Problem Set 9

Due: 5/15

Part One: Hand-Written Exercise

- 1. We perform best subset, forward stepwise, and backward stepwise selection on a single data set. For each approach, we obtain p + 1 models, containing 0, 1, 2, ..., p predictors. For k = 1, ..., p, please answer the following questions and justify your answers:
 - (a) Which of the three models with k predictors has the smallest training RSS?
 - (b) Which of the three models with k predictors has the smallest testing MSE?
 - (c) (True or False) The predictors in the k-variable model identified by forward stepwise are a subset of the predictors in the (k + 1)-variable model identified by forward stepwise selection.
 - (d) (True or False) The predictors in the k-variable model identified by backward stepwise are a subset of the predictors in the (k+1)-variable model identified by backward stepwise selection.
- 2. For a data set $(y_i, \mathbf{x}_i)_{i=1}^n$, where y_i is a scalar and \mathbf{x}_i a $p \times 1$ column vector. That is, the regression model is $y_i = \sum_{j=1}^p \beta_j x_{ij} + u_i$. Please show that the Ridge Regression estimator $\hat{\beta}_R$ is given by:

$$\hat{\beta}_R = \left(\sum_{i=1}^n \mathbf{x}_i \mathbf{x}_i' + \lambda \mathbf{I}\right)^{-1} \left(\sum_{i=1}^n \mathbf{x}_i y_i\right),\,$$

where λ is the tuning parameter and I is the p-dimensional identity matrix.

- 3. Answer the following questions with "True" or "False" and briefly explain it. All notations are defined the same as in our lecture slides.
 - (a) The LASSO regression will predict 0 when the tuning parameter, λ , goes to infinity.
 - (b) Suppose we fit data with forward stepwise selection, backward stepwise selection, and best subset selection procedures and obtain three respective selected models. Two of them should be identical.

Part Two: Computer Exercise

Consider the simulation settings on slide 24, Lecture 8. The data generating process (DGPs) are

DGP 1:
$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i$$
, $\beta_0 = 2$, $\beta_1 = \beta_2 = 1$,
DGP 2: $y_i = \beta_0 + \sum_{i=1}^{20} \beta_j x_{ij} + \epsilon_i$, $\beta_0 = 2$, $\beta_1 = \cdots = \beta_{20} = 1$,

where all x_{ij} and ϵ_i are i.i.d. $\mathcal{N}(0,1)$, and the sample size is n=55. For each DGP, we estimate two models with 25 and 50 regressors, including the "signal" variables in the DGP and other "noise" variables (generated as i.i.d. $\mathcal{N}(0,1)$). Consider 100 values in [0,2], with the optimal determined by 10-fold CV.

- 1. Plot the lines of ridge estimates averaged over 100 replications. Combine the 4 graphs on a single plot and place them as 2×2 .
- 2. Attach legends properly on the 4 graphs respectively.

Note that this exercise replicates the figures on slides 25 - 28, Lecture 8. Your numbers should be close to those on the slides but not necessarily the same.