Classification performance – Part 2

Taehoon Ko (thoon.koh@gmail.com)

Classification performance: ROC Curve

- Receiver operating characteristics (ROC) curve
 - Sort the records based on the P(positive class) in a descending order.
 - Compute the true positive rate and false positive rate by varying the cut-off.
 - Draw a chart where x & y axes are false & true positive rate, respectively.

• 예제1: 소매점에서 고객 구매 이력 데이터를 기반으로, 이 고객이 꾸준히 방문하는 VIP 고객인지 아닌지 예측하고자 함. (Test set = 10명의 고객)

X_1	•••	X_p	Y		P(Y=1)
			1		0.97
			0		0.15
			1		0.54
			0		0.58
			0	1	0.24
			1	$\Pr(Y=1) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p)}}$	0.75
			0		0.42
			1		0.80
			1		0.45
			0		0.70

• 데이터 포인트를 P(Y = 1) 기준으로 내림차순 정렬

Y	P(Y=1)
1	0.97
0	0.15
1	0.54
0	0.58
0	0.24
1	0.75
0	0.42
1	0.80
1	0.45
0	0.70

• Cut-off value를 변화시키면서 True positive rate와 False positive rate를 계산

Classify as positive class

Classify as negative class

cut-off

Y	P(Y=1)
1	0.97
	0.77
1	0.8
1	0.75
0	0.7
0	0.58
1	0.54
1	0.45
0	0.42
0	0.24
0	0.15
1 0 0	0.45 0.42 0.24

Cut-of	f> 0 07	Predicted class	
Cut-or	1>0.97	1 (+)	0 (-)
Actual	1 (+)	0	5
class	0 (-)	0	5

- True positive rate (Sensitivity, Recall) = 0 / (0 + 5) = 0
- False positive rate (1-Specificity)
 = 0 / (0 + 5) = 0

• Cut-off value를 변화시키면서 True positive rate와 False positive rate를 계산

Y	P(Y=1)
1	0.97
1	0.8
1	0.75
0	0.7
0	0.58
1	0.54
1	0.45
0	0.42
0	0.24
0	0.15

†	classify as positive class
	- cut-off
\	Classify as negative class

0.0 < 0.1+	off<0.97	Predicted class	
0.o <gui< td=""><td>011<0.97</td><td>1 (+)</td><td>0 (-)</td></gui<>	011<0.97	1 (+)	0 (-)
Actual	1 (+)	1	4
class	0 (-)	0	5

- True positive rate (Sensitivity, Recall) = 1 / (1 + 4) = 0.2
- False positive rate (1-Specificity)
 = 0 / (0 + 5) = 0

• Cut-off value를 변화시키면서 True positive rate와 False positive rate를 계산

cut-off

P(Y=1)
0.97
0.8
0.75
0.7
0.58
0.54
0.45
0.42
0.24
0.15

0.75 <cu< th=""><th>+ off<0.0</th><th colspan="2">Predicted class</th></cu<>	+ off<0.0	Predicted class	
0.75 <cu< td=""><td>1-011<0.0</td><td>1 (+)</td><td>0 (-)</td></cu<>	1-011<0.0	1 (+)	0 (-)
Actual	1 (+)	2	3
class	0 (-)	0	5

- True positive rate (Sensitivity, Recall)
 = 2 / 5 = 0.4
- False positive rate (1-Specificity)
 = 0 / 5 = 0

• Cut-off value를 변화시키면서 True positive rate와 False positive rate를 계산

	P(Y=1)	Y
	0.97	1
	0.8	1
	0.75	1
cut-off	0.7	0
Cut-on	0.58	0
	0.54	1
	0.45	1
	0.42	0
	0.24	0
	0.15	0

0.58 <cu< th=""><th>+ off < 0.7</th><th colspan="2">Predicted class</th></cu<>	+ off < 0.7	Predicted class	
0.56 <cu< td=""><td>t-011<0.7</td><td>1 (+)</td><td>0 (-)</td></cu<>	t-011<0.7	1 (+)	0 (-)
Actual	1 (+)	3	2
class	0 (-)	1	4

- True positive rate (Sensitivity, Recall)
 = 3 / 5 = 0.6
- False positive rate (1-Specificity)
 = 1 / 5 = 0.2

• Cut-off value를 변화시키면서 True positive rate와 False positive rate를 계산

cut-off

P(Y=1)
0.97
0.8
0.75
0.7
0.58
0.54
0.45
0.42
0.24
0.15

0.45 <cut-off<0.54< th=""><th colspan="2">Predicted class</th></cut-off<0.54<>		Predicted class	
		1 (+)	0 (-)
Actual	1 (+)	4	1
class	0 (-)	2	3

- True positive rate (Sensitivity, Recall)
 = 4 / 5 = 0.8
- False positive rate (1-Specificity)
 = 2 / 5 = 0.4

