VERSUCH NUMMER

TITEL

AUTOR A authorA@udo.edu

AUTOR B authorB@udo.edu

Durchführung: DATUM

Abgabe: DATUM

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Theorie		3		
2	Durchführ	ıng	3		
3	Auswertun	g	3		
	3.1 Bestimmung des Elastizitätsmoduls bei einseitiger Einspannung				
	3.1.1	Stab mit rechteckigem Querschnitt	3		
	3.1.2	Zylindrischer Stab	6		
4	Diskussion		13		
Literatur					

1 Theorie

[1]

2 Durchführung

3 Auswertung

3.1 Bestimmung des Elastizitätsmoduls bei einseitiger Einspannung

3.1.1 Stab mit rechteckigem Querschnitt

Im folgenden soll das Elastizitätsmodul des rechteckigen Stabes und des zylindrischen Stabes bei einseitiger Einspannung bestimmt werden. Man erhält durch Messung die in Tabelle 1 gezeigten Werte. Mittels linearer Regression lässt sich das Elastizitätsmodul bestimmen. In Abbildung 1 ist D(x) über g(x) aufgetragen.

Für die Abmessungen des rechteckigen Stabs werden gemittelte Werte benutzt. Somit ergibt sich als Breite $b=(0.012\,78\pm0.002\,34)\,\mathrm{m}$. Die Höhe der Querschnittsfläche beträgt $h=0.01\,\mathrm{m}$. Das verwendete Gewicht ist bei der einseitigen Einspannung vom rechteckigen wie auch vom zylindrischen Stab $1.0427\,\mathrm{kg}$. Dies entspricht einer Gewichtskraft von $F=10.23\,\mathrm{N}$. Für das Flächenträgheitsmoment ergibt sich:

$$I = \int_{Q} y^{2} dq(y)$$

$$= \int_{y=-\frac{1}{2}h}^{y=\frac{1}{2}h} by^{2} dy$$

$$= \frac{1}{12}bh^{3}$$

$$I = (1.07 + 0.20) \cdot 10^{-9} \text{ m}^{4}$$

Durch linearen Regression wird die Steigung ermittelt. Als Steigung ergibt sich $m=0{,}0401$. Daraus folgt für das Elastizitätsmodul:

$$m = \frac{F}{2EI}$$

$$E = \frac{F}{2mI}$$

$$E_1 = (1,20 \pm 0,22) \cdot 10^{11} \frac{N}{m^2}$$

Die Fehlerbehafteten Größen wurden mit Hilfe von Python 3.4.3 berechnet.

 ${\bf Tabelle~1:~Mess daten~zum~rechteckigen~Stab}$

x / mm	D_1 / mm	D_2 / mm	D(x) / mm	$g(x) = Lx^2 - \frac{x^3}{3}$
505	6.96	3.12	3.83	9.35
500	7.01	3.24	3.77	9.20
495	7.12	3.32	3.80	9.06
490	7.06	3.40	3.66	8.92
485	7.04	3.43	3.60	8.78
480	7.07	3.53	3.54	8.64
475	7.11	3.61	3.50	8.49
470	7.12	3.64	3.47	8.35
465	7.14	3.70	3.43	8.21
460	7.18	3.83	3.35	8.07
455	7.30	3.87	3.43	7.93
450	7.27	3.99	3.28	7.79
445	7.34	4.09	3.25	7.65
440	7.30	4.15	3.14	7.51
435	7.33	4.25	3.08	7.37
430	7.36	4.30	3.06	7.24
425	7.40	4.38	3.02	7.10
420	7.40	4.42	$\frac{3.02}{2.99}$	6.96
415	7.45	4.56	2.89	6.83
410	7.48	4.60	2.89 2.87	6.69
$410 \\ 405$	7.40	4.60 4.67	$\frac{2.87}{2.83}$	6.56
400	$7.50 \\ 7.52$	4.07 4.75	$\frac{2.63}{2.77}$	6.42
390	$7.52 \\ 7.57$		$\frac{2.77}{2.68}$	
		4.88		6.16
380	7.59	5.01	2.58	5.89
370 360	7.65	5.25	2.39	5.63
360	7.65	5.28	2.37 2.28	5.37
350	7.68	5.40		5.12
340	7.70	5.54	2.16	4.87
330	7.74	5.65	$2.08 \\ 2.02$	4.62
330	9.27	7.25		4.62
320	9.32	7.40	1.91	4.38
310	9.42	7.55	1.87	4.14
300	9.40	7.67	1.72	3.91
290	9.39	7.78	1.61	3.68
280	9.46	7.92	1.54	3.46
270	9.51	8.06	1.44	3.24
260	9.57	8.12	1.44	3.03
250	9.60	8.29	1.31	2.82
240	9.63	8.43	1.19	2.62
230	9.70	8.54	1.15	2.42
220	9.72	8.67	1.05	2.23
210	9.79	8.80	0.98	2.05
200	9.82	8.92	0.90	1.87
180	9.91	9.16	0.75	1.53
160	10.00	9.37	0.63	1.23
140	10.11	9.60	0.51	0.95
120	10.23	9.81	0.41	0.71
100	10.33	10.01	0.32	0.50
80	10.43	10.21	0.22	0.32
60	10.55	10.40	0.14	0.19

