Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 22: Osservabilità e ricostruibilità a tempo continuo e dualità

Corso di Laurea Magistrale in Ingegneria Meccatronica A.A. 2021-2022

In questa lezione

- Deservabilità e ricostruibilità di sistemi lineari a t.c.
- ⊳ Sistema duale e sue proprietà

Osservabilità e ricostruibilità di sistemi LTI a tempo continuo

$$\dot{x}(t) = Fx(t) + Gu(t)$$

 $y(t) = Hx(t)$ $x(0) = x_0 \in \mathbb{R}^n$

$$u(t) \in \mathbb{R}^m \longrightarrow \sum_{x(t)} y(t) \in \mathbb{R}^p$$

$$y(au) = He^{F au}x_0 + \int_0^t He^{F(t-s)}Gu(s)ds, \ au \in [0,t]$$

Quando possiamo determinare univocamente $x_0 \in \mathbb{R}^n$ dalle misure?

Quando possiamo determinare univocamente $x^* = x(t) \in \mathbb{R}^n$ dalle misure?

Criterio di osservabilità del rango

 $X_{NO}(t)=$ spazio non osservabile nell'intervallo [0,t] $X_{NO}=$ (minimo) spazio non osservabile

Definizione: Un sistema Σ a t.c. si dice (completamente) osservabile se $X_{NO} = \{0\}$.

$$\mathcal{O} \triangleq \mathcal{O}_n = \begin{bmatrix} H \\ HF \\ \vdots \\ HF^{n-1} \end{bmatrix} = \mathsf{matrice} \ \mathsf{di} \ \mathsf{osservabilit\grave{a}} \ \mathsf{del} \ \mathsf{sistema} \quad \mathsf{(Matlab^{\circledR} \ obsv(sys))}$$

$$\Sigma$$
 osservabile \iff ker $(\mathcal{O}) = \{0\} \iff$ rank $(\mathcal{O}) = n$

N.B. Se un sistema Σ a t.c. è osservabile allora $X_{NO}(t)=\{0\}$ per ogni t>0!!

G. Baggio

Lez. 22: Osservabilità e ricostruibilità a t.c. e dualità

6 Aprile 2022

Esempio

$$x_1(t) = i_{L_1}(t), x_2(t) = i_{L_2}(t)$$

$$y(t) = i_R(t) = i_{L_1}(t) + i_{L_2}(t)$$

$$\mathcal{O} = \begin{bmatrix} 1 & 1 \\ -R(\frac{1}{L_1} + \frac{1}{L_2}) & -R(\frac{1}{L_1} + \frac{1}{L_2}) \end{bmatrix}$$

 $\mathsf{rank}(\mathcal{O}) = 1 \implies \Sigma$ non osservabile

G.	Bag	gio
----	-----	-----

Ricostruibilità (a t.c.) = osservabilità (a t.c.)

$$x^* = x(t) = e^{Ft}x_0 + \int_0^t e^{F(t-\tau)}Gu(\tau)d\tau$$

misure $u(\tau)$, $y(\tau)$, $\tau \in [0, t]$

- stati iniziali compatibili con le misure: $x_0 + X_{NO}(t)$
- stati finali compatibili con le misure: $e^{Ft}X_0 + e^{Ft}X_{NO}(t) + \int_0^t e^{F(t-\tau)}Gu(\tau)d\tau$ = $x^* + e^{Ft}X_{NO}(t)$

 $X_{NR}(t) = e^{Ft}X_{NO}(t)$ = spazio non ricostruibile nell'intervallo [0, t]

 e^{Ft} invertibile \Longrightarrow $X_{NR}(t) = \{0\} \iff X_{NO}(t) = \{0\}$

ricostruibilità = osservabilità !!

G. Baggio

Lez. 22: Osservabilità e ricostruibilità a t.c. e dualità

6 Aprile 2022

Sistema duale

sistema
$$\Sigma = (F, G, H)$$

$$\Sigma$$
: $x(t+1) = Fx(t) + Gu(t)$ m ingressi p uscite $y(t) = Hx(t)$ n stati

sistema duale
$$\Sigma_d = (F^\top, H^\top, G^\top)$$

$$\Sigma_d$$
: $x(t+1) = F^{ op}x(t) + H^{ op}u(t)$ p ingressi m uscite $y(t) = G^{ op}x(t)$ n stati

N.B. Qui consideriamo sistemi a t.d. ma tutto si applica a t.c.!

Sistema duale: raggiungibilità e controllabilità

$$\Sigma_d$$
: $x(t+1) = F^{\top}x(t) + H^{\top}u(t)$ p ingressi m uscite p ingressi m uscite n stati

$$\mathcal{R}_d = \begin{bmatrix} H^\top & F^\top H^\top & \cdots & (F^\top)^{n-1} H^\top \end{bmatrix} = \begin{bmatrix} H \\ FH \\ \vdots \\ HF^{n-1} \end{bmatrix}^\top \qquad \begin{array}{c} \Sigma_d \text{ raggiungibile} \\ \vdots \\ \Sigma \text{ osservabile} \end{array}$$

$$\operatorname{im}((F^{\top})^n) \subseteq \operatorname{im} \mathcal{R}_d \iff \ker(F^n) \supseteq \ker \mathcal{O}$$

