

UPD301C PIM Source Pro Demo Read Me

THIS DOCUMENT IS UNCONTROLLED UNLESS OTHERWISE STAMPED. It is the user's responsibility to ensure this is the latest revision prior to using or referencing this document.	Page	REV
© Microchip Technology Inc.	1 of 16	1.12

Microchip Technology, Incorporated 2355 W. Chandler Boulevard Chandler, Arizona 85224 480/792-7200

REV	DATE	DESCRIPTION OF CHANGE
1.12	23-Sept-2021	Initial version

THIS DOCUMENT IS UNCONTROLLED UNLESS OTHERWISE STAMPED. It is the user's responsibility to ensure this is the latest revision prior to using or referencing this document.	Page	REV
© Microchip Technology Inc.	2 of 16	1.12

Table of Contents

1	Software License Agreement	4
	Terms and Abbreviations	
3	Introduction	5
4	Prerequisites	6
	Setting up the EVB-PSF board for "UPD301C_PIM_Source_Pro"	
	Running the demo.	
	Expected Results	

THIS DOCUMENT IS UNCONTROLLED UNLESS OTHERWISE STAMPED. It is the user's responsibility to ensure this is the latest revision prior to using or referencing this document.	Page	REV
© Microchip Technology Inc.	3 of 16	1.12

1 Software License Agreement

Copyright © [2019-2020] Microchip Technology Inc. and its subsidiaries.

Subject to your compliance with these terms, you may use Microchip software and any derivatives exclusively with Microchip products. It is your responsibility to comply with third party license terms applicable to your use of third-party software (including open source software) that may accompany Microchip software.

THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE, INCLUDING ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE.

INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE SOFTWARE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE.

2 Terms and Abbreviations

Term	Definition
PSF	Universal Serial Bus Power Delivery Software Framework
EVB	Evaluation Board
PD	Power Delivery
IDE	Integrated Development Environment
PDO	Power Data Object
PM-PD	Power Module-USB Power Delivery
LED	Light Emitting Diode
GPIO	General Purpose Input Output
I2C	Inter Integrated Circuit
PPS	Programmable Power Supply
PIM	Plug In Module

THIS DOCUMENT IS UNCONTROLLED UNLESS OTHERWISE STAMPED. It is the user's responsibility to ensure this is the latest revision prior to using or referencing this document.	Page	REV
© Microchip Technology Inc.	4 of 16	1.12

3 Introduction

Microchip's USB Power Delivery Software Framework (PSF) is a configurable USB PD solution that is compliant to USB-PD 3.0 specification.

PSF Source Pro application includes PD Source functionality with the support for Power Balancing, Power Throttling, Source only PPS, Boot time configuration parameters and I2C based DC-DC controller for port power control. This document is intended to guide a user on setting up the <u>USB Power Delivery Software Framework Evaluation Kit (EV65D44A)</u> with EV71C90A PIM to work properly with Source Pro version of PSF along with a demonstration of a PD device attached to the EVB-PSF.

EV65D44A consists of the following:

1 x USB Power Delivery Software Framework EVB (EVB-PSF)

2 x One-Hot Vertical Mount PM-PDs (PMPD-VM-HOT)

For evaluating PPS, we use Microchip's I2C mode PM-PD modules. For more information regarding this module, contact Microchip Support.

Power Delivery Port Balancing is a feature which makes a best effort to distribute a limited amount of power between the PD ports.

- Power Balancing Algorithm "A": First Come First Serve The first port which completes
 PD contract negotiation will be offered power PDOs which can source up to
 PORT1_MAX_PWR or PORT2_MAX_PWR (depending on whichever port the device is
 connected to). The second device to complete negotiation will be offered power based on
 the remaining amount of power within the power budget.
- Power Balancing Algorithm "B": Last Plugged Gets Priority: Whenever a new device is attached, the device will be offered power PDOs which can source up to PORT1_MAX_PWR or PORT2_MAX_PWR (depending on whichever port the device is connected to). If the device requests more power than is remaining in the budget, the device which was already attached will be renegotiated and forced to select a reduced amount of power which is within the remaining power budget.

Power Throttling is a Power Delivery capability banking system which allows the system to actively switch between up to three different power capability banks. The PSF never initiates a switch between the banks; the switching between banks must always be initiated by an external stimulus.

Power Throttling is configured through 3 complete banks of PD power capability settings.

