Решение системы линейных уравнений блочным методом Холецкого

Лобанова Валерия, группа 310

Содержание

1	Вве	едение	3
	1.1	Постановка задачи. Разложение Холецкого	3
	1.2	Оценка сложности алгоритма построения	
		верхнетреугольной матрицы в разложении Холецкого	4
2	Бло	очный метод Холецкого	5
2		очный метод Холецкого Описание блочного метода Холецкого	_
2	2.1		_
2	2.1	Описание блочного метода Холецкого	5

1 Введение

1.1 Постановка задачи. Разложение Холецкого

Задача. Найти решение системы линейных уравнений Ax = b, где

A- симметричная вещественнозначная матрицы размера $n \times n$,

b - uзвестный вектор размера n,

x — неизвестный вектор.

 $\mathit{Идея}\ \mathit{peшения}.\ \mathsf{Поиск}\ \mathsf{peшения}\ \mathsf{будет}\ \mathsf{ocуществляться}\ \mathsf{c}\ \mathsf{помощью}\ \mathsf{разложения}\ \mathsf{Холецкого}\ \mathsf{матрицы}\ \mathit{A}=\mathit{R}^T\mathit{DR},\ \mathsf{rge}$

R — верхнетреугольная матрица,

D — диагональная матрица с 1 или -1 на диагонали.

Найдем такое y, что $R^Ty=b$ и затем из условия DRx=y найдем x. \square

Теорема. Пусть матрица A — самосопряженная и все ее угловые миноры отличны от нуля. Тогда существует матрица $R = (r_{ij}) \in RT(n)$ с вещественными положительными элементами на главной диагонали и диагональная матрица D с вещественными равными по модулю единице дигональными элементами такие, что $A = R^T DR$.

Решение задачи. Применим точечный метод Холецкого для поиска матрицы R. Элементы d_{ii}, r_{ii}, r_{ij} могут быть вычислены по следующим формулам:

$$d_{ii} = sgn(a_{ii} - \sum_{k=1}^{i-1} |r_{ki}|^2 d_{kk}), \ i = 1, ..., n,$$
(1)

$$r_{ii} = \sqrt{\left|a_{ii} - \sum_{k=1}^{i-1} |r_{ki}|^2 d_{kk}\right|}, \ i = 1, ..., n,$$

$$r_{ij} = (r_{ii}d_{ii})^{-1}(a_{ij} - \sum_{k=1}^{i-1} r_{ki}d_{kk}r_{kj}), i < j, i, j = 1, ..., n,$$

1.2 Оценка сложности алгоритма построения верхнетреугольной матрицы в разложении Холецкого

Из формул (1) следует, что для вычисления элемента d_{ii} , i=1,...,n требуется 2(i-1) операций (умножение на d_{ii} за операцию не считаем). Следовательно, вычисление всех элементов матрицы D требует

$$\sum_{i=1}^{n} 2(i-1) = n(n-1) = O(n^2), \ n \to \infty$$
 операций.

Для вычисления элемента r_{ii} требуется 2(i-1)+1=2i-1 операций (учитываем 1 операцию извлечения корня).

При фиксированном i = 1, ..., n вычисление элементов r_{ij} для всех j = i + 1, ...n по формулам (1) требует

$$\sum_{j=i+1}^{n} (2i-1) = (n-i)(2i-1)$$
 операций.

Таким образом нахождение матрицы R требует

$$\sum_{i=1}^n (n-i)(2i-1) + (2i-1) = \frac{2n^2 + 3n + 1}{6} = \frac{n^3}{3} + O(n^2), \; n \to \infty \quad \text{ операций}.$$

2 Блочный метод Холецкого

2.1 Описание блочного метода Холецкого

Разобьем матрицу A на блоки (A_{ij}) размера $m \times m$, где m < n и если $m \nmid n \Rightarrow n = m * k + l, l \neq 0$, то крайние блоки могут иметь размеры $m \times l$, или $l \times m$, или $l \times l$. Матрицы R и D можно также искать в виде блочных матриц.

Из формулы $A = R^T D R$ ясно, что формулы для нахождения блоков матрицы R имеют вид:

$$R_{ii}^T D_i R_{ii} = A_{ii} - \sum_{j=1}^{i-1} R_{ji}^T D_j R_{ji}, \ i = 1, ..., k,$$
(2)

$$R_{ii}^T D_i R_{is} = A_{is} - \sum_{j=1}^{i-1} R_{ji}^T D_j R_{js}, \ i, s = 1, ..., k, \ i < s$$

$$R_{is} = D_i(R_{ii}^T)^{-1} (A_{is} - \sum_{j=1}^{i-1} R_{ji}^T D_j R_{js}), \ i, s = 1, ..., k, \ i < s$$
 (3)

Тем самым сначала R_{ii} и D_i ищутся разложением из (2), а после для s=i+1,...n вычисляются R_{is} , используя формулу (3).

2.2 Оценка сложности в алгоритме построения верхнетреугольной матрицы в блочном разложении Холецкого

Если известно количество операций в случае l=0, то количество операций в случае $l\neq 0$ можно оценить сверху, сделав в имеющейся оценке замену k на k+1.

