- Πανεπιστήμιο Δυτικής Μακεδονίας,
 - Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών,
 - Ασφάλεια Υπολογιστών και Δικτύων.
 - Διδάσκων: Παναγιώτης Σαρηγιαννίδης.

 Ο απλοποιημένος αλγόριθμος συμμετρικής κρυπτογράφησης S-DES.

S-DES \rightarrow Εισαγωγή^{1/7}

- Ο απλοποιημένος συμμετρικός αλγόριθμος S-DES.
 - Ο S-DES παίρνει σαν είσοδο ένα 8-bit απλό κείμενο και ένα κλειδί 10-bit και παράγει ένα 8-bit κρυπτογράφημα σαν έξοδο:

Είσοδος: 00010101

Κλειδί: 0101101000

• Έξοδος: 11001111

S-DES \rightarrow Εισαγωγή^{2/7}

- Ο S-DES εσωκλείει 5 συναρτήσεις για τη διαδικασία κρυπτογράφησης:
 - Συνάρτηση1: αρχική αντιμετάθεση (initial permutation, IP).
 - Συνάρτηση2: σύνθετη συνάρτηση f_K (περιλαμβάνει αντιμετάθεση και αλλαγή και εξαρτάται από το κλειδί εισόδου).
 - Συνάρτηση3: απλή συνάρτηση αντιμετάθεσης των δύο μισών εισόδου (switch, SW).
 - Συνάρτηση4: τη σύνθετη συνάρτηση f_K και πάλι.
 - Συνάρτηση5: τελική αντιμετάθεση, που είναι η αντίστροφη της αρχικής αντιμετάθεσης (IP-1).

S-DES \rightarrow Εισαγωγή^{3/7}

- Ο S-DES εσωκλείει 5 βήματα για την παραγωγή των δύο υποκλειδιών:
 - Βήμα1: Αντιμετάθεση P₁₀.
 - Βήμα2: Αριστερή ολίσθηση LS-1.
 - Βήμα3: Αντιμετάθεση P₈.
 - Βήμα4: Διπλή αριστερή ολίσθηση LS-2.
 - Βήμα5: Αντιμετάθεση P₈ (ξανά).

S-DES \rightarrow Εισαγωγή^{4/7}

• Σχηματικά:

S-DES \rightarrow Εισαγωγή^{5/7}

• Παρατηρήσεις:

- Οι διαδικασίες P₈ και P₁₀ είναι απλές αντιμεταθέσεις.
- Είναι φανερό ότι από το γράφημα χρησιμοποιούνται δύο κλειδιά, το κλειδί Κ₁ και το κλειδί Κ₂, τα οποία προκύπτουν από το αρχικό κλειδί Κ.
- Το αρχικό κλειδί Κ έχει εύρος 10-bit, ενώ τα υποκλειδιά Κ₁ και Κ₂ έχουν εύρος 8-bit το καθένα.
- Η κρυπτογράφηση τροφοδοτείται πρώτα με το υποκλειδί Κ₁ και στη συνέχεια με το υποκλειδί Κ₂.

S-DES \rightarrow Εισαγωγή^{6/7}

- Η κρυπτογράφηση μπορεί να εκφραστεί ως εξής:
 - c = κρυπτογράφημα.
 - m = απλό κείμενο.
 - $c = IP^{-1}(f_{K2}(SW(f_{K1}(IP(m))))).$
 - Η παραγωγή των υποκλειδιών αναλύεται:

```
K_1 = P8(Shift(P10(K))).

K_2 = P8(Shift(Shift(P10(K)))).
```

S-DES \rightarrow Εισαγωγή^{7/7}

- Η αποκρυπτογράφηση μπορεί να εκφραστεί ως εξής:
 - c = κρυπτογράφημα.
 - m = απλό κείμενο.
 - $m = IP^{-1}(f_{K_1}(SW(f_{K_2}(IP(c))))).$
 - Η παραγωγή των υποκλειδιών αναλύεται:

```
K_1 = P8(Shift(P10(K))).

K_2 = P8(Shift(Shift(P10(K)))).
```

S-DES → Παραγωγή υποκλειδιών^{1/12}

 Η παραγωγή του κλειδιού εμπεριέχει μία σειρά από στάδια όπου σχηματίζονται τα υποκλειδιά Κ₁ και Κ₂.

