Bornes stochastiques sur les mesures de performance pour des réseaux de files d'attente en tandem

Farah AIT SALAHT

LIP6, Université Paris Ouest Nanterre

Effectué en collaboration avec H. CASTEL-Taleb (SAMOVAR, Telecom SudParis), J.-M. Fourneau (DAVID, UVSQ) et N. Pekergin (LACL, Paris-Est Créteil)

AEP, 15 mars 2016

Sommaire

Motivation

2 Notre méthodologie : Analyse d'une file d'attente

3 Analyse de réseaux en tandem

4 Conclusion et perspectives

Sommaire

1 Motivation

2 Notre méthodologie : Analyse d'une file d'attente

3 Analyse de réseaux en tandem

4 Conclusion et perspectives

Motivation

 Analyser les performances d'un réseau (à temps discret) sous des trafics généraux issus de traces réelles

► Problème :

- ► Chaînes de Markov définies sur des espaces d'état très importants
- ▶ Calcul de la distribution stationnaire est très difficile voire impossible

Proposition :

Appliquer la méthode de bornes stochastiques pour l'analyse de performance du réseau avec une représentation en histogramme du trafic

• Fournir des garanties sur les mesures de performances sous condition d'avoir des histogrammes corrects

Motivation

- ► Approche par histogramme sur les mesures du trafic
- Moins d'hypothèses sur les processus d'arrivées et de services
- Utilisation de la théorie de bornes stochastiques pour réduire la taille des distributions
- Borne de la distribution exacte
- Bornes sur les mesures de performance qui sont des récompenses positives
- Définition d'encadrements stochastiques
- ► Contrôle de la taille des distributions ⇒ Contrôle de la complexité
- Compromis empirique entre la précision et la complexité

Sommaire

Motivation

2 Notre méthodologie : Analyse d'une file d'attente

3 Analyse de réseaux en tanden

4 Conclusion et perspectives

Notre méthodologie

Exemple de trace de traffic réelle

FIGURE: Trace du trafic MAWI correspondant à une heure de mesure de trafic IP, 9 janvier 2007 entre 12h et 13h (avec T = 40 ms)

Première étape

- Dériver une distribution discrète de la trace (distributions d'entrée)
- ► **Hypothèse principale :** stationnarité du processus
- Période d'échantillonnage (ici T = 40 ms, par exemple)

Première étape

- Dériver une distribution discrète de la trace (distributions d'entrée)
- ► **Hypothèse principale :** stationnarité du processus
- Période d'échantillonnage (ici T = 40 ms, par exemple)

FIGURE: Trace de traffic MAWI (à gauche), représentation en histogramme (à droite). Le nombre de bins (états) est de 80511.

Première étape

- Dériver une distribution discrète de la trace (distributions d'entrée)
- Hypothèse principale : stationnarité du processus
- Période d'échantillonnage (ici T = 40 ms, par exemple)

La taille de la distribution du processus d'arrivée (ici, **80511** bins) a une influence directe sur la résolution numérique du modèle

Modèle de file d'attente à temps discret

Exemple : file d'attente à temps discret avec tampon finie, arrivée par groupe et service constante

- Les arrivées ont lieu avant les services
- ► La longueur du tampon à l'instant *k* est :

$$Q(k) = \min(B, (Q(k-1) + A - S)^{+}), \quad k \in \mathbb{N}.$$
 (1)

- ▶ Où A est la taille du groupe en entrée
- ► S est capacité de service et B représente la taille du tampon

Modèle de file d'attente à temps discret

Exemple : file d'attente à temps discret avec tampon finie, arrivée par groupe et service constante

- Les arrivées ont lieu avant les services
- La longueur du tampon à l'instant k est :

$$Q(k) = \min(\mathbf{B}, (Q(k-1) + \mathbf{A} - S)^{+}), k \in \mathbb{N}.$$

► Résolution numérique très difficile (taille)

