ÜBUNGSAUFGABEN ALGEBRAISCHE TOPOLOGIE - SERIE 4

FRANZ PATZIG

1. Aufgabe

Für je zwei komplexe abelsche Gruppen K und L definieren wir einen Komplex Hom(K,L) in dem wir für jedes $n \in \mathbb{Z}$ setzen

$$\operatorname{Hom}(K,L)_n := X_{k \in \mathbb{Z}} \operatorname{Hom}(K_k, K_{k+n})$$

d.h. ein Element von Hom(K,L) ist eine Familie

$$f = \{f_k : K_k \to L_{k+n}\}_{k \in \mathbb{Z}}$$

von Gruppenhomomorphismen. Der Rand von f sei durch

$$\partial_n(f) := \{\partial_n^L \circ f_k - (-1)^n f_{k-1} \circ \partial_n^K\}_{k \in \mathbb{Z}}$$

gegeben.

(i) Zu zeigen: Auf diese Weise ist tatsächlich ein Komplex definiert.

Definition 1 (Komplex K). Ein Komplex K ist eine Familie $\{\partial_n : K_n \to K_{n-1}\}_{n \in \mathbb{Z}}$ von aufeinanderfolgenden Homomorphismen mit der Eigenschaft, dass die Zusammensetzung von je zwei aufeinanderfolgenden Homomorphismen Null ist:

$$\partial_{n-1} \circ \partial_n = 0$$

Damit müssen wir 1 zeigen mit $\partial_n((f_n)_{n\in\mathbb{Z}}) = (\partial_n^L \circ f_n - 1 \cdot (-1)^n f_{n-1} \circ \partial_n^K)_{n\in\mathbb{Z}}.$

$$\partial_{n-1} \circ \partial_n = \partial_{n-1}((f_n)_{n \in \mathbb{Z}}) \circ \partial_n((f_n)_{n \in \mathbb{Z}})$$

$$= (\partial_{n-1}^L \circ f_n - 1 \cdot (-1)^{n-1} f_{n-1} \circ \partial_{n-1}^K) \circ (\partial_n^L \circ f_n - 1 \cdot (-1)^n f_{n-1} \circ \partial_n^K)$$

$$= 0$$

(ii) Zu beschreiben: Zyklen Z₀Hom(K,L).

Definition 2 (Zyklen).

(2)
$$Z_n K := Ker(\partial_n)$$

Was bedeutet es, wenn jeder Eintrag 0 ist, also auf der rechten Seite nur 0en stehen?

(iii) Zu beschreiben: Ränder B₀Hom(K,L).

Definition 3 (Ränder).

$$(3) B_n K := Im(\partial_{n+1})$$

Linke Seite gleich 0.

- 2. Aufgabe
- 3. Aufgabe

Zu zeigen: Für eine kurze exakte Sequenz

$$0 \longrightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \longrightarrow 0$$

von abelschen Gruppen sind die folgenden Bedingungen äquivalent.

(i) Die Sequenz zerfällt, d.h. es handelt sich bis auf Isomorphie um die Sequenz

$$0 \longrightarrow \mathbf{A} \xrightarrow{\quad \alpha \quad} A \oplus C \xrightarrow{\quad \beta \quad} \mathbf{C} \longrightarrow 0 \quad \text{mit } \alpha(a) = (a,0) \text{ und } \beta(a,c) = c.$$

- (ii) Es gibt einen zu α linksinversen Homomorphismus.
- (iii) Es gibt einen zu β rechtsinversen Homomorphismus.
- (iv) Es gibt Homomorphismus: $a': B \to A$ und $b': C \to B$ mit $\alpha' \circ \alpha = \mathrm{id}$, $\beta \circ \beta' = \mathrm{id}$, $\alpha \circ \alpha' + \beta' \circ \beta = \mathrm{id}$.
- (i) \rightarrow (ii): Wir zeigen als erstes, dass es einen Isomorphismus $\varphi: A \oplus C \rightarrow B$ mit $\varphi(a,0) = f(a)$ und $h \circ \varphi(a,c) = c$ gibt. Wir definieren $\varphi(a,c) = f(a) + r(c)$. Dann kommutiert das Diagramm

$$0 \longrightarrow A \xrightarrow{i_A} A \oplus C \xrightarrow{\pi_C} C \longrightarrow 0$$

$$\downarrow id_A \qquad \downarrow \varphi \qquad \downarrow id_C \qquad \downarrow$$

$$0 \longrightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \longrightarrow 0$$

und das Fünferlemma zeigt, dass φ ein Isomorphismus ist. Setzt man $r(c) = \varphi(0, c)$ so erkennt man, dass die Sequenz spaltet. Es sei $\psi = \varphi^{-1}$. Dann erhalten wir r durch $r(b) = (\pi_A \circ \psi)(b)$.

- (ii) \rightarrow (iii): Sei $r: B \rightarrow A$ eine Retraktion von α . Wir definieren dann eine Abbildung $s: C \rightarrow B$ durch $c \mapsto b \alpha \circ r(b)$. Für ein $b \in \beta^{-1}(c)$. Dabei verwenden wir, dass für $b, b' \in \beta^{-1}(c)$ gilt $b b' \in Her(\beta) = Im(\alpha)$, d.h. $\alpha \circ r(b b') = b b'$, also $b \alpha \circ r(b) = b' \alpha \circ r(b')$. Sofort prüft man jetzt nach, dass s ein Homomorphismus ist und dass $s \in S$ eid gilt.
- (iii) \rightarrow (ii): Sei $s: C \rightarrow B$ ein Schnitt zu β . Wir definieren einen Homomorphismus $r: B \rightarrow A$ durch die Vorschrift $b \mapsto \alpha^{-1}(b-s\circ\beta(b))$. Wir verwenden hier erstens, dass durch $b \mapsto m-s\circ\beta(b)$ ein Homomorphismus $B \rightarrow B$ definiert wird, zweitens, dass wegen $\beta(m-s\circ\beta(b))=\beta(b)-\beta\circ s\circ\beta(b)=\beta(b)-\beta(b)=0$ jeweils $b-s\circ\beta(b)\in \mathrm{Ker}(\beta)=\mathrm{Im}(\alpha)$, und drittens, dass α injektiv ist. Für $a\in A$ folgt wegen der Injektivität von α und s, dass $r\circ\alpha(a)=\alpha^{-1}(\alpha(a)-s\circ\beta(\alpha(a)))=\alpha^{-1}(\alpha(a))-\alpha^{-1}(s(0))=a$. Damit gilt: $r\circ\alpha=\mathrm{id}_A$.

(iii)
$$\rightarrow$$
 (iv):