TEMA4: Implementación de Filtros Discretos

Contenidos del tema:

- ☐ El muestreo y sus consecuencias
- ☐ Relaciones entre señales y sus transformadas:
- ☐ Especificaciones de filtros continuos y discretos
 - Aproximaciones usuales
 - ◆Ejemplos
- ☐ Técnicas de implementación de filtros IIR:
 - ◆Respuesta impulsiva invariante
 - Transformación bilineal
- ☐ Implementación de filtros FIR

J.L.Huertas

Algunas Consideraciones al Procesado Discreto

☐ La frecuencia de muestreo (en relación con el contenido en frecuencia de la señal de entrada) condiciona la información disponible y la "convertibilidad" entre el dominio continuo y el discreto.

☐ La frecuencia de muestreo (en relación con el contenido en frecuencia de la señal de entrada) condiciona la forma del espectro discreto.

☐ La precisión de la transformación discreta-continua depende de la calidad del algoritmo de interpolación y de la frecuencia de muestreo.

☐ La frecuencia de muestreo (en relación con el contenido en frecuencia de la señal de entrada) condiciona la forma del espectro discreto.

J.L.Huertas

Restricciones al Procesado Discreto

■ Teorema	de Ny	quist:
-----------	-------	--------

Para poder recuperar una señal muestrada debemos usar una frecuencia de muestreo por lo menos doble que la frecuencia significativa más alta de la señal de entrada.

Sea la banda de interés de la señal de entrada: w < w_{max}

Sea la frecuencia de muestreo: W_s

Teorema de Nyquist:

$$w_s > 2w_{max}$$

- ☐ Interesa limitar la banda de la señal de entrada usando un filtro de paso de baja
- ☐ Es imprescindible colocar un filtro de paso de baja al reconvertir la información como señal continua
- **☐** Ambos filtros son CONTINUOS!

Maneras de Filtrar Salida Continua Entrada Continua Filtro Continuo Filtro **Filtro** Continuc C_k Filtro Filtro Filtro Continuo Continuo Objetivo: Poder hacer un procesado "Similar" en todos los casos

J.L.Huertas

Síntesis de Filtros Discretos

Tareas

- ☐ Encontrar funciones en z que sean "equivalentes" a filtros continuos
- Determinar procedimientos para construir esas funciones en z
- ☐ Elegir una estructura de sistema y determinar sus coeficientes
- Seleccionar las características necesarias para "soportar" la información (n° de bits, frecuencia de muestreo, código binario, tipo de representación, grado de paralelismo...)
- ☐ Escoger los componentes y diseñarlos
- ☐ Verificar los resultados

Necesidades

- ☐ Criterios para comparar entre opciones
- Estimación de la "calidad" de una solución

Síntesis de Filtros Discretos

Relaciones entre Señales y sus Transformadas

Expresión Alternativa:

$$X^*(j\omega) = X_D(e^{j\omega}) = \frac{1}{T_S} \sum_{n=-\infty}^{\infty} X(j\frac{\omega}{T_S} + jn\frac{2\pi}{T_S})$$

Relaciones entre Señales y sus Transformadas

ESCALADO DIGITAL

 $T_s = 3 \text{ ms}$

 $T_s = 2 \text{ ms}$

- \square Importa NO el valor absoluto de W_0 sino su valor relativo respecto a T_s (o a W_s)
- \square Es necesario hacer una normalización, por ejemplo: $W_S = W_S T_S = 2p$

Relaciones entre Señales y sus Transformadas

ESCALADO DIGITAL

 $T_s = 3 \text{ ms}$

 $T_s = 2 \text{ ms}$

- \square Importa NO el valor absoluto de W_0 sino su valor relativo respecto a T_s (o a W_s)
- \square Es necesario hacer una normalización, por ejemplo: $W_S = W_S T_S = 2p$

Relaciones entre Señales y sus Transformadas

ESCALADO DIGITAL

$$T_s = 3 \text{ ms}$$

$$T_s = 2 \text{ ms}$$

Relaciones entre Señales y sus Transformadas

$$X(e^{j\omega}) = X^*(j\omega) = X_D(e^{j\omega}) = \frac{1}{T_s} \sum_{n=-\infty}^{\infty} X(j\frac{\omega}{T_s} + jn\frac{2\pi}{T_s})$$

$$x_c(t) = señal continua$$

$$x^*(t) = x_s(t) = señal muestreada$$

 $x(n) = x_c(t)|_{t=nTs} = \text{secuencia numérica } Z$

$$\omega = \Omega T_{S}$$

X(z)

$$X_s(j\Omega) = X(e^{j\Omega T}s)$$

$$X(e^{j\omega}) = X_s(j\omega/T_s)$$

Relaciones entre Señales y sus Transformadas

$$x_c(t) = señal continua$$

$$x_c(nT_s) = se\tilde{n}al discreta$$

$$x(n) = x_c(t)|_{t=nTs}$$
 = secuencia numérica

$$x_{c}(nT_{s}) = x_{c}(t)|_{t=nTs}$$
$$x(n) = x_{c}(nT_{s})$$

$$x^*(t) = x_s(t) = \text{se\~nal muestreada}$$

$$x_{S}(t) = \sum_{k=-\frac{1}{2}}^{\frac{1}{2}} x_{C}(nT_{S}) d(t-nT_{S}) = \sum_{k=-\frac{1}{2}}^{\frac{1}{2}} x(n) d(t-nT_{S})$$