S-DES → Παραγωγή υποκλειδιών^{2/12}

- Εάν θεωρήσουμε ότι το 10-bit κλειδί έχει την ακόλουθη μορφή:
 - $(k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9, k_{10})$
- Μετά την αντιμετάθεση της συνάρτησης P₁₀ το κλειδί αλλάζει μορφή:
 - $(k_3, k_5, k_2, k_7, k_4, k_{10}, k_1, k_9, k_8, k_6)$
- Αφού η αντιμετάθεση της συνάρτησης P₁₀ έχει ως εξής:

P10 35274101986

S-DES → Παραγωγή υποκλειδιών^{3/12}

- Παράδειγμα:
 - Το κλειδί Κ πριν την εφαρμογή της P₁₀:
 - 1010000010
 - Το κλειδί Κ μετά την εφαρμογή της P₁₀:
 - 1000001100

S-DES → Παραγωγή υποκλειδιών^{4/12}

 Στη συνέχεια το κλειδί διαχωρίζεται στη μέση και στο κάθε κομμάτι ξεχωριστά εφαρμόζεται η ολίσθηση LS-1.

S-DES → Παραγωγή υποκλειδιών^{5/12}

- Παράδειγμα:
 - Το κλειδί Κ πριν την μετατόπιση της LS-1:
 - Μέρος1: 10000
 - Μέρος2: 01100
 - Το κλειδί Κ μετά την μετατόπιση της LS-1:
 - Μέρος1: 00001
 - Μέρος2: 11000

S-DES → Παραγωγή υποκλειδιών^{6/12}

- Ακολούθως εφαρμόζεται η αντιμετάθεση
 Ρ₈ στα δύο μέρη του κλειδιού και
 προκύπτει το υποκλειδί Κ₁.
- Στην μετατόπιση P₈ εισάγονται δύο μέρη των 5-bit και εξάγεται ένα ενιαίο υποκλειδί των 8-bit.

S-DES → Παραγωγή υποκλειδιών^{7/12}

- Εάν θεωρήσουμε ότι το 10-bit κλειδί έχει την ακόλουθη μορφή:
 - Μέρος1: (k₁, k₂, k₃, k₄, k₅)
 - Μέρος2: (k₆, k₇, k₈, k₉, k₁₀)
- Μετά την αντιμετάθεση της συνάρτησης P₈ σχηματίζεται το υποκλειδί K₁:
 - \bullet (k₆, k₃, k₇, k₄, k₈, k₅, k₁₀, k₉)
 - Αφού η αντιμετάθεση της συνάρτησης P₈ έχει ως εξής:

637485109

S-DES → Παραγωγή υποκλειδιών^{8/12}

Αφού σχηματιστεί το υποκλειδί Κ₁ τα δύο μέρη των 5-bit (πριν την εφαρμογή της μετατόπισης P₈) υφίστανται ξεχωριστά ολίσθηση με βάση τη συνάρτηση LS-2.

S-DES → Παραγωγή υποκλειδιών^{9/12}

- Παράδειγμα:
 - Τα δύο μέρη πριν την μετατόπιση της LS-2:
 - Μέρος1: 00001
 - Μέρος2: 11000
 - Τα δύο μέρη μετά την μετατόπιση της LS-2:
 - Μέρος1: 00100
 - Μέρος2: 00011

S-DES → Παραγωγή υποκλειδιών^{10/12}

- Μετά την ολίσθηση LS-2 τα δύο μέρη των 5-bit υφίστανται αντιμετάθεση σύμφωνα με την συνάρτηση P₈.
- Στη συνάρτηση P₈ εισάγονται δύο μέρη των 5-bit και εξάγεται το υποκλειδί K₂ που έχει εύρος 8-bit.

S-DES → Παραγωγή υποκλειδιών^{11/12}

- Παράδειγμα:
 - Τα δύο μέρη πριν την αντιμετάθεση P₈:
 - Μέρος1: 00100
 - Μέρος2: 00011
 - Το υποκλειδί K₂ μετά την αντιμετάθεση P₈ :
 - Υποκλειδί Κ₂: 01000011

S-DES → Παραγωγή υποκλειδιών^{12/12}

- Παράδειγμα παραγωγής των υποκλειδιών Κ₁ και Κ₂ από το ενιαίο κλειδί Κ:
 - Το 10-bit κλειδί Κ:
 - 1010000010
 - To 8-bit υποκλειδί Κ₁:
 - 10100100
 - To 8-bit υποκλειδί Κ₂:
 - 01000011

S-DES -> Κρυπτογράφηση^{1/18}

Σχηματικά η διαδικασία κρυπτογράφησης:

S-DES -> Κρυπτογράφηση^{2/18}

- Η κρυπτογράφηση του S-DES αποτελείται από δύο συνεχόμενα βήματα όπου γίνεται διπλή εφαρμογή της συνάρτησης f_K, πρώτα με είσοδο το υποκλειδί K₁ και μετά με είσοδο το υποκλειδί K₂.
- Η συνάρτηση f_κ μπορεί να περιγραφεί:
 - $f_K(L,R) = (L XOR F(R,SK),R)$
 - Όπου:
 - L: το αριστερό 4-bit μέρος του απλού μηνύματος.
 - R: το δεξί 4-bit μέρος του απλού μηνύματος.
 - F: η ενδιάμεση διαδικασία αντιμετάθεσης και μετατόπισης (εισάγονται 4-bit και εξάγονται 4-bit).
 - SK: το υποκλειδί.

