Математическая логика и теория алгоритмов

Сергей Григорян

23 октября 2024 г.

Содержание

1	Лен	кция 7	3		
2	Лекция 8				
	2.1	Выр-ем задачи через вып-ть ф-л	7		
		2.1.1 Обобщаем. Метод резолюций	Ĝ		

1 Лекция 7

Теорема 1.1 (О полноте ИВ). ϕ - тавтология $\Rightarrow \phi$ выводима

Правило исчерп. разбора случаев: Пусть Γ - нек-рое мн-во ф-ул, при это $\Gamma,A \vdash B$ и $\Gamma, \neg A \vdash B$

Тогда: $\Gamma \vdash B$

$$\begin{array}{c|c} \Gamma, A \vdash B & \Gamma, \neg A \vdash B \\ \hline \Gamma \vdash B & \end{array}$$

Обозначение.

$$p^{\varepsilon} = \begin{cases} p, \varepsilon = 1 \\ \neg p, \varepsilon = 0 \end{cases}$$

<u>Лемма</u> **1.2** (Основная). Пусть ϕ - ϕ -ла от n переменных $(\overline{p} = (p_1, \dots, p_n))$.

$$(a_1, \ldots, a_n) \in \{0, 1\}^n, \phi(a_1, \ldots, a_n) = a \in \{0, 1\}$$

Тогда:

$$p_1^{a_1}, p_2^{a_2}, \dots, p_n^{a_n} \vdash \phi^a$$

Рассм. переход:

ОСНОВНАЯ ЛЕММА ⇒ ТЕОРЕМА О ПОЛНОТЕ ИВ

$$\phi$$
 - тавтология \Rightarrow при всех (a_1, \dots, a_n) $\phi(a_1, \dots, a_n) = 1 \underset{\Pi_{0, \text{ JEMMe}}}{\Longrightarrow} p_1^{a_1}, \dots, p_n^{a_n} \vdash \phi$

Пример. n = 3: le Picture

 $\underline{\text{Лемма}}$ 1.3 (Базовая).

AND-ы:

$$A, B \vdash A \land B$$
$$\neg A, B \vdash \neg (A \land B)$$
$$A, \neg B \vdash \neg (A \land B)$$
$$\neg A, \neg B \vdash \neg (A \land B)$$

OR- $b\iota$:

$$A, B \vdash A \lor B$$

$$\neg A, B \vdash A \lor B$$
$$A, \neg B \vdash A \lor B$$
$$\neg A, \neg B \vdash \neg (A \lor B)$$

Implication-ы:

$$A, B \vdash A \to B$$

$$\neg A, B \vdash A \to B$$

$$A, \neg B \vdash \neg (A \vdash B)$$

$$\neg A, \neg B \to A \to B$$

И ещё:

$$\neg A \vdash \neg A$$
$$A \vdash \neg (\neg A)$$

Док-во основной леммы. Инд-ция по построению ф-лы:

База) Переменная: $p_i^{a_i} \vdash p_i^{a_i}$

Переход) Пусть, например:

$$\phi = (\xi \wedge \eta)$$

$$\xi(a_1, \dots, a_n) = a, \eta(a_1, \dots, a_n) = b \Rightarrow \phi(a_1, \dots, a_n) = a \cdot b$$

По предположению индукции:

$$p_1^{a_1}, p_2^{a_2}, \dots, p_n^{a_n} \vdash \xi^a \bowtie p_1^{a_1}, p_2^{a_2}, \dots, p_n^{a_n} \vdash \eta^b$$

По базовой лемме:

$$\xi^a, \eta^b \vdash \phi^{a \cdot b}$$

Запишем эти 3 вывода (подряд):

$$p_1^{a_1}, \dots, p_n^{a_n} \phi^{a \cdot b}$$

Другое док-во. Пусть Γ - мн-во пропозициональных ф-л.