Secuencia Transformada Z DTFT
$$X(z)|_{z=e}^{jW}$$

Señal Transf. Laplace CTFT $X(s)|_{s=jW}$
 w -----> "frecuencia" digital

 W -----> "frecuencia" analógica

J.L.Huertas

CTFT: Continuous-time Fourier Transform

$$X_{S}(jW) = \int_{-\frac{1}{2}}^{\frac{1}{2}} X_{S}(t) e^{-jWt} dt = \sum_{n = -\frac{1}{2}}^{\frac{1}{2}} X_{n}(n) e^{jWnT_{S}}$$

DTFT: Discrete-time Fourier Transform

$$X(e^{j\mathbf{W}}) = X_{\mathbf{D}}(e^{j\mathbf{W}}) = X(z)\Big|_{z=e^{j\mathbf{W}}} = \sum_{n=-\mathbf{Y}}^{\mathbf{Y}} x(n)e^{-j\mathbf{W}n}$$

sii ----> w = W
$$T_S$$

$$X_S(jW) = X \begin{pmatrix} jWT_S \\ e \end{pmatrix}$$

$$X \begin{pmatrix} e^{jW} \end{pmatrix} = X_S \begin{pmatrix} j\frac{W}{T_S} \end{pmatrix}$$

Espectro original:

$$\mathbf{x}_{\mathbf{c}}(\mathbf{t})$$
 \longrightarrow $\mathbf{X}_{\mathbf{c}}(\mathbf{j}\mathbf{W})$

CTFT: $x_s(t)$ (otra visión):

$$X_{S}(jW) = \frac{1}{2p}[X_{c}(jW) \text{ Å } P(jW)] = \frac{1}{T_{s}} \sum_{n=-\frac{1}{2}}^{\frac{1}{2}} X_{c}[j(W-nW_{s})]$$
 $W_{s} = \frac{2p}{T_{s}}$

$$X\begin{pmatrix} jWT_{S} \\ e \end{pmatrix} = \frac{1}{T_{S}} \sum_{n = -Y}^{Y} X_{c}[j(W - nW_{S})]$$

$$X(e^{jW}) = \frac{1}{T_{s}} \sum_{n=-Y}^{Y} X_{c} \left(j \frac{W - 2pn}{T_{s}} \right)$$

Especificaciones de Filtros Discretos

J.L.Huertas

Filtros de Paso de Baja Discretos

Definición del Problema:

Obtener una función de sistema, H(z), (o su expresión en diferencias finitas) que tenga una banda pasante $[0, \mathbf{w}_p]$ con una tolerancia \mathbf{d}_1 (ó R_p en dB), y una banda de rechazo $[\mathbf{w}_s, \mathbf{p}]$ con tolerancia \mathbf{d}_2 (ó A_s en dB)

Especificación de Filtros Continuos

Escala Lineal Relativa:

 Ω = frecuencia "analógica"

$$\frac{1}{1+e^2} \pounds |H_a(jW)|^2 \pounds 1, \qquad (|W| \pounds W_p)$$

$$|H_a(jW)|^2$$

SETI-03-04 J.L.Huertas

Filtros de Butterworth: Prototipo P. Baja

N es el orden del Filtro

Módulo al cuadrado:

$$\left|H_a(jW)\right|^2 = \frac{1}{1 + \left(\frac{W}{W_c}\right)^{2N}}$$

Función de transferencia:

$$H_a(s)(H_a(-s)) = |H_a(jW)|^2 \Big|_{W = s \neq j} = \frac{(jW)^{2N}}{s^{2N} + (jW_c)^{2N}} \quad p_k = \Omega_c e^{j\pi(2k+N+1)/2N}$$

$$p_k = \Omega_c e^{j\pi(2k+N+1)/2N}$$

SETI-03-04 J.L.Huertas

Filtros de Butterworth: Prototipo P. Baja

N es el orden del Filtro

Módulo al cuadrado:

$$|H_a(j\mathbf{w})|^2 = \frac{1}{1 + \left(\frac{\mathbf{w}}{\mathbf{w}_c}\right)^{2N}}$$

Función de transferencia:

$$H_a(s)(H_a(-s)) = |H_a(jw)|^2 \Big|_{w = s \neq j} = \frac{(jw)^{2N}}{s^{2N} + (jw_c)^{2N}}$$

$$H_{a}(s) = \frac{(\mathbf{w}_{c})^{N}}{\prod_{LHP} (s - p_{k})}$$

Filtros de Butterworth: Ecuaciones de Diseño

Problema:

