Matematyka obliczeniowa

dr inż. Piotr Piela

Wydział Informatyki ZUT w Szczecinie

Zastosowania macierzy

Zastosowania macierzy

Definicje wektorów i macierzy

Wektory

Macierze

Macierze kwadratowe

Zastosowania macierzy

Definicje wektorów i macierzy

Wektory

Macierze

Macierze kwadratowe

Działania na macierzach

Elementarne działania na macierzach

Mnożenie dwóch macierzy

Rząd macierzy

Macierz odwrotna, ortogonalna, podobna

Normy na wektorach i macierzach

Zastosowania macierzy

Definicje wektorów i macierzy

Wektory

Macierze

Macierze kwadratowe

Działania na macierzach

Elementarne działania na macierzach

Mnożenie dwóch macierzy

Rząd macierzy

Macierz odwrotna, ortogonalna, podobna

Normy na wektorach i macierzach

Wyznaczniki

Zastosowania macierzy:

- do rozwiązywania układów równań liniowych,
- w fizyce do opisu ruchu ciał oddziałujących na siebie,
- w meteorologii do opisu zjawisk fizycznych i procesów zachodzących w atmosferze,
- w ekonomii, do opisu zjawisk takich jak inflacja czy wzrost kapitału,
- w każdej dziedzinie w której pojawia się problem optymalizacji (minimalizacji lub maksymalizacji) jakichś wielkości lub występują zjawiska o skomplikowanej naturze (wiele czynników wpływających na zjawisko oraz wiele zależności między tymi czynnikami)

Zastosowania macierzy:

- do zapisywania dużych zbiorów danych, które są we wzajemnej relacji.
 Szczególnie ważną rolę pełnią macierze w informatyce oraz statystyce, gdzie często występują ogromne zbiory danych (wyniki pomiarów, dane w pamięci komputera itd.),
- do modelowania ekranów/moniotrów, które składają się z milionów pikseli ułożonych w sposób logiczny w wierszach i kolumnach, dzięki temu możemy korzystać z komputera, telewizora czy telefonu.

Wyszukiwarka internetowa Google - algorytm PageRank (PR), który wykorzystuje macierze i wartości i wektory własne macierzy.

Zastosowania:

Wektor

Wektorem \underline{a} określonym w przestrzeni m-wymiarowej \mathbb{R}^m nazywa się uporządkowany zbiór liczb rzeczywistych zwanych składowymi wektora \underline{a} .

Wektor kolumnowy: Wektor wierszowy:

$$\underline{\boldsymbol{a}} = \left(\begin{array}{c} a_1 \\ a_2 \\ \vdots \\ a_m \end{array} \right)$$
 $\underline{\boldsymbol{a}} = \left(\begin{array}{cccc} a_1 & a_2 & \dots & a_m \end{array} \right)$

Za pomocą operacji transponowania wektor kolumnowy możemy przeprowadzić na wektor wierszowy i na odwrót.

Matlab: a'

Wektor

Wektorem \underline{a} określonym w przestrzeni m-wymiarowej \mathbb{R}^m nazywa się uporządkowany zbiór liczb rzeczywistych zwanych składowymi wektora \underline{a} .

Wektor kolumnowy: Wektor wierszowy:

$$\underline{\boldsymbol{a}} = \left(\begin{array}{c} a_1 \\ a_2 \\ \vdots \\ a_m \end{array} \right)$$
 $\underline{\boldsymbol{a}} = \left(\begin{array}{cccc} a_1 & a_2 & \dots & a_m \end{array} \right)$

Za pomocą operacji transponowania wektor kolumnowy możemy przeprowadzić na wektor wierszowy i na odwrót.

Matlab: a'

$$\underline{\boldsymbol{a}} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \ \underline{\boldsymbol{a}}^T = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}, \ \underline{\boldsymbol{b}} = \begin{pmatrix} 1 & 0 \end{pmatrix}$$

Macierz A o wymiarach $m \times n$ jest uporządkowaniem elementów w postaci prostokątnej tablicy składającej się z m wierszy i n kolumn:

$$A = \left(egin{array}{ccccc} a_{11} & a_{12} & \dots & a_{1n} \ a_{21} & a_{22} & \dots & a_{2n} \ & \vdots & \vdots & \vdots & \vdots \ a_{m1} & a_{m2} & \dots & a_{mn} \end{array}
ight)$$

Macierze dzielimy na kwadratowe i prostokątne.

Macierz A o wymiarach $m \times n$ jest uporządkowaniem elementów w postaci prostokątnej tablicy składającej się z m wierszy i n kolumn:

$$A = \left(\begin{array}{ccccc} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{array}\right)$$

Macierze dzielimy na kwadratowe i prostokątne.

$$A = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}\right), \quad B = \left(\begin{array}{ccc} 1 & -1 & 1 \\ 0 & 1 & 2 \end{array}\right)$$

Macierz transponowana A^T

Z macierzy A o wymiarach $m \times n$ otrzymujemy macierz do niej transponowaną A^T o wymiarze $n \times m$ w wyniku wzajemnej zamiany wierszy i kolumn:

$$a_{ij}^T = a_{ji}$$

Matlab: transpose() lub A'

Macierz transponowana A^T

Z macierzy A o wymiarach $m \times n$ otrzymujemy macierz do niej transponowaną A^T o wymiarze $n \times m$ w wyniku wzajemnej zamiany wierszy i kolumn:

$$a_{ij}^T = a_{ji}$$

Matlab: transpose() lub A'

$$A = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}\right), \quad A^T = \left(\begin{array}{ccc} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{array}\right)$$

Macierz zerowa 0

Macierz zerowa jest macierzą, której wszystkie elementy są równe zeru:

$$0 = \left(\begin{array}{cccc} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 0 \end{array}\right)$$

Wektor zerowy – macierz zerowa składająca się tylko z jednej kolumny.

 $\mathsf{Matlab} \colon \mathsf{zeros}()$

Macierz kwadratowa

Macierz kwadratowa ma tą samą liczbę wierszy i kolumn:

$$A = \left(\begin{array}{ccccc} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{array}\right)$$

Elementy a_{ii} leżące na głównej przekątnej macierzy A nazywamy elementami diagonalnymi.

