AMENDMENT AND RESPONSE

Serial No.: 10/087,610

Filing Date: March 1, 2002 Attorney Docket No. 100.152US01

Title: DIGITAL PLL WITH CONDITIONAL HOLDOVER

PAGE 2

Amendments to the Claims:

This listing of claims will replace all prior versions and listings of claims in the application:

Listing of claims:

- 1. (Currently Amended) A phase locked loop, comprising:
 - a phase comparator having a first input for receiving a reference clock signal, a second input for receiving a feedback signal, and an output for providing an error signal;
 - a loop filter having an input for receiving the error signal and an output for providing a control signal;
 - an oscillator having an input for receiving the control signal and an output for providing a timing signal, wherein the feedback signal is derived from the timing signal;
 - a processor coupled to the oscillator, wherein the processor is further coupled to receive a status message indicative of a quality level of the reference clock signal; and
 - a machine-readable medium coupled to the processor, wherein the machine-readable medium has instructions stored thereon capable of causing the processor to monitor the status message and to selectively place the phase locked loop in a holdover condition in response to the status message message;
 - wherein the instructions stored on the machine-readable medium are capable of causing the processor to place the phase locked loop in the holdover condition when a quality level of the reference clock signal indicated by the status message is less than an expected quality level of the phase locked loop in the holdover condition.
- 2. (Original) The phase locked loop of claim 1, wherein the instructions stored on the machine-readable medium are capable of causing the processor to selectively

AMENDMENT AND RESPONSE

Serial No.: 10/087,610 Filing Date: March 1, 2002

Title: DIGITAL PLL WITH CONDITIONAL HOLDOVER

Attorney Docket No. 100.152US01

place the phase locked loop in the holdover condition in response to the status message regardless of a validity of the reference clock signal.

3. (Canceled)

- 4. (Currently Amended) A phase locked loop, comprising:
 - a phase comparator having a first input for receiving a reference clock signal, a second input for receiving a feedback signal, and an output for providing an error signal, wherein the reference clock signal is selected from a group consisting of a primary reference clock signal and at least one secondary reference clock signal;
 - a loop filter having an input for receiving the error signal and an output for providing a control signal;
 - an oscillator having an input for receiving the control signal and an output for providing a timing signal, wherein the feedback signal is derived from the timing signal;
 - a processor coupled to the oscillator, wherein the processor is further coupled to receive status messages indicative of a quality level of the primary reference clock signal and the at least one secondary reference clock signal; and
 - a machine-readable medium coupled to the processor, wherein the machine-readable medium has instructions stored thereon capable of causing the processor to monitor the status messages and to selectively place the phase locked loop in a holdover condition in response to the status messages messages;
 - wherein the instructions stored on the machine-readable medium are capable of
 causing the processor to place the phase locked loop in the holdover
 condition when a quality level of the primary reference clock signal and
 the at least one secondary reference clock signal indicated by the status

Serial No.: 10/087,610 Filing Date: March 1, 2002

Title: DIGITAL PLL WITH CONDITIONAL HOLDOVER

Attorney Docket No. 100.152US01

message is less than an expected quality level of the phase locked loop in the holdover condition.

- 5. (Currently Amended) A phase locked loop, comprising:
 - a phase comparator having a first input for receiving a reference clock signal, a second input for receiving a feedback signal, and an output for providing an error signal;
 - a loop filter having an input for receiving the error signal and an output for providing a control signal;
 - an oscillator having an input for receiving the control signal and an output for providing a timing signal, wherein the feedback signal is derived from the timing signal;
 - a processor coupled to the oscillator, wherein the processor is further coupled to receive a status message indicative of a quality level of the reference clock signal; and
 - a machine-readable medium coupled to the processor, wherein the machine-readable medium has instructions stored thereon capable of causing the processor to monitor the status message and to place the phase locked loop in a holdover condition if the quality level indicated by the status message is below a target quality level level;
 - wherein the target quality level is an expected quality level of the phase locked loop in the holdover condition.
- 6. (Canceled)
- 7. (Original) The phase locked loop of claim 5, wherein the expected quality level is at least a Stratum 2 level.
- 8. (Original) The phase locked loop of claim 5, wherein the instructions stored on the machine-readable medium are capable of causing the processor to monitor the status message and to place the phase locked loop in the holdover condition if the

