PL1 DE algèbre linéaire 2013-2014 durée 2H.

Documents non autorisés, aucun appareil électronique n'est autorisé y compris la calculatrice.

- 1) On considère la matrice $A = \begin{pmatrix} 1 & -1 \\ -2 & 2 \end{pmatrix}$ et l'ensemble $F = \{ \ X \in \mathbb{R}^2, \ AX = 0 \}$, résoudre $A \begin{pmatrix} X \\ y \end{pmatrix} = 0$.
- Déduire de 1) une base de F.
- 3) Que vaut dimF?
- -4) Soit la famille (v₁, v₂, v₃) dont les vecteurs sont définis par leurs coordonnées dans la base standard,

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $v_3 = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}$. Montrer que pout tout vecteur $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ de \mathbb{R}^3 , il existe trois réels α, β, γ

tels que : $\alpha v_1 + \beta v_2 + \gamma v_3 = \begin{pmatrix} x \\ y \end{pmatrix}$, vous donnerez α , β , γ en fonction de x,y,z.

- -5) D'après 4), il est clair que (v₁, v₂, v₃) est génératrice de ℝ³. Citer un résultat du cours sur les familles de n vecteurs dans \mathbb{R}^n qui permet de conclure que (v_1, v_2, v_3) est une base de \mathbb{R}^3 qu'on notera B.
- En déduire la matrice de passage P_{SB} où S désigne la base standard de ℝ³.
- 7) Soit E le sous-ensemble de \mathbb{R}^3 défini par l'équation x + 2y + z = 0 et deux vecteurs $u_1 = \begin{pmatrix} x_1 \\ y_1 \\ z_2 \end{pmatrix}$ et $u_2 = \begin{pmatrix} x_2 \\ y_2 \\ z_3 \end{pmatrix}$, calculer les coordonnées de $\alpha u_1 + \beta u_2$ et montrer que $\alpha u_1 + \beta u_2 \in E$.
- En déduire que E est un sous-espace vectoriel de R³.
- 9) Donner une base de E.
- 10) Que vaut dim E?
- _ 11) Soit $(\varepsilon_1, \varepsilon_2, \varepsilon_3)$ la base standard de \mathbb{R}^3 et l'application linéaire $f: \mathbb{R}^3 \to \mathbb{R}^3$ définie par $f(\varepsilon_1) = \varepsilon_1 + 2\varepsilon_3$; $f(\epsilon_2) = -\epsilon_1 + \epsilon_2$; $f(\epsilon_3) = 2\epsilon_1 + \epsilon_2 + \epsilon_3$. Ecrire la matrice standard de f.
 - 12) Montrer que f est bijective.