

BOHOL ISLAND STATE UNIVERSITY

Magsija, Balilihan, 6342, Bohol, Philippines
Office of the College of Computing and Information Sciences

Balance | Integrity | Stewardship | Uprightness

Course Code	CS ELEC 3	Course Credits (Units)	Total:	3	Lecture	2	Lab	1
Course Title	Graphics and Visual Computing	Contact Hours/Week	Total:	5	Lecture	2	Lab	3
Prerequisite	3 rd Year Standing	College / Department	CCIS					
Component	Professional Course	Semester, Academic Year	First Semester, A.Y. 2025-2026					
Program & Year	BS in Computer Science 3	Faculty	Myrtlle Gem L. Oraño					

Goals:	 Pursue faculty and education excellence and strengthen the current viable curricular programs and develop curricular programs that are responsive to the demands of the times both in the industry and the environment. Promote quality research outputs that respond to the needs of the local and national communities. Develop communities through responsive extension programs. Adopt efficient and profitable income generating projects/enterprise for self-sustainability. Provide adequate, state-of-the-art and accessible infrastructure support facilities for quality equation. Promote efficient and effective good governance supportive of high-quality education. 						
Core Values:	Balance, Integrity, Stewardship, and Rightness						
Institutional Grad	Institutional Graduate Attributes:						
	Innovative and service-oriented professionals.						
Program Educati	ogram Educational Objective (PEO):						
	 To provide students with technical and analytical skills in Information and Communications Technology through competence-based training. To demonstrate the practice of ethical standards for IT professionals. To produce research-oriented and competent information specialists for various sectors of society To inculcate students' awareness on the involvement of IT in the preservation and protection of the environment. 						

BOHOL ISLAND STATE UNIVERSITY

Magsija, Balilihan, 6342, Bohol, Philippines
Office of the College of Computing and Information Sciences

Balance | **I**ntegrity | **S**tewardship | **U**prightness

COURSE SYLLABUS

Program Outcomes: (Based on your Program CMO)

Program Outcomes (POs)

POs Common to all programs in all types of schools

- PO 1: Articulate and discuss the latest developments in the specific field of practice. (PQF level 6 descriptor)
- PO 2: Effectively communicate orally and in writing using both English and Filipino.
- PO 3: Work effectively and independently in multi-disciplinary and multi-cultural teams. (PQF level 6 descriptor)
- PO 4: Act in recognition of professional, social, and ethical responsibility.
- PO 5: Preserve and promote "Filipino historical and cultural heritage" (based on RA 7722)

POs Common to the discipline

- PO 6: Analyze complex problems, and identify and define the computing requirements needed to design an appropriate solution.
- PO 7: Apply computing and other knowledge domains to address real-world problems.
- PO 8: Design and develop computing solutions using a system-level perspective.
- PO 9: Utilize modern computing tools.

Specific to BS Computer Science

- PO 10: Apply knowledge of computing fundamentals, knowledge of a computing specialization, and mathematics, science, and domain knowledge appropriate for the computing specialization to the abstraction and conceptualization of computing models from defined problems and requirements.
- PO 11: Identify, analyze, formulate, research literature, and solve complex computing problems and requirements reaching substantiated conclusions using fundamental principles of mathematics, computing sciences, and relevant domain disciplines.
- PO 12: An ability to apply mathematical foundations, algorithmic principles and computer science theory in the modeling and design of computer-based systems in a way that demonstrates comprehension of the tradeoffs involved in design choices.
- PO 13: Knowledge and understanding of information security issues in relation to the design, development and use of information systems.
- PO 14: Design and evaluate solutions for complex computing problems, and design and evaluate systems, components, or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.
- PO 15: Create, select, adapt and apply appropriate techniques, resources and modern computing tools to complex computing activities, with an understanding of the limitations to accomplish a common goal.
- PO 16: Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings.

BOHOL ISLAND STATE UNIVERSITY

Magsija, Balilihan, 6342, Bohol, Philippines
Office of the College of Computing and Information Sciences

Balance | **I**ntegrity | **S**tewardship | **U**prightness

COURSE SYLLABUS

PO 17: Communicate effectively with the computing community and with society at large about complex computing activities by being able to comprehend and write effective reports, design documentation, make effective presentations, and give and understand clear instructions.

PO 18: An ability to recognize the legal, social, ethical and professional issues involved in the utilization of computer technology and be guided by the adoption of appropriate professional, ethical and legal practices.

PO 19: Recognize the need, and have the ability, to engage in independent learning for continual development as a computing professional.

