```
In [1]:

import pandas as pd
```

```
In [2]:
```

In [3]:

imoveis

Out[3]:

	Про	Valor	Condominio	IPIU
0	Apartamento	NaN	970.0	68.0
1	Apartamento	2000.0	878.0	112.0
2	Casa	5000.0	NaN	500.0
3	Apartamento	NaN	1010.0	170.0
4	Apartamento	1500.0	850.0	NaN
5	Casa	NaN	NaN	NaN
6	Apartamento	2000.0	878.0	NaN
7	Apartamento	1550.0	NaN	228.0
8	Apartamento	2500.0	880.0	195.0

In [4]:

imoveis.shape[0]

Out[4]:

9

```
In [5]: ▶
```

```
imoveis.dropna(subset = ['Valor'], inplace = True)
imoveis
```

Out[5]:

	Tipo	Valor	Condominio	IPTU
1	Apartamento	2000.0	878.0	112.0
2	Casa	5000.0	NaN	500.0
4	Apartamento	1500.0	850.0	NaN
6	Apartamento	2000.0	878.0	NaN
7	Apartamento	1550.0	NaN	228.0
8	Apartamento	2500.0	880.0	195.0

```
In [6]: 
▶
```

```
selecao = (imoveis['Tipo'] == 'Apartamento') & (imoveis['Condominio'].isnull())
print(f"valores boleanos com condição de seleção: \n\n{selecao}")
print()
print(f"inversão dos valores boleanos: \n\n{~selecao}")
```

valores boleanos com condição de seleção:

- 1 False
- 2 False
- 4 False
- 6 False
- 7 True
- 8 False
- dtype: bool

inversão dos valores boleanos:

- 1 True
- 2 True
- 4 True
- 6 True
- 7 False
- 8 True

dtype: bool

o caractere ~ inverte o valor boelano onde, oque oque era falso vira verdadeiro, e oque era verdadeiro vira falso.

In [7]: ▶

imoveis

Out[7]:

	Tipo	Valor	Condominio	IPTU
1	Apartamento	2000.0	878.0	112.0
2	Casa	5000.0	NaN	500.0
4	Apartamento	1500.0	850.0	NaN
6	Apartamento	2000.0	878.0	NaN
7	Apartamento	1550.0	NaN	228.0
8	Apartamento	2500.0	880.0	195.0

In [8]: ▶

imoveis2 = imoveis[~selecao]
imoveis2

Out[8]:

	Tipo	Valor	Condominio	IPTU
1	Apartamento	2000.0	878.0	112.0
2	Casa	5000.0	NaN	500.0
4	Apartamento	1500.0	850.0	NaN
6	Apartamento	2000.0	878.0	NaN
8	Apartamento	2500.0	880.0	195.0

substitui os valores na variavel pelos valores novos da seleção invertida.

In [9]: ▶

imoveis = imoveis2
imoveis

Out[9]:

	Tipo	Valor	Condominio	IPTU
1	Apartamento	2000.0	878.0	112.0
2	Casa	5000.0	NaN	500.0
4	Apartamento	1500.0	850.0	NaN
6	Apartamento	2000.0	878.0	NaN
8	Apartamento	2500.0	880.0	195.0

In [10]:

```
imoveis = imoveis.fillna({'Condominio': 0, 'IPTU': 0})
imoveis
```

Out[10]:

	Tipo	Valor	Condominio	IPTU
1	Apartamento	2000.0	878.0	112.0
2	Casa	5000.0	0.0	500.0
4	Apartamento	1500.0	850.0	0.0
6	Apartamento	2000.0	878.0	0.0
8	Apartamento	2500.0	880.0	195.0

In [11]:

```
imoveis.index = range(imoveis.shape[0])
imoveis
```

Out[11]:

	Tipo	Valor	Condominio	IPTU
0	Apartamento	2000.0	878.0	112.0
1	Casa	5000.0	0.0	500.0
2	Apartamento	1500.0	850.0	0.0
3	Apartamento	2000.0	878.0	0.0
4	Apartamento	2500.0	880.0	195.0

Out[12]:

	Corredor	Melhor Tempo
0	Marcos	9.62
1	Pedro	NaN
2	João	9.69
3	Beto	9.72
4	Sandro	NaN
5	Denis	9.69
6	Ary	NaN
7	Carlos	9.74

```
In [13]:
```

```
atletas.fillna(atletas.mean(), inplace = True)
```

```
In [14]:
```

atletas

Out[14]:

