Image Processing II

COMPUTER VISION (HY24011) HANYANG UNIV. ERICA Q YOUN HONG (홍규연)

Content

- Area-based Operation
- Binary Image Processing
- Geometric Transformation
- Image Pyramid

Neighborhood (Area-based) Operators

- Neighborhood operator(filter): pixel value computed using a collection of pixel values in a small neighborhood
- Linear filter: a pixel's value is a weighted sum of pixel values within a small neighborhood N
- Correlation and convolution operators

tion and convolution operators

1D Correlation:
$$g(i) = u \otimes f = \sum_{\substack{x = -(w-1)/2 \\ (w-1)/2}}^{(w-1)/2} u(x)f(i+x)$$

1D Convolution: $g(i) = u \otimes f = \sum_{\substack{x = -(w-1)/2 \\ (h-1)/2}}^{(w-1)/2} u(x)f(i-x)$

2D Correlation: $g(i) = u \otimes f = \sum_{\substack{x = -(w-1)/2 \\ (w-1)/2}}^{(w-1)/2} \sum_{\substack{y = -(h-1)/2 \\ (h-1)/2}}^{u(y,x)f(j+y,i+x)}$

2D Convolution: $g(i) = u \otimes f = \sum_{\substack{x = -(w-1)/2 \\ (w-1)/2}}^{(w-1)/2} \sum_{\substack{y = -(h-1)/2 \\ (h-1)/2}}^{u(y,x)f(j-y,i-x)}$

Linear Filtering: 1D Example

- Correlation: matching a window with an image
 - u(x): called a window, a weighted kernel, mask, filter (coefficients)
- Convolution: flipping the window and performing matching
 - u(x): also called the impulse response (: $u \otimes \delta(i,j) = u$)

Linear Filtering: 2D Example

Correlation

- Here, input f is an impulse response function
- When applying the convolution filter to f, the output image will the same as the window u
- When applying the correlation filter to f, the window will be reversed in the output

Convolution

Properties of Convolution (Correlation)

- Both correlation and convolution are linear shift-invariant (LSI)
 - The superposition principle: $u \circ (f_0 + f_1) = u \circ f_0 + u \circ f_1$
 - The shift invariance principle:

$$g(j,i) = f(j+k,i+l) \Leftrightarrow (u \circ g)(j,i) = (u \circ f)(j+k,i+l)$$

- ⇒ The operator "behaves the same everywhere"
- Correlation and convolution can be written as a matrix-vector multiplication: g = Uf

Separable Filtering

- General convolution filters: requires K^2 operations per pixel
- Separable convolution filter: perform 1D horizontal convolution followed by 1D vertical convolution $\Rightarrow 2K$ operations per pixel
 - Represent 2D kernel $K = vh^T$
 - Examples of separable filters: box, bilinear, Gaussian, Sobel, LOG

$\frac{1}{16}$	1	2	1
	2	4	2
	1	2	1

	1	4	6	4	1
	4	16	24	16	4
$\frac{1}{256}$	6	24	36	24	6
	4	16	24	16	4
	1	4	6	4	1

	-1	0	1
3	-2	0	2
	-1	0	1

	1	-2	1
$\frac{1}{4}$	-2	4	-2
231	1	-2	1

$$\frac{1}{2} 1 -2 1$$

Examples of Linear Filtering

- (a) Box filter (moving average filter): averages the pixels in a K x K window
- (b) Bilinear filter (Bartlett filter): smooths image with a piecewise "tent" function
- (c) Gaussian filter: made by convolving the linear tent function with itself
- (d) Sobel filter: simple 3x3 edge extractor
 (combination of horizontal central difference and a vertical tent filter)
- (e) Simple corner detector: look for simultaneous horizontal/vertical second derivatives (+diagonal edges)

1	1		1
1	1		1
:	:	1	:
1	1		1

	1	4	6	4	1
	4	16	24	16	4
$\frac{1}{256}$	6	24	36	24	6
O-RESERVED IN	4	16	24	16	4
	1	4	6	4	1

(a) box, K = 5

(b) bilinear

(c) "Gaussian"

(d) Sobel

(e) corner

Examples of Linear Filtering

.0000

.0002 .0000

Summed Area Table (Integral Image)

