THIN FILM TRANSISTOR

Publication number: JP63172470 (A)

Publication date: 1988-07-16

Inventor(s): YAMAGUCHI TADAHISA: HIRANAKA KOICHI Applicant(s):

FUJITSU LTD

Classification:

- international: H01L27/12; H01L29/78; H01L29/786; H01L27/12; H01L29/66; (IPC1-7): H01L27/12;

H01L29/78 H01L29/786

- European;

Application number: JP19870004663 19870112

Priority number(s): JP19870004663 19870112

Abstract of JP 63172470 (A)

PURPOSE:To make it possible to decrease OFF current, by providing a heat resisting insulating film on an insulating substrate. CONSTITUTION:An a-SiNx film as a heat resisting insulating film 7 is formed on a glass substrate 1 by a P-CVD method. Thereafter, a titanium (Ti) film 9 is formed by an electron beam evaporating method. An n<+> a-SI film 3 is formed on the film 9 by the P-CVD method. Then, reactive ion etching is performed, and a source electrode S and a drain electrode D are patterned and formed. An a-Si film and a gate insulating film 5 are formed. After an electrode film 6 is formed by the electron beam evaporating method, a gate electrode G is formed by chemical etching. Then elements are isolated by RIE, and a staggered TFT is completed. Thus impurity ions are not diffused, and deterioration of the characteristics of the a-SI film 4 is prevented.

Data supplied from the esp@cenet database — Worldwide

(9 日本国特許庁(JP)

① 特許出願公開

@ 公 開 特 許 公 報 (A)

昭63 - 172470

@Int Cl.4 H 01 L

識別記号 311

庁内整理番号 X-8422-5F 7514-5F

@公開 昭和63年(1988)7月16日

審査請求 未請求 発明の数 1 (全4頁)

69発明の名称 **蓮障トランジスタ**

> ②特 ₩ 262-4663

22出 頤 昭62(1987)1月12日

忠 久 79発明者 ш п

神奈川県川崎市中原区上小田中1015番地 富士通株式会社

@幹 明 者 弘 神奈川県川崎市中原区上小田中1015番地 富士通株式会社

神奈川県川崎市中原区上小田中1015番地

富士通株式会社 の出願人 弁理士 井桁 貞一

1. 発明の名称 渡膜 トランジスタ

2. 特許請求の額開

(1) 絶縁基板上にソース電極およびドレイン電 極を形成した後、非晶質シリコン膜、ゲート絶縁 膜と層形成し、更にゲート電極を設けてなるスタ ガード形理牒トランジスタにおいて、前記絶縁基 板トに耐熱性鉄緑雕を形成した後、核絶縁膜上に 前記トランジスタを形成したことを特徴とする薄 贈トランジスタ。

(2) 前紀耐熱性絶縁膜が酸化シリコン膜、酸窒 化シリコン陸または客化シリコン膜の何れか一つ よりなることを特徴とする特許請求の範囲第1項 記載の薄膜トランジスタ。

3. 発明の詳細な説明

(概要)

理障トランジスタのオフ電流の増加を防ぐ方法

として絶縁基板上に酸化シリコン膜、酸窒化シリ コン糠、容化シリコン酸の何れか一つからなる耐 熱性絶縁膜を設け、この絶縁膜上に、ソース電極 およびドレイン電極を形成した後、非晶質シリコ **ン誰、ゲート鉄級牌と層形成し、更にゲート電極** を設けて形成したスタガード形薄膜トランジスタ。

(産業上の利用分野)

太奈明はオフ雷波を低減した強騰トランジスタ の構成に関する。

道牒トランジスタ(略称TFT)はプラズマ化学気 相成長法(略称P-CVD)や真空蒸着法などの薄膜形 成技術を用いてガラスなどの絶縁基板上に非晶質 シリコン(以下略してa-Si)からなる半導体膜や 非晶質容化珪素 (a-SiNz),二酸化珪素(SiOz)な どの絶縁膜や金属膜を形成すると共に、これと写 真純朝技術(フォトリソグラフィ)を組合わして 微細パターンを層形成することにより作られてい

かゝる技術を使用すると広い面積に互ってトラ

ンジスタ・アレイが形成できることからTPT はイ メージセンサの駆動回路やアクティブマトリック ス形の液晶表示パネルにおけるスィッチング素子 として使用されている。

かかる用途において、TPT はスイッチング速度 が速いことと共にオフ電流値が少ないことが必要 である。

(従来の技術)

TPT にはソースおよびドレイン電極とゲート電 極との配置によりスタガード形と逆スタガード形 とがある。

第2回は従来のスタガード形1711の転面構成図であって、随縁基板 ID A にスパット技などによ め飲化錫(Snoi)と酸化インジウム(Inioi)の固 俗体よりなり、他抵抗の透明準電波(以下適称の ITO 膜)2と類(P)をドープした非晶質シリコ ン膜(以下略してn・a-Si 膜)3を服形成した 後、写真性制技術を用いて選択エッチングで フリス電極 Sとドレイン電極 Dとをパターン形 成する。

次に、この上に非晶質シリコン膜(以下略して a - 5i 膜) 4 年形成した後、この上に非晶質の宣 化シリコン膜 (10 kg) 。 2 kg) 。 2 kg (10 kg) 。 2 kg (10

か、る構成をとるスタガード形TPT は素子完成 の後に電気的特性を安定化するために200~300 での熟処理(アニール) が必要であり、またイ メージセンサなどのデバイス形成に当たっても各 編の熱処理工程がある。

