Lung and pleural tumors

Acknowledgment and Disclaimer

MEDICINE THROUGH THE GLASS SLIDE is a purely educational platform designed to provide a learning opportunity by drawing on personal experiences, scientific literature and publically available information.

I acknowledge these sources and attribute due credit to the original creators and authors in compliance with legal obligations regarding intellectual property rights.

Ibrahim Zardawi MD

Bachelor of Medicine, Bachelor of Surgery (MB ChB)
University of Baghdad, Iraq, Master of Science in
Pathology (MSc) University of Baghdad, Iraq, Fellow of
the Royal College of Pathologists of Great Britain,
Fellow of the Royal College of Pathologists of
Australasia, Fellow of the International Academy of
Cytology, Diploma in Cytopathology, Royal College of
Pathologists of Australasia, Founding Fellow of the
Faculty of Science of the Royal College of Pathologists
of Australasia, Fellow of the College of the American
Pathologists FCAP, Fellow of the American Association
of Clinical Pathologists, Diploma of the European
Board of Pathology

Lung cancer			
Year	Survival Reason		
	rates		
1970	10%	Late diagnosis	
2000	15%	25% of cases are diagnosed at an early stage	
2020	20%	50% of cases present at late stage (survival rate of 9%)	
Current	25%	National 5-year survival average is 25%	

2 million new lung cancer cases and 1.7 million deaths were recorded globally in 2020

The advent of targeted therapies guided by predictive markers heralds a promising future, with improved outcomes on the horizon

Lung cancer exhibits a diverse biological landscape, ranging from highly aggressive to indolent growth, shaped by significant molecular and pathological variations that profoundly impact patient outcomes.

Lung cancer

Patient #. 1	Patient #. 2	
63-year-old female	63-year-old female	
Heavy smoker	Non-smoker	
Clinical Features	Clinical Presentation:	
3-week history of cough, hemoptysis, dyspnea	Short history of cough with minor hemoptysis	
Systemic: weakness, weight loss	Otherwise healthy and asymptomatic	
CNS: headaches, right-sided weakness and	Physical exam:	
coordination deficits	Normal vital signs	
Physical exam:	Clear breath sounds	
Decreased left-sided breath sounds	No neurological deficits	
Imaging Findings:	Normal abdominal exam	
Primary: Large left central lung mass (5.2cm)	Imaging & Diagnostics:	
obstructing main bronchus	CXR: 2.5cm right upper lobe mass	
Metastases:	Chest CT: 2.8cm spiculated mass, no	
Brain (multiple lesions)	lymphadenopathy	
Adrenal: 5cm right mass	Bronchoscopy: Right upper bronchus lesion	
Mediastinal/hilar lymphadenopathy	successfully biopsied (adenocarcinoma)	
Diagnostic:	Treatment & Outcome:	
Bronchoscopy confirmed obstructing tumor	Received surgery and targeted therapy	
Biopsy obtained (small cell NE carcinoma)	Excellent prognosis: alive and well at 5-year	
Outcome:	follow-up	
Deceased 2 weeks after biopsy		

Tumours of the lung WHO Classification, 2021

Adenomas

Sclerosing pneumocytoma

Alveolaradenoma

Papillary adenoma of the lung

Bronchiolar adenoma / ciliated muconodular

papillary tumour

Mucinous cystadenoma of the lung

Mucous gland adenoma of the lung

Precursor glandular lesions

Atypical adenomatous hyperplasia of the lung

Adenocarcinoma in situ of the lung

Adenocarcinomas

50%

Minimally invasive adenocarcinoma of the lung Invasive non-mucinous adenocarcinoma of the lung

Invasive mucinous adenocarcinoma of the lung

Colloid adenocarcinoma of the lung

Fetal adenocarcinoma of the lung

Enteric-type adenocarcinoma of the lung

Squamous precursor lesions

<u>Squamous dysplasia and carcinoma in situ of</u> the lung

Squamous cell carcinomas

20%

Squamous cell carcinoma of the lung

Lymphoepithelial carcinoma of the lung

Large cell carcinomas

<5%

Large cell carcinoma of the lung

Adenosquamous carcinoma

Adenosquamous carcinoma of the lung

Sarcomatoid carcinomas

Pleomorphic carcinoma of the lung

Pulmonary blastoma

Carcinosarcoma of the lung

Other epithelial tumours

NUT carcinoma of the lung (see NUT

carcinoma of the thorax)

