# Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Факультет Електроніки Кафедра мікроелектроніки

### ЗВІТ

Про виконання лабораторної роботи №1 з дисципліни: «ФУНКЦІОНАЛЬНА ЕЛЕКТРОНІКА»

Дослідження динамічних характеристик оптронів

| Виконавець:<br>Студент 4-го курсу | (підпис) | А.С. Мнацаканов |  |
|-----------------------------------|----------|-----------------|--|
| Перевірив:                        | (підпис) | С.В. Малюта     |  |

Мета - Дослідження характеристик оптронів та функціональних пристроїв на їх основі. Дослідження динамічних характеристик оптронів.



Рис. 1: Макет для дослідження статичних характеристик оптронів.

# ПОРЯДОК ВИКОНАННЯ РОБОТИ

- 1. Провести вимірювання статичних характеристик оптрона.
- 2. Зібрати схему для вимірювання статичних характеристик оптронів
- 3. Переключити мультиметр у режим вимірювання опору.
- 4. Ввімкнути пару білий світлодіод фоторезистор та зняти передавальну характеристику резистивного оптрона при зміні напруги на світлодіоді (діапазон задається викладачем).
- 5. Ввімкнути пару червоний світлодіод фоторезистор та зняти передавальну характеристику резистивного оптрона при зміні напруги на світлодіоді (діапазон задається викладачем).
- 6. Ввімкнути пару зелений світлодіод фоторезистор та зняти передавальну характеристику резистивного оптрона при зміні напруги на світлодіоді (діапазон задається викладачем).
- 7. Переключити мультиметр в режим вимірювання струму.
- 8. Ввімкнути пару білий світлодіод фотодіод та зняти передавальну характеристику діодного оптрона при зміні напруги на світлодіоді (діапазон задається викладачем).
- 9. Ввімкнути пару червоний світлодіод фотодіод та зняти передавальну характеристику діодного оптрона при зміні напруги на світлодіоді (діапазон задається викладачем).
- 10. Ввімкнути пару зелений світлодіод фотодіод та зняти передавальну характеристику діодного оптрона при зміні напруги на світлодіоді (діапазон задається викладачем).

# 11. Вимкнути мультиметр та джерело струму.

## ЕКСПЕРИМЕНТАЛЬНІ РЕЗУЛЬТАТИ

Табл. 1: Експериментальні результати (  $\Phi P$  – фоторезистор,  $\Phi Д$  – фотодіод, свд – світлодіод.)

| ФР – білий СВД |        | ФР – зелений СВД |        | ФР – червоний СВД |       |        |        |       |
|----------------|--------|------------------|--------|-------------------|-------|--------|--------|-------|
| UBX, B         | R, кОм | І, мА            | Ubx, B | R, кОм            | І, мА | Uвх, В | R, кОм | І, мА |
| 1.5            | 10.44  | 0.001            | 1.3    | 16.3              | 0.001 | 1.1    | 500    | 0.043 |
| 1.6            | 9.06   | 0.0032           | 1.4    | 16.2              | 0.011 | 1.2    | 400    | 0.055 |
| 1.7            | 8.73   | 0.0051           | 1.5    | 4.57              | 0.07  | 1.3    | 12.59  | 0.075 |
| 1.8            | 3.4    | 0.021            | 1.6    | 2.16              | 0.26  | 1.4    | 1.2    | 0.15  |
| 1.9            | 1.4    | 0.078            | 1.7    | 1.06              | 0.78  | 1.5    | 0.88   | 1.45  |
| 2              | 0.9    | 0.158            | 1.8    | 0.2               | 0.79  | 1.6    | 0.5    | 3.3   |
| 2.1            | 0.18   | 6                | 1.9    | 0.18              | 1.2   | 1.7    | 0.4    | 3.8   |
| 2.2            | 0,15   | 10               | 2      | 0.10              | 4.4   | 1.8    | 0.35   | 4.7   |
|                |        |                  | 2.1    | 0.04              | 6.8   | 1.9    | 0.32   | 5.5   |
|                |        |                  | 2.2    | 0.01              | 9.96  | 2      | 0.32   | 6     |
|                |        |                  |        |                   |       | 2.1    | 0.28   | 7.2   |
|                |        |                  |        |                   |       | 2.2    | 0.27   | 8.1   |

