Álgebra Linear - Lista de Exercícios 5

escreva seu nome aqui

- 1. Explique porque essas afirmações são falsas
 - (a) A solução completa é qualquer combinação linear de x_p e x_n .

Resolução:

(b) O sistema Ax = b tem no máximo uma solução particular.

Resolução:

(c) Se A é inversível, não existe nenhuma solução x_n no núcleo.

Resolução:

2. Sejam

$$U = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 4 \end{bmatrix} e c = \begin{bmatrix} 5 \\ 8 \end{bmatrix}.$$

Use a eliminação de Gauss-Jordan para reduzir as matrizes $[U\ 0]$ e $[U\ c]$ para $[R\ 0]$ e $[R\ d]$. Resolva Rx=0 e Rx=d

Resolução:

3. Suponha que Ax = b e Cx = b tenham as mesmas soluções (completas) para todo b. Podemos concluir que A = C?

Resolução:

4. Ache o maior número possível de vetores linearmente independentes dentre os vetores:

$$\begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ -1 \end{bmatrix} e \begin{bmatrix} 0 \\ 0 \\ 1 \\ -1 \end{bmatrix}$$

Resolução:

5. Ache uma base para o plano x - 2y + 3z = 0 em \mathbb{R}^3 . Encontre então uma base para a interseção desse plano com o plano xy. Ache ainda uma base para todos os vetores perpendiculares a esse plano.

1

Resolução:

6. Ache (na sua forma mais simples) a matriz que é o produto das matrizes de posto 1 $\mathbf{u}\mathbf{v}^T$ e $\mathbf{w}\mathbf{z}^T$? Qual seu posto?

Resolução:

7. Suponha que a coluna j de B é uma combinação linear das colunas anteriores de B. Mostre que a coluna j de AB é uma combinação linear das colunas anteriores de AB. Conclua que posto $(AB) \leq \text{posto}(B)$.

Resolução:

8. O item anterior nos dá $posto(B^TA^T) \leq posto(A^T)$. É $possível concluir que <math>posto(AB) \leq posto(A)$?

Resolução:

9. Suponha que A e B são matrizes quadradas e AB = I. Prove que posto(A) = n. Conclua que B precisa ser a inversa (de ambos lados) de A. Então, BA = I.

Resolução:

10. $(B\hat{o}nus)$ Dado um espaço vetorial real V, definimos o conjunto

$$V^* := \{ f : V \to \mathbb{R} \mid f \text{ \'e linear} \}.$$

Ou seja, V^* é o conjunto de todas as funções lineares entre V e \mathbb{R} . Relembramos que uma função $f: E \to F$, onde E e F são espaços vetoriais, é dita linear se para todos $\mathbf{v}, \mathbf{w} \in E$ e $\alpha \in \mathbb{R}$ temos $f(\mathbf{v} + \mathbf{w}) = f(\mathbf{v}) + f(\mathbf{w})$ e $f(\alpha \mathbf{v}) = \alpha f(\mathbf{v})$. Chamamos V^* de espaço dual de V.

(a) Mostre que V^* é um espaço vetorial.

Resolução:

(b) Agora, seja $V=\mathbb{R}^n$. Mostre que existe uma bijeção $\varphi:V^*\to V$ tal que , para toda $f\in V^*$ e para todo $\mathbf{v}\in V$, tenhamos

$$f(\mathbf{v}) = \langle \varphi(f), \mathbf{v} \rangle.$$

Dica: Utilize a dimensão finita de \mathbb{R}^n para expandir \mathbf{v} como uma combinação linear dos vetores da base canônica e aplique a linearidade de f.

Resolução:

Em dimensão infinita, esse resultado é conhecido como Teorema da Representação de Riesz.