Applicationi lineari

Def. Dati V e W spazi vett., si indica con L(V, W) = { f: V→W | f lineare} lo spazio vett. delle app. lineari da V in W.

Teorema Fissata una base B di V, l'app. che associa una $h \in L(V, W)$ alla sua restrizione $h|_B \in W^B$ è bigettiva.

Sia B = $\{ \underline{V}_J \}_{J \in J}$ base di V e siano fissate le loro immagini. Allora $\underline{V} \in V$ sara' T.c. $f(\underline{V}) = f(\alpha_3 \underline{V}_2 + \cdots + \alpha_n \underline{V}_n) = \alpha_3 f(\underline{V}_3) + \cdots + \alpha_n f(\underline{V}_n)$, ossia tali immagini determinano univocamente l'app. lineare $f \in \mathcal{L}(V, \omega)$.

Oss Questo teorema permette pertanto di stabilire l'esistenza e l'unicità di un'app. lineare a partire dalle immagini della base dello spazio di partenza. OSS. Sia B' base di W, allora:

$$\begin{bmatrix} f(\underline{V}) \\ g' \end{bmatrix} = \begin{bmatrix} \chi_1 & f(\underline{V}_L) + \dots + \chi_L & f(\underline{V}_L) \\ f(\underline{V}_L) \end{bmatrix}_{g'} + \dots + \chi_L & f(\underline{V}_L) \end{bmatrix}_{g'} =$$

$$= \begin{bmatrix} f(\underline{V}_L) \\ g' \end{bmatrix} + \dots + \begin{bmatrix} f(\underline{V}_L) \\ g' \end{bmatrix} =$$

$$= \begin{bmatrix} f(\underline{V}_L) \\ g' \end{bmatrix} + \dots + \begin{bmatrix} f(\underline{V}_L) \\ g' \end{bmatrix} =$$

Def.
$$M_{B'}^{B}(f) = [f(v_1)]_{B'} | \cdots | [f(v_k)]_{B'}] con$$

 v_1, \dots, v_k base B.

Prop.
$$[k(\underline{v})]_{B'} = M_{B'}^{B}(k)[\underline{v}]_{B}$$

Prop.
$$M_{B1}^{B}: \mathcal{L}(V,W) \rightarrow M(\dim W, \dim V, \mathbb{K}) \in Un$$
 isomorf: smo.

(i) Innanzitutto
$$M_{B'}^{B}$$
 e' lineare, infatti:

• $M_{B'}^{B}$ ($1 + 3 = [[1 + 3)(1 - 1)]_{B'} + [[3(1 - 1)]_{B'}]_{B'}] = [[1 + 3)(1 - 1)]_{B'} + [[3(1 - 1)]_{B'}]_{B'}] = M_{B'}^{B}$ ($1 + M_{B'}^{B}$ ($1 + M_{B'}^{B}$)

•
$$M_{B'}^{B}(\alpha k) = [[(\alpha k)((U_{1}))]_{B'}|...] =$$

$$\alpha [[k((U_{1}))]_{B'}|...] =$$

$$= \alpha M_{B'}^{B}(k)$$

(ii)
$$M_{B'}^{g}$$
 e' iniettiva, infatti:
 $M_{B'}^{g}(1) = 0 \implies 1(U_{i}) = 0 \forall U_{i} \in B \implies$

→ f: U → O. Poiché Ker MBi contiene solo l'identità, MBi e' iniettiva.

(iii) MB, è surgettiva, infatti:

Sia $A \in M(\dim W, \dim V, \mathbb{K})$ e si costruisca f t.c. $f(U_{\overline{J}}) = W_{\overline{J}}$, dove $W_{\overline{J}} | [W_{\overline{J}}]_{B^1} = A^{\overline{J}}$. Allora f è app. lineare e univocamente determinata.

Poiché app. lineare bigettiva, MB, e' un isomarfismo.

Oss Me: (ha) = A, con e, e' bas: canoniche.

Corollario dim L(V,W) = dim M(dim W, dim V, K)=
= dim V. dim W.