Московский Физико-Технический Институт

КАФЕДРА ОБЩЕЙ ФИЗИКИ Лабораторная работа №3.2.5

Вынужденные колебания в электрическом контуре

Автор: Ришат ИСХАКОВ 513 группа

Преподаватель: Александр Александрович КАЗИМИРОВ

1 Цель работы

Исследование вынужденных колебаний и процессов их установления. В работе используются: генератор звуковой частоты, осциллограф, вольтметр, частотометр, ёмкость, индуктивность, магазин сопротивлений, универсальный мост.

2 Теоретическая часть

В данной работе будем рассматривать колебания в электрическом колебательном контуре под воздействием внешней ЭДС, гармонически изменяющейся во времени. Получаем, что при подключении внешнего источника возникнут колебания, которые будем рассматривать как решение дифференциального уравнения:

$$L\ddot{I} + R\dot{I} + \frac{I}{C} = -\mathcal{E}\Omega\sin\Omega t,\tag{1}$$

в качестве суперпозиции двух синусоид:

$$I = Be^{-\gamma t}\sin(wt - \theta) + \frac{\mathscr{E}\Omega}{L\rho_0}\sin(\Omega t - \psi), \tag{2}$$

одна из которых с частотой собственных колебаний контура ω и амплитудой, экспоненциально убывающей со временем; вторая - с частотой внешнего источника и постоянной амплитудой. Однако со временем собственные колебания затухают, и в контуре устанавливаются вынужденные колебания. А их амплитуда максимальна, когда знаменатель второй синусоиды $\rho_0 = \sqrt{(\omega_0^2 - \Omega_0^2)^2 + (2\gamma\Omega)^2}$ минимален, то есть $\omega_0 = \Omega$ (частота внешнего сигнала совпадает с собственной частотой контура). Это явление и называется резонансом. Зависимость амплитуды колебаний от частоты внешнего напряжения называется резонансной кривой.

2.1 Резонансная кривая колебательного контура

Рис. 1: Схема установки

Мы можем снять зависимость амплитуды напряжения на резисторе R от частоты на генераторе (при постоянной амплитуде выходного напряжения), однако для этого выходное сопротивление генератора должно быть много меньше импеданса контура. Для этого в цепи используется конденсатор C_1 . И в таком случае импеданс внешней по отношению к контуру цепи был гораздо больше импеданса самого контура вблизи резонанса:

$$\frac{1}{\omega C_1} \gg |Z_{\text{pes}}| = \frac{L}{RC}$$

2.2 Процессы установления и затухания колебаний

Добротность контура можно определить и другими способами, например, по скорости затухания свободных колебаний. Подавая на контур цуги синусоид конечной длины, можно наблюдать процессы установления и затухания колебаний в контуре. И те, и другие могут быть использованы для определения добротности контура по скорости нарастания/затухания напряжения:

Рис. 2: Нарастание и затухание вынужденных колебаний

$$\Theta = \frac{1}{n} \ln \frac{U_0 - U_k}{U_0 - U_{k+n}}$$

Измеряя амплитуды напряжения в какой-нибудь момент времени и через n периодов, можем посчитать добротность по формуле:

$$Q = \frac{\pi}{\gamma T} = \frac{\pi}{\Theta}$$

3 Установка и параметры измерения

Рис. 3: Схема экспериментальной установки для исследования вынужденных колебаний

Идеальная схема, изображённая на рисунке 2, не соответствует действительности. Элементы цепи не идеальны и имеют паразитные сопротивления. Измерим все величины с помощью RLC – моста:

$$R_L = 24.6 \; {\rm Om}, \; L = 99.97 \; {\rm m}$$
Гн, $C = 103.34 \; {\rm H}$ Ф, $R = 105.7 \; {\rm Om}$

Снимем зависимость напряжения на конденсаторе от входной частоты, и получим таким образом резонансную кривую. Рассчитаем добротность контура при разных значениях резистора по известной формуле:

$$Q = \frac{\nu_0}{\Delta \nu}$$

U, B	4.10	4.40	4.90	5.40	6.00	6.80	7.80	8.60	9.50	9.80	9.80	9.00	8.40	7.20	6.60	9.90	9.60	9.40	9.70	9.70	9.60	9.80
ν, Гц	1575	1584	1588	1591	1595	1600	1605	1609	1615	1624	1636	1566	1562	1560	1556	1553	1550	1546	1541	1535	1527	1517
ν/ν_0	0.99	1.00	1.00	1.00	1.00	1.01	1.01	1.01	1.01	1.02	1.03	0.98	0.98	0.98	0.98	0.98	0.97	0.97	0.97	0.96	0.96	0.95
U/U0	0.41	0.44	0.49	0.55	0.61	0.69	0.79	0.87	0.96	0.99	0.99	0.91	0.85	0.73	0.67	1.00	0.97	0.95	0.98	0.98	0.97	0.99
$\Delta \nu / \nu_0$	6.22	6.25	6.27	6.28	6.30	6.32	6.34	6.35	6.38	6.41	6.46	6.18	6.17	6.16	6.14	6.13	6.12	6.10	6.08	6.06	6.03	5.99
$\Delta U/U0$	0.002	0.002	0.002	0.002	0.002	0.002	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.002	0.002	0.003	0.003	0.003	0.003	0.003	0.003	0.003

Таблица 1: Полученные значения при ${
m R}=0$

Рис. 4: Резонансные кривые для $R=100~{\rm Om}$ и для $R=0~{\rm Om}$

Экспериментальные значения добротностей:

$$Q_{R=0} = 38.4 \pm 1.2$$

 $Q_{R=100} = 7.3 \pm 0.4$

]	Возрас	стание	Затухание					
R, Om	0			100	0		100		
U_n , мВ	44	68	56	16	680	380	152	164	
U_{k+n} , MB	160	160	160	60	100	100	24	24	
U_0 , мВ		177	•	61	-				
n	25	23	23	6	25	17	5	5	
Q	38.2	38.8	36.8	5	41	40	8.5	8.2	

Таблица 2: Измерение добротности по нарастанию и затуханию

Экспериментальные значения добротности (нарастание напряжения):

$$Q_{R=0} = 38 \pm 4$$

$$Q_{R=100} = 5 \pm 2$$

Экспериментальные значения добротности (убывание напряжения):

$$Q_{R=0} = 40.5 \pm 3$$

$$Q_{R=100} = 8.3 \pm 2$$

Сравнение экспериментальных значений добротности, полученных разными методами

	Теория	Резонансная кривая	Нарастание	Убывание
$Q_{R=0}$	38.8	38.4 ± 1.2	38 ± 4	40.5 ± 3
$Q_{R=100}$	7.51	7.3 ± 0.4	5 ± 2	8.3 ± 2

 Таблица 3: Сравнение экспериментальных значений добротности, полученных разными методами

4 Вывод

Были изучены законы, описывающие переходные процессы в резонансном контуре, изучена резонансная кривая и определение добротности из разных физических соображений.