

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problems Mailbox.**

THIS PAGE BLANK (USPTO)

PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM

Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICH NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation ⁷ : D21F 1/00, 11/00		A1	(11) Internationale Veröffentlichungsnummer: WO 00/63489 (43) Internationales Veröffentlichungsdatum: 26. Oktober 2000 (26.10.00)
 (21) Internationales Aktenzeichen: PCT/EP00/02972 (22) Internationales Anmeldedatum: 4. April 2000 (04.04.00) (30) Prioritätsdaten: 199 17 832.1 20. April 1999 (20.04.99) DE (71) Anmelder (<i>für alle Bestimmungsstaaten ausser US</i>): SCA HYGIENE PRODUCTS GMBH [DE/DE]; Sandhofer Strasse 176, D-68264 Mannheim (DE). (72) Erfinder; und (75) Erfinder/Anmelder (<i>nur für US</i>): LAMB, Hans-Jürgen [DE/DE]; Berliner Strasse 16a, D-64579 Gernsheim (DE). (74) Anwälte: GÖRG, Klaus usw.; Hoffmann . Eitle, Arabellasstrasse 4, D-81925 München (DE).		 (81) Bestimmungsstaaten: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIGO Patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG). Veröffentlicht <i>Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist; Veröffentlichung wird wiederholt falls Änderungen eintreffen.</i>	
 (54) Title: PAPER MACHINE CLOTHING AND TISSUE PAPER PRODUCED WITH SAME (54) Bezeichnung: PAPIERMASCHINEN-BESPANNUNG SOWIE DAMIT HERGESTELLTES TISSUE-PAPIER (57) Abstract The invention relates to a paper machine clothing, notably an air-dry clothing (TAD clothing), in the form of a woven having a weaving design. According to the invention the relative depth of machine clothing cups which are open towards the contact surface of the paper is 20 % or more, said relative cup depth being the quotient of the difference between the measurement height for which the bearing percentage is 30 % and the measurement for which the bearing percentage is 60 %, on the one hand, and the sum of the diameters of a warp thread and a weft, on the other hand. The measurement height "0" is the outer limit of the paper machine clothing on the paper contact surface, the bearing percentage is the projected sectional area of the threads of the woven at a given measurement height in relation to the measurement surface, the sectional areas being parallel to the surface of the clothing. The invention also relates to a tissue paper product which is produced with such a clothing and is especially voluminous in direction Z. (57) Zusammenfassung Die Erfindung bezieht sich auf eine Papiermaschinen-Bespannung, insbesondere Luftdurchström-Bespannung (TAD-Bespannung), als Gewebe mit einem Webmuster, die relative Nähfentiefe von zur Papieraufgabeseite hin offenen Nähfchen der Papiermaschinen-Bespannung beträgt 20 % oder mehr, die relative Nähfentiefe ist der Quotient aus der Höhendifferenz zwischen der Meßhöhe, bei welcher der Flächentraganteil 30 % beträgt, und der Meßhöhe, bei welcher der Flächentraganteil 60 % beträgt, und der Summe aus den Durchmessern eines Kett- und eines Schußrahmes, die Meßhöhe "0" ist die äußere Begrenzung der Papiermaschinen-Bespannung auf der Papieraufgabeseite, der Flächentraganteil ist die projizierte Schnittfläche durch die Drähte des Gewebes in einer bestimmten Meßhöhe, bezogen auf die Meßfläche, wobei die Schnittflächen parallel zur Oberfläche der Bespannung liegen. Des weiteren bezieht sich die Erfindung auf ein Tissue-Papierprodukt, welches mit einer solchen Bespannung hergestellt worden ist und dabei in Z-Richtung besonders volumös ist.			
 SCA 1			

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische Republik Mazedonien	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland	ML	Mali	TR	Türkei
BG	Bulgarien	HU	Ungarn	MN	Mongolei	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MR	Mauretanien	UA	Ukraine
BR	Brasilien	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Island	MX	Mexiko	US	Vereinigte Staaten von Amerika
CA	Kanada	IT	Italien	NE	Niger	UZ	Usbekistan
CF	Zentralafrikanische Republik	JP	Japan	NL	Niederlande	VN	Vietnam
CG	Kongo	KE	Kenia	NO	Norwegen	YU	Jugoslawien
CH	Schweiz	KG	Kirgisistan	NZ	Neuseeland	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik Korea	PL	Polen		
CM	Kamerun	KR	Republik Korea	PT	Portugal		
CN	China	KZ	Kasachstan	RO	Rumänien		
CU	Kuba	LC	St. Lucia	RU	Russische Föderation		
CZ	Tschechische Republik	LI	Liechtenstein	SD	Sudan		
DE	Deutschland	LK	Sri Lanka	SE	Schweden		
DK	Dänemark	LR	Liberia	SG	Singapur		
EE	Estland						

5

**Papiermaschinen-Bespannung
sowie damit hergestelltes Tissue-Papier**

10 **Technisches Gebiet**

Das technische Gebiet, auf das sich die Erfindung bezieht, betrifft die Herstellung von Tissue-Papier auf einer entsprechenden Papiermaschine, in der insbesondere ein TAD-15 Bereich vorhanden ist (TAD = Through Air Drying = Durchströmertrocknung). In diesem TAD-Bereich wird ein spezielles Einprägegewebe eingesetzt.

20 **Stand der Technik**

Die Blattbildung des Papiers und die dreidimensionale Strukturierung eines bereits gebildeten, jedoch in Folge eines hohen Rest-Wassergehaltes noch deformierbaren feuchten Faservlieses, geschieht üblicherweise auf Stützgeweben, die 25 textilen Webprozessen entstammen.

Die dreidimensionale Strukturierung eines feuchten Papierblattes durch Bildung von Zonen geringer Dichte, umrahmt durch verdichtete Bereiche, wird bei modernen Tissue-30 Erzeugungsmaschinen im Rahmen einer Vortrocknung des Blattes in einer Vortrockenpartie vor dem Yankee-Zylinder vorgenommen. Die Vortrocknung des Papierblattes geschieht auf dem Stützgewebe durch Konvektion, indem Heißluft durch die auf dem Stützgewebe liegende Papierbahn hindurchgepreßt wird. Man spricht von 35 Durchströmertrocknung oder TAD, dem "Through Air Drying".

Die dreidimensionale Strukturierung erfolgt üblicherweise in drei Schritten, die meist örtlich getrennt aufeinanderfolgen.

Den ersten Schritt bildet eine Auslenkung der Fasern in Z-Richtung in die vom TAD-Einprägegewebe angebotenen

5 strukturierenden Vertiefungen des Stützgewebes, die systematisch über die papierberührte Fläche des Stützgewebes verteilt sind.

Die Auslenkung der Fasern in Z-Richtung wird hervorgerufen durch Luft- und Wasserströmung, unterstützt durch Vakuum in einem oder ggf. mehreren Saugkästen, die auf der der papierberührten Seite

10 gegenüberliegenden Seite des Stützgewebes angeordnet ist/sind.

