4.09.2023

Теорема 1 (Необходимое условие дифференцируемости). Если $f: \mathbb{R}^n \supseteq O \to \mathbb{R}^m$ дифференцируема в точке $a, mo \ \forall u \in \mathbb{R}^n \ \exists \frac{\partial f}{\partial u}(a)$ (далее показано, что это эквивалентно для частных производных только по x_i).

Теорема 3 (Дифференцирование результата арифметических действий). Пусть $O \subseteq \mathbb{R}^n$, $a \in O$; $f, g : O \to \mathbb{R}^m$, $\lambda : O \to R$; f, g, λ дифференцируемы в точке a; $A, B \in \mathbb{R}$.

Тогда

- 1. Af + Bg дифференцируемо в точке a и $d_a(Af + Bg) = Ad_af + Bd_ag$
- 2. λf дифференцируемо в точке a и $d_a(\lambda f) = f(a) \cdot d_a \lambda + \lambda(a) \cdot d_a f$ Или на языке матриц: $(\lambda f)' = f(a) \cdot \lambda'(a) + \lambda(a) \cdot f'(a)$
- 3. $\langle f, g \rangle$ дифференцируемо в точке a и $d_a \langle f, g \rangle = (g(a))^T d_a f + (f(a))^T d_a g$ $(\langle f, g \rangle)' = (g(a))^T \cdot f'(a) + (f(a))^T \cdot g'(a)$
- 4. Если m=1 и $g(a) \neq 0$, то f/g дифференцируемо в точке a и $d_a(f/g) = \frac{g(a)d_af f(a)d_ag}{g^2(a)}$

если g дифференцируема в точке a и f дифференцируема в точке g(a), то $f \circ g$ дифференцируема в точке a и $d_a(f \circ g) = d_{g(a)}f \cdot d_ag$.

Или, если рассматривать матрицу Якоби, $(f \circ g)'(a) = f'(g(a)) \cdot g'(a)$

Теорема 4 (Теорема Лагранжа для отображений). Пусть $f: \mathbb{R}^n \supseteq O(om\kappa pumoe) \to \mathbb{R}^m$, f дифференцируемо в O; $a,b \in O$, $\forall t \in (0,1)$ $a+t(b-a) \in O$.

Тогда
$$\exists \theta \in (0,1) : ||f(b) - f(a)|| \le ||f'(a + \theta(b-a))|| \cdot ||b - a||$$

Следствие 1. Если $\forall \theta \in (0,1) ||f'(a+\theta(b-a))|| \leq M \in \mathbb{R}, mo ||f(b)-f(a)|| \leq M||(b-a)||$

Следствие 2. Если m=1 и $\forall u \in O$ $\forall i=1..n$ $||\frac{\partial f}{\partial x_i}(u)|| \leq M$, mo $||f(b)-f(a)|| \leq M\sqrt{n}||(b-a)||$

Теорема 5 (Достаточное условие дифференцируемости). Пусть $f: \mathbb{R}^n \supseteq O(om\kappa pumoe) \to \mathbb{R}^m, \ a \in O;$ $\frac{\partial f}{\partial x_i} \ \forall i \in 1...n \ 1)$ определен в некоторой окрестности точки $a \ 2$) непрерывен в точке a Тогда f дифференцируема в точке a.

Замечание. f дифференцируема в точке $a \Leftrightarrow f(a+h) - f(a) - f'(a) \cdot h = o(h)$ при $h \to 0$

Определение 1. Пусть $f: \mathbb{R}^n \supseteq O(omkpыmoe) \to \mathbb{R}$, $g(u) = \frac{\partial f}{\partial x_i}(u)$ для некоторого i определена в точке a $u \exists \frac{\partial g}{\partial x_i}(a)$ для некоторого j.

Torda
$$f_{x_i x_j} := \frac{\partial^2 f}{\partial x_j \partial x_i}(a) := \frac{\partial g}{\partial x_i}(a)$$

Определение 2. $\frac{\partial^2 f}{\partial x^2} \coloneqq \frac{\partial^2 f}{\partial x_i \partial x_i}$ - чистая частная производная.

Определение 3. $f_{x_ix_j}$, где $i \neq j$, - смешанная производная.

Теорема 6. Пусть $f: \mathbb{R}^n \supseteq O(omкpыmoe) \to \mathbb{R}, \ i \neq j; \ \frac{\partial^2 f}{\partial x_j \partial x_i} \ u \ \frac{\partial^2 f}{\partial x_i \partial x_j} \ onpedenenu \ u непрерывны в окрестности точка <math>a$.

