565 mid-term

 $y_{ij} = \mu + \tau_i + \varepsilon_{ij}$, for $\varepsilon_{ij} \sim iidN(0, \sigma^2)$, i = 1, 2, a, j = 1, 2, n, $\sum_{i=1}^{a} \tau_i = 0$ Random effects: $\tau_i \sim iidN(0, \sigma_{\tau}^2), \tau_i$ and ε_{ij} indep Random elects: $\tau_i \sim tull \vee (0, \sigma_\tau^2), \tau_i$ and ε_{ij} indep $y_{ij} = (\mu + \tau_i + \beta_j) + \varepsilon_{ij}$, for $\varepsilon_{ij} \sim iidN(0, \sigma^2)$, i = 1, 2, a, j = 1, 2, bFixed effects: $\sum_{i=1}^a \tau_i = 0$, $\sum_{j=1}^b \beta_j = 0$ Random effects: $\beta_j \sim iidN(0, \sigma_\beta^2)$ Graeco-Latin square: $y_{ijkl} = \mu + \theta_i + \tau_j + \omega_k + \psi_l + \varepsilon_{ijkl}; i, j, k, l = 1, 2, ..., p$ BIBD: $y_{ij} = (\mu + \tau_i + \beta_j) + \varepsilon_{ij}; i = 1, 2, a, j = 1, 2, b; N = kb = ra, \lambda = \frac{r(k-1)}{a-1}$

least square and normal equation

$$\begin{split} & \text{CRD:} SSE = \sum_{i=1}^{a} \sum_{j=1}^{n} (y_{ij} - \mu - \tau_{i})^{2} \\ & \frac{\partial SSE}{\partial \mu} \Big|_{\hat{\mu}, \hat{\tau}_{i}} = 2 \sum_{i=1}^{a} \sum_{j=1}^{n} (y_{ij} - \hat{\mu} - \hat{\tau}_{i}) (-1) = 0 \ y... = an\hat{\mu} + n \sum_{i=1}^{a} \hat{\tau}_{i} \\ & \frac{\partial SSE}{\partial \tau_{i}} \Big|_{\hat{\mu}, \hat{\tau}_{i}} = 2 \sum_{j=1}^{n} (y_{ij} - \hat{\mu} - \hat{\tau}_{i}) (-1) = 0 \ y_{i.} = n\hat{\mu} + n\hat{\tau}_{i} \\ & \text{RCBD:} \ SSE = \sum_{i=1}^{a} \sum_{j=1}^{b} (y_{ij} - \mu - \tau_{i} - \beta_{j})^{2} \\ & \frac{\partial SSE}{\partial \mu} \Big|_{\hat{\mu}, \hat{\tau}_{i}, \hat{\beta}_{j}} = 2 \sum_{i=1}^{a} \sum_{j=1}^{b} (y_{ij} - \hat{\mu} - \hat{\tau}_{i} - \hat{\beta}_{j}) (-1) = 0 \\ & \frac{\partial SSE}{\partial \tau_{i}} \Big|_{\hat{\mu}, \hat{\tau}_{i}, \hat{\beta}_{j}} = 2 \sum_{i=1}^{a} (y_{ij} - \hat{\mu} - \hat{\tau}_{i} - \hat{\beta}_{j}) (-1) = 0 \\ & \frac{\partial SSE}{\partial \beta_{j}} \Big|_{\hat{\mu}, \hat{\tau}_{i}, \hat{\beta}_{j}} = 2 \sum_{i=1}^{a} (y_{ij} - \hat{\mu} - \hat{\tau}_{i} - \hat{\beta}_{j}) (-1) = 0 \\ & y_{..} = ab\hat{\mu} + b \sum_{i=1}^{a} \hat{\tau}_{i} + a \sum_{j=1}^{b} \hat{\beta}_{j} \\ & y_{i.} = b\hat{\mu} + b\hat{\tau}_{i} + \sum_{j=1}^{b} \hat{\beta}_{j} \\ & y_{.j} = a\hat{\mu} + \sum_{i=1}^{a} \hat{\tau}_{i} + a\hat{\beta}_{j} \end{split}$$

hypothesis test

model	H0	H1
FT-CRD	$\mu_1 = \mu_2 = = \mu_a$	at least two of μ_a are different
RT-CRD	$\sigma_{\tau}^2 = 0$	$\sigma_{\tau}^2 > 0$
FB-RCBD	$\mu_1 = \mu_2 = = \mu_a$	at least two of μ_a are different
-Block	$\beta_1 = \beta_2 = \dots = \beta_j = 0$	at least one of $\beta_j \neq 0$
RB-RCBD	$\sigma_{\beta}^2 = 0$	$\sigma_{\beta}^2 > 0$
Contrast	$\Gamma = \sum_{i=1}^{a} c_i \mu_i = 0$	$\Gamma = \sum_{i=1}^{a} c_i \mu_i \neq 0$
LSD	$\mu_1 = \mu_2 = = \mu_p$	at least two of μ_p are different
BIBD	$\mu_1 = \mu_2 = \dots = \mu_a$	at least two of μ_a are different