Macierz kwadratowa

Macierz kwadratowa ma tą samą liczbę wierszy i kolumn:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

Elementy a_{ii} leżące na głównej przekątnej macierzy A nazywamy elementami diagonalnymi.

Dla macierzy:
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$
 elementami diagonalnymi są: 1, 5, 9.

Ślad macierzy

Dla każdej macierzy kwadratowej A jej ślad definiujemy jako sumę elementów diagonalnych.

$$Tr(A) = a_{11} + a_{22} + \cdots + a_{nn} = \sum_{i=1}^{n} a_{ii}$$

Matlab: trace()

Ślad macierzy

Dla każdej macierzy kwadratowej A jej ślad definiujemy jako sumę elementów diagonalnych.

$$Tr(A) = a_{11} + a_{22} + \cdots + a_{nn} = \sum_{i=1}^{n} a_{ii}$$

Matlab: trace()

Dla macierzy:
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$
 ślad wynosi: $Tr(A) = 15$

Macierz diagonalna D jest macierzą kwadratową, której wszystkie elementy poza przekątną przyjmują wartość 0:

$$D = \left(\begin{array}{cccc} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{array}\right)$$

Macierz diagonalną, której wszystkie elementy diagonalne są równe pewnej stałej c, rzeczywistej lub zespolonej nazywamy macierzą skalarną S.

Matlab: diag()

Macierz diagonalna D jest macierzą kwadratową, której wszystkie elementy poza przekątną przyjmują wartość 0:

$$D = \left(\begin{array}{cccc} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{array}\right)$$

Macierz diagonalną, której wszystkie elementy diagonalne są równe pewnej stałej *c*, rzeczywistej lub zespolonej nazywamy macierzą skalarną *S*.

Matlab: diag()

Macierz diagonalna:
$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 9 \end{pmatrix}$$
 Macierz skalarna: $S = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{pmatrix}$

Wyznacznik macierzy diagonalnej ${\it D}$ jest równy iloczynowi elementów diagonalnych:

$$det(D) = a_{11} \cdot a_{22} \cdot \ldots \cdot a_{nn}$$

Macierz odwrotna do macierzy diagonalnej D jest macierzą kwadratową, której elementy diagonalne są odwrotnością elementów diagonalnych macierzy D:

$$D^{-1} = \left(\begin{array}{cccc} 1/a_{11} & 0 & \dots & 0 \\ 0 & 1/a_{22} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1/a_{nn} \end{array}\right)$$

Wyznacznik macierzy diagonalnej D jest równy iloczynowi elementów diagonalnych:

$$det(D) = a_{11} \cdot a_{22} \cdot \ldots \cdot a_{nn}$$

Macierz odwrotna do macierzy diagonalnej *D* jest macierzą kwadratową, której elementy diagonalne są odwrotnością elementów diagonalnych macierzy *D*:

$$D^{-1} = \left(egin{array}{cccc} 1/a_{11} & 0 & \dots & 0 \ 0 & 1/a_{22} & \dots & 0 \ \vdots & \vdots & \vdots & \vdots \ 0 & 0 & \dots & 1/a_{nn} \end{array}
ight)$$

Macierz diagonalna:
$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 9 \end{pmatrix}, \quad D^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/5 & 0 \\ 0 & 0 & 1/9 \end{pmatrix}$$

Macierz jednostkowa

Macierz diagonalna o wymiarach $n \times n$,której wszystkie elementy diagonalne przyjmują wartość 1 nosi nazwę n-wymiarowej macierzy jednostkowej:

$$E = \left(\begin{array}{cccc} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 \end{array}\right)$$

Matlab: eye()

Macierz kwadratowa jest macierzą symetryczną jeśli:

$$A = A^T$$

Macierz kwadratowa jest macierzą antysymetryczną (skośną) jeśli:

$$A = -A^T$$

Macierz kwadratowa jest macierzą symetryczną jeśli:

$$A = A^T$$

Macierz kwadratowa jest macierzą antysymetryczną (skośną) jeśli:

$$A = -A^T$$

Macierz symetryczna:
$$A_s = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 4 \\ 3 & 4 & 9 \end{pmatrix}$$

Macierz antysymetryczna:
$$A_{as}=\left(\begin{array}{ccc}0&1&2\\-1&0&-3\\-2&3&0\end{array}\right)$$

Każdą macierz kwadratową A można rozłożyć na sumę macierzy symetrycznej A_s i macierzy antysymetrycznej A_{as} :

$$A = A_s + A_{as}$$
, gdzie: $A_s = \frac{1}{2}(A + A^T)$, $A_{as} = \frac{1}{2}(A - A^T)$

Każdą macierz kwadratową A można rozłożyć na sumę macierzy symetrycznej A_s i macierzy antysymetrycznej A_{as} :

$$A = A_s + A_{as}, \text{ gdzie}: A_s = \frac{1}{2}(A + A^T), A_{as} = \frac{1}{2}(A - A^T)$$

Zadanie

Dla macierzy:
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

znajdź A_s i A_{as} .

Rozwiązanie

$$A = \left(\begin{array}{rrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}\right)$$

Macierz symetryczna:
$$A_s = \begin{pmatrix} 1 & 3 & 5 \\ 3 & 5 & 7 \\ 5 & 7 & 9 \end{pmatrix}$$

Macierz antysymetryczna:
$$A_{as} = \begin{pmatrix} 0 & -1 & -2 \\ 1 & 0 & -1 \\ 2 & 1 & 0 \end{pmatrix}$$

Macierz górnotrójkątna

Macierz górnotrójkątna U jest macierzą, której wszystkie elementy poniżej przekątnej są równe zeru:

$$U = \left(\begin{array}{cccc} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{array}\right)$$

Wyznacznik macierzy górnotrójkątnej jest równy iloczynowi elementów leżących na głównej przekątnej:

$$det(U) = a_{11} \cdot a_{22} \cdot \ldots \cdot a_{nn}$$

Matlab: triu()

