```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
```

```
#read file
df=pd.read_csv('/content/sample_data/Opportunity Score(6).csv')
df.head()
```

	phrase	Search Volume	Relevancy	Seller1	Seller2	Seller3	Seller4	Seller5	Seller6
0	lunchbox	9159	NaN	9.0	81	3	6	5	18
1	bread box	105	NaN	4.0	129	5	11	2	21
2	bread boxes	694	NaN	4.0	151	13	12	1	19
4									>

```
#cleaning data and extracting important one
df = df[['Search Volume','Seller1','Seller2','Seller3','Seller4','Seller5','Seller6','Sell
df = df[df != '-']
df = df[df != '>306']
df = df[df != 'N/R']
df.fillna(0, inplace = True)
df
```

	Search Volume	Seller1	Seller2	Seller3	Seller4	Seller5	Seller6	Seller7	Seller8	S
0	9159	9.0	81	3	6	5	18	4	23	
1	105	4.0	129	5	11	2	21	6	9	
2	694	4.0	151	13	12	1	19	6	11	
3	223	9.0	166	26	4	2	7	12	28	
4	2229	12.0	178	4	7	1	8	9	24	
5	50794	4.0	185	16	5	1	20	7	14	
6	516	18.0	8	3	2	1	10	21	118	
7	122	1.0	15	19	13	11	3	41	17	
8	1368	5.0	147	9	12	15	7	1	8	
9	159	1.0	91	19	8	24	5	13	23	
10	185	1.0	73	13	24	4	7	23	17	
11	522	1.0	81	9	22	4	8	16	17	
12	177	20.0	8	5	23	3	16	10	217	
13	103	11.0	9	2	5	0	10	10	6	
14	104	0.0	18	1	14	4	5	17	16	
15	100	1.0	70	10	12	38	14	8	26	
16	799	13.0	31	20	10	5	42	7	1	
17	107	20.0	14	2	43	1	35	23	6	
18	101	6.0	7	3	13	5	25	17	53	
19	115	14.0	27	12	47	6	10	29	69	
20	101	16.0	108	2	3	15	4	26	87	
21	114	1.0	58	15	22	14	7	24	97	
22	316	5.0	151	9	13	1	205	3	10	
23	105	8.0	222	4	15	14	1	21	264	
24	280	10.0	0	1	11	34	48	5	7	
25	132	7.0	6	4	19	8	57	3	76	
26	107	4.0	48	37	29	22	89	15	45	
27	3349	4.0	40	64	1	3	81	8	5	
28	110	19.0	143	62	6	7	48	28	2	
29	132	9.0	15	42	14	25	34	20	70	
30	326	9.0	212	16	10	4	39	7	64	
31	103	19.0	111	23	42	6	2	27	76	

	32	3388	17.0	120	23	43	7	4	29	58	
	33	167	12.0	170	66	14	69	22	28	11	
	34	100	17.0	87	16	21	0	0	28	14	
	35	122	10.0	21	47	29	16	149	8	282	
	36	125	14.0	43	22	10	21	49	41	8	
	37	132	16.0	0	5	45	6	41	3	32	
	38	134	16.0	0	24	7	18	32	10	36	
	39	175	0.0	0	11	19	0	0	7	6	
	40	1406	3.0	120	33	19	21	80	1	78	
	41	347	8.0	89	13	7	11	65	1	86	
	42	762	2 0	94	44	4	42	110	3	17	
#	converting	g dataset	t into flo	at							

#converting dataset into float
df= df.astype(float)

