Public Key Cryptography

Jordan Spooner

Cryptography

1. Traditional Encryption

Cryptography

2. Public Key Encryption

The Subset Sum Problem

Given n+1 positive integers, a_1, a_2, \ldots, a_n and B, find a subset of the a_i that sums to B

Encrypting a Message

- Public key:, a_1, a_2, \ldots, a_n
- Character in Message: x, transformed to Blocks of length n, $(x_1, x_2, ..., x_n)$
- Output: $B_x = \sum_{i=1}^n x_i a_i$

Decrypting the Message

- Private key: $(a'_1, a'_2, ..., a'_n)$ and two integers, w and m
- Public and Private Keys related:

$$a_i = (w \times a_i') \mod m$$

- Find a subset of $(a'_1, a'_2, ..., a'_n)$ that gives B'_{x} , where $B'_{x} = (B_x \times w^{-1}) \mod m$
 - Take the largest integer, a'_n : if $B'_x > a'_n$, then include a'_n , else discard it
 - Take the next largest integer, a_i' , if $B_x' > \sum a_{included}' + a_i'$, then include a_i' , else discard it
 - Repeat the second step until $\sum a'_{included} = B'_x$

An Overview of How it Works

- Looking at T and T^{-1} :

$$T: B_x = \sum_{i=1}^n x_i a_i = \sum_{i=1}^n x_i \times w a_i' \mod m$$

$$T^{-1}$$
: $B_{\chi}' = (B_{\chi} \times w^{-1}) \mod m$,

$$B'_{x} = \sum_{i=1}^{n} x_{i} (wa'_{i} \mod m) \ w^{-1} \mod m \text{ and hence } B'_{x} = \sum_{i=1}^{n} x_{i} a'_{i}$$

I.e. the message x encoded in B_x as $\sum_{i=1}^n x_i a_i$ is encoded in B_x' as $\sum_{i=1}^n x_i a_i'$

How to Break it?

- Points of Vulnerability
- The Diffie-Hellman-Merkle Cryptosystem
- The RSA Cryptosystem
- Quantum Computing and Shor's Algorithm