Artificial Intelligence: HW 1

Jeong Min Lee

Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea

Email: jmleeluck@snu.ac.kr

September 2023

Abstract

This is for the assignment of "Artificial Intelligence" course in SNU 2023 Fall.

1 Linear Algebra

In this section, I used the following notation.

- 1. $||X||_2 = ||X||$, that is, I denoted L^2 norm just simply by dropping lower index.
- 2. $\langle X, Y \rangle = X^T Y$, that is, the bracket is simply dot product of \mathbb{R}^n
- 3. When the SVD is used, I defined $r = \min(m, n)$ where $A \in \mathbb{R}^{m \times n}$
- 4. If $A \in \mathbb{R}^{m \times n}$, the result of SVD is $A = U \Sigma V^T$ where $U \in O(m), V \in O(n)$ and $\Sigma = \operatorname{diag}(\sigma_1, ..., \sigma_r, 0, ..., 0) \in \mathbb{R}^{m \times n}$. Here σ_i are the square root of eigenvalues of $A^T A$ and $\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_r$.
- 5. For matrix $A \in \mathbb{R}^{m \times n}$, A_i denotes the column vectors while A^j row vectors

1.1

$$||A||_s = \max_{X \in \mathbb{R}^n} \frac{||AX||}{||X||}$$
 where $||\cdot||_s$ denotes the spectral norm. (1)

Claim 1: for the functions f, g in \mathbb{R} , $\max_{X \in \mathbb{R}^n} (f(X) \cdot g(X)) \le \max_{X \in \mathbb{R}^n} f(X) \cdot \max_{X \in \mathbb{R}^n} g(X)$ proof:

Here we can confine our discussion to the continuous functions that always have maximum and minimum value by Maximum-Minimum Theorem. Let M, N denote the max f, max g, respectively. $\exists X_1, X_2 \in \mathbb{R}^n$ s.t. $f(X_1) = M$ and $g(X_2) = N$. If $X_1 = X_2$, then $\max(fg) = MN$, trivially. If not, let h = fg. It is also trivial that function h is continuous. If $\max h > MN$, for some $X^* \in \mathbb{R}^n$, $f(X^*)g(X^*) > MN$. However, $f(X^*) \leq M$ and $g(X^*) \leq N$ by definition, therefore, contradict \blacksquare .

$$\begin{split} \|AB\|_{s} &= \max_{X \in \mathbb{R}^{n}} \frac{\|ABX\|}{\|X\|} \\ &= \max_{X \in \mathbb{R}^{n}} \frac{\|ABX\|}{\|BX\|} \frac{\|BX\|}{\|X\|} \\ &\leq \max_{X \in \mathbb{R}^{n}} \frac{\|AB\|}{\|BX\|} \cdot \max_{X \in \mathbb{R}^{n}} \frac{\|BX\|}{\|X\|} = \|A\|_{s} \cdot \|B\|_{s} \end{split}$$

Note that the inequality is held due to the **Claim1** above.

1.2

The maximum singular value of A is the maximum eigenvalue of A^TA . Since A^TA is symmetry matrix regardless of what A is, there is a basis $\{X_1, X_2, ..., X_n\}$ of \mathbb{R}^n where $A^TAX_i = \sigma_i X_i$ for $\sigma_i \in \mathbb{R}$ by Spectral Theorem of Real Symmetric Matrix.¹ It implies that $\forall X \in \mathbb{R}^n, X = \sum_{i=0}^n a_i X_i$. From now on, I'll use Einstein notation for simplicity.²

$$||X||^{2} = \langle a_{i}X_{i}, a_{j}X_{j} \rangle = a_{i}a_{j}\delta_{ij} = a_{i}^{2}$$

$$||AX||^{2} = \langle AX, AX \rangle = \langle X, A^{T}AX \rangle = \langle a_{i}X_{i}, a_{j}\sigma_{j}X_{j} \rangle = a_{i}^{2}\sigma_{i}^{2}$$

$$\therefore ||AX||^{2}/||X||^{2} = \frac{a_{1}^{2}\sigma_{1} + \cdots + a_{n}^{2}\sigma_{n}^{2}}{a_{1}^{2} + \cdots + a_{n}^{2}} \leq \sigma_{max}$$

The discussion above result in the following.

$$||A||_s^2 = \sigma_{max}^2 \tag{2}$$

Note that such X is exist. For example, let $||A||_s^2 = \frac{||AX^*||}{||X^*||}$. WLOG $\sigma_{max} = \sigma_1$, then $X^* = X_1$

1.3

From the result of SVD,

$$AV = U\Sigma \tag{3}$$

Since $V \in O(n)$, the column vectors of V compose the basis vector of \mathbb{R}^n . That is, $\forall X \in \mathbb{R}^n$, $X = a_i V_i$. (Like section 1.2, I used the Einstein notation.) Therefore, $AX = a_i A V_i = a_i \sigma_i U_i$.

$$||AX||^2 = a_i^2 \sigma_i^2 \tag{4}$$

Since we consider only the normalized vectors, $a_i^2 = 1$. Therefore, to minimize 4, only σ_r has to survive. Thus, the solution of given problem is $X = a_r V_r$.

