Closure Properties

Lecture 23.2.2024

Closure Properties

- A closure property is a statement that a certain operation on languages,
- when applied to languages in a class (Class of regular languages), produces a result that is also in that class.

Closure Properties

- To prove a closure property:-
- After the application of an operator, the Resultant language is regular, If we can use any of the following representations to describe the language-
- 1) If a Finite Automata can be constructed
- If a RE can be written (Every RE has a corresponding Regular Language)
- 3) If Regular Grammar can be written

Building Regular Expressions

Formal Recursive Definition of Regular Expression over ∑ as follows-

- 1. Any terminal symbol (i.e. an element of Σ) (Λ) and (\emptyset) are regular expressions. When we view α in Σ as a regular expression, we denote it by α . RE
- 2. The union of two regular expressions R1 and R2, written as R1 + R2, is also a regular expression.
- 3. The concatenation of two regular expressions R1and R2, written as R1R2, is also a regular expression. R1R2
- 4. The iteration (or closure) of a regular expression R written as R^* , is also a regular expression.
- J.If **R** is a regular expression, then **(R)** is also a regular expression.
- 6. The regular expressions over∑ are precisely those obtained recursively by the application of the rules 1-5 once or several times

a.b* = abbb.--.

 $(a.b) \stackrel{*}{=} abab - \cdots$

Building Regular Expressions

Formal Recursive Definition of Regular Expression over ∑ as follows-

- 1. Any terminal symbol (i.e. an element of Σ), Λ and \emptyset are regular expressions. When we view α in Σ as a regular expression, we denote it by \mathbf{a} .
- 2. The union of two regular expressions R1 and R2, written as R1 + R2, is also a regular expression.
- 3. The concatenation of two regular expressions R1and R2, written as R1R2, is also a regular expression.
- 4. The iteration (or closure) of a regular expression R written as R*, is also a regular expression.
- 5.If **R** is a regular expression, then **(R)** is also a regular expression.
- 6. The regular expressions over∑ are precisely those obtained recursively by the application of the rules 1-5 once or several times

Closure By RE Definition

By the Definition of regular expressions, the class of regular sets over Σ is closed under union, concatenation, and closure(iteration) by the conditions 2,3,4 of the definition

Closure Under Union (RE Method)

• If L1 and L2 are regular languages, so is L1 \cup L2.

Proof: Let L1 and L2 be the languages for regular expressions R1 and R2, respectively, such that

- L(R1)=L1
- L(R2)=L2

Then R1+R2 is also a regular expression, By definition

Also, R1+R2 denotes L1 \cup L2.

Thus L1 \cup L2 is closed under the class of regular languages

Closure Under Concatenation (RE Method)

If L1 and L2 are regular languages, so is L1.L2

Proof: Let L1 and L2 be the languages for regular expressions R1 and R2, respectively, such that

- L(R1)=L1
- L(R2)=L2

Then R1.R2 is also a regular expression, By definition,

Thus L1.L2 is closed under the class of regular languages

Closure Under Kleene Closure (RE Method)

If L is a regular languages, so is L*

Proof: Let L be the languages for regular expressions R, such that

Then R* is also a regular expression, By definition,

Thus L* is closed under the class of regular languages

Closure Under and (RE Method)

• Same idea:

- R1.R2 is a regular expression whose language is
 L1.L2
- R* is a regular expression whose language is
 L*.

Closure Under Union

- Lets take a class of regular languages say L1,L2,L3...
- Union is a binary Operation applied on this class
- If L1 and L2 are regular languages, so is L1 ∪ L2, we get a new language.
- The New language generated is also regular and belongs to same class
- Thus, This class is closed under Union
- Union of Two regular Languages is Regular

Product Automaton for Union

- Lets take two DFA M1 and M2
- M1=(Q1, Σ , δ 1, $q_0^{(1)}$, F1)
- M2=(Q2, \sum , δ 2, q_0^2 , F2)
- M= $(Q, \Sigma, \delta, q_0, F)$ =Product Automaton of M1 and M2
- $\delta((q1,q2),a) = (\delta(q1,a), \delta(q2,a))$
- \Rightarrow q0=(q₀¹, q₀²)
 - $\delta((q_0^1, q_0^2), x) = (\delta(q_0^1, x), \delta(q_0^2, x))$ $F = \{(p1, p2) \mid p1 \in F1 \text{ or } p2 \in F2\}$

