

Plano de Ensino para o Ano Letivo de 2021

IDENTIFICAÇÃO								
Disciplina:				Código da Disciplina:	:			
Mecânica Geral				EFB204				
Course:								
Mechanics								
Materia:								
Mecánica								
Periodicidade: Anual	Carga horária total:	80	Carga horária sem	nanal: 02 - 00 - 00				
Curso/Habilitação/Ênfase:			Série:	Período:				
Engenharia de Alimentos			2	Diurno				
Engenharia de Controle e Autor	nação		2	Diurno				
Engenharia de Controle e Autor	nação		2	Noturno				
Engenharia de Controle e Autor	nação		2	Noturno				
Engenharia de Computação			2	Diurno				
Engenharia Civil			2	Diurno				
Engenharia Civil			2	Noturno				
Engenharia Civil			2	Noturno				
Engenharia Eletrônica			2	Diurno				
Engenharia Eletrônica			2	Noturno				
Engenharia Elétrica			2	Noturno				
Engenharia Elétrica			2	Diurno				
Engenharia Mecânica			2	Diurno				
Engenharia Mecânica			2	Noturno				
Engenharia Mecânica			2	Noturno				
Engenharia de Produção			2	Noturno				
Engenharia de Produção			2	Diurno				
Engenharia de Produção			2	Noturno				
Engenharia Química			2	Diurno				
Engenharia Química			2	Noturno				
Engenharia Química			2	Noturno				
		Titules 2 Creduct						
Professor Responsável: Fernando Malvezzi		Titulação - Graduaç		Pós-Graduação	,			
Fernando Maivezzi		Engenheiro Me	canico	Doutor				
Professores:		Titulação - Graduaç		Pós-Graduação				
Demetrio Elie Baracat		Engenheiro Me		Doutor				
Fernando Malvezzi		Engenheiro Me		Doutor				
Renato Maia Matarazzo Orsino		Engenheiro Me	cânico	Doutor				

2021-EFB204 página 1 de 11

MODALIDADE DE ENSINO

Presencial: 100%

Mediada por tecnologia: 0%

* Em qualquer modalidade a entrega de atividades e trabalhos deve ser realizada segundo orientações do professor da disciplina.

ATIVIDADES DE EXTENSÃO

A DISCIPLINA NÃO CONTEMPLA ATIVIDADES DE EXTENSÃO.

EMENTA

Triedro de Frenet. Cinemática de corpos rígidos: campos de velocidades e acelerações, composição de movimentos.

Dinâmica de corpos rígidos: distribuição de massa, teorema do movimento do baricentro, momento angular e teorema do momento angular, energia cinética e teorema da energia cinética.

SYLLABUS

Frenet frame (Moving Trihedron). Rigid Bodies Kinematics: velocity and acceleration fields, moving reference frames.

Rigid Bodies Dynamics: mass distribution, center of mass theorem, angular momentum and angular momentum theorem, kinetic energy and kinetic energy theorem.

TEMARIO

Triedro de Frenet. Cinemática del cuerpo rígido: campos de velocidad y aceleración, composición de movimientos.

Dinámica del cuerpo rígido: distribución de masa, teorema del movimiento del centro de masa. El momento angular de un cuerpo rígido y teorema del momento angular. La energia cinética de un cuerpo rígido y teorema de la energía cinética.

CONHECIMENTOS PRÉVIOS NECESSÁRIOS PARA O ACOMPANHAMENTO DA DISCIPLINA

É importante que os alunos tenham bons conhecimentos de:

- 1) Estática:
- 1.1 Vínculos;
- 1.2 Condições de equilíbrio;
- 1.3 Equilíbrio de sistemas multicorpos.
- 2) Cálculo diferencial e integral.
- 3) Vetores e Geometria Analítica:
- 3.1 Sistema Cartesiano;
- 3.2 Sistema polar;
- 3.3 Operações com vetores:projeção de vetores, produto escalar, produto vetorial, produto misto e duplo produto vetorial;
- 3.4 Vetores para abordagem de problemas de paralelismo e perpendicularismo entre retas, planos e entre reta e plano.

