# MadGraph Tutorial

**Andrew Lifson Lund University** 

Olivier Mattelaer CP3/UCLouvain

Marco Zaro
NIKHEF

## Plan

### Help and Instructions

- This presentation should be self-contained
- See <a href="https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/Milan">https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/Milan</a> for some lectures
- See <a href="https://arxiv.org/pdf/1106.0522.pdf">https://arxiv.org/pdf/1106.0522.pdf</a>
   including appendices for useful information

#### **Tutorial**

- MG5aMC Basics
- Heavily based off Olivier Mattelaer and Marco Zaro's previous tutorials!!

## Aim of MadGraph5\_aMC@NLO

- Calculate hard matrix element and/or cross section for any process in any model at (N)LO
- Aims to be as generic and user friendly as possible
- Can export results to your favourite parton shower program
- Can import your favourite model to calculate the process

# Flow of MadGraph5\_aMC@NLO

- 1. Choose model
  - Stored as UFO file (see <a href="https://arxiv.org/pdf/1108.2040.pdf">https://arxiv.org/pdf/1108.2040.pdf</a>)
  - → 4 prebuilt models
  - Otherwise use FeynRules to output new model from Lagrangian
- 2. Choose process to study
  - MadGraph generates, writes, and builds a program on the fly to study this process
- 3. Run the program/calculate the process

## Tutorial map

#### Learning MG5

- 1. Download MG5, follow the built-in tutorial
- 2. Cards meaning
- 3. Meaning of QCD/QED
- 4. Details of syntax (\$/)
- 5. tt~ processes
  - Scripting
  - Decay
- 6. Other models

## Where to find help?

- Ask us
- Use the command "help" / "help XXX"
  - → "help" tell you the next command that you need to do.
- Launchpad:
  - https://answers.launchpad.net/madgraph5
  - → FAQ: <a href="https://answers.launchpad.net/madgraph5/+faqs">https://answers.launchpad.net/madgraph5/+faqs</a>

## Exercise 1: Download MG5 & Built-

## in tutorial

- Download from <a href="https://launchpad.net/mg5amcnlo/3.0/3.4.x/+download/mg5amcnlo/3.0/3.4.x/+download/mg5aMC\_v3.4.0.tar.gz">https://launchpad.net/mg5amcnlo/3.0/3.4.x/+download/mg5aMC\_v3.4.0.tar.gz</a>
  - →Unpack with tar xvzf MG5\_aMC\_v3.4.0.tar.gz
- Launch the code
  - →./bin/mg5\_aMC
- Type tutorial
  - → Follow instructions

### Exercise 2: What are those cards?

- Run a new process. In the launch step, read the cards and identify what they do
  - param\_card: model parameters
  - run\_card: beam/run parameters and cuts
    - https://answers.launchpad.net/madgraph5/+faq/2014

## Exercise 2: Cards Meaning

- How do you change?
  - → top mass
  - → top width
  - → W mass
  - beam energy
  - pt cut on the lepton
- Change some of these variables and observe their effect

## Exercise 3 : QED/QCD Syntax

- What's the meaning of the order QED/QCD?
- What's the difference between

$$\rightarrow$$
 pp > t t~

$$\rightarrow$$
 pp > t t~ QCD=0

$$\rightarrow$$
 pp > t t~ QED=2

$$\rightarrow$$
 pp > t t~ QED<=2

$$\rightarrow$$
 pp > t t~ QED=0

$$\rightarrow$$
 pp > t t~ QCD^2==2

 Compute the cross-section for each of those and check the diagrams created

Generate VBF processes





## Exercise 4: Syntax (\$/)

Generate the cross-section and the distribution (invariant mass) for

```
    → p p > e+ e-
    → p p > z, z > e+ e-
    → p p > e+ e- $ z (note: in run_card must set sde_strategy=I)
```

 Use the invariant mass distribution to determine the meaning of each syntax.

 $\rightarrow$  pp > e+ e-/z

# Exercise 5: Top pair production at LO

#### Basic questions:

- Generate the process
- Which partonic subprocesses contribute?
- How many Feynman diagrams does each each subprocess have?
- Output the code
- Are b-quarks included in the initial state? If not, how can I include them?

#### • Extra questions:

- Recompute the  $t\bar{t}$  cross-section for  $m_t=170, 172, 174 ... 180 GeV$
- Add the top decay and redo the mass scan. Anything strange?

