Álgebra Linear e Geometria Analítica

Agrupamento IV: Mestrado Integrado em Eng. ^a Eletrónica e Telecomunicações | Mestrado Integrado em Eng. ^a de Computadores e Telemática | Licenciatura em Eng. ^a Informática

06 de Dezembro de 2019 Duração: 1h10

2ª prova de avaliação

Justifique devidamente todas as suas respostas.

1. Considere o subespaço de \mathbb{R}^3

$$S = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 - 2x_2 + x_3 = 0\}.$$

Determine uma base de S e indique a dimensão de S.

2. Considere a base $\mathcal{B} = (X_1, X_2, X_3)$ de \mathbb{R}^3 , com os vetores $X_1, X_2, X_3 \in \mathbb{R}^3$ definidos por

$$X_1 = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T$$
; $X_2 = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$; $X_3 = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}^T$

e a base $\mathcal{T}=(Y_1,Y_2,Y_3)$ de \mathbb{R}^3 definida por

$$Y_1 = \left[\begin{array}{cccc} 1 & 0 & 0 \end{array} \right]^T; \quad Y_2 = \left[\begin{array}{cccc} 1 & 1 & 0 \end{array} \right]^T; \quad Y_3 = \left[\begin{array}{cccc} 0 & -1 & 1 \end{array} \right]^T.$$

- (a) Determine a matriz de mudança de base de \mathcal{B} para \mathcal{T} .
- (b) Usando a matriz de mudança de base obtida, represente o vetor $Z=-X_1-X_2+2X_3$ como combinação linear dos vetores da base \mathcal{T} .

Caso não tenha resolvido a alínea anterior, use a matriz A da Questão 4.

- 3. Sejam X=(1,0,1), Y=(0,1,1) e W=(1,1,0) vetores de \mathbb{R}^3 . Seja ainda (X,Y) uma base ordenada do subespaço $\mathcal{F}=\langle X,Y\rangle$ gerado por X e Y.
 - (a) Justifique que (X, (-1, 2, 1)) é uma base ortogonal de \mathcal{F} .
 - (b) Determine a projeção ortogonal de W sobre \mathcal{F} .
- 4. Considere a matriz

$$A = \left[\begin{array}{rrr} 1 & -1 & 0 \\ 1 & 0 & 3 \\ 0 & -1 & -3 \end{array} \right]$$

sendo $\lambda = -1$ um dos seus valores próprios.

- (a) Determine o subespaço próprio associado ao valor próprio $\lambda = -1$ e indique o conjunto de todos os vetores próprios associados ao valor próprio $\lambda = -1$.
- (b) Diga, justificando, se a matriz A é diagonalizável. Em caso afirmativo obtenha uma matriz diagonalizante para A.

Questão	1	2	3	4
Cotação	2.5	6	6	5.5