- Accelerate convolution when box filters of different sizes are used
- Summed area table: $s(j,i) = \sum_{k=0}^{j} \sum_{l=0}^{i} f(k,l)$ or s(j,i) = s(j-1,i) + s(j,i-1) s(j-1,i-1) + f(j,i)
- s(j,i) is also called an integral image
- To find the summed area in $[j_0, j_1] \times [i_0, i_1]$, we need 4 samples:

$$S([j_0, j_1], [i_0, i_1]) = s(j_1, i_1) - s(j_1, i_0 - 1) - s(j_0 - 1, i_1) + s(j_0 - 1, i_0 - 1)$$

3	2	7	2	3
1	5	1	3	4
5	1	3	5	1
4	3	2	1	6
2	4	1	4	8

3	5	12	14	17
4	11	19	24	31
9	17	28	38	46
13	24	37	48	62
15	30	44	59	81

157	3	5	12	14	17
	4	11	19	24	31
	9	17	28	38	46
	13	24	37	48	62
	15	30	44	59	81

- (a) Original image
- (b) Summed area table
- (c) Computation of area sum

(a)
$$S = 24$$

(b)
$$s = 28$$

(c)
$$S = 24$$

Non-Linear Filtering

- Linear filter computes a weighted sum of input pixels
- Non-linear filters perform better in some applications
 - E.g. Edge-preserving filtering, removing shot noises
- Example non-linear filters: median filter, bilateral filter

Original

Gaussian Filter

Median Filter

Non-Linear Filtering

Median filter: selects the median value from each pixel's

neighborhood

	•	Can	be	imp	lemented	via	linear-time	algorithm
--	---	-----	----	-----	----------	-----	-------------	-----------

Robust to removing shot noises while preserving edges

1	2	1	2	4
2	1	3	5	8
1	3	7	6	9
3	4	8	6	7
4	5	7	8	9

Bilateral filter: reject pixels whose values differ

(a)
$$median = 4$$

too much from the central pixel value (in a soft way)

$$g(j,i) = \frac{\sum_{k,l} f(k,l) w(j,i,k,l)}{\sum_{k,l} w(j,i,k,l)}, \text{ where } w(j,i,k,l) = \exp(-\frac{(j-k)^2 + (i-l)^2}{2\sigma_d^2} - \frac{\|f(j,i) - f(k,l)\|^2}{2\sigma_r^2})$$
 w(j,l,k,l): Bilateral weight function Domain kernel

Non-Linear Filtering

Figure 3.20 Bilateral filtering (Durand and Dorsey 2002) © 2002 ACM: (a) noisy step edge input; (b) domain filter (Gaussian); (c) range filter (similarity to center pixel value); (d) bilateral filter; (e) filtered step edge output; (f) 3D distance between pixels.

Content

- Area-based Operation (cont'd)
- Binary Image Processing
- Geometric Transformation
- Image Pyramid

Binary Image Processing

- Binary image: an image only consisting of 0's and 1's
- Binarization: binary image occurs after thresholding operation,

$$b(j,i) = \begin{cases} 1, & \text{if } f(j,i) > T \\ 0, & \text{if } f(j,i) \le T \end{cases}$$

- Binarization by thresholding
 - Select a threshold T at the valley point in the histogram

- Optimization problem: find the best threshold value from the image histogram
 - In a bimodal image (histogram having two peaks), a good threshold is in the middle of the two peaks
 - Objective function: make two split pixel sets as uniform as possible
 - > Two sets of pixels after splitting should have small variances
- Otsu's algorithm minimizes the weighted within-class variance:

$$T = \underset{t \in \{0,1,\dots,L-1\}}{\operatorname{argmin}} v_{within}(t)$$

$$v_{within}(t) = w_0(t)v_0(t) + w_1(t)v_1(t), \quad \text{where}$$

Time complexity: $\theta(L^2)$

Weight:
$$w_0(t) = \sum_{i=0}^t \hat{h}(i)$$
,

$$w_1(t) = \sum_{i=t+1}^{L-1} \hat{h}(i),$$

$$\underline{\mu_0(t)} = \frac{1}{w_0(t)} \sum_{i=0}^t i \hat{h}(i),$$

$$\underline{\mu_1(t)} = \frac{1}{w_1(t)} \sum_{i=t+1}^{L-1} i \hat{h}(i),$$

$$v_0(t) = \frac{1}{w_0(t)} \sum_{i=0}^t \hat{h}(i) (i - \mu_0(t))^2$$

- For better performance, use recurrence relation on t
- For every t, $\mu = \sum_{i=0}^{L-1} i\hat{h}(i)$, $v = \sum_{i=0}^{L-1} (i \mu)^2 \hat{h}(i)$
- Rewrite the equation of *v*:

