# 5일\_VRAR 에서 신뢰성 있는 상호작용

이준

## 신뢰성 있는 상호작용이 VR/AR 에서 필요한 이유

- •신뢰성 있는 상호작용 이란?
- 마사용자가 가상현실 세계와 커뮤니케이션을 하는 과정에서 수행하고자하는 상호작용에 따라서 알맞은 피드백을 제공해 줌으로써 사용자에게 제공된 상호작용이 현실 세계와 똑같거나 비슷하다는 경험 즉, 사용자가느끼는 가상세계에 대한 존재감을 향상할 수 있는 상호작용을 의미
- Elements of Believability **Physical** Level Believability Dynamic **Dynamics** Interpre. Interpre. **Emotion Emotion** Conceptual Interpre. Participants Believability Personality Personality Intension Interface



- □신뢰성 있는 상호작용을 위해서는 적합한 피드백 설계가 중요
- ▶시각적, 촉각적 피드백을 통해 알맞은 피드백이 필요함

# 가상 객체에 대한 무게감 연구(1)

- •가상 객체에 대한 무게감을 줄 수 있는 방법?
- □햅틱 인터페이스를 사용
- •고려할 점
- □비싼 가격, 제한된 인식 범위, 불편한 착용감
- •가상 햅틱 피드백
- 이시각적 혹은 단순화된 햅틱 피드백에 의한 무게감을 표현
- •햅틱 인터페이스를 부착하지 않고 가상 객체의 무게감을 피드백으로 제공 할 수 있을까?







# 가상 객체에 대한 무게감 연구(2)

Force Arrow 인터페이스를 활용한 가상 하중 무게감



## 가상 객체에 대한 무게감 연구(3)



System environment (A) Tracking user's 3D hand position and grasping gesture (B) HMD with immersive virtual environment

# 가상 객체에 대한 무게감 연구(3)



### 겹쳐진 객체에 대한 빠른 선택 방법(1)

- 가상 현실에서 객체들에 대한 선택은 가장 기본적이고 많이 사용하는 작업 "HMD를 착용한 사용자의 중심 시점으로 객체를 선택하는 Ray-Casting 방법이 보편화됨
  - •VR 윈도우, 블록게임, CAD 와 같이 겹쳐져 있는 객체들을 자주 사용하는 분야의 경우, 사용자가 원하는 객체 선택을 못하는 에러가 발생하고, 결과적으로 객체를 선택하는 시간이 오래 걸림
  - ■겹쳐진 가상객체의 선택을 빠르게 할 수 있는 신뢰성 있는 상호작용이 필요



Immersive CAD

## 겹쳐진 객체에 대한 빠른 선택 방법 (2)

 겹쳐진 가상 객체들에 대한 공간적 관계성을 계산한 다음, 이 정보에 맞춰서 객체들을 안 겹치게 펼침, 그 후에 사용자가 원하는 객체를 선택함



## 겹쳐진 객체에 대한 빠른 선택 방법 (2)

#### Fast and Accurate 3D Selection using Proxy with Spatial Relationship for Immersive Virtual Environments

Jun Lee<sup>1</sup>, JuYoung Oh<sup>2</sup>, JoongHo Lee<sup>3</sup>, and JiHyung Park<sup>1</sup>

Korea Institute of Science and Technology<sup>1</sup>, University of Science and Technology<sup>2</sup>, Center of Human-centered Interaction for Coexistence<sup>3</sup>

#### 투시 가시화 방법(1)

- •새로운 혼합 현실에서는 사용자들이 자유롭게 이동 하면서 현실 공간속에 원격 공간을 투사한 형태의 상호작용 필요
- ●투시, 확대 및 타자 관점 변경등 인간 시야를 극복할 수 있는 기술들을 개발 ●실내 공간의 환경 모델링을 통한 Diminished Reality 기술을 사용하여 현실의 벽이 무너지고 이후 공간이 보이도록 처리





# 투시 가시화 방법(2)

### 눈에 띄지 않는 손동작(1)

- •눈에 띄지 않는 IMU센서를 이용한 손가락 동작 인식을 위한 하드웨어 구성
- •손톱에 부착한 IMU 센서를 이용한 손가락 동작 인식 알고리즘 개발
- •IMU센서를 이용한 접촉한 평면 기울기 측정 방법 개발
- •손가락 해부학적 모델과 IMU센서의 회전을 이용한 손끝 위치 추적 방법 개발
- □손가락 Tap 동작시 IMU센서의 각속도와 가속도의 파형을 이용한 동작 인식 방법 개발

| Тар | Double Tap | Move |
|-----|------------|------|
|     | X2         |      |







< 정의한 손가락 동작 >

< 손가락 동작을 이용한 접촉한 평면의 기울기 계산 > < 해부학 모델을 이용한 손가락 위치추적 방법>

# 눈에 띄지 않는 손동작(2)



#### Multi Presence (1)

- •혼합현실 에서 사용자가 여러 공간에 동시에 몰입 되는 것을 지원
- □다중 존재감을 제공하면서 동시작업의 성능 극대화 가능
- •혼합 현실에서 여러 공간의 몰입과 관찰을 자유롭게 조작 가능





## MR 기반 협업 플랫폼 (1)

- •MS Hololens 기반 다중 사용자들이 동시에 사용할수 있는 공유 플랫폼 설계
- •해당 플랫폼에서 기본적인 객체 조작 및 원격 텔레프레젠스를 통한 공동 사무작업 구현
- □네트워크 기술 최적화 및 공유 플랫폼 기술 보유

# MR 기반 협업 플랫폼 (2)





### MR 환경에서 빠르고 정확한 상체 동작 추적(1)

- •MR 환경에서 사용자가 양손을 사용한 객체 조작을 하는 경우 사용자의 빠르고 정확한 상체 동작을 추적할수 있어야 함
- 。MS Hololens와 Myo 디바이스에서 제공하는 인식으로는 불가능 함
- □IMU 센서들과 FK를 활용한 상체 몸동작 측정 방법을 제안
- □양손으로 객체를 잡고 조작하는 방법과 연동함

# MR 환경에서 빠르고 정확한 상체 동작 추적(2)



#### 결론

- •VR/AR의 성공을 위해서는 디바이스와 콘텐츠가 필수적으로 확보 되어야함
- □그리고 디바이스와 콘텐츠를 연동할 수 있는 신뢰성 있는 상호작용들이 필요
- ●두명 이상의 사용자들이 실제 의료 환경에서 적용하는 경우에 많은 기술적인 도전점들이 존재
- □다양한 융합 연구 및 각 상황에 알맞은 인터페이스 및 상호작용 설계가 매우 중요



# Thanks!

Any questions?

junlee@game.hoseo.edu