Automating ΔSCF computations of point defects using AbiPy workflows

Julien Bouquiaux Matteo Giantomassi Xavier Gonze

UCLouvain

ABINIT Developer Workshop May 31 - June 4, 2021

Outline

Motivations and formalism

2 AbiPy implementation

Characterization of the luminescence of point defects

 Introduction of points defects can induce electron and hole-trapping levels inside the band gap of the host material → optical center

 $Sr_{8}[Si_{4}O_{12}]Cl_{8}:Eu^{2+} \text{ in its excited state configuration } (Eu=4f^{6}5d^{1}) \text{ using } GGA+U.$

Characterization of the luminescence of point defects

• This optical center interacts with the lattice. Upon absorption/emission, energy is dissipated through phonon emission.

- We aim to compute the **photo-luminescent properties** of this optical center.
 - Emission/absorption energy
 - Energy loss by phonons
 - Shape of the emission spectrum

Characterizing this optical center with DFT : the Δ SCF method

- Create a supercell with defect
- Relax the system in its ground state
- Excite the system without changing the atomic positions
- Relax the system in its excited state
- De-excite the system without changing the atomic positions

Constrained occupation

Ground state : ... $1\ 1\ 1\ 1\ 0\ 0\ 0\ \dots$ Excited state : ... $1\ 1\ 1\ 0\ 1\ 0\ 0\ \dots$

At the end of the day, one obtains four energies and two structures.

 Δ SCF : Transition energies are computed as difference of two total energies.

Displaced quantum harmonic oscillators problem

 Effective vibrational mode with configuration coordinate Q that interpolates linearly between initial and final state atomic configuration.

$$\begin{split} E_{g} &= \frac{1}{2}\Omega_{g}^{2}Q^{2} \\ E_{e} &= \frac{1}{2}\Omega_{e}^{2}(Q - \Delta Q)^{2} + E_{ZPL} \end{split}$$
 Completely determined by Δ SCF method.

Expression for the luminescence intensity:

$$A(\hbar\omega) = \sum_{n} \sum_{m} p_{m}(T) |\langle \chi_{g,n} | \chi_{e,m} \rangle|^{2} \delta(E_{zpl} + m\hbar\Omega_{e} - n\hbar\Omega_{g} - \hbar\omega)$$

- $(\Delta Q)^2 = \sum_{\alpha i} m_{\alpha} (R_{e;\alpha i} R_{g;\alpha i})^2$: Total normal coordinate change
- \bullet $\Omega_{g,e}$: Harmonic effective frequencies
- $p_m(T)$ Bose Einstein occupation probability
- $\langle \chi_{g,n} | \chi_{e,m} \rangle$: Overlap between two displaced harmonic oscillator eigenfunctions.

Example of applications

 Nitrogen-Vacancy center in diamond 1

 Rare-earth doping (phosphor-converted white LEDs) 2

 Self-trapped excitons broad band emission³

¹ Alkauskas, A. First-principles theory of the luminescence lineshape for the triplet transition in diamond NV centres. New J. Phys. 24 (2014).

²Bouquiaux, J. et al. Importance of long-range channel Sr displacements for the narrow emission in Sr[Li₂Al₂O₂N₂]:Eu²⁺ phosphor. arXiv:2010.00423 [cond-mat] (2021).

³ Lian, L. et al. Photophysics in Cs₃Cu₂X₅(X = Cl, Br, or I): Highly Luminescent Self-Trapped Excitons from Local Structure Symmetrization. Chem. Mater. 32, 3462-3468 (2020). 4 D F 4 D F 4 D F 4 D F

Motivations and formalism

2 AbiPy implementation

The workflow

Structure generation

• Create the supercell structure with defect from an initial primitive structure.

One can easily create a list of structure with different :

- supercell size
- substitutional site (if multiple non-equivalent sites for the dopant)
- host structure
- ...

LumiWork (abipy/flowtk/lumi_works.py)

 Creation of a flow that automates the computation of ground/excited state structure + 4 point energies.

Flexible template that receives four dictionaries with Abinit variables + optional flags

All the specific input variables are passed in these dict.

- DFT+U params
- Occupations
- ...

Construction of the flow

Let's assume we want to perform a convergence study on the cut-off energy.

Loop on cut-off energy

Create Abinit dict.

