Recherche dans les arbres de jeux

<u>Plan</u>

- Introduction
 - Généralités
 - > Formalisme et représentation
 - Recherche d'une stratégie gagnante
- Algorithmes de recherche du meilleur coup

Généralités

- Les jeux ont toujours intéressé les informaticiens
- □ La pratique des jeux est universelle Confrontation entre plusieurs personnes (compétitions)
 La victoire dans les jeux avec stratégie est censée démontrée une certaine intelligence
- Les jeux sont facilement formalisables en informatique
 - Monde clos
 - □ Règles simples

Type de jeux

type	déterministe	hasard
information		
complète	échecs, go, tic-tac-toe	backgammon, petits chevaux
partielle		poker, bridge, scrabble

Jeux les plus courants

- ☐ Jeux déterministes à information complète (le jeu de l'adversaire est connu)
 - □ le tic-tac-toe (morpion)
 - □ le Nim ou de Marienbad
 - ☐ Le puissance 4
 - les dames
 - les échecs
 - Le défi des années 70 00
 - □ le go
 - Le prochain grand défi
- Jeux faisant intervenir le hasard
 - ☐ Backgammon (dés)
 - ☐ Le poker (info. incomplète)
 - ☐ Le bridge (info. incomplète)

Nous considérerons dans la suite de ce cours uniquement les jeux déterministes, à information complète, avec un adversaire

Type de recherche dans les arbres de jeu

- Analyse exhaustive
 - calcul de l'ensemble des coups possibles
 - possible seulement dans des jeux dont le nombre d'états est restreint (ex. tictac-toe)
 - > Recherche d'une stratégie gagnante si elle existe
- Recherche informée
 - > Dans le cas du jeu d'échecs, le nombre de positions et d'opérations explose
 - Nécessité de guider la recherche par heuristique
- Recherche probabiliste
 - Dans le cas du poker, des informations probabilistes doivent être prises en compte
- Nous considérerons dans la suite de ce cours uniquement les jeux déterministes à information complète

Principe

- □ Dans les jeux à information complète :
 - ☐ On se trouve dans une situation où deux adversaires s'affrontent
 - Contraintes :
 - Impossible de connaître le coup de l'adversaire
 - > Temps d'action limité -> besoin d'approximation
 - On ne recherche en général pas une solution, mais un coup à jouer (le meilleur)
 - Principe du « look-ahead » :
 - On raisonne en développant à l'avance un certain nombre de coups et les différentes ripostes possibles de l'adversaire
 - On évalue les situations feuilles par une heuristique
 - On calcule par min-max le meilleur coup à jouer. La qualité du coup dépend de l'heuristique et de la profondeur du look-ahead (elle s'améliore si on augmente la profondeur).

=> Représentation par un graphe d'états

Recherche dans les arbres de jeu

Plan

- Introduction
 - Généralités
 - > Formalisme et représentation
 - Recherche d'une stratégie gagnante
- Algorithmes de recherche du meilleur coup

Formalisme

- Soit J1 et J2 deux joueurs, les règles du jeu permettent de définir un arbre de jeu :
 - La racine (profondeur o) représente la position de départ
 - Les nœuds de profondeur paire : situation où J1 doit jouer
 - Les nœuds de profondeur impaire : situation où J2 doit jouer
 - > Les arcs représentent les différents coups possibles
 - Les feuilles sont les positions gagnantes, perdantes ou bloquées

Lien avec les graphes d'états

- Le problème peut être représenté en terme d'opérateur de changement d'état :
 - La racine est l'état initial
 - Les opérateurs de changement d'états sont les coups légaux (alternance de J1 et J2)
 - Les états terminaux sont les situations gagnantes, perdantes ou bloquées
- Chaque chemin correspond à une partie

Attention aux symétries ...

Exercice « Grundy's game »

- « On dispose d'une pile de 7 pièces : chaque joueur doit diviser une des piles en deux piles inégales; le perdant ne peut plus jouer »
- ☐ Formaliser le problème (états, états terminaux)
- Faire l'arbre ET-OU du point de vue J1 puis du point de vue J2

Exercice « Grundy's game »

- « On dispose d'une pile de 7 pièces : chaque joueur doit diviser une des piles en deux piles inégales; le perdant ne peut plus jouer »
- ■Arbre de recherche :
 - ► État : liste de k chiffres ($k \le 7$) $(n_1, n_2, n_3, ..., n_k)$, avec $n_i \ge n_{i+1}$ le nombre de pièces dans chaque pile
 - > État terminal : lorsqu'il n'y a plus que des 1 ou des 2

« Grundy's game » : arbre de J1 (J1 commence + point de vue de J1)

Recherche dans les arbres de jeu

<u>Plan</u>

- Introduction
 - Généralités
 - Formalisme et représentation
 - > Recherche d'une stratégie gagnante
- Algorithmes de recherche du meilleur coup

« Grundy's game » : arbre de J1 (J1 commence + point de vue de J1)

Existe il un arbre de jeu gagnant pour J1 s'il commence?

