

Outline

- 1 Introduction
- 2 Test
 - Table test
 - Figure test
 - Equation test
 - Theorem test
 - Algorithm test
 - Slide transition test

Introduction

Test

Table test Figure test

Equation test

Theorem test

Algorithm test

Outline

- 1 Introduction
- 2 Test
 - Table test
 - Figure test
 - Equation test
 - Theorem test
 - Algorithm test
 - Slide transition test

Introduction

Test

Table test Figure test

Figure test Fauation test

Theorem test

Algorithm test

Introduction

■ **Table**: Check table 1.

Figure: Check fig. 1.

Block and Equation: Check (1-1).

■ **Theorem**: Check theorem 1.

Algorithm: Check algorithm 1.

■ Slide transition: Check Subsection 2.6.

■ And here we would like to test the references: Zeiler et al.¹, Yang et al.², Dong et al.³.

Introduction

Test

W-bit-

igure test

Equation test

Theorem tes

Algorithm test

Slide transition test

¹M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus, "Deconvolutional networks," in 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Jun. 2010, pp. 2528–2535.

²J. Yang, Z. Wang, Z. Lin, S. Cohen, and T. Huang, "Coupled dictionary training for image super-resolution," *IEEE Transactions on Image Processing*, vol. 21, no. 8, pp. 3467–3478, Aug. 2012.

³C. Dong, C. C. Loy, K. He, and X. Tang, "Image super-resolution using deep convolutional networks," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 38, no. 2, pp. 295–307, Feb. 2016.

Outline

- 1 Introduction
- 2 Test
 - Table test
 - Figure test
 - Equation test
 - Theorem test
 - Algorithm test
 - Slide transition test

Introduction

Test

Table test

Figure test

Equation test

Theorem test Algorithm test

Test Table test

■ Test table, which is shown in table 1.

Table: Parameters of Daubechies's filter.

n	h[n]	g[n]
0	0.3327	-0.0352
1	0.8069	-0.0854
2	0.4599	0.1350
3	-0.1350	0.4599
4	-0.0854	-0.8069
5	0.0352	0.3327

Introduction

Test

Table test

Figure test

Equation test

Theorem test

Algorithm test Slide transition test

Figure test

■ Test inner subgraphs, i.e. fig. 1(a) and fig. 1(b).

Figure: Test graphs.

Introduction

Test

Table test

Figure test

Equation test

Equation test

■ Test blocked equations, i.e. (1-1), (1-2).

SVM loss function

Here we show a simple example of subequations in (1-1):

$$\frac{\partial \mathcal{L}(\mathbf{w}, b)}{\partial \mathbf{w}} = \mathbf{w} + C \sum_{i} \frac{\partial \ell_{i}}{\partial \mathbf{w}}, \tag{1-1}$$

$$\frac{\partial \mathcal{L}(\mathbf{w}, b)}{\partial b} = C \sum_{i} \frac{\partial \ell_{i}}{\partial b}, \tag{1-2}$$

Introduction

Test

Table test Figure test

Fauation test

Algorithm test

Theorem test

■ Test theorems, i.e. theorem 1 and theorem 2.

Theorem (Example Theorem 1)

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus.

Theorem (Example Theorem 2)

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue.

Introduction

Test

Figure test

Theorem test

Algorithm test

Test algorithm, i.e. algorithm 1.

Algorithm 1 DWT Algorithm

Input: Sequence x in time domain

Output: Sequence $\hat{\mathbf{x}}$ in wavelet domain

- 1: $N = |\log_2(\operatorname{length}(\mathbf{x}))|$;
- 2: $\mathbf{c}_{N} = \mathbf{x}, \ \hat{\mathbf{x}} = \varnothing;$
- 3. **for** *i* from 1 to *N* **do**
- $\mathbf{c}_{N-i}, \, \mathbf{d}_{N-i} = \text{analysis_filter}(\mathbf{c}_{N-i+1});$
- insert \mathbf{d}_{N-i} at the beginning of $\hat{\mathbf{x}}$.
- 6: end for

Introduction

Test

Table test

Algorithm test

Slide transition test

■ This is transition test, let's begin:

Introduction

Test

Table test

Figure test

Theorem test Algorithm test

Slide transition test

Slide transition test

- This is transition test, let's begin:
 - This is the first item.

Introduction

Test

Table test

Figure test Equation test

Theorem test

Algorithm test

Slide transition test

- This is transition test, let's begin:
 - This is the first item.
 - This is the second item.

Introduction

Test

Table test

Figure test

Theorem test

Algorithm test

Slide transition test

10 / 10

Demo

Slide transition test

- This is transition test, let's begin:
 - This is the first item.
 - This is the second item.
 - This is the third item.

Introduction

Test

Table test

Figure test Equation test

Theorem test

Algorithm test

Slide transition test

- This is transition test, let's begin:
 - This is the first item.
 - This is the second item.
 - This is the third item.
- We will show 3 items simultaneously.

Introduction

Test

Table test

Figure test Fauation test

Theorem test

Algorithm test

Slide transition test

- This is transition test, let's begin:
 - This is the first item.
 - This is the second item.
 - This is the third item.
- We will show 3 items simultaneously.
 - This is the first item.
 - This is the second item.
 - This is the third item.

Introduction

Test

Table test

Figure tes

Theorem tes

Magrithm to

Slide transition test

- This is transition test, let's begin:
 - This is the first item.
 - This is the second item.
 - This is the third item.
- We will show 3 items simultaneously.
 - This is the first item.
 - This is the second item.
 - This is the third item.

Figure: Test graph.

Introduction

Test

Table test

Equation to

heorem test

Thank you for listening!

IT'S TIME FOR Q&A.