

Open Source CFD Consulting

 $\mathsf{NEXT} f \mathsf{oam}$

153-790, 서울특별시 금천구 가산동 갑을그레이트밸리 A동 1106호

차 례

1	Flow	and Energy Conditions	6
	1.1	alphatContactAngle	6
	1.2	alphatFixedPressure	6
	1.3	$active Baffle Velocity \ \dots $	7
	1.4	$active Pressure Force Baffle Velocity \\ \ldots \\ \ldots \\ \ldots \\ \ldots \\ \ldots$	8
	1.5	advective	9
	1.6	atmBoundaryLayerInletVelocity	10
	1.7	calculated	11
	1.8	${\it codedFixedValue} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	12
	1.9	$\operatorname{codedMixed} \ \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	13
	1.10	compressible::energyRegionCoupled	14
	1.11	$constant Alpha Contact Angle \\ \ldots \\ $	14
	1.12	cyclic	14
	1.13	cyclicACMI	14
	1.14	cyclicAMI	14
	1.15	cylindricalInletVelocity	15
	1.16	dynamicAlphaContactAngle	15
	1.17	empty	15
	1.18	energyJump	16
	1.19	energyJumpAMI	16
	1.20	externalCoupled	17
	1.21	extrapolatedCalculated	18
	1.22	fan	19
	1.23	fanPressure	20
	1.24	filmHeightInletVelocity	21
	1.25	filmPyrolysisRadiativeCoupledMixed	22
	1.26	filmPyrolysisTemperatureCoupled	23
	1.27	$film Pyrolysis Velocity Coupled \dots \dots$	23
	1.28	fixedEnergy	24
	1.29	fixedFluxExtrapolatedPressure	24
	1.30	fixedFluxPressure	24
	1.31	fixedGradient	25
	1.32	fixedInternalValue	25
	1.33	fixedJump	26
	1.34	fixedJumpAMI	27
	1.35	fixedMean	27

1.36	fixedNormalInletOutletVelocity	28
1.37	fixedNormalSlip	29
1.38	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	30
1.39	fixedProfile	31
1.40	fixedShearStress	32
1.41	fixed Unburnt Enthalpy 	32
1.42	fixedValue	32
1.43	flowRateInletVelocity	33
1.44	fluxCorrectedVelocity	35
1.45	freestream	36
1.46	freestreamPressure	37
1.47	gradientEnergy	38
1.48	gradientUnburntEnthalpy	39
1.49	$inclined Film Nusselt In let Velocity \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	39
1.50	$inclined Film Nusselt Height \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	39
1.51	$inletOutlet \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	39
1.52	$in let Out let Total Temperature \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	40
1.53	$interstitial In let Velocity \ \dots $	40
1.54	${\bf mappedField} \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	41
1.55	${\bf mappedFixedInternalValue}~\dots~\dots~\dots~\dots~\dots~\dots~\dots~\dots~\dots~\dots~\dots~\dots~\dots~\dots~\dots~\dots~\dots~\dots~\dots$	42
1.56	${\bf mappedFixedPushedInternalValue}~\dots~\dots~\dots~\dots~\dots~\dots~\dots$	43
1.57	${\bf mappedFixedValue} $	44
1.58	mappedFlowRate	45
1.59	${\bf mapped Velocity Flux Fixed Value} \ \dots $	46
1.60	mixed	47
1.61	mixedEnergy	48
1.62	$mixed Unburnt Enthalpy \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	48
1.63	$moving Wall Velocity \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	48
	noSlip	48
1.65	$outletInlet \ldots \ldots \ldots \ldots \ldots \ldots$	49
1.66	$outlet Mapped Uniform Inlet \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	50
1.67	outletPhaseMeanVelocity	51
1.68	partialSlip	51
1.69	phaseHydrostaticPressure	52
1.70	plenumPressure	53
1.71	porousBafflePressure	55
1.72	$pressure Directed In let Outlet Velocity \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	56
1.73	$pressure Directed In let Velocity \\ \ldots \\ $	57
1.74	$pressure In let Out let Par Slip Velocity \\ \ldots \\ \ldots \\ \ldots \\ \ldots \\ \ldots \\ \ldots$	58
1.75	pressureInletOutletVelocity	59
1 76	pressureInletUniformVelocity	60

1.77	pressureInletVelocity
1.78	porousBafflePressure
1.79	prghPressure
1.80	$prghTotalHydrostaticPressure \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
1.81	$prghTotalPressure \dots \dots$
1.82	rotating Pressure In let Out let Velocity
1.83	rotatingTotalPressure
1.84	rotatingWallVelocity
1.85	sliced
1.86	slip
1.87	SRFFreestreamVelocity
1.88	SRFVelocity
1.89	SRFWallVelocity
1.90	supersonicFreestream
1.91	surfaceNormalFixedValue
1.92	surfaceSlipDisplacement
1.93	swirlFlowRateInletVelocity
1.94	symmetry
1.95	symmetryPlane
1.96	syringePressure
1.97	temperatureDependentAlphaContactAngle
1.98	timeVaryingAlphaContactAngle
1.99	timeVaryingMappedFixedValue
1.100	totalFlowRateAdvectiveDiffusive
1.101	totalPressure
1.102	totalTemperature
	translatingWallVelocity
	turbulentInlet
	uniformDensityHydrostaticPressure
	uniformFixedGradient
	uniformFixedValue
	uniformInletOutlet
1.109	uniformJump
1.110	uniformJumpAMI
	uniformTotalPressure
1.112	variableHeightFlowRate
	variableHeightFlowRateInletVelocity
	waveSurfacePressure
	waveTransmissive
	wedge
	zeroGradient 9

2	Turk	oulence Conditions	96
	2.1	$atmBoundaryLayerInletEpsilon \\ \ldots \\ $	96
	2.2	atmBoundaryLayerInletK 	98
	2.3	$turbulent Intensity Kinetic Energy Inlet \\ \ldots \\ \ldots \\ \ldots \\ \ldots \\ \ldots \\ \ldots$	100
	2.4	$turbulent Mixing Length Dissipation Rate Inlet \\ \ldots \\ $	101
	2.5	$turbulent Mixing Length Frequency Inlet \\ \ldots \\ \ldots$	102
3	wall	Functions	103
	3.1	alphatJayatillekeWallFunction	103
	3.2	alphatFilmWallFunction	104
	3.3	$compressible :: alphat Jaya tille ke Wall Function \\ \ldots \\ \ldots \\ \ldots \\ \ldots \\ \ldots$	105
	3.4	$compressible :: alphat Wall Function \\ \ \ldots \\ \$	106
	3.5	$epsilonLowReWallFunction \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	107
	3.6	epsilonWallFunction	108
	3.7	fWallFunction	109
	3.8	kLowReWallFunction	110
	3.9	kqRWallFunction	110
	3.10	nutkAtmRoughWallFunction	111
	3.11	$nutkFilmWallFunction \ldots \ldots \ldots \ldots \ldots \ldots$	111
	3.12	$nutk Rough Wall Function \\ \ldots \\ \ldots$	112
	3.13	nutkWallFunction	112
	3.14	nutLowReWallFunction	113
	3.15	$nut UT abulated Wall Function \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	113
	3.16	nutURoughWallFunction	114
	3.17	nutUSpaldingWallFunction	115
	3.18	nutUWallFunction	115
	3.19	omegaWallFunction	116
	3.20	v2WallFunction	117
4	Heat	t Transfer Conditions	118
	4.1	$compressible:: thermal Baffle \dots \dots$	118
	4.2	$compressible:: thermal Baffle 1D \ldots \ldots \ldots \ldots \ldots \ldots$	121
	4.3	$compressible :: turbulent Heat Flux Temperature \\ \ldots \\ \ldots \\ \ldots \\ \ldots \\ \ldots$	122
	4.4	$compressible :: turbulent Temperature Coupled Baffle Mixed \\ \ldots \\ \ldots \\ \ldots$	123
	4.5	$compressible :: turbulent Temperature Rad Coupled Mixed \\ \ldots \\ \ldots \\ \ldots \\ \ldots$	124
	4.6	convectiveHeatTransfer	125
	4.7	externalCoupledTemperatureMixed	126
	4.8	externalWallHeatFluxTemperature	128
	4.9	wallHeatTransfer	129
5	Rad	iation Conditions	130
	5.1	greyDiffusiveRadiation	130
	5.2	greyDiffusiveViewFactor	130
	5.3	MarshakRadiation	131

		Boundary Conditions - OpenFOAM-4.1
5.4	${\it Marshak Radiation Fixed Temperature} \ . \ . \ . \ .$	
5.5	wideBandDiffusiveRadiation	

1 Flow and Energy Conditions

1.1 alphatContactAngle

Abstract base class for alphaContactAngle boundary conditions.

Derived classes must implement the theta() fuction which returns the wall contact angle field.

The essential entry "limit" controls the gradient of alpha1 on the wall:

- none Calculate the gradient from the contact-angle without limiter
- gradient Limit the wall-gradient such that alpha1 remains bounded on the wall
- alpha Bound the calculated alpha1 on the wall
- zeroGradient Set the gradient of alpha1 to 0 on the wall, i.e. reproduce previous behaviour, the pressure BCs can be left as before.

Note that if any of the first three options are used the boundary condition on p_rgh must set to guarantee that the flux is corrected to be zero at the wall e.g.:

```
myPatch
{
    type alphaContactAngle;
    limit none;
}
```

${\bf 1.2}\quad alphat Fixed Pressure$

A fixed-pressure alphaContactAngle boundary

1.3 activeBaffleVelocity

This velocity boundary condition simulates the opening of a baffle due to local flow conditions, by merging the behaviours of wall and cyclic conditions. The baffle joins two mesh regions, where the open fraction determines the interpolation weights applied to each cyclic- and neighbour-patch contribution.

We determine whether the baffle is opening or closing from the sign of the net force across the baffle, from which the baffle open fraction is updated using:

$$x = x_{old} + sign(F_{net})\frac{dt}{DT}$$
(1.1)

x: baffle open fraction [0-1]

 x_{old} : baffle open fraction on previous evaluation

dt: simulation time step

DT: time taken to open the baffle F_{net} : net force across the baffle

Property	Description	Required	Default
p	pressure field name	no	p
cyclicPatch	cylclic patch name	yes	
orientation	1 or -1 used to switch flow direction	yes	
openFraction	current opatch open fraction [0-1]	yes	
openingTime	time taken to open the baffle	yes	
maxOpenFractionDelta	max open fraction change per timestep	yes	

Example

1.4 activePressureForceBaffleVelocity

This boundary condition is applied to the flow velocity, to simulate the opening of a baffle due to local flow conditions, by merging the behaviours of wall and cyclic conditions.

The baffle joins two mesh regions, where the open fraction determines the interpolation weights applied to each cyclic- and neighbour-patch contribution.

Once opened the baffle continues to open at a fixed rate using

$$x = x_{old} + \frac{dt}{DT} \tag{1.2}$$

x : baffle open fraction [0-1]

 x_{old} : baffle open fraction on previous evaluation

dt : simulation time step

DT: time taken to open the baffle

Property	Description	Required	Default
p	pressure field name	no	p
cyclicPatch	cylclic patch name	yes	
orientation	1 or -1 used to switch flow direction	yes	
openFraction	current opatch open fraction [0-1]	yes	
openingTime	time taken to open the baffle	yes	
maxOpenFractionDelta	max open fraction change per timestep	yes	
minThresholdValue	minimum open fraction for activation	yes	
forceBased	force (true) or pressure-based (false) activation	yes	

Example

```
myPatch
{
                     activePressureForceBaffleVelocity;
    type
    cyclicPatch
                     cyclic1;
    orientation
                     1;
    openFraction
                     0.2;
    openingTime
                     5.0;
    maxOpenFractionDelta 0.1;
    minThresholdValue 0.01;
    forceBased
                     false;
}
```

1.5 advective

This boundary condition provides an advective outflow condition, based on solving DDt(psi, U) = 0 at the boundary.

The standard (Euler, backward, CrankNicolson) time schemes are supported. Additionally an optional mechanism to relax the value at the boundary to a specified far-field value is provided which is switched on by specifying the relaxation length-scale [Inf and the far-field value fieldInf.

The flow/wave speed at the outlet is provided by the virtual function advectionSpeed() the default implementation of which requires the name of the flux field (phi) and optionally the density (rho) if the mass-flux rather than the volumetric-flux is given.

