CHAPTER 19

MACROSCOPIC CIRCUIT ANALYSIS

OVERVIEW

- Last chapter, we developed a qualitative sense of the microscopic behavior of a circuit in terms of fundamental principles
 - Where does the field come from?
 - What is the function of a battery?
 - What is a resistor?
 - Charge & energy conservation

OVERVIEW

- In this chapter, we will apply this understanding to understand circuits macroscopically
 - How do circuit elements behave within a circuit?
 - Capacitors & resistors
 - ightharpoonup Calculate ΔV across different circuit elements
 - $lackbox{ }$ Calculate conventional current I in every part of a circuit

CONSIDER THIS CIRCUIT

Assume it is initially disconnected

CONSIDER THIS CIRCUIT

- Assume it is initially disconnected
- What happens when I connect the circuit?

CONSIDER THIS CIRCUIT

- Assume it is initially disconnected
- What happens when I connect the circuit?
- Why?

Capacitorcontinuescharging until?

• Capacitor continues charging until $E_{net} = 0$

CAPACITOR CHARGING CIRCUIT

Capacitor is initially "ignored"

Charge accumulates on the capacitor, decreases current

Battery power diverted to capacitor, bulb dims

CAPACITOR CHARGING CIRCUIT

- Charge continues to accumulate until fringe field of capacitor cancels field in wire
- Current stops flowing
 - Bulb is completely dark

CAPACITORS IN CIRCUITS

Charge on the capacitor: $Q = C\Delta V_c$

C is the **capacitance** of the capacitor (how much charge can it hold?)

 \blacktriangleright For same ΔV_c , higher C means more charge stored on the capacitor

CAPACITORS IN CIRCUITS

Full charged capacitor, remove the battery

Fully charged capacitor with battery connected

- Now remove the battery
- Charge leavescapacitor(current flows)
- Bulb lights up brightly

- Charge leaves capacitor $->E_c$ weakens
- Currentweakens, bulbdims

- Eventually,capacitor iscompletelydischarged
- $E_{net} = 0$, no more current
 - Bulb is off

CAPACITORS IN CIRCUITS

Uncharged capacitor connected to a battery:

- Initially acts like a piece of wire (no effect on the circuit)
- Builds up charge until it completely stops current flow (acts like an open wire)
- Fully charged capacitor: $Q = C\Delta V_c = C\varepsilon$

CAPACITORS IN CIRCUITS

Fully capacitor disconnected from battery

- Initially acts like a battery with "emf" of $\Delta V = Q/C$
- $ightharpoonup \Delta V$ drives current through circuit
- $lackbox{ }$ Capacitor slow discharges, decreasing ΔV , until current flow stops

- In chapter 18, we learned how to describe circuits in terms of their atomic-level properties: i, n, u, E, etc
- These quantities are more "fundamental", but hard to work with in practice (hard to measure!)
- Easier to work with conventional current I, potential difference ΔV , etc

$$J = |q| nuE$$

$$J = |q| nuE$$

	 q 	n	u	q nu
Copper	$-1.6 \times 10^{-19} \text{ C}$	$8.5 \times 10^{28} \text{ m}^{-3}$	$4.5 \times 10^{-3} \frac{\text{m/s}}{\text{N/C}}$	$6.1 \times 10^7 \frac{\text{C}^2}{\text{m}^2 \text{Ns}}$
Tungsten	$-1.6 \times 10^{-19} \text{ C}$	$6 \times 10^{28} \text{ m}^{-3}$	$1.8 \times 10^{-3} \frac{\text{m/s}}{\text{N/C}}$	$1.7 \times 10^7 \frac{\text{C}^2}{\text{m}^2 \text{Ns}}$
etc				

ELECTRICAL CONDUCTIVITY

$$\sigma = |q| nu$$

- $m{\sigma}$ is called the "electrical conductivity"
 - Lumps together all relevant properties of the material

ELECTRICAL CONDUCTIVITY

$$\sigma = |q| nu$$

- $m{\delta}$ is called the "electrical conductivity"
 - Lumps together all relevant properties of the material
- ightharpoonup Higher $\sigma \Longrightarrow$ less field needed for same current

CONSIDER

Length L of wire with crosssectional area A and conductivity σ

What is $|\Delta V|$ across the wire?

