Languages that are and are not Regular

CENG 280

Course outline

- Preliminaries: Alphabets and languages
- Regular languages
 - Regular expressions
 - Finite automata: DFA and NFA
 - Finite automata regular languages
 - Languages that are and that are not regular, Pumping lemma
 - State minimization for DFA
- Context-free languages
- Turing-machines

Languages that are and are not Regular

- Methods to show that a language is regular
- Methods to show that a language is not regular

To show that a language L is regular, one of the following methods can be used:

To show that a language L is regular, one of the following methods can be used:

• write a regular expression α such that $L = \mathcal{L}(\alpha)$

To show that a language L is regular, one of the following methods can be used:

- write a regular expression α such that $L = \mathcal{L}(\alpha)$
- construct an NFA M such that L = L(M)

To show that a language L is regular, one of the following methods can be used:

- write a regular expression α such that $L = \mathcal{L}(\alpha)$
- construct an NFA M such that L = L(M)
- use closure properties, e.g., for regular languages L_1 and L_2 , show $L=L_1\cap L_2$, $L=L_1\cup L_2$, $L=L_1L_2$, or $L=\Sigma^\star\setminus L_1$ (more examples can be added)

To show that a language L is regular, one of the following methods can be used:

- write a regular expression α such that $L = \mathcal{L}(\alpha)$
- construct an NFA M such that L = L(M)
- use closure properties, e.g., for regular languages L_1 and L_2 , show $L=L_1\cap L_2$, $L=L_1\cup L_2$, $L=L_1L_2$, or $L=\Sigma^*\setminus L_1$ (more examples can be added)

Example

 $\Sigma = \{0, 1, \dots, 9\}$. $L = \{n \mid n \text{ divisible by 2 and 3} \}$ (decimal representations without leading 0's). Show that L is regular.

To show that a language L is regular, one of the following methods can be used:

- write a regular expression α such that $L = \mathcal{L}(\alpha)$
- construct an NFA M such that L = L(M)
- use closure properties

To show that a language L is regular, one of the following methods can be used:

- write a regular expression α such that $L = \mathcal{L}(\alpha)$
- construct an NFA M such that L = L(M)
- use closure properties

Example

Is L regular or not? L' is regular.

$$L = \{xy \in \Sigma^* \mid x \in L' \text{ and } y \notin L'\}$$

To show that a language L is regular, one of the following methods can be used:

- write a regular expression α such that $L = \mathcal{L}(\alpha)$
- construct an NFA M such that L = L(M)
- use closure properties

Example

Is L^R regular or not? L is regular.

$$L^R = \{ w^R \in \Sigma^* \mid w \in L \}$$

To show that a language L is regular, one of the following methods can be used:

- write a regular expression α such that $L = \mathcal{L}(\alpha)$
- construct an NFA M such that L = L(M)
- use closure properties

Example

Is L regular or not?

$$L = \{w \in \Sigma^* \mid w \text{ has property } P\}, |L| \text{ is finite}$$

Languages that are not regular

• To show that a language L is not regular, we use the following property of regular languages: as a string is scanned from left to right, the amount of memory required to determine if $w \in L$ or $w \notin L$ must be bounded.

Languages that are not regular

- To show that a language L is not regular, we use the following property of regular languages: as a string is scanned from left to right, the amount of memory required to determine if $w \in L$ or $w \notin L$ must be bounded.
- In RL, infinite languages can be represented with Kleene star (cycle in automata), which induce a periodicity/pattern.

Languages that are not regular

- To show that a language L is not regular, we use the following property of regular languages: as a string is scanned from left to right, the amount of memory required to determine if $w \in L$ or $w \notin L$ must be bounded.
- In RL, infinite languages can be represented with Kleene star (cycle in automata), which induce a periodicity/pattern.

Theorem

Let L be a regular language. There is an integer $n \ge 1$ such that any string $w \in L$ with $|w| \ge n$ can be rewritten as w = xyz such that $y \ne e$, $|xy| \le n$ and $xy^iz \in L$ for each $i \ge 0$.

Theorem

Let L be a regular language. There is an integer $n \ge 1$ such that any string $w \in L$ with $|w| \ge n$ can be rewritten as w = xyz such that $y \ne e$, $|xy| \le n$ and $xy^iz \in L$ for each $i \ge 0$.

ullet For each regular language L,

ightarrow assume that L is regular

Theorem

Let L be a regular language. There is an integer $n \ge 1$ such that any string $w \in L$ with $|w| \ge n$ can be rewritten as w = xyz such that $y \ne e$, $|xy| \le n$ and $xy^iz \in L$ for each $i \ge 0$.

• For each regular language L,

ightarrow assume that L is regular

• there exists $n \ge 1$ such that

→ this is a general term do not pick a number!!!

