Ocena:

Łukasz Ochmański 183566 Przemysław Szwajkowski 173524

Zadanie 2a: Perceptron Wielowarstwowy*

1. Cel

Data oddania:

Celem zadania było zaimplementowanie programu umozliwiajacego tworzenie perceptronu wielowarstwowego (ang. Multi-Layer Perceptron, w skrócie: MLP) oraz wsteczna propagacje błedów jako metode jego nauki. Kolejnym etapem zadania było wykorzystanie aplikacji w celu stworzenia perceptronu o podanej architekturze(4:2:4) oraz wykonanie na nim zadanych eksperymentów.

2. Wstęp

Podstawowym elementem sieci jest neuron. Do kazdego neuronu dochodzi dowolna ilosc wejsc, natomiast wyjscie neuronu jest tylko jedno. Dodatkowo dla kazdego wejscia neuronu, przypisana jest waga w naszym przypadku losowana z zakresu -0.5 - 0.5. Kolejnym elementem jest Bias, czyli tzw wejscie obciazające mające zawsze wartosc 1 któremu równiez przypisana jest waga. Neurony grupowane sa w warstwy, gdzie w przypadku dwóch sasiadujących ze soba warstw wyjscia wszystkich neuronów jednej warstwy trafiaja jako wejscia neuronów warstwy nastepnej. Wyrózniamy trzy rodzaje warstw: 1. Warstwa wejsciowa - zawsze jedna. 2. Warstwa ukryta - wiele. 3. Warstwa wyjsciowa - zawsze jedna.

^{*} SVN: http://iad-lukasz-ochmanski.googlecode.com/svn/trunk/02

Rysunek 1. Siec bez obciazenia

Jak widać na wykresie nr 1 siec bez obciążenia zatrzymuje się na poziomie błędu: 0.03167644247839, co jest dość słabym rezultatem.

Rysunek 2. Siec z obciazeniem

Na wykresie 2 zaprezentowana wyniki nauki dla sieci z obciążeniem. Przy 4000 epok błąd sieci jest ponad 73 razy mniejszy: 0.000432373272398826

Na wykresie 3: Sieć bez momentum i przy wysokim współczynniku nauki: 0.9 zatrzymała się na wartości błędu: 0.000359134306069069

Na wykresie 4: Sieć bez momentum i przy współczynniku nauki: 0.6 osiągnęła nieco gorszy rezultat niż sieć w poprzednim przykładzie. Sieć zatrzymała się na wartości błędu: 0.000595680104236151

Rysunek 3. Siec ze wspolczynnikiem nauki 0.9

Na wykresie 5: Sieć ze współczynnikiem nauki 0.2 osiągnęła wyniki gorsze niż na wykresie nr3i nr $4\colon 0.00151562846558211$

Na wykresie 6: Sieć z wysokim wpółczynnikiem i umiarkowanym momentum 0.6 osiągnęła najlepszy wynik wśród zaprezentowanych: 0.000228618121023473

Na wykresie 7: Sieć z wysokim momentum osiągnęła nieco słabszy rezultat niż ta z niższym momentum: 0.000894870669832562

Rysunek 4. Siec ze wspolczynnikiem nauki 0.6

Rysunek 5. Siec ze wspolczynnikiem nauki $0.2\,$

Rysunek 6. Siec z momentum 0.6

Rysunek 7. Siec z momentum 0.9

Literatura

- [1] Ryszard Tadeusiewicz Sieci neuronowe, Wyd. 2., Warszawa 1993
- [2] "Learning and neural networks" [http://en.wikiversity.org/wiki/Learning_and_neural_networks]
- [3] UCI Machine Learning Repository Iris Data Set