Computational Biology

12 Raw Files

Team 22

Under supervision :
Dr / Ibrahim el semman

01 Team Members

Table of contents

02 Result of Files

O3 iTraq

04 iTraq and Bioinformatics

Team Members

Ashrqat Maher

Rewaa Ashraf

Fatma Osama

Yasmin Ahmed

Yara Essam

Yara Aony

Load mzMl File and obtain spectrum for peptide

```
from pyopenms import *
exp = MSExperiment()
MzMLFile().load("000_VTA_PRM1_C19.mzML", exp)
spectra = exp.getSpectra()
observed_spectrum = spectra[4]
```

```
observed_spectrum = spectra[18]
observed_spectrum

<pyopenms.pyopenms_5.MSSpectrum at 0x18be08f4930>
```

Digestion and store all fragment peptide

```
from pyopenms import *
dig = ProteaseDigestion()
                                                                       MAALDSLSLFTSLGLSEOK
dig.getEnzymeName() # Trypsin
                                                                       ETLK
                                                                       NSALSAOLR
entries = []
                                                                       EAATQAQQTLGSTIDK
f = FASTAFile()
                                                                       ATGILLYGLASR
                                                                       I R
f.load("Theo.fasta", entries)
                                                                       DTR
bsa2=[]
                                                                       LSFLVSYIASK
for e in entries:
    bsa2.append(AASequence.fromString( e.sequence))
                                                                       IHTEPOLSAALEYVR
                                                                       SHPLDPIDTVDFER
resultAll = []
                                                                       ECGVGVIVTPEOIEEAVEAAINR
resultOneSeq=[]
                                                                       HRPOLLVER
                                                                       YHFNMGLLMGEAR
result=[]
                                                                       AVLK
for u in bsa2:
                                                                       WADGK
                                                                       MIK
    resultOneSeq.append( dig.digest(u, result))
                                                                       NEVDMOVLHLLGPK
    for re in result:
                                                                       LEADLEK
         print(re)
                                                                       FK
         resultAll.append(re)
                                                                       VAK
                                                                       AR
                                                                       LEETDR
```

Generate theoretical spectrum

```
tsg = TheoreticalSpectrumGenerator()
theo_spectrum = MSSpectrum()
p = tsg.getParameters()
p.setValue("add_y_ions", "true")
p.setValue("add_b_ions", "true")
p.setValue("add_metainfo", "true")
tsg.setParameters(p)
tsg. TheoreticalSpectrumGenerator at 0x2544ed4dbd0>
```

```
entries =[]
                                                                                                                    b'y1++' 59.546766142221
f = FASTAFile()
                                                                                                                    b'v2++' 88.05749819007102
f.load(r"resultAll.fasta", entries)
                                                                                                                    b'b2++' 102.04607605507098
                                                                                                                    b'y3++' 116.568230237921
fasta file=entries[0]
                                                                                                                    b'v1+' 118,086255817671
                                                                                                                    b'b3++' 137.56463313482098
peptide = AASequence.fromString(fasta_file.sequence)
                                                                                                                    b'v2+' 175.107719913371
tsg.getSpectrum(theo spectrum, peptide, 1, 2)
                                                                                                                    b'b4++' 194.10666531027098
                                                                                                                    b'v4++' 194.61878592932104
for ion, peak in zip(theo_spectrum.getStringDataArrays()[0], theo_spectrum):
                                                                                                                    b'b2+' 203.08487564337096
                                                                                                                    b'v3+' 232.12918400907097
     print(ion, peak.getMZ())
                                                                                                                    b'v5++' 251.16081810477104
                                                                                                                    b'b5++' 251,62013739002097
                                                                                                                    b'b3+' 274.121989802871
                                                                                                                    b'b6++' 295,136151969771
                                                                                                                    b'y6++' 329.211373796171
                                                                                                                    b'b7++' 351.678184145221
```

Plot -Observed vs theoretical spectrum-

```
import numpy as np
from matplotlib import pyplot as plt
def mirror plot(obs mz, obs int, theo mz, theo int, title):
   obs int = [element / max(obs int) for element in obs int]
   theo int = [element * -1 for element in theo int]
   plt.figure(figsize=(12,8))
   plt.bar(obs mz, obs int, width = 3.0)
   plt.bar(theo mz, theo int, width = 3.0)
   plt.title(title)
   plt.vlabel('intensity')
   plt.xlabel('m/z')
obs mz, obs int = observed spectrum.get peaks()
print(min(obs mz))
print(max(obs mz))
theo mz, theo int = [], []
for mz, intensity in zip(*theo spectrum.get peaks()):
   if mz >= 200.0 and mz \leq= 800.0:
       theo mz.append(mz)
       theo int.append(intensity)
title = 'Observed vs theoretical spectrum'
mirror plot(obs mz, obs int, theo mz, theo int, title)
```

