

FCC Test Report

Report No.: RF180425D01-1

FCC ID: 2ALJ3AP211H

Test Model: AP211H

Received Date: Apr. 25, 2018

Test Date: May 9 ~ Jun. 27, 2018

Issued Date: Jul. 5, 2018

Applicant: HAN Networks Co., Ltd.

Address: 5/F, Building 37, No.8 Dongbeiwang West Road, HaiDian

District, Beijing, China

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

(R.O.C.)

FCC Registration /

Designation Number: 198487 / TW2021

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Report No.: RF180425D01-1 Page No. 1 / 83 Report Format Version:6.1.2

Table of Contents

R	Release Control Record4			
1	С	ertificate of Conformity	. 5	
2	S	ummary of Test Results	6	
	2.1	Measurement Uncertainty	6	
	2.2	Modification Record		
3	G	eneral Information	7	
J				
	3.1	General Description of EUT		
	3.2	Description of Test Modes		
	3.2.1	Test Mode Applicability and Tested Channel Detail		
	3.3 3.4	Description of Support Units		
	-	Configuration of System under Test		
	3.5	General Description of Applied Standard		
4	I	est Types and Results		
	4.1	Radiated Emission and Bandedge Measurement		
		Limits of Radiated Emission and Bandedge Measurement		
		Test Instruments		
		Test Procedure		
		Deviation from Test Standard		
		Test Setup		
		EUT Operating Condition		
	4.1.7	Conducted Emission Measurement		
		Limits of Conducted Emission Measurement		
		Test Instruments		
		Test Procedure		
		Deviation from Test Standard		
		Test Setup		
	4.2.6	EUT Operating Condition	53	
		Test Results		
	4.3	Transmit Power Measurement		
		Limits of Transmit Power Measurement		
		Test Setup		
		Test Instruments		
		Test Procedure Deviation from Test Standard		
		EUT Operating Condition		
		Test Result		
	4.4	Occupied Bandwidth Measurement		
	4.4.1	Test Setup		
		Test Instruments		
	4.4.3	Test Procedure	65	
		Test Results		
	4.5	Peak Power Spectral Density Measurement		
		Limits of Peak Power Spectral Density Measurement		
		Test Setup		
		Test Instruments		
		Deviation from Test Standard		
		EUT Operating Condition		
		Test Results		
	4.6	Frequency Stability Measurement		
		, ,,	•	

4.6.1 Limits of Frequency Stability Measurement	74
4.6.2 Test Setup	74
4.6.3 Test Instruments	
4.6.4 Test Procedure	74
4.6.5 Deviation from Test Standard	74
4.6.6 EUT Operating Condition	74
4.6.7 Test Results	75
4.7 6dB Bandwidth Measurement	76
4.7.1 Limits of 6dB Bandwidth Measurement	76
4.7.2 Test Setup	76
4.7.3 Test Instruments	
4.7.4 Test Procedure	
4.7.5 Deviation from Test Standard	76
4.7.6 EUT Operating Condition	
4.7.7 Test Results	77
5 Pictures of Test Arrangements	79
Annex A- Radiated Out of Band Emission (OOBE) Measurement (For U-NII-3 band)	80
Appendix – Information on the Testing Laboratories	83

Release Control Record

Issue No.	Description	Date Issued
RF180425D01-1	Original release.	Jul. 5, 2018

 Report No.: RF180425D01-1
 Page No. 4 / 83
 Report Format Version:6.1.2

1 Certificate of Conformity

Product: HAN Access Point

Brand: HAN

Test Model: AP211H

Sample Status: Engineering sample

Applicant: HAN Networks Co., Ltd.

Test Date: May 9 ~ Jun. 27, 2018

Standard: 47 CFR FCC Part 15, Subpart E (Section 15.407)

ANSI C63.10: 2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Annie Chang / Senior Specialist

Rex Lai / Associate Technical Manager

2 Summary of Test Results

47 CFR FCC Part 15, Subpart E (Section 15.407)				
FCC Clause	Test Item	Result	Remarks	
15.407(b)(6)	AC Power Conducted Emissions	Pass	Meet the requirement of limit. Minimum passing margin is -3.92dB at 15.07422MHz.	
15.407(b) (1/2/3/4(i/ii)/6)	Radiated Emissions & Band Edge Measurement*	Pass	Meet the requirement of limit. Minimum passing margin is -1.02dB at 5150.00MHz.	
15.407(a)(1/2/ 3)	Max Average Transmit Power	Pass	Meet the requirement of limit.	
	Occupied Bandwidth Measurement	-	Reference only.	
15.407(a)(1/2/ 3)	Peak Power Spectral Density	Pass	Meet the requirement of limit.	
15.407(e)	6dB bandwidth	Pass	Meet the requirement of limit. (U-NII-3 Band only)	
15.407(g)	Frequency Stability	Pass	Meet the requirement of limit.	
15.203	Antenna Requirement	Pass	No antenna connector is used.	

^{*}For U-NII-3 band compliance with rule part 15.407(b)(4)(i), the OOBE test plots were recorded in Annex A.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	2.79 dB
Radiated Emissions up to 1 GHz	9kHz ~ 30MHz	2.38 dB
Radiated Ethissions up to 1 GHz	30MHz ~ 1000MHz	5.54 dB
Radiated Emissions above 1 GHz	1GHz ~ 6GHz	4.77 dB
Naulaleu Ellissions above 1 GHZ	6GHz ~ 18GHz	5.48 dB

2.2 Modification Record

There were no modifications required for compliance.

 Report No.: RF180425D01-1
 Page No. 6 / 83
 Report Format Version:6.1.2

3 General Information

3.1 General Description of EUT

Product	HAN Access Point
Brand	HAN
Test Model	AP211H
Status of EUT	Engineering sample
Power Supply Rating	48Vdc from Adapter or 55Vdc from PoE
Modulation Type	64QAM, 16QAM, QPSK, BPSK for OFDM 256QAM for OFDM in 11ac mode only.
Modulation Technology	OFDM
Transfer Rate	802.11a: 54/48/36/24/18/12/9/6Mbps 802.11n: up to 300Mbps 802.11ac: up to 866.6Mbps
Operating Frequency	5180 ~ 5240MHz, 5745 ~ 5825MHz
Number of Channel	5180 ~ 5240MHz 4 for 802.11a, 802.11n (20MHz), 802.11ac (20MHz) 2 for 802.11n (40MHz), 802.11ac (40MHz) 1 for 802.11ac (80MHz) 5745 ~ 5825MHz 5 for 802.11a, 802.11n (20MHz) 802.11ac (20MHz) 2 for 802.11n (40MHz) 802.11ac (40MHz) 1 for 802.11ac (80MHz)
Output Power	5180 ~ 5240MHz: 389.583mW 5745 ~ 5825MHz: 418.218mW
Antenna Type	Printed antenna with 6.3dBi gain
Antenna Connector	N/A
Accessory Device	N/A
Data Cable Supplied	N/A

Note:

1. The EUT provides 2 completed transmitters and 2 receivers.

Modulation Mode	TX Function	
802.11a	2TX	
802.11n (20MHz)	2TX	
802.11n (40MHz)	2TX	
802.11ac (20MHz)	2TX	
802.11ac (40MHz)	2TX	
802.11ac (80MHz)	2TX	

Note: The modulation and bandwidth are similar for 802.11n mode for 20MHz (40MHz) and 802.11ac mode for 20MHz (40MHz), therefore investigated worst case to representative mode in test report. (Final test mode refer section 3.2.1)

Report No.: RF180425D01-1 Page No. 7 / 83 Report Format Version:6.1.2

2. The EUT uses following adapter or PoE Adapter (Support unit only):

Item	Brand	Model No.	Rating
	DELTA	ADP-30HR B	AC I/P: 100-240V, 50-60Hz, 1A
Adapter			DC O/P: 48V, 0.66A
			Non-shielded DC (1.5m) with one ferrite core
DoE Adoptor	Microsemi	PD-9001GR/AT/AC	AC I/P: 100-240V, 50/60Hz, 0.67A
PoE Adapter			DC O/P: 55V, 0.6A

- 3. For Radiated test, the EUT was pre-tested with the following modes:
 - ♦ Operating Mode, Powered from Adapter
 - ♦ Operating Mode, Powered from PoE The worst emission level was found when the EUT tested under Operating Mode, Powered from Adapter, therefore, only its test data was recorded in this report.
- 4. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

FOR 5180 ~ 5240MHz

4 channels are provided for 802.11a, 802.11n (20MHz), 802.11ac (20MHz):

Channel	Frequency	Channel	Frequency
36	5180 MHz	44	5220 MHz
40	5200 MHz	48	5240 MHz

2 channels are provided for 802.11n (40MHz), 802.11ac (40MHz):

Channel	Frequency	Channel	Frequency
38	5190 MHz	46	5230 MHz

1 channel is provided for 802.11ac (80MHz):

Channel	Frequency	
42	5210MHz	

FOR 5745 ~ 5825MHz:

5 channels are provided for 802.11a, 802.11n (20MHz), 802.11ac (20MHz):

Channel	Frequency	Channel	Frequency
149	5745MHz	161	5805MHz
153	5765MHz	165	5825MHz
157	5785MHz		

2 channels are provided for 802.11n (40MHz), 802.11ac (40MHz):

Channel	Frequency	Channel	Frequency
151	5755MHz	159	5795MHz

1 channel is provided for 802.11ac (80MHz):

•	,
Channel	Frequency
155	5775MHz

 Report No.: RF180425D01-1
 Page No. 9 / 83
 Report Format Version:6.1.2

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure		Applica	able To		Description	
Mode	RE≥1G	RE<1G	PLC	APCM		
Α	√	$\sqrt{}$	$\sqrt{}$	\checkmark	Powered from Adapter	
В	-	-	√	-	Powered from PoE	

Where

RE≥1G: Radiated Emission above 1GHz

RE<1G: Radiated Emission below 1GHz

PLC: Power Line Conducted Emission

APCM: Antenna Port Conducted Measurement

NOTE:

1. The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on Y-plane.

2. "-" means no effect.

Radiated Emission Test (Above 1GHz):

802.11ac (40MHz)

802.11ac (80MHz)

Α

Α

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

5745-5825

	CDD Mode								
EUT Configure Mode	Mode	FREQ. Band (MHz)	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)		
Α	802.11a		36 to 48	36, 40, 48	OFDM	BPSK	6		
Α	802.11ac (20MHz)	5400 5040	36 to 48	36, 40, 48	OFDM	BPSK	6.5		
Α	802.11ac (40MHz)	5180-5240	38 to 46	38, 46	OFDM	BPSK	13.5		
Α	802.11ac (80MHz)		42	42	OFDM	BPSK	29.3		
Α	802.11a		149 to 165	149, 157, 165	OFDM	BPSK	6		
Α	802.11ac (20MHz)	5745 F00F	149 to 165	149, 157, 165	OFDM	BPSK	6.5		
Α	802.11ac (40MHz)	5745-5825	151 to 159	151, 159	OFDM	BPSK	13.5		
Α	802.11ac (80MHz)		155	155	OFDM	BPSK	29.3		
		Bean	nforming_l	NSS1 Mode					
EUT Configure Mode FREG			Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)		
Α	802.11ac (20MHz)		36 to 48	36, 40, 48	OFDM	BPSK	6.5		
Α	802.11ac (40MHz)	5180-5240	38 to 46	38, 46	OFDM	BPSK	13.5		
Α	802.11ac (80MHz)		42	42	OFDM	BPSK	29.3		
Α	802.11ac (20MHz)		149 to 165	149, 157, 165	OFDM	BPSK	6.5		

151 to 159

155

151, 159

155

OFDM

OFDM

BPSK

BPSK

13.5

29.3

Report No.: RF180425D01-1 Page No. 10 / 83 Report Format Version:6.1.2

Radiated Emission Test (Below 1GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

	CDD Mode											
EUT Configure Mode	Mode Tested Channel					Modulation Type	Data Rate (Mbps)					
Α	802.11a	5180-5240	36 to 48	40	OFDM	BPSK	6					
Α	802.11a	5745-5825	149 to 165	40	OFDM	BPSK	6					

Power Line Conducted Emission Test:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

	CDD Mode										
EUT Configure Mode	Mode Tested Channel						Data Rate (Mbps)				
A & B	802.11a	5180-5240	36 to 48	40	OFDM	BPSK	6				
A & B	802.11a	5745-5825	149 to 165	40	OFDM	BPSK	6				

Antenna Port Conducted Measurement:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.
- ☐ The EUT was tested with CDD Mode & Beamforming_NSS1 Mode for Maximum Peak Output Power test. The worst case was found when the EUT was tested with CDD Mode. Therefore, other test items were tested with CDD Mode only.

