

HCMUT EE MACHINE LEARNING & IOT LAB

Buổi 5

Introduction to Machine Learning

Presentation By: Văn Thịnh

Table of Content

- Machine Learning (ML) là gì?
- Tại sao cần ML?
- Các nhóm bài toán trong ML
- Xây dựng mô hình ML

- **Overfitting và Underfitting**
- Tiền xử lý dữ liệu
- Do lường hiệu suất

I. Machine Learning(ML) là gì?

I. Machine Learning (ML) là gì?

? Cùng là tìm cách ánh xạ dữ liệu đến một kết quả nào đó, vậy ML khác gì với lập trình thông thường?

I. Machine Learning (ML) là gì?

Xây dựng một chương trình kiểm tra một số có là số nguyên tố hay không?

```
2  def is_prime(n):
3     if n < 2:
4         return False
5     if n == 2:
6         return True
7     if n % 2 == 0:
8         return False
9         for i in range(3, int(n**0.5) + 1, 2)
10         if n % i == 0:
11             return False
12         return True</pre>
```

Đặc điểm:

- Biết được hàm tường minh theo lý thuyết
- Có đầy đủ thông tin về dữ liệu
- Không có ngoại lệ (hoặc rất ít)

I. Machine Learning (ML) là gì?

Đặc điểm:

- Khó hoặc không thể tìm được hàm tường minh theo lý thuyết
- Không đủ tổng quát do thiếu dữ liệu
- Nhiễu, outliers trong dữ liệu

Data

 $y \simeq \hat{y} = f(x)$ Ground-truth Prediction Model

II. Tại sao cần Machine Learning?

II. Tại sao cần Machine Learning?

- 1. Giải quyết những bài toán không thể viết quy tắc rõ ràng
- Ví dụ: nhận diện khuôn mặt, dịch ngôn ngữ, phân loại cảm xúc.
- Những bài toán này quá phức tạp để lập trình thủ công. Nhưng nếu có dữ liệu (ảnh khuôn mặt + nhãn), ML có thể học được quy luật tiềm ẩn.

II. Tại sao cần Machine Learning?

2. Tự động hóa và thích nghi

- ML giúp hệ thống tự cải thiện theo thời gian, càng dùng càng thông minh.
- Ví dụ: hệ thống gợi ý phim của Netflix hay Youtube học từ hành vi của bạn để gợi ý chính xác hơn.

II. Tại sao cần Machine Learning?

- 3. Phân tích dữ liệu lớn (Big Data)
- Dữ liệu ngày nay rất nhiều (hàng tỷ dòng, petabytes).
- ML có khả năng học từ dữ liệu khổng lồ, phát hiện mẫu (pattern) mà con người không thấy.

III. Các nhóm bài toán trong Machine Learning

unsupervised learning supervised

reinforcement learning

- 1. Supervised Learning (Học có giám sát)
 - Mô hình sẽ được huấn luyện (train) trên tập dữ liệu có đã đánh nhãn (label):
 Linear Regression, Logistic Regression, Support Vector Machine, Classification

. . .

- 2. Unsupervised Learning (Học không có giám sát)
- Mô hình sẽ được huấn luyện (train) trên tập dữ liệu chưa có nhãn (non-label),
 bao gồm: K-means clustering, PCA,...

- 3. Reinforcement Learning (Học tăng cường)
- Trung gian của học có giám sát và không giám sát

- Semi-supervised Learning
- Self-supervised Learning
- ...

IV. Xây dựng mô hình Machine Learning

IV. Xây dựng mô hình ML

V. Overfitting và Underfitting

V. Overfitting và Underfitting

V. Overfitting và Underfitting

Kỹ thuật tránh overfitting:

- Cross-validation
- Regularization
- Dropout
- ...

Là bước cực kỳ quan trọng trước khi xây dựng một mô hình ML!!!

- 1. Làm sạch dữ liệu (Data Cleaning):
- Xử lý điểm dữ liệu thiếu (missing data)
- Xóa các điểm trùng
- Điều chỉnh định dạng chung
- Loại bỏ outliers

- 2. Chuyển đổi dữ liệu (Data Transformation)
- Chuẩn hóa
- Mã hóa biến phân loại
- Trích xuất đặc trưng

- 3. Giảm dữ liệu (Data Reduction)
- Giảm chiều dữ liệu (PCA, SVD,)
- Sampling

- 3. Chia dữ liệu (Data Splitting)
- Chia tập train, valid và test

Metric: dùng để đánh giá hiệu quả của một mô hình

Recall =
$$\frac{TP}{TP + FN}$$

Xét bài toán phân loại một người có bị ung thư hay không bằng một mô hình ML, ta có:

Trường hợp	Kí hiệu
Người đó bị ung thư và mô hình dự đoán là bị ung thư	True Positive (TP)
Người đó không bị ung thư và mô hình dự đoán là bị ung thư	False Positive (FP)
Người đó không bị ung thư và mô hình dự đoán là không bị ung thư	True Negative (TN)
Người đó bị ung thư và mô hình dự đoán là không bị ung thư	False Negative (FN)

Xét bài toán phân loại một người có bị ung thư hay không bằng một mô hình ML, ta có:

Accuracy: Số dự đoán đúng trên tổng số dự đoán

$$Accuracy = \frac{\text{correct classifications}}{\text{total classifications}} = \frac{TP + TN}{TP + TN + FP + FN}$$

Xét bài toán phân loại một người có bị ung thư hay không bằng một mô hình ML, ta có:

Precision: Số dự đoán Positive đúng trên tổng số dự đoán là Positive

$$\text{Precision} = \frac{\text{correctly classified actual positives}}{\text{everything classified as positive}} = \frac{TP}{TP + FP}$$

Xét bài toán phân loại một người có bị ung thư hay không bằng một mô hình ML, ta có:

Recall: Số dự đoán Positive đúng trên tổng số trường hợp là Positive

$$\text{Recall (or TPR)} = \frac{\text{correctly classified actual positives}}{\text{all actual positives}} = \frac{TP}{TP + FN}$$

Xét bài toán phân loại một người có bị ung thư hay không bằng một mô hình ML, ta có:

Precision-Recall Trade-off

Xét bài toán phân loại một người có bị ung thư hay không bằng một mô hình ML, ta có:

F1-score: Cân bằng giữa Precision và Recall

$$F1 = rac{2 imes ext{Precision} imes ext{Recall}}{ ext{Precision} + ext{Recall}}$$

Xét bài toán phân loại một người có bị ung thư hay không bằng một mô hình ML, ta có:

F1-score: Cân bằng giữa Precision và Recall

THANK YOU

CONTACT US

- 403.1 H6, BKHCM Campus 2
- mlandiotlab@gmail.com
- ml-iotlab.com
- facebook.com/hcmut.ml.iot.lab
- youtube.com/@mliotlab