ML Algorithms NEURAL NETWORKS

ClassA Detailed Look At Neural Networks

Topic

Mathematical Representation

To find their weights, modify how each neuron is represented mathematically

• The intercept term b is the weight for an input that is always 1

To find their weights, modify how each neuron is represented mathematically

- In multi layered networks, you can have multiple layers
- Each layer would have a different number of nodes than the others
- This neural net has three layers

Input Layer: 0 Dimension (number of nodes): $d^{(0)} = 3$ Hidden Layer: 1 Dimension (number of nodes): $d^{(1)} = 3$ Output Layer: 2 Dimension (number of nodes): $d^{(2)} = 1$

Mathematical Representation

- We have already seen the w's in
 - ☐ Single neurons
 - Networks
- Now that things are more complex, we need an indexing scheme to keep track of the \mathbf{w} 's
- Weights should have 3 indices
 - ☐ I1: Destination layer index
 - ☐ I2: Identifies the origin input in the origin layer
 - ☐ I3: Identifies the destination node in the destination layer
- The layer index is written in superscript
- The number thus displayed indicates which layer you're working with
- The two remaining indices are written in subscript
- I2 identifies the origin node and I3 identifies the destination node

Mathematical Representation

Input Layer: 0
Dimension (number of nodes): $d^{(0)} = 3$

Hidden Layer: 1 Dimension (number of nodes): $d^{(1)} = 3$

Output Layer: 2 Dimension (number of nodes): $d^{(2)} = 1$

Mathematical Representation

Input Layer: 0
Dimension (number of nodes): $d^{(0)} = 3$

Hidden Layer: 1
Dimension (number of nodes): $d^{(1)} = 3$

of Output Layer: 2
Dimension (number of nodes): $d^{(2)} = 1$

Neural Networks: Summary

- L layers (L 2 hidden layers)
- $d^{(l)}$ nodes in Layer l, $0 \le l \le L$
- Weights: $w_{ij}^{(l)}$, $i \le d^{(l-1)} \& j \le d^{(l)}$

Neural Networks: Summary

- L layers (L 2 hidden layers)
- $d^{(l)}$ nodes in Layer l, $0 \le l \le L$
- Weights: $w_{ij}^{(l)}$, $i \le d^{(l-1)} \& j \le d^{(l)}$

- The weight vector for such a neural network is a long vector
- Each element of the vector is the weight of a connection between a neuron in one layer to a neuron in the immediate next layer

Recap

- Machine Learning
- Different kinds of tasks in machine learning
- The workings of neurons
- How does a neuron make a decision?
- How does a group of neurons make a decision?
- Mathematical formulation

JIGSAW ACADEMY

THE ONLINE SCHOOL OF ANALYTICS