Spacecraft Autonomy

Seung H. Chung

16.851 Satellite Engineering Fall 2003

Why Autonomy?

- Failures
- Anomalies
- Communication
- Coordination

Autonomy Technologies

- Fault Detection, Isolation and Recovery
- Planning & Scheduling
- Intelligent Data Understanding

- Path Planning
 - Gradient method
 - Mixed integer linear programming (Prof John How)
 - Graph search (Prof Brian Williams)
- Localization & Mapping
 - Concurrent mapping and localization (Prof John Leonard)

Why Fault Detection Isolation & Recovery (FDIR)?

- Improve the likelihood of mission success by minimizing the downtime.
 - Increase productivity
 - Prevent loss of opportunities
 - Reduce safety risk

 For manned missions, longer system downtime implies higher risk to the astronauts.

FDIR Techniques

- If-then-else
 - Hard coded set of FDIR statements
- Rule-based
 - Set of rules written by the engineers
 - Fires a rule (i.e. executes a rule) when the rule is satisfied
 - Example
 - #24 (ID > 1A) And (Ishunt_D > 6A) for 10 sec, then Try_Sec_Bus_Reg_Off.
 - #27 (Red Battery Charger is ON) for 5 sec, then rule (28,29) stop.
 - The core software is reusable.
 - Engineers must enumerate all possible faults and combinations thereof along with the corresponding recovery methods.
 - Verifying the validity of the rules is difficult.

Model-based FDIR Technique

- Engineers model the behavior of the system (i.e. components).
- Computer detects/isolates/recovers faults by reasoning on the model of the system.
- Both the model and the model-based FDIR system can be reused.
- Problem too difficult for a computer?

Planning & Scheduling

Planning

- Given:
 - Set of actions a system can perform and the associated requirements and effects of the actions
 - Current state
 - Desired goal state
- Objective: Compute a sequence of actions that achieves the desired goal state.

Scheduling

- Given: Set of tasks to execute and the associated constraints (i.e. time, resource, ...)
- Objective: Compute the proper order of the tasks that satisfies the constraints.

Planning Example

- Goal: Take an image of Alpha Centauri
- Plan:
 - 1. Compute current position and attitude
 - 2. Compute the necessary position and attitude for Alpha Centauri to be in view
 - 3. Initialize and warm-up the imaging system
 - 4. Change the position and point toward Alpha Centauri
 - 5. Open the shutter
 - 6. Take image

Why Planning & Scheduling?

- Simplify spacecraft commanding.
- Simplify mission operations work.
- Enable timely replanning when necessary without communication time-delay issues.

Intelligent Data Understanding

What is it?

- Knowledge Discovery: Is this something new, something interesting?
- Pattern Recognition: What are the identifiable characteristics?
- Classification and Clustering: Does this belong to some category of information?

• Why?

- The communication bandwidth does not allow transmission of all available data.
- Serendipitous events...

Remote Agent Experiment

Model-based Embedded and Robotic Systems Group

Model-based Programs Reason in Terms of State

Embedded programs interact with the system's sensors/actuators:

- Read sensors
- Set actuators

Programmer must map between state and sensors/actuators.

Model-based programs interact with the system's state:

- Read state
- Set state

M-B Executive maps between states and sensors/actuators.

Model-based Programming Example

Systems engineers think in terms of state trajectories:

- goal: fire one of the two engines
- set both engines to 'standby'
- prior to firing the engine, turn the camera off to avoid plume contamination
- in case of engine failure, fire the backup

Engineers reason how to achieve state trajectories using component models

Model-based Executive "Executable Specification"

- goal: fire one of the two engines
- 'standby'
- turn the camera off to avoid plume

Mode Estimation

Mode Reconfiguration

INPUT

- Configuration Goal
 - Trust = on
- Current State
 - Tank = full
 - Pressure = nominal
 - Driver = off
 - Valve = closed
 - Thruster = off

OUPUT

- Command
 - Turn driver on

Hybrid Mode Estimation

- Failures can manifest themselves through coupling between a system's continuous dynamics and its evolution through different behavior modes
 - ⇒ must track over continuous state changes and discrete mode changes
- Symptoms initially on the same scale as sensor/actuator noise
 - ⇒ need to extract mode estimates from subtle symptoms

Difficulty with Autonomy

- Most problems require exponential time...
 - Unacceptable for real-time systems that have hard-time requirement
- Possible Approach
 - Use divide-and-conquer approach
 - Provide additional knowledge that guides the search for solution
 - Use suboptimal solution
 - Perform the difficult computations offline and execute the results online