(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 17.11.1999 Bulletin 1999/46

(21) Application number: 98201323.7

(22) Date of filing: 24.04.1998

(51) Int. Cl.⁶: A61 K 31/52, C07D 473/06. C07D 473/10

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Designated Extension States: AL LT LV MK RO SI

(71) Applicants:

· K.U. Leuven Research & Development 3000 Leuven (BE)

· Pfleiderer, Wolfgang 78464 Konstanz (DE) (72) Inventors:

· Waer, Mark Jozef Albert 3001 Heverlee (BE)

· Herdewijn, Piet André Maurits Maria 3111 Rotzelaar/Wezemaal (BE)

· Pfleiderer, Wolfgang 78464 Konstanz (DE)

(74) Representative: Bartelds, Erik Amold & Siedsma. Advocaten en Octrooigemachtigden,

Sweelinckplein 1 2517 GK Den Haag (NL)

(54)Immunosuppressive effects of 8-substituted xanthine derivatives

(57)The invention relates to a novel use of 8 substituted xanthine derivatives for the manufacture of a medicament for the treatment of auto-immuno disorders.

The invention relates in particular to the use of a xanthine derivative of general formula (I):

substituted or unsubstituted amino group; aliphatic chain with 1 to 3 carbon atoms; halogenated aliphatic chain with 1 to 3 carbon atoms; aliphatic chain containing ether functions, acids, esters, amides, substituted or unsubstituted amines having 1 to 3 carbon atoms, nitro, sulfonamides or a combination of these functional groups with a maximum length of the chain of 12 atoms,

or a pharmaceutically acceptable salt thereof for the manufacture of a medicament for the treatment of auto-immuno disorders.

wherein:

R₁, R₂ and R₃ are independently hydrogen, saturated or unsaturated aliphatic chains which may be straight or branched having 1 to 6 carbon atoms; X and Y are independently oxygen or sulfur; Z₁ is selected from the group comprising a thienyl; furanyl; cyclopentyl, phenyl or a substituted by Z2 or unsubstituted phenyl; wherein Z2 is selected from the group comprising phenyl; sulfonic acid; unsubstituted or N-substituted sulfonamide with substituents such as alkyl, aminoalkyl where the amino group may be substituted itself with lower alkyl groups bearing 1 to 4 carbon atoms; nitro; halogen

Description

[0001] The invention relates to a novel use of 8 substituted xanthine derivatives for the manufacture of a medicament for the treatment of auto-immuno disorders.

[0002] Methylxanthines, for example pentoxifylline (PTX) are known having immunosuppressive effects in vitro.

[0003] Several types of 8-substituted xanthine derivatives have been publicized, for example K.A. Jacobson et al. J. Med. Chem. 1993, 36, 2639-2644; K.A. Jacobson et al. Biochem. Pharmacol. 1988, 37, 3653-3661; K.A. Jacobson et al. J. Med. Chem. 1989, 32, 1873-1879.

[0004] Recently (Lin Y. et al, Transplantation 63 (1997) it has been found that the co-medication of an immunosuppressive compound such as cyclosporine A (CyA) or FK506 or RPM (rapamycine) with a methyl xanthine derivative, in particular A802715 (7-propyl-1(5-hydroxy-5-methylhexyl)-3-methylxanthine) leads to a superadditive increase in the immunosuppressive action.

[0005] The immunosuppressive effect of cyclosporine A (CyA) is already known since 1972. However, due to its nephrotoxicity and several other side effects CyA has not been able to establish itself as the optimal and final drug of choice.

[0006] The present invention relates to a novel use of 8-substituted xanthine derivates and their pharmaceutical salts, possessing unexpectedly desirable pharmaceutical properties, i.c. are immunosupressive agents.

[0007] The invention demonstrates a novel use of xanthine derivatives of the formula (I):

20

$$\begin{array}{c|c}
X & R_3 \\
R_1 - N & N \\
N & N \\
R_2 & N
\end{array}$$

25

35

40

30 wherein:

 R_1 , R_2 and R_3 are independently hydrogen, saturated or unsaturated aliphatic chains which may be straight or branched having 1 to 6 carbon atoms;

X and Y are independently oxygen or sulfur;

 Z_1 is selected from the group comprising a thienyl; furanyl; cyclopentyl or a substituted by Z_2 or unsubstituted phenyl; wherein Z_2 is selected from the group comprising phenyl; sulfonic acid; unsubstituted or N-substituted sulfonamide with substituents such as alkyl, aminoalkyl where the amino group may be substituted itself with lower alkyl groups bearing 1 to 4 carbon atoms; nitro; substituted or unsubstituted amino group; aliphatic chain with 1 to 3 carbon atoms; halogenated aliphatic chain with 1 to 3 carbon atoms; aliphatic chain containing ether functions, acids, esters, amides, substituted or unsubstituted amines having 1 to 3 carbon atoms, nitro, sulfonamides or a combination of these functional groups with a maximum length of the chain of 12 atoms,

or a pharmaceutically acceptable salt thereof for the manufacture of a medicament for the treatment of auto-immuno disorders.

[0008] The invention further relates to a combination preparation, containing 1) cyclosporin A or FK506 or rapamycin,
 2) at least one 8-substituted xanthine derivative of formula (I), and optionally a pharmaceutical excipient, for simultaneous, separate or sequential use in (auto)immune disorders.

[0009] Hereunder the effects of the 8-substituted xanthine derivatives on the lymphocyte activation are elucidated and are compared with non-substituted xanthine derivatives (see table I, compound 1,2,3,4,5,22,23,24,25,26, and 67,68,69,70,71).

[0010] Table I summarizes the tested compounds. These xanthine derivatives were obtained as follows:

Compound number 8, 10, 12, 14, 21, 36, 37, 38, 47, 48, 50, 51, 79, 83 K.A. Jacobson et al. J. Med. Chem. 1993, 36, 2639-2644;

55

9, 11, 13, 30, 31, 39, 40, 41, 42, 43, 125 K.A. Jacobson et al. Biochem. Pharmacol. 1988, 37, 3653-3661; 15, 17, 18, 28, 29, 33, 34, 35, 44, 45, 46, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 78, 80, 81 K.A. Jacobson et al. J. Med. Chem. 1989, 32, 1873-1879;

[0011] Compoundnumbers 1, 2, 3, 4, 5, 22, 23, 24, 67, 68, 82, 112, 113, 114, 116, 117, 118, 119 (table I and II) were obtained by the following procedure for the alkylation of xanthine derivatives.

