PC3130

Quantum Mechanics II

Time-Dependent Perturbation Theory

Some motivation

Lasers

Light-matter interaction (linear and non-linear)

Optical Absorption

Particle in an infinite square well

- The electron in the ground state can be excited to any of the excited states. When this happens, the system absorbs a photon of energy equal to the energy difference between the two states.
- Only photons with energies corresponding to these transitions $(hf = E_n - E_1, n = 2, 3, ...)$ can be absorbed.
- If the electron is initially in an excited state n = m, the system can absorb photons with energy $hf = E_n$ — E_m , n > m. Only photons of these energies can be absorbed.

Optical Emission

- The electron in any of the excited states can decay to the ground state or an excited state of lower energy.
 When this happens, the system emits a photon of energy equal to the energy difference between the two states.
- Only photons with energies corresponding to these transitions $(hf = E_n E_m, n > m)$ can be emitted.

Optical anisotropy in black phosphorus

