Endogeneity and Instrumental Variables Estimation

Applied Econometrics for Researchers, PhD Vera Rocha, CBS-SI, vr.si@cbs.dk
23rd November 2022

Agenda

- 1. The source(s) of the endogeneity problem
- 2. One possible solution: Instrumental Variables
- 3. Requirements: What makes a good instrument?
- 4. Key tests when using IV estimation
- 5. Examples, examples (including Stata examples ©)

Suggested readings:

- Wooldridge, "Introductory econometrics, a modern approach", Chapter 15: IV estimation and 2SLS
 - or S. Cunningham, Chapter 7 on Instrumental Variables (The Mixtape book)
- Hill et al. (2021), "Endogeneity: A Review and Agenda for the Methodology-Practice Divide Affecting Micro and Macro Research", Journal of Management, 47(1): 105-143.

Researchers care about causality!

THE COURT

It is important to distinguish between...

	Heckman (sample selection) models	Matching Models (e.g., PSM)	Instrumental Variables (today)
When	Y is missing in some cases	X is a binary intervention/choice	X is endogeneous (correlated with unobservables)
Problem	The missings in Y are driver by a "selection process"	nT & C groups are very different	Four possible causes that make X correlated with the error term
Stata commands	heckman, (twostep)	teffects psmatch, tebalance, teffects overlap	ivreg2, (first) ivendog, overid
Key tests	Significance of the Inverse Mills Ratio or <i>rho</i>	Balancing and overlapping conditions	Relevance and validity of the instruments
restrictions; selection bias observ important when IMR/rho If unob significant and X predicts PSM d		T & C only matched on observable characteristics. If unobservables matter PSM does not provide causal effects → IV	Validity only possible to assess ("imperfectly") when the model is overidentified; bad IVs are worse than OLS
First stage	Probit predicting selection into the sample (Y ≠ missing)	Probit predicting probability of being treated (X)	OLS predicting the endogenous variable (X)

General equation: $y_i = \beta_0 + \beta_1 X 1_i + \cdots + u_i$

What is the (identification) problem?

Assume we want to estimate the **causal effect** of some variable x on another (y), holding everything else constant:

- Example 1) What is the effect on wages from having a longer education?
 ("What is the return to schooling?")
- Example 2) What is the effect of wealth on the propensity to become an entrepreneur? ("Is entrepreneurship limited by access to capital markets?")

We have measurements of both x and y so we can compute a correlation or the regression coefficients (by regressing y on x).

Does any of these coefficients identify the **causal effect of** x **on** y?

What is the (identification) problem?

---> Does x cause y?

Yes! If x is an exogenous variable

No! If x is an **endogenous** variable

What is **endogeneity**?

What is the **consequence** of endogeneity?

How to **detect** endogeneity?

How to address endogeneity?

What is endogeneity exactly?

We want explanatory variables to be exogenous, but what if they are not?

Recall the classical linear regression model

$$y_i = \beta_0 + \beta_1 x_i + u_i$$

which requires

$$E(u_i|x_i) = E(u_i) = 0$$

The expected value of u_i does not depend on $x_i \Leftrightarrow u_i \& x_i$ are independent \Leftrightarrow

necessary condition for OLS estimator to be consistent (i.e., unbiased)

If, for any reason, x_i is correlated with u_i , this condition is violated and x_i is said to be an *endogenous* variable $\rightarrow cov(x_i, u_i) \neq 0$

The Different Sources of Endogeneity

1. Mis-specification of the model (omitted variable bias)

The most common case

2. Measurement error (in an explanatory variable)

The classical errors-in-variables case

3. Self-selection (into treatment)

e.g., Individuals self-select into certain behaviors or programs

4. Simultaneity (or reverse causality)

1. Omitted Variable Bias

Consider a wage function. We want to examine how the length of a person's education affects her wage (*returns to schooling*)

$$\log(wage) = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 abil + \varepsilon$$
 [1]

We suspect that educ is correlated with ability. Why? Theory!

