

AU OPTRONICS CORPORATION

Product Specification

12.1" WXGA Color TFT-LCD Module

Model Name: B121EW03 V2

Approved by	Prepared by

NBBU Marketing Division / AU Optronics corporation

Customer	Checked & Approved by

12.1" WXGA Color TFT-LCD Module Model Name: B121EW03 V.2

() Preliminary Specifications (V) Final Specifications

Note: This Specification is subject to change without notice.

Contents

1. Handling Precautions	5
2. General Description	6
2.1 Display Characteristics	6
2.2 Optical Characteristics	7
3. Functional Block Diagram	12
4. Absolute Maximum Ratings	13
4.1 Absolute Ratings of TFT LCD Module	13
4.2 Absolute Ratings ofBacklight Unit	13
4.3 Absolute Ratings of Environment	13
5. Electrical characteristics	14
5.1 TFT LCD Module	14
5.2 Backlight Unit	16
6. Signal Characteristic	18
6.1 Pixel Format Image	18
6.2 The input data format	19
6.3 Signal Description	20
6.4 Interface Timing	22
7. Connector & Pin Assignment	24
7.1 TFT LCD Module	24
(B) Signal Pin	24
7.2 Backlight Unit	25
7.3 Signal for Lamp connector	25
8. Vibration and Shock Test	26
8.1 Vibration Test	26
8.2 Shock Test Spec:	26
9. Reliability	27
10. Mechanical Characteristics	28
10.1 LCM Outline Dimension	28
10.2 Screw Hole Depth and Center Position	30
11. Shipping and Package	31
11.1 Shipping Label Format	31
11.2. Carton package	32
11.3 Shipping package of palletizing sequence	÷32
12. Appendix: EDID description	

Record of Revision

Version and Date Page		Old description	New Description	Remark
0.1 2005/12/05	All	First Edition for Customer		
0.2 2005/12/15 6 Glare, Hardnes		Glare, Hardness 2H,	Glare, Hardness 3H,	
		Haze 25%, Reflectance 4.3%	Reflectance 4.3%	
0.2 2005/12/15	14		VDD power Max 1.6 watt	
0.3 2006/4/07	6	180 typ. (5 points average)	200 typ. (5 points average)	
0.3 2000/4/07	O	160 min. (5 points average)	170 min. (5 points average)	
0.3 2006/4/07	6	Contrast ratio 400 typ	500 typ.	
0.2.2000(4/07	7	White Luminance CCFL 6.0mA (5	White Luminance CCFL 6.0mA ((5	
0.3 2006/4/07	/	points average) 180 typ. / 160 min.	points average) 200 typ. / 170 min.	
		Viewing angle Vertical CR = 10	Viewing angle Vertical CR = 10	
0.3 2006/4/07	7	(Upper) 10	(Upper) 20	
		(Lower) 30	(Lower) 40	
	_		Update Color / Chromaticity	
0.3 2006/4/07	7		Coordinates (CIE 1931)	
0.3 2006/4/07	7	CR: Contrast Ratio typ 400	CR: Contrast Ratio typ 500	
0.3 2006/4/07	22	6.4.1 Clock frequency: 68.9 (typ)	6.4.1 Clock frequency: 68 (typ)	
0.3 2006/4/07	31	11.1 Shipping Label Format (Rev.	11.1 Shipping Label Format (Rev. A00)	
		X20)	<u> </u>	
0.3 2006/4/07	33		Update 12. Appendix: EDID	
			description	