Plot -Observed vs theoretical spectrum-

Matching ions and mz from theoretical spectrum

```
Number of matched peaks: 62
        theo. m/z
                        observed m/z
ion
                59.546766142221 59.548274993896484
V1++
V2++
                88.05749819007102
                                        88.05718994140625
b2++
                102.04607605507098
                                        102.04742431640625
V3++
               116.568230237921
                                        116.56841278076172
V1+
               118.086255817671
                                        118.08643341064453
h3++
               137.56463313482098
                                        137.5648193359375
V2+
               175.107719913371
                                        175.10821533203125
b4++
                194.10666531027098
                                        194.10780334472656
                194.61878592932104
                                        194.61907958984375
V4++
b2+
                203.08487564337096
                                        203.08377075195312
V3+
                232.12918400907097
                                        232.1260223388672
V5++
                251.16081810477104
                                        251.15884399414062
b5++
                251.62013739002097
                                        251.6226348876953
b3+
                274.121989802871
                                        274.1199035644531
b6++
                295.136151969771
                                        295.1376647949219
V6++
                329.211373796171
                                        329.2120361328125
```

Mirror - Aligned Spectrum-

000_VTA_PRM1_C19

ion	theo.	m/z observed m/z	S INC. CONT. CHICAGO
		351.678184145221	
y7++	2	385.753405971621	385.79908804540554
b4+	1	387.206054153771	387.2055277787431
y4+	1	388.23029539187104	388.2309235306787
b8++	2	395.194198724971	395.184898724151
y8++	2	435.28761311517104	435.34520202133683
b9++		451.736230900421	451.7161914887091
y9++	2	491.82964529062104	491.8295126352524
y5+	1 1	501.31435974277105	501.28898378810305
b5+	1	502.23299831327097	
b10++		525.270438043971	525.2799598068392
y10++		560.359101402271	560.8410040240839
b6+	1	589.265027472771	588.8723983374019
y11++		616.901133577721	616.9025175637059
b12++	2	619.3102922353711	619.7410662560254
y6+		657.415471125571	657.7652897288622
y12++	2	667.424973189371	667.2208366959128
b7+	1	702.349091823671	702.7616866498944
b14++		704.363056458671	704.821393840089
b18++		932.9716894531211	932.7006071662397

000_VTA_PRM1_C19

022_VTA_PRM_190122102547_C19

```
Number of matched peaks: 32
ion
        theo. m/z
                        observed m/z
b7++
       2
               351,678184145221
                                        351.6776885629277
V7++
       2
               385.753405971621
                                        385.72269428314235
h4+
       1
               387,206054153771
                                        387.2051978306316
V4+
       1
               388,23029539187104
                                        388,2297674126516
b8++
       2
                395,194198724971
                                        395.19426508306617
V8++
                435.28761311517104
                                        435.2610229694314
b9++
       2
                451,736230900421
                                        451.7360746340657
                491.82964529062104
V9++
                                        491.75436548863973
V5+
       1
                501.31435974277105
                                        501.3138243479935
b5+
                502,23299831327097
                                        502.23415469047086
b10++
       2
                525.270438043971
                                        525.2557773526281
V10++
                560.359101402271
                                        560.3583351040395
b11++
                575.794277655621
                                        576.2498117086093
b6+
               589,265027472771
                                        589.2735842545871
V11++
                616.901133577721
                                        616.8387600657122
b12++
       2
                619.3102922353711
                                        619.292952541795
V6+
       1
               657,415471125571
                                        657.3650509607287
V12++
      2
               667,424973189371
                                        667.3085196583243
b13++
               675.8523244108211
                                        675.8315372317325
b7+
       1
               702.349091823671
                                        702.3486943491313
b14++
               704,363056458671
                                        704.3725095302223
V13++
       2
               710.9409877691211
                                        711.261726283785
b15++
       2
               760.9050886341211
                                        760.4495378481092
V7+
       1
               770,499535476471
                                        770.4134237963619
V14++
       2
               775,4622848807711
                                        775.3936641239696
b8+
       1
               789.381120983171
                                        789.3811410768251
b16++
       2
               804,4211032138711
                                        804.4159358407297
V15++
       2
               839,5097665721711
                                        839.4979331959191
b17++
       2
                868.9424003255211
                                        869.3019847053566
V8+
       1
                869.567949763571
                                        869.3983058978838
b18++
       2
                932,9716894531211
                                        933.3940539899982
V11+
                                        1232.678470394013
                1232.794990688671
```

022_VTA_PRM_190122102547_C19

Thanks