Mecánica Estadística

Práctica 1 - Repaso de Termodinámica y Análisis Combinatorio

Problema 1.

Entre los años 1995 y 2016 la Argentina adoptó un sistema de patentamiento de automóviles que contaba con la combinación de 3 letras y 3 números (ej. ABC 123). A partir de 2016 el sistema se modificó agregando una letra adicional (ej. AB 123 CD).

- (a) Calcule la cantidad total de autos que podrían registrase bajo el viejo sistema si a cada uno de ellos le corresponde una única patente.
- (b) Calcule la cantidad total de autos que se pueden registrar bajo el nuevo sistema.
- (c) ¿Cuántos autos tendrán patentes (del nuevo sistema) con solo vocales en el primer par de letras, solo números pares (incluido el cero) y solo consonantes en las últimas dos letras (ej. AE 248 FG)?

Problema 2.

- (a) ¿De cuántas formas es posible ordenar los símbolos a, b, c, d, e, f, g, h, i?
- (b) Si reemplazamos los últimos cuatro símbolos por e, ¿De cuántas formas es posible ordenar el conjunto a, b, c, d, e, e, e, e, e (tenga en cuenta que cada e es indistinguible de las demás)?
- (c) ¿De cuántas formas es posible ordenar el conjunto del item anterior de tal manera que ninguna e quede junto a otra?

Problema 3.

¿De cuántas formas se puede formar un equipo de baloncesto de cinco personas con 12 posibles jugadores? ¿Cuántas opciones incluyen al jugador más alto y al más bajo simultáneamente?

Problema 4.

Un comité de 12 personas será elegido entre 10 hombres y 10 mujeres. ¿De cuántas formas se puede hacer la selección si: (a) no hay restricciones? (b) debe haber seis hombres y seis mujeres?

Problema 5.

¿De cuántas formas es posible distribuir 10 monedas idénticas entre cinco niños si: (a) no hay restricciones? (b) cada niño recibe al menos una moneda? (c) el niño mayor recibe al menos dos monedas?

Problema 6.

Una tienda de helados tiene disponibles 13 sabores de helado. ¿De cuántas formas se puede comprar una docena de conos de helado si: (a) no queremos el mismo sabor más de una vez? (b) un mismo sabor puede pedirse cuantas veces como se desee?

Problema 7.

¿De cuántas formas se pueden distribuir ocho bolas blancas idénticas en cuatro recipientes distintos de modo que: (a) ningún recipiente quede vacío? (b) el cuarto recipiente contenga un número impar de bolas?

Problema 8.

Consideremos n moles de un gas ideal monoatómico que se encuentra en un estado inicial de presión P_A y volumen V_A . Supongamos que se incrementa la temperatura a volumen constante hasta duplicar la presión. Luego el gas se expande isotérmicamente hasta que la presión desciende a su valor original y posteriormente se comprime a presión constante hasta que el volumen recupera su valor inicial.

- (a) Representar estos procesos en el plano P-V y en el plano P-T.
- (b) Calcular el trabajo realizado por el sistema, el calor entregado al mismo y su variación de la energía interna en cada proceso.
- (c) Calcular la variación energía interna del ciclo completo e interpretar el resultado.
- (d) Calcular el trabajo realizado por el sistema y el calor entregado al mismo a lo largo del ciclo completo. ¿El sistema realiza trabajo o se realiza trabajo sobre el mismo? ¿El sistema recibe calor o lo entrega al entorno?

Problema 9.

Consideremos dos bloques idénticos A y B que se encuentran inicialmente a temperaturas T_A y T_B , respectivamente, tal que $T_A > T_B$. Dichos bloques se ponen en contacto dentro de un recipiente con paredes adiabáticas hasta que ambos alcanzan la misma temperatura T_f .

- (a) Analizando cualitativamente el proceso que sufren ambos bloques, ¿será reversible?
- (b) Si el calor específico de cada bloque es $C_V = 3Nk_B$, donde $N = 10^{23}$ y k_B es la constante de Boltzmann, calcular la variación de entropía de cada bloque a lo largo del proceso y la del sistema $A \cup B$. Teniendo en cuenta este último resultado, ¿el proceso es reversible?

Problema 10.

Consideremos un diamante monocristalino de 10g que ha sido utilizado como elemento de corte, proceso que ha elevado su temperatura a 300° C. Con el objeto de enfriarlo, se lo sumerge en un baño de agua a 10° C hasta que alcanza el equilibrio termodinámico con el mismo. El diamante es un material cuyo calor específico a temperatura ambiente depende de T a través de la siguiente expresión:

$$C_V(T) = \frac{12\pi^4}{5} N k_B \left(\frac{T}{\Theta_D}\right)^3,$$

donde N es la cantidad de átomos de carbono que componen al diamante, k_B es la constante de Boltzmann y Θ_D es la temperatura de Debye, que en el caso del diamante asume un valor de $\Theta_D = 1860 \mathrm{K}$.

- (a) Calcular el calor que transmite el diamante hacia el baño térmico durante el enfriado.
- (b) Determinar la variación de entropía del diamante.
- (c) Utilizando el resultado del item (a), estimar la variación de entropía del baño y luego el del sistema "baño + diamante". ¿El enfriamiento del diamante es reversible?

Ayuda: La masa atómica del C es de 12.01 g/mol. Podemos considerar que el baño de agua es tan grande que no sufre variaciones apreciables de temperatura durante el enfriado.