

PENENTUAN PENERIMA BEASISWA DENGAN METODE SIMPLE ADDITIVE WEIGHTING DAN METODE THE DISTANCE TO THE IDEAL ALTERNATIVE

SKRIPSI

Oleh

Rachmah Ayu Purnamasari NIM 091810101017

JURUSAN MATEMATIKA
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
UNIVERSITAS JEMBER
2015

PENENTUAN PENERIMA BEASISWA DENGAN METODE SIMPLE ADDITIVE WEIGHTING DAN METODE THE DISTANCE TO THE IDEAL ALTERNATIVE

SKRIPSI

diajukan guna melengkapi tugas akhir dan memenuhi salah satu syarat untuk menyelesaikan Program Studi Matematika (S1) dan mencapai gelar Sarjana Sains

Oleh

Rachmah Ayu Purnamasari NIM 091810101017

JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS JEMBER 2015

PERSEMBAHAN

Dengan menyebut nama Allah S.W.T Yang Maha Pengasih lagi Maha Penyayang, serta sholawat atas Nabi Muhammad S.A.W, kupersembahkan sebuah kebahagiaan dalam perjalanan hidupku teriring rasa terima kasihku yang terdalam kepada

- Orang Tuaku tercinta dan terkasih: Ibunda Hanik Yatul Yatimah dan Ayahanda Suja'i atas doa, kasih sayang tanpa batas, perhatian, dan segala kebaikan yang telah diberikan,serta selalu mengiringiku dalam meraih cita-cita, semoga Allah selalu mendekap erat dengan kasih sayang-Nya;
- 2. Adikku Rachmawati Dwi Anggraeni dan Saudara-saudaraku yang selalu memberi dukungan, nasehat, keceriaan, dan inspirasi;
- 3. Bapak Ahmad Kamsyakawuni, S.Si, M.Kom. dan Bapak Kusbudiono S.Si, M.Si. yang dengan sabar membimbing sehingga penulisan skripsi ini dapat terselesaikan.
- 4. guru-guruku sejak taman kanak-kanak sampai dengan perguruan tinggi yang telah memberikan ilmu serta membimbing dengan penuh kesabaran;
- 5. Almamater tercinta Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Jember.

MOTTO

Sesuatu yang belum dikerjakan, seringkali tampak mustahil; kita baru yakin kalau kita telah berhasil melakukannya dengan baik. *)

"Sesungguhnya Allah tidak akan merubah nasib suatu kaum sebelum mereka merubah nasib mereka sendiri." (terjemahan Surat Ar-Ra'du ayat 11) **)

Pendidikan merupakan perlengkapan paling baik untuk hari tua. ***).

^{*)} Evelyn Underhill. Kumpulan Motto [on line].

 $http://ananda-7.blogspot.com/2012/08/kumpulan-contoh-kata-motto/\,[28\ April\ 2015] \centerdot$

^{**)} Departemen Agama Republik Indonesia. 2002. *Al Quran* dan Terjemahannya. Jakarta: CV Darus Sunnah.

^{***)} Aristoteles. Kumpulan Motto Kehidupan [on line]. http://pristality.wordpress.com/2011/02/23/kumpulan-motto-kehidupan/ [28 April 2015].

PERNYATAAN

Saya yang bertanda tangan di bawah ini:

nama : Rachmah Ayu Purnamasari

NIM : 091810101017

menyatakan dengan sesungguhnya bahwa karya ilmiah yang berjudul "Penentuan Penerima Beasiswa dengan Metode *Simple Additive Weighting* dan Metode *The Distance To The Ideal Alternative*" adalah benar-benar hasil karya sendiri, kecuali kutipan yang sudah saya sebutkan sumbernya, belum pernah diajukan pada institusi mana pun, dan bukan karya jiplakan. Saya bertanggung jawab atas keabsahan dan kebenaran isinya sesuai dengan sikap ilmiah yang harus dijunjung tinggi.

Demikian pernyataan ini saya buat dengan sebenarnya, tanpa ada tekanan dan paksaan dari pihak mana pun serta bersedia mendapat sanksi akademik jika ternyata dikemudian hari pernyataan ini tidak benar.

Jember, Juni 2015 Yang menyatakan,

Rachmah Ayu Purnamasari NIM 091810101017

iv

SKRIPSI

PENENTUAN PENERIMA BEASISWA DENGAN METODE SIMPLE ADDITIVE WEIGHTING DAN METODE THE DISTANCE TO THE IDEAL ALTERNATIVE

Oleh

RACHMAH AYU PURNAMASARI NIM 091810101017

Pembimbing

Dosen Pembimbing Utama : Ahmad Kamsyakawuni, S.Si, M.Kom.

Dosen Pembimbing Anggota: Kusbudiono S.Si., M.Si

PENGESAHAN

Skripsi yang berjudul "Penentuan Penerima Beasiswa dengan Metode *Simple Additive Weighting* dan Metode *The Distance To The Ideal Alternative*" telah diuji dan disahkan pada :

hari, tanggal :

tempat : Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Jember

Tim Penguji:

Dosen Pembimbing Utama, Dosen Pembimbing Anggota,

Ahmad Kamsyakawuni, S.Si, M.Kom. Kusbudiono S.Si., M.Si NIP 197211291998021001 NIP. 197704302005011001

Penguji I, Penguji II,

Prof.Drs.Kusno.DEA.,Ph.D Kosala Dwidja Purnomo, S.Si., M.Si

NIP. 196101081986021001 NIP. 196908281998021001

Mengesahkan

Dekan,

Prof. Drs. Kusno, DEA., Ph.D. NIP 196101081986021001

RINGKASAN

Penentuan Penerima Beasiswa dengan Metode Simple Additive Weighting dan Metode The Distance To The Ideal Alternative; Rachmah Ayu Purnamasari; 091810101017; 2015; 42 halaman; Jurusan Matematika Fakultas MIPA Universitas Jember.

Lembaga pendidikan seperti di sekolah-sekolah, perguruan tinggi banyak sekali beasiswa yang ditawarkan kepada siswa yang kurang mampu dan siswa berprestasi. Seperti yang tertuang dalam Undang-Undang Dasar 1945 pasal 31 ayat 1 yang berbunyi "bahwa tiap-tiap warga Negara berhak mendapatkan pengajaran". Sehingga pemerintah pusat dan pemerintah daerah wajib memberikan kemudahan kepada warga Negara untuk mendapat pendidikan yang bermutu. Untuk mendapatkan pendidikan yang bermutu diperlukan biaya yang tidak sedikit. Oleh karena itu bagi peserta didik yang orang tuanya kurang mampu dan peserta didik yang berprestasi berhak mendapatkan biaya pendidikan yang biasanya sering disebut beasiswa.

Metode yang dapat diterapkan untuk penentuan penerima beasiswa, diantaranya adalah metode *Simple Additive Weighting* (SAW) dan metode *The Distance To The Ideal Alternative* (DIA). Oleh karena itu penulis tertarik untuk menerapkan metode *Simple Additive Weighting* dan metode *The Distance To The Ideal Alternative* untuk menyelesaikan permasalahan penentuan penerima beasiswa dengan tujuan untuk mengetahui metode mana yang lebih sesuai terhadap permasalahan penentuan penerima beasiswa.

Penelitian ini dilakukan dengan beberapa langkah, yaitu dimulai dengan mengumpulkan berbagai literatur tentang metode *Simple Additive Weighting* (SAW) dan metode *The Distance To The Ideal Alternative* (DIA) dari internet ataupun bukubuku yang berhubungan dengan kedua metode tersebut. Langkah kedua adalah pengambilan dan pengumpulan data tentang calon penerima beasiswa di Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Jember. Langkah ketiga adalah

menerapakan metode Simple Additive Weighting (SAW) dan metode The Distance To The Ideal Alternative (DIA) untuk menyelesaikan permasalahan penentuan penerima beasiswa. Langkah penelitian keempat adalah pembuatan program dengan menggunakan software matematika yaitu MATLAB. Pada langkah ini, penulis membuat desain program berupa tampilan GUI dan membuat skrip program berdasarkan aplikasi kedua metode yang telah digunakan. Langkah terakhir adalah membandingkan kedua metode berdasarkan nilai preferensi dengan tujuan untuk mengetahui metode mana yang lebih efektif pada permasalahan penentuan penerima beasiswa.

Berdasarkan penelitian yang telah dilakukan, dapat diketahui bahwa metode Simple Additive Weighting (SAW) dan metode The Distance To The Ideal Alternative (DIA) merupakan metode pengambilan keputusan dengan banyak kriteria yang keduanya dapat dimanfaatkan untuk penentuan penerima beasiswa. Pada akhir perhitungan berdasarkan data yang telah didapat metode Simple Additive Weighting (SAW) menghasilkan nilai preferensi tertinggi sebesar 0,8250 sedangkan pada metode The Distance To The Ideal Alternative (DIA) menghasilkan nilai preferensi terendah sebesar 0. Sehingga diperoleh hasil perangkingan mahasiswa terpilih dengan menggunakan metode Simple Additive Weighting (SAW) dan metode The Distance To The Ideal Alternative (DIA).

Berdasarkan penelitian yang telah dilakukan, metode *Simple Additive Weighting* (SAW) dan metode *The Distance To The Ideal Alternative* (DIA) memiliki penyelesaian yang berbeda, sehingga dilakukan uji sensitifitas yang ada pada kedua metode, metode *The Distance To The Ideal Alternative* (DIA) memiliki persentase perubahan perangkingan lebih besar yaitu sebesar 42,8571% dibandingkan dengan metode *Simple Additive Weighting* (SAW) yaitu sebesar 38,0952% sehingga dapat disimpulkan bahwa metode DIA adalah metode yang lebih baik digunakan dalam penentuan penerima beasiswa.

