CS109A Introduction to Data Science:

Homework 3 - Forecasting Bike Sharing Usage

Harvard University Fall 2018

Instructors: Pavlos Protopapas, Kevin Rader

In [1]: #RUN THIS CELL
import requests
from IPython.core.display import HTML
styles = requests.get("https://raw.githubusercontent.com/Harvard-IACS/2018-CS109A/m
aster/content/styles/cs109.css").text
HTML(styles)

Out[1]:

INSTRUCTIONS

- To submit your assignment follow the instructions given in canvas.
- Restart the kernel and run the whole notebook again before you submit.
- If you submit individually and you have worked with someone, please include the name of your [one] partner below
- As much as possible, try and stick to the hints and functions we import at the top of the homework, as those
 are the ideas and tools the class supports and is aiming to teach. And if a problem specifies a particular library
 you're required to use that library, and possibly others from the import list.

Names of people you have worked with goes here:

Pick up a bike at one of hundreds of stations around the metro DC area. See bike availability on the System Map or mobile app.

Take as many short rides as you want while your pass is active. Passes and memberships include unlimited trips under 30 minutes.

End a ride by returning your bike to any station. Push your bike firmly into an empty dock and wait for the green light to make sure it's locked.

Main Theme: Multiple Linear Regression, Subset Selection, Polynomial Regression

Overview

You are hired by the administrators of the <u>Capital Bikeshare program (https://www.capitalbikeshare.com)</u> program in Washington D.C., to **help them predict the hourly demand for rental bikes** and **give them suggestions on how to increase their revenue**. Your task is to prepare a short report summarizing your findings and make recommendations.

The predicted hourly demand could be used for planning the number of bikes that need to be available in the system at any given hour of the day. It costs the program money if bike stations are full and bikes cannot be returned, or empty and there are no bikes available. You will use multiple linear regression and polynomial regression and will explore techniques for subset selection to predict bike usage. The goal is to build a regression model that can predict the total number of bike rentals in a given hour of the day, based on all available information given to you.

An example of a suggestion to increase revenue might be to offer discounts during certain times of the day either during holidays or non-holidays. Your suggestions will depend on your observations of the seasonality of ridership.

The data for this problem were collected from the Capital Bikeshare program over the course of two years (2011 and 2012).

Use only the libraries below:

```
In [2]: import numpy as np
    import pandas as pd
    import matplotlib
    import matplotlib.pyplot as plt
    import statsmodels.api as sm
    from statsmodels.api import OLS

    from sklearn import preprocessing
    from sklearn.preprocessing import PolynomialFeatures
    from sklearn.metrics import r2_score
    from sklearn.model_selection import train_test_split

    from pandas.plotting import scatter_matrix
    import seaborn as sns

%matplotlib inline
```

Data Exploration & Preprocessing, Multiple Linear Regression, Subset Selection

Overview

The initial data set is provided in the file data/BSS_hour_raw.csv. You will first add features that will help with the analysis and then separate the data into training and test sets. Each row in this file represents the number of rides by registered users and casual users in a given hour of a specific date. There are 12 attributes in total describing besides the number of users the weather if it is a holiday or not etc:

- dteday (date in the format YYYY-MM-DD, e.g. 2011-01-01)
- season (1 = winter, 2 = spring, 3 = summer, 4 = fall)
- hour (0 for 12 midnight, 1 for 1:00am, 23 for 11:00pm)
- weekday (0 through 6, with 0 denoting Sunday)
- holiday (1 = the day is a holiday, 0 = otherwise)
- weather
 - 1: Clear, Few clouds, Partly cloudy, Partly cloudy
 - 2: Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist
 - 3: Light Snow, Light Rain + Thunderstorm
 - 4: Heavy Rain + Thunderstorm + Mist, Snow + Fog
- temp (temperature in Celsius)
- atemp (apparent temperature, or relative outdoor temperature, in Celsius)
- hum (relative humidity)
- windspeed (wind speed)
- casual (number of rides that day made by casual riders, not registered in the system)
- registered (number of rides that day made by registered riders)

General Hints

- Use pandas .describe() to see statistics for the dataset.
- When performing manipulations on column data it is useful and often more efficient to write a function and apply this function to the column as a whole without the need for iterating through the elements.
- A scatterplot matrix or correlation matrix are both good ways to see dependencies between multiple variables.
- For Question 2, a very useful pandas method is .groupby(). Make sure you aggregate the rest of the columns in a meaningful way. Print the dataframe to make sure all variables/columns are there!

Resources

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.to_datetime.html (http://pandas.pydata.org/pandas-docs/stable/generated/pandas.to_datetime.html)

Question 1: Data Read-In and Cleaning

In this section, we read in the data and begin one of the most important analytic steps: verifying that the data is what it claims to be.

- **1.1** Load the dataset from the csv file data/BSS_hour_raw.csv into a pandas dataframe that you name bikes_df. Do any of the variables' ranges or averages seem suspect? Do the data types make sense?
- **1.2** Notice that the variable in column dteday is a pandas object, which is **not** useful when you want to extract the elements of the date such as the year, month, and day. Convert dteday into a datetime object to prepare it for later analysis.
- **1.3** Create three new columns in the dataframe:
 - year with 0 for 2011, 1 for 2012, etc.
 - month with 1 through 12, with 1 denoting January.
 - counts with the total number of bike rentals for that **hour** (this is the response variable for later).

Answers

1.1 Load the dataset from the csv file data/BSS_hour_raw.csv into a pandas dataframe that you name bikes_df. Do any of the variables' ranges or averages seem suspect? Do the data types make sense?

```
In [3]:
        # your code here
         bikes_df = pd.read_csv('data/BSS_hour_raw.csv', delimiter=',')
         bikes_df.shape
Out[3]: (17379, 13)
In [4]: # your code here
         bikes_df.dtypes
Out[4]: dteday
                        object
                         int64
        season
                         int64
        hour
        holiday
                         int64
        weekday
                         int64
        workingday
                         int64
        weather
                         int64
                       float64
        temp
        atemp
                       float64
        hum
                       float64
        windspeed
                       float64
        casual
                         int64
        registered
                         int64
        dtype: object
```

```
In [5]: # your code here
bikes_df.describe()
```

Out[5]:

	season	hour	holiday	weekday	workingday	weather
count	17379.000000	17379.000000	17379.000000	17379.000000	17379.000000	17379.000000
mean	2.501640	11.546752	0.028770	3.003683	0.682721	1.425283
std	1.106918	6.914405	0.167165	2.005771	0.465431	0.639357
min	1.000000	0.000000	0.000000	0.000000	0.000000	1.000000
25%	2.000000	6.000000	0.000000	1.000000	0.000000	1.000000
50%	3.000000	12.000000	0.000000	3.000000	1.000000	1.000000
75%	3.000000	18.000000	0.000000	5.000000	1.000000	2.000000
max	4.000000	23.000000	1.000000	6.000000	1.000000	4.000000

Answer:

We observe that maximum for 'casual' and 'registered' are way higher considering their mean and standard deviation. That means we have some outliers there. Also, 'temp', 'hum', 'atemp' and 'windspeed are all between 0 and 1, which means that they are normalized.

We can also see that season, workingday, weekday and holiday are all integers but should be categorical.

1.2 Notice that the variable in column dteday is a pandas object, which is not useful when you want to extract the elements of the date such as the year, month, and day. Convert dteday into a datetime object to prepare it for later analysis.

```
In [6]: # your code here
bikes_df['dteday'] = pd.to_datetime(bikes_df['dteday'])
```

1.3 Create three new columns in the dataframe:

- year with 0 for 2011, 1 for 2012, etc.
- month with 1 through 12, with 1 denoting January.
- counts with the total number of bike rentals for that hour (this is the response variable for later).

```
In [7]: # your code here
bikes_df['year'] = bikes_df['dteday'].dt.year - 2011
bikes_df['month'] = bikes_df['dteday'].dt.month
bikes_df['counts'] = bikes_df['casual'] + bikes_df['registered']
```

In [8]: #

your code here
bikes_df.head()

Out[8]:

	dteday	season	hour	holiday	weekday	workingday	weather	temp	atemp	hum	windspe
0	2011- 01-01	1	0	0	6	0	1	0.24	0.2879	0.81	0.0
1	2011- 01-01	1	1	0	6	0	1	0.22	0.2727	0.80	0.0
2	2011- 01-01	1	2	0	6	0	1	0.22	0.2727	0.80	0.0
3	2011- 01-01	1	3	0	6	0	1	0.24	0.2879	0.75	0.0
4	2011- 01-01	1	4	0	6	0	1	0.24	0.2879	0.75	0.0

Question 2: Exploratory Data Analysis.

In this question, we continue validating the data, and begin hunting for patterns in ridership that shed light on who uses the service and why.

- **2.1** Use pandas' scatter_matrix command to visualize the inter-dependencies among all predictors in the dataset. Note and comment on any strongly related variables. [This will take several minutes to run. You may wish to comment it out until your final submission, or only plot a randomly-selected 10% of the rows]
- **2.2** Make a plot showing the *average* number of casual and registered riders during each hour of the day. .groupby and .aggregate should make this task easy. Comment on the trends you observe.
- **2.3** Use the variable weather to show how each weather category affects the relationships in question 2.2. What do you observe?
- **2.4** Make a new dataframe with the following subset of attributes from the previous dataset and with each entry being just **one** day:
 - dteday, the timestamp for that day (fine to set to noon or any other time)
 - · weekday, the day of the week
 - weather, the most severe weather that day
 - · season, the season that day falls in
 - temp, the average temperature (normalized)
 - atemp, the average atemp that day (normalized)
 - windspeed, the average windspeed that day (normalized)
 - · hum, the average humidity that day (normalized)
 - · casual, the total number of rentals by casual users
 - registered, the total number of rentals by registered users
 - · counts, the total number of rentals of that day

Name this dataframe bikes_by_day.

Make a plot showing the distribution of the number of casual and registered riders on each day of the week.

2.5 Use bikes_by_day to visualize how the distribution of **total number of rides** per day (casual and registered riders combined) varies with the **season**. Do you see any **outliers**? Here we use the pyplot's boxplot function definition of an outlier as any value 1.5 times the IQR above the 75th percentile or 1.5 times the IQR below the 25th percentiles. If you see any outliers, identify those dates and investigate if they are a chance occurence, an error in the data collection, or a significant event (an online search of those date(s) might help).