ELECTRICAL RESISTANCE

"Resistance"
$$R = \frac{L}{\sigma A}$$

- Combines geometry and inherent conductivity
- Units: The "ohm" (Ω)

OHM'S LAW

$$I = \frac{\Delta V}{R}$$

- Electric potential difference causes charges to move (current)
- Note that the Higher $\Delta V \implies$ more charge motion \implies higher current
- ▶ Higher R (low conductivity, fewer free electrons in wire, more collisions with atomic nuclei, etc) \Longrightarrow lower current

A resistor is made of nichrome wire (made of nickel, iron, and chromium) which has a cross-sectional area of $80~\mu m^2$.

- \blacktriangleright How long of a wire do you need to construct a 220 Ω resistor?
- \blacktriangleright What is the current through this resistor when connected to a 9 V battery?

$$\sigma_{\text{Nichrome}} = 0.10 \times 10^7 \ \Omega^{-1} \text{m}^{-1}$$

The resistor is connected to the battery via a length of thick copper wire (cross-sectional area of $0.3\ \mathrm{mm}^2$)

- How much copper wire do you need to use to match the resistance of the Nichrome resistor?
- $\sigma_{\text{Copper}} = 6.0 \times 10^7 \ \Omega^{-1} \text{m}^{-1}$

The resistor is connected to the battery via a length of thick copper wire (cross-sectional area of $0.3\ \mathrm{mm}^2$)

- How much copper wire do you need to use to match the resistance of the Nichrome resistor?
- $\sigma_{\text{Copper}} = 6.0 \times 10^7 \ \Omega^{-1} \text{m}^{-1}$

CONCLUSION? WE CAN SAFELY IGNORE CONNECTING WIRES IN CIRCUITS

CIRCUIT ELEMENTS

- For our purposes, a "circuit element" is structure placed in the circuit which uses (or supplies) significant energy (ΔV)
 - Capacitors
 - Resistors
 - Batteries

CIRCUIT DIAGRAMS

Capacitor

Resistor

Battery

CIRCUIT DIAGRAMS

Capacitor

Resistor

Battery

THE MICRO-MACRO CONNECTION

Microscopic View

$$\overline{v} = uE$$

$$i = nA\overline{v} = nAuE$$

Macroscopic View

$$J = \sigma E$$

$$I = |q| nA\overline{v} = \frac{1}{R}\Delta V$$

THE MICRO-MACRO CONNECTION

Microscopic View

Node Rule:

$$\sum_{\text{in}} i_{\text{in}} = \sum_{\text{out}} i_{\text{out}}$$
node node

Loop Rule:

$$\sum_{\text{loop}} \Delta V = 0$$

Macroscopic View

Node Rule:

$$\sum_{\text{in}} I_{\text{in}} = \sum_{\text{out}} I_{\text{out}}$$

Loop Rule:

$$\sum_{\text{loop}} \Delta V = 0$$

Current through and voltage across the resistor?

MULTIPLE RESISTORS IN <u>SERIES</u>

CIRCUIT ELEMENTS CONNECTED IN SERIES

$$I_1 = I_2 = I_3 = \dots = I_n = I$$

$$\Delta V = \Delta V_1 + \Delta V_2 + \Delta V_3 + \dots + \Delta V_n$$

$$I = \frac{\Delta V}{R_1 + R_2 + R_3 + \dots + R_n} = \frac{\Delta V}{R_{\text{eqiv}}}$$

$$R_{\text{equiv}} = R_1 + R_2 + R_3 + \dots + R_n$$

MULTIPLE RESISTORS IN PARALLEL

MULTIPLE RESISTORS IN PARALLEL

CIRCUIT ELEMENTS CONNECTED IN PARALLEL

$$I = I_1 + I_2 + I_3 + \dots + I_n$$

$$\Delta V = \Delta V_1 = \Delta V_2 = \Delta V_3 = \dots = \Delta V_n$$

$$I = \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_n}\right) \varepsilon = \frac{\varepsilon}{R_{\text{equiv}}}$$

$$\frac{1}{R_{\text{equiv}}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_n}$$