Bornes stochastiques et complexité

- Utiliser la Monotonie Stochastique. Intuition: si l'on augmente au sens stochastique la distribution des arrivées, alors on augmente les distributions de l'occupation du tampon, la distribution de départ et les délais au sens stochastique
- ▶ Ordre stochastique \leq_{st} sur les distributions
- ▶ L'idée : remplacer la distribution des arrivées avec N bins par une autre ayant moins de bins (K <<N) et qui est stochastiquement plus grande ou plus petite</p>
- Deux méthodes pour trouver une telle distribution : algorithme linéaire proposé par Tancrez et Semal ou l'algorithme que nous avons présenté dans [WODES12] qui fourni la distribution optimale pour une fonction de récompense positive donnée (algorithme fondé sur la programmation dynamique donc avec une complexité plus grande)

Brève introduction sur l'ordre stochastique

- $\triangleright \mathscr{G} = \{1, 2, ..., n\}$ un espace d'état fini
- $\triangleright X, Y$: distributions discrètes sur \mathscr{G}
- $ightharpoonup p_X(i) = prob(X = i)$ et $p_Y(i) = prob(Y = i)$ pour $i \in \mathscr{G}$

Propriétés sur l'ordre stochastique \leq_{st}

- **Définition de l'ordre** \leq_{st} : $X \leq_{st} Y$ ssi $\sum_{k=i}^{n} p_X(k) \leq \sum_{k=i}^{n} p_Y(k)$, $\forall i$.
- Comparaison de fonctions non décroissantes :

$$X \leq_{st} Y \iff \mathbb{E}[f(X)] \leq \mathbb{E}[f(Y)]$$

pour toute fonction non décroissante $f: \mathscr{G} \to \mathbb{R}^+$ à condition que les espérances existent.

• Soient F_X et F_Y leurs probabilités cumulées. Alors,

$$X \leq_{st} Y \Leftrightarrow F_X(a) \geq F_Y(a), \forall a \in \mathscr{G}$$

Brève introduction sur l'ordre stochastique

-pmfs des distributions X et Y-

-Leurs fonctions de répartition-

FIGURE:
$$\mathcal{G} = \{1, 2, \dots, 7\}, p_X = [0.1, 0.2, 0.1, 0.2, 0.05, 0.1, 0.25]$$
 et $p_Y = [0, 0.25, 0.05, 0.1, 0.15, 0.15, 0.3].$

Bornes stochastiques sur les histogrammes

- ▶ Hypothèse : ordre total sur l'espace \mathcal{H} , de taille N
- Nous avons une distribution d et r: fonction de récompense positive croissante, $R[d] = \sum r(i)d(i)$
- ▶ Déterminer *d1* et *d2* tel que :
 - 1 $d2 \leq_{st} d \leq_{st} d1$,
 - **2** d1 et d2 ont exactement K bins (pas nécessairement les mêmes); d1 a comme support \mathcal{H}^u et d2 a comme support \mathcal{H}^l ,
 - 3 $\sum_{i \in \mathcal{H}} r(i)d(i) \sum_{i \in \mathcal{H}^l} r(i)d2(i)$ est minimal pour les distributions bornes inférieures d avec K bins,
 - **4** $\sum_{i \in \mathcal{H}^u} r(i) d1(i) \sum_{i \in \mathcal{H}} r(i) d(i)$ est minimal pour les distributions bornes supérieures d avec K bins.

Bornes stochastiques sur les histogrammes

- ▶ Hypothèse : ordre total sur l'espace \mathcal{H} , de taille N
- Nous avons une distribution d et r: fonction de récompense positive croissante, $R[d] = \sum r(i)d(i)$
- ▶ Déterminer *d1* et *d2* tel que :
 - 1 $d2 \leq_{st} d \leq_{st} d1$,
 - **2** d1 et d2 ont exactement K bins (pas nécessairement les mêmes); d1 a comme support \mathcal{H}^u et d2 a comme support \mathcal{H}^l ,
 - $\sum_{i \in \mathcal{H}} r(i)d(i) \sum_{i \in \mathcal{H}^l} r(i)d2(i)$ est minimal pour les distributions bornes inférieures d avec K bins,
 - **4** $\sum_{i \in \mathcal{H}^u} r(i) d1(i) \sum_{i \in \mathcal{H}} r(i) d(i)$ est minimal pour les distributions bornes supérieures d avec K bins.
- Distributions déterminées via un algorithme fondé sur la programmation dynamique présenté dans [WODES 2012].

Exemple: Trace de trafic MAWI

H: histogramme associé à la trace de trafic MAWI, défini sur 80511 états.

r: fonction de récompense éagle à l'identité, $R[H] = 4.3756 \times 10^6$ bits.

