AT CHEAT SHEET TOPICS: neural networks anns knowledge representation logic theorem proving rule-based reasoning knowledge structures planning NOUN AT MOTHUM S types: convolutional-great for image processing long short-term memory—speech recognition Multilayer perceptron—basic & neurons. a neuron is a thing that holds data this data is called "Activation" output num: confidence

Long short-term memory - speech recognition

Multilayer perceptron - basic.

a neuron is a thing that holds data

this data is called "Activation"

output num. confidence

activations from one layer determine activations

passed to next layer (hidden/output)

ining:

the "activation sequence" is known through experimentation

"weights" are set

why layered?

components are processed individually ie: 8=0+0

ie: 4=1+++

components of components...

training

ativations weights = weighted Sum

weighted sums can be my number

we want 0-1

encodes importance of change

thus, we use a function to force weighted sums 0-1 Sigmoid function force = 1 re-x

force neuron to only activate if weighted sum? at Bias

thus $\omega = \omega - \alpha$ ($\omega = weighted sum$)

Bearning

Just finding the right weights & biases of weights in the right of across of the right of a cost, or how bad the network is

KNOWLE de representation

modelling behavior of intelligent agent knowledge: performance meta-knowledge objects. knowledge base events facts five types of knowledge declarative knowledge concepts, facts, objects structural knowledge problem solving knowledge relationships between concepts a objects procedural knowledge know how to do something rules, strats, procedures meta-knowledge knowledge about knowledge heuristic Knowledge expert knowledge in field eyeke of knowledge representation Perception - Learning knowledge representation

knowledge v.s intelligence

knowledge fuels intelligence

knowledge is the base of intelligent behavior
techniques

1) Logical representation

2.) semantic network representation

3.) frame representation

4) Production rules

LOGICAL REPRESENTATION

. lang w/ definite rules dealing w/ propositions No ambiguity

concludes on conditions & cements communication rules

Jyntax

* how we construct

sentences/propositions.
in Logic

interpretation of Sentences.

prescribes meaning

Semantics

* defines symbols . ! * proscribes mea Logical reasoning , basis of programming Langs.

```
SEMANTIC NETWORK REP
     alternative of predicate logic
      graphical networks
          nodes=objs, edges=relationships
      "is a relation (inheritance)
     "kind of" relation
     Natural rep, simple
      more comp. time
      NOT intelligent
FRAME REPRESENTATION
      collection of attributes describing an entity in the world
      stereotype situations
           names & values "facets"
      groups related data, easily understandable
      gene ralization
PRODUCTION RULES
      check if cond. exists
          if yes, prod rule fires & action is executed
     "recognize act cycle"

3 parts.

Set of Rules

2) Working Memory

3) Recognize-act cycle
    natural language
no Learning capabilities
& inefficient
reasoning.
      the ability to make decisions or inferences from facts
                                    vs Symbolic
      Automated
                                           encode knowledge in representation
          such as search
                                           apply inference mechanisms
          NN's = non-symbolic
                                               Li form new knowledge
Theorem Proving

knowledge in Logical Formalisms

knowledge => new knowledge
Rule-Based Reasoners
rep knowledge as if-then rules
apply rules⇒new knowledge
Planners
     rep knowledge as plan schemas, rules/logic, etc
      use specialized planning techniques
```