Licences 3
Statistique : Étude de Cas
Octobre 2019

Contrôle Continu N⁰ 1

Responsable: H LI

Les notes de cours et de travaux dirigés sont autorisées, le courriel (e-mail) et le téléphone ne sont pas autorisés. Durée de l'épreuve : 60 minutes

La rédaction et les commandes doivent être reportées sur la copie avec les résultats numériques éventuels.

Le sujet est à rendre en même temps que la copie.

Responsable: H LI

NOM: Prénom:

NOM: Prénom:

Exercice 1: Soit X une variable aléatoire suivant une loi géométrique $\mathcal{G}(p)$ de paramètre $p \in]0;1[$:

$$\mathbb{P}(X = k) = (1 - p)^{k-1}p, \ k \ge 1$$

1. Soit (1, 1, 3, 1, 2) une réalisation d'un échantillon $(X_1, ..., X_5)$ de loi $\mathcal{G}(p)$. Simplifiez l'expression suivante :

$$L(p) = \mathbb{P}(X_1 =, 1X_2 = 1, X_3 = 3, X_4 = 1, X_5 = 2)$$

- 2. Calculez les valeurs de L(p) pour $p=0.5,\,0.3$ et 0.1.
- 3. On définit :

(a)
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
,

(b)
$$S_c^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$
.

Ces deux variables sont elles des statistiques? Sont-elles indépendantes? Pourquoi?

- 4. On simule N=10000 réalisations d'un échantillons de taille n=5 d'une loi géométrique de paramètre p=3/4 à l'aide de la fonction $\operatorname{rgeom}(n,p)+1$. Dans le but d'estimer $\theta=\frac{1}{p^2}$ (= 1.777778), en vous basant sur ces 10000 réalisations, reportez les résultats de l'évaluation des performances des estimateurs suivants (sans le code) :
 - (a) $S_c^2 + \overline{X}$

(b)
$$\frac{\left(\sum_{i=1}^{n} X_i - 1\right)^2}{n(n-1)}$$
,

(c)
$$\frac{n\overline{X}^2 + \overline{X}}{n+1}$$
.

Exercice 2:

- 1. Soit U une variable aléatoire suivant la loi uniforme continue sur l'intervalle [0;1]. On définit une seconde variable aléatoire $X=\frac{\lambda}{(1-U)^{1/3}}$ où $\lambda>0$ est un paramètre. $(x^{1/3}$ désigne la racine cubique de x, c'est -à-dire l'unique racine positive telle que $(x^{1/3})^3=x$).
 - (a) Calculez la fonction de répartition de X, c'est à dire :

$$F_X(x) = \mathbb{P}(X \le x).$$

(b) Montrez que sa dérivée F'(x) est égale à la la densité de probabilité d'une loi de Paréto de paramètre λ :

$$f_{\lambda}(x) = \frac{3\lambda^3}{x^4} \mathbf{1}_{x > \lambda}$$

2. (a) En exploitant les résultats précédents, donner le code pour simuler N=1000 réalisations d'un échantillon $(X_1,...,X_{50})$ (n=50) d'une loi de Paréto de paramètre $\lambda=2$ via la commande runif (\ldots) .

Admis : Si X suit une loi de Paréto de paramètre $\lambda > 0$, alors $\mathbb{E}(X) = \frac{3\lambda}{2}$ et $Var(X) = \frac{3\lambda^2}{4}$.

- (b) Étuider les des variables aléatoires suivantes :
 - i. $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$. Quelle est la moyenne de N = 1000 réalisations de \overline{X} ? Si On augmente la taille N à 10^9 , 10^{90} , ..., quelle sera la valeur limite? En vertu de quel théorème?
 - ii. $S_c^2 = \frac{1}{n-1} \sum_{i=1}^n \left(\overline{X} X_i \right)^2$. Quelle est la moyenne de N=1000 réalisations de S_c^2 ? Si On augmente la taille N à 10^9 , 10^{90} , ..., quelle sera la valeur limite? En vertu de quel théorème?
 - iii. $T = (n-1)\frac{S_c^2}{\sigma^2}$. La variable aléatoire T est-elle une statistique? Connaissez vous la loi de T? Si oui, laquelle?
- (c) Sauvez les 1000 réalisations associées des variables aléatoires suivantes :

i.
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
.

ii.
$$Z = \frac{\sqrt{n}(\overline{X} - \mu)}{\sigma}$$
,

- 3. (a) À l'aide de la fonction hist(...,probability=TRUE), donner le code pour afficher l'histogramme de $\mathbb{Z}/1000$.
 - (b) Superposez-lui le graphe de la densité d'une loi normale aux paramètres bien choisis à l'aide des fonctions curve et dnorm. Justifiez vos choix de paramètres.
 - (c) Quel théorème venez-vous d'illustrer? Énoncez-le.
- 4. À l'aide des fonctions mean et var, estimez l'espérance et la variance de \overline{X} en vous basant sur ces 1000 réalisations. Ces résultats sont-ils cohérents avec les points 2.(b)i. et 2.(b)ii.?