Die Auslenkung der Fasern in Z-Richtung in das Innere der Vertiefungen schafft im Papierblatt Zonen verringelter Dichte, die auch als Kissen (Pillows) bezeichnet werden. Diese in einem

15 Muster angeordneten Zonen verringelter Dichte werden in einem zweiten Schritt auf bzw. im Inneren des Stützgewebes durch die durchströmende Luft eines oder mehrerer TAD-Zylinder getrocknet und damit in der vorliegenden Faserverteilung fixiert. Man spricht dann von einem "Einfrieren" des

20 Faserverteilungszustandes.

In einem dritten Schritt erfolgt dann eine partielle Kompression des vorgetrockneten Faservlieses durch Anpressen des Stützgewebes mit der daraufliegenden vorgetrockneten Papierbahn,

25 mit Hilfe einer Preßwalze gegen die Oberfläche des Yankee-Zylinders. Die Kompression der Papierbahn erfolgt an den erhabenen Stellen des Stützgewebes, die sowohl in bestimmten Bereichen der Stützgeweboberfläche von Kett- als auch von Schußdrähten gebildet werden können. Dabei bleiben die in den

30 Vertiefungen des Stützgewebes liegenden Fasern von einer Kompression verschont. TAD-Einprägegewebe stellen als Stützgewebe eine Sonderform der Siebe dar, die durch Webart, Drahtauswahl hinsichtlich Material, Durchmesser, Querschnittsform und Nachbehandlung, beispielsweise

35 Thermofixierung und Schleifen der Oberfläche, ihre typischen strukturbildenden Eigenschaften aufweisen.

Papiermaschinen-Bespannungen sind beispielsweise aus WO 96/04418, DE-OS 30 08 344, EP 0 724 038 A1 bekannt.

Darstellung der Erfindung

5 Das technische Problem (Aufgabe) der Erfindung besteht darin, eine Papiermaschinen-Bespannung zu schaffen, welche geeignet und aufgebaut ist im Hinblick auf ein damit hergestelltes Tissue-Papier einer verbesserten dreidimensionalen Oberflächenstruktur
10 10 in Form einer Folge von Einbuchtungen und Erhebungen für die Erzielung eines Tissue-Papiers verbesserten Aussehens, verbesserter Weichheit und vergrößerten Volumens im Zusammenhang mit einer verbesserten Wasseraufnahme und einem verbesserten Tastgefühl.

15 Dieses Problem wird insbesondere durch die Merkmale des Patentanspruchs 1 gelöst.

Durch die erfindungsgemäße Lösung wird eine Papiermaschinen-Bespannung geschaffen, bei der herausragend tiefe Einbuchtungen mit der Folge vorhanden sind, daß insbesondere im TAD-Bereich mit dieser Papiermaschinen-Bespannung ein Papier und insbesondere ein Tissue-Papier hergestellt werden kann, welches eine herausragend große Dreidimensionalität aufweist im Hinblick 25 auf eine Vergrößerung des spezifischen Volumens, die das Papier besonders flauschig erscheinen lässt und darüber hinaus neben einer herausragenden Weichheit auch eine herausragende Wasseraufnahmefähigkeit zeigt. Darüber hinaus ergibt sich eine verbesserte Ähnlichkeit mit einer gewebten Struktur und damit 30 ein stoffähnlicherer Charakter.

Mit der beschriebenen Papiermaschinen-Bespannung kann eine Papierstruktur mit einer hohen Anzahl von kissenartigen Zonen verminderter Dichte hergestellt werden, die systematisch über 35 die Gesamtfläche des Faservlieses verteilt vorliegen. Die Ausdehnung der kissenartigen Zonen verminderter Dichte in Z-Richtung, d. h. deren Dicke, weist relativ zu ihrer Flächengröße ein Maximum auf. Jede kissenartige Zone niedriger

Dichte ist von ihren kissenartigen Nachbarzonen erkennbar getrennt durch eine linienartige Umrahmung erhöhter Dichte, wobei diese linienartige Umrahmung kontinuierlich oder durch Unterbrechungen diskontinuierlich sein kann. Die optisch 5 kontinuierlich erscheinenden Linienbereiche zeichnen sich durch eine gegenüber den kissenartigen Zonen niedriger Dichte stark erhöhte, gleichmäßige Dichte aus. Sind die Linienzüge unterbrochen, so weisen die Linienzüge im Bereich dieser Unterbrechung gegenüber den kontinuierlich erscheinenden 10 Linienzügen eine niedrigere Dichte auf, die jedoch wiederum deutlich höher ist im Vergleich zu der der kissenartigen Zonen.

Die linienartigen Umrahmungen bestimmen die flächige Ausdehnung der kissenartigen Zonen. Die Gesamtheit der kissenartigen Zonen 15 mit ihren linienartigen Umrahmungen liefert ein optisch erkennbares makroskopisches Verteilungsmuster, das typisch für das zur Strukturierung verwendete TAD-Imprinting-Fabric und dessen Webart und Nachbehandlung ist.

20 Dabei ist die im Faservlies erzeugte dreidimensionale Struktur mit ihrem typischen Muster die spiegelbildliche Abbildung der dreidimensionalen Struktur und des Verteilungsmusters der zur Erzeugung verwendeten Bespannung. Insbesondere wenn eine Durchströmtröcknung zum Einsatz kommt und insbesondere wenn die 25 erwähnte Verdichtung am Trocknungszyylinder vorgenommen wird, zeichnen sich die erfindungsgemäß hergestellten Tissue-Papiere gegenüber konventionell erzeugten, nichtstrukturierten Tissue-Papieren durch ein deutlich erhöhtes spezifisches Volumen mit verbesserter Knüllweichheit aus, sowie ein erhöhtes 30 Aufnahmevermögen für Flüssigkeiten, insbesondere Wasser.

Auch gegenüber herkömmlichen TAD-Papiermaschinen-Bespannungen erzeugen die erfindungsgemäßen TAD-Papiermaschinen-Bespannungen ein Papier mit deutlich erhöhtem spezifischen Volumen, 35 verbesserter Knüllweichheit und verbessertem Aufnahmevermögen für Flüssigkeiten.

Weitere Ausgestaltungen ergeben sich aus den Unteransprüchen. Eine weitere Steigerung der Tiefe der Einbuchtungen lässt sich durch die Merkmale des Anspruchs 2 erzielen. Aus den übrigen Unteransprüchen ergeben sich eine Reihe von

- 5 Ausführungsbeispielen.

Kurze Beschreibung der Zeichnungen

In den Zeichnungen sind Ausführungsbeispiele der Erfindung
10 dargestellt. Es zeigen:

Fig. 1 eine Darstellung der Definition des Flächentraganteiles anhand einer schematischen dreidimensionalen Zeichnung;

15 Fig. 2 eine Anordnung des Sensors der Meßeinrichtung sowie die Meßrichtung;

Fig. 3 die Probe einer Bespannung unter dem
Triangulationssensor;

20 Fig. 4 eine Skizze des realen Querschnittes eines TAD-Siebes mit Trägermaterial;

Fig. 5 eine Skizze des Meßergebnisses;

25 Fig. 6 eine Skizze der gewählten normierten Auflageebene;

Fig. 7 eine Darstellung der Definition des relativen
Flächenanteils und des Flächentraganteils als
30 Querschnitt durch die Fig. 1;

Fig. 8 die relativen Flächenanteile für eine Bespannung SCA 1;

Fig. 9 den Flächentraganteil für die Bespannung SCA 1;

35 Fig. 10 die Darstellung von 30 % und 60 % Flächentraganteil;

Fig. 11 die Darstellung der idealisierten Bespannungsdicke;

Fig. 12 eine Vergleichsbespannung mit der Bezeichnung BST von der Papierseite her gesehen;

5 Fig. 13 eine Vergleichsbespannung mit der Bezeichnung 44 GST von der Papierseite her gesehen;

Fig. 14 eine Vergleichsbespannung mit der Bezeichnung 44 MST von der Papierseite her gesehen;

10 Fig. 15 eine Bespannung gemäß der Erfindung mit der Bezeichnung SCA 1 von der Papierseite her gesehen;

15 Fig. 16 eine erfindungsgemäße Bespannung mit der Bezeichnung SCA 2 von der Papierseite her gesehen;

Fig. 17 eine erfindungsgemäße Bespannung mit der Bezeichnung SCA 3 von der Papierseite her gesehen;

20 Fig. 18 eine erfindungsgemäße Bespannung mit der Bezeichnung SCA 4 von der Papierseite her gesehen; und

Fig. 19 eine erfindungsgemäße Bespannung mit der Bezeichnung SCA 5 von der Papierseite her gesehen.

