计算物理作业 2

谢昀城 22307110070

2024年9月18日

1 题目 1: 求方程的根

1.1 题目描述

Sketch the function $x^3 - 5x + 3 = 0$

- 1. Determine the two positive roots to 4 decimal places using the bisection method. Note: You first need to bracket each of the roots.
- 2. Take the two roots that you found in the previous question (accurate to 4 decimal places) and "polish them up" to 14 decimal places using the Newton-Raphson method.
- 3. Determine the two positive roots to 14 decimal places using the hybrid method.

1.2 程序描述

对于题目要求求解的方程,我们首先通过在一定范围内均匀采样 (一般采样 10 个点) 找到其变号区间,在程序中由 $find_bracket$ 完成 (见图1)。对于 1.1 题,我们使用 $bisection_method$ 函数接收其变号区间,并在区间内使用二分法逼近其中的根,直到误差在容差 $10^{(}-4)$ 以下,这里根的误差使用二分区间大小 |a-b| 估计。对于 1.2 和 1.3 题,由于 np.float64 类型浮点数的精度大约只有 16 位有效位数左右,因此我们使用 decimal 库实现 50 位有效数字的计算。我们在 $newton_raphson_method$ 和 $hybrid_method$ 函数中接收由 1.1 中得到的解,将其误差缩小至 $10^{(}-14)$ 以下,这里误差我们使用 |f(x)/f'(x)| 估计。

本程序源文件为 WheatstoneBridge.py, 在终端进入当前目录,使用命令 python -u WheatstoneBridge.py 运行本程序。运行时请保证此程序与题目一 SketchFunction.py 在同一文件夹下,且 Python 第三方库 Numpy 已安装。程序开发环境为 Python3.9.6,可在 Python3.8 以上版本中运行。

1.3 伪代码

高斯消去法的伪代码如下所示

Algorithm 1 Gaussian Elimination Method

Require: R: Matrix(float, shape=(n, n+1))

Ensure: *i*: Array(float, len=n)

1: for $i \leftarrow 1$ to n do

2: $m \leftarrow \text{the index of } max(abs(R[i:n,i]))$

▷ (Pivot the matrix)

图 1: f(x)-x 图像。其中标出了由 $find_b racket$ 函数找出的变号区域

```
swap row i and row m of the R
 3:
        R_i \leftarrow R_i/R_{ii}
                                                                                       ▷ (Let the first element in this line equals 1)
 4:
        for j \leftarrow i + 1 to n do
 5:
            R_i \leftarrow R_i - R_i * R_{ii}
                                                                                           ▷ (Produce the upper triangular matrix)
 6:
        end for
 7:
 8: end for
 9: for i \leftarrow n to 1 do
        for j \leftarrow 1 to i do
10:
            R_j \leftarrow R_i - R_i * R_{ii}
                                                                                                     ▷ (Produce the diagonal matrix)
11:
        end for
12:
13: end for
14: i \leftarrow the last column of R
15: return i
```

1.4 输入输出实例

对于本程序,首先需要用户输入电路中六个电阻 $(r_s, r_a, r_x, r_1, r_2, r_3)$ 的数值,通过这些电阻值写出增广矩阵 $\mathbf{R}|\mathbf{v}$,将该增广矩阵带入高斯消去法中即可求得电流 \mathbf{i} ,等效电阻 $r_e = v_0/i_1$ 。下列表格为在相应输入电阻下的运算结果

	Input						Output
Index	r_s	r_a	r_x	r_1	r_2	r_3	r_e
1	4	0	5	5	7	7	10.00
2	4	100	5	5	7	7	10.00
3	1	100	5	5	7	7	7.00
4	4	100	3	5	7	2	7.53
5	4	0	3	5	7	2	7.43

表 1: 问题二的结果实例

对比表格①与②可以看出,在电桥平衡的情况下,改变电流计阻值 r_a 并不会影响电路整体的等效电阻;对比表格②与③可以看出,电源内阻 r_s 的大小会直接影响电路电阻大小, r_s 的变化量就是 r_e 的变化量,从物理上看这也是显然的;对比表格④与⑤可以看出,在电桥不平衡的情况下,改变电流计阻值会影响等效电阻 r_e 的大小,但在 r_a 变化较大的情况下, r_e 变化仍较小。图2是程序运行的实际截图。

```
→ python -u .\WheatstoneBridge.py
Please enter the resistances of the resistors in the order of [Rs, Ra, Rx, R1, R2, R3], such as 1,2,3,4,5,6:
4,5,3,5,7,2
The effective resistance of the circuit is 7.48
```

图 2: 题目 2 运行结果