# MATH 220 Practice Finals 1 — October, 2024, Duration: 2.5 hours This test has 10 questions on 20 pages, for a total of 100 points.

| First Name:     | Last Name: |
|-----------------|------------|
| Student Number: | Section:   |
| Signature:      |            |

| Question: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10  |
|-----------|---|---|---|---|---|---|---|---|---|-----|
| Points:   |   |   |   |   |   |   |   |   |   |     |
| Total:    |   |   |   |   |   |   |   |   | / | 100 |

- 1. Carefully define or restate each of the following:
  - (a) A rational number  $q \in \mathbb{Q}$

**Solution:**  $q \in \mathbb{Q}$  if there exists coprime  $a, b \in \mathbb{Z}$  where  $b \neq 0$  such that  $q = \frac{a}{b}$ .

(b) Bézout's lemma

**Solution:** For all  $a, b \in \mathbb{Z}$ , there exists  $x, y \in \mathbb{Z}$  such that  $ax + by = \gcd(a, b)$ 

(c) The Fundamental Theorem of Arithmetic

**Solution:** Let  $n \in \mathbb{N}$ . Then, n can be uniquely factorised into a product of prime powers  $p_1^{e_1}p_2^{e_2}\dots p_n^{e_n}$  up to order, where  $p_i$  are distinct primes and  $e_i \in \mathbb{Z}$ .

(d) A convergent sequence  $(x_n)_{n\in\mathbb{N}}: \mathbb{N} \to \mathbb{R}$ 

**Solution:**  $(x_n)_{n\in\mathbb{N}}: \mathbb{N} \to \mathbb{R}$  converges to  $L \in \mathbb{R}$  if for all  $\varepsilon > 0 \in \mathbb{R}$ , there exists  $N \in \mathbb{N}$  such that for all n > N,  $|x_n - L| < \varepsilon$ .

(e) The principle of mathematical induction

**Solution:** Let  $\ell \in \mathbb{Z}$  and let  $S = \{k \in \mathbb{Z} | n \ge \ell\}$ . If  $P(\ell)$  is true and P(k) being true implies P(k+1) being true for some  $k \in S$ , then P(n) is true for all  $n \in S$ .

- 2. Write the negation of each of the following and prove or disprove the original statement.
  - (a) For all  $x \in \mathbb{R}$ , there exists  $y \in \mathbb{R}$  such that for all  $z \in \mathbb{R}$ , if x + y < z, then x y > z.

**Solution:** The negation is "There exists  $x \in \mathbb{R}$  such that for all  $y \in \mathbb{R}$ , there exists  $z \in \mathbb{R}$  such that x + y < z and  $x - y \le z$ ". The original statement is false.

Disproof. Let x=0 and  $y\in\mathbb{R}$ . Choose z=|y|+1. Notice  $\pm y\leq |y|<1+|y|$ , so z>x+y and z>x-y so the statement is false.  $\square$ 

(b) There exists  $x \in \mathbb{R}$  such that for all  $y \in \mathbb{R}$ , for all  $z \in \mathbb{R}$ , xy > z.

**Solution:** The negation is "For all  $x \in \mathbb{R}$ , there exists  $y \in \mathbb{R}$  such that there exists  $z \in \mathbb{R}$  such that  $xy \leq z$ ". The original statement is false.

Disproof. Let  $x \in \mathbb{R}$  and choose y = z = 0. Then, xy = 0 = z so the statement is false.

10 Marks 3.

- 3. Let  $f:A\mapsto B$  and  $g:B\mapsto C$  be functions. Prove or disprove each of the following:
  - (a) For all  $U \subseteq C$ ,  $(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U))$ .

## **Solution:**

*Proof.* Let everything be as stated. We show each inclusion in turn.

