J-REGULAR RINGS WITH INJECTIVITIES

LIANG SHEN

Abstract. A ring R is called a J-regular ring if R/J(R) is von Neumann regular, where J(R) is the Jacobson radical of R. It is proved that if R is J-regular, then (i) R is right n-injective if and only if every homomorphism from an n-generated small right ideal of R to R_R can be extended to one from R_R to R_R ; (ii) R is right FP-injective if and only if R is right R-injective. Some known results are improved.

1. Introduction

Throughout this paper rings are associative with identity. A ring R is regular means it is a von Neumann regular ring. We write J and S_r for the Jacobson radical J(R) and the right socle of R, respectively. Let U be a set and $n \geq 1$, U_n denotes the set of all $n \times 1$ matrices with entries in U. A right ideal L of R is called small if, for any proper right ideal K of R, $L + K \neq R$.

Recall that a ring R is right n-injective if every homomorphism from an n-generated right ideal of R to R_R can be extended to one from R_R to R_R . R is right F-injective if R is right n-injective for every $n \geq 1$. And R is right FP-injective if every homomorphism from a finitely generated submodule of a free right R-module F_R to R_R can be extended to one from F_R to R_R . The left side of the above injectivities can be defined similarly. By restricting the ideals to small ones, in [6], the above injectivities are studied under the condition that R is a semiperfect ring with an essential right socle. In [5], the condition is weakened to that R is a semiregular ring. In this short article, the above two conditions are generalized to the one that R is a I-regular ring. Better results are obtained.

²⁰⁰⁰ Mathematics Subject Classification. Primary 16L60; Secondary 16P70, 16D80. Keywords and phrases. J-regular, small injective, F-injective, FP-injective.

2. Results

Definition 1. A ring R is J-regular if R/J is regular. It is obvious that regular rings are J-regular. But the converse is not true. For example, let $R = \begin{bmatrix} \mathbb{Q} & \mathbb{R} \\ 0 & \mathbb{Q} \end{bmatrix}$ be the ring of upper triangular real matrices with all diagonal $\begin{bmatrix} 0 & \mathbb{R} \end{bmatrix}$

entries rational. Then $J(R)=\begin{bmatrix}0&\mathbb{R}\\0&0\end{bmatrix}$. It is easy to see that R is J-regular but not regular.

Remark 2. Recall that a ring R is *semilocal* if R/J is a semisimple ring. R is *semiperfect* in case R is semilocal and idempotents lift modulo J. R is *semiregular* when R is J-regular and idempotents lift modulo J. So we have the following relations:

semiperfect \Rightarrow semilocal $\Rightarrow J$ -regular, semiperfect \Rightarrow semiregular $\Rightarrow J$ -regular.

It is easy to show that J-regular rings are real generalizations of the above classes of rings. For example, let R_1 be a semilocal ring which is not semiregular and R_2 a semiregular ring that is not semilocal. Set $R = R_1 \prod R_2$. Since R_1 and R_2 are both J-regular, R is J-regular by the following Proposition 5. But R is neither semilocal nor semiregular.

A right ideal I of a ring R has a weak supplement in R if there exists a right ideal K of R such that I + K = R and $I \cap K$ is a small right ideal of R.

Proposition 3. The following are equivalent for a ring R:

- (1) R is J-regular.
- (2) Every principal right (or left) ideal of R has a weak supplement in R.
- (3) Every finitely generated right (or left) ideal of R has a weak supplement in R.

Proof. (1) \Leftrightarrow (2) is obtained by [3, Proposition 3.18]. It is obvious that (3) \Rightarrow (2). For (1) \Rightarrow (3), suppose that I is a finitely generated right ideal of R. Set $\overline{R} = R/J$. Since R is J-regular, \overline{I} is a direct summand of \overline{R} . Then it is easy to get there is a right ideal K of R such that I + K = R and $I \cap K \subseteq J$. Therefore, K is a weak supplement of I in R.

Proposition 4. If R is J-regular, then every factor ring S of R is also J-regular.

