安徽大学 2009—2010 学年第二学期

《高等数学 A (二)、B (二)》考试试卷(A 卷)

(闭卷 时间 120 分钟)

题 号	 1 1	三	四	五.	总分
得 分					
阅卷人					

一、填空题(本大题共五小题,每小题2分,共10分)

得 分

- 1. 点 (2,1,1) 到平面 x+y-z+1=0 的距离为
- 2. 极限 $\lim_{x \to +\infty} \left(\frac{xy}{x^2 + y^2} \right)^{x^2} = \underline{\hspace{1cm}}$
- 3. 交换积分次序 $\int_0^{\pi/2} dx \int_0^{\sin x} f(x, y) dy =$ _
- 4. 设 f(x) 是周期为 2 的函数,它在区间(-1,1]上的定义为 $f(x) = \begin{cases} 2, -1 < x \le 0, \\ x^3 & 0 < x \le 1 \end{cases}$ 则 f(x) 的

Fourier 级数在 x = 1 处收敛于

5. 函数 u = xyz 在点 (1,1,1) 处沿方向 (2,2,1) 的方向导数为

得 分

二、选择题(本大题共五小题,每小题 2 分,共 10 分)

6. 二元函数
$$f(x,y) = \sqrt{x^2 + y^2}$$
 在点(0,0) 处

)

- A. 连续, 但偏导数不存在;
- B. 不连续, 且偏导数不存在;
- C. 不连续, 但偏导数存在; D. 连续, 且偏导数存在.
- 7. 设第二类曲面积分 $I_1=\iint_S xyz\mathrm{d}z\mathrm{d}x$, $I_2=\iint_S xy^2z\mathrm{d}z\mathrm{d}x$, 其中 S 为 $x^2+y^2+z^2=1$ 的上半部 分,方向取上侧. 若 S_1 为S在第一卦限部分,且与S方向一致,则

A.
$$I_1 = I_2 = 0$$
;

B.
$$I_1 = 0$$
, $I_2 = 2 \iint_{S_1} xy^2 z dz dx$;

C.
$$I_1 = 2 \iint_{S_1} xyz dz dx$$
, $I_2 = 2 \iint_{S_2} xy^2 z dz dx$; D. $I_1 = 2 \iint_{S_2} xyz dz dx$, $I_2 = 0$.

- 8. 设 Ω 为 \mathbb{R}^3 中开区域,且 Ω 内任意一条闭曲线总可以张成一片完全属于 Ω 的曲面,函数 P,Q,R在 Ω 内连续可导.若曲线积分 $\int_L P \mathrm{d}x + Q \mathrm{d}y + R \mathrm{d}z$ 只依赖于曲线L的端点,而与积分路径无关,则下述命题**不正确**的是
 - A. 对Ω内任意光滑闭曲线C, 曲线积分 $\oint_C P dx + Q dy + R dz = 0$;
 - B. 存在 Ω 上某个三元函数u(x, y, z), 使得 du = Pdx + Qdy + Rdz;
 - C. 等式 $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$, $\frac{\partial R}{\partial x} = \frac{\partial P}{\partial z}$, $\frac{\partial Q}{\partial z} = \frac{\partial R}{\partial y}$ 在开区域 Ω 内恒成立;
 - D. 等式 $\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} = 0$ 在开区域Ω内恒成立.
- 9. 设函数 f(x,y) 在开区域 D 内有二阶连续偏导数,且 $f_x(x_0,y_0) = f_y(x_0,y_0) = 0$.则下列为 f(x,y) 在点 (x_0,y_0) 处取极小值的充分条件的是
 - A. $f_{yy}(x_0, y_0) > 0$, $f_{yy}(x_0, y_0) f_{yy}(x_0, y_0) f_{yy}^2(x_0, y_0) > 0$;
 - B. $f_{xx}(x_0, y_0) > 0$, $f_{xx}(x_0, y_0) f_{yy}(x_0, y_0) f_{xy}^2(x_0, y_0) < 0$;
 - C. $f_{xx}(x_0, y_0) < 0, f_{xx}(x_0, y_0) f_{yy}(x_0, y_0) f_{xy}^2(x_0, y_0) > 0$;
 - D. $f_{yy}(x_0, y_0) < 0, f_{yy}(x_0, y_0) f_{yy}(x_0, y_0) f_{yy}^2(x_0, y_0) < 0$.
- 10. 设函数u = f(x, y, z)具有二阶连续偏导数,则div**grad** f = ()
 - A. $f_{xx} + f_{yy} + f_{zz}$;

B. $f_x + f_y + f_z$;

C. (f_x, f_y, f_z) ;

- D. (f_{xx}, f_{yy}, f_{zz}) .
- 三、计算题(本大题共五小题, 其中第 11、12、13 题每小题 10 分, 第 _{得 分} 14、15 题每小题 12 分, 共 54 分)
- 11. 设平面 Π : x + ay z + b = 0通过曲面 $z = x^2 + y^2$ 在点(1,1,2)处的法线L, 求a,b的值.

13. 计算第一类曲面积分 $\iint_{\Sigma} \frac{z}{x^2+y^2+z^2} dS$,其中 Σ 为圆柱面 $x^2+y^2=R^2$ (R>0) 介于平面 z=0 与 z=h (h>0)之间的部分.

14. 将函数 $f(x) = \arctan x$ 展开成 x 的幂级数,并求级数 $\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$ 的和.

15. 设函数 f(u) 具有二阶连续导数,且 $z = f(e^x \sin y)$.

- (1) $\stackrel{*}{\cancel{x}} \frac{\partial^2 z}{\partial x^2}, \frac{\partial^2 z}{\partial y^2}.$
 - (2) 若函数 $z = f(e^x \sin y)$ 满足方程 $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = e^{2x}z$, 求函数 f(u).

得 分

16. 将一根长为*l* 的铁丝分割成两段,一段围成一个圆,另一段围成一个长方形. 求使得圆面积与长方形面积之和最大的分割方法.

江

— · · · — — 题 勿 超

17. 已知一条非均匀金属线 L 放置于平面 Oxy 上,刚好为抛物线 $y = x^2$ 对应于 $0 \le x \le 1$ 的那

一段,且它在点(x,y)处的线密度为 $\rho(x,y)=x$,求该金属丝的质量.

五、证明题(本大题共两小题,其中第18题6分,第19题4分, 共10分)

得 分

18. 证明级数 $\sum_{n=1}^{\infty} (-1)^n \ln \frac{n+1}{n}$ 条件收敛.

19. 设空间闭区域 Ω 可表示为 $\{(x,y,z) | 0 \le x \le 1, x \le y \le 1, x \le z \le y\}$.若 f(t) 在[0,1] 上连续,且 F(x,y,z) = f(x)f(y)f(z).试证明: $\iint_{\Omega} F(x,y,z) dx dy dz = \frac{1}{6} [\int_{0}^{1} f(t) dt]^{3} .$