Matrix Norm Essentials

- Matrix norms have vector norm properties plus $||AB|| \le ||A|| ||B||$.
- Only four norms to know: $\|\cdot\|_1$, $\|\cdot\|_2$, $\|\cdot\|_\infty$, and $\|\cdot\|_{\text{Frob}}$.
- Three have easy formulas $(1, \infty, \text{Frob})$.
- Three are induced from vector norms $(1, 2, \infty)$.
- Usually $\rho(A) < \|A\|$ for all norms. But always $\rho(A) \le \|A\|$ for any norm.
- $\|\cdot\|_2$ norm best for hermitian. One reason: if $A^* = A$ then $\rho(A) = \|A\|_2$.
- Iteration v, Av, A^2v, \ldots converges if and only if $\rho(A) < 1$. Thus if $\|A\| < 1$ then convergence. Not conversely!