Proof. Let S be a factor ring of R and ϕ be the ring epimorphism from R to S. By [1, Corollary 15.8], $\phi(J) \subseteq J(S)$. So S/J(S) is a factor ring of R/J. Since R/J is regular, S/J(S) is regular. Thus, S is J-regular.

Proposition 5. A direct product of rings $R = \prod_{i \in I} R_i$ is J-regular if and only if R_i is J-regular for every $i \in I$.

Proof. By [2, Lemma 4.1], it is easy to see that $J = \prod_{i \in I} J_i$ where J = J(R) and $J_i = J(R_i)$, $i \in I$. Since $\frac{R}{J} = \frac{\prod_{i \in I} R_i}{\prod_{i \in I} J_i} \cong \prod_{i \in I} \frac{R_i}{J_i}$, R/J is regular if and only if R_i/J_i is regular for every $i \in I$. So R is J-regular if and only if R_i is J-regular for every $i \in I$.

The following two propositions show that being J-regular is a Morita invariant.

Proposition 6. If R is J-regular, then eRe is also J-regular, where $e^2 = e \in R$.

Proof. We only need to show that for each $a \in eRe$, there exist $b \in eRe$ and $c \in J(eRe) = eJe$ (see [2, Theorem 21.10]) such that a = aba + c. As R is J-regular, there exist $b' \in R$ and $c' \in J$ such that a = ab'a + c'. Since $a \in eRe$, a = ab'a + c' = aeb'ea + c'. It is clear that $c' = a - ab'a \in eRe \cap J = eJe$. Then we can set b = eb'e and c = c'.

Proposition 7. If R is J-regular, then every matrix ring $M_{n\times n}(R)$ is also J-regular, $n \ge 1$.

Proof. It is well-known that $J(\mathcal{M}_{n\times n}(R)) = \mathcal{M}_{n\times n}(J)$ (see [2, Page 61]). And it is also easy to prove that $\frac{\mathcal{M}_{n\times n}(R)}{\mathcal{M}_{n\times n}(J)} \cong \mathcal{M}_{n\times n}(\frac{R}{J})$. Therefore $\frac{\mathcal{M}_{n\times n}(R)}{J(\mathcal{M}_{n\times n}(R))} = \frac{\mathcal{M}_{n\times n}(R)}{\mathcal{M}_{n\times n}(J)} \cong \mathcal{M}_{n\times n}(\frac{R}{J})$. Since R is J-regular, R/J is a regular ring. So $\mathcal{M}_{n\times n}(\frac{R}{J})$ is also regular. Thus, $\mathcal{M}_{n\times n}(R)$ is J-regular.

Theorem 8. Let R be a J-regular ring and K a finitely generated projective right R-module. Then the endomorphism ring End (K) of K is also J-regular.

Proof. Since K is finitely generated and projective, K is a direct summand of a finitely generated free right R-module F. Then there exists some integer $n \geq 1$

such that $\operatorname{End}(F) \cong \operatorname{M}_{n \times n}(R)$ and $\operatorname{End}(K) \cong e \operatorname{M}_{n \times n}(R)e$ for some idempotent e in $\operatorname{M}_{n \times n}(R)$. Thus, by Proposition 6 and Proposition 7, $\operatorname{End}(K)$ is J-regular.

Now we turn to the main results. The following lemma is inspired by [3, Lemma 3.4].

Lemma 9. Let R be a ring, $b, r_i, a_i \in R$, i = 1, 2, ..., n, such that $b + \sum_{i=1}^n a_i r_i = 1$. Then $bR \cap \sum_{i=1}^n a_i R = \sum_{i=1}^n ba_i R$.

Proof. Assume that $x \in bR \cap \sum_{i=1}^n a_i R$. And set $c = \sum_{i=1}^n a_i r_i$. Then there exist $t, t_1, \ldots, t_n \in R$ such that $x = bt = (1 - c)t = \sum_{i=1}^n a_i t_i$. Thus $t = ct + \sum_{i=1}^n a_i t_i \in \sum_{i=1}^n a_i R$. So $x = bt \in \sum_{i=1}^n ba_i R$. Conversely, $\sum_{i=1}^n ba_i R = \sum_{i=1}^n (1-c)a_i R \in bR \cap \sum_{i=1}^n a_i R$.

