1. ZufaUs Zonien

- · Systeme mit sehr vielen FG enthollen Sahshache Elemente
 - > Totsochuche Flukhvohonen:
 - Hermische Fluktuchonen: Diffusion, Wormeleitung, Trausport
 - Quanten fluktuationen: Teilchenphysik, Feldtheone
 - Zufolliges Verhollen einzelner Konstilvenlen
 - ► Algorithmische Zufallsvariation in streng dederminischschen Systemen
 - statistische Physik / Thermodynomik: Zertmillel = Schormillel
 - Stachas hische Prozesse / Monte- Carlo
 - Genetische Algorithmen
 - Stanshicke Profysen of heatmap

1.1. Klossen w Enjeuszahler

[1] Echle Zufauszohlen

- · erzeugl durch eatt zefellige Prozesse, z.B. rodioaktiver Zeifall (Poisson!)
- · aufwordig, Kurze sequeuzen, nicht Konfigurerbor, wenig urobh. sequeuzen

Pseudo- Zujauszahlen

- · night zufählig (determiniet Algon thmus)
- · (welgehard) unkorreliet
- · Echtzeit gineneibar, lange Sequenzen, viell unabh Sequenzen, schnell
- · Versteckle Konek Konen nicht eicht auffindbor State Tests

[3] Quasi-Zu, falls zanlen

- · night zufällig (delerminet)
- · (moximal) Korrelet
- · raumfu'llend (ergodisch)
- (m. Hel-) schnell, outwardy in hohen Dincusemen · Echtzeit generobar, lorge squeuzen,
- · Konnen MC Verfahren beschierengen

1.2. Gleichverteille Pseudozujalk Men (RNG)

Prolotyp: <u>Linear-Kongruenter</u> Gaurotor

X \in [0, M-1] nohrocho Zufalbszohl

Squeuz:
$$X_{j+1} = a \cdot X_j + c \pmod{M}$$

- Periode = # Schrift bis ein X; weder aufhitt
 moximal M
- · gule Worl von a, c, M entschudend (moximal Peniade)
- · Korrelationen:

K auf en ander folgende X_i , bilde $\bar{X} = (t_1,...,t_K)$ $t_2 = X_1 / M \in [0,1]$ $\{\bar{X}\}$ nicht arch1 im \mathbb{R}^K , sondern auf (K-1)-aim. Hyperebenen! hochslens $M^{1/K}$ solcher Ebenen, of Viel verige!!

BSp: IBM moinfrome, RANDU: $M = 2^{51} = 32.768$, $a = 65539 \rightarrow Z = (\frac{1}{6}, \frac{1}{6} + \frac{1}{6}, \frac{1}{6} + \frac{1}{6}) \in [0,1]^3$ and M(') Elemen in \mathbb{R}^3 !

Vorsicht mit QS-implementielen Zufallszahlen

browdbare (inear- 1000 gruente Generatoren

•
$$Q = 7^5 = 16807$$

 $C = 0$
 $M = 2^{31} - 1$
Lewis, Goodman, Miller (1969)

· Kombinière Sequeuzen mit verschiedurum M, Z.B.

$$X_{j} = \left[X_{j}^{(1)} + X_{j}^{(2)}\right] \mod M \qquad M \in \{M_{1}, M_{2}\}$$

(L'Ecuyer)

Best Tractice: Verwerde gul geteslete RNG - Bibliotheken / Algorithmen

- · ran3 (D. Knuth, p. Numerical Recipes)
- ron4 (Verschlusselver, bosel auf DES)
- · ronlux (M. Lüscher, externet, relative language)
- · mersence twister (Nishimura & Matsumoto, exzellent, schnole, nesse Provide 2 -1
- . s. NVIDO CURAND pir weiter (auch CPU-basert)

1.3. Quosi- Eufous zehlen

· delerminishsch, Korrebet

Quosi-zerfoldszahlen "doßen sich ab" -> gleichwie leit + eftiment vourifüllere -> Können stat. Algorithman beschleiningen!

· Bsp: (Holton)

- · j als Zonl zur Bosis b
- · Kehre Rehanfolge ow b-2 Harn um
- . Detromal puniet (Basis 6) vor umgrahelle Zahl
- · Schrebe Zahl Zuruck zur Basis 10 -> Halton-Zunl Hj

- · 17 = (122)3
- . (221) 3
- . (0,221)3
- . 2.3-1+23-2+1.3-3
- $H_D = \frac{25}{27} = 0.90123457$

$$J = 18$$
 $H_{18} = (0.002)_3 = \frac{2}{27} = 0.074$

1.4 Ungleichmößige Verleilungen

- Suche ZufaVs Zahl 5 ∈ I ⊆ R verleilt mit vorggebine Dottle P(5)
- · Annohme: Gluchveleille Zufallszahleu X ESZ ETR Könner erzeuft ucden (RNG)
- · Erzeusuy va s:
 - [1] Transform tons multiode
 - [2] Ablehnunginution
 - [3] Spezialle Algorithmen für geeignele P

• [1] Transformehousmathade

Sei \times auf $[\times_1, \times_2]$ given we let U and $g: [\times_1 \times_2] \rightarrow [a,b]$ differ and shrep mondare \mathcal{S} and $\mathcal{S} = g(x)$ $\mathcal{S} = g(x)$ $\mathcal{S} = g(x)$ and $\mathcal{S} = g(x)$ $\mathcal{S} = g(x)$ and $\mathcal{S} = g(x)$ $\mathcal{S} = g(x)$ $\mathcal{S} = g(x)$ and $\mathcal{S} = g(x)$ $\mathcal{S} = g($

