Complex Numbers

Questions are taken from VCE Secondary Papers

2009

Question 1

Find all solutions to the equation $z^4 - z^2 - 6 = 0$, $z \in C$.

Question 4

Given that $\cos(2\theta) = \frac{3}{4}$ where $\theta \in \left(\frac{3\pi}{4}, \pi\right)$, find $\operatorname{cis}(\theta)$ in cartesian form.

Answers

$$z = \pm \sqrt{3}, \pm \sqrt{2} i$$

4.
$$\operatorname{cis}(\theta) = -\frac{\sqrt{7}}{2\sqrt{2}} + \frac{1}{2\sqrt{2}}i$$

Question 2

In the complex plane, L is the line with equation $|z-1| = \left|z - \frac{1}{2} - \frac{\sqrt{3}}{2}i\right|$.

a. Verify that the point (0, 0) lies on L.

Show that the cartesian equation of L is given by $y = \frac{1}{\sqrt{3}}x$.

The equation of the part of L in the third quadrant of the complex plane can be written in the form $Arg(z) = \alpha$.

- Write down the value of α .
- Find, in cartesian form, the point(s) of intersection of L and the graph of |z| = 2.
- Sketch L and the graph of |z| = 2 on the argand diagram below.

f. Find the area in the first quadrant that is enclosed by L and the graphs of |z| = 2, |z| = 1 and $Arg(z) = \frac{\pi}{3}$.

Answers

2. When (0, 0) is substituted, left side of the equation $= \left| -1 \right| = 1$, right side of the equation $= \left| -\frac{1}{2} - i \frac{\sqrt{3}}{2} \right| = \sqrt{\frac{1}{4} + \frac{3}{4}} = 1$

b.
$$(x-1)^2 + y^2 = \left(x - \frac{1}{2}\right)^2 + \left(y - \frac{\sqrt{3}}{2}\right)^2$$
, $x^2 - 2x + 1 + y^2 = x^2 - x + \frac{1}{4} + y^2 - \sqrt{3}y + \frac{3}{4}$, $-x = -\sqrt{3}y$ which gives the required result, $y = \frac{1}{\sqrt{3}}x$.

$$\alpha = -\frac{5\pi}{6}.$$

d. $x^2 + y^2 = 2^2$, $y = \frac{1}{\sqrt{3}}x$, solves to give $(\sqrt{3}, 1), (-\sqrt{3}, -1)$ as the coordinates of the points of intersection.

e.

f. Area =
$$\frac{1}{12} \times (\pi \times 2^2 - \pi \times 1^2) = \frac{\pi}{4}$$

2008

Question 10

Let w = 1 + ai where a is a real constant.

- a. Show that $|w^3| = (1 + a^2)^{\frac{3}{2}}$.
- b. Find the values of a for which $|w^3| = 8$.
- c. Let $p(z) = z^3 + bz^2 + cz + d$ where b, c and d are non-zero real constants. If p(z) = 0 for z = w and all roots of p(z) = 0 satisfy $|z^3| = 8$, find the values of b, c and d and show that these are the only possible values.

Answers

10. b.
$$\pm \sqrt{3}$$

c.
$$b = -4$$
, $c = 8$, $d = -8$ or $p(z) = z^3 - 4z^2 + 8z - 8$

Question 5

- a. Verify that $\frac{\sqrt{3}}{2} + \frac{1}{2}i$ is one root of the equation $z^3 = i$.
- b. Plot the three roots of i on the argand diagram below.

c. Find the points of intersection of the curves given by

$$|z - i| = 1$$
 and $\text{Re}(z) = -\frac{1}{\sqrt{3}}\text{Im}(z)$.

d. Sketch the curves given by the relations |z-i|=1 and $\text{Re}(z)=-\frac{1}{\sqrt{3}}\text{Im}(z)$ on the argand diagram below.

e. On the argand diagram above shade the region given by

$$\{z: |z-i| \le 1\} \cap \{z: 0 \le \text{Arg}(z) \le \frac{2\pi}{3}\}.$$

f. Find the area of the shaded region in part e., correct to two decimal places.

Answers

5. a.
$$\frac{\sqrt{3}}{2} + \frac{1}{2}i = \operatorname{cis}\left(\frac{\pi}{6}\right), \left(\operatorname{cis}\left(\frac{\pi}{6}\right)\right)^3 = \operatorname{cis}\left(\frac{3\pi}{6}\right) = i$$

c.
$$(0,0)$$
, $\left(-\frac{\sqrt{3}}{2},\frac{3}{2}\right)$ or equivalent complex numbers.

Circle and straight line

- e. Shaded region on the diagram above
- f. 2.53

2007

Question 1

Express $\frac{2\sqrt{3} + 2i}{1 - \sqrt{3}i}$ in polar form.

Question 2

a. Show that $\sqrt{5}-i$ is a solution of the equation $z^3-(\sqrt{5}-i)z^2+4z-4\sqrt{5}+4i=0$.

b. Find all other solutions of the equation $z^3 - (\sqrt{5} - i)z^2 + 4z - 4\sqrt{5} + 4i = 0$.

Answers

1.
$$2\operatorname{cis}\left(\frac{\pi}{2}\right)$$
 2. b. $z=\pm 2i$

2006

Question 5

i. Let $z_1 = \operatorname{cis}\left(\frac{\pi}{4}\right)$. Plot and label carefully the points $-z_1$, $\overline{z_1}$ and $-\overline{z_1}$ on the Argand diagram below.

- ii. Write down the complex equation of the straight line which passes through the points z_1 and $-z_1$, in terms of $\overline{z_1}$.
- Use a double angle formula to show that the exact value of $\cos\left(\frac{\pi}{8}\right) = \frac{\sqrt{2+\sqrt{2}}}{2}$. Explain why any values are rejected. Explain why any values are rejected.
- Hence show that the exact value of $\sin\left(\frac{\pi}{8}\right) = \frac{\sqrt{2-\sqrt{2}}}{2}$.
- d. Evaluate $\left(\frac{\sqrt{2+\sqrt{2}}}{2} + \frac{\sqrt{2-\sqrt{2}}}{2}i\right)^{i}$, giving your answer in polar form.
- e. For what values of *n* is $\left(\frac{\sqrt{2+\sqrt{2}}}{2} + \frac{\sqrt{2-\sqrt{2}}}{2}i\right)^n$ a real number?

f. Plot the roots of $z^8 = 1$ on the Argand diagram below.

Answers

5.

ii. $|z-\overline{z_1}|=|z+\overline{z_1}|$

- Solving the equation $\cos\left(\frac{\pi}{4}\right) = 2\cos^2\left(\frac{\pi}{8}\right) 1$ for $\cos\left(\frac{\pi}{8}\right)$ gave the stated result. $\sin^2\left(\frac{\pi}{8}\right) = 1 \cos^2\left(\frac{\pi}{8}\right)$ yields the stated result.
- d.
- $n = 8k, k \in \mathbb{Z}$ (the set of integers)

f.

