Emerging NGS Platforms

The UG100

Footprint is the "Ultima"te of its kind

- Three instruments total
 - Clustering
 - Sequencing
 - Computational

Three main innovative components: (1) open fluidics and optics system

- Circular silicon wafer as an "open flow-cell"
- Patterned dense array of electrostatic landing pads to bind sequencing beads
 - ~10 billion clonally amplified beads
- Spin-dispense system

Three main innovative components: (2) mostly natural sequencing chemistry

- Sequencing-by-synthesis (mnSBS) uses a mixture of native dNTPs and one-at-a-time fluorescently labeled dNTP
- Polymerase extends 0, 1 or several bases depending on respective homopolymer
- Detected signal proportional to length of homopolymer

Three main innovative components: (3) neural network-enabled base-calling

 Machine learning and convolutional neural network (CNN) to convert raw signals to sequence reads; run-specific calibration process; CRAM file

HG001-HG007 Generated Data

444 cycles and a 20 hr run time

Three main innovative components: (3) neural network-enabled base-calling

	HG001	HG002	HG003	HG004	HG005	HG006	HG007	GIAB Mean
Mean coverage	40.05	39.58	39.67	38.56	39.16	39.53	38.32	39.27
% >20X	95.9%	95.7%	95.9%	96.6%	96.8%	96.1%	96.7%	96.2%
% Duplication	4.1%	6.6%	6.2%	7.3%	7.6%	6.1%	8.2%	6.6%
F90*	1.483	1.466	1.469	1.377	1.398	1.464	1.368	1.432
F95*	1.821	1.885	1.803	1.677	1.632	1.797	1.666	1.75
PF reads (M)**	469	435	436	4338	430	443	433	440
% reads aligned	99.80%	99.96%	99.96%	99.97%	99.96%	99.95%	99.97%	99.94%
Mean read length	264.8	284.9	284.4	286.7	288.6	280.3	286.4	282.
Median read length	291	302	302	303	304	301	302	300.
Modal read length	309	311	311	311	311	310	311	310.
% chimeras	2.3%	1.1%	1.2%	1.3%	1.4%	1.5%	1.3%	1.5%
Raw Indel error	0.27%	0.30%	0.29%	0.28%	0.29%	0.38%	0.28%	0.30%
HQ Mismatch error [†]	0.07%	0.08%	0.07%	0.07%	0.07%	0.10%	0.07%	0.07%
% BQ20 bases	95.5%	94.8%	95.0%	95.2%	95.0%	93.6%	95.2%	94.99
% BQ30 bases	87.3%	86.4%	86.8%	87.6%	87.1%	84.6%	87.7%	86.8%
Ti/Tv ratio Exome	2.97	2.89	2.95	2.90	2.98	2.93	2.97	2.9
Ti/Tv ratio [‡]	2.09	2.09	2.09	2.09	2.09	2.09	2.09	2.0
SNP recall [‡]	99.7%	99.6%	99.6%	99.7%	99.7%	99.6%	99.7%	99.7%
SNP precision [‡]	99.6%	99.6%	99.6%	99.6%	99.6%	99.6%	99.6%	99.6%
SNP F1 [‡]	99.7%	99.6%	99.6%	99.7%	99.7%	99.6%	99.7%	99.6%
Indel recall [‡]	96.7%	96.4%	96.6%	95.4%	96.0%	95.9%	96.0%	96.1%
Indel precision [‡]	97.0%	96.8%	97.1%	96.4%	97.0%	96.2%	96.7%	96.7%
Indel F1 [‡]	96.9%	96.6%	96.8%	95.9%	96.5%	96.1%	96.3%	96.49

GIAB Mean

SNP: 99.7% recall; 99.6% precision

Indel: 96.1% recall; 96.7% precision

Table 1: Performance metrics for Genome in a Bottle (GIAB) reference genomes HG001-7, and average performance metrics for 224 additional 1000 Genomes (1000G) reference genomes.

^{*} F90/95: Ratio of coverage between the median and the 10th or 5th percentile lowest coverage, respectively.

^{**} PF: Pass-filter reads. All other metrics were calculated over these reads.

 $[\]dagger$ HQ Mismatch error rate was corrected for germline SNPs and alignment errors (see $\underline{Methods}$ section).

[‡] Variant calling metrics were measured on GIAB HCR excluding long homopolymers and repetitive regions (UG-HCR, see Methods).

