



## Universidade Estadual de Campinas

# Instituto de Matemática, Estatística e Computação Científica.

# EP1 - Domínio Numérico de Matrizes $$\operatorname{MT404}$$

Vinícius Oliveira Martins RA: 206853 SETEMBRO DE 2023

#### 1 Algumas Definições

Dado um subconjunto  $\Omega \subset \mathbb{C}$ , dizemos que esse subconjunto é **convexo** se para quaisquer dois pontos  $x, y \in \Omega$  temos  $tx + (1 - t)y \subset \Omega$  para todo  $t \in [0, 1]$ .

Para uma matriz  $A \in \mathbb{C}^{n \times n}$  podemos definir alguns subconjuntos do plano complexo que nos dão informações sobre essa matriz. A multiplicação de A por um vetor  $x \in \mathbb{C}^n$  pode ser pensada como um operador de  $\mathbb{C}^n$  em  $\mathbb{C}^n$ , ou seja

$$T: \mathbb{C}^n \to \mathbb{C}^n$$
  
 $x \mapsto Ax , T(x) = Ax .$ 

Assim, os vetores de  $\mathbb{C}^n$  que são levados a algum de seus múltiplos pelo operador T são ditos autovetores de A. Assim, temos a equação de autovetor

$$Av = \lambda v , \qquad (1)$$

onde  $\lambda$  é um número complexo denominado autovalor. Dizemos ainda que v é o autovetor de A associado ao autovalor  $\lambda$ . Se A possuir m autovetores,  $\{v_1, ..., v_m\}$ , teremos  $n \leq m$  autovalores,  $\sigma(A) = \{\lambda_1, ..., \lambda_n\}$ , com  $\lambda_1 < ... < \lambda_n$ , e  $\sigma(A)$  é denominado **espectro** de A.

Além do espectro de A podemos também definir o **domínio numérico** de A como o subconjunto

$$W(A) = \{x^*Ax : x \in \mathbb{C}^n \ e \ x^*x = 1\} \subset \mathbb{C} \ . \tag{2}$$

. Neste texto iremos estudar a relação entre o domínio numérico e o espectro para uma matriz A, e como construir o domínio numérico usando um algoritmo simples.

#### 2 Domínio Numérico de Matrizes Normais

Dada uma matriz  $A \in \mathbb{C}^{n \times n}$  normal, temos sua diagonalização

$$A = UDU^* , (3)$$

onde U é uma matriz unitária formada pelos autovetores de A e  $D = diag(\lambda_1, ..., \lambda_n)$ . Dado,  $x \in \mathbb{C}^n$  tal que  $x^*x = 1$ , temos

$$x^*Dx = \sum_{j=1}^n |x_j|^2 \lambda_j , \qquad (4)$$

 $\epsilon$ 

$$x^*x = \sum_{j=1}^n |x_j|^2 = 1 \Rightarrow |x_j|^2 \ge 0 , \quad \forall j = 1, ..., n .$$
 (5)

Logo,  $x^*Dx$  é uma combinação convexa de  $L = \{\lambda_1, ..., \lambda_n\}$ . Assim, W(D) é o invólucro convexo de L. Pela **P6**, temos que  $W(A) = W(\Lambda)$ . Portanto, W(A) é o invólucro convexo dos autovalores de A.

Considere agora  $A \in \mathbb{C}^{n \times n}$  hermitiana. Assim, se  $(\lambda, v)$  é um autopar de A, temos que  $(\lambda, v)$  também é autopar de  $A^*$ . Logo,

$$Av = \lambda v \Rightarrow v^* A v = \lambda v^* v = \lambda ||v||^2 . \tag{6}$$

Além disso,

$$v^* A v = v^* A^* v = (A v)^* v = \bar{\lambda} ||v||^2 . \tag{7}$$

Assim, de (6) e (7) temos que  $\lambda = \bar{\lambda}$ , ou seja,  $\lambda \in \mathbb{R}$ . Assim,  $\sigma(A) \subset \mathbb{R}$ . Como A hermitiana, temos que  $AA^* = A^*A = \mathbb{I}$ , logo é um caso particular de A normal. Assim, temos que W(A) continua sendo o invólucro convexo de  $\sigma(A)$ , que é o intervalo fechado  $[\lambda_1; \lambda_n] \subset \mathbb{R}$ . Portanto,  $W(A) = [\lambda_1; \lambda_n]$ .