25 Beschreibung von Ausführungsbeispielen der Erfindung

Nachfolgend wird anhand einer erfindungsgemäßen Bespannung SCA 1 die Messung der Bespannung erläutert. Dabei wird synonym für 30 Bespannung der Begriff "Sieb" verwendet.

I. UBM-Meßsystem:

35 Triangulationssensor OTM2 der Firma Wolf & Beck

Steuergerät: Basisgerät RS 232 mit Synch.-Buchse

Tisch: DC(Galil)-Motor gesteuerter Messtisch mit 2 Achsen;

Verfahrweg: 50 mm; laterale Auflösung je Achse < 1 μm

Das System wird komplett von der Firma UBM Messtechnik GmbH
(Ottostr. 2, D-76275 Ettlingen) geliefert.

Tabelle 1: Allgemeine Betriebsdaten, Genauigkeit und Laserdaten des Triangulationsensors OTM2

Allgemeine Betriebsdaten		Genauigkeit	
Arbeitsabstand (Frontlinse ↔ Meßbereichsmitte)	mm 45 ± 1	Helligkeitsdynamik (von blauer Aluminiumoberfläche bis schwerem Gumminmaterial mit einer einzigen Sensorsetzung beobachtbar)	dB 25
Meßbereich	mm 10 ± 1	Meßbarkeit	Matt schwarze Referenz- oberfläche bis zu einem Ablastwinkel von 45°
Auflösung	µm 1	Reproduzierbarkeit bei Neigung $< 5^\circ$ auf Referenzstandard bei Neigungen $> 5^\circ$ bis 60°	mm $< 0,005$ $< 0,01$
Meßbare Oberfläche	Diffus teilreflektierende	Maximaler Linearitätsfehler bei Neigung $< 5^\circ$ auf Referenzstandard bei Neigungen $> 5^\circ$ bis 60°	mm $< 0,02$ $< 0,05$
Temperaturbereich	°C +10 - +40	Maximaler Fremdlichteinfluß (Abstand der Urgetriebeneinheit von Beleuchtungsquelle 0 bis 100 W/m²)	mm $< 0,005$
Relative Feuchtigkeit	% 80	Maximale Temperaturdrift (10 - 40°C)	mm $< 0,02$
Laserdaten		Einfluß der Oberflächenneigung Profilschnitt über eine Referenzkugel (Winkelbereich $\pm 60^\circ$), max. Abweichung	mm 0,05
Wellenlänge des Lasers	nm 750	Einfluß der Oberflächenfarbe Gemessen auf 10 Farbbereich-Proben über den gesamten Meßbereich	mm 0
Minimale Laserleistung (Pulsleistung)	mW $< 0,4$	Maximale Meßabweichung	$< 0,03$
Pulsfrequenz = Meßwiederholrate	kHz 20		

Der Triangulationssensor OTM2 ist ein optoelektronischer Lasersensor zur berührungslosen Distanz-Erfassung, bestehend aus Meßkopf und Steuergerät.

- 5 Der Meßkopf ist als koaxiale Anordnung von Sende- und Empfangsoptik realisiert. Die Sendeoptik besteht aus einem sichtbaren Halbleiterlaser mit Kollimatoroptik. Der Laserstrahl weist eine geringe Apertur auf und tritt zentrisch aus dem Meßkopf aus. Das von der Oberfläche diffus reflektierte Licht wird rotationssymmetrisch (360°) ausgewertet und trägt primär 10 zur Meßwertgewinnung bei. Ein mechanischer Aufbau ohne bewegliche Teile ermöglicht hohe Beschleunigung des Meßkopfes auch während der Messung.
- 15 Um Fremdlichteinflüsse zu vermeiden, wird die Intensität des Laserstrahls mit hoher Frequenz moduliert. Die emittierte Strahlungsleistung wird in Abhängigkeit von den Meßbedingungen geregelt. Dadurch ist eine zuverlässige Messung auf Oberflächen mit unterschiedlichstem Reflexionsverhalten möglich. Die 20 Empfangssignale werden im Meßkopf aufbereitet und digitalisiert, wodurch sich eine hohe Störsicherheit der Verbindungsleitung zwischen Meßkopf und Steuergerät ergibt.

- Das Steuergerät enthält eine digitale Schaltung zur 25 Linearisierung und zeitlichen Filterung der erfaßten Daten. Über diese Schnittstelle erfolgt die Meßwertausgabe.

Tabelle 1 gibt eine Übersicht über die allgemeinen Betriebsdaten, die Genauigkeit der Messung sowie die Laserdaten.

- 30 Die Meßwerte werden in einer Datei gespeichert und können mit der Software UBSOFT 1.9 bearbeitet werden. Ein Export der Daten in Excel ist jedoch nicht möglich.

35 II. Software OPTIMAS 6.0 (Bildanalyse)

Die Software kann über die Firma Stemmer Imaging GmbH (Gutenbergstr. 11, D-82178 Puchheim) bezogen werden.

III. Definition Flächentraganteil

Der Flächentraganteil im Sinne der Erfindung beschreibt den
5 jeweiligen Anteil der Schnittfläche durch Material bezogen auf
die Gesamtfläche. Der Flächentraganteil definiert sich dann
durch den Anteil der Fläche $c \times d$ bezogen auf die Gesamtfläche
a \times b (Fig. 1). Sehr grob strukturierte Siebe haben nur einen
geringen Zuwachs des Flächentraganteils, wenn die
10 Flächentraganteilsänderung auf die Höhenänderung bezogen wird.

IV. Probenvorbereitung:

1. Es wird ein 50 x 50 mm großes Stück mit einem Lötkolben aus
15 dem Sieb SCA 1 herausgetrennt, so daß der Rand des Siebes
nicht ausfranst und die Probe formstabil bleibt. Die Größe
der Probe ist aber generell frei wählbar. Die Auswahl der
Meßfläche innerhalb der Probengröße ist vom Webmuster des
Siebes abhängig und erfolgt so, daß ergebnisverfälschende
20 Randeinflüsse weitestgehend eliminiert werden. Für ein
8-Schaft-Sieb mit Fadendurchmessern von 400 x 450 μm muß die
Meßfläche daher größer als 7 x 7 mm sein.
2. Die Rückseite (Auflagefläche auf der als Trägermaterial
25 dienenden Glasplatte) des Siebes wird mit Schmirgelpapier
angeschliffen, damit die Auflagefläche gleichmäßig wird und
durch das Heraustrennen abgelöste herausstehende Fadenstücke
entfernt werden.
- 30 3. Siebprobe mit Druckluft reinigen.
4. Siebprobe mit doppelseitigem Klebeband auf eine der
Probengröße entsprechende Glasplatte (50 x 50 mm) kleben.
Durch die Fixierung auf der Glasplatte kann sich das Sieb
35 nicht wellen und eine ebene Oberfläche wird gewährleistet,
d. h. das Sieb bleibt formstabil.