- Dados W_p , R_p , W_s y A_s
- Obtener N y W_c

En
$$W = W_p$$
:

$$-10\log|\mathbf{H_a(jW)}|^2 = \mathbf{R_p}$$

$$-10\log[1+(W_{p}/W_{c})^{2N}]^{-1}=R_{p}$$

En
$$W = W_s$$
:

$$-10\log|\mathbf{H_a(jW)}|^2 = \mathbf{A_s}$$

$$-10\log[1+(W_s/W_c)^{2N}]^{-1}=A_s$$

J.L.Huertas

Filtros de Butterworth: Ecuaciones de Diseño

$$N = \begin{bmatrix} \log \left[\begin{pmatrix} R_p & \times 10 & \\ 10 & -1 \end{pmatrix} \times \begin{pmatrix} A_s & \times 10 & \\ 10 & -1 \end{pmatrix} \right] \\ \frac{2\log(W_p & \times W_s)}{} \end{bmatrix}$$

$$W_c = \frac{W_p}{\begin{pmatrix} R_p & 10 \\ 10 & -1 \end{pmatrix}^{-2N}}$$

$$W_{c} = \frac{W_{s}}{\left(10^{A_{s}} \times 10^{-2N}\right)^{-2N}}$$

Filtros de Butterworth: Ejemplo

• Dados $W_p = 0.2p$, $R_p = 7 dB$, $W_s = 0.3p$, $A_s = 16 dB$

$$N = \left| \frac{\log \left[\left(10^{0,7} - 1 \right) \times \left(10^{1,6} - 1 \right) \right]}{2\log((0,2p) \times (0,3p))} \right| = \lceil 2,79 \rceil = 3$$

$$W_{c} = \frac{0.2p}{\left(10^{0.7} - 1\right)^{-6}} = 0.4985$$

$$W_{c} = \frac{0.3p}{\left(10^{1.6} - 1\right)^{-6}} = 0.5122$$

$$W_c = 0.5$$

$$H_a(s) = \frac{0,125}{(s+0,5)(s^2+0,5s+0,25)}$$

Filtros de Butterworth: Ejemplo

 $\mathbf{A} =$

1.0000 0.5000 0.2500 0 1.0000 0.5000

 $\mathbf{A} =$

1.0000 0.4985 0.2485 0 1.0000 0.4985

B= 0 0 0.1238

Filtros de Chebyshev-I: Ejemplo

 $\mathbf{A} =$

1.0000 0.4233 0.1103 1.0000 0.1753 0.3895

B = 0 0.0383

Filtros de Chebyshev-II: Ejemplo

 $\mathbf{A} =$

1.0000 1.9521 1.4747 1.0000 0.3719 0.6784

B = 0 0 0.1585 1.0000 0 6.0654 1.0000 0 1.0407

Filtros Elípticos: Ejemplo

 $\mathbf{A} =$

 $\begin{array}{cccc} 1.0000 & 0.1696 & 0.4102 \\ & 0 & 1.0000 & 0.4435 \end{array}$

B =
0 0 0.274
1.0000 0.1696 0.4102
0 1.0000 0.4435

Técnicas de Aproximación para Filtros Discretos

Filtros IIR ó Recursivos

- ☐ Método de la respuesta impulsiva invariante
- ☐ Modificación del método de la respuesta impulsiva invariante
- ☐ Transformación z apareada
- ☐ Transformación bilineal

Filtros FIR ó No-recursivos

- ☐ Series de Fourier
- ☐ Fórmulas de análisis numérico

Filtros IIR: Respuesta Impulsiva Invariante

Idea: Imitar H_A(s) a través de la función continua del bloque filtro + muestreador

$$H_A^*(j\omega) = H_D(e^{j\omega T}) = \frac{h_A(0+)}{2} + \frac{1}{T} \sum_{n=-\infty}^{\infty} H_A(j\omega + jn\omega_s)$$

Procedimiento:

- 1.- Seleccionar un filtro analógico, $H_A(s)$
- 2.- Determinar $h_A(t)$
- 3.- Discretizar la función temporal, $h_A(nT)$
- 4.- Calcular la transformada z, $\mathbb{Z}[h_A(nT)]$

SETI-03-04 J.L.Huertas

Filtros IIR: Respuesta Impulsiva Invariante

Aplicación del Procedimiento (suposiciones):

- □ Para señales limitadas en banda, $\mathbf{H}_{\mathbf{A}}(\mathbf{j}\mathbf{w}) \approx 0$, para $|\mathbf{w}| \ge \mathbf{w}_{\mathbf{s}}/2$ Se cumplirá: $\sum \mathbf{H}_{\Delta}(\mathbf{j}\mathbf{w} + \mathbf{j}\mathbf{k}\mathbf{w}_{s}) \approx 0$, para $|\mathbf{w}| \leq \mathbf{w}_{s}/2$
- \square Si además $\mathbf{h}_{\mathbf{A}}(\mathbf{0}+)=\mathbf{0}$

Se cumplirá:
$$H_A^*(j\omega) = H_D(e^{j\omega T}) \approx \frac{1}{T} H_A(j\omega)$$
; para $|w| \le w_s/2$

