Basis of totally primitive elements of WQSym

Thanks for coming! These slides are made in such a way that you can jump around using the links in green (ex: Go to main result) or in the bottom-right of every slide. You will also find some clickable ? where I can give you more details, don't hesitate to ask!

Problematic, Main result and Steps

- 1999 Hivert define WQSym the Hopf algebra on packed words/surjections/ordered set partitions,
- 2001 Duchanp-Hivert-Thibon conjecture auto-duality of WQSym,
- 2005 Foissy proves this auto-duality with bidendriform structure.

Main Result

An explicit bidendriform morphism from WQSym to WQSym*.

Steps to construct the automorphism:

- Basis P of totally primitive elements of WQSym,
- Basis
 O of totally primitive elements of WQSym*,
- Bijection between biplan forests.

Packed words

Definition

A word over the alphabet $\mathbb{N}_{>0}$ is packed if all the letters from 1 to its maximum *m* appears at least once.

Packed words of size 0, 1, 2 and 3

• 6

- 12 21 11
- 123 132 213 231 312 321
 - 122 212 221 112 121 211

The function *pack*

24154 **€ PW**

remove empty lines

 $pack(24154) = 23143 \in PW$

 \rightarrow pack \rightarrow 2 3 1 4 3

WQSym, the Hopf algebra on packed words

WQSym

- $\mathbb{R}_{3112} + \mathbb{R}_{212} 3\mathbb{R}_{212341} \frac{5}{3}\mathbb{R}_{111}$
- ullet $\mathbb{R}_{12} \cdot \mathbb{R}_{11} = \mathbb{R}_{1233} + \mathbb{R}_{1323} + \mathbb{R}_{1332} + \mathbb{R}_{3123} + \mathbb{R}_{3132} + \mathbb{R}_{3312}$
- $\Delta(\mathbb{R}_{24231}) = \mathbb{R}_{\epsilon} \otimes \mathbb{R}_{24231} + \mathbb{R}_{121} \otimes \mathbb{R}_{21} + \mathbb{R}_{1312} \otimes \mathbb{R}_1 + \mathbb{R}_{24231} \otimes \mathbb{R}_{\epsilon}$
- Formal sums of packed words
- An associative and unitary product
- A coassociative and counitary coproduct Δ
- The Hopf relation $\Delta(a \cdot b) = \Delta(a) \cdot \Delta(b)$

Basis \mathbb{R} of **WQSym**

Product on \mathbb{R} : Shifted shuffle

$$\begin{array}{c} \mathbb{R}_{12} \cdot \mathbb{R}_{11} = \mathbb{R}_{1233} + \mathbb{R}_{1323} + \mathbb{R}_{1332} + \mathbb{R}_{3123} + \mathbb{R}_{3132} + \mathbb{R}_{3312} \\ \hline \vdots \\ \hline \end{array}$$

Reduced coproduct on \mathbb{R} :

Deconcatenation forbidding cut between two equal letters

$$\tilde{\Delta}(\mathbb{R}_{252341}) = \mathbb{R}_{121} \otimes \mathbb{R}_{231} + \mathbb{R}_{1312} \otimes \mathbb{R}_{21} + \mathbb{R}_{14123} \otimes \mathbb{R}_{1}$$

Bidendriform bialgebra

Example of half products

- $\mathbf{R}_{12} \cdot \mathbb{R}_{11} = \mathbb{R}_{1233} + \mathbb{R}_{1323} + \mathbb{R}_{1332} + \mathbb{R}_{3123} + \mathbb{R}_{3132} + \mathbb{R}_{3312}$
- $\mathbb{R}_{12} \prec \mathbb{R}_{11} = \mathbb{R}_{1332} + \mathbb{R}_{3132} + \mathbb{R}_{3312}$
- $\mathbb{R}_{12} \succ \mathbb{R}_{11} = \mathbb{R}_{1233} + \mathbb{R}_{1323} + \mathbb{R}_{3123}$

Example of half coproducts

- ullet $\tilde{\Delta}(\mathbb{R}_{2425531}) = \mathbb{R}_{121} \otimes \mathbb{R}_{3321} + \mathbb{R}_{12133} \otimes \mathbb{R}_{21} + \mathbb{R}_{131442} \otimes \mathbb{R}_{112133} \otimes \mathbb{R}_{21}$
- $\Delta_{\prec}(\mathbb{R}_{2425531}) = \mathbb{R}_{12133} \otimes \mathbb{R}_{21} + \mathbb{R}_{131442} \otimes \mathbb{R}_{1}$
- $\Delta_{\succ}(\mathbb{R}_{2425531}) = \mathbb{R}_{121} \otimes \mathbb{R}_{3321}$

Refinement of the Hopf definition

Refinement of associativity and coassociativity: 3 and 3 equations Refinement of the Hopf relation: 4 equations

Totally primitive elements

Primitive elements Prim(A)

P is a primitive element $\iff \tilde{\Delta}(P) = 0$

$$\mathsf{Ex}: P = \mathbb{R}_{1213} - \mathbb{R}_{2321} \quad \tilde{\Delta}(P) = \mathbb{R}_{121} \otimes \mathbb{R}_1 - \mathbb{R}_{121} \otimes \mathbb{R}_1 = 0$$

Totally primitive element TPrim(A)

P is a totally primitive element $\iff \Delta_{\prec}(P) = \Delta_{\succ}(P) = 0$

 $Ex : \mathbb{R}_{12443} - \mathbb{R}_{21443} - \mathbb{R}_{23441} + \mathbb{R}_{32441}$

Theorem [Foissy]

If A is a bidendriform bialgebra then A is freely generated by $\mathsf{TPrim}(A)$ as a dendriform algebra.

Corollary

WQSym is self-dual.

The basis \mathbb{P} indexed by red biplan forests

Example of expansion from \mathbb{P} to \mathbb{R}

$$\mathbb{P} = \mathbb{R}_{235541} - \mathbb{R}_{245531} - \mathbb{R}_{244531} - \mathbb{R}_{245431} - \mathbb{R}_{245431} - \mathbb{R}_{245431} - \mathbb{R}_{245431} + \mathbb{R}_{325541} - \mathbb{R}_{425531} - \mathbb{R}_{524431} + \mathbb{R}_{352541} - \mathbb{R}_{452531} + \mathbb{R}_{355241} - \mathbb{R}_{455231} + \mathbb{R}_{344521} + \mathbb{R}_{344521} + \mathbb{R}_{354421} + \mathbb{R}_{534421}$$

Bijection between packed words and red biplan forests.

Theorem

 $(\mathbb{P}_t)_{t\in\mathfrak{T}_n}$ for Prim_n , $(\mathbb{P}_t)_{t\in\mathfrak{V}_n}$ for TPrim_n .

The basis indexed by blue biplan forests

Example of expansion from \mathbb{O} to \mathbb{Q}

Bijection between packed words and blue biplan forests.

Theorem

 $:=\langle \mathbb{O}_h, \mathbb{O}_h, ..., \mathbb{O}_h; \Psi_i^{\alpha}(\mathbb{O}_{r_1,...,r_d}) \rangle (\mathbb{O}_f)_{f \in \mathfrak{F}_n}$ for **WQSym**_n* $(\mathbb{O}_t)_{t\in\mathfrak{T}^*}$, for Prim, $(\mathbb{O}_t)_{t\in\mathfrak{P}^*_n}$ for TPrim_n^* .

Bijection between red and blue biplan forests

