8 Others

21

Contents 1 Basic 1.1 default code 1.2 .vimrc 1.3 Increase Stack Size (linux) 2.2 MinCostFlow 2.3 Dinic ${\cal O}(V^2E)$. . 2.5 SW min-cut (不限 S-T 的 min-cut) $O(V^3)$ 2.6 Max flow with lower/upper bound 2.7 Flow Method 3.3 Faulhaber $(\sum\limits_{i=1}^n i^p)$ 3.4 Chinese Remainder 3.6 Pollard Rho . 3.14Prefix Inverse . . 3.15Roots of Polynomial 找多項式的根 3.16Combination thearom 4 Geometry 4.1 definition . . . 8 8 4.6 Intersection of 2 segments 5 Graph 10 5.1 DSU 並查集 & MST . . 10 5.2 Lowest Common Ancestor O(lgn) 11 5.3 Hamiltonian path $O(n^22^n)$ 11 11 12 12 12 5.8 Maximum General graph Matching 12 13 13 15 15 15 15 16 6.1 PalTree O(n) 16 6.2 Longest Increasing Subsequence 16 6.3 Longest Common Subsequence O(nlgn) 16 16 6.5 SAIS O(n) 16 6.6 Z Value O(n) 17 6.7 Manacher Algorithm O(n) 17 6.8 Smallest Rotation 17 6.9 Cyclic LCS 17 6.10Hash 18 7 Data Structure 7.1 Segment tree 18 7.3 Trie 19 7.4 Treap (interval reverse) 19 20

7.7 Black Magic

```
8.1 SOS dp
                                                                                                                       21
    21
     21
    8.5 3D LTS
    8.6 Aho-Corasick . . . . . . . .
          Basic
1.1 default code
#pragma GCC optimize("03,unroll-loops")
#pragma GCC target("avx2,bmi,bmi2,lzcnt,popcnt")
#include <bits/stdc++.h>
using namespace std;
ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0);
1.2 .vimrc
set nu rnu ts=4 sw=4 bs=2 ai hls cin mouse=a
color default
sy on
inoremap {<CR>} {<CR>} {<C>>} {<C>~} {<C~} {<C~
inoremap jk <Esc>
nnoremap J 5j
nnoremap K 5k
nnoremap run :w<bar>!g++ -std=c++14 -DLOCAL -Wfatal-
         errors -o test "%" && echo "done." && time ./test<
1.3 Increase Stack Size (linux)
#include <sys/resource.h>
void increase_stack_size() 
    const rlim_t ks = 64*1024*1024;
    struct rlimit rl;
    int res=getrlimit(RLIMIT_STACK, &rl);
    if(res==0){
         if(rl.rlim_cur<ks){</pre>
             rl.rlim_cur=ks;
             res=setrlimit(RLIMIT_STACK, &rl);
} } }
1.4 Misc
編譯參數:-std=c++14 -Wall -Wshadow (-fsanitize=
         undefined)
mt19937 gen(chrono::steady_clock::now().
         time_since_epoch().count());
int randint(int lb, int ub)
{ return uniform_int_distribution<int>(lb, ub)(gen); }
#define SECs ((double)clock() / CLOCKS_PER_SEC)
double startTime;
bool TIME() { // 比最大可執行時間小一點
         return SECs - startTime > 0.8;
int main() {
         startTime = SECs;
}
struct KeyHasher {
    size_t operator()(const Key& k) const {
         return k.first + k.second * 100000;
typedef unordered_map<Key,int,KeyHasher> map_t;
                                                     // 二進位有幾個1
__builtin_popcountll
                                                    // 左起第一個1之前0的個數
__builtin_clzll
                                                     // 1的個數的奇偶性
__builtin_parityll
__builtin_mul_overflow(a,b,&h) // a*b是否溢位
```

1.5 check

```
for ((i=0;;i++))
    echo "$i"
   python3 gen.py > input
    ./ac < input > ac.out
    ./wa < input > wa.out
    diff ac.out wa.out || break
done
```

flow

2.1 ISAP $O(V^3)$

```
struct Maxflow {
  static const int MAXV = 20010;
  static const int INF = 1000000;
  struct Edge {
    int v, c, r;
Edge(int _v, int _c, int _r):
    v(_v), c(_c), r(_r) {}
  int s, t;
  vector<Edge> G[MAXV*2];
  int iter[MAXV*2], d[MAXV*2], gap[MAXV*2], tot;
  void init(int x) {
    tot = x+2;
    s = x+1, t = x+2;
for(int i = 0; i <= tot; i++) {
       G[i].clear()
       iter[i] = d[i] = gap[i] = 0;
  void addEdge(int u, int v, int c) {
    G[u].push_back(Edge(v, c, SZ(G[v]) ));
G[v].push_back(Edge(u, 0, SZ(G[u]) - 1));
  int dfs(int p, int flow) {
     if(p == t) return flow;
    for(int &i = iter[p]; i < SZ(G[p]); i++) {</pre>
       Edge &e = G[p][i];
       if(e.c > 0 \& d[p] == d[e.v]+1) {
         int f = dfs(e.v, min(flow, e.c));
         if(f) {
           G[e.v][e.r].c += f;
           return f;
    if( (--gap[d[p]]) == 0) d[s] = tot;
    else {
      d[p]++;
       iter[p] = 0;
       ++gap[d[p]];
    }
    return 0;
  int solve() {
    int res = 0;
    gap[0] = tot;
    for(res = 0; d[s] < tot; res += dfs(s, INF));</pre>
    return res;
  void reset() {
    for(int i=0;i<=tot;i++) {</pre>
       iter[i]=d[i]=gap[i]=0;
} } flow;
```

2.2 MinCostFlow

```
struct zkwflow{
  static const int maxN=10000;
  struct Edge{ int v,f,re; ll w;};
int n,s,t,ptr[maxN]; bool vis[maxN]; ll dis[maxN];
  vector<Edge> E[maxN];
  void init(int _n,int _s,int _t){
    n=_n,s=_s,t=_t;
```

```
for(int i=0;i<n;i++) E[i].clear();</pre>
  void addEdge(int u,int v,int f,ll w){
    E[u].push_back({v,f,(int)E[v].size(),w});
    E[v].push\_back({u,0,(int)}E[u].size()-1,-w});
  bool SPFA(){
    fill_n(dis,n,LLONG_MAX); fill_n(vis,n,false);
    queue<int> q; q.push(s); dis[s]=0;
    while (!q.empty()){
      int u=q.front(); q.pop(); vis[u]=false;
for(auto &it:E[u]){
        if(it.f>0&&dis[it.v]>dis[u]+it.w){
          dis[it.v]=dis[u]+it.w;
          if(!vis[it.v]){
            vis[it.v]=true; q.push(it.v);
    } } } }
    return dis[t]!=LLONG_MAX;
  int DFS(int u,int nf){
    if(u==t) return nf;
    int res=0; vis[u]=true;
    for(int &i=ptr[u];i<(int)E[u].size();i++){</pre>
      auto &it=E[u][i]
      if(it.f>0&&dis[it.v]==dis[u]+it.w&&!vis[it.v]){
        int tf=DFS(it.v,min(nf,it.f));
        res+=tf,nf-=tf,it.f-=tf;
        E[it.v][it.re].f+=tf;
        if(nf==0){ vis[u]=false; break; }
      }
    }
    return res;
  pair<int,ll> flow(){
    int flow=0; ll cost=0;
    while (SPFA()){
      fill_n(ptr,n,0)
      int f=DFS(s,INT_MAX);
      flow+=f; cost+=dis[t]*f;
    return{ flow,cost };
   // reset: do nothing
} flow;
2.3 Dinic O(V^2E)
```

```
#define SZ(x) (int)x.size()
#define PB push_back
struct Dinic{
  struct Edge{ int v,f,re; };
int n,s,t,level[MXN];
  vector<Edge> E[MXN];
  void init(int _n, int _s, int _t){
  n = _n;  s = _s;  t = _t;
  for (int i=0; i<n; i++) E[i].clear();</pre>
  void add_edge(int u, int v, int f){
    E[u].PB(\{v,f,SZ(E[v])\})
    E[v].PB({u,0,SZ(E[u])-1});
  bool BFS(){
    for (int i=0; i<n; i++) level[i] = -1;</pre>
    queue<int> que;
    que.push(s)
    level[s] = 0;
    while (!que.empty()){
       int u = que.front(); que.pop();
       for (auto it : E[u]){
         if (it.f > 0 && level[it.v] == -1){
            level[it.v] = level[u]+1;
            que.push(it.v);
    } } }
    return level[t] != -1;
  int DFS(int u, int nf){
    if (u == t) return nf;
    int res = 0:
     for (auto &it : E[u]){
       if (it.f > 0 && level[it.v] == level[u]+1){
         int tf = DFS(it.v, min(nf,it.f));
```

```
res += tf; nf -= tf; it.f -= tf;
    E[it.v][it.re].f += tf;
    if (nf == 0) return res;
} if (!res) level[u] = -1;
    return res;
}
int flow(int res=0){
    while ( BFS() )
        res += DFS(s,2147483647);
    return res;
} flow;
```

2.4 Kuhn Munkres 最大完美二分匹配 $O(n^3)$

```
struct KM{ // max weight, for min negate the weights
   int n, mx[MXN], my[MXN], pa[MXN];
ll g[MXN][MXN], lx[MXN], ly[MXN], sy[MXN];
  bool vx[MXN], vy[MXN];
void init(int _n) { // 1-based
     n = _n;
     for(int i=1; i<=n; i++) fill(g[i], g[i]+n+1, 0);</pre>
   void addEdge(int x, int y, ll w) \{g[x][y] = w;\}
  void augment(int y) {
     for(int x, z; y; y = z)
        x=pa[y], z=mx[x], my[y]=x, mx[x]=y;
   void bfs(int st) {
     for(int i=1; i<=n; ++i) sy[i]=INF, vx[i]=vy[i]=0;</pre>
     queue<int> q; q.push(st);
     for(;;) {
        while(q.size()) {
          int x=q.front(); q.pop(); vx[x]=1;
for(int y=1; y<=n; ++y) if(!vy[y]){
    ll t = lx[x]+ly[y]-g[x][y];
</pre>
             if(t==0){
                pa[y]=x
                if(!my[y]){augment(y);return;}
                vy[y]=1, q.push(my[y]);
             }else if(sy[y]>t) pa[y]=x,sy[y]=t;
        } }
        ll cut = INF;
        for(int y=1; y<=n; ++y)
  if(!vy[y]&&cut>sy[y]) cut=sy[y];
        for(int j=1; j<=n; ++j){
  if(vx[j]) lx[j] -= cut;
  if(vy[j]) ly[j] += cut;</pre>
          else sy[j] -= cut;
        for(int y=1; y<=n; ++y) if([vy[y]\&sy[y]==0){
          if(!my[y]){augment(y);return;}
          vy[y]=1, q.push(my[y]);
   ĺl solve(){
     fill(mx, mx+n+1, 0); fill(my, my+n+1, 0); fill(ly, ly+n+1, 0); fill(lx, lx+n+1, -INF);
     for(int x=1; x<=n; ++x) for(int y=1; y<=n; ++y)
        lx[x] = max(lx[x], g[x][y]);
     for(int x=1; x<=n; ++x) bfs(x);</pre>
     11 ans = 0:
     for(int y=1; y<=n; ++y) ans += g[my[y]][y];
     return ans;
} }graph;
```

2.5 SW min-cut (不限 S-T 的 min-cut) $O(V^3)$

```
// global min cut
struct SW{ // O(V^3)
  int n,vst[MXN],del[MXN];
  int edge[MXN][MXN],wei[MXN];
  void init(int _n){
    n = _n; FZ(edge); FZ(del);
  }
  void addEdge(int u, int v, int w){
    edge[u][v] += w; edge[v][u] += w;
  }
  void search(int &s, int &t){
```

```
FZ(vst); FZ(wei);
s = t = -1;
     while (true){
        int mx=-1, cur=0;
        for (int i=0; i<n; i++)
  if (!del[i] && !vst[i] && mx<wei[i])</pre>
        cur = i, mx = wei[i];
if (mx == -1) break;
       vst[cur] = 1;
        s = t; t = cur;
for (int i=0; i<n; i++)
          if (!vst[ij && !del[i]) wei[i] += edge[cur][i];
   int solve(){
     int res = 2147483647;
     for (int i=0,x,y; i<n-1; i++){</pre>
        search(x,y);
        res = min(res,wei[y]);
        del[y] = 1;
        for (int j=0; j<n; j++)</pre>
          edge[x][j] = (edge[j][x] += edge[y][j]);
     return res;
} }graph;
```

2.6 Max flow with lower/upper bound

```
// flow use ISAP
// Max flow with lower/upper bound on edges
// source = 1 , sink = n
int in[ N ] , out[ N ];
 int l[M], r[M], a[M], b[M];//O-base,a下界,b
       上界
 int solve(){
   flow.init(n); //n 點的數量,m 為邊的數量,點是1-
         base
   for( int i = 0 ; i < m ; i ++ ){
  in[ r[ i ] ] += a[ i ];
  out[ l[ i ] ] += a[ i ];</pre>
      flow.addEdge( l[ i ] , r[ i ] , b[ i ] - a[ i ] );
// flow from l[i] to r[i] must in [a[ i ], b[ i ]]
   int nd = 0;
   for( int i = 1 ; i <= n ; i ++ ){
  if( in[ i ] < out[ i ] ){
    flow.addEdge( i , flow.t , out[ i ] - in[ i ] );
    nd += out[ i ] - in[ i ];</pre>
      if( out[ i ] < in[ i ] )</pre>
         flow.addEdge( flow.s , i , in[ i ] - out[ i ] );
   // original sink to source
   flow.addEdge( n , 1 , INF );
if( flow.maxflow() != nd )
      return -1; // no solution
   int ans = flow.G[ 1 ].back().c; // source to sink
flow.G[ 1 ].back().c = flow.G[ n ].back().c = 0;
   // take out super source and super sink
   for( size_t i = 0 ; i < flow.G[ flow.s ].size() ; i</pre>
      flow.G[ flow.s ][ i ].c = 0;
Edge &e = flow.G[ flow.s ][ i ];
      flow.G[ e.v ][ e.r ].c = 0;
   for( size_t i = 0 ; i < flow.G[ flow.t ].size() ; i</pre>
      ++ ){
flow.G[ flow.t ][ i ].c = 0;
      Edge &e = flow.G[ flow.t ][ i ];
      flow.G[e.v][e.r].c = 0;
   flow.addEdge( flow.s , 1 , INF
   flow.addEdge( n , flow.t , INF );
   flow.reset();
    return ans + flow.maxflow();
}
```