Si grado [N(s)] < grado [D(s)] - 1 ---- > Se cumplen las hipótesis

Para polos simples:

$$H_A(s) = \sum_{i=1}^{N} \frac{A_i}{s - p_i}$$

$$h_{A}(t) = \sum_{i=1}^{N} A_{i} e^{p_{i}t}$$

$$H_A(s) = \sum_{i=1}^{N} \frac{A_i}{s - p_i}$$
 $h_A(t) = \sum_{i=1}^{N} A_i e^{p_i t}$ $h_A(nT) = \sum_{i=1}^{N} A_i e^{p_i nT}$

$$H_D(z) = \sum_{i=1}^{N} \frac{A_i z}{z - e^{p_i T}}$$

SETI-03-04 J.L.Huertas

Filtros IIR: Respuesta Impulsiva Invariante

Utilidad para funciones "sólo-polos" Si el filtro analógico es estable, lo es el digital

Ejemplo:

$$H_A(s) = \frac{1}{s^2 + 5s + 4}$$

Descomposición:
$$H_A(s) = \frac{1}{3} \frac{1}{s+1} - \frac{1}{3} \frac{1}{s+4}$$

$$h_A(t) = \frac{1}{3}e^{-t} - \frac{1}{3}e^{-4t}$$

$$h_A(t) = \frac{1}{3}e^{-t} - \frac{1}{3}e^{-4t}$$
 $h_A(nT) = \frac{1}{3}e^{-nT} - \frac{1}{3}e^{-4nT}$

Filtro Digital

$$H_D(z) = \frac{\frac{1}{3}z}{z - e^{-T}} - \frac{\frac{1}{3}z}{z - e^{-4T}} = \frac{e^{-T} - e^{-4T}}{3} \frac{z}{\left(z - e^{-T}\right)\left(z - e^{-4T}\right)}$$

Filtros IIR: Respuesta Impulsiva Invariante

$$H_A(s) = \frac{s+1}{s^2 + 5s + 6} = \frac{2}{s+3} - \frac{1}{s+2}$$

$$H_D(z) = \frac{2}{1 - e^{-3T}z^{-1}} - \frac{1}{z - e^{-2T}z^{-1}}$$

$$H_D(z) = \frac{1 - 0,8966z^{-1}}{1 - 1,5595z^{-1} + 0,6065z^{-2}}$$

Filtros IIR: Respuesta Impulsiva Invariante

Ejemplo:

$$H_{A}(s) = \frac{1}{s^{2} + 5s + 4} \qquad H_{D}(z) = \frac{\frac{1}{3}z}{z - e^{-T}} - \frac{\frac{1}{3}z}{z - e^{-4T}} = \frac{e^{-T} - e^{-4T}}{3} \frac{z}{\left(z - e^{-T}\right)\left(z - e^{-4T}\right)}$$

$$H_D(z) = K \frac{z}{(z - p_1)(z - p_2)}$$

$$H_D(z) = \frac{Kz^{-1}}{1 - (p_1 + p_2)z^{-1} + p_1 p_2 z^{-2}}$$

Filtros IIR: Diseño

Especificaciones del filtro digital:

$$w_p, R_p, w_s y A_s$$

Procedimiento (Filtro):

1.- Elegir T y determinar las frecuencias analógicas de interés:

$$W_p = w_p/T$$
, $W_s = w_s/T$

- 2.- Diseñar un filtro analógico, H_a(s), usando 1.-
- 3.- Desarrollar $\mathbf{H}_{\mathbf{a}}(\mathbf{s})$ en fracciones simples
- 4.- Transformar los polos analógicos, p_k , en digitales, e^p_k ^T

SETI-03-04 J.L.Huertas

Filtros IIR: Butterworth, Ejemplo

$$\mathbf{w_p} = \mathbf{0.2p},$$

$$w_s = 0.3p$$

$$w_p = 0.2p,$$

 $R_p = 1 dB,$

$$A_s = 15dB$$

A =

1.0000 -0.9973 0.2570

1.0000 -1.0691 0.3699

1.0000 -1.2972 0.6949

 $\mathbf{B} =$

1.8557 -0.6304

-2.1428 1.1454

0.2871 -0.4466

Filtros IIR: Butterworth, Ejemplo

A =

1.0000 -0.9973 0.2570

1.0000 -1.0691 0.3699

1.0000 -1.2972 0.6949

 $\mathbf{B} =$

1.8557 -0.6304

-2.1428 1.1454

0.2871 -0.4466

Filtros IIR: Transformación bilineal

Técnicas anteriores: Emular la respuesta al impulso del filtro analógico

Transformación bilineal: Emular la respuesta temporal del filtro analógico para cualquier excitación

Alternativa:

Sea:
$$H_I(s) = \frac{1}{s}$$
; $h_I(t) = \begin{cases} 1, t \ge 0 + \\ 0, t \le 0 - \end{cases}$

- Respuesta a una señal arbitraria: $y(t) = \int_0^t x(\tau)h_I(t-\tau)d\tau$
- □ Para $0+< t_1 < t_2$

$$y(t_2) - y(t_1) = \int_{t_1}^{t_2} x(\tau) h_I(t - \tau) d\tau = \int_{0}^{t_2} x(\tau) h_I(t_2 - \tau) d\tau - \int_{0}^{t_1} x(\tau) h_I(t_1 - \tau) d\tau = \int_{t_1}^{t_2} x(\tau) d\tau$$

