Index

Symbols	automated retraining, 275-277
1NF (first normal form), 59	AutoML
2NF (second normal form), 59	architecture search, 174-178
	hard AutoML, 174-178
A	hyperparameter tuning, 173-174
	learned optimizer, 174-178
A/B testing, 283-284, 288	soft AutoML, 173-174
accuracy-related metrics, 252	autoscaling, 30
ACID (atomicity, consistency, isolation, dura-	0,
bility), 68	В
active learning, 101-102	
ad hoc analytics, 162	bagging, ensembles, 158-159
adaptability, 31	bandit algorithms, 287-291
adversarial attacks, 272	BASE (basically available, soft state, and even-
adversarial augmentation, 116	tual consistency), 68
AI (artificial intelligence), ethics, 339, 347-348	base learners, 156
data-driven approach limitations, 349	base model, fine tuning, 100
irresponsible, case studies, 341-347	baselines, offline model evaluation, 179
mitigating biases, 353	existing solutions, 181
model cards, 351-353	human, 180
trade-offs, 349	random, 180
Airflow, 315-316	simple heuristic, 180
alert fatigue, 255, 259	zero rule, 180
alert policies, 259	batch pipeline, 203-205
algorithms	batch prediction, 197-201
bandit algorithms, 287-291	moving to online prediction, 201-203
continual learning and, 273-274	batch processing, 78-79
feature importance, 142	batches, overfitting, 167
analytical processing, 67	binary classification, 37
Apache Iceberg, 69	binary data, 57
architectural search, 174	binary file size, 57
Argo, 316-318	boosting, ensembles, 159-161
artifacts, 162	Borg, 314
artificial intelligence (see AI)	brand monitoring, 12
asynchronous prediction, 198	browsers, ML (machine learning) and, 222

building versus buying, 327-329	feature reuse, 277
business analysis, 35	fresh data access, 270-272
business objectives, 26-28	stateful training, 265-268
	automated, 277-278
C	stateless retraining, 265-268
calibration, 183-184	manual, 275
canary release, 285	training, automated retraining, 275-277
cardinality, classification tasks and, 37	versus online learning, 268
catastrophic forgetting, 264	convenience sampling, 83
categorical features, 129-132	cost-sensitive learning, 111
champion model, 264	covariate data distribution shift, 238-240
churn prediction, 104	cron, schedulers, 313-314
class imbalance, 102	cross-functional collaboration, teams, 335
algorithm-level methods, 110	CSV (comma-separated values), row-major for
class-balanced loss, 112	mat, <mark>54</mark>
cost-sensitive learning, 111	
focal loss, 112	D
challenges, 103-105	DAG (directed acyclic graph), 312
evaluation metrics, 106-108	dashboards, monitoring and, 258
resampling, 109-110	data, 5, 18
class-balanced loss, 112	mind versus data, 43-46
classification	training (see training data)
as regression problem, 107	unseen data, 6
binary, 37	data augmentation, 113
hierarchical, 38	adversarial augmentation, 116
high cardinality, 37	data synthesis, 116-117
multiclass, 37, 38	perturbation, 114-116
multilabel, 38	simple label-preserving transformations,
sentiment analysis, 120	114
classification models, 36	data distribution shifts
cloud computing, 212, 300-302	addressing, 248-250
elasticity, 300	detection
multicloud strategy, 302	statistical methods, 243-244
code versioning, 164	time scale windows, 245-247
column deletion, 125	ML system failure, 237
column-major formats, 54-56	concept drift, 238, 241
pandas, 56	covariate shift, 238-240
Parquet, 54	feature change, 241
Commuter, 305	label schema change, 241
compact convolutional filters, 206	label shift, 238, 240
computational priorities, 15	data duplication, data leakage and, 139
compute-intensive problems, 6	data engineering, 34
concept drift, 238, 241	data formats, 53
confidence measurement, 185	binary, 57
containers, 308-310	column-major, 54-56
contextual bandits, 289	JSON, 54
continual learning, 35, 264, 268-270	multimodal data, 53
algorithms and, 273-274	relational model, NoSQL, 63-66
evaluation and, 272-273	
evaluation and, 2/2-2/3	row-major, 54-56

