Seminarul 10 de Algebră II

Grupele 103 și 104 - 2020-2021

1 Aritmetică în \mathbb{Z} și K[X]

Exercițiul 1.1: Fie $n \in \mathbb{N}^*$. Arătați că (n! + 1, (n + 1)! + 1) = 1.

Exercițiul 1.2: Fie $F_n = 2^{2^n} + 1$ pentru orice $n \ge 0$. Demonstrați că

 $F_n = F_0 F_1 ... F_{n-1} + 2$ pentru orice $n \ge 1$. Deduceţi că $(F_n, F_m) = 1$ pentru $n \ne m$. Redemonstraţi faptul că există o infinitate de numere prime.

Exercițiul 1.3: Aflați c.m.m.d.c și c.m.m.m.c. în $\mathbb{Q}[X]$ pentru:

- a) $X^3 2 \sin X + 1$;
- b) $X^5 + 2X^3 + X^2 + X + 1$ şi $X^5 + X^4 + 2X^3 + 2X^2 + 2X + 1$;
- c) $X^4 1 \text{ si } X^6 1$:
- d) $(X-1)(X^2-1)(X^3-1)(X^4-1)$ și $(X+1)(X^2+1)(X^3+1)(X^4+1)$.

Exercițiul 1.4: Fie $I = (X^3 + 1)$ și $J = (X^5 + 1) \leq \mathbb{R}[X]$. Calculați I + J și $I \cap J$.

Exercițiul 1.5: Care dintre polinoamele de mai jos este ireductibil în $\mathbb{Q}[X]$?

- a) $3X^2 7X + 1$;
- b) $6X^3 3X 18$;
- c) $X^3 7X + 1$;
- d) $X^3 9X 9$.

Exercițiul 1.6: Demonstrați că $X^3 + nX + 2$ este ireductibil peste \mathbb{Q} pentru toți $n \in \mathbb{Z}, n \neq 1, -3, -5$.

Exercițiul 1.7: Determinați toate polinoamele ireductibile de grad ≤ 5 din $\mathbb{Z}_2[X]$.

Exercițiul 1.8: Descompuneți în factori ireductibili următoarele polinoame din $\mathbb{Z}_2[X]$:

- a) $X^5 + X^3 + \hat{1}$;
- b) $X^6 + X^4 + X + \hat{1}$;
- c) $X^{15} + \hat{1}$.

Exercițiul 1.9: Demonstrați că $X^{n-1} + X^{n-2} + ... + X + 1$ este ireductibil peste \mathbb{Q} dacă și numai dacă n este prim.

Exercițiul 1.10: Scrieți factorizarea polinoamelor $X^n-1, 1 \leq n \leq 8$, în:

a) $\mathbb{Q}[X]$;

- b) $\mathbb{Z}_2[X]$;
- c) $\mathbb{Z}_3[X]$.

Exercițiul 1.11: Demonstrați că $P(X) = X^{105} - 9$ este ireductibil în $\mathbb{Q}[X]$.

Exercițiul 1.12: Fie p un număr prim și $F(X) = X^{p-1} + ... + X + 1 \in \mathbb{Q}[X]$. Calculați restul împărțirii lui $F(X^p)$ la F(X).

Exercițiul 1.13: Arătați că $P(X) = (1 + X + ... + X^n)^2 - X^n \in \mathbb{Q}[X]$ este reductibil pentru orice $n \geq 2$.

Exercițiul 1.14: Fie $a_1, ..., a_n \in \mathbb{Z}$ distincte. Demonstrați că

$$f(X) = (X - a_1)(X - a_2)...(X - a_n) - 1$$

este ireductibil în $\mathbb{Q}[X]$.

Exercițiul 1.15: Demonstrați că polinomul $X^4 + 1$ este ireductibil în $\mathbb{Q}[X]$, dar reductibil în $\mathbb{Z}_p[X]$ pentru orice p prim.

2 Temă

Exercițiul 2.1: Decideți care din următoarele polinoame sunt ireductibile:

a)
$$X^2 + X + \hat{1} \in \mathbb{Z}_2[X];$$

f)
$$X^4 + X^3 + X^2 + X + \hat{1} \in \mathbb{Z}_2[X];$$

b)
$$X^3 + X + \hat{1} \in \mathbb{Z}_2[X];$$

g)
$$X^4 + \hat{1} \in \mathbb{Z}_5[X];$$

c)
$$X^3 + X + \hat{1} \in \mathbb{Z}_3[X];$$

h)
$$X^4 + 10X^2 + 1 \in \mathbb{Z}[X];$$

e)
$$X^4 + X^2 + \hat{1} \in \mathbb{Z}_2[X];$$

d) $X^4 + X^2 + X + \hat{1} \in \mathbb{Z}_2[X];$

i)
$$X^4 + 3X^3 - 9X^2 + 7X + 5 \in \mathbb{Z}[X]$$
.