AMENDMENT AND RESPONSE

Serial No.: 10/087,610 Filing Date: March 1, 2002

Title: DIGITAL PLL WITH CONDITIONAL HOLDOVER

Attorney Docket No. 100.152US01

quality level indicated by the status message is below the target quality level when the reference clock signal is valid.

9. (Currently Amended) A phase locked loop, comprising:

- a phase comparator having a first input for receiving a reference clock signal, a second input for receiving a feedback signal, and an output for providing an error signal, wherein the reference clock signal is selected from a group consisting of a primary reference clock signal and at least one secondary reference clock signal;
- a loop filter having an input for receiving the error signal and an output for providing a control signal;
- an oscillator having an input for receiving the control signal and an output for providing a timing signal, wherein the feedback signal is derived from the timing signal;
- a processor coupled to the oscillator, wherein the processor is further coupled to receive status messages indicative of a quality level of the primary reference clock signal and the at least one secondary reference clock signal; and
- a machine-readable medium coupled to the processor, wherein the machine-readable medium has instructions stored thereon capable of causing the processor to monitor the status messages and to place the phase locked loop in a holdover condition if the quality level indicated by each status message is below a target quality level regardless of a validity of any reference clock signal signal;
- wherein the target quality level is an expected quality level of the phase locked loop in the holdover condition.
- 10. (Currently Amended) A timing circuit, comprising:
 - a receiver coupled to receive a communications signal and for recovering clock and data signals and a status message therefrom;

AMENDMENT AND RESPONSE

Serial No.: 10/087,610 Filing Date: March 1, 2002

Title: DIGITAL PLL WITH CONDITIONAL HOLDOVER

Attorney Docket No. 100.152US01

a framer for locating a frame pulse and generating a reference clock signal from the recovered clock and data signals; and

PAGE 6

a phase locked loop coupled to receive the reference clock signal and to generate a timing signal therefrom, the phase locked loop comprising:

- a phase comparator having a first input for receiving a reference clock signal, a second input for receiving a feedback signal, and an output for providing an error signal;
- a loop filter having an input for receiving the error signal and an output for providing a control signal;
- an oscillator having an input for receiving the control signal and an output for providing a timing signal, wherein the feedback signal is derived from the timing signal;
- a processor coupled to the oscillator, wherein the processor is further coupled to receive the status message, wherein the status message is indicative of a quality level of the reference clock signal; and
- a machine-readable medium coupled to the processor, wherein the machine-readable medium has instructions stored thereon capable of causing the processor to monitor the status message and to selectively place the phase locked loop in a holdover condition in response to the status message message; and

a pre-scaler interposed between the framer and the phase locked loop.

11. (Canceled)

- 12. (Currently Amended) A timing circuit, comprising:
 - a receiver coupled to receive a communications signal and for recovering clock and data signals and a status message therefrom;
 - a framer for locating a frame pulse and generating a reference clock signal from the recovered clock and data signals; and
 - a phase locked loop coupled to receive the reference clock signal and to generate

a timing signal therefrom, the phase locked loop comprising:

- a phase comparator having a first input for receiving a reference clock signal, a second input for receiving a feedback signal, and an output for providing an error signal;
- a loop filter having an input for receiving the error signal and an output for providing a control signal;
- an oscillator having an input for receiving the control signal and an output for providing a timing signal, wherein the feedback signal is derived from the timing signal;
- a processor coupled to the oscillator, wherein the processor is further coupled to receive the status message, wherein the status message is indicative of a quality level of the reference clock signal; and
- a machine-readable medium coupled to the processor, wherein the machine-readable medium has instructions stored thereon capable of causing the processor to monitor the status message and to place the phase locked loop in a holdover condition if the quality level indicated by the status message is below a target quality level level; and

a pre-scaler interposed between the framer and the phase locked loop.