#### 3 Teorema de Hausdorff-Toeplitz

Podemos enunciar o Teorema de Hausdorff-Toeplitz como:

**Teorema 3.1.** Dada uma matriz  $A \in \mathbb{C}^{n \times n}$ , temos que seu domínio numérico é um subconjunto convexo de  $\mathbb{C}$ .

O primeiro fato que podemos observar sobre W(A) é que, sendo um subconjunto do plano complexo, se W(A) for convexo, teremos

$$tv + (1 - t)w = t(x^*Ax) + (1 - t)(y^*Ay) \in W(A) \subset \mathbb{C} \ \forall t \in (0, 1) \ , \tag{8}$$

onde

$$x, y \in \mathbb{C}^n$$
  
 $v = x^*Ax$ ,  $w = y^*Ay$   
 $x^*x = y^*y = 1$ .

Dados dois vetores ortonormais  $x,y\in\mathbb{C}^n$ . O conjunto  $\{x,y,e_1,...,e_n\}$ , onde  $e_j$  são os vetores da base canônica de  $\mathbb{C}^n$ , é tal que  $span(\{x,y,e_1,...,e_n\})=\mathbb{C}^n$ . Reduzindo a matriz  $M=[x|y|e_1|...|e_n]$  a sua forma canônica por linhas temos a matriz  $\bar{M}=[x|y|\xi_1|...|\xi_{n-2}]$ , onde  $\xi_j=e_k$  para algum k, e  $\{x,y,\xi_1,...,\xi_{n-1}\}$  é uma base de  $\mathbb{C}^n$ . Aplicando o processo de Gram-Schmidt nos vetores dessa base temos a matriz unitária U, tal que x=Uv e y=Uw, onde  $v=(v_1,v_2,0,...,0)^t$  e  $w=(w_1,w_2,0,...,0)^t$ .

Assim, temos

$$tx^*Ax + (1-t)y^*Ay = tv^*U^*AUv + (1-t)w^*U^*AUw$$
  
=  $tv^*Bv + (1-t)w^*Bw$   
=  $t\xi^*B_2\xi + (1-t)\eta^*B_2\eta$ , (9)

onde  $B_2$  é a submatriz principal  $2 \times 2$  de B e  $\xi, \eta \in \mathbb{C}^2$  e  $\xi, \eta \in \mathbb{C}^2$  são os dois primeiros elementos de v e w, respectivamente.

Além disso, pela propriedade de translação podemos considerar apenas matrizes com traço nulo já que uma matriz A de traço não nulo terá um domínio numérico com a mesma fronteira que o domínio numérico de  $A - \frac{1}{2}Tr(A)\mathbb{I}$ , ou seja, W(A) é apenas  $W(A - \frac{1}{2}Tr(A)\mathbb{I})$  transladado.

Sabemos que o traço de uma matriz é igual a soma de seus autovalores. Assim, dada uma matriz  $A \in \mathbb{C}^{2\times 2}$ , tal que Tr(A) = 0, seus autovalores serão  $\pm z$ ,  $z \in \mathbb{C}$ . Sendo  $a_1$  o autovetor unitário associado a +z e  $a_2$  o autovetor unitário associado a -z, o vetor  $b = e^{i\phi}a_1 + a_2$  é não nulo para qualquer  $\phi \in \mathbb{R}$ . Logo

$$b^*Ab = z(e^{i\phi}a_2^*a_1 - e^{-i\phi}a_1^*a_2)$$
  
=  $2zIm(e^{i\phi}a_1^*a_2)i$ .

