Problem 1 1

Consider a linear time invariant system $\dot{x} = Ax$, $x(0) = [0, 1, 1]^T \in \mathbb{R}^3$ with

$$A = \begin{bmatrix} -1 & 2 & -1 \\ 0 & -1 & 0 \\ 0 & 1 & -2 \end{bmatrix}.$$

Find the Jordan canonical form of A and give the transformation matrix.

Answer: The rank of the matrix is 3

Step 1: computing Eigenvalues

$$A - \lambda I = \begin{bmatrix} -1 - \lambda & 2 & -1 \\ 0 & -1 - \lambda & 0 \\ 0 & 1 & -2 - \lambda \end{bmatrix} \xrightarrow{\text{det}} (A - \lambda I) = (-1 - \lambda) \cdot [(-1 - \lambda) \cdot (-2 - \lambda) - (0 \cdot 1)]$$

$$A - \lambda I = \begin{bmatrix} -1 - \lambda & 2 & -1 \\ 0 & -1 - \lambda & 0 \\ 0 & 1 & -2 - \lambda \end{bmatrix} \xrightarrow{\text{det}} (A - \lambda I) = (-1 - \lambda) \cdot [(-1 - \lambda) \cdot (-2 - \lambda) - (0 \cdot 1)]$$

Step 2: find Eigenvectors subtract rows
$$\begin{bmatrix} 1 & 2 & -1 \end{bmatrix}$$
 Subtract $\begin{bmatrix} 1 & 2 & -1 \end{bmatrix}$ Subtract $\begin{bmatrix} 1 & 2 & -1 \end{bmatrix}$ from row 1 $\begin{bmatrix} 1 & 2 & -1 \end{bmatrix}$ from row 1 $\begin{bmatrix} 1 & 2 & -1 \end{bmatrix}$ So we have $\begin{bmatrix} 1 & 2 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & -1 \end{bmatrix}$ So we have $\begin{bmatrix} 1 & 2 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & -1 \end{bmatrix}$

So we have $\begin{bmatrix} 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

same Procedure for $\lambda_2 = -1$, we have Eigenvector $V_z = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

and we need to find the generized vector, $\Rightarrow v = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

So our matrix in basis $\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \}$ Tordan form is compute by $A = S \cdot J \cdot S^{-1}$, we have $S = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ and $S^{-1} = \begin{bmatrix} 0 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix}$ $J = \begin{bmatrix} -2 & 0 & 0 \\ 0 & -1 & 1 \end{bmatrix}$

and
$$S^{-1} = \begin{bmatrix} 0 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix}$$
 $J = \begin{bmatrix} -2 & 0 & 0 \\ 0 & -1 & 1 \end{bmatrix}$

2. Find the solution of the differential equation under given initial conditions.

To solve the initial problem, we have to find general solution:

x(t)=CIVIelit+(zVzelit from question+

From question I, we know $\lambda_1 = -1$, $\lambda_2 = -2$

when $\lambda_1 = -1$ $V_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$

When $\lambda_2 = -2$ $V_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

Substitude the value to the x(t)

$$X(t) = C_1 \begin{bmatrix} 0 \\ 0 \end{bmatrix} e^{-t} + C_2 \begin{bmatrix} 0 \\ 0 \end{bmatrix} e^{-2t}$$

$$X(0) = [0, 1.1]^T = [0]$$

$$X(0) = C_1 \begin{bmatrix} 0 \\ 0 \end{bmatrix} + C_2 \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \Rightarrow \begin{cases} C_1 + C_2 = 0 \\ C_2 = 1 \end{cases} \Rightarrow \begin{cases} C_2 = 1 \\ C_1 = -1 \end{cases}$$

So we have
$$X(t) = -\begin{bmatrix} 0 \\ 0 \end{bmatrix} e^{-t} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} e^{-2t}$$

3. Let A be perturbed by a constant $a \in \mathbb{R}$ and

$$A = \begin{bmatrix} -1 & 2 & -1 \\ 0 & -1 & a \\ 0 & 1 & -2 \end{bmatrix}.$$

Find the possible values of a such that the system $\dot{x} = Ax$ is asymptotically stable.

