CS2100 Computer Organisation Tutorial #9: Sequential Circuits

(Week 11: 1 – 5 April 2024) **Answers**

Discussion Questions:

- D1. The state table on the right describes the state transition of a circuit with 4 states A, B, C and D, an input x, and an output z. For example, if the circuit is in state A and its input x is 0, then it moves into state C and generates the output 0 for z.
 - (a) Complete the state diagram below. The label of the arc indicates input/output, hence 1/1 means x=1 and z=1.

	Х						
	0	1					
Α	<i>C</i> /0	<i>A</i> /1					
В	D/1	<i>B</i> /0					
С	<i>B</i> /1	D/0					
D	<i>C</i> /0	D/0					

(b) Assuming that the circuit starts in state A, find the output sequence and state sequence for the input sequence x = 100010 (read from left to right). (x = 100010 means that initially x is 1, then in the next clock x is 0, and so on.)

State Q: A A C B D D

Input x: 1 0 0 0 1 0

Next state Q^+ : A C B D D C \leftarrow required answer Output z: 1 0 1 1 0 0 \leftarrow required answer

- D2. Match the following state diagrams to the 4 flip-flops: *JK* flip-flop, *D* flip-flop, *RS* flip-flop, and *T* flip-flop. Don't-care value is indicated by "x".
 - (a) D flip-flop

(b) SR flip-flop

(c) T flip-flop

(d) JK flip-flop

Tutorial Questions

1. A four-state sequential circuit below consists of a *T* flip-flop and a *D* flip-flop. Analyze the circuit.

- (a) Complete the state table and hence draw the state diagram.
- (b) Assuming that the circuit is initially at state 0, what is the final state and the outputs generated after 3 clock cycles?

A state is called a *sink* if once the circuit enters this state, it never moves out of that state.

- (c) How many sinks are there for this circuit?
- (d) Which is likely to be an unused state in this circuit?

Answ					$p = A \cdot B = A \cdot B$ $TA = A \cdot B$ $DB = A' + B$			/p /0
	Prese	nt state	Output	Flip-flo	p inputs	Next	state	$\begin{pmatrix} 0 \end{pmatrix} /1 \begin{pmatrix} 1 \end{pmatrix} \checkmark$
	Α	В	р	TA	DB	A+	B +	
	0	0	1	0	1	0	1	10
	0	1	0	0	1	0	1	/0
	1	0	0	1	0	0	0	
	1	1	1	0	1	1	1	((3) (2)

- (b) After 3 clock cycles, the circuit is in state 1, and it generated 100 as output.
- (c) There are 2 sinks: states 1 and 3.
- (d) State 3 is likely to be an unused state.

2. [AY2021/22 Semester 2 Exam]

A sequential circuit with 6 states: state 1 (ABC=001₂) through state 6 (ABC=110₂) is implemented using three JK flip-flops as shown below.

(a) Complete the state diagram below. One of the transitions has been drawn for you.

(b) A circuit is **self-correcting** if for some reason the circuit enters into any unused (invalid) state, it is able to transit to a valid state after a finite number of transitions. Is this circuit self-correcting? Explain.

Answer: Yes, it is self-correcting. State 0 transits to state 4 and state 7 transits to state 1.

Working:

(a) JA = C'; KA = C; JB = A; KB = 1; $JC = A \cdot B$; KC = 0.

Fill in the flip-flop inputs in the state table using the above expressions, then find the values of A^+ , B^+ , and C^+ .

Pre	esent s	tate	Next state			Flip-flop inputs						
Α	В	С	A^{+}	B⁺	C ⁺	JA=C'	KA=C	JB=A	KB=1	JC=A·B	<i>KC</i> =0	
0	0	0	1	0	0	1	0	0	1	0	0	
0	0	1	0	0	1	0	1	0	1	0	0	
0	1	0	1	0	0	1	0	0	1	0	0	
0	1	1	0	0	1	0	1	0	1	0	0	
1	0	0	1	1	0	1	0	1	1	0	0	
1	0	1	0	1	1	0	1	1	1	0	0	
1	1	0	1	0	1	1	0	1	1	1	0	
1	1	1	0	0	1	0	1	1	1	1	0	

State diagram with unused states 0 and 7.

3. [AY2021/22 Semester 2 Exam]

Redesign the circuit in question 2 by using only **T flip-flops**. You do not have to follow where the unused states transit to in question 2. Write out the flip-flop input functions *TA*, *TB* and *TC* so that your new design can be implemented with the fewest number of logic gates other than the flip-flops.

Answers: 3 logic gates (XNOR, OR, AND)

$$TA = A \cdot C + A' \cdot C' = A \odot C$$

$$TB = A + B$$

$$TC = A \cdot B$$

Working:

Pre	esent st	ate	N	ext stat	te	Flip-flop inputs					
Α	В	С	A^{+}	B ⁺	C ⁺	TA	TB	TC			
0	0	0	Х	Х	Х	Х	Х	Х			
0	0	1	0	0	1	0	0	0			
0	1	0	1	0	0	1	1	0			
0	1	1	0	0	1	0	1	0			
1	0	0	1	1	0	0	1	0			
1	0	1	0	1	1	1	1	0			
1	1	0	1	0	1	0	1	1			
1	1	1	Х	Х	Х	Х	Х	Χ			

4. [AY2018/19 Semester 2 exam]

A sequential circuit goes through the following states, whose state values are shown in decimal:

The states are represented by 4-bit values *ABCD*. Implement the sequential circuit using a *D* flip-flop for *A*, *T* flip-flops for *B* and *C*, and a *JK* flip-flop for *D*.

- (a) Write out the simplified SOP expressions for all the flip-flop inputs.
- (b) Implement your circuit according to your simplified SOP expressions obtained in part (a). Complete the given state diagram, by indicating the next state for each of the five unused states.
- (c) Is your circuit self-correcting? Why?

Answers:

	Curren	t state	<u>)</u>								
A	В	С	D	DA=A ⁺	B^{+}	C ⁺	D^+	TB	TC	JD	KD
0	0	0	0	X(0)	X(0)	X(1)	X(0)	X(0)	X(1)	X(0)	X(0)
0	0	0	1	0	0	1	1	0	1	Χ	0
0	0	1	0	0	1	0	0	1	1	0	Χ
0	0	1	1	0	1	0	1	1	1	Χ	0
0	1	0	0	0	1	1	0	0	1	0	X
0	1	0	1	0	1	1	1	0	1	Χ	0
0	1	1	0	0	0	0	1	1	1	1	Χ
0	1	1	1	1	0	0	1	1	1	Χ	0
1	0	0	0	X(1)	X(0)	X(1)	X(0)	X(0)	X(1)	X(0)	X(0)
1	0	0	1	1	0	1	1	0	1	Χ	0
1	0	1	0	X(1)	X(1)	X(0)	X(0)	X(1)	X(1)	X(0)	X(0)
1	0	1	1	1	1	0	1	1	1	Χ	0
1	1	0	0	X(1)	X(1)	X(1)	X(0)	X(0)	X(1)	X(0)	X(0)
1	1	0	1	1	1	1	1	0	1	Χ	0
1	1	1	0	X(0)	X(0)	X(1)	X(1)	X(1)	X(0)	X(1)	X(1)
1	1	1	1	0	0	1	0	1	0	Χ	1

$$DA = A \cdot B' + A \cdot C' + A' \cdot B \cdot C \cdot D$$
 $TB = C$
 $TC = A' + B' + C'$
 $JD = B \cdot C$
 $KD = A \cdot B \cdot C$

The circuit is self-correcting as any unused state can transit to a used state after a finite number of cycles.