## Lecture 4: Conservation Equations, Characteristics

· A Conservation equation describes a system in which a quantity like energy is conserved, usually by Setting up a pole for the density of that equation like the LaPlace Egn.

Model Problem: Oxygen in Blood.

-Model an arrely as a Cylindrical tube

() (V///A) ()

-let u(t,x) denote oxygen concentration, in mass/length units total mass is then  $m(t) = \int_a^b u(t,x) dx$  at time t

-instantaneous flow (an instant rate of change, like a derivative) is called flux. Denote it q(t,x) in whits mass/eime. flux = Concentration x velocity

- Assume velocity is independent of Oxygen, so q(+,x) = U(+,x) V(+,x) PH+ - WELLESSAUN is section

- Conservation of mass means m(e) changes only by the blood flowing in £ out, or  $\frac{dm}{dt}(t) = q(t, e) - q(t, b)$   $\begin{array}{c} continuously \\ let \\ q(t, \cdot) \\ be \\ differentiable \\ for all \\ fixed \\ t. \end{array}$ 

Then,  $q(t,\alpha)-q(t,b)=-\int_{a}^{b}\frac{\partial t}{\partial x}(t,x)dx$ 

By the Leibniz rule,

if u(t,x) is c'intime. dm = la du dx

then,  $\int_a^b \left(\frac{\partial u}{\partial x} + \frac{\partial r}{\partial x}\right) dx = 0$ .

we didn't specify a or b, so this must hold for all choices, giving that  $\frac{\partial U}{\partial t} + \frac{\partial U}{\partial x} = 0$ 

(if not, we can find a nonzero integral on some interval by concinuity)

(D) 
$$\frac{\partial U}{\partial t} + V \frac{\partial V}{\partial x} + U \frac{\partial V}{\partial x} = 0$$
 ~Dalinear Conservation Eqn.

'This describes how we obtain PDE's from Conservation laws.

La grangian Derivatives + Characteristics.

La grangian Derivatives + Characteristics.

PDE of the form

(E)  $\frac{2N}{2L} + V \frac{2N}{2X} + W = 0$  for V = V(t, X), W = W(t, X, U).

· We define a characteristic to be a trajectory t 1-> X(t) Buch that rif ve C', Picard-Lindelöf Shows that a unique Solution dx tt)= V(x,t) to this exists in a noble of each starting point (to, Xo)

ex.) Suppose v(t,x)=at+b for  $a,b\in\mathbb{R}$ . Then,  $\dot{x}(t) = at+b \Rightarrow x(t) = \frac{a}{2}t^2 + bt + C \quad for \quad c = x(0)$ .

·Now, Characteristics are quite a visual thing. The above characteristics give a family of parabolas. Since each characteristic is a 1D object, we may look at our concentration along the characteristic to reduce a PDE to denote this with

the "Lagrangian Derivative"

The On each characteristic, the PDE (E) reduces

The Du + w(t, x(t), x(t,x(t))) = 0

In Particular, if WEO, then U is constant on the characteristics.

PP By the Chain rule,  $\frac{Du}{Dt} = \frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} \cdot \frac{\partial x}{\partial t} = \frac{\partial u}{\partial x} + \sqrt{\frac{\partial u}{\partial x}} = -\omega$ if u solves the PDE.  $\square$ 

• If we can solve this ODE, we get a candidate for u. This is the method of characteristics.

e.g.) For v(t,x)=at+b, we have  $\frac{\partial u}{\partial x}+(at+b)\frac{\partial u}{\partial x}=0$  (w=0) with initial Condition u(0,x)=g(x), for some  $g\in C'(\mathbb{R})$ .

Since W=0, N is constant on characteristics, so

 $U(t, \frac{a}{2}t^2 + bt + \mathbf{C}) = U(0, c) = g(c)$ . To get a formula for U(t, x), we get  $x = \frac{a}{2}t^2 + bt + c$  to get  $c = x - \frac{a}{2}t^2 - bt$  and  $U(t, x) = g(x - \frac{a}{2}t^2 - bt)$ 

e.g.) Lee V(t,x)=a+bx for  $x\geq 0$ , a,b>0. This corresponds to Velocity Changing with proition, such as a Shrinking diameter in a pipe.

Then,  $\frac{dx}{dt} = a + bx$  gives  $\frac{1}{b} \ln |a + bx| = \pm + C$ or  $\chi(t) = \frac{1}{b} [ke^{bt} - a]$  characteristic curves. (K.G.IR).

Since we restricted to  $\chi \ge 0$ , we index by to so  $\chi(t_0) = 0$ ,

or  $\chi(t) = \frac{a}{b} \left[ e^{b(t_0 + t_0)} \right]$ 



Characteristics

· With V= a+bx, the Conservation eqn. becomes # + (a+bx) \$ + bu = 0 let us have boundary condition u(t, o) = f(t). Then, by the thm, Du + w = Du + bu = 0, giving u(t,x(t)) = Ae-bt

to solve for A,  $u(t_0, 0) = f(t_0) = Ae^{-bt_0} = > A = f(t_0)e^{bt_0}$ and  $u(t, x(t)) = f(t_0)e^{bt_0}e^{-bt} = u(t_0)e^{b(t_0)}e^{b(t_0)}$ then x= \( \frac{a}{b} \left[ e^{b(t-t\_0)} - 1] => t\_0 = t + \frac{b}{b} ln \( \left( \frac{a}{a} t bx \) \) gives  $\mu(t,x) = \left(\frac{a}{a+bx}\right) f(t+\frac{1}{b} \ln \left(\frac{a}{a+bx}\right))$ 

General Method:

- O.) Ensure the equation is of the form of + vox + w=0
  - 1.) Solve  $\dot{\chi}(t) = V(t,\chi)$  at  $(t_0,\chi_0)$  to obtain Characteristic
- 2.) Solve  $\frac{Du}{Dt} + w = 0$  to get  $u(t, \chi(t))$  with initial obta 3.) Set  $\chi = \chi(t)$  and invert to Solve For  $(t_0, \chi_0)$  in terms of X Et.
- 4.) Put this in U(t,x(t)) to get a formula 21(t,x).
- · Note: there is a much more general method of Characteristics - See Evans.