Illustrazione del modello

Si consideri il seguente sistema non lineare che descrive (al solito, in modo approssimato) i fenomeni metabolici che regolano la dinamica glucosio-insulina in un paziente diabetico. La derivazione del modello è illustrata nella Sezione 3.8.2 del libro di testo.

$$\begin{cases} \dot{x}(t) = \begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \\ \dot{x}_3(t) \end{bmatrix} = f(x(t), u(t)) = \begin{bmatrix} -k_a x_1(t) + u(t) \\ k_a x_1(t) - k_d x_2(t) \\ e - [k_{c0} + k_{ci} x_2(t)] x_3(t) \end{bmatrix} \\ y(t) = \frac{x_3(t)}{V} \end{cases}$$

In questo sistema:

- 1. L'ingresso u(t) è la dose di insulina iniettata sottocute per unità di tempo.
- 2. L'uscita y(t) è la concentrazione di glucosio ossia il rapporto fra la quantità di glucosio presente e il volume V del compartimento. Questo rapporto viene poi misurato nel plasma che è facilmente accessibile (il compartimento del glucosio è più ampio del solo plasma).

Di seguito si riportano i valori dei parametri ottenuti sperimentalmente su un gruppo di pazienti.

```
k_a = 0.05 \text{ min}^{-1}

k_d = 0.11 \text{ min}^{-1}

k_{c0} = 0.0219 \text{ min}^{-1}

k_{ci} = 8 \cdot 10^{-6} (\mu \text{UI/kg})^{-1} \cdot \text{min}^{-1}

e = 3.015 (\text{mg/kg}) \cdot \text{min}^{-1}

V = 1.62 \text{ dL/kg}
```

Attenzione:

- 1. Il tempo è misurato in minuti.
- 2. UI sono le "unità internazionali": si tratta dell'unità di misura della massa di insulina. Naturalmente, μ UI (micro UI) sono 10^{-6} UI.
- 3. I tre parametri k_{ci} , e e V sono normalizzati rispetto al peso in kg del paziente. Questo comporta che il modello non dipenda da peso del paziente: possiamo pensare che il modello descriva ciascun kg del paziente. Per esempio, la produzione endogena effettiva in un paziente di 80 kg è pari a $80 \cdot 3.015 = 241.2$ mg·min⁻¹. Naturalmente questo comporta che anche l'ingresso u(t) sia normalizzato rispetto al peso del paziente. In particolare, u(t) è misurato in $(\mu UI/kg)$ min⁻¹. È chiaro che i parametri effettivi dovranno poi essere calcolati in base al peso del paziente.

Problema

- A. Si consideri il modello con i parametri (normalizzati rispetto al peso del paziente) assegnati. Con tali parametri:
- A1. Si calcolino i punti di equilibrio corrispondenti a uscita di equilibrio $\bar{y} = 80 \text{ mg/dL}$ (indipendente dal peso del paziente) e si verifichi che in effetti il punto di equilibrio corrispondente a tale valore dell'uscita di equilibrio è unico.
- A2. Fissato il punto di equilibrio appena determinato:
- si linearizzi il sistema attorno al punto equilibrio;
- si discuta stabilità semplice e asintotica del sistema lineare ottenuto e del punto di equilibrio considerato;
- si calcoli la funzione di trasferimento del sistema linearizzato;
- si discuta la BIBO stabilità del sistema linearizzato.
- B. Si consideri ora un paziente di 80 kg.
- B1. Si dica come cambia il modello linearizzato attorno al punto di equilibrio corrispondente a uscita di equilibrio $\bar{y} = 80 \text{ mg/dL}$. Si calcoli la corrispondente funzione di trasferimento.
- B2. Si supponga che il paziente si trovi nel punto di equilibrio considerato e, al tempo $t_0 = 0$, si aumenti del 10% la portata di insulina in ingresso. Si calcoli l'evoluzione della glicemia y(t) del paziente prevista dal modello linearizzato nel corso delle 5 ore successive all'istante t_0 e se ne tracci il grafico. NB. L'evoluzione può essere calcolata sia analiticamente sia simulando il sistema (entrambe le soluzioni vanno bene).

Formato della soluzione

Nella prima pagina del documento consegnato si riportino solo i risultati numerici e i grafici richiesti, come nel seguente *template*:

A1. Il punto di equilibrio di Σ corrispondente a uscita di equilibrio $\bar{y} = 80$ è: ...

A2.

- le equazioni del sistema linearizzato attorno al p. di eq. sono:...
- il p. di eq. è/non è stabile ed è/non è asintoticamente stabile.
- la funzione di trasferimento del sistema linearizzato attorno al p. di eq. è....
- il sistema linearizzato attorno al p. di eq. è/non è BIBO stabile.
- **B1.** Per un paziente di 80 kg il modello linearizzato attorno al punto di equilibrio corrispondente a uscita di equilibrio $\bar{y} = 80 \text{ mg/dL}$ è La corrispondente funzione di trasferimento è
- **B2.** L'evoluzione della glicemia del paziente di 80 kg prevista dal modello linearizzato nel corso delle 5 ore successive all'istante $t_0 = 0$ è $y(t) = \dots$. Il relativo grafico è: (riportare il grafico).

Nelle pagine successive si riportino i ragionamenti e i passaggi fatti per rispondere alle domande.

Approfondimento

Questa parte dell'esercizio è del tutto facoltativa, serve solo a chi si è appassionato dell'argomento e desidera cimentarsi con un problema più complesso. La sua eventuale soluzione non comporta punteggio supplementare.

Si consideri sempre il caso di un paziente di 80 kg e il relativo modello non lineare. Come nella domanda B2, si supponga che il paziente si trovi nel punto di equilibrio a uscita di equilibrio $\bar{y} = 80 \text{ mg/dL}$ e, al tempo $t_0 = 0$, si aumenti del 10% la portata di insulina in ingresso. Si calcoli (simulando con Matlab o altro software) l'evoluzione della glicemia y(t) del paziente prevista dal modello non lineare nel corso delle 5 ore successive all'istante t_0 e se ne tracci il grafico confrontandolo con il grafico corrispondete ottenuto con il modello linearizzato nel punto B2 precedente. Si dica cosa si può concludere dal confronto dei due grafici.