2.7 Flow Method

```
Maximize c^T x subject to Ax \le b, x \ge 0;
with the corresponding symmetric dual problem,
Minimize b^T y subject to A^T y \geq c, y \geq 0.
Maximize c^T x subject to Ax \le b;
with the corresponding asymmetric dual problem,
Minimize b^T y subject to A^T y = c, y \ge 0.
Minimum vertex cover on bipartite graph =
Maximum matching on bipartite graph
Minimum edge cover on bipartite graph =
vertex number - Minimum vertex cover(Maximum matching)
Independent set on bipartite graph =
vertex number - Minimum vertex cover(Maximum matching)
找出最小點覆蓋,做完dinic之後,從源點dfs只走還有流量的
邊 · 左 邊 沒 被 走 到 的 點 跟 右 邊 被 走 到 的 點 就 是 答 案 · 其 他 點 為
    最大獨立集
Maximum density subgraph ( \sum W_e + \sum W_v ) / |V|
Binary search on answer:
For a fixed D, construct a Max flow model as follow:
Let S be Sum of all weight( or inf)
1. from source to each node with cap = S
2. For each (u,v,w) in E, (u->v,cap=w), (v->u,cap=w)
3. For each node v, from v to sink with cap = S + 2 * D - deg[v] - 2 * (W of v)
where deg[v] = \sum_{i=1}^{n-1} e^{-it} where deg[v] = \sum_{i=1}^{n-1} e^{-it}
If maxflow < S * |V|, D is an answer.
Requiring subgraph: all vertex can be reached from
    source with
edge whose cap > 0.
```

3 Math

3.1 FFT

```
// const int MAXN = 262144;
// (must be 2^k)
// before any usage, run pre_fft() first
typedef long double ld;
typedef complex<ld> cplx; //real() ,imag()
const ld PI = acosl(-1);
const cplx I(0, 1);
cplx omega[MAXN+1];
void pre_fft(){
  for(int i=0; i<=MAXN; i++)
  omega[i] = exp(i * 2 * PI / MAXN * I);</pre>
// n must be 2^k
void fft(int n, cplx a[], bool inv=false){
  int basic = MAXN / n;
  int theta = basic;
  for (int m = n; m >= 2; m >>= 1) {
    int mh = m >> 1;
for (int i = 0; i < mh; i++) {</pre>
      cplx w = omega[inv ? MAXN-(i*theta%MAXN)]
                             : i*theta%MAXN];
       for (int j = i; j < n; j += m) {
         int k = j + mh;
         cplx x = a[j] - a[k];
         a[j] += a[k];
         a[\bar{k}] = w * \bar{x};
    } }
    theta = (theta * 2) % MAXN;
  int i = 0;
  for (int j = 1; j < n - 1; j++) {
for (int k = n >> 1; k > (i ^= k); k >>= 1);
    if (j < i) swap(a[i], a[j]);</pre>
  if(inv) for (i = 0; i < n; i++) a[i] /= n;
```

```
cplx arr[MAXN+1];
inline void mul(int _n,ll a[],int _m,ll b[],ll ans[]){
  int n=1,sum=_n+_m-1;
  while(n<sum)
    n<<=1;
  for(int i=0;i<n;i++) {
    double x=(i<_n?a[i]:0),y=(i<_m?b[i]:0);
    arr[i]=complex<double>(x+y,x-y);
}
fft(n,arr);
for(int i=0;i<n;i++)
    arr[i]=arr[i]*arr[i];
fft(n,arr,true);
for(int i=0;i<sum;i++)
    ans[i]=(long long int)(arr[i].real()/4+0.5);
}</pre>
```

3.2 O(1)mul

```
LL mul(LL x,LL y,LL mod){
  LL ret=x*y-(LL)((long double)x/mod*y)*mod;
  // LL ret=x*y-(LL)((long double)x*y/mod+0.5)*mod;
  return ret<0?ret+mod:ret;
}</pre>
```

3.3 Faulhaber $(\sum_{i=1}^{n} i^{p})$

```
/* faulhaber' s formula -
* cal power sum formula of all p=1\simk in 0(k^2) */#define MAXK 2500
const int mod = 1000000007;
int b[MAXK]; // bernoulli number
int inv[MAXK+1]; // inverse
int cm[MAXK+1][MAXK+1]; // combinactories
int co[MAXK][MAXK+2]; // coeeficient of x^j when p=i
inline int getinv(int x) {
  int a=x,b=mod,a0=1,a1=0,b0=0,b1=1;
  while(b) {
    int q,t;
    q=a/b; t=b; b=a-b*q; a=t;
    t=b0; b0=a0-b0*q; a0=t;
    t=b1; b1=a1-b1*q; a1=t;
  return a0<0?a0+mod:a0;</pre>
inline void pre() {
  /* combinational */
  for(int i=0;i<=MAXK;i++) {</pre>
    cm[i][0]=cm[i][i]=1;
    for(int j=1;j<i;j++)</pre>
       cm[i][j]=add(cm[i-1][j-1],cm[i-1][j]);
  /* inverse */
  for(int i=1;i<=MAXK;i++) inv[i]=getinv(i);</pre>
   /* bernoulli */
  b[0]=1; b[1]=getinv(2); // with b[1] = 1/2
  for(int i=2;i<MAXK;i++) {</pre>
    if(i&1) { b[i]=0; continue; }
    b[i]=1;
    for(int j=0;j<i;j++)</pre>
      b[i]=sub(b[i],
                 mul(cm[i][j],mul(b[j], inv[i-j+1])));
  }
/* faulhaber */
  // sigma_x=1~n \{x^p\} = 
// 1/(p+1) * sigma_j=0~p \{C(p+1,j)*Bj*n^(p-j+1)\}
  for(int i=1;i<MAXK;i++) {</pre>
     co[i][0]=0;
     for(int j=0; j<=i; j++)</pre>
       co[i][i-j+1]=mul(inv[i+1], mul(cm[i+1][j], b[j]))
  }
/* sample usage: return f(n,p) = sigma_x=1\sim (x^p) */
inline int solve(int n,int p) {
```

```
int sol=0,m=n;
for(int i=1;i<=p+1;i++) {
    sol=add(sol,mul(co[p][i],m));
    m = mul(m, n);
}
return sol;
}</pre>
```

3.4 Chinese Remainder

3.5 Miller Rabin

```
// n < 4,759,123,141
                             3: 2, 7, 61
                                  2, 13, 23, 1662803
6: pirmes <= 13
// n < 1,122,004,669,633
// n < 3,474,749,660,383
                                        pirmes <= 13
// n < 2^64
// 2, 325, 9375, 28178, 450775, 9780504, 1795265022
// Make sure testing integer is in range [2, n-2] if
// you want to use magic.
LL magic[]={}
bool witness(LL a,LL n,LL u,int t){
  if(!a) return 0;
  LL x=mypow(a,u,n);
  for(int i=0;i<t;i++) {</pre>
    LL nx=mul(x,x,n);
    if(nx==1&&x!=1&&x!=n-1) return 1;
   x=nx;
 }
  return x!=1;
bool miller_rabin(LL n) {
  int s=(magic number size)
  // iterate s times of witness on n
 if(n<2) return 0;</pre>
  if(!(n\&1)) return n == 2;
 ll u=n-1; int t=0;
  // n-1 = u*2^t
 while(!(u&1)) u>>=1, t++;
 while(s--){
    LL a=magic[s]%n;
    if(witness(a,n,u,t)) return 0;
  return 1;
```

3.6 Pollard Rho

```
res = __gcd(abs(x-y), n);
}
y = x;
}
if (res!=0 && res!=n) return res;
} }
```

3.7 Josephus Problem

```
int josephus(int n, int m){ //n人每m次
   int ans = 0;
   for (int i=1; i<=n; ++i)
        ans = (ans + m) % i;
   return ans;
}</pre>
```

3.8 Matrix

```
//矩陣乘法
for(int i = 0; i < n; i++){
     for(int j = 0; j < n; j++){
   for(int k = 0; k < n; k++){
      ret[i][j] += a[i][k] * b[k][j];</pre>
     }
//矩陣快速冪
int base[2][2] = {
                         int ans[2][2] = {
  {1, 1},
{1, 0}
                            {1, 0},
{0, 1}
};
int mypow(int y){
  while(y){
    if( y&1 ) { ans = mul(ans, base); } //實作矩陣乘法
     base = mul(base, base);//實作矩陣乘法
    y >>= 1;
  return ans[0][0];
}
```

3.9 Gaussian Elimination

```
const int GAUSS_MOD = 100000007LL;
struct GAUSS{
  int n;
   vector<vector<int>> v;
   int ppow(int a , int k){
     if(k == 0) return 1;
     if(k \% 2 == 0) return ppow(a * a % GAUSS_MOD , k >>
          1);
     if(k \% 2 == 1) return ppow(a * a % GAUSS_MOD , k >>
          1) * a % GAUSS_MOD;
   vector<int> solve(){
     vector<int> ans(n);
     REP(now , 0 , n){
       REP(i , now , n) if(v[now][now] == 0 && v[i][now]
            (e = !
       swap(v[i] , v[now]); // det = -det;
if(v[now][now] == 0) return ans;
       int inv = ppow(v[now] [now] , GAUSS_MOD - 2);
       REP(i , 0 , n) if(i != now){
  int tmp = v[i][now] * inv % GAUSS_MOD;
         }
     REP(i , 0 , n) ans[i] = v[i][n + 1] * ppow(v[i][i]
      , GAUSS_MOD - 2) % GAUSS_MOD;
     return ans;
   // gs.v.clear() , gs.v.resize(n , vector<int>(n + 1 ,
        0));
} gs;
```

3.10 Inverse Matrix

```
int GAUSS_MOD;
struct GAUSS{
    int n;
     vector<vector<int> > v;
     vector<vector<int> > rev;
     int mul(int x,int y,int mod){
  int ret=x*y-(int)((long double)x/mod*y)*mod;
           return ret<0?ret+mod:ret;</pre>
      int ppow(int a, int b){//res=(a^b)%m
           int res=1, k=a;
           while(b){
                  if((b&1)) res=mul(res,k,GAUSS_MOD)%GAUSS_MOD;
                  k=mul(k,k,GAUSS_MOD)%GAUSS_MOD;
                 b>>=1;
           return res%GAUSS_MOD;
     bool solve(){
           for(int now = 0; now < n; now++){
                  int ch;
                  for(ch = now; ch < n && !v[ch][now]; ch++);</pre>
                  if(ch >= n) return 0;
                  swap(v[i] , v[now]); // det = -det;
swap(rev[i], rev[now]);
                 if(v[now][now] == 0) return 0;
                 int inv = ppow(v[now][now] , GAUSS_MOD - 2);
for(int i = 0; i < n; i++) if(i != now){
  int tmp = v[i][now] * inv % GAUSS_MOD;</pre>
                       for(int j = 0; j < n; j++) {
  (v[i][j] += GAUSS_MOD - tmp * v[now][j] %</pre>
                             GAUSS_MOD) %= GAUSS_MOD;

(rev[i][j] += GAUSS_MOD - tmp * rev[now][j] %

GAUSS_MOD) %= GAUSS_MOD;
                       }
                 }
           }
           return 1;
}} gs;
signed main(){
     int n, p; //n*n matrix, MOD=p
     cin>>n>>p; //if(!n && !p) return 0;
GAUSS_MOD = p; gs.n = n;
     gs.v.clear() , gs.v.resize(n + 1, vector < int > (n + 2, vector 
                     0));
     gs.rev.clear(), gs.rev.resize(n + 1, vector<int>(n +
    2 , 0));

for(int i = 0; i < n; i++){

  for(int j = 0; j < n; j++){

    cin>gs.v[i][j];
                  if(i == j) gs.rev[i][j] = 1;
     if(!gs.solve()) cout << "singular\n";</pre>
     else{
           for(int i = 0; i < n; i++){
                  int inv = gs.ppow(gs.v[i][i] , p - 2);
                  for(int j = 0; j < n; j++)
    cout << (gs.rev[i][j] * inv % p) <<" ";</pre>
                  cout<<"\n";
           }
     }
      cout << "\n";
```

3.11 模反元素

```
long long inv(long long a,long long m){
  long long x,y;
  long long d=exgcd(a,m,x,y);
  if(d==1) return (x+m)%m;
  else return -1; //-1為無解
}
```

3.12 ax+by=gcd

```
PII gcd(int a, int b){
   if(b == 0) return {1, 0};
   PII q = gcd(b, a % b);
   return {q.second, q.first - q.second * (a / b)};
}
int exgcd(int a,int b,long long &x,long long &y) {
   if(b == 0){x=1,y=0;return a;}
   int now=exgcd(b,a%b,y,x);
   y-=a/b*x;
   return now;
}
```