 Σ_d controllabile

 Σ ricostruibile

G. Baggio

Lez. 22: Osservabilità e ricostruibilità a t.c. e dualità

6 Aprile 2022

Sistema duale: osservabilità e ricostruibilità

$$\Sigma_d$$
: $x(t+1) = F^{\top}x(t) + H^{\top}u(t)$ p ingressi m uscite p in m uscite n stati

$$\mathcal{O}_d = \begin{bmatrix} G^\top \\ G^\top F^\top \\ \vdots \\ G^\top (F^\top)^{n-1} \end{bmatrix} = \begin{bmatrix} G & FG & \cdots & F^{n-1}G \end{bmatrix}^\top = \mathcal{R}^\top \qquad \qquad \begin{matrix} \Sigma_d \text{ osservabile} \\ & \updownarrow \\ & \Sigma \text{ raggiungibile} \end{matrix}$$

$$\ker((F^{\top})^n) \supseteq \ker \mathcal{O}_d \iff \operatorname{im}(F^n) \subseteq \operatorname{im} \mathcal{R}$$

 Σ_d ricostruibile Ω

 Σ controllabile

Dualità: forma di Kalman di raggiungibilità/osservabilità

 Σ_d non raggiungibile

Forma di Kalman di raggiungibilità

$$\Sigma_{d} = (F^{\top}, H^{\top}, G^{\top}) \longrightarrow \Sigma_{K,d} = \begin{pmatrix} \begin{bmatrix} F_{11}^{\top} & F_{21}^{\top} \\ 0 & F_{22}^{\top} \end{bmatrix}, \begin{bmatrix} H_{1}^{\top} \\ 0 \end{bmatrix}, \begin{bmatrix} G_{1}^{\top} & G_{2}^{\top} \end{bmatrix} \end{pmatrix}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\Sigma = (F, G, H) \longrightarrow \Sigma_{K} = \begin{pmatrix} \begin{bmatrix} F_{11} & 0 \\ E & E \end{bmatrix}, \begin{bmatrix} G_{1} \\ C \end{bmatrix}, [H_{1} & 0] \end{pmatrix}$$

 Σ non osservabile

Forma di Kalman di osservabilità $(F_{22}, 0)$ sottosistema non osservabile

G. Baggio

Lez. 22: Osservabilità e ricostruibilità a t.c. e dualità

6 Aprile 2022

Dualità: test PBH di raggiungibilità/osservabilità

Test PBH di raggiungibilità

$$\Sigma_{d} = (F^{\top}, H^{\top}, G^{\top}) \longrightarrow \begin{array}{c} \Sigma_{d} \text{ raggiungibile } \iff \\ \text{rank}[zI - F^{\top} H^{\top}] = n, \ \forall z \in \mathbb{C} \\ \text{dualità} \\ \text{dualità} \\ \text{} \downarrow \\ \Sigma \text{ osservabile } \iff \\ \Sigma = (F, G, H) \longrightarrow \\ \text{rank} \begin{bmatrix} zI - F \\ H \end{bmatrix} = n, \ \forall z \in \mathbb{C} \\ \end{array}$$

Test PBH di osservabilità

G. Baggio Lez. 22: Osservabilità e ricostruibilità a t.c. e dualità

6 Aprile 2022

Dualità: allocazione degli autovalori

$$\Sigma_{d} = (F^{\top}, H^{\top}, G^{\top}) \longrightarrow \begin{array}{c} \Sigma_{d} \text{ raggiungibile} & \Longleftrightarrow \\ \exists \, K \in \mathbb{R}^{p \times n} \colon \, F^{\top} + H^{\top} K \text{ ha autovalori desiderati} \\ & \downarrow & \downarrow \\ \Delta = (F, G, H) \longrightarrow \\ \exists \, L = K^{\top} \in \mathbb{R}^{n \times p} \colon \, F + LH \text{ ha autovalori desiderati} \end{array}$$

G. Baggio

Lez. 22: Osservabilità e ricostruibilità a t.c. e dualità

6 Aprile 2022

Proprietà equivalenti all'osservabilità

$$\Sigma$$
: $x(t+1) = Fx(t) + Gu(t)$ m ingressi p uscite n stati

Teorema: Il sistema Σ è osservabile se e solo se:

- 1. $\operatorname{rank}(\mathcal{O}) = n$.
- 2. Il sistema duale Σ_d è raggiungibile.

3.
$$\operatorname{rank}\begin{bmatrix} zI - F \\ H \end{bmatrix} = n, \ \forall z \in \mathbb{C}.$$

4. Gli autovalori di F + LH sono allocabili arbitrariamente tramite la matrice $L \in \mathbb{R}^{n \times p}$.

Proprietà equivalenti alla ricostruibilità

$$\Sigma$$
: $x(t+1) = Fx(t) + Gu(t)$ m ingressi p uscite n stati

Teorema: Il sistema Σ è ricostruibile se e solo se:

- 1. $\ker F^n \supseteq \ker \mathcal{O} = X_{NO}$.
- 2. Il sistema duale Σ_d è controllabile.
- 3. $\operatorname{rank}\begin{bmatrix} zI F \\ H \end{bmatrix} = n, \ \forall z \in \mathbb{C}, \ z \neq 0.$

4. Esiste una matrice $L \in \mathbb{R}^{n \times p}$ tale che F + LH ha tutti gli autovalori nulli. N.B. Parlare di ricostruibilità ha senso solo a t.d.! 6 Aprile 2022 G. Baggio Lez. 22: Osservabilità e ricostruibilità a t.c. e dualità