### Exercise 5a: Automation

- Compute the cross-section for the top pair production for m<sub>t</sub>=170, 172, 174 ... 180 GeV.
  - → Do NOT use the interactive interface
    - hint: you can edit the param\_card/run\_card via the "set" command [After the launch]
    - hint: All commands [including answer to question] can be put in a file. (run ./bin/mg5 PATH TO FILE)

#### **Examples**

import model EWDim6 generate p p > t t~ output TUTO\_DIM6

File: launch

set nevents 5000

set MT 170

How to Run: ./bin/mg5\_amc PATH

## Exercise 5b: Decay Chain

- Generate p p > t t~, and decay the tops (no need to decay the W's)
  - Use the decay-chain formalism
  - → Do the same mass scan as in Ex. 5a & compare crosssections
    - Do you notice something wrong? If so, what did you forget to also update?
    - Update the missing piece and confirm that the issue is fixed

## Exercise 5b: Decay Chain and MadSpin

- Generate p p > t t~, fully decayed (fully leptonic decay for the top)
  - Using the decay-chain formalism
  - → Using MadSpin
- Compare cross-sections
  - → which one is the correct one?
  - → Why are they different?
- Compare the shape.

### Exercise 6: Other Models

- Calculate cross-section and event shapes for p p > j j h
  - Note how many/which diagrams/subprocesses exist
- Now run the same calculation except this time in the Higgs effective theory
  - → Hint: different models can be loaded with import model <model\_name>
- Which model has the greater cross section?
  - → Can you see which process contribute the most to the cross section?

### Solutions

• I of course encourage you to try and do the exercises yourself first, but if needed or wanted, the following slides contain the solutions to the exercises

## Solution 2: Cards Meaning

- How do you change
  - → top mass
  - → top width
  - → W mass
  - beam energy
  - pt cut on the lepton

Param\_card

Run\_card

#### top mass

```
#####################################
## INFORMATION FOR MASS
Block mass
6 1.730000e+02 # MT
   23 9.118800e+01 # MZ
   25 1.200000e+02 # MH
## Dependent parameters, given by model restrictions.
## Those values should be edited following the
## analytical expression. MG5 ignores those values
## but they are important for interfacing the output of MG5
## to external program such as Pythia.
 1 0.000000 # d : 0.0
 2 0.000000 # u : 0.0
  3 0.000000 # s : 0.0
  4 0.000000 # c : 0.0
  11 0.000000 # e- : 0.0
  12 0.000000 # ve : 0.0
  13 0.000000 # mu- : 0.0
  14 0.000000 # vm : 0.0
  16 0.000000 # vt : 0.0
  21 0.000000 # q : 0.0
  22 0.000000 # a : 0.0
  24 80.419002 # w+ : cmath.sqrt(MZ__exp__2/2. + cmath.sqrt(MZ__exp__4/4. - (aEW*cmath.pi*MZ__exp__2)/(Gf*sqrt__2)))
```

```
## INFORMATION FOR MASS
Block mass
   5 4.700000e+00 # MB
   6 1.730000e+02 # MT
  15 1.777000e+00 # MTA
  23 9.118800e+01 # MZ
  25 1.200000e+02 # MH
## Dependent parameters, given by model restrictions.
## Those values should be edited following the
## analytical expression. MG5 ignores those values
## but they are important for interfacing the output of MG5
## to external program such as Pythia.
 1 0.000000 # d : 0.0
 2 0.000000 # u : 0.0
 3 0.000000 # s : 0.0
 4 0.000000 # c : 0.0
 11 0.000000 # e- : 0.0
 12 0.000000 # ve : 0.0
 13 0.000000 # mu- : 0.0
 14 0.000000 # vm : 0.0
 16 0.000000 # vt : 0.0
 21 0.000000 # a : 0.0
∠4 80.419002 # w+ : cmath.sqrt(MZ__exp__2/2. + cmath.sqrt(MZ__exp__4/4. - (aEW*cmath.pi*MZ__exp__2)/(Gf*sqrt__2)))
```

# W Mass is an internal parameter! MG5 didn't use this value! So you need to change MZ or Gf or alpha\_EW

## Solution 3: QED/QCD Syntax

- What's the meaning of the order QED/QCD
- What's the difference between
  - $\rightarrow$  pp > t t~
  - $\rightarrow$  pp > t t~ QED=2
  - $\rightarrow$  pp > t t~ QED==2
  - ⇒  $p p > t t \sim QCD=0$
  - $\rightarrow$  pp > t t~ QED<=2
  - $\rightarrow$  pp > t t~ QCD^2==2

## Solution 3 : QED/QCD Syntax

- What's the meaning of the order QED/QCD
  - → This is the number of QED/QCD vertices in diagram
  - → By default MG5 takes the lowest order in QED!
  - $\rightarrow$  pp > t t~ => pp > t t~ QED=0
  - $\rightarrow$  pp > t t~ QED=2
    - additional diagrams (photon/z exchange)

$$p p > t t \sim$$
Cross section (pb)
$$\frac{555 \pm 0.84}{}$$

No significant QED contribution

## Solution 3: QED/QCD Syntax

- QED<=2 is the SAME as QED=2</li>
  - Quite often source of confusion since most of the people use the = syntax
- QED==2
  - → Only include diagrams with exactly 2 QED vertices
- QCD^2==2
  - → Exactly 2 factors of g<sub>s</sub> in squared amplitude
  - → Returns the interference between the QCD and the QED diagrams

## Solution 3: QED/QCD Syntax

- generate p p > w+ w- j j
  - → 76 processes
  - → 1432 diagrams
  - → None of them are VBF

- generate p p > w + w j j QED = 2
  - → 76 processes
  - → 1432 diagrams
  - → None of them are VBF

- generate p p > w + w j j QED = 4
  - → 76 processes
  - → 5332 diagrams
  - → VBF present! + those not VBF

- generate p p > w + w j j QCD = 0
  - → 60 processes
  - → 3900 diagrams
  - → VBF present!

- generate p p > w + w j j QCD = 2
  - → 76 processes
  - → 5332 diagrams

- generate p p > w + w j j QCD = 4
  - → 76 processes
  - → 5332 diagrams

## Solution 4: Syntax (\$/)

Generate the cross-section and the distribution (invariant mass) for

```
→ pp > e+ e-
```

$$\rightarrow$$
 pp > z, z > e+ e-

$$\rightarrow$$
 pp > e+ e-/z

# Hint: To have automatic distributions: mg5> install MadAnalysis



### Z Peak



$$p p > e + e - /z$$

$$p p > e + e -$$
\$ z





Z- onshell veto



- The Physical distribution is (very close to) exact sum of the two other one.
- The "\$" forbids the Z to be on shell but the photon invariant mass can be at MZ (i.e. on shell subtraction).
- The "/" is to be avoided if possible since this leads to violation of gauge invariance.

## **WARNING**

- NEXT SLIDE is generated with bw\_cut =5
- This is TOO SMALL to have a physical meaning (15 the default value used in previous plot is better)
- This was done to illustrate more in detail how the "\$" syntax works.

## \$ explanation

p p > e + e - / Z (red curve) adding p p > e + e - \$ Z (blue curve)



- Z on-shell veto
- In veto area only photon contribution
- area sensitive to z-peak
- Very off-shell Z: the difference between the curves is due to interference which need to be KEPT in simulation.

5 times width area

15 times width area

>15 times width area

The "\$" can be use to split the sample in BG/SG area

## WARNING!! Bad Syntax!

Syntax Like

```
    p p > z > e+ e- (ask one S-channel z)
    p p > e+ e- / z (forbids any z)
    p p > e+ e- $$ z (forbids any z in s-channel)
```

- ARE NOT GAUGE INVARIANT!
- forgets diagram interference.
- can provides un-physical distributions.

## Avoid Those as much as possible!

check physical meaning and gauge/Lorentz invariance if you do.

## Better Syntax Examples

- Syntax like
  - p p > z, z > e+ e- (on-shell z decaying)
  - p p > e+ e- \$ z (forbids s-channel z to be on-shell)  $|M^* M| < BW_{cut} * \Gamma$
- Are linked to cuts
- Are safer to use

Use the above syntax instead of those on the previous slide!!

# Exercise 5: Top pair production at LO

#### Basic questions:

- Generate the process
- Which partonic subprocesses contribute?
- How many Feynman diagrams does each each subprocess have?
- Output the code
- Are b-quarks included in the initial state? If not, how can I include them?

# Solution 5: Top pair production at LO

### Basic questions:

- Which partonic subprocesses contribute?
- How many Feynman diagrams does each each subprocess have?
  - g g > t t~ (3 diagrams)
  - u u~ > t t~ (| diagram)
  - d d~ > t t~ (| diagram)
  - c c~ > t t~ (| diagram)
  - s s~ > t t~ (| diagram)
- Are b-quarks included in the initial state? If not, how can I include them?
  - define  $p = g u u \sim c \sim d d \sim s \sim b b \sim$

# Solutions 5: Old extra question:

- Are diagrams with photons/z included?If not, how can I include them? How much does the cross-section change?
  - > display diagrams
  - No photon/z appear.
  - Are we missing anything important?
    - Expect only small effects



# Solution 5: Old extra question:

- Are diagrams with photons/z included? If not, how can I include them? How much does the cross-section change?
  - generate p p > t t~ QED=2
  - o > display diagrams
  - •> output ...
  - •> launch
  - **●** > ...





