Natural Language Processing

$$\begin{aligned} & \mathbf{x}_{\textit{shirt}} - \mathbf{x}_{\textit{clothing}} \approx \mathbf{x}_{\textit{chair}} - \mathbf{x}_{\textit{furniture}} \ \log p(o|c) = \log \frac{\exp \left(u_o^T v_c\right)}{\sum_{w=1}^{W} \exp \left(u_w^T v_c\right)} \\ & \mathbf{x}_{\textit{king}} - \mathbf{x}_{\textit{man}} \approx \mathbf{x}_{\textit{queen}} - \mathbf{x}_{\textit{woman}} \end{aligned}$$

Contents

- Token Representation Word2Vec
- Sentence Representation CBOW, RN, CNN, Self Attention, RNN
- Language Model N-Gram LM, NNLM
- Neural Machine Translation

How to Represent a Token

- Intuitive embedding one hot encoding
 - Apple, Strawberry, Dog 세 단어가 있을 때,
 - Apple \rightarrow [1, 0, 0]
 - Strawberry \rightarrow [o, 1, o]
 - Dog \rightarrow [0, 0, 1]
- 장점
 - Easy!
- 단점
 - 단어들 간의 의미관계를 파악할 수 없음(apple과 strawberry, apple과 dog)
 - 단어가 많아지면?

We Want...

(Mikolov et al., NAACL HLT, 2013)

Let's Try It

http://w.elnn.kr/search/

- How to train word vectors?????
 - MLP
 - RNN
 - **-** ...

CBOW & Skip-gram

CBOW

Skip-gram

CBOW – Continuous Bag of Words

- Similar to the feedforward NNLM, but
- Non-linear hidden layer removed
- Projection layer shared for all words
- Projected vectors are just averaged
- Called CBOW because the order of the words is lost

CBOW – Continuous Bag of Words

- Fill the blank
 - 아이스크림을 사 먹었는데, ___ 시려서 먹기가 힘들었다.
- 앞 뒤로 C/2개의 단어를 input으로 하여 center 단어를 맞추도록 학습
- Input은 one-hot encoding
- Input → Hidden layer는 linear mapping(avg(Wx_{ik}))
- Hidden → Output layer는 Softmax(W'h_i)

Skip-gram

- Similar to CBOW, but instead of predicting the current word based on the context
- Tries to maximize classification of a word based on another word in the same sentence
- Thus, uses each current word as an input to a log-linear classifier
- Predicts words within a certain window

Skip-gram

- CBOW와 반대로 중심 단어를 주고 주변 단어들에 대한 확률 값을 출력함
- Window 내에 있는 단어의 확률이 최대 가 되도록 학습
- Objective function
 - Maximize $J'(\theta) = \prod_{t=1}^{T} \prod_{-C/2 \le j \le C/2, j \ne 0} P(x_{t+j}|x_t; \theta)$
 - → Negative log likelihood
 - Minimize

$$J(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-C/2 \le j \le C/2, j \ne 0} log P(x_{t+j} | x_t; \theta)$$

Skip-gram

•
$$P(o|c) = \frac{\exp(u_o^T \cdot v_c)}{\sum_{w=1}^{V} \exp(u_w^T \cdot v_c)}$$

•
$$J(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-C/2 \le j \le C/2, j \ne 0} log P(x_{t+j} | x_t; \theta)$$

에서, P의 분모를 구하려면 모든 단어에 대해 고려해야 한다

Negative sampling 방법으로 window 밖에 있는 단어를 일부만 sampling 하여 근사한다 →
 NCE(Noise Contrastive Estimation)

How to Represent a Token

- How do should we represent a token so that it reflects its "meaning"?
- First, we assume nothing is known: use an one-hot encoding.
- Second, the neural network capture the token's meaning as a vector.
- This is done by a simple matrix multiplication: $Wx = W[\hat{x}]$, if x is one-hot, where $\hat{x} = \arg\max x_i$ is the token's index in the vocabulary.

How to Represent a Sentence

- 단어는 Word2Vec을 사용하면 될텐데, 문장은 어떻게 해야할까?
- 문장 = 단어들의 sequence
- Sequence의 길이가 문장마다 모두 다름 → fixed length vector로 표현하는 방법을 찾아야 함

How to Represent a Sentence - CBOW

• Continuous bag-of-words based multi-class text classifier

• With this DAG, you use automatic backpropagation and stochastic gradient descent to train the classifier.