The flow/wave speed at the outlet can be changed by deriving a specialised BC from this class and over-riding advectionSpeed() e.g. in waveTransmissiveFvPatchField the advectionSpeed() calculates and returns the flow-speed plus the acoustic wave speed creating an acoustic wave transmissive boundary condition.

Property	Description	Required	Default
phi	flux field name	no	phi
rho	density field name	no	rho
fieldInf	value of field beyond patch	no	
$\overline{\text{lInf}}$	distance beyond patch for $fieldInf$	no	

```
myPatch
{
    type     advective;
    phi     phi;
}
```

Note:

If lInf is specified, fieldInf will be required; rho is only required in the case of a mass-based flux.

1.6 atmBoundaryLayerInletVelocity

This boundary condition specifies a velocity inlet profile appropriate for atmospheric boundary layers (ABL).

The profile is derived from the friction velocity, flow direction and "vertical" direction

$$U = \frac{U^*}{\kappa} ln \left(\frac{z - z_g + z_0}{z_0} \right) \tag{1.3}$$

 U^* : frictional velocity

 κ : von Karman's constant

z: vertical coordinate

 z_0 : surface roughness height [m] z_g : minimum z-coordinate [m]

and:

$$U^* = \kappa \frac{U_{ref}}{\ln\left(\frac{Z_{ref} + z_0}{z_0}\right)} \tag{1.4}$$

 U_{ref} : reference velocity at Z_{ref} [m/s]

 Z_{ref} : reference height [m]

Reference:

D.M. Hargreaves and N.G. Wright, "On the use of the k-epsilon model in commercial CFD software to model the neutral atmospheric boundary layer", Journal of Wind Engineering and Industrial Aerodynamics 95(2007), pp 355-369.

Property	Description	Required	Default
flowDir	Flow direction	yes	
zDir	Vertical direction	yes	
kappa	von Karman's constant	no	0.41
Cmu	Turbulence viscosity coefficient	no	0.09
Uref	Reference velocity [m/s]	yes	
Zref	Reference height [m]	yes	
$\overline{z0}$	Surface roughness height [m]	yes	
zGround	Minimum z-coordinate [m]	yes	

Note:

D.M. Hargreaves and N.G. Wright recommend Gamma epsilon in the k-epsilon model should be changed from 1.3 to 1.11 for consistency. The roughness height (Er) is given by Er = 20 z0 following the same reference.

1.7 calculated

```
myPatch
{
    type calculated;
}
```

1.8 codedFixedValue

Constructs on-the-fly a new boundary condition (derived from fixedValueFvPatchField) which is then used to evaluate.

Example

```
myPatch
                    codedFixedValue;
    type
                    uniform 0;
    value
    redirectType
                    rampedFixedValue;
                                        // name of generated BC
    code
    # {
        operator==(min(10, 0.1*this->db().time().value()));
    #};
    //codeInclude
    //#{
          #include "fvCFD.H"
    //#};
    //codeOptions
    //#{
          -I$(LIB_SRC)/finiteVolume/lnInclude
    //#};
```

A special form is if the 'code' section is not supplied. In this case the code is read from a (runTimeModifiable!) dictionary system/codeDict which would have a corresponding entry:

Example

```
myPatch
{
    code
    #{
        operator==(min(10, 0.1*this->db().time().value()));
    #};
}
```

1.9 codedMixed

Constructs on-the-fly a new boundary condition (derived from mixedFvPatchField) which is then used to evaluate.

Example

```
myPatch
{
    type
                    codedMixed;
    refValue
                    uniform (0 0 0);
    refGradient
                    uniform (0 \ 0 \ 0);
    valueFraction
                   uniform 1;
                                  // name of generated BC
    redirectType
                   rampedMixed;
    code
    # {
        this->refValue() =
            vector(1, 0, 0)
           *min(10, 0.1*this->db().time().value());
        this->refGrad() = vector::zero;
        this->valueFraction() = 1.0;
    # } ;
    //codeInclude
    //#{
          #include "fvCFD.H"
    //#};
    //codeOptions
    //#{
    //
          -I$(LIB_SRC)/finiteVolume/lnInclude
    //#};
}
```

A special form is if the 'code' section is not supplied. In this case the code gets read from a (runTimeModifiable!) dictionary system/codeDict which would have a corresponding entry

Example

```
myPatch
{
    code
    #{
        this->refValue() = min(10, 0.1*this->db().time().value());
        this->refGrad() = vector::zero;
        this->valueFraction() = 1.0;
    #};
}
```

1.10 compressible::energyRegionCoupled

Energy region coupled implicit boundary condition.

The fvPatch is treated as uncoupled from the delta point of view.

In the mesh the fvPatch is an interface and is incorporated into the matrix implicitly.

1.11 constantAlphaContactAngle

A constant alphaContactAngle scalar boundary condition.

1.12 cyclic

```
myPatch
{
    type cyclic;
}
```

1.13 cyclicACMI

```
myPatch
{
    type         cyclicACMI;
    value    $internalField;
}
```

1.14 cyclicAMI

```
myPatch
{
    type         cyclicAMI;
    value    $internalField;
}
```

1.15 cylindricalInletVelocity

This boundary condition describes an inlet vector boundary condition in cylindrical co-ordinates given a central axis, central point, rpm, axial and radial velocity.

Property	Description	Required	Default
axis	axis of rotation	yes	
centre	centre of rotation	yes	
axialVelocity	axial velocity profile [m/s]	yes	
radialVelocity	radial velocity profile [m/s]	yes	
rpm	rotational speed (revolutions per minute)	yes	

myPatch {

```
type cylindricalInletVelocity;
axis (0 0 1);
centre (0 0 0);
axialVelocity constant 30;
radialVelocity constant -10;
rpm constant 100;
```

Note:

The axialVelocity, radialVelocity and rpm entries are DataEntry types, able to describe time varying functions. The example above gives the usage for supplying constant values.

1.16 dynamicAlphaContactAngle

 $\label{lem:alphaContactAngle scalar boundary condition} A dynamic alphaContactAngleFvPatchScalarField)$

1.17 empty

Example myPatch { type empty; }

1.18 energyJump

This boundary condition provides an energy jump condition across a pair of coupled patches. It is not applied directly, but is employed on-the-fly when converting temperature boundary conditions into energy.

1.19 energyJumpAMI

This boundary condition provides an energy jump condition across a pair of coupled patches with an arbitrary mesh interface (AMI). It is not applied directly, but is employed on-the-fly when converting temperature boundary conditions into energy.

1.20 externalCoupled

This boundary condition provides an interface to an external application. Values are transferred as plain text files, where OpenFOAM data is written as:

```
# Patch: <patch name>
<magSf1> <value1> <surfaceNormalGradient1>
<magSf2> <value2> <surfaceNormalGradient2>
<magSf3> <value3> <surfaceNormalGradient3>
...
<magSfN> <valueN> <surfaceNormalGradientN>

and received as the constituent pieces of the 'mixed' condition, i.e.

# Patch: <patch name>
<value1> <gradient1> <valueFracion1>
<value2> <gradient2> <valueFracion2>
<value3> <gradient3> <valueFracion3>
...
<valueN> <gradientN> <valueFracionN>
```

Data is sent/received as a single file for all patches from the directory

```
$FOAM_CASE/<commsDir>
```

At start-up, the boundary creates a lock file, i.e..

OpenFOAM.lock

... to signal the external source to wait. During the boundary condition update, boundary values are written to file, e.g.

```
<fileName>.out
```

The lock file is then removed, instructing the external source to take control of the program execution. When ready, the external program should create the return values, e.g. to file

```
<fileName>.in
```

... and then re-instate the lock file. The boundary condition will then read the return values, and pass program execution back to OpenFOAM.

Property	Description	Required	Default
commsDir	communications directory	yes	
fileName	transfer file name	yes	
waitInterval	interval [s] between file checks	no	1
timeOut	time after which error invoked [s]	no	100*waitInterval
calcFrequency	calculation frequency	no	1
initByExternal	external app to initialises values	yes	
\log	log program control	no	no

Example

1.21 extrapolatedCalculated

This boundary condition applies a zero-gradient condition from the patch internal field onto the patch faces when evaluated but may also be assigned. snGrad returns the patch gradient evaluated from the current internal and patch field values rather than returning zero.

Example

1.22 fan

This boundary condition provides a jump condition, using the cyclic condition as a base.

The jump is specified as a DataEntry type, to enable the use of, e.g. contant, polynomial, table values.

Property	Description	Required	Default
patchType	underlying patch type should be <i>cyclic</i>	yes	
jumpTable	jump data, e.g. $csvFile$	yes	
phi	flux field name	no	phi
rho	density field name	no	none

Example

```
myPatch
{
    type
                     fan;
    patchType
                     cyclic;
    jumpTable
                     csvFile;
    csvFileCoeffs
        hasHeaderLine
                         1;
        refColumn
                         0;
        componentColumns 1(1);
        separator
        fileName
                         "$FOAM_CASE/constant/pressureVsU";
    }
    value
                     uniform 0;
```

The above example shows the use of a comma separated (CSV) file to specify the jump condition.

Note:

The underlying patchType should be set to cyclic

1.23 fanPressure

This boundary condition can be applied to assign either a pressure inlet or outlet total pressure condition for a fan.

Property	Description	Required	Default
fileName	fan curve file name	yes	
outOfBounds	out of bounds handling	yes	
direction	direction of flow through fan [in/out]	yes	
p0	environmental total pressure	yes	

$\mathbf{E}\mathbf{x}$ ample

```
inlet
    type
                     fanPressure;
    fileName
                     "fanCurve";
    outOfBounds
                     clamp;
    direction
                     in;
    рO
                     uniform 0;
                     uniform 0;
    value
outlet
    type
                     fanPressure;
    fileName
                     "fanCurve";
    outOfBounds
                     clamp;
    direction
                     out;
    рO
                     uniform 0;
    value
                     uniform 0;
```

Note:

If reverse flow is possible or expected use the pressureInletOutletVelocity condition instead.

1.24 filmHeightInletVelocity

This boundary condition is designed to be used in conjunction with surface film modelling. It provides a velocity inlet boundary condition for patches where the film height is specified. The inflow velocity is obtained from the flux with a direction normal to the patch faces using:

$$U_p = \frac{n\phi}{\rho |Sf|\delta} \tag{1.5}$$

 U_p : patch velocity [m/s] n: patch normal vector

 ϕ : mass flux [kg/s] ρ : density [kg/m3]

Sf: patch face area vectors [m2]

 δ : film height [m]

Property	Description	Required	Default
phi	Flux field name	no	phi
rho	density field name	no	rho
deltaf	height field name	no	deltaf

```
myPatch
{
    type     filmHeightInletVelocity;
    phi     phi;
    rho     rho;
    deltaf     deltaf;
    value     uniform (0 0 0); // initial velocity / [m/s]
}
```

${\bf 1.25} \quad film Pyrolysis Radiative Coupled Mixed$

Mixed boundary condition for temperature, to be used in the flow and pyrolysis regions when a film region model is used.

Example

```
myInterfacePatch
                     filmPyrolysisRadiativeCoupledMixed;
    type
    Tnbr
                     Τ;
                     fluidThermo;
    kappa
    Qr
                     Qr;
    kappaName
                     none;
    filmDeltaDry
                     0.0;
    filmDeltaWet
                     3e-4;
    value
                     $internalField;
```

Needs to be on underlying mapped(Wall)FvPatch.

It calculates local field as:

$$ratio = (filmDelta - filmDeltaDry)/(filmDeltaWet - filmDeltaDry)$$
 (1.6)

when ratio = 1 is considered wet and the film temperature is fixed at the wall. If ratio = 0 (dry) it emulates the normal radiative solid BC.

In between ratio 0 and 1 the gradient and value contributions are weighted using the ratio field in the following way:

$$qConv = ratio * htcwfilm * (Tfilm - *this); qRad = (1.0 - ratio) * Qr;$$
 (1.7)

Then the solid can gain or loose energy through radiation or conduction towards the film.

Notes:

- kappa and kappaName are inherited from temperatureCoupledBase.
- Qr is the radiative flux defined in the radiation model.

1.26 filmPyrolysisTemperatureCoupled

This boundary condition is designed to be used in conjunction with surface film and pyrolysis modelling. It provides a temperature boundary condition for patches on the primary region based on whether the patch is seen to be 'wet', retrieved from the film alpha field.

- if the patch is wet, the temperature is set using the film temperature
- otherwise, it is set using pyrolysis temperature

1.27 filmPyrolysisVelocityCoupled

This boundary condition is designed to be used in conjunction with surface film and pyrolysis modelling.