$$\begin{split} w_0(t) &= \sum_{i=0}^t \hat{h}(i), & w_1(t) &= \sum_{i=t+1}^{L-1} \hat{h}(i), \\ \mu_0(t) &= \frac{1}{w_0(t)} \sum_{i=0}^t i \hat{h}(i), & \mu_1(t) &= \frac{1}{w_1(t)} \sum_{i=t+1}^{L-1} i \hat{h}(i), \\ v_0(t) &= \frac{1}{w_0(t)} \sum_{i=0}^t \hat{h}(i) \big(i - \mu_0(t)\big)^2, & v_1(t) &= \frac{1}{w_1(t)} \sum_{i=t+1}^{L-1} \hat{h}(i) \big(i - \mu_1(t)\big)^2, \end{split}$$

$$\begin{split} v &= \sum_{i=0}^{t} (i - \mu_{0}(t) + \mu_{0}(t) - \mu)^{2} \, \hat{h}(i) + \sum_{i=t+1}^{L-1} (i - \mu_{1}(t) + \mu_{1}(t) - \mu)^{2} \hat{h}(i) \\ &= \sum_{i=0}^{t} \left[\left(i - \mu_{0}(t) \right)^{2} + 2(i - \mu_{0}(t))(\mu_{0}(t) - \mu) + (\mu_{0}(t) - \mu)^{2} \right] \hat{h}(i) + \\ &\sum_{i=t+1}^{L-1} \left[\left(i - \mu_{1}(t) \right)^{2} + 2(i - \mu_{1}(t))(\mu_{1}(t) - \mu) + (\mu_{1}(t) - \mu)^{2} \right] \hat{h}(i) \\ &= \sum_{i=0}^{t} \left[\left(i - \mu_{0}(t) \right)^{2} + (\mu_{0}(t) - \mu)^{2} \right] \hat{h}(i) + \sum_{i=t+1}^{L-1} \left[\left(i - \mu_{1}(t) \right)^{2} + (\mu_{1}(t) - \mu)^{2} \right] \hat{h}(i) \\ &= \sum_{i=0}^{t} \left(i - \mu_{0}(t) \right)^{2} \hat{h}(i) + (\mu_{0}(t) - \mu)^{2} \sum_{i=0}^{t} \hat{h}(i) + \sum_{i=t+1}^{L-1} \left(i - \mu_{1}(t) \right)^{2} \hat{h}(i) + (\mu_{1}(t) - \mu)^{2} \sum_{i=t+1}^{L-1} \hat{h}(i) \\ &= \left\{ \left(\mu_{0}(t) - \mu \right)^{2} w_{0}(t) + (\mu_{1}(t) - \mu)^{2} w_{1}(t) \right\} + \left\{ w_{0}(t) v_{0}(t) + w_{1}(t) v_{1}(t) \right\} \\ &= \left\{ \left(\mu_{0}(t) - \mu \right)^{2} w_{0}(t) + (\mu_{1}(t) - \mu)^{2} (1 - w_{0}(t)) \right\} + v_{within}(t) \qquad (\because w_{0}(t) \mu_{0}(t) + w_{1}(t) \mu_{1}(t) = \mu) \\ &= v_{between}(t) + v_{within}(t) \end{split}$$

 $\text{Minimize } v_{within}(t) \Rightarrow \text{Maximize } v_{between}(t), \text{ where } v_{between}(t) = w_0(t) \big(1 - w_0(t)\big) \big(\mu_0(t) - \mu_1(t)\big)^2, t \in \{0,1,\dots,L-1\}$