1.4

$$||AX - b||^2 = ||U\Sigma V^T X - b||^2$$

= $||\Sigma V^T X - U^T b||^2$ (:: $U \in O(m)$)

Let $V^TX = Y, U^Tb = Z$. If X is solution of $AX = b, \Sigma Y = Z$ or $\sigma_i Y_i = Z_i$ for i = 1, 2, ..., r. Since V conserves the norm, ||X|| = ||Y||. Therefore, to minimize the ||X||, $Y_{r+1}, ..., Y_n = 0$. Thus,

$$Y = \begin{cases} \begin{pmatrix} \sigma_1^{-1} Z_1 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_r^{-1} Z_r & \cdots & 0 \end{pmatrix}, & \text{if } n > m \\ \begin{pmatrix} \sigma_1^{-1} Z_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_r^{-1} Z_r \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{pmatrix}, & \text{if } m > n \end{cases}$$

$$(5)$$

¹The fact that some operator $T \in M_{n \times n} = \{A | A \text{ is } n \text{ by } n \text{ matrix}\}$ is normal is equivalent to the fact that the set composed by the eigenvectors of T is the orthonormal basis of vector space V where dim V = n.

²Einstein notation is the notation which is widely used in quantum mechanics devised by Einstein. In this notation, one can drop the Σ sign and just describe the expressions with the indices.

One can simplify the expression 5 by denoting $\Sigma^{-1} = \text{diag}(\sigma_1^{-1}, \sigma_2^{-1}, ..., \sigma_r^{-1}, 0, ..., 0)$.

$$Y = V^T X = \Sigma^{-1} U^T b \tag{6}$$

Therefore,

$$X = V \Sigma^{-1} U^T b = A^{\dagger} b \tag{7}$$

Note that

$$A^\dagger = (A^TA)^{-1}A^T = (V\Sigma^T\Sigma V^T)^{-1}V\Sigma^TU^T = V\Sigma^{-1}\Sigma^{-T}V^TV\Sigma^TU^T = V\Sigma^{-1}U^T$$

2 Probability

In this section, I used the following notation.

1. P(X) denotes the probability that the event X is happened

2.1

Let F be the event that the failed product is found and A_1, A_2, A_3 be the event of machine $M_1.M_2.M_3$ manufacutured the products, respectively. Then,

$$P(F) = 0.2 \times 0.03 + 0.3 \times 0.02 + 0.5 \times 0.01 = 0.017 \tag{8}$$

What we want to know is the probability of failure in each machine. It is simply expressed by the conditional probability. (Note that the event F and each manufacturing event A_i are statistically independent so that $P(A_i \cap F) = P(A_i) \times P(F)$)

$$P(A_1|F) = \frac{P(A_1 \cap F)}{P(F)} = \frac{0.03 \times 0.2}{0.017} = \frac{6}{17}$$

$$P(A_2|F) = \frac{P(A_2 \cap F)}{P(F)} = \frac{0.3 \times 0.02}{0.017} = \frac{6}{17}$$

$$P(A_3|F) = \frac{P(A_3 \cap F)}{P(F)} = \frac{0.01 \times 0.05}{0.017} = \frac{5}{17}$$

Note that these probabilities are normalized.

2.2

Let X be the length of the remaining stick of first break and Y be the length of the stick of second break. Since the stick is uniform, the probability density function(PDF) of X is

$$f_X(x) = \begin{cases} 1/L & \text{if } 0 \le x \le L \\ 0 & \text{otherwise} \end{cases}$$
 (9)

Futhermore, for a given X = x, the PDF of Y is

$$f_{Y|X=x}(y|x) = \begin{cases} 1/x & \text{if } 0 \le y < x \\ 0 & \text{otherwise} \end{cases}$$
 (10)

From the Bayes' theorem,

$$f_{X,Y}(x) = \begin{cases} 1/Lx & \text{if } 0 \le y < x \le L \\ 0 & \text{otherwise} \end{cases}$$
 (11)

Then, the expectation value E(Y|X=x) is

$$E(Y|X=x) = \int y f_{Y|X}(y|x) dy = x/2$$

Therefore,

$$E(Y) = E(E(Y|X=x)) = \frac{1}{L} \int_0^L x/2 \ dx = L/4$$

There is another solution that uses the PDF of Y. From the summation rule of PDF,

$$f_Y(y) = \int f_{X,Y}(x,y)dx$$
$$= \int_y^L \frac{1}{Lx} dx = \frac{1}{L} \ln \frac{L}{y} \text{ where } 0 \le y \le L$$

Therefore, from the integration by part,

$$E(Y) = \int_0^L y \frac{1}{L} \ln \frac{L}{y} dy = L/4$$
 (12)

2.3

To solve this problem, I'll prove the following claim.

Claim2: for $\forall x \ge 0, \ln x \le x - 1$

Proof:

At x=1,y=x-1 is tangent line of $\ln x$. From the fact that for $x>1,\frac{d}{dx}\ln x=1/x<1=\frac{d}{dx}(x-1)$, the amount of increment of y=x-1 is larger than that of $\ln x$. This can be verifed by the following graph \blacksquare .

