Cyclotomic numerical semigroups

Cyclotomic exponent sequences of a numerical semigroup

Pedro A. García Sánchez Joint work with A. Ciolan, A. Herrera-Poyatos and P. Moree

II Encuentro Conjunto España-Brasil de Matemáticas RSME-SEMA-SBM-SBMAC Partially supported by the project *Estudio y aplicaciones de semigrupos numéricos y afines* MTM2017-84890-P

UNIVERSIDAD

The Hilbert series

Hilbet series of a numerical semigroup

Let S be a numerical semigroup

The Hilbert series is also known as the generating function of S

$$\mathsf{H}_{S}(x) = \sum_{s \in S} x^{s}$$

It is well known that

$$H_S(x) = \frac{K_S(x)}{\prod_{a \in A} (1 - x^a)},$$

with A the unique minimal generating system of S, and $K_S(x)$ a polynomial

The degree of $K_S(x)$ is $F(S) + \sum_{a \in A} a$

1

Euler characteristic and K_S

Let n be an element in the numerical semigroup S minimally generated by A

Define

$$\Delta_n = \{ F \subset A : n - \sum_{a \in F} a \in S \}$$

and

$$\chi_{\mathcal{S}}(n) = \sum_{F \in \Delta_n} (-1)^{|F|},$$

the Euler characteristic of Δ_n

Then

$$\mathsf{K}_{S}(x) = \sum_{s \in S} \chi(s) x^{s}$$

The coefficients of this polynomial can also be computed with the Betti numbers of the semigroup ring of S

Gluings and Hilbert series

Let S_1 and S_2 be two numerical semigroups, and let a_1, a_2 be positive integers such that

- $a_1 \in S_2$ and it is not a minimal generator
- $a_2 \in S_1$ and it is not a minimal generator
- $gcd(a_1, a_2) = 1$

The $S = a_1S_1 + a_2S_2$ is the gluing of S_1 and S_2 (along a_1a_2)

$$\mathsf{H}_{a_1S_1+_{a_1a_2}a_2S_2}(x) = (1-x^{a_1a_2})\,\mathsf{H}_{S_1}(x^{a_1})\,\mathsf{H}_{S_2}(x^{a_2})$$

3

Hilbert series of complete intersections

Recall that a numerical semigroup S is a complete intersection if

- ullet it is either $\mathbb N$ or
- the gluing of two complete intersection numerical semigroups

If $S=a_1S_1+a_2S_2$ is a gluing, then the underlying graph of $\Delta_{a_1a_2}$ is not connected

The set of elements with associated nonconnected graph are called the Betti elements of ${\cal S}$

$$\mathsf{H}_{S}(x) = \frac{\prod_{b \in \operatorname{Betti}(S)} (1 - x^{b})^{\operatorname{nc}(\Delta_{b}) - 1}}{\prod_{i=1}^{e} (1 - x^{n_{i}})}$$

4

Polynomial associated to a

numerical semigroup

Numerical semigroup polynomial

Let S be a numerical semigroup, and let $G = \mathbb{N} \setminus S$ be its set of gaps

Observe that

$$\frac{1}{1-x} = \sum_{n \in \mathbb{N}} x^n = \sum_{g \in G} x^g + \mathsf{H}_{S}(x)$$

Hence

$$P_S(x) = 1 + (x - 1) \sum_{g \in G} x^g = (1 - x) H_S(x)$$

is a polynomial, the polynomial associated to S

Complete intersections and polynomials

If S is a complete intersection, then its associated polynomial has this form

$$P_{S}(x) = \frac{(1-x)\prod_{b \in B} (1-x^{b})^{m_{b}}}{\prod_{a \in A} (1-x^{a})}$$

Since it has all its roots in the unit circle, by Kronecker's lemma, it is a product of cyclotomic polynomials

We say that a numerical semigroup S is cyclotomic if its associated polynomial is a product of cyclotomic polynomials

Every complete intersection numerical semigroup is cyclotomic

Is the converse true?