1. Handling Precautions

- 1) Since front polarizer is easily damaged, pay attention not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- 5) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface.
- 6) Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 7) Do not open nor modify the Module Assembly.
- 8) Do not press the reflector sheet at the back of the module to any directions.
- 9) In case if a Module has to be put back into the packing container slot after once it was taken out from the container, do not press the center of the CCFL Reflector edge. Instead, press at the far ends of the CFL Reflector edge softly. Otherwise the TFT Module may be damaged.
- 10) At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT Module.
- 11) After installation of the TFT Module into an enclosure (Notebook PC Bezel, for example), do not twist nor bend the TFT Module even momentary. At designing the enclosure, it should be taken into consideration that no bending/twisting forces are applied to the TFT Module from outside. Otherwise the TFT Module may be damaged.
- 12)Cold cathode fluorescent lamp in LCD contains a small amount of mercury. Please follow local ordinances or regulations for disposal.
- 13) Small amount of materials having no flammability grade is used in the LCD module. The LCD module should be supplied by power complied with requirements of Limited Power Source(, IEC60950 or UL1950), or be applied exemption.
- 14) The LCD module is designed so that the CFL in it is supplied by Limited Current Circuit(IEC60950 or UL1950). Do not connect the CFL in Hazardous Voltage Circuit.

2. General Description

B121EW03 V2 is a Color Active Matrix Liquid Crystal Display composed of a TFT LCD panel, a driver circuit, and backlight system. The screen format is intended to support the WXGA (1280(H) x 800(V)) screen and 262k colors (RGB 6-bits data driver). All input signals are LVDS interface compatible. Inverter card of backlight is not included.

B121EW03 V2 is designed for a display unit of notebook style personal computer and industrial machine.

2.1 Display Characteristics

The following items are characteristics summary on the table under 25 $^{\circ}\mathrm{C}$ condition:

Items	Unit	Specifications
Screen Diagonal	[mm]	307.9 (12.1W")
Active Area	[mm]	261.12(H) X 163.2(V)
Pixels H x V		1280x3(RGB) x 800
Pixel Pitch	[mm]	0.204X0.204
Pixel Arrangement		R.G.B. Vertical Stripe
Display Mode		Normally White
Typical White Luminance (ICFL=6.0mA)	[cd/m ²]	200 typ. (5 points average) 170 min. (5 points average) (Note1)
Luminance Uniformity		1.25 max. (5 points)
Contrast Ratio		500 typ.
Optical Rise Time/Fall Time	[msec]	10/15 typ.
Nominal Input Voltage VDD	[Volt]	+3.3 typ.
Typical Power Consumption	[Watt]	4.5W max.
Weight (without inverter)	[Grams]	250g typ 265g max
Physical Size	[mm]	275.82x 178 x 5.2 max.
Electrical Interface		1 channel LVDS
Surface Treatment		Glare, Harness 3H, Reflectance 4.3%
Support Color		Native 262K colors (RGB 6-bit data driver)

Temperature Range Operating Storage (Non-Operating)	[°C] [°C]	0 to +50 -40 to +60
RoHS Compliance		RoHS Compliance

2.2 Optical Characteristics

The optical characteristics are measured under stable conditions at 25°C (Room Temperature):

Item	Unit	Condi	Conditions		Тур.	Max.	Note
White Luminance CCFL 6.0mA	[cd/m2]	5 points av	erage	170	200	-	1,2,3
Viewing Angle	[degree] [degree]	Horizontal CR = 10	(Right) (Left)	-	40 40	-	2,7
	[degree]	Vertical CR = 10	(Upper)	-	20 40	-	
Uniformity		(Lower) 5 Points				1.25	1
Uniformity		13 Points				1.6	
CR: Contrast Ratio				350	500	-	6
Cross talk	%					4	4
Response Time	[msec]	Rising		-	10	15	5
	[msec]	Falling		-	15	20	
	[msec]	Raising + F	alling		25	35	
Color / Chromaticity		Red x		0.560	0.580	0.600	2,7
Coordinates (CIE 1931)		Red y		0.320	0.340	0.360	
(012 1001)		Green x		0.290	0.310	0.330	
		Green y		0.530	0.550	0.570	
		Blue x		0.135	0.155	0.175	
		Blue y		0.135	0.155	0.175	
		White x		0.283	0.313	0.343	
		White y		0.299	0.329	0.359	

Note 1: 5 points position (Display area : 261.12mm x 163.2mm)

Note 2: 13 points position

Note 3: The luminance uniformity of 5 and 13 points is defined by dividing the maximum luminance values by the minimum test point luminance

$$\delta_{\text{W5}} = \frac{\text{Maximum Brightness of five points}}{\text{Minimum Brightness of five points}}$$

$$\delta_{\text{W13}} = \frac{\text{Maximum Brightness of thirteen points}}{\text{Minimum Brightness of thirteen points}}$$

Note 4: Measurement method

The LCD module should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 30 minutes in a stable, windless and dark room.

