DS 4

Les calculatrices sont interdites.

Exercice:

Soit $m \in \mathbb{N}$. Calculer $\int_0^{\pi} \sin^{2m} t \times \cos(2mt) dt$.

Problème 1 : fractions continues

Partie 1: notations

Dans tout ce problème, on travaille dans $\overline{\mathbb{R}_+} = \mathbb{R}_+ \cup \{+\infty\}$ avec les conventions habituelles : $\frac{1}{0} = +\infty$ et $\frac{1}{+\infty} = 0$.

On note $\lfloor \cdot \rfloor$ la partie entière et $\{\cdot\}$ la partie fractionnaire. On convient que $\lfloor +\infty \rfloor = +\infty$ et $\{+\infty\} = 0$, ce qui revient à considérer que $+\infty$ est un entier naturel. Soit $x \in \mathbb{R}_+$. On note $(x_n)_{n \geq 0}$ la suite à valeurs dans $\overline{\mathbb{R}_+}$ définie par

$$x_0 = x$$
 et $\forall n \in \mathbb{N}, \quad x_{n+1} = \frac{1}{\{x_n\}}$

Pour tout $n \in \mathbb{N}$, on note a_n l'élément de $\overline{\mathbb{N}} = \mathbb{N} \cup \{+\infty\}$ défini par

$$a_n = |x_n|$$
.

Si s_0, s_1, \ldots, s_n désignent des éléments de $\overline{\mathbb{R}_+}$, on pose

$$[s_0] = s_0, \quad [s_0, s_1] = s_0 + \frac{1}{s_1}, \quad [s_0, s_1, s_2] = s_0 + \frac{1}{s_1 + \frac{1}{s_2}}$$

et plus généralement

$$[s_0, s_1, \dots, s_{n-1}, s_n] = s_0 + \frac{1}{s_1 + \frac{1}{\cdots + \frac{1}{s_{n-1} + \frac{1}{s_n}}}}.$$

1

- 1°) Montrer que toutes ces quantités sont bien définies.
- **2°)** Démontrer que, pour tout $n \in \mathbb{N}$, on a $x = [a_0, a_1, \dots, a_{n-1}, x_n]$.

Partie 2: Fraction continue d'un rationnel.

On suppose que x est un nombre rationnel positif ou nul.

On note $x = \frac{u}{v}$ avec $u \in \mathbb{N}$, $v \in \mathbb{N}^*$ et $u \wedge v = 1$. On pose $r_{-1} = u$, $r_0 = v$.

On construit par récurrence les suites (r_n) et (q_n) de la manière suivante :

si pour $n \in \mathbb{N}$, r_{n-1} et r_n sont construits, et si $r_n \neq 0$, on note q_n et r_{n+1} les quotient et reste de la division euclidienne de r_{n-1} par r_n .

- 3°) Quel partie du cours (que l'on ne demande pas de démontrer) justifie l'existence du rang $d \in \mathbb{N}$ tel que $r_d = 1$ et $r_{d+1} = 0$?
- **4°)** Démontrer que, pour tout $k \in \{0, \ldots, d\}$, $x_k = \frac{r_{k-1}}{r_k}$ et $a_k = q_k$. Que dire de x_k et a_k lorsque $k \ge d + 1$?
- **5°)** En déduire que $x = [q_0, q_1, \dots, q_{d-1}, q_d]$.

Cette écriture de x s'appelle le développement en fraction continue du rationnel x.

- 6°) Décomposer $\frac{355}{113}$ en fraction continue.
- **7°)** Réciproquement, on suppose que l'ensemble $\{n \in \mathbb{N} \mid a_n = +\infty\}$ est non vide. Démontrer qu'il existe $d \in \mathbb{N}$ tel que $x = [a_0, a_1, \dots, a_{d-1}, a_d]$, avec $a_0, \dots, a_d \in \mathbb{N}$. En déduire que $x \in \mathbb{Q}_+$.

Partie 3: Fraction continue d'un irrationnel.

On suppose que x est un réel irrationnel positif. Les résultats de la question précédente nous disent alors qu'aucun a_n ne vaut $+\infty$, autrement dit que $(a_n)_{n\geq 0}$ est une suite d'entiers naturels. On peut alors introduire les deux suites $(p_n)_{n\geqslant -1}$ et $(q_n)_{n\geqslant -1}$ d'entiers

pour tout
$$n \in \mathbb{N}$$
,
$$\begin{cases} p_{n+1} = a_{n+1}p_n + p_{n-1} \\ q_{n+1} = a_{n+1}q_n + q_{n-1} \end{cases}$$

naturels définies par $p_{-1}=1, q_{-1}=0, p_0=a_0, q_0=1$ et, pour tout $n\in\mathbb{N},$ $\begin{cases} p_{n+1}=a_{n+1}p_n+p_{n-1}\\ q_{n+1}=a_{n+1}q_n+q_{n-1} \end{cases}$ Remarque : La suite $(q_n)_{n\geqslant -1}$ n'a pas de lien avec les quotients définis en partie 2.

- 8°) Démontrer que $(q_n)_{n\geqslant 1}$ est strictement croissante et déterminer la limite de q_n lorsque n tend vers $+\infty$.
- **9°)** Démontrer que, pour tout $n \in \mathbb{N}$, pour tout $t \in \mathbb{R}_+^*$,

$$[a_0, a_1, \dots, a_{n-1}, a_n, t] = \frac{p_n + \frac{p_{n-1}}{t}}{q_n + \frac{q_{n-1}}{t}}.$$

2

En déduire que, pour tout $n \in \mathbb{N}$, $[a_0, a_1, \dots, a_{n-1}, a_n] = \frac{p_n}{a_n}$.

