1

NCERT-discrete: 10.5.3 - 2

EE23BTECH11025 - Anantha Krishnan

I. QUESTION

Find the sums given below:

(i)
$$7 + 10\frac{1}{2} + 14 \dots + 84$$

(ii)
$$34 + 3\cancel{2} + 30 \dots + 10$$

(iii)
$$-5 + -8 + -11 \dots -230$$

Symbols	Description	Values
d_i	Common Difference	3.5, -2, -3
$x_i(n)$	Sequence	$(x_i(0) + nd_i)u_{(k)}$
$X_i(z)$	Z-Transform of $x_i(n)$	$zx_i(0)(z-1)^{-1} + d_iz(z-1)^{-2}$
$S_i(n)$	Sum of (n+1)terms	$\frac{(n+1)u_{(u)}}{2}(2x_i(0) + kd_i)$
h[n]	Unit step function	$0 \ \forall n < 0, 1 \forall n \ge 0$

Table 1: Parameters, Descriptions And Values

Solutions:

(i)
$$7 + 10\frac{1}{2} + 14 \dots + 84$$

$$S_n = \frac{(n+1)u_{(n)}}{2}(2x_i(0) + nd_i) \tag{1}$$

For number of terms, we use

$$x_i(n) = (x_i(0) + nd_i)u_n$$
 (2)

Where $x_i(n)$ is the $(n + 1)^{th}$ term of the series. Putting the values

$$84 = 7 + \frac{7n}{2} \tag{3}$$

$$n = 22 \tag{4}$$

1) Calculating $S_1(22)$:

$$S_1(22) = \frac{23}{2}(14 + (22)\frac{7}{2})S_1(22) = 1046.5$$
 (5)

2) Z-Transform of $x_1(n)$: By the Definition of Z-transform:

$$\sum_{n=-\infty}^{\infty} Z^{-n} x_i(n) = X_i(Z)$$
 (6)

Putting $x_1(n)$ in (6), we get

$$\sum_{n=-\infty}^{\infty} (x_1(0) + \frac{7n}{2}) u_{(n)} Z^{-n} = X_1(z)$$
 (7)

$$\sum_{n=-\infty}^{\infty} (7 + \frac{7n}{2}) u_{(n)} Z^{-n} = X_1(z)$$
 (8)

$$7z(z-1)^{-1} + 7z(2(z-1))^{-2} = X_1(z)$$
 (9)

$$\forall |z| > 1 \tag{10}$$

3) Z-Transform of $S_1(n)$: Using (2) and assuming

$$h(n) = u(n) \tag{11}$$

$$S_1(n) = x_1(n) * h(n)$$
 (12)

$$S_1(z) = X_1(z) * H_i(z)$$
 (13)

Where $X_1(z)$ comes from (9). For H(z), it is Z-transform of unit-step function

$$H_1(z) = z(z-1)^{-1} (14)$$

For $S_1(z)$:

$$S_1(z) = (7z(z-1)^{-1} + 7z(2(z-1))^{-2})z(z-1)^{-1}$$

ROC:

$$|z| > 1 \tag{15}$$

4) Inversion of $S_1(z)$: By using partial fractions:

$$S_1(z) = (7z^2(z-1)^{-2} + 7z^2(2(z-1))^{-3})$$

Using known results:

Inverse Z-transform of

$$z^2(z-1)^{-2} \leftrightarrow (n+1)u(n) \tag{16}$$

For
$$z^2(z-1)^{-3}$$

we can differentiate (16) and get the inverse Z-transform as

$$z^{2}(z-1)^{-3} \leftrightarrow (n(n+1)/2)u(n)$$
 (17)

Graph: 1 $x_1(n)$ vs n

Therefore:

$$S_1(n) = (7(n+1) + 1.75n(n+1))u(n)$$
 (18)

(ii) $34 + 32 + 30 \dots + 10$ In this bit $x_2(0) = 34$, $d_2 = -2$.

Using equation (2)

$$10 = 34 - 2n \tag{19}$$

$$n = 12 \tag{20}$$

For $x_2(n)$

$$x_2(n) = x_2(0) + nd_2 (21)$$

$$x_2(n) = x_2(0) - 2n (22)$$

1) Calculating $S_2(12)$: For calculating the sum, we use (1)

$$S_2(12) = \frac{13}{2}(64 + 11(-2))$$
 (23)

$$S_2(12) = 286.$$
 (24)

2) Z-Transform of $x_2(n)$: Using (6)

$$\sum_{n=-\infty}^{\infty} (x_2(0) - 2n)u_{(n)}Z^{-n} = X_2(z)$$
 (25)

For $X_2(z)$

$$34z(z-1)^{-1} - 2z((z-1))^{-2} = X_2(z)$$
 (26)

$$|z| > 1 \tag{27}$$

3) Z-Transform of $S_2(n)$: Using (2) and assuming

$$h[n] = u[n] \tag{28}$$

$$S_2(n) = x_2(n) * h(n)$$
 (29)

$$S_2(z) = X_2(z) * H(z)$$
 (30)

Where $X_2(z)$ comes from (26) and H(z) from (14). For $S_2(z)$:

$$S_2(z) = (34z(z-1)^{-1} - 2z((z-1))^{-2})z(z-1)^{-1}$$
(31)

ROC:

$$|z| > 1 \tag{32}$$

4) Inversion of $S_2(z)$: By using partial fractions

$$S_2(z) = (34z^2(z-1)^{-2} - 2z^2((z-1))^{-3})$$

Using results (16) and (17)

$$S_2(n) = (34(n+1) - n(n+1))u(n)$$
 (33)

Graph:2 $x_2(n)$ vs n

(iii) $-5 + -8 + -11 \dots -230$

Here
$$x_3(0) = -5$$
, $d_3 = -3$ From (2)

$$-230 = -5 - 3n \tag{34}$$

$$n = 75 \tag{35}$$

For $x_3(n)$

$$x_3(n) = x_3(0) + nd_3 (36)$$

$$x_{3(n)} = x_3(0) - 3n (37)$$

1) Calculating $S_3(75)$: Using (1):

$$S_3(75) = \frac{76}{2}(-10 + (76 - 1)(-3)) \tag{38}$$

$$S_3(75) = -8930 \tag{39}$$

2) Z-Transform of $x_3(n)$: Putting $x_3(n)$ in (6)

$$\sum_{n=-\infty}^{\infty} (x_3(0) - 3n)u_{(n)}Z^{-n} = X_3(z)$$
 (40)

For $X_3(z)$, we use the same process as in (i) bit

$$-5z(z-1)^{-1} - (1.5)z((z-1))^{-2} = X_3(z)$$

$$|z| > 1 \quad (41)$$

3) Z-Transform of $S_3(n)$: Using (2) and assuming

$$h(n) = u(n) \tag{42}$$

$$S_3(n) = x_3(n) * h(n)S_3(z) = X_3(z) * H_2(z)$$
(43)

Where $X_3(z)$ comes from (41) and $H_{(Z)}$ from (14). For $S_3(z)$:

$$S_3(z) = (-5z(z-1)^{-1} - (1.5)z((z-1))^{-2})z(z-1)^{-1}$$
(44)

ROC:

$$|z| > 1 \tag{45}$$

4) Inversion of $S_2(z)$: By using partial fractions

$$S_3(z) = (-5z^2(z-1)^{-2} - 1.5z^2((z-1))^{-3})$$

Using results (16) and (17)

$$S_3(n) = (-5(n+1) - 1.5n(n+1))u(n)$$
 (46)

Graph:3 $x_3(n)$ vs n