performed by Inna Williams

```
data Problem 5 1 5 5;
input X Y Z;
cards;
1 3 15
7 13 7
8 12 5
3 4 14
4 7 10
/* a */
proc corr data=Problem 5 1 5 5;
title "Pearson Correlation Coefficient Between X and Y, X and
Z";
var X;
with Y Z;
Run;
proc sgplot data=Problem 5 1 5 5;
scatter x=Z y=X;
run;
/* b */
proc corr data=Problem 5 1 5 5;
title "Pearson Correlation Coefficient Between variables X, Y
Z";
var X Y Z;
run;
```

Pearson Correlation Coefficient Between X and Y, X and Z

The CORR Procedure

2 With Variables:	ΥZ
1 Variables:	Х

Simple Statistics							
Variable	N	Mean	Std Dev	Sum	Minimum	Maximum	
Y	5	7.80000	4.54973	39.00000	3.00000	13.00000	
Z	5	10.20000	4.32435	51.00000	5.00000	15.00000	
х	5	4.60000	2.88097	23.00000	1.00000	8.00000	

	ation Coefficients, N = 5 under H0: Rho=0
	Х
Y	0.96509
	0.0078
Z	-0.97525
	0.0047

Interpretation Of X Vs Y and X vs Z

X vs Y R=0.96509 p=0.0078

This means that X and Y have Very strong

linear positive correlation. If Y increasing then

X also increasing.

X vs Z R=-0.97525 p=0.0047

This means that X and Y have Very strong

linear negative correlation. If Y increasing then

X decreasing.

Ho -> correlation =zero

Ha -> correlation not = zero

p-value < 0.0078, p=0.0047 (less then 0.05 level). This means that

we reject Ho We have an evidence that correlations

between X and Y, and X and Z is not zero.

Graph shows also that X and Y and X and Z have linear relationship.

Pearson Correlation Coefficient Between variables X, Y Z

The CORR Procedure

3 Variables: XYZ

Simple Statistics							
Variable	N	Mean	Std Dev	Sum	Minimum	Maximum	
х	5	4.60000	2.88097	23.00000	1.00000	8.00000	
Υ	5	7.80000	4.54973	39.00000	3.00000	13.00000	
Z	5	10.20000	4.32435	51.00000	5.00000	15.00000	

Pea	rson Correla Prob > r	tion Coeffici under H0: Rh	
	Х	Y	Z
X	1.00000	0.96509 0.0078	-0.97525 0.0047
Υ	0.96509 0.0078	1.00000	-0.96317 0.0084
Z	-0.97525 0.0047	-0.96317 0.0084	1.00000

Interpretation for X, Y, Z COrrelations

X vs Y R=0.96509 p=0.0078

This means that X and Y have Very strong linear positive correlation. If Y increasing then X is also increasing.

X Vs Z R=-0.97525 p=0.0047

This means that X and Y have Very strong linear negative correlation. If Z increasing then X is decreasing.

Y vs X R=0.96509 p=0.0078

This means that Y and X have Very strong linear positive correlation. If X increasing then Y is also increasing.

Y Vs Z R-0.96317 p=0.0084

This means that Y and Z have Very strong linear negative correlation. If Z increasing then Y is decreasing.

Z vs X R=0.97525 p=0.0047

This means that Z and X have Very strong linear positive correlation. If X increasing then

```
Z Vs Y R=0.96317 p=0.0084
This means that Z and Y have Very strong
linear negative correlation. If Y increasing then
Z is decreasing.
for each case above
Ho -> correlation =zero
Ha -> correlation not = zero
p-value < ... (less than 0.05 level). This means that
we reject Ho We have an evidence that correlations between X,Y Z
are not zero.
5 5 a
proc reg data=Problem 5 1 5 5;
title "Regression Y on X";
model Y=X;
Run;
```

Regression Y on X

Z is also increasing.

