Symmetry Point Group Character Tables:

Compiled By: Matthew Rowley

Point Group Identification Flow Chart:

Non-Axial: C_S, and C_i

 C_n : C_2 , C_3 , C_4 , C_5 , and C_6

 C_{nv} : C_{2v} , C_{3v} , C_{4v} , C_{5v} , and C_{6v}

 C_{nh} : C_{2h} , C_{3h} , C_{4h} , C_{5h} , and C_{6h}

 $\mathbf{D_n}$: D₂, D₃, D₄, D₅, and D₆

 $\mathbf{D_{nh}}$: D_{2h} , D_{3h} , D_{4h} , D_{5h} , and D_{6h}

 $\mathbf{D_{nd}}$: D_{2d} , D_{3d} , D_{4d} , D_{5d} , and D_{6d}

 S_n : S_4 , S_6 , S_8 , and S_{10}

High Symmetry: T_d, O_h, and I_h

Linear: $C_{\infty v}$, and $D_{\infty h}$

Partial Correlation Tables for Linear Groups: $C_{\infty v} \rightarrow C_{2v}$, $D_{\infty h} \rightarrow D_{2h}$

Notes and Acknowledgements:

Point Group Identification Flow Chart

Non-Axial: C_S, and C_i

 C_S – Abelian; h = 2; Subgroups = $\{\emptyset\}$

C_S	E	$\sigma_{\rm h}$	linear,	quadratic
-------	---	------------------	---------	-----------

			rotations	
A'	1	1	x, y, R_z	x^2 , y^2 , z^2 , xy
A''	1	-1	z, R_x, R_y	yz, xz

 C_i – Abelian; h = 2; Subgroups = $\{\emptyset\}$

C_i	E	i	linear, rotations	quadratic
$\mathbf{A_g}$	1	1	K_{v} , K_{v} , K_{7}	x^2 , y^2 , z^2 , xy , xz , yz
A _u	1	-1	x, y, z	

 C_n : C_2 , C_3 , C_4 , C_5 , and C_6

 $C_2-Abelian;\ h=2;\ Subgroups=\{\emptyset\}$

C_2	E	$\mathbf{C_2}$	linear, rotations	quadratic
A	1	1	z, R_z	x^2 , y^2 , z^2 , xy
В	1	-1	x, y, R_x, R_y	yz, xz

 C_3 – Abelian; h = 3; $\varepsilon = e^{2\pi i/3}$; Subgroups = $\{\emptyset\}$

C_3	E	\mathbb{C}_3	$(C_3)^2$	linear, rotations	quadratic	
A	1	1	1	z, R_z	x^2+y^2, z^2	
E	1	8 8	* &	$(x,y), (R_x,R_y)$	$(x^2-y^2, xy), (yz, xz)$	

 C_4 – Abelian; h = 4; Subgroups = $\{C_2\}$

C_4	E	C ₄	C_2	$(C_4)^3$	linear, rotations	quadratic
A	1	1	1	1	z, R_z	x^2+y^2, z^2
В	1	-1	1	-1		x^2-y^2 , xy
E	1	i -i	-1 -1	-i i	$(x,y), (R_x,R_y)$	(yz, xz)

 C_5 – Abelian; h=5; $\varepsilon = e^{2\pi i/5}$; Subgroups = $\{\emptyset\}$

C	5	E	C ₅	$(C_5)^2$	$(C_5)^3$	$(C_5)^4$	linear, rotations	quadratic
A	\	1	1	1	1	1	z, R _z	x^2+y^2, z^2

E	21	1	e *	ε^2 ε^{2*}	ε^{2^*} ε^2	ε* ε	$(x,y), (R_x,R_y)$	(yz, xz)
E	22	1	$\varepsilon^2_{\epsilon^{2*}}$	* &	ε *	ε^{2^*} ε^2		(x^2-y^2, xy)

 C_6 - Abelian; h=6; $\varepsilon = e^{2\pi i/6}$; Subgroups = $\{C_2, C_3\}$

C_6	E	C ₆	C ₃	\mathbb{C}_2	$(C_3)^2$	$(C_6)^5$	linear, rotations	quadratic
A	1	1	1	1	1	1	z, R_z	x^2+y^2, z^2
В	1	-1	1	-1	1	-1		
$\mathbf{E_1}$	1	ε ε	-ε* -ε		·*	* ε	$(x,y), (R_x,R_y)$	(xz, yz)
$\mathbf{E_2}$	1	-e* -e	-e *	1	* -e	-8 * 3-		(x^2-y^2, xy)

 C_{nv} : C_{2v} , C_{3v} , C_{4v} , C_{5v} , and C_{6v}

 $C_{2v}-Abelian;\,h=4;\;\;Subgroups=\{C_S,\,C_2\}$

	C_{2v}	E	$C_2(z)$	$\sigma_{v}(xz)$	$\sigma_{v}(yz)$	linear, rotations	quadratic
	$\mathbf{A_1}$	1	1	1	1	Z	x^2 , y^2 , z^2
I	$\mathbf{A_2}$	1	1	-1	-1	R_z	xy
	$\mathbf{B_1}$	1	-1	1	-1	x, R _y	XZ
I	\mathbf{B}_2	1	-1	-1	1	y, R _x	yz

 $C_{3v}-Not\ Abelian; \quad \ \ h=6;\ \ Subgroups=\{C_S,\,C_3\}$

C_{3v}	E	2C ₃ (z)	$3\sigma_{\rm v}$	linear, rotations	quadratic
$\mathbf{A_1}$	1	1	1	Z	x^2+y^2, z^2
$\mathbf{A_2}$	1	1	-1	R_z	
E	2	-1	0	$(x, y), (R_x, R_y)$	$(x^2-y^2, xy), (xz, yz)$

