Квантовая информатика.

Выполнил:

Чечеткин И. А. САПР-1.1п

Оглавление:

- Введение
- 2 Кубиты
- Квантовые вентили
- Квантовые вычисления
- 5 Компьютер D-Wave

Введение

3

Квантовые биты

Состояние кубита в общем виде задается волновой функцией вида:

дается волновой функцией вида:
$$|\psi\rangle=\alpha\,|0\rangle+\beta\,|1\rangle\,,$$
 где $|\alpha|^2+|\beta|^2=1.$ 1 1 0 или 1 α (0)+ β (1)

Бит

Кубит

Расписав комплексные коэффициенты α и β , получаем представление кубита на сфере Блоха:

$$|\psi
angle = \cos rac{artheta}{2} \, |0
angle + e^{i arphi} \sin rac{artheta}{2} \, |1
angle \, .$$

При измерении кубит переходит в одно из состояний $|0\rangle$ или $|1\rangle$.

4

Квантовые логические элементы

Однокубитовые вентили

Квантовый процесс вычисления

Элементы на матрицах Паули: Остальные элементы:

• элемент
$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
;

• элемент
$$Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$
;

• элемент
$$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
.

элемент Адамара1 /1 1 \

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix};$$

элемент сдвига фазы/10\

$$\mathsf{P} = \begin{pmatrix} 1 & 0 \\ 0 & \exp(i\varphi) \end{pmatrix}.$$

E

Квантовые логические элементы

Однокубитовые вентили

Действие элемента Х

Действие элемента Н

Действие элемента Z

Действие элемента Р

Квантовые логические элементы

Двукубитовые вентили

Управляемое преобразование

$$\mathit{CNOT} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix},$$

$$CP = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & e^{iarphi} \end{pmatrix}.$$

7

Квантовые вычисления В двух словах

Квантовый компьютер состоит из квантовых регистров. Вектор вычислительного базиса регистра:

$$|x\rangle = |x_{n-1}, x_{n-2}, \dots, x_1, x_0\rangle$$
, где $x_i = \{0, 1\}$.

Каждому вектору можно сопоставить двоичное число:

$$x = x_{n-1}2^{n-1} + x_{n-2}2^{n-2} + \ldots + x_12 + x_0.$$

Произвольное состояние квантового регистра:

$$|\psi
angle = \sum_{x=0}^{n-1} a_x \, |x
angle \, ,$$
 где $\sum_x |a_x|^2 = 1.$

Таким образом, квантовый регистр может находиться в суперпозиционном состоянии: регистр из n кубитов может содержать 2^n чисел одновременно. Это позволяет выполнить вычисление сразу для всех чисел, записанных в регистр, за один прогон.

Квантовые алгоритмы

Алгоритм Гровера

Алгоритм Гровера решает задачу перебора, то есть решения уравнения f(x)=1, где f – логическая функция от n переменных. Классически данная задача требует прямого перебора всех $N=2^n$ переменных, данный алгоритм находит корень уравнения за $\pi\sqrt{N}/4$ обращений к функции f с использованием O(n) кубитов.

Квантовые алгоритмы

Алгоритм Шора

Алгоритм Шора — квантовый алгоритм разложения числа на простые множители, позволяющий разложить число M за время $O(\lg^3 M)$ с использованием $O(\lg M)$ кубитов. Значимость алгоритма заключается в том, что с его помощью становится возможным взлом криптографических систем с открытым ключом.

Квантовые алгоритмы

Алгоритм Дойча-Йожи

Задача Дойча-Йожи заключается в определении является ли функция двоичной переменной f(n) постоянной (принимает либо значение 0, либо 1 при любых аргументах) или сбалансированной (для половины области определения принимает значение 0, для другой половины 1). При этом заранее считается известным, что функция либо является константой, либо сбалансирована.

Компьютер D-Wave

На сегодняшний день существуют ограниченные квантовые компьютеры.

Больших успехов добилась компания D-Wave, создавшая в 2012 образец квантового компьютера на основе процессора из 512 кубит – D-Wave One.

D-Wave One решает задачи методом квантового отжига, поэтому прирост скорости решения наблюдается для некоторых специфичных задач: задач моделирования динамики сложных систем и задач перебора.

Спасибо за внимание!