13.(Original) The timing circuit of claim 12, wherein the instructions stored on the machine-readable medium are capable of causing the processor to monitor the status message and to place the phase locked loop in the holdover condition if the quality level indicated by the status message is below the target quality level when the reference clock signal is valid.

14. (Cancelled)

AMENDMENT AND RESPONSE

Serial No.: 10/087,610 Filing Date: March 1, 2002

Title: DIGITAL PLL WITH CONDITIONAL HOLDOVER

Attorney Docket No. 100.152US01

15. (Currently Amended) A shelf controller for controlling synchronization of shelf elements in a communications network element, the shelf controller comprising: a processor;

- a machine-readable medium coupled to the processor; and
- a timing circuit coupled to the processor and providing a timing signal for controlling synchronization of the shelf elements in the communications network element, wherein the timing circuit comprises:
- a receiver coupled to receive a communications signal and for recovering clock and data signals and a status message therefrom;
- a framer for locating a frame pulse and generating a reference clock signal from the recovered clock and data signals, wherein the status message is indicative of a quality level of the reference clock signal; and
- a phase locked loop coupled to receive the reference clock signal and to generate a timing signal therefrom, the phase locked loop comprising:
 - a phase comparator having a first input for receiving a reference clock signal, a second input for receiving a feedback signal, and an output for providing an error signal;
 - a loop filter having an input for receiving the error signal and an output for providing a control signal; and
 - an oscillator coupled to the processor and having an input for receiving the control signal and an output for providing a timing signal, wherein the feedback signal is derived from the timing signal;
- wherein the machine-readable medium has instructions stored thereon capable of causing the processor to monitor the status message and to selectively place the phase locked loop in a holdover condition in response to the status message message; and

AMENDMENT AND RESPONSE

Serial No.: 10/087,610 Filing Date: March 1, 2002

Title: DIGITAL PLL WITH CONDITIONAL HOLDOVER

Attorney Docket No. 100.152US01

wherein the instructions stored on the machine-readable medium are capable of causing the processor to place the phase locked loop in the holdover condition when a quality level of the reference clock signal indicated by the status message is less than an expected quality level of the phase locked loop in the holdover condition.

- 16. (Original) A network element for a communications network, the network element comprising:
 - a shelf backplane; and
 - a plurality of shelf elements coupled to the shelf backplane, wherein the plurality of shelf elements includes at least one shelf controller for controlling synchronization of the plurality of shelf elements, the at least one shelf controller comprising:
 - a processor;
 - a machine-readable medium coupled to the processor; and
 - a timing circuit coupled to the processor and providing a timing signal for controlling synchronization of the shelf elements in the communications network element, wherein the timing circuit comprises:
 - a receiver coupled to receive a communications signal and for recovering clock and data signals and a status message therefrom;
 - a framer for locating a frame pulse and generating a reference clock signal from the recovered clock and data signals, wherein the status message is indicative of a quality level of the reference clock signal; and
 - a phase locked loop coupled to receive the reference clock signal and to generate a timing signal therefrom, the phase locked loop comprising:

Title: DIGITAL PLL WITH CONDITIONAL HOLDOVER

Attorney Docket No. 100.152US01

a phase comparator having a first input for receiving a reference clock signal, a second input for receiving a feedback signal, and an output for providing an error signal;

a loop filter having an input for receiving the error signal and an output for providing a control signal; and an oscillator coupled to the processor and having an input for receiving the control signal and an output for providing a timing signal, wherein the feedback signal is derived from the timing signal;

wherein the timing circuit provides a synchronization timing signal to the shelf backplane for the synchronization of the plurality of shelf elements; wherein the synchronization timing signal is derived from the first timing signal; and

wherein the machine-readable medium has instructions stored thereon capable of causing the processor to monitor the status message and to selectively place the phase locked loop in a holdover condition in response to the status message.