Aproximando cuando $t_1 \rightarrow t_2$

$$y(t_2) - y(t_1) \approx \frac{t_2 - t_1}{2} [x(t_1) + x(t_2)]$$

Filtros IIR: Transformación bilineal

Si $t_1 = nT - T$, $t_2 = nT$:

$$y(t_2) - y(t_1) \approx \frac{t_2 - t_1}{2} [x(t_1) + x(t_2)]$$
 $y(nT) - y(nT - T) \approx \frac{T}{2} [x(nT - T) + x(nT)]$

$$Y(z) - z^{-1}Y(z) = \frac{T}{2} \left[z^{-1}X(z) + X(z) \right]$$

La Función de Transferencia del integrador digital será: $H_I(z) = \frac{Tz+1}{2z-1}$

Esto equivale a sustituir s por: $s = \frac{2(z-1)}{T}$

Filtros IIR: Transformación bilineal

Significado de la transformación en el dominio s:

$$y(t_2) - y(t_1) \approx \frac{t_2 - t_1}{2} [x(t_1) + x(t_2)]$$
 $y(nT) - y(nT - T) \approx \frac{T}{2} [x(nT - T) + x(nT)]$

$$Y(z) - z^{-1}Y(z) = \frac{T}{2} \left[z^{-1}X(z) + X(z) \right]$$

La Función de Transferencia del integrador digital será: $H_I(z) = \frac{Tz+1}{2z-1}$

Esto equivale a sustituir s por: $s = \frac{2(z-1)}{T(z+1)}$

Comparando Transformaciones

$$Re(s) = \sigma < 0$$
 -----> $|z| < 1$ [interior del círculo unidad]

$$Re(s) = \sigma = 0$$
 -----> $|z| = 1$ [circunferencia unidad]

$$Re(s) = \sigma > 0$$
 -----> $|z| > 1$ [exterior del círculo unidad]

Todas las "tiras" semi-infinitas de anchura $2\pi/T$ se transforman en el círculo unidad

Todo filtro analógico causal y estable se transforma en uno digital causal y estable

$$Si H_a(j\Omega) = H_a(j\omega/T) = 0 \text{ para } |\Omega| > \pi/T -----> H(e^{j\omega}) = (1/T)H_a(j\omega/T) \text{ para } |\omega| < \pi$$

Filtros IIR: Transformación bilineal

Procedimiento:

1.- Seleccionar un filtro analógico, $H_A(s)$

2.- Sustituir s en
$$\mathbf{H_A}(\mathbf{s})$$
, según: $s = \frac{2(z-1)}{T}$

3.- La función resultante, $\mathbf{H}_{\mathbf{D}}(\mathbf{z})$, es el filtro digital buscado

En resumen:
$$\mathbf{H_D}(\mathbf{z}) = \mathbf{H_A}(\mathbf{s})|$$
 para $s = \frac{2(z-1)}{T(z+1)}$

Ejemplo:

$$H_{A}(s) = \frac{\frac{2(z-1)}{T(z+1)}}{\frac{2}{s^{2}+5s+4}} - \dots > H_{D}(z) = \frac{\frac{2(z-1)}{T(z+1)}}{\frac{4}{T^{2}(z+1)^{2}} + \frac{10(z-1)}{T(z+1)} + 4}$$

Filtros IIR: Transformación bilineal

x(n)

Ejemplo:

$$H_{A}(s) = \frac{s}{z^{2} + 5s + 4} \qquad ---> \qquad H_{D}(z) = \frac{\frac{2(z-1)}{T(z+1)}}{\frac{4}{T^{2}(z-1)^{2}} + \frac{10(z-1)}{T(z+1)} + 4}$$

Ejemplo:

Filtro Digital:

$$H_D(z) = \frac{\alpha \left(1 - z^{-2}\right)}{a_1 + a_2 z^{-1} + a_3 z^{-2}}$$

$$\alpha = \frac{4}{T^2} + \frac{10}{T} + 4$$

$$a_1 = (\alpha + 4)(\alpha + 1)$$
; $a_2 = (2 - \alpha)(2 + \alpha)$; $a_1 = (\alpha - 4)(\alpha - 1)$

Filtros IIR: Diseño usando la trans. bilineal

Especificaciones del filtro digital:

$$W_p$$
, R_p , W_s y A_s

Procedimiento (Filtro):

1.- Elegir T y determinar las frecuencias analógicas de interés:

$$W_p = F_1(w_p, 1/T), W_s = F_2(w_s, 1/T)$$

- 2.- Diseñar un filtro analógico, H_a(s), usando 1.-
- 3.- Sustituir s en $H_a(s)$ usando la transformación bi-lineal