Cross-section: 160.8 +- 0.1999 pb

Nb of events: 10000

WEIGHTED=2

Cross-section: 160.4 +- 0.231 pb

Nb of events: 10000



### Exercise 5a: Automation

- Compute the cross-section for the top pair production for m<sub>t</sub>=170, 172, 174 ... 180 GeV.
  - → Do NOT use the interactive interface
    - hint: you can edit the param\_card/run\_card via the "set" command [After the launch]
    - hint: All commands [including answer to question] can be put in a file. (run ./bin/mg5 PATH TO FILE)

#### **Examples**

import model EWDim6 generate p p > t t~

output TUTO\_DIM6 File: launch

> set nevents 5000 set MT 170

How to Run: ./bin/mg5\_amc PATH

- Recompute the  $t\bar{t}$  cross-section for  $m_t$ =170, 172, 174 ... 180 GeV
- Be smart! Script it!
- Create a txt file myttbar scan.txt

```
generate p p > t t∼
output mytestdir2
launch
set ebeam1 4000
set ebeam2 4000
set MT 170
launch
set MT 172
launch
set MT 174
launch
set MT 176
launch
set MT 178
launch
set MT 180
```

• ./bin/mg5\_aMC myttbar\_scan.txt

- Recompute the  $t\bar{t}$  cross-section for  $m_t=170, 172, 174 ... 180 GeV$
- Be smart! Script it!
- You can also launch an existing folder, without regenerating the code

```
launch mytestdir2
set ebeam1 4000
set ebeam2 4000
set MT 170
launch
set MT 172
launch
set MT 174
launch
set MT 176
launch
set MT 178
launch
set MT 180
```

• Recompute the  $t\bar{t}$  cross-section for  $m_t=170, 172, 174 ... 180 GeV$ 

Results in the sm for p p > t t~

#### **Available Results**

| Run    | Collider               | Banner | Cross section (pb) | Events | Data            | Output | Action                                |
|--------|------------------------|--------|--------------------|--------|-----------------|--------|---------------------------------------|
| run_01 | p p<br>4000 x 4000 GeV | tag 1  | 169.8 ± 0.24       | 10000  | parton madevent | LHE    | remove run launch detector simulation |
| run_02 | p p<br>4000 x 4000 GeV | tag 1  | 160.1 ± 0.28       | 10000  | parton madevent | LHE    | remove run launch detector simulation |
| run_03 | p p<br>4000 x 4000 GeV | tag 1  | 151.1 ± 0.2        | 10000  | parton madevent | LHE    | remove run launch detector simulation |
| run_04 | p p<br>4000 x 4000 GeV | tag 1  | 142.9 ± 0.18       | 10000  | parton madevent | LHE    | remove run launch detector simulation |
| run_05 | p p<br>4000 x 4000 GeV | tag 1  | 134.7 ± 0.19       | 10000  | parton madevent | LHE    | remove run launch detector simulation |
| run_06 | p p<br>4000 x 4000 GeV | tag 1  | $127.3 \pm 0.16$   | 10000  | parton madevent | LHE    | remove run launch detector simulation |

Main Page

- Recompute the  $t\bar{t}$  cross-section for  $m_t=170, 172, 174 ... 180 GeV$
- Be smart! Script it!
- You can specify the name (instead of run\_01...) with -n NAME

```
launch mytestdir2 -n run_MT170
set ebeam1 4000
set ebeam2 4000
set MT 170
launch -n run_MT172
set MT 172
launch -n run_MT174
set MT 174
launch -n run_MT176
set MT 176
launch -n run_MT178
set MT 178
launch -n run_MT180
set MT 180
```