- Assume  $x \notin f^{-1}(g^{-1}(U))$ , so  $f(x) \notin g^{-1}(U)$  and  $g(f(x)) \notin U$ . It follows that  $x \notin (g \circ f)^{-1}(U)$ , so by contraposition,  $(g \circ f)^{-1}(U) \subseteq f^{-1}(g^{-1}(U))$
- Assume  $x \in f^{-1}(g^{-1}(U))$ . Then,  $f(x) \in g^{-1}(U)$  and  $g(f(x)) \in U$  so  $(g \circ f)^{-1}(U) \subseteq f^{-1}(g^{-1}(U))$ .

It follows that  $(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U))$ . as required.

(b) For all  $U \subseteq B$ ,  $(g \circ f)^{-1}(g(U)) = f^{-1}(U)$ 

## **Solution:**

Disproof. Let 
$$A = \{1\} = C$$
,  $B = \{0,1\}$ ,  $f(x) = 1$  and  $g(x) = 1$ . Then, notice for  $U = \{0\}$ ,  $f^{-1}((U)) = \varnothing$ , but  $(g \circ f)^{-1}g(U) = (g \circ f)^{-1}(\{1\}) = \{1\}$  so  $(g \circ f)^{-1}(g(U)) \neq f^{-1}((U))$  and thus the statement is false.

4. Let  $n \in \mathbb{N}$  be even and  $K = \{0, 1, 2, \dots, n-1\}$ . Let  $S = \{k \in K | 2k \equiv 0 \mod n\}$ . Prove that |S| is even.

### **Solution:**

*Proof.* Assume for the sake of contradiction that |S| is not even, so for there exists an odd number of elements  $k \in K$  such that  $2k \equiv 0 \mod n$ . Consider K - S, which has an odd number of elements. Let  $a \in K - S$ . Since  $2a \not\equiv 0 \mod n$ , it follows that there exists  $a^{-1} \in K - S$  such that  $a + a^{-1} \equiv 0 \mod n$ , but there are only an odd number of a so there exists  $a_0 \in K - S$  such that  $a_0 = a_0^{-1}$  which implies  $2a_0 \equiv 0 \mod n$ , a contradiction. Hence, |S| is even as required.

5. (a) Prove that  $f: \mathbb{R} \to \mathbb{C} \setminus \{0\}$  where  $f(x) = e^{2\pi i x}$  is neither injective nor surjective and for all  $x, y \in \mathbb{R}$ , f(x+y) = f(x)f(y).

## **Solution:**

Proof. Notice  $0 \neq 1$  but  $f(0) = f(1) = 0 \in \mathbb{C}$  so f is not injective. Also notice there does not exist  $x \in \mathbb{R}$  such that f(x) = 0 since  $e^{2\pi ix} \neq 0$  for all  $x \in \mathbb{R}$ . Hence, f is not surjective. Finally, let  $x, y \in \mathbb{R}$ . Observe that  $f(x + y) = e^{2\pi i(x+y)} = e^{2\pi ix + 2\pi iy} = e^{2\pi ix}e^{2\pi iy} = f(x)f(y)$  so f(x + y) = f(x)f(y) as required.  $\square$ 

(b) Let R be a relation on  $\mathbb{R}$  be defined as xRy if and only if x=y+z where  $z\in f^{-1}(\{1\})$ . Prove that R is an equivalence relation.

## **Solution:**

*Proof.* We prove reflexivity, symmetry, and transitivity in turn.

- Notice x = x + 0 and  $0 \in f^{-1}(\{1\})$  so xRx as required.
- Assume xRy. Then, notice y=x-z and since  $f(-z)=e^{-2\pi iz}=\frac{1}{f(z)}=1$ , we have  $-z\in f^{-1}(\{1\})$  and so yRx.
- Assume xRy and yRw. Then,  $x = y + z_1$  and  $y = w + z_2$  so  $x = w + z_2 + z_1$ . Now notice  $f(z_2 + z_1) = f(z_2)f(z_1) = 1 \cdot 1 = 1$  so  $z_2 + z_1 \in f^{-1}(\{1\})$  and thus xRw

It follows that R is an equivalence relation.

(c) Find all equivalence classes under R. Show that the operation [a] + [b] = [a+b] is well defined for  $a, b \in \mathbb{R}$ .

