Mathematics Compulsory Part Paper 1

Mathematics Compulsory Part Paper 1						
	Solution	Marks	Remarks			
1.	$k = \frac{3x - y}{y}$ $yk = 3x - y$ $y = \frac{3x}{k+1}$					
2.	$\frac{(m^4 n^{-1})^3}{(m^{-2})^5}$ $= \frac{m^{12} n^{-3}}{m^{-10}}$ $= \frac{m^{22}}{n^3}$					
3.	(a) $x^2 - 4xy + 3y^2 = (x - 3y)(x - y)$ (b) $x^2 - 4xy + 3y^2 + 11x - 33y$ = (x - 3y)(x - y) + 11(x - 3y) = (x - 3y + 11)(x - y)					
4.	Let x , y be the number of regular tickets and concessionary tickets of respectively $\begin{cases} x = 5y \\ 126x + 78y = 50976 \end{cases}$ $126x + 78\left(\frac{x}{5}\right) = 50976$ $\begin{cases} x = 360 \\ y = 72 \end{cases}$ The number of admission tickets sold that day = 432	sold				
5.	(a) $7(x-2) \le \frac{11x+8}{3}$ and $6-x < 5$ $21(x-2) \le 11x+8$ and $x > 1$ $x \le 5$ and $x > 1$ $\therefore 1 < x \le 5$ (b) 2, 3, 4, 5 are the only integers satisfying (a) So, there are 4 integers satisfying both inequalities in (a)					

		Solution	Marks	Remarks
6.	(a)	The coordinates of $A' = (-4, -3)$		
		The coordinates of $B'=(9,9)$		
	(b)	Slope of AB		
	(0)			
		$=\frac{-9-4}{9-(-3)}$		
		$=-\frac{13}{12}$		
		12 Slope of A'B'		
		$=\frac{-3-9}{-4-9}$		
		$=\frac{12}{13}$		
		Slope of AB×Slope of A'B'		
		$=-\frac{13}{12}\times\frac{12}{13}$		
		= -1		
		$AB \perp A'B'$		
7.	(a)	$\frac{x}{360^{\circ}} = \frac{1}{9}$		
		$x = 40^{\circ}$		
	(b)	Let <i>N</i> be the number of students in the school		
	. ,	$\frac{180}{100} = \frac{360^{\circ} - 90^{\circ} - 40^{\circ} - 158^{\circ}}{100}$		
		$\overline{N} \equiv \overline{360^{\circ}}$		
		N = 900		
		The number of students in the school		
		= 900		
8.	(a)	k		
0.	(4)	$y = \frac{k}{\sqrt{x}}$		
		When $y = 81$, $x = 144$		
		$81 = \frac{k}{\sqrt{144}}$		
		k = 972		
		972		
		$y = \frac{972}{\sqrt{x}}$		
		VX		
	(b)	Change in value of y		
		$=\frac{972}{\sqrt{324}}-\frac{972}{\sqrt{144}}$		
		=-27		

	Solution	Marks	Remarks
9. (a)	Let x mL be the actual capacity of a standard bottle		
	10 10		
	$200 - \frac{10}{2} \le x < 200 + \frac{10}{2}$		
	$195 \le x < 205$		
	The least possible capacity is 195 mL		
(b)	$23400 \le 120x < 24600$		
	$23.4L \le 120x < 24.6L$ Lengt total approxity $= 23.4 L$		
	Least total capacity = $23.4 L$ No, I don't agree the claim.		
	No, I don t agree the claim.		
10. (a)	OP = OR(given)		
	PS = RS(given)		
	OS = OS(common)		
	$\therefore \triangle OPS \cong \triangle ORS(SSS)$		
(b)			
	$\angle POQ = \angle QOR = 10^{\circ}$		
	$\angle POR = 20^{\circ}$		
	Area of the sector OPQR		
	$=\frac{20^{\circ}}{360^{\circ}}\times\pi\times6^{2}$		
	$= 2\pi \text{ cm}^2$		
11. (a)	$\frac{895 + 70 + a + 80 + b}{a} = 70$		
	15		
	a+b=5		
	80 + b - 61 = 22		
	b=3 $a=2$		
	a = 2 median = \$69		
	standard deviation		
	= \$7.330302404		
	\approx \$7.33 (corr to 3 sig fig)		