PRAKATA

Puji syukur ke hadirat Allah SWT atas segala rahmat dan karunia-Nya sehingga penulis dapat menyelesaikan skripsi yang berjudul "Penentuan Penerima Beasiswa Dengan Metode *Simple Additive Weighting* Dan Metode *The Distance To The Ideal Alternative*". Skripsi ini disusun untuk memenuhi salah satu syarat menyelesaikan pendidikan Strata Satu (S1) pada Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Jember.

Penulisan skripsi ini tidak lepas dari bantuan berbagai pihak. Oleh karena itu, penulis menyampaikan terima kasih kepada:

- 1. Prof. Drs. Kusno, DEA., Ph.D., selaku Dekan Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Jember;
- 2. Kosala Dwidja Purnomo, S.Si., M.Si., selaku Ketua Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Jember;
- 3. Ahmad Kamsyakawuni, S.Si, M.Kom. selaku Dosen Pembimbing Utama, dan Kusbudiono S.Si., M.Si selaku Dosen Pembimbing Anggota yang telah meluangkan waktu, pikiran, dan perhatian dalam penulisan skripsi ini;
- 4. Prof. Drs. Kusno, DEA., Ph.D. selaku Dosen Penguji I dan Kosala Dwidja Purnomo, S.Si., M.Si. selaku Dosen Penguji II, yang telah memberikan kritik dan saran dalam penyusunan skripsi ini;
- 5. Kiswara Agung Santoso, S.Si, M.Kom. dan Bapak Ziaul Arif, S.Si., M.Sc. selaku Dosen Pembimbing Akademik yang telah membimbing selama penulis menjadi mahasiswa Matematika FMIPA;
- 6. Dosen dan karyawan Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Jember
- 7. Ibunda Hanik Yatul Yatimah, Ayahanda Suja'i, adik saya tersayang Rachmawati Dwi Anggraeni yang telah memberikan doa, perhatian dan dorongannya demi terselesaikan skripsi ini;

- 8. Teman-teman serta sahabatku sejak SD sampai SMA, serta teman-teman angkatan 2009 (MALINC) yang telah membantu dalam menyelesaikan skripsi ini;
- 9. Ahmad Efendi Widiyanto yang dengan sabar, dan telah memberi semangat dan perhatian selama penyusunan skripsi ini;
- 10. Semua pihak yang tidak dapat disebutkan satu per satu yang telah membantu demi kelancaran dalam penyusunan skripsi ini.

Penulis juga menerima segala kritik dan saran dari semua pihak demi kesempurnaan skripsi ini. Akhirnya penulis berharap, semoga skripsi ini dapat bermanfaat.

Jember, Juni 2015

Penulis

DAFTAR ISI

	Halaman
HALAMAN JUDUL	
HALAMAN PERSEMBAHAN	
HALAMAN MOTO	iii
HALAMAN PERNYATAAN	iv
HALAMAN PEMBIMBINGAN	v
HALAMAN PENGESAHAN	vi
RINGKASAN	vii
PRAKATA	X
DAFTAR ISI	xii
DAFTAR GAMBAR	. xiii
DAFTAR TABEL	. xiv
BAB 1. PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Rumusan Masalah	2
1.3 Tujuan	3
1.4 Manfaat	3
BAB 2. TINJAUAN PUSTAKA	4
2.1 Pengertian Beasiswa	. 4
2.2 Multiple Attribute Decision Making (MADM)	5
2.2.1 Konsep Dasar MADM	5
2.2.2 Metode-metode Penyelesaian MADM	. 8
2.3 Metode Simple Additive Weighting (SAW)	9
2.3.1 Pengertian Metode SAW	9
2.3.2 Langkah-langkah Metode SAW	9
2.4 Metode The Distance To The Ideal Alternative (DIA)	10
2.4.1 Pengertian Metode DIA	. 10
2 4 2 Langkah-langkah Metode DIA	11

	2.5	Uji Sensitivitas	12
	2.6	Pemrograman Matrix Laboratory (MATLAB)	13
BAB 3.	ME	TODE PENELITIAN	14
	3.1	Data Penelitian	14
	3.2	Langkah-langkah Penyelesaian	19
BAB 4.	HA	SIL DAN PEMBAHASAN	22
	4.1	Hasil	22
		4.1.1 Penyelesaian Metode SAW	23
		4.1.2 Penyelesaian Metode DIA	25
		4.1.3 Langkah-langkah Menjalankan Program	29
	4.2	Pembahasan	37
BAB 5.	PEN	NUTUP	40
	5.1	Kesimpulan	40
	5.2	Saran	40
DAFTA	R P	TISTAKA	11

DAFTAR GAMBAR

	laman
3.1 Skema Langkah-langkah Penelitian	19
4.1 Tampilan Program HOME	29
4.2 Tampilan Program Metode SAW	29
4.3 Tampilan Input Data SAW	30
4.4 Tampilan Open Bobot SAW	30
4.5 Tampilan Open Atribut SAW	31
4.6 Tampilan Matriks R SAW	31
4.7 Tampilan Proses SAW	32
4.8 Tampilan Uji SAW	32
4.9 Tampilan Output SAW	33
4.10 Tampilan Program Metode DIA	33
4.11 Tampilan Input Data DIA	34
4.12 Tampilan Open File Bobot DIA	34
4.13 Tampilan Matriks R DIA	35
4.14 Tampilan Matriks V DIA	35
4.15 Tampilan Alternatif Positif dan Negatif DIA	36
4.16 Tampilan Jarak <i>Manhattan</i> DIA	36
4.17 Tampilan nilai PIA DIA	37
4.18 Tampilan Proses DIA	37
4.19 Tampilan Uji DIA	38
4.20 Tampilan Output DIA	38

DAFTAR TABEL

	Halaman
2.1 Penilaian Bobot Alternatif pada Setiap Kriteria	. 7
3.1 Data Mahasiswa Calon Penerima Beasiswa	. 14
3.2 Nilai Indeks Prestasi Komulatif	. 15
3.3 Jumlah Penghasilan Orang tua	. 16
3.4 Jumlah Tanggungan Orang Tua	. 16
3.5 Bobot Setiap Kriteria	. 17
3.6 Bobot Mahasiswa Calon Penerima Beasiswa	. 17
4.1 Rating Kecocokan Alternatif pada Setiap Kriteria	. 22
4.2 Matriks Keputusan SAW	. 23
4.3 Perhitungan Normalisasi Matriks SAW	. 24
4.4 Matriks Keputusan DIA	. 25
4.5 Perhitungan Normalisasi Matriks DIA	. 25
4.6 Pembobotan Matriks	. 26
4.7 Solusi Ideal Positif	. 27
4.8 Solusi Ideal Negatif	. 27
4.9 Jarak Manhattan Maximum	. 27
4.10 Jarak Manhattan Minimum	. 28
4.11 Hasil Perangkingan	. 28
4.12 Hasil Perangkingan SAW	. 37
4.13 Hasil Perangkingan DIA	. 38

BAB 1. PENDAHULUAN

1.1 Latar Belakang

Lembaga pendidikan seperti di sekolah-sekolah banyak sekali beasiswa yang ditawarkan kepada siswa yang kurang mampu dan siswa berprestasi. Seperti yang tertuang dalam Undang-Undang Dasar 1945 pasal 31 ayat 1 yang berbunyi "bahwa tiap-tiap warga Negara berhak mendapatkan pengajaran". Sehingga pemerintah pusat dan pemerintah daerah wajib memberikan kemudahan kepada warga Negara untuk mendapat pendidikan yang bermutu. Untuk mendapatkan pendidikan yang bermutu diperlukan biaya yang tidak sedikit. Oleh karena itu bagi peserta didik yang orang tuanya kurang mampu dan peserta didik yang berprestasi berhak mendapatkan biaya pendidikan yang biasanya sering disebut beasiswa.

Melalui Dinas Pendidikan pemerintah berusaha mengalokasikan dana untuk memberikan beasiswa kepada mahasiswa yang secara ekonomi tidak mampu untuk membiayai pendidikannya serta memberikan beasiswa kepada mahasiswa yang memiliki prestasi. Agar pelaksanaan beasiswa dapat tercapai maka harus sesuai dengan prinsip 3T yaitu Tepat sasaran, Tepat jumlah dan Tepat waktu. Pemberian bantuan biaya pendidikan berupa beasiswa ini juga di berikan kepada mahasiswa di Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Jember. Beasiswa yang diberikan antara lain beasiswa Peningkatan Prestasi Akademik (PPA) yang diberikan kepada mahasiswa yang berprestasi dan beasiswa Bantuan Belajar Mahasiswa (BBM) yang diberikan kepada mahasiswa yang kurang mampu.

Beberapa metode matematika yang dapat digunakan untuk mendukung pengambilan keputusan. Salah satunya *Multiple Attribute Decision Making* (MADM). Metode MADM telah digunakan untuk menyelesaikan beberapa permasalahan, diantaranya adalah Pemanfaatan MADM pada pemilihan mahasiswa berprestasi

menggunakan algoritma *The Distance To The Ideal Alternative* (DIA). Dalam menentukan mahasiswa berprestasi ini terdapat beberapa kriteria penyeleksian yaitu nilai indeks prestasi komulatif, karya ilmiah, kegiatan ekstrakulikuler/prestasi, dan bahasa inggris (Nanda, 2013).

Ariyanto (2012), telah membahas tentang sistem pendukung keputusan pemilihan karyawan terbaik dengan menggunakan metode *Simple Additive Weighting* (SAW) studi kasus di Pamella Swalayan. Penelitian ini bertujuan untuk mengetahui prosedur penilaian dan pemilihan karyawan terbaik pada Pamella Swalayan Yogyakarta serta untuk menghasilkan sistem pendukung keputusan pemilihan karyawan terbaik berdasarkan kebutuhan Pamella Swalayan tersebut. Kriteria-kriteria yang digunakan adalah kejujuran, taat peraturan, alpha, kedisiplinan, tanggung jawab, kebersihan, kreatifitas, kerajinan, kerjasama dan senyuman. Output dalam sistem ini adalah nilai perhitungan pemilihan karyawan terbaik dengan metode SAW dan rekomendasi karyawan terbaik untuk Pamella Swalayan.