The REG Procedure Model: MODEL1 Dependent Variable: Y

Number of Observations Read 5 Number of Observations Used 5

Analysis of Variance							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Model	1	77.11928	77.11928	40.73	0.0078		
Error	3	5.68072	1.89357				
Corrected Total	4	82.80000					

Root MSE	1.37607	R-Square	0.9314
Dependent Mean	7.80000	Adj R-Sq	0.9085
Coeff Var	17.64195		

Parameter Estimates							
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t		
Intercept	1	0.78916	1.25920	0.63	0.5753		
Х	1	1.52410	0.23882	6.38	0.0078		

Regression Y on X

The REG Procedure Model: MODEL1 Dependent Variable: Y


```
5 5 b)
Intercept = 0.78916 \text{ prob}|t| = 0.5753
      = 1.52410 \text{ prob}|t| = 0.0078
Slope
5 5 c)
Ho -> slope is zero
Ha -> slope is not zero
p-value < 0.0078 (less than 0.05 level). This means that
we reject Ho We have an evidence that slope not equal zero
Ho -> intercept is zero
Ha -> Intercept is not zero
p-value = 0.5753 (> than 0.05 level). This means that
we fail to reject Ho We do not have enough evidence
to conclude that the slope is not equal zero.
5 3
data Problem 5 3;
input AGE SBP;
cards;
15 116
20 120
25 130
30 132
40 150
50 148
proc corr data=Problem 5 3;
title "Problem 5 3 SBP vs Age";
var SBP AGE;
Run;
```


SBP vs Age R=0.95258 p=0.0033

This means that SBP and AGE have Very strong
linear positive correlation. If AGE increasing then
SBP is also increasing.

Age vs SBP R=0.95258 p=0.0033

This means that AGE and SBP have Very strong
linear negative correlation. If SBP increasing then
AGE is also increasing.

8 180 98

```
8 168 88
16 160 80
16 172 86
16 170 86
32 140 80
32 130 72
32 128 70
;
proc reg data=DOSE_RESPONCE;
title 'Problem 5_8 Dose Response';
model SBP DBP =DOSE;
Run;
```

Problem 5_8 Dose Response

The REG Procedure Model: MODEL1 Dependent Variable: SBP Systolic Blood Pressure

> Number of Observations Read 12 Number of Observations Used 12

		Analysis of	Variance		
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	-1	4178.55854	4176.55854	103.61	<.0001
Error	10	403.10813	40.31081		
Corrected Total	11	4579.66887			

Root MSE	6.34908	R-Square	0.9120
Dependent Mean	163.83333	Adj R-Sq	0.9032
Coeff Var	3.87533		

Parameter Estimates							
Variable	Label	DF	Parameter Estimate		t Value	Pr > t	
Intercept	Intercept	1	188.82998	3.06430	61.62	<.0001	
DOSE	Dose	1	-1.69469	0.16649	-10.18	<.0001	

Problem 5_8 Dose Response

The REG Procedure Model: MODEL1 Dependent Variable: DBP Diastolic Blood Pressure

Number of Observations Read	12
Number of Observations Used	12

Analysis of Variance										
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F					
Model	1	1606.54100	1606.54100	47.10	<.0001					
Error	10	341.12587	34.11257							
Corrected Total	11	1947.88887								

Root MSE	5.84060	R-Square	0.8249
Dependent Mean	89.83333	Adj R-Sq	0.8073
Coeff Var	6.50159		

Parameter Estimates										
Variable	Label	DF	Parameter Estimate		t Value	Pr > t				
Intercept	Intercept	1	105.33843	2.81888	37.37	<.0001				
DOSE	Dose	1	-1.05108	0.15316	-6.86	<.0001				

Problem 5_8 Dose Response

The REG Procedure Model: MODEL1 Dependent Variable: SBP Systolic Blood Pressure

SBP VS DOSE

Intercept = 188.82998 Slope = -1.69469

DBP VS DOSE

Intercept = 105.33643 Slope = -1.05106

The daily attendance and the number of hot dog sales at a local ballpark are studied over a period of games. Given the following data, answer the following questions.

```
data DOG SALES;
input ATT SALES;
Label
   ATT="Attendance"
   SALES="Hot Dog Sales";
cards;
8747 6845
5857 4168
8360 5348
6945 5687
8688 6007
4534 3216
7450 5018
5874 4652
9821 7001
5873 3896
proc sgplot data=DOG_SALES;
title 'Dog Sales';
scatter x=ATT y=SALES;
Run;
```