40

10.65

10.56

0.08

0.08

 ${\bf Abbildung~1:}$ Ausgleichskurve durch Messwerte des rechteckigen Stabes

3.1.2 Zylindrischer Stab

Nun wird beim zylindrischen Stab ähnlich verfahren wie beim vorherigen Stab. Als Messwerte wurden die in Tabelle 2 gezeigten Daten ermittelt. In Abbildung 2 wurde D(x) über g(x) aufgetragen und mittels linearer Regression ausgewertet. Als Steigung erhählt man m=0,040.

Für die Abmessungen des Zylinders wurden folgende fehlerbehafteten Größen ermittelt. Die Länge beträgt $L=0.58\,\mathrm{m}$ und der Durchmesser $d=(0.009\pm0.010)\,\mathrm{m}$. Für das Flächenträgheitsmoment ergibt sich:

$$I = \int_{Q} y^{2} dq(y)$$

$$= \int_{0}^{2\pi} \int_{0}^{R} r^{3} \sin^{2} \phi dr d\phi$$

$$= \frac{1}{4} R^{4} \left[\frac{1}{2} \phi - \frac{1}{4} \sin 2\phi \right]_{0}^{2\pi}$$

$$= \frac{\pi}{4} R^{4}$$

$$I = (0.9 \pm 3.8) \cdot 10^{-7} \text{ m}^{4}$$

Mit Hilfe der ermittelten Steigung bestimmt sich das Elastizitätsmodul zu:

$$E = \frac{F}{2mI}$$

$$E_2 = (1.1 \pm 4.9) \cdot 10^9 \, \frac{\text{N}}{\text{m}^2}$$

Tabelle 2: Messdaten zum zylindrischen Stab

x / mm	D_1 / mm	D_2 / mm	D(x) / mm	$g(x) = Lx^2 - \frac{x^3}{3}$
505	6.52	1.52	5.00	9.09
500	6.57	1.62	4.95	8.95
495	6.51	1.73	4.78	8.82
490	6.60	1.78	4.82	8.68
485	6.65	1.93	4.71	8.54
480	6.63	2.05	4.58	8.40
475	6.64	2.11	4.53	8.27
470	6.75	2.22	4.53	8.13
465	6.70	2.30	4.40	8.00
460	6.74	2.32	4.41	7.86
455	6.76	2.45	4.31	7.72
450	6.82	2.69	4.12	7.59
445	6.86	2.72	4.13	7.45
440	6.89	2.83	4.06	7.32
435	6.92	2.90	4.02	7.19
430	6.97	2.98	3.99	7.05
425	6.94	3.07	3.87	6.92
420	6.96	3.18	3.78	6.79
415	6.99	3.29	3.70	6.65
410	7.03	3.38	3.64	6.52
405	7.06	3.43	3.62	6.39
400	7.11	3.59	3.52	6.26
395	7.12	3.66	3.45	6.13
390	7.15	3.74	3.41	6.00
385	7.16	3.82	3.33	5.87
380	7.19	3.90	3.29	5.75
370	8.75	5.62	3.12	5.49
360	8.72	5.79	2.93	5.24
350	8.79	5.93	2.85	5.00
340	8.83	6.10	2.72	4.75
330	8.83	6.27	2.56	4.51
320	8.85	6.41	2.43	4.28
310	8.91	6.55	2.35	4.05
300	8.89	6.68	2.20	3.82
290	8.91	6.78	2.12	3.60
280	8.96	6.96	2.00	3.38
270	9.00	7.14	1.86	3.17
260	9.02	7.28	1.73	2.96
250	9.04	7.39	1.65	2.76
240	9.05	7.50	1.55	2.56
230	9.09	7.62	1.46	2.37
220	9.08	7.73	1.35	2.18
210	9.08	7.85	1.22	2.00
200	9.10	7.95	1.15	1.83
180	9.11	8.16	0.95	1.50
160	9.11	8.32	0.79	1.20
140	9.12	8.49	0.63	0.93
120	9.11	8.62	0.48	0.69
100	9.11	8.74	0.36	0.49
80	9.09	8.83	0.26	0.31