Center of the sc

Note 5: Definition of Cross Talk (CT)

$$CT = |Y_B - Y_A| / Y_A \times 100 (\%)$$

Where

 $Y_A =$ Luminance of measured location without gray level 0 pattern (cd/m₂)

Y_B = Luminance of measured location with gray level 0 pattern (cd/m₂)

Note 6: Definition of response time:

The output signals of BM-7 or equivalent are measured when the input signals are changed from "Black" to "White" (falling time) and from "White" to "Black" (rising time), respectively. The response time interval between the 10% and 90% of amplitudes. Refer to figure as below.

Note 7. Definition of viewing angle

Viewing angle is the measurement of contrast ratio \geq 10, at the screen center, over a 180° horizontal and 180° vertical range (off-normal viewing angles). The 180° viewing angle range is broken down as follows; 90° (θ) horizontal left and right and 90° (Φ) vertical, high (up) and low (down). The measurement direction is typically perpendicular to the display surface with the screen rotated about its center to develop the desired measurement viewing angle.

3. Functional Block Diagram

The following diagram shows the functional block of the 12.1 inches wide Color TFT/LCD Module:

4. Absolute Maximum Ratings

Absolute maximum ratings of the module is as following:

4.1 Absolute Ratings of TFT LCD Module

Item	Symbol	Min	Max	Unit	Conditions
Logic/LCD Drive	Vin	-0.3	+4.0	[Volt]	Note 1,2

4.2 Absolute Ratings of Backlight Unit

Item	Symbol	Min	Max	Unit	Conditions
CCFL Current	ICFL	-	7	[mA] rms	Note 1,2

4.3 Absolute Ratings of Environment

Item	Symbol	Min	Max	Unit	Conditions
Operating Temperature	TOP	0	+50	[°C]	Note 3
Operation Humidity	HOP	5	95	[%RH]	Note 3
Storage Temperature	TST	-40	+60	[°C]	Note 3
Storage Humidity	HST	5	95	[%RH]	Note 3

Note 1: With in Ta (25°C)

Note 2: Permanent damage to the device may occur if exceed maximum values

Note 3: For quality performance, please refer to AUO IIS(Incoming Inspection Standard).

Operating Range

5. Electrical characteristics

5.1 TFT LCD Module

5.1.1 Power Specification

Input power specifications are as follows;

Symble	Parameter	Min	Тур	Max	Units	Condition
VDD	Logic/LCD Drive Voltage	3.0	3.3	3.6	[Volt]	Load Capacitance 20uF
PDD	VDD Power		1.0	1.6	[Watt]	Max:All Black Pattern
IDD	IDD Current		400	420	mA	Max:All Black Pattern
I Rush	Inrush Current			1800	mA	
VDDrp	Allowable Logic/LCD Drive Ripple Voltage			500	[mV] p-p	
VDDns	Allowable Logic/LCD Drive Ripple Noise			100	[mV] p-p	

Note 1: Measurement conditions:

5.1.2 Signal Electrical Characteristics

Input signals shall be low or Hi-Z state when VDD is off.

It is recommended to refer the specifications of SN75LVDS86DGG(Texas Instruments) in detail.