Otsu's algorithm in different form:

$$T = \underset{t \in \{0,1,\dots,L-1\}}{\operatorname{argmax}} v_{between}(t),$$

where
$$v_{between}(t) = w_0(t) (1 - w_0(t)) (\mu_0(t) - \mu_1(t))^2$$

- Recurrence relation (time complexity: $\theta(L)$)
- Initialize at t = 0: $w_0(0) = \hat{h}(0)$, $\mu_0(0) = 0$
- Step through all t > 0:

$$w_0(t) = w_0(t-1) + \hat{h}(t)$$

$$\mu_0(t) = \frac{w_0(t-1)\mu_0(t-1) + t\hat{h}(t)}{w_0(t)}$$

$$\mu_1(t) = \frac{\mu - w_0(t)\mu_0(t)}{(1 - w_0(t))}$$

Morphology

- Change the shape of the underlying binary image objects
- Can be applied to both binary and grayscale images, but commonly used in binary images
 - e.g. remove noises in binary images
- Morphological operations:
 - 1. Define a structuring element
 - 2. Convolve the structuring element with the image
 - 3. Thresholding the result of the convolution

Structuring Element

- Can be of any shape
- Represented as a set of non-zero pixel elements

- Define $S_t = \{s + t | s \in S\}$
 - E.g. $t = (2,3) \Rightarrow S_t^1 = \{(2,3), (2,4), (1,3), (2,2), (3,3)\}$

Morphological Operations

Figure 3.22 Binary image morphology: (a) original image; (b) dilation; (c) erosion; (d) majority; (e) opening; (f) closing. The structuring element for all examples is a 5×5 square. The effects of majority are a subtle rounding of sharp corners. Opening fails to eliminate the dot, as it is not wide enough.

(Binary) Dilation and Erosion

In a binary image f,

 $S_t = \{s + t | s \in S\}$

- Dilation
 - Place a structuring element where f(j,i) = 1
 - Change f(j + k, i + l) to 1 if (k, l) is in the structuring element:

$$f \oplus S = \bigcup_{x \in f} S_x$$

- → Grow(thicken) the shape by the structuring element
- Erosion
 - Place a structuring element at f(j, i)
 - Set f(j,i) to 1 only if f(j+k,i+l)=1 for all (k,l) in the structuring element:

$$f \ominus S = \{x | x + s \in f, \forall s \in S\}$$

→ Shrink the shape by the structuring element

(Binary) Opening and Closing

In a binary image f,

- Opening: $f \circ S = (f \ominus S) \oplus S$
- Closing: $f \cdot S = (f \oplus S) \ominus S$
- Leave large regions and smooth boundaries while removing small holes and noises

(Example) Morphological Operations: Dilation

	0	0	0	0	0	0	0	0
<i>f</i> =	0	1	1	0	0	0	1	0
	0	1	1	0	0	0	1	0
	0	1	1	1	0	0	1	0
	0	1	1	1	0	0	1	0
	0	1	1	1	1	1	1	0
	0	0	0	0	1	1	1	0
	0	0	0	0	0	0	0	0
				·		·		

Dilation Result

0	0	0	0	0	0	0	0
1	1	1	1	0	1	1	1
1	1	1	1	0	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
0	0	0	1	1	1	1	1
0	0	0	0	0	0	0	0

1 1 1

Structuring element:

$$S = \{(0, -1), (0, 0), (0, 1)\}$$

(Example) Morphological Operations: Erosion

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Erosion at (1,1) and (3,2)

Erosion Result

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	0	1	0	0	0	0	0
0	0	1	1	1	1	0	0
0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0

Structuring element:

$$S = \{(0, -1), (0, 0), (0, 1)\}$$

(Example) Morphological Operations: Opening and Closing

	0	0	0	0	0	0	0	0
	0	1	1	0	0	0	1	0
	0	1	1	0	0	0	1	0
£ _	0	1	1	1	0	0	1	0
<i>J</i> –	0	1	1	1	0	0	1	0
	0	1	1	1	1	1	1	0
	0	0	0	0	1	1	1	0
	0	0	0	0	0	0	0	0

	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	1	0	0	0	0	0
	0	0	1	0	0	0	0	0
	0	0	1	1	1	1	0	0
	0	0	0	0	0	1	0	0
	0	0	0	0	0	0	0	0
,								

1	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	1	1	1	0	0	0	0
	0	1	1	1	0	0	0	0
	0	1	1	1	1	1	1	0
	0	0	0	0	1	1	1	0
	0	0	0	0	0	0	0	0

