Homework6

陈淇奥 21210160025

2021年11月7日

Exercise 1 (2.2.6). 证明以上定义的 \triangleleft 是 $\kappa \times \kappa$ 上的良序

证明. 1. 传递性: 若 $(\alpha_1, \beta_1) \triangleleft (\alpha_2, \beta_2) \triangleleft (\alpha_3, \beta_3)$, 则

$$\begin{split} &\alpha_1+\beta_1<\alpha_2+\beta_2, 或\\ &\alpha_1+\beta_1=\alpha_2+\beta_2\wedge\alpha_1<\alpha_2, 或\\ &\alpha_1+\beta_1=\alpha_2+\beta_2\wedge\alpha_1=\alpha_2\wedge\beta_1<\beta_2 \end{split}$$

且

$$\begin{split} &\alpha_2+\beta_2<\alpha_3+\beta_3, 或\\ &\alpha_2+\beta_2=\alpha_3+\beta_3\wedge\alpha_2<\alpha_3, 或\\ &\alpha_2+\beta_2=\alpha_3+\beta_3\wedge\alpha_2=\alpha_3\wedge\beta_2<\beta_3 \end{split}$$

若 $\alpha_1+\beta_1<\alpha_2+\beta_2$,则 $\alpha_1+\beta_1<\alpha_2+\beta_2\leq\alpha_3+\beta_3$,因此 $(\alpha_1,\beta_1)<(\alpha_3,\beta_3)$

若
$$\alpha_1+\beta_1=\alpha_2+\beta_2\wedge\alpha_1<\alpha_2$$
,则 $\alpha_1+\beta_1=\alpha_2+\beta_2<\alpha_3+\beta_3$ 或 $\alpha_1+\beta_1=\alpha_3+\beta_3\wedge\alpha_1<\alpha_2\leq\alpha_3$,因此 $(\alpha_1,\beta_1)\lhd(\alpha_3,\beta_3)$

若
$$\alpha_1+\beta_1=\alpha_2+\beta_2\wedge\alpha_1=\alpha_2\wedge\beta_1<\beta_2$$
,则 $\alpha_1+\beta_1<\alpha_3+\beta_3$ 或 $\alpha_1+\beta_1=\alpha_3+\beta_3\wedge\alpha_1<\alpha_3$ 或 $\alpha_1+\beta_1=\alpha_3+\beta_3\wedge\alpha_1=\alpha_3\wedge\beta_1<\beta_2<\beta_3$,因此 $(\alpha_1,\beta_1)\lhd(\alpha_3,\beta_3)$

- 2. 非自反性: 若 $(\alpha_1, \beta_1) \triangleleft (\alpha_2, \beta_2)$ 且 $(\alpha_2, \beta_2) \triangleleft (\alpha_1, \beta_1)$,则 $\alpha_1 + \beta_1 > < \alpha_2 + \beta_2$ 或 $\alpha_1 > < \alpha_2$ 或 $\beta_1 > < \beta_2$,这与 < 的非自反性矛盾
- 3. 对任意的 (α_1, β_1) 与 (α_2, β_2) ,因为 < 有三岐性,于是 α_1 与 α_2 , β_1 与 β_2 只见有关系,因此 (α_1, β_1) 与 (α_2, β_2) 之间有关系
- 4. 对任意 $\kappa \times \kappa$ 的子集 $A \times B$ 。因为 A, B 是序数的集合,有 < 的最小值,令 $a = \min A, b = \min B$,于是对于任意 $\alpha \in A$ 与 $\beta \in B$, $a + b < a + \beta < \alpha + \beta$,于是 (a, b) 是 $A \times B$ 在 \triangleleft 的最小值。

Exercise 2 (2.2.9). 令 *A*, *B* 为集合

- 1. ^AB 为集合
- 2. 当 $B = \emptyset$ 时, ^{A}B 是什么?
- 3. 如果 $A = \emptyset$ 呢?
- 证明. 1. 因为 A,B 是集合,于是 $A\times B$ 是集合,于是 $^AB=\{R\in A\times B\mid R$ 是函数} 是集合
 - 2. 是 ∅
 - 3. 是 {∅}

