Nearest Neighbor Classifiers

CS434

When classifying an email to be spam or non-spam, one possible strategy is to look at existing emails that are similar to the email in question, and see if they are spams or not – this is the philosophy behind what we call "nearest neighbor classifiers".

Nearest Neighbor Classifier

- Store all training examples $S = \{(x_i, y_i): i = 1, ... n\}$
- Given a new example x to be classified, search for the training example (x_i, y_i) whose x_i is **most similar** (or **closest in distance**) to x, and predict y_i

Similarity/Distance

- How do we measure the similarity or distance between two examples?
- The most commonly used measure is Euclidean distance (straight line distance)

$$x = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix} \qquad x_i = \begin{bmatrix} x_{i1} \\ \vdots \\ x_{im} \end{bmatrix} \qquad = \underbrace{\begin{cases} x_{i1} \\ \vdots \\ x_{im} \end{cases}}$$

$$D(x, x_i) = ||x - x_i||$$

$$= \sqrt{(x - x_i)^T (x - x_i)}$$

$$= \underbrace{\begin{cases} \sum_{j=1,...,m} (x_j - x_{ij})^2 \end{cases}}$$

- Similarity can be defined as a non-increasing function of the distance
 - E.g., $S(x, x_i) = \exp(-\alpha D(x, x_i))$, where α is a parameter to control how close two things need to be for them to be considered similar

Decision Boundaries: The Voronoi Diagram

- Given a set of points, a Voronoi diagram describes the areas that are nearest to any given point.
- These areas can be viewed as zones of control
- Each zone is controlled by one of the points

Voroni diagram

Applet:

http://www.cs.cornell.edu/Info/People/chew/Delaunay.html

Decision Boundaries: Subset of the Voronoi Diagram

- Each example controls its own neighborhood
- Create the voroni diagram
- Decision boundary are formed by only retaining these line segments separating different classes.
- The more training examples we have stored, the more complex the decision boundaries can become

Decision Boundaries

With large number of examples and noise in the labels, the decision boundary can become nasty!

It can be bad some times – note the islands in this figure, they are formed because of noisy examples.

If the nearest neighbor happens to be a noisy point, the prediction will be incorrect!

How to deal with this issue?

K-Nearest Neighbor

Example:

Find the *k*-nearest neighbors and have them vote. By taking more than one neighbor, the impact of outliers can be reduced.

Practical note: It is typical to use an odd number for k to avoid ties

Impact of k for knn

Figures from Hastie, Tibshirani and Friedman (Elements of Statistical Learning)

Different k values give different results:

Larger k produces smoother boundaries, why?

• The impact of class label noises canceled out by one another But when k is too large, what will happen?

K-Nearest Neighbor

What if we set k=8 (or 7)?

- We will always predict green because regardless of the location of the point, the k-nearest neighbors will contain more green points than red, simply because there are more greens than reds
- Overly large k leads to overly simplified decision boundary

Question: how to choose k?

- Can we choose k to minimize the mistakes that we make on training examples (training error)?
- Let's first define training error
 - Given a training set S, learn a classifier h
 - for every example (x_i, y_i) in S
 - If $h(\mathbf{x}_i) \neq y_i$ $\varepsilon_{tr} = \varepsilon_{tr} + 1$

- What is training error of 1-nearest neighbor?
 - $\varepsilon_{tr} = 0$
 - Because for any training example, its nearest neighbor in
 S is always itself

We cannot use training error to select k because it will always select k=1

Continue: how to choose k?

- Can we choose k to minimize the mistakes that we make on a set of separate test examples (*test error*)?
- Let's first define test error
 - Given a training set S and a separate set T, learn a classifier h
 on S (without looking at T)
 - for every example (x_i, y_i) in **T**
 - If $h(x_i) \neq y_i$ $\varepsilon_{te} = \varepsilon_{te} + 1$

• How do ε_{tr} and ε_{te} change as we change the value of k?

