Financial Engineering Exam

Kasper Rosenkrands

Aalborg University

S20

- 1. Lebesgue integration theory
- 2. L^p spaces
- 3. Decomposition of measures
- 4. Generation of measures and product measures
- 5. Approximation by nice functions
- 6. Fourier transform

- 1. Lebesgue integration theory
- 1.1 Monotone Convergence Theorem
- 1.2 Proof of Monotone Convergence Theorem
- 2. L^p spaces
- 3. Decomposition of measures
- 4. Generation of measures and product measures
- 5. Approximation by nice functions
- 6. Fourier transform

Lebesgue integration theory Monotone Convergence Theorem

Theorem (Monotone Convergence Thereom)

If (f_n) is a monotone increasing sequence of functions in $M^+(X,m)$ which converges to f, then

$$\int f \, d\mu = \lim \int f_n \, d\mu. \tag{1.1}$$

Proof of Monotone Convergence Theorem

The strategy of the proof is to first show that

$$\lim \int f_n \, d\mu \le \int f \, d\mu, \tag{1.2}$$

then afterwards to show that also

$$\lim \int f_n \, d\mu \ge \int f \, d\mu, \tag{1.3}$$

in order to conclude that

$$\lim \int f_n \, d\mu = \int f \, d\mu \tag{1.4}$$

Lebesgue integration theory Proof of Monotone Convergence Theorem

According to Corollary 2.10

Corollary (2.10)

If (f_n) is a sequence in M(X, m) which converges to f on X, the f is in M(X, m).

the function f is measurable.

Proof of Monotone Convergence Theorem

From Lemma 4.5(1.)

Lemma

1. If f and g belong to $M^+(X, m)$ and $f \leq g$, then

$$\int f \, d\mu \le \int g \, d\mu. \tag{1.5}$$

2. If f belongs to $M^+(X, m)$, if E, F belong to m, and if $E \subseteq F$, then

$$\int_{E} f \, d\mu \le \int_{F} f \, d\mu. \tag{1.6}$$

we have that

$$\int f_n d\mu \leq \int f_{n+1} d\mu \leq \int f d\mu, \quad \forall n \in \mathbb{N}.$$
 (1.7)

Proof of Monotone Convergence Theorem

Therefore we must also have that

$$\lim \int f_n \, d\mu \le \int f \, d\mu. \tag{1.8}$$

So this was the first step of our strategy, now we proceed to the second step.

Proof of Monotone Convergence Theorem

Let $\alpha\in\mathbb{R}$ be such that $0<\alpha<1$ and let φ be a simple measurable function such that $0\leq\varphi\leq f$. Let

$$A_n = \{x \in X : f_n(x) \ge \alpha \varphi(x)\}, \qquad (1.9)$$

such that

- 1. $A_n \in m$
- 2. $A_n \subseteq A_{n+1}$
- 3. $X = \bigcup A_n$

Proof of Monotone Convergence Theorem

According to Lemma 4.5

Lemma

1. If f and g belong to $M^+(X, m)$ and $f \leq g$, then

$$\int f \, d\mu \le \int g \, d\mu. \tag{1.10}$$

2. If f belongs to $M^+(X, m)$, if E, F belong to m, and if $E \subseteq F$, then

$$\int_{E} f \, d\mu \le \int_{F} f \, d\mu. \tag{1.11}$$

it must be that

$$\int_{A_n} \alpha \varphi \, d\mu \le \int_{A_n} f_n \, d\mu \le \int f_n \, d\mu. \tag{1.12}$$

Proof of Monotone Convergence Theorem
Since the sequence A is monotone increasing and has union X, it follows from Lemma 4.3(2.) and Lemma 3.4(1.),

Lemma (4.3)

1. If φ and ψ are simple functions in $M^+(X, m)$ and c > 0, then

$$\int carphi\, d\mu = c\intarphi\, d\mu, \ (1.13)$$
 $\int (arphi+\psi)\, d\mu = \intarphi\, d\mu + \int\psi\, d\mu. \ (1.14)$

2. If λ is defined for E in m by

$$\lambda(E) = \int \varphi \chi_E \, d\mu, \quad (1.15)$$

then λ is a measure on m.

Lemma (3.4)

Let μ be a measure defined on a σ -algebra m.

1. If (E_n) is an increasing sequence in m, then

$$\mu\left(\bigcup_{n=1}^{\infty} E_n\right) = \lim \mu\left(E_n\right). \tag{1.16}$$

2. If (F_n) is a decreasing sequence in m and if $\mu(F_1) < +\infty$, then

$$\mu\left(\bigcap_{n=1}^{\infty}F_{n}\right)=\lim\mu\left(F_{n}\right).$$

(1.17)

Proof of Monotone Convergence Theorem

that

$$\int \varphi \, d\mu = \lim \int_{A_n} \varphi \, d\mu. \tag{1.18}$$

Taking the limit as n tends to infinity in (1.12) therefore gives that

$$\alpha \int \varphi \, d\mu \le \lim \int f_n \, d\mu. \tag{1.19}$$

Since this holds for all 0 < α < 1, by taking the limit as α tends to 1 we obtain

$$\int \varphi \, d\mu \le \lim \int f_n \, d\mu. \tag{1.20}$$

Proof of Monotone Convergence Theorem

As φ is any simple function in M^+ such that $0 \le \varphi \le f$, we can conclude that

$$\int f \, d\mu = \sup_{\varphi} \int \varphi \, d\mu \le \lim_{\varphi} \int f_n \, d\mu, \tag{1.21}$$

which concludes the proof.

