

Complete Solution for Testing & Calibration

K-12, Sec.-2, DSIIDC Indl. Area, Bawana, Delhi-110039 (India)

Ph.: 91-11-27761801-02-03; E-mail: infohpldelhi@gmail.com

Mobile 1: +91-8588886040 Mobile 2: +91-8588886050

ULR:TC563919000000581F/PHOTOMETRY TESTING/LUMINARIES

TEST REPORT

Page No.01 of 08

TEST REPORTAS PER: IESLM-79-08 and as per Customer Specification

SRF No.19120536

Name & Address of Customer:

Test Report No: HPL/Test/19120536/01 Date of Issue:23/12/2019

M/s. HALONIX TECHNOLOGIES PVT.

Customer Ref. & Date :Nil & Dated 23/12/2019

End of Test Date:

LTD B-31, Phase II, Noida, Distt. Gautam Budh Nagar, Uttar Pradesh - 201305

Date of Sample Receipt: 23/12/2019 Start of Test Date: 23/12/2019

23/12/2019

PART A - PARTICULARS OF THE SAMPLE SUBMITTED

Sample description	LED HW STREET LIGHT 15W CWL
Grade/ variety/ type/ class/ size etc.	Pin:15W, V: 240V~50Hz, PF:>0.95, t _a :-10°C to 50°C, IP 66
Declared values, if any	Input Voltage: 240V AC, Test Voltage: 240V AC, Input Frequency: 50Hz, Input Current:65mA, Input Power: 15W, PF>0.95, Total Luminous Flux: 1800lm, Luminous Efficacy: >120lm/W, Correlated Colour Temprature:5700K, Rendering Index(Ra) >70, Thd <10%
Code no., BIS seal and IO's sign. if any	Nil.
Batch no., date of manufacture and Brand Name	Brand: "HALONIX" Model No: "LED STREET LIGHT 15W"
Quantity	01No.
Condition of the sample	OK
Reference specification (s)	IES LM-79-08 & as per customer's request
Environmental conditions	Temperature (25±1)°C & Relative Humidity<65%

PART B - SUPPLEMENTARY INFORMATION

- If an Item is tested, acknowledging deviations from specified conditions as requested by customers, the results may be affected due to this deviation.
- Deviations from the test methods as per relevant specification/ work instructions, if any:
- Details of the drawings, graphs, tables, sketches or photographs as referred in the test report, if any:
- Testing procedure according to work instruction HPL03/WI/PHTM/144
- The standards/ Instruments used are maintained in accordance with ISO / IEC 17025 and are traceable to National and International Standards

Notes:

- This report is not to be reproduced wholly or in part without our special permission in writing.
- This report refers only to the particular sample detailed above. 2.
- The results reported in this Test report are valid at the time of and under the stipulated conditions of measurement.

Remnants of samples will be disposed off after 30/90 days of issue of test report if no any further information is received.

Tested by Saurabh Srivastava

(Testing Engineer)

Checked by

Technical Manager

Approved by

Format No.HPL04 F40-7.8-01

Complete Solution for Testing & Calibration K-12, Sec.-2, DSIIDC Indl. Area, Bawana, Delhi-110039 (India) Ph.: 91-11-27761801-02-03; E-mail: infohpldelhi@gmail.com

Mobile 1: +91-8588886040 Mobile 2: +91-8588886050

PART C-TEST RESULT

TEST REPORT NO.: HPL/Test/19120536/01

S. No.	TESTS WITH CLAUSE REFERENCE		SPECIFIED REQUIREMENTS	RESULTS
1.	[1.48] [1	i)	Total luminous flux	1736.80lm
	(IES EM-77-08)	ii)	Luminous efficacy	122.22 lm/W
		iii)	Luminous intensity	1064.99cd
		iv)	Luminous intensity distribution	Graph Attached
		v)	Chromaticity Co-ordinates	x= 0.3348 y = 0.3532
		vi)	Correlated Colour Temperature	5405K
		vii)	Rendering Index (Ra)	71
2. Electrical Results (IES LM-79-08)		i)	Input Power	14.21W
	ii)	Input Voltage	$240V_{ac}$	
		iii)	Input Current (Amps)	0.061A
		iv)	Power Factor	0.971
		v)	Input Frequency (Hz)	50 Hz
3.	Additional Parameters	i)	Stabilization Time	30 minutes
		ii)	Photometric Method Used	IESLM-79-08 Using C type- Goniophotometer

