Algorithm 8.4 Gibbs sampling for mixtures.

- 1. Take some initial values $\theta^{(0)} = (\mu_1^{(0)}, \mu_2^{(0)})$.
- 2. Repeat for t = 1, 2, ..., ...
 - (a) For i = 1, 2, ..., N generate $\Delta_i^{(t)} \in \{0, 1\}$ with $\Pr(\Delta_i^{(t)} = 1) = \hat{\gamma}_i(\theta^{(t)})$, from equation (8.42).
 - (b) Set

$$\hat{\mu}_{1} = \frac{\sum_{i=1}^{N} (1 - \Delta_{i}^{(t)}) \cdot y_{i}}{\sum_{i=1}^{N} (1 - \Delta_{i}^{(t)})},$$

$$\hat{\mu}_{2} = \frac{\sum_{i=1}^{N} \Delta_{i}^{(t)} \cdot y_{i}}{\sum_{i=1}^{N} \Delta_{i}^{(t)}},$$

and generate $\mu_1^{(t)} \sim N(\hat{\mu}_1, \hat{\sigma}_1^2)$ and $\mu_2^{(t)} \sim N(\hat{\mu}_2, \hat{\sigma}_2^2)$.

3. Continue step 2 until the joint distribution of $(\boldsymbol{\Delta}^{(t)}, \mu_1^{(t)}, \mu_2^{(t)})$ doesn't change