UNIVERSIDAD NACIONAL DE ASUNCIÓN

Facultad Politécnica

"ESTRATEGIA DE DISPARO PARA EL PROCESO DE DESFRAGMENTACIÓN EN REDES ÓPTICAS ELÁSTICAS MULTICORE, UTILIZANDO TÉCNICAS DE APRENDIZAJE AUTOMÁTICO"

Trabajo Final de Grado presentado por

RODOLFO SEBASTIÁN VERGARA FERREIRA Y DIEGO DANIEL DUARTE CENTURIÓN

COMO REQUISITO
PARA OBTENER EL TÍTULO DE INGENIERO
EN INFORMÁTICA

ORIENTADOR:
Phd. Msc. Ing. ENRIQUE DAVALOS

Índice general

In	dice	de Figuras	IV
Ín	dice	de Tablas	V
Li	sta d	e Símbolos	VI
1.	Intr	oducción	1
	1.1.	Justificación	1
	1.2.	Objetivos del trabajo	5
		1.2.1. Objetivo General	5
		1.2.2. Objetivos Específicos	5
	1.3.	Organización del libro	6
2.	Red	es Ópticas Elásticas Multicore y Fragmentación del Ancho de	
	Ban	da	7
	2.1.	Redes EON Multinúcleo	8
	2.2.	Diafonía en Redes Ópticas Elásticas Multinúcleo	10
		2.2.1. Cálculo de la diafonía	13
		2.2.2. Asignación de espectro con conmutación de núcleo	14
	2.3.	Fragmentación del Ancho de Banda en MC-EON	17
		2.3.1. Enfoques de gestión de fragmentación	21
	2.4.	Descripción del problema tratado	23

ÍNDICE GENERAL

3.	Apr	endizaje Automático	25
	3.1.	Clasificación de sistemas o tipos de aprendizaje automático	26
	3.2.	Redes Neuronales Artificiales	28
		3.2.1. Perceptrón	29
		3.2.2. Funciones de activación	31
		3.2.3. Arquitectura y aprendizaje	32
	3.3.	Aplicación de Machine Learning en Redes Ópticas Elásticas Multinúcleo	33
4.	Mé	todo Propuesto	37
	4.1.	Características	38
	4.2.	Obtención de datos para el entrenamiento	41
	4.3.	Herramientas Utilizadas	43
	4.4.	Modelado	44
	4.5.	Entrenamiento	44
	4.6.	Pruebas de predicción	45
5.	Pru	iebas y resultados obtenidos	47
	5.1.	Objetivos a optimizar	49
	5.2.	Análisis de los resultados	49
6.	Co	nclusiones y Trabajos Futuros	55
	6.1.	Conclusiones Experimentales	56
	6.2.	Aportes	57
	6.3.	Trabajos Futuros	58

Índice de figuras

2.1.	Ejemplo de Fibras Multinúcleo (MCF) con 7, 12 y 19 núcleos	Ĝ
2.2.	Core Pitch entre dos núcleos adyacentes en un MCF de 7 núcleos $$	10
2.3.	XT en un Fibra MCF de 3 núcleos [] $\ \ldots \ \ldots \ \ldots \ \ldots$	12
2.4.	Conmutación de núcleos con contigüidad de espectro []	14
2.5.	Asignación de espectro sin conmutación de núcleos []	16
2.6.	Asignación de espectro con conmutación de núcleos []	17
2.7.	Restricciones de contigüidad y continuidad aplicadas- Conexión Re-	
	chazada	20
2.8.	Restricciones de contigüidad y continuidad aplicadas- Conexión Es-	
	tablecida	20
2.9.	Esquema de Gestión de la Fragmentación	22
2.10.	Ejemplo de desfragmentaciones periódicas con volumen de carga de	
	tráfico variado	24
3.1.	Comportamiento del perceptrón	29
3.2.	Funciones de Activación	31
3.3.	Ejemplo de red neuronal	32
4.1.	Ejemplo de métricas de fragmentación	42
4.2.	Volumen de tráfico variado utilizado	43
4.3.	Evolución del error a través de épocas	45
4.4.	Utilización de la red y predicciones	46

ÍNDICE DE FIGURAS IV

5.1.	Diagrama simulador / modelo entrenado $\ . \ . \ . \ . \ . \ . \ . \ .$	48
5.2.	$\operatorname{Gráfico}$ de soluciones en el frente pareto para la topología NSFNET .	51
5.2.	$\operatorname{Gráfico}$ de soluciones en el frente pareto para la topología NSFNET .	52
5.3.	Gráfico de soluciones en el frente pareto para la topología USNET	52
5.3.	Gráfico de soluciones en el frente pareto para la topología USNET	53

Lista de Tablas

4.1.	Tabla de resultados en pruebas de predicción	45
5.1.	Tabla de soluciones en el frente pareto	50
5.2.	Tabla de cobertura para topología USNET	54
5.3.	Tabla de cobertura para topología NSFNET	54

Lista de Símbolos

HM High-slot Mark.

 HM_{max} HM máximo.

 Ent_{link} Entropía del enlace.

 Ent_{link-i} Entropía del enlace i.

 Ent_{red} Entropía de la red.

N Cantidad de FS en un enlace.

 FS_i Frecuency Slot de índice i.

 FS_{i+1} Frecuency Slot de índice i+1.

|E| Cantidad de enlaces de la red.

 SHF_{link} Entropía de Shannon del enlace.

 SHF_{link-i} Entropía de Shannon del enlace i.

 SHF_{red} Entropía de Shannon de la red.

 S_{free} Cantidad de FS libres en un enlace.

 BFR_{link} Relación de Fragmentación de ancho de banda de un enlace.

 BFR_{link-i} Relación de Fragmentación de ancho de banda del enlace i.

 BFR_{red} Relación de Fragmentación de ancho de banda de la red.

MaxBlock() Tamaño del mayor bloque de FS bloquados.

MSI Índice de slot máximo utilizado.

 MSI_{link-i} Índice de slot máximo utilizado del enlace i.

 MSI_{red} Índice de slot máximo utilizado de la red.

LISTA DE TABLAS

 CE_{link} Consecutividad del espectro.

 CE_{red} Consecutividad del espectro de la red.

Joins Cantidad total de bloques de dos ranuras libres adyacentes

distintos dentro de un enlace.

Bloques Cantidad de bloques de ranuras libres en un enlace.

K Cantidad de rutas de dos enlaces en la red.

Uso Porcentaje de utilización de la red.

sum(i) Cantidad de FS utilizadas en el enlace i.

FSB Acumulación de FS bloqueados.

 S_i^{block} Cantidad de FS solicitadas por la demanda bloqueada i.

D Cantidad de demandas.

T Ventada de tiempo seleccionada para el calculo de IB.

 PB_t Índice de bloqueo para el tiempo t.

 FSD_i Cantidad de FS demandadas en el tiempo t.

 $train_{mean}$ Media de valores.

 $train_{stf}$ Desviación estándar.

MAE Error Absoluto Medio.

MSE Error Cuadrático Medio.

PB Probabilidad de Bloqueo.

 PB_{th} Umbral para disparar el proceso de desfragmentación.

BL Cantidad de Bloqueos.

RC Cantidad de Reconfiguraciones.

SFP Número de soluciones en el Frente Pareto.

CP Cobertura Pareto.

MP Método Propuesto.

Capítulo 1

Introducción

1.1. Justificación

Debido al incremento de la popularidad de internet y del uso de servicios en la nube, tales como *Content Delivery Network* (CDN) y *Video on Demand* (VoD), las demandas de tasas de bits en las redes han crecido de manera exponencial, lo que obliga a estudiar nuevas y mejores tecnologías relacionadas a la transmisión de datos.

Las Redes de Multiplexación por División de Longitud de Onda o Wavelength Division Multiplexing (WDM), utilizan una grilla fija, de 50 o 100 GHz, dan una gran ventaja logrando velocidades muy superiores frente a las viejas tecnologías, pero a pesar de esta ventaja señalada, la gruesa granularidad lleva a un uso ineficiente del espectro, ya que cada demanda es asignada a un canal fijo y estas pueden requerir un ancho de banda menor al tamaño del canal.

Esta desventaja da lugar a las Redes Elásticas Ópticas o *Elastic Optical Networks* (EON) [1], las cuales surgen como una solución al problema anteriormente citado, ya que estas proporcionan una mayor flexibilidad en la división del espectro y de esa forma lograr que los requerimientos sean asignados de manera más eficiente.

A las redes EON tambien se la conocen como redes de grilla flexible, debido a que las ranuras de frecuencia o FS (Frequency Slot) que reemplazan a los "Canales

WDM", cuentan con una división más flexible. Cada FS tiene un ancho de banda de 12.5 GHz, de esta manera se logra una cantidad más apropiada de FS para satisfacer un requerimiento.

Sin embargo, a pesar de las mejoras introducidas por las redes EON, el crecimiento exponencial del tráfico de datos demanda soluciones aún mas avanzadas. En este contexto, surgen las Redes Ópticas Elásticas Multicore o *Elastic Optical Networks with Multicore Fibers* (EON-MCF) y por consecuente *Space Division Multiplexing-Elastic Optical Networks* (SDM-EON), que incorporan fibras ópticas multinúcleo (MCF), para multiplicar la capacidad de transmisión mediante la explotación de la dimensión espacial, ademas de las dimensiones espectral y temporal ya utilizadas en las redes EON convencionales.

Las fibras multinúcleo contienen múltiples núcleos dentro de una única fibra, donde cada núcleo puede transmitir señales de manera independiente. Esta arquitectura permite aumentar significativamente la capacidad de la red sin necesidad de desplegar nuevas fibras, ofreciendo una solución escalable y económicamente viable para satisfacer las crecientes demandas de ancho de banda.

Los métodos de ruteo y asignación del espectro y núcleo tienen gran impacto sobre el uso eficiente de los recursos de la red. Los algoritmos RSCA (Routing, Spectrum and Core Assignent) se encargan de resolver dicho problema encontrando el camino más apropiado desde el origen hasta el destino, el núcleo a utilizar y las ranuras que utilizará el requerimiento dentro del espectro de los enlaces.

Se han propuestos varios algoritmos RSCA con el fin de conseguir la mejor utilización de recursos, estos algoritmos están sujetos a tres principios fundamentales: la restricción de consecutividad del ancho de banda, la restricción de la continuidad del ancho de banda y la restricción de continuidad de núcleo.

La restricción de continuidad espectral establece que se deben utilizar los mismos FS en todo el camino y la restricción de contigüidad dispone que los FS seleccionados para satisfacer la demanda deben ser contiguos. La restricción de continuidad de

núcleo especifíca que se debe mantener el mismo núcleo a lo largo de toda la ruta establecida.