2021-EFB204 página 2 de 11

COMPETÊNCIAS DESENVOLVIDAS NA DISCIPLINA

COMPETÊNCIA 1:

- Analisar e compreender os fenômenos físicos por meio de modelos simbólicos e por simulações. A validação por experimentação também poderia ser realizada.- Aprender de forma autônoma e lidar com situações e contextos complexos (adequados para os alunos da 2a série), atualizando-se em relação aos avanços da ciência, da tecnologia, bem como em relação aos desafios da inovação.- Comunicar-se eficazmente nas formas escrita e gráfica.

OBJETIVOS - Conhecimentos, Habilidades, e Atitudes

CONHECIMENTOS

- C1 Momento e produto de Inércia.
- C2 Triedo de Frenet.
- C3 Cinemática do ponto material.
- C4 Cinemática do corpo rígido no plano.
- C5 Movimento relativo.
- C6 Dinâmica do corpo rígido no movimento plano.

HABILIDADES

- H1 Aplicar conceitos da cinemática e da dinâmica para análise de problemas de engenharia.
- H2 Identificar, formular e propor soluções para problemas relacionados com sistemas dinâmicos.
- H3 Avaliar o movimento de corpos rígidos no movimento plano.
- H4 Aplicar conceitos do cálculo e da geometria analítica em sistemas mecânicos.

ATITUDES

- Al Desenvolver a consciência de que o aluno é o elemento central no processo de ensino-aprendizagem.
- A2 Manter uma atitude crítica e participativa durante as aulas.
- A3 Persistir na busca da melhor solução para um problema.
- A4 Valorizar o rigor matemático e conceitual.
- A5 Cultivar a organização durante a resolução de problemas.

ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM - EAA

Aulas de Teoria - Sim

LISTA DE ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM

- Peer Instruction (Ensino por pares)
- Sala de aula invertida
- Problem Based Learning

2021-EFB204 página 3 de 11

METODOLOGIA DIDÁTICA

Aulas expositivas onde são apresentados os conceitos básicos do conjunto de conhecimentos da disciplina, eventualmente apresentados com o uso de data-show.

Aulas com participação ativa dos alunos (aula invertida).

Aulas de exercícios utilizando a aprendizagem por pares.

Uso da plataforma de aprendizagem a distância Moodle para realização de exercícios e trabalhos.

Estudo com exercícios resolvidos em forma de videoaula.

INSTRUMENTOS DE AVALIAÇÃO

NENHUM INSTRUMENTO DE AVALIAÇÃO FOI ADICIONADA.

AVALIAÇÃO (conforme Resolução RN CEPE 16/2014) e CRITÉRIOS DE APROVAÇÃO

Disciplina anual, com trabalhos e provas (duas e uma substitutiva).

Pesos dos trabalhos:

 $k_1: 1,0 \quad k_2: 1,0$

Peso de $MP(k_p)$: 0,6 Peso de $MT(k_p)$: 0,4

INFORMAÇÕES SOBRE INSTRUMENTOS DE AVALIAÇÃO

CONTRIBUIÇÃO DA DISCIPLINA

- 1. Iniciar o aluno no equacionamento de problemas de engenharia e na busca de soluções;
- 2. Consolidar conhecimentos de Cálculo e Geometria Analítica, pela sua aplicação em situações significativas para o engenheiro;
- 3. Contribuir para a base de outras disciplinas, como Resistência dos Materiais, Mecânica Analítica, Mecânica Vibratória, Construção de Máquinas e Projeto de Mecanismos.

BIBLIOGRAFIA

Bibliografia Básica:

BEER, F. P.; JOHNSTON, E. R. MECÂNICA VETORIAL PARA ENGENHEIROS. São Paulo, SP: McGraw-Hill, 1991. v. 2.

FRANÇA, L. N. F.; MATSUMURA, A. Z. Mecânica geral. 2. ed. São Paulo, SP: Edgard Blücher, 2004. 235 p.

MERIAN, J. L.; KRAIGE, L. G. DINÂMICA. 5. ed. Rio de Janeiro: LTC, 2004. v. 2. 496 p.

2021-EFB204 página 4 de 11

Bibliografia Complementar:

BEER, Ferdinand Pierre; JOHNSTON JR., E. Russell. Vector mechanics for engineers: dynamics. 6. ed. Boston: McGraw-Hill, 1997. 1314 p. ISBN 0-07-005366-9.

GIACAGLIA, G. E. O. Mecânica geral: para as escolas superiores. 3. ed. São Paulo, SP: Nobel, 1972. 447 p.

MERIAN, J. L., KRAIGE, L. G. ESTÁTICA. 5. ed. Rio de Janeiro, RJ: LTC, 2004. v. 1. 349 p.