Assume ability is unobservable: an omitted variable captured by the error term

$$\log(wage) = \beta_0 + \beta_1 educ + \beta_2 exper + \mathbf{u}$$
 [2]

where $u = \beta_3 abil + \varepsilon$

educ is **endogenous** because of its correlation with the error term u (via abil).

The OLS estimator of β_1 (and β_2) is biased. Correlation between a single explanatory variable and the error generally results in **all** OLS estimates being biased.

If panel data are available, consider a model with fixed effects to capture this permanent unobserved heterogeneity (next week!).

2. Measurement Error Bias

x $x - \tilde{x}$ \tilde{x}_i y_i

Consider estimating the effect of family income on college grades

$$colGPA = \beta_0 + \beta_1 faminc^* + \beta_2 hsGPA +$$

where *faminc** is the <u>actual</u> (true) value of family income. Let *faminc* be the <u>observed</u> value of family income, and

$$faminc = faminc^* + e_1$$

where e_1 is a measurement error.

Equation [1] can be rewritten as

$$colGPA = \beta_0 + \beta_1 faminc + \beta_2 hsGPA + (\varepsilon - \beta_1 e_1)$$

It can be easily shown that (observed) faminc is correlated with $(\varepsilon - \beta_1 e_1)$, causing bias in the OLS estimator of β_1 (and β_2).

Other examples:

Firm reputation → stock price

(a survey on firm reputation may systematically overrate firms with a high stock price)

Consider estimating the **effect of size** of current firm on the **probability that a wage worker** becomes self-employed

$$Prob(Self = 1) = \beta_0 + \beta_1 s firm + u$$

- Self is an outcome variable (1/0: worker becomes self-employed or not)
- sfirm is a binary variable (1 if an individual worked in a firm smaller than N employees)

Self-selection arises because workers with **higher entrepreneurial preference** are more willing to work for small firms. *Entrepreneurial preference* is captured by the **error term**, **u**.

Therefore
$$\rightarrow$$
 $E(u|sfirm=0) \neq E(u|sfirm=1)$ or $cov(sfirm, u_i) \neq 0$

The correlation between sfirm and ε causes bias in the OLS estimator of β_1 . Self-selection boils down to the omitted variable problem.

Selection into sample vs. into treatment!

Sample selection (Heckman models)

 y^* is affected by a selection process (s) that excludes observations from the sample. s is influenced by y (e.g., utility of being employed) and other unobserved causes w.

Selection of treatment (based on unobservables): today's focus

4. Simultaneity Bias

A city wants to determine if adding officers to its police force will reduce the crime rate

$$crimepc = \beta_{10} + \alpha_1 policepc + \beta_{11} incpc + \varepsilon_1$$
 [1]

A city's spending on law enforcement is also partly determined by its (expected) crime rate

$$policepc = \beta_{20} + \alpha_2 crimepc + \beta_{21} csize + \varepsilon_2$$
 [2]

Insert equation [1] into equation [2] and solving:

$$policepc = \frac{\beta_{20} + \alpha_2 \beta_{10}}{1 - \alpha_2 \alpha_1} + \frac{\alpha_2 \beta_{11}}{1 - \alpha_2 \alpha_1} incpc + \frac{\beta_{21}}{1 - \alpha_2 \alpha_1} csize + \frac{\alpha_2 \mathbf{\epsilon_1} + \epsilon_2}{1 - \alpha_2 \alpha_1}$$

We see that $cov(policepc, \varepsilon_1) \neq 0$. Applying OLS to [1] will give a biased estimate of α_1 . What happens if $\alpha_2 = 0$?

Other examples:

Alcohol consumption ↔ unemployment R&D expenditures ↔ firm performance

13

Solution: Instrumental Variables Estimation

Recall the <u>wage function example</u>:

$$log(wage) = \beta_0 + \beta_1 educ + \beta_2 \frac{abil}{e} + e$$
 ["true" equation]

problem: educ and abil are correlated & abil is not observed

$$\log(wage) = \beta_0 + \beta_1 educ + \mathbf{u}$$

[estimated equation]

u now includes unmeasured abil

The OLS estimator of β_1 is biased because

$$cov(educ, u) \neq 0$$

Solution: Instrumental Variable, z, for educ

Requirements: cov(z, u) = 0 & $cov(z, educ) \neq 0$

- Note: z is "extra information" and observable
- What does the *IV*, *z*, do to remove the bias?