Wahyu (2014), telah membahas tentang sistem pendukung keputusan kelayakan pemberian kredit motor menggunakan metode *Simple Additive Weighting* (SAW) pada perusahaan *Leasing HD Finance*. Penelitian ini bertujuan membantu perusahaan dalam menentukan pemohon kredit motor agar tidak mengalami kerugian yang diakibatkan kredit macet yang dapat menghambat arus lalu lintas uang dan menyebabkan kerugian bagi peruusahaan. Kriteria yang digunakan antara lain kepribadian, uang muka, kemampuan, jaminan, kondisi. Dalam penelitian ini menghasilkan sistem berbasis web agar dapat diakses dimana saja.

Dari beberapa penjelasan diatas, penulis tertarik untuk membahas pemanfaatan MADM pada penentuan penerima beasiswa menggunakan metode SAW dan metode DIA dengan penelitian yang akan dilakukan di Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Jember.

1.2 Rumusan Masalah

Permasalahan yang akan dibahas dalam penelitian ini adalah menentukan penerima beasiswa dengan metode *Simple Additive Weighting* (SAW) dan metode *The Distance To The Ideal Alternative* (DIA), serta mengetahui metode mana yang lebih baik.

1.3 Tujuan

Tujuan yang ingin dicapai dalam penulisan ini adalah untuk mengetahui penentuan penerima beasiswa dengan metode *Simple Additive Weighting* (SAW) dan metode *The Distance To The Ideal Alternative* (DIA). Dan mengetahui metode mana yang lebih sesuai pada penentuan penerima beasiswa.

1.4 Manfaat

Adapun manfaat yang dapat diambil dari penulisan skripsi ini yaitu sebagai wacana untuk menambah wawasan yang luas tentang metode *Simple Additive Weighting* (SAW) dan metode *The Distance To The Ideal Alternative* (DIA). Selain itu diharapkan dapat mempermudah dan menghemat waktu bagi lembaga pendidikan dalam penentuan penerima beasiswa.

BAB 2. TINJAUAN PUSTAKA

2.1 Pengertian Beasiswa

Beasiswa diartikan sebagai bentuk penghargaan yang diberikan kepada individu agar dapat melanjutkan pendidikan ke jenjang yang lebih tinggi. Penghargaan itu dapat berupa akses tertentu pada suatu institusi atau penghargaan berupa bantuan keuangan. Pada dasarnya, beasiswa adalah penghasilan bagi yang menerimanya. Hal ini sesuai dengan ketentuan pasal 4 ayat (1) Undang-undang PPh/2000. Disebutkan pengertian penghasilan adalah tambahan kemampuan ekonomis dengan nama dan dalam bentuk apa pun yang diterima atau diperoleh dari sumber Indonesia atau luar Indonesia yang dapat digunakan untuk konsumsi atau menambah kekayaan Wajib Pajak. Karena beasiswa bisa diartikan menambah kemampuan ekonomis bagi penerimanya, berarti beasiswa merupakan penghasilan (Murniasih, 2009).

Menurut (Muniarsih, 2009), ada beberapa jenis beasiswa yaitu:

a. Beasiswa Peningkatan Prestasi Akademik (PPA)

Beasiswa Peningkatan Prestasi Akademik adalah beasiswa yang diberikan untuk peningkatan pemeratan dan kesempatan belajar bagi mahasiswa yang mengalami kesulitan membayar biaya pendidikannya sebagai akibat krisis ekonomi, terutama bagi mahasiswa yang berprestasi akademik.

Adapun tujuan beasiswa Peningkatan Prestasi Akademik secara umum yaitu :

- 1. Meningkatkan pemerataan dan kesempatan belajar bagi mahasiswa yang mengalami kesulitan membayar pendidikan.
- 2. Mendorong dan mempertahankan semangat belajar mahasiswa agar mereka dapat menyelesaikan studi/pendidikan tepat waktunya.
- 3. Mendorong untuk meningkatkan prestasi akademik sehingga memacu peningkatan kualitas pendidikan.

b. Beasiswa Bantuan Belajar Mahasiswa (BBM)

Beasiswa Bantuan Belajar Mahasiswa adalah beasiswa yang yang berupa bantuan yang diberikan kepada mahasiswa yang mengalami kesulitan membayar biaya pendidikannya. Sama dengan PPA, tujuannya membantu meringankan beban orang tua dari kalangan ekonomi lemah.

c. Beasiswa Bank Indonesia

Beasiswa jenis ini bersumber dari pemerintah yang diberikan kepada mahasiswa selama kuliah dengan memenuhi persyaratan sebagaimana tercantum pada ketentuannya. Program Beasiswa bertujuan untuk memberikan bantuan keuangan tanpa ikatan dinas kepada mahasiswa yang secara ekonomi kurang mampu namun memiliki prestasi akademik yang baik, terutama untuk membantu menyelesaikan tugas akhir akademiknya.

d. Beasiswa Bidik Misi

Beasiswa Bidik Misi merupakan program dari Dirjen Dikti untuk perguruan tinggi negeri. Beasiswa jenis ini merupakan beasiswa bagi calon mahasiswa yang kurang mampu. Beasiswa Bidik Misi dilatar belakangi oleh permasalahan akses pendidikan dari SMA sederajat ke perguruan tinggi. Banyak lulusan SMA sederajat tidak bisa melanjutkan pendidikannya ke jenjang yang lebih tinggi karena calon mahasiswanya dari kalangan kurang mampu, tapi berpotensi.

2.2 Multiple Attribute Decision Making (MADM)

MADM adalah suatu metode yang digunakan untuk mencari alternatif optimal dari sejumlah alternatif dengan kriteria tertentu. Inti dari MADM adalah menentukan nilai bobot untuk setiap atribut, kemudian dilanjutkan dengan proses perangkingan yang akan menyeleksi alternatif yang sudah diberikan (Nanda *et al.*, 2013).

MADM digunakan untuk menyelesaikan masalah-masalah dalam ruang diskrit. Oleh karena itu, pada MADM biasanya digunakan untuk melakukan penilaian atau seleksi terhadap beberapa alternatif dalam jumlah yang terbatas. Secara umum dapat dikatakan bahwa, MADM menyeleksi alternatif terbaik dari sejumlah alternatif.

2.2.1 Konsep Dasar MADM

Pada dasarnya, proses MADM dilakukan melalui 3 tahap, yaitu (Kusumadewi *et al*, 2006):

a. Tahap Penyusunan Komponen-komponen Situasi

Pada tahap penyusunan komponen-komponen situasi akan dibentuk tabel taksiran yang berisi identifikasi alternatif dan spesifikasi tujuan, kriteria dan atribut. Salah satu cara untuk menspesifikasikan tujuan situasi $|O_i, i=1,...,t|$ adalah dengan cara mendaftar konsekuensi-konsekuensi yang mungkin dari alternatif yang telah teridentifikasi $|A_i, i=1,...,n|$. Selain itu juga disusun atribut-atribut yang akan digunakan $|a_k, k=1,...,m|$.

b. Tahap Analisis

Pada tahap analisis dilakukan melalui dua langkah. Pertama, mendatangkan taksiran dari besaran yang potensial, kemungkinan, dan ketidakpastian yang berhubungan dengan dampak-dampak yang mungkin pada setiap alternatif. Kedua, meliputi pemilihan dari preferensi pengambil keputusan untuk setiap nilai, dan ketidakpedulian terhadap resiko yang timbul.

c. Tahap Sintesis Informasi

Pada langkah pertama, beberapa metode menggunakan fungsi distribusi $|P_j(X)|$ menyatakan probabilitas kumpulan atribut $|a_k|$ terhadap setiap alternatif $|A_i|$. Konsekuensi juga dapat ditentukan secara langsung dari agregasi sederhana yang dilakukan pada informasi terbaik yang tersedia. Demikian pula, ada beberapa cara untuk menentukan preferensi pengambil keputusan pada setiap konsekuen yang dapat dilakukan pada langkah kedua. Metode yang paling sederhana adalah untuk menurunkan bobot atribut dan kriteria adalah dengan fungsi utilitas atau penjumlahan terbobot.

Secara umum, model *Multi-Attribute Decision Making* (MADM) dapat didefinisikan sebagi berikut (Kusumadewi *et al*, 2006):

Misalkan $A = \{a_i | i=1,...,n\}$ adalah himpunan alternatif-alternatif keputusan dan $C = \{c_j | j=1,...,m\}$ adalah himpunan tujuan yang diharapkan, maka akan ditentukan alternatif x^0 yang memiliki derajat harapan tertinggi terhadap tujuan-tujuan yang relevan c_i .

Sebagian besar pendekatan MADM melalui 2 langkah yaitu (Kusumadewi *et al.*, 2006):

- a. Melakukan agregasi terhadap keputusan-keputusan yang tanggap terhadap semua tujuan pada setiap alternatif.
- b. Melakukan perangkingan alternatif-alternatif keputusan tersebut berdasarkan hasil agregasi keputusan.