Tomando  $\phi = k\pi$ ,  $k \in \mathbb{Z}$ , temos que  $b^*Ab = 0$ . Usando  $\frac{b}{||b||}$  como a primeira coluna de uma matriz unitária W (obtida pelo processo de Gram-Schmidt do mesmo modo descrito anteriormente), temos  $(W^*AW)_{11} = (W^*AW)_{22} = 0$ . Assim, é suficiente considerarmos uma matriz

$$A = \begin{bmatrix} 0 & z_1 \\ z_2 & 0 . \end{bmatrix} \tag{10}$$

Ainda podemos simplificar ainda mais a matriz A. Sendo  $z_1 = |z_1|e^{i\theta_1}$  e  $z_2 = |z_2|e^{i\theta_2}$ , podemos construir a mais uma matriz unitária

$$Y = \begin{bmatrix} 1 & 0 \\ 0 & e^{-i\theta} \end{bmatrix} , \tag{11}$$

tal que

$$\begin{bmatrix} 1 & 0 \\ 0 & e^{-i\theta} \end{bmatrix} \begin{bmatrix} 0 & z_1 \\ z_2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{bmatrix} = e^{i\psi} \begin{bmatrix} 0 & |z_1| \\ |z_2| & 0 \end{bmatrix} , \qquad (12)$$

onde  $\theta = \frac{1}{2}(\theta_2 - \theta_1)$  e  $\psi = \frac{1}{2}(\theta_1 - \theta_2)$ . Portanto, basta considerarmos uma matriz

$$A = \begin{bmatrix} 0 & m \\ n & 0 \end{bmatrix} , \tag{13}$$

onde m, n são reais não negativos, para provarmos o teorema de de Hausdorff-Toeplitz.

Assim, consideremos uma matriz A da forma (13). Pela propriedade do conjugado complexo podemos supor ainda que  $m \geq n$ . Agora, dado um vetor unitário  $v \in \mathbb{C}^2$ , podemos parametrizar este vetor como  $v = e^{i\psi}(\sin(\phi), e^{i\theta}\cos(\phi))^t$ , onde  $\psi, \theta \in [0, 2\pi]$  e  $\phi \in [0, \frac{\pi}{2}]$ . Logo,

$$v^*Av = me^{i\theta}\sin(\phi)\cos(\phi) + ne^{-i\theta}\sin(\phi)\cos(\phi)$$
(14)

$$= \frac{1}{2}\sin(2\phi)(me^{i\theta} + ne^{-i\theta}), \qquad (15)$$

ou seja

$$W(a) = \left\{ z = x + iy : x = \frac{m+n}{2} \sin(2\phi)\cos(\theta), \ y = \frac{m-n}{2} \sin(2\phi)\sin(\theta) \right\} . \tag{16}$$

Da norma de z, temos que

$$\frac{2x^2}{(m+n)^2} + \frac{2y^2}{(m-n)^2} = \sin^2(2\phi) \ . \tag{17}$$

Logo, a região delimitada por W(A) é, para  $\phi = \frac{\pi}{4}$ , uma elipse. Podemos também observar dois casos especiais. O primeiro e mais direto é o caso trivial em que m = n = 0, que implica em  $W(A) = \{0\}$ . Para o caso em que m = n a matriz A se torna hermitiana e voltamos ao que foi discutido na seção anterior, nesse caso W(A) = [-m, m].

#### 3.1 Outra Atividade do Projeto

**Lema 3.1.** Uma matriz  $A \in \mathbb{C}^{2\times 2}$  de traço nulo é unitariamente equivalente a uma matriz de diagonal nula.

Primeiro, consideramos a matriz unitária

$$U = \begin{bmatrix} \sin(\theta) & e^{i\phi}\cos(\theta) \\ -e^{-i\phi}\cos(\theta) & \sin(\theta) \end{bmatrix}, \tag{18}$$

onde  $\phi \in [0, 2\pi]$  e  $\theta \in [0, \frac{\pi}{2}]$ . Logo, temos

$$UAU^* = U \begin{bmatrix} c & a \\ b & -c \end{bmatrix} U^* . {19}$$

Assim, a diagonal da matriz  $UAU^*$  será

$$(UAU^*)_{11} = -(UAU^*)_{22} = \frac{1}{2}\sin(2\theta)(ae^{i\phi} + be^{-i\phi}) - c\cos(2\theta) . \tag{20}$$

