Optique Géométrique CHAPITRE 5

Dioptre sphérique

Dr N'CHO Janvier Sylvestre

Définition

Un dioptre sphérique est une portion de surface sphérique réfringente séparant deux milieux homogènes et transparents d'indices différents. Il est caractérisé par son axe Δ , son centre C, son rayon de courbure ρ , son sommet S et les indices n_1 et n_2 des deux milieux qu'il sépare.

Invariant fondamental (1)

Soit un rayon lumineux incident A_1I issu d'un point objet A_1 situé sur l'axe. Selon que n_1 est supérieur ou inférieur à n_2 , il lui correspond un rayon réfracté IT qui se rapproche ou s'éloigne de la normale IC mais dont le support coupe toujours l'axe en un point A_2 .

Invariant fondamental (2)

Dans tous les cas de figures, les triangles CIA_1 et CIA_2 permettent d'écrire :

$$\frac{CA_1}{\sin i_1} = \frac{IA_1}{\sin(\pi - \omega)} = \frac{IA_1}{\sin \omega} \Rightarrow CA_1 = IA_1 \frac{\sin i_1}{\sin \omega}$$

$$\frac{CA_2}{\sin i_2} = \frac{IA_2}{\sin(\pi - \omega)} = \frac{IA_2}{\sin \omega} \Rightarrow CA_2 = IA_2 \frac{\sin i_2}{\sin \omega}$$

$$\Rightarrow \frac{CA_1}{CA_2} = \frac{IA_1}{IA_2} \frac{\sin i_1}{\sin i_2}$$
Théorème des sinus

$$\frac{CA_1}{CA_2} = \frac{-\overline{C}A_1}{-\overline{C}A_2} = \frac{\overline{C}A_1}{\overline{C}A_2} \\
n_1 \sin i_1 = n_2 \sin i_2$$

$$\Rightarrow \frac{\overline{C}A_1}{\overline{C}A_2} = \frac{\overline{I}A_1}{\overline{I}A_2} \cdot \frac{n_2}{n_1} \Rightarrow \boxed{n_1 \frac{\overline{C}A_1}{\overline{I}A_1} = n_2 \frac{\overline{C}A_2}{\overline{I}A_2}}$$

Ce qui montre que la quantité $n\frac{CA}{\overline{IA}}$ est invariante dans la traversée du dioptre sphérique : c'est un invariant fondamental qui est d'une grande importance dans l'étude des dioptres sphériques.

Stigmatisme rigoureux (1)

Pour les surfaces sphériques, on a également stigmatisme rigoureux lorsque A_1 est confondu avec le centre C: les rayons issus de C traversent le dioptre sans déviation et le point C est sa propre image. Mis à part ces cas, le stigmatisme rigoureux n'est réalisé que si la distance CA_2 est indépendante de l'angle ω . Comme on a $CA_2 = \frac{IA_2}{IA_1} \cdot \frac{n_2}{n_1} CA_1$ pour que CA_2 soit constant pour une position donnée de A_1 de l'objet, il faut que le rapport $\frac{IA_2}{IA_1}$ le soit également. Dans le cas où le point d'incidence I se déplace sur une sphère de diamètre SS', les deux points A_1 et A_2 , tels que le rapport $\frac{IA_2}{IA_1} = k = cte$ existent : ils appartiennent à la droite SS' et vérifient la relation:

$$\frac{\overline{SA_1}}{\overline{SA_2}} = -\frac{\overline{S'A_1}}{\overline{S'A_2}} = k = \frac{IA_1}{IA_2}$$

Stigmatisme rigoureux (2)

Les points A_1 et A_2 qui sont conjugués par rapport à la sphère et qui réalisent le stigmatisme rigoureux sont uniques; ils sont appelés "points de Weierstrass". Pour trouver leur position, supposons que le point I est successivement en S ou en S'.

