Naučno izračunavanje — Belekške

Andrija Urošević

Rešavanje problema matematičkim metodama

Modelovanje

- Relevantne veličine, njihovo kvantitativno izražavanje i odnos između njih: matematički model M.
- Pitanje na koje želimo dobiti odgovor: matematički problem P.

Rešavanje

- Primena metode koja može rešiti problem P.
- Dobijamo rešenje S.

• Interpretacija

— Rešenje S u modelu M, interpretirano u terminima polaznog problema

Modelovanje problema

- Poteškoće pri modelovanju
 - Potrebno je procizno uočiti relevantne vrednosti i odnose između njih, treba opisati odgovarajućim formalnim matematičkim jezikom.
 - Kako modelujemo problem direktno utiče na to koji metod rešavanja možemo da primenimo.
- Matematički model
 - Apstrakcija polaznog problema, kako se fokusiramo samo na relevantna svojstva problema.
 - Skup promenljivih predstavlja relevantne vrednosti.
 - Skup formula predstavlja relevantne odnose između tih vrednosti.

• Formulacija

- Matematička teorija koja ima pogodna svojstva (diferencijabilnost, konveksnost,...) se preporučuje pri formulisanju modela. Razlog tome je šira primena metoda za rešavanje tog problema.
- Pojednostavljenje modela
 - Model uprostimo sve dok je greška rešenja prihvatljiva.
 - Neke tehnike:
 - * Zamena beskonačkih procesa konačnim
 - * Zamena opštih matrica specifičnim matricama: blok dijagonalne, dijagonalne, trougaone,...

- * Zamena proizvoljnih funkcija jednostavnijim funkcijama: polinimima, konveksnim funkcijama....
- * Zamena nelinearnih problema linearnim problemima.
- * Zamena diferencijalnih jednačina algebarskim jednačinam.
- * Zamena beskonačno dimenzionih prostora konačno dimenzionim prostorima.
- Da bi tehnike pojednostavljenja bile relevantne potrebno je da:
 - * alternativni problem možemo lakše rešiti, a čije rešenje nije drastično drugačije od polaznog;
 - * transformacija tekućeg problema u lakši probl
me dozvoljava izračunavanje rešenja tekućeg problema pomoću rešenja lakšeg problema.
- Upozorenja:
 - Model ne oslikava precizno stvarnost
 - Model može biti dobar u nekim aspektima, a loš u drugim.
 - Podešavanje podataka dovodi do prilagođavanju modelu, u praksi ne daje dobre rezultate.
 - Ne treba se držati modela koji ne rade.

Rešavanje problema

- Obično sam metod rešavanja dolazi na osnovu dobro izabranog modela problema.
- U nekim slučajevima sam model nema metodu koja može da se primeni.

Interpretacija rešenja

- Kada dobijemo rešenje modela, primenjujemo inverzne transofrmacije pojednostavljivanja nad tim rešenjem.
- Transformisano rešenje razmatramo u terminima veza stvarnih fenomena i promenljivih u modelu.
 - Treba voditi računa o jedinicama.

Aproksimacija i greške u izračunavanju

- Greške pre samog naučnog izračunavanja:
 - Modelovanje: Apstrakcija i pojednostavljenje dovode do greške
 - Empirijska merenja: Uključuju dozu neprekidnosti zbog nesavršenosti mernih instrumenata
 - Prethodna izračunavanja: Ulazni podaci mogu biti rezultat nekog prethodnog izračunavanja, pa se greška tako akumulira.
- Prethodni problemi nisu otkljivi, sledeća dva jesu:
 - Diskretizacija i odsecanje: Povećanjem granularnosti smanjujemo grešku. Beskonačne procese koje zamenjujemo konačnim možemo kontrolisati njihov broj koraka.
 - Zaokruživanje: Broj decimala koje se koriste za zapis realnih brojeva.

- Dve grupe grešaka: (1) Greške podataka; (2) Greške izračunavanja.
- Procena greške. Za pravu i približnu vrednost x i x' definišemo greške:
 - Apsolutna greška: E(x, x') = |x x'|.
 - Relativna greška: $R(x, x') = \frac{|x-x'|}{|x|}$

Stabilnost, uslovljenost i regularizacija

- Algoritam je *nestabilan* ukoliko se njegova greška akumilira tokom njegovog izvršavanja, u suprotom algoritam je *stabilan*.
- *Poništavanje* je slučaj kada je relativna greška mala usled oduzimanja realnih vrednosti koje nose grešku.
- Problem je *loše uslovljen* ako za malo različite podatke na ulozu daje drastično različita rešenja.
- Neka su α ulazi podaci, i $x(\alpha)$ rešenja problema P. Tada uslovljenost problem P definišemo kao

$$Cond(P) = \frac{R(x(\alpha), x(\alpha'))}{R(\alpha, \alpha')} = \frac{|x(\alpha) - x(\alpha')|/|x(\alpha)|}{|\alpha - \alpha'|/|\alpha|}.$$

- Uslovljenost funkcije f:

$$Cond(f) = \frac{|f(x) - f(x + \Delta x)|/|f(x)|}{|\Delta x|/|x|} \approx |xf'(x)/f(x)|$$

- Uslovljenost matrice A:

$$Cond(A) = |A^{-1}||A|$$

- Uslovljenost sistema Ax = b:

$$\begin{split} Cond(P) &= \frac{|A^{-1}b - A^{-1}(b + \Delta b)|/|A^{-1}b|}{|\Delta b|/|b|} \\ &= \frac{|A^{-1}\Delta b|/|A^{-1}b|}{|\Delta b|/|b|} \\ &= \frac{|A^{-1}\Delta b|}{|\Delta b|} \frac{|Ax|}{|x|} \end{split}$$

- Lošu uslovljenost rešavamo regularizacijom.
 - Zamenjujemo problem koji je loše uslovljen bliskim problemom koji je dobro uslovljen.
 - Razlika između ta dva problema treba da bude podesiva nekim parametrom, tj. kada parametar teži nuli problemi su jednaki.

Aproksimacija funkcija

- Aproksimacija funkcije f je funkcija g koja je funkciji f bliska u nekom unapred definisanom smislu.

- Aproksimacija funkcija se vrši iz različitih razloga:
 - pojednostavljanje evaluacije funkcije;
 - zamenom funkcije nekom funkcijom sa boljim matematičkim osobi-
 - ne znamo simboličku reprezentaciju funkcije već samo njene vrednosti u nekim tačkama.
- Postoje razni kriterijumi za aproksimaciju:
 - $-\|f-g\|_2^2 = \int_a^b (f(x)-g(x))^2 dx$; (kriterijum je površina izmedju dve
 - $-\|f-g\|_2^2 = \sum_{i=1}^n (f(x_i) g(x_i))^2$; (ukupno odstupanje u svim tačkama u kojima je vrednost funkcije poznata)
 - $-\|f-g\|_{\infty} = \sup_{x \in [a,b]} |f(x)-g(x)|$. (samo najveće odstupanje je

Primeri problema aproksimacije funkcija

- Problem linearne aproksimacije:
- Aproksimacija: $g(x,\alpha) = \alpha_0 + \sum_{i=1}^n \alpha_i x_i$. Kriterijum: $\min_{\alpha} \sum_{i=1}^N (g(x_i,\alpha) f(x_i))^2$. Problem rekonstrukcije zamućene slike operatorom A:
 - $-x = A^{-1}y$ ne daje dobro rešenje, kako je A loše uslovljena matrica.
 - Regularizacija obezbeđuje da se susedni pokseli ne razlikuju mnogo:

$$\min_{x} ||Ax - y||^2 + \lambda \left(\sum_{i=1}^{M} \sum_{j=1}^{N-1} (x_{i,j} - x_{i,j+1})^2 + \sum_{i=1}^{M-1} \sum_{j=1}^{N} (x_{i,j} - x_{i+1,j})^2\right)$$