Assim,  $(UAU^*)_{11} = (UAU^*)_{22} = 0$  se

$$w = \frac{c}{ae^{i\phi} + be^{-i\phi}} , \qquad (21)$$

for um número real e  $tan(2\theta) = 2w$ . Podemos reescrever w como

$$w = \frac{c[(a+b)\sin(\phi) - (a-b)\cos(\phi)i]}{(a+b)^2\sin^2(\phi) + (a-b)^2\cos^2(\phi)},$$
(22)

para que w seja real precisamos que Im(w) = 0, ou seja

$$Im(w) = \frac{c(a-b)\cos(\phi)}{(a+b)^2\sin^2(\phi) + (a-b)^2\cos^2(\phi)} = 0$$
 (23)

$$\Rightarrow c(a-b)\cos(\phi) = 0 \tag{24}$$

$$\phi = \frac{\pi}{2} + k\pi , \quad k \in \mathbb{Z} . \tag{25}$$

### 4 Aproximação Numérica de W(A)

A estratégia que usamos para determinar uma aproximação numérica para o domínio numérico de uma matriz  $A \in \mathbb{C}^{n \times n}$  será calcular diversos pontos da fronteira de W(A) e uni-los com uma poligonal. Essa estratégia é valida pois sabendo que W(A) é convexo uma poligonal que une uma certa quantidade de pontos de  $\partial W(A)$  é uma boa aproximação de W(A). Para calcularmos esses pontos de  $\partial W(A)$  primeiro devemos notar que sempre podemos separar A como

$$A = \frac{1}{2}(A + A^*) + \frac{1}{2}(A - A^*) = A_H + A_I, \tag{26}$$

onde  $A_H$  é hermitiana e  $A_I$  é anti-hermitiana. Como  $iA_I$  é uma matriz hermitiana, temos que o espectro de  $A_I$  é composto apenas por números imaginários puros. Como isso, temos

$$x^* A x = x^* A_H x + x^* A_I x . (27)$$

Portanto, o maior autovalor de  $A_H$ ,  $\lambda_{max}$  é a coordenada do ponto mais a esquerda de W(A). Se  $v_{max}$  é o autovetor associado a  $\lambda_{max}$ , então

$$z_{max} = v_{max}^* A v_{max} , (28)$$

é o ponto mais a esquerda de W(A).

Sabemos que  $W(z_0A)=z_0W(A)$  para qualquer  $z_0\in\mathbb{C}^n$ . Assim, a matriz  $e^{-i\phi}A$  terá  $W(e^{-i\phi}A)=e^{-i\phi}W(A)$ , ou seja, seu domínio numérico será igual ao domínio numérico de A rotacionado pelo ângulo  $\phi$ . Fazendo a separação de  $e^{-i\phi}A$  em parte hermitiana e anti-hermitiana, encontramos o ponto mais a esquerda de  $W(e^{-i\phi}A)$ ,  $z_{max}(\phi)$ , como descrito anteriormente. Assim,  $z_{max}(\phi)$  é um outro ponto de  $\partial W(A)$  com uma distância angular  $\phi$  de  $z_{max}$ .

Fazendo  $\phi \in [0, 2\pi)$ , teremos que  $z_{max}(0) = z_{max}$  e a sequência obtida  $(z_{max})_{\phi}$  pertence a  $\partial W(A)$ . A qualidade dessa aproximação depende da quantidade de pontos que escolhemos para discretizar  $[0, 2\pi)$ . Essa quantidade de pontos pode mudar de matriz para matriz mas é possível determinar esse valor empiricamente.

Uma implementação deste algoritmo esta disponível neste repositório. No caso em que A é uma matriz normal não é necessário usar o algoritmo descrito. Como foi mostrado na seção (2) o domínio numérico de uma matriz normal é o envolucro convexo

dos autovalores de A. Assim, basta calcularmos os autovalores de A para determinar W(A). A implementação disponibilizada, lida com esse caso.



$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

Figura 1: Domínio numérico de uma matriz normal.

A seguir temos mais alguns domínios numéricos.



Domínio Numérico - Matriz de Toeplitz

Figura 2: Domínio numérico de uma matriz de Leslie  $10 \times 10$ .

Figura 3: Domínio numérico de uma matriz de Toeplitz  $10 \times 10$ .





Figura 4: Domínio numérico de uma matriz aleatória  $10 \times 10$  com elementos entre 0 e 1.

Figura 5: Domínio numérico de uma matriz aleatória  $10 \times 10$  com elementos entre 0 e 1.

# Referências

[1] Charles R. Johnson Roger A. Horn. *Topics in matrix analysis*. Cambridge University Press, cup edition, 1994.