

Tecnología e Ingeniería. Curso 2024-2025

Repaso de representación de funciones de transferencia

1) De un sólo bloque: ${f Z}={f G}\cdot {f X}$

2) Sumar / Restar señales

3) Bloques en serie: multiplicación de funciones: ${f Z}={f G_1}\cdot{f G_2}\cdot{f G_3}\cdot{f X}$

4) Bloques en paralelo: combinación lineal $~{f Z}={f G_1}\cdot{f X}+{f G_2}\cdot{f Y}$

Tecnología e Ingeniería. Curso 2024-2025

5) Sistema retroalimentado *negativamente*: $\mathbf{Z} = \frac{\mathbf{G}}{\mathbf{1} + \mathbf{G} \cdot \mathbf{H}} \cdot \mathbf{X}$

Nota: Los sistemas realimentados negativamente generan señales de error, y son más propicios para generar señales estables.

Ejercicio 1: Demostrar que un sistema retroalimentado positivamente tiene la ecuación

$$Z = \frac{G}{1 - G \cdot H} \cdot X$$

Ejercicio 2: Dibuja el diagrama de bloques de estas funciones de transferencia

$$\mathbf{Z} = \frac{\mathbf{P}}{1+\mathbf{P}} \cdot \mathbf{X}$$

$$Z = \tfrac{P}{1-P} \cdot X$$

Tecnología e Ingeniería. Curso 2024-2025

Ejercicio 3: Obtén la función de transferencia de este sistema

Ejercicio 4: Obtén la función de transferencia

Ejercicio 5: Se sigue un sistema de control como el de la figura, siendo $P_1 = f(x)$

- (a) El valor de la señal en A, B y Z cuando X = 4
- (b) Calcular X cuando Z = 20 / 3

Tecnología e Ingeniería. Curso 2024-2025

Ejercicio 6: Obtener la función de transferencia del sistema Z=f(X)

Ejercicio 7: En el siguiente ejercicio calcular Z = f(Y) y Z = f(X)

Ejercicio 8: ¿Puede representarse el resultado Z=f(X) del ejercicio 7 por un sistema simple realimentado negativamente?