	CDD Mode									
EUT Configure Mode	Mode	FREQ. Band (MHz)	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)			
А	802.11a		36 to 48	36, 40, 48	OFDM	BPSK	6			
Α	802.11ac (20MHz)	E400 E040	36 to 48	36, 40, 48	OFDM	BPSK	6.5			
А	802.11ac (40MHz)	5180-5240	38 to 46	38, 46	OFDM	BPSK	13.5			
Α	802.11ac (80MHz)		42	42	OFDM	BPSK	29.3			
Α	802.11a		149 to 165	149, 157, 165	OFDM	BPSK	6			
Α	802.11ac (20MHz)	5745 F00F	149 to 165	149, 157, 165	OFDM	BPSK	6.5			
Α	802.11ac (40MHz)	5745-5825	151 to 159	151, 159	OFDM	BPSK	13.5			
А	802.11ac (80MHz)		155	155	OFDM	BPSK	29.3			

Report No.: RF180425D01-1 Page No. 11 / 83 Report Format Version:6.1.2

	Beamforming_NSS1 Mode (Output Power Only)										
EUT Configure Mode	Mode	FREQ. Band (MHz)	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)				
Α	802.11ac (20MHz)		36 to 48	36, 40, 48	OFDM	BPSK	6.5				
Α	802.11ac (40MHz)	5180-5240	38 to 46	38, 46	OFDM	BPSK	13.5				
Α	802.11ac (80MHz)		42	42	OFDM	BPSK	29.3				
Α	802.11ac (20MHz)		149 to 165	149, 157, 165	OFDM	BPSK	6.5				
Α	802.11ac (40MHz)	5745-5825	151 to 159	151, 159	OFDM	BPSK	13.5				
А	802.11ac (80MHz)		155	155	OFDM	BPSK	29.3				

Test Condition:

Applicable To	EUT Configure Mode	Environmental Conditions	Input Power	Tested By	
RE≥1G	А	22deg. C, 76%RH	120Vac, 60Hz	James Wei	
RE<1G	Α	23deg. C, 74%RH	120Vac, 60Hz	James Wei	
DI O	А	25deg. C, 78%RH	120Vac, 60Hz	Starltaly Wu	
PLC	В	25deg. C, 75%RH	120Vac, 60Hz	Starltaly Wu	
APCM A		25deg. C, 76%RH	120Vac, 60Hz	Saxon Lee	

 Report No.: RF180425D01-1
 Page No. 12 / 83
 Report Format Version:6.1.2

3.3 Duty Cycle of Test Signal

If duty cycle of test signal is ≥ 98 %, duty factor is not required.

If duty cycle of test signal is < 98%, duty factor shall be considered.

802.11a: Duty cycle = 2.019/2.088 = 0.967, Duty factor = $10 * \log(1/0.967) = 0.15$

802.11ac (20MHz): Duty cycle = 4.949/5.017 = 0.986

802.11ac (40MHz): Duty cycle = 2.37/2.47 = 0.960, Duty factor = $10 * \log(1/0.960) = 0.18$

802.11ac (80MHz): Duty cycle = 1.089/1.200 = 0.908, Duty factor = 10 * log(1/0.908) = 0.42

3.4 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
A.	Adapter	DELTA	ADP-30HR B	N/A	N/A	Supplied by client
B.	Notebook PC	DELL	PP27L	8SNZ12S	FCC DoC Approved	Provided by Lab
C.	PoE Adapter	Microsemi	PD-9001GR/AT/AC	N/A	N/A	Supplied by client

Note:

- 1. All power cords of the above support units are non-shielded (1.8m).
- 2. Item B acted as communication partners to transfer data.

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	DC cable	1	1.5	N	0	Supplied by client
2.	LAN cable	1	10	N	0	Provided by Lab
3.	AC Cable	1	1.8	N	0	Provided by Lab
4.	LAN cable	1	1.5	N	0	Provided by Lab
5.	AC Cable	1	1.8	N	0	Provided by Lab

Note: The core(s) is(are) originally attached to the cable(s).

3.4.1 Configuration of System under Test

Report No.: RF180425D01-1 Page No. 14 / 83 Report Format Version:6.1.2

For Mode B:

3.5 General Description of Applied Standard

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart E (15.407)
KDB 789033 D02 General UNII Test Procedure New Rules v02r01
KDB 662911 D01 Multiple Transmitter Output v02r01
ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

Report No.: RF180425D01-1 Page No. 15 / 83 Report Format Version:6.1.2

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

Limits of unwanted emission out of the restricted bands

Entitle of animalities of the footieted same						
Applicable To			Lir	nit		
789033 D02 Genera	al UN	II Test Procedure	Field Strer	ngth at 3m		
New Ru	les v()2r01	PK:74 (dBµV/m)	AV:54 (dBμV/m)		
Frequency Band		Applicable To	EIRP Limit	Equivalent Field Strength at 3m		
5150~5250 MHz		15.407(b)(1)				
5250~5350 MHz		15.407(b)(2)	PK:-27 (dBm/MHz)	PK:68.2(dBµV/m)		
5470~5725 MHz		15.407(b)(3)				
5725~5850 MHz	\boxtimes	15.407(b)(4)(i)	PK:-27 (dBm/MHz) *1 PK:10 (dBm/MHz) *2 PK:15.6 (dBm/MHz) *3 PK:27 (dBm/MHz) *4	PK: 68.2(dBµV/m) *1 PK:105.2 (dBµV/m) *2 PK: 110.8(dBµV/m) *3 PK:122.2 (dBµV/m) *4		
15.407(b)(4)(ii)			Emission limits in section 15.247(d)			
*1		- h f th h	below the band edg	e increasing linearly to 10		

^{*1} beyond 75 MHz or more above of the band edge.

Note:

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

E =
$$\frac{1000000\sqrt{30P}}{3}$$
 µV/m, where P is the eirp (Watts).

Report No.: RF180425D01-1 Page No. 16 / 83 Report Format Version:6.1.2

dBm/MHz at 25 MHz above.

^{*3} below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above.

from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

4.1.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
HP Preamplifier	8447D	2432A03504	Feb. 21, 2018	Feb. 20, 2019
HP Preamplifier	8449B	3008A01201	Feb. 22, 2018	Feb. 21, 2019
MITEQ Preamplifier	AMF-6F-260400-33-8P	892164	Feb. 21, 2018	Feb. 20, 2019
Agilent TEST RECEIVER	N9038A	MY51210129	Feb. 6, 2018	Feb. 5, 2019
Schwarzbeck Antenna	VULB 9168	139	Nov. 29, 2017	Nov. 28, 2018
Schwarzbeck Antenna	VHBA 9123	480	May 19, 2017	May 18, 2019
Schwarzbeck Horn Antenna	BBHA-9170	212	Dec. 1, 2017	Nov. 30, 2018
Schwarzbeck Horn Antenna	BBHA 9120-D1	D130	Dec. 1, 2017	Nov. 30, 2018
ADT. Turn Table	TT100	0306	NA	NA
ADT. Tower	AT100	0306	NA	NA
Software	Radiated_V7.6.15.9.5	NA	NA	NA
SUHNER RF cable With 4dB PAD	SF104	CABLE-CH6	Aug. 14, 2017	Aug. 13, 2018
SUHNER RF cable With 3dB PAD	SF102	Cable-CH8-3.6m	Aug. 14, 2017	Aug. 13, 2018
KEYSIGHT Spectrum Analyzer	N9030A	MY54490260	Jul. 26, 2017	Jul. 25, 2018
Loop Antenna EMCI	LPA600	270	Aug. 11, 2017	Aug. 10, 2019
EMCO Horn Antenna	3115	00028257	Nov. 30, 2017	Nov. 29, 2018
Highpass filter Wainwright Instruments	WHK 3.1/18G-10SS	SN 8	NA	NA
ROHDE & SCHWARZ Spectrum Analyzer	FSV40	101042	Sep. 29, 2017	Sep. 28, 2018
Anritsu Power Sensor	MA2411B	0738404	Apr. 26, 2018	Apr. 25, 2019
Anritsu Power Meter	ML2495A	0842014	Apr. 26, 2018	Apr. 25, 2019

NOTE: 1. The calibration interval of the above test instruments is 12/24 months. And the calibrations are traceable to NML/ROC and NIST/USA.

Report No.: RF180425D01-1 Page No. 17 / 83 Report Format Version:6.1.2

^{2.} The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.

^{3.} The test was performed in Chamber No. 6.

^{4.} The Industry Canada Reference No. IC 7450E-6.

^{5.} Tested Date: May 9 ~ Jun. 1, 2018

4.1.3 Test Procedure

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 Deviation from Test Standard

No deviation.

Report No.: RF180425D01-1 Page No. 18 / 83 Report Format Version:6.1.2

4.1.5 Test Setup

For Radiated emission below 30MHz

For Radiated emission 30MHz to 1GHz

Report No.: RF180425D01-1 Page No. 19 / 83 Report Format Version:6.1.2

For Radiated emission above 1GHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Condition

- a. Connected the EUT with AC adapter placed on testing table.
- b. Set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

Above 1GHz Data:

CDD Mode

802.11a

CHANNEL	TX Channel 36	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M

NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	FACTOR (dB/m)	
1	5150.00	66.23 PK	74.00	-7.77	2.40 H	80	62.57	3.66	
2	5150.00	52.92 AV	54.00	-1.08	2.40 H	80	49.26	3.66	
3	*5180.00	113.74 PK			2.40 H	80	110.36	3.38	
4	*5180.00	102.99 AV			2.40 H	80	99.61	3.38	
5	#10360.00	58.39 PK	74.00	-15.61	1.17 H	312	43.70	14.69	
6	#10360.00	43.54 AV	54.00	-10.46	1.17 H	312	28.85	14.69	
	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
		AITIEINIA	VI OLAIVII I	G ILOI DI	OTANOL. V		1 0 111		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
NO .		EMISSION LEVEL	LIMIT	MARGIN	ANTENNA HEIGHT	TABLE ANGLE	RAW VALUE	FACTOR	
	(MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	FACTOR (dB/m)	
1	(MHz) 5150.00	EMISSION LEVEL (dBuV/m) 65.68 PK	LIMIT (dBuV/m) 74.00	MARGIN (dB) -8.32	ANTENNA HEIGHT (m) 1.00 V	TABLE ANGLE (Degree)	RAW VALUE (dBuV) 62.02	FACTOR (dB/m) 3.66	
1 2	(MHz) 5150.00 5150.00	EMISSION LEVEL (dBuV/m) 65.68 PK 51.56 AV	LIMIT (dBuV/m) 74.00	MARGIN (dB) -8.32	ANTENNA HEIGHT (m) 1.00 V 1.00 V	TABLE ANGLE (Degree) 112 112	RAW VALUE (dBuV) 62.02 47.90	FACTOR (dB/m) 3.66 3.66	
1 2 3	(MHz) 5150.00 5150.00 *5180.00	EMISSION LEVEL (dBuV/m) 65.68 PK 51.56 AV 112.68 PK	LIMIT (dBuV/m) 74.00	MARGIN (dB) -8.32	ANTENNA HEIGHT (m) 1.00 V 1.00 V 1.00 V	TABLE ANGLE (Degree) 112 112	RAW VALUE (dBuV) 62.02 47.90 109.30	FACTOR (dB/m) 3.66 3.66 3.38	

REMARKS:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. " # ": The radiated frequency is out of the restricted band.

Report No.: RF180425D01-1 Page No. 21 / 83 Report Format Version:6.1.2

CHANNEL	TX Channel 40	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	5150.00	67.01 PK	74.00	-6.99	2.75 H	83	63.35	3.66			
2	5150.00	52.88 AV	54.00	-1.12	2.75 H	83	49.22	3.66			
3	*5200.00	116.25 PK			2.75 H	83	113.06	3.19			
4	*5200.00	105.02 AV			2.75 H	83	101.83	3.19			
5	#10400.00	58.92 PK	74.00	-15.08	1.48 H	315	43.98	14.94			
6	#10400.00	44.06 AV	54.00	-9.94	1.48 H	315	29.12	14.94			
	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M										
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M				
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	/ & TEST DI MARGIN (dB)	STANCE: V ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
NO .		EMISSION LEVEL	LIMIT	MARGIN	ANTENNA HEIGHT	TABLE ANGLE	RAW VALUE	FACTOR			
	(MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	FACTOR (dB/m)			
1	(MHz) 5150.00	EMISSION LEVEL (dBuV/m) 66.47 PK	LIMIT (dBuV/m) 74.00	MARGIN (dB) -7.53	ANTENNA HEIGHT (m) 1.15 V	TABLE ANGLE (Degree)	RAW VALUE (dBuV) 62.81	FACTOR (dB/m) 3.66			
1 2	(MHz) 5150.00 5150.00	EMISSION LEVEL (dBuV/m) 66.47 PK 51.21 AV	LIMIT (dBuV/m) 74.00	MARGIN (dB) -7.53	ANTENNA HEIGHT (m) 1.15 V 1.15 V	TABLE ANGLE (Degree) 115	RAW VALUE (dBuV) 62.81 47.55	FACTOR (dB/m) 3.66 3.66			
1 2 3	(MHz) 5150.00 5150.00 *5200.00	EMISSION LEVEL (dBuV/m) 66.47 PK 51.21 AV 114.32 PK	LIMIT (dBuV/m) 74.00	MARGIN (dB) -7.53	ANTENNA HEIGHT (m) 1.15 V 1.15 V 1.15 V	TABLE ANGLE (Degree) 115 115	RAW VALUE (dBuV) 62.81 47.55 111.13	FACTOR (dB/m) 3.66 3.66 3.19			

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. " # ": The radiated frequency is out of the restricted band.

