5. Content Distribution Networks and Peer-to-Peer Networks

2018 Spring

Yusung Kim yskim525@skku.edu

Simple View for the Web Access

- Over 1.5 billion monthly active users
- Over 1 billion hours of video are watched every day
- 400 hours of video are uploaded every minute
- 80% of YouTube traffic comes from outside the US
- Accessed from 89 countries

facebook.

- Over 2.01 billion monthly active users
- Photo uploads 350 million per day
- 83% of active users outside US & Canada
- 100 million hours of daily video views
- 65 million businesses have Facebook pages.
- Every 60 seconds, **3 million** items are shared.

NETFLIX

- Over 100 million monthly active users
- 50% of active users outside the US
- 1 billion hours of video users watch per week
- Accessed from 190 countries
- 35% of traffic on North American fixed networks.

How to deliver a large amount of content to hundreds of thousands global users?

Option1: single, large "mega-server"

- Single point of failure
- Single point of network congestion
- Long path to distant clients
- Multiple copies of video sent over outgoing link

....quite simply *not scale*

Option2: Install local proxy

- Install a local proxy in every institution
- Scalable; mitigating single point of failure.
- Who pays to install it ?
 - University? Home?, Institution?
 - KT, SKT, AT&T ?
- Difficult to estimate the proxy capacity to install
- Difficult to maintain the proxy service

....quite *not practical*

Option3: Content Delivery Networks

- Store multiple copies of content at multiple geographically distributed sites.
- Type1: CDN servers deep into many access networks
 - used by Akamai, 1700 locations
- Type2: smaller number of larger clusters in Tier-1 ISPs
 - used by Limelight, 10's locations
- commercial CDNs
 - Akamai, Limelight, Amazon, Azure, Level3, ... etc.

Content Delivery Networks

- CDN is a large distributed system of servers deployed in multiple locations.
- Provide content to end-users with high availability and high performance
 - web objects (text, image, scripts)
 - files (media, software, documents)
 - media streaming (live, on-demand)
 - applications (e-commerce)

Content Delivery Networks

- Content providers pay CDN operators
- CDN pays ISPs and network operators for hosting servers
- Better user experience
- Offloading the load of content providers
- CDNs operated by content providers; Google/Microsoft
- Telecommunications CDN (Telco CDN)

CDN: "simple" content access scenario

- Bob (client) requests video http:// NewTube.com/6Y7B23V
- Video is also stored in CDN at http://KingCDN.com/NetC6y&B23V

CDN: "simple" content access scenario

- Bob (client) requests video http://NewTube.com/6Y7B23V
- Video is also stored in CDN at http://KingCDN.com/NetC6y&B23V

CDN server/cluster selection strategy

Challenge:

How does CDN DNS select "good" CDN node to stream to client?

- Pick CDN node geographically closest to client
- Pick CDN node with shortest delay to client (CDN nodes periodically ping access ISPs, reporting results to CDN DNS)

Alternative:

let client decide (give client a list of several CDN servers)

Client pings servers, picks "best" (Netflix approach)

Case study: Netflix

- 35% of downstream traffic in North America in 2016.
- Owns very little infrastructure, uses 3rd party services:
 - using Amazon cloud services
 - Netflix uploads content to Amazon cloud
 - create multiple versions (different encodings) in cloud
 - upload the versions from cloud to CDNs
 - cloud hosts Netflix web pages for user browsing
 - using three CDNs: Akamai, Limelight, Level-3

Case study: Netflix

Option4: Peer-to-Peer Networks

- P2P system is a distributed application architecture without a central server
- Peers are equally privileged.
 - both client and server
- Peers share their resources
 - processing power, disk storage, or bandwidth
- Overlay construction

P2P Networks: Overlay Networks

- Overlay Network
 - Building a network at the application layer

Pure P2P architecture

- no always-on server
- arbitrary end systems directly communicate
- peers are intermittently connected and change IP addresses
- Why P2P applications became popular in mid-2000?
 - High speed Internet connections
 - High performance of end-users
- More peers, P2P systems have greater power

What is the benefit of P2P?