text, 57	dependencies, 312
data freshness, model updates and, 279-280	ML models, model store, 322
data generation, data leakage and, 140	dependency failure, 227
data iteration, 267	deployment, 34, 192
model updates and, 281	endpoints, exposing, 192
data leakage, 135	failure, 227
data duplication prior to splitting, 139	ML models, 320
data generation process and, 140	myths
detecting, 140	limited models at once, 194-195
group leakage, 139	model updating, 196
Kaggle competition, 136	performance, 195
scaling before splitting, 138	scale, 196
statistics from test split, missing data and,	separation of responsibilities, 193
138	shadow deployment, 282
time-correlated data, 137	development environment, infrastructure, 296,
data models	302
relational, 59-62	containers, 308-310
structured data, 66-67	setup, 303
unstructured data, 66-67	IDE, 303-306
data normalization, 59	standardization, 306-308
data parallelism, distributed training and,	directed acyclic graph (DAG), 312
168-170	directional expectation tests, 183
data scientists, teams, 336-339	discretization, feature engineering and, 128-129
data sources, 50	distributed training, 168
databases, internal, 52	data parallelism and, 168
logs, 51	model parallelism and, 170-172
smartphones and, 52	Docker Compose, 310
system-generated data, 50	Docker images, 308-310
third-party data, 52	Dockerfiles, 308-310
user input, 50	document model, 63
data synthesis, 116-117	schemas, 64
data-driven approach, AI ethics and, 349	downtime, 228
databases and dataflow, 72	driver management service, 73
dataflow, 72	dynamic sampling, 110
message queue model, 77	1 8
passing through databases, 72	E
passing through real-time transport, 74-77	- .
passing through services, 73-74	edge cases
request driven, 75	failure and, 231-231
DataFrame, pandas and, 56	outliers and, 232
debugging, 165	edge computing, 213
decision trees, pruning, 208-209	model optimization, 214-221
declarative ML systems, 62	EKS (Elastic Kubernetes Service), 314
deep learning	embedding
ML (machine learning) and, 1	positional embedding, 133-135
ML algorithms and, 150	word embeddings, 133
degenerate feedback loops, ML system failure,	endpoint, exposing, 192
233	ensembles
correcting, 235-236	bagging, 158-159
	base learners, 156

boosting, 159-161	management, 326
spam classifiers, 157	monitoring, 253-255
stacking, 161	online, 199
ethics in AI, 339-347	reuse, 277
ETL (extract, transform, load), 70-72	streaming, 199
evaluation, offline	feedback loops, 288
confidence measurement, 185	ML system failure, 234
directional expectation tests, 183	feedback, users, 93
invariation tests, 182	fixed positional embeddings, 135
model calibration, 183-184	fixed-point inference, 210
perturbation tests, 181-182	FLOPS (floating-point operations per second),
slice-based, 185-188	298
existing data, 5	forecasting customer demand, 11
experiment artifacts, development and, 323	Fourier features, 135
experiment tracking, 162-163	fraud detection, 11, 104
third-party tools, 163	
exporting models, 193	G
	_
F	GDPR (General Data Protection Regulation), 164
F1 metrics, 107	generalization, features, 144-146
factorization, low-rank, 206-208	GKE (Google Kubernetes Engine), 314
fairness, 19	Google Translate, 1
feature change, 241	graph model, 65
feature engineering, 120-122	
categorical features, 129-132	Н
discretization, 128-129	H20 AutoML, 62
feature crossing, 132	hand labels, 88
feature generalization, 144-146	lineage, 90
feature importance, 142	multiplicity, 89-90
missing values and, 123	hard AutoML, 174-178
deletion, 125	hardware failure, 228
imputation, 125-126	hashed functions, 130
MAR (missing at random), 124	heuristics, LFs (labeling functions), 95
MCAR (missing completely at random),	heuristics-based slicing, 188
124	hierarchical classification, 38
MNAR (missing not at random), 124	human baselines, 180
NLP (natural language processing) and, 122	hyperparameters
positional embeddings, 133-135	failures and, 166
predictive power of features, 140	tuning, 173-174
scaling, 126-128	values over time, 163
useless features, 141	values over time, 103
feature scaling, 126-128	•
feature store, 325-327	1
features	IDE (integrated development environment),
computation, 326	303
consistency, 326	cloud dev environment, 307
extracting, 255	notebooks and, 304
failures and, 166	importance sampling, 87
learned, 120-122	infrastructure, 293, 295
· · · · · · · · · · · · · · · · · · ·	

