Chapitre 16

Relations binaires.

Sommaire.

Relations binaires et leurs éventuelles propriétés.

1

Relations d'équivalence.

Relations d'ordre.

Exercices.

Les propositions marquées de \star sont au programme de colles.

1 Relations binaires et leurs éventuelles propriétés.

Soit E un ensemble.

Définition 1

On appelle **relation binaire** sur E un prédicat $\Re(x,y)$ sur $E \times E$, c'est-à-dire une propriété dépendant de $(x,y) \in E \times E$ et pouvant être vérifiée ou pas par chaque couple (x,y) de $E \times E$.

Soit $(x,y) \in E^2$. Si la propriété $\mathcal{R}(x,y)$ est vérifiée, on dit que x et y sont en relation, et on note

$$x \mathcal{R} y$$
.

Remarque. On peut aussi définir plus rigoureusement une relation binaire \mathcal{R} comme une partie de $E \times E$. Pour $(x,y) \in E \times E$, on dit alors que x est en relation avec y si $(x,y) \in \mathcal{R}$.

Définition 2: Propriétés que possède éventuellement une relation binaire.

On dit qu'une relation binaire \mathscr{R} sur E est

- **réflexive** si pour tout $x \in E$, on a $x \mathcal{R} x$,
- symétrique si pour tout $(x,y) \in E^2$, on a $x \mathcal{R} y \Longrightarrow y \mathcal{R} x$,
- antisymétrique si pour tout $(x,y) \in E^2$, on a $(x \mathcal{R} y \text{ et } y \mathcal{R} x) \Longrightarrow x = y$,
- transitive si pour tout $(x, y, z) \in E^3$, on a $(x \mathcal{R} y \text{ et } y \mathcal{R} z) \Longrightarrow x \mathcal{R} z$,

Exemple 3

Soit \mathcal{D} l'ensemble des droites du plan, et E un ensemble quelconque.

Relation	réflexive ?	symétrique?	antisymétrique?	transitive?
= sur E	√	✓	✓	✓
$< sur \mathbb{R}$	Х	Х	Х	✓
$\perp \operatorname{sur} \mathcal{D}$	Х	✓	Х	Х
$\parallel \operatorname{sur} \mathcal{D}$	√	✓	Х	√

Relations d'équivalence.

Définition 4

Sur un ensemble E, une **relation d'équivalence** est une relation binaire \sim qui est réflexive, symétrique et

Deux éléments x et y qui sont en relation sont dits **équivalents**.

Pour $x \in E$, on appelle classe d'équivalence de x l'ensemble des éléments qui sont équivalents à x; on notera ici cet ensemble [x]:

$$[x] = \{ y \in E \mid x \sim y \}.$$

Exemple. Sur E, l'égalité est une relation d'équivalence. Que dire des classes d'équivalence?

Exemple 5: Relation d'équivalence associée à une fonction.

Soit $f: E \to F$ une application. Pour $x, y \in E$, on pose $x \sim y$ si f(x) = f(y).

La relation \sim est une relation d'équivalence sur E. Décrire les classes d'équivalences.

Solution:

Montrons que c'est une relation d'équivalence :

- **Réflexivité**: Soit $x \in E$, on a f(x) = f(x) donc $x \sim x$.
- Symétrie : Soient $x, y \in E$ tels que f(x) = f(y), on a f(y) = f(x).
- Transitivité: Soient $x, y, z \in E$ tels que f(x) = f(y) et f(y) = f(z). On a f(x) = f(z).

Soit $x \in E : [x] = \{y \in E \mid f(x) = f(y)\} = f^{-1}(\{f(x)\}).$

Définition 6

1. Soit $\alpha \in \mathbb{R}$. Sur \mathbb{R} , la relation de **congruence** modulo α est définie par

$$\forall (x,y) \in \mathbb{R}^2, \ x \equiv y[\alpha] \iff \exists k \in \mathbb{Z} \mid x = y + k\alpha.$$

2. Soit $n \in \mathbb{Z}$. Sur \mathbb{Z} , la relation de **congruence** modulo n est définie par

$$\forall (p,q) \in \mathbb{Z}^2, \ p \equiv q[n] \iff \exists k \in \mathbb{Z} \mid p = q + kn.$$

Proposition 7: *

Les relations de congruence sont des relations d'équivalence.

