Indian Institute of Technology Kharagpur Department of Mathematics MA11003 - Advanced Calculus Problem Sheet - 12 Autumn 2022

- 1. Evaluate the integrals over the region D.
 - (i) $\int \int_{D} xydA$, where D is region bounded by x-axis, ordinate x=2a and curve $x^2=4ay$,
 - (ii) $\int \int_{D} e^{\frac{x}{y}} dA$, where $D = \{(x, y) | 1 \le y \le 2, y \le x \le y^3 \}$.
 - (iii) $\int \int_{D} (4xy y^3) dA$, where D is region bounded by $y = \sqrt{x}$ and $y = x^3$,
 - (iv) $\int \int_{D} (6x^2 40y) dA$, where D is the triangle with vertices (0,3), (1,1) and (5,3),
 - (v) $\int_D \int_D (x^2 + 2xy^2 + 2) dA$, where D is region bounded by $y = x x^2$, y = 0, x = 0 and x = 2.
- 2. Evaluate the following integrals by changing the order of integration

 - (i) $\int_{0}^{4a} \int_{\frac{x^{2}}{4a}}^{2\sqrt{ax}} dy dx$, (ii) $\int_{0}^{1} \int_{x}^{\sqrt{2-x^{2}}} \frac{x}{\sqrt{x^{2}+y^{2}}} dy dx$,
 - (iii) $\int_{0}^{3} \int_{x^{2}}^{9} x^{3} e^{y^{3}} dy dx$,
 - (iv) $\int_0^8 \int_{3\sqrt{2}}^2 \sqrt{x^4 + 1} dx dy$.
- 3. Evaluate $\int_0^1 \int_0^{1-x} e^{\frac{y}{x+y}} dy dx$, using the transformation x+y=u and y=uv.
- 4. Consider the transform T from the xy-plane to the uv-plane given by

$$T: x = \frac{1}{2}(u+v), y = \frac{1}{2}(u-v).$$

- (i) Calculate the Jacobian of the transform T.
- (ii) Evaluate $\int \int_D (x-y) \cos^2(x+y) dA$ using transformation T, where D is the square in xy-plane with vertices $(0,0),(\pi,\pi),(0,2\pi)$ and $(-\pi,\pi)$
- 5. Evaluate the integral by making an appropriate change of variables
 - (i) $\int \int_D x^2 dx dy$, D is elliptic region $\{(x,y): \frac{x^2}{4} + \frac{y^2}{9} \le 1$.
 - (ii) $\int \int \int y^2 dx dy$, D is region bounded by curves xy = 1, xy = 2, $xy^2 = 1$ and $xy^2 = 2$.
 - (iii) $\int \int_D (x+y)^2 dx dy$, D is parallelogram bounded by the lines x+y=0, x+y=0

- 1, 2x y = 0 and 2x y = 3.
- 6. Find the area lying between the parabola $y^2 = 4ax$ and $x^2 = 4ay$.
- 7. Find the volume of the region bounded by the cylinder $x^2 + y^2 = 4$ and the planes y + z = 4 and z = 0, using double integral.
- 8. Find the area of the paraboloid $2z = \frac{x^2}{a} + \frac{y^2}{b}$ inside the cylinder $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- 9. Calculate the area of the region bounded by the upper half of the circle $x^2 + y^2 = 25$, the x-axis and the ordinates x = -3 and x = 4.