Thoracic SMARCA4-deficient undifferentiated

<u>tumour</u>

Salivary gland-type tumours

Pleomorphic adenoma of the lung

Adenoid cystic carcinoma of the lung

Epithelial-myoepithelial carcinoma of the lung

Mucoepidermoid carcinoma of the lung

Hyalinizing clear cell carcinoma of the lung
Myoepithelioma and myoepithelial carcinoma

of the lung

Lung neuroendocrine neoplasms

20%

Lung neuroendocrine neoplasms: Introduction

Precursorlesion

<u>Diffuse idiopathic pulmonary neuroendocrine</u>

cell hyperplasia

Neuroendocrine tumours

Carcinoid/neuroendocrine tumour of the lung

Neuroendocrine carcinomas

Small cell lung carcinoma

Large cell neuroendocrine carcinoma of the

lung

Tumours of ectopic tissues

Melanoma of the lung

Meningioma of the lung

Mesenchymal tumours specific to the lung

Pulmonary hamartoma

Pulmonary chondroma

Diffuse pulmonary lymphangiomatosis

Pleuropulmonary blastoma

Pulmonary artery intimal sarcoma

Congenital peribronchial myofibroblastic

tumour

Primary pulmonary myxoid sarcoma with

EWSR1-CREB1 fusion

PEComatous tumours

Lymphangioleiomyomatosis of the lung

PEComa of the lung

Haematolymphoid tumours

Haematolymphoid tumours of the lung:

Introduction

MALT lymphoma of the lung

Pulmonary diffuse large B-cell lymphoma

Lymphomatoid granulomatosis of the lung

Intravascular large B-cell lymphoma of the lung

Pulmonary Langerhans cell histiocytosis

Pulmonary Erdheim-Chester disease

Tumours of the lung		
Epithelial tumors (carcinomas)		75%
Adenocarcinomas	~50%	
Squamous cell carcinomas	20%	
Large cell undifferentiated		
carcinomas	~5%	
Other carcinomas		
Neuroendocrine Neoplasms		~20%
Neuroendocrine tumors		
(carcinoid tumor)	~5%	
Neuroendocrine carcinomas		
(small cell, large cell)	15%	
Mesenchymal, lymphoid, other		~5%
hematolymphoid tumours		
Sarcomas, lymphomas, other	tumors	;

Smoking and lung cancer

Smoking is the most important risk factor involved in >80% of the cancers

Up to 20% of lung cancers occur in nonsmokers (mostly in women; majority are adenocarcinomas with EGFR mutations; almost none have KRAS mutations)

Tumor location is an important prognostic factor

Majority of lung cancers in smokers arise centrally (air conducting system)

central cancers are mainly small cell carcinomas and squamous cell carcinomas EGFR generally not activated KRAS commonly activated

Most lung cancers in non-smokers arise peripherally (gas exchanges system)

Peripheral cancers are mainly

adenocarcinomas

Most are EGFR activated

Almost none are KRAS activated

Changes in frequency of histological types of lung cancer in the last 5 decades			
Tumour type	1977-1981	2012-2016	
Squamous cell carcinoma (SCC)	>40%	<25% •	
Adenocarcinoma (ADC)	<30%	>50%	
Small cell NEC (SCLC)	>20%	<15%	
Large cell NEC (LCNEC)	<1%	5%	
Large cell undifferentiated carcinoma NOS	10%	1%	

Reasons for the epidemiologic shift

Change in cigarette construction and tobacco composition which lead to increased puff volume and shifted of carcinogen deposition to the periphery

Declines in prevalence of smoking among males than females shifted the M:F ratio from 3:1 to 1:1

Improvement in histological diagnosis due to use of IHC and molecular testing has lead to refinement in diagnosis

