COMP 9602: Convex Optimization

Algorithms for Unconstrained Optimization

Dr. C Wu

Department of Computer Science
The University of Hong Kong

Roadmap

Theory	convex set convex function standard forms of optimization problems, quasi-convex optimization linear program, integer linear program quadratic program geometric program semidefinite program vector optimization duality
Algorithm	unconstrained optimization equality constrained optimization interior-point method localization methods subgradient method decomposition methods

Unconstrained optimization

minimize f(x)

- f convex, twice continuously differentiable (hence $\operatorname{dom} f$ open)
- ullet we assume optimal value $p^\star = \inf_x f(x)$ is attained (and finite)

solving the unconstrained optimization <=> find the solution to:

$$\nabla f(x^*) = 0$$
 (n equations)

- usually need iterative algorithms:
 - produce a sequence of $x^{(k)} \in dom(f), k=1,2,\ldots$ with $f(x^{(k)}) \to \min f(x)$ (i.e., $\nabla f(x^{(k)}) \to 0$) when $k \to \infty$
 - the algorithm terminates when $f(x^{(k)}) \min f(x) \le \epsilon$ where $\epsilon > 0$ or $\|\nabla f(x^{(k)})\|_2 \le \epsilon$

Descent methods

- lacksquare start with $x^{(0)}$
- - ullet other notations: $x^+ = x + t\Delta x$, $x := x + t\Delta x$
 - \bullet Δx is the step, or search direction; t is the step size, or step length
 - from convexity, $f(x^+) < f(x)$ implies $\nabla f(x)^T \Delta x < 0$ (i.e., Δx is a descent direction)

General descent method.

given a starting point $x \in \operatorname{dom} f$. repeat

- 1. Determine a descent direction Δx .
- 2. Line search. Choose a step size t > 0.
- 3. Update. $x := x + t\Delta x$.

until stopping criterion is satisfied.

Descent methods

- Determine a descent direction
 - one approach is gradient descent

$$\triangle x = - \nabla f(x)$$

- Choose a step size
 - line search methods

exact line search: $t = \operatorname{argmin}_{t>0} f(x + t\Delta x)$

backtracking line search (with parameters $\alpha \in (0, 1/2)$, $\beta \in (0, 1)$)

ullet starting at t=1, repeat $t:=\beta t$ until

$$f(x + t\Delta x) \le f(x) + \alpha t \nabla f(x)^T \Delta x$$

Gradient descent method

Gradient descent method:

general descent method with $\Delta x = -\nabla f(x)$

given a starting point $x \in \operatorname{dom} f$. repeat

- 1. $\Delta x := -\nabla f(x)$.
- 2. Line search. Choose step size t via exact or backtracking line search.
- 3. Update. $x := x + t\Delta x$.

until stopping criterion is satisfied.

Gradient descent method

Remarks

can be very slow (linear convergence); rarely used in practice

e.g.
$$f(x_1, x_2) = e^{x_1 + 3x_2 - 0.1} + e^{x_1 - 3x_2 - 0.1} + e^{-x_1 - 0.1}$$

linear convergence: the error converges

to zero at least as fast as a geometric series

Gradient descent method

find the steepest descent direction — steepest descent method

normalized steepest descent direction

$$\Delta x_{\text{nsd}} = \operatorname{argmin} \{ \nabla f(x)^T v \mid ||v|| = 1 \}$$

 $\triangle x = - \nabla f(x)$ is the steepest descent direction with respect to Euclidean norm

so performance of steepest descent similar to gradient descent

Newton's direction
$$\Delta x_{\rm nt} = -\nabla^2 f(x)^{-1} \nabla f(x)$$

- One interpretation
 - $x + \Delta x_{\rm nt}$ minimizes second order approximation

$$\widehat{f}(x+v) = f(x) + \nabla f(x)^T v + \frac{1}{2} v^T \nabla^2 f(x) v$$

intuition: f twice differentiable, so this quadratic model is very accurate when x is near x*.

Newton's decrement (Stopping criteria):

$$\lambda(x) = \left(\nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x)\right)^{1/2}$$

a measure of the proximity of x to x^*

ullet gives an estimate of $f(x)-p^\star$, using quadratic approximation \widehat{f} :

$$f(x) - \inf_{y} \widehat{f}(y) = \frac{1}{2}\lambda(x)^2$$

ullet directional derivative in the Newton direction: $abla f(x)^T \Delta x_{
m nt} = -\lambda(x)^2$

☐ (damped or guarded) Newton's method:

given a starting point $x \in \operatorname{dom} f$, tolerance $\epsilon > 0$. repeat

1. Compute the Newton step and decrement.

$$\Delta x_{
m nt} := -
abla^2 f(x)^{-1}
abla f(x); \quad \lambda^2 :=
abla f(x)^T
abla^2 f(x)^{-1}
abla f(x).$$

- 2. Stopping criterion. quit if $\lambda^2/2 \leq \epsilon$.
- 3. Line search. Choose step size t by backtracking line search.
- 4. Update. $x := x + t\Delta x_{\rm nt}$.

pure Newton's method: t=1

Converge in 2 phases

- damped Newton phase: t<1 (most iterations require backtracking steps)</p>
- quadratically convergent phase: t=1 ($|| \nabla f(x) ||_2$ converges to 0 quadratically, i.e., the number of correct digits doubles at each iteration)

$$f(x) = c^T x - \sum_{i=1}^{m} \log(b_i - a_i^T x),$$

with m = 500 terms and n = 100 variables.

- Convergence is rapid in general and quadratic near x*
- lacksquare Cost: compute and store $\bigtriangledown^2 f(x)$, and $\colongraphi^2 f(x)^{-1}$

- Reference
 - Chapter 9.1-9.5, Convex Optimization.
- Acknowledgement
 - Some materials are extracted from the slides created by Prof. Stephen Boyd for the textbook
 - Some materials are extracted from the lecture notes of Convex Optimization by Prof. Wei Yu at the University of Toronto