(1 point) What is the square root of i? (That is, what is \sqrt{i} ?)

B. -1

o c. $\frac{1}{\sqrt{2}}(1+i)$

D. (1 - i)

E. Does not exist

(1 point) Write each of the given numbers in the polar form $re^{i\theta}$, $-\pi < \theta \leq \pi$.

(a)
$$\left(\cos\frac{2\pi}{9} + i\sin\frac{2\pi}{9}\right)^3$$

(b)
$$\frac{6+6i}{-\sqrt{3}+i}$$
$$r = 3 \operatorname{sqrt}(2)$$

 $\theta = \tan^{-1}(2+ \text{sqrt}(3)) - \text{pi}$

(c) $\frac{2i}{5e^{(6+i)}}$

tan^-1(cos1/sin1) $r = \frac{2}{(5*e^6)}$

(1 point)

Re-write the following expressions with i:

$$\sqrt{-15} = \operatorname{sqrt}(15)i$$

(1 point) Write each of the given numbers in the polar form $re^{i\theta}$, $-\pi < \theta \le \pi$.

(a)
$$\frac{1-i}{5}$$

$$r = \boxed{\text{sqrt(2)/5}}$$
 , $\theta = \boxed{\text{tan^-1(-1)}}$

(b)
$$-8\pi(2 + i\sqrt{3})$$

$$r=$$
 8sqrt(7)pi , $heta=$ tan^-1(sqrt(3)/2)-pi

(c)
$$(1+i)^6$$

$$r=$$
 8 , $heta=$ -pi/2