Aspectos Formais da Computação

Prof. Sergio D Zorzo

Departamento de Computação - UFSCar

1º semestre / 2017

Aula 15

Não-determinismo

Em Máquinas de Turing

Definição formal da função de transição de uma MT

- Função de transição
 - δ : Q x $\Gamma \rightarrow$ Q x Γ x {E,D}
 - Os argumentos de δ(q,X) são:
 - um estado q e um símbolo de fita X
 - O valor de δ(q,X) (se definido) é uma tripla (p,Y,S), onde:
 - p é o próximo estado em Q
 - Y é o símbolo, em Γ, gravado na célula que está sendo varrida, substituindo o símbolo que estava nessa célula
 - S é um sentido, ou direção, em que a cabeça se move
 - E = esquerda, D = direita
 - L = left, R = right

Não-determinismo em MTs

- "a definição de MTs que vimos até agora é determinística ou não-determinística?"
 - Resposta: determinística a todo momento, sempre se sabe o que fazer
 - Em autômatos finitos, não-determinismo não aumenta a capacidade de reconhecimento de linguagens!
 - Em autômatos de pilha, não-determinismo aumenta a capacidade de reconhecimento de linguagens!
 - E em máquinas de Turing???

Não-determinismo em MTs

- Antes, veremos o que significa não-determinismo em MTs
- A única diferença está na função de transição:
 - δ : Q x $\Gamma \rightarrow P(Q x \Gamma x \{E,D\})$
 - Os argumentos de δ(q,X) são:
 - um estado q e um símbolo de fita X
 - O valor de δ(q,X) (se definido) é um conjunto de triplas (p,Y,S)

MTs não-determinísticas

- A linguagem aceita por uma NTM (Nondeterministic Turing Machine) é definida de forma similar a outros autômatos
 - A cada ponto de dúvida, analisam-se todas as possibilidades, se nenhuma levar à aceitação, a cadeia não é aceita. Se ao menos uma levar à aceitação, a cadeia é aceita
- É possível provar que, para toda NTM que reconhece uma linguagem L, é possível construir uma DTM que reconheça L
 - Ou seja: NTMs e DTMs são equivalentes em termos de capacidade de reconhecimento de linguagens!!

- A idéia é construir uma DTM que explora os diferentes pontos de não-determinismo, testando todas as possibilidades
- Como faríamos no papel?

- A DTM fará isso
 - Usará uma fita para armazenar, numa fila, as DIs a serem testadas
 - Nessa fita, uma trilha adicional é usada para "marcar" qual a DI sendo atualmente testada
 - Usará outra fita para ajudar a fazer "cópias" de uma DI imediatamente antes de um ponto de nãodeterminismo
 - Se, em uma determinada DI, existem k possibilidades de escolha, serão criadas k cópias daquela DI
 - Essas cópias serão armazenadas no fim da fila (fita 1)

A execução começa. DI1 está na primeira fita. DI1 não é uma DI de aceitação, portanto DTM precisa seguir em frente.

DTM avalia o número de possibilidades a partir de DI1. Só existe 1 alternativa, e portanto DTM vai criar uma cópia de DI1. Para isso, ela insere DI1 temporariamente na fita de rascunho, que irá servir de "memória" durante a cópia

Tendo armazenado DI1 na fita de rascunho, a DTM faz uma cópia, inserindo-a no final da fila. Um símbolo especial (#) serve de separador entre as DIs na fila

DTM então modifica cada cópia de acordo com as possibilidades de movimento. Nesse caso, só há uma cópia, e uma possibilidade de movimento (DI2).

Avaliando DI2, DTM descobre que esta não é uma DI de aceitação. Portanto, ela precisa ir em frente. Avaliando as possibilidades, ela identifica 2 alternativas, portanto DI2 deverá ser copiada 2 vezes.

Para fazer a cópia, DTM usa a fita de rascunho como memória, inserindo DI2 no lugar do valor anterior.

Em seguida, DTM insere 2 cópias de DI2 no final da fila, copiando a partir do rascunho.