How to Represent a Sentence - RN

- Relation Network [Santoro et al., 2017]: Skip Bigrams
 - Consider all possible pairs of tokens: $(x_i, x_j), \forall i \neq j$
 - Combine two token vectors with a neural network for each pair $f(x_i, x_j) = W\phi(U_{\text{left}}e_i + U_{\text{right}}e_j)$
 - ϕ is a element-wise nonlinear function, such as anh or ReLU $(\max(0,a))$
 - One subgraph in the DAG.

How to Represent a Sentence - RN

- Relation Network: Skip Bigrams
 - Considers all possible pairs of tokens: $(x_i, x_j), \forall i \neq j$
 - Considers an possible f $f(x_i, x_j) = W\phi(U_{\text{left}}e_i + U_{\text{right}}e_j)$ Considers the pair-wise "relation"ship $RN(X) = \frac{1}{2N(N-1)}\sum_{i=1}^{T-1}\sum_{j=i+1}^{T}f(x_i, x_j)$

How to Represent a Sentence - CNN

- Convolutional Networks [Kim, 2014; Kalchbrenner et al., 2015]
 - Captures k-grams hierarchically
 - One 1-D convolutional layer: considers all k-grams

$$h_t = \phi\left(\sum_{\tau=-k/2}^{k/2} W_{\tau} e_{t+\tau}\right)$$
, resulting in $H = (h_1, h_2, \dots, h_T)$.

- Stack more than one convolutional layers: progressively-growing window
- Fits our intuition of how sentence is understood: tokens→multi-word expressions→phrases→sentence

- Can we combine and generalize the relation network and the CNN?
- Relation Network:
 - Each token's representation is computed against all the other tokens $h_t = f(x_t, x_1) + \dots + f(x_t, x_{t-1}) + f(x_t, x_{t+1}) + \dots + f(x_t, x_T)$
- CNN:
 - Each token's representation is computed against neighbouring tokens $h_t = f(x_t, x_{t-k}) + \cdots + f(x_t, x_t) + \cdots + f(x_t, x_{t+k})$
- RN considers the entire sentence vs. CNN focuses on the local context.

- Can we combine and generalize the relation network and the CNN?
- CNN as a weighted relation network:
 - Original: $h_t = f(x_t, x_{t-k}) + \dots + f(x_t, x_t) + \dots + f(x_t, x_{t+k})$
 - Weighted:

$$h_t = \sum_{t'=1}^{I} \mathbb{I}(|t'-t| \le k) f(x_t, x_{t'})$$

where $\mathbb{I}(S) = 1$, if S is true, and 0, otherwise.

• Can we compute those weights instead of fixing them to 0 or 1?

- Can we compute those weights instead of fixing them to 0 or 1?
- That is, compute the weight of each pair $(x_t, x_{t'})$

$$h_t = \sum_{t'=1}^{T} \alpha(x_t, x_{t'}) f(x_t, x_{t'})$$

- The weighting function could be yet another neural network
 - Just another subgraph in a DAG: easy to use! $\alpha(x_t, x_{t'}) = \sigma(\text{RN}(x_t, x_{t'})) \in [0, 1]$
 - Perhaps we want to normalize them so that the weights sum to one

$$\alpha(x_t, x_{t'}) = \frac{\exp(\beta(x_t, x_{t'}))}{\sum_{t''=1}^{T} \exp(\beta(x_t, x_{t''}))}, \text{ where } \beta(x_t, x_{t'}) = \text{RN}(x_t, x_{t'}))$$

- Self-Attention: a generalization of CNN and RN.
- Able to capture long-range dependencies within a single layer.
- Able to ignore irrelevant long-range dependencies.

