

Mise en service du Bras Beta - 20 minutes

ş	D1-01 : Mettre en œuvre un système en suivant un protocole
	D2-01 : Choisir le protocole en fonction de l'objectif visé.
Objectifs	D2-02 : Choisir les configurations matérielles et logicielles du système en fonction de l'objectif visé par
þje	l'expérimentation.
ō	D2-03 : Choisir les réglages du système en fonction de l'objectif visé par l'expérimentation.
	D2-04: Choisir la grandeur physique à mesurer ou justifier son choix.

Expérimenter et analyser

Activité 1

- ☐ Prendre connaissance de la Fiche 1 (Présentation générale).
- ☐ Réaliser les protocoles donnés de la Fiche 2 (Mise en œuvre du bras beta, Allumage, Initialisation et Mise en mouvement).
- ☐ Proposer un schéma cinématique minimal du système.
- ☐ Donner les différences entre le système réel et le système didactique.

Activité 2

Expérimenter et analyser

☐ En utilisant la fiche 3 – Mesure en BF – , réaliser un essai dans les conditions suivantes :

- coordonnées du tube de départ : (125,0) ;
- coordonnées du tube d'arrivée : (275,50) ;
- stratégie de ralliement : trapèze de vitesse sans synchronisation.
- (correcteurs proportionnels avec P = 1 sur les deux axes, vitesse T 150 mm/s, vitesse R 120°/s).
- ☐ Afficher et conserver la courbe en réalisant l'inspection.
- Réaliser le même essai en modifiant uniquement la stratégie ralliement : trapèze de vitesse **avec** synchronisation.
- Commenter les courbe obtenues.

Expérimenter et analyser

Activité 3

☐ Vérifier si les exigences 1.1.3, 1.1.4 et 1.1.5 sont satisfaites.

☐ Réaliser une synthèse dans le but d'une préparation orale :

- Expliquer brièvement le contexte industriel du système.
- Expliquer brièvement le fonctionnement du système de laboratoire.
- Réaliser une synthèse de l'activité 2.

Synthèse

Pour XENS – CCINP – Centrale :

garder des copies d'écran dans PowerPoint ou Word

Pour CCMP:

• Rédiger les éléments de synthèse sur feuille, imprimer et annoter les courbes nécessaires.

Modélisation du Bras Beta - 60 minutes

0bjectifs		B2-02	Compléter un modèle multiphysique.
	Š	B2-03	Associer un modèle aux composants des chaines fonctionnelles.
	<u> </u>	B2-04	Établir un modèle de connaissance par des fonctions de transfert.
	<u> </u>	B2-05	Modéliser le signal d'entrée.
	ြင်္ခ ရင်္ခ	B2-07	Modéliser un système par schéma-blocs.
	péc	C1-01	Proposer une démarche permettant d'évaluer les performances des systèmes asservis.
	_	C3-01	Mener une simulation numérique.

Objectif

En vue de pouvoir corriger le comportement, du système, il est nécessaire de disposer d'un modèle de connaissance du système.

Activité 1

On cherche à modéliser l'axe de ROTATION

- ☐ Prendre connaissance de la fiche 4 (Diagramme de blocs interne).
- ☐ Identifier les blocs (constituants) du schéma proposé ci-dessous. Modifier la structure si cela vous semble nécessaire.

Modéliser

Activité 2

☐ Déterminer les fonctions de transfert de chacun des blocs.

Activité 3

odélise

- ☐ En utilisant Scilab, réaliser le schéma-blocs de l'axe de rotation.
- ☐ Vérifier si les exigences 1.2.3, 1.2.4 et 1.2.5 sont vérifiées (on pourra prendre un échelon de 5° et un échelon de 90 °mm).
- Si ces exigences ne sont pas vérifiées, que faudrait-il faire pour qu'elles le soient ? (On ne demande ici que des idées, on ne demande pas de les mettre en œuvre).

Activité 4

Prendre connaissance de la fiche 3 – Mesure en BF

- ☐ Vérifier si les exigences 1.2.3, 1.2.4 et 1.2.5 sont vérifiées. On prendra soin de s'assurer que les conditions expérimentales sont identiques aux conditions de la simulation.
- ☐ Comparer les résultats et conclure.

ynthèse

Activité 5

- Pour chacun des deux échelons comparer les courbes issues de la simulation et de l'expérimentation sur le **même graphe.** Vous utiliserez la solution de votre choix pour superposer les courbes.
- Conclure.

☐ Réaliser une synthèse dans le but d'une préparation orale :

- Présenter le modèle proposé.
- Comparer les résultats de la simulation et les résultats expérimentaux.
- Conclure.

Pour XENS – CCINP – Centrale :

- Donner l'objectif des activités.
- Présenter les points clés de la modélisation.
- Présenter le protocole expérimental.
- Présenter la courbe illustrant les résultats expérimentaux et ceux de la résolution.
- Analyser les écarts.

Pour CCMP:

- Synthétiser les points précédents sur un compte rendu.
- Imprimer le graphe où les courbes sont superposées.
- Habiller les courbes.