# Data Preprocessing Techniques/Methods Use for Weka, Python

## Why Data Preprocessing?

- Data in the real world is imperfect
  - incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data
  - noisy: containing errors or outliers
  - inconsistent: containing discrepancies in codes or names
- No quality data, no quality mining results!
  - Quality decisions must be based on quality data
  - Data warehouse needs consistent integration of quality data

## Types of Data Sets

Relational records

| NAME | AGE   | INCOME | CREDIT RATING |
|------|-------|--------|---------------|
| Mike | <= 30 | low    | fair          |
| Mary | <= 30 | low    | poor          |
| Bill | 3140  | high   | excellent     |
| Jim  | >40   | med    | fair          |
| Dave | >40   | med    | fair          |
| Anne | 3140  | high   | excellent     |

Transaction data

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Coke, Milk         |
| 2   | Beer, Bread               |
| 3   | Beer, Coke, Diaper, Milk  |
| 4   | Beer, Bread, Diaper, Milk |
| 5   | Coke, Diaper, Milk        |

- Data matrix, e.g., numerical matrix
- Document data:
  - text documents: term-frequency vector

#### **Data Objects**

- Data sets are made up of data objects.
- A data object represents an entity.
- Examples:
  - sales database: customers, store items, sales
  - medical database: patients, treatments
  - university database: students, professors, courses
- Also called samples, examples, instances, data points, objects, tuples.
- Data objects are described by attributes.
- Database rows -> data objects; columns ->attributes.

#### **Attributes**

- Attribute (or dimensions, features, variables): a data field, representing a characteristic or feature of a data object.
  - e.g., customer\_ID, name, address
- Types:
  - Nominal
    - special kind of nominal binary, ordinal
  - Numeric
    - Quantitative
    - Interval-scaled

#### **Nominal Attributes**

- Nominal: categories, states, or "names of things"
  - Hair\_color = {auburn, black, blond, brown, grey, red, white}
  - marital status, occupation, ID numbers, zip codes
- Special kind of nominal:
  - Binary
    - Nominal attribute with only 2 states (0 and 1)
    - Symmetric binary: both outcomes equally important
      - e.g., gender
    - Asymmetric binary: outcomes not equally important.
      - e.g., medical test (positive vs. negative)
      - Convention: assign 1 to most important outcome (e.g., HIV positive)

#### Ordinal

- Values have a meaningful order (ranking) but magnitude between successive values is not known.
- Size = {small, medium, large}, grades

#### **Numeric Attributes**

- Quantity (integer or real-valued)
- Interval
  - Measured on a scale of equal-sized units
  - Values have order
    - e.g., calendar dates
  - No true zero-point

#### Discrete and Continuous Attributes

#### Discrete Attribute

- Has only a finite or countably infinite set of values
  - e.g., zip codes, profession, or the set of words in a collection of documents
- Sometimes, represented as integer variables
- Note: Binary attributes are a special case of discrete attributes

#### Continuous Attribute

- Has real numbers as attribute values
  - e.g., temperature, height, or weight
- Practically, real values can only be measured and represented using a finite number of digits
- Continuous attributes are typically represented as floating-point variables

#### Basic Statistical Descriptions of Data

- Motivation
  - To better understand the data: central tendency, variation and spread
- Data dispersion characteristics
  - median, max, min, quantiles, outliers, variance, etc.
- Numerical dimensions correspond to sorted intervals
  - Data dispersion: analyzed with multiple granularities of precision
  - Boxplot or quantile analysis on sorted intervals

## Measuring the Central Tendency

Mean (algebraic measure) (sample vs. population):

Note: *n* is sample size and *N* is population size.

- Weighted arithmetic mean:
- Trimmed mean: chopping extreme values

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \mu = \frac{\sum x}{N}$$

$$\overline{x} = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i}$$

#### Median:

- Middle value if odd number of values, or average of the middle 'two values otherwise
- Estimated by interpolation (for grouped data):

$$median = L_1 + (\frac{n/2 - (\sum freq)_l}{freq_{median}}) width$$

#### Mode

- Value that occurs most frequently in the data
- Unimodal, bimodal, trimodal

#### Median - Example

Suppose that we consider the attribute: "unit price of different products" of a company



# Example of Five-number Summary



#### Measuring the Dispersion of Data

- Quartiles, outliers and boxplots
  - Quartiles: Q<sub>1</sub> (25<sup>th</sup> percentile), Q<sub>3</sub> (75<sup>th</sup> percentile)
  - Inter-quartile range:  $IQR = Q_3 Q_1$
  - Five number summary: min,  $Q_1$ , median,  $Q_3$ , max
  - Boxplot: ends of the box are the quartiles; median is marked; add whiskers, and plot outliers individually
- Variance and standard deviation (sample: s, population: σ)
  - Variance: (algebraic, scalable computation)