- [1] Red area: correlation between x and the error term
- [2] Using OLS for the intersection between x and y makes estimates inconsistent, because of [1].
- [3] Find a variable *z*, which is not correlated with the error term (e.g., ability), but with *x* (*z* is an instrument for *x*).
- [4] Find the estimate of the overlapping area of x and z, \hat{x} , by regressing x on z (First stage).
- [5] Regress y on \hat{x} . The **purple** area is used to form the IV estimator of β_1 (Second stage).

14

IV is one of the most common solutions

Summary of Identified Endogeneity Sources and Methods

<u>Self</u>-selection or <u>selection into treatment!</u> (not sample selection)

	Omitted Variable	Simultaneity	Measurement Error	Selection	Unclear	Total
Experiment	2	2	0	4	2	10
Quasi-experiment	4	1	0	5	1	11
Design choices	2	2	0	1_	3	8
Matching sample	4	2	0	10	4	20
Measurement	0	1	5	0	0	6
Control variables	10	1	0	3	5	19
Panel	11	11	1	2	13	38
Instrumental variable	41	42	0	94	48	225
Dynamic panel	6	16	0	3	12	37
Other	6	7	0	10	14	37
Total	86 (20.9%)	85 (20.7%)	6 (1.5%)	132 (32.1%)	102 (24.8%)	411

Next week

Implementing IV Estimation:

One Endogenous Variable & One Instrument

Justidentified model

$$y = \beta_0 + \beta_1 x + \beta_2 z_1 + u$$

[structural equation]

- $y: \log(wage)$ x: educ (Endogenous Variable) $z_1: exper$ (Exogenous Variable)
- Omitted variable ability (correlated with x, therefore x is correlated with u)

First Stage

- Find an instrument, z_2 (e.g. number of siblings) assumed to satisfy conditions:
 - cov(sibl, u) = 0
 - $cov(sibl, educ) \neq 0$

• Estimate the following regression: $x = \pi_0 + \pi_1 z_1 + \pi_2 z_2 + v_2$

[reduced form equation]

• Obtain the fitted value of x: \hat{x} is now "clean" from endogenous variation

Second Stage

- $y = \beta_0 + \beta_1 \hat{x} + \beta_2 z_1 + u$
- IV estimators $(\widehat{\beta_0}, \widehat{\beta_1}, \widehat{\beta_2})$ are consistent (all terms in the right-hand side are exogenous)

Implementing IV Estimation:

One Endogenous Variable & Multiple Instruments

Overidentified model

$$y = \beta_0 + \beta_1 x + \beta_2 z_1 + u$$

[structural equation]

- $y: \log(wage)$ x: educ (Endogenous Variable) $z_1: exper$ (Exogenous Variable)
- Omitted variable ability (correlated with x, therefore x is correlated with u)

Instrumental variables available: $sibl(z_2)$, $motheduc(z_3)$, $fatheduc(z_4)$

- $cov(\mathbf{z_2}, u) = 0, cov(\mathbf{z_3}, u) = 0, cov(\mathbf{z_4}, u) = 0$
- $cov(\mathbf{z_2}, educ) \neq 0, cov(\mathbf{z_3}, educ) \neq 0, cov(\mathbf{z_4}, educ) \neq 0$

Best IV: Linear combination of all instruments is likely to be highly correlated with x (educ)

First Stage:
$$x = \pi_0 + \pi_1 z_1 + \pi_2 z_2 + \pi_3 z_3 + \pi_4 z_4 + v_2$$

[reduced form equation]

• Obtain the fitted value of x: $\hat{x} = \hat{\pi}_0 + \hat{\pi}_1 z_1 + \hat{\pi}_2 z_2 + \hat{\pi}_3 z_3 + \hat{\pi}_4 z_4$

Second Stage

- $y = \beta_0 + \beta_1 \hat{x} + \beta_2 z_1 + u$
- IV estimators $(\widehat{\beta_0}, \widehat{\beta_1}, \widehat{\beta_2})$ are consistent and often called the **two stage least square (2SLS) estimators**.