) - (,							
44	1220	J.U	υu	ıσ	IU	40	เอฮ	10	OU

```
#calculating relevancy
```

```
df['Relevancy'] = np.where((df['Seller1'] < 16) & (df['Seller1'] > 0), df['Relevancy'] + 1
df['Relevancy'] = np.where((df['Seller2'] < 16) & (df['Seller2'] > 0), df['Relevancy'] + 1
df['Relevancy'] = np.where((df['Seller3'] < 16) & (df['Seller3'] > 0), df['Relevancy'] + 1
df['Relevancy'] = np.where((df['Seller4'] < 16) & (df['Seller4'] > 0), df['Relevancy'] + 1
df['Relevancy'] = np.where((df['Seller5'] < 16) & (df['Seller5'] > 0), df['Relevancy'] + 1
df['Relevancy'] = np.where((df['Seller6'] < 16) & (df['Seller6'] > 0), df['Relevancy'] + 1
df['Relevancy'] = np.where((df['Seller7'] < 16) & (df['Seller7'] > 0), df['Relevancy'] + 1
df['Relevancy'] = np.where((df['Seller8'] < 16) & (df['Seller8'] > 0), df['Relevancy'] + 1
df['Relevancy'] = np.where((df['Seller9'] < 16) & (df['Seller9'] > 0), df['Relevancy'] + 1
df['Relevancy'] = np.where((df['Seller9'] < 16) & (df['Seller10'] > 0), df['Relevancy'] + 1
df['Relevancy'] = np.where((df['Seller10'] < 16) & (df['Seller10'] > 0), df['Relevancy'] + 1
```

	Search Volume	Seller1	Seller2	Seller3	Seller4	Seller5	Seller6	Seller7	Seller8	•
0	9159.0	9.0	81.0	3.0	6.0	5.0	18.0	4.0	23.0	
1	105.0	4.0	129.0	5.0	11.0	2.0	21.0	6.0	9.0	
2	694.0	4.0	151.0	13.0	12.0	1.0	19.0	6.0	11.0	
3	223.0	9.0	166.0	26.0	4.0	2.0	7.0	12.0	28.0	
4	2229.0	12.0	178.0	4.0	7.0	1.0	8.0	9.0	24.0	
5	50794.0	4.0	185.0	16.0	5.0	1.0	20.0	7.0	14.0	
6	516.0	18.0	8.0	3.0	2.0	1.0	10.0	21.0	118.0	
7	122.0	1.0	15.0	19.0	13.0	11.0	3.0	41.0	17.0	
8	1368.0	5.0	147.0	9.0	12.0	15.0	7.0	1.0	8.0	
9	159.0	1.0	91.0	19.0	8.0	24.0	5.0	13.0	23.0	
10	185.0	1.0	73.0	13.0	24.0	4.0	7.0	23.0	17.0	
11	522.0	1.0	81.0	9.0	22.0	4.0	8.0	16.0	17.0	
12	177.0	20.0	8.0	5.0	23.0	3.0	16.0	10.0	217.0	
13	103.0	11.0	9.0	2.0	5.0	0.0	10.0	10.0	6.0	
14	104.0	0.0	18.0	1.0	14.0	4.0	5.0	17.0	16.0	
15	100.0	1.0	70.0	10.0	12.0	38.0	14.0	8.0	26.0	
16	799.0	13.0	31.0	20.0	10.0	5.0	42.0	7.0	1.0	
17	107.0	20.0	14.0	2.0	43.0	1.0	35.0	23.0	6.0	
18	101.0	6.0	7.0	3.0	13.0	5.0	25.0	17.0	53.0	
19	115.0	14.0	27.0	12.0	47.0	6.0	10.0	29.0	69.0	
20	101.0	16.0	108.0	2.0	3.0	15.0	4.0	26.0	87.0	
21	114.0	1.0	58.0	15.0	22.0	14.0	7.0	24.0	97.0	
22	316.0	5.0	151.0	9.0	13.0	1.0	205.0	3.0	10.0	
23	105.0	8.0	222.0	4.0	15.0	14.0	1.0	21.0	264.0	
24	280.0	10.0	0.0	1.0	11.0	34.0	48.0	5.0	7.0	
25	132.0	7.0	6.0	4.0	19.0	8.0	57.0	3.0	76.0	
26	107.0	4.0	48.0	37.0	29.0	22.0	89.0	15.0	45.0	
27	3349.0	4.0	40.0	64.0	1.0	3.0	81.0	8.0	5.0	
28	110.0	19.0	143.0	62.0	6.0	7.0	48.0	28.0	2.0	
29	132.0	9.0	15.0	42.0	14.0	25.0	34.0	20.0	70.0	
30	326.0	9.0	212.0	16.0	10.0	4.0	39.0	7.0	64.0	
31	103.0	19.0	111.0	23.0	42.0	6.0	2.0	27.0	76.0	

