

Hypothesis Testing II

- Quick review of last lecture
- Discussion on Multiple Testing & False Discovery
- Exam Review I
- Next lecture, more exam review and a few practice questions/problems

The Decision Framework Intro

- Each curve (H_o and H₁) shows what your test statistic (like a difference in means) would look like if you ran the experiment many times.
- The x-axis is the value of that test statistic (e.g., the difference between conversion rates in Group A and Group B).
- The y-axis is the probability density of getting that value, assuming H_0 or H_1 is true.
- They are distributions of possible sample outcomes, not a histogram of your actual data

Summary

Region	True World	Decision	Probability	Meaning
Left of threshold under H₀	H₀ true	Fail to reject H₀	1 – α	Correct "no effect" call
Right tail under H₀	H₀ true	Reject H₀	α	False positive
Left tail under H ₁	H ₁ true	Fail to reject H₀	β	Missed detection
Right of threshold under H ₁	H₁ true	Reject H₀	1 – β	Correct detection (power)

ROC: Seeing All Thresholds at Once

- ROC (Receiver Operating Characteristic) curve = plots all thresholds.
- x-axis: False Positive Rate (α).
- y-axis: True Positive Rate $(1-\beta)$ = Sensitivity.
- Each point = one possible decision threshold.
 - Area Under Curve (AUC): overall ability to separate signal from noise.
- Hypothesis testing \rightarrow picks one α ; ROC \rightarrow shows all α - β trade-offs.

The t-Test: Hypothesis Testing

- The t-test is just one implementation of our hypothesistesting logic.
- Example: compare two sample means (A vs. B).
- Null (H_0): no difference $\rightarrow \mu_a = \mu_\beta$.
- Alternative (H₁): difference exists \rightarrow $\mu_a \neq \mu_{\beta}$.
- Compute test statistic:

$$t = rac{ar{x}_A - ar{x}_B}{SE_{ ext{diff}}}$$

The Problem with Multiple Tests

- If you test enough things, something will always look significant.
- $\alpha = 0.05 \rightarrow 5$ % false positives by chance.
- 100 independent nulls → ≈ 5 false "discoveries."

When one test becomes a hundred

- We've treated hypothesis testing as a one-off decision one null, one test, one α .
- But in data science, you rarely stop at one.
- You might run 50 correlations, 100 feature tests, or thousands of model comparisons.

Logic of Multiple Tests/Comparisons

- If there's a 5% chance of a false positive, there's a 95% chance of no false positive.
 - P(no false positive in one test)=1-0.05=0.95
- If you run 40 independent tests, and you want *none* of them to be false positives, you multiply that 0.95 probability across all 40:
 - P(no false positives in 40 tests)= $(0.95)^{40}$
 - $-(0.95)^{40}\approx0.13$
- So there's an 87% chance that at least one of your 40 tests will show up as "significant" purely by random luck.

What should you do?

Adjust p's or validate on a hold-out set

Goal	Tool	Effect
You want to avoid any false positives (confirmatory research)	Bonferroni correction: use α/m	Very strict; reduces false positives but may miss true ones
You want to balance discovery vs. caution (exploratory data analysis)	FDR (Benjamini– Hochberg)	Keeps proportion of false positives under control; allows some risk
You're building a predictive model	Use hold-out validation	Let model performance (not p- values) confirm real signal

Adjusting p-Values

- Family-Wise Error Rate (FWER)
 - Probability of at least one Type I error across all tests
 - Very strict controls false alarms anywhere
- False Discovery Rate (FDR)
 - Expected proportion of false positives among all significant results
 - More flexible allows some false alarms but limits their proportion

Family Wise Error Rate

- FWER = P(At least one Type I error among all m tests)
- FWER =1- $(1-\alpha)^{m}$
- Bonferroni Correction: adjust p-value by dividing α /(number of tests)
 - From the previous example -0.05/40 = 0.00125
- FWER protects you from any false discovery great for confirmatory research, but often too strict for exploratory data science

False Discovery Rate (FDR)

- FWER tries to make sure you never call anything false, it can be too strict
- Common Method: Benjamini–Hochberg (BH)
 - Rank all p-values smallest → largest
 - Compute threshold line: $(i/m)\times\alpha$
 - Find the largest p_i below that line everything below it is "significant."