Is every cyclotomic numerical semigroup a complete intersection

Every cyclotomic numerical semigroup is symmetric

We have some computational evidence: all cyclotomic numerical semigroups with Frobenius number less than 71 are complete intersections

Cyclotomic sequences

Cyclotomic sequences

Let f be a polynomial with integer coefficients such that f(1) = 1

There exists $e_d \in \mathbb{Z}$, for every $d \in \mathbb{N} \setminus \{0\}$, such that

$$f = \prod_{d \in \mathbb{N}} (1 - x^d)^{e_d}$$

The exponents e_d can be retreived from the roots of f

For the particular case $f = P_S$, the sequence $(e_1, e_2, ...)$ is known as the *exponent sequence* of S

Finite cyclotomic sequences

We say that the cyclotomic sequence $(e_1, e_2, ...)$ is finite it if has only finitely many nonzero entries

A numerical semigroup S is cyclotomic if and only if its cyclotomic sequence is finite

$$\begin{split} \Omega &= \{d \in \mathbb{Z}^+ : e_d \neq 0\}, \ \Omega^* = \Omega \setminus \{1\} \\ \Omega_- &= \{d \in \Omega : e_d \leq -1\} \\ \Omega_+ &= \{d \in \Omega : e_d \geq 1\} \ \Omega_+^* = \Omega_+ \setminus \{1\} \\ P_S(x) &= \frac{\prod_{d \in \Omega_+} (1 - x^d)^{e_d}}{\prod_{d \in \Omega_-} (1 - x^d)^{-e_d}} \end{split}$$

C

Some examples

For
$$S = \langle 4, 6, 9 \rangle$$
,

$$P_S(x) = x^{12} - x^{11} + x^8 - x^7 + x^6 - x^5 + x^4 - x + 1$$

$$= \frac{(1 - x)(1 - x^{12})(1 - x^{18})}{(1 - x^4)(1 - x^6)(1 - x^9)},$$

and thus the exponent sequence of S is

$$\big(1,0,0,-1,0,-1,0,0,-1,0,0,1,0,0,0,0,0,1\big)$$

For $S=\langle 3,5,7\rangle$, $\mathrm{P}_S(x)=x^5-x^4+x^3-x+1$, and the first entries of the exponent sequence look like

These sequences can be computed by using CyclotomicExponentSequence of the development version of the GAP package numericalsgps.

Cyclotomic sequences and generators

Let S be a numerical semigroup

$$P_S(x) = \frac{\prod_{d \in \Omega_+} (1 - x^d)^{e_d}}{\prod_{d \in \Omega_-} (1 - x^d)^{-e_d}}$$

- Ω_{-} generates S
- $\Omega_+^* \subseteq S$
- if a is a minimal generator of S, then $e_a = -1$

Cyclotomic sequences: Betti elements

Let S be a numerical semigroup minimally generated by A and with Betti elements B (the set elements $b \in S$ with Δ_b nonconnected)

For $a, b \in \mathbb{Z}$, write

$$a \leq_S b$$
 if $b - a \in S$

- $\mathsf{Minimals}_{\leq_S}(B) = \mathsf{Minimals}_{\leq_S}(\Omega^* \setminus A) \subseteq \Omega^*_+$
- the elements in $\Omega^* \setminus A$ have at least two factorizations
- for every b ∈ Minimals_{≤s}(B), the number of factorizations of b is e_b + 1, and every two factorizations have disjoint support

If S is a complete intersection, and $b \in B$, then $e_b + 1$ equals the number of connected components of Δ_b

Forest arranged Betti elements

Forests

Let S be a numerical semigroup minimally generated by A and Betti elements B

For a subset X of S, set $\mathcal{H}(X)$ to be the associated Hasse diagram of (X, \leq_S)

Assume that the $\mathcal{H}(\Omega^* \setminus A)$ is a directed forest

- $\Omega_+^* = \Omega^* \setminus A \subseteq B$
- for every $b \in \Omega^* \setminus A$, $e_b + 1$ equals the number of connected components of Δ_b
- $\Omega_- = A$
- In particular, S is cyclotomic

Forests and complete intersections

If both $\mathcal{H}(B)$ and $\mathcal{H}(\Omega^* \setminus A)$ are forests, then S is a complete intersection

For
$$S=\langle 8,12,18,25 \rangle$$
,

$$P_{S}(x) = \frac{(1-x)(1-x^{24})(1-x^{36})(1-x^{50})}{(1-x^{8})(1-x^{12})(1-x^{18})(1-x^{25})}$$

Then $\Omega^* \setminus A = B = \{24, 36, 50\}$

The graph (B, \leq_S) is

In particular if all the elements of $\Omega^* \setminus A$ and B are incomparable via \leq_S , then S is a complete intersection

Betti sorted

Let S be a numerical semigroup minimally generated by A and with Betti elements B

Then B is totally ordered with respect to \leq_S (Betti sorted) if and only if $\Omega^* \setminus A$ is totally ordered with respect to \leq_S

In this case, S is a complete intersection

A particular case is when B is a singleton, then so is $\Omega^* \setminus A$ (and vice versa)