

Cryptanalysis of QARMAv2

Hosein Hadipour Yosuke Todo

FSE 2024 - Leuven, Belgium

Motivation and Our Contributions

- Motivation
 - **②** Sheding more light on the security of QARMAv2 against cryptanalysis.
- Contributions
 - Proposing a new CP-based tool to search for intergal distinguishers of tweakable block ciphers following the TWEAKEY framework.
 - Providing the first concrete key recovery attack against three main variants of DARMAY2.

Motivation and Our Contributions

② Sheding more light on the security of QARMAv2 against cryptanalysis.

Contributions

- Proposing a new CP-based tool to search for intergal distinguishers of tweakable block ciphers following the TWEAKEY framework.
- Providing the first concrete key recovery attack against three main variants of QARMAv2.

Outline

- Background and Specification of QARMAv2
- 2 Properties of MixColumns of QARMAv2
- 3 Our Method to Search For Distinguisher
- 4 Key Recovery Attack on QARMAv2
- 5 Contributions and Future Works

Background and Specification of QARMAv2

QARMAv2 Family of Tweakable Block Ciphers [Ava+23]

Security Parameters

Parameters of QARMAv2 with two tweak blocks ($\mathcal{T}=2$).

Version	Block size (b)	Key Size (s)	r	#Rounds	Time	Data
QARMAv2-64-128	64	128	9	20	$2^{128-\varepsilon}$	2^{56}
QARMAv2-128-128	128	128	11	24	$2^{128-\varepsilon}$	2 ⁸⁰
QARMAv2-128-192	128	192	13	28	$2^{192-\varepsilon}$	2 ⁸⁰
QARMAv2-128-256	128	256	15	32	$2^{256-\varepsilon}$	2 ⁸⁰

Parameters of QARMAv2 with a single tweak block ($\mathcal{T}=1$).

Version	Block size (b)	Key Size (s)	r	#Rounds	Time	Data
QARMAv2-64-128	64	128	7	16	$2^{128-\varepsilon}$	2^{56}
QARMAv2-128-128	128	128	9	20	$2^{128-\varepsilon}$	2 ⁸⁰
QARMAv2-128-192	128	192	11	24	$2^{192-\varepsilon}$	280
QARMAv2-128-256	128	256	13	28	$2^{256-\varepsilon}$	2 ⁸⁰

Designers' Analyses [Ava+23]

	QARMAv2-64		QARMAv2-128		
Attack	Parameter r	Rounds	Parameter r	Rounds	
Differential	6 (5)	14 (12)	9 (8)	20 (18)	
Boomerang (Sandwich)	7 (5)	16 (12)	10 (8)	22 (18)	
Linear	5	12	7	16	
Impossible-Differential	3	8	4	10	
Zero-Correlation	3	8	4	10	
Integral (Division Property)	_	5	_	_	
Meet-in-the-Middle	_	10	_	12	
Invariant Subspaces	_	5	_	6	
Algebraic (Quadratic Equations)	_	6	_	7	

Integral and Zero-Correlation (ZC) Distinguishers

- Integral attacks [Lai94; DKR97]
- ZC attacks [BR14]

Link Between ZC and Integral Distinguishers [Sun+15]

Let $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ be a vectorial Boolean function. Assume A is a subspace of \mathbb{F}_2^n and $\beta \in \mathbb{F}_2^n \setminus \{0\}$ such that (α, β) is a ZC approximation for any $\alpha \in A$. Then, for any $\lambda \in \mathbb{F}_2^n$, $\langle \beta, F(x+\lambda) \rangle$ is balanced over the set

$$A^{\perp} = \{ x \in \mathbb{F}_2^n \mid \forall \ \alpha \in A : \langle \alpha, x \rangle = 0 \}.$$

