Stochastic Processes

Lectured by Weijun Xu

I⁴TEXed by Chengxin Gong

May 9, 2023

Contents

1	Review of Martingales	2
2	Markov Chains	3
3	Ergodic Theorem	4
4	Brownian Motion	6

1 Review of Martingales

- $(X_n)_{n>0}$ is L^2 -bounded martingale $\Rightarrow X_n$ converges in L^2 .
- $(X_n)_{n>0}$ is L^1 -bounded martingale $\Rightarrow X_n$ converges a.s.
- (1) + (2): If $(X_n)_{n\geq 0}$ is L^p -bounded martingale for p>1, then X_n converges in $L^{p'}$ for $p'\in [1,p)$.
- Statement is false when p=1. Example: $\Omega=[0,1), \mathscr{F}_n=\sigma\{[\frac{i}{2^n},\frac{i+1}{2^n})\}_{i=0}^{2^n-1}, X_n(\omega):=\begin{cases} 2^n & \omega\in[0,\frac{1}{2^n})\\ 0 & \text{otherwise} \end{cases}$.
- Let p > 1 and $(X_n)_{n \ge 0}$ be L^p bounded martingale w.r.t. \mathscr{F}_n . Then $\exists X \in L^p(\Omega, \mathscr{F}_\infty, P)$ s.t. $X_n \to X$ in L^p and a.s. and $X_n = \mathbb{E}(X|\mathscr{F}_n)$.
- Let $(Z_n)_{n\geq 0}$ be a nonnegative sub-martingale and $Z_n^* = \sup_{0\leq k\leq n} Z_k$, then $\mathbb{P}(Z_n^* > \lambda) \leq \frac{1}{\lambda} \mathbb{E}(Z_n 1_{\{Z_n^* > \lambda\}}) \leq \frac{1}{\lambda} \mathbb{E}Z_n$. Corollary: $\mathbb{P}(Z_n^* > \lambda) \leq \frac{1}{\lambda p} \mathbb{E}(Z_n^p 1_{\{Z_n^* > \lambda\}}) \leq \frac{1}{\lambda p} \mathbb{E}(Z_n^p)$.
- Doob's maximal inequality: Let $p > 1, \exists C = C_p$ s.t. \forall martingale $(X_n)_{n \geq 0}$, we have $\mathbb{E}|X_n^*|^p \leq C_p \mathbb{E}|X_n|^p$ where $|X_n^*| = \sup_{0 \leq k \leq n} \sup |X_k|$.
- If $(X_n)_{n\geq 0}$ is a martingale with $\sup_n \mathbb{E}(|X_n|\log(1+|X_n|)) < +\infty$, then X_n converges in L^1 .

 Proof $\mathbb{E}|X_n^*| = \int_0^{+\infty} \mathbb{P}(|X_n^*| > \lambda) d\lambda \le 1 + \int_1^{+\infty} \frac{1}{\lambda} (\int_{|X_n^*>\lambda|} |X_n| d\mathbb{P}) d\lambda = 1 + \int_1^{+\infty} |X_n| 1 + \int_1^{+\infty} \frac{1}{\lambda} (|X_n^*| + |X_n|) d\mathbb{P} = 1 + \int_1^{+\infty} |X_n| 1 + \int_1^{+\infty} \frac{1}{\lambda} d\lambda d\mathbb{P} \Rightarrow \mathbb{E}|X_n^*| \le 1 + \int_1^{+\infty} |X_n| \log(X_n^* \vee 1) d\lambda = 1 + \int_1^{+\infty} |X_n| 1 + \int_1^{+\infty} \frac{1}{\lambda} d\lambda d\mathbb{P} \Rightarrow \mathbb{E}|X_n^*| \le 1 + \int_1^{+\infty} \frac{1}{\lambda} d\lambda d\mathbb{P} \Rightarrow \mathbb{E}|X_n^*| \le 1 + \int_1^{+\infty} \frac{1}{\lambda} d\lambda d\mathbb{P} \Rightarrow \mathbb{E}|X_n^*| \le 1 + \int_1^{+\infty} \frac{1}{\lambda} d\lambda d\mathbb{P} \Rightarrow \mathbb{E}|X_n^*| \le 1 + \int_1^{+\infty} \frac{1}{\lambda} d\lambda d\mathbb{P} \Rightarrow \mathbb{E}|X_n^*| \le 1 + \int_1^{+\infty} \frac{1}{\lambda} d\lambda d\mathbb{P} \Rightarrow \mathbb{E}|X_n^*| \le 1 + \int_1^{+\infty} \frac{1}{\lambda} d\lambda d\mathbb{P} \Rightarrow \mathbb{E}|X_n^*| \le 1 + \int_1^{+\infty} \frac{1}{\lambda} d\lambda d\mathbb{P} \Rightarrow \mathbb{E}|X_n^*| \le 1 + \int_1^{+\infty} \frac{1}{\lambda} d\lambda d\mathbb{P} \Rightarrow \mathbb{E}|X_n^*| \le 1 + \int_1^{+\infty} \frac{1}{\lambda} d\lambda d\mathbb{P} \Rightarrow \mathbb{E}|X_n^*| \le 1 + \int_1^{+\infty} \frac{1}{\lambda} d\lambda d\mathbb{P} \Rightarrow \mathbb{E}|X_n^*| \le 1 + \int_1^{+\infty} \frac{1}{\lambda} d\lambda d\mathbb{P} \Rightarrow \mathbb{E}|X_n^*| \le 1 + \int_1^{+\infty} \frac{1}{\lambda} d\lambda d\mathbb{P} \Rightarrow \mathbb{E}|X_n^*| \le 1 + \int_1^{+\infty} \frac{1}{\lambda} d\lambda d\mathbb{P} \Rightarrow \mathbb{E}|X_n^*| \le 1 + \int_1^{+\infty} \frac{1}{\lambda} d\lambda d\mathbb{P} \Rightarrow \mathbb{E}|X_n^*| \le 1 + \int_1^{+\infty} \frac{1}{\lambda} d\lambda d\mathbb{P} \Rightarrow \mathbb{E}|X_n^*| \le 1 + \int_1^{+\infty} \frac{1}{\lambda} d\lambda d\mathbb{P} \Rightarrow \mathbb{E}|X_n^*| \le 1 + \int_1^{+\infty} \frac{1}{\lambda} d\lambda d\mathbb{P} \Rightarrow \mathbb{E}|X_n^*| \le 1 + \int_1^{+\infty} \frac{1}{\lambda} d\lambda d\mathbb{P} \Rightarrow \mathbb{E}|X_n^*| \le 1 + \int_1^{+\infty} \frac{1}{\lambda} d\lambda d\mathbb{P} \Rightarrow \mathbb{E}|X_n^*| \le 1 + \int_1^{+\infty} \frac{1}{\lambda} d\lambda d\mathbb{P} \Rightarrow \mathbb{E}|X_n^*| \le 1 + \int_1^{+\infty} \frac{1}{\lambda} d\lambda d\mathbb{P} \Rightarrow \mathbb{E}|X_n^*| \le 1 + \int_1^{+\infty} \frac{1}{\lambda} d\lambda d\mathbb{P} \Rightarrow \mathbb{E}|X_n^*| \le 1 + \int_1^{+\infty} \frac{1}{\lambda} d\lambda d\mathbb{P} \Rightarrow \mathbb{E}|X_n^*| \le 1 + \int_1^{+\infty} \frac{1}{\lambda} d\lambda d\mathbb{P} \Rightarrow \mathbb{E}|X_n^*| \le 1 + \int_1^{+\infty} \frac{1}{\lambda} d\lambda d\mathbb{P} \Rightarrow \mathbb{E}|X_n^*| \le 1 + \int_1^{+\infty} \frac{1}{\lambda} d\lambda d\mathbb{P} \Rightarrow \mathbb{E}|X_n^*| \le 1 + \int_1^{+\infty} \frac{1}{\lambda} d\lambda d\mathbb{P} \Rightarrow \mathbb{E}|X_n^*| \le 1 + \int_1^{+\infty} \frac{1}{\lambda} d\lambda d\mathbb{P} \Rightarrow \mathbb{E}|X_n^*| \le 1 + \int_1^{+\infty} \frac{1}{\lambda} d\lambda d\mathbb{P} \Rightarrow \mathbb{E}|X_n^*| \le 1 + \int_1^{+\infty} \frac{1}{\lambda} d\lambda d\mathbb{P} \Rightarrow \mathbb{E}|X_n^*| \le 1 + \int_1^{+\infty} \frac{1}{\lambda} d\lambda d\mathbb{P} \Rightarrow \mathbb{E}|X_n^*| \le 1 + \int_1^{+\infty} \frac{1}{\lambda} d\lambda d\mathbb{P} \Rightarrow \mathbb{E}|X_n^*| \ge 1 + \int_1^{+\infty} \frac{1}{\lambda} d\lambda d\mathbb{P} \Rightarrow \mathbb{E}|X_n^*| \ge 1 + \int_1^{+\infty} \frac{1}{\lambda} d\lambda d\mathbb{P} \Rightarrow \mathbb{E}|X_n^*| \ge 1 + \int_1^{+\infty} \frac{1}{\lambda} d\lambda d\mathbb{P} \Rightarrow \mathbb{$
- martingale w.r.t. $(\mathscr{F}_n)_{n\geq 0}$. $\mathbb{Q} << \mathbb{P}$ on \mathscr{F}_{∞} if and only if $M_n \to M$ in L^1 . $\mathbb{Q}(A) = \int_A M d\mathbb{P} + \mathbb{Q}(A \cap \{M = +\infty\})$. Proof Sufficiency. $\mathbb{Q} << \mathbb{P}$ on $\mathscr{F} = \mathscr{F}_{\infty}$, thus let $Z = \frac{d\mathbb{Q}|_{\mathscr{F}}}{d\mathbb{P}|_{\mathscr{F}}}$, we need to show M_n converges to Z in L^1 . $\forall A \in \mathscr{F}_n, \int_A M_n d\mathbb{P} = \mathbb{Q}(A) = \int_A Z d\mathbb{P} \Rightarrow M_n = \mathbb{E}(Z|\mathscr{F}_n)$. Thus M_n is uniformly integrable, thus converges in L^1 . Necessity. Suppose $M_n \to M$ a.s. and in L^1 We need to show $M_n = \mathbb{E}(M|\mathscr{F}_n)$ and $M = \frac{d\mathbb{Q}}{d\mathbb{P}}$. It suffices to show $\mathbb{Q}(A) = \int_A M d\mathbb{P}$ for all $A \in \cup_n \mathscr{F}_n$. Suppose $A \in \mathscr{F}_N$. Then $\mathbb{Q}(A) = \int_A M_N d\mathbb{P} = \int_A M_{N+k} d\mathbb{P} \to \int_A M d\mathbb{P}$. By $\pi - \lambda$ theorem we can get the desired result.

• Two probability measures \mathbb{P} and \mathbb{Q} on (Ω, \mathscr{F}) , $\mathbb{Q} << \mathbb{P}$ on \mathscr{F}_n for every n and $M_n = \frac{d\mathbb{Q}|_{\mathscr{F}_n}}{d\mathbb{P}|_{\mathscr{F}_n}}$. $(M_n)_{n\geq 0}$ is a \mathbb{P} -

Special situation: Suppose $\mathbb{P} \perp \mathbb{Q}$ on $\mathscr{F}(\exists E \text{ s.t. } \mathbb{P}(E) = 1, \mathbb{Q}(E^c) = 1)$ and $\mathbb{P} << \mathbb{Q}$ on \mathscr{F}_n . Then $\frac{1}{M_n}$ converges \mathbb{Q} -a.s. Let $\mathbb{R} = \frac{1}{2}(\mathbb{P} + \mathbb{Q}), \mathbb{P}, \mathbb{Q} << \mathbb{R}$ on $\mathscr{F}, \frac{d\mathbb{P}|_{\mathscr{F}_n}}{d\mathbb{R}|_{\mathscr{F}_n}} = \frac{2}{1+M_n} \to \frac{2M}{1+M}$ in $L^1(\mathbb{R}), \frac{d\mathbb{Q}}{d\mathbb{R}} = \frac{2M_n}{1+M_n} \to \frac{2}{1+M}$ in $L^1(\mathbb{R})$. Then $\mathbb{Q}(A) = \mathbb{Q}(A \cap E^c) = 1$ and $\mathbb{P}(A) = \mathbb{Q}(A) = \mathbb{Q}(A) = \mathbb{Q}(A \cap E^c) = 1$ and $\mathbb{P}(A) = \mathbb{Q}(A) = \mathbb{Q}(A) = \mathbb{Q}(A) = 1$ and $\mathbb{P}(A) = \mathbb{Q}(A) = 1$ and $\mathbb{P}(A) = 1$

General situation: $\mathbb{Q} = \mathbb{Q}_1 + \mathbb{Q}_2$, $\mathbb{Q}_1 << \mathbb{P}$, $\mathbb{Q}_2 \perp \mathbb{P}$ on \mathscr{F} . Therefore we can decompose M_n as $M_n = Y_n + Z_n$ where $Y_n \to Y$ in $L^1(\mathbb{P})$ and $Z_n \to 0$ \mathbb{P} -a.s. $\mathbb{Q}_1(A) = \int_A Y d\mathbb{P} = \int_A M d\mathbb{P}$. $\mathbb{Q}_2(A) = \mathbb{Q}_2(A \cap \{Z = +\infty\})$. Since Z = 0 \mathbb{P} -a.s., $M < +\infty$ \mathbb{P} -a.s. and $\mathbb{Q}_2(M = +\infty) = 1$, we have $\mathbb{Q}_2(A) = \mathbb{Q}(A \cap \{Z = +\infty\}) = \mathbb{Q}_2(A \cap \{M = +\infty\}) = \mathbb{Q}(A \cap \{M = +\infty\})$. To sum up, $\mathbb{Q}(A) = \int_A M d\mathbb{P} + \mathbb{Q}(A \cap \{M = +\infty\})$.