Course Outcomes in Relation to Program Outcomes Program Outcomes (POs) Course Outcomes (COs) (Legend: I – Introduced, E – Enabled, D – Demonstrated) At the end of the course, the learners should be able to: PO 10 PO 11 PO 12 PO 14 CO1. Utilize Python to implement fundamental 2D graphics concepts and image filtering techniques. Ε D D CO2. Apply 3D coordinate systems and projections to create and render 3D scenes. D D CO3. Apply basic shading and lighting techniques to create visually realistic 3D scenes. CO4. Implement machine learning and deep learning algorithms to solve computer vision problems. Ε D D

Legend:

I – Introduced – An introductory course to an outcome; E – Enabled - A course that strengthens the outcome; D – Demonstrated – A course demonstrating an outcome

	This course provides an in-depth understanding of graphics and visual computing, utilizing Python and its built-in libraries. Through projects,
Course Description:	assignments, and real-world application, students will gain knowledge in computer graphics, image processing, computer vision, and theoretical and
	conceptual frameworks.

ourse itcome	Learning Objectives	Content/Course Matter	Time Frame	Teaching and Learning Activities	Assessment Tasks	Remarks
	By the end of the week, the students are expected to: > Understand the scope and objectives of the course.	 Overview Course Introduction Course Syllabus Discussion Class Policies 	WEEK 1	Course SyllabusLecture/ Discussion	✓ Diagnostic Exam/Pretest ✓ Assignment 1	

BOHOL ISLAND STATE UNIVERSITY

Magsija, Balilihan, 6342, Bohol, Philippines
Office of the College of Computing and Information Sciences

Balance | Integrity | Stewardship | Uprightness

 Understand the course schedule, grading system, required materials, and major assessments, enhancing their academic preparedness and planning. 					
By the end of the week, the students are expected to: > Review of data types, control flow, functions, and object-oriented programming.	Introduction to Python for Graphics (Part 1) • Python Basics Refresher	WEEK 2	Lecture/ Discussion	✓ Quiz 1 ✓ Activity 1 ✓ Assignment 2	
By the end of the week, the students are expected to: > Understand image, pixel data, and array manipulation using NumPy. > Demonstrate techniques in creating 2D and 3D plotting for basic visualization.	Introduction to Python for Graphics (Part 2) Basic Image Manipulation with PIL/Pillow Visualizing Data with Matplotlib	WEEK 3	 Lecture/ Discussion Laboratory Exercise 1 Announcement 	✓ Quiz 2 ✓ Laboratory Exercise 1 Announcement ✓ Assignment 3	
By the end of the week, the students are expected to: > Understand the basics of computer graphics and visual computing. > Recognize the key historical milestones in the field. > Identify current applications in various industries.	Foundations of Graphics & Visual Computing Overview of Computer Graphics History and Evolution Applications for Modern Computing	WEEK 4	 Lecture/ Discussion Laboratory Exercise 1 	✓ Quiz 3 ✓ Laboratory Exercise 1 ✓ Assignment 4	

BOHOL ISLAND STATE UNIVERSITY

Magsija, Balilihan, 6342, Bohol, Philippines
Office of the College of Computing and Information Sciences

Balance | Integrity | Stewardship | Uprightness

	COURSE STELF	4003		
By the end of the week, the students are expected to: Implement Python code to create 2D geometric shapes, demonstrating a basic understanding of coordinate systems. Apply and combine 2D geometric transformations with graphic objects using Python.	 2D Core Graphics Concepts Drawing Primitives and Shapes Geometric Transformations (2D) 	WEEK 5	Lecture/ Discussion	✓ Quiz 4 ✓ Activity 2 ✓ Assignment 5
By the end of the week, the students are expected to: > Understand the concepts of convolution and correlation techniques. > Understand basic noise reduction techniques to improve image quality in Python.	Image Filtering and Enhancement	WEEK 6	 Lecture/ Discussion Laboratory Exercise 2 Announcement 	✓ Quiz 5 ✓ Laboratory Exercise 2 Announcement ✓ Assignment 6
By the end of the week, the students are expected to: Define and represent points and vectors in 3D space and perform basic vector operations using Python. Understand 3D translation, scaling, and rotation using transformation matrices in Python. Utilize a basic Python 3D graphics library to render	 3D Coordinate Systems and Transformations Understanding 3D Space, Points, Vectors 3D Translation, Scaling, Rotation Matrices Introduction to Basic 3D Libraries 	WEEK 7	 Lecture/ Discussion Laboratory Exercise 2 	✓ Quiz 6 ✓ Laboratory Exercise 2 ✓ Assignment 7

