California State University Sacramento - Math 101 Make Up Quiz

Name:	
rvame.	

1) Solve the recurrence relation $a_{n+2} = 10a_{n+1} \pm 24a_n$ given that $a_0 = 1$ and $a_1 = 2$.

$$x^{2} = 10x + 24$$
 $x^{2} - 10x + 24 = 0$
 $1 = a_{0} = A + B$
 $(x - 4)(x - 6) = 0$
 $x = 4$
 $x = 4$
 $x = 4$
 $x = 4$
 $x = 6$
 $x = 4$
 $x = 4$
 $x = 6$
 $x = 4$
 $x = 6$
 $x = 2.4^{\circ} - 6^{\circ}$
 $x = 4$
 $x = 4$
 $x = 6$
 $x = 2.4^{\circ} - 6^{\circ}$
 $x = 4$
 $x = 6$
 $x = 2.4^{\circ} - 6^{\circ}$
 $x = 4$
 $x = 6$
 $x = 2.4^{\circ} - 6^{\circ}$
 $x = 4$
 $x = 6$
 $x = 2.4^{\circ} - 6^{\circ}$
 $x = 4$
 $x = 6$
 $x = 2.4^{\circ} - 6^{\circ}$
 $x = 4$
 $x = 6$
 $x = 2.4^{\circ} - 6^{\circ}$
 $x = 4$

2) Solve the recurrence $a_{n+2} = 8a_{n+1} - 16a_n$ given that $a_0 = 1$ and $a_1 = 3$.

$$(x-4)^{2} = 0$$
 $a_{n} = (A+B_{n}) \cdot L_{n}^{n}$
 $(x-4)^{2} = 0$ $a_{n} = (A+B_{n}) \cdot L_{n}^{n}$
 $X=4$ double root $1=a_{0}=A$
 $a_{n} = (1+B_{n}) \cdot L_{n}^{n}$
 $3=(1+B) \cdot L_{n}^{n}$
 $\frac{3}{4}=1+B$
 $a_{n} = (1-\frac{n}{4}) \cdot L_{n}^{n}$ $-\frac{1}{4}=13$

3) Find the number of integers in the set
$$\{1, 2, \dots, 210\}$$
 that are divisible by 3, 5, or 7.

Let
$$A_k = \{x \in S_{1,2,-,2103}: x \text{ is divisible by } k\}$$
 Then
$$|A_3| = \frac{210}{3} = 70, |A_5| = 42, |A_7| = 30$$

$$|A_3 \cap A_5| = \frac{210}{15} = 14 \qquad |A_3 \cap A_7| = 10 \qquad |A_5 \cap A_7| = 6$$

$$|A_3 \cap A_5 \cap A_7| = \frac{210}{105} = 2$$

4) Suppose that 80 students played three sports; basketball, soccer, or volleyball. Each student may play one, two or all three sports. If 20 students played basketball, 30 played soccer, 45 played volleyball, and 5 played all three sports, how many students played exactly two sports?

$$|B|=20 |S|=30 |V|=45 |BNSNV|=5$$

$$\Rightarrow 80 = 20+30+45-|BNSI-|BNVI-|SNVI-|+4$$

exactly two sports

5) Write out the Inclusion-Exclusion Principle in the case of the three finite sets A_1 , A_2 , and A_3 .