It provides a velocity boundary condition for patches on the primary region based on whether the patch is seen to be 'wet', retrieved from the film alpha field.

- if the patch is wet, the velocity is set using the film velocity
- otherwise, it is set using pyrolysis out-gassing velocity

```
Example
   myPatch
        type
                        filmPyrolysisVelocityCoupled;
       phi
                        phi;
                                  // name of flux field (default = phi)
                                  // name of density field (default = rho)
        rho
                        rho;
                                  // threshold height for 'wet' film
        deltaWet
                        1e-4;
                                   (0 0 0); // initial velocity / [m/s]
        value
                        uniform
    }
```

1.28 fixedEnergy

This boundary condition provides a fixed condition for internal energy

```
myPatch
{
    type     fixedEnergy;
    value     uniform 100;
}
```

1.29 fixedFluxExtrapolatedPressure

This boundary condition sets the pressure gradient to the provided value such that the flux on the boundary is that specified by the velocity boundary condition.

```
myPatch
{
    type fixedFluxExtrapolatedPressure;
}
```

1.30 fixedFluxPressure

This boundary condition sets the pressure gradient to the provided value such that the flux on the boundary is that specified by the velocity boundary condition.

```
myPatch
{
    type fixedFluxPressure;
}
```

1.31 fixedGradient

This boundary condition supplies a fixed gradient condition, such that the patch values are calculated using:

$$x_p = x_c + \frac{\nabla(x)}{\Delta} \tag{1.8}$$

 x_p : patch values

 x_c : internal field values

 $\nabla(x)$: gradient (user-specified)

 Δ : inverse distance from patch face centre to cell centre

Property	Description	Required	Default
gradient	gradient	yes	

```
myPatch
{
    type fixedGradient;
    gradient uniform 0;
}
```

1.32 fixedInternalValue

This boundary condition provides a mechanism to set boundary (cell) values directly into a matrix, i.e. to set a constraint condition. Default behaviour is to act as a zero gradient condition.

```
myPatch
{
    type fixedInternalValue;
    value uniform 0;  // place holder
}
```

Note:

This is used as a base for conditions such as the turbulence *epsilon* wall function, which applies a near-wall constraint for high Reynolds number flows.

1.33 fixedJump

This boundary condition provides a jump condition, using the *cyclic* condition as a base. The jump is specified as a fixed value field, applied as an offset to the 'owner' patch.

Property	Description	Required	Default
patchType	underlying patch type should be <i>cyclic</i>	yes	
jump	current jump value	yes	

```
myPatch
{
    type     fixedJump;
    patchType     cyclic;
    jump     uniform 10;
}
```

The above example shows the use of a fixed jump of '10'.

Note:

The underlying patchType should be set to cyclic

1.34 fixedJumpAMI

This boundary condition provides a jump condition, across non-conformal cyclic path-pairs, employing an arbitraryMeshInterface (AMI).

The jump is specified as a fixed value field, applied as an offset to the 'owner' patch.

Property	Description	Required	Default
patchType	underlying patch type should be <i>cyclic</i>	yes	
jump	current jump value	yes	

```
myPatch
{
    type     fixedJumpAMI;
    patchType     cyclic;
    jump     uniform 10;
}
```

The above example shows the use of a fixed jump of '10'.

Note:

The underlying patchType should be set to cyclicAMI

1.35 fixedMean

This boundary condition extrapolates field to the patch using the near-cell values and adjusts the distribution to match the specified, optionally time-varying, mean value.

Property	Description	Required	Default
meanValue	mean value Function1	yes	

```
myPatch
{
    type     fixedMean;
    meanValue    1.0;
}
```

1.36 fixedNormalInletOutletVelocity

This velocity inlet/outlet boundary condition combines a fixed normal component obtained from the "normalVelocity" patchField supplied with a fixed or zero-gradiented tangential component depending on the direction of the flow and the setting of "fixTangentialInflow":

- Outflow: apply zero-gradient condition to tangential components
- Inflow:
 - fixTangentialInflow is true
 - apply value provided by the normalVelocity patchField to the tangential components
 - fixTangentialInflow is false
 - apply zero-gradient condition to tangential components.

Property	Description	Required	Default
phi	flux field name	no	phi

Example

```
myPatch
    type
                     fixedNormalInletOutletVelocity;
    fixTangentialInflow false;
    normalVelocity
        type
                         uniformFixedValue;
        uniformValue
                         sine;
        uniformValueCoeffs
            frequency 1;
            amplitude table
                 (0 0)
                 (2 0.088)
                 (80.088)
            );
            scale
                       (0 1 0);
                       (0\ 0\ 0);
            level
    }
    value
                     uniform (0 0 0);
```

1.37 fixedNormalSlip

This boundary condition sets the patch-normal component to a fixed value.

Property	Description	Required	Default
fixedValue	fixed value	yes	

```
myPatch
{
    type fixedNormalSlip;
    fixedValue uniform 0; // example entry for a scalar field
}
```

1.38 fixedPressureCompressibleDensity

This boundary condition calculates a (liquid) compressible density as a function of pressure and fluid properties:

$$\rho = \rho_{l,sat} + \psi_l * (p - p_{sat}) \tag{1.9}$$

 ρ : density [kg/m3]

 $\rho_{l,sat}$: saturation liquid density [kg/m3]

 ψ_l : liquid compressibility

p: pressure [Pa]

 p_{sat} : saturation pressure [Pa]

The variables $\rho_{l,sat}$, p_{sat} and ψ_l are retrieved from the thermodynamic Properties dictionary.

Property	Description	Required	Default
p	pressure field name	no	p

```
myPatch
{
    type     fixedPressureCompressibleDensity;
    p     p;
    value     uniform 1;
}
```

1.39 fixedProfile

This boundary condition provides a fixed value profile condition.

Property	Description	Required	Default
profile	Profile Function1	yes	
direction	Profile direction	yes	
origin	Profile origin	yes	

Example

```
myPatch
                    fixedProfile;
    type
    profile
               csvFile;
    profileCoeffs
        nHeaderLine
                            0;
                                       // Number of header lines
        refColumn
                            0;
                                        // Reference column index
                                        // Component column indices
        componentColumns
                            (1 \ 2 \ 3);
                            ",";
                                        // Optional (defaults to ",")
        separator
        mergeSeparators
                                        // Merge multiple separators
                            no;
                            "Uprofile.csv"; // name of csv data file
        fileName
        outOfBounds
                                        // Optional out-of-bounds handling
                            clamp;
        interpolationScheme linear;
                                        // Optional interpolation scheme
    }
    direction
                     (0 \ 1 \ 0);
    origin
                     0;
```

Example setting a parabolic inlet profile for the PitzDaily case

Note:

- The profile entry is a Function1 type. The example above gives the usage for supplying csv file.

1.40 fixedShearStress

Set a constant shear stress as tau0 = -nuEff dU/dn

${\bf 1.41} \quad fixed Unburnt Enthalpy$

Fixed boundary condition for unburnt

1.42 fixedValue

```
myPatch
{
    type     fixedValue;
    value     uniform 100;
    //value     uniform (0 0 0); // for vector
}
```

1.43 flowRateInletVelocity

This boundary condition provides a velocity boundary condition, derived from the flux (volumetric or mass-based), whose direction is assumed to be normal to the patch.

For a mass-based flux:

- the flow rate should be provided in kg/s
- if *rhoName* is "none" the flow rate is in m3/s
- otherwise rhoName should correspond to the name of the density field
- if the density field cannot be found in the database, the user must specify the inlet density using the rhoInlet entry

For a volumetric-based flux:

- the flow rate is in m3/s

Property	Description	Required	Default
massFlowRate	mass flow rate [kg/s]	no	
${\bf volumetric Flow Rate}$	volumetric flow rate [m3/s]	no	
rhoInlet	inlet density	no	
extrapolateProfile	Extrapolate velocity profile	no	false

Example for a volumetric flow rate

```
myPatch
{
    type     flowRateInletVelocity;
    volumetricFlowRate 0.2;
    extrapolateProfile yes;
    value     uniform (0 0 0);
}
```

Example for a mass flow rate

The flowRate entry is a Function1 of time, see Foam::Function1Types.

Note:

- rhoInlet is required for the case of a mass flow rate, where the density field is not available at start-up
- the value is positive into the domain (as an inlet)
- may not work correctly for transonic inlets
- strange behaviour with potentialFoam since the U equation is not solved

1.44 fluxCorrectedVelocity

This boundary condition provides a velocity outlet boundary condition for patches where the pressure is specified. The outflow velocity is obtained by "zeroGradient" and then corrected from the flux:

$$U_p = U_c - n(n \cdot U_c) + \frac{n\phi_p}{|S_f|}$$
(1.10)

 U_p : velocity at the patch [m/s]

 U_c : velocity in cells adjacent to the patch [m/s]

n: patch normal vectors

 ϕ_p : flux at the patch [m3/s or kg/s] S_f : patch face area vectors [m2]

Property	Description	Required	Default
phi	name of flux field	no	phi
rho	name of density field	no	rho

myPatch { type fluxCorrectedVelocity; phi phi; rho rho; }

Note:

If reverse flow is possible or expected use the pressureInletOutletVelocity condition instead.

1.45 freestream

This boundary condition provides a free-stream condition. It is a 'mixed' condition derived from the *inletOutlet* condition, whereby the mode of operation switches between fixed (free stream) value and zero gradient based on the sign of the flux.

Property	Description	Required	Default
freestreamValue	freestream velocity	yes	
phi	flux field name	no	phi

```
myPatch
{
    type     freestream;
    phi     phi;
}
```

1.46 freestreamPressure

This boundary condition provides a free-stream condition for pressure. It is a zero-gradient condition that constrains the flux across the patch based on the free-stream velocity.

Property	Description	Required	Default
U	velocity field name	no	U
phi	flux field name	no	phi
rho	density field name	no	none

Example	
myPatch	
{	
type	<pre>freestreamPressure;</pre>
}	

Note:

This condition is designed to operate with a freestream velocity condition

1.47 gradientEnergy

This boundary condition provides a gradient condition for internal energy, where the gradient is calculated using:

$$\nabla(e_p) = \nabla_{\perp} C_p(p, T) + \frac{e_p - e_c}{\Delta}$$
(1.11)

 e_p : energy at patch faces [J]

 e_c : energy at patch internal cells [J]

p : pressure [bar]

T: temperature [K]

 C_p : specific heat [J/kg/K]

 Δ : distance between patch face and internal cell centres [m]

Property	Description	Required	Default
U	velocity field name	no	U
phi	flux field name	no	phi
rho	density field name	no	none

Example

1.48 gradientUnburntEnthalpy

gradient boundary condition for unburnt

1.49 inclinedFilmNusseltInletVelocity

Film velocity boundary condition for inclined films that imposes a sinusoidal perturbation on top of a mean flow rate, where the velocity is calculated using the Nusselt solution.

1.50 inclinedFilmNusseltHeight

Film height boundary condition for inclined films that imposes a sinusoidal perturbation on top of a mean flow rate, where the height is calculated using the Nusselt solution.

1.51 inletOutlet

This boundary condition provides a generic outflow condition, with specified inflow for the case of return flow.

Property	Description	Required	Default
phi	flux field name	no	phi
inletValue	inlet value for reverse flow	yes	

```
myPatch
{
    type     inletOutlet;
    phi     phi;
    inletValue     uniform 0;
    value     uniform 0;
}
```

The mode of operation is determined by the sign of the flux across the patch faces.

Note:

Sign conventions:

- positive flux (out of domain): apply zero-gradient condition
- negative flux (into of domain): apply the user-specified fixed value

1.52 inletOutletTotalTemperature

This boundary condition provides an outflow condition for total temperature for use with supersonic cases, where a user-specified value is applied in the case of reverse flow.

Property	Description	Required	Default
U	velocity field name	no	U
phi	flux field name	no	phi
psi	compressibility field name	no	psi
gamma	heat capacity ration (Cp/Cv)	yes	
inletValue	reverse flow (inlet) value	yes	
T0	static temperature [K]	yes	

myPatch inletOutletTotalTemperature; type U U; phi phi; psi psi; gamma; gamma inletValue uniform 0; ΤO uniform 0; uniform 0; value

1.53 interstitialInletVelocity

Inlet velocity in which the actual interstitial velocity is calculated by dividing the specified inletVelocity field with the local phase-fraction.

1.54 mappedField

This boundary condition provides a self-contained version of the *mapped* condition. It does not use information on the patch; instead it holds thr data locally.