Определение 1.1. Γ **совместно**, если при некот. значениях переменных все ф-лы из Γ истинны.

Определение 1.2. Γ - **противоречиво**, если для некот. ф-лы ϕ верно:

$$\begin{cases} \Gamma \vdash \phi \\ \Gamma \vdash \neg \phi \end{cases}$$

Теорема 1.4. Γ совместна $\stackrel{*}{\iff}$ Γ непротиворечива.

Рассмотрим связь теоремы о совм. и непрот. с теор. о корр. и полн.:

Теорема 1.5 (О корректности).

$$\vdash \phi \Rightarrow \{ \neg \phi \}$$
 - противор. $\stackrel{*}{\Longrightarrow} \{ \neg \phi \}$ - несовм. $\Rightarrow \forall a, \neg \phi(a) = 0 \iff \phi(a) = 1 \Rightarrow \phi$ - тавтология

Теорема 1.6 (О полноте).

 ϕ - тавтология \Rightarrow $\{ \neg \phi \}$ - несовм. $\stackrel{*}{\Rightarrow} \{ \neg \phi \}$ - противоречиво $\Rightarrow \neg \neg \phi \vdash \phi$

$$\begin{array}{c|c} \neg \phi \vdash B & \neg \phi \vdash \neg B \\ \hline & \vdash \neg \neg \phi \end{array}$$

Доказательство. 1) Γ против. ⇒ Γ несовм.

Теорема 1.7 (Обобщённая теорема о корректности). Если $\Gamma \vdash A$ и все ф-лы из Γ верны на (a_1, \ldots, a_n) , то и A верна на том жее наборе.

Д-во: индукция по номеру ф-лы в выводе.

 Γ - совм. $\Rightarrow~$ Все ф-лы из Γ верны на нек-ром наборе.

$$\Gamma \vdash \phi \Rightarrow \phi$$
 верно на том же наборе

$$\Gamma \vdash \neg \phi \Rightarrow \neg \phi \Rightarrow ---- || -----$$

Но ϕ и $\neg \phi$ не м. б. верны одновременно. Противор.

2) Γ непрот. \Rightarrow Γ совм. Пусть \triangle непрот. Будем говорить, что \triangle - полное, если для $\forall \phi$ верно $\triangle \vdash \phi$ или $\triangle \vdash \neg \phi$.

<u>Лемма</u> 1.8 (I). Γ непрот $\Rightarrow \Gamma \subset \triangle$ для некот. полного непрот. \triangle <u>Лемма</u> 1.9 (II). \triangle полное, непрот. $\Rightarrow \triangle$ - совм.

Док-во леммы I для счётного мн-ва перемен. Если переменных сч. мн-во то и ф-лы тоже.

Пусть $\phi_1, \phi_2, \dots, \phi_n$ - все ф-лы.

Oпр. Γ_i по инд-ции:

$$\Gamma_0 = \Gamma, \Gamma_i = \begin{cases} \Gamma_{i-1} \cup \{ \phi_i \}, \text{ - если это непрот.} \\ \Gamma_{i-1} \cup \{ \neg \phi_i \} \text{ - иначе} \end{cases}$$

Утверждение 1.1. *Все* Γ_i - *непрот.*

Доказательство.

$$\begin{cases} \Gamma_{i-1} \cup \{ \phi_i \} & \text{- прот.} \Rightarrow \Gamma_{i-1} \vdash \neg \phi_i \\ \Gamma \cup \{ \neg \phi_i \} & \text{- прот.} \Rightarrow \Gamma_{i-1} \vdash \neg \neg \phi_i \end{cases}$$

 $\Rightarrow \Gamma_{i-1}$ - прот. \Rightarrow пришли к противоречию.

 $\Gamma_0 \subset \Gamma_1 \subset \Gamma_2 \subset \dots$ $\Delta = \bigcup_{i=0}^{\infty} \Gamma_i$ - тоже непрот.

