

Oct 20, 2020

prime-seq

Aleksandar Janjic¹, Lucas Esteban LEW Wange¹, Johannes JWB Bagnoli¹, Johanna Geuder¹, Phong Nguyen¹, Daniel Richter¹, Christoph Ziegenhain², Wolfgang Enard¹

¹Ludwig-Maximilians-Universität München; ²Karolinska Institute Stockholm

2 Works for me

dx.doi.org/10.17504/protocols.io.s9veh66

Aleksandar Janjic Ludwig-Maximilians-Universität München

ARSTRACT

prime-seq is a simple and open RNA-seq method, which can be easily established in most research labs or facilities. Based on two of the most sensitive single cell RNA-seq methods available, namely smart-seq2 and mcSCRB-seq (Picelli et al. 2013; Bagnoli et al. 2018), prime-seq is an adaptable, affordable, robust, and high-throughput option. Additionally, prime-seq can be used on a wide range of model organisms, from apes to zebrafish, and many in between.

DOI

dx.doi.org/10.17504/protocols.io.s9veh66

PROTOCOL CITATION

Aleksandar Janjic, Lucas Esteban LEW Wange, Johannes JWB Bagnoli, Johanna Geuder, Phong Nguyen, Daniel Richter, Christoph Ziegenhain, Wolfgang Enard 2020. prime-seq. **protocols.io** https://dx.doi.org/10.17504/protocols.io.s9veh66

KEYWORDS

bulk RNA sequencing, RNA-seq, transcriptomics, SCRB-seq

LICENSE

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

CREATED

Sep 05, 2018

LAST MODIFIED

Oct 20, 2020

PROTOCOL INTEGER ID

15381

GUIDELINES

- All reagents and plastic-ware can be found in the 'Materials' section.
- Use only RNase free supplies and clean all surfaces and tools with RNase Away prior to working
- Make sure all steps involving cell lysate and RNA before reverse transcription are carried out swiftly and on ice.
- All primer sequences are listed below:

Oligo	Vendor	Purification	Working	Sequence	Notes	
			Conc.			

mprotocols.io

10/20/2020

Barcoded Oligo-dT (E3V7NEXT)	Sigma	Cartridge	10 μΜ	ACACTCTTTCCCTACACGACGCTCTTCCG ATCT[12 bp BC]NNNNNNNNNNNNNNNNNNVTTTTTTTTTTTTTTTTTTT	
Template Switching Oligo (TSO) (E5V7NEXT)	Sigma	RNase-Free HPLC	100 μΜ	Biotin- ACACTCTTTCCCTACACGACGCrGrGrG	
Preamp Primer (SINGV6)	Sigma	Standard Desalting	10 μΜ	Biotin-ACACTCTTTCCCTACACGACGC	
3' enrichment primer (P5NEXTPT5)	Sigma	Standard Desalting	5 μΜ	AATGATACGGCGACCACCGAGATCTACAC TCTTTCCCTACACGACGCTCTTCCGATCT	
i7 Index Primer (N7XX)	IDT	Trugrade	5 μΜ	CAAGCAGAAGACGGCATACGAGAT[i7]GTC TCGTGGGCTCGG	
prime-seq Adapter AntiSense	IDT	Standard Desalting	1.5 μΜ	/5Phos/CTGTCTCTTATACACATCT	Duplexe d DNA
prime-seq Adapter Sense	IDT	Standard Desalting	1.5 µM	GTCTCGTGGGCTCGGAGATGTGTATAAG AGACAGT	Duplexe d DNA

Specific barcoded oligodT (E3V7NEXT) sequences:

© E3V7_Set1.txt

MATERIALS

NAME	CATALOG #	VENDOR
DNase I Reaction Buffer - 6.0 ml	B0303S	New England Biolabs
DNase I (RNase-free) - 1,000 units	M0303S	New England Biolabs
Deoxynucleotide Solution Mix - 40 umol of each	N0447L	New England Biolabs
Exonuclease I (E.coli) - 3,000 units	M0293S	New England Biolabs
Quant-it™ PicoGreen® dsDNA Assay Kit	P7589	Life Technologies
ß -mercaptoethanol	M3148	Sigma Aldrich
QuantiFluor(R) RNA System	E3310	Promega
Proteinase K solution, 20 mg ml - 1	AM2546	Ambion
5 M Sodium chloride (NaCl)	S5150-1L	Sigma Aldrich
Agilent High Sensitivity DNA Kit	5067-4626	Agilent Technologies
Buffer RLT Plus	1053393	Qiagen
Maxima H Minus Reverse Transcriptase (200 U/uL)	EP0752	Thermo Fisher Scientific
NEBNext Ultra II FS DNA Library Prep with Sample Purification Beads - 24 rxns	E6177S	New England Biolabs
EDTA	E7889	Sigma Aldrich
Ethanol absolute	9065.4	Carl Roth
lgepal	18896	Sigma Aldrich
KAPA HiFi 2x RM	KR0370	Kapa Biosystems
Poly(ethylene glycol)	89510	Sigma Aldrich
UltraPure DNase/RNase Free Distilled Water	10977-049	
Trizma hydrochloride solution	T2694	Sigma Aldrich
Aluminium seals for cold storage	391-1275	
Filter tips 96 low retention 10 uL	771265	
PCR Seals	AB0558	Thermo Scientific
twin.tec 96-well DNA LoBind Plates	0030129504	Eppendorf

NAME	CATALOG #	VENDOR
Sera-Mag Speed Beads	65152105050250	Ge Healthcare
Sodium Azide	S2002-100G	Sigma Aldrich
NEBNext Ultra II FS DNA Library Prep Kit for Illumina	E7805S	New England Biolabs

SAFETY WARNINGS

Please follow all Manufacturer safety warnings and recommendations.

DISCLAIMER:

DISCLAIMER - FOR INFORMATIONAL PURPOSES ONLY: USE AT YOUR OWN RISK

The protocol content here is for informational purposes only and does not constitute legal, medical, clinical, or safety advice, or otherwise; content added to protocols.io is not peer reviewed and may not have undergone a formal approval of any kind. Information presented in this protocol should not substitute for independent professional judgment, advice, diagnosis, or treatment. Any action you take or refrain from taking using or relying upon the information presented here is strictly at your own risk. You agree that neither the Company nor any of the authors, contributors, administrators, or anyone else associated with protocols.io, can be held responsible for your use of the information contained in or linked to this protocol or any of our Sites/Apps and Services.

ABSTRACT

prime-seq is a simple and open RNA-seq method, which can be easily established in most research labs or facilities. Based on two of the most sensitive single cell RNA-seq methods available, namely smart-seq2 and mcSCRB-seq (Picelli et al. 2013; Bagnoli et al. 2018), prime-seq is an adaptable, affordable, robust, and high-throughput option. Additionally, prime-seq can be used on a wide range of model organisms, from apes to zebrafish, and many in between.

BEFORE STARTING

Wipe bench surfaces with RNAse Away and keep working environment clean.

Prepara	tion 12m
1	Clean all surfaces and
2	Thaw frozen buffers ar
3	Prepare 80% EtOH (app
Prepare	Cleanup Beads (22% PE Prepare PEG Solution

Reagent	Amount
PEG 8000	11 g
NaCl (5M)	10 mL
Tris-HCl (1M, pH 8.0)	500 μL
EDTA (0.5M)	100 μL
IGEPAL (10% solution)	50 μL
Sodium Azide (10% solution)	250 μL

UltraPure Water	up to 49 mL
Total	49 mL

Do not add the total amount of water until after PEG is completely solubilized

5 Incubate at 8 40 °C and vortex regularly until PEG is completely dissolved

10m

1_m

6 Resuspend **Sera-Mag Speed Beads** carefully and pipette **1000 μl** of bead suspension into a 1.5 mL tube

. . .

7 Place on magnet stand and remove storage buffer

1m

8 Add **1000 μl** of **TE Buffer** (10 mM Tris-HCl, pH 8.0, 1 mM EDTA) and resuspend beads

30s

9 Place on magnet stand and remove supernatant

30s

10 Repeat wash step one more time

1m

11 Add **3900 μl TE Buffer** (10 mM Tris-HCl, pH 8.0, 1 mM EDTA) and resuspend beads

30s

12 Add the washed Sera-Mag Speed Beads to the PEG Solution (22%) and mix well

1m 30s

The final Cleanup Beads (22% PEG) can be aliquoted and stored at 8 4 °C for up to six months

Lysate vs Extracted RNA

13

prime-seq can be used on lysate or extracted RNA. It is essential, however, that the samples either have the same input or that they are normalized after the RNA is extracted, otherwise sequencing depth per sample will be impacted. Based

on your starting material, please follow one of the following cases:

10m

Step 13 includes a Step case.

