3. Subespacios invariantes

A lo largo de esta sección E denotará un espacio vectorial finito dimensional y $\operatorname{End}(E)$ representará al conjunto de todas las transformaciones lineales de E a E. **Definición 3.1.** Sean $A \in \text{End}(E)$ y $F \subset E$ un subespacio vectorial. Decimos que F es **invariante** por el operador A si $A(F) \subset F$. Observación 3.2. Si F es un subespacio invariante por el operador $A \in \text{End}(E)$, la restricción de A a los vectores de F define un operador que haciendo un abuso de notación indicaremos con la misma notación $A: F \to F$. Así, la existencia de un subespacio invariante permite el estudio de un operador más simple por estar definido en un dominio más pequeño. **Ejemplo 3.3.** Los subespacios $\{0\}$ y E son invariantes para cualquier $A \in \text{End}(E)$. **Ejemplo 3.4.** Los subespacios $\ker(A)$ e (A) son invariantes para cualquier $A \in \operatorname{End}(E)$. **Propiedad 3.5.** Sea $A \in \text{End}(E)$. Se cumple: (I) Un subespacio unidimensional F es invariante por A sii existe $\lambda \in \mathbb{R}$ tal que $Av = \lambda v$ para todo $v \in F$. (II) Un subespacio bidimensional F generado por $\{u, v\}$ es invariante por A sii $Au, Av \in$ F. Demostración. Ejercicio. **Definición 3.6** (Autovector y autovalor). Un vector $v \in \mathcal{E} \setminus \{0\}$ se llama un **autovector** del operador $A \in \text{End}(E)$ si existe $\lambda \in \mathbb{R}$ tal que $Av = \lambda v$. Un número $\alpha \in \mathbb{R}$ se llama un autovalor del operador $A \in \text{End}(E)$ cuando existe un vector no nulo u tal que $Au = \alpha u$. Luego, se dice que el autovalor α corresponde al autovector u y, viceversa, que el autovector v corresponde al autovalor λ . Observación 3.7. Hallar un autovector (o, equivalentemente, un autovalor) de un operador $A \in \text{End}(E)$ es lo mismo que encontrar un subespacio unidimensional invariante por A. Definición 3.8 (Autovalor de una matriz). El número $\lambda \in \mathbb{R}$ es un autovalor de la **matriz** $\mathbf{a} \in \mathcal{M}(n \times n)$ si λ es un autovalor del operador $A : \mathbb{R}^n \to \mathbb{R}^n$ cuya matriz en la base canónica es a. **Ejemplo 3.9.** Sea $A \in \text{End}(E)$. Todo vector no nulo $v \in \text{ker}(A)$ es un autovector de **Ejemplo 3.10.** Una rotación $R: \mathbb{R}^2 \to \mathbb{R}^2$ en torno al origen de un ángulo diferente de

 $0 \text{ y } \pi$ no admite otros subespacios invariantes además de $\{0\}$ y \mathbb{R}^2 . Ejercicio.

Ejemplo 3.11. Para todo $\alpha \in \mathbb{R}$, la rotación $A : \mathbb{R}^3 \to \mathbb{R}^3$ del ángulo α en torno del eje z, definida por

$$A(x, y, z) = (x\cos(\alpha) - y\sin(\alpha), x\sin(\alpha) + y\cos(\alpha), z),$$

tiene al eje z y al plano z=0 como subespacios invariantes. Ejercicio.

Ejemplo 3.12. Sea $S: E \to E$ una reflexión en torno al subespacio F_1 , paralelamente a F_2 . Todo vector no nulo en F_1 es un autovector de S con autovalor correspondiente 1, y todo vector no nulo en F_2 también es un autovector de S, pero con autovalor correspondiente -1.

Ejemplo 3.13. Sea $A : \mathbb{R}^2 \to \mathbb{R}^2$, definido por $A(x,y) = (x + \alpha y, y)$. Para $\alpha \neq 0$, los únicos subespacios invariantes por A son $\{0\}$, la recta y = 0 y \mathbb{R}^2 . Ejercicio.

Observación 3.14. Sean $A \in \text{End}(E)$ y el polinomio $p(x) = a_0 + a_1 x + \cdots + a_n x^n$. La notación p(A) indica el operador

$$p(A) = a_0 I + a_1 A + \dots + a_n A^n.$$

Lema 3.15. Sea $A \in \text{End}(E)$. Luego, existe un polinomio mónico irreductible p de grado 1 o 2 y un vector no nulo $v \in E$ tales que $p(A) \cdot v = 0$.

Demostraci'on. Ejercicio.

Theorem 3.16. Todo $A \in \text{End}(E)$ posee un subespacio invariante de dimensión 1 o 2.

Demostraci'on. Ejercicio.

Theorem 3.17. Sea $A \in \text{End}(E)$. A autovalores diferentes de A corresponden autovectores l.i.

Demostraci'on. Ejercicio.

Observación 3.18. Como consecuencia del teorema 3.17, si $\dim(E) = n$, entonces todo $A \in \operatorname{End}(E)$ admite a lo más n autovalores distintos.