Macierz górnotrójkątna

Macierz górnotrójkątna U jest macierzą, której wszystkie elementy poniżej przekątnej są równe zeru:

$$U = \left(\begin{array}{cccc} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{array}\right)$$

Wyznacznik macierzy górnotrójkątnej jest równy iloczynowi elementów leżących na głównej przekątnej:

$$det(U) = a_{11} \cdot a_{22} \cdot \ldots \cdot a_{nn}$$

Matlab: triu()

Macierz górnotrójkątna:
$$U=\left(\begin{array}{ccc}1&3&5\\0&5&7\\0&0&9\end{array}\right),\;\;det(U)=45$$

Macierz dolnotrójkątna

Macierz dolnotrójkątna L jest macierzą, której wszystkie elementy powyżej przekątnej są równe zeru:

$$L = \left(\begin{array}{cccc} a_{11} & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{array}\right)$$

Wyznacznik macierzy dolnotrójkątnej jest równy iloczynowi elementów leżących na głównej przekątnej:

$$det(L) = a_{11} \cdot a_{22} \cdot \ldots \cdot a_{nn}$$

Matlab: tril()

Macierz dolnotrójkątna

Macierz dolnotrójkątna L jest macierzą, której wszystkie elementy powyżej przekątnej są równe zeru:

$$L = \left(\begin{array}{cccc} a_{11} & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{array}\right)$$

Wyznacznik macierzy dolnotrójkątnej jest równy iloczynowi elementów leżących na głównej przekątnej:

$$det(L) = a_{11} \cdot a_{22} \cdot \ldots \cdot a_{nn}$$

Matlab: tril()

Przykład

Macierz dolnotrójkątna: $L = \begin{pmatrix} 2 & 0 & 0 \\ 4 & 1 & 0 \\ 2 & 1 & 1 \end{pmatrix}$, det(L) = 2

Macierz dwudiagonalna *B* jest macierzą, która ma elementy nieznikające położone na głównej przekątnej i na przekątnej leżącej bezpośrednio powyżej niej:

$$B = \left(\begin{array}{ccccc} a_{11} & a_{12} & 0 & \dots & 0 \\ 0 & a_{22} & a_{23} & \dots & 0 \\ 0 & 0 & a_{33} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & a_{nn} \end{array}\right)$$

Macierz dwudiagonalna *B* jest macierzą, która ma elementy nieznikające położone na głównej przekątnej i na przekątnej leżącej bezpośrednio powyżej niej:

$$B = \left(\begin{array}{ccccc} a_{11} & a_{12} & 0 & \dots & 0 \\ 0 & a_{22} & a_{23} & \dots & 0 \\ 0 & 0 & a_{33} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & a_{nn} \end{array}\right)$$

Macierz dwudiagonalna:
$$B = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

Macierz trójdiagonalna

Macierz trójdiagonalna B jest macierzą, która ma elementy nieznikające położone na głównej przekątnej i na przekątnych leżących bezpośrednio powyżej i poniżej niej:

$$B = \begin{pmatrix} a_{11} & a_{12} & 0 & \dots & 0 \\ a_{12} & a_{22} & a_{23} & \dots & 0 \\ 0 & a_{23} & a_{33} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & a_{nn} \end{pmatrix}$$

Macierz trójdiagonalna

Macierz trójdiagonalna *B* jest macierzą, która ma elementy nieznikające położone na głównej przekątnej i na przekątnych leżących bezpośrednio powyżej i poniżej niej:

$$B = \begin{pmatrix} a_{11} & a_{12} & 0 & \dots & 0 \\ a_{12} & a_{22} & a_{23} & \dots & 0 \\ 0 & a_{23} & a_{33} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & a_{nn} \end{pmatrix}$$

Macierz trójdiagonalna:
$$B = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 2 & 1 & 3 & 0 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$

$$A = \begin{pmatrix} b_1 & c_1 & 0 & \dots & 0 \\ a_2 & b_2 & c_2 & \dots & 0 \\ 0 & a_3 & b_3 & \dots & 0 \\ 0 & \dots & \dots & c_{n-1} \\ 0 & 0 & \dots & a_n & b_n \end{pmatrix} B = \begin{pmatrix} b_1 & c_1 & 0 & \dots & p_1 \\ a_2 & b_2 & c_2 & \dots & 0 \\ 0 & a_3 & b_3 & \dots & 0 \\ 0 & \dots & \dots & c_{n-1} \\ q_1 & 0 & \dots & a_n & b_n \end{pmatrix}$$

$$A = \begin{pmatrix} b_1 & c_1 & 0 & \dots & 0 \\ a_2 & b_2 & c_2 & \dots & 0 \\ 0 & a_3 & b_3 & \dots & 0 \\ 0 & \dots & \dots & \dots & c_{n-1} \\ 0 & 0 & \dots & a_n & b_n \end{pmatrix} B = \begin{pmatrix} b_1 & c_1 & 0 & \dots & p_1 \\ a_2 & b_2 & c_2 & \dots & 0 \\ 0 & a_3 & b_3 & \dots & 0 \\ 0 & \dots & \dots & c_{n-1} \\ q_1 & 0 & \dots & a_n & b_n \end{pmatrix}$$

- ponad dwukrotny wzrost liczby działań arytmetycznych,
- ponad 60% wzrost obciążenia pamięci,
- pogorszenie oszacowania błędów zaokrągleń.

Elementarne działania na macierzach Mnożenie dwóch macierzy Rząd macierzy Macierz odwrotna, ortogonalna, podobna Normy na wektorach i macierzach

Równość macierzy

Dwie macierze A i B są równe jeśli mają te same wymiary i ich odpowiadające sobie elementy są równe:

$$A=B, \ \text{jeśli} \ a_{ij}=b_{ij} \ \text{dla} \ i=\overline{1,m}; \ j=\overline{1,n}$$

Równość macierzy

Dwie macierze A i B są równe jeśli mają te same wymiary i ich odpowiadające sobie elementy są równe:

$$A=B,\ \ \mathrm{jeśli}\ \ a_{ij}=b_{ij}\ \ \mathrm{dla}\ \ i=\overline{1,m};\ \ j=\overline{1,n}$$

Macierze równe:
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$

Przekształcenia elementarne

Przez pojęcie przekształcenia elementarnego rozumiemy:

- wzajemną zamianę miejscami dwóch wierszy lub kolumn,
- przemnożenie wiersza lub kolumny przez niezerową stałą,
- dodanie wiersza do innego wiersza lub kolumny do innej kolumny.

