Digital Electronics- 2CS303

UNIT-1 Boolean algebra: Definitions, Theorems & Properties

Dr. Sudeep Tanwar

M

- 1.Boolean algebra: Definitions,
- 2. Theorems & Properties
- 3.Examples

Definition of a Boolean Algebra

- All the properties of Boolean functions and expressions that we have discovered also apply to other mathematical structures such as propositions and sets and the operations defined on them.
- If we can show that a particular structure is a Boolean algebra, then we know that all results established about Boolean algebras apply to this structure.
- ■For this purpose, we need an abstract definition of a Boolean algebra.

Basic Definitions

Binary Operators

AND

$$z = x \cdot y = x y$$

$$z=1$$
 if $x=1$ AND $y=1$

• OR

$$z = x + y$$

$$z=1$$
 if $x=1$ OR $y=1$

NOT

$$z=\overline{x}=x'$$

$$z=1$$
 if $x=0$

Boolean Algebra

- Binary Variables: only '0' and '1' values
- Algebraic Manipulation

w

POSTULATES OF BOOLEAN ALGEBRA:

The Boolean algebra has its own set of fundamental laws, which differ from the traditional algebra. They are,

OR laws:

- \rightarrow A+0=A
- > A+1=1
- \rightarrow A+A=A
- > A+Ā=1 (law of complementary)

AND laws:

- > A.0=0
- A=A.A=A
- > A.1=A
- > A.Ā=0 (law of complementary)

NOT laws:

- $> \overline{0}=1$
- > 1=0
- > If A=0 then Ā=1
- ➤ If A=1 then Ā=0

Boolean Algebra Postulates

★ Commutative Law

$$x \bullet y = y \bullet x$$

$$x + y = y + x$$

★ Identity Element

$$x \cdot 1 = x$$

$$x + 0 = x$$

***** Complement

$$x \cdot x' = 0$$

$$x + x' = 1$$

Boolean Algebra Theorems

★ Duality

• The *dual* of a Boolean algebraic expression is obtained by interchanging the AND and the OR operators and replacing the 1's by 0's and the 0's by 1's.

Example:

$$\bullet x \bullet (y+z) = (x \bullet y) + (x \bullet z)$$

• $x + (y \cdot z) = (x + y) \cdot (x + z)$

Applied to a valid equation produces a valid equation

★ Theorem 1

$$\bullet$$
 $x \bullet x = x$

$$x + x = x$$

★ Theorem 2

$$\bullet$$
 $x \bullet 0 = 0$

$$x + 1 = 1$$

Boolean Algebra Theorems

★ Theorem 3: *Involution*

•
$$(x')' = x$$
 ; $(\overline{x}) = x$

★ Theorem 4: Associative

•
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$
; $(x + y) + z = x + (y + z)$

★ Theorem 5: *Distributive*

•
$$x \cdot (y+z) = (x \cdot y) + (x \cdot z);$$

 $x + (y \cdot z) = (x+y) \cdot (x+z)$

★ Theorem 6: *DeMorgan*

• $(x \cdot y)' = x' + y'$;

$$(x+y)'=x'\cdot y'$$

 $\bullet \quad (\overline{x \bullet y}) = \overline{x} + \overline{y} \qquad ;$

$$(\overline{x+y}) = \overline{x} \cdot \overline{y}$$

★ Theorem 7: Absorption

$$\bullet \quad x \bullet (x + y) = x$$

$$x + (x \cdot y) = x$$