Corolario 3.19. Si $\dim(E) = n$ y $A \in \operatorname{End}(E)$ posee n autovalores distintos, entonces existe una base $\{v_1, \ldots, v_n\} \subset E$ en relación a la cual la matriz de A es diagonal.

Demostración. Ejercicio.

Observación 3.20. Sea $A \in \text{End}(E)$ y $\lambda \in \mathbb{R}$. Luego, las siguientes proposiciones son equivalentes:

- (I) λ es un autovalor de A
- (II) $\ker(A \lambda I) \neq \{0\}$

(III) $ker(A - \lambda I)$ no posee inverso.

Ejemplo 3.21. Sea $\mathcal{U} = \{u, v\}$ una base de E y sea $A \in \text{End}(E)$. Sea

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

la matriz de A respecto a la base \mathcal{U} . Entonces, λ es un autovalor de A sii λ es una raíz del polinomio

$$p(x) = x^2 - (a+d)x + ad - bc.$$

 \Box

Ejemplo 3.22. Una rotación $R: \mathbb{R}^2 \to \mathbb{R}^2$ en torno al origen de un ángulo θ admite autovalores sii $\theta = 0$ o $\theta = \pi$. *Ejercicio*.

Ejemplo 3.23. Sea $A: \mathbb{R}^2 \to \mathbb{R}^2$, $(x,y) \mapsto (4x+3y,x+2y)$. Luego, existe una base formada por autovectores de A en la que la matriz de A respecto a esta base es diagonal. *Ejercicio*.

Definición 3.24. un operador $A \in \text{End}(E)$ será llamado de **normal** si A y A^* conmutan, **diagonalizable** si E posee una base formada por autovectores de A e **involución** si $A^2 = I$.

Ejercicio 3.1. Sean $P,Q \in \text{End}(E)$ proyecciones. Pruebe que P=Q sii tienen los mismos autovectores con los mismos autovalores.

Ejercicio 3.2. Sean $P \in \text{End}(E)$ una proyección. Pruebe que P es auto-adjunta sii P es normal.

Ejercicio 3.3. Sean $A, B \in \text{End}(E)$. Pruebe que A es auto-adjunto si B es invertible y BAB^* es auto-adjunto.

Ejercicio 3.4. Sea $A \in \text{End}(E)$ auto-adjunto y sea $v \in E$. Pruebe que para todo $k \in \mathbb{N}$:

$$A^k v = 0 \implies Av = 0.$$

Ejercicio 3.5. Sean $A, B \in \text{End}(E)$ involuciones auto-adjuntas. Pruebe que AB es una involución auto-adjunta sii AB = BA.

Ejercicio 3.6. Dados los vectores v=(2,-1,-2) y w=(3,-6,-6), determine el operador auto-adjunto $A \in \operatorname{End}(\mathbb{R}^3)$ tal que Av=(1,1,13) y Aw=(3,21,33), sabiendo que la traza de A es 5.

Ejercicio 3.7. Dados los vectores u = (4, 4, -2), v = (4, -2, 4) y w = (1, -2, -2). Sea $A \in \text{End}(\mathbb{R}^3)$ tal que Au = (10, -2, -2), Av = (-2, 10, -2) y Aw = (1, 1, -5). Pruebe que A es auto-adjunto.

Ejercicio 3.8. Sea $A \in \text{End}(E)$, $v \mapsto Av = \langle v, a \rangle b$ con $a, b \in E \setminus \{0\}$. Pruebe que A es auto-adjunto sii b es múltiplo de a.

Ejercicio 3.9. Sea $A \in \text{End}(E)$.

- (I) Si $A^*A = -A$, pruebe que los autovalores de A pertenecen al conjunto $\{0, -1\}$.
- (II) Dé una matriz $\mathbf{a} \in \mathcal{M}(2 \times 2)$ tal que $a_{11} = -1/3$ y $\mathbf{a}^{\mathsf{T}} \mathbf{a} = -\mathbf{a}$.
- (III) ¿Cuántas matriz del tipo del ítem anterior existen?

Ejercicio 3.10. Sea $A \in \text{End}(E)$. Si E posee una base formada por autovectores de A, pruebe que es posible definir en E un producto interno en relación al cual A es auto-adjunto.

Ejercicio 3.11. Sea $A \in \text{End}(E)$ diagonalizable. Si $F \subset E$ es un subespacio invariante por A, pruebe que la restricción de A al subespacio F es un operador diagonalizable en F.

Ejercicio 3.12. Sea $A \in \text{End}(E)$ diagonalizable y sea $F \subset E$ subespacio. Si F es invariante por A, pruebe que existe un subespacio $G \subset E$ también invariante por A tal que $E = F \oplus G$.

Ejercicio 3.13. Sean $A, B \in \text{End}(E)$ auto-adjuntos.

- (I) Pruebe que AB + BA es autoadjunto.
- (II) ¿Qué se puede decir sobre AB BA?

Ejercicio 3.14. Sean $A, B \in \text{End}(E)$ auto-adjuntos. Pruebe que A y B conmutan sii E posee una base ortonormal formada por autovectores comunes a B y A.