

Espace Géométrie - 4e

SOMME DES ANGLES D'UN TRIANGLE

Calculer l'angle demandé dans les triangles suivants :

- 1. HMJ est un triangle dont les trois angles sont égaux. Quelles sont les mesures de ses angles?
- 2. SBX est un triangle isocèle en S. L'angle \widehat{SBX} mesure 37°. Quelle est la mesure de l'angle \widehat{BSX} ?
- 3. ECR est un triangle quelconque. L'angle \widehat{ECR} mesure 34° et l'angle \widehat{CER} mesure 58°. Quelle est la mesure de l'angle \widehat{CRE} ?
- **4.** BME est un triangle rectangle en M et $\widehat{MBE} = \widehat{MEB}$. Quelle est la mesure de l'angle \widehat{MEB} ?
- 5. QWI est un triangle rectangle en W et l'angle \widehat{WQI} mesure 33°. Quelle est la mesure de l'angle \widehat{WIQ} ?

Espace Géométrie - 4e

SOMME DES ANGLES D'UN TRIANGLE

Corrections •

1. Dans un triangle, la somme des angles est égale à 180°.

De plus,
$$\widehat{HMJ} = \widehat{HJM} = \widehat{MHJ}$$

D'où
$$3 \times \widehat{HMJ} = 180^{\circ}$$
.

D'où :
$$\widehat{HMJ} = 180^{\circ} \div 3 = 60^{\circ}$$
.

On a donc
$$\widehat{HMJ} = \widehat{HJM} = \widehat{MHJ} = 60^{\circ}$$
.

Le triangle HMJ est un triangle équilatéral.

2. Dans un triangle, la somme des angles est égale à 180°.

Les deux angles à la base d'un triangle isocèle sont égaux.

Donc
$$\widehat{SBX} = \widehat{BXS} = 37^{\circ}$$
.

D'où
$$\widehat{BSX} = 180^{\circ} - 2 \times 37^{\circ} = 180^{\circ} - 74^{\circ} = 106^{\circ}$$
.

L'angle \widehat{BSX} mesure 106°.

3. Dans un triangle, la somme des angles est égale à 180°.

$$\widehat{ECR} + \widehat{CRE} + \widehat{CER} = 180^{\circ}$$

Donc
$$\widehat{CRE} = 180 - \left(\widehat{ECR} + \widehat{CER}\right)$$
.

D'où
$$\widehat{CRE}$$
 = $180^{\circ} - (34^{\circ} + 58^{\circ}) = 180^{\circ} - 92^{\circ} = 88^{\circ}$.

L'angle \widehat{CRE} mesure 88°.

4. Dans un triangle, la somme des angles est égale à 180°.

Comme
$$MBE = MEB$$
,

on a :
$$2 \times MBE + 90^{\circ} = 180^{\circ}$$
.

D'où
$$2 \times \widehat{MBE} = 180^{\circ} - 90^{\circ} = 90^{\circ}$$
.

D'où
$$\widehat{MBE} = 90^{\circ} \div 2 = 45^{\circ}$$
.

L'angle $\widehat{M}B\widehat{E}$ mesure 45°.

5. Dans un triangle, la somme des angles est égale à 180°.

Comme l'angle \widehat{QWI} est droit, les angles \widehat{WIQ} et \widehat{WQI} sont complémentaires.

On a donc :
$$\widehat{W}\widehat{IQ} + \widehat{W}\widehat{Q}\widehat{I} = 90^{\circ}$$

D'où
$$\widehat{WIQ} = 90^{\circ} - 33^{\circ} = 57^{\circ}$$

L'angle \widehat{WIQ} mesure 57°.