Elementarne działania na macierzach Mnożenie dwóch macierzy Rząd macierzy Macierz odwrotna, ortogonalna, podobna Normy, na wektorach i macierzach

Przekształcenia elementarne

Przez pojęcie przekształcenia elementarnego rozumiemy:

- wzajemną zamianę miejscami dwóch wierszy lub kolumn,
- przemnożenie wiersza lub kolumny przez niezerową stałą,
- dodanie wiersza do innego wiersza lub kolumny do innej kolumny.

Elementarne działania na macierzach Mnożenie dwóch macierzy Rząd macierzy Macierz odwrotna, ortogonalna, podobna Normy na wektorach i macierzach

Przekształcenia elementarne

Przez pojęcie przekształcenia elementarnego rozumiemy:

- wzajemną zamianę miejscami dwóch wierszy lub kolumn,
- przemnożenie wiersza lub kolumny przez niezerową stałą,
- dodanie wiersza do innego wiersza lub kolumny do innej kolumny.

Elementarne działania na macierzach Mnożenie dwóch macierzy Rząd macierzy Macierz odwrotna, ortogonalna, podobna Normy, na wektorach i macierzach

Dodawanie i odejmowanie macierzy

Dodawanie i odejmowanie dwóch macierzy A i B jest możliwe jeśli obie mają ten sam wymiar. Dodajemy lub odejmujemy elementy stojące na tym samym miejscu.

$$A\pm B=(a_{ij})\pm(b_{ij})=(a_{ij}\pm b_{ij})$$

Dodawanie i odejmowanie macierzy

Dodawanie i odejmowanie dwóch macierzy A i B jest możliwe jeśli obie mają ten sam wymiar. Dodajemy lub odejmujemy elementy stojące na tym samym miejscu.

$$A\pm B=(a_{ij})\pm(b_{ij})=(a_{ij}\pm b_{ij})$$

$$A = \left(\begin{array}{rrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}\right), \quad B = \left(\begin{array}{rrr} 1 & 0 & 3 \\ 4 & 5 & 2 \\ -1 & 0 & 1 \end{array}\right)$$

$$A + B = \left(\begin{array}{ccc} 2 & 2 & 6 \\ 8 & 10 & 8 \\ 6 & 8 & 10 \end{array}\right)$$

$$A - B = \left(\begin{array}{ccc} 0 & 2 & 0 \\ 0 & 0 & 4 \\ 8 & 8 & 8 \end{array}\right)$$

Mnożenie macierzy przez liczbę

Macierz A o wymiarowości $m \times n$ można pomnożyć przez liczbę α mnożąc przez α każdy jej element:

$$\alpha A = \alpha(a_{ij}) = (\alpha a_{ij})$$

W tym przypadku zachodzą następujące prawa:

- prawo przemienności: $\alpha A = A\alpha$,
- prawo łączności: $\alpha(\beta A) = (\alpha \beta) A$,
- prawo rozdzielności: $(\alpha \pm \beta)A = \alpha A \pm \beta A$, $\alpha(A \pm B) = \alpha A \pm \alpha B$.

Mnożenie macierzy przez liczbę

Macierz A o wymiarowości $m \times n$ można pomnożyć przez liczbę α mnożąc przez α każdy jej element:

$$\alpha A = \alpha(a_{ij}) = (\alpha a_{ij})$$

W tym przypadku zachodzą następujące prawa:

- prawo przemienności: $\alpha A = A\alpha$,
- prawo łączności: $\alpha(\beta A) = (\alpha \beta)A$,
- prawo rozdzielności: $(\alpha \pm \beta)A = \alpha A \pm \beta A$, $\alpha(A \pm B) = \alpha A \pm \alpha B$.

$$A = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}\right), \quad 2 \cdot A = \left(\begin{array}{ccc} 2 & 4 & 6 \\ 8 & 10 & 12 \\ 14 & 16 & 18 \end{array}\right)$$

Mnożenie dwóch macierzy

lloczyn dwóch macierz A i B jest dobrze określony jedynie wtedy gdy liczba kolumn macierzy A jest równa liczbie wierszy macierzy B. Jeśli A jest wymiaru $m \times n$ to B musi być wymiaru $n \times p$. Iloczyn AB będzie wówczas macierzą C o wymiarze $m \times p$.

$$C = AB = \left(\sum_{j=1}^n a_{ij}b_{jk}\right) = (c_{ik})$$

Jeśli dwa iloczyny AB i BA są dobrze określone to w ogólności nie zachodzi prawo przemienności:

$$AB \neq BA$$

Mnożenie dwóch macierzy

lloczyn dwóch macierz A i B jest dobrze określony jedynie wtedy gdy liczba kolumn macierzy A jest równa liczbie wierszy macierzy B. Jeśli A jest wymiaru $m \times n$ to B musi być wymiaru $n \times p$. Iloczyn AB będzie wówczas macierzą C o wymiarze $m \times p$.

$$C = AB = \left(\sum_{j=1}^n a_{ij}b_{jk}\right) = (c_{ik})$$

Jeśli dwa iloczyny AB i BA są dobrze określone to w ogólności nie zachodzi prawo przemienności:

$$AB \neq BA$$

Przykład

$$A = \begin{pmatrix} 1 & 2 & -3 \\ 4 & -1 & 2 \\ 1 & 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 \\ 2 & -1 \\ 3 & 1 \end{pmatrix}, \quad C = AB = \begin{pmatrix} -4 & -3 \\ 8 & 11 \\ 4 & 3 \end{pmatrix}$$