Property	Description	Required	Default
fieldName	name of field to be mapped	no	this field name
$\overline{\text{setAverage}}$	flag to activate setting of average value	yes	
average	average value to apply if $setAverage = yes$	yes	

Note:

Since this condition can be applied on a per-field and per-patch basis, it is possible to duplicate the mapping information. If possible, employ the *mapped* condition in preference to avoid this situation, and only employ this condition if it is not possible to change the underlying geometric (poly) patch type to *mapped*.

${\bf 1.55} \quad {\bf mapped Fixed Internal Value}$

This boundary condition maps the boundary and internal values of a neighbour patch field to the boundary and internal values of *this.

Property	Description	Required	Default
fieldName	name of field to be mapped	no	this field name
setAverage	flag to activate setting of average value	yes	
average	average value to apply if $setAverage = yes$	yes	

Note:

This boundary condition can only be applied to patches that are of the mappedPolyPatch type.

${\bf 1.56} \quad {\bf mapped Fixed Pushed Internal Value}$

This boundary condition maps the boundary values of a neighbour patch field to the boundary and internal cell values of *this.

Property	Description	Required	Default
fieldName	name of field to be mapped	no	this field name
setAverage	flag to activate setting of average value	yes	
average	average value to apply if $setAverage = yes$	yes	

Note:

This boundary condition can only be applied to patches that are of the mappedPolyPatch type.

1.57 mappedFixedValue

This boundary condition maps the value at a set of cells or patch faces back to *this.

The sample mode is set by the underlying mapping engine, provided by the mappedPatchBase class.

Property	Description	Required	Default
fieldName	name of field to be mapped	no	this field name
setAverage	flag to activate setting of average value	yes	
average	average value to apply if $setAverage = yes$	yes	
interpolationScheme	type of interpolation scheme	no	

When employing the nearestCell sample mode, the user must also specify the interpolation scheme using the interpolationScheme entry.

In case of interpolation (where scheme != cell) the limitation is that there is only one value per cell. For example, if you have a cell with two boundary faces and both faces sample into the cell, both faces will get the same value.

Note:

It is not possible to sample internal faces since volume fields are not defined on faces.

1.58 mappedFlowRate

Describes a volumetric/mass flow normal vector boundary condition by its magnitude as an integral over its area.

The inlet mass flux is taken from the neighbour region.

The basis of the patch (volumetric or mass) is determined by the dimensions of the flux, phi. The current density is used to correct the velocity when applying the mass basis.

Property	Description	Required	Default
phi	flux field name	no	phi
rho	density field name	no	rho
neigPhi	name of flux field on neighbour mesh	yes	

${\bf 1.59} \quad {\bf mapped Velocity Flux Fixed Value}$

This boundary condition maps the velocity and flux from a neighbour patch to this patch

Property	Description	Required	Default
phi	flux field name	no	phi

The underlying sample mode should be set to nearestPatchFace or nearestFace

Note:

This boundary condition can only be applied to patches that are of the mappedPolyPatch type.

1.60 mixed

This boundary condition provides a base class for 'mixed' type boundary conditions, i.e. conditions that mix fixed value and patch-normal gradient conditions.

The respective contributions from each is determined by a weight field:

$$x_p = wx_p + (1 - w)\left(x_c + \frac{\nabla_{\perp} x}{\Delta}\right)$$
 (1.12)

 x_p : patch values

 x_c : patch internal cell values

 Δ : inverse distance from face centre to internal cell centre

w: weighting (0-1)

Property	Description	Required	Default
valueFraction	weight field	yes	
refValue	fixed value	yes	
refGrad	patch normal gradient	yes	

Example

Note:

This condition is not usually applied directly; instead, use a derived mixed condition such as inletOutlet

1.61 mixedEnergy

This boundary condition provides a mixed condition for internal energy

1.62 mixedUnburntEnthalpy

Mixed boundary condition for unburnt

1.63 movingWallVelocity

This boundary condition provides a velocity condition for cases with moving walls.

```
myPatch
{
    type          movingWallVelocity;
    value          uniform (0 0 0); // initial value
}
```

1.64 noSlip

This boundary condition fixes the velocity to zero at walls.

```
myPatch
{
    type     noSlip;
}
```

1.65 outletInlet

This boundary condition provides a generic inflow condition, with specified outflow for the case of reverse flow.

Property	Description	Required	Default
phi	flux field name	no	phi
outletValue	Outlet value for reverse flow	yes	

```
myPatch
{
    type      outletInlet;
    phi      phi;
    outletValue      uniform 0;
    value      uniform 0;
}
```

The mode of operation is determined by the sign of the flux across the patch faces.

Note:

Sign conventions:

- positive flux (out of domain): apply the user-specified fixed value
- negative flux (into of domain): apply zero-gradient condition

1.66 outlet Mapped Uniform Inlet

This boundary condition averages the field over the "outlet" patch specified by name "outlet-PatchName" and applies this as the uniform value of the field over this patch.

Property	Description	Required	Default
outletPatchName	name of outlet patch	yes	
phi	flux field name	no	phi

Example

```
myPatch
{
    type         outletMappedUniformInlet;
    outletPatchName aPatch;
    phi         phi;
    value         uniform 0;
}
```

1.67 outletPhaseMeanVelocity

This boundary condition adjusts the velocity for the given phase to achieve the specified mean thus causing the phase-fraction to adjust according to the mass flow rate.

Typical usage is as the outlet condition for a towing-tank ship simulation to maintain the outlet water level at the level as the inlet.

Property	Description	Required	Default
Umean	mean velocity normal to the boundary [m/s]	yes	
alpha	phase-fraction field	yes	

```
myPatch
{
    type         outletPhaseMeanVelocity;
    Umean         1.2;
    alpha         alpha.water;
    value         uniform (1.2 0 0);
}
```

1.68 partialSlip

This boundary condition provides a partial slip condition. The amount of slip is controlled by a user-supplied field.

Property	Description	Required	Default
valueFraction	fraction od value used for boundary [0-1]	yes	

1.69 phaseHydrostaticPressure

This boundary condition provides a phase-based hydrostatic pressure condition, calculated as:

$$p_{hyd} = p_{ref} + \rho g(x - x_{ref}) \tag{1.13}$$

```
p_{hyd}: hyrostatic pressure [Pa] p_{ref}: reference pressure [Pa] x_{ref}: reference point in Cartesian co-ordinates \rho: density (assumed uniform) g: acceleration due to gravity [m/s2]
```

The values are assigned according to the phase-fraction field:

- 1: apply p_{hyd}

Example

value

- 0: apply a zero-gradient condition

Property	Description	Required	Default
phaseFraction	phase-fraction field name	no	alpha
rho	density field name	no	rho
pRefValue	reference pressure [Pa]	yes	
pRefPoint	reference pressure location	yes	

uniform 0; // optional initial value

1.70 plenumPressure

This boundary condition provides a plenum pressure inlet condition. This condition creates a zero-dimensional model of an enclosed volume of gas upstream of the inlet. The pressure that the boundary condition exerts on the inlet boundary is dependent on the thermodynamic state of the upstream volume. The upstream plenum density and temperature are time-stepped along with the rest of the simulation, and momentum is neglected. The plenum is supplied with a user specified mass flow and temperature.

The result is a boundary condition which blends between a pressure inlet condition condition and a fixed mass flow. The smaller the plenum volume, the quicker the pressure responds to a deviation from the supply mass flow, and the closer the model approximates a fixed mass flow. As the plenum size increases, the model becomes more similar to a specified pressure.

The expansion from the plenum to the inlet boundary is controlled by an area ratio and a discharge coefficient. The area ratio can be used to represent further acceleration between a sub-grid blockage such as fins. The discharge coefficient represents a fractional deviation from an ideal expansion process.

This condition is useful for simulating unsteady internal flow problems for which both a mass flow boundary is unrealistic, and a pressure boundary is susceptible to flow reversal. It was developed for use in simulating confined combustion.

Reference:

```
Bainbridge, W. (2013).
```

The Numerical Simulation of Oscillations in Gas Turbine Combustion Chambers,

PhD Thesis,

Chapter 4, Section 4.3.1.2, 77-80.

Property	Description	Required	Default
gamma	ratio of specific heats	yes	none
R	specific gas constant	yes	none
supplyMassFlowRate	flow rate into the plenum	yes	none
supplyTotalTemperature	temperature into the plenum	yes	none
plenumVolume	plenum volume	yes	none
plenumDensity	plenum density	yes	none
plenumTemperature	plenum temperature	yes	none

${\bf Boundary~Conditions~-~OpenFOAM-4.1}$

U	velocity field name	no	U
phi	flux field name	no	phi
rho	inlet density	no	none
inletAreaRatio	inlet open fraction	yes	none
in let Discharge Coefficient	inlet loss coefficient	yes	none
timeScale	relaxation time scale	yes	none

Example

```
myPatch
                  plenumPressure;
   type
   gamma
                   1.4;
                   287.04;
   supplyMassFlowRate 0.0001;
   supplyTotalTemperature 300;
   plenumVolume 0.000125;
   plenumDensity 1.1613;
   plenumTemperature 300;
   inletAreaRatio 1.0;
   inletDischargeCoefficient 0.8;
   timeScale
               1e-4;
   value
                  uniform 1e5;
}
```

1.71 porousBafflePressure

This boundary condition provides a jump condition, using the cyclic condition as a base.

The porous baffle introduces a pressure jump defined by:

$$\Delta p = -(D\mu U + 0.5I\rho |U|^2)L \tag{1.14}$$

p: pressure [Pa]

 ρ : density [kg/m3]

 μ : laminar viscosity [Pa s]

D: Darcy coefficient I: inertial coefficient

L: porous media length in the flow direction

Property	Description	Required	Default
patchType	underlying patch type should be cyclic	yes	
phi	flux field name	no	phi
rho	density field name	no	rho
D	Darcy coefficient	yes	
I	inertial coefficient	yes	
length	porous media length in the flow direction	yes	

Example

Note:

The underlying patchType should be set to cyclic

1.72 pressureDirectedInletOutletVelocity

This velocity inlet/outlet boundary condition is applied to pressure boundaries where the pressure is specified. A zero-gradient condition is applied for outflow (as defined by the flux); for inflow, the velocity is obtained from the flux with the specified inlet direction.

Property	Description	Required	Default
phi	flux field name	no	phi
rho	density field name	no	rho
inletDirection	inlet direction per patch face	yes	

Note:

Sign conventions:

- positive flux (out of domain): apply zero-gradient condition
- negative flux (into of domain): derive from the flux with specified direction

1.73 pressure Directed Inlet Velocity

This velocity inlet boundary condition is applied to patches where the pressure is specified. The inflow velocity is obtained from the flux with the specified inlet direction" direction.

Property	Description	Required	Default
phi	flux field name	no	phi
rho	density field name	no	rho
inletDirection	inlet direction per patch face	yes	

Note:

If reverse flow is possible or expected use the pressureDirectedInletOutletVelocityFvPatchVectorField condition instead.

1.74 pressureInletOutletParSlipVelocity

This velocity inlet/outlet boundary condition for pressure boundary where the pressure is specified. A zero-gradient is applied for outflow (as defined by the flux); for inflow, the velocity is obtained from the flux with the specified inlet direction.

A slip condition is applied tangential to the patch.

Property	Description	Required	Default
phi	flux field name	no	phi
rho	density field name	no	rho

```
myPatch
{
    type         pressureInletOutletParSlipVelocity;
    value         uniform 0;
}
```

Note:

Sign conventions:

- positive flux (out of domain): apply zero-gradient condition
- negative flux (into of domain): derive from the flux with specified direction

1.75 pressureInletOutletVelocity

This velocity inlet/outlet boundary condition is applied to pressure boundaries where the pressure is specified. A zero-gradient condition is applied for outflow (as defined by the flux); for inflow, the velocity is obtained from the patch-face normal component of the internal-cell value.

The tangential patch velocity can be optionally specified.

Property	Description	Required	Default
phi	flux field name	no	phi
tangentialVelocity	tangential velocity field	no	

Note:

Sign conventions:

value

- positive flux (out of domain): apply zero-gradient condition
- negative flux (into of domain): derive from the flux in the patch-normal direction

uniform (0 0 0);

1.76 pressureInletUniformVelocity

This velocity inlet boundary condition is applied to patches where the pressure is specified. The uniform inflow velocity is obtained by averaging the flux over the patch, and then applying it in the direction normal to the patch faces.

```
myPatch
{
    type         pressureInletUniformVelocity;
    value         uniform 0;
}
```

1.77 pressureInletVelocity

This velocity inlet boundary condition is applied to patches where the pressure is specified. The inflow velocity is obtained from the flux with a direction normal to the patch faces.

```
myPatch
{
    type         pressureInletVelocity;
    phi         phi;
    rho            rho;
    value            uniform 0;
}
```

Note:

If reverse flow is possible or expected use the pressureInletOutletVelocityFvPatchVectorField condition instead.

