CYANMATH: 创美营讲义(数学)

LeyuDame

2024年11月16日

目录

第一章	因式分解技巧	2
1.1	提公因式	2
1.2	应用公式	6
	1.2.1 平方差	6
	1.2.2 立方和与立方差	7
	1.2.3 完全平方	7
	1.2.4 完全立方	8
	1.2.5 2 ¹⁹⁸⁴ + 1 不是质数	10
& — <u>호</u>	救队 同人也了它之 印	10
第二章	_,,,,,,,,	12
2.1	整除	12
	2.1.1 整除的概念与基本性质	12
	2.1.2 素数与合数	15
	2.1.3 最大公因数与最小公倍数	18
	2.1.4 算术基本定理	24
2.2	同余	31
	2.2.1 同余的概念与基本性质	31
	2.2.2 剩余系及其应用	34
	2.2.3 费马小定理及其应用	38
	2.2.4 奇数与偶数	41
	2.2.5 完全平方数	44

第一章 因式分解技巧

什么是因式分解

在小学里, 我们学过整数的因数分解. 由乘法, 得

$$3 \times 4 = 12$$

反过来, 12 可以分解: $12 = 3 \times 4$.

当然. 4 还可以继续分解为 2×2. 于是得

$$12 = 3 \times 2 \times 2$$

这时 12 已经分解成质因数的乘积了.

同样地, 由整式乘法, 得

$$(1+2x)(1-x^2) = 1 + 2x - x^2 - 2x^3$$

反过来, $1 + 2x - x^2 - 2x^3$ 可以分解为两个因式 1 + 2x 与 $1 - x^2$ 的乘积, 即

$$1 + 2x - x^2 - 2x^3 = (1 + 2x)(1 - x^2)$$

 $1-x^2$ 还可以继续分解为 (1+x)(1-x). 于是

$$1 + 2x - x^2 - 2x^3 = (1 + 2x)(1 + x)(1 - x)$$

这里 x 的一次多项式 1+2x,1+x,1-x 都不能继续分解, 它们是不可约多项式, 也就是既约多项式. 所以, $1+2x-x^2-2x^3$ 已经分解成质因式的乘积了.

把一个整式写成几个整式的乘积, 称为因式分解, 每一个乘式称为积的因式.

在因式分解中,通常要求各个乘式(因式)都是既约多项式,这样的因式称为质因式.

因式分解的方法, 我们将逐一介绍,

1.1 提公因式

学过因式分解的人爱说: "一提、二代、三分组."

"提"是指"提取公因式".在因式分解时,首先应当想到的是有没有公因式可提. 几个整式都含有的因式称为它们的公因式.

例如 ma, mb, -mc 都含有因式 m, m 就是它们的公因式.

由乘法分配律, 我们知道

$$m(a+b-c) = ma + mb - mc,$$

因此

$$ma + mb - mc = m(a + b - c).$$

这表明上式左边三项的公因式 m 可以提取出来, 作为整式 ma + mb - mc 的因式. ma + mb - mc 的另一个因式 a + b - c 仍由三项组成, 每一项等于 ma + mb - mc 中对应的项除以公因式 m:

$$a = ma \div m, b = mb \div m, c = mc \div m$$

例 1.1.1 (一次提净). 分解因式: $12a^2x^3 + 6abx^2y - 15acx^2$

解. $12a^2x^3 + 6abx^2y - 15acx^2$ 由

$$12a^2x^3, 6abx^2y, -15acx^2$$

这三项组成, 它们的数系数 12,6,-15 的最大公约数是 3, 各项都含有因式 a 和 x^2 , 所以 $3ax^2$ 是上述三项的公因式, 可以提取出来作为 $12a^2x^3 + 6abx^2y - 15acx^2$ 的因式, 即有

$$12a^{2}x^{3} + 6abx^{2}y - 15acx^{2}$$
$$=3ax^{2}(4ax + 2by - 5c).$$

注记. 在例 1.1.1中, 如果只将因式 3a 或 3ax 提出, 那么留下的式子仍有公因式可以提取, 这增添了麻烦, 不如一次提净为好. 因此, 应当先检查数系数, 然后再一个个字母逐一检查, 将各项的公因式提出来, 使留下的式子没有公因式可以直接提取.

还需注意原式如果由三项组成,那么提取公因式后留下的式子仍由三项组成.在例 1 中,这三项分别为 $12a^2x^3$, $6abx^2y$, $-15acx^2$ 除以公因式 $3ax^2$ 所得的商. 初学的同学为了防止产生错误,可以采取两点措施:

1. 在提公因式前, 先将原式的三项都写成公因式 $3ax^2$ 与另一个式子的积, 然后再提取公因式, 即

$$12a^{2}x^{3} + 6abx^{2}y - 15acx^{2}$$

$$= 3ax^{2} \cdot 4ax + 3ax^{2} \cdot 2by + 3ax^{2} \cdot (-5c)$$

$$= 3ax^{2} \cdot (4ax + 2by - 5c).$$

在熟练之后应当省去中间过程,直接写出结果.

2. 用乘法分配律进行验算, 由乘法得出

$$3ax^{2}(4ax + 2by - 5c)$$
$$=12a^{2}x^{3} + 6abx^{2}y - 15acx^{2}.$$

例 1.1.2 (视 "多" 为一). 分解因式: $2a^2b(x+y)^2(b+c) - 6a^3b^3(x+y)(b+c)^2$

解. 原式由

$$2a^{2}b(x+y)^{2}(b+c), -6a^{3}b^{3}(x+y)(b+c)^{2}$$

这两项组成. 它们的数系数的最大公约数是 2, 两项都含有因式 a^2 和 b, 而且都含有因式 x+y 与 b+c, 因此 $2a^2b(x+y)(b+c)$ 是它们的公因式. 于是有

$$2a^{2}b(x+y)^{2}(b+c) - 6a^{3}b^{3}(x+y)(b+c)^{2}$$

$$= 2a^{2}b(x+y)(b+c) \cdot (x+y) - 2a^{2}b(x+y)(b+c) \cdot 3ab^{2}(b+c)$$

$$= 2a^{2}b(x+y)(b+c) \left[(x+y) - 3ab^{2}(b+c) \right]$$

$$= 2a^{2}b(x+y)(b+c) \left(x+y - 3ab^{3} - 3ab^{2}c \right).$$

在本例中, 我们把多项式 x + y, b + c 分别整个看成是一个字母, 这种观点在因式分解时是很有用的.

例 1.1.3 (切勿漏 1). 分解因式: $(2x+y)^3 - (2x+y)^2 + (2x+y)$.

 \mathbf{H} . 我们把多项式 2x + y 看成是一个字母, 因此原式由

$$(2x+y)^3$$
, $-(2x+y)^2$, $2x+y$

这三项组成, 2x + y 是这三项的公因式, 于是

$$(2x+y)^3 - (2x+y)^2 + (2x+y)$$

$$= (2x+y) \cdot (2x+y)^2 - (2x+y) \cdot (2x+y) + (2x+y) \cdot 1$$

$$= (2x+y) \left[(2x+y)^2 - (2x+y) + 1 \right].$$

请注意,中括号内的式子仍由三项组成,千万不要忽略最后一项 1. 在省去中间过程时,尤需加倍留心.

例 1.1.4 (注意符号). 分解因式: $-3ab(2x+3y)^4 + ac(2x+3y)^3 - a(2x+3y)$.

解.
$$-3ab(2x+3y)^4 + ac(2x+3y)^3 - a(2x+3y)$$

= $a(2x+3y) \cdot (-3b) \cdot (2x+3y)^3 + a(2x+3y) \cdot c(2x+3y)^2 + a(2x+3y) \cdot (-1)$
= $a(2x+3y) \left[-3b(2x+3y)^3 + c(2x+3y)^2 - 1 \right]$.

注记. 注意中括号内的最后一项是 -1, 千万别漏掉. 本例中, 原式的第一项有个因数 -1, 它也可以作为因数提取出来, 即

$$-3ab(2x+3y)^{4} + ac(2x+3y)^{3} - a(2x+3y)$$

$$= -a(2x+3y) \cdot 3b(2x+3y)^{3} - a(2x+3y) \cdot (-c)(2x+3y)^{2} - a(2x+3y) \cdot 1$$

$$= -a(2x+3y) \left[3b(2x+3y)^{3} - c(2x+3y)^{2} + 1 \right].$$

这样做也是正确的. 但必须注意各项的符号, 提出因数 -1 后各项都应改变符号, 所以上式的中括号内三项的符号恰与原式中相应的三项相反.

例 1.1.5 (仔细观察). 分解因式: (2x-3y)(3x-2y)+(2y-3x)(2x+3y).

解. 初看起来, 原式所含的第一项 (2x-3y)(3x-2y) 与第二项 (2y-3x)(2x+3y) 没有公因式, 但进一步观察便会发现

$$2y - 3x = -(3x - 2y),$$

因此 3x - 2y 是两项的公因式. 于是有

$$(2x - 3y)(3x - 2y) + (2y - 3x)(2x + 3y)$$
$$= (3x - 2y)[(2x - 3y) - (2x + 3y)]$$
$$= -6y(3x - 2y).$$

提出公因式后, 留下的式子如果可以化简, 就应当化简.

例 1.1.6 (化"分"为整). 分解因式: $3a^3b^2 - 6a^2b^3 + \frac{27}{4}ab$.

解. 这里的第三项 $\frac{27}{4}ab$ 的系数是分数,为了避免分数运算,我们把 $\frac{1}{4}$ 先提取出来,这时每项都除以 $\frac{1}{4}$ (也就是乘以 4),即

$$3a^{3}b^{2} - 6a^{2}b^{3} + \frac{27}{4}ab$$

$$= \frac{1}{4} \left(12a^{3}b^{2} - 24a^{2}b^{3} + 27ab \right)$$

$$= \frac{3}{4}ab \left(4a^{2}b - 8ab^{2} + 9 \right).$$

熟练以后可以将以上两步并作一步,"一次提净".

在提出一个分数因数(它的分母是各项系数的公分母)后,我们总可以使各项系数都化为整数(这个过程实质上就是通分).并且,还可以假定第一项系数是正整数,否则可用前面说过的方法,把-1作为公因数提出,使第一项系数成为正整数.

注记. 提公因式是因式分解的基本方法之一. 在因式分解时, 首先应该想到是否有公因式可提. 在与其他方法配合时, 即使开始已经提出公因式, 但是经过分组或应用公式后还有可能再出现公因式. 凡有公因式应立即提净. 提公因式时, 应注意各项的符号, 千万不要漏掉一项.

