2.10.23

Al25BTECH11034 - Sujal Chauhan

September 24, 2025

Question

The vector(s) which is/are coplanar with the vectors $\hat{i} + \hat{j} + 2\hat{k}$ and $\hat{i} + 2\hat{j} + \hat{k}$, and perpendicular to vector $\hat{i} + \hat{j} + \hat{k}$ is/are.

- $\mathbf{0} \hat{\mathbf{j}} \hat{\mathbf{k}}$
- $\mathbf{2} \hat{\mathbf{i}} + \hat{\mathbf{j}}$
- $\hat{\mathbf{i}} \hat{\mathbf{j}}$
- $\mathbf{0} \hat{\mathbf{j}} + \hat{\mathbf{k}}$

Solution

Variable	Vector	
Α	$\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$	
В	$\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$	
С	$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$	

Solution

Listing options as vectors D_i :

Input	Vector
D ₁	$\begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$
D ₂	$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$
D ₃	$\left \begin{array}{c} 1 \\ -1 \\ 0 \end{array}\right $
D ₄	$\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$

Checking conditions

Let equation of plane be given by:

$$\mathbf{n}^{\top} \mathbf{X} = 1 \tag{1}$$

Let's find general solution \mathbf{n} which is perpendicular to the plane

$$(A B)^{\top} \mathbf{n} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 (2)

Given:
$$\begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \end{pmatrix} \mathbf{n} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 (3)

(4)

We want to solve:
$$\begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \end{pmatrix} \mathbf{n} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \mathbf{n} = \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix}$$
 (5)

$$\begin{pmatrix}
1 & 1 & 2 & | & 1 \\
1 & 2 & 1 & | & 1
\end{pmatrix}$$
(7)

$$\xrightarrow{R_2 \to R_2 - R_1} \begin{pmatrix} 1 & 1 & 2 & | & 1 \\ 0 & 1 & -1 & | & 0 \end{pmatrix} \tag{8}$$

$$\xrightarrow{R_1 \to R_1 - R_2} \begin{pmatrix} 1 & 0 & 3 & | & 1 \\ 0 & 1 & -1 & | & 0 \end{pmatrix} \tag{9}$$

Thus the equations are:
$$(10)$$

$$n_1 + 3n_3 = 1, \quad n_2 - n_3 = 0$$
 (11)

Let
$$n_3 = a \in \mathbb{R}, \quad n_2 = a, \quad n_1 = 1 - 3a$$
 (12)

So the general solution is:

$$\mathbf{n} = \begin{pmatrix} 1 - 3a \\ a \\ a \end{pmatrix}, \quad a \in \mathbb{R} \tag{14}$$

(13)

Now any vector following both condition will be solution of the equation:

$$\begin{pmatrix} n & C \end{pmatrix}^{\top} \mathbf{D_i} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{15}$$

Checking Values for all options:

$$\begin{pmatrix} 1 - 3a & a & a \\ 1 & 1 & 1 \end{pmatrix} \mathbf{D_i} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{16}$$

Vector	$\begin{pmatrix} 1 - 3a & a & a \\ 1 & 1 & 1 \end{pmatrix} \mathbf{D_i}$	Satisfies
D ₁	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	Yes
D ₂	$\begin{pmatrix} 1-2a\\2 \end{pmatrix}$	No
D ₃	$\begin{pmatrix} 1-4a \\ 0 \end{pmatrix}$	No
D ₄	$\begin{pmatrix} 2a \\ 2 \end{pmatrix}$	No

So only D_1 satisfies both conditions.

Figure: Vector D_1 in plane

Figure: Vector D_2 not coplanar

Figure: Vector D_3 not coplanar

Figure: Vector D_4 not coplanar

conclusion

Only 1 satisfys both conditions