3.13 Discrete sqrt

```
void calcH(LL &t, LL &h, const LL p) {
  LL tmp=p-1; for(t=0;(tmp&1)==0;tmp/=2) t++; h=tmp;
// solve equation x^2 \mod p = a
bool solve(LL a, LL p, LL &x, LL &y) {
  if(p == 2) { x = y = 1; return true;
  int p2 = p / 2, tmp = mypow(a, p2, p);
if (tmp == p - 1) return false;
  if ((p + 1) \% 4 == 0) {
    x=mypow(a,(p+1)/4,p); y=p-x; return true;
  } else {
    LL t, h, b, pb; calcH(t, h, p);
     if (t >= 2) {
       do \{b = rand() \% (p - 2) + 2;
       } while (mypow(b, p / 2, p) != p - 1);
       pb = mypow(b, h, p);
    for (int step = 2; step <= t; step++) {
  int s = (((LL)(s * s) % p) * a) % p;</pre>
       for(int i=0;i<t-step;i++) ss=mul(ss,ss,p);</pre>
       if (ss + 1 == p) s = (s * pb) % p;
pb = ((LL)pb * pb) % p;
     x = ((LL)s * a) % p; y = p - x;
  } return true;
```

3.14 Prefix Inverse

```
void solve( int m ){
  inv[ 1 ] = 1;
  for( int i = 2 ; i < m ; i ++ )
    inv[ i ] = ((LL)(m - m / i) * inv[m % i]) % m;
}</pre>
```

3.15 Roots of Polynomial 找多項式的根

```
const double eps = 1e-12;
const double inf = 1e+12;
double a[ 10 ], x[ 10 ]; // a[0..n](coef) must be
     filled
int n; // degree of polynomial must be filled
int sign( double x ) {return (x < -eps)?(-1):(x>eps);}
double f(double a[], int n, double x){
  double tmp=1,sum=0;
  for(int i=0;i<=n;i++)</pre>
  { sum=sum+a[i]*tmp; tmp=tmp*x; }
  return sum;
double binary(double l,double r,double a[],int n){
  int sl=sign(f(a,n,l)),sr=sign(f(a,n,r));
  if(sl==0) return l; if(sr==0) return r;
  if(sl*sr>0) return inf;
  while(r-l>eps){
    double mid=(l+r)/2;
    int ss=sign(f(a,n,mid));
    if(ss==0) return mid;
    if(ss*sl>0) l=mid; else r=mid;
```

```
return 1;
void solve(int n,double a[],double x[],int &nx){
  if(n==1){ x[1]=-a[0]/a[1]; nx=1; return; }
double da[10], dx[10]; int ndx;
  for(int i=n;i>=1;i--) da[i-1]=a[i]*i;
  solve(n-1,da,dx,ndx);
  nx=0;
  if(ndx==0){
    double tmp=binary(-inf,inf,a,n);
    if (tmp<inf) x[++nx]=tmp;</pre>
    return;
  double tmp;
  tmp=binary(-inf,dx[1],a,n);
  if(tmp<inf) x[++nx]=tmp;</pre>
  for(int i=1;i<=ndx-1;i++){
   tmp=binary(dx[i],dx[i+1],a,n);</pre>
     if(tmp<inf) x[++nx]=tmp;</pre>
  tmp=binary(dx[ndx],inf,a,n);
  if(tmp<inf) x[++nx]=tmp;</pre>
} // roots are stored in x[1..nx]
```

3.16 Combination thearom

```
const ll mod = 1e9 + 7;
ll fac[(int)2e6 + 1], inv[(int)2e6 + 1];
ll getinv(ll a){ return qpow(a, mod-2); }
void init(int n){
  fac[0] = 1;
  for(int i = 1; i <= n; i++){
    fac[i] = fac[i-1] * i % mod;
  }
  inv[n] = getinv(fac[n]);
  for(int i = n - 1; i >= 0; i--){
    inv[i] = inv[i + 1] * (i + 1) % mod;
  }
}
ll C(int n, int m){
  if(m > n) return 0;
  return fac[n] * inv[m] % mod * inv[n-m] % mod;
}
```

3.17 Primes

```
/* 12721, 13331, 14341, 75577, 123457, 222557, 556679
* 999983, 1097774749, 1076767633, 100102021, 999997771
* 1001010013, 1000512343, 987654361, 999991231
* 999888733, 98789101, 987777733, 999991921, 1010101333
* 1010102101, 1000000000039, 100000000000037
* 2305843009213693951, 4611686018427387847
* 9223372036854775783, 18446744073709551557 */
int mu[ N ] , p_tbl[ N ];
vector<int> primes;
void sieve() {
  mu[ 1 ] = p_tbl[ 1 ] = 1;
for( int i = 2 ; i < N ; i ++ ){
   if( !p_tbl[ i ] ){</pre>
        p_tbl[ i ] = i;
       primes.push_back( i );
mu[ i ] = -1;
     for( int p : primes ){
  int x = i * p;
  if( x >= M ) break;
        p_tbl[ x ] = p;
mu[ x ] = -mu[ i ];
        if(i \% p == 0)
          mu[x] = 0;
          break;
vector<int> factor( int x ){
  vector<int> fac{ 1 };
  while(x > 1){
     int fn = SZ(fac), p = p_tbl[x], pos = 0;
     while( x \% p == 0){
        x /= p;
```

3.18 Phi

3.19 Result

- Lucas' Theorem : For $n,m\in\mathbb{Z}^*$ and prime P, $C(m,n)\mod P=\Pi(C(m_i,n_i))$ where m_i is the i-th digit of m in base P.
- Stirling approximation : $n! \approx \sqrt{2\pi n} (\frac{n}{e})^n e^{\frac{1}{12n}}$
- Stirling Numbers(permutation |P|=n with k cycles): S(n,k)= coefficient of x^k in $\Pi_{i=0}^{n-1}(x+i)$
- Stirling Numbers(Partition n elements into k non-empty set): $S(n,k)=\tfrac{1}{k!}\sum_{i=0}^k (-1)^{k-j} {k\choose j} j^n$
- Pick's Theorem : A=i+b/2-1 在二維座標平面中畫上網格·對於任何簡單多邊形 A: 面積、i: 內部的格點數、b: 邊上的格點數
- $\begin{array}{l} \bullet \quad \text{Catalan number} \ : \ C_n = {2n \choose n}/(n+1) \\ C_n^{n+m} C_{n+1}^{n+m} = (m+n)! \frac{n-m+1}{n+1} \quad for \quad n \geq m \\ C_n = \frac{1}{n+1} {2n \choose n} = \frac{(2n)!}{(n+1)!n!} \\ C_0 = 1 \quad and \quad C_{n+1} = 2(\frac{2n+1}{n+2})C_n \\ C_0 = 1 \quad and \quad C_{n+1} = \sum_{i=0}^n C_i C_{n-i} \quad for \quad n \geq 0 \end{array}$
- Euler Characteristic: planar graph: V-E+F-C=1 convex polyhedron: V-E+F=2 V,E,F: number of vertices, edges, faces(regions), and components
- Kirchhoff's theorem : $A_{ii}=deg(i), A_{ij}=(i,j)\in E\ ?-1:0$, Deleting any one row, one column, and cal the det(A)
- Polya' theorem (c is number of color \cdot m is the number of cycle size): $(\sum_{i=1}^m c^{gcd(i,m)})/m$
- Burnside lemma: $|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|$
- 錯排公式: (n 個人中·每個人皆不再原來位置的組合數): dp[0]=1; dp[1]=0; dp[i]=(i-1)*(dp[i-1]+dp[i-2]);
- Bell 數 (有 n 個人,把他們拆組的方法總數): $B_0 = 1$ $B_n = \sum_{k=0}^n s(n,k) \ (second stirling)$ $B_{n+1} = \sum_{k=0}^n \binom{n}{k} B_k$
- Wilson's theorem : $(p-1)! \equiv -1 (mod \ p)$
- Fermat's little theorem : $a^p \equiv a (mod\ p)$
- Euler's totient function: $A^{B^{\,C}}\,mod\ p = pow(A,pow(B,C,p-1))mod\ p$
- 歐拉函數降冪公式: $A^B \mod C = A^B \mod \phi(c) + \phi(c) \mod C$
- 用歐拉函數求模反元素: 如果 a 和 n 互質, 則 a 對 n 的模反元素 $a^{-1} \equiv a^{\phi(n)-1} (mod\ n)$
- 6 的倍數: $(a-1)^3 + (a+1)^3 + (-a)^3 + (-a)^3 = 6a$

4 Geometry

4.1 definition

```
typedef long double ld;
const ld eps = 1e-8;
int dcmp(ld x) {
  if(abs(x) < eps) return 0;
  else return x < 0 ? -1 : 1;
struct Pt {
  ld x, y;
Pt(ld _x=0, ld _y=0):x(_x), y(_y) {}
  Pt operator+(const Pt &a) const {
  return Pt(x+a.x, y+a.y); }
Pt operator-(const Pt &a) const {
    return Pt(x-a.x, y-a.y); }
  Pt operator*(const ld &a) const {
 return Pt(x*a, y*a); }
Pt operator/(const ld &a) const {
    return Pt(x/a, y/a);
  ld operator*(const Pt &a) const {
    return x*a.x + y*a.y;
  ld operator^(const Pt &a) const {
    return x*a.y - y*a.x;
  bool operator<(const Pt &a) const {</pre>
    return x < a.x | | (x == a.x && y < a.y); }
    //return dcmp(x-a.x) < 0 || (dcmp(x-a.x) == 0 &&
         dcmp(y-a.y) < 0); }
  bool operator==(const Pt &a) const {
    return dcmp(x-a.x) == 0 && dcmp(y-a.y) == 0; }
ld norm2(const Pt &a) {
  return a*a; }
ld norm(const Pt &a) {
  return sqrt(norm2(a)); }
Pt perp(const Pt &a) {
return Pt(-a.y, a.x); }
Pt rotate(const Pt &a, ld ang) {
  return Pt(a.x*cos(ang)-a.y*sin(ang), a.x*sin(ang)+a.y
      *cos(ang)); }
struct Line {
 Pt s, e, v; // start, end, end-start
  ld ana;
  Line(Pt _s=Pt(0, 0), Pt _e=Pt(0, 0)):s(_s), e(_e) { v }
       = e-s; ang = atan2(v.y, v.x); }
  bool operator<(const Line &L) const {</pre>
    return ang < L.ang;</pre>
} };
struct Circle {
 Pt o; ld r;
  Circle(Pt _o=Pt(0, 0), ld _r=0):o(_o), r(_r) {}
```

4.2 Intersection of 2 lines

```
Pt LLIntersect(Line a, Line b) {
  Pt p1 = a.s, p2 = a.e, q1 = b.s, q2 = b.e;
  ld f1 = (p2-p1)^(q1-p1),f2 = (p2-p1)^(p1-q2),f;
  if(dcmp(f=f1+f2) == 0)
    return dcmp(f1)?Pt(NAN,NAN):Pt(INFINITY,INFINITY);
  return q1*(f2/f) + q2*(f1/f);
}
```

4.3 halfPlaneIntersection

```
|// O(nlogn)
|// 傳入 vector<Line>
|// (半平面為點 st 往 ed 的逆時針方向)
|// 回傳值為形成的凸多邊形的頂點 vector
|// 對於點或線的解·將 '>' 改為 '>='
|bool onleft(Line L, Pt p) { return dcmp(L.v ^ (p - L.s) ) > 0; }
|// 假設線段是有交點的
```

```
vector<Pt> HPI(vector<Line> &L) {
  sort(L.begin(), L.end()); // 按角度排序
int n = L.size(), fir, las;
  Pt *p = new Pt[n];
  Line *q = new Line[n]
  q[fir = las = 0] = L[0];
  for (int i = 1; i < n; i++) {
   while (fir < las && !onleft(L[i], p[las - 1])) las
    while (fir < las && !onleft(L[i], p[fir])) fir++;</pre>
    q[++las] = L[i];
    if (dcmp(q[las].v \land q[las - 1].v) == 0) {
      las--;
      if (onleft(q[las], L[i].s)) q[las] = L[i];
    if (fir < las)
       p[las - 1] = LLIntersect(q[las - 1], q[las]);
  while (fir < las && !onleft(q[fir], p[las - 1])) las</pre>
  if (las - fir <= 1) return {};</pre>
  p[las] = LLIntersect(q[las], q[fir]);
  int m = 0;
  vector<Pt> ans(las - fir + 1);
  for (int i = fir; i <= las; i++) ans[m++] = p[i];</pre>
  return ans;
```

4.4 Convex Hull

```
double cross(Pt o, Pt a, Pt b){
 return (a-o) ^ (b-o);
vector<Pt> convex_hull(vector<Pt> pt){
  sort(pt.begin(),pt.end());
  int top=0;
  vector<Pt> stk(2*pt.size());
  for (int i=0; i<(int)pt.size(); i++){</pre>
    while (top >= 2 && cross(stk[top-2],stk[top-1],pt[i
        ]) <= 0)
      top--;
    stk[top++] = pt[i];
  for (int i=pt.size()-2, t=top+1; i>=0; i--){
    while (top >= t && cross(stk[top-2],stk[top-1],pt[i
        ]) <= 0)
      top--;
    stk[top++] = pt[i];
  stk.resize(top-1);
  return stk;
```

