

Reservoir Transformers

Sheng Shen[†], Alexei Baevski[‡], Ari S. Morcos[‡], Kurt Keutzer[†], Michael Auli[‡], Douwe Kiela[‡]

[†]UC Berkeley, [‡]Facebook AI

Transformer

NLP has been undergoing a revolution

Transformer Limitations

How do we make Transformer more training efficient?

Devlin et al. (2019). We pretrain our model using 1024 V100 GPUs for approximately one day.

Green AI

\$4,600,000: The full cost of training GPT-3

Consumption	CO ₂ e (lbs)	
Air travel, 1 passenger, NY↔SF	1984	
Human life, avg, 1 year	11,023	
American life, avg, 1 year	36,156	
Car, avg incl. fuel, 1 lifetime	126,000	
Training one model (GPU)		
NLP pipeline (parsing, SRL)	39	
w/ tuning & experimentation	78,468	
Transformer (big)	192	
w/ neural architecture search	626,155	

Artificial intelligence / Machine learning

Training a single Al model can emit as much carbon as five cars in their lifetimes

Transformer Limitations

- How do we make Transformer more training efficient?
- What do Transformer learn?

A Primer in BERTology: What We Know About How BERT Works

Anna Rogers, Olga Kovaleva and Anna Rumshisky

Posted Online 2020

https://doi.org/10.1162/tacl a 00349

© 2020 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

Reservoir Transformers

 In this work, we explore a simple old idea to make transformers more training efficient, and understand what they learn.

Reservoir Transformers

• In this work, we explore a simple old idea (random reservoir layer).

Connect to Random LSTM

 A random LSTM on top of pretrained word embeddings is a surprisingly good sentence encoder.

Z
Ø
5
Q
0
Š
→

Model	Dim	MR	CR	MPQA	SUBJ	SST2	TREC	SICK-R	SICK-E	MRPC	STSB
ВОЕ	300	77.3(.2)	78.6(.3)	87.6(.1)	91.3(.1)	80.0(.5)	81.5(.8)	80.2(.1)	78.7(.1)	72.9(.3)	70.5(.1)
BOREP RandLSTM ESN	4096	77.2(.3)	78.7(.5)	87.9(.1)	91.9(.2)	81.5(.3)	88.8(.3) 86.5(1.1) 87.9(1.0)	85.5(.1)	81.8(.5)	74.1(.5)	72.4(.5)

Random Wide sentence Encoder perform great on sentence classification task

Connect to Reservoir Computing & Random Feature

Fixed random (RNN) reservoir with "readout" function trained on top.

The "echo state" approach to analysing and training recurrent neural networks – with an Erratum note¹

Herbert Jaeger Fraunhofer Institute for Autonomous Intelligent Systems

January 26, 2010

Random Features for Large-Scale Kernel Machines

Ali Rahimi and Ben Recht

Reservoir computing approaches to recurrent neural network training

Mantas Lukoševičius △ , Herbert Jaeger

Evaluation

- Goal:
 - Can we speed up transformers by freezing-and-keeping-fixed "reservoir layers"?
 - o Can we do so without sacrificing (too much) task performance?

- Metrics:
 - Area under the convergence curve (f is the network, g is the eval metric, t is wall-clock):

$$\int_{t=0}^{\hat{T}} \sum_{x,y \in \mathcal{D}} g_t(f(x), y)$$

- Train time until max validation performance
- Test set generalization
- Number of trainable parameters
- Probing Task Performance

Tasks

- Tasks (small, medium, big; from scratch and pretrained):
 - Machine Translation:
 - IWSLT (small)
 - WMT (medium)
 - Language Modelling:
 - Enwiki8 (big)
 - Masked Language Modelling:
 - RoBERTa pretraining (big)
 - Finetuning:
 - Sentiment: SST-2 (small)
 - Natural Language Inference: MultiNLI (medium)

Experiments

- Comparison of different reservoir layers:
 - Regular Transformer (FFN + MultiHeadSelfAttn)

$$H = MultiHeadSelfAttn(LayerNorm(X)) + X$$

 $L = FFN(LayerNorm(H)) + H$

- Transformer reservoir
- o FFN reservoir, no attention
- (CNN and BiGRU in the appendix)
- Different freezing strategies (we found interleaving trainable and reservoir layers to work the best)

Results (Machine Translation & Language Modeling)

Comparable or better final performance of T Reservoir & FFN Reservoir

(test BLEU)↑

(test bpc)↓

Results (Machine Translation & Language Modeling)

• T Reservoir & FFN Reservoir are more training efficient (better AUCC).

