

Inter-Calibration of the CMS Electromagnetic Calorimeter with $\pi^0(\eta) \rightarrow \gamma\gamma$

Yong Yang, California Institute of Technology

CMS ECAL Calibration Overview

• ECAL consists of 75,848 crystals (61,200 in the Barrel) of high resolution, high granularity scintillating PbWO₄

• Inter-calibration precision is expected to be one of the key contributions to the constant term of the energy resolution:

$$\frac{\sigma(E)}{E} = \frac{2.8\%}{\sqrt{E(GeV)}} \oplus \frac{12\%}{E(GeV)} \oplus 0.3\%$$

- Several strategies have been explored for in-situ crystal-by-crystal inter-calibration:
 - φ-symmetry calibration, exploiting invariance around the beam axis of energy flow in minimum bias events.
 - $\pi^0(\eta) \rightarrow \gamma \gamma$ calibration, exploiting the reconstructed $\pi^0(\eta) \rightarrow \gamma \gamma$ peak position for individual crystals.
 - single-electron calibration, exploiting the E/p from ECAL and tracker measurements.

The $\pi^0(\eta)$ Calibration Trigger

- \sim 3000 π^0 / crystal are needed to reach a statistical precision of calibration of 0.5%; Therefore, it is not sufficient to use the physics High Level Trigger, which is limited to a rate of O(100) Hz, to obtain a fast inter-calibration on a time scale of a few weeks.
- A special calibration trigger has been developed and is running at the HLT, with features listed below:
 - Level-1 seeds. Electromagnetic triggers and jet triggers are used to enhance the rate.
 - **Regional unpacking**. Only ECAL raw data around Level-1 EG trigger objects above a 2GeV E_T threshold are used. This step not only enhances the selection efficiency but also reduces the CPU time consumption at the HLT filter farm.
 - Special clustering algorithm and simplified selection. Fast 3x3 clustering algorithm is used to make photon candidates. Simplified selection criteria on photon E_T , shower shape and isolation, all based on ECAL crystal variables, are used to select $\pi^0(\eta)$ candidates for calibration.
 - Light event content. Only EcalRechits which are useful for offline calibration are saved on tape (~50 Rechits per event).

π⁰(η) Calibration Method

• The energy of each photon candidate is calculated as the sum of all crystals' energies, taking into account the Laser Correction value (LC) and Inter-Calibration constant (IC).

$$E = \sum_{i} ADC_{j} \times GeV/ADC \times LC_{j} \times IC_{j} \qquad M_{inv} = \sqrt{2E_{1}E_{2}(1 - \cos\theta_{12})}$$

- Inter-calibration with the physics resonances $\pi^0(\eta) \to \gamma \gamma$ derives the IC for each crystal using the resonance peak position reconstructed with $\pi^0(\eta)$ candidates selected by requiring one of the two photons to be centered on that crystal.
- Uniformizing the peak positions obtained for individual crystals gives the IC for each crystal. However, several other effects were found to bias the measurement of the photon energy:
 - Variations of the shower containment with energy and pseudorapidity;
 - Energy losses for photons near module cracks and gaps;
 - Energy losses for photons near dead or masked trigger towers or crystals;
 - Imperfections of the laser corrections.
- Special corrections have been derived from the calibration data to minimize the bias in the IC due to the above effects, except the laser corrections which are derived from a separate laser monitoring data.
- Two inter-calibration iterative algorithms were found to be consistent:
 - The L3 method, first developed for the calibration of the ECAL crystals at the L3 experiment.
 - The Fit method, fitting the invariant mass distribution obtained for each individual crystal.

Inter-calibration Performance

- With 2010 data, inter-calibration with $\pi^0(\eta) \rightarrow \gamma \gamma$ reached the precision of 0.5-0.6% for $|\eta|$ <1 in Barrel. Systematic precision found to be 0.4-0.5%.
- Similar calibration precision was achieved throughout 2011, despite a higher level of crystal transparency change.

Summary and Outlook

- Dedicated $\pi^0(\eta) \rightarrow \gamma \gamma$ calibration stream proved to be capable of sustaining the high output rate of about 10 kHz.
- In 2010 and 2011, the $\pi^0(\eta) \rightarrow \gamma \gamma$ has been the most important inter-calibration method for CMS ECAL. The design-goal inter-calibration precision of 0.5% has been reached for the majority of the barrel ($|\eta|$ <1).
- Precise sub-percent inter-calibration of a crystal calorimeter at a hadron collider performed for the first time.
- The $\pi^0(\eta)$ calibration continues to play an important role for precision physics with photons and electrons at CMS.