2. (a) Let V_1 cm ³ and V_2 cm ³ be the volume of smaller right pyramid and larger right pyramid respectively $ \frac{V_1}{V_2} = \left(\sqrt{\frac{4}{9}}\right)^3 $ $= \frac{8}{27}$ $V_1 + V_2$ $= (84)(20)$ $= 1680$ V_2 $= 1680 \times \frac{27}{27 + 8}$ $= 1296$ The volume of the larger pyramid $= 1296 \text{ cm}^3$ (b) Volume of smaller pyramid = 384 cm ³ Height of smaller pyramid $= \frac{2}{3} \times 12$ $= 8$ $\frac{1}{3} \text{ (Base Area)(8)} = 384$ Base Area = 144 cm^2 Length of square in base $= \sqrt{144}$ $= 12$ Total surface area $= \frac{1}{2} (12) \sqrt{\left(\frac{12}{2}\right)^2 + 8^2} \times 4 + 144$ $= 384 \text{ cm}^2$		Solution	Marks	Remarks
$= \left(\sqrt{\frac{4}{9}}\right)^{3}$ $= \frac{8}{27}$ $V_{1} + V_{2}$ $= (84)(20)$ $= 1680$ V_{2} $= 1680 \times \frac{27}{27 + 8}$ $= 1296$ The volume of the larger pyramid $= 1296 \text{ cm}^{3}$ (b) Volume of smaller pyramid $= \frac{2}{3} \times 12$ $= 8$ $\frac{1}{3} \text{ (Base Area)(8)} = 384$ Base Area = 144cm ² Length of square in base $= \sqrt{144}$ $= 12$ Total surface area $= \frac{1}{2} (12) \sqrt{\left(\frac{12}{2}\right)^{2} + 8^{2}} \times 4 + 144$	2. (a)			
$= \left(\sqrt{\frac{4}{9}}\right)^{3}$ $= \frac{8}{27}$ $V_{1}+V_{2}$ $= (84)(20)$ $= 1680$ V_{2} $= 1680 \times \frac{27}{27+8}$ $= 1296$ The volume of the larger pyramid $= 1296 \text{ cm}^{3}$ (b) Volume of smaller pyramid = 384 cm ³ Height of smaller pyramid $= \frac{2}{3} \times 12$ $= 8$ $\frac{1}{3} \text{ (Base Area)(8)} = 384$ Base Area = 144cm ² Length of square in base $= \sqrt{144}$ $= 12$ Total surface area $= \frac{1}{2} (12) \sqrt{\left(\frac{12}{2}\right)^{2} + 8^{2}} \times 4 + 144$		$\frac{V_1}{V_2}$		
$= \frac{8}{27}$ $V_1 + V_2$ $= (84)(20)$ $= 1680$ V_2 $= 1680 \times \frac{27}{27 + 8}$ $= 1296$ The volume of the larger pyramid $= 1296 \text{ cm}^3$ (b) Volume of smaller pyramid = 384 cm ³ Height of smaller pyramid $= \frac{2}{3} \times 12$ $= 8$ $\frac{1}{3} \text{ (Base Area)(8)} = 384$ Base Area = 144 cm ² Length of square in base $= \sqrt{144}$ $= 12$ Total surface area $= \frac{1}{2} (12) \sqrt{\left(\frac{12}{2}\right)^2 + 8^2} \times 4 + 144$				
$V_1 + V_2 = (84)(20)$ = 1680 V_2 = 1680 × $\frac{27}{27 + 8}$ = 1296 The volume of the larger pyramid = 1296 cm ³ (b) Volume of smaller pyramid = 384 cm ³ Height of smaller pyramid = $\frac{2}{3} \times 12$ = 8 $\frac{1}{3} \text{ (Base Area)(8)} = 384$ Base Area = 144 cm ² Length of square in base = $\sqrt{144}$ = 12 Total surface area = $\frac{1}{2}(12)\sqrt{\left(\frac{12}{2}\right)^2 + 8^2} \times 4 + 144$				