Если \triangle прот., то прот. использ. кон. число ф-л из \triangle . Каждое δ_j лежит в Γ_{k_j} . Тогда прот. выв-ся из $\Gamma_{max\{k_j\}}$. Но все конечные Γ_i непрот.

 \mathcal{A} ок-во леммые II. \triangle - полн. \Rightarrow для перем. $p_i,$ $\triangle \vdash p_i \lor \triangle \vdash \neg p_i.$ Набор. значений:

$$p_i = \begin{cases} 1, \triangle \vdash p_i \\ 0, \triangle \vdash \neg p_i \end{cases} \tag{1}$$

Д-м, что ф-лы из \triangle верны на системе (1). Ф-ла - перем. \Rightarrow согл. опр. системы (1):

$$\phi = \neg \psi$$

Более общ утв.:

$$\begin{cases} \triangle \vdash \phi \Rightarrow \phi \text{ верна на системе (1)} \\ \triangle \not\vdash \phi \Rightarrow \phi \text{ - неверна на системе (1)} \end{cases}$$

2 Лекция 8

Ф-лы			
Выполнимые	Невыполнимые		

2.1 Выр-ем задачи через вып-ть ф-л

1) Раскраски:

Дан граф G = (V, E). Цель, построить 3-раскраску

$$V \rightarrow \{1, 2, 3\} : (v, u) \in E \Rightarrow col(u) \neq col(v)$$

Вершина	$u\mapsto (p_u,q_u)$
цвет	знач перем
не сущ	00
1	01
2	10
3	11

Усл-ие на ребро:

$$(v,u) \mapsto (p_u \neq p_v) \lor (q_u \neq q_v)$$

Итоговая ф-ла:

$$\bigcap_{(v,u)\in E} (p_u \neq p_v) \vee (q_u \neq q_v)$$

Вып-ма т. и т. т., когда граф раскрашен в 3 цвета.

2) Расстановка ферзей:

$$n \times n$$
: $p_{ij} = \begin{cases} 1, \text{ на клетке } (i,j) \text{ стоит ферзь} \\ 0, \text{ иначе} \end{cases}$ $(p_{i1} \vee \ldots \vee p_{in})$ - в і-ой строке > 1 Ф. $(\neg p_{ij} \vee \neg p_{ik})$ - в і-ой строке ≤ 1 Ф $(\neg p_{ik} \vee \neg p_{jk})$ - в і-ой вертикали ≤ 1 Ф $(\neg p_{ij} \vee \neg p_{i-k,j-k})$ на диагонали ≤ 1 Ф $(\neg p_{ij} \vee \neg p_{i-k,j-k})$ на побочной диагонали ≤ 1 Ф

Вся ф-ла - конкатенация всех условий.

3) 3-ча о клике:

Дан граф $G, q_{uv} = 1 \iff (u, v) \in E$ Вопрос: \exists ? клика из k вершин.

$$(v_1, v_2, \dots, v_k) \colon \forall i \neq j, (v_i, v_j) \in E$$

$$\bigvee_{(v_1, v_2, \dots, v_k)} \bigwedge_{i \neq j} q_{v_i, v_j} -$$
длина $\sim C_n^k =$
$$= \frac{n!}{k!(n-k)!} > \frac{(n-k)^k}{k!} > \left(\frac{n-k}{k}\right)^k = \frac{n!}{10} 9^{\frac{n}{10}}$$

Можно ли понимать v_1, v_2, \dots, v_k как перемен. и написать ф-лу:

$$\bigwedge_{i\neq j} (v_i \neq v_j \land q_{v_i,v_j})?$$

Это не булева ф-ла, т. к. перем. встреч. в индексе.

$$p_u = egin{cases} 1, \ ext{u в клике} \ 0, \ ext{иначе} \ (p_u \wedge p_v)
ightarrow q_{uv} \ p_1 + p_2 + \ldots + p_n \geq k \end{cases}$$

