Machine Learning, Machine Learning (extended)

9 – Unsupervised Learning: Dimensionality Reduction Kashif Rajpoot

k.m.rajpoot@cs.bham.ac.uk
School of Computer Science
University of Birmingham

Outline

- High dimensionality
- Curse of dimensionality
- Dimensionality reduction
- Projection
- Preserving 'interesting' characteristics in data
- Principal component analysis (PCA)

High dimensionality

- Dimensionality
 - Number of attributes (i.e. features) in the data
- Technological advances lead to increasingly high dimensional data sets
 - Tens to hundreds to thousands...
 - Mass spectrometry, brain functional imaging, genomics, hyperspectral imaging, financial analysis
- High dimensional data => expected to give "more" information (features) about an object?
 - Not always, it could actually cause "curse of dimensionality"

Curse of dimensionality

- Computational burden
 - For example: consider clustering 3000 samples of 2000-dimensional data with k-means algorithm in 10 classes?
- Visualization
 - Typically, we can visualize data only up to 3d/4d
 - What about higher-dimensional data?
- Parameter estimation
 - Higher dimensions need estimation of higher number of parameters (e.g. regression, classification)

Dimensionality reduction

 Dimensionality reduction aims to avoid the 'curse of dimensionality' by reducing the attributes/dimensions/features

1. Feature selection

- Sequential feature selection (one of the simplest methods for feature selection)
 - Gradually add (remove) a feature to include (exclude)
- Determine feature scoring/importance by cross-validation

2. Subspace projection

- Make new features by combining (i.e. linearly or non-linearly) the old features
- Represent the data in fewer number of dimensions but 'preserving' the 'interesting' characteristics of data

Projection

 Represent the data in fewer number of features but 'preserving' the 'interesting' characteristics of data?

 3D world to 2D image projection

Projection

- Project M-dimensional data Y containing N samples into a lower D-dimensional representation X (D

 M)
- X = YW
 - Y is NxM
 - W is MxD
 - X is NxD (i.e. D-dimensional)
- What is W?
 - Defines the projection
 - Changing W is like changing where the light is coming from or rotating the hand
- Y is hand, X is shadow

Projection

- Different W will result in different projections
- How to choose W?
 - Not all projections will represent our data 'well'
- We should choose a W that preserves the 'interesting' data characteristics
 - such that $D \ll M$
 - M is the actual data's dimensionality
 - D is the projected data's dimensionality

Preserve 'interesting' data characteristics

- Project 2-d data into 1-d?
- Pick some arbitrary w
- Project the data onto it
- The position on the line is our 1-d representation
- Compute the variance on the line

Preserve 'interesting' data characteristics

- Represent the data in fewer number of features but 'preserving' the 'interesting' characteristics of data?
 - High variance = highly "interesting" characteristics

(a) Data from a single, elongated Gaussian

(b) Data from two Gaussians

Principal component analysis (PCA)

- PCA chooses W such that it transforms M-dimensional data Y into D-dimensional representation X with $D \ll M$
 - It preserves dimensions with high variance ('interesting' characteristics)
 - It removes dimensions which are redundant (i.e. not much 'interesting' – having low variance)
- Find the columns of W one at a time
 - w_d as the d^{th} column of W
 - Each Mx1 column defines a new dimension

PCA

- PCA determines the dominant modes of variation from within the data and then projects data onto this 'natural' coordinate system
- Matches the coordinate system to the shape of the data

PCA

• Consider \mathbf{w}_d as a new dimension, then the data projection in this dimension is computed as:

$$x_d = Yw_d$$

- ullet PCA chooses $oldsymbol{w}_d$ that maximizes the variance of $oldsymbol{x}_d$
 - $\sigma_d^2 = \frac{1}{N} \sum_{n=1}^{N} \left(x_d^{(n)} \mu_d \right)^2$ where $\mu_d = \frac{1}{N} \sum_{n=1}^{N} x_d^{(n)}$
 - and $x_d^{(n)}$ denotes the $n^{\rm th}$ sample value for $d^{\rm th}$ attribute
- Each new column of \boldsymbol{W} is found such that it maximizes variance and is orthogonal (perpendicular) to the previous columns

- Search for $W = [w_1 w_2 \dots w_D]$?
- Fortunately, analytical solution exists
- **W** are the eigenvectors of the covariance matrix Σ of **Y**
 - The covariance matrix Σ describes the way different attributes (i.e. features or variables) co-vary