- 17. (Currently Amended) A method of generating a timing signal, comprising: generating the timing signal from a reference clock signal in a phase locked loop;
 - monitoring a status message indicative of a quality level of the reference clock signal; and
 - placing the phase locked loop in a holdover condition if the quality level indicated by the status message is below a target level; wherein the method is performed in the order presented.

AMENDMENT AND RESPONSE

Serial No.: 10/087,610 Filing Date: March 1, 2002

Title: DIGITAL PLL WITH CONDITIONAL HOLDOVER

Attorney Docket No. 100.152US01

19. (Original) The method of claim 17, wherein the target level is an expected quality level of the phase locked loop in the holdover condition.

- 20. (Original) The method of claim 19, wherein the expected quality level is a Stratum 2 level.
- 21. (Original) The method of claim 17, wherein placing the phase locked loop in the holdover condition if the quality level indicated by the status message is below the target level occurs when the reference clock signal is valid.
- 22. (Currently Amended) A method of generating a timing signal, comprising:

 generating the timing signal from a reference clock signal in a phase locked

 loop, wherein the reference clock signal is selected from the group

 consisting of a primary reference clock signal and at least one secondary

 reference clock signal;

monitoring status messages indicative of a quality level of the primary reference clock signal and the at least one secondary reference clock signal; and placing the phase locked loop in a holdover condition if the quality level indicated by each status message is below a target level regardless of a validity of any reference clock signal signal; and wherein the method is performed in the order presented.

- 23. (Canceled)
- 24. (Original) The method of claim 22, further comprising:

 maintaining the phase locked loop in the holdover condition until at least one of
 the reference clock signals is valid and has a status message indicating a
 quality level at or above the target level.

AMENDMENT AND RESPONSE

Serial No.: 10/087,610 Filing Date: March 1, 2002

Title: DIGITAL PLL WITH CONDITIONAL HOLDOVER

Attorney Docket No. 100.152US01

25. (Original) The method of claim 24, wherein the phase locked loop is maintained in the holdover condition for a predetermined period after a reference clock signal having a valid status has a status message indicating a quality level at or above the target level.

26. (Currently Amended) A method of generating a timing signal, comprising:

during a time when a primary reference clock signal is valid and has an indicated

quality level at or above a target level:

generating a first error signal indicative of a phase relationship between the primary reference clock signal and a first feedback signal; filtering the first error signal to produce a first control signal; generating the timing signal in response to the first control signal; and deriving the first feedback signal from the timing signal;

during a time when the primary reference clock signal is failed or has an indicated quality level below the target level, and when a secondary reference clock signal is valid and has an indicated quality level at or above the target level:

generating a second error signal indicative of a phase relationship between the secondary reference clock signal and a second feedback signal;

filtering the second error signal to produce a second control signal; generating the timing signal in response to the second control signal; and deriving the second feedback signal from the timing signal; and a time when each reference clock signal is failed or has an indicated

during a time when each reference clock signal is failed or has an indicated quality level below the target level:

generating a holdover control signal; and

generating a timing signal in response to the holdover control signal

signal;

wherein the method is performed in the order presented.

AMENDMENT AND RESPONSE PAGE 13

Serial No.: 10/087,610 Filing Date: March 1, 2002

Title: DIGITAL PLL WITH CONDITIONAL HOLDOVER

Attorney Docket No. 100.152US01

27. (Canceled)

28. (Currently Amended) A method of generating a timing signal, comprising:

during a time when a primary reference clock signal is valid and has an indicated quality level at or above a target level:

generating a first error signal indicative of a phase relationship between the primary reference clock signal and a first feedback signal; filtering the first error signal to produce a first control signal; generating the timing signal in response to the first control signal; and

during a time when the primary reference clock signal either is failed or is valid and has an indicated quality level below the target level, and when a secondary reference clock signal is valid and has an indicated quality level at or above the target level:

deriving the first feedback signal from the timing signal;

generating a second error signal indicative of a phase relationship between the secondary reference clock signal and a second feedback signal;

filtering the second error signal to produce a second control signal; generating the timing signal in response to the second control signal; and deriving the second feedback signal from the timing signal; and

during a time when each reference clock signal either is failed or is valid and has an indicated quality level below the target level:

generating a holdover control signal; and

generating a timing signal in response to the holdover control signal

signal;

wherein the method is performed in the order presented.