Lysate (similar input)

Lysate (variable input)

Extracted RNA

Prepare Bead Binding Buffer

Lysate (similar input)

Follow this case if you are testing samples that have **similar input** (i.e. the expected RNA amount is the same between samples). The steps here will guide you in digesting residual proteins in your samples, extracting the RNA, digesting DNA, preparing RNA-seq libraries, and finally sequencing.

step case

Example: investigating the genotype effect on transcription in 5,000 neurons

14 Prepare Bead Binding Buffer (2x)

10m

Reagent	
PEG 8000	1.1 g
NaCl (5 M)	1 mL
Tris-HCl (1 M, pH 8.0)	50 μL
Igepal (10% solution)	5 μL
Sodium Azide (10% solution)	25 μL
H2O	to 5 mL
Total	5 ml

<u></u>

The Bead Binding Buffer (2x) can be stored at § Room temperature for up to six months.

Sample Collection 2m

15 Prepare Lysis Buffer according to the number of samples.

2m

Reagent	Well	Plate
RLT Plus Buffer	99 μL	10.89 mL
β-mercaptoethanol	1 μL	110 µL
Total	100 μL	11 mL

If sample volume exceeds 25 % of total lysate, use 2x TCL buffer (Qiagen, #1070498) + 1 % β -mercaptoethanol

1m

16 Add **100 μl** of **Lysis Buffer** to each well of a semi-skirted 96-well PCR plate

Citation: Aleksandar Janjic, Lucas Esteban LEW Wange, Johannes JWB Bagnoli, Johanna Geuder, Phong Nguyen, Daniel Richter, Christoph Ziegenhain, Wolfgang

Add cells or tissue to wells

Cells

Minimum: 100 cells, Optimum: 10,000 cells

Make sure that the same number of cells are used for each sample. Large differences between cells will impact distribution of sequencing reads and can potentially affect normalization.

Tissue

If samples are difficult to lyse they should be homogenized using a tissue homogenizer.

Tissue should be a relatively small and not exceed more than 1000 ng of RNA. Tissue samples should be normalized by weight and be the same type of tissue.

Large differences between tissue samples will impact distribution of sequencing reads and can potentially affect normalization.

If you are unsure if the samples will contain the same amount of RNA, it is best to switch to the "Lysate (variable)" case in Step 13.

Transfer 50 µl of lysate to a new plate, return one plate immediately to -80 C freezer to save as a backup

Conversely, one can prepare two plates during sorting with 50 µL of lysis buffer.

Add 11 µl Proteinase K (20 mg/mL) and 11 µl EDTA (25 mM) to each well

Proteinase K Digest

30m

1m

20

19

Incubate for \circlearrowleft 00:15:00 at & 50 °C and then heat inactivate the Proteinase K for \circlearrowleft 00:10:00 at & 75 °C

Bead Clean Up

mprotocols.io

10/20/2020

29	Resuspend beads in □15 μl of DNase I Mix			2m
30	Incubate DNase I Mix and beads for © 00:10:00 at § 20°	C (Room Temp)		10m
31	Heat inactivate the DNase I by adding $\[\Box 1 \] \mu I$ of EDTA (100)) mM) and incubating	for ⊙ 00:05:00 at ≬ 65°C	6m
32	Place plate on magnet stand until clear (~3 min) and discard	the supernatant.		3m
33	Wash with $ \mbox{\Large \square} 100 \mu l $ of 80% EtOH while the plate is on the	magnet. Discard the su	pernatant	2m
34	Repeat wash step once more			2m
35	Air dry beads for \bigcirc 00:05:00			5m
	Depending on temperature and humidity, the beads no check the beads and avoid over-drying.	nay dry faster. Therefor	re it is important to regularly	
	While drying, prepare Reverse Transcription Mix	(Step 36).		
Reverse	Transcription 5m			
36	Prepare Reverse Transcription Mix			5m
	Reagent	Well	Plate	
	Maxima H Minus RT	0.15 µL	16.5 μL	

2 µL

0.4 µL

 $0.1~\mu L$

220 µL

44 µL

11 µL

Maxima RT Buffer (5x)

TSO (E5V7NEXT) (100 uM)

dNTPs (25 mM)

UltraPure Water	2.35 μL	258.5 μL
Total	5 μL	550 μL

37 Add **4 μl H20**

1m

The 4 μ L of water can be combined with the Reverse Transcription Mix by increasing the water in Row 6 from 2.35 μ L to 6.35 μ L.

