

串口转 CAN AT 指令表

产品规格书:SPECIFICATION

型 号: TTL-CAN USB-CAN

描述:串口转 CAN 模块 USB 转 CAN 模块

生产执行标准参考

企业质量体系标准: ISO9001:2016 标准

倾角开关生产标准: GB/T191SJ 20873-2016

产品试验检测标准: GB/T191SJ 20873-2016

修 订 日 期:2017.8.30

版本号	版本更新内容	更改人	日期
V1.0	发布		20171027

www.wit-motion.com

目录

—、	内容介绍	- 5 -
二、	指令使用介绍	- 5 -
	2.1 AT 测试命令	- 5 -
	2. 2 AT+CAN_MODE 设置、查询 CAN 模块的工作模式	- 5 -
	2.3 AT+CAN_FRAMEFORMAT 查询及设置数据透传格式	- 6 -
	2.4 AT+CAN_FILTERn 查询及设置 CAN 滤波器	- 7 -
	2.5 AT+CAN_BAUD 查询或设置 CAN 波特率参数	. 9 -
	2. 6 AT+USART_PARAM 查询或设置串口参数	. 9 -
	2.7 AT+DEFAULT 恢愎出厂默认参数	11 -
	2.8 AT+CG 进入配置模式	11 -
	2.8 AT+ET 退出配置模式	11 -
	2.9 AT+AT 进入模拟 CAN 模式	11 -

目录

— ,	内容介绍	5 -
=,	指令使用介绍	5 -
	2.1 AT 测试命令	5 -
	2. 2 AT+CAN_MODE 设置、查询 CAN 模块的工作模式	5 -
	2.3 AT+CAN_FRAMEFORMAT 查询及设置数据透传格式	
	2.4 AT+CAN_FILTERn 查询及设置 CAN 滤波器	7 -
	2.5 AT+CAN_BAUD 查询或设置 CAN 波特率参数	9 -
	2. 6 AT+USART_PARAM 查询或设置串口参数	9 -
	2 7 AT+DFFAIII T 恢恒出厂默认参数	_ 11 _

电话: 0755-33185882 邮箱: wit@wit-motion.com 网站: www.wit-motion.com

一、内容介绍

AT 指令手册描述串口转 CAN 的 AT 命令接口规范。本手册均为私有的 AT 指令接口。AT 指令接口方便地修改、查询串口转 CAN 的内置参数(工作模式、滤波器组、串口参数等)。

二、指令使用介绍

注意事项: 下发 AT 命令时,AT 命令名称及参数中包含的字符大小写兼容,AT 命令返回结果中的字符一律采用大写字母。

AT 指令参数说明:

<LF>: 回车换行符,本 AT 命令接口规范约定所有命令都以回车换行符结束,即电脑键盘 Enter 键的键值。

<...>: 里面参数必须要填写,命令中<>本身不出现。

2.1 AT 测试命令

执行命令: AT<LF>

功 能: 用于测试串口转 CAN 处于配置模式。

回 复: OK<LF>

例:

控制器发: AT<LF>

网络继电器回复: OK<LF>

2.2 AT+CAN_MODE 设置、查询 CAN 模块的工作模式

2. 2. 1 查询串口转 CAN 工作模式

执行命令: AT+CAN_MODE=?<LF>

功 能: 查询串口转 CAN 工作模式。

回 复: AT+CAN MODE=<MODE><LF>

表 2-2-1 < MODE> 状态取值表:

<mode></mode>	工作模式	备注
0	正常工作模式	环回模式用于模块的自收自发测试
1	环回模式	

例:读取 CAN 模块的工作模式 控制器发: AT+CAN_MODE=?<LF> 模块回复: +CAN MODE:0<LF>

2.2.2 设置模块的工作模式

执行命令: AT+CAN_MODE=<MODE><LF>

功 能: 设置串口转 CAN 工作模式。

回 复: 命令成功执行: OK<LF>

命令有误: ERROR<LF>

例:

控制器发: AT+CAN_MODE=0<LF>

模块回复: OK<LF>

控制器发: AT+CAN_MODE=2<LF>

模块回复: ERROR<LF>

2.3 AT+CAN FRAMEFORMAT 查询及设置数据透传格式

2.3.1 查询数据透传格式

执行命令: AT+CAN_FRAMEFORMAT=?<LF>

功 能: 查询数据透传格式。

回 复: 命令成功执行:

 $+ CAN_FRAMEFORMAT: \langle Enable \rangle, \langle FrameFormat \rangle, \langle StdID \rangle, \langle ExtID \rangle \langle LF \rangle$

命令有误: ERROR<LF>

表 2-3-1 < Enable > 取值表:

<enable></enable>	透传使能	备注
0	禁止	***
1	使能	数据透传使能

表 2-3-2< FrameFormat>取值表:

<pre><frameformat></frameformat></pre>	帧格式选择	备注
0	标准数据帧	此状态为数据帧选择,当选择标准数据
1	扩展数据帧	帧时,传输的帧 ID 最大值为 0x7FF

表 2-3-3 < StdID > 取值表:

<stdid></stdid>	标准帧 ID	备注
取值范围为	0 0x7 FF	对应的十进制为: 0 2047

表 2-3-4 < ExtID >取值表:

< ExtID>	扩展帧 ID	备注
取值范围为	0 0x1F FF FF FF	对应的十进制为: 0 536870911

例:查询数据透传格式

控制器发: AT+CAN_FRAMEFORMAT=?<LF>

模块回复: +CAN FRAMEFORMAT:1,0,136,0<LF>

2.3.2 设置数据透传格式

执行命令:

AT+CAN FRAMEFORMAT=<Enable>, <FrameFormat>, <StdID>, <ExtID><LF>

功 能:设置数据透传模式

回 复: 命令成功执行 OK<LF> 命令错误 ERROR<LF>

例:

控制器发: AT+CAN_FRAMEFORMAT=1, 0, 136, 0<LF>

模块回复: OK〈LF〉

2.4 AT+CAN_FILTERn 查询及设置 CAN 滤波器

2.4.1 查询 CAN 滤波器参数

执行命令: AT+CAN_FILTERn=?<LF>

功 能: 查询 CAN 滤波器参数。

回 复: 命令成功执行:

+CAN_FILTERn: <Enable>, <Mode>, <Id>, < MaskId><LF>

命令有误: ERROR<LF>

表 2-4 n 参数对照表:

<value></value>	滤波器组号	备注
	0-13	分别对应第1到14组滤波器,0为第一组滤波器

表 2-4-1 < Enable>参数对照表:

<value></value>	滤波器使能标志	备注
0	禁止当前组滤波器	八即对应签1到14年读出现
1	使能当前组滤波器	分别对应第1到14组滤波器

表 2-4-2 < Mode > 参数对照表:

<value></value>	滤波器组的工作模式	备注
0	屏蔽位模式	

表 2-4-4 < Id>参数对照表:

<value></value>	取值范围	备注
	0 - 0x1F FF FF FF	此值为滤波器待检测的位

表 2-4-5 < Mask Id>参数对照表:

<value></value>	取值范围	备注		
0 – 0x1F FF	0 01E EE EE EE	指定必须过滤的位,当帧 Id 与指定位相匹配时,才能		
	U - UXIF FF FF FF	通过滤波器的过滤		

例(以第一组滤波器为例):

控制器发: AT+CAN FILTER0=?<LF>

模块回复: +CAN FILTER0:0,0,0,0<LF>

2.4.2 设置 CAN 滤波器参数

执行命令:

AT+CAN_FILTERn=<Enable>, <Mode>, <Id>, < MaskId><LF>

功 能: 查询 CAN 滤波器参数。

回 复: 命令成功执行: OK<LF>

命令有误: ERROR<LF>

例:

例(以第一组滤波器为例):

控制器发: AT+ CAN_FILTER0=0, 0, 0, 0, 0 < LF>

模块回复: OK<LF>

2.5 AT+CAN_BAUD 查询或设置 CAN 波特率参数

2.5.1 查询 CAN 波特率参数

执行命令: AT+CAN BAUD=?<LF>

功 能: 查询 CAN 波特率。

回 复: 命令成功执行: +CAN BAUD: <Baud><LF>

命令有误: ERROR<LF>

表 2-4 〈Baud〉参数对照表:

<va1< th=""><th>ue></th><th>波特率取值范围</th><th>备注</th></va1<>	ue>	波特率取值范围	备注
		3000bps 1000 000bpx	

例:

控制器发: AT+CAN_BAUD=?<LF> 模块回复: +CAN_BAUD:100000<LF>

2.5.1 设置 CAN 波特率参数

执行命令: AT+CAN_BAUD=<Baud><LF>

功 能: 设置 CAN 波特率。

回 复: 命令成功执行: OK〈LF〉

命令有误: ERROR<LF>

例(设置为 100Kpbs 的波特率):

控制器发: AT+CAN BAUD=100000<LF>

模块回复: OK<LF>

2.6 AT+USART_PARAM 查询或设置串口参数

2.6.1 查询模块串口参数

执行命令: AT+USART_PARAM=?<LF>

功 能: 查询模块串口参数。

回 复: +USART_PARAM: <Baud>, <DataBit>, <StopBit>, <ParityBit><LF>

表 2-6-1 \Baud \对照表:

<value></value>	串口波特率取值范围	备注	
	4800 460800		

表 2-6-1 〈DataBit〉对照表:

<value></value>	数据位	备注
0	8位	
1	9 位	

表 2-6-1 〈StopBit〉对照表:

<value></value>	停止位	备注
0	0.5 位	
1	1 位	
2	1.5 位	
3	2 位	

表 2-6-1 < ParityBit >对照表:

V					
<value></value>	校验位	备注			
0	无校验				
1	奇校验				
2	偶校验				

例:

控制器发: AT+USART_PARAM=?<LF>

网络继电器回复: +USART_PARAM: 115200, 0, 1, 0 < LF >

2.6.2 设置模块的串口参数

执行命令: AT+USART_PARAM=〈Baud〉,〈DataBit〉,〈StopBit〉,〈ParityBit〉〈LF〉

功 能: 设置模块串口参数。

回 复: 命令成功执行: OK<LF>

命令有误: ERROR<LF>

例:

控制器发: AT+USART_PARAM=115200, 0, 1, 0<LF>

模块回复: OK<LF>

2.7 AT+DEFAULT 恢愎出厂默认参数

执行命令: AT+DEFAULT<LF>

功 能:恢复出厂默认参数。

回 复: 命令成功执行: OK<LF>

命令有误: ERROR<LF>

例:

控制器发: AT+DEFAULT<LF>

模块回复: OK<LF>

2.8 AT+CG 进入配置模式

执行命令: AT+CG<LF>

功 能: 进入配置模式

回 复: 命令成功执行: OK<LF>

命令有误: ERROR<LF>

例:

控制器发: AT+CG<LF>模块回复: OK<LF>

2.8 AT+ET 退出配置模式

执行命令: AT+ET<LF>

功 能:退出配置模式

回 复: 命令成功执行: OK<LF>

命令有误: ERROR<LF>

例:

控制器发: AT+ET<LF>模块回复: OK<LF>

2.9 AT+AT 进入模拟 CAN 模式

执行命令: AT+AT<LF>

功 能:退出配置模式

回 复: 命令成功执行: OK〈LF〉

命令有误: ERROR<LF>

例:

控制器发: AT+AT<LF> 模块回复: OK<LF>

AT 模式(模拟 CAN) 数据格式:

头	ID	4Byte	数据长度	数据	尾
AT					0x0d, 0x0a
					(\r\n)

ID 说明: 4Byte 组成一个 32bit 数据,高位在前

bit31-bit21	bit20-bit3	Bit2	Bit1	Bit0
标准帧 id, 扩展	扩展帧后 18 位	1表示扩展帧	1表示远程帧	固定是 0
帧 id 前 11 位		0表示标准帧	0表示数据帧	

注意:远程帧数据长度应为0

举例说明:

接收数据: 0x41 0x54 0x01 0x00 0x00 0x02 0x00 0x0d 0x0a

表示 ID为 0x008 的标准远程帧