How to Represent a Sentence – RNN

- Weaknesses of self-attention
 - 1. Quadratic computational complexity $O(T^2)$
 - 2. Some operations cannot be done easily: e.g., counting, ...
- Online compression of a sequence O(T) $h_t = \text{RNN}(h_{t-1}, x_t)$, where $h_0 = 0$.
- Memory h_t allows it to be Turing complete.*

How to Represent a Sentence – RNN

- Recurrent neural network: online compression of a sequence O(T) $h_t = \text{RNN}(h_{t-1}, x_t)$, where $h_0 = 0$.
- Bidirectional RNN to account for both sides.
- Inherently sequential processing
 - Less desirable for modern, parallelized, distributed computing infrastructure.
- LSTM [Hochreiter&Schmidhuber, 1999] and GRU [Cho et al., 2014] have become de facto standard
 - All standard frameworks implement them.
 - Efficient GPU kernels are available.

Language Model

- Input: a sentence
- Output: the probability of the input sentence
- A language model captures the distribution over all possible sentences. $p(X) = p((x_1, x_2, ..., x_T))$
- Unlike text classification, it is unsupervised learning.
 - We will however turn the problem into a sequence of supervised learning.

Autoregressive Language Model

- Autoregressive sequence modelling
 - The distribution over the next token is based on all the previous tokens. $p(X) = p(x_1)p(x_2|x_1)\cdots p(x_T|x_1,\ldots,x_{T-1})$
 - This equality holds exactly due to the def. of conditional distribution*
- Unsupervised learning becomes a set of supervised problems.
 - Each conditional is a neural network classifier.
 - Input is all the previous tokens (a partial sentence).
 - Output is the distribution over all possible next tokens (classes).
 - It is a **text classification** problem.

Autoregressive Language Model

- Autoregressive sequence modelling
 - The distribution over the next token is based on all the previous tokens.

$$p(X) = p(x_1)p(x_2|x_1)\cdots p(x_T|x_1,\dots,x_{T-1})$$

• Each conditional is a sentence classifier:

N-Gram Language Model

- Let's back up a little...
- What would we do without a neural network?
- We need to estimate *n*-gram probabilities: $p(x|x_{-N}, x_{-N+1}, \dots, x_{-1})$
- Recall the def. of conditional and marginal probabilities:

$$p(x|x_{-N}, x_{-N+1}, \dots, x_{-1}) = \frac{p(x_{-N}, x_{-N+1}, \dots, x_{-1}, x)}{p(x_{-N}, x_{-N+1}, \dots, x_{-1})}$$
$$= \frac{p(x_{-N}, x_{-N+1}, \dots, x_{-1}, x)}{\sum_{x \in V} p(x_{-N}, x_{-N+1}, \dots, x_{-1}, x)}$$

• V: all possible tokens (=vocabulary)

N-Gram Language Model

• We need to estimate *n*-gram probabilities:

$$p(x|x_{-N}, x_{-N+1}, \dots, x_{-1}) = \frac{p(x_{-N}, x_{-N+1}, \dots, x_{-1}, x)}{p(x_{-N}, x_{-N+1}, \dots, x_{-1})}$$

• Estimation:

$$p(x|x_{-N}, x_{-N+1}, \dots, x_{-1}) = \frac{p(x_{-N}, x_{-N+1}, \dots, x_{-1}, x)}{\sum_{x \in V} p(x_{-N}, x_{-N+1}, \dots, x_{-1}, x)}$$

$$\approx \frac{c(x_{-N}, x_{-N+1}, \dots, x_{-1}, x)}{\sum_{x' \in V} c(x_{-N}, x_{-N+1}, \dots, x_{-1}, x')}$$

• Do you see why this makes sense?

N-Gram Language Model

• We need to estimate n-gram probabilities:

$$p(x|x_{-N}, x_{-N+1}, \dots, x_{-1}) = \frac{p(x_{-N}, x_{-N+1}, \dots, x_{-1}, x)}{\sum_{x \in V} p(x_{-N}, x_{-N+1}, \dots, x_{-1}, x)}$$

$$\approx \frac{c(x_{-N}, x_{-N+1}, \dots, x_{-1}, x)}{\sum_{x' \in V} c(x_{-N}, x_{-N+1}, \dots, x_{-1}, x')}$$

- How likely is "University" given "New York"?
 - Count all "New York University"
 - Count all "New York?": e.g., "New York State", "New York City", "New York Fire", "New York Police", "New York Bridges", ...
 - How often "New York University" happens among these?