1.78 porousBafflePressure

This boundary condition provides a jump condition, using the cyclic condition as a base.

The porous baffle introduces a pressure jump defined by:

$$\Delta p = -(D\mu U + 0.5I\rho |U|^2)L \tag{1.15}$$

p: pressure [Pa]

 ρ : density [kg/m3]

 μ : laminar viscosity [Pa s]

D: Darcy coefficient I: inertial coefficient

L: porous media length in the flow direction

Property	Description	Required	Default
patchType	underlying patch type should be cyclic	yes	
phi	flux field name	no	phi
rho	density field name	no	rho
D	Darcy coefficient	yes	
I	inertial coefficient	yes	
length	porous media length in the flow direction	yes	

Example

Note:

The underlying patchType should be set to cyclic

1.79 prghPressure

This boundary condition provides static pressure condition for p_rgh, calculated as:

$$p_r g h = p - \rho g (h - hRef) \tag{1.16}$$

 p_rgh : Pseudo hydrostatic pressure [Pa]

p: Static pressure [Pa]

h: Height in the opposite direction to gravity

hRef: Reference height in the opposite direction to gravity

 ρ : density

g: acceleration due to gravity [m/s2]

Property	Description	Required	
rho	rho field name	no	rho
p	static pressure	yes	

```
myPatch
{
    type     prghPressure;
    rho     rho;
    p      uniform 0;
    value     uniform 0; // optional initial value
}
```

${\bf 1.80} \quad {\bf prghTotalHydrostaticPressure}$

This boundary condition provides static pressure condition for p_rgh, calculated as:

$$p_r g h = p h_r g h - 0.5 \rho |U|^2 \tag{1.17}$$

 p_rgh : Pressure - ρ g.(h - hRef) [Pa]

 ph_rgh : Hydrostatic pressure - ρ g.(h - hRef) [Pa]

h: Height in the opposite direction to gravity

hRef: Reference height in the opposite direction to gravity

 ρ : density

g: acceleration due to gravity [m/s2]

Property	Description	Required	Default
U	Velocity field name	no	U
phi	Flux field name	no	phi
rho	Density field name	no	rho
$\overline{\mathrm{ph}_{\mathrm{rgh}}}$	ph_rgh field name	no	ph_rgh
value	Patch face values	yes	

Example

1.81 prghTotalPressure

This boundary condition provides static pressure condition for p_rgh, calculated as:

$$p_r g h = p - \rho g.(h - hRef) \tag{1.18}$$

$$p = p0 - 0.5\rho |U|^2 \tag{1.19}$$

 p_rgh : Pseudo hydrostatic pressure [Pa]

p: Static pressure [Pa] p0: Total pressure [Pa]

h: Height in the opposite direction to gravity

hRef: Reference height in the opposite direction to gravity

 ρ : density

g : acceleration due to gravity [m/s2]

Property	Description	Required	Default
U	Velocity field name	no	U
phi	Flux field name	no	phi
rho	Density field name	no	rho
p0	Total pressure	yes	

```
myPatch
{
    type     prghTotalPressure;
    p0     uniform 0;
}
```

1.82 rotatingPressureInletOutletVelocity

This velocity inlet/outlet boundary condition is applied to patches in a rotating frame where the pressure is specified. A zero-gradient is applied for outflow (as defined by the flux); for inflow, the velocity is obtained from the flux with a direction normal to the patch faces.

Property	Description	Required	Default
phi	flux field name	no	phi
tangentialVelocity	tangential velocity field	no	
omega	angular velocty of the frame [rad/s]	yes	

The *omega* entry is a Function1 type, able to describe time varying functions.

Note:

Sign conventions:

- positive flux (out of domain): apply zero-gradient condition
- negative flux (into of domain): derive from the flux and patch-normal direction

1.83 rotating Total Pressure

This boundary condition provides a total pressure condition for patches in a rotating frame.

Property	Description	Required	Default
U	velocity field name	no	U
phi	flux field name	no	phi
rho	density field name	no	none
psi	compressibility field name	no	none
gamma	ratio of specific heats (Cp/Cv)	yes	
$\overline{p0}$	static pressure reference	yes	
omega	angular velocty of the frame [rad/s]	yes	

myPatch rotatingTotalPressure; type U U; phi phi; rho rho; psi psi; gamma 1.4; рO uniform 1e5; 100; omega

The omega entry is a Function1 type, able to describe time varying functions.

1.84 rotatingWallVelocity

This boundary condition provides a rotational velocity condition.

Property	Description	Required	Default
origin	origin of rotation in Cartesian co-ordinates	yes	
axis	axis of rotation	yes	
omega	angular velocty of the frame [rad/s]	yes	

The *omega* entry is Function1 of time, see Foam::Function1Types.

1.85 sliced

Specialization of fvsPatchField which creates the underlying fvsPatchField as a slice of the given complete field.

The destructor is wrapped to avoid deallocation of the storage of the complete fields when this is destroyed.

Should only used as a template argument for SlicedGeometricField.

1.86 slip

This boundary condition provides a slip constraint.

```
myPatch
{
    type slip;
}
```

1.87 SRFFreestreamVelocity

Freestream velocity condition to be used in conjunction with the single rotating frame (SRF) model (see: SRFModel class)

Given the free stream velocity in the absolute frame, the condition applies the appropriate rotation transformation in time and space to determine the local velocity using:

$$U_p = \cos(\theta) * U_{Inf} + \sin(theta)(n^U Inf) - U_{p,srf}$$
(1.20)

 U_p : patch velocity [m/s]

 U_{Inf} : free stream velocity in the absolute frame [m/s]

theta: swept angle [rad]

n : axis direction of the SRF

 $U_{p,srf}$: SRF velocity of the patch

Property	Description	Required	Default
UInf	freestream velocity	yes	
relative	UInf relative to the SRF?	no	

Example

1.88 SRFVelocity

Velocity condition to be used in conjunction with the single rotating frame (SRF) model (see: SRFModel class)

Given the free stream velocity in the absolute frame, the condition applies the appropriate rotation transformation in time and space to determine the local velocity.

The optional relative flag switches the behaviour of the patch such that:

- relative = yes: inlet velocity applied 'as is':

$$U_p = U_{in} (1.21)$$

- relative = no : SRF velocity is subtracted from the inlet velocity:

$$U_p = U_{in} - U_{p,srf} (1.22)$$

 U_p : patch velocity [m/s]

 U_{in} : user-specified inlet velocity

 $U_{p,srf}$: SRF velocity

Property	Description	Required	Default
inletValue	inlet velocity	yes	
relative	inletValue relative motion to the SRF?	yes	

Example

1.89 SRFWallVelocity

Wall-velocity condition to be used in conjunction with the single rotating frame (SRF) model (see: FOAM::SRFModel)

The condition applies the appropriate rotation transformation in time and space to determine the local SRF velocity of the wall.

$$U_p = -U_{p,srf} (1.23)$$

 U_p : patch velocity [m/s] $U_{p,srf}$: SRF velocity

The normal component of U_p is removed to ensure 0 wall-flux even if the wall patch faces are irregular.

```
myPatch
{
    type SRFWallVelocity;
    value uniform (0 0 0); // Initial value
}
```

1.90 supersonicFreestream

This boundary condition provides a supersonic free-stream condition.

- supersonic outflow is vented according to ???
- supersonic inflow is assumed to occur according to the Prandtl-Meyer expansion process.
- subsonic outflow is applied via a zero-gradient condition from inside the domain.

Property	Description	Required	Default
Т	Temperature field name	no	Т
p	Pressure field name	no	p
psi	Compressibility field name	no	thermo:psi
UInf	free-stream velocity	yes	
pInf	free-stream pressure	yes	
TInf	free-stream temperature	yes	
gamma	heat capacity ratio (cp/Cv)	yes	

Note:

This boundary condition is ill-posed if the free-stream flow is normal to the boundary.

1.91 surfaceNormalFixedValue

This boundary condition provides a surface-normal vector boundary condition by its magnitude.

Property	Description	Required	Default
refValue	reference value	yes	

Note:

Sign conventions:

- the value is positive for outward-pointing vectors

1.92 surfaceSlipDisplacement

Displacement follows a triSurface. Use in a displacementMotionSolver as a bc on the point-Displacement field.

Following is done by calculating the projection onto the surface according to the projectMode

- NEAREST : nearest
- POINTNORMAL : intersection with point normal
- FIXEDNORMAL : intersection with fixed vector

Optionally (intersection only) removes a component ("wedgePlane") to stay in 2D.

Needs:

- geometry : dictionary with searchable Surfaces. (usually triSurfaceMeshes in constant/triSurface)
- projectMode : see above
- projectDirection : if projectMode = fixedNormal
- wedgePlane : -1 or component to knock out of intersection normal
- frozenPointsZone : empty or name of pointZone containing points that do not move

1.93 swirlFlowRateInletVelocity

This boundary condition provides a volumetric- OR mass-flow normal vector boundary condition by its magnitude as an integral over its area with a swirl component determined by the angular speed, given in revolutions per minute (RPM)

The basis of the patch (volumetric or mass) is determined by the dimensions of the flux, phi. The current density is used to correct the velocity when applying the mass basis.

Property	Description	Required	Default
phi	flux field name	no	phi
rho	density field name	no	rho
flowRate	flow rate profile	yes	
rpm	rotational speed profile	yes	

Note:

- the flowRate and rpm entries are DataEntry types, able to describe time varying functions. The example above gives the usage for supplying constant values.
- the value is positive into the domain

1.94 symmetry

```
Example

myPatch
{
    type symmetry;
}
```

1.95 symmetryPlane

```
myPatch
{
    type symmetryPlane;
}
```

1.96 syringePressure

This boundary condition provides a pressure condition, obtained from a zero-D model of the cylinder of a syringe.

The syringe cylinder is defined by its initial volume, piston area and velocity profile specified by regions of constant acceleration, speed and deceleration. The gas in the cylinder is described by its initial pressure and compressibility which is assumed constant, i.e. isothermal expansion/compression.

Property	Description	Required	Default
Ap	syringe piston area [m2]	yes	
Sp	syringe piston speed [m/s]	yes	
VsI	initial syringe volume [m3]	yes	
tas	start of piston acceleration [s]	yes	
tae	end of piston acceleration [s]	yes	
tds	start of piston deceleration [s]	yes	
tde	end of piston deceleration [s]	yes	
psI	initial syringe pressure [Pa]	yes	
psi	gas compressibility [m2/s2]	yes	
ams	added (or removed) gas mass [kg]	yes	

Example

```
myPatch
                      syringePressure;
    type
                      1.388e-6;
    Aр
                      0.01;
    Sp
                      1.388e-8;
    VsI
                      0.001;
    tas
                      0.002;
    tae
                      0.005;
    tds
    tde
                      0.006;
                      1e5;
    psI
                      1e-5;
    psi
    ams
                      0;
    value
                      uniform 0;
```

$1.97 \quad temperature Dependent Alpha Contact Angle$

Temperature-dependent constant alphaContactAngle scalar boundary condition.

Property	Description	Required	Default value
Property	Description	Required	Default value
$\overline{\mathrm{T}}$	Temperature field name	no	Т
theta0	Contact angle data	yes	

```
myPatch
{
    type         temperatureDependentAlphaContactAngle;
    theta0         constant 60;
}
```

$1.98 \quad time Varying Alpha Contact Angle$

 $\label{lem:approx} A\ time-varying\ alphaContactAngle\ scalar\ boundary\ condition\ (alphaContactAngleFvPatchScalarField)$

1.99 timeVaryingMappedFixedValue

This boundary conditions interpolates the values from a set of supplied points in space and time. Supplied data should be specified in constant/boundaryData/< patchname > where:

- points : pointField with locations
- ddd : supplied values at time ddd

The default mode of operation (mapMethod planarInterpolation) is to project the points onto a plane (constructed from the first three points) and construct a 2D triangulation and finds for the face centres the triangle it is in and the weights to the 3 vertices.

The optional mapMethod nearest will avoid all projection and triangulation and just use the value at the nearest vertex.

Values are interpolated linearly between times.

