Мартингалы: 2

7.1 Сходимость мартингалов и непрерывные мартингалы

7.1.1 Сходимость мартингалов

Одним из первых и очевидных примеров мартингалов является процесс $X_n = \mathbb{E}[X|\mathcal{F}_n]$ для интегрируемой случайной величины X. Его смысл заключается в следующем: распределение случайной величины X содержит в себе всю информацию, а распределение X_n только информацию до момента времени t. Естественно задаться таким вопросом: каким условиям должен удовлетворять мартингал X_t , чтобы существовала случайная величина X со свойством $X_n = \mathbb{E}[X|\mathcal{F}_n]$? Этим вопросом мы и займемся.

Формализацией понятия информация к моменту времени n является сигма-алгебра \mathcal{F}_n (как элемент фильтрации). Тогда всю информацию естественно описывать сигма-алгеброй, порожденной объединением \mathcal{F}_n .

Определение 7.1. Замыканием справа мартингала (X_n, \mathcal{F}_n) называется случайная величина $X'_{\infty} \in L_1(\Omega, \mathcal{F}, P)$, такая, что $X_n = \mathbb{E}[X'_{\infty}|\mathcal{F}_n]$, при этом случайная величина $X_{\infty} = \mathbb{E}[X'_{\infty}|\mathcal{F}_{\infty}]$ так же является замыканием.

Если замыкание существует, то принято считать, что оно \mathcal{F}_{∞} -измеримо.

Теорема 7.1. Замыкание X_{∞} мартингала (X_n, \mathcal{F}_n) существует тогда и только тогда, когда он равномерно интегрируем.

Докажет теорему только в одну сторону (более простую).

Доказательство. Пусть замыкание существует, мы хотим показать равномерную интегрируемость, т.е. $\lim_{\lambda \to \infty} \sup_{n \in \mathbb{N}} |X_n| dP = 0$. Давайте для начала оценим $|X_n|$, применив определение замыкания $X_n = \mathbb{E}[X_\infty | \mathcal{F}_n]$, неравенство Йенсена и условное неравенство Йенсена:

$$|X_n| = |\mathbb{E}[X_\infty|\mathcal{F}_n]| \le \mathbb{E}[|X_\infty||\mathcal{F}_n]$$

$$\int\limits_{|X_n|>\lambda} |X_n| dP \le \int\limits_{|X_n|>\lambda} |X_\infty| dP.$$

Т.к. $X_{\infty} \in L_1(\Omega, \mathcal{F}, P)$, достаточно показать, что $\lim_{\lambda \to \infty} \sup_{n \in \mathbb{N}} \mathbb{P}|X_n| > \lambda = 0$. Сделаем это с помощью неравенства Маркова и оценки на $|X_n|$, полученной в начале доказательства:

$$\mathbb{P}\{|X_n| > \lambda\} \le \frac{\mathbb{E}[|X_n|]}{\lambda} \le \frac{\mathbb{E}[|X_\infty|]}{\lambda}$$

Теперь рассмотрим, предельные теоремы для мартингалов.

Теорема 7.2. Пусть (X_n, \mathcal{F}_n) - замыкаемый мартингал, тогда $X_n \stackrel{n.n.,L_1}{\longrightarrow} X_\infty$

Теорема 7.3. Пусть (X_n, \mathcal{F}_n) - L_1 -ограниченный мартингал, тогда $X_n \xrightarrow{n.n.} Y$, причем $Y \in L_1$.

Доказательство этих теорем слишком громоздко, однако мы может поупражняться в применении разложения Дуба и доказать следующие следствия.