- Statement is false if $M_n \not\to M$ in L^1 . Example: $\Omega = \{\omega = (\omega_1, \cdots, \omega_n, \cdots) \in \{\pm 1\}^{\mathbb{N}}\}, X_n(\omega) = \omega_n$. X_n 's are i.i.d. under \mathbb{P} and \mathbb{Q} , but $\mathbb{P}(X_n = 1) = \frac{1}{2}, \mathbb{P}(X_n = -1) = \frac{1}{2}, \mathbb{Q}(X_n = 1) = \frac{1}{3}, \mathbb{Q}(X_n = -1) = \frac{2}{3}$. $\mathscr{F}_n = \sigma(X_1, \cdots, X_n)$. $\mathbb{P}(\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n X_k = 0) = 1, \mathbb{Q}(\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n X_k = -\frac{1}{3}) = 1$.
- Monotone class theorem for functions: Suppose \mathcal{A} us a π -system and \mathcal{H} be a class of functions from Ω to \mathbb{R} s.t. (1) $1_A \in \mathcal{H}$ for every $A \in \mathcal{A}$, (2) if $f, g \in \mathcal{H}$ then $af + bg \in \mathcal{H}$, (3) if $f_n \in \mathcal{H}$ and $f_n \uparrow f$ then $f \in \mathcal{H}$. Then all nonnegative $\sigma(\mathcal{A})$ -measurable functions are in \mathcal{H} .
- Let $(Y_n)_{n\geq 0}$ be i.i.d., nonnegative r.v.'s with $\mathbb{E}Y_k=1$. Then $M_n=\prod_{k=1}^n Y_k$ converges in L^1 iff $Y_n\equiv 1$. Otherwise $M_n\to 0$ a.s.

Proof Note that $\frac{1}{n}\log M_n = \frac{1}{n}\sum_{k=1}^n \log Y_k \to \mathbb{E}\log Y$ a.s. If $\mathbb{E}\log Y = 0$ then by Jensen's inequality we have $Y_n \equiv 1$ which means M_n converges in L^1 . If $\mathbb{E}\log Y < 0$ then $M_n \to 0$ a.s.

MARKOV CHAINS

• Kakutani's theorem: $M_n = \prod_{k=1}^n Y_k, Y_k \ge 0$ are independent, $\mathbb{E}Y_k = 1, \lambda_k = \mathbb{E}\sqrt{Y_k}$. (1) If $\prod_k \lambda_k > 0$, then $M_n \to M$ in L^1 ; (2) If $\prod_k \lambda_k = 0$, then $M_n \to 0$ a.s.

Proof Let $Z_n = \prod_{k=1}^n \frac{\sqrt{Y_k}}{\lambda_k}$. Then Z_n is a martingale and has an a.s. limit Z, and $M_n = (\prod_{k=1}^n \lambda_k)^2 Z_n^2$. If $\prod_k \lambda_k > 0$, then Z_n is L^2 bounded and then convergence in L^2 , which implies $M_n \to M$ in L^1 . If $\prod_k \lambda_k = 0$, it is obvious that $M_n \to 0$ a.s.

- Martingale LLN: Let $(M_n)_{n\geq 0}$ be a martingale s.t. $\sum_{k=1}^{+\infty} \frac{\mathbb{E}(M_k-M_{k-1})^2}{k^2} < +\infty$. Then $\frac{M_n}{n} \to 0$ a.s. Proof Let $Y_n = \sum_{k=1}^n \frac{X_k}{k}$. Then $(Y_n)_{n\geq 0}$ is an L^2 bounded martingale, thus $Y_n \to Y$ a.s. Then use Kronecker's lemma.
- Martingale CLT: Let $(M_n)_{n\geq 0}$ be a martingale with $M_0=0$ and $\sigma_n^2=\sum_{k=1}^n\mathbb{E}X_k^2=\mathbb{E}\langle M\rangle_n$. Assume that $\frac{1}{\sigma_n^2} \max_{1 \leq k \leq n} (\mathbb{E}X_k^2) \to 0, \ \frac{1}{\sigma_n^2} \sum_{k=1}^n \mathbb{E}(X_k^2 1_{\{|X_k| > \epsilon \sigma_n\}} | \mathscr{F}_{k-1}) \xrightarrow{p} 0 \text{ for all } \epsilon > 0, \ \frac{1}{\sigma_n^2} \langle M \rangle_n \xrightarrow{p} 1. \text{ Then } \frac{M_n}{\sigma_n} \Rightarrow \mathcal{N}(0,1).$

Markov Chains

- Let $(X_n)_{n\geq 0}$ be a homogeneous Markov chain on a discrete space S. \mathbb{P}^x : law of $(X_n)_{n\geq 0}$ conditioned on $X_0=x$. $\mathbb{P}(X_{n+1} \in A | \mathscr{F}_n) = \mathbb{P}^{X_n}(X_1 \in A) = \mathbb{P}(X_1 \in A | X_0 = X_n). \ \mathbb{E}^x : \text{expectation under } \mathbb{P}^x. \ \mathbb{P}^x(X_1 = y) = p(x, y).$
- For every $f: S \to \mathbb{R}$ bounded, define $(\mathcal{P}f)(x) = \sum_{y \in S} p(x,y) f(y) = \mathbb{E}^x(f(X_1)), (\mathcal{L}f)(x) = \sum_{y \in S} p(x,y) f(y) = \mathbb{E}^x(f(X_1))$ f(x). $\mathcal{L} = \mathcal{P} - \mathrm{id}$, the generator.
- Let $(X_n)_{n\geq 0}$ be a homogeneous Markov chain with generator \mathcal{L} . Then for every bounded $f:S\to\mathbb{R},\ M_n=0$ $f(X_n) - f(X_0) - \sum_{k=0}^{n-1} (\mathcal{L}f)(X_k)$ is a martingale. Conversely, let $(X_n)_{n\geq 0}$ be a process and \mathcal{L} be an operator on $\mathcal{B}(S)$ s.t. M_n^f is a martingale for every f, then $(X_n)_{n\geq 0}$ is a Markov chain with generator \mathcal{L} .
- Given operator \mathcal{L} on $\mathcal{B}(S)$, we say $f: S \to \mathbb{R}$ is (1) harmonic for \mathcal{L} if $\mathcal{L}f = 0$; (2) sub-harmonic for \mathcal{L} if $\mathcal{L}f \geq 0$; (3) super-harmonic for \mathcal{L} if $\mathcal{L}f \leq 0$.
- Let f be the generator of a Markov chain $(X_n)_{n\geq 0}$. Then f is (sub-/super-)harmonic $\Leftrightarrow f(X_n)_{n\geq 0}$ is a (sub-/super-) martingale.
- f is (sub-/super-)harmonic on $D \subset S$ if $\mathcal{L}f \geq / \leq / = 0$ on D. Let $\tau = \inf\{k \geq 0 : X_k \in D^c\}$, then $(f(X_{n \wedge \tau}))_{n \geq 0}$ is a (sub-/super)martingale.
- Maximum principle: Let $(X_n)_{n\geq 0}$ be a Markov chain and $D\subset S$ s.t. the stopping time $\tau=\inf\{k\geq 0, X_k\in D^c\}$ is a.s. finite. If f is bounded and sub-harmonic on D, then $\sup_{x \in D} f(x) \leq \sup_{x \in D^c} f(x)$.

Proof f is sub-harmonic implies $(f(X_{n \wedge \tau}))$ is a sub-martingale, hence for $x \in D$ we have $f(x) \leq \mathbb{E}^x(f(X_{n \wedge \tau})) \to \mathbb{E}^x(f(X_{\tau})) \leq \mathbb{E}^x(f(X_{\tau}))$ $\sup_{x \in D^c} f(x).$

•
$$A \subset S, \tau_A = \sup\{k \geq 0 : X_k \in A\}.$$
 (1) $u(x) = \mathbb{P}^x(\tau_A < +\infty) \Rightarrow \begin{cases} \mathcal{L}u = 0 & \text{on } A^c \\ u = 1 & \text{on } A \end{cases}$. (2) $u(x) = \mathbb{P}(\tau_A < \tau_B) \Rightarrow (1) = \mathbb{P}(\tau_A < \tau_B) \Rightarrow (2) = \mathbb{P}(\tau_A < \tau_B) \Rightarrow (3) = \mathbb{P}(\tau_A < \tau_B) \Rightarrow (4) = \mathbb{P}(\tau_A < \tau_B) \Rightarrow (4)$

$$\begin{cases} \mathcal{L}u = 0 & \text{on } (A \cup B)^c \\ u = 1 & \text{on } A \\ u = 0 & \text{on } B. \end{cases} (3) \ u(x) = \mathbb{E}^x[\tau_A] \Rightarrow \begin{cases} \mathcal{L}u = -1 & \text{on } A^c \\ u = 0 & \text{on } A \end{cases}.$$

• Any nonnegative solution v to $\begin{cases} \mathcal{L}v = 0 & \text{on } A^c \\ v = 1 & \text{on } A \end{cases}$ satisfies $v \geq u$. Furthermore, if $u \equiv 1$, then $\exists 1$ bounded solution to $\begin{cases} \mathcal{L}v = 0 & \text{on } A^c \\ v = f & \text{on } A \end{cases}$ with $v(x) = \mathbb{E}^x(f(X_{\tau_A}))$.

to
$$\begin{cases} \mathcal{L}v = 0 & \text{on } A^c \\ v = f & \text{on } A \end{cases} \text{ with } v(x) = \mathbb{E}^x(f(X_{\tau_A})).$$

Proof Let v(x) be a non-negative solution, then $v(X_{n \wedge \tau_A})_{n \geq 0}$ is a martingale. $v(x) = \mathbb{E}^x v(X_{n \wedge \tau_A}) = \mathbb{E}^x v(X_{n \wedge \tau_A}) 1_{\tau_A < \infty} + \mathbb{E}^x v(X_{n \wedge \tau_A}) 1_{\tau_A < \infty}$ $\mathbb{E}^x v(X_{n \wedge \tau_A}) 1_{\tau_A = \infty} \ge \mathbb{E}v(X_{n \wedge \tau_A}) 1_{\tau_A < \infty}. \text{ Let } n \to \infty \text{ and by Fatou's lemma, we have } v(x) \ge \mathbb{E}^x v(X_{\tau_A}) 1_{\tau_A < \infty} = \mathbb{P}^x (\tau_A < \infty) = \mathbb{E}v(X_{\tau_A}) 1_{\tau_A < \infty}$ u(x). If $u(x) \equiv 1$ and v(x) is bounded, then by bounded convergence theorem, $v(x) = \mathbb{E}^x v(X_{n \wedge \tau_A}) \to \mathbb{E}^x v(X_{\tau_A}) = \mathbb{E}^x f(X_{\tau_A})$.

ERGODIC THEOREM

• Doob's h-transform: Let h be nonnegative, harmonic with $h(x_0) = 1$ for some $x_0 \in S$. Then $(h(X_n))_{n \geq 0}$ is a martingale with $\mathbb{E}^{\mathbb{P}^{x_0}}(h(X_n)) = 1$. Then $\exists 1$ measure \mathbb{Q}^h on \mathscr{F}_{∞} s.t. $\frac{d\mathbb{Q}^h}{d\mathbb{P}^{x_0}|_{\mathscr{F}_n}} = h(X_n), \forall n \geq 0$. $\mathbb{Q}^h(X_0 = x_0) = 1$, $(X_n)_{n \geq 0}$ never visits the set $D = \{x : h(x) = 0\}$. Under \mathbb{Q}^h , $(X_n)_{n \geq 0}$ is again a Markov chain on $S \setminus D$ with transition probability $q(x,y) = \frac{p(x,y)h(y)}{h(x)}$ (or equivalently, $(\mathcal{L}^h f)(x) = \frac{1}{h(x)}(\mathcal{L}(hf))(x)$).