Create and register a "LumiWork" for each cut-off energy

return flow

Running the flow

Running on nic5-login1 -- system Linux -- Python 3.9.2 -- abirun-0.9.0

Work #0: <LumiWork, node_id=639, workdir=flow_deltaSCF/w0>, Finalized=True

						Sub Rest Corr	Time	Node_ID
w0_t0	Completed	787832@batch	120 1 3.9	271 6	RelaxTask	(1, 0, 0)	1:39:25R	
w0_t1	Completed	788573@batch	1201 113.9	701 4	RelaxTask	(1, 0, 0)	3:06:32R	667
w0_t2	Completed	790906@batch	1201 113.9	4 4	ScfTask	(1, 0, 0)	0:03:15R	675
w0_t3	Completed	790907@batch	1201 113.9	1914	ScfTask	(1, 0, 0)	0:14:13R	676
w0_t4	Completed	790908@batch	1201 113.9	1 41 4	ScfTask	(1, 0, 0)	0:04:44R	677
w0_t5	Completed	790909@batch	1201 113.9	191 4	ScfTask	(1, 0, 0)	0:06:50R	678

Work #1: dismiWork mode id-642 workdin-flow deltoSCE/wds Finelized-Taus

mork #1: <tuminork, node_ta="043," workatr="riow_deltaStr/wi">, rinatized=1rde</tuminork,>										
l Task	Status	Queue	MPI Omp Gb	Warn Com	l Class		Time	Node_ID		
w1_t0	Completed	787833€batch	1201 113.9	151 6	RelaxTask		1:02:07R	644		
i w1_t1	Completed	787980€batch	1201 113.9	741 4	RelaxTask		8:11:32R	i 665		
i w1_t2	Completed	792755@batch	1201 113.9	1 41 4	l ScfTask		0:08:11R	I 684		
w1_t3	Completed	792757@batch	1201 113.9	91 4	l ScfTask	(1, 0, 0)	0:21:04R			
i w1_t4	Completed	1 792758@batch	1 1201 113.9	1 41 4	l ScfTask		0:08:32R	686		
		792759@batch					0:11:10R			

One "LumiWork" per cut-off energy

Post-Process

 Read netcdf files associated to the computations and create one "DeltaSCF" object per "LumiWork".

ecut = 15 Ha 2.67029 3.489013 3.084619 0.414326 0.374394 0.786720 0.76226 5.267075 0.01174 0.010622 37.079102 35.247044
ecut = 20 Ha 2.653148 3.448749 3.087970 0.424821 0.387170 0.786201 0.768582 5.244355 0.011346 0.010487 37.383823 34.48974
ecut = 25 Ha 2.665335 3.469079 3.088213 0.422876 0.382766 0.785644 0.763820 5.20436 0.011425 0.010582 37.014320 34.28276
ecut = 30 Ha 2.66743 3.444284 3.048127 0.422876 0.382766 0.785644 0.763820 5.20436 0.011425 0.010582 37.014320 34.28276
ecut = 30 Ha 2.66743 3.444288 3.088127 0.422876 0.380161 0.785844 0.763820 5.162956 0.011447 0.010582 36.282320 33.88719

$$A(\hbar\omega) = \sum_{n} \sum_{m} p_{m}(T) |\langle \chi_{g,n} | \chi_{e,m} \rangle|^{2} \delta(E_{zpl} + m\hbar\Omega_{e} - n\hbar\Omega_{g} - \hbar\omega)$$

Practical difficulties

- Careful convergence study on the supercell size! Check energies AND structural relaxation convergence.
- If the defect is a rare-earth with 4f electrons (PAW+U), achieving self-consistency might be painful → case by case analysis. Playing with the preconditioning of the SCF cycle (diemac, nline, ...) might help.

$Sr[Li_2Al_2O_2N_2]:Eu^{2+}$

Conclusion

- ullet We want to characterize the luminescent properties of point defects o Δ SCF method (2 relaxations + 4 points)
- \bullet With ground/excited state structures and 4 points energies \to A first approximation of the emission spectrum is obtained.
- This ΔSCF method is now implemented on AbiPy (creation of "LumiWork"). Practical implementation to loop over important variables (ecut, supercell size, k-point grid, different structures,...)
- The results can be quickly analyzed using DeltaSCF AbiPy module.
- Caution with the supercell size!