Следствие 7.4. Пусть (X_n, \mathcal{F}_n) - L_1 -ограниченный субмартингал, тогда $X_n \stackrel{n.н.,L_1}{\longrightarrow} Y$

Доказательство. Давайте сведем утверждение к соответствующей теореме для мартингалов, применив разложение Дуба.

$$X_n = M_n + A_n \in L_1$$

Видим, что достаточно рассмотреть по-отдельности сходимость A_n и сходимость M_n . Начнем с A_n . Разложение Дуба нам говорит о том, что A_n не убывает. Поэтому, чтобы доказать, что $A_n \xrightarrow{\text{п.н.}} A \in L_1$, достаточно показать L_1 -ограниченность A_n . Сделаем это используя L_1 -ограниченность X_n и свойства мартингала M_n

$$\mathbb{E}[|A_n|] \leq \mathbb{E}[|X_n|] + \mathbb{E}[|M_n|] = \mathbb{E}[|X_n|] + \mathbb{E}[|M_1|] < c$$

Теперь рассмотрим поведение $M_n=X_n-A_n$. Из L_1 -ограниченности X_n и A_n следует L_1 -ограниченность M_n . Поэтому мартингал $M_n \xrightarrow{\text{п.н.}} M \in L_1$.

В итоге,
$$X_n = M_n + A_n \xrightarrow{\text{п.н.}} M + A = Y \in L_1.$$

Следствие 7.5. Пусть (X_n, \mathcal{F}_n) - равномерно интегрируемый субмартингал, тогда $X_n \stackrel{n.н.,L_1}{\longrightarrow} Y$

Доказательство. Доказательство аналогично доказательству предыдущего следствия. Начнем с разложения Дуба:

$$X_n = M_n + A_n \in L_1$$

В ходе доказательства предыдущего следствия мы уже выяснили, что A_n ограничены в L_1 . Это означает, что A_n равномерно интегрируемы (т.к. они неотрицательны и монотонно

не убывают). Поэтому $M_n = X_n - A_n$ является равномерно интегрируемым мартингалов, а следовательно, $M_n \stackrel{\text{п.н.},L_1}{\longrightarrow} M_\infty$. Поэтому $X_n = M_n + A_n \stackrel{\text{п.н.},L_1}{\longrightarrow} M_\infty + A = Y \in L_1$.

Давайте рассмотрим пример мартингала с дискретным временем, называемый уроновой схемой Пойа. Пусть у нас есть коробка, в которой в момент времени n=0 лежат 1 черный шар и 1 белый шар. На шаге n мы вынимаем из коробки случайный шар и кладем в коробку вместо него 2 шага того же цвета. Введем следующие обозначения: A_n число шаров черного цвета в коробке в момент времени n, B_n число шаров белого цвета в коробке в момент времени n, A_n число шаров в коробке в момент времени n, A_n индикатор события "на шаге n вынули черный шар". Тогда верны следующие рекурентные уравнения:

$$A_0 = B_0 = 1, A_n = A_{n-1} + \xi_n, B_n = B_{n-1} + (1 - \xi_n)$$

Пусть сигма алгебра \mathcal{F}_n содержит всю информацию до шага n, т.е. $\mathcal{F}_n = \sigma\{A_k, B_k, k \le n\}$. Заметим, что распределение ξ_n зависит только от того, сколько черных и белых шаров было в коробке в момент n-1, а именно:

$$P(\xi_n = 1 | \mathcal{F}_{n-1}) = \frac{A_{n-1}}{A_{n-1} + B_{n-1}}, P(\xi_n = 0 | \mathcal{F}_{n-1}) = \frac{B_{n-1}}{A_{n-1} + B_{n-1}}$$

Теперь мы можем доказать, что X_n является мартингалом.

