LUNDS TEKNISKA HÖGSKOLA MATEMATIK

LÖSNINGAR ENDIMENSIONELL ANALYS A1 2015–10–29 kl 14–19

1. a)
$$-\sqrt{3}/2$$

b)
$$x = 0, x = \pm 1$$

c)
$$x = 2$$

d)
$$ln(11/9)$$

e)
$$x < 4$$

f)
$$4\sqrt{2}$$
 cm

g)
$$\frac{13+5\sqrt{7}}{2}$$

h)
$$210^{\circ}$$

i)
$$-3$$

j)
$$x = 1/2$$

2. a) Binomialsatsen tillsammans med potenslagar ger att

$$(x^2 + \frac{1}{2x})^{11} = \sum_{k=0}^{11} {11 \choose k} (x^2)^{11-k} \left(\frac{1}{2x}\right)^k = \sum_{k=0}^{11} {11 \choose k} \left(\frac{1}{2}\right)^k x^{22-3k},$$

så koefficienten får vi då 22 - 3k = 7, dvs. k = 5, och blir $\binom{11}{5} \left(\frac{1}{2}\right)^5 = \frac{231}{16}$.

b) Detta rör sig om en geometrisk summa, och vi får

$$\frac{2}{3} - \frac{2}{9} + \frac{2}{27} - \frac{2}{81} + \dots - \frac{2}{3^{20}} = \frac{2}{3} \left(1 + \left(-\frac{1}{3} \right) + \left(-\frac{1}{3} \right)^2 + \dots + \left(-\frac{1}{3} \right)^{19} \right) =$$

$$= \frac{2}{3} \frac{1 - \left(-\frac{1}{3} \right)^{20}}{1 - \left(-\frac{1}{3} \right)} = \frac{1}{2} (1 - 3^{-20}).$$

3. a)

$$e^x = 4e^{-x} + 3$$
 \Leftrightarrow $e^x = \frac{4+3e^x}{e^x}$ \Leftrightarrow $(e^x)^2 - 3e^x - 4 = 0$ \Leftrightarrow $e^x = 4$ (eller $e^x = -1$) \Leftrightarrow $x = \ln 4$.

b)

$$\ln x + \ln(x^2) \cdot \ln(x^4) = 0 \qquad \Leftrightarrow \qquad \ln x + 2 \cdot 4 \cdot (\ln x)^2 = 0$$

$$\Leftrightarrow \qquad (\ln x)(1 + 8 \ln x) = 0 \qquad \Leftrightarrow \qquad \ln x = 0 \quad \text{eller} \quad \ln x = -\frac{1}{8}$$

$$\Leftrightarrow \qquad x = 1 \quad \text{eller} \quad x = e^{-1/8}.$$

- c) Se läroboken sidan 36.
- **4.** a) Se geometriboken sidan 15.

b) Kvadratkomplettering ger

$$x^{2} - 4x + 2y^{2} + 4y + 4 = 0 \Leftrightarrow (x - 2)^{2} - 4 + 2(y^{2} + 2y) + 4 = 0 \Leftrightarrow$$

$$\Leftrightarrow (x-2)^2 + 2((y+1)^2 - 1) = 0 \Leftrightarrow \frac{(x-2)^2}{(\sqrt{2})^2} + (y+1)^2 = 1,$$

och vi ser att det rör sig om en ellips med medelpunkt (2,-1) och halvaxlar $\sqrt{2}$ respektive 1.

- c) Se läroboken sidan 144.
- 5. a) Hanterar vi absolutbeloppet genom att dela upp i fall får vi

$$f(x) = \begin{cases} x^2 + 2x - 1 = (x+1)^2 - 2 & \text{då } x \ge 1/2, \\ x^2 - 2x + 1 = (x-1)^2 & \text{då } x < 1/2, \end{cases}$$

och med förflyttningsregler tillämpade på "grundparabeln" $y=x^2$, får vi grafen nedan (heldragen). Ur denna kan vi avläsa att ekvationen f(x)=a saknar lösning precis då a<1/4 (den vågräta linjen y=a skär då inte grafen).