Adicionalmente, en las redes SDM-EON surge un nuevo fenómeno denominado Crosstalk o diafonía entre núcleos inter-core crosstalk, XT, que ocurre cuando las señales ópticas de núcleos adyacentes interfieren entre sí, degradando la calidad de la transmisión. Este fenómeno debe ser considerado como una restricción adicional en los algoritmos RSCA para garantizar la calidad del servicio.

Debido a las restricciones explicadas y a que las asignaciones de recursos son realizadas de manera dinámica, surge el fenómeno denominado "Fragmentación del Ancho de Banda y del Espacio", este problema es una de las principales dificultades de las redes SDM-EON ya que tiene un impacto directo en el uso eficiente del espectro y de los núcleos disponibles.

El fenómeno de la fragmentación espectro-espacial del ancho de banda sucede cuando en los enlaces se encuentran FS disponibles separados por FS que están siendo utilizados por otras conexiones, o cuando existen núcleos con recursos fragmentados que no pueden ser eficientemente asignados, por lo que estas podrían quedar inutilizables para nuevas conexiones por no poder satisfacer a la demanda debido a las restricciones citadas anteriormente, en consecuencia, la probabilidad de bloqueo [2] aumenta considerablemente.

Un bloqueo sucede cuando el algoritmo RSCA no puede encontrar núcleos y FS disponibles para una demanda, esto puede deberse a una alta saturación del espectro o de los núcleos, pero también debido al problema mencionado anteriormente, donde existe la cantidad de FS libres que se solicitan, pero sin respetar las restricciones de continuidad y contigüidad, o donde no hay núcleos disponibles que cumplan con las restricciones de crosstalk, es decir el espectro y el espacio se encuentran fragmentados.

El problema de la fragmentación de redes SDM-EON es ampliamente estudiado en la literatura actual, para buscar manejarlo se han propuesto soluciones con distintos enfoques.

Uno de los enfoques es el llamado *Enfoque proactivo* el cual consiste en ejecutar un proceso de desfragmentación periódicamente o mediante un disparador. Tiene como principal objetivo prevenir futuros bloqueos en la red, este enfoque será el utilizado en este trabajo.

El proceso de desfragmentación consiste en la reconfiguración o re-ruteo de un sub-conjunto de conexiones ya establecidas en la red, teniendo como principal objetivo reducir la fragmentación del espectro y la fragmentación espacial mediante la eliminación de bloques de FS libres no contiguos y la registribución eficiente de conexiones entre núcleos.

En el trabajo presentado por Zhang [3], se realizó un análisis del problema de desfragmentación en redes EON, en el cual lo dividen en cuatro subproblemas, los cuales son, (I) ¿Cómo reconfigurar?, (II) ¿Cómo migrar el tráfico?, (III) ¿Cuándo reconfigurar? y (IV) ¿Qué reconfigurar?. Estos subproblemas mantienen su vigencia en el contexto de las redes SDM-EON, con la complejidad adicional de considerar la dimensión espacial.

En este trabajo nos centraremos en el tercer subproblema, ¿Cuándo reconfigurar?, ya que considerando el enfoque proactivo para resolver el problema de la fragmentación, encontramos que los procesos de desfragmentación podrían ejecutarse en periodos de tiempo donde no son del todo necesarios, es decir cuando la red se encuentra con una baja fragmentación, provocando desfragmentaciones ineficientes, una cantidad mayor de disrupciones de conexiones y una elevación innecesaria del costo de procesamiento.

En los siguientes capítulos presentamos un novedoso modelo de predicción de probabilidades de bloqueo implementado con técnicas de aprendizaje automático o *Machine Learning*, el cual se utiliza como disparador del proceso de desfragmentación pero en este caso redes SDM-EON Multinúcleo, proponiendo de esta manera una solución al sub problema planteado anteriormente.

1.2. Objetivos del trabajo

1.2.1. Objetivo General

Diseñar un modelo de disparo para el proceso de desfragmentación en redes ópticas elásticas multicore basado en métricas que indiquen el estado de la fragmentación de la red, utilizando técnicas de aprendizaje automático (*Machine Learning*), con el propósito de maximizar la eficiencia en el uso de los recursos de la red mediante la reducción de reconfiguraciones de conexiones existentes y la minimización de la probabilidad de bloqueo.

1.2.2. Objetivos Específicos

- Realizar una revisión bibliográfica del estado del arte en técnicas de desfragmentación para redes ópticas elásticas, con énfasis en métodos basados en aprendizaje automático y su aplicación en redes multicore.
- Identificar y definir métricas de fragmentación apropiadas para redes ópticas elásticas multicore, considerando las particularidades de la asignación de recursos en múltiples núcleos.
- Desarrollar e implementar un modelo de aprendizaje automático capaz de predecir el índice de la fragmentación de la red a futuro y determinar momentos óptimos para activar el proceso de desfragmentación en redes EON multicore.
- Diseñar e implementar una interfaz de integración entre el simulador de redes ópticas elásticas multicore y el modelo de aprendizaje automático entrenado, permitiendo la evaluación en tiempo real del sistema propuesto.
- Evaluar el desempeño del modelo propuesto mediante simulaciones, comparando sus resultados con técnicas de desfragmentación existentes en términos

de probabilidad de bloqueo, número de reconfiguraciones y eficiencia en el uso de recursos espectrales.

1.3. Organización del libro

El presente trabajo se encuentra organizado de la siguiente manera:

En el capítulo dos se trata sobre características y conceptos relacionados con las redes EON, su principal dificultad (la fragmentación del ancho de banda), los diferentes enfoques para manejar la misma y una presentación de trabajos relacionados presentes en la literatura científica.

En el capítulo tres se hace una introducción al *Machine learning*, enfocado al aprendizaje supervisado y redes neuronales.

En el capítulo cuatro se presenta el método propuesto para la selección del momento de desfragmentación, describiendo todo el proceso que conlleva.

El capítulo cinco se muestra las pruebas experimentales junto a un análisis de los resultados obtenidos.

Por último, el capítulo seis presenta las conclusiones del trabajo y sugerencias para trabajos futuros.

Capítulo 2

Redes Ópticas Elásticas Multicore y Fragmentación del Ancho de Banda

Las redes ópticas que se basan en WDM dividen el espectro de cada enlace en canales cuyo ancho de banda se fija de 50 GHz o 100 GHz. Esto debido a que la Unión Internacional de Telecomunicaciones (ITU-T International Telecommunication Union) especificó el estándar G.694.1 en el año 2002. Estas redes WDM resultan muy rígidas, y debido a eso es posible que ocurra una utilización ineficiente de la capacidad, provocado por el hecho de que el espacio entre dos canales adyacentes es relativamente grande y si la señal que se transmite utiliza un ancho de banda muy bajo, gran parte del espectro será desperdiciado.

Una nueva tecnología denominada Redes Ópticas Elásticas o Elastic Optical Networks (EON) y su evolución: Las Redes ópticas Elásticas Multinúcleo o Multicore Elastic Optical Networks (MC-EON) el cual no solo dividen el espectro óptico en Ranuras de Frecuencia o Frequency Slots (FS) de 12.5 GHz conforme a lo establecido por el estándar definido en ITU-T (G.694.1) en el año 2012, sino que las (MC-EON) introducen un nuevo dominio de multiplexación espacial, al permitir la transmisión simultánea de múltiples señales ópticas en diferentes núcleos dentro de una misma fibra. Esta aproximación multidimensional proporciona una mayor escalabilidad, eficiencia en la asignación del espectro y reducción del consumo energético, posicionando a las MC-EON como una de las tecnologías mas prometedoras para la

implementación de redes ópticas de ultra alta capacidad en escenarios de próxima generación.

2.1. Redes EON Multinúcleo

Las redes EON Multinúcleo constituyen una variante avanzada de las redes EON que integran el concepto de fibras multinúcleo (MCF) para incrementar significativamente la capacidad de transmisión y la eficiencia espectral. Fundamentalmente, las redes EON Multinúcleo aprovechan múltiples núcleos independientes dentro de una misma fibra óptica para transmitir señales de forma simultánea y paralela, posibilitando una multiplicación de la capacidad de transmisión en comparación con las fibras convencionales [15]. Estas características mencionadas en las EON Multinúcleo se materializan mediante la implementación de la Multiplexación por División de Espacio (SDM). Por esta razón, las redes EON Multinúcleo también se denominan SDM-EON[5]. En las redes EON Multinúcleo, se integra el concepto de asignación flexible de espectro con la utilización de múltiples núcleos, alcanzando una distribución más eficiente de la capacidad total de transmisión. Esta integración de tecnologías posibilita un incremento sustancial en la capacidad de transmisión a través de una única fibra, resultando esencial en un contexto donde la demanda de datos continúa creciendo de manera exponencial. Al incorporar el concepto de fibras multinúcleo en el diseño de las redes EON, se puede lograr una mayor adaptabilidad a las cambiantes necesidades del tráfico y una optimización más profunda de los recursos disponibles.

MCF con 7 núcleos [5] MCF con 12 núcleos [5] MCF con 19 núcleos [5]

Figura 2.1: Ejemplo de Fibras Multinúcleo (MCF) con 7, 12 y 19 núcleos

Conforme a lo documentado en la literatura [], inicialmente podría considerarse que la utilización de redes EON con mayor cantidad de núcleos proporciona ventajas sustanciales debido a la amplia disponibilidad de recursos espectrales y espaciales. No obstante, se ha identificado que en las redes MCF, el principal desafío radica en la interferencia denominada diafonía (crosstalk), la cual se genera cuando una fracción de la potencia óptica de un núcleo se propaga hacia los núcleos contiguos. Este fenómeno ocasiona una interferencia significativa en los circuitos activos y complejiza considerablemente la asignación de las ranuras espectrales (FS). Investigaciones previas [] [] han indicado que para viabilizar la implementación de redes EON multinúcleo, resulta fundamental desarrollar fibras que minimicen la diafonía entre núcleos adyacentes.

En la Figura [], se presenta una configuración de MCF con 7 núcleos dispuestos en un patrón hexagonal. En esta arquitectura, el núcleo central (núcleo N° 6) se encuentra rodeado por 6 núcleos adyacentes, resultando en una mayor incidencia de diafonía sobre este núcleo. En contraste, los núcleos periféricos (núcleos N° 0, 1, 2, 3, 4 y 5) poseen 3 núcleos adyacentes cada uno. La Figura [] exhibe una MCF con 12 núcleos organizados en una disposición anular. En esta configuración, cada núcleo presenta exactamente 2 núcleos adyacentes, lo que deriva en que todos los núcleos

experimenten un nivel equivalente de diafonía.

Finalmente, la Figura [] ilustra una MCF con 19 núcleos. En este tipo de fibras, los núcleos pueden presentar hasta 6 núcleos adyacentes por núcleo, generando una mayor incidencia de diafonía.