32	3388.0	17.0	120.0	23.0	43.0	7.0	4.0	29.0	58.0
33	167.0	12.0	170.0	66.0	14.0	69.0	22.0	28.0	11.0
34	100.0	17.0	87.0	16.0	21.0	0.0	0.0	28.0	14.0
35	122.0	10.0	21.0	47.0	29.0	16.0	149.0	8.0	282.0
36	125.0	14.0	43.0	22.0	10.0	21.0	49.0	41.0	8.0
37	132.0	16.0	0.0	5.0	45.0	6.0	41.0	3.0	32.0
38	134.0	16.0	0.0	24.0	7.0	18.0	32.0	10.0	36.0
39	175.0	0.0	0.0	11.0	19.0	0.0	0.0	7.0	6.0
40	1406.0	3.0	120.0	33.0	19.0	21.0	80.0	1.0	78.0
41	347.0	8.0	89.0	13.0	7.0	11.0	65.0	1.0	86.0
42	762.0	2.0	94.0	44.0	4.0	42.0	110.0	3.0	17.0
43	542.0	10.0	165.0	35.0	27.0	25.0	20.0	59.0	124.0
44	1228.0	5.0	56.0	19.0	16.0	45.0	159.0	15.0	80.0

#if relevancy < 3 drop that record
df.drop(df[(df['Relevancy'] < 3)].index,axis = 0,inplace=True)
df</pre>

	Search Volume	Seller1	Seller2	Seller3	Seller4	Seller5	Seller6	Seller7	Seller8	:
0	9159.0	9.0	81.0	3.0	6.0	5.0	18.0	4.0	23.0	
1	105.0	4.0	129.0	5.0	11.0	2.0	21.0	6.0	9.0	
2	694.0	4.0	151.0	13.0	12.0	1.0	19.0	6.0	11.0	
3	223.0	9.0	166.0	26.0	4.0	2.0	7.0	12.0	28.0	
4	2229.0	12.0	178.0	4.0	7.0	1.0	8.0	9.0	24.0	
5	50794.0	4.0	185.0	16.0	5.0	1.0	20.0	7.0	14.0	
6	516.0	18.0	8.0	3.0	2.0	1.0	10.0	21.0	118.0	
7	122.0	1.0	15.0	19.0	13.0	11.0	3.0	41.0	17.0	
8	1368.0	5.0	147.0	9.0	12.0	15.0	7.0	1.0	8.0	
9	159.0	1.0	91.0	19.0	8.0	24.0	5.0	13.0	23.0	
10	185.0	1.0	73.0	13.0	24.0	4.0	7.0	23.0	17.0	
11	522.0	1.0	81.0	9.0	22.0	4.0	8.0	16.0	17.0	
12	177.0	20.0	8.0	5.0	23.0	3.0	16.0	10.0	217.0	
13	103.0	11.0	9.0	2.0	5.0	0.0	10.0	10.0	6.0	
14	104.0	0.0	18.0	1.0	14.0	4.0	5.0	17.0	16.0	
15	100.0	1.0	70.0	10.0	12.0	38.0	14.0	8.0	26.0	
16	799.0	13.0	31.0	20.0	10.0	5.0	42.0	7.0	1.0	
17	107.0	20.0	14.0	2.0	43.0	1.0	35.0	23.0	6.0	
18	101.0	6.0	7.0	3.0	13.0	5.0	25.0	17.0	53.0	
19	115.0	14.0	27.0	12.0	47.0	6.0	10.0	29.0	69.0	
20	101.0	16.0	108.0	2.0	3.0	15.0	4.0	26.0	87.0	
21	114.0	1.0	58.0	15.0	22.0	14.0	7.0	24.0	97.0	
22	316.0	5.0	151.0	9.0	13.0	1.0	205.0	3.0	10.0	
23	105.0	8.0	222.0	4.0	15.0	14.0	1.0	21.0	264.0	
24	280.0	10.0	0.0	1.0	11.0	34.0	48.0	5.0	7.0	
25	132.0	7.0	6.0	4.0	19.0	8.0	57.0	3.0	76.0	
27	3349.0	4.0	40.0	64.0	1.0	3.0	81.0	8.0	5.0	
28	110.0	19.0	143.0	62.0	6.0	7.0	48.0	28.0	2.0	
29	132.0	9.0	15.0	42.0	14.0	25.0	34.0	20.0	70.0	

