UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

SOLUCION EXAMEN DE REPETICION. ALG. y ALG. LINEAL 520142.

Problema 1. (25 puntos) Sea $f: A \subseteq \mathbb{R} \longrightarrow \mathbb{R}$, $x \longrightarrow f(x) = -5cos (4x + 8\pi)$. Determine, justificando matemáticamente:

1.1) el dominio de f: A = Dom(f).

Solución. Por definición

(5 puntos)

$$Dom(f) = \{x \in \mathbb{R} : -5cos \ (4x + 8\pi) \in \mathbb{R}\} = \{x \in \mathbb{R} : x \in \mathbb{R}\} = \mathbb{R}.$$

1.2) un intervalo I, que contenga a -2π , donde exista la inversa f^{-1} de f.

Solución. La función cos(x) tiene inversa si $x \in [0, \pi]$. Luego, f tiene inversa si

$$4x + 8\pi \in [0, \pi] \Longleftrightarrow -2\pi \le x \le -\frac{7\pi}{4}.$$

En consecuencia, la función f tiene inversa en $I = [-2\pi, -\frac{7\pi}{4}]$. Además, $-2\pi \in I$ por lo tanto el intervalo pedido es I. (10 puntos)

1.3) amplitud, periodo y fase para graficar un ciclo de f.

Solución. En la forma general y=acos~(bx+c) la amplitud de la función es |a|=|-5|=5, el periodo de la función es $p=\frac{2\pi}{b}=\frac{2\pi}{4}=\frac{\pi}{2}$ y el desplazamiento de fase es $|\frac{-c}{b}|=|\frac{-8\pi}{4}|=2\pi$ hacia la izquierda, pues $c=8\pi>0$. (5 puntos) Por hacer la gráfica del primer ciclo. (5 puntos)

Problema 2. (25 puntos)

2.1) En caso de ser posible defina una aplicación lineal $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^4$ tal que $T(1,0)=(4,0,0,1), \quad T(0,1)=(-1,1,0,3)$ y T(2,5)=(3,5,1,17).

Solución. Para $(x,y) \in \mathbb{R}^2$, tomando los vectores (1,0),(0,1) como base de \mathbb{R}^2 , se tiene (x,y)=x(1,0)+y(0,1) y se puede definir una aplicación lineal tomando sus valores dados en los elementos de la base. Se tiene

$$T(x,y) = xT(1,0) + yT(0,1)$$

= $x(4,0,0,1) + y(-1,1,0,3)$
= $(4x - y, y, 0, x + 3y)$.

(5 puntos)

Ahora, para esta aplicación $T(2,5) = (3,5,1,17) \neq (3,5,0,17)$. En consecuencia, no es posible definir una aplicación lineal T en las condiciones dadas. (5 puntos)

2.2) Considerando que $\forall n \in \mathbb{N}$, $n^2 + n + 4$ es divisible por 2, demuestre que $\forall n \in \mathbb{N}$, $n^3 + 11n$ es divisible por 6.

Solución. Sea $n^2 + n + 4 = 2k$, $k \in \mathbb{N}$. Aplicaremos inducción para probar que $n^3 + 11n$ es divisible por 6.

Sea $S = \{ n \in \mathbb{N} : n^3 + 11n = 6p, p \in \mathbb{N} \}.$

- 1. $1^3 + 11 \cdot 1 = 12 = 6p$, con p = 2. Luego, $1 \in S$.
- 2. Se
a $n \in S;$ es decir $n^3 + 11n = 6p,$ para algún
 $p \in \mathbb{N}.$ Ahora

$$(n+1)^3 + 11(n+1) = n^3 + 3n^2 + 3n + 1 + 11n + 11$$

= $(n^3 + 11n) + 3(n^2 + n + 4)$
= $6p + 3 \cdot 2k$, por hipótesis
= $6(p+k)$.

Así, $n+1 \in S$

De 1) v 2) se tiene que $S = \mathbb{N}$ v $n^3 + 11n$ es divisible por 6. (15 puntos)

Problema 3. (25 puntos) Considere el espacio vectorial real $V = \mathcal{M}_2(\mathbb{R})$ de matrices cuadradas.

3.1. Diga si los siguientes conjuntos son subespacios de V con las operaciones usuales.

$$U = \{A \in V : A \text{ tiene la primera fila nula}\}, \quad W = \{A \in V : |A| = 1\}.$$

Solución. U es un subespacio vectorial de $\mathcal{M}_2(\mathbb{R})$. En efecto:

- La matriz nula está en U, pues tiene la primera fila nula. Así $U \neq \phi$.
- Si $A, B \in U$, entonces ambas tienen la primera fila nula y A + B también tiene la primera fila nula. En consecuencia $A + B \in W$.
- Si $A \in U, k \in \mathbb{R}$, entonces A tiene la primera fila nula y kA también tiene la primera fila nula. En consecuencia $kA \in U$.

