UNCLASSIFIED

AD NUMBER AD032587 CLASSIFICATION CHANGES TO: unclassified FROM: confidential LIMITATION CHANGES

TO:

Approved for public release; distribution is unlimited.

FROM:

Distribution authorized to U.S. Gov't. agencies and their contractors;

Administrative/Operational Use; AUG 1953. Other requests shall be referred to Office, Chief of Ordnance (Army), Washington, DC.

AUTHORITY

ARRADCOM ltr, 4 Sep 1981; ARRADCOM ltr, 4 Sep 1981

AD NO. 32, 58

SECURITY INFORMATION

CONFIDENTIAL

THIRTY-SEVENTH

PROGRESS REPORT

OF

THE FIRESTONE TIRE & RUBBER COMPANY
ON

BATTALION ANTI-TANK PROJECT

UNDER

Contract Nos. DA-33-019-ORD-33

DA-33-019-ORD-1202

ORDNANCE DEPARTMENT PROJECTS

TS4-4020-WEAPONS AND ACCESSORIES

TM1-1540-AMMUNITION

"This document contains information affecting the national defense of the United States within the meaning of the Espionage Laws, Title 18 U. S. C., Sections 793 and 794. The transmission or the reversation of its contents in any manner to an unauthorized person is prohibited by law."

COPY No. 4

THE FIRESTONE TIRE & RUBBER COMPANY

Defense Research Division

Akron, Thio

AUGUST 1993

CONFIDENTIAL

SECURITY INFORMATION

THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200,20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

NOTICE: THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 and 794.

THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

THIRTY-SEVENTH
PROGRESS REPORT

OF

THE FIRESTONE TIRE & RUBBER CO.

ON

BATTALION ANTI-TANK PROJECT

Contract Nos.
DA-33-019-ORD-33 (Negotiated)
DA-33-019-ORD-1202

RAD Nos. ORDTS 1-12383 ORDTS 3-3955 ORDTS 3-3957 ORDTA 3-3952

THE FIRESTONE TIRE & RUBBER CO.
Defense Research Division
Akron, Ohio
AUGUST, 1953

CONFIDENTIAL

54AA 57058

INDEX

	1	Page
I.	Abstract	1
II.	The Weapon System	2
III.	T119 Projectile	3
IV.	T171 Projectile	21
V.	Penetration Studies	34
VI.	Fuzes	53
VII.	Manufacturing Summary	57

ABSTRACT

The Weapon System - A 90mm BAT weapon system is being manufactured. The ONTOS mount and remote control firing system, manufactured by Firestone, has been delivered to Aberdeen Proving Ground and is being tested.

Tilly Projectile - Spin rate data for Tilly projectiles, reported in the Thirty-Fifth Progress Report, have been reduced and an equation of roll is developed.

Two experiments concerned with increasing the initial spin rate of the Tll9Ell projectile in order to improve stability during the initial part of the trajectory, are reported. In one study rubber obturating rings were used and in the other study gilding metal rotating bands were used. Test arrangements and resulting data are reported.

Twenty Tl19Ell projectiles, prepared and assembled so as to represent extremes (loose or tight) in clearance between certain components of the tail assembly, were tested for mechanical functioning and accuracy. The test conditions are charted and illustrated and the data discussed.

A tail assembly, .475 in. shorter than the standard tail assembly (fin length remaining the same), were fired for accuracy tests. The data are presented.

T171 Projectile - Two modifications of the T171 projectile were fired for accuracy and flight evaluation at Erie Ordnance Depot. The test results are given.

Using the Siacci theory and experimental data, ballistic coefficients for four T171 configurations were determined. The form factor, drng coefficient, terminal velocity, time of flight and elevation were found for various ranges and muzzle velocities for the four configurations. The results are analyzed.

Penetration Studies - Two separate but related scaling studies of penetration have been completed. The first part of the study was reported previously and the second portion is described here and the data from both studies are summarized.

Tests were conducted concerning spin rate behavior of DRB398 cones at high spin rates, penetration behavior of zinc alloy (Zamak 3) cones, effect of tee configuration on penetration. Data for the tests are presented.

Ten M344 (T119E11) prototype projectiles were withdrawn from production and modified for static penetration tests. The test data are given.

Fuzes - Functioning tests were conducted with T267El4 base elements and with T223 E2 fuzes. The test data are presented.

Manufacturing Summary - A summary of rifles, mounts and projectiles manufactured by Firestone under the subject contracts is given.

THE WEAPON SYSTEM

Ultimate BAT System

The 90mm ultimate BAT weapon system, illustrated and discussed in the Thirty-Sixth Progress Report, is being manufactured. The rifle will be mounted on the T152E7 aluminum mount for preliminary tests. A mount and tripod for the 90mm weapon is being designed.

ONTOS Mount and Firing System

The mount and remote control firing system for the ONTOS vehicle, developed by this division and illustrated in the Thirty-Sixth Progress Report, was delivered to Aberdeen Proving Ground during August. There was some delay in getting the system mounted on a vehicle and no test firing was done until the last week in August. Test results are incomplete at this time and will be reported later.

Future Program

- 1. Continue the manufacture of the 90mm ultimate BAT rifle.
- 2. Complete the preliminary design of a 90mm mount.

- 3. Investigate designs for improved firing effort on BAT rifles.
- 4. Continue tests of ONTOS firing system.

T119 PROJECTILE

Derivation of Roll Motion Equation From Experimental Data

The Thirty-Fifth Progress Report presented spin data for five rounds of Tll9Ell projectiles. These data have been reduced (using a method suggested by Bolz and Nicolaides in BRL Report No. 7ll) and an equation of roll for the Tll9Ell projectile has been derived.

The dynamical equation of roll is

$$\phi' = S - C, Ae^{-C, \Xi}$$
 (1)

where Z = distance down range (ft)

$$\phi'$$
 = rate of roll (deg/ft)

S = sleady state rolling
valocity (deg/ft)

C, = damping constant

A = arbitrary constant.

Since S, C, and A may be determined experimentally it is not difficult to establish a relationship between spin rate and distance throughout the entire trajectory of a projectile.

The experimental data for one projectile, X368 (Thirty-Fifth Progress Report), are used in this study. A plot of rotation versus range is presented in Fig. 1. In plotting the curve of Fig. 1 an arbitrary figure (329) was subtracted from each of the measured angles to insure that the curve, when extrapolated back to the muzzle, could be contained in the graph. From this plot a table of values for ϕ' is determined by computing $\Delta \phi$

in intervals of 20 ft. The resulting values are given in Table I and a graph of ϕ' (rate of roll) versus Ξ (distance from gun) appears in Fig. 2.

Determination of S

An initial value of S, denoted S_o , may be calculated from the graph of ϕ versus Z by the relation

$$S_o = \phi_i' + \sum_{i=2}^n \Delta \phi_i' \qquad (2)$$

where
$$\frac{\Delta \phi_n'}{\Delta \phi_{n-1}} = e^{-c_i \Delta z}$$
 constant.

A table of data to establish this constant ratio is,

Z	ϕ '	$\Delta \phi'$
0	.290	000
150	1.270	.980
300	1.870	.600

The ratio, therefore, is $\frac{.600}{.980}$ = .6122.

Values of $\Delta \phi$ for distances greater than the length of the measured range are extrapolated and are tabulated below:

2	ø	ΔΦ
0	0.290	0.000
150	1,270	0.980
300	1.876	G.600
		0.367
450	,	0.224
600		0.137
750	1	
900		0.084
1050		0.051
i		0.031
1200		0.019
1350		0.012
1500	1	
1650		0.007
1800		0.004
		0.002
1950		0.001
2.100		

From the above table

$$\phi'_{i} + \sum_{i=2}^{15} \triangle \phi'_{i} = 2.809 = S_{o}$$

Fig. 1. Roll Angle Versus Distance From Gun.
T119E11 Projectile No. X368.

Table I
Values of ϕ Determined from Experimental Roll Data
T119E11 Projectile No. X368

Z (ft)	φ (°)	ΔΦ	Ø"("/ft)
U	8.9		
10		7.0	. 350
20	15.9	755	
30		* 9.9 Lane	. 495
40	77.5	100 mm and a	
50		12,6	.630
69	38.4	12.	i
70		15.1	. 755
80	53.5		
90		17.6	. 880
1.00	71.1		
110		20.1	1.005
17.0	91.2		
135		22.5	1, 125
1-10	111/2		
150		100	1,270
166	139.1	the same of the	
170		27.8	1,390
180	_166.7		
190		20.5	1.475
250	196.4	-	
210		33, C	1.650
220	027.4		
235		34.9	1.745
246	264.3	100	
250		30.8	1.840
260	301, 1		i
2 70		37.2	1.8ė0
280	338.3		
290		37.0	1,850
300	375.3		

4 CONFIDENTIAL

Fig. 2. Rate of Roll Versus Distance From Gun. T119Elt Projectile No. X368.

Determination of C,

1

1

Equation (1) may be written in the form $\ln (S_0 - \phi') = \ln (C_{10}A) - C_{10}Z$, (3)

where C_{i_0} is an initial value of C_i . A logarithmic plot of $(S_0 - \phi)$ versus Z is given in Fig. 3. It can be seen that the slope of the straight line is-C,; thus,

$$C_{10} = \frac{l_{n}2.519 - l_{n}.439}{300} = .002870.$$

Fig. 3. $(S_{\sigma} - \phi')$ Versus Distance. (Logarithmic Plot.)

Determination of A

A set of boundary conditions for (1) is Z = 0, $S = S_o$, $C_i = C_{i_o}$, $\phi' = \phi'_i$ and $A = A_o$. Thus,

$$A_0 = \frac{(S_0 - \phi'_1)}{C_{10}} = 877.8$$

Roll Motion Equation

The roll motion equation with initial values for S, C and A is

$$\phi' = 2.809 - 2.519 e^{-.0028707}$$
 (4),

These parameters can be determined more precisely by the method of "Differential Corrections", but for the approximation sought here it is sufficient to use initial values. Table II is a table of values for equation (4) in which ϕ is converted to revolutions per second. Fig. 4 is a graph of ϕ (rps) versus Ξ for the entire range.

The magnitude of spin, as here found, appears reasonable when compared with spin measurements of the Tll9Ell projectile as reported by Frankford Arsenal in Report No. R-1086.

Table II
Projectile Spin (rps)
Determined From Roll Motion Equation

2 (11)	Ø (*/f1)	u (fr/sec)	\$ (rps)
0	. 290	1685	1.36
110	.972	1667	4.50
210	1.430	1648	6,55
250	1.580	1635	7.18
300	1.744	1627	1.88
600	2.359	1569	10.28
1200	2.729	1457	11,05
1600	2.775	1384	10.67
2400	2.806	1247	9,72
1000	2.809	1152	8.99

Fig. 4. Rolling Velocity Versus Distance From Gun. Calculated From Roll Equation For T119E11 Projectile.

Studies of Launching Conditions (Increasing Initial Spin Rate)

Spin measurement data for the T119E11 projectile, described in the preceding section of this report, indicate that the projectile emerges from the muzzle with a spin rate of one or two revolutions per second. It has been observed in flight photographs that the fins of the T119E11 projectile do not open fully until the projectile has traveled five to seven feet from the muzzle. (Thirty-Sixth Progress Report). It is possible that the projectile is sensitive to perturbations in this interval before the canted fins begin to induce stabilizing spin.

Increasing the spin at the muzzle would tend to minimize the effects of perturbations in that region and ultimate accuracy might then be improved. The most serious limitation on the increased initial spin is the ability of the fin assembly to withstand the increased stress.

1

In contemplating higher spin rates the degrading effect of spin on penetration must be considered. It can be shown that a large initial spin will damp out quickly by applying the differential equations of motion to an initial spin rate of 40 rps. Fig. 5 shows that even this high spin rate will damp out at 400 ft to slightly less than 22 rps, which would not cause a prohibitive degradation in penetration.

Rubber Obturating Rings

A simple method to increase the muzzle spin rate of a projectile is to place on the projectile a plastic or rubber type rotating or obturating band which would slip or grind away sufficiently to give a reasonable spin. This method has been tried with two projectiles equipped with rubber "O" rings placed in a special machined groove in the chamber as shown in Fig. 6.

The rotation (in degrees) for the two projectiles, as measured with yaw cards,

Fig. 5. Calculated Spin Behavior. TI19E11 Projectile Launched With High Initial Spin.

Fig. 6. Rubber Obturating Ring. In Position in Groove On T119E11 Projectile.

is contained in the firing record, Table III, and a plot of rotation versus distance is shown in Fig. 7. The calculated spin rates at various distances are given in Table IV and are compared with corresponding spin rates for the standard Tll9Ell

1

1

projectile in Fig. 8. The original range data for the standard Tll9Ell projectile used in this comparison are found in Table VI of the Thirty-Fifth Progress Report and a preceding section of this report.

Fig. 7. Rotation Versus Distance From Muzzle.
T119E11 Projectiles With Rubber Obturator Rings.

Range Data 7119E11 Projectiles With Rubber Obturators Table III

Date of Test Aug 20, 1953

	MISCELL ANEOUS DATA Range Faces The Same Regard The Propellant Type Market Web 2333m Weight The Case I no Propellant Former Type The Same	Observations	2 A Office fine stray maginismy swall catility found															Signed
Purpose of Test Oblived for Test	Model 7/3/2/3 Model 7/3/2/3 Note: 7/3/2/3 Serial No	Limuth Position of Hit Corrected Position Recoil of Hit — mils (mils) Vert Horiz Veri Horiz (in)	1//2 R.															Proof Director & High Street
Date of Test May 22 1753	Elec -	duzzie Velocity Elev A ft / sec Instr Actual (mits)	1,300,1570	1,300	gand fired at single courts.	n Distances	2 nd Coil	46.75' 18.75'	Card 3 Card 4 Card 5									
	PROJECTI: E Model	Round No Weight Chorge Pie	1 1		Note: Rounds were louded and	Yow Card & Screen	Ist. Coil	9.67 +	Card Cord 2	Angle of Ratation (deg.)	66.33' 342.0 23/3	46.0.0	770.08 604 0 520.3	dock.	vertical retained in			

Table IV

Effect of Rubber Obturator On Spin

1119E11 Projectile

5: 4	Pro	jectile XI	137	Projectile X 1136											
Distance (feet)	dΦ dZ (°/ft)	u (ft./sec.)	Spin(rps)	dØ (°/ft)	u (ft./sec.)	Spin(rps)									
0	1.94	1615	8.71		1621										
60	2.40	1591	10.61	2.70	1597	11.98									
80	2.58	1583	11.34	2.85	1589	12.58									
100	2.76	1575	12.08	3.00	1581	13.18									
120	2.88	1567	12.54	3.18	1573	13.89									
140	2.94	1559	12.73	3.27	1565	14.22									
160	3.00	1551	12.93	3.30	1557	14.27									
180	3.00	1543	12.86	3,33	1549	14.33									

Fig. 8. Comparison of Spin Rates.
Projectiles With and Without Rubber Obturators.