 Report No.: RF180425D01-1
 Page No. 22 / 83
 Report Format Version:6.1.2

CHANNEL	TX Channel 48	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	*5240.00	115.64 PK			1.93 H	81	112.64	3.00			
2	*5240.00	103.40 AV			1.93 H	81	100.40	3.00			
3	5350.00	54.33 PK	74.00	-19.67	1.93 H	81	51.41	2.92			
4	5350.00	42.81 AV	54.00	-11.19	1.93 H	81	39.89	2.92			
5	#10480.00	59.32 PK	74.00	-14.68	1.22 H	289	43.81	15.51			
6	#10480.00	44.42 AV	54.00	-9.58	1.22 H	289	28.91	15.51			
		ANTENNA	A POLARITY	& TEST DI	STANCE: V	ERTICAL A	T 3 M				
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	*5240.00	114.08 PK			1.08 V	128	111.08	3.00			
2	*5240.00	102.22 AV			1.08 V	128	99.22	3.00			
3	5350.00	54.02 PK	74.00	-19.98	1.08 V	128	51.10	2.92			
4	5350.00	40.47 AV	54.00	-13.53	1.08 V	128	37.55	2.92			
5	#10480.00	57.42 PK	74.00	-16.58	1.66 V	200	41.91	15.51			
6	#10480.00	43.31 AV	54.00	-10.69	1.66 V	200	27.80	15.51			

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. " # ": The radiated frequency is out of the restricted band.

 Report No.: RF180425D01-1
 Page No. 23 / 83
 Report Format Version:6.1.2

CHANNEL	TX Channel 149	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	#5643.31	54.86 PK	68.20	-13.34	1.66 H	87	51.07	3.79		
2	*5745.00	116.96 PK			1.66 H	87	112.51	4.45		
3	*5745.00	105.11 AV			1.66 H	87	100.66	4.45		
4	#5930.20	54.11 PK	68.20	-14.09	1.66 H	87	48.92	5.19		
5	11490.00	58.78 PK	74.00	-15.22	1.82 H	312	42.28	16.50		
6	11490.00	44.01 AV	54.00	-9.99	1.82 H	312	27.51	16.50		
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	#5624.59	54.32 PK	68.20	-13.88	1.41 V	80	50.60	3.72		
2	*5745.00	115.53 PK			1.41 V	80	111.08	4.45		
3	*5745.00	103.49 AV	_	_	1.41 V	80	99.04	4.45		
4	#5981.29	53.60 PK	68.20	-14.60	1.41 V	80	48.21	5.39		
5	11490.00	57.52 PK	74.00	-16.48	1.51 V	300	41.02	16.50		
6	11490.00	42.69 AV	54.00	-11.31	1.51 V	300	26.19	16.50		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. " # ": The radiated frequency is out of the restricted band.

Report No.: RF180425D01-1 Page No. 24 / 83 Report Format Version:6.1.2

CHANNEL	TX Channel 157	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	#5647.74	53.66 PK	68.20	-14.54	2.45 H	86	49.86	3.80		
2	*5785.00	118.52 PK			2.45 H	86	113.77	4.75		
3	*5785.00	107.02 AV			2.45 H	86	102.27	4.75		
4	#5962.02	53.64 PK	68.20	-14.56	2.45 H	86	48.35	5.29		
5	11570.00	59.02 PK	74.00	-14.98	1.89 H	321	42.41	16.61		
6	11570.00	44.21 AV	54.00	-9.79	1.89 H	321	27.60	16.61		
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	#5626.64	53.78 PK	68.20	-14.42	1.50 V	82	50.05	3.73		
2	*5785.00	116.88 PK			1.50 V	82	112.13	4.75		
3	*5785.00	104.94 AV			1.50 V	82	100.19	4.75		
4	#5980.56	54.98 PK	68.20	-13.22	1.50 V	82	49.59	5.39		
5	11570.00	57.73 PK	74.00	-16.27	1.42 V	246	41.12	16.61		
6	11570.00	42.88 AV	54.00	-11.12	1.42 V	246	26.27	16.61		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. " # ": The radiated frequency is out of the restricted band.

Report No.: RF180425D01-1 Page No. 25 / 83 Report Format Version:6.1.2

CHANNEL	TX Channel 165	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	#5644.74	53.53 PK	68.20	-14.67	2.64 H	78	49.74	3.79
2	*5825.00	117.27 PK			2.64 H	78	112.30	4.97
3	*5825.00	105.55 AV			2.64 H	78	100.58	4.97
4	#5925.10	56.28 PK	68.20	-11.92	2.64 H	78	51.11	5.17
5	11650.00	58.62 PK	74.00	-15.38	1.91 H	301	42.26	16.36
6	11650.00	43.84 AV	54.00	-10.16	1.91 H	301	27.48	16.36
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	#5645.39	53.52 PK	68.20	-14.68	1.58 V	88	49.73	3.79
2	*5825.00	115.94 PK			1.58 V	88	110.97	4.97
3	*5825.00	103.91 AV			1.58 V	88	98.94	4.97
4	#5929.83	52.65 PK	68.20	-15.55	1.58 V	88	47.46	5.19
5	11650.00	57.25 PK	74.00	-16.75	1.64 V	284	40.89	16.36
6	11650.00	42.50 AV	54.00	-11.50	1.64 V	284	26.14	16.36

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. " # ": The radiated frequency is out of the restricted band.

Report No.: RF180425D01-1 Page No. 26 / 83 Report Format Version:6.1.2

802.11ac (20MHz)

CHANNEL	TX Channel 36	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M

NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	5150.00	65.54 PK	74.00	-8.46	2.51 H	82	61.88	3.66
2	5150.00	52.83 AV	54.00	-1.17	2.51 H	82	49.17	3.66
3	*5180.00	114.18 PK			2.51 H	82	110.80	3.38
4	*5180.00	101.91 AV			2.51 H	82	98.53	3.38
5	#10360.00	58.98 PK	74.00	-15.02	1.11 H	317	44.29	14.69
6	#10360.00	43.25 AV	54.00	-10.75	1.11 H	317	28.56	14.69
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	5150.00	63.78 PK	74.00	-10.22	1.00 V	112	60.12	3.66
2	5150.00	51.13 AV	54.00	-2.87	1.00 V	112	47.47	3.66
3	*5180.00	112.79 PK			1.00 V	112	109.41	3.38
4	*5180.00	100.38 AV			1.00 V	112	97.00	3.38
5	#10360.00	56.76 PK	74.00	-17.24	2.69 V	103	42.07	14.69
6	#10360.00	40.90 AV	54.00	-13.10	2.69 V	103	26.21	14.69

REMARKS:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. " # ": The radiated frequency is out of the restricted band.

Report No.: RF180425D01-1 Page No. 27 / 83 Report Format Version:6.1.2

CHANNEL	TX Channel 40	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	5150.00	67.42 PK	74.00	-6.58	2.52 H	78	63.76	3.66
2	5150.00	52.88 AV	54.00	-1.12	2.52 H	78	49.22	3.66
3	*5200.00	116.06 PK			2.52 H	78	112.87	3.19
4	*5200.00	103.24 AV			2.52 H	78	100.05	3.19
5	#10400.00	60.75 PK	74.00	-13.25	1.22 H	305	45.81	14.94
6	#10400.00	44.31 AV	54.00	-9.69	1.22 H	305	29.37	14.94
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
NO .		LEVEL			HEIGHT	ANGLE	VALUE	FACTOR
	(MHz)	LEVEL (dBuV/m)	(dBuV/m)	(dB)	HEIGHT (m)	ANGLE (Degree)	VALUE (dBuV)	FACTOR (dB/m)
1	(MHz) 5150.00	LEVEL (dBuV/m) 64.48 PK	(dBuV/m) 74.00	(dB) -9.52	HEIGHT (m)	ANGLE (Degree)	VALUE (dBuV) 60.82	FACTOR (dB/m) 3.66
1 2	(MHz) 5150.00 5150.00	LEVEL (dBuV/m) 64.48 PK 51.44 AV	(dBuV/m) 74.00	(dB) -9.52	HEIGHT (m) 1.11 V 1.11 V	ANGLE (Degree) 108	VALUE (dBuV) 60.82 47.78	FACTOR (dB/m) 3.66 3.66
1 2 3	(MHz) 5150.00 5150.00 *5200.00	LEVEL (dBuV/m) 64.48 PK 51.44 AV 113.98 PK	(dBuV/m) 74.00	(dB) -9.52	HEIGHT (m) 1.11 V 1.11 V 1.11 V	ANGLE (Degree) 108 108 108	VALUE (dBuV) 60.82 47.78 110.79	FACTOR (dB/m) 3.66 3.66 3.19

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. " # ": The radiated frequency is out of the restricted band.

Report No.: RF180425D01-1 Page No. 28 / 83 Report Format Version:6.1.2

CHANNEL	TX Channel 48	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*5240.00	115.43 PK			2.09 H	81	112.43	3.00	
2	*5240.00	102.95 AV			2.09 H	81	99.95	3.00	
3	5350.00	54.29 PK	74.00	-19.71	2.09 H	81	51.37	2.92	
4	5350.00	40.28 AV	54.00	-13.72	2.09 H	81	37.36	2.92	
5	#10480.00	59.59 PK	74.00	-14.41	1.16 H	306	44.08	15.51	
6	#10480.00	44.00 AV	54.00	-10.00	1.16 H	306	28.49	15.51	
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	FACTOR (dB/m)	
NO .	-	LEVEL			HEIGHT	ANGLE	VALUE	FACTOR	
	(MHz)	LEVEL (dBuV/m)			HEIGHT (m)	ANGLE (Degree)	VALUE (dBuV)	FACTOR (dB/m)	
1	(MHz) *5240.00	LEVEL (dBuV/m) 114.13 PK			HEIGHT (m) 1.03 V	ANGLE (Degree)	VALUE (dBuV) 111.13	FACTOR (dB/m) 3.00	
1 2	*5240.00 *5240.00	LEVEL (dBuV/m) 114.13 PK 101.92 AV	(dBuV/m)	(dB)	HEIGHT (m) 1.03 V 1.03 V	ANGLE (Degree) 108 108	VALUE (dBuV) 111.13 98.92	FACTOR (dB/m) 3.00 3.00	
1 2 3	*5240.00 *5240.00 5350.00	LEVEL (dBuV/m) 114.13 PK 101.92 AV 53.02 PK	(dBuV/m) 74.00	(dB) -20.98	HEIGHT (m) 1.03 V 1.03 V 1.03 V	ANGLE (Degree) 108 108 108	VALUE (dBuV) 111.13 98.92 50.10	FACTOR (dB/m) 3.00 3.00 2.92	

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. " # ": The radiated frequency is out of the restricted band.

 Report No.: RF180425D01-1
 Page No. 29 / 83
 Report Format Version:6.1.2

CHANNEL	TX Channel 149	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	#5648.79	54.56 PK	68.20	-13.64	1.70 H	73	50.76	3.80	
2	*5745.00	116.19 PK			1.70 H	73	111.74	4.45	
3	*5745.00	103.43 AV			1.70 H	73	98.98	4.45	
4	#5975.77	54.06 PK	68.20	-14.14	1.70 H	73	48.70	5.36	
5	11490.00	57.13 PK	74.00	-16.87	1.18 H	203	40.63	16.50	
6	11490.00	43.72 AV	54.00	-10.28	1.18 H	203	27.22	16.50	
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	#5637.76	53.25 PK	68.20	-14.95	1.66 V	89	49.48	3.77	
2	*5745.00	114.27 PK			1.66 V	89	109.82	4.45	
3	*5745.00	101.46 AV			1.66 V	89	97.01	4.45	
4	#5935.64	52.46 PK	68.20	-15.74	1.66 V	89	47.26	5.20	
5	11490.00	56.05 PK	74.00	-17.95	1.64 V	341	39.55	16.50	
6	11490.00	42.60 AV	54.00	-11.40	1.64 V	341	26.10	16.50	

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. " # ": The radiated frequency is out of the restricted band.