Figura 2.2: Core Pitch entre dos núcleos adyacentes en un MCF de 7 núcleos

2.2. Diafonía en Redes Ópticas Elásticas Multinúcleo

La diafonía constituye un fenómeno indeseado que se manifiesta en las redes de fibra óptica cuando la señal transmitida en una fibra se acopla hacia otra fibra contigua. En el contexto de las redes EON fundamentadas en MCF, la diafonía se define como la interferencia entre conexiones ópticas establecidas en núcleos adyacentes que emplean las mismas ranuras espectrales (FS) en un enlace común. Este tipo de interferencia se denomina diafonía entre núcleos o Inter-Core Crosstalk (XT). La interferencia ocasionada por el XT puede degradar la calidad de la señal en las FS afectadas, lo que implica que la señal en estas ranuras puede experimentar

distorsiones, incrementando la probabilidad de errores en la transmisión de datos.

Consecuentemente, impacta directamente en la capacidad de la red al «inhabilitar» estas FS para la transferencia de datos debido a la diafonía, generando espacios no utilizables entre ellas.

En síntesis, esto deriva en una reducción de la cantidad total de FS disponibles para la transmisión de datos, limitando la capacidad operativa de la red. Con menor disponibilidad de FS, se reducen los canales para transmitir datos, lo que puede restringir la capacidad total de transmisión de la infraestructura de red.

En las redes SDM-EON, el XT entre dos núcleos de una MCF depende significativamente de la distancia entre dicho par de núcleos, denominada core pitch $(\Lambda_{i,j})$. A mayor core pitch, menor será el impacto del XT entre estos dos núcleos []. No obstante, resulta importante destacar que, a medida que se incrementa el core pitch, la capacidad de la fibra óptica disminuye. Es decir, al aumentar la distancia física entre dos núcleos, se reduce el espacio disponible en la fibra óptica para albergar núcleos adicionales. Por consiguiente, resulta fundamental establecer un equilibrio entre un core pitch reducido para incrementar la capacidad y uno suficientemente amplio para minimizar los efectos del XT. Este balance posibilita optimizar el desempeño y la eficiencia de la red.

Para demostrar el comportamiento del crosstalk (XT) entre núcleos en fibras multinúcleo, se analiza el ejemplo presentado en la figura [], la cual ilustra una fibra óptica multinúcleo (MCF) compuesta por tres núcleos organizados en configuración lineal. En esta topología, resulta evidente que el núcleo central (núcleo 2) experimenta una interferencia significativa por XT intercore. Este fenómeno se atribuye a que ambos núcleos contiguos (núcleos 1 y 3) mantienen conexiones establecidas en intervalos espectrales similares a aquellos ya ocupados en el núcleo 2. A modo de ejemplo, los segmentos espectrales FS1 y FS2 resultan inutilizables en el núcleo 2 debido a la interferencia generada por las asignaciones activas en los núcleos laterales. Esta misma situación se replica en los intervalos FS4, FS5 y FS6 del núcleo

mencionado. Consecuentemente, en arquitecturas SDM-EON basadas en fibras multinúcleo, resulta imperativo evaluar el impacto del XT intercore durante el proceso de asignación de recursos espectrales, a fin de mitigar degradaciones en la calidad de transmisión.

Es relevante destacar que el crosstalk intercore no afecta exclusivamente a los segmentos espectrales con demandas activas, sino también a aquellos recursos disponibles en núcleos adyacentes. Un análisis detallado de la figura [] revela que incluso los intervalos espectrales sin conexiones asignadas experimentan interferencia procedente de transmisiones en núcleos contiguos. Esto se ejemplifica con los segmentos FS8 y FS9 del núcleo 1, que sufren degradación por el XT generado desde las mismas posiciones espectrales en el núcleo 2. En determinadas circunstancias, esta interferencia puede superar el umbral de crosstalk admisible, imposibilitando la utilización de dichos recursos para el establecimiento de futuras conexiones en arquitecturas multinúcleo.

Figura 2.3: XT en un Fibra MCF de 3 núcleos []

2.2.1. Cálculo de la diafonía

El procedimiento para determinar el nivel de XT que incide sobre una conexión establecida en el núcleo i de una MCF, considerando una configuración arbitraria de núcleos y cualquier disposición geométrica, se desarrolla mediante los siguientes pasos:

En primera instancia, se determina el valor de la XT por unidad de longitud entre el núcleo i y un núcleo adyacente j, denotado como $h_{i,j}$, empleando la expresión:

$$h_{i,j} = \frac{2k^2r}{\beta\Lambda_{i,j}} \tag{2.1}$$

Donde k representa el coeficiente de acoplamiento; r corresponde al radio de curvatura; β denota la constante de propagación; y $\Lambda_{i,j}$ indica la distancia entre los núcleos i y j respectivamente (core pitch).

Posteriormente, se calcula el valor total de la XT que impacta al núcleo i, designado como XT_i , mediante la agregación de las contribuciones de XT provenientes de todos sus núcleos adyacentes. Esta operación se efectúa utilizando la siguiente expresión:

$$XT_i = \sum_{j=1}^{N_i} h_{i,j} \cdot L \tag{2.2}$$

Donde N_i representa la cantidad de núcleos adyacentes al núcleo i, y L corresponde a la longitud física del enlace óptico.

Con el propósito de garantizar la integridad de la señal transmitida, resulta imperativo que el valor calculado de XT_i no exceda un umbral máximo admisible de diafonía al momento de establecer de forma óptima la trayectoria óptica para una solicitud de conexión entrante. El umbral de diafonía o $Crosstalk\ Threshold\ (XT_{TH})$ se conceptualiza como el límite superior de XT que una señal propagada a través del sistema puede tolerar sin experimentar una degradación considerable en su calidad o sin provocar la generación de errores en la transmisión de datos [19].

El valor particular del XT_{TH} puede fluctuar en función de las características de la aplicación y las especificaciones técnicas del sistema implementado. En contextos de aplicaciones que demandan elevadas velocidades de transmisión y capacidades sustanciales, es factible admitir niveles considerablemente reducidos de XT_{TH} , en tanto que para aplicaciones de menor criticidad, los valores de XT_{TH} admisibles pueden ser superiores.

2.2.2. Asignación de espectro con conmutación de núcleo

En las arquitecturas SDM-EON, es posible optimizar la eficiencia espectral mediante la implementación de conmutación de núcleos, mecanismo que permite identificar y asignar recursos espectrales en uno o múltiples núcleos a lo largo de una conexión establecida en fibras MCF. Este procedimiento implica la selección del mismo bloque de FS como recursos reservados para cada solicitud de conexión, distribuyéndose entre diferentes núcleos a lo largo de la trayectoria de trabajo. Para materializar la conmutación de núcleos, resulta fundamental respetar la restricción de contigüidad espectral, lo cual significa que la señal puede ser transferida de un núcleo a otro sin limitaciones, en tanto se preserve la continuidad del mismo intervalo espectral asignado.

Figura 2.4: Conmutación de núcleos con contigüidad de espectro []

En las Figuras [] y [] se ilustra la asignación de núcleos y recursos espectrales sin

conmutación de núcleos y con conmutación de núcleos, respectivamente. Los elementos gráficos de color naranja denotan FS ocupadas, mientras que los elementos en blanco representan FS disponibles. Con el propósito de ejemplificar el funcionamiento del mecanismo de asignación espectral con conmutación de núcleos, se presentan dos casos representativos documentados en la literatura [20]. En ambos escenarios, se considera una demanda d(2,4,4), donde el primer parámetro identifica el nodo de origen, el segundo corresponde al nodo de destino, y el tercero especifica la cantidad de FS requeridas para satisfacer dicha demanda, respectivamente. Es posible identificar y asignar los recursos espectrales necesarios para la demanda a lo largo de la trayectoria conformada por dos enlaces de fibra: l_0 (2-5) y l_1 (5-4), implementando tres núcleos.

La Figura [] exhibe la asignación de núcleos y espectro sin aplicar conmutación de núcleos para la demanda d(2,4,4). En los enlaces l_0 y l_1 existen diversos bloques contiguos de FS disponibles. No obstante, debido a la restricción de continuidad espectral, únicamente se configura un bloque candidato de FS en el núcleo 2, representado mediante SC_{2,l_0}^0 , SC_{2,l_1}^0 . Posteriormente, se verifica el impacto del XT con el objetivo de asegurar que la incorporación de la demanda no supere el umbral XT_{TH} . En caso de que el XT exceda XT_{TH} , la demanda d(2,4,4) resultará bloqueada, dado que no existen recursos espectrales disponibles a lo largo de la ruta establecida.

Figura 2.5: Asignación de espectro sin conmutación de núcleos []

La Figura [] ilustra la asignación de núcleos y espectro mediante la implementación de conmutación para la demanda d(2,4,4). El mecanismo de conmutación de núcleos posibilita la identificación de bloques de FS que satisfacen la restricción de contigüidad espectral distribuidos en núcleos distintos a través de múltiples enlaces de la trayectoria establecida.

A modo de ejemplo, para la demanda d(2,4,4) se identifican tres bloques candidatos de FS que cumplen con dicha restricción: $\{SC_{2,l_0}^0, SC_{2,l_1}^0\}$, $\{SC_{1,l_0}^3, SC_{3,l_1}^3\}$ y $\{SC_{3,l_0}^6, SC_{1,l_1}^6\}$. Estos bloques se encuentran disponibles a lo largo de la ruta conformada por los enlaces l_0 (2-5) y l_1 (5-4).

Conforme se observó en el caso precedente, si el bloque candidato de FS representado por $\{SC_{2,l_0}^0, SC_{2,l_1}^0\}$ experimenta una interferencia significativa por XT que excede el umbral XT_{TH} , resultaría inviable establecer la demanda en dichos recursos espectrales. No obstante, mediante la implementación de conmutación de núcleos, los dos bloques candidatos restantes, $\{SC_{1,l_0}^3, SC_{3,l_1}^3\}$ y $\{SC_{3,l_0}^6, SC_{1,l_1}^6\}$, se encuentran distribuidos en núcleos diferentes a través de los enlaces de fibra. Consecuentemente,

el nivel de XT que incide sobre estos bloques de FS podría permanecer por debajo del umbral XT_{TH} , facilitando su asignación exitosa.

Figura 2.6: Asignación de espectro con conmutación de núcleos

En términos comparativos, la implementación del mecanismo de conmutación de núcleos a lo largo de los enlaces de fibra en una ruta de trabajo permite reducir sustancialmente la probabilidad de bloqueo de solicitudes en comparación con escenarios donde no se aplica conmutación de núcleos, incrementando así la eficiencia en la utilización de los recursos espectrales y espaciales disponibles en la infraestructura de red.

2.3. Fragmentación del Ancho de Banda en MC-EON

Las redes ópticas elásticas multinúcleo (MC-EON) permiten optimizar el uso del ancho de banda necesario para satisfacer una demanda, respetando tres restricciones

fundamentales:

- Restricción de continuidad: esta restricción implica que un cambio de luz o lightpath debe utilizar los mismos Frecuency Slots (FS) a lo largo del camino establecido entre los nodos de origen y destino, tanto en la dimensión espectral como en la dimensión espacial (núcleo).
- Restricción de consecutividad: esta restricción establece que todos los FS utilizados para establecer un lightpath deben ser contiguos en el dominio espectral, formando un solo bloque contiguo de FS dentro del mismo núcleo.