- Bank A Total System Power
- Bank A Guaranteed Minimum Power
- Bank A Port X Max Power
- Bank B Total System Power

THIS DOCUMENT IS UNCONTROLLED UNLESS OTHERWISE STAMPED. It is the user's responsibility to ensure this is the latest revision prior to using or referencing this document.	Page	REV
© Microchip Technology Inc.	5 of 16	1.12

- Bank B Guaranteed Minimum Power
- Bank B Port X Max Power
- Bank C Total System Power
- Bank C Guaranteed Minimum Power
- Bank C Port X Max Power

Programmable Power Supply (PPS) provides PD Sink devices a method to specify discrete voltage and current limit values, dynamically throughout their explicit contract as their batteries become charged. PPS is only available between Source and Sink devices operating under the USB PD 3.0 protocol specification.

For information on how to configure the above listed features, please refer <u>PSF User Guide</u>.

4 Prerequisites

Hardware:

1) USB Power Delivery Software Framework Evaluation kit with part number EV65D44A (EVB-PSF)

Figure 4.1 USB Power Delivery Software Framework EVB (EVB-PSF)

THIS DOCUMENT IS UNCONTROLLED UNLESS OTHERWISE STAMPED. It is the user's responsibility to ensure this is the latest revision prior to using or referencing this document.	Page	REV
© Microchip Technology Inc.	6 of 16	1.12

2) Two I2C based PPS capable PM-PD Cards (UNG8198)

Figure 4.2 I2C based PPS capable PM-PD Card

3) Microchip UPD301C Plug-In Module

Figure 4.3 UPD301C Plug-In Module

4) 150W Power Adapter with 24V, 6.25A output or a bench power supply

Figure 4.4 Power Adapter with 24V, 6.25A output capacity

THIS DOCUMENT IS UNCONTROLLED UNLESS OTHERWISE STAMPED. It is the user's responsibility to ensure this is the latest revision prior to using or referencing this document.	Page	REV
© Microchip Technology Inc.	7 of 16	1.12

- 5) USB-C to USB-C cable
- 6) Atmel ICE Debugger kit (Optional)

Figure 4.5 Atmel-ICE Debugger Kit

7) USB Power Delivery capable Phones or Laptops

5 Setting up the EVB-PSF board for "UPD301C_PIM_Source_Pro"

1. Connect the PIM according to the silk label marking on PSF EVB as shown in the Figure 5.1

Figure 5.1 PIM Orientation

THIS DOCUMENT IS UNCONTROLLED UNLESS OTHERWISE STAMPED. It is the user's responsibility to ensure this is the latest revision prior to using or referencing this document.	Page	REV
© Microchip Technology Inc.	8 of 16	1.12

2. Connect PM-PD Modules to J34 and J43 of the EVB-PSF in correct orientation as shown in Figure 5.2

I2C Slave address for Port 1's PM-PD should be selected as 0x61 by connecting the jumper in 0x61 of J2 and slave address for Port 2's PM-PD should be selected as 0x62 by connecting the jumper in 0x62 of J2. J2 can be found on top left corner of the PM-PDs.

Figure 5.2 PM-PD Installation

3. Ensure the following jumpers are connected in EVB-PSF before proceeding to next step.

Jumper	Pins
J38	1-2, 3-4, 5-6
J39	1-2, 3-4, 5-6
J21	1-3, 2-4
J15	1-3, 2-4
J47	1-2, 3-4
J48	1-2, 3-4
J20	1-2

THIS DOCUMENT IS UNCONTROLLED UNLESS OTHERWISE STAMPED. It is the user's responsibility to ensure this is the latest revision prior to using or referencing this document.	Page	REV
© Microchip Technology Inc.	9 of 16	1.12

10	
J2	1-2
	3-4
	5-6
	7-8
	9-10
	11-12
	13-14
Ј3	1-2
	3-4
	5-6
	7-8
	9-10
	13-14
J6	1-2
	3-4
	5-6
	7-8
	9-10
	13-14
J7	1-2
	3-4
	5-6
	7-8
	9-10
	11-12
J9 on PIM	1-2
GPIO_SEL1 on PIM	1-2
	3-4
	5-6
	7-8
	9-10
	11-12
	13-14
	15-16
	17-18
	19-20
	17-20

THIS DOCUMENT IS UNCONTROLLED UNLESS OTHERWISE STAMPED. It is the user's responsibility to ensure this is the latest revision prior to using or referencing this document.	Page	REV
© Microchip Technology Inc.	10 of 16	1.12

GPIO_SEL2 on PIM	1-2
	3-4
	5-6
	7-8
	9-10
	11-12
	13-14
	15-16
	17-18
	19-20

Table 5.1 EVB-PSF Jumper Connections

Figure 5.3 EVB-PSF Jumper Connections highlighted

- 4. Connect 150W power adapter to J49 of the EVB-PSF
- 5. Connect a USB Micro-B cable to "DEBUG USB" which on the top of the board as shown in the figure 5.4 and connect the other end USB Type-A to the laptop for using the on-board debugger for programming