ANOVA

	SS	df	MS	F
SS_{Trt}	$n\sum_{i=1}^{a}(\bar{y}_{i.}-\bar{y}_{})^{2}$	a-1	$\frac{SS_{Trt}}{a-1}$	$\frac{MS_{Trt}}{MS_{E}}$
SS_E	$\sum_{i=1}^{a} \sum_{j=1}^{n} (y_{ij} - \bar{y}_{i.})^2$	a(n-1)	$\frac{SS_E}{N-a}$	2 '
SS_T	$\sum_{i=1}^{a} \sum_{j=1}^{n} (y_{ij} - \bar{y}_{i.})^{2}$ $\sum_{i=1}^{a} \sum_{j=1}^{n} (y_{ij} - \bar{y}_{i.})^{2}$	an-1	·	
SS_{Trt}	$b\sum_{i=1}^{a}(\bar{y}_{i.}-\bar{y}_{})^{2}$	a-1	$\frac{SS_{Trt}}{a-1}$	$\frac{MS_{Trt}}{MS_E}$
SS_{Blk}	$a\sum_{j=1}^{b}(\bar{y}_{.j}-\bar{y}_{})^{2}$	b-1	$\frac{SS_{Blk}}{b-1}$	$\frac{MS_{Blk}}{MS_{E}}$
SS_E	$SS_T - SS_{Trt} - SS_{Blk}$	(a-1)(b-1)	$\frac{SS_E}{df_E}$	2
SS_T	$\sum_{i=1}^{a} \sum_{j=1}^{b} (y_{ij} - \bar{y}_{})^2$	ab-1		·

$$SS_{T} = \sum_{i=1}^{a} \sum_{j=1}^{b} y_{ij}^{2} - \frac{y_{...}^{2}}{N}, S_{i}^{2} = \frac{\sum_{j=1}^{n} (y_{ij} - \bar{y}_{i..})^{2}}{n-1}$$

$$LSD \qquad SS$$

$$SS_{Trt1} \qquad p \sum_{j=1}^{p} (\bar{y}_{i..} - \bar{y}_{...})^{2} \qquad df$$

$$SS_{Row} \qquad p \sum_{j=1}^{p} (\bar{y}_{..j} - \bar{y}_{...})^{2} \qquad p-1$$

$$SS_{Col} \qquad p \sum_{k=1}^{p} (\bar{y}_{..k} - \bar{y}_{...})^{2} \qquad p-1$$

$$SS_{E} \qquad SS_{T} - SS \qquad (p-1)(p-2)$$

$$SS_{T} \qquad \sum_{i=1}^{p} \sum_{j=1}^{p} \sum_{k=1}^{p} (y_{ijk} - \bar{y}_{...})^{2} \qquad p^{2} - 1$$

df	Case1	Case2	Case3
SS_{Trt}	p-1	p-1	p-1
SS_{Row}	p-1	n(p-1)	n(p-1)
SS_{Col}	p-1	p-1	n(p-1)
SS_{Rep}	n-1	n-1	n-1
SS_E	(p-1)(np+n-3)	(p-1)(np-2)	p-1)(np-n-1)
SS_T	$np^2 - 1$	$np^2 - 1$	$np^2 - 1$

BIBD | SS

$$SS_{Trt}$$
 | $\frac{k}{\lambda a} \sum_{i=1}^{a} Q_i^2 = \frac{k}{\lambda a} \sum_{i=1}^{a} (y_{i.} - \sum_{j=1}^{b} n_{ij} \bar{y}_{.j})^2$ | df
 $a - 1$
 SS_{Blk} | $a \sum_{j=1}^{b} (\bar{y}_{.j} - \bar{y}_{..})^2$ | $b - 1$
 SS_{T} | $SS_{T} - SS_{Trt(adj)} - SS_{Blk}$ | $N - a - b + 1$)
 SS_{T} | $\sum_{i=1}^{a} \sum_{j=1}^{b} (y_{ij} - \bar{y}_{..})^2$ | $N - 1$

