Pontificia Universidad Católica de Chile Facultad de Matemáticas Departamento de Estadística

Segundo Semestre 2014

Curso : Probabilidad y Estadística

Sigla : EYP1113

Pauta : I3

Profesores : Ricardo Aravena C. y Ricardo Olea O.

Problema 1

Considere una muestra aleatoria X_1, \ldots, X_n proveniente de una población cuya distribución de probabilidad es Uniforme $(0, \theta)$. A usted le proponen los siguientes estimadores para el parámetro θ :

$$\hat{\theta} = 2 \cdot \overline{X}_n$$
 y $\tilde{\theta} = \max\{X_1, \dots, X_n\}$

Calcule los errores cuadráticos de ambos estimadores. ¿Cuál prefiere?

Solución

Tenemos que $\hat{\theta}$ es un estimador insesgado para θ , ya que

$$E(\hat{\theta}) = \frac{2}{n} \sum_{i=1}^{n} E(X_i) = \theta$$
 [1.0 Ptos.]

v por independencia

$$Var(\hat{\theta}) = \frac{4}{n^2} \sum_{i=1}^{n} Var(X_i) = \frac{\theta^2}{3n}$$
 [1.0 Ptos.]

Luego

$$ECM(\hat{\theta}) = \frac{\theta^2}{3n}$$
 [0.5 Ptos.]

Por otra parte,

$$f_{\widetilde{\theta}}(u) = n \left(\frac{u}{\theta}\right)^{n-1} \frac{1}{\theta} = \frac{n u^{n-1}}{\theta^n}, \quad 0 \le u \le \theta$$
 [0.5 Ptos.]

Por definición

$$E(\widetilde{\theta}) = \int_0^\theta u \cdot \frac{n \, u^{n-1}}{\theta^n} \, du = \frac{n}{(n+1)} \, \theta \qquad [0.5 \text{ Ptos.}]$$

у

$$[\mathbf{0.5 \ Ptos.}] \qquad \mathrm{E}(\widetilde{\theta}^2) = \int_0^\theta u^2 \cdot \frac{n \, u^{n-1}}{\theta^n} \, du = \frac{n}{(n+2)} \, \theta^2 \longrightarrow \mathrm{Var}(\widetilde{\theta}) = \theta^2 \left\{ \frac{n}{(n+2)} - \left[\frac{n}{(n+1)} \right]^2 \right\} \qquad [\mathbf{0.5 \ Ptos.}]$$

$$= \frac{n \, \theta^2}{(n+2)(n+1)^2}$$

Luego

$$ECM(\widetilde{\theta}) = \frac{n \theta^2}{(n+2)(n+1)^2} + \left[\frac{n}{(n+1)} \theta - \theta\right]^2$$
 [0.5 Ptos.]
$$= \frac{2 \theta^2}{(n+2)(n+1)}$$

Finalmente el estimador $\widetilde{\theta}$ es más eficiente para estimar θ por:

- \blacksquare $\widetilde{\theta}$ es el estimador de máxima vero similitud.
- $ECM(\tilde{\theta})/ECM(\hat{\theta}) \to 0$, cuando $n \to \infty$.
- $ECM(\hat{\theta})/ECM(\widetilde{\theta}) \to \infty$, cuando $n \to \infty$.

Asignar [1.0 Ptos.] por cualquiera de las justificaciones anteriores.

Considere una muestra aleatorias X_1, \ldots, X_n proveniente de una población cuya distribución de probabilidad es Gamma (k, ν) trasladada en δ , es decir, su función de densidad esta dada por:

$$f_X(x) = \frac{\nu^k}{\Gamma(k)} (x - \delta)^{k-1} e^{-\nu (x - \delta)}, \quad x \ge \delta, \quad \delta \ge 0, \quad \nu > 0, \quad k > 0$$

Suponga que k es conocido. Obtenga los estimadores de momento de ν y δ .

