PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISI	HED I	UNDER THE PATENT COOPERATION TREATY (PCT)
(51) International Patent Classification ⁶ :		(11) International Publication Number: WO 97/11098
C08F 210/00	A1	(43) International Publication Date: 27 March 1997 (27.03.97)
(21) International Application Number: PCT/FIS (22) International Filing Date: 19 September 1996 (1) (30) Priority Data: 954475 21 September 1995 (21.09.9)	19.09.9	CA, CH, CN, CZ, DE, DK, EE, ES, GB, GE, HU, IL, IS,
 (71) Applicant (for all designated States except US): BO A/S [FI/FI]; Pl 330, FIN-06101 Porvoo (FI). (72) Inventors; and (75) Inventors/Applicants (for US only): LÖFGREN, [FI/FI]; Niittyranta 17 B, FIN-00930 Helsinki (FI TONEN, Păivi [FI/FI]; Kuhatienahde 1 B 11, FI Espoo (FI). KNUUTTILA, Pekka [FI/FI]; Torppa FIN-06400 Porvoo (FI). (74) Agent: FORSSÉN & SALOMAA OY; Yrjönkatu 3 00100 Helsinki (FI). 	Barbs I). AAI N-0217 arintie	With international search report. In English translation (filed in Finnish).
(57) Abstract		ROUPS, AND A METHOD FOR THEIR MANUFACTURE th contains 2-5 carbon atoms with a monomer which contains a functional
		·

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AU BB	Australia Barbados	GE GN	Georgia	MX	Mexico
BB	Barbedos		A. 1- T.		
			Guinea	NE	Niger
BE	- · ·	GR	Greece	NL	Netherlands
	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	ΙE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
СН	Switzerland	K2	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
	Germany	LV	Latvia	TJ	Tajikistan
	Denmark	MC	Monaco	π	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
	Spain	MG	Madagascar	UG	
	Finland	ML	Mali	US	Uganda United States of America
	France	MN	Mongolia	U2	Uzbekistan
	Gabon	MR	Mauritania	VN	Viet Nam

WO 97/11098 PCT/FI96/00494

1

Olefin polymers which contain polar groups, and a method for their manufacture

5

20

The invention relates to novel olefin copolymers which contain functional groups and to a method for their manufacture.

The linking of monomers which contain functional groups to a hydrocarbon polymer chain signifies the creating of a usable method for the modification of the chemical and physical properties of olefins. By using monomers containing functional groups it is possible to improve properties such as adhesion, dyeability, printability and permeability. Furthermore, a functional group provides a possibility for graft polymerization and thereby for uses such as compatibilization of blends containing polyolefins.

The Ziegler-Natta catalyst system is commonly used in the polymerization and copolymerization of olefins, but one of the major limitations of these conventional catalysts is that they are not suited for use in conjunction with monomers containing polar groups. Ziegler-Natta catalysts rather form a complex with the electron pair of a heteroatom, and thus in polymerization they rapidly deactivate the active centers by forming a stable complex with the functional group.

The more a polar monomer resembles alpha-olefin, the greater is its potential for becoming polymerized by the same active centers as olefins. The inventors have shown that comonomers which contain heteroatoms can be used for the polymerization of polyolefin. It is known that Lewis acid components (Zr, Al) present in the catalyst tend to form a complex with the unbound electron pairs of heteroatoms, thus causing deactivation of the catalyst. In practice this non-desirable interaction can be minimized by certain methods, such as (a) by isolating the double bond from the heteroatoms by means of a longer hydrocarbon chain; (b) by adding

WO 97/11098 PCT/FI96/00494

2

a steric barrier around the heteroatom; (c) by decreasing the electron donor character of the heteroatom, for example, by linking to it or in its vicinity a group which attracts electrons; (d) by selecting catalyst components which are inert to functional groups; (e) by precomplexing the functional monomer by using a Lewis acid; or (f) by using a polar solvent which becomes polarized with the active center but allows the polymerization of the vinyl monomer.

If deactivation can be successfully prevented by one or several of the above-mentioned methods, the copolymerization of functional monomers will become more popular than it is today.

US patent publication 5,286,800 discloses the polymerization, with alpha-olefins, of comonomers containing functional groups. In these polymerizations there are used borane monomers which are converted, by reactions after the polymerization step, into polyolefins which contain functional groups.

