

$$P(y=1/\bar{x})=\sigma(\bar{x}\cdot Aug(\bar{x}))$$

$$P(y=1/\pi)=p=\sigma(\omega\cdot Aug(x))$$

Take $\sigma^{-1}()$

Question (9) (Answer at practicaldsc.org/q)

Which expression describes the odds ratio,

$$\frac{P(y=1|\vec{x})}{P(y=0|\vec{x})}$$

[5-1(p) = w.Aug(v)

in the logistic regression model?

• A.
$$\vec{w}$$
 · Aug(\vec{x})

• B.
$$-\vec{w} \cdot \text{Aug}(\vec{x})$$

• C. $\rho \vec{w} \cdot \text{Aug}(\vec{x})$

- D. $\sigma(\vec{w} \cdot \text{Aug}(\vec{x}))$
- E. None of the above.

uportant:
$$(p) = \log (p)$$

P = e w. Aug (\$\forall \)

$$P(y=1|\vec{x}) = \sigma(\vec{\omega}\cdot Aug(\vec{x}))$$
looking for $P(y=0|\vec{x}) = 1 - \sigma(\vec{\omega}\cdot Aug(\vec{x}))$

Question (4) (Answer at practicaldsc.org/q)

Which expression describes $P(y=\mathbf{0}|\vec{x})$ in the logistic regression model?

- A. $\sigma \left(\vec{w} \cdot \operatorname{Aug}(\vec{x}) \right)$
- B. $-\sigma \left(\vec{w} \cdot \operatorname{Aug}(\vec{x}) \right)$

$$C.\sigma\left(-\vec{w}\cdot \operatorname{Aug}(\vec{x})\right)$$

- D. $1 \log(1 + e^{w \cdot \operatorname{Aug}(\vec{x})})$
- E. 1 + $\log(1 + e^{-\vec{w} \cdot \text{Aug}(\vec{x})})$

$$P(y=0|\vec{x}) = \sigma(-\vec{w} \cdot \text{Aug}(\vec{x}))^{2} \left[1-\sigma(\vec{w} \cdot \text{Aug}(\vec{x}))\right] - \frac{1}{e^{t}+1}$$

$$\sigma(-t)=1-\sigma(t) = 1-\sigma(-t)$$

Fact about 5:

Here, a false positive (FP) is when we predict that someone has diabetes when they do not.

• How does the model's training precision change as the threshold changes?

util.plot_vs_threshold(X_train, y_train, 'Precision')

changes?

• We can visualize how precision and recall vary together.

The ROC curve for our classifier looks like:

@ localhost

• If we care about TPR and FPR equally, the best threshold is the one whose point is closest to the **top left corner** in the plot above.

Why? The top left corner is where TPR = 1 and FPR = 0, and we want TPR to be high and FPR to be low.

 A common metric for the quality of a binary classifier is the area under curve (AUC) for Larger values are better!

ullet A dataset is **linearly separable** if a line, plane, or hyperplane can be drawn in d-dimension perfectly separates the two classes.

• Why is the dataset below not linearly separable?

(3)

• Why would the optimal w_1^* below tend to ∞ ? See the annotated slides for more details.

$$P(y = 1|\text{Glucose}) = \sigma(w_0 + w_1 \cdot \text{Glucose}) = \frac{1}{1 + e^{-(w_0 + w_1 \cdot \text{Glucose})}}$$

110	- 8						
0	Adelie	Torgersen	39.1	18.7	181.0	3750.0	Male
1	Adelie	Torgersen	39.5	17.4	186.0	3800.0	Female
2	Adelie	Torgersen	40.3	18.0	195.0	3250.0	Female
330	Gentoo	Biscoe	50.4	15.7	222.0	5750.0	Male
331	Gentoo	Biscoe	45.2	14.8	212.0	5200.0	Female
332	Gentoo	Biscoe	49.9	16.1	213.0	5400.0	Male

333 rows × 7 columns

- Here, each row corresponds to a single penguin.
- There are three 'species' of penguin: Adelie, Chinstrap, and Gentoo.

• Question: What accuracy would the best "constant" classifier achieve on this data?

Note that the resulting decision boundaries are still linear!