S-DES -> Κρυπτογράφηση^{3/18}

 Αρχικά το απλό μήνυμα των 8-bit εισάγεται για κρυπτογράφηση. Το αρχικό απλό μήνυμα αντιμετατίθεται σύμφωνα με τη συνάρτηση IP.

S-DES -> Κρυπτογράφηση^{4/18}

- Εάν θεωρήσουμε ότι το 8-bit απλό μήνυμα έχει την ακόλουθη μορφή:
 - $(m_1, m_2, m_3, m_4, m_5, m_6, m_7, m_8)$
- Μετά την αντιμετάθεση της συνάρτησης ΙΡ σχηματίζεται το μήνυμα:
 - $(m_2, m_6, m_3, m_1, m_4, m_8, m_5, m_7)$
 - Αφού η αντιμετάθεση της συνάρτησης IP έχει ως εξής:

IP 26314857

S-DES -> Κρυπτογράφηση^{5/18}

- Παράδειγμα:
 - Το μήνυμα m πριν την εφαρμογή της IP:
 - 11110011
 - Το μήνυμα m μετά την εφαρμογή της IP:
 - 10111101

S-DES -> Κρυπτογράφηση^{6/18}

Μετά την αντιμετάθεση της συνάρτησης
 ΙΡ το μήνυμα χωρίζεται στο αριστερό (L) και στο δεξί (R) μέρος του.

S-DES -> Κρυπτογράφηση^{7/18}

- Παράδειγμα:
 - Το μήνυμα m (10111101) χωρίζεται:
 - Στο αριστερό μέρος L: 1011
 - Και στο δεξί μέρος R: 1101

S-DES -> Κρυπτογράφηση^{8/18}

 Στη συνέχεια το δεξιό μέρος R εισάγεται στη συνάρτηση Ε/P. Η συνάρτηση Ε/P λαμβάνει 4-bit είσοδο και παράγει 8-bit έξοδο.

S-DES -> Κρυπτογράφηση^{9/18}

 Εάν θεωρήσουμε ότι το δεξί 4-bit μέρος έχει την ακόλουθη μορφή:

$$(r_1, r_2, r_3, r_4)$$

- Μετά την αντιμετάθεση/επέκταση της συνάρτησης Ε/Ρ σχηματίζεται η 8-bit μορφή:
 - $(r_4, r_1, r_2, r_3, r_2, r_3, r_4, r_1)$
 - Αφού η αντιμετάθεση/επέκταση της συνάρτησης Ε/Ρ έχει ως εξής:

E/P 4 1 2 3 2 3 4 1

S-DES -> Κρυπτογράφηση^{10/18}

- Παράδειγμα:
 - Το δεξί μέρος r πριν από την είσοδο στη συνάρτηση Ε/Ρ:
 - r = 1101
 - Μετά την έξοδο από τη συνάρτηση Ε/Ρ:
 - 11101011

S-DES -> Κρυπτογράφηση^{11/18}

- Η 8-bit έξοδος από τη συνάρτηση Ε/Ρ συνδυάζεται με το 8-bit υποκλειδί Κ₁ με πράξη ΧΟR.
 - Η 8-bit έξοδος από την συνάρτηση Ε/Ρ είναι:
 - 11101011
 - To 8-bit υποκλειδί Κ₁ είναι:
 - 10100100
 - Το 8-bit αποτέλεσμα έχει τη μορφή:
 - 01001111

S-DES -> Κρυπτογράφηση^{12/18}

- Το πρώτο (αριστερό) μέρος εισάγεται στο κουτί-S₀ και το δεύτερο (δεξιό) εισάγεται στο κουτί-S₁.
- Τα κουτιά S₀ και S₁ δέχονται 4-bit εισόδους και παράγουν 2-bit εξόδους. Τα κουτιά αποτελούν διδιάστατους πίνακες 4Χ4 που περιέχουν δεκαδικούς αριθμούς από 0 έως και 3.
- Η 4-bit είσοδος «σπάει» στη μέση και το πρώτο μέρος δηλώνει το δεκαδικό αριθμό σειράς και το δεύτερο μέρος δηλώνει το δεκαδικό αριθμό στήλης.

