NYSTRÖM-OPTIMIZED KERNEL K-MEANS CLUSTERING

A COMPARISON OF CLUSTERING METHODS

LUKE FLECKER AND TANUSH KALLEM

INTRODUCTION TO CLUSTERING

- Clustering: Fundamental unsupervised machine learning task
- Goal: Divide data into clusters based on similarity
- K-means: Simple and efficient, but struggles with non-linear data
- Kernel K-means: Uses RBF kernels for non-linear patterns
 - Computationally intensive for large datasets

THE NYSTRÖM APPROXIMATION

- Problem: Full kernel matrix calculation is expensive
- Solution: Nyström approximation
 - Approximates the kernel matrix by using a subset of data points
 - Reduces computational cost
 - Improves scalability of kernel methods for clustering non-linear data

NYSTRÖM KERNEL K-MEANS METHOD

- Nyström Approximation: Approximates full kernel matrix (K) using a subset of data points(m)
- $K_{approx} = K_{nm}K_{mm}^{-1}K_{M}^{T}$
- K_nm: Kernel matrix between full dataset and sampled points
- K_mm: Kernel matrix of sampled points
- Implementation Samples m=50 points uniformly at random
- Efficient solution for complex data

DATASETS

- Moon: Interleaving crescent shapes
 - Non-linearly separable
- Spiral: Spiral arrangement
 - Non-linearly separable
- Circles: Concentric circles
 - Non-linearly separable
- Blobs: Gaussian-distributed clusters

RESULTS

100

RESULTS

• Linear K-means:

- Fast, but poor on non-linear data (Spiral, Circles)
- Good on linearly separable data (Blobs)

• Nyström Kernel K-means:

- Enhanced accuracy for nonlinear data
- Best accuracy on Moon dataset
- Runtime slower than expected

Full Kernel K-means

- Consistently competitive accuracy
- Runtime comparable to Nyström

Dataset	Method	Accuracy	Runtime(s)	Optimal γ
Moon	Linear K-means	0.85	0.13	-
	Nyström Kernel K-means	0.99	4.68	4.3
	Full Kernel K- means	0.92	3.61	6.6
Spiral	Linear K-means	0.61	0.01	-
	Nyström Kernel K-means	0.69	9.10	4.2
	Full Kernel K- means	0.68	5.47	1.7
Circles	Linear K-means	0.52	0.01	-
	Nyström Kernel K-means	0.73	4.74	2.2
	Full Kernel K- means	1.00	2.31	2.2
Blobs	Linear K-means	1.00	0.00	-
	Nyström Kernel K-means	1.00	1.52	0.1
	Full Kernel K- means	1.00	1.41	0.1

CONCLUSION & FUTURE WORK

- Nyström Kernel K-means: a good alternative for large datasets
 - Outperformed Full Kernel K-means on some datasets
- Can be improved with a coarser gamma search
- Try changing m
- Explore a coarser search for the gamma parameter
- Test on larger datasets
- Test Nyström kernel k-means on real-world applications