Solución

Necesitamos calcular los primeros dos momentos

$$E(X) = \int_{\delta}^{\infty} x \cdot \frac{\nu^{k}}{\Gamma(k)} (x - \delta)^{k-1} e^{-\nu (x - \delta)} dx$$

$$= \int_{0}^{\infty} (y + \delta) \cdot \frac{\nu^{k}}{\Gamma(k)} y^{k-1} e^{-\nu y} dy$$

$$= \frac{k}{\nu} + \delta \qquad [1.5 \text{ Ptos.}]$$

$$(1)$$

у

$$E(X^{2}) = \int_{\delta}^{\infty} x^{2} \cdot \frac{\nu^{k}}{\Gamma(k)} (x - \delta)^{k-1} e^{-\nu (x - \delta)} dx$$

$$= \int_{0}^{\infty} (y^{2} + 2 \delta y + \delta^{2}) \cdot \frac{\nu^{k}}{\Gamma(k)} y^{k-1} e^{-\nu y} dy$$

$$= \frac{k(k+1)}{\nu^{2}} + 2 \delta \frac{k}{\nu} + \delta^{2}$$

$$= \frac{k}{\nu^{2}} + \left(\frac{k}{\nu} + \delta\right)^{2}$$
 [1.5 Ptos.] (2)

Nota: Asigna puntaje total por la expresión correcta de los momentos, y en caso de error, asignar puntaje parcial al desarrollo si corresponde, ya que no era necesario el calculo, por que se deducen del formulario al sumar δ a una variable aleatoria Gamma (k, ν) no trasladada.

Luego, igualando (1) a \overline{X}_n y (2) a \overline{X}_n^2 se tiene que

$$\hat{\nu} = \sqrt{\frac{k}{\overline{X^2}_n - (\overline{X}_n)^2}}$$
 [1.5 Ptos.]

у

$$\hat{\delta} = \overline{X}_n - \sqrt{k \left[\overline{X^2}_n - \overline{X}_n)^2 \right]}$$
 [1.5 Ptos.]

Nota: Si los momentos están mal calculados, pero la solución es correcta según el error, asignar puntaje completo por esta parte.

Considere una muestra aleatoria X_1, \ldots, X_n proveniente de una población cuya distribución de probabilidad es Log-Normal (λ, ζ) , con ζ conocido. Obtenga el estimador máximo verosímil de la mediana y proponga una distribución de probabilidad asintótica junto con sus parámetros para este estimador.

Solución

Tenemos que

[0.5 Ptos.]
$$F_X(\text{Mediana}) = \frac{1}{2} \longrightarrow \frac{\ln(\text{Mediana}) - \lambda}{\zeta} = 0 \longrightarrow \text{Mediana} = e^{\lambda} = g(\lambda)$$
 [0.5 Ptos.]

Del formulario se tiene que el estimador de máxima verosimilitud de $g(\lambda)$ es $g(\hat{\lambda})$, con $\hat{\lambda}$ estimador máximo verosímil de λ .

$$L(\lambda) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} \frac{1}{(\zeta x)} \exp\left\{-\frac{1}{2} \left[\frac{\ln(x) - \lambda}{\zeta}\right]^{2}\right\} \qquad \textbf{[0.5 Ptos.]}$$

$$\ln L(\lambda) = -\frac{n}{2} \ln(2\pi) - n \ln(\zeta) + \sum_{i=1}^{n} \ln(X_{i}) - \frac{1}{2\zeta^{2}} \sum_{i=1}^{n} \left[\ln(X_{i}) - \lambda\right]^{2} \qquad \textbf{[0.5 Ptos.]}$$

$$\frac{\partial}{\partial \lambda} \ln L(\lambda) = -\frac{1}{2\zeta^{2}} \sum_{i=1}^{n} 2 \left[\ln(X_{i}) - \lambda\right] (-1) = 0 \longrightarrow \hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} \ln(X_{i}) \qquad \textbf{[0.5 Ptos.]}$$

Del formulario tenemos que

$$g(\hat{\lambda}) \stackrel{\text{aprox}}{\sim} \text{Normal}\left(g(\lambda), \sqrt{\frac{[g'(\lambda)]^2}{I_n(\lambda)}}\right)$$
 [0.5 Ptos.]

Necesitamos

$$g'(\lambda) = e^{\lambda}$$
 [0.5 Ptos.]

у

$$I_n(\lambda) = -\mathrm{E}\left[\frac{\partial^2}{\partial \lambda^2} \ln L(\lambda)\right]$$
 [0.5 Ptos.]

Luego

[0.5 Ptos.]
$$\frac{\partial^2}{\partial \lambda^2} \ln L(\lambda) = -\frac{n}{\zeta^2} \longrightarrow I_n(\lambda) = \frac{n}{\zeta^2}$$
 [0.5 Ptos.]

