1 Reviewing Contradiction Proofs

Proving $P \Rightarrow Q$ By Contradiction. We know that

$$\neg (P \Rightarrow Q) \equiv p \land \neg Q$$

Then our proof could follow the structure:

Proof Structure:

Assume $P \wedge \neg Q$

. . .

Therefore, Contradict.

Alternatively we can start it directly:

Proof Structure:

Assume P

WTS Q by Contradict.

Assume $\neg P$

Therefore, Contradict.

Recall the proof of $\forall n, k, d \in \mathbb{Z}^+, n = kd \Rightarrow k \leq n \land d \leq n$ **Proof:**

Let $n, kd \in \mathbb{Z}^+$. Assume n = dk

Assume for contra, $k > n \lor d > n$

Case k > n Continuing solving this, we note that this case is unused.

$$n = kd$$

$$\therefore k = \frac{n}{d}$$

$$\leq n$$

 $\therefore d \geq 1$

2 Induction Proofs

Consider the question:

For which $n \in \mathbb{N}$ is $n+2 < n^{2-1}$?

We can examine the table

\overline{n}	n+2	2^{n-1}	$n+2 < n^{2-1}$
0	2	$\frac{1}{2}$	False
1	3	1	False
2	4	2	False
3	5	4	False
4	6	8	True
5	7	16	True

We come up with the conjecture:

$$\forall n \in \mathbb{N}, n \geq 4 \Rightarrow n + 2M2^{n-1}$$

We can examine this conjecture by extending the table:

$$7 > 16$$

$$8 = 7 + 1 < 7 + 16$$
 Since 2^{n-1} always increases by at least 16
$$< 16 + 16$$

$$< 32$$

We also note:

Let P(n) be $n+2 < 2^{n-1}$, then (n+1)+2 = (n+2)+1Therefore, $2^{(n+1)-1} = 2 \cdot 2^{n-1} = 2^{n-1} \cdot 2^{n-1}$

We notice that we can prove $P(4) \Rightarrow P(5) \land P(5) \Rightarrow P(6) \land P(6) \Rightarrow P(7) \dots$

Example

let $c \in \mathbb{N}$

Suppose $P(c) \land \forall n \in \mathbb{N}, n \ge c \Rightarrow (P(n) \Rightarrow P(n+1))$ Then $\forall n \in \mathbb{N}, n \ge c \Rightarrow P(n)$

Proof Structure:

Base Case: Prove P(c)

Inductive Step: Let $n \in \mathbb{N}$

Assume $n \ge c$ and P(n) – this is by the induction hypothesis, explicitly state it in proofs

. .

Therefore P(n+1)

Proving the statement from above,

$$Pn: n + 2 < 2^{n-1}$$

 $Q(n): n \ge 4 \Rightarrow n + 2 < 2^{n-1} \forall n \in \mathbb{N}, Q(n)$

CSC165 Arthur Gao

LECTURE 9 (February 9, 2022)

Proof:

Try induction from 0.

Base Case: $0 \ge 4 \Rightarrow \dots$ Vacuously True!

Inductive Step: Let $n \in \mathbb{N}$ Assume $n \ge 4 \Rightarrow n+2 < 2^{n-1}$

 $\overline{WTS: n+1} \ge 4 \Rightarrow n+1+2 < 2^{n+1-1}$ Assume $n+1 \ge 4$

Then $n \geq 3$

Case n = 3: WTS n + 1 + 2 < 2

Case $n \ge 4$: WTS $n + 2 < n^{n-1}$ By the induction hypothesis

3