 $C_{4v}-Not\;Abelian; \quad \ \ h=8;\;\; Subgroups=\{C_S,\,C_2,\,C_4,\,C_{2v}\}$

C_{4v}	E	2C ₄ (z)	C_2	$2\sigma_{\rm v}$	$2\sigma_{ m d}$	linear, rotations	quadratic		
$\mathbf{A_1}$	1	1	1	1	1	Z	x^2+y^2, z^2		
\mathbf{A}_2	1	1	1	-1	-1	R_z			

\mathbf{B}_1	1	-1	1	1	-1		x^2-y^2
\mathbf{B}_2	1	-1	1	-1	1		xy
E	2	0	-2	0	0	$(x, y), (R_x, R_y)$	(xz, yz)

 $C_{5v}-Not\ Abelian; \qquad h=10; Subgroups=\{C_S,\,C_5\}$

C_{5v}	E	2C ₅ (z)	2(C ₅) ²	5σ _v	linear, rotations	quadratic
$\mathbf{A_1}$	1	1	1	1	z	x^2+y^2, z^2
$\mathbf{A_2}$	1	1	1	-1	R_z	
$\mathbf{E_1}$	2	$2\cos\left(\frac{2\pi}{5}\right)$	$2\cos\left(\frac{4\pi}{5}\right)$	0	$(x, y), (R_x, R_y)$	(xz, yz)
$\mathbf{E_2}$	2	$2\cos\left(\frac{4\pi}{5}\right)$	$2\cos\left(\frac{2\pi}{5}\right)$	0		(x^2-y^2, xy)

 $C_{6v}-Not\ Abelian; \qquad h=12; Subgroups=\{C_S,\,C_2,\,C_3,\,C_6,\,C_{2v},\,C_{3v}\}$

C_{6v}	E	2C ₆ (z)	2C ₃ (z)	$C_2(z)$	$3\sigma_{\rm v}$	$3\sigma_{\rm d}$	linear, rotations	quadratic
$\mathbf{A_1}$	1	1	1	1	1	1	Z	x^2+y^2 , z^2
$\mathbf{A_2}$	1	1	1	1	-1	-1	R_z	
$\mathbf{B_1}$	1	-1	1	-1	1	-1		
\mathbf{B}_2	1	-1	1	-1	-1	1		
$\mathbf{E_1}$	2	1	-1	-2	0	0	$(x, y), (R_x, R_y)$	(xz, yz)
$\mathbf{E_2}$	2	-1	-1	2	0	0		(x^2-y^2, xy)

 C_{nh} : C_{2h} , C_{3h} , C_{4h} , C_{5h} , and C_{6h}

 $C_{2h}-Abelian;\,h=4;\;\;Subgroups=\{\;C_S,\,C_i,\,C_2\}$

C_{2h}	E	$C_2(z)$	i	$\sigma_{ m h}$	linear, rotations	quadratic
$\mathbf{A}_{\mathbf{g}}$	1	1	1	1	R_z	x^2 , y^2 , z^2 , xy
$\mathbf{B}_{\mathbf{g}}$	1	-1	1	-1	R_x, R_y	xz, yz
$\mathbf{A}_{\mathbf{u}}$	1	1	-1	-1	Z	
$\mathbf{B}_{\mathbf{u}}$	1	-1	-1	1	x, y	

 C_{3h} – Abelian; h = 6; $\varepsilon = e^{2\pi i/3}$; Subgroups = $\{C_S, C_3\}$

C_{3h}	E	C ₃ (z)	$(C_3)^2$	$\sigma_{\rm h}$	S_3	$(S_3)^5$	linear, rotations	quadratic functions
A'	1	1	1	1	1	1	R _z	x^2+y^2, z^2

E'	1	ε *	ε* ε	1	8 *	ε* ε	(x, y)	(x^2-y^2, xy)
A''	1	1	1	-1	-1	-1	z	ī
E''	1	8 *	* E	-1 -1	-e *	*3- 3-	(R_x, R_y)	(xz, yz)

 $C_{4h}-Abelian;\,h=8;\;\;Subgroups=\{C_S,\,C_i,\,C_2,\,C_4,\,C_{2h},\,S_4\}$

C_{4h}	E	C ₄ (z)	$\mathbf{C_2}$	$(C_4)^3$	i	$(S_4)^3$	$\sigma_{\rm h}$	S ₄	linear, rotations	quadratic
$\mathbf{A}_{\mathbf{g}}$	1	1	1	1	1	1	1	1	R_z	x^2+y^2, z^2
$\mathbf{B}_{\mathbf{g}}$	1	-1	1	-1	1	-1	1	-1		x^2-y^2 , xy
$\mathbf{E}_{\mathbf{g}}$	1	i -i	-1 -1	-i i	1	i -i	-1 -1	-i i	(R_x, R_y)	(xz, yz)
$\mathbf{A}_{\mathbf{u}}$	1	1	1	1	-1	-1	-1	-1	Z	
$\mathbf{B}_{\mathbf{u}}$	1	-1	1	-1	-1	1	-1	1		
$\mathbf{E}_{\mathbf{u}}$	1	i -i	-1 -1	-i i	-1 -1	-i i	1	i -i	(x, y)	

 C_{5h} - Abelian; h = 10; $\varepsilon = e^{2\pi i/5}$; Subgroups = $\{C_S, C_5\}$