Vi löser slutligen ekvationen f(x)=3. I fallet $x\geq 1/2$ får vi ekvationen $(x+1)^2-2=3 \Leftrightarrow x=-1\pm\sqrt{5}$, där $x=-1-\sqrt{5}$ ligger utanför intervallet, och i fallet x<1/2 får vi $(x-1)^2=3 \Leftrightarrow x=1\pm\sqrt{3}$, där vi bortser från lösningen $x=1+\sqrt{3}$. De enda rötterna är alltså $x=-1+\sqrt{5}$ och $x=1-\sqrt{3}$.

b) Med hjälp av formeln för dubbla vinkeln för sinus får vi

$$\sin 2x + \sqrt{6}\sin x + 2\sin^2 x = 0 \quad \Leftrightarrow \qquad 2\sin x \cos x + \sqrt{6}\sin x + 2\sin^2 x = 0 \quad \Leftrightarrow$$

$$\Leftrightarrow 2\sin x(\cos x + \frac{\sqrt{6}}{2} + \sin x) = 0 \Leftrightarrow \sin x = 0 \text{ eller } \cos x + \sin x = -\frac{\sqrt{6}}{2}.$$

Ekvationen sin x = 0 har lösningarna $x = k\pi$, $k \in \mathbb{Z}$, så det återstår att hantera det andra fallet. Vi använder hjälpvinkelmetoden:

$$\cos x + \sin x = -\frac{\sqrt{6}}{2} \iff \sqrt{2}\sin\left(x + \frac{\pi}{4}\right) = -\frac{\sqrt{6}}{2}$$

$$\Leftrightarrow \sin\left(x + \frac{\pi}{4}\right) = -\frac{\sqrt{3}}{2} \iff x + \frac{\pi}{4} = -\frac{\pi}{3} + 2\pi k \quad \text{eller} \quad x + \frac{\pi}{4} = \frac{4\pi}{3} + 2\pi k, \quad k \in \mathbb{Z},$$

$$\Leftrightarrow \qquad x = -\frac{7\pi}{12} + 2\pi k \quad \text{eller} \quad x = \frac{13\pi}{12} + 2\pi k, \quad k \in \mathbb{Z}.$$

Lösningarna ges alltså av $x=k\pi,\; x=-\frac{7\pi}{12}+2\pi k$ och $x=\frac{13\pi}{12}+2\pi k,\quad k\in\mathbb{Z}.$

6. a) Det gäller att

$$f\left(\frac{3\pi}{4}\right) = \arccos\left(\cos\frac{3\pi}{4}\right) = \arccos\left(-\frac{1}{\sqrt{2}}\right) = \frac{3\pi}{4}$$

$$f\left(\frac{5\pi}{4}\right) = \arccos\left(\cos\frac{5\pi}{4}\right) = \arccos\left(-\frac{1}{\sqrt{2}}\right) = \frac{3\pi}{4}$$

Grafen för f får följande utseende:

b) Ekvationen i uppgiften kan alternativt skrivas

$$\arccos(\cos x) = \frac{x}{2},$$

så vi söker (x-koordinaterna till) alla skärningspunkter mellan grafen för f och linjen y=x/2. Från grafen ser vi att det handlar om två skärningspunkter, dels origo och dels en punkt med x-koordinat i intervallet $[\pi, 2\pi]$. (Observera att $V_f = [0, \pi]$, så för att ekvationen f(x) = x/2 ska ha en lösning måste det gälla att $0 \le x \le 2\pi$.)

I intervallet $[\pi, 2\pi]$ gäller det att $f(x) = 2\pi - x$, så vi får $2\pi - x = \frac{x}{2} \Leftrightarrow x = \frac{4\pi}{3}$. Ekvationen har alltså de två lösningarna x = 0 och $x = 4\pi/3$.

c) Ekvationen f(x) = x/a har tre lösningar precis då linjen y = x/a går igenom någon av punkterna $(3\pi, \pi)$ och $(-3\pi, \pi)$ (se figuren). Detta inträffar då a = 3 respektive a = -3.