5. Siebprobe mit Blow-Flag (entfernbare Tarnfarbe, amerikanisches Produkt) besprühen, um die für den Lasersensor erforderliche einheitliche Reflexion zu gewährleisten. Die Farbmenge muß gut dosiert werden, da eine zu große Farbmenge die Hohlräume im Sieb schließen kann, während eine zu geringe Farbmenge die Reflexion senkt.
10. Die nach den Punkten 1 bis 5 vorbereitete Probe wird unter Berücksichtigung der Maschinenlaufrichtung des Siebes (= Maschinenrichtung in Fig. 2) so auf den Meßtisch gelegt, daß die Maschinenlaufrichtung des Siebes mit einer Achse (y-Koordinatenrichtung) des 2-Achsenmeßtisches zusammenfällt. Über dem Meßtisch ist der Triangulationssensor installiert (Fig. 2). Die Ausrichtung der Probe in Maschinenlaufrichtung erfolgt mit Augenmaß und ist daher nicht immer exakt. Fig. 3 zeigt die Probe unter dem Triangulationssensor mit Meßbereich, Arbeitsabstand und Erkennungsbereich.

20 V. Einstellungen der UBSOFT-Software (siehe Fig. 2)

1. Meßstrecke: 12 mm, Punktedichte: 50 P/mm in Maschinen- und Querrichtung, d. h. es werden 600 x 600 Punkte pro Messung erfaßt. Die zu wählende Größe der Meßfläche wird bestimmt durch die Wiederholung des Musters. So muß z. B. für ein 8-shed-Sieb eine Fläche von größer als 8 mal 8 Fäden gemessen werden.
2. Die Messung erfolgt schrittweise durch automatisches Verstellen des Meßtisches mit der darauf fixierten Probe entlang der beiden Verstellachsen mit einer "Abtastgeschwindigkeit", die nicht von der Meßfrequenz abhängig ist. Die Abtastgeschwindigkeit beträgt 3 mm/s.
- 35 Der Verfahrweg der Probe ist schematisch in Fig. 2 rechts dargestellt. Der Startpunkt der Messung ist Mitte (1), d. h. die Messung startet in der Mitte der Fläche. Dann folgt eine Leerfahrt zum unteren linken Punkt der Fläche und die

eigentliche Messung beginnt. Nach Beendigung der Messung nach ca. 11 h in der oberen rechten Ecke, erfolgt eine Leerfahrt zum Ausgangspunkt. Die Meßrichtung ist bei diesem Vorgang "vorwärts", d. h. die Messung erfolgt bei
5 Vorwärtsbewegung des Tisches in Quer- und Maschinenlaufrichtung.

3. Es werden nur die Meßwerte der Profilmessung aufgezeichnet.

10 VI. Auswertung mit der UBSoft-Software

1. Da die Probe trotz aller Sorgfalt nicht planparallel unter dem Sensor fixiert werden kann, muß die gemessene Fläche anhand der Meßwerte zunächst unter Zuhilfenahme
15 mathematischer Methoden ausgerichtet werden, um zu gewährleisten, daß sie planparallel erscheint. Hierfür stehen zwei verschiedene Werkzeuge (Lineare Regression und Auflagefläche) zur Verfügung.

20 Das Werkzeug "Lineare Regression" richtet eine Meßreihe anhand einer Regressions-Ebene aus. Die Ebene wird dabei nach der Methode der kleinsten Quadrate aus den Meßpunkten erzeugt und in die Meßgrafik eingezeichnet und anschließend von der gemessenen Datei subtrahiert.

25 Das Werkzeug "Auflageebene" richtet die Meßfläche nach den drei höchsten Punkten aus.

30 Für das Sieb SCA 1 wird eine Höhe von 2638 μm gemessen (Maximum: 1006 μm , Minimum: -1632 μm). Ausgerichtet wird die gemessene Fläche durch das Werkzeug "Auflageebene", wodurch sich eine Höhe von 2628 μm ergibt (Maximum: 0 μm , Minimum: -2628 μm).

35 2. Wegen der offenen Fläche bzw. "Löcher" der TAD-Siebe gleicht die graphische Darstellung des Meßergebnisses nicht dem realen Sieb (Fig. 4). Wie in Fig. 5 dargestellt, werden die optisch geschlossenen Flächenanteile des Siebes als scheinbar tiefer

bzw. als dicker wahrgenommen im Vergleich zum meßtechnisch ermittelten Abstand der Oberfläche des Trägermaterials zum Lasersensor, wobei die Oberfläche des Trägermaterials als Referenzebene dient. Dies resultiert aus den unterschiedlichen Reflexionsfaktoren von Sieb und Trägermaterial. Die reale mit einem Dickenmeßgerät (gemäß EN 12625-3:1999) ermittelte Dicke des Siebes SCA 1 beträgt 1778 µm.

5. 3. Da durch die Vorbehandlung des Siebes mit Blow-Flag für ein einheitliches Reflexionsverhalten aller Drähte des Gewebes (Sieb) gesorgt wurde und nur Höhendifferenzen zwischen den Oberflächen der das Gewebe bildenden Kett- und Schußdrähte von Interesse sind, spielt die Fehlmessung im absoluten Abstand zur Oberfläche des Trägermaterials (Referenzebene) für die Praxis keine Rolle und kann durch Normierung eliminiert werden.
10. 4. Da die sogenannte "Meßhöhe" (2628 µm) wesentlich größer als die reale Siebdicke (1778 µm) ist, werden die Höhen zunächst auf 1900 µm begrenzt bzw. normiert (Maximum: 0 µm, Minimum: -1900 µm). Diese Höhenbegrenzung wird abhängig von der realen Siebdicke gewählt. Sollte diese mehr als 1900 µm betragen, müssen alle Siebe auf ein höheres Maß begrenzt werden (Fig. 6). Ein Vergleich der ermittelten Ergebnisse darf daher nur an Proben durchgeführt werden, die auf das gleiche Maß begrenzt worden sind.
15. 5. Das Meßsystem erkennt aufgrund seiner internen Auswertesoftware und aufgrund der geeigneten Wahl des Meßpunkteabstandes strukturmäßig zusammengehörige Werte gleichen Abstandes vom Sensor (Höhe, Dicke). Strukturmäßige Zusammengehörigkeit im Sinne der Messung meint, daß die auszuwertenden Meßpunkte zu jeweils einer eindeutig definierten Oberfläche z. B. der eines einzelnen Kett- oder Schußdrahtes gehören.

Durch Zusammenfassen strukturmäßig zusammengehöriger Punkte gleichen Abstandes vom Sensor (d. h. gleicher Höhe/Dicke)

ergeben sich die Höhen oder Konturlinien, die die Begrenzung der Schnittebene mit dem Gewebematerial, d. h. die durch die Schnittebene in einer bestimmten Höhe geschnittenen Kett- und Schußdrähte, bilden. Aus dem Abstand der Konturlinien zusammengehöriger Strukturelemente des Gewebes lassen sich die einer bestimmten Höhe zukommende als "Flächentraganteil" bezeichnete Schnittflächen errechnen. Es ist zu beachten, daß ab der größten Ausdehnung der Kett- bzw. Schußdrähte nur die projizierte Fläche und nicht die reale Fläche berücksichtigt wird.

- 5
- 10
- 15
- 20
- 25
- 30
- 35
6. Ein Export der Flächentraganteilskurven von der UBSoft-Datei in andere Programme ist bei der vorhandenen Ausrüstung nicht möglich. Die ausgerichteten, begrenzten Flächen werden daher in Bild-Dateien (8-bit Graudarstellung, TIF-Format) konvertiert, um anschließend mit der Bildanalyse Software OPTIMAS weiter bearbeitet zu werden.

