Université Abdelmalek Essaadi, ENSA Al Hoceima, 1^{ére} Année Préparatoire, 2019-2020.

Devoir Surveillé d'Algébre de Base. Durée : 1h30.

Exercice 1: (7 pt)

1. Montrer l'assertion suivante : $\forall A, B, C \in P(E)$

$$(A \cap B = A \cap C)$$
 et $(A \cup B = A \cup C) \Rightarrow B = C$

2. Soit X un ensemble. Pour $f \in F(X, X)$, on définit $f^0 = Id$ et par récurrence pour $n \in \mathbb{N}$, $f^{n+1} = f^n \circ f$.

Montrer que si f est bijective alors $\forall n \in \mathbb{N}, (f^{-1})^n = (f^n)^{-1}$

3. On définit sur une partie E de $\mathbb R$ la relation $\mathbf T$ par :

$$x \mathbf{T} \mathbf{y} \Leftrightarrow x e^y = y e^x$$

- (a) Montrer que T est une relation d'équivalence.
- (b) Donner la classe d'équivalence de T.
- (c) Donner un exemple d'une relation d'ordre partiel. Justifiez?

Exercice 2: (6 pt)

Soient f et g deux applications de \mathbb{R} vers \mathbb{R} ; et h définie par

$$h : \mathbb{R} \to \mathbb{R}^2$$
 $x \to (f(x), g(x))$

- 1. Montrer que si f ou g sont injectives alors h est injective.
- 2. On suppose dans cette question que $f(x) = x^2$ et $g(x) = \frac{x}{|x|}$ si $x \neq 0$ et g(0) = 0. Les applications f, g et h sont elles injectives? Que peut on en déduire?
- 3. Montrer que si h est surjective alors f et g sont surjectives.

Exercice 3: (7 pt)

On définit sur \mathbb{R} deux lois de composition internes o et T par :

$$x \circ y = x + y + 1$$
 et $x T y = xy + x + y$

- Montrer que (R, o) est un groupe abélien.
- 2. Donner en exemple de sous groupe de (R, o). Justifier?
- 3. Montrer que (\mathbb{R}, o, T) est un anneau commutatif.
- 4. Prouver que l'application

$$\varnothing: (\mathbb{R}, o, T) \longrightarrow (\mathbb{R}, +, \times)$$

$$x \longmapsto x + 1$$

est un isomorphisme d'anneaux.

5. Déduire que (\mathbb{R}, o, T) est un corps commutatif.

Pr. ABOUELHANOUNE