Experiment No. 6

Environment: Microsoft Windows **Tools/ Language:** Oracle/SQL

Objective: To implement concept of various functions in SQL.

Theory & Concepts:

Oracle functions:

Functions make the basic query block more powerful and are used to manipulate data values. Functions accept one or more arguments and return one value. An argument is a user supplied constant, variable or column reference, which can be passed to a function in the following format:

function _name (argument1, argument2 ..)

Functions can be used to

- > Perform calculations on data
- ➤ Modify individual data item
- > Manipulate output for group of rows
- ➤ Alter date formats for display
- > Convert column data types

Single Row Functions:

- Act on each row returned in a query
- > Return one result per row
- > Expect one or more user arguments
- > May be nested

Single row functions can be of following types:

Character functions, Number Functions, Date functions and conversion functions.

ORACLE TABLE

DUAL: Dual table is owned by SYS. SYS owns the data dictionary; in DUAL is a part of data dictionary. Dual is a small Oracle worktable which consists of only one row and one column and contains the value *x* in that column. Besides arithmetic calculations, it also supports date retrieval and its formatting.

DUMMY Select * from DUAL		VARCHAR2(1)	
DESC DUAL; Name	Null?	Туре	
Select 4/2 from DUAL;			
Select 3.14*3*3 from DT 28.26	JAL;		

```
D
```

X

(a) **Character Functions:** accept character data as input and can return both character and number values.

LOWER (col/value)

UPPER (col/value)

INITCAP (col/value)

SUBSTR (col/value, position, n)

INSTR (col/value, 'string')

ASCII (character)

CHR (number)

(b) Number Functions:

ROUND (col/val, n)

TRUNC (col/val, n)

CEIL (col/val)

FLOOR (col/val)

POWER (col/val, n)

SQRT (col/val)

EXP (n)

ABS (col/val)

MOD (value1, value2)

(c) **Date Functions:** Date functions are used to manipulate and extract values from the date column of a table.

SYSDATE

ADD_MONTHS (date, count)

LAST_DAY (date)

MONTHS_BETWEEN (date2, date1)

NEXT_DAY (date, 'day')

(d) **Conversion Functions:** Converts one data type into another.

TO_CHAR (input, format): Converts date or number into character string.

TO_DATE (date, format): Converts any date format to default format (dd-mon-yy).

TO_NUMBER (col/value): Converts a string into a number.

ORACLE FUNCTION EXAMPLES

NUMERIC FUNCTIONS

_	_	_		
1	- D	1 N		JD
			יונו	N I J

Round(n, m) return rounded to m places to the right of a decimal point. If m is omitted then n is rounded to 0 places.

```
Select ROUND(15.81,1), round(158.158), round(158.158,-2) from
DUAL
```

```
ROUND(15.81,1)
15.8
```

2. ABSOLUTE: This function return absolute value of numbers

Select ABS(-15) from DUAL

```
ABS(-15)
15
```

3. POWER: Return m raise to n where n must be an integer.

```
Select POWER(7,3) from DUAL
     POWER(7,3)
     -----
     343
```

4. SQUARE ROOT: Return the square root of *n*. If n<0 then NULL.

```
Select SQRT(25) from DUAL
          SQRT(25)
                5
```

```
select ROUND(sqrt(15),2) from DUAL
     ROUND(SQRT(15),2)
```

3.87

5.	EXP	ON	FN	TTI	AT.
J.		\mathbf{v}_{1}			L.

5. EXPONENTIAL
Select EXP(5) from DUAL
EXP(5)
148.413159
6. EXTRACT: Returns a value extracted from a date or an interval. A date can be used
only to extract year month or day while a time span with the time zone use to extract
hours and minutes.
Select extract(month from sysdate)
from DUAL
EXTRACT(MONTHFROMSYSDATE)
2
7 MOD. Determ the constitution of first around a divided by
7. MOD: Return the remainder of first number divided by second number passed as a parameter
Select MOD(15,7) from DUAL
MOD(15,7)
1
8. TRUNCATE: Returns a truncated number to a certain number of decimal places
TRUNC(number, decimal places)
Select TRUNC(125.815,1) from dual
TRUNC(125.815,1)
125.8
0 1 + mp. m. (105 015 0) 5 1 1
Select TRUNC(125.815,-2) from dual
TRUNC(125.815,-2)
100
100
9. FLOOR: Returns the largest value that is equal to or less than the number.
Select floor(24.92), floor(3.1) from dual
FLOOR(24.92) FLOOR(3.1)
24 3
24 3
10. CEILING: Return the largest value that is equal to or greater than the number.
Select ceil(24.92), ceil(3.1) from dual
CEIL(24.92) CEIL(3.1)
25 4

STRING FUNCTIONS:

1. Lower: Returns char, with letters in lower case.

Select LOWER('RAJeEv') from dual LOWER(-----Rajeev **2. UPPER:** Return char with letters in UPPER case Select LOWER('rAJeEv') from dual LOWER(**RAJEEV** 3. SUBSTRING: SUBSTR(string, start_pos, length) Select SUBSTR('Prateek', 4, 3) from dual **SUB** --tee Select SUBSTR('Prateek', 4) from dual SUB --teek **4. INSTR:** Returns the location of substring in the string INSTR(string, string2, start_position, n^{th} appearance) Select instr('Rahul Pradhan', 'a', 2, 3) from dual INSTR('RAHULPRADHAN','A',2,3) Select instr('Rahul Pradhan', 'a', 2) as INSTR from dual **INSTR** -----String: HTC launch a new phone on net Select instr('HTC launch a new phone on net', 't') from dual

INSTR('HTCLAUNCHANEWPHONEONNET','T')

5. TRANSLATE

Select translate('HTC launch a new phone on net', 'net', 'web')as Translate from dual

TRANSLATE

HTC lauwch a wew phowe ow web

6. LENGTH

Select length ('Pratyush Mehrotra') as Length from dual

LENGTH

17

7. TO_CHAR(n,fmt): Converts a number to a character

Select to char(17475,'\$099,999') as FMT from dual

FMT

\$017,475

Select TO CHAR(sysdate, 'Month DD, YYYY') from dual

TO_CHAR(SYSDATE,'M

February 17, 2014

Select TO CHAR(date '2014-02-20', 'DD/MM/YYYY') from dual;

TO_CHAR(DA

20/02/2014

8. TO_DATE:

Select to date('23/02/1988', 'DD/MM/YYYY') from DUAL

TO DATE('

23-FEB-88

9. ADD MONTHS:

Select add months(sysdate, 4) from dual

ADD_MONTH

17-JUN-14

Select add months (date '1994-09-20', 4) from dual

ADD_MONTH

20-JAN-95

10. LAST_DAY

Select sysdate, last day(sysdate) from dual

SYSDATE LAST_DAY(

17-FEB-14 28-FEB-14

S

11. NEXT_DAY

Select sysdate, next_day(Sysdate, 'Monday') from dual

SYSDATE NEXT_DAY(

17-FEB-14 24-FEB-14

Select sysdate, next_day(date '2014-09-20', 'sunday') from dual

SYSDATE NEXT_DAY(

20-FEB-14 21-SEP-14

Practical Assignment - 6

Department: Computer Engineering & Applications

Course: B.Tech. (CSE)

Subject: Database Management System Lab (CSE3083)

Year: 2nd Semester: 3rd

SQL Script for this Experiment

```
BEGIN
FOR cur_rec IN (SELECT object_name, object_type
          FROM user_objects
         WHERE object_type IN
              ('TABLE',
               'VIEW',
               'PACKAGE',
               'PROCEDURE',
               'FUNCTION',
               'SEQUENCE'
              ))
LOOP
  BEGIN
    IF cur_rec.object_type = 'TABLE'
     EXECUTE IMMEDIATE 'DROP'
               || cur_rec.object_type
               ||'""
               || cur_rec.object_name
               || '" CASCADE CONSTRAINTS';
    ELSE
     EXECUTE IMMEDIATE 'DROP'
               || cur_rec.object_type
               || cur_rec.object_name
    END IF;
  EXCEPTION
    WHEN OTHERS
     DBMS_OUTPUT.put_line ( 'FAILED: DROP'
                 || cur_rec.object_type
                 ||'"
                 || cur_rec.object_name
                || ''''
                );
  END;
END LOOP;
END;
commit;
```

```
drop table College;
drop table
            Student;
drop table Apply;
create table College (cName varchar2 (10) primary key, state
varchar2(10), enrollment int);
create table Student(sID int primary key, sName varchar2(10), GPA
real, sizeHS int);
create table Apply(sID int, cName varchar2(10), major varchar2(20),
decision char(1), primary key(sID, major, cName), constraint sID fk
Foreign key(sID) references Student, constraint cName fk Foreign
key(cName) references College);
delete from Student;
delete from College;
delete from Apply;
insert into Student values (123, 'Amy', 3.9, 1000);
insert into Student values (234, 'Bob', 3.6, 1500);
insert into Student values (345, 'Craig', 3.5, 500);
insert into Student values (456, 'Doris', 3.9, 1000);
insert into Student values (567, 'Edward', 2.9, 2000);
insert into Student values (678, 'Fay', 3.8, 200);
insert into Student values (789, 'Gary', 3.4, 800);
insert into Student values (987, 'Helen', 3.7, 800);
insert into Student values (876, 'Irene', 3.9, 400);
insert into Student values (765, 'Jay', 2.9, 1500);
insert into Student values (654, 'Amy', 3.9, 1000);
insert into Student values (543, 'Craig', 3.4, 2000);
insert into College values ('Stanford', 'CA', 15000);
insert into College values ('Berkeley', 'CA', 36000);
insert into College values ('MIT', 'MA', 10000);
insert into College values ('Cornell', 'NY', 21000);
insert into College values ('Harvard', 'MA', 50040);
insert into Apply values (123, 'Stanford', 'CS', 'Y');
insert into Apply values (123, 'Stanford', 'EE', 'N');
insert into Apply values (123, 'Berkeley', 'CS', 'Y');
insert into Apply values (123, 'Cornell', 'EE', 'Y');
insert into Apply values (234, 'Berkeley', 'biology', 'N');
insert into Apply values (345, 'MIT', 'bioengineering', 'Y');
insert into Apply values (345, 'Cornell', 'bioengineering', 'N');
insert into Apply values (345, 'Cornell', 'CS', 'Y');
insert into Apply values (345, 'Cornell', 'EE', 'N');
insert into Apply values (678, 'Stanford', 'history', 'Y');
insert into Apply values (987, 'Stanford', 'CS', 'Y');
insert into Apply values (987, 'Berkeley', 'CS', 'Y');
insert into Apply values (876, 'Stanford', 'CS', 'N');
insert into Apply values (876, 'MIT', 'biology', 'Y');
insert into Apply values (876, 'MIT', 'marine biology', 'N');
insert into Apply values (765, 'Stanford', 'history', 'Y');
insert into Apply values (765, 'Cornell', 'history', 'N');
insert into Apply values (765, 'Cornell', 'psychology', 'Y');
insert into Apply values (543, 'MIT', 'CS', 'N');
commit;
```

