

The irreducible error us a cause comes from the noise in the data set. Hence, this is on inhimic property and remains the same. The sum of bian, variance and irreducible emon is the generalization error. Exercise & Given, foexact ocx)=x3 x (t) gict) = fexact(x(t) + E(t) -0.1 -1.0 -0025 -0.5 0-1 -1 -1 0 -0.029 -0-5 0.1 0.325 0-5 0-2 0.001 0.1 0.025 -0.1 0.5 01 1-1 61.0 -0.101 -0-1 -0-1 1 -0.125 0 -0.5 02 -10 -0.8 For the first sample, y= [-1.1] solving the least square, P2 (XTX) Xy, al get, f(x): 1+2.05 x

For,
$$y$$
 a cond can ple

 $x = \begin{bmatrix} 1 & 0.5 \\ 0.35 \end{bmatrix}$, $y = \begin{bmatrix} -0.025 \\ 0.325 \end{bmatrix}$
 $p = \begin{bmatrix} 0.2214 \\ 0.6357 \end{bmatrix}$, $S(y) = 0.2214+0.6357 \times$

for, y of cample,

 $x = \begin{bmatrix} 1 & 0.1 \\ 1 & 0.5 \end{bmatrix}$, $y = \begin{bmatrix} 0.001 \\ 0.025 \\ 1.1 \end{bmatrix}$, $p = \begin{bmatrix} -0.2962 \\ 1.2592 \end{bmatrix}$
 $p = \begin{bmatrix} 0.1 \\ 0.25 \\ 1.1 \end{bmatrix}$, $p = \begin{bmatrix} 0.0949 \\ 0.9002 \end{bmatrix}$

for, y of sample

 $x = \begin{bmatrix} 1 & 0.1 \\ 0.5 \end{bmatrix}$, $y = \begin{bmatrix} -0.101 \\ 0.125 \end{bmatrix}$, $p = \begin{bmatrix} 0.0949 \\ 0.9002 \end{bmatrix}$
 $x = \begin{bmatrix} 1 & 0.1 \\ 0.125 \end{bmatrix}$, $y = \begin{bmatrix} 0.0949 \\ 0.9002 \end{bmatrix}$
 $x = \begin{bmatrix} 1 & 0.1 \\ 0.125 \end{bmatrix}$, $y = \begin{bmatrix} 0.0949 \\ 0.9002 \end{bmatrix}$

Given, 20=0. for & CX)= 1+2.05x. $f_{\tau_2}(x_0) = 0.2214, f_{\tau_3}(x_0) = -0.2962$ Ex. f(x0) = 1, fin (x0)=0.0848. fexact (xo) =0 (1-0) + ET (ft(x0)-fexact (x0))= (1-0)+(0.2214-0)+(-0.2962-0)+ (0-80848-0)) x1/4 = 0.2525 (ET (fT(x0)-fxacf(x0))= 0.06375 FTI(x0)=1, FTZ(x0)=0.2214, FT3(x0)=-0.2962, Fry (xo)=0.084. , Mean = (+0.22)4-0.2962+0.05/1x1/4 Variance = $\frac{1}{3}$ (1-0.2523) + (0.2214-0.2523) + (0.084-0.2523) + (0.(=6.2962-0.2523)+(0.084-0.252) 1 (0.88918) = 0.2963