Clustering VCD dump and Report Functional coverage.

Shivam Porwal

Content

- Understand the problem
- Input Data
- Intent and process
- Data preprocessing
- ML Process
- Post processing
- Proof of concept
- Challanges
- Future Scope

Let's understand the problem

Functional coverage-

In VLSI, "functional coverage" refers to a metric that measures how much of a design's intended functionality has been exercised by the verification process.

- Existing EDA tools does not report functional coverage.
- Inadequate or Missing Functional Coverage Bins

Let's understand this Example

Figure 2-1 Handshake with TVALID asserted before TREADY

Figure 2-2 Handshake with TREADY asserted before TVALID

Handshake with TVALID and TREADY asserted simultaneously

How does Data look like

- VCD dump or value change dump is an o/p file generate by any EDA logic simulation tool.
- This file consist signal from the design and captures the transitions of those signals over a time duration or clock.

Cycle	GCD.x	GCD.y[15:0]
0	0	0
1	0	0
2	0	0
3	0	0
4	0	0
5	48	32
6	16	32
7	16	16
8	16	0
9	16	0
10	7	3
11	4	3
12	1	3
13	1	2
14	1	1
15	1	0
16	1	0
17	100	10
18	90	10
19	80	10
20	70	10

Process

Dataset/ Preprocessing

- Converts vcd file into a csv file, where we can have multiple columns with signal names, and populate these columns with the binary and asci values over each clock period.
- Eliminate signals which toggles over a test case rather over a transaction for example reset, test_done, start etc.
- Calculate entropy for all these filtered signals and choose a signal having least entropy. Lets call it window signal.
- Define a window size using this window signal and create a matrix of window size * No. filtered signals.
- Flatten these all matrix before giving it to k-means algorithm for clustering
- Now this data is preprocessed and ready for a clustering algorithm.

ML Process

- Lets start with initial K value which is number of testcases defined.
- Select Initial centroids and apply k-means to assign data points to the clusters.
- Calculate within class variance and between class variance to quantify the clustering.
- Update value of k if silhouette score is beyond threshold boundary.
- Redo the clustering and keep updating no of classes to reach an optimal value.

Post Processing

- Calculate the variance matrices with in a cluster.
- Pick up few samples with higher variance and draw timing diagram.
- Label each classes as per the timing diagram of sample matrices.
- Compare these labels with the test cases defined.
- Report the coverage with existing test bench.
- Determine the coverage gap

Proof of concept

Input – Total no of matrices are 191 each of 64 clock samples.

Output- Clustered these matrices into 6 classes.

```
from sklearn.metrics import silhouette_score

# After fitting the KMeans model
score = silhouette_score(data_points, kmeans.labels_)
print(f"Silhouette Score: {score}")

    0.1s

Silhouette Score: 0.6830314934269549
```


Post processing

These are 2 matrices of same class, which covers one IDLE test case of axi stream protocol where ready is toggling but tvalid and tlast are low.

Challenges

VCD is a complicated format and converting it into csv was a challenge.

Deciding optimal window size requires understanding of data sample behaviour.

Defining threshold to quantify clustering.

Labelling of data requires manual effort.

Usecase

- Functional coverage gaps are hard to find in large data set.
- Determine the cases covered with in a test case by just randomizing the input signals.
- Can eliminate the need of writing coverpoints to some extent.
- Reduces manual intervention and improves the quality of product.

Future Scope for Next year

Enable dynamic and auto window detection.

Using it for custom logic.

Working with multi bit signals.

Working with complex designs having multiple levels/instances.

Improve the quality of classification.

Reducing manual efforts in labelling the classes.

Thank You