What is claimed is:

5

10

15

20

25

30

1. A resilient fibrous insulation batt comprising:

a batt of resilient fibrous insulation; the batt having a length, a width and a thickness; the batt having first and second major surfaces that, with respect to each other, lie in substantially parallel planes and that each extend the length and width of the batt; the batt having first and second lateral surfaces that, with respect to each other, lie in substantially parallel planes, that extend for the length of the batt, and that extend between the major surfaces of the batt; the batt having first and second end surfaces that, with respect to each other, lie in substantially parallel planes, that extend the width of the batt, and that extend between the major surfaces of the batt; the fibers of the batt being randomly oriented and entangled together and predominately lying in planes that extend substantially perpendicular to the major surfaces and the end surfaces of the batt and substantially parallel to the lateral surfaces of the batt to facilitate a widthwise compression of the batt.

- 2. The resilient fibrous insulation batt according to claim 1, wherein: the fibers are glass fibers.
- 3. The resilient fibrous insulation batt according to claim 1, wherein: the fibers are polymeric fibers.
- 4. The resilient fibrous insulation batt according to claim 1, wherein: a binder bonds the fibers together at points of intersection.
- 5. The resilient fibrous insulation batt according to claim 4, wherein: the fibers are glass fibers.
- 6. The resilient fibrous insulation batt according to claim 4, wherein: the fibers are polymeric fibers.
- 7. The resilient fibrous insulation batt according to claim 1, wherein: the blanket is binderless.
- 35 8. The resilient fibrous insulation batt according to claim 7, wherein: the fibers are glass fibers.

5

10

15

20

25

30

35

9. The resilient fibrous insulation batt according to claim 7, wherein: the fibers are polymeric fibers.

10. A method of making resilient fibrous insulation batts, comprising:

in a process for making resilient fibrous insulation batts having a length, a width and a thickness; collecting fibers into a continuous blanket of resilient, fibrous insulation having a thickness about equal to the width of the batts being made from the blanket; the blanket having a length and a width; the blanket having first and second major surfaces that, with respect to each other, lie in substantially parallel planes and that each extend the length and width of the blanket; the blanket having first and second lateral surfaces that, with respect to each other, lie in substantially parallel planes, that extend for the length of the blanket, and that extend between the major surfaces of the blanket; the collected fibers of the blanket being randomly oriented and entangled together and predominately lying in planes that extend substantially parallel to the major surfaces of the blanket; and

severing the blanket into longitudinally extending blanket sections having lengths, widths and thicknesses equal to the lengths, widths and thicknesses of the insulation batts: a) by forming a first series of longitudinally extending cuts in the blanket that are substantially parallel with respect to each other with the longitudinal cuts extending substantially perpendicular to the major surfaces of the blanket, extending from the first major surface to the second major surface of the blanket, extending substantially parallel to the lateral surfaces of the blanket, and being spaced-apart from each other, across the width of the blanket, distances about equal to the thicknesses of the batts being made from the blanket; and b) by forming a plurality of transversely extending cuts in the blanket that are substantially parallel with respect to each other with the transverse cuts extending substantially perpendicular to the major surfaces and the lateral surfaces of the blanket, extending from the first major surface to the second major surface of the blanket, and being spaced-apart from each other, along the length of the blanket, distances about equal to the lengths of the batts being made from the blanket whereby a plurality of the batts are formed; the batts each having first and second major surfaces that, with respect to each other, lie in substantially parallel planes and that each extend the length and width of the batt; the batts each having first and second lateral surfaces that, with respect to each other, lie in substantially parallel planes, that extend for the length of the batt, and that extend between the major surfaces of the batt; the batts each having first and second end surfaces that, with respect to each other, lie in substantially

parallel planes, that extend the width of the batt, and that extend between the major surfaces of the batt; the fibers of each of the batts being randomly oriented and entangled together and predominately lying in planes that extend substantially perpendicular to the major surfaces and the end surfaces of the batt and substantially parallel to the lateral surfaces of the batt to facilitate a widthwise compression of the batt.

11. The method of making resilient fibrous insulation batts according to claim 10, wherein:

the fibers are glass fibers.

10

5

12. The method of making resilient fibrous insulation batts according to claim 10, wherein:

the fibers are polymeric fibers.

15 13. The method of making fibrous insulation batts according to claim 10, including:

applying a binder to the fibers as the blanket is formed whereby the binder bonds the fibers together at points of intersection.

20 14. The method of making fibrous insulation batts according to claim 13, wherein:

the fibers are glass fibers formed by a rotary fiberization process.

15. The method of making fibrous insulation batts according to claim 13,25 wherein:

the fibers are polymeric fibers formed by a rotary fiberization process.

- 16. The method of making fibrous insulation batts according to claim 10, wherein:
- 30 no binder is applied to the fibers as the blanket is formed and the blanket is binderless.
 - 17. The method of making fibrous insulation batts according to claim 16, wherein:
- the fibers are glass fibers formed by a rotary fiberization process.

18. The method of making fibrous insulation batts according to claim 16, wherein:

the fibers are polymeric fibers formed by a rotary fiberization process.

}=