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \frac{1}{n-1} \left[ \sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} (\sum_{i=1}^{n} x_{i})^{2} \right] \qquad \sigma^{2} = \frac{1}{N} \sum_{i=1}^{n} (x_{i} - \mu)^{2} = \frac{1}{N} \sum_{i=1}^{n} x_{i}^{2} - \mu^{2}$$

• Standard deviation s (or  $\sigma$ ) is the square root of variance  $s^2$  (or  $\sigma^2$ )

# Example of inter-quartile range (IQR)



## **Example of Boxplot**



whisker and an outlier

#### **Boxplot Analysis**

- Five-number summary of a distribution
  - Minimum, Q1, Median, Q3, Maximum

#### Boxplot

- Data is represented with a box
- The ends of the box are at the first and third quartiles,
  i.e., the height of the box is IQR
- The median is marked by a line within the box
- Whiskers: two lines outside the box extended to Minimum and Maximum
- Outliers: points beyond a specified outlier threshold, plotted individually





#### **Outliers**

- An outlier is a data point that comes from a distribution different (in location, scale, or distributional form) from the bulk of the data
- In the real world, outliers have a range of causes, from as simple as
  - operator blunders
  - equipment failures
  - day-to-day effects
  - batch-to-batch differences
  - anomalous input conditions
  - warm-up effects

## Visualization of Data Dispersion: 3-D Boxplots



- Histogram: Graph display of tabulated frequencies, shown as bars
- x-axis are values, y-axis represent frequency
- It shows what proportion of cases fall into each of several categories
- Looks like a bar chart, e.g.

#### Favourite Colour





Differs from a bar chart in that it is the area of the bar that denotes the value, not the height as in bar charts, a crucial distinction 35-when the categories are not of uniform width

The categories are usually specified as nonoverlapping intervals of some variable. The 20categories (bars) must be adjacent 15-



Median, mean and mode of symmetric, positively and negatively skewed data



## Histograms Often Tell More than Boxplots



- The two histograms shown in the left may have the same boxplot representation
  - The same values for:
    min, Q1, median, Q3,
    max
- But they have rather different data distributions



Singleton buckets

Buckets denoting a Continuous range of values

- How are buckets determined and the attribute values partitioned?
  - Equiwidth: The width of each bucket range is uniform
  - Equidepth: The buckets are created so that, roughly, the frequency of each bucket is constant

## Histogram Examples

Suppose that the values for the attribute age:

13, 15, 16, 16, 19, 20, 20, 21, 21, 22, 25, 25, 25, 25, 30, 30, 30, 30, 32, 33, 33, 37, 40, 40, 40, 42, 42

#### Equiwidth Histogram:

| Bucket range | Frequency |
|--------------|-----------|
| 13-22        | 10        |
| 23-32        | 9         |
| 33-42        | 8         |

#### **Equidepth Histogram:**

| Bucket range | Frequency |
|--------------|-----------|
| 13-21        | 9         |
| 22-30        | 9         |
| 32-42        | 9         |

## **Equiwidth Histograms**

#### Properties of Normal Distribution Curve

- The normal (distribution) curve
  - From  $\mu$ – $\sigma$  to  $\mu$ + $\sigma$ : contains about 68% of the measurements ( $\mu$ : mean,  $\sigma$ : standard deviation)
  - From  $\mu$ –2 $\sigma$  to  $\mu$ +2 $\sigma$ : contains about 95% of it
  - From  $\mu$ –3 $\sigma$  to  $\mu$ +3 $\sigma$ : contains about 99.7% of it



## Graphic Displays of Basic Statistical Descriptions

- **Boxplot**: graphic display of five-number summary
- **Histogram**: x-axis are values, y-axis repres. frequencies
- **Quantile plot**: each value  $x_i$  is paired with  $f_i$  indicating that approximately  $100 f_i \%$  of data are  $\le x_i$
- Scatter plot: each pair of values is a pair of coordinates and plotted as points in the plane

#### Quantile Plot

- Displays all of the data (allowing the user to assess both the overall behavior and unusual occurrences)
- Plots quantile information
  - For a data  $x_i$  data sorted in increasing order,  $f_i$  indicates that approximately  $100 f_i$ % of the data are below or equal to the value  $x_i$



#### **Scatter Plot**

- Provides a first look at bivariate data to see clusters of points, outliers, etc
- Each pair of values is treated as a pair of coordinates and plotted as points in the plane



#### Correlation

 Correlation coefficient (also called Pearson's product moment coefficient)

$$r_{A,B} = \frac{\sum_{i=1}^{n} (a_i - \overline{A})(b_i - \overline{B})}{(n-1)\sigma_A \sigma_B} = \frac{\sum_{i=1}^{n} (a_i b_i) - n \overline{A} \overline{B}}{(n-1)\sigma_A \sigma_B}$$

where n is the number of tuples,  $\overline{A}$  and  $\overline{B}$  are the respective means of A and B,  $\sigma_A$  and  $\sigma_B$  are the respective standard deviation of A and B, and  $\Sigma(a_ib_i)$  is the sum of the AB cross-product.