Example: Conversion of ZC Distinguisher to Integral Distinguisher

- ZC distinguisher:
 - /■/■: Fixed/Nonzero/Any value for linear mask
- Integral distinguisher:
 - X₀[15]||T[15] takes all possible values and the remaining cells take a fixed value
 - $X_7[1]$ is balanced

ZC Distinguishers for Ciphers Following the TWEAKEY Framework

Ankele et al. [Ank+19]

Let $E_K(T,P):\mathbb{F}_2^{t\times n}\to\mathbb{F}_2^n$ be a TBC following the STK construction. Suppose that the tweakey schedule of E_K has z parallel paths and applies a permutation h on the tweakey cells in each path. Let (Γ_0,Γ_r) be a pair of linear masks for r rounds of E_K , and $\Gamma_1,\ldots,\Gamma_{r-1}$ represents a possible sequence for the intermediate linear masks. If there is a cell position i such that any possible sequence $\Gamma_0[i],\Gamma_1[h^{-1}(i)],\Gamma_2[h^{-2}(i)],\ldots\Gamma_r[h^{-r}(i)]$ has at most z linearly active cells, then (Γ_0,Γ_r) yields a ZC linear hull for r rounds of E.

Example: ZC Distinguisher for Tweakable Block Ciphers

Hosein Hadipour, Yosuke Todo FSE 2024 - Leuven, Belgium

CP Model to Search for ZC-based Integral Distinguishers [HSE23]

- \bigcirc CSP_U($\Gamma_{\rm U}$)
- \bigcirc $CSP_{L}(\Gamma_{L})$
- \bigcirc $CSP_{M}(\Gamma_{U}, \Gamma_{L})$
- \bigcirc $\mathit{CSP}_{\mathrm{D}} = \mathit{CSP}_{\mathrm{U}} \wedge \mathit{CSP}_{\mathrm{L}} \wedge \mathit{CSP}_{\mathrm{M}}$

Properties of MixColumns of QARMAv2

Properties of MixColumns of QARMAv2

MixColumns of QARMAv2 is defined as follows:

$$\begin{pmatrix} Y_0 \\ Y_1 \\ Y_2 \\ Y_3 \end{pmatrix} = \begin{pmatrix} 0 & \rho & \rho^2 & \rho^3 \\ \rho^3 & 0 & \rho & \rho^2 \\ \rho^2 & \rho^3 & 0 & \rho \\ \rho & \rho^2 & \rho^3 & 0 \end{pmatrix} \times \begin{pmatrix} X_0 \\ X_1 \\ X_2 \\ X_3 \end{pmatrix} = \begin{pmatrix} \rho X_1 + \rho^2 X_2 + \rho^3 X_3 \\ \rho^3 X_0 + \rho X_2 + \rho^2 X_3 \\ \rho^2 X_0 + \rho^3 X_1 + \rho X_3 \\ \rho X_0 + \rho^2 X_1 + \rho^3 X_2 \end{pmatrix}.$$

- ρ : rotation to the left by 1 bit, and $\rho^4 = 1$.
- If X_i and X_j have the zero-sum property simultaneously, then a linear combination of Y_i and Y_j also has the zero-sum property:

$$\bigoplus_{c\in\mathbb{C}} \left((\rho^{(i-j) \mod 4} X_i(c)) \oplus X_j(c) \right) = \bigoplus_{c\in\mathbb{C}} \left((\rho^{(i-j) \mod 4} Y_i(c)) \oplus Y_j(c) \right).$$

Our Method to Search for Distinguishers

Our Method to Search for ZC-based Integral Distinguishers

- \bigcirc $CSP_{\mathrm{U}}(\Gamma_{\mathrm{U}})$
- \bigcirc CSP1_L(Γ 1_L)
- \bigcirc CSP2_L(Γ 2_L)
- \bigcirc $CSP_{M}(\Gamma_{U}, \Gamma1_{L}, \Gamma2_{L})$
- \bigcirc $\mathit{CSP}_{\mathrm{U}} \wedge \mathit{CSP1}_{\mathrm{L}} \wedge \mathit{CSP2}_{\mathrm{L}} \wedge \mathit{CSP}_{\mathrm{M}}$

