Working Principles Of Proof Assistant

And Formalization Of Some Proofs In Agda

Ashwot Acharya, Bishesh Bohora, Supervisor: Mr K.B Manandhar Supreme Chaudhary

Kathmandu University

What are proof assistant

Proof Assistants
What are proof
assistant
Why digital
verification is
needed?

Foundations

Architecture of proof assistant

Comparative Study

Formalization O

Some Proofs

Limitations

Proof assistant, are software more specifically a type of programming language thats allows us to formalize mathematical proofs in computer for digital verification.

Proof Assistants What are proof assistant Why digital verification is needed?

Foundations

Architecture of proof assistant

Comparati Study

Formalization Of Some Proofs

Some Proofs

Limitations

Need of digital verification

- ⋄ Fast and Efficient
- Many cases can be explored which would take mathematicians long time
 - ex: The Kepler Conjecture's proof , which was so complex that verifying it manually would take 20 person-years, but proof assistants made this verification feasible and fast.
- What if you don't use proof assistants? ABC conjecture

Proof Assistants
What are proof
assistant
Why digital
verification is
needed?

Foundation:

Architecture of proof assistant

Comparative Study

Formalization Of Some Proofs

Limitations

Mathematicians when a correct proof of the four color theorem was revealed

"What the hell? It's assisted by computers!?"

Foundations

Comparative Study

Formalization (
Some Proofs

Limitation

- ♦ **Natural Deduction** is a rule-based system for deriving conclusions from assumptions in logic.
- Instead of using exhaustive truth tables, proofs are built step-by-step using inference rules.
- \diamond Example: Proving from $A \land (A \rightarrow \bot)$ that \bot (contradiction) can be derived.

Foundations

Architecture of proof assistant

Comparative Study

Formalization O
Some Proofs

Limitation:

Foundations

proof assistant

Comparative Study

Formalization Of Some Proofs

Intuitionistic Logic

- **Intuitionistic Logic** Also called Constructive Logic, reflects principles of constructive mathematics, where a statement is only true if a proof can be constructed.
- Omits some classical logic rules, such as the Law of Excluded Middle.
- Stronger requirement: to prove existence, a method or algorithm must be given.
- Proof assistants leverage this constructive approach for digital verification.

Formalization (
Some Proofs

Limitation

Introduction Rules

Elimination Rules

Inference Rules for Intuitionistic Logic

Lambda Calculus

Proof Assistants Foundations

Architecture of proof assistant

Comparative Study

Formalization (

Limitation

What is Lambda Calculus?

- ⋄ A formal model of computation by Alonzo Church
- ♦ Lambda Terms:

Variables: x, y, z

Abstraction: $\lambda x.E$

Application: $(\lambda x.E) F$

Foundations

Architecture of proof assistant

Comparative Study

Formalization C Some Proofs

Limitation

Examples

- $\diamond \quad \lambda x.x^2$ is a function
- $\diamond \quad (\lambda x.x^2)(3) \rightarrow 9$

Limitation

Type Theory Basics

- \diamond Assigns types to terms: $1: \mathbb{N}, +: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$
- ⋄ Typing is decidable

Type Categories

- \diamond Base Types: \mathbb{N} , Bool, \perp
 - Arrow Types: $f: A \rightarrow B$
- \diamond Product Types: $\langle a, b \rangle : A \times B$
- ♦ Sum Types: a : A + B

Comparativ Study

Formalization C Some Proofs

Limitation

Typed Lambda Calculus

 $\diamond \quad (\lambda x : \mathbb{N}.x^2) : \mathbb{N} \to \mathbb{N}$

Dependent Types

- \diamond Types depend on values: Vec(n)
- Indexed types, predicate representation
- \diamond *Vec* : $\mathbb{N} \to Type$

. .

Proof Assistants

Foundations

Architecture of proof assistant

Comparative Study

Formalization Of Some Proofs

Limitation

Curry-Howard Correspondence

- sometimes referred as Curry Howard Isomorphism
- ⋄ A connection between logic, computation, and type theory
- Also known as the *proofs-as-programs* and *propositions-as-types* principle

Core Idea

- ⋄ A proposition corresponds to a type
- ⋄ A proof of the proposition is a program (term) of that type
- Proof checking is equivalent to type checking
- Proof normalization corresponds to program evaluation

Foundations

Architecture of proof assistant

Comparativ Study

Formalization C Some Proofs

Limitation

Curry-Howard Correspondence

Logic	Type Theory	Programming	
Proposition	Туре	-	
Proof	Term	Program	
Implication $A \rightarrow B$	$A \rightarrow B$	λ -abstraction	
Conjunction $A \wedge B$	$A \times B$	Pair	
Disjunction $A \lor B$	A + B	Tagged union	
$Falsehood\ \bot$	Empty Type	No term	
Universal $\forall x.A(x)$	$\Pi x : A.B(x)$	Function over types	
Existential $\exists x.A(x)$	$\Sigma x : A.B(x)$	Dependent pair	

Comparati Study

Formalization (
Some Proofs

Limitation

What is it?