Answer: This equilibrium is said to be lyapunov Stable. If, for every $\epsilon > 0$, there exists af > 0, such that if $||x(0)-x_{\epsilon}|| < f$, then for every t > 0we have $||x(t) - x_{\epsilon}|| < \epsilon$.

$$50 - 3 + \sqrt{1+4a} < 0$$
 and $1+4a > 0$

we can see the real part of each # eigenvalue is strictly regative

if - 4 < a < 2, the system is asymptotically stable

2 Problem 2

Are the following statements true or false? If true, prove the statement. If false, give a counterexample.

Assume X,Y ∈ R^{n×n} satisfying XY = YX and x is a generalized eigenvector of X. Then, Yx is also a generalized eigenvector of X.

Answer: True

let assume X, y & Rnxn satisfying XY=YX

we know that $(X-\lambda I)y = 0$ for some P and eigenvalue λ . If x is an nxn matrix, a generilized eigenvector of a corresponding to the eigenvalue λ is nonzero vector. Y_X satisfying $(X-\lambda I)^P_{Y_X} = 0$ for some Positive integer P. Equivalently, it is a nonzero element of the null space of $(X-\lambda I)^P$.

now $(X-\lambda I) xy_X = y_X(X-\lambda I) x = 0$ Since $x_X = x_X = x_X = x_X = 0$

Since Yx is also generalized Eigenvector of X.

Hence proved!

#

2. Let $A \in \mathbb{R}^{m \times n}$. Then, $\operatorname{rank}(AA^T) = \operatorname{rank}(A)$. Answer: Tyue

The null space $N(A^T)$ of A^T contains vectors x which satisfies the equation $A^T \cdot x = 0$. These vectors can then will also satisfy the equation $AA^T \cdot x = 0$ which implies that $N(A^T) \subset N(AA^T)$. To prove that $N(A^T) = N(AA^T)$. We now need to show that $N(AA^T) \subset N(A^T)$. In order to do that, let's pick any vector $x \in N(AA^T)$. So, $AA^T \cdot X = 0 \Rightarrow X^T \cdot AA^T \cdot X = 0 \Rightarrow ||A^T \cdot X||^2 = 0 \Rightarrow |A^T \cdot X = 0 \Rightarrow ||A^T \cdot X||^2 = 0 \Rightarrow |A^T \cdot X = 0 \Rightarrow ||A^T \cdot X||^2 = 0 \Rightarrow |A^T \cdot X = 0 \Rightarrow ||A^T \cdot X||^2 =$

=) rank (AAT) = rank (A)

Let A ∈ R^{4×6}, and its null space is 3-dimensional. Then, for any b ∈ R⁴, the equation Ax = b has a solution.

Answer: False

Since A has 6 columns and the nulity of A is 3 the rank of A is 6-3=3. Thus the dimension of the column space of A is 3. if $A \times = 6$ has solution, dim $-6 \le 3$

counter Example:

$$A = \begin{bmatrix} 2 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \qquad b = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$

we can see that Ax=b doesn't have solution.

3 Problem 3

Suppose there are three birds flying in the sky and assume the birds' speeds are $v_1(k)$, $v_2(k)$ and $v_3(k)$ at moment k, respectively. Each bird will adjust its speed based on the average of the other two birds' speeds, i.e. at moment k + 1, the birds' speeds are

$$\upsilon_1(k+1) = \frac{\upsilon_2(k) + \upsilon_3(k)}{2}, \quad \upsilon_2(k+1) = \frac{\upsilon_1(k) + \upsilon_3(k)}{2} \quad \text{and} \quad \upsilon_3(k+1) = \frac{\upsilon_1(k) + \upsilon_2(k)}{2},$$

respectively. Assume the initial speeds are $v_1(0) = 8\text{m/s}$, $v_2(0) = 9\text{ m/s}$ and $v_3(0) = 13\text{ m/s}$.