 Report No.: RF180425D01-1
 Page No. 30 / 83
 Report Format Version:6.1.2

CHANNEL	TX Channel 157	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	#5633.09	53.27 PK	68.20	-14.93	1.69 H	73	49.52	3.75
2	*5785.00	116.65 PK			1.69 H	73	111.90	4.75
3	*5785.00	103.78 AV			1.69 H	73	99.03	4.75
4	#5936.01	54.29 PK	68.20	-13.91	1.69 H	73	49.09	5.20
5	11570.00	57.29 PK	74.00	-16.71	1.35 H	201	40.68	16.61
6	11570.00	43.86 AV	54.00	-10.14	1.35 H	201	27.25	16.61
		ANTENNA	A POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	#5620.43	55.47 PK	68.20	-12.73	1.59 V	99	51.77	3.70
2	*5785.00	114.71 PK			1.59 V	99	109.96	4.75
3	*5785.00	101.82 AV			1.59 V	99	97.07	4.75
4	#5953.83	53.56 PK	68.20	-14.64	1.59 V	99	48.31	5.25
5	11570.00	56.23 PK	74.00	-17.77	1.69 V	328	39.62	16.61
6	11570.00	42.79 AV	54.00	-11.21	1.69 V	328	26.18	16.61

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. " # ": The radiated frequency is out of the restricted band.

 Report No.: RF180425D01-1
 Page No. 31 / 83
 Report Format Version:6.1.2

CHANNEL	TX Channel 165	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	#5641.50	54.33 PK	68.20	-13.87	2.07 H	89	50.55	3.78		
2	*5825.00	116.03 PK			2.07 H	89	111.06	4.97		
3	*5825.00	103.07 AV			2.07 H	89	98.10	4.97		
4	#5930.70	54.87 PK	68.20	-13.33	2.07 H	89	49.68	5.19		
5	11650.00	56.79 PK	74.00	-17.21	1.32 H	185	40.43	16.36		
6	11650.00	43.47 AV	54.00	-10.53	1.32 H	185	27.11	16.36		
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	#5646.22	53.97 PK	68.20	-14.23	2.02 V	92	50.18	3.79		
2	*5825.00	114.24 PK			2.02 V	92	109.27	4.97		
3	*5825.00	101.63 AV			2.02 V	92	96.66	4.97		
4	#5928.95	55.29 PK	68.20	-12.91	2.02 V	92	50.10	5.19		
5	11650.00	55.74 PK	74.00	-18.26	1.95 V	326	39.38	16.36		
6	11650.00	42.35 AV	54.00	-11.65	1.95 V	326	25.99	16.36		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. " # ": The radiated frequency is out of the restricted band.

 Report No.: RF180425D01-1
 Page No. 32 / 83
 Report Format Version:6.1.2

802.11ac (40MHz)

CHANNEL	TX Channel 38	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	5150.00	66.27 PK	74.00	-7.73	2.26 H	80	62.61	3.66		
2	5150.00	52.98 AV	54.00	-1.02	2.26 H	80	49.32	3.66		
3	*5190.00	108.05 PK			2.26 H	80	104.76	3.29		
4	*5190.00	96.98 AV			2.26 H	80	93.69	3.29		
5	#10380.00	57.64 PK	74.00	-16.36	1.88 H	261	42.83	14.81		
6	#10380.00	44.25 AV	54.00	-9.75	1.88 H	261	29.44	14.81		
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	T 3 M			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	5150.00	66.76 PK	74.00	-7.24	1.25 V	103	63.10	3.66		
2	5150.00	51.22 AV	54.00	-2.78	1.25 V	103	47.56	3.66		
3	*5190.00	105.20 PK			1.25 V	103	101.91	3.29		
4	*5190.00	94.02 AV			1.25 V	103	90.73	3.29		
5	#10380.00	55.10 PK	74.00	-18.90	1.15 V	182	40.29	14.81		

REMARKS:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. " # ": The radiated frequency is out of the restricted band.

 Report No.: RF180425D01-1
 Page No. 33 / 83
 Report Format Version:6.1.2

CHANNEL	TX Channel 46	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	*5230.00	113.49 PK			1.80 H	77	110.45	3.04		
2	*5230.00	101.69 AV			1.80 H	77	98.65	3.04		
3	5350.00	59.45 PK	74.00	-14.55	1.80 H	77	56.53	2.92		
4	5350.00	44.10 AV	54.00	-9.90	1.80 H	77	41.18	2.92		
5	#10460.00	58.56 PK	74.00	-15.44	1.92 H	258	43.18	15.38		
6	#10460.00	44.95 AV	54.00	-9.05	1.92 H	258	29.57	15.38		
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	*5230.00	110.65 PK			1.37 V	119	107.61	3.04		
2	*5230.00	99.26 AV			1.37 V	119	96.22	3.04		
		00.2071			1.07 V	110	00.22	0.0.		
3	5350.00	58.73 PK	74.00	-15.27	1.37 V	119	55.81	2.92		
3	5350.00 5350.00		74.00 54.00	-15.27 -8.39						
		58.73 PK		_	1.37 V	119	55.81	2.92		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. " # ": The radiated frequency is out of the restricted band.

Report No.: RF180425D01-1 Page No. 34 / 83 Report Format Version:6.1.2

CHANNEL	TX Channel 151	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	#5645.28	62.75 PK	68.20	-5.45	2.32 H	92	58.96	3.79		
2	*5755.00	113.92 PK			2.32 H	92	109.40	4.52		
3	*5755.00	102.43 AV			2.32 H	92	97.91	4.52		
4	#5927.87	56.96 PK	68.20	-11.24	2.32 H	92	51.79	5.17		
5	11510.00	56.97 PK	74.00	-17.03	1.82 H	204	40.43	16.54		
6	11510.00	43.72 AV	54.00	-10.28	1.82 H	204	27.18	16.54		
		ANTENNA	A POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	#5644.60	60.92 PK	68.20	-7.28	1.11 V	109	57.13	3.79		
2	*5755.00	110.01 PK			1.11 V	109	105.49	4.52		
3	*5755.00	98.43 AV			1.11 V	109	93.91	4.52		
4	#5926.97	55.22 PK	68.20	-12.98	1.11 V	109	50.05	5.17		
5	11510.00	55.76 PK	74.00	-18.24	1.03 V	293	39.22	16.54		
6	11510.00	42.35 AV	54.00	-11.65	1.03 V	293	25.81	16.54		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. " # ": The radiated frequency is out of the restricted band.

 Report No.: RF180425D01-1
 Page No. 35 / 83
 Report Format Version:6.1.2

CHANNEL	TX Channel 159	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	#5643.78	55.39 PK	68.20	-12.81	1.00 H	146	51.60	3.79		
2	*5795.00	110.91 PK			1.00 H	146	106.09	4.82		
3	*5795.00	100.13 AV			1.00 H	146	95.31	4.82		
4	#5934.86	56.85 PK	68.20	-11.35	1.00 H	146	51.65	5.20		
5	11590.00	56.90 PK	74.00	-17.10	1.61 H	242	40.28	16.62		
6	11590.00	43.68 AV	54.00	-10.32	1.61 H	242	27.06	16.62		
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	#5585.59	53.43 PK	68.20	-14.77	1.39 V	110	49.86	3.57		
2	*5795.00	107.00 PK			1.39 V	110	102.18	4.82		
3	*5795.00	94.60 AV			1.39 V	110	89.78	4.82		
4	#5934.73	54.66 PK	68.20	-13.54	1.39 V	110	49.46	5.20		
5	11590.00	55.55 PK	74.00	-18.45	1.00 V	249	38.93	16.62		
6	11590.00	42.25 AV	54.00	-11.75	1.00 V	249	25.63	16.62		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. " # ": The radiated frequency is out of the restricted band.

Report No.: RF180425D01-1 Page No. 36 / 83 Report Format Version:6.1.2

802.11ac (80MHz)

CHANNEL	TX Channel 42	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	5150.00	67.03 PK	74.00	-6.97	2.13 H	80	63.37	3.66		
2	5150.00	52.93 AV	54.00	-1.07	2.13 H	80	49.27	3.66		
3	*5210.00	102.29 PK			2.13 H	80	99.15	3.14		
4	*5210.00	91.97 AV			2.13 H	80	88.83	3.14		
5	5350.00	54.80 PK	74.00	-19.20	2.13 H	80	51.88	2.92		
6	5350.00	41.52 AV	54.00	-12.48	2.13 H	80	38.60	2.92		
7	#10420.00	53.41 PK	74.00	-20.59	1.72 H	289	38.32	15.09		
8	#10420.00	40.92 AV	54.00	-13.08	1.72 H	289	25.83	15.09		
		ANTENNA	NOLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	5150.00	67.37 PK	74.00	-6.63	1.00 V	106	63.71	3.66		
2	5150.00	52.48 AV	54.00	-1.52	1.00 V	106	48.82	3.66		
3	*5210.00	101.20 PK			1.00 V	106	98.06	3.14		
4	*5210.00	89.99 AV			1.00 V	106	86.85	3.14		
5	5350.00	54.47 PK	74.00	-19.53	1.00 V	106	51.55	2.92		
6	5350.00	41.14 AV	54.00	-12.86	1.00 V	106	38.22	2.92		
7	#10420.00	52.71 PK	74.00	-21.29	1.02 V	103	37.62	15.09		
8	#10420.00	40.36 AV	54.00	-13.64	1.02 V	103	25.27	15.09		

REMARKS:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. " # ": The radiated frequency is out of the restricted band.

Report No.: RF180425D01-1 Page No. 37 / 83 Report Format Version:6.1.2

CHANNEL	TX Channel 155	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	#5656.84	72.20 PK	73.26	-1.06	1.05 H	145	68.35	3.85	
2	*5775.00	105.98 PK			1.05 H	145	101.30	4.68	
3	*5775.00	95.18 AV			1.05 H	145	90.50	4.68	
4	#5932.94	65.20 PK	68.20	-3.00	1.05 H	145	60.02	5.18	
5	11550.00	55.92 PK	74.00	-18.08	1.15 H	178	39.34	16.58	
6	11550.00	41.95 AV	54.00	-12.05	1.15 H	178	25.37	16.58	
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	#5649.61	65.95 PK	68.20	-2.25	1.01 V	106	62.15	3.80	
2	*5775.00	104.82 PK			1.01 V	106	100.14	4.68	
3	*5775.00	94.24 AV			1.01 V	106	89.56	4.68	
4	#5924.26	60.58 PK	68.75	-8.17	1.01 V	106	55.40	5.18	
5	11550.00	55.02 PK	74.00	-18.98	2.23 V	346	38.44	16.58	
6	11550.00	41.45 AV	54.00	-12.55	2.23 V	346	24.87	16.58	

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. " # ": The radiated frequency is out of the restricted band.

 Report No.: RF180425D01-1
 Page No. 38 / 83
 Report Format Version:6.1.2

Beamforming_NSS1 Mode

802.11ac (20MHz)

CHANNEL	TX Channel 36	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M

NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	5150.00	64.42 PK	74.00	-9.58	2.45 H	77	60.76	3.66	
2	5150.00	52.76 AV	54.00	-1.24	2.45 H	77	49.10	3.66	
3	*5180.00	112.19 PK			2.45 H	77	108.81	3.38	
4	*5180.00	100.70 AV			2.45 H	77	97.32	3.38	
5	#10360.00	57.31 PK	74.00	-16.69	1.77 H	205	42.62	14.69	
6	#10360.00	42.28 AV	54.00	-11.72	1.77 H	205	27.59	14.69	
	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
NO .		EMISSION LEVEL	LIMIT		ANTENNA HEIGHT	TABLE ANGLE	VALUE	FACTOR	
	(MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	(dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	VALUE (dBuV)	FACTOR (dB/m)	
1	(MHz) 5150.00	EMISSION LEVEL (dBuV/m) 61.02 PK	LIMIT (dBuV/m)	(dB) -12.98	ANTENNA HEIGHT (m) 1.00 V	TABLE ANGLE (Degree)	VALUE (dBuV) 57.36	FACTOR (dB/m) 3.66	
1 2	(MHz) 5150.00 5150.00	EMISSION LEVEL (dBuV/m) 61.02 PK 47.77 AV	LIMIT (dBuV/m)	(dB) -12.98	ANTENNA HEIGHT (m) 1.00 V 1.00 V	TABLE ANGLE (Degree) 107 107	VALUE (dBuV) 57.36 44.11	FACTOR (dB/m) 3.66 3.66	
1 2 3	(MHz) 5150.00 5150.00 *5180.00	EMISSION LEVEL (dBuV/m) 61.02 PK 47.77 AV 109.41 PK	LIMIT (dBuV/m)	(dB) -12.98	ANTENNA HEIGHT (m) 1.00 V 1.00 V	TABLE ANGLE (Degree) 107 107	VALUE (dBuV) 57.36 44.11 106.03	FACTOR (dB/m) 3.66 3.66 3.38	

REMARKS:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. " # ": The radiated frequency is out of the restricted band.

