " \times 10 $^{l_{4}}$	$^{k}_{RD}$ ' $ imes$ 10^{lt}	$^{k_{RD}}$ " $ imes$ 10 $^{l_{t}}$	krp' × 10 ⁴	k RD'' \times 10 4	$k_{RD}^{\prime} \times 10^{4}$	$^{\mathrm{k}_{\mathrm{RD}}}$ " \times 10 $^{\mathrm{4}}$

TABLE V.- VALUES OF COEFFICIENTS P_n IN SERIES REPRESENTATION $\gamma = -2V \left(P_O \cot \frac{\emptyset}{2} + 2 \sum_n P_n \sin n \emptyset \right)$

$$\left[P_n = P_n' + iP_n''\right]$$

					For	flapping	of airfoi	1						
			ω _r =	0.	02	$\omega_{\mathbf{r}}$	= 0.04			$\omega_{\mathbf{r}} =$	0.0	6		
	n	P	n'		P _n ''	Pn'	Pn''		P_n	1		Pn''		
	0	0.0	0405	0	.02580	0.01195	0.0472	6	0.02	102	0	.06523		
	1	0	0050		.00005	00194	.0003	6	00	0413		.00091		
	2	0		0		0	.0000	3	.00	002		.00009		
	3	0		0		0	0		0		0			
	4	0		0		0	0		0	·	0			
	(ω _r =	0.08		wr =	0.10	$\omega_{\mathbf{r}} =$	0.2	0 .	$\omega_{\mathbf{r}}$	=	0.30		
n	P_n	T	Pn'	1	P _n '	Pn''	P _n '		P _n ''	P _n '		Pn''		
0	0.03	053	0.080	67	0.03991	0.09420	0.08342	0.	14570	0.123	86	0.18312		
1	00	700	.001	81	01048	.00302	03610			074	19	.03356		
2	.00	006	.000	18	.00013	.00034	.00123	.00218		.004	54	.00039		
3	0		0		.00011	00004	.00013	00007		.000	57	00043		
4	0		0		0	0	0	0		000	0000400			
	w	r =	0.40		w _r =	0.50	$\omega_{\mathbf{r}} =$	0.	60	. ω	r =	0.70		
n	Pn	t	P _n '	t	P _n '	P _n ''	P _n '		Pn''	P _n '		Pn''		
0	0.16	431	0.210	75	0.20492	0.22786	0.24175	0.23334				0.271	33	0.22743
1	12	273	.065	74	17824	.11402	23186		17927	277	97	.26203		
2	.01	189	.013	53	.02588	.02355	.04912		03341	.084	34	.03984		
3	•00	167	001	57	.00378	00432	.00634		01014	.008	48	02027		
4	00	018	000	14	00059	00044	00165		00096	003	55	00157		

TABLE V.- VALUES OF COEFFICIENTS P_n IN SERIES REPRESENTATION

$$\gamma = -2V\left(P_0 \cot \frac{\emptyset}{2} + 2 \sum_n P_n \sin n\emptyset\right) - Concluded$$

Г											
L				For	rotation	of	airfo	il			
			w _r =	0.02	ω	r	= 0.04			wr =	0.06
	n		P _n '	Pn''	P _n '		Pn	11		P _n '	Pn''
	0	1.	.29401	-0.19220	1.1929	0	-0.2	7984	1.	10671	-0.32806
	1	,	.00272	.03991	.0079	3	.0'	7696		01391	.11189
	2		.00032	00003	.0012	5	0	0013		00270	00035
	3	0		0	0		0		0		0
	4	0		0	0		0		0		0
	ω	r =	= 0.08	· wr	= 0.10		ω _r :	= 0.20)	$\omega_{\mathbf{r}}$	= 0.30
n	P _n '		Pn''	P _n '	Pn''		P'n'	Pn	1	P _n '	Pn''
0	1.037	81	-0.3579 ¹	0.97989	-0.37637	0.	.80131	-0.41	701	0.7047	5 -0.45044
1	.020	12	.14529	.02691	.17790		.06175	•33	3405	.1065	.48796
2	.004	61	00069	.00697	00126		.02586	00	612	.05649	01645
3	0		00009	00004	00018	- ،	.00037	00	135	00159	00454
4	0		0	0	0		.00004	0		00029	.00014
	ω	r =	= 0.40	ω _r =	= 0.50		w _r =	= 0.60		$\omega_{\mathbf{r}}$	= 0.70
n	P _n '		P _n ''	P _n '	Pn''		P _n '	P _n '	1	P _n '	P _n ''
0	0.631	01	-0.49399	0.55644	-0.54194	0.	47233	-0.59	052	0.37481	-0.61770
1	.1691	12	.64043	.25543	.78449		36613	.91	393	.49812	1.00553
2	.099	07	03557	.15194	06873		21279	11	630	.26823	19176
3	004	72	01080	01190	02105		02383	03	601	04688	05153
4	0009	97	.00055	00196	00169	•	00531	.00	378	00929	.00848