习题 1

将以下各式分解因式:

- 1. $5x^2y 10xyz + 5xy$.
- 2. 2a(x-a) + b(a-x) (x-a).
- 3. 3 2x(x+1) + a(x+1) + (x+1).
- 4. $\frac{3}{2}b^{3n-1} + \frac{1}{6}b^{2n-1}$ (n 是正整数).
- 5. $2(p-1)^2 4q(p-1)$.

- 6. $mn(m^2+n^2)-n^2(m^2+n^2)$.
- 7. (5a-2b)(2m+3p)-(2a-7b)(2m+3p).
- 8. $2(x+y) + 6(x+y)^2 4(x+y)^3$.
- 9. $(x+y)^2(b+c) (x+y)(b+c)^2$.
- 10. $6p(x-1)^3 8p^2(x-1)^2 2p(1-x)^2$.

1.2 应用公式

将乘法公式反过来写就得到因式分解中所用的公式, 常见的有七个公式:

- 1. $a^2 b^2 = (a+b)(a-b)$.
- 2. $a^3 + b^3 = (a+b)(a^2 ab + b^2)$.
- 3. $a^3 b^3 = (a b) (a^2 + ab + b^2)$.
- 4. $a^2 + 2ab + b^2 = (a+b)^2$.
- 5. $a^2 2ab + b^2 = (a b)^2$.
- 6. $a^3 + 3a^2b + 3ab^2 + b^3 = (a+b)^3$.
- 7. $a^3 3a^2b + 3ab^2 b^3 = (a b)^3$.

以上公式必须熟记, 牢牢掌握各自的特点.

1.2.1 平方差

七个公式中,平方差公式应用得最多.

例 1.2.1. 分解因式: $9(m-n)^2 - 4(m+n)^2$.

解. 原式由两项组成, 这两项符号相反, 并且

$$9(m-n)^2 = [3(m-n)]^2,$$

$$4(m+n)^2 = [2(m+n)]^2,$$

因此可以应用平方差公式,得

$$9(m-n)^{2} - 4(m+n)^{2}$$

$$= [3(m-n)]^{2} - [2(m+n)]^{2}$$

$$= [3(m-n) + 2(m+n)][3(m-n) - 2(m+n)]$$

$$= (5m-n)(m-5n).$$

例 1.2.2. 分解因式: $75x^6y - 12x^2y^5$.

解.

$$75x^{6}y - 12x^{2}y^{5} = 3x^{2}y (25x^{4} - 4y^{4})$$
$$= 3x^{2}y [(5x^{2})^{2} - (2y^{2})^{2}]$$
$$= 3x^{2}y (5x^{2} + 2y^{2}) (5x^{2} - 2y^{2})$$

例 1.2.3. 分解因式: $-(3a^2-5b^2)^2+(5a^2-3b^2)^2$.

解.

$$- (3a^{2} - 5b^{2})^{2} + (5a^{2} - 3b^{2})^{2}$$

$$= (5a^{2} - 3b^{2})^{2} - (3a^{2} - 5b^{2})^{2}$$

$$= [(5a^{2} - 3b^{2}) + (3a^{2} - 5b^{2})] [(5a^{2} - 3b^{2}) - (3a^{2} - 5b^{2})]$$

$$= (8a^{2} - 8b^{2}) (2a^{2} + 2b^{2})$$

$$= 16 (a^{2} - b^{2}) (a^{2} + b^{2})$$

$$= 16(a + b)(a - b) (a^{2} + b^{2})$$

注记. 例 1.2.3表明在因式公解中可能需要多次应用公式或提公因式,直到不能继续分解为止.

1.2.2 立方和与立方差

例 1.2.4. 分解因式: $9x^5 - 72x^2y^3$.

解.

$$9x^{5} - 72x^{2}y^{3} = 9x^{2}(x^{3} - 8y^{3})$$
$$= 9x^{2}[x^{3} - (2y)^{3}]$$
$$= 9x^{2}(x - 2y)(x^{2} + 2xy + 4y^{2})$$

例 1.2.5. 分解因式: $a^6 + b^6$.

解.

$$a^{6} + b^{6} = (a^{2})^{3} + (b^{2})^{3}$$

$$= (a^{2} + b^{2}) \left[(a^{2})^{2} - a^{2}b^{2} + (b^{2})^{2} \right]$$

$$= (a^{2} + b^{2}) (a^{4} - a^{2}b^{2} + b^{4})$$

1.2.3 完全平方

例 1.2.6. 分解因式: $9x^2 - 24xy + 16y^2$.

解. 原式由三项组成, 第一项 $9x^2 = (3x)^2$, 第三项 $16y^2 = (4y)^2$, 而

$$2 \cdot 3x \cdot 4y = 24xy$$

与中间一项只差一个符号, 因此可以利用(完全)平方式, 得

$$9x^2 - 24xy + 16y^2$$
$$= (3x - 4y)^2.$$

不是平方式的二次三项式,通常用十字相乘法分解(后面会讲).

例 1.2.7. 分解因式: $8a-4a^2-4$.

 \mathbf{M} . 首先把原式"理顺", 也就是将它的各项按字母 a 降幂 (或升幂) 排列, 从而有

$$8a - 4a^{2} - 4$$

$$= -4a^{2} + 8a - 4$$

$$= -4(a^{2} - 2a + 1)$$

$$= -4(a - 1)^{2}.$$

注记. 按某个字母降幂排列是一个简单而有用的措施(简单的往往是有用的),值得注意.

例 1.2.8. 分解因式: $4a^2 + 9b^2 + 9c^2 - 18bc - 12ca + 12ab$.

解. 我们需要引入一个公式. 由乘法可得

$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca,$$

即若干项的和的平方等于各项的平方与每两项乘积的 2 倍的和. 上面的式子可写成

$$a^{2} + b^{2} + c^{2} + 2ab + 2bc + 2ca$$

= $(a + b + c)^{2}$.

这也是一个因式分解的公式.

联系到例 1.2.8就有

$$4a^{2} + 9b^{2} + 9c^{2} - 18bc - 12ca + 12ab$$

$$= (2a)^{2} + (3b)^{2} + (-3c)^{2} + 2(3b)(-3c) + 2(2a)(-3c) + 2(2a)(3b)$$

$$= (2a + 3b - 3c)^{2}.$$

1.2.4 完全立方

例 1.2.9. 分解因式: $8x^3 + 27y^3 + 36x^2y + 54xy^2$.

解.

$$8x^{3} + 27y^{3} + 36x^{2}y + 54xy^{2}$$

$$=8x^{3} + 36x^{2}y + 54xy^{2} + 27y^{3}$$

$$=(2x)^{3} + 3(2x)^{2}(3y) + 3(2x)(3y)^{2} + (3y)^{3}x$$

$$=(2x + 3y)^{3}.$$

例 1.2.10. 分解因式: $729a^6 - 243a^4 + 27a^2 - 1$.

解.

$$729a^{6} - 243a^{4} + 27a^{2} - 1$$

$$= (9a^{2})^{3} - 3 \cdot (9a^{2})^{2} \cdot 1 + 3 \cdot (9a^{2}) \cdot 1^{2} - 1^{3}$$

$$= (9a^{2} - 1)^{3}$$

$$= (3a + 1)^{3}(3a - 1)^{3}$$

例 1.2.11. 分解因式: $a^6 - b^6$.

解. a^6 可以看成平方:

$$a^6 = \left(a^3\right)^2,$$

也可以看成立方:

$$a^6 = (a^2)^3$$
,

于是 $a^6 - b^6$ 的分解就有两条路可走.

第一条路是先应用平方差公式:

$$a^{6} - b^{6} = (a^{3})^{2} - (b^{3})^{2}$$

$$= (a^{3} + b^{3}) (a^{3} - b^{3})$$

$$= (a + b) (a^{2} - ab + b^{2}) (a - b) (a^{2} + ab + b^{2})$$

第二条路是从立方差公式入手:

$$a^{6} - b^{6} = (a^{2})^{3} - (b^{2})^{3}$$

$$= (a^{2} - b^{2}) (a^{4} + a^{2}b^{2} + b^{4})$$

$$= (a + b)(a - b) (a^{4} + a^{2}b^{2} + b^{4})$$

注记. 采用两种方法分解, 获得的结果应当相同. 因此比较

$$\left(a+b\right)\left(a^2-ab+b^2\right)\left(a-b\right)\left(a^2+ab+b^2\right)$$

与

$$(a+b)(a-b)(a^4+a^2b^2+b^4)$$
,

我们知道 $a^4 + a^2b^2 + b^4$ 不是既约多项式, 并且有

$$a^{4} + a^{2}b^{2} + b^{4} = (a^{2} + ab + b^{2})(a^{2} - ab + b^{2})$$
(1.1)

及

$$a^{6} - b^{6} = (a+b)(a-b)\left(a^{2} + ab + b^{2}\right)\left(a^{2} - ab + b^{2}\right). \tag{1.2}$$

于是, 从 $a^6 - b^6$ 的分解出发, 不但得到1.2式, 而且知道 $a^4 + a^2b^2 + b^4$ 不是既约多项式, 导出了1.1式, 可谓问一知三.

后面我们还要介绍导出1.1式的另一种方法.

1.2.5 $2^{1984} + 1$ 不是质数

例 1.2.12. 求证 2¹⁹⁸⁴ + 1 不是质数.

 \mathbf{H} . 为了将 $2^{1984} + 1$ 分解因数, 我们需要知道一个新的公式, 即在 n 为正奇数时

$$a^{n} + b^{n} = (a+b) (a^{n-1} - a^{n-2}b + a^{n-3}b^{2} - \dots - ab^{n-2} + b^{n-1}).$$

上式不难用乘法验证,将右边的两个因式相乘便得到 $a^n + b^n$. 现在我们有

$$2^{1984} + 1 = (2^{64})^{31} + 1^{31}$$
$$= (2^{64} + 1) (2^{64 \times 30} - 2^{64 \times 29} + \dots - 2^{64} + 1).$$

 $2^{64}+1$ 是 $2^{1984}+1$ 的真因数,它大于 1,小于 $2^{1984}+1$,所以 $2^{1984}+1$ 不是质数. 用这个方法可以证明: 当 n 有大于 1 的奇数因数时, 2^n+1 不是质数.

注记. 类似地, 由乘法可以得到在 n 为正整数时

$$a^{n} - b^{n} = (a - b) \left(a^{n-1} + a^{n-2}b + a^{n-3}b^{2} + \dots + ab^{n-2} + b^{n-1} \right).$$
 (12)

这也是一个有用的公式.

例 1.2.13. 分解因式: x^5-1 .