1. What are the speeds of the birds at moment k = 1?

Answer:

$$V_1(1) = \frac{V_2(0) + V_3(0)}{2} = \frac{9 + 13}{2} = 11 \text{m/s}$$

 $V_2(1) = \frac{V_1(0) + V_3(0)}{2} = \frac{8 + 13}{2} = 10.5 \text{ m/s}$
 $V_3(1) = \frac{V_1(0) + V_2(0)}{2} = \frac{8 + 9}{2} = 8.5 \text{ m/s}$

2. Assume we lump the speeds into a vector as
$$x(k) = [v_1(k), v_2(k), v_3(k)]^T \in \mathbb{R}^3$$
, then the relation between $x(k+1)$ and $x(k)$ can be described as $x(k+1) = Ax(k)$ with $A \in \mathbb{R}^{3\times 3}$. Find the A matrix.

Answer:
$$X(K) = [V_1(k), V_2(k), V_3(k)]^T = \begin{bmatrix} V_1(k) \\ V_2(k) \end{bmatrix}$$

$$\begin{bmatrix} V_1(k) \\ V_2(k) \end{bmatrix}$$

$$X(k+1) = \begin{bmatrix} \frac{V_2(k) + V_3(k)}{2} \\ \frac{V_1(k) + V_3(k)}{2} \\ \frac{V_1(k) + V_2(k)}{2} \end{bmatrix}$$
 assume $A = \begin{bmatrix} A_1 & A_2 & A_3 \\ A_4 & A_5 & A_6 \\ A_7 & A_8 & A_9 \end{bmatrix}$

assume
$$A = \begin{bmatrix} A, A_2 A_3 \\ A_4 & A_5 & A_6 \\ A_7 & A_8 & A_9 \end{bmatrix}$$

So we have

$$\begin{bmatrix}
V_{2}(K) + V_{3}(K) \\
V_{1}(K) + V_{3}(K)
\end{bmatrix} = \begin{bmatrix}
A_{1} & A_{2} & A_{3} \\
A_{4} & A_{5} & A_{6}
\end{bmatrix}
\begin{bmatrix}
V_{1}(K) \\
V_{2}(K)
\end{bmatrix} = \begin{bmatrix}
A_{1}V_{1}(K) + A_{2}V_{2}(K) + A_{3}V_{3}(K) \\
V_{2}(K)
\end{bmatrix} = \begin{bmatrix}
A_{1}V_{1}(K) + A_{2}V_{2}(K) + A_{3}V_{3}(K) \\
V_{2}(K)
\end{bmatrix} = \begin{bmatrix}
A_{1}V_{1}(K) + A_{2}V_{2}(K) + A_{3}V_{3}(K) \\
V_{2}(K)
\end{bmatrix} = \begin{bmatrix}
A_{1}V_{1}(K) + A_{2}V_{2}(K) + A_{3}V_{3}(K) \\
V_{2}(K)
\end{bmatrix} = \begin{bmatrix}
A_{1}V_{1}(K) + A_{2}V_{2}(K) + A_{3}V_{3}(K) \\
V_{2}(K)
\end{bmatrix} = \begin{bmatrix}
A_{1}V_{1}(K) + A_{2}V_{2}(K) + A_{3}V_{3}(K) \\
V_{2}(K)
\end{bmatrix} = \begin{bmatrix}
A_{1}V_{1}(K) + A_{2}V_{2}(K) + A_{3}V_{3}(K) \\
V_{2}(K)
\end{bmatrix} = \begin{bmatrix}
A_{1}V_{1}(K) + A_{2}V_{2}(K) + A_{3}V_{3}(K) \\
V_{3}(K)
\end{bmatrix} = \begin{bmatrix}
A_{1}V_{1}(K) + A_{2}V_{2}(K) + A_{3}V_{3}(K) \\
V_{3}(K)
\end{bmatrix} = \begin{bmatrix}
A_{1}V_{1}(K) + A_{2}V_{2}(K) + A_{3}V_{3}(K) \\
V_{3}(K)
\end{bmatrix} = \begin{bmatrix}
A_{1}V_{1}(K) + A_{2}V_{3}(K) \\
V_{3}(K)
\end{bmatrix} = \begin{bmatrix}
A_{1}V_{1}(K) + A_{2}V_{3}(K) \\
V_{3}(K)
\end{bmatrix} = \begin{bmatrix}
A_{1}V_{1}(K) + A_$$

