FOCS Notes 1/31/2020

Stronger forms of induction

- "Leaping" induction (multiple base cases)
- Strong induction

Contents

1	Recap	1
2	Leaping Induction	1
3	Strong Induction	1
	Examples	2
	4.1 $\forall n \geq 1 : \sum_{i=1}^{n} \frac{1}{\sqrt{i}} \leq 2\sqrt{n}$	2
	4.2 Proving claims by strengthening our inductive hypothesis	2
	4.3 Tiling Dyadic Floor with Triominoes	
	4.4 Leaping Induction	3
	4.5 Strong Induction	4

1 Recap

Given P(n), goal is to show $P(n) \to \forall n \ge b, P(b) \to P(b+1) \to P(b+2) \to \dots$ via principle of induction. P(b) is the base case, $P(b) \to P(b+1)$ justified by induction step.

Template for Inductive Proofs

- We prove by induction $P(n), n \ge b$
- Base case: Show that P(b) is true
- Inductive step: (to prove $P(n) \to P(n+1), \forall n \ge b$)
 We state our method of proof
 Use the fact that P(n) holds to get that P(n+1) holds
- Conclude by the principle of induction, that $P(n), \forall n \geq b$

2 Leaping Induction

```
P(1) \rightarrow P(3), \ P(2) \rightarrow P(4), \dots
Multiple base cases (P(1) \text{ and } P(2) \text{ above})
P(n) \rightarrow P(n+2) induction step above
```

3 Strong Induction

```
P(1) \to P(2), (P(1) \land P(2)) \to P(3), \dots

P(1) is the base case

P(1) \land P(2) \land \dots \land P(n) \to P(n+1) inductive step.
```

4 Examples

Outline

- Example of weak induction using a lemma
- Weak induction with a strengthened hypothesis
 - $-n^2 < 2^n$ when $n \ge 4$
 - tiling dyadic floors with triominoes
- Two more flavors of induction
 - Leaping: $n^3 < 2^n$ for $n \ge 10$
 - Strong induction:
 - * Fundamental Theorem of Arithmetic
 - * Nim game

4.1 $\forall n \ge 1 : \sum_{i=1}^{n} \frac{1}{\sqrt{i}} \le 2\sqrt{n}$

 $P(n): \sum_{i=1}^{n} \frac{1}{\sqrt{i}} \le 2\sqrt{n}$

Base case $P(1): 1 \le 2$ true

Inductive step show $P(n) \to P(n+1)$

Assume P(n), so $\sum_{i=1}^{n} \frac{1}{\sqrt{i}} \le 2\sqrt{n}$ and show $P(n+1) : \sum_{i=1}^{n+1} \frac{1}{\sqrt{i}} \le 2\sqrt{n} + \frac{1}{\sqrt{n+1}} \le 2\sqrt{n+1}$

Is the underlined section true? Show $P(n+1): \sum_{i=1}^{n+1} \frac{1}{\sqrt{i}} \leq 2\sqrt{n+1}$. I can use the assumption that P(n) holds to conclude that $\sum_{i=1}^{n+1} \frac{1}{\sqrt{i}} = \sum_{i=1}^{n} \frac{1}{\sqrt{i}} + \frac{1}{\sqrt{n+1}} \leq 2\sqrt{n} + \frac{1}{\sqrt{n+1}}$.

Lemma: If $n \ge 1$ then $2\sqrt{n} + \frac{1}{\sqrt{n+1}} \le 2\sqrt{n+1}$.

Proof. Direct proof.
$$2\sqrt{n} + \frac{1}{\sqrt{n+1}} \le 2\sqrt{n+1} \iff 2\sqrt{n(n+1)} + 1 \le 2(n+1) \iff 2\sqrt{n(n+1)} \le 2n+1 \iff 4n(n+1) \le (2n+1)^2 \iff 4n^2 + 4n \le 4n^2 + 4n + 1$$
 True

4.2 Proving claims by strengthening our inductive hypothesis

Ex: $n^2 \le 2^n$ for $n \ge 4$

Base case $P(4): 16 \le 16$ True

Inductive step $P(n) \to P(n+1)$ via direct proof

Assume P(n), namely $n^2 \le 2^n$. We want to show $P(n+1): (n+1)^2 \le 2^{n+1}$

Calculate: $(n+1)^2 = n^2 + 2n + 1 \le 2^n + 2n + 1$. Want to prove that is $\le 2^{n+1} = 2^n + 2^n$

so true if $2n+1 \le 2^n$

We wanted to prove $P(n): n^2 \leq 2^n$ for $n \geq 4$ We see it's useful to prove the stronger claim Q(n):

- (i) $n^2 < 2^n$
- (ii) $2n+1 \le 2^n$

for $n \ge 4$

Proof. We prove by induction that $Q(n), \forall n \geq 4$.

