

تمرین سری سوم درس تصویربرداری رقمی

پوریا محمدی نسب (۴۰۰۷۲۲۱۳۸)

۱- الف) مقاله زير را با دقت مطالعه كنيد و به صورت خلاصه روش پيشنهادي آن براي كاهش نويز را توضيح دهيد.

Ramadhan, Afrah, Firas Mahmood, and Atilla Elci. "Image denoising by median filter in wavelet domain." arXiv preprint arXiv:1703.06499 (2017).

در این مقاله الگوریتمی ارائه شده است که از تکنیک median filter در دامنه wavelet ها استفاده میکند تا نویز تصویر را تا حد امکان کاهش دهد و از هدر رفت دیتای اصلی تصویر جلوگیری کند. برای یافتن بهترین عملکرد، تبدیلات wavelet متفاوتی مورد بررسی قرار بررسی قرار گرفته اند. این مقاله برای درک و مقایسه ی بهتر، چهار سناریوی مختلف را در نظر گرفته و هر یک را جداگانه مورد بررسی قرار داده است. اولین حالت استفاده از Discrete Wavelet Transform) DWT) به تنهایی میباشد. در این سناریو از معادله زیر برای حدس زدن مقدار نویز استفاده میشود:

$$\sigma^2 = [median(|x(i,j)|)/0.6745]^2$$

حالت بعدی برای مقایسه، حالتی است که تنها از تکنیک median filter استفاده شود. این حالت دارای پروسه ی ساده ای میباشد که شکل آن در زیر قابل مشاهده است.

حالت های سوم و چهارم هستند که الگوریتم اصلی پیشنهادی مقاله را تشکیل میدهند. در حالت سوم پس از به کارگیری DWT ، از تکنیک median filter استفاده میشود و سپس به دست مرحله بعدی (thresholding) میرسد. اما در حالت چهارم این عمل به صورت وارونه انجام میشود. به عبارتی دیگر ابتدا مقدار آستانه تصویر مشخص میشود سپس median filter روی تصویر اعمال میشود.

نتایجی که به دست آمده نشان میدهد، الگوریتم پیشنهادی همانند اکثر الگوریتم های کاهش نویز به طبیعت و ذات تصویر وابسته است. اما در مجموع میتوان اظهار داشت که الگوریتم پیشنهادی در هر دو حالت اعمال median filter قبل و بعد از thresholding نتایجی واضح و از نظر بصری، باکیفیت را دارا میباشد. همچنین برای مقایسه ۴ حالت معرفی شده از ۵ تصویر معروف در پردازش تصویر استفاده شد و کیفیت خروجی هر الگوریتم با دو معیار MSE و PSNR و PSNR بررسی شدند. نتایج کلی را در جدول زیر مشاهده میکنید.

Images	noise ratio	MF	DWT	MF befor thr.	MF after thr.
Lena	15	26.5469	25.1504	26.4146	26.2893
	20	25.5292	23.5935	25.1486	25.2302
	25	24.6117	22.3148	24.0477	24.1414
Barbara	15	22.3048	23.5818	24.0892	23.2405
	20	21.9372	22.3197	23.1468	22.6969
	25	21.5613	21.2449	22.2978	22.0692
Camera	15	24.6562	24.5340	25.1232	24.4323
	20	24.0361	22.9896	24.2206	23.8242
	25	23.3887	21.6859	23.2202	23.0355
Fruit	15	25.7715	24.7774	25.9091	25.3040
	20	24.9298	23.2299	24.8211	24.4766
	25	24.1101	22.1286	23.7675	23.6186
Buterfly	15	23.4540	24.0486	24.7068	23.7919
	20	22.8565	22.5758	23.7164	23.2238
	25	22.3289	21.3814	22.8253	22.5696

۱- ب) با جستجو در اینترنت، چند کاربرد wavelet در حوزه پردازش تصویر را ذکر کنید(لینک منابع مورد استفاده را قرار دهید.)

از رایج ترین کاربردهای wavelet در پردازش تصویر، بحث فشرده سازی تصویر مطرح است. الگوریتم های زیاد و تنوعی در این باره پیشنهاد شده اند. از جمله این الگوریتم ها میتوان به الگوریتم ارسال پیشرو، WDR ،ROI ،SPIHT ،EZW و ASWDR اشاره کرد. همچنین در مواردی از wavelet ها برای کدگذاری زیر باندها، حذف نویز و حتی تشخیص چهره نیز استفاده میشود.