- ♦ A formal system for constructive mathematics
- Also known as Intuitionistic Type Theory
- ♦ Backbone of modern Proof Assistants

Core Types

- \Diamond (Π -type): Dependent function type, $\forall x : A.B(x)$
- \diamond (Σ -type): Dependent sum type, $\exists x : A.B(x)$

Foundations

Architecture of proof assistant

Comparativ Study

Formalization C Some Proofs

Limitation

Type Universes

- \diamond Types have types: $1 : \mathbb{N}, \mathbb{N} : Type, Type : \cdots$
- Not like sets within sets avoids paradoxes
- Enables reasoning and abstraction over types themselves

Architecture of proof assistant

Architecture of a Proof Assistant

Proof Assistants

Foundations

Architecture of proof assistant

Tactic Engine
Language
Libraries
User Interface

Comparative Study

Formalization Of Some Proofs

Limitations

- ♦ Kernel: Minimal, trustworthy codebase enforcing logical rules and validating proofs.
- ♦ Tactic Engine: Helps build and automate proofs step by step.
- Formal Proof Language: Rigorously expresses definitions, statements, and proofs.
- Libraries: Collections of verified mathematical foundations for reuse.
- User Interface: IDEs and plugins for interactive, efficient proof development.

Kernel: The Trusted Core

Foundations

Architecture of proof assistant

Proof Assistants

Kernel
Tactic Engine
Language
Libraries
User Interface

Comparative Study

Formalization Of Some Proofs

Limitations

- ♦ The **kernel** is the minimal and most critical part of a proof assistant.
- ♦ It enforces the logical rules of the underlying formal system (e.g., type theory).
- Responsible for validating every proof step to guarantee correctness.
- ♦ Ensures **soundness and trustworthiness**; the rest of the system depends on its integrity.
- ⋄ Typically very small and rigorously tested or formally verified to avoid bugs.
- Example: Agda's kernel is written in Haskell and integrates normalization to check definitional equality.

Foundations

Architecture of proof assistant
Kernel
Tactic Engine
Language

User Interface
Comparative
Study

Formalization Of Some Proofs

Limitations

Tactic Engine: Proof Construction Assistant

- ♦ The tactic engine supports users in constructing proofs interactively.
- It breaks complex proof goals into simpler subgoals using proof strategies called tactics.
- Provides automation for common proof patterns, speeding up proof development.
- ⋄ Enables both forward and backward reasoning approaches.
- ⋄ Even fully automated tactics rely on the kernel for final verification.
- Varies among assistants (Agda has minimal/no tactics, Coq and Lean have powerful tactic systems).

Foundations

Proof Assistants

Architecture of proof assistant
Kernel
Tactic Engine
Language
Libraries
User Interface

Comparative Study

Formalization Of Some Proofs

Limitations

Formal Proof Language: Expressing Proofs Precisely

- ⋄ This language allows expressing definitions, propositions, and proofs rigorously.
- Typically a dependently typed language so logical properties can be encoded as types.
- Provides syntax and semantics suitable for formal reasoning and machine checking.
- ⋄ Enables users to write human-readable yet unambiguous formal proofs.
- Integrates smoothly with tactics and type checker to maintain correctness.
- ♦ Example languages: Agda's core language, Coq's Gallina, Lean's dependent type language.

Foundations

Architecture of proof assistant
Kernel
Tactic Engine
Language
Libraries
User Interface

Comparative Study

Formalization Of Some Proofs

Limitations

Libraries: Reusable Verified Foundations

- ⋄ Extensive collections of formalized mathematics and algorithms supporting new developments.
- Include basic theories such as arithmetic, algebra, logic, and set theory.
- Enable users to build on existing verified results without re-proving foundations.
- ♦ Libraries evolve and grow, fostering collaboration and community sharing.
- Well-maintained libraries reduce duplication and improve proof assistant adoption.
- Examples include Coq's Standard Library, Agda Standard Library, Lean's mathlib.

Architecture of proof assistant
Kernel
Tactic Engine
Language
Libraries

Foundations

User Interface
Comparative
Study

Formalization Of Some Proofs

Limitations

User Interface: Proof Development Environment

- Provides interactive tools like IDEs, editor plugins, or command line interfaces
- ⋄ Features include syntax highlighting, error reporting, real-time proof state visualization, and auto-completion.
- ⋄ Enhances usability and productivity for proof authors.
- Supports integration with tactics and proof language for seamless workflow.
- ⋄ Examples: CoqIDE, Proof General, Emacs-mode for Agda, VS Code extensions.
- A good interface lowers the learning curve and makes formalization more accessible.