Targeted therapy and use of **predictive markers** have lead to improved outcome

Lung cancer terminology in resection specimens and small samples		
Large specimens (resection and postmortem)	Small samples (FNA, core biopsies, etc)	
Squamous cell carcinoma (SCC) (Keratin formation or intercellular bridges)	Squamous cell carcinoma Non-small cell carcinoma favor SCC	
Adenocarcinoma (ADC) (Glands or mucin)	Adenocarcinoma Non-small cell carcinoma favor ADC	
Neuroendocrine neoplasms (NEN) Neuroendocrine Tumor (NET) Neuroendocrine Carcinoma (NEC) Small cell NEC Large cell NEC	Neuroendocrine neoplasms (NEN) Neuroendocrine Tumor (NET) Neuroendocrine Carcinoma (NEC) Small cell NEC (SCLC) Non-small cell carcinoma (NSCC) with large cell neuroendocrine (LCNEC) features	
Large cell undifferentiated carcinoma	NSCC NOS	

IHC markers used in the evaluation of squamous cell carcinoma (SCC) and adenocarcinoma (ADC)

	SCC	ADC
Primary diagnosis is based	Individual cell	Gland formation,
on morphology	keratinization,	mucin production
Confirmed by IHC	keratin pearl	Tubular, papillary,
	formation,	lepidic, mucinous, solid,
	intercellular bridges	micropapillary
Morphology IHC markers		
TTF1 (Thyroid	Neg	Pos
Transcription factor-1	J	103
Napsin A	Neg	Pos
P40 (subunit of IL-12)	Pos	Neg
HMW cytokeratins (CK5/	6) Pos	Neg

Adenocarcinoma, TTF1 Pos

Squamous cell carcinoma, p40 Pos

Adenocarcinoma, Napsin A Pos

Squamous cell carcinoma, HMW keratin Pos

Adenocarcinoma (ADC) Gland forming tumour

Mucinous and non-mucinous subtype

Non-mucinous may show several histological patterns

ADC cells are typically positive for Napsin A, TTF-1 and low molecular weight cytokeratin positive

Squamous markers (P40 and high molecular weight keratins CK5/6) are negative

Napsin A is an aspartic proteinase expressed in lung and kidney Marker for lung adenocarcinoma and renal cell carcinoma (RCC)

Adenocarcinomas display glandular differentiation and shows one or more architectural features

- Acinar
- > Lepidic
- Papillary
- Mucinous
- Micropapillary
- > Solid

Acinar ADC

Lepidic ADC

Papillary ADC

Mucinous ADC

Micropapillary ADC

Solid ADC

Mucinous adenocarcinoma

Mucinous adenocarcinoma

Non-mucinous adenocarcinoma (macroscopic, cytology and histology)

Non-mucinous adenocarcinoma

Black lung with non-mucinous adenocarcinoma

Normal lung

Non-mucinous adenocarcinoma

Mucinous adenocarcinoma

Pathway to lung adenocarcinoma (ADC) and precancerous lesions

Atypical Adenomatous Hyperplasia Small (<5mm) focus of atypical type Il pneumocyte

Adenocarcinoma in situ

Larger proliferation of atypical type II pneumocytes ≤30mm, without invasion

Minimally invasive adenocarcinoma

Proliferation of atypical type II pneumocytes, ≤30 mm with invasive component ≤5mm

Invasive adenocarcinoma

Invasive component is >5mm

Normal lung parenchyma

Atypical Adenomatous Hyperplasia (AAH) <5mm

Adenocarcinoma in situ (ADC in situ) ≤30mm, without invasion

Invasive Adenocarcinoma >5mm

Adenocarcinoma and precursor lesions

Invasive ADC

Adenocarcinoma summary
Often presents as a peripheral
mass with gland formation and
mucin production

Mucinous adenocarcinomas tend to **spread aerogenously**, forming satellite tumors (less likely to be cured by surgery)

Oncogenic gain-of-function mutations occur in one third: EGFR in 15%, ALK in 5%, ROS1 in 1%, MET in 2%, RET in 1%, BRAF in 2%, PI3K in 2% and KRAS in 30%

