The derivative $D_Y X(a)$ is thus the derivative of the vector field X along the curve γ , and it is called the *covariant derivative of* X along γ .

Given an affine frame $(O, (u_1, \ldots, u_n))$ for (E, \overrightarrow{E}) , it is easily seen that the covariant derivative $D_Y X(a)$ is expressed as follows:

$$D_Y X(a) = \sum_{i=1}^n \sum_{j=1}^n \left(Y_j \frac{\partial X_i}{\partial x_j} \right) (a) e_i.$$

Generally, $D_Y X(a) \neq D_X Y(a)$. The quantity

$$[X, Y] = D_X Y - D_Y X$$

is called the $Lie\ bracket$ of the vector fields X and Y. The Lie bracket plays an important role in differential geometry. In terms of coordinates,

$$[X,Y] = \sum_{i=1}^{n} \sum_{j=1}^{n} \left(X_j \frac{\partial Y_i}{\partial x_j} - Y_j \frac{\partial X_i}{\partial x_j} \right) e_i.$$

39.9 Futher Readings

A thorough treatment of differential calculus can be found in Munkres [130], Lang [112], Schwartz [151], Cartan [34], and Avez [9]. The techniques of differential calculus have many applications, especially to the geometry of curves and surfaces and to differential geometry in general. For this, we recommend do Carmo [52, 53] (two beautiful classics on the subject), Kreyszig [106], Stoker [166], Gray [81], Berger and Gostiaux [13], Milnor [126], Lang [110], Warner [186] and Choquet-Bruhat [38].

39.10 Summary

The main concepts and results of this chapter are listed below:

- Directional derivative $(D_u f(a))$.
- Total derivative, Fréchet derivative, derivative, total differential, differential $(df(a), df_a)$.
- Partial derivatives.
- Affine functions.
- The chain rule.
- Jacobian matrices (J(f)(a)), Jacobians.