Comparative Study

Comparative Table: Agda, Rocq (Coq), and Lean

Proof Assistants

Architecture of proof assistant

Comparative Study

Formalization C Some Proofs

Limitation

_			
Component	Agda	Rocq (Coq)	Lean
Proof Style	Explicit term-based, man-	Tactic-based, automated	Both tactic-based and
	ual proof writing	backward reasoning	term-style
Kernel	Minimal, written in	Based on Calculus of	CIC-based, written in
	Haskell, tight integra-	Inductive Constructions	C++/C
	tion with normalization	(CIC), written in Coq	
		(extracted to OCaml)	
Туре	Bidirectional, transpar-	Bidirectional, heavy	Bidirectional, smart
Checking	ent, normalization by	conversion, strong	elaboration (coercion,
	evaluation	automation	backtracking, overload-
			ing)
Automation	Limited (no tactics,	Extensive tactic engine	Advanced, seamless
	minimal automation)	and proof search	tactic/term mixing,
			smart elaborator
Use Cases	Foundations, educa-	Large/complex for-	Research, educa-
	tion, dependently typed	malizations, industrial-	tion, combinato-
	programming	scale proofs	rial/mathematical
			formalizations

Formalization Of Some Proofs

Eg: Defining Natural Numbers

Proof Assistants

Architecture of proof assistant

Comparative Study

Formalization O
Some Proofs

Defining Natural Numbers

simple properities
Formalization O
DeMorgan's Law

Limitations

data N : Set where

Zero : N

 $suc : N \rightarrow N$

Architecture of proof assistant

Comparative Study

Some Proofs

Numbers

simple properities Formalization Of DeMorgan's Law

Limitations

Eg: Some mathematical properities

Equality and Transitivity:

data
$$_==_$$
 { A : Set } (x : A) : A -> Set where refl : x == x

Formalization Of Some Proofs

Formalization Of DeMorgan's Law

DeMorgan's Law in agda

Proof Assistants

Foundations

Architecture of proof assistant

Comparative Study

Formalization Of Some Proofs Defining Natural Numbers simple properities Formalization Of DeMorgan's Law

Limitations

```
DeMorgan's Law
open import Agda. Primitive using (Level; lzero)
open import Data. Product using (\times;,)
open import Data.Sum using ( ⊎; inj1; inj2)
open import Relation. Nullary using (Dec; yes; no)
open import Data. Empty using (\bot; \bot - elim)
open import Relation.Nullary.Negation using (-)
--One Direction
\texttt{deMorganOneWay} \;:\; \forall \; \{\ell\} \; \{\texttt{P} \; \texttt{Q} \;:\; \texttt{Set} \; \ell\} \; \rightarrow \; (\lnot \; \texttt{P}) \; \uplus \; (\lnot \; \texttt{Q}) \; \rightarrow \; \lnot \; (\texttt{P} \; \times \; \texttt{Q})
deMorganOneWay (inj1 np) (p , q) = np p
deMorganOneWay (inj2 nq) (p, q) = nq q
```

```
Proof Assistants
```

Foundations

Architecture of proof assistant

Comparative Study

Formalization Of Some Proofs Defining Natural Numbers simple properities Formalization Of

DeMorgan's Law Limitations

```
Converse, Requires Non Constructive Assumptions
deMorganOtherWay :
\forall \{\ell\} \{P Q : Set \ell\}
\rightarrow Dec P

ightarrow Dec Q
\rightarrow \neg (P \times Q)
\rightarrow (\neg P) \uplus (\neg Q)
deMorganOtherWay (yes p) notPQ = inj2 (\lambda q \rightarrow notPQ (p , q))
deMorganOtherWay (no np) (yes q) = inj1 np
deMorganOtherWay (no np) (no nq) = inj1 np -- or inj2 nq
```

Limitations

Foundation

Architecture of proof assistant

Comparative Study

Formalization C Some Proofs

Limitations

- Issue while implementing Real Numbers Construcitvely.
- Bidirectional Typechecking Algorithm isn't discussed rigorously.

atc

Proof Assistants

Foundations

Architecture of proof assistant

Comparative Study

Formalization (
Some Proofs

Limitations

References

- ♦ William Howard. *The formula-as-types notion of construction*, 1969.
- ♦ Per Martin-Löf. *An Intuitionistic Theory of Types*, 1972.
- Jan Willem Klop, Alejandro Ríos. Introduction to Lambda Calculus, Rojas, 2015.
- ♦ Herman Geuvers. *Proof Assistants: History, Ideas and Future*, 2009.
- ♦ Frank Pfenning. *Intuitionistic Logic: Proof Theory*, Lecture Notes, 2004.
- ♦ Sozeau, M. et al. (2025). Correct and complete type checking and certified erasure for Coq, in Coq, J. ACM, 72(1).
- ♦ Team, R. P. D. (2025). Rocq Prover Reference Manual: Core Language. Accessed: 2025-08-05.

Thank you!