THIS DOCUMENT IS UNCONTROLLED UNLESS OTHERWISE STAMPED. It is the user's responsibility to ensure this is the latest revision prior to using or referencing this document.	Page	REV
© Microchip Technology Inc.	11 of 16	1.12

Figure 5.4 Programming using On-board debugger

6. Optionally, Atmel ICE can also be used for programming the board by connecting it to J19 as shown in the figure 5.5. Please ensure the jumper is switched to 2-3 on J20 while using Atmel ICE.

THIS DOCUMENT IS UNCONTROLLED UNLESS OTHERWISE STAMPED. It is the user's responsibility to ensure this is the latest revision prior to using or referencing this document.	Page	REV
© Microchip Technology Inc.	12 of 16	1.12

Figure 5.5 Programming using Atmel ICE (Optional)

7. The whole connection looks as in the figure 5.6

THIS DOCUMENT IS UNCONTROLLED UNLESS OTHERWISE STAMPED. It is the user's responsibility to ensure this is the latest revision prior to using or referencing this document.	Page	REV
© Microchip Technology Inc.	13 of 16	1.12

Figure 5.6 EVB-PSF Full Setup

6 Running the demo

Refer <u>Getting Started with PSF</u> document for the detailed steps on setting up the build environment, building the UPD301C PIM Source Pro PSF project and programming the EVB-PSF.

Refer Appendix 8.2 of <u>Getting Started with PSF</u> to change any SAMD20 Harmony configuration. Refer 'Boot time Configuration' section of <u>PSF User Guide</u> to change any configuration parameters.

- 1. Ensure all the jumpers are in place and Power on the EVB-PSF.
- 2. Program the EVB-PSF by following the steps mentioned in section 7 of Getting Started with PSF
- 3. Connect a PD device to Port 1 of EVB-PSF using a USB-C to USB-C cable.
- 4. Connect another PD device to Port 2 of EVB-PSF using a USB-C to USB-C cable.
- 5. The image demonstrates a scenario where Microchip's UPD301C Basic Sink AE connected to Port 1 and Port 2.

THIS DOCUMENT IS UNCONTROLLED UNLESS OTHERWISE STAMPED. It is the user's responsibility to ensure this is the latest revision prior to using or referencing this document.	Page	REV
© Microchip Technology Inc.	14 of 16	1.12

Figure 6.1 Two PD Devices connected to each PD port

7 Expected Results

1. Once the hex file is programmed, the SPI_IRQ_N LEDs in both the ports flash and then turn off. DC_DC_EN will turn on.

Figure 7.1 Status of DC_DC_EN LEDs after power on

- 2. Once a PD Device is attached to a PD port, Source capabilities will be advertised by the PSF, followed by a PDO request from the device.
- 3. PSF checks if the PDO requested by the device is within the range of its capabilities. If so, it accepts the request and starts driving the requested voltage in the VBUS.

THIS DOCUMENT IS UNCONTROLLED UNLESS OTHERWISE STAMPED. It is the user's responsibility to ensure this is the latest revision prior to using or referencing this document.	Page	REV
© Microchip Technology Inc.	15 of 16	1.12

4. Once an explicit power contract negotiation is in place, the device starts charging. PDO status LEDs will turn ON indicating the negotiated voltage as shown in Figure 7.2

PDO	Status LED
5V	Port 1 – D20, Port 2 – D19
9V	Port 1 – D25, Port 2 – D23
15V	Port 1 – D30, Port 2 – D29
20V	Port 1 – D33, Port 2 – D32

Table 7.1 PDO Status LEDs

Example with Port 1: If 5V is negotiated by the device, LED in the D20 of Port 1 PDO will glow. If 9V is negotiated, then LEDs in D20 and D25 will glow. In case of 15V, LEDs in D20, D25 and D30 will glow. If 20V is negotiated, all the LEDs will glow.

5. In our case, Microchip's UPD301C Basic Sink AE connected in Port 1 and Port 2 and have requested 20V. The status of PDO status LEDs is shown in Figure 7.2

Figure 7.2 PDO Status LEDs after device attach

THIS DOCUMENT IS UNCONTROLLED UNLESS OTHERWISE STAMPED. It is the user's responsibility to ensure this is the latest revision prior to using or referencing this document.	Page	REV
© Microchip Technology Inc.	16 of 16	1.12