• Cut-off value를 변화시키면서 True positive rate와 False positive rate를 계산

Y	P(Y=1)
1	0.97
1	0.8
1	0.75
0	0.7
0	0.58
1	0.54
1	0.45
0	0.42
0	0.24
0	0.15

Cut-off < 0.15		Predicted class	
		1 (+)	0 (-)
Actual	1 (+)	5	0
class	0 (-)	5	0

- True positive rate (Sensitivity, Recall)
 = 5 / 5 = 1
- False positive rate (1-Specificity)
 = 5 / 5 = 1

cut-off

• Cut-off value를 변화시키면서 True positive rate와 False positive rate를 계산

Y	P(Y=1)
1	0.97
1	0.8
1	0.75
0	0.7
0	0.58
1	0.54
1	0.45
0	0.42
0	0.24
0	0.15

TPR	FPR
0	0
0.2	0
0.4	0
0.6	0
0.6	0.2
0.6	0.4
0.8	0.4
1	0.4
1	0.6
1	0.8
1	1

Draw ROC curve

```
%matplotlib inline
from matplotlib import pyplot as plt

tpr = [0,0.2,0.4,0.6,0.6,0.6,0.8,1,1,1,1]
fpr = [0,0,0,0,0.2,0.4,0.4,0.4,0.6,0.8,1]

plt.plot(fpr,tpr)
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.show()
```


Classification performance: ROC Curve

Classification performance: ROC Curve

Classification performance: AUROC

- Area under ROC curve (AUROC or AUC)
 - ROC curve 아래의 면적
 - Ideal classifier: AUROC = 1
 - Random classifier: AUROC = 0.5
 - In general, 0.5 < AUROC < 1
 - AUROC가 클 수록 분류 모델의 성능이 좋음.

Asymmetric error costs

- 두 가지 형태의 error costs
 - -Positive class인 포인트들을 negative class로 잘못 분류했을 때의 cost
 - -Negative class인 포인트들을 positive class로 잘못 분류했을 때의 cost
- 일반적으로 positive class인 포인트들을 잘못 분류했을 때의 cost가 그 반대의 경우보다 크다.
 - -ex) 암 진단, 보험 사기 탐지, VIP 고객 탐지, 제품 불량 예측 등.

Profits

- 포인트들을 제대로 분류했을 때 발생하는 profit
- 일반적으로 positive class인 포인트들을 잘 분류했을 때의 profit이 그 반대의 경우보다 크다.

Example: Response to promotional offer

- Suppose we send an offer to 1000 people, with 1% average response rate ("1" = response, "0" = non-response).
- "Naïve rule": Classify everyone as "0".

Confusion Matrix		Predicted	
		1	0
Actual	1	0	10
	0	0	990

- Misclassification error = 1%
- Accuracy = 99%.

- Example: Response to promotional offer
 - Classification model

Confusion Matrix		Predicted	
		1	0
Actual	1	8	2
	0	20	970

- Misclassification error = 2.2%
- Accuracy = 97.8%

- Consider profits and costs.
 - Assign profit/cost for each cell of confusion matrix.
 - Example:
 - -\$10: net profit for the responders if the offer is sent.
 - -\$10: net cost for not sending offer for the responders.
 - -\$1: net cost for sending an offer.

Confusion Matrix		Predicted	
		1	0
Actual	1	\$9	-\$10
	0	-\$1	0

- Total profit for the naïve rule: 10*(-\$10) = -\$100
- Total profit for classification model: 8*(\$9)+2*(-\$10)+20*(-\$1) = \$32* (Best)

- Profit과 cost를 정확히 할당할 수 있는가?
 - 매우 어려운 문제.
 - -ex) 암 예측

Confu	sion	Predicted	
Mati	rix	1 0	
Actual	1	Reduce diagnosis cost / Save one's life	Increase diagnosis cost / Lose one's lfe
	0	Misdiagnosis cost	0

경제학 등 일부 분야에서는 이러한 profit과 cost를 잘 정의하여
 모델의 성능을 평가하는 경우도 있음

Class 별 cost를 다르게 주는 방법

- Class별 weight / cost를 줘서 모델링하는 경우
 - 예제: 암 환자 10명, 정상 환자 990명 → Class-imbalanced data
 - 암 환자에 대해서 더 큰 가중치를 부여하여, 모델링에 반영하는 방법

- In scikit-learn,
 - Classifier 클래스 중에 parameter로 [class_weight]라는 것이 있는 경우, 각 클래스에 다른 가중치를 주는 것이 가능

Class 별 cost를 다르게 주는 방법

Example:

http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

class_weight : dict or 'balanced', default: None

Weights associated with classes in the form {class_label: weight}. If not given, all classes are supposed to have weight one.

The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as

```
n_samples / (n_classes * np.bincount(y)).
```

Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified.

New in version 0.17: class_weight='balanced' instead of deprecated class_weight='auto'.