UNIVERSIDADE FEDERAL DE VIÇOSA

CURSO DE CIÊNCIA DA COMPUTAÇÃO

PEDRO CARDOSO DE CARVALHO MUNDIM - 3877

Trabalho Prático 2: Construindo Autômatos - Fundamentos da Teoria da Computação (CCF 131)

Segundo Trabalho Prático da disciplina Fundamentos da Teoria da Computação - CCF 131, do curso de Ciência da Computação da Universidade Federal de Viçosa - Campus Florestal

Professor: Daniel Mendes Barbosa

FLORESTAL

SUMÁRIO

1. Introdução	1
2. Desenvolvimento - Questões	1
➤ Questão 01	1
➤ Questão 02	2
➤ Questão 03	3
➤ Questão 04	4
➤ Questão 05	5
➤ Questão 06	ϵ
➤ Questão 07	7
➤ Questão 08	8
➤ Questão 09	10
Considerações Finais	11
Referências	11

1. Introdução

Este trabalho tem como foco a construção de autômatos de pilha determinísticos ou não determinísticos, bem como a construção de máquinas de Mealy e Moore, a fim de aplicar os conhecimentos adquiridos na disciplina até o presente momento. Para realizar tais construções, será utilizada a ferramenta JFLAP.

2. Desenvolvimento - Questões

Aqui, serão implementados os diagramas das máquinas de estados, de acordo com cada exercício solicitado. Além disso, serão mostrados diversos inputs e outputs para cada um deles, dentre os quais, 3 inputs apresentados serão aceitos pelas máquinas e 3 serão rejeitados, no caso dos autômatos de pilha. Para as máquinas de Mealy e Moore, serão apresentadas diversas palavras como inputs e seus respectivos outputs.

Questão 01

Linguagem: $\{a^nb^{2n} | n > 0\}$

Diagrama de Estados:

Input	Result
abb	Accept
aabbbb	Accept
aaabbbbbb	Accept
abbb	Reject
aabb	Reject
baa	Reject

Linguagem: $\{0^{3n}1^{2n} \mid n > 0\}$

Diagrama de Estados:

Input	Result
00011	Accept
0000001111	Accept
000000000111111	Accept
0001	Reject
000	Reject
0110	Reject

Linguagem: $\{0^n1^{3n}0^{2m}1^m \mid n > 0\}$

Diagrama de Estados:

Input	Result
0111001	Accept
0111000011	Accept
001111110000000011111	Accept
011001	Reject
0111011	Reject
0111000111	Reject

Uma linguagem livre do contexto qualquer, <u>definida por você</u>. Você deverá escrever também em português, ou em notação matemática, a definição desta linguagem.

Linguagem: {aⁱCOMPUb²ⁱTAÇAO| i > 0} **Diagrama de Estados:**

Input	Result
COMPUTAÇÃO	Accept
aCOMPUbbTAÇAO	Accept
aaCOMPUbbbbTAÇAO	Accept
aaCOMPUTAÇAO	Reject
aaCOMPUbbTAÇAO	Reject
aCOMPUbbbbTAÇAO	Reject

Linguagem: Construa uma máquina de Moore que leia palavras do alfabeto {a, b, c} e produza palavras do alfabeto {0, 1, 2}, sendo que ao ler um a deve ser produzido um 0, ao ler um b deve ser produzido um 1 e ao ler um c deve ser produzido um 2.

Diagrama de Estados:

Input	Result
abc	012
cba	210
cbb	211
bac	102
ababacccb	010102221
bbbbcccc	11112222

Linguagem: Construa uma máquina de Mealy equivalente à máquina de Moore do Exercício 5.

Diagrama de Estados:

Input	Result
abc	012
cba	210
cbb	211
bac	102
ababacccb	010102221
bbbbcccc	11112222

Linguagem: Construa uma Máquina de Moore que receba como entrada palavras formadas por símbolos do alfabeto {0,1,2} e que gera palavras formadas por símbolos do alfabeto {x,y,z} da seguinte forma: um 0 sempre gera um x; um 1 gera um y, mas se três ou mais 1's consecutivos são lidos, a partir do terceiro (incluindo o terceiro) ele passa a gerar z. Um 2 gera um x se é lido após um 0 ou após um 2 ou se é lido inicialmente, e gera um y se é lido após um 1.

Diagrama de Estados:

Input	Result
00111202	xxyyzyxx
001111202	xxyyzzyxx
2221110	xxxyyzx
01112	xyyzy
01221000	xyyyyxxx
21001211	хуххуууу

Construa uma máquina de Moore de acordo com uma <u>especificação feita por você</u>, escrevendo também esta especificação em português no trabalho.

Linguagem: Dado o alfabeto de símbolos de leitura {1,2,3,4,5,6,7} e o alfabeto de saída {Domingo, Segunda, Terça, Quarta, Quinta, Sexta, Sabado}, construa uma máquina de Moore que reconheça o dia da semana de acordo com o símbolo lido. As condições para cada símbolo são as seguintes: 1 - Domingo, 2 - Segunda, 3 - terça e assim por diante.

Diagrama de Estados:

Resultado das Computações:

Input	Result
1	Domingo
6	Sexta
34	TerçaQuarta
512	QuintaDomingoSegunda
11	DomingoDomingo
7123	SabadoDomingoSegundaTerça

Observação:

➤ Nesta máquina, todos os estados precisam conter todas as transições possíveis, pois estamos tratando de dias da semana (que são 7). Então cada estado deve ter estas 7 transições. Por isso ela ficou um pouco "bagunçada".

Construa uma máquina de Mealy de acordo com uma <u>especificação feita por você</u>, escrevendo também esta especificação em português no trabalho.

Linguagem: Construir uma máquina de Mealy que reconheça o número de cada mês do ano. Exemplo: Jan = 1, Fev = 2, Dez = 12, etc. Para uma melhor organização (em caso de haver mais de um mês por leitura) será utilizado o caractere '/' para separar o número de cada mês.

Diagrama de Estados:

Input	Result
Mar	3/
Set	9/
OutNov	10/11/
MaiJanJul	5/1/7/
DezAbrJun	12/4/6/
AgoFev	8/2/

Considerações Finais

Com este trabalho, foi possível revisar os conceitos estudados na disciplina sobre os autômatos de pilha, bem como aprender a utilizar a ferramenta para a construção dos mesmos. Além disso, também foi um bom trabalho para revisar as máquinas de Mealy e Moore que já haviam sido estudadas anteriormente na disciplina.

Referências

[1] VIEIRA, Newton José. **Introdução aos Fundamentos da Computação:** linguagens e máquinas. São Paulo: Pioneira Thomson Learning, 2006.