C_{5h}	E	C ₅	$(C_5)^2$	$(C_5)^3$	$(C_5)^4$	$\sigma_{ m h}$	S_5	$(S_5)^7$	$(S_5)^3$	$(S_5)^9$	linear, rotations	quadratic
A'	1	1	1	1	1	1	1	1	1	1	R _z	x^2+y^2, z^2
E'1	1			ε^{2^*} ε^2	* &	1	: *	$\varepsilon^2 \\ \varepsilon^{2*}$	ε^{2^*} ε^2	e* E	(x, y)	
E'2	1	$\epsilon^2_{\epsilon^{2*}}$	* &	မ *	ε^{2^*} ε^2	1	$\varepsilon^2 \\ \varepsilon^{2*}$	* &	e *	ε^{2*} ε^2		(x^2-y^2, xy)
A''	1	1	1	1	1	-1	-1	-1	-1	-1	Z	
E'' ₁				ε^2	* &	-1 -1			$-\varepsilon^2$	-ε* -ε	(R_x, R_y)	(xz, yz)
E''2	1	ϵ^2 ϵ^{2*}	e*	e *	ε^{2^*} ε^2	-1 -1	-ε ² -ε ^{2*}	* 3-	3- *	-ε ^{2*} -ε ²		

 C_{6h} – Abelian; h = 12; $\varepsilon = e^{2\pi i/6}$; Subgroups = $\{C_S, C_i, C_2, C_3, C_6, C_{2h}, C_{3h}, S_6\}$

C_{6h}	E	C ₆ (z)	C ₃	$\mathbf{C_2}$	$(C_3)^2$	$(C_6)^5$	i	$(S_3)^5$	$(S_6)^5$	$\sigma_{\rm h}$	S_6	S_3	linear, rotations	quadratic
$\mathbf{A}_{\mathbf{g}}$	1	1	1	1	1	1	1	1	1	1	1	R_z	x^2+y^2, z^2	
$\mathbf{B}_{\mathbf{g}}$	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1		

$\mathbf{E}_{1\mathbf{g}}$	1	3 *	* 3-	-1 -1	3- *3-	* E	1	ε *	* -e	-1 -1	-e *	ε* ε	(R_x, R_y)	(xz, yz)
$\mathbf{E}_{\mathbf{2g}}$	1	* -&	-မ -မ	1 1	* -8	-8 * 3-	1	* -ε	-8 * -8	1 1	-e* -e	-e * 3-		(x^2-y^2, xy)
$\mathbf{A}_{\mathbf{u}}$	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	Z	
$\mathbf{B}_{\mathbf{u}}$	1	-1	1	-1	1	-1	-1	1	-1	1	-1	1		
$\mathbf{E_{1u}}$	1	8 *	* 3-	-1 -1	-8 * -8	* E	-1 -1	-8 * 3-	ε* ε	1 1	ε *	-8* -8-	(x, y)	
$\mathbf{E_{2u}}$	1	* -E	-e * -e	1 1	-e* -e	3- * 3-	-1 -1	* E	ε ε*	-1 -1	ε* ε	ε *		

 $\mathbf{D_n}$: D_2 , D_3 , D_4 , D_5 , and D_6

 $D_2-Abelian;\ h=4;\ Subgroups=\{C_2\}$

D_2	E	$C_{2}(z)$	C ₂ (y)	C ₂ (x)	linear, rotations	quadratic
A	1	1	1	1	ī	x^2 , y^2 , z^2
$\mathbf{B_1}$	1	1	-1	-1	z, R _z	xy
\mathbf{B}_2	1	-1	1	-1	y, R _y	XZ
\mathbf{B}_3	1	-1	-1	1	x, R_x	yz

 $D_3-Not\ Abelian; \qquad h=6;\ \ Subgroups=\{C_2,\,C_3\}$

D	3	E	2C ₃ (z)	3C' ₂	linear, rotations	quadratic
A	1	1	1	1		x^2+y^2, z^2
A	2	1	1	-1	z, R _z	
E	,	2	-1	0	$(x, y), (R_x, R_y)$	$(x^2-y^2, xy), (xz, yz)$

 $D_4-Not\ Abelian; \qquad h=8;\ \ Subgroups=\{C_2,\,C_4,\,D_2\}$

D_4	E	2C ₄ (z)	$C_2(z)$	2C' ₂	2C'' ₂	linear, rotations	quadratic
$\mathbf{A_1}$	1	1	1	1	1		x^2+y^2, z^2
$\mathbf{A_2}$	1	1	1	-1	-1	z, R _z	
$\mathbf{B_1}$	1	-1	1	1	-1		x^2-y^2
\mathbf{B}_2	1	-1	1	-1	1		xy
E	2	0	-2	0	0	$(x, y), (R_x, R_y)$	(xz, yz)

 $D_5-Not\;Abelian; \qquad h=10; Subgroups=\{C_2,\,C_5\}$

D_5	E	2C ₅ (z)	2(C ₅) ²	5C' ₂	linear, rotations	quadratic
$\mathbf{A_1}$	1	1	1	1		x^2+y^2, z^2
$\mathbf{A_2}$	1	1	1	-1	z, R_z	
$\mathbf{E_1}$	2	$2\cos\left(\frac{2\pi}{5}\right)$	$2\cos\left(\frac{4\pi}{5}\right)$	0	$(x, y), (R_x, R_y)$	(xz, yz)
$\overline{\mathbf{E}_2}$	2	$2\cos\left(\frac{4\pi}{5}\right)$	$2\cos\left(\frac{2\pi}{5}\right)$	0		