Report No.: RF180425D01-1 Page No. 39 / 83 Report Format Version:6.1.2

CHANNEL	TX Channel 40	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	*5200.00	112.18 PK			1.67 H	89	108.99	3.19		
2	*5200.00	100.78 AV			1.67 H	89	97.59	3.19		
3	#10400.00	57.60 PK	74.00	-16.40	1.03 H	281	42.66	14.94		
4	#10400.00	42.55 AV	54.00	-11.45	1.03 H	281	27.61	14.94		
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M			
NO.	FREQ. EMISSION LIMIT MARGIN ANTENNA TABLE RAW CORRECT									
1	*5200.00	109.60 PK			1.05 V	119	106.41	3.19		
2	*5200.00	98.11 AV			1.05 V	119	94.92	3.19		
3	#10400.00	55.61 PK	74.00	-18.39	1.88 V	204	40.67	14.94		
4	#10400.00	41.27 AV	54.00	-12.73	1.88 V	204	26.33	14.94		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. " # ": The radiated frequency is out of the restricted band.

Report No.: RF180425D01-1 Page No. 40 / 83 Report Format Version:6.1.2

CHANNEL	TX Channel 48	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*5240.00	109.67 PK			2.07 H	61	106.67	3.00	
2	*5240.00	98.51 AV			2.07 H	61	95.51	3.00	
3	5350.00	58.53 PK	74.00	-15.47	2.07 H	61	55.61	2.92	
4	5350.00	41.54 AV	54.00	-12.46	2.07 H	61	38.62	2.92	
5	#10480.00	57.73 PK	74.00	-16.27	1.52 H	182	42.22	15.51	
6	#10480.00	42.88 AV	54.00	-11.12	1.52 H	182	27.37	15.51	
		ANTENNA	A POLARITY	& TEST DI	STANCE: V	ERTICAL A	T 3 M		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*5240.00	107.55 PK			1.00 V	122	104.55	3.00	
2	*5240.00	95.81 AV			1.00 V	122	92.81	3.00	
3	5350.00	56.74 PK	74.00	-17.26	1.00 V	122	53.82	2.92	
4	5350.00	38.69 AV	54.00	-15.31	1.00 V	122	35.77	2.92	
5	#10480.00	55.59 PK	74.00	-18.41	1.62 V	302	40.08	15.51	
6	#10480.00	41.52 AV	54.00	-12.48	1.62 V	302	26.01	15.51	

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. " # ": The radiated frequency is out of the restricted band.

 Report No.: RF180425D01-1
 Page No. 41 / 83
 Report Format Version:6.1.2

CHANNEL	TX Channel 149	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	#5592.22	61.11 PK	68.20	-7.09	2.92 H	83	57.51	3.60	
2	*5745.00	110.85 PK			2.92 H	83	106.40	4.45	
3	*5745.00	99.62 AV			2.92 H	83	95.17	4.45	
4	#5940.70	54.88 PK	68.20	-13.32	2.92 H	83	49.67	5.21	
5	11490.00	58.67 PK	74.00	-15.33	1.82 H	209	42.17	16.50	
6	11490.00	42.93 AV	54.00	-11.07	1.82 H	209	26.43	16.50	
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	#5641.88	53.89 PK	68.20	-14.31	1.54 V	96	50.11	3.78	
2	*5745.00	107.70 PK			1.54 V	96	103.25	4.45	
3	*5745.00	97.09 AV			1.54 V	96	92.64	4.45	
4	#5957.57	54.11 PK	68.20	-14.09	1.54 V	96	48.85	5.26	
5	11490.00	56.72 PK	74.00	-17.28	1.03 V	84	40.22	16.50	
6	11490.00	41.63 AV	54.00	-12.37	1.03 V	84	25.13	16.50	

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. " # ": The radiated frequency is out of the restricted band.

 Report No.: RF180425D01-1
 Page No. 42 / 83
 Report Format Version:6.1.2

CHANNEL	TX Channel 157	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

		ANTENNA	POLARITY &	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	#5627.99	58.02 PK	68.20	-10.18	3.81 H	103	54.29	3.73
2	*5785.00	111.94 PK			3.81 H	103	107.19	4.75
3	*5785.00	101.15 AV			3.81 H	103	96.40	4.75
4	#5984.81	53.27 PK	68.20	-14.93	3.81 H	103	47.85	5.42
5	11570.00	58.93 PK	74.00	-15.07	1.88 H	217	42.32	16.61
6	11570.00	43.18 AV	54.00	-10.82	1.88 H	217	26.57	16.61
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	#5639.36	53.77 PK	68.20	-14.43	1.65 V	100	50.00	3.77
2	*5785.00	109.28 PK			1.65 V	100	104.53	4.75
3	*5785.00	98.47 AV			1.65 V	100	93.72	4.75
4	#5999.04	55.21 PK	68.20	-12.99	1.65 V	100	49.72	5.49
5	11570.00	57.08 PK	74.00	-16.92	1.12 V	72	40.47	16.61
6	11570.00	42.00 AV	54.00	-12.00	1.12 V	72	25.39	16.61

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. " # ": The radiated frequency is out of the restricted band.

 Report No.: RF180425D01-1
 Page No. 43 / 83
 Report Format Version:6.1.2

CHANNEL	TX Channel 165	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

		ANTENNA I	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	#5626.97	54.85 PK	68.20	-13.35	3.88 H	89	51.12	3.73
2	*5825.00	111.64 PK			3.88 H	89	106.67	4.97
3	*5825.00	99.85 AV			3.88 H	89	94.88	4.97
4	#5962.26	54.30 PK	68.20	-13.90	3.88 H	89	49.01	5.29
5	11650.00	58.59 PK	74.00	-15.41	1.97 H	248	42.23	16.36
6	11650.00	42.84 AV	54.00	-11.16	1.97 H	248	26.48	16.36
		ANTENNA	A POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	#5627.03	54.24 PK	68.20	-13.96	1.67 V	72	50.51	3.73
2	*5825.00	108.38 PK			1.66 V	143	103.41	4.97
3	*5825.00	97.85 AV			1.66 V	143	92.88	4.97
4	#5974.19	54.95 PK	68.20	-13.25	1.67 V	72	49.60	5.35
5	11650.00	56.67 PK	74.00	-17.33	1.00 V	27	40.31	16.36
6	11650.00	41.54 AV	54.00	-12.46	1.00 V	27	25.18	16.36

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. " # ": The radiated frequency is out of the restricted band.

Report No.: RF180425D01-1 Page No. 44 / 83 Report Format Version:6.1.2

802.11ac (40MHz)

CHANNEL	TX Channel 38	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	5150.00	69.11 PK	74.00	-4.89	1.58 H	60	65.45	3.66		
2	5150.00	52.82 AV	54.00	-1.18	1.58 H	60	49.16	3.66		
3	*5190.00	108.40 PK			1.58 H	60	105.11	3.29		
4	*5190.00	98.11 AV			1.58 H	60	94.82	3.29		
5	#10380.00	57.64 PK	74.00	-16.36	1.74 H	242	42.83	14.81		
6	#10380.00	41.15 AV	54.00	-12.85	1.74 H	242	26.34	14.81		
		ANTENNA	A POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	5150.00	68.89 PK	74.00	-5.11	1.00 V	116	65.23	3.66		
2	5150.00	51.95 AV	54.00	-2.05	1.00 V	116	48.29	3.66		
3	*5190.00	107.80 PK			1.00 V	116	104.51	3.29		
4	*5190.00	97.47 AV	·		1.00 V	116	94.18	3.29		

REMARKS:

#10380.00

6 #10380.00

5

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

-18.50

-13.78

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

1.12 V

1.12 V

141

141

40.69

25.41

14.81

14.81

3. The other emission levels were very low against the limit.

74.00

54.00

- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.

55.50 PK

40.22 AV

6. " # ": The radiated frequency is out of the restricted band.

Report No.: RF180425D01-1 Page No. 45 / 83 Report Format Version:6.1.2

CHANNEL	TX Channel 46	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	*5230.00	111.17 PK			1.68 H	71	108.13	3.04		
2	*5230.00	101.23 AV			1.68 H	71	98.19	3.04		
3	5350.00	58.39 PK	74.00	-15.61	1.68 H	71	55.47	2.92		
4	5350.00	41.71 AV	54.00	-12.29	1.68 H	71	38.79	2.92		
5	#10460.00	58.35 PK	74.00	-15.65	1.77 H	281	42.97	15.38		
6	#10460.00	41.89 AV	54.00	-12.11	1.77 H	281	26.51	15.38		
		ANTENNA	A POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	*5230.00	440.00 DIC					10=00	0.04		
	3230.00	110.33 PK			1.02 V	122	107.29	3.04		
2	*5230.00	110.33 PK 100.63 AV			1.02 V 1.02 V	122 122	97.59	3.04		
3			74.00	-17.81						
	*5230.00	100.63 AV	74.00 54.00	-17.81 -13.62	1.02 V	122	97.59	3.04		
3	*5230.00 5350.00	100.63 AV 56.19 PK			1.02 V 1.02 V	122 122	97.59 53.27	3.04 2.92		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. " # ": The radiated frequency is out of the restricted band.

 Report No.: RF180425D01-1
 Page No. 46 / 83
 Report Format Version:6.1.2

CHANNEL	TX Channel 151	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	#5640.18	53.70 PK	68.20	-14.50	1.46 H	61	49.92	3.78
2	*5755.00	110.39 PK			1.46 H	61	105.87	4.52
3	*5755.00	99.55 AV			1.46 H	61	95.03	4.52
4	#5979.39	53.81 PK	68.20	-14.39	1.46 H	61	48.43	5.38
5	11510.00	59.09 PK	74.00	-14.91	1.77 H	251	42.55	16.54
6	11510.00	42.92 AV	54.00	-11.08	1.77 H	251	26.38	16.54
		ANTENNA	A POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	#5652.46	53.92 PK	70.02	-16.10	1.22 V	96	50.10	3.82
2	*5755.00	108.76 PK			1.22 V	96	104.24	4.52
3	*5755.00	98.24 AV			1.22 V	96	93.72	4.52
4	#5934.76	54.09 PK	68.20	-14.11	1.22 V	96	48.89	5.20
5	#115100.00	40.31 PK	74.00	-33.69	1.00 V	76	40.31	0.00
6	#115100.00	25.23 AV	54.00	-28.77	1.00 V	76	25.23	0.00

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. " # ": The radiated frequency is out of the restricted band.

 Report No.: RF180425D01-1
 Page No. 47 / 83
 Report Format Version:6.1.2

CHANNEL	TX Channel 159	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

		ANTENNA	POLARITY &	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	#5637.33	59.59 PK	68.20	-8.61	1.60 H	86	55.82	3.77
2	*5795.00	111.76 PK			1.60 H	86	106.94	4.82
3	*5795.00	101.54 AV			1.60 H	86	96.72	4.82
4	#5944.96	53.04 PK	68.20	-15.16	1.60 H	86	47.83	5.21
5	11590.00	59.23 PK	74.00	-14.77	1.82 H	237	42.61	16.62
6	11590.00	43.03 AV	54.00	-10.97	1.82 H	237	26.41	16.62
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	#5633.52	53.15 PK	68.20	-15.05	1.74 V	63	49.40	3.75
2	*5795.00	110.54 PK			1.74 V	63	105.72	4.82
3	*5795.00	100.37 AV			1.74 V	63	95.55	4.82
4	#5932.43	52.33 PK	68.20	-15.87	1.74 V	63	47.15	5.18
5	11590.00	57.10 PK	74.00	-16.90	1.02 V	119	40.48	16.62
6	11590.00	42.01 AV	54.00	-11.99	1.02 V	119	25.39	16.62

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. " # ": The radiated frequency is out of the restricted band.

 Report No.: RF180425D01-1
 Page No. 48 / 83
 Report Format Version:6.1.2

802.11ac (80MHz)

CHANNEL	TX Channel 42	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

		ANTENNA	POLARITY &	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	5150.00	67.48 PK	74.00	-6.52	1.83 H	69	63.82	3.66
2	5150.00	52.89 AV	54.00	-1.11	1.83 H	69	49.23	3.66
3	*5210.00	102.99 PK			1.83 H	69	99.85	3.14
4	*5210.00	92.77 AV			1.83 H	69	89.63	3.14
5	5350.00	53.82 PK	74.00	-20.18	1.83 H	69	50.90	2.92
6	5350.00	42.67 AV	54.00	-11.33	1.83 H	69	39.75	2.92
7	#10420.00	56.91 PK	74.00	-17.09	1.82 H	162	41.82	15.09
8	#10420.00	41.52 AV	54.00	-12.48	1.82 H	162	26.43	15.09
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	5150.00	64.80 PK	74.00	-9.20	1.02 V	109	61.14	3.66
2	5150.00	52.18 AV	54.00	-1.82	1.02 V	109	48.52	3.66
3	*5210.00	101.59 PK			1.02 V	109	98.45	3.14
4	*5210.00	91.82 AV			1.02 V	109	88.68	3.14
5	5350.00	53.39 PK	74.00	-20.61	1.02 V	109	50.47	2.92
6	5350.00	42.45 AV	54.00	-11.55	1.02 V	109	39.53	2.92
7	#10420.00	55.01 PK	74.00	-18.99	1.00 V	42	39.92	15.09
8	#10420.00	39.92 AV	54.00	-14.08	1.00 V	42	24.83	15.09

REMARKS:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. " # ": The radiated frequency is out of the restricted band.

