9560 19999n-1 0.1 Rationality refers to ability of an agent to make duisions that maximize its expected utility or achieve its goaly given available anto 4 resources Rationality 93 about maring best possible duisions given 2 carcumstancy even of those decisions are not always parted Rationality refers to behaviour of agents in env by guiding 3 them to select actions that had to disvable outcomes I gody. 9 An agent is considered rational of consistently chooses autions that expected to max utility or aum obj 3 Eg :- A chess-playing agent A rational chess playing agent would choose moves that are expected to had to victory or at least avoid defeat It evaluates potential movies based on its understanding of game state of seluts to one that maximizes its chance of winning. In a self-driving car reviouality involves making duisions that prioritize salety of efficiency. The car must navigeve through traffic, obey traffic ruly 1 avoid awdents Reach dutination in timely manner. A rational soll-driving ear would choose rawes 4 - driving behaviours

- The nature of environments in which intelligent agents operate is eliverse 4 can vary greatly depending on latins such as complexity, dynamics, observability
- Complexity: Environments can range from simple, deterministe env with a few steves of autions to complex stochastic env with countless possible steves outions
- Dynamics Env may be static, where the agents
 autions do not change the state or dynamic, where
 the env envolves
- Observability: Env (on be fully observable where agents has account to complete into about current steele or partially observable where agent has limited a incomplex into
 - Determinism: Env may be obterministic where the automo Of aution is fully obtermined by current state fewton taken or stochastic where there is uncertainty
 - Episodicity: Env may be episodic where each auton leads
 to immediate reward 1 resuls env to initial state

 Eq: Stock Harket!-
 - A stochastic partially observable sequential env with high complexity. Agents may analyze historical deta 1 predlet futur.

 2) 120bot now: A alynamic observable sequential env with moderale complexity. Agents multo precious surrounding + nrough sensors.

O3]	
->	Intelligent agent in A.I typically consist of 5 main compor
P)	Perception: This component involves sensing the environment
	using sensors to greater into . Its about how are agent
	perceive Survounding
ri)	Reasoning - Agents use reasoning mechanism to make decisions
	1 plan autions based on onto they have gethered
	This involves processing 4 analyzing deter to come up with
	Solutions or responses
Ti)	Action: once a duision is made the eigent must ent upon
	Actuators are mechanisms through which agent interacts
	with env to carry out actions
1~)	Knowledge, Agents possy knowledge or 9010 about environment
	themselves 4 the tosks, they need to perform. This knowledge
	can be pre-dygned rearned or gnicired
v)	Leorning - Intelligent agents can improve their performance
	over 19me through learning mechanisms. This involve
	ecquiring good knowledge adapting strategies or aptimize
0	Types of Phielingent agents include
	simple reflex agents: These agents take actions based solvy
	on current percept without considering history of past
	percepts. An eg is thermostat
1.4	model Based Reflex: They maintain an internal model of en
	pose 9+ 10 mare divisions for es vacum chery row
	that us, a map of room to deuch who to clean

- 3) Goal Based Agents These eigens have go all or objectives their thing alm to entreve t telke entrons to move town goals.
- 4) Utility Based Agents They evaluate desirability of various autions based on utility function of choose the autions that maximizes expected willity. A personal assistant app that scheduly tasks based on user preferences
- 5) Learning Agents: These Agents improve pertormance over time through Learning from exp. Eg include recomendation systems that learn user preference from intercutions

0.4)

- → A Role of p.3 eigents
 - 1 taking autions to auticve desired goals without human
 - 1 These agents are designed to efficiently explore 4 navigate problem spalls to tind optimal solurs
 - 6). P. 8 agents can adapt to changes in their env or domain adjusting strategies to automate new into or constraints
 - They can handle a wide range of problem type of complexity from simple puzzles to complex real-world scenarios

2) formulation of problems

- rep +not (on be understood 4 processed by p.s agents
- @ Problems one tep in way that captures essential elements.
 Such as initial states, god states action
- (3) formulating problems providus a structured approach to p. s,

3)	Methods used for scorching solutions
0	uninformed search: Agents explore the problem space systematically
	without consideretion of domain specific knowledge.
	eg 813, D75
2	Intermed search Agents use domein specific knowledge of
	heuristics to guide search towards promising solutions
	Eg A + Search
3	loral souch agents - Agents iteratively improve (andictor soluti
	by making modifications
4)	eg
-	Powling Planning: In navigoution systems, p. s agents search
	for shortest peth bow two locations of enalyze rocal notwork
	Consider traffic conditions of employ algo like A
	Puzzle Solvang: In games like sudoku or Rubiu (obe
	agents wim to find solutions scalistying certain construct
	They analyze install state explore moves
6	Automated planning: In robotics or automated systems p.s
10 1 1	agents plan seg of autions to achieve desired accommy
	alon lik past to assisted constraints templay planning
2	algo lik Pasi to generale actions sequences