М+ Една задача + много решения

ВЪРХУ РАЗБИРАНЕТО (ПРОУМЯВАНЕТО) НА ЗАДАЧАТА

д-р Хари Алексиев

Волени от желанието да бъдем полезни на ученици и предлагаме учители, на читателите рубриката "Една решения". задача + много Рубриката включва найразнообразни задачи: урочни, олимпиадни, конкурсни. Целта е разкрием историята съответната задача, да разберем как тя е била замислена, да осъзнаем идеята на нейното съставяне и да се докоснем до потенциала на възможните й приложения. Един от начините за това е чрез намиране на различни решения. Търсенето на поне едно решение се превръща в "мисловен алпинизъм", заради неусетната поява на желание за откриване на повече решения.

Искрено се надяваме, че подобно предизвикателство ще мотивира читателя за активна самостоятелна работа и той ще се включи в рубриката със свои предложения.

Очакваме писмата Ви на адреса на редакцията до д-р Хари Алексиев, който води рубриката.

Пожелаваме Ви приятни занимания!

Често при поставяне на задача за решаване читателят се впуска в търсенето на решение не по най-рационалния начин, само защото не я е подложил на системен (цялостен) анализ. Това се случва и на национални състезания. Ще илюстрираме казаното с една задача1.

Задача 2. Да се докаже, че ако a,b>0 и $a^3 + b^3 \ge 2$, to $a^2 + b^2 \ge a + b$

Решение 1. (Николай Николов) $\lambda^3 = a^3 + b^3$, $a = \lambda c$, $b = \lambda d$, to $\lambda \ge 1$, $c^3 + d^3 \ge 2$ и неравенството приема вида $\lambda(c^2+d^2) \ge c+d$. Значи е достатъчно да докажем неравенството при $\lambda = 1$. Сега можем да считаме, че $a \le 1 \le b$. Понеже

$$(a^2 + a + 1)(a^2 - 1) = a(a^3 - 1) =$$

= $a(1-b^3) = a(1-b)(b^2 + b + 1),$

то

$$(a^2 + a + 1)(a^2 + b^2 - a - b) =$$

$$(b-1)\Big(b\Big(a^2+a+1\Big)-a\Big(b^2+b+1\Big)\Big)=(b-1)(b-a)(1-ab)$$

Остава да съобразим, че $a.b \le 1$ от неравенството между СА и СГ.

Оценяване. 2 т. за редукция до $\lambda = 1$, по 2 т. за двете равенства и 1 т. за $a.b \le 1$.

Решението на Николай Николов и оценяването могат да се коментират, но това не е нашата цел.

Ще се опитаме да дадем друг поглед върху разбирането и решението на задачата. Това ще рече да предложим други решения.

Забележете какви вариации на неравенството $a^3 + b^3 \ge 2$ предлагат изложените решения по долу!

¹ Задача 2 от материалите на турнира "Иван Салабашев" през 2016 г., 10-12 клас

Решение 2. ("Оценяване") Анализът ни започва така:

Ако a=b , то $2a^3 \ge 2$ и затова $a=b \ge 1$, $a^2=b^2 \ge a=b \ge 1$ или $a^2+b^2 \ge a+b$. Ето защо без ограничение, нека a>b>0 .

Ако $b \ge 1$, то $b^2 \ge b$ и $a^2 > a$ и затова $a^2 + b^2 > a + b$.

Ако b < 1, от неравенството $x^2 + y^2 + z^2 \ge xy + yz + zx$ следва, че $a^2 + b^2 + 1 \ge a + b + ab$.

При $ab \ge 1$ имаме $a^2 + b^2 + 1 \ge a + b + ab \ge a + b + 1$ или $a^2 + b^2 \ge a + b$.

При ab < 1 разсъждаваме така: Разглеждаме

$$\frac{a^2 + b^2}{a + b} = \frac{a^2 \left(1 + \frac{b^2}{a^2}\right)}{a \left(1 + \frac{b}{a}\right)} = a \cdot \frac{1 + x^2}{1 + x} = a \left(x - 1 + \frac{2}{x + 1}\right) = a \left(x + 1 + \frac{2}{x + 1} - 2\right) \ge a \left(2\sqrt{2} - 2\right),$$

където $x = \frac{b}{a}$. Равенство се достига при $x+1 = \frac{2}{x+1}$ или $\frac{b}{a} = \sqrt{2}-1$. Тогава $b = a\left(\sqrt{2}-1\right)$ или $a+b=a\sqrt{2}$. От друга страна $(a+b)\left(a^2-ab+b^2\right)=a^3+b^3\geq 2$. Но $a+b=a\sqrt{2}$ и затова $a^2\sqrt{2}\left(2a-3b\right)\geq 2$. Понеже $b=a\left(\sqrt{2}-1\right)$, то $a^2\sqrt{2}\left(2a-3b\right)\geq 2$ приема вида

$$a^2\sqrt{2}(2a-3a(\sqrt{2}-1)) \ge 2$$
 или $a^3\sqrt{2}(5-3\sqrt{2}) \ge 2$.