Por lo tanto

$$\widehat{\text{Mediana}} = e^{\hat{\lambda}} \stackrel{\text{aprox}}{\sim} \text{Normal}\left(e^{\lambda}, \frac{\zeta e^{\lambda}}{\sqrt{n}}\right)$$
 [0.5 Ptos.]

como pueden saber existen varios indicadores que deben satisfacer los distintos servicios del transantiago. Indicadores tales como frecuencia y regularidad. El indicador de cumplimiento de frecuencia indica que debe satisfacer 8 vehículos por hora (para cualquier módulo hora, por ejemplo entre 8.00 y 9.00, o bien entre 7.45 y 8.45). El indicador de regularidad indica que el tiempo entre buses no debe ser inferior a 4 min (a objeto de evitar los "trencitos"). Otra forma de evaluar el indicador de regularidad es que el tiempo medio entre buses no debe diferir de 7,5 min. Suponga que se han tomado datos para los periodos punta de un servicio durante un mes y algunos resultados son:

- Módulos horarios controlados 52, indicador de cumplimiento de frecuencia igual a 49.
- Tiempo promedio en minutos entre vehículos alcanza a 9 min, resultado basado en 108 tiempos. Asuma que estos tiempos son independientes con distribución exponencial.

Con base a la información anterior, indique si se debe multar al servicio si no cumple con cualquiera de los indicadores de acuerdo a los siguientes requerimientos

- (a) Cumplimiento de frecuencia es superior al 90 %.
- (b) Tiempo medio entre buses igual a 7,5 minutos.

Considere en su decisión un nivel de significancia del 5 %. En cada caso indique explícitamente: Test a aplicar, supuestos y valor-p.

Solución

(a) Tenemos que 49 de los 52 módulos horarios controlados se cumplió la frecuencia exigida, es decir, la estimación del parámetro p que representa la proporción de módulos horarios en que se cumple la frecuencia sería \hat{p} igual a 0.9423077. [0.5 Ptos.]

Se pide hacer la siguiente prueba de hipótesis para la proporción:

$$H_0: p = p_0 \text{ vs } H_a: p < p_0$$
 [0.5 Ptos.]

Nota: Si el alumno pone $H_a: p > p_0$, descontar solo puntaje correspondiente.

con
$$p_0 = 0.90$$
. [0.5 Ptos.]

Bajo el escenario que H₀ es correcta, se tiene que

$$Z_0 = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 (1 - p_0)}{n}}} \stackrel{\text{aprox}}{\sim} \text{Normal}(0, 1)$$
 [0.5 Ptos.]

donde $Z_0 = 1.01695$. [0.5 Ptos.]

El valor-p es igual a $\Phi(1.01695) \approx 0.8461$, entonces no existe suficiente evidencia con un 5% de significancia para rechazar la hipótesis que nula la frecuencia no se cumple y así poder cobrar la multa. [0.5 Ptos.]

Nota: Si el alumno concluye correctamente según error anterior, asignar todo el puntaje correspondiente.

(b) Se pide hacer la siguiente prueba de hipótesis para la media de los tiempos:

$$H_0: \mu = \mu_0 \text{ vs } H_a: \mu \neq \mu_0$$
 [0.5 Ptos.]

con $\mu_0 = 7.5$. [0.3 Ptos.]

Como los tiempos son Exponenciales, supongamos de parámetro ν , entonces $\mu = \frac{1}{\nu} = g(\nu)$. [0.3 Ptos.]

Como el estimador máximo verosímil de ν es $\hat{\nu}=\frac{1}{\overline{X}_n}$ [0.3 Ptos.], entonces el estimador máximo verosímil de μ sería $\hat{\mu}=g(\hat{\nu})=\frac{1}{\hat{\nu}}=\overline{X}_n$. [0.3 Ptos.]

Luego, por propiedad de los estimadores máximo verosímiles se tiene que

$$\hat{\mu} \stackrel{\text{aprox}}{\sim} \text{Normal}(\mu, \mu/\sqrt{n})$$
 [0.3 Ptos.]

Bajo el supuesto que H_0 es correcta, se tiene que

$$Z_0 = \frac{\overline{X}_n - \mu_0}{\mu_0 / \sqrt{n}} \sim \text{Normal}(0, 1)$$
 [0.3 Ptos.]

donde $Z_0 = 2.078461$. [0.3 Ptos.]