Answers

2.1 Use pandas' scatter_matrix command to visualize the inter-dependencies among all predictors in the dataset. Note and comment on any strongly related variables. [This will take several minutes to run. You may wish to comment it out until your final submission, or only plot a randomly-selected 10% of the rows]

In [9]: # your code here
pd.plotting.scatter_matrix(bikes_df, figsize = (15,15), grid = True)

```
<matplotlib.axes._subplots.AxesSubplot object at 0x00000000105F9518>,
 <matplotlib.axes._subplots.AxesSubplot object at 0x00000001061FBA8>,
 <matplotlib.axes._subplots.AxesSubplot object at 0x000000010650278>,
  <matplotlib.axes. subplots.AxesSubplot object at 0x000000010678908>,
 <matplotlib.axes._subplots.AxesSubplot object at 0x0000000106A1F98>,
 <matplotlib.axes._subplots.AxesSubplot object at 0x00000000106D0668>,
 <matplotlib.axes._subplots.AxesSubplot object at 0x0000000106FCCF8>,
 <matplotlib.axes._subplots.AxesSubplot object at 0x000000001072C3C8>,
 <matplotlib.axes. subplots.AxesSubplot object at 0x000000010752A58>,
  <matplotlib.axes._subplots.AxesSubplot object at 0x000000010784128>,
 <matplotlib.axes._subplots.AxesSubplot object at 0x0000000107AB7B8>,
  <matplotlib.axes._subplots.AxesSubplot object at 0x00000000107D2E48>],
 [<matplotlib.axes._subplots.AxesSubplot object at 0x0000000010803518>,
  <matplotlib.axes._subplots.AxesSubplot object at 0x00000001082DBA8>,
 <matplotlib.axes. subplots.AxesSubplot object at 0x00000001085C278>,
 <matplotlib.axes._subplots.AxesSubplot object at 0x0000000010884908>,
 <matplotlib.axes._subplots.AxesSubplot object at 0x0000000108ADF98>,
 <matplotlib.axes._subplots.AxesSubplot object at 0x0000000108DE668>,
 <matplotlib.axes._subplots.AxesSubplot object at 0x000000010904CF8>,
  <matplotlib.axes._subplots.AxesSubplot object at 0x0000000109363C8>,
  <matplotlib.axes. subplots.AxesSubplot object at 0x00000001095CA58>,
  <matplotlib.axes._subplots.AxesSubplot object at 0x00000001098D128>,
 <matplotlib.axes._subplots.AxesSubplot object at 0x00000000109B47B8>,
 <matplotlib.axes._subplots.AxesSubplot object at 0x0000000109DEE48>,
 <matplotlib.axes._subplots.AxesSubplot object at 0x000000010A0F518>,
 <matplotlib.axes. subplots.AxesSubplot object at 0x000000010A36BA8>,
  <matplotlib.axes. subplots.AxesSubplot object at 0x000000010A69278>]],
dtype=object)
```


We could see that 'temp' and 'atemp' are strongly correlated to each other. 'hour' and 'temp'/atemp' also have a polynomial relationhip. 'counts' is also strongly correlated to 'casual' and 'registered' for the obvious reason that it calculated using the later two. This points out that there is multi-collinearity in the predictor variables and that we should take out the correlated predictors before doing the analysis.

We see linear relation between 'counts' and 'temp' and a polynomial relationship between 'counts' and 'hour'. 'weather' shows a strong relationship with 'counts' as well, the counts seem to go down with increase in weather severity. We can also see the 'temp' and 'atemp' peaking at the middle of the year which might bring out the months of May-July as a significant predictor of counts, since 'temp' is also has a relationship with 'counts'. Windspeed also shows somewhat negative correlation.

2.2 Make a plot showing the *average* number of casual and registered riders during each hour of the day. .groupby and .aggregate should make this task easy. Comment on the trends you observe.

```
In [10]: # your code here
bikes_gb_hr = bikes_df.groupby(by = 'hour')
df_bar = bikes_gb_hr[['casual', 'registered']].mean()

df_bar.index

fig_hr, ax_hr = plt.subplots(1, 1, figsize=(15,7))
df_bar.plot.bar(ax = ax_hr)
ax_hr.set_xlabel('Hour', fontsize=12)
ax_hr.set_ylabel('Avg. No. of Riders', fontsize=12)
ax_hr.tick_params(labelsize=12)
ax_hr.set_title('Average Number of Riders for Each Hour', fontsize=14)
```

Out[10]: Text(0.5,1, 'Average Number of Riders for Each Hour')

Answer:

We can see the registered riders spiking at 8 AM and between 5 to 6 PM, which are the peak office hours, which could potentially mean that a lot of the registered riders use the bikes to go to work. The casual riders show a smoother curve from 7 AM to 11 PM with peak being between 2 PM to 5 PM.

2.3 Use the variable weather to show how each weather category affects the relationships in question 2.2. What do you observe?

```
In [11]:
         # your code here
         bikes_gb_wr = bikes_df.groupby(by = ['weather'])
         bikes gb wr1 = bikes df[bikes df.weather == 1].groupby(by = ['weather', 'hour'])
         bikes gb_wr2 = bikes_df[bikes_df.weather == 2].groupby(by = ['weather', 'hour'])
         bikes_gb_wr3 = bikes_df[bikes_df.weather == 3].groupby(by = ['weather',
                                                                                 'hour'])
         bikes_gb_wr4 = bikes_df[bikes_df.weather == 4].groupby(by = ['weather', 'hour'])
         df_bar_wr = bikes_gb_wr[['casual', 'registered']].mean()
         casual1 = bikes_gb_wr1.casual.mean()
         casual2 = bikes_gb_wr2.casual.mean()
         casual3 = bikes gb wr3.casual.mean()
         casual4 = bikes_gb_wr4.casual.mean()
         registered1 = bikes gb wr1.registered.mean()
         registered2 = bikes_gb_wr2.registered.mean()
         registered3 = bikes_gb_wr3.registered.mean()
         registered4 = bikes gb wr4.registered.mean()
```

```
In [12]:
         # your code here
         fig wr, ax wr = plt.subplots(1, 2, figsize=(15,7))
         ax wr[0].scatter(casual1, registered1, label = 'Weather: 1')
         ax_wr[0].scatter(casual2, registered2, label = 'Weather: 2')
         ax_wr[0].scatter(casual3, registered3, label = 'Weather: 3')
         ax_wr[0].scatter(casual4, registered4, label = 'Weather: 4')
         ax_wr[0].set_xlabel('Casual', fontsize=12)
         ax_wr[0].set_ylabel('Registered', fontsize=12)
         ax_wr[0].tick_params(labelsize=12)
         ax_wr[0].set_title('Number of Users by Weather Category', fontsize=12)
         ax_wr[0].legend(loc = 'best', fontsize=12)
         df_bar_wr.plot.bar(ax = ax_wr[1], title = 'Average Riders by Weather Severity')
         ax_wr[1].set_xlabel('Weather', fontsize=12)
         ax_wr[1].set_ylabel('Avg. No. of Riders', fontsize=12)
         ax_wr[1].tick_params(labelsize=12)
```


From the right plot, we can clearly see that as weather severity increses, the average number of riders go down for both the groups - casual and registered users.

The left plot shows somewhat of a linear relationship between registered and casual riders. Observe how the weather category 1 and 2 affects casual users more than the registered - we can see this by the cluster where casual > 40 and 100 < registered < 250. Also notice how the weather 3 and 4 are both clustered very close to 0 for both users.

2.4 Make a new dataframe with the following subset of attributes from the previous dataset and with each entry being just one day:

- dteday, the timestamp for that day (fine to set to noon or any other time)
- · weekday, the day of the week
- · weather, the most severe weather that day
- · season, the season that day falls in
- temp, the average temperature (normalized)
- atemp, the average atemp that day (normalized)
- windspeed, the average windspeed that day (normalized)
- · hum, the average humidity that day (normalized)
- casual, the total number of rentals by casual users
- registered, the total number of rentals by registered users
- · counts, the total number of rentals of that day

Name this dataframe bikes_by_day.

Make a plot showing the *distribution* of the number of casual and registered riders on each day of the week.

Out[13]:

	weekday	weather	season	temp	atemp	windspeed	hum	
count	731.000000	731.000000	731.000000	731.000000	731.000000	731.000000	731.000000	7:
mean	2.997264	2.207934	2.496580	0.495385	0.474354	0.190486	0.627894	84
std	2.004787	0.766056	1.110807	0.183051	0.162961	0.077498	0.142429	6{
min	0.000000	1.000000	1.000000	0.059130	0.079070	0.022392	0.000000	2.
25%	1.000000	2.000000	2.000000	0.337083	0.337842	0.134950	0.520000	3,
50%	3.000000	2.000000	3.000000	0.498333	0.486733	0.180975	0.626667	7
75%	5.000000	3.000000	3.000000	0.655417	0.608602	0.233215	0.730208	1(
max	6.000000	4.000000	4.000000	0.861667	0.840896	0.507463	0.972500	3₄

```
In [14]: fig_h, ax_h = plt.subplots(1, 1, figsize=(15,7))
    temp_df = bikes_by_day.copy()
    del temp_df['registered']
    del temp_df['casual']
    temp_df = pd.concat([temp_df]*2)
    temp_df['modified'] = bikes_by_day.registered.append(bikes_by_day.casual)
    temp_df['category'] = "casual"
    temp_df.loc[:bikes_by_day.shape[0],'category'] = str('registered')

sns.violinplot(x="weekday", y="modified", data=temp_df, hue='category')
    ax_h.tick_params(labelsize=12)
    ax_h.set_xlabel('Weekday', fontsize=12)
    ax_h.set_ylabel('Riders', fontsize=12)
    ax_h.set_title('Violin Plots for Rider Type on Each Weekday', fontsize=14)
```

Out[14]: Text(0.5,1,'Violin Plots for Rider Type on Each Weekday')

Notice that the distribution for casual riders is narrower during the weekdays as compared to the weekend, whereas for the registered riders it is narrower during the weekends as compared to the weekdays.

2.5 Use bikes_by_day to visualize how the distribution of total number of rides per day (casual and registered riders combined) varies with the season. Do you see any outliers? Here we use the pyplot's boxplot function definition of an outlier as any value 1.5 times the IQR above the 75th percentile or 1.5 times the IQR below the 25th percentiles. If you see any outliers, identify those dates and investigate if they are a chance occurrence, an error in the data collection, or a significant event (an online search of those date(s) might help).

