Aufgabe 1

(a) Betrachten Sie die formale Sprache $L\subseteq\{0,1\}^*$ aller Wörter, die 01 oder 110 als Teilwort enthalten.

Geben Sie einen regulären Ausdruck für die Sprache ${\cal L}$ an.

(b) Entwerfen Sie einen (vollständigen) deterministischen endlichen Automaten, der die Sprache L aus Teilaufgabe (a) akzeptiert. (Hinweis: es werden nicht mehr als 6 Zustände benötigt.)

(c) Minimieren Sie den folgenden deterministischen endlichen Automaten: Machen Sie dabei Ihren Rechenweg deutlich!

1

 $^{^{1} \}mathtt{https://flaci.com/Ajpw4j73w}$

a	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
b		Ø	Ø	Ø	Ø	Ø	Ø	Ø
С	*1	*1	Ø	Ø	Ø	Ø	Ø	Ø
d	*1	*1		Ø	Ø	Ø	Ø	Ø
e	*2	*2	*1	*1	Ø	Ø	Ø	Ø
f	*3	*3	*1	*1		Ø	Ø	Ø
g	*1	*1	*2	*2	*1	*1	Ø	Ø
h	*1	*1	*2	*2	*1	*1		Ø
	a	b	<u>c</u>	<u>d</u>	e	f	<u>g</u>	<u>h</u>

- \ast^1 Paar aus End-/ Nicht-Endzustand kann nicht äquivalent sein.
- *² Test, ob man mit Eingabe zu bereits markiertem Paar kommt.
- *³ In weiteren Iterationen markierte Zustände.

Die Zustandpaare werden aufsteigend sortiert notiert.

Übergangstabelle

Zustandspaar	0	1	
(a, b)	(c, c)	(d, d)	
(a, e)	(c, h) * ²	(c, d)	
(a, f)	$(c, g) *^3$	(d, d)	
(b, e)	$(c, h) *^2$	(c, d)	
(b, f)	$(c, g) *^3$	(d, g)	
(c, d)	(c, d)	(e, f)	
(c, g)	$(d, e) *^2$	(e, f)	
(c, h)	$(d, f) *^2$	(f, f)	
(d, g)	$(c, e) *^2$	(e, e)	
(d, h)	$(c, f) *^2$	(e, f)	
(e, f)	(g, h)	(c, d)	
(g, h)	(e, f)	(g, h)	

a
——ahttps://flaci.com/Arzvh5kyz

(d) Ist die folgende Aussage richtig oder falsch? Begründen Sie Ihre Antwort! "Zu jeder regulären Sprache L über dem Alphabet Σ gibt es eine Sprache $L'\subseteq \Sigma^*$, die L enthält (d. h. $L\subseteq L$) und nicht regulär ist."