

Data Science

DATA

Information

Relevant

Raw

Structured Data

Tabular

SQL Databases

Unstructured Data

Photos

Sounds

Videos

Collected from where?

Social Media

Smart devices

Bank Accounts

GPS

.... everywhere

volume of unstructured data is growing & that growth is accelerating

volume of unstructured data is growing & that growth is accelerating

SCIENCE

- ✓ Observe
- Question
- Researc

DATA SCIENTIST

DS = evidence-based methodology for solving problems using computational and analytical tools

Data Science = applied branch of statistics

data \rightarrow valuable asset \rightarrow insight \rightarrow decisions \rightarrow actions

automated analysis
extract knowledge
visualisation & communication

DATA SCIENTIST

"A data scientist is someone who is better at statistics than any software engineer and better at software engineering than any statistician."

Wills (2012, Director of Data Science at Cloudera)

"... the sexiest job ... will be statisticians....

data ... understand it extract value from it ... visualise it

Varian (2008, Chief Economist at Google)

"A data scientist is somebody
who is inquisitive,
who can stare at data and spot trends...

... like a Renaissance individual who really wants to learn and bring change to an organization."

Bhambhi (2012, VP of Big Data products at IBM)

DATA SCIENTIST

"effective data science should not be treated like just another business process, and can not be operationalized assemblyline style.

Data science -- as the name suggests -- is a mode of inquiry and exploration similar to "real" science.

Just as a physicist uses math to reason about the natural world, data scientists harness mathematical and computational tools to reason about the business world."

Peter Wang (2019, CEO Anaconda)

DATA SCIENCE APPLICATIONS

DATA SCIENCE APPLICATIONS

Marketing

Optimizing ads

Identifying the best ad to run online

Forecasting Churn

Predict which type of customers are most likely to leave your service

Segmenting Customer Base

Deeply understand customer base for better tailored products and services

Finance

Stock Price Prediction

Forecasting share indices and specific stock prices

Improved Customer Service

Using text data for chatbots and call center routing

Fraud Detection

Identify fraudulent transactions based on key patterns

DATA SCIENCE APPLICATIONS

Sentiment Analysis - Social media – can we gain intuition/vibe?

Medical analysis - Are you likely to get a certain illness based on your lifestyle (or other factors)?

The natural world - What is going on with the weather? snow?

Financial - Is the market going to go up or down?

Retail - Who is most likely to buy something?

Supermarkets - What stock to put in the front of the shops? What discounts to give?

Personal - Why can't I hit 10,000 steps a day?

NOMENCLATURE

"example"

"feature"

"label"

"observation"

"predictor"
"independent variable"

"response"

"dependent variable"

- ✓ Domain Knowledge
- **✓** Programming
- **✓** Statistics
- Curiosity
- Visualisation
- Communications
- Storytelling
- ☐ Project Management/DevOps
- Databases
- ☐ Data Mining
- Machine Learning

- ✓ Domain Knowledge
- **✓** Programming
- **✓** Statistics
- Curiosity
- Visualisation
- Communications
- Storytelling
- ☐ Project Management/DevOps
- Databases
- Data Mining
- Machine Learning

In many walks of life evolution selects against the kind of person who decides to find out what happens "if I push that button".

In Data Science it selects for it.

2012, Ross (Director Data Science at Teradata)

Data Science Is Multidisciplinary

ANALYTICS

Descriptive Analytics

Making data visible and getting it in the right hands

Predictive Analytics

Predict the future with data

Prescriptive Analytics

Making data-driven decisions

MATHEMATICS & STATISTICS

Probability

Belief of event occurrence Bayes rule

Statistics

Random Variables (Features)
Samples vs Populations
Distributions
Inference

Linear Algebra

Transformations on data sets Weighted Sums Models (Tensor, Matrix, Vector)

Calculus

Areas and Rates
Rates of error functions
Parameter Optimisation

PYTHON LIBRARIES

NumPy

- fast numerical arrays
- optimized fortran and C extensions

Pandas

- numpy wrapper
- provides "data frames"
- tabular model over numpy arrays

matplotlib

visualization and plotting

seaborn

convenience matplotlib wrapper

Bokeh

- alternative graphing library (for the web)
- especially useful for geoplots and other complex plots

SciKit Learn

- comprehensive machine learning library
- provides good-enough implementations of most key algorithms

Tensorflow

- fast (concurrent, distributed, gpu) numerical computing library
- describes computations as optimizable graphs

Keras

• tensorflow (et al.) wrapper providing neural network abstractions

TOOLS

Programming Languages

Databases

Command Line Tools

Spreadsheets

Big Data

collection, ingestion, processing and analysis of datasets **too large**, and generated **too quickly**, to be analyzed effectively by traditional analytical tools and methodologies

QA BIG DATA

VOLUME

Huge amount of data

VOLUME

- Terabyte
- Records/Arch
- Tables, Files
- Distributed

VELOCITY

- Batch
- Real/near-time
- Processes
- Stream

VARIETY

- Structured
- Unstructured
- Multi-factor
- Probabilistic
- Linked
- Dynamic

VERACITY

- Trustworthiness
- Authenticity
- Origin, reputation
- Availability
- Accountability

5 V's of Big Data

VARIABILITY

- Changing data
- Changing model
- Linkage

VALUE

- Statistical
- Events
- Correlations
- Hypothetical

BIG DATA: SOURCES

Human Generated

- Photos, videos
- Text
- Click Like
- Web search
- Emails & SMS
- Online Purchases

Machine Generated

- Cell Phones, GPS
- Industrial Process Monitoring
- Climate monitoring
- Medical Devices
- IoT

BIG DATA VS SMALL DATA

Small Data

Goals: Specific

Location: In one place

Structure: structured

Preparation: by end user for their own purpose

Longevity: kept for specific time

Reproducibility: can be reproduced

Stakes: data loss cost is limited
Analysis: can be analysed at once
in one PC

Big Data

Goals: Evolving

Location: distributed

Structure: unstructured &

multi formats

Preparation: by many, used by

many

Longevity: kept for long

period of time

Reproducibility: may not be

possible

Stakes: data loss cost is high

Analysis: Multiple steps as files can be in different

places and formats

APPENDIX: Jargon

ARTIFICIAL INTELLIGENCE

A particular pattern-finding algorithm

Deep Neural Networks

A particular generalization of the neural network algorithm

Artificial Intelligence

• (boad def.) the project of simulating animal intelligence

Artificial Intelligence

- whatever artifical system is the best at decision making
- 50s: computers running simple programs
- 80s: computes running expert programs
- 00s: computers running machine learning programs
- 10s: computers running machine learning with neural networks

DATA SCIENCE

Statistics

Describing and finding patterns in data

Patterns

Correlations between variables

Statistical Inference

 Finding novel patterns / making predictions / generalizing from observation

Machine Learning

 Computational Statistical Inference = Statistical Inference with Computers

Learning

Finding the "best" patterns

ROLES

Historical Trends, Data Fact Finding

Data Science

- Future Trends, Inference & Prediction
- Domain Understanding
- Data Understanding
- Data Exploration, Preparation
- Statistical Modelling
- Evaluation of Models
- Deploying solutions

DATA INSIGHT

Data Scientist

- Machine Learning Developer
- Researcher

Data Engineer

- Big Data Engineer
- DataOps
- Data Science with DevOps

Data Leader

Project Manager