L'invariant fondamental du dioptre sphérique permet d'écrire :

$$\frac{\overline{SA_2}}{\frac{n_2\overline{CA_2}}{\overline{S'A_2}}} = \frac{\overline{SA_1}}{n_1\overline{CA_1}}$$

$$\frac{\overline{S'A_2}}{\overline{S'A_2}} = -\frac{\overline{S'A_1}}{n_1\overline{CA_1}}$$

$$n_2\overline{CA_2}$$

Stigmatisme rigoureux (3)

En ajoutant membre à membre les deux relations précédentes, on obtient :

$$\frac{\overline{SA_2}}{n_2\overline{CA_2}} + \frac{\overline{S'A_2}}{n_2\overline{CA_2}} = \frac{\overline{SA_1}}{n_1\overline{CA_1}} - \frac{\overline{S'A_1}}{n_1\overline{CA_1}}$$

$$\Rightarrow \frac{\overline{SA_2} + \overline{S'A_2}}{n_2\overline{CA_2}} = \frac{\overline{SA_1} - \overline{S'A_1}}{n_1\overline{CA_1}}$$

$$\overline{SA_2} + \overline{S'A_2} = \overline{SC} + \overline{CA_2} + \overline{S'C} + \overline{CA_2} = 2\overline{CA_2}$$

$$\overline{SA_1} - \overline{S'A_1} = \overline{SA_1} + \overline{A_1S'} = \overline{SS'} = 2\overline{SC}$$

$$\Rightarrow \frac{2\overline{CA_2}}{n_2\overline{CA_2}} = \frac{2\overline{SC}}{n_1\overline{CA_1}} \Rightarrow \boxed{\overline{CA_1}} = \frac{n_2}{n_1} \overline{SC} = -\frac{n_2}{n_1} \overline{CS}$$

Stigmatisme rigoureux (4)

En retranchant membre à membre les deux relations comme précédemment, on obtient :

$$\frac{\overline{SA_2}}{n_2\overline{CA_2}} - \frac{\overline{S'A_2}}{n_2\overline{CA_2}} = \frac{\overline{SA_1}}{n_1\overline{CA_1}} + \frac{\overline{S'A_1}}{n_1\overline{CA_1}} \Rightarrow \frac{\overline{SA_2} - \overline{S'A_2}}{n_2\overline{CA_2}} = \frac{\overline{SA_1} + \overline{S'A_1}}{n_1\overline{CA_1}}$$

$$\frac{\overline{SA_2}}{\overline{SA_2} - \overline{S'A_2}} = \frac{\overline{SC} + \overline{CA_2} - \overline{S'C} - \overline{CA_2}}{\overline{SC}} = \frac{\overline{SS'} = 2\overline{SC}}{\overline{SC}}$$

$$\frac{\overline{SA_1} + \overline{S'A_1}}{\overline{SA_1} + \overline{S'A_1}} = \overline{SC} + \overline{CA_1} + \overline{S'C} + \overline{CA_1} = 2\overline{CA_1}$$

$$\Rightarrow \frac{2\overline{SC}}{n_2\overline{CA_2}} = \frac{2\overline{CA_1}}{n_1\overline{CA_1}} \Rightarrow \boxed{\overline{CA_2} = \frac{n_1}{n_2}\overline{SC}} = -\frac{n_1}{n_2}\overline{CS}$$

On remarque le produit des deux relations trouvées conduit à :

$$\overline{CA_1}.\overline{CA_2} = \overline{SC}^2 = \overline{S'C}^2$$

Stigmatisme approché

Le stigmatisme approché est réalisé au voisinage des positions de stigmatisme rigoureux. En effet lorsque le point objet A_1 est très proche du centre C (respectivement du point de Weierstrass W_1), le point image A_2 a une position fixe indépendante de I et proche de $\mathcal C$ (respectivement du point de Weierstrass W_2). Lorsque le point objet a une position quelconque, le stigmatisme approché est réalisé dans le cas des rayons paraxiaux, c'est-à-dire lorsque I est proche de S.

Relations de conjugaison

On étudiera le dioptre sphérique dans le cadre de l'approximation de Gauss.

Origine au centre C (1)

I et S étant pratiquement confondus, l'invariant fondamental du dioptre sphérique devient :

$$n_1 \frac{\overline{CA_1}}{\overline{SA_1}} = n_2 \frac{\overline{CA_2}}{\overline{SA_2}}$$