 $D_6-Not\ Abelian; \qquad h=12; Subgroups=\{C_2,\,C_3,\,C_6,\,D_2,\,D_3\}$

D_6	E	2C ₆ (z)	2C ₃ (z)	$C_{2}(z)$	3C' ₂	3C'' ₂	linear, rotations	quadratic
$\mathbf{A_1}$	1	1	1	1	1	1		x^2+y^2, z^2
$\mathbf{A_2}$	1	1	1	1	-1	-1	z, R_z	
$\mathbf{B_1}$	1	-1	1	-1	1	-1		
\mathbf{B}_2	1	-1	1	-1	-1	1		
$\mathbf{E_1}$	2	1	-1	-2	0	0	$(x, y), (R_x, R_y)$	(xz, yz)
$\mathbf{E_2}$	2	-1	-1	2	0	0		(x^2-y^2, xy)

 $\boldsymbol{D_{nh}}\text{:}\ D_{2h},\,D_{3h},\,D_{4h},\,D_{5h},\,and\,\,D_{6h}$

 $D_{2h}-Abelian; h=8; \;\; Subgroups=\{C_S,\,C_i,\,C_2,\,C_{2v},\,C_{2h}\}$

D_{2h}	E	$C_2(z)$	C ₂ (y)	$C_2(x)$	i	σ (xy)	σ (xz)	σ (yz)	linear, rotations	quadratic
$\mathbf{A}_{\mathbf{g}}$	1	1	1	1	1	1	1	1		x^2 , y^2 , z^2
\mathbf{B}_{1g}	1	1	-1	-1	1	1	-1	-1	R_z	xy
$\mathbf{B}_{2\mathbf{g}}$	1	-1	1	-1	1	-1	1	-1	R_y	XZ
\mathbf{B}_{3g}	1	-1	-1	1	1	-1	-1	1	R_x	yz
$\mathbf{A}_{\mathbf{u}}$	1	1	1	1	-1	-1	-1	-1		
$\mathbf{B}_{1\mathbf{u}}$	1	1	-1	-1	-1	-1	1	1	z	
$\mathbf{B}_{2\mathbf{u}}$	1	-1	1	-1	-1	1	-1	1	у	
\mathbf{B}_{3u}	1	-1	-1	1	-1	1	1	-1	X	_

 $D_{3h} - Not \; Abelian; \quad \; h = 12; \\ Subgroups = \{C_S, \, C_2, \, C_3, \, C_{2v}, \, C_{3v}, \, C_{3h}, \, D_3\}$

D_{3h}	E	2C ₃	3C' ₂	$\sigma_{\rm h}$	2S ₃	$3\sigma_{\rm v}$	linear, rotations	quadratic
A' ₁	1	1	1	1	1	1		x^2+y^2, z^2

	A'2	1	1	-1	1	1	-1	R_z	
	E '	2	-1	0	2	-1	0	(x, y)	(x^2-y^2, xy)
A	A'' ₁	1	1	1	-1	-1	-1		
I	A''2	1	1	-1	-1	-1	1	Z	
	E''	2	-1	0	-2	1	0	(R_x, R_y)	(xz, yz)

 $D_{4h} - Not \ Abelian; \quad \ \ h = 16; \\ Subgroups = \{C_S, C_i, C_2, C_4, C_{2v}, C_{4v}, C_{2h}, C_{4h}, D_2, D_4, D_{2h}, D_{2d}, S_4\}$

D_{4h}	E	2C ₄ (z)	$\mathbf{C_2}$	2C'2	2C'' ₂	i	2S ₄	$\sigma_{\rm h}$	$2\sigma_{\rm v}$	$2\sigma_{\rm d}$	linears, rotations	quadratic
A_{1g}	1	1	1	1	1	1	1	1	1	1		x^2+y^2, z^2
$\mathbf{A}_{2\mathbf{g}}$	1	1	1	-1	-1	1	1	1	-1	-1	R_z	
$\mathbf{B}_{1\mathrm{g}}$	1	-1	1	1	-1	1	-1	1	1	-1		x^2-y^2
$\mathbf{B}_{2\mathbf{g}}$	1	-1	1	-1	1	1	-1	1	-1	1		xy
$\mathbf{E}_{\mathbf{g}}$	2	0	-2	0	0	2	0	-2	0	0	(R_x, R_y)	(xz, yz)
A_{1u}	1	1	1	1	1	-1	-1	-1	-1	-1		
$\mathbf{A}_{2\mathbf{u}}$	1	1	1	-1	-1	-1	-1	-1	1	1	Z	
$\mathbf{B}_{1\mathbf{u}}$	1	-1	1	1	-1	-1	1	-1	-1	1		
$\mathbf{B}_{2\mathbf{u}}$	1	-1	1	-1	1	-1	1	-1	1	-1		
$\mathbf{E}_{\mathbf{u}}$	2	0	-2	0	0	-2	0	2	0	0	(x, y)	

 $D_{5h}-Abelian; h=20; Subgroups = \{C_{S},\,C_{2},\,C_{5},\,C_{2v},\,C_{5v},\,C_{5h},\,D_{5}\}$

