segmentation

Introduction au traitement d'images Segmentation et Analyse d'Images

Nicholas Journet

7 février 2011

Plan

- ► Segmentation
 - seuillage
 - Approches régions
 - Approches contours
 - Codage contours
- ▶ Introduction à la reconnaissance des formes
 - ► Calcul de caractéristiques
 - Mesure de similarité et classification
 - Etude d'un OCR

Bibliographie

- ► Analyse d'image I : segmentation Jacques-Olivier Lachaud LaBRI, Université / IUT Bordeaux 1
- Analyse d'images notes de cours Alain boucher
- Reconnaissance des formes introduction notes de cours de Thierry Chateau - univ Clermont
- ► REconnaissance de formes introduction notes de Cours de S. Canus Univ rouen
- Reconnaissance de Formes Processus de RdF Laurent HEUTTE - Univ rouen

segmentation Définitions Seuillage Approches région Approches Frontières Codage frontières

Qu'est ce que la segmentation?

- Décomposition d'une image en régions qui ont un sens (!)
- ▶ étiquetage des pixels de l'image. Même couleur de pixels
 = même région

Codage frontières

Approches

Qu'est ce que la segmentation?

- Facile pour un être humain : connaissance préalables, image vue dans sa totalité, déductions (par exemple pour les frontières cachées)
- Approches régions : grouper les pixels semblables et former des régions homogènes
- ► Approches frontières : rechercher pixels dissemblables pour former des contours entre zones homogènes
- Eventuellement des approches hybrides (frontières et régions)

Exemple

segmentation

Définitions

Seuillage Approches région Approches Frontières Codage frontières

Exemple

segmentation

Définitions
Seuillage
Approches région
Approches
Frontières
Codage frontières

Reconstruction 3D du cortex cérébral (Approche contour : modèle déformable)

Images 3D (3 coupes)

Segmentation

Reconstruction 3D

segmentation Définitions Seuillage Approches région Approches Frontières Codage frontières

Définitions utiles

- ► histogramme $h(i) = (0, 1, 2, 3, 4, 5, 6) \rightarrow (7, 4, 0, 0, 2, 5, 2)$
- ▶ nombre de pixels de la région R = 9
- ▶ Moyenne des intensités des pixels $\mu_R = 5$
- ▶ Variance $\sigma^2_R = 4/9$
- ▶ Longueur du contour $|\delta R| = 18$

Segmentation par seuillage

segmentation
Définitions
Seuillage
Approches région
Approches
Frontières
Codage frontières

- Objectif: affecter chaque pixel d'une image en niveaux de gris à une classe. classe = intervalle de niveaux de gris
- Principe
 - Extraire des seuils à partir de l'histogramme
 - classification d'un pixel p par comparaison de son niveau de gris aux seuils.

Seuillage

segmentation Définitions Seuillage Approches région Approches Frontières Codage frontières

- ightharpoonup n seuils pour séparer l'image en n+1 classes
 - si $I(p) < seuil_1$ alors I(p) = 0
 - ▶ Si $I(p) > seuil_1$ et $I(p) < seuil_2$ alors I(p) = 1
 - **...**
 - ▶ Si $I(p) > seuil_n$ alors I(p) = n
- ▶ MAIS : Combien de seuils et quelles valeurs prendre?

Exemple de seuillage à deux classes

- segmentation
 Définitions
 Seuillage
 Approches région
 Approches
 Frontières
 Codage frontières
- ▶ 2 surfaces (arrière-plan et objet) dans une image
- On suppose que la distribution est composée de 2 gaussiennes
- ► On peut déterminer la probabilité d'erreur de classification dans les classes 1 et 2
- on cherche alors un seuil T qui causera une erreur minimale

Codage frontières

Approches

Exemple de seuillage à deux classes : OTSU

- Pour chaque valeur de T on calcule une variance intra-classes $\sigma_w^2 = P_1 \sigma_1^2 + P_2 \sigma_2^2$
- Le seuil optimal est celui qui donne σ_w minimum

 P_n la moyenne des niveaux de gris de la classe n σ_n^2 la variance des niveaux de gris de la classe n L'algorithme d'OTSU fonctionne bien si les deux classes sont bien définies et regroupées.

segmentation Définitions Seuillage Approches région Approches Frontières

Codage frontières

Exemple

Source: Jacques-André Landry. Vision robotique. ETS.

segmentation
Définitions
Seuillage
Approches région
Approches
Frontières
Codage frontières

Exemple de seuillage à *n* classes : k-means

Objectif : on veut diviser les pixels en k groupes (paramètre de l'algo)

- 1. Partitionnement des données en k sous-ensembles
- 2. Calcul des centres des groupes (moyenne)
- 3. les données sont affectées au groupe dont le centre leur est le plus proche
- 4. On boucle en 2 tant que les groupes ne sont pas (à peu près) constants

lle Scharff, Pace Univ. www.csis.pace.edu/~scharff/DMIFI/cluster9.ppt

Exemple

segmentation
Définitions
Seuillage
Approches région
Approches
Frontières
Codage frontières

ce: D.A. Forsyth and J. Ponce. Computer Vision: A Modern Approach. Prentice-Hall, 2002.