Signal electrical characteristics are as follows;

Parameter	Condition	Min	Max	Unit
Vth	Differential Input High Threshold (Vcm=+1.2V)		100	[mV]
Vtl	Differential Input Low Threshold (Vcm=+1.2V)	-100		[mV]

Note: LVDS Signal Waveform

5.2 Backlight Unit

Parameter guideline for CCFL Inverter

Parameter	Min	Тур	Max	Units	Condition
White Luminance 5 points average	170	200	-	[cd/m ²]	(Ta=25°€)
CCFL current(ICFL)	5.5	6.0	6.5	[mA] rms	(Ta=25°C) Note 2
CCFL Frequency(FCFL)	50	60	70	[KHz]	(Ta=25°C) Note 3,4
CCFL Ignition Voltage(Vs)	1400	-	-	[Volt] rms	(Ta= 0°ℂ) Note 5
CCFL Voltage (Reference) (VCFL)	-	580	-	[Volt] rms	(Ta=25°C) Note 6
CCFL Power consumption (PCFL)	-	3.5	-	[Watt]	(Ta=25°C) Note 6

Note 1: Typ are AUO recommended Design Points.

- *1 All of characteristics listed are measured under the condition using the AUO Test inverter.
- *2 In case of using an inverter other than listed, it is recommended to check the inverter carefully. Sometimes, interfering noise stripes appear on the screen, and substandard luminance or flicker at low power may happen.
- *3 In designing an inverter, it is suggested to check safety circuit very carefully. Impedance of CFL, for instance, becomes more than 1 [M ohm] when CFL is damaged.
- *4 Generally, CFL has some amount of delay time after applying kick-off voltage. It is recommended to keep on applying kick-off voltage for 1 [Sec] until discharge.
- *5 CFL discharge frequency must be carefully chosen so as not to produce interfering noise stripes on the screen.
- *6 Reducing CFL current increases CFL discharge voltage and generally increases CFL discharge frequency. So all the parameters of an inverter should be carefully designed so as not to produce too much leakage current from high-voltage output of the inverter.
- Note 2: It should be employed the inverter which has "Duty Dimming", if ICFL is less than 4mA.
- Note 3: CFL discharge frequency should be carefully determined to avoid interference between inverter and TFT LCD.
- Note 4: The frequency range will not affect to lamp life and reliability characteristics.
- Note 5: CFL inverter should be able to give out a power that has a generating capacity of over 1,430 voltage. Lamp units need 1,400 voltage minimum for ignition.
- Note 6: Calculator value for reference (ICFL×VCFL=PCFL)

- Note 7: Requirements for a system inverter design, which is intended to have a better display performance, a better power efficiency and a more reliable lamp, are following.

 It shall help increase the lamp lifetime and reduce leakage current.
- a. The asymmetry rate of the inverter waveform should be less than 10%.
- b. The distortion rate of the waveform should be within $\sqrt{2 \pm 10\%}$.
- * Inverter output waveform had better be more similar to ideal sine wave.

6. Signal Characteristic

6.1 Pixel Format Image

Following figure shows the relationship of the input signals and LCD pixel format.

		0			1			1	27	9	12	28	0
1st Line	R	G	В	R	G	В		R	G	В	R	G	В
					-								
		•					•		•			:	
							• •		•			•	
		,			1		•		1				
		1					•		'			,	
800th Line	R	G	В	R	G	В		R	G	В	R	G	В

6.2 The input data format

Signal Name	Description	
RED5	Red Data 5 (MSB)	Red-pixel Data
RED4	Red Data 4	Each red pixel's brightness data consists of
RED3	Red Data 3	these 6 bits pixel data.
RED2	Red Data 2	
RED1	Red Data 1	
RED0	Red Data 0 (LSB)	
	Red-pixel Data	
GREEN 5	Green Data 5 (MSB)	Green-pixel Data
GREEN 4	Green Data 4	Each green pixel's brightness data consists of
GREEN 3	Green Data 3	these 6 bits pixel data.
GREEN 2	Green Data 2	
GREEN 1	Green Data 1	
GREEN 0	Green Data 0 (LSB)	
	O a service I Date	
D	Green-pixel Data	D
BLUE 5	Blue Data 5 (MSB)	Blue-pixel Data
BLUE 4	Blue Data 4	Each blue pixel's brightness data consists of
BLUE 3	Blue Data 3	these 6 bits pixel data.
BLUE 2	Blue Data 2	
BLUE 1	Blue Data 1	
BLUE 0	Blue Data 0 (LSB)	
	Blue-pixel Data	
DTCLK	Data Clock	The typical frequency is 68.9 MHZ The signal
		is used to strobe the pixel data and DSPTMG
		signals. All pixel data shall be valid at the falling
		edge when the DSPTMG signal is high.
DSPTMG	Display Timing	This signal is strobed at the falling edge of
		-DTCLK. When the signal is high, the pixel data
		shall be valid to be displayed.
VSYNC	Vertical Sync	The signal is synchronized to -DTCLK.
HSYNC	Horizontal Sync	The signal is synchronized to -DTCLK.