In Japanese patent publication 61 72 447, the comonomer used is 10-undecen-1-ol which has been pretreated with tri-isobutyl aluminum for 3 hours at room temperature before polymerization.

20

25

5

10

15

An object of the present invention is to provide novel copolymers of olefins and monomers containing functional groups. Furthermore, one object of the invention is a method in which the catalyst system has as high an activity as possible in the presence of a polar group. One object of the invention is also to provide for the copolymerization of olefins a method in which the copolymerization with a polar comonomer takes place in one step, without any pretreatment or postmodification. A further object according to the invention is to provide functional polyolefins in which the molar masses remain relatively high and the molar mass distributions are wide.

WO 97/11098 PCT/FI96/00494

3

In the Applicant's previous application *FI 951970*, this object was achieved by using as the functional monomer 2-methyl-3-buten-1-ol, 3-methyl-3-buten-1-ol and 5-hexen-1-ol.

5 The olefin copolymer according to the invention, prepared by polymerizing an olefin which contains 2—5 carbon atoms with a monomer which contains a functional group, is characterized in that the functional monomer is 9-methyl decenoate.

The olefin used in the manufacture of copolymers according to the invention consists of olefins containing 2—6 carbon atoms. Preferably, ethylene or propylene is used, but olefins having a longer carbon chain, such as 1-butene, pentene and 1-hexene, may be used just as well.

10

15

20

25

30

The catalyst used is a metallocene-type catalyst. The metallocene may be a metallocene of any type. Thus, suitable metallocene compounds include compounds having the formula $(Cp)_m R_n MR'_o X_p$, where Cp is an unsubstituted or substituted and/or fused homo- or heterocyclopentadienyl, R is a group containing 1-4 carbon atoms and serving as a bridge between two Cp rings, M is a transition metal belonging to group 4A, 5A or 6A (Hubbard), R' is a C_1 - C_2 hydrocarbyl or hydroxycarbyl group, and X is a halogen, R' being 0 or R' being 0 or R' being 0.—3, and the sum R' progression metal is preferably zirconium or hafnium, most preferably zirconium. Examples of suitable metallocene compounds include bis(R' butylcyclopentadienyl) zirconium dichloride, 1,2-ethylene-bis(indenyl) zirconium dichloride, and 1,2-ethylene-bis(indenyl) hafnium dichloride.

The polymerization activity of the catalyst can also be increased by using activators such as alumoxane. One method is to add the alumoxane to the metallocene component either before, simultaneously or after the metallocene. Another method is to add the activator directly into the polymerization reactor.

WO 97/11098 PCT/F196/00494-

4

Suitable activators include alumoxane compounds having the formula $R-(Al(R)-O)_n$ -AlR2 or $(-Al(R)-O-)_m$, where n is 1-40, m is 3-40, and R is a C_1-C_8 alkyl group. Preferably R is a methyl group.

5 The support used may be any porous or inert support, such as silica or alumina or mixtures thereof.

The polymerization may be carried out by any method, for example by slurry polymerization or gas phase polymerization. Thus the polymerization may be carried out, for example, at a temperature of 60-100 °C and under a pressure of 1-100 bar. The partial pressure of olefin in the reactor may vary within the range 1-3 bar and the amount of comonomer within the range 0.5—10 mmol.

The invention is described below in greater detail, with reference to the accompanying examples.

Materials

10

15

Bis(n-butylcyclopentadienyl) zirconium dichloride (n-butCp)₂)ZrCl₂, dicyclopentadienyl zirconium dichloride Cp₂ZrCl₂, 1,2-ethylene-bis(indenyl) zirconium dichloride Et(Ind)₂ZrCl₂, (dimethylsilyl-bis(1H-indenyl)) zirconium dichloride Me₂Si(Ind)₂ZrCl₂ and methylalumoxane (MAO) were of a commercial grade and were not purified separately. Polymerization-grade ethylene and propylene and the n-heptane and toluene serving as the medium were purified by feeding them through a column series to eliminate any moisture and oxygen residues. The comonomer methyl-9-decenoate was of own production.

Polymerization

Ethylene copolymerizations were carried out in a 0.5 dm³ autoclave at a temperature of 60 °C for 40 minutes, and the reaction medium used was n-heptane.

