

STOR 320 Programming

Lecture 12

Yao Li

Department of Statistics and Operations Research UNC Chapel Hill

Introduction

- Reading
 - Chapters 19-21 in R4DS
 - Chapters 14-18 in RP4DS
 - Chapter 7 in AoRP
 - Chapter 4 in FCSPR

- **Programming Steps**
 - Understand the Problem
 - Inputs and Outputs
 - Create Code
 - Test the Code (Simple Case)
 - Generalize the Code
 - Test Problematic Cases
 - Edit Code to Handle Issues
 - Consider Efficiency

Setup for Lecture

- Open Tutorial 7
- Packages Required:
 - Tidyverse
 - Ecdat
- Knit Document As You Go
- Read Introduction
- Prepare Your Minds for the Matrix

Part 1: If Else

General Construction:

```
if (CONDITION) {
    ACTION
}
```

"If-Else"if (CONDITION) {
 ACTION 1
 } else {
 ACTION 2
 }

• ifelse() ifelse(CONDITION,ACTION1,ACTION2)

Part 1: If Else

- Run Chunk 1
 - Check if Larger than 0
 - If True, Take Log
 - Result When x = 3?
 - Result When x = -3?
- Run Chunk 2
 - Notice the Difference
 - If-Else to Handle Errors
- Run Chunk 3
 - Situation Not Considered
 - Replace BLANK to Lead to Potential Problem

Part 1: If Else

- Run Chunk 4
 - Replace BLANK with Different Options and Check
 - How Would You Explain this Code to Your Granny?
- Run Chunk 5
 - What is the Difference Between y1 and y2?
 - Always Look for a Vectorized Solution for Efficiency
- Run Chunk 6
 - Nested ifelse() Statements
 - How Would You Explain this to your Mother?

- General Construction
 - "for" Loop
 for (INDEX in VECTOR) {
 ACTION FOR EACH INDEX
 }

• "while" Loop

```
while (CONDITION) {
    ACTION UNTIL CONDITION = FALSE
}
```

Nested "for" Loops

```
for (INDEX1 in VECTOR1) {
    for (INDEX2 in VECTOR2) {
        ACTION
    }
}
```


- Mental Process
 - I Want to Do for Every until
 - What Type of Object Do You Want Returned?
 - Initiate a Starting Point Based on the Desired Output
 - Try R Code on Single Instance
 - Create the Loop

Geometric Series

$$\sum_{k=0}^{\infty} ar^k = rac{a}{1-r}, ext{ for } |r| < 1$$

- Run Chunk 1
 - What a did you choose?
 - What r did you choose?
 - What is the theoretical limit?
 - What pattern exists?
- Run Chunk 2
 - Choose a and r that work?
 - Choose a and r that don't work?
 - Modify: if(k>100) break

Geometric Series (Cont.)

$$\sum_{k=0}^{\infty} a r^k = rac{a}{1-r}, ext{ for } |r| < 1$$

- Run Chunk 3
 - Suppose We Want to Save at Every Step
 - Why? Picture to Examine the Path of the Summation
 - Choose Small K<15
 - Choose Large K>50
 - What do You Observe?
 - How Would You Explain This Code to Your Stranged Brother?

Setup for Lecture

- Open Tutorial 8
- Packages Required:
 - Tidyverse
 - Ecdat
- Knit Document As You Go
- Read Introduction
- Prepare Your Minds for the Matrix

- Correlation Matrix
 - Definition: Matrix Which Shows the Correlation Between Every Pair of Numeric Variables
 - Used to Understand Strength of Linear Relationships Between Numeric Variables
 - Helpful in Measuring Collinearity
- Run Chunk 1
 - Inspect the Variables in Cigar
 - Inspect the Correlation Matrix
 - Which Variable(s) is Inappropriate for a Correlation Analysis? Why?

- Run Chunk 2
 - Run First Half Loops through Every Combination of Columns and Computes Correlation
 - Examine Second Half Loops Through Every
 Combination of Columns Excluding the First Column
 - Fill in Blanks with Appropriate Indices so Second Loop Works
 - Run Second Half
- Run Chunk 3
 - Inspect the Variables in HI
 - Uncomment to Print Correlation Matrix
 - What is the Problem?

- Run Chunk 4
 - Observe the Difference Between the Printed Tibbles
 - What is the Difference?
 - How Would You Explain the First Loop to a Toddler?
 - What is cat() doing?
 - How Would You Explain the Second Loop to an Infant?
 - Remember: There Are an Infinite Number of Ways to Do the Same Thing.

Part 2: SRS

- Important For Simulation Studies
- Known Distributions

Distribution	Density/pmf	cdf	Quantiles	Random Numbers
Normal Chi square Binomial	<pre>dnorm() dchisq() dbinom()</pre>	<pre>pnorm() pchisq() pbinom()</pre>	<pre>qnorm() qchisq() qbinom()</pre>	<pre>rnorm() rchisq() rbinom()</pre>

- "d" -> Useful for Plotting Density Curve for Continuous Variables or Probability Mass Function for Discrete Variables
- "p" -> Finds the Probability Less Than Or Equal to a Given Number
- "q" -> Finds Cutoff Points
- "r" -> Generates a Random Sample from the Distribution

Part 2: SRS

- For SRS, Use "r"
- Run Chunk 1
 - Scenario for x1: You Ask BLANK Number of Students
 Their Grades where Grades Follow a Normal
 Distribution with Mean=82 and SD=2
 - Scenario for x2: You Ask BLANK Number of Students to Roll a Fair Die 10 Times and Tell You the Number of 6's that Appeared.

Part 2: SRS

- Sampling From Finite Set of Possible Outcomes
- Run Chunk 2
 - Scenario: Flip k Coins
 - P(Heads) = BLANK
 - P(Tails) = 1-BLANK
 - How would You Explain What the Figure is Showing to a Politician?