Text-based Emotion Recognition across BERT Family and LSTM

NLP class project

Andy Cherney, Abbeer Wani, Kexin Shang

Our reference paper: Comparative Analyses of BERT, RoBERTa, Distilbert, and XLNet for Text-Based Emotion Recognition

This paper analyzes the efficacy of BERT, RoBERTa, DistilBERT, and XLNet pre-trained transformer models in recognizing emotions from texts. The paper undertakes this by analyzing each candidate model's output compared with the remaining candidate models. The implemented models are fine-tuned on the ISEAR data to distinguish emotions into anger, disgust, sadness, fear, joy, shame, and guilt.

A. F. Adoma, N. -M. Henry and W. Chen, "Comparative Analyses of Bert, Roberta, Distilbert, and Xlnet for Text-Based Emotion Recognition," *2020* 17th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), Chengdu, China, 2020, pp. 117-121, doi: 10.1109/ICCWAMTIP51612.2020.9317379.

Data: ISEAR

- Publicly available dataset constructed through cross-culture questionnaire studies in 37 countries.
- It contains 7666 sentences classified into seven distinct emotion labels:
 - Joy (0)
 - Anger (1)
 - Sadness (2)
 - Shame (3)
 - Guilt (4)
 - Surprise (5)
 - Fear (6)

Table 1	Data	Distribution	of the	ISEAR	Dataset

	Emotion Labels	Quantity
,	Anger	1096
	Disgust	1096
	Sadness	1096
	Shame	1096
	Fear	1095
	Joy	1094
	Guilt	1093
100	Total	7666

Hyperparameters

- Batch size: 16
- Epoch: 10
- Learning rate: 4e-5
- Padding length: 200 (but changed to max_length in our practice)
- Optimizer: Adam
- Loss function: sparse_categorical_crossentropy (equivalent to torch.nn.functional.cross_entropy)

Our data:

- Set of 20,000 unique English tweets gathered on the Huggingface repository
- Very similar in structure to the ISEAR dataset but has slightly different labels:
 - Sadness (0)
 - Joy (1)
 - Love (2)
 - Anger (3)
 - Fear (4)
 - Surprise (5)

Data Exploration

The Baseline Model: LSTM

LSTM

Long Short-Term Memory Units (LSTM) are a special type of RNN that further improved Gated Recurrent Units (GRUs).

With 4 carefully regulated "gates", LSTM has the ability to remove or add information to the cell state and thus avoid the **long-term dependency problem**.

However, as a previous generation architecture, **LSTM doesn't have attention mechanism as BERT family do.** In this project, we added another experience on LSTM as our baseline.

Implementation

- Make vocab and dataloader
 Max_padding = 117
- 2) Train a embedding word vectors use our train data based on "glove-wiki-gigaword-50"

```
LSTM_wvs.shape, LSTM_wvs

... (torch.Size([3120, 50]),
    tensor([[ 1.9269,  1.4873,  0.9007,  ...,  1.3835, -1.2024,  0.7078],
        [ 2.2181,  0.5232,  0.3466,  ...,  0.5069, -0.4752, -0.4920],
        [ 0.1189,  0.1525, -0.0821,  ..., -0.5751, -0.2667,  0.9212],
        ...,
        [ 0.8106, -0.5419,  0.1878,  ..., -0.9614,  0.0169, -1.0266],
        [ 0.4760,  0.8361, -1.1790,  ..., -0.7668, -0.4678, -0.1378],
        [ 0.3964,  1.2262, -0.6604,  ..., -0.3464, -0.6066, -0.4939]]))
```

Implementation

- Define LSTM module from nn.Module

 Bidirectional = True

 Lstm_layers = 2
- Output_dim = 6
 Linear_pre layer's input dim = 2*hidden_dim*seq_len(117)

Gradient clipping turned on

Fine-tune with a self-defined trainer function

Use argmax for multi-label classification prediction

early stop turned on

3) Evaluate:

3)

Results

Accuracy: 64%

	precision	recall	f1-score	support
Sadness	0.499006	0.919414	0.646907	273.000
Joy	0.806061	0.760000	0.782353	350.000
Love	1.000000	0.123288	0.219512	73.000
Anger	0.833333	0.384615	0.526316	156.000
Fear	0.666667	0.452174	0.538860	115.000
Surprise	1.000000	0.242424	0.390244	33.000
Accuracy	0.646000	0.646000	0.646000	0.646
Macor Avg	0.800844	0.480319	0.517365	1000.000
Wt Avg	0.731017	0.646000	0.623406	1000.000

