Secure Function Extensions to Additively Homomorphic Cryptosystems

Mounika Pratapa and Aleksander Essex

Selected Areas in Cryptography - 2023

August 17, 2023

mpratapa@uwo.ca aessex@uwo.ca

Agenda

- Methodology to extend the functionality of additively homomorphic encryption schemes by modifying secret key generation
- Steps for modified key generation
- Potential applications and results

Four Questions: What? Why? How? So what?

Secure Computation

- Increase in the availability of personal information
- Challenge: Make the best possible use of available data without giving away access to it
- Data Encryption- popular and secure
- Can we perform computations on this encrypted data, without decrypting it?

Secure Function Evaluation

In a two party setting:

- Alice and Bob with inputs x, y respectively
- They want to jointly evaluate a function f(x, y), without sharing their inputs
- Upon SFE, Alice will learn f(x, y) and nothing else. Bob learns nothing

Applications: Privacy-preserving machine learning, private information retrieval, similarity search in private databases such as genotype and other medical data, online voting, auctions and private credit checking.

Homomorphic Encryption

• Homomorphic encryption between two messages m_1, m_2 :

$$Enc(m_1 \star m_2) = Enc(m_1) \diamond Enc(m_2)$$

Decryption results match with operations on a plain-text message

Categories

Why PHE?

- Additive HE plays an important role in secure computations
- Examples: Medical applications, Internet-voting (Switzerland)
- Reasons:
 - Clear-cut parameterizations
 - More mature(well understood) hardness assumptions
 - Faster execution
 - Reduced communication overhead compared to Garbled circuits
- Can we do more than just addition?

Quadratic Residue Function: QR(x, p)

• Legendre symbol $L: \mathbb{Z} \times \mathbb{Z} \mapsto \{-1, 0, 1\}$:

Quadratic Residue Function: QR(x, p)

• Legendre symbol $L: \mathbb{Z} \times \mathbb{Z} \mapsto \{-1, 0, 1\}$:

• Let QR : $\mathbb{Z} \times \mathbb{Z} \to \{0,1\}$ be a function testing the quadratic residuosity of an integer $x \in \mathbb{Z}_p$, defined as

$$QR(x, p) = \begin{cases} 1 & \text{if } x \text{ is a quadratic residue modulo } p. \\ 0 & \text{otherwise.} \end{cases}$$

Quadratic Residue Function: QR(x, p)

• Legendre symbol $L: \mathbb{Z} \times \mathbb{Z} \mapsto \{-1, 0, 1\}$:

$$\left(\frac{x}{p}\right) \equiv \begin{cases} 1 & \text{if x is quadratic residue mod } p \\ -1 & \text{if x is quadratic non-residue mod } p \\ 0 & \text{if } x \equiv 0 \bmod p. \end{cases}$$

• Let $QR : \mathbb{Z} \times \mathbb{Z} \to \{0,1\}$ be a function testing the quadratic residuosity of an integer $x \in \mathbb{Z}_p$, defined as

$$QR(x,p) = \begin{cases} 1 & \text{if } x \text{ is a quadratic residue modulo } p. \\ 0 & \text{otherwise.} \end{cases}$$

Quadratic Residue Symbol Sequences

For p = 277, the Residue symbols for first 10 positive integers:

X	1	2	3	4	5	6	7	8	9	10
$QR_{277}(x)$	1	1	0	1	1	0	0	1	0	1

Quadratic Residue Symbol Sequences

For p = 277, the Residue symbols for first 10 positive integers:

X	1	2	3	4	5	6	7	8	9	10
$QR_{277}(x)$	1	1	0	1	1	0	0	1	0	1

For p = 277 and an offset value of 178, the Legendre symbols of 10 elements from 178 are:

X	1	2	3	4	5	6	7	8	9	10
$QR_{277}(178 + x)$	0	0	0	0	0	0	1	1	1	1

Quadratic Residue Symbol Sequences

For p = 277, the Residue symbols for first 10 positive integers:

X	1	2	3	4	5	6	7	8	9	10
$QR_{277}(x)$	1	1	0	1	1	0	0	1	0	1

For p = 277 and an offset value of 178, the Legendre symbols of 10 elements from 178 are:

X	1	2	3	4	5	6	7	8	9	10
$QR_{277}(178 + x)$	0	0	0	0	0	0	1	1	1	1

Observe that the sequence is a consecutive occurrence of symbols- limited in scope

Linear Embeddings in Residue Symbol Sequences

Given $f(\cdot)$ and an integer sequence of the form $[\alpha x + \beta \mid 0 \le x < t, \text{ and } \alpha, \beta > 0]$, our approach involves three components:

lacktriangle An efficient algorithm for finding a prime p for which

$$QR(\alpha x + \beta, p) = f(x).$$

- ② An additively homomorphic public-key cryptosystem embedding the required quadratic residue symbol sequence into the plaintext space, i.e., $\mathcal{M} \subset \mathbb{Z}_p$.
- **3** A public homomorphic operation that can blind the encryption of $\alpha x + \beta$ while preserving its quadratic residue symbol modulo p (and hence the output of the function f(x)).

Approach to secure computation

- CS = {Gen, Enc, Dec}
- Homomorphisms:

$$\operatorname{Enc}(x_1) \cdot \operatorname{Enc}(x_2) = \operatorname{Enc}(x_1 + x_2 \bmod p)$$
$$\operatorname{Enc}(x_1)^{x_2} = \operatorname{Enc}(x_1 x_2 \bmod p).$$

• A mapping function $h: \mathbb{Z} \to \mathbb{Z}_p$, $h(x) = (\alpha x + \beta) \mod p$

Approach to secure computation

- CS = {Gen, Enc, Dec}
- Homomorphisms:

$$\operatorname{Enc}(x_1) \cdot \operatorname{Enc}(x_2) = \operatorname{Enc}(x_1 + x_2 \bmod p)$$
$$\operatorname{Enc}(x_1)^{x_2} = \operatorname{Enc}(x_1 x_2 \bmod p).$$

- A mapping function $h: \mathbb{Z} \to \mathbb{Z}_p$, $h(x) = (\alpha x + \beta) \mod p$
- Given Enc(x) for $0 \le x < t$, and an $\alpha, \beta > 0$, compute:

$$\operatorname{Enc}(h(x)) = \operatorname{Enc}(x)^{\alpha} \cdot \operatorname{Enc}(\beta) = \operatorname{Enc}(\alpha x + \beta \bmod (p)).$$

Approach to secure computation

- CS = {Gen, Enc, Dec}
- Homomorphisms:

$$\operatorname{Enc}(x_1) \cdot \operatorname{Enc}(x_2) = \operatorname{Enc}(x_1 + x_2 \bmod p)$$
$$\operatorname{Enc}(x_1)^{x_2} = \operatorname{Enc}(x_1 x_2 \bmod p).$$

- A mapping function $h: \mathbb{Z} \to \mathbb{Z}_p$, $h(x) = (\alpha x + \beta) \mod p$
- Given Enc(x) for 0 < x < t, and an $\alpha, \beta > 0$, compute:

$$\operatorname{Enc}(h(x)) = \operatorname{Enc}(x)^{\alpha} \cdot \operatorname{Enc}(\beta) = \operatorname{Enc}(\alpha x + \beta \mod (p)).$$

Using QR Function:

$$QR(Dec(Enc(\alpha(x) + \beta)), p) = QR(h(x), p) = f(x).$$

Theorem (1)