Exercise 3 (2.2.16). 证明 $|\mathbb{R}| = 2^{\aleph_0}$

证明. $|\mathbb{R}| \geq 2^{\aleph_0}$: 对于每个 0,1 序列 $f \in 2^{\aleph_0}$,都可以唯一映射到康托集的一个元素,因此 $2^{\aleph_0} \leq |\mathbb{R}|$ 。

 $|\mathbb{R}| \leq 2^{\aleph_0}$: 定义 $f: \mathbb{R} \to \mathcal{P}(\mathbb{Q})$ 为 $f(r) = \{q \in \mathbb{Q} \mid q < r\}$ 。如果 $r \neq r'$,不妨令 r < r',则存在有理数 q 使得 r < q < r',因此 $f(r) \neq f(r')$,从而 f 是 1-1 的

Lemma 1. 对于集合 A, C, |A| = |A| = |A|

证明. 给定双射 $f: |A| \to A$,定义 $h: {}^{A}C \to {}^{|A|}C$ 为 $h(g) = g \circ f$ 若 $h(g_1) = h(g_2)$,则 $g_1 \circ f = g_2 \circ f$,因为 f 是双射,于是 $g_1 = g_2$ 对于任意 $k \in {}^{|A|}C$,则 $k \circ f^{-1} \in {}^{A}C$ 且 $h(k \circ f^{-1}) = k$ 因此 h 是双射

Lemma 2. 对于集合 $A, B, |A \times B| = ||A| \times |B||$

证明. 给定双射 $f:|A|\to A,\ g:|B|\to B,$ 定义映射 $h:|A|\times |B|\to A\times B$ 为 h((a,b))=(f(a),g(b))。

若 h((a,b)) = h((a',b')),则 f(a) = f(a') 且 g(b) = g(b'),因此 (a,b) = (a',b')

同时对任意 $(a,b) \in A \times B$, $h(f^{-1}(a),g^{-1}(b)) = (a,b)$,因此 h 是双射

Exercise 4 (2.2.12). 假设 κ, λ 是无穷基数,则

- 1. $\kappa^{\lambda \oplus \mu} = \kappa^{\lambda} \oplus \kappa^{\mu}$
- 2. $(\kappa^{\lambda})^{\mu} = \kappa^{\lambda \otimes \mu}$
- 3. $(\kappa \otimes \lambda)^{\mu} = \kappa^{\mu} \otimes \lambda^{\mu}$
- 4. $2^{\kappa} > \kappa$

证明. $\diamondsuit |A| = \lambda, |B| = \mu, |C| = \kappa 且 A, B, C$ 相互不交

1. 由引理

$$\begin{split} \kappa^{\lambda \oplus \mu} &= \left| {}^{\lambda \oplus \mu} C \right| = \left| {}^{|A \cup B|} C \right| = \left| {}^{A \cup B} C \right| \\ \kappa^{\lambda} \otimes \kappa^{\mu} &= \left| \left| {}^{|A|} C \right| \times \left| {}^{|B|} C \right| \right| = \left| {}^{A} C \times {}^{B} C \right| \end{split}$$

定义映射 $h: {}^{A \cup B}C \to {}^{A}C \times {}^{B}C$ 为 h(f) = (f|A, f|B)。若 h(f) = h(f'),则 (f|A, f|B) = (f'|A, f'|B),因为 $A \cap B = \emptyset$,f = f'。 对任意 $f \in {}^{A}C, g \in {}^{B}C$,则 $h(f \cup g) = (f, g)$ 。因此 h 是双射

2. $(\kappa^{\lambda})^{\mu} = |B(AC)|, \kappa^{\lambda \otimes \mu} = |A \times BC|$

对于任意函数 $f: A \times B \to C$,定义 $g_b: A \to C$ 为 $g_b(a) = f(a,b)$,定义 $h: B \to (A \to C)$ 为 $h(b) = g_b$ 。定义映射 $k: f \to h$. 如果 k(f) = k(f'),则对于任意 $(a,b) \in A \times B$,f(a,b) = k(f)(b)(a) = k(f')(b)(a) = f'(a,b),于是 f = f'。