Keratinizing SCC (p40)

Pathways to lung
Squamous cell carcinoma
(SCC) and precancerous
lesions

Mostly occur in the proximal airways

Squamous Metaplasia

Squamous Dysplasia

In situ SCC

Invasive SCC

The above pathways are non-linear and most of the early changes are non-obligate precancers because they can be reversed with the cessation of the stimuli that evoked them

Normal epithelium

Squamous metaplasia

Squamous dysplasia

In Situ SCC

Invasive SCC

Invasive SCC

Neuroendocrine cells Present in all epithelial site

Largest group of hormone producing cells in the body

Originate locally from stem cells

Identified by IHC for Chromogranin, Synaptophysin, CD56 or by hormones they produce

Neuroendocrine Neoplasms (NEN)		
Well differentiated	Poorly differentiated	
Neuroendocrine tumors (NET)	Neuroendocrine carcinomas (NEC)	
Grade 1	Small cell NEC	
Typical Carcinoid	>30 mitoses/2 mm ²	
<2 mitoses/2 mm ²	Ki67 >30%	
Ki67 <3%		
No necrosis	Large cell NEC	
	>30 mitoses/2 mm ²	
Grade 2	Ki67 >30%	
Atypical Carcinoid		
2-10 mitoses/2 mm ²		
Ki67 3%-20%		
Focal necrosis		
Grade 3		
>10 mitoses/2 mm ²		
Ki67 >20%		
Widespread necrosis		

Mixed NE-non-NE neoplasms (MiNENs)

Endocrine component constitutes ≥30% of the neoplasm

Nikolai Kulchitsky (1856-1925)

Carcinoid introduced in 1897 by Nikolai Kulchitsky

Carcinoid tumours have diverse histology, hormone production, molecular profile and clinical behaviour

Terminology varies by site, type and hormone secretion was problematic

Consensus meeting 2017 suggested a single classification for all neuroendocrine tumours (NET) in all sites

Neuroendocrine tumour to replace carcinoid tumour

Terminology adopted by WHO classification of tumours in 2019

Neuroendocrine Neoplasms

		NET (Carcinoid)	Small cell NEC	Large cell NEC
	Chromogranin	Pos	Pos	Pos
	Synaptophysin	Pos	Pos	Pos
	Cytokeratins	Pos	Pos	Pos
(P	Mitotic index Ki67 index roliferation marke	<10 /2mm ² <20% r)	>30/2mm ² >30%	>30/2mm ² >30%
	Morphology			
	Ki67			

Neuroendocrine tumours
(Carcinoid Tumours)
Low grade malignant tumours
NET grade 1 (typical carcinoids)
has <2 mitoses/2 mm² and lacks
necrosis

NET grade 2 (atypical carcinoids) has 2-10 mitoses/2 mm² or foci of necrosis

NET G1 (typical carcinoid)

Neuroendocrine tumor (carcinoid)

NET G2 (atypical carcinoid)

Neuroendocrine Tumours (Carcinoid Tumours)

NET G1 (typical carcinoid)

NET G2 (atypical carcinoid)

Ki67 NET G1 (typical carcinoid)

Ki67, NET G2 (atypical carcinoid)

Small cell carcinoma Highly malignant tumor

Strongest association with smoking

Usually **located centrally** in the major airways, frequently involving the **mediastinal lymph nodes**

Peripheral location accounts for 5%

Small cell carcinoma Highest mutational burden among lung cancers

SCLC shares many molecular features with squamous cell carcinoma, including p53 in up to 90%, RB in almost 100% and MYC family gene amplification

Loss of chromosome 3p occurs in nearly all these tumors

SCLC appears as small, round to oval blue cells with scant cytoplasm and finely granular chromatin

Sheets, clusters, ribbons, rosettes, peripheral palisading

High mitotic rate, usually greater than 50 mitoses/2 mm²

High mutational burden p53 and RB mutations and MYC family gene amplification

Loss of chromosome 3p occurs in nearly all these tumors

Small Cell Neuroendocrine Carcinoma (SCNEC) Small Cell Lung Cancer (SCLC)