$$\mathbb{E}[X_n - X_{n-1}|\mathcal{F}_{n-1}] = \mathbb{E}\left[\frac{A_n}{A_n + B_n} - \frac{A_{n-1}}{A_{n-1} + B_{n-1}}|\mathcal{F}_{n-1}\right] = \mathbb{E}\left[\frac{A_{n-1} + \xi_n}{A_{n-1} + B_{n-1} + 1} - \frac{A_{n-1}}{A_{n-1} + B_{n-1}}|\mathcal{F}_{n-1}\right] =$$

$$= \mathbb{E}\left[\frac{(A_{n-1} + \xi_n)(A_{n-1} + B_{n-1}) - A_{n-1}(A_{n-1} + B_{n-1} + 1)}{(A_{n-1} + B_{n-1} + 1)(A_{n-1} + B_{n-1})}|\mathcal{F}_{n-1}\right] =$$

$$= \mathbb{E}\left[\frac{\xi_n(A_{n-1} + B_{n-1}) - A_{n-1}}{(A_{n-1} + B_{n-1} + 1)(A_{n-1} + B_{n-1})} | \mathcal{F}_{n-1}\right] = \frac{1}{A_{n-1} + B_{n-1} + 1} \mathbb{E}\left[\xi_n - \frac{A_{n-1}}{A_{n-1} + B_{n-1}} | \mathcal{F}_{n-1}\right] = 0$$

 X_n мартингал, равномерно интегрируем (т.к. ограничен единицей), а следовательно, существует его замыкание X_∞ , и $X_n \stackrel{\text{п.н.},L_1}{\longrightarrow} X_\infty$.

Можно показать, что $X_\infty \sim U[0,1]$. Для этого докажем, что $P(A_n=k)=\frac{1}{n+1}$ при $k\in\{1,2,...,n+1\}$, используя индукцию.

$$P(A_0 = 1) = 1$$

$$P(A_n=k)=P(A_{n-1}=k-1,\xi_n=1)+P(A_{n-1}=k,\xi_n=0)=\frac{1}{n}\frac{k-1}{n+1}+\frac{1}{n}\frac{n+1-k}{n+1}=\frac{1}{n+1}$$
 Тогда $P(X_n=\frac{k}{n+2})=P(A_n=k)=\frac{1}{n+1}.$

7.1.2 Мартингалы с непрерывным временем

Давайте сформулируем утверждения для мартингалов с непрерывным временем, аналогичные утверждениям для мартингалов с дискретным временем.

Для начала нам потребуется ввести дополнительное (довольно техническое) определение непрерывной справа фильтрации.

Определение 7.2. Непрерывной справа фильтрацией называется фильтрация $\mathbb{F} = (\mathcal{F}_t)_{t \in \mathbb{R}_+}$, такая, что $\mathcal{F}_t = \bigcap_{t \le s} \mathcal{F}_s$.

Рассмотрим пример, как можно применять это свойство фильтрации.

Утверждение 7.6. Пусть фильтрация $\mathbb{F} = (\mathcal{F}_t)_{t \in \mathbb{R}_+}$ непрерывна справа. Тогда случайная величина T является моментом остановки тогда и только тогда, когда $\{T < t\} \in \mathcal{F}_t$.

Доказательство. Пусть T является моментом остановки, т.е. $\{T \leq t\} \in \mathcal{F}_t$. Тогда $\{T < t\} = \bigcap_{s \leq t} \{T \leq s\} \in \mathcal{F}_t$.

Пусть $\{T < t\} \in \mathcal{F}_t$. Тогда $\{T \le t\} = \bigcap_{t < s} \mathcal{F}_s = \mathcal{F}_t$ (по свойству непрерывности фильтрации).

Далее сформулируем обычные условия на фильтрацию, т.е. условия, которые обычно накладываются на фильтрацию в теоремах про непрерывные мартингалы.

Определение 7.3. Фильтрация $\mathbb{F} = (\mathcal{F}_t)_{t \in \mathbb{R}_+}$ удовлетворяет обычным условиям, если она непрерывна справа и \mathcal{F}_0 содержит все P-пренебрежимые множества.

Полезно рассматривать непрерывные права процессы. Рассмотрим следующую теорему без доказательства.

