VORTEX @ origin

Consider F(z) = -icln Z

Lander Brown and Market and Administration where C is real

= -ic ln (re10)

= CO - ichr

= \$\psi + iy => Line of constant 19 is also the line along which & is

=> Streamlines are circles and equipotential lines. => indicates contex. $W(2) = \frac{dF}{dz} = U - iv = -i \subseteq$

or (ur - ino) e-io = - i =

=-1. 000 io

=-i == i0

=) Us = 0 } c>0 implies counter clockwise (positive)

Vortes @ origin . . - contd. Strength of a vostex is defined by circulation [. $\Gamma = \int \nabla \cdot ds = \int (u_r \hat{s} + u_\theta \hat{o}) (dr \hat{r} + (rd\theta) \hat{\theta})$ Among the dot products, $\hat{r} \cdot \hat{s}$ and $\hat{\theta} \cdot \hat{\theta}$ exist. $\hat{r} \cdot \hat{\theta}$ does not exist $= \int \Gamma = \int \frac{41}{(u_r dr + r u_\theta d\theta)} = \int \frac{41}{(0 + c d\theta)} = 2\pi c$ = $C = \frac{\Gamma}{2\pi} = \frac{\Gamma}{2\pi} = -i \frac{\Gamma}{2\pi} \ln \tau$ P>0 corresponds to counter-clockwise (positive) solation For vostex located at position 2 = 20 $F(z) = -i \frac{\Gamma}{2\pi} \ln(z-z_0)$ vorticity is given by Also note that in egol cylindrical coordinates, Since Ur=0 1 / 2 (rup) - 30 = 1 (0) $u_0 = \frac{\Gamma}{2\pi r}$ =) Vorkcity is zero for all or except for r=0

This is definition of free vortex where all vorticity is concentrated at the Alternatively, one can define a constant vorticity upto a radial distance R (referred as Forced vortex) and for r > R it is free vootex. A rotchord viscous core for r < R provides for the necessar vosticity. For example $U_0 = \frac{\Gamma}{2\Pi} \frac{\tau}{R^2}$ for $\tau \in R$

 $U_{\theta} = \frac{\Gamma}{2\pi r}$ for r > R

Doublet

Source and a sink that are brought close together Source of Strength m at x=-6 Superposition of a

Source of Strength m at
$$x = 6$$

Sink " " -m at $x = 6$

From (2) =
$$\frac{m}{2\pi} \ln (2+\epsilon)$$

Frink (2) = $-\frac{m}{2\pi} \ln (2-\epsilon)$

Superposed
$$f(z) = \frac{m}{2\pi} \ln \left(\frac{z+\epsilon}{z-\epsilon} \right) = \frac{m}{2\pi} \ln \left(\frac{1+\frac{\epsilon}{z}}{1-\frac{\epsilon}{z}} \right)$$

As source and Sink approach each other, $\epsilon \to 0$

$$\Rightarrow \left(1 - \frac{\epsilon}{z} \right)^{-1} = 1 + \frac{\epsilon}{z} + \left(\frac{\epsilon}{z} \right)^{2} + \cdots = 1 + \frac{\epsilon}{z} \quad \text{By nomial sem expansion}$$

=)
$$F(z) = \frac{m}{2n} \ln \left\{ \left(1 + \frac{\epsilon}{z}\right) \left(1 + \frac{\epsilon}{z}\right) \right\} = \frac{m}{2n} \ln \left(1 + \frac{2\epsilon}{z}\right)$$

Doublet contd.

For Smell X,
$$\ln x = (x-1) - \frac{1}{2}(x-1)^{2} + \frac{1}{3}(x-1)^{3} - \cdots$$

 $\ln(1+x) = x - \frac{1}{2}x^{2} + \frac{1}{3}x^{3} - \cdots$

$$F(z) = \frac{m}{2\pi} \left\{ 2 \frac{\xi}{z} + \cdots \right\} = \frac{m\xi}{\pi z} = \frac{\mu}{z} \left(say \right)$$

$$= \frac{\mu}{\tau} e^{-i\theta} \left(\frac{\chi}{\sqrt{x^2 + y^2}} \right) + i \left[-\frac{\mu}{\tau} \frac{\chi}{\sqrt{x^2 + y^2}} \right]$$

$$\Rightarrow \Rightarrow \begin{pmatrix} x + y^{2} \end{pmatrix} = \begin{pmatrix} x \\ x^{2} + y^{2} \end{pmatrix}$$

$$y = - \mu \left(\frac{y}{x^{2} + y^{2}} \right) \Rightarrow x^{2} + \left(y + \frac{\mu}{2y} \right)^{2} = \left(\frac{\mu}{2y} \right)^{2}$$

$$y = - \mu \left(\frac{y}{x^{2} + y^{2}} \right) \Rightarrow through origin with$$

=) Lines of constant is are circles through origin with radius $\frac{M}{29}$; Centre of circle is located at $y=\frac{\pm}{29}$

when y >0, circles are in lower half plane
when y <0, " " upper " "

Sink μ is considered as the strength of the vortex for doublet located at $z=z_0$ $f(z)=\frac{\mu}{z-z_0}$

=) $u_r = -\frac{\mu}{r^2} \cos \theta$? He velocity induced by doublet decreases or $\frac{1}{r^2}$, compared to $\frac{1}{r}$ for a source or $\frac{1}{r^2}$ wortex.