SIGBE/17/3

Talsekvensen i filen

http://www.users.abo.fi/~htoivone/courses/sigbe/signal2.dat representerar en audiosignal $\{x_0(nT_{s0})\}$ som diskretiserats med samplingsfrekvensen $f_{s0} = 11025$ Hz.

- (i) Verifiera att signalen är bandbegränsad, samt bestäm signalens högsta frekvenskomponent ω_{max} . Verifiera att $\omega_{max} < \omega_{s0}/8$, där $\omega_{s0} = 2\pi f_{s0}$.
- (ii) Enligt Shannons samplingsteorem räcker det med en samplingsfrekvens som satisfierar $\omega_s > 2\omega_{max}$ för att representera signalen. Enligt (i) kan samplingsfrekvensen därför reduceras till $\omega_s = 2 \times (\omega_{s0}/8) = \omega_{s0}/4$, vilket motsvarar samplingstiden $T_s = 4T_{s0}$. Bilda en sådan långsamt samplad diskret signal $\{x(nT_s)\}$ genom att ta vart fjärde element från sekvensen $\{x_0(nT_{s0})\}$, dvs $\{x(nT_s)\} = \{x_0(nT_s)\} = \{x_0(nT_{s0})\} = \{x_0(0), x_0(4T_{s0}), x_0(8T_{s0}), \ldots\}$.

Verifiera att de diskreta signalerna representerar samma kontinuerliga signal genom att:

- Lyssna på dem med soundsc (observera samplingsfrekvensen!),
- bestämma sekvensernas fouriertransformer $X_0(k)$ respektive X(k), och verifiera att $X_0 = \frac{T_s}{T_{s0}}X$ gäller i frekvensintervallet $\omega < \omega_{s0}/8$.
- (iii) Rekonstruera den ursprungliga signalen $\{x_0(nT_{s0})\}$ ur den långsamt samplade signalen $\{x(nT_s)\}$ genom att:
 - bilda fouriertransformen $\{X(k)\}\$ för $\{x(nT_s)\}\$,
 - beräkna fouriertransformen $\{X_0(k)\}$ för $\{x(nT_{s0})\}$ ur $\{X(k)\}$ (jfr ovan; $X_0(k) = 4X(k)$ i frekvensintervallet $\omega < \omega_{s0}/8$ och $X_0(k) = 0$ för frekvenser $\omega \ge \omega_{s0}/8$),
 - bestämma $\{x_0(nT_{s0})\}$ genom att bilda inversa transformen av $\{X_0(k)\}$.
- (iv) Upprepa nedsamplingen i fall (ii) för den icke-bandbegränsade signalen i filen

http://www.users.abo.fi/~htoivone/courses/sigbe/signal.dat.

Bilda den nedsamplade signalens fouriertransform och verifiera att den nedsamplade signalens frekvenskomponenter (med beaktande av skalningsfaktorn $\frac{T_s}{T_{s0}}$) består av den ursprungliga signalens frekvenskomponenter plus summan av alla alias- och vikta frekvenskomponenter från den ursprungliga signalen.

SIGBE/16/3 (iv) TIPS

Problemet är att verifiera att den nedsamplade signalens frekvenskomponenter är sammansatt av den ursprungliga signalens frekvenser plus alla aliasfrekvenser som uppstår pga nedsamplingens. Dessa kan bestämmas enligt nedan:

Beteckna den med samplingsperioden T_{s0} samplade signalen med $\{s_0(n_0T_{s0})\}$, $n_0=0,1,\ldots,N_0-1$, och den nedsamplade signalen med $\{s(nT_s)\}$, där $s(nT_s)=s_0(4nT_{s0}), n=0,1,\ldots,N-1$, där $N=N_0/4$.

Sekvensen $\{s_0(n_0T_{s0})\}$ kan uttryckas med hjälp av motsvarande fouriertransform $S_0(k)$ enligt

$$s_0(n_0 T_{s0}) = \frac{1}{N_0} \sum_{k=0}^{N_0 - 1} S_0(k) e^{j2\pi k n_0/N_0}$$

Då fås för den nedsamplade signalen

$$s(nT_s) = s_0(4nT_{s0})$$

$$= \frac{1}{N_0} \sum_{k=0}^{N_0 - 1} S_0(k) e^{j2\pi k4n/N_0}$$

$$= \frac{1}{N_0} \sum_{k=0}^{N_0 - 1} S_0(k) e^{j2\pi kn/(N_0/4)}$$

Eftersom

$$e^{j2\pi kn/(N_0/4)} = e^{j2\pi kn/(N_0/4)+j2\pi ln} = e^{j2\pi (k+lN_0/4)n/(N_0/4)}$$

kan vi kombinera termerna för k (0 < k < $N_0/4$) och $k+N_0/4, k+2N_0/4$ och $k+3N_0/4$, så att summan kan skrivas

$$s(nT_s) = \frac{1}{N_0} \sum_{k=0}^{N_0 - 1} S_0(k) e^{j2\pi kn/(N_0/4)}$$

$$= \frac{1}{N_0} \sum_{k=0}^{N_0/4 - 1} \left(S_0(k) + S_0(k + N_0/4) + S_0(k + 2N_0/4) + S_0(k + 3N_0/4) \right) e^{j2\pi kn/(N_0/4)}$$

Introduktion av den nedsamplader signalens längd $N = N_0/4$ ger

$$s(nT_s) = \frac{1}{4N} \sum_{k=0}^{N-1} \left(S_0(k) + S_0(k+N) + S_0(k+2N) + S_0(k+3N) \right) e^{j2\pi kn/N}$$

Observerar vi till slut att nedsamplade sekvensen $\{s(nT_s)\}$ kan uttryckas med hjälp av motsvarande fouriertransform S(k) enligt

$$s(nT_s) = \frac{1}{N} \sum_{k=0}^{N-1} S(k) e^{j2\pi kn/N}$$

ser vi att

$$S(k) = \frac{1}{4} \Big(S_0(k) + S_0(k+N) + S_0(k+2N) + S_0(k+3N) \Big)$$

där $S_0(k+N)$, $S_0(k+2N)$ och $S_0(k+3N)$ kan ses som aliaskomponenter till $S_0(k)$.