Como el valor-p es igual a $2 \cdot [1 - \Phi(|2.078461|)] = 2 \cdot (1 - 0.9812) = 0.0376$, entonces existe suficiente evidencia con un 5% de significancia para rechazar la hipótesis que nula que los tiempos medios no cumplen con lo exigido, por lo cual procede la multa. [0.4 Ptos.]

La asistencia a clases es un atributo que se ha perdido en el tiempo. Un estudiante busca demostrar que existe un cambio estructural en relación a la asistencia (disminución significativa) de los cursos cuya pag.web es activa (es decir, incluye las slides del curso, material de ejercicios e interrogaciones pasadas), situación que no se observa en los cursos con pag.web no activa.

Por lo anterior el estudiante hace una selección aleatoria y su revisión de 64 cursos. Determina que sólo 25 de ellos que pueden considerarse como curso de pag.activa. En relación a la asistencia observa que los primeros (pag.activa) presentan un promedio de 52 % de asistencia con una desviación estándar de 18 %.

- (a) ¿Existe evidencia que permita afirmar que los cursos con pág.activa son minoría? Considere en su decisión un nivel de significancia del $5\,\%$.
- (b) De acuerdo con antecedentes históricos, hace una década la asistencia media era igual a un 64%. ¿Se puede hablar de una disminución significativa en relación a la asistencia media sólo de los cursos con pag.activa? Considere en su decisión un nivel de significancia del 1% y si corresponde calcule la probabilidad de cometer error tipo II, bajo el escenario que la media realmente era igual a 60%.

Solución

(a) Tenemos que 25 cursos de la muestra aleatoria de 64 pudo clasificarse como curso con pag.activa, es decir, la estimación del parámetro p que representa la proporción de cursos con pag.activa sería \hat{p} igual a 0.390625. [0.5 Ptos.]

Se pide hacer la siguiente prueba de hipótesis para la proporción:

$$H_0: p = p_0 \text{ vs } H_a: p < p_0$$
 [0.5 Ptos.]

con
$$p_0 = 1/2$$
. [0.5 Ptos.]

Bajo el escenario que H₀ es correcta, se tiene que

$$Z_0 = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 (1 - p_0)}{n}}} \stackrel{\text{aprox}}{\sim} \text{Normal}(0, 1) \qquad [\textbf{0.5 Ptos.}]$$

donde $Z_0 = -1.75$. [0.5 Ptos.]

Alternativa 1

Como el valor-p es igual a $\Phi(-1.75) = 1 - \Phi(1.75) = 1 - 0.9599 = 0.0401$, entonces existe suficiente evidencia con un 5% de significancia para rechazar la hipótesis que nula que los curso con pag.activa son mayoría y apoyar la hipótesis que son minoría. [0.5 Ptos.]

Alternativa 2

Tenemos que $Z_0 = -1.75 < -1.645 = k_{0.05}$, entonces existe suficiente evidencia con un 5% de significancia para rechazar la hipótesis que nula que los curso con pag.activa son mayoría y apoyar la hipótesis que son minoría. [0.5 Ptos.]

(b) Tenemos que la media muestral de asistencia en los 25 cursos con pag.activa es de un 52 % con una desviación estándar muestral igual a 18 %. [0.5 Ptos.]

Se pide hacer la siguiente prueba de hipótesis para la media de asistencia:

$$H_0: \mu = \mu_0 \text{ vs } H_a: \mu < \mu_0$$
 [0.5 Ptos.]

con
$$\mu_0 = 64\%$$
. [0.5 Ptos.]

Bajo Normalidad y que H_0 es correcta, se tiene que

$$T_0 = \frac{\overline{X}_n - \mu_0}{S/\sqrt{n}} \sim \text{t-Student}(n-1)$$
 [0.5 Ptos.]

donde $T_0 = -3.333333$. [0.5 Ptos.]

Alternativa 1

Como el valor-p es igual a P(T < -3.333333), entonces a partir de la tabla de percentiles t-Student(24) se deduce que

valor-p
$$\leq 1\%$$

Es decir, existe suficiente evidencia con un 1% de significancia para rechazar la hipótesis que nula que los curso con pag.activa tienen una asistencia igual o mayor a la histórica, y se apoya que la disminución es significativa. Luego, el calculo de la probabilidad tipo II no es necesario. [0.5 Ptos.]

