Data Visualization

Steve lannaccone • 04.21.2017

Overview

Objectives

- Learn fundamentals of graphic design
- Use Seaborn and Bokeh to make great static plots
- Use plotly and folium to make great interactive plots

The Thinking Eye

- How do we display information so that it is easily interpretable to the viewer?
- Our eyes are connected to our brains
- This processing comes at a cost

The Thinking Eye

- We are easily fooled!
- Which line is the longest?

The Grammar of Graphics

We can Control How We Show Data

- Size
- Color
- Weight
- Position
- Shape
- Scale

Changing Size

Bubblecharts - Change point sizes to reflect the input data

A Quick Side Note About Color

Colorspaces:

- RGBa (red, green, blue, alpha) usually 8bits per channel
- Hexadecimal 2 hex values per R, G and B (#00FF00)
- CMYK Cyan, Magenta, Yellow, Black
- HSV Hue, Saturation, Value

Changing Color

Scatterplots - Change color to reflect classification

Changing Color

Scatterplots - Change transparency to show density

Changing Weight

Line plots - Change line width to show importance

Changing Position

Subplots - We can add multiple plots to the same figure to show that these graphics are related to one another

Changing Shape

Boxplots - If your plot has to be in B&W we can use shapes and textures to indicate classification

Comparing Pollution in London, Los Angeles, and New York

Changing Scale

Log plots - If your data is not linear, you can scale your axes to show logarithmic effects

Some Pitfalls

Using Seaborn & Bokeh

Advanced Plotting in Python

Seaborn

A python package that uses MatPlotLib under the hood

- Simple to use
- Great plots out of the box
- Some added features

Advanced Plotting in Python

Seaborn

Check out their Gallery for code examples:

https://seaborn.pydata.org/examples/index.html

Advanced Plotting in Python

Bokeh

A python package that uses JavaScript under the hood and your web-browser to display

- Great looking plot, perfect if you need to host your figure online
- Can add in interaction (like hover states)
- But, less simple to use (interactions are awkward at best)

texas.py

Using Plotly & Folium

Plotly

A python package written by Hadley Wickham that uses D3 under the hood

- Making interactive plots less cumbersome
- Input arguments look like JSON objects
- Documentation is hard to read and navigate

Plotly

They are trying to run a business, so they imply that you need an account to make plots...Thankfully this isn't true. Just run it in `offline` mode.

Plotly

```
$ pip install plotly
import plotly
import plotly.plotly as py
from plotly.graph_objs import *
from plotly.offline import download_plotlyjs,
   init_notebook_mode, plot, iplot
```

Plotly

```
Now in plotly's examples wherever you see:
    plotly.iplot()
or:
    py.iplot()

Use this instead:
    plotly.offline.plot()
```

Plotly

Example:

https://plot.ly/python/line-and-scatter/#style-scatter-plots

Plotly

This writes a local HTML file that has all the necessary JS functions minified in the script tag. This file allows you to interact with your graph as a stand alone file.

Plotly

Parameters of the plot look like JavaScript Object Notation (JSON).

In Python, this means it looks like nested dict() calls.

Plotly

```
marker = dict(
    size = 10,
    color = 'rgba(255, 182, 193, .9)',
    line = dict(
        width = 2,
    )...
```

Plotly

Using APIs like Mapbox are awesome at plotting on top of great looking maps.

This will often require setting up an account to get access-tokens to use.

Folium

Allows us to use Python to interact with Leaflet. JS mapping tools much in the same why Mapbox and Plotly do, but without any accounts or access-tokens.

Recap

- 1. What are the things we can change to make better figures?
- 2. What is a hexadecimal color, and where do we see them most often?
- 3. Name at least 3 packages that let us make plots in python.

Assignment

Use folium to make an interactive map.