Example of Our Method to Search for Distinguishers

■: Fixed nonzero, ■: Any nonzero, ■: Unknown

Key Recovery Attack on QARMAv2

Naive Approach v.s. MitM [SW12]

- ► MitM:
 - $x = g(k_1, c), y = h(k_2, c)$
 - $T = N \cdot 2^{|k_1|} + N \cdot 2^{|k_2|}$

$$\sum_{z \in S} z = 0$$

Naive Approach v.s. MitM [SW12]

$$x = g(k_1, c), y = h(k_2, c)$$

$$T = N \cdot 2^{|k_1|} + N \cdot 2^{|k_2|}$$

$$\sum_{c \in c} z = 0 \iff \sum_{c \in c} x = \sum_{c \in c} y$$

Naive Approach v.s. Partial-Sum Technique [Fer+00]

- $x_1 = f_1(k_1, x_0), x_2 = f_2(k_2, x_1), \dots, x = f_n(k_n, x_{n-1}), \dots, x = f_n(k_n, x_{n-1}), \dots, x = f_n(k_n, x_n), \dots, x = f_n(k_$
- $\nabla T = \sum_{i=1}^{n} \frac{N_{i-1}}{n} \cdot 2^{|k_1| + \dots + |k_i|} < \sum_{i=1}^{n} \frac{N}{n} \cdot 2^{|k|}$
- \bigcirc $T < N \cdot 2^{|k|}$

Naive Approach v.s. Partial-Sum Technique [Fer+00]

$$x_1 = f_1(\mathbf{k}_1, \mathbf{x}_0), x_2 = f_2(\mathbf{k}_2, \mathbf{x}_1), \dots, x = f_n(\mathbf{k}_n, \mathbf{x}_{n-1})$$

$$x_0 = c, N_0 = N, N_i < N$$

$$\bullet$$
 $\tau = \sum_{i=1}^{n} N_{i-1} 2|\mathbf{k}_1| + \cdots + |\mathbf{k}_i| \geq \sum_{i=1}^{n} N$

$$\nabla T < N \cdot 2^{|k|}$$

Example: Partial-Sum Technique [Fer+00]

- Guess $K_6[0,7]$ and derive $S_0\left(C_6[0] \oplus K_6[0]\right) \oplus S_1\left(C_6[7] \oplus K_6[7]\right)$
- Guess $K_6[10]$ and derive $\mathcal{S}_2\left(\mathit{C}_6[10] \oplus \mathit{K}_6[10]\right)$
- Guess $K_6[13]$ and derive $S_3(C_6[13] \oplus K_6[13])$
- Guess $\bar{K}_5[0]$ and derive $C_4[0]$
- Time complexity: $6 \times 4 \times 2^{48} \approx 2^{52}$ S-box lookups

13-Round Integral Attack on QARMAv2-64-128 ($\mathscr{T}=1$) I

Our Key Recovery Attack on QARMAv2-64-128 ($\mathscr{T}=1$) II

- Guess L_0 :
 - Compute $X_0[5]$ by partial-sum technique.
 - Compute $X_0[15]$ by partial-sum technique.
 - Merge the results to derive 2^{64-4s} candidates for L_1 .
 - Brute force the remaining 2^{64-4s} candidates for L_1 by 1 extra pair.
- Each partial-sum involves 36 bits of L_1 .

$$\mathcal{T} = 2^{64} \times \left(s \times 2^{44} \text{RF} + s \times 2^{50.15} \text{MA} + s \times 2^{50.67} \text{MA} + 2^{64-4s} \text{ENC} \right)$$

For
$$s = 5$$
: $T = 2^{110.47}$, $M = 2^{44}$, $D = 5 \times 2^{44}$

Contributions and Future Works

Contributions and Future Works I

Summary of our attacks on QARMAv2. \mathcal{T} : No. of independent tweak blocks.

