Sistemas Distribuidos

Bibliografía: Introducción a los Sistemas de Bases de Datos Date, C.J.

Bases de datos distribuidas

"Transparente" significa
que la aplicación trabajaría,
desde un punto de vista lógico,
como si un solo DBMS,
ejecutado en una sola máquina,
administrara todos los datos

Bases de datos distribuidas

- implica que una sola aplicación deberá ser capaz de trabajar en forma "transparente"
- · con datos dispersos en varias BD diferentes,
- administradas por varios DBMS distintos,
- · ejecutadas en varias máquinas diferentes,
- apoyadas por diversos sistemas operativos
- y conectadas entre sí mediante varias redes de comunicación distintas.

Sistema de bases de datos distribuidas (BDD)

- se compone de un conjunto de sitios conectados entre sí mediante algún tipo de red de comunicaciones, en el cual
 - Cada sitio es un sistema de BD en sí mismo.
 - Es decir, cada sitio tiene sus BD reales locales, sus propios usuarios locales, sus propios DBMS y programas para la administración de transacciones (incluyendo sus propios programas de bloqueo, bitácoras, recuperación, etc.)

Sistema de bases de datos distribuidas (BDD)

- Pero los sitios han convenido en trabajar juntos (si es necesario) con el fin de que:
 - un usuario de cualquier sitio pueda obtener acceso a los datos de cualquier punto de la red tal como si todos los datos estuvieran almacenados en el sitio propio del usuario.

Es la combinación de
este nuevo componente
y el DBMS ya existente
lo que constituye el llamado
Sistema de Administración de bases de
datos distribuidas: DDBMS.

- Un sistema de BDD puede considerarse como una especie de sociedad entre los DBMS individuales locales de todos los sitios.
- Un nuevo componente de software en cada sitio realiza las funciones de sociedad necesarias

Ventajas

- ¿Por qué son deseables las bases de datos distribuidas?
- Por lo regular las empresas ya están distribuidas, por lo menos desde el punto de vista lógico (en divisiones, departamentos, etc.) y en el sentido físico (plantas, talleres, laboratorios, etc.)
- Por lo tanto la información está distribuida también

Ventajas

- Un sistema distribuido permite que la estructura de la BD refleje la estructura de la empresa:
 - Los datos locales se pueden mantener en forma local, donde por lógica deben estar, pero al mismo tiempo
 - Es posible obtener acceso a datos remotos en caso necesario.

Desventajas

- Falta de experiencia generalizada (pocas aplicaciones: reservas aéreas)
- Si no hay un buen diseño y organización trae mayor complejidad:
- problemas del centralizado + problemas del distribuido
- Puede aumentar costos iniciales: Hardware y software de comunicación y distribución
- Seguridad: se debe aumentar los controles respecto a BD centralizadas
- Complejidad de los sistemas distribuidos (desde el punto de vista técnico)

Ejemplo

- Supongamos un sistema bancario y dos sitios: Rosario y Bs.As.:
 - Los registros de las cuentas de Rosario están en Rosario y las de Bs.As. en Bs.As.
 - Esto da **eficiencia** al procesamiento:
 - los datos están en el lugar donde se los utiliza con mayor frecuencia.
 - es posible tener acceso a una cuenta de Rosario desde Bs.As. y viceversa.

El principio fundamental de las Bases de Datos Distribuidas (regla 0)

 Desde el punto de vista del usuario, un sistema distribuido deberá ser idéntico a un sistema no distribuido.

Esto es:

- Las operaciones de DML no deberán sufrir cambios.
- Las operaciones de DDL requerirán cierta ampliación.
 - Ejemplo: poder crear una tabla en el sitio X y poder almacenarla en el sitio Y.

Las doce reglas

- 1. Autonomía local
- 2. No dependencia de un sitio central
- 3. Operación continua
- 4. Independencia con respecto a la localización
- 5. Independencia con respecto a la fragmentación
- 6. Independencia de réplica

1. Autonomía local

- Los sitios deben ser autónomos.
- Todas las operaciones en un sitio dado se controlan de ese sitio.
- Ningún sitio X debe depender de otro sitio Y para su correcto funcionamiento.
- Si cae Y, X debe poder seguir trabajando.

Las doce reglas

- 7. Procesamiento distribuido de consultas
- 8. Manejo distribuido de transacciones
- 9. Independencia con respecto al equipo
- 10. Independencia con respecto al sistema operativo
- 11. Independencia con respecto a la red
- 12. Independencia con respecto al DBMS

- 2. No dependencia de un sitio central
- Todos los sitios deben tratarse por igual.
- No debe haber dependencia de un sitio central para obtener un servicio, por ejemplo procesar una consulta.
- Si el sitio central sufriera un desperfecto todo el sistema dejaría de funcionar

3. Operación continua

- Nunca debería haber necesidad de apagar el sistema para realizar alguna función.
- Por ejemplo para:
 - añadir un nuevo sitio o
 - instalar una versión del DBMS existente.

