Total No. of Printed Pages:2

F.E. Semester-I (Revised Course 2016-17) EXAMINATION JULY 2021 Engineering Mathematics -I

[Duration: Two Hours] [Total Marks: 60] 1) Answer THREE FULL QUESTIONS with ONE QUESTION FROM EACH **Instructions:** 2) Assume missing data, if any. PART-A a) Evaluate $\int_0^1 x (\log x)^6 dx$. Q.1 (5) (4) b) Prove that $erf(\infty) = 1$ (5) c) Use DeMoivre's theorem to evaluate all the values of $i^{\frac{3}{4}}$ d) Evaluate $\int_0^2 (4-x^2)^{3/2} dx$ using Beta function. (6)a) Test the convergence of the following series Q.2 (12)(i) $\Sigma \frac{3^{n} n! n!}{(2n)!}$ (ii) $\frac{2^{2}}{3} + \frac{3^{2}}{3^{2}} + \frac{4^{2}}{3^{3}} + \frac{5^{2}}{3^{4}} + \cdots$ (iii) $\frac{1}{1.2.3} - \frac{3}{2.3.4} + \frac{5}{2.4.5} - \cdots$ b) Prove that $f(z) = \sin z$ is analytic. (4) c) Determine the value of P so that $f(z) = \frac{1}{2} \log(x^2 + y^2) + i \tan^{-1} \frac{py}{x}$ is analytic. (4) a) If $\log[\log(x+iy)] = p + iq$ then prove that $y = x \tan[\tan q \log \sqrt{x^2 + y^2}]$ Q.3 (6) (6) b) Prove $\cosh^{-1} \sqrt{1 + x^2} = \sinh^{-1} x$ (8) c) Find the radius and interval of convergence for the power series $\sum_{n=1}^{\infty} \frac{3^n x^n}{\sqrt{n}}$ PART - B a) If $u = \tan^{-1} \left(\frac{x^5 + y^5}{x - y} \right)$ then evaluate $x^2 u_{xx} + 2xy u_{xy} + y^2 u_{yy}$ Q.4 (7)

b) If
$$y = a\cos(\log x) + b\sin(\log x)$$
 then prove that $x^2y_{n+2}(2n+1)xy_{n+1} + (n^2+1)y_n = 0$ (6)

- c) Use Taylor's series expansion to expand the polynomial $x^5 + 2x^4 x^2 + x + 1$ in powers of (x 1). (7)
- Q.5 a) Evaluate (12)
 - (i) $\lim_{x\to 1} \frac{1+\log x-x}{\frac{1-2x+x^2}{e^x-e^{-x}-2x}}$ (ii) $\lim_{x\to 0} \frac{e^{x}-e^{-x}-2x}{x^2\sin x}$
 - (iii) $\lim_{x\to 0} (\cos x)^{1/x^2}$
 - b) Form a partial differential equation by eliminating a and b from $z = (x^2 + a)(y^2 + b)$ (4)
 - c) Form a partial differential equation by eliminating the arbitrary function from $f(x^2 + y^2 + z^2, x + y + z) = 0$ (4)
- Q.6 a) If z = f(u, v) where u = lx + my, v = ly mx; l and m eing constants, then prove that $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = (l^2 + m^2)(\frac{\partial^2 z}{\partial u^2} + \frac{\partial^2 z}{\partial v})$ (8)
 - b) Solve the partial differential equation (z y)p + (x z)q = (y x) (6)
 - c) Find and classify the critical points of $f(x, y) = x^3 + y^3 63(x + y) + 12xy$ (6)

PART-C

- Q.7 a) Evaluate $\int_0^{\pi/2} \frac{d\theta}{\sqrt{\sin \theta}} \cdot \int_0^{\pi/2} \sqrt{\sin \theta} d\theta$ (6)
 - b) Use Lagrange's method to find the minimum value of $f(x, y, z) = x^2 + y^2 + z^2$ subject to the condition x + y + z = 1. (8)
 - c) Use Taylor's Series expansion to find the approximate value of tan⁻¹(1.003) (6)
- Q.8 (a) Prove $\sin\left\{ilog\left(\frac{a-ib}{a+ib}\right)\right\} = \frac{2ab}{a^2+b^2}$ (6)
 - (b) Define absolute convergence and conditional convergence. Check if the following series is absolutely or conditionally convergent $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(2n-1)}$
 - (c) Use Taylor's series to find approximate value of $\sqrt{25.15}$