A Zone-based Reachability Analysis for Nested Timed Automata Seiichirou Tachi¹, Shoji Yuen¹, and Mizuhito Ogawa²

¹ Graduate School of Informatics, Nagoya University, Japan Japan Advanced Institute of Science and Technology; Japan

Timed Automata

Introduction

 $\mathbb{R}^{\geq 0}$ denotes the set of non-negative real numbers. Given a set of clocks X an

 $- F \subseteq Q$ is the set of accepting locations.

Nested Timed Automata

Definition 1 (Timed Automata) A timed automaton is a tuple $\mathcal{A} = (Q, q_0, X, \Delta)$

A clock valuation over X is a map from X to $\mathbb{R}^{\geq 0}$. The set of clock valuations over X is written as N_X . The clock valuation assigning 0 to X is denoted by

Definition 2 (Semantics of Timed automata) Given a timed automaton A = (Q, q_0, X, Δ, F) , a configuration of A is (q, ν) where $q \in Q$ and $\nu \in V_X$. A tran-

Definition 3 Given a disjoint pair of clocks X_q and X_ℓ , let a set of timed automata be $T = \{A_0, \dots, A_n\}$ where A_i is a timed automaton $(Q_i, q_i^0, X_\ell \cup$ X_q, Δ_i). We assume $Q_i \cap Q_j = \emptyset$ if $i \neq j$ and we write $Q = \bigcup_i Q_i$ and $Q^0 = \emptyset$ $\cup_i \{q_0^i\}$. A nested timed automaton (NeTA) is given by $\mathcal{N} = (T, A_0, \Delta, X_q)$

atomic clock guard is in the form of either $x \triangleleft c$ or $x - y \triangleleft c$ where $x, y \in X$,

 $\triangleleft \in \{<, \leq\}$ and $c \in \mathbb{N}$. A clock guard is a conjunction of atomic clock guards, and

 $-\Delta \subseteq Q \times \mathcal{B}(X) \times 2^X \times Q$

 $-(q_1,\nu_1) \xrightarrow{d} (q_1,\nu_1+d);$

we write $\mathcal{B}(X)$ for the set of clock guards. A set of clock valuations for clocks X is written as $V_X: X \to \mathbb{R}^{\geq 0}$.

1

 $\mathbf{2}$

where

 0_X .

3

where

-Q is a finite set of control locations with the initial location $q_0 \in Q$, - X is a finite set of clocks,

sition $(q_1, \nu_1) \xrightarrow{t} (q_2, \nu_2)$ where t is either $d \in \mathbb{R}^{\geq 0}$ or ε with:

 $-(q_1, \nu_1) \xrightarrow{g,R} (q_2, [R](\nu_1)) \text{ where } (q_1, g, R, q_2) \in \Delta \text{ and } \nu_1 \models g.$

 $-A_0 \in T$ is the initial timed automaton, $-X_g$ is the set of global clocks, and $-\Delta_q \subseteq (Q \times \{\mathsf{push}\} \times Q^0) \cup (Q \times Q \times \{\mathsf{pop}\} \times Q)$

For simplicity, every A_i has the same set of local clocks X_{ℓ} .

Note that since Q_i is disjoint to each other, each push rule specifies the pushed automaton A_i with $q \in Q(A_i)$. Similarly, each pop rule specifies a pair of automata A_i and A_j and A_j is popped. To explicitly show which automaton is involved, we write $q(A_i)$ when $q \in Q(A_i)$.

Definition 4 A configuration of NeTA is given by (c, μ) where $c \in \mathcal{C}^*$ with $\mathcal{C} = \bigcup_i (Q(\mathcal{A}_i) \times V_{X_\ell}) \text{ and } \mu \in V_{X_g}.$ $-(c_1, \mu_1) \xrightarrow{t} (c_2, \mu_2)$ where $t \in \mathbb{R}_{>0}$, $c_2 = c_1 + t$ and $\mu_2 = \mu_1 + t$;

$$-(c(q_1,\nu_1),\mu_1) \xrightarrow{g,R} (c(q_2,\nu_2),\mu_2) \text{ if } (q_1,\nu_1 \cup \mu_1) \xrightarrow{g,R} (q_2,\nu_1 \cup \mu_2) \in \Delta(\mathcal{A}_i);$$

$$-(c(q,\nu),\mu) \xrightarrow{\text{push}} (c(q,\nu)(q_0(\mathcal{A}_i),0_{X_\ell}),\mu) \text{ if } q \xrightarrow{\text{push}} q_0(\mathcal{A}_i) \in \Delta_g; \text{ and}$$

$$-(c(q_1,\nu_1)(q_2,\nu_2),\mu) \xrightarrow{\text{pop}} (q_3,\nu_1),\mu) \text{ if } q_1q_2 \xrightarrow{\text{pop}} q_3 \in \Delta_g$$

where c+t for $(c+t)[i]=(q^i,\nu^i+t)$ with $c[i]=(q^i,\nu^i)$ where c[i] is the i-th element in c for $1 \leq i \leq |c|$. The reachability problem of NeTA is to check if there is a sequence of transitions from $((q_0(\mathcal{A}_0), 0_{X_\ell}), 0_{X_q})$ to $(c(q, \nu), \mu)$ for some ν and μ given \mathcal{N} and