BOHOL ISLAND STATE UNIVERSITY

Magsija, Balilihan, 6342, Bohol, Philippines
Office of the College of Computing and Information Sciences

Balance | Integrity | Stewardship | Uprightness

	COUNSE STEE	100		
simple 3D scenes and objects.				
By the end of the week, the students are expected to: > Understand the difference between orthographic and perspective projections. > Understand viewing transformations to position and orient a virtual camera in a 3D scene.	Projections and Camera Model Orthographic and Perspective Projections Viewing Transformations	WEEK 8	Lecture/ Discussion	✓ Quiz 7 ✓ Assignment 8
By the end of the week, the students are expected to: Discover the science behind light and perception in imaging.	 Ambient, Diffuse, Specular Lighting Introduction to Simple Light Sources 	WEEK 9	Lecture/ Discussion	✓ Quiz 8 ✓ Assignment 9
	MIDTERM EXAMINATION	N (WEEK 1	0)	
By the end of the week, the students are expected to: > Understand fundamental image segmentation techniques to isolate objects or regions within ar image. > Identify and describe key features (e.g., corners, edges) in images. > Implement basic object detection methods in images using Python.	Advanced Image Processing and Computer Vision Fundamentals Image Segmentation Feature Detection and Description Object Detection Fundamentals	WEEK 11	 Lecture/ Discussion Laboratory Exercise 3 Announcement 	✓ Quiz 9 ✓ Laboratory Exercise 3 Announcement ✓ Assignment 10

BOHOL ISLAND STATE UNIVERSITY

Magsija, Balilihan, 6342, Bohol, Philippines
Office of the College of Computing and Information Sciences

 \pmb{B} alance | \pmb{I} ntegrity | \pmb{S} tewardship | \pmb{U} prightness

By the end of the week, the students are expected to: Develop simple interactive graphical applications using Pygame or Pyglet in Python.	Real-time and Interactive Graphics • Introduction to Pygame/Pyglet for Interactive Applications	WEEK 12	 Lecture/ Discussion Laboratory Exercise 3 	✓ Quiz 10 ✓ Laboratory Exercise 2 ✓ Assignment 11
By the end of the week, the students are expected to: Differentiate between supervised and unsupervised learning paradigms in machine learning. Identify and apply basic regression and classification concepts.	Introduction to Machine Learning Concepts (Part 1) • Supervised vs. Unsupervised Learning • Regression and Classification basics	WEEK 13	Lecture/ Discussion	✓ Quiz 11 ✓ Assignment 12
By the end of the week, the students are expected to: Split datasets into training, validation, and testing sets for machine learning model development. Implement and train simple machine learning models using scikit-learn for basic tasks.	Introduction to Machine Learning Concepts (Part 2) • Training, validation, and testing data • Introduction to scikit-learn for simple ML models	WEEK 14	 Lecture/ Discussion Laboratory Exercise 4 Announcement 	✓ Quiz 12 ✓ Laboratory Exercise 4 Announcement ✓ Assignment 13
By the end of the week, the students are expected to: > Explain the basic architecture and function of	 Deep Learning Fundamentals (Part 1) Neural Networks (perceptrons, multi-layer perceptrons) Introduction to Convolutional Neural Networks (CNNs) 	WEEK 15	 Lecture/ Discussion Laboratory Exercise 4 	✓ Quiz 13 ✓ Laboratory Exercise 4 ✓ Assignment 14

BOHOL ISLAND STATE UNIVERSITY

Magsija, Balilihan, 6342, Bohol, Philippines
Office of the College of Computing and Information Sciences

 \pmb{B} alance | \pmb{I} ntegrity | \pmb{S} tewardship | \pmb{U} prightness

COURSE SYLLABUS

	OOUNGE OTEL	100	•		
perceptrons and multi-layer perceptrons. Describe the core concepts and purpose of Convolutional Neural Networks (CNNs) in image processing.					
By the end of the week, the students are expected to: Identify and explain the roles of convolutional, pooling, and fully connected layers within a CNN architecture. Implement and train a basic Convolutional Neural Network (CNN) using TensorFlow/Keras or PyTorch.	Deep Learning Fundamentals (Part 2)	WEEK 16	Lecture/ Discussion	✓ Quiz 14 ✓ Assignment 15	
By the end of the week, the students are expected to: Analyze and critically evaluate key concepts and theories discussed in the course, demonstrating a comprehensive understanding of the subject matter.	Written Final Examination	WEEK 17	 Final Written Examination Final Project Consultation 	✓ Final Written Examination	
		611 017	(40)	·	

