

Lead Score Model

Operations Analytics Intern: Shiyu Ma

Goals:

Predict Conversion Probability of Potential Pros(Leads)

- Improve Sales Team Efficiency
- **02 Identify** Characteristics of High

Potential Leads

Data Overview

Model & Feature Selection

Model Interpretation

Data Overview

Goals

Data Overview

Model & Feature Selection

Model Interpretation

Data Overview

3834

Total number of unique leads enriched by sales team (with at least 1 attempt)

6

Platforms' profile data collected from Internet

62

Features available in dataset

7.17%

Conversion Rate

Basic Info

- Industry/Occupation/Category
- State/City/Postal Code/Biz Street
- Phone/Email
- Date Prospected/Enriched/Converted
- Sales Outcome/Number of Attempts

Platforms' Profile

Competitors: Home Advisor/Yelp/Angi/Google

- Profile Link Existence
- Number of Reviews
- Average Rating
- Latest Review Date

Social Media: Facebook/Instagram

- Profile Link Existence
- Number of Followers
- Number of Likes

Stand Alone Website

Basic Info Exploratory Analysis

Conversion Rate by State

Over 10%: UT, SC, MA, CA, TN, MO, FL Below 3.5%: RI, NJ, DE, PA, AZ, OH, IL, MN

Conversion Rate by Occupation

Over 9.5%: Cleaner, Floor, Carpet, and Tile Specialist Below 4%: Plumber, Painter

Platforms' Profile Exploratory Analysis

Problems in Features:

- Highly Skewed
- Too Many Outliers

To solve:

- Grouping
- Aggregate between platforms
- Apply model robust to outliers

Home Advisor-Number of Reviews

HA___of_Reviews

Home Advisor-Avg Rating

Data Manipulation Attempts

of each platforms

	Before	After	Why
01	Industry/Occupation/Category	Occupation Group	Intrinsic difference between leads:
02	State/City/Postal Code/ Biz Street	State_G: State Group	Service types, Locations • Grouping prevent small sample size issue
03	Profile Link Existence	P_G: Across Platforms Profile Group	• Interaction Between Platforms: Previous Marketing Investment
04	Average Rating & Number of Reviews	Use Wilson interval with continuity correction	 Highlight Difference between: Rating 5 (1 review) vs. Rating 4.8 (50 reviews)
05	Latest Review Date	Diff_Week: Week Differences from Date Enriched	 Easier format as model input: Convert time into a numerical feature
06	Avg. Rating of each platforms	SUM(Avg. Rating)/ Number of Profile Link Existence	Aggregate similar features across platforms:
07	Number of Reviews	SUM(Number of Reviews)/	Reduce number of features neededLess 0, Less skewed data

Number of Profile Link Existence

Model & Feature Selection

Goals

Data Overview

Model & Feature Selection

Model Interpretation

Pre-Model Selection

Imbalance Data Issue:

• Even predicting all samples as FALSE, we still have 93% accuracy=(TP+TN)/All observations

To Solve:

- Use **Recall=TP/Actual P** as evaluation metrics
- Sampling methods help model to **focus** on TRUE samples

Method	Pros & Cons	
Stratified Sampling	➤ Built-in for Random Forest➤ Less training samples per batch	
SMOTE Oversampling	No need to delete training samplesNoisy TRUE samples hurt performance	
Cost-Sensitive Learning	➤ High Recall=TP/Actual P➤ Low Precision=TP/Predicted P	

Logistic Regression VS. Random Forest

 Use Random Forest with stratified sampling as a preliminary model to help with feature selection and deal with messy data

Method	Pros & Cons		
Logistic	➤ Easy to Interpret➤ Fast and Easy to implement		
Regression	 Need to ensure no multicollinearity exist Sensitive to outliers and missing values Assume variables linear with logit 		
Random	 ➤ Able to handle correlation between features ➤ Robust to outliers and missing values ➤ Able to generate feature importance 		
Forest	Less interpretableNo available implementation so far		

Pre-Model Selection

Imbalance Data Issue:

 Even predicting all samples as FALSE, we still have 93% accuracy=(TP+TN)/All observations

To Solve:

- Use **Recall=TP/Actual P** as evaluation metrics
- Sampling methods help model to **focus** on TRUE samples

Method	Pros & Cons	
Stratified Sampling	➤ Built-in for Random Forest➤ Less training samples per batch	
SMOTE Oversampling	No need to delete training samplesNoisy TRUE samples hurt performance	
Cost-Sensitive Learning	➤ High Recall=TP/Actual P➤ Low Precision=TP/Predicted P	

Logistic Regression VS. Random Forest

- Use Random Forest with stratified sampling as a preliminary model
- Help with **feature selection** and deal with **messy data**