Tested by Saurabh Srivastava (Testing Engineer)

Checked by

FOR HI PHYSIX LABORATORY

(Sufil Saini) Technical Manager

Approved by

Page No.02 of 08

Complete Solution for Testing & Calibration K-12, Sec.-2, DSIIDC Indl. Area, Bawana, Delhi-110039 (India) Ph.: 91-11-27761801-02-03; E-mail: infohpldelhi@gmail.com

> Mobile 1: +91-8588886040 Mobile 2: +91-8588886050

PART C-TEST RESULT

TEST REPORT NO.:HPL/Test/19120536/01

Intensity distribution Graph at C0-C180

Saurabh Srivastava (Testing Engineer)

Checked by

Page No.03of 08

FOR HI PHYSIX LABORATORY

Saini) Technical Manager

Approved by

Complete Solution for Testing & Calibration K-12, Sec.-2, DSIIDC Indl. Area, Bawana, Delhi-110039 (India) Ph.: 91-11-27761801-02-03; E-mail: infohpldelhi@gmail.com

Mobile 1: +91-8588886040 Mobile 2: +91-8588886050

PART C-TEST RESULT

TEST REPORT NO.:HPL/Test/19120536/01

Intensity distribution Graph at C90-C270

Tested by Saurabh Srivastava (Testing Engineer)

Checked by

Page No.04 of 08

FOR HI PHYSIX LABORATORY

(Sun'l Saini) Technical Manager

Approved by

Complete Solution for Testing & Calibration K-12, Sec.-2, DSIIDC Indl. Area, Bawana, Delhi-110039 (India) Ph.: 91-11-27761801-02-03; E-mail: infohpldelhi@gmail.com

Mobile 1: +91-8588886040 Mobile 2: +91-8588886050

TEST REPORT NO.:HPL/Test/19120536/01

PART C-TEST RESULT

Zonal Flux Distribution Table

	ZONAL LUN	EN SUMMARY	
Zone	Lumens	%Lamp	%Fixt
0-30	457.11	N.A.	26.32%
0-40	805.36	N.A.	46.37%
0-60	1479.08	N.A.	85.16%
0-90	1694.42	N.A.	97.56%
0-120	1714.26	N.A.	98.70%
0-180	1736.80	N.A.	100.00%
60-90	335.42	N.A.	19.31%
90-120	25.05	N.A.	1.44%
90-130	31.17	N.A.	1.79%
90-150	41.57	N.A.	2.39%
90-180	47.42	N.A.	2.73%
0-56.27	1389.44	N.A.	\$0.00%

	IEN SUMMARY
0-10	51.77
10-20	153.90
20-30	251.43
30-40	348.25
40-50	391.63
50-60	282.08
60-70	159.83
70-80	43.12
80-90	12.38
90-100	7.20
100-110	6.42
110-120	6.24
120-130	6.12
130-140	5.69
140-150	4.71
150-160	3.39
160-170	1.98

0.49

FOR HI PHYSIX LABORATORY

(SMA) I Saini) Technical Manager

Approved by

Tested by Saurabh Srivastava (Testing Engineer)

Checked by

170-180

Page No.05 of 08

Complete Solution for Testing & Calibration K-12, Sec.-2, DSIIDC Indl. Area, Bawana, Delhi-110039 (India) Ph.: 91-11-27761801-02-03; E-mail: infohpldelhi@gmail.com

> Mobile 1: +91-8588886040 Mobile 2: +91-8588886050

TEST REPORT NO.:HPL/Test/19120536/01

PART C-TEST RESULT

Space Iso lux Diagram

Saurabh Srivastava (Testing Engineer)

Checked by

Page No.06 of 08

FOR HI PHYSIX LABORATORY

pil Saini) Technical Manager

Approved by

Complete Solution for Testing & Calibration K-12, Sec.-2; DSIIDC Indl. Area, Bawana, Delhi-110039 (India)

