

Available online at www.starresearchjournal.com (Star International Journal)

MATHEMATICS

ISSN: 2321-676X

Two Curious Properties on Pairs of M-Gonal Numbers

M.A.Gopalan 1*, S. Vidhyalakshmi 2, N. Thiruniraiselvi 3

 $^{1,2} {\it Professor, Department of Mathematics, SIGC, Trichy-620002, Tamilnadu;}$

Abstract

We search for non-zero positive distinct integers n_i , i=1,2,3,... such that, the difference between the two polygonal numbers, each having n_i as the rank, is expressed as the difference between two perfect squares. And also, the difference between any two polygonal numbers with the same rank n_i added with the quadratic expression $k^2 + 4k$ is a perfect square.

Keywords: Special polygonal numbers, Pellian equation 2010 Mathematical Subject Classification: 11D99

Introduction

Number is the essence of mathematical calculation. Variety of numbers has variety of range and richness. Many numbers exhibit fascinating properties, they form sequences, they form patterns and so on [1,2,3]. In [4] explicit formulas for the ranks of Triangular numbers which simultaneously equal to Pentagonal, Octagonal, Decagonal and Dodecagonal numbers in turn are presented. In [5,6,7,8] the authors have obtained the ranks of m-gonal numbers such that the difference between any two m-gonal numbers is unity.

In this communication, we consider two special polygonal numbers with the same rank such that

- (i) The difference between the two polygonal numbers added with a square is a perfect square.
- (ii) The difference between the two special polygonal numbers added with the quadratic expression k^2+4k is a perfect square.

Method of Analysis

Let n be any non-zero positive integer. Let $P_1(=t_{m,n})$ and $P_2(=t_{m-4,n})$ be two special polygonal numbers with the same rank n.

Case 1:

Let
$$P_1 - P_2 = \alpha^2 - k^2$$
; $\alpha, k \neq 0$

$$\Rightarrow 2n^2 - 2n + k^2 = \alpha^2$$
(1)

On completing the squares, the above equation is written as $Y^2=2\alpha^2+(1-2k^2)$ (2) where Y=2n-1

The initial solution of (2) is $\alpha_0 = k, Y_0 = 1$

To find the other solutions of (2), consider the Pellian equation $Y^2 = 2\alpha^2 + 1$ whose general solution $(\tilde{\alpha}_s, \tilde{Y}_s)$ is given by

$$\widetilde{Y}_{s} = \frac{f_{s}}{2}; \widetilde{\alpha}_{s} = \frac{g_{s}}{2\sqrt{2}}$$

³ Research Scholar, Department of Mathematics, SIGC, Trichy-620002, Tamilnadu;

where

$$f_s = (3 + 2\sqrt{2})^{s+1} + (3 - 2\sqrt{2})^{s+1}$$
$$g_s = (3 + 2\sqrt{2})^{s+1} - (3 - 2\sqrt{2})^{s+1}$$

Applying Brahmagupta Lemma between $\,\alpha_0\,\,$ and $\,\,Y_0\,\,\&\,\,\widetilde{\alpha}_s\,\,$ and $\,\,\widetilde{Y}_s$, we have

$$\alpha_{s+1} = \frac{\sqrt{2}kf_s + g_s}{2\sqrt{2}}$$
 : $Y_{s+1} = \frac{\sqrt{2}f_s + 2kg_s}{2\sqrt{2}}$

In view of (3), we have

$$n_{s+1} = \frac{Y_{s+1} + 1}{2}$$

$$\Rightarrow n_{s+1} = \frac{\sqrt{2}f_s + 2kg_s + 2\sqrt{2}}{4\sqrt{2}}$$
(4)

Thus, (4) represents the required values of n such that

$$t_{m,n_{s+1}} - t_{m-4,n_{s+1}} = \alpha_{s+1}^2 - k^2$$

A few illustrations are given in table 1 below

Table:1

m	S	n_{s+1}	$t_{m,n_{s+1}}$	$t_{m-4,n_{s+1}}$	$t_{m,n_{s+1}} - t_{m-4,n_{s+1}} + k^2$
7	0	2(k+1)	$10k^2 + 17k + 7$	$2k^2 + 5k + 3$	$(3k+2)^2$
8	0	2(k+1)	$12k^2 + 20k + 8$	$4k^2 + 8k + 4$	$(3k+2)^2$
7	1	3(4k+3)	$360k^2 + 522k + 189$	$72k^2 + 114k + 45$	$(17k + 12)^2$
8	1	3(4k+3)	$432k^2 + 624k + 225$	$144k^2 + 216k + 81$	$(17k + 12)^2$

Case 2:

Let
$$P_1 - P_2 + k^2 + 4k = \alpha^2; \alpha, k \neq 0$$
 (5)

$$\Rightarrow 2n^2 - 2n + k^2 + 4k = \alpha^2$$

On completing the squares, the above equation is written as

$$Y^2 = 2\alpha^2 + (1 - 2k^2 - 8k) \tag{6}$$

The initial solution of (6) is $\alpha_0 = k + 2$, $Y_0 = 3$

Following the procedure as in case 1, the general solution (α_{s+1}, Y_{s+1}) of (6) is given by

$$\alpha_{s+1} = \frac{\sqrt{2}(k+2)f_s + 3g_s}{2\sqrt{2}}$$
 : $Y_{s+1} = \frac{3\sqrt{2}f_s + 2(k+2)g_s}{2\sqrt{2}}$

In view of (3), we have

$$n_{s+1} = \frac{3\sqrt{2}f_s + 2(k+2)g_s + 2\sqrt{2}}{4\sqrt{2}} \tag{4}$$

Thus, (7) represents the required values of \mathbf{n} such that

$$t_{m,n_{s+1}} - t_{m-4,n_{s+1}} + k^2 + 4k = \alpha_{s+1}^2$$

A few illustrations are given in table 2 below

Table:2

m	S	n_{s+1}	t _{m,n_{s+1}}	$t_{m-4,n_{s+1}}$	$t_{m,n_{s+1}} - t_{m-4,n_{s+1}} + (k^2 + 4k)$
7	0	2k+9	$10k^2 + 87k + 189$	$2k^2 + 19k + 45$	$(3k+12)^2$
8	0	2k+9	$12k^2 + 104k + 225$	$4k^2 + 36k + 81$	$(3k+12)^2$
7	1	12k+50	$360k^2 + 2982k + 6175$	$72k^2 + 606k + 1275$	$(17k + 70)^2$
8	1	12k+50	$432k^2 + 3576k + 7400$	$144k^2 + 1200k + 2500$	$(17k + 70)^2$

Remark:

For simplicity and clear understanding we present in table III below, curious properties on some more pairs of m-gonal number.

Table III: Pairs of polygonal numbers with properties

	<u></u>		
Pairs of	Observations	n	$\{f_s,g_s\}$
polygonal			(0.5 * 0.5)
numbers			
$(t_{m,n},t_{m-1,n})$	$t_{m,n} - t_{m-1,n} + k^2 = \alpha^2$	$\frac{1}{4}\left[f_s + 2\sqrt{2}kg_s + 2\right]$	$\left(\left(\frac{1}{3} + \sqrt{8} \right)^{8+1} + \left(\frac{1}{3} + \sqrt{8} \right)^{8+1} \right)$
$m \ge 4$	· III,II · III—I,II · · · · · · · · · · · · · · · · · ·	$\left[\begin{array}{c} \frac{1}{4} \mu_s + 2\sqrt{2\kappa g_s} + 2\right]$	$\begin{cases} (3+\sqrt{8})^{6+1} + (3-\sqrt{8})^{6+1}, \\ (3+\sqrt{8})^{6+1} - (3-\sqrt{8})^{6+1} \end{cases}$
		s = 0,1,2,	$(3+\sqrt{8})^{+1}-(3-\sqrt{8})^{+1}$
	$t_{m,n} - t_{m-1,n} + k^2 + 2k = \alpha^2$	$\frac{1}{4} \left[3f_S + 2\sqrt{2}(k+1)g_S + 2 \right]$	
	$\mathbf{r}_{\mathbf{m},\mathbf{n}}$	4-	
		s = 0,1,2,	
$(t_{m,n},t_{m-3,n}),$	$t_{m,n} - t_{m-3,n} + k^2 = \alpha^2$	$\frac{1}{12} \left[3f_s + 2\sqrt{6}kg_s + 6 \right]$	$\left\{ \left(5 + \sqrt{24}\right)^{s+1} + \left(5 - \sqrt{24}\right)^{s+1}, \right\}$
m ≥ 6	111,11 111-3,11	$\left[\frac{1}{12}\right]^{51}$ _s + 2 $\sqrt{6}$ kg _s + $\sqrt{6}$	$\begin{cases} 3+\sqrt{24} & +(3-\sqrt{24}) & , \\ -(3-\sqrt{24}) & & -(3-\sqrt{24}) & , \\$
III = 0		s = 0,1,2,	$\left[\left(5 + \sqrt{24} \right)^{8+1} - \left(5 - \sqrt{24} \right)^{8+1} \right]$
	$t_{m,n} - t_{m-3,n} + k^2 + 6k = \alpha^2$		
	$t_{m,n} - t_{m-3,n} + K^- + 6K = \alpha^-$	$\frac{1}{12} \left[15f_S + 2\sqrt{6}(k+3)g_S + 6 \right]$	
		s = 0,1,2,	
$(t_{m,n},t_{m-5,n}),$	$t_{m,n} - t_{m-5,n} + k^2 = \alpha^2$	1 [55 + 2 /10]	
$m \ge 8$	$t_{m,n}$ $t_{m-5,n}$ $+$ $k - \alpha$	$\frac{1}{20} \left[5f_s + 2\sqrt{10}kg_s + 10 \right]$	
III ≥ 0		s = 0,1,2,	(/)1 /)1)
	. 2 2		$\int (19+3\sqrt{40})^{8+1} + (19-3\sqrt{40})^{8+1},$
	$t_{m,n} - t_{m-5,n} + k^2 + 30k = \alpha^2$	$\frac{1}{20} \left[95f_S + 2\sqrt{10}(k+15)g_S + 10 \right]$	$\left(19+3\sqrt{40}\right)^{8+1}-\left(19-3\sqrt{40}\right)^{8+1}$
		s = 0,1,2,	$(\mu_{9}+3\sqrt{40})$ $-(\mu_{9}-3\sqrt{40})$
1, ,	2 2	1 []	(/) .1 /) .1)
$(t_{m,n},t_{m-7,n}),$	$t_{m,n} - t_{m-7,n} + k^2 = \alpha^2$	$\frac{1}{28} \left[7f_s + 2\sqrt{14}kg_s + 14 \right]$	$\left \left(15 + 2\sqrt{56} \right)^{8+1} + \left(15 - 2\sqrt{56} \right)^{8+1} \right $
m ≥ 10		28	$\left(15 + 2\sqrt{56}\right)^{8+1} - \left(15 - 2\sqrt{56}\right)^{8+1}$
		s = 1,3,5,	$((15+2\sqrt{56}) - (15-2\sqrt{56})$
$(t_{m,n},t_{m-8,n}),$	$t_{m,n} - t_{m-8,n} = (4a^2 - 1)k^2$	1,000	\(\sigma
$m \ge 11$	m,n m-8,n - (74 1)	$\frac{1}{4}[f_s + 2]; s = 1,3,5,$	$\left(2a + \sqrt{4a^2 - 1}\right)^{s+1} + \left(2a - \sqrt{4a^2 - 1}\right)^{s+1},$
111 < 11		-	[{ `
			$\left \left(2a + \sqrt{4a^2 - 1} \right)^{s+1} - \left(2a - \sqrt{4a^2 - 1} \right)^{s+1} \right $
			$\begin{bmatrix} 2a + \sqrt{4}a^{-1} & -2a - \sqrt{4}a^{-1} \end{bmatrix}$
	$t_{m,n} - t_{m-8,n} = (4a^2 + 4a)k^2$	1, 2, 2, 2	\(\sqrt{s+1} \)
	$t_{m,n} - t_{m-8,n} = (4a + 4a)K$	$\frac{1}{4}[f_s + 2]; s = 0,2,4,6,$	$\left(2a + \sqrt{4a^2 - 1}\right)^{s+1} + \left(2a - \sqrt{4a^2 - 1}\right)^{s+1},\right)$
		-	
			$\left \left(2a + \sqrt{4a^2 - 1} \right)^{s+1} - \left(2a - \sqrt{4a^2 - 1} \right)^{s+1} \right $
			$\left \begin{array}{c c} 2a + \sqrt{4a^2 - 1} & - 2a - \sqrt{4a^2 - 1} \\ \end{array} \right $

