Métodos Numéricos en Ingeniería

Proyecto

ISABEL GONZALEZ LEZAMA

¿Para qué sirven las ecuaciones? En realidad la aplicación de los polinomios en la vida diaria es de suma importancia. Se puede aplicar en el área de construcción, para el pronóstico del clima, para el cálculo en finanzas, al realizar alguna compra, etc. Emplearemos un ejemplo que se ocupa en la vida diaria: la velocidad. Siendo más específicos, la velocidad constante.

Descripción del problema a resolver

Dos ciudades A y B distan 300 km entre sí. A las 9 de la mañana parte de la ciudad A un coche hacia la ciudad B con una velocidad de 90 km/h, y de la ciudad B parte otro hacia la ciudad A con una velocidad de 60 km/h. Hallar el tiempo que tardarán en encontrarse; la hora del encuentro; la distancia recorrida por cada uno.

La ecuación deducida por los datos proporcionados es:

$$eAC = 90t ; eCB = 60t.$$

Sabemos que el espacio recorrido por el primer coche más el espacio recorrido por el segundo es igual a 300 km. Por lo tanto quedará :

$$eAC + eCB = 300;$$

$$90t + 60t = 300$$
;

F(x): 90t + 60t -300 = 0,

MÉTODOS

MÉTODO DE BISECCION

En este método, se debe realizar una tabulación de la ecuacio. Se realiza la grafica y se determina donde cruza en 0. Escogemos valores como x0 y xi. Se realiza con esos puntos y se coloca nuevamente nuestra ecuación en xi y en el promedio de los dos puntos. Esto hasta que se alcance el cero o lo mas cercano.

MÉTODOS

MÉTODO SECANTE

En este método, volvemos a elegir nuestros puntos iniciales. Se debe sustituir los valores por nuestra ecuación, y así se obtiene f(xi). Finalmente se obtiene el error aproximado que se requiere que sea menor a nuestra tolerancia de 0.0001.

```
command Window
ingrese funcion =
'90*x+ 60*x - 300'
limite inferior =

limite superior =

tolerancia =
0.0001
n x0 x1 x2 error
0 1.0000 3.0000 2.0000 0.0000
raiz = 2.000000
```


MÉTODOS

MÉTODO DE NEWTON-RAPHSON

En este método, se debe encontrar las aproximaciones a cero o las raíces de nuestra función. Se toma x0 como valor inicial. Se tiene que derivar nuestra función y en este casi nuestra función es 150 una constante que limita mas resultados y asi llegando al cero con éxito.