Ultima Genomics Summary

- Technology: mostly natural sequencing-by-synthesis (mnSBS)
- Output: 10 billion clonally amplified beads; 2 Wafers at a time
- Runtime: 20 hr
- Length of reads: 310 bp mode size (GIAB)
- Accuracy:
 - SNP: 99.7% recall; 99.6% precision
 - Indel: 96.1% recall; 96.7% precision
- Instrument cost: Unknown (comparable to Illumina NovaSeq 6000)
- Instrument size (relative): Several NovaSeqs worth
- Partnerships/acquisitions:
 - Al partnerships with Google DeepVariant, NVIDIA and Senteon
 - Exact Sciences, Regeneron Pharmaceuticals, NYGC and Broad Institute:
 beta testing—both NYGC and Broad have purchased

Element Biosciences – AVITI Benchtop Sequencer

Highlights

- **Two** independent, random-access flow cells (>1b paired-end reads output per flow cell)
- FASTQ file output (conversion performed by AVITI Operating Software Bases2Fastq workflow)
- Three library workflows (Adept conversion of existing libraries; Elevate Aviti library preparation, LoopSeq—long read sequencing approach)
- Tunable optical throughput (full scan, ½ scan, ¼ scan etc..) to select desired TAT/read depth

Element Biosciences - AVITI

Circularization

Off-instrument library circularized prior to sequencing

"Working to move onto the flow cell"

Pollination

Rolling circular amplification on flow cell surface creates clonal copies of the library molecule or "polony"

Sequencing

Instead of binding an individual labeled nucleotide at each location of the cluster, AVITI uses single fluor with many octopus-like tentacle arms (Avidite)

Avidite nucleotide substrate

Each arm, single nt type

One avidite = multiple binding sites within the polony = increased binding avidity

Element Biosciences - Resources

Aviti Cloudbreak Chemistry

- 20% faster run times
- Reads index 1 and 2 first for initial run/library quality control purposes
- Improved data quality at the ends of reads, and at homopolymers

Element Biosciences – AVITI Key Performance Metrics

Highly efficient kit choices cover a spectrum of applications and maintain cost savings across output requirements. In only 38 hours, two 2 x 150 runs with indexing produce up to 600 Gb of data and 2 billion reads.

READ LENGTH	HIGH OUTPUT FLOW CELL (GB/HOURS)*	MEDIUM OUTPUT FLOW CELL (GB/HOURS)	LOW OUTPUT FLOW CELL (GB/HOURS)	QUALITY SCORES
Read Count	1 billion**	500 million	250 million	Q30
2 x 75	150/24	75/20	Not applicable	> 90%
2 x 150	300/38	150/31	75/27 hours	> 90%
Read Count	300 million	100 million	Not applicable	Q3O
2 x 300	180/60	60/51	Not applicable	> 85%

^{*} Individually addressable lanes slightly extend run times.

^{**} The numbers of reads are based on sequencing Element-prepared libraries. Actual read counts might differ based on lab-specific factors.

Singular Genomics G4 Platform

SYSTEM DESIGN ENGINEERED FOR SPEED, THROUGHPUT, FLEXIBILITY

- Flexible run size: 1–4 flow cells
- 4 independent lanes/FC (up to 16 individual samples/run)
- Integrated cluster generation (amplification)
- Chemistry, optics, fluidics for rapid SBS: 2.5 min/cycle
- 400M Reads/FC or 1600M Reads/run

Singular G4 Design

SBS FLOW CELL WHERE IT ALL HAPPENS

Lithographically patterned flow cell

· Precise microfluidic channels

Polymer "scaffold" for clustering & sequencing

· 4 independently-addressable lanes

• Ergonomic handle & frame

HIGH-THROUGHPUT, 4-COLOR FLUORESCENCE IMAGING DESIGNED FOR SPEED-READING DNA

- Designed to image 4 dyes simultaneously
- Large aperture optics (high NA) for max resolution & light collection
- High-speed imaging at > 2B pixels/sec
- Real-time image processing

SEQUENCING BY SYNTHESIS (SBS) CHEMISTRY NUCLEOTIDES WITH CLEAVABLE TERMINATORS AND DYES

Desired properties in a new SBS chemistry:

- Fast, accurate incorporation by the sequencing polymerase
- Rapidly cleavable terminator & dye linker
- Stable in storage and during sequencing

G4 SEQUENCING REAGENTS

¹Reagents include 50 additional cycles above what is represented to account for adapters and indices.

²Run time measured from run start through clustering, sequencing and instrument wash for non-indexed reads.

³Paired reads passing filter for F2 and F3 are dependent on application and read length.

⁴Performance metrics may be impacted by application, sample quality, library preparation, loading concentration, and other sequencing considerations. Metrics as generated on reference bacterial and human genomes.

