1 The RSA Cryptosystem

1.1 Mechanism

Goal: Alice wants to send Bob an encrypted message through an insecure channel.

- Bob chooses his public key $(n,e) \in \mathbb{N}^2$ and private key $d \in \mathbb{N}$. Bob publishes his public key.
 - $-n \in \mathbb{N}$ is called the modulus, with n = pq, where p and q are large distinct prime numbers. Note that Bob publishes p but keeps p and q secret.
 - $-e \in \mathbb{N}$ is the called encryption exponent, and satisfies $\gcd(e,(p-1)(q-1))=1$.
 - $-d \in \mathbb{N}$ is the called decryption exponent, and is determined by e and n = pq via $d = e^{-1} \in \mathbb{Z}_{(p-1)(q-1)}$. Note that $e^{-1} \in \mathbb{Z}_{(p-1)(q-1)}$ exists since $\gcd(e, (p-1)(q-1)) = 1$.
- Alice
 - chooses plaintext $m \in \mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$.
 - encrypts her plaintext m using Bob's public key (n, e) by raising $m \in \mathbb{Z}_n$ to the e^{th} power. In other words, Alice computes her ciphertext $c = m^e \in \mathbb{Z}_n$.
 - sends to Bob through the insecure channel the ciphertext $c \in \mathbb{Z}_n$.
- Bob decrypts the ciphertext $c \in \mathbb{Z}_n$ from Alice by taking the e^{th} root of c in \mathbb{Z}_n using his private key $d \in \mathbb{N}$ as follows:

$$c^d = (m^e)^d = m^{ed} = m^{1+k(p-1)(q-1)} = m \cdot (m^{(p-1)(q-1)})^k = m \cdot (1)^k = m \in \mathbb{Z}_n$$

- The second last equality follows from $m^{(p-1)(q-1)} \equiv 1 \mod n$, which follows immediately from Euler's Theorem. It can also be justified with Fermat's Little Theorem as follows:

Fermat's Little Theorem
$$\implies \begin{cases} m^{(p-1)(q-1)} = (m^{p-1})^{q-1} \equiv 1 \mod p, \text{ and } \\ m^{(p-1)(q-1)} = (m^{q-1})^{p-1} \equiv 1 \mod q. \end{cases}$$

Hence, $m^{(p-1)(q-1)} - 1$ is divisble by both p and q, and hence also by pq = n (since p and q are distinct primes). Thus, $m^{(p-1)(q-1)} \equiv 1 \mod n = pq$.

1.2 Comments

- One-way function (easy): Exponentiation in \mathbb{Z}_n .
 - Repeating Squaring Algorithm
- (Difficult) inverse function: Taking roots in \mathbb{Z}_n , for n = pq, where p and q are large distinct prime numbers.
- Trapdoor: If the factorization of n = pq is known, then we can convert the inverse function (taking roots in \mathbb{Z}_n , which is slow) to an exponentiation in \mathbb{Z}_n , which is fast.

1.3 How to find large prime numbers?

- Generate a large N-bit (say N = 1024) random number x, i.e. $2^{N-1} < x < 2^N$. Use an efficient primality test to check whether x is prime. If so, we are done. If not, repeat until we succeed.
- The Prime Number Theorem (from Analytic Number Theory) gives an estimate of how many times we need to try before succeeding. The Prime Number Theorem states that

$$\lim_{x \to \infty} \frac{\pi(x)/x}{1/\ln(x)} = 1,$$

where $\pi(x)$ is the number of prime numbers less than or equal to x. Hence, it implies that, for large values of N, the probability that a randomly selected integer $x \in (2^{N-1}, 2^N)$ is prime is approximately

$$\frac{1}{\ln(2^N)}$$

Conversely, this implies that, on average, out of every $\ln(2^N) = N \cdot \ln(2) \approx 0.693 \cdot N$ randomly and independently selected integers from $(2^{N-1}, 2^N)$, one of them will be a prime number. For example, if N = 1024, then $0.693 \cdot N \approx 709.78$; in other words, if we are selecting random integers from $(2^{1023}, 2^{1024})$, then on average, we expect repeating approximately 710 times before we succeed in selecting a prime number. Note that $2^{1023} = 10^{1023 \times \log_{10}(2)} \approx 10^{1023 \times 0.301} \approx 10^{307.95}$.