Estas restricciones conducen a que, tras sucesivas asignaciones y liberaciones de recursos, se genere la aparición de bloques aislados de FS no utilizados tanto en la dimensión espectral como en la dimesión espacial (núcleos) de los enlaces ópticos. Dichos bloques fragmentados presentan desalineación tanto entre enlaces consecutivos de la ruta como entre los diferentes núcleos de una misma fibra multinúcleo. Como consecuencia, se incrementa significativamente la probabilidad de bloqueo de solicitudes, pudiendo la red rechazar demandas incluso cuando existe ancho de banda disponible suficiente en los enlaces. Este fenómeno se denomina Fragmentación de la red y en arquitecturas multinúcleo se manifiesta en dos domensiones complementarias:

- Fragmentación espectral: se refiere a la presencia de bloques aislados de FS no utilizados en el dominio espectral, que no pueden ser aprovechados para establecer nuevas conexiones debido a las restricciones de continuidad y consecutividad.
- Fragmentación espacial: se refiere a la desalineación de bloques de FS disponibles entre los diferentes núcleos de una misma fibra multinúcleo, lo que dificulta la asignación eficiente de recursos en la dimensión espacial.

Ejemplo ilustrativo del fenómeno:

- 1 Se presenta el estado inicial del enlace mostrando las asignaciones activas de lightpaths distribuidos en los múltiples núcleos de la fibra.
- 2 Se produce la liberación de recursos al finalizar el tiempo de vida de determinadas conexiones, generando segmentos espectrales disponibles dispersos en diferentes núcleos y posiciones del espectro.
- 3 Se evidencia el rechazo de una nueva solicitud de conexión debido a que, pese a existir una cantidad agregada suficiente de FS libres en la red, estos no satisfacen simultáneamente las restricciones de contigüidad espectral dentro de un único núcleo y continuidad espacial a lo largo de la ruta. La conexión resulta bloqueada en todos los núcleos disponibles como resultado de la fragmentación tanto espectral como espacial inherente al sistema multinúcleo.

Para ilustrar estas restricciones, se presenta un ejemplo en las Figuras [] y [], donde se simula la conexión de una demanda de fod FS, con un nodo origen en 0 y un nodo destino en 3. En este escenario, existen dos posibblews caminos: 0-1-3 y 0-1-2-3.

La trayectoria de menor longitud corresponde a la ruta 0-1-3. No obstante, al procurar el establecimiento del lightpath mediante esta alternativa, la solicitud de conexión resulta denegada, dado que los enlaces 0-1 y 1-3 carecen de dos FS consecutivos y alineados espectralmente, tal como se evidencia en la Figura [].

Figura 2.7: Restricciones de contigüidad y continuidad aplicadas- Conexión Rechazada

Figura 2.8: Restricciones de contigüidad y continuidad aplicadas- Conexión Establecida

En contraste, al considerar la asignación del lightpath a través de la trayectoria de mayor extensión, específicamente 0-1-2-3, empleando los FS 4 y 5, la conexión se establece satisfactoriamente, puesto que esta configuración dispone de dos FS contiguos y alineados espectralmente, según se observa en la Figura [].

2.3.1. Enfoques de gestión de fragmentación

La problemática descrita previamente genera consecuencias perjudiciales para la infraestructura de red, ocasionando un incremento en la probabilidad de bloqueo y comprometiendo significativamente su desempeño óptimo y continuidad operacional. En consecuencia, resulta fundamental identificar estrategias que permitan prevenir, mitigar o reducir la fragmentación del espectro disponible.

De acuerdo con la bibliografía especializada, existen diversas aproximaciones que pueden ser consideradas para abordar la gestión de la desfragmentación. En la figura [] se presentan las principales estrategias de gestión de la fragmentación [4].

La Desfragmentación constituye un procedimiento mediante el cual se ejecuta la reconfiguración o el re-ruteo de un subconjunto de conexiones existentes en la infraestructura de red. Su propósito fundamental consiste en reacomodar las asignaciones espectrales de las solicitudes de tráfico vigentes, consolidando de este modo los recursos disponibles en segmentos contiguos y continuos de mayor magnitud, los cuales pueden ser aprovechados para el establecimiento de futuras demandas [5].

Es factible abordar la problemática de la fragmentación prescindiendo de técnicas de desfragmentación espectral (Sin Desfragmentación), lo cual se alcanza mediante una administración del espectro orientada a la prevención de su fragmentación.

En el tratamiento de la fragmentación bajo un esquema Sin Desfragmentación, se pueden mencionar los algoritmos denominados Sensibles a la Fragmentación o Fragmentation Aware RSA (FA-RSA). Estos consideran la fragmentación espectral durante el establecimiento de las demandas, empleando diversos indicadores de fragmentación, procurando así minimizar la fragmentación del espectro.

Alternativamente, es posible emplear técnicas de desfragmentación, las cuales se fundamentan en dos aproximaciones principales:

 Desfragmentación Reactiva: El procedimiento se ejecuta como respuesta al bloqueo de una solicitud, con la finalidad de lograr su establecimiento exitoso. Desfragmentación Proactiva: Se lleva a cabo de manera periódica o en función de determinados umbrales que activan el proceso, permitiendo así reducir la fragmentación de la infraestructura de red y minimizar la ocurrencia de futuros bloqueos de solicitudes.

Las aproximaciones que implementan técnicas de desfragmentación pueden clasificarse además en: (i) estrategias sin re-ruteo, las cuales realizan únicamente una reasignación espectral en los *lightpaths* o caminos ópticos establecidos, y (ii) estrategias con re-ruteo, que constituyen técnicas capaces de modificar tanto las rutas como el espectro asignado a los lightpaths existentes.

En el presente trabajo, para la gestión de la fragmentación se adoptó la aproximación con desfragmentación, de naturaleza proactiva y con re-ruteo de lightpaths preexistentes. En la figura [] se puede observar resaltada dicha estrategia.

Figura 2.9: Esquema de Gestión de la Fragmentación

2.4. Descripción del problema tratado

La Fragmentación del Espectro en Redes Ópticas Elásticas Multinúcleo (Multi-Core EON) constituye una problemática que compromete la eficiencia en la utilización de recursos espectrales y espaciales. El desempeño de la infraestructura de red resulta severamente afectado, dado que este fenómeno puede ocasionar bloqueos de solicitudes debido a la ausencia de ranuras espectrales contiguas y alineadas entre enlaces consecutivos, así como por la indisponibilidad de núcleos adecuados, sin que necesariamente el espectro en todos los núcleos se encuentre completamente ocupado. En secciones previas se expusieron estrategias para el manejo de la fragmentación en la red; en el presente trabajo se examina la estrategia con desfragmentación, adoptando un enfoque proactivo.

Un método ampliamente implementado consiste en ejecutar el procedimiento de desfragmentación de manera periódica con el propósito de prevenir bloqueos futuros, abordando así una de las cuatro interrogantes planteadas por Zhang [], ¿Cuándo reconfigurar?.

En la figura || se puede observar una posible solución a la problemática de la selección del momento óptimo para realizar la desfragmentación, la cual consiste en ejecutar desfragmentaciones periódicas en intervalos temporales fijos. En este caso, cada 100 unidades de tiempo, el eje vertical representa el volumen de tráfico cuantificado mediante el número de conexiones activas, mientras que el eje horizontal indica las unidades temporales; cada punto azul denota el instante en que el proceso de desfragmentación se ejecuta. Siguiendo este patrón, se evidencian situaciones donde se realizan procesos de desfragmentación cuando la red podría no requerirlos, considerando que la utilización de los recursos espectrales y de los núcleos constituye un indicador significativo del grado de fragmentación.

Además de la utilización de la red, existen otras métricas de fragmentación relevantes en redes multinúcleo, cuyos valores deben considerarse para el disparo de los

procesos de desfragmentación, incluyendo la fragmentación por núcleo y la disponibilidad de recursos en la dimensión espacial.

De este modo, se evidencia la necesidad de un disparador inteligente para ejecutar el proceso de desfragmentación que considere todos estos parámetros o "características" para seleccionar apropiadamente el momento del disparo, dado que realizar múltiples desfragmentaciones de manera frecuente afecta directamente al desempeño de la red, pudiendo ocasionar disrupciones en las conexiones activas; mientras que ejecutar pocas desfragmentaciones muy dispersas resultaría en efectos prácticamente imperceptibles.

En síntesis, la selección del momento para ejecutar el proceso de desfragmentación resulta crítica debido a su impacto significativo en la cantidad de procesos de desfragmentación, lo cual incide directamente en las dos métricas globales más relevantes en el enrutamiento de redes ópticas elásticas multinúcleo: Cantidad de bloqueos y Cantidad de reconfiguraciones.

En los capítulos subsiguientes se presenta y aborda en profundidad un modelo de disparo inteligente que contempla numerosos factores tales como métricas de fragmentación de la red, utilización de recursos espectrales y espaciales, y bloqueos de solicitudes.

Figura 2.10: Ejemplo de desfragmentaciones periódicas con volumen de carga de tráfico variado

Capítulo 3

Aprendizaje Automático

El Aprendizaje Automático, conocido en inglés como *Machine Learning*, representa una de las áreas más dinámicas y prometedoras dentro del campo de la inteligencia artificial contemporánea. se fundamenta en el desarrollo de algoritmos y modelos computacionales capaces de identificar patrones complejos en conjuntos de datos, con el propósito de generar predicciones o tomar decisiones informadas sin necesidad de instrucciones programáticas explícitas para cada escenario específico.

La esencia del aprendizaje automático radica en su capacidad para mejorar el desempeño de manera iterativa mediante la experiencia acumulada. Mitchell proporciona una definición operacional particularmente esclarecedora: un sistema computacional manifiesta capacidad de aprendizaje cuando su rendimiento en una tarea determinada T, cuantificado mediante una métrica de desempeño P, experimenta una mejora mensurable como consecuencia de la exposición a una experiencia E.[] Esta conceptualización establece tres componentes fundamentales que articulan cualquier sistema de aprendizaje automático: la tarea objetivo, la experiencia de aprendizaje y el criterio de evaluación.

Para ilustrar estos conceptos de manera concreta, se puede examinar el caso de los sistemas de filtrado de correo electrónico no deseado. Un filtro de spam ejemplifica de forma paradigmática los principios del aprendizaje automático. El sistema desarrolla progresivamente la capacidad de discriminar entre mensajes legítimos y

correo no solicitado mediante el análisis de ejemplos previamente etiquetados por usuarios. Estos conjuntos de datos, denominados conjuntos de entrenamiento, contienen tanto instancias positivas (correos identificados como spam) como negativas (mensajes legítimos), permitiendo al algoritmo extraer características distintivas de cada categoría.

