

Programme

- 1. Methane Recording In the Netherlands
- 2. Modelling
- 3. Incorporating Methane
- 4. Farmer Incentives

Acknowledgements

Larissa Zetouni (CRV R&D), Niek Meijer, Gerben de Jong (CRV Cooperative), Birgit Gredler-Grandl, Anouk van Breukelen, Yvette de Haas, Roel Veerkamp (Wageningen), Jeroen Heck (Friesland Campina)

Climate Smart Cattle Breeding

- In 2020 CRV, Wageningen and Friesland Campina began Climate Smart Cattle Breeding Project
 - > Evaluation for methane
- 100 Sniffers to measure methane on 79 Farms
- > PhD by Anouk van Breukelen
- > Ended 2025

New Zealand Methane

- In 2020, CRV, LIC and Helical began a pilot to measure methane with Greenfeeds
 - > 157 CRV Bulls have been measured
 - Daughters of these bulls born (spring 2023) to see if lower bull methane = lower daughter methane
- > Ends 2026

Relivestock

GreenFeed @ Duursma

- In 2021, CRV and Agrifirm entered into a collaboration on methane
 - 3 Greenfeeds have been installed at Wietse Duursma's farm
 - Despite initial teething challenges data has been validated
- Ongoing

CRVClimate Smart Cattle Breeding

- > 226,449 weekly sniffer records
- > 11,595 cows
- > 1,380 bulls
- **>** 89 farms

Carltech Sniffer see also: https://wiki.icar.org/index.php/Sniffer SOP#Carltech

Sniffer locations by postcode. Symbol size denotes number of farms in that postcode (1 or 2)

CRV Greenfeed @ Duursma *

- > 11,824 weekly green feed records
- **>** 397 cows
- **)** 154 bulls
- > 1 farm

Sniffer locations by postcode. Symbol size denotes number of farms in that postcode (1 or 2)

Climate Smart Cattle Breeding

- > 180,423 weekly sniffer records
- > 9,528 cows
- > 79 Herds

$$y_{i[k]l} = \mu + Farm_i \cdot \sum_{j=1}^{1} (sinj\theta 2\pi + cosj\theta 2\pi) + [GF_k] + \varepsilon_{ikl}$$

Model Terms (Lactation 1 & 2)

$$y1_{ijklmnopr} + y2_{ijklmnopr} = HYS_i + DIM_j + FD_k + Het_m + Rec_n + Inb_o + A_p + PE_i + E_{ijklmnopr}$$

> Model Terms (3+)

BETTER COWS > **BETTER LIFE**

$$y1_{ijklmnopr} + y2_{ijklmnopr} = HYS_i + DIM_j + Par_k + Het_m + Rec_n + Inb_o + A_p + PE_i + E_{ijklmnopr}$$

Θ=Time of recording, [GF = Green Feed]*,HYS=Herd Year Season, DIM= Days in milk, [FD = Fresh date or Par=Parity]*, Het = Hetrosis Effect, Rec = Recomination Effect, Inb= Inbreeding, A=Random Animal Genetic Effect, PE=Random Permanent Environment Effect; E= Residual error *as applicable*

	Methane g/day
Milk	0.39
Fat	0.19
Feed Intake	0.2
Body Weight	0.09

Methane Grams
Per Day With
Predictors

Production correlations based on bull breeding values

- Correlation between Milk and gross
 Methane directly is moderate
- We have been able to partition the methane required for production from the extra methane produced per cow.
- r² between breeding values of 0.2 so a correlation coefficient of 0.44.
- The estimates from the more accurate MACE methodology are 0.39

Correlation Between Milk and Methane

- Correlation between Milk and gross Methane directly is moderate
- We have been able to partition the methane required for production from the extra methane produced per cow.
 - Potential from the total is ~ 39.1
 - Potential from the residual is ~ 38(Expressed as genetic standard deviations)

- Dutch Breeding Values are Standardised
 - Mean 100
 - Genetic Standard Deviation 4
- For methane 1 standard deviation

 - \rightarrow g/kg FPCM = 1.32
 - > Residual (corr. FPCM) = 38.0
 - > Residual (corr. DMI) = 38.3

1200

Ch4/Kg FPCM FPCM (Secondary)

gCH₄ KgFPCM ⁻¹ ~ 0.32 units year⁻¹

CRV The Genetics of Methane: The Story so Far

- Significant gains have been made in gCH₄ KgFPCM ⁻¹ ~ 0.32 units year⁻¹
- Equates to improvement of:
 - 0.1g CH4 per Kg Milk Per Year
 - In the period 2003-2023 this equates to a reduction of 2 g methane per litre
 - National Inventory Report (2019) of 13.5 gCH₄ KgFPCM ⁻¹
 - Half of the observed reduction since 1990

CRV The Genetics of Methane: The Story so Far

- As a consequence (genetically) methane per cow is increasing.
- **>** Between 2003 and 2023:
 - 4.2 BV Points, 1.05 genetic sd,41.19 g CH₄ Per Day
 - > 15,036g Per Cow Per Year
 - 22,554 tonnes of Methane (1.5 Million Cows)
 - > 563,851 tonnes C0₂ equivalent

Ch4/Kg Milk

CH4 Per Cow Per Day Residual CH4/Cow

CRV The Genetics of Methane: The Story so Far

- Residual is uncorrelated with other traits and as a result hasn't been subject to selection
- This provides the basis to explore trends and the potential for programmes designed to reduce methane.

Correlations with Residual Methane for

Breeding Value

Remuneration in the Supply Chain

Kringloopwijzer

- > The kringloopwijzer is a body in the Netherlands that provides advice to dairy farmers on emissions.
 - Methane, Nitrogen, Carbon Dioxide, Phosphate
- Estimates based on indicators
 i.e. milk production, estimating DMI requirements
 from which an emissions estimate is calculated
- In January 2026 these estimates will be adjusted to account for the average genetic merit of the animals at a given farm.
 - A farm that averages animals 1 genetic standard deviation below the mean will have a 1% reduction applied to the emissions total

Remuneration in the Supply Chain

Friesland Campina

- > Focus Planet rewards goals across 4 key areas of improvement:
 - Animal Health and Well-being, Climate, Biodiversity and Pasture
- Approximately
 - ➤ €2.63 per 100kg Milk is available for a 30% reduction in methane or 2.6 cents per litre.
 - Grams Per Day: 1 cow (~405g methane), 30%, 121g per cow,
 30 litres (€0.79 cow, €0.0065 g CO₄, €0.25 genetic S.D)
 - Frams per litre: ~13.5 g/l at 30% = 3.06g which is 2.3 genetic S.D. for 2.6 cents or €0.0113 genetic S.D.
- > 1 genetic standard deviation in milk €750

CRVThe Role of Genetics in Dairying

- Genetics works!
- Not only does it work, it works better than anything else.

Summary

- Extensive phenotyping programme in the Netherlands for Methane
- Methane breeding value will be released in April 2025 in the Netherlands
- > Significant value within breeding for a residual trait.
- This value will be recognised in independent auditing bodies like the Kringloopwijzer
- Valorisation models exist, however these probably aren't as effective for genetic improvement as for additives: more work is needed on the incentive models
- There is huge potential within genetics in building sustainable food production.

Acknowledgements

Larissa Zetouni (CRV R&D), Niek Meijer, Gerben de Jong (CRV Cooperative), Birgit Gredler-Grandl, Anouk van Breukelen, Yvette de Haas, Roel Veerkamp (Wageningen), Jeroen Heck (Friesland Campina)