10°) Démontrer que, pour tout $n \in \mathbb{N}$, $p_n q_{n-1} - q_n p_{n-1} = (-1)^{n+1}$.

Que peut-on en déduire à propos de la fraction $\frac{p_n}{q_n}$ pour $n \in \mathbb{N}$?

- 11°) Démontrer que la suite $\left(\frac{p_{2n}}{q_{2n}}\right)_{n\geqslant 1}$ est croissante, que la suite $\left(\frac{p_{2n-1}}{q_{2n-1}}\right)_{n\geqslant 1}$ est décroissante et que $\frac{p_{2n-1}}{q_{2n-1}} \frac{p_{2n}}{q_{2n}} \underset{n \to +\infty}{\longrightarrow} 0$.
- 12°) Démontrer que, pour tout $n \in \mathbb{N}^*$, $\frac{p_{2n}}{q_{2n}} \leqslant x \leqslant \frac{p_{2n-1}}{q_{2n-1}}$ et en déduire que $\frac{p_n}{q_n} \xrightarrow{n \to +\infty} x$. Ainsi, $x = \lim_{n \to +\infty} [a_0, a_1, \dots, a_{n-1}, a_n]$, ce que l'on écrit sous la forme $x = [a_0, a_1, \dots, a_{n-1}, a_n, \dots]$ et que l'on appelle le développement en fraction continue de l'irrationnel x.
- **13°)** Montrer que, pour tout $n \in \mathbb{N}^*$, $\left| x \frac{p_n}{q_n} \right| \le \frac{1}{q_n^2}$.

Problème 2 : ensembles pairs

On rappelle qu'une paire est un ensemble de cardinal 2.

Si E est un ensemble, on note $\mathcal{P}_2(E)$ l'ensemble des paires d'éléments de E.

Si E est un ensemble, on appelle partition par paires de E toute partie \mathcal{F} de $\mathcal{P}_2(E)$ qui est une partition de E. Autrement dit, \mathcal{F} est une partition par paires de E lorsque

- Pour tout $P \in \mathcal{F}$, P est une paire de E;
- Pour tout $P, Q \in \mathcal{F}, P \neq Q \Longrightarrow P \cap Q = \emptyset;$
- $E = \bigcup_{P \in \mathcal{F}} P.$

On dit qu'un ensemble E est pair lorsqu'il existe une partition par paires de E.

- 1°) Soient E et F deux ensembles. On suppose qu'il existe une bijection de E dans F. Démontrer que si E est pair, alors F est aussi pair.
- $\mathbf{2}^{\circ})$ Montrer (sans utiliser les questions qui suivent) que $\mathbb N$ est pair.
- 3°) Soit E un ensemble non vide. Montrer (sans utiliser les questions qui suivent) que $\mathcal{P}(E)$ est pair.
- **4°)** Établir qu'un ensemble fini est pair si, et seulement si, son cardinal est pair. Pour tout $m \in \mathbb{N}$, on note a_m le nombre de partitions par paires d'un ensemble de cardinal 2m.
- 5°) Démontrer que, pour tout $m \in \mathbb{N}^*$, on a $a_m = (2m-1)a_{m-1}$. Pour tout $m \in \mathbb{N}$, en déduire une expression simple de a_m en fonction de m.

 6°) Soient E et F deux ensembles.

On suppose qu'il existe une bijection de E dans F.

On note $\Pi(E)$ l'ensemble des partitions par paires de E et on note $\Pi(F)$ l'ensemble des partitions par paires de F.

Montrer qu'il existe une bijection de $\Pi(E)$ dans $\Pi(F)$.

7°) Soit $m \in \mathbb{N}$. On pose $E = \{k \in \mathbb{N} \mid 1 \le k \le 2m\}$. Lorsque σ est une bijection de E dans E, on note $\varphi(\sigma) = \{\{\sigma(2i-1), \sigma(2i)\} \mid i \in \{1, \ldots, m\}\}$.

Montrer que φ est une surjection de l'ensemble $\mathcal{S}(E)$ des bijections de E dans E dans l'ensemble des partitions par paires de E.

En déduire une seconde démonstration pour l'obtention de l'expression de a_m en fonction de m.

- 8°) Soient E un ensemble infini et x un élément de E. Démontrer qu'il existe une bijection entre E et $E \setminus \{x\}$.
- 9°) Montrer (sans utiliser les questions qui suivent) que \mathbb{R} est pair.

Pour toute la suite de ce problème, on fixe un ensemble E que l'on suppose infini. On note Π l'ensemble des parties de $\mathcal{P}_2(E)$ formées de paires disjointes. Ainsi, $\mathcal{F} \in \Pi$ si et seulement si

- Pour tout $P \in \mathcal{F}$, P est une paire de E;
- Pour tout $P, Q \in \mathcal{F}, P \neq Q \Longrightarrow P \cap Q = \emptyset$.
- 10°) Soit Γ une partie de Π totalement ordonnée pour l'inclusion. Montrer que Γ possède un majorant dans Π .

On a ainsi démontré que, dans Π , tout sous-ensemble totalement ordonné possède un majorant dans Π . On dit que Π est inductif. Le lemme de Zorn (que nous admettrons) dit que tout ensemble ordonné inductif possède au moins un élément maximal. L'ensemble Π possède donc un élément maximal que nous noterons \mathcal{E} .

- 11°) Démontrer l'alternative suivante : ou bien \mathcal{E} est une partition par paires de E, ou bien il existe un élément x de E tel que \mathcal{E} est une partition par paires de $E \setminus \{x\}$.
- 12°) Montrer que tout ensemble infini est pair.