VII. Auswertung mit OPTIMAS 6.0

- 20
- 25
- 30
- 35
1. Die Konvertierung in eine 8-bit Tiff-Datei bedeutet, daß die 1900 μm Höhendifferenz in 256 Helligkeitsstufen (0 bis 255) umgerechnet werden (Maximum: Helligkeitsstufe 255 = 0 μm ; Minimum: Helligkeitsstufe 0 = -1900 μm). Mit dem Werkzeug PercentArea (relativer Flächenanteil) wird der relative Flächenanteil jeder der 256 Helligkeitsstufen bestimmt. Dies bedeutet, daß im Gegensatz zum Flächentraganteil nicht die einer Schnittebene zugeordneten Strukturelemente des Gewebes ermittelt werden, sondern die einer Helligkeitsstufe zugehörigen Strukturelemente. In Fig. 7 ist beispielhaft ein Teilstück der Fig. 1 als zweidimensionale Zeichnung dargestellt und zeigt den Unterschied zwischen relativem Flächenanteil und Flächentraganteil. a1 bis a5 sind die Strukturelemente einer Helligkeit von 97 bzw. Höhe von -1177 μm . Diese Strukturelemente des relativen Flächenanteiles berücksichtigen nur die Helligkeit bei einer bestimmten Höhe bzw. nur die Flächenstücke, die seit dem vorherigen Schnitt (bei Helligkeit 98 bzw. Höhe -1170 μm) neu erscheinen. Der

relative Flächenanteil bei den entsprechenden Höhen wird durch Aufsummieren der einzelnen Strukturelemente a_i gebildet, d.
h.:
h.:

5 Relativer Flächenanteil bei Helligkeit 97 = $\sum_{i=1}^n a_i$

b1 bis b3 stellt in Fig. 7 die Strukturelemente des Flächentraganteiles bei einer Helligkeit von 97 bzw. Höhe von -1177 μm dar. Der Flächentraganteil dieser Höhe bzw.
10. Helligkeit wird durch Summieren der einzelnen Strukturelemente b_i gebildet, d. h.:

Flächentraganteil bei Höhe -1177 μm = $\sum_{i=1}^n b_i$

15 Durch Summieren der relativen Flächenanteile bis zu einer bestimmten Helligkeit kann so der Flächentraganteil bei dieser Helligkeit bzw. Höhe berechnet werden, d. h.:

20 Flächentraganteil bei Helligkeit k =

$$\sum_{j=k}^{255} \text{relativer Flächenanteil bei Helligkeit j}$$

Durch Summieren der relativen Flächenanteile von der Höhe
0 μm bzw. Helligkeit 255 bis zur Höhe -1177 μm bzw.
25. Helligkeit 97 wird ebenfalls der Flächentraganteil gebildet,
d. h.:

Flächentraganteil bei Höhe -1177 μm =

$$\sum_{j=97}^{255} \text{relativer Flächenanteil bei Helligkeit j}$$

30 Um den maximalen Flächentraganteil von 100 % bei der Höhe -1900 μm bzw. Helligkeit 0 zu erhalten, müssen alle relativen Flächenanteile von 0 bis 255 addiert werden. In der Tabelle auf der letzten Seite ist dies als Beispiel für das Sieb SCA 1 angegeben.

2. Die erhaltenen Daten werden nach Excel exportiert.
3. In Fig. 8 sind die relativen Flächenanteile über der Dicke, die aus den Helligkeitsstufen berechnet werden können, für das Sieb SCA 1 dargestellt.
4. Durch Summieren der einzelnen "relativen Flächenanteile" gleichen Abstandes vom Sensor (gleiche Höhe oder Dicke) wird der Flächentraganteil berechnet. Die Höhendifferenz wird über dem Flächentraganteil dargestellt, so daß die Änderung der Höhe zwischen verschiedenen Flächentraganteilen abgelesen werden kann (Fig. 9).

Da das gemessene Sieb SCA 1 nicht angeschliffen war, können Höhen bzw. Dicken auch für einen Flächentraganteil von kleiner als 30 % abgelesen werden. Für einen Einsatz in der Tissuemaschine würde das Sieb jedoch auf eine Kontaktfläche von 30 % angeschliffen werden, wodurch sich der Verlauf der Kurve ab einem Flächentraganteil von 30 % nicht unterscheiden würde.

5. Zur Beurteilung von TAD-Sieben sollte einer der Grenzwerte der Flächentraganteil von 30 % sein. Ein Flächentraganteil von 30 % sollte deshalb gewählt werden, weil TAD-Siebe üblicherweise angeschliffen werden. Die Aussage von mehreren Experten ist, daß TAD-Siebe nicht stärker als auf 30 % Kontaktfläche, entspricht 30 % Flächentraganteil, angeschliffen werden (Fig. 10). Das Anschleifen beeinflußt zwar den Verlauf des Flächentraganteils zwischen 0 und 30 %, jedoch nicht mehr den oberhalb von 30 %, vorausgesetzt, daß nicht mehr als auf 30 % Kontaktfläche angeschliffen wird. Das bedeutet, daß für ein bestimmtes Sieb unabhängig von dem Anschleifen der Flächentraganteil eines geschliffenen und ungeschliffenen TAD-Siebes oberhalb von 30 % exakt gleich sein sollte.

Für den Vergleich mehrerer, unterschiedlicher, einlagiger Siebe bedeutet dies, daß die relativen Flächenanteile und

Flächentraganteile in Tabelle 2 alle auf 30 %
Flächentraganteil eines Siebes normiert werden, d. h. die
Werte aller anderen Siebe werden in der Tabelle auf 30 %
Flächentraganteil eines Siebes verschoben.

TAD-Siebe haben fast immer eine offene Fläche bzw. Löcher.
Deswegen wird ein Flächentraganteil von 100 % zumindest
theoretisch am Sieb nicht erreicht. Es werden zwar bei den
Messungen 100 % Flächentraganteil ausgewiesen, dies wird aber
nur durch die Einbeziehung des unter dem Sieb befindlichen
Trägermaterials erreicht. Um bei Vergleichen
unterschiedlicher, einlagiger Siebe den Einfluß
unterschiedlicher Siebdicken und der Struktur des eingesetzten
Trägermaterials ausszuschließen, muß der Bereich des
Flächentraganteils nach oben beschränkt werden (vergleiche
Fig. 5, 6 Begrenzung des Meßergebnisses). Die offene Fläche
der Siebe beträgt in den meisten Fällen ca. 20 bis 30 %.
Beschränkt man den Flächentraganteil auf 60 %, ist man
ausreichend vom Beginn des Einflusses der offenen Fläche
entfernt (Fig. 10).

Betrachtet man nur die Höhendifferenz zwischen 30 % und 60 %
Flächentraganteil, ergibt sich, daß flache Siebe nur eine
geringe Höhendifferenz aufweisen. Stark strukturierte Siebe
weisen dagegen gerade in diesem Bereich eine wesentlich
größere Höhendifferenz auf. Tabelle 2 zeigt die Analyse
mehrerer TAD-Siebe, die einerseits dem Stand der Technik
entsprechen, andererseits erfindungsgemäße Ausbildungsformen
darstellen und so diese Annahme bestätigen. Strukturierte
Siebe zeichnen sich durch eine Höhendifferenz von mehr als
170 µm aus.

II. Relative Näpfchentiefe in Prozent:

Aufgrund der vorherigen Definition wird der Flächentraganteil
sehr stark durch die verwendeten Drahtdurchmesser von Schuß
und Kette beeinflußt. Je dicker die Drähte, umso größer ist
die Höhendifferenz zwischen 30 und 60 % Flächentraganteil. Um

den Einfluß der Drahtdurchmesser zu eliminieren, bietet es sich an, die Höhendifferenz zwischen 30 und 60 % Flächentraganteil auf die Summe der größten Drahtdurchmesser von Kette und Schuß zu beziehen und diesen 5 Klassifizierungskennwert als "relative Näpfchentiefe" zu bezeichnen. Die relative Näpfchentiefe wird in Prozent angegeben. Die relative Näpfchentiefe zeigt, daß stark strukturierte Siebe hohe Werte ausweisen. Als Grenze zwischen herkömmlichen und neuen Sieben ergibt sich der Wert 20 %. 10 Abgeschätzte Werte, d. h. nach der in Fig. 11 relativierten Höhendifferenz, sind in Tabelle 2 zusammengefaßt.