Ph.: 91-11-27761801-02-03; E-mail: infohpldelhi@gmail.com

Mobile 1: +91-8588886040 Mobile 2: +91-8588886050

PART C-TEST RESULT

TEST REPORT NO.: HPL/Test/19120536/01

Intensity	y Data	(cd)

Intensity																				
C/r(°) 0.0 22.5 45.9 67.5 90.0 112.5 135.5 180.0 202.5 226.0 247.5 270.0 292.5 315.0 337.5 360.0	0.0 \$52.65 \$40.65 \$58.10 \$27.47 \$53.89 \$28.81 \$47.43 \$33.98 \$52.65 \$40.69 \$540.69 \$552.65	5.0 554.75 554.85 558.10 552.26 553.70 548.43 553.60 546.52 552.74 540.68 536.37 488.95 543.17 513.01 543.75 543.75	10.0 602.24 557.43 564.52 552.26 603.01 550.16 562.13 554.75 534.36 531.30 463.51 512.72 467.82 532.06 524.98 602.24	15.0 602.24 573.71 581.08 585.39 603.01 562.13 562.13 562.75 567.78 559.83 525.17 427.99 506.02 424.35 499.60 524.98 602.24	20.0 617.14 578.56 619.29 593.53 689.25 595.92 643.61 559.83 585.30 528.14 501.71 342.68 458.91 345.74 491.56 519.14	25.0 591.62 593.24 691.10 636.23 749.12 641.12 663.14 617.95 585.343 432.65 327.36 327.36 327.36 349.00 326.21 482.27 516.93 591.62	30.0 601.00 607.01 691.10 656.02 712.26 667.83 304.75 633.36 597.6 33.402.80 208.92 339.52 244.82 407.78 497.88 601.00	35.0 619.29 612.55 892.83 892.83 881.15 646.90 828.01 639.39 612.65 840.57 208.92 312.04 151.15 409.786 619.29	40.0 679.03 636.43 947.79 520.09 834.14 706.42 666.59 634.33 963.32 197.14 408.74 459.45		C (gf) 0.9 22.5 45.8 67.5 90.0 112.5 136.0 202.5 225.0	135.0 8.14 8.33 8.04 6.99 6.20 6.21 5.46 5.27 8.81 8.43 7.66	140.0 8.43 8.43 8.54 6.39 6.33 6.22 8.33 8.34	145.0 8.04 8.43 8.14 7.76 7.27 6.21 5.46 5.27 9.29 8.14 8.04	150.0 198 8.14 138 8.11 139 6.11 5.55 6.27 8.13 1.96 8.14	155.0 7.76 8.61 7.66 7.66 7.66 7.66 1.09 6.21 6.13 5.27 8.14 7.55 8.62	160 II 131 176 128 166 156 632 534 521 195 131 814	165.0 156 126 128 128 156 109 631 546 546 128 125 125	170.0 1.09 1.18 1.28 1.27 1.49 6.31 5.55 5.07 1.28 1.28 1.28	1750 7,09 7,18 1,27 1,18 1,18 6,41 5,55 5,07 7,09 7,28 1,66
C'y(*) 0.0 22.5 45.0 67.5 90.0 112.6 136.0 157.5 180.0 202.5 225.0 247.5 270.0 292.5 318.0 337.5 360.0	45.0 711.59 746.44 814.42 1064.99 491.47 549.58 706.42 784.93 256.70 104.36 194.84 110.26 264.74 466.61 711.59	50.0 711.78 746.44 638.53 603.57 160.57 512.91 560.31 878.09 174.74 233.62 104.36 115.18 76.88 211.31 397.92 711.75	55.0 236.49 709.77 510.04 584.43 49.41 282.64 385.57 825.43 463.70 126.39 207.39 47.87 95.46 53.81 200.59 101.40 236.49	60.0 175.50 579.65 58.69 262.63 49.41 188.52 94.50 825.436 86.08 40.50 42.03 42.03 42.03 42.03 45.19 200.59 16.18 175.50	65.0 53.14 435.90 58.69 262.63 45.19 188.52 65.20 875.02 22.21 26.81 11.49 11.49 36.29 38.29 38.29 15.22 53.14	70.0 