	Corredor	Melhor Tempo
0	Marcos	9.620
1	Pedro	9.692
2	João	9.690
3	Beto	9.720
4	Sandro	9.692
5	Denis	9.690
6	Ary	9.692
7	Carlos	9.740

```
In [15]:
```

In [16]:

alunos

Out[16]:

	Nome	ldade	Sexo	Notas
0	Ary	15	М	7.5
1	Cátia	27	F	2.5
2	Denis	56	М	5.0
3	Beto	32	М	10.0
4	Bruna	42	F	8.2
5	Dara	21	F	7.0
6	Carlos	19	М	6.0
7	Alice	35	F	5.6

In [17]:

alunos['Notas-Média(Notas)'] = alunos['Notas'].mean()
alunos

Out[17]:

	Nome	ldade	Sexo	Notas	Notas-Média(Notas)
0	Ary	15	М	7.5	6.475
1	Cátia	27	F	2.5	6.475
2	Denis	56	М	5.0	6.475
3	Beto	32	М	10.0	6.475
4	Bruna	42	F	8.2	6.475
5	Dara	21	F	7.0	6.475
6	Carlos	19	М	6.0	6.475
7	Alice	35	F	5.6	6.475

```
In [18]:
```

In [19]:

alunos

Out[19]:

	Nome	Idade	Sexo	Notas	Notas-Média(Notas)
0	Ary	15	М	7.5	1.025
1	Cátia	27	F	2.5	-3.975
2	Denis	56	М	5.0	-1.475
3	Beto	32	М	10.0	3.525
4	Bruna	42	F	8.2	1.725
5	Dara	21	F	7.0	0.525
6	Carlos	19	М	6.0	-0.475
7	Alice	35	F	5.6	-0.875

In [20]: ▶

```
alunos['Faixa Etária'] = alunos['Idade'].apply(lambda x: 'Menor que 20 anos' if x < 20 else ('Entre 20 e 40 anos' if (x >= 20 and x <= 40) else 'Maior que 40 anos'))
```

In [21]: ▶

alunos

Out[21]:

	Nome	ldade	Sexo	Notas	Notas-Média(Notas)	Faixa Etária
0	Ary	15	М	7.5	1.025	Menor que 20 anos
1	Cátia	27	F	2.5	-3.975	Entre 20 e 40 anos
2	Denis	56	М	5.0	-1.475	Maior que 40 anos
3	Beto	32	М	10.0	3.525	Entre 20 e 40 anos
4	Bruna	42	F	8.2	1.725	Maior que 40 anos
5	Dara	21	F	7.0	0.525	Entre 20 e 40 anos
6	Carlos	19	М	6.0	-0.475	Menor que 20 anos
7	Alice	35	F	5.6	-0.875	Entre 20 e 40 anos

In [22]:

```
alunos['Notas-Média(Notas)'] = alunos.Notas - alunos.Notas.mean()
```

In [23]: ▶

```
alunos
```

Out[23]:

	Nome	ldade	Sexo	Notas	Notas-Média(Notas)	Faixa Etária
0	Ary	15	М	7.5	1.025	Menor que 20 anos
1	Cátia	27	F	2.5	-3.975	Entre 20 e 40 anos
2	Denis	56	М	5.0	-1.475	Maior que 40 anos
3	Beto	32	М	10.0	3.525	Entre 20 e 40 anos
4	Bruna	42	F	8.2	1.725	Maior que 40 anos
5	Dara	21	F	7.0	0.525	Entre 20 e 40 anos
6	Carlos	19	М	6.0	-0.475	Menor que 20 anos
7	Alice	35	F	5.6	-0.875	Entre 20 e 40 anos

Erro: Alternativa correta! O único erro nesta linha de código está na declaração elif, trocando por else o código roda perfeitamente.

```
In [24]:

alunos['Faixa Etária'] = alunos['Idade']
   .apply(lambda x: 'Menor que 20 anos' if x < 20
        elif ('Entre 20 e 40 anos' if (x >= 20 and x <= 40)
        else 'Maior que 40 anos'))</pre>
```

```
File "<ipython-input-24-b1663ea618f4>", line 2
.apply(lambda x: 'Menor que 20 anos' if x < 20
```

