Digital Logic

Akhia¹

2020年9月21日

 $^{^{1}\}hbox{E-mail:akhialomgir} 362856@gmail.com$

目录

基础

1.1 二进制八进制十进制十六进制相互转化

1.1.1 十进制和其他进制的相互转换

- 1. 其他进制转换为十进制: 各进制数按权展开并相加
- 2. 十进制转换为其他进制:
 - (a) 整数:除以基数取余,直到商为零,逆序
 - (b) 小数: 乘以基数取整, 顺序

1.1.2 二进制八进制十六进制的相互转换

以小数点为界向两侧划分,按基数划分组,不够则补零

1.1.3 8421BCD 码格雷码余 3 码与十进制之间的转换

- 1. 8421BCD
- 2. G
- 3. 余3

1.2 十进制与原码反码补码之间的转换

符号位 0, 正数反码补码和原码相同

符号位 1, 负数反码数值取反,补码在反码最低有效位上加一

1.3 校验法

- 1. 奇偶校验码: 可以验证传输过程是否产生了错误
- 2. 奇校验: 为二进制添加一位校验码, 使 1 的数量为奇数

- 3. 偶校验: 为二进制添加一位校验码, 使 1 的数量为偶数
- 4. 海明码: 传输过程中错一位概率大,通过海明码可以验证是哪位出错

逻辑代数

2.1 逻辑代数运算法则

2.1.1 逻辑运算

1.
$$F = A + B \quad (F = A \wedge B)$$

$$2. \ F = A \cdot B \ (F = A \vee B)$$

3.
$$F = \overline{A}$$

表 2.1:
$$F = A + B$$
 $(F = A \wedge B)$

В	F	
0	0	
1	1	
0	1	
1	1	
	0	

表 2.2:
$$F = A \cdot B$$
 $(F = A \vee B)$

	_	(-	
A	В	F	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

表
$$2.3$$
: $F = \overline{A}$

∠.Ծ.	1' -	_
A	F	
0	1	
1	0	

2.1.2 基本定律

1

$$A + B = B + A$$
 $AB = BA$

 2
 $A + (B + C) = (A + B) + C$
 $A(BC) = (AB)C$

 3
 $A + (BC) = (A + B)(A + C)$
 $A(B + C) = AB + AC$

 4
 $A + 0 = A, A + 1 = 0$
 $A \cdot 1 = A, A \cdot 0 = 0$

 5
 $A + \overline{A} = 1$
 $A \cdot \overline{A} = 0$

 6
 $A + A = A$
 $A \cdot A = A$

 7
 $\overline{A} = A$

 8
 $\overline{A} + \overline{B} = \overline{A} \cdot \overline{B}$
 $\overline{AB} = \overline{A} + \overline{B}$

2.1.3 代入规则

2.1.4 反演规则

$$F\left\{1 \Longleftrightarrow 0 + \Longleftrightarrow \bullet A \Longleftrightarrow \overline{A}\right\} \overline{F} \tag{2.1}$$

2.1.5 对偶规则

$$F\left\{1 \Longleftrightarrow 0 + \Longleftrightarrow \bullet\right\} F' \tag{2.2}$$

2.1.6 常用公式

2.2 逻辑函数标准形式

1. 最小项及标准与或式

最小项: **与项**包含全部 n 个变量, 全部以原变量或反变量的形式出现, 且只出现一次

例如: $A\overline{B}C$

函数简写作: $\sum m(0,1,2,3...)$

2. 最大项及标准或与式

最大项:或项包含全部 n 个变量,全部以原变量或反变量的形式出现,且只出现一次

例如: $A + \overline{B} + C$

函数简写作: $\prod M(0,1,2,3...)$

- 3. 两者转换
 - (a) 代数转换法
 - i. 转换到最小项之和
 - ii. 转换为一般与或式
 - iii. 将非最小项拓展到最小项
 - i. 转换到最大项之积
 - ii. 转换为一般或与式
 - iii. 将非最大项转换到最大项
 - (b) 真值表转换法
 - i. $1:\sum m(0,2,4,6...)$
 - ii. $0: \prod M(1,3,5,7...)$

2.3 逻辑函数化简

- 1. 代数化简化
 - (a) 与或
 - (b) 并项法 $AB + A\overline{B} = A$
 - (c) 吸收法A + AB = A
 - (d) 消去法 $A + \overline{A}B = A + B$
 - (e) 配项法 $A \cdot 1 = 1, A + \overline{A} = 1$
 - (f) 或与
 - (g) 定理法
 - (h) 求偶得到F'(ffi-)化简再求偶得到 F
- 2. 卡诺图简化

CD AB	00	01	11	10
00	$\overline{A}\overline{B}\overline{C}\overline{D}$	$\overline{A}B\overline{C}\overline{D}$	$AB\overline{C}\overline{D}$	$A\overline{B}\overline{C}\overline{D}$
01	$\overline{A}\overline{B}\overline{C}D$	$\overline{A}B\overline{C}D$	$AB\overline{C}D$	$A\overline{B}\overline{C}D$
11	$\overline{A}\overline{B}CD$	$\overline{A}BCD$	ABCD	$A\overline{B}CD$
10	$\overline{A}\overline{B}C\overline{D}$	$\overline{A}BC\overline{D}$	$ABC\overline{D}$	$A\overline{B}C\overline{D}$