Scalability

- Peers who consume resources also donate their resources
- Aggregate resources grow naturally with increasing the number of peers

Reliability

- Replicas
- Geographic distribution
- No single point of failure

Low cost

- Nodes self organize
- No need to deploy servers to satisfy demand
- Built-in fault tolerance, replication, and load balancing

Intuition

Client-server vs. P2P: example

- First generation P2P for mp3 sharing
- NOT a pure P2P network => hybrid system
- Operations:
 - All clients send MP3 info they hold to a server
 - One client sends a query to the server,
 the server responds to the client with a list of clients
 - The client downloads directly from other client(s)

5 4

- Further services:
 - Chat program, instant messaging service...
- Query is fast, but centralized system
 - Single point of failure => limited fault tolerance
 - Legal issues

Gnutella

- Pure peer-to-peer (decentralized)
- Very simple protocol
- No routing "intelligence"
- Constrained broadcast
 - Life-time of packets limited by TTL (typically set to 7)
 - Packets have unique IDs to detect loops

Gnutella - PING/PONG

Query/Response analogous

Gnutella

- Share any type of files (not just music)
- First ask my neighbors, they ask their neighbors
- Peers with matching files reply to you
- Decentralized search
- No single point of failure
- Flooding may be not scalable

Structured P2P

- The second generation of P2P networks
 - Self-organizing
 - Fault-tolerant
 - Load balanced
- Guarantee small number of hops to answer query
 - Major difference with unstructured P2P systems
- Based on a distributed hash table (DHT)

Distributed Hash Table (DHT)

- DHT is a distributed P2P database
 - Database has (key, value) pairs;e.g. key: hash(file name); value: a node (IP address)
 - Distribute (key, value) pairs over peers
- A peer queries DHT with key, then DHT returns values that match the key
- Core operation: find a node responsible for a key

How to distribute (key, value) to peers

- Basic idea in Chord [MIT 2011]
 - Assign each key to peer by Hash(peer IP address)
 - Get a key for a file by Hash (a file name)
 - Key is ranging [0, 2^m 1]
 - Put a file in the peer that is closest to the key.

Assign keys to peers

- Assign key to the peer that has the closest ID.
- closest means the *immediate successor* of the key.

```
e.g., m=4; peers: 1, 3, 4, 5, 8, 10, 12, 14;
```

- For key 6, successor peer is 8
- For key 15, successor peer is 1

Where to upload a file

How to lookup peer for a key?

 Assume: Each peer only aware of immediate successor.

If Key of A file is 14, how to find the closest?

How to lookup peer for a key?

How to lookup peer for a key?

- If each peer knows one successor IP address?
 - # queries sent is O(N) where N is the number of peers in this P2P networks.
 - maintenance cost : O(1)

- If each peer knows all peers' IP address?
 - # queries sent is only one
 - maintenance cost : O(N)

A trade-off between lookup-time and maintenance-cost

Chord Finger Table [MIT 2011]

- Finger Table size is O(log N)
- ith finger points to the closest of 2ⁱ⁻¹

Chord Lookup [MIT 2011]

- Lookup the furthest node that precedes key
- Query reaches target in O(log N) hops

Other P2P Issues: Free riding

- P2P File sharing rely on users sharing data
- Free riding is that a peer uses P2P network services but doesn't contribute to the network.
- On Gnutella
 - 15% of users contribute 94% of content
 - 63% of users never responded to a query
- How to encourage peers to keep contributing?

Other P2P Issues: Network Locality

- Neighbor peers can be far in the physical networks.
- Peer3 may receive content from Peer1 via Peer2.
- How to construct P2P networks or provide routing topologically-aware?

BitTorrent

BitTorrent: P2P file distribution

- File divided into 256 Kbyte chunks
- Peers in torrent send/receive file chunks

BitTorrent Overview

BitTorrent: requesting, sending file chunks

Requesting chunks:

- At any given time,
 different peers may have different subsets of file chunks
- Periodically,
 Alice asks each peer for list of chunks that they have
- Alice requests missing chunks from peers, rarest first

BitTorrent: requesting, sending file chunks

Sending chunks: tit-for-tat

- Alice sends chunks to top four peers currently sending her chunks at highest rate
 - other peers are choked by Alice (do not receive chunks from her)
 - re-evaluate top four peers every 10 seconds
- Every 30 secs: randomly select another peer, starts sending chunks
 - "optimistically unchoke" this peer (Bob)
 - Alice may became one of top four peers of Bob

higher upload rate: find better trading partners, get file faster!