- \bullet Problem konstrukcije slike od N slika različitih delova iste scene.
 - Moramo uračunati razlike među delovima slika: To su rotacija kamere za ugao θ , translacija kamere za vektor (u, v) i skaliranje za vrednost s. Jedna takva veza može biti data matricom transformacije (a = $s\cos\theta, b = s\sin\theta \text{ i } s = \sqrt{a^2 + b^2}$):

$$G = \begin{pmatrix} a & -b & u \\ b & a & v \\ 0 & 0 & 1 \end{pmatrix},$$

- Potrebno je još odrediti i upariti detalje na slikama (postoji algoritam). Neka je skup lokacija detalja $\{x_{ij}|j=1,\ldots,M\}$, i za svake dve slike i i j dat F(i,j) skup indeksa detalja koji su uspešno upareni.
- Konačan optimizacioni problem postaje (G_i matrica transformacije sa parametrima (a_i, b_i, u_i, v_i) :

$$\min_{\mathbf{a}, \mathbf{b}, \mathbf{u}, \mathbf{v}} \sum_{i=1}^{N} \sum_{j=i+1}^{N} \sum_{k \in F(i, j)} \|G_i x_{ik} - G_j x_{jk}\|^2$$

- Određivanje koordinata GPS uređaja:
 - -(u, v, w) koordinate GPS uređaja koje treba izračunati;
 - $-(p_i,q_i,r_i)$ koordinate i-tog satelita;

 - ρ_i udaljenost *i*-tog satelita od GPS uređaja. Za svaki satelit treba da važi: $\sqrt{(u-p_i)^2+(v-q_i)^2+(w-r_i)^2}=$
 - Problem se svodi na:

$$\min_{u,v,w} \sum_{i=1}^{n} (\sqrt{(u-p_i)^2 + (v-q_i)^2 + (w-r_i)^2} - \rho_i)^2.$$

Aproksimacija u Hilbertovim prostorima

- Vektorski prstor koji je kompletan u odnosu na metriku indukovanu skalarnim proizvodom $d(x,y) = ||x-y|| = \sqrt{(x-y)\cdot(x-y)}$ se naziva Hilbertovim prostorom.
 - $-\mathbb{R}^n$ je Hilbertov prostor
 - $\mathcal{L}_{2}[a,b]$ prostor funkcija koje su integrabile sa kvadratom na intervalu [a,b] je Hilbertov prostor.
- Sistem vektor $\{e_i|i\in\mathbb{N}\}$ je ortonormiran ako

$$e_i \cdot e_j = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases} \quad i, j \in \mathbb{N}.$$

• Neka je $\{e_i|i\in\mathbb{N}\}$ ortonormiran sistem vektora Hilbertovog prostora \mathcal{H} . Koeficijenti $x \cdot e_i$ nazivaju se Furijeovi koeficijenti vektora $x \in \mathcal{H}$, a red $\sum_{i=1}^{\infty} (x \cdot e_i)e_i$ se naziva Furijevo red vektora $x \in \mathcal{H}$.

Teorema 1 Za ortonormirani sistem $\{e_i|i\in\mathbb{N}\}$ u Hilbertovom prostoru \mathcal{H} , sledeća tvrđenja su ekvivalentna:

- Za svako $x \in \mathcal{H}$ i svako $\varepsilon > 0$, postoje skalari $\lambda_1, \lambda_2, \dots, \lambda_n$, takvi da važi $||x - \sum_{i=1}^{n} \lambda_i e_i|| < \varepsilon.$
- Za svako $x \in \mathcal{H}$ važi $\sum_{i=1}^{\infty} (x \cdot e_i) e_i = x$ (pri čemu se podrazumeva konvergencija u smislu metrike prostora \mathcal{H})
 • Za svako $x \in \mathcal{H}$ važi $\sum_{i=1}^{\infty} (x \cdot e_i)^2 = \|x\|^2$ (Parselova jednakost)
- Ako je vektor $x \in \mathcal{H}$ takav da je $x \cdot e_i = 0$ za svako $i \in \mathbb{N}$, onda važi x = 0.

Teorema 2 Neka je f element Hilbertovog postora \mathcal{H} i neka je \mathcal{H}' njegov potprostor čiju bazu čine elementi $\{g_1, g_2, \dots, g_n\}$. Postoji element najbolje aproksimacije $g^* = \sum_{i=1}^n c_i^* g_i \in \mathcal{H}'$, takav da važi

$$\left\| f - \sum_{i=1}^{n} c_i^* g_i \right\| = \inf_{c_1, \dots, c_n} \left\| f - \sum_{i=1}^{n} c_i g_i \right\|.$$

Dodatno, važi da je $(f-g^*)\cdot x=0$ za sve $x\in \mathcal{H}'$ akko je g^* element najbolje aproksimacije za f iz \mathcal{H}' .

- Element najbolje aproksimacije za f je njegova ortogonalna projekcija na prostor $\mathcal{H}'!!!$
- Keoficijenti najblje aproskimacije se mogu odrediti iz sistema:

$$\sum_{i=1}^{n} c_i(g_i \cdot g_j) = f \cdot g_j, \quad j = 1, \dots, n$$

• Ako je baza $\{g1, \ldots, g_n\}$ ortogonalna, svi skalarni proizvodi $g_i \cdot g_j$ su jednaki nuli ako $i \neq j$, tako da u tom slučaju nije potrebno rešavati sistem jednačina već je dovoljno izračunati skalarne proizvode i izraziti koeficijente c_i iz dobijenih jednakosti u kojima učestvoje po jedan keoficijent c_i .

Srednjekvadratna aproksimacija

- Neka je $\mathcal{L}_2[a,b]$ Hilbertov prostor funkcija integrabilnih sa kvaratom na intervalu [a,b], u kome je norma definisana integralom $||f||^2 = \int_a^b f^2(x)dx$ onda se element najbolje aproksimacije naziva elementom najbolje srednjekvadratne aproksimacije.
- Ako je funkcija f definisana na konačnom skupu tačaka $\{x_0, \ldots, x_m\}$ integral zamenjujemo sumom, tj. $||f||^2 = \sum_{i=1}^m f^2(x_i)$.
- Metoda koja rešava srednjekvadratnu aproksimaciju na konačnom skupu tačaka naziva se metoda najmanjih kvadrata (engl. least squares method).
- Sistem koji se rešava uzima sledeći oblik:

$$\sum_{i=1}^{n} c_i \sum_{k=1}^{m} g_i(x_k) g_j(x_k) = \sum_{k=1}^{m} f(x_k) g_j(x_k) \quad j = 1, \dots, n.$$

$$\sum_{k=1}^{m} g_j(x_k) \left(\sum_{i=1}^{n} c_i g_i(x_k) \right) = \sum_{k=1}^{m} f(x_k) g_j(x_k) \quad j = 1, \dots, n.$$

$$A^T A x = A^T b$$

$$x = (A^T A)^{-1} A^T b$$

• Prethodna jednačina predstavlja rešenje problema

$$\min_{x} ||Ax - b||^2.$$

• Drugi način izvođenja rešenja:

$$||Ax - b||^2 = (Ax - b)^T (Ax - b)$$

$$= ((Ax)^T - b^T)(Ax - b)$$

$$= (x^T A^T - b^T)(Ax - b)$$

$$= b^T b - x^T A^T b - (b^T Ax)^{T^T} + x^T A^T Ax$$

$$= b^T b - x^T A^T b - (x^T A^T b)^T + x^T A^T Ax$$

$$= b^T b - 2x^T A^T b + x^T A^T Ax$$

• Izjednačavanjem gradijenta po x sa nulom dobijamo:

$$2A^T A x - 2A^T b = 0.$$

- Matrica $(A^TA)^{-1}A^T$ je Mur-Penrouzov pseudoinverz matrice A.
- Metod srednjekvadratne aproksimacije se često koristi za rešavanje problema linearne regresije.