For the Previous Example(Slide 10)

A General Problem: Model Selection

- Choosing k for k-nn is just one of the many model selection problems we face in machine learning
- Model selection is about choosing among different models
 - linear regression vs. quadratic regression
 - choosing k-nn over linear classifier
 - Choosing one set of features vs. another
 - heavily studied in machine learning, crucial importance in practice
- If we use training error to select models, we will always choose more complex ones

Overfitting

- Overfitting can be interpreted as:
 - Fitting to the particularities of the data
 - E.g. we want to learn the gender distribution of the machine learning class
 - We observe from my training set (e.g., 2010's class), that all students are male
 - Conclude that all machine learning students are male
 - Fitting too many parameters with too few data points
 - E.g. fitting a line to a single data point
- Over fitting can be worsened with
 - Too many parameters (or over-complex model)
 - Too few training examples

Under-fitting

- When the model is not complex enough to capture the variability in the data
- E.g., fitting a line through a polynomial curve
- E.g., linear decision boundary for nonlinearly separable data

The goal of model selection is to find a middle point to avoid both over-fitting and under-fitting.

Model selection: Validation Set

- We can keep part of the labeled data apart as the validation data
- Evaluate different k values based on the prediction accuracy on the validation data
- Choose k that minimize validation error

Validation can be viewed as another name for testing, but the name *testing* is typically reserved for final evaluation purpose, whereas *validation* is mostly used for model selection purpose.

The impact of validation set size

- If we only reserve one point in our validation set, should we trust the validation error as a reliable estimate of our classifier's performance?
- No. The larger the validation set, the more reliable our model selection choices are
- When the total labeled set is small, we might not be able to get a big enough validation set – leading to unreliable model selection decisions

Model selection: K-fold Cross Validation

- Note the use of capital K not the k in knn
- Randomly split the training set into K equal-sized subsets
 - The subsets should have similar class distribution.
- Perform learning/testing K times
 - Each time reserve one subset for validation, train on the rest

$$\varepsilon = \frac{1}{5} \sum_{i=1}^{5} \varepsilon_{i}$$

Model Selection: K-fold Cross Validation

- For each candidate model, e.g. for k-nn we consider each possible value of k
 (1,3,5...)
 - Perform K-fold cross-validation on the training set (e.g., K=10)
 - Measure it's cross-validation error
- Select the model with lowest C-V error

Leave-one-out Cross Validation

- If we set K, the number of folds to |S|, we end up with what we call leave-out-out cross validation
- Each time we leave one example out for validation

What is the leave-one-out error of 1-nearest neighbor on this data set?

Practical issues with KNN

- Suppose we want to build a model to predict a person's shoe size
- Use the person's height and weight to make the prediction
- P1: (6', 175), P2: (5.7',168), PQ:(6.1', 170)

$$\mathbf{D(PQ,P1)} = \sqrt{0.1^2 + 5^2} \approx 5$$
 $\mathbf{D(PQ,P2)} = \sqrt{0.4^2 + 2^2} \approx 2.04$

There is a problem with this

Because weight has a much larger range of values, the differences is dominated numerically by weight

Features should be normalized to have the same range of values (e.g., [0,1]), otherwise features with larger ranges will have higher impact on the distance.

Practical issues with KNN

- Our data may also contain the GPAs
- Should we include this attribute into the calculation?
- When collecting data, people tend to collect as much information as possible regardless whether they are useful or not for the question in hand
- It is critical to recognize and remove such attributes when building your classification models
- Curse of dimensionality:
 - In high dimensional space (e.g., over 20), data becomes so sparse that the nearest neighbor is still very far, not informative any more
 - Often need to be used with dimension reduction

Other issues

- It can be computationally expensive to find the nearest neighbors for large data
 - O(Nd) for every test point (as opposed to O(d) for linear classifier)
 - Speed up the computation by using smart data structures (kdtree) to quickly search for approximate solutions
- For massive data sets, it also requires a lot of memory
 - Remove unimportant examplés

Final words on KNN

- KNN is what we call lazy learning (vs. eager learning)
 - Lazy: learning only occur when you see the test example
 - Eager: learn a model before you see the test example, training examples can be thrown away after learning

Advantage:

- Conceptually simple, easy to understand and explain
- Very flexible decision boundaries

Disadvantage

- It can be hard to find a good distance measure
- Irrelevant features and noise can be very detrimental
- Typically can not handle more than a few dozen attributes unless a good distance measure can be learned
- Computational cost: requires significant computation and memory