SETI-03-04 J.L.Huertas

Filtros IIR: Butterworth, Ejemplo

$$w_p = 0.2p,$$

 $R_p = 1 dB,$

$$w_s = 0.3p$$

$$R_p = 1 dB$$
,

$$A_s = 15dB$$

 $\mathbf{B} =$

2.0327 1.0000 1.0331

1.0000 1.9996 1.0000

1.0000 1.9676 0.9680

A =

-0.9459 0.2342 1.0000 -1.0541 1.0000 0.3753

-1.3143 0.7149 1.0000

Filtros IIR: Butterworth, Comparación

A =				
		A =		
1.0000 -0.9973				
1.0000 -1.0691 0.3699		1.0000	-0.9459	0.2342
1.0000 -1.2972 0.6949		1.0000	-1.0541	0.3753
	C =	1.0000	-1.3143	0.7149
B =				
	5.7969e-004	$\mathbf{B} =$		
1.8557 -0.6304				
-2.1428 1.1454		1.0000	2.0327	1.0331
0.2871 -0.4466		1.0000	1.9996	1.0000
		1.0000	1.9676	0.9680

B =			
1.0000	2.0000	1.0000	
1.0000	2.0000	1.0000	
1.0000	2.0000	1.0000	

B =

1.0000 2.0183 1.0186
1.0000 1.9814 0.9817
1.0000 2.0004 1.0000

Filtros IIR: Butterworth, Comparación

Filtros IIR: Transformación bilineal

Relaciones:

$$s = \frac{2(z-1)}{T(z+1)} = \sigma + j\omega$$

$$z = \frac{\frac{2}{T} + s}{\frac{2}{T} - s} = r \exp(j\omega)$$

$$r = \left[\frac{\left(\frac{2}{T} + \sigma\right)^2 + \omega^2}{\left(\frac{2}{T} - \sigma\right)^2 + \omega^2} \right]^{1/2}$$

Filtros IIR: Transformación bilineal

WARPING:

$$\mathbf{H}_{\mathbf{D}}(\mathbf{z}) = \mathbf{H}_{\mathbf{A}}(\mathbf{s})| \text{ para } s = \frac{2}{T} \frac{(z-1)}{z+1} \quad ----> \mathbf{H}_{\mathbf{D}}(\mathbf{z}) = \mathbf{H}_{\mathbf{D}}(\mathbf{e}^{\mathbf{j}\mathbf{W}}) = \mathbf{H}_{\mathbf{D}}(\mathbf{e}^{\mathbf{s}'})$$

$$s = \frac{2e^{s'} - 1}{Te^{s'} + 1} = \frac{2e^{\frac{s'}{2}} - \frac{s'}{2}}{Te^{\frac{s'}{2}} + e^{\frac{s'}{2}}} = \frac{2}{Te^{\frac{s'}{2}}} \frac{\sinh \frac{s'}{2}}{\cosh \frac{s'}{2}}$$

Filtros IIR: Transformación bilineal

WARPING:

2.- Sustituir s en $H_A(s)$, según:

$$\mathbf{H_D}(\mathbf{z}) = \mathbf{H_A}(\mathbf{s})| \text{ para } s = \frac{2(z-1)}{T(z+1)} - \cdots > \mathbf{H_D}(\mathbf{e^{jw}}) = \mathbf{H_A}(\mathbf{jW})$$

$$\Omega = \frac{2}{T} \frac{e^{j\omega} - 1}{e^{j\omega} + 1} = \frac{2}{T} \frac{e^{j\frac{\omega}{2}} - e^{-j\frac{\omega}{2}}}{e^{j\frac{\omega}{2}} - j\frac{\omega}{2}} = \frac{2}{T} \frac{\sin\frac{\omega}{2}}{\cos\frac{\omega}{2}}$$

$$\Omega = \frac{2}{T} \tan \frac{\omega}{2} \quad ----> \quad W < 0.3/T ---> \quad \omega \approx \Omega$$

Hay una evidente falta de linealidad!!!

Filtros IIR: Transformación bilineal

WARPING: No-linealidad:

$$\Omega = \frac{2}{T} \tan \frac{\omega}{2}$$
 ----> $W < 0.3/T ---> \omega \approx \Omega$

Filtros IIR: Transformación bilineal

$$\Omega = \frac{2}{T} \tan \frac{\omega}{2}$$
 ----> $\omega \approx \Omega$

Filtros IIR: Transformación bilineal

Filtros IIR: Transformación bilineal

Pre-warping:

Seleccionar las frecuencias de interés:

ej. Paso-baja: límite de la banda pasante, (W_p) **y límite de la de corte,** (W_c)

Transformar esas frecuencias de interés según:

$$\omega_p = 2 \arctan \frac{\Omega_p T}{2}$$

$$\omega_c = 2 \arctan \frac{\Omega_c T}{2}$$

ó Corregir la posición de los polos y ceros:

$$z_{m} = \frac{\frac{2}{T} + \sigma_{m}}{\frac{2}{T} - \sigma_{m}}$$

$$p_k = \frac{\frac{2}{T} + s_k}{\frac{2}{T} - s_k}$$

Ejemplo: (T=1)

$$H_{A}(s) = \frac{s+1}{s^{2} + 5s + 6} - H_{D}(z) = \frac{2\left(\frac{(z-1)}{z+1}\right) + 1}{4\frac{(z-1)^{2}}{(z+1)^{2}} + 10\frac{(z-1)}{z+1} + 6} ;$$

$$H_D(z) = \frac{\left(0.15 + 0.1z^{-1} - 0.05z^{-2}\right)}{1 + 0.2z^{-1}}$$

$$z_{m} = \frac{\frac{2}{T} + \sigma_{m}}{\frac{2}{T} - \sigma_{m}}$$

$$\begin{cases} \sigma_1 = -2, \ \sigma_2 = -3; \ s_3 = -1 \\ z_1 = 0, \ z_2 = -0.02; \ p_3 = 0.333; \ p_4 = 1 \end{cases}$$