60

9.09

8.92

0.17

0.18

 ${\bf Abbildung}$ 2: Ausgleichskurve durch Messwerte des zylindrischen Stabes

Tabelle 3: Messdaten zum zweiseitig eingespannten rechteckigen Stab. Linke Seite

-				
x / mm	D_1 / mm	D_2/mm	$D(x) / \mathrm{mm}$	$(x) = Lx^2 - \frac{x^3}{3}$
290	8.31	7.72	5.89	3.83
295	8.31	7.74	5.70	3.95
300	8.33	7.74	5.89	4.07
305	8.31	7.73	5.80	4.19
310	8.31	7.72	5.89	4.32
315	8.33	7.72	6.09	4.44
320	8.32	7.78	5.40	4.57
325	8.32	7.78	5.40	4.69
330	8.31	7.79	5.20	4.82
335	8.32	7.79	5.29	4.95
340	8.32	7.80	5.20	5.08
345	8.32	7.81	5.10	5.21
350	8.31	7.82	4.89	5.34
355	8.33	7.83	5.00	5.47
360	8.33	7.84	4.89	5.61
370	8.33	7.87	4.60	5.88
380	8.34	7.89	4.49	6.15
390	8.35	7.93	4.19	6.43
400	8.36	7.96	4.00	6.71
420	8.37	7.99	3.80	7.28
440	8.40	8.09	3.09	7.86
460	8.41	8.13	2.80	8.45
480	8.43	8.20	2.30	9.05
500	8.46	8.30	1.60	9.65
520	8.47	8.36	1.10	10.26

Abbildung 3: Ausgleichskurve durch Messwerte des rechteckigen Stabes bei zweiseitiger Einspannung. Linke Seite.

Tabelle 4: Messdaten zum zweiseitig eingespannten rechteckigen Stab. Rechte Seite

x / mm	D_1 / mm	D_2/mm	D(x) / mm	$g(x) = Lx^2 - \frac{x^3}{3}$
255	10.08	9.50	5.80	3.04
250	10.08	9.55	5.29	2.93
245	10.07	9.56	5.10	2.82
240	10.09	9.57	5.20	2.72
235	10.08	9.58	5.00	2.62
230	10.11	9.60	5.10	2.51
225	10.11	9.62	4.89	2.41
220	10.13	9.64	4.89	2.32
215	10.13	9.66	4.70	2.22
210	10.15	9.69	4.60	2.13
205	10.16	9.72	4.40	2.03
200	10.17	9.73	4.40	1.94
195	10.18	9.76	4.19	1.85
190	10.20	9.79	4.10	1.76
185	10.21	9.80	4.10	1.68
175	10.23	9.86	3.69	1.51
165	10.26	9.90	3.59	1.35
155	10.30	9.97	3.29	1.20
145	10.32	10.02	2.99	1.06
125	10.40	10.15	2.50	0.79
105	10.45	10.26	1.90	0.57
85	10.54	10.38	1.60	0.37
65	10.62	10.51	1.10	0.22
45	10.69	10.62	0.70	0.10

Abbildung 4: Ausgleichskurve durch Messwerte des rechteckigen Stabes. Rechte Seite.

4 Diskussion

Literatur

 $[1] \quad \text{TU Dortmund. } \textit{Versuch zum Literaturverzeichnis. } 2014.$