building versus buying, 327-329	class imbalance and, 102
cloud computing and, 300-302	errors, class imbalance and, 105
development environment layer, 296, 302	hand labels, 88
setup, 303-306	lineage, 90
fundamental facilities, 295	multiplicity, 89-90
ML platform layer, 296	lack of labels, 94
requirements, 295	active learning, 101-102
resource management layer, 295	semi-supervision, 98-99
storage and compute layer, 295, 296, 297	transfer learning, 99-101
compute resources, 297	weak supervision, 95-98
FLOPS, 298	ML algorithms, 151
private data centers, 300-302	natural labels, 91
public cloud, 300-302	feedback loop length, 92
units, 297	recommender systems, 91
input, monitoring, <mark>255</mark>	perturbation, 114-116
instances on-demand, 300	simple label-preserving transformations,
integrated development environment (see IDE)	114
interleaving experiments, 285-287	language modeling, sampling and, 83
internal databases, 52	latency, 16
interpretability, 20	latency versus throughput, 16-18
invariation tests, 182	learning, 3
IR (intermediate representation), 215	LFs (labeling functions), 95
iterative processes	heuristics, 95
model development and, 34	logs, 51, 51
performance check, 149	experiment tracking, 162
model updates and, 281	monitoring and, 256-257
training the model and, 32-33	storage, 51
data engineering, 34	loop tiling, model optimization, 218
project scoping, 34	loss curve, 162
	loss functions, 40
J	(see also objective functions)
JSON (JavaScript Object Notation), 54	low-rank factorization, 206-208
judgment sampling, 83	
,8,	M
K	maintainability, 31
	Manning, Christopher, 44
k-means clustering models, 150	MAR (missing at random) values, 124
Kaggle, data leakage, 136	MCAR (missing completely at random) values
knowledge distillation, 208	124
Kubeflow, 318	merge conflicts, 164
Kubernetes (K8s), 310, 314	message queue, dataflow and, 77
EKS (Elastic Kubernetes Service), 314 GKE (Google Kubernetes Engine), 314	Metaflow, 318
GRE (Google Rubernetes Eligine), 314	metrics
•	monitoring and, 250
L	accuracy-related metrics, 252
label computation, 271	features, 253-255
label schema change, 241	predictions, 252-253
label shift, 238, 240	raw input, 255
labeling, 88	performance metrics, 162
	-

system performance, 163	hyperparameters and, 166
mind versus data, 43-46	poor model implementation, 166
missing at random (MAR), 124	random seeds, 167
missing completely at random (MCAR), 124	theoretical constraints, 166
missing data, test split statistics and, 138	iteration, 267
missing not at random (MNAR), 124	monitoring, 35
ML (machine learning)	offline evaluation, 178
browsers and, 222, 223	baselines, 179-181
cloud computing, 212-223	methods, 181-188
complex patterns, 4	optimization, 220-221
deep learning and, 1	parameters, model store, 322
edge computing, 212-223	performance metrics, 162
existing data and, 5	selection criteria, 151
learning, 3	human biases in, 153
model optimization, 220-221	model, 155
predictions and, 6	performance now and later, 153
production and, 12-21	simple models, 152
repetition, 7	state-of-the-art trap, 152
research and, 12-21	trade-offs, 154
scale, 7	speed, 163
smartphones and, 9	training, 32-33
unseen data, 6	data engineering, 34
use cases, 9-12	distributed, 168-172
when to use, 3-12	update frequency, 279
ML algorithms, 2, 149	data freshness and, 279-280
deep learning and, 150	data iteration and, 281
labels, 151	model iteration and, 281
versus neural networks, 150	updates, 267
ML model logic, 191	versioning, 163-165
ML models	ML platform, 319
continual learning, 35	model deployment, 320
data iteration, 267	model store, 321-325
debugging, 165	ML platform layer, infrastructure, 296
deployment, 320	ML system failures
edge computing, optimization, 214-221	data distribution shifts, 237
ensembles, 156, 157	addressing, 248-250
bagging, 158-159	concept drift, 238, 241
base learners, 156	covariate, 238-240
boosting, 159-161	detection, 242-247
stacking, 161	feature change, 241
evaluation, 150	label schema change, 241
test in production, 281-291	label shifts, 238, 240
experiment tracking, 162-163	ML-system specific
exporting, 193	degenerate feedback loops, 233-236
failures	edge cases, 231
batches, overfitting, 167	production data different from training
components, 167	data, 229-231
data problems, 166	operational expectation violations, 227
feature choice, 166	software