SCNEC (Chromogranin)

SCNEC (Synaptophysin)

Ki67

Large cell neuroendocrine carcinoma (LCNEC)

High-grade non-small cell carcinoma

Neuroendocrine morphology

Mitotic count of >30 mitoses/2 mm²

Ki67 > 30%

Expresses neuroendocrine markers Chromogranin, Synaptophysin, CD56

Small cell carcinoma combined with adenocarcinoma

Small cell carcinoma combined with squamous cell carcinoma

Mixed NE-Non-NE Neoplasms (MiNEN)

The endocrine component constitutes ≥30% of the neoplasm

Pathways to neuroendocrine neoplasms and precancers and cancers

Majority arise in the proximal airways

Diffuse Idiopathic Pulmonary
Neuroendocrine Cell Hyperplasia (DIPNECH)
<5mm in bronchial mucosa

Tumorlet <5mm extends beyond bronchial mucosa

Neuroendocrine Tumor (NET) >5mm with bronchial wall involvement (Carcinoid Tumor)

Neuroendocrine Carcinoma (NEC) Small Cell NE Carcinoma Large Cell NE Carcinoma

DIPNECH <5mm

NET (CARCINOID) >5mm

LARGE CELL NEC

Diffuse Idiopathic Pulmonary Neuroendocrine Cell Hyperplasia, <5mm in bronchial mucosa

Tumorlet <5mm extends beyond bronchial mucosa

NUT carcinoma Nuclear Protein in Testis (NUT)

Fusion of BRD4-NUT leads to uncontrolled cell growth

Primitive undifferentiated round cell tumour (URC)

Extremely aggressive cancer with a median survival of **6 months**

Variant histological features included basaloid, squamoid, clear cell changes, glandular differentiation and papillary architecture

IHC for NUT protein and "split apart" signal with the fusion partner BRD4

SMARCA Deficient Tumour SMARCA4 is a tumor suppressor gene and a subunit of SWI/SNF (SWItch/Sucrose Non-Fermentable) family

Tumor suppressor gene which regulates gene activity and repairs damaged DNA

Deficiency of SMARCA4 (SWI/SNF Related, Matrix Associated, Actin Dependent Regulator of Chromatin, Subfamily A, Member 4)

High-grade undifferentiated or rhabdoid malignant neoplasm

Involves the thorax of adults

Universally aggressive behavior and poor prognosis

Median overall survival of 6 months

Neoplasms in the pleura								
Epithelial		Mesothelial						
Morphology		Morphology						
Most reliable IHC markers Claudin-4, MOC-31 and Ber-EP4		Best IHC mesothelial markers Calretinin, CK5/6, WT-1, D2-40						
Malignant		Benign (atypical) or malignant						
Lung primary	Other primaries	Benign	Malignant					
Adenocarcinoma, squamous cell carcinoma, other	Breast, GI, Kidney, Female genital, other organs	Mesothelial hyperplasia	Epithelioid, sarcomatoid, biphasic, other subtypes					
Lung markers	Organ specific markers	BAP1, MTAP and p16						

No marker is 100% specific for mesothelioma

All mesothelial markers can be positive in carcinoma subsets
Broad-spectrum cytokeratin and 2 mesothelial and 2 epithelial markers are
recommended as a first-line immunopanel to determine the mesothelial lineage

Malignant Mesothelioma
Malignant tumor of mesothelial cells
occurring most often in the pleura

Asbestos exposure in 90% of cases

Lifetime risk in heavily exposed individuals is about **10%**

Latency period between exposure and tumor development of 30 years

Loss of the tumor suppressor gene CDKN2A (p16) in 80% of cases

Driver mutations are also common in the **NF2 gene and BAP1**

Asbestos workers who smoke are much more likely to die of lung carcinoma than mesothelioma

Malignant mesothelioma

Epithelioid mesothelioma

Sarcomatoid mesothelioma

Morphology of malignant mesothelioma

Tumor spreads diffusely over the lung surface and fissures, forming an **encasing sheath**

Microscopic patterns are **epithelioid** (80%), **sarcomatoid** (10%) and **mixed** (biphasic) (10%)