FINAL PITCH PRESENTATION (WEEK 18)

BOHOL ISLAND STATE UNIVERSITY

Magsija, Balilihan, 6342, Bohol, Philippines
Office of the College of Computing and Information Sciences

Balance | Integrity | Stewardship | Uprightness

COURSE SYLLABUS

References:	Campbell, J., Gries, P., Montojo, J., & Wilson, G. (2009). <i>Practical Programming: An introduction to computer science using Python</i> . http://ndl.ethernet.edu.et/bitstream/123456789/54569/1/1.pdf.pdf Heaton, J. (2017). lan Goodfellow, Yoshua Bengio, and Aaron Courville: Deep learning. <i>Genetic Programming and Evolvable Machines</i> , 19(1–2), 305–307. https://doi.org/10.1007/s10710-017-9314-z Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2012). <i>Foundations of machine learning</i> . http://ci.nii.ac.jp/ncid/BB10313921 Szeliski, R. (2022). <i>Computer Vision: Algorithms and Applications</i> (2nd ed.). Springer. Retrieved from https://szeliski.org/Book/ <i>Other Supplementary Materials</i> , details will be given in each learning material guides.					
Integration of Values:	Patience, appreciation, diligence, precision and accuracy, self-confidence, hard work, honesty, determination, discipline, perseverance, time management, independence, optimism, persistence, neatness and orderliness					
Grading System:	50% passing mark/transmutation of raw scores or cumulative related scores Major Examinations Major Outcome-Based Projects (performance/practicum) Class Works and Participation (Quizzes, Assignments, Attendance) TOTAL 30 % 100 %					
Classroom Policies:	 Attendance is recorded (excerpt from Student Handbook). During scheduled online classes, learning materials will be provided for self-paced study. Virtual classes will only be conducted if announced in advance. Students are expected to meet all deadlines for assignments and projects. Rules to follow during laboratory exercises: 					

Designed by: Reviewed by: Approved:

MYRTLLE GEM L. ORAÑO Instructor 1 CATHERINE LEAH G. GABO, MEng Chairperson, CIS SHELLA C. OLAGUIR, PhD
Dean, CCIS

BOHOL ISLAND STATE UNIVERSITY

Magsija, Balilihan, 6342, Bohol, Philippines
Office of the College of Computing and Information Sciences

Balance | Integrity | Stewardship | Uprightness

COURSE SYLLABUS

PROJECTS/ACTIVITIES RUBRICS

LABORATORY EXERCISES CRITERIA

Table 1. Laboratory Exercise Criteria

CRITERIA	EXCELLENT	PROFICIENT	SATISFACTORY	NEEDS IMPROVEMENT	UNSATISFACTORY
Functionality	15 pts: The code produces the	12 pts: Has minor issues, mostly	9 pts: Some features were missing	6 pts: Major features were	3 pts: The code fails to run
	expected results and covers all	correct results, and covers most	or buggy, but core functionality	missing or incorrect results.	or does not meet
	required features and tasks.	features.	works.		requirements.
Code Understanding	10 pts: An in-depth understanding	8 pts: Shows good knowledge of	6 pts: Understands the code but	4 pts: Shows limited	2 pts: Failed to demonstrate
	of the code was observed, with no	the code, with minor errors and	misses key details or has unclear	understanding, which raises	understanding, leading to
	errors about the code's	gaps in the explanation.	explanation.	the question of code	questions on students'
	functionality and overall			originality and ownership.	credibility and code
	performance.				ownership.
Code Quality	10 pts: The code is optimized and	8 pts: Mostly efficient and	6 pts: Has acceptable readability,	4 pts: Has poor readability	2 pts: Unreadable or highly
	efficient in its execution and is	readable, with minor	with some inefficiencies.	or inefficient logic.	inefficient code.
	readable.	improvements needed.			
Originality	5 pts: The code is original and	4 pts: Some originality, mostly	3 pts: Standard approach, minimal	2 pts: Predictable and	1 pt: No originality or clear
	follows a distinct flow that is	logical.	creativity.	disorganized.	flow.
	unique to the pair's approach to				
	the problem.				
Comments	5 pts: The code is well-	4 pts: Mostly clear with some	3 pts: Basic comments, some	2 pts: Sparse or unclear	1 pt: No comments or
	commented and easy to	comments.	unclear parts.	comments.	confusing code.
	understand.				
Collaboration & Teamwork	5 pts: The defense is clear,	4 pts: Mostly clear and	3 pts: Adequate but lacks	2 pts: Disorganized or	1 pt: No defense or poor
	engaging, and well-structured,	collaborative.	engagement or structure.	unclear defense.	teamwork.
	showcasing effective collaboration				
	and teamwork.				
TOTAL	and teamwork.				50 F