След рационализация окончателно получаваме

$$7a^3 \ge \sqrt{2}(5+3\sqrt{2}) = 6+5\sqrt{2}$$
 или $a^3 \ge \frac{6+5\sqrt{2}}{7}$

$$a^3 \ge \frac{6+5\sqrt{2}}{7}.$$

Аналогично
$$b^3 \ge \frac{6+5\sqrt{2}}{7} \left(\sqrt{2}-1\right)^3 = \frac{6+5\sqrt{2}}{7} \cdot \left(5\sqrt{2}-7\right) = \frac{8-5\sqrt{2}}{7}$$
 или $b^3 \ge \frac{8-5\sqrt{2}}{7}$.

Имаме:

$$\frac{a^2 + b^2}{a + b} = \frac{a^2 \left(1 + \frac{b^2}{a^2}\right)}{a \left(1 + \frac{b}{a}\right)} = a \cdot \frac{1 + x^2}{1 + x} = a \left(x - 1 + \frac{2}{x + 1}\right) = a \left(x + 1 + \frac{2}{x + 1} - 2\right) \ge a \left(2\sqrt{2} - 2\right).$$

Разглеждаме

$$\left(2a\left(\sqrt{2}-1\right)\right)^{3} = 8a^{3}\left(2\sqrt{2}-6+3\sqrt{2}-1\right) = 8a^{3}\left(5\sqrt{2}-7\right) \ge 8.\frac{6+5\sqrt{2}}{7}.\left(5\sqrt{2}-7\right)$$
 или
$$\left(2a\left(\sqrt{2}-1\right)\right)^{3} \ge 8.\frac{6+5\sqrt{2}}{7}.\left(5\sqrt{2}-7\right) = 8.\frac{8-5\sqrt{2}}{7}$$

$$\left(2a\left(\sqrt{2}-1\right)\right)^{3} \ge 8.\frac{8-5\sqrt{2}}{7}.$$

Ще сравним $8.\frac{8-5\sqrt{2}}{7}$ и 1. Това е равносилно на $64-40\sqrt{2}$ и 7 или 57 и $40\sqrt{2}$. Тогава $57^2=3249>\left(40\sqrt{2}\right)^2=3200$. Следователно $8.\frac{8-5\sqrt{2}}{7}>1$. Ето защо

$$\left(2a\left(\sqrt{2}-1\right)\right)^3 \ge 8.\frac{6+5\sqrt{2}}{7}.\left(5\sqrt{2}-7\right) = 8.\frac{8-5\sqrt{2}}{7} > 1$$
или $2a\left(\sqrt{2}-1\right) > 1$. Тогава

$$\frac{a^2 + b^2}{a + b} = \frac{a^2 \left(1 + \frac{b^2}{a^2}\right)}{a \left(1 + \frac{b}{a}\right)} = a \cdot \frac{1 + x^2}{1 + x} = a \left(x - 1 + \frac{2}{x + 1}\right) = a \left(x + 1 + \frac{2}{x + 1} - 2\right) \ge a \left(2\sqrt{2} - 2\right) > 1.$$

C други думи, $a^2 + b^2 \ge a + b$

Решение 3. ("Оценки") Съобразяваме, че

$$a^3 - 1 + b^3 - 1 \ge 0$$

$$(a-1)(a^2+a+1)+(b-1)(b^2+b+1) \ge 0.$$

От $(a^2 + a + 1)(b^2 + b + 1) > 0$ чрез деление от горното неравенство получаваме

$$\frac{a-1}{b^2+b+1} + \frac{b-1}{a^2+a+1} \ge 0.$$

Очевидно е, че $a^2 + a + 1 \ge 3a$ и $\frac{1}{3a} \ge \frac{1}{a^2 + a + 1}$. Аналогично $\frac{1}{3b} \ge \frac{1}{b^2 + b + 1}$. Ето защо

$$\frac{a-1}{3b} + \frac{b-1}{3a} \ge \frac{a-1}{b^2+b+1} + \frac{b-1}{a^2+a+1} \ge 0 \ \text{ или } \ a(a-1) + b(b-1) \ge 0 \ .$$
 Следователно $a^2 + b^2 \ge a+b$