4.5 Convex Hull trick

```
/* Given a convexhull, answer querys in O(lgN)
CH should not contain identical points, the area should
be > 0, min pair(x, y) should be listed first */
double det( const Pt& p1 , const Pt& p2 )
{ return p1.X * p2.Y - p1.Y * p2.X; }
struct Conv{
  int n;
   vector<Pt> a;
   vector<Pt> upper, lower;
   Conv(vector < Pt > _a) : a(_a){}
     n = a.size();
     int ptr = 0;
      for(int i=1; i<n; ++i) if (a[ptr] < a[i]) ptr = i;</pre>
     for(int i=0; i<=ptr; ++i) lower.push_back(a[i]);
for(int i=ptr; i<n; ++i) upper.push_back(a[i]);</pre>
     upper.push_back(a[0]);
  int sign( LL x ){ // fixed when changed to double
  return x < 0 ? -1 : x > 0; }
   pair<LL,int> get_tang(vector<Pt> &conv, Pt vec){
     int l = 0, r = (int)conv.size() - 2;
     for( ; l + 1 < r; ){</pre>
        int mid = (1 + r) / 2;
```

```
if(sign(det(conv[mid+1]-conv[mid],vec))>0)r=mid;
    else l = mid;
  return max(make_pair(det(vec, conv[r]), r)
             make_pair(det(vec, conv[0]), 0));
void upd_tang(const Pt &p, int id, int &i0, int &i1){
  if(det(a[i0] - p, a[id] - p) > 0) i0 = id;
  if(det(a[i1] - p, a[id] - p) < 0) i1 = id;
void bi_search(int l, int r, Pt p, int &i0, int &i1){
  if(l == r) return;
  upd_tang(p, 1 % n, i0, i1);
  int sl=sign(det(a[l % n] - p, a[(l + 1) % n] - p));
  for( ; l + 1 < r; ) {</pre>
    int mid = (l + r) / 2;
    int smid=sign(det(a[mid%n]-p, a[(mid+1)%n]-p));
    if (smid == sl) l = mid;
    else r = mid;
  upd_tang(p, r % n, i0, i1);
int bi_search(Pt u, Pt v, int l, int r) {
  int sl = sign(det(v - u, a[l % n] - u));
  for(; l + \bar{1} < r; ) {
    int mid = (l + r) / 2;
    int smid = sign(det(v - u, a[mid % n] - u));
    if (smid == sl) l = mid;
    else r = mid;
  return 1 % n;
}
// 1. whether a given point is inside the CH
bool contain(Pt p) {
  if (p.X < lower[0].X || p.X > lower.back().X)
      return 0;
  int id = lower_bound(lower.begin(), lower.end(), Pt
      (p.X, -INF)) - lower.begin();
  if (lower[id].X == p.X) {
    if (lower[id].Y > p.Y) return 0;
  }else if(det(lower[id-1]-p,lower[id]-p)<0)return 0;</pre>
  id = lower_bound(upper.begin(), upper.end(), Pt(p.X
        INF), greater<Pt>()) - upper.begin();
  if (upper[id].X == p.X) {
    if (upper[id].Y < p.Y) return 0;</pre>
  }else if(det(upper[id-1]-p,upper[id]-p)<0)return 0;</pre>
  return 1;
// 2. Find 2 tang pts on CH of a given outside point
// return true with i0, i1 as index of tangent points
// return false if inside CH
bool get_tang(Pt p, int &i0, int &i1) {
  if (contain(p)) return false;
  i0 = i1 = 0;
  int id = lower_bound(lower.begin(), lower.end(), p)
        lower.begin();
  bi_search(0, id, p, i0, i1);
bi_search(id, (int)lower.size(), p, i0, i1);
  id = lower_bound(upper.begin(), upper.end(), p,
      greater<Pt>()) - upper.begin();
  bi_search((int)lower.size() - 1, (int)lower.size()
  - 1 + id, p, i0, i1);
bi_search((int)lower.size() - 1 + id, (int)lower.
      size() - 1 + (int)upper.size(), p, i0, i1);
  return true;
// 3. Find tangent points of a given vector
// ret the idx of vertex has max cross value with vec
int get_tang(Pt vec){
  pair<LL, int> ret = get_tang(upper, vec);
  ret.second = (ret.second+(int)lower.size()-1)%n;
  ret = max(ret, get_tang(lower, vec));
  return ret.second;
// 4. Find intersection point of a given line
// return 1 and intersection is on edge (i, next(i))
// return 0 if no strictly intersection
bool get_intersection(Pt u, Pt v, int &i0, int &i1){
 int p0 = get_tang(u - v), p1 = get_tang(v - u);
 if(sign(det(v-u,a[p0]-u))*sign(det(v-u,a[p1]-u))<0){
   if (p0 > p1) swap(p0, p1);
   i0 = bi_search(u, v, p0, p1);
```

```
i1 = bi_search(u, v, p1, p0 + n);
    return 1;
}
return 0;
};
```

4.6 Intersection of 2 segments

4.7 Point In Polygon

4.8 Tangent line of two circles

```
vector<Line> go( const Cir& c1 , const Cir& c2 , int
     sign1 ){
  // sign1 = 1 for outer tang, -1 for inter tang
  vector<Line> ret;
  double d_sq = norm2(c1.0 - c2.0);
  if( d_sq < eps ) return ret;
double d = sqrt( d_sq );</pre>
  Pt v = (c2.0 - c1.0) / d;
  double c = ( c1.R - sign1 * c2.R ) / d;
if( c * c > 1 ) return ret;
  double h = sqrt( max( 0.0 , 1.0 - c * c ) );
  v.Y * c + sign2 * h * v.X };
    Pt p1 = c1.0 + n * c1.R;
    Pt p2 = c2.0 + n * (c2.R * sign1);
    if( fabs( p1.X - p2.X ) < eps and
      fabs( p1.Y - p2.Y ) < eps )
p2 = p1 + perp( c2.0 - c1.0 );
    ret.push_back( { p1 , p2 } );
  return ret;
}
```

4.9 Minimum distance of two convex

4.10 Area of Rectangles

struct AreaofRectangles{
#define cl(x) (x<<1)</pre>

```
#define cr(x) (x<<1|1) ll n, id, sid;
    pair<ll, ll> tree[MXN<<3]; // count, area</pre>
    vector<ll> ind;
    tuple<11,11,11,11> scan[MXN<<1];
    void pull(int i, int l, int r){
   if(tree[i].first) tree[i].second = ind[r+1] -
         ind[l];
else if(l != r){
              int mid = (l+r)>>1;
              tree[i].second = tree[cl(i)].second + tree[
                   cr(i)].second;
         else
                  tree[i].second = 0;
     void upd(int i, int l, int r, int ql, int qr, int v
         if(ql <= l \& r <= qr){}
              tree[i].first += v;
              pull(i, l, r); return;
         int mid = (l+r) \gg 1;
         if(ql <= mid) upd(cl(i), l, mid, ql, qr, v);</pre>
         if(qr > mid) upd(cr(i), mid+1, r, ql, qr, v);
         pull(i, l, r);
    void init(int _n){
    n = _n; id = sid = 0;
         ind.clear(); ind.resize(n<<1);</pre>
         fill(tree, tree+(n<<2), make_pair(0, 0));</pre>
     void addRectangle(int lx, int ly, int rx, int ry){
         ind[id++] = lx; ind[id++] = rx;
scan[sid++] = make_tuple(ly, 1, lx, rx);
         scan[sid++] = make_tuple(ry, -1, lx, rx);
    ll solve(){
         sort(ind.begin(), ind.end());
         ind.resize(unique(ind.begin(), ind.end()) - ind
               .begin());
         sort(scan, scan + sid);
ll area = 0, pre = get<0>(scan[0]);
         for(int i = 0; i < sid; i++){
              auto [x, v, l, r] = scan[i];
              area += tree[1].second * (x-pre);
              upd(1, 0, ind.size()-1, lower_bound(ind.
begin(), ind.end(), l)-ind.begin(),
                   lower_bound(ind.begin(),ind.end(),r)-
                   ind.begin()-1, v);
              pre = x;
         return area;
    }rect;
```

4.11 Min dist on Cuboid

4.12 Heart of Triangle

```
Pt inCenter( Pt &A, Pt &B, Pt &C) { // 內心 double a = norm(B-C), b = norm(C-A), c = norm(A-B); return (A * a + B * b + C * c) / (a + b + c); }

Pt circumCenter( Pt &a, Pt &b, Pt &c) { // 外心 Pt bb = b - a, cc = c - a; double db=norm2(bb), dc=norm2(cc), d=2*(bb ^ cc); return a-Pt(bb.Y*dc-cc.Y*db, cc.X*db-bb.X*dc) / d; }

Pt othroCenter( Pt &a, Pt &b, Pt &c) { // 垂心 Pt ba = b - a, ca = c - a, bc = b - c; double Y = ba.Y * ca.Y * bc.Y, A = ca.X * ba.Y - ba.X * ca.Y, x0 = (Y+ca.X*ba.Y*b.X-ba.X*ca.Y*c.X) / A, y0 = -ba.X * (x0 - c.X) / ba.Y + ca.Y; return Pt(x0, y0); }
```

5 Graph

5.1 DSU 並查集 & MST

```
struct DSU {// 並查集
    vector<int> fa, sz;
    DSU(int n = 0) : fa(n), sz(n, 1) {
        iota(fa.begin(), fa.end(), 0);
    int Find(int x) { // 路徑壓縮
        while (x != fa[x])
            x = fa[x] = fa[fa[x]];
        return x;
    bool Merge(int x, int y) { //合併
        x = Find(x), y = Find(y);
if (x == y) return false; // 是否為連通
        if (sz[x] > sz[y]) swap(x, y);
        fa[x] = y;
        sz[y] += sz[x];
        return true;
    }
int MST(int n, int m, vector<tuple<int, int, int>> &edge
    ){ //0 base
    sort(edge.begin(), edge.end());
    DSU dsu(n+1); // 初始化並查集
```

```
int res = 0, flag=1; // 最小生成樹邊權和
for (auto &[w, u, v] : edge)
    if(dsu.Merge(u, v)) {
        res += w; //合併並統計答案
        //graph[u].push_back({v,w});
        //graph[v].push_back({u,w});
    }
    //else edges.push_back({w,u,v});
    return res;
}
int main(){
    int n, m; //點數,邊數
    cin >> n >> m;
    vector<tuple<int, int, int>> edge(m);
    for (auto &[w, u, v] : edge) cin >> u >> v >> w;
    cout << MST(n, m, edge);
}</pre>
```

5.2 Lowest Common Ancestor O(lgn)

```
int anc[MXN + 5][__lg(MXN) + 1] = {0};
int MaxLength[MXN][__lg(MXN) + 1] = {0};
  int time_in[MXN] = {0};
  int time_out[MXN] = {0};
  LCA( int _n, int f ):n(_n), ti(0), lgN(__lg(n)) {
    dfs(f,f,0);
    build();
  void dfs(int now, int f, int len_to_father) { // dfs
        for anc, time, Lenth
    anc[now][0] = f;
    time_in[now] = ti;
    MaxLength[now][0] = len_to_father;
    for (auto i : graph[now]) {
   if (i.first == f) continue
         dfs(i.first, now, i.second);
    time_out[now] = ti;
    pid build() { // build anc[][], MaxLength[][]
for (int i = 1; i <= lgN; ++i) {</pre>
  void build() {
       for (int u = 1; u \le n; ++u) {
         anc[u][i] = anc[anc[u][i - 1]][i - 1];
MaxLength[u][i] = max(MaxLength[u][i - 1]
                     MaxLength[anc[u][i-1]][i-1]);
    }
  bool isAncestor(int x, int y) {
    if (time_in[x] <= time_in[y] && time_out[x] >=
         time_out[y]) return true;
     return false;
  int getLCA(int u, int v) {
    if (isAncestor(u, v)) return u;
    if (isAncestor(v, u)) return v;
for (int i = lgN; i >= 0; --i) {
       if (!isAncestor(anc[u][i], v)) {
         u = anc[u][i];
       }
    }
    return anc[u][0];
  int getMAX(int u, int v) { //獲得路徑上最大邊權
    int lca = getLCA(u, v);
    int maxx = -1;
     for (int i = lgN; i >= 0; --i) {
       // u to lca
       if (!isAncestor(anc[u][i], lca)) -
         maxx = max(maxx, MaxLength[u][i]);
         u = anc[u][i];
       }
       // v to lca
       if (!isAncestor(anc[v][i], lca)) {
         maxx = max(maxx, MaxLength[v][i]);
         v = anc[v][i];
```

```
}
if (u != lca) maxx = max(maxx, MaxLength[u][0]);
if (v != lca) maxx = max(maxx, MaxLength[v][0]);
return maxx;
}
};
```

5.3 Hamiltonian path $O(n^22^n)$

```
|//dp[i][j] = 目前在j節點走過{i}節點的最短路徑
| for(int i=1; i < (1 << n); i++ ) {
| for(int j = 1; j < n; j++ ) {
| if(!((1 << j) & i)&&(i&1)) {
| for( int k = 0; k < n; k++ ) {
| if(j == k) continue;
| if( (1<<k)&i ) dp[j][i|(1<<j)]=
| min(dp[j][i|(1<<j)],dp[k][i]+dis[k][j]);
| }
| }
| }
| }
```

5.4 MaximumClique 最大團

```
#define N 111
struct MaxClique{ // 0-base
  typedef bitset<N> Int;
  Int linkto[N] , v[N];
  int n;
  void init(int _n){
    n = _n;
    for(int i = 0; i < n; i ++){
      linkto[i].reset(); v[i].reset();
  void addEdge(int a , int b)
{ v[a][b] = v[b][a] = 1; }
  int popcount(const Int& val)
  { return val.count(); }
  int lowbit(const Int& val)
  { return val._Find_first(); }
  int ans , stk[N];
int id[N] , di[N] , deg[N];
  Int cans;
  void maxclique(int elem_num, Int candi){
    if(elem_num > ans){
      ans = elem_num; cans.reset();
      for(int i = 0 ; i < elem_num ; i ++)</pre>
         cans[id[stk[i]]] = 1;
    int potential = elem_num + popcount(candi);
    if(potential <= ans) return;</pre>
    int pivot = lowbit(candi);
    Int smaller_candi = candi & (~linkto[pivot]);
    while(smaller_candi.count() && potential > ans){
      int next = lowbit(smaller_candi);
      candi[next] = !candi[next];
      smaller_candi[next] = !smaller_candi[next];
      potential --
      if(next == pivot || (smaller_candi & linkto[next
           ]).count()){
         stk[elem_num] = next;
        maxclique(elem_num + 1, candi & linkto[next]);
  } } }
  int solve(){
    for(int i = 0; i < n; i ++){
      id[i] = i; deg[i] = v[i].count();
    sort(id , id + n , [\&](int id1, int id2){
           return deg[id1] > deg[id2]; });
    for(int i = 0; i < n; i ++) di[id[i]] = i;
for(int i = 0; i < n; i ++)</pre>
      for(int j = 0 ; j < n ; j ++)
  if(v[i][j]) linkto[di[i]][di[j]] = 1;</pre>
    Int cand; cand.reset();
    for(int i = 0 ; i < n ; i ++) cand[i] = 1;
    ans = 1;
    cans.reset(); cans[0] = 1;
```

```
maxclique(0, cand);
return ans;
} }solver;
```

