(Pages: 4)

L - 1562

Reg. No.:....

Sixth Semester B.Sc. Degree Examination, March 2021

First Degree Programme under CBCSS

Mathematics

Core Course XI

MM 1643: ABSTRACT ALGEBRA-RING THEORY

(2018 Admission Regular)

Time: 3 Hours

Max. Marks: 80

SECTION - I

Answer all the first 10 questions. Each carries 1 mark.

- 1. Give an example of a non-commutative ring with unity.
- 2. Write a subring of Z₆, the integers modulo 6.
- 3. Define the term "Zero divisors".
- 4. Why Z_{10} , the integers modulo 10 is not an integral domain.
- 5. Find the characteristic of the integral domain Z_{19} , the integers modulo 19.
- 6. List the elements in 2Z/6Z.
- 7. Show that the correspondence $x \mapsto 3x$ from \mathbb{Z}_4 to \mathbb{Z}_{12} does not preserve multiplication.
- 8. Give an example of an integral domain which is not a unique factorization domain.

- 9. True or False: "The ring of Gaussian integers a unique factorization domain".
- 10. In the ring of integers, find a positive integer a such that $\langle a \rangle = \langle 6 \rangle + \langle 8 \rangle$.

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - II

Answer any eight questions among the questions 11 to 26. They carry 2 marks each.

- 11. Let $\phi : \mathbf{R}[x] \to \mathbf{C}$ be a homomorphism with the property that $\phi(x) = \phi(i)$. Evaluate $\phi(x^2 + 1)$.
- 12. Show that the polynomial 2x + 1 in $\mathbb{Z}_4[x]$ has a multiplicative inverse in $\mathbb{Z}_4[x]$.
- 13. Show that the polynomial $2x^2 + 4$ is not reducible over $\mathbb Q$ but reducible over $\mathbb Z$
- 14. Suppose that R is an integral domain in which 20*1=0 and 12*1=0. What is the characteristic of R?
- 15. Let D be a Euclidean domain with measure d. Show that if a and b are associates in D, then d(a) = d(b).
- 16. Show that $\mathbb{Z}[\sqrt{-6}]$ is not a unique factorization domain.
- 17. If a and b belong to $\mathbb{Z}[\sqrt{d}]$, where d is not divisible by the square of a prime and ab is a unit, power that a and b are units.
- 18. Give an example of ring elements a and b with the properties that ab = 0 but $ba \neq 0$.
- 19. Prove that "Let a, b and c belong to an integral domain. If $a \neq 0$ and ab = ac, then b = c".
- 20. Prove that the only idempotents in an integral domain are 0 and 1.
- 21. Consider the equation $x^2 5x + 6 = 0$. Find all solutions of this equation in \mathbb{Z}_{8} .
- 22. Find a subring of $\mathbb{Z} \oplus \mathbb{Z}$ that is not an ideal of $\mathbb{Z} \oplus \mathbb{Z}$.
- 23. Draw the lattice diagram of ideals of \mathbb{Z}_{36} .
- 24. Give an example of a commutative ring that has a maximal ideal that is not a prime ideal.

- 25. Show that the mapping a + ib to a ib is a ring isomorphism from the complex numbers onto the complex numbers.
- 26. Give an example of a ring with unity 1 that has a subring with unity 1' such that

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - III

Answer any six questions among the questions 27 to 38. They carry 4 marks each.

- 27. If R is a ring, then for any $a, b \in R$, show that a(-b) = (-a)b = -(ab).
- 28. Show that "If p is a prime, then \mathbb{Z}_p is a field".
- 29. Let F be a field of order 2^n . Prove that characteristic of F = 2.
- 30. Let p be a prime. Show that in the ring \mathbb{Z}_p you have $(a+b)^p = a^p + b^p$. for every $a,b \in \mathbb{Z}_p$.
- 31. Let R be a ring and let I be an ideal of R. Prove that the factor ring R/I is commutative if and only if $rs sr \in I$ for all r and s in R.
- 32. Find all ring homomorphisms from \mathbb{Z}_{12} to \mathbb{Z}_{30} .
- 33. Show that "If D is an integral domain, then D[x] is an integral domain".
- 34. Find the quotient and remainder upon dividing $f(x) = 3x^4 + x^3 + 2x^2 + 1$ by $g(x) = x^2 + 4x + 2$.
- 35. By stating necessary theorem show that the polynomial $3x^5 + 15x^4 20x^3 + 10x + 20$ is irreducible over \mathbb{Q} , the set of rational numbers.
- 36. Prove that "In an integral domain, every prime is an irreducible".
- 37. Let F be a field and let a be a non zero element of F. If f(x+a) is irreducible over F, prove that f(x) is irreducible over F.
- 38. Let D be a Euclidean domain with measure d. Prove that u is a unit in D if and only if d(u) = d(1).

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - IV

Answer any two questions among the questions 39 to 44. They carry 15 marks each.

- 39. Prove that "Let R be a commutative ring with unity and let A be an ideal of R. Then R / A is an integral domain if and only if A is prime".
- 40. (a) Let a and b be idempotents in a commutative ring. Show that each of the following is also an idemptotent:
 - (i) ab
 - (ii) a-ab
 - (iii) a+b-ab
 - (iv) a+b-2ab.
 - (b) Show that a unit of a ring divides every element of the ring.
- 41. (a) Prove that "Let ϕ be a ring homomorphism from a ring R to a ring S. Then $Ker\phi = \{r \in R; \phi(r) = 0\}$ is an ideal of R".
 - (b) Show that $\phi: \mathbb{Z}_4 \mapsto \mathbb{Z}_{10}$ by $\phi(x) = 5x$ is a ring homomorphism.
- 42. Prove that "A polynomial of degree *n* over a field has at most *n* zeros, counting multiplicity".
- 43. Prove that "Let $f(x) \in \mathbb{Z}[x]$. If f(x) is reducible over \mathbb{Q} , then it is reducible over \mathbb{Z} ".
- 44. In $\mathbb{Z}[i]$, show that 3 is irreducible but 2 and 5 are not.

 $(2 \times 15 = 30 \text{ Marks})$