۲- الف) ضرایب تبدیل زیر را محسابه کنید. همچنین توضیح دهید هر کدام از ضرایب تبدیل، نشانگر چیست ؟

$$\begin{cases}
I) w + x + y + z = 6 \\
II) w - x + y - z = -2 \\
III) w + x - y - z = -3 \\
IV) w - x - y + z = 8
\end{cases} \Rightarrow \begin{cases}
w = \frac{9}{4} = 2.25 \\
x = \frac{-3}{4} = -0.75 \\
y = \frac{-1}{4} = -0.25 \\
z = \frac{19}{4} = 4.75
\end{cases}$$

هر یک از این ضرایب تبدیل نشان میدهند که تصویر در یک جهت خاص به چه مقداری تغییرات داشته است.

۲- ب) نتیجه حاصل از یک مرحله تجزیه تصویر زیر را با استفاده از موجک Haar، محاسبه نمایید $(V_J = V_{J-1} \bigoplus W_{J-1})$.خروجی چهار ماتریس 2×2 خواهد بود.

4	6	4	2
3	4	4	2
2	2	7	7
1	3	1	3

Step1:
$$\begin{bmatrix} (4+6)/2 & (4+2)/2 & (4-6)/2 & (4-2)/2 \\ (3+4)/2 & (4+2)/2 & (3-4)/2 & (4-2)/2 \\ (2+2)/2 & (7+7)/2 & (2-2)/2 & (7-7)/2 \\ (1+3)/2 & (1+3)/2 & (1-3)/2 & (1-3)/2 \end{bmatrix} = \begin{bmatrix} 5 & 3 & -1 & 1 \\ 3.5 & 3 & -0.5 & 1 \\ 2 & 7 & 0 & 0 \\ 2 & 2 & -1 & -1 \end{bmatrix}$$

Step2:
$$\begin{bmatrix} (5+3.5)/2 & (3+3)/2 & (-1-0.5)/2 & (1+1)/2 \\ (2+2)/2 & (7+2)/2 & (0-1)/2 & (0-1)/2 \\ (5-3.5)/2 & (3-3)/2 & (-1+0.5)/2 & (1-1)/2 \\ (2-2)/2 & (7-2)/2 & (0+1)/2 & (0+1)/2 \end{bmatrix} = \begin{bmatrix} 4.25 & 3 & -0.75 & 1 \\ 2 & 4.5 & -0.5 & -0.5 \\ 0.75 & 0 & -0.25 & 0 \\ 0 & 2.5 & 0.5 & 0.5 \end{bmatrix}$$

Output:
$$\begin{bmatrix} 4.25 & 3 \\ 2 & 4.5 \end{bmatrix}$$
, $\begin{bmatrix} -0.75 & 1 \\ -0.5 & -0.5 \end{bmatrix}$, $\begin{bmatrix} 0.75 & 0 \\ 0 & 2.5 \end{bmatrix}$, $\begin{bmatrix} -0.25 & 0 \\ 0.5 & 0.5 \end{bmatrix}$

۲- ج) ضرایب d0 ، c0 و d1 برای موجک Haar محاسبه کرده و تخمین بدست امده برای f(x) با استفاده از این ضرایب را رسم نمایید.

$$f(x) = \begin{cases} 5 & \text{, } 0 < x \le 0.5 \\ x - 1 & \text{, } 0.5 < 5 \le 1 \end{cases}$$

$$\varphi_0 = \varphi_0 + \varphi_0(x+1)$$
; $h\varphi_0(0) = \frac{\sqrt{2}}{2}$; $h\varphi_0(-1) = \frac{-\sqrt{2}}{2}$

$$c0 = \int_0^{0.5} x(5)dx + \int_{0.5}^1 x(x-1)dx = \frac{5}{8} - \frac{1}{12} = \frac{13}{24} \rightarrow c0 = \left[\frac{-1}{12}, \frac{5}{8} \right]$$

$$d0 = \int_{-\frac{1}{12}}^{0} 5x dx + \int_{0}^{\frac{5}{8}} 5x dx + \int_{\frac{5}{8}}^{1} (x - 1)x dx = \frac{-2}{8} \rightarrow d0 = [\frac{-1}{2}, \frac{1}{2}]$$

References

- 1) https://ganj.irandoc.ac.ir/viewer/6c2e9178281987aef40f53602b568c73?sample=1
- 2) https://ganj.irandoc.ac.ir/viewer/c50f30a5d8a275d6d1c41193d1eabd9b?sample=1