Corey Capooci cvcapooc@ncsu.edu HW4

1

There are two combinations of genotypes that produce the close to the dosage we are looking for.

CYPTC9: *2/*3, VKORC1: A/G, Dosage: 21.242

CYPTC9: *3/*3, VKORC1: unknown, Dosage: 20.982

The combination of CYPTC9 *3/*3 and VKORC1 unknown is closer and I would chose this one.

2

a	
X	Accuracy (when N=3)
3	1173/10000 (12%)
5	1318/10000 (13%)
7	894/10000 (9%)
10	1224/10000 (12%)

D	
N	Accuracy (when X=5)
3	831/10000 (8%)
5	1258/10000 (13%)
10	915/10000 (9%)

 \mathbf{c}

There is no clear definitive pattern according to the tables in $\bf a$ and $\bf b$. Nevertheless, for both $\bf a$ and $\bf b$, it appears the accuracy improves with larger X or larger N. Note for $\bf a$ that X=5 and X=10 performed better than X=3. It did not occur in a linear fashion but there a slight upward trend. For $\bf b$, N=5 and N=10 performed better than N=3. The best performer is X=5 for $\bf a$ and N=5 for $\bf b$.

3

No statistical parity for Female group. Difference is 0.1300 Statistical parity for Asian-Pacific-Islander group. Difference is 0.0300

P(Income>\$50K | whole dataset) = 0.2393 P(Income>\$50K | Female) = 0.1093 P(Income>\$50K | Asian-Pacific-Islander) = 0.2693