(b) Find the correlation coefficient and test its significance.

```
proc corr data=DOG_SALES;
title 'Correlation Coefficient Dog Sales';
Var ATT SALES;
Run;
```

Correlation Coefficient Dog Sales The CORR Procedure 2 Variables: ATT SALES Simple Statistics Sum Minimum Maximum Label Variable N Mean Std Dev 10 7215 1879 72149 4534 9821 Attendance 3216 7001 Hot Dog Sales 1242 51838 SALES 10 5184 Pearson Correlation Coefficients, N = 10 Prob > Irl under H0: Rho=0 ATT SALES ATT 1.00000 0.93748 Attendance < 0001 0.93748 1.00000 SALES

Hot Dog Sales

Attendance vs Sale Coefficient of Correlation R=0.93748 with significance p<.0001

<.0001

This means that Attendance vs Sale have Very strong linear positive correlation. If Sales is increasing then Attendance is also increasing.

Sale vs Attendance Coefficient of Correlation R=0.93748 with significance p<.0001

This means that Sale vs Attendance have Very strong linear positive correlation. If Attendance is increasing then Sales is also increasing.

testing for significance

Ho -> correlation = zero

Ha -> correlation not = zero

p-value < 0.0001 (less than 0.05 level). This means that we reject Ho We have an evidence that correlation is not Zero.

Find the regression line to predict hot dogs sales based on attendance.

```
proc reg data=DOG_SALES;
title 'Regression Coefficient Dog Sales';
model SALES=ATT / clb;
run;
```

Regression Coefficient Dog Sales

The REG Procedure Model: MODEL1 Dependent Variable: SALES Hot Dog Sales

Number of Observations Read 10 Number of Observations Used 10

		Analysis of	Variance		
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	12209634	12209634	58.04	<.0001
Error	8	1682814	210352		
Corrected Total	9	13892448			

Root MSE	458.64114	R-Square	0.8789
Dependent Mean	5183.80000	Adj R-Sq	0.8637
Coeff Var	8.84759		

Parameter Estimates											
Variable	Label	DF	DF	Parameter Standard DF Estimate Error t Value Pr > t	95% Confidence Limits						
Intercept	Intercept	1	179.41977	672.68015	0.27	0.7964	-1371.78344	1730.62298			
ATT	Attendance	. 1	0.69362	0.09104	7.82	<.0001	0.48387	0.90356			

Regression Coefficient Dog Sales

The REG Procedure Model: MODEL1 Dependent Variable: SALES Hot Dog Sales

Regression Line:

(e) Report and interpret the 95% confidence interval for the slope coefficient.

```
95% CI for Slope = [0.48367, 0.90356]
0.48367 0.90356
```

with 95% confidence for each attander there is an associated increase in dog sales between [0.48367, 0.90356]

2. Although the income tax system is structured so that people with higher incomes should pay a higher percentage of their incomes in taxes, there are many loopholes and tax shelters available for individuals with higher incomes. A sample of 2017 tax returns gave the data listed in the table.

```
data TAX DATA;
input INDIVIDUAL GROSS TAX;
Label
    GROSS='Gross Income (in 1000\'' s)'
    TAX='Taxes Paid (% of Total Income)'
cards;
1 44.2 16.0
2 92.0 20.1
3 17.0 11.1
4 54.0 24.3
5 10.4 10.2
6 172.2 30.4
7 63.9 27.3
8 125.9 27.9
9 83.6 16.2
10 167.7 29.8
11 114.7 23.4
```

(a) Compute the sample correlation coefficient and interpret the results.

