ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «Санкт-Петербургский государственный университет телекоммуникаций им. проф. М. А. Бонч-Бруевича»

Факультет инфокоммуникационных сетей и систем

Кафедра теоретических основ связи и радиотехники

Расчёт основных характеристик цифровой системы связи с использованием квадратурной модуляции

Учебная дисциплина «Теория электрической связи»

Курсовая работа

Студент группы ИКТО-91 Копыл А. В. зачетная книжка № 1905141

Руководитель

Санкт-Петербург 2021

Цель курсовой работы — изучить и разработать систему цифровой связи, оптимальную в отношении флуктуационной помехи и исключающую появления межсимвольной помехи.

1 Структурная схема системы цифровой связи

Система связи предназначена для передачи аналоговых сообщений по цифровому каналу связи.

Рис. 1: Структурная схема цифровой системы связи

В систему входят следующие функциональные узлы с последующими назначениями:

- 1. Источник сообщений создает реализации a(t) случайного процесса A(t).
- 2. Аналого-цифровой преобразователь преобразует аналоговый сигнал от источника сообщения в последовательность двоичных отсчетов b(t).

- 3. Кодер включает в цифровой поток от АЦП дополнительные символы, предназначенные для повышения помехоустойчивости системы связи;
- 4. Формирователь модулирующих символов служит для получения модулирующих сигналов I(t) и Q(t), соответствующих заданному виду модуляции;
- 5. Сглаживающие формирующие фильтры (СФФ1, СФФ2);
- 6. Перемножители для получения БМ сигналов: синфазного $I(t)\cos\omega_C t$ и квадратурного $Q(t)\sin\omega_C t$.
- 7. Фазовращатель для получения второго несущего колебания, ортогонального по отношению к первому;
- 8. Генератор гармонических колебаний для получения несущего колебания;
- 9. Инвертор;
- 10. Сумматор для объединения синфазного и квадратурного сигналов в единый сигнал с квадратурной модуляцией $S_{KAM}(t) = I(t) \cos \omega_C t + Q(t) \sin \omega_C t$;
- 11. Непрерывный канал среда распространения сигнала $S_{KAM}(t)$;
- 12. Демодулятор для анализа приходящего сигнала, искаженного помехами, и принятии решения о переданном сообщении;
- 13. Преобразователь параллельного кода в последовательный код для преобразования сигнала с выхода демодулятора в последовательный формат кодовых комбинаций;
- 14. Декодер для исправления части ошибок, возникших при приёме сообщения $\hat{b}(t)$ вследствие влияния помех;
- 15. Цифро-аналоговый преобразователь для восстановления аналоговой формы сигнала $\hat{a}(t)$ из его цифрового представления;
- 16. Получатель сообщений.

2 Исходные данные

m = 41

Предельные уровни ана-	$a_{Makc} = 25, 6 \text{ B};$	Внести свои данные
логового сигнала $a_{\mathit{мин}},$	$a_{Mun} = -25, 6 \text{ B}$	
$a_{Ma\kappa c}$ (B)		
Верхняя частота спектра	$f_B = (1 + m \cdot 10^{-2}) \cdot 10^4$	$f_B = 14100$
аналогового сигнала f_B		
Заданный уровень кванто-	$j = 500 - 3 \cdot m$	377
вания		
Спектральная плотность	41	$N_0 = 2, 3 \cdot 10^{-7} B^2 / \Gamma$ ц
мощности флуктуацион-		
ной помехи		
q – номер тактового интер-	$q = m \mod 3 + 1$	q=3
вала ошибки		
Вид модуляции	KAM-16	

3 Расчет составляющих системы цифровой связи

3.1 Источник сообщений

Источник сообщения (ИС) вырабатывает реализации a(t) стационарного случайного процесса A(t), типа квазибелого шума с параметрами $a_{мин}$, $a_{макс}$ и f_B . Мгновенные значения сообщения равновероятны в интервале от значения $a_{мин}$ и до значения $a_{макс}$.