In [15]: # your code here
fig_ct1, ax_ct1 = plt.subplots(1, 4, figsize=(20,5))

for i in bikes_by_day.season.unique():
 ax_ct1[i-1].hist(bikes_by_day[bikes_by_day.season == i].counts)
 ax_ct1[i-1].tick_params(labelsize=12)
 ax_ct1[i-1].set_title('Distribution of Users: Season %s'%str(i), fontsize=14)


```
In [16]: # your code here
    fig_ct, ax_ct = plt.subplots(1, 1, figsize=(7,7))
    sns.boxplot(x = 'season', y = 'counts', data = bikes_by_day)
    ax_ct.set_xlabel('Season', fontsize=12)
    ax_ct.set_ylabel('Total Users', fontsize=12)
    ax_ct.tick_params(labelsize=12)
    ax_ct.grid(True, axis = 'y')
    ax_ct.set_title('Total Users by Season', fontsize=14)
```

Out[16]: Text(0.5,1,'Total Users by Season')

	weekday	weather	season	temp	atemp	windspeed	hum	casual	registere
dteday									
2012- 03-17	6	2	1	0.514167	0.505046	0.110704	0.755833	3155	4681

	weekday	weather	season	temp	atemp	windspeed	hum	casual	registered	counts
dteday										
2012- 10-29	1	3	4	0.44	0.4394	0.3582	0.88	2	20	22

2012-10-29 was the day when Hurricane Sandy occurred, so there is significant less total riders that day. 2012-03-17 can be a chance because of very conducive weather conditions (temp = 0.5, weather = 2) occurring on a Saturday right after a winter.

Question 3: Prepare the data for Regression

In order to build and evaluate our regression models, a little data cleaning is needed. In this problem, we will explicitly create binary variables to represent the categorical predictors, set up the train-test split in a careful way, remove ancillary variables, and do a little data exploration that will be useful to consider in the regression models later.

- **3.1** Using bikes_df, with hourly data about rentals, convert the categorical attributes ('season', 'month', 'weekday', 'weather') into multiple binary attributes using **one-hot encoding**.
- **3.2** Split the updated bikes_df dataset in a train and test part. Do this in a 'stratified' fashion, ensuring that all months are equally represented in each set. Explain your choice for a splitting algorithm.
- **3.3** Although we asked you to create your train and test set, but for consistency and easy checking, we ask that for the rest of this problem set you use the train and test set provided in the he files data/BSS_train.csv and data/BSS_test.csv. Read these two files into dataframes BSS_train and BSS_test, respectively. Remove the dteday column from both the train and the test dataset (its format cannot be used for analysis). Also, remove any predictors that would make predicting the count trivial. Note we gave more meaningful names to the one-hot encoded variables.

Answers

3.1 Using bikes df, with hourly data about rentals, convert the categorical attributes ('season', 'month', 'weekday', 'weather') into multiple binary attributes using one-hot encoding.

```
In [18]:
                                                   # your code here
                                                     bikes_df_hot = pd.get_dummies(bikes_df, columns = ['season', 'month', 'weekday', 'w
                                                     eather'], drop first = True)
In [19]: #your code here
                                                     bikes df hot.columns
Out[19]: Index(['dteday', 'hour', 'holiday', 'workingday', 'temp', 'atemp', 'hum',
                                                                                          'windspeed', 'casual', 'registered', 'year', 'counts', 'season_2', 'season_3', 'season_4', 'month_2', 'month_3', 'month_4', 'month_5', 'month_6', 'month_7', 'month_8', 'month_9', 'month_10', 'month_11', 'month_12', 'month_12', 'month_13', 'month_
                                                                                           'month_12', 'weekday_1', 'weekday_2', 'weekday_3', 'weekday_4', 'weekday_5', 'weekday_6', 'weather_2', 'weather_3', 'weather_4'],
                                                                                     dtype='object')
In [20]: #your code here
                                                     bikes_df_hot.head()
```

Out[20]:

	dteday	hour	holiday	workingday	temp	atemp	hum	windspeed	casual	registered	 m
0	2011- 01-01	0	0	0	0.24	0.2879	0.81	0.0	3	13	 0
1	2011- 01-01	1	0	0	0.22	0.2727	0.80	0.0	8	32	 0
2	2011- 01-01	2	0	0	0.22	0.2727	0.80	0.0	5	27	 0
3	2011- 01-01	3	0	0	0.24	0.2879	0.75	0.0	3	10	 0
4	2011- 01-01	4	0	0	0.24	0.2879	0.75	0.0	0	1	 0

5 rows × 35 columns

3.2 Split the updated bikes df dataset in a train and test part. Do this in a 'stratified' fashion, ensuring that all months are equally represented in each set. Explain your choice for a splitting algorithm.

```
In [21]: # your code here
         bikes_train, bikes_test = train_test_split(bikes_df_hot, test_size = 0.2, random_st
         ate = 42,
                                                       stratify=bikes df hot[['month 2', 'mon
         th_3', 'month_4', 'month_5', 'month_6',
                                                                               'month_7', 'mon
         th_8', 'month_9', 'month_10', 'month_11',
                                                                               'month_12']])
```

In [22]: # your code here
bikes_train.head()

Out[22]:

	dteday	hour	holiday	workingday	temp	atemp	hum	windspeed	casual	registered
10701	2012- 03-27	0	0	1	0.32	0.2879	0.26	0.5224	1	9
11051	2012- 04-10	15	0	1	0.56	0.5303	0.21	0.2985	46	157
12703	2012- 06-18	12	0	1	0.56	0.5303	0.78	0.1343	29	139
16548	2012- 11-27	6	0	1	0.30	0.3030	0.81	0.1642	3	97
12146	2012- 05-26	7	0	0	0.62	0.5606	0.88	0.1642	10	44

5 rows × 35 columns

In [23]: # your code here
bikes_test.head()

Out[23]:

	dteday	hour	holiday	workingday	temp	atemp	hum	windspeed	casual	registered	
6071	2011- 09-15	13	0	1	0.64	0.6061	0.65	0.2836	38	151	
7457	2011- 11-12	8	0	0	0.26	0.2576	0.70	0.1940	14	87	
7115	2011- 10-29	2	0	0	0.30	0.2727	0.87	0.2985	1	16	
6426	2011- 09-30	8	0	1	0.54	0.5152	0.77	0.1343	31	425	
6982	2011- 10-23	13	0	0	0.52	0.5000	0.55	0.1940	160	255	

5 rows × 35 columns

Answer:

We performed a stratified sampling by passing all the month fields in the updated bikes_df dataset to get equal proportions of 0 and 1 for each of the month fields in both training and testing data sets. Stratified sampling ensures there are equal proportions of all the values within each column that is used to stratify. Thus, the both the train and the test sets are equally represented over those fields.

3.3 Although we asked you to create your train and test set, but for consistency and easy checking, we ask that for the rest of this problem set you use the train and test set provided in the he files data/BSS_train.csv and data/BSS_test.csv. Read these two files into dataframes BSS_train and BSS_test, respectively. Remove the dteday column from both the train and the test dataset (its format cannot be used for analysis). Also, remove any predictors that would make predicting the count trivial. Note we gave more meaningful names to the one-hot encoded variables.

```
In [24]:
         # your code here
         test = pd.read_csv('data/BSS_test.csv', delimiter = ',')
         BSS_test = pd.DataFrame(test)
         train = pd.read_csv('data/BSS_train.csv', delimiter = ',')
         BSS_train = pd.DataFrame(train)
         BSS_test.shape, BSS_train.shape
```

Out[24]: ((3476, 36), (13903, 36))

```
In [25]:
         # your code here
         BSS train = BSS train.drop(labels = ['dteday', 'Unnamed: 0', 'casual', 'registered'
         ], axis = 1)
         BSS_train.head()
```

Out[25]:

	hour	holiday	year	workingday	temp	atemp	hum	windspeed	counts	spring	 Dec	Мо
0	0	0	0	0	0.24	0.2879	0.81	0.0	16	0	 0	0
1	1	0	0	0	0.22	0.2727	0.80	0.0	40	0	 0	0
2	2	0	0	0	0.22	0.2727	0.80	0.0	32	0	 0	0
3	3	0	0	0	0.24	0.2879	0.75	0.0	13	0	 0	0
4	4	0	0	0	0.24	0.2879	0.75	0.0	1	0	 0	0

5 rows × 32 columns

```
# your code here
In [26]:
         BSS_test = BSS_test.drop(labels = ['dteday', 'Unnamed: 0', 'casual', 'registered'],
          axis = 1)
         BSS_test.columns
```

```
Out[26]: Index(['hour', 'holiday', 'year', 'workingday', 'temp', 'atemp', 'hum',
                             'windspeed', 'counts', 'spring', 'summer', 'fall', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sept', 'Oct', 'Nov', 'Dec', 'Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Cloudy', 'Snow', 'Storm'],
                           dtype='object')
```

Question 4: Multiple Linear Regression

- **4.1** Use statsmodels to fit a multiple linear regression model to the training set using all the predictors (no interactions or polynomial terms) to predict counts, and report its R^2 score on the train and test sets.
- **4.2** Examine the estimated coefficients and report which ones are statistically significant at a significance level of 5% (p-value < 0.05). You should see some strange values, such as July producing 93 fewer rentals, all else equal, than January.
- **4.3** To diagnose the model, make two plots: first a histogram of the residuals, and second a plot of the residuals of the fitted model $e=y-\hat{y}$ as a function of the predicted value \hat{y} . Draw a horizontal line denoting the zero residual value on the Y-axis. What do the plots reveal about the OLS assumptions (linearity, constant variance, and normality)?
- **4.4** Perhaps we can do better via a model with polynomial terms. Build a dataset X_{train_poly} from X_{train} with added x^2 terms for temp, hour, and humidity. Are these polynomial terms important? How does predicted ridership change as each of temp, hour, and humidity increase?
- **4.5** The strange coefficients from 4.2 could also come from *multicolinearity*, where one or more predictors capture the same information as existing predictors. Why can multicolinearity lead to erroneous coefficient values? Create a temporary dataset X_train_drop that drops the following 'redundant' predictors from X_train: workingday atemp spring summer and fall. Fit a multiple linear regression model to X_train_drop. Are the estimates more sensible in this model?