Consider a list of k distinct primes $\{a_1, \ldots, a_k\}$ and a list of residue symbols $\{\ell_1, \ldots, \ell_k\}$ where $\ell_i \in \{-1, 1\}$. For all $1 \le i \le k$, there exists a prime p such that

$$\left(\frac{p}{a_i}\right)=\ell_i.$$

Consider a list of k distinct primes $\{a_1, \ldots, a_k\}$ and a list of residue symbols $\{\ell_1, \ldots, \ell_k\}$ where $\ell_i \in \{-1, 1\}$. For all $1 \le i \le k$, there exists a prime p such that

$$\left(\frac{p}{a_i}\right)=\ell_i.$$

Theorem (2)

For all $t \in \mathbb{Z}^+$ and all functions $f : \mathbb{Z}_t \to \{0,1\} \exists a \text{ prime } p \text{ and two}$

integers
$$0 < \alpha, \beta < p$$
 such that for all $0 \le x < t$ $\frac{\left(\frac{\alpha x + \beta}{p}\right) + 1}{2} = f(x)$

Components

 $CS = \{Gen, Enc, Dec, Add, Smul, Eval\}$

- Gen $(1^{\rho}, \alpha, \beta, f)$: Secret keys $\mathcal{SK} = \{p, q\}$ and public key $\mathcal{PK} = \{n\}$ where $n = p^2q$
- $Enc(\mathcal{PK}, m)$: c = [m]
- $Dec(\mathcal{SK}, c)$: m
- $Add(c_1, c_2)$: $c' = [(m_1 + m_2) \mod p]$
- Smul(s, c): $c' = [(m_1 m_2) \mod p]$
- Eval($\mathcal{PK}, \alpha, \beta, c$):
 - Choose $r_c \leftarrow [1, 2^{\lambda}]$ Smul $(r_c^2, Add(Smul(\llbracket m \rrbracket, \alpha), Enc(\beta)) = \llbracket r_c^2 \cdot (\alpha m + \beta) \mod p \rrbracket$

• $S = \{s_m \mid s_m = \alpha m + \beta, 0 \leq m < t\}$ - an odd sequence for some $\alpha, \beta \in \mathbb{Z}^+$

- $S = \{s_m \mid s_m = \alpha m + \beta, 0 \le m < t\}$ an odd sequence for some $\alpha, \beta \in \mathbb{Z}^+$
- Factorize $s_m \in S$ to $s_{m,0}^{(e_{m,0})}, \ldots, s_{m,\rho_m}^{(e_{m,\rho_m})}$ and form the following set of equations:

$$\left(\frac{s_m}{p}\right) = \left(\frac{s_{m,0}^{(e_{m,0})} \cdot \ldots \cdot s_{m,\rho_m}^{(e_{m,\rho_m})}}{p}\right) = \left(\frac{s_{m,0}}{p}\right) \cdot \ldots \cdot \left(\frac{s_{m,\rho_m}}{p}\right) = 1 - 2 \cdot f(m)$$

Here $e_{m,j}$ is an odd power

- $S = \{s_m \mid s_m = \alpha m + \beta, 0 \le m < t\}$ an odd sequence for some $\alpha, \beta \in \mathbb{Z}^+$
- Factorize $s_m \in S$ to $s_{m,0}^{(e_{m,0})}, \ldots, s_{m,\rho_m}^{(e_{m,\rho_m})}$ and form the following set of equations:

$$\left(\frac{s_m}{p}\right) = \left(\frac{s_{m,0}^{(e_{m,0})} \cdot \ldots \cdot s_{m,\rho_m}^{(e_{m,\rho_m})}}{p}\right) = \left(\frac{s_{m,0}}{p}\right) \cdot \ldots \cdot \left(\frac{s_{m,\rho_m}}{p}\right) = 1 - 2 \cdot f(m)$$

Here $e_{m,j}$ is an odd power

$$QR(s_m, p) = QR(s_{m,0}, p) + \ldots + QR(s_{m,\rho_m}, p) \equiv f(m) \mod 2.$$

• $A = \{a_0, \dots, a_{u-1}\} \rightarrow \text{ set of } u \text{ unique prime factors from the complete set of factors of each element}$