calculating CKWS
totalrows = len(df)

x = len(df.loc[(df['Seller1'] < 16) & (df['Seller1'] > 0)])

```
x = ((x/totalrows)*100)
x2 = len(df.loc[(df['Seller2'] < 16) & (df['Seller2'] > 0)])
x2 = ((x2/totalrows)*100)
x3 = len(df.loc[(df['Seller3'] < 16) & (df['Seller3'] > 0)])
x3 = ((x3/totalrows)*100)
x4 = len(df.loc[(df['Seller4'] < 16) & (df['Seller4'] > 0)])
x4 = ((x4/totalrows)*100)
x5 = len(df.loc[(df['Seller5'] < 16) & (df['Seller5'] > 0)])
x5 = ((x5/totalrows)*100)
x6 = len(df.loc[(df['Seller6'] < 16) & (df['Seller6'] > 0)])
x6 = ((x6/totalrows)*100)
x7 = len(df.loc[(df['Seller7'] < 16) & (df['Seller7'] > 0)])
x7 = ((x7/totalrows)*100)
x8 = len(df.loc[(df['Seller8'] < 16) & (df['Seller8'] > 0)])
x8 = ((x8/totalrows)*100)
x9 = len(df.loc[(df['Seller9'] < 16) & (df['Seller9'] > 0)])
x9 = ((x9/totalrows)*100)
x10 = len(df.loc[(df['Seller10'] < 16) & (df['Seller10'] > 0)])
x10 = ((x10/totalrows)*100)
df1=pd.read_csv('/content/sample_data/train_test_data.csv')
data_frame = pd.DataFrame([x, x2, x3, x4, x5, x6, x7, x8, x9, x10])
df1['CKWS'] = data_frame
# calculating CVS
totalCVS = df['Search Volume'].sum()
CVS = df.loc[(df['Seller1'] < 16) & (df['Seller1'] > 0)]
x = ((CVS['Search Volume'].sum()/totalCVS)*100)
CVS = df.loc[(df['Seller2'] < 16) & (df['Seller2'] > 0)]
x2 = ((CVS['Search Volume'].sum()/totalCVS)*100)
CVS = df.loc[(df['Seller3'] < 16) & (df['Seller3'] > 0)]
x3 = ((CVS['Search Volume'].sum()/totalCVS)*100)
CVS = df.loc[(df['Seller4'] < 16) & (df['Seller4'] > 0)]
x4 = ((CVS['Search Volume'].sum()/totalCVS)*100)
CVS = df.loc[(df['Seller5'] < 16) & (df['Seller5'] > 0)]
x5 = ((CVS['Search Volume'].sum()/totalCVS)*100)
CVS = df.loc[(df['Seller6'] < 16) & (df['Seller6'] > 0)]
x6 = ((CVS['Search Volume'].sum()/totalCVS)*100)
```

```
CVS = df.loc[(df['Seller7'] < 16) & (df['Seller7'] > 0)]
x7 = ((CVS['Search Volume'].sum()/totalCVS)*100)
CVS = df.loc[(df['Seller8'] < 16) & (df['Seller8'] > 0)]
x8 = ((CVS['Search Volume'].sum()/totalCVS)*100)
CVS = df.loc[(df['Seller9'] < 16) & (df['Seller9'] > 0)]
x9 = ((CVS['Search Volume'].sum()/totalCVS)*100)
CVS = df.loc[(df['Seller10'] < 16) & (df['Seller10'] > 0)]
x10 = ((CVS['Search Volume'].sum()/totalCVS)*100)
data_frame = pd.DataFrame([x, x2, x3, x4, x5, x6, x7, x8, x9, x10])
df1['CSV'] = data_frame
#classifying viability through loc
x = df1.sum(axis = 1)
df1.loc[x > 150, 'Viable'] = 'Low'
df1.loc[((x <= 150) & (x > 100)), 'Viable'] = 'Medium'
df1.loc[x \leftarrow 100, 'Viable'] = 'High'
df1.to_csv('/content/sample_data/train_test_data.csv')
df1
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: FutureWarning: Droppi

	Sellers	CKWS	CSV	Viable
0	Seller1	76.086957	93.939321	Low
1	Seller2	19.565217	1.807338	High
2	Seller3	56.521739	21.242560	High
3	Seller4	63.043478	89.409506	Low
4	Seller5	63.043478	91.565756	Low
5	Seller6	39.130435	11.780898	High
6	Seller7	58.695652	91.337575	Low
7	Seller8	32.608696	71.226261	Medium
8	Seller9	45.652174	86.555433	Medium
9	Seller10	23.913043	70.689010	High