Answers

4.1 Use statsmodels to fit a multiple linear regression model to the training set using all the predictors (no interactions or polynomial terms) to predict counts, and report its \mathbb{R}^2 score on the train and test sets.

```
In [27]: # your code here

X_train = BSS_train.drop(labels = ['counts'], axis = 1)
    y_train = BSS_train['counts']
    X_test = BSS_test.drop(labels = ['counts'], axis = 1)
    y_test = BSS_test['counts']

X_train_ca, X_test_ca = sm.add_constant(X_train), sm.add_constant(X_test)
```

```
In [28]: # your code here
OLS = sm.OLS(y_train, X_train_ca)
OLSModel = OLS.fit()
score_train = r2_score(y_train, OLSModel.predict(X_train_ca))
score_test = r2_score(y_test, OLSModel.predict(X_test_ca))

print('R^2 sccore on training set is %s'%score_train)
print('R^2 sccore on test set is %s'%score_test)

R^2 sccore on training set is 0.4065387827969087
```

4.2 Examine the estimated coefficients and report which ones are statistically significant at a significance level

R^2 sccore on test set is 0.40638554757102263

of 5% (p-value < 0.05). You should see some strange values, such as July producing 93 fewer rentals, all else equal, than January.

In [29]: # your code here print(OLSModel.summary())

OLS Regression Results

D			t- D			0.407
Dep. Variab	Te:	С		quared:		0.407
Model:			_	. R-squared:		0.405
Method:		Least Sq		tatistic:		316.8
Date:		Thu, 04 Oct		(F-statist	ic):	0.00
Time:		09:	38:57 Log	-Likelihood:		-88306.
No. Observa			13903 AIC			1.767e+05
Df Residual	s:		13872 BIC:	•		1.769e+05
Df Model:			30			
Covariance	• .		obust			
=======	CO6		t	P> t	[0.025	0.975]
const	-21.083	0 8.641	-2.440	0.015	 -38.020	-4.146
hour	7.221			0.000	6.860	7.583
holiday	-18.095			0.006	-31.027	-5.165
year	76.351			0.000	71.687	81.017
workingday	11.317			0.000	5.926	16.710
temp	333.248			0.000	246.684	419.812
atemp	74.631			0.106	-15.940	165.202
hum	-205.495		-26.343	0.000	-220.786	-190.205
windspeed	22.516			0.036	1.439	43.595
spring	43.154			0.000	28.615	57.693
summer	29.542			0.001	12.346	46.739
fall	68.595			0.000	53.911	83.280
Feb	-7.643			0.200	-19.336	4.050
Mar	-11.673			0.080	-24.737	1.390
Apr	-41.524			0.000	-60.886	-22.163
May	-33.292			0.002	-53.958	-12.628
Jun	-65.803			0.002	-86.809	-44.799
Jul	-93.486			0.000	-117.171	-69.789
Aug	-59.208			0.000	-82.401	-36.015
Sept	-16.051			0.129	-36.780	4.676
Oct	-16.166			0.101	-35.497	3.177
Nov	-25.873			0.007	-44.547	-7.199
Dec	-10.204			0.180	-25.128	4.719
Mon	-2.666			0.372	-8.498	3.177
Tue	-6.142		-1.915	0.056	-12.430	0.145
Wed	2.296		0.721	0.471	-3.943	8.536
Thu						
Fri	-3.161 2.889		-0.993 0.907	0.321 0.364	-9.404	3.082
					-3.355	9.133
Sat	14.945			0.001	6.357	23.535
Cloudy	6.786			0.019	1.103	12.470
Snow Storm	-28.285			0.000	-37.731	-18.841
2 COL-III	42.356	99 98.377 ========	0.431 	0.667 	-150.475 ======	235.189
Omnibus:				oin-Watson:		0.755
Prob(Omnibu	s):			que-Bera (JB):	5657.789
Skew:				o(JB):		0.00
Kurtosis:			4.943 Cond	d. No.		1.17e+16

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly sp ecified.
- [2] The smallest eigenvalue is 1.87e-26. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

0.000000e+00 hour holiday 6.095043e-03 6.205883e-218 year workingday 3.905740e-05 temp 4.767468e-14 hum 2.797780e-149 windspeed 3.628163e-02 6.082058e-09 spring summer 7.609902e-04 fall 6.106365e-20 Apr 2.640964e-05 1.592599e-03 May Jun 8.447047e-10 Jul 1.110753e-14 Aug 5.685359e-07 Nov 6.619949e-03 Sat 6.490550e-04 Cloudy 1.926802e-02 Snow 4.454966e-09

dtype: float64

Answer:

All the months have -ve coefficients associated with them however the seasons have all positive coefficients. Clearly months and seasons are correlated to each other which is probably reversing the signs the coefficients of all the months.

4.3 To diagnose the model, make two plots: first a histogram of the residuals, and second a plot of the residuals of the fitted model $e=y-\hat{y}$ as a function of the predicted value \hat{y} . Draw a horizontal line denoting the zero residual value on the Y-axis. What do the plots reveal about the OLS assumptions (linearity, constant variance, and normality)?

```
In [31]: # your code here
fig_rs, ax_rs = plt.subplots(1, 2, figsize = (15,7))

ax_rs[0].hist(OLSModel.resid, bins = 25)
ax_rs[0].set_xlabel(r'$Residuals$', fontsize = 12)
ax_rs[0].set_title('Histogram of the Residuals of OLSModel')

ax_rs[1].scatter(OLSModel.predict(X_train_ca), OLSModel.resid)
ax_rs[1].hlines(y=0, xmin = np.min(OLSModel.predict(X_train_ca))-50, xmax = np.max(OLSModel.predict(X_train_ca))+50, color = 'red')
ax_rs[1].set_xlabel(r'$y$_pred', fontsize = 12)
ax_rs[1].set_ylabel(r'$e = y - y$_pred', fontsize = 12)
ax_rs[1].set_xlim(xmin = np.min(OLSModel.predict(X_train_ca))-50, xmax = np.max(OLSModel.predict(X_train_ca))+50)
ax_rs[1].set_title('Scatterplot of $e$ as a function of $y$_pred')
```

Out[31]: Text(0.5,1,'Scatterplot of \$e\$ as a function of \$y\$_pred')

The **histogram** of the residuals is skewed to the right, thus, it is clear that the residuals are not normally distributed. The **scatterplot** to the right shows that the assumptions of constant variance are violated as well since the variance changes with y_pred. Also, we can observe that the axis for residuals is almost rotated by a certain angle, which tells us that the linearity assumption is violated as well. Thus, the assumptions of the OLS model are not holding for this data set and we need to explore higher degree terms to fit the non-linearity.

4.4 Perhaps we can do better via a model with polynomial terms. Build a dataset X_train_poly from X_train with added x^2 terms for temp, hour, and humidity. Are these polynomial terms important? How does predicted ridership change as each of temp, hour, and humidity increase?

```
In [32]: # your code here
# pd.DataFrame(np.array(X_train).reshape(-1, X_train.shape[1]), columns = X_train.c
olumns)
X_train_poly = X_train.copy()
X_train_poly['temp2'] = X_train_poly['temp']**2
X_train_poly['hour2'] = X_train_poly['hour']**2
X_train_poly['hum2'] = X_train_poly['hum']**2

X_test_poly = X_test.copy()
X_test_poly['temp2'] = X_test_poly['temp']**2
X_test_poly['hour2'] = X_test_poly['hour']**2
X_test_poly['hum2'] = X_test_poly['hum']**2

OLS_poly = sm.OLS(y_train, sm.add_constant(X_train_poly))
OLSModel_poly = OLS_poly.fit()
print(OLSModel_poly.summary())
```