Training time: 30 sec

```
Start epoch 9
Total epoch loss: 12773.06 (Avg. 22.527446)
Total validation loss: 1113.70 (Avg. 1.964203)
Start epoch 10
Total epoch loss: 13908.61 (Avg. 22.077156)
Total validation loss: 1046.93 (Avg. 1.661801)
Start epoch 11
Total epoch loss: 14947.98 (Avg. 21.569961)
Total validation loss: 953.59 (Avg. 1.376029)
Start epoch 12
Total epoch loss: 15925.78 (Avg. 21.065850)
Total validation loss: 954.83 (Avg. 1.263006)
No improvement! Early stopping
```

The BERT Family and XLNET

BERT

Input Embeddings: Word, position, and token type embeddings combined, normalized, and regularized.

Transformer Encoder: A stack of 12 transformer blocks, each with self-attention and feed-forward sub-layers (12 transformer layers, 768-hidden layers, 12 attention heads)

Pooling Layer: Applies a dense layer and Tanh activation to the [CLS] token.

Dropout: Adds regularization before the final classification layer.

Classification Layer: Projects the pooled output to the desired number of classes.

BERT Inputs

- This is a transformer model, which requires tokens to be encoded as numerical vectors
 - Produces a static attention mask and input_ids (the embeddings)
 - Model randomly masks 15% of the words in the input then runs the entire masked sentence through every epoch
- APIs used: BertForSequenceClassification, BertTokenizer
- Tokenization style:

```
'[CLS] im feeling rather rotten so im not very ambitious righ now [SEP] [PAD] [PAD]..'
```

BERT Implementation

```
BertForSequenceClassification(
 (bert): BertModel(
   (embeddings): BertEmbeddings(
     (word embeddings): Embedding(30522, 768, padding idx=0)
      (position embeddings): Embedding(512, 768)
     (token type embeddings): Embedding(2, 768)
     (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise affine=True)
     (dropout): Dropout(p=0.1, inplace=False)
    (encoder): BertEncoder(
     (layer): ModuleList(
       (0-11): 12 x BertLayer(
         (attention): BertAttention(
            (self): BertSdpaSelfAttention(
             (query): Linear(in features=768, out features=768, bias=True)
             (key): Linear(in_features=768, out_features=768, bias=True)
             (value): Linear(in features=768, out features=768, bias=True)
              (dropout): Dropout(p=0.1, inplace=False)
            (output): BertSelfOutput(
             (dense): Linear(in features=768, out features=768, bias=True)
             (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise affine=True)
             (dropout): Dropout(p=0.1, inplace=False)
          (intermediate): BertIntermediate(
            (dense): Linear(in_features=768, out_features=3072, bias=True)
            (intermediate_act_fn): GELUActivation()
          (output): BertOutput(
            (dense): Linear(in_features=3072, out_features=768, bias=True)
            (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
           (dropout): Dropout(p=0.1, inplace=False)
   (pooler): BertPooler(
     (dense): Linear(in_features=768, out_features=768, bias=True)
      (activation): Tanh()
  (dropout): Dropout(p=0.1. inplace=False)
  (classifier): Linear(in_features=768, out_features=6, bias=True)
```

AdamW optimizer with LR Scheduler to adjust learning rate

```
# the folowing params are the same as in our reference paper
batch_size = 16
num_epochs = 10
num_training_steps = num_epochs * len(BERT_train_dataloader)
total_steps = len(BERT_train_dataloader)

optimizer = Adam(BERT_model.parameters(), lr=4e-5) #Adam optimizer
lr_scheduler = get_scheduler(name="linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=num_training_steps)
```

Accelerator in training loop to speed up backprop

```
progress_bar = tqdm(range(num_training_steps))

BERT_model.train()
total_loss = 0
accelerator = Accelerator()

for epoch in range(num_epochs):
    print('-' * 20)
    print(f'Begin epoch {epoch+1}')
    print('-' * 20)

    for step, batch in enumerate(BERT_train_dataloader): # 63 + 1
```

BERT Training Performance

Begin epoch 10 Total loss: 379.95814476534724 [0.000%] Step 0/63. Average Loss: 0.042143 Total loss: 381.5416242759675 [15.873%] Step 10/63. Average Loss: 0.041580 Total loss: 382.22154187969863 [31.746%] Step 20/63. Average Loss: 0.040941 Total loss: 382.7556634731591 [47.619%] Step 30/63. Average Loss: 0.040307 Total loss: 383,2070836648345 [63.492%] Step 40/63. Average Loss: 0.039686 Total loss: 383.7115953452885 [79.365%] Step 50/63. Average Loss: 0.039090 Total loss: 384.06783994473517 [95.238%] Step 60/63. Average Loss: 0.038499 End of epoch 10 Total epoch loss: 384.12 (Average Loss: 0.038412)