En este contexto específico, la tarea T consiste en la clasificación binaria de nuevos mensajes electrónicos, la experiencia E está constituida por el proceso de entrenamiento con los datos etiquetados, y la métrica de desempeño P puede definirse como la tasa de precisión o *Accuracy*, que cuantifica la proporción de mensajes correctamente clasificados en relación con el total de predicciones realizadas.

3.1. Clasificación de sistemas o tipos de aprendizaje automático

La diversidad de aplicaciones y contextos en los que se implementan sistemas de aprendizaje automático ha propiciado el desarrollo de múltiples paradigmas metodológicos. La clasificación más fundamental de estos enfoques se establece en función del tipo y grado de supervisión disponible durante la fase de entrenamiento. A continuación, se muestran las tres categorías principales:

• Aprendizaje supervisado: Este paradigma constituye el enfoque más ampliamente implementado en aplicaciones prácticas. Se caracteriza por la disponibilidad de un conjunto de entrenamiento que incluye pares de entrada-salida, donde cada instancia de entrada está asociada con su correspondiente etiqueta o label, que representa la solución correcta. El objetivo del algoritmo consiste en inferir una función de mapeo que establezca la correspondencia óptima entre el espacio de características de entrada y el conjunto de salidas deseadas, de manera que pueda generalizar efectivamente a instancias no observadas

previamente.

El aprendizaje supervisado se subdivide en dos categorías fundamentales según la naturaleza de la variable objetivo:

- Clasificación: Se trata de brindar ejemplos de entrenamiento donde cada
 instancia está asociada con una o múltiples clases predefinidas, a modo de
 que se pueda realizar el entrenamiento y clasificar nuevas entradas dentro
 de alguna de las clases existentes. Aplicaciones típicas incluyen el reconocimiento de imágenes, detección de fraudes y análisis de sentimientos.
- Predicción: A diferencia de la clasificación, éste consiste en la predicción de una variable objetivo de naturaleza continua o numérica. El sistema recibe datos de entrenamiento compuestos por vectores de características junto con sus valores objetivos correspondientes, permitiendo al modelo aprender la relación funcional entre sí. Esta capacidad predictiva se aplica posteriormente para estimar valores numéricos de nuevas instancias basándose exclusivamente en sus características de entrada. Aplicaciones típicas comprenden la predicción de precios, estimación de demanda y proyecciones temporales.
- Aprendizaje no supervisado: Este paradigma aborda escenarios donde los datos de entrenamiento carecen de soluciones deseadas. La ausencia de supervisión directa plantea un desafío metodológico fundamentalmente diferente: el algoritmo debe descubrir estructuras intrínsecas, patrones latentes o relaciones subyacentes en los datos sin guía externa. Las técnicas de aprendizaje no supervisado resultan particularmente valiosas para tareas exploratorias, tales como la segmentación de clientes, detección de anomalías, reducción de dimensionalidad y descubrimiento de asociaciones en grandes volúmenes de datos. Este enfoque refleja una aproximación más cercana a cómo los sistemas bio-

lógicos pueden aprender mediante la observación y organización autónoma de información sensorial.

Aprendizaje por refuerzo: Este paradigma se distingue por su naturaleza secuencial e interactiva. En lugar de aprender a partir de un conjunto estático de ejemplos, el aprendizaje por refuerzo se fundamenta en la interacción continua de un agente con un entorno dinámico. El proceso de aprendizaje se articula mediante señales de retroalimentación en forma de recompensas (positivas o negativas) que el agente recibe como consecuencia de sus acciones. El objetivo fundamental consiste en desarrollar una política de comportamiento que maximice la recompensa acumulada a largo plazo. Este bucle de retroalimentación continua entre acción, observación y recompensa permite al sistema refinar progresivamente su estrategia mediante exploración y explotación del espacio de estados. Las aplicaciones emblemáticas incluyen sistemas de control robótico, estrategias de juegos, optimización de recursos y vehículos autónomos.

Cada uno de estos paradigmas presenta ventajas distintivas y limitaciones inherentes, determinando su idoneidad para contextos específicos. La selección del enfoque apropiado constituye una decisión metodológica crucial que debe considerar tanto la naturaleza del problema como las características de los datos disponibles.

3.2. Redes Neuronales Artificiales

Las redes neuronales artificiales constituyen una clase de algoritmos computacionales bio-inspirados que emulan, de manera simplificada, la arquitectura y funcionamiento del sistema nervioso biológico. Al igual que en el cerebro, estas estructuras computacionales se componen de unidades elementales denominadas neuronas artificiales, las cuales establecen conexiones entre sí formando redes complejas. Cada neurona recibe señales de entrada, las procesa mediante funciones matemáticas específicas y transmite el resultado a otras neuronas de la red, operando de manera análoga a un interruptor que se activa bajo determinadas condiciones.

La potencia computacional de las redes neuronales artificiales no reside en la sofisticación de sus componentes individuales, sino en la emergencia de comportamientos complejos producto de las interacciones masivas entre múltiples unidades simples. Esta propiedad refleja un principio fundamental observado en sistemas biológicos: el cerebro humano, con aproximadamente cien mil millones de neuronas y cien billones de sinapsis, genera capacidades cognitivas extraordinarias a partir de la interconexión de elementos relativamente simples. De manera similar, las redes neuronales artificiales derivan su capacidad de aprendizaje y generalización de la organización colectiva de sus unidades, más que de la complejidad algorítmica de cada neurona individual.

3.2.1. Perceptrón

El perceptrón constituye la unidad computacional elemental de las redes neuronales artificiales, inspirado directamente en el funcionamiento de las neuronas biológicas. Estas células nerviosas operan mediante un mecanismo de umbralización: reciben señales eléctricas de múltiples fuentes y, cuando la suma de estos estímulos supera un umbral crítico, generan un potencial de acción que se propaga a neuronas subsecuentes.

Figura 3.1: Comportamiento del perceptrón

El perceptrón emula este comportamiento mediante un modelo matemático re-

lativamente simple, como se ilustra en la figura 3.1. Este componente puede recibir múltiples señales de entrada representadas por el vector $X = \{x_0, x_1, x_2, ..., x_n\}$. Cada entrada es ponderada mediante multiplicación con un peso correspondiente del vector $W = \{w_0, w_1, w_2, ..., w_n\}$. La suma ponderada resultante, denotada como z, se procesa posteriormente mediante una función de activación que determina la salida final y. Este proceso puede expresarse formalmente como:

$$z = \sum_{i=1}^{n} w_i x_i = w^T x (3.1)$$

Esta ecuación presenta dos representaciones equivalentes del modelo neuronal: la suma explícita de productos y su formulación vectorial compacta. El término w^Tx denota el producto escalar entre el vector de pesos transpuesto y el vector de entradas. Para completar la descripción matemática, se incorpora un término de sesgo b o bias:

$$z = \sum_{i=1}^{n} w_i x_i + b = w^T x + b \tag{3.2}$$

Esta expresión representa una combinación lineal de las entradas, que constituye la etapa previa a la aplicación de la función de activación. La función de activación determina la respuesta final del perceptrón ante los estímulos recibidos.

Existen diversas funciones de activación según la aplicación específica. La más elemental es la función escalón o función de paso, que produce una salida binaria definida por:

$$f(x) = \begin{cases} 1 & \text{si } (w^T x + b) > 0 \\ 0 & \text{caso contrario} \end{cases}$$
 (3.3)

Esta función implementa una decisión de umbral simple, donde el perceptrón se activa únicamente cuando la combinación lineal de sus entradas excede cero.

3.2.2. Funciones de activación

Las funciones de activación son componentes esenciales que determinan la salida de cada neurona según su entrada. Su principal propósito es introducir no-linealidad en el modelo, aspecto crucial dado que sin ellas, la composición de múltiples capas lineales equivaldría a una única transformación lineal, limitando severamente la capacidad representacional de la red.

Entre las funciones más utilizadas se encuentran la sigmoide, la tangente hiperbólica (tanh) y la unidad lineal rectificada (ReLU, rectified linear unit), cada una con características específicas según la aplicación, como se observa en la figura 3.2.

Figura 3.2: Funciones de Activación

3.2.3. Arquitectura y aprendizaje

La interconexión de múltiples neuronas artificiales configura una red neuronal. En las arquitecturas convencionales, las neuronas se organizan en capas, donde cada unidad está conectada a todas las neuronas de las capas adyacentes mediante conexiones ponderadas.

La figura 3.3 ilustra una arquitectura típica estructurada en tres componentes. La capa de entrada recibe y alimenta los datos al sistema. Las capas intermedias u ocultas realizan transformaciones progresivas de la información; su número determina la profundidad de la red. La capa de salida genera las predicciones finales, con una dimensionalidad que depende del problema: una neurona para regresión o clasificación binaria, múltiples neuronas para clasificación multiclase.

Figura 3.3: Ejemplo de red neuronal

Una vez establecidos los pesos de las conexiones de la red, es posible calcular valores de salida para cualquier entrada. Inicialmente, estos pesos se asignan de manera aleatoria, por lo que las salidas calculadas difieren de los valores esperados. El objetivo consiste en ajustar individualmente estos pesos para minimizar el error cuadrático medio entre las predicciones y los valores reales, proceso realizado mediante el método de retropropagación o backpropagation.

El procedimiento opera de la siguiente manera: se calcula la salida para un registro del conjunto de datos y se determina el error respecto al valor esperado. Este error se propaga hacia atrás a través de todas las capas, desde la capa de salida

hasta la capa de entrada, ajustando los pesos en función de su contribución al error total. Este proceso se repite iterativamente para cada registro del conjunto de datos.

La minimización del error se realiza mediante el método de descenso del gradiente, ambos algoritmos se explican detalladamente en [[]].

El ratio de aprendizaje o *Learning Rate* determina la magnitud de los ajustes aplicados a los pesos en cada iteración. Un valor alto acelera la convergencia pero puede comprometer la precisión, mientras que un valor bajo favorece una convergencia más estable aunque más lenta. Los valores típicamente empleados oscilan entre 0.001 y 0.3.

El entrenamiento con una única pasada del conjunto de datos resulta insuficiente para alcanzar el mínimo error, especialmente con valores bajos de *Learning Rate*. Por ello, se realizan múltiples iteraciones completas del conjunto de datos a través de la red, denominando a cada pasada completa como época o *epoch*.

3.3. Aplicación de Machine Learning en Redes Ópticas Elásticas Multinúcleo

En esta sección se presenta un estudio bibliográfico del estado del arte de técnicas de *Machine Learning* aplicadas a problemas en redes ópticas elásticas multinúcleo (MC-EON, *Multi-Core Elastic Optical Networks*).

