

The Introduction To Artificial Intelligence

Yuni Zeng yunizeng@zstu.edu.cn 2024-2025-1

The Introduction to Artificial Intelligence

- Part I Brief Introduction to AI & Different AI tribes
- Part II Knowledge Representation & Reasoning
- Part III AI GAMES and Searching
- Part IV Model Evaluation and Selection

- 1.1 Empirical Error and Overfitting
- 1.2 Evaluation Methods
- 1.3 Performance Measure
- 1.4 Summary

Solve two problems:

- (1) How to make a model convincible?
- (2) How to evaluate a model?

- 1.1 Empirical Error and Overfitting
- 1.2 Evaluation Methods
- 1.3 Performance Measure
- 1.4 Summary

Definitions

Usually, if m samples totally, a model predict a samples incorrectly:

Error Rate: a/m, the proportion of wrong predictions;

Accuracy: 1- a/m, the proportion of right predictions.

Generally:

Error: the difference between the output of the model and the ground truth (real label).

Training Error/ Empirical Error: the error on training dataset.

Generalization Error: the error on new data.

Definitions

- Error Rate, Accuracy, Training error, Generalization error
- ➤ A best model:
 On training dataset: 0% Training error, 100% Accuracy,
 On new samples: 0% Generalization error, 100% Accuracy

> But:

- Overfitting and Underfitting
- ➤ Underfitting: A statistical model or a machine learning algorithm is said to have underfitting when it cannot capture the underlying trend of the data.
- ➤ In a nutshell, Underfitting refers to a model that can neither performs well on the training data nor generalize to new data.
- > Reasons for Underfitting:
 - High bias and low variance
 - The size of the training dataset used is not enough.
 - The model is too simple.
 - Training data is not cleaned and also contains noise in it.

- Overfitting and Underfitting
- ➤ Overfitting: In mathematical modeling, overfitting is "the production of an analysis that corresponds too closely or exactly to a particular set of data, and may therefore fail to fit to additional data or predict future observations reliably".
- An overfitted model is a <u>mathematical</u> <u>model</u> that contains more <u>parameters</u> than can be justified by the data. In a mathematical sense, these parameters represent the <u>degree of a</u> <u>polynomial</u>. The essence of overfitting is to have unknowingly extracted some of the residual variation (i.e., the <u>noise</u>) as if that variation represented underlying model structure.

- Overfitting and Underfitting
- ➤ In a nutshell, Overfitting is a problem where the evaluation of machine learning algorithms on training data is different from unseen data.
- > Reasons for Overfitting are as follows:
 - High variance and low bias
 - The model is too complex
 - The size of the training data

Overfitting and Underfitting

Overfitting and Underfitting

Overfitting

Underfitting

- Overfitting and Underfitting
- > Techniques to reduce underfitting:
 - Increase model complexity
 - Increase the number of features, performing feature engineering
 - Remove noise from the data.
 - Increase the number of epochs or increase the duration of training to get better results.
- > Techniques to reduce overfitting:
 - Increase training data.
 - Reduce model complexity.
 - Early stopping during the training phase (have an eye over the loss over the training period as soon as loss begins to increase stop training).
 - Ridge Regularization and Lasso Regularization
 - Use dropout for neural networks to tackle overfitting.

- Overfitting and Underfitting
 - ➤ Overfitting: Good performance on the training data, poor generalization to other data.
 - ➤ Underfitting: Poor performance on the training data and poor generalization to other data.

We already know:

What kind of model do we need?

- → Low training error, low generalization error, high Accuracy;
- → However, many methods could be utilized for one problem with different parameters.
- → how to select a model?

- 1.1 Empirical Error and Overfitting
- 1.2 Evaluation Methods
- 1.3 Performance Measure
- 1.4 Summary

- Evaluation Methods
 - ➤ A model with low training error, low generalization error, high accuracy;
 - How to compute generalization error?

How to divide training dataset and testing dataset?

- Evaluation Methods
 - For example, m samples:

$$D = \{(x_1, y_1), (x_2, y_2), (x_3, y_3), \cdots, (x_m, y_m)\}\$$

Training dataset: *S* Testing dataset: *T*

- $S \cap T = \emptyset$
- $S \cup T = D$

How to divide training dataset and testing dataset?

- Hold-out Method (留出法)
 - \triangleright Set a proportion r, like r = 0.3
 - By sampling methods, make

$$T = r * D, S = (1 - r) * D$$

- Sampling methods:
 - Random sampling
 - Stratified sampling: keep the proportion rate of samples;

For example, 500 positive samples, 500 negative samples in D and r = 0.3:

S: 350 positive samples; 350 negative samples

T: 150 positive samples; 150 negative samples

 \triangleright Difficulty: r,

- □ Cross Validation (交叉验证法)
 - Divided D dataset to k sub-dataset:

$$D = D_1 \cup D_2 \cup \cdots D_k$$
, $D_i \cap D_j = \emptyset \ (i \neq j)$

- Keep same distribution of each sub-dataset
- ➤ K-times test: (k-1) sub-dataset as S, 1 sub-dataset as T
- Average K-times test error as final results.