$= 1680$ V_2 $= 1680 \times \frac{27}{27 + 8}$ $= 1296$ The volume of the larger pyramid $= 1296 \text{ cm}^3$ (b) Volume of smaller pyramid = 384 cm ³ Height of smaller pyramid $= \frac{2}{3} \times 12$ $= 8$ $\frac{1}{3} \text{ (Base Area)(8)} = 384$ Base Area = 144cm ² Length of square in base $= \sqrt{144}$ $= 12$ Total surface area $= \frac{1}{2} (12) \sqrt{\left(\frac{12}{2}\right)^2 + 8^2} \times 4 + 144$				
$= 1680 \times \frac{27}{27 + 8}$ $= 1296$ The volume of the larger pyramid $= 1296 \text{ cm}^{3}$ (b) Volume of smaller pyramid = 384 cm ³ Height of smaller pyramid $= \frac{2}{3} \times 12$ $= 8$ $\frac{1}{3} \text{(Base Area)(8)} = 384$ Base Area = 144 cm ² Length of square in base $= \sqrt{144}$ $= 12$ Total surface area $= \frac{1}{2} (12) \sqrt{\left(\frac{12}{2}\right)^{2} + 8^{2}} \times 4 + 144$		=1680		
$= 1296$ The volume of the larger pyramid $= 1296 \text{ cm}^{3}$ (b) Volume of smaller pyramid = 384 cm ³ Height of smaller pyramid $= \frac{2}{3} \times 12$ $= 8$ $= \frac{1}{3} \text{ (Base Area)(8)} = 384$ Base Area = 144 cm ² Length of square in base $= \sqrt{144}$ $= 12$ Total surface area $= \frac{1}{2} (12) \sqrt{\left(\frac{12}{2}\right)^{2} + 8^{2}} \times 4 + 144$				
$= 1296 \text{ cm}^{3}$ (b) Volume of smaller pyramid = 384 cm ³ Height of smaller pyramid $= \frac{2}{3} \times 12$ $= 8$ $\frac{1}{3} \text{ (Base Area)(8)} = 384$ Base Area = 144 cm ² Length of square in base $= \sqrt{144}$ $= 12$ Total surface area $= \frac{1}{2} (12) \sqrt{\left(\frac{12}{2}\right)^{2} + 8^{2}} \times 4 + 144$				
Height of smaller pyramid $= \frac{2}{3} \times 12$ $= 8$ $\frac{1}{3} \text{ (Base Area)(8)} = 384$ Base Area = 144 cm ² Length of square in base $= \sqrt{144}$ $= 12$ Total surface area $= \frac{1}{2} (12) \sqrt{\left(\frac{12}{2}\right)^2 + 8^2} \times 4 + 144$				
$= 8$ $\frac{1}{3} \text{ (Base Area)}(8) = 384$ Base Area = 144 cm ² Length of square in base $= \sqrt{144}$ $= 12$ Total surface area $= \frac{1}{2} (12) \sqrt{\left(\frac{12}{2}\right)^2 + 8^2 \times 4 + 144}$	(b)	Height of smaller nyramid		
$\frac{1}{3} \text{ (Base Area)(8)} = 384$ Base Area = 144 cm ² Length of square in base $= \sqrt{144}$ $= 12$ Total surface area $= \frac{1}{2} (12) \sqrt{\left(\frac{12}{2}\right)^2 + 8^2 \times 4 + 144}$		$= \frac{2}{3} \times 12$ $= 8$		
Length of square in base $= \sqrt{144}$ $= 12$ Total surface area $= \frac{1}{2}(12)\sqrt{\left(\frac{12}{2}\right)^2 + 8^2} \times 4 + 144$		$\frac{1}{3}$ (Base Area)(8) = 384		
$= 12$ Total surface area $= \frac{1}{2} (12) \sqrt{\left(\frac{12}{2}\right)^2 + 8^2 \times 4 + 144}$		Length of square in base		
$=\frac{1}{2}(12)\sqrt{\left(\frac{12}{2}\right)^2+8^2}\times4+144$		=12		
'``				
		• • •		

