

Outline

- Business Problem
- EDA
- Unsupervised ML
- Supervised ML
- Takeaways

How Severe is the Insurance Claim?

When you've been devastated by a serious car accident, your focus is on the things that matter the most: family, friends, and other loved ones. Pushing paper with your insurance agent is the last place you want your time or mental energy spent. This is why Allstate, a personal insurer in the United States, is continually seeking fresh ideas to improve their claims service for the over **16 million households** they protect.

Allstate is currently developing automated methods of **predicting the cost**, and hence severity, of claims.

EDA - Statistical Description

rows: 188318 cont: 14 cat: 116

missingness: Remove ID none column

EDA - Transforming Response Variable


```
In [22]: print "skew:", train.loss.skew()
         train.loss.describe()
         akew: 3.79495037754
Out[22]: count
                   188318.000000
                     3037.337686
         mean
         std
                    2904.086186
         min
                        0.670000
         25%
                     1204.460000
         50%
                    2115.570000
         75%
                     3864.045000
                   121012.250000
         Name: loss, dtype: float64
```


EDA - Correlation between continuous features

Continuous variables

Variables	Correlation	
Cont 11 & Cont 12	0.994384	
Cont 1 & Cont 9	0.929912	
Cont 6 & Cont 10	0.883351	
Cont 6 & Cont 13	0.815091	
Cont 1 & Cont10	0.808551	
Cont 9 & Cont 6	0.797544	
Cont 9 & Cont 10	0.785697	
Cont 6 & Cont12	0.785144	

Threshold = 0.78

EDA - Categorical Features Frequency

Category 1 - 72	A, B
Category 73-76	A,B,C
Category 77-88	A,B,C,D
cat112	51

Unsupervised: PCA/SVD - Dimensionality reduction

PCA for Continuous Features

- Continuous variables reduced from 14 to 7
- Binary categorical variables reduced from 72 to 26

Machine Learning for Prediction

Models Examined:

Regression

- Linear regression -- R^2 of 50%. Good for initial analysis
- Boosted trees -- XGBoost had best performance
- Neural network -- close second to XGBoost
- XGBBoost + NN => marginal improvement MAE 1126

Classification

- Logistic regression
- SVM

Tactics to Reduce Iteration Time:

Regularization

- Near-zero variance function
- Use p values from regression
- Reduced # levels (e.g., cat116)
- Penalized MAE by \$300

Sampling

- Random sampling
- Sampling cat80D versus B

Other

- Used AWS, but parallel processing not always a turn-key solution
- Reduce # folds in validation

Machine Learning for Prediction -- Model Assessment

Variable Importance

Machine Learning for Prediction -- Model Assessment

Underestimates increase with loss

Machine Learning for Prediction -- XGB Model Tuning

Most of error for claims between $\exp(\$6)$ and $\exp(\$9) \sim (\$400-\$8000)$, therefore no need to get distracted by tails

Model gets more accurate until exp(\$8) ~\$3000, then performance degrades

What's Salvageable?

When you've been devastated by a serious car accident, your focus is on the things that matter the most: family, friends, and other loved ones. Pushing paper with your insurance agent is the last place you want your time or mental energy spent.

Conclusion: claim size can not be accurately predicted based on provided features

Root Problem

Doing paperwork for claim protects insurer against fraud

May be able to reduce paperwork burden for claims if they don't look odd

Can features support a classification question?

New classifier: "smallClaim"

80% of customers account for 50% of claims by value -- all below \$4500

Confusion Matrix

- What happens if we streamline the claims process for "normal-looking" claims?
- Confusion matrix can be recast as a business trade-off:

Truth/Predict	Small	Large
Small Claim (80%)	Gain	Same
Large (20%)	Risk	Gain

Need a cutoff that balances the gains of customers dealing with less paperwork with fraud risk

Fishing for Questionable Claims

Customer Impact of Varying Logistic Regression Cutoffs

Next Steps: quantify dollar risk of misclassification and dollar benefit to customer of reduced paperwork