

Final Project Proposal HDR Image Signal Processor (ISP)

NTHU/Team 7

Leader:張傑閔

Member:蔡宗頴

Outline

- Problem Statement
- Problem Scope
- Project Plan
- Reference

Problem Statement

Application

- Application:
 - Preserve the true essence of your surroundings with HDR imaging techniques.

This image is copied from: https://vmi.tv/blog/learn-help/hdr_reality_and_monitoring-a_dops_perspective/

Issue and Objective

• Issue:

 Limited sensor dynamic range sacrifices image detail in either bright or dark areas, resulting in an incomplete representation of the scene.

• Objective:

• The target to achieve is the function of real-time HDR ISP.

Problem Scope

Background Introduction

- Where is ISP used?
 - ISP: Image Signal Processor.
 - Image Signal Processing is a method to convert an image into digital form by performing operations for digital processing and image quality enhancement, and dedicated hardware called an ISP implements these functions.

Background Introduction

- When is HDR introduced?
 - LTM: Local Tone Mapping
 - Purpose: Local contrast enhancement based on brightness domain.

Default Pipeline

System Block Diagram and Its Operation Flow

Block diagram

Identify the area of work

- Identify algorithm C-source code and run Catapult C-sim
 - Self-contained, no library function call
 - Identify test dataset
 - Generate raw images or copy some raw images from the internet.
 - The number of test pictures needed are generated according to the specification.
 - Partition host + kernel
 - Host: Send configurations
 - Kernel: HDR ISP pipeline
 - Run Catapult C-sim (pre-HLS verification)

Identify the area of work

- Kernel HLS implementation, Host implementation
 - Kernel HLS implementation for 17 modules in pipeline.
 - Unit test for every module in Catapult (RTL verification).
 - Host implementation for sending configurations.
- Individual Kernel FPGA validation/integration test
 - FSIC simulation and validation by testbench.
- Kernel and Host Optimization
 - If time permits, optimize at least one module to enhance performance or achieve better quality of results.

FPGA platform

• KV260

Target Specification

- Primary camera input format: MIPI RAW10/RAW12/RAW16
- Max. resolution: (MIPI RAW) 1280 x 960 (1.2 Mp)
- Max. throughput: RGB pixels per cycle: 1 RGB pixel (24-bit) per cycle
 - 45 fps @ 1.2 Mp, 60 fps @ 720p
- Max. frequency: 200 MHz

Project Plan

Workflow

- Identify algorithm C-source code and run Catapult C-sim 1w
 - Self-contained, no library function call (Done, tested with Catapult Makefile)
 - Identify test dataset 3 days
 - Generate raw images or copy some raw images from the internet.
 - The number of test pictures needed are generated according to the specification.
 - Partition host + kernel (Done)
 - Host: Send configurations
 - Kernel: HDR ISP pipeline
 - Run Catapult C-sim (pre-HLS verification) 3 days

Workflow

- Kernel HLS implementation, Host implementation 3w
 - Kernel HLS implementation for 17 modules in pipeline.
 - Unit test for every module in Catapult (RTL verification).
 - Host implementation for sending configurations.
- Individual Kernel FPGA validation/integration test 2w
 - FSIC simulation and validation by testbench.
- Kernel and Host Optimization Max. 1w
 - If time permits, optimize at least one module to enhance performance or achieve better quality of results.

Roles & Task assignment

- •張傑閔:
- Identify algorithm C-source code and run Catapult C-sim

• Run Catapult C-sim

- Kernel HLS implementation, Host implementation
 Modules: LTM to YUV2RGB
- Individual Kernel FPGA validation/integration test
 - FSIC simulation
- •蔡宗頴:
- Identify algorithm C-source code and run Catapult C-sim
 Identify test dataset

- Kernel HLS implementation, Host implementation
 Modules: UNPACK to CCM
- Individual Kernel FPGA validation/integration test
 - FSIC validation

Check-point, Time Duration, and Deliverables

Date	Check-point	Time duration	Deliverables
5/5	Identify algorithm C-source code and run Catapult C-sim	1w	 Test dataset C-sim result
5/12	Kernel HLS implementation, Host implementation (I)	1w	1. # of modules implementation & unit test done
5/26	Kernel HLS implementation, Host implementation (II)	2w	1. # of modules implementation & unit test done
6/9	Individual Kernel FPGA validation/integration test	2w	 FSIC simulation pass or not FSIC validation pass or not
6/16	Kernel and Host Optimization	1w	1. Performance speedup or QoR

Reference

List of Papers for Reference

[1]B. C. Huang, C. S. Fuh, "Image pipeline algorithms for standard mobile imaging architecture sensors", 2005 18th IPPR Conference on Computer Vision, Graphics and Image Processing (CVGIP), pp. 1118-1125, 2005.

[2]S. H. Choi, et al. "A parallel camera image signal processor for SIMD architecture", EURASIP Journal on Image and Video Processing, vol 2016, pp.1-14, 2016.

[3] Park H.S. (2016) Architectural Analysis of a Baseline ISP Pipeline. In: Kyung CM. (eds) Theory and Applications of Smart Cameras. KAIST Research Series. Springer, Dordrecht.

Open-source to use

- We use the following open-source projects:
 - o Baseline: <u>Image Signal Process For HDR CMOS Image Sensor</u>
 - We follow the HDR ISP pipeline in this repository.
 - Catapult HLS Implementation reference: <u>xkISP</u>
 - Both the Vitis and Catapult HLS C modules are provided for reference, but the algorithm C codes are encrypted and provided in the form of executable binary file.

Thank you!

Final Project Proposal Guidelines

Final Project (Team)

- Refer to "Referenced Final Projects" for suggested projects
 - https://docs.google.com/spreadsheets/d/1FqAnTJP_vOm9G4UFEAINB9KhNT y6tggH/edit?usp=drive_link&ouid=106716318998274820333&rtpof=true&sd =true
- Your research topics
- Requirement: End-to-end application acceleration
 - Scope at application level
 - Profiling to identify function to accelerate
 - SW application parallelization
 - Kernel optimization
 - Run on FPGA

Start thinking the Final Project Now

Purpose

The proposal report serves

- 1. Provide a framework to construct a project, from idea to execution
- 2. Define the project scope and evaluate its complexity
- 3. Basis for one-on-one discussion

Content of Final Project Proposal

- Project Title
- Team: Leader + Members
- Problem statement
- Project scope
- Project plan
- Reference

Problem Statement

- Context: what is the application the project is applied to?
- Issue: what is the problem to solve?
- Objective: what is the target to achieve? e.g. performance/area improvement, adding new functions ...

Project Scope

- Background Introduction
- System block diagram, and its operation flow
- Identify the area of work
- What FPGA platform to implement on, e.g. U50, PYNQ-Z2, KV260
- Target Specification throughput, accuracy, speedup, area, or a design methodology proposed

Project Plan

- Workflow definition: Breakdown the project into a set of tasks, and describe the dependency among the tasks
- Assign the task to members / define the role of each member
- Identify the check-point, estimate the time duration, deliverables, and quality requirement

Workflow

- Identify algorithm C-source code 1w
 - self-contained, no library function call
 - Identify test dataset
 - Partition host + kernel
- Run C-sim in Vitis environment Partition 2w
 - run through dataset -> check correctness
- Kernel HLS implementation, Host implementation 2w
 - define host/kernel communication, including debugging
 - If multiple kernels, allow validate separately.
 - Host program implement two modes for each kernels (C-code, or FPGA kernel)
- Individual Kernel FPGA validation/integration test 1w
- Kernel and Host Optimization