◆ロト ◆昼 ト ◆ 差 ト → 差 ・ り へ ()・

Operacje arytmetyczne na macierzach

Zestawienie możliwych operacji arytmetycznych dla macierzy A i B o różnych wymiarach:

dim(A)	dim(B)	dim(C)		
		+	_	
$n \times n$				
$n \times p$	$m \times q$	Х	Х	Х
$n \times p$	$n \times p$	$n \times p$	$n \times p$	X
$n \times p$	$p \times n$	X	X	$n \times n$
$n \times p$	p × m	X	X	$n \times m$

Działania na macierzach

Przy działaniach na macierzach mają zastosowanie następujące reguły:

$$\bullet$$
 $AE = EA = A$

•
$$A0 = 0A = 0$$

•
$$(AB)C = A(BC)$$

$$(A + B)^T = A^T + B^T$$
, $(AB)^T = B^T A^T$, $(A^T)^T = A^T$

$$(A^T)^{-1} = (A^{-1})^T$$

•
$$(AB)^{-1} = B^{-1}A^{-1}$$

Elementarne działania na macierzach

Mnożenie dwóch macierzy

Rząd macierzy

Macierz odwrotna, ortogonalna, podobna

Normy na wektorach i macierzach

Zadania

Wykonaj obliczenia:

Elementarne działania na macierzach Mnożenie dwóch macierzy Rząd macierzy Macierz odwrotna, ortogonalna, podobna Normy na wektorach i macierzach

Iloczyn skalarny dwóch wektorów

lloczynem skalarnym wektora wierszowego $\underline{\pmb{a}}^T$ o wymiarze $1 \times n$ i wektora kolumnowego $\underline{\pmb{b}}$ o wymiarze $n \times 1$ jest liczba (skalar)

$$\underline{\underline{\mathbf{a}}}^{\mathsf{T}}\underline{\underline{\mathbf{b}}} = \underline{\underline{\mathbf{b}}}^{\mathsf{T}}\underline{\underline{\mathbf{a}}} = \sum_{i=1}^{n} a_{i}b_{i} = c$$

Wektory \underline{a}^T i \underline{b} są wzajemnie ortogonalne, gdy ich iloczyn skalarny zanika.

Iloczyn skalarny dwóch wektorów

lloczynem skalarnym wektora wierszowego $\underline{\pmb{a}}^T$ o wymiarze $1 \times n$ i wektora kolumnowego $\underline{\pmb{b}}$ o wymiarze $n \times 1$ jest liczba (skalar)

$$\underline{\boldsymbol{a}}^{\mathsf{T}}\underline{\boldsymbol{b}} = \underline{\boldsymbol{b}}^{\mathsf{T}}\underline{\boldsymbol{a}} = \sum_{i=1}^{n} a_{i}b_{i} = c$$

Wektory \underline{a}^T i \underline{b} są wzajemnie ortogonalne, gdy ich iloczyn skalarny zanika.

$$\underline{\boldsymbol{a}}^T = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}, \ \underline{\boldsymbol{b}} = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}, \ \underline{\boldsymbol{a}}^T\underline{\boldsymbol{b}} = 1$$

Elementarne działania na macierzach Mnożenie dwóch macierzy Rząd macierzy Macierz odwrotna, ortogonalna, podobna Normy na wektorach i macierzach

Iloczyn tensorowy dwóch wektorów

lloczynem tensorowym wektora kolumnowego $\underline{\pmb{a}}$ o wymiarze $n\times 1$ i wektora wierszowego $\underline{\pmb{b}}^T$ o wymiarze $1\times m$ jest macierz o wymiarze $n\times m$

$$\mathbf{\underline{ab}}^{T} = \begin{pmatrix} a_{1}b_{1} & a_{1}b_{2} & \dots & a_{1}b_{m} \\ a_{2}b_{1} & a_{2}b_{2} & \dots & a_{2}b_{m} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n}b_{1} & a_{n}b_{2} & \dots & a_{n}b_{m} \end{pmatrix}$$

Iloczyn tensorowy dwóch wektorów

lloczynem tensorowym wektora kolumnowego $\underline{\pmb{a}}$ o wymiarze $n \times 1$ i wektora wierszowego $\underline{\pmb{b}}^T$ o wymiarze $1 \times m$ jest macierz o wymiarze $n \times m$

$$\underline{ab}^{T} = \begin{pmatrix} a_{1}b_{1} & a_{1}b_{2} & \dots & a_{1}b_{m} \\ a_{2}b_{1} & a_{2}b_{2} & \dots & a_{2}b_{m} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n}b_{1} & a_{n}b_{2} & \dots & a_{n}b_{m} \end{pmatrix}$$

$$\underline{\boldsymbol{a}} = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}, \quad \underline{\boldsymbol{b}}^T = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}, \quad \underline{\boldsymbol{ab}}^T = \begin{pmatrix} 2 & 4 & 6 \\ 1 & 2 & 3 \\ -1 & -2 & -3 \end{pmatrix}$$

Elementarne działania na macierzach Mnożenie dwóch macierzy Rząd macierzy Macierz odwrotna, ortogonalna, podobna Normy, na wektorach i macierzach

Rząd macierzy

Definicja

Dla każdej macierzy A maksymalna liczba r niezależnych liniowo kolumn jest równa maksymalnej liczbie niezależnych liniowo wierszy. Liczbę r nazywamy rzędem macierzy:

$$rank(A) = r$$

Rząd macierzy - największy rząd różnych od zera minorów macierzy A

Matlab: rank()

Twierdzenia o rzędzie macierzy:

• dla macierzy A o wymiarze $m \times n$:

$$rank(A_{m \times n}) = r \leqslant min(m, n)$$

• dla nieosobliwej macierzy A ($det(A) \neq 0$) o wymiarze $n \times n$:

$$rank(A_{n\times n})=r=n$$

• dla osobliwej macierzy A (det(A) = 0) o wymiarze $n \times n$:

$$rank(A_{n \times n}) = r < r$$

dla macierzy zerowej:

$$rank(0) = r = 0$$

Twierdzenia o rzędzie macierzy:

• dla macierzy A o wymiarze $m \times n$:

$$rank(A_{m \times n}) = r \leqslant min(m, n)$$

• dla nieosobliwej macierzy A ($det(A) \neq 0$) o wymiarze $n \times n$:

$$rank(A_{n\times n})=r=n$$

• dla osobliwej macierzy A (det(A) = 0) o wymiarze $n \times n$:

$$rank(A_{n \times n}) = r < r$$

dla macierzy zerowej:

$$rank(0) = r = 0$$

Twierdzenia o rzędzie macierzy:

• dla macierzy A o wymiarze $m \times n$:

$$rank(A_{m \times n}) = r \leqslant min(m, n)$$

• dla nieosobliwej macierzy A ($det(A) \neq 0$) o wymiarze $n \times n$:

$$rank(A_{n\times n})=r=n$$

• dla osobliwej macierzy A (det(A) = 0) o wymiarze $n \times n$:

$$rank(A_{n \times n}) = r < n$$

dla macierzy zerowej:

$$rank(0) = r = 0$$

Twierdzenia o rzędzie macierzy:

• dla macierzy A o wymiarze $m \times n$:

$$rank(A_{m \times n}) = r \leqslant min(m, n)$$

• dla nieosobliwej macierzy A ($det(A) \neq 0$) o wymiarze $n \times n$:

$$rank(A_{n\times n})=r=n$$

• dla osobliwej macierzy A (det(A) = 0) o wymiarze $n \times n$:

$$rank(A_{n \times n}) = r < n$$

• dla macierzy zerowej:

$$rank(0) = r = 0$$

Zadania

Oblicz rząd oraz wyznacznik macierzy A:

Elementarne działania na macierzach Mnożenie dwóch macierzy Rząd macierzy Macierz odwrotna, ortogonalna, podobna

Macierz odwrotna

Dla każdej macierzy nieosobliwej A istnieje macierz do niej odwrotna A^{-1} . Iloczyn macierzy i macierzy do niej odwrotnej jest równy macierzy jednostkowej:

$$AA^{-1} = A^{-1}A = E$$

Macierz odwrotną wyznaczamy ze wzoru:

$$A^{-1} = \frac{1}{\det(A)}\hat{A}, \quad \hat{A} = \begin{pmatrix} \hat{a}_{11} & \hat{a}_{12} & \dots & \hat{a}_{1n} \\ \hat{a}_{21} & \hat{a}_{22} & \dots & \hat{a}_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ \hat{a}_{n1} & \hat{a}_{n2} & \dots & \hat{a}_{nn} \end{pmatrix}$$

 \hat{A} - transponowana macierz dopełnień algebraicznych, elementy tej macierzy \hat{a}_{ij} to algebraiczne dopełnienia elementów a_{ij} macierzy A.

Matlab: inv()

Korzystamy ze wzoru:

$$A^{-1} = \frac{1}{\det(A)}\hat{A}$$

Dla macierzy kwadratowej o wymiarze $n \times n$ otrzymamy:

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

• Wykorzystujemy zależność $AA^{-1}=E$. Stosując operacje elementarne na macierzy (A|E) doprowadzamy ją do postaci $(E|A^{-1})$.

Dla macierzy
$$A=\left(egin{array}{cc} -1 & 2 \\ -1 & 4 \end{array}
ight)$$
 znajdź macierz odwrotną.

Dla macierzy
$$A = \begin{pmatrix} -1 & 2 \\ -1 & 4 \end{pmatrix}$$
 znajdź macierz odwrotną.

•
$$A^{-1} = -\frac{1}{2} \begin{pmatrix} 4 & -2 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ -1/2 & 1/2 \end{pmatrix}$$

Przykład

Dla macierzy $A = \begin{pmatrix} -1 & 2 \\ -1 & 4 \end{pmatrix}$ znajdź macierz odwrotną.

•
$$A^{-1} = -\frac{1}{2} \begin{pmatrix} 4 & -2 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ -1/2 & 1/2 \end{pmatrix}$$

$$\bullet (A|E) = \begin{pmatrix} -1 & 2 & 1 & 0 \\ -1 & 4 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} -1 & 2 & 1 & 0 \\ -1 & 4 & 0 & 1 \end{pmatrix} \xrightarrow{w_1/-1} \begin{pmatrix} 1 & -2 & -1 & 0 \\ -1 & 4 & 0 & 1 \end{pmatrix} \xrightarrow{w_2+w_1}$$

$$\begin{pmatrix} 1 & -2 & -1 & 0 \\ 0 & 2 & -1 & 1 \end{pmatrix} \xrightarrow{w_2/2} \begin{pmatrix} 1 & -2 & -1 & 0 \\ 0 & 1 & -1/2 & 1/2 \end{pmatrix} \xrightarrow{w_1+2w_2}$$

$$\begin{pmatrix} 1 & 0 & -2 & 1 \\ 0 & 1 & -1/2 & 1/2 \end{pmatrix}$$

Elementarne działania na macierzach Mnożenie dwóch macierzy Rząd macierzy Macierz odwrotna, ortogonalna, podobna

Interpretacja graficzna odwracania macierzy

```
n = 500;
A = rand(n);
imagesc(A);
colormap(summer);
axis square;
```

```
B = inv(A);
figure
imagesc(B);
colormap(summer);
axis square;
```

```
figure
imagesc(A*B);
colormap(summer);
axis square;
```

Interpretacja graficzna odwracania macierzy

$$B = inv(A)$$

$$A \cdot B$$

Macierz ortogonalna

Macierz Q jest macierzą ortogonalną jeśli spełnia relację:

$$Q^T = Q^{-1}$$
, lub $QQ^T = Q^TQ = E$

Własności macierzy ortogonalnych:

- macierz transponowana i macierz odwrotna do macierzy ortogonalnej jest macierzą ortogonalną,
- ullet wyznacznik macierzy ortogonalnej: $det(Q)=\pm 1$,
- iloczyn macierzy ortogonalnych jest macierzą ortogonalną

Macierz ortogonalna

Macierz Q jest macierzą ortogonalną jeśli spełnia relację:

$$Q^T = Q^{-1}$$
, lub $QQ^T = Q^TQ = E$

Własności macierzy ortogonalnych:

- macierz transponowana i macierz odwrotna do macierzy ortogonalnej jest macierzą ortogonalną,
- ullet wyznacznik macierzy ortogonalnej: $det(Q)=\pm 1$,
- iloczyn macierzy ortogonalnych jest macierzą ortogonalną

Przykład macierzy ortogonalnej - macierz obrotu:
$$Q = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}$$

Macierz ortogonalna - przykład

Niech będzie dany obiekt posiadający punkt zaczepienia $P = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ chcemy go obrócić o kąt $\alpha = 25$ względem początku układu współrzędnych.