解.

$$x^5 - 1 = (x - 1)(x^4 + x^3 + x^2 + x + 1)$$

习题 2

将以下各式分解因式:

- 1. $16 (3a + 2b)^2$.
- 2. $4y^2 (2z x)^2$.
- $3 a^4 b^4$

- 4. $-81a^4b^4 + 16c^4$.
- 5. $20a^3x^3 45axy^2$.
- 6. $(3a^2 b^2)^2 (a^2 3b^2)^2$.
- 7. $x^8 y^8$.
- 8. $16x^5 x$.
- 9. $(5x^2 + 2x 3)^2 (x^2 2x 3)^2$.
- 10. $32a^3b^3 4b^9$.
- 11. $8a^3b^3c^3 1$.
- 12. $64x^6y^3 + y^{15}$.
- 13. $x^2(a+b)^2 2xy(a^2-b^2) + y^2(a-b)^2$.
- 14. $a^{n+2} + 8a^n + 16a^{n-2}$.
- 15. $9a^2 + x^{2n} + 6a + 2x^n + 6ax^n + 1$.
- 16. $a^2 + b^2 + c^2 + 2ab 2ac 2bc$.
- 17. $x^2 + 9y^2 + 4z^2 6xy + 4xz 12yz$.
- 18. $(p+q)^3 3(p+q)^2(p-q) + 3(p+q)(p-q)^2 (p-q)^3$.
- 19. $4a^2b^2 (a^2 + b^2)^2$.
- 20. $(a+x)^4 (a-x)^4$.

第二章 整除,同余和不定方程

符号说明

符号	说明
$a \mid b$	a 整除 b
$a \nmid b$	a 不整除 b
(a,b)	a 与 b 的最大公因数
[a,b]	a 与 b 的最小公倍数
$p^{lpha}\ a$	$p^{\alpha} \mid a \not\sqsubseteq p^{\alpha+1} \nmid a$
$a \equiv b(\bmod m)$	a 与 b 对模 m 同余
$a \not\equiv b (\bmod m)$	a 与 b 对模 m 不同余
$a^{-1}(\bmod m)$	a 对模 m 的数论倒数
[x]	不超过 x 的最大整数
$\max\{a,b\}$	实数 a b 中较大的数
$\min\{a,b\}$	实数 a b 中较小的数

表 2.1: 符号说明

2.1 整除

任意两个整数的和, 差或积都是整数, 但是两个整数做除法时所得的结果不一定是整数, 因此, 数论中的许多问题都是在研究整数之间的除法.

2.1.1 整除的概念与基本性质

定义 2.1.1. 对任给的两个整数 $a, b(a \neq 0)$, 如果存在整数 q, 使得 b = aq, 那么称 b 能被 a 整除 (或称 a 能整除 b), 记作 $a \mid b$. 否则, 称 b 不能被 a 整除, 记作 $a \nmid b$.

如果 $a \mid b$, 那么称 a 为 b 的因数, b 为 a 的倍数.

利用整除的定义,可以非常容易地推导出下面一些经常被用到的性质.

性质 2.1.1. 如果 $a \mid b$, 那么 $a \mid (-b)$, 反过来也成立; 进一步, 如果 $a \mid b$, 那么 $(-a) \mid b$, 反过来也成立. 因此, 我们经常只讨论正整数之间的整除关系.

性质 2.1.2. 如果 a|b,b|c, 那么 a|c. 这表明整除具有传递性.

性质 2.1.3. 若 a|b,a|c, 则对任意整数 x,y, 都有 a|bx+cy. (即 a 能整除 b,c 的任意一个"线性组合")

例 2.1.1. 若 a|n,b|n, 且存在整数 x,y, 使得 ax + by = 1, 证明: $ab \mid n$.

证明. 由条件, 可设 n = au, n = bv, u, v 为整数. 于是

$$n = n(ax + by)$$

$$= nax + nby$$

$$= abvx + abuy$$

$$= ab(vx + uy).$$

因此

 $ab \mid n$.

注记. 一般地, 由 a|n,b|n, 并不能推出 ab|n, 例如 2|6,6|6, 但 $12 \nmid 6$. 题中给出的条件 实质上表明 a,b 的最大公因数 (见 1.3 节) 为 1, 即 a 与 b 互素, 在此条件下可推出 ab|n.

例 2.1.2. 证明: 无论在数 12008 的两个 0 之间添加多少个 3, 所得的数都是 19 的倍数.

证明. 记
$$a_0 = 12008, a_n = 120\underbrace{3\cdots 308}_{n\uparrow 3}, n = 1, 2, \cdots$$
.

首先,因为

$$a_0 = 19 \times 632,$$

故

$$19 \mid a_0$$
.

其次,设 $19 \mid a_n$,则由

$$a_{n+1} - 10a_n = 228 = 19 \times 12,$$

可知

19 |
$$a_{n+1}$$
.

所以, 对一切整数 n, 数 a_n 都是 19 的倍数.

注记. 此题的处理过程中运用了递推的思想, 其基本思路是将 a_{n+1} 表示为 a_n 与 19 的 一个线性组合.

例 2.1.3. 已知一个 1000 位正整数的任意连续 10 个数码形成的 10 位数是 2^{10} 的倍数. 证明: 该正整数为 2^{1000} 的倍数.

证明. 设该正整数 $x = \overline{a_1 a_2 \cdots a_{1000}}$, 其中 a_i 是十进位数码. 由条件, 可知

$$2^{10} \mid \overline{a_{991} \cdots a_{1000}}, 2^{10} \mid \overline{a_{990} \cdots a_{999}}, \tag{2.1}$$

因此

$$2^{10} \mid \overline{a_{990} \cdots a_{999}} \times 10. \tag{2.2}$$

记 $y = \overline{a_{991} \cdots a_{999}}$, 则式 2.2又可写作

$$2^{10} \mid a_{990} \times 10^{10} + 10y,$$

故

$$2^{10} \mid 10y$$
.

结合 $2^{10} \mid \overline{a_{991} \cdots a_{1000}}$,可知

$$2^{10} \mid 10y + a_{1000},$$

于是

$$2^{10} \mid a_{1000},$$

这要求

$$a_{1000} = 0.$$

类似地,朝前倒推,可得

$$a_{11} = \cdots = a_{1000} = 0,$$

即

$$x = \overline{a_1 \cdots a_{10}} \times 10^{990}.$$

再结合条件 $2^{10} \mid \overline{a_1 \cdots a_{10}}$, 即可得

$$2^{1000} \mid x$$
.

注记. 这里先证明 $a_{11} = \cdots = a_{1000} = 0$ 是非常关键的, 在证明中利用 $\overline{a_{991} \cdots a_{999}}$ 来过渡也是比较巧妙的.

例 2.1.4. 设 m 是一个大于 2 的正整数, 证明: 对任意正整数 n, 都有 $2^m - 1 \nmid 2^n + 1$.

证明. 如果存在正整数 n, 使得 $2^m - 1 \mid 2^n + 1$, 那么取其中最小的那个 n.

由于 m > 2, 知 n > 1, 进一步, 应有 $2^n + 1 \ge 2^m - 1$, 知 $n \ge m$, 而 n = m 时, 将导致 $2^m - 1 \mid 2$, 矛盾, 故 n > m.

现在,设 $2^{n}+1=(2^{m}-1)q$,这里 q为正整数,则

$$2^{n} + 2^{m} = (2^{n} + 1) + (2^{m} - 1) = (2^{m} - 1)(q + 1).$$

即

$$2^{m} (2^{n \sqcap m} + 1) = (2^{m} - 1) (q + 1)$$

于是,

$$(2^{n-m}+1)+(2^m-1)(2^{n-m}+1)=(2^m-1)(q+1),$$

得 $2^{n-m}+1=(2^m-1)\left(q-2^{n-m}\right)$,因此, $2^m-1\mid 2^{n-m}+1$,与 n 的最小性矛盾. 所以,命题成立.

注记. 这里用到了两个结论: 一个是"若 $a \mid b,b \neq 0$,则 $|a| \leq |b|$ ",它由整除的定义可直接证出. 另一个是"任意多个正整数中必有最小元",这是著名的"最小数原理".

2.1.2 素数与合数

对任意正整数 n > 1, 如果除 1 与 n 以外, n 没有其他的因数, 那么称 n 为素数. 否则称 n 为合数. 这样, 我们将正整数分为了三类: 1, 素数, 合数.

素数从小到大依次为 $2,3,5,7,11,\cdots$. 我们可以非常轻松地写出 100 以内的所有素数, 共 25 个. 但是并不是对每个素数 p, 都能轻易地指出 p 后面的一个素数是多少. 事实上, 当 p 比较大时, 求出它后面的那个素数是十分困难的. 正是素数的这种无规律性, 初等数论才显得魅力无穷, 具有很强的挑战性和极大的吸引力. 素数与合数具有如下的一些性质.

性质 2.1.4. 设 n 为大于 1 的正整数, p 是 n 的大于 1 的因数中最小的正整数, 则 p 为 素数.

性质 2.1.5. 如果对任意 1 到 \sqrt{n} 之间的素数 p, 都有 $p \nmid n$, 那么 n 为素数. 这里 n(>1) 为正整数.

证明. 事实上, 若 n 为合数, 则可写 $n=pq, 2 \le p \le q$. 因此 $p^2 \le n$, 即 $p \le \sqrt{n}$. 这表明 p 的素因子 $\le \sqrt{n}$, 且它是 n 的因数, 与条件矛盾. 因此 n 为素数.

注记. 这里素因子是指正整数的因数中为素数的那些数, 此性质是我们检验一个数是否为素数的最常用的方法.

性质 2.1.6. 素数有无穷多个.

证明. 若只有有限个素数, 设它们是 $p_1 < p_2 < \cdots < p_n$. 考虑数

$$x = p_1 p_2 \cdots p_n + 1$$

其最小的大于 1 的因数 p, 它是一个素数, 因此, p 应为 p_1, p_2, \dots, p_n 中的某个数. 设 $p = p_i, 1 \le i \le n$, 并且 $x = p_i y$, 则 $p_1 p_2 \cdots p_n + 1 = p_i y$, 即

$$p_i(y - p_1 p_2 \cdots p_{i-1} p_{i+1} \cdots p_n) = 1.$$

这导致 $p_i \mid 1$. 矛盾.

注记. 如果将所有的素数从小到大依次写出为 $2 = p_1 < p_2 < \cdots$, 并写 $q_n = p_1 p_2 \cdots p_n + 1$, 那么

$$q_1 = 3, q_2 = 7, q_3 = 31, q_4 = 211, q_5 = 2311$$

它们都是素数. 是否每一个 n 都有 q_n 为素数呢? 我们不能被表面现象所迷惑, 再朝下算, 可知 $q_6 = 59 \times 509$ 就是一个合数. 事实上, 后面的 q_7, q_8, q_9, q_{10} 都是合数. 到目前为止, 人们还不知道数列 q_1, q_2, \cdots 中是否有无穷多个素数, 也不知道其中是否有无穷多个合数.