Preuve:

Soit $\alpha \in \mathbb{R}$.

- Réflexivité : Soit $x \in \mathbb{R}$. On a $x = x + 0\alpha$ donc $x \equiv x[\alpha]$.
- Symétrie : Soient $x, y \in \mathbb{R}$ tels que $\exists k \in \mathbb{Z} \mid x = y + k\alpha$. Alors $y = x k\alpha$ et $y \equiv x[\alpha]$.
- **Transitivité**: Soient $x, y, z \in \mathbb{R}$ tels que $\exists k, k' \in \mathbb{Z} \mid x = y + k\alpha$ et $y = z + k'\alpha$. Alors $x = z + (k + k')\alpha$. C'est bien une relation d'équivalence.

Proposition 8

Soit E un ensemble et \sim une relation d'équivalence sur E. Pour $x, x' \in E$,

$$x \sim x' \iff x' \in [x] \iff [x] = [x'].$$

Preuve:

- $(3) \Longrightarrow (2)$ Supposons que [x] = [x']. Puisque $x' \in [x'], x' \in [x]$ car [x] = [x'].
- $(2) \Longrightarrow (1)$ Supposons $x' \in [x]$, on a par definition $x' \sim x$ donc $x \sim x'$ (symétrie).

 $\overline{\text{Par double inclusion}}, [x] = [x'].$

On a bien $(3) \Longrightarrow (2) \Longrightarrow (1) \Longrightarrow (3)$, donc les équivalences sont vraies.

Théorème 9

Les classes d'équivalence pour une relation d'équivalence sur un ensemble E forment une partition de cet ensemble.

Preuve:

- Une classe d'équivalence est non-vide car définie à partir d'un élément de $E: \forall x \in E, \ x \in [x]$.
- ullet Montrons que E est l'union des classes d'équivalence par double inclusion.
- \supset est claire car les [x] sont des parties de E.
- \subset Soit $x \in E$, on a $x \in [x]$ et $[x] \in E_{/\sim}$ donc x est dans l'union des classes d'équivalence.
- Montrons que les classes d'équivalence sont deux-à-deux disjointes. Soient $[x] \neq [x']$ deux classes d'équiv.
- Par l'absurde, supposons que $\exists y \in [x] \cap [x']$. Alors [y] = [x] = [x'], absurde.
- Ainsi, toutes les classes d'équivalence sont deux-à-deux disjointes.

Les classes d'équivalence forment donc une partition de E.

3 Relations d'ordre.

Définition 10

Sur un ensemble E, une **relation d'ordre** est une relation binaire \leq qui est réflexive, antisymétrique et transitive. Au sujet du couple (E, \leq) , on peut alors parler d'ensemble ordonné.

Définition 11

Une relation d'ordre sur un ensemble E est dite **totale** si on peut toujours comparer deux éléments de E, c'est-à-dire que

$$\forall (x,y) \in E^2, \quad x \leq y \text{ ou } y \leq x.$$

Dans le cas contraire, on peut parler d'ordre ${f partiel}.$

Exemple 12: Inégalités.

La relation \leq est une relation d'ordre sur \mathbb{R} , c'est un ordre total.

La relation < n'est pas une relation d'ordre sur \mathbb{R} (elle n'est pas réflexive).

Exemple 13: Inclusion.

Soit E un ensemble. La relation d'inclusion \subset est une relation d'ordre sur $\mathcal{P}(E)$.

Dès que E possède plus de deux éléments, c'est un ordre partiel.

Solution:

Supposons que $|E| \ge 2$. Soient $x, y \in E \mid x \ne y$. On a $\{x\} \not\subset \{y\}$ et $\{y\} \not\subset \{x\}$. C'est un ordre partiel.