Implementing IV Estimation:

Multiple Endogenous Explanatory Variables

$$y = \beta_0 + \beta_1 x_2 + \beta_2 x_3 + \beta_3 z_1 + \beta_4 z_2 + \beta_5 z_3 + u$$

[structural equation]

• Endogenous variable: x_2 , x_3 ; Exogenous variable: z_1 , z_2 , z_3

Order Condition for Identification:

- We need at least <u>as many</u> excluded exogenous variables (i.e, <u>instruments</u>) as there are <u>endogenous</u> explanatory variables
- 2SLS estimator not feasible if there is only 1 instrument e.g. z_4 for both x_2 and x_3

Two instruments: (z_4, z_5) for (x_2, x_3) – although in theory: z_4 for x_2 , z_5 for x_3

- Two reduced forms:
- $\mathbf{x}_2 = \pi_{20} + \pi_{21}\mathbf{z}_1 + \pi_{22}\mathbf{z}_2 + \pi_{23}\mathbf{z}_3 + \pi_{24}\mathbf{z}_4 + \pi_{25}\mathbf{z}_5 + v_2$
- $\mathbf{x}_3 = \pi_{30} + \pi_{31}\mathbf{z}_1 + \pi_{32}\mathbf{z}_2 + \pi_{33}\mathbf{z}_3 + \pi_{34}\mathbf{z}_4 + \pi_{35}\mathbf{z}_5 + \mathbf{v}_3$

Two Requirements for Instruments

Yellow

Green

Instrument Relevance

$$cov(z,x) \neq 0$$

We need the **Purple** and **Green** area as large as possible (**a strong instrument**) to have sufficient information to explain variations in *Y*.

How to test? First-stage reduced form equation (including <u>all exogenous variables</u>)

$$x = \pi_0 + \pi_1 z + \dots + v$$

Relevance holds if $\hat{\pi}_1 \neq 0$.

Instrument Validity (i.e., Exogeneity)

$$cov(z, u) = 0$$

We want the **Purple** area to solely explain variations in Y, independent of the error term.

How to test? Impossible, because u is unobserved. Rely on intuition or theory!

All in all, we want cov(z,u) to be as **small** as possible (in principle, zero) and cov(z,x) as **large** as possible.

Key Tests: The Presence of Endogeneity

Is IV/2SLS estimation really necessary? [Note: 2SLS estimator is less efficient than OLS, due to larger standard errors]

We could directly **compare** $\hat{\beta}^{OLS}$ and $\hat{\beta}^{IV}$, and determine whether the difference is statistically significant (Hausman Test). If it is, endogeneity is likely to be present!

Other alternative tests:

- Run the reduced-form equation: $\mathbf{x} = \pi_0 + \pi_1 \mathbf{z} + \dots + v$ (if there is a single endogenous variable)
- Obtain the residuals \hat{v} by OLS, and include \hat{v} as an additional regressor in the structural equation for y:
- $y = \beta_0 + \beta_1 x + \dots + \delta_1 \hat{v} + e_1 \rightarrow \text{test } H_0: \delta_1 = 0 \text{ using the } t\text{-statistic}$
- If rejected, endogeneity is present and must be solved! We cannot trust $\hat{\beta}^{OLS}$.

For multiple endogenous variables

- Obtain the residuals by OLS from the first-stage reduced-form for each suspected endogenous variable
- Include each residual in the structural equation for y, and perform an F-test to test their joint significance
- If jointly significant, endogeneity is present and we must find valid and relevant instruments.

Key Tests: The Relevance of the Instrument(s)

We want to check the relevance of the instrument(s) \Leftrightarrow do we have weak or strong instruments?

Test the significance of the **green** and **purple** overlaps between the variation of x and z.

