ОБРАТНЫЕ СВЯЗИ В УСИЛИТЕЛЯХ

Отрицательная обратная связь

$$K'_{u} = \frac{K_{u}}{1 - \beta K_{u}}$$
 βK_{u} — петлевое усиление

Если $K_u' < K_u$ то обратную связь (ОС) называют отрицательной. При отрицательной ОС $\beta K_u < 0$.

Сильная обратная связь: $|\beta K_u| >> 1$ $K_u' \square 1/\beta$

Уменьшение искажений при отрицательной ОС

Диаграмма Найквиста

$$K_u(j\omega)\cdot\beta(j\omega)=U+jV,$$
 $U=|K_u\beta|\cos\varphi$ $V=|K_u\beta|\sin\varphi$

$$U = |K_u \beta| \cos \varphi \qquad V$$

$$V = |K_{\mu}\beta| \sin \varphi$$

Устойчивость усилителя с обратной связью

$$\frac{K_{u}'(j\omega)}{K_{u}(j\omega)} = \frac{K_{u}(j\omega)}{(1-\beta(j\omega)K_{u}(j\omega))\cdot K_{u}(j\omega)} = \frac{1}{1-U-jV},$$

Критерий устойчивости Найквиста

Усилитель с обратной связью устойчив, если годограф петлевого усиления не охватывает точку с координатами (1, 0).

Устойчивость 1-каскадного усилителя

$$K_{u}(j\omega) = \frac{K_{u0}}{1 + j\omega\tau_{R}}, \qquad K_{u}(j\omega)\cdot\beta(j\omega) = -K_{u0}\beta/(1 + j\omega\tau_{B})$$

Частотная характеристика 1-каскадного усилителя

$$K'_{u}(j\omega) = \frac{K_{u}(j\omega)}{1 - \beta K_{u}(j\omega)} = \frac{K'_{u0}}{1 + j\omega\tau'_{e}}, \quad K'_{u0} = \frac{K_{u0}}{1 + \beta K_{u0}} \quad \tau'_{B} = \frac{\tau_{B}}{1 + \beta K_{u0}}$$

Устойчивость многокаскадных усилителей

Частотная характеристика 2-каскадного усилителя

Виды обратных связей

- 1. Последовательная обратная связь
 - •По напряжению
 - •По току
- 2. Параллельная обратная связь
 - •По напряжению
 - •По току

Последовательная обратная связь

Последовательная обратная связь

Входное сопротивление

$$R_{ ext{вх}}' = u_{ ext{вх}}' / i_{ ext{вх}}' \qquad u_{ ext{вх}} = u_{ ext{вх}}' + u_{ ext{ос}} = u_{ ext{вх}}' + \beta u_{ ext{вых}} \qquad R_{ ext{вх}}' = R_{ ext{вх}} \left(1 - \beta K_u \right)$$
 При $\beta K_u < 0$
$$R_{ ext{вх}}' = R_{ ext{вх}} \left(1 + \left| \beta K_u \right| \right)$$

Для обратной связи по току $\beta = u_{\rm oc}/u_{\rm вых} = R_{\rm oc}/R_{\rm H}$ при $i'_{\rm вx} \Box i_{\rm H}$

Выходное сопротивление

При
$$u_{\text{вых}}' = 0$$
 создадим на выходе $u_{\text{вых}}$
$$u_{\text{вых}} = K_{u0}u_{\text{вх}} - R_{\text{вых}}i_{\text{вых}}$$

$$i_{\text{вых}} = \frac{u_{\text{вых}} - K_{u0}u_{\text{вх}}}{R_{\text{вых}}} = \frac{u_{\text{вых}} - K_{u0}\beta u_{\text{вых}}}{R_{\text{вых}}}$$

$$R'_{\text{вых кз}} = \frac{u_{\text{вых хх}}}{1 - \beta K_{u0}}$$

При отрицательной ОС $(\beta K_u < 0)$

$$R'_{\text{вых}} = \frac{R_{\text{вых}}}{1 + \left| \beta K_{u0} \right|}$$

Примеры усилителей с отрицательной последовательной обратной связью

Параллельная обратная связь по напряжению

$$K_{u}' = K_{u} = K_{u0} \left(R_{H} / \left(R_{H} + R_{BMX} \right) \right)$$

$$u_{\text{bx}} = \frac{R_{\text{bx}} \| R_{\text{oc}}}{R_{\text{u}} + (R_{\text{bx}} \| R_{\text{oc}})} e_{\text{u}} + \frac{R_{\text{bx}} \| R_{\text{u}}}{R_{\text{oc}} + (R_{\text{bx}} \| R_{\text{u}})} u_{\text{вых}}$$