It is evident from Fig. 8 that the launching spin of the rubber obturated projectiles (approximately nine revolutions per second) is considerably higher than for the unobturated Tll9Ell projectile (approx. 1.3 rps). The recovered projectiles were in good condition, indicating that the increased spin had not damaged the fins. Small bits of the rubber "O" ring had been forced into the gap between the body and

chamber, by the propellent gases.

In view of the satisfactory performance of these two rounds it is planned to fire a complete program to determine the effect of higher launching spin rate upon accuracy and to establish the consistency of the muzzle spin of a rubber obturated round.

Gilding Metal Rotating Bands

3

Another method of increasing initial spin is through the use of a gilding metal rotating band. The Twelfth Progress Report included the results of firing three projectiles with gilding metal rotating bands from a tube rifled one turn in 480 calibers. The projectiles suffered severe damage in the tail assembly. Since the tail assembly of the Tl19Ell projectile is considerably stronger than the tail assembly of the test above it was decided to test the ability of the Tl19Ell tail assembly to withstand the sudden torque

transmitted to the body by the action of a gilding metal rotating band in the rifling of the tube.

Two projectiles, one with fins 6.92 in. long and one with standard length (8.92 in.) fins were fired from a 1-480 tube, through a series of yaw cards, into a recovery box. The range data are given in Table V, which includes the measured rotation. A plot of rotation versus distance appears in Fig. 9. Values of spin rate (rev/sec) versus distance are given in Table VI and the tabulated values are plotted in Fig. 10.

Fig. 9. Rotation Versus Distance From Muzzle.
TII9EII Projectiles With Gilding Metal Rotating Bands.

11 CONFIDENTIAL

Table V Range Data Tilgell Projectile With Rotating Band Fired From 1-480 Tube

1

Purpose of Test Charge Development & Son Mousurement

Propellont
Type Mio MP Web : 0335:n Weight Valies Magazine Hax 76.5 Min 7/°5. Present 76.5 Louding Room 80.5. Ambient 96.5 Mistired fired as speciating handle MISCELLANEOUS DATA Observations Renge Recovery Box Lot No 2/2 30252 Primer 7-5361 Shell Case 7-53 Temperatures (0. Corrected Position of Hit — mils HOL: Ver Model 71.27
Type 105mm recolless
Seriol No #397
Chomber 77230827 Type Perdulum Constant 2.64 10/100/11 Horiz Position of Hit Notes: Projectile XII49 (short lins) recovered in good condition fins undemaged no yaw on coros Ver TEST GUN 9100 10182 8176 246 10628 11331 Gage Number M-3 indicated bond line, from 5-10 - you (Slim) Chamber Muzzle Velocity Elev Pressure ft/sec (1b / sq in) Instr Actual (1 6200 200 / 549 / 595 8608200 / 586 / 632 1592 19 6 19% R 19% & Recoil (j. Special Features Bluntuose Bourrelet Dia 4/32 - 4-37 Proj. Powder Weight Charge (1b.) (1b-oz) 00 8 Weight 17.52 16 (Nom.) X 1007 X 1149 17.5 X //48 /75 Model 7/19 PROJECTILE Type _ £ // C.G. Location_ X1015 Proj. Ž Round No 5683 5684 5685 5686

Angle of Rotation &	Yaw Cord Distances	
Distanc; X 1149 X 1148	Box 63708 6308 4- 3200 4- 6146 1104 4 704 4	
53.08' 3/4.5" 19/0"	64.2	
6841 3518 2300		
10049 4365 3535	Screen Distances	
161.95 6210 6520	H 68.42' 93.58'	
172.99' 6579" 7750"		
180 03 (810 7528		
" Measured in degrees clockwise from		
vertical reference line.		
		publication of the control of the co
The same remainder of		
A STATE OF THE PROPERTY OF THE		
	Proof Directo Observers	Proof Director E. Hulfman Signed O Miler Observers C. M. Cox
		A 10 00 00 10

Table VI
Spin Rate of T119E11 Projectile
With Rotating Band; Fired from 1-480 Tube

		TT IN KOIGHING	y Danie, Fried F	1011 1-400 100	•	
Distance	Proj	ectile XII	49	Projecti		
(feet)	dØ (°/ft.)	u (ft./sec.)	Spin (rps)	dØ (°/ft.)	u (ft./sec.)	Spin (rps)
0		1638			1630	
60	2.43	1614	10.89	3.09	1606	13.78
80	2.61	1606	11.64	3.72	1598	16.51
100	2.79	1598	12.38	4.23	1590	18.68
120	2.91	1590	12.85	4.62	1582	20.30
140	3.06	1582	13,45	5.10	1574	22.30
160	3.18	1574	13.90	5.46	1566	23.75
180	3.30	1566	14.36	5.70	1558	24.67
				1		

The spin of the projectile with fins 6.92 in. long was normal but the projectile with standard length (8.92 in.) fins attained an abnormally high spin rate of 24.5 rps at 180 feet. It is believed that this high spin rate was due to fin distortion, giving an abnormal cant to the fins.

1

From these test results it is evident that the results of launching a T119E11

projectile with a non-slip rotating band from a low spin tube are considerably less satisfactory than the results from launching the same projectile with a slip band from a high spin tube. The fins were damaged by the high initial angular velocity when using the non-slip band and the low spin tube. On the basis of these test results no additional tests from slow spin tubes are planned.

Performance Tests of T119E11 Projectile

Effect of Dimensional Variations

Twenty Til9Ell projectiles, prepared and assembled so as to represent extremes (loose or tight) in clearance between certain components of the tail assembly were tested for mechanical functioning and ac-

curacy. These tests were so made that manufacturing tolerances might be as broad as is justifiable.

Fig. 11 illustrates the tail components involved in the dimensional study and Table VII charts the original and proposed tolerances. The parts were machined for this test and Table VIII is an inspection report of the parts. The firing record for the twenty projectiles is given in Table IX.

Fig. 11. T119E11 Tail Assembly Components.
For Tolerance Study.

Table VII Proposed Dimensional Changes Tolerance Study

Dimension	T119E11 Dimensions	Proposed Dimensions
A	1.6875 + .0010	1.687 + .004
В	1.68600015	1.686002
С	1.810 + .001	1.810 + .004
D	1.817001	1.819002
E	1.869002	1.809002

Table VIII Inspection Data Tilly Projectile Parts

Projectile													
Na	А	В	C=1.810 +	.0002	D=181900	02	E = 1.809	- 0002					
SET 1			Max.	Min.	Max.	Min	Max	Min.					
X867		SEE	1.	8125	1.8191	1.8181	1.8094	1.8083					
X868		NOTES	1.	8135	1.8200	1.8191	1.8099	1.8093					
X869		BELOW	1.	8120	1.8200	1.8191	1.8102	1.8100					
X870			1.	8101	1.8205	1.8181	1.8103	1.8085					
X871			1.	8125	1.8200	1.8187	1.8099	1.8093					
X872			1.	8115	1.8207	1.8191	1.8101	1.8088					
X873			1.	8125	1.8202	1.8194	1.8107	1.8102					
X874		1	1.	8090	1.8198	1.8188	1.8095	1.8092					
X875			1.	8120	1.8194	1.8182	1.8193	1.8093					
X876			1.	8095	1.8200	1.8194	1.8100	1.8097					
SETI		1	C=1.814 -	+.0002	D=181700	002	E=1807-	- 0002					
			Max	Min	Max	Min	Max.	Min					
X877			1.8142	1.8140	1.8181	1.8177	1.8082	1.8080					
X878			1.	813:	1.6188	1.8175	1.8092	1.8085					
X879			1.8142	1.8140	1.8176	1.8171	1.8074	1.8070					
X880			1.	8125	1.8176	1.8172	1.8085	1.8080					
X881			1.	8160	1.8178	1.8161	1.8076	1.8055					
X882			1.	8135	1.8169	1.8153	1.8075	1.8060					
X883			1.	8120	1.8182	1.8179	1.8087	1.8085					
X884			1.8142	1.8140	1,8165	1.816	i.8075	1.8070					
X885			1.8142	1.8140	1.8177	-1.8172	1.8083	1.8079					
X886			1.	8115	1.8178	1.8167	1.8083 1.8075						

Notes:

1

Î

- 1. Dimension A = 1.691 ÷ .0002. All pieces in tolerance.
- 2. Dimension B = 1.684 .0002. Eighteen pieces in tolerance, two measured at 1.6836.
- 3. SET I is close clearance group; Set II is loose clearance group.

Four of the reprojectiles were fired through the wards, into a recovery box.

Two the four projectiles were from the week weeks pressures were projected to the four projection of the wards and the property wards are property wards and the property wards and the property wards are property wards and the property wards are property wards and the property wards are property wards.

to the property of the Troup I (close to rate a) and rype from Level I (loose

tolerances) of Table VIII were fired for accuracy at a range of 998 yards. The first projectile flew over the target and after resetting the elevation the next fifteen rounds all hit the target with probable errors of dispersion of V.P.E. = ±.49 mil and H.P.E. = ±.51 mil.

Since these projectiles were prepared from certain components machined so as to create extremes of fit wider than any fit that could be expected in production manufacture and assembly, the results of the firing tests indicate that tolerances in the tested components may be relaxed to the proposed degree presented in Table VII without being detrimental to the accuracy of the projectile.

Table IX Range Data 7119E11 Projectile Effect of Relaxed Tolerances

															No.	Comp		3	77	80	9	ı	E)	3	,	6	ک	8	,	9	3	4			1	-				
		Target	1	Jack					76.€	12°F			Firing.		Person Parson	Correct Comp	To O AL	+1.617	+264.8	+1001	+ 884	- 306	+.501	+ 479	\$50.1+	+ 682	+ 904	+ 1.40	+2032	+.487	+.097	+1.503			1					
Pupose of Test Te test, effect of relaxing televences, on tail assembly Proxon #42	MISCELLANEOUS DATA	Ronge Kecovery Box & 978 yels Target	Propellant	Type METILO Web-02:36 Weight Maries	Primer 78/	Shell Case 753	Sighting Equipment Direct Sight Mize " 18004, Manut Tiss" Liner DRC 497	Locatures	Max 22 "- Min 20"	Loading Room Bo E Ambient B7 E		Succession	Cold box - 41°F BI°F Ambient at Firing	Cold box -41.F			vergenter		Good flight		Good flight	:	:	31.94t precession noted	Good flight.	Good flight	Good flight	TSZ Cut liner Slight precession	Good £1.9ht	Good flight	2	Good Flight			recovered. No apperent domage was noted.		(4) On rounds 5504, 5554, 5556, # 5556 4 4000 Cords were placed on the cold of trant or redouct box.	1/2 C C C C C C C C C C C C C C C C C C C	* to	1
cetofo							Yourt TI		m.1 - 34 43 in	17.	Recoil	(10)	346	367.	300	2 % 6	3.7.5	SerII	Serr	SETI	SETI	SETH	SELI	SETI	Serr	SeTE	SETI	SetH	Serr	SETI	SETT	Ser.T			Serent		04,0	E Huf	"Jender	
test eth							1,00061	.,3243		Corrected to 21 mils elec & 1 mil Asimuth	Position	Γ.						4.515	+1.642	0	417	-1.308	109	529	+.257	320	097	057	+1.030	5/5	905	+.501			NO BY		S & front	Dent District F. His forman	Chesivers F. Mander	
# Test 76							the MEZE	Ladrant	acrete 0	Jelev &	Corrected Position of Hit - mils	Vert.	Fin 430					+1.394	+1.517	- 905	+ .183	+1.715	+ 350	#.05B	- 193	41.199	+.405	7.362	097	r.390	10174	4.557		1369.			The 20.1	Drage	9	
Purpose of Tes	•	1	257/10	1	1	(1-20)	Direct Su	Sessonie	Me ea Co	f to kim	÷ ;	Horiz	Broken Up Fin Asy OK				target	-17:1-	+ 23	-36	-6/	-83	8/-	6/-	+2	. 3//-	-3%	7-	7	-18%	-32%	. 8/+			b were	+104	locod on	North		
	21	3752	Type 102 mm Kecoulless	01.7	Chamber 18679	Tube 2. 8-849 .c (1-20)	quipmen!	Per 2 46 - Supposes Quedrant 13243	Type Vendulum; Mt on Concrete Bose	Correcte	Position of Hit		(sod hor		ery box	ry box	missed t	+84	+ 54%	-32 1/2	+42 %	+97%	1,86+	+38	+29	+79	11/4	+13	-31/2	4/4	141	+40		Stune nos	1814×87	erimox a	o mere p	Mognet		1m.1 Les
	TEST GUN	Model TIBLE	ype (O)	ON IDLAN	Chamber	Tube 22	Sighting	Mount	7,50	rstem	Azimuth F			الم عامه	Fired into recovery box	IN to recovery bux	77	72	77	77	24.	77	7/	1/	11	7/	7/	11	7/	7/	71	7/		removed & blunt noses were used.	3 x876, x4	projections taken to Akron for examination	How cort	Clackwise from Magnetic North		H. Positions Corrected to Imil Left
a		Recov	Вож						ا ما .	S 40.11	Eiev	[SIIE]	(F,red	(Time	Fired	Fired	\$7-5-9	4-2-26	17.	57-21	53-12	5.7-22	77	77	22	22	17	12	'n	2/	12	2,		C : "	v) ect, la	to A.	15052	010. KW		ons Co
Test Buquet 12, 1953	18.5	5.	٢٠	,				Total Canada	II . LOOSE CLEARANCE	Solenoid Machanical Firing System	elocity	Actual	1527	1831	1770	1756	1667	1679	1676	1685	8771	1679	1667	1677	8991	1677	1673	699/	649/	699/	1673	1675	1672	X879 THE OGIVES WENT	red. Pr	s toke	1555'	.1		Pos. 4.
st Augu	93.84'	.000	C7 96 -		Inces			0.036	Loose C	d Machi	Muzzle V	Instr	1505	-	1725	1111	1643	1665	1652	1991	1644	1655	1643	1653	1646	1653	1649	1645	1625	1645	1649	1651	Ac As. 1672	79 THC	recove	Ject 16	* 555G	1.m09		11
Date of Te	1		_		en Distances			SELL		Solenor	Pressure #1/ sec	(Ib / sq In.)	8000	7200	10800	12000	60000	10000	9800	8400	00000	4600	10000	9200	10100	10000	(0100	00400/	7600	0000	00006	NoGeges	6836	8x 9 18.	74 not	red pri	nds 554	0- =H:1'	1.m 68+	505 mil
	66.46	1000	1 0.40		Screen	,		Special Features Relaxed Tolerances	On Tail Assembly			76. B Dir.	TI		Set II	SETIL	7-235 9600	10-2750	7-2450	13.2450	19.235	15.230	9-225	7-230	6 . 220	.007-01	7.250	5-260	9-250	7-260	9-280	8-235	Ave Mess	(1) Proj X881 6	(2) Proj X874 not recovered. Projectios x876, x881 & x879 word	(3) Recovered	(4) On rou	V= +.54 1mil: H= -060mil	rical #	Probable Error - Horizontal # 505 mil
	Sound Sound	1	L	1 1	Nom.	1000	2 10	loxed	Toil A.		Powder		7-12%	7-12 1/2	8-5	8-5	7-12%	7-121/2	7-12%	7-12%	7-12 1/2	7-12%	7-12%	7-12%	2-12%	7-12%	7-12%	7-12%	7-12%	7-12%	7-12/2	7-12%		Nores:	-				- Lucia	Error - Ho
		611	"	1110	2510		10 4/3	tures Re	00		-	(Ib.)	17.50	17.51	17.48	17.52	17.54	17.51	17.52	17.51	17.52	17.52	17.52	1752	17.50	17.52	17.53	17.52.	17.52	1752	17.52	17.52						Center of Impact	Frobable	Probable
	PROJECTILE	Model T119	Type E11	,	Weight // 32 10 (100 m.	C.G. Location	Bourrelet Dia 4/32	Decirol Fed			Pro j.	V	09:76 X 876	04.60 878 X	X 881	XA79	898 x	x 880	118x	x878	898X	x885	x875	x877	x810	x884	x 867	x 883	x872	XBBZ	X873	x886								
	A.	ž	t		\$	Ü	ě	ŭ	ń		1	Monday Mo	5549	5550		5552	5553	5554	6555	5556	5557	5558	5559	5560	5561	5562	5563	5564	5255	5566	5567	5568								
																	1	6																						

