CSCI 5610 Solutions to Exercises(List 1)

Anonymous

January 30, 2020

- 1. For the $(-\infty, y)$ case:
 - **1** Initially, $\Sigma = \Phi$, and set u to the root of T.
 - ② If the key of u equals x, then add slab(lc(u)) to Σ , and stop. (Ic: left child,rc: right child)
 - **3** If the key of u < x, then add slab(lc(u)) to Σ , and let u = rc(u).
 - If the key of u > x, let u = lc(u), repeat from 2.
- 2. For the [x, y) case, we calculate canonical slabs of $[x, \infty]$ and $(-\infty, y)$. Then we remove the two unbounded intervals containing ∞ and $-\infty$.

Construct a BST on the age of people with each node u containing the following additional information:(1) the range of ages covered in the subtree rooted on u, namely I, r; (2) the maximum salary in the subtree rooted on u.

For a query [x, y], we will handle it in a recursive way:

Algorithm 1 queryMax(u,x,y)

- 1: if y < u.l or x > u.r then
- 2: return $-\infty$
- 3: **end if**
- 4: if $x \le u.l$ and $y \ge u.r$ then
- 5: return u.maxSalary
- 6: end if
- 7: if $(x \ge u.l \text{ and } x \le u.r)$ or $(y \ge u.l \text{ and } y \le u.r)$ then
- 8: return max(queryMax(lc(u), x, y), queryMax(rc(u), x, y)))
- 9: end if

Lecture 2: Problem 2 Con't

As for the query time of $O(\log n)$, we can see that no more than 4 nodes will be visited at each level and there are $O(\log n)$ levels in total. (Click here for reference)

In each node u, we store the size of the subtrees rooted on lc(u) and rc(u) as l_cnt and r_cnt correspondingly. In order to find the k-th largest element in S, we define the following function:

Algorithm 2 find_kth_largest(u,k)

- 1: if $u.l_cnt \ge k$ then
- 2: return find_kth_largest(lc(u),k)
- 3: **end if**
- 4: **if** $u.l_cnt + 1 == k$ **then**
- 5: return u.key
- 6: end if
- 7: **if** $u.l_{-}cnt + 1 \le k$ **then**
- 8: $return find_kth_largest(rc(u),k-(u.l_cnt + 1))$
- 9: end if

To get a 2-3 tree on the set $S\setminus[x,y]$, we can use the existing split and join functions.

- Use x to split S into S_1 and S_2 . All the values in S_1 is smaller than x. We get a 2-3 tree on S_1 and a 2-3 tree on S_2 .
- ② Use y to split S_2 into S_{21} and S_{22} in the same way.
- **3** Delete y in the 2-3 tree on S_{22} if it exists.
- Join S_1 and S_{22} to get a 2-3 tree on set $S\setminus [x,y]$

Lecture 2: Problem 5*(optional)