Chapitre 7 - Déterminant

Manel TAYACHI (cours) - Mica MURPHY (note) - Antoine SAGET (note)

Vendredi 9 novembre 2018

Rappels

Matrices 2×2

Pour une matrice $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ son déterminant vaut ad-bc

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 0 & 1 \\ 1 & 0 & -1 & 2 \end{pmatrix}$$

Plus généralement, on définit le déterminant par récurrence par du **developpment par ligne** (ou par colonne).

Matrices 3×3

$$\begin{vmatrix} (-1)^{1+1} & (-1)^{1+2} & (-1)^{1+3} \\ (-1)^{2+1} & (-1)^{2+2} & (-1)^{2+3} \\ (-1)^{3+1} & (-1)^{3+2} & (-1)^{3+3} \end{vmatrix} = \begin{vmatrix} + & - & + \\ - & + & - \\ + & - & + \end{vmatrix}$$

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \times \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \times \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \times \begin{vmatrix} d & e \\ g & h \end{vmatrix} \text{ (ligne)}$$
motation classique pour le det
$$= c \times \begin{vmatrix} d & e \\ g & h \end{vmatrix} - f \times \begin{vmatrix} a & b \\ g & h \end{vmatrix} + i \times \begin{vmatrix} a & b \\ d & e \end{vmatrix} \text{ (colonne)}$$

Exemple.

$$\begin{vmatrix} 1 & 1 & 1 \\ 2 & 0 & 1 \\ 1 & -1 & 1 \end{vmatrix} = -1 \begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} + 0 \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} + 1 \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix} = -1 - 1 = \boxed{-2}$$

Remarque. On peut appliquer cette même méthode pour les matrices carées plus grandes.

Généralisation

En pratique, on fait des opérations sur les lignes et/ou les colonnes pour mettre plein de 0 dans la matrice.

Opérations possibles 1. $L_i \leftarrow L_i + \lambda L_j$ (ou $C_i \leftarrow C_i + \lambda C_j$), $i \neq j$ 2. $L_i \leftarrow \lambda L_i$ (ou $C_i \leftarrow \lambda C_i$) > Cette opération multiplie le déterminant par λ ! 3. $L_i \leftrightarrow L_j$ (ou $C_i \leftrightarrow \lambda C_j$), $i \neq j$ > Cette opération change le signe du déterminant

Exemple.

$$\begin{vmatrix} 1 & 1 & -1 \\ 1 & 0 & 1 \\ 2 & 1 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & -2 \\ 1 & 0 & 0 \\ 2 & 1 & -3 \end{vmatrix} = -1 \begin{vmatrix} 1 & -2 \\ 1 & -3 \end{vmatrix} = \boxed{1}$$

$$C_3 - C_1 \to C_3$$

Intérêt principal du déterminant

Théorème. Si $A \in M_n(\mathbb{R})$, A inversible $\Leftrightarrow det(A) \neq 0$

Remarque. Pour le determinant 3×3 , on a une formule "du genre ad - bc" appelée la règle de Sarrus:

Soit
$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

Alors det(A) = aei + bfg + cdh - ceg - afh - bdi

$$\begin{vmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{vmatrix} \stackrel{=}{\underset{C_1 \leftarrow C_1 + C_2 + C_3}{=}} \begin{vmatrix} 4 & 1 & 1 \\ 4 & 2 & 1 \\ 4 & 1 & 2 \end{vmatrix} \stackrel{=}{\underset{C_1 \leftarrow C_1/4}{=}} 4 \begin{vmatrix} 4 & 1 & 1 \\ 4 & 2 & 1 \\ 4 & 1 & 2 \end{vmatrix} \stackrel{=}{\underset{C_2 \leftarrow C_2 - C_1}{=}} 4 \begin{vmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{vmatrix} = 4$$

Propriétés importantes du det

- $\begin{array}{l} \bullet \quad det(AB) = det(A)det(B) \\ \bullet \quad det(A^{-1}) = \frac{1}{det(A)} \end{array}$
- $det(A^{-1}) = \frac{1}{det(A)}$ $det(A+B) \neq det(A) + det(B)$

Diagonalisation de matrices

 $A \in M_n(\mathbb{R})$

But: "simplifier" A en la diagonalisant pour que les calculs soient plus simples.

Remarque.