5. Independencia con respecto a la fragmentación

 Un sistema maneja fragmentación de los datos si es posible dividir una relación en partes o "fragmentos" para propósitos de almacenamiento físico.

4. Independencia con respecto a la localización

- Los usuarios no deberían necesitar saber dónde están almacenados físicamente los datos.
- Debe comportarse desde el punto de vista lógico como si todos los datos estuvieran almacenados en su propio sitio local.

5. Independencia con respecto a la fragmentación

- Los datos pueden almacenarse en el lugar donde se los utiliza con más frecuencia:
 - la mayor parte de las operaciones serán locales y
 - se reducirá el tráfico en la red.
 - Ejemplo:
 - empleados de Rosario en Rosario,
 - · los de Buenos Aires en Buenos Aires.

- 5. Independencia con respecto a la fragmentación
- Existen dos tipos de fragmentación:
 - horizontal
 - vertical
- se corresponden con la
 - selección
 - proyección

- 5. Independencia con respecto a la fragmentación
- Independencia con respecto a la fragmentación significa:
 - Los usuarios tendrán una vista de los datos con fragmentos combinados lógicamente mediante reuniones y uniones apropiadas.
 - El optimizador determina a cuáles fragmentos físicos es necesario tener acceso para satisfacer cualquier solicitud del usuario.

- 5. Independencia con respecto a la fragmentación
- En la proyección deben conservar la clave primaria
- La reconstrucción de los fragmentos se hace mediante reunión y unión
 - Reunión en caso de fragmentos verticales.
 - Unión en caso de fragmentos horizontales.

- 6. Independencia de réplica
- Un sistema maneja independencia de réplica de datos si una relación dada (o un fragmento) se puede representar en el nivel físico mediante varias copias almacenadas o réplicas, en muchos sitios distintos.

- 6. Independencia de réplica
- Independencia de réplica significa que los usuarios deberán comportarse lógicamente como si existiera una sola copia.
- Debe ser **transparente** para el usuario.

- 6. Independencia de réplica
- Desventaja principal:
 - Problema de propagación de actualizaciones
 - al actualizar un cierto objeto, deben actualizarse todas sus réplicas

6. Independencia de réplica

- La réplica es deseable por dos razones:
 - Puede producir un mejor desempeño: las aplicaciones pueden operar sobre copias locales en vez de tener que comunicarse con sitios remotos
 - Mejor disponibilidad: un objeto está disponible para su procesamiento en tanto esté disponible por lo menos una copia, al menos para propósitos de recuperación.

7. Procesamiento distribuido de consultas

- Hay una optimización global más una optimización local en cada sitio.
- La **optimización** es más importante en un **sistema distribuido** que en el centralizado.
- Hay muchas maneras de trasladar datos entre varios sitios.
- Hay que encontrar la estrategia más eficiente.

7. Procesamiento distribuido de consultas

Por **ejemplo**:

- una solicitud de unión de una relación Rx almacenada en el sitio X y una Ry en Y, podría llevarse a cabo:
 - trasladando Rx a Y ó
 - trasladando Ry a X ó
 - trasladando las dos a un tercer sitio.
- Según la estrategia, el tiempo puede variar entre un segundo y dos días.

8. Manejo distribuido de transacciones

El manejo de transacciones comprende:

- Control de concurrencia
 - Esta basado en el **bloqueo**, igual que en sistemas no distribuidos.

8. Manejo distribuido de transacciones

El manejo de transacciones **comprende**:

- Control de recuperación
 - Una transacción debe ser atómica (todo o nada)
 - En las BDD el sistema debe asegurarse que todos los agentes correspondientes a la transacción se comprometan o retrocedan al unísono.
 - Esto se logra mediante un protocolo de compromiso de dos fases.

- 9. Independencia con respecto al equipo
- Es conveniente ejecutar el mismo DBMS en diferentes equipos y presentar al usuario una sola imagen del sistema.

10. Independencia con respecto al sistema operativo

 Se debe poder ejecutar el mismo DBMS en diferentes equipos y sistemas operativos.

Independencia con respecto a la red

 Se debe poder manejar varias redes de comunicación distintas.

12. Independencia con respecto al DBMS

- Los DBMS en los distintos sitios deben manejar la misma interfaz.
- Por ejemplo:
 - si tanto INGRES como Oracle manejan la norma oficial de SQL,
 - es posible una comunicación entre los dos en el contexto de un sistema distribuido.

Conclusiones

- No todas las reglas serán pertinentes en todas las situaciones
- No todas las reglas son independientes entre sí
- No todas las reglas tienen la misma importancia
- Las reglas son útiles para entender la tecnología distribuida

Conclusiones

Un **objetivo** primordial
en los **sistemas distribuidos**es **reducir al mínimo el número y volumen de los mensajes**