Report No.: RF180425D01-1 Page No. 49 / 83 Report Format Version:6.1.2

CHANNEL	TX Channel 155	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

		ANTENNA	POLARITY &	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	#5632.35	58.36 PK	68.20	-9.84	3.46 H	81	54.62	3.74
2	*5775.00	108.14 PK			3.46 H	81	103.46	4.68
3	*5775.00	97.87 AV			3.46 H	81	93.19	4.68
4	#5935.15	53.69 PK	68.20	-14.51	3.46 H	81	48.49	5.20
5	11550.00	58.26 PK	74.00	-15.74	1.82 H	154	41.68	16.58
6	11550.00	42.89 AV	54.00	-11.11	1.82 H	154	26.31	16.58
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	#5626.27	56.98 PK	68.20	-11.22	1.00 V	115	53.25	3.73
2	*5775.00	105.16 PK			1.00 V	115	100.48	4.68
3	*5775.00	95.05 AV			1.00 V	115	90.37	4.68
4	#5937.04	56.48 PK	68.20	-11.72	1.00 V	115	51.28	5.20
5	11550.00	56.69 PK	74.00	-17.31	1.33 V	71	40.11	16.58
6	11550.00	41.60 AV	54.00	-12.40	1.33 V	71	25.02	16.58

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. " # ": The radiated frequency is out of the restricted band.

 Report No.: RF180425D01-1
 Page No. 50 / 83
 Report Format Version:6.1.2

Below 1GHz Data:

CDD Mode

CHANNEL	TX Channel 40	DETECTOR	Ouesi Beek (OB)
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m) MARGIN (dB) ANTENNA TABLE RAW HEIGHT ANGLE VALUE (m) (Degree) (dBuV)		VALUE	CORRECTION FACTOR (dB/m)			
1	42.90	23.10 QP	40.00	-16.90	1.07 H	95	30.59	-7.49	
2	107.36	17.17 QP	43.50	-26.33	2.65 H	52	28.00	-10.83	
3	534.74	30.81 QP	46.00	-15.19	2.98 H	82	31.27	-0.46	
4	650.02	32.33 QP	46.00	-13.67	1.66 H	160	30.28	2.05	
5	775.01	35.10 QP	46.00	-10.90	1.46 H	260	30.43	4.67	
6	859.79	33.83 QP	46.00	-12.17	2.05 H	151	28.47	5.36	
		ANTENNA	A POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M		
NO.	(MHz) (dBuV/m) (dB)								
		LEVEL (dBuV/m)			HEIGHT (m)	ANGLE (Degree)			
1							VALUE	FACTOR	
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(m)	(Degree)	VALUE (dBuV)	FACTOR (dB/m)	
1	(MHz) 43.00	(dBuV/m) 35.34 QP	(dBuV/m) 40.00	(dB) -4.66	(m) 2.28 V	(Degree) 164	VALUE (dBuV) 42.83	FACTOR (dB/m) -7.49	
1 2	(MHz) 43.00 53.62	(dBuV/m) 35.34 QP 29.85 QP	(dBuV/m) 40.00 40.00	(dB) -4.66 -10.15	(m) 2.28 V 1.05 V	(Degree) 164 17	VALUE (dBuV) 42.83 37.08	FACTOR (dB/m) -7.49 -7.23	
1 2 3	(MHz) 43.00 53.62 92.76	(dBuV/m) 35.34 QP 29.85 QP 24.99 QP	(dBuV/m) 40.00 40.00 43.50	-4.66 -10.15 -18.51	(m) 2.28 V 1.05 V 1.15 V	(Degree) 164 17 254	VALUE (dBuV) 42.83 37.08 37.51	FACTOR (dB/m) -7.49 -7.23 -12.52	

REMARKS:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

Report No.: RF180425D01-1 Page No. 51 / 83 Report Format Version:6.1.2

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Ī	Frequency (MHz)	Conducted	d Limit (dBuV)			
	Frequency (MHZ)	Quasi-peak	Average			
	0.15 - 0.5	66 - 56	56 - 46			
	0.50 - 5.0	56	46			
	5.0 - 30.0	60	50			

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
ROHDE & SCHWARZ TEST RECEIVER	ESR3	102413	Feb. 8, 2018	Feb. 7, 2019
ROHDE & SCHWARZ Artificial Mains Network (for EUT)	ESH2-Z5	100104	Dec. 6, 2017	Dec. 5, 2018
LISN With Adapter (for EUT)	AD10	C09Ada-001	Dec. 6, 2017	Dec. 5, 2018
ROHDE & SCHWARZ Artificial Mains Network (for peripherals)	ESH3-Z5	847265/023	Nov. 03, 2017	Nov. 02, 2018
SCHWARZBECK Artificial Mains Network (For EUT)	NNLK8129	8129229	May 3, 2018	May 2, 2019
Software	Cond_V7.3.7.4	NA	NA	NA
RF cable (JYEBAO) With 10dB PAD	5D-FB	Cable-C09.01	Feb. 21, 2018	Feb. 20, 2019
SUHNER Terminator (For ROHDE & SCHWARZ LISN)	65BNC-5001	E1-010789	May 8, 2018	May 7, 2019

Notes: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in Shielded Room No. 9.
- 3. Tested Date: Jun. 1 ~ 27, 2018

Report No.: RF180425D01-1 Page No. 52 / 83 Report Format Version:6.1.2

4.2.3 Test Procedure

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

NOTE: All modes of operation were investigated and the worst-case emissions are reported.

4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Condition

Mode A:

- a. Connected the EUT with AC adapter placed on testing table.
- b. Set the EUT under transmission condition continuously at specific channel frequency.

Mode B:

- a. Connected the EUT with PoE adapter placed on testing table.
- b. Set the EUT under transmission condition continuously at specific channel frequency.

Report No.: RF180425D01-1 Page No. 53 / 83 Report Format Version:6.1.2

4.2.7 Test Results

CDD Mode

Phase	Line (L)	I Detector Function	Quasi-Peak (QP) / Average (AV)
Test Mode	Mode A		

	Corr.		Reading Value		Emissio	Emission Level		Limit		Margin	
No	Freq.	Factor	[dB	(uV)]	[dB	(uV)]	[dB ((uV)]	(dl	3)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.18125	10.12	28.62	17.75	38.74	27.87	64.43	54.43	-25.69	-26.56	
2	0.37266	10.15	36.67	30.63	46.82	40.78	58.44	48.44	-11.62	-7.66	
3	1.09766	10.26	24.90	16.87	35.16	27.13	56.00	46.00	-20.84	-18.87	
4	3.46875	10.43	22.62	14.21	33.05	24.64	56.00	46.00	-22.95	-21.36	
5	12.40234	10.77	28.70	25.57	39.47	36.34	60.00	50.00	-20.53	-13.66	
6	15.07422	10.89	35.68	35.19	46.57	46.08	60.00	50.00	-13.43	-3.92	

REMARKS:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

Report No.: RF180425D01-1 Page No. 54 / 83 Report Format Version:6.1.2

Phase	Neutral (N)	Detector Function	Quasi-Peak (QP) / Average (AV)
Test Mode	Mode A		

	Eroa	Corr.	Readin	Reading Value		Emission Level		Limit		Margin	
No	Freq.	Factor	[dB ((uV)]	[dB ((uV)]	[dB ((uV)]	(dl	3)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15391	10.12	33.02	20.42	43.14	30.54	65.79	55.79	-22.65	-25.25	
2	0.36875	10.16	38.43	33.05	48.59	43.21	58.53	48.53	-9.94	-5.32	
3	1.06641	10.27	25.60	14.62	35.87	24.89	56.00	46.00	-20.13	-21.11	
4	3.53125	10.45	23.20	14.20	33.65	24.65	56.00	46.00	-22.35	-21.35	
5	12.40234	10.71	27.87	25.48	38.58	36.19	60.00	50.00	-21.42	-13.81	
6	15.07422	10.77	35.40	34.95	46.17	45.72	60.00	50.00	-13.83	-4.28	

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

Report No.: RF180425D01-1 Page No. 55 / 83 Report Format Version:6.1.2

Phase	Line (L)	Liberación Filherion	Quasi-Peak (QP) / Average (AV)
Test Mode	Mode B		

	Erog Corr		Readin	g Value	Emissio	n Level	Lir	nit	Mar	gin
No	Freq.	Factor	[dB	(uV)]	[dB	(uV)]	[dB ((uV)]	(dl	В)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.16564	10.11	37.13	28.33	47.24	38.44	65.18	55.18	-17.94	-16.74
2	0.42761	10.15	30.34	23.27	40.49	33.42	57.30	47.30	-16.81	-13.88
3	0.80107	10.22	17.15	11.18	27.37	21.40	56.00	46.00	-28.63	-24.60
4	2.74043	10.38	12.07	6.90	22.45	17.28	56.00	46.00	-33.55	-28.72
5	21.88338	11.13	30.19	27.81	41.32	38.94	60.00	50.00	-18.68	-11.06
6	29.66037	11.13	21.24	14.98	32.37	26.11	60.00	50.00	-27.63	-23.89

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

 Report No.: RF180425D01-1
 Page No. 56 / 83
 Report Format Version:6.1.2

Phase	Neutral (N)	Detector Function	Quasi-Peak (QP) / Average (AV)
Test Mode	Mode B		

	Eroa	Corr.	Readin	g Value	Emissio	n Level	Lir	nit	Mar	gin
No	Freq.	Factor	[dB	(uV)]	[dB	(uV)]	[dB ((uV)]	(dl	В)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.16173	10.12	37.22	26.46	47.34	36.58	65.37	55.37	-18.03	-18.79
2	0.42761	10.17	28.78	21.89	38.95	32.06	57.30	47.30	-18.35	-15.24
3	0.58602	10.19	17.50	12.19	27.69	22.38	56.00	46.00	-28.31	-23.62
4	1.19598	10.28	12.62	7.16	22.90	17.44	56.00	46.00	-33.10	-28.56
5	4.19886	10.50	7.41	2.89	17.91	13.39	56.00	46.00	-38.09	-32.61
6	21.64096	10.85	29.65	26.62	40.50	37.47	60.00	50.00	-19.50	-12.53

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

Report No.: RF180425D01-1 Page No. 57 / 83 Report Format Version:6.1.2

4.3 **Transmit Power Measurement**

4.3.1 Limits of Transmit Power Measurement

Operation Band		EUT Category	Limit			
U-NII-1		Outdoor Access Point	1 Watt (30 dBm) (Max. e.i.r.p ≤ 125mW(21 dBm) at any elevation angle above 30 degrees as measured from the horizon)			
O-INII-1		Fixed point-to-point Access Point	1 Watt (30 dBm)			
	\checkmark	Indoor Access Point	1 Watt (30 dBm)			
		Client device	250mW (24 dBm)			
U-NII-2A			250mW (24 dBm) or 11 dBm+10 log B*			
U-NII-2C			250mW (24 dBm) or 11 dBm+10 log B*			
U-NII-3		$\sqrt{}$	1 Watt (30 dBm)			

^{*}B is the 26 dB emission bandwidth in megahertz

Per KDB 662911 Method of conducted output power measurement on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$; Array Gain = 0 dB (i.e., no array gain) for channel widths ≥ 40 MHz for any N_{ANT} ;

Array Gain = $5 \log(N_{ANT}/N_{SS})$ dB or 3 dB, whichever is less for 20-MHz channel widths with $N_{ANT} \ge 5$.

For power measurements on all other devices: Array Gain = $10 \log(N_{ANT}/N_{SS}) dB$.

4.3.2 Test Setup

For Power Output Measurement

For 26dB Occupied Bandwidth

Report No.: RF180425D01-1 Page No. 58 / 83 Report Format Version:6.1.2

4.3.3 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
ROHDE & SCHWARZ Spectrum Analyzer	FSV40	101042	Sep. 29, 2017	Sep. 28, 2018
Anritsu Power Sensor	MA2411B	0738404	Apr. 26, 2018	Apr. 25, 2019
Anritsu Power Meter	ML2495A	0842014	Apr. 26, 2018	Apr. 25, 2019
Temperature & Humidity Chamber	MHU-225AU	920409	May 25, 2018	May 24, 2019
DIGITAL POWER METER IDRC	CP-240	240515	Sep. 8, 2017	Sep. 7, 2018
AC Power Source ExTech	CFW-105	E000603	NA	NA

NOTE: 1. The calibration interval of the above test instruments is 12/24 months. And the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in Chamber No. 6.
- 3. The Industry Canada Reference No. IC 7450E-6.
- 4. Tested Date: Jun. 27, 2018

4.3.4 Test Procedure

For Average Power Measurement For 802.11a, 802.11ac (20MHz), 802.11ac (40MHz)

Method PM is used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst and set the detector to AVERAGE. Duty factor is not added to measured value.