▶ Borne stochastique supérieure H^u et borne stochastique inférieure H^l sur 10 bins.

Exemple: Trace de trafic MAWI

H: histogramme associé à la trace de trafic MAWI, défini sur 80511 états.

r: fonction de récompense éagle à l'identité, $R[H] = 4.3756 \times 10^6$ bits.

▶ Borne stochastique supérieure H^u et borne stochastique inférieure H^l sur 10 bins.

Exemple : Borne supérieure optimale

H: histogramme associé à la trace de trafic MAWI, défini sur 80511 états.

r: fonction de récompense éagle à l'identité, $R[H] = 4.3756 \times 10^6$ bits.

▶ Borne stochastique supérieure H^{u} et borne stochastique inférieure H^{l} sur 10 bins.

FIGURE: Fonction de répartition (CDF) des différentes distributions.

Les récompenses cumulées des bornes sont : $R[H^u] = 4.5843 \times 10^6$ bits et $R[H^l] = 4.1644 \times 10^6$ bits.

Algorithmes de réduction des distributions discrètes

Autres algorithmes de réduction possibles

- Méthode HBSP (Hernandez-Orallo): construit une approximation de la distribution plutôt qu'une borne
- Une approche heuristique divisant l'espace d'état \(\mathcal{H} \) en K sous ensembles de même taille et en calculant la somme des probabilités sur ces sous-ensembles (approche de Tancrez-Semal)
 - Résultats pas prouvés optimaux (contrairement à notre approche)
- Une autre approche gloutonne enlevant les sommets les plus coûteux (récompense) un par un
 - Test d'optimalité intégré

Analyse d'une file d'attente simple

FIGURE: Analyse d'une file d'attente, H_1 et S sont connus, H_3 , H_4 et H_5 sont numériquement calculables.

Résultats théoriques

- Théorème: La file d'attente finie avec des arrivées par groupe et service constant est stochastiquement monotone sous l'hypothèse Tail Drop
- Par conséquent, si l'on considère deux distributions H_1^{ℓ} et H_1^{u} définies sur K bins tels que $H_1^{\ell} \leq_{st} H_1 \leq_{st} H_1^{u}$, nous obtenons :
 - $H_3^{\ell} \leq_{st} H_3 \leq_{st} H_3^{u}$
 - $H_4^{\ell} \leq_{st} H_4 \leq_{st} H_4^u$
 - $H_5^{\ell} \leq_{st} H_5 \leq_{st} H_5^u$
- Également des bornes stochastiques supérieures et inférieures pour la distribution des pertes
- \blacktriangleright Mêmes types de résultats avec un service par groupe H_2
- K << N, typiquement K = 20 ou K = 100 et N = 80511.

Exemple pour une file d'attente simple avec trace de trafic réelle en entrée

Fonction de répartition (cdf) de la longueur du tampon sous la trace MAWI

(a) bins=20

(b) bins=100

Temps de calcul pour bins = 100:

Exacte: 1897 s

Borne Inférieure: 0.35 s Borne Supérieure : 0.33 s et

Sommaire

Motivation

2 Notre méthodologie : Analyse d'une file d'attente

3 Analyse de réseaux en tandem

4 Conclusion et perspectives

Analyse de réseau en tandem

Analyse des réseaux de files d'attente

FIGURE: Réseau de files d'attente en tandem.

Analyse de réseau en tandem

Analyse des réseaux de files d'attente

FIGURE: Réseau de files d'attente en tandem.

Approches de résolution :

- Méthode de simulation
- 2 Approche par décomposition pour les réseaux feed-forward

Analyse de réseau en tandem

Analyse des réseaux de files d'attente

FIGURE: Réseau de files d'attente en tandem.

Approches de résolution :

- Méthode de simulation
- 2 Approche par décomposition pour les réseaux feed-forward
- 3 Approche de bornes sur les QoS de réseaux de files d'attente en tandem

Approches de résolution

► Approche par décomposition des réseaux feed-forward

- Réseaux orientés acycliques (DAG)
- Hypothèse : indépendance (approximation)
- Chaque file est analysée séparément
- Recomposition des résultats pour calculer les performances du réseau
- Approximations des indices de performance du réseau

Approches de résolution

▶ Bornes sur les mesures exactes des réseaux de files d'attente en tandem

Réseau de files d'attente en tandem.