DTM faz o retorno, substituindo cada cópia de DI2 por uma alternativa diferente, no caso, DI3 e DI4

Não sendo uma DI de aceitação, DTM faz a análise de alternativas a partir de DI3, criando cópias no final da fila e alterando-as para o próximo movimento possível. Nesse caso, só existe a possibilidade de ir para DI5

Antes de avaliar DI5, porém, DTM volta para a próxima DI não analisada, ou seja, DI4

DI4 também não é uma DI de aceitação, e portanto novas DIs serão inseridas no final da fila, representando as possibilidades, DI7 e DI8

Esse procedimento continua até serem esgotadas todas as possibilidades. Analise a fita resultante e note que se trata de uma busca "primeiro em amplitude"

- Durante esse percurso, caso a máquina entre em uma DI de aceitação, ela aceita e encerra a execução
 - Caso encontre uma DI de rejeição, ela continua na próxima DI da fila
- Essa simulação é precisa
 - DTM só aceita se NTM pode entrar em uma DI de aceitação

- Seja m o número máximo de escolhas que NTM tem em qualquer configuração
 - Nesse exemplo à direita,
 m=3 (DI4 → DI7, DI8, DI12)
- Vamos então analisar um caso extremo!
 - Em toda DI, há 3 escolhas!

 Essa figura ilustra um caso extremo de nãodeterminismo, onde, a cada DI, temos 3 escolhas

. . .

- Ou seja, vemos uma progressão:
 - 1,3,9,27,...
 - Ou: 3⁰, 3¹, 3², 3³, 3⁴, ...
- Generalizando: m⁰, m¹, m², m³, m⁴, ...
 - Onde m é o número máximo de escolhas que a NTM pode fazer em todas as Dis
- Pergunta: por quantas DIs a NTM pode passar, no máximo, em:
 - 1 movimento? Resp: 1 DI
 - 2 movimentos? Resp: 1+3 DIs
 - 3 movimentos? Resp: 1+3+9 DIs
 - 4 movimentos? Resp: 1+3+9+27 DIs

- Generalizando: em n movimentos, a NTM pode alcançar no máximo:
 - $1 + m + m^2 + m^3 + ... + m^n$ DIs
 - Esse número é no máximo nmⁿ DIs
- A DTM equivalente faz uma busca primeiro em amplitude, isto é:
 - Primeiro ela testa as DIs que seriam alcançadas em 0 movimentos da NTM
 - Depois ela testa as DIs que seriam alcançadas em 1 movimento da NTM
 - Depois as DIs que seriam alcançadas em 2 movimentos da NTM
 - E assim por diante

- Generalizando:
 - Se NTM leva n movimentos para chegar à aceitação...
 - A DTM levará no máximo nmⁿ movimentos!!
- Eventualmente a NTM chegará na DI de aceitação
 - Ou seja, se a NTM aceita, a DTM também o fará (mesmo que demorando mais)
 - Concluímos que L(NTM) = L(DTM)

- Vimos que a DTM demora exponencialmente mais tempo que a NTM
 - Essa diferença tem importantes consequências práticas
- Mas não se sabe se essa lentidão é realmente necessária
 - Existe um modo melhor de simular uma NTM de forma determinística?
 - A resposta, e mais detalhes sobre isso, veremos mais adiante

MTs restritas

MT com fita semi-infinita

- Ou seja, a fita tem um início
 - A cabeça não pode se mover além desse ponto
- Veremos que a capacidade de processamento de linguagens é a mesma que as MTs com fita duplamente infinita

MT com fita semi-infinita

MT com fita semi-infinita

- Um PDA com uma única pilha aceita as linguagens livres de contexto (Tipo-2)
- Mas acrescentando uma segunda pilha, é possível simular completamente uma Máquina de Turing!
 - Passando a aceitar as linguagens recursivamente enumeráveis (Tipo-0)
- Veremos essa construção a seguir

Como simular o movimento da cabeça na fita?