Version	\mathscr{T}	#Rounds	Time	Data	Memory
QARMAv2-64-128	1	13 /16	$2^{110.47}$	$2^{46.32}$	$2^{46.32}$
QARMAv2-64-128	2	14/20	2 ^{110.17}	2 ^{46.32}	$2^{46.32}$
QARMAv2-128-256	2	16/32	2 ^{234.11}	2 ^{46.58}	$2^{46.58}$

Contributions and Future Works II

- Contributions
 - Introducing a new CP-based tool to search for integral distinguishers of tweakable block ciphers following the TWEAKEY framework.
 - Providing the longest concrete key recovery attack against QARMAv2.
- Future works
 - **A** Whether there exists a 12-round integral distinguisher for QARMAv2-128 ($\mathcal{T}=2$) with data complexity less than 2^{80} ?
 - **A** Can other cryptanalytic techniques, outperforme our integral attacks, especially for QARMAv2-64-128 ($\mathcal{T}=1$)?
 - T: https://github.com/hadipourh/QARMAnalysis
 - https://ia.cr/2023/1833

Bibliography I

- [Ank+19] Ralph Ankele et al. Zero-Correlation Attacks on Tweakable Block Ciphers with Linear Tweakey Expansion. *IACR Transactions on Symmetric Cryptology* 2019.1 (Mar. 2019), pp. 192–235. DOI: 10.13154/tosc.v2019.i1.192–235.
- [Ava+23] Roberto Avanzi et al. **The QARMAv2 Family of Tweakable Block Ciphers**. *IACR Trans. Symmetric Cryptol.* 2023.3 (2023), pp. 25–73. DOI: 10.46586/TOSC.V2023.I3.25–73.
- [BR14] Andrey Bogdanov and Vincent Rijmen. Linear hulls with correlation zero and linear cryptanalysis of block ciphers. Des. Codes Cryptogr. 70.3 (2014), pp. 369–383. DOI: 10.1007/s10623-012-9697-z.
- [DKR97] Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. The Block Cipher Square. FSE 1997. Vol. 1267. LNCS. Springer, 1997, pp. 149–165. DOI: 10.1007/BFb0052343.

Bibliography II

- [Fer+00] Niels Ferguson et al. Improved Cryptanalysis of Rijndael. FSE 2000. Vol. 1978. LNCS. Springer, 2000, pp. 213–230. DOI: 10.1007/3-540-44706-7_15.
- [HSE23] Hosein Hadipour, Sadegh Sadeghi, and Maria Eichlseder. Finding the Impossible: Automated Search for Full Impossible Differential, Zero-Correlation, and Integral Attacks. EUROCRYPT 2023. Vol. 14007. LNCS. Springer, 2023, pp. 128–157. DOI: 10.1007/978-3-031-30634-1_5.
- [Lai94] Xuejia Lai. **Higher order derivatives and differential cryptanalysis**. *Communications and cryptography*. Springer, 1994, pp. 227–233.
- [Sun+15] Bing Sun et al. Links Among Impossible Differential, Integral and Zero Correlation Linear Cryptanalysis. CRYPTO 2015. Vol. 9215. LNCS. Springer, 2015, pp. 95–115. DOI: 10.1007/978-3-662-47989-6_5.

Bibliography III

[SW12] Yu Sasaki and Lei Wang. Meet-in-the-Middle Technique for Integral Attacks against Feistel Ciphers. SAC 2012. Vol. 7707. LNCS. Springer, 2012, pp. 234–251. DOI: 10.1007/978-3-642-35999-6_16.

14-Round Integral Attack on QARMAv2-64-128 ($\mathscr{T}=2$)

16-Round Integral Attack on QARMAv2-128-256 ($\mathscr{T}=2$)

