Московский государственный технический университет имени Н. Э. Баумана

Факультет: Информатика и системы управления

Кафедра: Программное обеспечение ЭВМ и информационные технологии

Математическая статистика Лекции

1 Предельные теоремы теории вероятностей

1.1 Неравенства Чебышева

Теорема 1.1 (первое неравенство господина Чебышева).

- X случайная величина;
- $P\{X \le 0\} = 0$ так как $X \ge 0$.

Доказательство. Для непрерывной случайное величины X и зная, что при $X \geq 0 \Rightarrow f(x) = 0, \ x < 0$

$$MX = \int_{-\infty}^{+\infty} x f(x) dx = \int_{0}^{+\infty} x f(x) dx = \underbrace{\int_{0}^{\varepsilon} x f(x) dx}_{\geq 0} + \int_{\varepsilon}^{+\infty} x f(x) dx$$

учитывая $x \ge \varepsilon$

$$\underbrace{\int_{0}^{\varepsilon} x f(x) dx}_{>0} + \int_{\varepsilon}^{+\infty} x f(x) dx \ge \int_{\varepsilon}^{+\infty} x f(x) dx \ge \varepsilon \cdot \int_{\varepsilon}^{+\infty} f(x) dx$$

где

$$\varepsilon \cdot \int_{\varepsilon}^{+\infty} f(x) \, dx = \varepsilon \cdot \mathsf{P}\{X \ge \varepsilon\}$$

таким образом

$$MX \ge \varepsilon \cdot \mathsf{P}\{X \ge \varepsilon\} \ \Rightarrow \ \mathsf{P}\{X \ge \varepsilon\} \le \frac{MX}{\varepsilon}$$

Теорема 1.2 (второе неравенство лорда Чебышева).

$$\exists MX, \exists DX \Rightarrow \forall \varepsilon > 0, \ \mathsf{P}\{|X - MX| \ge \varepsilon\} \le \frac{DX}{\varepsilon^2}$$
 (2)

• X — случайная величина.

Доказательство. Выпишем дисперсию

$$DX = M\left[(X - MX)^2 \right]$$

Рассмотрим случайную величину $Y=(X-MX)^2$, где $Y\geq 0$. Тогда из *первого неравенства Чебышева* следует, что $\forall \delta\geq 0,\, MY\geq \delta\,\mathsf{P}\{Y\geq \delta\}$, где получается, что $\delta=\varepsilon^2$.

$$\left[DX = M \left[(X - MX)^2 \right] \right] \ge \left[\varepsilon^2 \cdot \mathsf{P} \left\{ (X - MX)^2 \ge \varepsilon^2 \right\} = \varepsilon^2 \cdot \mathsf{P} \left\{ |X - MX| \ge \varepsilon \right\} \right]$$

таким образом

$$DX \ge \varepsilon^2 \cdot \mathsf{P}\{|X - MX| \ge \varepsilon\} \ \Rightarrow \ \mathsf{P}\{|X - MX| \ge \varepsilon\} \le \frac{DX}{\varepsilon^2}$$

Пример 1.1. Предельно допустимое давление в пневмосистеме ракеты равна 200 (Π a). После проверки большого количество ракет было получено среднее значение давления 150 (Π a). Оценить вероятность того, что давление в пневмосистеме очередной ракеты будет больше 200 (Π a), если по результатам проверки ракет было получено среднеквадратичное отклонение 5 (Π a).

Решение. Имеем следующее:

- \bullet случайная величина X давление в пневмосистеме;
- $X \ge 0$;
- $MX = 150 \text{ (\Pi a)};$
- $DX = 25 \ (\Pi a);$

Решим поставленную задачу с помощью первого неравенства Чебышева

$$\left[\mathsf{P}\{X \ge \varepsilon\} = \mathsf{P}\{X \ge 200\} \right] \le \left[\frac{MX}{\varepsilon} = \frac{150}{200} = \frac{3}{4} = 0.75 \right]$$
$$\mathsf{P}\{X \ge 200\} \le 0.75$$

Поскольку нам известна дисперсия почему бы не воспользоваться *вторым неравенством Чебышева*? Действуем. Для начало рассмотрим вероятность следующего события

$$\mathsf{P}\{X \geq \varepsilon\} = \mathsf{P}\{X \geq 200\} = \mathsf{P}\{X - \underbrace{150}_{MX} \geq \underbrace{50}_{\varepsilon}\}$$

Остаётся построить вероятность, которая будет удовлетворять форме *второго неравенства Чебышева* (т. е. сделать модуль).

$$P\{X - 150 \ge 50\} \le P\{X - 150 \ge 50\} + P\{X - 150 \le -50\}$$

Так как события $\{X-150 \ge 50\}$ и $\{X-150 \le -50\}$ несовместные, то по формуле сложения вероятностей несовместных событий получаем

$$P\{X - 150 \ge 50\} + P\{X - 150 \le -50\} =$$

$$= P\{\{X - 150 \ge 50\} + \{X - 150 \le -50\}\} = P\{|X - 150| \ge 50\}$$

Таким образом применяем второе неравенство Чебышева

$$\left[\mathsf{P} \big\{ |X - MX| \ge \varepsilon \big\} = \mathsf{P} \big\{ |X - 150| \ge 50 \big\} \right] \le \left[\frac{DX}{\varepsilon^2} = \frac{25}{50^2} = \left(\frac{5}{50} \right)^2 = 0.01 \right] \\
\mathsf{P} \big\{ |X - 150| \ge 50 \big\} \le 0.01$$

Ответ:

- с использованием первого неравенства Чебышева $P \le 0.75$;
- ullet с использованием второго неравенства Чебышева $P \leq 0.01$.

Замечание. Второе неравенство Чебышева даёт более точную оценку, так как используется информация о дисперсии случайной величины.

Замечание. Использование *первого неравенства Чебышева* при $\varepsilon < MX$ и *второго неравенства Чебышева* при $\varepsilon < \sqrt{DX}$ даёт тривиальную оценку: $P \le 1$.