BE530: Medical Deep Learning

2021학년도 1학기, 중간고사

학과		
구분	학사과정	석사과정
학번		
이름		

1. Interpretation of loss functions (25 points)

Deep neural network(DNN)을 학습하기 평가하기 위해 일반적으로 학습데이터를 3개의 서브 그룹으로 나누어 사용한다. 즉, 1) Training set (S_T) , 2) Validation set (S_V) , 3) Evaluation set (S_E) . 각각의 데이터셋에 대해 손실함수는 아래와 같이 계산될 수 있다.

$$L_T(\theta) = \frac{1}{|S_T|} \sum_{k \in S_T} ||y_k - f_{\theta}(x_k)||^2$$

$$L_V(\theta) = \frac{1}{|S_V|} \sum_{k \in S_V} ||y_k - f_{\theta}(x_k)||^2$$

$$L_E(\theta) = \frac{1}{|S_E|} \sum_{k \in S_E} ||y_k - f_{\theta}(x_k)||^2$$

- 이 때, $|S_T|$, $|S_V|$, $|S_E|$ 는 Training set, Validation set, 및 Evaluation set 에 포함된 학습데이터 수를 나타낸다.
 - (1) $L_V \gg L_T$ 인 경우 DNN 모델의 용량 및 학습데이터 측면에서 그 결과를 분석하시오.

(2) $L_V \gg L_T$ 인 경우 DNN 의 성능 개선을 위해 적용 가능한 방법을 기술하시오

- 2. 이진 분류 문제를 해결하기 위해 100 개의 층으로 구성된 딥러닝 모델을 개발하고 있다고 가정하자. 이 때 가장 마지막 층은 sigmod 활성화 함수를 사용하며 나머지 층은 tanh 또는 ReLU 활성화 함수를 사용하고 있다. 그런데 학습 후 어느 정도 epoch 이 경과한 후 더 이상 각층에서 일부 가중치는 더 이상 업데이트되지 않는 현상을 발견하게 되었다. 상세 분석 결과 gradients 들이 문제의 층에서는 거의 0 으로 전달되고 있음을 확인하였다. 이를 해결하기 위해 다음의 각 방법을 적용하고자 한다. 이 중 문제 해결에 도움이 되는 방법을 선택하고 그 이유를 상세히 기술하시오. (25 points)
- (1) 학습데이터 수를 증가시킨다
- (2) ReLU 활성화 함수를 Leaky ReLU 함수로 교체한다.
- (3) 모든 활성화 함수에 대해 Batch Normalization 을 적용한다
- (4) Learning Rate 를 증가시킨다

- 3. 다음 중 활성화 함수로 적절하지 못한 함수를 선택하고 그 이유를 기술하시오. (25 points)
 - $(i) f(x) = -\min(2, x)$
 - (ii) f(x) = 0.9x + 1

(iii)
$$f(x) = \begin{cases} \min(x, .1x) & |x> = 0\\ \min(x, .1x) & |x< 0 \end{cases}$$

(iii)
$$f(x) = \begin{cases} \min(x, .1x) & |x > = 0 \\ \min(x, .1x) & |x < 0 \end{cases}$$

(iv) $f(x) = \begin{cases} \max(x, .1x) & |x > = 0 \\ \min(x, .1x) & |x < 0 \end{cases}$

- **4.** 아래 표에서 기술된 층으로 구성된 Convolutional Neural Network 를 개발하고 있다고 가정하자. 이 때 각 층에서 출력되는 feature map 의 볼륨 (Activation Volume Dimension)및 해당 층에서 사용되는 파라미터의 수 (Number of parameters)를 채우시오. Feature map 은 H×W×C 로 표현한다 (H: Height, W: Width, C: Channel).
 - 단, 별도의 언급이 없을 경우 padding 1, stride 1을 사용한다고 가정한다. (25 points)
 - CONVx-N Convolutional layer with N filters with height and width equal to x
 - POOL-n n×n max-pooling layer with stride of n and 0 padding
 - BATCHNORM batch normalization layer
 - FLATTEN to flatten its inputs
 - FC-N a fully connect layer with N neurons

Layer	Activation Volume Dimensions	Number of parameters
Input	32×32×3	0
CONV3-8		
Leaky ReLU		
POOL-2		
BATCHNORM		
CONV3-16		
Leaky ReLU		
POOL-2		
FLATTEN	1024	0
FC-10		