N-Gram Language Model – Two Problems

- 1. Data sparsity: lack of generalization
 - What happens "one" n-gram never happens?

$$p(a \text{ lion is chasing a llama}) = p(a) \times p(\text{lion}|a) \times p(\text{is}|a \text{ lion})$$

 $\times p(\text{chasing}|\text{lion is}) \times p(\text{a}|\text{is chasing})$

$$\times \underbrace{p(\text{llama}|\text{chasing a})}_{=0} = 0$$

- 2. Inability to capture long-term dependencies
 - Each conditional only considers a small window of size *n*.
 - Consider "the same **stump** which had impaled the car of many a guest in the past thirty years and which he refused to have **removed**"
 - It is impossible to tell "removed" is likely by looking at the four preceding tokens.

Neural N-Gram Language Model

• The first extension of n-gram language models using a neural network

Neural N-Gram Language Model

- Training examples
 - there are three teams left for qualification.
 - four teams have passed the first round.
 - four groups are playing in the field.
- Q: how likely is "groups" followed by "three"?

Neural N-Gram Language Model

- In practice,
- 1. Collect all n-grams from the corpus.
- 2. Shuffle all the n-grams to build a training set
- 3. Train the neural n-gram language model using stochastic gradient descent on minibatches containing 100-1000 n-grams.
- 4. Early-stop based on the validation set.
- 5. Report perplexity on the test set. $ppl = b^{\frac{1}{|D|} \sum_{(x_1, \dots, x_N) \in D} \log_b p(x_N | x_1, \dots, x_{N-1})}$

Increasing the Context Size - Convolutional Language Model

[Kalchbrenner et al., 2015; Dauphin et al., 2016]

- Dilated convolution to rapidly increase the window size
 - Exponential-growth of the window by introducing a multiplicative factor
 - By carefully selecting the multiplicative factor, no loss in the information.

Infinite Context : n → ∞ - CBoW Language Model

- Equivalent to the neural LM after replacing "concat" with "average"
 - "Averaging" allows the model to consider the infinite large context window.
- Extremely efficient, but a weak language model
 - Ignores the order of the tokens in the context windows.
 - · Any language with a fixed order cannot be modelled well.
 - Averaging ignores the absolute counts, which may be important:
 - If the context window is larger, "verb" becomes less likely in SVO languages.

Infinite Context : n → ∞ - Recurrent Language Model

- A recurrent network summarizes all the tokens so far.
- Use the recurrent network's memory to predict the next token.

Infinite Context : n → ∞

- Recurrent Language Model

• The **recurrent network** solves a difficult problem: *compress the entire context into a fixed-size memory vector*.

Weighting

Function α

• **Self-attention** does not require such compression but still can capture long-term dependencies.

• Combine these two: a recurrent memory network (RMN) [Tran et al., 2016]

• RNMT+: a similar, recent extension for neural machine translation

Machine Translation

- Input: a sentence written in a source language L_S
- Output: a corresponding sentence in a target language L_T
- Problem statement:
 - Supervised learning: given the input sentence, output its translation
 - Compute the conditional distribution over all possible translation given the input $p(Y=(y_1,\ldots,y_T)|X=(x_1,\ldots,x_{T'}))$

• We have already learned every necessary ingredient for building a full neural machine translation system.

Encoder – Source Sentence Representation

- Encode the source sentence into a set of sentence representation vectors
 - # of encoded vectors is proportional to the source sentence length: often same. $H=(h_1,\ldots,h_{T'})$
 - Recurrent networks have been widely used [Cho et al., 2014; Sutskever et al., 2014], but CNN [Gehring et al., 2017; Kalchbrenner&Blunsom, 2013] and self-attention [Vaswani et al., 2017] are used increasingly more often. See Lecture 2 for details.
- We do not want to collapse them into a single vector.
 - Collapsing often corresponds to information loss.
 - Increasingly more difficult to encode the entire source sentence into a single vector, as the sentence length increases [Cho et al., 2014b].
 - We didn't know initially until [Bahdanau et al., 2015].

Encoder – Source Sentence Representation

- Encode the source sentence into a set of sentence representation vectors
- We do not want to collapse them into a single vector.
 - Increasingly more difficult to encode the entire source sentence into a single vector, as the sentence length increases [Cho et al., 2014b].