### Solution:

Proof. There are infinite equivalence classes. In particular, for all  $x \in [0, 1)$ , there exists an equivalence class of the form  $[x] = \{k + x | k \in \mathbb{Z}\}$ . For showing the operation is well defined, we claim that xRy if and only if f(x) = f(y). Assume x = y + z where  $z \in f^{-1}(\{1\})$ . Then, f(x) = f(y + z) = f(y)f(z) = f(y) so f(y) = f(x). On the other hand, assume f(x) = f(y). Notice for all  $k \in \mathbb{Z}$ , f(k) = 1. Then,  $f(x)f(z_1) = f(x)1 = f(y)1 = f(y)f(z_2) = f(y + z_2)$  where  $z_1, z_2 \in f^{-1}(\{1\})$  so  $x = y + z_2 - z_1$  and since  $z_2 - z_1 \in f^{-1}(\{1\})$ , xRy. Let  $a, b \in \mathbb{R}$ . Since for all  $y \in [a+b]$ , f(y) = f(a+b), it suffices to show that for all  $x \in [a] + [b]$ , f(x) = f(a+b). Notice since  $x \in [a] + [b]$ ,  $x = a + z_1 + b + z_2$  where  $z_1, z_2 \in f^{-1}(\{1\})$  so  $f(x) = f(a+z_1+b+z_2) = f(a)f(z_1)f(b)f(z_2) = f(a)f(b) = f(a+b)$  so  $x \in [a+b]$ . Hence, the operation is well defined.

6. (a) Let X be a non-empty set. Prove that any equivalence relation on X forms a partition on X.

## **Solution:**

*Proof.* Let  $\sim$  be an equivalence relation on X. By reflexivity, we have that for all  $x \in X$ , x lies in some equivalence class and thus every equivalence class is non-empty. For showing that equivalence classes are disjoint, suppose  $x \in [a]$  and  $x \in [b]$ , so  $x \sim a$  and  $x \sim b$ . By symmetry and transitivity, we have  $a \sim x$  and  $x \sim b$  so [a] = [b]. Thus, equivalence classes are disjoint. It follows that the equivalence classes of an equivalence relation partition a set.

(b) Prove that any partition on X corresponds to equivalence classes of an equivalence relation on X.

## **Solution:**

*Proof.* Let  $P \subseteq \mathcal{P}(X)$  be a partition of X, and define a relation  $x \sim y$  if and only if  $x, y \in A_i$  where  $A_i \in P$ .

- Since every x lies in some  $A_i \in P$  by the definition of a partition,  $x \sim x$ .
- If  $x, y \in A_i$ , then surely  $y, x \in A_i$  so  $x \sim y$ .
- Similarly, if  $x, y \in A_i$  and  $y, z \in A_i$ , it follows that  $x, z \in A_i$  since every element lies in precisely one  $A_i$ .

Hence,  $\sim$  is an equivalence relation and by our choice of equivalence relation, we have that every equivalence class corresponds precisely to some  $A_i \in P$ .

7. Prove that if  $a \neq 0$ ,  $\lim_{x \to a} \frac{1}{x} = \frac{1}{a}$ .

## **Solution:**

*Proof.* Notice a > 0, or a < 0.

- Let  $\varepsilon > 0$  and assume a > 0. Choose  $\delta = \min(\{b, (a^2 a)\varepsilon\})$  where 0 < b < a. Assume  $0 < |x a| < \delta$ , so |x a| < b which implies a b < |x|. Then, notice  $\left|\frac{1}{x} \frac{1}{a}\right| = \left|\frac{a x}{ax}\right| < \frac{\delta}{a^2 ab} = \varepsilon$  so  $\lim_{x \to a} \frac{1}{x} = \frac{1}{a}$  as required.
- Let  $\varepsilon > 0$  and assume a < 0. Choose  $\delta = \min(\{-b, |a^2 ba|\varepsilon\})$  where 0 < -b < -a. Assume  $0 < |x a| < \delta$ , so |x a| < -b which implies |a b| < |x|. Then, notice  $\left|\frac{1}{x} \frac{1}{a}\right| = \left|\frac{a x}{ax}\right| < \frac{\delta}{|a^2 ba|} = \varepsilon$  so  $\lim_{x \to a} \frac{1}{x} = \frac{1}{a}$  as required.

