

planetmath.org

Math for the people, by the people.

wavelet set

Canonical name WaveletSet

Date of creation 2013-03-22 14:27:10 Last modified on 2013-03-22 14:27:10

Owner swiftset (1337) Last modified by swiftset (1337)

Numerical id 7

Author swiftset (1337)
Entry type Definition
Classification msc 46C99
Classification msc 65T60

Related topic wavelet
Related topic Wavelet

Definition An (orthonormal dyadic) wavelet set on \mathbb{R} is a subset $E \subset \mathbb{R}$ such that

- 1. $\chi_E \in L^2(\mathbb{R})$ (since $\|\chi_E\| = \sqrt{m(E)}$, this implies $m(E) < \infty$).
- 2. $\frac{\chi_E}{\sqrt{m(E)}}$ is the Fourier transform of an orthonormal dyadic wavelet,

where χ_E is the characteristic function of E, and m(E) is the Lebesgue measure of E.

Characterization $E \subset \mathbb{R}$ is a wavelet set iff

- 1. $\{E+2\pi n\}_{n\in\mathbb{Z}}$ is a measurable partition of \mathbb{R} ; i.e. $\mathbb{R}\setminus\bigcup_{n\in\mathbb{Z}}\{E+2\pi n\}$ has measure zero, and $\bigcap_{n=i,j}\{E+2\pi n\}$ has measure zero if $i\neq j$. In short, E is a 2π -translation "tiler" of \mathbb{R}
- 2. $\{2^n E\}_{n \in \mathbb{Z}}$ is a 2-dilation "tiler" of \mathbb{R} (once again modulo sets of measure zero).

Notes There are higher dimensional analogues to wavelet sets in \mathbb{R} , corresponding to wavelets in higher dimensions. Wavelet sets can be used to derive wavelets— by creating a set E satisfying the conditions given above, and using the inverse Fourier transform on χ_E , you are guaranteed to recover a wavelet. A particularly interesting open question is: do all wavelets contain wavelet sets in their frequency support?