DFA can be constructed

Product Automaton for Union

- If Product Machine is in state F, It means either M1 machine has reached one of its final state or machine M2 has reached one of its final state
- Therefore, Any string that takes M1 to one of its final state or takes M2 to one of its final state, All such strings will be accepted by machine M
- Clearly Language(M)=L(M1) U L(M2)
- So any two regular languages for construction of Product Automaton
- Thus, Class of Regular Languages is closed under Union

Closure Under Intersection

If L and M are regular languages, then so is L

 ∩ M.

Product Automaton for Intersection

- To show L1 ∩ L2 is also regular:-
- Which strings fall in L1 ∩ L2 ?
- All strings that are in both L1 and L2
- What would such strings do?
- Such strings will take the Product Automaton to a pair of states (p1,p2) such that both p1 and p2 are final states of M1 and M2 respectively.
- Language(M)=L(M1)

 L(M2)

Product Automaton for Intersection

- Lets take two DFA M1 and M2
- M1=(Q1, \sum , δ 1, q_0^1 , F1)
- M2=(Q2, \sum , δ 2, q_0^2 , F2)
- M= $(Q, \sum, \delta, q_0, F)$ =Product Automaton of M1 and M2
- Q=Q1XQ2
- $\delta((q1,q2),a) = (\delta(q1,a), \delta(q2,a))$
- $q0=(q_0^1, q_0^2)$
- $\delta((q_0^1, q_0^2), x) = (\delta(q_0^1, x), \delta(q_0^2, x))$
- F={(p1,p2) | p1 ∈ F1 and p2 ∈F2}

DFA can be constructed

Example: Product DFA for Intersection

Closure Under Difference

- If L1 and L2 are regular languages, then so is L1 L2 = strings in L1 but not L2.
- L1-L2= $\{x \mid x \in L1 \text{ and } x \not\in L2 \}$
- Proof: Let M1 and M2 be DFA's whose languages are L1 and L2, respectively.
- Construct M, the product automaton of L1 and L2.
- Make the final states of M be the pairs where M1-state is final but M2-state is not.

Product Automaton for Difference

- To show L1 L2 is also regular:-
- Which strings fall in L1 L2 ?
- What would such strings do?
- Such strings will takes the Product Automaton to a pair of states (p1,p2) such that both p1 is final state but p2 is not a final states of M1 and M2 respectively.
- Such strings take M1 to final state but does not take M2 to final state,
- I.e. Product Automaton accepts all the strings accepted by L1 but not accepted by L2.
- Language(M)=L(M1) L(M2)

Example: Product DFA for Difference

Notice: difference is the empty language

Closure Under Complementation

- The *complement* of a language L (with respect to an alphabet Σ such that Σ^* contains L) is $\Sigma^* L$.
- Since Σ^* is surely regular, the complement of a regular language is always regular.

Closure Under Complementation

1

- Initial State will Remain Initial
- Final State will become Non-Final
- Non-Final State will become Final
- Transitions will be same

DFA can be constructed, RE can be written, So closed

Closure Under Reversal

- Recall example of a DFA that accepted the binary strings that, as integers were divisible by 3.
- Thus, the language of binary strings whose reversal was divisible by 3 was also regular,
- Good application of reversal-closure.

Closure Under Reversal – (2)

- Given language L, L^R is the set of strings whose reversal is in L.
- Example: L = {0, 01, 100};
 L^R = {0, 10, 001}.

- Proof: Let E be a regular expression for L.
- We show how to reverse E, to provide a regular expression E^R for L^R.

Reversal of a Regular Expression

- Basis: If E is a symbol a, ϵ , or \emptyset , then $E^R = E$.
- Induction: If E is
 - E=F+G, then E^R = F^R + G^R.
 - E=FG, then $E^R = G^R F^R$
 - $E=F^*$, then $E^R = (F^R)^*$.

