

Fakultät für Informatik
Facoltà di Scienze e Tecnologie informatiche
Faculty of Computer Science

Exact Computation of Graph Edit Distance for Uniform and Non-Uniform Metric Edit Costs

David B. Blumenthal & Johann Gamper

GbRPR, Anacapri, 18 May 2017

Overview

- graph edit distance: flexible distance measure for labelled graphs
- supports uniform and non-uniform edit costs
- exact computation is NP-hard
- existing exact algorithms
 - A*-GED (Riesen, Fankhauser, and Bunke 2007)
 - BLP-GED (Lerouge et al. 2016)
 - ▶ DF-GED: node-based DFS, designed for non-uniform edit costs (Abu-Aisheh et al. 2015)
 - CSI_GED: edge-based DFS, supports uniform edit costs only (Gouda and Hassaan 2016)
- contributions
 - (1) DF-GED": speed-up of DF-GED for uniform edit costs
 - (2) CSI_GED^{nu}: generalised version of CSI_GED that supports non-uniform edit costs

Two Communities

- ► Pattern Recognition
- Database Technologies
 - a lot of work o graph edit distance exists
 - publications in venues such as VLDB, ICDE, SIGMOD, TKDE, CIKM
 - main focus: filtering and lower bounds
 - slightly different definitions
 - main difference: restriction on uniform edit costs

Graph Edit Distance

- ▶ labelled undirected graph: 4-tuple $G = (V^G, E^G, \ell_V^G, \ell_E^G)$
- ▶ label functions: $\ell_V^G: V^G \to \Sigma_V$ for nodes, $\ell_E^G: E^G \to \Sigma_E$ for edges
- ▶ edit path between G and H: sequence of edit operations starting at G and ending at $H' \simeq H$
- edit operations: deleting, inserting, relabelling
- edit costs: $c_V : \Sigma_V \times \Sigma_V \to \mathbb{R}$ for operations on nodes, $c_E : \Sigma_E \times \Sigma_E \to \mathbb{R}$ for operations on edges
- ▶ uniform edit costs: $c_V(\alpha, \beta)$, $c_E(\alpha, \beta) = \begin{cases} 1 & \alpha \neq \beta \\ 0 & \alpha = \beta \end{cases}$
- ▶ graph edit distance $\lambda(G, H)$: minimum cost of edit path between G and H

Node Maps

- $V^{G+|H|}$: V^G plus $|V^H|$ isolated dummy nodes
- ▶ node map: injective partial function $\pi: V^{G+|H|} \to V^{H+|G|}$ with $V^G \subseteq dom(\pi)$ and $V^H \subseteq img(\pi)$
- ▶ edit path induced by node map: let $i \in V^G$, $k \in V^H$, $ij \in E^G$, $kl \in E^H$
 - \bullet $\pi(i) = k \rightsquigarrow$ change node label from $\ell_V^G(i)$ to $\ell_V^H(k)$
 - $\qquad \qquad \pi(i) = k_{\varepsilon} \leadsto \text{delete node } i$
 - $\qquad \qquad \pi^{-1}(k) = i_{\varepsilon} \rightsquigarrow \text{insert node } k$
 - ▶ $\pi(i)\pi(j) = kl \rightsquigarrow$ change edge label from $\ell_E^G(ij)$ to $\ell_E^H(kl)$
 - $\blacktriangleright \pi(i)\pi(j) \notin E^H \rightsquigarrow \text{delete edge } ij$
 - $\pi^{-1}(k)\pi^{-1}(l) \notin E^G \rightsquigarrow \text{insert edge } kl$
- ▶ alternative definition of $\lambda(G, H)$: minimum cost $g(\pi)$ of edit path induced by a node map π

DF-GED: Node-Based DFS

- $g(\pi)$: cost of partial edit path induced by π
- h(π): lower bound for induced cost from π to a leaf, i.e., complete node map rooted at π → has to be computed at each inner node of the DFS

 $\begin{array}{l} \text{inner nodes} \ \widehat{=} \\ \text{incomplete node maps} \end{array}$

leafs $\hat{=}$ complete node maps $\rightsquigarrow UB = q(\pi)$

Our Speed-Up DF-GED^u for Uniform Edit Costs

multiset with unassigned labels from nodes in $V^{G+|H|}$

 $h(\pi): \text{ defined as } MLA(\ell_V^G(V^{G+|H|-\pi}) \times \ell_V^H(V^{H+|G|-\pi}), c_V) + MLA(\ell_E^G(E^{G-\pi}) \times \ell_E^H(V^{H-\pi}), c_E)$ multiset with unassigned labels

computation for non-uniform edit costs requires cubic time

Lemma

For uniform edit costs, $h(\pi)$ can be computed in linear time.