ности точка а. Тогда $\frac{\partial^2 f}{\partial x_j \partial x_i}(a) = \frac{\partial^2 f}{\partial x_i \partial x_j}(a)$

Определение 4. Если $f:\mathbb{R}^n\supseteq O \to \mathbb{R},\ h\in\mathbb{R}^n,\ mo\ d_a^2f(h)\coloneqq d(d_af(h))(h)$

11.09.2023

Определение 1. $r \in \mathbb{Z}_+$, O-omкpытое в \mathbb{R}^n Тогда $C^r(O) \coloneqq \{f \colon O \to R : \forall i_1 \dots i_r \ \frac{\partial^r f}{\partial x_{i_r} \dots \partial x_{i_1}} \in C(O)\}$

Определение 2. $C^{\infty}(O) \coloneqq \bigcap_{r \in \mathbb{Z}_{+}} C^{r}(O)$

Теорема 1 (О линейном пространстве $C^r(O)$). $C^r(O)$ - линейное пространство. Замкнуто относительно произведения: $f,g \in C^r: f \cdot g \in C^r$

Определение 3. $C^r(O \to \mathbb{R}^m) \coloneqq \{f: f_1, \dots f_m \in C^r(O)\}$

Теорема 2 (Композиция $C^r(O)$). Пусть $\varphi \in C^r(O \to \tilde{O}), f \in C^r(\tilde{O})$. Тогда $f \circ \varphi \in C^r(O)$

Теорема 3 (О равенстве смешанных производных в классе C^r). Если $f \in C^r(O)$, $O- открытое в <math>\mathbb{R}^n$, $r \in \mathbb{Z}_+$; $(i_1,i_2,\ldots i_l) \in 2^{\{1,\ldots,r\}}$, $l \leq r$, $(j_1,\ldots,j_l) - nepecmanoвка(i_1,\ldots i_l)$ $Torda \frac{\partial^l f}{\partial x_{i_l}\ldots\partial x_{i_1}} = \frac{\partial^l f}{\partial x_{j_l}\ldots\partial x_{j_1}}$

Определение 4. Mультиинdекc - элемент \mathbb{Z}_{+}^{n}

$$|j| = j_1 + j_2 + \dots + j_n
j! = j_1! \cdot j_2! \cdot \dots \cdot j_n!
h \in \mathbb{R}^n, h^j = h_1^{j_1} \cdot \dots \cdot h_n^{j_n}
f(j)(a) = \frac{\partial^{|j|} f}{\partial x_n^{j_1} \dots \partial x_1^{j_1}}(a)$$

Лемма 1. Пусть $f \in C^r(O)$, $O-omкрытое в <math>\mathbb{R}^n$, $[a,a+h] \subset O$, g(t)=f(a+th). Тогда $\forall l=0,\ldots,r: g^{(l)}(t)=\sum_{j\in\mathbb{Z}_+{}^n,|j|=l}\frac{l!}{j!}f^{(j)}(a+th)\cdot h^j$

Теорема 4 (Глобальная формула Тейлора(-Лагранжа) для функции нескольких переменных). *Если* $f \in C^{r+1}(O)$, $O-om\kappa pumoe\ g\ \mathbb{R}^n$, $r \in \mathbb{Z}_+$; $[a,a+h] \subset O$.

 $C^{r+1}(O), \ O-om\kappa pumoe \ e \ \mathbb{R}^n, \ r \in \mathbb{Z}_+; \ [a,a+h] \subset O.$ $Torda \ \exists \theta \in (0,1): f(a+h) = \sum_{j \in \mathbb{Z}_+^n, |j| \le r} \frac{f^{(j)}(a)}{j!} h^j + \sum_{j \in \mathbb{Z}_+^n, |j| = r+1} \frac{f^{(j)}(a+\theta h)}{j!} h^j$

Следствие 1 (Формула Тейлора-Пеано, локальный вариант формулы Тейлора). *Пусть* $f \in C^r(O)$, O- *открытое* $g \mathbb{R}^n$, $a \in O$.

Тогда $f(a+h) = \sum_{j \in \mathbb{Z}_+^n, |j| \le r} \frac{f^{(j)}(a)}{j!} h^j + o(||h||^j) \ npu \ h \to 0$

Следствие 2 (Теорема Лагранжа о среднем для скалярно-значных отображений). *Пусть* $f \in C^1(O)$, $O - om\kappa pumoe\ b \mathbb{R}^n$; $a, h : a + th \in O \forall t \in [0, 1]$.