With A Short Chamber-Tail Assembly

A tail assembly, .475 in. shorter than the standard tail assembly of the Tl19El1 projectile has been tested at Eric Ordnance Depot. Fig. 12 illustrates the revised shorter chamber and tail assembly.

Six projectiles incorporating the shorter tail assembly were fired through yaw cards into a recovery box. The firing record is contained in Table X. Three of the six rounds were loaded to give excess pressures at ambient temperature; three were loaded for operating pressures, and prior to firing were conditioned in a cold box at -40°F. The yaw cards showed that the

1

fin-opening mechanism functioned satisfactorily and the recovered projectiles gave no evidence of failure or malfunction of any of the components.

Fourteen projectiles with the short tail assembly were fired for accuracy at an 18 ft by 18 ft target at a range of 998 yards. The data appear in Table XI. Probable errors of dispersion for 14 impacts were V.P.E.=±.39 mil and H.P.E.=±.60 mil.

These test results indicate that the short tail assembly can be incorporated into the T119 projectile if, at some future time, a desired decrease in length and weight justifies the change.

Fig. 12. Short Chamber and Tail Assembly.

Table X Range Bata 1119 Projectile With Short Tail Assembly

1

Purpose of Test To Test Tulffel with Short Tail Assy.	MISCELLANEOUS DATA Ronge Kerca cry Box Propellont PASOESO Type MPMIL Web .0335 Weight 8.9.9.2 Type MPMIL Web .0335 Weight 8.9.9.2 Type MPMIL Web .0335 Weight 8.9.9.2 There ORC 535 (3.002/pd.*Rayon) Temperatures Mogatine Max. 775 Min 71.7. Pressnt 23.7. Looding Room 74.7. Ambient: 75°F.	Observations	piera of liner in case	19x 5 Chamber along	2/13	No! Jan Card X: X Price of At - 40" F	of 1,000 16 16			tout of box down range.	iner, ogson with polyethylene burned off, were 411 found in the shell Gose.	3 of shottered propellent.	g section of the top of the liner (DRC 545) was found a few that from the muzzle.		liner was between projectile and tube wall.						43	42		ĺ	19 1 Numbered , Cound Leas tires	3. O. S.
T.119(E.		Recoil (in.)				N 2000	2000			1000	111 0	10 ment	D From	22/4	Sen Pr		\downarrow		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CARO 2 CARO 3	2 10 100 1	0.30.20	14/1.40	108-105	2012801	10% 40%
5 7635		Corrected Position of Hit — mils	Clock		4	Sece of 1	, Mer. Co.	1138/04		O XBE	11 for	1/ /10	found	the mi	13 betu				FIN MEASURE MENTS	C460"2	118×118×11	11×11/2×11	01.11.471	D. gango	- 200 50	10.811 201
of Test	Adde T. 127 E. 3 Model T. 127 E. 3 Serial No. 28 120/ Chamber 236 120/ Bushing Veril 4.26 6020 Tube 22.8 120/ Model T. 120/ Model T. 120/ Serial P. 1 2.66 (b. 250// Serial P. 1 2.66 (b. 250///	Correcte of Hit	4 Fin Mark at 10° & 10°Clock		2 Fin Morks of 1100,000 1 4 34	Mar No Diece of liver in Cone	Dece of		1	Tion F	Were	114 30	5) 403	bye to	liner W				1	1005	4% . 45 48 48 112 113 11 211 611 611 6 10 10 10 10 10 10 10 10 10 10 10 10 10	11 2-11/2-10	11.8.11.8.11	10 × 11 × 11	Nocord	10 % x 11 x 11
Purpose	ST GUN odel 77.57.63 pe 10.5 man Encarlless pe 10.5 man Encarlless homber 2.85 - 7.20/ use 2.85 - 1.49 c total fount Type - Encluden Manat Serial P.G 2.00 lb - 2.54/27 Serial P.G 2.00 lb - 2.54/27	Horiz.	Hark at	No Fin Morks	Morks a	No Fin Marks	No Fin Mark			guing	ed off	pand c	DEC 54.	aund al					YAW CARD MEASURE MENTS	CARD"2 CARO"S	30.80	34.90	4%.4%	\$6.35	4 1 × 44	\$4.50
	EST GUN Model 7.37 E.8 Type 102 and Eccolless Serial No 28 Chamber 236 - /20/ Chamber 236 - /20/ Tube 228-149-0 Tube 228-149-0 Mount Type Ferdulum Mauri Type Ferdulum Mauri	Position of Hit	4 619	No F.	2 FIM	No Fin	No F.			forek	c burn	1nd 3h	liner (was f	Sec ti				ED MEAS	2000	4% 48	4% . 48	46:46	75 x 35	4% × 4%	47.46
	TEST GUN Model ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	Goge No	9/26	835.8	7.77	10 m	9.4/	2,7,7,0		BOS, X790 & X789 recovered for examination. Proj X801 went	chylen	and chamber ofter each round showed anly small fragments	0 0 t the	sex: tron	(groove & lands marks) that this section of				NOW CO	CARD"	418:41.	46" x 46" 48" x 46" 48" x 46" 11211 6 11 11 11 11 1 1 1 1 1 1 1 1 1 1	01 1 4 4 4 4 4 4 4 4 4 4 4 11 4 11 4 11	418 = 48 48 × 18 46 × 94 108 11 11 10 10 10 10 10 10 10 10 10 10 10	No cord of x pt. 48 x 45 No cord without 10 th 10 th 15 16 th	4% . 4%
3	∵ " ⊤	Shell	Beent	,		00000	 -			68	Th 204	, ther	tive to	Imilar	1637		1				1	7	5		م	3
Tust July 22, 1953	36.42' + 94.75'+ 2 3 Card Distances	zzle Velocity ft / sec str. Actuot		-	-	1573				SO AX	you wi	Im ber	on of	2000	nds mo	an obtarator										
181 - 161	36.42' + 94.1 2 1 Card Distance 4 94.7 een Distances	₹ 5	1	0721 0		1551	123	, ,		105,X7	10/10	and che	1 500 11	14 roun	Ve 6 19	200 00	1	+	-	040	ordtures.					
Dote of 1	7 - 7 - Scr	Chomber Pressure (16 / sq in)	12500	1,400	12400	8200	3000	HAO		795, XC	0 f /	tube	pund	nd SIK		80 6				Genditions	FASTOR P					
	2975 — — — 6611	Recoil (in)	2 1/4 8	2 66	2 66	4/				Projectiles X793, X795, X	Sections	of the	fourth	FIFTH GAD SIXTH rounds O Similar scrition was found abse to the muzzle.	indicates	obviously octing				Atmaspheric						
		Powder Chorge (1b - oz)	8-4	8-4	8-4	7-13%	2	20/2/		ectiles	Small	Inspection	er the	After the	Evidence	Chrisa		1		Atma	prere					
	11.E	Weight	17.52	17.92	17.52	17.54	1000	*6//	53	Pro	The	1015	MFEER	AFE	EVI											
	PROJECTILE Gun Type Execumental Weight C.G. Locotion C.G. Locotion Special Features Short Tax (1934, 1934, 1935)	Proj.	X 801	X 793	X 795	x Bos		49/ X	Nores		-															
		Round No	5348-1	5349-2	5350-3	5331-4	7000	0.000																		

Table XI. Accuracy Range Data 1119 Frojectile With Short Tail Assembly

	_	16-12 200		y			3.16	Normal	Component	١	1	`	,	5.3	,	2.7		-2.9	\vdash	Ţ	56	5.3	9	4.4										
Purpose of Test Haweney CF TUP(EL) WITH SHORT TOIL ASSY.	Ronge 974 vd. Line Se Si Mar No. EN	Type MPMID Web 20338 Weight 716-18 204	Lot No PA 302.39		Liner	Mogazine	Serial 4/3 (Concrete Desc) Penguium Maurit DC - 248 10 20/1 Mos 27/6 Min 21/6 Present 74 6 Corrected to O Asimuth & 24 mis Elevation Loading Room 21/6. Ambient 91/6		Observations		Cases bulged near 923 See!	Cood flight	Good flight	Good flight	(Josephiliphe	Clora Flight	Grand flight	Vin mork aftio actock/mutals 6 in Take	Good flight	Fire mark at (12 19 0 Citat) mutale 1 long	Slight You		٧	Tie (think man)	first good Grun was set with a housented / cetarance line				Measurements of target				MAN Signed O. Miller	11
SE TUPLE							Pe - 240 16	Recoil	(iu)	13/4K															T 4				Messuren				Proof Director E. Hyrran	Observers C.M. Cos. F. MENDEZ
Scuence							4 mils E	Position mils	Horiz	10,600	1,800	+1.014	1187	+2186	24.040	42 018	\$6000	+0.65+	+1.002	+2.513	+2.07	+: \$80	2000	72.5/7				200	1 %0.	201	10		Director	vers C.
of Test A					The state of the s		Andula	Corrected Position of Hit - mils	Vert	check		+2000	1/006	10.557	+1.517	7	105/1	1		_	+2 547			1000	0.1 Gu		MARKS	10 8x 11 x 10 %	101×11× 900	201201201	1 % A 11 X 4		Proof	Obser
Purpose of Tes				Jube 22 8 2 20 - P	Sighting Equipment Tisamet	200	o O Asin	Į.	Horiz	7,000	TOCO. 1 CHECK	.35%	+	1	+	+	136	İ.,		+	+	3M	+	277	first B		No.07	0, + 1 9, +		3 2 4 %	211x11 4 11 11 11 11 11 11 11 11 11 11 11 11	1		
	ST GUN		Chamber 1K 679	Tube 22 8 - 270 - P	duibment.	7,5264	rected t	Position of Hit	Veri	\rightarrow	~	+ 74	+ 50%	1.20	15.0%	47.62	700	+10%	+ 92%	200	7.76+	+77%	+68%	10/00/	on the		Kound	5500	5603	5504	5506			
	Model TISZEZ	Serial No.	Chamber	Tube 22	Sighting E	Mount	Serial	Azimuth P	(Sim)	down range for	down rooge for	77	3.5	3.5	3,5	76	1	75	36	3.5	375	35	7,	54 54 54 5 (Call Anna Days) Par	you good on the	-						-		
1	F1	2						Elev	(mils)		p posit	6-24	2	**	• 7	22		27.5	-24	-24	17.	-24	17.			1		,,	30	11%	8,01 ×	+		
Date of Test Huse 4, 1953	93.75		Distances						Actual	1663	1669	1,670	999/	/623	669/	1,607	157/	1,654	1660	697)	1679	1658	1656	7 (63/ /654 -29	through on		NARKS	4%.4% 11% . 11.211%	30118,01211 9,019,6	4 % x 6 2 11 % x 11 4 11 %	8,01 x 9,01.8,01 8, x 10, 8			
st Huce	6 01							Muzzle Velocity	Instr	1001	7491	1647	1645	1600	17/7	*79/	644	/63/	1627	1641			_	/63/	6 fired	1	50 07 YRW		20.70	4 % x 6 %	8 4 x 0, 0		11/10	
Date of Te	+	-	Screen				30/1t	Chamber	(Ib / sq.in.)	74,292	14,155	1	13,550	761	1	12,001	13 100	12 104	1	1	12.69/	12,655	12,547	12.54	6 6 50		Round	5444	5445	5498	2444		H . + 2.17	11 mil
	66.42			1		t tail	Retordation Factor "195 ft/se/lt	Wind	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-	1	50-210	18. 210	18-225	18.210	/3-220		13-195	22-2/5"	15-205	15-230	18 -225	18-210	1754 7-12 16 -226	(2) Pound 5505 & 5506							ABE	Center of Impact V=+1.10mile; Mate. 17mils	Probable Fror - Vertica # .387 mil
	1	107	52 16		12 10.	th shor	Foctor	Powder		7-12 1/2	7-12%	7.12%	7-12%	7-12%	7.12%	7-12%	7.17.6	7-12%	7-12%	7-12%	7-12%	7-12%	7-12%	7-72.2	(2)							ROOT MEAN SQUARE	mpact V=	rear - Ver
	ILE 1/9	הפנושפה	om) 12.	uC	Dio. 4.4	otures 14	dation	Proj	(1b.)	17.50	1221	17.54	1755	17.55	\rightarrow	+	17.54	17.55	17.54	1754	17.50	17.51	-	+	101							ROOT M	Center of	Probable
	PROJECTILE Model 77/19	Type Experimental	Weight (Nam.) 17.52 16.	C.G. Location	Bourrelet Dia 4.132 in	Special Features With short tail	Reto	Proj	ŏ	x 955	096x	x 806	x 796	X792	16LX	x 748	4 707	A 70B	x 80c	H	X 799	X 804	+	X 803	-									
	£1.2		_	_	J	31			Konnd No	5491	5442	5443	5494	5445	2496	5447	3470	5500	5501	5005	62203	5504	5205	5506										

Future Program

- l. A nylon slip-band will be tried as a means of increasing the muzzle spin of the projectile.
- 2. Twenty projectiles with rubber "O" ring obturators have been fired for spin and accuracy. The results will be reported in next month's publication.
 - 3. Fifteen projectiles with short bodies,

- short ogives and rounded nose caps are being assembled. It is planned to fire these projectiles to check drag and accuracy.
- 4. Twenty special housings with an O.D. of 4.118 .005 are still in process. This design should permit a smoother launching condition of the projectile. Results will be included in a later report.