	Solution	Marks	Remarks
6. (a)	Let the equation of C be $(x-4)^2 + (y+1)^2 = r$, where r is a real constant		
	Since C passes through $(-6,5)$,		
	So, we have $(-6-2)^2 + (5+1)^2 = r$		
	r = 100 The equation of $C: (x-4)^2 + (y+1)^2 = 100$		
(b)	Radius of $C = 10$ GF		
	$= \sqrt{(2 - (-3))^2 + (-1 - 11)^2}$ $= 13$		
	> 10 F lies outside C		
(c)	(i) F, G, H are collinear		
	(ii) The equation of straight line which passes through F and H :		
	$\frac{y-11}{x+3} = \frac{11-(-1)}{-3-2}$		
	$y = -\frac{12}{5}x + \frac{19}{5}$ $12x + 5y - 19 = 0$		

			Solution	Marks	Remarks
4.	(a)	f(x	(*)		
		=(3.5)	$(x+7)(2x^2+ax+4)+bx+c$		
		=6x	$x^3 + (3a+14)x^2 + (12+7a+b)x + 28+c$		
		$\equiv 6x$	$x^3 - 13x^2 - 46x + 34$		
			14 = -13		
		a = -	-9		
	(b)	(i)	Since $g(x)$ is a quadratic polynomial, degree of quotient		
			when $g(x)$ is divided by $2x^2 + ax + 4$ is 0		
			$g(x) = A(2x^2 - 9x + 4) + bx + c$, where A is a constant		
			f(x) - g(x)		
			$= (3x+7)(2x^2+ax+4)+bx+c-(A(2x^2-9x+4)+bx+c)$		
			$= (3x+7-A)(2x^2+ax+4)$		
			$\therefore f(x) - g(x) \text{ is divisible by } 2x^2 + ax + 4$		
	(b)	(ii)	f(x) - g(x) = 0		
			$(3x+7-A)(2x^2-9x+4)=0$		
			$x = \frac{A-7}{3}$ or $x = 4$ or $x = \frac{1}{2}$		
			Since $\frac{1}{2}$ is not an integer, I don't agree the claim		

	Solution	Marks	Remarks
15. $\int 0 =$	$a + \log_b 9$ $a + \log_b 243$		
3 =	$a + \log_b 243$		
3 = k	$\log_b 243 - \log_b 9$		
3 = 10	$\log_b \frac{243}{9}$		
$b^{3} = b = 3$			
b=3 $a=-$			
y = -	$-2 + \log_3 x$		
	$2 = \log_3 x$		
x = 3	y+2		
16. (a) (b)	The total volume of water imported = $1.5 \times 10^7 + 0.9 \times 1.5 \times 10^7 + 0.9^2 \times 1.5 \times 10^7 + + 0.9^{19} \times 1.5 \times 10^7$ = $1.5 \times 10^7 \times (1 + 0.9 + 0.9^2 + + 0.9^{19})$ = $1.5 \times 10^7 \times \frac{1 - 0.9^{20}}{1 - 0.9}$ = 1.31763501×10^8 $\approx 1.32 \times 10^8$ m³ (corr to 3 sig fig) Since the water imported every year is positive, The total volume of water imported $< 1.5 \times 10^7 + 0.9 \times 1.5 \times 10^7 + 0.9^2 \times 1.5 \times 10^7 +$ = $1.5 \times 10^7 \times (1 + 0.9 + 0.9^2 +)$ = $1.5 \times 10^7 \times \frac{1}{1 - 0.9}$ = 1.5×10^8 $< 1.6 \times 10^8$ No, I don't agree the claim.		
	Suppose the total water imported can exceed 1.6×10^8 m ³ at n^{th} year $1.5 \times 10^7 + 0.9 \times 1.5 \times 10^7 + 0.9^2 \times 1.5 \times 10^7 + + 0.9^{n-1} \times 1.5 \times 10^7 > 1.6 \times 10^7 \times (1 + 0.9 + 0.9^2 + + 0.9^{n-1}) > 1.6 \times 10^8$ $\frac{1 - 0.9^n}{1 - 0.9} > \frac{32}{3}$ $0.9^n < -\frac{1}{15}$ which is impossible No, I don't agree the claim.	5×10 ⁸	

	Solution	Marks	Remarks
7. (a)	Required probability		
	$=\frac{C_4^4 C_1^{15}}{C_5^{19}}$		
	$= \left(\frac{4}{19}\right) \left(\frac{3}{18}\right) \left(\frac{2}{17}\right) \left(\frac{1}{16}\right) \left(\frac{15}{15}\right) C_4^5$		
	5		r.t. 0.00129
	$=\frac{3}{3876}$		
(b)	Required probability		
	$=\frac{C_3^4 C_2^{15}}{C_5^{19}}$		
	$= \left(\frac{4}{19}\right) \left(\frac{3}{18}\right) \left(\frac{2}{17}\right) \left(\frac{15}{16}\right) \left(\frac{14}{15}\right) C_3^5$		
			r.t. 0.0361
	$=\frac{35}{969}$		1.0.0001
(c)	Required probability		
	$=1-\frac{5}{3876}-\frac{35}{969}$		
	$ = \left(\frac{15}{19}\right) \left(\frac{14}{18}\right) \left(\frac{13}{17}\right) \left(\frac{12}{16}\right) \left(\frac{11}{15}\right) C_0^5 + \left(\frac{4}{19}\right) \left(\frac{15}{18}\right) \left(\frac{14}{17}\right) \left(\frac{13}{16}\right) \left(\frac{12}{15}\right) C_1^5 $		
	$+\left(\frac{4}{19}\right)\left(\frac{3}{18}\right)\left(\frac{15}{17}\right)\left(\frac{14}{16}\right)\left(\frac{13}{15}\right)C_2^5$		
	$=\frac{3731}{}$		r.t. 0.963
	3876		