```
#read training/testing dataset
df2 = pd.read_csv('/content/sample_data/Final Output.csv')
df2
```

		Sellers	CKWS	CSV	Viable	/ +
	0	Seller1	97.222222	99.572795	Low	
	1	Seller2	22.22222	72.683140	High	
	2	Seller3	38.888889	89.897568	Medium	
	3	Seller4	13.888889	46.128453	High	
	4	Seller5	66.666667	27.748920	High	
	491	Seller6	15.828292	92.487205	Medium	
	492	Seller7	66.842396	30.174558	High	
	493	Seller8	83.553085	25.134668	Medium	
df: df: df:	2.loc[df 2.loc[df 2.loc[df 2.loc[df 2 = df2[2['Viable 2['Viable 2['Viable	e'] == 'Med: e'] == 'Low CSV','Cate	h', 'Catego ium', 'Cate ', 'Categor	orical_Via gorical_\ ical_Via	nble'] = '0' /iable'] = '1' ole'] = '2'

	CKWS	CSV	Categorical_Viable
0	97.222222	99.572795	2.0
1	22.22222	72.683140	0.0
2	38.888889	89.897568	1.0
3	13.888889	46.128453	0.0
4	66.666667	27.748920	0.0
491	15.828292	92.487205	1.0
492	66.842396	30.174558	0.0
493	83.553085	25.134668	1.0
494	76.824917	95.468479	2.0
495	32.644893	20.162299	0.0
496 ro	ws × 3 colum	nns	

df2

```
#train testing command/classfication import
x = df2[['CKWS','CSV']]
y = df2['Categorical_Viable']
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=.3)
from sklearn.metrics import classification_report,confusion_matrix,accuracy_score
```

```
#Apply KNN,training data,score
from sklearn.neighbors import KNeighborsClassifier
knn = (KNeighborsClassifier(n_neighbors = 30))
knn.fit(x_train,y_train)
knn.score(x_test,y_test)
```

0.9530201342281879

```
#predicting and scattering graph
predict = knn.predict(x_test)
plt.scatter(predict,y_test)
```



```
#syntax for piechart(Testing data)
from collections import Counter
counter_object = Counter(y_test)
keyst = counter_object.keys()
valuest = counter_object.values()
keyst, valuest
```

```
(dict_keys([1.0, 0.0, 2.0]), dict_values([61, 70, 18]))
```

```
#KNN testing data
plt.pie( valuest, labels=keyst )
plt.show()
```

#syntax for piechart(KNN)
from collections import Counter
counter_object = Counter(predict)
keysk = counter_object.keys()
valuesk = counter_object.values()
keysk, valuesk
print(num_values)

(dict_keys([1.0, 0.0, 2.0]), dict_values([64, 71, 14]))

#KNN predict
plt.pie(valuesk, labels=keysk)
plt.show()

#classification report
print(classification_report(y_test,predict))
print(classification_report(y_train,knn.predict(x_train)))

	precision	recall	f1-score	support
0.0	0.97	0.99	0.98	70
1.0	0.92	0.97	0.94	61
2.0	1.00	0.78	0.88	18
accuracy			0.95	149
macro avg	0.96	0.91	0.93	149
weighted avg	0.95	0.95	0.95	149
	precision	recall	f1-score	support
0.0	precision	recall 0.97	f1-score 0.98	support 163
0.0 1.0				
	1.00	0.97	0.98	163
1.0	1.00 0.94	0.97 1.00	0.98 0.97	163 130
1.0	1.00 0.94	0.97 1.00	0.98 0.97 0.97	163 130 54

