Home Service Robot Project Starter Code

Abhay Luna

The objective of this project is a full home service robot capable of navigating to pick up and deliver virtual objects.

How to run the program with your own code

Go to Desktop and open a terminal.

For the execution of your own code, we head to the Project Workspace. For this setup, catkin_ws is the name of the active workspace. If your workspace name is different, change the commands accordingly.

Install ROS Navigation system.

```
sudo apt-get update
sudo apt-get install ros-kinetic-navigation
```

If you do not have an active workspace, you can create one. You can launch it by running the following commands first.

```
cd /home/workspace/
mkdir -p catkin ws/
```

Clone the required repositories to the /home/workspace/catkin ws/ folder

```
cd /home/workspace/catkin_ws/
git clone https://github.com/Abhaycl/RoboND-Home-Service-Robot-2P5.git src
```

Clone the required repositories to the ~/catkin_ws/src folder. Note that this repository already includes official ROS packages compatible with this repository: gmapping, turtlebot_turtlebot_rviz_launchers, and turtlebot_gazebo. Their dependencies must be installed to successfully use this repository.

(Optional)

- https://github.com/turtlebot/turtlebot_apps.git
- This repository contains the turtlebot_navigation package which is a turtlebot dependency.
- This will give you some room to tweak navigation and some SLAM behaviors.

Add required ROS packages as git submodules.

```
cd ~/catkin_ws/src
git submodule add https://github.com/ros-perception/slam_gmapping.git
git submodule add https://github.com/turtlebot/turtlebot.git
git submodule add https://github.com/turtlebot/turtlebot_interactions.git
git submodule add https://github.com/turtlebot/turtlebot_simulator.git
```

Install ROS packages dependancies.

```
cd ~/catkin_ws/src
sudo rosdep -i install gmapping -y
sudo rosdep -i install turtlebot_teleop -y
sudo rosdep -i install turtlebot_rviz_launchers -y
sudo rosdep -i install turtlebot gazebo -y
```

Once copied everything, it's important to give permissions, reading and/or execution to the files necessary for the proper functioning.

Build the project:

```
cd /home/workspace/catkin_ws
catkin_make
source devel/setup.bash
```

Catkin Workspace Structure

Should look something like this:

```
catkin ws/src
    |-- add markers
        |-- src
        |-- ...
    |-- misc_images
        |-- ...
    |-- pick objects
        |-- src
        |-- ...
    |-- RvizConfig
        |-- ...
    |-- ShellScripts
        |-- ...
    |-- slam_gmapping
        |-- gmapping
        |-- slam gmapping
        |-- ...
    |-- turtlebot
        |-- turtlebot
        |-- turtlebot_bringup
        |-- turtlebot_capabilities
        |-- turtlebot_description
        |-- turtlebot_teleop
        |-- ...
    |-- turtlebot apps
        |-- turtlebot navigation
        |-- ...
    |-- turtlebot interactions
        |-- turtlebot_dashboard
        |-- turtlebot_interactions
        |-- turtlebot_interactive_markers
        |-- turtlebot_rviz_launchers
```

```
|-- ...
|-- turtlebot_simulator
|-- turtlebot_gazebo
|-- turtlebot_simulator
|-- turtlebot_stage
|-- turtlebot_stdr
|-- ...
|-- wall_follower
|-- src
|-- ...
|-- World
|-- ...
```

The summary of the files and folders within repo is provided in the table below:

File/Folder	Definition
add_markers/*	Folder that contains all the node that model the object with a marker in rviz.
pick_objects/*	Folder that contains all the node that commands your robot to drive to the pick-up and drop-off zones.
RvizConfig/*	Folder that contains all the customized rviz configuration files.
ShellScripts/*	Folder that contains all the shell scripts.
slam_gmapping/*	Folder that contains all the files that perform SLAM and build a map of the environment with a robot equipped with laser range finder sensors or RGB-D cameras.
turtlebot/*	Folder that contain the keyboard_teleop.launch file that you can manually control a robot using keyboard commands. the keyboard_teleop.launch file that you can manually control a robot using keyboard commands.
turtlebot_apps/*	Folder that contain the turtlebot_navigation package which is a turtlebot dependency.
turtlebot_interactions/*	Folder that contain the view_navigation.launch file that you can load a preconfigured rviz workspace. It will automatically load the robot model, trajectories, and map for you.
turtlebot_simulator/*	Folder that contain the turtlebot_world.launch file that you can deploy a turtlebot in a gazebo environment by linking the world file to it.
wall_follower/*	Folder that contains all the wall_follower node that will autonomously drive your robot around to perform SLAM.
World/*	Folder that contains all the gazebo world file and the map generated from SLAM.
misc_images/*	Folder containing the images of the project.
CMakeLists.txt	Contains the System dependencies that are found with CMake's conventions.
README.md	Contains the project documentation.
README.pdf	Contains the project documentation in PDF format.

Steps to complete the project:

- 1. Design a simple environment with the Building Editor in Gazebo.
- 2. Teleoperate your robot and manually test SLAM.
- 3. Create a wall follower node that autonomously drives your robot to map your environment.
- 4. Use the ROS navigation stack and manually commands your robot using the 2D Nav Goal arrow in rviz to move to 2 different desired positions and orientations.
- 5. Write a pick_objects node that commands your robot to move to the desired pickup and drop off zones.
- 6. Write an add_markers node that subscribes to your robot odometry, keeps track of your robot pose, and publishes markers to rviz.

Rubric Points

Here I will consider the rubric points individually and describe how I addressed each point in my implementation.

Execution of the different shellscripts.

For run **launch.sh** open a terminal:

cd /home/workspace/catkin_ws/src/ShellScripts
./launch.sh

For create **my world** open a terminal:

cd /home/workspace/catkin_ws/src/World
gazebo MyWorld.world

Design your environment.

- Open a terminal and launch Gazebo.
- Click Edit and launch Building Editor.
- Design a simple environment.
- Apply textures or color.
- Save the building editor environment and go back to Gazebo.
- Save the Gazebo environment to the World directory under your ~/catkin ws/src.

For run **test_slam.sh** open a terminal:

 $\verb|cd/home/workspace/catkin_ws/src/ShellScripts||./test slam.sh||$

For run wall_follower.sh open a terminal:

cd /home/workspace/catkin_ws/src/ShellScripts
./wall follower.sh

For run **test_navigation.sh** open a terminal:

cd /home/workspace/catkin_ws/src/ShellScripts
./test navigation.sh

For run **pick_objects.sh** open a terminal:

cd /home/workspace/catkin_ws/src/ShellScripts
./pick_objects.sh

For run add_markers.sh open a terminal:

cd /home/workspace/catkin_ws/src/ShellScripts
./add markers.sh

For run the project **home_service.sh** open a terminal:

cd /home/workspace/catkin_ws/src/ShellScripts
./home service.sh