- $A = \{a_0, \dots, a_{u-1}\} \rightarrow \text{ set of } u \text{ unique prime factors from the complete set of factors of each element}$
- Define a function:

$$d(a_j, s_m) = egin{cases} 1 & ext{if } a_j \mid s_m \ 0 & ext{otherwise}. \end{cases}$$

- $A = \{a_0, \dots, a_{u-1}\} \rightarrow \text{ set of } u \text{ unique prime factors from the complete set of factors of each element}$
- Define a function:

$$d(a_j, s_m) = egin{cases} 1 & ext{if } a_j \mid s_m \\ 0 & ext{otherwise.} \end{cases}$$

Construct a matrix based on the factor list in each element

- Compute $M' \leftarrow \mathsf{RREF}(M)$
- If the system of equations is consistent and exactly determined, each $a_j \in A$ implies a residue value $\ell_j \in \{0,1\}$
- Satisfies $QR(s_m) = f(m)$ for $0 \le m < t$.

- For each $a_j \in A$ and each residue value $\ell_j \in \{0,1\}$, select $b_j \leftarrow [0,a_j)$ such that $QR(b_j,a_j) = \ell_j$.
- For each pair a_i, b_i :

$$p'\equiv b_0\ ext{mod}\ a_0$$
 $p'\equiv b_1\ ext{mod}\ a_1$
 \vdots
 $p'\equiv b_{u-1}\ ext{mod}\ a_{u-1}.$

- Compute $p \leftarrow k \left(\prod_{j=0}^{u-1} a_j\right) + p'$ for $k \xleftarrow{R} [k_{min}, k_{max}]$ such that $|p| = \lambda$.
- If $p \equiv 1 \mod 4$ and p is prime, output p, else find new b_j

Okamoto-Uchiyama Cryptosystem

Encryption:

- \bullet $g \in \mathbb{Z}_p^* \mid g^{p-1} \not\equiv 1 \pmod{p^2}$
- $h \equiv g^n \pmod{n}$
- $c \leftarrow g^m h^r \pmod{n} \mid n = p^2 q$

Decryption:

•
$$a = \frac{(c^{p-1} \pmod{p^2}) - 1}{p}$$
• $b = \frac{(g^{p-1} \pmod{p^2}) - 1}{p}$

$$\bullet \ b = \frac{\left(g^{p-1} \pmod{p^2}\right) - 1}{p}$$

$$\bullet \ m = ab^{-1} \ (\bmod \ p)$$

(Eval) Correctness

$$c' = \operatorname{Eval}(\mathcal{PK}, \alpha, \beta, c) = (c^{\alpha} \cdot [\![\beta]\!])^{r_c^2} \mod n$$

$$= ([\![m]\!]^{\alpha} \cdot [\![\beta]\!])^{r_c^2}$$

$$= [\![(\alpha m + \beta) \cdot r_c^2]\!].$$

$$\operatorname{Dec}(c') = \alpha m + \beta \cdot r_c^2$$

Apply QR-function

$$QR((\alpha m + \beta) \cdot r_c^2, p) = QR(\alpha m + \beta, p) \cdot QR(r_c^2, p)$$
$$= f(m) \cdot 1$$
$$= f(m).$$

Semantic Security

Two decision problems:

- p-th residue decisional problem (PRDP): Given $a \in \mathbb{Z}_n^*$ and $n = p^2q$ for unknown p, q, deciding if \exists a b where $a \equiv b^p \mod n$
- Quadratic residuosity mod p decisional problem (QRDP): Given Enc(m) and an unknown p, computing QR(m, p)

