Roll No.

D-3698

B. Sc. (Part III) EXAMINATION, 2020

MATHEMATICS

Paper First

(Analysis)

Time: Three Hours]

[Maximum Marks : 50

नोट: प्रत्येक इकाई से कोई दो भाग हल कीजिए। सभी प्रश्नों के अंक समान हैं।

Attempt any *two* parts of each Unit. All questions carry equal marks.

इकाई—1 (UNIT—1)

1. (अ) अन्तराल $0 < x < 2\pi$ में $f(x) = e^{-x}$ के लिए फूरियर श्रेणी ज्ञात कीजिए।

Find the Fourier series for $f(x) = e^{-x}$ in the interval $0 \le x \le 2\pi$.

(ब) दो चरों के फलन के लिए श्वार्ज प्रमेय को लिखिए एवं सिद्ध कीजिए।

State and prove Schwarz's theorem for function of two variables.

(A-58) P. T. O.

(स) दर्शाइये कि फलन :

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2}, & \text{यदि}(x,y) \neq (0,0) \\ 0, & \text{अन्यथा} \end{cases}$$

(0, 0) पर संतत है पर अवकलनीय नहीं है।

Prove that the function:

$$f(x, y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2}, & \text{if } (x, y) \neq (0, 0) \\ 0, & \text{otherwise} \end{cases}$$

is continuous but not differentiable at the point (0, 0).

(UNIT—2)

2. (अ) मान लीजिए कि $f:[a,b] \to \mathbf{R},[a,b]$ पर एक परिबद्ध फलन है। तब f, R-समाकलनीय है यदि और केवल यदि प्रत्येक $\varepsilon>0$ के लिए, [a,b] के एक विभाजन P का अस्तित्व इस प्रकार है कि :

$$U(P, f) - L(P, f) \le \varepsilon$$

Let $f:[a,b] \to \mathbf{R}$ be a bounded function on [a, b]. Then f is R-integrable if and only if, for every $\varepsilon > 0$, there exists a partition P of [a, b] such that:

$$U(P,f)-L(P,f) \le \varepsilon$$

(ब) दर्शाइये कि समाकल $\int_0^1 \frac{dx}{\sqrt{x(1-x)}}$ अभिसारी है।

Prove that
$$\int_0^1 \frac{dx}{\sqrt{x(1-x)}}$$
 converges.

(A-58)

(स) दर्शाइये कि :

$$\int_0^1 \frac{x^{\alpha} - 1}{\log x} dx = \log(1 + \alpha) (\alpha > -1)$$

Show that:

$$\int_0^1 \frac{x^{\alpha} - 1}{\log x} dx = \log(1 + \alpha) (\alpha > -1)$$

इकाई—3

(UNIT-3)

3. (अ) एक फलन f(z) = u(x, y) + iv(x, y) के f के प्रान्त D के किसी बिन्दु z = x + iy पर विश्लेषिक होने के लिए आवश्यक प्रतिबन्ध यह है कि चार आंशिक अवकलज u_x, u_y, v_x तथा v_y अस्तित्व में हों और समीकरणों :

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

को संतुष्ट करते हैं।

The necessary condition for a function:

$$f(z) = u(x, y) + iv(x, y)$$

to be analytic at any point z = x + iy of the domain D of f is that the four partial derivatives u_x, u_y, v_x and v_y should exist and satisfy the equation:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

(ब) सिद्ध कीजिए कि फलन :

$$u = x^3 - 3xy^2 + 3x^2 - 3y^2 + 1$$

लाप्लास समीकरण को संतुष्ट करता है और संगत वैश्लेषिक फलन u + iv को ज्ञात कीजिए।

(A-58) P. T. O.

Prove that the function:

$$u = x^3 - 3xy^2 + 3x^2 - 3y^2 + 1$$

satisfies Laplace equation and determine corresponding analytic function u + iv.

स) दर्शाइये कि रूपान्तरण $w = \frac{2}{\sqrt{z}} - 1$ परवलय $v^2 = 4(1-x)$ के बाहर के क्षेत्र को w-समतल में इकाई वृत्त

 $y^2 = 4(1-x)$ के बाहर के क्षेत्र की w-समतल में इकाइ वृत्त के आन्तरिक भाग में रूपान्तरित करता है।

Show that the transformation $w = \frac{2}{\sqrt{z}} - 1$ transforms

the outer region of parabola $y^2 = 4(1-x)$ into interior of unit circle in w-plane.

इकाई—4

(UNIT-4)

4. (अ) दूरीक समष्टि को परिभाषित कीजिए एवं दर्शाइये कि यदि एक प्रतिचित्रण $d: \mathbf{R} \times \mathbf{R} \to \mathbf{R}$ निम्न प्रकार परिभाषित है:

$$d(x, y) = \frac{|x - y|}{1 + |x - y|} \forall x, y \in \mathbf{R}$$

तो d, R पर एक दूरीक है।

Define metric space and show that if map $d: \mathbf{R} \times \mathbf{R} \to \mathbf{R}$ is defined as follows:

$$d(x, y) = \frac{|x - y|}{1 + |x - y|} \forall x, y \in \mathbf{R}$$

then d is a metric on \mathbf{R} .

(A-58)

[5] D-3698

(ब) कौशी अनुक्रम को परिभाषित कीजिए एवं सिद्ध कीजिए कि दूरीक समष्टि में प्रत्येक कौशी अनुक्रम परिबद्ध होता है।

Define Cauchy sequence and prove that every Cauchy sequence in a metric space is bounded.

(स) बनाख संकुचन सिद्धान्त लिखिए तथा सिद्ध कीजिए।

State and prove Banach contraction principle.

इकाई—5

(UNIT—5)

- 5. (अ) निम्नलिखित को उदाहरण सहित परिभाषित कीजिए :
 - (i) गणनीय सघन समष्टि
 - (ii) एक बिन्दु पर स्थानीय आधार
 - (iii) प्रथम गणनीय समष्टियाँ

Define the following with an example:

- (i) Separable space
- (ii) Local base at a point
- (iii) First countable space
- (ब) दूरीक समष्टि के लिए बेयर संवर्ग प्रमेय को लिखिए एवं सिद्ध कीजिए।

State and prove Bair category theorem for metric space.

(स) मान लीजिए कि (X, d) तथा (Y, ρ) दो दूरीक समष्टियाँ हैं और $f: X \to Y$ एक फलन है। तब f संतत है यदि और केवल यदि $f^{-1}(G)$, X में विवृत है जब कभी G, Y में विवृत है।

Let (X, d) and (Y, ρ) be two metric spaces and $f: X \to Y$ be a function. Then f is continuous if and only if $f^{-1}(G)$ is open in X wherever G is open in Y.

D-3698 2,600

(A-58)