Dengan demikian, bisa dikatakan bahwa, masalah *Multi-Attribute Decision Making* (MADM) adalah mengevaluasi m alternatif A_i (i = 1, 2, ..., m) terhadap sekumpulan atribut atau kriteria C_j (j = 1, 2, ..., n), dimana setiap atribut saling tidak bergantung satu dengan yang lainnya. Matriks keputusan setiap alternatif terhadap setiap atribut X, yang dinyatakan menggunakan persamaan (2.1):

$$X = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \vdots & \vdots & & \vdots \\ x_{m1} & x_{m2} & \dots & x_{mn} \end{bmatrix}$$
(2.1)

dimana x_{ij} merupakan rating kinerja alternatif ke-i terhadap atribut ke-j. Nilai bobot yang menunjukkan tingkat kepentingan relatif setiap atribut diberikan sebagai, W dan ditulis menggunakan persamaan (2.2):

$$W = \{w_1, w_2, \dots, w_n\} \tag{2.2}$$

Rating kinerja (X), dan nilai bobot (W) merupakan nilai utama yang merepresentasikan preferensi absolut dari pengambil keputusan. Masalah MADM diakhiri dengan proses perangkingan untuk mendapatkan alternatif terbaik yang diperoleh berdasarkan nilai keseluruhan preferensi yang diberikan (Kusumadewi *et al.*,2006).

Alternatif Kriteria (C_i) C_1 (A_i) C_2 C_n X_{11} X_{12} X_{1n} A_1 A_2 X_{21} X_{22} X_{2n} : : : X_{m1} X_{mn} A_m X_{m2}

Tabel 2.1 Penilaian Bobot Alternatif pada Setiap Kriteria

(Kusumadewi et al.,2006).

2.2.2 Metode-Metode Penyelesaian MADM

Ada beberapa metode yang dapat digunakan untuk menyelesaikan masalah MADM, antara lain (Kusumadewi *et al.*, 2006):

a. Metode Simple Additive Weighting (SAW)

Metode SAW pada dasarnya adalah mencari penjumlahan terbobot dari rating kinerja pada setiap alternatif pada semua atribut. Metode ini membutuhkan proses normalisasi matriks keputusan ke suatu skala yang dapat diperbandingkan dengan semua rating alternatif yang ada.

b. Metode Weighted Product (WP)

Metode WP menggunakan perkalian untuk menghubungkan rating atribut, dimana rating setiap atribut harus dipangkatkan dulu dengan bobot atribut yang bersangkutan. Proses ini sama halnya dengan proses normalisasi.

c. Metode *Elimination Et Choix Traduisant la Realite* (ELECTRE)

Metode ELECTRE didasarkan pada konsep perangkingan melalui perbandingan berpasangan antar alternatif pada kriteria yang sesuai.

- d. Metode *Technique for Order Preference by Similarity to Ideal Solution* (TOPSIS) Metode TOPSIS didasarkan pada konsep dimana alternatif terpilih yang terbaik tidak hanya memiliki jarak terpendek dari solusi ideal positif, namun juga memiliki jarak terpanjang dari solusi ideal negatif.
- e. Metode *The Distance to the Ideal Alternative* (DIA)

 Metode DIA merupakan metode yang didasarkan pada prinsip-prinsip sebagaimana pada metode TOPSIS. Metode ini dikembangkan guna memperbaiki metode sebelumnya yaitu metode TOPSIS.
- f. Metode *Analytic Hierarchy Proses* (AHP)

Metode AHP merupakan metode pengambilan keputusan yang dapat digunakan untuk membantu memecahkan situasi kompleks ke dalam bagian-bagian komponennya yang berupa alternatif dengan berbagai kriteria sebagai ukuran yang digunakan dalam pengambilan keputusan dan menyusunnya ke dalam suatu struktur hirarki (Wardhono, 2008).

2.3 Metode Simple Additive Weighting (SAW)

2.3.1 Pengertian Metode SAW

Metode SAW sering juga dikenal istilah metode penjumlahan terbobot. Konsep dasar metode SAW adalah mencari penjumlahan terbobot dari rating kinerja pada setiap alternatif pada semua atribut (Kusumadewi *et al*, 2006).

2.3.2 Langkah-Langkah Metode SAW

Langkah-langkah yang dilakukan dalam penyelesaian masalah menggunakan metode SAW adalah sebagai berikut:

a. Menentukan matriks keputusan

$$X = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \vdots & \vdots & & \vdots \\ x_{m1} & x_{m2} & \dots & x_{mn} \end{bmatrix}$$
(2.3)

b. Normalisasi matriks keputusan

Proses normalisasi matriks keputusan (X) ke suatu skala yang dapat diperbandingkan dengan semua rating alternatif yang ada sebagai berikut:

$$r_{ij} = \begin{cases} \frac{x_{ij}}{maxx_{ij}}, \text{ jika } j \text{ adalah atribut keuntungan } (benefit) \\ i \\ \frac{minx_{ij}}{x_{ij}}, \text{ jika } j \text{ adalah atribut biaya } (cost) \end{cases}$$

$$(2.4)$$

Dimana r_{ij} adalah rating kinerja ternormalisasi dari alternatif A_i pada atribut C_j ; i= 1,2,...,m dan j=1,2,...,n.

c. Proses perangkingan

Dalam menentukan nilai preferensi untuk setiap alternatif V_i adalah sebagai berikut:

$$V_i = \sum_{i=1}^n w_i r_{ij} \tag{2.5}$$

Nilai V_i yang lebih besar mengindikasikan bahwa alternatif A_i lebih terpilih. (Kusumadewi $et\ al,\ 2006$).

2.4 Metode The Distance To The Ideal Alternative (DIA)

2.4.1 Pengertian Metode DIA

Metode DIA merupakan metode yang dimiliki oleh MADM yang baru dikembangkan oleh beberapa peneliti. Metode DIA didasarkan pada prinsip-prinsip sebagaimana pada metode TOPSIS, DIA juga menentukan nilai ideal positif dan negatif dari setiap atribut. Perbedaan terletak pada penentuan jarak yang menggunakan manhattan distance, penentuan Positif Ideal Alternatif (PIA) yang memiliki minimal D_j^+ , dan maksimal D_j^- serta formula dalam urutan nilai pada Ri sebagai penentu perangkingan alternatif (Tran et al. 2008).

2.4.2 Langkah-langkah Metode DIA

Langkah-langkah yang dilakukan dalam penyelesaian masalah menggunakan metode DIA adalah sebagai berikut (Lahby *et al*, 2012):

a. Menentukan matriks keputusan

$$X = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \vdots & \vdots & & \vdots \\ x_{m1} & x_{m2} & \dots & x_{mn} \end{bmatrix}$$
(2.6)

b. Normalisasi matriks keputusan

Setiap elemen pada matriks di normalisasi untuk mendapatkan matriks normalisasi r_{ij} , dapat dihitung sebagai berikut:

$$r_{ij} = \frac{x_{ij}}{\sqrt{\sum_{i=1}^{m} x^2_{ij}}} \tag{2.7}$$

Sehingga diperoleh matriks R hasil normalisasi,

$$R = \begin{bmatrix} r_{11} & r_{12} & \dots & r_{1n} \\ r_{21} & r_{22} & \dots & r_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ r_{m1} & r_{m2} & \dots & r_{mn} \end{bmatrix}$$
 (2.8)

c. Pembobotan pada matriks yang telah di normalisasi

Setelah proses normalisasi matriks kemudian menentukan matriks V, dimana setiap elemen matriks V diperoleh dengan perhitungan:

$$V = W_{ij}X_{ij} (2.9)$$

Diberikan bobot $W = w_1, w_2, ..., w_n$ sehingga weight normalized matrix V dapat dihasilkan sebagai berikut:

$$V = \begin{bmatrix} w_1 r_{11} & w_2 r_{12} & \dots & w_n r_{1n} \\ w_1 r_{21} & w_2 r_{22} & \dots & w_n r_{2n} \\ \vdots & \vdots & & \vdots \\ w_1 r_{m1} & w_2 r_{m2} & \dots & w_n r_{mn} \end{bmatrix}$$
(2.10)

V : Matriks Pembobotan

 w_i, r_{ij} : atribut matriks

d. Menentukan solusi ideal positif dan ideal negatif

Solusi ideal positif dinotasikan dengan A⁺ dan solusi ideal negatif dinotasikan dengan A⁻, sebagai berikut:

$$A^{+} = \max V_{ij} = [V_{1}^{+}, V_{2}^{+}, \dots, V_{n}^{+}]$$
 (2.11)

$$A^{-} = \min V_{ij} = [V_{1}^{-}, V_{2}^{-}, \dots, V_{n}^{-}]$$
 (2.12)

Hasil dari solusi ideal positif (A^+) dan solusi ideal negatif (A^-) berupa matriks.

e. Hitung jarak Manhattan untuk atribut positif dan negatif

$$D_i^+ = \sum_{i=1}^m [V_{ii} - a_i^+], untuk \ i = 1, 2, 3, ..., m$$
 (2.13)

$$D_i^- = \sum_{i=1}^m [V_{ij} - a_i^-], untuk \ i = 1, 2, 3, ..., m$$
 (2.14)

Dimana V_{ij} adalah elemen matriks V dan a_i adalah elemen matriks A.

f. Menentukan *Positif Ideal Alternatif* (PIA) yang memiliki minimal D_j^+ , dan maksimal D_i^- , sebagai berikut:

$$PIA = \min(D_i^+), \max(D_i^-)$$
(2.15)

g. Melakukan identifikasi peringkat

Peringkat dapat ditentukan dengan melihat Ri yang diperoleh dari jarak alternatif PIA sebagai berikut:

$$R_{i} = \sqrt{\left(D_{j}^{+} - min(D_{j}^{+})\right)^{2} + \left(D_{j}^{-} - max(D_{j}^{-})\right)^{2}}$$
 (2.16)

Nilai R_i yang minimum mengindikasikan bahwa alternatif A_i lebih terpilih.

2.5 Uji Sensitivitas

Uji sensitivitas terhadap 2 metode penyelesaian masalah MADM untuk menentukan metode mana yang sesuai dalam menyelesaikan suatu kasus. Pada basis pengetahuan yang telah dibangun, hubungan antar setiap alternatif dengan setiap atribut dalam basis pengetahuan yang merupakan nilai probabilitas munculnya atribut jika diberikan alternatif tertentu, diwujudkan dalam matriks X berukuran $m \times n$.

