In [32]: num_listened_plot.plot()

Out[32]: <matplotlib.axes. subplots.AxesSubplot at 0x7f73eb169908>

After songs played up to 100% of the song length, on average, users listen daily to more songs played less than 25% of the song length, than songs played at other lengths.

This could be because users are interested in trying out songs that they are not familiar with. The daily average number of songs played between 25% and 50%, between 50% and 75%, and between 75% and 98.5% of the length are very similar.

In [33]: num_listened_plot_2 = df_logs.groupby('date')['num_25','num_50','num_
75','num_985'].agg('mean')

In [34]: num_listened_plot_2.plot()

Out[34]: <matplotlib.axes._subplots.AxesSubplot at 0x7f741f12b2b0>

The daily average number of unique songs listened to fluctuates throughout the month, peaking on the weekends.

```
In [14]: num_unq_plot = df_logs.groupby('date')['num_unq'].agg('mean')
```

```
In [27]: num_unq_plot.plot()
```

Out[27]: <matplotlib.axes._subplots.AxesSubplot at 0x7f73bce777f0>

The mean number of unique songs listened to daily is about 29.

```
In [32]: df_logs.num_unq.mean()
Out[32]: 29.036145516162382
```

Inferential Statistics

all_data = one_hot('payment_method_id',all_data) all_data = one_hot('city',all_data) all_data = one_hot('gender',all_data) all_data = one_hot('registered_via',all_data) all_data = one_hot('registration_init_time',all_data) all_data = one_hot('year',all_data)

```
In [58]: all_data_onehot = pd.get_dummies(all_data, prefix=None, prefix_sep=
    '_', dummy_na=False, columns=['payment_method_id','city','gender','re
    gistered_via','registration_init_time'])
```

Whether or not a user churned is most strongly correlated to payment_plan_days, plan_list_price, actual_amount_paid, payment_method_id_32, is_auto_renew, and is_cancel. These features have correlations between 0.47 and 0.31 with is_churn.

```
In [59]: corr = all_data_onehot.corr()
    c = corr.abs()
    s = c.unstack()
```

In [60]: s['is_churn'].sort_values(ascending=False)

Out[60]:	is_churn payment_plan_days	1.000000 0.473736
	plan_list_price	0.455707
	actual_amount_paid	0.450579
	payment_method_id_32	0.384989
	is auto renew	0.349667
	is cancel	0.313537
	payment method id 15	0.193123
	payment method id 38	0.159720
	payment method id 41	0.155421
	registered via 7	0.147419
	payment method id 20	0.128193
	transaction date count	0.105310
	city 1	0.101843
	payment_method_id_22	0.096334
	registered via 4	0.083453
	payment method id 17	0.078696
	payment_method_id_13	0.077872
	registered via 3	0.072665
	registered via 9	0.065339
	bd	0.062260
	<pre>payment_method_id_12</pre>	0.062150
	gender_female	0.057437
	payment_method_id_35	0.054600
	gender_male	0.054083
	<pre>payment_method_id_37</pre>	0.038075
	city_13	0.036822
	city_5	0.034938
	payment_method_id_34	0.034064
	<pre>payment_method_id_26</pre>	0.032196
	city_3 city 11	0.008955 0.008257
	payment method id 23	0.008207
	payment_method_id_27	0.008109
	registration_init_time_2015	0.007750
	registration_init_time_2015	0.007730
	city 18	0.007233
	registration init time 2012	0.006363
	payment method id 19	0.005347
	registration_init_time_2014	0.005195
	registration_init_time_2008	0.005135
	payment_method_id_29	0.004922
	registration_init_time_2017	0.004311
	payment_method_id_14	0.003915
	payment_method_id_18	0.003912
	registration_init_time_2006	0.003140
	city_7	0.002967
	registration_init_time_2004	0.002550
	payment_method_id_21	0.002353
	payment_method_id_11	0.001838
	registration_init_time_2013	0.001534
	city_19	0.001474
	<pre>registered_via_13 city 16</pre>	0.001116 0.001042
	payment method id 10	0.000939
	payment_method_id_30	0.000939
	payment_method_td_50	0.000337

A t-test is used to see whether there is a statistical difference in the proportion of female vs male churners. At a confidence level of 0.01, we reject the null hypothesis that the proportion of female and male churners is the same.

```
In [62]: from scipy.stats import ttest_ind, f_oneway
    ttest_ind(all_data['is_churn'][all_data.gender=='female'],all_data['i
    s_churn'][all_data.gender=='male'])

Out[62]: Ttest_indResult(statistic=3.0423516232159784, pvalue=0.00234755202275
    02554)
```

A t-test is used to see whether there is a statistical difference in the proportion of churners who have canceled and those who have not canceled. At a confidence level of 0.01, we reject the null hypothesis that the proportion of churners who have canceled is the same as the proportion of churners who have not canceled.

```
In [16]: ttest_ind(all_data['is_churn'][all_data.is_cancel==1],all_data['is_ch
urn'][all_data.is_cancel==0])
Out[16]: Ttest indResult(statistic=281.28261945889841, pvalue=0.0)
```

A one way ANOVA is used to see whether there is a statistical difference in the proportion of churners who registered in 2017, vs those who registered in 2016 and 2015. At a confidence level of 0.01, we reject the null hypothesis that the proportion of churners who registered in 2017, 2016, and 2015 is the same.

A one way ANOVA is used to see whether there is a statistical difference in the proportion of churners who are in city 1, vs those who are in cities 3 and 4. At a confidence level of 0.01, we reject the null hypothesis that the proportion of churners who are in cities 1, 3, and 4 are the same.

```
In [26]: f_oneway(all_data['is_churn'][all_data.city==1],all_data['is_churn'][
    all_data.city==3],all_data['is_churn'][all_data.city==4])

Out[26]: F_onewayResult(statistic=1254.7043807999448, pvalue=0.0)

In []: #t-test is_discount
```