# CS217: Artificial Intelligence and Machine Learning (associated lab: CS240)

Nihar Ranjan Sahoo
PhD scholar under Prof. Pushpak Bhattacharyya
CSE Dept.,
IIT Bombay

Week11 of 24mar25, Decision Trees, Intro Speech
Recognition

# **Decision Tree**

| Match | Pitch Type    | Host      | <b>Batting First</b> | Winner    |
|-------|---------------|-----------|----------------------|-----------|
| M1    | Spin-friendly | India     | India                | India     |
| M2    | Pace-friendly | Australia | Australia            | Australia |
| M3    | Balanced      | India     | Australia            | India     |
| M4    | Spin-friendly | Australia | India                | Australia |
| M5    | Pace-friendly | India     | Australia            | Australia |
| M6    | Spin-friendly | India     | Australia            | India     |
| M7    | Balanced      | Australia | India                | India     |
| M8    | Pace-friendly | Australia | India                | Australia |
| M9    | Spin-friendly | India     | India                | India     |
| M10   | Balanced      | Australia | Australia            | Australia |

- 1. Make decision to predict if India can beat Australia in the upcoming match?
  - a. Use Information Gain/Gain Ratio/Gini Index to build decision tree.

#### **Decision Tree**

# Entropy == Randomness







$$X \sim \mathrm{Bern}(P)$$
 Randomness
 $P(x = 1) = P$ 
 $P(x = 0) = 1 - P$ 
 $H(x) = \sum_{z=1}^{k} -P(x = i) \log P(x = i)$ 
 $= -\int_{-\infty}^{\infty} P(x) \log P(x) dx$ 
 $= E_{x \sim P(x)}[-\log P(x)]$ 

#### Find P that maximizes the entropy for a Bern(P) => MLE

$$H(\operatorname{Bern} n(P)) = -P \log P - (1 - P) \log(1 - P)$$

$$\frac{\partial H}{\partial P} = \frac{-P}{P} - \log P + \log(1 - P)$$

$$H = 0$$

$$\log \left(\frac{1 - P}{P}\right) = 0$$

$$\Rightarrow 1 - P = P$$

$$\Rightarrow P = 1/2$$

$$H(\text{Bern}(1/2)) = -1/2 \log 1/2 - (1 - 1/2) \log (1 - 1/2)$$

$$H(\text{Bern}(1/2)) = (1/2) \log 2 + (1/2) \log 2 = \log 2$$

$$\lim_{P \to 0^+} -P \log P - (1 - P) \log (1 - P)$$

$$\lim_{P \to 0^+} \frac{-\log P}{1/P} = \frac{-\log P}{-1/P} = \lim_{P \to 0^+} P = 0$$
Similarly, 
$$\lim_{P \to 1^-} H(P) = 0$$

#### What needs to be decided on?

- Split feature
  - based on Purity on feature
- Split point
- When to stop splitting

#### **Purity**:

- how homogeneous a node is in terms of class labels
- goal of splitting is to create child nodes that are purer than the parent node
- meaning they contain more instances of a single class

# Different Purity measures?

#### 1. Gini Impurity

$$Gini = 1 - \sum_{i=1}^{c} p_i^2$$

- Measures the probability of incorrectly classifying a randomly chosen element.
- Lower values indicate purer nodes.
- Used in CART (Classification and Regression Trees).

#### 2. Entropy (Information Gain)

$$Entropy = -\sum_{i=1}^{c} p_i \log_2 p_i$$

- Measures the uncertainty in a node.
- Used in ID3, C4.5, and C5.0 algorithms.
- A split is chosen to maximize Information Gain:

$$IG = Entropy(parent) - \sum \frac{|child|}{|parent|} \times Entropy(child)$$

# Different Purity measures?

#### Variance Reduction (for Regression Trees)

Variance = 
$$\frac{1}{N} \sum (y_i - \bar{y})^2$$

- Used for regression tasks.
- The split is chosen to minimize variance within child nodes.

#### **Splitting Strategy**- At each step, the algorithm:

- Evaluates all possible splits.
- Computes the purity measure for each split.
- Selects the split that results in the highest improvement in purity.