Justidentified model

- 1. One endogenous regressor x, and one instrument, $z \rightarrow$ test significance of $\hat{\pi}_1$ (recall slide 17)
- 2. One endogenous regressor x, and two instruments, z_3 and z_4 .

$$x = \pi_{20} + \pi_{21}z_1 + \pi_{22}z_2 + \pi_{23}z_3 + \pi_{24}z_4 + v_2$$
Remember, z_1 and z_2 are exogeneous regressors that also enter the structural equation!

- 3. Two endogenous regressors x_2 , x_3 , and two instruments, z_3 and z_4 .
 - Two reduced forms. Same logic (F-test), but also applied across equations (Stock-Yogo). Ideally, we want to obtain smaller p-values than usual to guarantee good performance

$$x_2 = \pi_{20} + \pi_{21}z_1 + \pi_{22}z_2 + \pi_{23}z_3 + \pi_{24}\mathbf{z}_4 + \pi_{25}\mathbf{z}_5 + v_2$$
$$x_3 = \pi_{30} + \pi_{31}z_1 + \pi_{32}z_2 + \pi_{33}z_3 + \pi_{34}\mathbf{z}_4 + \pi_{35}\mathbf{z}_5 + v_3$$

Key Tests: Overidentifying Restrictions

Can we somehow test for the correlation between the error term and the instruments? (recall the validity/exogeneity requirement)

• Only possible, if we have "extra" instruments for the endogeneous explanatory variable(s) (i.e., more z's than endogeneous x's). In that case, we can test whether <u>some of them</u> are uncorrelated with the structural error.

A formal test:

- Estimate the structural equation by 2SLS, and obtain the 2SLS residuals \hat{u} :
- $\hat{u} = y \hat{\beta}_0 \hat{\beta}_1 \hat{x} \hat{\beta}_2 z_1 \hat{\beta}_3 z_2$ (Note: $\hat{x}! z_1$ and z_2 are exogenous determinants of y)
- Then regress \hat{u} on <u>all exogenous variables</u> (all z's, including the instruments).
- Obtain the *R*-squared and perform the following test:
- H₀: <u>all</u> IVs are uncorrelated with u
- Key statistic: $nR^2 \sim \chi_q^2$ (Note: q = # instruments # endogenous variables (= # extra instruments))
- If nR^2 exceeds (say) the 5% critical value in the distribution, we reject H_0 , and conclude that <u>at least</u> one of the IVs is **not** exogenous.

Example 1. Financial constraints and entry into self-employment

 RQ: Do prospective entrepreneurs face limited access to the capital market? If so, personal wealth should play an important role in business creation:

$$self_i = \beta_0 + \beta_1 wealth_i + \beta_2 X_i + u_i$$
, expect $\beta_1 > 0$

- What is the potential endogeneity problem?
 - An unmeasured omitted variable: (entrepreneurial) ability
 - People with higher (entrepreneurial) ability are more likely to a) enter selfemployment; b) accumulate more wealth
 - $\circ cov(wealth, u) > 0$ through (unobserved) ability. There might be a (positive) bias in OLS
- Solution? Find an **instrumental variable**, **z** for **wealth**, such that:
 - $cov(z, wealth) \neq 0$, and cov(z, u) = 0
 - Can z be any variable? No. Theoretically, z is an exogenous variable that does not enter the structural model. But it must affect wealth.

Example 1. Financial constraints and entry into self-employment (cont.)

Candidates for instruments?

- Inheritance and gifts (Blanchflower and Oswald, 1991, JOLE)
- Lottery winnings (Lindh and Ohlsson, 1996, EJ)

$$\widehat{w}ealth_i = \widehat{\pi}_0 + \widehat{\pi}_1 \mathbf{z}_i + \widehat{\pi}_2 X_i$$
 [reduced form eq] $self_i = \beta_0 + \beta_1 \widehat{w}ealth_i + \beta_2 X_i + u_i$ [structural eq]

Criticisms:

- Inheritance and gifts are indirectly correlated with ability
- The behavior of purchasing lottery tickets is also related to personalities
- Both are unobservable to econometricians
- Can we really claim that cov(z, u) = 0?