Proof The first two props are trivial. $\mathbb{Q}(X_{n+1}=y|\mathscr{F}_n)=\frac{\mathbb{Q}(X_{n+1}=y,X_n=x_n,\cdots,X_0=x_0)}{\mathbb{Q}(X_n=x_n,\cdots,X_0=x_0)}=\frac{\int_{\{X_{n+1}=y,X_n=x_n,\cdots,X_0=x_0\}}h(X_{n+1})d\mathbb{P}^{x_0}}{\int_{\{X_n=x_n,\cdots,X_0=x_0\}}h(X_n)d\mathbb{P}^{x_0}}=\frac{h(y)\mathbb{P}^{x_0}(X_{n+1}=y,X_n=x_n,\cdots,X_0=x_0)}{h(x_n)\mathbb{P}^{x_0}(X_n=x_n,\cdots,X_0=x_0)}=\frac{h(y)p(x_n,y)}{h(x_n)}.$ Next we show $M_n^f:=f(X_n)-f(X_0)-\sum_{k=0}^{n-1}(\mathcal{L}^hf)(X_k)$ is a \mathbb{Q} -martingale for any bounded f. Let $Z_n=\mathbb{E}^{\mathbb{Q}}f(X_{n+1})|\mathscr{F}_n.$ $\forall A\in\mathscr{F}_n, \int_A Z_nh(X_n)d\mathbb{P}^{x_0}=\int_A Z_nd\mathbb{Q}=\int_A f(X_{n+1})d\mathbb{Q}=\int_A f(X_{n+1})h(X_{n+1})d\mathbb{P}^{x_0}=\mathbb{E}^{\mathbb{P}^{x_0}}[\mathbb{E}^{\mathbb{P}^{x_0}}(f(X_{n+1})h(X_{n+1})1_A|\mathscr{F}_n)]=\mathbb{E}^{\mathbb{P}^{x_0}}[1_A\mathbb{E}^{\mathbb{P}^{x_0}}(f(X_{n+1})h(X_{n+1})|\mathscr{F}_n)]=\int_A \mathcal{P}(hf)(X_n)d\mathbb{P}^{x_0}.$ Thus $Z_n=\frac{\mathcal{P}(hf)(X_n)}{h(X_n)}$ only depends on X_n , i.e. $(X_n)_{n\geq 0}$ is a MC on \mathbb{Q} with generator \mathscr{L}^h .

- An irreducible Markov chain $(X_n)_{n\geq 0}$ (1) is transient if $\exists x$ and $A\subset S$ s.t. $\mathbb{P}(\tau_A<\infty|X_0=x)<1$; (2) is recurrent if \exists a finite set $A\subset S$ s.t. $\mathbb{P}(\tau_A<\infty)=1$ for all $x\in S$. (3) is positive recurrent if \exists a finite set $A\subset S$ s.t. $\mathbb{E}(\tau_A)<\infty$ for all $x\in S$.
- Foster-Lyapunov criterion: An irreducible MC on a countable state space S (1) is transient iff $\exists v : S \to \mathbb{R}^+$ and $A \subset S$ non-empty s.t. $\mathcal{L}v \leq 0$ on A^c and $v(x) < \inf_{y \in A} v(y)$ for some $x \in A^c$; (2) is recurrent iff $\exists v : S \to \mathbb{R}^+$ s.t. $\mathcal{L}v \leq 0$ on A^c where A is a finite set and $\{x : v(x) \leq N\}$ is finite for every N; (3) is positive recurrent iff $\exists v : S \to \mathbb{R}^+$, $A \subset S$ finite, $\exists \epsilon > 0$ s.t. $\mathcal{L}v \leq -\epsilon$ on A^c and $\sum_{y \in S} p(x,y)V(y) < +\infty$ for all $x \in A$.

Proof (1) $v(X_{n \wedge \tau_A})_{n \geq 0}$ is a super-martingale, hence $v(x) \geq \mathbb{E}v(X_{n \wedge \tau_A}) \geq \mathbb{E}v(X_{n \wedge \tau_A})1_{\tau_A < \infty}$. Let $n \to \infty$ we know $v(x) \geq \mathbb{E}v(X_{\tau_A}1_{\tau_A < \infty}) \geq (\inf_{y \in A}v(y))\mathbb{P}^x(\tau_A < \infty) \Rightarrow \mathbb{P}^x(\tau_A < \infty) < \frac{v(x)}{\inf_{y \in A}v(y)} < 1$. (2) On $\{\tau_A = \infty\}$, $\limsup_{n \to \infty}v(X_{n \wedge \tau_A}) = +\infty$ a.s. Since $(v(X_{n \wedge \tau_A}))_{n \geq 0}$ is a nonnegative super-martingale, hence converges a.s., therefore $\lim_{n \to \infty}v(X_{n \wedge \tau_A}) = +\infty$ a.s. Note that $v(x) \geq \mathbb{E}v(X_{n \wedge \tau_A})1_{\tau_A = \infty}$. Since LHS is a finite number, we have $\mathbb{P}^x(\tau_A = \infty) = 0$. (3) $\mathbb{E}v(X_{n \wedge \tau_A})|\mathscr{F}_{n-1} \leq v(X_{(n-1) \wedge \tau_A}) - \epsilon 1_{\tau_A \geq n}$. Taking expectation on the both sides, $\mathbb{E}v(X_{n \wedge \tau_A}) \leq \mathbb{E}v(X_{(n-1) \wedge \tau_A}) - \epsilon \mathbb{E}^x 1_{\tau_A \geq n} \leq \cdots \leq v(x) - \epsilon \sum_{k=1}^n \mathbb{P}^x(\tau_A \geq k) \leq \frac{v(x)}{\epsilon} < \infty$.

Conversely, (1) Let $v(x) = \mathbb{P}^x(\tau_A < \infty)$. (2) Let $u(x) = \mathbb{P}^x(\tau_B < \tau_A)$. We have shown that if $x \in (A \cup B)^c$ then $\mathcal{L}u \leq 0$. When $x \in B$, $(\mathcal{L}u)(x) = \sum_{y \in S} p(x,y)u(y) - 1 \leq 0$. Take $B_N \downarrow \emptyset$ s.t. B_N^c is finite for every N. Via a diagonal argument $\Rightarrow \exists$ subsequence $\{N_k\}$ s.t. $v(x) := \sum_{k>1} \mathbb{P}^x(\tau_{B_{N_k}} < \tau_A) < +\infty$ for every $x \in S$. (3) Let $v(x) = \mathbb{E}^x(\tau_A)$.

- e.g. $h(x) = \frac{\mathbb{P}^x(\tau_A < \tau_B)}{\mathbb{P}^x(\tau_A < \tau_B)}$ is harmonic on $(A \cup B)^c$ with $h(x_0) = 1(x_0 \in (A \cup B)^c)$. Then $\forall x, y \in (A \cup B)^c$, $q(x, y) = \frac{h(y)p(x,y)}{h(x)} = \frac{\mathbb{P}^y(\tau_A < \tau_B)p(x,y)}{\mathbb{P}^x(\tau_A < \tau_B)} = \frac{\mathbb{P}^x(X_1 = y, \tau_A < \tau_B)}{\mathbb{P}^x(\tau_A < \tau_B)} = \mathbb{P}^x(X_1 = y | \tau_A < \tau_B)$.
- e.g. \mathbb{P} is simple symmetric random walk on \mathbb{Z} starting from $X_0 = 0$. Question: what is the law of $(X_n)_{n \geq 0}$ conditioned on $X_n \geq 0$ for all n? Let $\tau_k = \inf\{n \geq 0, X_n = k\}$. On $\{\tau_N < \tau_{-1}\}, \frac{h(y)}{h(x)} = \frac{\mathbb{P}^y(\tau_N < \tau_{-1})}{\mathbb{P}^x(\tau_N < \tau_{-1})} = \frac{y+1}{x+1}$. Thus $q_N(x,y) = \frac{1}{2} \frac{y+1}{x+1}, |x-y| = 1, x \in \{0, \dots, N-1\} \Rightarrow q(x,y) = \frac{1}{2} \frac{y+1}{x+1}, x \geq 0, |x-y| = 1$.

3 Ergodic Theorem

- Basic setup: a measurable map $T:(\Omega,\mathscr{F})\to(\Omega,\mathscr{F})$. Examples: (1) circle rotations: $\Omega=\mathbb{R}/\mathbb{Z}, T:x\mapsto x+\alpha$; (2) doubling map: $\Omega=\mathbb{R}/\mathbb{Z}, x\mapsto 2x$; (3) shift map: $\Omega=S^{\mathbb{N}}, (T\omega)_n=\omega_{n+1}$.
- Let $T:(\Omega,\mathscr{F})\to (\Omega,\mathscr{F})$ measurable and \mathbb{P} be a probability measure on (Ω,\mathscr{F}) . We say T is measure-preserving if $\mathbb{P}(T^{-1}(A))=\mathbb{P}(A)$ for every $A\in\mathscr{F}$ (or $\mathbb{P}\circ T^{-1}=\mathbb{P}$).
- Question: what if we define by $\mathbb{P}(T(A)) = \mathbb{P}(A)$ for every $A \in \mathscr{F}$ instead? $\mathbb{P} \circ T = \mathbb{P} \Rightarrow \mathbb{P} \circ T^{-1} = \mathbb{P}$ while the converse proposition is false.
- $(X_n)_{n\geq 0}$ be i.i.d. $\sim \mu$. We can build $(\Omega, \mathscr{F}, \mathbb{P})$ and $X_n : \Omega \to \mathbb{R}$ measurable s.t. $(X_n)_{n\geq 0}$ i.i.d. $\sim \mu$ under \mathbb{P} : (1) $\Omega = \mathbb{R}^{\mathbb{N}} = \{\omega : \omega = (\omega_0, \omega_1, \cdots)\}$; (2) $X_n(\omega) = \omega_n$; (3) $\mathscr{F} = \sigma(X_0, X_1, \cdots, X_n, \cdots)$; (4) $\mathbb{P} = \mu^{\otimes \mathbb{N}}$. It is easy to show that the shift map is measure-preserving: \mathscr{F} is generated by sets of the form $A = \{\omega_{k_1} \in I_1, \cdots, \omega_{k_N} \in I_N\}$, $T^{-1}(A) = \{\omega : (T\omega)_{k_1} \in I_1, \cdots, (T\omega)_{k_N} \in I_N\} = \{\omega : \omega_{k_1+1} \in I_1, \cdots, \omega_{k_N+1} \in I_N\}$. Key: the only thing used is that $(X_{k_1}, \cdots, X_{k_N}) \stackrel{\text{law}}{=} (X_{k_1+1}, \cdots, X_{k_N+1})$ for every N and every k_1, \cdots, k_N .

ERGODIC THEOREM

- A sequence of random variables is stationary if $(X_n)_{n\in J}\stackrel{\text{law}}{=} (X_{n+k})_{n\in J}$ for all k and finite set J.
- Let $T:(\Omega, \mathscr{F}, \mathbb{P}) \to (\Omega, \mathscr{F}, \mathbb{P})$ be measure-preserving and $X:\Omega \to \mathbb{R}$ be measurable. Then $X_n(\omega):=X(T^n\omega)$ defines a stationary sequence.

Proof It suffices to show that for every N, every $I_1, \dots, I_N \subset \mathbb{R}$ and every $k_1 < k_2 < \dots < k_N$, we have $\mathbb{P}(X_{k_1} \in I_1, \dots, X_{k_N} \in I_N) = \mathbb{P}(X_{k_1+1} \in I_1, \dots, X_{k_N+1} \in I_N)$. $\mathbb{P}(\{\omega : X_{k_1}(\omega) \in I_1, \dots, X_{k_N}(\omega) \in I_N\}) = \mathbb{P}(T^{-1}\{\omega : X_{k_1}(\omega) \in I_1, \dots, X_{k_N}(\omega) \in I_N\}) = \mathbb{P}(\{\omega : X_{k_1}(T\omega) \in I_1, \dots, X_{k_N}(T\omega) \in I_N\}) = \mathbb{P}(\{\omega : X_{k_1+1}(\omega) \in I_1, \dots, X_{k_N+1}(\omega) \in I_N\})$.

- Let $(\Omega, \mathscr{F}, \mathbb{P}, T)$ be a measure-preserving system. (1) A set $A \in \mathscr{F}$ is invariant if $\mathbb{P}(A \triangle T^{-1}(A)) = 0$. (2) A random variable $X : \Omega \to \mathbb{R}$ is invariant if $X = X \circ T$ \mathbb{P} -a.e.
- The collection of invariant sets $\mathcal{I} = \{A \in \mathscr{F} : A \text{ is invariant}\}\$ is a σ -algebra and $X : \Omega \to \mathbb{R}$ is invariant iff it is \mathcal{I} -measurable.
- We say $T:(\Omega,\mathscr{F},\mathbb{P})\to(\Omega,\mathscr{F},\mathbb{P})$ measurable-preserving is ergodic if $\mathbb{P}(A)=0$ or 1 for all $A\in\mathcal{I}$.
- Let $T:(\Omega,\mathscr{F},\mathbb{P})\to(\Omega,\mathscr{F},\mathbb{P})$ be measure preserving and $f\in L^p(p\geq 1)$. Then $\frac{1}{N}\sum_{k=0}^{N-1}f\circ T^K\to\mathbb{E}(f|\mathcal{I})$ a.s. and in L^p . In particular, $\mathbb{E}(f|\mathcal{I})=\mathbb{E}f$ if T is ergodic.

Proof We first show convergence in L^p .

Lemma 1 If $(\Omega, \mathscr{F}, \mathbb{P}, T)$ is a measure-preserving system and $X \in L^1(\Omega, \mathscr{F}, \mathbb{P})$. Then $\int_{\Omega} X d\mathbb{P} = \int_{\Omega} X \circ T d\mathbb{P}$. In fact, $||X||_{L^p} = ||X \circ T||_{L^p}, p \in [1, +\infty]$.