OLS Regression Results

Dep. Variable: counts Model: R-squared: 0.561 Model: Thu, 94 Oct 2018 Prob (F-statistic: 421.8 Date: Thu, 94 Oct 2018 Prob (F-statistic:): 0.00 No. Observations: 13993.00 AIC: 1.743e+05 Df Residuals: 13869 BIC: 1.745e+05 Towariance Type: nonrobust Towariance Type: t P> t [0.025 0.975] Const -185.2131 14.016 -13.214 0.000 -212.687 -157.739 hour 39.5786 0.662 59.777 0.000 38.281 40.876 holiday -13.0661 6.056 59.777 0.000 38.281 40.876 holiday 13.2894 2.524 5.265 0.000 76.721 85.340 workingday 13.2294 2.829 2.277 0.023 18.452 246.997 atemp 67.4957 43.532 1.550 0.121 17.833 152.824	========		========	======	=======	=========	========
Nethod:	Dep. Variab	le:	С	ounts I	R-squared:		0.501
Date	Model:						0.500
Time:	Method:		Least Sq	uares l	F-statistic	:	421.8
No. Observations: 13963 AIC: 1.743e+05 Df Residuals: 13869 BIC: 1.745e+05 Df Model: 33 Covariance Type: nonrobust Coef Std err t P> t [0.025 0.975]	Date:		Thu, 04 Oct	2018 I	Prob (F-sta	tistic):	0.00
No. Observations: 13963 AIC: 1.743e+05 Df Residuals: 338Covariance Type: nonrobust	Time:		09:	39:00	Log-Likelih	ood:	-87102.
DF Model: 33 869 BIC: 1.745e+05 Covariance Type: nonrobust To coff std err t P) t [0.025 0.975] Const -185. 2131 14.016 -13.214 0.000 -212. 687 -157. 739 holiday -13.0661 6.056 -2.148 0.032 -24.877 -1.135 year 81.0365 2.199 36.854 0.000 76.721 85.340 workingday 13.2894 2.524 5.565 0.000 76.721 85.340 temp 132.7247 58.298 2.277 0.023 18.452 246.997 atemp 67.4957 43.552 1.550 0.121 -17.833 152.824 windspeed -6.9100 9.920 -0.697 0.486 -26.354 12.534 spring 43.7116 6.895 6.244 0.000 38.742 85.675 Feb 1.6487 5.538 <td>No. Observat</td> <td>tions:</td> <td></td> <td></td> <td>_</td> <td></td> <td>1.743e+05</td>	No. Observat	tions:			_		1.743e+05
DF Model:					BIC:		
Covariance Type: nonrobust							
const -18S. 2131 14.016 -13.214 0.000 -212.687 -157.739 hour 39.5786 0.662 59.777 0.000 38.281 40.876 holiday -13.0061 6.056 -2.148 0.032 -24.877 -1.135 year 81.0305 2.199 36.854 0.000 76.721 85.340 workingday 13.2894 2.524 5.265 0.000 8.342 18.237 temp 132.7247 58.298 2.277 0.023 18.452 246.997 atemp 67.4957 43.532 1.550 0.121 -17.833 152.824 hum 111.8636 36.114 0.329 0.743 -58.925 82.652 windspeed -6.9100 9.920 -0.697 0.486 -26.354 12.534 spring 43.7116 6.805 6.424 0.000 30.374 57.049 summer 33.9087 8.066 4.204 0.000 18.098 49.720 </td <td></td> <td>Tvpe:</td> <td>nonr</td> <td></td> <td></td> <td></td> <td></td>		Tvpe:	nonr				
Const -185.2131	=========	======	=========	=======		=========	========
hour 39.5786 0.662 59.777 0.000 38.281 40.876 holiday -13.0661 6.056 -2.148 0.032 -24.877 -1.135 year 81.0305 2.199 36.854 0.000 8.342 18.237 temp 132.7247 58.298 2.277 0.023 18.452 246.997 atemp 67.4957 43.532 1.550 0.121 -17.833 152.824 hum 11.8636 36.114 0.329 0.743 -58.925 82.652 windspeed -6.9100 9.920 -0.697 0.486 -26.354 12.534 spring 43.7116 6.895 6.424 0.000 30.374 57.049 summer 33.9087 8.066 4.204 0.000 38.712 85.675 Feb 1.6487 5.538 0.298 0.766 -9.207 12.564 Mar 9.5583 6.304 1.516 0.129 -2.798 2.191		coe	f std err		t P>	t [0.025	0.975]
hour 39.5786 0.662 59.777 0.000 38.281 40.876 holiday -13.0661 6.056 -2.148 0.032 -24.877 -1.135 year 81.0305 2.199 36.854 0.000 8.342 18.237 temp 132.7247 58.298 2.277 0.023 18.452 246.997 atemp 67.4957 43.532 1.550 0.121 -17.833 152.824 hum 11.8636 36.114 0.329 0.743 -58.925 82.652 windspeed -6.9100 9.920 -0.697 0.486 -26.354 12.534 spring 43.7116 6.895 6.424 0.000 30.374 57.049 summer 33.9087 8.066 4.204 0.000 38.712 85.675 Feb 1.6487 5.538 0.298 0.766 -9.207 12.564 Mar 9.5583 6.304 1.516 0.129 -2.798 2.191							
holiday							
year 81.0305 2.199 36.854 0.000 76.721 85.340 workingday 13.2894 2.524 5.265 0.000 8.342 18.237 temp 132.7247 58.298 2.277 0.023 18.452 246.997 atemp 67.4957 43.532 1.550 0.121 -17.833 152.824 hum 11.8636 36.114 0.329 0.743 -58.925 82.652 windspeed -6.9100 9.920 -6.697 0.486 -26.354 12.534 spring 43.7116 6.805 6.424 0.000 30.374 57.049 summer 33.9087 8.066 4.204 0.000 18.098 49.720 fall 72.1937 6.878 10.497 0.000 18.098 49.720 fall 72.1937 6.878 10.497 0.000 58.712 85.675 Mar 9.5583 6.304 1.516 0.129 -2.798 12.914 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
workingday 13.2894 2.524 5.265 0.000 8.342 18.237 temp 132.7247 58.298 2.277 0.023 18.452 246.997 atemp 67.4957 43.532 1.550 0.121 -17.833 152.824 hum 11.8636 36.114 0.329 0.743 -58.925 82.652 windspeed -6.9100 9.920 -0.697 0.486 -26.354 12.534 spring 43.7116 6.805 6.424 0.000 18.098 49.720 fall 72.1937 6.878 10.497 0.000 18.098 49.720 fall 72.1937 6.878 10.497 0.000 58.712 85.675 Feb 1.6487 5.538 0.298 0.766 -9.207 12.504 Mar 9.5583 6.304 1.516 0.129 -2.798 21.914 Apr -10.7152 9.238 -1.160 0.246 -28.824 7.933	-						
temp	-						
atemp 67.4957 43.532 1.550 0.121 -17.833 152.824 hum 11.8636 36.114 0.329 0.743 -58.925 82.652 windspeed -6.9100 9.920 -0.697 0.486 -26.354 12.534 spring 43.7116 6.805 6.424 0.000 30.374 57.649 summer 33.9087 8.066 4.204 0.000 18.098 49.720 fall 72.1937 6.878 10.497 0.000 58.712 85.675 Feb 1.6487 5.538 0.298 0.766 -9.207 12.504 Mar 9.5583 6.304 1.516 0.129 -2.798 21.914 Apr -10.7152 9.238 -1.160 0.246 -28.824 7.393 May -2.7388 9.789 -0.280 0.780 -21.926 16.449 Jun -23.0688 9.922 -2.322 0.020 -42.485 -3.588 Jul -53.5230 11.163 -4.795 0.000 -75.405 -31.642<	workingday						
hum 11.8636 36.114 0.329 0.743 -58.925 82.652 windspeed -6,9100 9.920 -0.697 0.486 -26.354 12.534 spring 43.7116 6.805 6.424 0.000 30.374 57.049 summer 33.9087 8.066 4.204 0.000 18.098 49.720 fall 72.1937 6.878 10.497 0.000 58.712 85.675 Feb 1.6487 5.538 0.298 0.766 -9.207 12.504 Mar 9.5583 6.304 1.516 0.129 -2.798 21.914 Apr -10.7152 9.238 -1.160 0.246 -28.824 7.393 May -2.7388 9.789 -0.280 0.780 -21.926 16.449 Jun -23.0368 9.922 -2.322 0.020 -42.485 -3.588 Jul -53.5230 11.163 -4.795 0.000 -75.405 -31.642	temp	132.724	7 58.298	2.			
windspeed -6.9100 9.920 -0.697 0.486 -26.354 12.534 spring 43.7116 6.885 6.424 0.000 30.374 57.049 summer 33.9087 8.066 4.204 0.000 18.098 49.720 fall 72.1937 6.878 10.497 0.000 58.712 85.675 Feb 1.6487 5.538 0.298 0.766 -9.207 12.504 Mar 9.5583 6.304 1.516 0.129 -2.798 21.914 Apr -10.7152 9.238 -1.160 0.246 -28.824 7.393 May -2.7388 9.789 -0.280 0.780 -21.926 16.449 Jun -23.6368 9.922 -2.322 0.020 -42.485 -3.589 Jul -53.5230 11.163 -4.795 0.000 -75.405 -31.642 Aug -23.6944 10.965 -2.161 0.031 -45.188 -2.201	atemp	67.495	7 43.532			121 -17.833	152.824
spring 43.7116 6.805 6.424 0.000 30.374 57.049 summer 33.9087 8.066 4.204 0.000 18.098 49.720 fall 72.1937 6.878 10.497 0.000 58.712 85.675 Feb 1.6487 5.538 0.298 0.766 -9.207 12.504 Mar 9.5583 6.304 1.516 0.129 -2.798 21.914 Apr -10.7152 9.238 -1.160 0.246 -28.824 7.393 May -2.30368 9.789 -0.280 0.780 -21.926 16.449 Jul -53.5230 11.163 -4.795 0.000 -75.405 -31.642 Aug -23.6944 10.965 -2.161 0.031 -45.188 -2.201 Sept 10.9955 9.887 1.103 0.270 -8.475 30.286 Oct 2.8452 9.262 0.367 0.759 -15.309 20.999	hum	11.863	6 36.114	0.	329 0.	743 -58.925	82.652
summer 33.9087 8.066 4.204 0.000 18.098 49.720 fall 72.1937 6.878 10.497 0.000 58.712 85.675 Feb 1.6487 5.538 0.298 0.766 -9.207 12.504 Mar 9.5583 6.304 1.516 0.129 -2.798 21.914 Apr -10.7152 9.238 -1.160 0.246 -28.824 7.393 May -2.7388 9.789 -0.280 0.780 -21.926 16.449 Jun -23.0368 9.922 -2.322 0.020 -42.485 -3.588 Jul -53.5230 11.163 -4.795 0.000 -75.405 -31.642 Aug -23.6944 10.965 -2.161 0.31 -45.188 -2.201 Sept 10.9055 9.887 1.103 0.270 -8.475 30.286 Oct 2.8452 9.262 0.307 0.759 -15.309 20.999 No	windspeed	-6.910	0 9.920	-0.0	697 0.	486 -26.354	12.534
summer 33.9087 8.066 4.204 0.000 18.098 49.720 fall 72.1937 6.878 10.497 0.000 58.712 85.675 Feb 1.6487 5.538 0.298 0.766 -9.207 12.504 Mar 9.5583 6.304 1.516 0.129 -2.798 21.914 Apr -10.7152 9.238 -1.160 0.246 -28.824 7.393 May -2.7388 9.789 -0.280 0.780 -21.926 16.449 Jun -23.0368 9.922 -2.322 0.020 -42.485 -3.588 Jul -53.5230 11.163 -4.795 0.000 -75.405 -31.642 Aug -23.6944 10.965 -2.161 0.031 -45.188 -2.201 Sept 10.9055 9.887 1.103 0.270 -8.475 30.286 Oct 2.8452 9.262 0.307 0.759 -15.309 20.999 N	spring	43.711	6.805	6.4	424 0.	000 30.374	57.049
fall 72.1937 6.878 10.497 0.000 58.712 85.675 Feb 1.6487 5.538 0.298 0.766 -9.207 12.504 Mar 9.5583 6.304 1.516 0.129 -2.798 21.914 Apr -10.7152 9.238 -1.160 0.246 -28.824 7.393 May -2.7388 9.789 -0.280 0.780 -21.926 16.449 Jun -23.0368 9.922 -2.322 0.020 -42.485 -3.588 Jul -53.5230 11.163 -4.795 0.000 -75.405 -31.642 Aug -23.6944 10.965 -2.161 0.031 -45.188 -2.201 Sept 10.9055 9.887 1.103 0.270 -8.475 30.286 Oct 2.8452 9.262 0.307 0.759 -15.309 20.999 Nov -16.5926 8.897 -1.865 0.062 -34.032 0.846 De		33.908	7 8.066	4.	204 0.	000 18.098	49.720
Feb 1.6487 5.538 0.298 0.766 -9.207 12.504 Mar 9.5583 6.304 1.516 0.129 -2.798 21.914 Apr -10.7152 9.238 -1.160 0.246 -28.824 7.393 May -2.7388 9.789 -0.280 0.780 -21.926 16.449 Jun -23.0368 9.922 -2.322 0.020 -42.485 -3.588 Jul -53.5230 11.163 -4.795 0.000 -75.405 -31.642 Aug -23.6944 10.965 -2.161 0.031 -45.188 -2.201 Sept 10.9055 9.887 1.103 0.270 -8.475 30.286 Oct 2.8452 9.262 0.307 0.759 -15.309 20.999 Nov -16.5926 8.897 -1.865 0.662 -34.032 0.846 Dec -6.9106 7.078 -0.976 0.329 -20.784 6.963 Mon	fall						
Mar 9.5583 6.304 1.516 0.129 -2.798 21.914 Apr -10.7152 9.238 -1.160 0.246 -28.824 7.393 May -2.7388 9.789 -0.280 0.780 -21.926 16.449 Jun -23.0368 9.922 -2.322 0.020 -42.485 -3.588 Jul -53.5230 11.163 -4.795 0.000 -75.405 -31.642 Aug -23.6944 10.965 -2.161 0.031 -45.188 -2.201 Sept 10.9055 9.887 1.103 0.270 -8.475 30.286 Oct 2.8452 9.262 0.307 0.759 -15.309 20.999 Nov -16.5926 8.897 -1.865 0.062 -34.032 0.846 Dec -6.9106 7.078 -0.976 0.329 -20.784 6.963 Mon -2.4620 2.731 -0.901 0.367 -7.816 2.892 Tu							