Alternative instruments?

Outcomes of random economic shocks:

- Capital gains from housing price change (Hurst and Lusardi 2004, JPE)
- Unforeseen change in income tax policy
- o ...

Example 2. Returns to education (in wage equations)

Education is correlated with unobserved ability → Candidates for instruments?

- Distance to educational institutions? (but what if areas with no education institutions are also low-income areas?)
- Institutional constraints e.g., compulsory schooling laws?
- Any natural experiment? e.g.,
 Angrist-Krueger (1991) individual's quarter of birth!

- In the US, <u>most states require students</u> to enter school in the calendar year in which they turn 6
- School start age is therefore a function of the date of birth:
- If born in January (December) → starts school in August at age 6 (5)
- Legal dropout rate: after 16
- This creates different education levels for those born in different dates
- Birth date arguably unrelated to ability!

Example 2. Returns to education (in wage equations) (cont.)

A. Average Education by Quarter of Birth (first stage)

Source: Angrist & Krueger (1991)

Criticisms:

- Exogeneous variation is only created by a small subset of kids who leave school early – generalizable?
- Is the instrument relevant enough? (Recall the need to maximize the green & purple areas)
- Family background can be associated with kids' quarter of birth and future earnings potential: e.g., Incidence of schizophrenia depend on the season in which kids are born
 - (!) [Bound, Jaeger, Baker, 1995]

Example 3. Effect of children in income gender gap among inventors

- Sample of inventors: R&D workers with patents
- Gender gap still significant in this narrow and highly-skilled subsample of the population!
- Could parenthood account for (part of) the income differential between male and female inventors?
- But having children is a choice (often made jointly with labor market-related decisions
 simultaneity bias?); Unobserved factors can also matter (what if ambitious women choose to have fewer children in order to focus on their career, thereby possibly earning higher wages?)

Instruments for fertility (#children):

- Abortion legislation (Bloom et al. 2009)
- Occurrence of twins at first birth (Angrist & Evans, 1998)
- Whether individuals dedicate time to religious and spiritual activities in their leisure time (Hoisl and Mariani, 2016)
- Why? Religious beliefs tend to be developed early and prior to determination of labor market outcomes and parenthood. They also affect one's opinion about birth control, contraception, abortion, and family plans.

Source: Hoisl & Mariani (2016), "Income and the gender gap in industrial research", *Management Science*.

Yes, finding good IVs is challenging!

Instrumental Variables in STATA

Basic syntax is simple:

Requires
installation!
Type:
ssc install
"command"

```
ivreg2 depvar [varlist1] (varlist2 = varlist_iv), first
```

depvar is the dependent variable (y) - e.g., wages

varlist1 are the exogenous regressors of the structural equation – e.g., exper

varlist2 are the endogenous regressors that are being instrumented (x) – e.g., educ

varlist_iv are the exogenous variables excluded from the structural regression (instruments *z*) – e.g., parents' education

Option first gives us the output of the reduced form equation.

Lots of options, and lots of outputs! Check **help ivreg2** for very complete guidance.

ivendog and overid post-estimation commands will be useful to run key tests.

STATA example: Medical expenditures

"mus06.dta": these data will be used to study some determinants of expenditures on prescribed medications, using a sample of individuals older than 65 years old.

Variable	Obs	Mean	Std. Dev.	Min	Max
ldrugexp	10391	6.479668	1.363395	0	10.18017
hi_empunion	10391	.3796555	. 4853245	0	1
totchr	10391	1.860745	1.290131	0	9
age	10391	75.04639	6.69368	65	91
female	10391	.5797325	. 4936256	0	1
blhisp	10391	.1703397	.3759491	0	1
linc	10089	2.743275	.9131433	-6.907755	5.744476

hi_empunion: dummy = 1 if the individual holds either employer or unionsponsored health insurance. It's a choice variable. Possibly endogenous! Why?