crashes, 228	recommender systems, 91
dependency failure, 227	natural language processing (NLP) (see NLP)
deployment failure, 227	neural architecture search (NAS), 174
downtime, 228	neural networks, 150
hardware failure, 228	positional embedding, 133
ML systems	newsfeeds
declarative, 62	ranking posts, 41
failures, 226	user engagement and, 41
iterative processes, 32-35	NLP (natural language processing), 114
requirements	data augmentation and, 113
adaptability, 31	feature engineering, 122
maintainability, 31	nonprobability sampling, 83
reliability, 29	biases, 83
scalability, 30-31	Norvig, Peter, 44
versus traditional software, 22-23	NoSQL, 63
MLOPs, ML systems design and, 2-3	document model, 63
MNAR (missing not at random) values, 124	graph model, 65
model biases, AI ethics, 347-348	notebooks, IDE and, 304
model calibration, 183-184	NSFW (not safe for work) content filtering, 4
model cards, AI ethics, 351-353	NumPy, 56
model compression, 206	
knowledge distillation, 208	0
low-rank factorization, 206-208	objective functions, 40-43
pruning, 208-209	observability, 250, 259-261
quantization, 209-211	offline evaluation of models, 178
model development, 34	baselines, 179
model implementation, failures and, 166	existing solutions, 181
model parallelism, distributed training and,	human, 180
170-172	random, 180
model performance, business analysis, 35	simple heuristic, 180
monitoring, 250, 263	zero rule, 180
(see also test in production)	OLAP (online analytical processing), 69
alerts and, 259	OLTP (online transaction processing) system,
dashboards and, 258	69
logs and, 256-257	on-demand instances, 300
metrics and, 250	on-demand prediction, 198
accuracy-related metrics, 252	One Billion Word Benchmark for Language
features, 253-255	Modeling, 45
predictions, 252-253	online features, 199
raw input, 255	online learning, 268
multiclass classification, 37, 38	online prediction, 197-201, 288
multilabel classification, 38	moving to from batch prediction, 201-203
multimodal data, 53	streaming pipeline, 203-205
	operation expectation violations, 227
N	operator fusion, model optimization and, 218
n-grams, 120	orchestrators
NAS (neural architecture search), 174	HashiCorp Nomad, 314
natural labels, 91	Kubernetes (K8s), 314
feedback loop length, 92	outliers, edge cases and, 232
	-

oversampling	pruning, 208-209
overfitting, 110	public cloud versus private data center, 300-302
SMOTE, 110	
	Q
P	quantization, 209-211
pandas, 56	query languages, 60
Papermill, 305	quota sampling, 83
parallelization, model optimization and, 217	quota sumpimig, os
parameter values over time, 163	R
Pareto optimization, 42	
Parquet, 54, 57	random baselines, 180
binary files, 57	real-time transport
patterns	dataflow and, 74-77
changing, 8	streaming data and, 78
complex, 4	reasonable scale, 294
Pearl, Judea, 43	recall metrics, 107
performance metrics, 162	recommender systems, labels, 91
system performance, 163	regression
perturbation, 114-116	class imbalance and, 102
perturbation method of semi-supervision, 99	tasks, 39
perturbation tests, 181-182	regression models, 36
positional embedding, 133-135	relational databases, 60
fixed, 135	relational models, 59-62
precision metrics, 107	data normalization, 59
prediction, 6, 39	NoSQL, 63
asynchronous, 198	document model, 63
batch prediction, 197-201	graph model, 65
moving to online prediction, 201-203	tables, 59
"mostly correct," user experience, 332-334	reliability, 29
on-demand prediction, 198	repetition, 7
online, 197-201	repetitive jobs, scheduling, 311
streaming pipeline, 203-205	request-driven data passing, 75
synchronous, 198	resampling, 109
predictions, monitoring, 252-253	dynamic sampling, 110
predictive power of features, 140	oversampling
price optimization service, 73	overfitting and, 110
problem framing, 35-43	SMOTE, 110
processing	two-phase learning, 110
analytical, 67	undersampling, 109
batch processing, 78-79	reservoir sampling, 86-87
ETL (extract, transform, load), 70-72	resource management, 311
stream processing, 78-79	resource management layer, infrastructure, 295
transactional, 67	REST (representational state transfer), 74
ACID and, 68	ride management service, 73
production environment, 192	ROC (receiver operating characteristics) curve,
production, ML and, 12-21	108
project objectives, 26-28	Rogati, Monica, 44
project scoping, 34	ROI (return on investment), maturity stage of
prototyping, batch prediction and, 201	adoption, 28
1/1 0,	row deletion, 125