BH Procedure Example

Rank (i)	p-value	BH threshold (i/100 \times 0.05)
1	0.0005	0.0005
2	0.0010	0.0010 🔽
3	0.0020	0.0015 🗙

FWER vs FDR

Run 10 hypothesis tests, alpha = 0.05

Bonferroni

p _i	Significant?
0.001	∠ yes
0.009	🗙 no
0.015	🗙 no
	× no

Benjamini-Hochberg

Rank (i)	p _i	Threshold	Significant?
1	0.001	0.005	yes yes
2	0.009	0.010	yes yes
3	0.015	0.015	✓ yes
4	0.020	0.020	✓ yes
5	0.032	0.025	X no
6–10			× no

Exam Review

Types of Variables

- Nominal/Categorical
- Ordinal
- Boolean
- Discrete
- Continuous
- Datetime

- These are important to know because it will affect how you validate, explore, and ultimately model the data
- For example, continuous data lends itself to regression, but what about nominal?

Examples

Example (CSV or SQL):

id	name	age	signup_date
1	Alice	30	2023-01-10
2	Bob	24	2023-02-15

```
→ Rows = records (people), Columns = variables
```

```
→ Schema: id (int), name (str), age (int), signup_date (datetime)
```

```
data = np.array([
    [1.2, 3.5, 5.1],
    [4.4, 0.8, 2.9]
])
```

```
timestamp temperature

2023-01-01 00:00 21.5

2023-01-01 01:00 20.8

2023-01-01 02:00 19.9
```

```
{
  "user": "alice",
  "age": 30,
  "preferences": {
     "theme": "dark",
     "notifications": true
  }
}
```


The Three Core Goals of EDA

- Data Quality What's missing, wrong, or suspicious?
- Data Structure How is the data organized?
 What's the distribution of variables?
- Data Insight What trends or patterns jump out immediately?

Data Quality Checks

- Missing values
 - % missing per column
 - Patterns of missingness (spot visually)
- Outliers
 - Context vs. error (deer antler/gender example)
 - Will female deer have entlers?
- Duplicates
 - Exact vs near-duplicate records

Missingness

- 1. MCAR Missing Completely At Random Definition: The probability of a value being missing is unrelated to the data (observed or unobserved).
 - Example: A lab tech accidentally drops a test tube and loses the blood sample → the missingness is random and unrelated to patient characteristics.
 - Consequence: Safe to analyze the remaining data no systematic bias, though you lose power.
- 2. MAR Missing At Random Definition: Missingness depends on observed data but not the missing value itself.
 - Example: Older participants are less likely to respond to a digital survey → missingness depends on age (observed), but not directly on the unreported values.
 - Consequence: Can be handled if you condition on the related observed variables.
- 3. MNAR Missing Not At Random Definition: Missingness depends on the missing value itself.
 - Example: People with higher incomes are less likely to report their income → the probability of missingness depends on the true (unobserved) value.
 - Consequence: Very tricky requires domain assumptions or specialized models.

Handling Missingness

Drop rows/columns (listwise deletion)

- Easy but can waste data
- Risk of bias if missingness is not MCAR
- Example: Drop all rows missing Age → smaller dataset

Simple imputation (mean, median, mode)

- Fills gaps with a single summary statistic
- Can shrink variance, distort distributions
- Example: Replace missing Age with median Age

Forward/backward fill (time series)

- Carries forward last known value or fills with next value
- Assumes stability between measurements
- Example: Missing stock price on Tuesday filled with Monday's

Model-based imputation

- Use regression, k-NN, or ML model to predict missing values
- More powerful but requires assumptions and computation
- Example: Predict missing Age using Income and Education

Outliers

- Errors (measurement/data entry) Typos, sensor glitches, unit mismatches
 - e.g., Height = 300 cm
- Contextual— Unusual only in certain situations
 - e.g., 30°C in winter
- Natural Extremes

 Rare but valid tail values
 - e.g., very tall athlete
- Multivariate Odd combinations of features
 - e.g., Math = 100, English = 5
- Sampling/Processing Artifacts— Wrong population or merge error
 - e.g., dog weights in human dataset

Data Distribution Importance

- The shape of a variable's distribution affects the summaries, statistical tests, and models you can use.
- Always visualize distributions numbers alone can hide skew, multimodality, or outliers.
- Common shapes: normal, uniform, skewed, bimodal, exponential, heavy-tailed.
- Skewed data may need transformations (log, square root) before modeling.
- Multimodal patterns often indicate distinct subgroups in your data.