29. (Canceled)

Attorney Docket No. 100.152US01

30. (Currently Amended) A machine-readable medium having instructions stored thereon capable of causing a processor to perform a method of generating a timing signal, the method comprising:

generating the timing signal from a reference clock signal in a phase locked loop;

monitoring a status message indicative of a quality level of the reference clock signal; and

placing the phase locked loop in a holdover condition if the quality level indicated by the status message is below a target level; wherein the method is performed in the order presented.

- 31. (Original) The machine-readable medium of claim 30, wherein placing the phase locked loop in the holdover condition if the quality level indicated by the status message is below the target level occurs when the reference clock signal is valid.
- 32. (Currently Amended) A machine-readable medium having instructions stored thereon capable of causing a processor to perform a method of generating a timing signal, the method comprising:

generating the timing signal from a reference clock signal in a phase locked loop, wherein the reference clock signal is selected from the group consisting of a primary reference clock signal and at least one secondary reference clock signal;

monitoring status messages indicative of a quality level of the primary reference clock signal and the at least one secondary reference clock signal; and placing the phase locked loop in a holdover condition if the quality level indicated by each status message is below a target level regardless of a validity of any reference clock signal;

wherein the method is performed in the order presented.

Serial No.: 10/087,610 Filing Date: March 1, 2002

Title: DIGITAL PLL WITH CONDITIONAL HOLDOVER

Attorney Docket No. 100.152US01

33. (Currently Amended) A machine-readable medium having instructions stored thereon capable of causing a processor to perform a method of generating a timing signal, the method comprising:

during a time when a primary reference clock signal is valid and has an indicated quality level at or above a target level:

generating a first error signal indicative of a phase relationship between
the primary reference clock signal and a first feedback signal;
filtering the first error signal to produce a first control signal;
generating the timing signal in response to the first control signal; and
deriving the first feedback signal from the timing signal;

during a time when the primary reference clock signal is failed or has an indicated quality level below the target level, and when a secondary reference clock signal is valid and has an indicated quality level at or above the target level:

generating a second error signal indicative of a phase relationship between the secondary reference clock signal and a second feedback signal;

filtering the second error signal to produce a second control signal; generating the timing signal in response to the second control signal; and deriving the second feedback signal from the timing signal; and

during a time when each reference clock signal is failed or has an indicated quality level below the target level:

generating a holdover control signal; and

generating a timing signal in response to the holdover control signal signal; wherein the method is performed in the order presented.

Serial No.: 10/087,610 Filing Date: March 1, 2002

Title: DIGITAL PLL WITH CONDITIONAL HOLDOVER

Attorney Docket No. 100.152US01

34. (Currently Amended) A machine-readable medium having instructions stored thereon capable of causing a processor to perform a method of generating a timing signal, the method comprising:

during a time when a primary reference clock signal is valid and has an indicated quality level at or above a target level:

generating a first error signal indicative of a phase relationship between
the primary reference clock signal and a first feedback signal;
filtering the first error signal to produce a first control signal;
generating the timing signal in response to the first control signal; and
deriving the first feedback signal from the timing signal;

during a time when the primary reference clock signal either is failed or is valid and has an indicated quality level below the target level, and when a secondary reference clock signal is valid and has an indicated quality level at or above the target level:

generating a second error signal indicative of a phase relationship between the secondary reference clock signal and a second feedback signal;

filtering the second error signal to produce a second control signal; generating the timing signal in response to the second control signal; and deriving the second feedback signal from the timing signal; and during a time when each reference clock signal either is failed or is valid and has an indicated quality level below the target level:

generating a holdover control signal; and

generating a timing signal in response to the holdover control signal

signal;

wherein the method is performed in the order presented.