Panchali Datta Choudhury y Tanmay De presentan un análisis comprehensivo del uso de técnicas de *Machine Learning* en redes ópticas elásticas [[]], fundamento que se extiende a las arquitecturas multinúcleo. Las MC-EON introducen complejidades adicionales respecto a las redes ópticas elásticas convencionales, particularmente en la gestión de múltiples núcleos dentro de una misma fibra y los fenómenos de interferencia entre núcleos (inter-core crosstalk), aspectos que requieren estrategias de optimización más sofisticadas donde el *Machine Learning* demuestra particular

utilidad.

Las principales áreas de aplicación de estas técnicas en el contexto de MC-EON incluyen:

Evaluación y predicción de calidad de servicio

La investigación presentada en []] propone un modelo de asignación de ancho de banda en EON considerando los requisitos de calidad de servicio o Quality of Service (QoS). Se emplea aprendizaje por refuerzo o Reinforcement Learning, donde la función de recompensa se fundamenta en el cumplimiento de los requisitos de QoS. En el contexto de MC-EON, esta aproximación adquiere mayor relevancia debido a la necesidad de garantizar QoS considerando simultáneamente la asignación de recursos en múltiples núcleos y la gestión de interferencias entre ellos.

Supervivencia de red

El trabajo presentado en []] explora la optimización de redes considerando su capacidad de supervivencia mediante aprendizaje por refuerzo profundo. Se implementa una arquitectura de dos agentes: uno proporciona el esquema de trabajo principal y otro gestiona el esquema de protección. Esta combinación, junto con un mecanismo de recompensas orientado a maximizar la rentabilidad, genera políticas de enrutamiento, asignación de espectro y selección de modulación que garantizan supervivencia. En MC-EON, estos mecanismos de protección resultan especialmente críticos dado el mayor número de recursos físicos susceptibles a fallos.

• Predicción de tráfico

Aibin []] presenta un enfoque para predicción de tráfico en redes de centros de datos en la nube o *Cloud Data Center Networks* utilizando búsqueda de árbol de Monte Carlo. Para cada solicitud, esta técnica identifica el centro

de datos más apropiado y el conjunto óptimo de rutas candidatas mediante la construcción de un árbol disperso y selección estocástica. Esta metodología es aplicable a MC-EON para predecir patrones de tráfico y optimizar la asignación de núcleos.

Enrutamiento, modulación y asignación del espectro

Chen et al. [[]] proponen un modelo de aprendizaje por refuerzo profundo para desarrollar un sistema autónomo de RMSA en redes ópticas elásticas. Emplean redes neuronales convolucionales, denominadas *Q Networks*, para aprender políticas RMSA considerando conectividad, utilización espectral y demandas de tráfico. En MC-EON, este enfoque se extiende al problema RMSCA (*Routing, Modulation, Spectrum and Core Assignment*), donde adicionalmente se debe seleccionar el núcleo óptimo y considerar las restricciones de crosstalk entre núcleos.

Durante este trabajo dentro de los puntos mas destacados nos podemos encontrar con algunos trabajos cuyo principal objetivo y enfoque es la solución al problema de la fragmentación de la red, con alguno de ellos para otro tipo de redes, como el presentado en [6], el cual encuentra su principal enfoque en Space Division Multiplexing Elastic Optical Networks o SDM-EON, implementando redes neuronales, específicamente la red neuronal de Elman, para la predicción de tráfico de manera de disminuir la fragmentación y la diafonía o Cross-talk. También se cuenta con el trabajo presentado por Enciso y Silva, el cual propone un algoritmo para decidir el mejor momento para disparar la desfragmentación de la red. Tomando ese trabajo como base, en este trabajo se propone un modelo para predecir el mejor momento para para ejecutar la desfragmentación para Redes Ópticas Elásticas Multinúcleo (MC-EON). De manera en que se contemplan los mismos problemas agregando la complejidad que conlleva el uso de múltiples núcleos en una misma fibra.

Para redes MC-EON también contamos con algoritmos de desfragmentación ba-

sados en Machine Learning, como el presentado en [7], donde los autores proponen un enfoque de aprendizaje no supervisado que no requiere conocimientos previos de la red. El algoritmo identifica aquellos *lightpaths* que pueden ser agrupados en base a ciertas características, para luego mapear esos grupos a los núcleos y reordenar el espectro sin necesidad de realizar re-ruteos.

Capítulo 4

Método Propuesto

Este trabajo propone una solución para determinar los momentos en los que se disparará la ejecución de los procesos de desfragmentación de manera proactiva en redes MC-EON, mediante la utilización de técnicas de $Machine\ Learning\ para$ predecir el índice de fragmentación BFR que sufrirá la red mediante el tráfico de red en un determinado periodo de tiempo t y en base a eso, decidir si ejecutar la desfragmentación o no. Esto a fin de proceder de la mejor manera ante la red cuando llegue a un estado de alta fragmentación que provoque un aumento en la probabilidad de bloqueo de las demandas y que la desfragmentación de la red en ese punto ya no sea óptima.

Para esta predicción se utiliza primeramente un valor que indique el umbral del indice de fragmentación, a modo que el valor predicho del índice de fragmentación a futuro no supere ese umbral, en caso contrario realizar las desfragmentaciones con menor frecuencia hasta que el indice de fragmentación futuro BFR sea menor al umbral. Así como tambien un modelo de regresión y clasificación, utilizando un conjunto de datos de simulaciones de tráfico unicast, tomando parámetros o características relacionadas a la fragmentación, la utilización de la red y las métricas específicas de múltiples núcleos como datos de entrada, produciendo un valor estimado del índice de fragmentación que experimentará la red en un periodo de tiempo t. A partir de este valor predicho, se determinará la frecuencia de desfragmentaciones realizadas

fijando un umbral que permite actuar antes de que la red alcance estados críticos de fragmentación que incrementen significativamente la probabilidad de bloqueo de las demandas.

4.1. Características

En el área de *Machine Learning*, se conoce como "características" a los parámetros o datos de entrada del modelo de aprendizaje.

Las características seleccionadas fueron aquellas relacionadas al uso y la fragmentación de la red, así como métricas específicas de redes MC-EON. Se tomaron las principales métricas utilizadas para la determinación del estado de fragmentación, además de otras relacionadas a la utilización de la red y al comportamiento del tráfico, con el objetivo de predecir el índice de fragmentación futuro y determinar los momentos óptimos para ejecutar la desfragmentación de manera proactiva.

Estas características son las siguientes:

■ Bandwidth Fragmentation Ratio o Relación de Fragmentación de ancho de banda (BFR)[8]: Representa el índice de fragmentación de los recursos de la red, siendo una de las métricas principales para evaluar la fragmentación externa. El BFR de un core en un enlace se define como:

$$BFR_{core} = 1 - \frac{MaxBlock()}{S^{free}}$$
(4.1)

Donde MaxBlock() es el tamaño del mayor bloque de FS libres y S^{free} es la sumatoria total de FS libres en el core. El BFR de la red se calcula como el promedio ponderado considerando todos los cores de todos los enlaces:

$$BFR_{red} = 1 - \frac{\sum_{i=1}^{|E|} \sum_{j=1}^{C} MaxBlock_{i,j}}{\sum_{i=1}^{|E|} \sum_{j=1}^{C} S_{i,j}^{free}}$$
(4.2)

Donde C es el número de cores por enlace, $MaxBlock_{i,j}$ es el mayor bloque libre en el core j del enlace i, y $S_{i,j}^{free}$ es el total de FS libres en ese core.

Entropía de Shannon (SHF)[9]: Métrica de fragmentación que mide la distribución de bloques libres en el espectro. Para un core en un enlace está definida por:

$$SHF_{core} = \sum_{i=1}^{B} \frac{S_i^{free}}{N} \ln \frac{N}{S_i^{free}}$$
 (4.3)

Donde S_i^{free} representa el tamaño del bloque libre $i,\,N$ es el número total de FS en el core, y B es la cantidad de bloques de FS libres. Para calcular el SHF de la red se calcula el promedio de los valores en todos los cores de todos los enlaces:

$$SHF_{red} = \frac{1}{|E| \times C} \sum_{i=1}^{|E|} \sum_{j=1}^{C} SHF_{core_{i,j}}$$
 (4.4)

Compacidad del Espectro (SC - Spectrum Compactness): Métrica que evalúa qué tan compacto está el uso del espectro en un core. Se calcula considerando la dispersión de los FS ocupados y la cantidad de gaps intermedios. Para un core en un enlace se define como:

$$SC_{core} = \frac{s_{max} - s_{min} + 1}{S^{occupied}} \times \frac{\sum_{i=1}^{G} g_i}{G}$$
 (4.5)

Donde s_{min} y s_{max} son los índices del primer y último FS ocupado respectivamente, $S^{occupied}$ es la cantidad total de FS ocupados, g_i es el tamaño del gap libre i, y G es la cantidad total de gaps entre bloques ocupados. Si no hay FS ocupados, $SC_{core} = 0$. El SC de la red se calcula como:

$$SC_{red} = \frac{1}{|E| \times C} \sum_{i=1}^{|E|} \sum_{j=1}^{C} SC_{core_{i,j}}$$
 (4.6)

• Golden Metric (GM): Métrica avanzada que evalúa la fragmentación considerando rangos de tamaño de demandas esperadas. Dado dos parámetros n_1 y n_2 que representan el rango de tamaños de demanda típicos, el GM para un core se calcula como:

$$GM_{core} = \frac{a}{|b|} \tag{4.7}$$

Donde los valores de a y b se calculan iterando sobre cada gap de FS libres de tamaño g:

$$a_0 = \epsilon, \quad b_0 = -\epsilon \tag{4.8}$$

$$a = a_0 + \sum_{i=1}^{G} a_i, \quad b = b_0 + \sum_{i=1}^{G} b_i$$
 (4.9)

Donde $\epsilon = 0.001$ y para cada gap g_i :

- Si $g_i < n_1$: $a_i = 0$, $b_i = -\frac{g_i}{ava}$
- Si $g_i > n_2$: $a_i = \frac{g_i}{avq}$, $b_i = 0$
- Si $n_1 \le g_i \le n_2$: $a_i = \frac{g_i n_1 + 1}{avg}$, $b_i = -\frac{n_2 g_i}{avg}$

Con $avg = \frac{n_1 + n_2}{2}$. El GM de la red se calcula como:

$$GM_{red} = \frac{1}{|E| \times C} \sum_{i=1}^{|E|} \sum_{j=1}^{C} GM_{core_{i,j}}$$
 (4.10)

• Available Spectrum Fragmentation Ratio 3D (ASFR3D): Métrica que considera la fragmentación espacial en redes multi-core, evaluando bloques pequeños que no pueden ser utilizados eficientemente. Para un core se define como:

$$ASFR3D_{core} = \left(1 - \frac{S^{small}}{S^{free}}\right) \times F_{spatial} \tag{4.11}$$

Donde S^{small} es la suma de FS libres en bloques menores a 5 slots, S^{free} es el total de FS libres, y $F_{spatial}$ es un factor de peso espacial definido como:

$$F_{spatial} = \frac{\ln(D_{active} + 1)}{10} \tag{4.12}$$

Donde D_{active} es el número de demandas activas en la red. El ASFR3D de la red se calcula como:

$$ASFR3D_{red} = \frac{1}{|E| \times C} \sum_{i=1}^{|E|} \sum_{j=1}^{C} ASFR3D_{core_{i,j}}$$
(4.13)

 Utilización Diferencial (UD): Métrica que mide el desbalance en la utilización entre diferentes cores y enlaces de la red. Se define como:

$$UD_{red} = U_{max} - U_{min} (4.14)$$

Donde U_{max} y U_{min} son las utilizaciones máxima y mínima entre todos los cores de todos los enlaces, siendo la utilización de un core:

$$U_{core} = \frac{S^{occupied}}{N} \tag{4.15}$$

Con $S^{occupied}$ siendo el número de FS ocupados y N el número total de FS en el core. Un valor alto de UD indica desbalance en la carga de la red, mientras que un valor bajo indica una distribución uniforme.