| ФД – білий СВД |          | ФД – зелений СВД |        |         | ФД – червоний СВД |        |         |          |
|----------------|----------|------------------|--------|---------|-------------------|--------|---------|----------|
| UBX, B         | Іфд, мкА | Ісвд , мА        | Uвх, В | Іф, мкА | Ісвд , мА         | Ubx, B | Іф, мкА | Ісвд, мА |
| 1.3            | 0.2      | 0.001            | 1.5    | 0.3     | 0.27              | 1.1    | 0.3     | 0.3      |
| 1.4            | 0.3      | 0.002            | 1.6    | 0.3     | 0.3               | 1.2    | 0.5     | 0.49     |
| 1.5            | 0.3      | 0.004            | 1.7    | 1.4     | 0.38              | 1.3    | 1.8     | 0.49     |
| 1.6            | 0.3      | 0.004            | 1.8    | 7.2     | 0.6               | 1.4    | 5.6     | 1.38     |
| 1.7            | 0.3      | 0.05             | 1.9    | 15      | 1                 | 1.5    | 10.5    | 2.9      |
| 1.8            | 0.5      | 0.17             | 2      | 44      | 2.6               | 1.6    | 29      | 3.7      |
| 1.9            | 1        | 0.43             | 2.1    | 65      | 4.1               | 1.7    | 40      | 4.57     |
| 2              | 0.9      | 0.58             | 2.2    | 89      | 6                 | 1.8    | 51      | 4.57     |
| 2.1            | 21       | 1.25             | 2.3    | 115     | 8.4               | 1.9    | 63      | 5.4      |
| 2.2            | 87       | 5.67             |        |         |                   | 2      | 74      | 6.2      |
| 2.3            | 133      | 9.2              |        |         |                   | 2.1    | 99      | 7.9      |
|                |          |                  |        |         |                   | 2.2    | 111     | 8        |
|                |          |                  |        |         |                   | 2.3    | 124     | 9.6      |

### ОБРОБКА РЕЗУЛЬТАТІВ

Побудовані передавальні характеристики — залежності фотоопору та фотоструму від струму через світлодіод:



Рис. 2: Залежність фотоопору від струму через світлодіод для білого та зеленого світлодіоду



Рис. 3: Залежність фотоопору від струму через світлодіод для червоного світлодіоду

Коефіцієнт передачі К розрахуємо з формули:



Рис. 4: Залежність фотоструму від струму через світлодіод для трьох випадків

$$K = \frac{I_{\Phi \Pi_2} - I_{\Phi \Pi_1}}{I_{C\Pi_2} - I_{C\Pi_1}}$$

$$K = \frac{I_{\Phi P_2} - I_{\Phi P_1}}{I_{C\Pi_1} - I_{C\Pi_2}}$$
(1)

де ІФД1-2, ІФР1-2 – значення струму, що протікає через світлодіод, обране в лінійній ділянці передавальної характеристики; ІСД1, ІСД2 – відповідне до обраного значення струму світлодіоду значення вхідного струму.

Розрахуємо K для випадку  $\Phi$ Д – білий CBД, дані, необхідні для розрахунку, обираємо із таблиці

$$K = \frac{133 - 87}{9, 2 - 5, 6} = 0,0127 \tag{2}$$

Аналогічно для інших

Для  $\Phi$ Д – зелений св-да:  $K=0{,}006$ 

Для  $\Phi$ Д – червоний св-да: K=0.017

Для  $\Phi P$  – білий св-да: K = -3688,42 Om/A.

Для  $\Phi$ P – зелений св-да: K= -9876,74 Ом/A.

Для  $\Phi P$  – червоний св-да: K = -15673,5~Om/A.

### ВИСНОВКИ

Оптрон має прямий оптичний зв'язок, для такого типу зв'язку характерно: 1) висока шумозахищеність, оскільки відсутній гальванічний зв'язок між входом і виходом; 2) можливість керування по кожному з трьох незалежних входів; 3) велика гнучкість та можливість принципу фотоелектронного перетворення, що створює умови для одержання оптоелектронних схем різного призначення. Найбільший коефіцієнт передачі К для пари ФД — червоний світлодіод, найменший для пари ФД — зелений світлодіод.