性质 2.1.7. 素数中只有一个数是偶数, 它是 2.

例 2.1.5. 设 n 为大于 1 的正整数. 证明: 数 $n^5 + n^4 + 1$ 不是素数.

证明. 注意到

$$n^5 + n^4 + 1 \tag{2.3}$$

$$=n^5 + n^4 + n^3 - (n^3 - 1) (2.4)$$

$$= n^{3} (n^{2} + n + 1) - (n - 1) (n^{2} + n + 1)$$
(2.5)

$$= (n^3 - n + 1) (n^2 + n + 1)$$
(2.6)

因此, 若 $n^5 + n^4 + 1$ 为素数, 则 $n^3 - n + 1 = 1$, 这要求 n = 0 或 ± 1 . 故当 n > 1 时, $n^5 + n^4 + 1$ 不是素数.

注记. 利用因式分解来判断一个数是否为素数是数论中的常见方法, 后面也将不断用到.

例 2.1.6. 考察下面的数列:

$$101, 10101, 1010101, \cdots$$

问: 该数列中有多少个素数?

解. 易知 101 是素数. 下证这是该数列中仅有的一个素数.

记 $a_n = 1 \underbrace{0101 \cdots 01}_{n \uparrow 01}$, 则当 $n \geqslant 2$ 时, 有

$$a_n = 10^{2n} + 10^{2(n-1)} + \dots + 1$$

$$= \frac{10^{2(n+1)} - 1}{10^2 - 1}$$

$$= \frac{(10^{n+1} - 1)(10^{n+1} + 1)}{99}.$$

注意到, $99 < 10^{n+1} - 1$, $99 < 10^{n+1} + 1$, 而 a_n 为正整数, 故 a_n 是一个合数 (因为分子中的项 $10^{n+1} - 1$ 与 $10^{n+1} + 1$ 都不能被 99 约为 1).

注记. 这里需要将因式分解式 $x^n - 1 = (x - 1)(x^{n-1} + x^{n-2} + \dots + 1)$ 反用, 高中阶段 它被作为等比数列求和的公式.

例 2.1.7. 求所有的正整数 n, 使得 $\frac{n(n+1)}{2} - 1$ 是一个素数.

解. 记 $a_n = \frac{n(n+1)}{2} - 1$,则 $a_1 = 0$ 不是素数,因此只需讨论 n > 1 的情形.我们利用 n 只能是形如 4k, 4k + 1, 4k + 2, 4k + 3 的数分别讨论.

当 n 是形如 4k+2 或 4k+1 的数时, a_n 都是偶数, 要 a_n 为素数, 只能是

$$\frac{n(n+1)}{2} - 1 = 2$$
$$n = 2$$

解得

当 n=4k 时,可得

$$a_n = 2k(4k+1) - 1 (2.7)$$

$$=8k^2 + 2k - 1\tag{2.8}$$

$$= (4k-1)(2k+1), (2.9)$$

这是一个合数.

当 n = 4k + 3 时, 可得

$$a_n = 2(k+1)(4k+3) - 1 (2.10)$$

$$=8k^2 + 14k + 5\tag{2.11}$$

$$= (4k+5)(2k+1), (2.12)$$

仅当 k=0,即 n=3时, a_n 为素数.

所以, 满足条件的 n=2 或 3.

注记. 对 n 分类处理一方面是去分母的需要, 另一方面是为进行因式分解做准备.

例 2.1.8. 对任意正整数 n, 证明: 存在连续 n 个正整数, 它们都是合数.

证明. 设n为正整数.则

$$(n+1)! + 2, (n+1)! + 3, \dots, (n+1)! + (n+1)$$

是 n 个连续正整数, 并且第 k 个数是 k+1 的倍数 (且大于 k+1), 故它们是连续的 n 个合数.

注记. 这个结论表明: 对任意正整数 n, 都存在两个素数, 它们之间至少有 n 个数, 且这些数都是合数. 但是, 让我们来看一些素数对 (3,5), (5,7), (11,13), (17,19), \cdots , (1997,1999), 它们他们所含的两个素数都只相差 2(这是两个奇素数的最小差距), 这样的素数对称为孪生素数. 是否存在无穷多对素数, 它们是孪生素数? 这是数论中一个未解决的著名问题.

例 2.1.9. 设 n 为大于 2 的正整数. 证明: 存在一个素数 p, 满足 n .

证明. 设 $p_1 < p_2 < \cdots < p_k$, 且 p_1, p_2, \cdots, p_k 是所有不超过 n 的素数, 考虑数

$$q = p_1 p_2 \cdots p_k - 1$$

在 n > 2 时, 2,3 都在 p_1, \dots, p_k 中出现, 故 $5 \le q \le n! - 1 < n!$, 利用<mark>性质 2.1.6</mark>证明中的方法, 可知 q 的素因子 p 不等于 p_1, p_2, \dots, p_k 中的任何一个. 而 p_1, p_2, \dots, p_k 是所有不超过 n 的素数, 因此 p > n , 所以 n .

注记. 利用本题的结论亦可证出: 素数有无穷多个. 贝特朗曾猜测在 m>1 时, 正整数 m 与 2m 之间 (不包括 m 与 2m) 有一个素数. 如果将素数从小到大排列为 $p_1 < p_2 < \cdots$,该猜测亦即 $p_{n+1} < 2p_n$. 这个猜测被契比雪夫证明了. 因此它被称为贝特朗猜想或契比雪夫定理.

例 2.1.10. 设 a,b,c,d,e,f 都是正整数, S = a + b + c + d + e + f 是 abc+def 和 ab+bc+ca-de-ef-ed 的因数. 证明: S 为合数.

证明. 考虑多项式

$$f(x) = (x+a)(x+b)(x+c) - (x-d)(x-e)(x-f)$$

展开后,可知

$$f(x) = Sx^{2} + (ab + bc + ca - de - ef - fd)x + (abc + def)$$

由条件可知, 对任意 $x \in \mathbb{Z}$, 都有 $S \mid f(x)$. 特别地, 取 x = d , 就有 $S \mid f(d)$, 即 $S \mid (d+a)(d+b)(d+c)$. 由于 a,b,c,d,e,f 都为正整数, 故 d+a,d+b , d+c 都小于 S , 所以, S 为合数.

注记. 对比例 2.1.6, 两个例子中分别用到下面的结论: 若 x, y, z 为正整数, 且 $\frac{xy}{z}$ 亦为整数, 则如果 x, y > z, 那么 $\frac{xy}{z}$ 为合数; 如果 x, y < z, 那么 z 为合数.

2.1.3 最大公因数与最小公倍数

设 a,b 是不全为零的两个整数, d 是一个非零整数, 如果 $d \mid a$ 且 $d \mid b$, 那么称 d 为 a,b 的公因数.

注意到, 当 $d \mid a$ 且 $d \mid b$ 时, 则 $d \leq |a|$ 或 $d \leq |b|$ 中必有一个成立 (对 a, b 中不为零的数成立). 因此, a, b 的公因数中有一个最大的, 这个数称为 a, b 的最大公因数, 记为 (a, b) . 如果 (a, b) = 1 , 那么我们称 a, b 互素.

在讨论最大公因数的性质之前,我们不加证明地引入一个在小学就接触到的、数论中最基本、最常用的结论.

定理 2.1.1 (带余数除法). 设 a,b 是两个整数, $a \neq 0$, 则存在唯一的一对整数 q 和 r, 满足

$$b = aq + r, 0 \leqslant r < |b|$$

其中 q 称为 b 除以 a 所得的商, r 称为 b 除以 a 所得的余数.

性质 **2.1.8** (贝祖 (Bezout) 定理). 设 d = (a, b), 则存在整数 x, y, 使得

$$ax + by = d$$

证明. 我们利用带余除法来处理, 此结论的证明过程又是求 a,b 的最大公因数的过程, 它被称为"辗转相除".

不妨设 a, b 都不为零 (当 a, b 中有一个为零时, 结论是显然的), 且 $|a| \leq |b|$.

设 $b = aq_1 + r_1$, 其中 $0 \le r_1 < |a|, q_1, r_1$ 为整数. 若 $r_1 = 0$, 则辗转相

除到此为止; 否则用 a 去除以 r_1 , 得等式 $a = r_1q_2 + r_2$, $0 \le r_2 < r_1$; 依此讨论, 由于 $r_1 > r_2 > r_3 > \cdots$, 因此辗转相除到某一步后, 所得的 $r_{k+1} = 0$, 于是, 我们得到了如下的一系列式子:

$$b = aq_1 + r_1, 0 < r_1 < |a|$$

$$a = r_1q_2 + r_2, 0 < r_2 < r_1$$

$$r_1 = r_2q_3 + r_3, 0 < r_3 < r_2$$

$$\dots$$

$$r_{k-2} = r_{k-1}q_k + r_k, 0 < r_k < r_{k-1}$$

$$r_{k-1} = r_kq_{k+1}$$

注意到, 从第一个式子到第 k 个式子, 我们依次有

$$d | r_1, d | r_2, \cdots, d | r_k,$$

而从第 k+1 个式子倒推, 又依次有

$$r_k | r_{k-1}, r_k | r_{k-2}, \cdots, r_k | r_1, r_k | a, r_k | b,$$

所以, r_k 又是 a,b 的公因数, 结合 d 为 a,b 的最大公因数知 $r_k \leq d$, 又 $d \mid r_k$, 故 $d \leq r_k$, 因此, $d = r_k$. 也就是说, 我们求出了 a,b 的最大公因数.

现在, 利用 $d = r_k$ 及第 k 个式子, 可知

$$d = r_{k-2} - r_{k-1}q_k$$

再由

$$r_{k-1} = r_{k-3} - r_{k-2}q_{k-1}$$
 (第 $k-1$ 个式子变形得),

代入上式, 可知 d 可以表示为 r_{k-2} 与 r_{k-3} 的 "线性组合" (见性质 2.1.3), 依此倒推, 可知 d 可以表示为 a,b 的 "线性组合", 即存在整数 x,y 使得

$$d = ax + by$$
.

注记. 反过来, 设 x,y 为整数, d'=ax+by, 并不能推出 d' 为 a,b 的最大公因数. 事实上, 可以证明: a,b 的最大公因数是形如 ax+by (x,y 为任意整数) 的正整数中最小的那个.

性质 2.1.9. 设 d 为 a, b 的公因数, 则 $d \mid (a, b)$.

这个性质可由前面的贝祖定理证出.事实上, 贝祖定理也是初等数论中的一个基本定理, 应用非常广泛, 下面的性质是它的一个直接推论.