Proses pengujian sensitivitas akan dilakukan dengan cara mencari derajat sensitivitas setiap atribut terhadap hasil perangkingan pada setiap metode penyelesaian

MADM. Derajat sensitivitas (s_j) setiap atribut diperoleh melalui langkah-lengkah sebagai berikut:

- a. Tentukan semua bobot atribut, $w_j = 1$ (bobot awal), dengan j = 1, 2, ..., jumlah atribut.
- b. Normalisasi bobot atribut tersebut dengan cara membentuk nilai bobot sedemikian hingga $\sum w = 1$.
- c. Aplikasikan metode MADM, untuk bobot-bobot atribut yang telah dibentuk pada langkah sebelumnya.
- d. Hitung prosentase perubahan rangking dengan cara membandingkan berapa banyak perubahan rangking yang terjadi jika dibandingkan dengan kondisi pada saat bobotnya sama (bobot = 1). Hasil prosentase perubahan rangking yang lebih besar maka metode yang terbaik. (Wibowo, 2010).

2.6 Pemrograman Matrix Laboratory (MATLAB)

MATLAB adalah sebuah program untuk analisis dan komputasi numerik dengan bahasa pemrograman matematika lanjutan yang dibentuk dengan dasar pemikiran menggunakan sifat dan bentuk matriks. MATLAB merupakan software yang dikembangkan oleh Mathwork, Inc. Dan merupakan software yang paling tepat untuk perhitungan numerik berbasis matriks. MATLAB memiliki kemampuan yang tinggi dalam bidang komputasi, karena MATLAB memiliki kemampuan mengintegrasikan komputasi, visualisasi, dan pemrograman. MATLAB juga memiliki toolbox yang berisi fungsi-fungsi tambahan untuk aplikasi khusus. MATLAB sering digunakan untuk teknik komputasi numerik, untuk menyelesaikan masalah-masalah yang melibatkan operasi matematika, matriks, optimasi, aproksimasi, dan lain-lain (Arhami dan Desiani, 2005).

BAB 3. METODE PENELITIAN

3.1 Data Penelitian

Data yang digunakan dalam penelitian ini adalah data-data yang dibutuhkan untuk menentukan penerima beasiswa. Dalam skripsi ini, pengambilan data dilakukan di Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Jember. Data tersebut disajikan dalam Tabel 3.1.

Tabel 3.1 Data Mahasiswa Calon Penerima Beasiswa

	Atribut (Kriteria)			
Alternatif	IPK	Penghasilan ortu	Jml. Sdr Kandung	
Mahasiswa 1	3,38	4.370.800	5	
Mahasiswa 2	3,36	3.490.400	3	
Mahasiswa 3	3,28	600.000	3	
Mahasiswa 4	3,32	1.000.000	3	
Mahasiswa 5	3,32	4.370.800	5	
Mahasiswa 6	3,29	1.500.000	4	
Mahasiswa 7	3,17	926.355	2	
Mahasiswa 8	3,14	3.942.800	2	
Mahasiswa 9	3,08	750.000	4	
Mahasiswa 10	3,08	800.000	3	
Mahasiswa 11	3,01	3.772.900	2	
Mahasiswa 12	3,52	4.000.000	3	
Mahasiswa 13	3,14	0	1	

	Atribut (Kriteria)			
Alternatif -	IPK	Penghasilan ortu	Jml. Sdr Kandung	
Mahasiswa 14	3	2.524.488	1	
Mahasiswa 15	3,48	2.399.000	2	
Mahasiswa 16	3	2.499.900	1	
Mahasiswa 17	3	3.586.245	1	
Mahasiswa 18	3,14	700.000	1	
Mahasiswa 19	3,19	3.840.800	3	
Mahasiswa 20	3,24	500.000	4	
Mahasiswa 21	3,14	1.873.800	3	

Tujuan dari kasus ini adalah menentukan calon penerima beasiswa yang benarbenar berhak menerima. Adapun 3 kriteria yang dibutuhkan adalah sebagai berikut:

a. Nilai Indeks Prestasi Komulatif (*C*₁) yaitu nilai indeks prestasi komulatif pada semester sebelumnya. Nilai IPK yang lebih tinggi yang menjadi prioritas untuk mendapatkan beasiswa. Dari kriteria ini ditentukan bobot dari nilai Indeks Prestasi Komulatif disajikan pada Tabel 3.2.

Tabel 3.2 Nilai Indeks Prestasi Komulatif

Nilai IPK	Nilai
IPK 2,75	0
2,75 < IPK 3,00	0,25
3,00 < IPK 3,25	0,5
3,25 < IPK 3,50	0,75
IPK > 3,50	1

b. Penghasilan orang tua (C_2) yaitu penghasilan yang diperoleh orang tua mahasiswa setiap bulan. Jumlah penghasilan orang tua yang lebih rendah yang menjadi prioritas untuk mendapatkan beasiswa Dari kriteria ini ditentukan bobot dari penghasilan orang tua yang disajikan dalam Tabel 3.3.

Tabel 3.3 Penghasilan Orang Tua

Penghasilan Orang Tua (X)	Nilai
X Rp 1.000.000	1
$Rp\ 1.000.000 < X Rp\ 5.000.000$	0,75
Rp 5.000.000 < X Rp 10.000.000	0,5
X > 10.000.000	0,25

c. Jumlah saudara kandung (C_3) yaitu jumlah saudara kandung mahasiswa. Jumlah saudara kandung yang lebih banyak yang menjadi prioritas untuk mendapatkan beasiswa. Dari kriteria ini ditentukan bobot dari jumlah tanggungan orang tua yang disajikan dalam Tabel 3.4.

Tabel 3.4 Jumlah Saudara Kandung

Jumlah Saudara Kandung	Nilai
1 anak	0
2 anak	0,25
3 anak	0,5
4 anak	0,75
5 anak	1
5 anak	<u> </u>

(Putra et al.,2011).

Dari beberapa kriteria diatas diberikan nilai bobot pada setiap kriteria penerima beasiswa dan dapat disajikan dalam Tabel 3.5.

Tabel 3.5 Bobot Setiap Kriteria

Notasi	Nama Kriteria	Nilai Bobot
C_1	Nilai Indeks Prestasi Komulatif	0,4
C_2	Jumlah Penghasilan Orang Tua	0,3
C_3	Jumlah Saudara Kandung	0,2

Dari data Mahasiswa Calon Penerima Beasiswa yang ada pada Tabel 3.1 kemudian di ubah sesuai dengan nilai bobot masing-masing kriteria. Untuk kriteria IPK nilai bobot berdasarkan pada Tabel 3.2. Kriteria penghasilan orang tua nilai bobot berdasarkan pada Tabel 3.3. Kriteria jumlah saudara kandung nilai bobot berdasarkan

Tabel 3.4. Sehingga di peroleh data bobot mahasiswa calon penerima beasiswa yang di sajikan pada tabel 3.6.

Tabel 3.6 Data Bobot Mahasiswa Calon Penerima Beasiswa

	Atribut (Kriteria)			
Alternatif -	IPK	Penghasilan ortu	Jml. Sdr Kandung	
Mahasiswa 1	0,75	0,5	1	
Mahasiswa 2	0,75	0,5	0,5	
Mahasiswa 3	0,75	0,25	0,5	
Mahasiswa 4	0,75	0,25	0,5	
Mahasiswa 5	0,75	0,5	1	
Mahasiswa 6	0,75	0,5	0,75	
Mahasiswa 7	0,5	0,25	0,25	
Mahasiswa 8	0,5	0,5	0,25	
Mahasiswa 9	0,5	0,25	0,75	
Mahasiswa 10	0,5	0,25	0,5	
Mahasiswa 11	0,5	0,5	0,25	
Mahasiswa 12	1	0,5	0,5	
Mahasiswa 13	0,5	0,25	0	
Mahasiswa 14	0,25	0,5	0	
Mahasiswa 15	0,75	0,5	0,25	
Mahasiswa 16	0,25	0,5	0	
Mahasiswa 17	0,25	0,5	0	
Mahasiswa 18	0,5	0,25	0	
Mahasiswa 19	0,5	0,5	0,5	
Mahasiswa 20	0,5	0,25	0,75	
Mahasiswa 21	0,5	0,5	0,5	

3.2 Langkah-Langkah Penelitian

Secara sistematik, langkah-langkah penelitian yang akan dilakukan dapat dilihat pada Gambar 3.1.

Gambar 3.1 Skema Langkah-langkah Penelitian

Adapun penjelasan dari skema langkah-langkah penelitian pada Gambar 3.1 adalah sebagai berikut:

a. Studi Literatur

Langkah awal yang dilakukan adalah mengumpulkan berbagai literatur tentang metode SAW dan metode DIA dari internet ataupun buku-buku yang berhubungan dengan metode tersebut.

b. Pengambilan dan Pengumpulan Data

Pada langkah ini, dilakukan pengambilan dan pengumpulan data tentang penentuan calon penerima beasiswa di Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Jember.

c. Penerapan Metode SAW dan Metode DIA

Langkah awal yang dilakukan sebelum menerapkan metode SAW dan metode DIA adalah menentukan kriteria yang dibutuhkan untuk pengambilan keputusan berdasarkan persyaratan yang telah ditentukan. Adapun kriteria yang telah ditentukan yaitu Nilai Indeks Prestasi Komulatif (C_1), Jumlah Penghasilan Orang

Tua (C_2), Jumlah saudara kandung (C_3). Dari kriteria tersebut, ditentukan nilai bobot setiap kriteria yang terdapat pada Tabel 3.6.