WO 97/11098 PCT/F196/00494

5

The medium n-heptane (350 cm³) was fed into a vacuumized reactor, blanketed with nitrogen and equipped with a stirrer. The rotation velocity of the stirrer was constantly 400 rotations per minute. The comonomer was added in one batch under nitrogen blanket, and the cocatalyst MAO (Al/Zr = 3000 mol/mol) was added at the beginning of the polymerization by using a pump. After the polymerization temperature had been reached, ethylene was fed into the reactor. The consumption of ethylene was monitored by means of a mass flow controller. After equilibrium had been reached, polymerization was started by pumping the catalyst into the reactor. The partial pressure of ethylene or propylene was maintained constant (2.5 bar ethylene overpressure) by means of an electronic pressure controller and a solenoid valve, and the reactor temperature was maintained constant (±0.1 °C). The conversion was maintained low in order that it could be assumed that the concentration in the reactor remained constant. At 40 minutes, reactor pressure was released and the obtained polymer product was washed with a solution of ethanol and hydrochloric acid, and was dried.

Propylene copolymerizations were carried in the same manner as ethylene copolymerizations except that the medium used was toluene in an amount of 300 cm³, the polymerization time was 60 minutes and the polymerization temperature was 30 °C, and the propylene overpressure was 3.0 bar. The catalyst used was 1,2-ethylene-bis(indenyl) zirconium dichloride.

Characterization of the polymers

5

10

15

20

30

The compositions of the copolymers of ethylene and the functional monomer were determined by using a Jeol NMR spectrometer.

The melting points and enthalpies were determined from the peak of the DSC curve by using a Perkin Elmer DSC-7 instrument. The DSC measurements were carried out by reheating the sample to 180 °C at heating rates of 2 and 10 °C/min.

6

The molar masses and the molar mass distributions were measured using a Waterstype ALC/GPC 150 instrument in which there had been installed 3 TOSOH mixed-bed columns in which the polystyrene barrier limit was 4×10^8 at a temperature of 135 °C. The solvent used was 1,2,4-trichlorobenzene having a flow rate of 1.0 ml/min.

Examples

Ethylene was copolymerized with methyl-9-decenoate. The catalysts used were combinations (n-butCp)₂ZrCl₂/MAO, Cp₂ZrCl₂/MAO, Et(Ind)₂ZrCl₂/MAO and Me₂Si(Ind)₂ZrCl₂/MAO. The polymerization conditions and some product properties are shown in Table 1.

Table 1

15

5

Ex. No.	Catalyst 2 mg	Comonomer amount mmol	Activity kg/g cat h	Molar mass M _w ·10 ⁻³	Mv/Mn	Tm °C
1	(n-butCp) ₂ ZrCl ₂	1	5,0	98	3,1	131,5
2	•	2	4,1	139	3,8	134,5
3		3	2,1	131	3,9	134,0
* 4		4	0,2	60	5,2	133,3
5	Cp ₂ ZrCl ₂	1	2,5	120	4,6	130,4
6	Et(Ind) ₂ ZrCl ₂	1	1,9	265	4,8	130,8
7	Me ₂ Si(Ind) ₂ ZrCl ₂	1	1,1	104	2,9	128,1

25

20

polymerization temperature 60 °C polymerization time 40 min ethylene pressure 2.5 bar $Zr = 4.94 \times 10^{-2} \text{ mol}$ Al (as MAO) = 1.98 x 10^{-2} mol

30

* Composition of the ethylene copolymer

7

Comonomer	Comonomer feed	In the copolymer		
	mmol	% wt.	molar %	
methyl-9-decenoate	4	1.1	0.2	

10 Activity decreases as the amount of comonomer fed in increases.

Copolymerizations of propylene and methyl-9-decenoate were carried out by using the combination 1,2-ethylene-bis(indenyl) zirconium chloride/MAO. The polymerization conditions and some properties of the product are shown in Table 2.

