Appunti Fisica I

Luca Seggiani

1 Marzo 2024

1 Accelerazione media e istantanea nel moto rettilineo

Poniamoci il problema di come definire l'accelerazione media e instantanea nel moto rettilineo. Ricaviamo in modo simile a ciò che avevamo fatto per la velocità media:

$$a_x = \frac{\Delta v_x}{\Delta t} = a_m = \frac{v_x(t + \Delta t) - v_x(t)}{\Delta t}$$

e quindi istantanea:

$$a_x^i = \lim_{\Delta t \to 0} a_x = \lim_{\Delta t \to 0} \frac{v_x(t + \Delta t) - v_x(t)}{\Delta t} = \frac{d^2 x}{dt^2}$$

chiaramente, l'accelerazione istantanea di un corpo non è altro che la derivata seconda della posizione di quel corpo in funzione del tempo. Si ricorda infine la notazione \ddot{x} per le derivate seconde.

Vediamo un esepmio, presa la legge oraria:

$$v_x(t) = \frac{dx}{dt} = v_0 + a_0 t$$

la velocità non è costante, ma varia linearmente col tempo. Possiamo calcolare quindi l'accelerazione media come:

$$a_m = \frac{\Delta v}{\Delta t} = \frac{v_2 - v_1}{t_2 - t_1}, \quad [a_m] = \frac{m}{s^2}$$

Ricavare l'accelerazione dalla legge oraria

Se conosciamo la posizione di un corpo in funzione del tempo secondo la legge

oraria x(t), possiamo allora determinare, come prima affermato, velocità e accelerazione:

 $v = \frac{dx(t)}{dt}, \quad a = \frac{dv(t)}{dt}$

Ricavare la legge oraria dall'accelerazione Possiamo svolgere l'operazione inversa attraverso l'operazione di integrale. Noto che accelerazione e velocità sono:

$$v = \frac{dx(t)}{dt}, \quad a = \frac{dv(t)}{dt}, \quad vdt = dx$$

e ho quindi per la velocità:

$$\int_{t_0}^t a_x dt' = \int_{t_0}^t \frac{dv_x}{dt'} dt' = v_x - v_{0x}, \quad v_x = v_{0x} + \int_{t_0}^t a_x dt'$$

e per lo spostamento:

$$\int_{t_0}^t v_x dt' = \int_{t_0}^t \frac{dx}{dt'} dt' = \int_{x(t_0)}^{x(t)} dx = x(t) - x(t_0)$$

$$x(t) = x(t_0) + \int_{v_0}^{t} v_x dt' = x(t_0) + \int_{t_0}^{t} v_x dt'$$

2 Moto rettilineo uniforme

Il moto rettilineo uniforme è un tipo di moto dove la velocità è costante e l'accelerazione nulla. Dalle formule precedenti, abbiamo:

$$a_x(t) = \frac{dv_x}{dt} = 0, \quad \text{da} \quad v_x = \frac{dx}{dt} = v_{0x} \quad v_{0x}dt = dx$$

$$\int_{t_0}^t v_{0x}dt' = \int_{t_0}^t \frac{dx}{dt'}dt' = \int_{x(t_0)}^{x(t)} dx = x(t) - x(t_0)$$

$$x(t) = x(t_0) + \int_{t_0}^t v_{0x}dt' = x(t_0) + v_0(t - t_0)$$

da cui ricaviamo l'ultima formula, legge oraria del moto rettilineo uniforme.

3 Moto uniformemente accelerato

Dalle stesse formule precedenti, possiamo ricavare:

$$\int_{t_0}^t a_x dt' = \int_{t_0}^t a dt' = a(t - t_0) = \int_{t_0}^t \frac{dv_x}{dt'} dt' = v_x - v_{0x}$$

$$v_x = v_{0x} + a(t - t_0)$$

$$\int_{t_0}^t v_x dt' = \int_{t_0}^t [v_{0x} + a(t' - t_0)] dt' = \int_{t_0}^t \frac{dx}{dt'} dt' = \int_{x(t_0)}^{x(t)} dx = x(t) - x(t_0)$$

$$x(t) = x(t_0) + v_{0x}(t - t_0) + \frac{1}{2}a(t - t_0)^2$$

Ricordiamo inoltre la formula utile:

$$t = \frac{v - v_0}{a}$$

$$x = x_0 + v_0 t + \frac{1}{2} a t^2 = x_0 + v_0 \frac{v - v_0}{a} + \frac{1}{2} a (\frac{v - v_0}{a})^2$$

$$x - x_0 = [\dots] = \frac{v^2 - v_0^2}{2a}$$