Exemple 14: Divisibilité sur les entiers positifs. *

Soient p et q deux entiers naturels. On dit que p divise q si il existe un entier $k \in \mathbb{N}$ tel que q = kp; on note alors $p \mid q$. La relation | est une relation d'ordre (partielle) sur \mathbb{N} .

Solution:

- Réflexivité : Soit $p \in \mathbb{N}$, on a $p = p \cdot 1$ donc $p \mid p$.
- Transitivité : Soient $p, q, r \in \mathbb{N}$ tels que $\exists k, k' \in \mathbb{N}$ q = kp et r = k'q, alors r = pkk' et $p \mid r$.
- Antisymétrie : Soient $p, q \in \mathbb{N}$ tels que $\exists k, k' \in \mathbb{N}$ q = kp et p = k'q, alors q = qkk' donc q(1 kk') = 0.
- Si q = 0, alors p = qk' = 0 = q donc p = q.
- Si kk' = 1, alors k = k' = 1 car $k, k' \in \mathbb{N}$. Or, q = pk donc p = q.

Exemple 15: Ordre lexicographique.

Soit $p \in \mathbb{N}^*$. L'ordre lexicographique est une relation d'ordre totale sur \mathbb{N}^p .

Deux p-uplets $(x_1,...,x_p)$ et $(y_1,...,y_p)$ sont comparés d'abord selon leur première coordonnée, puis selon la deuxième en cas d'égalité, etc...

Les p-uplets sont alors ordonnés comme dans un dictionnaire.

Pour cet ordre sur \mathbb{N}^3 , (1,2,4) est plus petit que (1,3,2), qui est lui même plus petit que (1,3,4).

Définition 16

Considérons deux ensembles, chacun muni d'une relation d'ordre : (E, \preceq_E) et (F, \preceq_F) .

D'une application $f: E \to F$, on dit qu'elle est :

- croissante si $\forall (x, x') \in E^2, \ x \leq_E x' \Longrightarrow f(x) \leq_F f(x').$
- décroissante si $\forall (x, x') \in E^2, \ x \leq_E x' \Longrightarrow f(x') \leq_F f(x)$.
- monotone si elle est croissante ou décroissante.

Exemple 17

Connaissons-nous des fonctions monotones (au sens de l'inclusion) de $\mathcal{P}(E)$ dans lui-même ?

Solution:

L'identité, la constante, ou le complémentaire...

Définition 18: Majorant, minorant.

Soit (E, \preceq) un ensemble ordonné et A une partie de E.

 \bullet On dit que A est **majorée** dans E si il existe un élément M de E tel que

$$\forall x \in A, \ x \leq M.$$

Dans ce contexte, M est appelé un **majorant** de A.

• On dit que A est **minorée** dans E si il existe un élément m de E tel que

$$\forall x \in A, \ m \preceq x.$$

Dans ce contexte, m est appelé un **minorant** de A.

ullet On dit que A est **bornée** dans E si elle est majorée et minorée.

Définition 19: Maximum, minimum.

Soit (E, \preceq) un ensemble ordonné et A une partie de E.

- S'il existe un majorant de A qui appartient à A, alors cet élément est unique. Il est appelé plus grand élément de A, ou encore **maximum** de A et noté $\max(A)$.
- S'il existe un minorant de A qui appartient à A, alors cet élément est unique. Il est appelé plus petit élément de A, ou encore **minimum** de A et noté min(A).

Exemple 20

Soit E un ensemble. Alors $(\mathcal{P}(E), \subset)$ est un ensemble ordonnée.

 $\mathcal{P}(E)$ possède-t-il un plus petit élément ? Un plus grand élément ?

Solution:

Un minimum : \varnothing car $\forall X \in \mathcal{P}(E)$, $\varnothing \subset X$ et $\varnothing \subset E$ et un maximum : E car $\forall X \in \mathcal{P}(E)$, $X \subset E$ et $E \subset E$.

Définition 21: Borne supérieure, inférieure.

Soit (E, \preceq) un ensemble ordonné et A une partie de E.