IWSLT
(valid BLEU AUCC)↑

WMT (valid BLEU AUCC)↑

enwik8 (valid bpc AUCC)

Results (Machine Translation & Language Modeling)

• 21%/30% training saving with no performance drop with FFN Reservoir.

Results (Maksed Language Modeling)

Pretraining PPL shows no big difference:

• Up to 25% time savings during pretraining for better performance:

Downstream performance is better overall:

Reservoir layers score better on probing tasks

Model	Layer	SentLen (Surface)	TreeDepth (Syntactic)	TopConst (Syntactic)	BShift (Syntactic)	Tense (Semantic)	SubjNum (Semantic)	ObjNum (Semantic)	SOMO (Semantic)	CoordInv (Semantic)
	1	84.56 ± 0.54	32.30 ± 0.41	54.40 ± 0.33	49.99 ± 0.01	80.98 ± 0.32	76.26 ± 0.09	50.01 ± 0.19	76.38 ± 0.61	54.33 ± 0.47
	2	87.22 ± 0.07	33.63 ± 0.57	58.38 ± 0.20	50.12 ± 0.17	82.84 ± 0.68	78.65 ± 0.19	51.47 ± 0.53	78.00 ± 1.12	54.66 ± 0.53
	3	84.25 ± 0.16	32.60 ± 0.17	54.41 ± 0.10	50.02 ± 0.01	81.72 ± 0.59	77.00 ± 0.13	51.32 ± 0.64	76.57 ± 1.13	54.13 ± 0.5
	4	87.37 ± 0.20	32.59 ± 0.29	50.06 ± 0.21	69.76 ± 0.26	81.63 ± 1.17	76.47 ± 0.09	52.41 ± 1.49	76.15 ± 0.84	52.62 ± 1.3
	5	84.61 ± 0.24	31.14 ± 0.48	44.76 ± 0.38	74.82 ± 0.11	80.16 ± 0.19	73.66 ± 0.16	52.95 ± 1.77	72.90 ± 0.21	51.26 ± 1.14
Transformer	6	82.56 ± 0.25	30.31 ± 0.40	39.30 ± 0.40	78.80 ± 0.38	81.88 ± 0.47	75.30 ± 0.07	56.21 ± 1.26	74.37 ± 0.16	51.44 ± 1.0
Transformer	7	70.85 ± 0.13	26.65 ± 0.72	40.70 ± 0.13	78.98 ± 0.32	85.11 ± 0.31	72.03 ± 0.46	58.15 ± 0.46	68.71 ± 0.91	55.39 ± 0.2
	8	66.23 ± 1.33	23.46 ± 0.44	25.19 ± 1.02	77.42 ± 0.27	80.35 ± 0.45	67.55 ± 0.99	54.94 ± 2.04	63.69 ± 2.32	50.58 ± 0.8
	9	71.17 ± 0.29	31.21 ± 0.31	58.42 ± 0.29	85.55 ± 0.44	86.77 ± 0.19	80.30 ± 0.08	64.36 ± 1.20	81.68 ± 0.45	66.90 ± 0.4
	10	73.19 ± 0.50	27.74 ± 0.53	41.01 ± 0.22	83.56 ± 0.96	86.13 ± 0.35	83.04 ± 0.04	62.01 ± 0.59	79.73 ± 0.21	62.60 ± 1.0
	11	71.37 ± 0.42	30.22 ± 0.28	48.58 ± 0.35	84.40 ± 0.44	87.28 ± 0.59	82.34 ± 0.15	61.10 ± 0.14	80.00 ± 0.40	64.44 ± 0.3
	12	71.66 ± 0.12	33.43 ± 0.18	64.38 ± 0.20	87.38 ± 0.02	88.41 ± 0.09	84.46 ± 0.25	63.01 ± 0.05	81.80 ± 0.27	65.72 ± 0.16
	1	87.75 ± 0.10	31.60 ± 0.21	50.38 ± 0.23	50.00 ± 0.00	80.40 ± 0.18	76.47 ± 0.20	50.53 ± 0.14	73.48 ± 0.15	53.55 ± 0.70
	2	81.28 ± 0.23	34.20 ± 0.41	61.41 ± 0.42	60.64 ± 0.65	81.50 ± 0.77	76.33 ± 0.08	50.73 ± 0.34	74.28 ± 0.67	56.82 ± 0.19
	3	89.28 ± 0.09	36.42 ± 0.11	67.36 ± 0.45	75.64 ± 0.52	85.42 ± 0.18	80.53 ± 0.02	52.50 ± 1.80	78.47 ± 1.81	57.16 ± 0.2
	4	74.31 ± 0.32	32.42 ± 0.83	55.19 ± 0.33	73.41 ± 0.00	79.56 ± 0.00	75.15 ± 0.08	53.68 ± 0.66	75.02 ± 0.19	56.89 ± 0.0
	5	88.03 ± 0.22	38.34 ± 0.64	68.65 ± 0.29	82.25 ± 0.12	86.80 ± 0.02	82.27 ± 0.33	57.95 ± 0.24	80.82 ± 0.91	58.05 ± 0.19
T Reservoir	6	74.55 ± 0.37	33.13 ± 0.29	52.70 ± 0.81	79.21 ± 0.13	85.70 ± 0.36	77.43 ± 0.03	57.26 ± 0.19	75.38 ± 0.66	51.95 ± 1.3
1 Keservon	7	85.82 ± 0.37	37.63 ± 0.13	70.43 ± 0.05	84.12 ± 0.35	86.88 ± 0.07	82.86 ± 0.30	61.17 ± 0.21	80.79 ± 0.17	61.83 ± 0.9
	8	71.69 ± 0.71	30.32 ± 0.01	48.44 ± 0.30	79.12 ± 0.12	84.75 ± 0.09	79.23 ± 0.11	59.53 ± 0.16	76.80 ± 0.41	57.34 ± 0.1
	9	85.86 ± 0.12	37.89 ± 0.03	69.53 ± 0.37	85.55 ± 0.12	87.98 ± 0.22	84.13 ± 0.01	63.06 ± 0.01	82.55 ± 0.31	66.07 ± 0.0
	10	69.22 ± 0.23	25.58 ± 0.35	29.20 ± 0.58	78.57 ± 0.09	85.02 ± 0.03	75.68 ± 0.16	57.55 ± 1.57	74.70 ± 0.02	55.02 ± 0.6
	11	65.70 ± 0.05	30.57 ± 0.03	47.56 ± 0.02	81.20 ± 0.00	86.78 ± 0.02	83.73 ± 0.05	60.38 ± 0.17	80.59 ± 0.15	62.50 ± 0.1
	12	70.61 ± 0.18	34.45 ± 0.20	64.19 ± 0.10	84.53 ± 0.03	87.48 ± 0.16	84.86 ± 0.14	62.75 ± 0.14	82.08 ± 0.03	64.73 ± 0.0

