Автоматизация процесса вывода совместной демографической истории нескольких популяций из аллель-частотного спектра

Носкова Екатерина Эдуардовна

Научные руководители: к. т. н. Ульянцев Владимир Игоревич (ИТМО) Добрынин Павел Владимирович (СП6ГУ)

СПбАУ РАН

15 июня 2018 г.

Введение

- Историю развития видов и популяций можно попытаться проследить по их генетическим данным.
- Эту историю рассказывает демографическая модель развития популяций.

Аллель-частотный спектр

Аллель

— вариант гена или локуса генома.

Аллель-частотный спектр N популяций

- это совместное распределение частот аллелей, отличных от референса, у N популяций.
- это N-мерная гистограмма, где оси соответствуют популяциям и каждый элемент содержит число локусов, на которых аллель, отличная от референса, встретилась определенное число раз.

Рис. 1: Примеры аллель-частотных спектров двух популяций

Существующие подходы

Существуют два метода для симуляции ожидаемого аллельчастотного спектра M из заданной демографической модели:

- Численное решение уравнения диффузии $\partial a \partial i$ [1].
- Аппроксимация моментов случайного процесса moments [2].

Предположение: каждый элемент аллель-частотного спектра — это независимая Пуассоновская случайная величина.

Тогда можем посчитать правдоподобие — вероятность получить наблюдаемый спектр S при условии, что ожидаемый спектр — M:

$$\mathcal{L}(M|S) = \prod_{i=1,\dots P} \prod_{d_i=1,\dots n_i} \frac{e^{-M[d_1,\dots,d_P]}M[d_1,\dots,d_P]^{S[d_1,\dots,d_P]}}{S[d_1,\dots,d_P]!}$$

- [1] Gutenkunst et al., 2009
- [2] Jouganous et al., 2017

Существующие подходы: общая схема

Существующая демографическая модель выхода людей из Африки — Gutenkunst et al. (2009)

Дано 3 популяции людей:

- YRI люди народа Йоруба из Нигерии,
- CEU жители штата Юта с предками из западной Европы,
- СНВ люди народа Хань из Пекина.

Логарифм правдоподобия: -6316.89

Цель диссертации

Цель: Автоматизация вывода демографической истории нескольких популяций из аллель-частотного спектра.

Задачи диссертации

Задачи:

- Разработать метод автоматического глобального поиска демографичеякой модели по аллель-частотному спектру, основанный на генетическом алгоритме.
- Реализовать разработанный метод в прототипе программного средства.
- Провести экспериментальные исследования с использованием реальных геномов (люди *Homo sapiens*, бабочки *E. gillettii*).

Генетический алгоритм

Мутация демографической модели

Скрещивание демографических моделей

Реализация

- GADMA (Genetic Algorithm for Demographic Model Analysis) программное обеспечение для поиска совместной демографической модели популяций из аллель-частотного спектра.
- Язык разработки: Python.

GADMA

GADMA implements methods for automatic inferring joint demographic history of multiple populations from genetic data.

GADMA is based on two open source packages: the ∂a∂i developed by Ryan Gutenkunst [https://bitbucket.org/gutenkunstlab/dadi/] and the *moments* developed by Simon Gravel [https://bitbucket.org/simongravel/moments/].

In contrast, GADMA is a **command-line tool**. It presents a series of launches of the genetic algorithm and infer demographic history from Allele Frequency Spectrum of multiple populations (up to three).

GADMA is developed by Ekaterina Noskova (ekaterina.e.noskova@gmail.com)

Table of contents

Демографическая модель выхода людей из Африки, полученная нашим методом (1)

- Подбирались те же параметры (14 штук), что и в Gutenkunst et al.
- Экспертные данные: время выхода из Африки не более 150 тыс. лет назад.

Логарифм правдоподобия: -6315.86

Демографическая модель выхода людей из Африки, полученная нашим методом (2)

- Подбирались все доступные параметры: 23 штуки.
- Экспертные данные: время выхода из Африки не более 150 тыс. лет назад.

