standardization

March 8, 2024

[2]: import pandas as pd

[6]: ((280, 2), (120, 2))

```
import matplotlib.pyplot as plt
     import numpy as np
     import seaborn as sns
[3]: df=pd.read_csv('Social_Network_Ads.csv')
[4]: df=df.iloc[:,2:]
     df
[4]:
          Age
               EstimatedSalary
                                 Purchased
           19
                          19000
     1
           35
                          20000
                                         0
     2
           26
                          43000
                                         0
     3
           27
                          57000
                                         0
     4
           19
                          76000
                                         0
     . .
     395
                          41000
           46
                                         1
     396
           51
                          23000
                                         1
     397
           50
                          20000
                                         1
     398
                                         0
           36
                          33000
     399
           49
                          36000
                                         1
     [400 rows x 3 columns]
    0.1
         Train Test Split
[5]: from sklearn.model_selection import train_test_split
     X_train,X_test,y_train,y_test=train_test_split(df.
      Grop('Purchased',axis=1),df['Purchased'],test_size=0.3,random_state=0)
[6]: X_train.shape, X_test.shape
```

0.2 Standard Scaler

```
[7]: from sklearn.preprocessing import StandardScaler
    scaler=StandardScaler()

scaler.fit(X_train)

X_train_scaled=scaler.transform(X_train)
    X_test_scaled=scaler.transform(X_test)
```

[8]: X_train_scaled=pd.DataFrame(X_train_scaled,columns=X_train.columns)
X_test_scaled=pd.DataFrame(X_test_scaled,columns=X_test.columns)

[9]: np.round(X_train_scaled.describe(),1)

[9]:		Age	EstimatedSalary
	count	280.0	280.0
	mean	0.0	0.0
	std	1.0	1.0
	min	-1.9	-1.6
	25%	-0.8	-0.8
	50%	-0.1	0.0
	75%	0.8	0.5
	max	2.2	2.3

0.3 Visualization of Standardisation

```
[10]: fig,(ax1,ax2)=plt.subplots(ncols=2,figsize=(12,5))
ax1.scatter(X_train['Age'],X_train['EstimatedSalary'])
ax1.set_title('Before Scaling')
ax2.scatter(X_train_scaled['Age'],X_train_scaled['EstimatedSalary'],color='red')
ax2.set_title('After Scaling')
plt.show()
```



```
fig, (ax1,ax2)=plt.subplots(ncols=2,figsize=(14,5))

#before scaling
sns.kdeplot(X_train['Age'],ax=ax1)
sns.kdeplot(X_train['EstimatedSalary'],ax=ax1)

#after scaling
sns.kdeplot(X_train_scaled['Age'],ax=ax2)
sns.kdeplot(X_train_scaled['EstimatedSalary'],ax=ax2)
plt.show()
```


0.4 Comparison between Scaled data and Unscaled data

0.4.1 Here we can see the Scaled (standardised data) data gives more Accuracy than Previous data.

```
[17]: print('Actual',accuracy_score(y_test,y_pred))
print('Scaled',accuracy_score(y_test,y_pred_scaled))
```