For 802.11ac (80MHz)

- 1) Set span to encompass the entire 26 dB EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal.
- 2) Set sweep trigger to "free run".
- 3) Set RBW = 1 MHz
- 4) Set VBW ≥ 3 MHz
- 5) Number of points in sweep ≥ 2 Span / RBW.
- 6) Sweep time ≤ (number of points in sweep) * T
- 7) Using emission bandwidth to determine the frequency span for integration the channel bandwidth.
- 8)Detector = RMS.
- 9) Trace mode = max hold.
- 10) Allow max hold to run for at least 60 seconds, or longer as needed to allow the trace to stabilize.

For 26dB Occupied Bandwidth

- 1) Set RBW = approximately 1% of the emission bandwidth.
- 2) Set the VBW > RBW.
- 3) Detector = Peak.
- 4) Trace mode = max hold.
- 5) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

 Report No.: RF180425D01-1
 Page No. 59 / 83
 Report Format Version:6.1.2

	VERITAS
4.3.5	Deviation from Test Standard
No d	eviation.
4.3.6	EUT Operating Condition
The s midd	software provided by client to enable the EUT under transmission condition continuously at lowest, le and highest channel frequencies individually.

 Report No.: RF180425D01-1
 Page No. 60 / 83
 Report Format Version:6.1.2

4.3.7 Test Result

Mode A

CDD Mode

Power Output:

802.11a

Chan.	Chan.	Maximum Conduc	cted Power (dBm)	Total Power	Total Power	Power Limit	Pass/Fail
Cilaii.	Freq. (MHz)	Chain 0	Chain 1	(mW)	(dBm)	(dBm)	Pass/Faii
36	5180	19.00	19.28	164.156	22.15	29.70	Pass
40	5200	21.95	22.41	330.856	25.20	29.70	Pass
48	5240	22.58	22.95	378.376	25.78	29.70	Pass
149	5745	23.05	23.23	412.215	26.15	29.70	Pass
157	5785	23.04	23.19	409.821	26.13	29.70	Pass
165	5825	23.01	23.15	406.524	26.09	29.70	Pass

Note: Antenna gain = 6.3dBi > 6dBi , so the limit shall be reduced to 30-(6.3-6) = 29.70dBm.

802.11ac (20MHz)

Chan.	Chan.	Maximum Conduc	cted Power (dBm)	Total	Total	Power	Pass/Fail
Chan.	Freq. (MHz)	Chain 0	Chain 1	Power (mW)	Power (dBm)	Limit (dBm)	Pass/Faii
36	5180	19.27	19.67	177.211	22.48	29.70	Pass
40	5200	21.20	21.54	274.387	24.38	29.70	Pass
48	5240	20.72	21.15	248.349	23.95	29.70	Pass
149	5745	23.05	23.07	404.605	26.07	29.70	Pass
157	5785	22.98	23.22	408.503	26.11	29.70	Pass
165	5825	23.08	23.11	407.880	26.11	29.70	Pass

Note: Antenna gain = 6.3dBi > 6dBi , so the limit shall be reduced to 30-(6.3-6) = 29.70dBm.

802.11ac (40MHz)

Chan.	Chan.	Maximum Conduc	cted Power (dBm)	Total Power	Total Power	Power Limit	Pass/Fail
Chan.	Freq. (MHz)	Chain 0	Chain 1	(mW)	(dBm)	(dBm)	Pass/Faii
38	5190	15.65	16.14	77.843	18.91	29.70	Pass
46	5230	22.58	23.19	389.583	25.91	29.70	Pass
151	5755	23.02	23.38	418.218	26.21	29.70	Pass
159	5795	22.94	23.06	399.091	26.01	29.70	Pass

Note: Antenna gain = 6.3dBi > 6dBi , so the limit shall be reduced to 30-(6.3-6) = 29.70dBm.

802.11ac (80MHz)

Chan.	Chan. Freg.	Maximum Conduc	cted Power (dBm)	Total Power	Total Power	Power Limit	Pass/Fail
Cilaii.	(MHz)	Chain 0	Chain 1	(mW)	(dBm)	(dBm)	Pass/Fall
42	5210	14.79	15.26	63.704	18.04	29.70	Pass
155	5775	20.01	20.25	206.156	23.14	29.70	Pass

Note: Antenna gain = 6.3dBi > 6dBi , so the limit shall be reduced to 30-(6.3-6) = 29.70dBm.

Report No.: RF180425D01-1 Page No. 61 / 83 Report Format Version:6.1.2

26dB Bandwidth:

802.11a

Channal	Channel	26dBc Bandwidth (MHz)				
Channel	Frequency (MHz)	Chain 0	Chain 1			
36	5180	23.07	22.30			
40	5200	32.67	34.61			
48	5240	37.99	37.99			

802.11ac (20MHz)

Channel	Channel Frequency (MHz)	26dBc Bandwidth (MHz)			
Channel		Chain 0	Chain 1		
36	5180	28.73	28.52		
40	5200	39.56	39.19		
48	5240	36.16	36.23		

802.11ac (40MHz)

Channel	Channel	26dBc Bandwidth (MHz)		
	Frequency (MHz)	Chain 0	Chain 1	
38	5190	40.40	40.16	
46	5230	77.93	80.61	

802.11ac (80MHz)

Channal	Channel	26dBc Band	width (MHz)
Chamie	Channel Frequency (MHz)	Chain 0	Chain 1
42	5210	82.75	82.43

 Report No.: RF180425D01-1
 Page No. 62 / 83
 Report Format Version:6.1.2

Beamforming_NSS1 Mode

Power Output:

802.11ac (20MHz)

Ohan	Chan. Freq. (MHz)	Maximum Conducted Power (dBm)		Total	Total	Power	D/5-il
Chan.		Chain 0	Chain 1	Power (mW)	Power (dBm)	Limit (dBm)	Pass/Fail
36	5180	19.27	19.67	177.211	22.48	26.69	Pass
40	5200	19.29	19.78	179.978	22.55	26.69	Pass
48	5240	19.32	19.93	183.908	22.65	26.69	Pass
149	5745	19.68	19.73	186.869	22.72	26.69	Pass
157	5785	19.72	19.85	190.361	22.80	26.69	Pass
165	5825	19.78	19.92	193.235	22.86	26.69	Pass

Note: Directional gain = 6.3dBi + 10log(2) = 9.31dBi > 6dBi , so the limit shall be reduced to 30-(9.31-6) = 26.69dBm.

802.11ac (40MHz)

Chan.	Chan. Freq. (MHz)	,		Total	Total Power	Power Limit	Pass/Fail
Cilaii.		Chain 0	Chain 1	Power (mW)	(dBm)	(dBm)	Pass/Faii
38	5190	15.65	16.14	77.843	18.91	26.69	Pass
46	5230	20.19	20.61	219.552	23.42	26.69	Pass
151	5755	20.29	20.62	222.250	23.47	26.69	Pass
159	5795	20.31	20.68	224.349	23.51	26.69	Pass

Note: Directional gain = 6.3dBi + 10log(2) = 9.31dBi > 6dBi , so the limit shall be reduced to 30-(9.31-6) = 26.69dBm.

802.11ac (80MHz)

Chan	Chan.	Maximum Conducted Power (dBm)		Total	Total	Power	Dece/Feil
Chan.	Freq. (MHz)	Chain 0	Chain 1	Power (mW)	Power (dBm)	Limit (dBm)	Pass/Fail
42	5210	14.79	15.26	63.704	18.04	26.69	Pass
155	5775	20.01	20.25	206.156	23.14	26.69	Pass

Note: Directional gain = 6.3dBi + 10log(2) = 9.31dBi > 6dBi , so the limit shall be reduced to 30-(9.31-6) = 26.69dBm.

Report No.: RF180425D01-1 Page No. 64 / 83 Report Format Version:6.1.2

4.4 Occupied Bandwidth Measurement

4.4.1 Test Setup

4.4.2 Test Instruments

Refer to section 4.3.3 to get information of above instrument.

4.4.3 Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with resolution bandwidth in the range of 1% to 5% of the anticipated emission bandwidth, and a video bandwidth at least 3x the resolution bandwidth and set the detector to SAMPLE. The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 %of the total mean power of a given emission.

Report No.: RF180425D01-1 Page No. 65 / 83 Report Format Version:6.1.2

4.4.4 Test Results

Mode A CDD Mode

802.11a

Chammal	Channel Frequency	Occupied Bandwidth (MHz)		
Channel	(MHz)	Chain 0	Chain 1	
36	5180	16.78	16.68	
40	5200	17.52	17.52	
48	5240	19.39	19.68	
149	5745	29.57	29.40	
157	5785	32.60	31.00	
165	5825	29.00	27.00	

802.11ac (20MHz)

Channal	Channel Frequency	Occupied Bandwidth (MHz)		
Channel	(MHz)	Chain 0	Chain 1	
36	5180	18.48	18.36	
40	5200	18.48	18.48	
48	5240	19.04	19.08	
149	5745	28.78	28.90	
157	5785	32.60	32.90	
165	5825	28.10	28.30	

802.11ac (40MHz)

Channel	Channel Frequency	Occupied Bar	ndwidth (MHz)
Chamei	(MHz)	Chain 0	Chain 1
38	5190	36.40	36.20
46	5230	37.80	38.00
151	5755	41.59	42.00
159	5795	46.17	46.00

802.11ac (80MHz)

Channel	Channel Frequency	Occupied Bandwidth (MHz)		
Channel	(MHz)	Chain 0	Chain 1	
42	5210	75.36	75.36	
155	5775	77.31	77.56	

 Report No.: RF180425D01-1
 Page No. 66 / 83
 Report Format Version:6.1.2

4.5 Peak Power Spectral Density Measurement

4.5.1 Limits of Peak Power Spectral Density Measurement

Operation Band	EUT Category		Limit
		Outdoor Access Point	
11 8111 4		Fixed point-to-point Access Point	17dBm/ MHz
U-NII-1	V	Indoor Access Point	
		Client device	11dBm/ MHz
U-NII-2A			11dBm/ MHz
U-NII-2C			11dBm/ MHz
U-NII-3		$\sqrt{}$	30dBm/ 500kHz

4.5.2 Test Setup

4.5.3 Test Instruments

Refer to section 4.3.3 to get information of above instrument.

 Report No.: RF180425D01-1
 Page No. 68 / 83
 Report Format Version:6.1.2

4.5.4 Test Procedure

For U-NII-1 band:

Using method SA-1, Duty cycle >98%:

- 1) Set span to encompass the entire emission bandwidth (EBW) of the signal.
- 2) Set RBW = 30 kHz, Set VBW ≥ 1 MHz, Detector = RMS
- 3) Set Channel power measure = 1MHz
- 4) Sweep time = auto, trigger set to "free run".
- 5) Trace average at least 100 traces in power averaging mode.
- 6) Record the max value

Using method SA-2, Duty cycle <98%:

- 1) Set span to encompass the entire emission bandwidth (EBW) of the signal.
- 2) Set RBW = 30 kHz, Set VBW ≥ 1 MHz, Detector = RMS
- 3) Set Channel power measure = 1MHz
- 4) Sweep time = auto, trigger set to "free run".
- 5) Trace average at least 100 traces in power averaging mode.
- 6) Record the max value and add 10 log (1/duty cycle)

For U-NII-3 band:

Using method SA-1, Duty cycle >98%:

- 1) Set span to encompass the entire emission bandwidth (EBW) of the signal.
- 2) Set RBW = 1 MHz, Set VBW ≥ 3 MHz, Detector = RMS
- 3) Sweep time = auto, trigger set to "free run".
- 4) Trace average at least 100 traces in power averaging mode.
- 5) Record the max value

Using method SA-2, Duty cycle <98%:

- 1) Set span to encompass the entire emission bandwidth (EBW) of the signal.
- 2) Set RBW = 1 MHz, Set VBW ≥ 3 MHz, Detector = RMS
- 3) Sweep time = auto, trigger set to "free run".
- 4) Trace average at least 100 traces in power averaging mode.
- 5) Record the max value and add 10 log (1/duty cycle)

4.5.5 Deviation from Test Standard

No deviation.