- Bootstrapping (自助法)
 - Based on Bootstrapping Sampling
 - Randomly select 1 sample from D and copy it to D';
 - Repeat m times
 - Obviously, some of the samples in D will be repeated in D', and some will not.
 - Suitable for small datasets!

- 1.1 Empirical Error and Overfitting
- 1.2 Evaluation Methods
- 1.3 Performance Measure
- 1.4 Summary

■ Performance Measure

 \triangleright For dataset D, with x_i as input, y_i as true label,

$$D = \{(x_1, y_1), (x_2, y_2), (x_3, y_3), \cdots, (x_m, y_m)\}\$$

 \triangleright The predicted output of a model (f),

outputs =
$$\{y_1^*, y_2^*, y_3^*, \dots, y_m^*\}$$

How to measure the predictions of different models?

- Two different tasks
 - > For regression tasks: Mean Squared Error

$$E(f,D) = \frac{1}{m} \sum_{i=1}^{m} (y_i^* - y_i)^2$$

The classification task: Error Rate, Accuracy

$$E(f,D) = \frac{1}{m} \sum_{i=1}^{m} \prod (y_i^* \neq y_i)$$

$$Acc(f,D) = \frac{1}{m} \sum_{i=1}^{m} \prod (y_i^* = y_i) = 1 - E(f,D)$$

Confusion matrix

> For binary classification tasks

	Decision	True sta		
Sensitivity Specificity	/action	Positive	Negative	T I F
	Positive	·		Type-I Error Type-II Error
	Negative		,	-JF

Correct classification

TP: the number of samples belonging to positive decided positive

TN: the number of samples belonging to negative decided negative

Misclassification

FP: the number of samples belonging to negative decided positive incorrectly. (False Alarm)

FN: the number of samples belonging to positive decided negative incorrectly.(Missed Detection)

2024/12/16

• Sensitivity (TP rate)

$$> S_n = \frac{TP}{TP + FN}$$

• Specificity (TN rate)

$$\triangleright S_p = \frac{TN}{TN + FP}$$

• FP rate (Type-I Error)

$$\triangleright$$
 FP rate = $\frac{FP}{FP+TN}$

• FN rate (Type-II Error)

$$ightharpoonup FN rate = \frac{FN}{FN + TP}$$

Accuracy

Decision/ action	True state/class					
	Positive	Negative				
Positive	TP	FP				
Negative	FN	TN				

$$TP + FP + TN + FN =$$

Total number of samples in dataset

$$accuracy = \frac{TP + TN}{TP + FP + TN + FN}$$

Precision

$$precision = \frac{TP}{TP + FP}$$

• Sensitivity (TP rate)

$$> S_n = \frac{TP}{TP + FN}$$

• Specificity (TN rate)

$$> S_p = \frac{TN}{TN + FP}$$

• FP rate (Type-I Error)

$$\triangleright$$
 FP rate = $\frac{FP}{FP+TN}$

• FN rate (Type-II Error)

$$ightharpoonup FN rate = \frac{FN}{FN + TP}$$

Accuracy

Decision/ action	True state/class					
	Positive	Negative				
Positive	TP	FP				
Negative	FN	TN				

