Exercice 1 - Distance de freinage

Une voiture de masse $m=1.5\times 10^3\,\mathrm{kg}$ roule à la vitesse de $50\,\mathrm{km}\cdot\mathrm{h}^{-1}$ sur une route horizontale. Devant un imprévu, le conducteur écrase la pédale de frein et s'arrête sur une distance $d=15\,\mathrm{m}$. On modélise la force de freinage par une force constante opposée à la vitesse.

- 1. Calculer le travail de la force de freinage.
- 2. En déduire la norme de cette force.
- 3. Quelle distance faut-il pour s'arrêter si la vitesse initiale est de $70 \,\mathrm{km} \cdot \mathrm{h}^{-1}$?
- 4. Commenter cette phrase relevée dans un livret d'apprentissage de la conduite : « La distance de freinage est proportionnelle au carré de la vitesse ».

Exercice 2 - Mouvement sur un cercle

Une bille de masse m peut se déplacer sans frottement sur la surface intérieure d'un support circulaire vertical de rayon R. On la lance avec la vitesse horizontale $\overrightarrow{v_0}$ au point le plus bas du cercle.

- 1. En utilisant un théorème énergétique établir l'équation du mouvement de M.
- 2. Montrer que la norme de la force de réaction du support circulaire vaut

$$N = m \left[\frac{v_0^2}{R} + g(3\cos\theta - 2) \right].$$

- 3. Montrer que la bille reste en contact avec le support lors de tout le mouvement lorsque la vitesse initiale v_0 est supérieure à une vitesse v_{\min} à déterminer.
- 4. Supposons $v_0 < v_{\min}$. Déterminer l'angle auquel la bille quitte le support et tombe.

Exercice 3 - Masse doublement retenue

Une masse m est retenue de part et d'autre par deux ressorts (k_1, ℓ_0) et (k_2, ℓ_0) . Le ressort 1 est fixé au mur gauche, le ressort 2 est fixé au mur droit distant de $d > 2\ell_0$ de celui de gauche. On repère la position de la masse par sa coordonnée x repérée à partir du mur de gauche et orienté selon les x croissants par le vecteur unitaire $\overrightarrow{e_x}$.

- 1. Établir l'expression de l'énergie potentielle totale du système en fonction de x. Tracer le profil d'énergie potentielle associé.
- 2. Établir l'expression de la position de la masse à l'équilibre $x_{\text{éq}}$. Commenter.
- 3. Commenter la stabilité de cette position d'équilibre.
- 4. Obtenir l'équation différentielle vérifiée par x(t).
- 5. Résoudre cette équation dans le cas où la masse m est lancée depuis sa position d'équilibre avec une vitesse v_0 .

Exercice 4 - Étude d'une force

Une particule de masse m astreinte à se déplacer sur un axe $(O, \overrightarrow{e_r})$ est soumise à la force :

$$\overrightarrow{F}(r) = \left(-kr + \frac{a}{r^2}\right)\overrightarrow{e_r},$$

où a et k sont des constantes positives.

- 1. Commenter l'expression de \overrightarrow{F} .
- 2. Existe-t-il une position d'équilibre? Si oui, quelle est-elle?
- 3. Montrer que la force \overrightarrow{F} est conservative.
- 4. Représenter $\mathcal{E}_{p}(r)$ et commenter.
- 5. Déterminer la période des petites oscillations autour de la position d'équilibre.

python Exercice 5 – Profil d'énergie potentielle

On considère un point matériel M de masse $m=500\,\mathrm{g}$, astreint à se déplacer le long d'un axe (Ox). Il est soumis à des forces conservatives dont la résultante est associée au profil d'énergie potentielle $\mathcal{E}_{\mathrm{p}}(x)$ représenté ci-dessous (la référence d'énergie potentielle est choisie telle que $\lim_{|x|\to\infty} \mathcal{E}_{\mathrm{p}}(x)=0$). On néglige tous les frottements.

- 1. Déterminer les positions d'équilibre ainsi que leur stabilité. Peut-on choisir une vitesse v_0 pour que le point M initialement loin de x = 0 finisse piégé au voisinage de x = 0?
- 2. Le point M est initialement en x=0. Déterminer la vitesse v_1 correspondant à la plus grande vitesse initiale pour laquelle le mouvement correspond à un état lié. Déterminer l'amplitude des oscillations de M pour $\mathcal{E}_{\rm m}=0,3$ J.
- 3. Le point M est initialement en x = -5 m et possède une énergie mécanique $\mathcal{E}_{\rm m} = 0,3$ J. Déterminer sa vitesse initiale v_2 (on suppose $v_2 > 0$), la position maximale x_2 qu'il atteint et décrire son mouvement.
- 4. Déterminer la vitesse minimale v_3 à lui communiquer pour passer de $x = -\infty$ à $x = +\infty$. Calculer alors sa vitesse v_4 au fond du puits.
- 5. Vérifier vos réponses avec le programme td08-exo5.py ¹. Le choix des conditions initiales se fait aux liques 26 et 27.

^{1.} Avec Spyder, activer l'affichage externe pour que l'animation fonctionne : dans Tools, Preferences, IPython console, onglet Graphics, choisir Backend : QT5.

Exercice 6 - Résolution de problème

Un remonte-pente est constitué d'un câble auquel les skieurs s'accrochent à l'aide d'une perche pour remonter.

Indication : On peut modéliser les frottements avec la neige par une réaction tangentielle $\overrightarrow{R_T}$, opposée au sens du mouvement et liée à la réaction normale $\overrightarrow{R_N}$ par $R_T = fR_N$, où f est le coefficient de frottement.

Données:

- Longueur du câble 200 m
- Distance entre deux perches : 5 m
- Dénivelé : 25 m
- Vitesse du câble $5 \,\mathrm{km}\cdot\mathrm{h}^{-1}$
- Coefficient de frottement : $f \approx 0.1$.

Déterminer la puissance du moteur qui entraine le câble.

Exercice 7 - Chariot de parc d'attraction - Oral banque PT

On étudie numériquement la trajectoire d'un chariot de parc d'attraction, de masse m=10 tonnes. Ce chariot part du point A, descend le long d'un plan incliné et entre ensuite dans un looping haut de $40 \,\mathrm{m}$, où l'on suppose qu'il peut parcourir plusieurs tours.

Les courbes ci-dessous représentent l'évolution au cours du temps de l'énergie cinétique \mathcal{E}_{c} , de l'énergie potentielle \mathcal{E}_{p} , de l'énergie mécanique totale \mathcal{E}_{m} et de l'évolution de la réaction normale R_{N} du looping sur le chariot.

Donnée: $g \approx 10 \,\mathrm{m\cdot s^{-2}}$.

- 1. Associer à chaque courbe la grandeur représentée. La simulation prend-t-elle en compte des frottements et autres sources de dissipation?
- 2. Calculer la hauteur h et la vitesse initiale V_0 du chariot, ainsi que la vitesse V_{max} qu'il atteint.
- 3. À quelle date le chariot quitte-t-il le looping?
- 4. Combien de tours entiers effectue le chariot avant de se décoller du looping?
- 5. Quelle hauteur initiale faudrait-il donner au chariot afin qu'il ne se décolle pas?