Um dos "nother" of bew. 5 zu finden (be vergegebene Boldicht p) muss

p = f' integral now. on mon muss our Stammfur the ray and proly with kennen

$$\begin{split} &\rho(\xi) = \lambda \cdot e^{-\lambda S} \quad (\xi \in \mathbb{R} \quad (\underline{Prisson}) \quad (,) \\ &|f'(\xi)| = \rho(\xi) = \lambda e^{-\lambda S} \quad f(\xi) = \pm e^{-\lambda S} \\ &\text{with L' and $g(x) = f'(x) = + x' \ln(-x)$} \\ &\Rightarrow \quad x \quad \text{and } \quad [x_1, x_2,] \quad \text{gluch with } \quad \text{mit } \quad x_1 = -e^{-\lambda g}, \quad x_2 = -e^{-\lambda b} \\ &\text{down ist } \quad \xi = \chi^{-1} \ln(-x) \quad \text{and } \quad [a_1b] \quad \text{mit } \quad \rho(\xi) = \lambda e^{-\lambda S} \quad \text{verleit}. \end{split}$$

[2] Ablehnungsmelhode

wonle Funich (3,7) unter der Floche var p gland forms

-> & 1st gesucht Enfallsvarrable

If principle Flochardichle for Runte (5, n) = 1 $1 = \text{Diddential value} \quad \text{Diddential value} \quad 1$ $= \text{Diddential value} \quad \frac{1}{\rho(5)}$ $\text{Diddential value} \quad \frac{1}{\rho(5)}$

Gluck fixing Punichvoluturg

Faus $F(\xi) = \int_{-\infty}^{\xi} dx \, \rho(x)$ are just be travel und $A = F(\infty) = \int_{-\infty}^{\infty} dx \, \rho(x)$

while
$$t \in [0, \Lambda]$$
 glent firms $\to \tilde{s} = F'(t)$
 $\eta \in [0, \rho(\tilde{s})]$ stackmess since

(5,7) gludiformy unter prelent

From: Was Stomm Jullia onghisch Kennen

Besse: White analytisch arganitime Versuds (N. U(E) mit F(E) = Jax u(x) und A = F(x)

Waterchentetted for (5, n):

$$U(\xi) \cdot \frac{\rho(\xi)}{U(\xi)} = \rho(\xi)$$

- · Want Punkt (5, n) unic Verlectorfunktia U(5) wie oben
- · Falls (\$,n) unle p, d.h. M < p(\$)

 altreption Punist (\$,n), sonst vewerfound ziehe

 neven Kandidat (\$,n), solayy bis atteplet
- · > nochsler Punich (5, 4)
- · \$ ist rept p(\$) relett.

[3] Sprzelle Methoden

Bep: (Eax-Muller) for Googs-Verleiturg

- > 4, 2 sleichvolett auf [0,1]
- $S_1 = \sqrt{-2 \ln \xi_1} \cdot \cos(2\pi \xi_2)$ $S_2 = \sqrt{-2 \ln \xi_1} \cdot \sin(2\pi \xi_2)$
- E S_{n} , S_{n} S_{n}

1.4 Einfoche Monte-Carlo Methode

· Bosiet auf Aldehnungsmethode

- · Kressfoods / Quodrofficine = TC/4
- · Wirfle (x, y) e Quadrat glichfirmig
- . Zahl , Trefu" in Kres
- · # Tresfer im Krus
 # Versuche
- 1. Konn ze jedem Zeil pankt mil Nahmuy für The abgestochen weden
- 2. Konvegeur soir logssom, Noherung $\pi/4$ | = $O(N^{-1/2})$ N=# Versuche

rge regelier Bifes Giller für Tostpunkte

- . Started we O(N-1)
- . From most jederteil abjedrachen weden!

(UA) Ersetze Pseudo-Zufallswitt im MC row durch Quasi-tefallszahlan Wie andalt sich due Konverpuzyerchissinaly kalt?

1.5. Dos Monie-Corlo Theorem

Betrochle n-ain Inlegral
$$I = \int d^n x f(\bar{x})$$
 mit $\Omega = \Omega_1 \times \times \Omega_n$ and $f \ge 0$

$$I = |\Omega| \cdot \left\{ \langle f \rangle \pm \varphi_f \right\} \qquad \text{Standowly failur} \qquad \varphi^2 = \frac{1}{|\Omega|^2} \int_{\mathbb{R}^2} d\chi \left[f(\bar{x}) - I/\Omega I \right]^2$$

2. Der bisti Scholzweit für die Variaur g2 ist

$$\mathcal{F}^{2} \cong \frac{1}{N-1} \left\{ \langle f^{2} \rangle - \langle f \rangle^{2} \right\} = \frac{1}{N(N-1)} \sum_{i=1}^{N} \left[f(\vec{s}^{(i)}) - \langle f \rangle \right]^{2}$$

Instasonaire ist of ~ O(N-1/2) for N -> 00.

3. Verolgemenorung for notif glerchvelette Zufallsvelclern:

$$\frac{I}{|\Omega|} = \frac{1}{|\Omega|} \int d^{4}x \, P(x) \cdot f(x) \approx \langle f \rangle \pm \left[\frac{\langle f^{2} \rangle - \langle f \rangle^{2}}{N - 1} \right]^{1/2}$$

wobe $\langle \omega \rangle = \frac{1}{N} \sum_{i=1}^{N} \omega(\vec{\xi}^{(i)})$ und $\vec{\xi}$ in Ω noth Dichle $\rho(\vec{\xi})$ vertoilt