Automatismes sur l'exponentielle (Manuel Barbazo)

Frédéric Junier

Lycée du Parc 1 Boulevard Anatole France 69006 Lyon

17 mars 2021

Table des matières

Automatismes du manuel Barbazo.

- Automatisme n°0,1
- Automatisme n°0,2
- Automatisme n°1
- Automatisme n°2
- Automatisme n°3
- Automatisme n°4
- Automatisme n°5
- Automatisme n°6
- Automatisme n°7
- Automatisme n°8

Automatisme 0,1 : question

Soit a un réel non nul. Exprimer sous la forme a^n ou $a^m + a^n$

- $a^4 \times a^5 = ...$
- $(a^4)^5 = ...$
- $\frac{a^4}{a^7} = ...$
- $a^{-3} \frac{a^4}{(a^{-2})^3} = \dots$
- $\frac{a^2+a^3}{a} = \dots$

Automatisme 0,2 : question

Soit a et b deux réels non nuls. Exprimer sous la forme a^nb^m ou $a^nb^m + a^pb^q$.

•
$$(a^2b)^3b^5a^{-6} = \dots$$

$$a^2b+ba^2 = \dots$$

•
$$(a+b)^2 - (a-b)^2 = ...$$

Automatisme 1 : question

$$\frac{e^5 \times e^{-3}}{e \times e^2}$$
 est égal à :

$$\frac{1}{e^{-1}}$$

$$c$$
 $\frac{1}{e}$

Automatisme 1 : réponse

$$\frac{e^5 \times e^{-3}}{e \times e^2} = \frac{e^{5-3}}{e^{1+2}}$$
$$\frac{e^5 \times e^{-3}}{e \times e^2} = e^{2-3} = e^{-1} = \frac{1}{e}$$

Automatisme 2 : question

VRAI ou FAUX

La fonction f définie sur \mathbb{R} par $f(x) = -2e^{5x}$ est croissante sur \mathbb{R} .

Automatisme 2 : réponse

Soit f la fonction définie sur \mathbb{R} par $f(x) = -2e^{5x}$. f est dérivable sur \mathbb{R} et pour tout réel x, on a :

$$f'(x) = -2 \times 5e^{5x} = -10e^{5x}$$

Pour tout réel x, on a $e^{5x} > 0$ donc f'(x) < 0 donc f est strictement décroissante sur \mathbb{R} .

Réponse : FAUX

Automatisme 3 : question

La suite suivante définie par son terme général u_n est une suite géométrique.

$$u_n = -2e^{3n}$$

Donner son premier terme et sa raison.

Automatisme 3 : réponse

Soit la suite (u_n) définie pour tout entier naturel n par $u_n = -2e^{3n}$.

- Le premier terme est $u_0 = -2e^{3\times 0} = -2e^0 = -2$.
- Pour tout entier naturel n, on a $u_n = -2(e^3)^n$ donc d'après une propriété du cours, la suite (u_n) est géométrique de raison e^3 . On peut le retrouver en mettant en évidence la formule de récurrence :

$$u_{n+1} = -2e^{3(n+1)} = -2e^{3n}e^3 = e^3u_n$$

Automatisme 4 : question

On considère la fonction g définie sur $\mathbb R$ par :

$$g(x) = e^{-2x}.$$

À l'aide de la calculatrice, déterminer au centième près, la valeur de x pour laquelle g(x) = 0,1.

Automatisme 4 : réponse

On utilise l'émulateur Numworks en ligne.

On procède par balayage, voir la video.

On obtient $1,151 < \alpha < 1,152$ donc $\alpha \approx 1,15$ à 0,01 près.

Automatisme 5 : question

On considère la fonction g définie sur \mathbb{R} par :

$$g(x) = (x + 1)e^x$$
.

Donner l'écriture factorisée de sa dérivée g'.

Automatisme 5 : réponse

Pour tout réel x. on a donc :

g est une fonction dérivable sur \mathbb{R} par $g(x) = (x+1)e^x$. Pour tout réel x on a g(x) = u(x)v(x) avec u(x) = x+1 et $v(x) = e^x$ dérivables sur \mathbb{R} . D'après la formule de dérivation d'un produit g' = u'v + uv'.

$$g'(x) = e^x + e^x(x+1) = e^x(1+x+1) = e^x(x+2)$$

Automatisme 6 : question

VRAI ou FAUX

On considère la fonction f définie sur $\mathbb R$ par :

$$f(x) = 2x - 3e^{-x}$$
.

La fonction f est strictement décroissante sur \mathbb{R} .

Automatisme 6 : réponse

Soit f la fonction définie sur \mathbb{R} par $f(x) = 2x - 3e^{-x}$. f et dérivable sur \mathbb{R} par $f'(x) = 2 + 3e^{-x}$. Pour tout réel x, on a $e^{-x} > 0$ donc f'(x) > 0 donc f est strictement croissante sur \mathbb{R} . **Réponse : Faux**.

Automatisme 7 : question

Résoudre l'inéquation suivante.

$$e^{-2x+1} < 1$$

Automatisme 7 : réponse

$$e^{-2x+1} < 1 \Leftrightarrow e^{-2x+1} < e^{0}$$

$$e^{-2x+1} < 1 \Leftrightarrow -2x+1 < 0$$

$$e^{-2x+1} < 1 \Leftrightarrow \frac{1}{2} < x$$

L'ensemble des solutions de cette inéquation est donc

$$\left]\frac{1}{2};+\infty\right[$$