Property	Description	Required	Default value
setAverage	flag to activate setting of average value	yes	
perturb	perturb points for regular geometries	no	1e-5
fieldTableName	alternative field name to sample	no	this field name
mapMethod	type of mapping	no	planarInterpolation
offset	for applying offset to mapped values	no	constant 0.0

Example

1.100 totalFlowRateAdvectiveDiffusive

This BC is used for species inlets. The diffusion and advection fluxes are considered to calculate the inlet value for the species

The massFluxFraction sets the fraction of the flux of each particular species.

1.101 totalPressure

This boundary condition provides a total pressure condition. Four variants are possible:

1. incompressible subsonic:

$$p_p = p_0 - 0.5|U|^2 (1.24)$$

 p_p : incompressible pressure at patch [m2/s2]

 p_0 : incompressible total pressure [m2/s2]

U: velocity

2. compressible subsonic:

$$p_p = p_0 - 0.5\rho |U|^2 \tag{1.25}$$

 p_p : pressure at patch [Pa]

 p_0 : total pressure [Pa]

 ρ : density [kg/m3]

U: velocity

3. compressible transonic ($\gamma \le 1$):

$$p_p = \frac{p_0}{1 + 0.5\psi |U|^2} \tag{1.26}$$

$$->p_T=p+0.5\rho U^2 (1.27)$$

 p_p : total pressure [Pa]

 p_0 : reference pressure [Pa]

 ψ : compressibility [m2/s2]

4. compressible supersonic $(\gamma > 1)$:

$$p_p = \frac{p_0}{(1 + 0.5\psi G|U|^2)^{\frac{1}{G}}}$$
 (1.28)

 p_p : pressure at patch [Pa]

 p_0 : total pressure [Pa]

 γ : ratio of specific heats (Cp/Cv)

 ψ : compressibility [m2/s2]

G : coefficient given by $\frac{\gamma}{1-\gamma}$

The modes of operation are set by the dimensions of the pressure field to which this boundary condition is applied, the ψ entry and the value of γ :

Mode	dimensions	psi	gamma
incompressible subsonic	p/rho		
compressible subsonic	p	none	
compressible transonic	p	psi	1
compressible supersonic	p	psi	į 1

Property	Description	Required	Default
U	velocity field name	no	U
phi	flux field name	no	phi
rho	density field name	no	rho
psi	compressibility field name	no	none
gamma	ratio of specific heats (Cp/Cv)	no	1
p0	total pressure	yes	

```
myPatch
{
    type     totalPressure;
    p0     uniform 1e5;
}
```

1.102 total Temperature

This boundary condition provides a total temperature condition.

Property	Description	Required	Default
U	Velocity field name	no	U
phi	Flux field name	no	phi
psi	Compressibility field name	no	thermo:psi
gamma	ratio of specific heats (Cp/Cv)	yes	
T0	reference temperature	yes	

```
myPatch
{
    type     totalTemperature;
    T0     uniform 300;
}
```

1.103 translatingWallVelocity

This boundary condition provides a velocity condition for translational motion on walls.

Property	Description	Required	Default
U	translational velocity	yes	

1.104 turbulentInlet

This boundary condition generates a fluctuating inlet condition by adding a random component to a reference (mean) field.

$$x_p = (1 - \alpha)x_p^{n-1} + \alpha(x_{ref} + sC_{RMS}x_{ref})$$
(1.29)

 x_p : patch values

 $\boldsymbol{x_{ref}}$: reference patch values

n: time level

 α : fraction of new random component added to previous time value

 C_{RMS} : RMS coefficient s: fluctuation scale

Property	Description	Required	Default
fluctuationScale	RMS fluctuation scale (fraction of mean)	yes	
referenceField	reference (mean) field	yes	
alpha	fraction of new random component added to previous	no	0.1

Example

$1.105 \quad uniform Density Hydrostatic Pressure$

This boundary condition provides a hydrostatic pressure condition, calculated as:

$$p_{hyd} = p_{ref} + \rho g(x - x_{ref}) \tag{1.30}$$

 p_{hyd} : hyrostatic pressure [Pa] p_{ref} : reference pressure [Pa]

 x_{ref} : reference point in Cartesian co-ordinates

 ρ : density (assumed uniform)

g: acceleration due to gravity [m/s2]

Property	Description	Required	Default
rho	uniform density $[kg/m3]$	yes	
pRefValue	reference pressure [Pa]	yes	
pRefPoint	reference pressure location	yes	

Example

1.106 uniformFixedGradient

This boundary condition provides a uniform fixed gradient condition.

Property	Description	Required	Default
uniformGradient	uniform gradient	yes	

```
myPatch
{
    type      uniformFixedGradient;
    uniformGradient constant 0.2;
}
```

Note:

The uniformGradient entry is a Function1 type, able to describe time varying functions. The example above gives the usage for supplying a constant value.

1.107 uniformFixedValue

This boundary condition provides a uniform fixed value condition.

Property	Description	Required	Default
uniformValue	uniform value	yes	

Example

```
inlet
 {
     type
                 uniformFixedValue;
     uniformValue constant 0.2;
inlet
          uniformFixedValue;
 type
 uniformValue table ((0 0) (10 2));
inlet
 type uniformFixedValue;
 uniformValue tableFile;
 uniformValueCoeffs
   fileName "dataTable.txt";
 }
}
inlet
      uniformFixedValue;
 uniformValue csvFile;
 uniformValueCoeffs
                          // number of header lines
  nHeaderLine
                4;
                     // time column index
              0;
   refColumn
   componentColumns (1); // data column index
   separator ",";
                          // optional (defaults to ",")
   mergeSeparators no; // merge multiple separators
   fileName
           "dataTable.csv";
}
inlet
{
```

```
uniformFixedValue;
 uniformValue
                 square;
 uniformValueCoeffs
   frequency 10;
   amplitude 1;
   scale 2; // Scale factor for wave
   level 1; // Offset
}
inlet
               uniformFixedValue;
 uniformValue
                 sine;
 uniformValueCoeffs
   frequency 10;
   amplitude 1;
   scale 2; // Scale factor for wave
   level 1; // Offset
  }
}
inlet
{
            uniformFixedValue;
 uniformValue polynomial ((1 0) (2 2)); // = 1*t^0 + 2*t^2
}
```

Note:

The uniformValue entry is a Function1 type, able to describe time varying functions. The example above gives the usage for supplying a constant value.

1.108 uniformInletOutlet

Variant of inletOutlet boundary condition with uniform inletValue.

Property	Description	Required	Default
phi	flux field name	no	phi
uniformInletValue	inlet value for reverse flow	yes	

The mode of operation is determined by the sign of the flux across the patch faces.

Note:

Sign conventions:

- positive flux (out of domain): apply zero-gradient condition
- negative flux (into of domain): apply the user-specified fixed value

1.109 uniformJump

This boundary condition provides a jump condition, using the cyclic condition as a base. The jump is specified as a time-varying uniform value across the patch.

Property	Description	Required	Default
patchType	underlying patch type should be <i>cyclic</i>	yes	
jumpTable	jump value	yes	

```
myPatch
{
    type         uniformJump;
    patchType         cyclic;
    jumpTable         constant 10;
}
```

The above example shows the use of a fixed jump of '10'.

Note:

The uniformValue entry is a Function1 type, able to describe time varying functions. The example above gives the usage for supplying a constant value.

1.110 uniformJumpAMI

This boundary condition provides a jump condition, using the cyclicAMI condition as a base. The jump is specified as a time-varying uniform value across the patch.

Property	Description	Required	Default
patchType	underlying patch type should be $cyclicAMI$	yes	
jumpTable	jump value	yes	

```
myPatch
{
    type         uniformJumpAMI;
    patchType         cyclicAMI;
    jumpTable         constant 10;
}
```

The above example shows the use of a fixed jump of '10'.

Note:

The uniformValue entry is a Function1 type, able to describe time varying functions. The example above gives the usage for supplying a constant value.

The underlying patchType should be set to cyclic.

1.111 uniformTotalPressure

This boundary condition provides a time-varying form of the uniform total pressure boundary condition.

Property	Description	Required	Default
U	velocity field name	no	U
phi	flux field name	no	phi
rho	density field name	no	rho
psi	compressibility field name	no	none
gamma	ratio of specific heats (Cp/Cv)	no	1
p0	total pressure as a function of time	yes	

myPatch { type uniformTotalPressure; p0 uniform 1e5; }

The *pressure* entry is specified as a Function1 type, able to describe time varying functions.

Note:

The default boundary behaviour is for subsonic, incompressible flow.

1.112 variableHeightFlowRate

This boundary condition provides a phase fraction condition based on the local flow conditions, whereby the values are constrained to lay between user-specified upper and lower bounds. The behaviour is described by:

if alpha > upperBound:

- apply a fixed value condition, with a uniform level of the upper bound

if lower bound <= alpha <= upper bound:

- apply a zero-gradient condition

if alpha < lowerBound:

- apply a fixed value condition, with a uniform level of the lower bound

Property	Description	Required	Default
phi	flux field name	no	phi
lowerBound	lower bound for clipping	yes	
upperBound	upper bound for clipping	yes	

```
myPatch
{
    type variableHeightFlowRate;
```

lowerBound 0.0; upperBound 0.9; value uniform 0;

}

Example

1.113 variableHeightFlowRateInletVelocity

This boundary condition provides a velocity boundary condition for multphase flow based on a user-specified volumetric flow rate.

The flow rate is made proportional to the phase fraction alpha at each face of the patch and alpha is ensured to be bound between 0 and 1.

Property	Description	Required	Default
flowRate	volumetric flow rate [m3/s]	yes	
alpha	phase-fraction field	yes	

Note:

- the value is positive into the domain
- may not work correctly for transonic inlets
- strange behaviour with potentialFoam since the momentum equation is not solved

1.114 waveSurfacePressure

This is a pressure boundary condition, whose value is calculated as the hydrostatic pressure based on a given displacement:

$$p = -\rho * g * \zeta \tag{1.31}$$

 ρ : density [kg/m3]

g: acceleration due to gravity [m/s2]

 ζ : wave amplitude [m]

The wave amplitude is updated as part of the calculation, derived from the local volumetric flux.

Property	Description	Required	Default
phi	flux field name	no	phi
rho	density field name	no	rho
zeta	wave amplitude field name	no	zeta

The density field is only required if the flux is mass-based as opposed to volumetric-based.

1.115 waveTransmissive

This boundary condition provides a wave transmissive outflow condition, based on solving $\mathrm{DDt}(\mathrm{psi},\,\mathrm{U})=0$ at the boundary.

$$x_p = \frac{\phi_p}{|Sf|} + \sqrt{\frac{\gamma}{\psi_p}} \tag{1.32}$$

 x_p : patch values ϕ_p : patch face flux

 ψ_p : patch compressibility Sf: patch face area vector γ : ratio of specific heats

Property	Description	Required	Default
phi	flux field name	no	phi
rho	density field name	no	rho
psi	compressibility field name	no	psi
gamma	ratio of specific heats (Cp/Cv)	yes	

1.116 wedge

```
myPatch
{
    type wedge;
}
```

1.117 zeroGradient

```
Example

myPatch
{
    type zeroGradient;
}
```

2 Turbulence Conditions

${\bf 2.1} \quad atmBoundary Layer In let Epsilon$

This boundary condition specifies an inlet value for the turbulence dissipation, ϵ (epsilon), appropriate for atmospheric boundary layers.

Use in the atmBoundary LayerInletVelocity, atmBoundary LayerInletK and atmBoundary LayerInletEpsilon boundary conditions.

$$\epsilon = \frac{(U^*)^3}{\kappa(z - z_g + z_0)} \tag{2.1}$$

 U^* : frictional velocity

 κ : von Karman's constant z: vertical coordinate [m]

 z_0 : surface roughness height [m] z_g : minimum z-coordinate [m]

and:

$$U^* = K \frac{U_{ref}}{\ln\left(\frac{Z_{ref} + z_0}{z_0}\right)} \tag{2.2}$$

 U_{ref} : reference velocity at Z_{ref} [m/s]

 Z_{ref} : reference height [m]

Description	Required	Default
Flow direction	yes	
Vertical direction	yes	
von Karman's constant	no	0.41
Turbulence viscosity coefficient	no	0.09
Reference velocity [m/s]	yes	
Reference height [m]	yes	
Surface roughness height [m]	yes	
Minimum z-coordinate [m]	yes	
	Flow direction Vertical direction von Karman's constant Turbulence viscosity coefficient Reference velocity [m/s] Reference height [m] Surface roughness height [m]	Flow direction yes Vertical direction yes von Karman's constant no Turbulence viscosity coefficient no Reference velocity [m/s] yes Reference height [m] yes Surface roughness height [m] yes

Example

Reference:

D.M. Hargreaves and N.G. Wright, "On the use of the k-epsilon model in commercial CFD software to model the neutral atmospheric boundary layer", Journal of Wind Engineering and Industrial Aerodynamics 95(2007), pp 355-369.