- (a) $AB + A\overline{B} = A$
- (b) $\overline{A}B\overline{C} + \overline{A}BC + AB\overline{C} + ABC = B\overline{C} + BC = B$
- (a) 卡诺圈尽量大
- (b) 卡诺圈个数尽量少
- (c) 每个 1 可以被多个卡诺圈包含

组合逻辑电路

3.1 逻辑门

1. 与门

符号: A=&-F

表达式: $F = A \cdot B$

2. 或门

符号: *A*=≥ 1-*F*

表达式: F = A + B

3. 非门

符号: A-1。-F

表达式: $F = \overline{A}$

- 4. 复合逻辑门
 - (a) 与非门

符号: ^A=&o-F

表达式: $F = \overline{AB}$

(b) 或非门

符号: ^A=≥ 1∘-F

表达式: $F = \overline{A + B}$

(c) 与或非门

表达式: $F = \overline{AB + CD}$

(d) 异或门

符号: A== 1-F

表达式: $F = A \oplus B = A\overline{B} + \overline{A}B$

同或运算: $F = A \odot B = AB + \overline{AB}$

- 1. 根据输入逐级写出输出
- 2. 化简逻辑功能
- 3. 列出真值表
- 4. 讨论功能

3.2 逻辑函数实现

$$F(A,B,C) = AB + \overline{A}C = (\overline{A} + B)(A + C) = \overline{\left[\overline{(A+C)} + \overline{(\overline{A}+B)}\right]} = \overline{(A\overline{B} + \overline{A})}$$
(3.1)

- 1. 与非
 - (a) 化为最简**与或**式
 - (b) 变换为**与非2** 式
- 2. 或非
 - (a) 化为最简**或与**式
 - (b) 变换为**或非2**式
- 3. 与或非
 - (a) 化为最简**与或**式
 - (b) 变换为**与或非**式
- 4. 异或(部分才能实现,但简单)

3.3 组合逻辑电路分析

- 1. 输入标字母
- 2. 从输入端按深度一层层写出逻辑函数
- 3. 用前一层输出代入后一层并继续重复
- 4. 简化逻辑函数, 判断合理性
- 5. 列出逻辑电路的真值表
- 6. 判断功能并评价完善

3.4 组合逻辑电路设计

- 1. 根据逻辑要求构建真值表
- 2. 根据真值表写出逻辑函数
- 3. 将逻辑函数化简并转换成适当形式

3.5 竞争与冒险

原因:信号传输延迟 用输入、输出时序图表示

3.5.1 竞争

竞争:输入信号通过不同途径达到输出端的时间不同(随机过程)

- 1. 非临界竞争: 不会产生错误
- 2. 临界竞争: 导致逻辑错误

3.5.2 冒险

冒险(暂时、瞬态现象):输出端的尖脉冲

	OUT_EXPECTED	OUT_ERROR	
静态冒险	偏 1	1	1-0-1
	偏 0	0	0-1-0
动态冒险	偏 1	0-1	0-1-0-1
	偏 0	1-0	1-0-1-0

1. 代数判别法

从函数表达式结构判别

- (a) 如果某变量同时以原变量反变量形式存在
- (b) 将其他变量可能的取值代入
- (c) 如果出现 $x + \overline{x}$ 或 $x\overline{x}$ 则可能产生冒险

2. 卡诺图判别法

- (a) 画出各**与项**对应卡诺圈
- (b) 如果两卡诺圈**相切**(存在共用的相邻最小项)则可能产生冒险

同步时序电路

4.1 结构

- 1. 组合电路
- 2. 储存电路
- 1. 输出函数

$$Z_i = f_i(x_1, \dots, x_n, y_1, \dots, y_r), i = 1, \dots, m$$
 (4.1)

2. 激励函数

$$Y_j = g_j(x_1, \dots, x_n, y_1, \dots, y_r), \ j = 1, \dots, r$$
 (4.2)

统一的时钟信号(不能太短)来临后,电路状态才改变,且只有一次。

时钟信号起同步作用

信号来临前 现态 y^n 信号来临后 次态 y^{n+1}

4.2 描述

- 1. 状态表
- 2. 状态图

4.3 触发器

- 1. 储存电路
- 2. 能储存一位二进制数
- 3. 在任一时刻只处于一种稳态

4.3.1 R-S 触发器

- 1. 基本型(锁存器)
- 2. 直接复位-置位
- 3. 组成:
- 4. 交叉耦合或非门
- 5. 交叉耦合与非门
- 6. 时钟型
- 7. 4与非

空翻现象:由于时钟信号宽度而多次翻转,可由主从触发器(串联)解决

4.3.2 D 触发器

为了解决 R-S 触发器输入同为 1 时触发器状态不确定问题

- 1. 单输入端
- 2. 输入信号转换为互补信号

4.3.3 J-K 触发器

为了解决 R-S 触发器输入同为 1 时触发器状态不确定问题,同时使触发器有两个输入端

4.3.4 T 触发器

JK 端合并为 T 端

- 4.4 电路分析
- 4.5 电路设计

异步时序电路

- 5.1 特性
- 5.2 脉冲异步分析与设计
- 5.3 电平异步分析与设计
- 5.3.1 电平异步竞争与冒险

规模集成电路逻辑设计

- 6.1 二进制并行加法器
- 6.2 数值比较器
- 6.3 译码器
- 6.4 多路选择器
- 6.5 计数器
- 6.6 寄存器
- 6.7 只读存储器
- 6.8 可编程逻辑阵列
- 6.9 可编程阵列逻辑
- 6.10 通用阵列逻辑
- 6.11 高密度可编程逻辑器件