

SIR PRATEEK JAIN

- . Founder @ Physicsaholics
- . Top Physics Faculty on Unacademy (IIT JEE & NEET)
- . 8+ years of teaching experience in top institutes like FIITJEE (Delhi, Indore), CP (KOTA) etc.
- . Produced multiple Top ranks.
- . Research work with HC Verma sir at IIT Kanpur
- . Interviewed by International media.

Use code PHYSICSLIVE to get 10% OFF on Unacademy PLUS and learn from India's Top Faculties.

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/42

Video Solution on YouTube:-

https://youtu.be/iM2w5Ylicrl

Physics DPP

DPP-1 NLM: Free Body Diagram By Physicsaholics Team

Q) Three blocks A, B and C of masses m_1 , m_2 and m_3 are placed one over the other as shown in figure. Draw free body diagram of all the three blocks:

Join Unacademy PLUS Referral Code:

Q) A blocked of mass m is attached with two strings as shown in figure. Draw the

free body diagram of the block:

Join Unacademy PLUS Referral Code:

FBD of mass 'm' ane tension forces

Q) Two masses m and M are attached with strings as shown. Draw the free body

diagram of point B and mass M:

Join Unacademy PLUS Referral Code:

Q) Two spheres A and B of masses m_1 and m_2 are placed between two vertical walls as shown in figure .Friction is absent everywhere. Draw the free body diagram of both the spheres:

Join Unacademy PLUS Referral Code:

Q) A cylinder of weight W is resting on a V-groove as shown in figure. Draw its free body diagram:

Join Unacademy PLUS Referral Code:

Q) Two blocks are placed at rest on a smooth fixed inclined place. A force F acts on block of mass m_1 and is parallel to the inclined plane as shown in figure. Both blocks move up the incline. Then Draw free body diagram blocks of mass m_1 and

 m_2 :

Join Unacademy PLUS Referral Code:

FBD of (m,) MI = Normal oreaction on NI m, by inclined plane. 1 = Marmal Treaction between FBD of 'me' N2 = 16 smal steaction of me by inclined plane

Q) Two blocks of masses m_1 and m_1 are connected with light string. All surfaces are smooth. Then Draw free body diagram blocks of mass m_1 and m_2 and pulley: (pulley is massless)

Join Unacademy PLUS Referral Code:

Q) Three blocks A, B and C of masses m_1 , m_2 and m_3 are connected by massless strings and placed on a smooth surface. A force F is applied on block A, then draw free body diagram of all the three blocks:

Join Unacademy PLUS Referral Code:

Q) If vertical wall is smooth and string is massless, then draw the FBD of mass m:

Join Unacademy PLUS Referral Code:

mass to

Q) If the surface is smooth, then draw the FBD of mass m:

Join Unacademy PLUS Referral Code:

FBD of (m' geround surface. Narmal reaction between

Q) If pulleys and string are massless, then draw the FBD of small block of mass m:

Join Unacademy PLUS Referral Code:

Q) If pulleys and string are massless, then draw the FBD of small block of mass m and M:

Join Unacademy PLUS Referral Code:

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/42

Video Solution on YouTube:-

https://youtu.be/iM2w5Ylicrl

CUSIS NIKIS