_		•	
Lr	\sim	ior	•
Γ	() \		
	\mathbf{c}	$\cdot \circ \cdot$	

0	0	0	0	0	0	0	0
1	1	1	1	0	1	1	1
1	1	1	1	0	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
0	0	0	1	1	1	1	1
0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0
0	1	1	0	0	0	1	0
0	1	1	0	0	0	1	0
0	1	1	1	1	1	1	0
0	1	1	1	1	1	1	0
0	1	1	1	1	1	1	0
0	0	0	0	1	1	1	0
0	0	0	0	0	0	0	0

Opening

Structuring element:

$$S = \{(0, -1), (0, 0), (0, 1)\}$$

Grayscale Morphological Operations (SKIP)

Structuring Element

0	1	0			1	
1	2	1		1	2	1
0	1	0	·		1	

Nonflat structuring elements

Flat structuring elements

- Morphological operations
 - Binary morphological operations can be extended to grayscale images through use of min and max functions
 - Regard a grayscale image as a heightmap
 - min and max function fill the valleys or erode the peaks of a heightmap
 - Used in
 - Contrast enhancement
 - Texture description
 - Edge detection
 - Thresholding

Grayscale Morphological Operations (SKIP)

Structuring Element

0	1	0	
1	2	1	
0	1	0	

	1	
1	2	1
	1	

Morphological operations

Nonflat structuring elements Flat structuring elements

For nonflat structuring elements

- Dilation:
$$(f \oplus S)(j,i) = \max_{(y,x) \in S} (f(j-y,i-x) + S(y,x))$$

- Dilation:
$$(f \oplus S)(j,i) = \max_{\substack{(y,x) \in S}} (f(j-y,i-x) + S(y,x))$$

- Erosion: $(f \ominus S)(j,i) = \min_{\substack{(y,x) \in S}} (f(j+y,i+x) - S(y,x))$

For flat structuring elements

- Dilation:
$$(f \oplus S)(j,i) = \max_{(y,x) \in S} f(j-y,i-x)$$

- Dilation:
$$(f \oplus S)(j,i) = \max_{\substack{(y,x) \in S}} f(j-y,i-x)$$

- Erosion: $(f \ominus S)(j,i) = \min_{\substack{(y,x) \in S}} f(j+y,i+x)$

Opening and closing

- Opening:
$$f \circ S = (f \ominus S) \oplus S$$

- Closing:
$$f \cdot S = (f \oplus S) \ominus S$$

- Grayscale opening: remove small and bright details

(Example) Grayscale Morphology (SKIP)

	0	0	0	0	0	0	0	0
	0	1	1	0	0	0	1	0
	0	1	2	0	0	0	1	0
£ _	0	1	3	1	0	0	2	0
<i>J</i> –	0	1	3	1	0	0	2	0
	0	1	2	3	4	4	3	0
	0	0	0	0	1	თ	1	0
	0	0	0	0	0	0	0	0

Structuring element S	0	0	0
-----------------------	---	---	---

0	0	0	0	0	0	0	0
1	1	1	1	0	1	1	1
1	2	2	1	0	1	1	1
1	3	3	3	1	2	2	2
1	თ	3	3	1	2	2	2
1	2	3	4	4	4	4	3
0	0	0	1	3	3	3	1
0	0	0	0	0	0	0	0

Grayscale dilation

Grayscale erosion

$$(f \oplus S)(1,0) = \max(f(1,-1), f(1,0), f(1,1)) = \max(-\infty, 0,1) = 1$$

 $(f \ominus S)(1,0) = \min(f(1,-1), f(1,0), f(1,1)) = \min(\infty, 0,1) = 0$

Height map of f

Grayscale Morphology (SKIP)

Erosion

Original image and Structuring element

Closing

Connected Component

- Pixel adjacency: define which neighboring pixels are adjacent to the given pixel
 - \mathcal{N}_4 -adjacency (\mathcal{N}_4 -connectivity): a pixel has 4 neighbors (N,S,E,W)
 - \mathcal{N}_8 -adjacency (\mathcal{N}_8 -connectivity): a pixel has 8 neighbors (N,S,E,W, NE,NW,SE,SW)