If working with many samples, or if using a stepper pipette or robot, we find that it is better to add some water separately to prevent the beads from drying too much.

38 Add **5** µl Reverse Transcription Mix

1m

39 Add **11 μl** of **Barcoded oligodT (E3V7NEXT) (10 μM)** per well

2m

40 Incubate for **© 01:30:00** at **§ 42 °C**

1h 30m

cDNA Pooling & Purification

cation 5m

3m

Place the plate on a magnet

10m

Pool all wells of one plate into a 2 mL tube

5m

[Pa

41

42

43

The EDTA in the **Cleanup Beads (22% PEG)** will inactivate the RT and make pooling easier due to the color.

Add 10 µl of Cleanup Beads (22% PEG) for each sample for a 1:1 ratio (e.g. 240 µL for 24 samples)

44 Incubate for **© 00:05:00** at **§ Room temperature** to allow binding of the cDNA onto beads

5m

45 Place the tube on the magnet stand until clear (~3 min) and discard supernatant

3m

m protocols.io

10/20/2020

55	Wash with □50 μl of 80% EtOH while the tube is on the magnet. Discard the supernatant		
56	Repeat wash step once more	1m	
57	Air dry beads for ③ 00:05:00	5m	
	Depending on temperature and humidity, the beads may dry faster. Therefore it is important to recheck the beads and avoid over-drying.	egularly	
58	Elute the beads in	1m	
59	Incubate for © 00:05:00 at RT and transfer to a new PCR tube or plate	5m	
Full lend	gth cDNA Amplification 1m		
60	Prepare Pre Amplification Mix	1m	
	Reagent 1x		
	KAPA HiFi 2x RM 25 μL		
	Pre-amp Primer (SINGV6) (10 uM)		
	UltraPure Water 2 µL		
	Total 30 µL		

61 Add **30 μl Pre Amplification Mix** to sample

1m

62 Incubate the Pre Amplification PCR as follows:

1h 30m

Step	Temperature	Time	Cycles
Initial Denaturation	98 C	3 min	1 cycle
Denaturation	98 C	15 sec	10 cycles*
Annealing	65 C	30 sec	
Elongation	72 C	4 min	
Final Elongation 72 C		10 min	1 cycle
Storage 4 C		∞	

69	Elute cDNA in 10 μl UltraPure Water	1m
	Depending on temperature and humidity, the beads may dry faster. Therefore it is important to regularly check the beads and avoid over-drying.	
68	Air dry beads for © 00:05:00	5m
67	Repeat wash step once more	1m
66	Wash with 100 μl of 80% EtOH while the tube is on the magnet. Discard the supernatant	1m
65	Place the tube on the magnet stand until clear (~3 min) and discard supernatant	3m
64	Incubate for © 00:05:00 at § 20 °C (Room Temp)	5m
cDNA E	Mix sample with 340 μl Clean Up Beads (22% PEG) for a ratio of 1:0.8	1m
aDNIA F	Dood Durification 1	

Citation: Aleksandar Janjic, Lucas Esteban LEW Wange, Johannes JWB Bagnoli, Johanna Geuder, Phong Nguyen, Daniel Richter, Christoph Ziegenhain, Wolfgang Enard (10/20/2020). prime-seq. https://dx.doi.org/10.17504/protocols.io.s9veh66

10/20/2020

Incubate for \bigcirc **00:05:00** at RT and transfer to a new PCR tube or plate

Stopping Point. Samples can be safely stored at & -20 °C and protocol can be continued at a later date.

cDNA Quantification and Quality Check

45m

71

Quantify the cDNA using the **Quant-iT PicoGreen dsDNA assay kit** or equivalent Qubit following the manufacturer's protocol. Use 1 μ I of clean cDNA for quantification.