FLOW CELL AND LANE COMPARTMENTALIZATION

ACCOMMODATING DIVERSE EXPERIMENTAL NEEDS

F2 Flow Cell ~50M Reads per Lane

F3 Flow Cell ~100M Reads per Lane

\$150-\$250 per lane \$600-\$1,000 per flow cell

VERSATILITY ACROSS CORE APPLICATIONS

	F2 Flow Cell Samples / FC	F3 Flow Cell Samples / FC	Max Read Samples / FC	Samples / Run
Human Whole Genome (2x150 bp, 3 Gb at 30x coverage)	_	1	_	4
Exome (2x100 bp, 34 Mb at 100x coverage)	6	13	_	52
Target Enrichment (2x150 bp, 800 Kb at 4000x coverage)	8	16	_	64
Methyl-Seq (2x100 bp targeting 15x coverage)	1	2	_	8
Shotgun Metagenomics (2x150 bp, 10M reads)	20	40	_	160
RNA-Seq (2x100 bp, 50M reads)	4	8	_	32
Single Cell RNA-Seq (28x91 configuration, 10,000 cells/sample and 20,000 reads/cell)	1	2	4	16

Sequencing multiplexing capabilities are approximations based on assumptions and configurations listed in table and expected, but not guaranteed, throughput on G4 flow cells. Results may vary based on experimental design and sample type. Please refer to kit specifications for more detail.

RAPID HUMAN GENOME ON F3 FLOW CELL

- 1 FC = 1 genome
- 1 4 genomes/run; no batching needed; < 24 hr run time
- F3 FC output: 400M Read pairs, 2 x 150 bp
- Genome coverage (HG002): > 30X
- Single-pass accuracy: 99.9%
- Q-scores: 80-90% >Q30

	40 - 30 -				1			_
Mean QS	20-		Rea	d 1		R	ead 2	
	10							
	J	ò	50	100	150 Cycle	200	250	300

Metric	Value
%PF Reads Aligned	99,9
Median Insert Size (bp)	328
Mean Coverage (X)	33,6
SNP Precision	99.86
SNP Recall	99.18
SNP F1-Score	99.52
Indel (<50bp) Precision	98.33
Indel (<50bp) Recall	97.43
Indel F1-Score	97.88
Het:Hom Ratio	1,51
Ti:Tv Ratio	2.00

Details available in WGS Technical Report 2.0

SINGLE CELL RNA-SEQ IN MAX READ FORMAT GETTING MORE READS WITH MULTIPLE PRIMERS

HIGH-DEFINITION SEQUENCING (HD-SEQ) DOUBLE-STRANDED SEQUENCING FOR RARE VARIANT DETECTION

Methods - Library Preparation gDNA Fragmentation, End Repair, A-Tailing Fragmented DNA Adapter 1 Adapter Ligation & Purification Adapter 2 Optional UMI Bobby Pin Amplification & Purification HD-Seq Library

- HD-Seq enables much greater accuracy by physically linking double stranded DNA from library prep through clustering & sequencing
- Ideally suited for rare variant detection in cell-free DNA

HIGH-DEFINITION SEQUENCING (HD-SEQ) DOUBLE-STRANDED SEQUENCING FOR RARE VARIANT DETECTION

99.8% Single-Read Accuracy

99.999% HD-Seq Accuracy (Q50)

HD-Seq eliminates many sources of errors: sequencing errors,
 PCR amplification errors, and errors due to DNA damage

HIGH-DEFINITION SEQUENCING (HD-SEQ) DOUBLE-STRANDED SEQUENCING FOR RARE VARIANT DETECTION

Pacific Biosciences: Onso

Sequencing By Binding (SBB) Technology: interrogation followed by

incorporation

Accuracy: 90% of bases >Q40

Improved homopolymer accuracy

Output: Up to 500M paired-end reads

Demultiplexed FASTQ

• Runtime: <24 hours</p>

Length of reads: 2x150, or 1x200

- 50-65Gb output
- Accuracy:
 - Google DeepVariant calling
 - 99.25% Indels
 - 99.7% SNVs

- (1) Each cycle initiates with a 3' reversible blocked nucleotide.
- (2) Fluorescently labelled nucleotides are then flowed over the flow cell allowing for the appropriate base to bind. Unbound nucleotides are washed away so that the base can be interrogated with reduced background signal.
- (3) The 3' end of the nucleotide is activated via removal of the reversible terminator.
- (4) Native, unlabeled, reversible blocked nucleotides incorporate the cognate base into the growing strand.