Orders, continued

- Recall: The order of geG is
 the smallest positive power
 of g that equals e.
- $Video: g^k = e \iff ord(g) \mid k$.

Worksheet 10: Orders of Elements in Groups, continued

Math 335

ь.				
${f Re}$	no	\rt	Or	٠
\mathbf{r}	'nι	JΙU	$\mathbf{c}_{\mathbf{I}}$	•

Recorder:

Equity Manager:

1. Let

$$\alpha = (1, 4, 3) \in S_4.$$

Calculate α^2 , α^3 , and so on, until you find a power of α that equals e. (In other words, calculate the order of α .)

$$d = (1,4,3)$$

$$d^{2} = (1,4,3) \circ (1,4,3)$$

$$= (1,3,4)$$

$$= (1,4,3) \circ (1,4,3) \circ (1,4,3)$$

$$= (1,3,4) \circ (1,4,3) \circ (1,4,3)$$

$$= (1,3,4) \circ (1,4,3)$$

2. Do you have any guesses about the order of the element

$$(1,4,3,2) \in S_4,$$

without doing any calculation?

- 3. Calculating orders of elements in S_n that have more than one cycle is trickier, but it does follow a pattern. To explore this, have each person in the Breakout Room choose a different one of the following elements of S_6 and compute its order.
 - f = (1,2) (4,5)
 - g = (1, 2, 3) (4, 5, 6)
 - h = (1,4)(2,3,5,6)
 - k = (1, 2, 3) (5, 6)

(This may take a fair amount of computation! Take your time, and feel free to scroll to a different area of the Limnu board if you need more space.)

ord(f) =
$$3$$

ord (g) = 3
ord (h) = 4
ord (k) = 6
E.g.
 $g = (1,2,3)(4,5,6)$
 $g^2 = (1,2,3)(4,5,6)(1,2,3)(4,5,6)$
 $= (1,2,3)(1,2,3)(4,5,6)(4,5,6)$
 $= (1,3,2)(4,6,5)$
 $g^3 = e$

4. Once each member of the Breakout Room has computed the order of an element of S_6 , share your answers with one another. With all of this data, can you conjecture a formula for the order of any element of S_n ? If so, try testing your conjecture on an element not in the above list.