Apr -10.7152 9.238 -1.160 0.246 -28.824 7.393 May -2.7388 9.789 -0.280 0.780 -21.926 16.449 Jun -23.0368 9.922 -2.322 0.020 -42.485 -3.588 Jul -53.5230 11.163 -4.795 0.000 -75.405 -31.642 Aug -23.6944 10.965 -2.161 0.031 -45.188 -2.201 Sept 10.9055 9.887 1.103 0.270 -8.475 30.286 Oct 2.8452 9.262 0.307 0.759 -15.309 20.999 Nov -16.5926 8.897 -1.865 0.062 -34.032 0.846 Dec -6.9106 7.078 -0.976 0.329 -20.784 6.963 Mon -2.4620 2.731 -0.901 0.367 -7.816 2.892 Tue -3.8629 2.943 -1.313 0.189 -9.631 1.905 W							
May -2.7388 9.789 -0.280 0.780 -21.926 16.449 Jun -23.0368 9.922 -2.322 0.020 -42.485 -3.588 Jul -53.5230 11.163 -4.795 0.000 -75.405 -31.642 Aug -23.6944 10.965 -2.161 0.031 -45.188 -2.201 Sept 10.9055 9.887 1.103 0.270 -8.475 30.286 Oct 2.8452 9.262 0.307 0.759 -15.309 20.999 Nov -16.5926 8.897 -1.865 0.062 -34.032 0.846 Dec -6.9106 7.078 -0.976 0.329 -20.784 6.963 Mon -2.4620 2.731 -0.901 0.367 -7.816 2.892 Tue -3.8629 2.943 -1.313 0.189 -9.631 1.905 Wed 2.1275 2.920 0.729 0.466 -3.596 7.851 Thu </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Jun -23.0368 9.922 -2.322 0.020 -42.485 -3.588 Jul -53.5230 11.163 -4.795 0.000 -75.405 -31.642 Aug -23.6944 10.965 -2.161 0.031 -45.188 -2.201 Sept 10.9055 9.887 1.103 0.270 -8.475 30.286 Oct 2.8452 9.262 0.307 0.759 -15.309 20.999 Nov -16.5926 8.897 -1.865 0.062 -34.032 0.846 Dec -6.9106 7.078 -0.976 0.329 -20.784 6.963 Mon -2.4620 2.731 -0.901 0.367 -7.816 2.892 Tue -3.8629 2.943 -1.313 0.189 -9.631 1.905 Wed 2.1275 2.920 0.729 0.466 -3.596 7.851 Thu -0.2540 2.922 -0.087 0.931 -5.981 5.473 Fri <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Jul -53.5230 11.163 -4.795 0.000 -75.405 -31.642 Aug -23.6944 10.965 -2.161 0.031 -45.188 -2.201 Sept 10.9055 9.887 1.103 0.270 -8.475 30.286 Oct 2.8452 9.262 0.307 0.759 -15.309 20.999 Nov -16.5926 8.897 -1.865 0.062 -34.032 0.846 Dec -6.9106 7.078 -0.976 0.329 -20.784 6.963 Mon -2.4620 2.731 -0.901 0.367 -7.816 2.892 Tue -3.8629 2.943 -1.313 0.189 -9.631 1.905 Wed 2.1275 2.920 0.729 0.466 -3.596 7.851 Thu -0.2540 2.922 -0.087 0.931 -5.981 5.473 Fri 4.7347 2.923 1.620 0.105 -0.995 10.465 Sat 16.7983 4.021 4.178 0.000 8.917 24.679	-						
Aug -23.6944 10.965 -2.161 0.031 -45.188 -2.201 Sept 10.9055 9.887 1.103 0.270 -8.475 30.286 Oct 2.8452 9.262 0.307 0.759 -15.309 20.9999 Nov -16.5926 8.897 -1.865 0.062 -34.032 0.846 Dec -6.9106 7.078 -0.976 0.329 -20.784 6.963 Mon -2.4620 2.731 -0.901 0.367 -7.816 2.892 Tue -3.8629 2.943 -1.313 0.189 -9.631 1.905 Wed 2.1275 2.920 0.729 0.466 -3.596 7.851 Thu -0.2540 2.922 -0.087 0.931 -5.981 5.473 Fri 4.7347 2.923 1.620 0.105 -0.995 10.465 Sat 16.7983 4.021 4.178 0.000 8.917 24.679 Cloudy -8.4327 2.680 -3.146 0.002 -13.687 -3.179							
Sept 10.9055 9.887 1.103 0.270 -8.475 30.286 Oct 2.8452 9.262 0.307 0.759 -15.309 20.999 Nov -16.5926 8.897 -1.865 0.062 -34.032 0.846 Dec -6.9106 7.078 -0.976 0.329 -20.784 6.963 Mon -2.4620 2.731 -0.901 0.367 -7.816 2.892 Tue -3.8629 2.943 -1.313 0.189 -9.631 1.905 Wed 2.1275 2.920 0.729 0.466 -3.596 7.851 Thu -0.2540 2.922 -0.087 0.931 -5.981 5.473 Fri 4.7347 2.923 1.620 0.105 -0.995 10.465 Sat 16.7983 4.021 4.178 0.000 8.917 24.679 Cloudy -8.4327 2.680 -3.146 0.002 -13.687 -3.179 Snow -47.3269 4.583 -10.327 0.000 -56.310 -38.344 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>							
Oct 2.8452 9.262 0.307 0.759 -15.309 20.999 Nov -16.5926 8.897 -1.865 0.062 -34.032 0.846 Dec -6.9106 7.078 -0.976 0.329 -20.784 6.963 Mon -2.4620 2.731 -0.901 0.367 -7.816 2.892 Tue -3.8629 2.943 -1.313 0.189 -9.631 1.905 Wed 2.1275 2.920 0.729 0.466 -3.596 7.851 Thu -0.2540 2.922 -0.087 0.931 -5.981 5.473 Fri 4.7347 2.923 1.620 0.105 -0.995 10.465 Sat 16.7983 4.021 4.178 0.000 8.917 24.679 Cloudy -8.4327 2.680 -3.146 0.002 -13.687 -3.179 Snow -47.3269 4.583 -10.327 0.000 -56.310 -38.344 Stemp2	_						
Nov -16.5926 8.897 -1.865 0.062 -34.032 0.846 Dec -6.9106 7.078 -0.976 0.329 -20.784 6.963 Mon -2.4620 2.731 -0.901 0.367 -7.816 2.892 Tue -3.8629 2.943 -1.313 0.189 -9.631 1.905 Wed 2.1275 2.920 0.729 0.466 -3.596 7.851 Thu -0.2540 2.922 -0.087 0.931 -5.981 5.473 Fri 4.7347 2.923 1.620 0.105 -0.995 10.465 Sat 16.7983 4.021 4.178 0.000 8.917 24.679 Cloudy -8.4327 2.680 -3.146 0.002 -13.687 -3.179 Snow -47.3269 4.583 -10.327 0.000 -56.310 -38.344 Storm 35.5800 90.246 0.394 0.693 -141.315 212.475 temp2							
Dec -6.9106 7.078 -0.976 0.329 -20.784 6.963 Mon -2.4620 2.731 -0.901 0.367 -7.816 2.892 Tue -3.8629 2.943 -1.313 0.189 -9.631 1.905 Wed 2.1275 2.920 0.729 0.466 -3.596 7.851 Thu -0.2540 2.922 -0.087 0.931 -5.981 5.473 Fri 4.7347 2.923 1.620 0.105 -0.995 10.465 Sat 16.7983 4.021 4.178 0.000 8.917 24.679 Cloudy -8.4327 2.680 -3.146 0.002 -13.687 -3.179 Snow -47.3269 4.583 -10.327 0.000 -56.310 -38.344 Storm 35.5800 90.246 0.394 0.693 -141.315 212.475 temp2 109.4437 36.470 3.001 0.003 37.958 180.930 hu							
Mon -2.4620 2.731 -0.901 0.367 -7.816 2.892 Tue -3.8629 2.943 -1.313 0.189 -9.631 1.905 Wed 2.1275 2.920 0.729 0.466 -3.596 7.851 Thu -0.2540 2.922 -0.087 0.931 -5.981 5.473 Fri 4.7347 2.923 1.620 0.105 -0.995 10.465 Sat 16.7983 4.021 4.178 0.000 8.917 24.679 Cloudy -8.4327 2.680 -3.146 0.002 -13.687 -3.179 Snow -47.3269 4.583 -10.327 0.000 -56.310 -38.344 Storm 35.5800 90.246 0.394 0.693 -141.315 212.475 temp2 109.4437 36.470 3.001 0.003 37.958 180.930 hour2 -1.3570 0.027 -50.567 0.000 -1.410 -1.304 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
Tue -3.8629 2.943 -1.313 0.189 -9.631 1.905 Wed 2.1275 2.920 0.729 0.466 -3.596 7.851 Thu -0.2540 2.922 -0.087 0.931 -5.981 5.473 Fri 4.7347 2.923 1.620 0.105 -0.995 10.465 Sat 16.7983 4.021 4.178 0.000 8.917 24.679 Cloudy -8.4327 2.680 -3.146 0.002 -13.687 -3.179 Snow -47.3269 4.583 -10.327 0.000 -56.310 -38.344 Storm 35.5800 90.246 0.394 0.693 -141.315 212.475 temp2 109.4437 36.470 3.001 0.003 37.958 180.930 hour2 -1.3570 0.027 -50.567 0.000 -1.410 -1.304 hum2 -108.7057 28.944 -3.756 0.000 -165.440 -51.971							
Wed 2.1275 2.920 0.729 0.466 -3.596 7.851 Thu -0.2540 2.922 -0.087 0.931 -5.981 5.473 Fri 4.7347 2.923 1.620 0.105 -0.995 10.465 Sat 16.7983 4.021 4.178 0.000 8.917 24.679 Cloudy -8.4327 2.680 -3.146 0.002 -13.687 -3.179 Snow -47.3269 4.583 -10.327 0.000 -56.310 -38.344 Storm 35.5800 90.246 0.394 0.693 -141.315 212.475 temp2 109.4437 36.470 3.001 0.003 37.958 180.930 hour2 -1.3570 0.027 -50.567 0.000 -1.410 -1.304 hum2 -108.7057 28.944 -3.756 0.000 -165.440 -51.971							
Thu							
Fri 4.7347 2.923 1.620 0.105 -0.995 10.465 Sat 16.7983 4.021 4.178 0.000 8.917 24.679 Cloudy -8.4327 2.680 -3.146 0.002 -13.687 -3.179 Snow -47.3269 4.583 -10.327 0.000 -56.310 -38.344 Storm 35.5800 90.246 0.394 0.693 -141.315 212.475 temp2 109.4437 36.470 3.001 0.003 37.958 180.930 hour2 -1.3570 0.027 -50.567 0.000 -1.410 -1.304 hum2 -108.7057 28.944 -3.756 0.000 -165.440 -51.971 ====================================							
Sat 16.7983 4.021 4.178 0.000 8.917 24.679 Cloudy -8.4327 2.680 -3.146 0.002 -13.687 -3.179 Snow -47.3269 4.583 -10.327 0.000 -56.310 -38.344 Storm 35.5800 90.246 0.394 0.693 -141.315 212.475 temp2 109.4437 36.470 3.001 0.003 37.958 180.930 hour2 -1.3570 0.027 -50.567 0.000 -1.410 -1.304 hum2 -108.7057 28.944 -3.756 0.000 -165.440 -51.971 ====================================							
Cloudy -8.4327 2.680 -3.146 0.002 -13.687 -3.179 Snow -47.3269 4.583 -10.327 0.000 -56.310 -38.344 Storm 35.5800 90.246 0.394 0.693 -141.315 212.475 temp2 109.4437 36.470 3.001 0.003 37.958 180.930 hour2 -1.3570 0.027 -50.567 0.000 -1.410 -1.304 hum2 -108.7057 28.944 -3.756 0.000 -165.440 -51.971 ====================================							
Snow -47.3269 4.583 -10.327 0.000 -56.310 -38.344 Storm 35.5800 90.246 0.394 0.693 -141.315 212.475 temp2 109.4437 36.470 3.001 0.003 37.958 180.930 hour2 -1.3570 0.027 -50.567 0.000 -1.410 -1.304 hum2 -108.7057 28.944 -3.756 0.000 -165.440 -51.971							
Storm 35.5800 90.246 0.394 0.693 -141.315 212.475 temp2 109.4437 36.470 3.001 0.003 37.958 180.930 hour2 -1.3570 0.027 -50.567 0.000 -1.410 -1.304 hum2 -108.7057 28.944 -3.756 0.000 -165.440 -51.971	-			-3.	146 0.	002 -13.687	-3.179
temp2 109.4437 36.470 3.001 0.003 37.958 180.930 hour2 -1.3570 0.027 -50.567 0.000 -1.410 -1.304 hum2 -108.7057 28.944 -3.756 0.000 -165.440 -51.971	Snow			-10.	327 0.	000 -56.310	-38.344
hour2 -1.3570 0.027 -50.567 0.000 -1.410 -1.304 hum2 -108.7057 28.944 -3.756 0.000 -165.440 -51.971 Omnibus: 2946.543 Durbin-Watson: 0.890 Prob(Omnibus): 0.000 Jarque-Bera (JB): 6094.033 Skew: 1.253 Prob(JB): 0.00 Kurtosis: 5.059 Cond. No. 1.35e+16	Storm	35.580	0 90.246	0.	394 0.	693 -141.315	212.475
hum2 -108.7057 28.944 -3.756 0.000 -165.440 -51.971	temp2	109.443	7 36.470	3.0	001 0.	003 37.958	180.930
Omnibus: 2946.543 Durbin-Watson: 0.890 Prob(Omnibus): 0.000 Jarque-Bera (JB): 6094.033 Skew: 1.253 Prob(JB): 0.00 Kurtosis: 5.059 Cond. No. 1.35e+16	hour2	-1.357	0.027	-50.	567 0.	000 -1.410	-1.304
Omnibus: 2946.543 Durbin-Watson: 0.890 Prob(Omnibus): 0.000 Jarque-Bera (JB): 6094.033 Skew: 1.253 Prob(JB): 0.00 Kurtosis: 5.059 Cond. No. 1.35e+16							
Prob(Omnibus): 0.000 Jarque-Bera (JB): 6094.033 Skew: 1.253 Prob(JB): 0.00 Kurtosis: 5.059 Cond. No. 1.35e+16							
Skew: 1.253 Prob(JB): 0.00 Kurtosis: 5.059 Cond. No. 1.35e+16		- \ .					
Kurtosis: 5.059 Cond. No. 1.35e+16	•	5):			•	(JR):	
					• •		
						==========	