T171 PROJECTILE

Accuracy Tests

Two modifications of the T171 projectile were fired for accuracy and flight evaluation at Erie Ordnance Depot. Seven T171 MD8 rounds (Fig. 13) and twelve T171 MD10 rounds (Fig. 14) were launched from a T137 rifle having a 1-20 twist tube. The target, 18 ft. by 18 ft., was placed 1000 yards from the gun muzzle. Since the projectiles did not have rotating bands, it is estimated, from spin measurements previously made, that the rounds were rotating 2 to 3 rps at the muzzle.

T171MD8 (Fig. 13)

Of seven rounds of this modification fired one round hit the target. This one round, fired at an elevation of 23 mils and zero azimuth, with a muzzle velocity of 1692 feet per second, hit .28 mil below and 1.28 mils right of the aiming point. Two rounds, after hitting velocity coils, exhibited large yaw during the remainder of their observed flight and another round

tumbled at a point about 600 yards down range. The remaining three rounds appeared stable in flight, but drifted off the line of sight. The firing record for this program is in Table XII.

A yaw card was placed on the first velocity screen and the three projectiles which flew badly (X902, X903, X911) each had a large initial yaw, indicating that poor launching conditions were responsible for the poor flight. The poor launching conditions may be related with the riding surface of the fins - which is narrower and longer than that of the T-4 fin used on the T171 MD10 projectile.

T171MD10 (Fig. 14)

Eleven of the twelve MD10 rounds fired hit the target, with probable errors of ±.60 mil horizontally and ±.90 mil vertically. The dispersion chart is shown in Fig. 15. These rounds, fired at an elevation of 23 mils and zero azimuth, with an average muzzle velocity of 1669

Fig. 13. T171MD8 Projectile.

Fig. 14. T171MD10 Projectile.

feet per second, had a center of impact. Il mil above and .28 mil to the right of the aiming point. The round that missed the target appeared stable in flight but drifted to the right. The firing record for this program is shown in Table XII.

sult either from the difficulty in maintaining a uniform loading density of the separately loaded rounds or from the low initial spin rate, or both. The large horizontal dispersion also suggests that the spin rate of 2 to 3 rps is not sufficient to yield satisfactory performance.

The large vertical dispersion may re-

Fig. 15. Dispersion Chart T171MD10 Projectiles.

Table XII Range Data

MISCELLANEOUS DATA Ronge 998 441, (d) Ronge 998 441, (d) Ronge 998 441, (d) Propriori Type 21271 Weight \$18,8 % or Lot No. PR 302 39 Prime: TS2 Roll Cose 752 Polyter y lene Mod 272 Min 71% Present 75 % Looding Room Ambient 62 %	Observotions	Hit fourth coil.	434 x 4' 6 Body you; hil ' 4 mil right; 1/4 mil low	Low in front of larget.	Left and low.	Trackly and to the		Very sight you 6.0d fight				40		Law & 2 mils left, Good flight " whale pluy come out.	Masce torget Good flybt	6000	do.	be done		The state of the s		A LINE AND LINE AS	N1010		Signed	higaenti .
13 13 1/3745 19006	900 y	1	43/4:41/8		1				4/8 :4%		- T	0 18 x 4 10		416 516	_	4/6.4%	4/0.4/8	phopology This was done		Trake.			9	F Hilton	0 200	
Purpose of Test Accuracy of Date of Test Aug 7,1953	Corrected Position of Hit — mils	!	1 1		1	1 1	11.044	-	501	\neg	_	. 306	1.654			\dashv	76.5	11.1001000				h	MOB		Observers 4	:
Purpose of Test And Date of Test And Test And And Test And And Test And And Test And	Correct of His			!		11	4/0	+-	+1.920	070	+	760 -	1.030	-2.8//	+	_	.2.03	*	-	U	\mathbb{X}_{+}	<u> </u>		6	i ë	
Purpose of Test	(inches)		. 46	1		1 1	. 37 1/2	. 18 1/2	8/ -	15.	+	. 35%	+ 23%	. 55 %		4%	?-	1000		1						
Pur	Elevation Position of Hit (inches)		0/1		1		7/1 -	Ŀ	• 69	. 2%	- 29	3%	+ 37	101 -	1	6/ ,		01 140		0/02						
TEST GUN Model	E levotion (mils) zero super	4	23	23	53	2 5		23	23	23	22	2 2	23	23	23	23	53	would be		2 0000						
Ţ [‡]	Azim. E		0 0	7/	7,	7,	0	0	0	0	0	0	0	0	0	0	0	2000		655. 12					Rounds 5521 10 \$532	
- 37.57'+55.92' 2.nd. 3.nd. <u>Visionces</u>	velocity sec Actual	\vdash	/653	1891	1881	1 1		1.74	1:76		-	5:9/	+	1680	1678	1675	1656	the tube so that the		Type, commer 5521 5532					~	`
27.57.4- 2.nd. 3.nd. Distonces	Muzzle Velocity ft / sec Instr Actual	1634	/643	1652	N	1 1	1	1	1607	1642	1638	16.50	1661	1651	649	1646	/627	1 00 4		1000		North.		283mil.		
	Wind (c) Pressure VEL 8 Dir. mph degrees (tb / Sq in)	3800	3600	94009400	9300/0/00	0066	99000	78009500	9400 7800	26009500	9100,0300	10400,300 1646	10300 00001	10206	0000/0016	00860089	008800	140 /41	- 1	108 TY				Center of Impact Verif 4,1/3 mil, Horse 4, 283 mil/s	Omils	Proboble Crior - Horizoniol
105.83' 3 Screen	B Dir. Pressu degrees (b / sq	055	058	060	090	1050			950		- 1	060	090		550	080	n i	placed in	load dem	Rounds 5514 to 5,520 were	Clockwise from Missonetic North.	ast of Magnetic		1.113 cm.13.	Probable Error - Verlical 2 . 90 miles	1010
192 - 191 ist. Welserly Cool Kin Cool Cool Cool Cool Cool Cool Cool Coo	· >	-	200	+-	6	1 2	╁	+	00		+	* 0	0		5 7	- 1	1.		Some 100	5520	2000		+	Very	-Vertice	22.0H-
(Nom) (10) (Nom) (Nom) (Nom) (Nom)	Proj.	1-1	x 905	1		x 9/3			ale x	17.53 x 922	X 92	x 924	x 920	x 9/4		\neg	~ 1		000	5 4 70	1	- 26	1	- Jane	Error	
	Proj Weight	1752	17.50	17.53	17.52	17.52			17.50	17.53	17.52	17.53	17.52	17.52	17.50	17.53	17.50	Projecties	7. 2.1	5 5000	teris.	Line of fire - 28°	1	Capter	Probable	Propos
PROJECTILE (1911) What T-171 Type Model T-171 Type MODE & MODE State St	Time of Flight		2.33333				2 22030	2.22896	1		2.23445 17.52 X 921			i		2.22285	A.I.	(a)	- i			(p) 71m				
σ . Σ ⊢ ≱ ດ ໝົ ພັ	Round No	5514	56/5	55/7	55/8	55/9	0265	5552	5523	5524	5525	5526	5578	6755	5530	553,	5532									
				2	23																					

Ballistic and Range Calculations

Using the Siacci theory and experimental data, ballistic coefficients for the T171MD3, MD5, MD10 and MD11 configurations were determined. From these ballistic coefficients the form factors and drag coefficients were computed. The terminal velocity, time of flight and elevation were found for various ranges and muzzle velocities, and the variations in vertical target strike which would result from errors in range estimation have been calculated.

Ballistic Coefficients

The Ballistic coefficients were found which satisfied the equations

$$C_{\tau} = \frac{t}{T_{f} - T_{o}}$$

$$C_{s} = \frac{x}{S_{f} - S_{o}}$$

where

t = time of flight

x = range

T_o = Siacci time function at initial velocity.

T_f = Siacci time function at final velocity.

S_o= Siacci space function at initial velocity.

S_f = Siacci space function at final velocity.

C₇, C₅= Ballistic coefficients determined by time and space conditions. The times of flight and muzzle velocities were measured, and the range was known. After the initial values of the space and time functions corresponding to the muzzle velocities were obtained from the tables, the terminal velocity was varied until the final values of the space and time functions were found that gave equal values of the ballistic coefficients, $C_{\rm g}$ and $C_{\rm T}$.

This procedure was carried out with standard drag functions 1, 2, 7 and 8, and the standard function chosen was that one which best fit the experimental data. The best fit was assumed to be the function for which the standard deviation of the ballistic coefficients was a minimum.

It was found that the number 2 standard function provides the best fit to the data for the MD11 projectile, and the number 7 standard function was chosen for the MD3, MD5, and MD10 modifications.

The form factors were then determined from the relation $i = \frac{m}{C d^2}$

where i = form factor

C = ballistic coefficient

m = mass of shell

d = diameter of shell

Values for the ballistic coefficient and the form factor are shown in Table XIII.

Table XIII

Ballistic Coefficients and Form Factors
T171MD3, MD5, MD10 and MD11 Projectiles

Drag Force Coefficients

1

1

With the aid of the expression

$$K_D = \frac{iG}{Ku}$$

$$k = 5.217 \times 10^{-4}$$

$$i = form factor$$

$$G = drag function$$

u = velocity

the drag force coefficient - Mach number relationships for these four configurations were computed (Fig. 16). The solid sections of these curves are the portions of the curves to which the experimental data were applied, while the dotted lines are extrapolations of the standard curves using the at we listed form factors. These results indicate that the drag force acting on each of these projectiles, using the MD10 modification as a base (=1.0), is 1.09 for the MD11, 1.74 for the MD3 and 1.81 for the MD5.

Fig. 16. Drag Force Coefficient Versus Mach Number. T171MD3, MD5, MD10 and MD11 Projectiles.

Trajectory Elements

The significance of a difference in drag force lies in its effect on the trajectory elements. Using the equations

$$S_{f} = S_{o} + \frac{x_{G}}{C} \sec \theta_{o}$$

$$y = x \tan \theta_{o} - \frac{c^{2}}{2G^{2}} \left[(A_{f} - A_{o}) - I_{o} \frac{x_{G}}{C} \right]$$

$$t = \frac{C}{G} \left[T_{f} - T_{o} \right]$$

S_{off} initial, final values of Siacci space function.

Tof = initial, final values of Siacci space function.

A_{o,f}= initial, final values of Siacci altitude functions.

I_o = initial value of Siacci inclination
 function.

x = range

1

1

1

c = ballistic coefficient

t = time of flight

y = elevation

6 = ratio of density of air to standard density.

the elevations, terminal velocities, and times of flight were related to varying muzzle velocity for ranges of 1000 yards and 2000 yards, (Figures 17-22), and to range for a muzzle velocity of 1650 feet per second (Figures 23-25).

It is easily seen that the MD10 and MD11 modifications are superior to the MD3 and MD5 modifications when drag force alone is considered. The required elevation for the MD10 is 3% less than that for the MD11 at 1000 yards, and 5% less at 2000 yards. The remaining velocities of the MD10 at 1000 yards and 2000 yards are, respectively, 3% and 6% higher than those of the MD11 at the same ranges, while the times of flight for the MD10 at 1000 yards and 2000 yards are 2% and 3% lower than those of the MD11 at those ranges.

Variation in Hit

The variations in vertical target hit as a function of range error, for ranges of 1000 yards and 2000 yards, and as a function of range, for a 15% range error, were determined using the equation

$$y = x \tan \theta - \frac{C^2}{26^2} \left[(A - A_0) - \frac{I_0 \times 6}{C} \right]$$

and plotted in Figs. 26, 27 and 28. These graphs also show the superiority of the MD10 and MD11 modifications over the MD 3 and MD5 rounds. It is apparent that the MD10 is an improvement over the MD11, especially for extended ranges, when this variation is considered.

Fig. 17. Remaining Velocity Versus Muzzle Velocity. T171MD3, MD5, MD10 and MD11 Projectiles: 1,000-yard Range.

Fig. 18. Elevation Versus Muzzle Velocity.
T171MD3, MD5, MD10 and MD11 Projectiles; 1,000-yard Range.

Fig. 19. Time of Flight Versus Muzzle Velocity. T171MD3, MD5, MD10 and MD11 Projectiles: 1,000-yard Range.

Fig. 20. Remaining Velocity Versus Muzzle Velocity. T171MD3, MD5, MD10 and MD11 Projectiles; 2,000-yard Range.