« Grundy's game » : arbre de J1 (J2 commence)

Existe il un arbre de jeu gagnant pour J1 si J2 commence?

Recherche d'une stratégie gagnante

- Idée : déterminer s'il existe une suite de coups qui mène à la victoire quelque soit le jeu de l'adversaire
- Un arbre de jeu est gagnant pour J1 :
 - ➤ Si c'est une feuille victoire pour Jı
 - > Ou si la racine est un nœud ET et que tous les fils sont gagnants
 - > Ou si la racine est un nœud OU et un de ses fils est gagnant

=> Recherche d'une solution dans un arbre ET-OU

Recherche d'une stratégie gagnante (algorithme)

```
Fonction évaluer(racine R)? : existe (1 si existe, o sinon)
existe ← évaluer(R)

si FEUILLE(R) alors
si FEUILLE_GAGNANTE(R) alors existe ← 1
sinon existe ← o fsi
sinon si NŒUD_OU (R) alors existe ← max(évaluer(fils(R))
sinon si NŒUD_ET (R) alors existe ← min(évaluer(fils(R)))
fsi
```

- On peut extraire l'arbre ET-OU gagnant en conservant les pères des noeuds
- On veut mettre un coût sur les coups et chercher la « meilleure » solution (la plus rapide) : voir AO*

Limite de la recherche de stratégie gagnante

- Stratégie gagnante très limitée :
 - N'existe pas toujours pour les jeux complexes (heureusement !)
 - ➤ Elle existe peut-être, mais l'arbre de recherche est trop gros pour le savoir (rappel taille = b^p, b=nb branchements, p=profondeur)

□Exemple :

- Dames : 10⁴⁰ soit, si un nœud et traité en 1ns, > 10²² siècles pour développer l'arbre : voir dames anglaises !
- \triangleright Échecs : b =30, p = 100 environ 10¹²⁰ -> stratégie gagnante ?

=> On s'intéresse à la **recherche du meilleur coup** à jouer à un instant donné

Recherche dans les arbres de jeu

<u>Plan</u>

- Introduction
- ☐ Algorithmes de recherche du meilleur coup
 - Principe
 - > Minimax
 - > Alpha-beta
 - > SSS*

Principe de la recherche du meilleur coup

- On ne recherche pas la « solution » (partie) optimale (voir AO*, voir reines anglaises)
- On s'intéresse à la détermination du meilleur coup à jouer à chaque pas
 - Seule une sous-partie de l'arbre de jeu est développée à une certaine profondeur pour déterminer le meilleur coup
 - > Après riposte de l'adversaire il y a réévaluation de la stratégie
 - La qualité du choix dépend de la fonction d'évaluation des sous-arbres non développés

Quel est le meilleur coup à jouer pour •?

Fonctions d'évaluation

- □Choix heuristique du coup à jouer
 - Développement à un seul niveau
 - > Si un coup c est gagnant, le choisir
 - > Si un coup c est perdant, le supprimer
 - > Pou r les coups restants, choisir le plus avantageux (ou le plus handicapant pour l'adversaire)
 - > Technique du « looking ahead »
 - On développe les nœuds jusqu'à une profondeur p_{max} (fonction du temps de calcul par exemple) et on remonte l'évaluation jusqu'au nœud courant
 - Principe du Minimax

Recherche dans les arbres de jeu

<u>Plan</u>

- Introduction
- ☐ Algorithmes de recherche du meilleur coup
 - Principe
 - > Minimax
 - > Alpha-beta
 - > SSS*

Minimax

- Hypothèse de base
 - La fonction d'évaluation est toujours du point de vue de J1
 - Le coup le plus intéressant est celui qui a la valeur maximale
 - > J2 fait toujours les meilleurs choix pour lui (les plus contraignants pour J1)
- Évaluation
 - La racine est la situation du jeu au moment où J1 doit jouer
 - ➤ On développe l'arbre jusqu'à une profondeur p_{max} (sauf si..)
 - Les feuilles sont évaluées et leur valeur est (rétro)propagée jusqu'à la racine
 - > Au nœud OU (choix de J1) on associe le maximum des valeurs
 - > Au nœud ET (choix de J2) on associe le minimum des valeurs (choix le plus contraignant pour J1)

