

Eine einfache Computersimulation kollidierender Galaxien

Michael Thiel Manuel Brea-Carreras Dr. Markus Pössel MPIA-Campus Heidelberg

Galaxienentstehung und -entwicklung

Toomre & Toomre (1972): Galactic Bridges and Tails Astrophysical Journal, 178:623-666

Aufbau der Simulation

Aufbau der Galaxie

Ablauf der Simulation

Update Funktion

Zweikörperproblem: Analytische Lösung

Dreikörperproblem (Allgemeiner Fall): Numerische Lösung

$$F = \frac{GM_1 \cdot M_2}{r^2}$$

$$\ddot{\vec{x}}_{j}(t) = -G \sum_{i \neq j} m_{i} \cdot \frac{\vec{x}_{j}(t) - \vec{x}_{i}(t)}{|\vec{x}_{j}(t) - \vec{x}_{i}(t)|^{3}}$$

Numerische Lösungsverfahren:

Haus der Astronomie

Explizites Euler-Verfahren

Velocity update

$$\dot{\vec{x}}_j(t_{n+1}) = \dot{\vec{x}}_j(t_n) + h\ddot{\vec{x}}_j(t_n)$$

Position update

$$\vec{x}_j(t_{n+1}) = \vec{x}_j(t_n) + h\dot{\vec{x}}_j(t_n)$$

Für
$$n = 1, 2, 3...$$

1D Bewegung eines harmonischen Oszillators

Numerische Lösungsverfahren:

Velocity Verlet

Velocity update (Half-Step)

$$\dot{\vec{x}}_j(t_{n+1/2}) = \dot{\vec{x}}_j(t_n) + \frac{h}{2}\ddot{\vec{x}}_j(t_n)$$

Position update

$$\vec{x}_j(t_{n+1}) = \vec{x}_j(t_n) + h\dot{\vec{x}}_j(t_{n+\frac{1}{2}})$$

Velocity update

$$\dot{\vec{x}}_j(t_{n+1}) = \dot{\vec{x}}_j(t_{n+\frac{1}{2}}) + \frac{h}{2}\ddot{\vec{x}}_j(t_{n+1})$$

Aufbau der Simulation

Ergebnisse

Ergebnisse:

1. Retrograde Begegnung

Größe	Toomre & Toomre	Eigene Parameter
$m1, m2 [M_{\odot}]$	10 ¹¹	10 ¹¹
$R_{min}\left[kpc\right]$	25	30,46
е	1	1,21
Δt [Jahre]	10 ⁸	10 ⁸

•

Ergebnisse:

2. Prograde Begegnung

Größe	Toomre & Toomre	Eigene Parameter
$m1, m2 [M_{\odot}]$	10^{11} , $0.25 * 10^{11}$	10^{11} , $0.25 * 10^{11}$
$R_{min}\left[kpc\right]$	25	27,02
e	1	1,04
Δt [Jahre]	108	108

Ergebnisse - Simulation des NGC 5426/7 Paars

 $\overline{e} \approx 0.67 \ R_{min} \approx 28.16 kpc$

t = 12

Ergebnisse - Simulation des NGC 4038/9 Paars

 $e \approx 0.44$ $R_{min} \approx 18.57 kpc$

Fazit und Ausblick

- Bedeutung des Projekts
 - Gut geeignet auch für Schüler der Oberstufe
 - Anschauliche Ergebnisse
- Schwierigkeiten
 - Hoher Zeitaufwand
 - Motivation erforderlich
- Github Zugang
 - bit.ly/2NmdBQe

Internationales Sommerpraktikum am Haus der Astronomie 2017

bit.ly/2NmdBQe

Dr. Markus Pössel Haus der Astronomie MPIA-Campus Heidelberg

DANKE