D_{5h}	E	2C ₅	2(C ₅) ²	5C' ₂	h	2S ₅	$2(S_5)^3$	5 σ _v	linear, rotations	quadratic
A'1	1	1	1	1	1	1	1	1		x^2+y^2, z^2
A'2	1	1	1	-1	1	1	1	-1	R_z	
E'1	2	$2\cos\left(\frac{2\pi}{5}\right)$	$2\cos\left(\frac{4\pi}{5}\right)$	0	2	$2\cos\left(\frac{2\pi}{5}\right)$	$2\cos\left(\frac{4\pi}{5}\right)$	0	(x, y)	
E'2	2	$2\cos\left(\frac{4\pi}{5}\right)$	$2\cos\left(\frac{2\pi}{5}\right)$	0	2	$2\cos\left(\frac{4\pi}{5}\right)$	$2\cos\left(\frac{2\pi}{5}\right)$	0		(x^2-y^2, xy)
A''1	1	1	1	1	-1	-1	-1	-1		
A''2	1	1	1	-1	-1	-1	-1	1	Z	
E'' ₁	2	$2\cos\left(\frac{2\pi}{5}\right)$	$2\cos\left(\frac{4\pi}{5}\right)$	0	-2	$-2\cos\left(\frac{2\pi}{5}\right)$	$-2\cos\left(\frac{4\pi}{5}\right)$	0	(R_x, R_y)	(xz, yz)
E''2	2	$2\cos\left(\frac{4\pi}{5}\right)$	$2\cos\left(\frac{2\pi}{5}\right)$	0	-2	$-2\cos\left(\frac{4\pi}{5}\right)$	$-2\cos\left(\frac{2\pi}{5}\right)$	0		

 $D_{6h}-Abelian; h=24\\$

 $Subgroups = \{\ C_S,\ C_i,\ C_2,\ C_3,\ C_6,\ C_{2v},\ C_{3v},\ C_{6v},\ C_{2h},\ C_{3h},\ C_{6h},\ D_2,\ D_3,\ D_6,\ D_{2h},\ D_{3h},\ D_{3d},\ S_6\}$

D_{6h}	E	2C ₆	2C ₃	$\mathbf{C_2}$	3C' ₂	3C'' ₂	i	2S ₃	2S ₆	$\sigma_{\rm h}$	$3\sigma_{\rm d}$	$3\sigma_{\rm v}$	Linear, rotations	Quadratic
$\mathbf{A}_{1\mathbf{g}}$	1	1	1	1	1	1	1	1	1	1	1	1		x^2+y^2, z^2
$\mathbf{A}_{2\mathbf{g}}$	1	1	1	1	-1	-1	1	1	1	1	-1	-1	R_z	
$\mathbf{B}_{1\mathrm{g}}$	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1		
$\mathbf{B}_{2\mathbf{g}}$	1	-1	1	-1	-1	1	1	-1	1	-1	-1	1		
$\mathbf{E}_{1\mathbf{g}}$	2	1	-1	-2	0	0	2	1	-1	-2	0	0	(R_x, R_y)	(xz, yz)
$\mathbf{E}_{2\mathbf{g}}$	2	-1	-1	2	0	0	2	-1	-1	2	0	0		(x^2-y^2, xy)
A_{1u}	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1		
A_{2u}	1	1	1	1	-1	-1	-1	-1	-1	-1	1	1	Z	
B_{1u}	1	-1	1	-1	1	-1	-1	1	-1	1	-1	1		
$\mathbf{B}_{2\mathbf{u}}$	1	-1	1	-1	-1	1	-1	1	-1	1	1	-1		
$\mathbf{E_{1u}}$	2	1	-1	-2	0	0	-2	-1	1	2	0	0	(x, y)	
$\mathbf{E}_{2\mathbf{u}}$	2	-1	-1	2	0	0	-2	1	1	-2	0	0		

 \textbf{D}_{nd} : D_{2d} , D_{3d} , D_{4d} , D_{5d} , and D_{6d}

 $D_{2d}-Not\;Abelian; \quad \ h=8;\;\; Subgroups=\{C_S,\,C_2,\,C_{2v},\,D_2,\,S_4\}$

D_{2d}	E	2S ₄	$C_2(z)$	2C' ₂	$2\sigma_{\rm d}$	linear, rotations	quadratic
$\mathbf{A_1}$	1	1	1	1	1		x^2+y^2, z^2
$\mathbf{A_2}$	1	1	1	-1	-1	R_z	
\mathbf{B}_1	1	-1	1	1	-1		x^2-y^2
\mathbf{B}_2	1	-1	1	-1	1	Z	xy
E	2	0	-2	0	0	$(x, y) (R_x, R_y)$	(xz, yz)

 D_{3d} – Not Abelian; h = 12; Subgroups = $\{C_S, C_i, C_2, C_3, C_{3v}, D_3, S_6\}$

D_{3d}	E	2C ₃	3C' ₂	i	2S ₆	$3\sigma_{\rm d}$	linear, rotations	quadratic
A_{1g}	1	1	1	1	1	1		x^2+y^2, z^2
A_{2g}	1	1	-1	1	1	-1	R_z	
$\mathbf{E}_{\mathbf{g}}$	2	-1	0	2	-1	0	(R_x, R_y)	$(x^2-y^2, xy) (xz, yz)$
A_{1u}	1	1	1	-1	-1	-1		
A_{2u}	1	1	-1	-1	-1	1	z	
$\mathbf{E}_{\mathbf{u}}$	2	-1	0	-2	1	0	(x, y)	

 $D_{4d} - Not \; Abelian; \quad \; h = 16; \\ Subgroups = \{C_{S}, C_{2}, C_{4}, C_{2v}, C_{4v}, D_{2}, D_{4}, S_{8}\}$

D_{4d}	E	2S ₈	2C ₄	2(S ₈) ³	C_2	4C' ₂	$4\sigma_{\rm d}$	linear, rotations	quadratic
$\mathbf{A_1}$	1	1	1	1	1	1	1		x^2+y^2, z^2
$\mathbf{A_2}$	1	1	1	1	1	-1	-1	R_z	
\mathbf{B}_1	1	-1	1	-1	1	1	-1		
\mathbf{B}_2	1	-1	1	-1	1	-1	1	Z	
$\mathbf{E_1}$	2	$\sqrt{2}$	0	$-\sqrt{2}$	-2	0	0	(x, y)	
\mathbf{E}_2	2	0	-2	0	2	0	0		(x^2-y^2, xy)
$\mathbf{E_3}$	2	$-\sqrt{2}$	0	$\sqrt{2}$	-2	0	0	(R_x, R_y)	(xz, yz)

