

Institut für Mathematik Sommersemester 2025

Prof. Dr. Nejjar Dr. Stankewitz D. Bernal K. Kurien

5. Übungszettel "Stochastik - Modul MAT 1103 / MAT M3"

Abzugeben bis 16.5.25 um 12:00

1. (Augensumme)

4 Punkte

Sei $\Omega=\{1,2,3,4,5,6\}^2$, versehen mit der Gleichverteilung $\mathbb P$ und der Potenzmenge als $\sigma-$ Algebra. Sei $X:\Omega\to\mathbb R$ die Zufallsvariable X((i,j))=i+j. Berechnen Sie $\mathbb P(\{(i,j):X((i,j))=k\})$ für k=1,3,5,9,11.

2. (Münzwurf) 4 Punkte

Sei $\Omega = \{0, 1\}^n$, versehen mit der Gleichverteilung \mathbb{P} und der Potenzmenge als σ -Algebra. Wir schreiben die Elemente $\omega \in \Omega$ als $\omega = (\omega_1, \dots, \omega_n)$. Sei, für $i = 1, \dots, n$ $X_i : \Omega \to \mathbb{R}$ die Zufallsvariable $X_i(\omega) = \omega_i$. Berechnen Sie $\mathbb{P}(\{\omega : X_i(\omega) = 1\})$ und $\mathbb{P}(\{\omega : X_1(\omega) + X_2(\omega) + X_3(\omega) = 0\})$.

3. (Montecarlo Integration)

8 Punkte

Schreiben Sie ein Computerprogramm, das als Input eine stetige Funktion $f:[0,1] \to [0,1]$ bekommt und als output eine Zahl Int(f) (Nährung vom Integral $\int_a^b \mathrm{d}x f(x)$) produziert. Wir starten mit Int(f) = 0. Das Programm soll fogendes n-mal tun:

- Schritt 1: produzieren Sie in Matlab z.B. mit dem Befehl **rand** zwei Pseudo-Zufallszahlen **c**, **d**, gleichverteilt aus dem Intervall [0, 1].
- Schritt 2: Ist $\mathbf{d} \leq f(\mathbf{c})$, setze Int(f) = Int(f) + 1/n, und gehe zu Schritt 1. Ansonsten setze Int(f) = Int(f) und gehe zu Schritt 1.

Wenden Sie Ihr Programm dann auf die Funktionen $f = \cos(x), \sin(x), \sqrt{x}, e^{-x^2}$ an mit $n = 10^6$ (falls der Rechner zu langsam ist, nehmen Sie $n = 10^4$). Vergleichen Sie Int(f) in den ersten drei Fällen mit dem echten Wert vom Integral.