distribution

$$t_{df_E} \left| \begin{array}{c} \frac{\underline{y_{i.} - \mu_i}}{\frac{\sigma}{\sqrt{n}}} \\ \frac{SS_E}{\sigma^2(N-a)} \end{array} \right| = \frac{y_{i.} - \mu_i}{\sqrt{\frac{SS_E}{n(df_E)}}} = \frac{y_{i.} - \mu_i}{\sqrt{\frac{MS_E}{n}}} \left| \begin{array}{c} \frac{\bar{y}_{i.} - \bar{y}_{j.} - (\mu_i - \mu_j)}{\sqrt{\frac{2MS_E}{n}}} \end{array} \right| \frac{C}{\sqrt{Var(C)}}$$

$$\begin{array}{c|cccc} \chi^2 & \frac{SS_E}{\sigma^2} & \frac{SS_{Trt}}{\sigma^2} & \frac{SS_{Blk}}{\sigma^2} & SS_C \\ \mathrm{df} & E & Trt & Blk & 1 \end{array}$$

$$\begin{array}{c|cccc}
F & \frac{MS_{Trt}}{MS_E} & \frac{(MS_{Blk}}{MS_E} & \frac{(\sum_{i=1}^{a} c_i \bar{y}_i)^2}{\sum_{i=1}^{a} c_i^2} \\
df & (Trt, E) & (Blk, E) & (C = 1, E)
\end{array}$$

contrast

$$\Gamma = \sum_{i=1}^{a} c_{i} \mu_{i}, C = \sum_{i=1}^{a} c_{i} \bar{y}_{i}; \sum_{i=1}^{a} c_{i} = 0; \text{Orthogonal } \sum_{i=1}^{a} c_{i} d_{i} = 0$$

$$SS_{C} = \frac{(\sum_{i=1}^{a} c_{i} \bar{y}_{i})^{2}}{\frac{1}{n} \sum_{i=1}^{a} c_{i}^{2}}, \sum_{1}^{a-1} SS_{C} = SS_{Trt}$$

CI

CI balanced unbalanced
$$\mu_{i} \qquad \bar{y}_{i.} \pm t_{\frac{\alpha}{2}} \sqrt{\frac{MS_{E}}{n}}$$

$$\mu_{i} - \mu_{j} \qquad \bar{y}_{i.} - \bar{y}_{j.} \pm t_{\frac{\alpha}{2}} \sqrt{\frac{2MS_{E}}{n}}$$

$$\bar{y}_{i.} - \bar{y}_{j.} \pm t_{\frac{\alpha}{2}} \sqrt{\frac{MS_{E}}{n}}$$

$$\bar{y}_{i.} - \bar{y}_{j.} \pm t_{\frac{\alpha}{2}} \sqrt{MS_{E}(\frac{1}{n_{i}} + \frac{1}{n_{j}})}$$

$$\bar{y}_{i.} - \bar{y}_{j.} \pm t_{\frac{\alpha}{2}} \sqrt{MS_{E}(\frac{1}{n_{i}} + \frac{1}{n_{j}})}$$

expectation and variance

$$y_{..} = \sum_{i=1}^{a} (y_{i.} = \sum_{j=1}^{n} y_{ij}), \mu = \frac{\sum_{i=1}^{a} \mu_{i}}{a}$$

$$\bar{y}_{..} = \frac{1}{N} \left[y_{..} = \sum_{i=1}^{a} (y_{i.} = \sum_{j=1}^{n} y_{ij}) \right] = \frac{1}{a} \sum_{i=1}^{a} \left[\bar{y}_{i.} = \frac{1}{n} (y_{i.} = \sum_{j=1}^{n} y_{ij}) \right]$$

$$\begin{vmatrix} y_{ij} & | \bar{y}_{..} & | \bar{y}_{.j} & |$$

	$igg y_{ij}$	$\begin{array}{ c } \bar{y}_{\dots} \\ \sum_{i=1}^{a} \sum_{j=1}^{n} y_{ij} \end{array}$	$\sum_{j=1}^{n} y_{ij}$	$\sum_{i=1}^{a} y_{ij}$	$\begin{array}{ c c } C \\ \sum_{i=1}^{a} c_i \bar{y}_i. \end{array}$
E[f.] V[f.]	$\begin{vmatrix} \mu + \tau_i + \beta_j \\ \sigma^2 \end{vmatrix}$	μ $\frac{\sigma^2}{na}$	$\mu + \tau_i \frac{\sigma^2}{n}$	$\mu + \beta_j \frac{\sigma^2}{a}$	$ \sum_{i=1}^{i=1} c_i y_i \cdot \frac{c_i y_i}{c_i \mu_i} \cdot \frac{c_i^2 y_i}{c_i \sum_{i=1}^{a} c_i^2} c_i^2 $
E[r.] V[r.]	$\frac{\mu}{\sigma^2 + \sigma_\tau^2}$	$\frac{\mu}{\frac{\sigma_{\tau}^2}{a} + \frac{\sigma^2}{na}}$	$\frac{\mu}{\frac{\sigma^2}{n} + \sigma_{\tau}^2}$	$\frac{\mu}{\frac{\sigma^2}{a} + \sigma_{\beta}^2}$	