5.5 MaximalClique 極大團

```
#define N 80
struct MaxClique{ // 0-base
  typedef bitset<N> Int;
  Int lnk[N] , v[N];
  int n;
  void init(int _n){
    n = _n;
    for(int i = 0; i < n; i ++){
      lnk[i].reset(); v[i].reset();
  void addEdge(int a , int b)
{ v[a][b] = v[b][a] = 1; }
  int ans , stk[N], id[N] , di[N] , deg[N];
  Int cans;
  void dfs(int elem_num, Int candi, Int ex){
    if(candi.none()&ex.none()){
       cans.reset();
       for(int i = 0; i < elem_num; i ++)
         cans[id[stk[i]]] = 1;
      ans = elem_num; // cans is a maximal clique
      return;
    int pivot = (candilex)._Find_first();
    Int smaller_candi = candi & (~lnk[pivot]);
    while(smaller_candi.count()){
      int nxt = smaller_candi._Find_first();
       candi[nxt] = smaller_candi[nxt] = 0;
       ex[nxt] = 1;
       stk[elem_num] = nxt;
       dfs(elem_num+1,candi&lnk[nxt],ex&lnk[nxt]);
  } }
  int solve(){
    for(int i = 0; i < n; i ++){
      id[i] = i; deg[i] = v[i].count();
    sort(id , id + n , [&](int id1, int id2){
           return deg[id1] > deg[id2]; });
    for(int i = 0; i < n; i ++) di[id[i]] = i;
for(int i = 0; i < n; i ++)
       for(int j = 0; j < n; j ++)
    if(v[i][j]) lnk[di[i]][di[j]] = 1;
    ans = 1; cans.reset(); cans[0] = 1;
dfs(0, Int(string(n,'1')), 0);
    return ans;
} }solver;
```

5.6 BCC based on vertex 點雙聯通分量

```
#define PB push_back
#define REP(i, n) for(int i = 0; i < n; i++)
struct BccVertex {
  int n,nScc,step,dfn[MXN],low[MXN];
  vector<int> E[MXN],sccv[MXN];
  int top,stk[MXN];
  void init(int _n) { // 初始化n點
n = _n; nScc = step = 0;
    for (int i=0; i<n; i++) E[i].clear();</pre>
  void addEdge(int u, int v) // 無向邊
  { E[u].PB(v); E[v].PB(u); }
  void DFS(int u, int f) {
    dfn[u] = low[u] = step++;
    stk[top++] = u;
    for (auto v:E[u]) {
      if (v == f) continue;
      if (dfn[v] == -1) {
        DFS(v,u);
        low[u] = min(low[u], low[v]);
        if (low[v] >= dfn[u]) {
          int z;
          sccv[nScc].clear();
          do {
```

```
z = stk[--top];
            sccv[nScc].PB(z);
          } while (z != v);
          sccv[nScc++].PB(u);
      }else
        low[u] = min(low[u],dfn[v]);
  } }
  vector<vector<int>> solve() { // 回傳(size=2 橋, size
      >2 點雙連通分量)
    vector<vector<int>> res;
    for (int i=0; i<n; i++)</pre>
      dfn[i] = low[i] = -1;
    for (int i=0; i<n; i++)
      if (dfn[i] == -1) {
        top = 0;
        DFS(i,i);
    REP(i,nScc) res.PB(sccv[i]);
    return res;
}graph;
```

5.7 Strongly Connected Component 強連通分量

```
#define PB push_back
#define FZ(x) memset(x, 0, sizeof(x)) //fill zero
struct Scc{
  int n, nScc, vst[MXN], bln[MXN];
vector<int> E[MXN], rE[MXN], vec;
  void init(int _n){
     n = _n;
for (int i=0; i<MXN; i++)</pre>
       E[i].clear(), rE[i].clear();
  void addEdge(int u, int v){
     E[u].PB(v); rE[v].PB(u);
  void DFS(int u){
     vst[u]=1;
     for (auto v : E[u]) if (!vst[v]) DFS(v);
     vec.PB(u);
  void rDFS(int u){
     vst[u] = 1; bln[u] = nScc;
     for (auto v : rE[u]) if (!vst[v]) rDFS(v);
  void solve(){
     nScc = 0;
     vec.clear();
     FZ(vst);
     for (int i=0; i<n; i++)
      if (!vst[i]) DFS(i);
     reverse(vec.begin(),vec.end());
     FZ(vst);
     for (auto v : vec)
       if (!vst[v]){
         rDFS(v); nScc++;
  }
};
```

5.8 Maximum General graph Matching

```
// should shuffle vertices and edges
const int N=100005, E=(2e5)*2+40;
struct Graph{ // 1-based; match: i <-> lnk[i]
  int to[E],bro[E],head[N],e,lnk[N],vis[N],stp,n;
  void init(int _n){
    stp=0; e=1; n=_n;
    for(int i=1;i<=n;i++) head[i]=lnk[i]=vis[i]=0;
}
void add_edge(int u,int v){
    to[e]=v,bro[e]=head[u],head[u]=e++;
    to[e]=u,bro[e]=head[v],head[v]=e++;
}</pre>
```

```
bool dfs(int x){
    vis[x]=stp;
    for(int i=head[x];i;i=bro[i]){
      int v=to[i];
      if(!lnk[v]){ lnk[x]=v,lnk[v]=x; return true; }
    for(int i=head[x];i;i=bro[i]){
      int v=to[i];
      if(vis[lnk[v]]<stp){</pre>
         int w=lnk[v]; lnk[x]=v,lnk[v]=x,lnk[w]=0;
        if(dfs(w)) return true;
        lnk[w]=v, lnk[v]=w, lnk[x]=0;
      }
    }
    return false;
  int solve(){
    int ans=0;
    for(int i=1;i<=n;i++) if(!lnk[i]) stp++,ans+=dfs(i)</pre>
    return ans;
}graph;
```

5.9 Min Mean Cycle

```
/* minimum mean cycle O(VE) */
struct MMC{
#define E 101010
#define V 1021
#define inf 1e9
#define eps 1e-6
  struct Edge { int v,u; double c; };
  int n, m, prv[V][V], prve[V][V], vst[V];
  Edge e[E];
  vector<int> edgeID, cycle, rho;
  double d[V][V];
  void init( int _n )
  \{ n = _n; m = 0; \}
  // WARNING: TYPE matters
  void addEdge( int vi , int ui , double ci )
{ e[ m ++ ] = { vi , ui , ci }; }
void bellman_ford() {
    for(int i=0; i<n; i++) d[0][i]=0;
for(int i=0; i<n; i++) {</pre>
       fill(d[i+1], d[i+1]+n, inf);
       for(int j=0; j<m; j++) {
  int v = e[j].v, u = e[j].u;
         if(d[i][v]<inf && d[i+1][u]>d[i][v]+e[j].c) {
           d[i+1][u] = d[i][v]+e[j].c;
           prv[i+1][u] = v
           prve[i+1][u] = j;
  } } } }
  double solve(){
    // returns inf if no cycle, mmc otherwise
    double mmc=inf;
    int st = -1;
    bellman_ford();
    for(int i=0; i<n; i++) {
       double avg=-inf;
       for(int k=0; k<n; k++) {</pre>
         if(d[n][i]<inf-eps) avg=max(avg,(d[n][i]-d[k][i</pre>
              ])/(n-k));
         else avg=max(avg,inf);
      if (avg < mmc) tie(mmc, st) = tie(avg, i);</pre>
    fill(vst,0); edgeID.clear(); cycle.clear(); rho.
         clear();
    for (int i=n; !vst[st]; st=prv[i--][st]) {
      vst[st]++;
       edgeID.PB(prve[i][st]);
      rho.PB(st);
    while (vst[st] != 2) {
       if(rho.empty()) return inf;
      int v = rho.back(); rho.pop_back();
       cycle.PB(v);
       vst[v]++;
```

```
reverse(ALL(edgeID));
edgeID.resize(SZ(cycle));
return mmc;
} }mmc;
```

5.10 Directed Graph Min Cost Cycle

```
// works in O(N M)
#define INF 1000000000000000LL
#define N 5010
#define M 200010
struct edge{
  int to; LL w;
   edge(int a=0, LL b=0): to(a), w(b){}
};
struct node{
   LL d; int u, next;
   node(LL a=0, int b=0, int c=0): d(a), u(b), next(c){}
}b[M];
struct DirectedGraphMinCycle{
  vector<edge> g[N], grev[N];
LL dp[N][N], p[N], d[N], mu;
bool inq[N];
   int n, bn, bsz, hd[N];
   void b_insert(LL d, int u){
     int i = d/mu;
     if(i >= bn) return;
     b[++bsz] = node(d, u, hd[i]);
     hd[i] = bsz;
   void init( int _n ){
     n = _n;
     for( int i = 1 ; i <= n ; i ++ )</pre>
        g[ i ].clear();
   void addEdge( int ai , int bi , LL ci )
   { g[ai].push_back(edge(bi,ci)); }
   LL solve(){
     fill(dp[0], dp[0]+n+1, 0);
     for(int i=1; i<=n; i++){
        fill(dp[i]+1, dp[i]+n+1, INF);
for(int j=1; j<=n; j++) if(dp[i-1][j] < INF){
  for(int k=0; k<(int)g[j].size(); k++)
    dp[i][g[j][k].to] =min(dp[i][g[j][k].to],</pre>
                                            dp[i-1][j]+g[j][k].w);
     } }
     mu=INF; LL bunbo=1;
     for(int i=1; i<=n; i++) if(dp[n][i] < INF){</pre>
        LL a=-INF, b=1;
        for(int j=0; j<=n-1; j++) if(dp[j][i] < INF){
  if(a*(n-j) < b*(dp[n][i]-dp[j][i])){</pre>
             a = dp[n][i]-dp[j][i];
             b = n-j;
        if(mu*b > bunbo*a)
          mu = a, bunbo = b;
     if(mu < 0) return -1; // negative cycle</pre>
     if(mu == INF) return INF; // no cycle
     if(mu == 0) return 0;
for(int i=1; i<=n; i++)</pre>
        for(int j=0; j<(int)g[i].size(); j++)</pre>
        g[i][j].w *= bunbo;
     memset(p, 0, sizeof(p));
     queue<int> q;
     for(int i=1; i<=n; i++){
        q.push(i);
        inq[i] = true;
     while(!q.empty()){
        int i=q.front(); q.pop(); inq[i]=false;
        for(int j=0; j<(int)g[i].size(); j++){
  if(p[g[i][j].to] > p[i]+g[i][j].w-mu){
    p[g[i][j].to] = p[i]+g[i][j].w-mu;
}
              if(!inq[g[i][j].to]){
                q.push(g[i][j].to);
                inq[g[i][j].to] = true;
     for(int i=1; i<=n; i++) grev[i].clear();
for(int i=1; i<=n; i++)</pre>
```

```
for(int j=0; j<(int)g[i].size(); j++){
  g[i][j].w += p[i]-p[g[i][j].to];</pre>
          grev[g[i][j].to].push_back(edge(i, g[i][j].w));
     LL mldc = n*mu;
     for(int i=1; i<=n; i++){</pre>
       bn=mldc/mu, bsz=0;
memset(hd, 0, sizeof(hd));
       fill(d+i+1, d+n+1, INF);
       b_insert(d[i]=0, i);
       for(int j=0; j<=bn-1; j++) for(int k=hd[j]; k; k=
   b[k].next){</pre>
          int u = b[k].u;
          LL du = b[k].d;
          if(du > d[u]) continue;
          for(int l=0; l<(int)g[u].size(); l++) if(g[u][l</pre>
            ].to > i){
if(d[g[u][l].to] > du + g[u][l].w){
d[g[u][l].to] = du + g[u][l].w;
               b_insert(d[g[u][l].to], g[u][l].to);
       } } }
       for(int j=0; j<(int)grev[i].size(); j++) if(grev[</pre>
             i][j].to > i)
          mldc=min(mldc,d[grev[i][j].to] + grev[i][j].w);
     return mldc / bunbo;
} }graph;
```