[0012] 0,01 mol of a xanthine derivative (1a, 2a, 3a, 4a, 5a, 67a, 68a, 82a, 112a, 113a (114a), 116a (117a), 118a (119a)). (The origin of these compounds is as follows: 1a Theobromin, commercially available FLUKA AG; 2a W. Traube, Ber. Deut. Chem. Ges. 33, 3035 (1900); 3a G. Elion, J. Org. Chem. 27, 2478 (1962); 4a W. Hutzenlaub, W. Pfleiderer, Liebigs Ann. Chem. 1979, 1847; 5a Xanthin, commercially available FLUKA AG; 67a W. Hutzenlaub, W. Pfleiderer, Liebigs Ann. Chem. 1979, 1847; 68a P.G. Kjellin, C.G.A. Persson, Eur. Pat. Appl. 10 531; C.A. 94, P 15773 u; 82a K.A. Jacobson, D. Shi, C. Gallo-Rodriguez, M. Manning, C. Müller, J.W. Daly, J.L. Neumeyer, L. Kiriasis, W. Pleiderer, J. Med. Chem. 36, 2639 (1993); 112a H. Goldner, G. Dietz, E. Carstens, Liebigs Ann. Chem. 691, 142 (1966); 113a M.T. Shamim, D. Ukena, W.L. Padgett, J.W. Daly, J. Med. Chem. 32, 1231 (1989)] (see table II) were suspended or dissolved in DMF (60 ml) at room temperature and then under stirring K₂CO₃ (6 g per N-H function) and the alkylating agent (methyl iodide, ally iodide, propargyl bromide, n-propyl iodide, benzyl bromide, 2-chlorobenzyl bromide, 4-bromobutanoic acid, 5-bromopentanoic acid, ethyl 4-bromobutanoate) (0.015 mci per N-H) function added. The mixture was stirred at room temperature for 15 h, then the insoluble inorganic salts filtered off by suction and the filtrate evaporated in vacuum at 50°C to a syrup. The residue was treated with H₂O forming a colorless solid. The precipitate was collected and purified by recrystallization from H₂O/EtOH mixtures to give colorless crystals of 1, 2, 3, 4, 5, 67, 68, 82, 112, 113, 114, 116, 117, 118, 119.

[0013] Compound numbers 16, 52, 53, 54, 69, 70, 71, 115, 116a (117a), 118a (119a) (table I and III) were obtained by a procedure for the cyclization of 5-acylamino-6-aminouracils

35

25

30

[0014] The 5-acylamino-6-aminouracil (16a, 52a, 53a, 54a, 69a, 70a, 71a, 115a, 116b, 118b) (0.01 mol) was heated in a mixture of 2 NaOH (50 ml) and EtOH (10 ml) under reflux for 30 min. The hot solution was acidified by AcOH whereby a colorless precipitate separated. The solid was collected after cooling, dried and then purified by recrystallization from EtOH, DMF or by reprecipitation from alkaline solution by addition of AcOH.

General procedures for the synthesis of 5-acylamino-6-amino-uracils (16a, 52a, 53a, 54a, 69a, 70a, 71a, 115a, 116b, 118b) (table IV).

45 **[0015]**

50

- a) 0.01 mol of the N-substituted 5,6-diaminouracil (69b, 70b, 71b) was heated in formic acid (20 ml) for 15 mm under reflux. The reaction mixture was evaporated to dryness and the residue recrystallized from water to give colorless crystals (69a, 70a, 71a). Yield: 75-90%.
- b) 0.01 mol of the N-substituted 5,6-diaminouracil (52b, 53b, 116c) was treated with 0.012 mol of the appropriate acyl chloride (p-nitrobenzoyl chloride, p-biphenyl-4-carbonyl chloride, p-chlorbenzoyl chloride, p-aminobenzoyl chloride) in abs. pyridine (20 ml) with stirring at room temp. for 3 hours. It was evaporated, the residue treated with water and the resulting precipitate collected by suction. Recrystallization from EtOH/H₂0 yielded 70-90% of colorless crystals (52a, 115a, 53a, 54a, 116b, 118b).
- c) 0.01 mol of the N-substituted 5,6-diaminouracil (16b) was suspended in EtOH (100 ml), then subsequently added 0.011 mol of the appropriate acid (p-sulfamoylbenzoic acid) and 0.012 mol of the condensing agent (dicyclohexylcarbodiimide), N-dimethylaminopropyl-N'-ethylcarbodiimide hydrochloride). The mixture stirred at room temp, for 2 hours, the precipitate filtered off and purified by recrystallization from EtOH to give colorless crystals

(16a). Yield: 80-90%.

General procedure for the synthesis of N-alkyl-5,6-diaminouracil (16b, 52b, 53b, 69b, 70b, 71b, 116c) (table V).

[0016]

10

15

20

a) 0.05 mol of 6-amino-3-methyl-1-neopentyluracil (69c), 6-amino-1,3-dimethyluracil (52c), 6-amino-1,3-di-n-propyluracil (53c), 6-amino-1-isopropyl-3-methyluracil (71c), 6-amino-1-n-propyluracil (116d) and 6-amino-1,3-di-n-propyl-2-thiouracil (16c), respectively, were suspended in a mixture of water (100 ml) and EtOH (20 ml) and heated to 50°C. Then NaNO₂ (4 g) was added and the stirring mixture acidified by dropwise addition of AcOH (5 ml) whereby intermediary solution with strong coloration takes place. A red to violet coloured precipitate consisting of the corresponding 5-nitroso derivative was formed. The solid was collected after cooling (85-90%) and used directly for reduction to the anticipated N-alkyl-5,6-diaminouracil (69b, 52b, 53b, 71b, 116c, 16b). 0.05 mol of the 6-amino-N-alkyl-5-nitrosouracil derivative was added under stirring to a warm solution (50°C) of ammonium sulfide (25 ml) and then the temperature raised to 80°C for 15 mm. On cooling the resulting precipitate was filtered off by suction, washed with water and little MeOH and then dried in a vacuum desiccator to give 75-90% of colorless to yellowish crystals.

b) 6-Amino-5-methylamino-1-neopentyluracil (70b). 6-Amino-1-neopentyluracil (70c) (3.94 g, 0.02 mol) was treated in AcOH (40 ml) at 80°C in presence of NaOAc x 3 H₂O (2.6 g, 0.02 mol) with bromine (3.2 g, 0.02 mol) by dropwise addition. After 2 hours was cooled, the precipitate (75%) collected, washed with water and dried. 6-Amino-5-bromo-1-neopentyluracil (2.76 g, 0.01 mol) was then stirred in a 40% aqueous methylamine solution (80 ml) at room temp. for 2 days. The mixture was evaporated to half its volume and the precipitate collected. Washing with water and drying in a desiccator yielded 2.05 g (90%) of 70b. M.P. 217-220°C.