Fig. 21. Elevation Versus Muzzle Valocity.
T171MD3, MD5, MD10 and MD11 Projectiles; 2,000-yard Range.

Fig. 22. Time of Flight Versus Muzzle Velocity. T171MD3, MD5, MD10 and MD11 Projectiles; 2,000-yerd Range.

Fig. 23. Remaining Velocity Versus Range. T171MD3, MD5, MD10 and MD11 Projectiles.

Fig. 24. Elevation Versus Range. TITIMD3 MD5. MD10 and MD11 Projectiles.

Fig. 25. Time of Flight Versus Range. T171MD3, MD5. MD10 and MD11 Projectiles.

Fig. 26. Variation in Hit Versus Range Error. T171MD3, MD5, MD10 and MD11 Projectiles: 1,000-yard Range.

31 CONFIDENTIAL

Fig. 27. Variation in Hit Versus Range Error. TITIMD3, MD5, MD10 and MD11 Projectiles; 2,000-yard Range.

1

Fig. 28. Variation in Hit Versus Range. TI71MD3, MD5, MD10 and MD11 Projectiles.

Future Program

1. Because of the advantage the reduced drag force provides and the simplification of penetration problems offered by the conical nose, continued emphasis will be placed on achieving satisfactory accuracy with the MD10 modification. Several T171MD10 projectiles are at Erie Ordnance Depot awaiting firing from a 1-500 twist tube. This test is designed to show the effect of spin rate upon the ac-

A

curacy of this projectile.

- 2. A test similar to (1) is planned for T171 MDII projectiles.
- 3. T171 MD!! projectiles, modified by replacing the regular tee with the T138 E23M nose (page 19, BRL Memo Report 592, A. S. Platou) are being prepared for evaluation tests.

PENETRATION STUDIES

Scaling Studies

Two separate but related scaling studies have now been completed. One is based upon the DRB398 copper cone and the first part of this study (75mm) was presented in the Thirty-Fifth Progress Report. The second considered a family of 45° sharp apex copper cones and was reported in the Thirty-Sixth Progress Report. In this report new data for the 90mm size DRB398 type cone is presented and all data for the two studies are summarized.

The 90/105mm scaled counterpart of the DRB398 cone and DRC376 test assembly consists of a DRB707 cone and DRC506-1 test assembly (No. 2 nose ring). Fig. 29 shows the cone and Fig. 30 shows a cone and charge assembly. These cones were made from DRB398 drawn cones by cutting them off at the appropriate base diameter (3.0 inch register diameter) and by machining the inside wall surface to the specified wall thickness (.086 inch). The only departure from linear scaling is in the small spitback tube whose dimensions are unchanged from the original DRB398 cone.

The inspection data for the DRB707 cones are shown in Table XIV and the penetration data are shown in Tables XV(A) and XV(B).

MOTE:

(ALL INDICATED SURFACES TO BE CONCENTRIC WITHIN DOSTLIR WITH RESPECT TO 2:998DIA: REGISTER. 2 INDICATED SURFACE TO BE PERPENDICULAR TO \$ OF PART WITHIN COSTIUR.

3 RETHIS REGION VARIATION IN STRUGHESS OF THICHNESS OF WALL SHALL NOT EXCEED COSTIN NAV AND PLANE; WALL THICKNESS IN ANY TRANSVERSE PLANC SHALL NOT EXCEED CO VARIATION
4, FINISH US

4 FRISHOR - A STEPHAL : CXYGEN FREE, NO RESIDIAL DECRIDENTS COPPER. ALTERNATIVE MATERIAL; ELECTROLYTIC FOLGH PITCH COPPER. A THIS CONE MAY BE MACE BY MODIFYING CONE DICC-398.

Fig. 29. DRB707 90 mm. Smooth Cone. 90/105 Scaled Counterpart of DRB398 Cone.

Fig. 30. DRC506-1 90 mm. Penetration Test Assembly. 90/105 Scaled Counterpart of DRC376 Assembly.

Table XIV Inspection Data DRB707 Cones

Cane	Wall ,	Thickn inches)	ess	Max. Vario		Max. Wayin	Wall ess-in.	Co	ncentrici	ty T. I.R. (in.) z
No.	Max.	Min.	Avg.	Transverse		0. D.	I.C.	Base 1 Datum	A p e x Datum	Cone Tip in Assembly
Specifica					1			<u> </u>		
DRB707										
Cone	.086	.084	<u>-</u> -	001	003 _	.003	.003	.0030	00 <u>30</u> _	.015 (Maximum)
FS1049	.086	.085	.0851	.001	.001	.002	.002	.0010	.0020	.005
FS1050	.088	.086	.0865	.002	.002	.001	.002	.0020	.0025	.010
FS1051	.085	.084	.0845	.001	.001	.00!	.002	,0040	.0010	.004
FS1052	.090	.085	.0878	.001	.004	.002	.005	.0020	.0015	.002
FS1053	.092	.086	.0890	,001	.005	.002	.003	.0020	.0010	.004
FS1054	.090	.085	.0875	.001	.004	.002	.003	.0020	.0020	.010
FS1055	.094	.086	.0898	.001	.008	.002	.008	.0015	.0040	.008
FS1056	.086	.084	.0851	.001	.002	.002	.003	.0010	.0020	.005
FS1057	.085	.085	.0850	<.001	<.001	.002	.002	.0020	.0020	.008
FS1058	.086	.084	.0851	.001	.002	.002	.003	.0010	.0020	j.010
FS1059	.086	.084	.0850	.001	.002	.002	.003	.0020	.0020	.007
FS1060	.087	.086	. 0865	.003	.003	.002	.002	.0015	.0040	.006
FS1061	.085	.084	.0845	.002	.002	.002	.002	.0030	.0060	.016
FS1062	.090	.086	.0880	<.001	.004	.002	.004	.0020	.0010	.004
FS10633				NO DA	ATA				2.00	e 7 •
FS1064	.087	.085	. 0863	.002	.001	.002	.002	.0020	.0040	.005
FS1065	.087	.085	.0860	.001	.001	.003	. 002	.0020	.0040	.012
FS1066	.090	.086	.0879	.003	.003	.002	.003	.0020	.0030	.006
FS1067	.086	.084	.0853	.001	.002	.002	.003	.0010	.0010	.008
FS1068	.088	.085	.0864	.001	.003	.002	.005	.0020	.0010	.005
FS1069	.085	.082	.0843	.002	.003	.002	.004	.0020	.0020	.001
FS1070	.087	.085	.0860	.002	.002	.002	.004	.0020	.0010	.017
FS1071	.087	.084	.0854	.001	.003	.002	.004	.0010	.0010	.002
FS1072	.085	.083	.0840	.001	.002	.002	.003	.0020	.0010	.010
FS1073	.090	.085	.0875	.002	.005	.002	.005	.0020	.0010	.006
FS1074	.086	.085	.0853	.001	.001	.002	.004	.0030	.0010	.010
Avg.	.0875	.0848	.0862	.0013	.0026	.0020	.0033	.0019	1.0021	.0072
Std.										
Dev.	±.0024	+.0010	±.0017	<u>+</u> .0007	±.0017	±.0004	±.0014	±.000	7 ±.0013	±.0039

Notes:

- 1. Lower datum is .484 inch above base; the upper datum is 2.92 inches above base.
- 2. The indicated measurement at each datum is the total indicator runout of the lineric outside surface relative to the register diameter. The difference between the runout at the two datum planes is an indication of the lack of perpendicularity of the register plane and the liner axis.
- 3. Held as sample.

Table XV Penetration Data DRB707 Cones

Round Na.	L.b. Camp B.	Standoff (in.)	Penetrotion (inches M.S.)	Max. Spread	Std. Deviation (in.)
A. Effec	t of Stande	off			
FS1049	1.56	6,0	18.69		
FS1050	1.58	6.0	16.94		
F'S1051	1.60	6.0	15.81		
FS1052	1,58	6.0	17, 31		
			Avg. 17.19	2.88	±1.19
FS1053	1.56	9.0	18,31		
FS1054	1.56	9.0	18,25		
FS1055	1.58	9.0	17,94		
FS1056	1.60	9.0	17,44		
			Avg. 17.99	.87	±0,40
FS1057	1.58	12.0	19.12		
FS1058	1.56	12.0	17,44		
FS1059	1.58	12.0	18,62		
FS1060	1.58	12.0	19,12		
			Avg. 18.58	1.68	±0,80

Notes:

- Cones were modified from drawn DRB398 HW3 item 1 copper cones, and were assembled in DRC506-1 test bodies, plugs and No. 2 nose rings.
- 2. Loaded at Ravenna Arsenal, BAT Lot No. 32, with Composition B from Holston Lot No. 4-1197.
- 3. Tested at Erie Ordnance Depot without rotation; mild steel target plate was used.

B. Effect of Rotation Max. Spread (in.) Penetration Std. Deviation Lb. Comp B Rev/Sec Round No. (in.) Inches M.S FS1049 1.56 0 18.69 FS1050 1.58 0 16.94 FS1051 15.81 1.60 ð Avg. 17.31 FS1052 1.58 0 2,88 ±1.19 FS1061 1.56 30 15.25 FS1062 1.58 30 14.75 FS1074 1.58 13,88 30 FS1064 1.60 30 12.75 Avg. 14.16 2.50 ±1.10 FS1065 1.56 60 8.18 FS1066 1.56 60 7, 75 FS1067 1.56 60 8.18 Avg. 8.04 0.43 ±.25 FS1068 1.58 90 6.56 FS1069 1.56 90 6.62 FS1070 90 6.50 1.58 Avg. 6.56 ±.06 0.12 FS1071 1.58 120 5.94 5.56 FS1072 1.56 120 FS1073 1.58 120 5.38

Notes:

 Cones were modified from drawn DRB398 HW3 item 1 copper cones, and were assembled in DRC506-1 test bodies, plugs and No. 2 nose rings.

Avg. 5.63

0.56

±.29

- Loaded at Ravenna Arsenal, BAT Lot No. 32, with Composition B from Holston Lot No. 4-1197.
- Tested at Eric Ordnance Depot at a standoff of 6.0 inches. Mild steel target plate was used.

Scaling of Standoff

The penetration data for the effect of standoff are shown in Fig. 31 and are compared directly with similar data for the 75mm and 105mm scaled counterparts. The curves have the same general shape. Fig. 32 is a generalized plot showing the effect of standoff. Data for both scaling studies are included in this curve. Both

depth of penetration and standoff distance are expressed in terms of charge diameters. In confirmation of generally accepted theory a single curve represents the data adequately for standoff distances up to 4 or 5 charge diameters. At longer standoff distances other factors such as precision of manufacture, charge symmetry, etc., become increasingly important.

Fig. 31. Penetration Versus Standoff. 75 mm., 90 mm. and 105 mm. Cones Type Cones.

Fig. 32. Penetration Versus Standoff. In Terms of Charge Diameters.

Scaling of the Rotational Effect

The penetration vs spin rate curve for the 90/105 modification of the DRB 398 type cone is shown in Fig. 33, Fig. 34 is a generalized plot in which the data for both sharp apex and spitback tube types of cones are presented. The data for a 1.63 inch diameter charge (Carnegie Institute of Technology, Report No. CIT-ORD-R18), though not scaled directly, are also shown for comparison. The penetration $(P\omega)$ at any spin rate $(\omega \text{ radians/sec})$ is expressed as a fraction of the non rotated penetration (P_0) and is equal to $P\omega$. The spin rate is expressed in

terms of surface speed and is equal to ωr . As expected the effect of spin is

invariant under these transformations and the one curve represents the data for all of the charges quite well. There are, however, certain restrictions upon the general applicability of the relationship between spin rate and penetration shown in Fig. 34. The data were obtained using conical copper cones of such quality that without rotation they would penetrate approximately 6.0 charge diameters into mild steel target. Charges of poorer quality, or of other shapes or materials will lose their penetration at a different rate. Under these latter conditions the empirical relationship presented in the Supplement to the Penetration Studies beginning on page 38 of the Eleventh Progress Report is more nearly applicable.

Fig. 33. Penetration Versus Rotation. 90/105 Scaled Counterpart of DRB398 Cone.

Fig. 34. Penetration Versus Surface Velocity. 2.5-in., 3.0-in., and 3.5-in. Sharp Apex and Spirback Cones.

Penetration of DRB398 Cones At High Spin Rates

The penetration spin rate behavior of DRB398 copper cones has been well established between the spin rates of -25 rps and +30 rps. These data have been presented in Fig. 6 of the Twenty-Seventh Progress Report. The tests have been continued and data are now available for spin rates up to 250 rps. In this experiment the bases of the cones were modified to provide a small clamping flange. Fig. 35 shows the cone (DRB398HW3 item 1) and Fig. 36 shows a DRC376 test assembly with No. 2 nose ring. The inspection data for these cones are shown in Table XVI and the penetration data are presented in Table XVII and Fig. 37. The dotted curve shown in Fig. 37 is for the earlier data. (Fig. 6 of the Twenty-Seventh Progress Report). The agreement is excellent.

- C. ALL INDICATED SURFACES MUST BE FLAT & PARALLEL WITHIN .005 TIR. & PERPENDICULAR
- TO & OF PART.

 D. IN THIS REGION VARIATION IN STRAIGHTNESS OR THICKNESS OF WALL SHALL NOT EXCEED GOG IN ANY AXIAL PLANE, VARIATION OF WALL THICKNESS IN ANY TRANSVERSE PLANE SHALL NOT EXCEED GOG.
- E. PREFERRED MATERIAL : OXYGEN FREE, NO RESIDUAL DEOXIDANTS COPPER.

Fig. 35. DRB398 HW3 Item I Cone.

Fig. 36. DRC376 Penetration Test Assembly. DRB378 Cone.