Table 2

15

20	Ex. No.	Catalyst 2 mg	Comonomer amount mmol	Activity kg/g cat h	Molar mass M _w ·10 ⁻³	Mv/Mn	Tm °C
	8	Et(Ind) ₂ ZrCl ₂	0,5	3,9	33	1,8	135,5

Al/Zr 4000 mol/mol

25 MAO solution 12.4 ml (7.0 cm) from burette

Propylene 3.0 bar

30 °C

300 ml (261 g) toluene

400 rpm

30 60 min

WO 97/11098 PCT/F196/00494

8

Claims

5

- 1. An olefin copolymer prepared by polymerizing an olefin containing 2—5 carbon atoms with a monomer containing a functional group, **characterized** in that the functional monomer is 9-methyl decenoate.
- 2. An olefin copolymer according to Claim 1, characterized in that the olefin has been selected from the group ethylene and propylene.
- 3. An olefin copolymer according to Claim 1—2, characterized in that it has been prepared by using a metallocene catalyst.
- An olefin copolymer according to any of the above claims, characterized in that the metallocene is selected from the group bis(n-butylcyclopentadienyl) zirconium chloride (n-butCp)₂)ZrCl₂, dicyclopentadienyl zirconium dichloride Cp₂ZrCl₂, 1,2-ethylene-bis(indenyl) zirconium dichloride Et(Ind)₂ZrCl₂, (dimethylsilyl-bis(1H-indenyl) zirconium dichloride Me₂Si(Ind)₂ZrCl₂.
- 5. An olefin copolymer according to Claim 4, characterized in that the polymerization has been carried out using methylalumoxane (MAO) as an activator.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/FI 96/00494

		101711 3070	<u> </u>
A. CLAS	SIFICATION OF SUBJECT MATTER		
	08F 210/00 to International Patent Classification (IPC) or to both r	national classification and IPC	
B. FIELD	OS SEARCHED		
Minimum d	ocumentation searched (classification system followed b	by classification symbols)	
IPC6: C			
	tion searched other than minimum documentation to the I,NO classes as above	ne extent that such documents are included if	n the helds searched
Electronic d	lata base consulted during the international search (nam	ne of data base and, where practicable, search	h terms used)
EPODOC,	CAPLUS		
C. DOCL	MENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where ap	ppropriate, of the relevant passages	Relevant to claim No.
Х	EP 0356692 A2 (DEMITSU KOSAN COM 7 March 1990 (07.03.90), pag claim 1	MPANY LIMITED), ge 3, line 1 - line 21,	1-2
х	US 4523929 A (ILAN DUVDEVANI ET (18.06.85), abstract; column example 1, line 15 - line 35	n 4, line 1 - line 35;	1-2
A	US 4518757 A (DONALD N. SCHULZ E 1985 (21.05.85), abstract, c		1-2
Furth	er documents are listed in the continuation of Bo	x C. X See patent family annex	
"A" docume to be of	categories of cited documents: nt defining the general state of the art which is not considered particular relevance	To later document published after the inte date and not in conflict with the applic the principle or theory underlying the	ation but cited to understand invention
"L" docume	ocument but published on or after the international filing date at which may throw doubts on priority claim(s) or which is establish the publication date of another citation or other	"X" document of particular relevance: the considered novel or cannot be consider step when the document is taken alone	red to involve an inventive
"O" docume means	reason (as specified) nt referring to an oral disclosure, use, exhibition or other nt published prior to the international filing date but later than	"Y" document of particular relevance: the of considered to involve an inventive step combined with one or more other such being obvious to a person skilled in the	when the document is documents, such combination
	nity date claimed	"&" document member of the same patent	
Date of the	actual completion of the international search	Date of mailing of the international so	
	mber 1996	1 0 -12- 1998)
	mailing address of the ISA/ Patent Office	Authorized officer	ĺ
Box 5055,	S-102 42 STOCKHOLM No. + 46 8 666 02 86	Agneta Österman Wallin Telephone No. +46 8 782 25 00	

INTERNATIONAL SEARCH REPORT

Information on patent family members

28/10/96

International application No.

96 PCT/FI 96/00494

Patent document cited in search report		Publication date		Patent family member(s)	
EP-A2-	0356692	07/03/90	CA-A- DE-D,T- JP-A- JP-B- US-A- JP-A- JP-B-	1338394 68911065 2041306 7091337 5270420 2055708 7078101	11/06/96 07/04/94 09/02/90 04/10/95 14/12/93 26/02/90 23/08/95
S-A-	4523929	18/06/85	CA-A- DE-A- US-A-	1244194 3446781 4586937	01/11/88 04/07/85 06/05/86
S-A-	4518757	21/05/85	CA-A- DE-A- JP-A-	1244194 3446781 60231709	01/11/88 04/07/85 18/11/85

Form PCT/ISA/210 (patent family annex) (July 1992)