Peak Traffic in 2011

Table 6 - Europe, Fixed Access, Peak Period, Top Applications by Bytes

	Upstream		Downstream		Aggregate	
Rank	Application	Share	Application	Share	Application	Share
1	BitTorrent	59.68%	BitTorrent	21.63%	BitTorrent	28.40%
2	Skype	7.16%	HTTP	20.47%	HTTP	18.08%
3	HTTP	7.02%	YouTube	14.13%	YouTube	11.93%
4	PPStream	3.64%	RTMP	4.58%	RTMP	3.90%
5	Spotify	2.91%	Flash Video	3.99%	Flash Video	3.38%
6	SSL	2.66%	iTunes	3.65%	SSL	3.09%
7	eDonkey	1.76%	SSL	3.18%	iTunes	3.07%
8	YouTube	1.76%	NNTP	2.73%	Skype	2.44%
9	Facebook	1.42%	Facebook	1.71%	NNTP	2.30%
10	Teredo	1.18%	Skype	1.42%	PPStream	1.77%
	Top 10	89.19%	Top 10	77.49%	Top 10	78.36%

SOURCE: SANDVINE NETWORK DEMOGRAPHICS

Peak Traffic in Europe, 2016

	Upstream		Downstream		Aggregate	
Rank	Application	Share	Application	Share	Application	Share
1	BitTorrent	21.08%	YouTube	24.44%	YouTube	21.16%
2	HTTP	12.53%	HTTP	15.39%	HTTP	14.94%
3	YouTube	7.51%	Facebook	7.56%	BitTorrent	8.44%
4	SSL - OTHER	7.43%	BitTorrent	6.07%	Facebook	7.39%
5	Facebook	6.49%	SSL - OTHER	5.51%	SSL - OTHER	5.81%
6	Skype	4.78%	Netflix	4.82%	Netflix	4.18%
7	eDonkey	3.67%	MPEG - OTHER	3.82%	MPEG - OTHER	3.51%
8	MPEG - OTHER	1.89%	iTunes	2.24%	iTunes	2.03%
9	Apple iMessage	1.70%	Flash Video	1.85%	Skype	1.78%
10	Dropbox	1.44%	Twitch	1.65%	Flash Video	1.599
		68.54%		73.35%		70.849

Table 1 - Top 10 Peak Period Applications - Europe, Fixed Access

Peak Traffic in Asia, 2016

	Upstream		Downstream		Aggregate	
Rank	Application	Share	Application	Share	Application	Share
1	BitTorrent	48.22%	YouTube	29.31%	BitTorrent	24.95%
2	QVoD	8.89%	BitTorrent	19.20%	YouTube	24.64%
3	Thunder	3.91%	HTTP	9.65%	HTTP	8.39%
4	HTTP	3.29%	Facebook	3.65%	Facebook	3.27%
5	Skype	2.10%	MPEG - OTHER	3.11%	Thunder	2.32%
6	Facebook	1.71%	Thunder	1.93%	QVoD	2.31%
7	SSL - OTHER	1.21%	SSL - OTHER	1.66%	SSL - OTHER	1.57%
8	PPStream	0.81%	Flash Video	1.21%	iTunes	1.26%
9	Dropbox	0.70%	Valve's Steam Service	1.16%	Skype	1.12%
10	Apple iMessage	0.57%	Dailymotion	0.88%	Flash Video	1.09%
		71.41%		71.76%		70.92%

Table 3 - Top 10 Peak Period Applications - Asia-Pacific, Fixed Access

Peak Traffic in North America, 2016

Upstream		Downstream		Aggregate	
BitTorrent	18.37%	Netflix	35.15%	Netflix	32.72%
YouTube	13.13%	YouTube	17.53%	YouTube	17.31%
Netflix	10.33%	Amazon Video	4.26%	HTTP - OTHER	4.14%
SSL - OTHER	8.55%	HTTP - OTHER	4.19%	Amazon Video	3.96%
Google Cloud	6.98%	iTunes	2.91%	SSL - OTHER	3.12%
iCloud	5.98%	Hulu	2.68%	BitTorrent	2.85%
HTTP - OTHER	3.70%	SSL - OTHER	2.53%	iTunes	2.67%
Facebook	3.04%	Xbox One Games Download	2.18%	Hulu	2.47%
FaceTime	2.50%	Facebook	1.89%	Xbox One Games Download	2.15%
Skype	1.75%	BitTorrent	1.73%	Facebook	2.01%
	69.32%		74.33%		72.72%

Table 1 - Top 10 Peak Period Applications - North America, Fixed Access

Different Usages of BitTorrent

- BitTorrent is very good to distribute content
 - Start to be used by several big companies
- Twitter is using Murder to update Twitter servers

Murder Performance

- Bitcoin is a worldwide cryptocurrency and the first decentralized digital payment system.
- The system is peer-to-peer, and transactions take place between users directly.
- These transactions are verified by peers and recorded in a public distributed ledger called a blockchain.
- There are 3 to 6 million unique users in 2017.

How a Blockchain Works

Blockchain Startup Landscape