Alternativa 2

Tenemos que $T_0 = -3.333333 < -2.492 = t_{0.01}(24)$, es decir, existe suficiente evidencia con un 1% de significancia para rechazar la hipótesis que nula que los curso con pag.activa tienen una asistencia igual o mayor a la histórica, y se apoya que la disminución es significativa. Luego, el calculo de la probabilidad tipo II no es necesario. [0.5 Ptos.]

Basado en la información obtenida en el estudio del problema 5, ¿cuántos cursos deben ser revisados para que, con un 90% de confianza, se pueda estimar la asistencia media de los cursos con pág.activa con un error de estimación no mayor al 4%.

Solución

Tenemos que el tamaño muestral n, bajo Normalidad, para la estimación media de los cursos con pag.activa con un error de estimación δ y una confianza de nivel $(1 - \alpha) \times 100\%$ está dada por:

$$n = \left(\frac{k_{1-\alpha/2} \cdot \sigma}{\delta}\right)^2$$
 [2.0 Ptos.]

Del problema anterior tenemos que σ en el caso de los cursos con pag.activa es igual a un 18 % (0.18) [0.5 Ptos.] y del enunciado δ es igual 4 % (0.04). [0.5 Ptos.]

Para una confianza del 90 %, se necesita calcular el percentil $k_{0.95}$ que es igual a 1.645. [1.0 Ptos.]

Nota: Si el alumno utiliza percentil $t_{0.95}(24)$ igual a 1.711 no descontar puntajes anteriores y seguir revisando con este nuevo valor

Reemplazando tenemos

$$n = \left(\frac{1.645 \times 18\%}{4\%}\right)^2 = \left(\frac{1.645 \times 0.18}{0.04}\right)^2 = 54.79701 \approx 55$$
 [1.5 Ptos.]

Es decir, se necesita 55 cursos con pag. activa, lo que implica que el número de cursos N a revisar en total sería

$$\frac{25}{64} = \frac{55}{N} \longrightarrow N = 140.8 \approx 141$$
 [0.5 Ptos.]

Formulario

Propiedades función $\Gamma(\cdot)$

(1)
$$\Gamma(k) = \int_0^\infty u^{k-1} e^{-u} du;$$
 (2) $\Gamma(a+1) = a \Gamma(a);$

(3)
$$\Gamma(n+1) = n!$$
, si $n \in \mathbb{N}_0$; (4) $\Gamma(1/2) = \sqrt{\pi}$

Propiedades función $B(\cdot, \cdot)$

(1)
$$B(q, r) = \int_0^1 x^{q-1} (1-x)^{r-1} dx;$$
 (2) $B(q, r) = \frac{\Gamma(q) \Gamma(r)}{\Gamma(q+r)}$

Igualdades

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}, \qquad \sum_{k=x}^\infty \phi^k = \frac{\phi^x}{1-\phi} \quad \text{si } |\phi| < 1, \qquad \sum_{k=0}^\infty \frac{\lambda^k}{k!} = \exp(\lambda)$$

Propiedad distribución Gamma

Si
$$T \sim \text{Gamma}(k, \nu)$$
, con $k \in \mathbb{N} \longrightarrow F_T(t) = 1 - \sum_{x=0}^{k-1} \frac{(\nu t)^x e^{-\nu t}}{x!}$

Transformación

Sea Y = g(X) una función cualquiera, con k raíces:

$$f_Y(y) = \sum_{i=1}^k f_X(g_i^{-1}(y)) \cdot \left| \frac{d}{dy} g_i^{-1}(y) \right|$$
$$p_Y(y) = \sum_{i=1}^k p_X(g_i^{-1}(y))$$

Sea Z = g(X, Y) una función cualquiera:

$$p_Z(z) = \sum_{g(x,y)=z} p_{X,Y}(x,y)$$

Sea Z = g(X, Y) una función invertible para X o Y fijo:

$$f_{Z}(z) = \int_{-\infty}^{\infty} f_{X,Y}(g^{-1}, y) \left| \frac{\partial}{\partial z} g^{-1} \right| dy$$
$$= \int_{-\infty}^{\infty} f_{X,Y}(x, g^{-1}) \left| \frac{\partial}{\partial z} g^{-1} \right| dx$$