25 Syntheses of N-alkyl-6-aminouracils.

[0017] 6-Amino-1-neopentyluracil (70c). N-neopentyluraci (13.0 g, 0.1 mol) and ethyl cyanoacetate (10 ml) were heated in 4N NaOEt (100 ml) for 4 hours under reflux. The reaction mixture was evaporated to dryness, the residue treated with water (100 ml) and then acidified with AcOH to pH 4-5 to form a colorless precipitate. Yield: 11.2 g (59%). [0018] 6-Amino-3-methyl-1-neopentyluracil (69c). 6-Amino-1-neopentyluracil (90c) (5.9 g, 0.03 mol) were dissolved in 1 N NaOH (50 ml) and then unredr vigorous stirring dimethylsulfate (3.9 ml, 0.033 mol) dropwise added at room temp. A precipitate separated and was collected after 2 hours. After washing with water and drying in a vacuum desiccator resulted 5.76 g (91%) of colorless crystals.

[0019] 6-Amino-3-methyl-1-n-Isopropyluracil (71c). 6-Amino-1-isopropyluracil (16.9 g, 0.1 mol) were dissolved in 1 N NaOH (120 ml) and then at room temp. dimethylsulfate (12 ml, 0.12 mol) dropwise added with vigorous stirring. After 1 hour the precipitate was collected, washed with water and dried at 50°C in high vacuum to give 15.1 g (82%) of chromatographically pure, colorless crystals.

[0020] 6-Amino-1-n-propyluracil (116d). N-n-propylurea (20.4 g, 0.2 mol) and ethyl cyanoacetate (20 ml) were heated in 3 N NaOMe (200 ml) for 3 hours under reflux. The reaction mixture was evaporated, the residue treated with 100 ml of water and acidified with AcOH to pH 4 to give 23.7 g (70%) of colorless crystals.

[0021] 6-Amino-1,3-di-n-propyl-2-thiouracil (16c). To a mixture of cyanoacetic acid (10 g) and acetic anhydride (50 ml) was added N,N'-di-n-propylthiourea (16 g, 0.01 mol) and stirred at 60°C for 4 hours. It was evaporated to dryness, the residue treated with 30% NaOH (100 ml) for 30 min, then diluted with water (100 ml) and the precipitate collected. Recrystallization from EtOH/water gave 18 g (79%) of yellowish crystals. The same procedure and started from N,N'-di-n-propylurea yielded 6-amino-1,3-dimethyluracil (52c) and 6-amino-1,3-di-n-propyluracil (53c) respectively as colorless crystals.

[0022] Compoundnumbers 25 and 26 (table I and table III) were obtained by a general procedure for the sythesis of 1-(5-hydroxyhexyl)xanthines.

50

[0023] 3,7-Dialkyl-1-(hexan-5-onyl)xanthine (2 mmol) was dissolved in MeOH (15 ml) and then created under stirring with NaBH₄ (0.1 g) overnight. The mixture was evaporated to dryness, the residue diluted with H₂O, then extracted several times with CHCl₃. The CHCl₃ layer was dried over Na₂SO₄, filtered and the filtrate again evaporated to give a chromatographically pure solid. The solid was stirred in n-hexane for 1 h, then filtered by suction and dried in a vacuum destillator to give a colorless crystal powder.

[0024] Compounds 19, 20 and 66 were obtained by methylation of 55, 57 and 64 respectively. 0.01 Mol of the purine 55, 57 and 64, respectively, was dissolved in DMF (120 ml) by warming. After cooling to room temperature K_2CO_3 (7 g) and methyl iodide (2 ml) were added and then the mixture stirred for 3 hours. The solution was then diluted with H_2O (150 ml) and after cooling the precipitate collected, washed with water and dried. Recrystallization from EtOH/ H_2O gave colorless crystals in 75-90% yield. M.p. 198°C (19), 298°C (20) and 197°C (66).

[0025] The synthesis of compound 32 is based on compound 33, which is described in literature [K.A. Jacobson, K.L. Kirk, W.L. Padgett, J.W. Daly, J. Med. Chem. 1985, 28, 1334]. Compound 33 (2.14 g, 0.005 mol) was suspended in abs. pyridine (50 ml) and then under stirring chlorosulfonic acid (4 ml) added dropwise. It was heated to 50°C with stirring for 12 hours. The reaction mixture was evaporated in vacuum, coevaporated twice with EtOH and the residue recrystallized from H₂O/EtOH to give 1.95 g (77%) of 32 of a colorless crystal powder. M.p. 245°c.

Materials and methods

5

10

30

40

[0026] Various models may be used for testing an immunosuppressive effect. In vivo, for example, different transplantation models are available. They are strongly influenced by different immunogenicities, depending on the donor and recipient species used and depending on the nature of the transplanted organ. The survival time of transplanted organs can thus be used to measure the suppression of the immune response. In vitro, there exist also various models. The most used are lymphocyte activation tests. Usually activation is measured via lymphocyte proliferation. Inhibition of proliferation thus always means immunosuppression under the experimental conditions applied. There exist different stimuli for lymphocyte activation:

- coculture of lymphocytes of different species (MLR = mixed lymphocyte reaction): lymphocytes expressing different minor and major antigens of the HLA-DR type (= allogens) activate each other non-specifically.
- CD3 assay: here there is an activation of the T-lymphocytes via an exogenously added antibody (OKT3). This antibody reacts against the CD3 molecule located on the lymphocyte membrane. This molecule has a costimulatory function. The interaction anti-CD3 (= OKT3)-CD3 results in T-cell activation which proceeds via the Ca²+/calmodulin/cacineurin system and can be inhibited by CyA.
- CD28 assay: here specific activation of the T-lymphocyte goes also via an exogenously added antibody against the
 CD28 molecule. This molecule is also located on the lymphocyte membrane, and delivers strong costimulatory signals. This activation is Ca²+-independent and thus cannot be inhibited by CyA.
- IL-2R assay: here activation of the lymphocyte occurs via the exogenously added cytokine IL-2 which binds to the IL-2 receptor (IL-2R) that is located on the lymphocyte membrane of prestimulated T cells. This activation is also Ca²+/cAMP-independent and cannot be inhibited by CyA.

Reagents

[0027] All derivatives were dissolved in 0.5 ml DMSO and further diluted in culture medium before use in in vitro experiments. The culture medium consisted of RPMI-1640 + 10% FCS.

Mixed Lymphocyte Reaction

[0028] Peripheral blood mononuclear cells (PBMC) were isolated from heparinized peripheral blood by density gradient centrifugation over Lymphoprep (Nycomed, Maorstua, Norway). Allogeneic PBMC or EBV-transformed human B cells [RPMI1788 (ATCC name CCL156)] which strongly express B7-1 and B7-2 were used as stimulator cells after irradiation with 30 Gy. MLR was performed in triplicate wells. After 5 days incubation at 37°C, 1 μ Ci [3 H]-thymidine was added to each cup. After a further 16 hours incubation, cells were harvested and counted in a β -counter. [0029] The percent suppression of proliferation by drugs was counted using the formula:

10

Per cent inhibition =
$$\frac{\text{(cpm+drugs)} - \text{cpm Cult.Med.)}}{\text{(cpm-drugs)} - \text{cpm Cult.Med.)}} \times 100$$

T cell purification

15

[0030] T cells were purified by removing non-T cells. Briefly, monocytes were removed by cold agglutination. The resulting lymphoid cells were further purified by a cell enrichment immunocolumn [Cellect Human T (Biotex, Edmonton, Alberta, Canada)] by a process of negative selection. More than 95% of the B cells were removed with this procedure. After depletion, the resulting T cell preparation was highly purified explaining these cells could not be activated by PHA or rIL-2 alone at concentrations capable of stimulating RBMC prior to deletion.

