Cycles and Forecasting of Hawaiin Hotel Occupancy Presentation

Ran Jin

4/13/2018

Background and Key Question

Understanding the dynamics and forecasting the Hawaiin hotel room occupancy is essential to better control a budget for a trip.

Key Questions:

- Is there a predominant cycle present in the Hawaiian hotel occupancy rate change?
- What are the forecast, and forecast error bounds for the Hawaiin hotel occupany rate change for the next 3 years?

To better address these questions, a time series model will be developed. In addition, since it is a quarterly data, I will also develop a model based spectral density estimate, which will address possible cycles in the data.

Data: Definition, Aquisition and Exploration

I am using the Quarterly Hawaiian hotel occupancy rate change from 1982-I to 2015-IV from the *astsa* package. It is defined as a ts object.

Plot1

```
dhor<-diff(hor)
ts.plot(dhor, main="Quarterly Hawaiian hotel occupancy ra</pre>
```

Quarterly Hawaiian hotel occupancy rate change

Plot2

seasonplot(dhor)

Seasonal plot: dhor

ACF and PACF

invisible(astsa::acf2(dhor,40))

Modeling Recruitment

```
recfit0<-invisible(astsa::sarima(dhor,p=4,d=0,q=0,
                                  no.constant=FALSE.
                                  details=F))
recfit1<-invisible(astsa::sarima(dhor,p=4,d=0,q=1,
                                  no.constant=FALSE,
                                  details=F))
recfit2<-invisible(astsa::sarima(dhor,p=4,d=0,q=2,
                                  no.constant=FALSE,
                                  details=F))
recfit3<-invisible(astsa::sarima(dhor,p=4,d=0,q=3,
                                  no.constant=FALSE,
                                  details=F))
recfit4<-invisible(astsa::sarima(dhor,p=4,d=0,q=4,
                                 no.constant=FALSE,
                                  details=F))
```

Comparison

ARIMA(4,0,4) is the best model here.

```
## BIC AIC
## ARIMA(4,0,0) 2.595448 3.487845
## ARIMA(4,0,1) 2.522507 3.393384
## ARIMA(4,0,2) 2.517099 3.366455
## ARIMA(4,0,3) 2.552342 3.380178
## ARIMA(4,0,4) 2.512815 3.319130
```

With seasonal Component

```
recfitar <- invisible (astsa::sarima(dhor,p=4,d=0,q=4,
                                   P=1,S=4,no.constant=F,
                                   details=F))
recfitma<-invisible(astsa::sarima(dhor,p=4,d=0,q=4,
                                   S=4,Q=1,no.constant=F,
                                   details=F))
recfit11<-invisible(astsa::sarima(dhor,p=4,d=0,q=4,
                                   P=1.S=4.Q=1.
                                   no.constant=FALSE,
                                   details=F))
```

Comparison

 $ARIMA(4,0,4) \times AR(1)[4]$ is the best fitted model here.

```
## BIC AIC AICC
## ARIMA(4,0,4)xAR(1)[4] 2.505222 3.290016 3.320730
## ARIMA(4,0,4)xMA(1)[4] 2.511990 3.296784 3.327498
## ARIMA(4,0,2)xARMA(1,1)[4] 2.545871 3.309144 3.342903
```

Model Estimation

Table 1: SARIMA(4,0,4)x(1,0,0)[4] Parameter Estimates

	Estimate	SE	t.value	p.value
ar1	-0.0234	0.0758	-0.3086	0.7581
ar2	-0.1675	0.0575	-2.9116	0.0043
ar3	-0.4188	0.0727	-5.7590	0.0000
ar4	0.7252	0.0726	9.9947	0.0000
ma1	-0.3325	0.0944	-3.5218	0.0006
ma2	-0.0223	0.1078	-0.2065	0.8367
ma3	0.3133	0.1332	2.3521	0.0202
ma4	-0.9586	0.1141	-8.4033	0.0000
sar1	0.1899	0.1138	1.6689	0.0976
xmean	-0.0010	0.0269	-0.0368	0.9707

What is the predominant period?

```
sa <- spec.pgram(dhor,log='no')
text(frequency(dhor)*0.45, 600, substitute(omega==1/2))</pre>
```


Forecasting 2016-2018

sarima.for(dhor,n.ahead=12,p=4,d=0,q=4,P=1,S=4,Q=0)

Summary Conclusions

- -The temporal dynamics of the occupancy rate of Hawaiin hotels is well captured by a seasonal model $ARIMA(4,0,4) \times AR(1)[4]$.
- -We also found the predominant cycle the occupancy rate change series, as indicated by the estimate of the spectral density.
- -Forecasts predict the near term behavior of the series (3 years ahead). And we see that the longterm forecasts oscillates around the estimated mean of the process, as expected.