MATH 601 (DUE 12/6)

HIDENORI SHINOHARA

Contents

1.	Jordan canonical form	1
2.	Galois Theory VI	1
3.	Cauchy's Theorem, Finite p-groups, The Sylow theorems	2

1. Jordan Canonical form

Exercise. (Problem 3) By the theorem in the Jordan canonical form handout, there exists a basis for which the matrix M for T consists of blocks in the specified form. Let B a block of size ≥ 2 where the diagonal elements are all λ . Then the diagonal elements in B^m are all λ^m and the sub-diagonal elements in B^m are all m^{m-1} . Since $M^m = I$, $m\lambda^{m-1} = 0$. Then $\lambda = 0$. However, if $\lambda = 0$, then $\lambda^m \neq 1$. This is a contradiction, so all the blocks must be of size 1, so M is diagonal.

Finish this!

2. Galois Theory VI

Exercise. (Problem 1) Let u_1, u_2, u_3, u_4 be the variables of the elementary symmetric polynomials s_1, s_2, s_3, s_4 . Then $f(x) = (x - u_1)(x - u_2)(x - u_3)(x - u_4)$. For any permutation $\sigma \in S_4$, $\phi \in \operatorname{Aut}(F(u_1, \dots, u_n))$ determined by $\phi(u_i) = u_{\sigma_i}$ is an automorphism that fixes F because every elementary symmetric polynomial s_i is symmetric. Therefore, the Galois group is isomorphic to S_4 .

The roots of f(x) are expressible by radicals relative to F because, as shown in Problem 3 below, S_4 is solvable.

Exercise. (Problem 2) $f(x) = x^6 - 2$ is irreducible over \mathbb{Q} by Eisenstein (p = 2). The roots are $\{\zeta^i\sqrt[6]{2} \mid i = 0, \cdots, 5\}$ where $\zeta = e^{2\pi i/6} = (1 + \sqrt{-3})/2$. Then the splitting field L is $\mathbb{Q}(\zeta^0\sqrt[6]{2}, \cdots, \zeta^5\sqrt[6]{2}) = \mathbb{Q}(\zeta, \sqrt[6]{2})$. Let $\sigma \in \operatorname{Aut}(L/\mathbb{Q})$. The minimal polynomial of $\sqrt[6]{2}$ is $x^6 - 2$, so $\sigma(\sqrt[6]{2}) = \zeta^i\sqrt[6]{2}$ for some i. The minimal polynomial of ζ is $x^2 - x + 1$, so $\sigma(\zeta) = \zeta, \overline{\zeta}$. Thus there are $6 \cdot 2 = 12$ automorphisms. This is isomorphic to D_6 because $\sqrt[6]{2} \mapsto \zeta\sqrt[6]{2}$ corresponds to rotation and $\zeta \mapsto \overline{\zeta}$ corresponds to reflection.

Exercise. (Problem 3) As discussed in the Galois Theory IV handout, the only transitive subgroups of S_4 are S_4 , A_4 , V_4 , C_4 , and groups with 8 elements. Clearly, V_4 , C_4 are solvable. We showed below (Problem 2 from the Cauchy handout) that every p-group is solvable. Thus any group with 8 elements is solvable. The handout mentions V_4S_4 , so clearly $V_4 \subseteq A_4$.

Moreover, A_4/V_4 has only 3 elements, so it is abelian. Thus $\{e\} \subset V_4 \subset A_4 \subset S_4$ is a filtration because A_4 is an index-2 subgroup of S_4 . Therefore, all the transitive subgroups of S_4 are solvable, so all the roots of any quartic polynomial are expressible by radicals.

3. Cauchy's Theorem, Finite p-groups, The Sylow theorems

Exercise. (Problem 2) Let a prime number p be given. We will show that any group G of order p^n for some n is solvable by induction on n. When n=1, $G\cong \mathbb{Z}_p$, which is abelian, so it is solvable. Suppose we have shown the proposition for some $n\in\mathbb{N}$, and let G be a group of order p^{n+1} . By Corollary 1 right above this problem statement in the handout, the center H of G is a nontrivial subgroup. Moreover, H is clearly a normal subgroup of G. Thus it makes sense to consider G/H. The order of G/H must be p^m for some $1\leq m\leq n-1$. By the inductive hypothesis, G/H is solvable. Since every subgroup of G/H can be realized as the quotient of a subgroup of G by G b

Exercise. (Problem 3) Let m = 3, p = 7. Then |G| = 21 = pm with $p \nmid m$. Let t be the number of Sylow p-subgroups. By the third Sylow theorem, $t \mid m$ and $t \equiv 1 \pmod{p}$. The only number that satisfies this is 1, so every group of order 21 has a unique Sylow 7-subgroup.

Exercise. (Problem 4) Using the same idea as Problem 2 above, we will construct a filtration. Let G be an extension of H by Q. Suppose H and Q are both solvable. Since Q is solvable, there exists a filtration $\{e\} = Q_0 \leq \cdots \leq Q_n = Q$. Let ϕ be an isomorphism from Q to G/H. Then the $\phi(Q_i)$'s form a filtration of G/H and $\phi(Q_i) = G_i/H$ for some subgroup G_i by the same theorems that we used in Problem 2. Moreover, G_i 's form a filtration from H to G. Since H is solvable, there exists a filtration from $\{e\}$ to H. By concatenating them, we obtain a filtration from $\{e\}$ to G, so G is solvable.

Exercise. (Problem 5) By Problem 3, G has a unique group H of order 7. Since conjugation preserves the order of a group, the group must be normal. Then $H \subseteq G$ and $G/H \cong \mathbb{Z}_3$. Any group of prime order is abelian and thus solvable. Therefore, G is an extension of a solvable group \mathbb{Z}_7 by a solvable group \mathbb{Z}_3 , so it must be solvable.

