

Détection du mildiou de la pomme de terre par imagerie grâce aux méthodes de Machine Learning

Yasmine BOUCHIBTI Leslie CIETERS Meryem GRIMAJ

Sommaire

1 Introduction

1 duction Le je

4 Modèles de Deep Learning Le jeux de données

Limites et perspectives

Modèles de Machine Learning

6 Conclusion

Introduction

- Alternaria solani (mildiou précoce)
- Phytophthora infestans (mildiou tardif)

Jusqu'à 80% de pertes

Utilisation de produits phytosanitaires

la Grande Famine 1845-1849

Machine Learning et Deep Learning

INTELLIGENCE ARTIFICIELLE Techniques permettant aux ordinateurs de copier un MACHINE LEARNING comportement humain DEEP LEARNING d'apprendre à résoudre 1950 1960 1970 1980 1990 2000 2010 2020

Imagerie

Le jeu de données

2152 images réparties en trois classes :

- Mildiou précoce
- Mildiou tardif
- Sain

Le jeu de données

Le jeu de données

Déséquilibre important des classes

Technique SMOTE pour le suréchantillonnage de la classe minoritaire

Le jeu de données

• Séparation du jeu de données (80/20) pour l'entraînement et la validation

KNN

Comparaison de plusieurs modèles afin de définir les meilleurs paramètres

- Accuracy = 0.70
- Taux de faux positifs = 0.15
- Taux de faux négatifs = 0.27

En séparant les classes

Accuracy = 0.77

Accuracy = 0.85

Régression logistique

1

Méthode one-vs-all

2

Distinction
entre Mildiou
tardif et
précoce

Résultats

Accuracy = 0.95

Résultats

1

Accuracy = 0.99

Résultats

1

SVM

Objectifs de la recherche

1

Choix de la méthode

2

Choix des hyperparamètres

Choix de la méthode

Ramener un problème de classification ou de discrimination à un hyperplan

Utilise un sous-ensemble de points d'entraînement dans la fonction de décision (appelé vecteurs de support), il est donc également efficace en mémoire.

Efficace dans les espaces de haute dimension

Différentes <u>fonctions du noyau</u> peuvent être spécifié pour la fonction de décision

Choix des hyperparamètres

- un contre un pour SVC : des classificateurs sont construits et chacun d'entre eux forme des données à partir de deux classes.
- kernel (noyau) : P
- decision_function_shape : On choisit d'appliquer la méthode de classificateur un contre le reste au lieu d'un contre un

Résultats

Accuracy: 91.	42%			
	precision	recall	f1-score	support
0	0.87	0.95	0.91	196
1	0.95	0.94	0.95	198
2	0.95	0.57	0.71	37
accuracy			0.91	431
macro avg	0.93	0.82	0.86	431
weighted avg	0.92	0.91	0.91	431

CONCLUSION POUR LES SVM

Le modèle fonctionne très bien pour les classes majoritaires (0 et 1) avec des précisions, rappels et F1-scores élevés

DecisionTreeClassifier

Objectifs de la recherche

1

Choix de la méthode

2

Choix des hyperparamètres

CHOIX DE LA MÉTHODE

ne nécessite pas de normaliser ou de transformer les données.

Demandent moins de données et de temps de calcul

Choix des hyperparamètres

- max_depth=10 : Limite la profondeur de l'arbre à 10 niveaux. Cela empêche l'arbre de devenir trop complexe et de surapprendre sur les données d'entraînement
- min_samples_split=2 : C'est le nombre minimum d'échantillons requis pour diviser un nœud. Avec une valeur de 2, on autorise le modèle à diviser un nœud dès qu'il y a au moins 2 échantillons.
- min_samples_leaf=1 : spécifie le nombre minimum d'échantillons dans une feuille. on autorise des feuilles avec un seul échantillon.
- criterion='gini' : l'objectif est de minimiser l'impureté (la diversité des classes) dans les nœuds.

Résultats

Decision Tree	Accuracy:	0.73		
	precision	recall	f1-score	support
0	0.73	0.75	0.74	196
1	0.79	0.77	0.78	198
2	0.47	0.46	0.47	37
accuracy			0.73	431
macro avg	0.66	0.66	0.66	431
weighted avg	0.73	0.73	0.73	431

CONCLUSION POUR LES DECISION TREE

DecisionTreeClassifier donne des résultats acceptables sur les classes majoritaires, il a des difficultés à traiter la classe minoritaire (classe 2)

Random Forest

Objectifs de la recherche

1

Choix de la méthode

2

Choix des hyperparamètres

Choix de la méthode

Random Forest est également très résistant au bruit dans les données

Le modèle Random Forest est connu pour ses performances solides sur les problèmes de classification grâce à la combinaison de plusieurs arbres de décision.

Contrairement à un modèle de décision unique (comme le DecisionTreeClassifier), le Random Forest utilise plusieurs arbres, ce qui réduit la variance du modèle.

Mieux équipé pour traiter des classes déséquilibrées que des modèles plus simples, grâce à sa capacité à effectuer un échantillonnage aléatoire lors de la construction de chaque arbre.

Choix des hyperparamètres

- n_estimators=100 : 100 arbres de décision se qui améliore la stabilité des prédictions
- max_features='sqrt' : Pour chaque division dans un arbre, seulement la racine carrée du nombre total de caractéristiques sera considérée. Cela permet d'accélérer le calcul .

Résultats

Random Forest	Accuracy:	0.90		
	precision	recall	f1-score	support
0	0.90	0.89	0.90	196
1	0.90	0.96	0.93	198
2	0.92	0.62	0.74	37
accuracy			0.90	431
macro avg	0.91	0.82	0.86	431
weighted avg	0.90	0.90	0.90	431

CONCLUSION POUR LES DECISION TREE

Avec une accuracy de 90% et des précisions et F1-scores élevés pour les classes 0 et 1, le modèle Random Forest se comporte très bien pour les deux premières classes, qui ont plus de données d'entraînement. Le modèle a plus de difficultés à bien identifier la classe 2 (62% de rappel)

Modèle CNN

1

Choix de l'architecture

2

Analyse des performances du modèle

Choix de l'architecture

Modèle CNN

1 couche dense + fonction d'activation Softmax

Classes déséquilibrées

Modèle de Deep Learning

Accuracy: 0.95

Loss: 0.1332

Classes rééquilibrées

Classes rééquilibrées

Accuracy: 0.83

Discussion

Temps de calcul important, nécessité d'utiliser Google Colab

Limites

Nombre de données insuffisant pour l'optimisation des méthodes de Deep Learning

Construction d'un modèle hiérarchique entre les classes

Perspectives

Conclusion

INSTITUT AGRO RENNES-ANGERS

Merci!

Yasmine BOUCHIBTI
Leslie CIETERS
Meryem GRIMAJ