Association Rule

기본 개념

연관규칙분석

- 어떤 사건이 얼마나 자주 동시에 발생하는가를 표현하는 규칙
- IF X then Y $(X \Rightarrow Y)$
- 자료에 존재하는 항목(item)들 간의 If-then 식의 연관 규칙 발견
- 비지도학습(unsupervised learning)의 일종
- 상품의 구매, 서비스 등 일련의 거래 또는 사건들, 상품 추천,
 웹페이지간의 링크에 대한 분석
- 장바구니분석라고도 부름(유통업)

평가척도 - 지지도 (Support)

- 관련성이 있다고 판단되는 품목들을 포함하고 있는 거래나 사건의 확률
- 지지도 $(A \Rightarrow B) = \frac{A, B}{2}$ 모두 포함하는 거래의 수 전체 거래의 수
- 지지도 $(A \Rightarrow B) =$ 지지도 $(B \Rightarrow A)$: 상호 대칭적
- A나 B 둘 중 하나라도 포함될 확률이 낮은 경우 지지도가 작게 추정
- 실제 연관성이 높더라도 잘 잡아내지 못함
- 전체적인 구매도에 대한 경향 파악

평가척도 - 신뢰도 (Confidence)

- A를 구입하였을 경우 B를 구입하는 확률(조건부 확률)
- 신뢰도 $(A\Rightarrow B)=rac{A,B}{A}$ 를 모두 포함하는 거래의 수 A를 포함하는 거래의 수
- 신뢰도 $(A \Rightarrow B) \neq$ 신뢰도 $(B \Rightarrow A)$: 비대칭적
- 둘 중 하나가 포함될 확률이 낮은 경우 연관성을 잘 찾아내지 못하는
 지지도의 단점을 보완

평가척도 - 예

맥주	맥주	맥주	맥주	콜라	콜라	컵라면	맥주	맥주	맥주	컵라면	맥주
치킨	치킨	치킨	치킨	맥주	맥주	김치	치킨	치킨	치킨	김치	치킨

- {컵라면} ⇒ {김치}
- 지지도 : 컵라면과 김치의 판매가 동시에 일어날 확률

$$\frac{\text{컵라면과 김치를 모두 포함하는 거래의 수}}{\text{전체 거래의 수}} = \frac{2}{12} = \frac{1}{6}$$

• 신뢰도 : 컵라면을 구입하였을 경우 김치를 구입하는 확률

$$\frac{\mbox{컵라면과 김치를 모두 포함하는 거래의 } \mbox{$+$}}{\mbox{컵라면을 포함하는 거래의 } \mbox{$+$}} = \frac{2}{2} = 1$$

평가척도 - 향상도 (Lift)

- 우연에 의한 발생에 비해 연관성이 강한지 나타내는 측도
- 향상도 $(A \Rightarrow B) = \frac{P(B|A)}{P(B)} = \frac{P(A \cap B)}{P(A)P(B)}$
- 향상도 = 1 : A와 B가 독립
- 향상도 > 1 : 규칙이 의미가 있음
- 향상도 < 1 : 규칙이 의미가 없음

평가척도 - 예

맥주	맥주	맥주	맥주	콜라	콜라	컵라면	맥주	맥주	맥주	컵라면	맥주
치킨	치킨	치킨	치킨	맥주	맥주	김치	치킨	치킨	치킨	김치	치킨

- {컵라면} ⇒ {김치}
- 향상도 : 컵라면과 김치의 판매가 동시에 일어날 확률

$$\frac{\text{컵라면을 구입하였을 경우 김치를 구입하는 확률}}{\text{김치를 구입하는 확률}} = \frac{1}{2/12} = 6$$

• 향상도가 6으로 1에 비해 매우 큰 값을 보이므로 이는 우연에 의한 일이 아닐 가능성이 큼

연관규칙분석 - 예제

ID	판매상품
1	소주, 콜라, 맥주
2	소주, 콜라, 와인
3	소주, 주스
4	콜라, 맥주
5	소주, 콜라, 맥주, 와인
6	주스

지지도 50% 이상인 규칙	해당 transaction	신뢰도
소주 ⇒ 콜라	1,2,5	75%
콜라 ⇒ 맥주	1,4,5	75%
맥주 ⇒ 콜라	1,4,5	100%

- 연관규칙 : 맥주를 구입한 사람은 모두 콜라를 구매한다. (100%)
- 지지도 : 이러한 경향을 갖는 사람은 전체의 50%정도이다.