• Recompute the  $t\bar{t}$  cross-section for  $m_t$ =170, 172, 174 ... 180 GeV

| Run       | Collider               | Banner | Cross section (pb) | Events | Data            | Output     | Action                                |
|-----------|------------------------|--------|--------------------|--------|-----------------|------------|---------------------------------------|
| run_01    | p p<br>4000 x 4000 GeV | tag 1  | $169.8 \pm 0.24$   | 10000  | parton madevent | LHE        | remove run launch detector simulation |
| run_02    | p p<br>4000 x 4000 GeV | tag 1  | 160.1 ± 0.28       | 10000  | parton madevent | LHE        | remove run launch detector simulation |
| run_03    | p p<br>4000 x 4000 GeV | tag 1  | 151.1 ± 0.2        | 10000  | parton madevent | LHE        | remove run launch detector simulation |
| run_04    | p p<br>4000 x 4000 GeV | tag 1  | 142.9 ± 0.18       | 10000  | parton madevent | <u>LHE</u> | remove run launch detector simulation |
| run_05    | p p<br>4000 x 4000 GeV | tag 1  | $134.7 \pm 0.19$   | 10000  | parton madevent | LHE        | remove run launch detector simulation |
| run_06    | p p<br>4000 x 4000 GeV | tag 1  | $127.3 \pm 0.16$   | 10000  | parton madevent | LHE        | remove run launch detector simulation |
| run_MT170 | p p<br>4000 x 4000 GeV | tag 1  | 170 ± 0.22         | 10000  | parton madevent | LHE        | remove run launch detector simulation |
| run_MT172 | p p<br>4000 x 4000 GeV | tag 1  | $159.6 \pm 0.22$   | 10000  | parton madevent | <u>LHE</u> | remove run launch detector simulation |
| run_MT174 | p p<br>4000 x 4000 GeV | tag 1  | 151.1 ± 0.22       | 10000  | parton madevent | <u>LHE</u> | remove run launch detector simulation |
| run_MT176 | p p<br>4000 x 4000 GeV | tag 1  | 142.6 ± 0.19       | 10000  | parton madevent | LHE        | remove run launch detector simulation |
| run_MT178 | p p<br>4000 x 4000 GeV | tag 1  | 134.7 ± 0.18       | 10000  | parton madevent | LHE        | remove run launch detector simulation |
| run_MT180 | p p<br>4000 x 4000 GeV | tag 1  | 127.2 ± 0.24       | 10000  | parton madevent | LHE        | remove run launch detector simulation |

Since recently, multiple values can be specified for parameters.
 Just set in the param\_card, instead of the top mass
 scan: [170, 172, 174, 176, 178]

- Generate p p > t t~, and decay the tops (no need to decay the W's)
  - Use the decay-chain formalism
  - → Do the same mass scan as in Ex. 5a & compare crosssections
    - Do you notice something wrong? If so, what did you forget to also update?
    - Update the missing piece and confirm that the issue is fixed

#### **Available Results**

| Run              | Collider                   | Banner       | Cross section (pb)                       | Events    | Data            | Output                   | Action                                |  |
|------------------|----------------------------|--------------|------------------------------------------|-----------|-----------------|--------------------------|---------------------------------------|--|
| run_MT170        | p p<br>4000.0 x 4000.0 GeV | <u>tag 1</u> | 143.6 ± 0.23 ± systematics               | I 10000 I | parton madevent | LHE MA5 report analysis1 | remove run launch detector simulation |  |
|                  |                            |              |                                          |           | hadron MA5      |                          |                                       |  |
| min MT172        | p p<br>4000.0 x 4000.0 GeV | <u>tag 1</u> | <u>146.9 ± 0.27</u> ± <u>systematics</u> | 10000     | parton madevent | LHE MA5 report analysis1 | remove run launch detector simulation |  |
| Tuii_1VI I 1 / 2 |                            |              |                                          |           | hadron MA5      |                          |                                       |  |
| min MT174        | p p<br>4000.0 x 4000.0 GeV | <u>tag 1</u> | 150.5 ± 0.24 ± systematics               | I 10000 I | parton madevent | LHE MA5 report analysis1 | remove run launch detector simulation |  |
| Tuii_1VI I 174   |                            |              |                                          |           | hadron MA5      |                          |                                       |  |
| min MT176        | p p                        | tog 1        | $153.7 \pm 0.27 \pm \text{systematics}$  | 10000     | parton madevent | LHE MA5 report analysis1 | remove run launch detector simulation |  |
| Tuii_IVI I 170   | рр<br>4000.0 x 4000.0 GeV  | <u>tag_1</u> | 133.7 ± 0.27 ± <u>systematics</u>        |           | hadron MA5      |                          |                                       |  |
| run_MT178        | p p<br>4000.0 x 4000.0 GeV | <u>tag_1</u> | $157 \pm 0.29 \pm \text{systematics}$    | 10000     | parton madevent | LHE MA5 report analysis1 | remove run launch detector simulation |  |
|                  |                            |              |                                          |           | hadron MA5      |                          |                                       |  |
| run_MT180        | p p<br>4000.0 x 4000.0 GeV | <u>tag 1</u> | $160.1 \pm 0.33 \pm \text{systematics}$  | 10000     | parton madevent | LHE MA5 report analysis1 | remove run launch detector simulation |  |