性质 2.1.10. 设 a,b 是不全为零的整数, 则 a 与 b 互素的充要条件是存在整数 x,y 满足

$$ax + by = 1$$

性质 **2.1.11.** 设 a|c,b|c, 且 (a,b)=1, 则 $ab \mid c$.

这个性质的证明见例 2.1.1.

性质 2.1.12. 设 $a \mid bc$, 且 (a,b) = 1, 则 $a \mid c$.

证明. 由性质 2.1.10, 知存在整数 x, y 使得

$$ax + by = 1$$

故 acx + bcy = c, 由 $a \mid bc$ 及 $a \mid acx$, 可知 $a \mid c$.

性质 2.1.13. 设 p 为素数, $p \mid ab$, 则 $p \mid a$ 或 $p \mid b$.

证明. 由于 p 只有两个正约数, 故 (p,a) = 1 或者 (p,a) = p . 若 (p,a) = 1 , 则由性质 5 知 $p \mid b$; 若 (p,a) = p , 则 $p \mid a$.

下面引入公倍数的一些概念和性质.

设 a,b 都是不等于零的整数, 如果整数 c 满足 $a \mid c$ 且 $b \mid c$, 那么称 c 为 a,b 的公倍数. 在 a,b 的所有正的公倍数中, 最小的那个称为 a,b 的最小公倍数, 记作 [a,b].

性质 2.1.14. 设 a, b 为非零整数, d, c 分别是 a, b 的一个公因数与公倍数, 则 d|(a, b), [a, b]|c

证明. 这个性质在本质上反映了最大公因数与最小公倍数的属性. 前者是性质 2.1.9的结论, 这里再次列出是为了对比.

对于后者,采用反证法予以证明.

若 $[a,b] \nmid c$,设 $c = [a,b] \cdot q + r, 0 < r < [a,b]$,则由 $a \mid c$ 及 $a \mid [a,b]$,可知 $a \mid r$,同 理 $b \mid r$,即 r 为 a,b 的公倍数,但 r < [a,b],这与 [a,b] 是 a,b 的最小公倍数矛盾. 所以 $[a,b] \mid c$.

性质 **2.1.15.** 设 a,b 都是正整数, 则 $[a,b] = \frac{ab}{(a,b)}$.

证明. 记 $c=\frac{ab}{(a,b)}$,则由 $(a,b)\mid a$ 及 $(a,b)\mid b$ 知 $b\mid c,a\mid c$. 即 c 为 a,b 的公倍数,故 $[a,b]\mid c$

反过来, 由贝祖定理, 知存在整数 x, y, 使得

$$ax + by = (a, b),$$

即

$$\frac{a}{(a,b)}x + \frac{b}{(a,b)}y = 1,$$

于是

$$\frac{a[a,b]}{(a,b)}x + \frac{b[a,b]}{(a,b)}y = [a,b],$$

由 b | [a, b] 及 a | [a, b], 可知

$$c\left|\frac{a[a,b]}{(a,b)},c\right|\frac{b[a,b]}{(a,b)},$$

所以

$$c \mid [a, b],$$

综上, 可知

$$[a,b] = \frac{ab}{(a,b)}.$$

一般地, 对 n 个整数 (非零) a_1,a_2,\cdots,a_n ,可以类似地引入最大公因数与最小公倍数的概念,分别记为 (a_1,a_2,\cdots,a_n) 和 $[a_1,a_2,\cdots,a_n]$. 容易得到下面的一些结论:

性质 **2.1.17**. 存在整数 x_1, x_2, \dots, x_n , 使得

$$a_1x_1 + a_2x_2 + \cdots + a_nx_n = (a_1, a_2, \cdots, a_n)$$

特别地, $(a_1, a_2, \dots, a_n) = 1$, 即 a_1, a_2, \dots, a_n 互素的充要条件是: 存在整数 x_1, x_2, \dots, x_n , 使得

$$a_1x_1 + a_2x_2 + \cdots + a_nx_n = 1$$

注意, n 个数互素, 并不能保证它们两两互素, 例如 ($2 \times 3, 2 \times 5, 3 \times 5$) = 1, 但 6, 10, 15 两两不互素. 反过来, 若 n 个数中有两个数互素, 则这 n 个数互素. 因此, 在 n 个数中, "两两互素"的条件比"它们互素"的条件要强得多.

性质 2.1.18. 设m 为正整数,则

$$(ma_1, ma_2, \cdots, ma_n) = m(a_1, a_2, \cdots, a_n),$$
 (2.13)

$$[ma_1, ma_2, \cdots, ma_n] = m[a_1, a_2, \cdots, a_n].$$
 (2.14)

例 2.1.11. 设 a,b 为正整数,且 $\frac{ab}{a+b}$ 也是正整数.证明: (a,b) > 1.

证明. 若 (a,b) = 1 , 则 (a,a+b) = 1 (这由性质 2.1.13可推得), 从而, 由 $a+b \mid ab$ 及 (a,a+b) = 1 , 得 $a+b \mid b$, 但是 a+b > b , 故 $a+b \mid b$ 不可能成立. 所以, (a,b) > 1.

注记. 在辗转相除求 a,b 的公因数的讨论中, 可知对任意整数 x, 都有 (a,b) = (a,b+ax), 这一点在利用最大公因数处理数论问题时经常被用到.

例 2.1.12. 设正整数 a,b,c 满足 $b^2=ac$. 证明: $(a,b)^2=a(a,c)$.

证明. 如果我们能够证明: $(a,b)^2 = (a^2,b^2)$,那么结合性质 2.1.18,可知

$$(a,b)^2 = (a^2,b^2) = (a^2,ac) = a(a,c),$$

命题获证.

为此, 记 d = (a, b), 设 a = du, b = dv, 则由性质 2.1.18可知 u, v 是两个互素的正整数, 为证 $(a^2, b^2) = d^2$, 只需证明: $(u^2, v^2) = 1$.

利用贝祖定理, 知存在整数 x,y , 使得 ux+vy=1 , 故 $u^2x^2=(1-vy)^2=1+v\left(vy^2-2y\right)$, 结合性质 3 可知 $\left(u^2,v\right)=1$, 交换 u^2 与 v 的位置, 同上再做一次, 即有 $\left(v^2,u^2\right)=1$.

注记. 利用下一节的算术基本定理可以非常方便地证出: $(a^2,b^2) = (a,b)^2$, 但遗憾的是我们还没给出该定理的证明, 通常都是先建立最大公因数理论再去证算术基本定理, 这里不用该定理是不希望掉入"循环论证"的旋涡, 读者在学习中应认真掌握其中的逻辑结构.

例 2.1.13. 求所有的正整数 $a, b(a \le b)$, 使得

$$ab = 300 + 7[a, b] + 5(a, b).$$
 (2.15)

解. 设 [a,b]=x,(a,b)=y, 由性质 2.1.15可知 ab=xy, 于是, 式 2.15变为

$$xy = 300 + 7x + 5y,$$

即 $(x-5)(y-7) = 5 \times 67$.

由于 $[a,b] \ge (a,b)$, 故 $x \ge y$, 进而 x-5 > y-7, 只有如下的两种情形.

情形— x-5=67 且 y-7=5 ; 此时, x=72,y=12 , 于是, 可设 a=12n,b=12m,(m,n)=1 , 并有 $(12n)(12m)=ab=xy=12\times72$, 结合 $a\leqslant b$, 只能是 (m,n)=(1,6) 或 (2,3) , 对应的 (a,b)=(12,72) 或 (24,36).

情形二 x-5=335 且 y-7=1; 对应地, x=340, y=8, 但 y=(a,b) 是 x=[a,b] 的因数, 而 8 ł 340, 所以, 此时无解.

综上, 符合条件的 (a,b) = (12,72) 或 (24,36).

例 2.1.14. 求所有的正整数 a, b, 使得

$$(a,b) + 9[a,b] + 9(a+b) = 7ab. (2.16)$$

解. 记 (a,b) = d , 设 a = dx, b = dy , 则 (x,y) = 1 (由性质 2.1.18知), [a,b] = dxy (由性质 2.1.15知), 于是代入式 2.16可得

$$1 + 9xy + 9(x+y) = 7dxy, (2.17)$$

$$7d = 9 + 9\left(\frac{1}{x} + \frac{1}{y}\right) + \frac{1}{xy},$$

所以

$$9 < 7d \le 9 + 9\left(\frac{1}{1} + \frac{1}{1}\right) + \frac{1}{1 \times 1} = 28,$$

故

$$2 \leqslant d \leqslant 4$$
,

当 d=2 时, 由式 2.17得

$$5xy - 9(x+y) = 1,$$

两边乘以5,并将左边因式分解,得

$$(5x-9)(5y-9) = 86 = 2 \times 43,$$

故 (5x - 9, 5y - 9) = (1,86), (86,1), (2,43), (43,2). 分别求解可知只能是 (x,y) = (2,19), (19,2), 对应的 (a,b) = (4,38), (38,4).

分别就 d = 3,4 同上讨论, 得 (a,b) = (4,4).

所以, 满足条件的 (a,b) = (4,38), (38,4), (4,4).

例 2.1.15. Fibonacci 数列定义如下: $F_1 = F_2 = 1, F_{n+2} = F_{n+1} + F_n, n = 1, 2, \cdots$. 证明: 对任意正整数 m, n, 都有 $(F_m, F_n) = F_{(m,n)}$.

证明. 当 m = n 时, 命题显然成立. 现在不妨设 m < n, 注意到

$$F_{n} = F_{2}F_{n-1} + F_{1}F_{n-2}$$

$$= F_{2}(F_{n-2} + F_{n-3}) + F_{1}F_{n-2}$$

$$= (F_{2} + F_{1})F_{n-2} + F_{2}F_{n-3}$$

$$= F_{3}F_{n-2} + F_{2}F_{n-3}$$

$$= F_{3}(F_{n-3} + F_{n-4}) + F_{2}F_{n-3}$$

$$= F_{4}F_{n-3} + F_{3}F_{n-4}$$

$$= \cdots$$

$$= F_{m}F_{n-m+1} + F_{m-1}F_{n-m},$$

因此,设 $d \mid F_m$ 且 $d \mid F_n$,则由上式可知 $d \mid F_{m-1}F_{n\to m}$. 又对任意正整数 m,有 $(F_m, F_{m-1}) = (F_{m-1} + F_{m-2}, F_{m-1}) = (F_{m-1}, F_{m-2}) = \cdots = (F_2, F_1) = 1$,所以, $(d, F_{m-1}) = 1$,故 $d \mid F_{n-m}$;反过来,若 $d' \mid F_{n-m}$ 且 $d' \mid F_m$,则由上式又可知 $d' \mid F_n$.依此可知 $(F_n, F_m) = (F_{n-m}, F_m)$.

利用上述结论, 对下标进行辗转相除, 就可证得 $(F_n, F_m) = F_{(m,n)}$.