Corollary 10. ([3, Lemma 3.4]) Let R be a ring, $r, a \in R$ and b = 1 - ar. Then $bR \cap aR = baR$.

Theorem 11. If R is J-regular and $n \ge 1$, then R is right n-injective if and only if every homomorphism from an n-generated small right ideal of R to R_R can be extended to one from R_R to R_R .

Proof. The necessity is obvious. For the sufficient part, assume that $I = a_1R + \cdots + a_nR$ is an n-generated right ideal of R and f is a homomorphism from I to R_R . Since R is J-regular, by Proposition 3, I has a weak supplement in R. Thus, there exists a right ideal K of R such that I+K=R and $I\cap K\subseteq J$. It is easy to see there are $r_1,\ldots,r_n\in R$, $b\in K$ such that $b+\sum_{i=1}^n a_ir_i=1$ and $I\cap bR\subseteq I\cap K\subseteq J$. Therefore, $I\cap bR$ is a small right ideal of R. By Lemma 9, $I\cap bR=\sum_{i=1}^n ba_iR$ is n-generated. Thus, by hypothesis, there is a homomorphism g from R_R to R_R such that $g_{|I\cap bR|}=f_{|I\cap bR|}$. Since I+bR=R, for each $x\in R$, there exist $x_1\in I$, $x_2\in bR$ such that $x=x_1+x_2$. Define a map F from $x_1\in R$ with $x_2\in R$ is a well-defined homomorphism from $x_1\in R$ to $x_2\in R$ such that $x_2\in R$ is a such that $x_1\in R$ is a well-defined homomorphism from $x_1\in R$ to $x_2\in R$ such that $x_1\in R$ is a well-defined homomorphism from $x_1\in R$ to $x_2\in R$ such that $x_1\in R$ is a well-defined homomorphism from $x_1\in R$ to $x_2\in R$ such that $x_2\in R$ is a well-defined homomorphism from $x_1\in R$ to $x_2\in R$ such that $x_1\in R$ is a well-defined homomorphism from $x_1\in R$ to $x_2\in R$ such that $x_1\in R$ is a well-defined homomorphism from $x_1\in R$ to $x_2\in R$ such that $x_1\in R$ is a well-defined homomorphism from $x_1\in R$ to $x_2\in R$ such that $x_1\in R$ is a well-defined homomorphism from $x_1\in R$ to $x_2\in R$ the first $x_1\in R$ is a proper from $x_1\in R$ to $x_1\in R$ such that $x_1\in R$ is a well-defined homomorphism from $x_1\in R$ to $x_1\in R$ such that $x_1\in R$ is a proper from $x_1\in R$ to $x_1\in R$ such that $x_1\in R$ is a proper from $x_1\in R$ to $x_1\in R$ such that $x_1\in R$ to $x_1\in R$ such that $x_1\in R$ is a proper from $x_1\in R$ to $x_1\in R$ t

Corollary 12. If R is J-regular, then R is right F-injective if and only if every homomorphism from a finitely generated small right ideal of R to R_R can be extended to one from R_R to R_R .

Let I, K be two right ideals of a ring R and $m \geq 1$. In [6], R is called a right (I, K)-m-injective ring if, for any m-generated right ideal $U \subseteq I$, every homomorphism from U to K can be extended to one from R_R to R_R . And R is right (I, K)-FP-injective if, for any $n \geq 1$ and any finitely generated right R-submodule N of I_n which is a submodule of the free right R-module R_n , every homomorphism from N to K can be extended to one from R_n to R_R .

Using the same method in the proof of Theorem 11, we have the following result.

Theorem 13. Let K be a right ideal of a J-regular ring R and $m \ge 1$. Then R is right (R, K)-m-injective if and only if R is right (J, K)-m-injective.