Теорема 7.7. Пусть фильтрация $\mathbb{F} = (\mathcal{F}_t)_{t \in \mathbb{R}_+}$ удовлетворяет обычным условиям. Тогда если (X_t, \mathcal{F}_t) - субмартингал с непрерывным справа матожиданием (т.е. $\mathbb{E}[X_t]$ непрерывно справа как функция от времени), то у него существует непрерывная справа модификация.

Пришло время сформулировать теоремы, аналогичные теоремам для дискретных мартингалов.

Теорема 7.8. (Разложение Дуба - Мейера).

Пусть (X_t, \mathcal{F}_t) - непрерывный субмартингал, $X_{\tau\tau\in S_a}$ равномерно интегрируемо для любого a, где $S_a = \{\tau \leq a, \tau$ момент остановки $\}$. Тогда существуют непрерывные согласованные процессы M_t, A_t , такие, что

1.
$$X_t = M_t + A_t \ npu \ t \ge 0 \ n.H.$$

2.
$$(M_t, \mathcal{F}_t)$$
 - мартингал,

3. $A_0 = 0$,

4. $A_s(\omega) \leq A_t(\omega)$ п.н. при всех $s \leq t$, т.е. A_t не убывает.

Более того, если другая пара \bar{M}_t, \bar{A}_t обладает теми же свойствами, то $M_t = \bar{M}_t, A_t = \bar{A}_t$ n.н.

Если применить разложение Дуба-Мейера к квадрату квадратично интегрируемого непрерывного мартингала Y_t , то можно доказать, что в разложении $Y_t^2 = M_t + A_t$ процесс A_t будет являться квадратичной вариацией процесса Y_t , т.е. $A_t = \lim_{|\pi| \to 0} \sum_{k=0}^{m-1} |Y_{t_{k+1}} - Y_k|^2$, где $\pi = \{0 = t_0 < t_1 < ... < t_m = t\}$ - разбиение интервала [0,t]. В частности, квардратическая вариация Винеровского процесса это просто t, поэтому $W_t^2 - t$ является мартингалом, т.к. $\mathbb{E}[W^{t2} - t|\mathcal{F}_s] = \mathbb{E}[(W_s + W^t - W_s)^2|\mathcal{F}_s] - t = W_s^2 + 2W_s\mathbb{E}[W_t - W - s|\mathcal{F}_s] + \mathbb{E}[(W_t - W_s)^2|\mathcal{F}_s] - t = W_s^2 + t - s - t = W_s^2 - s$. Мы вернемся к этому утверждению во время обсуждения стохастических интегралов.

Теорема 7.9. (Теорема о свободном выборе). Пусть (X_t, \mathcal{F}_t) - непрерывный справа субмартингал, $\leq \tau \leq r$ - ограниченные моменты остановки. Тогда $X_{\}sigma} \leq \mathbb{E}[X_{\tau}|\mathcal{F}_{\sigma}]$.

Заметим, что так же, как и в случае дискретным мартингалов, это утверждение остается верным для неограниченных моментов остановки, если потребовать равномерную интегрируемость субмартингала.

Теорема 7.10. (Неравенство Дуба)

Пусть (X_t, \mathcal{F}_t) - непрерывный справа субмартингал. Тогда для любого $t \geq 0$ и $\lambda > 0$ выполняется неравенство:

$$\lambda P(A(\lambda, t)) \le \int_{A(\lambda, t)} X_t dP \le \max(X_t, 0)$$

$$\operatorname{ede} A(\lambda, t) = \{\omega : \sup_{0 \le s \le t} X_s(\omega) \ge \lambda\}.$$

Теорема 7.11. (Сходимость равномерно интегрируемого мартингала)

Пусть (X_t, \mathcal{F}_t) - непрерывный справа замыкаемый мартингал, фильтрация $\mathbb{F} = (\mathcal{F}_t)$ удовлетворяет обычным условиям. Тогда $X_n \stackrel{n.н.,L_1}{\longrightarrow} X_{\infty}$.