$$\begin{vmatrix} \hat{\mu}_i \\ \frac{1}{2}y_{\cdot \cdot} - \frac{1}{a} \sum_{i=1}^a \hat{\tau}_i \end{vmatrix} \begin{vmatrix} \hat{\mu}_i \\ \bar{y}_i \end{vmatrix} \begin{vmatrix} \hat{\tau}_i \\ \bar{y}_{i \cdot} - \bar{y}_{\cdot \cdot} \\ \frac{1}{a}y_{i \cdot} - \hat{\mu} \end{vmatrix} \begin{vmatrix} \hat{\beta}_j \\ \bar{y}_{\cdot j} - \bar{y}_{\cdot \cdot} \end{vmatrix} \begin{vmatrix} \hat{y}_{ij} \\ \bar{y}_{i \cdot} + \bar{y}_{\cdot j} - \bar{y}_{\cdot \cdot} \end{vmatrix} \begin{vmatrix} \hat{\varepsilon}_{ij} \\ \bar{y}_{ij} - \bar{y}_{\cdot} \end{vmatrix}$$

$$\begin{split} & Var[\beta_{j} + \frac{\sum_{i=1}^{a} \varepsilon_{ij}}{a} - \frac{\sum_{i=1}^{a} \sum_{j=1}^{b} \varepsilon_{ij}}{ab}] = \\ & Var[\beta_{j}] + \frac{\sum_{i=1}^{a} Var[\varepsilon_{ij}]}{a^{2}} + \frac{\sum_{i=1}^{a} \sum_{j=1}^{b} Var[\varepsilon_{ij}]}{a^{2}b^{2}} + \frac{2Cov[\beta_{j}, \sum_{i=1}^{a} \varepsilon_{ij}]}{a^{2}b^{2}} - \frac{2Cov[\beta_{j}, \sum_{i=1}^{a} \sum_{j=1}^{b} \varepsilon_{ij}]}{ab} - \frac{2Cov[\sum_{i=1}^{a} \varepsilon_{ij}, \sum_{i=1}^{a} \sum_{j=1}^{b} \varepsilon_{ij}]}{a^{2}b} \\ & = 0 + \frac{\sigma^{2}}{a} + \frac{\sigma^{2}}{ab} - \frac{2\sigma^{2}}{ab} = \frac{(b-1)\sigma^{2}}{ab} \\ & Var[\beta_{j} - \frac{\sum_{j=1}^{b} \beta_{j}}{b} + \frac{\sum_{i=1}^{a} \varepsilon_{ij}}{a^{2}} - \frac{\sum_{i=1}^{a} \sum_{j=1}^{b} \varepsilon_{ij}}{a^{2}}] = , \end{split}$$

 $Var[\tau_i + \varepsilon_{ij} - \frac{\sum_{i=1}^a \varepsilon_{ij}}{a}] = Var[\tau_i] + Var[\varepsilon_{ij}] + \frac{\sum_{i=1}^a Var[\varepsilon_{ij}]}{a^2} - \frac{2Cov[\tau_i, \varepsilon_{ij}]}{a} - \frac{2Cov[\tau_i, \varepsilon_{ij}]}{a} - \frac{2Cov[\tau_i, \sum_{i=1}^a \varepsilon_{ij}]}{a} - \frac{2Cov[\varepsilon_{ij}, \sum_{i=1}^a \varepsilon_{ij}]}{a} = 0 + \sigma^2 + \frac{\sigma^2}{a} - \frac{2\sigma^2}{a} = \frac{(a-1)\sigma^2}{a} + \frac{(a-1)\sigma^2}{$