(10 puntos)

W no es un subespacio vectorial de $\mathcal{M}_2(\mathbb{R})$. En efecto, la matriz nula, θ , tiene determinante nulo, $|\theta| = 0 \neq 1$. Luego, no está en W. (5 puntos)

3.2. En V se define la suma $A \boxplus B = B - A$. Diga si V con esta suma y el producto por escalar usual, es un espacio vectorial real.

Solución. La suma así definida no es conmutativa, pues para A, B no nulas $A \boxplus B = B - A \neq B \boxplus A = A - B$. Luego, $(\mathcal{M}_2(\mathbb{R}), \boxplus, \cdot)$ no es una espacio vectorial real. (10 puntos)

Problema 4. (25 puntos) Sea $V = \mathcal{P}_2(\mathbb{R})$ y $T \in \mathcal{L}(V)$ el operador lineal definido para cada $p \in V$, con $p(x) = ax^2 + bx + c$, por

$$(Tp)(x) = (b+c)x^2 + (a+c)x + (a+b).$$

4.1. Encuentre la matriz asociada al operador T, $A = [T]_B$, donde $B = \{1, x, x^2\}$ es la base canónica de V.

Solución. Observamos que $[T(1)]_B = (0, 1, 1), [T(x)]_B = (1, 0, 1), [T(x^2)]_B = (0, 1, 1).$

Luego la matriz pedida es $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ (7 puntos)

4.2. Determine los valores y vectores propios de A.

Solución. Determinamos $p(\lambda) = \det(A - \lambda I)$, es decir:

$$p(\lambda) = \begin{vmatrix} -\lambda & 1 & 1 \\ 1 & -\lambda & 1 \\ 1 & 1 & -\lambda \end{vmatrix} = \begin{vmatrix} -\lambda + 1 + 1 & 1 & 1 \\ 1 - \lambda + 1 & -\lambda & 1 \\ 1 + 1 - \lambda & 1 & -\lambda \end{vmatrix}$$
$$= (2 - \lambda) \begin{vmatrix} 1 & 1 & 1 \\ 1 & -\lambda & 1 \\ 1 & 1 & -\lambda \end{vmatrix} = (2 - \lambda) \begin{vmatrix} 1 & 1 & 1 \\ 0 & -\lambda - 1 & 0 \\ 0 & 0 & -\lambda - 1 \end{vmatrix}$$
$$= (\lambda - 2)(\lambda + 1)^{2}$$

luego
$$\sigma(A) = \{-1, -1, 2\}$$
.

• Espacio propio asociado a $\lambda = -1$: $S_{-1} = \{v \in \mathbb{R}^3 : Av = -v\}$

$$S_{-1} = \left\{ (a, b, c) \in \mathbb{R}^3 : \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\}$$
$$= \left\{ (a, b, c) \in \mathbb{R}^3 : a + b + c = 0 \right\} = \left\langle \{ (1, 0, -1), (0, 1, -1) \} \right\rangle.$$

• Espacio propio asociado a $\lambda=2:$ $S_2=\{v\in\mathbb{R}^3: Av=2v\}$

$$S_{2} = \left\{ (a, b, c) \in \mathbb{R}^{3} : \begin{pmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\}$$

$$= \left\{ (a, b, c) \in \mathbb{R}^{3} : \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\}$$

$$= \left\{ (a, b, c) \in \mathbb{R}^{3} : a = b = c \right\} = \left\langle \left\{ (1, 1, 1) \right\} \right\rangle.$$

(8 puntos)

(5 puntos)

4.3. Determine los valores y vectores propios de T.

Solución. Recordamos que

$$\forall p, q \in \mathcal{P}_2(\mathbb{R}) : Tp = q \iff A[p]_B = [q]_B$$

luego

$$- \sigma(A) = \sigma(T) = \{-1, -1, 2\}$$

-los espacios propios asociados a ${\cal T}$ son:

$$S_{-1} = \{ ax^{2} + bx + c \in \mathcal{P}_{2}(\mathbb{R}) : a + b + c = 0 \}$$

$$= \langle \{ 1 - x^{2}, x - x^{2} \} \rangle.$$

$$S_{2} = \{ ax^{2} + bx + c \in \mathcal{P}_{2}(\mathbb{R}) : a = b = c \}$$

$$= \langle \{ 1 + x + x^{2} \} \rangle.$$

(5 puntos)

08. 01. 2003.

ACQ/LNB/acq.