Wykorzystując macierz obrotu $R = \begin{pmatrix} cos(\alpha) & -sin(\alpha) \\ sin(\alpha) & cos(\alpha) \end{pmatrix}$ otrzymamy

$$P_1 = R \cdot P = \left(\begin{array}{c} 1.2321 \\ 1.8660 \end{array} \right)$$

Mając punkt P1 oraz macierz obrotu R możemy znaleźć punkt pierwotny:

$$P = R^{-1} \cdot P_1 = R^T \cdot P_1$$

Elementarne działania na macierzach Mnożenie dwóch macierzy Rząd macierzy Macierz odwrotna, ortogonalna, podobna

Macierze podobne

Macierze A i B nazywamy podobnymi jeśli są one powiązane zależnością:

$$AT = TB$$

gdzie: T jest dowolną macierzą nieosobliwą zwaną macierzą przejścia. Macierze podobne mają takie same wyznaczniki oraz widma.

Macierze podobne

Macierze A i B nazywamy podobnymi jeśli są one powiązane zależnością:

$$AT = TB$$

gdzie: T jest dowolną macierzą nieosobliwą zwaną macierzą przejścia. Macierze podobne mają takie same wyznaczniki oraz widma.

Przykład

$$A=\left(\begin{array}{cc}1&3\\2&2\end{array}\right),\ B=\left(\begin{array}{cc}-1&0\\2&4\end{array}\right),\ det(A)=-4,\ det(B)=-4$$

Aksjomaty normy

Każdemu wektorowi $\underline{\mathbf{x}}$ i każdej macierzy A można przyporządkować liczbę $\|\underline{\mathbf{x}}\|$ (normę \mathbf{x}) oraz $\|A\|$ (normę A).

Normy macierzy mają następujące własności:

•
$$||A|| > 0$$
, $A \neq 0$; $||A|| = 0$, $A = 0$

$$\bullet \ \alpha ||A|| = |\alpha| ||A||, \ \alpha \in \mathbb{R}$$

•
$$||A + B|| \le ||A|| + ||B||$$

$$\bullet \ \|AB\| \leqslant \|A\| \|B\|$$

Mnożenie dwóch macierzy Rząd macierzy Macierz odwrotna, ortogonalna, podobna Normy na wektorach i macierzach

Normy na wektorach

Najczęściej stosowane normy wektora $\underline{\mathbf{x}} = (x_1, x_2, \dots, x_n)^T$ w przestrzeni \mathbb{R}^n :

• Norma euklidesowa:

$$\|\underline{\mathbf{x}}\| = \|\underline{\mathbf{x}}\|_2 := \sqrt{\sum_{i=1}^n x_i^2}.$$

Wektor \mathbf{x} mający normę $\|\mathbf{x}\|_2 = 1$ nazywamy wektorem jednostkowym.

• Norma maksimum:

$$\|\underline{\mathbf{x}}\| = \|\underline{\mathbf{x}}\|_{\infty} := \max_{1 \leq i \leq n} |x_i|.$$

• Norma - suma wartości bezwzględnych współrzędnych:

$$\|\underline{\boldsymbol{x}}\| = \|\underline{\boldsymbol{x}}\|_1 := \sum_{i=1}^n |x_i|.$$

Normy na macierzach

Najczęściej stosowane normy macierzy:

Norma spektralna:

$$||A|| = ||A||_2 := \sqrt{\lambda_{max}(A^T A)}.$$

 $\lambda_{max}(A^TA)$ - największa wartość własna macierzy A^TA .

Norma wierszowa:

$$||A|| = ||A||_{\infty} := \max_{1 \leqslant i \leqslant n} \sum_{j=1}^{n} |a_{ij}|.$$

Norma kolumnowa:

$$||A|| = ||A||_1 := \max_{1 \leqslant j \leqslant n} \sum_{i=1}^n |a_{ij}|.$$

Matlab: norm()

Mnożenie dwóch macierzy Rząd macierzy Macierz odwrotna, ortogonalna, podobna Normy na wektorach i macierzach

Wskaźnik uwarunkowania macierzy

Macierz A nazywamy źle uwarunkowaną jeśli jej wyznacznik det(A) jest bliski zeru. Wskaźnik uwarunkowania macierzy:

$$cond(A) = ||A|| ||A^{-1}||.$$

Macierz jest źle uwarunkowana jeśli wskaźnik uwarunkowania jest duży. W przeciwnym przypadku macierz jest dobrze uwarunkowana.

Matlab: cond()

Dowolnej macierzy A o wymiarze $n \times n$ można jednoznacznie przypisać liczbę zwaną wyznacznikiem tej macierzy:

$$det(A) = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}$$

Wyznacznik n-tego stopnia macierzy A definiujemy rekursywnie za pomocą rozwinięcia Laplace'a względem dowolnie wybranego wiersza lub kolumny macierzy A. Dla rozwinięcia względem elementów ustalonego wiersza i otrzymamy:

$$det(A) = \sum_{i=1}^{n} a_{ij} \hat{a}_{ij}$$

gdzie: \hat{a}_{ij} to algebraiczne dopełnienia elementów a_{ij} macierzy A.

Matlab: det()

Wyznaczniki stopnia pierwszego, drugiego i trzeciego zdefiniowane są wzorami:

•
$$det(A) = |a_{11}| = a_{11}$$

•
$$det(A) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

reguła Sarrusa

$$det(A) = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{33} + a_{13}a_{22}a_{31} - a_{23}a_{22}a_{31} - a_{23}a_{32}a_{31} - a_{33}a_{12}a_{21} \end{vmatrix}$$

Wyznaczniki wyższych rzędów możemy policzyć za pomocą rozwinięcia Laplace'a.