同时对于任意 $h \in {}^B({}^AC)$, 令 f(a,b) = h(b)(a),则 k(f) = h。因此 k是双射

3. $(\kappa \otimes \lambda)^{\mu} = |B(C \times A)|, \kappa^{\mu} \otimes \lambda^{\mu} = |BC \times BA|$ 定义函数 $k : BC \times BA \rightarrow B(C \times A)$ 为 $k(f,g) = f \times g$,对于任意 $x \in B$, $(f \times g)(x) = (f(x), g(x))$ 。若 k(f,g) = k(f',g'),则对于任意 $\hat{x} \in B$,(f(x), g(x)) = (f'(x), g'(x)),于是 f = f',g = g',因此

对于任意 $g \in {}^B(C \times A)$, 令 $\pi_1 : C \times A \to C$, $\pi_2 : C \times A \to A$ 为对应的投影函数,则 $k(\pi_1 \circ g, \pi_2 \circ g) = g$ 。因此 k 是双射。

4. $2^{\kappa} > \kappa$ 等价于 $|2^{A}| > A$ 。对任意函数 $f: A \to \mathcal{P}(A)$,令 $Y = \{x \in A \mid x \notin f(x)\}$,如果存在 $a \in A$ 使得 f(a) = Y,则 $a \in Y$ 当且仅当 $a \notin f(a)$ 当且仅当 $a \notin Y$ 。因此 f 不是满射。因此 $2^{\kappa} \neq \kappa$ 。同时我们有单射 $x \mapsto \{x\}$,于是 $2^{\kappa} > \kappa$

2. 对任意 α , cf(α) < α

(f,g) = (f',g')

- 3. 任意后继序数 $\alpha = \beta + 1$ 的共尾是 1
- 4. 对任意极限序数 $\alpha > 0$, $cf(\alpha) \ge \omega$
- 证明. 1. 若 $A \subset \alpha$ 无界,因此对于任意 $\beta \in \alpha$,都存在 $\xi \in A$ 使得 $\gamma \leq \xi < \xi + 1$,因此 $\alpha \subseteq \bigcup \{\xi + 1 \mid \xi \in A\}$ 。同时对任意 $\xi \in A$,因为

 $A \subset \alpha$,因此 $\xi \subset \alpha$,因此 $\xi+1=\xi\cup\{\xi\}\subset \alpha$,所以 $\bigcup\{\xi+1\mid \xi\in A\}\subseteq \alpha$ 。 于是 $\alpha=\bigcup\{\xi+1\mid \xi\in A\}$

若 $\alpha = \bigcup \{\xi + 1 \mid \xi \in A\}$,则对于任意 $\beta < \alpha$,都存在 $\xi \in A$ 使得 $\beta < \xi + 1$,因此 $\beta \le \xi$,因此 A 无界

- 2. 因为恒等映射 $id: \alpha \to \alpha$ 是一个共尾映射, 因此 $cf(\alpha) \le \alpha$
- 3. 令映射 $f:1\to \alpha$ 为 $f(0)=\beta$,而 β 在 α 中无界,因此 f 是共尾映射。 因为 $\mathrm{cf}(\alpha)\neq 0$,因此 $\mathrm{cf}(\alpha)=1$
- 4. 因为 $A \subset \alpha$ 无界当且仅当 $\alpha = \bigcup \{\xi + 1 \mid \xi \in A\}$ 。若 $|A| \in \omega$,则 $\bigcup \{\xi + 1 \mid \xi \in A\}$ 为后继序数,矛盾

Exercise 6. 对任意序数 α, β , $\operatorname{cf}(\aleph_{\alpha}^{\aleph_{\beta}}) > \aleph_{\beta}$

证明. 若 $\operatorname{cf}(\aleph_{\alpha}^{\aleph_{\beta}}) \leq \aleph_{\beta}$,则

$$\left(\aleph_{\alpha}^{\aleph_{\beta}}\right)^{\mathrm{cf}(\aleph_{\alpha}^{\aleph_{\beta}})} \leq \left(\aleph_{\alpha}^{\aleph_{\beta}}\right)^{\aleph_{\beta}} = \aleph_{\alpha}^{\aleph_{\beta}}$$