# Expressões regulares

### Construção de compiladores I

## Objetivos

### Objetivos

 Apresentar como utilizar expressões regulares para especificar a estrutura léxica de linguagens.

### Objetivos

- Mostrar como produzir autômatos não determinísticos a partir de expressões regulares.
- Mostrar como obter um autômato determinístico a partir de um não determinístico.

### Expressões regulares

### Expressões regulares

- Forma algébrica para especificar linguagens regulares.
- Linguagens regulares: aceitas por AFDs

### Expressões regulares

• Sintaxe

$$e \rightarrow \emptyset \mid \lambda \mid a \mid ee \mid e + e \mid e^*$$

### Expressões regulares

• Expressões regulares denotam linguagens.

### Expressões regulares

• Semântica:

$$\begin{array}{lll} [\![\![ \emptyset ]\!] & = & \emptyset \\ [\![\![ \lambda ]\!] & = & \{\lambda\} \\ [\![\![ a ]\!] & = & \{a\} \\ [\![\![ e_1 e_2 ]\!] & = & [\![\![ e_1 ]\!]\!] \cup [\![\![ e_2 ]\!]\!] \\ [\![\![ e_1^* ]\!] & = & [\![\![ e_1 ]\!]\!]^* \\ \end{array}$$

### Expressões regulares

- Expressões regulares são equivalentes a **autômatos finitos não de**terminísticos.
- Equivalência definida pela construção de Thompson.

### Autômatos não determinísticos

### Autômatos não determinísticos

- Um AFN  $M = (E, \Sigma, \delta, I, F)$ :
  - -E: conjunto de estados
  - $-\Sigma$ : alfabeto
  - $-\ \delta: E \times \Sigma \to \mathcal{P}(E)$ : função de transição.
  - $I\subseteq E$ : conjunto de estados iniciais.
  - $F\subseteq E$ : conjunto de estados finais.

### Autômatos não determinísticos

• Exemplo: (0+1)\*00



#### Autômatos não determinísticos.

- Seja  $M = (E, \Sigma, \delta, I, F)$  um AFN.
- O AFD equivalente é  $(\mathcal{P}(E), \Sigma, \delta', I, F')$ :

$$-\delta'(X,a) = \bigcup_{e \in X} \delta(e,a).$$
  
-  $F' = \{X \mid X \cap F = \emptyset\}.$ 

#### Autômatos não determinísticos

• Implementação em Haskell

#### Autômato não determinísticos

• Implementação em Haskell

```
subset :: Ord a => NFA a -> DFA (Set a)
subset m
= DFA {
    start = nfaStart m
    , delta = \ es c ->
        Set.unions (map (flip (nfaDelta m) c) (Set.elems es))
    , finals = \ es -> not (disjoint es (nfaFinals m))
}
```

## Construção de Thompson

### Construção de Thompson

- Mostra como obter um AFN a partir de uma expressão regular.
- Estratégia utilizada por ferramentas de geração de analisadores léxicos.

• AFN para  $e = \emptyset$ .



### Construção de Thompson

• AFN para  $e = \lambda$ .



## Construção de Thompson

• AFN para e = a.



• AFN para  $e = e_1 + e_2$ .



## Construção de Thompson

• AFN para  $e = e_1 e_2$ .



• AFN para  $e = e_1^*$ .



### Construção de Thompson

- Como implementar?
  - AFNs para casos bases.
  - Funções para combinar AFNs.

### Construção de Thompson

• AFN para  $\emptyset$ .

### Construção de Thompson

• AFN para  $\{\lambda\}$ .

```
one
where
one = Set.singleton 1
```

• AFN para {a}.

chrNFA :: Char -> NFA Int
chrNFA c
= NFA 2 zero f one
 where
 zero = Set.singleton 0
 one = Set.singleton 1
 err = Set.singleton 2
 f 0 x = if c == x then one
 else err

### Construção de Thompson

f \_ \_ = err

• Antes de definir funções para combinar AFNs, precisamos garantir que estes não possuam estados em comum.

### Construção de Thompson

• Para isso, vamos "renomear" estados de um AFN.

```
shift :: Int -> Set Int -> Set Int
shift n = Set.fromAscList . map (+ n) . Set.toAscList
```

### Construção de Thompson

• AFN para  $e_1 + e_2$ .

```
unionNFA :: NFA Int -> NFA Int -> NFA Int
unionNFA m1 m2
= NFA {
    numberOfStates = n1 + n2
    , nfaStart = Set.union (nfaStart m1) (shift n1 (nfaStart m2))
    , nfaDelta = f
    , nfaFinals = Set.union (nfaFinals m2) (shift n1 (nfaFinals m2))
```

```
where
  n1 = numberOfStates m1
  n2 = numberOfStates m2
  f s c = if s < n1 then nfaDelta m1 s c
        else shift n1 (nfaDelta m2 (s - n1) c)</pre>
```

• AFN para  $e_1 e_2$ .

### Construção de Thompson

• AFN para  $e_1 e_2$  (continuação).

### Construção de Thompson

• AFN para  $e = e_1^*$ .

```
starNFA :: NFA Int -> NFA Int
starNFA m1
= NFA {
    numberOfStates = numberOfStates m1
    , nfaStart = nfaStart m1
    , nfaDelta = newDelta
    , nfaFinals = nfaStart m1
}
where
    newDelta e c
    = let r = nfaDelta m1 e c
    in if disjoint r (nfaFinals m1)
        then r
        else Set.union r (nfaStart m1)
```

• Convertendo uma ER em um DFA:

```
toDFA :: Regex -> DFA (Set Int)
toDFA = subset . thompson
```

### Construção de Thompson

• Construindo o AFD para um conjunto de REs.

```
lexer :: [Regex] -> DFA (Set Int)
lexer = subset . foldr unionNFA emptyNFA . map thompson
```

### Concluindo

### Concluindo

- Revisamos REs, AFNs e sua relação com AFDs.
- Apresentamos como construir AFDs a partir de expressões regulares.

### Concluindo

Próxima aula: Derivadas de expressões regulares e geradores de analisadores léxicos.

# Exercícios

### Exercícios

• Construa um analisador léxico para a linguagem IMP utilizando o arcabouço baseado em expressões regulares e AFDs.