4 Push-down automata over Zones

Given a set of clocks X_q and X_ℓ , the set of items Y derived from X_q and X_ℓ is $\{0,\vdash,\vdash^{\bullet}\} \cup \{x^{\bullet}|x \in X_q\} \cup X_{\ell} \cup X_q \text{ and } Y_{clk} \text{ for } Y\{0\}.$ For a set of items Y, A zone over Y is $Z \subseteq Y \times Y \times \{\leq, <\} \times (\mathbb{Z} \cup \{\infty\})$

 $q \in Q_{\mathcal{N}}$.

 $-y \neq y'$ for $(y, y', \leq, c) \in Z$; and

 $-\ (y_1,y_1',\preceq_1,c_1)\ \in\ Z$ implies $y_1\neq y_2$ or $y_2\neq y_2'$ for all (y_2,y_2',\preceq_2,c_2) \in $Z\setminus(y_1,y_1',\preceq_1,c_1)$

For $(y, y', \leq, c) \in \mathbb{Z}$, we write $y - y' \leq c$ where $\leq \in \{<, \leq\}$. By the second

condition, it is ensured that the pair (y, y') is unique in a zone. Thus, a zone can be described as a form of the difference bound matrix where (\preceq, c) is placed in the column labelled by y' and the row labelled by y for $y - y' \leq c$.

 $- \ \operatorname{Test}(Z, x \in I) = Z \wedge \{x - \mathbf{0} \triangleleft \mathsf{ub}(I), \mathbf{0} - x \triangleleft - \mathsf{lb}(I)\};$

- Free $(Z, Y) = (Z \ominus Y) \oplus Y$;

- Reset(Z, Y) = Free(Z, Y) $\land \{y - \mathbf{0} \le 0 \mid y \in Y\};$

 $- \mathsf{Copy}(Z, x \leftarrow y) = \mathsf{Free}(Z, \{x\}) \land \{x - y \le 0, y - x \le 0\};$ $- Z(|y \mapsto z|) = \mathsf{Copy}(Z, z \leftarrow y) \ominus \{y\}$

Simulation

5

Definition 5 A binary relation \leq on $Q \times V_{X_a} \times V_{X_a} \times V_{X_a \cup \{\vdash \bullet\}}$ is a simulation if, whenever $(q, \mu, \nu, \mu^{\bullet}) \leq (q, \mu', \nu', \mu'^{\bullet})$:

 $-(q, \mu + t, \nu + t, \mu^{\bullet} + t) \leq (q, \mu' + t, \nu' + t, \mu'^{\bullet} + t);$ $-(q,\mu,\nu,\mu^{\bullet}) \xrightarrow{g,R} (q_1,\mu_1,\nu_1,\mu_1^{\bullet}) \text{ implies for some } (\mu'_1,\nu'_1,\mu'_1^{\bullet}) (q,\mu',\nu',\mu'^{\bullet}) \xrightarrow{g,R}$ $(q_1, \mu'_1, \nu'_1, \mu'^{\bullet}_1)$ and $(q_1, \mu_1, \nu_1, \mu^{\bullet}_1) \leq (q_1, \mu'_1, \nu'_1, \mu'^{\bullet}_1)$;

 $- q \xrightarrow{\mathsf{push}} q' \text{ implies } (q', \mu, \nu_0, \bullet(\mu) \uplus [\vdash^{\bullet} \mapsto 0]) \preceq (q', \mu', \nu_0, \bullet(\mu') \uplus [\vdash^{\bullet} \mapsto 0])$ where $\bullet(\mu)(x^{\bullet}) = \mu(x)$ for $x \in X_a$; $-qq'' \xrightarrow{\mathsf{pop}} q' \text{ implies for all } (\mu_1, \nu_1, \mu_1^{\bullet}) \text{ such that } \mu_1(X_q) + \mu^{\bullet}(\vdash^{\bullet}) = \mu^{\bullet}(X_q^{\bullet})$ there exists $(\mu'_1, \nu'_1, \mu'^{\bullet}_1)$ such that $\mu'_1(X_q) + \mu'^{\bullet}(\vdash^{\bullet}) = \mu'^{\bullet}(X_q^{\bullet}), (q'', \mu_1, \nu_1, \mu^{\bullet}) \leq$ $(q'', \mu'_1, \nu'_1, \mu'^{\bullet}_1), \text{ and } (q', \mu, \nu_1 + \mu^{\bullet}(\vdash^{\bullet}), \mu_1^{\bullet} + \mu^{\bullet}(\vdash^{\bullet})) \leq (q', \mu', \nu'_1 + \mu'^{\bullet}(\vdash^{\bullet}))$