#### **Main Page**

- generate p p > t t $\sim$ , t > w+ b, t $\sim$  > w- b $\sim$
- What's wrong?
  - → The cross-section now increases with mass

### What's wrong?

→The width was not updated. Let's fix it:

```
launch mytestdir2 -n run_MT170
set ebeam1 4000
set ebeam2 4000
set MT 170
set WT auto
launch -n run MT172
set MT 172
set WT auto
launch -n run MT174
set MT 174
set WT auto
launch -n run_MT176
set MT 176
set WT auto
launch -n run_MT178
set MT 178
set WT auto
launch -n run_MT180
set MT 180
set WT auto
```

### After updating the widths

#### **Available Results**

| Run           | Collider                   | Banner         | Cross section (pb)                                             | Events   | Data            | Output                   | Action                                |
|---------------|----------------------------|----------------|----------------------------------------------------------------|----------|-----------------|--------------------------|---------------------------------------|
| run_MT170     | p p<br>4000.0 x 4000.0 GeV | <u>tag 1</u>   | $\underline{162.3 \pm 0.3} \pm \underline{\text{systematics}}$ | 10000    | parton madevent | LHE MA5 report analysis1 | remove run launch detector simulation |
|               |                            |                |                                                                |          | hadron MA5      |                          |                                       |
| mm MT172      | p p<br>4000.0 x 4000.0 GeV | tag 1          | $153 \pm 0.28 \pm \text{systematics}$                          | 10000    | parton madevent | LHE MA5 report analysis1 | remove run launch detector simulation |
| Tun_W11172    |                            |                |                                                                |          | hadron MA5      |                          |                                       |
| run MT174     | p p<br>4000.0 x 4000.0 GeV | tag 1          | 144.7 ± 0.26 ± systematics                                     | 10000    | parton madevent | LHE MA5 report analysis1 | remove run launch detector simulation |
| Tuii_W11174   |                            |                |                                                                |          | hadron MA5      |                          |                                       |
| run MT176     | p p                        | tag 1          | $136.2 \pm 0.24 \pm \text{systematics}$                        | 10000    | parton madevent | LHE MA5 report analysis1 | remove run launch detector simulation |
| Tuii_WIT170   | p p<br>4000.0 x 4000.0 GeV | <u>tag_1</u>   | 130.2 ± 0.24 ± <u>systematics</u>                              | 10000    | hadron MA5      |                          |                                       |
| min MT179     | p p<br>4000.0 x 4000.0 GeV | / <u>tag_1</u> | 128.4 ± 0.23 ± systematics                                     | 10000    | parton madevent | LHE MA5 report analysis1 | remove run launch detector simulation |
| Tuii_1VI I 70 |                            |                |                                                                |          | hadron MA5      |                          |                                       |
| run_MT180     | p p<br>4000.0 x 4000.0 GeV | <u>tag 1</u>   | $121.5 \pm 0.21 \pm \text{systematics}$                        | 10000    | parton madevent | LHE MA5 report analysis1 | remove run launch detector simulation |
|               | 1000.0 A 7000.0 OC V       |                |                                                                | <u> </u> |                 |                          |                                       |

**Main Page** 

### Exercise 6: Other Models

- Calculate cross-section and event shapes for p p > j j h
  - Note how many/which diagrams/subprocesses exist
- Now run the same calculation except this time in the Higgs effective theory
  - → Hint: different models can be loaded with import model <model\_name>
- Which model has the greater cross section?
  - → Can you see which process contribute the most to the cross section?

### Solution 6: Other Models

- Calculate cross-section and event shapes for p p > j j h
  - Note how many/which diagrams/subprocesses exist
    - Cross section: 3.351 +- 0.009 (pb), 60 processes, 84 diagrams
- Now run the same calculation except this time in the Higgs effective theory
  - Hint: different models can be loaded with import model <model\_name>
    - At beginning of run card or in program write "import model heft", then proceed as normal
    - Cross section: 7.863 +- 0.025 (pb), 65 processes, 214 diagrams
      - gluon-gluon fusion included and is dominant