Injectons le centre C dans la relation précédente, on obtient :

$$n_{1} \frac{\overline{CA_{1}}}{\overline{SC} + \overline{CA_{1}}} = n_{2} \frac{\overline{CA_{2}}}{\overline{SC} + \overline{CA_{2}}}$$

$$\Rightarrow n_{1} \overline{CA_{1}} \left(\overline{SC} + \overline{CA_{2}} \right) = n_{2} \overline{CA_{2}} \left(\overline{SC} + \overline{CA_{1}} \right)$$

$$\Rightarrow n_{1} \overline{CA_{1}} \cdot \overline{SC} + n_{1} \overline{CA_{1}} \cdot \overline{CA_{2}} = n_{2} \overline{CA_{2}} \cdot \overline{SC} + n_{2} \overline{CA_{2}} \cdot \overline{CA_{1}}$$

$$\Rightarrow n_{2} \overline{CA_{2}} \cdot \overline{SC} - n_{1} \overline{CA_{1}} \cdot \overline{SC} = (n_{1} - n_{2}) \overline{CA_{1}} \cdot \overline{CA_{2}}$$

Origine au centre C (2)

En divisant par $CA_1.SC.CA_2$, il vient :

$$\Rightarrow n_2 \frac{\overline{CA_2}.\overline{SC}}{\overline{CA_1}.\overline{SC}.\overline{CA_2}} - n_1 \frac{\overline{CA_1}.\overline{SC}}{\overline{CA_1}.\overline{SC}.\overline{CA_2}}$$

$$= (n_1 - n_2) \frac{\overline{CA_1}.\overline{CA_2}}{\overline{CA_1}.\overline{SC}.\overline{CA_2}} \Rightarrow \frac{n_2}{\overline{CA_1}} - \frac{n_1}{\overline{CA_2}} = \frac{n_1 - n_2}{\overline{SC}}$$

$$\Rightarrow \boxed{\frac{n_1}{\overline{C}A_2} - \frac{n_2}{\overline{C}A_1} = \frac{n_1 - n_2}{\overline{C}S}}$$

Origine au sommet S (1)

On part toujours sur l'hypothèse que I et S confondus.

L'invariant fondamental du dioptre sphérique est alors :

$$n_1 \frac{\overline{CA_1}}{\overline{SA_1}} = n_2 \frac{\overline{CA_2}}{\overline{SA_2}}$$

Injectons-y le sommet S, on obtient :

$$n_{1} \frac{\overline{CS} + \overline{SA_{1}}}{\overline{SA_{1}}} = n_{2} \frac{\overline{CS} + \overline{SA_{2}}}{\overline{SA_{2}}} \Rightarrow n_{1} \overline{SA_{2}} (\overline{CS} + \overline{SA_{1}})$$

$$= n_{2} \overline{SA_{1}} (\overline{CS} + \overline{SA_{2}})$$

$$\Rightarrow n_{1} \overline{SA_{2}} . \overline{CS} + n_{1} \overline{SA_{2}} . \overline{SA_{1}} = n_{2} \overline{SA_{1}} . \overline{CS} + n_{2} \overline{SA_{1}} . \overline{SA_{2}}$$

$$\Rightarrow n_{1} \overline{SA_{2}} . \overline{CS} - n_{2} \overline{SA_{1}} . \overline{CS} = (n_{2} - n_{1}) \overline{SA_{1}} . \overline{SA_{2}}$$

Origine au sommet S (2)

En divisant par $\overline{SA_1}.\overline{CS}.\overline{SA_2}$, il vient :

$$\Rightarrow n_{1} \frac{\overline{SA_{2}}.\overline{CS}}{\overline{SA_{1}}.\overline{CS}.\overline{SA_{2}}} - n_{2} \frac{\overline{SA_{1}}.\overline{CS}}{\overline{SA_{1}}.\overline{CS}.\overline{SA_{2}}} = (n_{2} - n_{1}) \frac{\overline{SA_{1}}.\overline{SA_{2}}}{\overline{SA_{1}}.\overline{CS}.\overline{SA_{2}}}$$

$$\Rightarrow \frac{n_{1}}{\overline{SA_{1}}} - \frac{n_{2}}{\overline{SA_{2}}} = \frac{n_{2} - n_{1}}{\overline{CS}} \Rightarrow \boxed{\frac{n_{1}}{\overline{SA_{1}}} - \frac{n_{2}}{\overline{SA_{2}}}} = \frac{n_{1} - n_{2}}{\overline{SC}}$$

Remarques:

• Si $\overline{SC} \rightarrow \infty$, on retrouve la formule du dioptre plan

$$\frac{n_1}{\overline{SA_1}} - \frac{n_2}{\overline{SA_2}} = 0 \Longrightarrow \frac{n_1}{\overline{SA_1}} = \frac{n_2}{\overline{SA_2}}$$