Proof Take
$$X = 1_A$$
. LHS = $\mathbb{P}(A) = \mathbb{P}(T^{-1}(A)) = \int_{\Omega} 1_A(T\omega) d\mathbb{P}$.

Let $\mathcal{U}_T: L^p(\Omega, \mathscr{F}, \mathbb{P}) \to L^p(\Omega, \mathscr{F}, \mathbb{P})$ be defined by $(\mathcal{U}_T f)(\omega) := f(T\omega)$ (or $\mathcal{U}_T f = f \circ T$).

For p = 2, $\mathcal{U}_T : L^2 \to L^2$ is an isometry in the sense that $\langle f, g \rangle = \langle \mathcal{U}_T f, \mathcal{U}_T g \rangle$. LHS $= \frac{1}{N} \sum_{k=0}^N \mathcal{U}_T^k f$, $f = \mathbb{E}(f|\mathcal{I}) + (f - \mathbb{E}(f|\mathcal{I})) \Rightarrow$ LHS $= \underbrace{\mathbb{E}(f|\mathcal{I})}_{k=0} + \frac{1}{N} \sum_{k=0}^N \mathcal{U}_T^k (f - \mathbb{E}(f|\mathcal{I}))$. Since $\mathcal{H} = \operatorname{Ker}(A) \oplus \overline{\operatorname{Im}(A^*)}$, $\exists g \in \mathcal{H} \text{ s.t. } ||f - \mathbb{E}(f|\mathcal{I}) - \underbrace{(\mathcal{U}_T^* - \operatorname{Id})g}_{=(\mathcal{U}_T - \operatorname{Id})g}|| < \epsilon$.

Lemma 2 Let $A: \mathcal{H} \to \mathcal{H}$ be an isometry. If Af = f, then $A^*f = f$.

$$Proof \langle A^*f, g \rangle = \langle f, Ag \rangle = \langle f, Ag \rangle = \langle f, g \rangle.$$

Proposition 1 $\mathcal{H} = \operatorname{Ker}(A^*) \oplus \overline{\operatorname{Im}(A)}$.

Proof We show that $\operatorname{Ker}(A^*) = (\operatorname{Im}(A))^{\perp}$. (i) $f \in \operatorname{Ker}(A^*) \Rightarrow A^*f = 0 \Rightarrow \langle f, Ag \rangle = \langle A^*f, g \rangle = 0$. (ii) $f \in (\operatorname{Im}(A))^{\perp} \Rightarrow \langle f, Ag \rangle = 0$ for all $g \in \mathcal{H} \Rightarrow \langle A * f, g \rangle = 0$ for all $g \in \mathcal{H} \Rightarrow A^*f = 0$.

 $\mathcal{H} = L^{2}(\omega, \mathscr{F}, \mathbb{P}) = \operatorname{Ker}(\mathcal{U}_{T}^{*} - \operatorname{Id}) + \overline{\operatorname{Im}(\mathcal{U}_{T} - \operatorname{Id})} \Rightarrow \forall f \in \mathscr{H}, \forall \epsilon > 0, \exists g, h \in \mathscr{H} \text{ s.t. } ||h||_{L^{2}} < \epsilon \text{ and } f = \mathbb{E}(f|\mathcal{I}) + (\mathcal{U}_{T} - \operatorname{Id})g + h \Rightarrow \frac{1}{N} \sum_{k=0}^{N-1} \mathcal{U}_{T}^{k} f = \mathbb{E}(f|\mathcal{I}) + \underbrace{\frac{1}{N}(\mathcal{U}_{T}^{N}g - g)}_{||\cdot||_{L^{2}} \leq \frac{2}{N}||g||_{L^{2}} \to 0} + \underbrace{\frac{1}{N} \sum_{k=0}^{N-1} \mathcal{U}_{T}^{k} h}_{||\cdot||_{L^{2}} \Rightarrow \lim \sup_{N \to \infty} ||\frac{1}{N} \sum_{k=0}^{N-1} \mathcal{U}_{T} f - \mathbb{E}(f|\mathcal{I})||_{L^{2}} < \epsilon.$

For $p \neq 2$, let $S_N f = \sum_{k=0}^{N-1} f \circ T^k$ and $A_N f = \frac{1}{N} S_N f$.

(1) If $f \in L^{\infty}$, then $||A_N f||_{L^{\infty}} \le ||f||_{L^{\infty}}, ||A_N f - \mathbb{E}(f|\mathcal{I})||_{L^2} \to 0 \Rightarrow A_N f \to \mathbb{E}(f|\mathcal{I}) \text{ in } L^p \text{ for every } p \in [1, +\infty) \text{ (for } p \ge 2, ||A_N f - \mathbb{E}(f|\mathcal{I})||_{L^p}^p \le ||f||_{L^{\infty}}^{p-2}||A_N f - \mathbb{E}(f|\mathcal{I})||_{L^2}^2; \text{ for } 1 \le p < 2, ||A_N f - \mathbb{E}(f|\mathcal{I})||_{L^p}^p \le ||A_N f - \mathbb{E}(f|\mathcal{I})||_{L^2}^p ||1||_{L^2}^{2-p}).$

(2) If $f \in L^p(p \ge 1)$, then $\forall \epsilon > 0, \exists g \in L^{\infty}$ s.t $||f - g||_{L^p} < \epsilon$,

$$||A_N f - \mathbb{E}(f|\mathcal{I})||_{L^p} \leq \underbrace{||A_N (f-g)||_{L^p}}_{<\epsilon} + \underbrace{||A_N g - \mathbb{E}(g|\mathcal{I})||_{L^p}}_{\to 0 \text{ as } N \to +\infty} + \underbrace{||\mathbb{E}(g-f|\mathcal{I})||_{L^p}}_{<\epsilon} \Rightarrow \forall \epsilon > 0, \lim \sup_{N \to \infty} ||A_N f - \mathbb{E}(f|\mathcal{I})||_{L^p} < 2\epsilon.$$

We next show convergence a.s.

Maximum ergodic theorem $f \in L^1(\Omega, \mathscr{F}, \mathbb{P}), S_n = \sum_{k=0}^{n-1} f \circ T^k, M_n = \max\{S_1, \cdots, S_n\}.$ Then $\int_{\{M_n > 0\}} f(\omega) \mathbb{P}(d\omega) \geq 0.$

 $Proof \ M_{n-1}(T\omega) = \max\{S_1(T\omega), \cdots, S_{n-1}(T\omega)\} = \max\{S_2(\omega), \cdots, S_n(\omega)\} - f(\omega) \Rightarrow \max\{0, M_{n-1}(T\omega)\} = M_n(\omega) - f(\omega) \Rightarrow f(\omega) = M_n(\omega) - \max\{0, M_{n-1}(T\omega)\}.$ $\int_{\{M_n > 0\}} f d\mathbb{P} = \int_{\{M_n > 0\}} M_n d\mathbb{P} - \int_{\{M_n > 0\}} \max\{0, M_{n-1}(T\omega)\} d\mathbb{P} = \int_{\{M_n > 0\}} M_n d\mathbb{P} - \int_{\{M$

Corollary 1 $\mathbb{P}(\omega : \sup_{n \geq 1} (A_n f)(\omega) > \lambda) \leq \frac{\mathbb{E}|f|}{\lambda}$.

Proof Let
$$E_N = \{\omega : \sup_{1 \le n \le N} (A_n f)(\omega) > \lambda\} = \{\omega : \sup_{1 \le n \le N} (A_n (f - \lambda))(\omega) > 0\} = \{\omega : \sup_{1 \le n \le N} (S_n (f - \lambda))(\omega) > 0\}.$$

 $E_N \uparrow E = \{\omega : \sup_{n \ge 1} (A_n f)(\omega) > \lambda\}.$ $\int_{E_n} (f - \lambda) d\mathbb{P} \ge 0 \Rightarrow \mathbb{P}(E_n) \le \frac{\int_{E_n} f d\mathbb{P}}{\lambda} \le \frac{\mathbb{E}|f|}{\lambda} \Rightarrow \mathbb{P}(E) \le \frac{\mathbb{E}|f|}{\lambda}.$

Goal: $f \in L^1$ (for finite measure \mathbb{P} , $L^p \subset L^1$), need to show $\frac{1}{N} \sum_{k=0}^{N-1} f \circ T^k \to \mathbb{E}(f|\mathcal{I})$ a.s.

- (1) If $f \in L^2$ is \mathcal{I} -measurable, then $A_N f = f = \mathbb{E}(f|\mathcal{I})$ a.s.
- (2) If $f = (\mathcal{U}_T \operatorname{Id})g$ for some $g \in L^{\infty}$, then $(A_N f)(\omega) = \frac{1}{N}(g(T^N \omega) g(\omega)) \leq \frac{2||g||_{L^{\infty}}}{N} \to 0$. Check $\mathbb{E}((\mathcal{U}_T \operatorname{Id})g|\mathcal{I}) = 0 : \forall A \in \mathcal{I}, \int_A (g \circ T g) d\mathbb{P} = \int_{T^{-1}(A)} g \circ T d\mathbb{P} \int_A g d\mathbb{P} = \int_A g d\mathbb{P} \int_A g d\mathbb{P} = 0$.
- (3) $\Lambda = \{ f = \mathbb{E}(f_0|\mathcal{I}) + (\mathcal{U}_T \operatorname{Id})g : f_0 \in L^2, g \in L^\infty \}$ is dense in L^1 . If $f \in L^1$, then $\exists f_j \in \Lambda$ s.t. $f_j \to f$ in L^1 . We need to show $\mathbb{P}(\limsup_{N \to \infty} |A_N f \mathbb{E}(f|\mathcal{I})| > \epsilon) = 0$. $|A_N f \mathbb{E}(f|\mathcal{I})| \le |A_N (f f_j)| + \underbrace{|A_N f_j \mathbb{E}(f_j|\mathcal{I})|}_{+} + |\mathbb{E}(f_j f|\mathcal{I})| \Rightarrow$

$$\mathbb{P}(\limsup_{N\to\infty} |A_N f - \mathbb{E}(f|\mathcal{I})| > \epsilon) \leq \mathbb{P}(\limsup_{N\to+\infty} |A_N (f - f_j)| > \frac{\epsilon}{2}) + \mathbb{P}(|\mathbb{E}(f_j - f|\mathcal{I})| > \frac{\epsilon}{2}) \leq \frac{2\mathbb{E}|f_j - f|}{\epsilon} + \frac{2\mathbb{E}|f_j - f|}{\epsilon} \to 0. \quad \Box$$

• Kingman's subadditive ergodic theorem: Let $(\Omega, \mathscr{F}, \mathbb{P}, T)$ be a measure-preserving space and $\{g_n\} \in L^1$ subadditive in the sense that $g_{n+m} \leq g_n + g_m \circ T^n$ for every n, m. Then (1) $\lim_{n \to \infty} \frac{\mathbb{E}(g_n)}{n} \to \inf_{k \geq 1} \frac{\mathbb{E}(g_k)}{k}$ (possibly $-\infty$); (2) $\frac{g_n}{n}$ convergence a.s. to F where F is \mathcal{I} -measurable and $\mathbb{E}F = \inf_{k \geq 1} \frac{\mathbb{E}(g_k)}{k}$; (3) If $\mathbb{E}F > -\infty$, then the convergence is also in L^1 .

Proof Recall an elementary version. If $\{a_n\} \in \mathbb{R}$ s.t. $a_{n+m} \leq a_n + a_m, \forall n, m$, then $\frac{a_n}{n} \to \inf_{k \geq 1} \frac{a_k}{k}$ as $n \to \infty$. We assume $g_n \leq 0$.

