Komitet strajkowy

Stanisław Bitner

listopad 2022

• p - niemalejący ciąg rang pracowników

- p niemalejący ciąg rang pracowników
- a_i minimalna liczba pracowników w komitecie zawierającym p_i i reprezentującego $p_1, ..., p_i$;

- p niemalejący ciąg rang pracowników
- a_i minimalna liczba pracowników w komitecie zawierającym p_i i reprezentującego p₁, ..., p_i;
- b_i liczba sposobów na uzyskanie optymalnego komitetu reprezentującego $p_1, ..., p_i$ zawierającego w sobie p_i .

- p niemalejący ciąg rang pracowników
- a_i minimalna liczba pracowników w komitecie zawierającym p_i i reprezentującego p₁, ..., p_i;
- b_i liczba sposobów na uzyskanie optymalnego komitetu reprezentującego $p_1, ..., p_i$ zawierającego w sobie p_i .

Oczywiście $a_0 = 0, b_0 = 1.$

• $k_i = \max\{p_j | j < i \land p_j + k < p_i\}$ (największy pracownik niepokrywany przez p_i)

- $k_i = \max\{p_j | j < i \land p_j + k < p_i\}$ (największy pracownik niepokrywany przez p_i)
- $l_i = \min\{j|p_j + k \ge k_i\}$ (indeks najmniejszego pracownika pokrywającego k_i)

- $k_i = \max\{p_j | j < i \land p_j + k < p_i\}$ (największy pracownik niepokrywany przez p_i)
- $l_i = \min\{j|p_j + k \ge k_i\}$ (indeks najmniejszego pracownika pokrywającego k_i)
- $r_i = \max\{j|p_j \le p_i k\}$ (indeks największego pracownika niekolidującego z p_i)

Oczywistym staje się, że

$$a_i = \min\{a_j | I_i \le j \le r_i\} + 1$$

$$b_i = \sum_{j=l_i}^{r_i} [a_i = a_j + 1] \cdot b_j$$

Oczywistym staje się, że

$$a_i = \min\{a_j | I_i \le j \le r_i\} + 1$$

$$b_i = \sum_{j=l_i}^{r_i} [a_i = a_j + 1] \cdot b_j$$

 k_i , l_i , r_i można łatwo wyznaczyć wyszukiwaniem binarnym (lub w zamortyzowanym czasie liniowym).

 a_i , b_i można wyznaczyć za pomocą drzewa przedziałowego lub zauważając pewną dodatkową zależność i używając sum prefiksowych, nie będę tego pokazywał, bo jest to bardziej skomplikowane.

Złożoność czasowa:
$$O(\underbrace{n \log n}_{\text{sortowanie}} + \underbrace{n \log n}_{\text{dynamik}}) = O(n \log n).$$