Measurements of T cell proliferations induced by anti-CD3 mAb + PMA or anti-CD28 mAb + PMA

[0031] Highly purified T cells (10⁶/ml) were stimulated by immobilized anti-CD3 or anti-CD28 mAb in the presence of PMA. Anti-CD3 mAb (CLB-CD3; CLB, Amsterdam, The Netherlands) were fixed on the 96-microwell plates by incubating the wells with 50 μl of mAb solution (CLB-CD28; CLB, Amsterdam, The Netherlands) 50 μl (1/650 dilution in culture medium) was added directly to the wells. Further, 20 μl PMA (Sigma, St. Louis, MO, USA) solution (final concentration: 0.5 ng/ml) was added. Subsequently, 20 μl of immunosuppressants were added by serial dilution in triplicate wells. Finally 100 μl of the T cell suspension (10⁶/ml) was added. After 48-hour incubation at 37°C in 5% CO₂ 20 μl BrdU (100 μM solution) (Cell Proliferation Elisa, Boehringer-Mannheim Belgium) was added to each well. After a further overnight incubation the T cell proliferation was measured using a colorimetric immunoassay for qualification of cell proliferation based on measurements of the incorporation of BrdU during DNA synthesis. The optical density (OD) was measured by a Behring EL311 place reader at 450 nm (reference wavelength: 690 nm). The percent suppression of proliferation by drugs was counted using the formula:

35

50

Per cent inhibition =
$$\frac{\text{(OD+drugs)} - \text{(OD Cult. Med.)}}{\text{(OD-drugs)} - \text{(OD Cult. Med.)}} \times 100$$

In vitro immunosuppressive effect of Xanthine Derivatives as measured with the MLR and with tests involving polyclonal

T cell proliferation induced by anti-CD3 mAb + PMA or anti-CD28 mAb + PMA (table VI)

[0032]

- 45 In the tabe VI column II shows the IC50 values of the various substances in the MLR. The IC50 value represents the lowest concentration of the substances that resulted in a 50% suppression of the MLR.
 - Column III shows the IC50 value of the various substances for the anti-CD3 mAb + PMA pathway and row IV the IC50 values of the various substances for the anti-CD28 mAb + PMA pathway.
 - As a comparison the values of other immunosuppressants: CsA, FK506, Rapamycin, Leflunomide and Mycophenolic acid are given as well.

[0033] Whole Blood Assay (WBA): WBA is a lymphoproliferation assay performed in vitro but using lymphocytes present in whole blood, taken from animals that were previously given test substances in vivo. Hence it reflects the in vivo effect of substances as assessed with an in vitro read-out assay.

[0034] Rats: inbred, male 6- to 8-weeks old R/A rats weighing ± 200 g were used as recipients.

[0035] Drug administration: Xanthine derivatives were dissolved in DMSO and further diluted with PBS. Products were given orally in different concentrations 2 times a day for 2 days. To perform the experiments, 6-8 hours after the last administration 1 ml of blood is taken by heart puncture after ether anesthesia and anticoagulated with 100 U/ml of

preservative free heparine.

[0036] Whole Blood Assay: This assay was performed as we described previously [Use of the Methylxanthine Derivatives A802715 in Transplantation Immunology. II In vitro Experiments. (Yuan Lin, et al., Transplantation 1997, 63, No. 12, 1734-1738)].

[0037] Heparinized whole blood was diluted (1:25) with complete RPMI medium and stimulated with 15 μg/ml of concanavalin A (Con A) in triplicate wells in 96-well microtiter plates at 37°C and 5% CO₂. After 96-h culture, proliferation was determined by measuring the incorporation (cpm) of [³H]-thymidine.

[0038] The Con A induced proliferation of lymphocytes taken from rats receiving the test substances (exp) was compared with that from rats receiving only the solvent (con). The percent suppression was calculated as follows:

% sup pression:100- $\left[\frac{\text{cpm exp}}{\text{cpm con}}x100\right]$

15

20

10

Resu	ults		
Nr	% suppression	Administration of drugs	Blood taken after:
11	33	40mg/kg/d 2x/d 2d	8 h
14	86	40mg/kg/d 2x/d 2d	8 h

[0039] First, most of the substances according to the invention have a clear suppressive effect in the MLR (mixed lymphocyte reaction). The MLR is considered as an in vitro analogue of the transplant rejection as it is based on the recognition of allogeneic MHC (major histocompatibility antigens) on the stimulator leucotyes, by responding lymphocytes. Various established immunosuppressive drugs are known to suppress the MLR, and were also shown in this description. Further, the 8-substituted xanthine derivatives are more effective than the non-substituted.

[0040] From these data it can be deduced that the 8-substituted xanthine derivatives may be effective in clinical situations where other immunosuppressants are active as well.

[0041] These include the prevention and/or treatment of organ transplant rejection, the prevention and/or treatment of both rejection and the occurrence of graft-versus-host-disease after BM transplantation; the prevention and/or treatment of autoimmune diseases including diabetes mellitus, multiple sclerosis, glomerulonephritis, rheumatoid arthritis, proriasis systemic diseases such as vasculitis; scleroderma, polymyositis, autoimmune endocrine disorders (thyroiditis), ocular diseases (uveitis), inflammatory bowel diseases (Crohn's disease, colitis uclerosa), autoimmune liver diseases (autoimmune hepatitis, primary biliary cirrhosis) autoimmune pneumonitis and auto-immune carditis.

[0042] Whereas cyclosporine A and FK506 are only active in the anti-CD3 + PMA test, the 8-substituted xanthine derivatives according to the invention were active, not only in the anti-CD3 + PMA but also in the anti-CD28 + PMA test. It has been shown that the latter is Ca-calmodulin resistant, and resistant to CsA and FK506. The anti-CD28 + PMA pathway has also been called the cosignal pathway and is important to induce energy and even tolerance in T cells. Moreover, representative compounds have been found to be active in a whole blood assay.

[0043] Under the term "organ" in the description is understood all organs or parts of organs (even several) in mammals, in particular humans, for example kidney, heart, skin, liver, muscle, cornea, bone, bone marrow, lung, pancreas, intestine or stomach.