72 Quality check the cDNA using the Agilent 2100 Bioanalyzer with High Sensitivity DNA Analysis Kits.

45m

10m

Passing the cDNA quality check does not guarantee that the data will be of high quality, however, if the cDNA fails the quality check it will usually not yield good libraries and will therefore generate lower quality data.

Library Preparation

73

Before starting, read the library preparation section carefully as there are a few steps that are very time sensitive.

74 Prepare Fragmentation Mix

1m

Reagent	1x
Ultra II FS Reaction Buffer	1.4 µL

protocols.io
13
10/20/2020

Ultra II FS Enzyme Mix	0.4 μL
cDNA (4-8 ng/μL)	2.5 µL
TE	1.7 µL
Total	6 μL

Ensure that the Ultra II FS Reaction Buffer is completely thawed. If a precipitate is seen in the buffer, pipette up and down several times to break it up, and quickly vortex to mix. Place on ice until use.

Vortex the Ultra II FS Enzyme Mix for 5-8 seconds prior to use for optimal performance.

75 Vortex the **Fragmentation Mix** for © **00:00:05** and immediately proceed to step 70

10s

76 Incubate the Fragmentation reaction as follows:

40m

Step	Temperature	Time
Pre-Cool	4 C	∞
Fragmentation	37 C	5 min
A Tailing and Phosphorylation	65 C	30 min
Storage	4 C	∞

Set heated lid to 75° C. Make sure the lid is at the correct temperature before you start the reaction. Skip the first incubation step once you have added your samples.

Adapter Ligation 1m

77 Prepare Adapter Ligation Mix

1m

Reagent	1x	
NEBNext Ultra II Ligation Master Mix	6 μL	-
NEBNext Ligation Enhancer	0.2 μ	μL
prime-seq Adapter (1.5 µM)	0.5 ן	μL
Total	6.7	μL

78 Add \Box 6.7 μ l Adapter Ligation Mix to each replicate

1m

ß

Depending on temperature and humidity, the beads may dry faster. Therefore it is important to regularly check the beads and avoid over-drying.

90 Elute samples in $\Box 10.5 \, \mu l \, 0.1 X \, TE$ (dilute 1X TE Buffer 1:10 in water) for $\odot 00:05:00$

5m

Library PCR 1m

91 Transfer samples to clean wells

1m

92 Add 11 µl of Index Primer (i7, 5 uM) to each well

1m

<u></u>

This is the unique index that will be used for demultiplexing libraries.

93 Prepare Library PCR Mix

1m

Reagent	1x	5x
NEBNext Ultra II Q5 Master Mix	12.5 µL	62.5 μL
P5NEXTPT5 primer (5uM stock)	1 μL	5 μL
Total	13.5 µL	67.5 μL

Although scaled down, there will not be sufficient Q5 Master Mix (M0544L) in the kit. This item will have to be ordered separately.

Instead of the universal P5NEXTPT5 primer, one can use unique i5 Indices for each sample. This is recommended if using a sequencer with patterned flow cells to account for index hopping.

94 Add **13.5 μl** of **Library PCR Mix** to each well

1m

95 Incubate the Library PCR reaction as follows:

20m

protocols.io

10/20/2020

Step	Temperature	Time	Cycles
Initial Denaturation	98 C	30 sec	1 cycle
Denaturation	98 C	10 sec	10 cycles*
Annealing/Elongation	65 C	1 min 15 sec	
Final Elongation	65 C	5 min	1 cycle
Storage	4 C	∞	

1m

Mix supernatant with $\blacksquare 10 \mu l$ SPRI select beads (ratio of 1:0.72)

Sequencing

Samples should be submitted according to your Sequencing Facility specifications. At least 8 cycles are required for the Index Read (i7) and 28 cycles for the Read 1 (BC+UMI). Read 2 (DNA) should be adjusted based on the quality of the genome being mapped to, but for human and mouse 50 cycles is sufficient.

Some potential sequencing options:

Read	Read 1	Read 2	Index Read (i7)	Index Read (i5)	Kit
HiSeq	28	114	8	0	HiSeq 3000/4000 150 cycles
NextSeq	28	56	8	0	NextSeq 500/550 HiOut v3 75 cycle
NovaSeq	28	94	8	8	NovaSeq SP v1.5 100 cycle