Origine au sommet S (3)

• Si $n_1 = -n_2$, on retrouve la formule du miroir sphérique

$$\frac{1}{\overline{SA_1}} + \frac{1}{\overline{SA_2}} = \frac{2}{\overline{SC}}$$

• Regroupons différemment les termes de la relation trouvée :

$$\frac{n_1}{\overline{SA_1}} - \frac{n_2}{\overline{SA_2}} = \frac{n_1 - n_2}{\overline{SC}} = \frac{n_1}{\overline{SC}} - \frac{n_2}{\overline{SC}}$$

$$\Rightarrow \left| n_1 \left(\frac{1}{\overline{SC}} - \frac{1}{\overline{SA_1}} \right) = n_2 \left(\frac{1}{\overline{SC}} - \frac{1}{\overline{SA_2}} \right) \right|$$

Cette expression est aussi une forme invariante du dioptre sphérique

Origine au sommet S (4)

$$\tan \omega = \frac{\overline{HI}}{\overline{HC}} \approx \omega \quad \tan \alpha_{1} = \frac{\overline{HI}}{\overline{HA}} \approx \alpha_{1}$$

$$(a) \quad \text{tan } \omega = \frac{\overline{HI}}{\overline{HC}} \approx \omega \quad \tan \alpha_{1} = \frac{\overline{HI}}{\overline{HA}} \approx \alpha_{1}$$

$$\Delta \text{ ACI} \Rightarrow \omega = \alpha_{1} + i_{1} \Rightarrow \frac{\overline{HI}}{\overline{HC}} = \frac{\overline{HI}}{\overline{HA}} + i_{1}$$

$$\Delta \text{ A'CI} \Rightarrow \omega = \alpha_{2} + i_{2} \Rightarrow \frac{\overline{HI}}{\overline{HC}} = \frac{\overline{HI}}{\overline{HA}} + i_{2}$$

$$n_{1} \sin i_{1} = n_{2} \sin i_{2} \Rightarrow n_{1} (\frac{\overline{HI}}{\overline{HC}} - \frac{\overline{HI}}{\overline{HA}}) = n_{2} (\frac{\overline{HI}}{\overline{HC}} - \frac{\overline{HI}}{\overline{HA}})$$

$$\Rightarrow n_{1} (\frac{\overline{HI}}{\overline{HC}} - \frac{\overline{HI}}{\overline{HA}}) = n_{2} (\frac{\overline{HI}}{\overline{HC}} - \frac{\overline{HI}}{\overline{HA}}) \Rightarrow n_{1} (\frac{1}{\overline{HC}} - \frac{1}{\overline{HA}}) = n_{2} (\frac{1}{\overline{HC}} - \frac{1}{\overline{HA}})$$

Origine au sommet S (5)

Dans l'approximation des petits angles, H et S sont pratiquement confondus ; d'où :

$$\Rightarrow n_1 \left(\frac{1}{\overline{SC}} - \frac{1}{\overline{SA}} \right) = n_2 \left(\frac{1}{\overline{SC}} - \frac{1}{\overline{SA'}} \right) \quad \Rightarrow \quad \left| \frac{n_1}{\overline{SA}} - \frac{n_2}{\overline{SA'}} \right| = \frac{n_1 - n_2}{\overline{SC}}$$

Cette relation de conjugaison du dioptre sphérique permet de calculer la position A' par rapport à S connaissant celle de A. Elle est valable algébriquement, que n_1 soit supérieur ou inférieur à n_2 . Inversement, elle permet de trouver la position de A si celle de A' est connue.

Foyer image, foyer objet, distance focale, vergence

Pour déterminer la position des foyers, il suffit de faire tendre dans l'expression obtenue pour l'origine au sommet S, $\overline{SA_1}$ ou $\overline{SA_2}$ vers l'infini.