NW	Z	NE
W	(j,i)	E
SW	S	SE

Connectivity of a pixel

NW	N	NE
W	(<i>j</i> , <i>i</i>)	E
SW	S	SE

 \mathcal{N}_4 -connectivity

NW	N	NE
W	(j,i)	E
SW	S	SE

 \mathcal{N}_8 -connectivity

Connected Component

- Connected component a region of all adjacent pixels
- Label each connected component with different numbers

0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	0	0	0	0
0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	1	0	0	0	0
0	1	1	0	0	1	0	1	1	0
0	1	0	1	0	1	1	0	1	0
0	1	0	1	0	1	0	0	1	0
0	1	0	1	0	1	0	0	1	0
0	1	1	0	0	1	0	0	1	0
0	0	0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	0	0	0	0
0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	1	0	0	0	0
0	2	2	0	0	1	0	ന	ന	0
0	2	0	4	0	1	1	0	ന	0
0	2	0	4	0	1	0	0	3	0
0	2	0	4	0	1	0	0	3	0
0	2	2	0	0	1	0	0	3	0
0	0	0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	0	0	0	0
0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	1	0	0	0	0
0	2	2	0	0	1	0	1	1	0
0	2	0	2	0	1	1	0	1	0
0	2	0	2	0	1	0	0	1	0
0	2	0	2	0	1	0	0	1	0
0	2	2	0	0	1	0	0	1	0
0	0	0	0	0	0	0	0	0	0

Original binary image

Label CC based on \mathcal{N}_4

Label CC based on \mathcal{N}_8

Connected Component Labeling

```
Algorithm. Flood-fill algorithm to label connected components
Input: Binary image b(j,i), 0 \le j \le M-1, 0 \le i \le N-1
Output: Labelled image l(j,i), 0 \le j \le M-1, 0 \le i \le N-1
Initialize 1: l(j,i) = 0 if b(j,i) = 0, l(j,i)=-1 if b(j,i)=1
1(0,:) = 1(M-1,:) = 1(:,0) = 1(:, N-1) = 0
label := 1;
for (j=1 \text{ to } M-2)
   for (i=1 to N-2) {
      if (l(j,i) == -1) {
          flood fill4(1, j, I, label);
          label++;
function flood_fill4(1,j,1,label) {
   if(l(j,i)==-1) {
      l(j,i)=label;
      flood fill4(l,j,i+1, label);
      flood fill4(l,j-1,i, label);
      flood fill4(1,j,i-1, label);
      flood fill4(l,j+1,I,label);
```

- Use flood fill algorithm to label connected components
- Pick one unvisited pixel and assign the current label to every unvisited pixel that can be connected via \mathcal{N}_4 -connectivity
- Unable to control the depth of recursive function calls
- ⇒ Stack overflow can occur

Connected Component Labeling

Algorithm. Flood-fill algorithm to label connected components Input: Binary image $b(j,i), 0 \le j \le M-1, 0 \le i \le N-1$ Output: Labelled image $l(j,i), 0 \le j \le M-1, 0 \le i \le N-1$ Initialize 1: l(j,i) = 0 if b(j,i) = 0, l(j,i) = -1 if b(j,i)=11(0,:) = 1(M-1,:) = 1(:,0) = 1(:, N-1) = 0label := 1; for (j=1 to M-2)for (i=1 to N-2) { if (l(j,i) == -1) { efficient_flood_fill4(l, j, I, label); label++;

```
function efficient flood fill4(1,j,1,label) {
   0 := \emptyset;
   push(Q(j,i));
   while (Q \neq \emptyset) {
      (y,x) = pop(Q);
      if(l(j,i)==-1) {
         left=right=x;
         while(l(y,left-1)==-1) left--;
         while(l(y,right+1)==-1) right++;
         for(c=left to right) {
            l(y,c)=label;
            if(l(y-1,c)=-1 and (c=left or l(y-1,c-1)\neq -1)
                push(Q,(y-1,c));
             if(l(y+1,c)=-1 and (c=left or l(y+1,c-1) \neq -1)
                push(Q,(y+1,c));
```

- Queue-based algorithm
- Put unvisited pixel to a queue
- For each unvisited pixel, find the consecutive row of unvisited pixels and label them together

Content

- Area-based Operation (cont'd)
- Binary Image Processing
- Geometric Transformation
- Image Pyramid