1) Penerapan Metode SAW

Adapun langkah-langkah yang harus dilakukan dalam metode SAW adalah sebagai berikut:

- a) Menentukan matriks keputusan seperti yang ditunjukkan pada persamaan (2.3).
- b) Normalisasi matriks keputusan dilakukan menggunakan perhitungan pada persamaan (2.4).
- c) Proses perangkingan dari setiap alternatif menggunakan perhitungan pada persamaan (2.5).

2) Penerapan Metode DIA

Langkah-langkah yang harus dilakukan dalam metode DIA adalah sebagai berikut:

- a) Membangun sebuah matriks keputusan seperti yang ditunjukkan pada persamaan (2.6).
- b) Normalisasi matriks keputusan dilakukan menggunakan perhitungan pada persamaan (2.7) sehingga diperoleh matriks seperti pada persamaan (2.8)
- c) Pembobotan pada matriks yang telah di normalisasi sehingga diperoleh elemen matriks V dengan menggunakan persamaan (2.9) dapat dihasilkan matriks V sesuai dengan persamaan (2.10).
- d) Menetukan solusi ideal positif dan ideal negative seperti yang ditunjukkan pada persamaan (2.11) dan (2.12).
- e) Menghitung jarak Manhattan untuk atribut positif dan negatif sesuai dengan persamaan (2.13) dan (2.14).
- f) Menentukan *Positif Ideal Alternatif* (PIA) dengan menggunakan persamaan (2.15).
- g) Melakukan identifikasi peringkat ini dengan menghitung jarak alternatif PIA menggunakan persamaan (2.16).

d. Perbandingan Kedua Metode

Langkah penelitian berikutnya adalah perbandingan kedua metode untuk mengetahui metode mana yang lebih baik untuk menentukan penerima beasiswa dengan menggunakan uji sensitivitas yaitu denagn melihat hasil prosentase perubahan rangking yang lebih besar.

e. Kesimpulan

Langkah terakhir yang dilakukan adalah menyimpulkan hasil sebagai informasi kepada pembaca.

BAB 4. HASIL DAN PEMBAHASAN

4.1 Hasil

Untuk mengetahui cara kerja metode *Simple Additive Weighting* (SAW) dan metode *The Distance To The Ideal Alternative* (DIA) secara manual, berikut ini akan diberikan contoh penyelesaian menggunakan sampel data yang kecil berupa 5 altenatif dan 3 atribut kriteria. Sampel data yang kecil ini diambil dari sebagian data pada Tabel 3.6, seperti yang tercantum pada Tabel 4.1.

Tabel 4.1 Rating Kecocokan Alternatif pada Setiap Kriteria

Alternatif _	Atribut (Kriteria)		
Alternatii —	<i>C</i> ₁	C_2	<i>C</i> ₃
Mahasiswa 1	0,75	0,5	1
Mahasiswa 2	0,75	0,5	0,5
Mahasiswa 3	0,75	0,25	0,5
Mahasiswa 4	0,75	0,25	0,5
Mahasiswa 5	0,75	0,5	1

Keterangan:

 C_1 = Nilai Indeks Prestasi Komulatif

 C_2 = Jumlah Penghasilan Orang Tua

 C_3 = Jumlah Saudara Kandung

4.1.1 Langkah-Langkah Penyelesaian Metode SAW

Berikut ini diberikan langkah-langkah penyelesaian secara manual dengan metode SAW:

a. Menentukan Matriks Keputusan

Dalam menentukan matriks keputusan ini di peroleh dari pengambilan beberapa sampel pada data calon penerima beasiswa yang di peroleh pada Tabel 3.5

Atribut (Kriteria) Alternatif C_1 C_2 C_3 0,75 0.5 Mahasiswa 1 1 Mahasiswa 2 0,75 0,5 0,5 Mahasiswa 3 0,75 0,25 0,5 Mahasiswa 4 0,75 0,25 0,5 Mahasiswa 5 0,75 0,5 1

Tabel 4.2 Matriks Keputusan SAW

Dari tabel di atas dapat di bentuk sebuah matriks sebagai berikut:

$$X = \begin{bmatrix} 0.75 & 0.5 & 1\\ 0.75 & 0.5 & 0.5\\ 0.75 & 0.25 & 0.5\\ 0.75 & 0.25 & 0.5\\ 0.75 & 0.5 & 1 \end{bmatrix}$$

Bobot yang di berikan adalah $W = \begin{bmatrix} 0.4 & 0.3 & 0.2 \end{bmatrix}$

b. Normalisasi Matriks Keputusan

Pada tahap normalisasi matriks ini dilakukan menggunakan persamaan (2.4). Karena setiap nilai yang diberikan pada setiap kriteria merupakan nilai kecocokan, maka semua kriteria yang diberikan diasumsikan sebagai kriteria keuntungan yang menghasilkan matriks pada Tabel 4.3.

Alternatif	1	Atribut (Kriteria	n)
Alternatii	<i>C</i> ₁	C ₂	<i>C</i> ₃
Mahasiswa 1	1	1	1
Mahasiswa 2	1	1	0,5
Mahasiswa 3	1	0,5	0,5
Mahasiswa 4	1	0,5	0,5
Mahasiswa 5	1	1	1

Tabel 4.3 Perhitungan Normalisasi Matriks SAW

Dari tabel di atas jika disajikan dalam bentuk sebuah matriks sebagai berikut:

$$R = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0.5 \\ 1 & 0.5 & 0.5 \\ 1 & 0.5 & 0.5 \\ 1 & 1 & 1 \end{bmatrix}$$

c. Proses Perangkingan

Pada tahapan ini yaitu perkalian matriks ternormalisasi dengan bobot yang diberikan menggunakan persamaan (2.5).

 $V_1 = 0.900$

 $V_2 = 0.800$

 $V_3 = 0.650$

 $V_4 = 0.650$

 $V_5 = 0.900$

Sehingga dapat disimpulkan perangkingan dari hasil perkalian matriks dengan bobot diatas dari hasil akhir yang terbesar ke hasil akhir terendah yaitu :

- 1) Mahasiswa 1 dengan nilai $V_1 = 0.900$
- 2) Mahasiswa 5 dengan nilai $V_5 = 0.900$
- 3) Mahasiswa 2 dengan nilai $V_2 = 0.800$
- 4) Mahasiswa 3 dengan nilai $V_3 = 0,650$
- 5) Mahasiswa 4 dengan nilai $V_4 = 0.650$

4.1.2 Langkah-Langkah Penyelesaian Metode DIA

Berikut ini diberikan langkah-langkah penyelesaian secara manual dengan metode DIA:

a. Menentukan Matriks Keputusan

Dalam menentukan matriks keputusan ini di peroleh dari pengambilan beberapa sampel pada data calon penerima beasiswa yang di peroleh pada Tabel 3.5

Atribut (Kriteria) Alternatif C_1 C_2 C_3 Mahasiswa 1 0,75 0.5 1 Mahasiswa 2 0,75 0,5 0,5 Mahasiswa 3 0.75 0,25 0,5 Mahasiswa 4 0,75 0,25 0,5 Mahasiswa 5 0,75 0,5 1

Tabel 4.4 Matriks Keputusan DIA

Dari tabel di atas dapat di bentuk sebuah matriks sebagai berikut:

$$X = \begin{bmatrix} 0.75 & 0.5 & 1\\ 0.75 & 0.5 & 0.5\\ 0.75 & 0.25 & 0.5\\ 0.75 & 0.25 & 0.5\\ 0.75 & 0.5 & 1 \end{bmatrix}$$

Bobot yang di berikan adalah $W = \begin{bmatrix} 0.4 & 0.3 & 0.2 \end{bmatrix}$

b. Normalisasi Matriks Keputusan

Pada tahap normalisasi matriks ini dilakukan menggunakan persamaan (2.7) sehingga menghasilkan matriks pada Tabel 4.5:

Tabel 4.5 Perhitungan Normalisasi Matriks DIA

Atribut (Kriteria)

Alternatif _	Atribut (Kriteria)			
	C_1	C ₂	<i>C</i> 3	
Mahasiswa 1	0,4472	0,5345	0,6030	
Mahasiswa 2	0,4472	0,5345	0,3015	

Alternatif _	A	Atribut (Kriteria	1)
	C_1	C_2	<i>C</i> ₃
Mahasiswa 3	0,4472	0,5345	0,3015
Mahasiswa 4	0,4472	0,5345	0,3015
Mahasiswa 5	0,4472	0,5345	0,6030

Dari tabel di atas jika disajikan dalam bentuk sebuah matriks sebagai berikut:

$$R = \begin{bmatrix} 0,4472 & 0,5345 & 0,6030 \\ 0,4472 & 0,5345 & 0,3015 \\ 0,4472 & 0,2673 & 0,3015 \\ 0,4472 & 0,2673 & 0,3015 \\ 0,4472 & 0,5345 & 0,6030 \end{bmatrix}$$

c. Pembobotan pada matriks yang telah di normalisasi

Pada langkah ini matriks keputusan yang telah di normalisasi maka dikalikan dengan bobot kriteria sesuai bobot yang telah ditentukan sehingga menghasilkan sebagai berikut:

Tabel 4.6 Pembobotan Matriks

Alternatif		Atribut (Kriteria	n)
	<i>C</i> ₁	C_2	<i>C</i> ₃
Mahasiswa 1	0,1789	0,1604	0,1206
Mahasiswa 2	0,1789	0,1604	0,0603
Mahasiswa 3	0,1789	0,0802	0,0603
Mahasiswa 4	0,1789	0,0802	0,0603
Mahasiswa 5	0,1789	0,1604	0,1206

Dari tabel di atas jika disajikan dalam bentuk sebuah matriks sebagai berikut:

$$V = \begin{bmatrix} 0,1789 & 0,1604 & 0,1206 \\ 0,1789 & 0,1604 & 0,0603 \\ 0,1789 & 0,0802 & 0,0603 \\ 0,1789 & 0,0802 & 0,0603 \\ 0,1789 & 0,1604 & 0,1206 \end{bmatrix}$$

d. Menentukan solusi ideal positif dan ideal negative

Langkah ini adalah mencari Alternatif positif dan negatif dari setiap kriteria berdasarkan nilai pada Tabel 4.6.