- Si l'ensemble des majorants de A admet un plus petit élément, alors cet élément est unique. Il est appelé borne supérieure de A et noté $\sup(A)$.
- Si l'ensemble des minorants de A admet un plus grand élément, alors cet élément est unique. Il est appelé **borne inférieure** de A et noté $\inf(A)$.

Exemple 22

Soit E un ensemble. Dans l'ensemble ordonné $(\mathcal{P}(E), \subset)$, toute partie A de $\mathcal{P}(E)$ possède une borne supérieure, ainsi qu'une borne inférieure : on a

$$\sup(A) = \bigcup_{X \in A} X$$
 et $\inf(A) = \bigcap_{X \in A} X$.

Solution:

Soit $X_0 \in A$. On a $\bigcup_{X \in A} X = X_0 \cup \bigcup_{X \in A \backslash X_0} X$ donc $X_0 \subset \bigcup_{X \in A} X$. Soit M un majorant de A. Soit $x \in \bigcup_{X \in A} X$ donc $\exists X \in A \mid x \in X$.

Or $X \subset M$ donc $X \in M$ donc $\bigcup_{X \in A} X$ est le plus petit des majorants.

De même pour l'intersection.

4 Exercices.

Exercice 1: $\Diamond \Diamond \Diamond$

Soit \mathscr{R} la relation définie sur \mathbb{R} par :

$$x \mathcal{R} y \iff xe^y = ye^x.$$

- 1. Montrer que \mathbb{R} est une relation d'équivalence sur \mathbb{R} .
- 2. Préciser le cardinal de la classe d'équivalence d'un réel x.

Solution:

1.

Réflexivité : Soit $x \in \mathbb{R}$, on a bien que $xe^x = xe^x$.

Symétrie: Soient $x, y \in \mathbb{R}$ tels que $xe^y = ye^x$, on a bien $ye^x = xe^y$.

Transitivité: Soient $x, y, z \in \mathbb{R}$ tels que $xe^y = ye^x$ et $ye^z = ze^y$. Montrons que $xe^z = ze^x$.

D'après la première égalité, $y = xe^{y-x}$.

On remplace y dans la seconde : $xe^{y-x+z} = ze^y$.

On divise par $e^y : xe^{z-x} = z$. On multiplie par $e^x : xe^z = ze^x$.

On a bien $x \mathcal{R} z$.

2. Soient $x, y \in \mathbb{R}$.

On a $x \mathcal{R} y \iff xe^y = ye^x \frac{x}{e^x} = \frac{y}{e^y}$.

On pose $f: x \mapsto \frac{x}{e^x}$. La classe d'équivalence de x est alors $\{y \in \mathbb{R} \mid f(x) = f(y)\}$.

La question revient à chercher le nombre d'éléments dans \mathbb{R} qui ont la même image par f.

On a que f est dérivable et $f': x \mapsto \frac{1-x}{e^x}$. Alors :

x	$-\infty$ 1 $+\infty$
f'(x)	+ 0 -
f	$-\infty$ $\frac{1}{e}$ 0

Alors, pour $x \in]-\infty, 0], |[x]| = 1$, pour x = 1, |[x]| = 1 et sinon, |[x]| = 2.

Exercice 2: $\Diamond \Diamond \Diamond$

On considère la relation \mathcal{R} définie sur \mathbb{N}^* par

$$p \mathcal{R} q \iff \exists n \in \mathbb{N}^* : p^n = q.$$

Montrer que \mathcal{R} est une relation d'ordre partiel sur \mathbb{N}^* .

Solution:

Réflexivité : Soit $p \in \mathbb{N}^*$. On a $p^1 = p$, donc $p \mathscr{R} p$.

Antisymétrie: Soient $p, q \in \mathbb{N}^*$ tels que $\exists n \in \mathbb{N}^* \mid p^n = q$ et $\exists m \in \mathbb{N}^* \mid q^m = p$. Montrons que p = q.

On a $p^n = q$ donc $p^{nm} = q^m = p$. De plus, $q^m = p$, donc $q^{nm} = p^n = q$.