[0044] After organ transplantation, rejection of the transplanted organ by the recipient occurs (host-versus-graft reaction). After bone marrow transplantation, also rejection of the host by the grafted cell may occur (graft-versus-host reaction). Rejection reactions mean all reactions of the recipient body or of the transplanted organ which in the end lead to cell or tissue death in the transplanted organ or adversely affect the functional ability and viability of the transplanted organ or the recipient. In particular, this means acute and chronic rejection reactions.

[0045] Auto-immune disorders include, inter alia, systemic lupus erythematosus, rheumatoid arthritis, psoriasis, pemphigus, atopic dermatitis, myositis, multiple sclerosis, nephrotic syndrome (in particular glomerulonephritis), ulcerative colitis or juvenile diabetes.

The invention further relates to the use of cyclosporin A or FK506 or Rapamycine and at least one 8-substituted xanthine according to the invention for the production of a pharmaceutical for inhibiting the replication of viruses such as picorna-, toga-, bunya-, orthomyxo-, paramyxo-, rhabdo-, retro-, arena-, hepatitis B-, hepatitis C-, hepatitis D-, adeno-, vaccinia-, papilloma-, herpes-, varicella-zoster-virus or human immunodeficiency virus (HIV); or for treating of

cancer such as lung cancers, leukaemia, ovarian cancers, sarcoma, Kaposi's sarcoma, meningioma, colon cancers, lymp node tumors, glioblastoma multiforme, prostate cancers or skin carcinoses.

[0047] The invention further relates to the use of cyclosporin A or FK506 or rapamycin and at least one xanthine of the general formula for the production of a pharmaceutical for the treatment of human after organ transplantation or of (auto)immune disorders.

[0048] Hence, the advantage to associate xanthine with other immunosuppressants may be that, first, the therapeutic spectrum of action of the individual components is quantitatively and qualitatively broadened. Secondly that it allows, by means of a dose reduction without reduced efficacy but with increased safety, that the treatment of immune disorders which were hitherto no indication for immunosuppressive therapy as a result of side effects may be considered. At the same time, the therapy costs can be decreased to an appreciable extent.

[0049] The prefered compounds according to the invention are the xantine derivates bearing on the 8-position a substituted or unsubstituted phenyl.

5				Z		•	ı	•	•	•	-SO2NHCH2CH:NM62	CF,	-SO ₂ NH(CH ₂),NEt ₂	CF,	-OCH2CONH(CH3)3NEt2	CF,	
15			-	\mathbf{Z}_1	н	Ħ	Ħ	×	= (90	- 		\		\	\$	Ÿ
20			_	*	0	0	0	0	0	0	0	0	0	0	0	0	0
25		-Z ₁ -Z ₂	_	×	0	0	0	0	0	0	0	0	0	0	0	0	0
30		χ – z – z – z – z – z – z – z – z – z –	: z-& -	R,	CH,	CH ₂ CmCH	CH, CaCH	CH,	CH ₂ C=CH	CH2-CH=CH2	Ħ	.	н	CH3	Ħ	сн,сн-сн,	н
35		L.	_	R3	ć,	Ğ,	CH,CeCH	СН,СыСН	CH ₂ C=CH	CH	СН,СН,СН,	æ,	сн,сн,сн,	ਲੌਂ	сн,сн,сн,	СН2СН2СН3	СН,СН,СН,
45			_	Ŗ,	CH ₂ CeCH	CH ₂ C=CH	CH,	CH,CaCH	CH2C=CH	CH ₂ -CH=CH ₂	CH2CH2CH3	CH,	сн,сн,сн,	CH2-CH=CH2	сн,сн,сн,	СН,СН,СН,	СН,СН,СН,
50	Table 1			Compound no	-	7		4	ĸ	00	٥	01	11	12	13	14	15

5	72	SO ₂ NH ₃	•			ı	SO ₃ Na	,	•	•	•	•	-оснусоон	-осн,соое	OCH2COOMe	ОСН,СОИН(СН,),,ЧНСОСН,	OCH2CONH(CH2);NHSO3H
15	2,	 	7	\Diamond	\$	\$	ф	Ħ	н	H	H	Ξ	ф	\$	\$	\$	\(\rightarrow
20	>	S	0	S	0	w	0	0	0	0	0	0	Ø	ø	0	0	•
25	×	0	Ø	Ø	0	0	0	0	0	0	0	0	0	0	0	0	0
30	R,	æ	Ĭ	×	ť	ĊH.	CH,	CH	CH,	City	CH,	СН,СН,СН,	×	×	æ	ж	x
35	R ₂	CH ₂ CH ₂ CH ₃	CH,	GI,	CH,	СН,	CH	.	ъ,	Э,	CH,	"H	СН,СН,СН,	CH2CH2CH3	CH,CH,CH,	СН,СН,СН,	СН,СН,СН,
45	Ā.	сн,сн,сн,	GH,	Ġ,	CH,	CH,	CH,CH=CH,	-(СН3),СООН	+(СН ₂),СООН	-(CH ₂),COOEt	-(СН ₂),СНОН-СН ₃	-(СН,),СНОН-СН,	-CH,CH,CH,	-CH2CH2CH3	СН,СН,СН,	СН,СН,СН,	СН,СН,СН,
50	Compound ne	16	17	18/	19	20	21	22	23	24	25	26	28	. 53	30	31	32

5	72	OCH2CONH(CH2)2-NH2	OCH2CONH(CH2)2NMe2	OCH3CONH(CH2)3NH2	-SO ₂ NH ₂	SO ₂ NH ₂	ноs	SO ₂ NH(CH ₂) ₂ NH ₂	SO ₂ NH(CH ₂) ₃ NM ₇₂	SO,NH(CH ₂),NMe ₂	SO ₂ NH(CH ₂) ₃ NMe ₂	SO ₂ NH(CH ₂) ₃ ,NE(₂	ı	•	
15	Ž	ф	\$	\$	\$	ф	ф	\$	ф	\$	\$	ф	9	9	
20	*	0	0	ω	0	0	0	0	o	0	0	0	s	0	•
25	×	0	0	0	0	0	0	0	0	0	0	0	0	s	s
30	Rs	Ξ	I	æ	ж	CH,	СН	н	I	z	×	×	r	×	æ
35	R ₂	СН,СН,СН,	сн,сн,сн,	сн,сн,сн,	сн,сн,сн,	CH,	СН	CH3	CH2CH2CH3	CH3	СН	СН	СН	CH,	СН,СН,
45	R	сн,сн,сн,	СН,СН,СН,	СН,СН,СН,	СН,СН,СН,	æ	I	CH,	CH,CH,CH,	CH	CH,	CH,	CH,	ĊH,	сн,сн,
50	Compound nº	33	34	35	36	37	90	39	40	41	42	43	4	84	46