S-DES -> Κρυπτογράφηση^{13/18}

- Στο κουτί S_0 εισάγεται το 4-bit μέρος 0100 και στο κουτί S_1 εισάγεται το 4-bit μέρος 1111.
 - Για το κουτί S₀:
 - Το πρώτο και το τέταρτο bit μετατρέπονται σε δεκαδικό αριθμό και δηλώνουν την γραμμή στο κουτί S_0 :
 - Δηλαδή: 00₍₂₎ → 0₍₁₀₎ → σειρά 0
 - Το δεύτερο και το τρίτο bit μετατρέπονται σε δεκαδικό αριθμό και δηλώνουν την στήλη στο κουτί S_0 :
 - Δηλαδή: 10₍₂₎ → 2₍₁₀₎ → στήλη 2
 - Για το κουτί S₁:
 - Το πρώτο και το τέταρτο bit μετατρέπονται σε δεκαδικό αριθμό και δηλώνουν την γραμμή στο κουτί S₁:
 - Δηλαδή: 11₍₂₎ → 3₍₁₀₎ → σειρά 3
 - Το δεύτερο και το τρίτο bit μετατρέπονται σε δεκαδικό αριθμό και δηλώνουν την στήλη στο κουτί S₁:
 - Δηλαδή: 11₍₂₎ → 3₍₁₀₎ → στήλη 3

S-DES -> Κρυπτογράφηση^{14/18}

• Τα κουτιά S₀ και S₁ περιέχουν συγκεκριμένες τιμές:

 S_0

1	0	3	2
3	2	1	0
0	2	1	3
3	1	თ	2

 S_1

0	1	2	3
2	0	1	3
3	0	1	0
2	1	0	3

S-DES -> Κρυπτογράφηση^{15/18}

- Επομένως το τμήμα που εξάγεται από το κουτί S₀ δείχνει στη δεκαδική τιμή 3 → 11 και το τμήμα που εξάγεται από το κουτί S₁ δείχνει στη δεκαδική τιμή 3 → 11.
 - Με αυτόν τον τρόπο από το κουτί S₀ εξάγεται το τμήμα 11 και από το κουτί S₁ εξάγεται το τμήμα 11.

S-DES -> Κρυπτογράφηση^{16/18}

Τα δύο τμήματα εισάγονται ενοποιημένα στην συνάρτηση αντιμετάθεσης P₄. Η συνάρτηση P₄ δέχεται δύο τμήματα των 2-bit και εξάγει ένα 4-bit τμήμα.

S-DES -> Κρυπτογράφηση^{17/18}

- Εάν θεωρήσουμε ότι τα δύο τμήματα των 2-bit έχουν την ακόλουθη μορφή:
 - $(t_1, t_2), (t_3, t_4)$
- Μετά την αντιμετάθεση της συνάρτησης P₄
 σχηματίζεται η 4-bit μορφή:
 - (t_2, t_4, t_3, t_1)
 - Αφού η αντιμετάθεση της συνάρτησης P₄ έχει ως εξής:

P₄ 2 4 3 1

S-DES -> Κρυπτογράφηση^{18/18}

- Για το συγκεκριμένο παράδειγμα η έξοδος από τη συνάρτηση P₄ θα είναι:
 - 1111
- Έπειτα το 4-bit μέρος συνδυάζεται με πράξη ΧΟΡ με το αρχικό τμήμα L:
 - 1111 XOR L = 1111 XOR 1011 = 0100
- Το τμήμα αυτό εισάγεται στη συνάρτηση SW σαν αριστερό μέλος, ενώ το δεξιό μέλος είναι το τμήμα R = 1101.
- Η συνάρτηση SW αντιστρέφει το αριστερό και δεξί μέλος και τα δύο τμήματα επαναεισάγονται στη συνάρτηση f_K με όμοιο τρόπο. Η μόνη αλλαγή στη νέα εκτέλεση της f_K είναι ότι χρησιμοποιείται το υποκλειδί K₂.

S-DES → Ισχύς

- Ισχύς του S-DES.
 - Μία «βίαιη επίθεση» είναι εφικτό να παραβιάσει τον S-DES, αφού με ένα 10-bit κλειδί υπάρχουν μόνο 2¹⁰ = 1024 δυνατοί συνδυασμοί κλειδιών.

S-DES -> Σχέση με DES

- Ο S-DES αποτελεί μία μικρογραφία του DES (χρησιμοποιείται για εκπαιδευτικούς σκοπούς).
 - O S-DES δέχεται 8-bit απλό κείμενο, ενώ ο DES 64-bit απλό κείμενο.
 - Ο S-DES δέχεται 10-bit κλειδί, ενώ ο DES 64-bit (το οποίο μετατρέπεται σε 56-bit).
 - Ο S-DES χρησιμοποιεί 2 υποκλειδιά, ενώ ο DES 16.

S-DES - Παραδείγματα

• Παράδειγμα1:

Είσοδος: 00010101

• Κλειδί: 0101101000

• Έξοδος: 11001111

• Παράδειγμα2:

Είσοδος: 00000000

Κλειδί: 1111111111

• Έξοδος: 11101011

• Παράδειγμα3:

Είσοδος: 111111111

• Κλειδί: 000000000

• Έξοδος: 00010100