row-major format, 54-56	smooth failing, user experience, 334
CSV (comma-separated values), 54	SMOTE (synthetic minority oversampling
NumPy, 56	technique), 110
RPC (remote procedure call), 74	Snorkel, 95
	snowball sampling, 83
S	soft AutoML, 173-174
sampling, 82	software system failure
importance sampling, 87	crashes, 228
nonprobability, 83	dependency, 227
biases, 83	deployment, 227
reservoir sampling, 86-87	hardware, 228
	spam filtering, 41
simple random sampling, 84 stratified sampling, 84	splitting
	data duplication, 139
weighted sampling, 85	data leakage and, 138
scalability, 30-31	SQL, 60
autoscaling, 30	SQL databases, 61
scale, 7	SSD (solid state disk), 297
deployment myths, 196	stacking, ensembles, 161
schedulers, 313-314	stakeholders, research projects, 13-15
Borg, 314	state-of-the-art models, 152
Slurm, 314	stateful training, 265-268
schemas, document model, 64	automated, 277-278
scoping a project, 34	stateless retraining, 265-268
self-training, 98	manual, 275
semi-supervision, 98-99	stochastic gradient descent (SGD), 169
sentiment analysis classifier, 120	storage and compute layer, infrastructure, 295,
serialization, 193	296, 297
services	compute resources, 297
dataflow and, 73-74	FLOPS (floating-point operations per sec-
driver management, 73	ond), 298
price optimization, 73	private data centers, 300-302
ride management, 73	public cloud, 300-302
SGD (stochastic gradient descent), 169	units, 297
shadow deployment, 282	storage engines, 67
SHAP (SHapley Additive exPlanations, 142	stratified sampling, 84
simple heuristic, offline evaluation, 180	stream processing, 78-79
simple label-preserving transformations, 114	streaming data, real-time transport, 78
simple random sampling, 84	streaming features, 199
Simpson's paradox, 186	streaming pipeline, 203-205
skewed distribution, feature scaling and, 127	structured data, 66-67
slice-based evaluation, 185-188	Sutton, Richard, 44
slicing	synchronous prediction, 198
error analysis, 188	synthetic minority oversampling technique
heuristics based, 188	(SMOTE), 110
slice finders, 188	system performance metrics, 163
Slurm, 314	system-generated data, 50
smartphones	, 6
data sources and, 52	
ML (machine learning) and, 9	

T	lack of labels, 94-102
tags, model store, 323	natural labels, 91-94
tasks	user feedback, 93
classification, 36	n-grams, 121
binary, 37	noisy samples, 116
high cardinality, 37	sampling, <mark>82</mark>
multiclass, 37, 38	importance sampling, 87
multilabel, 38	nonprobability, 83-84
labels, 91	reservoir sampling, 86-87
regression, 36, 39	simple random sampling, 84
teams	stratified sampling, 84
cross-functional collaboration, 335	weighted sampling, 85
data scientists, 336-339	training the model, iteration and, 32-33
production management, 336	data engineering, 34
telemetry, 260	project scoping, 34
test in production, 263, 281	transactional processing, 67
A/B testing, 283-284	ACID and, 68
bandits, 287-291	transfer learning, 99-101
canary release, 285	two-phase learning, 110
interleaving experiments, 285-287	
shadow deployment and, 282	U
text data, 57	undersampling, 109
text file size, 57	unseen data, 6
theoretical constraints, failures and, 166	unstructured data, 66-67
third-party data, 52	updates, deployment myths, 196
time-correlated data, data leakage and, 137	use cases, 9-12
training	user experience, 331
automated retraining, 275-277	consistency, 332
distributed, 168	predictions, mostly correct, 332-334
data parallelism and, 168-170	smooth failing, 334
model parallelism and, 170-172	user feedback, 93
stateful, 265-268	user input data, 50
automated, 277-278	
stateless retraining, 265-268	V
manual, 275	vCPU (virtual CPU), 299
training data, 81	vectorization, model optimization, 217
class imbalance, 102	versioning, 163-165
algorithm-level methods, 110-113	code versioning, 164
challenges, 103-105	,
evaluation metrics, 106-108	W
resampling, 109-110	
data augmentation, 113	WASM (WebAssembly), 223
perturbation, 114-116	weak supervision, 95-98
simple label-preserving transformations,	Snorkel, 95
114	weighted sampling, 85
data distributions, 229	word embeddings, 133 workflow management, 314
data leakage, 135	Airflow, 315-316
labeling, 88	Argo, 316-318
hand labels, 88-90	A180, 310-310

```
DAG (directed acyclic graph), 312
                                                  Z
   Kubeflow, 318
                                                  zero rule baselines, 180
   Metaflow, 318
                                                  zero-shot learning, 100
X
```

XGBoost, 142