

CLAIMS

5

10

15

20

25

What is claimed is:

- 1. A method for a systematic approach to forming experimental designs for large, complex systems, the method comprising:
 - (a) generating and developing an idea for a product;
- (b) develop an experimental design for the product, wherein the experimental design includes:
 - (c) determining critical variables for the product;
 - (d) setting a design matrix $U_k = 0$ and k = 0;
 - (e) generating a base design matrix X;
- (f) running $Y(P) = (I-B(B^TB)^{-1}B^T)[(X P)//U]A \& Wynn's criterion,$ where P is a permutation matrix, I is an identity matrix, B is a blocking matrix, B^T is a transposed matrix of B, and A is a matrix composed of causal map-based coefficients; and
 - (g) creating a design matrix U_k .
 - 2. The method of Claim 1, wherein step (b) further includes:
 - (h) setting $k \leftarrow k + 1$;
- (i) running an algorithm to choose the best of random column permutations matrices P;
- (j) running an algorithm to choose the best column permutation matrix P that is near a previous solution; and
 - (k) setting $U_k \leftarrow [XP^k \text{ with rows from } U_{k-1} \text{ appended}].$
 - 3. The method of Claim 2, wherein step (b) further includes:
 - (1) determining whether the design Uk is at desired size; and
- (m) if the design U_k is not at the desired size repeating steps (h) through (m) until step (l) indicates that the design U_k is at the desired size.
- 4. The method of Claim 2 wherein step (b) further includes (n) setting the experimental design using U_k if step (l) indicates that the design U_k is at the desired size.
 - 5. The method of Claim 4 further including:
 - (o) manufacturing prototype wafers using the experimental design U_k;
 - (p) determining model responses from the prototype wafers;

- (q) determining whether the model responses are adequate; and
- (r) if the model responses are not adequate repeating steps (f) through (r) until step (q) indicates that the model responses are adequate.
 - 6. The method of Claim 5 further comprising:
 - (s) assess and propose manufacturing tolerances for the design Uk;
 - (t) determine if the proposed manufacturing tolerances are manufacturable; and
- (u) if the manufacturing tolerances are not manufacturable repeating steps (b) through (t) until it is determined that the manufacturing tolerances are manufacturable.
- 7. The method of Claim 6 further comprising (v) sending the design U_k to production if it is determined that the manufacturing tolerances are manufacturable.
 - 8. The method of Claim 7 wherein step (e) includes:
 - (w) creating a causal network diagram using information determined in ste (c);
- (x) creating an internode link-count distance matrix using information from step(w);
 - (y) creating a causal map using information from step (x);
 - (z) identifying response nodes from the causal map created in step (y); and
 - (aa) calculating map-based coefficients from the information in the causal map.

5

10

15

20

30