 $D_{5d}-Not\ Abelian; \quad \ \ h=20; Subgroups=\{C_S,\,C_i,\,C_2,\,C_5,\,C_{5v},\,D_5,\,S_{10}\}$

D_{5d}	E	2C ₅	2(C ₅) ²	5C' ₂	i	$2(S_{10})^3$	2S ₁₀	5σ _d	linear, rotations	quadratic
A_{1g}	1	1	1	1	1	1	1	1		x^2+y^2, z^2
A_{2g}	1	1	1	-1	1	1	1	-1	R_z	
E_{1g}	2	$2\cos\left(\frac{2\pi}{5}\right)$	$2\cos\left(\frac{4\pi}{5}\right)$	0	2	$2\cos\left(\frac{2\pi}{5}\right)$	$2\cos\left(\frac{4\pi}{5}\right)$	0	(R_x, R_y)	(xz, yz)
E_{2g}	2	$2\cos\left(\frac{4\pi}{5}\right)$	$2\cos\left(\frac{2\pi}{5}\right)$	0	2	$2\cos\left(\frac{4\pi}{5}\right)$	$2\cos\left(\frac{2\pi}{5}\right)$	0		(x^2-y^2, xy)
A_{1u}	1	1	1	1	-1	-1	-1	-1		
A_{2u}	1	1	1	-1	-1	-1	-1	1	Z	
E_{1u}	2	$2\cos\left(\frac{2\pi}{5}\right)$	$2\cos\left(\frac{4\pi}{5}\right)$	0	-2	$-2\cos\left(\frac{2\pi}{5}\right)$	$-2\cos\left(\frac{4\pi}{5}\right)$	0	(x, y)	
E_{2u}	2	$2\cos\left(\frac{4\pi}{5}\right)$	$2\cos\left(\frac{2\pi}{5}\right)$	0	-2	$-2\cos\left(\frac{4\pi}{5}\right)$	$-2\cos\left(\frac{2\pi}{5}\right)$	0		

 $\underline{D_{6d} - Not \ Abelian;} \quad \ \ h = 24; \\ Subgroups = \{C_S, C_2, C_3, C_6, C_{2v}, C_{3v}, C_{6v}, D_2, D_3, D_6, S_4, S_{12}\}$

D_{6d}	E	2S ₁₂	2C ₆	2S ₄	2C ₃	$2(S_{12})^5$	$\mathbf{C_2}$	6C'2	$6\sigma_{\rm d}$	linear, rotations	quadratic
$\mathbf{A_1}$	1	1	1	1	1	1	1	1	1		x^2+y^2, z^2
$\mathbf{A_2}$	1	1	1	1	1	1	1	-1	-1	R_z	
\mathbf{B}_1	1	-1	1	-1	1	-1	1	1	-1		
\mathbf{B}_2	1	-1	1	-1	1	-1	1	-1	1	Z	
$\mathbf{E_1}$	2	$\sqrt{3}$	1	0	-1	-√3	-2	0	0	(x, y)	
$\mathbf{E_2}$	2	1	-1	-2	-1	1	2	0	0		(x^2-y^2, xy)

\mathbf{E}_3	2	0	-2	0	2	0	-2	0	0		
$\mathbf{E_4}$	2	-1	-1	2	-1	-1	2	0	0		
$\mathbf{E_5}$	2	$-\sqrt{3}$	1	0	-1	$\sqrt{3}$	-2	0	0	(R_x, R_y)	(xz, yz)

 S_n : S_4 , S_6 , S_8 , and S_{10}

 $S_4-Abelian;\ h=4;\ Subgroups=\{C_2\}$

S_4	E	S ₄	$\mathbf{C_2}$	$(S_4)^3$	linear, rotations	quadratic
A	1	1	1	1	R_z	x^2+y^2, z^2
В	1	-1	1	-1	Z	x^2-y^2 , xy
E	1	i -i	-1 -1	-i i	$(x, y), (R_x, R_y)$	(xz, yz)

 S_6 – Abelian; h = 6; $\varepsilon = e^{2\pi i/6}$; Subgroups = $\{C_i, C_3\}$

S_6	E	C ₃ (z)	$(C_3)^2$	i	$(S_6)^5$	S ₆	linear, rotations	quadratic
$\mathbf{A_g}$	1	1	1	1	1	1	R_z	x^2+y^2, z^2
$\mathbf{E}_{\mathbf{g}}$	1	် *	* &	1	e *	* 8	(R_x, R_y)	$(x^2-y^2, xy) (xz, yz)$
$\mathbf{A}_{\mathbf{u}}$	1	1	1	-1	-1	-1	Z	
$\mathbf{E}_{\mathbf{u}}$	1	မ မ	* &	4	ε ε	* &	(x, y)	

 S_8 – Abelian; h = 8; $\varepsilon = e^{2\pi i/8}$; Subgroups = $\{C_2, C_4\}$

S_8	E	S_8	C ₄ (z)	$(S_8)^3$	C_2	$(S_8)^5$	$(C_4)^3$	$(S_8)^7$	linear, rotations	quadratic
A	1	1	1	1	1	1	1	1	R_z	x^2+y^2, z^2
В	1	-1	1	-1	1	-1	1	-1	Z	
$\mathbf{E_1}$	1	e*	i -i	* 3-	-1 -1	3- *	-i i	* &	(x, y)	
$\mathbf{E_2}$	1	i -i	-1 -1	i	_	-i	-1 -1	-i i		(x^2-y^2, xy)
E ₃	1	-& -&	i -i	* &	-1 -1	e *	-i i	-e* -e	(R_x, R_y)	(xz, yz)