Начнём с оценки количества операций для $R_{ji}^T D_j R_{js}$, чтобы не путаться в индексах рассмотим это произвдение как $R^T D R$, тогда

$$(R^T D R)_{ij} = \sum_{k=1}^{\min(i,j)} r_{ki} d_k r_{kj}$$

здесь min(i,j)-1 аддитивных и min(i,j) мультипликативных операций, то есть всего 2min(i,j)-1 операций для одного элемента (по аналогии с неблочным методом умножение на d_i за операцию не считаем).

Тогда для вычисления $R_{ji}^T D_j R_{js}$ требуется

$$\sum_{i=1}^{m} \sum_{j=1}^{m} (2min(i,j) - 1) = \sum_{i=1}^{m} \sum_{j=1}^{i} (2j - 1) + \sum_{i=1}^{m} \sum_{j=i+1}^{m} (2i - 1) =$$

$$m(m+1)(2m+1) \qquad m(2m^2 - 3m + 1) \qquad m(2m^2 + 1)$$

$$\frac{m(m+1)(2m+1)}{6} + \frac{m(2m^2 - 3m + 1)}{6} = \frac{m(2m^2 + 1)}{3}$$

Обозначим как $Mult(m) = (2m^3 + m)/3$.

Для вычисления $A_{is} - \sum_{k=1}^{i-1} R_{ji}^T D_j R_{js}$ требуется:

$$H(i,m)=(i-1)(Mult(m)+m^2)=(i-1)(2m^3+3m^2+m)/3$$
 операций.

Сложность разложения Холецкого $Chol(m) = m^3/3$.

Сложность вычисления блока R_{ii} и $D_i: H(i,m) + Chol(m)$

Сложность вычисления всех диагональных блоков:

$$S_1(n, m, k) = \sum_{i=1}^{k} (H(i, m) + Chol(m)) = n(2mn + 3n + k - 3m - 1)/6$$

Умножение на треугольную матрицу требует $Y(m) = m^3$ операций. Здесь имеется ввиду умножение на $(R_{ii}^T)^{-1}$ в формуле (3). Подсчёт обратной к R_{ii}^T учтёем позже, так как это вычисление выполняется 1 раз при подсчете всей строки.

Итак, сложность вычисления недиагонального блока R_{ij} :

$$R(i,m) = H(i,m) + Y(m) = (i-1)(2m^3 + 3m^2 + m)/3 + m^3$$

Сложность вычисления всех недиагональных блоков R:

$$S_2(n, m, k) = \sum_{i=1}^k \sum_{s=i+1}^k R(i, m) = n(k-1)(2mn + 3n + k + 5m^2 - 6m - 2)/18$$

Для вычисления строки - R_{ij} при фиксированном i требуется $(R_{ii}^T)^{-1}$, следовательно нужно (k-1) раз найти обратную матрицу за $S_3(n,m) = (k-1)Chol(m) = (k-1)m^3/3$ операций.

Итак, нахождение всех блоков R_{is} требует

$$S(n,m) = S_1 + S_2 + S_3 = \frac{n(2mn + 3n + k - 3m - 1)}{6} + \frac{n(k-1)(2mn + 3n + k + 5m^2 - 6m - 2)}{18} + \frac{(k-1)m^3}{3} = \frac{n(2n^2 + m^2 + 9mn - 3m - 1 + 3nk + k^2)}{18} - \frac{m^3}{3} = \frac{n^3}{9} + \frac{nm^2}{18} + \frac{n^2m}{3} - \frac{nm}{6} - \frac{n}{18} + \frac{n^3}{6m} + \frac{n^3}{18m^2} - \frac{m^3}{3}$$

$$S(n,n) = \frac{n^3}{9} + \frac{n^3}{18} + \frac{n^3}{3} - \frac{n^2}{6} - \frac{n}{18} + \frac{n^2}{6} + \frac{n}{18} - \frac{n^3}{3} = \frac{n^3}{3}$$

$$S(n,1) = \frac{n^3}{9} + \frac{n}{18} + \frac{n^2}{3} - \frac{n}{6} - \frac{n}{18} + \frac{n^3}{6} + \frac{n^3}{18} - \frac{1}{3} = \frac{n^3}{3} + \frac{n^2}{3} - \frac{n}{6}$$

$$S(n,n) = \frac{n^3}{3} \quad S(n,1) = \frac{n^3}{3} + O(n^2), \quad n \to \infty$$

2.3 Хранение матриц

Так как матрица A симметричная, то логично хранить не всю матрицу, а только верхнюю ее часть над главной диагональю и саму диагональ.

$$a_{00} = a[0]; \ a_{11} = a[n]; \ a_{22} = a[n + (n-1)]; \dots$$

$$a_{ii} = a[\sum_{j=0}^{i-1} (n-j)] = a[i * (2 * n - i + 1)/2];$$

$$a_{is} = a[\sum_{j=0}^{i-1} (n-j)] = a[i * (2 * n - i + 1)/2 + (s-i)], \ i \le s$$

У матрицы D хранить нужно только диагональ в массиве длины n.

При вычислении матрицы R элементы R_{is} можно записывать сразу на место A_{is} , так как A_{is} больше не будет использоваться.