Table XVI Inspection Data DRB398 HW3 Item 1 Cones

Cane		Thicknes	ss		Thickness		Vai!	L	ncentrici	
No.	(i	nches)	- A		ion(in.)		<u>(i n.)</u>	Bose	Apex	Cane Tip in
	Max.	Min.	Avg.	Tronsverse	Longitua.	0. D.	I.D.	Datum	Datum	Assembly
Specifica					0.07	0.00				(2.
DRB398	.105	.100		.002	. 0 06	.003	.003	.0030	.0030	.015 (Nominal
HW3 Iten	n I									
Cones								1 = 7		
R56	.103	.100	.1016	.002	.003	.002	.003	.002	.0010	. 0 02
R57	,105	.102	.1040	.003	.003	.003	.004	.002	.0020	.003
R58	.104	.102	.1024	.002	.002	.003	.003	.002	.0020	.002
R59	.104	.101	.1021	.002	.002	.003	.002	.003	.0020	.003
R60	.103	.101	.1020	.002	.002	.002	.002	.002	.0010	.003
R61	.100	.096	.0988	.002	.004	.004	.004	.002	.0010	.004
R62	.103	.100	.1013	.002	.002	.003	.002	.002	.0020	.006
R63	.101	.099	.0999	.001	.002	.003	.002	.004	.0030	.002
R64	.103	.100	.1018	.002	.002	.002	.002	.004	.0040	.003
R65	.102	.100	.1014	.001	.001	.001	.003	.002	.0010	.002
R66	.102	.100	.1011	.002	.002	.002	.003	.003	.0020	.002
R67	.101	.098	.1000	,003	.002	.003	.003	.002	.0020	.003
R68	.104	.102	.1029	.002	.002	.002	.002	.002	.0030	. 005
R69	.103	.100	.1014	.003	.001	.002	.001	.002	.0030	.610
R70	.104	.101	.1024	.003	.002	.002	.002	.001	.0020	.009
R71	.104	.102	.1029	.002	.002	.002	.002	.002	.0020	.002
R72	.102	.098	.1003	.004	.003	.002	.003	.002	.0020	.006
R73	.103	.101	.1016	.002	.002	. 002	.002	.002	< .0010	.002
R74	.102	.100	.1009	.002	.002	.002	.002	.002	.0010	.006
R 75	.104	.100	.1023	.004	.002	.003	.002	.001	.0020	.002
R76	.103	. 101	.1019	.002	.002	.003	.002	.002	.0020	.007
R77	.107	.101	.1034	. 0 05	.004	. 002	.004	.003	.0040	.002
R 78	.105	.102	.1034	.002	.002	.002	.002	.002	.0010	.003
R79	.103	.102	.1026	.001	.001	.002	.005	.002	.0020	.004
R80	.105	.102	.1036	.003	.002	. 002	.003	.002	.0020	.006
R81	. 105	.103	. 1041	.002	.002	. 002	.002	.001	.0020	.002
R82	.105	.102	. 1038	.003	.002	.002	.002	.002	.0020	.004
R83	.102	.098	. 1000	,004	.002	.003	.002	.002	.0010	.001
R84	.101	.100	.1006	.001	.001	.002	. 002	.002	.0020	.008
R85	.101	.100	.1005	.001	.001	.002	.003	.003	.0030	.005
							-	, ,	-	
Avg.	.1031	.1005	.1018	.0023	.0021	. 0023	.0025	.0022	.0020	.0040
Std.										
Dev.	±.001	5 ±.0016	±.0013	±.0010	±.0007	±.0006	<u>+</u> .000	19 ±.0007	<u>+</u> .0012	+.0023

Notes:

^{1.} Lower datum is .484 inch above base; upper datum is 3.302 inches above base.

The indicated measurement at each datum is the total indicator runout of the liner's outside surface relative to the register diameter. The difference between the runout at the two datum planes is an indication of the lack of perpendicularity of the register plane and the liner's axis.

Table XVII Penetration Data DRB398 HW3 Item 1 Cones

Round No.	Lb. CompB	RPS	Penetrotion (inches M.S.)	Max-Spread (in.)	Std Deviation (in.)
R56	2.50	0	19,18		
R57	2.46	11	19.18	1 1	
R58	2.46	- 11	22.69	1	
1,50	2.40		Avg. 20.35	3.51	±2.03
R59	2.46	15	19.81		
R60	2.46	11	20.25		
		11	20.06	1	
R61	2.46		Avg. 20.04	0.44	±0.22
D / 2	2.4/	30			
R62	2.46	30	13.88		
R63	2.46		13,75		
R64	2.46	"	14.06		
	<u></u>		Avg. 13.90	0.31	±0.16
R65	2.46	45	9.69		
R66	2.46	"	9.88		
R67	2.45	"	9.44		
			Avg. 9.67	0.44	±0.22
R68	2.46	60	7.75		
R69	2.46	"	7.75		
R70	2.46	- 11	7.44		
			Avg. 7.65	0.31	±0.18
R 71	2.46	90	6.56		
R 72	2.46	- 11	7.25	ì	
R 73	2.48		7.00		Ì
1(1)	2.40		Avg. 6.94	0.69	i0.35
R74	2.46	120	5,81	 	
R75	2.44	12.0	7.18	1	
R76	2.44	11	7.88		
1010	2.44		Avg. $\frac{7.86}{6.96}$	2.07	±0.85
R77	2.46	150	7.06	 	
	2.46	150			
R78	2.44		6.94		
R 79	2.46		5,81		
			Avg. 6.60	1.25	±0.69
R80	2.44	180	4.81		
R81	2.46	11	4.56		1
R82	2.46	11	Avg. 4.31	0.50	±0.25
D 0.5				+	
R83	2.48	250	4.69		
R84	2.46	"	4.94		
R 85	2.44	"	4.38	}	
			Avg. 4.67	0.56	±0.28

Notes

- Cones were drawn DRB398 HW3 item 1 copper cones assembled in DRC376 test bodies, plugs and No. 2 nose rings.
- Loaded at Ravenna Arsenal, BAT Lot No. 34, with Composition B from Holston Lot No. 4-1197.
- 3. Tested at Erie Ordnance Depot, mild steel target plate, 7.5 inch standeff.

Fig. 37. Penetration Versus Rotation. At High Spin Rates.

Behavior of Zinc Alloys (Zamak 3)

工

At the Quarterly Meeting of the Shaped Charge Committee held January 28, 1953, in the Ballistic Research Laboratory at Aberdeen Proving Ground, Mr. Guy Throner (Naval Ordnance Test Station, China Lake, Inyokern, California) reported 26 cast Zamak 5 cones having an apex angle of 42.50 and a 4% wall thickness penetrated 6.2 cone diameters into mild steel target. This level of performance is as good as is normally obtained with well made copper cones of optimum thickness and is well above that reported for "pure" zinc cones by workers at E.I. du Pont de Nemours and Co., (Report for March, 1943, Contract No. W-670-ORD-4331, Section VII). The du Pont cones were drawn from sheet at Frankford Arsenal and were 45°, 1.63-inch base diameter, "037-inch (2.27%) wall cones. The best average penetration observed was 5.5 inches (3.38 cone diameters) of mild steel.

Since the performance reported for zinc by NOTS was so good and since zinc may offer certain advantages over copper for use in shaped charge weapons, the penetration behavior of two zinc die casting alloys, U. S. Army, Specification No. 57-93-2A, Alloys A and B, are being determined in this laboratory. The tests for standoff penetration behavior of Alloy A (Zamak 3) cones has now been completed.

The cones employed in this program were made by machining rough sand castings to DRB398HW3 item 2 and 3 (Fig. 35). The cones were assembled in DRC376 test assemblies using No. 2 nose rings (Fig 36). The item 2 cones have a wall thickness of .120 in. the item 3 cones .140 in. but the outside dimensions of the two series of cones are alike.

The inspection data for these cones are shown in Table XVIII and the penetration data in Table XIX and in Fig. 38.

Fig. 38. Penetration Versus Standoff.
DR8398 HW3 Items 2 and 3.

At a standoff distance of 7.5 in., approximately the standoff available in projectiles using a cone 3.5 in. in diameter, the average penetration of these Zamak 3 cones is approximately 18 in. (5.2 charge diameters) compared to the 20.4 in. (5.8 charge diameters) observed with the copper cone controls (Table XVII).

Although there is no substantial difference in the average penetration of the .120-inch wall and .140-inch wall cones, the standard deviation of the .140-inch cones is uniformly less than for the .120-inch wall cones, suggesting that .140-in. is closer to the optimum wall thickness. The sand castings from which these cones were machined were not uniformly dense and some of the porous areas remained in the final cones. It is possible that the .120-inch wall cones would be as satisfactory as the heavier cones if the porosity was eliminated.

The charges used in this test and also those used by NOTS have reasonably heavy confinement while the du Pont charges were unconfined. In view of the difference in confinement, past experience with copper cones would indicate that the difference in wall thickness, 4% vs 2% is of the proper magnitude for satisfactory

performance.

It is typical of these cones that no slug remains in the cavity produced by the jet. Presumably because of the relatively low melting point of zinc the slug appears to have melted and splashed out between the target plates. There was also some evidence of target shock or damage beyond that normally experienced with copper cones. There is a steel box approximately two feet square and three feet deep buried beneath the penetration table. This box is covered by a 3/4-inch steel plate and the target plate is stacked on top of the steel cover. In these tests two rounds, FS1190 and FS1210, caused sufficient shock to overturn the cover and to dump the target plate into the pit. This effect has never been observed in the testing of other rounds.

The excellent performance of these Zamak 3 cones, the low cost and availability of zinc, the high production possibilities of die cast cones and the possibility for increased damage beyond the target invite a continuation of the study of the behavior of zinc cones. Zamak 5 cones are now being manufactured and their performance will be compared with the Zamak 3 cones.

Table XVIII Inspection Data Zamak No. 3 Cones

A. DRB3 Specificati DRB-398 HW3 Item 2 Zamak #3 FS1183 FS1184 FS1185 FS1186	on	Min. W3 item . 120	Avg. n 2 Cor	Variation = Trans. nes (.120-i	Long.	O.D.		Base 1 Dotum	Apex Datum	Cone Tip in Ass'y.
A. DRB3 Specificati DRB-398 HW3 Item 2 Zamak #3 FS1183 FS1184 FS1185 FS1186	98 HV on .125	.120	n 2 Cor	nes (.120-i	in. Wall)				
Specificati DRB-398 HW3 Item 2 Zamak #3 FS1183 FS1184 FS1185 FS1186	on .125	.120					.006	.0030	.0030	.015 (Nomir
DRB-398 HW3 Item 2 Zamak #3 FS1183 FS1184 FS1185 FS1186	.125	,121	.1226	.002	.006	.006	.006	.0030	.0030	.015 (Nomin
HW3 ltem 2 Zamak #3 FS1183 FS1184 FS1185 FS1186	.124	,121	.1226	•02	.000	.000	. 000	.0030	.0050	• 013 (1101111
ltem 2 Zamak #3 FS1183 FS1184 FS1185 FS1186	.123		.1226							
Zamak #3 FS1183 FS1184 FS1185 FS1186	.123		. 1226							
FS1183 FS1184 FS1185 FS1186	.123		. 1226							
FS1184 FS1185 FS1186	.123			002 1	.002	.001	. 002	0050	.0030	,002
FS1185 FS1186			.1209	.002	.002	.001	.007	.0030	.0040	.008
FS1186	* 17.4 l	.117				< 001	.006	-	.0080	
	.123		.1216	.004				.0040		.010
L 21101		.118	.1206	.002	.004	.001	. 005	.0040	.0040	.010
ECLION	.127	.118	.1229	.005	.006	.001	. 006	.0030	.0030	. 009
	.123	.117	.1210	.005	.005	.001	.005	.0020	.0030	.005
	. 125	.123	. 1244	.001	.002	.001	. 002	.0040	,0030	.002
	.124	.121	.1226	.002	.002	.001	. 002	.0030	.0000	.003
	. 124	.122	.1230	.002	.001	.001	.003	-	,0010	.004
	.124	.123	.1233	.001	<.001	.001	.001	.0030	.0020	.005
FS1193	.125	.121	.1231	.002	.002	.001	.003	.0030	.0010	.003
FS1194	. 124	.121	. 1226	.001	.003	.001	.003	.0030	.0020	.005
FS1195	.122	.124	.1230	.001	.002	.001	.002	.0020	.0030	.009
FS1196	.125	.124	. 1245	.001	<.001	.001	.001	10040	0050	003
FS1197	12:	.120	.1211	.001	.002	.001	. 003	,0030	,0010	.001
Avg. Std.	. 1239	.1204	. 1225	.0023	.0029	.0010	.0034	.0032	.0031	.0053
	±.0013	±.0025	±.0012	±.0016	±.002	3	±.0019	±.0009	±.0019	±.0031
B. DRB39	8 HW	3 Item	3 Cone	s (.140-in	. Wall)					
Specifica ti	on									
DRB398										(
	. 145	.140		.002	.006	.006	. 006	.0030	.0030	.015 (Nomi
ltem 3										
Zamak #3										
Cones										T
	. 146	138	.1425	.004	.006	.001	.006	.0040	. 00 50	.001
FS1199	.147	138	. 1433	.003	.007	.001	.007	.0020	_ nn30	.006
FS1200	. 150	.143	.1471	.005	.005	.001	.005	.0030	.0030	.004
FS1201	. 146	.141	.1435	.001	.004	.001	.004	.0030	.0050	.003
FS1202	.147	. 141	.1438	.004	.005	.001	.005	.0060	.0060	. 005
FS1203	. 144	.136	.1410	.005	.007	.001	.006	.0030	.0010	.003
FS1204	.148	.139	.1440	.006	.005	.001	.005	.0040	. 0050	.005
FS1205	.149	.141	.1443	.008	.006	.001	.006	.0060	.0090	.005
	. 147	.137	.1429	.006	.006	.001	.006	.0030	.0050	.009
FS1206		.140	.1424	.002	.005	.001	.004	, 0020	.0010	.011
FS1206 FS1207	. 145		.1420	.001	.004	ح. 001	.003	.0030	.0020	.009
FS1207	.145	.140			1	.001	.006	.0030	.0030	.005
FS1207 FS1208	. 144	.140	1	.002	.006					
FS1207 FS1208 FS1209	.144	.139	.1425	.002	.006		.006	.0020	,0030	.001
FS1207 FS1208 FS1209 FS1210	.144 .145 .145	.139	.1425	. 005	.006	.001		.0020		
FS1207 FS1208 FS1209 FS1210 FS1211	.144 .145 .145 .147	.139 .138 .139	.1425 .1429 .1434	.005	.006	.001	.005	.0070	.0060	.006
FS1207 FS1208 FS1209 FS1210 FS1211 FS1212	.144 .145 .145 .147	.139 .138 .139 .139	.1425 .1429 .1434 .1430	.005 .004 .003	.006	.001 .001	.005	.0070	.0060	.006
FS1207 FS1208 FS1209 FS1210 FS1211 FS1212 Avg.	.144 .145 .145 .147	.139 .138 .139	.1425 .1429 .1434 .1430	.005	.006	.001	.005	.0070	.0060	.006
FS1207 FS1208 FS1209 FS1210 FS1211 FS1212	.144 .145 .145 .147 .146	.139 .138 .139 .139 .1393	.1425 .1429 .1434 .1430	.005 .004 .003 .0039	.006 .005 .006 .0055	.001 .001 .001	.005	.0070 .0020 .0035	.0060	.006

^{2.} The indicated measurement at each datum is the total indicator runout of the liner's outside surface relative to the register diameter. The difference between the runout at the two datum planes is an indication of the lack of perpendicularity of the register plane and the liner's axis.