Note: Output signals from any system shall be low or Hi-Z state when VDD is off.

6.3 Signal Description

The LVDS receiver equipped in this LCD module is compatible with SN75LVDS86 standard. LVDS is a differential signal technology for LCD interface and high speed data transfer device. Transmitter shall be SN75LVDS84 (negative edge sampling) or compatible.

Signal Name	Description
RxIN0N, RxIN0P	LVDS differential data input (Red0-Red5, Green0)
RxIN1N, RxIN1P	LVDS differential data input (Green1-Green5, Blue0-Blue1)
RxIN2N, RxIN2P	LVDS differential data input (Blue2-Blue5, Hsync, Vsync, DSPTMG)
RxCLKINN, RxCLKIN0P	LVDS differential clock input
VDD	+3.3V Power Supply
GND	Ground

Note1: Start from right side Note2: Please follow VESA.

Note3: Input signals shall be low or Hi-Z state when VDD is off. Internal circuit of LVDS inputs are as following.

The module uses a 100ohm resistor between positive and negative data lines of each receiver input

6.4 Interface Timing

6.4.1 Timing Characteristics

Basically, interface timings should match the 1280x800 /60Hz manufacturing guide line timing.

Parameter		Symbol	Min.	Тур.	Max.	Unit
Frame Rate		-	50	60	-	Hz
Clock from	equency	1/ T _{Clock}	62	68	72	MHz
	Period	T _V	803	816	832	
Vertical	Active	T _{VD}	800	800	800	T_{Line}
Section	Blanking	T _{VB}	3	16	32	
	Period	T _H	1302	1408	1700	
Horizontal	Active	T_{HD}	-	1280	-	T_{Clock}
Section	Blanking	Тнв	22	128	420	
End-frame checking period		tEF		2		T_Line
DE checking period		tDE		6400		T_Line

Note : DE mode only

6.4.2 Timing diagram

6.5 Power ON/OFF Sequence

VDD power and lamp on/off sequence is as follows. Interface signals are also shown in the chart. Signals from any system shall be Hi-Z state or low level when VDD is off.

Power Sequence Timing

Parameter	Min.	Тур.	Max.	Units
T1	0.5	-	10	(ms)
T2	0	-	50	(ms)
Т3	0	-	50	(ms)
T4	500	-	-	(ms)
T5	200	-	-	(ms)
T6	200	-	-	(ms)
T7	0	-	10	(ms)

7. Connector & Pin Assignment

Physical interface is described as for the connector on module.

These connectors are capable of accommodating the following signals and will be following components.

7.1 TFT LCD Module

(A) CONNECTOR

Connector Name / Designation	For Signal Connector
Manufacturer	Hirose
Type / Part Number	DF19L-20P-1H
Mating Housing/Part Number	DF19G-20S-1C or compatible

(B) Signal Pin

` '			
Pin#	Signal Name	Pin#	Signal Name
1	GND	2	VDD
3	VDD	4	VDD _{EDID}
5	AGING	6	CLK _{EDID}
7	DATA _{EDID}	8	RxIN0N
9	RxIN0P	10	GND
11	RxIN1N	12	RxIN1P
13	GND	14	RxIN2N
15	RxIN2P	16	GND
17	RxCLKINN	18	RxCLKINP
19	GND	20	GND

7.2 Backlight Unit

Physical interface is described as for the connector on module.

These connectors are capable of accommodating the following signals and will be following components.

