- 1. [20 points] TRUE/FALSE. No need for justification.
 - (a) TRUE/FALSE

G

tree of G

https://eduassistpro.github.io/

 $\underset{(\text{Let }G = (V,E)}{\textbf{Assignment Project Exam Help}}$

For every vertex vertex

Assignment Project Exam Help

(c) TRUE/FALSE

G

https://eduassistpro.github.io/

The second smallest spanning tree of G

Add WeChat edu_assist_pro

(d) TRUE/FALSE

If all edge capacities in a flow network are integer multiples of 35, then the value of the maximum flow must be a multiple of both 5 and 7.

(e) TRUE/FALSE

(Let G = (V, E) be a directed graph with nonnegative weights on edges, and $\gamma(p, q)$ denote the length of the *longest simple path* between p and q.)

The triangle inequality $\gamma(p,q) + \gamma(q,r) \leq \gamma(p,r)$ holds for every p, q, and r in V.

- 2. [30 points] MINIMUM SPANNING TREE UPDATE Consider an undirected, connected graph G = (V, E) with edge weights $w : E \to \mathbb{Z}^+$, and a minimum spanning tree T = (V, E') of G, both given as adjacency lists. Consider the following updates on G. For each case, decide whether an update might be necessary, and if
 - (a) https://eduassistpro-github.io/
 (b) The weight of a particular edge $e \in E E'$ is decreased to $\hat{w}(e) < w(e)$.

 - (c) The weight of a particular edge $e \in E'$ is decreased to $\hat{\mathbf{p}}(e) \leq w(e)$. Help (d) The weight of a particular edge $e \in E'$ is increased to $\hat{\mathbf{p}}(e) \leq w(e)$.
 - (e) A new edge $e = (u, v) \notin E$ is added to E

Add WeChat edu_assist_pro

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

- 3. [30 points] An Alternative Algorithm for All Pairs Shortest Path Problem Let G = (V, E) be a directed graph with n vertices and weighted (-, 0, or +) edges.
 - (a) How could we delete an arbitrary vertex ν from this graph, without changing the

$$V' = V - \{v\}$$
 https://eduassistpro.github.giu/

- (b) Suppose we have already computed all pairs shortest-path distances in G'. Describe and analyze characteristic path of the path of t
- by combining part of the WeChat edu_assist_pro

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

- 4. [30 points] FLOW NETWORKS
 - Consider the flow network G = (V, E), where $V = \{s, a, b, c, d, e, f, g, t\}$, s is the source, t is the sink, and the edge set with capacities is $E = \{((s, a), 3), ((s, b), 6), ((a, c), 4), ((a, d), 2), ((b, d), 3), ((b, e), 5), ((c, f), 1), ((d, f), 6), ((d, g), 7), ((e, g), 2), ((f, t), 8), ((g, t), 5)\}.$
 - https://eduassistpro.github.io/
 - (c) Is the maximum flow function f on G unique? Justify.
 - (d) Prove disprove the claim: The marimum flow function on a flow he work is unique if and only if the minimum cut on it is unique.
 - (e) Draw the residual graph for flow f

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro