DID PUBLIC INVESTMENT "CROWD OUT" PRIVATE INVESTMENT?

EVIDENCE FROM INDIAN STATES

SHRADDHA ANAND

INTRODUCTION

- Increased public spending → increase or decrease private spending.
 - Ricardo: increased taxes → decreased disposable incomes
 - Keynes: increased government borrowing → decreased loanable funds for private investors
- Affects macroeconomic policies & long-term economic growth
- Past: mixed results using national panel data
- This paper: Crowding in in rich (GDP and GPD per capita) and very poor (GDP) states using project level state data to study effects in each state

DATA

- Dataset:
 - project level investment data for Indian states
 - 1996 Q1 to 2019 Q4
- Three variables:
 - I. Indian State Domestic Product

DATA

• Dataset:

- project level investment data for Indian states
- 1996 Q1 to 2019 Q4
- Three variables:
 - I. Indian State Domestic Product
 - 2. Public Investments

DATA

• Dataset:

- project level investment data for Indian states
- 1996 Q1 to 2019 Q4
- Three variables:
 - I. Indian State Domestic Product
 - 2. Public Investments
 - 3. Private Investments

- Vector Error Correction Model (VECM)
 - Non-stationary: Mean and variance vary over time
 - Cointegrated: long-run relationship

- Vector Error Correction Model (VECM)
 - Non-stationary: Mean and variance vary over time
 - Cointegrated: long-run relationship

25 VECMs

$$\Delta Public_t = \ \delta + \sum_{i=1}^p \beta_i \Delta SDP_{t-i} + \sum_{j=1}^p \gamma_j \Delta Public_{t-j} + \sum_{k=1}^p \varphi_k \Delta Private_{t-k} + \lambda ECT_{t-1} + \epsilon_{2t}$$

- Error correct term (ECT) speed of convergence of LHS variable back to equilibrium after shock
- Use MLE to estimate coefficients

Assumptions:

I. $E(\varepsilon_{it}|SDP_{t-1},...,SDP_{t-p}, Private_{t-1},..., Private_{t-p}, Public_{t-1},..., Public_{t-p}) = 0$

- I. $E(\varepsilon_{it}|SDP_{t-1},...,SDP_{t-p}, Private_{t-1},..., Private_{t-p}, Public_{t-1},..., Public_{t-p}) = 0$
- 2. Series are stationary in first difference and cointegrated

- I. $E(\varepsilon_{it}|SDP_{t-1},...,SDP_{t-p}, Private_{t-1},..., Private_{t-p}, Public_{t-1},..., Public_{t-p}) = 0$
- 2. Series are stationary in first difference and cointegrated
- 3. Variables and their lags are increasingly independent as number of lags increases

- I. $E(\varepsilon_{it}|SDP_{t-1},...,SDP_{t-p}, Private_{t-1},..., Private_{t-p}, Public_{t-1},..., Public_{t-p}) = 0$
- 2. Series are stationary in first difference and cointegrated
- 3. Variables and their lags are increasingly independent as number of lags increases
- 4. No large outliers

- I. $E(\varepsilon_{it}|SDP_{t-1},...,SDP_{t-p}, Private_{t-1},..., Private_{t-p}, Public_{t-1},..., Public_{t-p}) = 0$
- 2. Series are stationary in first difference and cointegrated
- 3. Variables and their lags are increasingly independent as number of lags increases
- 4. No large outliers
- 5. No perfect multicollinearity

Plot Series

Graphs by irfname, impulse variable, and response variable

• Individual states

VECM Result for Maharashtra					
Beta	Coef.	Std. Err.	z	P > z	95% Conf. Int.
_cel					
logprivate	1				
logpublic	959	.136	-7.03	0.000	[-1.226,691]
D.Logprivate					
_cel	181	.068	-2.65	0.008	[315,047]
D.Logpublic					
_cel	053	.0441	-1.20	0.232	[139, .034]

• Individual states

VECM Result for Maharashtra					
Beta	Coef.	Std. Err.	z	P > z	95% Conf. Int.
_cel					
logprivate	1				
logpublic	959	.136	-7.03	0.000	[-1.226,691]
D.Logprivate					
_cel	181	.068	-2.65	0.008	[315,047]
DI III					
D.Logpublic					

"Crowding in"

• Individual states

VECM Result for Maharashtra					
Beta	Coef.	Std. Err.	z	P > z	95% Conf. Int.
_cel					
logprivate	1				
logpublic	959	.136	-7.03	0.000	[-1.226,691]
D.Logprivate					
_cel	181	.068	-2.65	0.008	[315,047]
D.Logpublic					
_cel	053	.0441	-1.20	0.232	[139, .034]

- "Crowding in"
- Adjustment term (private): 18.1%
 - disequilibrium is halved in about 3.5 years

• Individual states

VECM Result for Maharashtra					
Beta	Coef.	Std. Err.	z	P > z	95% Conf. Int.
_cel					
logprivate	I				
logpublic	959	.136	-7.03	0.000	[-1.226,691]
D.Logprivate					
D.Logprivate _ce1	181	.068	-2.65	0.008	[315,047]
O,	181	.068	-2.65	0.008	[315,047]

- "Crowding in"
- Adjustment term (private): 18.1%
 - disequilibrium is halved in about 3.5 years
- Adjustment term (public): 5.3%
 - disequilibrium will be halved in about 12.8 years

- Rich vs. Poor States (GDP):
 - Rich:
 - Maharashtra
 - Tamil Nadu
 - Gujarat
 - Uttar Pradesh

- Poor:
 - Meghalaya
 - Chandigarh
 - Puducherry
 - Goa

- Rich vs. Poor States (GDP per capita):
 - Rich:
 - Delhi
 - Goa
 - Chandigarh
 - Haryana

- Poor:
 - Bihar
 - Uttar Pradesh
 - Assam
 - Jharkhand

CONCLUSION

- Rich, and very poor states: Crowding In
- Medium GDP states: Crowding Out
- Limitations:
 - Data not originally quarterly
 - Using national deflator for series, not state deflators

THANK YOU!