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly sp
- [2] The smallest eigenvalue is 4.56e-24. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

```
In [33]: score_test_poly = r2_score(y_test, OLSModel_poly.predict(sm.add_constant(X_test_pol
y)))
    score_train_poly = r2_score(y_train, OLSModel_poly.predict(sm.add_constant(X_train_
poly)))
    print('R^2 on full training set with polynomial features:%s'%score_train_poly)
    print('R^2 on full testing set with polynomial features:%s'%score_test_poly)

R^2 on full training set with polynomial features:0.5009041530600604
R^2 on full testing set with polynomial features:0.49653116472922565
```

The polynomial terms come out to be significant with p-value <0.05 for all of them. For hour and hum have +ve first degree terms but -ve second degree terms. This means that the rate of decrease in ridership increases with increase in hour and hum. For temp both first and second degree terms are +ve which means that the rate of increase in ridership increases with increase in temperature. Notice that our R^2 score has gone up by approx. 0.1 compared to the previous model without the polynomial terms.

If we have just a slope coeficient, we can interpret the model as one unit of [input] is worth [coef] units of [output], assuming everything else remains the same. However for polynomial terms, the relationship can be more complex. The direction of the regression line could change depending on the polynomial terms and the signs associated with the coefficients, as we can clearly see in the above model.

4.5 The strange coefficients from 4.2 could also come from *multicolinearity*, where one or more predictors capture the same information as existing predictors. Why can multicolinearity lead to erroneous coefficient values? Create a temporary dataset X_train_drop that drops the following 'redundant' predictors from X_train: workingday atemp spring summer and fall. Fit a multiple linear regression model to X_train_drop. Are the estimates more sensible in this model?

```
In [34]:
         # your code here
         X_train_drop = X_train.drop(labels = ['workingday', 'atemp', 'spring', 'summer', 'f
         all'], axis = 1)
         OLS_mc = sm.OLS(y_train, sm.add_constant(X_train_drop))
         OLSModel_mc = OLS_mc.fit()
         print(OLSModel_mc.summary())
```

OLS Regression Results

===========	=============		========
Dep. Variable:	counts	R-squared:	0.402
Model:	OLS	Adj. R-squared:	0.401
Method:	Least Squares	F-statistic:	358.3
Date:	Thu, 04 Oct 2018	<pre>Prob (F-statistic):</pre>	0.00
Time:	09:39:02	Log-Likelihood:	-88363.
No. Observations:	13903	AIC:	1.768e+05
Df Residuals:	13876	BIC:	1.770e+05
Df Model:	26		
Covaniance Type:	nonnohust		

Covariance Type: nonrobust

covar zamec	. , , ,	110111 001	<i></i>				
========	coef	std err	t	P> t	[0.025	0.975]	
const	-20.0627	8.541	-2.349	0.019	-36.805	-3.321	
hour	7.2378	0.185	39.095	0.000	6.875	7.601	
holiday	-35.8906	7.395	-4.854	0.000	-50.385	-21.396	
year	76.3039	2.389	31.945	0.000	71.622	80.986	
temp	406.2359	13.279	30.593	0.000	380.208	432.264	
hum	-201.5103	7.800	-25.835	0.000	-216.799	-186.221	
windspeed	11.9668	10.448	1.145	0.252	-8.512	32.446	
Feb	-7.6897	5.986	-1.285	0.199	-19.422	4.043	
Mar	2.8889	6.158	0.469	0.639	-9.182	14.960	
Apr	1.0237	6.594	0.155	0.877	-11.902	13.950	
May	7.2426	7.613	0.951	0.341	-7.680	22.165	
Jun	-30.6611	8.346	-3.674	0.000	-47.020	-14.302	
Jul	-67.7620	9.062	-7.477	0.000	-85.525	-49.999	
Aug	-34.2712	8.628	-3.972	0.000	-51.183	-17.359	
Sept	20.6406	7.882	2.619	0.009	5.191	36.090	
0ct	50.7025	6.823	7.431	0.000	37.329	64.076	
Nov	42.3211	6.111	6.926	0.000	30.344	54.299	
Dec	34.2134	5.952	5.748	0.000	22.546	45.881	
Mon	9.2907	4.570	2.033	0.042	0.333	18.248	
Tue	4.7929	4.442	1.079	0.281	-3.914	13.500	
Wed	13.2143	4.417	2.992	0.003	4.557	21.871	
Thu	8.0051	4.445	1.801	0.072	-0.708	16.718	
Fri	13.0474	4.429	2.946	0.003	4.367	21.728	
Sat	14.1461	4.397	3.217	0.001	5.528	22.764	
Cloudy	6.7192	2.909	2.310	0.021	1.018	12.421	
Snow	-29.1668	4.828	-6.041	0.000	-38.631	-19.703	
Storm	40.3125	98.759	0.408	0.683	-153.267	233.893	
Omnibus: 2850.389 Durbin-Watson: 0.74							
Prob(Omnibus):		0.0		e-Bera (JB):	:	5702.134	
Skew:		1.3	1.231 Prob(JB):			0.00	
Kurtosis: 4.944 Cond. No.			No.		1.13e+03		

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly sp ecified.
- [2] The condition number is large, 1.13e+03. This might indicate that there are strong multicollinearity or other numerical problems.