$$TP + FP + TN + FN =$$

Total number of samples in dataset

$$accuracy = \frac{TP + TN}{TP + FP + TN + FN}$$

Precision

$$precision = \frac{TP}{TP + FP}$$

□ Confusion matrix from Wiki

		Predicted (condition	Sources: [21][22][23][24][25][26][27][28][29] vid		
	Total population = P + N	Positive (PP)	Negative (PN)	Informedness, bookmaker informedness (BM) = TPR + TNR - 1	Prevalence threshold (PT) $= \frac{\sqrt{TPR \times FPR} - FPR}{TPR - FPR}$	
condition	Positive (P)	True positive (TP), hit	False negative (FN), type II error, miss, underestimation	True positive rate (TPR), recall, sensitivity (SEN), probability of detection, hit rate, power $= \frac{TP}{P} = 1 - FNR$	False negative rate (FNR), miss rate $= \frac{FN}{P} = 1 - TPR$	
Actual o	Negative (N)	False positive (FP), type I error, false alarm, overestimation	True negative (TN), correct rejection	False positive rate (FPR), probability of false alarm, fall-out $= \frac{FP}{N} = 1 - TNR$	True negative rate (TNR), specificity (SPC), selectivity = $\frac{TN}{N}$ = 1 - FPR	
	Prevalence = P P+N	Positive predictive value (PPV), precision = TP PP = 1 - FDR	False omission rate (FOR) $= \frac{FN}{PN} = 1 - NPV$	Positive likelihood ratio (LR+) = TPR = FPR	Negative likelihood ratio (LR-) = FNR TNR	
	Accuracy (ACC) $= \frac{TP + TN}{P + N}$	False discovery rate (FDR) $= \frac{FP}{PP} = 1 - PPV$	Negative predictive value $(NPV) = \frac{TN}{PN} = 1 - FOR$	Markedness (MK), deltaP (Δp) = PPV + NPV - 1	Diagnostic odds ratio (DOR) = LR+ LR-	
	Balanced accuracy $(BA) = \frac{TPR + TNR}{2}$	F ₁ score = 2PPV×TPR = 2TP PPV+TPR = 2TP+FP+FN	Fowlkes–Mallows index (FM) = √PPV×TPR	Matthews correlation coefficient (MCC) = √TPR×TNR×PPV×NPV -√FNR×FPR×FOR×FDR	Threat score (TS), critical success index (CSI), Jaccard index = $\frac{TP}{TP + FN + FP}$	

2024/12/16

P-R Curve: Precision- Recall

APR curve is simply a graph with Precision values on the y-axis and Recall (Sensitivity) values on the x-axis.

- The point is called "Break-Even Point, BEP", when precision= recall.
- ➤ If the BEP value of model A is bigger than it of model B, we can say model A is better than model B based on BEP.

2024/12/16

• Sensitivity (Recall, R)

$$\triangleright S_n = \frac{TP}{TP + FN}$$

• Precision (P)

$$> precision = \frac{TP}{TP + FP}$$

Decision/	True state/class					
action	Positive	Negative				
Positive	TP	FP				
Negative	FN	TN				

$$TP + FP + TN + FN =$$

Total number of samples in dataset

• F1

$$F1 = \frac{2 \times P \times R}{P + R}$$

■ ROC Curve (Receiver Operating Characteristic)

An ROC curve (receiver operating characteristic curve) is a graph showing the performance of a classification model at all classification thresholds.

2024/12/16

2.3 Type-I Error Probability & Type-II Error Probability

- ROC Curve (Receiver Operating Characteristic)
 - > For a binary classification,
 - 5 positive samples, and prediction probability: (0.9,0.8,0.5,0.4,0.3)
 - 5 negative samples: (0.7,0.6,0.2,0.1,0.01)
 - Ranking:(0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1,0.01)

Thresholds	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1	0.01
TPR = TP/(TP+FN)	0.2	0.4	0.4	0.4	0.6	0.8	1.0	1.0	1.0	1.0
FPR = FP/(FP+TN)	0	0	0.2	0.4	0.4	0.4	0.4	0.6	0.8	1.0

- TP: number of true positive samples; FP: number of false positive samples
- TN: number of true negative samples; FN: number of false negative samples 32

2.3 Type-I Error Probability & Type-II Error Probability

■ ROC Curve (Receiver Operating Characteristic)

Thresholds	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1	0.01
TPR	0.2	0.4	0.4	0.4	0.6	0.8	1.0	1.0	1.0	1.0
FPR	0	0	0.2	0.4	0.4	0.4	0.4	0.6	0.8	1.0

- Area Under Curve: AUC
- AUC:

$$AUC = \frac{1}{2} \sum_{i=1}^{m-1} (x_{i+1} - x_i) \cdot (y_i + y_{i+1})$$

- AUC =1; perfect!
- 0.5<AUC<1, better than randomly classification;
- AUC = 0.5, same as randomly classification;

Test

■ ROC Curve (Receiver Operating Characteristic)

样本编号	真实标签	模型输出 概率	样本编号	真实标签	模型输出 概率	
1	p	0.9	11	p	0.4	
2	p	0.8	12	n	0.39	
3	n	0.7	13	p	0.38	
4	p	0.6	14	n	0.37	
5	p	0.55	15	n	0.36	
6	p	0.54	16	n	0.35	
7	n	0.53	17	p	0.34	
8	n	0.52	18	n	0.33	
9	p	0.51	19	p	0.30	
10	n	0.505	20	n	0.10	

• p : positive sample, n: negative sample

Summary

- 1.1 Empirical Error and Overfitting
- 1.2 Evaluation Methods
- 1.3 Performance Measure
- 1.4 Summary

Solve two problems:

- (1) How to make a model convincible?
- (2) How to evaluate a model?

Summary

- How to make a model convincible?
 - > Error, Training error, Generalization error
 - Overfitting and Underfitting
 - ➤ Evaluation Methods: Hold-out method, Cross Validation, Bootstrapping
- How to evaluate a model?
 - ➤ Measure metrics: ACC, Recall, F1,AUC...