Требуется:

1. Написать аналитические выражения для плотности вероятности w(a) мгновенных значений сообщения, функции распределения F(a) и построить их графики (рис. 2).

$$w(a) = \frac{1}{a_{\text{Marc}} - a_{\text{Mun}}} = \frac{1}{\Delta} = \frac{1}{25, 6 + 25, 6} = 0,02$$

$$F(a) = \int_{-\infty}^{a} w(a) da = \int_{a_{\text{Mun}}}^{a} \frac{1}{\Delta} da = \begin{cases} 1, & a > a_{\text{Marc}} \\ \frac{a - a_{\text{Mun}}}{\Delta}, & a_{\text{Mun}} \le a \le a_{\text{Marc}} \\ 0, & a < a_{\text{Mun}} \end{cases}$$

где $\Delta = a_{\text{макс}} - a_{\text{мин}} = 51, 2 B.$

Рис. 2: Графики функции распределения и плотности вероятности

2. Рассчитать математическое ожидание $\overline{A(t)}$ и дисперсию $D\{A(t)\}$ сообщения A(t).

$$\overline{A(t)} = \int_{-\infty}^{\infty} a \cdot w(a) da = \int_{a_{\mathit{Mun}}}^{a_{\mathit{Makc}}} a \frac{1}{a_{\mathit{Makc}} - a_{\mathit{Mun}}} da = \frac{a^2}{2\Delta} \bigg|_{a_{\mathit{Min}}}^{a_{\mathit{Makc}}} = \frac{a_{\mathit{Makc}}^2 - a_{\mathit{Mun}}^2}{2\Delta} = 0$$

$$D\{A(t)\} = \int_{-\infty}^{\infty} (a - \overline{A(t)})^2 w(a) da = \int_{a_{Mun}}^{a_{Maxc}} a^2 w(a) da$$
$$= \frac{a^3}{3\Delta} \Big|_{a_{Mun}}^{a_{Maxc}} = \frac{a_{\min}^2 + a_{\max} a_{\min} + a_{\max}^2}{3} = 218, 5$$

3. Написать аналитическое выражение для спектральной плотности мощности $G_A(f)$ сообщения A(t) и построить график (рис. 3).

$$G_A(f) = rac{D\{A(t)\}}{2f_B} = rac{218,5}{2\cdot 1,41\cdot 10^4} = 7,7\,\mathrm{M}B^2/\Gamma u,$$

$$G_A(f) = \begin{cases} 7,7\,\mathrm{M}B^2/\Gamma u, & |f| \leq f_B \\ 0, & |f| > f_B \end{cases}$$

Рис. 3: График спектральной плотности мощности.

4. Найти аналитическое выражение для корреляционной функции $B_A(\tau)$ сообщения A(t) и построить график (рис. 4). По форме графика $B_A(\tau)$ определить, является ли сообщение A(t) эргодическим случайным процессом или не является таковым.

$$B_A(\tau) = \int_{-\infty}^{\infty} \frac{G_A(f)}{2} e^{j2\pi f \tau} df = \int_{-f_B}^{f_B} \frac{G_A}{2} \cos 2\pi f \tau df$$
$$= \frac{G_A}{2} \frac{\sin 2\pi f \tau}{2\pi \tau} \bigg|_{-f_B}^{f_B} = G_A \frac{\sin 2\pi f_B \tau}{2\pi \tau}$$

Рис. 4: График корреляционной функции $B_A(\tau)$.

3.2 Аналого-цифровой преобразователь

$$\Delta t \le \frac{1}{2f_B} = \frac{1}{2 \cdot 14100} = 3,546 \cdot 10^{-5} c$$

$$f_d = \frac{1}{\Delta t} \ge 2f_B = \frac{1}{3,546 \cdot 10^{-5}} = 28200$$
$$377_{10} = 101111001_2$$
$$k = 9; L = 2^9 = 512$$

3.3 Кодер

3.3.1 Решетка кодера

Рис. 5: Решетка кодера

Длительность двоичного символа T_B на выходе кодера:

$$T_B = \frac{\Delta t}{2k} = \frac{3,546 \cdot 10^{-5}}{2 \cdot 9} = 1,97 \cdot 10^{-6} c$$

Рис. 6: Решетка декодера

Рис. 7: Сегмент решетки декодера от t = 0, до t = 3.

3.4 Декодер

По каналу передавался код $\overline{u}=111000011010011111$. Ошибка произошла на тактовом интервале q=3. Таким образом, на вход декодера поступает последовательность $\overline{Z}=11\overset{\times}{0}000011010011111$. Крестиком обозначен ошибочно принятый символ.

3.4.1 Диаграмма декодера

Рис. 8: Сегмент решетки декодера от t = 0, до t = 4.

Рис. 9: Сегмент решетки декодера от t = 0, до t = 5.

Рис. 10: Сегмент решетки декодера от t=0, до t=6.

Рис. 11: Сегмент решетки декодера от t = 0, до t = 7.

Рис. 12: Сегмент решетки декодера от t = 0, до t = 8.

Рис. 13: Сегмент решетки декодера от t = 0, до t = 9.

Рис. 14: Полная решетка декодера.

Наложив полученный путь на решетку кодера, узнаем декодированное слово. $\overline{m}_{nonyu}=101111001$