О решении уравнения Фредгольма второго рода с применением квадратичных интегро-дифференциальных сплайнов

Бурова И. Г.,

д.ф.-м.н., профессор кафедры вычислительной математики СПбГУ, burovaig@mail.ru

Домнин Н. С.,

аспирант кафедры вычислительной математики СПбГУ, domninnickolay@gmail.com

Аннотация

Рассматривается построение локально полиномиальных интегро-дифференциальных сплайнов третьего порядка аппроксимации и их применение для приближённого решения интегрального уранения Фредгольма второго рода. Приводятся результаты численного эксперимента, оценка погрешности приближения и ускорения при распараллеливании с применением MPI.

Введение

В данной работе рассматривается построение квадратичных интегродифференциальных сплайнов, построение на их основе приближённого решения интегрального уравнения Фредгольма второго рода; приведены результаты численных экспериментов, оценки погрешностей и ускорение при распараллеливании построения приближённого решения на основе МРІ.

Построение квадратурных формул

Рассмотрим промежуток [a,b], где a и b - вещественные числа. Возьмём натуральное число $n\geq 2$ и построим равномерную сетку узлов $\{x_j\}_{j=0}^n$ с шагом $h=\frac{b-a}{n}$:

$$X : a = x_0 < \dots < x_{i-1} < x_i < x_{i+1} < \dots < x_n = b.$$

Лемма 1. Пусть функция $u\left(x\right)\in C^{3}\left[x_{j-1},x_{j+1}\right]$. Верна следующая формула:

$$\int_{x_{j}}^{x_{j+1}} u(x)dx \approx \frac{h}{12} \left(5u(x_{j+1}) + 8u(x_{j}) - u(x_{j-1}) \right). \tag{1}$$

 \mathcal{A} оказательство. Рассмотрим $\int\limits_{x_{j}}^{x_{j+1}}u\left(x\right) dxpprox\int\limits_{x_{j}}^{x_{j+1}}v\left(x\right) dx$, где

$$v(x) = u(x_{j-1})w_{j-1}(x) + u(x_j)w_j(x) + u(x_{j+1})w_{j+1}(x), x \in [x_j, x_{j+1}],$$

Базисные сплайны $w_{j-1}(x), w_j(x), w_{j+1}(x)$ определяются из решения системы уравнений $v(x)=u(x), u(x)=1, x, x^2$ мы получаем:

$$w_{j-1}(x) = \frac{(x - x_j)(x - x_{j+1})}{(x_{j-1} - x_j)(x_{j-1} - x_{j+1})}, w_j(x) = \frac{(x - x_{j-1})(x - x_{j+1})}{(x_j - x_{j-1})(x_j - x_{j+1})},$$
$$w_{j+1}(x) = \frac{(x - x_{j-1})(x - x_j)}{(x_{j+1} - x_{j-1})(x_{j+1} - x_j)}.$$

После интегрирования получаем формулу (1).

Замечание 1. Используя (1) можно доказать, что:

$$\left| \int_{x_{j}}^{x_{j+1}} u(x)dx - \frac{h}{12} \left(5u(x_{j+1}) + 8u(x_{j}) - u(x_{j-1}) \right) \right| \le K_{1}h^{4} \|u'''\|_{[x_{j-1}, x_{j+1}]}, K_{1} > 0. \quad (2)$$

Лемма 2. Пусть функция $u\left(x\right)\in C^{3}\left[x_{j},x_{j+2}\right]$. Верна следующая формула:

$$\int_{x_{j}}^{x_{j+1}} u(x)dx \approx \frac{h}{12} \left(5u(x_{j}) + 8u(x_{j+1}) - u(x_{j+2}) \right). \tag{3}$$

Доказательство. Доказательство аналогично доказательству леммы (1).