Teorema 3 (Gaus-Markov) Ukoliko važi $E(\varepsilon) = 0$ i $cov(\varepsilon) = \sigma^2$, za konstantno $\sigma^2 > 0$, onda za ocenu $\hat{w} = (X^T X)^{-1} X^T y$ važi

$$E(\hat{w}) = w, cov(\hat{w}) = \sigma^2 (X^T X)^{-1}.$$

Takođe, za svaku nepristrasnu linearnu ocenu \tilde{w} parametra w važi

$$\sum_{i=1}^{n} (w_i - \hat{w}_i)^2 \le \sum_{i=1}^{n} (w_i - \tilde{w}_i)$$

 Ukoliko je matrica A^T A loše uslovljena (kolone ili vrste matrice A su visoko korelisane), tada se koristi regularizacija i rešava se problem (*Tihonovljeva* regularizacija ili grebena regularizacija):

$$\min_{x} \|Ax - b\|^2 + \lambda \|x\|^2$$

• Slično kao u prethodnom slučaju:

$$\|Ax - b\|^2 + \lambda \|x\|^2 = (Ax - b)^T (Ax - b) + \lambda x^T x = b^T b - 2x^T A^T b + x^T A^T A x + \lambda x^T x.$$

- Računanjem gradijenta po x i izjednačavanjem sa nulom dobijamo:

$$A^{T}Ax - A^{T}b + \lambda x = 0$$
$$x = (A^{T}A + \lambda I)^{-1}A^{T}b$$

• Uklanjanje šuma iz signala:

$$\min_{x} ||x - y||^2 + \lambda \sum_{i=1}^{n-1} (x_i - x_{i+1})^2$$

- Uvodimo matricu *D*:

$$\begin{pmatrix} 1 & -1 & 0 & \dots & 0 & 0 & 0 \\ 0 & 1 & -1 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & -1 & 0 \\ 0 & 0 & 0 & \dots & 0 & 1 & -1 \end{pmatrix}$$

- Dati problem postaje:

$$\min_{x} ||Ix - y||^2 + ||\sqrt{\lambda}Dx - 0||^2$$

$$\min_{x} \left\| \begin{pmatrix} I \\ \sqrt{\lambda}D \end{pmatrix} x - \begin{pmatrix} y \\ 0 \end{pmatrix} \right\|^{2}$$

- Odgovarajuce rešenje:

$$x = (I + \lambda D^T D)^{-1} y$$

• Rekonstrukcija zamućene slike:

$$\min_{x} ||Ax - y||^2 + \lambda \left(\sum_{i=1}^{M} \sum_{j=1}^{N-1} (x_{i,j} - x_{i,j+1})^2 + \sum_{i=1}^{M-1} \sum_{j=1}^{N} (x_{i,j} - x_{i+1,j})^2\right)$$

– Uvodimo matricu D_h i D_v :

$$\begin{pmatrix} I & -I & 0 & \dots & 0 & 0 & 0 \\ 0 & I & -I & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & I & -I & 0 \\ 0 & 0 & 0 & \dots & 0 & I & -I \end{pmatrix} \quad \begin{pmatrix} D & 0 & \dots & 0 \\ 0 & D & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & D \end{pmatrix}$$

- Problem možemo zapisati kao:

$$\min_{x} ||Ax - y||^2 + ||\sqrt{\lambda}D_v x - 0||^2 + ||\sqrt{\lambda}D_h x - 0||^2$$

$$\min_{x} \left\| \begin{pmatrix} A \\ \sqrt{\lambda} D_{v} \\ \sqrt{\lambda} D_{h} \end{pmatrix} x - \begin{pmatrix} y \\ 0 \\ 0 \end{pmatrix} \right\|^{2}$$

Odgovarajuće rešenje:

$$x = (A^T A + \lambda D_v^T D_v + \lambda D_h^T D_h)^{-1} A^T y$$

Furijeova transformacija

- Trigonometrijski Furijeov red se zasniva na sistemu različitih frekvencija $\cos(kx)$ i $\sin(kx)$ za $k=0,1,\ldots$
- Furijeovi koeficijenti omogućavaju analizu signala u odnosu na frekvencije koje su u njemu zastupljene, odnosno *spektar signala*. ???
- Furijeova transformacije prevodi reprezentaciju funkcije iz vremenskog domena u frekvencijski domen.
 - Inverzna Furijeova transformacija radi obrnuto.
 - Neke vrste Furijeovih transformacija: razvoj u Furijeov red, neprekidna Furijeova transformacija i diskretna Furijeova transformacija.
- Neka je funkcija f periodnična i integrabilna na intervalu [a,b]. Tada se može razviti u Furijeov red:

$$f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos\left(\frac{2\pi kt}{b-a}\right) + b_k \sin\left(\frac{2\pi kt}{b-a}\right) \right),$$

$$a_k = \frac{2}{b-a} \int_a^b f(t) \cos\left(\frac{2\pi kt}{b-a}\right) dt, \quad k = 0, 1, 2, \dots$$
$$b_k = \frac{2}{b-a} \int_a^b f(t) \sin\left(\frac{2\pi kt}{b-a}\right) dt, \quad k = 1, 2, 3, \dots$$

- Primer: $f(t) = 5\cos(2t) + 3\sin(8t)$ je periodična na intervalu $[0, \pi]$. Odatle svi Furijeovim koeficijenti su 0 sem $a_1 = 5$ i $b_4 = 3$.
- Komleksna reprezentacije Furijeovog reda:

$$f(t) = \sum_{k=-\infty}^{\infty} \hat{f}_k e^{\frac{-2\pi i kt}{b-a}}$$

$$\hat{f}_k = \frac{1}{b-a} \int_a^b f(t)e^{\frac{2\pi ikt}{b-a}} dt$$

• Odnos između realne i kompleksne reprezentacije su u tesnoj vezi:

$$a_0 = 2\hat{f}_0$$

$$a_k = \hat{f}_k + \hat{f}_{-k}$$

$$b_k = i\hat{f}_{-k} - \hat{f}_k$$

• Za koeficijente važi $\overline{\hat{f}_k} = \hat{f}_{-k}$:

$$\overline{\hat{f}_k} = \overline{\frac{1}{b-a} \int_a^b f(t) e^{\frac{2\pi i k t}{b-a}} dt}$$

$$= \frac{1}{b-a} \int_a^b \overline{f(t)} e^{\frac{2\pi i k t}{b-a}} dt$$

$$= \frac{1}{b-a} \int_a^b f(t) e^{\frac{-2\pi i k t}{b-a}} dt$$

$$= \hat{f}_k$$

- Promenljiva t predstavlja vreme, dok Furijeovi koeficijenti \hat{f}_k predstavljaju intenzitet odgovarajućih frekvencija u signalu.
 - U razvoju u Furijeov red vremenski domen je neprekidno, ali je frekvencijski domen diskretan, tj. periodična funkcija se može predstaviti preko beskonačno mnogo broja sinusa i kosinusa, ali sa diskretnim frekvencijama.
 - Ovaj problem se prevazilazi prelaskom sa reda na intergral (Furijeova transformacija i inverzna Furijeova transformacija):

$$\hat{f}(u) = \int_{-\infty}^{+\infty} f(t)e^{2\pi i ut} dt$$

$$f(t) = \int_{-\infty}^{+\infty} \hat{f}(u)e^{-2\pi i u t} du$$

- Mana ovih metoda je što je funkcija f obično poznata samo na konačnom skupu tačaka.
- Neka su vrednosti funkcije $f_j=f(t_j)$, gde je $t_j=t_0+jh$, za $j=0,1,\ldots,n-1$ i h>0. Tada:

$$\hat{f}_k = \frac{1}{n} \sum_{j=0}^{n-1} f_j e^{\frac{k2\pi i j}{n}}$$
 $k = 0, 1, \dots, n-1$

$$f_k = \frac{1}{n} \sum_{k=0}^{n-1} \hat{f}_k e^{-\frac{2\pi i k j}{n}}$$
 $j = 0, 1, \dots, n-1$