Или: $(u, v) \notin E \Rightarrow (\neg p_u \land \neg p_v).$

Будем делать так:

$$p_{iu}$$
 - вершина u - i -ая в клике

$$(p_{i1} \lor \ldots \lor p_{in})$$
 - под каждым номером есть вершина, $i \in \{1, \ldots, k\}$ $i \neq j \Rightarrow (\neg p_{iv} \lor \neg p_{jv})$ - у одной верш. не м. б. 2 номеров. $(u,v) \not\in E \Rightarrow (\neg p_{iu} \lor \neg p_{jv})$ - антиребро не м. б. внутри клики.

2.1.1 Обобщаем. Метод резолюций

Ф-ла - конъюнкция всех усл. - КНФ.

Пусть дана КНФ, будем рассм. её как набор дизъюнктов.

Правило Res:

$$\cfrac{A \lor x}{A \lor B$$
 - резольвента

Утверждение 2.1. Если на данном наборе вып. $A \lor x$ и $B \lor \neg x$, то вып-мо и $A \lor B$

Следствие. Если исх. ф-ла вып-ма, то и все резольвенты тоже.

Пустой дизъюинкт: \bot

$$\begin{array}{c|c}
x & \neg x \\
 & \bot \\
\hline
x \lor y & \neg x \lor \neg y \\
\hline
y \lor \neg y \\
\hline
p \lor x & p \lor r \lor \neg x \\
\hline
p \lor r
\end{array}$$

Метод резолюций: строим всё новые резольвенты, пока либо не будет выведен \bot , либо не прекратится появление новых дизъюнктов.

Теорема 2.1 (О корректности метода резол.). *Если исх. ф-ла вып., то* \perp *нельзя вывести.*

Доказательство. Если можно вывести, то \perp будет ист., но он $\equiv 0$

Пример. Φ ерзи 2 x 2

Усл-ие:

$$p \lor q$$

$$r \lor s$$

$$\neg p \lor \neg q$$

$$\neg r \lor \neg q$$

$$\neg p \lor \neg s$$

$$\neg q \lor \neg r$$

$$p \lor q \qquad \neg p \lor \neg s$$

$$q \lor \neg s$$

Picture

Теорема 2.2. (О полноте) $Ecnu \perp$ нельзя вывести, то ф-ла выполнима.

Доказательство. Все выводимые дизъюнкты разобъём на классы.

$$C_0 \subset C_1 \subset C_2 \subset \ldots \subset C_k$$

 C_i - дизъюнкты, зависящ. только от переменных p_1,\dots,p_i ($C_0=\emptyset,$ т. к. \bot - невыводим).

Будем док-ть по инд-ции, что одновр. вып. все дизъюнкты из C_i . ММИ:

• База: $C_0 = \emptyset \Rightarrow$ очев.

• Переход: пусть все ф-лы из C_{i-1} вып-ны на знач. $a_1, \dots a_{i-1}$. Рассм. ф-лы из C_i , кот. ещё не выполнены за счёт этих значений. Предположим, что среди них есть ф-ла с p_i и ф-ла с $\neg p_i$:

$$p_i \vee D_0$$
 и $\neg p_i \vee D_1$

Раз эти ф-лы остались, то $D_0(a_1,\ldots,a_{i-1})=0$ и $D_1(a_1,\ldots,a_{i-1})=0$. Но $D_0\vee D_1$ явл-ся резольвентой: $(p_i\vee D_0), (\neg p_i\vee D_1)$. Тогда $D_0\vee D_1\in C_{i-1}$, и тогда должно быть: $D_0\vee D_1=1!!!$ Следовательно, все оставшиеся ф-лы либо с $p_i\Rightarrow p_i=1$, либо с $\neg p_i\Rightarrow p_i=0$

Как это связано с тафтологиями? А это уже совсем другая история.