QRDP is reducible to PRDP \implies modified CS is semantically secure

Public: \mathcal{PK} , $\{\alpha, \beta\}$, $f: \mathbb{Z}_t \mapsto \{0, 1\}$

Alice

Bob

$$X \leftarrow \{x_1, \dots, x_a\}$$

 $\mathcal{SK} = \{p, q\}$

$$Y=\{y_1,\ldots,y_b\}$$

 $\llbracket X
rbracket$

$$\llbracket m \rrbracket \leftarrow \pi_{sub}(X, Y)$$

$$c' \leftarrow \mathsf{Eval}(\mathcal{PK}, \alpha, \beta, \llbracket m \rrbracket)$$

c'

$$\textit{m}' \leftarrow \mathsf{Dec}(\mathcal{SK}.\textit{c}')$$

$$m' = (\alpha \cdot m + \beta) \cdot r_c^2$$

$$QR(m',p)=f(m)$$

Protocol Security

This protocol is secure under Honest-But-Curious model- proved by taking the security of Alice and Bob separately

Protocol Security

This protocol is secure under Honest-But-Curious model- proved by taking the security of Alice and Bob separately:

 Alice's privacy is dependent on the cryptosystem itself as Alice shares only encrypted output. Since the CS is semantically secure, Alice's data is secure

Protocol Security

This protocol is secure under Honest-But-Curious model- proved by taking the security of Alice and Bob separately:

- Alice's privacy is dependent on the cryptosystem itself as Alice shares only encrypted output. Since the CS is semantically secure, Alice's data is secure
- The privacy of Bob's output, relies on the hider $r_c \stackrel{R}{\leftarrow} \mathbb{Z}_k$ where k is the bit-size of the prime p. Bob's decrypted output has the same distribution as that of Quadratic Residues and Non-Residues, making the security hardness equivalent to Quadratic Residuosity Problem

Key Generation Implementation

Function size (domain cardinality t)	512	256	128	50
Gaussian Elimination	0.236	0.078	0.015	0.004
Test for consistency	0.016	0.009	0.002	0.001
Finding the right b_x	87.30	21.00	3.900	0.560
CRT	25.24	3.6	0.142	0.062

Table: Run time for various steps in the the key generation in seconds

Results Analysis

Performance Indicator	Abspoel et al. [2019]	Yu [2011]	Essex [2019]	Our Protocol
Domain cardinality (t)	623	$\Omega(\log(p))$	26	512
Residue symbol sequence type	$\{1\}^t$	$\{1\}^t$	$[0]^t \mid\mid [1]^t$	$\{0,1\}^t$
Secure function evaluation type	Specific (sign functions)	Specific (sign functions)	Specific (thresholds)	General (Boolean)

Table: Comparison between SFE protocols that rely on the runs of quadratic residues.

Practical use

- Private record linkage, information retrieval and machine learning inference
- Display of intermediate computations leads to potential database reconstruction attacks
- Hiding intermediate computations requires increase in communication rounds or reliance on some trusted third parties
- Our approach achieves single round communication while displaying only the end result

Summary

- Explored the properties of quadratic residue sequences and combined it with public key cryptography to expand the functionality of existing additive homomorphic encryption schemes
- Implemented a modified key-generation algorithm that produces primes based on arbitrary residue symbol sequences
- Designed protocol for SFE domains which is secure in honest-but curious setting
- \bullet Future work could optimize methods to find such α and β to generate primes with smaller bit-size

Thank You!

Questions?

References

- M. Abspoel, N. J. Bouman, B. Schoenmakers, and N. de Vreede. Fast secure comparison for medium-sized integers and its application in binarized neural networks. In *Topics in Cryptology–CT-RSA 2019: The Cryptographers' Track at the RSA Conference 2019, San Francisco, CA, USA, March 4–8, 2019, Proceedings*, pages 453–472. Springer, 2019.
- A. Essex. Secure approximate string matching for privacy-preserving record linkage. *IEEE Transactions on Information Forensics and Security*, 14 (10):2623–2632, 2019.
- A. Wood, K. Najarian, and D. Kahrobaei. Homomorphic encryption for machine learning in medicine and bioinformatics. *ACM Computing Surveys (CSUR)*, 53(4):1–35, 2020.
- C.-H. Yu. Sign modules in secure arithmetic circuits. *Cryptology ePrint Archive*, 2011.