), $\mu_1^{\prime \bullet} + \mu^{\prime \bullet}(\vdash^{\bullet})$) $(q,Z) \leq (q,Z')$ if for all $(\mu,\nu,\mu^{\bullet}) \models Z$, there exists $(\mu',\nu',\mu'^{\bullet})$ such that $(\mu', \nu', \mu'^{\bullet}) \models Z' \text{ and } (q, \mu, \nu, \mu^{\bullet}) \preceq (q, \mu', \nu', \mu'^{\bullet}).$

If $q \neq q'$, there exists no relation between (q, v) and (q', v'). We write $v \leq_q v'$ if $(q, v) \leq (q, v')$. Similarly, we write $Z \leq_q Z'$ for $(q, Z) \leq (q, Z')$. [The following lemma is yet to be proved] **Lemma 1.** for all $Z \leq_q Z'$,

 $-Z_2 \odot Z \neq \bot$ and $qq'' \xrightarrow{\mathsf{pop}} q' \in \Delta_q \text{ imply } Z_2 \odot Z \preceq_{q'} Z_2' \odot Z' \text{ for some } Z_2'$ such that $Z_2 \prec_{a''} Z_2'$

Lemma 2. \sqsubseteq_{LU_q} is a simulation relation.

Lemma 3. $\sqsubseteq_{LU_q} \cap \sqsubseteq_{LU_q}^{-1}$ has a finite index.

 $\frac{}{\mathfrak{S} := \{(A_0, Z_0)\}, \mathcal{S}_{(\mathcal{A}_0, Z_0)} := \{(q_0(\mathcal{A}_0), Z_0)\}} \left[\mathsf{start} \right]$

 $\frac{(\mathcal{A}_i,Z) \in \mathfrak{S} \quad (q',Z') \in \mathcal{S}_{(\mathcal{A}_i,Z)} \quad q' \xrightarrow{g,R} q'' \quad Z'' = [R]\mathsf{Test}(Z',g)}{\mathcal{S}_{(\mathcal{A}_i,Z)} := \mathcal{S}_{(\mathcal{A}_i,Z)} \cup \{(q'',Z'')\} \quad \text{unless } \exists (q'',Z'') \in \mathcal{S}_{(\mathcal{A}_i,Z)} \ Z'' \preceq_{q''} Z'''} \ [\mathsf{local}]$

 $\mathcal{A}_i, Z) \in \mathfrak{S} \quad (q', Z') \in \mathcal{S}_{(\mathcal{A}_i, Z)} \quad q' \xrightarrow{\mathsf{push}} q_0(\mathcal{A}_j) \quad Z'' = Reset(Z', X_c \cup \{\vdash^{\bullet}\})$

 $\overline{\mathfrak{S} := \mathfrak{S} \cup \{(\mathcal{A}_j, Z'')\}} \quad \mathcal{S}_{(\mathcal{A}_j, Z'')} = \{(q_0(\mathcal{A}_j), Z'')\} \quad \text{unless } \exists (\mathcal{A}_j, Z''') \in \mathfrak{S} \ Z'' \sim_{a_0(A_i)} Z'''} [\text{push}]$

 $(\mathcal{A}_i,Z) \in \mathfrak{S} \quad (q',Z') \in \mathcal{S}_{(\mathcal{A}_i,Z)} \quad q' \xrightarrow{\mathsf{push}} q_0(\mathcal{A}_j) \quad Z'' \sim_{q_0(\mathcal{A}_i)} Z_1 \quad Z'' = Reset(Z',X_c \cup \{\vdash^{\bullet}\})$

 $(\mathcal{A}_j, Z_1) \in \mathfrak{S} \quad (q_1', Z_1') \in \mathcal{S}_{(\mathcal{A}_j, Z_1)} \quad q'q_1' \xrightarrow{\mathsf{pop}} q_2 \quad Z_2 = Up(Z' \odot Z_1')$ _____ [pop] $\mathcal{S}_{(\mathcal{A}_i,Z)} := \mathcal{S}_{(\mathcal{A}_i,Z)} \cup \{(q_2,Z_2)\} \quad \text{unless } \exists (q_2,Z_2') \in \mathcal{S}_{(\mathcal{A}_i,Z)} \ Z_2 \ \underline{\prec_{q_2} \ Z_2'}$