```
#Apply Logistic Regression
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression()
lr.fit(x_train,y_train)
```

LogisticRegression()

```
#predicting and scattering graph
predict1 = lr.predict(x_test)
plt.scatter(predict1, y_test)
```

<matplotlib.collections.PathCollection at 0x7f97224fc750>


```
#piechart syntax
from collections import Counter
counter_object = Counter(predict1)
keysl = counter_object.keys()
valuesl = counter_object.values()
keysl, valuesl
# print(num_values)
```

```
(dict_keys([1.0, 0.0, 2.0]), dict_values([61, 70, 18]))
```

```
#Logistic Regression Predict
plt.pie( values1, labels=keys1 )
plt.show()
```

```
print(classification_report(y_test,predict1))
print(classification_report(y_train,lr.predict(x_train)))
```

	precision	recall	f1-score	support
0.0	1.00	1.00	1.00	70
1.0	1.00	1.00	1.00	61
2.0	1.00	1.00	1.00	18
accuracy			1.00	149
macro avg	1.00	1.00	1.00	149
weighted avg	1.00	1.00	1.00	149
	precision	recall	f1-score	support
0.0	precision	recall	f1-score	support 163
0.0 1.0	•			
	1.00	1.00	1.00	163
1.0	1.00	1.00 1.00	1.00 1.00	163 130
1.0	1.00	1.00 1.00	1.00 1.00 1.00	163 130 54

#Apply Naive Bayes

from sklearn.naive_bayes import MultinomialNB
classifier = MultinomialNB().fit(x_train,y_train)

```
predict2 = classifier.predict(x_test)
print(classification_report(y_test,predict2))
```

	precision	recall	f1-score	support
0.0	0.53	0.61	0.57	70
1.0	0.43	0.46	0.44	61
2.0	0.00	0.00	0.00	18
accuracy			0.48	149
macro avg	0.32	0.36	0.34	149
weighted avg	0.43	0.48	0.45	149

```
from collections import Counter
counter_object = Counter(predict2)
keysn = counter_object.keys()
valuesn = counter_object.values()
keysn, valuesn
# print(num_values)
```

```
(dict_keys([0.0, 1.0, 2.0]), dict_values([81, 65, 3]))
```

```
#Naive bayes Predict
plt.pie( valuesn, labels=keysn )
plt.show()
```



```
#comparing each pie chart
figure, axis = plt.subplots(2, 2,figsize=(15,15))

axis[0, 0].pie( valuest, labels=keyst )
axis[0, 0].set_title("Testing")

axis[0, 1].pie( valuesk, labels=keysk )
axis[0, 1].set_title("KNN")

axis[1, 0].pie( valuesl, labels=keysl )
axis[1, 0].set_title("Logistic")

axis[1, 1].pie( valuesn, labels=keysn )
axis[1, 1].set_title("Naive bayes")
plt.show
```

 \Box


```
#KNN accuracy: 97%
#Logistic accuracy: 100%
#Naive Bayes accuracy: 34%
#decisiontree accuracy: 95%
print(knn.predict([[90,80]]))
print(lr.predict([[90,80]]))
print(classifier.predict([[90,80]]))
print(clf.predict([[90,80]]))
     [2.]
     [2.]
     [0.]
     [2.]
     /usr/local/lib/python3.7/dist-packages/sklearn/base.py:451: UserWarning: X does not h
       "X does not have valid feature names, but"
     /usr/local/lib/python3.7/dist-packages/sklearn/base.py:451: UserWarning: X does not h
       "X does not have valid feature names, but"
     /usr/local/lib/python3.7/dist-packages/sklearn/base.py:451: UserWarning: X does not h
       "X does not have valid feature names, but"
     /usr/local/lib/python3.7/dist-packages/sklearn/base.py:451: UserWarning: X does not h
       "X does not have valid feature names, but"
```