

Criticism of Schaffner

S. Rawer
of Salmon is in 59, 442-3.
(ref to Truth predicate, no explicit T
with respect to P or S in T-sentences.)

- 1.) $P(e|a)$ is probably to be on choices other than T
- 2.) In footnote expands $P(e|a)$ in terms of alternative competing choices.
- 3.) Theory suffering factor has low value of $P(e|a)$
high value of $P(e|T \wedge \neg T)$

$$\text{new } P(e|T \wedge \neg T) = 1$$

$$P(e|a) = x + \varepsilon(1-x) = x(1-\varepsilon) + \varepsilon.$$

~~Theory~~ ^{now}-suffering factor has a low value of ε
This does not mean necessarily $P(e|a)$ is
small as x may be large

$$\boxed{\begin{array}{l} x < \varepsilon \\ \frac{x}{x+\varepsilon} < 1 \\ x < \varepsilon(1-x) \end{array}}$$

This is odd for 2.

- 4.) Schaffner now succeeds to odd for 3.
and says H' is odd for if $P(H'|a)$ is
small and $\leq P(e|a)$

$$\boxed{\begin{array}{l} \text{if } x < \varepsilon \\ \text{or } \varepsilon(1-x) \rightarrow 0 \end{array}}$$

we have $n = \frac{1}{x+\varepsilon(1-x)}$. For $x < \varepsilon < 1$

$$n \rightarrow \frac{1}{\varepsilon} \text{ as } n \text{ is large}$$

and theory is not odd unless $n = 1$

Indeed s. tot

$$\frac{P(T'/e \& u)}{P(T'/u)} = \frac{P(e/T' \& u)}{P(e/u)} = \frac{1}{P(e/u)}$$

\Rightarrow if $P(e/u)$ is small.

So e may confirm T' unless $\varepsilon = 1$.

5.) Footnote 3 says condition of ad hoc is

$$P(e/u) \gg P(H'/u) \gg P(H'/u) P(u/u)$$
$$= P(T'/u)$$

$$\text{or } x(1-\varepsilon) + \varepsilon \gg x$$

$$\text{or } \varepsilon(1-x) \gg 0$$

This condition is not satisfied
by $x \leq 1$ unless $\varepsilon \gg 0$

Correct equation is $x = 1$

$$\text{or } x + \varepsilon(1-x) = 1$$

$$\text{or } (1-x)(1-\varepsilon) = 0 \quad \text{(P. } \underline{\varepsilon=1})$$

6) S. states if $p(H'/2)$ is small
 e cannot confirm T' .
This is false if $\varepsilon \ll 1$.

7) e is excluded from \mathcal{G} - not denied
but this is not reason for \mathcal{H}' to be correct.

8) Effect of new e' at T' would include
even a new background \mathcal{G}' .
 $p(H'/2') > p(H'/2)$ since $p(e/2)$ is small.
 $(\text{and also if } \varepsilon \text{ is small})$
 $= p(H')/2 \varepsilon e)$

9) consider ratio $\frac{P(e'/2'|T')}{P(e'/T_i, 2')}$ always = 1
free of decay rate selection criteria.
possible $e \rightarrow e'$ this ratio may be large.
if T' explains e' derivatives does not change
of the form.