Tabelle 2: Ergebnisse einlagiger Siebe

	BST	44 GST	44 MST	SCA 1	SCA 2	SCA 3	SCA 4	SCA 5
Höhe bei 30 % Flächentraganteil	1080 µm							
Höhe bei 60 % Flächentraganteil	1147 µm	976 µm	991 µm	775 µm	872 µm	872 µm	827 µm	909 µm
Differenz (30%-60%)	126 µm	104 µm	104 µm	305 µm	208 µm	208 µm	253 µm	171 µm
Durchmesser von Kett- und Schußfäden summiert	800 µm (400x400)	850 µm (350x500)	800 µm (400x400)	850 µm (400x450)	750 µm (350x400)	750 µm (350x450)	800 µm (350x450)	800 µm (350x450)
Flächentraganteil (30%-60%) bezogen auf Fäden (relative Nähfertentiefe)	15,8 %	12,2 %	11,1 %	31,7 %	27,7 %	27,7 %	31,6 %	21,4 %

In der Tabelle auf der nächsten Seite sind die zu den verschiedenen Höhen, die aus den Helligkeitsstufen berechnet wurden, gehörenden relativen Flächenanteile (ermittelt mit dem Werkzeug PercentArea im Programm Optimas) und die daraus berechneten Flächentraganteile für das Sieb SCA 1 dargestellt.
Mit diesen Zahlenwerten wurden auch die Diagramme 8 und 9 erstellt.

	A	B	C	D	E	F	G	H	I	K	L	M	N	O	P	Q	R	S
	Helligkeitsstufe	Höhe [µm]	Flächenanteil [%]	Flächentraganteil [%]	Helligkeitsstufe	Höhe [µm]	Flächentraganteil [%]	Helligkeitsstufe	Höhe [µm]	Flächenanteil [%]	Höhe [µm]	Flächentraganteil [%]	Helligkeitsstufe	Höhe [µm]	Flächenanteil [%]	Höhe [µm]	Flächentraganteil [%]	
1	2	0	-1900	9,943	100,000	64	-1423	0,081	85,351	128	-946	0,654	62,134	92	-469	0,386	21,895	
3	1	-1893	0,113	90,057	65	-1416	0,100	85,270	129	-939	0,681	61,480	93	-462	0,424	21,509		
4	2	-1885	0,103	89,944	66	-1408	0,097	85,170	130	-931	0,674	60,799	94	-455	0,429	21,085		
5	3	-1878	0,105	89,841	67	-1401	0,097	85,073	131	-924	0,689	59,125	95	-447	0,448	20,657		
6	4	-1870	0,099	89,735	68	-1393	0,104	84,977	132	-916	0,717	59,437	96	-440	0,462	20,208		
7	5	-1863	0,100	89,636	69	-1386	0,109	84,873	133	-909	0,709	58,720	97	-432	0,484	19,746		
8	6	-1855	0,094	89,536	70	-1378	0,107	84,764	134	-902	0,707	58,011	98	-425	0,512	19,262		
9	7	-1848	0,090	89,442	71	-1371	0,112	84,657	135	-894	0,685	57,303	99	-417	0,574	18,751		
10	8	-1840	0,095	89,352	72	-1364	0,113	84,545	136	-887	0,744	56,618	200	-410	0,600	18,177		
11	9	-1833	0,087	89,256	73	-1356	0,104	84,432	137	-879	0,725	55,874	201	-402	0,631	17,577		
12	10	-1825	0,089	89,170	74	-1349	0,134	84,328	138	-872	0,739	55,149	202	-395	0,670	16,946		
13	11	-1818	0,076	89,080	75	-1341	0,120	84,194	139	-864	0,784	54,410	203	-387	0,702	16,275		
14	12	-1811	0,084	89,004	76	-1334	0,145	84,074	140	-857	0,832	53,625	204	-380	0,741	15,574		
15	13	-1803	0,086	88,921	77	-1326	0,134	83,929	141	-849	0,818	52,794	205	-373	0,713	14,832		
16	14	-1796	0,087	88,835	78	-1319	0,167	83,795	142	-842	0,835	51,973	206	-365	0,720	14,120		
17	15	-1788	0,082	88,748	79	-1311	0,168	83,628	143	-835	0,826	51,140	207	-358	0,682	13,400		
18	16	-1781	0,083	88,666	80	-1304	0,174	83,460	144	-827	0,828	50,314	208	-350	0,680	12,718		
19	17	-1773	0,072	88,582	81	-1296	0,177	83,286	145	-820	0,842	49,486	209	-343	0,614	12,038		
20	18	-1766	0,078	88,511	82	-1289	0,182	83,109	146	-812	0,835	48,643	210	-335	0,612	11,404		
21	19	-1758	0,073	88,431	83	-1282	0,190	82,926	147	-805	0,854	47,808	211	-328	0,587	10,792		
22	20	-1751	0,075	88,360	84	-1274	0,192	82,736	148	-797	0,812	46,954	212	-320	0,560	10,205		
23	21	-1744	0,069	88,285	85	-1267	0,209	82,544	149	-790	0,858	46,142	213	-313	0,533	9,645		
24	22	-1736	0,071	88,216	86	-1259	0,230	82,335	150	-782	0,818	45,285	214	-305	0,484	9,112		
25	23	-1729	0,067	88,145	87	-1252	0,221	82,105	151	-775	0,762	44,467	215	-298	0,458	8,628		
26	24	-1721	0,069	88,078	88	-1244	0,233	81,883	152	-767	0,753	43,705	216	-291	0,446	8,170		
27	25	-1714	0,061	88,009	89	-1237	0,244	81,650	153	-760	0,712	42,951	217	-283	0,408	7,724		
28	26	-1706	0,070	87,949	90	-1229	0,236	81,406	154	-753	0,676	42,239	218	-276	0,394	7,316		
29	27	-1699	0,068	87,878	91	-1222	0,275	81,150	155	-745	0,672	41,563	219	-268	0,364	6,922		
30	28	-1691	0,067	87,810	92	-1215	0,288	80,875	156	-738	0,661	40,891	220	-261	0,358	6,558		
31	29	-1684	0,066	87,743	93	-1207	0,287	80,586	157	-730	0,641	40,230	221	-253	0,318	6,200		
32	30	-1676	0,069	87,677	94	-1200	0,311	80,299	158	-723	0,627	39,589	222	-246	0,300	5,883		
33	31	-1669	0,069	87,608	95	-1192	0,336	79,989	159	-715	0,642	38,962	223	-238	0,280	5,583		
34	32	-1662	0,062	87,539	96	-1185	0,315	79,653	160	-708	0,598	38,120	224	-231	0,295	5,303		