Ainsi, $p = p^{nm}$ et $q = q^{nm}$. Alors, soit p = q = 1, soit n = m = 1 et alors p = q dans tous les cas.

Transitivité: Soient $p, q, r \in \mathbb{N}^*$ tels que $\exists n \in \mathbb{N}^* \mid p^n = q$ et $\exists m \in \mathbb{N}^* \mid q^m = r$. Montrons que $p \mathcal{R} r$.

On a que $p^n = q$ donc $p^{nm} = q^m = r$. Or $nm \in \mathbb{N}^*$, donc $p \mathcal{R} r$.

Alors \mathcal{R} est bien une relation d'ordre sur \mathbb{N}^* .

Ce n'est pas un ordre total : il n'existe pas d'entier n tel que $2^n = 3$ ou $3^n = 2$, par exemple.

Exercice 3: $\Diamond \Diamond \Diamond$

Soit $n \in \mathbb{N}^*$.

Soient $x = (x_1, ..., x_n) \in \mathbb{R}^n$ et $y = (y_1, ..., y_n) \in \mathbb{R}^n$. On note $x \leq y$ si

$$\forall k \in [1, n] : \sum_{i=1}^{k} x_i \le \sum_{i=1}^{k} y_i.$$

- 1. Montrer que \leq est une relation d'ordre sur \mathbb{R}^n .
- 2. Si $n \geq 2$, montrer qu'il s'agit d'un ordre partiel.

Solution:

1. **Réflexivité**: Soit $x \in \mathbb{R}^n$. On a bien que $\forall k \in [1, n]$ $\sum_{i=1}^k x_i \leq \sum_{i=1}^k x_i$.

Antisymétrie: Soient $x, y \in \mathbb{R}^n$. Supposons que $x \leq y$ et $y \leq x$. Montrons que x = y. On a que $\forall k \in [1, n], \sum_{i=1}^k x_i \leq \sum_{i=1}^k y_i \wedge \sum_{i=1}^k y_i \leq \sum_{i=1}^k x_i$.

Par antisymétrie de \leq , $\forall k \in [1, n]$ $\sum_{i=1}^{k} x_i = \sum_{i=1}^{k} y_i$.

Par récurrence forte triviale sur k, on peut montrer que tous les éléments sont égaux 1 à 1.

i.e. Avec k = 1, $x_1 = y_1$, on suppose $x_j = y_j$ pour tout j < k et on a $\sum_{i=1}^{j-1} x_i + x_k = \sum_{i=1}^{j-1} y_i = y_k$

Transitivité : Soient 1. Montrer que \sim est une relation d'équivalence.

 $x,y,z\in\mathbb{R}^n$ tels que $x\preceq y$ et $y\preceq z.$ Montrons que $x\preceq z.$ On a que $\forall k\in [\![1,n]\!], \sum_{i=1}^k x_i \leq \sum_{i=1}^k y_i \leq \sum_{i=1}^k z_i.$ Par transitivité de $\leq,\,x\preceq z.$

2. Soient x=(0,2) et y=(1,0). On a $\sum_{i=1}^2 x_i \ge \sum_{i=1}^2 y_i$ et $\sum_{i=1}^1 x_i \le \sum_{i=1}^1 y_i$: x et y ne sont pas comparables, \preceq est un ordre partiel.

Exercice 4: $\Diamond \Diamond \Diamond$

Sur \mathbb{R}_{+}^{*} , on définit une relation binaire en posant que deux réels strictement positifs sont en relation, ce qu'on note $x \mathcal{R} y$ si et seulement si

$$\exists (p,q) \in (\mathbb{N}^*)^2 \ px = qy$$

- 1. Démontrer que \mathcal{R} est une relation d'équivalence.
- 2. Démontrer que pour cette relation, deux classes d'équivalence sont nécessairement en bijection.

Solution :

1. **Réflexivité**: Soit $x \in \mathbb{N}^*$. On a que $1 \cdot x = 1 \cdot x$ donc $x \mathcal{R} x$.