Training time: 2 hours
Evaluation time: 45 minutes

BERT Model Results

91.4% accuracy

	precision	recall	f1-score	support
sadness	0.9516	0.9582	0.9549	287
joy	0.9517	0.9331	0.9423	359
love	0.8310 0.9380	0.8082 0.8832	0.8194 0.9098	73 137
anger fear	0.8632	0.8783	0.8707	115
surprise	0.5476	0.7931	0.6479	29
accuracy			0.9140	1000
macro avg	0.8472	0.8757	0.8575	1000
weighted avg	0.9191	0.9140	0.9157	1000

RoBERTa

12 transformer layers, 768-hidden layers, 12 attention heads

Tokenization style:

'<s>im feeling rather rotten so im not very ambitious right
now</s><pad><pad>..'

API I used: RobertaTokenizer, RobertaForSequenceClassification from transformers

Features of Roberta — Pre-training with dynamic masking

In contrast to the static masking used in the original BERT model, which masks the same tokens at every epoch of pre-training, dynamic masking involves **randomly masking** different tokens at different points during pre-training.

This encourages the model to learn more robustly

Implementation

classification report

Use "mps" to utilize the GPU on M3 macbook device = "mps" if torch.backends.mps.is_built() else torch.device("cpu")

```
model.to(device)
Use Ir_scheduler to adjust learning rate dynamically
```

optimizer = AdamW(model.parameters(), lr=4e-5) #Adam optimizer with weight decay lr scheduler = get scheduler(

```
Use Accelerator package to accelerate the
```

backpropagation on loss function Get metrics from sklearn.metrics import for step, batch in enumerate(RoBERTa_train_dataloader): # 63 + 1

optimizer.zero_grad() batch = {k: v.to(device) for k, v in batch.items()} outputs = model(**batch) # equivalent to model.forward(**batch) loss = torch.nn.functional.cross entropy(target=batch['labels'], input=outputs.logits, reduction='sum') accelerator.backward(loss) optimizer.step()

lr_scheduler.step()

total_loss += loss.cpu().detach().item()

name="linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=num_training_steps)

Results

End of epoch 10

Accuracy: 86%

	precision	recall	f1-score	support
Sadness	0.901754	0.895470	0.898601	287.00
Joy	0.898876	0.891365	0.895105	359.00
Love	0.714286	0.684932	0.699301	73.00
Anger	0.805556	0.846715	0.825623	137.00
Fear	0.837607	0.852174	0.844828	115.00
Surprise	0.678571	0.655172	0.666667	29.00
Accuracy	0.860000	0.860000	0.860000	0.86
Macor Avg	0.806108	0.804305	0.805021	1000.00
Wt Avg	0.860007	0.860000	0.859889	1000.00
Begin epoch 10 Total loss: 615 [0.000%] Step 0/	63.	Average Los	s: 0.682611	
Total loss: 617 [15.873%] Step 1 Total loss: 618	0/63.	Average L	oss: 0.672474	
[31.746%] Step 2 Total loss: 619		Average L	oss: 0.662088	
[47.619%] Step 3		Average L	oss: 0.652679	
[63.492%] Step 4 Total loss: 621	0/63.	Average L	oss: 0.642678	
[79.365%] Step 5 Total loss: 622	2.346022441983		oss: 0.633075	
[95.238%] Step 6	0/63.	Average L	oss: 0.623732	

Training time: 2 hours Validation time: 8 mins

DistilBERT

- Input Layer: The DistilBERT Model takes inputs: ids, and mask. These inputs are encoded representations of the input text obtained using a tokenizer.
- **pre-trained Layer:** The pre-trained "distilbert-base-uncased" weights are used to initialize the DistilBERT model. It processes the input tensors to obtain the hidden state output. The first token of the sequence is used to obtain a pooled representation of the input sequence from the hidden_state tensor.
- **Linear Layer pre-classifier:** Linear layer pre-classifier is responsible for extracting features from data by taking the output of the pre-trained layer and passing it to a fully connected layer.
- Fully connected Layer: The fully connected layer is a linear layer that takes the output of linear layer pre-classifier
 and maps it to the desired output dimensionality. In this case, the output dimensionality is six, corresponding to topic
 tagging.

Implementation

Tokenization

Transformer models like <code>Distilbert</code>do not take raw strings as input; instead, they require the text to undergo tokenization and be encoded as numerical vectors. Tokenization involves breaking down text into smaller units, often word or subword pieces. We used WordPiece tokenizer, since it is used by <code>Distilbert</code>model. The AutoTokenizer class to was used to load the tokenizer of the model by using the <code>from_pretrained()</code>method.

