VOLTAGE DIVIDER BIAS

Voltage Divider Bias:

If the load resistance R_C is very small, e.g. in a transformer coupled circuit, then there is no improvement in stabilization in the collector to base bias circuit over fixed bias circuit. A circuit which can be used even if there is no dc resistance in series with the collector, is the voltage divider bias or self bias. **fig. 3**.

The current in the resistance R_E in the emitter lead causes a voltage drop which is in the direction to reverse bias the emitter junction. Since this junction must be forward biased, the base voltage is obtained from the supply through R_1 , R_2 network. If $R_b = R_1 \parallel R_2$ equivalent resistance is very – very small, then V_{BE} voltage is independent of I_{CO} and \P I_{CO} \P I_{CO} \P 0. For best stability R_1 & R_2 must be kept small.

Fig. 3

If I_C tends to increase, because of I_{CO} , then the current in R_C increases, hence base current is decreased because of more reverse biasing and it reduces I_C .

To analysis this circuit, the base circuit is replaced by its thevenin's equivalent as shown in **fig. 4**.

Fig. 4

Thevenin's voltage is

$$V = \frac{R_2}{R_1 + R_2} V_{CC},$$

$$R_b = \frac{R_1 R_2}{R_1 + R_2}$$

R_b is the effective resistance seen back from the base terminal.

$$\forall = I_B R_b + \forall_{BE} + (I_B + I_C) R_E$$

If V_{BE} is considered to be independent of I_{C} , then

$$\frac{\partial I_B}{\partial I_C} = -\frac{R_E}{R_B + R_E}$$
$$S = \frac{1 + \beta_{do}}{1 + \frac{\beta_{do} R_E}{R_B + R_E}}$$

If
$$R_b/R_c \rightarrow 0$$
 then $S \rightarrow 1$
If $R_b/R_c \rightarrow \infty$ then $S \rightarrow (1+\beta_{dc})$.

The smaller the value of R_b, the better is the stabilization but S cannot be reduced be unity.

Hence I_C always increases more than I_{CO} . If R_b is reduced, then current drawn from the supply increases. Also if R_E is increased then to operate at same Q-point, the magnitude of V_{CC} must be increased. In both the cases the power loss increased and reduced h.

In order to avoid the loss of ac signal because of the feedback caused by R_E , this resistance is often by passed by a large capacitance (> 10 m F) so that its reactance at the frequency under consideration is very small.

Emitter Bias:

Fig. 5, shown the emitter bias circuit. The circuit gets this name because the negative supply V_{EE} is used to forward bias the emitter junction through resistor R_E . V_{CC} still reverse biases collector junction. This also gives the same stability as voltage divider circuit but it is used only if split supply is available.

Fig. 5

In this circuit, the voltage equation is given by

$$\begin{split} &I_{B}\;R_{B}\;+\bigvee_{BE}\;+I_{E}\;R_{E}\;=\bigvee_{EE} \end{split}$$
 therefore,
$$&I_{B}\;=\;\frac{I_{C}}{\beta_{dc}}\;=\;\frac{I_{E}}{\beta_{dc}}$$
 and
$$&I_{E}\;=\;\frac{\bigvee_{EE}\;-\;\bigvee_{BE}}{R_{E}\;+\;\frac{R_{B}}{\beta_{dc}}} \end{split}$$

If I_C or I_E is to be independent of β then $R_E >> \frac{R_B}{\beta_{do}}$

and then
$$I_E = \frac{V_{EE} - V_{BE}}{R_E}$$

This shown that emitter is virtually at ground potential.

$$V_{CE} = V_{CC} - I_C R_C$$

Normally R $_{B}$ is selected less than 0.01 $\beta_{de}R_{E}$