Homogeneous Coordinate System

• Homogeneous coordinate: represent a 2D point x = (y, x) as a 3D vector \dot{x} :

$$\dot{\mathbf{x}} = (y, x, 1) = (hy, hx, h)$$

• E.g. \dot{x} =(3,5,1), (6,10,2), (1.5, 2.5, 0.5) represent the same 2D point (3,5)

 With homogeneous coordinates, 2D geometric transformation can be expressed with a 3x3 homogeneous matrix

Transformation	Homogeneous Matrix \dot{H}	Geometric Meaning
Translation	$T(t_y, t_x) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ t_y & t_x & 1 \end{bmatrix}$	Translate by t_y in y direction and t_x in x direction
Rotation	$R(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$	Rotation clockwise by $ heta$
Scale	$S(s_y, s_x) = \begin{bmatrix} s_y & 0 & 0 \\ 0 & s_x & 0 \\ 0 & 0 & 1 \end{bmatrix}$	Scale by s_y in y direction and s_x in x direction
Shear	$Sh_{y}(h_{y}) = \begin{bmatrix} 1 & 0 & 0 \\ h_{y} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, Sh_{x}(h_{x}) = \begin{bmatrix} 1 & h_{x} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$Sh_{\mathcal{Y}}$: Shear by $h_{\mathcal{Y}}$ in y direction $Sh_{\mathcal{X}}$: Shear by $h_{\mathcal{X}}$ in x direction

A point x moves to x as follows

$$\dot{\mathbf{x}}' = \dot{\mathbf{x}}\dot{H} = (y \ x \ 1) \begin{bmatrix} a_{11} & a_{12} & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & 1 \end{bmatrix}$$

$$\Rightarrow$$
 $y' = a_{11}y + a_{21}x + a_{31}, x' = a_{12}y + a_{22}x + a_{32}$

• E.g. Write a homogeneous matrix for 2D geometric transformation of translating a point by 3 in y direction and by 2 in x direction

$$\dot{H} = T(3,2) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}$$

E.g. Translate a triangle by (3,2), and rotate it by 30°

• By applying
$$T(3,2) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}$$
, $\dot{x_1}' = (351) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix} = (671)$

• Then apply $R(30^\circ)$ to (6 7 1):

$$\dot{x_1}'' = (671) \begin{bmatrix} \cos 30^\circ & -\sin 30^\circ & 0\\ \sin 30^\circ & \cos 30^\circ & 0\\ 0 & 0 & 1 \end{bmatrix} = (8.6963.0621)$$

 \Rightarrow Point (3,5) moves to (8.696 3.062)

• By applying
$$T(3,2)R(30^\circ) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} \cos 30^\circ & -\sin 30^\circ & 0 \\ \sin 30^\circ & \cos 30^\circ & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0.866 & -0.5 & 0 \\ 0.5 & 0.866 & 0 \\ 3.598 & 0.232 & 1 \end{bmatrix}$$
 to (3 5 1):

$$\dot{x_1}'' = (3\ 5\ 1) \begin{bmatrix} 0.866 & -0.5 & 0 \\ 0.5 & 0.866 & 0 \\ 3.598 & 0.232 & 1 \end{bmatrix} = (8.696\ 3.062\ 1)$$

 \Rightarrow Point (3,5) moves to (8.696 3.062)

Figure 3.44 Basic set of 2D geometric image transformations.

Transformation	Matrix	# DoF	Preserves	Icon
translation	$\begin{bmatrix}\mathbf{I} & \mathbf{t}\end{bmatrix}_{2\times 3}$	T 2	orientation	
rigid (Euclidean)	$\begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix}_{2 \times 3}$	<i>T</i> 3	lengths	\Diamond
similarity	$\begin{bmatrix} s\mathbf{R} & \mathbf{t} \end{bmatrix}_{2\times 3}$	T 4	angles	\Diamond
affine ($\left[\mathbf{A}\right]_{2 imes 3}$	Г 6	parallelism	
projective	$\left[\mathbf{ ilde{H}} ight]_{3 imes 3}$	8	straight lines	

 Write a homogeneous matrix to represent the following geometric transformation

How to apply a geometric transformation to an image?