	A	B	C	D	E	F	G	H	I	K	L	M	N	O	P	Q	R	S
	Helligkeitsstufe	Höhe [µm]	Relativer Flächenanteil [%]	Flächentraganteil [%]	Helligkeitssstufe	Höhe [µm]	Relativer Flächenanteil [%]	Flächentraganteil [%]	Helligkeitssstufe	Höhe [µm]	Relativer Flächenanteil [%]	Flächentraganteil [%]	Helligkeitssstufe	Höhe [µm]	Relativer Flächenanteil [%]	Flächentraganteil [%]	Höhe [µm]	
1																		
35	33	-1654	0,061	87,477	97	-1177	0,340	79,338	161	-700	0,633	37,723	225	-224	0,285	5,008		
36	34	-1647	0,060	87,416	98	-1170	0,334	78,998	162	-691	0,627	37,090	226	-216	0,286	4,723		
37	35	-1639	0,065	87,356	99	-1162	0,365	78,664	163	-685	0,620	36,463	227	-209	0,272	4,437		
38	36	-1632	0,066	87,291	100	-1155	0,360	78,298	164	-678	0,649	35,843	228	-201	0,304	4,165		
39	37	-1624	0,056	87,225	101	-1147	0,383	77,939	165	-671	0,661	35,194	229	-194	0,293	3,861		
40	38	-1617	0,063	87,168	102	-1140	0,398	77,555	166	-663	0,648	34,533	230	-186	0,315	3,569		
41	39	-1609	0,061	87,106	103	-1133	0,405	77,158	167	-656	0,695	33,886	231	-179	0,295	3,254		
42	40	-1602	0,067	87,045	104	-1125	0,425	76,753	168	-648	0,669	33,190	232	-171	0,274	2,959		
43	41	-1595	0,061	86,978	105	-1118	0,442	76,327	169	-641	0,653	32,522	233	-164	0,289	2,685		
44	42	-1587	0,053	86,917	106	-1110	0,450	75,885	170	-633	0,657	31,868	234	-156	0,259	2,395		
45	43	-1580	0,065	86,854	107	-1103	0,475	75,434	171	-626	0,643	31,211	235	-149	0,242	2,136		
46	44	-1572	0,062	86,790	108	-1095	0,500	74,960	172	-618	0,585	30,568	236	-142	0,238	1,895		
47	45	-1565	0,063	86,728	109	-1088	0,528	74,460	173	-611	0,566	29,984	237	-134	0,190	1,657		
48	46	-1557	0,068	86,665	110	-1080	0,535	73,932	174	-604	0,561	29,417	238	-127	0,196	1,467		
49	47	-1550	0,061	86,596	111	-1073	0,545	73,397	175	-596	0,517	28,856	239	-119	0,171	1,271		
50	48	-1542	0,069	86,535	112	-1065	0,592	72,852	176	-589	0,512	28,339	240	-112	0,158	1,100		
51	49	-1535	0,061	86,466	113	-1058	0,605	72,260	177	-581	0,466	27,827	241	-104	0,153	0,942		
52	50	-1527	0,072	86,405	114	-1051	0,626	71,655	178	-574	0,448	27,361	242	-97	0,138	0,789		
53	51	-1520	0,074	86,333	115	-1043	0,634	71,029	179	-566	0,442	26,913	243	-89	0,117	0,651		
54	52	-1513	0,068	86,259	116	-1036	0,674	70,395	180	-559	0,423	26,471	244	-82	0,120	0,535		
55	53	-1505	0,069	86,191	117	-1028	0,661	69,722	181	-551	0,413	26,048	245	-75	0,104	0,414		
56	54	-1498	0,066	86,122	118	-1021	0,699	69,060	182	-544	0,420	25,636	246	-67	0,091	0,311		
57	55	-1490	0,066	86,056	119	-1013	0,691	68,362	183	-536	0,392	25,216	247	-60	0,066	0,220		
58	56	-1483	0,080	85,990	120	-1006	0,715	67,671	184	-529	0,367	24,824	248	-52	0,054	0,154		
59	57	-1475	0,077	85,910	121	-998	0,710	66,956	185	-522	0,387	24,457	249	-45	0,043	0,100		
60	58	-1468	0,078	85,833	122	-991	0,714	66,245	186	-514	0,355	24,070	250	-37	0,022	0,057		
61	59	-1460	0,078	85,755	123	-984	0,684	65,531	187	-507	0,340	23,715	251	-30	0,021	0,035		
62	60	-1453	0,076	85,677	124	-976	0,696	64,847	188	-499	0,352	23,375	252	-22	0,007	0,014		
63	61	-1445	0,073	85,601	125	-969	0,695	64,151	189	-492	0,365	23,013	253	-15	0,003	0,006		
64	62	-1438	0,089	85,529	126	-961	0,660	63,456	190	-484	0,380	22,638	254	-7	0,002	0,003		
65	63	-1431	0,089	85,440	127	-954	0,663	62,796	191	-477	0,383	22,278	255	0	0,001	0,001		

Der "Flächentraganteil" im Sinne des erfindungsgemäßen Bewertungsverfahrens ist definiert als die zu messende Oberfläche, die eine imaginäre Kontaktfläche mit einer geometrisch idealen planen Oberfläche ohne Einwirkung einer

5 Anpreßkraft im planen Kontakt berühren würde, wenn die Kett- und Schußdrähte der Bespannung von oben kommend vom höchsten Berührungs punkt an, beispielsweise durch planparalleles Abschleifen, in ihrer Dicke quasi kontinuierlich immer weiter verringert werden, wobei zu beachten ist, daß durch Abschleifen

10 die reale Fläche, also auch die Abnahme der Kett- bzw. Schußdrahtflächen, berücksichtigt wird, während ein Lasermeßgerät unterhalb der größten Schnittfläche nur deren Projektion wahrnimmt. Beispielsweise kann diese theoretische Betrachtung in den beiden Grenzen zwischen 30 % und 60 %

15 Flächentraganteil vorgenommen werden.

Hinsichtlich der Definition der projizierten Schnittfläche ist folgendes auszuführen. Bei den Höhenmessungen mit z. B. einem Lasergerät muß darauf geachtet werden, daß die Schnittfläche,

20 die gemessen wird, nicht die wirkliche Schnittfläche, sondern die projizierte Schnittfläche ist. Es ist eine projizierte Schnittfläche, weil die Messungen rechtwinklig zur Oberfläche des Meßobjektes von oben nach unten durchgeführt werden und das Gerät durch Überschneidung verdeckte Konturen, z. B. solche, die unterhalb des größten Ausmaßes eines Drahtes liegen, nicht "sehen" kann. Deshalb wird die "Schnittfläche" z. B. eines Drahtes nicht mehr kleiner, wenn Höhenbereiche vermessen werden, die unterhalb des die Kontur bildenden größten Ausmaßes des Drahtes liegen. Diese optisch bedingte Schnittfläche ist die

25 projizierte Schnittfläche.

Folgende weitere Definitionen werden für die relative Nämpfentiefe, die Meßhöhe "0" und den Flächentraganteil gegeben. Die relative Nämpfentiefe ist der Quotient aus der

30 Höhendifferenz zwischen der Meßhöhe, bei welcher der Flächentraganteil 30 % beträgt, und der Meßhöhe, bei welcher der Flächentraganteil 60 % beträgt, und der Summe aus den Durchmessern eines Kett- und eines Schußdrahtes. Die Meßhöhe "0"

ist die äußere Begrenzung der Papiermaschinen-Bespannung auf der Papieraufklageseite. Der Flächentraganteil ist die projizierte Schnittfläche durch die Drähte des Gewebes in einer bestimmten Meßhöhe, bezogen auf die Meßfläche, wobei die Schnittflächen 5 parallel zur Oberfläche der Bespannung liegen.

Vergleicht man konventionell gewebte und anschließend konventionell thermofixierte, einlagige TAD-Bespannungen mit erfindungsgemäßen Ausführungsformen, so erkennt man, daß 10 konventionelle Bespannungen dieser Art eindeutig unterhalb eines Grenzwertes, erfindungsgemäße Ausführungen der TAD-Bespannungen oberhalb dieses Grenzwertes liegen.