- Covariance matrix Σ describes the way attributes co-vary
 - $\Sigma_{i,j}$ denotes the covariance of i^{th} and j^{th} attributes of Y

$$\Sigma_{i,j} = \frac{1}{N} \sum_{n=1}^{N} \left(y_i^{(n)} - \mu_i \right) \left(y_j^{(n)} - \mu_j \right)$$

where μ_i and μ_j denote the mean of i^{th} and j^{th} attributes, respectively, while $y_i^{(n)}$ and $y_j^{(n)}$ denote the n^{th} sample value for i^{th} and j^{th} attributes, respectively.

- ullet The data $oldsymbol{Y}$ is mean subtracted (along each dimension) to translate the data to the centre of coordinate system
 - Each row is an object, each column is a dimension
 - $\widetilde{Y} = Y \overline{Y}$, where each column of \overline{Y} is mean value μ across that particular attribute
- The covariance matrix can then be computed as:

$$\mathbf{\Sigma} = \frac{1}{N} (\mathbf{Y} - \overline{\mathbf{Y}})^T (\mathbf{Y} - \overline{\mathbf{Y}}) = \frac{1}{N} \widetilde{\mathbf{Y}}^T \widetilde{\mathbf{Y}}$$

PCA finds new coordinate vectors

$$W = [w_1 w_2 \dots w_D]$$

that align with data shape

- $\mathbf{w}_i^T \mathbf{w}_j = 0$, $\forall i \neq j$ new dimensions are orthogonal
- ullet PCA looks to find the direction $oldsymbol{w}$ that maximizes variance in that direction

$$\mathcal{F} = \underset{\mathbf{w}}{\operatorname{argmax}} \operatorname{var}(\widetilde{\mathbf{Y}}\mathbf{w})$$

- $var(\widetilde{Y}w) = (\widetilde{Y}w)^T \widetilde{Y}w = w^T \widetilde{Y}^T \widetilde{Y}w = w^T \Sigma w$
- So

$$\mathcal{F} = \underset{\mathbf{w}}{argmax} \, \mathbf{w}^T \mathbf{\Sigma} \mathbf{w}$$

subject to $\mathbf{w}^T \mathbf{w} = \mathbf{1}$

(we could keep increasing w to maximise \mathcal{F} , hence the need to constrain $w^T w = 1$)

$$\mathcal{F} = \mathop{argmax}_{\boldsymbol{w}} \boldsymbol{w}^T \boldsymbol{\Sigma} \boldsymbol{w}$$
 subject to $\boldsymbol{w}^T \boldsymbol{w} = \boldsymbol{1}$

 Using the Lagrange multiplier "trick" (beyond our module scope):

$$\mathcal{F} = \underset{\mathbf{w}}{argmax} \left(\mathbf{w}^{T} \mathbf{\Sigma} \mathbf{w} - \lambda (\mathbf{w}^{T} \mathbf{w} - \mathbf{1}) \right)$$

• To maximize, differentiate with respect to \boldsymbol{w} and set to 0:

$$\frac{\partial \mathcal{F}}{\partial w} = 2\Sigma w - 2\lambda w = 0$$
$$\Sigma w = \lambda w$$

 This can be solved with eigenvalue/eigenvector method (beyond our module scope)

Aside: Eigenvector

We obtained solution for w:

$$\Sigma w = \lambda w$$

- Note that the multiplication of matrix Σ with vector \mathbf{w} changes it only by a scalar factor
- Such a vector \mathbf{w} is called eigenvector
 - λ is the eigenvalue, the scale by which eigenvector w changes
- The eigenvector is a 'special' vector which has nice properties to become a transformation vector

Aside: Eigenvector

What is eigenvector?

https://www.youtube.com/wat
ch?v=ue3yoeZvt8E

Introduction to eigenvalues and eigenvectors
https://www.youtube.com/watch?v=PhfbEr2btGQ