- Primer uklanjanje šuma: Signal $-(FFT) \rightarrow Frekvencije -(clamp) \rightarrow Frekvencije (bez viskokih) -(IFFT) \rightarrow Signal (bez šuma).$
- Furijeova transformacija u dve dimenzije:
 - Nekprekidna:

$$\hat{f}(u,v) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y)e^{2\pi i(xu+yv)}dxdy$$

$$f(x,y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \hat{f}(u,v) e^{-2\pi i(xu+yv)} du dv$$

- Diskretna:

$$\hat{f}_{lm} = \frac{1}{PQ} \sum_{j=0}^{P-1} \sum_{k=0}^{Q-1} f_{jk} e^{2\pi i \left(\frac{jl}{P} + \frac{km}{Q}\right)}$$

$$f_{jk} = \sum_{l=0}^{P-1} \sum_{m=0}^{Q-1} \hat{f}_{lm} e^{-2\pi i \left(\frac{jl}{P} + \frac{km}{Q}\right)}$$

- Koeficijenti Furijeove transformacije su, kao kompleksni brojevi, određeni modulom ili *amplitudom* i argumentom ili *fazom*.
 - Amplituda predstavlja jačinu nekog signala.
 - Faza predstavlja pomeraj frekvencije duž vremenske ose.
- Dirakova delta funkcija i $f(x,y) = \delta(x,y) = \delta(x)\delta(y)$
- Odsecanje dela spektra:
 - Odsecanje viših frekvencija omogućava grub prikaz slike (uklanja ivice)
 - Odsecanje nižih frekvencija omogućava prepoznavanje ivica (istače ivice)
 - Uklanjanjem prepoznatljivih maksimuma uklanjaju se poreiodične strukture na slici.

Brza Furijeova transformacija

- DFT (Diskretna Furijeova transformacija) ima složenost $\Theta(n^2)$.
- FFT (Brza Furijeova transformacija) ima složenost $\Theta(n \log n)$.
- Uvodimo n-ti koren jedinice $w = e^{\frac{2\pi i}{n}}$,

– Važi
$$w^n = 1$$
:

$$w^n = e^{\frac{2\pi i}{n}n} = e^{2\pi i} = 1$$

 $- \text{ Važi } w^{k+\frac{n}{2}} = -w^k$:

$$w^{k+\frac{n}{2}} = e^{\frac{2\pi i}{n}(k+\frac{n}{2})} = e^{\frac{2\pi i k}{n}+\pi i} = e^{\pi i}e^{\frac{2\pi i k}{n}} = -w^k$$

• Diskretna Furijeovra transformacija postaje:

$$\hat{f}_k = \frac{1}{n} \sum_{j=0}^{n-1} f_j w^{kj}$$
 $k = 0, 1, 2, \dots, n-1$

– Važi $\hat{f}_{k+n} = \hat{f}_k$:

$$\hat{f}_{k+n} = \frac{1}{n} \sum_{j=0}^{n-1} f_j w^{(k+n)j} = \frac{1}{n} \sum_{j=0}^{n-1} f_j w^{kj} = \hat{f}_k$$

- Keoficijenti se mogu izračunati preko parnih i neparnih elementa:

$$\hat{f}_k = \frac{1}{n} \sum_{j=0}^{n-1} f_j w^{kj} = \frac{1}{n} \sum_{j=0}^{n/2-1} f_{2j} w^{2jk} + \frac{1}{n} \sum_{j=0}^{n/2-1} f_{2j+1} w^{(2j+1)k} =$$

$$= \frac{1}{2} \frac{1}{n/2} \sum_{j=0}^{n/2-1} f_{2j} w^{2jk} + \frac{1}{2} w^k \frac{1}{n/2} \sum_{j=0}^{n/2-1} f_{2j+1} w^{(2j+1)k} = \frac{1}{2} (E_k + w^k O_k)$$

Takođe, važi:

$$E_{k+n/2} = E_k$$

$$O_{k+n/2} = O_k$$

- Dobijamo:

$$\hat{f}_k = \begin{cases} \frac{1}{2} (E_k + w^k O_k) & 0 \le k < \frac{n}{2} \\ \frac{1}{2} (E_{k-\frac{n}{2}} + w^k O_{k-\frac{n}{2}}) & \frac{n}{2} \le k < n \end{cases}$$

Konačno:

$$\hat{f}_k = \frac{1}{2}(E_k + w^k O_k)$$

$$\hat{f}_{k+\frac{n}{2}} = \frac{1}{2}(E_k - w^k O_k)$$

 Algoritam FFT se može koristiti i kao algoritam za inverzni FFT, tako što se pre primene algoritma FFT, ulaz konjuguje, a nakon primene algoritma FFT, izlaz konjuguje.

Konvolucija

• Da li postoji neka aritmetička veza između operacija nad signalima i nekih operacija nad njihovim Furijeovim transformacijama?

Važi:

$$\widehat{f+g}(u) = \int_{-\infty}^{+\infty} (f+g)(t)e^{2\pi i u t} dt$$

$$= \int_{-\infty}^{+\infty} (f(t)+g(t))e^{2\pi i u t} dt$$

$$= \int_{-\infty}^{+\infty} f(t)e^{2\pi i u t} dt + \int_{-\infty}^{+\infty} f(t)e^{2\pi i u t} dt$$

$$= \widehat{f}(u) + \widehat{g}(u)$$

- Takođe,

$$\hat{f}(u)\hat{g}(u) = \int_{-\infty}^{+\infty} f(x)e^{2\pi i u x} dx \int_{-\infty}^{+\infty} g(y)e^{2\pi i u y} dy$$

$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x)g(y)e^{2\pi i (x+y)u} dx dy$$

$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x)g(v-x)e^{2\pi i v u} dx dv$$

$$= \int_{-\infty}^{+\infty} (\int_{-\infty}^{+\infty} f(x)g(v-x) dx)e^{2\pi i v u} dv$$

$$= \int_{-\infty}^{+\infty} (f * g)(v)e^{2\pi i v u} dv$$

$$(f * g)(v) = \int_{-\infty}^{+\infty} f(x)g(v-x) dx$$

- Operacija * se naziva operacijom konvolucije.

Teorema 5 (o konvoluciji):

$$\widehat{f*g} = \widehat{f}\widehat{g}$$

$$\widehat{fg} = \widehat{f}*\widehat{g}$$

$$f*g = g*f$$

$$(f*g)*h = f*(g*h)$$

$$f*(g+h) = f*g+f*h$$

$$f*\delta = f$$

• Konvolucija u diskretnom smislu:

$$(f * g)_i = \sum_{j=0}^{n-1} f_j g_{i-j}$$
 $i = 0, 1, \dots, n-1$

• Konvolucija u dve dimenzije:

$$(f * g)(u, v) = \int_{-\infty}^{+\infty} f(x, y)g(u - x, v - y)dxdy$$

$$(f * g)_{i,j} = \sum_{k=0}^{m-1} \sum_{l=0}^{n-1} f_{k,l} g_{i-k,j-l}$$

- Po definiciji konvolucija dva signala ima vremensku složenost $\Theta(n^2)$. Ali primenom FFT algoritma, konvoluciju možemo izračunati u $\Theta(n \log n)$ (zbog teoreme o konvoluciji $(\widehat{f} * \widehat{g}) = \widehat{f}\widehat{g}$).
 - -f i g $-(FFT) \rightarrow \hat{f}$ i \hat{g} $-(množenje) \rightarrow \hat{f}\hat{g}$ $-(teorema o konvoluciji) \rightarrow$ $\widehat{f * g}$ -(IFFT) $\rightarrow f * g$
- Primer: Množenje polinoma je konvolucija

$$f(x) = \sum_{i=1}^{m} f_i x^i$$
 $g(x) = \sum_{i=1}^{n} g_i x^i$

- Proizvod je veličine m + n + 1, te ulazne podatke proširujemo $(f_1, f_2, \ldots, f_m, 0, \ldots, 0)$ i $(g_1, g_2, \ldots, g_n, 0, \ldots, 0)$.
- Množenje polinoma ima složenost $\Theta((n+m)\log(n+m))$.
- Konvolucija se koristi tako što je jedna funkcija signal, a druga funkcija predstavlja neku jednostavnu funkciju kojom transformišemo signal. Tu funkciju zovemo filter.
- Filter Gausovog zamućivanja.