Instrumenting Health Insurance

Two potential instruments for hi_empunion:

ssiratio: ratio of an individual's social security income to the overall income from all sources

lowincome: dummy = 1 if the individual is a low-income status person

Are they **relevant instruments**? Testable. →

Are they valid instruments? It cannot be tested. We must rely on theoretical arguments

– i.e., we need to assume they can be omitted from the medical

expenditures equation, since the direct role of income is already captured by the regressor *linc*. The only way these variables will affect expenditures is through "hi_empunion".

pwcorr hi_empunion ssiratio lowincome, star (0.01)

	hi_emp~n ss	siratio lowinc~e
hi_empunion	1.0000	
ssiratio	-0.1963*	1.0000
lowincome	-0.1144*	0.2498* 1.0000

. reg hi_empunion ssiratio lowincome totchr age female blhisp linc

SS	df	MS	Number of obs	=	10089
			F(7, 10081)	=	122.58
860924	7 26.69	44176	Prob > F	=	0.0000
5.38192 100	81 .217	77422	R-squared	=	0.0784
			Adj R-squared	=	0.0778
2.24284 100	88 .2361	46197	Root MSE	=	.46666
	.86092 4 5.38192 100	.860924 7 26.69 5.38192 10081 .217	.860924 7 26.6944176 5.38192 10081 .21777422	F(7, 10081) 860924 7 26.6944176 Prob > F 5.38192 10081 .21777422 R-squared Adj R-squared	F(7, 10081) = .860924 7 26.6944176 Prob > F = 5.38192 10081 .21777422 R-squared = Adj R-squared =

hi_empunion	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ssiratio	1787027	.014337	-12.46	0.000	2068061	1505993
lowincome	0633991	.0124133	-5.11	0.000	0877317	0390665
totchr	.0128507	.0036181	3.55	0.000	.0057586	.0199428
age	0085393	.0007124	-11.99	0.000	0099357	0071429
female	0729811	.0094819	-7.70	0.000	0915675	0543947
blhisp	062178	.0127532	-4.88	0.000	0871767	0371792
line	.0448206	.0057127	7.85	0.000	.0336225	.0560186
_cons	1.036267	.0573559	18.07	0.000	.9238382	1.148696

IV estimates (1 instrument): Manually vs. ivreg2

Recall the steps behind IV estimator:

- 1. Regress hi_empunion on ssiratio and all the other exogenous variables in the structural equation (gender, race, income, #chronical conditions)
- 2. Predict the estimated values of hi_empunion (predict hi_hat, xb)
- Use these predicted values as a regressor in the structural equation (hi_hat instead of hi_empunion)

(ivreg2 does it automatically for you) →

```
IV (2SLS) estimation
```

Estimates efficient for homoskedasticity only Statistics robust to heteroskedasticity

			Manager or one		10000
			F(6, 10082)	=	333.25
			Prob > F	=	0.0000
Total (centered) SS	=	18715.11622	Centered R2	=	0.0640
Total (uncentered) SS	=	442534.2012	Uncentered R2	=	0.9604
Residual SS	=	17518.21658	Root MSE	=	1.318

ldrugexp	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
hi_empunion	8975913	.2211268	-4.06	0.000	-1.330992	4641908
totchr	. 4502655	.0101969	44.16	0.000	. 43028	. 470251
age	0132176	.0029977	-4.41	0.000	0190931	0073421
female	020406	.0326114	-0.63	0.531	0843232	.0435113
blhisp	2174244	.0394944	-5.51	0.000	294832	1400167
line	.0870018	.0226356	3.84	0.000	.0426368	.1313668
_cons	6.78717	.2688453	25.25	0.000	6.260243	7.314097

Supplementary-insured individuals have medical expenses that are 90% lower than those without insurance.

Number of obs =

Test: Presence of Endogeneity

- Run the reduced form equation for hi_empunion (including the instrument(s)) – predict the residuals
- Include those residuals in the second stage and test the significance of the coefficient
- 3. If statistically significant, endogeneity is present and must be solved.

Other alternatives:

- Run OLS and IV and compare the estimates – significantly different? [Hausman test] If yes, endogeneity is likely present!
- Or simply run ivreg2 and run the post-estimation command ivendog hi_empunion. H0 states that the regressor is exogeneous. If rejected, endogeneity is present.

