Guía 3: Reticulados par

Definición inicial y algunas propiedades

- Reticulado par: poset (P, \leq) el cual cumple que $\forall a, b \in P$ existen en (P, \leq) sup $(\{a, b\})$ e $inf(\{a,b\})$
- Propiedades:
 - Si (P, \leq) es un conjunto totalmente ordenado, entonces (P, \leq) es un reticulado par.
 - Si (P, \leq) es un reticulado par, entonces existe $\sup(S) \forall S \subseteq P$.

Functiones s, i

- Función binaria: Dado un conjunto A, por una operación binaria sobre A entenderemos una función cuyo dominio es A^2 y cuya imagen está contenida en A.
- **Funciones** s, i: En un reticulado par (P, \leq) tenemos dos operaciones binarias naturalmente definidas:

$$\begin{split} s: P^2 \to P & i: P^2 \to P \\ (a,b) \to \sup(\{a,b\}) & (a,b) \to \inf(\{a,b\}) \end{split}$$

- Escribiremos $a \ s \ b$ en lugar de s(a,b) y $a \ i \ b$ en lugar de i(a,b)
- Lemas: Dado un reticulado par (L, \leq) :
 - Cotas básicas, Reflexividad y Conmutatividad. Se cumplen las siguientes:
 - 1. $x \le x \ s \ y \ \forall x, y \in L$
 - $2. \ x \ i \ y \leq x \ \forall x, y \in L$
 - 3. $x s x = x \forall x \in L$
 - $4.\ x\ i\ x=x\ \forall x\in L$
 - 5. $x s y = y s x \forall x, y \in L$
 - 6. $x i y = y i x \forall x, y \in L$
 - Supremo e ínfimo cuando están relacionados. Se tiene que:
 - 1. $x \le y \iff x \ s \ y = y \ \forall x, y \in L$
 - 2. $x \leq y \iff x \ i \ y = x \ \forall x, y \in L$
 - Absorción. Se tiene que:
 - 1. $x s (x i y) = x \forall x, y \in L$
 - 2. $x i (x s y) = x \forall x, y \in L$
 - Asociatividad. Se tiene que:
 - 1. $(x s y) s z = x s (y s z) \forall x, y, z \in L$
 - 2. $(x i y) i z = x i (y i z) \forall x, y, z \in L$
 - Preserva el orden. Se tiene que:
 - 1. $x \le z \land y \le w \Rightarrow x \ s \ y \le z \ s \ w \ \forall x, y, z, w \in L$
 - 2. $x < z \land y < w \Rightarrow x \ i \ y < z \ i \ w \ \forall x, y, z, w \in L$
 - Desigualdad de la distributividad. Se tiene que:
 - $*(x i y) s (x i z) \leq x i (y s z) \forall x, y, z \in L$
 - Relación entre s/i con sup/inf para conjuntos. Se tiene que, cualesquiera sean los elementos $x_1, ..., x_n \in L : n \ge 2$:
 - * $(...(x_1 \ s \ x_2) \ s \ ...) \ s \ x_n = \sup(\{x_1,...,x_n\})$
 - * $(...(x_1 \ i \ x_2) \ i \ ...) \ i \ x_n = \inf(\{x_1, ..., x_n\})$
- Notación: Dado que la distribución de paréntesis en una expresión de la forma $(...(x_1 s x_2) s ...) s x_n$ es irrelevante (ya que s es asociativa), en general se suprimen. Lo mismo para i.

Reglas/Trucos para demostraciones

- Igualdad en Posets: Para ver que x = y en un poset (P, \leq) , ver que:
 - -x < y

- $-y \leq x$.
- Igualar un Supremo: Para ver que $x=\sup(S)$ en un poset (P,\leq) , ver que:

 - -x es cota superior de S $-x \le z \ \forall z$ cota superior de S
- Superar un Supremo: Para ver que $z \geq x$ s y en un reticulado par (L, \leq) , ver que:
 - $\begin{array}{l}
 -z \ge x \\
 -z \ge y
 \end{array}$
- Ser Menor o Igual que un Ínfimo: Para ver que $z \le x$ i y en un reticulado par (L, \le) , ver que:

 - $\begin{array}{l} -\ z \leq x \\ -\ z \leq y \end{array}$