Esperanza y Varianza Condicional

$$E(Y) = E[E(Y \mid X)]$$
 y $Var(Y) = Var[E(Y \mid X)] + E[Var(Y \mid X)]$

Teorema del Límite Central

Sean X_1, \ldots, X_n variables aleatorias independientes e idénticamente distribuidas, entonces

$$Z_n = \frac{\sum_{i=1}^n X_i - n \cdot \mu}{\sqrt{n} \, \sigma} = \frac{\overline{X}_n - \mu}{\sigma / \sqrt{n}} \longrightarrow Z \sim \text{Normal}(0, 1),$$

cuando $n \to \infty$, $E(X_i) = \mu$ y $Var(X_i) = \sigma^2$.

Propiedades Esperanza y Varianza

Sean $X_1, X_2, \ldots, X_n, Y_1, Y_2, \ldots, Y_m$ variables aleatorias y $a_0, a_1, \ldots, a_n, b_0, b_1, \ldots, b_m$ constantes conocidas.

•
$$E\left(a_0 + \sum_{i=1}^n a_i \cdot X_i\right) = a_0 + \sum_{i=1}^n a_i \cdot E(X_i).$$

• Si X_1, \ldots, X_n son variables aleatorias independientes, entonces

$$\operatorname{Var}\left(a_0 + \sum_{i=1}^{n} a_i \cdot X_i\right) = \sum_{i=1}^{n} a_i^2 \cdot \operatorname{Var}\left(X_i\right)$$

Mínimo y Máximo

Sean X_1, \ldots, X_n variables aleatorias continuas independientes con idéntica distribución $(f_X y F_X)$, entonces para:

$$Y_1 = \min\{X_1, \dots, X_n\} \longrightarrow f_{Y_1} = n \left[1 - F_X(y)\right]^{n-1} f_X(y)$$

 $Y_n = \max\{X_1, \dots, X_n\} \longrightarrow f_{Y_n} = n \left[F_X(y)\right]^{n-1} f_X(y)$

Mientras que la distribución conjunta entre Y_1 e Y_n está dada por:

$$f_{Y_1,Y_n}(u,v) = n(n-1) [F_X(v) - F_X(u)]^{n-2} f_X(v) f_X(u), \quad u \le v$$

Estimador Máximo Verosímil

Sea X_1, \ldots, X_n una muestra aleatoria independiente e idénticamente distribuida con función de probabilidad p_X o de densidad f_X , determinada por un parámetro θ . Si $\hat{\theta}$ es el estimador máximo verosímil del parámetro θ , entonces:

- $E(\hat{\theta}) \to \theta$, cuando $n \to \infty$.
- $\bullet \ \hat{\theta} \stackrel{\cdot}{\sim} \text{Normal}\left(\theta, \sqrt{\frac{1}{I_n(\theta)}}\right), \text{ cuando } n \to \infty.$
- El estimador máximo verosímil de $g(\theta)$ es $g(\hat{\theta})$, cuya varianza está dada por: $\text{Var}[g(\hat{\theta})] = \frac{[g'(\theta)]^2}{I_n(\theta)}$.

Error Cuadrático Medio

El error cuadrático medio de un estimador $\hat{\theta}$ de θ se define como:

$$ECM(\hat{\theta}) = E\left\{ \left[\hat{\theta} - E(\hat{\theta}) \right]^2 \right\} = Var(\hat{\theta}) + Sesgo^2$$

Distribuciones Muestrales

Sean X_1, \ldots, X_n variables aleatorias independientes e idénticamente distribuidas Normal (μ, σ) , entonces

$$\frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \sim \text{Normal}(0, 1), \quad \frac{\overline{X}_n - \mu}{s/\sqrt{n}} \sim \text{t-student}(n-1), \quad \frac{s^2(n-1)}{\sigma^2} \sim \chi_{n-1}^2$$

con
$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X}_n)^2$$
.