Forward warping (Forward mapping)

Aliasing artifact

```
Alg. Forward warping  \begin{split} &\text{Input: } f_{src}(j,i), 0 \leq j \leq M-1, 0 \leq i \leq N-1, \ \dot{H} \\ &\text{Output: } f_{tgt}(j,i), 0 \leq j \leq M-1, 0 \leq i \leq N-1 \end{split}   &\text{for (j=0 to M-1)} \\ &\text{for (i=0 to N-1)} \{ \\ & (j',i') = \text{Apply } \dot{H} \text{ to } (j,i) \text{ (rounding included)} \\ & f_{tgt}(j',i') = f_{src}(j,i) \\ &\text{} \} \end{split}
```

```
Alg. Inverse warping  \begin{split} &\text{Input: } f_{src}(j,i), 0 \leq j \leq M-1, 0 \leq i \leq N-1, \ \dot{H} \\ &\text{Output: } f_{tgt}(j,i), 0 \leq j \leq M-1, 0 \leq i \leq N-1 \end{split}   \begin{aligned} &\text{for (j=0 to M-1)} \\ &\text{for (i=0 to N-1)} \\ & (j',i') = \text{Apply } \dot{\textbf{H}}^{-1} \text{ to } (j,i) \text{ (rounding included)} \\ & f_{tgt}(j,i) = f_{src}(j',i') \\ &\text{\}} \end{aligned}
```

- Aliasing also occurs in inverse warping
- ⇒Two different target pixels can refer to the same source pixel
- ⇒ For anti-aliasing, we interpolate the neighboring pixel values

Interpolation

Linear interpolation in 1D

 $f(x') = (1 - \alpha)f(x) + \alpha f(x+1)$

Bilinear interpolation in 2D

$$f(y,x') = (1-\alpha)f(y,x) + \alpha f(y,x+1)$$

$$f(y+1,x') = (1-\alpha)f(y+1,x) + \alpha f(y+1,x+1)$$

$$f(y',x')$$

$$= (1-\beta)f(y,x') + \beta f(y+1,x')$$

$$= (1-\beta)(1-\alpha)f(y,x) + (1-\beta)\alpha f(y,x+1)$$

$$+\beta(1-\alpha)f(y+1,x) + \beta\alpha f(y+1,x+1)$$

Original Image

Bilinear Interpolation

Bicubic Interpolation

Content

- Area-based Operation (cont'd)
- Binary Image Processing
- Geometric Transformation
- Multi-resolution Representations

Multiresolution Images

- Input and output images of different sizes
- Do not know the appropriate resolution of an image
- ⇒ A *pyramid* of different-sized images might be useful
- Upsampling: increase resolution by 2 times
- Downsampling: decrease resolution by ½ times

Image pyramid

Downsampling

Reduce the image resolution by ½

$$f_k(j,i) = f_{k-1}\left(\frac{j}{r}, \frac{i}{r}\right), r = \frac{1}{2}, 1 \le k \le q$$

 \Rightarrow Aliasing occurs as each pixel in f_{k-1} contributes to f_k either by 100% or 0%

Figure 3.31 A traditional image pyramid: each level has half the resolution (width and height), and hence a quarter of the pixels, of its parent level.

Downsampling

 To reduce aliasing, apply smoothing to an image before downsampling [Burt and Adelson's (1983)]

$$f_k(j,i) = \sum_{y=-2}^{y=2} \sum_{x=-2}^{x=2} w(y,x) f_{k-1} \left(\frac{j}{r} + y, \frac{i}{r} + x \right), r = \frac{1}{2}, 1 \le k \le q$$

- W(y,x) is 1x5 filter (1/20, 1/4, 2/5, 1/4, 1/20)
- Weights sums up to 1
- All pixels in f_{k-1} contributes to f_k by 50%

Downsampling

Downsampling in 2D

$$v = \begin{array}{c|c}
0.05 \\
\hline
0.25 \\
0.4 \\
\hline
0.25 \\
0.05 \\
\end{array} \quad h = \begin{array}{c|c}
0.05 & 0.25 \\
\hline
0.05 & 0.05 \\
\end{array}$$

w =	.0025	.0125	.0200	.0125	.0025
	.0125	.0625	.1000	.0625	.0125
	.0200	.1000	.1600	.1000	.0200
	.0125	.0625	.1000	.0625	.0125
	.0025	.0125	.0200	.0125	.0025

0.25

0.05

0.4

Original Image (764 x 1024)