Теорема 7.12. (Сходимость ограниченного мартингала)

Пусть (X_t, \mathcal{F}_t) - непрерывный справа L_1 -ограниченный мартингал, фильтрация $\mathbb{F} = (\mathcal{F}_t)$ удовлетворяет обычным условиям. Тогда $X_n \xrightarrow{n.н.} Y$, причем $Y \in L_1$.

Следствие 7.13. Пусть (X_n, \mathcal{F}_n) - непрерывный L_1 -ограниченный субмартингал, фильтрация $\mathbb{F} = (\mathcal{F}_t)$ удовлетворяет обычным условиям, тогда $X_n \stackrel{n.н.,L_1}{\longrightarrow} Y$.

Следствие 7.14. Пусть (X_n, \mathcal{F}_n) - непрерывный равномерно интегрируемый субмартингал, фильтрация $\mathbb{F} = (\mathcal{F}_t)$ удовлетворяет обычным условиям, тогда $X_n \stackrel{n.n.,L_1}{\longrightarrow} Y$.

Давайте рассмотрим простой пример непрерывных мартингалов.

Пример 7.1. Докажем, что $X_t = e^{\theta W_t - \theta^2 t/2}$ является мартингалом, используя характеристическую функцию:

$$\mathbb{E}[X_t | \mathcal{F}_s] = \mathbb{E}[e^{\theta W_t - \theta^2 t/2} | \mathcal{F}_s] = \mathbb{E}[e^{\theta (W_s + W_t - W_s) - \theta^2 t/2} | \mathcal{F}_s] = e^{\theta W_s} + \mathbb{E}[e^{\theta (W_t - W_s)} | \mathcal{F}_s] - e^{\theta^2 t/2} = \mathbb{E}[e^{\theta (W_t - W_s)} | \mathcal{F}_s] = \mathbb{E}[e^{\theta (W_t - W_$$

$$= e^{\theta W_s} + e^{\theta^2(t-s)/2} - e^{\theta^2 t/2} = e^{\theta W_s - \theta^2 s/2}$$

Рассмотрим любопытный пример, демонтстрирующий другой способ определения Винеровского процесса.

Пример 7.2. Пусть $X_0 = 0$, $Y_t^{\lambda} = e^{i < \lambda, X_t > + ||\lambda||^2 t/2}$ является мартингалом при любом λ . Докажем, что из этого следует то, что X_t Винеровским процессом.

Для начала проверим нормальность приращений, т.е. $X_t - X_s \sim \mathcal{N}(0, (t-s)I)$. Для этого воспользуемся мартингальным свойством процесса Y_t^{λ} и формулой полного матожидания:

$$\mathbb{E}[Y_t|\mathcal{F}_s] = Y_s$$

$$\mathbb{E}[e^{i < \lambda, X_t > + ||\lambda||^2 t/2} | \mathcal{F}_s] = e^{i < \lambda, X_s > + ||\lambda||^2 s/2}$$

$$\mathbb{E}[e^{i\langle\lambda,X_t-X_s\rangle}|\mathcal{F}_s] = e^{-||\lambda||^2(t-s)/2}$$

$$\phi_{X_t - X_s}(\lambda) = \mathbb{E}[e^{i < \lambda, X_t - X_s >}] = e^{-||\lambda||^2 (t - s)/2}$$

Теперь докажем независимость приращений, т.е. $X_t - X_s \perp \mathcal{F}_s$ при $s \leq t$, что означает $X_t - X_s \perp W$ для любой \mathcal{F}_s -измеримой случайной величины W. Для этого воспользуемся следующим свойством характеристических функций: $X_t - X_s \perp W$ тогда и только тогда, когда характеристическая функция случайного вектора $(X_t - X_s, W)$ разбивается в произведение характеристической функции $X_t - X_s$ и характеристической функции W. Рассмотрим случайный вектор $(X_t - X_s, W)$. В точке $\lambda = (\lambda_1, \lambda_2)$ характеристическая функция этого вектора принимает следующий вид:

$$\phi_{(X_t - X_s, W)}(\lambda) = E[e^{i < \lambda, (X_t - X_s, W)}] = E[e^{i < \lambda_1, X_t - X_s} e^{i < \lambda_2, W}]$$