FIGURE: Réseau en tandem composé de *N* files d'attente.

- ► Apporter des modifications sur le réseau initial
- Préserver les propriétés d'ordre stochastique
- ▶ Bornes sur les indices de performances exacts du réseau

- Influence de la séquence des capacités de service du réseau sur l'analyse de performance
 - Séquence des capacités de service croissante
 - Séquence des capacités de service générale

- Influence de la séquence des capacités de service du réseau sur l'analyse de performance
 - Séquence des capacités de service croissante
 - Séquence des capacités de service générale
- ► Séquence des capacités de service croissante

- Influence de la séquence des capacités de service du réseau sur l'analyse de performance
 - Séquence des capacités de service croissante
 - Séquence des capacités de service générale
- ► Séquence des capacités de service croissante

- Influence de la séquence des capacités de service du réseau sur l'analyse de performance
 - Séquence des capacités de service croissante
 - Séquence des capacités de service générale
- ► Séquence des capacités de service croissante

- Influence de la séquence des capacités de service du réseau sur l'analyse de performance
 - Séquence des capacités de service croissante
 - Séquence des capacités de service générale
- ► Séquence des capacités de service croissante

- Influence de la séquence des capacités de service du réseau sur l'analyse de performance
 - Séquence des capacités de service croissante
 - Séquence des capacités de service générale
- ► Séquence des capacités de service croissante

- Influence de la séquence des capacités de service du réseau sur l'analyse de performance
 - Séquence des capacités de service croissante
 - Séquence des capacités de service générale
- ► Séquence des capacités de service croissante

- Influence de la séquence des capacités de service du réseau sur l'analyse de performance
 - Séquence des capacités de service croissante
 - Séquence des capacités de service générale
- ► Séquence des capacités de service croissante

- Influence de la séquence des capacités de service du réseau sur l'analyse de performance
 - Séquence des capacités de service croissante
 - Séquence des capacités de service générale
- ► Séquence des capacités de service croissante

- Influence de la séquence des capacités de service du réseau sur l'analyse de performance
 - Séquence des capacités de service croissante
 - Séquence des capacités de service générale
- ► Séquence des capacités de service croissante

- ► Séquence des capacités de service générale
 - ▶ Définition des *Bottlenecks* locaux et du *Bottleneck* global
 - File *i* est *Bottleneck local* si \forall file $j < i, S_j > S_i$
 - File i est Bottleneck global si $\forall j > 1, j \neq i : S_j > S_i$

- ► Séquence des capacités de service générale
 - ▶ Définition des *Bottlenecks* locaux et du *Bottleneck* global
 - File *i* est *Bottleneck local* si \forall file $j < i, S_j > S_i$
 - File *i* est *Bottleneck global* si $\forall j > 1, j \neq i : S_i > S_i$
 - Exemple de positions des bottlenecks dans un réseau en tandem

- ► Séquence des capacités de service générale
 - ▶ Définition des *Bottlenecks* locaux et du *Bottleneck* global
 - File *i* est *Bottleneck local* si \forall file $j < i, S_i > S_i$
 - File *i* est *Bottleneck global* si $\forall j > 1, j \neq i : S_i > S_i$
 - Exemple de positions des bottlenecks dans un réseau en tandem :

- ► Séquence des capacités de service générale
 - ▶ Définition des *Bottlenecks* locaux et du *Bottleneck* global
 - File *i* est *Bottleneck local* si \forall file $j < i, S_i > S_i$
 - File *i* est *Bottleneck global* si $\forall j > 1, j \neq i : S_i > S_i$
 - Exemple de positions des bottlenecks dans un réseau en tandem :

- ► Séquence des capacités de service générale
 - ▶ Définition des *Bottlenecks* locaux et du *Bottleneck* global
 - File *i* est *Bottleneck local* si \forall file $j < i, S_i > S_i$
 - File *i* est *Bottleneck global* si $\forall j > 1, j \neq i : S_i > S_i$
 - Exemple de positions des bottlenecks dans un réseau en tandem :

- Réseau réduit -

Méthodes de résolution du réseau réduit

 Quatre approches pour construire des bornes (prouvées) sur les mesures de performance exactes