1. at initialisation, sort node and edge labels

from edges in E^G

2. compute $MLA(A \times B, c)$ as $\Gamma(A, B) = \max\{|A|, |B|\} - |A \cap B|$

Valid Edge Maps (I)

- $ightharpoonup \overrightarrow{E^G}$: one oriented edge (i, j) for each undirected $ij \in E^G$
- $ightharpoonup \overleftrightarrow{E^H}$: both (k, l) and (l, k) for each $kl \in E^H$
- ▶ edge map: mapping $\phi: \overrightarrow{E^G} \to \overleftarrow{E^H} \cup \{e_{\varepsilon}\}$
- ▶ induces relation π_{ϕ} on $V^G \times V^H$: if $\phi(i,j) = (k,l)$, then $(i,k) \in \pi_{\phi}$ and $(j,l) \in \pi_{\phi}$
- ightharpoonup valid edge map: ϕ is valid iff π_ϕ is partial injective function

Valid Edge Maps (II)

- ▶ partial edit path induced by valid edge map: let $i \in V^G$, $k \in V^H$, $(i, j) \in \overrightarrow{E^G}$, (k, l), $(l, k) \in \overrightarrow{E^H}$
 - $\phi(i,j) = (l,k) \rightsquigarrow$ change edge label from $\ell_E^G(ij)$ to $\ell_E^H(kl)$
 - $\phi(i,j) = e_{\varepsilon} \rightsquigarrow \text{delete edge } ij$
 - $\phi^{-1}[\{(k,l),(l,k)\}] = \emptyset \rightsquigarrow \text{insert edge } kl$
 - $\pi_{\phi}(i) = k \leadsto$ changed node label from $\ell_V^G(i)$ to $\ell_V^H(k)$

Theorem

 $\lambda(G,H) = \min\{g(\phi) + \Gamma(V^{G-\pi_{\phi}},V^{H-\pi_{\phi}}) \mid \phi \text{ is valid edge map}\}$ holds for uniform edit costs, where $g(\phi)$ is the cost of the partial edit path induced by edge map ϕ .

ightharpoonup can compute $\lambda(G,H)$ by traversing space of all valid edge maps

CSI_GED: Edge-Based DFS

Our Generalisation CSI_GED^{nu}

Theorem

 $\lambda(G, H) = \min\{g(\phi) + MLA(\ell_V^G(V^{G+|H|-\pi_\phi}) \times \ell_V^H(V^{H+|G|-\pi_\phi}), c_V) \mid \phi \text{ is valid edge map}\} \text{ holds for non-uniform metric edit costs.}$

- can use CSI_GED's DFS framework for non-uniform edit costs
- \blacktriangleright at leafs, use *MLA* instead of Γ to compute *UB*
- increased complexity at leafs (cubic instead of linear)
- no increased complexity at inner nodes of search tree

Setup

- used the datasets AIDS and FINGERPRINTS (Riesen and Bunke 2008)
- formed groups of size four containing graphs of fixed size and ran all algorithms for all pairs of graphs in one test group
- set time limit of 1000 seconds
- recorded the runtime, the number of timeouts, and the deviation of an algorithm's upper bound after 1000 seconds from the best upper bound

Results for Non-Uniform Metric Edit Costs

Results for Uniform Edit Costs

Upshot of the Results

- uniform edit costs
 - our speed-up DF-GED^u always outperforms DF-GED
 - CSI_GED and our generalisation CSI_GED^{nu} perform similarly
- general observation: no clear winner between node based and edge based algorithms
- ► FINGERPRINTS: DF-GED and DF-GED^u perform better
- AIDS: CSI_GED^{nu} and CSI_GED perform better
- CSI_GED and CSI_GED^{nu} are more stable than DF-GED and DF-GED^u: their deviation is small even if DF-GED and DF-GED^u perform better
- No prior knowledge about dataset and both uniform and non-uniform edit costs relevant → CSI_GED^{nu} is algorithms of choice

Future Work

- ▶ individuate characteristics of datasets, for which the node based/edge based approaches perform better
- develop meta-algorithm based on these characteristics
- combine techniques from both communities in order to come up with significantly faster algorithm

References

- Abu-Aisheh, Zeina et al. (2015). "An Exact Graph Edit Distance Algorithm for Solving Pattern Recognition Problems". In: ICPRAM 2015. Ed. by Maria De Marsico, Mário A. T. Figueiredo, and Ana L. N. Fred. Vol. 1. SciTePress, pp. 271–278.
- Gouda, Karam and Mosab Hassaan (2016). "CSI_GED: An Efficient Approach for Graph Edit Similarity Computation". In: 32nd IEEE International Conference on Data Engineering. IEEE Computer Society, pp. 265–276.
- Lerouge, Julien et al. (2016). "Exact Graph Edit Distance Computation Using a Binary Linear Program". In: S+SSPR 2016. Vol. 10029. LNCS. Heidelberg: Springer, pp. 485–495.
- Riesen, Kaspar and Horst Bunke (2008). "IAM Graph Database Repository for Graph Based Pattern Recognition and Machine Learning". In: S+SSPR 2008. Ed. by Niels da Vitoria Lobo et al. Vol. 5342. LNCS. Springer, pp. 287–297.
- Riesen, Kaspar, Stefan Fankhauser, and Horst Bunke (2007). "Speeding Up Graph Edit Distance Computation with a Bipartite Heuristic". In: MLG 2007. Ed. by Paolo Frasconi, Kristian Kersting, and Koji Tsuda, pp. 21–24. URL: %7Bhttp://mlg07.dsi.unifi.it/pdf/02_Riesen.pdf%7D.