segmentation
Définitions
Seuillage
Approches région
Approches
Frontières
Codage frontières

Split and merge

- ► Etape de division (split)
 - diviser récursivement tout un bloc non-homogène selon un critère pré-défini (variance, min,...)
 - ► La division donne 4 sous blocs
 - les attributs de chaque sous-bloc sont recalculés
- ► Etape de fusion (merge)
 - Regrouper les blocs adjacents représentant des régions homogènes selon un critère pré-défini

Exemple

N. Journet

segmentation
Définitions
Seuillage
Approches région
Approches
Frontières
Codage frontières

vurce: Jean-Christophe Baillie, ENSTA, uei.ensta.fr/baillie/assets/ES322%20-%20Segmentation.ppt

segmentation Définitions Seuillage Approches région Approches Frontières Codage frontières

Exemple

Différents seuils sont utilisés ici

segmentation
Définitions
Seuillage
Approches région
Approches
Frontières
Codage frontières

Croissance de régions

- On débute avec un pixel, et on ajoute les pixels voisins qui répondent à un critère d'appartenance (variance faible, même texture...)
- ▶ Les pixels initiaux sont appelés "germes"
- ▶ la région grandit par rapport à son germe

segmentation
Définitions
Seuillage
Approches région
Approches
Frontières
Codage frontières

croissance de région

- ► On part d'un germe et on l'étend en ajoutant les pixels voisins qui satisfont le critère d'homogénéité
- ► Le germe peut être choisi soit par un humain, soit de manière automatique

Source: Jean-Christophe Baillie, ENSTA, uei.ensta.fr/baillie/assets/ES322%20-%20Segmentation.ppt

segmentation Définitions Seuillage Approches Approches Frontières Codage frontières

Croissance avec plusieurs germes

segmentation
Définitions
Seuillage
Approches région
Approches
Frontières
Codage frontières

Approches frontières

Recherche des contours à partir du gradient

Norme du gradient

Norme du gradient seuillée

ΤI

N. Journet

segmentation
Définitions
Seuillage
Approches région
Approches
Frontières
Codage frontières

Filtrage optimal : Canny

segmentation
Définitions
Seuillage
Approches région
Approches
Frontières
Codage frontières

Les contours actifs (un exemple simplifié)

Un contour actif est une courbe qui se déforme à partir d'une position initiale. Cette courbe est soumise à des forces qui la déforme à chaque itération.

$$E(courbe) = E_{interne}(courbe) + E_{externe}(courbe) + E_{contexte}(courbe)$$

- ▶ Energie interne : valeur dépendante de la forme de la courbe
- ► Energie externe : valeur dépendante des caractéristiques de l'image
- Energie de contexte : permet d'introduire des connaissance "a priori" (ex : sens du déplacement de la courbe)

On cherche à minimiser l'énergie totale!

Initialisation

Après quelques itérations

Après 50 itérations

segmentation
Définitions
Seuillage
Approches
Approches
Frontières
Codage frontières

Les contours actifs (un exemple simplifié)

Bilan sur la segmentation

- Dans toutes les méthodes il y a des paramètres
 - Seuil : comment les fixer?
 - Critère : Dynamique ou non? Quelle caractéristiques prendre?
- Le pré-traitement des images, la sélection de capteurs et sources d'énergie appropriées, et la prise contrôlée des images rendent cette étape plus facile et plus efficace
- ► Evaluer le résultat d'une segmentation n'est pas facile (il dépend de l'application, de ce que l'on veut, subjectif!)

segmentation
Définitions
Seuillage
Approches
Frontières
Codage frontières

Limite de la segmentation

segmentation
Définitions
Seuillage
Approches région
Approches
Frontières
Codage frontières

Codage d'un contour

► Codage de Freeman : utilisé pour coder un chemin

➤ On part d'un pixel du contour et on code le contour en le parcourant dans le sens des aiguilles d'une montre

segmentation
Définitions
Seuillage
Approches région
Approches
Frontières
Codage frontières

Codage d'un contour

segmentation
Définitions
Seuillage
Approches région
Approches
Frontières
Codage frontières

Codage d'un contour

- ▶ invariant en translation
- pas invariant en rotation

segmentation
Définitions
Seuillage
Approches région
Approches
Frontières
Codage frontières

Codage d'un contour

segmentation
Définitions
Seuillage
Approches région
Approches
Frontières
Codage frontières

Codage d'un contour

Code indépendant de l'origine et de l'orientation?

Algo de la tortue [PATER 1973]

segmentation
Définitions
Seuillage
Approches région
Approches
Frontières
Codage frontières

- 1. On débute à partir d'un pixel sur la frontière de l'objet
- 2. Si la valeur du pixel courant est 1 alors on enregistre ce pixel contour, on tourne vers la gauche et on avance d'un pixel.
- 3. Si la valeur du pixel courant est 0 alors on tourne vers la droite et on avance d'un pixel
- 4. Stop lorsqu'on retourne au point de départ
- 5. on élimine les boucles

segmentation Définitions Seuillage Approches région Approches Frontières Codage frontières

Notion de composante connexe

Une composante connexe est un ensemble de points tel qu'il existe un chemin entre toute paire de points de cette composante

Remarque : l'image doit être binarisée