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

- Calculer avec A c'est très facile
- Résoudre des systèmes AX = b c'est très facile

$$A^n = \begin{pmatrix} 1^n & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 3^n \end{pmatrix}$$

Exemple. Étude d'une population de lapins :

$$n_b(t) = \text{nombre de bébés au temps t}$$
 $n_a(t) = \text{nombre d'adultes au temps t}$
 $N(t) = \binom{n_b(t)}{n_a(t)}$

$$n_b(t+1) = \lambda n_a(t)$$
 avec λ le taux de natalité $n_a(t+1) = \epsilon_b n_b(t)$ avec ϵ_b le taux de survie des bébés

$$N(t+1) = \begin{pmatrix} 0 & \lambda \\ \epsilon_b & 0 \end{pmatrix} N(t)$$

Donc étudier l'évolution de la popultaion des lapins revient à comprendre A^N .

Bases et changement de bases

Définition. $E = \mathbb{R}^n$ Une base de E, c'est une famille e_1, \ldots, e_n de n vecteurs tq $\forall u \in \mathbb{R}^n, \exists ! (\lambda_1, \ldots, \lambda_n) \in \mathbb{R}$ tq

$$u = \lambda_1 e_1 + \dots + \lambda_n e_n$$

 $\lambda_1, \ldots, \lambda_n$ s'appellent les **coordonnées** de u dans la base (e_1, \ldots, e_n)

Exemple. Soient $E = \mathbb{R}^2$ et B = ((1,0),(0,1)) alors (x,y) = x(1,0) + y(0,1)

Schéma

Exemple. Soient $E = \mathbb{R}^2$ et B = ((1,1),(-1,1)) alors quelles sont les coordonnées de (x,y) dans la base ((1,1),(-1,1))?

$$(x,y) = a(1,1) + b(-1,1)$$

\$

$$\begin{cases} x = a - b \\ y = a + b \end{cases} \Leftrightarrow \begin{cases} x = a - b \\ x + y = 2a \\ b = a - x = \frac{y - x}{2} \\ a = \frac{x + y}{2} \end{cases}$$

Ainsi les coordonnées de $\begin{pmatrix} x \\ y \end{pmatrix}$ dans B = ((1,1),(-1,1)) sont $\begin{pmatrix} \frac{x+y}{2} \\ \frac{y-x}{2} \end{pmatrix}$

Schéma

$$\begin{pmatrix} x \\ y \end{pmatrix}_{((1,0),(0,1))} = \begin{pmatrix} \frac{x+y}{2} \\ \frac{y-x}{2} \end{pmatrix}_{((1,1),(-1,1))}$$

Exemple.

$$\binom{1}{2}_{((1,0),(0,1))} = \binom{\frac{1+2}{2}}{\frac{2-1}{2}}_{((1,1),(-1,1))} = \binom{3/2}{1/2}_{((1,1),(-1,1))}$$

Changement de base en général

Soient $B = (e_1, \dots, e_n)$ une base de $E = \mathbb{R}$, $B' = (e'_1, \dots, e'_n)$ une autre base de $E = \mathbb{R}^n$ Comment on passe de $B \ni B'$ et inversement?

$$P_{B'\to B} = \begin{pmatrix} C1 & C2 & C3 \end{pmatrix}$$

Avec C_1 les coordonnées de e'_1 dans B, C_2 les coordonnées de e'_2 dans B et C_3 les coordonnées de e'_3 dans B.

On a alors

$$P_{B'\to B} \times \left(\vdots\right)_{B'} = \left(\vdots\right)_{B}$$

$$P_{B \to B'} = (C1 \quad C2 \quad C3) = P_{B' \to B}^{-1}$$

Avec C_1 les coordonnées de e_1 dans B', C_2 les coordonnées de e_2 dans B' et C_3 les coordonnées de e_3 dans B'.

$$\begin{array}{lll} Matrice & \leftrightarrow & \text{application} \\ A \in M_n(\mathbb{R}) & \leftrightarrow & X \in \mathbb{R} \to AX \in \mathbb{R} \end{array}$$

Diagonalisation

Définition. $A \in \mathcal{M}_n(\mathbb{R})$ est **diagonalisable** si $\exists P$ inversible telle que $P^{-1}AP = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots \\ 0 & \lambda_n \end{pmatrix} = D$

Remarque. $P^{-1}AP = D \Leftrightarrow A = PDP^{-1}$

$$AX_B = PDP^{-1}X_B$$

= $P(D(P^{-1}(X_B)))$
= $PDX_{B'}$
= $(DX_{B'})_B$

Attention. Toutes les matrices ne sont pas diagonalisables.