RAHNEJAT, Homer. Multi-body dynamics: vehicles, machines, and mechanisms. Warrendade: SAE, 1998. 355 p. ISBN 0-7680-0269-9.

SANTOS, I. F. Dinâmica de sistemas mecânicos: modelagem, simulação, visualização, verificação. São Paulo, SP: Makron Books, 2001. 272 p.

TENENBAUM, Roberto A. Dinâmica. Rio de Janeiro, RJ: Ed. UFRJ, 1997. 759 p. ISBN 85-7108-201-4.

SOFTWARES NECESSÁRIOS PARA A DISCIPLINA

Programa Excel

INFORMAÇÕES SOBRE PROVAS E TRABALHOS

PROVAS

As provas semestrais P1 e P2 versarão sobre o conteúdo visto em cada semestre. A prova substitutiva PS versará sobre todo o conteúdo desenvolvido no curso. A aplicação das provas seguirá o calendário oficial da Escola.

A média de provas MP é calculada segundo a expressão MP = (2*P1 + 3*P2)/5.

***** IMPORTANTE ***** A nota da prova PS substitui a menor dentre as notas das provas P1 e P2, ou a média entre essas notas, de acordo com a situação que melhor favorecer o aluno.

TRABALHOS

Os trabalhos T1 e T2 serão aplicados ao longo do primeiro e segundo semestres, respectivamente. Esses trabalhos podem conter problemas aplicados, questões dissertativas, de múltipla escolha e questões de resposta numérica. Tais atividades podem ser realizadas presencialmente e/ou no formato online, via Open LMS.

O trabalho T1 é composto por uma atividade avaliativa, realizada ao final do 10 bimestre (AA1), e por outra(s) atividade(s), realizada(s) ao longo do 10 semestre (AS1). A nota T1 é calculada segundo a expressão T1 = 0,7AA1 + 0,3AS1.

2021-EFB204 página 5 de 11

INSTITUTO MAUÁ DE TECNOLOGIA

O traball	no T2	é	compost	0	por	uma	ativ	idade	ava	liativa	,re	aliz	ada	ao	fina	al d	do	30
bimestre	(AA2	:),	e po	r	outr	ra(s)	ati	vidad	e(s)	, real	izad	a(s)	a	o 1	ongo	d	0	20
semestre	(AS2)) .	A nota	Т2	é	calcu	ılada	segun	do a	a expres	ssão	Т2	= 0	,7AA	12 +	0,3	BAS	2.

A média dos trabalhos MT é calculada segundo a expressão MT=(T1+T2)/2.

MÉDIA FINAL

A média FINAL MF é calculada segundo a expressão MF = 0.6*MP + 0.4*MT. O aluno estará aprovado se a MF for maior ou igual a 6.0(seis).

2021-EFB204 página 6 de 11

OUTRAS INFORMAÇÕES

Todos os alunos, inclusive os que já cursaram a disciplina em anos anteriores e não foram aprovados, deverão entregar os trabalhos T1 e T2.

0 des	senvolvi	mento	das	ati	vidades	dest	a di	iscipl	lina	comp	õe	um	pro	cesso	de
apren	dizagem	onde	você	será	tratado	com	resp	eito.	São	bem-	vind	los	indi	víduos	de
todas	as ida	ades,	orige	ens,	crenças	, etr	nias,	gêne	eros,	ide	ntic	dade	s de	gêne	ero,
expre	ssões d	e gên	ero,	orig	ens nac	ionai	s, a	filia	ções	reli	igio	sas	, or	ientaç	ões
sexua	is, out	ras d	ifere	nças	visívei	s e	não	visív	eis.	Espe	era-	se	que	todos	os
matri	culados	nesta	disc	iplin	a contri	buam	para	um a	mbie	nte r	espe	eito	so,	acolhe	dor
e inc	lusivo p	para to	odos.												

