Rules

Definition

 $y = \log_b x$ if and only if $x = b^y$ 1. $\ddot{3} = \log_2 8 \mid 8 = 2^3$

Inverse Property

$$\log_b b^x = x \& b^{\log_b x} = x$$

1.
$$\log_2 2^3 = 3$$

2. $2^{\log_2 3} = 3$

2.
$$2^{\log_2^{-3}} = 3$$

Change Base

$$\log_a v = \log_b v / \log_b a$$

 $\log_{100} 10 = \log_{10} 10 /$ 1. $\log_{10} 100 \\ 100^{x} = 10$ $\log_{10} 10 / \log_{10} 100 = 1/2$ x = 1/2 $10^x = 10$ $10^x = 100$ x = 1 x = 2

Product / Quotient Property

$$log_b A + log_b B = log_b A*B$$

 $log_b A - log_b B = log_b A/B$

1.
$$\log_2 4 + \log_2 8 = \log_2 32$$

a. $2 + 3 = 5$

2.
$$\log_3 27 - \log_3 9 = \log_3 3$$

a. $3 - 2 = 1$

Power Property

$$\log_b A^P = P * \log_b A$$

1.
$$\log_2 4^2 = 2*\log_2 4$$

a.
$$\log_2 16 = 2*\log_2 4$$

b.
$$4 = 2*2$$

Logarithms and Exponentials

Shengzhi Hu 2B

There are usually 2 things that are confusing about logarithms.

- 1. What exactly the logarithm does
- The difference between exponentials and polynomials

Formal Definition

The logarithm of a positive real number x with base b is the exponent by which b must be raised to yield x.

The difference between exponentials and polynomials

Exponentials and polynomials often get mixed up because they both utilize power.

Polynomials change the **base** of the power. (\mathbf{x}^2)

But exponentials change the **exponent** of the power. (2^x)

Therein lies the difference between roots and logs, logs return the **exponent** while roots return the **base**.

X	y = 2 ^x	x	y = log ₂ x
0	1	1	0
1	2	2	1
2	4	4	2

What the Logarithm does

A more concise definition than the formal one would be that the logarithm is the inverse function of $y = b^x$.

Inverse functions "undo" what the original function "did". In other words it returns the <u>input</u> from the <u>output</u>.

Ex.

f(x) = x + 2 (original function) $f(x)^{-1} = x - 2$ (inverse function) $f^{-1}(f(3)) = 3 \rightarrow (3 + 2) - 2 = 3$

The logarithm will return x (the input) given y and b (the result and unknowns) from the equation $y = b^x$

Put simply, Log is to the exponential (b^x) what subtraction is to addition.

Properties of Logarithms

Product Property

Use when simplifying

$$log a + log b = log a * b$$

1.
$$\log_2 4 + \log_2 8 = \log_2 32$$

a. $2 + 3 = 5$

Power Property

Use when simplifying

$$\log a^b = b * \log a$$

1.
$$\log_2 4^2 = 2*\log_2 4$$

a. $\log_2 16 = 2*\log_2 4$
b. $4 = 2*2$

Change of Base Formula

Use when your calculator doesn't support anything other than natural or common log.

$$\log_b x = \log x / \log b$$

1. $\log_2 10 = \log 10 / \log 2$

Quotient Property

Use when simplifying

$$log a - log b = log a / b$$

1.
$$\log_3 27 - \log_3 9 = \log_3 3$$

a. $3 - 2 = 1$

Inverse Property

Allows simplification when log or exponential is applied to both sides of an equation

$$log_b b^x = x \& b^{log_b x} = x$$

$$log_b b^x = x$$
 allows
 $4 = 2^{x+3}$

$$4 = 2^{x+3}$$

$$\log_2 4 = x + 3$$

$$x + 3 = 2$$

$$x = -1$$

$b^{\log_b x} = x$ allows

$$\log_2(x+3)=2$$

$$x + 3 = 2^2$$

$$x + 3 = 4$$

$$x = 1$$

Additional Examples

Example 1

$$\log_2(x/3) = \log_2 3$$

$$\log_2 x - \log_2 2 = \log_2 3$$
 — Quotient Property

$$\log_2 x = \log_2 2 + \log_2 3$$
 — Algebra

$$\log_2 x = \log_2 6$$
 — Product Property

Example 2

$$3^{x} = \log_{2} 8^{2}$$

$$3^x = 2 * log_2 8$$
 — Power Property

$$3^x = 6$$
 Evaluate

$$x = log_3 6$$
 — Inverse Property

$$x = log 6 / log 3$$
 — Change of Base Formula

Example 3

$$7^{\log_7 7} - \log_7 7^7$$

$$7^{\log_7 7} - 7 * \log_7 7$$
 — Power Property