说明由本题的结论还可以推出一个有趣的性质: 若 F_n 为素数, 则 n=4 或者 n 为素数.

事实上,设 F_n 为素数,而 n 为合数,可设 $n=p\cdot q,2\leqslant p\leqslant q,p,q$ 为正整数,则由前面的结论,可知 $(F_n,F_p)=F_{(n,p)}=F_p,(F_n,F_q)=F_{(n,q)}=F_q$.结合 Fibonacci 数列的定义,可知 $F_n>F_p,F_n>F_q$,而 F_n 为素数,故 $(F_n,F_p)=(F_n,F_q)=1$,所以, $F_p=F_q=1$,再由 $2\leqslant p\leqslant q$,可知只能是 p=q=2,即 n=4.所以,性质成立.

例 2.1.16. 设 n 为大于 1 的正整数. 证明: 存在从小到大排列后成等差数列 (即从第二项起,每一项与它前面那项的差为常数的数列) 的 n 个正整数,它们中任意两项互素.

证明. 考虑下面的 n 个数:

$$n! + 1, 2 \times (n!) + 1, \dots, n \times (n!) + 1$$

这n个正整数组成一个公差为n!的等差数列.

我们证明其中任意两项是互素的.

事实上, 若存在 $1 \le i < j \le n$, 使得数 $i \times (n!) + 1$ 与数 $j \times (n!) + 1$ 不互素, 设 $d = (i \times (n!) + 1, j \times (n!) + 1) > 1$. 考虑 d 的素因子 p , 可知

$$p \mid (j \times (n!) + 1) - (i \times (n!) + 1)$$

即 $p \mid (j-i) \times n!$. 由性质 6 知 $p \mid j-i$ 或 $p \mid n!$, 结合 $1 \leq j-i < n$, 可知 $(j-i) \mid n!$, 所以, 总有 $p \mid n!$. 但是, $p \mid d, d \mid i \times (n!) + 1$, 故 $p \mid i \times (n!) + 1$, 结合 $p \mid n!$, 导致 $p \mid 1$, 矛盾.

注记. 此题为导出与反设矛盾的结论,采用了素因子分析的方法. 该方法在数论中有广泛的应用.

2.1.4 算术基本定理

在前面我们引入了素数与合数的概念, 对每个大于 1 的正整数 n, 如果 n 为合数, 那么可写 $n=n_1n_2$, 其中 $2 \le n_1 \le n_2$. 再分别对 n_1,n_2 重复这样的讨论, 即可将 n 表示为一些素数的乘积. 对这个过程认真思考, 就能得到下面的重要定理, 在解数论的问题时经常会直接或间接地用到它.

定理 2.1.2 (算术基本定理). 设 n 是大于 1 的正整数,则 n 可以分解成若干个素数的乘积的形式,并且在不考虑这些素数相乘时的前后次序时,这种分解是唯一的.即对任意大于 1 的正整数 n,都存在唯一的一种素因数分解形式:

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$$

这里 $p_1 < p_2 < \cdots < p_k$ 为素数, $\alpha_1, \alpha_2, \cdots, \alpha_k$ 为正整数.

证明. 利用前面的分析, 可证得存在性, 下面证明唯一性.

若 n 有两种素因数分解形式:

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k} = q_1^{\beta_1} q_2^{\beta_2} \cdots q_l^{\beta_2}$$

其中 $p_1 < p_2 < \cdots < p_k, q_1 < q_2 < \cdots < q_l$, 且都是素数, α_i, β_j 都为正整数, $1 \leq i \leq k, 1 \leq j \leq l$.

我们证明 k = l 且 $p_i = q_i, \alpha_i = \beta_i$.

事实上,由 (1) 知 $p_i \mid q_1^{\beta_1}q_2^{\beta_2}\cdots q_l^{\beta_l}$,利用性质 2.1.13可知,存在某个 j 使 $p_i \mid q_j^{\beta_j}$,,再用一次性质 2.1.13,知 $p_i \mid q_j$,这要求 $p_i = q_j$.即对 $1 \leqslant i \leqslant k$ 及每个 p_i ,在 q_1,q_2,\cdots,q_l 中总有一个 q_j ,使得 $p_i = q_j$.反过来对 q_j 分析,又有对 $1 \leqslant j \leqslant l$ 及每个 q_j ,在 p_1,p_2,\cdots,p_k 中总有一个 p_i ,使得 $q_j = p_i$.这表明 k = l,且 q_1,q_2,\cdots,q_l 是 p_1,p_2,\cdots,p_k 的一个排列,结合 $p_1 < p_2 < \cdots < p_k$ 及 $q_1 < q_2 < \cdots < q_l$,知 $p_i = q_i, 1 \leqslant i \leqslant k$.进一步证明 $\alpha_i = \beta_i$ 是容易的.

利用正整数 n 的素因数分解式, 我们可以简单地得到下面的一些结论.

推论 2.1.1. 设 n 的所有正因数 (包括 1 和 n) 的个数为 d(n), 那么

$$d(n) = (\alpha_1 + 1)(\alpha_2 + 1) \cdots (\alpha_k + 1)$$

由此公式易知: n 是一个完全平方数的充要条件是 d(n) 为奇数.

推论 2.1.2. 设 n 的所有正因数之和为 $\sigma(n)$, 那么

$$\sigma(n) = (1 + p_1 + \dots + p_1^{\alpha_1}) (1 + p_2 + \dots + p_2^{\alpha_2}) \cdots (1 + p_k + \dots + p_k^{\alpha_k})$$

由此可知: $\sigma(n)$ 为奇数的充要条件是 n 为完全平方数或者某个完全平方数的两倍.

推论 2.1.3. 设 n, m 的素因数分解分别为

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}, m = p_1^{\beta_1} p_2^{\beta_2} \cdots p_k^{\beta_k},$$

这里 $p_1 < p_2 < \dots < p_k$,都为素数, α_i , β_i 都是非负整数,并且对每个 $1 \leq i \leq k$, α_i 与 β_i 不全为零,那么,我们有 $(m,n) = p_1^{\gamma_1} p_2^{\gamma_2} \cdots p_k^{\gamma_k}$; $[m,n] = p_1^{\delta_1} p_2^{\delta_2} \cdots p_k^{\delta_k}$,其中 $\gamma_i = \min \{\alpha_i, \beta_i\}$, $\delta_i = \max \{\alpha_i, \beta_i\}$, $1 \leq i \leq k$.

例 2.1.17. 在一个走廊上依次排列着编号为 1,2,…,2012 的灯共 2012 盏,最初每盏灯的状态都是开着的. 一个好动的学生做了下面的 2012 次操作: 对 $1 \le k \le 2012$,该学生第 k 次操作时,将所有编号是 k 的倍数的灯的开关都拉了一下. 问:最后还有多少盏灯是开着的?(提示: $44^2 = 1936, 45^2 = 2025$)

解. 设 $1 \le n \le 2012$,我们来考察第 n 盏灯的状态, 依题意, 该盏灯的开关被拉了 d(n) 次. 而偶数次拉动开关不改变灯的初始状态, 奇数次拉动开关, 灯的状态与初始状态不同.

利用 d(n) 的性质及前面的讨论, 因为 $1, 2, \dots, 2012$ 中恰有 44 个数为完全平方数, 可知最后还有 2012 - 44 = 1968 盛灯是开着的.

例 2.1.18. 求所有的正整数 n, 使得 $n = d(n)^2$.

 \mathbf{M} . 当 n=1 时, 符合条件, 下面考虑 n>1 的情形.

由条件知 n 为完全平方数, 因此 d(n) 为奇数, 设 d(n) = 2k + 1. 鉴于对任意正整数 d, 当 $d \mid n$ 时, 有 $\frac{n}{d} \mid n$, 因此, 我们将 d 与 $\frac{n}{d}$ 配对后, 可知 d(n) 等于数 $1, 2, \dots, 2k - 1$ 中为 n 的因数的个数的两倍加上 1 . 又 $1, 2, \dots, 2k - 1$ 中的偶数都不是 n (= $(2k + 1)^2$) 的因数, 因此结合 d(n) = 2k + 1, 可知 $1, 2, \dots, 2k - 1$ 中的每一个奇数都是 n 的因数.

注意到, 当 k > 1 时, (2k-1,2k+1) = (2k-1,2) = 1, 故 $2k-1 \nmid (2k+1)^2$. 所以 k > 1 时, $n = (2k+1)^2$ 不符合要求, 故 k = 1, n 只能等于 9.

直接验证, 可知 1 和 9 满足条件, 所以 n=1 或 9.

注记. 此题考虑了 n 的因数关于 \sqrt{n} 的对称性, 分析出一个非常强的条件, 从而解决了问题.

它还有一个一般性的处理方法, 需要用到如下的估计: 设 p 为不小于 5 的素数, 则 $p^{\alpha} > (\alpha+1)^2$. 而 $\alpha \ge 2$ 时, $3^{\alpha} \ge (\alpha+1)^2$. 这两个不等式都可以用数学归纳法予以证明 (对 α 归纳).

现在设 n(>1) 是一个满足条件的正整数,则 n 为一个奇数的平方,于是,可设 $n=3^{\alpha}\cdot p_1^{\beta_1}p_2^{\beta_2}\cdots p_k^{\beta_k}$,其中 $3< p_1< p_2<\cdots< p_k$,并且 $\alpha,\beta_1,\beta_2,\cdots,\beta_k$ 都是偶数. 如果 k>0,那么由前面的分析,知 $n>(\alpha+1)^2(\beta_1+1)^2\cdot(\beta_2+1)^2\cdots(\beta_k+1)^2=d(n)^2$,矛盾,故 $n=3^{\alpha}$. 进一步分析,可知 $\alpha>2$ 时,有 $3^{\alpha}>(\alpha+1)^2$,故 $\alpha=2$,即 n=9.

例 2.1.19. 设 n 为正整数. 证明: 数 $2^{2^n} + 2^{2^{n-1}} + 1$ 至少有 n 个不同的素因子.

证明. 我们作如下的分解:

$$2^{2^{n}} + 2^{2^{n-1}} + 1$$

$$= (2^{2^{n-1}} + 1)^{2} - 2^{2^{n-1}}$$

$$= (2^{2^{n-1}} + 2^{2^{n-2}} + 1) (2^{2^{n-1}} - 2^{2^{n-2}} + 1)$$

$$= (2^{2^{n-2}} + 2^{2^{n-3}} + 1) (2^{2^{n-2}} - 2^{2^{n-3}} + 1) (2^{2^{n-1}} - 2^{2^{n-2}} + 1)$$

$$= \cdots$$

$$= (2^{2^{1}} + 2^{2^{0}} + 1) (2^{2^{1}} - 2^{2^{0}} + 1) (2^{2^{2}} - 2^{2^{1}} + 1) \cdots (2^{2^{n-1}} - 2^{2^{n-2}} + 1)$$

这样, 我们将 $2^{2^n} + 2^{2^{n-1}} + 1$ 表示为 n 个大于 1 的正整数之积, 为证明它有 n 个不同的 素因子, 只需证明这 n 个大于 1 的正整数两两互素.