- 8. Prove or disprove each of the following:
  - (a) Let  $A, B \subseteq C$ . If  $|C \setminus A| = |C \setminus B|$ , then |A| = |B|.

## Solution:

Disproof. Let  $A = \{1\}$ ,  $B = \{1,2\}$  and  $C = \mathbb{N}$ . Notice there exists an explicit bijection  $f: C \setminus A \mapsto C \setminus B$  where f(n) = n+1, but  $|A| = 1 \neq 2 = |B|$  so the statement is false.

(b) Let  $A_i \in X$ . Then,  $X \setminus (\bigcup_{i \in I} A_i) = \bigcap_{i \in I} (X \setminus A_i)$ .

## **Solution:**

*Proof.* Let  $A_i \in X$  and  $x \in X$ . We show each inclusion in turn.

- Let  $x \in X \setminus (\bigcup_{i \in I} A_i)$ , so  $x \notin (\bigcup_{i \in I} A_i)$  and thus  $x \notin A_i$  for all  $i \in I$ . It follows that  $x \in A_i \setminus X$  for all i and thus  $x \in \bigcap_{i \in I} (X \setminus A_i)$ .
- Let  $x \in \bigcap_{i \in I} (X \setminus A_i)$  so for all  $i \in I$ ,  $x \notin A_i$ . It follows that  $x \notin \bigcup_{i \in I} A_i$  so  $x \in X \setminus (\bigcup_{i \in I} A_i)$ .

Hence,  $X \setminus (\bigcup_{i \in I} A_i) = \bigcap_{i \in I} (X \setminus A_i)$ .

- 9. Let  $B_r(\mathbf{x}) \subseteq \mathbb{R}^n$ , called an open ball of radius r centered at  $\mathbf{x} \in \mathbb{R}^n$ , be defined as  $\{\mathbf{y} \in \mathbb{R}^n | \|\mathbf{x} \mathbf{y}\| < r\}$  for some  $r > 0 \in \mathbb{R}$ , note that  $\|\mathbf{x} \mathbf{y}\|$  refers to the Euclidean norm where  $\|\mathbf{x} \mathbf{y}\| = \sqrt{\sum_{i=1}^n (x_i y_i)^2}$  and  $x_i, y_i \in \mathbb{R}$ .
  - (a) Let  $\mathbf{p} \in \mathbb{R}^n$  and  $\mathbf{q} \in B_r(p)$ . Show that there exists  $B_{r_2}(\mathbf{q}) \subseteq B_r(p)$ . (Hint: The triangle inequality works for  $\|\mathbf{x} \mathbf{y}\| \le \|\mathbf{x} \mathbf{z}\| + \|\mathbf{z} \mathbf{y}\|$  in  $\mathbb{R}^n$  too)

### **Solution:**

Proof. Let  $\mathbf{q} \in B_r(\mathbf{p})$ . Choose  $r_2 = r - \|\mathbf{p} - \mathbf{q}\|$  and  $q \in B_{r_2}(\mathbf{q})$ . Now,  $r > \|\mathbf{p} - \mathbf{q}\|$  so  $r_2 > 0$ . Let  $x \in B_{r_2}(\mathbf{q})$ . By the triangle inequality,  $\|\mathbf{p} - \mathbf{x}\| \le \|\mathbf{p} - \mathbf{q}\| + \|\mathbf{q} - \mathbf{x}\| < \|\mathbf{p} - \mathbf{q}\| + r_2 = r$  so  $B_{r_2}(\mathbf{q}) \subseteq B_r(\mathbf{p})$ .

