定理 4.10~A を n 個の頂点 $V=\{v_1,v_2,...,v_n\}$ を持つ有向グラフの隣接行列とすると ,行列 A m の[i,j] 成分は頂点 v_i から v_j への長さ m ($m \ge 0$)の道の個数である。

【証明】

 A^m の[i,j] 成分を $a_{i,j}^{(m)}$ とする。m に関する数学的帰納法を用いて示す。

- (1) m=0 のとき , $A^0=I$ (すなわち単位行列)である。定理の主張を満たす。
- (2) $m=k\geq 0$ のとき,定理の主張を満たすと仮定すると, $a_{i,t}^{(k)}$ は頂点 v_i から頂点 v_t への長さk の道の個数であり, $a_{i,t}^{(k)}a_{t,j}$ は頂点 v_i から頂点 v_t を経由して頂点 v_j へ到る長さk+1 の道の個数である。ゆえに, $\sum_{t=1}^n a_{i,t}^{(k)}a_{t,j}$ は頂点 v_i から頂点 v_j への長さk+1 の道の個数である。 $A^{k+1}=A^kA$ の[i,j] 成分は $\sum_{t=1}^n a_{i,t}^{(k)}a_{t,j}$ であるので,m=k+1 のとき,定理の主張を満たす。
- (1)と(2)より,定理の主張を満たす。