 $Var[y_{ij} - \bar{y}_{.j}] =$ FB-RCBD; RB-RCBD

 $Var[\bar{y}_{.j} - \bar{y}_{..}] = FB-RCBD$

 $\begin{aligned} &Var[\beta_j] + \frac{\sum_{j=1}^b Var[\beta_j]}{b^2} + \frac{\sum_{i=1}^a Var[\varepsilon_{ij}]}{a^2} + \frac{\sum_{i=1}^a \sum_{j=1}^b Var[\varepsilon_{ij}]}{a^2} - \frac{2Cov[\beta_j, \sum_{j=1}^b \beta_j]}{b} + \frac{2Cov[\beta_j, \sum_{i=1}^a \varepsilon_{ij}]}{a} - \frac{2Cov[\beta_j, \sum_{i=1}^a \varepsilon_{ij}]}{ab} - \frac{2Cov[\sum_{j=1}^b \beta_j, \sum_{i=1}^b \varepsilon_{$

$$\begin{aligned} &Var[y_{ij} - \bar{y}_{i.} - \bar{y}_{.j} + \bar{y}_{..}] = \text{FB-RCBD} \\ &Var[\varepsilon_{ij} - \frac{1}{a} \sum_{i=1}^{a} \varepsilon_{ij} - \frac{1}{b} \sum_{j=1}^{b} \varepsilon_{ij} + \frac{1}{ab} \sum_{i=1}^{a} \sum_{j=1}^{b} \varepsilon_{ij}] = \\ &Var[\varepsilon_{ij}] + \frac{\sum_{i=1}^{a} Var[\varepsilon_{ij}]}{a^{2}} + \frac{\sum_{j=1}^{b} Var[\varepsilon_{ij}]}{b^{2}} + \frac{\sum_{i=1}^{a} \sum_{j=1}^{b} Var[\varepsilon_{ij}]}{a^{2}b^{2}} - \frac{2Cov[\varepsilon_{ij}, \sum_{i=1}^{a} \varepsilon_{ij}]}{a} - \frac{2Cov[\varepsilon_{ij}, \sum_{j=1}^{b} \varepsilon_{ij}]}{b} + \frac{2Cov[\varepsilon_{ij}, \sum_{i=1}^{a} \sum_{j=1}^{b} \varepsilon_{ij}]}{ab} + \frac{2Cov[\sum_{i=1}^{a} \varepsilon_{ij}, \sum_{j=1}^{b} \varepsilon_{ij}]}{ab} - \frac{2Cov[\sum_{i=1}^{a} \varepsilon_{ij}, \sum_{j=1}^{a} \varepsilon_{ij}]}{ab^{2}} - \frac{2Cov[\sum_{j=1}^{a} \varepsilon_{ij}, \sum_{i=1}^{b} \varepsilon_{ij}]}{ab^{2}} - \frac{2Cov[\sum_{j=1}^{a} \varepsilon_{ij}, \sum_{i=1}^{a} \varepsilon_{ij}]}{ab^{2}} - \frac{2Cov[\sum_{j=1}^{b} \varepsilon_{ij}]}{ab^{2}} - \frac{2Cov[\sum_{j=1}^{b} \varepsilon_{ij}]}{ab^{2}} - \frac{2Cov[\sum_{j=1}^{b} \varepsilon_{ij}, \sum_{i=1}^{a} \sum_{j=1}^{b} \varepsilon_{ij}]}{ab^{2}} - \frac{2Cov[\sum_{j=1}^{b} \varepsilon_{ij}, \sum_{i=1}^{b} \varepsilon_{ij}, \sum_{i=1}^{b} \varepsilon_{ij}]}{ab^{2}} - \frac{2Cov[\sum_{j=1}^{b} \varepsilon_{ij}, \sum_{i=1}^{b} \varepsilon_{ij}, \sum_{i=1}^{b} \varepsilon_{ij}]}{ab^{2}} - \frac{2Cov[\sum_{j=1}^{b} \varepsilon_{ij}, \sum_{i=1}^{b} \varepsilon_{ij}]}{ab^{2}} - \frac{2Cov[\sum_{j=1}^{b} \varepsilon_{ij}, \sum_{i=1}^{b} \varepsilon_{ij}]}{ab^{2}} - \frac{2Cov[\sum_{j=1}^{b} \varepsilon_{ij}, \sum_{i=1}^{b} \varepsilon_{ij}, \sum_{i=1}^{b} \varepsilon_{ij}]}{ab^{2}} - \frac{2Cov[\sum_{j=1}^{b} \varepsilon_{ij}, \sum_{j=1}^{b} \varepsilon_{ij}, \sum_{j=1}^{b} \varepsilon_{ij}]}{ab^{2}} - \frac{2Cov[\sum_{j=1}^{b} \varepsilon_{ij}, \sum_{j=1}^{b} \varepsilon_{ij}, \sum_{j=1}^{b} \varepsilon_{ij}, \sum_{j=1}^{b} \varepsilon_{ij}]}{ab^{2}} - \frac{2Cov[\sum_{j=1}^{b} \varepsilon_{ij}, \sum_{j=1}^{b} \varepsilon_{ij}, \sum_{j=1}^$$