(b) A set  $E \subseteq \mathbb{R}^n$  is open if for all  $\mathbf{p} \in E$ , there exists  $B_r(\mathbf{p}) \subseteq E$ . Prove that E is open if and only if E is a union of open balls.

### Solution:

*Proof.* We prove each direction in turn.

- For one direction, suppose E is open. I claim  $E = \bigcup_{\mathbf{x} \in E} B_r(\mathbf{x})$  where  $B_r(\mathbf{x})$  is some open ball centered at  $\mathbf{x}$  contained in E. Notice this yields  $\bigcup_{\mathbf{x} \in E} B_r(\mathbf{x}) \subseteq E$ . On the other hand, if  $\mathbf{x} \in E$ , we know  $\mathbf{x} \in B_r(\mathbf{x}) \subseteq E$  for some r > 0 by E is open, so  $\mathbf{x} \in \bigcup_{\mathbf{x} \in E} B_r(\mathbf{x})$ . This proves  $E = \bigcup_{\mathbf{x} \in E} B_r(\mathbf{x})$  so E is a union of open balls.
- For the other direction, suppose E is a union of open balls  $\{B_i\}$ , and let  $\mathbf{x} \in E$ . By definition,  $x \in B_0$  for some  $B_0 \in \{B_i\}$  and from part (a), we know there exists  $B_r(\mathbf{x}) \subseteq B_0 \subseteq E$  so E is open as required.

- 10. Let  $N = \{1, 2, 3, ..., n\}$  for some  $n \in \mathbb{N}$ , and let  $S_n$  be the set of bijective functions  $f: N \mapsto N$ .
  - (a) Prove by induction that for all  $n \in \mathbb{N}$ ,  $|S_n| = n!$ .

## **Solution:**

*Proof.* Let  $N = \{1, 2, 3, ..., n\}$  for some  $n \in \mathbb{N}$ , and let  $S_n$  be the set of bijective functions  $f: N \mapsto N$ . We proceed with mathematical induction on n.

- For the base case, notice when n = 1, the only bijective map is f(n) = 1 so  $S_n = \{f\}$  and  $|S_n| = 1$ .
- Assume that for n = k,  $|S_k| = k$ . For  $|S_{k+1}|$ , notice taking every map in  $S_k$  and fixing an element yields k! bijections and hence elements in  $S_{k+1}$ , and fixing and repeating this process with a different element in  $N = \{1, 2, 3, ..., k+1\}$  will give (k+1)k! possible bijections from N to itself and hence (k+1)! bijections. It follows that  $|S_{k+1}| = (k+1)!$  as required.

By the principle of mathematical induction,  $|S_n| = n!$  for all  $n \in \mathbb{N}$ .

(b) Prove by induction that for all  $n \geq 3 \in \mathbb{N}$ , there exists  $f, g \in S_n$  such that  $f \circ g \neq g \circ f$ .

## **Solution:**

*Proof.* Let  $n \geq 3$ . We proceed with mathematical induction on n.

• For the base case, let f and g in  $S_3$  be defined as follows:

$$f(n) = \begin{cases} 1 \mapsto 2 \\ 2 \mapsto 1, g(n) = \begin{cases} 1 \mapsto 2 \\ 2 \mapsto 3 \\ 3 \mapsto 1 \end{cases}$$

Notice  $f \circ g(1) = 1$  and  $g \circ f(1) = 3$  so  $f \circ g \neq g \circ f$ .

• Assume there exists  $f, g \in S_k$  such that  $f \circ g \neq g \circ f$  for some k. For  $S_{k+1}$ , choose such  $f, g \in S_k$  and create f', g' which is the same as f and g except that the k+1th element gets mapped to itself. Notice there exists some  $i \in \{1, 2, ..., k\}$  such that  $f' \circ g'(i) = f \circ g(i) \neq g \circ f(i) = g' \circ f'(i)$  so it follows that  $f' \circ g' \neq g' \circ f'$  and thus the result holds.

By the principle of mathematical induction, the result holds for all  $n \geq 3$ .