$$A4V_{1}(k)+A5V_{2}(k)+A6V_{3}(k)=\frac{V_{1}(k)+V_{3}(k)}{2}$$

A4V₁(K)+A₅V₂(K)+A₆V₃(K) =
$$\frac{1}{2}$$

A7(V₁t) A₇V₁(K)+A₈V₂(K)+A₉V₃(K) = $\frac{1}{2}$ V₁(K)+V₂(K) 3

Combine 0, 0, 0, we get A₁=0, A₂= $\frac{1}{2}$ A₃= $\frac{1}{2}$, A₄= $\frac{1}{2}$ A₅=0

A6= $\frac{1}{2}$ A₇= $\frac{1}{2}$ A₈= $\frac{1}{2}$ A₉=0

Find a canonical diagonal matrix similar to A, and give the orthogonal transformation matrix.

Answer: step1: find eigenvalue
$$A = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} \quad A - \lambda I = \begin{bmatrix} -\lambda & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\lambda & \frac{1}{2} \end{bmatrix}$$

$$\det(A - \lambda I) = 0 = -\lambda \left[(-\lambda - \lambda) - (\frac{1}{2} - \frac{1}{2}) \right] - \frac{1}{2} \left[(\frac{1}{2} - \lambda) - (\frac{1}{2} - \frac{1}{2}) \right] + \frac{1}{2} \left[\frac{1}{4} - (\frac{1}{2} - \lambda) \right]$$

$$= \frac{3\lambda}{4} - \lambda^3 + \frac{1}{4} \Rightarrow \lambda_1 = 1 \quad \lambda_2 = -\frac{1}{2}$$

$$\int \exp 2: \text{ find eigenvectors } \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\lambda_2 = \frac{1}{2} \quad \text{ Eigenvectors } \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\lambda_2 = \frac{1}{2} \quad \text{ Eigenvectors } \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\lambda_2 = \frac{1}{2} \quad \text{ Eigenvectors } \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$\int -1 = \begin{bmatrix} -1 \\ 3 \\ -\frac{1}{3} - \frac{1}{3} - \frac{1}{3} \end{bmatrix}$$

$$\int -1 = \begin{bmatrix} -1 \\ 3 \\ -\frac{1}{3} - \frac{1}{3} - \frac{1}{3} \end{bmatrix}$$

$$\int -1 = \begin{bmatrix} -1 \\ 3 \\ -\frac{1}{3} - \frac{1}{3} - \frac{1}{3} \end{bmatrix}$$

$$\int -1 = \begin{bmatrix} -1 \\ 3 \\ -\frac{1}{3} - \frac{1}{3} - \frac{1}{3} \end{bmatrix}$$

$$\int -1 = \begin{bmatrix} -1 \\ 0 \\ -\frac{1}{2} \\ -\frac{1}{3} - \frac{1}{3} - \frac{1}{3} \end{bmatrix}$$

$$\int -1 = \begin{bmatrix} -1 \\ 0 \\ -\frac{1}{2} \\ -\frac{1}{3} - \frac{1}{3} - \frac{1}{3} \end{bmatrix}$$

$$\int -1 = \begin{bmatrix} -1 \\ 0 \\ -\frac{1}{2} \\ -\frac{1}{3} - \frac{1}{3} - \frac{1}{3} \end{bmatrix}$$

$$\int -1 = \begin{bmatrix} -1 \\ 0 \\ -\frac{1}{2} \\ -\frac{1}{3} - \frac{1}{3} - \frac{1}{3} \end{bmatrix}$$

