Algoritmos e Estruturas de Dados Aula 4 :: Busca e Ordenação

Filipe Cordeiro (filipe.rolim@ufrpe.br)

Crédito slides: Prof. Francisco Simões (<u>francisco.simoes@ufrpe.br</u>)

Busca vs Ordenação

Busca

Buscar um item em um banco de dados

Ordenação

• Organizar os N itens or ordem crescente

Andrews	3	Α	664-480-0023	097 Little
Battle	4	С	874-088-1212	121 Whitman
Chen	3	А	991-878-4944	308 Blair
Furia	1	А	766-093-9873	101 Brown
Gazsi	4	В	766-093-9873	101 Brown
Kanaga	3	В	898-122-9643	22 Brown
Rohde	2	А	232-343-5555	343 Forbes

Busca

25 4 19 10	99 84	13 2	30 50	
------------	-------	------	-------	--

Para encontrar um elemento, precisamos percorrer nossa lista de elementos para informar se ele está ou não na lista (e consequentemente informar sua posição)

P1. O elemento 13 está na lista?

R. Sim, na posição 6

Método mais natural: Busca linear

Percorre a lista do início ao fim e verifica cada elemento

Isto é eficiente?

Busca

25 4 19 10 99	84 13	2 30	50
---------------	-------	------	----

Para encontrar um elemento, precisamos percorrer nossa lista de elementos para informar se ele está ou não na lista (e consequentemente informar sua posição)

P1. O elemento 13 está na lista?

R. Sim, na posição 6

Método mais natural: Busca linear

Percorre a lista do início ao fim e verifica cada elemento

Isto é eficiente?

E se tivéssemos uma lista ordenada?

Busca binária!

Busca linear vs busca binária

25	4	19	10	99	84	13	2	30	50
25	4	19	10	99	84	13	2	30	50
25	4	19	10	99	84	13	2	30	50
25	4	19	10	99	84	13	2	30	50
							<u> </u>		
25	4	19	10	99	84	13	2	30	50
25	4	19	10	99	84	13	2	30	50
25	4	19	10	99	84	13	2	30	50
25	4	19	10	99	84	13	2	30	50

25	4	19	10	99	84	13	2	30	50	
Ordena										
2	4	10	13	19	25	30	50	84	99	
2	4	10	13	19	25	30	50	84	99	
	1				1			1		
2	4	10	13	19	25	30	50	84	99	
2	4	10	13	19	25	30	50	84	99	

Atividade

• Implemente os algoritmos de Busca Binária e Busca Sequencial.

Como ordenar?

Pense em como seria um algoritmo de ordenação

Visualização: https://www.youtube.com/watch?v=BeoCbJPuvSE

Som de cada algoritmo: https://www.youtube.com/watch?v=kPRA0W1kECg&t=185s

Ordenar sequência de elementos

Insertion Sort (Problema)

Insertion Sort (Intuição)

Insertion Sort (Intuição)

Atividade

- Execute o InsertionSort para ordenar o seguinte vetor
- [5 10 3 7 8 6 1 2 9 2]

```
INSERTION-SORT (A, n) // A[1 ... n]
for j \leftarrow 2 to n
     do key \leftarrow A[j]
          i \leftarrow j-1
          while i > 0 and A[i] > key
                \operatorname{do} A[i+1] \leftarrow A[i]
                     i \leftarrow i - 1
          A[i+1] = key
```

Insertion Sort (Pseudocódigo)

Tipos de Análise

Pior caso (mais comum)

T(n) = tempo máximo que o algoritmo demora para executar

Caso médio

T(n) = tempo médio esperadoconsiderando todas as possíveisentradas (Baseado em estatística)

Melhor caso

T(n) = tempo mínimo que demorapara executar (para alguma entrada)

Insertion Sort (Complexidade)

Qual o tempo que o Insertion Sort demora para ordenar?

Velocidade depende de máquina, processos, memória...

Como analisar independentemente?

Análise Assintótica ou Funcional!

Análise acerca da velocidade de crescimento da função T(n) quando n tende a infinito n→∞

Insertion Sort (Complexidade)

Qual a complexidade do Insertion Sort?

$$O(n^2)$$

Ele é um algoritmo rápido?

Moderado, para entradas pequenas

Não, para entradas grandes

Insertion Sort (Complexidade)

Qual é o pior tipo de entrada que pode ser passada para o Insertion Sort?

Insertion Sort (Para pensar)

Atividades

- 1. Implemente a função insertionSort que ordena um vetor
- Implemente a função buscaBinaria que realiza a busca binária considerando um vetor ordenado
- Execute diversas buscas aleatórias num vetor (tam>1000) e compare sua eficiência:
 - a. Utilizando sempre a busca linear
 - b. Primeiro ordenando e sempre utilizando buscaBinaria para buscar

Atividade

Estude o material do prof. Paulo Feafiloff sobre ordenação

https://www.ime.usp.br/~pf/algoritmos/aulas/ordena.html