Results

	precision	recall	f1-score	support
sadness joy love anger fear surprise	0.97 0.96 0.86 0.92 0.83 0.90	0.96 0.94 0.87 0.95 0.89 0.75	0.96 0.95 0.86 0.93 0.86 0.82	550 704 178 275 212 81
accuracy macro avg weighted avg	0.90 0.93	0.89 0.93	0.93 0.90 0.93	2000 2000 2000

XLNet

	precision	recall	f1-score	support
0	0.62	0.71	0.66	550
1	0.72	0.77	0.74	704
2	0.49	0.40	0.44	178
3	0.60	0.49	0.54	275
4	0.55	0.50	0.53	212
5	0.49	0.32	0.39	81
accuracy			0.64	2000
macro avg	0.58	0.53	0.55	2000
weighted avg	0.63	0.64	0.63	2000

Paper Results

Table 2 Comparison of Precision, Recall And F1-scores of BERT, RoBERTa, DistilBERT, and XLNET on the ISEAR Dataset

M-1-1-	Anger			Disgust			Fear			Guilt			Joy			Sadness			Shame		
Models	P R F1 P R F1 P R F1	F1	P	R	F1	P	R	F1	P	R	F1	P	R	F1							
BERT	0.56	0.57	0.57	0.71	0.63	0.67	0.74	0.76	0.75	0.65	0.69	0.67	0.84	0.91	0.88	0.76	0.8	0.78	0.63	0.57	0.6
RoBERTa	0.67	0.59	0.62	0.76	0.69	0.73	0.8	0.81	0.8	0.62	0.76	0.68	0.9	0.96	0.93	0.77	0.81	0.79	0.69	0.62	0.65
DistilBERT	0.52	0.57	0.55	0.69	0.65	0.67	0.7	0.76	0.73	0.63	0.6	0.61	0.88	0.81	0.85	0.76	0.8	0.78	0.54	0.51	0.52
XLNET	0.59	0.57	0.58	0.69	0.73	0.71	0.76	0.81	0.78	0.7	0.72	0.71	0.91	0.93	0.92	0.76	0.81	0.79	0.69	0.57	0.63

Our Results

Models	Sadness			Joy			Love			Anger			Fear			Surprise		
	Precision	Recall	F1															
BERT	0.95	0.96	0.95	0.95	0.93	0.94	0.83	0.81	0.82	0.94	0.88	0.91	0.86	0.88	0.87	0.55	0.79	0.65
RoBERTa	0.90	0.90	0.90	0.90	0.89	0.90	0.71	0.68	0.70	0.81	0.85	0.83	0.84	0.85	0.84	0.68	0.66	0.67
DistilBERT	0.97	0.96	0.96	0.96	0.94	0.95	0.86	0.87	0.86	0.92	0.95	0.93	0.83	0.89	0.86	0.90	0.75	0.82
XLNET	0.62	0.71	0.66	0.72	0.77	0.74	0.49	0.40	0.44	0.60	0.49	0.54	0.55	0.50	0.53	0.49	0.32	0.39
LSTM	0.50	0.92	0.65	0.81	0.76	0.78	1.00	0.12	0.22	0.83	0.38	0.53	0.67	0.45	0.54	1.00	0.24	0.39

Conclusion

- 1. From our reproduction, all models attained higher precision, recall and F1 score compared to the paper. This might because we used a more imbalanced dataset with fewer labels.
- A notable finding/ confusion is that the best model shifts from RoBERTa to DistilBERT after applying the new data even if we used almost the same hyperparameters as in the paper.
- 3. Our baseline, LSTM, has the worst performance. This might have two potential reasons:
 - a. LSTM is known for capturing long-range dependencies in sequential text context, but our assignment does not involve bulky context but only pieces of independent sentences.

 Therefore, LSTM lost its strength.
 - b. The emergence of attention mechanism significantly boosted the performance of BERT family.

References

- Dataset: https://huggingface.co/datasets/dair-ai/emotion
- Reference Paper: https://ieeexplore.ieee.org/document/9317379
- https://huggingface.co/blog/bert-101
- https://colah.github.io/posts/2015-08-Understanding-LSTMs/
- https://medium.com/@musawi.rahmat/distilbert-finetuned-emotion-368237455a96
- https://huggingface.co/docs/transformers/en/model_doc/xlnet
- https://huggingface.co/docs/transformers/en/model_doc/roberta
- https://www.comet.com/site/blog/roberta-a-modified-bert-model-for-nlp/

Thanks!