Замечание 2. Используя (3) можно доказать, что:

$$\left| \int_{x_{j}}^{x_{j+1}} u(x)dx - \frac{h}{12} \left(5u(x_{j}) + 8u(x_{j+1}) - u(x_{j+2}) \right) \right| \leq K_{2}h^{4} \|u^{"'}\|_{[x_{j}, x_{j+2}]}, K_{2} > 0. \quad (4)$$

Построение приближённого решения уравнения Фредгольма второго рода

Рассмотрим уранение Фредгольма второго рода

$$\varphi(x) - \int_{a}^{b} K(x, s)\varphi(s)ds = f(x). \tag{5}$$

Перепишем интеграл в (5) в следующем виде:

$$\int_{a}^{b} K(x,s)\varphi(x)ds = \int_{a}^{b-h} K(x,s)\varphi(x)ds + \int_{b-h}^{b} K(x,s)\varphi(x)ds.$$
 (6)

Заменим в интегралах в правой части функцию $\varphi(s), s \in [x_j, x_{j+1}]$ на

$$\psi(s) = \varphi(x_j)\omega_j(s) + \varphi(x_{j+1})\omega_{j+1}(s) + \int_{x_{j+1}}^{x_{j+2}} \varphi(t)dt \,\omega_j^{<1>}(s), s \in [x_j, x_{j+2}] \, \mathbf{H}$$

$$\psi(s) = \varphi(x_j)\mu_j(s) + \varphi(x_{j+1})\mu_{j+1}(s) + \int_{x_{j-1}}^{x_j} \varphi(t)dt \,\mu_j^{<-1>}(s), s \in [x_{j-1}, x_{j+1}].$$
(8)

Лемма 3. Пусть функция $\varphi(x) \in C^3[x_j,x_{j+2}]$, верны (7) и (1) и $s \in [x_j,x_{j+1}]$, $t \in [0,1]$, $s=x_j+th$. Базисные сплайны в (7) имеют следующий вид:

$$\omega_j(x_j + th) = \frac{(t-1)(3t-5)}{5}, \omega_{j+1}(x_j + th) = -\frac{t(9t-14)}{5},$$
$$\omega_j^{<1>}(x_j + th) = \frac{6t(t-1)}{5h}.$$

Лемма 4. Пусть функция $\varphi(x) \in C^3[x_j,x_{j+2}]$, верны (8) и (3) и $s \in [x_j,x_{j+1}]$, $t \in [0,1]$, $s=x_j+th$. Базисные сплайны в (8) имеют следующий вид:

$$\mu_j(x_j + th) = -\frac{(9t+5)(t-1)}{5}, \mu_{j+1}(x_j + th) = -\frac{t(3t+2)}{5},$$
$$\mu_j^{<-1>}(x_j + th) = \frac{6t(t-1)}{5h}.$$

Нетрудно видеть, что верно следующее соотношение:

$$|\varphi(x) - \psi(x)| \le Kh^3 \|\varphi'''\|_{[x_{j-1}, x_{j+1}]}, K > 0.$$

Используя формулы (7) и (8) и базисные сплайны из лемм 3 и 4 получаем следующую систему уравнений для вычисления $\widetilde{\varphi}(x_i) \approx \varphi(x_i), i=0,...,n$:

$$\widetilde{\varphi}(x_i) - \sum_{j=0}^{n-2} (\widetilde{\varphi}(x_j) A_j^{< l>}(x_i) + \widetilde{\varphi}(x_{j+1}) B_j^{< l>}(x_i) + \widetilde{\varphi}(x_{j+2}) C_j^{< l>}(x_i)) - (\widetilde{\varphi}(x_{n-2}) A_{n-1}^{< r>}(x_i) + \widetilde{\varphi}(x_{n-1}) B_{n-1}^{< r>}(x_i) + \widetilde{\varphi}(x_n) C_{n-1}^{< r>}(x_i)) = f(x_i)$$
 (9)

где

$$A_{j}^{< l>}(x) = \int_{x_{j}}^{x_{j+1}} K(x,s)(\omega_{j}(s) - \frac{h}{12}\omega_{j}^{< 1>}(s))ds,$$

$$B_{j}^{< l>}(x) = \int_{x_{j}}^{x_{j+1}} K(x,s)(\omega_{j+1}(s) + \frac{2h}{3}\omega_{j}^{< 1>}(s))ds,$$

$$C_{j}^{< l>}(x) = \frac{5h}{12} \int_{x_{j}}^{x_{j+1}} K(x,s)\omega_{j}^{< 1>}(s)ds,$$

$$A_{n-1}^{< r>}(x) = \frac{5h}{12} \int_{x_{n-1}}^{x_{n}} K(x,s)\mu_{n-1}^{< -1>}(s)ds,$$

$$B_{n-1}^{< r>}(x) = \int_{x_{n-1}}^{x_{n}} K(x,s)(\mu_{n-1}(s) + \frac{2h}{3}\mu_{n-1}^{< -1>}(s))ds,$$

$$C_{n-1}^{< r>}(x) = \int_{x_{n-1}}^{x_{n}} K(x,s)(\mu_{n}(s) - \frac{h}{12}\mu_{n-1}^{< -1>}(s))ds.$$

Результаты численного эксперимента

Фактические ошибки аппроксимации решения уравнения Фредгольма для некоторых вариантов функций и ядер приведены в Таблице 1 и на Рис. 1.