When there is multicollinearity, the model cannot accurately interpret which of the independent variables is casuing the variance in the response. This can lead to wrong coefficients, wrong signs for the coefficients, wrong p-values and so on. Clearly it makes our model less accurate and usefull if we have predictors that are correlated.

In the above example, we do see more meaningful estimates as we get lower standard errors in this model for all the coefficients except storm. Also, the coefficients for all the months except June and July now have a +ve sign, which is more realistic.

Question 5: Subset Selection

Perhaps we can automate finding a good set of predictors. This question focuses on forward stepwise selection, where predictors are added to the model one by one.

5.1 Implement forward step-wise selection to select a minimal subset of predictors that are related to the response variable. Run your code on the richest dataset, X_train_poly, and determine which predictors are selected.

We require that you implement the method **from scratch**. You may use the Bayesian Information Criterion (BIC) to choose the best subset size.

Note: Implementing from scratch means you are not allowed to use a solution provided by a Python library, such as sklearn or use a solution you found on the internet. You have to write all of the code on your own. However you MAY use the `model.bic` attribute implemented in statsmodels.

- **5.2** Does forward selection eliminate one or more of the colinear predictors we dropped in Question 4.5 (workingday atemp spring summer and fall)? If any of the five predictors are not dropped, explain why.
- **5.3** Fit the linear regression model using the identified subset of predictors to the training set. How do the train and test R^2 scores for this fitted step-wise model compare with the train and test R^2 scores from the polynomial model fitted in Question 4.4?

Answers

5.1 Implement forward step-wise selection to select a minimal subset of predictors that are related to the response variable. Run your code on the richest dataset, X_train_poly, and determine which predictors are selected.

We require that you implement the method from scratch. You may use the Bayesian Information Criterion (BIC) to choose the best subset size.

Note: Implementing from scratch means you are not allowed to use a solution provided by a Python library, such as sklearn or use a solution you found on the internet. You have to write all of the code on your own. However you MAY use the `model.bic` attribute implemented in statsmodels.

```
In [35]:
         # your code here
          def forward_selection(X_train, y_train):
             subset = []
             all_cols = list(X_train_poly.columns)
             prev_bic = float('inf')
             curr bic = 0
             rem = list(X_train_poly.columns)
             while (True):
                  bic = []
                  i_val = []
                  for i in (rem):
                      subset.append(i)
                      X newadd = X train[subset]
                      OLS = sm.OLS(y_train, sm.add_constant(X_newadd))
                      OLSModel = OLS.fit()
                      bic.append(OLSModel.bic)
                      i val.append(i)
                      subset.remove(i)
                  curr bic = min(bic)
                  ind = bic.index(min(bic))
                  add = i_val[ind]
                  if prev_bic>curr_bic:
                      subset.append(add)
                  else: break
                  rem = list(set(subset)^set(all_cols))
                  prev_bic = curr_bic
              return(subset)
```

```
In [36]:
          # your code here
          best_subset = forward_selection(X_train_poly, y_train)
          best_subset
Out[36]: ['temp',
           'hour',
           'hour2',
           'year',
           'hum2',
           'fall',
           'Jul',
           'Snow',
           'spring',
           'Sept',
           'holiday',
           'Cloudy']
```

5.2 Does forward selection eliminate one or more of the colinear predictors we dropped in Question 4.5 (workingday atemp spring summer and fall)? If any of the five predictors are not dropped, explain why.

Answer: We see that the forward selection eliminates the variables workingday, atemp and summer. However, spring and Fall are not eliminated.

Forward selection chooses just one best variable at a time on to be added to the existing model. And the selection is made by looking at BIC, in our, which looks at the MSE and the number of variables we have added to the model. So unless the multi-collinearity is so significant that it affects the MSE, it might still add correlated variables.

5.3 Fit the linear regression model using the identified subset of predictors to the training set. How do the train and test \mathbb{R}^2 scores for this fitted step-wise model compare with the train and test \mathbb{R}^2 scores from the polynomial model fitted in Question 4.4?

```
In [37]: # your code here
   X_train_best = X_train_poly[best_subset]
   OLS_best = sm.OLS(y_train, sm.add_constant(X_train_best))
   OLSModel_best = OLS_best.fit()
   print(OLSModel_best.summary())
```

OLS Regression Results

Dep. Variable:	counts	R-squared:	0.498					
Model:	OLS	Adj. R-squared:	0.497					
Method:	Least Squares	F-statistic:	1148.					
Date:	Thu, 04 Oct 2018	<pre>Prob (F-statistic):</pre>	0.00					
Time:	09:39:19	Log-Likelihood:	-87144.					
No. Observations:	13903	AIC:	1.743e+05					
Df Residuals:	13890	BIC:	1.744e+05					
Df Modol:	12							

Df Model: 12 Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]		
const	-189.1223	5.283	-35.795	0.000	-199.479	-178.766		
temp	310.9097	6.890	45.125	0.000	297.404	324.415		
hour	39.5749	0.647	61.177	0.000	38.307	40.843		
hour2	-1.3582	0.026	-51.420	0.000	-1.410	-1.306		
year	80.3153	2.182	36.804	0.000	76.038	84.593		
hum2	-97.3713	5.534	-17.595	0.000	-108.219	-86.524		
fall	56.0162	2.797	20.026	0.000	50.533	61.499		
Jul	-25.6107	4.679	-5.473	0.000	-34.783	-16.438		
Snow	-48.1081	4.447	-10.819	0.000	-56.824	-39.392		
spring	25.8171	2.910	8.873	0.000	20.114	31.520		
Sept	29.2489	4.302	6.798	0.000	20.816	37.682		
holiday	-27.4291	6.432	-4.265	0.000	-40.037	-14.822		
Cloudy	-8.4814	2.666	-3.181	0.001	-13.707	-3.256		
========			:=======		========	=======		
Omnibus:	Omnibus: 2990.921 Durbin-Watson: 0.88							

 Omnibus:
 2990.921
 Durbin-Watson:
 0.884

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 6264.394

 Skew:
 1.265
 Prob(JB):
 0.00

 Kurtosis:
 5.102
 Cond. No.
 1.85e+03

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly sp ecified.
- [2] The condition number is large, 1.85e+03. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [38]: X_test_best = X_test_poly[best_subset]
    score_test_best = r2_score(y_test, OLSModel_best.predict(sm.add_constant(X_test_best)))
    score_train_best = r2_score(y_train, OLSModel_best.predict(sm.add_constant(X_train_best)))

    print('R^2 on best training set with polynomial features:%s'%score_train_best)
    print('R^2 on best testing set with polynomial features:%s'%score_test_best)
```

R^2 on best training set with polynomial features:0.4979274979859656 R^2 on best testing set with polynomial features:0.49431032355580706

The R^2 scores on the training and testing set for both, the step-wise model and the polynomial model, are nearly equal. That means that the step-wise model does a good job of eliminating variables without affecting model R^2 value.

Written Report to the Administrators [20 pts]

Question 6

Write a short repost stating some of your findings on how the administrators can increase the bike share system's revenue. You might want to include suggestions such as what model to use to predict ridership, what additional services to provide, or when to give discounts, etc. Include your report as a pdf file in canvas. The report should not be longer than one page (300 words) and should include a maximum of 5 figures.

Answers 6

Summary Report:

Using the model obtained by forward selection method yeilds us the best balance between accuracy and complexity. Based on that model, we get temperature, hour, humidity and season to be the top predictors.

We can see these relationships in the figures below. Temperature has a positive effect on the number of riders (Fig 1.1), humidity has a curvilinear (second degree polynomial) relationship (Fig 1.2) and the increase in weather severity decreases the number of riders (Fig 2). Also observe the spikes at peak hours for registered users in Fig 3. These spikes are at office hours, which tells us that a lot of our registered riders use the system to commute to work.

Recommendations:

- 1. To generate more revenue for the bike share system, it is important to target the supply strategy. On days with good weather or during rush hours, it is important to ensure there are enough bikes loaded at each station. During bad weathers or past midnight, it is a good time to do bike maintenance.
- 2. Consider starting corporate programs and discounts to reach out to working professionals who might want to try out bike share system at a discounted price.
- 3. Consider starting spring/fall programs and discounts to encourage more people to register at a discounted price when the weather is nice.
- 4. It is a good incentive to give out discounts to the registered riders so they can recommend the bike share system with their friends and family.
- 5. It is good incentive to give out discounts to the casual riders to encourage them to register.
- 6. The demand is increasing by 80 riders each year, make sure to add more capacity to adjust for the increase in demand.

```
In [39]: # your code here
fig_sc, ax_sc = plt.subplots(1, 2, figsize=(15,7))
ax_sc[0].scatter(bikes_by_day.temp, bikes_by_day.counts)
ax_sc[0].set_xlabel('Temperature', fontsize=12)
ax_sc[0].set_ylabel('Total Riders', fontsize=12)
ax_sc[0].tick_params(labelsize=12)
ax_sc[0].set_title('Fig. 1.2 Temperature vs. Total Riders', fontsize=12)

ax_sc[1].scatter(bikes_by_day.hum, bikes_by_day.counts)
ax_sc[1].set_xlabel('Humidity', fontsize=12)
ax_sc[1].set_ylabel('Total Riders', fontsize=12)
ax_sc[1].tick_params(labelsize=12)
ax_sc[1].set_title('Fig. 1.2 Humidity vs. Total Riders', fontsize=12)
```

Out[39]: Text(0.5,1,'Fig. 1.2 Humidity vs. Total Riders')


```
In [40]: fig_wr, ax_wr = plt.subplots(1, 1, figsize=(7,7))
    df_bar_wr.plot.bar(ax = ax_wr, title = 'Fig. 2 Average Riders by Weather Severity')
    ax_wr.set_xlabel('Weather', fontsize=12)
    ax_wr.set_ylabel('Avg. No. of Riders', fontsize=12)
    ax_wr.tick_params(labelsize=12)
```



```
In [41]: #your code here
    bikes_gb_hr = bikes_df.groupby(by = 'hour')
    df_bar = bikes_gb_hr[['casual', 'registered']].mean()

df_bar.index

fig_hr, ax_hr = plt.subplots(1, 1, figsize=(15,7))
    df_bar.plot.bar(ax = ax_hr)
    ax_hr.set_xlabel('Hour', fontsize=12)
    ax_hr.set_ylabel('Avg. No. of Riders', fontsize=12)
    ax_hr.tick_params(labelsize=12)
    ax_hr.set_title('Fig. 3 Average Number of Riders for Each Hour', fontsize=14)
```

Out[41]: Text(0.5,1,'Fig. 3 Average Number of Riders for Each Hour')