$$\beta = \frac{R_{\text{BX}} \| R_{\text{H}}}{R_{\text{oc}} + \left(R_{\text{BX}} \| R_{\text{H}} \right)}$$

$$\gamma = \frac{R_{_{\mathrm{BX}}} \| R_{_{\mathrm{OC}}}}{R_{_{\mathrm{M}}} + \left(R_{_{\mathrm{BX}}} \| R_{_{\mathrm{OC}}} \right)}$$

$$K_e' = \frac{u_{\text{BMX}}}{e_u} = \frac{\gamma K_u}{1 - \beta K_u}$$

$$R'_{\text{BX}} = R_{\text{BX}} \left| \frac{R_{\text{oc}}}{1 - K_u}, \right|$$

$$R'_{\text{вых}} = \frac{R_{\text{вых}}}{1 - \beta K_{u0}}.$$

Параллельная обратная связь по току

$$\gamma = \frac{R_{_{\rm BX}} \| R_{_{\rm oc}2}}{R_{_{\rm II}} + \left(R_{_{\rm BX}} \| R_{_{\rm oc}2} \right)}, \quad \beta = \beta_1 \cdot \beta_2, \quad \beta_1 = \frac{R_{_{\rm oc}1}}{R_{_{\rm H}}}, \quad \beta_2 = \frac{R_{_{\rm BX}} \| R_{_{\rm II}}}{R_{_{\rm oc}2} + \left(R_{_{\rm BX}} \| R_{_{\rm II}} \right)},$$

$$K'_{e} = \frac{\gamma K_{u}}{1 - \beta K_{u}}$$
 $R'_{\text{BX}} = R_{\text{BX}} \left\| \frac{R_{\text{oc}2}}{1 - \beta {}_{1}K_{u}} - R'_{\text{BbIX}} = R_{\text{BbIX}} + R_{\text{oc}1} \left(1 - \beta K_{u0} \right) \right\|$

Пример усилителя с отрицательной параллельной обратной связью по напряжению

$$K_{u} = -SR_{K}$$

$$R_{E} \approx h_{219} \left\| \frac{R_{oc}}{1 + K_{u}} \right\|$$

$$M_{BMX} \qquad K'_{e} = \frac{\gamma K_{u}}{1 + \beta K_{u}}$$

$$\gamma \approx \frac{h_{119}}{h_{119} + R_{u}} \quad \beta = \frac{h_{119} \left\| R_{u}}{\left(h_{119} \right\| R_{u} \right) + R_{oc}}$$

Пример усилителя с отрицательной параллельной обратной связью по току

$$K'_{e} = \frac{\gamma K_{u}}{1 + \beta K_{u}} \qquad R'_{\text{BX}} \approx h_{119}^{(1)} \left\| \frac{R_{\text{oc}}}{1 + K_{1}} \right\|$$

$$\gamma \approx \frac{h_{119}^{(1)}}{h_{119}^{(1)} + R_{u}} \quad \beta = \beta_{1} \cdot \beta_{2} = \frac{R_{9}}{R_{K2}} \cdot \frac{h_{119}^{(1)} \| R_{u}}{\left(h_{119}^{(1)} \| R_{u}\right) + R_{\text{oc}}}$$

ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ

1940-е годы

ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ

Основные параметры операционного усилителя

$$u_{\text{вых}} = K_{\text{диф}} \left(u_{\text{вх 2}} - u_{\text{вх 1}} \right)$$

$$KOCC = 20 \lg \frac{K_{\text{диф}}}{K_{\text{cф}}}$$

$$K_{\text{диф}} = 10^3 \div 10^6$$

$$R_{\rm bx} \ge 10^6~{
m Om}$$

$$R_{\text{bux}} \leq 200 \text{ Om}$$

Напряжение смещения $U_{\rm cm}$: типичные значения составляют $10^{-3} \div 10^{-6}~{
m B}$

Входной ток: типичные значения входного тока составляют $10^{-9} \div 10^{-12} \text{ A}$.

Сопротивление нагрузки: типичное минимальное сопротивление нагрузки составляет 2 кОм.