- (1) $H(\omega) := \liminf_{n \to \infty} \frac{g_n(\omega)}{n}$. Claim $H = H \circ T$. $g_{n+1}(\omega) \leq g_1(\omega) + g_n(T\omega) \Rightarrow H \leq H \circ T$. T measure-preserving $\Rightarrow H \stackrel{\text{law}}{=} H \circ T$. Then we must have $H = H \circ T$ \mathbb{P} -a.s.
- (2) Now need to show for every $\epsilon > 0$, we have $\limsup_{n \to \infty} \frac{g_n}{n} < H + \epsilon$ \mathbb{P} -a.s. Let $n_i = \sum_{j=1}^i k_j$ and $n_M = n$. Then $g_n(\omega) \le g_{k_1}(\omega) + g_{n-k_1}(T^{k_1}\omega) \le g_{k_1}(\omega) + g_{k_2}(T^{k_1}(\omega)) + g_{n-k_1-k_2}(T^{n_2}\omega) \le \cdots \Rightarrow g_n(\omega) \le \sum_{j=0}^{M-1} g_{k_{j+1}}(T^{n_j}\omega)$ (hope $g_{k_{j+1}}(T^{n_j}\omega) \le k_{j+1}(H(\omega) + \epsilon)$). Fix k > 0, define $A_k = \{\omega : \frac{g_l(\omega)}{l} < H(\omega) + \epsilon \text{ for some } 1 \le l \le k\}$, $B_k = \{\omega : \frac{g_l(\omega)}{l} \ge H(\omega) + \epsilon \text{ for every } 1 \le l \le k\}$. If $\exists 1 \le l \le k \land (n-1)$ s.t. $\frac{g_l(\omega)}{l} < H(\omega) + \epsilon$, then let $k_1 := \inf\{l : \frac{g_l(\omega)}{l} < H(\omega) + \epsilon\}$, otherwise let $k_1 = 1$. If $\exists 1 \le l \le k \land (n-n_p)$ s.t. $\frac{g_l(T^{n_p}\omega)}{l} < H(\omega) + \epsilon$, then $k_{p+1} := \inf\{l : \frac{g_l(T^{n_p}\omega)}{l} < H(\omega) + \epsilon\}$, otherwise let $k_{p+1} = 1$. Let $\Lambda(\omega) = \{0 \le j \le M(\omega) 1 : g_{k_{j+1}}(T^{n_j}\omega) < k_{j+1}(\omega)(H(\omega) + \epsilon)\} \Rightarrow g_n(\omega) \le \sum_{j \in \Lambda(\omega)} g_{k_m}(T^{n_j}(\omega)) \le \sum_{j \in \Lambda(\omega)} k_{j+1}(H(\omega) + \epsilon) \Rightarrow g_n(\omega) < n\epsilon + H(\omega) \sum_{j \in \Lambda(\omega)} k_{j+1} \Rightarrow \limsup_{n \to \infty} \frac{g_n(\omega)}{n} < \epsilon + H(\omega) \liminf_{n \to \infty} \frac{\sum_{j \in \Lambda} k_{j+1}}{n} \ge 1 \frac{k}{n} \frac{1}{n} \sum_{j=0}^{n-1} 1_{B_k}(T^{j}\omega) \Rightarrow \liminf_{n \to \infty} \frac{\sum_{j \in \Lambda} k_{j+1}}{n} \ge 1 \mathbb{E}(1_{B_k}|\mathcal{I}) \Rightarrow \limsup_{n \to \infty} \frac{g_n(\omega)}{n} < \epsilon + H(\omega)(1 \mathbb{E}(1_{B_k}|\mathcal{I}))$. Let $k \to \infty$, $B_k \downarrow \emptyset \Rightarrow \mathbb{E}(1_{B_k}|\mathcal{I}) \to 0$ a.s., thus RHS $\to \epsilon + H(\omega)$.
- (3) Let $g_n^{(\lambda)} = \max\{-\lambda n, g_n\}$. Then $\{g_n^{(\lambda)}\}$ is subadditive and we have $\frac{g_n^{(\lambda)}}{n} \to F^{(\lambda)}$ a.s. and in L^1 (by uniform boundedness). $\mathbb{E}F^{(\lambda)} = \inf_{k \ge 1} \frac{\mathbb{E}g_k^{(\lambda)}}{k}$ and $F^{(\lambda)} = \max\{F, -\lambda\}$. Then $\mathbb{E}F = \inf_{k \ge 0} \mathbb{E}F^{k} = \inf_{k \ge 1} \frac{\mathbb{E}g_k^{(\lambda)}}{k} = \inf_{k \ge 1} \inf_{k \ge 1} \frac{\mathbb{E}g_k^{(\lambda)}}{k} = \inf_{k \ge 1} \frac{\mathbb{E}g_k^{(\lambda)}}{k}$.

For general subadditive $\{g_n\}$, define $\tilde{g}_n = g_n - \sum_{k=0}^{n-1} g_1 \circ T^k$ which is negative and subadditive, and $\frac{g_n}{n} = \frac{\tilde{g}_n}{n} + \frac{1}{n} \sum_{k=0}^{n-1} g_1 \circ T^k$. Convergence of the first term has been proved and convergence of the next term is by the standard ergodic theorem.

4 Brownian Motion

- A one-dimensional B.M. (on [0,T]) is a real-valued process $(B_t)_{t \in [0,T]}$ s.t. (1) For every $0 < t_1 < \cdots < t_n = T$, the r.v.'s $B_{t_1} B_0, B_{t_2} B_{t-1}, \cdots, B_{t_n} B_{t_{n-1}}$ are independent $\mathcal{N}(0, t_i t_{i-1})$; (2) With probability 1, the sample path $t \mapsto B_t$ is continuous.
- A real-valued stochastic process $(X_t)_{t\in I}$ is a map $X:I\times\Omega\to\mathbb{R}$ s.t. (i) For every $\omega\in\Omega$, $X(\omega)$ is a real-valued function on I; (ii) For every $t\in I$, X_t is a random variable.
- Construction of stochastic processes: \mathscr{F} is the smallest σ -algebra s.t. $X_t:\Omega\to\mathbb{R}$ is measurable for every $t\in I$. Finite dimensional distributions (f.d.d.) are laws of (X_{t_1},\cdots,X_{t_n}) . Natural to take $\Omega=\mathbb{R}^I$. \mathscr{F} is generated by cylinder sets $\{\omega:\omega|_J\in A,J \text{ finite},\ A\subset\mathbb{R}^{|J|}\}$. For every finite index set $J=(t_1,\cdots,t_n)\in I^n$, need to specify the f.d.d. $Q_J:=\operatorname{Law}(X_{t_1},\cdots,X_{t_n})$. We are given $\{Q_J\}_{J \text{ finite}}$. We say the family of f.d.d. $\{Q_J\}_{J \text{ finite}}$ is consistent if for every $J'\subset J$, we have $Q_J\circ\pi_{J,J'}^{-1}=Q_{J'}$ where $\pi_{J,J'}:\mathbb{R}^J\to\mathbb{R}^{J'}$ is the canonical projection.
- Kolmogorov's extension theorem: If the family of f.d.d. is consistent, then $\exists 1$ probability measure \mathbb{P} on $(\mathbb{R}^I, \mathscr{F})$ s.t. $\mathbb{P} \circ \pi_J^{-1} = Q_J$ for every J finite.

Proof Let $C = \{\omega : \omega|_J \in A, J \text{ finite, } A \subset \mathbb{R}^{|J|}\}$. It suffices to construct \mathbb{P} on C and prove uniqueness. (1) If $E \in C$, then $E = \{\omega : \omega|_J \in A\}$ for some I and $A \subset \mathbb{R}^{|J|}$, and define $\mathbb{P}(E) = Q_J(A)$. Uniqueness follows immediately (if it is well defined).

Suppose $\exists J'$ and $A' \subset \mathbb{R}^{|J'|}$ s.t. $E = \{\omega : \omega|_J \in A\} = \{\omega : \omega_{J'} \in A'\}$. Let $J^* = J \cup J'$, then $\{\omega : \omega|_{J^*} \in A \times \mathbb{R}^{J^* \setminus J}\} = \{\omega : \omega|_J \in A\} = \{\omega : \omega|_{J^*} \in A' \times \mathbb{R}^{J^* \setminus J'}\}$. By consistency, $Q_J(A) = Q_{J^*}(A \times \mathbb{R}^{J^* \setminus J}) = Q_{J^*}(A' \times \mathbb{R}^{J^* \setminus J'}) = Q_{J'}(A')$. (2) We first show finite additivity. Let $E, E' \subset \mathcal{C}$ be disjoint. Then there exist J and $A, A' \subset \mathbb{R}^{|J|}$ disjoint s.t. $E = \{\omega : \omega|_J \in A\}$ and $E' = \{\omega : \omega|_J \in A'\}$. $\mathbb{P}(E \cup E') = Q_J(A \cup A') = Q_J(A) + Q_J(A') = \mathbb{P}(E) + \mathbb{P}(E')$. (3) For countable additivity, it suffices to show that if $E_n \downarrow \emptyset$, then $\mathbb{P}(E_n) \downarrow \emptyset$. Need to show that if $\{E_n\}$ is a sequence of decreasing sets in \mathcal{C} s.t. $\mathbb{P}(E_n) \downarrow \delta > 0$, then $\bigcap_{n \geq 1} E_n$ is non-empty. We can find $J_1 \subset \cdots \subset J_n \subset \cdots$ and sets $A_n \in J_n$ with $A_{n+1} \subset \pi_{J_{n+1},J_n}^{-1}(A_n)$ s.t. $E_n = \{\omega : \omega|_{J_n} \in A_n\}$. For every n, \exists compact $K_n \subset A_n$ s.t. $Q_{J_n}(K_n) > Q_{J_n}(A_n) - \frac{\delta}{2^{n+1}}$. Let $G_n = \pi_{J_n}^{-1}(K_n)$. Consider the set $\bigcap_{k=1}^N G_k$ in $\Omega = \mathbb{R}^I$. $\mathbb{P}(\bigcap_{k=1}^N G_k) \geq \mathbb{P}(\bigcap_{k=1}^N E_k) - \sum_{k=1}^N \mathbb{P}(E_k \setminus G_k) > \delta - \frac{\delta}{2} = \frac{\delta}{2} \Rightarrow \text{ For every } N$, $\exists \omega^{(N)} \in \bigcap_{k=1}^N G_k \Rightarrow \omega^{(N)}|_{J_n} \in K_m$ for every $m \leq N \Rightarrow \exists$ subsequence of $\{\omega^{(N)}|_{J_1}\}_N$ convergent in K_1 and denote the limit by $Z_1 \in K_1 \Rightarrow \exists$ further subsequence $\{\omega^{(N)}\}$ s.t. $\omega^{(N)}|_{J_2} \to Z_2 \in K_2$ and $Z_2|_{J_1} = Z_1 \Rightarrow \exists$ subsequence $\{\omega^{(m_l)}\}_{k \geq 1}$ s.t. $\omega^{(m_l)}_{J_n} \to Z_n \in K_n$ and $Z_n|_{J_{n-1}} = Z_{n-1} \Rightarrow \exists Z \in \mathbb{R}^N$ s.t. $Z|_{J_n} = Z_n$. Let $\omega \in \mathbb{R}^I$ be the sample point s.t. $\omega|_{J_n} = Z_n \Rightarrow \omega \in \cap_{k \geq 1} G_k$.

- We say two processes $(X_t)_{t\in I}$ and $(Y_t)_{t\in I}$ (1) have the same f.d.d. if $\text{Law}_{\mathbb{P}}(X_{t_1}, \dots, X_{t_n}) = \text{Law}_{\mathbb{P}}(Y_{t_1}, \dots, Y_{t_n})$ for every $t_1, \dots, t_n \in I$; (2) are modifications of each other if for every $t \in I$ we have $\mathbb{P}(X_t = Y_t) = 1$; (3) are indistinguishable if $X(\omega) = Y(\omega)$ for \mathbb{P} a.e. ω . In the following text we set I = [0, 1].
- Kolmogorov's continuity criterion: Let $(X_t)_{t\in[0,1]}$ be a process s.t. $(\mathbb{E}|X_t-X_s|^p)^{\frac{1}{p}} \leq C|t-s|^{\alpha}$ where $\alpha p>1$, C independent of s and t. Then for every $\beta<\alpha-\frac{1}{p}$, \exists modification \widetilde{X} of X s.t. $\mathbb{E}(\sup_{s\neq t}\frac{|\widetilde{X}_t-\widetilde{X}_s|}{|t-s|^{\beta}})^p<+\infty$.

Proof Step 1: Choose a conutable dense subset $D \subset [0,1]$ and show that $\mathbb{E}[\sup_{s,t \in D, s \neq t} \frac{|X_t - X_s|}{|t - s|^{\beta}}]^p < +\infty$.

Step 2:
$$X|_D$$
 is β -Holder continuous \Rightarrow can extend to \widetilde{X} on $[0,1]$ by $\widetilde{X}_t(\omega) = \begin{cases} X_t(\omega) & \text{if } t \in D \\ \lim_{n \to \infty} X_{t_n}(\omega) & \text{if } t_n \to t \end{cases}$ and $||\widetilde{X}||_{\beta} \le ||X||_{\beta}$.

Step 3: Show that \widetilde{X} is a modification of X.

Proof of Step 1: Let $D_n = \{\frac{j}{2^n}, j = 0, 1, \dots, 2^n\}$ and $D = \bigcup_n D_n$. For $s, t \in D_N$, $\exists 1 \ m \ \text{s.t.} \ \frac{1}{2^{m+1}} < |t-s| \le \frac{1}{2^m}$. For every n, let s_n, t_n be the points in D_n with smallest distance to s and t. Then (1) $|s_{n+1} - s_n| \le \frac{1}{2^{n+1}}, |t_{n+1} - t_n| \le \frac{1}{2^{n+1}};$ (2) $|s_m - t_m| \le \frac{1}{2^m}$. Note that $X_t = X_{t_N} = \sum_{n=m}^{N-1} (X_{t_{n+1}} - X_{t_n}) + X_{t_m}, X_s = X_{s_N} = \sum_{n=m}^{N-1} (X_{s_{n+1}} - X_{s_n}) + X_{s_m} \Rightarrow |X_t - X_s| \le |X_{t_m} - X_{s_m}| + \sum_{n>m} (|X_{t_{n+1}} - X_{t_n}| + |X_{s_{n+1}} - X_{s_n}|)$. Then we have

$$\begin{split} &|X_{t_{n+1}} - X_{t_n}| \leq \sup_{0 \leq j \leq 2^{n+1} - 1} |X_{\frac{j+1}{2^{n+1}}} - X_{\frac{j}{2^{n+1}}}| \text{ and } |X_{s_{n+1}} - X_{s_n}| \leq \sup_{0 \leq j \leq 2^{n+1} - 1} |X_{\frac{j+1}{2^{n+1}}} - X_{\frac{j}{2^{n+1}}}| \\ \Rightarrow &|X_t - X_s| \lesssim 2 \sum_{n \geq m} \sup_{0 \leq j \leq 2^n - 1} |X_{\frac{j+1}{2^n}} - X_{\frac{j}{2^n}}| \\ \Rightarrow &\frac{|X_t - X_s|}{|t - s|^\beta} \lesssim 2^{m\beta} \sum_{n \geq m} \sup_{0 \leq j \leq 2^n - 1} |X_{\frac{j+1}{2^n}} - X_{\frac{j}{2^n}}| \leq \sum_{n \geq 0} 2^{n\beta} \sup_{0 \leq j \leq 2^n - 1} |X_{\frac{j+1}{2^n}} - X_{\frac{j}{2^n}}| \\ \Rightarrow &\left\| \sup_{s,t \in D, s \neq t} \frac{|X_t - X_s|}{|t - s|^\beta} \right\|_p \lesssim \sum_{n \geq 0} 2^{n\beta} \left(\sum_{j=0}^{2^{n-1}} \mathbb{E} |X_{\frac{j+1}{2^n}} - X_{\frac{j}{2^n}}|^p \right)^{\frac{1}{p}} \lesssim \sum_{n \geq 0} 2^{-(\alpha - \frac{1}{p} - \beta)n} \end{split}$$

The remaining details are left for exercise.