Foyer objet F_1

Il correspond à la position F_1 du point A_1 lorsque l'image A_2 est à l'infini ou plus simplement F_1 est le point sur lequel il faut mettre l'objet pour que l'image soit à l'infini . On aura alors :

$$\frac{n_1}{\overline{SF_1}} - \frac{n_2}{\infty} = \frac{n_1 - n_2}{\overline{SC}}$$

$$\Rightarrow \frac{n_1}{\overline{SF_1}} = \frac{n_1 - n_2}{\overline{SC}} \Rightarrow \boxed{\frac{\overline{SF_1}}{\overline{SC}}} = \frac{n_1}{n_1 - n_2} \overline{\overline{SC}}$$

C'est la distance focale objet

Foyer image F_2 (1)

Il correspond à la position F_2 de l'image A_2 lorsque l'objet A_1 est à l'infini. On a donc :

$$-\frac{n_2}{\overline{SF_2}} = \frac{n_1 - n_2}{\overline{SC}} \Rightarrow \boxed{\overline{SF_2} = \frac{n_2}{n_2 - n_1}} \overline{SC}$$
 C'est la distantant focale image

C'est la distance

On remarque que les deux expressions se déduisent l'une de l'autre par permutation des indices, ce qui est prévisible. Comme

$$\frac{\overline{SF_1}}{\overline{SF_2}} = \frac{n_1}{n_1 - n_2} \frac{\overline{SC}}{\overline{SC}} \Longrightarrow \boxed{\frac{\overline{SF_1}}{\overline{SF_2}} = -\frac{n_1}{n_2}} \quad (a) \text{ et } \boxed{\frac{\overline{SF_1} + \overline{SF_2} = \overline{SC}}{\overline{SC}}} \quad (b)$$

Foyer image F_2 (2)

- La première équation (a) montre que les foyers sont toujours situés de part et d'autre du sommet du dioptre. Ainsi, si F_1 est dans le milieu 1, F_1 est réel, F_2 est dans le milieu 2, donc F_2 est aussi réel ; par contre, si F_1 est dans le milieu 2, F_1 est virtuel, F_2 se trouve du côté du milieu 1, F_2 est aussi virtuel.
- La deuxième équation (b) montre, quant à elle, que le milieu du segment F_1F_2 coïncide avec le milieu du segment SC: les foyers sont donc symétriques par rapport au milieu de SC:

$$\overline{\overline{SF_1}} = \overline{F_2C}$$
 et $\overline{\overline{SF_2}} = \overline{F_1C}$

Cela traduit simplement que contrairement au miroir sphérique, il n'y a jamais de foyer entre S et C pour un dioptre sphérique.

Distance focale et vergence

La distance focale est donnée par :

$$f' = \overline{SF_2} = \frac{n_2}{n_2 - n_1} \overline{SC} = \frac{n_2}{n_2 - n_1} R$$

et la vergence est définie par :

$$C = \frac{n_2}{f'} = \frac{n_2}{\overline{SF_2}} = \frac{n_2 - n_1}{\overline{SC}} = \frac{n_2 - n_1}{R}$$

$$C_{objet} = \frac{n_1}{\overline{SA_1}}$$
 $C_{image} = \frac{n_2}{\overline{SA_2}}$
 $\Rightarrow C_{objet} - C_{image} = C$

Dioptres convergents et dioptres divergents (1)

La vergence est une grandeur algébrique :

- si $n_2 n_1$ et \overline{SC} sont de même signe, alors la vergence C est positive et le dioptre est dit convergent.
- si $n_2 n_1$ et SC sont de signes contraires, alors la vergence C est négative et le dioptre est dit divergent.
- On remarquera que les dioptres à foyers réels sont convergents et les dioptres à foyers virtuels sont divergents.
- Nous présentons, sur la figure suivante, les quatre dispositions possibles des points S, C, F_1 et F_2 .

Dioptres convergents et dioptres divergents (2)

Remarques: un miroir sphérique concave est toujours convergent et un miroir sphérique convexe est toujours divergent

Dioptres convergents et dioptres divergents (3)

Remarque:

$$\frac{n_1}{\overline{SA_1}} - \frac{n_2}{\overline{SA_2}} = \frac{n_1 - n_2}{\overline{SC}}$$

$$\Rightarrow \frac{\overline{SC}}{n_1 - n_2} \cdot \left(\frac{n_1}{\overline{SA_1}} - \frac{n_2}{\overline{SA_2}}\right) = \frac{n_1 - n_2}{\overline{SC}} \cdot \frac{\overline{SC}}{n_1 - n_2} = 1$$