Tогда $f(a+h)-f(a)=\sum_{i=1}^n \frac{\partial f}{\partial x_i}(a+\theta h)\cdot h_i=\langle \nabla_{a+\theta h}f,h\rangle$ (частный случай Тейлора для r=0).

Следствие 3 (Полиномиальная формула). $(x_1+\cdots+x_n)^r=\sum_{j\in\mathbb{Z}_+{}^n,|j|=r}\frac{r!}{j!}(x_1,\ldots,x_n)^j,\; npu\;r\in\mathbb{Z}_+$

Замечание. $d_a^0 f = f(a)$ $d_a^1 f = d_a f$ $d_a^1 f(h) = d_a f(h)$ $d_a^{l+1} f(h) = d_a (d_a^l f(h))(h)$

Лемма 2. Пусть $f \in C^r(O)$, $O-om\kappa pытое в <math>\mathbb{R}^n$; $a,h:a+th \in O \ \forall t \in [0,1]$. Тогда $\forall l=0,\ldots,r:d_{a+th}^lf(h)=g^{(l)}(t)$, где g(t)=f(a+th)

Теорема 5 (Формула Тейлора в дифференциалах в условиях теоремы Тейлора-Лагранжа). $f(a+h) = \sum_{l=0}^{r} \frac{1}{l!} d_a^l f(h) + \frac{d_a^{l+1}}{(l+1)!} (h)$

Определение 5. $f: E \to \mathbb{R}, E \subseteq \mathbb{R}^n, a \in E$.

а называется точкой максимума для f, если существует окрестность $U(a): f(x) \leq f(a) \ \forall x \in U(a) \cap E$

Теорема 6 (Необходимое условие экстремума). $f: E \to \mathbb{R}, \ a \in IntE, \ a$ - точка экстремума $f, \ f$ дифференцируема в точке $a \Rightarrow d_a f = 0 \Leftrightarrow \nabla_a f = 0 \Leftrightarrow \forall i \in 1, \ldots, n: \frac{\partial f}{\partial x_i}(a) = 0$

Теорема 7. a - точка максимума $f, \ \varphi$ непрерывна в точке $\alpha, \ \varphi(\alpha) = a.$

Tогда lpha - mочка максимума $f\circ arphi$

Замечание. $\sum_{1 \leq i,j \leq n} a_{i,j} h_i h_j$ - $\kappa ea \partial pamuчная форма.$

 $d_a^2f(h)$ - квадратичная форма переменных h_1,\ldots,h_n

 $d_a^{\bar{l}}f(h)$ - однородная функция степени $l\colon d_a^lf(Ch)=C^ld_a^lf(h).$

 Φ орма Q(h) бывает положительно определенной, отрицательно определенной, неопределенной (бывает и положительной, и отрицательной).

Теорема 8 (Достаточное условие экстремума). $f: \mathbb{R}^n \supseteq E \to \mathbb{R}, \ a \in IntE$, в точке а выполняется необходимое условие экстремума $u \; \exists d_a^2 f$.

 $Q(h) := d_a^2 f(h)$. Тогда, если Q > 0, то a - точка минимума, если Q < 0, то a - точка максимума, если Q неопределенная, то a - не точка экстремума.

25.09.2023

Билет 11 (Теорема о непрерывности функции, заданной неявно). Пусть $X \subseteq \mathbb{R}^n$, $I = [a,b] \subseteq R$, $X \times I \subseteq O$; $F:O \to R$ непрерывно $u \ \forall x \in X: F(x,a) \cdot F(x,b) < 0, \ F(x,y) = \varphi_x(y)$ строго монотонна на [a,b]. Тогда $\exists ! f: x \mapsto y, f: X \to I$ такая, что

- 1. $\forall x \in X : F(x, f(x)) = 0$
- 2. $e X \times I F(x,y) = 0 \Leftrightarrow y = f(x)$
- 3. $f \in C(X)$

Билет 12 (Теорема о гладкости функции, заданной неявно). Пусть $X \subseteq \mathbb{R}^n$, $I = [a,b] \subseteq R$, $X \times I \subseteq O$; $F: O \to R$, $F \in C^1(O)$; $(x*,y*) - pewenue \ F(x,y) = 0 \ u \ \frac{\partial F}{\partial y}(x*,y*) \neq 0$. Тогда \exists окрестность $U_{x*} \subseteq \mathbb{R}^n$, окрестность V_{y*} $u \ f: U_{x*} \to V_{y*}(x \mapsto y)$ такие что:

- 1. $e U_{x*} \times V_{y*} F(x,y) = 0 \Leftrightarrow y = f(x)$
- 2. $f \in C^1(U_{x*})$
- 3. $f'_{x_i}(x) = -\frac{F'_{x_i}}{F'_y}(x, y)$

Билет 13 (Теорема об открытом отображении в случае равенства размерностей образов и прообразов). $\Pi y cm b \Phi : \mathbb{R}^n \supseteq O \to \mathbb{R}^n, \Phi'$ обратима всюду в O.

Tогда Φ - открытое отображение (то есть $\forall U$ открытого в O $\Phi(O)$ открыто).

Билет 13 (Лемма об оценке снизу приращения отображения с обратимым дифференциалом). *Пусть* $F: \mathbb{R}^n \supseteq O \to \mathbb{R}^n, F$ дифференцируема в а и F'(a) обратима.

Тогда $\exists \delta > 0, c > 0 : \forall x \in U_{\delta}(a) ||F(x) - F(a)|| \ge c||x - a||.$

Билет 14 (Теорема об открытом отображении в общем случае). Пусть $\Phi : \mathbb{R}^n \supseteq O \to \mathbb{R}^m$, $m \le n$, $rang\Phi'$ максимален всюду в $O \ (= m)$.

Tогда Φ - omкрытое omoбражение.

Билет 25. *Поточечная и равномерная еходимость функциональных последовательностей и рядов. Элементарны* свойства равномерной сходимости

Билет 25 (Характеристика равномерной сходимости посредством чебышевской нормы). $f: X \to \mathbb{R}$ (или \mathbb{C}), $||f|| = \sup_{x \in X} |f(x)|$. Если f ограничена на X, то $||f|| < +\infty$. При $t \ge 0$ $||tf|| = \sup_{x \in X} |t||f(x)|$. $\forall x \in X|f(x) + g(x)| \le ||f(x)| + ||g(x)| \le ||f|| + ||g|| \Rightarrow ||f + g|| = \sup_{x \in X} |f(x) + g(x)| \le ||f|| + ||g||$.

Tаким образом, $||\cdot||$ является нормой на совокупности функций на X.

Пусть $f_k, f: E \to \mathbb{C}$. Тогда $f_k \rightrightarrows f \Leftrightarrow ||f_k - f|| \to 0$ при $k \to +\infty$.

Билет 25 (Критерий Коши равномерной сходимости для последовательностей). Пусть $f_k, f: E \to \mathbb{C}$. Тогда $f_k \rightrightarrows f$ на $E \Leftrightarrow \forall \varepsilon > 0 \; \exists N = N(\varepsilon) : \forall n, m \geq N \; \forall x \in E \; |f_n(x) - f_m(x)| < \varepsilon$.

Билет 25 (Критерий Коши равномерной сходимости для рядов). Пусть $f_k: E \to \mathbb{C}$. Тогда $\sum_{k=1}^{\infty} f_k(x)$ сходится равномерно на $E \Leftrightarrow \forall \varepsilon > 0 \; \exists N: \forall n \geq N \; \forall p \in \mathbb{Z}_+ \; \forall x \in E \; |\Sigma_{k=n}^{n+p} f_k(x)| < \varepsilon$.

Билет 25 (Необходимое условие равномерной сходимости). Следствие из критерия. $\Sigma_{k=1}^{\infty} f_k(x)$ сходится равномерно на $E \Rightarrow f_k(x) \Rightarrow 0$ на E.

Билет 26 (Равномерная сходимость при действиях над множествами. Признак Вейерштрасса равномерной сходимости ряда). *Пусть* $f_n: E \to \mathbb{C}$.

Тогда $\Sigma_{n=1}^{\infty}||f_n||_{\mathfrak{q}}$ сходится $\Rightarrow \Sigma_{n=1}^{\infty}f_n(x)$ сходится равномерно на E.