そのために、絶縁基板1より不純物の拡散が生 じ、これにより特性の劣化が生じている。

すなわち、TRT のスイッチング動作はソース電 極Sを接地してドレイン電極Dとの間に一定の電

圧を加えてある状態でゲートGに負の電圧を印加 する場合はドレイン電極Dとソース電極Sとの間 は絶縁状態である。

然し、ゲート電極 G に正の電圧を加えると、 ゲート絶縁膜 5 と接する a - Si 膜の界面に電子が 誘起されてチャネルを生じ、こゝを通って電波 (!。) が彼れる。

それ故にゲート電極Gに加える電圧(V。)の 正負によりスイッチング作用が行われている。

そのためにはオフ電流がなるべく少なくOM/OFF が高いことが必要条件である。

然し、スタガード形FFT はソース電信 S とドレイン電信 D の間にあってチャネルで扱い行われる a - Si 膜4 が機能基板!と接しているために各種の然処理工程を選じて総維基板!の中に含まれている不執勢イナンの拡散を生じ、そのためにa - S i 膜の特性が常化してオフ電波の増加が起り、ON /OPFが低速している。

(発明が解決しようとする問題点)

スタガード形1787においてはチャネル形成が行われる。-SI 旗 4 が結構基板と接しているために 各種の熱処理工程を選じて能縁基板 1 ロ中に含まれている不純物 4 オンロ鉱散を生じ、それにより オフ電流の増加が起り、0 8/0 PFの低減を揺いてい ることが問題である。

(問題点を解決するための手段)

上紀の問題は絶縁基板上に510.限、5101限、a -5181、膜の何れからなる耐熱性の絶縁限を形成した後に、鉄絶縁膜上に、ソース電極おおよりと一ゼン電極日を形成した後、a -51.膜、ゲート地線 陸 西部域 い、更にゲート電極のを設けて形成するスタガード形1FT の使用により解決することができる。

(作用)

本発明はソース電極Sとドレイン電極Dとの間 にあり、チャネル活性化層を生ずるa-Si 膜 4 が

特開昭63-172470(3)

絶縁基板1と接するのを防ぐ方法として、絶縁基板1の上に耐熱性の絶縁膜を介在させるものである。

第1図は未発明に係るスタガード形IPIの順間構成図であって、抽構基板1の上CSIOI限、SION 限、a.SiN。などの解に外性地縁限7年形成し、こ の上に従来と同様に外グガード形IPIを形成する ことにより不純物ペオンの拡散を無くし、a.Si 限4の特性劣化を助ぐものである。

(実施例)

第4図は本発明に係るスタガード形TFT の製造 工程を示す断面図であって、実施例を示すと次ぎ のようになる。

ガラス基版 1の上に封熱性協議関 7としてP-CV) 独によりa-S14、腕を1000人の厚さに形成した 後、ソース電艦Sとドレイン電極のの形成材とし て電子ピーム原著法によりチタン(T1)膜 9を1000 人の厚さに形成し、次にオーミックな資熱を得る かめに、4の上にP-CVD 技により300 人の厚さに n・a-Si 膜 3 を形成した(以上同図A)。 次に、反応性イオンエッチング(略称RIB)を 行ってソース電極 S とドレイン電極 D をパターン 級応する。

ここで、反応ガスとしてn°a-SI腰のエッチ ングには四弗化炭素 (CFa)と酸素 (Cg)の混合ガス を、Tiのエッチングには四塩化炭素 (CC&a)と0g との混合ガスを使用した(以上同図B)。

次に、かいる基板上にP-CVD 法によりa-Si 膜 4 を2000人の厚さに、またa-SiN x 膜を3000人 の厚さに形成してゲート絶縁膜5を形成した。

次に、電子ビーム蒸着法によりNi Cr を800 人の厚さに蒸着して電極膜6を形成した後に、化学エッチングしてゲート電価Gを形成した(以上同間C)

次に、RIE により素子間分離を行ってスタガー ド形TFT ができ上がった(以上同図D)。

第3図は本発明に係るスタガード形TFTのドレイン電流(I。) - ゲート電圧(V。) 特性図であって、破線10で示す従来のTFTに較べ、本発明に係

る実線11で示すTPT はオフ電流は二桁程少なく、 また立ち上がり特性も優れている。

なお、耐熱性絶縁膜7としてa-SiNxの代わり にSiOxやSiONを用いる場合も結果は同様である。 3 はn°a-Si 膜、

4 は a - Si 膜、

5 はゲート絶縁膜、 7 は耐熱性絶縁膜、 6 は電極膜、

である.

代理人 会理十 井桁 首

(発明の効果)

以上記したように本発明の実施によりOFF 電波 の減少が可能となり、これにより電気的特性が向 上する。

4. 図面の簡単な説明

第1図は本発明に係るスタガード形TPT の斯面 様成図、

第2図は従来のスタガード形TFT の断面構成図、

第3回はスタガード形TFT の I - V 。 特性図、 第4回 (A) ~ (D) は本発明に係るスタガー

ド形TFT の製造工程を示す断面図、

である.

図において、

1は絶縁基板、

2 はITO 膜、

特開昭63-172470(4)

本発明に係るスタガード形TFTの断面構成図 第 1 図

従来のスタガード形TFTの断面構成図 第 2 図