IndentationError: unexpected indent

```
In [27]: ▶
```

In [33]:

```
m1 m2 m3 m4 m5
    C
       C
          C
                 C
0
             C
    C
       C
                 C
1
          C
             C
2
    C
       C
          C
             C
                 C
3
    C
       C
          C
             С
                 C
4
    C
       C
          C
             C
                 C
5
            C
    C
       C
          C
                 C
6
    C
       C
          C
             C
                 C
7
    C
       C
          C
             C
                 C
8
    C
       c
          C
             C
                 C
9
    C
       c
          C
             C
                 C
10
    c
       C
         C
            C C
          C
                 C
11
       C
    C
             С
12
    C
       C
          C
             С
                 C
       C
          C
             C
13
    C
                 C
14
    C
       C
          C
             C
                 C
       C
          C
                 C
15
    c
              C
16
    c
       c
          C
             C
                C
17
    C
       C
          C
                 C
18
       C
         C
    C
             С
                 C
19
    C
       С
          C
             C
                 C
20
    C
       C
                 C
          С
             С
    C
21
       С
          С
             C
                 c
22
    C
          C
       C
              C
                 c
23
    C
       C
          С
             C
                 C
24
    C
       C
             C
                 C
25
    C
       C
          C
            C
                 C
    C
       C
26
          C
             C
                 C
27
    С
       c
          C
             C
                 C
28
    С
       С
          C
                 c
             С
29
       C
          C
    C
             C
                 C
30
    C
       C
          C
                 C
             C
    C
31
       C
          c C
                 C
32
    C
       C
          c C
                 c
    C
          C
33
       С
             C
                 C
          C
                 C
34
    c
       c
             C
       C
35
    C
          C
             С
                 C
36
    C
       C
                 C
          С
             C
    C
       C
37
          C
             С
                 C
38
                 C
    C
       C
             C
          С
       C
39
    C
          C
             C
                 C
       C
          C
             C
                 C
40
    C
```

```
41
   C
      c C C c
42
    C
       C
          СС
                  C
43
           C
    C
       C
              C
44
    C
       c C
             C
                  c
45
       Ссс
    C
46
       c c C
    C
47
    C
       C
          c C
48
   \mathsf{C} \mathsf{C} \mathsf{C} \mathsf{C} \mathsf{C}
   c c C C c
   Faces
   Coroa
```

Out[33]:

	Faces	m1	m2	m3	m4	m5
С	Coroa	25	24	31	27	25
c	Cara	25	26	19	23	25

```
In [25]:
```

```
In [26]: ▶
```

alunos

Out[26]:

	Nome	Idade	Sexo	Notas	Aprovado
0	Ary	15	М	7.5	True
1	Cátia	27	F	2.5	False
2	Denis	56	М	5.0	False
3	Beto	32	М	10.0	True
4	Bruna	42	F	8.2	True
5	Dara	21	F	7.0	True
6	Carlos	19	М	6.0	False
7	Alice	35	F	5.6	False

In [27]:

```
sexo = alunos.groupby('Sexo')
sexo = pd.DataFrame(sexo['Notas'].mean().round(2))
sexo.columns = ['Notas Médias']
sexo
```

Out[27]:

Notas Médias

Sexo	
F	5.82
М	7.12

```
In [25]: ▶
```

Out[25]:

	Local	Produto	Preço
0	Feira	Cebola	2.50
1	Mercado	Cebola	1.99
2	Supermercado	Cebola	1.69
3	Feira	Tomate	4.00
4	Mercado	Tomate	3.29
5	Supermercado	Tomate	2.99
6	Feira	Batata	4.20
7	Mercado	Batata	3.99
8	Supermercado	Batata	3.69

```
In [28]:
```

```
produtos = precos.groupby('Produto')
produtos.describe().round(2)
```

Out[28]:

Preço count mean std min 25% 50% 75% max **Produto** 3.96 0.26 3.69 3.84 3.99 4.10 4.2 **Batata** 3.0 Cebola 2.5 3.0 2.06 0.41 1.69 1.99 2.24 1.84 **Tomate** 3.0 3.43 0.52 2.99 3.14 3.29 3.64 4.0

```
In [30]:

estatisticas = ['mean', 'std', 'min', 'max']

reman = ('mean', 'Médial | detd', 'Desvie Padrão' | 'min', 'Médial | 'may', 'may'
```

```
estatisticas = ['mean', 'std', 'min', 'max']
nomes = {'mean': 'Média', 'std': 'Desvio Padrão', 'min': 'Mínimo', 'max': 'Máximo'}
produtos['Preço'].aggregate(estatisticas).rename(columns = nomes).round(2)
```

Out[30]:

imo Maximo	Minimo	Padrão	Desvio	Média
imo Maximo	Minimo	Padrão	Desvio	Média

Produto				
Batata	3.96	0.26	3.69	4.2
Cebola	2.06	0.41	1.69	2.5
Tomate	3.43	0.52	2.99	4.0

```
In []:
```