Solution	Marks	Remarks
3. (a) $\int y = 19$		
$y = 2x^2 - 2kx + 2x - 3k + 8$		
$19 = 2x^2 - 2kx + 2x - 3k + 8$		
$2x^2 - 2kx + 2x - 3k - 11 = 0$		
Δ		
$= (-2k+2)^2 - 4(2)(-3k-11)$		
$=4k^2+16k+92$		
$=4(k+2)^2+76$		
≥ 76 , for all real values of k		
$\therefore \Delta > 0$, for all real values of k		
L and Γ intersect at two distinct points.		
(b) (i) a, b are the roots of $2x^2 - 2kx + 2x - 3k - 11 = 0$		
ab		
$=\frac{-3k-11}{2}$		
-		
$=-\frac{3k+11}{2}$		
2		
a+b		
$=-\frac{-2k+2}{2}$		
$\equiv -{2}$		
=k-1		
$(-1)^2$		
$(a-b)^2$ $= a^2 + b^2 - 2ab$		
$= a + b - 2ab$ $= (a+b)^2 - 4ab$		
$= (k-1)^2 - 4(-\frac{3k+11}{2})$		
$=k^2-2k+1+6k+22$		
$= k^2 + 4k + 23$		
(ii) AB		
$=\sqrt{\left(a-b\right)^{2}}$		
$=\sqrt{k^2+4k+23}$		
$=\sqrt{(k+2)^2+19}$		
$\geq \sqrt{19} = 4.358898944 \text{ , for all real values of } k$		
$\geq \sqrt{19} = 4.358898944$, for all real values of κ No, it is impossible.		
ito, it is impossible.		

		Solution	Marks	Remarks
9. (a)	AC	_ <u>=</u>		
sin	$180^{\circ} - 30^{\circ} - 42^{\circ}$	$\sin 30^{\circ}$		
	C = 45.65071278			
	$C \approx 45.7 \mathrm{cm} (\mathrm{corr})$			
Th	e length of AC is	45.7 cm		
(b) (i)	CF	2		
(0) (1)	$\frac{CF}{CF + AC} = \frac{1}{2}$	$\frac{2}{0}$		
		O .		
	$CF = \frac{1}{4}AC$			
	_	65051050		
	$CF = \frac{1}{4} \times 45.$	650/12/8		
	CF = 11.412	6782		
	$CF \approx 11.4 \mathrm{cm}$	n(corr to 3 sig fig)		
('')		1		
(ii)	Area of ΔAB	$F = \frac{1}{2}(AB)(AF)\sin 30^{\circ}$		
		1C=57.06339098		
		$-BC^2 - 2(AC)(BC)\cos 42^\circ$		
		5071278) ² + 24 ² - 2(24)(45.65071278) c	os 42°	
	AB = (43.0. $AB = 32.118$		0542	
	AB = 32.118 Area of ΔA			
	1			
	$=\frac{1}{2}(32.1182)$	6911)(57.06339098) sin 30°		
	= 458.19433	69 cm ²		
		orr to 3 sig fig)		
		011 40 0 018 118)		
			I	I

	Solution	Marks	Remarks
(iii)	$BF^{2} = AF^{2} + AB^{2} - 2(AF)(AB)\cos 30^{\circ}$ $BF^{2} = (57.06339098)^{2} + (32.11826911)^{2} - 2(57.06339098)(32.11826911)\cos 30^{\circ}$ $BF = 33.36690449$ Let h be the height of $\triangle ABF$ with base BF $\frac{1}{2}(h)(BF) = \text{Area of } \triangle ABF$ $\frac{1}{2}(h)(BF) = 458.1943369$ $\frac{1}{2}(h)(33.36690449) = 458.1943369$ $h = 27.46400026$ Let the inclination of the thin metal sheet ABC to horizontal ground be θ $\sin \theta = \frac{10}{h}$ $\sin \theta = \frac{10}{27.46400026}$ $\theta = 21.35300646^{\circ}$ The inclination of the thin metal sheet ABC to horizontal		
(iv)	ground = 21.4° BF = 33.36690449 $BD = \sqrt{AB^2 - 10^2}$ BD = 30.52184808 $DF = \sqrt{CF^2 - 10^2}$ DF = 56.18033989 Let $s = \frac{BF + BD + DF}{2} = 60.03454623$ Area of $\triangle BDF$ $= \sqrt{s(s - BF)(s - BD)(s - DF)}$ = 426.741482 < 460 No, I don't agree the claim.		