コンピュータハードウェアの概要

- * OSの役割:資源管理→ハードウェアの管理
- * 主な要素は4つ
 - * プロセッサ
 - * メモリ
 - * 入出力デバイス
 - * バス

プロセッサ

- * CPU (central processing unit) と呼ばれる
- * プロセッサ内の回路は命令という値によって 様々な動作をする
- * 命令の集まり→命令セット
- * 命令によってどの演算ユニットを使用するか決 まる
- * 演算に必要なデータを保持→レジスタ
- * 一部のレジスタは特定の情報扱うために用意されている
- * 特にプログラムカウンタ、プログラムステータ スワードは処理の制御に必要
- * 必要な動作はどのプロセッサも同じだが、指定 する命令の値(ビット列)は様々
 - →プロセッサごとにプログラムが異なる

- * 実行サイクル
- * メモリ上の命令を読み込み(フェッチ)→命令を解読(デコード)→実行→結果出力のサイクルを繰り返す
- * 使用できる命令はモードに依存する →OSとして動作するときはカーネルモード
- * OSとしてのプログラムを呼び出す →システムコール
- * 割り込み(インタラプト)命令を実行すること で、実行中の処理を止めて、別のプログラムを 呼び出すことができる

メモリ

- * メモリ (記憶装置) の目的
- * プログラムやデータの保持→アクティブなものは主記憶(メインメモリ)
 - →蓄積しておくものは<mark>補助記憶</mark>
- * プロセッサの作業領域→メインメモリ
- * 前者は高速なアクセス、後者は大きな容量 が必要
- * 同時に実現するハードウェアはない
- * メモリの階層
- * レジスタ:プロッセサ内のメモリ
- * **キャッシュ**:レジスタとメインメモリの間 の速度差を埋める

- * メインメモリ:実行するプログラムが配置 されている
- * ハードディスク:電源なしで記録保持、メインメモリの仮想記憶
- * メモリの種類
- * RAM:書き換え可能でランダムアクセス可能なメモリ→メインメモリで使用
- * ROM:書き換え不可能なメモリ、ファームウェアやBIOSなど変更の必要がないものに
- * EEPROMやフラッシュROM:特定の条件 で消去可能なROM、不揮発性。SDカード やUSBメモリなどのリムーバブルメディア やSSDなどに利用される

入出力デバイス、バス

* 入出力デバイス

- ユーザ対話用:キーボード、マウス、モニタ、プリンタなど
- * 機能拡張:外部記憶装置、外部音源、画像 処理装置など
- * 各デバイスはコントローラを仲介し、プロセッサと接続
- * 装置 (コントローラ) の管理はOSが行う
- * OSはすべての装置を標準的にサポートできない
 - →デバイスドライバを追加することで制御 下に

* バス

- * 装置間のデータを伝送する共用の通信路→バス
- * 装置によって専用のバスを持つものも:常時使用、要低遅延
- * 速度の違いによって、調整役のブリッジが 仲介
- * コンピュータ内部で使用されるもの、外部 機器との接続に使用するものなど様々
- * 様々な機器が共通して使用できるように形 状や信号など細かく仕様が決められている→PCI, PCI Express, USB, Thunderbolt

オペレーティングシステムの基本要素

- * 仮想マシンを提供するための基本機構
- * プロセス:仮想的なプロセッサの割り当て
- * メモリ管理:仮想的なメモリ空間の割り当て
- * ファイル:仮想的なデータユニットの提供
- * 入出力管理:多重化されたデバイスの提供
- * 保護機能:システム内の秩序の確保
- * システムコール
- * OSとして用意された関数群 →システムコール
- * カーネルモードで動作

- * ユーザモードのプログラムから呼び出し で、OSの機能を利用 (割り込み機構を利用)
- システムコールの呼び出しには番号 (ID)を指定
 - →複数の処理を呼び出しできる
- * 実際の処理系、システムコールハンドラが 実行
- * OSによってシステムコールの内容は違う →アプリはOSに依存
- * POSIX:システムコールの共通規格

その他

* **C**言語

- * C言語はそもそもOSを作るための言語
- * データ型はプロセッサが直接使える型
- * ポインタ→メモリのアドレスを保持
- * Cを深く理解する→オープンソースの OSを読める
- * より高級な言語の基礎になっている
- * 一方で現在のアプリ開発には向かない→より適した言語を

* 単位

- * この分野では様々な単位の数値が 使われる
- * 多すぎる桁数は接頭辞で省略する (K, M, G, T, m, μ, n, p)
- 単位も省略形で表す (Hz, bps, rpm)
- * 単位の意味と数値の大きさを想像 できるように