# Information Gain to construct Decision Tree

| Match | Pitch Type    | Host      | Batting First | Winner    |
|-------|---------------|-----------|---------------|-----------|
| M1    | Spin-friendly | India     | India         | India     |
| M2    | Pace-friendly | Australia | Australia     | Australia |
| M3    | Balanced      | India     | Australia     | India     |
| M4    | Spin-friendly | Australia | India         | Australia |
| M5    | Pace-friendly | India     | Australia     | Australia |
| M6    | Spin-friendly | India     | Australia     | India     |
| M7    | Balanced      | Australia | India         | India     |
| M8    | Pace-friendly | Australia | India         | Australia |
| M9    | Spin-friendly | India     | India         | India     |
| M10   | Balanced      | Australia | Australia     | Australia |

## Information Gain to construct Decision Tree

$$Entropy(S) = -p_1 \log_2 p_1 - p_2 \log_2 p_2$$

where  $p_1$  and  $p_2$  are the probabilities of India winning and India not winning (Australia winning).

From the table:

- Total matches = 10
- India wins = 5
- Australia wins = 5

$$\begin{split} p(India) &= \frac{5}{10} = 0.5, \quad p(Australia) = \frac{5}{10} = 0.5 \\ Entropy(S) &= -\left(0.5\log_2 0.5 + 0.5\log_2 0.5\right) \\ &= -(0.5 \times -1 + 0.5 \times -1) \\ &= -(-0.5 - 0.5) = 1.0 \\ p(India) &= \frac{3}{4}, \quad p(Australia) = \frac{1}{4} \\ Entropy(Spin) &= -\left(\frac{3}{4}\log_2\frac{3}{4} + \frac{1}{4}\log_2\frac{1}{4}\right) \\ &= -(0.75 \times -0.415 + 0.25 \times -2) \end{split}$$

= -(-0.311 - 0.5) = 0.811

**Entropy for Spin** 

## Information Gain to construct Decision Tree

#### **Entropy for Pace**

$$p(India) = 0, \quad p(Australia) = 1$$

$$Entropy(Pace) = -(0\log_2 0 + 1\log_2 1) = 0$$

$$p(India) = rac{2}{3}, \quad p(Australia) = rac{1}{3}$$

#### **Entropy for Balanced**

$$Entropy(Balanced) = -\left(rac{2}{3}\log_2rac{2}{3} + rac{1}{3}\log_2rac{1}{3}
ight)$$

$$= -(0.667 \times -0.585 + 0.333 \times -1.585)$$

$$= -(-0.390 - 0.528) = 0.918$$

#### **Weighted Entropy of Pitch**

$$Entropy(Pitch) = \frac{4}{10} \times 0.811 + \frac{3}{10} \times 0 + \frac{3}{10} \times 0.918$$
  
=  $0.3244 + 0 + 0.2754 = 0.5998$ 

#### **Information Gain**

$$IG = Entropy(S) - Entropy(Pitch)$$

$$IG = 1.0 - 0.5998$$

$$IG = 0.4002$$

# Stopping Criteria in Decision Tree

- 1. Pure Node
- 1. No significant IG
- 1. Minimum Samples in a node
- 1. Maximum tree depth
- 1. No features to split

### Definition of a linear model

A linear model is considered **linear** because the model's predictions are a **linear function** of the parameters w.

Mathematically, a typical linear model takes the form:

where:

- x is the input feature vector,
- w is the weight vector (parameters),
- b is the bias term,
- y is the predicted output.

# **Bias-Variance** Tradeoff: Overfitting and Underfitting

**Overfitting**: The model learns not only the underlying pattern but also the noise in the training data. It performs well on training data but poorly on unseen data.

**Underfitting**: The model is too simple to capture the underlying pattern in the data, leading to poor performance on both training and test data.



# **Bias-Variance** Tradeoff: Overfitting and Underfitting

**Overfitting**: The model learns not only the underlying pattern but also the noise in the training data. It performs well on training data but poorly on unseen data.

**Underfitting**: The model is too simple to capture the underlying pattern in the data, leading to poor performance on both training and test data.