5.11 K-th Shortest Path

```
// time: O(|E| \setminus |E| + |V| \setminus |E| + K)
// memory: 0(|E| \lg |E| + |V|)
struct KSP{ // 1-base
  struct nd{
     int u, v; ll d;
     nd(int ui = 0, int vi = 0, ll di = INF)
     \{ u = ui; v = vi; d = di; \}
  struct heap{
    nd* edge; int dep; heap* chd[4];
  static int cmp(heap* a,heap* b)
  { return a->edge->d > b->edge->d; }
  struct node{
     int v; ll d; heap* H; nd* E;
     node(){}
    node(ll _d, int _v, nd* _E)
{ d =_d; v = _v; E = _E; }
node(heap* _H, ll _d)
     {H = _H; d = _d; }
     friend bool operator<(node a, node b)
     { return a.d > b.d; }
  };
  int n, k, s, t;
ll dst[ N ];
  nd *nxt[ N ];
  vector<nd*> g[ N ], rg[ N ];
heap *nullNd, *head[ N ];
  void init( int _n , int _k , int _s , int _t ){
  n = _n;  k = _k;  s = _s;  t = _t;
  for( int i = 1 ; i <= n ; i ++ ){</pre>
       g[ i ].clear(); rg[ i ].clear();

nxt[ i ] = NULL; head[ i ] = NULL;

dst[ i ] = -1;
  void addEdge( int ui , int vi , ll di ){
    nd* e = new nd(ui, vi, di);
g[_ui ].push_back( e );
     rg[ vi ].push_back( e );
  queue<int> dfsQ;
  void dijkstra(){
     while(dfsQ.size()) dfsQ.pop();
     priority_queue<node> Q;
     Q.push(node(0, t, NULL));
     while (!Q.empty()){
       node p = Q.top(); Q.pop();
        if(dst[p.v] != -1) continue;
       dst[ p.v ] = p.d;
nxt[ p.v ] = p.E;
```

```
dfsQ.push( p.v );
for(auto e: rg[ p.v ])
         Q.push(node(p.d + e->d, e->u, e));
  } }
  heap* merge(heap* curNd, heap* newNd){
     if(curNd == nullNd) return newNd;
    heap* root = new heap;
memcpy(root, curNd, sizeof(heap));
     if(newNd->edge->d < curNd->edge->d){
       root->edge = newNd->edge;
root->chd[2] = newNd->chd[2];
       root->chd[3] = newNd->chd[3];
      newNd->edge = curNd->edge;
newNd->chd[2] = curNd->chd[2];
newNd->chd[3] = curNd->chd[3];
     if(root->chd[0]->dep < root->chd[1]->dep)
       root->chd[0] = merge(root->chd[0],newNd);
       root->chd[1] = merge(root->chd[1],newNd);
     root->dep = max(root->chd[0]->dep, root->chd[1]->
     return root;
  vector<heap*> V;
  void build(){
     nullNd = new heap;
     nullNd->dep = 0;
     nullNd->edge = new nd;
     fill(nullNd->chd, nullNd->chd+4, nullNd);
     while(not dfsQ.empty()){
       int u = dfsQ.front(); dfsQ.pop();
       if(!nxt[ u ]) head[ u ] = nullNd;
else head[ u ] = head[nxt[ u ]->v];
       V.clear();
       for( auto&& e : g[ u ] ){
         int v = e \rightarrow v;
         if( dst[ v ] == -1 ) continue;
         e->d += dst[ v ] - dst[ u ];
if( nxt[ u ] != e ){
            heap* p = new heap;
            fill(p->chd, p->chd+4, nullNd);
            p->dep = 1;
            p->edge = e;
            V.push_back(p);
       if(V.empty()) continue;
       make_heap(V.begin(), V.end(), cmp);
#define L(X) ((X<<1)+1)
#define R(X) ((X<<1)+2)
       for( size_t i = 0 ; i < V.size() ; i ++ ){</pre>
         if(L(i) < V.size()) V[i]->chd[2] = V[L(i)];
         else V[i]->chd[2]=nullNd;
         if(R(i) < V.size()) V[i]->chd[3] = V[R(i)];
         else V[i]->chd[3]=nullNd;
       head[u] = merge(head[u], V.front());
  } }
  vector<ll> ans;
  void first_K(){
     ans.clear();
     priority_queue<node> Q;
     if( dst[ s ] == -1 ) return;
     ans.push_back( dst[ s ] );
     if( head[s] != nullNd )
       Q.push(node(head[s], dst[s]+head[s]->edge->d));
     for( int _ = 1 ; _ < k and not Q.empty() ; _ ++ ){
       node p = Q.top(), q; Q.pop();
ans.push_back( p.d );
       if(head[ p.H->edge->v ] != nullNd){
         q.H = head[p.H->edge->v];
         q.d = p.d + q.H->edge->d;
         Q.push(q);
       for( int i = 0 ; i < 4 ; i ++ )
  if( p.H->chd[ i ] != nullNd ){
    q.H = p.H->chd[ i ];
            q.d = p.d - p.H->edge->d + p.H->chd[i]->
                edge->d;
            Q.push( q );
  } }
  void solve(){ // ans[i] stores the i-th shortest path
```

```
dijkstra();
build();
first_K(); // ans.size() might less than k
} }solver;
```

5.12 Floryd Warshall

5.13 SPFA

```
#define MXN 200005
struct SPFA{
  int n;
  LL inq[MXN], len[MXN];
  vector<LL> dis;
  vector<pair<int, LL>> edge[MXN];
  void init(int _n){
    dis.clear(); dis.resize(n, 1e18);
    for(int i = 0; i < n; i++){
      edge[i].clear();
      inq[i] = len[i] = 0;
  void addEdge(int u, int v, LL w){
    edge[u].push_back({v, w});
  vector<LL> solve(int st = 0){
    deque<int> dq; //return {-1} if has negative cycle
    dq.push_back(st); //otherwise return dis from st
inq[st] = 1; dis[st] = 0;
    while(!dq.empty()){
      int u = dq.front(); dq.pop_front();
      inq[u] = 0;
      for(auto [to, d] : edge[u]){
        if(dis[to] > d+dis[u]){
          dis[to] = d+dis[u];
          len[to] = len[u]+1;
          if(len[to] > n) return {-1};
           if(inq[to]) continue;
           (!dq.empty()&&dis[dq.front()] > dis[to]?
               dq.push_front(to) : dq.push_back(to));
          inq[to] = 1;
    } } }
    return dis;
} }spfa;
```

5.14 Tree Hash

```
//限定root = 1
//從 dfs(1,1) 開始
int subtree_sz[MXN];
vector<int> edge[MXN];

int dfs(int u, int f) {
  vector<pair<int, int>> h;
  subtree_sz[u] = 1;
  for (int child : edge[u]) {
    if (child == f) continue;
    int tmp = dfs(child, u);
    h.push_back(make_pair(tmp, subtree_sz[child]));
    subtree_sz[u] += subtree_sz[child];
  }
  sort(h.begin(), h.end());
```

```
int ret = subtree_sz[u];
for (auto v : h) {
   ret = ((ret * p) % MOD + v.first) % MOD;
   ret = ret * v.second % MOD;
}
return ret;
}
```

5.15 HeavyLightDecomposition

```
// 詢問,修改複雜度 0(log^2 n)
// 1-base
int sz[MXN], dep[MXN], son[MXN], fa[MXN];
// 第一次 dfs
// 找重兒子 需要紀錄當前節點的子樹大小(sz)、深度(dep)、
     重兒子(son)、父節點(fa)
// 沒有子節點 son[x] = 0
void dfs_sz(int x, int f, int d) { //當前節點 x · 父節
    點 f·深度 d
    sz[x] = 1; dep[x] = d; fa[x] = f;
    for(int i : edge[x]) {
        if(i == f)
                      continue:
        dfs_sz(i, x, d+1);
sz[x] += sz[i];
        if(sz[son[x]] < sz[i])</pre>
                                  son[x] = i;
}
// 第二次 dfs
int top[MXN]; // 每個節點所在的鏈的頂端節點
int dfn[MXN]; // 節點編號,編號為在線段樹上的位置
int rnk[MXN]; // 編號為哪個節點
int bottom[MXN]; // 維護每個節點的子樹中最大 dfn 編號
int cnt = 0;
int dfs_hld(int x, int f){
  top[x] = (son[fa[x]] == x ? top[fa[x]] : x);
    rnk[cnt] = x;
    bottom[x] = dfn[x] = cnt++;
        on[x]) bottom[x] = max(bottom[x], dfs_hld(son[x], x)); // 更新子樹最大編號
    if(son[x])
    for(int i : edge[x]){
        if(i == f | i == son[x])
                                     continue;
        bottom[x] = max(bottom[x], dfs_hld(i, x)); //
             更新子樹最大編號
    return bottom[x];
}
// 求出 lca
// 不斷跳鏈·直到 u,v 跳到同一條鏈上為止
// 每次跳鏈選所在的鏈頂端深度較深的一端往上跳
int getLca(int u, int v) {
    while(top[u] != top[v]){
      if(dep[top[u]] > dep[top[v]])
          u = fa[top[u]];
          v = fa[top[v]];
    return dep[u] > dep[v] ? v : u;
}
// 路徑權重總和
int query(int u, int v) {
    int ret = 0;
    while(top[u] != top[v]){
        if (dep[top[u]] > dep[top[v]]){
            ret += segtree.query(dfn[top[u]], dfn[u]);
            u = fa[top[u]];
        }
        else{
            ret += segtree.query(dfn[top[v]], dfn[v]);
            v = fa[top[v]];
        }
    // 最後到同一條鏈上
    ret += segtree.query(min(dfn[u], dfn[v]), max(dfn[u
        ], dfn[v]));
```

```
return ret;
```

5.16 差分約束

約束條件 $V_j - V_i \leq W$ addEdge(V_i, V_j, W) and run bellman-ford or spfa

6 String

6.1 PalTree O(n)

```
// state[i]代表第i個字元為結尾的最長回文編號
// len[s]是對應的回文長度
// num[s]是有幾個回文後綴
// cnt[s]是這個回文子字串在整個字串中的出現次數
// fail[s]是他長度次長的回文後綴·aba的fail是a
const int MXN = 1000010;
struct PalT{
  int nxt[MXN][26],fail[MXN],len[MXN];
  int tot,lst,n,state[MXN],cnt[MXN],num[MXN];
  int diff[MXN],sfail[MXN],fac[MXN],dp[MXN];
  char s[MXN]={-1};
int newNode(int l,int f){
    len[tot]=1,fail[tot]=f,cnt[tot]=num[tot]=0;
   memset(nxt[tot],0,sizeof(nxt[tot]));
diff[tot]=(l>0?l-len[f]:0);
    sfail[tot]=(l>0&&diff[tot]==diff[f]?sfail[f]:f);
    return tot++;
  int getfail(int x){
   while(s[n-len[x]-1]!=s[n]) x=fail[x];
    return x;
  int getmin(int v){
    dp[v]=fac[n-len[sfail[v]]-diff[v]];
    if(diff[v]==diff[fail[v]])
        dp[v]=min(dp[v],dp[fail[v]]);
    return dp[v]+1;
  int push(){
    int c=s[n]-'a',np=getfail(lst);
    if(!(lst=nxt[np][c])){
      lst=newNode(len[np]+2,nxt[getfail(fail[np])][c]);
      nxt[np][c]=lst; num[lst]=num[fail[lst]]+1;
    fac[n]=n;
    for(int v=lst;len[v]>0;v=sfail[v])
        fac[n]=min(fac[n],getmin(v));
    return ++cnt[lst],lst;
  void init(const char *_s){
    tot=lst=n=0;
    newNode(0,1), newNode(-1,1);
    for(;_s[n];) s[n+1]=_s[n],++n,state[n-1]=push();
    for(int i=tot-1;i>1;i--) cnt[fail[i]]+=cnt[i];
}palt;
```

6.2 Longest Increasing Subsequence

```
vector<int> getLIS(vector<int> a){
  vector<int> lis;
  for(int i : a){
    if(lis.empty() || lis.back() < i) lis.push_Back(
        i);
    else    *lower_bound(lis.begin(), lis.end(), i) =
        i;
  }
  return lis;
}</pre>
```

6.3 Longest Common Subsequence O(nlgn)

6.4 KMP

```
/* len-failure[k]:
在k結尾的情況下,這個子字串可以由開頭
長度為(len-failure[k])的部分重複出現來表達
failure[k] 為 次 長 相 同 前 綴 後 綴
如果我們不只想求最多,而且以0-base做為考量
 ·那可能的長度由大到小會是
failuer[k] \ failure[failuer[k]-1]
 failure[failure[failuer[k]-1]-1]..
直到有值為0為止 *
int failure[MXN];
vector<int> KMP(string& t, string& p){
    vector<int> ret;
    if (p.size() > t.size()) return;
for (int i=1, j=failure[0]=-1; i<p.size(); ++i){
    while (j >= 0 && p[j+1] != p[i])
             j = failure[j]
         if (p[j+1] == p[i]) j++;
         failure[i] = j;
    for (int i=0, j=-1; i<t.size(); ++i){
        while (j \ge 0 \&\& p[j+1] != t[i])
             j = failure[j];
         if (p[j+1] == t[i]) j++;
         if (j == p.size()-1){
    ret.push_bck( i - p.size() + 1 );
             j = failure[j];
}
    }
        }
```

6.5 SAIS O(n)

```
/*** SA·將字串的所有後綴排序後的數組 ***/
/* SA[i]儲存排序後第i小的後綴從哪裡開始 */
/**** H[i] 為第i小的字串跟第i-1小的LCP ***/
/**** 註:LCP(Longest Common Prefix) ****/
/**** ex:S = "babd", SA[0] = 1("abd") ****/
/*** ex:S = "babd", SA[0] = 1("abd") ****/
/** SA[1] = 0("babd"), SA[2] = 2("bd") **/
/*** H[0] = 0, H[1] = 0, H[2] = 1("b") ***/
/* 傳入參數:ip 陣列放字串·len為字串長度 */
/* 需保證ip[len]為0, 且字串裡的元素不為0 */
const int N = 300010;
struct SA{
#define REP(i,n) for ( int i=0; i<int(n); i++ )</pre>
#define REP1(i,a,b) for ( int i=(a); i<=int(b); i++ )
  bool _t[N*2];
  int _s[N*2], _sa[N*2], _c[N*2], x[N], _p[N], _q[N*2],
    hei[N], r[N];
  int operator [] (int i){ return _sa[i]; }
  void build(int *s, int n, int m){
    memcpy(_s, s, sizeof(int) * n);
    sais(_s, _sa, _p, _q, _t, _c, n, m);
    mkhei(n);
```

```
void mkhei(int n){
    REP(i,n) r[\_sa[i]] = i;
    hei[0] = 0;
    REP(i,n) if(r[i]) {
       int ans = i>0? max(hei[r[i-1]] - 1, 0) : 0;
       \label{eq:while} \begin{tabular}{lll} while(\_s[i+ans] &== \_s[\_sa[r[i]-1]+ans]) & ans++; \\ \end{tabular}
       hei[r[i]] = ans;
    }
  }
  void sais(int *s, int *sa, int *p, int *q, bool *t,
    int *c, int n, int z){
bool uniq = t[n-1] = true, neq;
     int nn = 0, nmxz = -1, *nsa = sa + n, *ns = s + n,
          lst = -1;
#define MSO(x,n) memset((x),0,n*sizeof(*(x)))
#define MAGIC(XD) MS0(sa, n); \
    memcpy(x, c, sizeof(int) * z); \
    memcpy(x + 1, c, sizeof(int) * (z - 1)); \
    REP(i,n) if(sa[i] \&\& !t[sa[i]-1]) sa[x[s[sa[i]-1]]
         ]-1]]++] = sa[i]-1;
    memcpy(x, c, sizeof(int) * z); \
for(int i = n - 1; i >= 0; i--) if(sa[i] && t[sa[i
          MSO(c, z);
    REP(i,n) uniq \&= ++c[s[i]] < 2;
    REP(i,z-1) c[i+1] += c[i];
     if (uniq) { REP(i,n) sa[--c[s[i]]] = i; return; }
    for(int i = n - 2; i >= 0; i--) t[i] = (s[i]==s[i +1] ? t[i+1] : s[i]<s[i+1]);

MAGIC(REP1(i,1,n-1) if(t[i] && !t[i-1]) sa[--x[s[i
         ]]]=p[q[i]=nn++]=i);
    REP(i, n) if (sa[i] && t[sa[i]] && !t[sa[i]-1]) {
       \label{lem:neq} \begin{tabular}{ll} neq=lst<0 | lmemcmp(s+sa[i],s+lst,(p[q[sa[i]]+1]-sa) \\ \end{tabular}
            [i])*sizeof(int));
       ns[q[lst=sa[i]]]=nmxz+=neq;
    sais(ns, nsa, p + nn, q + n, t + n, c + z, nn, nmxz
           + 1);
    MAGIC(for(int i = nn - 1; i \ge 0; i--) sa[--x[s[p[
         nsa[i]]]] = p[nsa[i]]);
}sa;
int H[ N ], SA[ N ];
void suffix_array(int* ip, int len) {
  // should padding a zero in the back
  // ip is int array, len is array length
  // ip[0..n-1] != 0, and ip[len] = 0
  ip[len++] = 0;
  sa.build(ip, len, 128);
for (int i=0; i<len; i++) {</pre>
    H[i] = sa.hei[i + 1];
    SA[i] = sa.\_sa[i + 1];
  // resulting height, sa array \in [0,len)
6.6 Z Value O(n)
//z[i] = lcp(s[1...n-1], s[i...n-1])
int z[MAXN];
void Z_value(const string& s) {
  int i, j, left, right, len = s.size();
  left=right=0; z[0]=len;
  for(i=1;i<len;i++) {</pre>
     j=max(min(z[i-left],right-i),0);
    for(;i+j<len&&s[i+j]==s[j];j++);</pre>
     z[i]=j;
     if(i+z[i]>right) {
       right=i+z[i];
```