Данные о полученном ускорении при распараллеливании с помощью MPI приведены в Таблицах 2, 3 и на Рис. 2.

Рис. 1: Фактические погрешности приближённого решения при h=0.01: (a) $K(x,s)=x^2s^2, \varphi(x)=x^{\frac{3}{2}}\sin(x)$, (b) $K(x,s)=e^x\cos(s), \varphi(x)=x^{\frac{3}{2}}\sin(x)$ (c) $K(x,s)=xs, \varphi(x)=\frac{1}{1+25x^2}$

	h=0.1	h=0.01	h=0.001
$K(x,s) = x^2 s^2, \varphi(x) = x^{\frac{3}{2}} \sin(x)$	$2.06 \cdot 10^{-6}$	$2.36 \cdot 10^{-8}$	$2.8 \cdot 10^{-11}$
$K(x,s) = e^x \cos(s), \varphi(x) = x^{\frac{3}{2}} \sin(x)$	$3.6 \cdot 10^{-4}$	$4.36 \cdot 10^{-7}$	$2.2 \cdot 10^{-9}$
$K(x,s) = xs, \varphi(x) = \frac{1}{1+25x^2}$	$6.0 \cdot 10^{-5}$	$6.1 \cdot 10^{-9}$	$1.8 \cdot 10^{-11}$

Таблица 1: Фактические погрешности приближённого решения

Заключение

В работе представлен способ построения приближённого решения уравнения Фредгольма второго рода на основе квадратичных интегродифференциальных сплайнов, даны оценки точности аппроксимации. Также приведены результаты численного эксперимента и данные об ускорении построения приближённого решения при распараллеливании с использованием MPI.

	Последо-	Параллельный алгоритм			
Размер	вательный	2 процесса		4 процесса	
матрицы	алгоритм	Время	Ускорение	Время	Ускорение
500	0.4410	0.2261	1.9501	0.1218	3.6211
1000	3.4621	1.8565	1.8649	0.9383	3.6898
1500	11.8426	5.9237	1.9992	3.0555	3.8759
2000	28.1658	14.3213	1.9667	7.2160	3.9032
2500	55.0675	27.3766	2.0115	14.1882	3.8812
3000	94.7146	48.2710	1.9621	24.2012	3.9136
3500	148.2640	76.2270	1.9450	38.4033	3.8607

Таблица 2: Время вычисления решения и ускорение при распараллеливании

	Последо-	Параллельный алгоритм			
Размер	вательный	8 процессов		16 процессов	
матрицы	алгоритм	Время	Ускорение	Время	Ускорение
500	0.4410	0.0667	6.6154	0.0426	10.3476
1000	3.4621	0.4842	7.1506	0.2680	12.9196
1500	11.8426	1.9793	5.9833	0.8650	13.6903
2000	28.1658	3.7463	7.5183	1.9929	14.1331
2500	55.0675	7.3108	7.5324	3.8496	14.3047
3000	94.7146	12.6078	7.5124	6.7299	14.0737
3500	148.2640	19.9695	7.4245	10.5463	14.0584

Таблица 3: Время вычисления решения и ускорение при распараллеливании

Рис. 2: Ускорение при распараллеливании

Литература

- [1] Киреев В. И. Численные методы в примерах и задачах. М., 2008.
- [2] Завьялов Ю. С., Квасов Б. И., Мирошниченко В. Л. Методы сплайнфункций. М., 1980.
- [3] I. G. Burova, N. S. Domnin, A. E. Vezhlev, A. V. Lebedeva, A. N. Pakulina On the Solution of the Fredholm Equation of the Second Kind, WSEAS Transactions on Mathematics, Vol. 17, 2018. pp. 317-328