Билет 27 (Признак Дирихле равномерной сходимости рядов). Пусть $f_n: E \to \mathbb{C}, \ g_n: E \to \mathbb{R}$. Если

- 1. $\Sigma_{k=1}^{\infty} f_k(x)$ относительно $x \in E$ равномерно ограничен на E ($\exists C : \forall n \in N \ \forall x \in E \ |\Sigma_{k=1}^{\infty} f_k(x)| \leq C$)
- 2. $\forall x \in E \ g_n(x)$ монотонная
- $3. \; g_n
 ightrightarrows 0 \;$ на E

Тогда $\sum_{n=1}^{\infty} f_n(x)g_n(x)$ сходится равномерно на E.

Билет 27 (Признак Абеля равномерной сходимости рядов). Пусть $f_n: E \to \mathbb{C}, \ g_n: E \to \mathbb{R}.$ Если

- 1. $\Sigma_{n=1}^{\infty}f_{n}(x)$ сходится равномерно на E
- 2. $\forall x \in E \ g_n(x)$ монотонная
- 3. $g_n(x)$ равномерно по x ограничено на E.

Тогда $\sum_{n=1}^{\infty} f_n(x)g_n(x)$ сходится равномерно на E.

Билет 27 ((с леммой) (взято у Кости Баца)). *Если* $b_k(x)$ монотонно зависит от k при любом x, то $|\sum_{k=n}^m a_k(x)b_k(x)| \leqslant 4 \cdot \max_{k=n:m} |A_k(x)| \cdot \max\{|b_n(x)|, |b_m(x)|\}.$

2.10.2023

Билет 15 (Теорема о дифференцируемости обратного отображения). Пусть $E \subseteq \mathbb{R}^n$, $a \in IntE$, $\Phi : E \to \mathbb{R}^n$, $\Phi(a) = b \in Int\Phi(E)$, Φ дифференцируема в a, $\Phi'(a)$ обратима $(det\Phi'(a) \neq 0)$. Тогда Φ^{-1} дифференцируема в b и $(\Phi^{-1})'(b) = (\Phi'(a))^{-1}$

Билет 16 (Теорема о гладкости обратного отображения (достаточное условие диффеоморфности)). O, \tilde{O} открытые, $\Phi: O \to \tilde{O}$ - диффеоморфизм на $C^r \stackrel{def}{\Longrightarrow} \Phi$ обратима и $\Phi \in C^r(O \to \tilde{O}), \ \Phi^{-1} \in C^r(\tilde{O} \to O).$ Если O - открытое, $O \subseteq \mathbb{R}^n, \ \Phi \in C^r(O \to \mathbb{R}^n), \ \Phi$ обратимо (как отображение на свой образ) и $\det \Phi'(x) \neq 0$

Тогда $\Phi^{-1} \in C^r(\Phi(O) \to O) \ (\forall x \in O(\Phi^{-1})(\Phi(x)) = (\Phi'(x))^{-1})$

Билет 17 (Теорема о локальной обратимости регулярного отображения). $\Phi: \mathbb{R}^n \supseteq O \to \mathbb{R}^n$, O открытое; Φ регулярное $\stackrel{def}{\Longrightarrow} \Phi \in C^1(O \to \mathbb{R}^n)$, $rank\Phi'(x)$ максимальной в каждой точке O.

Пусть $\mathbb{R}^n \supseteq O$ открытое, $\Phi \in C^r(O \to \mathbb{R}^n)$, Φ регулярно в O.

Тогда $\forall a \in O$ \exists окрестность $U_a : \Phi|_{U_a}$ - диффеоморфизм класса C^r , в частности обратимо.

Билет 18 (Теорема о неявном отображении). Пусть $m, n, r \in \mathbb{N}$, $\mathbb{R}^{n+m} \supseteq O$ открытое, $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$, $x^0 \in \mathbb{R}^n$, $y^0 \in \mathbb{R}^m$, $F \in C^r(O \to \mathbb{R}^m)$ и F' обратима.

Тогда \exists окрестности U_{x^0}, U_{y^0} и $f: U_{x^0} \to U_{y^0}$ такие, что:

- 1. $F(x,y) = 0 \Leftrightarrow y = f(x) \ \text{6} \ U_{x^0} \times U_{y^0}$
- 2. $f \in C^r(U_{x^0} \to U_{y^0})$
- 3. $f'(x) = -(F'_y(x, f(x)))^{-1} \cdot F'_x(x, f(x))$

Билет 19 (Теорема об открытом отображении в общем случае). Пусть $\Phi : \mathbb{R}^n \supseteq O \to \mathbb{R}^m$, $m \le n$, $rang\Phi'$ максимален всюду в $O \ (= m)$.

Тогда Φ - открытое отображение.