COERÊNCIA E ALIASING

.MATHEUS MORAES PEREIRA SALES DE AZEVEDO - 99892

E-mails: joão.rossi@ufv.br, thiago.m.avila@ufv.br

Resumo: Ao se tratar de processamento de sinais, é de fundamental importância à necessidade de se conhecer as ferramentas disponíveis para a realização dos processos desejados, além de se obter o máximo de conhecimento disponível sobre os efeitos os quais um sinal pode ser submetido. Em vista disso, este relatório fundamenta-se em realizar um estudo de comandos, funções e aplicações, utilizando o software interativo MATLAB, com enfoque nas operações de cuja finalidade consistem no estudo introdutório acerca da análise de similaridade entre sinais no domínio da frequência, juntamente com a análise acerca do efeito aliasing pelo qual um processamento pode ser submetido.

Palavras-chave: MATLAB, similaridade, coerência, aliasing.

Introdução

Dentre as diversas ferramentas utilizadas em processamentos de sinais, é notória a utilidade prática para a estimativa da similaridade entre sinais. Isto posto, a função de coerência é um mecanismo matemático muito usada para mensurar o grau de similaridade entre sinais. Enquanto o coeficiente de correlação provê uma medida global para esta quantificação, a coerência é discriminada em frequência, com a conveniência de possuir magnitude independente de qualquer retardo entre os sinais.[1]

Ademais, é fundamental analisamos em processamento de sinais, o efeito aliasing. Temos que o aliasing é o termo em inglês usado para explicar o efeito distorcivo da sub-amostragem de um sinal contínuo.

De acordo com o Teorema de Nyquist, uma taxa de amostragem de no mínimo duas vezes o valor da frequência máxima alcançada pelo sinal analógico é necessária para possibilitar o registro digital de todas as frequências analisadas. Esta taxa de amostragem mínima desejada é chamada frequência de Nyquist. Quando a taxa de amostragem para determinado sinal é menor que a frequência de Nyquist, ocorre um efeito chamado aliasing ou foldover, em que uma alta frequência é medida erroneamente como sendo de frequência mais baixa. [2]

Materiais e métodos

Comparando dois sinais: Com o viés prático de analisar o funcionamento da função de coerência do matlab, foram gerados dois sinais. O primeiro, foi gerado a partir da soma entre duas senóides, já o segundo foi gerado de forma idêntica ao primeiro, entretanto, a mesma foi acrescentada uma defasagem de noventa graus a componente de 8 Hz.

À vista disso, foi realizado o cálculo da coerência entre os dois sinais aludidos e realizado o estudo acerca dos resultados obtidos

Diferença WAV e MP3: Foi proposto, nessa porção do roteiro, um estudo acerca das forma de compactação de armazenamento de um áudio, com o enfoque nos formatos WAV e MP3.

Dessa forma, foi realizado o cálculo da coerência entre os sinal sonoro que foi armazenado no formato WAV e o sinal que, primeiramente foi compactado no formato MP3 e posteriormente armazenado no formato WAV, para tal foi necessário o uso do comando *mscohere*. [3]

Por fim, feita as devidas análises acerca do resultado obtido com o intuito de observar a diferença de qualidade entre os dois tipos de sinais.

Reamostragem de sinal: Dando prosseguimento a atividade, essa alíquota do roteiro tem como enfoque a análise acerca do efeito denominado de aliasing, gerado quando a taxa de amostragem para determinado sinal é menor que a frequência de Nyquist, fazendo com que que uma alta frequência é medida erroneamente como sendo de frequência mais baixa.

Isto posto, dado um sinal cossenoidal com 1kHz, foi criado um sinal cossenoidal com 1 kHz e freqüência de amostragem 10 kHz, denominado como o sinal sobreamostrado. Feito isso, foi realizado o plot de vinte períodos.

Por conseguinte, foi realizado uma reamostragem do sinal na frequência de Nyquist. Feito isso, foi realizado o plot de vinte períodos.

Ademais, de forma semelhante, foi realizada a sub-amostragem do sinal e efetuado o plot de vinte períodos. Por fim, foi realizado o plot de cada amostragem supracitada em cima do mesmo subplot com o intuito de facilitar a análise e estudos sobre as suas diferenças.

Aliasing temporal: Com o propósito de observar o efeito aludido na dimensão temporal, foi elaborado um filme de uma de uma roda girando numa taxa de 12º/frame durante 3 segundos.

Por fim, salvou o filme em diferentes velocidades. Isto posto, foi feito um estudo sobre os efeito aliasing em filmes.

Resultados

Dando início aos requerimentos do roteiro da prática 11, inicialmente foram gerados dois sinais compostos pela soma de funções senoidais, os quais serão tratados como sinal X e Y neste relatório, em seguida tais funções foram contaminadas com ruídos aleatórios.

Figura 1: Senóides contaminadas por ruído.

Após os sinais citados anteriormente serem gerados, foram gerados novos sinais senoidais defasados em 90° na componente de 8 Hz, como mostra a figura 2. Por conseguinte, foi executado o comando referente a coerência e correlação dos sinais, vale ressaltar que foi observado um pico no gráfico de coerência no valor de 8Hz.