2021-EFB204 página 7 de 11

APROVAÇÕES

Prof.(a) Fernando Malvezzi Responsável pela Disciplina

Prof.(a) Angelo Sebastiao Zanini Coordenador do Curso de Engenharia de Computação

Prof.(a) Cassia Silveira de Assis Coordenador(a) do Curso de Engenharia Civil

Prof.(a) David Garcia Penof Coordenador do Curso de Engenharia de Produção

Prof.(a) Edval Delbone Coordenador(a) do Curso de Engenharia Elétrica

Prof.(a) Eliana Paula Ribeiro Coordenador(a) do Curso de Engenharia de Alimentos

Prof.(a) Fernando Silveira Madani Coordenador(a) do Curso de Eng. de Controle e Automação

Prof.(a) Hector Alexandre Chaves Gil Coordenador(a) do Ciclo Básico

Prof.(a) Luciano Gonçalves Ribeiro Coordenador(a) do Curso de Engenharia Química

Prof.(a) Sergio Ribeiro Augusto Coordenador do Curso de Engenharia Eletrônica

Prof.(a) Susana Marraccini Giampietri Lebrao Coordenadora do Curso de Engenharia Mecânica

2021-EFB204 página 8 de 11

Data de Aprovação:		

2021-EFB204 página 9 de 11

	PROGRAMA DA DISCIPLINA	
Nº da	Conteúdo	EAA
semana		
1 T	Aulas somente para a primeira série.	0
2 Т	Apresentação da disciplina. Introdução à Cinemática do ponto	0
	material (movimento retilíneo).	
3 T	Cinemática do ponto material (movimento retilíneo).	1% a 10%
4 T	Triedro de Frenet.	0
5 Т	Triedro de Frenet (exercícios).	1% a 10%
6 T	Cinemática do ponto material(movimento curvilíneo).	1% a 10%
7 Т	Cinemática do ponto material (aplicações em sistemas	1% a 10%
	multicorpos).	
8 T	Cinemática do ponto material(aplicações em sistemas multicorpos).	11% a 40%
9 Т	Cinemática do ponto material(aplicações em sistemas multicorpos).	11% a 40%
10 T	Período de atividades avaliativas.	91% a
		100%
11 T	Cinemática dos corpos rígidos.	0
12 T	Cinemática dos corpos rígidos.	1% a 10%
13 Т	Cinemática dos corpos rígidos.	11% a 40%
14 T	Cinemática dos corpos rígidos.	11% a 40%
15 Т	Semana de Inovação	0
16 T	Estudos de caso e aplicações de cinemática em problemas de	91% a
	engenharia.	100%
17 Т	Cinemática - Movimento Relativo.	0
18 T	Cinemática - Movimento Relativo.	11% a 40%
19 Т	Semana de Provas (P1).	0
20 Т	Semana de Provas (P1).	0
21 Т	Atividades de Planejamento.	0
22 Т	Período de atividades avaliativas.	91% a
		100%
23 Т	Período de atividades avaliativas.	91% a
		100%
24 T	Momento de Inércia. Produto de Inércia.	0
25 T	Teorema de Steiner. Momento de Inércia com- figuras compostas.	 1% a 10%
	Raio de Giração.	
26 Т	Dinâmica dos corpos rígidos no plano - Translação.	1% a 10%
27 Т	Dinâmica dos corpos rígidos no plano - Translação.	11% a 40%
28 T	Dinâmica dos corpos rígidos no plano - Rotação.	1% a 10%
29 Т	Período de atividades avaliativas.	91% a
	Torrow as astriages avarraging.	100%
30 T	Dinâmica dos corpos rígidos no plano - Rototranslação.	0
31 T	Dinâmica dos corpos rígidos no plano - Rototranslação.	 1% a 10%
32 T	Dinâmica dos corpos rígidos no plano - Rototranslação.	91% a
J2 1	211255 God God Page 11. Prairie Robottalistayas.	100%
	Dinâmica dos corpos rígidos no plano - Trabalho e Energia.	0
33 Т		
33 T 34 T	Dinâmica dos corpos rígidos no plano - Trabalho e Energia.	1% a 10%

2021-EFB204 página 10 de 11

INSTITUTO MAUÁ DE TECNOLOGIA

35 T	Estudos de caso e aplicações de dinâmica em problemas de	91% a
	engenharia.	100%
36 T	Dinâmica dos corpos rígidos no plano - Trabalho e Energia.	41% a 60%
37 T	Semana de Provas (P2).	0
38 T	Semana de Provas (P2).	0
39 T	Semana de Provas (P2).	0
40 T	Complementos de dinâmica dos corpos rígidos no plano.	0
41 T	Semana de Provas (PS).	0
Legend	a: T = Teoria, E = Exercício, L = Laboratório	

2021-EFB204 página 11 de 11