15.61 215.62 58.69 262.63 14.55 66.83 42.80 191.97 145.60 14.74 16.76 10.92 49.60 12.35 27.96 8.62 15.61	75.0 15.61 19.163 19.05 30.06 9.77 70.76 21.93 102.54 78.22 9.86 14.65 8.33 31.69 11.01 27.96 6.32 15.61	\$0.0 26.43 12.16 31.85 9.77 24.61 18.29 22.58 9.57 7.18 9.57 7.47 14.36 9.48 15.99 9.48 15.99 9.48 15.99 9.48 15.99 9.48 15.99	\$5.0 10.05 9.00 21.06 6.99 22.26 6.61 22.28 8.90 6.50 14.36 6.51 15.03 5.46 6.80	100	247.5 270.0 292.5 315.0 317.5 360.0 C (*) 0.0 45.0 67.5 90.0	814 195 814 199 632 814 1898 118 118 128 128	871 833 823 718 632 843	823 833 7.76 7.89 633 894	814 899 156 6.89 6.03 1.95	7.95 8.43 7.09 6.89 5.94 7.76	795 843 850 659 546 737	7.66 8.43 6.70 6.13 5.17 7.66	126 8.43 6.61 5.94 5.36 1.09	156 118 6.61 5.94 5.27 1.09
CINT) 0.0 22.5 45.0 67.5 90.0 112.5 135.0 157.0 202.5 2270.0 292.5 270.0 292.5 337.5 360.0	90.0 6.03 6.80 6.70 8.51 7.85 5.84 10.09 9.48 6.22 7.76 6.41 7.09 6.41 10.15 4.79 6.03	95.0 6.13 6.90 6.41 7.15 6.32 6.32 6.32 6.35 6.70 7.76 6.41 7.09 6.41 7.09 6.13	100,0 6.13 6.41 6.41 6.32 6.22 6.22 5.07 6.70 6.41 7.28 6.32 6.41 7.28 6.32 6.41 7.28 6.32 6.41 7.47 9.63 9.64 9.64 9.64 9.64 9.64 9.64 9.64 9.64	105.0 6.22 6.41 6.41 5.846 6.51 7.09 6.41 7.09 6.41 5.07 4.58 6.51 7.09 6.41 6.41	110.0 6.61 6.22 6.51 6.51 6.51 6.51 6.51 6.51 6.51 6.51	115.0 6.32 6.32 6.34 6.41 5.27 6.32 6.39 6.41 6.32 6.39 6.41 5.17 5.55 6.39	120.0 7.37 6.70 7.09 7.15 6.41 5.94 7.09 6.80 7.09 6.80 6.80 6.80 6.80 6.80 6.80 6.80 6.80	125.0 7.37 7.28 7.18 6.51 6.50 5.94 4.98 7.56 6.50 7.56 6.50 7.56 6.50 7.56 6.50 7.56 6.50 7.56 6.50 7.56 7.56 7.56	130.0 \$14 7.56 \$.04 6.61 6.70 6.61 6.70 4.95 8.43 8.04 7.18 8.62 7.18 7.85 6.51 6.13 8.14		111.5 135.0 157.5 130.0 202.5 225.0 147.5 170.0 292.5 331.5 360.0	6.61 5.65 5.17 7.09 1.28 1.66 6.61 6.13 5.17 7.18								

Saurabh Srivastava (Testing Engineer)

Checked by

unil Saini) Technical Manager

Approved by

FOR HI PHYSIX LABORATORY

Page No.07 of 08

Complete Solution for Testing & Calibration K-12, Sec.-2, DSIIDC Indl. Area, Bawana, Delhi-110039 (India) Ph.: 91-11-27761801-02-03; E-mail: infohpldelhi@gmail.com

Mobile 1: +91-8588886040 Mobile 2: +91-8588886050

TEST REPORT NO.:HPL/Test/19120536/01

PART C-TEST RESULT

Sample under Test

Marking plate of the sample

For HI PHYSIX LABORATORY

(Sun | Saini) Technical Manager

Approved by

PART-D

Remarks: 1. The observations given in part A of the cover page of the test report are taken from the marking on the sample and specification given by the customer.

Tested by Saurabh Srivastava (Testing Engineer)

Checked by

Page No 08 of 08

***** END OF THE TEST REPORT *****