Epithelioid (epithelium-like) pattern form tubules and papillary projections resembling adenocarcinomas

Sarcomatoid mesotheliomas are composed of pleomorphic spindle cells

Epithelioid mesothelioma

Sarcomatoid mesothelioma

Biphasic mesothelioma

Morphology of malignant mesothelioma

Mesothelioma is positive for Calretinin, WT-1, D2-40 and cytokeratin 5/6 positivity Lung adenocarcinomas are positive for CEA, TTF-1, Napsin-A and Claudin 4

D2-40 (mesothelioma)

CK5/6 (mesothelioma)

Atypical (reactive) mesothelial proliferation Versus epithelioid mesothelioma

Biomarker	Atypical mesothelial proliferation	Epithelioid mesothelioma		
BAP1	Pos	Neg		
MTAP	Pos	Neg		
CDKN2 (p16)	Pos	Neg		

BAP1 (BRCA1-Associated Protein 1) loss has 70% sensitivity and 100% specific for malignancy in mesothelial lesions

MTAP (Methylthioadenosine Phosphorylase) loss has 50% sensitivity and 100% specific for malignancy in mesothelial lesions

CDKN2A (Cyclin-Dependent Kinase Inhibitor 2A) and its protein product p16 homozygous deletion of CDKN2A has 70% sensitivity and 100% specificity for malignancy in mesothelial lesions

IHC stain	Mesothelioma	Adenocarcinoma		
<u>Calretinin</u>	Positive	Negative		
D2-40 (podoplanin)	Positive	Negative		
WT1	Positive	Negative		
Cytokeratin 5 / 6	Positive	Negative		
Claudin 4	Negative	Positive		
MOC31	Negative	Positive		
TTF1	Negative	Positive		
Napsin A	Negative	Positive		
<u>B72.3</u>	Negative	Positive		
BG8	Negative	Positive		
CEA (monoclonal)	Negative	Positive		
BerEP4	Negative	Positive		
BAP1	Loss in 60% of epithelioid MM	Retained		

Mesothelioma markers: Calretinin, D2-40, WT1 and CK5/6 Adenocarcinoma markers: Claudin 4, MOC31, TTF1, Napsin A, CEA, BerEp4 and BAP1

Organ specific IHC markers

Lung ADC CK7/CK20+/-, TTF1+, Napsin A+

Breast CA GATA3, GCDFP-15, ER, mammaglobin

Colorectal ADC CDX2, SATB2

Prostate ADC PSA, PAP, NKX3.1

RCC PAX8, PAX2, vimentin, RCCma, CD10

Urothelial CA GATA3, uroplakin-II

Thyroid CA Thyroglobulin, PAX8, TTF1

Adrenal cortical CA SF-1, inhibin, Melan-A

Hepatocellular CA Arginase-1, Hep-Par1, glypican 3, AFP

Pancreatic ADC CK17, MUC5AC, S100P

Ovarian serous CA PAX8, WT1, inhibin, β-catenin

Ovarian mucinous CA PAX8, MUC5AC, \(\beta\)-catenin

Endometrium CA ER, PAX8, vimentin

Endocervical CA PAX8, p16, HPV

Cancer of unknown primary (CUP)

Widespread metastatic cancer without an identifiable primary site Accounting for up to 5% of a new cancer diagnosis (6th most common malignancy)
Currently less frequently diagnosed due to improvement in detection of the primary

Cancer of unknown primary (CUP)

Conclusion

The integration of **prognostic** and **predictive biomarkers** into lung cancer management has transformed patient care

Prognostic markers inform disease course and survival irrespective of treatment

Predictive markers guide targeted and immunotherapies, optimizing outcomes

Prognostic Markers

Predict disease progression and survival, **independent of treatment**

Clinical indicators

ECOG performance status and smoking status

Pathological indicators
Tumor stage, histological differentiation

Molecular markers

Mutations in p53, RB1, KRAS, STK11, PIK3CA are associated with worse prognosis

Aggressive behavior

Poor survival

Resistance to targeted therapy and to immunotherapy

Molecular Predictive Markers

Predictive markers identify patients likely to benefit from specific therapies

Targeted Therapy:

EGFR mutations, ALK rearrangements, ROS1 rearrangements, BRAF, MET alterations, RET rearrangements, HER2 mutations

Immunotherapy:

PD-L1 expression, Tumor Mutational Burden (TMB) and dMMR/MSI-High correlate with better immunotherapy response.