En la figura 4.1 se puede ver un ejemplo de una topología con 4 conexiones activas, el estado de sus enlaces y el cálculo de cada una de las métricas de fragmentación explicadas anteriormente.

4.2. Obtención de datos para el entrenamiento

Se utilizó un simulador de redes EON [10] para la generación del conjunto de datos a ser utilizados para el entrenamiento de la red neuronal.

Para esto se utilizaron dos topologías de red: USNET y NSFNET, en donde por cada topología se realizaron 50 simulaciones con volumen de tráfico variable en la misma simulación, para lograr que la cantidad de conexiones activas no permanezca constante durante la simulación. La variación de tráfico usada fue la que se ve en la figura 4.2-a, el proceso se realizó durante 1210 unidades de tiempo para cada simulación, generando un total de 121.000 registros.

Una vez generados los datos, los mismos fueron preprocesados, de forma a obtener los valores de la probabilidad de bloqueo que deseamos estimar.

Figura 4.1: Ejemplo de métricas de fragmentación

El preprocesamiento consiste en el cálculo del índice de bloqueo en base a la ecuación 4.16, donde para un tiempo t, utilizando una ventana de 10 unidades de tiempo hacia delante, para cada instante podemos obtener una mirada hacia delante de posibles bloqueos, FSB_i es la sumatoria de FS bloqueados en el tiempo i y FSD_i es la sumatoria de FS demandados en el tiempo i.

$$PB_t = \frac{\sum_{i=t}^{t+T} FSB_i}{\sum_{i=t}^{t+T} FSD_i}$$

$$(4.16)$$

Además, una vez separados los datos y debido a la diferencia de rangos de valores, los mismos son normalizados, usando la siguiente fórmula.

$$n = x - \frac{train_{mean}}{train_{std}} \tag{4.17}$$

Figura 4.2: Volumen de tráfico variado utilizado

Donde x es el valor que queremos normalizar, $train_{mean}$ la media de valores y $train_{std}$ es la desviación estándar.

4.3. Herramientas Utilizadas

En esta sección se presentan las herramientas utilizadas para la implementación del método propuesto en este trabajo, seleccionadas luego de realizar numerosas ejecuciones de prueba para obtener los valores de los parámetros del modelo, asi como la prueba de concepto en sí.

Para todo el proceso de *Machine Learning* se utilizó la plataforma de código abierto llamada *TensorFlow* [11] en el lenguaje de programación *Python*. En la creación y entrenamiento de redes neuronales se utilizó la API de alto nivel incluida en la plataforma *Tensorflow* denominada *Keras*, la cual permite la creación de modelos de aprendizaje automático de forma rápida y sencilla.

Elegimos Tensorflow como herramienta principal debido a que es una plataforma de código abierto orientado a *Machine Learning*. Cuenta con un ecosistema completo de herramientas y librerías que facilitan la creación y desarrollo de aplicaciones de aprendizaje automático, además cuenta con una extensa y muy completa documentación.

4.4. Modelado

Para entrenar los datos recolectados se utilizó un modelo con una capa de entrada de 7 neuronas, dos capas ocultas densamente conectadas, cada una con 64 y 32 neuronas respectivamente, y una capa de salida que devuelve un único valor continuo. Para todas las capas la función de activación utilizada fue la RELU (Ver sección 3.2.2).

4.5. Entrenamiento

Para el entrenamiento del modelo, se creó un conjunto de datos de entrenamiento utilizando el 70 % de los datos recolectados de forma aleatoria.

El 20 % de los datos de entrenamiento se utilizó como el conjunto de validación. Una técnica utilizada en el procedimiento es el llamado parada temprana o Early Stopping, el cual mediante el monitoreo del rendimiento del entrenamiento nos permite detenernos una vez que el error de validación aumente de forma sostenida, de forma así evitar un sobre entrenamiento.

El modelo se entrena como máximo por 1000 épocas, el cual se detiene automáticamente cuando el valor del error de validación deja de mejorar. La figura 4.3 muestra la evolución del error al pasar las épocas.

Los parámetros comparados son el error de entrenamiento o *Train Error*, el cuál es el error obtenido durante la fase de entrenamiento del modelo y el error de validación o *Val Error*, que se obtiene en la fase de validación.

Por cada época el *Val Error* es comparado con el *Train Error*, esto hasta que se determina que ya no existe mejora, sino que el error de validación se mantiene o aumenta su valor con respecto al punto de parada.

Figura 4.3: Evolución del error a través de épocas

4.6. Pruebas de predicción

Para comprobar la efectividad de nuestro modelo se procedió a tomar el 30 % de datos restantes que no fueron incluidos en el entrenamiento y realizar predicciones, como ya conocemos el valor de la probabilidad de bloqueo que se busca predecir podemos calcular el error absoluto medio (MAE) y el error cuadrático medio (MSE). La tabla 4.1 muestra los resultados obtenidos, siendo éstos muy satisfactorios.

Tabla 4.1: Tabla de resultados en pruebas de predicción

MAE	0.0239	
MSE	0.002	

Figura 4.4: Utilización de la red y predicciones

En la Figura 4.4 - a se observa la variación de la utilización de la red, al realizarse una simulación con volumen de tráfico variable sin realizar procesos de desfragmentación. En la parte b de la misma figura se observa la curva de valores predichos con las técnicas presentadas junto a los bloqueos dados en la misma simulación. Puede observarse cómo este valor acompaña la variación de la utilización de la red, y también toma valores más altos en periodos de tiempo en que la frecuencia de bloqueos se hace más alta.

Capítulo 5

Pruebas y resultados obtenidos

Las pruebas se realizaron sobre el simulador de redes elásticas ópticas desarrollado en [10] con las topologías USNET y NSFNET, la generación de demandas se realiza de manera aleatoria, pero con variaciones de volumen de tráfico. En la figura 4.2 se pueden ver las curvas de rutas activas, siendo el eje x el tiempo y el eje y la cantidad de rutas activas, para lograr esto inicialmente la simulación inicia con 700 Erlangs y al llegar la utilización de la red a un valor máximo baja a 100 Erlangs, de esta forma conseguimos que la carga de la red no sea constante y podamos acercarnos a un escenario más real. Para el proceso de desfragmentación se utilizó el algoritmo genético propuesto en [10].

El proceso que seguimos para seleccionar el periodo de tiempo en el que el proceso de desfragmentación se ejecutará se puede ver en la figura 5.1, donde las características son las citadas en el capítulo 4 sección 4.1, PB es la probabilidad de bloqueo calculada por nuestro modelo entrenado, PB_{th} es el valor seleccionado como umbral para que el proceso de desfragmentación se dispare y DF es el proceso de desfragmentación.

Para tener un punto de referencia nuestro modelo se compara con otros dos métodos conocidos:

a) Desfragmentación periódica por tiempo fijo: el cual consiste en desfragmentar la red cada cierta cantidad constante de unidades de tiempo.

Figura 5.1: Diagrama simulador / modelo entrenado

a) Desfragmentación por métricas de fragmentación: el cual consiste en desfragmentar cuando la red alcanza cierto valor de alguna métrica, en este caso de BFR.

Cada método tiene su propio parámetro encargado de disparar el proceso de desfragmentación y durante las pruebas se hace variar este parámetro hasta tres veces.

Para elegir este valor tomamos como base la cantidad de desfragmentaciones que realiza el método por tiempo fijo y se buscan valores para los parámetros de los otros métodos de tal manera que ejecuten cantidades similares de desfragmentaciones, así logramos que la comparación se haga de la forma más justa posible.

Las simulaciones se realizaron con los tres métodos bajo las mismas condiciones de variaciones de distribuciones demandas y parámetros, para obtener mayor variación en los resultados este procedimiento se repitió 5 veces.

5.1. Objetivos a optimizar

Para la evaluación de los resultados, considerando dos objetivos globales, medidos al final de cada simulación:

- Obj. 1) Cantidad de bloqueos(BL): Suma de las demandas bloqueadas durante la simulación
- Obj. 2) Cantidad de reconfiguraciones (RC): Número de conexiones reconfiguradas durante los procesos de desfragmentación realizadas durante la simulación.

Como se trata de dos objetivos a optimizar (BL y RC), buscando minimizar el valor de ambas, para la comparación de los resultados se consideraron dos métricas de desempeño para optimización multi-objetivo [12]:

- Número de soluciones en el Frente Pareto obtenido (SFP): Para esta primera métrica, se busca determinar el método que contenga el mayor número de soluciones no dominadas que minimicen BL y RC, comparando al mismo tiempo las soluciones de nuestro método propuesto con las soluciones de los otros dos métodos.
- Cobertura Pareto(CP): Como segundo método de comparación utilizamos una métrica binaria denominada "Cobertura", la cual nos permite realizar la comparación de las soluciones óptimas de nuestro método propuesto con los demás métodos tomándolos de a pares.

$$C(A,B) = \frac{Soluciones\ de\ B\ dominadas\ por\ A}{Soluciones\ totales\ de\ B} \tag{5.1}$$

5.2. Análisis de los resultados

Se puede observar en la Tabla 5.1 que de todas las instancias experimentales que se encuentran en el Frente Pareto, el método propuesto (MP) en este

trabajo representa el 52.9 % de los puntos dentro del mismo, lo que indica que este método produce más soluciones no dominadas, indicando una mayor eficiencia en lo que respecta a la minimización de la cantidad de bloqueos y el número de reconfiguraciones en la red.

Tabla 5.1: Tabla de soluciones en el frente pareto

SIMULACIÓN	Soluciones del Frente Pareto				
SIMULACION	MP	MP Tiempo Fijo		Total	
NSFNET	9	4	6	19	
USNET	9	4	2	15	

En las figuras 5.2 y 5.3 podemos observar los resultados para los tres diferentes tipos de tráfico, para el caso de la topología USNET (figura 5.3), en el frente de soluciones óptimas se aprecia una predominancia del método propuesto en cuanto a cantidad de soluciones. Mientras que en el caso de la topología NSFNET (figura 5.2), dicha predominancia se puede ver en dos de los tres tipos de tráfico.