Table XIX **Penetration Data** Zamak No. 3 Cones

	Lb.Comp.B	Standoff (in.)	Penetration (inchesM.S)		Std. Deviation (in.)
A. DRB3	98 HW3 H	em 2 Cone	es (.120-in. Wa	(1)	
FS1183	2.43	7.5	16.50		
FS1184	2.48	7.5	18.00		
FS1185	2.48	7.5	19.12		
FS1186	2.48	7.5	14.94	i	
FS1187	2.50	7.5	17.69	1	
			Avg. 17.25	4.18	±1.59
FS1188	2.48	15.0	22.18		
FS1189	2.48	15.0	16.18		
FS1190	2.50	15.0	19.88		
FS1191	2.50	15.0	22.18		
FS1192	2.48	15.0	16,62		1
			Avg. 19.41	6.00	±2.91
FS1193	2.46	22.5	20.00		
FS1194	2.48	22.5	20,50	İ	
FS1195	2.50	22.5	16.06		
FS1196	2.48	22.5	14.25		
FS1197	2.48	22.5	14.25		9
			Avg. 17.01	6.25	±3.05
B. DRB	398 HW3 I	tem 3 Con	es (.140-in. Wa	·II)	
FS1198	2.48	7.5	19.38		
	2.48	7.5	17.69	Ì	
FS1199 FS1200	2.46	7.5	18.81	1	
FS1200	2.48	7.5	17.31	1	2.2
FS1202	2.48	7.5	18.88		
r 31202	2.40	1,5	Avg. 18.41	2.07	±.87
13/21/2000	2 40	15.0	15.25		
FS1203	2.48	15.0	15, 25		
FS1204	2.46	15.0	18, 94		
FS1205	2.48	15.0	21.12		
FS1206	2.46	15.0	1		1939
FS1207	2.48	15.0	Avg. 18.12	5.87	±2.14
1300	2.40	22.5	10.13		
FS1208	2.48	22.5	19,12		
FS1209	2.48	7.2.5	19, 12		
FS1210	2.48	22.5	19.18		1
FS1211	2.50	22.5	19.31 19.38		
	1 / 48	46.0	1 19.38	1	1
FS1212	i		Avg. 19.22	0.26	±.12

- 1. Cones were assembled in DRC376 test bodies, plugs and No. 2 nose rings.
- Loaded at Ravenna Arsenal, BAT Lot No. 34 with Composition B from Holston Lot No. 4-1197.
 All were tosted against mild steel target at zero rps at Erie Ordnance Depot.
- 4. It is typical of these cones that no slug remained in the cavity. There was some evidence of increased target damage beyond that normally noted with copper cones. Rd. FS1210 lifted the stack of targetplate and lifted a steel plate covering a pit below the table. The target plate then fell into the pit. This effect has not been experienced with other types of concs.

Effect of Tee Configuration

The effect of interior tee design upon penetration has been reported in several earlier reports (Twenty-Sixth, Twenty-Seventh, Twenty-Ninth, Thirtieth and Thirty-Third), Additional experiments in this program have now been completed. It was shown in the Thirtieth Progress Report that the DRC314HW11 tee has only a very slight detrimental effect upon pene tration. This tee has a large bore extending nearly to the nose end of the tee. This large bore reduces the weight of the tee and moves the C.G. of the projectile rearward. In an effort to determine the minimum length of . 875-inch diameter counterbore required, two additional tees, DRC314HW18 and DRC314HW19, have been tested. They differ from DRC314HW11 only in the depth of counterbore. To obtain a direct comparison between flanged cones

and pressed in, or snap ring cones, some of both types are included in the present experiments.

Drawn copper cones (DRB398-7) were assembled in DRC376 test assemblies using nose rings and various tees. Fig. 39 shows the various tee modifications studied. Figs. 35 and 36 show the flange type cone (DRB398HW3 item 1) with nose ring No. 2, and Fig. 12 of the Thirty-Third Progress Report shows a typical assembly of the pressed-in type of cone (DRB398) with a No. 1 nose ring.

Inspection data for the DRB398-7 cones are shown in Table XX and for DRB398HW3 item 1 cones in Table XXI. Penetration data for the two series of cones are shown in Tables XXII and XXIII. The following tabulation summarizes the penetration of the various modifications.

DD5730 DRB398HW3

		DK8398	iteml
Nose Ring		20.40	21.12
DRC314 (Standard tee)		16.10	17.36
DRC314 HWII (bore extends 6.56 inc	hes from base of cone)	20.19	19.36
DRC314 HW18 (" " 4.56 '	11 11 11 11	20.43	
DRC314 HW19 ('' '' 2.56 '	11 11 11 11	19.97	

Fig. 39. Various Tee Modifications.

It is evident that the deep counterbore of the DRC314HW11 tee is not necessary. Although the counterbore of DRC314HW19, which extends to a distance of 2.56 inches from the base, seems to offer some slight resistance to penetration in this test it should be noted that the penetration with this tee is as great as has been obtained using DRC314HW11 tees in several earlier tests. (Ex. Thirtieth and Thirty-Third Progress Reports). The changes in the basic DRC314 tee required for the HW19 modification are quite slight and cause only a small change in weight and C.G.

location. It is therefore recommended that any projectiles made using a tee or spike boom be so designed as to provide a free space in front of the cone at least as large as that provided by the DRC314 HW19 tee. As described in the Supplement to the Thirty-Fifth Progress Report there is some evidence that even the DRC 314HW11 tee causes a considerable reduction in penetration on dynamic firings against inclined plate. It would therefore be very desirable to provide as large a free space as possible in new projectile designs.

Table XX
Inspection Data
DRB398-7 Cones

Cone	Well Thick		Max. Wall Variation		Max. W			ncen tri	
No.			Transverse		O. D.		Base	Apex	Spitback Tube
	Max. Min.	Ayg.		Langitua.	<u> 0. b. </u>	I. D.	Datum	Datum	in Assembly
Specifica	ation		II. Chara						
DRB398.	-7 .105 .100		.002	.006	.006	.006	.0030	.0030	.015 (Nominal)
Cones									
R443	.104 .101	.1021	.002	.001	.001	.001	.0010	.0020	.010
R444	.103 .101	.1020	. 002	.001	.001	.002	.0020	.0030	.008
R445	.100 .099	.0998	.001	.001	.001	.002	.0020	.0020	.006
R446	.102 .099	.1011	.003	.003	. 001	.002	.0020	.0030	.014
R447	.102 .100	.1013	.002	.002	.001	.001	.0030	.0020	.011
R448	.104 .103	.1033	.001	.001	.002	.002	.0030	.0040	.016
R449	.105 .104	.1046	.001	.001	. 002	.002	.0020	.0030	.005
R450	.100 .098	.0993	.002	.002	.002	.002	.0030	.0020	.003
R451	.100 .098	.0993	.002	.002	. 001	.001	.0020	.0050	.006
R452	.105 .103	.1041	.002	.001	. 601	.002	.0030	.0030	.004
R453	,101 .099	, 1001	.001	.001	.001	.001	.0020	.0020	.007
R454	.105 .104	.1048	.001	.001	.001	.001	.0030	.0020	.002
R455	.101 .099	.1001	.001	.001	.001	.002	.0010	.0020	.009
R456	.099 .097	.0978	.001	.001	.001	.002	.0010	.0020	.015
R457	.102 .100	.1008	.002	.002	. 002	.002	.0020	.0020	.007
R458	.105 .103	.1043	.002	.001	.002	.002	.0040	.0050	.006
R459	.100 .097	.0980	,003	,003	.002	.002	.0020	.0020	.005
R460	.101 .100	.1003	.001	.001	.001	.001	. 0020	.0030	.009
R461	.103 .102	. 1026	.001	.001	100.	.001	.0020	.0030	.017
R462	.102 .100	.1008	.002	.002	.001	.001	.0010	.0010	.002
R463	.107 .105	.1059	.001	.001	.002	.001	.0020	.0020	.016
R464	.100 .099	.0999	.001	.001	.002	.001	.0020	.0030	.012
R465	.102 .101	. 1012	,001	.001	.002	.001	.0020	.0020	.008
R466	.101 .099	.1003	.002	.002	.001	. 002	.0010	.0050	.003
R467	.103 .102	. 1024	.001	.001	.002	.002	.0020	.0030	.007
Avg.	.1023 .1003	.1014	.0016	.0014	.0014	.0016	.0021	.0027	.0083
Std.									
Dev.	±.0020 ±.00	22 +. 0021	±.0007	±.0005	<u>+</u> .0005	+.0009	±.000	7 <u>+</u> .0011	±.0044

Notes

- 1. The lower datum is .484 inch above base; the upper datum is 3.202 inches above base.
- 2. The indicated measurement at each datum is the total indicator runout of the liner's outside surface relative to the register diameter. The difference between the runout at the two datum planes is an indication of the lack of perpendicularity of the register plane and the liner's axis.

Table XXI Inspection Data DRB398 HW3 Item 1 Cones

Cane		Thickne	ss		Thickness	Mox. W		Ç	ncentri	city T.I.R.
Na.		inches)		Variation		Wayiness		Base 1	Apex	Cane Tip in
	Mox.	Min.	Avg.	Transv.	Longitud	O. D.	I.D.	Datum	Datum	Assembly
Specific	ation									
DRB398		. 100		.002	.006	.006	. 006	.0030	.0030	.015(Nominal
HW3 Ite	m 1									
cones.										
Ri	.099	.098	.0983	.001	.001	.003	.002	.0020	.0020	.005
RZ !	.101	.100	.1003	.001	.001	.003	.003	.0030	.0010	.006
R3	.103	.102	.1021	.001	.001	.003	.003	.0020	.0030	.004
R4	.098	. 100	.0995	.002	. 0 02	.003	.003	.0020	.0020	.005
R5	.101	.100	.1006	.001	.001	.004	.003	.0030	.0020	.004
R6	.100	.100	.1000	<.001	<.001	.003	.003	.0020	.0010	.003
R7	.101	.100	.1008	.001	.001	.004	.003	.0030	.0030	.007
R8	.100	.100	.1000	<.001	<.001	.003	.00z	.0020	.0010	.003
R9	.103	. 102	.1029	.001	.00ı	.003	.003	.0020	.0030	.004
R10	. 104	.103	,1031	.001	.001	.003	.003	.0030	.0030	.003
RII	.049	.097	.0979	.00Z	.001	.003	.003	.0010	.0020	.006
R12	.100	.099	.0999	.00:	.001	.00Z	.00Z	.0020	.0030	.005
R13	.102	.099	.1003	.00z	.003	.003	.003	.0020	.0020	.003
R14	.103	.102	.1028	.001	.001	.003	.003	.0020	.0030	.003
R15	.103	.102	.1028	.001	.001	.003	.003	.0010	0500	.006
Average	.1011	.1003	.1008	.0010	.0010	.0031	.0028	.0021	.0022	.9045
Std.				7.1						
Dev.	+.0010	+.0017	+.0016			+.0005	+.0005	+.000°	7 +.0008	±.0011

- The lower datum is ,484 inch above base; the upper datum is 3,202 inches above base.
- 2. The indicated measurement at each datum is the total indicator runout of the liner's outside surface relative to the register diameter. The difference between the runout at the two datum planes is an indication of the lack of perpendicularity between the register plane and the liner's

Table XXII **Penetration Data** DRB398-7 Cones

Raund Na	Type Tee	Comp 8 (1bs.)	Penetration (inches M.S.)	Max. Spread (inches)	Standard Deviation (inches)
R443	No. 1 Nose Ring	2.58	20.81		
R444		2.56	20,12		
R445		2.58	21,12		
R446		2.58	20.00	! !	
R447		2.56	19.94	i i	
			Avg. 20.40	1.18	<u>•</u> .53
		İ		1	
R448	DRC314	2.60	17.31	l i	
R449	"	2,60	17,52) 1	
R450	*'	2,58	15.81	i i	
R451	"	2.60	16.38	1	
R452		2.60	13.38	1	
	-		Avg. 16.10	4.24	±1.68
R453	DRC31411W11	2:62	19,25	i 1	
R454	**	2,60	21.81	1	
R455		2.60	19.31	!!!	
R456		2.60	19.69	1 1	
R457		2.60	20,88	1	
			Avg. 20.18	2.56	<u>†</u> 1.12
R458	DRC314HW18	2.60	19.12		
R459	"	2.58	(12.06)	1	
R460	**	2,58	20.50	l í	
R461		2.60	21.62	1	
R462		2.60	20.38] [
			Avg. 20.41	2,50	±1.03
R463	DRC314HW19	2.60	22.31	1	
R464	"	2.60	21,16	1	
R465		2.60	20.18		
R466		2.60	18,50	1	
R467	.,	2,62	17.69		
	1		Avg. 19.97	4.62	+1.89

- Notes:
 1. Rounds were assembled in DRC376 test bodies, plugs and indicated tees and rings.
 2. Loaded at Ravenna Arsenal, BAT Lot No. 33 with Composition B from Holston Lot No. 4-1197.
 3. Tested at Eric Ordnance Depot at a standoff of 7.5 inches and at 0 rps.
 4. Jet went through side of tee, Not included in average.