ACTIVITY CRITERIA

Table 2. Activity Criteria

COMPONENT	DESCRIPTION	POINTS
Objective Alignment		10 POINTS

BOHOL ISLAND STATE UNIVERSITY

Magsija, Balilihan, 6342, Bohol, Philippines
Office of the College of Computing and Information Sciences

Balance | Integrity | Stewardship | Uprightness

COURSE SYLLABUS

Clear Objectives	The activity's objectives are clearly stated and easy to understand.	5 points	
Relevance to Learning Goals	The activity directly supports and enhances the learning objectives.	5 points	
Content Quality			15 POINTS
Accuracy	The information provided is accurate and reliable.	5 points	
Depth	The content is thorough and covers the topic comprehensively.	5 points	
Relevance	The content is highly relevant to the topic and objectives.	5 points	
Use of Tools/Resources			10 POINTS
Effective Usage	Tools and resources are used effectively to enhance the learning experience.	5 points	
Appropriateness	The chosen tools and resources are appropriate for the activity and audience.	5 points	
Creativity and Originality			15 POINTS
Creativity	The activity shows creativity and innovative approaches.	5 points	
Engagement	The activity is engaging and captures participants' interest.	5 points	
Originality	The activity is original and demonstrates unique ideas.	5 points	
TOTAL			50 POINTS

FINAL PROJECT/EXAM CRITERIA

Table 3. Output Grading Criteria

COMPONENT	DESCRIPTION	POINTS
Project Proposal	·	20 POINTS
Clarity and Objectives	The project proposal is clear and well-defined with specific objectives.	10 points
Feasibility	The project is feasible within the given time frame and resources.	10 points
Code Implementation	·	40 POINTS
Code Quality	The code is well-formatted and logically organized.	20 points
Functionality	The code meets the project requirements and produces correct results.	20 points
Code Quality		20 POINTS
Efficiency	The code is optimized and efficient in its execution.	10 points
Readability	The code is readable and well-formatted.	10 points
Presentation	The project presentation is clear, engaging, and well-organized.	10 POINTS
Testing and Validation	·	10 POINTS
Testing Coverage	The code has been thoroughly tested with sufficient test cases.	5 points
Validation	The code handles edge cases and potential errors gracefully.	5 points
TOTAL		100 POINTS

Table 4. Pitching Criteria

COMPONENT	DESCRIPTION	POINTS

BOHOL ISLAND STATE UNIVERSITY

Magsija, Balilihan, 6342, Bohol, Philippines
Office of the College of Computing and Information Sciences

Balance | Integrity | Stewardship | Uprightness

COURSE SYLLABUS

Content Quality			25 POINTS
Relevance of information	Ensures content aligns with the purpose of the website.	10 points	
Clarity and grammar	Maintains proper grammar and clear communication.	10 points	
Creativity in presentation	Delivers innovative and engaging storytelling or ideas.	5 points	
Design and UX	•		20 POINTS
Aesthetic design	Combines color, typography, and visuals effectively.	10 points	
Ease of navigation	Provides seamless and intuitive user experience.	10 points	
Functionality			15 POINTS
Efficiency	The website produces the expected results with minimal to no errors.	10 points	
Loading speed	Smooth navigation and responsive features.	5 points	
Delivery of Pitch			20 POINTS
Clear diction and flow	Confidence, clarity, and overall presentation skills.	10 points	
Effective time management	Presents information efficiently within the given time.	10 points	
Audience Impact	•		20 POINTS
Emotional resonance	Strikes a deep connection with the audience emotionally.	10 points	
Persuasiveness	Demonstrates compelling and convincing arguments.	10 points	
TOTAL	•		100 POINTS

Table 5. QnA Grading Criteria

Table of the ording officers		
COMPONENT	DESCRIPTION	POINTS
Response Quality	Each student answered well and comprehensively during the Q&A session.	10 POINTS
Understanding of the Code	Each student demonstrated a clear understanding of their code and project.	10 POINTS
TOTAL		20 POINTS

Table 6. Overall Grading Conversion

Components	Scores
Output Grading	100
Pitching	100
QnA .	20
Total	220
Equivalent	100 points