Решение 4. ("Уравновесяване") Без ограничение $0 < b \le a.b \le 1 \le a$. "Уравновесяваме" неравенството $a^3 + b^3 \ge 2$ по следния начин: $a^3 - 1 \ge 1 - b^3$. Затова имаме $(a-1)(a^2 + a + 1) \ge (1-b)(1+b+b^2)$. Тогава

$$\frac{a-1}{1-b} \ge \frac{b^2 + b + 1}{a^2 + a + 1}.$$

"Съобразяваме" да извадим от двете страни на неравенството $\frac{b}{a}$ и получаваме

$$\frac{a-1}{1-b} - \frac{b}{a} \ge \frac{b^2 + b + 1}{a^2 + a + 1} - \frac{b}{a}$$

$$\frac{a^2 + b^2 - a - b}{(1 - b)a} \ge \frac{a(b^2 + b + 1) - b(a^2 + a + 1)}{a(a^2 + a + 1)} = \frac{a - b + ab(b - a)}{a(a^2 + a + 1)} = \frac{(a - b)(1 - ab)}{a(a^2 + a + 1)} \ge 0$$

$$\frac{a^2 + b^2 - a - b}{(1 - b)a} \ge \frac{(a - b)(1 - ab)}{a(a^2 + a + 1)} \ge 0.$$

Използвахме, че $0 < b \le a.b \le 1 \le a$. Ето защо

$$\frac{a^2+b^2-a-b}{(1-b)a} \ge 0.$$

Следователно $a^2 + b^2 - a - b \ge 0$ или $a^2 + b^2 \ge a + b$

Решение 5. ("Съобразяване" на числото 2 - възможност за разглеждане на случаи) Достатъчно да решим задачата, когато $0 < b \le ab \le 1 \le a$. Разсъждаваме така: Разглеждаме следните случаи:

Ако $a+b \ge 2$, то от неравенството $\frac{a^2+b^2}{2} \ge \left(\frac{a+b}{2}\right)^2$ за средно квадратично и средно

аритметично имаме:

$$\frac{a^2 + b^2}{2} \ge \left(\frac{a+b}{2}\right)^2 = \frac{a+b}{2} \cdot \frac{a+b}{2} \ge \frac{a+b}{2}$$

и затова $a^2 + b^2 \ge a + b$.

Ако a+b<2, то a-1<1-b и затова $\left(a-1\right)^3<\left(1-b\right)^3$ или $\left(a-1\right)^3+\left(b-1\right)^3<0$. Но $\left(a-1\right)^3+\left(b-1\right)^3=a^3+b^3-3\left(a^2+b^2\right)+3(a+b)-2$ и затова

$$a^3 + b^3 - 3(a^2 + b^2) + 3(a+b) - 2 < 0$$

$$0 \le a^3 + b^3 - 2 < 3(a^2 + b^2) - 3(a + b)$$

Следователно $a^2 + b^2 \ge a + b$.

При търсене на други решения могат да се формулират и решат следните задачи:

Задача 1. Ако a,b>0 и $a^3+b^3\geq 2$, то $a^4+b^4\geq a+b$.

Задача 2. . Ако a,b > 0 и $a^3 + b^3 \ge 2$, то $a^2 - ab + b^2 \ge 1$.

Упътване:
$$a^2 - ab + b^2 \ge \frac{(a+b)^2}{4}$$

Задача 3. Ако a,b>0 и $a^3+b^3\geq 2$, то $a^3+b^3\geq a+b$.

Упътване: $a^2 - ab + b^2 \ge 1$

Накрая ще завършим изложението със следните въпроси:

Дали ако a,b>0, $a^3+b^3\geq 2$, $a^4+b^4\geq a+b$, $a^3+b^3\geq a+b$, то $a^2+b^2\geq a+b$?

Дали ако a,b>0 и $a^3+b^3\leq 2$ следва, че $a^2+b^2\leq a+b$?

И така многото решения позволяват да се научим да търсим нещо ново!

ИЗПОЛЗВАНА ЛИТЕРАТУРА

1. Grozdev, S. For High Achievements in Mathematics. The Bulgarian Experience (Theory and Practice). ADE, Sofia, 2007, ISBN 978-954-92139-1-1.