Princeton, USA

+1 (609) 865-3506 nvishvajeet@gmail.com

https://nvishvajeet.github.io

Research Interests

I am broadly interested in Theoretical Computer Science. My current work is in Complexity Theory and specifically in Streaming Algorithms and Communication Complexity, and Pseudorandomness.

My work involves proving lower bounds in multi-pass streaming and communication models for graph optimization and Constraint Satisfaction Problems, and often uses Fourier-analytic and information-theoretic methods. I also work on pseudorandomness involves proving lower bounds on the seed-length for various randomness extractors, which necessitates the study of problems in extremal combinatorics.

EDUCATION

Rutgers University

2017 - 2022 (expected)

- Ph. D candidate in Computer Science
- Advisor: Prof. Swastik Kopparty

Indian Institute of Technology Madras

2012 - 2017

- Bachelor and Master of Technology
- Master's Thesis Advisor: Prof. Radhakrishna Ganti
- Master's Thesis: Optimization of Mechanical Systems via Lasserre Hierarchy of Semidefinite Programming Relaxations

PUBLICATIONS

Graph Streaming Lower Bounds for Parameter Estimation and Property Testing via a Streaming XOR Lemma Sepehr Assadi and Vishvajeet N, 2021.

The 53rd Annual ACM Symposium on Theory of Computing (STOC 2021)

INTERNSHIPS

Microsoft Research, India

May - Aug 2016

- Mentor: Dr. Satya Lokam
- Area: Analysis of Boolean Functions, Sensitivity Conjecture
- Worked towards extending the approach of relating higher moments of sensitivity and degree of a general function to bounding decision-tree depth in terms of higher moment of sensitivity

Tata Institute of Fundamental Research, Mumbai, India

May - Oct 2015

- Mentor: Prof. Prahladh Harsha
- Area: Coding Theory
- Surveyed Arikan's capacity-achieving deterministic coding schemes and fresh results surrounding the capacity-achieving capabilities of Reed-Muller codes, as part of the *Visiting Students' Research Program*
- Wrote an article on the area: Codes That Achieve Capacity on Symmetric Channels (arXiv:1510.01439[cs.IT]).

Workshops Attended

Workshop on Algorithms for Large Data

Aug 2021

- Online

Monthly Meeting of the Simons Collaboration on Algorithms and Geometry

2019/2020

- Flatiron Institute, NYC

Interactive Complexity	Oct 2018
- Simons Institute for the Theory of Computing, Berkeley	
Workshop on Local Algorithms	June 2018
- MIT, Cambridge	
Sublinear Algorithms, Local Algorithms and Robust Statistics	June 2018
- MIT, Cambridge	
Avi Wigderson is 60 - A Celebration of Mathematics and Computer Science	Oct 2016
- Institute for Advanced Study, Princeton	
TEACHING EXPERIENCE	
I have been a Teaching Assistant for the following courses at Rutgers University:	
Introduction to Discrete Structures II (CS 206)	Spring 2021
Introduction to Discrete Structures I (CS 205)	Spring 2020
Design and Analysis of Computer Algorithms (CS 344)	Fall 2019
Introduction to Calculus I (MATH 135)	Spring 2019
Design and Analysis of Data Structures and Algorithms (CS 513)	Fall 2018
Introduction to Discrete Structures II (CS 206)	Spring 2018
Design and Analysis of Data Structures and Algorithms (CS 513)	Fall 2017