注意到, 当 m > l 时, $2^{2^l} + 2^{2^{L-1}} + 1$ 与 $2^{2^l} - 2^{2^{L-1}} + 1$ 都是 $2^{2^m} + 2^{2^{m-1}} + 1$ 的因数, 因此

$$\left(2^{2^m} - 2^{2^{m-1}} + 1, 2^{2^l} \pm 2^{2^{L-1}} + 1\right) \tag{2.18}$$

$$\leq \left(2^{2^m} - 2^{2^{m-1}} + 1, 2^{2^m} + 2^{2^{m-1}} + 1\right)$$
 (2.19)

$$= \left(2^{2^m} - 2^{2^{m-1}} + 1, 2 \times 2^{2m-1}\right) \tag{2.20}$$

由于, $2 \times 2^{2m-1}$ 中只有一个素因子 2, 而 $2^{2^m} - 2^{2^{m-1}} + 1$ 为奇数, 故

$$\left(2^{2^m} - 2^{2^{m-1}} + 1, 2 \times 2^{2^{m-1}}\right) = 1,$$

因此

$$\left(2^{2^m} - 2^{2m-1} + 1, 2^{2^l} \pm 2^{2^{2-1}} + 1\right) = 1.$$

所以, $2^{2^1}+2^{2^0}+1$, $2^{2^1}-2^{2^0}+1$, $2^{2^2}-2^{2^1}+1$, \cdots , $2^{2^{n-1}}-2^{2^{n-2}}+1$ 两两互素, 进而 $2^{2^n}+2^{2^{n-1}}+1$ 至少有 n 个不同的素因子.

例 2.1.20. 设 m, n 是正整数, 且 m 的所有正因数之积等于 n 的所有正因数之积. 问: m 与 n 是否必须相等?

 \mathbf{m} 与 n 必须相等.

事实上, 将 m 的正因数 d 与 $\frac{m}{d}$ 配对, 可知 m 的所有正因数之积为 $m\frac{d(m)}{2}$, 因此, 条件等价于

$$m^{d(n)} = n^{d(n)}, (2.21)$$

此式表明 m, n 有相同的素因子, 可设

$$m = p_1^{a_1} p_2^{a_2} \cdots p_k^{\alpha_k}, n = p_1^{\beta_1} p_2^{\beta_2} \cdots p_k^{\beta_k},$$

其中 $p_1 < p_2 < \cdots < p_k$ 为素数 α_i 与 β_i 都是正整数, $1 \leq i \leq k$.

代入2.21式,利用算术基本定理,可知

$$\alpha_i d(m) = \beta_i d(n), 1 \leqslant i \leqslant k, \tag{2.22}$$

若 d(m) > d(n), 则对 $1 \le i \le k$, 都有 $\alpha_i < \beta_i$, 于是, $\alpha_i + 1 < \beta_i + 1$, 故 $(\alpha_1 + 1)(\alpha_2 + 1)\cdots(\alpha_k + 1) < (\beta_1 + 1)(\beta_2 + 1)\cdots(\beta_k + 1)$, 这导致 d(m) < d(n), 矛盾. 同样, 由 d(m) < d(n), 利用2.22式也可导出矛盾. 所以 d(m) = d(n), 进而由2.21式得 m = n.

注记. 一般地, 由 $\sigma(m) = \sigma(n)$ (即考虑 m, n 所有正因数之和) 并不能导出 m = n (例如 $\sigma(6) = \sigma(11) = 12$), 此题是对两个正整数的所有正因数作乘积方面的思考得出的结论.

例 2.1.21. 求所有的正整数 x, y, 使得

$$y^x = x^{50}$$

解. 设 x,y 为满足条件的正整数, 并且 $x = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ 为 x 的素因数分解式, 则由 y 为正整数, 知对 $1 \le i \le k$, 都有 $x \mid 50\alpha_i$. 现在先讨论 x 的素因子.

如果 x 有一个不同于 2 和 5 的素因子 p , 并设 $p^{\alpha}||x$, 那么由前面的结果知 x | 50α , 当然有 p^{α} | 50α , 又 $p \neq 2,5$, 故 p^{α} | α . 但是, 对任意素数 p 及正整数 α , 有 p^{α} > α , 所以, p^{α} | α 不能成立, 这表明 x 的素因子只能为 2 或 5 .

于是, 我们可设 $x=2^{\alpha}\cdot 5^{\beta}$ (其中 α,β 为非负整数), 这时 $x|50\alpha,x|50\beta$, 故 $2^{\alpha}\left|50\alpha,5^{\beta}\right|50\beta$, 前者要求 $2^{\alpha-1}\mid\alpha$, 后者要求 $5^{\beta-2}\mid\beta$. 注意到, 当 $\alpha\geqslant 3$ 时, $2^{\alpha-1}>\alpha$, 而 $\beta\geqslant 3$ 时, $5^{\beta-2}>\beta$, 所以, $0\leqslant\alpha\leqslant 2, 0\leqslant\beta\leqslant 2$. 这表明 x 只能取 $1,2,2^2,5,5^2,2\times 5,2^2\times 5,2\times 5^2,2^2\times 5^2$.

将 x 的上述取值逐个代入 (1) 式, 可得到全部解为 (x,y) = (1,1), $(2,2^{25})$, $(2^2,2^{25})$, $(5,5^{10})$, $(5^2,5)$ 共 8 组解.

注记. 上面两例直接用到算术基本定理, 所涉及的变量数看似增加或会变难, 但这时不等式估计的手段可介入, 问题求解反而有了着力点.

- 例 2.1.22. 给定正整数 n > 1,设 d_1, d_2, \dots, d_n 都是正整数, 满足: $(d_1, d_2, \dots, d_n) = 1$,且对 $j = 1, 2, \dots, n$ 都有 $d_j \mid \sum_{i=1}^n d_i$ (这里 $\sum_{i=1}^n d_i = d_1 + d_2 + \dots + d_n$).
 - (1) 证明: $d_1 d_2 \cdots d_n \mid \left(\sum_{i=1}^n d_i\right)^{n-2}$;
 - (2) 举例说明: n > 2 时, 上式右边的幂次不能减小.
- **证明.** (1) 设 p 为 $d_1d_2\cdots d_n$ 的素因数,且 k 为各 d_i 的素因数分解式中 p 的幂次的最大值,则由 $d_j \mid \sum_{i=1}^n d_i$ 可知, $p^k \mid \sum_{i=1}^n d_i$,故 $p^{k(n-2)} \mid \left(\sum_{i=1}^n d_i\right)^{n-2}$.

而 $(d_1,d_2,\cdots,d_n)=1$,故存在 d_i ,使得 $p\nmid d_i$,结合 $p\mid \sum_{i=1}^n d_i$,可知 d_1 , d_2 , \cdots , d_n 中至少有两个数不是 p 的倍数. 所以, p 在 $d_1d_2\cdots d_n$ 中的幂次不超过 k(n-2),依此可知结论成立.

(2) 设 $d_1=1, d_2=n-1, d_i=n, 3 \leqslant i \leqslant n$,则 $\sum_{i=1}^n d_i=n(n-1)$ 是每个 d_i 的倍数,且 $(d_i, d_2, \cdots, d_n)=1$.

此时, $d_1d_2\cdots d_n=n^{n-2}(n-1)$, 结合 (n,n-1)=1 , 可知满足 $n^{n-2}(n-1)$ | $(n(n-1))^m$ 的最小正整数 m=n-2.

习题 1

- 1. 设 n 为大于 1 的正整数. 证明: $n^4 + 4^n$ 是一个合数.
- 2. 求使得 $|4x^2 12x 27|$ 为素数的所有整数 x.
- 3. 设m 为大于1 的正整数,且m | (m-1)! + 1.证明:m 是一个素数.
- 4. 是否存在 3 个不同的素数 p,q,r, 使得下面的整除关系都成立?

$$qr\left|p^{2}+d,rp\right|q^{2}+d,pq\mid r^{2}+d$$

其中 (1) d = 10; (2)d = 11.

- 5. 设 p 为正整数, 且 $2^p 1$ 是素数. 求证: p 为素数.
- 6. 设 n 为正整数, 且 $2^n + 1$ 是素数. 证明: 存在非负整数 k, 使得 $n = 2^k$.
- 7. 求所有形如 $n^n + 1$ 且不超过 10^{19} 的素数, 这里 n 为正整数.
- 8. 设 a,b,c,d 都是整数,且 $a \neq c,a-c \mid ab+cd$.证明: $a-c \mid ad+bc$.
- 9. 设 a,b,c,d 为整数,且 ac,bc+ad,bd 都是某个整数 u 的倍数.证明:数 bc 和 ad 也是 u 的倍数.
- 10. 设 a,b,n 为给定的正整数,且对任意正整数 $k(\neq b)$,都有 $b-k\mid a-k^n$.证明: $a=b^n$.
- 11. 已知正整数 n 的正因数中, 末尾数字为 $0,1,2,\cdots,9$ 的正整数都至少有一个. 求满足条件的最小的 n.
- 12. 求一个 9 位数 M , 使得 M 的数码两两不同且都不为零, 并对 $m=2,3,\cdots,9$, 数 M 的左边 m 位数都是 m 的倍数.
- 13. 对于一个正整数 n , 若存在正整数 a , b , 使得 n = ab + a + b , 则称 n 是一个" 好数",例如 $3 = 1 \times 1 + 1 + 1$, 故 3 为一个" 好数". 问: 在 $1, 2, \dots$, 100 中, 有多少个" 好数"?
- 14. 设素数从小到大依次为 p_1, p_2, p_3, \cdots 证明: 当 $n \ge 2$ 时, 数 $p_n + p_{n+1}$ 可以表示为 3 个大于 1 的正整数 (可以相同) 的乘积的形式.
- 15. 设 n 为大于 1 的正整数. 证明: n 为合数的充要条件是存在正整数 a, b, x, y,使 得 $n = a + b, \frac{x}{a} + \frac{y}{b} = 1$.
- 16. 证明: 数列 10001, 100010001, 1000100010001, ... 中, 每一个数都是合数.
- 17. 设 a, b, c, d 都是素数, 且 $a > 3b > 6c > 12d, a^2 b^2 + c^2 d^2 = 1749$. 求 $a^2 + b^2 + c^2 + d^2$ 的所有可能值.