Binomial $ \binom{n}{x} p^x (1-p)^{n-x} $ Geométrica $ \binom{x-1}{r-1} p^r (1-p)^{x-1} $ Binomial-Negativa $ \binom{x-1}{r-1} p^r (1-p)^{x-1} $ Exponencial $ \binom{\nu}{r-1} p^r (1-p)^{x-r} $ Gamma $ \binom{\nu}{r} \binom{k}{x} k^{-1} e^{-\nu} x $ Gamma $ \binom{\nu}{\sqrt{2\pi} \sigma} e^{\kappa} \left[-\frac{1}{2} \left(\frac{x-\nu}{\sigma} \right)^2 \right] $ Log-Normal $ \frac{1}{\sqrt{2\pi} (\zeta x)} \exp \left[-\frac{1}{2} \left(\frac{n-\mu}{\zeta} \right)^2 \right] $ Uniforme $ \frac{1}{\sqrt{2\pi} (\zeta x)} \exp \left[-\frac{1}{2} \left(\frac{\ln x-\lambda}{\zeta} \right)^2 \right] $ Beta $ \frac{1}{B(q,r)} \frac{(x-a)q^{-1}(b-x)^{r-1}}{(b-a)q^{+r-1}} $	de Probabilidad Θ_X	Parametros	Esperanza y Varianza
nial-Negativa nencial Normal	$x = 0, \dots, n$	u, p	$\mu X = n p$ $\sigma_X^2 = n p (1-p)$ $M(t) = [p e^t + (1-p)]^n, t \in \mathbb{R}$
nial-Negativa nencial al Aormal	$x = 1, 2, \dots$	d	$M(t) = p e^{t} / [1 - (1 - p) e^{t}], t < -\ln(1 - p)$
on nencial na al Normal	$-r$ $x = r, r + 1, \dots$	ć,	$\mu X = r/p$ $\sigma_X^2 = r(1-p)/p^2$ $M(t) = \left\{ p e^t / [1 - (1-p) e^t] \right\}^r, t < -\ln(1-p)$
nencial na Aormal	$x = 0, 1, \dots$	7	$\mu_{X} = \nu t$ $\sigma_{X}^{2} = \nu t$ $\sigma_{X}^{2} = \nu t$ $[\lambda (e^{t} - 1)], t \in \mathbb{R}$
na Aormal	0 \land 1 \text{\$u\$}	7	$\mu X = 1/\nu$ $\frac{\rho^2}{\sqrt{\chi}} = 1/\nu^2$ $M(t) = \nu/(\nu - t), t < \nu$
Aormal Yormal rme	0 ∧l &	к, и	$\mu_X = k/\nu$ $\sigma_X^2 = k/\nu^2$ $M(t) = [\nu/(\nu - t)]^k, t < \nu$
Yormal rme	$-\frac{\mu}{2} $	μ, σ	$\mu_X = \mu$ $\sigma_X^2 = \sigma^2$ $M(t) = \exp(\mu t + \sigma^2 t^2/2), t \in \mathbb{R}$
rme $\frac{1}{B(q,r)}$	$\frac{s-\lambda}{\zeta}\bigg)^2\bigg] \qquad x\geq 0$	5 'X	$\begin{split} \mu_X &= \exp\left(\lambda + \frac{1}{2}\zeta^2\right) \\ \sigma_X^2 &= \mu_X^2\left(e^{\zeta^2} - 1\right) \\ E(X^r) &= e^{r\lambda}M_Z(r\zeta), \operatorname{con}Z \sim & \operatorname{Normal}(0,1) \end{split}$
$\frac{1}{B(q,r)}$	$\begin{array}{c} a \\ \rangle \\ $	a, b	$\begin{split} \mu_X &= (a+b)/2 \\ \sigma_X^2 &= (b-a)^2/12 \\ M(t) &= [e^t b - e^{ta}]/[t(b-a)], t \in \mathbb{R} \end{split}$
	$(a) r - 1$ -1 $a \le x \le b$	q, r	$\mu_X = a + \frac{q}{q+r} (b-a)$ $\sigma_X^2 = \frac{q r (b-a)^2}{(q+r)^2 (q+r+1)}$
Hipergeométrica $\frac{\binom{m}{x}\binom{N-m}{n-x}}{\binom{N}{n}}$	$\max\{0,n+m-N\} \leq x \leq \min\{n,m\}$	$\}$ N, m, n	$\mu_X = n \frac{m}{N}$ $\sigma_X^2 = \left(\frac{N-n}{N-1}\right) n \frac{m}{N} \left(1 - \frac{m}{N}\right)$

