卒業論文 2019年度 (令和元年)

QRコードを用いたナビゲーションシステムの開発

慶應義塾大学大学院 環境情報学部環境情報学科 井手田悠希

QRコードを用いたナビゲーションシステムの開発

現在人間が物品管理を行っている倉庫で新たにレールを用いた形で自動化を行おうとするとレールの敷設が必要となる。そこで本研究では将来的に物品管理に利用されることを想定したドローンのナビゲーションシステムの開発を目指す。経路情報をソフトウェアで管理すると場合経路情報の管理は重要な要素である。一方で管理対象の規模が大きくなる場合その経路情報も同時に変更になると考えられ、規模変更に合わせたシステム自体の修正が必要になる。

そこで今回は管理対象の規模変更によるシステムの修正を減らす為に経路情報に関してステートレスなナビゲーションシステムを開発出来ればこれらのデメリットは解消すると考えた。本研究ではQRコードを用いて経路情報に関してステートレスなナビゲーションシステムの実現をする。

キーワード:

1. ドローン, 2. ナビゲーションシステム, 3. 倉庫, 4. QR コード, <u>5. ROS, 6. SLAM</u>,

慶應義塾大学大学院 環境情報学部環境情報学科 井手田悠希

Abstract of Bachelor's Thesis - Academic Year 20xx

Development of navigation system with QR code

I can't write English.

Keywords:

1. Drone, 2. Navigation System, 3. WareHouse, 4. QRCode, 5. ROS, 6. SLAM,

Keio University Bachelor of Arts in Environment and Information Studies Yuki Ideta

目 次

図目次

表目次

第1章 序論

本章では本研究の背景,課題及び手法を提示し,本研究の概要を示す.

1.1 本研究の背景

1.1.1 自己位置推定手法の発展

モバイルデバイスの高度化やセンサの小型化,計算能力の向上により高度な処理が可能となった。これにより自己位置推定の様々な手法が提案され、その精度も向上を続けている。しかしながら実運用を考慮する上で運用コストや機体性能、環境による制約が多く要件に応じた適切な自己位置推定手法を取る必要がある。

1.1.2 倉庫内での物品管理方法

現在倉庫内の物品管理に用いられる方法はいくつかあり、自動型の物であれば物品棚自体に設置されたレール上を物品を配置/記録/取得する専用機が移動するという形が取られている。この形を基本形として取得後はベルトコンベアーで移動、梱包等まで自動で行う倉庫もある。一方で人間が専用機を用いて物品の配置/記録/取得をする形式の倉庫も多く存在している。現在人間が物品管理を行っている倉庫で新たにレールを用いた形で自動化を行おうとするとレールの敷設が必要となる。そこで本研究では将来的に物品管理に利用されることを想定したドローンのナビゲーションシステムの開発を目指す。本研究ではナビゲーションシステム¹の開発までを行っており、実際に物品の読み取り/記録システムまでは実装しない。

1.2 本研究の問題と仮説

現在自己位置推定には GPS(Global Positioning System) を用いる手法が非常に有力であり頻繁に用いられる. しかし,屋内等の理由により直上方向に遮蔽物がある場合にはその精度が著しく低下することや利用できないという状況が発生する.

本研究では倉庫での物品管理に利用するドローンの為のナビゲーションシステムの開発を目標としている. 倉庫で物品管理にドローンを用いる上で求められるものとして第一に業務利用する以上そのメンテナンス性が挙げられる.

¹本論文ではロボットの自己位置推定と経路選択を行うシステムを指す

ハードウェア面でのメンテナンスはもとよりソフトウェア面でのメンテナンス性は非常に重要である。倉庫内を複数機で巡回する形式のドローンの運用を考えるとその経路情報の管理はいくつか方法が考えられる。はじめに考えられるのは機体それぞれに飛行プログラムの一部として経路情報を書き込む方法である。外部との通信を必要とせず自律飛行性能は高くなるというメリットがあるが、常に最新の経路情報で飛行させようとすれば経路情報のバージョン管理や飛行前のアップデート確認の手間が必要となるというデメリットがある。次に考えられるのがグラウンドコントロールシステムによる中央集権的な管理である。基本の飛行システムさえ書き込んでおけば経路情報と誘導はグラウンドコントールシステム側で一元管理が可能になり飛行前のアップデートの確認の手間は不要になるというメリットがあるが。機体側は外部通信機構が必須になる上グラウンドコントロールシステム側での複数機体の管理、グラウンドコントロールシステムと各機体とのコミュニケーションが必要となる上に機体数が増えた場合にそのネットワークの帯域も問題となる可能性があるというデメリットがある。

加えてこれら方式では機体数が増えるに連れてそれぞれのデメリットは大きな物になる 上,管理対象の規模が大きくなる場合その経路情報も同時に変更になると考えられ,規模 変更に合わせたシステム自体の修正が必要になる.

そこで今回は管理対象の規模変更によるシステムの修正を減らす為に経路情報に関してステートレスなナビゲーションシステムを開発出来ればこれらのデメリットは解消すると考えた。本研究ではQRコードを用いて経路情報に関してステートレスなナビゲーションシステムの実現をする。

1.3 本論文の構成

本論文における以降の構成は次の通りである.

- 1章では、導入を述べる.
- ??章では、背景を述べる.
- ??章では、本研究における問題の定義と、解決するための要件の整理を行う.
- ??章では、本研究の提案手法を述べる.
- ??章では、??章で述べたシステムの実装について述べる.
- ??章では、??章で求められた課題に対しての評価を行い、考察する.
- ??章では、本研究のまとめと今後の課題についてまとめる.