Connector Name / Designation	For Lamp Connector
Manufacturer	JST
Type / Part Number	BHSR-02VS-1
Mating Type / Part Number	SM02B-BHSS-1-TB

7.3 Signal for Lamp connector

Pin #	Cable color	Signal Name
1	Red	Lamp High Voltage
2	White	Lamp Low Voltage

8. Vibration and Shock Test

8.1 Vibration Test

Test Spec:

I Test method: Non-Operation

Acceleration: 1.5G

Frequency: 26 - 500Hz Random

I Sweep: 30 Minutes each Axis (X, Y, Z)

8.2 Shock Test Spec:

Test Spec:

I Test method: Non-Operation

Acceleration: 180 G , Half sine wave

I Active time: 2 ms

I Pulse: X,Y,Z .one time for each side

9. Reliability

Items	Required Condition	Note
Temperature Humidity Bias	40°C /95%,250Hr	
High Temperature Operation	50°C /Dry,250Hr	
Low Temperature Operation	0°C ,250Hr	
On/Off Test	ON/30 sec. OFF/30sec., 30,000 cycles.	
Hot Storage	65°C/20% RH ,250 hours	
Cold Storage	-40°ℂ/50% RH ,250 hours	
Thermal Shock Test	-40°ℂ/20 min ,65°ℂ/20 min 300cycles	
Hot Start Test	50°C/1 Hr min. power on/off per 5 minutes, 5 times	
Cold Start Test	0°C/1 Hr min. power on/off per 5 minutes, 5 times	
Shock Test (Non-Operating)	180G, 2ms, Half-sine wave	
Vibration Test (Non-Operating)	Random vibration, 1.5 G zero-to-peak, 26 to 500 Hz, 30 mins in each of three mutually perpendicular axes.	
ESD	Contact: ±8KV/ operation Air: ±15KV / operation	Note 1
Room temperature Test	25°C, 2000hours, Operating with loop pattern	

Note1: According to EN61000-4-2, ESD class B: Some performance degradation allowed. No data lost

. Self-recoverable. No hardware failures.

Note2: CCFL Life time: 10,000 hours minimum under normal module usage.

Note3: MTBF (Excluding the CCFL): 30,000 hours with a confidence level 90%

10. Mechanical Characteristics

10.1 LCM Outline Dimension

10.2 Screw Hole Depth and Center Position

Screw hole minimum depth, from side surface =2.85 mm (See drawing)

Screw hole center location, from front surface = 328 ± 0.2 mm (See drawing)

Screw Torque: Maximum 2.2 kgf-cm

11. Shipping and Package

11.1 Shipping Label Format

Note 1:

IC Combination	Inverter Combination	Control Code	H/W
Source IC:Novaek Gate IC: Novatek	Sumida (Maxim)	OAXXG	OA
Source IC:Novaek Gate IC: Novatek	Foxconn (MPS)	1AXXG	1A

11.2. Carton package

The outside dimension of carton is 486 (L)mm x 286 (W)mm x 360 (H)mm

11.3 Shipping package of palletizing sequence

Note: Limit of box palletizing = Max 3 layers(ship and stock conditions)