 Gausovo zvono: $\frac{1}{2\pi\sigma^2}e^{-\frac{x^2+y^2}{2\sigma^2}}$
 - Uprošćeni filter zamućivanja:

$$\frac{1}{9} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

- Filteri za otkrivanje ivica:
 - Sobel-Feildmonove vertikalne i horizontalne ivice:

$$G_x = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{pmatrix} * A \quad G_y = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{pmatrix} * A$$

- Aproksimacija intenziteta gradijenta je onda $G=\sqrt{G_x^2+G_y^2}$
- Brzo pronalaženje uzorka slike g u drugoj slici f.

Osnovni koncept obrade signala

Uzorkovanje

- Zbog prirode operisanja računara signal se opisuje diskretnim reprezentacijama.
 - Procedura uzorkovanja signala se radi tako što se odaberu vremenski trenuci u kojima će se meriti jačina zvuka, a kvantizaija odabir numeričke skale za predstavljanje izmerenih vrednosti.
 - Ako se na svakih T sekundi vrši uzorkovanje signala, govori se o uzorkovanju signala sa frekvencijama uzorkovanja f_s .
 - Veza između učestalosti uzorkovanja i frekvencije uzorkovanja:

$$f_s = \frac{1}{T};$$

$$w_s = \frac{2\pi}{T} = 2\pi f_s.$$

- Ukoliko postoji neka frekvencija f_b za koju važi $f_b > f$ onda je frekvencija f ograničena frekvencijom f_b koju još i nazivamo granična frekvenija.
- Najkvistov teorema: Signal se može verodostojno reprodukovati samo ako je frekvencija uzorkovanja više od dva puta veća od graničke frekvencije.
 - Kako ljutsko uvo čuje do oko 22KHz, najčešće se vrši uzorkovanje od 44.1KHz.
 - Kod video zapisa uzorkovanje se mora vršiti i više od dva puta učestalije, jer može pokazivati statična kretanja, pa čak i kretanja unazad.

Curenje spektra

- Razvoj u Furijeov red i diskretna Furijeova transformacija pretpostavljaju periodičnost signala i diskretan frekvencijski domen, što u realnosti obično nije slučaj.
 - Čak iako je signal periodičan to nam ne garantuje da će njegovo uzorkovanje biti periodično.
 - * To stvara skokove u vremenskom domenu i odgovarajuće visoke frekvencije u frekvencijskom domenu.
 - Ako kalibrišemo softver za analizu sprektra tako da izražava frekvencije u celobrojnim Herima, onda:
 - * Signal frekvencije 3Hz prilikom Furijeove transformacije daje vrlo jasan pik na frekvencije 3Hz;
 - * Signal frekvencije 2.8Hz prilikom Furijeove transformacije će se predstaviti u celom frekvencijskom spektru. Ovaj fenomen se naziva *curenje spektra*.
- Problem se ublažuje pomoću przorskih funkcije, tako što se signal u vremenskom domenu množi nekom prozorskom funkcijom.
 - Osobine prozorskih funkcija:
 - * svuda izvan intervala su nula:
 - * na krajevima intervala teže nuli;

- * maksimum dostižu na sredini intervala.
- Neke prozorske fnkcije:
 - Blekmenova
 - Hanova
 - Hamingova funkcija
 - Kasijerova funkcija

Filtriranje signala

- Filtriranje signala obično se koristi kao prvi korak u selekciji informacija koje signal nosi.
 - Prvi način: FFT \rightarrow modifikacija signala \rightarrow IFFT
 - Drugi način: Konvolucija gde je jedan signal polazni signal, a drugi je filter.
 - Zašto je drugi pristup brži? Jer filteri obično vrlo malo ne nula vrednosti.
- Linearni vremenski invarijantni sistemi koji za linearne kombinaije ulaznih signala generišu linearne kombinacije izlaznih signala i čije ponašanje se ne menja u zavisnosti od vremena.
 - Linearno invarijentni sistem H koji preslikava signal x(t) u y(t) opisuje se kao:
 - * H(ax(t)) = aH(x(t))
 - * $H((x_1 + x_2)(t)) = H(x_1(t)) + H(x_2(t))$
 - -y(t) = tx(t) nije vremenski invarijantan
 - -y(t) = 2x(t) jesete vremenski invarijantan
- Impulsni odgovor sistema predstavlja kratkotrajni signal u vremenskom domenu, koji je najčešće diskretna Dirakova δ funkcija.
 - Formalno, ako je ulaz sistema signal $x[n] = \delta[n]$, impulsni odgovor sistema je signal $h[n] = H(\delta[n])$.
- Diskretni signali zajedno sa odgovarajućim izlazima se mogu zapisati

$$x[n] = \sum_{k} x[k]\delta[n-k]$$

$$y[n] = H(x[n]) = \sum_k x[k]h[n-k]$$

- Podela filtera:
 - Po prirodi signala: analogni ili digitalni
 - Po dužini impulsnog odgovora: filteri sa konačnim trajanjem impulsnog odgovora (FIR filteri) i filteri sa beskonačnom dužinom impulsnog odgovora (IIR filteri)
- FIR filteri se mogu predstaviti kao konačne težinske sume prethodnih, trenutnih, ili budućih ulaza:

$$y[n] = \sum_{i=-M_1}^{M_2} b_i x[n-i]$$

- Primer: $y[n] = \frac{1}{3}(x[n] + x[n-1] + x[n-2])$
- Frekvencijski odgovor sistema oslikava kako sistem reaguje na ulaze (harmonike)

$$x[n] = e^{i\omega n}$$

$$y[n] = \sum_{k=0}^{M} b_k x[n-k] = \sum_{k=0}^{M} b_k e^{i\omega(n-k)} = e^{i\omega n} \sum_{k=0}^{M} b_k e^{-i\omega k}.$$

• Frekvencijski odgovor filtera, podrazumeva:

$$H(\omega) = \sum_{k=0}^{M} b_k e^{-i\omega k}$$

- Kako se signali mogu razložiti na harmonike, dovoljno je poznavati frekvencijski odgovor filtera da bi filter bio definisan.
 - Ukoliko je amplituda frekvencijskog odgovora filtera za harmonik neke frekvencije jednaka nuli, to znači da taj filter eliminiše tu frekvenciju iz signala.
- Zamućenje prostim uprosečavanjem, Gausovo zamućenje i Sobel-Feldmanovi filteri predstavljaju FIR filtere.
- IIR filteri zavse od tekućih ulaza, prethodnih ulaza, i prethodnih izlaza:

$$y[n] = \sum_{l=1}^{N} a_l y[n-l] + \sum_{k=0}^{M} b_k x[n-k]$$

- Primer: $y[n] = a_1y[n-1] + b_0x[n]$
 - * Impulsni odgovor određujemo zamenom $x[n] = \delta[n]$.
 - * Pretpostavljamo da važi x[0] = 0 i y[0] = 0.
 - * Rekurentno stižemo do rešenja:

$$y[n] = a_1^n b_0 x[0]$$

- Impulni odgovor jednog IIR filtera može biti:
 - Low-pass, Hight-pass, Band-pass, Band-stop

Talasići

- Sistem trigonometrijskih funkcije nije uvek najbolji izbor.
 - Nije pogodan za funkcije koje nisu periodične.
 - Ne dozvoljava lokalizaciju: Ako je u nekom frekvencija prisutna u signalu, biće prisutra takom celog trajanja signala (u intervalima u kojima nije izražena biće poništena drugim frekvencijama).
 - Nije pogodan za funkcije koje nisu glatke.
- Definiše se funkcija koja ne mora biti glatka, pa čak ni neprekidna koju nazivamo talasićem. Ona generiše sistem talasića translacijama i skaliranjem.