Exemple.
$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

Comment trouve-t-on D et P? ### Commencons par D

Définition. $A \in \mathcal{M}_n(\mathbb{R})$ le polynôme caractéristique de A est le polynôme, en λ , $det(\lambda I_n - A)$.

Exemple.
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

$$\chi_A(\lambda) = \begin{vmatrix} \lambda - 1 & -1 \\ 0 & \lambda - 1 \end{vmatrix}$$
$$= (\lambda - 1)^2$$

Exemple.
$$A = P \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix} P^{-1}$$

$$= D$$

$$\chi_{A}(\lambda) = det(\lambda I_{n} - PDP^{-1})$$

$$= det(\lambda PP^{-1} - PDP^{-1})$$

$$= det(P(\lambda I_{n} - D)P^{-1})$$

$$= det(P)det(\lambda I_{n} - D)det(P^{-1})$$

$$= \lambda I_{n} - D$$

$$= \chi_{D}(\lambda)$$

$$\begin{vmatrix} \lambda - \lambda_{1} & 0 & 0 \\ 0 & \lambda - \lambda_{2} & 0 \\ 0 & 0 & \lambda - \lambda_{3} \end{vmatrix}$$

$$= (\lambda - \lambda_{1})(\lambda - \lambda_{2})(\lambda - \lambda_{3})$$

Preposition. Si A est diagonalisable, alors les racines de $\chi_A(\lambda)$ sont exactement les termes diagonaux de D

Définition. Les racines de χ_A sont appelées les valeurs propres de A.

Remarque. Si λ est une valeur propre de A alors $\exists x \neq 0$ to $AX = \lambda X$.

Exemple.
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \chi_A(\lambda) = (\lambda - 1)^2 \text{ et } A \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 1 \times \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Remarque. $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ n'est pas diagonalisable.

La seule valeur propre de A est 1. Donc si A était diagonalisable on aurait

$$A = P \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} P^{-1}$$
$$= PI_2P^{-1}$$
$$= PP^{-1}$$
$$= I_2$$

Donc
$$A = I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 absurde

Donc A n'est pas diagonalisable!

Remarque. l'ensemble de valeurs propre s'apelle le sprecte de A et est noté $S_p(A)$

Comment trouve-t-on P?

Définition. Soient $A \in \mathcal{M}_n(\mathbb{R})$ et λ une valeur propre de A. Un vecteur propre de A associé à λ est un vecteur $X \neq 0$ tel que :

$$AX = \lambda X$$

Définition. L'espace propre de A associé à λ est noté :

$$E_{\lambda} = \{ x \in \mathbb{R}^n | AX = \lambda X \}$$

Pour trouver P, on cherche une base faite de vecteurs propres. Il faut donc déterminer $E_{\lambda} \ \forall \lambda \in S_p(A)$

Exemple.
$$\begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} = A$$

$$\chi_A(\lambda) = \begin{vmatrix} \lambda - 1 & -1 \\ 0 & \lambda - 2 \end{vmatrix}$$
$$= (\lambda - 1)(\lambda - 2)$$

Donc $S_P(A) = \{1, 2\}$

Calcul des espaces propres

$$E_2 = \{ X \in \mathbb{R}^2 \mid AX = 2X \}$$

$$\left\{ \begin{array}{lcl} -x+y & = & 0 \\ 0 & = & 0 \end{array} \right. \Leftrightarrow x=y$$

$$E_2 = \{ y \begin{pmatrix} 1 \\ 1 \end{pmatrix} \mid y \in \mathbb{R} \}$$

 Et

$$E_1 = \{ X \in \mathbb{R}^2 \mid \underset{(A-I_2)X=0}{AX = X} \}$$

$$\begin{cases} y = 0 \\ y = 0 \end{cases} \Leftrightarrow y = 0$$

$$E_1 = \{ X \begin{pmatrix} 1 \\ 0 \end{pmatrix} \mid X \in \mathbb{R} \}$$

Prenons alors
$$P = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

On a donc
$$P^{-1} = -\begin{pmatrix} 0 & -1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix}$$

$$P^{-1}AP = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$

Exemple. Soit $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ alors $\chi_A(\lambda) = \begin{vmatrix} \lambda & 1 \\ -1 & \lambda \end{vmatrix} = \lambda^2 + 1$

Il n'y a pas de racine réelle, donc A n'est pas diagonalisable.

