This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

00 52 999

85-023518/04 K05 TOKE 28.04.78 TOSHIBA KK *J8 4052-999-E 28.04.78-JP-050090 (22.12.84) G21c-03/30	
Nuclear reactor fuel assembly - includes spacers with holes for draining coolant (J5 6.11.79)	
C85-010310	4
A nuclear fuel assembly has a water rod (2) held with spacers, together with fuel rods. The top spacer and second from top spacer (6a,6b) have holes (23,24) for draining the coolant. (4ppW26RKMHDwgNo1/6).	
	J84052999-B

© 1985 DERWENT PUBLICATIONS LTD. 128, Theobalds Road, London WC1X 8RP, England US Office: Derwent Inc. Suite 500, 6845 Elm St. McLean, VA 22101 Unauthorised copying of this abstract not permitted.

rto Fisi

19 日本国特許庁(JP) ①特許出願公告

⑫特 許 公 報(B2) 昭59-52999

⑤Int.Cl.3

識別記号

庁内整理番号

2044公告 昭和59年(1984)12月22日

G 21 C 3/30

7808-2G

10

発明の数 1

(全4頁)

印燃料集合体

21)持

題 昭53-50090

22出 昭53(1978) 4 月28日

69公 開 昭54-142487

❸昭54(1979)11月6日

②発 明 者 扇谷 俊亮

> 東京都千代田区内幸町1の1の6 東京芝浦電気株式会社東京事務所

内

人 株式会社東芝 包出 顊

川崎市幸区堀川町72番地

②代 理 人 弁理士 則近 憲佑 外1名

57特許請求の範囲

複数の燃料棒および1本のウオーターロッド を複数のスペーサーで格子状に配列し、その上下 . 端をそれぞれ上下のタイプレートで保持してなる 燃料束をチヤンネルボツクスに挿入して構成され る燃料集合体において、上部二個のスペーサーの 20 来からある下部孔21、上部孔22に加えて、冷 下部に対応するウオーターロツドの位置にそれぞ れ冷却材流出口を設け、かつウオーターロッド内 部には仕切板により流路が形成されていることを 特徴とする燃料集合体。

の下側にあることを特徴とする特許請求の範囲 5記載の燃料集合体。

匈な説明

」は原子炉に用いる燃料集合体に係り、特 は複数の燃料棒および1本のウオーターロツ . をスペーサーで格子状に束ねその上下端を各々 タイプレートで保持して成る燃料束をチヤンネル ボツクスに挿入して構成する。従来の燃料集合体 では、燃料棒表面で沸騰を起しているため、燃料 35 混合を十分なしうるように設計する。中間孔2 棒表面が蒸気泡で覆われやすく、また発熱がない チャンネルボツクス内壁近くに液相が集中する傾

向がある。特に冷却材の蒸気重量率が増加して液 相部分が少くなる燃料集合体上部では冷却効果が 大きい液相部分の不均一性が伝熱面の局所的な乾 燥を引き起し、熱伝達が悪くなり、発熱面のバー 5 ンアウト現象が起りやすくなる。液相部分の不均 一性がパーンアウト現象に影響していることは、 気液混合が悪化する燃料集合体上部のスペーサー 下部で起るという炉外試験の結果でも証明されて いる。

本発明は上述の事情を考慮してなされたもの で、燃料集合体上部の伝熱面での気液の混合のよ い燃料集合体を得ることを目的としている。

以下図面を参照して本発明の一実施例を説明す る。第1図に示すように本発明の燃料集合体は複 15 数の燃料棒1および1本のウオーターロッド2を スペーサー6で格子状に束ね、その上下端をそれ ぞれタイプレート3、4で保持しチヤンネルボツ クス5に挿入して構成する。本発明の燃料集合体 のウオーターロッド 2 には第2回に示すように従 却材流出口としての中間孔23、24が最上部の スペーサー6aの下部および上部から二番目のス ペーサー6bの下部に設けられている。第3図は 第2図をⅢ−Ⅲ線で切断し矢視方向に見た横断面 2 ウオーターロッドの下部孔が下部タイプレー 25 図、第4図は第2図をIV-IV線で切断し矢視方向 に見た横断面図である。第1図ないし第4図の矢 印は冷却材の流れる方向を示す。ウオーターロツ ド2の内部は内壁に溶接された仕切板7.8によ り下部から上方に向つて流路が3個、2個、1個 集合体の伝熱特性の改良に関する。燃料集 30 になつている。ウオーターロツドに設けられる下 部孔21、中間孔23、24、上部孔22の各孔 の大きさおよび個数はウオーターロッド内の各流 路のいかなる軸方向位置でもポイドが発生せず、 かつ、中間孔出口から流出する流れの流速が気液 3. 24からバーンアウトの起りやすいスペーサ -6a.6bの下部に液相の冷却水を流し出す。

これにより燃料棒1間を流れる冷却材の主流の液 相部は増加し、冷却効果が増加すると共に、その 流れにより手流に乱れが生じ、気液の混合の均一 化が促進され、伝熱面が気相のみでおおわれるこ となく、液相部を熱伝達により効果的に寄与させ 5 ものである。これにより、ウオーターロツド2片 ることができる。これにより、バーンアウトが起 る燃料集合体出力(限界出力と称する)が増加 し、高出力密度の燃料集合体が可能になる。第5 図は限界出力と燃料集合体内冷却材流量(集合体 流量)の関係を示す。実線Piは本発明の燃料集 10 くした構造も可能である。 台体、破線P2は従来の燃料集合体を表わす。第 5 図に示すように、本発明の燃料集合体では、従 来に比較し限界出力が増加している。限界出力が 高いということは、許容される燃料集合体出力が 高いことであり、高出力密度の炉心が可能にな 15 し矢視方向に見た横断面図、第4図は第2図を11 る。なお、下部孔21から入つた冷却材が中間孔 23、24より流入して、上部孔22を通過する 流量が減少し、ウオーターロツド2内上部でポイ ドが発生する事を防止するために、ウオーターロ ツド内部に仕切板7, 8が設けられており、これ 20 によつて、ウオーターロツド2内でポイドを発生 させないという、ウオーターロツド2に対する本 来の要求は満足されている。

以上説明したように、本発明の燃料集合体は伝

熱特性が改善され、高出力密度の原子炉を可能に する。第6図は本発明の燃料集合体の他の実施を を示すもので、ウオーターロッド2を長くして、 下部孔21を下部タイプレート4の下側に設けた の流れの駆動水頭が大きくなり中間孔23,24 での流出速度が増加し、気液の混合効果はさらに 向上する。なお、仕切板 7、8の加工の容易さの 観点から、ウオーターロツド2の下部端面9を無

図面の簡単な説明

第1図は本発明の燃料集合体の一実施例を示す 縦断面図、第2図は本発明の燃料集合体の要部を 示す縦断面図、第3図は第2図をIII-III線で切断 -IV線で切断し矢視方向に見た横断面図、第5区 は限界出力と集合体流量の関係を示す説明図、第 6 図は本発明の燃料集合体の他の実施例の要部を 示す縦断面図である。

1……燃料棒、2……ウオーターロツド、3, 4……タイプレート、5……チヤンネルボツク ス、6……スペーサー、7、8……仕切板、21 ·····下部孔、22·····上部孔、23、24·····中 間孔。

第3図

第5図

第6図