Логарифм правдоподобия: -6288.37

Сравнение существующей модели и полученной

Существующая демографическая модель для бабочек E. gillettii McCoy et al. (2013).

- WY популяция бабочек Euphydryas gillettii в штате Вайоминг,
- CO популяция бабочек *Euphydryas gillettii* в штате Колорадо.

Логарифм правдоподобия: -284.17

Альтернативные демографические модели для бабочек E. gillettii, полученные нашим методом

Результаты

- Был разработан и реализован метод автоматического вывода демграфических моделей из аллель-частотного спектра, на основе генетического алгоритма.
- Были проведены экспериментальные исследования на реальных данных: выведены демографические модели для трех популяций современных людей и двух популяций бабочек *E. gillettii*.
- Метод позволил подобрать модели, лучшие по правдоподобию, чем те, что были подобраны ранее.
- Также метод предоставил несколько альтернативных демографических моделей с близким значением правдоподобия.

Спасибо за внимание!

Пример аллель-частотного спектра

Реф	Референс:			ATACG						
2 oc	1 особь 2 особь 3 особь			опуляці XT <mark>C</mark> CG X <mark>C</mark> ACG GCACG	RΝ	2 популяция A <mark>C</mark> ACG ACACT				
Позиция Аллель Частота в 1 поп. Частота во 2 поп.	1 G 1 0	2 C 2 2	3 C 1 0	5 T 0 1		\Rightarrow $A =$	$ \begin{array}{c} 0\\2\\1\\0\end{array} $		2 1 0 0	

Аллель-частотный спектр N популяций

— это N-мерная гистограмма, где оси соответствуют популяциям и каждый элемент содержит число позиций, на которых аллель, отличная от референса, встретилась определенное число раз.

Модель Райта-Фишера

- ullet Пусть у нас имеется одна популяция размера N.
- Локус A две аллели A_1 , A_2 .
- Обозначим X(t) число аллелей A_1 в поколении t.
- Очевидно, $X(t) \in \{0, 1, ..., 2N\}$
- Тогда X(t+1) биномиальная случайная величина:

$$p_{ij} = P(X(t+1) = j | X(t) = i) = {2N \choose j} \left(\frac{i}{2N}\right)^{j} \left(1 - \frac{i}{2N}\right)^{2n-j}$$

Forward уравнение Колмогорова

• Пусть у нас имеется марковская цепь с исходами $\{0,1/M,2/M,\cdots,1\}$ и матрицей переходов $P=\{p_{ij}\}$, обозначим $f(i,k,t)=p_{ij}^{(t)}$

Если выполнено:

$$E(\delta x) = a(x)\delta t + o(\delta t),$$

$$var(\delta x) = b(x)\delta t + 0(\delta t),$$

$$E(|\delta x|^3) = 0(\delta t).$$

TO:

$$\frac{\partial f(x;t)}{\partial t} = -\frac{\partial}{\partial x} \{a(x)f(x;t)\} + \frac{1}{2} \frac{\partial^2}{\partial x^2} \{b(x)f(x;t)\}.$$

— forward уравнение Колмогорова или уравнение Фоккера-Планка.

Уравнение диффузии популяционной генетики

Пусть у нас имеется Р популяций, где:

- ν_i численность популяции i,
- \bullet γ_i отбор,
- M_{ij} темпы миграции.

Тогда можно записать следующее уравнение Фоккера-Планка:

$$\frac{\partial f(x;t)}{\partial t} = -\sum_{i=1,\dots,P} \frac{\partial}{\partial x} \left(\gamma_i x_i (1-x_i) + \sum_{j=1,\dots,P} M_{ij} (x_i - x_j) \right) f(x;t) + \frac{1}{2} \sum_{i=1,\dots,P} \frac{\partial^2}{\partial x^2} \frac{x_i (1-x_i)}{\nu_i} f(x;t).$$