• The eigenvector and eigenvalue solution of covariance matrix Σ will provide M eigenvectors $[\mathbf{w}_1 \ \mathbf{w}_2 \ ... \ \mathbf{w}_M]$ and M eigenvalues $[\lambda_1 \ \lambda_2 \ ... \ \lambda_M]$:

$$\Sigma w_i = \lambda_i w_i$$

- Which w has highest variance?
- Multiplying both sides of above equation by ${m w}_i^T$:

$$\mathbf{w}_i^T \mathbf{\Sigma} \mathbf{w}_i = \lambda_i \mathbf{w}_i^T \mathbf{w}_i = \lambda_i$$

i.e. λ_i denotes variance along \mathbf{w}_i dimension since $\mathbf{w}_i^T \mathbf{\Sigma} \mathbf{w}_i = var(\widetilde{\mathbf{Y}} \mathbf{w}_i)$

• The principal components of data Y are the eigenvectors $[w_1 \ w_2 \ ... \ w_M]$ of covariance matrix Σ , ordered by eigenvalues $[\lambda_1 \ \lambda_2 \ ... \ \lambda_M]$

• Having found the principal components (PCs) $W = [w_1 \ w_2 \ ... \ w_M]$ data Y can now be transformed to these new dimensions:

$$X = \widetilde{Y}W$$

where \widetilde{Y} is the mean-subtracted data

- W is the projection (aka loadings)
- X is the projected data (aka scores)

PCA: algorithmic workflow

- 1. Form the NxM zero-mean matrix, by subtracting mean
 - $\widetilde{Y} = Y \overline{Y}$, where each column of \overline{Y} is mean value across that particular attribute
- 2. Calculate the $M \times M$ covariance matrix Σ

$$\mathbf{\Sigma} = \frac{1}{N}\widetilde{\mathbf{Y}}^T\widetilde{\mathbf{Y}}$$

- 3. Calculate the M eigenvalues $(\lambda_1, \lambda_2, ..., \lambda_M)$ and eigenvectors $(\boldsymbol{w}_1, \boldsymbol{w}_2, ..., \boldsymbol{w}_M)$ of $\boldsymbol{\Sigma}$
- 4. Sort the eigenvalues and eigenvectors from largest to smallest by eigenvalue
- 5. Choose *D* eigenvectors corresponding to highest eigenvalues
- 6. Compute the scores X (i.e. projections) by projecting data \widetilde{Y} on to new coordinates W (i.e. PCs or eigenvectors)

$$X = \widetilde{Y}W$$

How to choose D?

- We get M eigenvectors from the MxM covariance matrix
 - i.e. M new dimensions
- How to choose D dimensions (such that $D \ll M$)?
 - Application domain knowledge
 - Visualization
 - Computational burden
 - 'interesting' structure (i.e. defined by variance)
 - Post-processing results
- Total variation $(\sum_{d=1}^{M} \lambda_d)$
 - Percentage variation preserved by D eigenvectors can be estimated as: $\left[\sum_{d=1}^{D} \lambda_d / \sum_{d=1}^{M} \lambda_d\right] * 100$

PCA: example

- Consider this 2D data for 3-classes
 - Five additional dimensions were added with random values $\mathcal{N}(0,1)$
 - Perform PCA and dimensionality reduction

- the data objects y_n
- (a) First two dimensions of (b) The seven eigenvalues (c) The data projected onto (variances of the projected the first two principal compodimensions)
 - nents
- It determines the dominant modes of variation from within the data and then projects data onto this 'natural' coordinate system

PCA: example

- Consider this 2D data for 4-classes
 - Five additional dimensions were added with random values $\mathcal{N}(0,1)$
 - Perform PCA and dimensionality reduction

- (a) First two dimensions of (b) The seven eigenvalues (c) The data projected onto the data objects \mathbf{y}_n
 - (variances of the projected the first two principal compodimensions)
 - nents
- It determines the dominant modes of variation from within the data and then projects data onto this 'natural' coordinate system

Summary

- "curse of dimensionality" with high-dimensional data can pose various problems
- Data projection to preserve 'interesting' characteristics within data
 - Avoid "curse of dimensionality"
- Dimensionality reduction is a form of unsupervised learning
- Dimensionality reduction is often used as a preprocessing step before classification or clustering
 - The 'success' of dimensionality reduction can be evaluated by subsequent processing operation

Exercise (ungraded)

- Experiment with MATLAB code pcaexample.m (from FCML book website)
- Experiment with MATLAB code pcaexample2.m (from FCML book website)
- Experiment with MATLAB code rgbeyepcaexample.m (from Canvas)

Author's material (Simon Rogers)

Ata Kaban

Iain Styles

Thankyou