Symétrie: Soient $x, y \in \mathbb{N}^*$ tels que $\exists (p, q) \in \mathbb{N}^*$ px = qy. On a qy = px donc $y \mathcal{R} x$.

Transitivité: Soient $x, y, z \in \mathbb{N}^*$ tels que $\exists (p, q) \in \mathbb{N}^*$ px = qy et $\exists (p', q') \in \mathbb{N}^*$ p'y = q'z.

On a $y = \frac{p}{q}x$ donc $p'\frac{p}{q}x = q'z$. Alors pp'x = qq'z et $x \mathcal{R} z$.

[x] Soient [x] et [y] deux classes d'équivalence de \mathscr{R} avec $x, y \in \mathbb{R}_+^*$.

On pose $f: \begin{cases} [x] \to [y] \\ a \mapsto \frac{a}{x}y \end{cases}$

Pour $a \in [x]$, on a $f(a) \in [y]$: $\exists (p,q) \in (\mathbb{N}^*)^2$ pa = qx Alors $a = \frac{q}{p}x$ et $f(a) = \frac{q}{p}\frac{x}{x}y \iff pf(a) = qy$.

On a f injective: Soient $a, a' \in [x]$ tels que f(a) = f'(a) on a $\frac{y}{x}a = \frac{y}{x}a'$ donc a = a'.

On a f surjective : Soit $b \in [y] : \exists (p,q) \in (\mathbb{N}^*)^2 \ pb = qy$, alors $b = \frac{q}{p}y$.

On pose $a \in [x] \mid pa = qx$, donc $a = \frac{q}{n}x$. On a $f(a) = \frac{q}{n}y = b$.

Donc f est bien une fonction bijective de [x] vers [y].

Exercice 5: $\Diamond \Diamond \Diamond$

Sur \mathbb{R} , on définit la relation \mathscr{R} par

$$x \mathcal{R} y \iff x^2 + 2y = y^2 + 2x.$$

- 1. Montrer que \mathscr{R} est une relation d'équivalence sur \mathscr{R} .
- 2. Déterminer la classe d'équivalence d'un réel a.

Solution:

1. **Réflexivité** : On a bien que $x^2 + 2x = x^2 + 2x$.

Symétrie: Soient $x, y \in \mathbb{R}$ tels que $x \mathcal{R} y$, par symétrie de l'égalité, on a $y \mathcal{R} x$.

Transitivité : Soient $x, y, z \in \mathbb{R}$ tels que $x \mathcal{R} y$ et $y \mathcal{R} z$. Par transitivité de l'égalité, $x \mathcal{R} z$.

2. Soit $x \in \mathbb{R}$. On a :

$$x^{2} + 2a = a^{2} + 2x$$

$$\iff x^{2} - a^{2} = 2(x - a)$$

$$\iff (x - a)(x + a) = 2(x - a)$$

$$\iff (x - a)(x + a - 2) = 0$$

Ainsi, soit x = a, soit x = 2 - a.

La classe d'équivalence de a est alors : $[a] = \{2 - a, a\}$.

Exercice 6: ♦♦◊

Soit \mathscr{R} une relation sur un ensemble E.

Pour $x, y \in E$, on note $x \sim y$ s'il existe $n \in \mathbb{N}^*$ et $x_0, ... x_n \in E$ tels que

$$x_0 = x, \ x_0 \mathcal{R} \ x_1, \ x_1 \mathcal{R} \ x_2, \ ..., \ x_{n-1} \mathcal{R} \ x_n, \ x_n = y.$$

- 1. Montrer que \sim est une relation transitive sur E.
- 2. On suppose \mathcal{R} réflexive et symétrique. Montrer que \sim est une relation d'équivalence sur E.