• Primer osnovnog talasića je Harova funkcija:

$$\phi(x) = \begin{cases} 1 & x \in [0, \frac{1}{2}) \\ -1 & x \in [\frac{1}{2}, 1) \\ 0 & x \notin [0, 1) \end{cases}$$

• Ortonormirani sistem kojim se mogu proizvoljno dobo aproksimirati funkcije prostora $L^2(\mathbb{R})$ su definisani kao:

$$\phi_{ij} = 2^{i/2}\phi(2^i x - j) \quad i, j \in \mathbb{Z}$$

 Mogu se koristiti i drugi osnovni talasići, ali je bitno od njih konstruisati ortonormirani sistem.

Numerička linearna algebra

Primeri problema numeričke linearne algebre

Dekompozicija matrica

Sopstveni vektori matrica

Retki sistemi linearnih jednačina

Inkrementalni pristup rešavaju problema linearne algebre

Matematička optimizacija

Opšti problem optimizacije je oblika:

$$\min_{x \in \mathcal{D}} f(x)$$

$$t.d.g_i(x) \le 0$$
 $i = 1, ..., M$

gde je f funkcija cilja, skup \mathcal{D} domen, i M funkcija ograničenja g_i . Objekat iz domena $x \in \mathcal{D}$ se naziva dopustivo rešenje. Potrebno je među svim dopustivim rešenjima naći ono za koje je vrednost ciljne funkcije najmanja.

- Pronalaženje maksimuma funkcije f se može svesti na pronalaženje minimuma funkcije -f.
- Ograničenje g(x)=0 se može predstaviti pomoću dva ograničenja: $g(x)\leq 0$ i $-g(x)\leq 0$.
- Problemi: raspoređivanje, transport, komunikacija, problemi mašinskog učenja, metode automatskog dizajna hardvera, računarske vizije, robotika, odlučivanja, ekonomije i finansije, biologije, građevine, goe nauka, arheologije,...
- Podela metoda za rešavanje problema optimizacije po osobinama problema:
 - Lokalnost

- * Lokalni ili globalni minimumi?
- * Lokalne optimizacije su obično egzaktne
- * Globalne optimizacije nemaju egzaktne metode, već se rešavaju heuristikama

- Neprekidnost

- * U zavisnosti od toga da li je domen diskretan ili neprekidan skup?
- * Kod diskretnih optimizacija se javlja kombinatorna eksplozija pa se optimizacione metode zasnivaju često na heuristikama.
- * Neprekidne optimizacije je obično lako rešiti matematičkom analizom, i obično su te metode efikasne.

- Diferencijabilnost

- * Da li su funkcija cilja i ograničenja diferencijabilni?
- * Ako su neprekidne, koriste gradijent, a ako su još i glatke koriste hesijan kao dodatne informacije o pronalaženju minimuma.

- Konveksnost

- * Da li su funkcija cilja i graničenja konveksni?
- * Tada imamo jedinstveni optimum, pa se pronalaženje globalnog optimuma svodi na pronalaženje lokalnog optimuma.

- Prisustvo ograničenja

* Ako nemamo ograničenja, probleme je moguće rešiti dosta jednostavnijim metodama.

Primeri praktičnih problema neprekidne matematičke optimizacije

Neprekidna optimizacija

• U ovom delu se govori o neprekidnoj optimizaciji, tj. domen je neprekidan skup.

Uslovi optimalnosti

- Pretpostavimo da su funkcije cilja i ograničenja diferencijabilne.
- Gradijent funkcije f u tački x:

$$\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_1}, \dots, \frac{\partial f(x)}{\partial x_n}\right)$$

- Gradijent opisuje pravac u kojem funkcija najbrže raste u toj tački.
- U nekoj tački x^* optimuma, gradijent je nula, tj.

$$\nabla f(x^*) = 0$$

- Tada je tangentna površ je horizontalna.
- Ako je za tačku x^* važi $\nabla f(x^*) = 0$, onda ona ne mora biti tačka optimuma, i takve tačke se nazivaju stacionarnim.

• Dva puta diferencijalne funkcije imaju svoj hesijan:

$$\nabla^2 f(x) = \left[\frac{\partial^2 f(x)}{\partial x_i \partial x_j} \right]$$

• Da bi stacionarna tačka zaista bila optimum, hesijan u datoj tački mora biti pozitivno ili negativno definitna matrica, tj. mora da važi:

$$h^T \nabla^2 f(x^*) h > 0$$
, gde $h \neq 0$

- U slučaju optimizacionih problema sa ograničenjma postoje uslovi optimalnosti KKT uslovi:
 - Neka je dat problem

$$\min_{x \in \mathbb{R}^n} f(x)$$

t.d. $g_i(x) \le 0$ $i = 1, \dots, M$
 $h_j(x) = 0$ $j = 1, \dots, L$

• Neka je x^* optimalno rešenje i neka su sve funkcije diferencijabilne u x^* . Ako važe *uslovi regularnosti*, postoje konstante μ_i^* i λ_j^* takve da važi:

$$g_i(x^*) \le 0$$

$$h_j(x^*) = 0$$

$$-\nabla f(x^*) = \sum_{i=1}^M \mu_i^* \nabla g_i(x^*) + \sum_{j=1}^L \lambda_j^* \nabla h_j(x^*)$$

$$\mu_i^* \ge 0$$

$$\mu_i^* g_i(x^*) = 0$$

• Jedan od gornjih uslova možemo posmatrati kao da je (x^*, μ^*, λ^*) stacionarna tačka lagranžijana:

$$L(x, \mu, \lambda) = f(x^*) + \sum_{i=1}^{M} \mu_i g_i(x) + \sum_{j=1}^{L} \lambda_j h_j(x)$$

- Uslova regularnosti:
 - Sva ograničenja su afine funkcije
 - Gradijenti aktivnih ograničenja i jednakosnih ograničenja u tački x^* su linearno nezavisni
 - Sve funkcije u problemu su konveksne i postoji tačka x takva da je $h_i(x) = 0$ za sve i i $q_i(x) < 0$ za sve i.
- Dovoljan uslov optimalnosti se može sada definisati preko hesijana: Za svako h koje zadovoljava $h^T \nabla g_i(x) = 0$ za svako nejednakosno ograničenje g_i treba da važi:

$$h^T \nabla^2_{xx} L(x^*, \lambda^*, \mu^*) h > 0$$

Metode lokalne optimizacije prvog reda bez ograničenja

- Metode optimizacije prvog reda pordrazumevaju sve metode koje kao jedine informacije o funkciji koriste njene vrednosit i vrednosti njenog gradijenta u proizvoljnim tačkama.
- Neka je $X\subset\mathbb{R}^n$. Funkcija $f:X\mapsto\mathbb{R}$ je Lipšic neprekidna, ukoliko postoji konstanta L, takvda da za sve $x,y\in X$ važi

$$|f(x) - f(y)| \le L||x - y||$$

• Difrencijabilna funkcija $f:X\mapsto \mathbb{R}$ je konveksna, ako za svako $x,y\in X$ važi:

$$f(x) \ge f(y) + \nabla f(y)^T (x - y)$$

- Funckija f je konkavna ukoliko je funkcija -f konveksna.
- Funkcija f je jako~konveksna, ukoliko postoji m>0i za svako $x,y\in X$ važi:

$$f(x) \ge f(y) + \nabla f(y)^T (x - y) + \frac{m}{2} ||x - y||^2$$

- Neformalno, jako konveksna funkcija je konvaksna bar koliko i kvadratna funkcija.
- Svojstva konveksnih funkcija:
 - Ako su f_1, \ldots, f_m konveksne funkcija i važi $w_1 \geq 0, \ldots, w_m \geq 0$, onda je i sledeća funkcija konveksna:

$$w_1 f_1(x) + \ldots + w_m f_m(x)$$

- Ako je f konveksna funkcija, A matrica i b vektori odgovarajućih dimenzija, onda je i f(Ax + b) konveksna funkcija.
- Ako su f_1, \dots, f_m konveksne funkcije, onda je i sledeća funkcija konveksne:

$$\max\{f_1(x),\ldots,f_m(x)\}\$$

- * Isto važi i za supremum nad beskonačnim skupom konveksnih funkcija.
- Kompozicija $f \circ g$ je konveksna funkcija ako je funkcija f konveksna i neopadajuća po svim argumentima, a funkcija g konveksna ili ako je funkcija f konveksna i nerastuća po svim argumentima, a g konkavna.
- *Gradijentni spust* je metoda optimizacije prvog reda za difrencijabilna funkcije.
 - Počinjemo od nasumične tačke x_0
 - Svako sledeću tačku računamo na osnovu prethodne: $x_{k+1} = x_k \alpha_k \nabla f(x_k)$
 - Kako izabrati parametre α_k ?
 - * Konstantne vrednosti: $\alpha_k = \alpha$, za svako k.
 - * Izbor mora da zadovoljava Robins-Monroove uslove:

$$\sum_{k=0}^{\infty} \alpha_k = \infty \quad \sum_{k=1}^{\infty} \alpha_k^2 < \infty$$

