ANALYZIS OF EGNOS IONOSPHERIC MODEL

Introduction to Integrity Integrity – the aim of the EGNOS analyzis

"Integrity is the measure of the trust that can be placed in the correctness of the information supplied by a navigation system. Integrity includes the ability of the system to provide timely warnings to users when the system should not be used for navigation" - This definition was adapted from the 2008 US Federal Navigation Plan - Navipedia

Introduction

Definition of performace key parameter

Measure of navigation output Accuracy: deviating from truth.

Ability of a system to provide Integrity: timely warnings when the system should not be used for navigation. Integrity risk is the probability of an undetected, threatening navigation system problem.

Availability: Fraction of time navigation system is usable as determined by compliance with accuracy, integrity and continuity requirements.

Continuity: Likelihood that the navigation supports accuracy and integrity requirements for the duration of intended operation. Continuity risk is the probability of a detected but unscheduled navigation interruption after initiation of an operation.

High Precision, Low Accuracy

Low Precision, Low Accuracy

High Precision, High Accuracy

Low Precision, High Accuracy

Accuracy

Introduction System performance

System performance:
 Accuracy, Integrity, Availability, Continuity

High accuracy, poor integrity

Integrity monitoring/mechanisms

Poor accuracy, high integrity

Detectable fault, but hazardous condition – Integrity event: hazardous misleading information

The concepts of Protection Level, Alarm Limit and integrity events.

Introduction Stanford diagram

System performance:
 Accuracy, Integrity, Availability, Continuity

High accuracy, poor integrity

Integrity monitoring/mechanisms

Poor accuracy, high integrity

AL: Alert Limit

PL: Protection Level

PE: Position Estimation

HMI: Hazardously

Misleading Information

EGNOS

RTCA's protection level calculation

Horizontal protection level

$$HPL = K_H d_{major}$$

 $K_H = 6.0 - position probability 10^{-7}$

Variance of the residual after application of ionospehric error

$$\sigma_{i}^{2} = \sigma_{i,flt}^{2} + \sigma_{i,UIRE}^{2} + \sigma_{i,air}^{2} + \sigma_{i,tropo}^{2}$$

Inverse cummulative function of 2D Gaussian

$$r = F^{-1}(p) = \sqrt{-2\ln(1-p)}$$

EGNOS

Ionsopheric Grid Point and Message Formats

IGP Mask Message Format

Ionospheric Delay Corrections Message Format

EGNOS

Ionospheric Variance

IONOSPHERIC PIERCE POINTS (IPP)

4 point interpolation algorithm definition

GINA – Global Integrated Navigation Algorithm

EGNOS

Cmake based C++ project

Github Repo

Evaulation done by Octova/Matlab EGNOS is the latest module in GINA It contains ~4000 Line of Code

EGNOS - GINA

EGNOS Features - EMS Processing

Create Ionex file from EMS

Difference of lonex files

EGNOS - GINA

Raw measurement

EGNOS - GINA Interpolated IGPs

EGNOS - GINA EMS - CODE's GIM

$$dTEC = TEC_1 - TEC_2$$
$$dRMS = \sqrt{RMS_1 + RMS_2}$$

EGNOS - GINA

EGNOS Features - Navigation Engine with EGNOS Iono Model

Calculate position with IONEX correction

EGNOS - GINA

Navigation Engine with EGNOS Iono Model

Position Difference Ground Track

Position with EMS and with CODE

Bayesian statistic

Are the measurements consistent?

Likelihood of the measurements Priori beleif is the Measurement A

$$P(A = x_1 \text{ and } B = x_2 | Priori \text{ is model } C) = ?$$

$$P(A = x_1 \text{ and } B = x_2 | Priori \text{ is model } A)$$

$$= P(A = x_1 | Model A)P(B = x_2 | Model A)$$

$$= \sum_{i} P(A = x_1 | R = x_i)P(R = x_i) \sum_{i} P(B = x_2 | R)$$

Likelihood of the measurements Priori beleif is the Measurement B

$$P(A = x_1 \text{ and } B = x_2 | Priori \text{ is model } C) = ?$$

$$P(A = x_1 \text{ and } B = x_2 | Priori \text{ is model } B)$$

$$= P(A = x_1 | Model B) P(B = x_2 | Model B)$$

$$= \sum_{i} P(A = x_1 | R = x_i) P(R = x_i) \sum_{i} P(B = x_2 | R)$$

Likelihood of the measurements

Which Priori Model would give the maximum likelihood?