Figura 5.2: Gráfico de soluciones en el frente pareto para la topología NSFNET

Figura 5.2: Gráfico de soluciones en el frente pareto para la topología NSFNET

Figura 5.3: Gráfico de soluciones en el frente pareto para la topología USNET

Figura 5.3: Gráfico de soluciones en el frente pareto para la topología USNET

En las tablas 5.2 y 5.3 se presentan los resultados de la métrica CP, para los tres tipos de tráfico, donde MP es el método propuesto, TF el método por tiempos fijos y BFR es el método por métricas. Se verifica que en un 67% del total de comparaciones, incluidas las dos topologías, el método propuesto obtiene mayor cobertura en las soluciones óptimas.

Tabla 5.2: Tabla de cobertura para topología USNET

USNET						
Tráfico	A	В	C(A,B)	C(B,A)	Conclusión	
4.2-a	MP	TF	0.5 0.25	0,5 0,25	A cubre a B en un 50%	
1.2 0	1111	11	0,0	,5 0,25	y es cubierto en un 25%	
4.2-a	MP	BFR	1 0	A cubre a B en un 100%		
1.2 0	1111		_		y es cubierto en un 0%	
4.2-b	MP	$_{ m TF}$	0,67	TF 0.67 0	0	A cubre a B en un 67 %
1.2 0	1111	11	0,01	0,01	y es cubierto en un 0%	
4.2-b	MP	BFR	0,8	0	A cubre a B en un 80 %	
1.2 0	1111		0,0		y es cubierto en un 0%	
4.2-c	MP	TF	0,5	0,67	B cubre a A en un 67%	
1.20	1,11	11	,,,			y es cubierto en un 50%
4.2-c	MP	BFR	0	0	No existe cobertura	

Tabla 5.3: Tabla de cobertura para topología NSFNET

NSFNET					
Tráfico	A	В	C(A,B)	C(B,A)	Conclusión
4.2-a	MP	TF	0.25	0.25 ± 0	A cubre a B en un 25%
4.2 α	1/11	11	0,20		y es cubierto en un 0%
4.2-a	MP	BFR	0,43	0.43 0	A cubre a B en un 43%
4.2-a	1011	Drit	0,45	y es cubierto en un 0%	
4.2-b	MP	TF	0	0,29	B cubre a A en un 29%
4.2-0	1011	1.1	0 0,29	0,29 y es cubierto es	y es cubierto en un 0%
4.2-b	MP	BFR	DED 0.22	33 0,43	B cubre a A en un 43%
4.2-0	WIT	DFR	0,33		y es cubierto en un 33%
4.2-c	MP	TF	1 0	0	A cubre a B en un 100%
4.2-C	MP	1 Г			y es cubierto en un 0%
12.5	MP	BFR	0,67	67 0	A cubre a B en un 67%
4.2-c					y es cubierto en un 0%

Capítulo 6

Conclusiones y Trabajos Futuros

En las redes ópticas elásticas, la constante asignación y liberación de recursos en forma dinámica puede dar lugar al problema conocido como "fragmentación del ancho de banda". Este problema es crítico ya que la presencia de bloques aislados de ancho de banda dentro del dominio del espectro deja a los mismos inutilizables ante futuras solicitudes de conexiones, debido a que los mismos no se encuentran alineados y contiguos,

Un enfoque utilizado para combatir la fragmentación son los procesos de desfragmentación, que consisten en el retiro y posterior re-ruteo de un sub-conjunto de conexiones existentes, con el objetivo de consolidar los espacios disponibles en grandes bloques contiguos y continuos que puedan ser utilizados para futuras solicitudes de conexiones.

El problema analizado en este trabajo es el de ¿Cuándo Reconfigurar?, es decir, buscar el momento adecuado para disparar el proceso de desfragmentación, ya que desfragmentaciones muy frecuentes o muy distantes en el tiempo pueden hacer que estos no sean muy eficientes.

Este trabajo presenta un enfoque con desfragmentación para tráfico dinámico de redes ópticas elásticas por medio de un disparador inteligente utilizando técnicas de *Machine Learning*. En su implementación se utilizó un enfoque de aprendizaje supervisado, con un modelo de redes neuronales artificiales para la predicción de futuros

bloqueos y utilizando algunas características para medir el estado de fragmentación de la red y el uso de la misma.

El método propuesto de disparo recibe el estado actual de la red o "características" para cada instante de tiempo, con estas características y el entrenamiento previo del modelo, obtenemos una predicción de la probabilidad de futuros bloqueos, para una ventana de 10 unidades de tiempo hacia delante.

Para evaluar la eficiencia del método propuesto de disparo se consideraron tres escenarios diferentes, con un volumen de tráfico variable, utilizando las topologías NSFNET y USNET. Los objetivos a optimizar fueron:

- La cantidad de bloqueos obtenidos (BL)
- La cantidad de reconfiguraciones al final de cada instancia de prueba (RC)

6.1. Conclusiones Experimentales

Se realizaron pruebas experimentales a fin de comparar nuestro método de disparo contra otros dos presentes en la literatura científica. El método de desfragmentanción periódica es una estrategia ampliamente utilizada, la cual consiste en realizar el proceso de desfragmentación cada cierto periodo fijo de tiempo y el disparo por medio de métricas, la cual considera en realizar el proceso de desfragmentación en base al valor actual de la métrica, para las pruebas de este método se utilizó la métrica de fragmentación BFR.

Para comparar los resultados obtenidos en relación a los objetivos citados anteriormente (BL y RC), se utilizaron dos métricas de desempeño para optimización multi-objetivo.

- 1. Número de soluciones en el Frente Pareto (SFP).
- 2. Cobertura Pareto (CP).

Como resultado de la comparación de los métodos en base a los objetivos expuestos previamente, se concluye que el método propuesto es mejor ya que consigue en la mayoría de los escenarios mejores resultados, minimizando los valores obtenidos para BL y RC. Considerando la métrica SFP se obtiene que constituye el 52.9% de soluciones no dominadas y en el caso de CP se logró en un 67% del total de comparaciones resultados favorables a nuestro método.

6.2. Aportes

Los aportes del presente trabajo son:

- Un análisis bibliográfico sobre el problema relacionado al periodo de tiempo en el que el proceso de desfragmentación será ejecutado.
- 2) Una investigación y recopilación de métricas de fragmentación las cuales son utilizadas como características necesarias para la predicción de la probabilidad de bloqueo por parte del modelo entrenado.
- 3) Como principal aporte se diseñó un algoritmo que realiza el preprocesamiento de datos, entrenamiento del modelo y predicción de probabilidades de bloqueo utilizando técnicas de Machine Learning.
- 4) Pruebas experimentales utilizando en conjunto un simulador de redes EON y el modelo entrenado a fin de evaluar la eficiencia de nuestro método propuesto. Se realizaron comparaciones contra otros dos mecanismos de disparo, disparo periódico en tiempos fijos y disparo basado en la métrica BFR, teniendo resultados favorables para nuestro método en relación a la minimización de la cantidad de bloqueos y reconfiguraciones.

6.3. Trabajos Futuros

■ Aplicar el modelo de disparo inteligente del proceso de desfragmentación propuesto en este trabajo a redes ópticas elásticas que utilizan otras tecnologías o técnicas, como las redes EON con multiplexación por división de espacios o Space División Multiplexing (SDM).

EL SDM es utilizado en redes con múltiples núcleos, por lo que sería interesante realizar un análisis de la eficiencia del modelo en este tipo de redes.

Proponer algoritmos de disparo del proceso de desfragmentación utilizando métodos estadísticos, tal como la regresión logística binaria (RLB), la cual se utiliza cuando se desea conocer la relación entre una variable dependiente binaria y una o más variables independientes o explicativas, las cuales pueden ser cuantitativas y/o cualitativas.

El objetivo de la RLB es obtener una estimación ajustada de la probabilidad de ocurrencia de un evento a partir de una o más variables independientes.

Otro enfoque posible es utilizar programación genética, el cual consiste en una metodología basada en algoritmos evolutivos e inspirada en la evolución biológica para desarrollar programas que realicen ciertas tareas, por ejemplo, realizar disparo del proceso de desfragmentación en el mejor momento.

Es una técnica de aprendizaje automático utilizada para optimizar una población de programas de acuerdo a una función de ajuste o *fitness function* que evalúala capacidad de cada programa de realizar la tarea.

Bibliografía

- [1] Masahiko Jinno et al. «Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies». En: *IEEE communications magazine* 47.11 (2009), págs. 66-73.
- [2] Weiran Shi et al. «On the effect of bandwidth fragmentation on blocking probability in elastic optical networks». En: *IEEE transactions on communications* 61.7 (2013), págs. 2970-2978.
- [3] Mingyang Zhang et al. «Dynamic and adaptive bandwidth defragmentation in spectrum-sliced elastic optical networks with time-varying traffic». En: *Journal of Lightwave Technology* 32.5 (2014), págs. 1014-1023.
- [4] Bijoy Chand Chatterjee, Seydou Ba y Eiji Oki. «Fragmentation problems and management approaches in elastic optical networks: A survey». En: *IEEE Communications Surveys & Tutorials* 20.1 (2017), págs. 183-210.
- [5] Sahar Talebi et al. «Spectrum management techniques for elastic optical networks: A survey». En: Optical Switching and Networking 13 (2014), págs. 34-48.
- [6] Silvana Trindade y Nelson LS da Fonseca. «Machine Learning for Spectrum Defragmentation in Space-Division Multiplexing Elastic Optical Networks».
 En: IEEE Network 35.1 (2020), págs. 326-332.
- [7] Yu Xiong et al. «A machine learning approach to mitigating fragmentation and crosstalk in space division multiplexing elastic optical networks». En: Optical Fiber Technology 50 (2019), págs. 99-107.

BIBLIOGRAFÍA 60

[8] Mingyang Zhang et al. «Bandwidth defragmentation in dynamic elastic optical networks with minimum traffic disruptions». En: 2013 IEEE International Conference on Communications (ICC). IEEE. 2013, págs. 3894-3898.

- [9] Paul Wright, Michael C Parker y Andrew Lord. «Minimum-and maximum-entropy routing and spectrum assignment for flexgrid elastic optical networ-king». En: Journal of Optical Communications and Networking 7.1 (2015), A66-A72.
- [10] Enrique J Dávalos et al. «Spectrum defragmentation in elastic optical networks: Two Approaches With Metaheuristics». En: *IEEE Access* 7 (2019), págs. 119835-119843.
- [11] Tensor Flow. https://www.tensorflow.org.
- [12] Christian Von Lucken, Benjamin Baran y Carlos Brizuela. «A survey on multiobjective evolutionary algorithms for many-objective problems». En: *Computational optimization and applications* 58.3 (2014), págs. 707-756.