Matrix Algebra

2.1

MATRIX OPERATIONS

MATRIX OPERATIONS

- If A is an $m \times n$ matrix—that is, a matrix with m rows and n columns—then the scalar entry in the ith row and jth column of A is denoted by a_{ij} and is called the (i, j)-entry of A. See the Fig. 1 below.
- Each column of A is a list of m real numbers, which identifies a vector in \mathbb{R}^m .

Matrix notation.

MATRIX OPERATIONS

• The columns are denoted by $\mathbf{a}_1, \dots, \mathbf{a}_n$, and the matrix A is written as

. . .

- The number a_{ij} is the *i*th entry (from the top) of the *j*th column vector \mathbf{a}_{i} .
- The **diagonal entries** in an $m \times n$ matrix $A = \begin{bmatrix} a_{ij} \end{bmatrix}$ are $a_{11}, a_{22}, a_{33}, ...,$ and they form the **main diagonal** of A.
- A diagonal matrix is a square $n \times m$ matrix whose nondiagonal entries are zero.
- An example is the $n \times n$ identity matrix, I_n .

- An $m \times n$ matrix whose entries are all zero is a **zero** matrix and is written as 0.
- The two matrices are **equal** if they have the same size (*i.e.*, the same number of rows and the same number of columns) and if their corresponding columns are equal, which amounts to saying that their corresponding entries are equal.
- If A and B are $m \times n$ matrices, then the sum A + B is the $m \times n$ matrix whose columns are the sums of the corresponding columns in A and B.

- Since vector addition of the columns is done entrywise, each entry in A + B is the sum of the corresponding entries in A and B.
- The sum A + B is defined only when A and B are the same size.

Example 1: Let
$$A = \begin{bmatrix} 4 & 0 & 5 \\ -1 & 3 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 5 & 7 \end{bmatrix}$,

and
$$C = \begin{bmatrix} 2 & -3 \\ 0 & 1 \end{bmatrix}$$
. Find $A + B$ and $A + C$.

Solution:
$$A + B = \begin{bmatrix} 5 & 1 & 6 \\ 2 & 8 & 9 \end{bmatrix}$$
 but $A + C$ is not

defined because A and Chave different sizes.

- If r is a scalar and A is a matrix, then the scalar multiple rA is the matrix whose columns are r times the corresponding columns in A.
- Theorem 1: Let A, B, and C be matrices of the same size, and let r and s be scalars.

$$a. A + B = B + A$$

b.
$$(A+B)+C = A+(B+C)$$

c.
$$A + 0 = A$$

d.
$$r(A+B) = rA + rB$$

e.
$$(r+s)A = rA + sA$$

f.
$$r(sA) = (rs)A$$

• Each quantity in Theorem 1 is verified by showing that the matrix on the left side has the same size as the matrix on the right and that corresponding columns are equal.

- When a matrix B multiplies a vector \mathbf{x} , it transforms \mathbf{x} into the vector $B\mathbf{x}$.
- If this vector is then multiplied in turn by a matrix A, the resulting vector is $A(B\mathbf{x})$. See the Fig. 2 below.

Multiplication by B and then A.

 Thus A (Bx) is produced from x by a composition of mappings—the linear transformations.

• Our goal is to represent this composite mapping as multiplication by a single matrix, denoted by AB, so that A(Bx)=(AB)x. See Fig. 3 below

Multiplication by AB.

• If A is $m \times n$, B is $n \times p$, and \mathbf{x} is in R^p , denote the columns of B by $\mathbf{b}_1, \ldots, \mathbf{b}_p$ and the entries in \mathbf{x} by

$${\bf x}_1, ..., {\bf x}_p.$$

Then

$$Bx = x_1b_1 + ... + x_pb_p$$

• By the linearity of multiplication by A,

$$A(Bx) = A(x_1b_1) + ... + A(x_pb_p)$$
$$= x_1Ab_1 + ... + x_pAb_p$$

- The vector $A(B\mathbf{x})$ is a linear combination of the vectors $A\mathbf{b}_1, ..., A\mathbf{b}_p$, using the entries in \mathbf{x} as weights.
- In matrix notation, this linear combination is written as $A(Bx) = \begin{bmatrix} Ab_1 & Ab_2 & \cdots & Ab_n \end{bmatrix} x$

- Thus multiplication by $\begin{bmatrix} Ab_1 & Ab_2 & \cdots & Ab_p \end{bmatrix}$ transforms **x** into $A(B\mathbf{x})$.
- **Definition:** If A is an $m \times n$ matrix, and if B is an $n \times p$ matrix with columns $\mathbf{b}_1, ..., \mathbf{b}_p$, then the product AB is the $m \times p$ matrix whose columns are $A\mathbf{b}_1, ..., A\mathbf{b}_p$.
- That is,

$$AB = A[b_1 \quad b_2 \quad \cdots \quad b_p] = [Ab_1 \quad Ab_2 \quad \cdots \quad Ab_p]$$

 Multiplication of matrices corresponds to composition of linear transformations.