• 향상도 =
$$\frac{P(콜라|맥주)}{P(콜라)} = \frac{1}{4/6} = 1.5$$

- 맥주 구매 시 콜라를 구입하게 될 가능성은 맥주 구매가 전제되지 않았을 경우보다 1.5배 높아진다.

연관규칙분석

- 품목이 많은 경우 모든 연관 규칙을 찾는 것은 불가능
- 예를 들어 k개의 품목(item)이 있다면
 - \triangleright 품목집합 수 : $2^k 1$
 - \triangleright 연관규칙 수 : $3^k 2^{k+1} + 1$

효과적인 알고리즘 필요

• k = 4

Apriori 알고리즘

- 빈발항목집합: 최소 지지도 이상을 갖는 항목 집합
- 모든 항목 집합에 대한 측도(지지도, 신뢰도, 향상도)를 구하는 대신 최소 지지도 이상의 빈발항목집합만 찾아내서 연관 규칙을 계산
- 기본원리 :
 - ▷ 빈발항목집합 ⇒ 개별 부분집합도 빈발
 - ▶ 비빈발항목집합 ⇒ 모든 상위집합이 비빈발
- 연관규칙 마이닝 분석
 - 1. 빈발항목 찾기 → 2. 빈발항목에서 강한 연관규칙 생성

• (예제) 빈발패턴 생성

TID	구매항목
T10	A,B,E
T20	B,D
T30	B,C
T40	A,B,D
T50	A,C
T60	B,C
T70	A,C
T80	A,B,C,E
T90	A,B,C

• (예제) 빈발패턴 생성

TID	구매항목
T10	A,B,E
T20	B,D
T30	B,C
T40	A,B,D
T50	A,C
T60	B,C
T70	A,C
T80	A,B,C,E
Т90	A,B,C

■ Apriori 알고리즘

• (예제) 연관규칙 생성

TID	구매항목
T10	A,B,E
T20	B,D
T30	B,C
T40	A,B,D
T50	A,C
T60	B,C
T70	A,C
T80	A,B,C,E
Т90	A,B,C

	항목	지지도
	Α	6
	В	7
	С	6
	D	2
	E	2

지지도
4
4
2
4
2
2

빈발패턴	지지도
{A,B,C}	2
{A,B,E}	2

 $\{A,B,E\} = > \{A\}, \{B\}, \{E\}, \{A,B\}, \{A,C\}, \{B,E\}$

- 신뢰도 구하기

{A} ⇒ {B,E} : 신뢰도 = 2/6 = 0.33

 $\{B\} \Rightarrow \{A,E\} : 신뢰도 = 2/7 = 0.29$

 $\{E\} \Rightarrow \{A,B\}$: 신뢰도 = 2/2 = 1

{A,B} ⇒ {E} : 신뢰도 = 2/4 = 0.5

{A,E} ⇒ {B} : 신뢰도 = 2/2 = 1

{B,E} ⇒ {A} : 신뢰도 = 2/2 = 1

FP-Growth Algorithm

- 연관규칙을 Tree구조를 활용하여 나타내는 방식으로 트리와 노드 링크라는 자료구조를 활용
- Apriori의 연산 속도를 개선하기 위해 등장
- Candidate를 만들지 않음으로써 그를 위한 시간과 메모리 절약 가능
- 전체 DB를 2번만 scan함으로써 실행시간을 단축

FP-Growth Algorithm - 예제

■ 예제) 빈발패턴 생성

TID	구매항목							TID	구매항목
T10	A,B,E			_			_	T10	B,A,E
T20	B,D	항목	지지도개수		항목	지지도개수		T20	B,D
T30	В,С	А	6		В	7		T30	B,C
T40	A,B,D	В	7		А	6		T40	B,A,D
T50	A,C	С	6		С	6		T50	A,C
T60	В,С	D	2		D	2		T60	B,C
T70	A,C	E	2	1	E	2		T70	A,C
T80	A,B,C,E	빈발	항목 수집	-	내림	차순 정렬	-	T80	B,A,C,E
T90	A,B,C							T90	B,A,C

FP-Growth Algorithm - 예제

■ 예제) 빈발패턴 생성

TID	구매항목
T10	B,A,E
T20	B,D
T30	B,C
T40	B,A,D
T50	A,C
T60	В,С
T70	A,C
T80	B,A,C,E
T90	B,A,C

FP-Growth Algorithm - 예제

■ 예제) 빈발패턴 생성

항목	빈발패턴
Е	{B,E: 2}, {A,E: 2}, {A,B,E: 2}
D	{B,D: 2}
С	{B,C, : 4}, {A,C : 4}, {B,A,C : 2}
Α	{B,A: 4}