- In case of B.M., the condition is satisfied for every $p \ge 1$ and $\alpha = \frac{1}{2}$.
- Almost none Brownian path is Hölder- $\frac{1}{2}$ continuous, i.e. $\mathbb{P}(\{\omega: \sup_{s,t \in [0,1]} \frac{||B_t(\omega) B_s(\omega)||}{\sqrt{t-s}} < + \infty\}) = 0$. $Proof \sup_{s,t \in [0,1]} \frac{||B_t - B_s||}{\sqrt{t-s}} \ge \sup_n \sup_{0 \le j \le n-1} \sqrt{n} ||B_{\frac{j+1}{n}} - B_{\frac{j}{n}}|| \Rightarrow \mathbb{P}(\sup_{s,t \in [0,1]} \frac{||B_t - B_s||}{\sqrt{t-s}} \le \lambda) \le \mathbb{P}(\sup_{0 \le j \le n-1} ||Z_j|| \le \lambda) \text{ for every } n$. Let $n \to \infty$ and then RHS $\to 0$.
- For every t, almost none Brownian path is Hölder- $\frac{1}{2}$ continuous at t, i.e. $\mathbb{P}(\{\omega: \sup_{|h| \le 1} \frac{|B_{t+h} B_t|}{\sqrt{|h|}} < \infty\}) = 0$.
- Almost every Brownian path is Hölder- $\frac{1}{2}$ continuous at some t, i.e. $\mathbb{P}(\{\omega: \exists t \in [0,1] \text{ s.t. } \sup_{|h| \le 1} \frac{|B_{t+h} B_t|}{\sqrt{|h|}} < \infty\}) = 1$.
- $\alpha > \frac{1}{2}$, almost none Brownian path is Hölder- α continuous at any t, i.e. $\mathbb{P}(\{\omega : \exists t \in [0,1] \text{ s.t. } \sup_{|h| \leq 1} \frac{|B_{t+h} B_t|}{h^{\alpha}} < \infty\}) = 0$.
- Let $\mathscr{F}_t = \sigma(B_s, 0 \le s \le t)$ and $W_t^{(s)} = B_{s+t} B_s$. For every $s \ge 0$, define $\mathscr{F}_s^+ = \cap_{\epsilon > 0} \mathscr{F}_{s+\epsilon}$. Then $(\mathscr{F}_s^+)_{s \ge 0}$ is right-continuous in the sense that $\mathscr{F}_s^+ = \cap_{\epsilon > 0} F_{s+\epsilon}^+$.

- Markov property 1 of B.M.: $(W_t^{(s)})_{t>0}$ is a B.M. inpendent of \mathscr{F}_s .
- Markov property 2 of B.M.: For every $s \geq 0$, $(W_t^s)_{t\geq 0}$ is a B.M. independent of \mathscr{F}_s^+ .

Proof We need to show that $\mathbb{E}(\Phi(W^{(s)})1_A) = \mathbb{E}(\Phi(B))\mathbb{P}(A)$ for every bounded measurable function $\Phi: C(\mathbb{R}^+, \mathbb{R}) \to \mathbb{R}$ and every $A \in \mathscr{F}_s^+$. By monotone class theorem, it suffices to prove it for $\Phi = 1_E$, where E ranges over all cylinder sets. Then it suffices to consister Φ that depends on finitely many values $(W_{t_1}^{(s)}, \cdots, W_{t_n}^{(s)})$ and is bounded and continuous. Suppose $\Phi(g) = \Phi(g_{t_1}, \cdots, g_{t_n})$, and $\mathbb{E}(\Phi(W_{t_1}^{(s)}, \cdots, W_{t_n}^{(s)})1_A) = \mathbb{E}(\lim_{\epsilon \to 0} \Phi(W_{t_1}^{(s+\epsilon)}, \cdots, W_{t_n}^{(s+\epsilon)})1_A) = \lim_{\epsilon \to 0} \mathbb{E}(\Phi(W_{t_1}^{s+\epsilon}, \cdots, W_{t_n}^{(s+\epsilon)}))\mathbb{P}(A) = \mathbb{E}(\Phi(B_{t_1}, \cdots, B_{t_n}))\mathbb{P}(A)$.

• Blumenthal's 0-1 law: If $A \in \mathscr{F}_0^+$, then $\mathbb{P}(A) = 0$ or 1.

Proof If $A \in \mathscr{F}_0^+$, then $(B_t)_{t\geq 0} \perp \perp A$. On the other hand, $A \in \sigma(B_t, t\geq 0) \Rightarrow A$ is independent of A.

• Let $\tau_1 = \inf\{t \ge 0 : B_t > 0\}$, then $\tau_1 = 0$ a.s.

Proof
$$\{\tau_1 = 0\} = \bigcap_{n \geq 1} \{\sup_{s \in [0, \frac{1}{n}]} B_s > 0\} \in \mathscr{F}_0^+ \Rightarrow \mathbb{P}(\tau_1 = 0) = 0 \text{ or } 1. \ \mathbb{P}(\tau_1 = 0) = \lim_{\epsilon \to 0} \mathbb{P}(\tau_1 \leq \epsilon) \geq \frac{1}{2}.$$

• Let $\tau_2 = \inf\{t > 0 : B_t = 0\}$. Then $\tau_2 = 0$ a.s.

Proof The prior proposition + symmetry + continuity of B.M.

• Strong Markov property: Let τ be a stopping time w.r.t. $(\mathscr{F}_t)_{t\geq 0}$. The process $(1_{\tau<+\infty}W_t^{\tau})_{t\geq 0}$ is a B.M. independent of \mathscr{F}_{τ} under the measure $\mathbb{P}(\cdot|\tau<+\infty)$.

Proof We only prove the case when $\mathbb{P}(\tau < +\infty) = 1$. It suffices to show $\mathbb{E}(\Phi(W_{t_1}^{\tau}, \cdots, W_{t_n}^{(\tau)})1_A) = \mathbb{E}(\Phi(B_{t_1}, \cdots, B_{t_n}))\mathbb{P}(A)$ for every continuous and bounded $\Phi : \mathbb{R}^n \to \mathbb{R}$ and $A \in \mathscr{F}_{\tau}$. Let $\tau_k(\omega) := \frac{j}{k}$ if $\tau(\omega) \in (\frac{j-1}{k}, \frac{j}{k}], \tau_k \to \tau$ a.s. Bounded convergence $\Rightarrow \mathbb{E}(\Phi(W_{t_1}^{(\tau_k)}, \cdots, W_{t_n}^{(\tau_k)})1_A) \to \mathbb{E}(\Phi(W_{t_1}^{(\tau)}, \cdots, W_{t_n}^{(\tau)})1_A)$. Then

$$\begin{split} \mathbb{E}(\Phi(W_{t_1}^{(\tau)},\cdots,W_{t_n}^{(\tau)})1_A) &= \lim_{k \to \infty} \mathbb{E}(\Phi(W_{t_1}^{(\tau_k)},\cdots,W_{t_n}^{(\tau_k)})1_A) \\ &= \lim_{k \to \infty} \mathbb{E}(\sum_{j \ge 0} \Phi(W_{t_1}^{(\tau_k)},\cdots,W_{t_n}^{(\tau_k)})1_{A \cap \{\frac{j-1}{k} < \tau \le \frac{j}{k}\}}) \\ &= \lim_{k \to \infty} \mathbb{E}(\sum_{j \ge 0} \Phi(W_{t_1}^{(\frac{j}{k})},\cdots,W_{t_n}^{(\frac{j}{k})})1_{A \cap \{\frac{j-1}{k} < \tau \le \frac{j}{k}\}}) \\ &= \lim_{k \to \infty} \sum_{j \ge 0} \mathbb{E}(\Phi(B_{t_1},\cdots,B_{t_n}))\mathbb{P}(A \cap \{\frac{j-1}{k} < \tau \le \frac{j}{k}\}) \\ &= \mathbb{E}(\Phi(B_{t_1},\cdots,B_{t_n}))\mathbb{P}(A) \end{split}$$

• Maximum principle: Let $M_t = \sup_{s \in [0,t]} B_s$. Then $\mathbb{P}(M_T \ge a) = 2\mathbb{P}(B_T \ge a)$ for a > 0.

Proof Let $\tau_a = \inf\{t > 0 : B_t = a\}$. Then $\{M_T \ge a\} = \tau_a \le T$. $\{W_t^{(\tau_a)}\}_{t \ge 0}$ is a B.M. independent of \mathscr{F}_{τ_a} . $\mathbb{P}(M_T \ge a) = \mathbb{P}(M_T \ge a, B_T \ge a) + \mathbb{P}(M_T \ge a, B_T \le a) + \mathbb{P}(M_T \ge a, B_T \le a) + \mathbb{P}(M_T \ge a, B_T \le a) = \mathbb{P}(\tau_a \le T, B_T - B_{\tau_a} \le 0) = \mathbb{P}(T_a \le T, B_T - B_{\tau_a} \ge 0) = \mathbb{P}(B_T \ge a)$.

- Let (\mathcal{X}, d) be a complete, separable metric space with Borel σ -algebra. Let $(\mathbb{P}_n)_{n\geq 0}$ and \mathbb{Q} be probability measure on it. We say \mathbb{P}_n convergences weakly to \mathbb{Q} $(\mathbb{P}_n \Rightarrow \mathbb{Q})$ if for every bounded and continuous $f: \mathcal{X} \to \mathbb{R}$, we have $\int_{\mathcal{X}} f d\mathbb{P}_n \to \int_{\mathcal{X}} f d\mathbb{P}$.
- $\mathbb{P}_n \Rightarrow \mathbb{Q}$ (weakly on $C([0,1],\mathbb{R})$) iff (1) $\mathbb{P}_n|J \Rightarrow \mathbb{Q}|_J$ for every finite $J \subset [0,1]$; (2) $\{P_n\}_n$ is relatively compact, i.e., every subsequence has a further subsequence that is weakly convergent.
- Let $M = M(\mathcal{X})$ be the set of all probability measure on $(\mathcal{X}, d, \mathcal{B}(\mathcal{X}))$. We say $\Gamma \subset M$ is tight if for every $\epsilon > 0$, $\exists \text{ compact } K_{\epsilon} \subset \mathcal{X} \text{ s.t. } \sup_{\mu \in \Gamma} \mu(\mathcal{X} \setminus K_{\epsilon}) < \epsilon$.
- Prokhorov's theorem: Let (\mathcal{X}, d) be a complete, separable metric space. Then, $\Gamma \subset M(\mathcal{X})$ is tight if and only if it is relatively compact.
- Arzela-Ascoli: A set $A \subset C([0,1],\mathbb{R})$ is relatively compact iff (1) $\sup_{f \in A} |f(0)| < +\infty$; (2) $\sup_{f \in A} \operatorname{Osc}_f(\delta) \to 0$ as $\delta \to 0$ where $\operatorname{Osc}_f(\delta) = \sup_{|s-t| < \delta} |f(s) f(t)|$.

• A set $\Gamma \subset M(C[0,1],\mathbb{R})$ is tight iff (i) $\lim_{\lambda \to \infty} \sup_{\mu \in \Gamma} \mu(\{\omega : |\omega(0)| \ge \lambda\}) = 0$; (ii) $\forall \epsilon > 0$, $\lim_{\delta \to 0} \sup_{\mu \in \Gamma} \mu(\{\omega : |\omega(0)| \ge \lambda\}) = 0$.