Tabel 4.7 Solusi Ideal Positif

Alternatif Positif	Kriteria	$A^{+} = max V_{ij} = [V_{1}^{+}, V_{2}^{+},, V_{n}^{+}]$
V_1^+	IPK	0,1789
V_2^+	Penghasilan Ortu	0,1604
V_3^+	Tanggungan Ortu	0,1206

Tabel 4.8 Solusi Ideal Negatif

Alternatif Negatif	Kriteria	$A^{-} = min V_{ij} = [V_{1}^{-}, V_{2}^{-},, V_{n}^{-}]$
V_1^-	IPK	0,1789
V_2^-	Penghasilan Ortu	0,0802
V_3^-	Tanggungan Ortu	0,0603

e. Hitung jarak Manhattan untuk atribut positif dan negatif

Untuk menghitung jarak *Manhattan* ini menggunakan Nilai Alternatif positif dan negatif sebagai acuan sehingga menghasilkan Jarak *Manhattan Maximum* dan Jarak *Manhattan Minimum*.

Tabel 4.9 Jarak Manhattan Maximum

Alternatif	Manhattan Maximum	Nilai
Mahasiswa 1	D_1^+	0
Mahasiswa 2	D_2^+	0,6030
Mahasiswa 3	D_3^+	0,1405
Mahasiswa 4	D_4^+	0,1405
Mahasiswa 5	D_5^+	0

Tabel 4.10 Jarak Manhattan Minimum

Alternatif	Manhattan Minimum	Nilai
Mahasiswa 1	D_1^-	0,1405
Mahasiswa 2	D_2^-	0,0802
Mahasiswa 3	D_3^-	0
Mahasiswa 4	D_4^-	0
Mahasiswa 5	D_5^-	0,1405

f. Menentukan Positif Ideal Alternatif (PIA)

$$PIA = 0$$
; 0,1405

g. Melakukan identifikasi peringkat

Langkah ini adalah langkah terakhir yang di gunakan untuk mengidentifikasi peringkat dari nilai terendah yang layak memperoleh beasiswa menggunakan persamaan (2.16) sehingga menghasilkan seperti tabel dibawah ini:

Tabel 4.11 Hasil Perangkingan

Nama	R_i	Peringkat
Mahasiswa 1	0	1
Mahasiswa 2	0,0853	3
Mahasiswa 3	0,1987	4
Mahasiswa 4	0,1987	5
Mahasiswa 5	0	2

Sehingga dapat disimpulkan perangkingan sebagai berikut :

- 1) Mahasiswa 1 dengan nilai $R_1 = 0$
- 2) Mahasiswa 5 dengan nilai $R_5 = 0$
- 3) Mahasiswa 2 dengan nilai $R_2 = 0.0853$
- 4) Mahasiswa 3 dengan nilai $R_3 = 0.1987$
- 5) Mahasiswa 4 dengan nilai $R_4 = 0.1987$

4.1.3 Langkah-Langkah Menjalankan Program

Program penentuan penerima beasiswa menggunakan metode *Simple Additive Weighting* (SAW) dan metode *The Distance To The Ideal Alternative* (DIA) dibuat dengan bantuan program *Matlab7.8.0. Matlab* adalah bahasa pemrograman tingkat tinggi yang dikhususkan untuk komputasi teknis. Bahasa ini mengintegrasikan kemampuan komputasi, visualisasi dan pemrograman dalam sebuah lingkungan yang mudah untuk digunakan.

Program penentuan penerima beasiswa menggunakan metode *Simple Additive Weighting* (SAW) dan metode *The Distance To The Ideal Alternative* (DIA). Semua fungsi yang dibuat kemudian dipanggil melalui fungsi utama yaitu Program Utama. Tampilan program ditunjukkan pada Gambar 4.1.

Gambar 4.1 Tampilan Program Utama

Pada Gambar 4.1 terdapat kolom metode yaitu tampilan awal untuk memproses setiap metode, apabila mengklik tombol Metode SAW akan muncul Gambar 4.2.

Gambar 4.2 Tampilan program Metode SAW

Ada beberapa kolom pada *frame* tampilan program Metode SAW antara lain sebagai berikut:

- a. Kolom *input* yaitu berisi tentang input data calon penerima beasiswa dan input bobot setiap kriteri yang di ambil dari data yang sudah di simpan dalam bentuk *.txt.
- b. Kolom proses yaitu terdiri dadi beberapa menu antara lain:
 - 1) Open Data merupakan tombol yang berfungsi untuk meng-*input* data yang sudah disimpan dalam bentuk *.txt yaitu data calon penerima beasiswa, seperti Gambar 4.3.

Gambar 4.3 Tampilan input data SAW

2) Open Bobot yaitu tombol yang digunakan untuk memanggil data bobot yang sudah disimpan dalam bentuk *.txt, pada Gambar 4.4.

Gambar 4.4 Tampilan open bobot SAW

3) Open Atribut yaitu tombol yang digunakan untuk memanggil data atribut yang sudah disimpan dalam bentuk *.txt, ditampilkan pada Gambar 4.5.

Gambar 4.5 Tampilan open atribut SAW

4) R merupakan tombol yang digunakan untuk menampilkan hasil normalisasi matriks X yang di sebut matriks R. Seperti tampak pada Gambar 4.6.

Gambar 4.6 Tampilan Matriks R SAW

5) Proses merupakan tombol yang digunakan untuk memproses kinerja metode SAW sehingga memperoleh hasil perangkingan. Seperti yang ditampilkan pada Gambar 4.7.

Gambar 4.7 Tampilan proses SAW

6) Uji merupakn tombol untuk mengetahui perubahan perangkingan dengan mengganti bobot awal menjadi 1 sehingga mengetahui persentase perubahan perangkingan yang bertujuan untuk menentukan metode yang terbaik. Akan ditampilkan seperti Gambar 4.8.

Gambar 4.8 Tampilan uji SAW

7) Home yaitu tombol untuk kembali ke tampilan awal program utama seperti pada Gambar 4.1.

c. Kolom *out put* yaitu kolom yang menampilkan hasil perangkingan metode SAW dan hasil perubahan perangkingan yang di sebut uji sensitivitas serta menampilkan persentase perubahan perangkingan, seperti pada Gambar 4.9.

Gambar 4.9 Tampilan output SAW

Pada tampilan Program Utama pada Gambar 4.1 terdapat kolom metode yaitu tampilan awal untuk memproses setiap metode, apabila mengklik tombol Metode DIA akan muncul Gambar 4.10.

Gambar 4.10 Tampilan program DIA

Ada beberapa kolom pada *frame* tampilan program DIA *Method* antara lain sebagai berikut:

- a. Kolom *input* yaitu berisi tentang input data calon penerima beasiswa dan input bobot setiap kriteri yang di ambil dari data yang sudah di simpan dalam bentuk *.txt.
- b. Kolom proses yaitu terdiri dadi beberapa menu antara lain:
 - 1) Open File Data merupakan tombol yang berfungsi untuk meng-*input* data yang sudah disimpan dalam bentuk *.txt yaitu data calon penerima beasiswa, seperti pada Gambar 4.11.

Gambar 4.11 Tampilan input data DIA

2) Open file Bobot yaitu tombol yang digunakan untuk memanggil data bobot yang sudah disimpan dalam bentuk *.txt., apabila dijalankan akan muncul seperti Gambar 4.12.

Gambar 4.12 Tampilan open file bobot DIA

3) R merupakan tombol untuk mengetahui hasil matriks ternormalisasi yang di sebut matriks R. Ditampilkan seperti pada Gambar 4.13.

Gambar 4.13 Tampilan matriks R DIA

4) V merupakan tombol untuk mengetahui hasil matriks ternormalisasi terbobot yang di sebut matriks V. Ditampilkan seperti pada Gambar 4.14.

Gambar 4.14 Tampilan matriks V DIA

 A merupakan tombol untuk mengetahui alternatif positif dan negatif dari setiap kriteria berdasarkan nilai matriks V. Ditampilkan seperti pada Gambar 4.15.

Gambar 4.15 Tampilan Alternatif positif dan negatif DIA

6) Dj merupakan tombol untuk menghitung jarak *Manhattan maximum* dan jarak *Manhattan minimum*. Ditampilkan seperti pada Gambar 4.16.

Gambar 4.16 Tampilan jarak Manhattan DIA

7) PIA merupakan tombol untuk Positif Ideal Alternatif yang memiliki $minimal \ Dj^+$ dan $maximal \ Dj^-$. Ditampilkan seperti pada Gambar 4.17.

Gambar 4.17 Tampilan nilai PIA DIA

8) Proses merupakan tombol yang digunakan untuk memproses kinerja metode DIA sehingga memperoleh hasil perangkingan seperti pada Gambar 4.18.

Gambar 4.18 Tampilan proses DIA

9) Uji merupakn tombol untuk mengetahui perubahan perangkingan dengan mengganti bobot awal menjadi 1 sehingga mengetahui persentase

| Program Penerima Beasiswa | Matriks X | Matriks V |

perubahan perangkingan yang bertujuan untuk menentukan metode yang terbaik. Akan ditampilkan seperti Gambar 4.19.

Gambar 4.19 Tampilan uji DIA

- 10) Home yaitu tombol untuk kembali ke tampilan awal program HOME seperti pada Gambar 4.1.
- c. Kolom *out put* yaitu kolom yang menampilkan hasil perangkingan metode DIA dan hasil perubahan perangkingan yang di sebut uji sensitivitas serta menampilkan persentase perubahan perangkingan, seperti Gambar 4.20.

