Deep Learning for Computer Vision

Homework1

R06942052 電信碩一 鍾勝隆

Problem 1: Bayes Decision Rule

A:

$$P(x|\omega_{1}) = \frac{1}{5}, when \ 0 < x < 5$$

$$P(x|\omega_{2}) = \frac{1}{3}, when \ 3 < x < 6$$

$$P(\omega_{1}) = \frac{3}{4}, \qquad P(\omega_{2}) = \frac{1}{4}$$

$$P(x|\omega_{1}) \cdot P(\omega_{1}) = \frac{3}{20}$$

$$P(x|\omega_{2}) \cdot P(\omega_{2}) = \frac{1}{12}$$

$$P(x|\omega_{1}) \cdot P(\omega_{1}) > P(x|\omega_{2}) \cdot P(\omega_{2}), when \ 3 < x < 5$$

Thus, error will occur when 3 < x < 5 and ω_2 was classified as ω_1 ,

$$P_e = \int_3^5 P(error|x)P(x) dx$$
$$= \int_3^5 P(x|\omega_2)P(\omega_2)dx = \frac{1}{6}$$
$$R_1 \to (0,5)$$
$$R_2 \to (5,6)$$

Problem 2: Principal Component Analysis and k-Nearest Neighbors Classification

A:

(a) Plot the mean face and the first three eigenfaces.

Mean Face Eigenface 1 Eigenface 2 Eigenface 3

(b) Plot the reconstructed images with n = 3, 50, 100, 239 with the corresponding MSE values.

(c) Please show the cross-validation results and explain your choice for (k; n). Finally, use your hyperparamter choice to report the recognition rate on the test set.

The following forum is the accuracy on the validation set with different (k; n), and they are the average accuracy of 3-fold cross-validation.

k \ n	3	50	159
1	68.75%	88.75%	91.25%
3	55.42%	77.91%	65.42%
5	50.42%	70.42%	67.92%

With larger \mathbf{n} , we can describe a face more accurately, as it having more details. However, if the \mathbf{k} increases, possible candidates might affect our accuracy as noise data. Thus, I chose $(\mathbf{k}; \mathbf{n}) = (1, 159)$ as my hyperparamter to do the classification on the test set. The result is 73.75%