Proof "\Rightarrow": Suppose $\Gamma \subset M$ is tight. Then $\forall \eta > 0$, \exists compact $K \subset C([0,1],\mathbb{R})$ s.t. $\mu(K^c) < \eta$ for every $\mu \in \Gamma$. By Arzela-Ascoli, (a) $\sup_{\omega \in K} |\omega(0)| < +\infty$; (b) $\sup_{\omega \in K} \operatorname{Osc}_{\omega}(\delta) \to 0$ as $\delta \to 0$. (a) $\Rightarrow \{\omega : |\omega(0)| > \lambda\} \subset K^c$ for sufficient large λ . (b) $\Rightarrow \forall \epsilon > 0$, $\{\omega : \operatorname{Osc}_{\omega}(\delta) > \epsilon\} \subset K^c$ for sufficient small δ . $\Rightarrow \sup_{\mu \in \Gamma} \mu(\{\omega : |\omega(0)| > \lambda\}) < \eta$, $\sup_{\mu \in \Gamma} \mu(\{\omega : \operatorname{Osc}_{\omega}(\delta) > \epsilon\}) < \eta$. "\(\infty\$": Suppose $\Gamma \subset C([0,1],\mathbb{R})$ satisfies (i) and (ii). For every $\eta > 0$, we need find compact $K \subset C([0,1],\mathbb{R})$ s.t. $\sup_{\mu \in \Gamma} \mu(K^c) < \eta$. By (i), choose $\lambda > 0$ s.t. $\sup_{\mu \in \Gamma} \mu(\{\omega : |\omega(0)| > \lambda\}) < \frac{\eta}{2}$ and define $A_0 = \{\omega : |\omega(0)| \le \lambda\}$. By (ii), $\forall k \ge 1$, $\exists \delta_k (\downarrow 0 \text{ as } k \to \infty)$ s.t. $\sup_{\mu \in \Gamma} \mu(\{\omega : \operatorname{Osc}_{\omega}(\delta_k) > \frac{1}{k}\}) \le \frac{\eta}{2^{k+1}}$ and define $A_k = \{\omega : \operatorname{Osc}_{\omega}(\delta_k) \le \frac{1}{k}\}$. $E := \cap_{k \ge 0} A_k$ is a compact subset of $C([0,1],\mathbb{R})$ and $\sup_{\mu \in \Gamma} \mu(E^c) \le 1 - \eta$.

• Donsker's invariance principle: X_i , $i=1,2,\cdots$ are i.i.d. r.v.'s with $\mathbb{E}X_i=0$ and $\mathbb{E}X_i^2=1$. Define $W^{(n)}(t):=S_{\lfloor nt\rfloor}+\{nt\}(S_{\lfloor nt\rfloor+1}-S_{\lfloor nt\rfloor})$ and $\mathbb{P}_n:=\mathbb{P}\circ(\frac{W_n}{\sqrt{n}})^{-1}$. Then $\mathbb{P}_n\Rightarrow \mathrm{B.M.}$

Proof We need to show $\mathbb{P}_n(\{\omega : \mathrm{Osc}_{\omega}(\delta) > \epsilon\}) \to 0$ as $\delta \to 0$.

Step 1. $\mathbb{P}_n(\{\omega: \mathrm{Osc}_{\omega}(\delta) > \epsilon\}) = \mathbb{P}(\mathrm{Osc}_{W^{(n)}}(\delta) > \epsilon \sqrt{n})$. It suffices to show $\forall \epsilon > 0$, $\limsup_{n \to \infty} \mathbb{P}(\mathrm{Osc}_{W^{(n)}}(\delta) > \epsilon \sqrt{n}) \to 0$ as $\delta \to 0$.

 $\begin{aligned} &\text{Step 2. } \mathbb{P}(\text{Osc}_{W^{(n)}}(\delta) > \epsilon \sqrt{n}) = \mathbb{P}(\sup_{|s-t| \leq \delta} |W^{(n)}(s) - W^{(n)}(t)| > \epsilon \sqrt{n}) = \mathbb{P}(\sup_{t \in [0,1-\delta]} \sup_{h \in [0,\delta]} |W^{(n)}(t+h) - W^{(n)}(t)| > \epsilon \sqrt{n}) \\ &\epsilon \sqrt{n}) \leq \mathbb{P}(\sup_{k \in [0,2\delta]} |W^{(n)}(k\delta + h) - W^{(n)}(k\delta)| > \frac{\epsilon \sqrt{n}}{2}) \leq (\frac{1}{\delta} + 1) \sup_{k < \frac{1}{\delta} + 1} \mathbb{P}(\sup_{k \in [0,2\delta]} |W^{(n)}(k\delta + h) - W^{(n)}(k\delta)|) > \frac{\epsilon \sqrt{n}}{2}. \end{aligned}$

Step 3. We need to show $\forall \epsilon > 0, \frac{1}{\delta} \limsup_{n \to \infty} \sup_{t \in [0,1]} \mathbb{P}(\sup_{h \in [0,\delta]} |W^{(n)}(t+h) - W^{(n)}(t)| > \epsilon \sqrt{n}) \to 0.$ $W^{(n)}(t+h) - W^{(n)}(t) = S_{\lfloor n(t+h) \rfloor} + \{n(t+h)\}X_{\lfloor n(t+h) \rfloor} - S_{\lfloor nt \rfloor} - \{nt\}X_{\lfloor nt \rfloor} \Rightarrow |W^{(n)}(t+h) - W^{(n)}(t)| \leq |S_{\lfloor n(t+h) \rfloor} - S_{\lfloor nt \rfloor}| + |X_{\lfloor n(t+h) \rfloor}| + |X_{\lfloor nt \rfloor}| \Rightarrow \mathbb{P}(\sup_{h \in [0,\delta]} |W^{(n)}(t+h) - W^{(n)}(t)| > \epsilon \sqrt{n}) \leq \mathbb{P}(\sup_{h \in [0,\delta]} |S_{\lfloor n(t+h) \rfloor} - S_{\lfloor nt \rfloor}| > \frac{\epsilon \sqrt{n}}{3}) + O_n(1).$ $\mathbb{P}(\sup_{0 \leq k \leq n\delta} |S_{\lfloor nt \rfloor + k} - S_{\lfloor nt \rfloor}| > \frac{\epsilon \sqrt{n}}{3}) \lesssim \frac{\mathbb{E}(S_{\lfloor nt \rfloor + \lfloor n\delta \rfloor} - S_{\lfloor nt \rfloor})^2}{\epsilon^{2n}} \sim \frac{\delta}{\epsilon^2},$ which means that the maximal inequality is not enough if we only have finite second moment.

Step 4. We need to show $\frac{1}{\delta} \limsup_{n \to \infty} \mathbb{P}(\sup_{0 \le k \le n\delta} |S_k| > \epsilon \sqrt{n}) = 0$. Let $\tau = \inf\{k \ge 1, |S_k| > \epsilon \sqrt{n}\}$. $\mathbb{P}(\max_{1 \le k \le \lfloor n\delta \rfloor} |S_k| > \epsilon \sqrt{n}) = \mathbb{P}(\max_{1 \le k \le \lfloor n\delta \rfloor} |S_k| > \epsilon \sqrt{n}) = \mathbb{P}(\max_{1 \le k \le \lfloor n\delta \rfloor} |S_k| > \epsilon \sqrt{n}, |S_{\lfloor n\delta \rfloor}| > \frac{\epsilon \sqrt{n}}{2}) + \mathbb{P}(\max_{1 \le k \le \lfloor n\delta \rfloor} |S_k| > \epsilon \sqrt{n}, |S_{\lfloor n\delta \rfloor}| \le \frac{\epsilon \sqrt{n}}{2})$. The first term $\le \mathbb{P}(|S_{\lfloor n\delta \rfloor}| > \frac{\epsilon \sqrt{n}}{2}) \le \frac{\epsilon \sqrt{n}}{2} > \frac{\epsilon \sqrt{n}}{2} > \frac{\epsilon \sqrt{n}}{2} = \frac{\epsilon \sqrt{n}$

- $(\mathcal{P}_t f)(x) = \mathbb{E}^x(f(X_t)), (\mathcal{L}f)(x) = \lim_{h\downarrow 0} \frac{(\mathcal{P}_h f)(x) f(x)}{h}, \mathcal{P}_{t+s} = \mathcal{P}_t \circ \mathcal{P}_s, \mathcal{P}_t \circ \mathcal{L} = \mathcal{L} \circ \mathcal{P}_t.$ For B.M., $p_t(y) = \frac{1}{\sqrt{2\pi t}} e^{-\frac{|y|^2}{2t}},$ therefore $(\mathcal{L}f)(x) = \lim_{t\downarrow 0} \frac{1}{t} (\mathbb{E}^x(f(B_t)) f(x)) = \lim_{t\downarrow 0} \frac{1}{t} \int_{\mathbb{R}} p_t(y) [f(x-y) f(x)] dy = \lim_{t\downarrow 0} \frac{1}{t} \int_{\mathbb{R}} p_t(y) (-f'(x)y + \frac{1}{2}f''(x)y^2 + O(|y|)^3) \sim \lim_{t\downarrow 0} (\frac{1}{t} \int_{\mathbb{R}} p_t(y)y^2 dy) \cdot \frac{1}{2}f''(x) = \frac{1}{2}f''(x) \Rightarrow \mathcal{L} = \frac{1}{2}\triangle.$
- Feynman-Kac formula: Suppose $v: \mathbb{R}^d \to \mathbb{R}$ is bounded and continuous and let $u(t,x) = \mathbb{E}^x[f(B_t)e^{\int_0^t v(B_s)ds}]$ where B is d-dim B.M. Then u satisfies the PDE $\begin{cases} \partial_t u = \frac{1}{2}\triangle u + vu \\ u(0,\cdot) = f(\cdot) \end{cases}$.

Proof $e^{\int_0^t v(B_s)ds} = \sum_{n\geq 0} \frac{1}{n!} (\int_0^t v(B_s)ds)^n$

$$\frac{1}{n!} \int \cdots \int_{[0,1]^n} v(B_{s_1}) \cdots v(B_{s_n}) ds_1 \cdots ds_n = \int \cdots \int_{0 < s_1 < \cdots < s_n < t} v(B_{s_1}) \cdots v(B_{s_n}) ds_1 \cdots ds_n$$

$$= \int \cdots \int_{0 < s_1 < \cdots < s_n < t} v(B_{t-s_1}) \cdots v(B_{t-s_n}) ds_1 \cdots ds_n$$

Denote the region $\Delta_n(t) = \{0 < s_1 < \dots < s_n < t\}$, then $u(t,x) = \sum_{n \geq 0} \int \dots \int_{\Delta_n(t)} \mathbb{E}^x (f(B_t)v(B_{t-s_1}) \dots v(B_{t-s_n})) ds_1 \dots ds_n := \sum_{n \geq 0} I_n(t,x)$. $I_0(t,x) = \mathbb{E}^x (f(B_t)) = (\mathcal{P}_t f)(x) \Rightarrow \begin{cases} \partial_t I_0 = \frac{1}{2} \triangle I_0 \\ I_0(0,\cdot) = f \end{cases}$.

 $I_1(t,x) = \int_0^t \mathbb{E}^x (f(B_t)v(B_{t-s})) ds = \int_0^t \mathbb{E}^x (v(B_{t-s})\mathbb{E}^x (f(B_t)|\mathscr{F}_{t-s})) ds = \int_0^t \mathbb{E}^x (v(B_{t-s})(\mathcal{P}_f\{)(B_{t-s})) ds = \int_0^t (\mathcal{P}_{t-s}v\mathcal{P}_s f)(x) ds$ $\Rightarrow \partial_t I_1 = v\mathcal{P}_t f + \frac{1}{2} \triangle I_1 = \frac{1}{2} \triangle I_1 + vI_0, I_1(0,\cdot) = 0.$

$$I_{n}(t,x) = \int \cdots \int_{0 < s_{1} < \cdots < s_{n} < t} \mathbb{E}^{x}(f(B_{t})v(B_{t-s_{1}}) \cdots v(B_{t-s_{n}})) ds_{1} \cdots ds_{n} = \int_{0}^{t} \mathbb{E}^{x}(v(B_{t-s})\mathbb{E}^{x}(f(B_{t})|\mathscr{F}_{t-s})) ds$$

$$= \int_{0}^{t} \left(\int \cdots \int_{\Delta_{n-1}(s_{n})} (\mathcal{P}_{t-s_{n}}v\mathcal{P}_{s_{n}-s_{n-1}}v \cdots v\mathcal{P}_{s_{2}-s_{1}}v\mathcal{P}_{s_{1}}f)(x) ds_{1} \cdots ds_{n-1} \right) ds_{n}$$

$$\Rightarrow \partial_{t}I_{n} = vI_{n-1} + \frac{1}{2}\Delta I_{n}, I_{n}(0,\cdot) = 0.$$

• Let
$$\xi_t = \frac{1}{t} \int_0^t 1_{\mathbb{R}^+}(B_s) ds$$
, then $\mathbb{P}(\xi_t \leq x) = \int_0^x \frac{1}{\pi \sqrt{y(1-y)}} dy = \frac{2}{\pi} \arcsin(\sqrt{x})$.
Proof $\xi_t = \frac{1}{t} \int_0^t 1_{\mathbb{R}^+}(B_s) ds = \int_0^t 1_{\mathbb{R}^+}(B_{t \cdot \frac{s}{t}}) d\frac{s}{t} = \int_0^1 1_{\mathbb{R}^+}(\sqrt{t} \frac{B_{st}}{\sqrt{t}}) ds = \int_0^1 1_{\mathbb{R}^+}(\frac{B_{st}}{\sqrt{t}}) ds \stackrel{\text{Law}}{=} \int_0^1 1_{\mathbb{R}^+}(B_s) ds := \xi.$