Example: Reversal of a RE

• Let $E = 01^* + 10^*$. $E^{R} = (01^* + 10^*)^{R} = (01^*)^{R} + (10^*)^{R}$ E=F+G=) ER=FR+GR • = $(1*)^R 0^R + (0*)^R 1^R$ 100 001 Induction: If E is

F=F+G, then $F^R=F^R$

E=F+G, then
$$E^R = F^R + G^R$$
.
E=FG, then $E^R = G^R F^R$
E=F*, then $E^R = (F^R)^*$

$\leq = \{a_ib\}$ Homomorphisms

- A homomorphism on an alphabet is a function that gives a string for each symbol in that alphabet.
- Example: h(0) = ab; $h(1) = \epsilon$.
- Extend to strings by $h(a_1...a_n) = h(a_1)...h(a_n)$.
- (Example: h(01010) = ababab.

Closure Under Homomorphism

- If L is a regular language, and h is a homomorphism on its alphabet,
- then h(L) = {h(w) | w is in L} is also a regular language.
- Proof:
- Let E be a regular expression for L.
- Apply h to each symbol in E.
- Language of resulting RE is h(L).

Example: Closure under Homomorphism

- Let h(0) = ab; $h(1) = \epsilon$.
- Let L be the language of regular expression
 01* + 10*.
- Then h(L) is the language of regular expression $ab \in * + \hat{\epsilon}(ab)*$.

lote: use naren

Note: use parentheses to enforce the proper grouping.

Ea=a·E=a, Example – Continued

- $ab \in * + \in (ab) *$ can be simplified.
- $\varepsilon^* = \varepsilon$, so $ab\varepsilon^* = ab\varepsilon$.
- € is the identity under concatenation.
 - That is, $\in E = E \in E$ = E for any RE E.
- Thus, $ab \in * + \in (ab) * = ab \in + \in (ab) * = ab +$ 5 Mab, abab, ababas
- Finally, L(ab) is contained in L((ab)*), so a RE for h(L) is (ab)*

Example – Continued

- $ab \in * + \in (ab) *$ can be simplified.
- $\epsilon^* = \epsilon$, so $ab\epsilon^* = ab\epsilon$.
- ∈ is the identity under concatenation.
 - That is, $\in E = E \in E = E$ for any RE E.
- Thus, ab∈* + ∈(ab)* = ab∈ + ∈(ab)* = ab +
 (ab)*.
- Finally, L(ab) is contained in L((ab)*), so a RE for h(L) is (ab)*.

RE can be written, So closed

Inverse Homomorphisms

- Let h be a homomorphism and L a language whose alphabet is the output language of h.
- $h^{-1}(L) = \{w \mid h(w) \text{ is in } L\}.$

Example: Inverse Homomorphism

- Let h(0) = ab; $h(1) = \epsilon$.
- Let L = {abab, baba}.
- $h^{-1}(L)$ = the language with two 0's and any number of 1's = L(1*01*01*).

6666abeab66 11101011

Notice: no string maps to baba; any string with exactly two 0's maps to abab.

RE can be written, So closed

- Q)Regular languages are closed over
- concatenation
- ☐ union
- ☐ intersection
- ☐ complement

- Q)Regular languages are closed over
- concatenation
- union
- ☐ intersection
- complement

Accepted Answers:

union
intersection
complement
concatenation

9)
 DROP-ONE(L) = {xz | xyz ∈ L where x, z ∈ Σ* and y ∈ Σ }. Which of following are true?|

 Regular languages are closed under DROP-ONE.
 For any regular language L, DROP-ONE(L) is not regular.
 For some regular language L, DROP-ONE(L) are not regular.
 For some regular languages L, DROP-ONE(L) is regular but not all.

9) $DROP\text{-}ONE(L) = \{xz \mid xyz \in L \text{ where } x, z \in \Sigma^* \text{ and } y \in \Sigma \}$. Which of following are true? Regular languages are closed under DROP-ONE.

For any regular language L, DROP-ONE(L) is not regular.

For some regular language L, DROP-ONE(L) are not regular.

For some regular languages L, DROP-ONE(L) is regular but not all.

Accepted Answers:

Regular languages are closed under DROP-ONE.