Rozwinięcie wyznacznika czwartego stopnia względem elementów trzeciego wiersza:

$$det(A) = \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} = a_{31} \begin{vmatrix} a_{12} & a_{13} & a_{14} \\ a_{22} & a_{23} & a_{24} \\ a_{42} & a_{43} & a_{44} \end{vmatrix}$$

$$- a_{32} \begin{vmatrix} a_{11} & a_{13} & a_{14} \\ a_{21} & a_{23} & a_{24} \\ a_{41} & a_{43} & a_{44} \end{vmatrix} + a_{33} \begin{vmatrix} a_{11} & a_{12} & a_{14} \\ a_{21} & a_{22} & a_{24} \\ a_{41} & a_{42} & a_{43} \end{vmatrix}$$

$$- a_{34} \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{41} & a_{42} & a_{43} \end{vmatrix}$$

Obliczenie wyznacznika z wykorzystaniem przekształceń elementarnych.

Wykorzystując własność: jeżeli macierz B powstaje z macierzy A przez pomnożenie wszystkich elementów pewnego wiersza (kolumny) przez liczbę α , to $det(B) = \alpha \cdot det(A)$,

Przykład

Dla macierzy
$$A=\left(\begin{array}{ccc} 2 & 1 & 3 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{array}\right)$$
 wyznacznik wynosi:

$$det(A) = \begin{vmatrix} 2 & 1 & 3 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{vmatrix} = 2 \cdot \begin{vmatrix} 1 & 1/2 & 3/2 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{vmatrix} \begin{vmatrix} (w_2 - w_1) \\ 2 & 1 \end{vmatrix} = 2 \cdot \begin{vmatrix} 1 & 1/2 & 3/2 \\ 0 & 3/2 & -1/2 \\ 0 & 1 & 2 \end{vmatrix} = 2 \cdot \frac{3}{2} \cdot \begin{vmatrix} 1 & 1/2 & 3/2 \\ 0 & 1 & -1/3 \\ 0 & 1 & 2 \end{vmatrix} = 3 \cdot (1 \cdot 1 \cdot \frac{7}{3}) = 7$$

Obliczanie wyznacznika n-tego stopnia macierzy A – algorytm Chio.

$$det(A) = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{vmatrix} \cdots \begin{vmatrix} a_{11} & a_{1n} \\ a_{21} & a_{2n} \end{vmatrix}$$

$$det(A) = \frac{1}{a_{11}^{n-2}} \begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix} \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} \cdots \begin{vmatrix} a_{11} & a_{1n} \\ a_{31} & a_{3n} \end{vmatrix}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{n1} & a_{n2} \end{vmatrix} \begin{vmatrix} a_{11} & a_{13} \\ a_{n1} & a_{n3} \end{vmatrix} \cdots \begin{vmatrix} a_{11} & a_{1n} \\ a_{n1} & a_{nn} \end{vmatrix}$$

Obliczenie wyznacznika – algorytm Chio.

Przykład

Dla macierzy
$$A = \begin{pmatrix} 2 & 1 & 3 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$
 wyznacznik wynosi:

$$det(A) = \frac{1}{2^{3-2}} \begin{vmatrix} 2 & 1 & 2 & 2 & 3 \\ 1 & 2 & 1 & 1 & 2 \\ 2 & 1 & 2 & 3 & 2 \end{vmatrix} = \frac{1}{2} \begin{vmatrix} 3 & -1 \\ 2 & 4 \end{vmatrix} = 7$$

Minor

Minorem elementu a_{ij} wyznacznika stopnia n nazywamy wyznacznik stopnia n-1 macierzy powstałej przez skreślenie i-tego wiersza i j-tej kolumny.

Dopełnieniem algebraicznym \hat{a}_{ij} elementu a_{ij} macierzy A jest mnożony przez czynnik $(-1)^{i+j}$ minor wyznaczony przez element a_{ij} .

Działania na wyznacznikach

Przy działaniach na wyznacznikach mają zastosowanie następujące reguły:

- $det(A) = det(A)^T$
- $det(\alpha A) = \alpha^n det(A)$
- det(AB) = det(A)det(B)
- przy zamianie miejscami dwóch wierszy znak wyznacznika zmienia się na przeciwny,
- jeśli w macierzy dwa wiersze (dwie kolumny) są identyczne, to wyznacznik tej macierzy wynosi zero,
- jeżeli macierz B powstaje z macierzy A przez pomnożenie wszystkich elementów pewnego wiersza (kolumny) przez liczbę α , to $det(B) = \alpha \cdot det(A)$,
- dodanie do wiersza (kolumny) macierzy kwadratowej wielokrotności innego wiersza (kolumny) nie zmienia wyznacznika tej macierzy.

Wybrane funkcje Matlaba

- ones() tworzenie macierzy wypełnionej jedynkami,
- magic() tworzenie "kwadratu magicznego" o zadanym wymiarze,
- rand() tworzenie macierzy wypełnionej liczbami losowymi o rozkładzie równomiernym w przedziale (0,1),
- cat() łączenie macierzy wzdłuż określonego wymiaru,
- horzcat() łączenie macierzy poziomo (dodawanie kolumn),
- vertcat() dołączanie macierzy pionowo (dodawanie wierszy),
- repmat() wielokrotne powtórzenie macierzy pionowo i poziomo,
- blkdiag() konstrukcja macierzy, w której kolejne macierze dołączane są diagonalnie,
- length() największy z wymiarów macierzy,
- ndims() ilość wymiarów,
- numel() ilość elementów,
- size() wymiary macierzy,

Wybrane funkcje Matlaba

- reshape() zmiana wymiarów macierzy. W macierzy wynikowej elementy umieszczane są w kolejności indeksu liniowego macierzy wejściowej,
- rot90() obrót macierzy w taki sposób, że ostatnia kolumna staje się pierwszym wierszem,
- fliplr() obrót macierzy wokół osi pionowej,
- flipud() obrót macierzy wokół osi poziomej,
- flipdim() obrót macierzy wokół wybranej osi.