Shift registers

Classification of Registers:

Combinations of Data Transfer Methods

o SISO: Serial In, Serial Out

Combinations of Data Transfer Methods

o PISO: Parallel In, Serial Out

o PIPO: Parallel In, Parallel Out

Shift Register

Sr. No.	Mode	Illustrative Diagram	Comments
1,	SISO (Shift Right)	I/P FF3 FF2 FF1 FF0 O/P	Data bits shift from Left to Right by 1 position per clock cycle.
2.	SISO (Shift Left)	O/P FF3 FF2 FF1 FF0 I/P	Data bits shift from Right to Left by 1 position per clock cycle.
3.	SIPO	I/P FF3 FF2 FF1 FF0 O/P	All o/p bits are made aval. simult. after 4-clcok pulse
4.	PISO	$ \downarrow I/P \downarrow \downarrow $ FF3 FF2 FF1 FF0 \longrightarrow O/P	All i/p bits are applied simult and. After 4-clk pulse the required o/p is available serially.

 Before application of clock let assume all outputs are zero and apply MSB bit of the number to entered to Din. So Din = Do = 1.

 Apply the clock. On the first falling edge of clock, the FF-0 is SET and the stored data in the register is

- Apply the NEXT bit to Din . So if Din =1.
- As soon as the next positive edge of the clock hits. FF- 1 will SET and the stored data changes to,

- Apply the NEXT bit to Din . So if Din =1.
- As soon as the next positive edge of the clock hits. FF- 2will SET and the stored data changes to,

- Apply the NEXT bit to Din . So if Din =1.
- As soon as the next positive edge of the clock hits. FF- 3will SET and the stored data changes to,

Summary of shift left operation

CLK	Q ₃	Q2=D3	Q1=D2	Qo=D1	Serial input Din = Do
	0	0	0	0	
1	0	0	0	1 ←	1
1	0	0	1	1 ←	1
1	0	1	1	1 ←	1
1	1	1	1	1 🗲	— 1

Serial input Parallel Output (SIPO)

- In this operation the data is entered serially and taken out in parallel.
- That means first the data is loaded bit by bit. The output are disabled as the loading is taking place.
- Number of clock cycles required to load a four bits data is 4. Hence the speed of operation of SIPO mode is same as that of SISO mode.

Parallel input Parallel Output (PIPO)

- In this operation the data are entered parallel.
- The 4-bit binary input Bo, B1, B2, B3 is applied to data inputs Do, D1, D2 and D3
 respectively of the four flip-flops.
- As soon as a positive clock edge is applied, the input binary bits will be loaded into the flip-flops simultaneously.
- The loaded bits will appear simultaneously to the output side. ONLY ONE CLOCK IS ESSENTIAL TO LOAD ALL THE BITS.

Parallel input Serial Output (PISO)

- In this operation the data are entered parallel.
- Output of pervious FF is connected to the input of the next via a combinational circuit.
- The binary input data Bo, B1, B2, B3 is applied through the same the combinational circuit.
- There are two modes in which this circuit can work namely shift mode or load mode.

4 bit bidirectional shift registers

4-bits Universal Shift Register

Mode C Sı	ontrol So	Register Operation
0	0	No change
0	1	Shift Right
1	0	Shift Left
1	1	Parallel load

Applications of shift Register

- For Temporary data storage.
- For multiplication and division
- As a delay line
- Ring Counter
- Parallel to serial converter