第九章 二重职分 一定义 曲质技体的体积 底面积 do >0 1. 在自角些称系 $\{f(x,y)\}d\sigma = \lim_{n\to\infty} \sum_{j=1}^{n} f(a + \frac{b - a}{n}i, c + \frac{d - c}{n}j) \cdot \frac{b - a}{n} \cdot \frac{d - c}{n}$ 此时0厘长才形区域,若b-q=1,d-c=1.则告骤为搜出方. 九.慢生 并, 方 罗战=重积分 2. 存在坚美比这积分 Sfa,y)在D上连读,则可积 f(X))在D上有界, 除有限与或有限气质曲线外车度,例可积 二性质. O可加强. D=D,+D. M Sfdo=Sfdo+Sfdo D数度 Slaf+Bgydo = dssfdo + pssgdo ③屏号性. 若f<g. M Jfdo ≤ Jgdo ④有界性 老faxy)在D上可积,则必有界 B陆随这理. 若m<f≤M. M mA≤ ssfdo≤MA ①中值空理、f在D上连续、则存在(5,1) 使 $\iint d\sigma = f(5,1) \cdot A$ 普通对称性、D类为铀对称、是fdo=50, f星xin高 2月fdo,f星xin属 D类X轴对称。是fdo=50, f星yin高 2月fdo,f星yin属 在判断于是y的奇或偶时,将x视的常数 乾换对称性 区域 D关子 y=X对称. 有 {{f(x,y)do = {{f(y,x)do = { 品交换 X, Y位置,积分不变. 则 I= = {(f(x,y)+f(y,x)) do 三运算 $\int_{a}^{b} dx \int_{\mu(x)}^{\mu(x)} f(x,y) dy$ 这里的下限都从常小孩子 < 上限 $\int_{a}^{b} d\theta \int_{\mu(\theta)}^{\mu(\theta)} f(r,\theta) r dr$

	JUREN WENCAL
1直接运算. 在计算	(1. 五十七) 在到图 对域上到影响对积煤来化间计算
力社化路村 西山	20 20 x tax 4 TP x + V B1 2 B P170 2 91 NO 16-5
注意	rd==dr2 此时的三容易变漏。
7 Th 1 25 1 TD	3) 個上了個 3时 船后的 人名
特二	次积分转化为=重积分时,若下限>上限、离场、加负号、分段求解(18.69.11·10)
1°分块函数分块求	静 (18.9.11.14)
2° D: X7 1/3 R2. MS.	$\int_{0}^{\infty} (x^{2}+y^{2}-R^{2}) d\sigma = \frac{1}{2} \lambda R^{4}$
	$(x + y) d\sigma = 0$
2°二重积分取极值(洛以次法则 BAF (接无后) 七尺存在于上下限中
	中值定理 f(s,n)
	运意中值位置与义关系
4°-重积分化=重.多	国之相意以接名.
[f(x) dx	$\int_{c}^{d} g(x) dx = \int_{a}^{b} f(x) dx - \int_{c}^{d} g(y) dy = \iint_{c}^{d} f(x) \cdot g(y) d\sigma = \iint_{c}^{d} f(y) \cdot g(x) d\sigma$
了更到回是	元- 十等县 ZI= 以fx>g(y)+ f(y)g(x))do
用子别斯·	特马 京 使某 破 相 尚 (18.09.11.18)
roth-To bix To di	符号或变集项相消 (18.09.11.18) [[fxy dvdy = sodx sofxy dy = sodx x] c dx
16,2f(V)	(1) 2+(x,c)
$=\int_{a}^{b}\left(\frac{\partial \int C \lambda \partial x}{\partial x}\right)$	$\frac{\partial}{\partial x} = \int (x, c) dx = \int (x, d) - \int (x, c) dx$
= f(b,d) -	f(b,c) - f(a,d) + f(a,c)

