Some Graphs

Street Maps

Maps

Food Chain

SOFTWARE ENGINEERING FLOWCHART, 2011-2012 CATALOG (124.5 credits)

32 LORGE NUMBER NUMBER

Route Map

The Internet

Polygon Meshes

"Visualizing Friendships" by Paul Butler

Representing Graphs

Adjacency Lists

Adjacency Matrices

HashMap/HashSet

Values

Time/Space

Operation	Adjacency matrix	Adjacency List	HashMap/ HashSet
Scanning neighbors of u	O(V)	O(deg(u))	O(deg(u))†
Testing if u and v are neighbors	O(1)	O(min(deg(u), deg(v)))	O(1) [†]
Space	O(V ²)	O(V+E)	O(V+E) [†]

†Under standard hashing assumptions