Figure 1: The graph of y = x - 1 and $y = \ln x$

Therefore, from the Claim2 and the normality of the probability mass function,

$$-KL(p||q) = \int p \ln \frac{q}{p} dx$$

$$\leq \int p(\frac{q}{p} - 1) dx$$

$$= \int q - p dx$$

$$= 1 - 1$$

$$= 0$$

Therefore, the KL divergence is always greater than or equal to zero.

3 Optimization

I used following notation in this section.

- 1. $D(X_0, r) = \{X \in \mathbb{R}^n | \|X X_0\| < r\}$. This set is called by ball in Mathematics.
- 2. $\{\hat{e}_i\}_{i\in\{1,2,...,n\}}$ is the standard basis of \mathbb{R}^n

3.1

The definition of differenciable function f is that the function y = f(X) for $X \in \mathbb{R}^n$ has a tagential plane (whose slope is finite) at every points $(X_0, f(X_0)) \in \mathbb{R}^{n+1}$. From the defition of differenciable function, $\exists \vec{a} \in \mathbb{R}^n$ s.t. $y = f(X_0) + \langle \vec{a}, (X - X_0) \rangle$. Let g be the hyperplane. Then, $\lim_{X \to X_0} g(X) - f(X) = 0$. That is,

$$\lim_{X \to X_0} \frac{f(X) - f(X_0) - \langle \vec{a}, X - X_0 \rangle}{|X - X_0|} = 0$$
 (13)

By replacing $X - X_0$ to hY for $Y \in \mathbb{R}^n$, the equation 13 reduces to the following.

$$\lim_{h \to 0} \frac{f(X_0 + hY) - f(X_0) - \langle \vec{a}, hY \rangle}{h|Y|} = 0$$
 (14)

or by denoting $\hat{Y} = Y/|Y|$,

$$\lim_{h \to 0} \frac{f(X_0 + h\hat{Y}) - f(X_0)}{h} = \langle \vec{a}, \hat{Y} \rangle$$
 (15)

Therefore, for arbitrary unit vector Y,

$$D_Y f = \langle \vec{a}, Y \rangle \tag{16}$$

From the relation between directional derivative and partial derivative, $D_{\hat{e_i}}f = \frac{\partial f}{\partial x_i}$, $D_{\hat{e_i}}f = \langle \vec{a}, \hat{e_i} \rangle = a_i$. Note that the relation above is derived by equation 16. Thus, the vector \vec{a} is nothing else but the gradient of $f, \nabla f_{\blacksquare}$.

³Actually, I know that this is a definition of partial derivative, referring to **HJ Kim, Calculus 2+, pg 438.**

3.2

Let X^* be the local minimum of function f. Then, for arbitrarily small ϵ , $f(X^*) \leq f(X)$ for $X \in D(X^*, \epsilon)$ by definition of local minimum. From the definition of convex function, $f(tX^* + (1-t)Y) \leq tf(X^*) + (1-t)f(Y) \leq f(Y)$ for $Y \in D(X^*, \epsilon)$. This implies that the value of every points in the disk centered by local minimum of X^* evaluated by function f has smaller than one evaluated in local minimum. To show that X^* is global minimum, suppose $\exists Y \in \mathbb{R}^n \setminus D(X^*, \epsilon)$ s.t. $f(Y) < f(X^*)$. Then, from the definition of convex function, $f(tY + (1-t)X^*) \leq tf(Y) + (1-t)f(X^*) < f(Y)$ for $\forall t \in [0,1]$. However, this is contradiction since the the last inequality is not held in t=1. This implies that $\forall Y \in \mathbb{R}^n \setminus D(X^*, \epsilon), f(Y) \leq f(X^*)$. Therefore, $\forall Y \in \mathbb{R}^n, f(Y) \leq f(X^*)$.

4 Orthogormal Procustrates Analysis

In this section, I'll prove that the following proposition: the solution of $\Omega^* = \min_{\Omega \in \mathbb{R}^{3 \times 3}} ||A\Omega - B||$ is $\Omega = V^T U$ where U, V is the left singular vector and right singular vector of $B^T A$.

To prove this, let $B^T A = U \Sigma V^T$. Then,

$$||A\Omega - B||^2 = \operatorname{tr}\left((A\Omega - B)^T (A\Omega - B)\right)$$
$$= \operatorname{tr}\left(A^T A\right) + \operatorname{tr}\left(B^T B\right) - 2\operatorname{tr}\left(\Omega^T A^T B\right)$$

Minimizing the $||A\Omega - B||^2$ is equivalent to maximize tr $(\Omega^T B^T A)$.

$$\operatorname{tr}(\Omega^T A^T B) = \operatorname{tr}(\Omega^T U \Sigma V^T)$$
$$= \operatorname{tr}(V^T \Omega^T U \Sigma) \ge \operatorname{tr}(I \Sigma)$$

Therefore, $V^T \Omega^{*T} U = I$, or $\Omega^* = V^T U$.