À medida que a cabeça se move para a esquerda, deslocamos os símbolos da pilha da esquerda para a pilha da direita

À medida que a cabeça se move para direita, deslocamos os símbolos da pilha da direita para a pilha da esquerda

O fundo das pilhas representa a posição em que os infinitos brancos começam

Máquinas de Turing e computadores reais

Máquinas de Turing e computadores reais

- Agora iremos comparar a máquina de Turing e computadores reais, que usamos no dia-a-dia
 - Iremos mostrar que reconhecem as mesmas linguagens: as linguagens recursivamente enumeráveis
- Ou seja:
 - Um computador pode simular uma máquina de Turing
 - Uma máquina de Turing pode simular um computador
 - E mais: pode fazê-lo em um tempo polinomial em relação ao tempo de execução do computador
 - * Lembrando que a noção de tempo = movimentos

Simulação de uma MT por um computador

- Deve ser bastante óbvio que é relativamente fácil implementar uma MT usando uma linguagem de programação:
 - Uma variável armazena estados
 - Tabela de transições para os movimentos
 - A fita pode ser armazenada em um array
 - Um ponteiro aponta o local da cabeça de leitura
 - Existem, de fato, muitos simuladores de MT disponíveis, o que demonstra essa possibilidade

Simulação de uma MT por um computador

- Mas existe um aspecto no qual a MT "ganha"
 - Sua fita é infinita!
 - A memória do computador (memória principal, disco rígido, pen drive, etc) é finita!!
- Alguém pode argumentar que é sempre possível implementar um sistema de troca de discos em tempo de execução
 - Sempre que for necessário um novo pedaço de fita, troque o disco mais distante da cabeça por um disco novo
 - Ou seja, assumimos que conseguimos fabricar quantos discos o computador necessita
 - Mas aí estamos assumindo que a quantidade de matéria no Universo é infinita
 - E isso é outra discussão...
- Na prática, podemos confiar que a quantidade de memória não é infinita, mas é suficientemente grande para armazenar dados sobre todos os possíveis problemas que iremos encontrar

Simulação de um computador por uma MT

- A demonstração anterior não é tão surpreendente
- Mais interessante é o fato de que uma MT consegue fazer tudo que um computador faz (mais lentamente, claro)
- Iremos demonstrar como é possível simular a execução de um programa de computador em uma MT
- Para isso, vamos primeiro definir um modelo realista de um computador típico

Modelo de um computador

- Memória
 - Sequência indefinidamente longa de palavras
 - Cada uma com um endereço
- Programa
 - Está armazenado em algumas das palavras
 - Cada palavra representa uma instrução simples
 - Como linguagem de máquina, por exemplo
 - Movimentam uma palavra para outra
 - Adicionam uma palavra a outra
 - Endereçamento indireto (ponteiros)
 - Cada instrução envolve um número limitado (finito) de palavras
 - Cada instrução altera o valor de no máximo uma palavra

MT que simula um computador

Memória

Contador de instruções

Endereço de memória

Arquivo de entrada

Rascunho

MT que simula um computador

- A cada instrução:
 - A MT procura na fita 1 o local apontado pelo conteúdo da fita 2
 - A MT interpreta o conteúdo da instrução
 - Se a instrução exigir o valor de um endereço (ponteiro), a MT o copia para a fita 3. Em seguida, ela busca na fita 1 o endereço apontado pela fita 3, e copia seu conteúdo na fita 3
 - A MT então executa a instrução: cópia, soma, "salto", etc, usando o rascunho opcionalmente como auxílio
 - A MT então incrementa o conteúdo da fita 2 e recomeça o ciclo

Tempo de simulação

- Estamos em busca de um modelo matemático para analisar a capacidade de um computador em resolver problemas
 - Encontramos um: a MT, que tem a mesma capacidade de reconhecimento que um computador comum
 - Mas ainda falta analisar se ela é eficiente
 - Ou seja, ela executa em tempo "similar"?
 - Ou seja (2), se eu estudar o comportamento e eficiência das MTs para um determinado problema, os estudos serão também válidos para os computadores reais?
- A linha divisória é polinomial X não-polinomial!
 - Polinomial = tratável
 - Não-polinomial (exponencial, por exemplo) = intratável