Tablas de Percentiles p

Distribución Normal Estándar $\ k_p$								Distribución t-student $t_p(u)$							
k_p	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	ν	$t_{0.90}$	$t_{0.95}$	$t_{0.975}$	$t_{0.99}$
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359	1	3.078	6.314	12.706	31.821
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753	2	1.886	2.920	4.303	6.965
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141	3	1.638	2.353	3.182	4.541
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517	4	1.533	2.132	2.776	3.747
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879	5	1.476	2.015	2.571	3.365
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224	6	1.440	1.943	2.447	3.143
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549	7	1.415	1.895	2.365	2.998
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852	8	1.397	1.860	2.306	2.896
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133	9	1.383	1.833	2.262	2.821
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389	10	1.372	1.812	2.228	2.764
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621	11	1.363	1.796	2.201	2.718
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830	12	1.356	1.782	2.179	2.681
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015	13	1.350	1.771	2.160	2.650
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177	14	1.345	1.761	2.145	2.624
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319	15	1.341	1.753	2.131	2.602
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441	16	1.337	1.746	2.120	2.583
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545	17	1.333	1.740	2.110	2.567
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633	18	1.330	1.734	2.101	2.552
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706	19	1.328	1.729	2.093	2.539
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767	20	1.325	1.725	2.086	2.528
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817	21	1.323	1.721	2.080	2.518
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857	22	1.321	1.717	2.074	2.508
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890	23	1.319	1.714	2.069	2.500
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916	24	1.318	1.711	2.064	2.492
$^{2.4}$	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936	25	1.316	1.708	2.060	2.485
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952	26	1.315	1.706	2.056	2.479
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964	27	1.314	1.703	2.052	2.473
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974	28	1.313	1.701	2.048	2.467
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981	29	1.311	1.699	2.045	2.462
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986	30	1.310	1.697	2.042	2.457
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990	∞	1.282	1.645	1.960	2.326

		Disti	ribución	Chi-Cua	$c_p(\nu)$			
ν	$c_{0.025}$	$c_{0.05}$	$c_{0.10}$	$c_{0.90}$	$c_{0.95}$	$c_{0.975}$	$c_{0.99}$	$c_{0.995}$
1	0.00	0.00	0.02	2.71	3.84	5.02	6.63	7.88
2	0.05	0.10	0.21	4.61	5.99	7.38	9.21	10.60
3	0.22	0.35	0.58	6.25	7.81	9.35	11.34	12.84
4	0.48	0.71	1.06	7.78	9.49	11.14	13.28	14.86
5	0.83	1.15	1.61	9.24	11.07	12.83	15.09	16.75
6	1.24	1.64	2.20	10.64	12.59	14.45	16.81	18.55
7	1.69	2.17	2.83	12.02	14.07	16.01	18.48	20.28
8	2.18	2.73	3.49	13.36	15.51	17.53	20.09	21.95
9	2.70	3.33	4.17	14.68	16.92	19.02	21.67	23.59
10	3.25	3.94	4.87	15.99	18.31	20.48	23.21	25.19
11	3.82	4.57	5.58	17.28	19.68	21.92	24.72	26.76
12	4.40	5.23	6.30	18.55	21.03	23.34	26.22	28.30
13	5.01	5.89	7.04	19.81	22.36	24.74	27.69	29.82
14	5.63	6.57	7.79	21.06	23.68	26.12	29.14	31.32
15	6.26	7.26	8.55	22.31	25.00	27.49	30.58	32.80
16	6.91	7.96	9.31	23.54	26.30	28.85	32.00	34.27
17	7.56	8.67	10.09	24.77	27.59	30.19	33.41	35.72
18	8.23	9.39	10.86	25.99	28.87	31.53	34.81	37.16
19	8.91	10.12	11.65	27.20	30.14	32.85	36.19	38.58
20	9.59	10.85	12.44	28.41	31.41	34.17	37.57	40.00
21	10.28	11.59	13.24	29.62	32.67	35.48	38.93	41.40
22	10.98	12.34	14.04	30.81	33.92	36.78	40.29	42.80
23	11.69	13.09	14.85	32.01	35.17	38.08	41.64	44.18
24	12.40	13.85	15.66	33.20	36.42	39.36	42.98	45.56
25	13.12	14.61	16.47	34.38	37.65	40.65	44.31	46.93