Exercise. (Problem 7) Since we are given that $\mathbb{Q}(\alpha)$ is the splitting field, every root of f(x) can be expressed by multiplying, adding, dividing and subtracting rational numbers and α . This implies that $\sigma \in G = \operatorname{Aut}(\mathbb{Q}(\alpha)/\mathbb{Q})$ is uniquely determined by $\sigma(\alpha)$. Therefore, $|G| \leq 80$.

The Galois group should have exactly 80 elements by the fundamental theorem of Galois theory. $80 = 5 \cdot 2^4$. Use Problem 4.

Exercise. (Problem 8) A_5 is a simple non-abelian group, so it is not solvable. [P.3, Galois Theory VI]

 $|A_5| = 5!/2 = 60$. Let $G = A_5 \times \mathbb{Z}/5\mathbb{Z}$. Then G has 300 elements and $H = \{(x,0) \in G\}$ is a subgroup of G that is isomorphic to A_5 . By lemma 1 [P.4, Galois Theory V], a solvable group cannot contain an unsolvable subgroup. Therefore, G is an unsolvable group of order 300.

Exercise. (Problem 9)

- (1) By the third Sylow theorem, the number t of Sylow p-subgroups of G satisfies $t \mid q$ and $t \equiv 1 \pmod{p}$. Thus t = 1. Thus the subgroup H of G with p elements is normal because conjugation preserves the order of a group. G/H is a cyclic group of order q, so let x + H be a generator. Then every element $g \in G$ satisfies $g + H = x^i + H$ for a unique $i \in \{0, \dots, q-1\}$. Then the map $G \to \mathbb{Z}_q$ such that $g \mapsto i$ is a surjective group homomorphism. A surjective homomorphism $G \to \mathbb{Z}_q$ can be constructed in a similar fashion.
- (2) The problem statement simply says the existence of a homomorphism, which can be achieved by the "zero" map $g\mapsto e$. We will instead show the existence of a surjective homomorphism. In (1), we showed the existence of surjective homomorphisms $\phi_p:G\to C_p$ and $\phi_q:G\to C_q$. We have trivial homomorphisms $\psi_p:C_p\times C_q\to C_p$ and $\psi_q:C_p\times C_q\to C_q$ defined by $\psi_p(a,b)\to a$ and $\psi_q(a,b)\to b$. By the universal mapping property of the product, there must exist a unique group homomorphism $\Phi:G\to C_p\times C_q$ such that $\phi_p,\phi_q,\psi_p,\psi_q,\Phi$ all commute. Since $\phi_p=\psi_p\circ\Phi$ and $\phi_q=\psi_q\circ\Phi$ are both surjective, Φ must be surjective.
- (3) Since |G| = pq, Φ must be bijective, so it is an isomorphism.
- (4) Clearly, C_p and C_q are isomorphic to \mathbb{Z}/p and \mathbb{Z}/q . Then the map $(a, b) \mapsto qa + b$ is an isomorphism from $\mathbb{Z}/p \times \mathbb{Z}/q$ into \mathbb{Z}/pq . \mathbb{Z}/pq is isomorphic to C_{pq} . Therefore, G is isomorphic to C_{pq} .

Exercise. (Problem 10) By the Corollary 1 indicated in the hint, we obtain a nontrivial center C of G. By Lagrange, $|C| = p, p^2$. If $|C| = p^2$, then G is abelian, so G must be isomorphic to $\mathbb{Z}/(p^2)$ or $(\mathbb{Z}/p)^2$. Suppose |C| = p. Since C is normal, we will consider G/C, which is isomorphic to \mathbb{Z}/p . Let x + C be a generator of G/C and y be a generator of C. Then every element in G can be expressed as x^iy^j for some $i, j \in \mathbb{Z}/p$. However, this implies that C = G because for any i, j, k, l, $(x^iy^j)(x^ky^l) = x^ix^ky^jy^l = x^kx^iy^ly^j = (x^ky^l)(x^iy^j)$ because a power of y commutes with any element. This is a contradiction, so $|C| \neq p$.

Exercise. (Problem 11) It suffices to show that every group of order 132 is solvable because it implies that every subgroup of a group of order 132 is solvable. Let p = 11, m = 12 and apply the third Sylow theorem. Them $t \mid 12$ and $t \equiv 1 \pmod{p}$ is satisfied only by 1 or 12.

• Suppose t=1. Let H be the subgroup of order 11. Then H is normal and G/H is a group of order 12. By Sylow, the number t_4 of subgroups of order 4 of G/H is either 1 or 3 and the number t_3 of subgroups of order 3 is either 1 or 4. If $t_4=1$ or $t_3=1$, then we obtain a normal subgroup H' and (G/H)/H' has 3 or 4 elements, which mean (G/H) is solvable. By Problem 4, G is solvable. Suppose $t_4=3$ and $t_3=4$. Then we have 3 distinct subgroups A_1, A_2, A_3 of order 4 and 4 distinct subgroups B_1, \dots, B_4 of order 3. By Lagrange, for any $i \neq j$, $B_i \cap B_j = \{e\}$, and, for any $i, j, B_i \cap A_j = \{e\}$. However, this implies that G contains more than 12 elements. (i.e., $B_1 = \{v_1, v_2, v_3\}, B_2 = \{v_1, v_4, v_5\}, \dots, B_4 = \{v_1, v_8, v_9\}$ and $A_1 = \{v_1, v_{10}, v_{11}, v_{12}\}$.) Therefore, this case is impossible.

• Suppose t = 12.

I think this is only possible if G is abelian. But I don't know how to proceed.