2.2 atmBoundaryLayerInletK

This boundary condition specifies an inlet value for the turbulence dissipation, k, appropriate for atmospheric boundary layers.

Use in the atmBoundary LayerInletVelocity, atmBoundary LayerInletK and atmBoundary LayerInletEpsilon boundary conditions.

$$k = \frac{(U^*)^2}{\sqrt{C_m u}} \tag{2.3}$$

 U^* : frictional velocity

 κ : von Karman's constant z: vertical coordinate [m]

 z_0 : surface roughness height [m] z_g : minimum z-coordinate [m]

and:

$$U^* = K \frac{U_{ref}}{\ln\left(\frac{Z_{ref} + z_0}{z_0}\right)} \tag{2.4}$$

 U_{ref} : reference velocity at Z_{ref} [m/s]

 Z_{ref} : reference height [m]

Property	Description	Required	Default
flowDir	Flow direction	yes	
zDir	Vertical direction	yes	
kappa	von Karman's constant	no	0.41
Cmu	Turbulence viscosity coefficient	no	0.09
Uref	Reference velocity [m/s]	yes	
Zref	Reference height [m]	yes	
z_0	Surface roughness height [m]	yes	
zGround	Minimum z-coordinate [m]	yes	

Example

```
myPatch
{
```

Reference:

D.M. Hargreaves and N.G. Wright, "On the use of the k-epsilon model in commercial CFD software to model the neutral atmospheric boundary layer", Journal of Wind Engineering and Industrial Aerodynamics 95(2007), pp 355-369.

${\bf 2.3} \quad turbulent Intensity Kinetic Energy Inlet$

This boundary condition provides a turbulent kinetic energy condition, based on user-supplied turbulence intensity, defined as a fraction of the mean velocity:

$$k_p = 1.5(I|U|)^2 (2.5)$$

 k_p : kinetic energy at the patch

I: turbulence intensity

U : velocity field

In the event of reverse flow, a zero-gradient condition is applied.

Property	Description	Required	Default
intensity	fraction of mean field [0-1]	yes	
U	velocity field name	no	U
phi	flux field name	no	phi

${\bf 2.4} \quad turbulent Mixing Length Dissipation Rate In let$

This boundary condition provides a turbulence dissipation, ϵ (epsilon) inlet condition based on a specified mixing length. The patch values are calculated using:

$$\epsilon_p = \frac{C_\mu^{0.75} k^{1.5}}{L} \tag{2.6}$$

 ϵ_p : patch epsilon values

 C_{μ} : Model coefficient, set to 0.09

k: turbulence kinetic energy

L: length scale

Property	Description	Required	Default
mixingLength	Length scale [m]	yes	
phi	flux field name	no	phi
k	turbulence kinetic energy field name	no	k

Example

Note:

In the event of reverse flow, a zero-gradient condition is applied

${\bf 2.5} \quad turbulent Mixing Length Frequency Inlet$

This boundary condition provides a turbulence specific dissipation, ω (omega) inlet condition based on a specified mixing length. The patch values are calculated using:

$$\omega_p = \frac{k^{0.5}}{C_\mu^{0.25} L} \tag{2.7}$$

 ω_p : patch omega values

 C_{μ} : Model coefficient, set to 0.09

k: turbulence kinetic energy

L: length scale

Property	Description	Required	Default
mixingLength	Length scale [m]	yes	
phi	flux field name	no	phi
k	turbulence kinetic energy field name	no	k

Example

Note:

In the event of reverse flow, a zero-gradient condition is applied

3 wallFunctions

3.1 alphatJayatillekeWallFunction

This boundary condition provides a thermal wall function for turbulent thermal diffusivity (usually α_t) based on the Jayatilleke model.

Property	Description	Required	Default value
Prt	turbulent Prandtl number	no	0.85
Cmu	model coefficient	no	0.09
kappa	Von Karman constant	no	0.41
E	model coefficient	no	9.8

```
myPatch
{
    type         alphatJayatillekeWallFunction;
    Prt         0.85;
    kappa         0.41;
    E          9.8;
    value         uniform 0; // optional value entry
}
```

3.2 alphat Film Wall Function

This boundary condition provides a turbulent thermal diffusivity condition when using wall functions, for use with surface film models. This condition varies from the standard wall function by taking into account any mass released from the film model.

Property	Description	Required	Default
В	model coefficient	no	5.5
yPlusCrit	critical y+ for transition to turbulent flow	no	11.05
Cmu	model coefficient	no	0.09
kappa	Von-Karman constant	no	0.41
Prt	turbulent Prandtl number	no	0.85

$\mathbf{E}\mathbf{x}$ ample

${\bf 3.3}\quad compressible:: alphat Jaya tille ke Wall Function$

This boundary condition provides a thermal wall function for turbulent thermal diffusivity (usually α_t) based on the Jayatilleke model.

Property	Description	Required	Default value
Prt	turbulent Prandtl number	no	0.85
Cmu	model coefficient	no	0.09
kappa	Von Karman constant	no	0.41
E	model coefficient	no	9.8

myPatch { type alphatJayatillekeWallFunction; Prt 0.85; kappa 0.41; E 9.8; value uniform 0; // optional value entry }

${\bf 3.4}\quad compressible:: alphat Wall Function$

This boundary condition provides a turbulent thermal diffusivity condition when using wall functions

- replicates OpenFOAM v1.5 (and earlier) behaviour

The turbulent thermal diffusivity calculated using:

$$\alpha_t = \frac{\mu_t}{Pr_t} \tag{3.1}$$

 α_t : turblence thermal diffusivity

 μ_t : turblence viscosity

 Pr_t : turblent Prandtl number

Property	Description	Required	Default value
nut	turbulence viscosity field name	no	nut
Prt	turbulent Prandtl number	no	0.85

```
myPatch
{
    type alphatWallFunction;
    nut mut;
    Prt 0.85;
    value uniform 0; // optional value entry
}
```

3.5 epsilonLowReWallFunction

This boundary condition provides a turbulence dissipation wall function condition for lowand high-Reynolds number turbulent flow cases.

The condition can be applied to wall boundaries, whereby it inserts near wall epsilon values directly into the epsilon equation to act as a constraint.

The model operates in two modes, based on the computed laminar-to-turbulent switch-over y+ value derived from kappa and E.

Property	Description	Required	Default value
Cmu	model coefficient	no	0.09
kappa	Von Karman constant	no	0.41
E	model coefficient	no	9.8

```
myPatch
{
    type         epsilonLowReWallFunction;
}
```

3.6 epsilonWallFunction

This boundary condition provides a turbulence dissipation wall function condition for high Reynolds number, turbulent flow cases.

The condition can be applied to wall boundaries, whereby it

- calculates ϵ and G
- inserts near wall epsilon values directly into the epsilon equation to act as a constraint

 ϵ : turblence dissipation field G : turblence generation field

Property	Description	Required	Default value
Cmu	model coefficient	no	0.09
kappa	Von Karman constant	no	0.41
E	model coefficient	no	9.8

```
myPatch
{
    type         epsilonWallFunction;
}
```

3.7 fWallFunction

This boundary condition provides a turbulence damping function, f, wall function condition for low- and high Reynolds number, turbulent flow cases

The model operates in two modes, based on the computed laminar-to-turbulent switch-over y+ value derived from kappa and E.

Property	Description	Required	Default
Cmu	model coefficient	no	0.09
kappa	Von Karman constant	no	0.41
E	model coefficient	no	9.8

```
myPatch
{
    type fWallFunction;
}
```

3.8 kLowReWallFunction

This boundary condition provides a turbulence kinetic energy wall function condition for lowand high-Reynolds number turbulent flow cases.

The model operates in two modes, based on the computed laminar-to-turbulent switch-over y+ value derived from kappa and E.

Property	Description	Required	Default
Cmu	model coefficient	no	0.09
kappa	Von Karman constant	no	0.41
E	model coefficient	no	9.8
Ceps2	model coefficient	no	1.9

```
myPatch
{     type          kLowReWallFunction;
}
```

3.9 kqRWallFunction

This boundary condition provides a suitable condition for turbulence k, q, and R fields for the case of high Reynolds number flow using wall functions.

It is a simple wrapper around the zero-gradient condition.

```
myPatch
{
    type kqRWallFunction;
}
```

3.10 nutkAtmRoughWallFunction

This boundary condition provides a turbulent kinematic viscosity for atmospheric velocity profiles. It is desinged to be used in conjunction with the atmBoundaryLayerInletVelocity boundary condition. The values are calculated using:

$$U = frac U_f K ln(\frac{z+z_0}{z_0})$$
(3.2)

 U_f : frictional velocity

K: Von Karman's constant z_0 : surface roughness length

z : vertical co-ordinate

Property	Description	Required	Default
z0	surface roughness length	yes	

```
myPatch
{
    type         nutkAtmRoughWallFunction;
    z0          uniform 0;
}
```

3.11 nutkFilmWallFunction

This boundary condition provides a turbulent viscosity condition when using wall functions, based on turbulence kinetic energy, for use with surface film models.

```
myPatch
{
    type      nutkFilmWallFunction;
    value      uniform 0;
}
```

3.12 nutkRoughWallFunction

This boundary condition provides a turbulent kinematic viscosity condition when using wall functions for rough walls, based on turbulence kinetic energy. The condition manipulates the E parameter to account for roughness effects.

Parameter ranges

- roughness height = sand-grain roughness (0 for smooth walls)
- roughness constant = 0.5-1.0

Property	Description	Required	Default
Ks	sand-grain roughness height	yes	
$\overline{\mathrm{Cs}}$	roughness constant	yes	

myPatch { type nutkRoughWallFunction; Ks uniform 0; Cs uniform 0.5; }

3.13 nutkWallFunction

This boundary condition provides a turbulent kinematic viscosity condition when using wall functions, based on turbulence kinetic energy.

- replicates OpenFOAM v1.5 (and earlier) behaviour

```
myPatch
{
    type     nutkWallFunction;
}
```

3.14 nutLowReWallFunction

This boundary condition provides a turbulent kinematic viscosity condition for use with low Reynolds number models. It sets *nut* to zero, and provides an access function to calculate y+.

```
myPatch
{
    type         nutLowReWallFunction;
}
```

3.15 nutUTabulatedWallFunction

This boundary condition provides a turbulent kinematic viscosity condition when using wall functions. As input, the user specifies a look-up table of U+ as a function of near-wall Reynolds number. The table should be located in the \$FOAM_CASE/constant directory.

Property	Description	Required	Default
uPlusTable	U+ as a function of Re table name	yes	

```
myPatch
{
    type         nutTabulatedWallFunction;
    uPlusTable         myUPlusTable;
}
```

Note:

The tables are not registered since the same table object may be used for more than one patch.

3.16 nutURoughWallFunction

This boundary condition provides a turbulent kinematic viscosity condition when using wall functions for rough walls, based on velocity.

Property	Description	Required	Default
${\it roughness Height}$	roughness height	yes	
roughnessConstant	roughness constanr	yes	
roughnessFactor	scaling factor	yes	

3.17 nutUSpaldingWallFunction

This boundary condition provides a turbulent kinematic viscosity condition when using wall functions for rough walls, based on velocity, using Spalding's law to give a continuous nut profile to the wall (y+=0)

$$y^{+} = u^{+} + \frac{1}{E} \left[exp(\kappa u^{+}) - 1 - \kappa u^{+} - 0.5(\kappa u^{+})^{2} - \frac{1}{6}(\kappa u^{+})^{3} \right]$$
 (3.3)

 y^+ : non-dimensional position u^+ : non-dimensional velocity κ : Von Karman constant

Example

3.18 nutUWallFunction

This boundary condition provides a turbulent kinematic viscosity condition when using wall functions, based on velocity.

3.19 omegaWallFunction

This boundary condition provides a wall function constraint on turbulnce specific dissipation, omega. The values are computed using:

$$\omega = sqrt(\omega_{vis}^2 + \omega_{log}^2) \tag{3.4}$$

 ω_{vis} : omega in viscous region ω_{log} : omega in logarithmic region

Model described by Eq.(15) of:

Menter, F., Esch, T.