Algorithme du Minimax

```
\begin{split} & \text{alpha} \leftarrow \text{maximin } (R) \\ & \underline{si} \; \text{FEUILLE}(R) \; \underline{alors} \; \text{alpha} \leftarrow h(R) \\ & \underline{sinon} \; \text{alpha} \leftarrow \text{max}(\text{Minimax}(\text{succ}_{_1}(R)), \; \text{Minimax}(\text{succ}_{_2}(R)), \; ..., \\ & \quad \text{Minimax}(\text{succ}_{_n}(R))) \\ & \underline{si} \end{split} & \text{beta} \leftarrow \text{Minimax } (R) \\ & \underline{si} \; \text{FEUILLE}(R) \; \underline{alors} \; \text{beta} \leftarrow h(R) \\ & \underline{sinon} \; \text{beta} \leftarrow \text{min } (\text{maximin } (\text{succ}_{_1}(R)), \; \text{maximin } (\text{succ}_{_2}(R)), \; ..., \; \text{maximin } (\text{succ}_{_n}(R))) \\ & \underline{fsi} \end{split}
```

Remarques

- La notion de feuille est ici heuristique. Les feuilles ne sont pas obligatoirement toutes à la même profondeur (succès, échecs mais aussi attente d'une situation stable)
- L'heuristique ne sert pas ici à guider le développement de l'arbre.
 - L'arbre est développé complètement jusqu'aux feuilles
 - L'heuristique sert à valuer les feuilles

- □ Soit la fonction d'évaluation h(F)
 - h(F) = nb lignes + nb colonnes + diagonales ouvertes pour J1 – (nb lignes + nb colonnes + diagonales ouvertes pour J2)
- On considère une profondeur de développement de 2

Propriétés de Minimax

- S'arrête toujours si l'arbre est fini
- Si b = nombre de coups possibles et p la profondeur moyenne des feuilles, minimax a une complexité en temps O(b^p) et en espace O(b*p)
- Problème d'horizon
 - Le meilleur coup a jouer à une profondeur p peut cacher un coup plus intéressant par la suite

Recherche dans les arbres de jeu

<u>Plan</u>

- Introduction
- ☐ Algorithmes de recherche du meilleur coup
 - Principe
 - > Minimax
 - > Alpha-beta
 - > SSS*

Alpha - Beta

- Le Minimax fait une énumération explicite de l'ensemble des coups possibles jusqu'à une certaine profondeur
- L'apha-beta permet de ne développer que les noeuds intéressants à l'aide de coupes
- Deux types de coupes peuvent être envisagés
 - Coupe beta sur les nœuds OU
 - Coupe alpha sur les nœuds ET

Alpha-beta - exemple de coupe alpha

Alpha-beta - exemple de coupe beta

Algorithme de l'alpha-beta

```
maximin (R,alpha,beta) // R nœud max
si FEUILLE(R) alors return h(R)
sinon
    eval = -\infty
    pour tout successeur de R faire
       eval \leftarrow max(eval,
             minimax(succ(R), eval, beta))
        si eval > beta alors
         print « beta coupure »
         return eval
       fsi
   fpour
   return eval
fsi
```

```
minimax (R,alpha,beta) // R nœud min
si FEUILLE(R) alors return h(R)
sinon
      eval = +\infty
      pour tout successeur de R faire
          eval \leftarrow min(eval,
                       maximin(succ(R), alpha,
                             eval))
          si eval ≤ alpha alors
                   print« alpha coupure »
                   return eval
          fsi
    fpour
     return eval
fsi
```

Alpha-beta – exercice

Alpha-beta – exercice

Alpha-beta – exercice (droite-gauche)

Remarques sur l'alpha-beta

- L'ordre dans lequel on visite les nœuds fils est important
 - Si on trouve rapidement une bonne valeur on élague plus de nœuds
 - ➤ Idée : Utiliser la fonction d'évaluation pour établir l'ordre de visite des nœuds fils
- Comment décider de la profondeur ?
 - > Utiliser le principe de l'iterative deepening
 - On utilise le résultat obtenu pour ordonner les nœuds à l'itération suivante
 - > Algorithme de type anytime (contrôle du temps passé pour chaque coup)