$$P(A = x_1 \text{ and } B = x_2 | Priori \text{ is model } C)$$

Model C is a Gaussian with mean x_c and σ_c .

$$\begin{split} &P(A=x_1 \ and \ B=x_2|Model \ C) = P(A=x_1 \ |Model \ C)P(B=x_2 \ |Model \ C) \\ &= \sum_{i} P(A=x_1|R=x_i)P(R=x_i) \sum_{i} P(B=x_2|R=x_i)P(R=x_i) \\ &= \int_{-\infty}^{\infty} \left[x,\sigma_1 \right] |_{x_1} [x_c,\sigma_c]|_{x} dx \int_{-\infty}^{\infty} [x,\sigma_2]|_{x_2} [x_c,\sigma_c]|_{x} dx \\ &= \int_{-\infty}^{\infty} \left[x_1,\sigma_1 \right] |_{x_1} [x_c,\sigma_c]|_{x} dx \int_{-\infty}^{\infty} [x_2,\sigma_2]|_{x_1} [x_c,\sigma_c]|_{x} dx = \left[x_1,\sqrt{\sigma_1^2+\sigma_c^2} \right] |_{x_c} \left[x_2,\sqrt{\sigma_2^2+\sigma_c^2} \right] |_{x_c} \\ &= \left[\sqrt{\frac{(\sigma_1^2+\sigma_c^2)(\sigma_2^2+\sigma_c^2)}{(\sigma_1^2+\sigma_c^2)+(\sigma_2^2+\sigma_c^2)}}, \frac{x_2(\sigma_1^2+\sigma_c^2)+x_1(\sigma_2^2+\sigma_c^2)}{(\sigma_1^2+\sigma_c^2)+(\sigma_2^2+\sigma_c^2)} \right] |_{x_c} \end{split}$$

Likelihood of the measurements

Which Priori Model would give the maximum likelihood?

$$\min\left(\frac{({\sigma_1}^2 + {\sigma_c}^2)({\sigma_2}^2 + {\sigma_c}^2)}{({\sigma_1}^2 + {\sigma_c}^2) + ({\sigma_2}^2 + {\sigma_c}^2)}\right) \Rightarrow {\sigma_c}^2 = 0$$

$$\frac{x_2(\sigma_1^2 + \sigma_c^2) + x_1(\sigma_2^2 + \sigma_c^2)}{(\sigma_1^2 + \sigma_c^2) + (\sigma_2^2 + \sigma_c^2)} = \frac{x_2(\sigma_1^2) + x_1(\sigma_2^2)}{(\sigma_1^2) + (\sigma_2^2)} = x_c$$

$$\lim_{\sigma \to \infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}} = \delta(x-\mu)$$

Maximum likelihood

But wouldn't we get the same result with a Kalman filter or LSQ?

$$P(Priori \ D \ at \ \mu | A = x_1 \ and \ B = x_2)$$

$$= \frac{\left[x_1, \sqrt{\sigma_1^2 + \sigma_2^2}\right]|_{x_2} [x_{12}, \sigma_{12}]|_{\mu}}{\int_{-\infty}^{\infty} \left[x_1, \sqrt{\sigma_1^2 + \sigma_2^2}\right]|_{x_2} [x_{12}, \sigma_{12}]|_{x} dx}$$

$$= \frac{\left[x_1, \sqrt{\sigma_1^2 + \sigma_2^2}\right]|_{x_2} [x_{12}, \sigma_{12}]|_{\mu}}{\left[x_1, \sqrt{\sigma_1^2 + \sigma_2^2}\right]|_{x_2} [x_{12}, \sigma_{12}]|_{\mu}} = [x_{12}, \sigma_{12}]|_{\mu}$$

Next Steps Think Tank

THANK YOU