Filtros FIR: Propiedades

Filtro no recursivo:

$$H(z) = \sum_{n=0}^{N-1} h(nT)z^{-n} = z^{-(N-1)} \sum_{n=0}^{N-1} h(nT)z^{N-1-n}$$

Respuesta en frecuencia:

$$H(e^{j\omega T}) = M(\omega)e^{j\theta(\omega)} = \sum_{n=0}^{N-1} h(nT)e^{-j\omega nT}$$
 N-1 polos en el origen

$$M(\omega) = \left| H(e^{j\omega T}) \right|$$

$$\theta(\omega) = \arg H\left(e^{j\omega T}\right)$$

Fase:
$$\tau_p = -\frac{\theta(\omega)}{\omega}$$
; Retraso de grupo: $\tau_g = -\frac{d}{d\omega}\theta(\omega)$

Filtros FIR: Propiedades

Filtros de Retraso Constante:

Para que t_p y t_g sean constantes:

$$\theta(\omega) = -\tau\omega$$

$$N-1$$

$$\sum_{n=0}^{N-1} h(nT)\sin \omega nT$$

$$\frac{1}{N-1} = 0$$

$$\sum_{n=0}^{N-1} h(nT)\cos \omega nT$$

$$\sum_{n=0}^{N-1} h(nT)\sin(\tau\omega - \omega nT) = 0$$

Soluciones:
$$\tau = \frac{(N-1)T}{2}$$
 ; $h(nT) = h[(N-1-n)T]$; para $0 \le n \le N-1$

Es posible mantener la fase y el retraso de grupo constantes en toda la banda pasante!!

Filtros FIR: Propiedades

Filtros de Retraso Constante:

Para que t_p y t_g sean constantes:

Si sólo el retraso de grupo debe ser constante:

$$\theta(\omega) = \theta_0 - \tau \omega \qquad ---->> \qquad \tau = \frac{(N-1)T}{2} \qquad \text{y } h(nT) = -h[(N-1-n)T]$$

Filtros FIR: Ejemplo

Sea la respuesta al impulso: $h(n) = \{1, 1, 1\}$

$$H(e^{j\omega T}) = \sum_{n=0}^{2} h(n)e^{-j\omega n} = 1 + e^{-j\omega} + e^{-j2\omega} = \left\{e^{j\omega} + 1 + e^{-j\omega}\right\}e^{-j\omega} = \{1 + 2\cos\omega\}e^{-j\omega}$$

En este caso: $|H(e^{j\omega})| = |1 + 2\cos\omega|, 0 < \omega < \pi$

$$\phi[H(e^{j\omega})] = \begin{cases} -\omega, & \text{si } 0 < \omega < 2\pi/3 \\ \pi - \omega, & \text{si } 2\pi/3 < \omega < \pi \end{cases}$$

Podemos definir: $\mathbf{H}(\mathbf{e}^{\mathbf{j}w}) = \mathbf{H_r}(w)\mathbf{e}^{\mathbf{j}(b-aw)}$, $\mathbf{con} |\beta| = \pi/2$, $\alpha = (N-1)/2$

En este caso:
$$\mathbf{H_r}(w) = 1 + 2\cos\omega, -\pi < \omega < \pi$$

$$\phi_r[H(e^{j\omega})] = -\omega$$

Filtros FIR: Propiedades

Respuesta en Frecuencia (caso simétrico con N impar):

$$H\left(e^{j\omega T}\right) = \sum_{n=0}^{\frac{N-3}{2}} h(nT)e^{-j\omega nT} + h\left[\frac{(N-1)T}{2}\right]e^{-j\omega\frac{(N-1)T}{2}} + \sum_{n=\frac{N+1}{2}}^{N-1} h(nT)e^{-j\omega nT}$$

Pero:

$$\sum_{n=\frac{N+1}{2}}^{N-1} h(nT)e^{-j\omega nT} = \sum_{n=0}^{\frac{N-3}{2}} h(nT)e^{-j\omega(N-1-n)T} = \sum_{n=\frac{N+1}{2}}^{N-1} h[(N-1-n)T]e^{-j\omega nT}$$