5	72	•	CF,		CF,	ON .	, NO	NH ₂	•					
15	Z,		ф	9	ф	ø	\$	\$	\$	\$	\$	\Diamond	\Diamond	~
20	*	0	0	0	0	٥	0	0	0	0	σ 	0	0	<i>ω</i>
25	×	0	0	0	0	0	0	0	•	0	0	0	•	0
30	Ą	CH3	н	CH,	x	ж	æ	#	Ħ	ж	π	ж	π.	x
35	R	CH,	сн,сн,си,	CH,	CH,	CH	СН,СН,СН,	сн,сн,сн,	СН,	СН,СН,СН,	СН	СН,	CH,CH,CH,	CH,
45	æ	H	СН,СН,СН,	CH2CH=CH2	CH,	CH,	СН,СН,СН,	СН,СН,СН,	CH,	СН,СН,СН,	CH,	Ğ,	CH ₂ CH ₂ CH ₃	CH,
50	Compound no	47	84	20	15	52	83	\$	8	38	52		88	09

5	7	•	•	•	i	•	·	ı	•	•	•	•	ı	,	ı		CF,
10 15	Z,	Ĉ	γ	7	γ.	γ.	7	F	Ħ	I	I	Ξl	9	9	P	\$	\$
20	*	S	0	۰	Ø	s	Ø	•	•	0	0	0	0	0	•	ω	0
25	×	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
30	R³	H	x	x	x	#	ĊH,	CH ²	CH,	Ξ	CH,	×	E	CH,	т.		сн,сн=сн,
35	R,	СН,СН,СН,	.	СН,СН,СН,	GF,	СН,СН,СН,	ť	CH ₂ C⊕CH	CH,C(CH,),	CH ₂ -C(CH ₃),	CH,C(CH,),	-СН(СН3)	CH,	ć ,	СН,СН,СН,	CH ₂ CH ₂ CH ₃	ć ,
40	Ri	CH2CH2CH3	£	сн,сн,сн,	ť	CH2CH2CH3	CH,	сн,	CH,	CH3	×	CH,	CH,	"	СН,СН,СН,	СН,СН,СН,	СН,
45	Compound ne	19	62	63	**	\$9	99	67	89	69	0,	п	78	79	98	 16	83

5	72	CF,	•	•	•	9	9	9	ō	ō	-SO ₂ NH ₂
15	ž	ф	P	9	P	\$	\$	\$	\$	\$	\$
20	>	0	0	0	0	0	0	0	0	0	0
25	×	0	0	0	0	0	0	0	0	0	٥
30	R,	СН3	сн,сн,сн,	СН,СН,СН,	сн,-сн=сн,	н	СН,СН,СН,	CH2-CH=CH2	сн,сн,сн,	CH ₂ -CH=CH ₂	Ξ
35	R	CH,	CH,	CH2CH2CH3	-CH ₂ CH ₂ CH ₃	ę,	СН,СН,СН,	сн,сн,сн,	CH ₂ CH ₂ CH ₃	СН2СН3СН3	CH,
45	Rı	Ħ	CH,	сн,сн,сн,	CH2-CH*CH2	GH,	СН,СП,СН,	CH ₂ -CH=CH ₂	сн,сн,сн,	CH2-CH=CH3	Ж
50	Compound n°	83	112	113	114	115	116	117	118	119	125

fable II

		R ₁	R ₂	R ₃	Zı	Z ₂	Мр
	la	Н	CH ₃	CH ₃	Н	-	
15	l	HC=C-CH₂	CH ₃	CH ₃	Н	-	204°
	2a	Н	CH ₃	Н	Н	-	
	2	HC=C-CH ₂	CH ₃	HC≡C-CH ₂	Н	-	177°
20	3 a	CH ₃	Н	н	Н	•	
	3	CH ₃	HC≡C-CH₂	HC≡C-CH ₂	Н	-	1 74°
	4a	Н	Н	CH ₃	Н	-	
	4	HC=C-CH₂	HC≡C-CH₂	CH ₃	Н	-	172°
25	5a	Н	H	Н	H	-	
	5	HC≡C-CH ₂	HC≡C-CH ₂	HC=C-CH₂	н	•	155°
	22	HOOC(CH ₂) ₄	CH ₃	CH ₃	Н	-	195°
30	23	HOOC(CH ₂) ₃	CH ₃	CH ₃	Н	•	208-210°
30	24	EtOOC(CH ₂) ₃	CH ₃	CH ₃	Н	-	86-88°
	67a	CH ₃	Н	CH ₃	Н	-	
	67	CH ₃	HC≡C-CH ₂	CH ₃	Н	-	
35	68a	н	CH ₂ C(CH ₃) ₃	Н	Н	•	
	68	CH ₃	CH ₂ C(CH ₃) ₃	CH ₃	Н	•	158°
	82a	СН₃	CH₃	Н	-C ₆ H ₄ -	p-CF ₃	
40	82	CH ₃	CH ₃	CH₂=CHCH₂	-C ₆ H ₄ -	p-CF ₃	116-118°
	112a	CH ₃	CH ₃	Н	-C ₆ H ₅	•	
	112	CH ₃	CH₃	CH₃CH₂CH₂	-C ₆ H ₅	· -	141°
45	113a	Н	CH₃CH₂CH₂	Н	-C₅H₅	•	
45	113	CH₃CH₂CH₂	CH₃CH₂CH₂	CH₃CH₂CH₂	-C₄H₅	-	123-125°
	114a	н	CH₃CH₂CH₂	Н	-C ₆ H ₅	•	
	114	CH2=CHCH2	CH₃CH₂CH₂	CH ₂ =CHCH ₂	-C ₆ H ₅	•	113-114°
50	116a	Н	CH₃CH₂CH₂	Н	-C₀H₄	p-C ₆ H ₅	
	116	CH₃CH₂CH₂	CH₃CH₂CH₂	CH₃CH₂CH₂	-C₅H₄	p-C ₆ H ₅	116°

		R_t	R ₂	R ₃	Z ₁	Z ₂	Мр
5	117a	Н	CH₃CH₂CH₂	Н	-C ₆ H.	p-C ₆ H ₅	
	117	CH₂=CHCH₂	CH₃CH₂CH₂	CH₂=CHCH₂	-C ₆ H ₄	p-C ₆ H ₅	104-106°
	118a	Н	CH₃CH₂CH₂	н	-C ₆ H₄	p-Cl	
	118	CH₃CH₂CH₂	CH₃CH₂CH₂	CH₃CH₂CH₂	-C ₆ H ₄	p-Cl	71-74°
10	119 a	Н	CH₃CH₂CH₂	Н	-C ₆ H ₄	p-Cl	
	119	CH₂=CHCH₂	CH₃CH₂CH₂	CH₂=CHCH₂	-C ₆ H ₄	p-Cl	89-91°