Data Structure - Distributions

Histogram

- Generally your first stop when visualizing data (can even apply to time series data)
- 1 main parameter: number of bins: more bins → higher resolution

$$bin_size = \frac{max(x) - min(x)}{number of bins}$$

$$\mathrm{edges} = \min(x),\, \min(x) + \mathrm{bin_size},\, \ldots,\, \max(x)$$

$$center_i = \frac{edge_i + edge_{i+1}}{2}$$

Facets/Small Multiples

Overall Process (Iterative)

- Practical Steps for EDA
- Start with structure
 - Identify IDs, categorical vs numerical variables
 - Check ordering (time, grouping)
- Check data quality
 - Look for duplicates (exact, key, near-duplicates)
 - Summarize missingness (% overall, by subgroup)
 - Identify outliers (errors vs real extremes)
- Explore distributions
 - Plot histograms, boxplots, violin plots
 - Compare distributions across groups (facets / small multiples)
 - Watch for skewness, multimodality

Investigate relationships

- Cross-tabulations, grouped summaries
- Scatterplots for pairs of numeric variables
- Split patterns by subgroup (e.g., Group A vs Group B)

Iterate & document

- Clean obvious errors (e.g., impossible ages)
- Re-check after cleaning new issues may emerge
- Keep notes: what you saw, what you changed, why

Correlation

- Correlation is a statistical measure of association that describes how strongly and in what direction two variables are related.
- Correlation ≠ Causation

Pearson's Correlation Coefficient (r)

$$r = rac{\sum_{i=1}^{n}(x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^{n}(x_i - ar{x})^2}\,\sqrt{\sum_{i=1}^{n}(y_i - ar{y})^2}}$$

$$r = rac{\mathrm{Cov}(X,Y)}{\sigma_X \sigma_Y}$$

Spearman's cont'd.

Spearman's Rank Correlation Calculation ($\rho = 0.50$)

X	Rank X	Y	Rank Y	d = RankX - RankY	d^2
10.0	1.0	15.0	1.0	0.0	0.0
20.0	2.0	40.0	4.0	-2.0	4.0
30.0	3.0	25.0	2.0	1.0	1.0
40.0	4.0	50.0	5.0	-1.0	1.0
50.0	5.0	35.0	3.0	2.0	4.0

$$ho = 1 - rac{6\sum d_i^2}{n(n^2-1)}$$
 $egin{aligned} d_i = \operatorname{rank}(x_i) - \operatorname{rank}(y_i) \ n = \operatorname{number of pairs} \end{aligned}$

$$\rho = \text{Pearson}(\operatorname{rank}(X), \operatorname{rank}(Y))$$

Spearman vs Pearson

Kendall's Derivation

Obs	Х	Υ
А	1	12
В	2	15
С	3	14
D	4	10

	_		
Pair	Compare X	Compare Y	Result
(A, B)	1 < 2	12 < 15	Concordant
(A, C)	1 < 3	12 < 14	Concordant
(A, D)	1 < 4	12 > 10	Discordant
(B, C)	2 < 3	15 > 14	Discordant
(B, D)	2 < 4	15 > 10	Concordant
(C, D)	3 < 4	14 > 10	Concordant

$$au = rac{C-D}{inom{n}{2}} = rac{4-2}{6} = rac{2}{6} = 0.333$$

Concept and Formula

$$r_{XY \cdot Z} = rac{r_{XY} - r_{XZ} r_{YZ}}{\sqrt{(1 - r_{XZ}^2)(1 - r_{YZ}^2)}}$$

Concept and Formula

$$r_{XY \cdot Z} = rac{r_{XY} - r_{XZ} r_{YZ}}{\sqrt{(1 - r_{XZ}^2)(1 - r_{YZ}^2)}}$$