6.7 Manacher Algorithm O(n)

```
| // 求以每個字元為中心的最長回文半徑
| // 頭尾以及每個字元間都加入一個
| // 沒出現過的字元·這邊以'@'為例
```

left=i;

}

```
// s為傳入的字串,len為字串長度
// z為儲存答案的陣列 (有包含'@'要小心)
// ex: s = "abaac" ->
                      "@a@b@a@a@c@"
// z =
                      [12141232121]
void z_value_pal(char *s,int len,int *z){
  len=(len<<1)+1;
  for(int i=len-1;i>=0;i--)
    s[i]=i&1?s[i>>1]:'@';
  z[0]=1;
  for(int i=1,l=0,r=0;i<len;i++){</pre>
    z[i]=i < r?min(z[l+l-i],r-i):1;
    while(i-z[i]>=0&&i+z[i]<len&&s[i-z[i]]==s[i+z[i]])</pre>
        ++z[i];
    if(i+z[i]>r) l=i,r=i+z[i];
} }
```

6.8 Smallest Rotation

```
//rotate(begin(s),begin(s)+minRotation(s),end(s))
int minRotation(string s) {
  int a = 0, N = s.size(); s += s;
  rep(b,0,N) rep(k,0,N) {
    if(a+k == b || s[a+k] < s[b+k])
      {b += max(0, k-1); break;}
  if(s[a+k] > s[b+k]) {a = b; break;}
  } return a;
}
```

6.9 Cyclic LCS

```
#define L 0
#define LU 1
#define U 2
const int mov[3][2]=\{0,-1,-1,-1,-1,0\};
int al,bl;
char a[MAXL*2],b[MAXL*2]; // 0-indexed
int dp[MAXL*2][MAXL]:
char pred[MAXL*2][MAXL];
inline int lcs_length(int r) {
  int i=r+al, j=bl, l=0;
  while(i>r) {
    char dir=pred[i][j];
    if(dir==LU) l++;
    i+=mov[dir][0];
    j+=mov[dir][1];
  }
  return 1;
inline void reroot(int r) \{ // r = new base row \}
  int i=r, j=1;
  while(j<=bl&&pred[i][j]!=LU) j++;</pre>
  if(j>bl) return;
  pred[i][j]=L;
  while(i<2*al&&j<=bl) {</pre>
    if(pred[i+1][j]==U) {
      pred[i][j]=L;
    } else if(j<bl&&pred[i+1][j+1]==LU) {</pre>
      i++;
      pred[i][j]=L;
    } else {
      j++;
} } }
int cyclic_lcs() {
  // a, b, al, bl should be properly filled
  // note: a WILL be altered in process
                concatenated after itself
  char tmp[MAXL];
  if(al>bl)
    swap(al,bl);
    strcpy(tmp,a);
    strcpy(a,b);
    strcpy(b,tmp);
  strcpy(tmp,a);
  strcat(a,tmp);
  // basic lcs
```

```
for(int i=0;i<=2*al;i++) {
  dp[i][0]=0;</pre>
  pred[i][0]=U;
for(int j=0;j<=bl;j++) {
  dp[0][j]=0;</pre>
  pred[0][j]=L;
for(int i=1;i<=2*al;i++) {
  for(int j=1;j<=bl;j++) {
  if(a[i-1]==b[j-1]) dp[i][j]=dp[i-1][j-1]+1;</pre>
     else dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
     if(dp[i][j-1]==dp[i][j]) pred[i][j]=L;
     else if(a[i-1]==b[j-1]) pred[i][j]=LU;
     else pred[i][j]=U;
// do cyclic lcs
int clcs=0;
for(int i=0;i<al;i++) {</pre>
  clcs=max(clcs,lcs_length(i));
  reroot(i+1);
// recover a
a[al]='\0':
return clcs;
```

6.10 Hash

```
//字串雜湊前的idx是0-base,雜湊後為1-base
//即區間為 [0,n-1] -> [1,n]
//若要取得區間[L,R]的值則
//H[R] - H[L-1] * p^(R-L+1)
//cmp為比較從i開始長度為len的字串和
//從j開始長度為len的字串是否相同
#define x first
#define y second
pair<int,int> Hash[MXN];
void build(const string& s){
 pair<int,int> val = make_pair(0,0);
 Hash[0]=val;
  for(int i=1; i<=s.size(); i++){</pre>
 val.x = (val.x * P1 + s[i-1]) \% MOD;
  val.y = (val.y * P2 + s[i-1]) % MOD;
 Hash[i] = val;
 }
bool cmp( int i, int j, int len ) {
    return ((Hash[i+len-1].x-Hash[i-1].x*qpow(P1,len)%
        MOD+MOD)%MOD == (Hash[j+len-1].x-Hash[j-1].x*
        qpow(P1,len)%MOD+MOD)%MOD)
    && ((Hash[i+len-1].y-Hash[i-1].y*qpow(P2,len)%MOD+
        MOD)%MOD == (Hash[j+len-1].y-Hash[j-1].y*qpow(
        P2,len)%MOD+MOD)%MOD);
}
```

7 Data Structure

7.1 Segment tree

```
//!!!注意build()時初始化用的陣列也是1-base
#define cl(x) (x*2)
#define cr(x) (x*2+1)

struct segmentTree {
    int n;
    vector<int> seg, tag, cov;
    segmentTree( int _n ): n(_n) {
        seg=tag=cov=vector<int>(n*4,0);
    }
    void push( int i, int L, int R ) {
        if( cov[i] ) {
            seg[i]=cov[i]*(R-L+1);
            if( L < R ) {
                  cov[cl(i)]=cov[cr(i)]=cov[i];
```

```
tag[cl(i)]=tag[cr(i)]=0;
             cov[i]=0;
         if( tag[i] ) {
             seg[i]+=tag[i]*(R-L+1);
             if( L < R ) {
    tag[cl(i)]+=tag[i];</pre>
                  tag[cr(i)]+=tag[i];
              tag[i]=0;
         }
    void pull( int i, int L, int R ) {
   if( L >= R ) return;
         int mid=(L+R)>>1;
         push(cl(i),L,mid);
         push(cr(i),mid+1,R);
         seg[i]=seg[cl(i)]+seg[cr(i)];
     void build( vector<int>& arr, int i=1, int L=1, int
         R=-1 ) {
if( R == -1 ) R=n;
if( L == R ) {
             seg[i]=arr[L];
             return;
         int mid=(L+R)>>1;
         build(arr,cl(i),L,mid)
         build(arr,cr(i),mid+1,R);
         pull(i,L,Ŕ);
     int query( int rL, int rR, int i=1, int L=1, int R
=-1 ) {
         if(R == -1) R=n;
         push(i,L,R);
         if( rL <= L && R <= rR ) return seg[i];</pre>
         int mid=(L+R)>>1, ret=0;
         if( rL <= mid ) ret+=query(rL,rR,cl(i),L,mid);</pre>
         if( mid < rR ) ret+=query(rL,rR,cr(i),mid+1,R);</pre>
         return ret;
     void update( int rL, int rR, int val, int i=1, int
         L=1, int R=-1) {
         if( R == -1 ) R=n;
         push(i,L,R);
         if( rL <= L && R <= rR ) {
             tag[i]=val;
             return;
         int mid=(L+R)>>1;
         if( rL <= mid ) update(rL,rR,val,cl(i),L,mid);</pre>
         if( mid < rR ) update(rL,rR,val,cr(i),mid+1,R);</pre>
         pull(i,L,R);
     void cover( int rL, int rR, int val, int i=1, int L
         =1, int R=-1) {
if( R == -1 ) R=n;
         push(i,L,R);
         if( rL <= L && R <= rR ) {
             cov[i]=val;
              return:
         int mid=(L+R)>>1;
         if( rL <= mid ) cover(rL,rR,val,cl(i),L,mid);</pre>
         if( mid < rR ) cover(rL,rR,val,cr(i),mid+1,R);</pre>
         pull(i,L,R);
    }
};
```

7.2 持久化 SMT

```
struct node{
  node *1, *r;
  int val;
};

vector<node *> ver;
int arr[MXN] = {0};
```

```
//0-base
struct SegmentTree{
 int n;
 node *root:
 void build(int _n){
   n = _n;
   root = build(0, n-1);
 node* build(int L, int R){
   node *x = new node();
    if(L == R){x->val = arr[L]; return x;}
   int mid = (L+R)/2;
   x->l = build(L, mid);
   x->r = build(mid + 1, R);
   x->val = x->l->val + x->r->val;
    return x;
 int query(node *ro, int L, int R){return query(ro, 0,
       n-1, L, R);}
 int query(int L, int R){return query(root, 0, n-1, L,
       R);}
  int query(node *x, int L, int R, int recL, int recR){
    if(recL <= L && R <= recR) return x->val;
int mid = (L+R)/2, res = 0;
    if(recL <= mid) res += query(x->1, L, mid, recL,
        recR);
    if(mid
            < recR) res += query(x->r, mid+1, R, recL,
        recR);
    return res;
 void update(int pos, int v){update(root, 0, n-1, pos,
       v);}
 void update(node *x, int L, int R, int pos, int v){
  if(L == R){ x->val = v; arr[L] = v; return;}
    int mid = (L+R)/2;
    if(pos <= mid) update(x->1, L, mid, pos, v);
    else
                   update(x->r, mid+1, R, pos, v);
   x->val = x->l->val + x->r->val;
 }
 node *update_ver(node *pre, int l, int r, int pos,
     int v){
                           //當前位置建立新節點
    node *x = new node();
    if(l == r){
     x->val = v;
     return x;
    int mid = (l+r)>>1;
    if(pos <= mid){ //更新左邊
     x->l = update_ver(pre->l, l, mid, pos, v); //左邊
          節點連向新節點
     x->r = pre->r; //右邊連到原本的右邊
   }
    else{ //更新右邊
     x->l = pre->l; //左邊連到原本的左邊
     x->r = update_ver(pre->r, mid+1, r, pos, v); //
          右邊節點連向新節點
   x->val = x->l->val + x->r->val;
    return x;
}} sea;
void add_ver(int x,int v){
                             //修改位置 x 的值為 v
   ver.push_back(seg.update_ver(ver.back(), 0, seg.n
        -1, x, v));
```

7.3 Trie

```
trie *now = root; // 每次從根結點出發
  for(auto i:s){
   now->sz++;
   if(now->nxt[i-'a'] == NULL)
     now->nxt[i-'a'] = new trie();
   now = now->nxt[i-'a']; //走到下一個字母
 now->cnt++; now->sz++;
}
int query_prefix(string& s){ //查詢有多少前綴為 s
                    // 每次從根結點出發
  trie *now = root;
  for(auto i:s){
   if(now->nxt[i-'a'] == NULL){
     return 0;
   now = now->nxt[i-'a'];
  return now->sz;
}
int query_count(string& s){ //查詢字串 s 出現次數
 trie *now = root;
                     // 每次從根結點出發
  for(auto i:s){
   if(now->nxt[i-'a'] == NULL){
     return 0:
   now = now->nxt[i-'a'];
  return now->cnt;
```