Table XXIII Penetration Data DRB398 HW3 Item 1 Cones

Round No.	Тее	Comp. B (Ibs.)	Penetration (inches M.S.)	Max. Spread (inches)	Std. Deviation (inches)
ñl	No. 2 Nose Ring	2,46	21,69		
R2	0	2.46	22,62		
R3	**	2.46	21,94	Ì	
R4	11	2.48	22.81		
R5	1+	2.46	21.55		
			Avg. 21.12	1.25	±.56
R6	DRC314	2.48	16.62		
R7	11	2.50	17.81		ļ
R8	11	2.50	18,12		!
R9	11	2,50	16.56		
R10	11	2.48	17.69		
			Avg. 17,36	1,56	±.72
RII	DRC314HW11	2,54	19.56		
R12	11	2.48	17.88		!
R13	11	2.50	21.00	1	
R14	*1	2,48	18, 18		1
R15	11	2.48	20,18		
			Avg. 19.36	3,12	±1.32

Notes:

- Rounds were assembled in DRC376 test bodies and plugs. Nose ring and tees were as indicated.
- Rounds were loaded at Ravenna Arsenal, BAT Lot No.33 with Composition B from Holston Lot No. 4-1197.
- All rounds were tested at Erie Ordnance Depot at a standoff of 7,5 inches and at 0 rps.

Production Control M344 (T119E11) Projectiles

Ten M344 (T119E11) prototype projectiles were withdrawn from production and prepared for static penetration tests by replacing the fin and chamber assembly with a DRB861 base plug. Fig. 40 shows the assembly as tested. These assemblies contained DRB398-9 cones, Fig. 41, which

included all latest modifications to the cone. The rounds were fired without rotation against mild steel target at a stand-off 1/8 in. longer than that provided by the ogive and cap (9.35 in. from cone base to target). The penetration data are shown in Table XXIV. The average penetration of 20.56 in. indicates normal performance for this cone at the indicated standoff distance.

Fig. 40. Static Penetration Round. T119 Projectile Type.

Fig. 41. DRB398-9 Conical Liner. Used in TI19 Test Assemblies.

Table XXIV Penetration Data M344 (T119E11) Production Control

Round	14 6	Penetration	Max.	Std. Dev.	Concenti	icity T.I.R.
No.	Lb.Comp B	(inches M.S)	Spread (in.)	(in.)	Cone Apex	Ogive Ti p
X777	2.88	21.56			.002	.007
X778	2.88	20.00	1		.004	. 025
X779	2.90	20.50	İ		.005	.007
X780	2.90	18.62			.005	.013
X781	2.88	20.06		1	.005	.008
X782	2.88	20.44			.005	.003
X783	2.88	21.81			.010	.013
X784	2.88	20.38			.003	.011
X785	2.90	21.06			.006	.008
X786	2.88	21.12	: G		.007	.016
		Avg. 20.56	3.19	±0.91		

Notes:

- 1. Rounds consist of DRB861 base plugs, DRC497 bodies, DRC342 ogives, DRA699 caps and DRB398-9 copper cones.
- 2. Loaded at Ravenna Arsenal, BAT Lot No. 33 with Composition B from Holston Lot No. 4-1197.
- 3. Tested against mild steel target plate at Erie Ordnance Depot using a standoff distance of 1/8" from the nose cap to target (9.35 inches from cone base to target) 0 rps.

Future Program

l. Cones made of Zamak 5 and aluminum are to be tested for penetration behavior. Penetrations approaching those of copper cones have been obtained for certain aluminum and zinc alloys.

2. Composite Cone Study

A series of tests of bimetal cones with aluminum liners and copper shells are being manufactured for testing.

- a. .080-inch thick copper shell and .020 and .040-inch aluminum insert (245-T4).
- b. .100-inch thick copper shell and .020 and .040-inch aluminum insert (245-T4).
- c. Same as (a) and (b) but using 2S-F aluminum instead of 24S-T4.
- d. Same as (b) but using two stamped 2S inserts in each cone.
- e. Same as (b) except aluminum is sprayed (metalized) into inside of cone and then machined to final dimensions.

3. Evaluation of Cones made by "Spinning".

Forty-two copper cones manufactured by a spinning process will be tested for penetration behavior and compared with cones made by other methods. These cones are P83580Al cones designed for use in the 90mm T108E40 projectile.

4. Evaluation of Cones Made by Electroforming

A series of DRB681 copper cones made by an electroforming method are being manufactured for comparison with machined cones.

5. Effect of T119Ell Body Length Upon Penetration

A new Tll9 type projectile with a short body is being manufactured for test. The penetration performance of this projectile is to be compared with the Tll9Ell and the standard penetration assembly.

FUZES

T267E14 Type Base Element

1

The last reported test firing of the T267El4 fuze (Thirty-Sixth Progress Report, page 38) was satisfactory for superquick function but unsatisfactory for delay function. A modification was shown which improved the functioning of the delay explosive train in air gun tests (Fig. 33, Thirty-Sixth Progress Report).

Ten fuzes with this modification were prepared and fired at Erie Ordnance Depot. All ten fuzes were set delay. A 4-inch wood screen at 200 yards was the target. Eight fuzes functioned satisfactorily. It was discovered later that the tetryl pellet had been omitted from one base element and it is presumed that this accounts for one of the two fuze failures. The firing record is given in Table XXV.

Air gun tests were conducted on the inertia portion of the T267El4 fuze. Fig. 42 shows the g's required to function the inertia element for four different impact media. The dense material stops the projectile so quickly that deceleration is completed before the inertia element has completed its action. Therefore, the inertia element must have sufficient kinetic energy, when deceleration ceases,

to complete its travel. In the lighter media the deceleration lasts longer and impulse time is sufficient to cause functioning. Since graze impact falls into this latter class it appears that graze functioning of the T267E14 will occur with approximately 200 g's deceleration providing the deceleration time is sufficiently long.

1223E2 Fuze

Fourteen T223E2 fuzes (Twenty-Fifth, Twenty-Sixth, Twenty-Eighth and Thirty-Second Progress Reports) were tested at Erie Ordnance Depot. The firing record appears in Table XXVI. Seven each of two types, varying only in the position of the center of gravity of the rotor, and therefore in arming time, were tested. Four of the fourteen functioned.

Because of consistently poor results, difficulties in assembly, and the present lack of interest in the T138E57 projectile, no further development of this fuze is planned.

Time Fuze

Pilot models of the Firestone time fuze (Fig. 14, Thirty-Third Progress Report) are currently being fabricated.

Future Program

- 1. Fire T267E14 base elements for graze functioning at Aberdeen Proving Ground.
- 2. Manufacture and test 100 T267 fuzes incorporating crystal shorting switches.

1

Fig. 42. Deceleration Versus Impact Media.

Table XXV Firing Record To Test 1267 Fuze

Propellont
Type Man Web : 033 Weight 716 401
Type Man 30239
Printer Services Ronge four inch Busting screen of 200 40: Mogozine Max 2011, Min 7012 Present 7012 Loading Room 8012 Ambient 8517 The property of the Durstray Secret indicated that covery count wind through by treet 3 michaeld wood the trunk of the secret was compacted of 8 x 6 s which was interfaced for the Dealite of the projection. The first began of the 2x 6 x were somewhat shaftered but it was appared that the shaftering were contained to the projection of the shaftering was course by the profession of the shaftering course by Functioned bock (20") of lorge! Functioned back (20') of target. One of the fires which totallists may have been due to agled on the part of the luse lawers. The other could have been due to explicit impact. MISCELLANEOUS DATA Observotions Shell Cose 7:5261 (50) (30) (50) (50.) (20) foiled to function. Foiled to function Purpose of Test To Test Fune 7-247E14
Date July 31,1953 Corrected Position | Recoil (10) Chamber <u>22-C-209-D</u>
Bushing(<u>Vent)</u> <u>D-370-6</u>
Tube <u>27-6-335-9, /·200 Twist</u>
Sighting Equipment <u>77.2 mod/ E/form 78/05/9P</u> Horiz. Vert Type / 2.06 10 100 1/10 Model 7.37 E3 Type 105 mm receilles Horiz Position of Hil Seriol No 28 Veri **EST GUN** Azimuth (3) E) (Slim) 1710 1738 1701 1729 1706 1734 1749 Muzzle Velocity ft / sec 1750 Screen Distances 9 F 9 F 9 F 10 F 4 F 105 66.3' + 32 33 (20-QI) X 923 16.54 7 14 X 929 16.66 7 14 Bourrelet Dia 4/32 ----X 932 16.60 7 14 X 934 16.60 7 19 Weight 17216 (Nom.) X 935 (6.58 7 X 929 (6.56 7 X 93/ (6.54 7 X 930 /6.60 / Wanght (1b.) (16.64 PROJECTILE Model 7/38 Type ES7 C.G. Locofion X 927

Coservers - Cherus, R. Dewn Signed.

another projectile

P. Docko

55

5472

5474 5475 5476 5477 5477 Nores:

<

F. Dock.

Signed

Proof O rector E. Hullman
Observers E. Brews

To Test 7223 Fuze Range Data Table XXVI

1

I

Purpose of Test Tost Tazz Fring &

Dote of Test Aug. 14. 1953

Bushing (<u>Vent) - 22-9-92-8-9</u> Tube <u>22-9-775-8 (1-200 Turn)</u> Signting Equipment 777 member 1 Elesson Model 7/37£3 Type 105 mm 1 mcs 11/433 Seriol No / Chamber 22.8 775.8 **TEST GUN**

Propellant
Type Con Meb 0235m. Weight 716 Mess
Lot No Primer
Primer

Shell Cose 752E/ Temperatures

Ronge Four in Courating server at 200 yes.

MISCELLANEOUS DATA

Type 7/5254 (6round 1100.01)

Bourrelet Dio 4./32 -- Oct.

C.G. Location ___

Weight 17416 (Nom)

Type £574

PROJECTILE Model 7/38

Mogazine 75°5. Min 70°5. Present 75°5. Max 70°5. Min 70°5. Ambient 87°5. Special Features Minned mily 7233 Fuse

Functioned at Torget, Solone d aume 1003 e Through practices hole. Did not function through provinces Observations do Throng Functioned at target Did not tunction 0 Corrected Position Recoil Ē Pistical, pin mark on princer casewas turned in chamber, fire of on second Horiz Subsequent mistres Secretical Alter Anned 3503 was tired, the tiring mechanism was adjuted and me subsequent mestines accounts were fired for super-paried action.

The burding school was compered of two sets of 3 x 8 1, and set theirs follows set refried All remark were fired as single paris, perfectly being pashere into the cases of the living line. The transfer were fired as single paris, the transfer into the cases of the living line. The transfer into the cases of the living line. Vert Hor 12. Position of Hit Mistice, functioned after care was thread Vert Azımuth (SIE) (mils) Chamber Muzzle Velocity Elev Pressure #/ sec (ib /sq.n.) :nsfr | Actual (mils) Mistire, see above. 00/2 X899 17.34 7 14 X896 17.44 7 14 X893 17.42 7 14 (10-01) X 901 1740 7 14 X 889 17.37 7 14 17.38 7 14 17.40 7 14 4) 7 8471 000X X897 17.40 7 14 X890 1738 7 /4 17.40 X 688 168X X6198 Notes: Round No. 5577 5580 5580 5581 5581 5583 5584 5584 5574 5575 5576 5587 5586

MANUFACTURING SUMMARY

In addition to the experimental material prepared for the research and development work under contracts DA-33-019-ORD-33 and DA-33-019-ORD-1202, described in preceding progress reports and in the preceding pages of this report, the following have been manufactured and shipped to the installations indicated.

Firestone's Defense Research Division, in shipping these items, transfers custody and control of the items to the receiving agencies. However, personnel of Defense Research Division will continue to collaborate with personnel of the other installations.

(_

I. Cartridges, Tl19Eil, Metal Parts Assembly, w/o Fuze T208E7

Prior to	August 1, 1953	7695	All Shipments
	August 10, 1953	125 (Live)	Picatinny Arsenal
(For Testing T278 Fuze)			
	August 20, 1953	120 (Inert)	Picatinny Arsenal
(For Canadian Army Staff)			
	August 24, 1953	50 (Inert)	Aberdeen Proving Ground
	(For Charge De	velopment)	

Total 7980

II. Rifles, T170El for ONTOS

1

T

Prior to	July 1,	1953	3.0	Aberdeen	Proving	Ground
	July 24	, 1953	6	11	11	11
	Aug. 10	1953	6	11	11	11

III. Mounts, T173 and T26 Tripod for ONTOS

Prior to Aug. 1,	1953	1	Allis	Chalmer:
Aug. 4.	1953	3	. 11	11

IV. BAT Systems less Jeep, T170E1 (M40) Rifle, T149E3 (M79) Mounts

Prior to July 1, 1953	5	Aberdeen Proving Ground
* July 13, 1953	1	Firestone
July 13, 1953	ì	Aberdeen Proving Ground
July 31, 1953	3	Aberdeen Proving Ground
** Aug. 12, 1953	1	Firestone

^{*} For firing effort (pistol grip) tests.

In addition to the above 2 T170Elrifles were sent to Aberdeen Proving Ground on August 8, 1953 for Ammunition Acceptance Tests.

^{**} For ammunition tests at Erie Ordnance Depot.

DISTRIBUTION

Number of Copies	NUMBERS	INSTALLATION
		Office, Chief of Ordnance
1	1	ORDTS
2	2-3	ORDTA
1	4	ORDTO
1	5	ORDTB
1	6	ORDGU-SE
1	7	ORDTU
1	8	ORDIM
		Arsenals
10	9-18 incl.	Frankford
2	19-20	Picatinny
1	21	Springfield Arniory
2	22-23	Redstone
		Ordnance Districts
1	24	Cleveland
		Aberdeen Proving Ground
2	25-26	Ballistics Research Labourto
1	27	Development and Proof Services
		Contractors
2	28-29	Frigidaire Div. Gen. Motors Corp.
1	30	Winchester Repeating Arms Co.
1	31	Remington Arms Co.
1	32	National Forge & Ordnance Co.
2	33-34	Midwest Research Institute
2	35-36	Armour Research Foundation
1	37	Carnegie Institute of Technology
1	38	Arthur D. Little Co.
1	39	The Budd Company
1	40	Franklin Institute
1	41	Chamberlain Corporation
		U. S. Navy
1	42	Bureau of Navy Ordnance
2	43-44	Naval Ordnance Laboratory, White Oak
2	45-46	Naval Ordnance Test Station, Inyokern
1	47	Naval Proving Ground, Dahlgren