Method	Pros & Cons		
	➤ Easy to Interpret➤ Fast and Easy to implement		
Logistic Regression	 Need to ensure no multicollinearity exist Sensitive to outliers and missing values Assume variables linear with logit 		
Random Forest	 Able to handle correlation between features Robust to outliers and missing values Able to generate feature importance 		
	Less interpretableNo available implementation so far		

Feature Selection

Post-Model Selection

Random Forest:

- 4 Features: with_web, HA_diff_week, HA_Avg_Rating, State_Group
- Stratified Sampling
- Higher **Precision**, Lower Recall

Recall	Precision	AUC	ACC
0.72	0.11	0.68	0.58

	Pred FALSE	Pred TRUE
Actual FALSE	TN=490	FP=400
Actual TRUE	FN=19	TP=50

Logistic Regression: Chosen

- 4 Features: with_web, HA_diff_week, HA_Avg_Rating, State_Group
- Cost-Sensitive Learning
- Higher **Recall**, Lower Precision
- Regroup HA_Avg_Rating to satisfy logit linearity assumption; Remove outliers

Recall	Precision	AUC	ACC
0.93	0.10	0.72	0.39

	Pred FALSE	Pred TRUE
Actual FALSE	TN=328	FP=562
Actual TRUE	FN=3	TP=66

Model Interpretation

Goals

Data Overview

Model & Feature Selection

Model Interpretation

Flatform Focus in Details

Angi_P	HA_P	Yelp_P	n	С	Conversion Rate
0	0	1	266	33	12.41%
0	1	1	1115	93	8.34%
1	0	1	90	7	7.78%
0	1	0	1698	110	6.48%
1	1	0	164	8	4.88%
1	1	1	494	24	4.86%
1	0	0	7	0	0%

Model Coefficients

Probability of Conversion=

- -0.634 + with_web*(0.523) + HA_diff_week*(-0.003)
- + HA_Avg_Rating*(0.375) +State_G*(0.668)

	State_G·	0.15	-0.17	-0.02	1	
3)	HA_Avg_Rating-	0.08	0.18	1	-0.02	value
	HA_diff_week-	-0.22	1	0.18	-0.17	
	with_web·	1	-0.22	0.08	0.15	
	'	with_web	HA_diff_week	HA_Avg_Rating	State_G	

0.2

0.4 0.6 False Positive Rate FALSE

Feature	Possible Values	Coefficient	Interpretation
with_web	FALSE=0, TRUE=1	0.523	For leads with a stand alone website, their conversion probability is multiplied by 1.69 compared to those who does not
HA_diff_week	0 - 1140	-0.003	An increase of 1 week from latest review date means a 0.3% reduction in the relative conversion probability
HA_Avg_Rating Group	<4.7 = 0, 0 = 1, >=4.7 = 2	0.375	Going up 1 level along 'Low rating, No rating, High rating' means multiplying conversion probability by 1.45
State_Group	Low = 0, Mid = 1, High = 2	0.668	Going up 1 level along 'Low, Mid, High' Conversion Rate by State group means multiplying conversion probability by 1.95

Profile of High Potential Leads

Platform Focus 46% are in

Higher Conversion Profile Group Without Angi + With Yelp

Promising Location

45% located in Higher Conversion State Group i.e UT, SC, MA, CA, TN, MO, FL

Active Median 18 weeks from

Latest Review Date

High Quality

Mean **4.77** Avg. Rating

Mature

67%

With Stand Alone Website

Shoutouts

Anne, for being such a supportive mentor and friend

Elliot, for answering all of my questions and giving me directions

Anna, for leading me to the world of experiments

Josh and Blake, for giving such an interesting project to me and all the constructive feedback

The entire Operations Analytics team, for being so welcoming and helpful

All Tackterns, so nice to talk with you all

The University Recruiting team, for facilitating so many interesting events

Thank you!

Platforms' Profile EDA

Number of Reviews vs. Avg Ratings

- Highly Skewed
- Too Many Outliers
- No Strong Difference between Conversion
- No Strong Difference between Platforms

Latest Review Year & Stand Alone Website & Across Platforms Profile Link Existence

Promising Features

Home Advisor-Number of Reviews

Home Advisor-Avg Rating

Angi_P	HA_P	Yelp_P	n	С	Conversion Rate
0	0	1	266	33	12.41%
0	1	1	1115	93	8.34%
1	0	1	90	7	7.78%
0	1	0	1698	110	6.48%
1	1	0	164	8	4.88%
1	1	1	494	24	4.86%
1	0	0	7	0	0%

Project timeline

Platforms' Profile EDA

Number of Reviews vs. Avg Ratings

- Highly Skewed
- Too Many Outliers
- No Strong Difference between Conversion
- No Strong Difference between Platforms

Latest Review Year & Stand Alone Website

Promising Features

Home Advisor-Number of Reviews

HA___of_Reviews

Yelp-Number of Reviews

Angi-Number of Reviews

Angi_s___of_Reviews

Home Advisor-Avg Rating

Yelp-Avg Rating

Angi-Avg Rating