"Elements of Industrial Heat Transfer Prediction" 16th Brazilian Congress of Mechanical Engineering (COBEM), Nov. 2001

Property	Description	Required	Default
Cmu	model coefficient	no	0.09
kappa	Von Karman constant	no	0.41
E	model coefficient	no	9.8
beta1	model coefficient	no	0.075

```
myPatch
{
    type compressible::omegaWallFunction;
}
```

3.20 v2WallFunction

This boundary condition provides a turbulence stress normal to streamlines wall function condition for low- and high-Reynolds number, turbulent flow cases.

The model operates in two modes, based on the computed laminar-to-turbulent switch-over y+ value derived from kappa and E.

Property	Description	Required	Default
Cmu	model coefficient	no	0.09
kappa	Von Karman constant	no	0.41
E	model coefficient	no	9.8

```
myPatch
{
    type v2WallFunction;
}
```

4 Heat Transfer Conditions

4.1 compressible::thermalBaffle

This boundary condition provides a coupled temperature condition between multiple mesh regions.

The regions are generally referred to as the:

- primary region,
- and baffle region.

The primary region creates the baffle region and evolves its energy equation either:

- 1-D, normal to each patch face
- 2-D, normal and tangential components

The thermodynamic properties of the baffle material are specified via dictionary entries on the master patch.

```
masterPatch
                        compressible::thermalBaffle;
    type
    // Underlaying coupled boundary condition
    Tnbr
                       fluidThermo; // or solidThermo
    kappa
    KappaName
                      none;
    QrNbr
                      Qr;//or none.Name of Qr field on neighbourregion
                      none; // or none. Name of Qr field on localregion
    Qr
                      uniform 300;
    value
    // Baffle region name
    regionName
                      baffleRegion;
    active
                       yes;
    // Solid thermo in solid region
    thermoType
                       heSolidThermo;
       type
       mixture
                       pureMixture;
       transport
                      constIso;
        thermo
                       hConst;
        equationOfState rhoConst;
        specie
                       specie;
                        sensibleEnthalpy;
        energy
```

```
}
   mixture
       specie
        {
           nMoles
                           1;
           molWeight
                           20;
       transport
                           0.01;
           kappa
       thermodynamics
           Ηf
                            0;
                           15;
           Ср
        }
       density
                           80;
           rho
       }
    }
    radiation
    {
       radiationModel opaqueSolid;
       absorptionEmissionModel none;
       scatterModel none;
    }
    // Extrude model for new region
   extrudeModel
                       linearNormal;
   nLayers
                       50;
   expansionRatio
                       1;
   columnCells
                       false; //3D or 1D
   linearNormalCoeffs
       thickness
                          0.02;
    }
slavePatch
                       compressible::thermalBaffle;
   type
   kappa
                       fluidThermo;
   kappaName
                       none;
   value
                       uniform 300;
```

4.2 compressible::thermalBaffle1D

This BC solves a steady 1D thermal baffle.

The solid properties are specify as dictionary. Optionally radiative heat flux (Qr) can be incorporated into the balance. Some under-relaxation might be needed on Qr. Baffle and solid properties need to be specified on the master side of the baffle.

```
myPatch_master
{
         compressible::thermalBaffle1D<hConstSolidThermoPhysics>;
    samplePatch
                    myPatch_slave;
    thickness
                    uniform 0.005; // thickness [m]
    Qs
                    uniform 100;
                                    // heat flux [W/m2]
                    none;
    Qr
    relaxation
                  0;
    // Solid thermo
    specie
        nMoles
                        1;
        molWeight
                        20;
    transport
        kappa
                        1;
    thermodynamics
        Нf
                        0;
        Ср
                        10;
    equationOfState
        rho
                        10;
    value
                        uniform 300;
myPatch_slave
         compressible::thermalBaffle1D<hConstSolidThermoPhysics>;
                   myPatch_master_master;
    samplePatch
                    none;
    relaxation
}
```

4.3 compressible::turbulentHeatFluxTemperature

Fixed heat boundary condition to specify temperature gradient. Input heat source either specified in terms of an absolute power [W], or as a flux [W/m2].

The thermal conductivity κ can either be retrieved from various possible sources, as detailed in the class temperatureCoupledBase.

Property	Description	Required	Default
heatSource	power [W] or flux [W/m2]	yes	
q	heat power or flux field	yes	
Qr	name of the radiative flux field	yes	
value	initial temperature value	no	calculated
gradient	initial gradient value	no	0.0
kappaMethod	$inherited\ from\ temperature Coupled Base$	inherited	
kappa	inherited from temperatureCoupledBase	inherited	

Note: If needed, both 'value' and 'gradient' must be defined to be used.

${\bf 4.4}\quad compressible:: turbulent Temperature Coupled Baffle Mixed$

Mixed boundary condition for temperature, to be used for heat-transfer on back-to-back baffles. Optional thin thermal layer resistances can be specified through thicknessLayers and kappaLayers entries.

Specifies gradient and temperature such that the equations are the same on both sides:

- refGradient = zero gradient
- refValue = neighbour value
- mixFraction = nbrKDelta / (nbrKDelta + myKDelta())

where KDelta is heat-transfer coefficient K * deltaCoeffs

The thermal conductivity κ can either be retrieved from various possible sources, as detailed in the class temperatureCoupledBase.

Property	Description	Required	Default value
Tnbr	name of the field	no	Т
thicknessLayers	list of thicknesses per layer [m]	no	
kappaLayers	list of thermal conductivities per layer $[W/m/K]$	no	
kappaMethod	inherited from temperatureCoupledBase	inherited	
kappa	inherited from temperatureCoupledBase	inherited	

Example

Needs to be on underlying mapped(Wall)FvPatch.

$4.5 \quad compressible :: turbulent Temperature Rad Coupled Mixed$

Mixed boundary condition for temperature and radiation heat transfer to be used for in multiregion cases. Optional thin thermal layer resistances can be specified through thicknessLayers and kappaLayers entries.

The thermal conductivity, κ , can either be retrieved from various possible sources, as detailed in the class temperatureCoupledBase.

Property	Description	Required	Default value
Tnbr	name of the field	no	Т
QrNbr	name of the radiative flux in the nbr region	no	none
$\overline{\mathrm{Qr}}$	name of the radiative flux in this region	no	none
thicknessLayers	list of thicknesses per layer [m]	no	
kappaLayers	list of thermal conductivites per layer [W/m/K]	no	
kappaMethod	inherited from temperatureCoupledBase	inherited	
kappa	inherited from temperatureCoupledBase	inherited	

```
Example
   myPatch
       type
                        compressible::turbulentTemperatureRadCoupledMixed;
       Tnbr
                        Qr; // or none. Name of Qr field on neighbour region
       QrNbr
                        Qr; // or none. Name of Qr field on local region
       thicknessLayers (0.1 0.2 0.3 0.4);
       kappaLayers
                        (1 2 3 4);
       kappaMethod
                        lookup;
       kappa
                        kappa;
       value
                        uniform 300;
```

Needs to be on underlying mapped(Wall)FvPatch.

4.6 convectiveHeatTransfer

This boundary condition provides a convective heat transfer coefficient condition

if Re > 500000

$$htc_p = \frac{0.664Re^{0.5}Pr^{0.333}\kappa_p}{L} \tag{4.1}$$

else

$$htc_p = \frac{0.037Re^{0.8}Pr^{0.333}\kappa_p}{L} \tag{4.2}$$

 htc_p : patch convective heat transfer coefficient

Re: Reynolds number Pr: Prandtl number

 κ_p : thermal conductivity

L: length scale

Property	Description	Required	Default value
L	Length scale [m]	yes	

4.7 externalCoupledTemperatureMixed

This boundary condition provides a temperature interface to an external application. Values are transferred as plain text files, where OpenFOAM data is written as:

```
# Patch: <patch name>
<magSf1> <value1> <qDot1>
<magSf2> <value2> <qDot2>
<magSf3> <value3> <qDot3>
...
<magSfN> <valueN> <qDotN>

and received as the constituent pieces of the 'mixed' condition, i.e.

# Patch: <patch name>
<value1> <gradient1> <valueFracion1>
<value2> <gradient2> <valueFracion2>
<value3> <gradient3> <valueFracion3>
...
<valueN> <gradientN> <valueFracionN>
```

Data is sent/received as a single file for all patches from the directory

```
$FOAM_CASE/<commsDir>
```

At start-up, the boundary creates a lock file, i.e..

OpenFOAM.lock

... to signal the external source to wait. During the boundary condition update, boundary values are written to file, e.g.

```
<fileName>.out
```

The lock file is then removed, instructing the external source to take control of the program execution. When ready, the external program should create the return values, e.g. to file

```
<fileName>.in
```

... and then re-instate the lock file. The boundary condition will then read the return values, and pass program execution back to OpenFOAM.

Property	Description	Required	Default
commsDir	communications directory	yes	
fileName	transfer file name	yes	
waitInterval	interval [s] between file checks	no	1
timeOut	time after which error invoked [s]	no	100*waitInterval
calcFrequency	calculation frequency	no	1
\log	log program control	no	no

4.8 externalWallHeatFluxTemperature

This boundary condition supplies a heat flux condition for temperature on an external wall. Optional thin thermal layer resistances can be specified through thicknessLayers and kappaLayers entries for the fixed heat transfer coefficient mode.

The condition can operate in two modes:

- fixed heat transfer coefficient: supply h and Ta
- fixed heat flux: supply q

where

```
h = \text{heat transfer coefficient } [\text{W/m2/K}]

Ta = \text{ambient temperature } [\text{K}]

q = \text{heat flux } [\text{W/m2}]
```

The thermal conductivity, κ , can either be retrieved from various possible sources, as detailed in the class temperatureCoupledBase.

Property	Description	Required	Default
q	heat flux $[W/m2]$	yes*	
Та	ambient temperature [K]	yes*	
h	heat transfer coefficient $[W/m2/K]$	yes*	
thicknessLayers	list of thicknesses per layer [m]	yes	
kappaLayers	list of thermal conductivities per layer $[W/m/K]$	yes	
Qr	name of the radiative field	no	no
relaxation	relaxation factor for radiative field	no	1
kappaMethod	$inherited\ from\ temperature Coupled Base$	inherited	
kappa	inherited from temperatureCoupledBase	inherited	

```
myPatch
{
    type         externalWallHeatFluxTemperature;
    q          uniform 1000;
    Ta          uniform 300.0;
    h          uniform 10.0;
    thicknessLayers (0.1 0.2 0.3 0.4);
    kappaLayers (1 2 3 4);
```

```
value uniform 300.0;
Qr none;
relaxation 1;
kappaMethod fluidThermo;
kappa none;
```

Note:

- Only supply h and Ta, or q in the dictionary (see above)

4.9 wallHeatTransfer

This boundary condition provides an enthalpy condition for wall heat transfer

Property	Description	Required	Default
Tinf	wall temperature	yes	
alphaWall	thermal diffusivity	yes	

5 Radiation Conditions

5.1 greyDiffusiveRadiation

This boundary condition provides a grey-diffuse condition for radiation intensity, I, for use with the finite-volume discrete-ordinates model (fvDOM), in which the radiation temperature is retrieved from the temperature field boundary condition.

Property	Description	Required	Default
Т	temperature field name	no	Т
emissivityMode	emissivity mode: solidRadiation or lookup	yes	

${\bf 5.2}\quad {\bf grey Diffusive View Factor}$

This boundary condition provides a grey-diffuse condition for radiative heat flux, Qr, for use with the view factor model

Property	Description	Required	Default value
Qro	external radiative heat flux	yes	
emissivityMode	emissivity mode: solidRadiation or lookup	yes	

```
Example
```

5.3 MarshakRadiation

A 'mixed' boundary condition that implements a Marshak condition for the incident radiation field (usually written as G)

The radiation temperature is retrieved from the mesh database, using a user specified temperature field name.

Property	Description	Required	Default
Т	temperature field name	no	Т

5.4 MarshakRadiationFixedTemperature

A 'mixed' boundary condition that implements a Marshak condition for the incident radiation field (usually written as G)

The radiation temperature field across the patch is supplied by the user using the Trad entry.

Property	Description	Required	Default
Т	temperature field name	no	Т

5.5 wideBandDiffusiveRadiation

This boundary condition provides a wide-band, diffusive radiation condition, where the patch temperature is specified.

Property	Description	Required	Default
Т	temperature field name	no	Т

```
myPatch
{
    type         wideBandDiffusiveRadiation;
    value         uniform 0;
}
```