Lemma 14. ([6, Lemma 1.3]) The following are equivalent for two right ideals I and K of a ring R:

- (1) R is right (I, K)-FP-injective.
- (2) $M_{n\times n}(R)$ is right $(M_{n\times n}(I), M_{n\times n}(K))$ -1-injective for every $n \geq 1$.

Theorem 15. If R is J-regular, then R is right FP-injective if and only if R is right (J, R)-FP-injective.

Proof. If R is right FP-injective, it is clear that R is right (J, R)-FP-injective. Conversely, assume that R is right (J, R)-FP-injective. By Lemma 14, $M_{n \times n}(R)$ is right $(M_{n \times n}(J), M_{n \times n}(R))$ -1-injective for every $n \ge 1$. Since R is J-regular, by Proposition 7, $M_{n \times n}(R)$ is J-regular. Again since $J(M_{n \times n}(R)) = M_{n \times n}(J)$, Theorem 11 implies that $M_{n \times n}(R)$ is right 1-injective for every $n \ge 1$. Thus, by [4, Theorem 5.41], R is right FP-injective.

By the above theorems, we obtain the following corollaries.

Corollary 16. Let R be a semilocal ring.

- (1) If I is a right ideal of R and $m \ge 1$, then R is right (R, I)-m-injective if and only if R is right (J, I)-m-injective.
- (2) R is right F-injective if and only if R is right (J, R)-n-injective for every $n \geq 1$.
- (3) R is right FP-injective if and only if R is right (J, R)-FP-injective.

Remark 17. Recall that a ring R is right small injective if every homomorphism from a small right ideal of R to R can be extended to one from R to

 R_R . It was proved in [5, Theorem 3.16 (1)] that if R is semilocal, then R is right self-injective if and only if R is right small injective. But the results in the above corollary weren't obtained in [5].

Corollary 18. ([5, Theorem 3.16 (3), (4)]) Let R be a semiregular ring and $m \ge 1$.

- (1) If I is a right ideal of R, then R is right (J, I)-m-injective if and only if R is right (R, I)-m-injective.
- (2) R is right (J, R)-FP-injective if and only if R is right FP-injective.

Corollary 19. ([6, Lemma 2.3]) Let R be a semiregular ring.

- (1) If R is right (J, S_r) -1-injective, then R is right (R, S_r) -1-injective.
- (2) If R is right (J, R)-1-injective, then R is right 1-injective.

Corollary 20. ([6, Theorem 2.11 (1), (2)]) Let R be a semiperfect ring with an essential right socle and $m \ge 1$.

- (1) If R is right (J, S_r) -m+1-injective, then R is right (R, S_r) -m-injective.
- (2) If R is right (J, R)-m+1-injective, then R is right m-injective.

Acknowledgements

The article was written during the author's visiting the center of ring theory and its applications in Department of Mathematics, Ohio University. He would like to thank the center for the hospitality. The research is supported by China Scholarship Council and Southeast University Foundation (No.4007011034 and No.9207012402). The author is also partially supported by the National Natural Science Foundation of China (No.10971024).

References

- F.W. Anderson and K.R. Fuller, Rings and Categories of Modules, New York, Springer-Verlag, 1992.
- [2] T.Y. Lam, A First Course in Noncommutative Rings, New York, Springer-Verlag, 1991.
- [3] C. Lomp, On semilocal modules and rings, Comm. Algebra 27 (1999), 1921-1935.
- [4] W.K. Nicholson and M.F. Yousif, *Quasi-Frobenius Rings*, Cambridge Tracts in Mathematics 158, Cambridge University Press, 2003.
- [5] L. Shen and J.L. Chen, New characterizations of quasi-Frobenius rings, Comm. Algebra **34** (2006), 2157-2165.

[6] M.F. Yousif and Y.Q. Zhou, FP-injective, simple-injective and quasi-Frobenius rings, Comm. Algebra **32** (2004), 2273-2285.

LIANG SHEN
DEPARTMENT OF MATHEMATICS
SOUTHEAST UNIVERSITY
NANJING, 210096
P.R.CHINA

E-mail: lshen@seu.edu.cn