TABLE VI .- AERODYNAMIC CORFFICIENTS DUE TO FLAP ROTATION

ſ	7	l
	ö	
	31	
i	X	

,														i		Γ									
	7.0	5244	-2869	9299	-2776	8824	-2084	11,020	-965.6	6277	-653.1	7588	809.9	8262	5686	2 4 48	4722	178.9	75.8	Z*484	312.7	974.5	817.1	1684	1690
٢١:> - ال	9.0	1064	-2917	6963	-2806	9980	-2163	10,945	-1116	6280	-364.6	7342	980.5	1769	2633	7702	4375	176.0	66.2	4.754	272.5	919.6	708.3	1553	1441
	0.5	-5319	-2961	7314	-2889	9164	-2337	10,909	9t/t1-	6202	-122.2	6902	1063	7284	2453	7039	3872	173.2	55.9	452.0	228.6	872.5	591.9	1448	1206
	ቱ.0	5780	-3042	777	-3051	9443	-2654	210,11	-1984	#L09	9.65	6768	1049	6838	2160	9949	3273	170.1	14.3	438.9	181.6	836.3	1.994	1367	942.2
	0.3	6373	-3187	8296	-3336	9928	-3157	11,408	-2723	5912	177.5	9949	4.646	6415	1764	6009	2562	168.8	32.1	429.5	130.4	808.9	329.8	1319	662.2
	0.2	7320	-3402	9313	-3769	10,978	-3813	ग्री। हिं	-3684	5738	225.2	ŧ029	735.5	6100	1284	2640	1819	168.4	19.0	1.754	75.0	805.3	189.2	1311	376.1
	0.1	9164	-3459	11,538	-4023	13,409	-4316	14,979	-4425	5559	194.9	2964	463.4	5823	744.0	5332	1013	1,171	5.1	438.5	20,1	836.7	49.0	1373	94.3
	90.0	9801	-3350	12,267	-3930	14,218	-4258	15,846	-4417	5522	176.0	5922	393.2	5767	620.1	5271	836.5	172.4	2.7	9.444	10.0	850.5	23.2	1401	42.1
	90.0	10,524	-3123	13,145	-3697	15,208	-4043	16,918	-4229	5487	148.3	5/8/2	315.1	5721	487.5	5206	650.3	174.0	4.0	451.3	6.0	868.4	0.2	1436	-4-1
	40.0	11,392	-2690	14,206	-3209	16,403	-3548	18,205	-3753	5453	111.9	5836	225.5	5673	342.4	5166	452.9	176.1	-1.4	1,60,1	-6.2	891.1	-17.5	1485	-39.1
	0,02	114,21	-1858	15,321	-2235	17,816	7642-	19,745	-2674	5455	63.4	5802	122.2	₹99	181.9	5123	237.6	1.78.1	-2.1	470.8	0.6-	919.6	-24.2	1543	-51.7
	0	13,458	0	16,742	0	19,294	0	21,370	0	5411	0	5787	0	5617	0	5104	0	181.7	0	482.3	0	950.4	0	1608	0
	T H	0.15		42.0		0.33		5h.0	•	0.15		0.24		0.33		0.42		0.15		42.0		0.33		O. 42	
	Coefficient	ksR' × 104	ksR'' × 104	$k_{\rm SR}^{\dagger} \times 10^4$	ksR'' × 104	ksR' × 10 ⁴	ksR'' × 104	kSR' × 10 ⁴	kgR'' × 104	kpR' × 104	k _{DR} '' × 10 ⁴	knr' × 104	knr'' × 10 ⁴	knr' × 10 ⁴	kpR" × 104	kpR' × 10 ⁴	k_DR'' × 10 ⁴	$k_{ m RR}^{1} imes 10^{4}$	krr ' × 104	krr' × 10 ⁴	$k_{ m RR}$ " $ imes$ 10^{4}	krr × 104	$k_{RR}^{11} \times 10^4$	k_{RR} × 10^{4}	krR'' × 104

Figure 1.- Real part of k_{SS} against reduced frequency for M = 0.7.

Figure 2.- Imaginary part of k_{SS} for M = 0.7.

Figure 3.- Real part of k_{SD} for M = 0.7.

Figure 4.- Imaginary part of k_{SD} for M = 0.7.

Figure 5.- Real part of k_{DS} for M = 0.7.

Figure 6.- Imaginary part of k_{DS} for M = 0.7.

Figure 7.- Real part of k_{DD} for M = 0.7.

Figure 8.- Imaginary part of k_{DD} for M = 0.7.

Figure 9.- Real part of k_{RS} for M = 0.7.

Figure 10.- Imaginary part of k_{RS} for M = 0.7.

Figure 11.- Real part of k_{RD} for M = 0.7.

Figure 12.- Imaginary part of k_{RD} for M = 0.7.

Figure 13.- Real part of k_{SR} for M = 0.7.

Figure 14.- Imaginary part of k_{SR} for M = 0.7.

Figure 15.- Real part of k_{DR} for M = 0.7.

Figure 16.- Imaginary part of k_{DR} for M = 0.7.

NACA TN 2213 45

Figure 17.- Real part of k_{RR} for M = 0.7.

Figure 18.- Imaginary part of k_{RR} for M = 0.7.