- The Miller-Rabin Primality test
 - **Proposition** Let p be an odd prime and write $p-1=2^kt$, where t is odd. Then, for each $a \in \mathbb{Z}$ with $p \nmid a$, one of the following is true:
 - $a^t \equiv 1 \mod p$, or
 - One of a^t , a^{2t} , a^{4t} , ..., $a^{2^{k-1}t}$ is congruent to $-1 \mod p$.
 - Corollary Let $n \in \mathbb{Z}$ be an odd number, with $n-1=2^kt$, t being odd. Then, n is composite, if any of the following is true:
 - There exists $a \in \mathbb{Z}$ such that gcd(a, n) > 1.
 - There exists $a \in \mathbb{Z}$ such that gcd(a, n) = 1, and $a^t \not\equiv 1 \mod n$, and $a^{2^i t} \not\equiv -1 \mod n$, for each $i = 0, 1, 2, \ldots, k 1$.
 - **Proposition** Let n be an odd composite number. Then, at least 75% of integers between 1 and n-1 are Miller-Rabin witnesses for n.

1.4 Factorization algorithms

• Pollard's p-1 factorization algorithm

This method "probably" works for producing a non-trivial factor for composite $n \in \mathbb{N}$ admitting a prime factor p such that p-1 is a product of small primes.

- **Proposition:** Let n = pq, where p and q are distinct prime numbers. Then the following two statements hold:

• For each $L \in \mathbb{N}$, we have the following implications:

$$(p-1) \mid L \implies p \mid (a^L - 1)$$

• For any $a \in \mathbb{N}$ with $p \nmid a$ and $q \nmid a$, and any $L \in \mathbb{N}$,

$$\left. \begin{array}{c} p \mid (a^L - 1) \\ q \nmid (a^L - 1) \end{array} \right\} \quad \Longrightarrow \quad p = \gcd(a^L - 1, n)$$

Key observations:

- If p-1 is a product of small primes, then $p \mid N!$, for some not-too-large N.
- If $(q-1) \nmid N!$, then $q \nmid (a^{N!}-1)$ is "probably" true.
- If p-1 is a product of small primes, and q-1 is NOT so, then computing $gcd(a^{k!}-1,n)$, for $k=2,3,\ldots$, will "probably" yield p as a non-trivial factor of n.
- Factorization via difference of squares

Key observations:

Suppose we know that $n \in \mathbb{N}$ is odd and composite. We want to find a non-trivial factor of n.

- If we can find $a, b \in \mathbb{N}$ such that n is the difference of their squares, i.e. $n = a^2 b^2 = (a b)(a + b)$, then computing gcd(a b, n) will yield a non-trivial factor of n.
- Conversely, suppose n=cd. Since n is odd, both c and d must also be odd. Hence, $a:=\frac{1}{2}(c+d)\in\mathbb{Z}$ and $b:=\frac{1}{2}(c-d)\in\mathbb{Z}$. And, $a^2-b^2=\cdots=cd=n$. In other words, every composite odd integer can be written as the difference of two squares.
- If some multiple kn is a difference of squares, i.e. $kn = a^2 b^2 = (a b)(a + b)$, then computing gcd(a b, n) will "probably" yield a non-trivial factor of n, since it should be unlikely that n divides a b.
- In summary, if we could find $a, b \in \mathbb{Z}$ such that $a^2 \equiv b^2 \mod n$, then computing $\gcd(a b, n)$ will probably yield a non-trivial factor of n.

- Outline of general procedure:

- 1. Find B-smooth perfect squares in \mathbb{Z}_n . Find many $a_1, a_2, \ldots, a_r \in \mathbb{Z}$ such that every prime factor of $c_i \equiv a_i^2 \mod n$ is less than or equal to B.
- 2. Find sub-collections $c_{i_1}, c_{i_2}, \ldots, c_{i_s}$ such that $c_{i_1}c_{i_2}\cdots c_{i_s} \equiv b^2 \mod n$ are perfect squares in \mathbb{Z}_n .
- 3. Let $a := a_{i_1} a_{i_2} \cdots a_{i_s} \mod n$. Then, computing gcd(a-b,n) will probably yield a non-trivial factor of n.

- Comments on the general procedure:

- Step (3) can be performed efficiently using the Euclidean Algorithm.
- Step (2) is equivalent to solving a homogeneous (sparse) system of linear equations over \mathbb{F}_2 .
- The main challenge in difference-of-squares factorization is Step (1), namely, given $n \in \mathbb{Z}$, finding enough B-smooth perfect squares in \mathbb{Z}_n .