Tempo de simulação

- Primeiro. A MT que simula um computador tem várias fitas, ou seja, iremos no mínimo "gastar" um tempo quadrático para converter para uma fita
 - Conforme vimos anteriormente
 - Quadrático = polinômio, então até agora, OK!
- Uma instrução do computador leva no máximo O(n²) movimentos da MT
 - Incluindo a busca de endereços, execução de instruções, etc
- Portanto: n instruções do computador leva no máximo O(n³) movimentos da MT
- Combinado à conversão para uma única fita, uma MT de uma fita pode simular n etapas de um computador em no máximo O(n⁶) movimentos

Máquinas de Turing com Fita Limitada

Máquinas de Turing com Fita Limitada

Máquinas de Turing com Fita Limitada

- Funcionamento é igual à MT com fita infinita
- Porém existem dois delimitadores, um à esquerda e um à direita
 - Imediatamente ao redor da entrada
- Ou seja, se a entrada tem n símbolos
 - A fita terá n+2 posições
- A MT pode ler/escrever na fita
 - Mas não pode se mover além dos delimitadores

A linguagem de uma MT com fita limitada

- O conjunto de linguagens aceitas pelas máquinas de Turing com fita limitada é chamado de
 - Linguagens sensíveis ao contexto
- Na hierarquia de Chomsky

Hierarquia	Gramáticas	Linguagens	Autômato mínimo
Tipo-0	Recursivamente Enumeráveis	Recursivamente Enumeráveis	Máquinas de Turing
Tipo-1	Sensíveis ao contexto	Sensíveis ao	MT com fita limitada
	Contexto	contexto	
Tipo-2	Livres de contexto	Livres de contexto	Autômatos de pilha

Linguagens sensíveis ao contexto

 Lembre-se da restrição das gramáticas livres de contexto (lema do bombeamento):

- Em algumas LP, variáveis precisam ser declaradas antes de serem utilizadas
 - É o mesmo caso da linguagem {ww | w em um alfabeto com mais de um símbolo}
- Essas linguagens não são livres do contexto

- Considere a gramática (livre de contexto) abaixo:
 - E → E + E
 - E → E * E
 - $E \rightarrow E E$
 - $E \rightarrow E / E$
 - $E \rightarrow (E)$
 - $E \rightarrow a$
 - E → b
- Considere o próximo passo de derivação para a seguinte cadeia:
 - E + E * (E E)
- Iremos substituir o E mais à esquerda

- E + E * (E E)
- A princípio, é possível usar qualquer regra que comece com E → ...
 - Claro, depende da cadeia de terminais sendo reconhecida
- Mas o importante aqui é: as regras não impõem restrição à substituição!
 - Todas as regras podem ser usadas em qualquer ocorrência de E!
 - Não importa se o E aparece no começo da cadeia, após os parêntesis, depois do +, etc
 - Ou seja, não importa o CONTEXTO, qualquer regra pode ser usada

- Suponha agora que queiramos fazer uma restrição adicional:
 - Sempre que aparecer logo após a abertura de parêntesis, uma expressão deve ser uma soma ou uma subtração, ou seja:
 - a + b * (a b * c) faz parte da linguagem
 - a + b * (a / b + c) não faz parte da linguagem
 - a + b * (a * c) não faz parte da linguagem
- Poderíamos modificar a gramática para acrescentar essa restrição
 - E → E + E
 - E → E * E
 - $E \rightarrow E E$
 - $E \rightarrow E / E$
 - E → a
 - E → b
 - E → (E')
 - E' → E + E | E E

Exemplo de dependência do contexto. Quando abre parêntesis, E "muda" um pouquniho

- Suponha agora que queiramos fazer outras restrições:
 - Sempre que aparecer logo após o sinal de +, uma expressão não pode ser soma
 - Sempre que aparecer antes de fechar o parêntesis, uma expressão deve ser uma divisão
 - Etc...
- Poderíamos modificar a gramática para acrescentar essas restrições
 - Iríamos criar regras adicionais, replicando símbolos para cobrir todos os casos
- Mas existem casos onde não é possível adicionar essa restrição em uma CFG
 - Justamente aqueles cobertos pelo lema do bombeamento para linguagens livres de contexto