- If  $r_{A,B} > 0$ , A and B are positively correlated (A's values increase as B's). The higher, the stronger correlation.
- $r_{A,B} = 0$ : independent;  $r_{AB} < 0$ : negatively correlated

#### **Correlation**



# Scatter plots showing the similarity from -1 to 1

## **Uncorrelated Data**







#### More on Outliers

An outlier is a data value that has a very low probability of occurrence (i.e., it is unusual or unexpected).



 In a scatter plot, outliers are points that fall outside of the overall pattern of the relationship.





#### **Outliers**

- The upper right-hand point here is probably <u>not</u> an outlier of the relationship
- It is what you would expect for this many beers given the linear relationship between beers/weight and blood alcohol.

 This point is not in line with the others, so it <u>may be</u> an outlier of the relationship.

# Major Tasks in Data Preprocessing

F

- Data cleaning
  - Fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies
- Data integration
  - Integration of multiple databases, data cubes, or files
- Data transformation
  - Normalization and aggregation
- Data reduction
  - Obtains reduced representation in volume but produces the same or similar analytical results
- Data discretization
  - Part of data reduction but with particular importance, especially for numerical data

# Forms of data preprocessing



## **Data Cleaning**

- Data cleaning tasks
  - Fill in missing values
  - Identify outliers and smooth out noisy data
  - Correct inconsistent data

## Recover Missing Values Moving Average

- A simple moving average is the unweighted mean of the previous n data points in the time series
- A weighted moving average is a weighted mean of the previous n data points in the time series
  - A weighted moving average is more responsive to recent movements than a simple moving average

#### **Data Transformation**

- Smoothing: remove noise from data
- Aggregation: summarization, data cube construction
- Normalization: scaled to fall within a small, specified range
  - min-max normalization
  - z-score normalization
- Attribute/feature construction
  - New attributes constructed from the given ones

# Data Transformation: Normalization

min-max normalization

$$v' = \frac{v - min}{max - min}(new \_ max - new \_ min) + new \_ min$$

z-score normalization

$$v' = \frac{v - mean}{stand\_dev}$$

#### Normalization - Examples

- Suppose that the minimum and maximum values for attribute income are 12,000 and 98,000 respectively. How to map an income value of 73,600 to the range of [0.0,1.0]?
- Suppose that the mean and standard deviation for the attribute income are 54,000 and 15,000. How to map an income value of 73,600 using z-score normalization?

## Normalization – Examples (Answers)

1) min-max normalization

$$\frac{73600 - 12000}{98000 - 12000}(1.0 - 0) + 0 = 0.716$$

2) z-score normalization

$$\frac{73600 - 54000}{15000} = 1.307$$

- Some data mining methods require that the variables be normally distributed.
- Note that z-score standardization cannot achieve normality, i.e. distribution may still be skewed
- Apply a transformation such as natural log, square root, and inverse square root















 Fortunately methods requiring normality usually do fine when supplied with data that is symmetric and unimodal.

## Data Reduction Strategies

- Complex data analysis/mining may take a very long time to run on the complete data set
- Data reduction
  - Obtains a reduced representation of the data set that is much smaller in volume but yet produces the same (or almost the same) analytical results
- Data reduction strategies
  - Dimensionality reduction

#### **Dimensionality Reduction**

- Feature selection (i.e., attribute subset selection):
  - Select a minimum set of features useful for data mining
  - reduce # of patterns in the patterns, easier to understand

## Sampling

- Allow a mining algorithm to handle an extremely large amount of the data
- Choose a representative subset of the data

## Sampling



## Sampling

- Simple random sampling may have very poor performance in the presence of skew
- Adaptive sampling method Stratified sampling:
  - Approximate the percentage of each class (or subpopulation of interest) in the overall database
  - Used in conjunction with skewed data





## Stratified sample (according to *age*)

| T38         | young       |
|-------------|-------------|
| <b>T256</b> | young       |
| T307        | young       |
| T391        | young       |
| <b>T96</b>  | middle-aged |
| T117        | middle-aged |
| T138        | middle-aged |
| <b>T263</b> | middle-aged |
| <b>T290</b> | middle-aged |
| T308        | middle-aged |
| T326        | middle-aged |
| T387        | middle-aged |
| <b>T69</b>  | senior      |
| T284        | senior      |
| 1204        | 3011101     |

| •    |             |
|------|-------------|
| T38  | young       |
| T391 | young       |
| T117 | middle-aged |
| T138 | middle-aged |
| T290 | middle-aged |
| T326 | middle-aged |
| T69  | senior      |
| 109  | 3611101     |