Quiz 6 Solutions

1. Compute

$$\int_0^4 \frac{1}{x-2} \ dx.$$

Solution: Recall that $\int_a^b f(x) dx$ exists only if $\int_a^b |f(x)| dx$ exists. Observe,

$$\int_0^4 \frac{1}{|x-2|} \ dx = \int_0^2 \frac{1}{|x-2|} \ dx + \int_2^4 \frac{1}{|x-2|} \ dx \ .$$

Let's take the second of these

$$\int_{2}^{4} \frac{1}{|x-2|} dx = \lim_{a \to 2} \int_{a}^{4} \frac{1}{x-2} dx$$
$$= \lim_{a \to 2} \ln(x-2) \Big|_{a}^{4}$$
$$= \lim_{a \to 2} \ln\left(\frac{4}{a}\right)$$
$$= \infty$$

2. Use Euler's method with step size 0.5 to estimate y(2) where y(x) is the solution to the initial value problem

$$y' = x(y - x),$$
 $y(1) = 2.$

Solution:

Let's make a table using

$$y(x + \Delta x) \approx y(x) + y'(x)\Delta x$$
.

x	$\approx y$	$\approx y'$
1	2	1
1.5	2.5	1.5
2	3.25	N/A

Therefore $y(2) \approx 3.25$.