- 1. Lebesgue integration theory
- 2. L^p spaces
- 2.1 Minkowski's Inequality
- 2.2 Proof of Minkowski's Inequality
- 3. Decomposition of measures
- 4. Generation of measures and product measures
- 5. Approximation by nice functions
- 6. Fourier transform

L^p spaces Minkowski's Inequality

Theorem (Minkowski's Inequality)

If f and h belong to L_p , $p \ge 1$, then f + h belongs to L_p and

$$||f + h||_{p} \le ||f||_{p} + ||h||_{p}.$$
 (2.1)

- ▶ The case of p = 1 is equivalent to the triangular inequality and will not be considered here.
- ▶ We suppose p > 1.

Proof of Minkowski's Inequality

As both f and h are measurable functions, so is the sum

$$f+h, (2.2)$$

as the sum of measurable functions are also measurable.

Proof of Minkowski's Inequality

From Corollary 5.4, Theorem 5.5 and the fact that

$$|f+h|^p \le [2\sup\{|f|,|h|\}]^p \le 2^p\{|f|^p+|h|^p\},$$
 (2.3)

it follows that $f + h \in L^p$.

Corollary (5.4)

If f is measurable, g is integrable, and $|f| \le |g|$, then f is integrable, and

$$\int |f| d\mu \le \int |g| d\mu. \quad (2.4)$$

Theorem (5.5)

A constant multiple αf and a sum f+g of functions in L belongs to L and

$$\int \alpha f \, d\mu, \qquad (2.5)$$

$$\int (f+g) d\mu = \int f d\mu + \int g d\mu. \quad (2.6)$$

Proof of Minkowski's Inequality

Using the triangular inequality we can see that

$$|f+h|^p = |f+h||f+h|^{p-1} \le |f||f+h|^{p-1} + |h||f+h|^{p-1}.$$
(2.7)

Since $f + h \in L^p$ it implies that $|f + h|^p \in L^1$.

Assuming that $\frac{1}{p} + \frac{1}{q} = 1$, it implies that

$$\frac{1}{p} + \frac{1}{q} = 1 \Leftrightarrow 1 + \frac{p}{q} = p \Leftrightarrow \frac{p}{q} = p - 1 \Leftrightarrow p = (p - 1)q, (2.8)$$

and thereby that $|f + h|^{p-1} \in L^q$.

Proof of Minkowski's Inequality

We can now apply Hölder's Inequality,

Theorem (Hölder's Inequality)

Let
$$f \in L_p$$
 and $g \in L_q$ where $p > 1$ and $(1/p) + (1/q) = 1$. Then $fg \in L_1$ and $\|fg\|_1 \le \|f\|_p \|g\|_q$.

to infer that

$$\int |f||f+h|^{p-1} d\mu \le ||f||_p \left\{ \int |f+h|^{(p-1)q} d\mu \right\}^{1/q}$$

$$= ||f||_p ||f+h||_p^{p/q}.$$
(2.9)

Note that exactly the same can be said for the other term

$$\int |h||f+h|^{p-1} d\mu \le ||h||_p \left\{ \int |f+h|^{(p-1)q} d\mu \right\}^{1/q}$$

$$= ||h||_p ||f+h||_p^{p/q}.$$
(2.11)

Proof of Minkowski's Inequality

This tells us that

$$||f + h||_{p}^{p} \le ||f||_{p} ||f + h||_{p}^{p/q} + ||h||_{p} ||f + h||_{p}^{p/q}$$

$$= \{||f||_{p} + ||h||_{p}\} ||f + h||_{p}^{p/q}.$$
(2.14)

If we let $A = ||f + h||_p = 0$, then the result becomes trivial as a norm by definition is greater than or equal to zero.

Proof of Minkowski's Inequality

Suppose now that $A \neq 0$ then we can divide (2.14) by $A^{p/q}$

$$\frac{A^{p}}{A^{p/q}} \le \{\|f\|_{p} + \|h\|_{p}\} \frac{A^{p/q}}{A^{p/q}} \tag{2.15}$$

$$A^{p-p/q} \le \|f\|_p + \|h\|_p, \tag{2.16}$$

by noting that p - p/q = 1, we obtain

$$||f + h||_{p} \le ||f||_{p} + ||h||_{p},$$
 (2.17)

which concludes the proof.

22 / 34

L^p spaces

L^p spaces

L^p spaces

- 1. Lebesgue integration theory
- 2. L^p spaces
- 3. Decomposition of measures
- 4. Generation of measures and product measures
- Approximation by nice functions
- 6. Fourier transform

Decomposition of measures

- 1. Lebesgue integration theory
- 2. L^p spaces
- 3. Decomposition of measures
- 4. Generation of measures and product measures
- Approximation by nice functions
- 6. Fourier transform

Generation of measures and product measures

- 1. Lebesgue integration theory
- 2. L^p spaces
- 3. Decomposition of measures
- 4. Generation of measures and product measures
- 5. Approximation by nice functions
- 6. Fourier transform

Approximation by nice functions

- 1. Lebesgue integration theory
- 2. L^p spaces
- 3. Decomposition of measures
- 4. Generation of measures and product measures
- 5. Approximation by nice functions
- 6. Fourier transform

Fourier transform Proof of Minkowski's Inequality