Theorem

Let L be a regular language. There is an integer $n \ge 1$ such that any string $w \in L$ with $|w| \ge n$ can be rewritten as w = xyz such that $y \ne e$, $|xy| \le n$ and $xy^iz \in L$ for each $i \ge 0$.

• For each regular language L,

ightarrow assume that L is regular

- ullet there exists $n\geq 1$ such that
- for each $w \in L$ with $|w| \ge n$

- \rightarrow this is a general term do not pick a number!!!
- \rightarrow write a string with respect to n, use it to reach a contradiction

Theorem

Let L be a regular language. There is an integer $n \ge 1$ such that any string $w \in L$ with $|w| \ge n$ can be rewritten as w = xyz such that $y \ne e$, $|xy| \le n$ and $xy^iz \in L$ for each $i \ge 0$.

• For each regular language L,

ightarrow assume that L is regular

- there exists $n \ge 1$ such that
- for each $w \in L$ with $|w| \ge n$
- there exists a split w = xyzwith $y \neq e$, $|xy| \leq n$

- → this is a general term do not pick a number!!!
- \rightarrow write a string with respect to n, use it to reach a contradiction
- → consider each possible split satisfying these constraints

Theorem

Let L be a regular language. There is an integer $n \geq 1$ such that any string $w \in L$ with $|w| \ge n$ can be rewritten as w = xyz such that $y \ne e$, $|xy| \le n$ and $xy^iz \in L$ for each $i \ge 0$.

• For each regular language L,

 \rightarrow assume that L is regular

- there exists $n \ge 1$ such that
- for each $w \in L$ with $|w| \ge n$
- there exists a split w = xyzwith $y \neq e$, $|xy| \leq n$
- for each i > 0 $xy^iz \in L$

- \rightarrow this is a general term do not pick a number!!!
- \rightarrow write a string with respect to n, use it to reach a contradiction
- → consider each possible split satisfying these constraints
- \rightarrow show that there exists an i such that $xy^iz \notin L$, contradiction

For each regular language L,

- there exists $n \ge 1$ such that
- for each $w \in L$ with $|w| \ge n$
- there exists a split w = xyzwith $y \neq e$, |xy| < n
- for each $i \ge 0$ $xy^iz \in L$

- → this is a general term do not pick a number!!!
- \rightarrow write a string with respect to n, use it to reach a contradiction
- → consider each possible split satisfying these constraints
- \rightarrow show that there exists an i such that $xy^iz \notin L$, contradiction

Example

Show that $L = \{a^k b^k \mid k \ge 0\}$ is not regular.

For each regular language L,

- there exists $n \ge 1$ such that
- for each $w \in L$ with $|w| \ge n$
- there exists a split w = xyzwith $y \neq e$, |xy| < n
- for each $i \ge 0$ $xy^iz \in L$

- → this is a general term do not pick a number!!!
- \rightarrow write a string with respect to n, use it to reach a contradiction
- ightarrow consider each possible split satisfying these constraints
- \rightarrow show that there exists an i such that $xy^iz \notin L$, contradiction

Example

Show that $L = \{a^i \mid i \text{ is prime}\}\$ is not regular.

For each regular language L,

- there exists $n \ge 1$ such that
- for each $w \in L$ with $|w| \ge n$
- there exists a split w = xyzwith $y \neq e$, $|xy| \leq n$
- for each $i \ge 0$ $xy^iz \in L$

- → this is a general term do not pick a number!!!
- \rightarrow write a string with respect to n, use it to reach a contradiction
- → consider each possible split satisfying these constraints
- \rightarrow show that there exists an i such that $xy^iz \notin L$, contradiction

Example

Show that $L = \{w \in \{a, b\}^* \mid w \text{ has equal number of } a \text{ and } b\}$ is not regular.

For each regular language L,

- there exists $n \ge 1$ such that
- for each $w \in L$ with $|w| \ge n$
- there exists a split w = xyzwith $y \neq e$, |xy| < n
- for each $i \ge 0$ $xy^iz \in L$

- \rightarrow this is a general term do not pick a number!!!
- \rightarrow write a string with respect to n, use it to reach a contradiction
- ightarrow consider each possible split satisfying these constraints
- \rightarrow show that there exists an i such that $xy^iz \notin L$, contradiction

Example

Show that $L = \{ww^R \in \{a, b\}^*\}$ is not regular.

For each regular language L,

- there exists n > 1 such that
- for each $w \in L$ with $|w| \ge n$
- there exists a split w = xyzwith $y \neq e$, $|xy| \leq n$
- for each $i \ge 0$ $xy^iz \in L$

- \rightarrow this is a general term do not pick a number!!!
- \rightarrow write a string with respect to n, use it to reach a contradiction
- ightarrow consider each possible split satisfying these constraints
- \rightarrow show that there exists an i such that $xy^iz \notin L$, contradiction

Example

Show that $L = \{wcw \mid w \in \{a, b\}^*\}$ is not regular.