Exemple. $\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} = 1$

$$\chi_A(\lambda) = \begin{vmatrix} \lambda & -1 & -1 \\ -1 & \lambda & -1 \\ -1 & -1 & \lambda \end{vmatrix} = (\lambda - 2)(\lambda + 1)^2$$

Donc $S_P(A) = \{-1, 2\}$

$$E_2 = \{ X \in \mathbb{R}^2 \mid (A - 2I_3)X = 0 \}$$

$$\begin{bmatrix} -2 & 1 & 1 & | & 0 \\ 1 & -2 & 1 & | & 0 \\ 1 & 1 & -2 & | & 0 \end{bmatrix} \sim \begin{bmatrix} -2 & 1 & 1 & | & 0 \\ 0 & -3/2 & 3/2 & | & 0 \\ 0 & 3/2 & -3/2 & | & 0 \end{bmatrix}$$

$$\sim \begin{bmatrix} -2 & 1 & 1 & | & 0 \\ 0 & 3/2 & -3/2 & | & 0 \\ 0 & 3/2 & 3/2 & | & 0 \\ 0 & -3/2 & 3/2 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

$$\sim \begin{bmatrix} -2 & 1 & 1 & | & 0 \\ 0 & -3/2 & 3/2 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

$$\sim \begin{bmatrix} -2 & 1 & 1 & | & 0 \\ 0 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

$$\sim \begin{bmatrix} -2 & 1 & 1 & | & 0 \\ 0 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

$$\Leftrightarrow \begin{cases} -2x - 2z & = 0 \\ y - z & = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x = z \\ y = z \end{cases}$$

$$E_2 = \{ z \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \mid z \in \mathbb{R} \}$$

$$E_{1} = \{x \in \mathbb{R}^{2} | (A + I_{n})x = 0\}$$

$$= \begin{cases} x + y + z = 0 \\ x + y + z = 0 \\ x + y + z = 0 \end{cases} \Leftrightarrow x + y + z = 0$$

$$E_{-1} = \left\{ \begin{pmatrix} -y - z \\ y \\ z \end{pmatrix} \mid (y, z) \in \mathbb{R}^2 \right\}$$
$$= \left\{ y \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \mid (y, z) \in \mathbb{R}^2 \right\}$$

On a alors, pour
$$P = \begin{pmatrix} 1 & -1 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
 la matrice $D = P^{-1}AP = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$

Retour aux lapins

$$N(t+1) = AN(t)$$
 où $A = \begin{pmatrix} 0 & \lambda \\ \epsilon_b & 0 \end{pmatrix}$

Regardons si A est diagonalisable.

$$\chi_A(X) = \begin{vmatrix} X & -\lambda \\ -\epsilon_b & X \end{vmatrix} = X^2 - \lambda \epsilon_b = (X - \sqrt{\lambda \epsilon_b})(X + \sqrt{\lambda \epsilon_b})$$

$$\text{Donc } S_p(A) = \{-\sqrt{\lambda \epsilon_a}, \sqrt{\lambda \epsilon_b}\}$$

et donc $\exists P$ inversible telle que

$$P^{-1}AP = \begin{pmatrix} -\sqrt{\lambda\epsilon_a} & 0\\ 0 & \sqrt{\lambda\epsilon_b} \end{pmatrix}$$

Étudions A^n

$$A = PDP^{-1}$$

$$A^{2} = (PDP^{-1})(PDP^{-1})$$

$$= PD^{2}P^{-1}$$

$$A^{3} = PD^{3}P^{-1}$$

 Et

$$A^n = PD^nP^{-1}$$

Il suffit donc de comprendre $D^n=\begin{pmatrix} (-\sqrt{\lambda\epsilon_b})^n & 0 \\ 0 & (\sqrt{\lambda\epsilon_b})^n \end{pmatrix}$

On a alors 3 cas de figure :

• Cas 1 $\epsilon_b \lambda = 1$: cas stationnaire, la popultaion reste a peu près la même

• Cas 2 $\epsilon_b \lambda > 1$: alors $\sqrt{\lambda \epsilon_b} > 1$ et $(\sqrt{\lambda \epsilon_b})^n \xrightarrow[n \to \infty]{} + \infty$ • Cas 3 $\epsilon_b \lambda < 1$: alors $\sqrt{\epsilon_b \lambda} < 1$ et $\sqrt{\epsilon_b \lambda} \xrightarrow[n \to +\infty]{} 0$