 S_{10} – Abelian; h = 10; $\varepsilon = e^{2\pi i/10}$; Subgroups = $\{C_i, C_5\}$

S ₁₀	E	C ₅	$(C_5)^2$	$(C_5)^3$	$(C_5)^4$	i	$(S_{10})^7$	$(S_{10})^9$	S ₁₀	$(S_{10})^3$	linear, rotations	quadratic
$\mathbf{A}_{\mathbf{g}}$	1	1	1	1	1	1	1	1	_	1	R_z	z^2, x^2+y^2
$\mathbf{E}_{1\mathrm{g}}$	1	e *	ε^2 ε^{2*}	ε^2		+1 1			$+\varepsilon^{2*}$ ε^2	*3+ +3	(R_x,R_y)	(xz, yz)
$\mathbf{E}_{2\mathbf{g}}$	1	$\epsilon^2_{\epsilon^{2*}}$	* &	e *	ε^{2^*} ε^2	1	$+\varepsilon^2$ ε^{2*}	* +3	3* *	$+\varepsilon^{2^*}$ ε^2		(x^2-y^2, xy)
$\mathbf{A}_{\mathbf{u}}$	1	1	1	1	1	-1	-1	-1	-1	-1	Z	
E _{1u}	1	e *	ε^2 ε^{2*}	ε^2	3	-1 -1			-ε [∠]	* -3	(x, y)	
$\mathbf{E_{2u}}$	1	$\epsilon^2_{\epsilon^{2*}}$	* &	် ဧ	ε^{2^*} ε^2	-1 -1	-ε ² -ε ^{2*}	* -&	-8 * 3-	$-\varepsilon^{2*}$ $-\varepsilon^2$		

High Symmetry: T_d , O_h , and I_h

 $T_d-Abelian; \ h=24; Subgroups=\{Many\}$

T_d	E	8C ₃	3C ₂	6S ₄	$6\sigma_{\rm d}$	linear, rotations	quadratic
$\mathbf{A_1}$	1	1	1	1	1		$x^2+y^2+z^2$
$\mathbf{A_2}$	1	1	1	-1	-1		
E	2	-1	2	0	0		$(2z^2-x^2-y^2, x^2-y^2)$
T_1	3	0	-1	1	-1	(R_x, R_y, R_z)	
T_2	3	0	-1	-1	1	(x, y, z)	(xy, xz, yz)

 $O_h-Not\;Abelian; \qquad h=48; Subgroups=\{Many\}$

O_h	E	8C ₃	6C ₂	6C ₄	$3C_2 = (C_4)^2$	i	6S ₄	8S ₆	$3\sigma_{\rm h}$	$6\sigma_{\rm d}$	linear, rotations	quadratic
A _{1g}	1	1	1	1	1	1	1	1	1	1		$x^2+y^2+z^2$
A_{2g}	1	1	-1	-1	1	1	-1	1	1	-1		
$\mathbf{E}_{\mathbf{g}}$	2	-1	0	0	2	2	0	-1	2	0		$(2z^2-x^2-y^2, x^2-y^2)$
T_{1g}	3	0	-1	1	-1	3	1	0	-1	-1	(R_x, R_y, R_z)	
T_{2g}	3	0	1	-1	-1	3	-1	0	-1	1		(xz, yz, xy)
\mathbf{A}_{1u}	1	1	1	1	1	-1	-1	-1	-1	-1		
\mathbf{A}_{2u}	1	1	-1	-1	1	-1	1	-1	-1	1		
$\mathbf{E}_{\mathbf{u}}$	2	-1	0	0	2	-2	0	1	-2	0		
T_{1u}	3	0	-1	1	-1	-3	-1	0	1	1	(x, y, z)	
T_{2u}	3	0	1	-1	-1	-3	1	0	1	-1		

 $I_h-Not\ Abelian; \qquad h=120; \qquad Subgroups=\{Many\}$

I_h	E	12C ₅	12(C ₅) ²	20C ₃	15C ₂	i	12S ₁₀	$12(S_{10})^3$	20S ₆	15σ	linear, rotations	quadratic
$\mathbf{A}_{\mathbf{g}}$	1	1	1	1	1	1	1	1	1	1		$x^2+y^2+z^2$
T_{1g}	3	$-2\cos\left(\frac{4\pi}{5}\right)$	$-2\cos\left(\frac{2\pi}{5}\right)$	0	-1	3	$-2\cos\left(\frac{2\pi}{5}\right)$	$-2\cos\left(\frac{4\pi}{5}\right)$	0	-1	(R_x, R_y, R_z)	
T_{2g}	3	$-2\cos\left(\frac{2\pi}{5}\right)$	$-2\cos\left(\frac{4\pi}{5}\right)$	0	-1	3	$-2\cos\left(\frac{4\pi}{5}\right)$	$-2\cos\left(\frac{2\pi}{5}\right)$	0	-1		
G_{g}	4	-1	-1	1	0	4	-1	-1	1	0		
\mathbf{H}_{g}	5	0	0	-1	1	5	0	0	-1	1		$(2z^2-x^2-y^2, x^2-y^2, xy, xz, yz)$
$\mathbf{A}_{\mathbf{u}}$	1	1	1	1	1	-1	-1	-1	-1	-1		
T_{1u}	3	$-2\cos\left(\frac{4\pi}{5}\right)$	$-2\cos\left(\frac{2\pi}{5}\right)$	0	-1	-3	$2\cos\left(\frac{2\pi}{5}\right)$	$2\cos\left(\frac{4\pi}{5}\right)$	0	1	(x, y, z)	
T_{2u}	3	$-2\cos\left(\frac{2\pi}{5}\right)$	$-2\cos\left(\frac{4\pi}{5}\right)$	0	-1	-3	$2\cos\left(\frac{4\pi}{5}\right)$	$2\cos\left(\frac{2\pi}{5}\right)$	0	1		
G_{u}	4	-1	-1	1	0	-4	1	1	-1	0		
$\mathbf{H}_{\mathbf{u}}$	5	0	0	-1	1	-5	0	0	1	-1		