Test: Presence of Endogeneity

Source	SS	df	MS		Number of obs	= 10089 = 314.07
Model Residual	3350.66632 15364.4499		. 666618 2409978		F(7, 10081) Prob > F R-squared	= 0.0000 = 0.1790
Total	18715.1162	10088 1.8	5518599		Adj R-squared Root MSE	= 1.2345
ldrugexp	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
hi_res	.9891978	.1965648	5.03	0.000	.6038916	1.374504
hi_empunion	8975913	.1947955	-4.61	0.000	-1.279429	5157533
totchr	. 4502655	.0097613	46.13	0.000	. 4311315	.4693996
age	0132176	.0026935	-4.91	0.000	0184973	0079379
female	020406	.0295501	-0.69	0.490	0783301	.0375181
blhisp	2174244	.0362335	-6.00	0.000	2884492	1463995
			4.22	0.000	.0465728	.1274308
linc	.0870018	.020625	4.22	0.000		

. ivendog hi_empunion

Tests of endogeneity of: hi empunion

H0: Regressor is exogenous

Wu-Hausman F test:

Durbin-Wu-Hausman chi-sq test:

25.32531 F(1,10081)

P-value = 0.00000

P-value = 0.00000

Test: Overidentifying Restrictions

. reg uhat ssiratio lowincome totchr age female blhisp linc

Source	SS df	MS	Number of obs = 10089
			F(7, 10081) = 0.96
Model	11.1820729 7	1.59743898	Prob > F = 0.4587
Residual	16775.5778 10081	1.66407874	R-squared = 0.0007
			Adj R-squared = -0.0000
Total	16786.7599 10088	1.6640325	Root MSE = 1.29

uhat	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ssiratio	.0525874	.0396317	1.33	0.185	0250986	.1302734
lowincome	0832573	.0343141	-2.43	0.015	1505197	0159948
totchr	0004007	.0100014	-0.04	0.968	0200054	.019204
age	0001267	.0019692	-0.06	0.949	0039867	.0037332
female	0006952	.0262107	-0.03	0.979	0520734	.050683
blhisp	0003397	.0352535	-0.01	0.992	0694436	.0687641
linc	.000949	.0157916	0.06	0.952	0300056	.0319036
_cons	0044991	.1585483	-0.03	0.977	3152854	.3062872

H0: All IVs are uncorrelated with *u* (the structural error).

We reject H0 when using these 2 instruments ⇔ so at least one instrument is not valid.

From the ivreg2 output:

```
Sargan statistic (overidentification test of all instruments): 6.721 Chi-sq(1) P-val = 0.0095
```

Post-estimation test:

. overid

```
Tests of overidentifying restrictions: Sargan N*R-sq test 6.721 Chi-sq(1) P-value = 0.0095 Basmann test 6.720 Chi-sq(1) P-value = 0.0095
```

One last time...

	Heckman (sample selection) models	Matching Models (e.g., PSM)	Instrumental Variables
When	Y is missing in some cases	X is a binary intervention/choice	X is endogeneous (correlated with unobservables)
Problem	The missings in Y are driver by a "selection process"	nT & C groups are very different	Four possible causes that make X correlated with the error term
Stata commands	heckman, (twostep)	teffects psmatch, tebalance, teffects overlap	ivreg2, (first) ivendog, overid
Key tests	Significance of the Inverse Mills Ratio or <i>rho</i>	Balancing and overlapping conditions	Relevance and validity of the instruments
Attention!	Need for valid exclusion restrictions; selection bias important when IMR/rho significant and X predicts selection	T & C only matched on observable characteristics. If unobservables matter PSM does not provide causal effects → IV	Validity only possible to assess ("imperfectly") when the model is overidentified; bad IVs are worse than OLS
First stage	Probit predicting selection into the sample (Y ≠ missing)	Probit predicting probability of being treated (X)	OLS predicting the endogenous variable (X)

36

Good luck with your instruments! ©