Table III

	R ₁	R ₂	R ₃	Х	Z ₁	Z ₂	Мр
16	CH ₃ CH ₂ CH ₂	CH ₃ CH ₂ CH ₂	Н	S	-C ₆ H ₄	p-SO ₂ NH ₂	> 300°
25	CH ₃ CHOH(CH ₂) ₄	CH ₃	CH ₃				118-120°
26	CH₃CHOH(CH₂)₄	CH ₃	CH ₃ CH ₂ CH ₂				72-74°
52	CH ₃	CH ₃	Н	0	-C ₆ H ₄	p-NO ₂	275°
53	CH ₃ CH ₂ CH ₂	CH ₃ CH ₂ CH ₂	Н	0	-C ₆ H ₄	p-NO ₂	> 270°
54	CH ₃ CH ₂ CH ₂	CH ₃ CH ₂ CH ₂	Н	0	-C ₆ H₄	p-NO ₂	> 300°
69	CH ₃	CH ₂ C(CH ₃) ₃	н	0	н	•	234°
70	н	CH ₂ C(CH ₃) ₃	CH ₃	0	н		248°
71	CH₃	CH(CH ₃) ₂	н	0	н	-	230°
115	CH₃	CH ₃	Н	0	-C ₆ H ₄ -	p-C ₆ H ₅	> 300°

5		M.p.	268-270°		>250° dec		235-237°		267-270°	288-290°	180°	269-272°
10		7	p-CaHSO2NH2	p-C _e H ₄ -NO ₂	p-C _e H _e -NO ₂	p-C.HNH2	I	I	H			5
15	R2 -NCOZ -NH2	Х	S	0	0	0	0	0	0	0	0	0
20	ğ- z z z	R³	Н	H	H	Н	H	Н	CH	H	I	Ξ
	ž-	R¹	n-Pr	ğ	n-Pr	n-Pr	Me	CH3	I	H	Me	I
25		R	n-Pr	Me	n-Pr	n-Pr	CH2CMea	CHIMe2	CH ₂ CMe ₃	n-Pr	Me	n-Pr
30	g-r T		16a	52a	53a	S48	69a	71a	70a	116b	115a	118b
35	⊙=√Z-α Z-α	×	S	0	0	0	0	0	0			
40	æ ×	R²	Н	H	H	H	H	Me	H		· .	÷į
	·	R¹	n-Pr	Me	n-Pr	Ψe	ğ	H	Ή			
45	>	R	n-Pr	Me	n-Pr	CH ₂ CMe ₃	CHIMes	CH2CMes	n-Pr			
50	Table IV		16b	52b	23 b	969	71b	70b	116c			

5 10	Q= 2½-	X X X X X X X X X X X X X X X X X X X	R ¹ R ³ X M.p.	H Me 0 >237° dec	Me II O 108-110°	n-Pr H S 110-113°	Ме н О	n-Pr H O	Ме Н О	о н н
20		†	ĸ	CH ₂ CMe ₃	CH ₂ CMe ₃		Me	n-Pr	CHMe2	n-Pr
25	O=	ON THE X	<u>-</u>	70b	q 69	16b	52b	53b	71b	116c
30 35		†	×	0	0	S	0	0	0	0
40	0=	Z-a	· ~	H	Me	n-Pr	Me	n-Pr	Me	표
4 5		ž ×	_~	CH ₂ CMe ₃	CH ₂ CMe ₃	n-Pr	Me	n-Pr	CHIMes	n-Pr
50	ble V			70c	369	16c	52c	53c	71c	116d

Table VI

5	Nr IC50 in μM			Nr		IC50 in μM		
5		Xanthine	derivatives			Xanthine	derivatives	
		MLR	aCD3	aCD28		MLR	aCD3	aCD28
10	1	> 200	150	> 200	25	> 200	140	160
	2	> 200	> 200	100	26	100	100	100
	3	150	150	100	28	120	150	75
	4	> 200	90	> 200	29	> 200	150	130
15	5	> 200	50	> 200	30	> 200	140	100
	8	30	35	80	31	200	120	80
	9	25	40	50	32	70	90	110
20	10	50	20	30	33	160	45	35
	11	25	40	55	34	105	45	60
	12	30	90	80	35	50	50	70
25	13	ND	35	40	36	> 200	45	40
25	14	15	40	35	37	> 200	150	150
	15	ND	> 200	170	38	> 200	120	120
	16	ND	25	20	39	100	120	140
30	17	80	30	40	40	25	60	70
	18	120	75	40	41	120	80	90
	19	ND	50	80	42	170	130	130
35	20	ND	170	50	43	115	120	90
35	21	ND	180	80	44	120	170	120
	22	> 200	> 200	> 200	45	165	25	25
	23	> 200	> 200	> 200	46	> 200	25	20
40	24	> 200	170	150				

45

50

55

ek.

EP 0 956 855 A1

	Nr		IC50 in µN	1	Nr		IC50 in μN	1
5		Xanthine	derivatives			Xanthine	derivatives	
	•	MLR	aCD3	aCD28		MLR	aCD3	aCD28
	47	200	140	140	77	130		-
10	48	180	160	150	78	> 200	> 200	> 200
	49	ND	ND	ND	79	75	100	130
	50	180	200	120	80	160	120	65
15	51	200	200	200	81	> 200	180	110
	52	80	180	90	82	25	80	80
	53	110	160	110	83	> 200	> 200	150
20	54	120	130	130	112	20	45	40
20	55	> 200	200	120	113	20	110	90
	56	> 200	170	100	114	15	85	70
	57	> 200	> 200	180	115	110	> 200	160
25	58	> 200	160	170	116	160	45	40
	59	15	155	135	117	15	30	30
	60	> 200	200	190	118	15	15	20
30	61	100	170	110	119	15	50	30
	62	> 200	> 200	190	125	160	150	90
	63	> 200	135	100	132	> 200	> 200	> 200
	64	> 200	> 200	> 200				
35	65	> 200	135	75				
	66	> 200	170	170				
	67	> 200	> 200	200				
40	68	75	130	120				
	69	120	110	45		ú,		
	70	> 200	180	140			•	
45	71	160						

I.S.		IC50	
In	nmunosuppre	ssant	
	MLR	aCD3	aCD28
СуА	20 nM	50 nM	N.S.
FK506	l nM	l nM	N.S.
Rapamycin	l nM	l nM	l nM
Leflunomide	25 μΜ	15 μΜ	20 μΜ
Mofetil	<0.5µM	50 nM	50 nM

N.S. = not suppressive even not in the highest concentration

30 Claims

5

10

15

20

25

35

40

50

55

1. Use of a xanthine derivative of general formula (I):

$$\begin{array}{c|c}
X & R_3 \\
\hline
 & N & Z_1 - Z_2 \\
\hline
 & R_2 & \end{array}$$

45 wherein:

 R_1 , R_2 and R_3 are independently hydrogen, saturated or unsaturated aliphatic chains which may be straight or branched having 1 to 6 carbon atoms;

X and Y are independently oxygen or sulfur;

 Z_1 is selected from the group comprising a thienyl; furanyl; cyclopentyl, phenyl or a substituted by Z_2 or unsubstituted phenyl; wherein Z_2 is selected from the group comprising phenyl; sulfonic acid; unsubstituted or N-substituted sulfonamide with substituents such as alkyl, aminoalkyl where the amino group may be substituted itself with lower alkyl groups bearing 1 to 4 carbon atoms; nitro; halogen substituted or unsubstituted amino group; aliphatic chain with 1 to 3 carbon atoms; halogenated aliphatic chain with 1 to 3 carbon atoms; aliphatic chain containing ether functions, acids, esters, amides, substituted or unsubstituted amines having 1 to 3 carbon atoms, nitro, sulfonamides or a combination of these functional groups With a maximum length of the chain of 12 atoms,

or a pharmaceutically acceptable salt thereof for the manufacture of a medicament for the treatment of auto-

immuno disorders.

