Transport Layer

Re-look at the stack

 Headers are "peeled" as you go up the stack

 Headers are added as you go down the stack.

Layering, Revisited

- Lowest level end-to-end protocol
 - Transport header only read by source and destination
 - Routers view transport header as payload
 - Each packet has a Maximum Segment Size (MSS)

Transport layer: TCP

- Transport layer roles
 - "End-to-End" abstraction
 - De-multiplexing

What is de-multiplexing?

 Clients run many applications at the same time

– Who to deliver packets to?

 Insert Transport Layer to handle demultiplexing using ports

 The end point is identified using an IP address and a port.

Transport
Network
Data Link
Physical

Packet

arunab, SBU// CS 534: Fall 2022: Transport Layer

Demultiplexing Traffic

Endpoints identified by <src_ip, src_port, dest_ip, dest_port>

Two types of Transport Protocol

- Transmission Control Protocol (TCP)
 - Connection oriented
 - Masks unreliability.

- User Datagram Protocol (UDP)
 - Connection less
 - Does not mask unreliability.

Socket Programming

- Socket programming provides a way to realize the transport layer abstraction
- Create a socket, connect to the socket, and create a connection.

TCP

Transmission Control Protocol

- TCP properties
 - Bi-directional
 - Stream based/connection oriented
 - Maintains state per connection
- TCP provides the following abstraction
 - In-order delivery
 - Reliability
 - End-to-end connectivity*

TCP In-Order Delivery

What is the buffer for?

TCP Header Format

Ports plus IP addresses identify a connection

TCP connection

Connection Establishment in TCP

- Both sender and receiver must be ready before we start to transfer the data
- Sender and receiver need to agree on a set of parameters
 - This is signaling. It sets up state at the endpoints
 - Compare to "dialing" in the telephone network

Problems with Connection Establishment

Key problem is to ensure reliability even though packets may be lost, corrupted, delayed, and duplicated

How can we avoid duplicates and delayed packets?

Sequence numbers

Use a maximum segment lifetime (MSL)

- Wait until MSL to repeat sequence numbers (120 seconds in the Internet)

Three-Way Handshake

Opens both directions for transfer

Why three way handshake?

 TCP is a bi-directional communication. Both directions have to establish a sequence number to be used during the communication

- What else happens during the handshake?
 - Exchange of connection parameters
 - TCP is a stateful connections

Connection Teardown

Cleans up state in sender and receiver

- TCP provides a "symmetric" close
 - both sides shutdown independently
 - Why?

Connection Release problem

Key problem is to ensure reliability while releasing (DR: Disconnect request)

Asymmetric release
(when one side
breaks connection) is
abrupt and may lose
data

Connection Release

Normal release sequence, initiated by transport user on Host 1

- DR=Disconnect Request
- Both DRs are ACKed by the other side

What happens if ack is lost?

Error handling in connection release

TCP Connection Teardown with states

TCP State Transitions

Wow!