				The COR	R Proc	edure			
				2 Variables	TAX	GROSS			
				Simple	Statist	tics			
Variable	N	Mean	Std Dev	Sum	Minim	um Ma	ximum	Lab	pel
TAX	11	21.51818	7.28215	238.70000	10.20	000 3	0.40000	Tax	es Paid (% of Total Income)
GROSS	11	85.96364	55.04433	945.60000	10.40	000 17	2.20000	Gro	oss Income (in 1000\' s)
			Pear	son Correlation Prob > r u		: Rho=0			
						TAX	GRO	SS	
			TAX Taxes Paid	d (% of Total In	come)	1.00000 0.83412 0.0014			
			GROSS			0.83412 1.00000 0.0014		000	

TAX vs Gross: Correlation Coefficient = 0.83412 significance = 0.0014 This means that Correlation Coefficient > 0.8 and therefore it is strong positive correlation. If Gross is increasing then Tax is increasing.

Ho -> correlation between Tax and Gross Income equal zero
Ha -> correlation between Tax and Gross Income !=zero
because significance =0.0014 < 0.05 we reject Ho. We have a evidence
that correlation between Tax and Gross Income is not zero.

(b) Compute r-squared and interpret results.

proc reg data=TAX DATA;

title 'Regression Tax vs Gross';
model TAX=GROSS /clb;
run;

R-squared = Sum Of Squares Of Model/Sum Of Squares Of Total = 368.960/530.296 = 0.6958

R-squared = 0.6958

R-square is the proportion of the variance explained by independent variables.

R-square means that out of total variance 69.58% explained by Variance of the model. (in our case this is a Gross) or 69.58% of total tax variance can be predicted by the variable Gross income.

(c) Is the correlation coefficient significant at = 0:05?

Coefficient Of Correlation = 0.83412 p=0.0014

Ho - >Correlation between Tax paid and Gross Income is zero Ha -> correlation between Tax paid and Gross income is not zero p-value =0.0014 < alpha=0.05 -> We reject Ho. We conclude that we have evidence that correlation between tax paid and the gross income is not zero for alpha=0.05.

- (d) Compute the estimated line of regression.
- (e)What is the estimate of standard deviation (root
 MSE)?

Estimated line of regression

The REG Procedure Model: MODEL1 Dependent Variable: TAX Taxes Paid (% of Total Income)

Number of Observations Read	11
Number of Observations Used	11

Analysis of Variance									
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F				
Model	1	368.96003	368.96003	20.58	0.0014				
Error	9	161.33633	17.92626						
Corrected Total	10	530.29636							

Root MSE	4.23394	R-Square	0.6958
Dependent Mean	21.51818	Adj R-Sq	0.6620
Coeff Var	19.67611		

Parameter Estimates										
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t	95% Confide	ence Limits		
Intercept	Intercept	1.	12.03199	2.44986	4.91	0.0008	6.49003	17.57395		
GROSS	Gross Income (in 1000\'s)	1	0.11035	0.02432	4.54	0.0014	0.05533	0.16538		

Estimated line of regression

The REG Procedure Model: MODEL1 Dependent Variable: TAX Taxes Paid (% of Total Income)

We calculated Intercept and slope, therefore estimated line of regression is:

TaxPaid = 12.03199 + 0.11035 * GrossIncome

The estimate of standard deviation (square root MSE):

root MSE = 4.23394

Root MSE is a square root of the mean square residual.

(f) Predict the mean percentage of income paid in taxes by individuals with a gross income of \$80,000. Report

and interpret the confidence interval for this estimate.

```
TAX(\$80000) = 12.03199 + 0.11035 * 80 = 20.85999
data TAX DATA;
set TAX DATA end=last;
output;
if last then do;
TAX=.;
GROSS=80;
output;
end;
run;
proc reg data=TAX DATA;
model TAX=GROSS / clb;
output out=TAX DATA out (where=(TAX=.)) predicted=TAX hat
LCLM=LCL mean UCLM=UCL mean;
run;
proc print data=TAX DATA OUT ;
title 'Report Prediction Of Tax Data';
var GROSS TAX hat LCL mean UCL mean;
Run;
```

Report Prediction Of Tax Data

Obs	GROSS	TAX_hat	LCL_mean	UCL_mean
1	80	20.8601	17.9537	23.7665

for 80000 of gross income
estimated tax paid = 20.8601% with
95% CI= [17.9537 , 23.7665]
the mean tax of 80000 income will be in the interval
[17.9537 , 23.7665].