5 The table shows some electrode half-equations and the associated standard electrode potentials.

Equation number	Electrode half-equation	E [⊕] /V
1 2	$Cd(OH)_2(s) + 2e^- \rightarrow Cd(s) + 2OH^-(aq)$ $Zn^{2+}(aq) + 2e^- \rightarrow Zn(s)$	-0.88 -0.76
3	$NiO(OH)(s) + H2O(I) + e- \rightarrow Ni(OH)2(s) + OH-(aq)$	+0.52
4 5	$MnO_2(s) + H_2O(l) + e^- \rightarrow MnO(OH)(s) + OH^-(aq)$ $O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O(l)$	+0.74 +1.23

5 (a)	In terms of	electrons,	state the	meaning of	the term	oxidising	agent
-------	-------------	------------	-----------	------------	----------	-----------	-------

(1 mark)

5 (b) Deduce the identity of the weakest oxidising agent in the table. Explain how E^{\ominus} values can be used to make this deduction.

Weakest oxidising agent

Explanation

(2 marks)

5 (c) The diagram shows a non-rechargeable cell that can be used to power electronic devices. The relevant half-equations for this cell are equations 2 and 4 in the table above.

5 (c) (i)	Calculate the e.m.f. of this cell.	
5 (c) (ii)	Write an equation for the overall reaction that occurs when the cell discharges.	(1 mark)
5 (c) (iii)	Deduce one essential property of the non-reactive porous separator labelled in diagram.	
5 (c) (iv)	Suggest the function of the carbon rod in the cell.	(1 mark)
5 (c) (v)	The zinc electrode acts as a container for the cell and is protected from externa damage. Suggest why a cell often leaks after being used for a long time.	(1 mark)
	Question 5 continues on the next page	(1 mark)

Turn over ▶

5	(d)	A rechargeable nickel–cadmium cell is an alternative to the cell shown in part (c). The relevant half-equations for this cell are equations 1 and 3 in the table on page 10.			
5	(d) (i)	Deduce the oxidation state of the nickel in this cell after recharging is complete. Write an equation for the overall reaction that occurs when the cell is recharged .			
		Oxidation state			
		Equation			
		(3 marks)			
5	(d) (ii)	State one environmental advantage of this rechargeable cell compared with the non-rechargeable cell described in part (c) .			
		(1 mark)			
5	(e)	An ethanol—oxygen fuel cell may be an alternative to a hydrogen—oxygen fuel cell. When the cell operates, all of the carbon atoms in the ethanol molecules are converted into carbon dioxide.			
5	(e) (i)	Deduce the equation for the overall reaction that occurs in the ethanol-oxygen fuel cell.			
		(1 mark)			
5	(e) (ii)	Deduce a half-equation for the reaction at the ethanol electrode. In this half-equation, ethanol reacts with water to form carbon dioxide and hydrogen ions.			
		(1 mark)			
5	(e) (iii)	The e.m.f. of an ethanol—oxygen fuel cell is 1.00 V. Use data from the table on page 10 to calculate a value for the electrode potential of the ethanol electrode.			
		(1 mark)			

5 (e) (iv)	Suggest why ethanol can be considered to be a carbon-neutral fuel.	
	(2 marks)	Γ

17

Turn over for the next question

Turn over ▶