4.5.6 EUT Operating Condition Same as Item 4.3.6.

4.5.7 Test Results

Mode A CDD Mode 802.11a

	Chan. Freq. (MHz)	PSD (dBm)			Total PSD With	MAX. Limit	
Chan.		Chain 0	Chain 1	Duty Factor	Duty Factor (dBm)	(dBm)	Pass / Fail
36	5180	4.09	4.08	0.15	7.24	13.69	Pass
40	5200	5.38	5.41	0.15	8.55	13.69	Pass
48	5240	6.02	6.08	0.15	9.21	13.69	Pass

- **Note:** 1. Method a) of power density measurement of KDB 662911 is using for calculating total power density. Total power density is summing entire spectra across corresponding frequency bins on the various outputs by computer.
 - 2. Directional gain = 6.3dBi + 10log(2) = 9.31dBi > 6dBi , so the power density limit shall be reduced to 17-(9.31-6) = 13.69dBm.
 - 3. Refer to section 3.3 for duty cycle spectrum plot.

802.11ac (20MHz)

Chan.	Chan. Freq. PSD (dBm) Total PSD			MAX. Limit	Pass / Fail		
Gilaii.	(MHz)	Chain 0	Chain 1	(dBm)	(dBm)	Fass / Fall	
36	5180	5.25	5.26	8.27	13.69	Pass	
40	5200	6.63	6.66	9.66	13.69	Pass	
48	5240	5.77	5.72	8.76	13.69	Pass	

- **Note:** 1. Method a) of power density measurement of KDB 662911 is using for calculating total power density. Total power density is summing entire spectra across corresponding frequency bins on the various outputs by computer.
 - 2. Directional gain = 6.3dBi + 10log(2) = 9.31dBi > 6dBi , so the power density limit shall be reduced to 17-(9.31-6) = 13.69dBm.
 - 3. Refer to section 3.3 for duty cycle spectrum plot.

802.11ac (40MHz)

	Chan. Freq.	PSD (dBm)			Total PSD With	MAX. Limit	Pass / Fail
Chan.	(MHz)	Chain 0	Chain 1	Duty Factor	Duty Factor (dBm)	Duty Factor (dBm)	
38	5190	0.61	0.50	0.18	3.75	13.69	Pass
46	5230	3.97	3.99	0.18	7.17	13.69	Pass

- **Note:** 1. Method a) of power density measurement of KDB 662911 is using for calculating total power density. Total power density is summing entire spectra across corresponding frequency bins on the various outputs by computer.
 - 2. Directional gain = 6.3dBi + 10log(2) = 9.31dBi > 6dBi , so the power density limit shall be reduced to 17-(9.31-6) = 13.69dBm.
 - 3. Refer to section 3.3 for duty cycle spectrum plot.

802.11ac (80MHz)

	Chan. Freq.	PSD (dBm)			Total PSD With	MAX. Limit	
Chan.	(MHz)	Chain 0	Chain 1	Duty Factor	Duty Factor (dBm)	(dBm)	Pass / Fail
42	5210	-3.71	-3.79	0.42	-0.32	13.69	Pass

- **Note:** 1. Method a) of power density measurement of KDB 662911 is using for calculating total power density. Total power density is summing entire spectra across corresponding frequency bins on the various outputs by computer.
 - 2. Directional gain = 6.3dBi + 10log(2) = 9.31dBi > 6dBi , so the power density limit shall be reduced to 17-(9.31-6) = 13.69dBm.
 - 3. Refer to section 3.3 for duty cycle spectrum plot.

For U-NII-3:

TX chain	Channel	Freq. (MHz)	PSD (dBm/500kHz)	10 log (N=2) dB	Duty Factor	Total PSD (dBm/500kHz)	Limit (dBm/500kHz)	Pass /Fail
	149	5745	-0.62	-0.62	3.01	2.54	26.69	Pass
0	157	5785	-0.37	-0.37	3.01	2.79	26.69	Pass
	165	5825	-0.77	-0.77	3.01	2.39	26.69	Pass
	149	5745	-0.73	-0.73	3.01	2.43	26.69	Pass
1	157	5785	-0.20	-0.20	3.01	2.96	26.69	Pass
	165	5825	-0.76	-0.76	3.01	2.40	26.69	Pass

Note: 1. Method a) of power density measurement of KDB 662911 is using for calculating total power density. Total power density is summing entire spectra across corresponding frequency bins on the various outputs by computer.

- 2. Directional gain = 6.3dBi + 10log(2) = 9.31dBi > 6dBi , so the power density limit shall be reduced to 30-(9.31-6) = 26.69dBm.
- 3. Refer to section 3.3 for duty cycle spectrum plot.

802.11ac (20MHz)

TX chain	Channel	Freq. (MHz)	PSD (dBm/500kHz)	10 log (N=2) dB	Total PSD (dBm/500kHz)	Limit (dBm/500kHz)	Pass /Fail
	149	5745	-0.69	3.01	2.32	26.69	Pass
0	157	5785	-0.36	3.01	2.65	26.69	Pass
	165	5825	-0.94	3.01	2.07	26.69	Pass
	149	5745	-0.83	3.01	2.18	26.69	Pass
1	157	5785	-0.35	3.01	2.66	26.69	Pass
	165	5825	-1.05	3.01	1.96	26.69	Pass

Note: 1. Method a) of power density measurement of KDB 662911 is using for calculating total power density. Total power density is summing entire spectra across corresponding frequency bins on the various outputs by computer.

2. Directional gain = 6.3dBi + 10log(2) = 9.31dBi > 6dBi , so the power density limit shall be reduced to 30-(9.31-6) = 26.69dBm.

802.11ac (40MHz)

TX chain	Channel	Freq. (MHz)	PSD (dBm/500kHz)	10 log (N=2) dB	Duty Factor	Total PSD (dBm/500kHz)	Limit (dBm/500kHz)	Pass /Fail
	151	5755	-4.45	3.01	0.18	-1.26	26.69	Pass
0	159	5795	-4.34	3.01	0.18	-1.15	26.69	Pass
	151	5755	-4.52	3.01	0.18	-1.33	26.69	Pass
1	159	5795	-4.41	3.01	0.18	-1.22	26.69	Pass

Note: 1. Method a) of power density measurement of KDB 662911 is using for calculating total power density. Total power density is summing entire spectra across corresponding frequency bins on the various outputs by computer.

- 2. Directional gain = 6.3dBi + 10log(2) = 9.31dBi > 6dBi , so the power density limit shall be reduced to 30-(9.31-6) = 26.69dBm.
- 3. Refer to section 3.3 for duty cycle spectrum plot.

Report No.: RF180425D01-1 Page No. 72 / 83 Report Format Version:6.1.2

802.11ac (80MHz)

TX chain	Channel	Freq. (MHz)	PSD (dBm/500kHz)	10 log (N=2) dB	Duty Factor	Total PSD (dBm/500kHz)	Limit (dBm/500kHz)	Pass /Fail
0	155	5775	-8.87	3.01	0.42	-5.44	26.69	Pass
1	155	5775	-8.89	3.01	0.42	-5.46	26.69	Pass

- **Note:** 1. Method a) of power density measurement of KDB 662911 is using for calculating total power density. Total power density is summing entire spectra across corresponding frequency bins on the various outputs by computer.
 - 2. Directional gain = 6.3dBi + 10log(2) = 9.31dBi > 6dBi , so the power density limit shall be reduced to 30-(9.31-6) = 26.69dBm.
 - 3. Refer to section 3.3 for duty cycle spectrum plot.

4.6 Frequency Stability Measurement

4.6.1 Limits of Frequency Stability Measurement

The frequency of the carrier signal shall be maintained within band of operation

4.6.2 Test Setup

4.6.3 Test Instruments

Refer to section 4.3.3 to get information of above instrument.

4.6.4 Test Procedure

- a. The EUT was placed inside the environmental test chamber and powered by nominal AC voltage.
- b. Turn the EUT on and couple its output to a spectrum analyzer.
- c. Turn the EUT off and set the chamber to the highest temperature specified.
- d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize, turn the EUT on and measure the operating frequency after 2, 5, and 10 Minutes.
- e. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature.
- f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 Minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.

4.6.5 Deviation from Test Standard

No deviation.

4.6.6 EUT Operating Condition

Set the EUT transmit at un-modulation mode to test frequency stability.

Report No.: RF180425D01-1 Page No. 74 / 83 Report Format Version:6.1.2

4.6.7 Test Results

	Frequency Stability Versus Temp. Operating Frequency: 5180 MHz										
	0 Minute 2 Minute 5 Minute 10 Minute										
TEMP. (℃)	Power Supply (Vac)	Measured Frequency (MHz)	Pass/Fail	Measured Frequency (MHz) Measured Frequency (MHz) Measured Frequency (MHz)		Measured Frequency (MHz)	Pass/Fail				
40	120	5180.0159	PASS	5180.0144	PASS	5180.0175	PASS	5180.0185	PASS		
30	120	5180.0131	PASS	5180.0116	PASS	5180.0129	PASS	5180.0155	PASS		
20	120	5179.9924	PASS	5179.9922	PASS	5179.9908	PASS	5179.9940	PASS		
10	10 120 5180.0001 PASS 5179.9971 PASS 5179.9998 PASS 5179.9999 PASS										
0	120	5179.983	PASS	5179.9788	PASS	5179.9809	PASS	5179.9816	PASS		

	Frequency Stability Versus Voltage									
	Operating Frequency: 5180 MHz									
	0 Minute 2 Minute 5 Minute 10 Minute									
TEMP . (°C)	Supply (Vac)	Measured Frequency (MHz)	Pass/Fail	Measured Frequency (MHz)	Pass/Fail	Measured Frequency (MHz)	Pass/Fail	Measured Frequency (MHz)	Pass/Fail	
	138	5179.9926	PASS	5179.9913	PASS	5179.9905	PASS	5179.9936	PASS	
20	120	5179.9924	PASS	5179.9922	PASS	5179.9908	PASS	5179.9940	PASS	
	102	5179.9934	PASS	5179.9917	PASS	5179.9905	PASS	5179.9941	PASS	

 Report No.: RF180425D01-1
 Page No. 75 / 83
 Report Format Version:6.1.2

4.7 6dB Bandwidth Measurement

4.7.1 Limits of 6dB Bandwidth Measurement

The minimum of 6dB Bandwidth Measurement is 0.5MHz.

4.7.2 Test Setup

4.7.3 Test Instruments

Refer to section 4.3.3 to get information of above instrument.

4.7.4 Test Procedure

MEASUREMENT PROCEDURE REF

- a. Set resolution bandwidth (RBW) = 100kHz
- b. Set the video bandwidth (VBW) ≥ 3 x RBW, Detector = Peak.
- c. Trace mode = max hold.
- d. Sweep = auto couple.
- e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission

4.7.5 Deviation from Test Standard No deviation.

4.7.6 EUT Operating Condition

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.7.7 Test Results

802.11a

Channal	Fragues av (MIII=)	6dB Bandv	vidth (MHz)	Minimum Limit	Pass / Fail	
Channel	Frequency (MHz)	Chain 0	Chain 1	(MHz)	Fass/Fall	
149	5745	16.38	16.39	0.5	PASS	
157	5785	16.40	16.39	0.5	PASS	
165	5825	16.37	16.36	0.5	PASS	

802.11ac (20MHz)

Channal	Fragues av (MIII=)	6dB Bandv	vidth (MHz)	Minimum Limit	Dood / Fail
Channel	Frequency (MHz)	Chain 0	Chain 1	(MHz)	Pass / Fail
149	5745	17.59	17.60	0.5	PASS
157	5785	17.65	17.63	0.5	PASS
165	5825	17.59	17.58	0.5	PASS

802.11ac (40MHz)

Channel	Fragueney (MHz)	6dB Bandv	vidth (MHz)	Minimum Limit	Doos / Foil	
Channel	Frequency (MHz)	Chain 0	Chain 1	(MHz)	Pass / Fail	
151	5755	33.90	34.19	0.5	PASS	
159	5795	35.12	35.10	0.5	PASS	

802.11ac (80MHz)

	Channal	Fraguera, (MIII-)	6dB Bandv	vidth (MHz)	Minimum Limit	Dogo / Fail
	Channel	Frequency (MHz)	Chain 0	Chain 1	(MHz)	Pass / Fail
ſ	155	5775	75.81	75.93	0.5	PASS

Report No.: RF180425D01-1 Page No. 77 / 83 Report Format Version:6.1.2

		VERITAS
5	Pictures of Test Arrangements	
	•	
ы	Land of the Art of the	
ы	lease refer to the attached file (Test Setup Photo).	

 Report No.: RF180425D01-1
 Page No. 79 / 83
 Report Format Version:6.1.2

Annex A- Radiated Out of Band Emission (OOBE) Measurement (For U-NII-3 band)

802.11a

802.11ac (80MHz)

Appendix - Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linkou EMC/RF Lab Hsin Chu EMC/RF/Telecom Lab

Tel: 886-2-26052180 Tel: 886-3-6668565 Fax: 886-2-26051924 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---

Report No.: RF180425D01-1 Page No. 83 / 83 Report Format Version:6.1.2