Als "kennzeichnender Grenzwert". erfindungsgemäßer 15 Ausführungsformen von einlagigen TAD-Bespannungen ist eine "relative Näpfchentiefe" definiert, die eine Aussage über die erfindungsgemäße Eignung einer TAD-Bespannung zuläßt, unabhängig vom jeweils gewählten Durchmesser der Kett- und Schußdrähte des Gewebes. Die Relativierung erfolgt, indem die Höhendifferenz 20 zwischen der Höhe bei einem Flächentraganteil von 30 % und der Höhe bei einem Flächentraganteil von 60 % auf die Summe aus Kett- und Schußdrahtdurchmesser bezogen wird.

Als "kennzeichnender Grenzwert" für die Auswahl 25 erfindungsgemäßer Ausführungsformen gilt eine "relative Näpfchentiefe" von $>/= 20 \%$, bevorzugt von $>/= 24 \%$ und am meisten bevorzugt von $>/= 27 \%$. Konventionelle TAD-Bespannungen weisen "relative Näpfchentiefen" von deutlich unter 20 % auf.

30 Die Vorgabe einer "relativen Näpfchentiefe" ist sinnvoll, da das Optimierungsverfahren eine Auswahl beim Vergleich von TAD-Bespannungsstrukturen gleicher Kett- und Schußdrahtdurchmesser liefern soll. Die Dickenzunahme bei Vergrößerung von Kett- und/oder Schußdrahtdurchmesser ist demgegenüber banal.

Patentansprüche

1. Papiermaschinen-Bespannung, insbesondere Luftdurchström-
5 Bespannung (TAD-Bespannung), als Gewebe mit einem Webmuster,
 - die relative Näpfchentiefe von zur Papieraufklageseite hin offenen Näpfchen der Papiermaschinen-Bespannung beträgt 20 % oder mehr,
- 10
 - die relative Näpfchentiefe ist der Quotient aus der Höhendifferenz zwischen der Meßhöhe, bei welcher der Flächentraganteil 30 % beträgt, und der Meßhöhe, bei welcher der Flächentraganteil 60 % beträgt, und der Summe aus den Durchmessern eines Kett- und eines Schußdrahtes,
- 15
 - die Meßhöhe "0" ist die äußere Begrenzung der Papiermaschinen-Bespannung auf der Papieraufklageseite,
- 20
 - der Flächentraganteil ist die projizierte Schnittfläche durch die Drähte des Gewebes in einer bestimmten Meßhöhe, bezogen auf die Meßfläche, wobei die Schnittflächen parallel zur Oberfläche der Bespannung liegen.
- 25 2. Papiermaschinen-Bespannung nach Anspruch 1, dadurch gekennzeichnet, daß die relative Näpfchentiefe 24 % oder mehr beträgt.
- 30 3. Papiermaschinen-Bespannung nach Anspruch 1, dadurch gekennzeichnet, daß die relative Näpfchentiefe 27 % oder mehr beträgt.
- 35 4. Papiermaschinen-Bespannung nach Anspruch 1, dadurch gekennzeichnet, daß das Gewebe ein über die Fläche regelmäßig wiederkehrendes Webmuster aufweist.

5. Papiermaschinen-Bespannung nach Anspruch 1,
dadurch gekennzeichnet, daß das Gewebe ein über die Fläche
unregelmäßig verteiltes Webmuster aufweist.
- 5 6. Papiermaschinen-Bespannung nach Anspruch 1,
dadurch gekennzeichnet, daß die Bespannung einlagig ist.
7. Tissue-Papierprodukt, hergestellt mit einer Papiermaschinen-
Bespannung gemäß mindestens einem der Ansprüche 1 bis 6.

1/19

FIG.1

2/19

FIG.2

3/19

FIG.3

4/19

FIG.4

5/19

FIG.5

6/19

FIG.6

7/19

FIG. 7

8/19

FIG.8

9/19

FIG.9

10/19

FIG.10

11/19

FIG.11

12/19

FIG.12

BST

13/19

FIG.13

44 GST

14/19

FIG.14

15/19

FIG.15

SCA 1

16/19

FIG.16

SCA 2

17/19

FIG.17

SCA 3

18/19

FIG.18

SCA 4

19/19

FIG.19

SCA 5

INTERNATIONAL SEARCH REPORT

Int'l. Appl. No.
PCT/EP 00/02972

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 D21F1/00 D21F11/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 D21F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 98 10142 A (KIMBERLY-CLARK WORLDWIDE INC.) 12 March 1998 (1998-03-12) the whole document ----	1
A	WO 97 32081 A (ASTEN INC.) 4 September 1997 (1997-09-04) ----	
A	DE 36 00 530 A (HERMANN WANGNER GMBH) 16 July 1987 (1987-07-16) -----	

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "I" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

30 August 2000

Date of mailing of the international search report

06/09/2000

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

De Rijck, F

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 00/02972

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
WO 9810142	A	12-03-1998	AU	3670797 A	26-03-1998
			BR	9711694 A	24-08-1999
			EP	0925404 A	30-06-1999
			US	6080691 A	27-06-2000

WO 9732081	A	04-09-1997	US	5853547 A	29-12-1998
			AU	705815 B	03-06-1999
			AU	1981197 A	16-09-1997
			BR	9707793 A	04-01-2000
			CA	2218156 A	04-09-1997
			EP	0891441 A	20-01-1999
			JP	11511518 T	05-10-1999
			NO	983922 A	27-10-1998

DE 3600530	A	16-07-1987	AT	58405 T	15-11-1990
			BR	8700062 A	01-12-1987
			CA	1268373 A	01-05-1990
			DE	3766117 D	20-12-1990
			EP	0232715 A	19-08-1987
			JP	8030312 B	27-03-1996
			JP	62162095 A	17-07-1987
			US	4759391 A	26-07-1988

INTERNATIONALER RECHERCHENBERICHT

Int. nationales Aktenzeichen
PCT/EP 00/02972

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 D21F1/00 D21F11/00

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 D21F

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	WO 98 10142 A (KIMBERLY-CLARK WORLDWIDE INC.) 12. März 1998 (1998-03-12) das ganze Dokument ---	1
A	WO 97 32081 A (ASTEN INC.) 4. September 1997 (1997-09-04) ---	
A	DE 36 00 530 A (HERMANN WANGNER GMBH) 16. Juli 1987 (1987-07-16) ----	

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen :

"A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

"E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist

"L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

"O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Nutzung, eine Ausstellung oder andere Maßnahmen bezieht

"P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

"T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

"X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden

"Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

"&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des internationalen Recherchenberichts

30. August 2000

06/09/2000

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

De Rijck, F

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP 00/02972

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
WO 9810142 A	12-03-1998	AU	3670797 A	26-03-1998
		BR	9711694 A	24-08-1999
		EP	0925404 A	30-06-1999
		US	6080691 A	27-06-2000
-----	-----	-----	-----	-----
WO 9732081 A	04-09-1997	US	5853547 A	29-12-1998
		AU	705815 B	03-06-1999
		AU	1981197 A	16-09-1997
		BR	9707793 A	04-01-2000
		CA	2218156 A	04-09-1997
		EP	0891441 A	20-01-1999
		JP	11511518 T	05-10-1999
		NO	983922 A	27-10-1998
-----	-----	-----	-----	-----
DE 3600530 A	16-07-1987	AT	58405 T	15-11-1990
		BR	8700062 A	01-12-1987
		CA	1268373 A	01-05-1990
		DE	3766117 D	20-12-1990
		EP	0232715 A	19-08-1987
		JP	8030312 B	27-03-1996
		JP	62162095 A	17-07-1987
		US	4759391 A	26-07-1988
-----	-----	-----	-----	-----

THIS PAGE BLANK (USPTO)