12. Appendix: EDID description

Byte	Field Name and Comments	Value	Value
(hex)	Field Name and Comments	(hex)	(binary)
0	Header	00	00000000
1	Header	FF	11111111
2	Header	FF	11111111
3	Header	FF	11111111
4	Header	FF	11111111
5	Header	FF	11111111
6	Header	FF	11111111
7	Header	00	00000000
8	EISA manufacture code = 3 Character ID	06	00000110
9	EISA manufacture code (Compressed ASCII)	AF	10101111
0A	Panel Supplier Reserved – Product Code	14	00010100
0B	Panel Supplier Reserved – Product Code	32	00110010
0C	LCD module Serial No - Preferred but Optional ("0" if not used)	00	00000000
0D	LCD module Serial No - Preferred but Optional ("0" if not used)	00	00000000
0E	LCD module Serial No - Preferred but Optional ("0" if not used)	00	00000000
0F	LCD module Serial No - Preferred but Optional ("0" if not used)	00	00000000
10	Week of manufacture	01	00000001
11	Year of manufacture	10	00010000
12	EDID structure version # = 1	01	0000001
13	EDID revision # = 3	03	00000011
14	Video I/P definition = Digital I/P (80h)	80	10000000
15	Max H image size = (Rounded to cm)	1A	00011010
16	Max V image size = (Rounded to cm)	10	00010000
17	Display gamma = (gamma ×100)-100 = Example: (2.2×100) - 100 = 120	78	01111000
18	Feature support (no DPMS, Active off, RGB, timing BLK 1)	0A	00001010
19	Red/Green Low bit (RxRy/GxGy)	87	10000111
1A	Blue/White Low bit (BxBy/WxWy)	FE	11111110
1B	Red X $Rx = 0.xxx$	94	10010100
1C	Red Y $Ry = 0.xxx$	57	01010111
1D	Green X Gx = 0.xxx	4F	01001111
1E	Green Y Gy = 0.xxx	8C	10001100
1F	Blue X $Bx = 0.xxx$	27	00100111
20	Blue Y By = 0.xxx	27	00100111
21	White X $Wx = 0.xxx$	50	01010000
22	White Y Wy = 0.xxx	54	01010100
23	Established timings 1 (00h if not used)	00	00000000
24	Established timings 2 (00h if not used)	00	00000000
25	Manufacturer's timings (00h if not used)	00	00000000
26	Standard timing ID1 (01h if not used)	01	0000001
27	Standard timing ID1 (01h if not used)	01	00000001
28	Standard timing ID2 (01h if not used)	01	0000001

R1	21	FW	/N3	V2
-			ws	V Z

V.	Product Specification		B121EW03 V2	
29	Standard timing ID2 (01h if not used)	01	00000001	
2A	Standard timing ID3 (01h if not used)	01	00000001	
2B	Standard timing ID3 (01h if not used)	01	00000001	
2C	Standard timing ID4 (01h if not used)	01	00000001	
2D	Standard timing ID4 (01h if not used)	01	00000001	
2E 2F	Standard timing ID5 (01h if not used)	01	00000001	
30	Standard timing ID5 (01h if not used) Standard timing ID6 (01h if not used)	01 01	00000001	
31	Standard timing ID6 (01h if not used)	01	00000001	
32	Standard timing ID7 (01h if not used)	01	00000001	
33	Standard timing ID7 (01h if not used)	01	00000001	
34	Standard timing ID8 (01h if not used)	01	00000001	
35	Standard timing ID8 (01h if not used)	01	00000001	
36	Pixel Clock/10,000 (LSB)	90	10010000	
37	Pixel Clock/10,000 (MSB)	1A	00011010	
38	Horizontal Active = 1280 pixels (lower 8 bits)	00	00000000	
39	Horizontal Blanking (Thbp) = 112 pixels (lower 8 bits)	70	01110000	
3A	Horizontal Active/Horizontal blanking (Thbp) (upper4:4 bits)	50	01010000	
3B	Vertical Active = 800 lines	20	00100000	
3C	Vertical Blanking (Tvbp) = 16 lines (DE Blanking typ. for DE only panels)	10	00010000	
3D 3E	Vertical Active : Vertical Blanking (Tvbp) (upper4:4 bits) Horizontal Sync, Offset (Thfp) = 21 pixels	30 15	00110000	
3F	Horizontal Sync, Pulse Width = 32 pixels	20	00100000	
40	Vertical Sync, Offset (Tvfp) = 4 lines Sync Width = 4 lines	44	01000100	
41	Horizontal Vertical Sync Offset/Width upper 2 bits	00	00000000	
42	Horizontal Image Size =261 mm	05	00000101	
43	Vertical image Size = 163 mm	А3	10100011	
44	Horizontal Image Size / Vertical image size	10	00010000	
45	Horizontal Border = 0 (Zero for Notebook LCD)	00	00000000	
46	Vertical Border = 0 (Zero for Notebook LCD)	00	00000000	
47	Non-interlaced, Normal, no stereo, Separate sync, H/V pol Negatives, DE only note: LSB is set to "1" if panel is DE-timing only. H/V can be ignored.	18	00011000	
48	Pixel Clock/10,000 (LSB)	00	00000000	
49	Pixel Clock/10,000 (MSB)	00	00000000	
4A	Horizontal Active = xxxx pixels (lower 8 bits)	00	00000000	
4B	Horizontal Blanking (Thbp) = xxxx pixels (lower 8 bits)	00	00000000	
4C	Horizontal Active/Horizontal blanking (Thbp) (upper4:4 bits)	00	00000000	
4D	Vertical Active = xxxx lines	00	00000000	
4E	Vertical Blanking (Tvbp) = xxxx lines (DE Blanking typ. for DE only panels)	00	00000000	
4F 50	Vertical Active : Vertical Blanking (Tvbp) (upper4:4 bits) Horizontal Sync, Offset (Thfp) = xxxx pixels	00	00000000	
51	Horizontal Sync, Pulse Width = xxxx pixels	00	00000000	
52	Vertical Sync, Offset (Tvfp) = xx lines Sync Width = xx lines	00	00000000	
53	Horizontal Vertical Sync Offset/Width upper 2 bits	00	00000000	
54	Horizontal Image Size =xxx mm	00	00000000	