Figura 2: Comparação das senóides defasadas.

Figura 3: Coerência e correlação entre os sinais.

Em segunda análise, foram trabalhados arquivos de áudio, os quais foram gerados de maneira diferente. Sendo assim, no primeiro caso o arquivo foi executado na extensão *wav*. Já no segundo caso, o áudio foi

convertido para *mp3* e em *wav* novamente. Isto posto, foram gerados os gráfico dos sinais no domínio do tempo e da frequência, como mostram as figuras 4 e 5.

Figura 4: Sinais plotados no domínio do tempo.

Figura 5: Sinais plotados no domínio da frequência.

Após realizar o cálculo de coerência entre o sinal armazenado no formato WAV e o compactado no formato MP3 (que posteriormente foi armazenado no formato), além de efetuar uma análise em cima da reprodução de ambos os sinais, é possível determinar diferenças na forma de compactação entre os dois formatos.

Primeiramente, vale destacar que o formato WAV possuir uma maior qualidade por não sofrer compressão, ou seja, armazena e reproduz o sinal de forma mais fiel. Entretanto, visto que o sinal se mantém com suas características relativamente intactas, é evidente e compreensível o fato de se necessitar de um maior espaço para armazená-lo

Por conseguinte, ao analisar-se o formato de compactação MP3, nota-se uma maior compressão do sinal, ou seja, priva-se da qualidade do mesmo. Além disso, ao se realizar o cálculo de coerência é possível observar a perda de informação em relação ao sinal armazenado em WAV aludido anteriormente.

Desta maneira, pode-se destacar que algumas nuances do sinal foram perdidas durante o processo de conversão, esta análise é possível observando-se a figura 6, a qual mostra a coerência entre os sinais. Em tal imagem observa-se que para certos valores de frequência, ocorre uma atenuação da amplitude do gráfico, mostrando que existem algumas alterações no processo de conversão.

Figura 6: Coerência entre os sinais abordados.

Dando prosseguimento ao roteiro 12, no qual trabalhou-se acerca das ocorrências causadas pelo efeito *aliasing*, primeiramente implementou-se uma reamostragem de um sinal cossenoidal em três versões, sobre-amostradas, criticamente-amostradas e sub-amostradas, como mostra a figura 7.

Analisando a figura abaixo, nota-se que quanto menor a frequência de amostragem, o sinal torna-se mais distorcido, afastando-se cada vez mais de um sinal cossenoidal perfeito. Sendo assim, pode-se afirmar que esta distorção ocorre devido ao efeito *aliasing*, haja visto que ao se decair a frequência de amostragem em valores próximos ao mínimo (frequência de Nyquist), percebe-se a presença de tal efeito.

Figura 7: Reamostragem de um sinal cossenoidal.

Por fim, com a finalidade de estudar o efeito *aliasing* temporal, implementou-se um código capaz de gerar um pequeno vídeo de uma roda em movimento giratório, partindo-de de uma imagem. Variando-se o valor de fps (fotos por segundo) e o parâmetro 'graus por freme', notam-se algumas diferenças nos efeitos visuais.

Primeiramente, é possível notar que a velocidade altera basicamente a rapidez com que a roda gira, logo em valores altos de fps, como 60, há um efeito de uma velocidade alta. Por outro lado, alterando-se o ângulo, é possível perceber distorções no eixo rotativo do objeto, como algumas trepidações.

Discussão

Em primeira análise é necessário destacar a aplicabilidade da análise em coerência como uma ferramenta para trabalhos envolvendo sinais sonoros, em que o mesmo se mostrou muito útil em tais operações, possibilitando ao usuário o uso do mecanismo como uma ferramenta para verificação de alterações realizadas em tais sinais.

Ademais, é necessário afirmar que os trabalhos envolvendo a análise sobre o efeito *aliasing* foram úteis nesta prática, haja visto que este processo possibilita a percepção dos efeitos causados pela variação da frequência de amostragem em determinados sinais.

Além disso, pode-se inferir que as implicações causados pelo efeito *aliasing* atemporal desempenharam uma aplicabilidade interessante no contexto do processamento de imagens, haja visto que as variações implementadas no parâmetro fps causaram efeitos importantes, como foi citado anteriormente.

Conclusão

Após realizar as manipulações dos sinais, pode-se inferir que o nível de coerência e os efeitos *aliasing* trabalhados permitem ao usuário um leque de operações no contexto do processamento de sinais sonoros e de imagens. Em face à esta ideia, uma ferramenta muito útil trabalhada nesta prática foram as implicações observadas na análise de coerência entre sinais sonoros, uma vez que este processo permite identificar o quão um sinal coincide com o outro mesmo ocorrendo uma defasagem entre os mesmos.

Referências

- [1] LATHI, B. P. Sinais e Sistemas Lineares. 2. ed. Bookman, Porto Alegre. 2007.
- [2] OPPENHEIM, A.V.; WILLSKY, A. S. Sinais e Sistemas, 2a edição, Pearson, 2010.
- [3] MATLAB. Disponível em: https://www.mathworks.com/products/matlab.html. Acesso em: 11 de novembro de 2019.