SS 2011

Prof. Claudio Ortelli

Prof. Davide La Vecchia

Statistics

ALaRI Exam 15 September 2011

• Duration: 2 hours and 30 minutes

ullet Open book exam

• Solve all exercises

Exercise 1

Suppose that for a certain device the instantaneous failure rate has the form

$$h(t) = a + bt + c\sin(2\pi t).$$

where t denotes the time in years and a, b and c are given parameters such that $h \geq 0$.

- 1. What is the interpretation of h(t) in general? Discuss this particular failure rate and give examples of devices which potentially could possess this kind of failure rate.
- 2. Derive the corresponding lifetime distribution function $F_X(t)$. Is it an increasing or decreasing failure rate distribution? Motivate your answer.

Exercise 2

We assume that the lifetime X of a particular device has a Gamma distribution. Recall that the Gamma distribution has density function given by

$$f(t) = \frac{t^{k-1}e^{-t/\lambda}}{(k-1)!\lambda^k}, \ t \ge 0.$$

- 1. Compute the expectations E(X) and $E(X^2)$. Show the computations!
- 2. Derive the variance of X.

3. The results of 10 independent realizations of X are summarized in the following table:

i	1	2	3	4	5	6	7	8	9	10
x_i	17.6	13.8	8.7	11.5	9	8.7	8	4.3	8.7	8.2

Tabella 1: Independent realizations of X.

For k=4 compute the method of moments estimate of λ using

- (a) the first moment of X, denoted $\hat{\lambda}_1$;
- (b) the second centered moment (the variance) of X, denoted $\hat{\lambda}_2$.

Exercise 3

For the same problem as in Exercise 2

- 1. derive the Maximum-Likelihood estimator of λ , denoted $\hat{\lambda}_{ml}$ when k is known.
- 2. derive the variance of the Maximum-Likelihood estimator and show that the variance of $\hat{\lambda}_{ml}$ depends on the parameter λ .
- 3. Compute the Maximum-Likelihood estimate.
- 4. How would you estimate the variance of $\hat{\lambda}_{ml}$ once you have the estimate of point 3?
- 5. An important theorem in Maximum-Likelihood estimation theory says that the quantity

$$\sqrt{n}(\hat{\lambda}_{ml} - \lambda)$$

for large n is distributed according to the normal distribution $N(0, 1/I(\lambda))$ where the quantity $I(\lambda)$ is called the Fisher information and is equal to

$$I(\lambda) = E\left[\left(\frac{\partial}{\partial \lambda} log(f(X;\lambda))\right)^{2}\right]. \tag{1}$$

Under regularity conditions on the underlying density function the Fisher information can be computed by applying the following alternative formula

$$I(\lambda) = -E\left[\frac{\partial^2}{\partial \lambda^2} log(f(X;\lambda))\right]$$
 (2)

(a) Compute $\frac{\partial^2}{\partial \lambda^2} log(f(X; \lambda))$.

- (b) Compute its expectation and verify that
 - i. for the Gamma distribution the equality between (1) and (2) holds;
 - ii. the variance of $\sqrt{n}(\hat{\lambda}_{ml} \lambda)$ corresponds (after the appropriate transformations) to the variance calculated in points 2 and 4.
- 6. Suppose that the estimate of $I(\lambda)$ is equal to 0.64 and that we want to test the null hypothesis $H_0: \lambda = 2.5$ versus the alternative $H_A: \lambda \neq 2.5$ at a 5% significance level.
 - (a) Is H_0 a simple or composite hypothesis? And H_A ?
 - (b) Perform the test and explain the conclusions. Is the null hypothesis rejected?

Exercise 4

We define X as the number of Bernoulli trials needed by a client to access in write mode a particular database table (the table may be locked by another client). X is distributed according to the geometric distribution

$$P(X = k) = (1 - p)^{k-1}p, k = 1, 2, \dots$$

where p denotes the probability of success in one trial.

- 1. Compute the z-transform $G_X(z)$ of the random variable X.
- 2. Similarly to the exponential distribution, the geometric distribution is memoryless. Given that the first success has not yet occurred, the conditional probability distribution of the number h of additional trials required to obtain the first success does not depend on the number of observed failures. In other words, show that the conditional distribution

$$P(X = n + h \mid X > n) = (1 - p)^{h-1}p.$$

3. Show that if X_1, \ldots, X_n are independent, geometrically distributed random variables with parameter p, then

$$X_{min} = min(X_1, \dots, X_n)$$

is also geometrically distributed with parameter p_{min} . Derive explicitly the relation between p and p_{min} . In particular

(a) Explain the following inequality

$$P(X_{min} > k) = \prod_{i=1}^{n} P(X_i > k).$$

(b) Compute explicitly as a function of p the probabilities

$$P(X_i \le k)$$
 and $P(X_i > k)$.

(c) Compute the probability

$$P(X_{min} > k)$$

as a function of p and show that X_{min} is geometrically distributed with probability of success p_{min} . Derive explicitly p_{min} as a function of p. Show the computations!