STK11/KEAP1 Mutations:

Associated with immunotherapy resistance

Chemotherapy/Radiotherapy:

Low ERCC1 and high RRM1 predict better response to platinum-based and gemcitabine therapies, respectively

Low Thymidylate Synthase (TS) levels correlate with improved pemetrexed response in non-squamous NSCLC

Molecular alteration in lung cancer

Role of pathology in patient care in lung cancer

- Morphological diagnosis and degree of differentiation
- Immunohistochemical (IHC) confirmation
- Rule out metastasis when lung markers are aberrant
- Determine molecular profile of the tumour
- Prognostic and predictive information

Genetic Alteration	ADC	SCC	SCLC
Mutation			
BRAF	5%	0%	0%
EGFR			
Caucasians	15%	<1%	<1%
Asians	45%	<5%	<5%
KRAS			
Caucasians	35%	<5%	<1%
Asians	5%	<5%	<1%
P53	35%	60%	>90%
RB	10%	10%	>90%
PIK3CA (p16)	<5%	10%	<5%
Amplification			
EGFR	5%	10%	1%
HER2	5%	1%	1%
MET	5%	5%	1%
MYC	5%	5%	25%
FEGFR	5%	20%	1%
Gene rearrangement			
ALK	5%	1%	0%
RET	1%	0%	0%
ROS	1%	0%	0%
NTRK	1%	0%	0%

Signaling Pathways
Group of molecules
working together to
control cell function

Regulate biological processes through multiple cellular mechanisms

Promote cell survival, growth and cell cycle progression

Dysregulation

Abnormal activation of signal transduction can predispose to cancer

KRAS and BRAF

KRAS and BRAF are oncogenes involved in cell growth, proliferation, differentiation and survival (key role in oncogenisis)

BRAF is downstream of KRAS

KRAS is one of the most important players in human cancers

Activating of RAS (RAS-GTP) occurs in 90% of pancreatic tumors, 35% of lung cancers and 40% of CRCs

BRAF is mutated in at least 10% of metastatic CRC (V600E)

Esophageal cancer PD-L1 positive (IHC)

Checkpoint Proteins

PD-1: Receptor found on immune cells.

PD-L1: Ligand present on the surface of some tumor cells.

Ligand: Molecule that binds to a receptor to send signals within or between cells.

Checkpoint proteins act as "off switches" for the immune system.

When PD-1 binds to PD-L1, it sends signals that reduce immune activity.

This prevents tissue damage but can also stop the immune system from killing tumor cells.

PD-L1 is amplified in many cancers (80% of esophageal SCC and 60% of gastric and gastroesophageal junction cancers, especially MSI-H and EBV subtypes)

Blocking PD-L1 from binding to PD-1 using checkpoint inhibitors (anti-PD-L1 or anti-PD-1) reactivates T cells, enabling them to attack and kill tumor cells

The Future of Lung Cancer Care

Lung cancer treatment is rapidly evolving, offering new hope through early detection, advanced diagnostics, precision medicine and innovative therapies.

Early Detection

Low-dose CT screening for high-risk individuals Liquid biopsies for non-invasive cancer detection

Personalized Medicine & Emerging Therapies

Targeted treatments based on genetic mutations (EGFR)
Sotorasib for previously untreatable KRAS mutations
Checkpoint inhibitors and CAR-T cell therapies

Overcoming Treatment Resistance

New drug combinations targeting multiple pathways **Manipulation of the tumor microenvironment** for novel solutions

Improving Access

Expanding global collaboration to ensure equitable treatment availability

Outlook

Advancements in precision medicine and global collaboration are transforming lung cancer care, moving it toward a more manageable and potentially curable disease.