Let
$$u(t,x) = \mathbb{E}^x(e^{-\sigma t\xi}) \Rightarrow \begin{cases} \partial_t u = \frac{1}{2}\partial_x^2 u - \sigma 1_{\mathbb{R}^+} u \\ u(0,\cdot) = 1 \end{cases}$$
. Define $g(x) = \int_0^{+\infty} e^{-\lambda t} u(t,x) dt \Rightarrow \frac{1}{2}g'' = (\lambda + \sigma 1_{\mathbb{R}^+})g - 1 \Rightarrow g''(x) = 0$

$$\begin{cases} 2(\lambda+\sigma)g(x)-2, & x\geq 0 \\ 2\lambda g(x)-2, & x\leq 0 \end{cases} \Rightarrow g(x) = \begin{cases} Be^{-\sqrt{2(\lambda+\sigma)}x}+\frac{1}{\lambda+\sigma}, & x\geq 0 \\ Ce^{\sqrt{2\lambda}x}+\frac{1}{\lambda}, & x\leq 0 \end{cases}. \quad g(0) \text{ and } g'(0) \text{ well-defined } \Rightarrow B = \frac{\sqrt{\lambda+\sigma}-\sqrt{\lambda}}{\sqrt{\lambda}(\lambda+\sigma)}, C = -\frac{\sqrt{\lambda+\sigma}-\sqrt{\lambda}}{\lambda\sqrt{\lambda+\sigma}}. \quad g(0) = \frac{1}{\sqrt{\lambda(\lambda+\sigma)}} = \mathbb{E}(\frac{1}{\lambda+\sigma\xi}) \text{ for every } \lambda, \sigma>0 \text{ (take } \lambda=1) \Rightarrow \mathbb{E}(\frac{1}{1+\sigma\xi}) = \frac{1}{\sqrt{1+\sigma}} \text{ for every } \sigma>0. \text{ Power expansion } \Rightarrow \sum_{n\geq 0} (-1)^n \mathbb{E}(\xi^n) \sigma^n = \sum_{n\geq 0} (-\sigma)^n \int_0^1 \frac{x^n}{\pi\sqrt{x(1-x)}} dx \qquad \qquad \Box$$

• Law of iterated logarithm:
$$\limsup_{h\to 0} \frac{B_h}{\sqrt{2h\log\log(\frac{1}{h})}} = 1$$
 a.s., $\liminf_{h\to 0} \frac{B_h}{\sqrt{2h\log\log(\frac{1}{h})}} = -1$ a.s.

Proof Since $W_t = tB_{1/t}$ is again a standard B.M., it is equivalent to prove $\limsup_{t\to\infty} \frac{B_t}{\sqrt{2t\log\log t}} = 1$ a.s.

Step 1. Let $\Psi(t) = \sqrt{2t \log \log t}$ and $t_n = \gamma^n (\gamma > 1)$. We want to show $\limsup_{n \to \infty} \frac{B_{t_n}}{\Psi(t_n)} \le 1$ a.s.

$$\mathbb{P}(\frac{B_{t_n}}{\Psi(t_n)} > \alpha) = \mathbb{P}(\frac{B_{t_n}}{\sqrt{t_n}} > \sqrt{2}\alpha\sqrt{\log\log t_n}) \sim (C + o_n(1))\frac{1}{\sqrt{\log n}}(\frac{1}{n})^{\alpha^2} \Rightarrow \sum_n \mathbb{P}(\frac{B_{t_n}}{\Psi(t_n)} > \alpha) = \begin{cases} < +\infty, & \text{if } \alpha > 1 \\ = +\infty, & \text{if } \alpha \leq 1 \end{cases}$$
. Borel-Cantelli
$$\Rightarrow \mathbb{P}(\frac{B_{t_n}}{\Psi(t_n)} > 1 + \epsilon \text{ i.o.}) = 0.$$

For arbitrary t, assume $r^n < t < r^{n+1}$. Then $\frac{B_t}{\Psi(t)} = \frac{\Psi(r^n)}{\Psi(t)} \frac{B_r^n}{\Psi(r^n)} + \frac{\Psi(r^n)}{\Psi(t)} \frac{B_t - B_{r^n}}{\Psi(r^n)}$. The first term ≤ 1 a.s. Then need to show $\limsup_{n \to +\infty} \sup_{t \in [r^n, r^{n+1}]} \frac{B_t - B_{r^n}}{\Psi(r^n)} = \epsilon$ a.s. for every $\epsilon > 0$. $\mathbb{P}(\sup_{t \in [r^n, r^{n+1}]} \frac{B_t - B_{r^n}}{\Psi(r^n)} \geq \epsilon) = \mathbb{P}(\sup_{t \in [r^n, r^{n+1}]} (B_t - B_{r^n}) \geq \epsilon)$ $\epsilon \Psi(r^n)) = 2\mathbb{P}(B_{r^{n+1}} - B_{r^n} \ge \epsilon \Psi(r^n)) = 2\mathbb{P}(\frac{B_{r^{n+1}} - B_{r^n}}{\sqrt{r^n(r-1)}} \ge \epsilon \frac{\Psi(r^n)}{\sqrt{r^n(r-1)}}) \sim (\log(r^n(r-1)))^{-\frac{\epsilon^2}{r-1}} \sim n^{-\frac{\epsilon^2}{r-1}}.$ Take r close enough to 1 s.t. $\frac{\epsilon^2}{n-1} > 1$.

Step 2. We want to show
$$\limsup_{t\to +\infty}\frac{B_t}{\Psi(t)}\geq 1$$
 a.s. Take $t_n=\gamma^n$. Need to show for every $\epsilon>0$, $\exists r>1$ s.t. $\limsup_{n\to +\infty}\frac{B_r^n}{\Psi(r^n)}>1-\epsilon$ a.s. $\mathbb{P}(\frac{B_r^{n+1}-B_r^n}{\Psi(r^n(r-1))})=\mathbb{P}(\frac{B_r^{n+1}-B_r^n}{\sqrt{r^n(r-1)}}>\alpha\sqrt{2\log\log(r^n(r-1))})\sim e^{-\alpha^2\log\log(r^n(r-1))}\frac{1}{\sqrt{\log\log(r^n(r-1))}}\sim \frac{1}{\sqrt{\log\log(r^n(r-1))}}\sim \frac{1}{\sqrt{\log n}}n^{-\alpha^2}\Rightarrow \mathbb{P}(B_{r^{n+1}}-B_{r^n}>\Psi(r^n(r-1)) \text{ i.o.})=1.$ $\frac{B_r^{n+1}}{\Psi(r^{n+1})}=\frac{\Psi(r^n)}{\Psi(r^{n+1})}\frac{B_r^n}{\Psi(r^n)}+\frac{\Psi(r^n(r-1))}{\Psi(r^{n+1})}\frac{B_r^{n+1}-B_r^n}{\Psi(r^n(r-1))}\Rightarrow \limsup_{n\to +\infty}\frac{B_r^{n+1}}{\Psi(r^{n+1})}\geq -\frac{1}{\sqrt{r}}+\sqrt{\frac{r-1}{r}}$ arbitrary close to 1 for sufficient large r .

Lévy's construction of B.M. (based on Gaussianity): Let $\{Z_t, t \text{ dyadic}\}\$ be i.i.d. $\mathcal{N}(0,1)$ on a common probability space $(\Omega, \mathscr{F}, \mathbb{P})$. Let $B_0(t) = tZ_1, B_1(\frac{1}{2}) = \frac{1}{2}(B_0(0) + B_0(1)) + \frac{1}{2}Z_{\frac{1}{8}}, B_2(\frac{1}{4}) = \frac{1}{2}(B_1(0) + B_1(\frac{1}{2})) + \frac{1}{4}Z_{\frac{1}{4}}, B_2(\frac{3}{4}) = \frac{1}{2}(B_1(0) + B_1(\frac{1}{2})) + \frac{1}{4}Z_{\frac{1}{4}}, B_2(\frac{3}{4}) = \frac{1}{2}(B_1(0) + B_1(\frac{3}{2})) + \frac{1}{4}Z_{\frac{1}{4}}, B_2(\frac{3}{4}) = \frac{1}{2}(B_1(0) + B_1(\frac{3}{4})) + \frac{1}{2}(B_1(0) + B_1(0) + B_1(0)) + \frac{1}{2}(B_1(0) + B_1(0) + B_1(0) + B_1(0) + \frac{1}{2}(B_1(0) + B_1(0)) + \frac{1}{2}(B_1(0) + B_1(0) + B_1(0) + \frac{1}$ $\frac{1}{2}(B_1(\frac{1}{2}) + B_1(1)) + \frac{1}{4}Z_{\frac{3}{4}}$. We will show that for every p > 1 and $\alpha < \frac{1}{2}$, $\{B_N\}$ is Cauchy on $L_w^p(C^{\alpha}[0,1],\mathbb{R})$.

Proof We define the functions $\{h_n^{(k)}, n \geq 0, 0 \leq k \leq 2^{n-1}, \text{even}\}$. $h_0^{(0)} = 1 \text{ on } [0, 1], h_n^{(k)} = 2^{\frac{n-1}{2}} (1_{\lceil \frac{2k}{2k} \rceil, \frac{2k+1}{2} \rceil} - 1_{\lceil \frac{2k+1}{2k+2} \rceil})$. The collection $\{h_n^{(k)}\}$ is an orthogonal basis of $L^2([0,1],\mathbb{R})$. Let $\{Z_n^{(k)}, k \leq 2^n - 1, \text{even}, n \geq 0\}$ be i.i.d. $\mathcal{N}(0,1)$ and define $B_N(t) = 0$ $\sum_{n=0}^{N}\sum_{k=0}^{2^{n}-1}Z_{n}^{(k)}\int_{0}^{t}h_{n}^{(k)}(r)\mathrm{d}r$. $\{B_{N}\}$ has the same law as the piecewise linear construction metioned above. We will show now for p > 1, $\alpha < \frac{1}{2}$, $\{B_N\}$ is Cauchy in $L_w^p(C^{\alpha}[0,1], \mathbb{R})$. In other words, we need to show $(\mathbb{E}||B_N - B_{N-1}||_{C^{\alpha}}^p)^{\frac{1}{p}}$ decays fast enough as $N \to +\infty$ where $||B_N - B_{N-1}||_{C^{\alpha}} = \sup_{t \in [0,1]} |B_N(t) - B_{N-1}(t)| + \sup_{s,t \in [0,1]} \frac{|(B_N(t) - B_N(s)) - (B_{N-1}(t) - B_{N-1}(s))|}{|t-s|^{\alpha}}$. The first term is dominated by the second term. $|(B_N(t) - B_N(s)) - (B_{N-1}(t) + \sup_{s,t \in [0,1]} \frac{|t-s|^{\alpha}}{|t-s|^{\alpha}}] = \sum_{k=0}^{2^N-1} \frac{|t-s|^{\alpha}}{2^N}$. The first term is dominated by the second term. $|(B_N(t) - B_N(s)) - (B_{N-1}(t) - B_{N-1}(s))| = |\sum_{k=0}^{2^N-1} Z_N^{(k)} \int_s^t h_N^{(k)}(r) dr| := (*).$ If $|t-s| \le \frac{1}{2^N}$, $(*) \lesssim 2^{\frac{N}{2}} |t-s| \sup_{0 \le t \le 2^{N-1}} |Z_N^{(k)}|$ (at most one integral is nonzero); otherwise, $(*) \lesssim 2^{-\frac{N}{2}} \sup_{0 \le t \le 2^{N-1}} |Z_N^{(k)}|$ (at most two integrals are nonzero). Thus $||B_N - B_{N-1}||_{C^{\alpha}} \lesssim \begin{cases} 2^{\frac{N}{2}} |t-s|^{1-\alpha} \sup_{0 \le t \le 2^{N-1}} |Z_N^{(k)}| \lesssim 2^{-N(1-\alpha)} 2^{\frac{N}{2}} = 2^{-(\frac{1}{2}-\alpha)N}, & |t-s| \le \frac{1}{2^N}, \\ 2^{-\frac{N}{2}} |t-s|^{-\alpha} \sup_{0 \le t \le 2^{N-1}} |Z_N^{(k)}| \lesssim 2^{-\frac{N}{2}} 2^{\alpha N} \lesssim 2^{-(\frac{1}{2}-\alpha)N}, & \text{otherwise} \end{cases}$

grals are nonzero). Thus
$$||B_N - B_{N-1}||_{C^{\alpha}} \lesssim \begin{cases} 2^{\frac{N}{2}} |t-s|^{1-\alpha} \sup_{0 \le k \le 2^{N-1}} |Z_N^{(k)}| \lesssim 2^{-N(1-\alpha)} 2^{\frac{N}{2}} = 2^{-(\frac{1}{2}-\alpha)N}, & |t-s| \le \frac{1}{2^N} \\ 2^{-\frac{N}{2}} |t-s|^{-\alpha} \sup_{0 \le t \le 2^{N-1}} |Z_N^{(k)}| \lesssim 2^{-\frac{N}{2}} 2^{\alpha N} \lesssim 2^{-(\frac{1}{2}-\alpha)N}, & \text{otherwise} \end{cases}$$