Decoder – Language Modelling

- Autoregressive Language modelling with an infinite context $n \rightarrow \infty$
 - Larger context is necessary to generate a coherent sentence.
 - Semantics could be largely provided by the source sentence, but syntactic properties need to be handled by the language model directly.
 - Recurrent networks, self-attention and (dilated) convolutional networks
 - Causal structure must be followed.
 - See Lecture 3.
- Conditional Language modelling
 - The context based on which the next token is predicted is **two-fold**

$$p(Y|X) = \prod_{t=1}^{I} p(y_t|y_{< t}, X)$$

Decoder – Language Modelling

• Conditional Language modelling $p(Y|X) = \prod_{t=1}^{\infty} p(y_t|y_{< t}, X)$

- 1. Source sentence representation
 - A stack of bidirectional RNN's

• The extracted vector at each location is a **context-dependent vector representation**.

- 2. Target prefix representation
 - A unidirectional recurrent network

Compression of the target prefix

$$z_t = \text{RNN}_{\text{decoder}}(z_{t-1}, y_{t-1})$$

• Summarizes what has been translated so far

3. Attention mechanism

• Which part of the source sentence is relevant for predicting the next target token? c_t

• Time-dependent source context vector c_t

- 4. Fuse the source context vector and target prefix vector
 - Combines z_t and c_t into a single vector

Attention with NMT $y = softmax(\hat{h_t})$ $\hat{h_t} = tanh(Wc[ct;ht])$ context c_t attention a_t decoder encoder Er liebte Softmax Encoder Decoder NULL Er **Embed** He loved to eat

- **Source**: An admitting privilege is the right of a doctor to admit a patient to a hospital or a medical centre to carry out a diagnosis or a procedure, based on his status as a health care worker at a hospital.
- When collapsed: Un privilège d'admission est le droit d'un médecin de reconnaître un patient à l'hôpital ou un centre médical <u>d'un diagnostic ou de prendre un diagnostic en fonction de son état de santé.</u>
- **RNNSearch**: Un privilège d'admission est le droit d'un médecin d'admettre un patient à un hôpital ou un centre médical <u>pour effectuer un diagnostic ou une procédure, selon son statut de travailleur des soins de santé à l'hôpital.</u>

- Sensible alignment between source and target tokens
- Capture long-range reordering/dependencies
- Without strong supervision on the alignment
 - Weakly supervised learning

- Input: arbitrary as long as encoded into a set of continuous vectors
- Output: a corresponding sentence in a target language

What Does NMT Do?

- Sequence of "discrete" symbols → Set of "continuous" vectors
- Continuous vectors encode semantics of discrete symbols
- Continuous vectors are stripped of hard, linguistic symbols
- Can we map multiple languages on a single continuous space?

Multilingual Neural Machine Translation

• Can this continuous vector space be shared across multiple languages?

Character-Level, Multilingual Translation

- Robust to intra-sentence code switching
- Huge saving in parameters: 4x less parameters without loss in BLEU

(e) Multilingual

Multi src	Bei der Metropolitního výboru pro dopravu für das Gebiet der San Francisco Bay erklärten Beamte, der Kon-
	gress könne das Problem банкротство доверительного Фонда строительства шоссейных дорог einfach
	durch Erhöhung der Kraftstoffsteuer lösen .
EN ref	At the Metropolitan Transportation Commission in the San Francisco Bay Area, officials say Congress could
	very simply deal with the bankrupt Highway Trust Fund by raising gas taxes.
bpe2char	During the Metropolitan Committee on Transport for San Francisco Bay, officials declared that Congress could
	solve the problem of bankruptcy by increasing the fuel tax bankrupt.
char2char	At the Metropolitan Committee on Transport for the territory of San Francisco Bay, officials explained that the
	Congress could simply solve the problem of the bankruptcy of the Road Construction Fund by increasing the fuel
	tax.

Image Caption Generation

- Input: an image
- Output: an image caption
- Network Architecture
 - Encoder: deep convolution network
 - Decoder: recurrent language model with the attention mechanism.
- Data: image-caption pairs

Image Caption Generation

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A <u>stop</u> sign is on a road with a mountain in the background.

A little <u>girl</u> sitting on a bed with a teddy bear.

A group of <u>people</u> sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

Speech Recognition

• Input: Speech

• Output: transcription