Linguagens livres de contexto

- Ex: $\{a^nb^nc^n \mid n \ge 1\}$
- Nesses casos, é necessário adicionar sensibilidade ao contexto à gramática de forma explícita
- Uma gramática sensível ao contexto é similar a uma gramática livre de contexto, porém as regras obedecem ao formato α → β, onde:
 - α pode ter qualquer quantidade de símbolos terminais e/ou não-terminais
 - Mas pelo menos um não-terminal
 - β é composto de terminais e/ou não-terminais (assim como nas CFGs)
 - |β| ≥ |α| ou seja, o lado direito possui uma quantidade de símbolos não-inferior à do lado esquerdo da mesma regra

- Ex:
 - $E \rightarrow E + E$
 - E → E * E
 - $E \rightarrow E E$
 - $E \rightarrow E / E$
 - $E \rightarrow (E)$
 - $E \rightarrow a$
 - $E \rightarrow b$
 - (E → E + E
 - $(E \rightarrow E E)$

- Outro exemplo:
 - $S \rightarrow aSBC$
 - $S \rightarrow aBC$
 - $CB \rightarrow BC$
 - $aB \rightarrow ab$
 - $bB \rightarrow bb$
 - $bC \rightarrow bc$
 - $cC \rightarrow cc$
- Faça algumas derivações e veja o resultado:
 - $\{a^nb^nc^n \mid n \geq 1\}$

- Outro exemplo:
 - $S \rightarrow aSBC$
 - $S \rightarrow aBC$
 - $CB \rightarrow BC$
 - $aB \rightarrow ab$
 - $bB \rightarrow bb$
 - $bC \rightarrow bc$
 - $cC \rightarrow cc$

Recursão simples, do centro para fora. Produz formas sentenciais onde para cada "a" existe um "BC": aaBCBC, aaaaBCBCBCBC

"Inverte" os BCs, colocando-os em ordem, mas sem alterar sua quantidade: aaaBCBCBC ⇒ aaaBBCCBC ⇒ aaaBBCCCC

Adiciona os terminais, mas somente se estiverem na ordem correta!

- São ditas monotônicas
 - O comprimento das formas sentenciais durante o processo de derivação nunca diminui
 - Devido à restrição |β| ≥ |α|
 - Consequência imediata:
 - não existe regra do tipo S → ε
 - Ou seja, estritamente falando, a cadeia vazia não faz parte de nenhuma linguagem sensível ao contexto
 - Mas essa restrição normalmente é desconsiderada na prática
- Algumas gramáticas sensíveis ao contexto podem ser convertidas em gramáticas livres de contexto
 - Aquelas que não podem são gramáticas estritamente sensíveis ao contexto
 - Exemplo anterior

- Resumindo
 - São gramáticas mais genéricas do que as livres de contexto
 - Denotam as linguagens livres de contexto
 - São reconhecidas por Máquinas de Turing com fita limitada
 - Toda gramática livre de contexto é sensível ao contexto
 - Desconsiderando o caso da cadeia vazia, obviamente

Finalizando

- E se "relaxarmos" as restrições das gramáticas sensíveis de contexto?
- Ou seja, as regras obedecem ao formato α → β, onde:
 - α pode ter qualquer quantidade de símbolos terminais e/ou não-terminais
 - β pode ter qualquer quantidade de símbolos terminais e/ou não-terminais
- Essas gramáticas são chamadas de gramáticas irrestritas
 - Ou gramáticas recursivamente enumeráveis
 - Que são as gramáticas Tipo-0

Finalizando

- Exemplo:
 - $S \rightarrow aAbcC$
 - bc \rightarrow B

• ABC \rightarrow b

Lado esquerdo não possui não-terminal

Lado direito tem comprimento menor que o esquerdo (gramática não-monotônica)

Finalizando

Hierarquia de Chomsky completa

Hierarquia	Gramáticas	Linguagens	Autômato mínimo
Tipo-0	Recursivamente Enumeráveis ou irrestritas	Recursivamente Enumeráveis	Máquinas de Turing
Tipo-1	Sensíveis ao contexto	Sensíveis ao contexto	MT com fita limitada
Tipo-2	Livres de contexto	Livres de contexto	Autômatos de pilha
Tipo-3	Regulares (Expressões regulares)	Regulares	Autômatos finitos