Linear: $C_{\infty v}$, and $D_{\infty h}$

 $C_{\infty_V}-Not\ Abelian; \quad \ h=\infty;\ Subgroups=\{Many\}$

$C_{\infty v}$	E	$2C_{\infty}$	•••	∞ σ_{v}	linear, rotations	quadratic
$A_1=\Sigma^+$	1	1		1	Z	x^2+y^2, z^2
$A_2=\Sigma$	1	1		-1	R_z	
$E_1=\Pi$	2	$2\cos(\varphi)$		0	$(x, y), (R_x, R_y)$	(xz, yz)
$\mathbf{E}_2 = \Delta$	2	$2\cos(2\varphi)$		0		(x^2-y^2, xy)
Е3=Ф	2	$2\cos(3\varphi)$	•••	0		
•••		•••		•••		

 $D_{\infty h}-Not\ Abelian;\quad \ h=\infty;\ Subgroups=\{Many\}$

2 0011 110	,,,	ioonan, i	_	, ~	, 40	510 ups (11)	1411	,		
$oldsymbol{D}_{\infty oldsymbol{h}}$	E	$2\mathrm{C}_{\infty}$	•••	$\infty \sigma_{v}$	i	$2S_{\infty}$	•••	∞C' ₂	linear functions, rotations	quadratic
$A_{1g} = \Sigma_{g}^{+}$	1	1		1	1	1		1		x^2+y^2, z^2
$A_{2g}=\Sigma_g$	1	1		-1	1	1		-1	R_z	
$E_{1g}=\Pi_g$	2	$2\cos(\varphi)$		0	2	$-2\cos(\varphi)$		0	(R_x, R_y)	(xz, yz)

$\mathbf{E}_{2\mathbf{g}} = \mathbf{\Lambda}_{\mathbf{g}}$	2	$2\cos(2\varphi)$	•••	0	2	$2\cos(2\varphi)$	•••	0		(x^2-y^2, xy)
$E_{3g} = \Phi_g$	2	$2\cos(3\varphi)$		0	2	$-2\cos(3\varphi)$		0		
•••		•••		•••						
$A_{1u} = \Sigma_{u}^{+}$	1	1		1	-1	-1		-1	z	
$A_{2u}=\Sigma_u$	1	1		-1	-1	-1	•••	1		
$E_{1u}=\Pi_u$	2	$2\cos(\varphi)$		0	-2	$2\cos(\varphi)$		0	(x, y)	
$E_{2u}=\Delta_u$	2	$2\cos(2\varphi)$		0	-2	$-2\cos(2\varphi)$		0		
$E_{3u}=\Phi_u$	2	$2\cos(3\varphi)$		0	-2	$2\cos(3\varphi)$		0		
•••	•••	•••	•••	•••	•••	•••	•••	•••		

Partial Correlation Tables for Linear Groups: $C_{\infty v} \to C_{2v}, D_{\infty h} \to D_{2h}$

$$C_{\infty v} \rightarrow C_{2v}$$

$\mathbf{C}_{\infty\mathbf{v}}$	C_{2v}
$A_1 = \Sigma^+$	A_1
$A_2=\Sigma^-$	A_2
$E_1=\Pi$	$B_1 + B_2$
$E_2=\Delta$	$A_1 + A_2$

$$D_{\infty h} \to D_{2h}$$

	2.1.
$\mathbf{D}_{\infty\mathbf{h}}$	$\mathbf{D}_{2\mathbf{h}}$
$A_{1g} = \sum_{g}^{+}$	A_{g}
$A_{2g}=\Sigma_{g}$	B_{1g}
$E_{1g}=\Pi_{g}$	$B_{2g} + B_{3g}$
$E_{2g} = \Delta_g$	$A_g + B_{1g}$
•••	
$A_{1u} = \sum_{u}^{+}$	B_{1u}
$A_{2u}=\Sigma_u$	A_{u}
$E_{1u}=\Pi_u$	$B_{2u}+B_{3u}$
$E_{2u} = \Delta_u$	$A_u + B_{1u}$

Notes and Acknowledgements:

1. Linear functions x, y, and z can represent translational degrees of freedom. Linear functions R_x , R_y , and R_z can represent rotational degrees of freedom.

- 2. Vibrational modes which share a symmetry species with one of the three linear functions x, y, or z will be infrared active. Vibrational modes which share a symmetry species with one of the quadratic functions will be Raman active.
- 3. Degenerate functions $(x \pm iy)$ and $(R_x \pm iR_y)$ are represented as simply (x, y) and (R_x, R_y) .
- 4. While I have worked hard to ensure that this document is correct, I assume no responsibility for the accuracy of the information here.

This document was compiled with the help of these references:

- 1. http://www.webqc.org/symmetry.php
- 2. http://en.wikipedia.org/wiki/List_of_character_tables_for_chemically_important_3D_point_groups
- 3. Carter, Robert L. *Molecular Symmetry and Group Theory*. John Wiley and Sons, Inc. (Hoboken, NJ) 1998.