Conclusion

In this paper, we have presented pairs of special polygonal numbers each with the same rank satisfying specific relations. As polygonal numbers are rich in variety, one may attempt for finding other choices for pairs of polygonal numbers with different relations. The above analysis may also be considered for higher ordered polygonal numbers.

s = 1,3,5,...

Acknowledgement

The financial support from the UGC, New Delhi (F-MRP-5123/14(SERO/UGC) dated march 2014) for a part of this work is gratefully acknowledged.

References

- 1. Bhanu Murthy T.S., "Ancient Indian Mathematics", New age International Publishers Ltd., New Delhi, 1995.
- 2. Dickson L.E., "History of Theory of Numbers", Chelsa Publishing Company, Vol.2, New York, 1952.
- 3. Shailesh Shirali, "Mathematical Marvels", A Primer on Number Sequences, Universities Press, 2001.
- 4. Gopalan M.A., and Devibala S., "Equality of Triangular Numbers with Special m-gonal numbers", Bulletin of the Allahabad Mathematical Society, Vol.21, Pp.25-29, 2006.
- 5. Gopalan M.A., Manju Somanath, Vanith N., "On pairs of m-gonal numbers with unit difference", Advances in Theorectical and Applied Mathematics, Vol.1, No.3, Pp 197-200, 2006.
- 6. Gopalan M.A., Manju Somanath, Vanith N., "On pairs of m-gonal numbers with unit difference", Reflections des ERA-JMS, Vol.4, Issue 4, Pp.365-376, 2009.
- 7. Gopalan M.A., Manju Somanath, Geetha.K., "On pairs of special polygonal numbers with unit difference", IJMER, Vol.3, Issue 3, Pp.1520-1522, 2013.
- 8. Gopalan M.A., Manju Somanath, Geetha.K., "On pairs of m-gonal numbers with unit difference", IJESM, Vol.2, Issue.2, Pp.219-222, 2013.

ISSN: 2321-676X