Tutorial #7

CSE 321a: Computer Organization (I)

Third Year, Computer and Systems Engineering

Problem 10.6 (text book)

Compare zero-, one-, two-, and three-address machines by writing programs to

compute: X = (A + B * C) / (D - E * F)

For each of the following four machines. The instructions available for use are as follows:

0 Address	1 Address	2 Address	3 Address
PUSH M	LOAD M	$MOVE(X \leftarrow Y)$	MOVE $(X \leftarrow Y)$
POP M	STORE M	ADD $(X \leftarrow X + Y)$	$ADD (X \leftarrow Y + Z)$
ADD	ADD M	$SUB (X \leftarrow X - Y)$	$SUB (X \leftarrow Y - Z)$
SUB	SUB M	$MUL(X \leftarrow X \times Y)$	$MUL(X \leftarrow Y \times Z)$
MUL	MUL M	DIV $(X \leftarrow X/Y)$	DIV $(X \leftarrow Y/Z)$
DIV	DIV M		

Zero-address	One-address	Two-address	Three-address
PUSH E	LOAD E	MOV X, E	MUL AC, E, F
PUSH F	MULF	MUL X, F	SUB AC, D, AC
MUL	STORE X	MOV AC, D	MUL X, B, C
PUSH D	LOAD D	SUB AC, AC	ADD X, A, X
SUB	SUB X	MOV X, B	DIV X, X, AC
PUSH A	STORE X	MUL X, C	
PUSH B	LOAD B	ADD X, A	
PUSH C	MULC	DIV X, AC	
MUL	ADD A		
ADD	DIV X		
DIV	STORE X		
POP X			

External problem

If AC is 8 bits and contains -4 decimal number that is represented in sign and magnitude representation. Show the contents of AC register after perform the following shift operation:

- 1) Logical Right Shift
- 2) Logical Left Shift
- 3) Arithmetic Right Shift
- 4) Arithmetic Left Shift
- 5) Rotate Right
- 6) Rotate Left
- 1) Logical Right Shift
- -4 = 10000100 in binary after perform LRS = 01000010 = +66 in decimal
- 2) Logical Left Shift
- -4 = 10000100 in binary after perform LLS = 00001000 = +8 in decimal
- 3) Arithmetic Right Shift
- -4 = 10000100 in binary after perform ARS = 11000010 = 66 in decimal
- 4) Arithmetic Left Shift
- -4 = 10000100 in binary after perform ALS = 10001000 = -8 in decimal
- 5) Rotate Right
- -4 = 10000100 in binary after perform LRS = 01000010 = +66 in decimal
- 6) Rotate Left
- -4 = 10000100 in binary after perform LRS = 00001001 = +9 in decimal