Why does it work?

- Summary:
 - Train faster for shorter, with fewer parameters, get better results
- Findings:
 - Reservoir layers improve efficiency
 - Appears to generalize better
 - Why?
 - Noise helps generalization
 - Detrimental noise can be removed by subsequent layers
 - "Cheap additional parameters"
- More details in the <u>paper</u> (ACL 2021).

Backskip (more efficient Reservoir Transformer)

Estimate gradients for reservoir layers to skip activation gradient computation.

$$\theta_{t+1} \leftarrow \theta_t - \eta \frac{\partial J}{\partial \theta_t}; \frac{\partial J}{\partial \theta_t} = \frac{\partial J}{\partial L_n} \frac{\partial L_n}{\partial L_{n-1}} \cdots \frac{\partial L_0}{\partial x}$$

FACEBOOK AI

Results

• Even **better training saving** with no performance drop.

Model	Max BLEU	AUCC	Train time
Transformer	34.59 ± 0.11	114.57 ± 0.08	142.28 ± 1.87
T Reservoir	34.80 ± 0.07	115.26 ± 0.26	134.49 ± 1.70
Backskip Reservoir	34.75 ± 0.05	115.99 ± 0.23	119.54 ± 1.78

Table 3: Validation max BLEU, AUCC at 4h and wallclock time per epoch (averaged over multiple runs, in seconds) on IWSLT comparing backskipping with regular and reservoir transformers.