- * Jedan izbor može biti $\alpha_k = \frac{1}{k}$.
- Kriterijum zaustavljanja:
 - * Određeni broj iteracija:

 - $* \|x_{k+1} x_k\| < \varepsilon;$ $* |f(x_{k+1}) f(x_k)| < \varepsilon;$ $* \frac{|f(x_{k+1}) f(x_k)|}{|f(x_0)|} < \varepsilon;$ $1 \dots$
- Za konveksne funkcije sa Lipšic neprekidnim gradijentom, pod Robins-Monroovim uslovima greška $||x_k - x^*||$, gde je x^* tačka minimuma, je reda $O(\frac{1}{k})$. Ovo implicira da metod konvergira.
- Za jako konveksne funkcije sa Lipšic neprekidnim gradijentom, greška je reda $O(c^k)$ za neko 0 < c < 1.
- Ostale neprekidne funkije koje nisu konveksne, gradijentni spust konvergira, ali navedene brzine konvergencija ne važe.
- Na izduženim konturama gradijentni spust pravi zig-zag putanju, kako gradijent ne mora biti pravac najbržeg kretanja ka minimumu.
- Prednost metode gradijentnog spusta su njena jednostavnost i široki uslovi promenjivosti.
- Mane su spora konvergencija, to što je izabran pravac samo lokalno optimalan.
- Stohastički gradijentni spust je modifikacija gradijentnog spusta tako što se umesto gradijenta koristi neki slučajni vektor čije je očekivanje kolinearno sa gradijentom i istog je smera.
 - Ima smisla koristiti je kada se funkcija koja se optimizuje može predstaviti kao presek drugih funkcije:

$$f(x) = \frac{1}{n} \sum_{i=1}^{N} f_i(x)$$

Korak se onda računa, za nasumično izaberano i, kao:

$$x_{k+1} = x_k - \alpha_k \nabla f_i(x_k)$$

- Novo i može da se bira: $i = (k \mod N) + 1$
- Još jedan pristup da se za novo rešenje x_{k+1} uključuje presek nekog podskupa funkcije f_i (minibatch).
- Za konveksne funkcije sa Lipšic neprekidnim gradijentom greška je $O(\frac{1}{\sqrt{k}})$
- Za jako konveksne funkcije sa Lipšic neprekidnim gradijentom greška je rede $O(\frac{1}{k})$.
- Nekada se gredijent skup za izračunavanje, pa se kod stohastičkog gradijentnog spusta on jeftino aproksimira.
- Metod inercije se zasniva na ideji akumuliranje prethodnog gradijenta, pri čemu je značaj starijih gradijenata manji, a novijih veći:

$$d_0 = 0$$

$$d_{k+1} = \beta_k d_k + \alpha_k \nabla f(x_k)$$

$$x_{k+1} = x_k - d_{k+1}$$

• Nestorovljev ubrzani gradijentni spust je modifikacija metoda inercije, koja predstavlja asimptotski optimalan algoritam prvog reda za konveksne funkcije:

$$d_0 = 0$$

$$d_{k+1} = \beta_k d_k + \alpha_k \nabla f(x_k - \beta_k d_k)$$

$$x_{k+1} = x_k - d_{k+1}$$

- Za konveksne funkcije sa Lipšic neprekidnim gradijentom, greška je reda $O(\frac{1}{k^2})$.

Metode lokalne optimizacije drugog reda bez ograničenja

- Metode optimizacije drugog reda pored vrednosti funkcija i gradijenta, koriste hesijan.
- Kako gradijent pruža informaciju o brzini promene funkcije duž različitih koordinatnih pravaca, tako hesijan pruža informaciju o brzini promene gradijenta duž različitih koordinatnih pravaca.
- Njutnov metod:

$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)}$$
$$x_{k+1} = x_k - \nabla^2 f(x_k)^{-1} \nabla f(x_k)$$

- Za jako konveksne funkcije sa Lipšic neprekidnim hesijanom, greška je reda $O(c^{2^k})$, za neko 0 < c < 1, što je neuporedivo brže od metoda provog reda.
- Neka je funkcije koja se minimizuje kvadratna:

$$f(x) = \frac{1}{2}x^T A x + b^T x + c$$

- Odgovarajući gradijent: $\nabla f(x) = b + Ax$
- Odgovarajući hesijana: $\nabla^2 f(x) + A$
- Korak Njutnove metode:

$$x_1 = x_0 - A^{-1}(b + Ax) = -A^{-1}b$$

$$\nabla f(x_1) = \nabla f(-A^{-1}b) = b + A(-A^{-1}b) = 0$$

- Iz prethodnog razmatranja imamo da je gradijent nula, pa je smo dobili stacionarnu tačku.
- -Ako je fkonveksna funkcija, tj. matrica A je pozitivno semidefinitna, sigurno se radi o minimumu.
- Ako je f kokkavna funkcija, tj. matrica A je negativno semidefinitna, sigurno se radi o maksimumu.
- U svim ostalim slučajevima radi se o sedlenim tačkama.
- Njutnova metoda traži nulu gradijenta, a ne minimum funkcije.
 - Kasnijim razmatranjem to će biti ili minimum ili maksimum ili sedlena tačka.

- Njutnovom metodom se vrši niz uzastopnih minimizacija lokalnih kvadratnih aproksimacija funkcije.
- Prednost Njutnove metode je brza konvergencija
- Mana je memorijski zahtevno skladištenje hesijana, i zahtev za strogu konveksnost funkcije.
- Kvazi-Njutnove metode se zasnivaju na aproksimaciju inverza hesijana na osnovu gradijenata.
- BFGS (Brojden-Flečer-Goldfarb-Šano):

$$x_{k+1} = x_k - H_k^{-1} \nabla f(x_k)$$

- H_k^{-1} aproksimirana simetrična matrica. BFGS pretpostavlja i slaganje gradijenata funkcije f i njene kvadratne aproksimacije \bar{f}_k :

$$\overline{f}_k(x) = f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{1}{2} (x - x_k)^T H_k(x - x_k)$$
$$\nabla \overline{f}_k(x) = \nabla f(x_k) + H_k(x - x_k)$$

• Gradijenti se slažu u tački x_k .

$$\nabla f(x_k) + H_k(x_{k-1} - x_k) = \nabla f(x_{k-1})$$

 - Ovaj uslov se oslanja na matricu H_k , što je nepoželjno, pošto je aproksimirana H_k^{-1} , pa se uslov transformiše u ekvivalentan:

$$H_k^{-1}(\nabla f(x_k) - \nabla f(x_{k-1})) = x_k - x_{k-1}$$

 - Dodatno se zahteva da ${\cal H}_k^{-1}$ predstavlja rešenje narednog optimizacionog problema:

$$\min_{H^{-1}} \|H^{-1} - H_{k-1}^{-1}\|_2^2$$
t.d.
$$H^{-1}(\nabla f(x_k) - \nabla f(x_{k-1})) = x_k - x_{k-1}$$
$$H^{-1} = H^{-1}$$

- Ispostavlja se da ovaj problem ima rešenje u zatorenoj formi, koje se brzo izračunava.
- BFGS ima red greške između $O(c^k)$ i $O(c^{2^k})$. Može se očekivati da ova metoda bude sportija od Njutnove, ali brža od metoda prvog reda.
- Ne rešava problem memorije, to radi LBFGS (low memory BFGS).