$$\int -1 = \begin{bmatrix} -1 \\ 0 \\ -\frac{1}{2} \\ -\frac{1}{3} - \frac{1}{3} - \frac{1}{3} \end{bmatrix}$$

$$\int -1 = \begin{bmatrix} -1 \\ 0 \\ -\frac{1}{2} \\ -\frac{1}{3} - \frac{1}{3} - \frac{1}{3} \end{bmatrix}$$

$$\int -1 = \begin{bmatrix} -1 \\ 0 \\ -\frac{1}{2} \\ -\frac{1}{3} - \frac{1}{3} - \frac{1}{3} \end{bmatrix}$$

$$\int -1 = \begin{bmatrix} -1 \\ 0 \\ -\frac{1}{2} \\ -\frac{1}{3} - \frac{1}{3} - \frac{1}{3} \end{bmatrix}$$

$$\int -1 = \begin{bmatrix} -1 \\ 0 \\ -\frac{1}{2} \\ -\frac{1}{3} - \frac{1}{3} - \frac{1}{3} \end{bmatrix}$$

$$\int -1 = \begin{bmatrix} -1 \\ 0 \\ -\frac{1}{2} \\ -\frac{1}{3} - \frac{1}{3} - \frac{1}{3} \end{bmatrix}$$

$$\int -1 = \begin{bmatrix} -1 \\ 0 \\ -\frac{1}{2} \\ -\frac{1}{3} - \frac{1}{3} - \frac{1}{3} \end{bmatrix}$$

$$\int -1 = \begin{bmatrix} -1 \\ 0 \\ -\frac{1}{2} \\ -\frac{1}{3} - \frac{1}{3} - \frac{1}{3} \end{bmatrix}$$

$$\int -1 = \begin{bmatrix} -1 \\ 0 \\ -\frac{1}{2} \\ -\frac{1}{3} - \frac{1}{3} - \frac{1}{3} \end{bmatrix}$$

$$\int -1 = \begin{bmatrix} -1 \\ 0 \\ -\frac{1}{2} \\ -\frac{1}{3} - \frac{1}{3} - \frac{1}{3} \end{bmatrix}$$

$$\int -1 = \begin{bmatrix} -1 \\ 0 \\ -\frac{1}{2} \\ -\frac{1}{3} - \frac{1}{3} - \frac{1}{3} \end{bmatrix}$$

$$\int -1 = \begin{bmatrix} -1 \\ 0 \\ -\frac{1}{2} \\ -\frac{1}{3} - \frac{1}{3} - \frac{1}{3} \end{bmatrix}$$

$$\int -1 = \begin{bmatrix} -1 \\ 0 \\ -\frac{1}{2} \\ -\frac{1}{3} - \frac{1}{3} - \frac{1}{3} \end{bmatrix}$$

$$\int -1 = \begin{bmatrix} -1 \\ 0 \\ -\frac{1}{2} \\ -\frac{1}{3} - \frac{1}{3} - \frac{1}{3} \end{bmatrix}$$

$$\int -1 = \begin{bmatrix} -1 \\ 0 \\ -\frac{1}{2} \\ -\frac{1}{3} - \frac{1}{3} - \frac{1}{3} \end{bmatrix}$$

$$\int -1 = \begin{bmatrix} -1 \\ 0 \\ -\frac{1}{3} - \frac{1}{3} - \frac{1}{3}$$

4. Find the speeds of the birds when $k \to \infty$, i.e. $\lim x(k)$.

Answer:

from 3.3, we have eigenvalue & 1,=1

and the Correspondant Vector 1 7

the initial speed is $V_1(0) + V_2(0) + V_3(0) = 8 + 9 + 13 = 30$.

So the it will be
$$\begin{bmatrix} 10 \\ 10 \end{bmatrix}$$

Thus $\lim_{k\to 0} X(k) = \begin{bmatrix} 10 \\ 10 \end{bmatrix}$