Base step $Q(4): (i)4^2 \le 2^4$ True, $(ii)2*4+1 \le 2^4$ True

Inductive step We use direct proof (for both parts of Q(n+1))

 $\overline{\text{Assume } Q(n)}: (i)n^2 \le 2^n \ (ii)2n+1 \le 2^n. \text{ We need to show } Q(n+1): (i)(n+1)^2 \le 2^{n+1} \ (ii)2(n+1)+1 \le 2^{n+1}$

<u>(i)</u>

 $\frac{\tilde{n}}{(n+1)^2} = n^2 + (2n+1) \le 2^n + (2n+1)$ Using Q(n) part (i) $\le 2^n + 2^n$ using Q(n) part (ii) $= 2^{n+1}$

(ii)

 $\overline{2(n+1)} + 1 = (2n+1) + 2 \le 2^n + 2 \text{ using } Q(n) \text{ part (ii)} \le 2^n + 2^n \text{ because } 2 < 2^n \text{ when } n \ge 4 = 2^{n+1}$

4.3 Tiling Dyadic Floor with Triominoes

Given floor with $2^n \times 2^n$ tiles, remove 1 of the 4 center tiles.

Question: Can you tile the floor L-shaped with triominoes (3-block shape similar looking to tetris)

Answer: yes

when n=1, yes. Use an L such that the bend is opposite the missing tile.

General Case

P(n): can tile a $2^n \times 2^n$ floor with a missing center square using triominoes

Base case P(1) true (above)

Inductive step $P(n) \to P(n+1)$?

 $\overline{\text{Adding an initial triomino making a } 2 \times 2 \text{ square with the missing tile effectively removes a tile from corner of each quadrant.}$

• reduces to the question: can we tile a $2^n \times 2^n$ floor with a missing corner square using triominoes?

So, strengthen our inductive hypothesis:

Q(n):(i) we can tile with a missing center square

(ii) we can tile with a missing corner square

Proof that $Q(n) \to Q(n+1)$

 $\overline{\text{(i) can tile a } 2^{n+1} \times 2^{n+1} \text{ with a missing center square}}$

- use one triomino to reduce to tiling 4 floors of $2^n \times 2^n$ with missing corner squares
- by Q(n) part (ii) we can tile each of these 4 quadrants using triominoes
- Hence we get a tiling for our $2^{n+1} \times 2^{n+1}$ floor
- (ii) can tile a $2^{n+1} \times 2^{n+1}$ with a missing corner square
 - use one triomino to reduce to tiling 4 floors with missing corner squares
 - ...

4.4 Leaping Induction

Ex: $n^3 < 2^n$ for $n \ge 10$

Can be accomplished by strengthening inductive hypothesis to

$$Q(n): (i)n^3 < 2^n$$

 $(ii)6n^2 + 1 \le 2^n \text{ for } n \ge 10$
 $(iii)2n + 1 \le n^2$

Easier way: observe that $(n+2)^3 = n^3 + 6n^2 + 12n + 8$. Recall that

$$n > 10 \Rightarrow n > 6$$
$$n^2 > 12$$
$$n^3 > 8$$

 $=4n^3 < 4*2^n$ by inductive hypothesis $n^3 < 2^n = 2^{n+2}$

So we showed that if P(n), then P(n+2) when $n \ge 10$. Need to prove P(10) and P(11) to get $\forall n \ge 10$. Two base cases:

- P(10): 1000 < 1024 True
- P(11): 1331 < 2048 True

4.5 Strong Induction

 $P(1) \wedge \cdots \wedge P(n) \rightarrow P(n+1)$ is the inductive step.

Ex: Fundamental Theorem of Arithmetic

Suppose $n \geq 2$. Then

- (i) n can be written as a product of factors each of which is prime
- (ii) This representation is unique up to ordering

$$2020 = 2 * 1010 = 2 * 2 * 505 = 2 * 2 * 5 * 101$$

$$2021 = 43 * 47$$

 $P(n) \to P(n+1)$ looks untrue/unclear

Proof. Base Case P(2): 2 has a unique prime factorization. True

Inductive Step $P(1) \land \cdots \land P(n) \rightarrow P(n+1)$

Direct proof. Cases:

- (i) n+1 is prime. Clearly P(n+1)
- (ii) n+1 is composite, that is n+1=k*l where k < n+1, l < n+1 are in \mathbb{N} . Each of k and l have unique prime factorizations because $P(k) \wedge P(l)$ is true by the inductive hypothesis. Implies n+1 has a unique prime factorization