Solution:

1. Soient $x, y, z \in E$ tels que $x \sim y$ et $y \sim z$. Montrons $x \sim z$.

Alors il existe $n \in \mathbb{N}^*$ et $0, ..., x_n \in E, m \in \mathbb{N}^*$ et $y_0, ..., y_m \in E$ tels que

$$x_0 = x, \ x_0 \ \mathscr{R} \ x_1, \ ..., x_{n-1} \ \mathscr{R} \ x_n = y_0 \ \mathscr{R} \ y_1, \ ..., \ y_{n-1} \ \mathscr{R} \ y_n = z_n$$

Alors on a m+n éléments de E tels que

$$x_0 = x$$
, $x_0 \mathcal{R} x_1$, ..., $x_{m+n-1} \mathcal{R} x_{m+n}$, $x_{m+n} = z$.

On en conclut que $x \sim z$: \sim est transitive sur E.

2. **Réflexivité**: Soit $x \in E$. On pose $x_0 = x$ et $x_1 = x$. Par réflexivité de \mathscr{R} , on a $x_0 \mathscr{R}$ x_1 . Alors on a que $x_0 = x$, $x_0 \mathscr{R}$ x_1 , $x_1 = x$. C'est exactement $x \sim x$.

Symétrie: Soient $x, y \in E$ tels que $x \sim y$. Il existe $n \in \mathbb{N}^*$ et $x_0, ..., x_n$ tels que [la relation]. Par symétrie de \mathscr{R} , on obtient:

$$x_n = y, \ x_n \ \mathscr{R} \ x_{n-1}, \ ..., \ x_1 \ \mathscr{R} \ x_0, \ x_0 = x$$

On pose alors $(y_0, y_1, ..., y_n) = (x_n, x_{n-1}, ...x_0)$ et on obtient que

$$y_0 = y, \ y_0 \ \mathcal{R} \ y_1, \ ..., \ y_{n-1} \ \mathcal{R} \ y_n, \ y_n = x$$

Alors $y \sim x$ et on en conclut que \sim est réflexive.

On a déjà montré la transitivité de \sim : c'est une relation d'équivalence sur E.

Exercice 7: ♦♦♦

Soit E un ensemble et A une partie de E. Pour deux parties X et Y de E on note $X \sim Y$ lorsque $X \cap A = Y \cap A$, ce qui définit sur $\mathcal{P}(E)$ une relation binaire.

- 1. Montrer que \sim est une relation d'équivalence.
- 2. On note $\mathcal{P}(E)/\sim$ l'ensemble des classes d'équivalences pour \sim .

Démontrer qu'il existe une bijection de $\mathcal{P}(A)$ dans $\mathcal{P}(E)/\sim$.

Solution:

1. **Réflexivité** : Soit $X \in \mathcal{P}(E)$. Par réflexivité de l'égalité, on a que $X \cap A = X \cap A : X \sim X$.

Symétrie : Soient $X, Y \in \mathcal{P}(E)$ tels que $X \sim Y$. Par symétrie de l'égalité, $Y \sim X$.

Transitivité : Soient $X, Y, Z \in \mathcal{P}(E)$ tels que $X \sim Y$ et $Y \sim Z$. Par transitivité de l'égalité, $X \sim Z$. Alors \sim est bien une relation d'équivalence.

2. On pose
$$f: \begin{cases} \mathcal{P}(A) \to \mathcal{P}(E)/\sim \\ X \mapsto [X] \end{cases}$$

f est d'abord bien définie puisque $A \subset E$ et que \sim est une relation sur E.

Montrons que f est **injective**: Soient $X, X' \in (\mathcal{P}(A))^2$ tels que f(X) = f(X').

On a [X] = [X']. Alors $X \cap A = X' \cap A$, or $X \subset A$ et $X' \subset A$ donc X = X'.

Montrons que f est surjective : Soit $C \in \mathcal{P}(E) / \sim$. Alors $\exists X \in \mathcal{P}(E) \mid [X] = C$.

Ainsi, $X \cap A \in \mathcal{P}(A)$ et $f(X \cap A) = [X]$ puisque $X \cap A \cap A = X \cap A$. On a bien que f est surjective.

On en conclut que f est une bijection de $\mathcal{P}(A)$ vers $\mathcal{P}(E)/\sim$.