Filtros FIR: Respuesta en Frecuencia

h(nT)	N	$H(e^{j\omega T})$	Coeficientes	
Sing Anima	Impar	$e^{-j\omega\frac{(N-1)T}{2}\left[\sum_{k=0}^{(N-1)}a_k\cos\omega kT\right]}$	$a_0 = h \left[\left(\frac{N-1}{2} \right) T \right]$	
Simétrica	Par	$e^{-j\omega\frac{(N-1)T}{2}\left[\sum_{k=1}^{\frac{N}{2}}b_k\cos\left[\omega\left(k-\frac{1}{2}\right)T\right]\right]}$	$a_k = 2h \left[\left(\frac{N-1}{2} - k \right) T \right]$	
A minima de in a	Impar	$e^{-j\omega\left[\frac{(N-1)T}{2} - \frac{\pi}{2}\right] \left[\frac{(N-1)}{2} \sum_{k=0}^{\infty} a_k \sin\left[\omega kT\right]\right]}$		
Antisimétrica	Par	$e^{-j\omega\left[\frac{(N-1)T}{2} - \frac{\pi}{2}\right]} \begin{bmatrix} \frac{N}{2} \\ \sum_{k=1}^{N} b_k \sin\left[\omega\left(k - \frac{1}{2}\right)T\right] \end{bmatrix}$	$b_k = 2h \left[\left(\frac{N}{2} - k \right) T \right]$	

Filtros FIR: Posición de los ceros

Las restricciones exigen:

$$H(z) = \frac{1}{\frac{(N-1)}{2}} \sum_{n=0}^{\frac{N-3}{2}} h(nT) \left(z^{\frac{(N-1)}{2} - n} - \frac{(N-1)}{2} - n \right) + \frac{1}{2} h \left(\frac{(N-1)}{2} T \right) (z^0 \pm z^0)$$

Haciendo k = (N-1)/2 -n:

$$H(z) = \frac{1}{\frac{(N-1)}{2}} \sum_{k=0}^{\frac{N-1}{2}} \frac{a_k}{2} \left(z^k \pm z^{-k} \right) = \frac{N(z)}{D(z)}$$

Los ceros de N(z) son los de H(z).

Para esta expresión (sea N par o impar):

$$N(z^{-1}) = \pm N(z)$$

Se trata de polinomios de imagen especular

Filtros FIR: Posición de los ceros

Polinomios de imagen especular:

Si $z_i=r_ie^{j\phi_i}$ es un cero, $z_k=z_i^{-1}=e^{-j\phi_i}/r_i$ también es un cero.

Implicaciones:

- \square Puede haber un número arbitrario de ceros en $z_i = 1$ ó -1.
- ☐ Puede haber un número arbitrario de pares de ceros complejos conjugados sobre dicha circunferencia.
- ☐ Los ceros fuera de esa circunferencia aparecen en pares recíprocos.
- ☐ Los ceros complejos fuera de la circunferencia unidad aparecerán en grupos de 4.

Filtros FIR: Ejemplo 2

Sea: $h(n) = \{-4, 1, -1, -2, 5, 6, 5, -2, -1, 1, -4\}$ ----> N = 11, $\alpha = (N-1)/2 = 5$

$$a(0) = h(\alpha) = h(5) = 6;$$

 $a(1) = 2h(5-1) = 10;$
 $a(2) = 2h(5-2) = -4;$
 $a(3) = 2h(5-3) = -2;$
 $a(4) = 2h(5-4) = 2;$
 $a(5) = 2h(5-5) = -8;$

Ahora:

$$\mathbf{H_r}(\mathbf{w}) = \mathbf{a}(0) + \mathbf{a}(1)\cos\omega + \mathbf{a}(2)\cos2\omega + \mathbf{a}(3)\cos3\omega + \dots =$$

= $6 + 10\cos\omega - 4\cos2\omega - 2\cos3\omega + 2\cos4\omega - 8\cos5\omega$

Filtros FIR: Ejemplo 2

Filtros FIR: Ejemplo 3

Sea: $h(n) = \{-4, 1, -1, -2, 5, 6, 6, 5, -2, -1, 1, -4\}$ ----> N = 12, $\alpha = (N-1)/2 = 5.5$

```
b(1) = 2h(6-1) = 12;

b(2) = 2h(6-2) = 10;

b(3) = 2h(6-3) = -4;

b(4) = 2h(6-4) = -2;

b(5) = 2h(6-5) = 2;

b(6) = 2h(6-6) = -8;
```

Ahora:

$$\begin{aligned} \mathbf{H_r}(\mathbf{w}) &= b(1)\cos\omega(1 - 1/2) + b(2)\cos\omega(2 - 1/2) + b(3)\cos\omega(3 - 1/2) + \dots = \\ &= 12\cos(\omega/2) + 10\cos(3\omega/2) - 4\cos(5\omega/2) - 2\cos(7\omega/2) + 2\cos(9\omega/2) - 8\cos(11\omega/2) \end{aligned}$$

Filtros FIR: Ejemplo 3

Filtros FIR: Ejemplo 4

Sea: $h(n) = \{-4, 1, -1, -2, 5, 0, -5, 2, 1, -1, 4\} ----> N = 11, \alpha = (N-1)/2 = 5$

Filtros FIR: Ejemplo 5

Sea: $h(n) = \{-4, 1, -1, -2, 5, 6, -6, -5, 2, 1, -1, 4\} ----> N = 12, \alpha = (N-1)/2 = 5.5$