55

Vertical image Size = xxx mm

00000000 34/36 Document version 0.3

00

7D

7E

7F

Product Specification Horizontal Image Size / Vertical image size 00 00000000 00000000 57 Horizontal Border = 0 (Zero for Notebook LCD) 00 58 Vertical Border = 0 (Zero for Notebook LCD) 00 00000000 Module "A" Revision = Example: 00, 01, 02, 03, etc. 00 00000000 59 5A Flag 00 00000000 5B Flag 00 00000000 5C Flag 00 00000000 **Dummy Descriptor** FΕ 11111110 5D 5E 00 00000000 5F Dell P/N 1st Character 4A 01001010 Dell P/N 2nd Character 60 46 01000110 Dell P/N 3rd Character 61 32 00110010 62 Dell P/N 4th Character 39 00111001 Dell P/N 5th Character 63 38 00111000 64 LCD Supplier EEDID Revision # 04 00000100 65 Manufacturer P/N 42 01000010 Manufacturer P/N 66 31 00110001 Manufacturer P/N 00110010 67 32 68 Manufacturer P/N 31 00110001 69 Manufacturer P/N 45 01000101 6A Manufacturer P/N 01010111 57 Manufacturer P/N (If <13 char, then terminate with ASCII code 0Ah, set remaining char 6B 33 00110011 6C 00 00000000 Flag 6D Flag 00 00000000 Flag 00 00000000 6E 6F Data Type Tag: FΕ 11111110 00000000 70 00 SMBUS Value = XX nits 00101011 71 2B 72 SMBUS Value = XX nits ЗА 00111010 73 SMBUS Value = XX nits 46 01000110 74 SMBUS Value = XX nits 01010000 50 SMBUS Value = XX nits 01110000 75 70 10001111 76 SMBUS Value = XXX nits 8F 77 SMBUS Value = XXX nits AC 10101100 78 SMBUS Value = XXX nits (Typically = 00h, XXX nits) E2 11100010 79 Number of LVDS receiver chips = '01' or '02' 01 0000001 7A BIST Enable: Yes = '01' No = '00' 01 0000001 7B (If <13 char, then terminate with ASCII code 0Ah, set remaining char = 20h) 0A 00001010 7C (If <13 char, then terminate with ASCII code 0Ah, set remaining char = 20h) 20 00100000

(If <13 char, then terminate with ASCII code 0Ah, set remaining char = 20h)

Extension flag (# of optional 128 EDID extension blocks to follow, Typ = 0)

Checksum (The 1-byte sum of all 128 bytes in this EDID block shall = 0)

00100000

00000000

10111110

20

00

BE

