Задачи к лекции 6

Задача 1. Построить конечный атлас на единичной окружности

$$S^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\},\$$

превращающий S^1 в гладкое многообразие. Выписать функции перехода и проверить их гладкость.

Задача 2. Построить конечный атлас на двумерном торе $T^2=S^1\times S^1$, превращающий T^2 в гладкое многообразие. Выписать функции перехода и проверить их гладкость.

Задача 3. Привести пример топологического, но не гладкого многообразия.

Задача 4. Пусть X — топологическое пространство c топологией τ , $u \sim -$ некоторое отношение эквивалентности на X. Если $x \in X$, то через [x] обозначим класс эквивалентности, содержащий x. Обозначим через X/\sim множество классов эквивалентности. Пусть $\pi: X \to X/\sim -$ естественная проекция, заданная так: $\pi: x \mapsto [x]$. Рассмотрим следующее семейство τ_\sim подмножеств e X/\sim :

$$U \in \tau_{\sim} \Leftrightarrow \pi^{-1}(U) \in \tau.$$

Проверить, что τ_{\sim} — топология. Такое семейство τ_{\sim} называется ϕ актор—топологией на X/\sim .

Пусть \mathbb{R}_1 и \mathbb{R}_2 — два экземпляра вещественной прямой \mathbb{R} , а x_i — координата на прямой \mathbb{R}_i . Будем считать все точки прямых \mathbb{R}_1 и \mathbb{R}_2 различными, и рассмотрим эквивалентность \sim на множестве $X = \mathbb{R}_1 \cup \mathbb{R}_2$, определенную так: $x_1 \sim x_2$, если и только если $x_1 = x_2 \neq 0$. Иными словами, мы склеиваем все точки прямых \mathbb{R}_1 и \mathbb{R}_2 с одинаковыми координатами, за исключением нулей. Фактор-пространство $M = X/\sim$ называется прямой с удвоенным нулем или прямой Александрова. Докажите, что это пространство не хаусдорфово, и что на нем можно ввести конечный атлас с гладкими функциями перехода.

Задача 5. Показать, что на объединении двух координатных осей нельзя ввести атлас, превращающий это топологическое пространство (с индуцированной топологией) в топологическое многообразие.

Задача 6. Доказать, что на $\mathrm{GL}(n,\mathbb{R})$, $\mathrm{O}(n)$, $\mathrm{SO}(n)$ и $\mathrm{SL}(n,\mathbb{R})$ можно ввести атласы, превращающие эти топологические пространства в гладкие многообразия.

Задача 7. Доказать, что группа SO(2) гомеоморфна окружности. Чему гомеоморфна группа O(2)?

Задача 8. Какому многообразию гомеоморфно множество всех прямых на плоскости? Всех ориентированных прямых на плоскости?