	Approche 1	Approche 2	Approche 3	Approche 4
	Bornes st-sup	Bornes st-sup	Bornes st-inf	Bornes st-sup
	réseau	file i	file i	file i
de	distrib. de sortie	distrib. de sortie	distrib. de sortie	distrib. de sortie
Mesures de performance	+	+ pertes +	+ pertes	+ pertes
	delai de traversé	+ délais	+ délais	+ délais
ions	tampon infini	$B_j = \infty, j < i$		serveur infini
Modifications	+	+	$B_j = 0, j < i$	pour $j < i$
Mod	interchangeabilité	interchangeabilité		

Méthodes de résolution du réseau réduit

 Quatre approches pour construire des bornes (prouvées) sur les mesures de performance exactes

	Approche 1	Approche 2	Approche 3	Approche 4
	Bornes st-sup	Bornes st-sup	Bornes st-inf	Bornes st-sup
	réseau	file i	file i	file i
de	distrib. de sortie	distrib. de sortie	distrib. de sortie	distrib. de sortie
Mesures de performance	+	+ pertes +	+ pertes	+ pertes
	delai de traversé	+ délais	+ délais	+ délais
ions	tampon infini	$B_j = \infty, j < i$		serveur infini
Modifications	+	+	$B_j = 0, j < i$	pour $j < i$
Mod	interchangeabilité	interchangeabilité		

1. Poser tous les tampons des files du réseau à l'infini

1. Poser tous les tampons des files du réseau à l'infini

1. Poser tous les tampons des files du réseau à l'infini

- ▶ Borne stochastique supérieure de la distribution en sortie H_5
- Borne stochastique supérieure sur le délai de vie dans le réseau

2. Utiliser le théorème d'interchangeabilité de Friedman

Théorème d'interchangeabilité de Friedman

Dans les réseaux en tandem,

- ▶ Pour un processus d'arrivée arbitraire
- Services déterministes
- Et des tampons infinis dans chaque file
- → le processus de départ final du réseau est indépendant de l'ordre des files
 - les distributions des temps de séjour dans l'ensemble du réseau sont également indépendantes de l'ordre des files d'attente
- ► Résultat également vrai pour des services Exponentiels [Weber79]

- \blacktriangleright Distribution de sortie (H_5) est identique dans les deux réseaux
- ► Idem pour le délai de traversée

2. Théorème d'interchangeabilité : mettre le *Bottleneck* global en tête du réseau

2. Théorème d'interchangeabilité : mettre le *Bottleneck* global en tête de réseau

2. Théorème d'interchangeabilité : mettre le Bottleneck global en tête de réseau

Au final.

- On analyse une seule file d'attente simple (*Bottleneck* global)
- On obtient des bornes stochastiques supérieures sur la distribution exacte de sortie et la distribution exacte de délai de traversée dans le réseau
- ► Utilisation de notre méthode de bornes stochastiques (borne stochastique supérieure) sur la distribution d'entrée (*H*₁)

Bornes stochastiques sur les réseaux en tandem

Sommaire

1 Motivation

2 Notre méthodologie : Analyse d'une file d'attente

3 Analyse de réseaux en tandem

4 Conclusion et perspectives

Conclusion

- Définition de nouvelles solutions de modélisation et de résolution numérique reposant sur les techniques de bornes
- Détermination de bornes sur les performances qui peuvent être très pertinentes pour le dimensionnement de réseau de files d'attente en tandem
- Approches valables également pour les réseaux en arbres

Conclusion

- Définition de nouvelles solutions de modélisation et de résolution numérique reposant sur les techniques de bornes
- Détermination de bornes sur les performances qui peuvent être très pertinentes pour le dimensionnement de réseau de files d'attente en tandem
- Approches valables également pour les réseaux en arbres

Conclusion

- Définition de nouvelles solutions de modélisation et de résolution numérique reposant sur les techniques de bornes
- Détermination de bornes sur les performances qui peuvent être très pertinentes pour le dimensionnement de réseau de files d'attente en tandem
- Approches valables également pour les réseaux en arbres

Perspectives:

- Voir si les approches développées peuvent être améliorées
- Prouver théoriquement que l'approche 4 est la meilleure
- ▶ Voir si on peut généraliser ces approches sur des réseaux à topologie plus générale