Gambar 4.20 Tampilan output DIA

4.2 Pembahasan

Berdasarkan hasil yang didapat pada subbab sebelumnya, Metode SAW menggunakan kriteria nilai IPK, jumlah penghasilan orang tua, jumlah saudara kandung dan semester untuk penentuan alternatif penerima beasiswa yaitu mahasiswa 1, mahasiswa 2, mahasiswa 3 dan seterusnya. Dari tingkat kepentingan yang didapat dari tiap-tiap kriteria, sehingga diperoleh hasil perangkingan metode SAW untuk alternatif setiap mahasiswa yang disajikan pada Tabel 4.12.

Tabel 4.12 Hasil Perangkingan SAW

No	Hasil Sebelum Uj	i Sensitifitas	Hasil Setelah Uj	i Sensitifitas
110	Alternatif	Nilai V _i	Alternatif	Nilai V _i
1	Mahasiswa 1	0,8000	Mahasiswa 1	2,7500
2	Mahasiswa 5	0,8000	Mahasiswa 5	2,7500
3	Mahasiswa 12	0,8000	Mahasiswa 6	2,5000
4	Mahasiswa 6	0,7500	Mahasiswa 12	2,5000
5	Mahasiswa 2	0,7000	Mahasiswa 2	2,2500
6	Mahasiswa 15	0,6500	Mahasiswa 15	2
7	Mahasiswa 19	0,6000	Mahasiswa 19	2
8	Mahasiswa 21	0,6000	Mahasiswa 21	2
9	Mahasiswa 3	0,5500	Mahasiswa 3	1,7500
10	Mahasiswa 4	0,5500	Mahasiswa 4	1,7500
11	Mahasiswa 8	0,5500	Mahasiswa 8	1,7500
12	Mahasiswa 11	0,5500	Mahasiswa 9	1,7500
13	Mahasiswa 9	0,5000	Mahasiswa 11	1,7500
14	Mahasiswa 20	0,5000	Mahasiswa 20	1,7500
15	Mahasiswa 10	0,4500	Mahasiswa 10	1,5000
16	Mahasiswa 14	0,4000	Mahasiswa 7	1,2500
17	Mahasiswa 16	0,4000	Mahasiswa 14	1,2500
18	Mahasiswa 17	0,4000	Mahasiswa 16	1,2500

No	Hasil Sebelum U	ji Sensitifitas	Hasil Setelah Uji Sensitifi	
110	Alternatif	Nilai V _i	Alternatif	Nilai V _i
19	Mahasiswa 7	0,4000	Mahasiswa 17	1,2500
20	Mahasiswa 13	0,3500	Mahasiswa 13	1
21	Mahasiswa 18	0,3500	Mahasiswa 18	1

Aplikasi metode DIA menggunakan kriteria nilai IPK, jumlah penghasilan orang tua, jumlah saudara kandung dan semester untuk penentuan alternatif penerima beasiswa yaitu mahasiswa 1, mahasiswa 2, mahasiswa 3 dan seterusnya. Dari tingkat kepentingan yang didapat dari tiap-tiap kriteria, sehingga diperoleh hasil perangkingan metode DIA dengan nilai preferensi yang didapat untuk alternatif setiap mahasiswa yang disajikan pada Tabel 4.13.

Tabel 4.13 Hasil Perangkingan DIA

No	Hasil Sebelum Uj	Sebelum Uji Sensitifitas Hasil Setelah Uji Sensitifitas		i Sensitifitas
110	Alternatif	Nilai <i>R_i</i>	Alternatif	Nilai R _i
1	Mahasiswa 1	0	Mahasiswa 1	0
2	Mahasiswa 5	0	Mahasiswa 5	0
3	Mahasiswa 12	0,0081	Mahasiswa 6	0,1482
4	Mahasiswa 6	0,0296	Mahasiswa 12	0,1685
5	Mahasiswa 2	0,0593	Mahasiswa 2	0,2965
6	Mahasiswa 15	0,0889	Mahasiswa 19	0,4245
7	Mahasiswa 19	0,1105	Mahasiswa 21	0,4245
8	Mahasiswa 21	0,1105	Mahasiswa 15	0,4447
9	Mahasiswa 3	0,1141	Mahasiswa 9	0,4589
10	Mahasiswa 4	0,1141	Mahasiswa 20	0,4589
11	Mahasiswa 9	0,1356	Mahasiswa 3	0,4791
12	Mahasiswa 20	0,1356	Mahasiswa 4	0,4791
13	Mahasiswa 8	0,1402	Mahasiswa 8	0,5728

No	Hasil Sebelum Uji Sensitifitas		Hasil Setelah Uji Sensitifitas	
	Alternatif	Nilai R _i	Alternatif	Nilai R _i
14	Mahasiswa 11	0,1402	Mahasiswa 11	0,5728
15	Mahasiswa 10	0,1653	Mahasiswa 10	0,6071
16	Mahasiswa 7	0,1949	Mahasiswa 7	0,7554
17	Mahasiswa 14	0,2210	Mahasiswa 14	0,8491
18	Mahasiswa 16	0,2210	Mahasiswa 16	0,8491
19	Mahasiswa 17	0,2210	Mahasiswa 17	0,8491
20	Mahasiswa 13	0,2246	Mahasiswa 13	0,9036
21	Mahasiswa 18	0,2246	Mahasiswa 18	0,9036

Perbandingan antara metode SAW dan metode DIA memiliki perbedaan dalam penentuan keputusan, dimana metode SAW semakin besar nilai preferensi yang diperoleh maka alternatif lebih terpilih sehingga proses perangkingan dimulai dari nilai preferensi terbesar ke preferensi terkecil. Sedangkan pada metode DIA, semakin kecil nilai yang didapat, maka alternatif terpilih lebih besar. Berdasarkan hasil uji sensitifitas yang ada pada kedua metode, metode DIA memiliki persentase perubahan perangkingan lebih besar yaitu sebesar 42,8571% dibandingkan dengan metode SAW yaitu sebesar 38,0952%, sehingga dapat disimpulkan bahwa metode DIA adalah metode yang lebih baik digunakan dalam penentuan penerima beasiswa karena memiliki perentase perubahan lebih besar daripada metode SAW.

BAB 5. PENUTUP

5.1 Kesimpulan

Kesimpulan yang dapat diambil dari penerapan metode DIA dan metode SAW adalah sebagai berikut:

- a. Penerapan metode SAW menghasilkan nilai preferensi tertinggi sebesar 0,8250 sedangkan pada metode DIA menghasilkan nilai preferensi terendah sebesar 0. Sehingga diperoleh hasil perangkingan mahasiswa terpilih dengan menggunakan metode SAW dan metode DIA.
- b. Berdasarkan hasil uji sensitifitas yang ada pada kedua metode, metode DIA memiliki persentase perubahan perangkingan lebih besar yaitu sebesar 42,8571% dibandingkan dengan metode SAW yaitu sebesar 38,0952% sehingga dapat disimpulkan bahwa metode DIA adalah metode yang lebih baik digunakan dalam penentuan penerima beasiswa.

5.2 Saran

Selain metode DIA dan metode SAW, masih banyak lagi metode sistem pendukung keputusan yang dapat diaplikasikan untuk menentukan penerima beasiswa, sehingga masih dapat dimungkinkan untuk membandingkan metode SAW dengan metode yang lainnya.

DAFTAR PUSTAKA

- Arhami, M. dan Desiani, A. 2005. Pemrograman MATLAB. Yogyakarta: Andi Offset.
- Ariyanto. 2012. Sistem Pendukung Keputusan Pemilihan Karyawan Terbaik dengan Metode SAW (Simple Additive Weighting). Skripsi. Yogyakarta: Universitas Islam Negeri Sunan Kalijaga.
- Kusumadewi, Hartati, Harjoko, dan Wardoyo. 2006. Fuzzy Multi-Attribute Decision Making (Fuzzy MADM). Yogyakarta: Graha Ilmu.
- Lahby, M., Cherkaoui, L. 2012. An Enhanced Evaluation Model For Vertical Handover Algorithm In Heterogeneous Network. IJCSI.
- Muniarsih. 2009. *Beasiswa*, *pengertian dan jenis*. [serial online]. http://beasiswa.pengertian dan jenis dunia pendidikan ptk.html. [8 Februari 2014].
- Nanda, E. 2013. Pemanfaatan MADM (Multiple Attribute Decission Making) Pada Pemilihan Mahasiswa Berprestasi Menggunakan Algoritma DIA (Distance To The Ideal Alternative). Skripsi. Madura: Universitas Trunojoyo.
- Putra, Apriansyah. dan Yunika, D. 2011. *Penentuan Beasiswa Dengan Menggunakan Fuzzy MADM*. Seminar Nasional Informatika. Yogyakarta: UPN "Veteran".
- Tran, P, N., dan Boukatem, N. 2008. The Distance to the Ideal Alternative (DIA) Algorithm for Interface Selection in Heterogenous Wireless Network. *Computer Science & network Department TELECOM Paris Tech*.
- Wahyu, Alif, Oktaputra. 2014. Sistem Pendukung Keputusan Kelayakan Pemberian Kredit Motor Menggunakan Metode SAW pada Perusahaan Leasing HD Finance. Jurnal SPK Kelayakan Pemberian Kredit Motor. Semarang: Universitas Dian Nuswantoro.
- Wardhono, A. 2008. *Teori dan Aplikasi Analitic Hierarchy Proses Edisi Pertama*. Jember: Laboratorium Ekonomika Jurusan IESP-FE Universitas Jember.
- Wibowo, Henry, S. 2010. MADM-TOOL: Aplikasi Uji Sensitivitas untuk model MADM Menggunakan Metode SAW Dan TOPSIS. Seminar Nasional Aplikasi Teknologi Informasi. Yogyakarta: Universitas Islam Indonesia.