

CARNOT USER TAG

Überblick der Aktivitäten an der UIBK

FHNW, Muttenz, 16.01.2013

Fabian Ochs
Dr.-Ing.
AB für Energieeffizientes Bauen
Fakultät für Technische Wissenschaften
UIBK, Innsbruck

Aktivitäten

- Gebäudemodel(le)
 - (TABS vs. Radiator)
 - (Klima)-;)
- Erdreich-Wärmeübertrager
 - horizontal
 - vertikal
- Wärmepumpen-Berechnungsmodell ("cross-validiert" mit CARNOT)
- Hygrothermische Wand
- PV vs. ST für MFH
- Vergleich SolarAktivhaus und Passivhaus (TRNSYS + CARNOT)

Referenzgebäude IEA T44 (SFH15)

Folie: 3

View of the E/W section of the building

Simple view of the house (showing South and West facades)

part	а	b	f	g	h	m	n	r	α	β
measure	5.46 m	2.64 m	7 m	10 m	2.6 m	0.4 m	0.2 m	1.87 m	45°	20°

Wandmodell "complex building model"

Vergleich Carnot – Trnsys (reference)

Standort: Strasbourg

Vergleich Carnot – Trnsys (reference)

Standort: Strasbourg

Vergleich Carnot – Trnsys (reference)

Standort: Strasbourg

25.0

Heat[Cad; kMh/m2 15.0 10.0 5.0

"simple building model"

simple vs. complex building model

Vereinfachungen

- 1*-model
- "lumped mass"
- Leitwerte (UA, ὑ·ρ·c_p)
- solare Gewinne (g l_s f)

⇒ "wie PHPP" (Monatsbilanz, ISO 13790)

Anpassungsparameter

- Radiatorexponent, Masse Radiator (mc_p)
- Masse Luftknoten des Gebäudes (mc_p)

Monatsbilanz

Lastkurven – complex building model

Standort: Innsbruck

Lastkurven – complex and simple building model

Standort: Innsbruck

CARNOT EWS model

- on-off massflow
- g-function
- initial temperature field
- validation

Vergleich EWS – Thermal Response Test

Vergleich Messung und Simulation (R1, R2), (Berechnung, kein Fit)

	Q (90h) / [kWh]	Q (24 h) / [kWh]
TRT	825.5	436.5
EWS	847.3	455.7
err / [%]	2.7	4.4

Daten: TRT, ZAE Bayern 2-U, H = 193 m, D_b = 0.2 m, D = 40/3.7 mm mdot = 0.44 kg/s (Wasser) ϑ_a = 14.7 °C

	grout	soil
λ / [W/(m K)]	2.1	2.3
ρ / [kg/m 3]	2500	2500
c / [J/(kg K)]	800	800

Vergleich EWS – FEM (Ansys)

Vergleich Berechnung und Simulation (R1, R2)

	Q (2160h) / [kWh]	Q (24 h) / [kWh]
FEM	38138.7	715.2
EWS	38085.7	690.6
err / [%]	0.14	3.4

Daten: ANSYS FEM Simulation

D. Bauer, ITW, Uni Stuttgart, unveröffentlicht

2-U, H = 100 m, $D_b = 0.13$ m, D = 32/3 mm

S = 0.06 m

mdot = 0.25 kg/s (Wasser)

 $\theta_{ini} = 10.0 \, ^{\circ}C$

	grout	soil
λ / [W/(m K)]	2.2	2.3
ρ / [kg/m³]	2600	1460
c / [J/(kg K)]	850	1500

Validierung EWS - Lastprofile

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Q												
(H)	0.43	0.21	0.09	0.03	0.00	0.00	0.00	0.00	0.00	0.03	0.22	0.43
Q												
(H+DHW)	1.24	0.65	0.36	0.25	0.26	0.25	0.21	0.21	0.25	0.26	0.50	1.19

type	2U
height	50 75 100 m
borehole diameter	$D_b = 0.18 \text{ m}$
pipe	D = 32/3.0 mm
pipe thermal conductivity	$I_p = 0.48 \text{ W/(m K)}$
pipe distance	Bu = 0.1293 m
massflow	mdot = 0.5 kg/s (water-
	glycol 25%)
undisturbed ground temperature	$\theta_{\rm g} = 10.0 {\rm ^{\circ}C}$
Geothermal gradient	$T_{Grad} = 0.025 \text{K/m} (= 0.05)$
	W/m²)

	grout	soil
λ / [W/(m K)]	1.0	2.0
ρ / [kg/m³]	2000	2500
c / [J/(kg K)]	1000	800

Validierung CARNOT EWS

Folie: 19

Validierung Langzeitverhalten

constant load Q = 1667 W

Folie: 20

Validierung Langzeitverhalten

heating + dhw profile

Heat Pump Options

Folie: 22

new worksheet "heat pump" in PHPP

"enhanced" bin method

"Cross-Validation" by comparison with a model in Matlab/ Simulink using Carnot Blockset

ToDo: Validation of HGHX Validation of Solar

Jniversität Innsb

Air-Sourced HP Model in Simulink/Carnot

Results

Air source heat pump

Distribution system: floor heating without store (θ_{snk} =35 °C)

A single family house adapted to Passive House standard in several climates.

Results

GHX sourced heat pump

Distribution system: floor heating without store (θ_{snk} =35 °C)

A single family house adapted to Passive House standard in several climates

Zusammenfassung: Modelle

0) Cross-Validierung Gebäudemodell (Mehrzonenmodell) (TRNSYS, Dynbil) vergleich Complex-simple building

(neue) Modelle

- 1) Horizontal Ground Heat Exchanger
 - 1D / 2D / 2D radialsym.
 - Eisbildung, Latentwärme
- 2) V-GHX EWS (erweitert, validiert)

Folie: 28

Zukünftige Tätigkeiten

- automatisiertes Fitten des "simple building" an das "complex building"
- Kopplung HAM-Wall (1D, pdepe)
- Kopplung Comsol (2D/3D FEM)
- Heat pump model (→ Facade integrated micro heat pump iNSPiRe)