Student

~1					
sID	sName	GPA	sizeHS	DoB	
123	Amy	3.9	1000	26-JUN-96	
234	Bob	3.6	1500	7-Apr-95	
345	Craig	3.5	500	4-Feb-95	
456	Doris	3.9	1000	24-Jul-97	
567	Edward	2.9	2000	21-Dec-96	
678	Fay	3.8	200	27-Aug-96	
789	Gary	3.4	800	8-Oct-96	
987	Helen	3.7	800	27-Mar-97	
876	Irene	3.9	400	7-Mar-96	
765	Jay	2.9	1500	8-Aug-98	
654	Amy	3.9	1000	26-May-96	
543	Craig	3.4	2000	27-Aug-98	

Apply

sID	cName	major	decision
123	Stanford	CS	Y
123	Stanford	EE	N
123	Berkeley	CS	Y
123	Cornell	EE	Υ
234	Berkeley	biology	N
345	MIT	bioengineering	Y
345	Cornell	bioengineering	N
345	Cornell	CS	Y
345	Cornell	EE	N
678	Stanford	history	Y
987	Stanford	CS	Y
987	Berkeley	CS	Y
876	Stanford	CS	N
876	MIT	biology	Y
876	MIT	marine biology	N
765	Stanford	history	Y
765	Cornell	history	N
765	Cornell	psychology	Y
543	MIT	CS	N

College

state	enrollment			
CA	15000			
CA	36000			
MA	10000			
NY	21000			
MA	50040			
	CA CA MA NY			

Write SQL queries for the following:

- Q1. Create a new column DoB in Student table. (Datatype will be *date*)
- Q2. Insert DoB for each Student in corresponding table using above *instance* of Student table.
- Q3. Find average of GPA round off to 2 decimal places.
- Q4. Find year of DoB of Student having less than 1000.
- Q5. Compute Age of each student. (Hint: take difference between year of sysdate and Student's DoB)
- Q6. Display name of *all* Students in uppercase and name of college they applied in lower case.
- Q7. Find fourth alphabet of each student. (Hint: *use* substring)
- Q8. Find sID and sName of student whose sName has string length greater than 3.
- Q9. Find floor, ceiling and truncate (to one decimal place) value of average GPA.
- Q10. Display details of all students whose sID is even.
- Q11. Compute Square Root of 900 and 24⁷.
- Q12. Consider the string "Peter Piper picked a peck of pickled peppers. A peck of pickled peppers Peter Piper picked. If Peter Piper picked a peck of pickled peppers, Where the peck of pickled peppers Peter Piper picked?"
 - Find 6th occurrence of string 'pick'. (Hint: *use* INSTR)

Q13. Consider String 'Satya Nadella' replace this using the key (Hint: *use* translate)

a	d	e	1	N	S	t	у
1	2	3	4	5	6	7	8

- Q14. Display sID, sname and DoB in this format 'February 26, 2014'
- Q15. Convert the text '26/02/2014' to date.
- Q16. Compute on which date is next Saturday and last day of this month?

Exercise

- Q1. Display sID, sname and DoB in this format '26th Feburary, 2014'
- Q2. Display sID, sname and DoB in this format '26/02/2014'
- Q3. Add 5 months to DoB of Edward?
- Q4. Display last day of DoB of Amy?
- Q5. Display next Sunday of DoB of Doris?

Pre Experiment Questions

- 1. How to do arithmetic calculation in SQL?
- **2.** How to store date in SQL?

Post Experiment Questions

- 1. When to use User created table or to use DUAL?
- 2. How can we decide whether to use truncate or round?
- 3. Which function is use to convert text to date?