En utilisant les relations définissant la position des foyers

$$\overline{SF_1} = \frac{n_1}{n_1 - n_2} \, \overline{SC} \qquad et \qquad \overline{SF_2} = \frac{n_2}{n_2 - n_1} \, \overline{SC}$$

$$\Rightarrow \frac{1}{\overline{SA_1}} \cdot \frac{n_1}{n_1 - n_2} \ \overline{SC} - \frac{1}{\overline{SA_2}} \cdot \frac{n_2}{n_2 - n_1} \ \overline{SC} = 1 \Rightarrow \boxed{\frac{\overline{SF_1}}{\overline{SA_1}} + \frac{\overline{SF_2}}{\overline{SA_2}}} = 1$$

Relations de conjugaison avec origine aux foyers. Formule de Newton

Injectons F_1 et F_2 dans la relation précédente, on obtient :

$$\frac{\overline{SF_1}}{\overline{SF_1} + \overline{F_1A_1}} + \frac{\overline{SF_2}}{\overline{SF_2} + \overline{F_2A_2}} = 1$$

$$\Rightarrow \overline{SF_1}(\overline{SF_2} + \overline{F_2A_2}) + \overline{SF_2}(\overline{SF_1} + \overline{F_1A_1}) = (\overline{SF_2} + \overline{F_2A_2}).(\overline{SF_1} + \overline{F_1A_1})$$

Il vient après calcul, la formule de Newton:

$$\Rightarrow \overline{\overline{SF_1}.\overline{SF_2}} = \overline{F_1A_1}.\overline{F_2A_2}$$

Construction de l'image d'un point objet perpendiculaire à l'axe

Rayons particuliers

- Tout rayon incident passant par le centre *C* ne subit aucune déviation,
- Tout rayon incident parallèle à l'axe, se réfracte en passant par le foyer image F_2 ,
- Tout rayon incident passant par le foyer objet F_1 se réfracte parallèlement à l'axe.
- Tout rayon passant par le sommet S se trouve dévié en respectant la loi de Snell-Descartes.

L'image d'un objet A_1B_1 perpendiculaire à l'axe s'obtient donc en cherchant le conjugué B_2 de B_1 à partir de l'intersection de deux des rayons particuliers précédents issus de B_1 et en menant la perpendiculaire à l'axe pour trouver la position de l'image A_2 de A_1 .

Quelques constructions (1)

objet réel placé avant F_1

Dioptre convergent

L'image est réelle et renversée

Dioptre divergent

L'image est virtuelle et de même sens que l'objet

Quelques constructions (2)

Dioptre concave convergent (n' < n), objet réel placé après le foyer objet \rightarrow image virtuelle et droite.

Dioptre concave convergent (n' < n), objet virtuel \rightarrow image réelle et droite.

Quelques constructions (3)

Dioptre convexe divergent (n' < n), objet virtuel placé avant le foyer objet \rightarrow image réelle et droite.

Dioptre convexe divergent (n' < n), objet virtuel placé après le foyer objet \rightarrow image virtuelle et renversée.

Grandissement linéaire

transversal

Avec origine au sommet S

On a:

$$\frac{A_1 B_1}{SA_1} = tan i_1$$
 $\frac{A_2 B_2}{SA_2} = tan i_2$

Dans les conditions de l'approximation de Gauss on a $\tan i_1 \approx \sin i_1$ et $\tan i_2 \approx \sin i_2$.

On en déduit que :

$$n_1 \frac{A_1 B_1}{S A_1} = n_2 \frac{A_2 B_2}{S A_2} \Longrightarrow$$

$$\gamma = \frac{\overline{A_2 B_2}}{\overline{A_1 B_1}} = \frac{n_1}{n_2} \frac{\overline{SA_2}}{\overline{SA_1}}$$

Avec origine au centre C

Avec origine aux foyers

Dans les triangles $F_1A_1B_1$ et F_1SH , on a :

$$\frac{\overline{SH}}{\overline{A_1B_1}} = \frac{\overline{F_1S}}{\overline{F_1A_1}}$$

Dans les triangles $F_2A_2B_2$ et

 F_1SI , on a:

$$\frac{\overline{A_2B_2}}{\overline{SI}} = \frac{\overline{F_2A_2}}{\overline{F_2S}}$$

Comme $\overline{SH} = \overline{A_2B_2}$ et $\overline{SI} = \overline{A_1B_1}$, on obtient :

$$\boxed{ \gamma = \frac{\overline{A_2 B_2}}{\overline{A_1 B_1}} = \frac{\overline{F_1 S}}{\overline{F_1 A_1}} = \frac{\overline{F_2 A_2}}{\overline{F_2 S}} }$$