7.4 Treap (interval reverse)

```
//拆出[a,b]區間就如同下面所展示先使用splitByTh()拆出
//左右,再把左區間拆成l,m最後merge()回去
//反轉區間時又記得使用^=可以直接反轉01
//treap 拆區間時從後面拆是因為這樣[a,b]的關係
//不用重新考慮·要是先拆前面b的位置會變成b-a+1
//splitByTh(root,a-1,l,m);
//splitByTh(m,b-a+1,m,r);
mt19937 gen(chrono::steady_clock::now().
     time_since_epoch().count());
struct Treap {
  int key, pri, sz, tag, sum;
  Treap *L, *R;
  Treap( int val ) {
    sum=key=val, pri=gen(), sz=1, tag=0;
    L=R=NULL;
};};
int Size( Treap *a ) { return !a?0:a->sz;}
void pull( Treap *a ) {
  a \rightarrow sz = Size(a \rightarrow L) + Size(a \rightarrow R) + 1;
  a->sum=a->key;
  if( a \rightarrow L ) a \rightarrow sum += a \rightarrow L \rightarrow sum;
  if( a \rightarrow R ) a \rightarrow sum += a \rightarrow R \rightarrow sum;
void push( Treap *a ) {
  if( a && a->tag ) {
     swap(a->L,a->R);
     if( a->L ) a->L->tag^=1;
     if( a->R ) a->R->tag^=1;
     a \rightarrow tag=0;
}}
Treap *merge(Treap *a, Treap *b) {
  if( !a || !b ) return a?a:b;
  push(a), push(b);
  if( a->pri > b->pri ) {
    a \rightarrow R = merge(a \rightarrow R, b);
    pull(a); return a;
  b->L=merge(a,b->L);
  pull(b); return b;
void print(Treap *a) {
  if( !a ) return;
```

```
push(a);
  print(a->L);
  cout.put(a->key);
  print(a->R);
Treap *buildTreap( int n, string& str ) {
  Treap *root=NULL;
  for( int i=0 ; i < n ; i++ )
    root=merge(root, new Treap(str[i]));
  return root;
void splitbyk( Treap *x, int k, Treap *&a, Treap *&b )
  if(!x) a=b=NULL;
  else if( x->key <= k ) {
    splitbyk(x->R,k,a->R,b);
    pull(a);
  else {
    b=x
    splitbyk(x->L,k,a,b->L);
    pull(b);
void splitByTh( Treap *x, int k, Treap *&a, Treap *&b )
  if( !x ) { a=b=NULL; return; }
  push(x);
  if( Size(x->L)+1 \le k ) {
    splitByTh(x->R,k-Size(x->L)-1,a->R,b);
    pull(a);
  else {
    b=x;
    splitByTh(x->L,k,a,b->L);
    pull(b);
 }
signed main() {
  string str;
  int n, m;
  cin>>n>>m>>str;
  Treap *root;
  root=buildTreap(n,str);
  for( int i=0 ; i < m ; i++ ) {</pre>
    int a, b;
    cin>>a>>b;
Treap *1, *m, *r;
    splitByTh(root,b,l,r);
    splitByTh(l,a-1,l,m);
    m->tag^=1;
    root=merge(l,merge(m,r));
  print(root);
}
```

7.5 Treap (interval erase)

```
//區間移除使用bitset維護區間值
mt19937 gen(chrono::steady_clock::now().
     time_since_epoch().count());
struct Treap {
char key;
int pri, sz;
bitset<128> tag;
  Treap *L, *R;
  Treap( char val ) {
     key=val, pri=gen(), sz=1;
     L=R=NULL:
     tag.set(key);
int Size( Treap *a ) { return !a?0:a->sz;}
void pull( Treap *a ) {
  if(!a) return;
  a \rightarrow sz = Size(a \rightarrow L) + Size(a \rightarrow R) + 1;
  a->tag=a->tag.reset();
  a->tag=a->tag.set(a->key);
  if( a \rightarrow L ) a \rightarrow tag = a \rightarrow L \rightarrow tag;
```

```
if( a \rightarrow R ) a \rightarrow tag = a \rightarrow R \rightarrow tag;
Treap *merge( Treap *a, Treap *b ) {
  if( !a || !b ) return a?a:b;
if( a->pri > b->pri ) {
    a \rightarrow R = merge(a \rightarrow R, b);
    pull(a);
    return a;
  b->L=merge(a,b->L);
  pull(b);
  return b;
Treap *buildTreap( int n, string& str ) {
  Treap *root=NULL;
  for( int i=0 ; i < n ; i++ )
    root=merge(root, new Treap(str[i]));
  return root;
void print( Treap *a ) {
  if( !a ) return;
  print(a->L);
  cout.put(a->key);
  print(a->R);
void splitByTh( Treap *x, int k, Treap *&a, Treap *&b )
  if( !x ) { a=b=NULL; return; }
  if( Size(x->L)+1 \le k ) {
    splitByTh(x->R,k-Size(x->L)-1,a->R,b);
    pull(a);
  else {
    b=x;
    splitByTh(x->L,k,a,b->L);
    pull(b);
}
void erase( Treap *&x, char ch ) {
  if( !x || !x->tag.test(ch) ) return;
  erase(x->L,ch);
  erase(x->R,ch);
  if( x \rightarrow key == ch ) {
    Treap *l=x->L, *r=x->R;
    x=NULL;
    x=merge(l,r);
  pull(x);
signed main() {
  string str;
  int n, m;
  cin>>n>>m>>str;
  Treap *root;
  root=buildTreap(n,str);
  for( int i=0 ; i < m ; i++ ) {</pre>
    char c;
    int a, b;
    cin>>a>>b>>c;
    Treap *l, *m, *r;
if( !root || !root->tag.test(c) ) continue;
    splitByTh(root,b,l,r);
    splitByTh(l,a-1,l,m);
    if( m || !m->tag.test(c) ) erase(m,c);
    root=merge(l,merge(m,r));
  print(root);
}
```

7.6 BIT

```
#define lowbit(x) (x&-x)
struct BIT {
    int n:
    vector<int> bit;
    BIT(int _n):n(_n), bit(n+1) {}
void update( int x, int val )
         for(;x \le n; x += lowbit(x)) bit[x] += val;
    void range_update( int L, int R, int val ) {
         update(L,val), update(R+1,-val);
     int query( int x ) {
         int res = 0;
         for(;x; x -= lowbit(x)) res += bit[x];
         return res;
     int range_query( int L, int R ) {
         return query(R)-query(L-1);
    }
};
```

7.7 Black Magic

```
#include <bits/extc++.h>
using namespace __gnu_pbds;
typedef tree<int,null_type,less<int>,rb_tree_tag,
    tree_order_statistics_node_update> set_t;
// tree<int,null_type,less_equal<int>,rb_tree_tag,
    tree_order_statistics_node_update> s;
#include <ext/pb_ds/assoc_container.hpp>
typedef cc_hash_table<int,int> umap_t;
// gp_hash_table<int, int>
typedef priority_queue<int> heap;
#include<ext/rope>
using namespace __gnu_cxx;
int main(){
 // Insert some entries into s.
 set_t s; s.insert(12); s.insert(505);
 // The order of the keys should be: 12, 505.
 assert(*s.find_by_order(0) == 12);
 assert(*s.find_by_order(3) == 505);
 // The order of the keys should be: 12, 505.
 assert(s.order_of_key(12) == 0);
 assert(s.order_of_key(505) == 1);
 // Erase an entry.
 s.erase(12);
 // The order of the keys should be: 505.
 assert(*s.find_by_order(0) == 505);
 // The order of the keys should be: 505.
 assert(s.order_of_key(505) == 0);
 heap h1 , h2; h1.join( h2 );
 rope<char> r[ 2 ];
r[ 1 ] = r[ 0 ]; // persistenet
string t = "abc";
 r[ 1 ].insert( 0 , t.c_str() );
  r[1].erase(1,1);
cout << r[1].substr(0,2);
```

8 Others

8.1 SOS dp

8.2 Max subrectangle

```
const int N = 1e5+5;
int n, a[N], l[N], r[N];
long long ans;
int main() {
  while (cin>>n) {
    ans = 0;
    for (int i = 1; i \le n; i++) cin>>a[i], l[i] = r[i]
         = i;
    for (int i = 1; i <= n; i++)
      while (l[i] > 1 \&\& a[i] <= a[l[i] - 1]) l[i] = l[
          l[i] - 1];
    for (int i = n; i >= 1; i--)
      while (r[i] < n \&\& a[i] <= a[r[i] + 1]) r[i] = r[
          r[i] + 1];
    for (int i = 1; i <= n; i++)
      ans = max(ans, (long long)(r[i] - l[i] + 1) * a[i]
    cout<<ans<<"\n";
}
```

8.3 De Brujin sequence

```
// return cyclic array of length k^n such that every
// array of length n using 0~k-1 appears as a subarray.
vector<int> DeBruijn(int k,int n){
  if(k==1) return {0};
  vector<int> aux(k*n),res;
  function<void(int,int)> f=[&](int t,int p)->void{
    if(t>n){  if(n%p==0)
      for(int i=1;i<=p;++i) res.push_back(aux[i]);
  }else{
    aux[t]=aux[t-p]; f(t+1,p);
    for(aux[t]=aux[t-p]+1;aux[t]<k;++aux[t]) f(t+1,t)
    ;
  }
  };
  f(1,1); return res;
}</pre>
```

8.4 CDQ 分治

```
//cdq分治使用的結構u, v, w為排序物的三個維度
//ans記錄了有幾項三維都小於等於自己
//cnt記錄了相同物有幾個·在使用cdq之前必先去重·
//並且將相同元素紀錄至cnt中,可使用map來做到這步
//cdq使用的BIT就是普通求和的BIT · 大小就開維度的
//值域範圍·若值域大於2e6則要先進行離散化
struct triple {int u, v, w, ans, cnt;};
int n, k;
BIT *bt;
void cdq( int L, int R, vector<triple>& arr ) {
  if( R-L <= 1 ) return;</pre>
  int mid=L+R>>1;
  vector<triple> temp;
  cdq(L,mid,arr), cdq(mid,R,arr);
  for( int i=L, j=mid ; i < mid || j < R ; ) {</pre>
    for(; i < mid && ( j >= R || arr[i].v <= arr[j].v )</pre>
          ; i++ ) {
      bt->update(arr[i].w,arr[i].cnt);
      temp.push_back(arr[i]);
    if( j < R ) {
      arr[j].ans+=bt->query(arr[j].w);
      temp.push_back(arr[j]);
      j++;
    }
  for( int i=L ; i < mid ; i++ )</pre>
    bt->update(arr[i].w,-arr[i].cnt);
  copy(temp.begin(),temp.end(),arr.begin()+L);
}
signed main()
{
  cin>>n>>k;
```

8.5 3D LIS

```
#define lowbit(x) (x&-x)
const int MAXN=1e5+5;
struct BIT {
  int n;
  vector<int> bit;
  BIT( int _n ):n(_n), bit(_n+1,0) {}
  int query( int x ) {
    int res=0:
    for(; x > 0; x-=lowbit(x)) res=max(res,bit[x]);
    return res:
  }
  void update( int x, int val ) {
    for(; x <= n ; x+=lowbit(x) ) {
  if( val < 0 ) bit[x]=0;</pre>
      else bit[x]=max(bit[x],val);
    }
}bt(MAXN);
struct triple {
  int u, v, w, ans, cnt;
  bool operator<( triple b ) { return u<b.u; }</pre>
bool cmp( triple a, triple b ) {return a.v<b.v;}</pre>
void cdq( int L, int R, vector<triple>& arr ) {
  if( R-L <= 1 ) return;</pre>
  int mid=L+R>>1;
  cdq(L,mid,arr);
  sort(arr.begin()+L,arr.begin()+mid,cmp);
  sort(arr.begin()+mid,arr.begin()+R,cmp);
  for( int i=L, j=mid ; i < mid || j < R ; ) {
  for(; i < mid && ( j >= R || arr[i].v < arr[j].v )</pre>
    ; i++ ) bt.update(arr[i].w,arr[i].ans); if( j < R ) {
      arr[j].ans=max(bt.query(arr[j].w-1)+1,arr[j].ans)
      j++;
    }
  for( int i=L ; i < mid ; i++ ) bt.update(arr[i].w,-1)</pre>
  sort(arr.begin()+L,arr.begin()+R);
  cdq(mid,R,arr);
signed main()
{
  ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0)
  int n, res=0;
  cin>>n;
  vector<int> ls;
  vector<triple> arr;
  for( int i=0 ; i < n ; i++ ) {
    int a. b:
    cin>>a>>b;
    arr.push_back({i,a,b,1,1});//{第一維,第二維,第三維,
         答案,數量}
    ls.push_back(b);
  sort(ls.begin(),ls.end());
  ls.resize(unique(ls.begin(),ls.end())-ls.begin());
```

8.6 Aho-Corasick

```
struct ACautomata{
  struct Node{
    int cnt,i
    Node *go[26], *fail, *dic;
    Node (){
      cnt = 0; fail = 0; dic = 0; i = 0;
      memset(go,0,sizeof(go));
  }pool[1048576],*root;
  int nMem,n_pattern;
  Node* new_Node(){
    pool[nMem] = Node();
    return &pool[nMem++];
  void init() {
    nMem=0;root=new_Node();n_pattern=0;
add("");
  void add(const string &str) { insert(root,str,0);
  void insert(Node *cur, const string &str, int pos){
    for(int i=pos;i<str.size();i++){</pre>
      if(!cur->go[str[i]-'a'])
         cur->go[str[i]-'a'] = new_Node();
      cur=cur->go[str[i]-'a'];
    cur->cnt++; cur->i=n_pattern++;
  void make_fail(){
    queue<Node*> que;
    que.push(root);
    while (!que.empty()){
  Node* fr=que.front(); que.pop();
      for (int i=0; i<26; i++){
         if (fr->go[i]){
           Node *ptr = fr->fail;
           while (ptr && !ptr->go[i]) ptr = ptr->fail;
           fr->go[i]->fail=ptr=(ptr?ptr->go[i]:root);
           fr->go[i]->dic=(ptr->cnt?ptr:ptr->dic);
           que.push(fr->go[i]);
  void query(string s){
      Node *cur=root;
      for(int i=0;i<(int)s.size();i++){</pre>
           while(cúr&&!cur->go[s[ij-'a']) cur=cur->fail;
cur=(cur?cur->go[s[i]-'a']:root);
           if(cur->i>=0) ans[cur->i]++;
           for(Node *tmp=cur->dic;tmp;tmp=tmp->dic)
               ans[tmp->i]++;
  } }// ans[i] : number of occurrence of pattern i
}AC;
```


