SS 2020 Shestakov

Übungsaufgaben zur Vorlesung "Analysis IIb"

Blatt 9

Aufgabe 1. Skizzieren Sie die folgenden Mengen. Ermitteln Sie, welche der folgenden Mengen Mannigfaltigkeiten sind, und geben sie in diesem Fall ihre Dimension an.

- a) Der Rand des Quadrats $[0,1] \times [0,1]$ in \mathbb{R}^2 .
- b) $\{(1,1), (e^{\pi}, \pi^e)\} \subset \mathbb{R}^2$
- c) $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 2xy\}$
- d) $\{(x,y) \in \mathbb{R}^2 : (x^2 + y^2)^2 = 2(x^2 y^2)\}$
- e) $\{(x,y,z)\in\mathbb{R}^3\colon x^2+y^2=z^2+a\}$ für $a\in\mathbb{R}$

Aufgabe 2. Sei $M_n(\mathbb{R})$ die Menge aller reellen $n \times n$ -Matrizen, die mit \mathbb{R}^{n^2} identifiziert wird.

a) Zeigen Sie, dass die spezielle lineare Gruppe

$$SL(n,\mathbb{R}) := \{ A \in M_n(\mathbb{R}) : \det A = 1 \}$$

eine Untermannigfaltigkeit von $M_n(\mathbb{R})$ der Kodimension 1 ist.

- b) Stellen Sie $SL(n, \mathbb{R})$ nahe der Einheitsmatrix E als Graph dar.
- c) Zeigen Sie, dass der Tangentialraum $T_E\mathrm{SL}(n,\mathbb{R})$ der Vektorraum aller $n\times n$ -Matrizen mit der Spur 0 ist. Ist A eine Matrix mit der Spur 0, so definiert $\gamma(t):=e^{tA},\ t\in\mathbb{R}$, eine Kurve in $\mathrm{SL}(n,\mathbb{R})$ mit $\gamma(0)=E$ und $\dot{\gamma}(0)=A$.

Hinweis: Sie dürfen ohne Beweis die Formel det $e^A = e^{\operatorname{Spur} A}$ benutzen.

Bemerkung: $SL(n, \mathbb{R})$ ist ein Beispiel für eine Lie-Gruppe, d.h. eine Gruppe, die zugleich eine Mannigfaltigkeit ist.

Aufgabe 3. Seien $M \subset \mathbb{R}^m$ und $N \subset \mathbb{R}^n$ zwei Untermannigfaltigkeiten. Beweisen Sie, dass $M \times N$ eine Untermannigfaltigkeit im $\mathbb{R}^m \times \mathbb{R}^n$ ist und geben Sie die Dimension dieser Untermannigfaltigkeit an.

Abgabe: Bis 9. Juli um 10 Uhr als PDF-Datei in StudIP in der Veranstaltung Übung Analysis IIb unter dem Reiter Dateien im dafür vorgesehenen Ordner.

Aufgabe	1					2			3	
	a	b	С	d	е	a	b	С		
Punkte	1	1	1	2	2	3	3	4	3	20

Präsenzaufgaben

- 1. Entscheiden Sie, ob die angegebene Menge M eine Untermannigfaltigkeit des \mathbb{R}^2 bzw. \mathbb{R}^3 ist. Skizzieren Sie M und stellen Sie ggf. M in verschiedenen Formen dar.
 - a) $M = \{(t^3, t^6) \in \mathbb{R}^2 : t \in \mathbb{R}\}$
 - b) $M = \{(x, y) \in \mathbb{R}^2 \colon y^2 = x^3 + x^2\}$
 - c) $M = \{(\cos t, \sin t, t) \in \mathbb{R}^3 : t \in \mathbb{R}\}$
 - d) $M = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 z^2 = 0\}$
- 2. Beweisen oder widerlegen Sie: Sind $U, V \subset \mathbb{R}^n$ offene Mengen, $\Phi \colon U \to V$ ein Diffeomorphismus und $M \subset U$ eine k-dimensionale Untermannigfaltigkeit, so ist $\Phi(M) \subset V$ eine k-dimensionale Untermannigfaltigkeit.
- 3. Sei $M_n(\mathbb{R})$ die Menge aller reellen $n \times n$ -Matrizen, die mit \mathbb{R}^{n^2} identifiziert wird.
 - a) Zeigen Sie, dass die orthogonale Gruppe

$$O(n, \mathbb{R}) := \{ A \in M_n(\mathbb{R}) : A^T A = E \}$$

eine Untermannigfaltigkeit von $M_n(\mathbb{R})$ der Dimension $\frac{n(n-1)}{2}$ ist.

- b) Zeigen Sie, dass der Tangentialraum $T_E\mathcal{O}(n,\mathbb{R})$ der Vektorraum aller schiefsymmetrischen $n\times n$ -Matrizen ist.
- 4. Sei $f:(a,b)\to\mathbb{R}_{>0}$ eine stetig differenzierbare Funktion und

$$M := \{(x, y, z) \in \mathbb{R}^3 \colon z \in (a, b), \ x^2 + y^2 = (f(z))^2 \}.$$

- a) Zeigen Sie, dass die Rotationsfläche M eine Untermannigfaltigkeit des \mathbb{R}^3 ist und bestimmen Sie ihre Dimension.
- b) Finden Sie einen Atlas für M.
- c) Bestimmen sie den Tangential- und Normalenraum am Punkt $\left(f(\frac{a+b}{2}),0,\frac{a+b}{2}\right)\in M.$