Example 3: Compute
$$AB$$
, where $A = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & 3 & 6 \\ 1 & -2 & 3 \end{bmatrix}$.

• Solution: Write $B = \begin{bmatrix} b_1 & b_2 & b_3 \end{bmatrix}$, and compute:

$$Ab_{1} = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \end{bmatrix}, Ab_{2} = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \end{bmatrix}, Ab_{3} = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \end{bmatrix}$$
$$= \begin{bmatrix} 11 \\ -1 \end{bmatrix} \qquad = \begin{bmatrix} 0 \\ 13 \end{bmatrix} \qquad = \begin{bmatrix} 21 \\ -9 \end{bmatrix}$$

Then

$$AB = A[b_1 \quad b_2 \quad b_3] = \begin{bmatrix} 11 & 0 & 21 \\ -1 & 13 & -9 \end{bmatrix}$$

$$Ab_1 \quad Ab_2 \quad Ab_3$$

Each column of AB is a linear combination of the columns of A using weights from the corresponding column of B.

$$AB = [Ab_1 \quad Ab_2 \quad \dots \quad Ab_n]$$

Row—column rule for computing AB

If a product AB is defined, then the entry in row i and column j of AB is the sum of the products of corresponding entries from row i of A and column j of B. If $(AB)_{ij}$ denotes the (i, j)-entry in AB, and if A is an $m \times n$ matrix, then

$$(AB)_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj}$$

- Theorem 2: Let A be an $m \times n$ matrix, and let B and C have sizes for which the indicated sums and products are defined.
 - a. A(BC) = (AB)C (associative law of multiplication)
 - b. A(B+C) = AB + AC (left distributive law)
 - c. (B+C)A = BA + CA (right distributive law)
 - d. r(AB) = (rA)B = A(rB) for any scalar r
 - e. $I_m A = A = AI_n$ (identity for matrix multiplication)

■ **Proof:** Property (a) follows from the fact that matrix multiplication corresponds to composition of linear transformations (which are functions), and it is known that the composition of functions is associative. Let

$$C = \begin{bmatrix} c_1 & \cdots & c_p \end{bmatrix}$$

By the definition of matrix multiplication,

$$BC = \begin{bmatrix} Bc_1 & \cdots & Bc_p \end{bmatrix}$$

$$A(BC) = \begin{bmatrix} A(Bc_1) & \cdots & A(Bc_p) \end{bmatrix}$$

The definition of AB makes A(Bx) = (AB)x for all x, so

$$A(BC) = [(AB)c_1 \quad \cdots \quad (AB)c_p] = (AB)C$$

- The left-to-right order in products is critical because *AB* and *BA* are usually not the same.
- Because the columns of AB are linear combinations of the columns of A, whereas the columns of BA are constructed from the columns of B.
- The position of the factors in the product AB is emphasized by saying that A is right-multiplied by B or that B is left-multiplied by A.

If AB = BA, we say that A and B commute with one another.

Warnings:

- 1. In general, $AB \neq BA$.
- 2. The cancellation laws do *not* hold for matrix multiplication. That is, if AB = AC, then it is *not* true in general that B = C.
- 3. If a product AB is the zero matrix, you cannot conclude in general that either A = 0 or B = 0.

POWERS OF A MATRIX

If A is an $n \times n$ matrix and if k is a positive integer, then A^k denotes the product of k copies of A:

$$A^k = \underbrace{A \cdots A}_k$$

- If A is nonzero and if x is in \mathbb{R}^n , then A^k x is the result of left-multiplying x by A repeatedly k times.
- If k = 0, then A^0 **x** should be **x** itself.
- Thus A^0 is interpreted as the identity matrix.

THE TRANSPOSE OF A MATRIX

Given an $m \times n$ matrix A, the **transpose** of A is the $n \times m$ matrix, denoted by A^T , whose columns are formed from the corresponding rows of A.

Theorem 3: Let *A* and *B* denote matrices whose sizes are appropriate for the following sums and products.

a.
$$(A^T)^T = A$$

b.
$$(A + B)^{T} = A^{T} + B^{T}$$

c. For any scalar r, $(rA)^T = rA^T$

$$\mathrm{d.} \ (AB)^{\mathrm{T}} = B^{\mathrm{T}} A^{\mathrm{T}}$$

THE TRANSPOSE OF A MATRIX

• The transpose of a product of matrices equals the product of their transposes in the *reverse* order.