2. Use according to claim 1, wherein

10

```
5 R<sub>1</sub>, R<sub>2</sub> and R<sub>3</sub> are independently hydrogen; saturated or unsaturated straight aliphatic chains having 1 to 3 carbon atoms; and
```

Z₁ is a substituted or unsubstituted phenyl.

3. Use according to claim 1 or 2, wherein the xanthine derivative is compound selected from the group comprising:

```
1,7-diallyl-3-methyl-8-fenylxanthine (8);
1,3-dipropyl-8-[4(dimethylamino(ethyl(amino(sulfonyl))))fenyl]xanthine (9);
1,3,7-trimethyl-8-(4-trifluoromethylfenyl)xanthine (10);
1,3-dipropyl-8-[4(diethylamino(propyl(amino(sulfonyl))))fenyl]xanthine (11);
15
1,3-dipropyl-8-[4-dimethylamino(propyl(amino(sulfonyl))))fenyllxanthine (40);
1,3-dipropyl-8-[4-dimethylamino(propyl(amino(sulfonyl))))fenyllxanthine (40);
1,3-dimethyl-7-propyl-8-fenylxanthine (112);
1,7-diallyl-3-propyl-8-(4-chlorofenyl)xanthine (118);
20
1,7-diallyl-3-propyl-8-(4-chlorofenyl)xanthine (119).
```

- 4. Product containing a compound according to any of the preceding claims 1-3 and at least a compound selected from the group comprising cyclosporine A, FK506, Rapamycin, Leflunomide, Mofetil.
- 25 5. Use of a product according to claim 4, as a combined preparation for simultaneous separate or sequential use in the treatment of auto-immuno disorders.
 - 6. Compound having the formula:

```
30
             1-propynyl-3,7-dimethylxanthine (1);
             1,7-dipropynyl-3-methylxanthine (2);
             1-methyl-3,7-dipropynylxanthine (3);
             1,3-dipropynyl-7-methylxanthine (4);
             1.3.7-tripropynylxanthine (5):
35
             1-(4-carboxybutyl)-3,7-dimethylxanthine (22);
             1-(3-carboxypropyl)-3,7-dimethylxanthine (23);
             1-(3-ethoxycarbonyl)propyl-3,7-dimethylxanthine (24);
             1,7-dimethyl-3-propynylxanthine (67);
             1,7-dimethyl-3-((tertbutyl)methyl)xanthine (68);
             1,3-dimethyl-7-allyl-8-[(4-trifluoromethyl)fenyl]xanthine (82);
40
             1,3-dimethyl-7-propyl-8-fenylxanthine (112);
             1,3,7-tripropyl-8-fenylxanthine (113);
             1,7-diallyl-3-propyl-8-fenylxanthine (114);
             1,3,7-tripropyl-8-(p-bifenyl)xanthine (116);
             1,7-diallyl-3-propyl-8-(p-bifenyl)xanthine (117);
45
             1,3,7-tripropyl-8-(4-chlorofenyl)xanthine (118);
             1,7-diallyl-3-propyl-8-(4-chlorofenyl)xanthine (119).
```

7. Compound having the formula:

```
1-propynyl-3,7-dimethyixanthine (1);
1,7-dipropynyl-3-methylxanthine (2);
1-methyl-3,7-dipropynylxanthine (3);
1,3-dipropynyl-7-methylxanthine (4);
55 1,3,7-tripropynylxanthine (5).
```

8. Compound having the formula:

		1-(4-carboxybutyl)-3,7-dimethylxanthine (22); 1-(3-carboxypropyl)-3,7-dimethylxanthine (23); 1-(3-ethoxycarbonyl)propyl-3,7-dimethylxanthine (24).
5	9.	Compound having the formula:
10		1,3-dimethyl-7-allyl-8-[(4-trifluoromethyl)fenyl]xanthine (82); 1,3-dimethyl-7-propyl-8-fenylxanthine (112); 1,3,7-tripropyl-8-fenylxanthine (113); 1,7-diallyl-3-propyl-8-fenylxanthine (114); 1,3,7-tripropyl-8-(p-bifenyl)xanthine (116).
	10.	Compound having the formula:
15		1,7-diallyl-3-propyl-8-(p-bifenyl)xanthine (117); 1,3,7-tripropyl-8-(4-chlorofenyl)xanthine (118); 1,7-diallyl-3-propyl-8-(4-chlorofenyl)xanthine (119).
20	11.	Use of a compound according to any of the claims 7-10, for the manufacture of a medicament for the treatment of auto-immuno disorders.
25		
30		
35		
40		
45		
E 0		
50		
55		

EUROPEAN SEARCH REPORT

Application Number

EP 98 20 1323

Category	Citation of document with of relevant pas	indication, where appropriate, sages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CI.6)	
A A	WO 96 36638 A (CHIF 21 November 1996 EP 0 490 181 A (HOE 17 June 1992		A61K31/52 C07D473/06 C07D473/10		
A	M.H. HOLSCHBACH ET receptor antagonist positron emission t single-photon emiss J. MED. CHAM, vol. 41, no. 4, 199 XP002078914	comography and ion tomography."			
A	I.A. DOICHINOVA ET 8-substituted xanth receptor antagonist EUR. J. MED. CHEM., vol. 29, no. 2, 199 XP000574700	.S. "			
A	xanthines) and othe unsubstituted at th adenosine receptor. J. MED. CHEM.,	s (1,7-disubstituted er xanthines me 3-position: SAR at		SEARCHED (Int.Cl.6) A61K C07D	
	and 8-cyclalkyl sub activity of mono-,	di- and trisubstituted substitution at the 1-,			
	The present search report has	•			
	Place of search THE HAGUE	Date of completion of the search 29 September 1998	Kla	examiner ver, T	
X : partic Y : partic docur A : techr	ATEGORY OF CITED DOCUMENTS cularly relevant if taken alone cularly relevant if combined with another ment of the same category notogical background written disclosure	T : theory or principle E : earlier patent doc after the filing date	underlying the I sument, but public e the application or other reasons	rvention shed on, or	