Name:	Joshua Schmidt	Date:	9/16/	/2019
i vaii i C.	Joshaa Schilliat	Date.	J/ ±U/	2013

I pledge my honor that I have abided by the Stevens Honor System. - Joshua Schmidt

Point values are assigned for each question.

1. Find an upper bound for $f(n)=n^4+10n^2+5$. Write your answer here: ___O(n^4)____ (4 points)

Prove your answer by giving values for the constants c and n_0 . Choose the smallest integral value possible for c. (4 points)

$$f(n)=n^4+10n^2+5<2n^4, n_0=4, c=2$$

2. Find an asymptotically tight bound for $f(n)=3n^3-2n$. Write your answer here: $-\Theta(n^3)$ (4 points)

Prove your answer by giving values for the constants C_1 , C_2 , and C_3 . Choose the tightest integral values possible for C_1 and C_2 . (6 points)

$$f(n)=3n^3-2n<3n^3, n_0=1$$

 $f(n)=3n^3-2n>2n^3, n_0=1$
 $c_1=2, c_2=3, n_0=1$

3. Is $3n-4 \in \Omega(n^2)$? Circle your answer: yes / no. (2 points)

If yes, prove your answer by giving values for the constants c and n_0 . Choose the smallest integral value possible for c. If no, derive a contradiction. (4 points)

$$3n-4 < n^2, n_0=1 \rightarrow -1 < 1$$

The function has a value lower than Omega, which should not be possible.

4. Write the following asymptotic efficiency classes in **increasing** order of magnitude.

$$O(n^2)$$
, $O(2^n)$, $O(1)$, $O(n \lg n)$, $O(n)$, $O(n!)$, $O(n^3)$, $O(\lg n)$, $O(n^n)$, $O(n^2 \lg n)$ (2 points each)

$$_{O}(1)_{,O}(lgn)_{,O}(n)_{,O}(nlgn)_{,O}(n^2lgn), _{O}(n^2lgn), _{O}(n^3), _{O}(2^n)_{,O}(n!)_{,O}(n!)_{,O}(n^n), _{O}(n^n)_{,O}(n^n)$$

5. Determine the largest size n of a problem that can be solved in time t, assuming that the algorithm takes f(n) milliseconds. n must be an integer. (2 points each)

b.
$$f(n) = n \lg n, t = 1 \text{ hour } \underline{204100}$$

c.
$$f(n) = n^2$$
, $t = 1$ hour 360000

```
d. f(n) = n^3, t = 1 \text{ day} 864000
```

- e. f(n) = n!, t = 1 minute 8
- 6. Suppose we are comparing two sorting algorithms and that for all inputs of size n the first algorithm runs in $4\,n^3$ seconds, while the second algorithm runs in $64\,nlg\,n$ seconds. For which integral values of n does the first algorithm beat the second algorithm? ______ n_0 =7______ (4 points) Explain how you got your answer or paste code that solves the problem (2 point): _____ I tried different values for n until I got one where the second algorithm was less than the first. This occurred at 7.
- 7. Give the complexity of the following methods. Choose the most appropriate notation from among O, Θ , and Ω . (8 points each)

```
int function1(int n) {
     int count = 0;
     for (int i = n / 2; i <= n; i++) {</pre>
         for (int j = 1; j <= n; j *= 2) {
               count++;
    return count;
Answer: \underline{\Theta}(nlgn)
int function2(int n) {
     int count = 0;
    for (int i = 1; i * i * i <= n; i++) {</pre>
         count++;
    return count;
Answer: \underline{\hspace{0.1cm}} \boldsymbol{\Theta}(n^{(1/3)})
int function3(int n) {
     int count = 0;
     for (int i = 1; i <= n; i++) {</pre>
          for (int j = 1; j <= n; j++) {</pre>
               for (int k = 1; k <= n; k++) {
                    count++;
          }
    return count;
Answer: \underline{\Theta}(n^3)
```

```
int function4(int n) {
    int count = 0;
    for (int i = 1; i <= n; i++) {</pre>
        for (int j = 1; j <= n; j++) {</pre>
             count++;
             break;
         }
    return count;
Answer: \_\Theta(n)__
int function5(int n) {
    int count = 0;
    for (int i = 1; i <= n; i++) {</pre>
        count++;
    for (int j = 1; j <= n; j++) {
        count++;
    return count;
Answer: \_\Theta(n)__
```