Linijska pretraga

- Linijska pretraga se zasniva na izboru dužine koraka. Pretražuje odabranu duž pravca za najboljom ili maka povoljnom dužinom koraka.
- Pretpostavimo da je izbor pravca spusta, tj. da važi $\nabla f(x)^T d < 0$, gde je d pravac.

• Egzaktna linijska pretraga u tački x_k :

$$\min_{\alpha > 0} f(x_k + \alpha d)$$

- Da li se ovaj problem može rešiti analitički ili ne?
- U praksi se retko koristi.
- Kako izabrati odgovarajuću vrednosti α ?
 - Neka je $\alpha_k = \alpha_0 \beta^k$ za k > 0, $\alpha_0 > 0$ i $\beta \in (0,1)$. Linijska pretraga se bira najmanje k, odnosno najveće α_k za koje važe Armihov uslov:

$$f(x + \alpha_k d) \le f(x) + \alpha_k \nabla f(x)^T d.$$

- Da je ovaj postupak izbora vrednosti α završava u konačnom vremenu?
 - Za dovoljno malo α važi:

$$f(x + \alpha d) \approx f(x) + \alpha \nabla f(x)^T d$$

- Kako α_k eksponencijalno opada, za dovoljno veliko k važi $\alpha_k < \alpha$.
- Kako je d pravac spusta, važi:

$$f(x) + \alpha \nabla f(x)^T d < f(x) + \alpha^* \nabla f(x)^T d$$

- Za dovoljno malo α važi:

$$f(x + \alpha f) < f(x) + \alpha^* \nabla f(x)^T d$$

Metode lokalne optimizacije sa ograničenjima

- Uz prisustvo ograničenja minimum funkcije ne mora biti jednak pravom minimumu funkcije.
- Takođe, ukoliko ne postoji minimum funkcije bez ograničenja, on može postojata ukoliko su ograničenja pristna.
- Najjednostavnije klasa problema sa ograničenjima su linearni problemi, odnosno problemi linearnog programiranja.
- Najpoznatiji metod rešavanja problema linearnog programiranja je simpleks algoritam.
 - Ima eksponencijalnu složenost, ali u praksi je često efikasan.
 - Postoji i algoritmi sa polinomijalnom složenošću.
- U slučaju konveksnog skupa dopustivih rešenja, moguće je primeniti mehanizam projektovanog gradijenta.

$$\min_{u \in U} ||x - u||_2 = P_U(x)$$

$$x_{k+1} = P_U(x_k - \alpha_k \nabla f(x_k))$$

- Kako rešiti problem projektovanja?
 - Optimizacijom? Ne pokazuje se toliko efikasno
 - Metodi zasnova na kaznenim funkcijama (alogitam logaritamska barijera)

• Opšti problem minimizacije rešavamo iterativno tako što se u k-toj iteraciji rešava problem (za početnu tačku uzima se rešenje prethodne iteracije):

$$\min_{x} f(x) + \frac{1}{\mu_k} \sum_{i=1}^{L} -\log(-g_i(x))$$

- Kada je $g_i(x)$ blisko nuli, vrednost kaznene funkcije $-\log(-g_i(x))$ je veliki pozitivan broj.
- Povećavanjem parametra μ se omogućava smanjenje uticaja kaznene funkcije.

Diskretna optimizacija

- Diskretna optimizacija podrzumeva diskretnost nekog od elemenata optimizacionog problema (domena, funkcije cilja).
- Metode se posmatraju kao algoritmi pretrage na prostoru potencijalnih rešenja.
- Egzaktna pretraga garantuje pronalaženje optimuma.
- Heuristička pretraga ne pruža nikakvu garanciju.

Egzaktne metode

- Problemi koje rešavaju egzaktne metode su vrlo često NP-teški.
- Zbog toga ove metode imaju eksponencijalne ili veće vremenske složenosti.
- Grananje i ograničavanje (Branch and bound)
 - Prostor rešenja se može deliti na dva ili više delova koji u uniji čine ceo prostor.
 - Iscrpna pretraga, ali ako je moguće uštedu u vremenu treba izvršiti odsecanjem podstabla pretrage.
 - Zasniva se na brzom određivanju donjih granica vrednosti funkcije cilja: kada je donja granica nekof od potprostora veća od najniže vrednosti pronađene u toko pretrage, celo podstablo koje odgovara tom potprostoru se može zanemariti.

Algoritam:

- Nekom heuristikom odrediti početno dopustivo rešenje x,
- Neka je B = f(x), s = x i Q = [P].
- Ponavljati dok $Q \neq \emptyset$
 - Uzeti instancu I iz reda Q
 - Ukoliko važi signle(I) i ako je x jedino rešenje instance I i važi f(x) < B, onda dodeliti B = f(x) i s = x i preskočiti ostatak iteracije.
 - Neka je $[I_1, \ldots, I_n] = branch(I)$
 - Svaku instancu I_i za koju važi $bound(I_i) < B$ staviti u red
- Vratiti (s, B)

Heurističke metode

- Heurističke metode ne garantuju optimalnost.
- Metaheuristike su šabloni po kojima se kreiraju heuristike za konkretan problem.
- Populacione metaheuristike se zasnivaju na održavanju populacije dopustivih rešenja koja se paralelno menjaju, popravljaju, kobinuju, interaguju i slično. (genetski algoritmi, kolonija mrava, roj čestica,...)
- Druge predstavljaju održanje jednog dopusivog rešenja. (simulirano kaljenje, tabu pretraga, metod promenljivih okolina).
- Mehanizam intenzifikacije popravlja tekuće rešenje ili tekuća rešenje.
- Mehanizam diverzifikacije pokušava da se izvuče iz lokalno minimuma.
- Metod promenljivih okolina (VNS variable neighbourhood search)
 - Održava jedno rešenje
 - Koristi metod pronalaženja lokalnog optimuma (metod intenzifikacije)
 - Koristi *razmrdavanje* (shaking) (metod diverzifikacije)
- $(N)_i(x)$, za $i=1,\ldots,K$ za svako dopustivo rešenje $x\in D$.

Redukovana metoda promenljivih okolina:

- Inicijalizovati dopustivo rešenje x
- Ponavljati naredne korake sve dok nije ispunjen kriterijum zaustavljanja:
 - Neka je k=1.
 - Ponavljati dok važi k < K
 - * Razmrdavanje: nasumice generisati tačku $x' \in \mathcal{N}_k(x)$
 - * Kretanje: ukoliko je f(x') < f(x), neka je x = x' i k = 1, a u suprotnom, neka je k = k + 1

Metoda promenljivih okolina:

- Inicijalizovati dopustivo rešenje x
- Ponavljati naredne korake sve dok nije ispunjen kriterijum zaustavljanja:
 - Neka je k = 1.
 - Ponavljati dok važi k < K
 - * Razmrdavanje: nasumice generisati tačku $x' \in \mathcal{N}_k(x)$
 - \ast Lokalna pretraga: primeniti neki metod lokalne optimizacije počevši odx'i označiti rezultat sax''
 - * Kretanje: ukoliko je f(x'') < f(x), neka je x = x'' i k = 1, a u suprotnom, neka je k = k + 1

Opšta metoda promenljivih okolina se dobija kada se za mehanizam lokalne pretrage uzme spust sa promenljivih okolinama (variable neighbourhood descent):

- Neka je l=1
- Ponavljati dok važi l < L
 - Pretraga: naći najbolje $x' \in N_l(x)$
 - Kretanje: ukoliko je f(x') < f(x), neka je x = x' i l = 1, a u suprotnom, neka je l = l + 1
- Okoline \mathcal{N} i N se ne moraju podudarati.