Tак как W является \mathcal{F}_s -измеримой случайной величиной, полезно воспользоваться формулой полного матожидания, тогда мы сможем применить следующее ужее доказанное утверждение:

$$\mathbb{E}[e^{i < \lambda, X_t - X_s >} | \mathcal{F}_s] = e^{-||\lambda||^2 (t-s)/2} = \mathbb{E}[e^{i < \lambda, X_t - X_s >}]$$

Применим формулу полного матожидания:

$$E[e^{i<\lambda_1,X_t-X_s>}e^{i<\lambda_2,W>}] = E[E[e^{i<\lambda_1,X_t-X_s>}e^{i<\lambda_2,W>}|\mathcal{F}_s]] = E[e^{i<\lambda_2,W>}E[e^{i<\lambda_1,X_t-X_s>}|\mathcal{F}_s]] = E[e^{i<\lambda_1,X_t-X_s>}e^{i<\lambda_2,W>}|\mathcal{F}_s]] = E[e^{i<\lambda_1,X_t-X_s>}e^{i<\lambda_2,W>}|\mathcal{F}_s] = E[e^{i<\lambda_1,X_t-X_s>}e^{i<\lambda_2,W>}|\mathcal{F}_s]] = E[e^{i<\lambda_1,X_t-X_s>}e^{i<\lambda_2,W>}|\mathcal{F}_s] = E[e^{i<\lambda_1,X_t-X_s>}e^{i<\lambda_2,W>}|\mathcal{F}_s| = E[e^{i<\lambda_1,X_t-X_s>}e^{i<\lambda_1,X_t-X_s>}e^{i<\lambda_1,X_t-X_s>}e^{i<\lambda_1,X_t-X_s>}e^{i<\lambda_1,X_t-X_s>}e^{i<\lambda_1,X_t-X_s>}e^{i<\lambda_1,X_t-X_s>}e^{i<\lambda_1,X_t-X_s>}e^{i<\lambda_1,X_t-X_s>}e^{i<\lambda_1,X_t-X_s>}e^{i<\lambda_1,X_t-X_s>}e^{i<\lambda_1,X_t-X_s>}e^{i<\lambda_1,X_t-X_s>}e^{i<\lambda_1,X_t-X_s>}e^{i<\lambda_1,X_t-X_s>}e^{i<\lambda_1,X_t-X_s>}e^{i<\lambda_1,X_t-X_s>}e^{i<\lambda_1,X_t-X_s>}e^{i<\lambda_1,X_t-X_s>}e^{i<\lambda_1,X_t-X_s>}e^{i<\lambda_1,X_t-X_s>}e^{i<\lambda_1,X_t-X_s>}e^{i<\lambda_1,X_t-X_s>}e^{i<\lambda_1,X_t-X_s>}e^{i<\lambda_1,X_t-X_s>}e^{i<\lambda_1,X_t-X_s>}e^{i<\lambda_1,X_t-X_s>}e^{i<\lambda_1,X_t-X_s>}e^{i<\lambda_1,X_t-X_s>}e^{i<\lambda_1,X_t-X$$

$$= E[e^{i<\lambda_2,W>}E[e^{i<\lambda_1,X_t-X_s>}]] = E[e^{i<\lambda_1,X_t-X_s>}]E[e^{i<\lambda_2,W>}] = \phi_{X_t-X_s}(\lambda_1)\phi_W(\lambda_2)$$

В итоге мы доказали, что $\phi_{(X_t-X_s,W)}(\lambda) = \phi_{X_t-X_s}(\lambda_1)\phi_W(\lambda_2)$ для любой \mathcal{F}_s измеримой случайной величины W, откуда следует независимость приращений процесса X_t .