- 18. 数列 $\{a_n\}$ 的每一项都是正整数, $a_1 \le a_2 \le a_3 \le \cdots$, 且对任意正整数 k , 该数列中恰有 k 项等于 k . 求所有的正整数 n , 使得 $a_1 + a_2 + \cdots + a_n$ 是素数.
- 19. 由正整数组成的数列 $\{a_n\}$ 满足: 对任意正整数 m , n , 若 $m \mid n, m < n$, 则 $a_m \mid a_n$, 且 $a_m < a_n$. 求 a_{2000} 的最小可能值.
- 20. 设 p 为奇素数, 正整数 m, n 满足 $\frac{m}{n} = 1 + \frac{1}{2} + \cdots + \frac{1}{p-1}$. 证明: $p \mid m$.
- 21. 设 a, m, n 为正整数, a > 1, 且 $a^m + 1 \mid a^n + 1$. 证明: $m \mid n$.
- 22. 证明: 对任意正整数 n 及正奇数 m, 都有 $(2^m 1, 2^n + 1) = 1$.
- 23. 费马数 F_n 定义为 $F_n = 2^{2^n} + 1$. 证明: 对任意两个不同的正整数 m, n ,都有 $(F_n, F_m) = 1$
- 24. 已知正整数 a,b,c,d 的最小公倍数为 a+b+c+d. 证明: abcd 是 3 或 5 的倍数.
- 25. 记 M_n 为正整数 $1, 2, \dots, n$ 的最小公倍数. 求所有的正整数 n(>1), 使得 $M_n = M_{n-1}$.
- 26. 设 a, m, n 为正整数, a > 1. 证明: $(a^m 1, a^n 1) = a^{(m,n)} 1$.
- 27. 设 a, n 为正整数, a > 1, 且 $a^n + 1$ 是素数. 证明: $d(a^n 1) \ge n$.
- 28. 对怎样的正整数 n(>2),存在 n 个连续正整数, 使得其中最大的数是其余 n-1 个数的最小公倍数的因数?
- 29. 设正整数 a, b, m, n 满足: (a, b) = 1, a > 1, 且 $a^m + b^m \mid a^n + b^n$. 证明: $m \mid n$
- 30. 证明: 存在 2012 个不同的正整数, 使得其中任意两个不同的数 a, b 都满足 $(a-b)^2 | ab$.
- 31. 设 a, b 为正整数, 且 (a, b) = 1 . 证明: 对任意正整数 m , 数列

$$a, a+b, a+2b, \cdots, a+nb, \cdots$$

中,有无穷多个数与m互素.

- 32. 已知正整数数对 (a,b) 满足: 数 $a^a \cdot b^b$ 在十进制表示下, 末尾恰有 98 个零. 求 ab 的最小值.
- 33. 求所有的正整数 m, 使得 $m = d(m)^4$.
- 34. 证明:每一个正整数都可以表示为两个正整数之差,且这两个正整数的素因子个数相同.
- 35. 求所有的正整数 a, b, c, 使得 $a^2 + 1$ 和 $b^2 + 1$ 都是素数, 且满足

$$(a^2+1)(b^2+1) = c^2+1$$

- 36. 用 p(k) 表示正整数 k 的最大奇因数. 证明: 对任意正整数 n , 都有 $\frac{2}{3}n < \sum_{k=1}^n \frac{p(k)}{k} < \frac{2}{3}(n+1)$
- 37. 设 a, b, c 都是大于 1 的正整数. 求代数式 $\frac{a+b+c}{2} \frac{[a,b]+[b,c]+[c,a]}{a+b+c}$ 的最小可能值.
- 38. 对任意给定的素数 p , 有多少个整数组 (a,b,c) , 使得 (1) $1 \leq a,b,c \leq 2p^2$; (2) $\frac{[a,c]+[b,c]}{a+b} = \frac{p^2+1}{p^2+2} \cdot c$.
- 39. 黑板上写着数 $1,2,\cdots,33$. 每次允许进行下面的操作: 从黑板上任取两个满足 $x \mid y$ 的数 x,y ,将它们从黑板上去掉,写上数 $\frac{y}{x}$. 直至黑板上不存在这样的两个 数. 问: 黑板上至少剩下多少个数?
- 40. 设 n 是一个正整数. 证明: 数 $1+5^n+5^{2n}+5^{3n}+5^{4n}$ 是一个合数.

2.2 同余

同余是由大数学家高斯引入的一个概念. 我们可以将它理解为"余同", 即余数相同. 正如奇数与偶数是依能否被 2 整除而得到的关于整数的分类一样, 考虑除以 $m(\geq 2)$ 所得余数的不同, 可以将整数分为 m 类. 两个属于同一类中的数相对于"参照物"m 而言, 具有"余数相同"这个性质. 这种为对比两个整数的性质, 引入一个参照物的思想是同余理论的一个基本出发点.

同余是初等数论中的一门语言,是一件艺术品. 它为许多数论问题的表述赋予了统一的,方便的和本质的形式.

2.2.1 同余的概念与基本性质

定义如果 a,b 除以 $m(\geqslant 1)$ 所得的余数相同, 那么称 a,b 对模 m 同余, 记作 $a \equiv b \pmod{m}$. 否则, 称 a,b 对模 m 不同余, 记作 $a \neq b \pmod{m}$.

性质 $1 a \equiv b \pmod{m}$ 的充要条件是 $m \mid a - b$.

性质 2 若 $a \equiv b \pmod{m}$, $c \equiv d \pmod{m}$, 则 $a + c \equiv b + d \pmod{m}$, $a - c \equiv b - d \pmod{m}$, $ac \equiv bd \pmod{m}$.

证明这些结论与等式的一些相关结论极其相似,它们都容易证明. 我们只给出第3个式子的证明.

只需证明: $m \mid ac - bd$.

因为

$$ac - bd = ac - bc + bc - bd \tag{2.23}$$

$$= (a - b)c + b(c - d) (2.24)$$

由条件 m|a-b, m|c-d, 知 m|ac-bd.

说明与同余有关的许多结论都要用到性质 1, 事实上, 很多数论教材中利用性质 1 来引入同余的定义.

性质 3 若 $a \equiv b \pmod{n}$, n 为正整数, 则 $a^n \equiv b^n \pmod{m}$.

性质 4 若 $a \equiv b \pmod{m_1}$, $a \equiv b \pmod{m_2}$, 则 $a \equiv b \pmod{[m_1, m_2]}$.

性质 5 若 $ab \equiv ac(\text{mod} m)$, 则 $b \equiv c\left(\text{mod} \frac{m}{(a,m)}\right)$.

在同余式两边约去一个数时, 应将该数与m 的最大公因数在"参照物"中同时约去.

性质 6 如果 (a,m)=1,那么存在整数 b,使得 $ab\equiv 1 \pmod{m}$.这个 b 称 a 对模 m 的数论倒数, 记为 $a^{-1} \pmod{m}$,在不会引起误解时常常简记为 a^{-1} .

证明利用贝祖定理, 可知存在整数 x,y 使得

$$ax + my = 1$$

于是, $m \mid ax - 1$, 即 $ax \equiv 1 \pmod{m}$, 故存在符合条件的 b. 说明由数论倒数的定义, 易知当 (a,m) = 1 时, $\left(a^{-1}\right)^{-1} \equiv a \pmod{m}$. 例 1 求所有的素数 $p,q,r(p \leqslant q \leqslant r)$, 使得

$$pq + r, pq + r^2, qr + p, qr + p^2, rp + q, rp + q^2$$

都是素数.

解若 p > 2 , 则 p,q,r 都是奇数, 此时 pq + r 是一个大于 2 的偶数, 矛盾, 故 p = 2 . 现 在, 数

$$2q + r, 2q + r^2, qr + 2, qr + 4, 2r + q, 2r + q^2$$

都是素数.

若 q,r 中有偶数,则 qr+2 为一个大于 2 的偶数,矛盾,故 q,r 都是奇素数. 若 q>3,则 $3 \nmid qr$. 此时,若 $qr \equiv 1 \pmod{3}$,则 $qr+2 \equiv 0 \pmod{3}$,与 qr+2 为素数矛盾;若 $qr \equiv 2 \pmod{3}$,则 $qr+4 \equiv 0 \pmod{3}$,与 qr+4 为素数矛盾,故 q=3.这样,数

$$6+r$$
, $6+r^2$, $3r+2$, $3r+4$, $2r+3$, $2r+9$

都是素数.

若 $r \neq 5$, 则 $r \neq 0 \pmod{5}$, 但分别当 $r \equiv 1, 2, 3, 4 \pmod{5}$ 时, 对应地, 数 3r + 2, 3r + 4, 2r + 9, 6 + r 为 5 的倍数, 矛盾, 故 r = 5 .

直接验证, 可知它们满足条件, 所求的素数为

$$p = 2, q = 3, r = 5$$

例 2 设 n 为大于 1 的正整数, 且 $1!, 2!, \dots, n$! 中任意两个数除以 n 所得的余数不同. 证明: n 是一个素数.

证明注意到, $n! \equiv 0 \pmod{n}$, 而 n = 4 时, 有 $2! \equiv 3! \pmod{4}$. 因此,

如果能够证明: 当 n 为大于 4 的合数, 都有 $(n-1)! \equiv 0 \pmod{n}$, 就能依题中的条件导出矛盾. 从而证出 n 为素数.

事实上, 若 n 为大于 4 的合数, 则可对 n 作分解, 变为下述两种情形.

情形一可写 $n = pq, 2 \le p < q, p, q$ 为正整数, 这时 $1 , 从而 <math>pq \mid (n-1)!$, 即 $(n-1)! \equiv 0 \pmod{n}$.

情形二当 $n = p^2, p$ 为素数时, 由 n > 4, 知 $p \ge 3$, 故 $1 , 从而 <math>p \cdot (2p) \mid (n-1)!$, 于是, $(n-1)! \equiv 0 \pmod{n}$.

综上可知, n 只能是素数.

说明反过来, 当 n 为素数时, 并不能保证 $1!, 2!, \dots, n!$ 中任意两个数对模 n 不同余. 例 如 p = 5 时, $3! \equiv 1! \pmod{5}$.

例 3 设整数 x,y,z 满足

$$(x-y)(y-z)(z-x) = x + y + z.$$

证明: x + y + z 是 27 的倍数.

证明考虑 x, y, z 除以 3 所得的余数, 如果 x, y, z 中任意两个对模 3 不同余, 那么

$$x + y + z \equiv 0 + 1 + 2 \equiv 0 \pmod{3}$$

但是 $3 \nmid (x-y)(y-z)(z-x)$, 这与 (1) 矛盾.

现在 x, y, z 中必有两个对模 3 同余, 由对称性, 不妨设 $x \equiv y \pmod{3}$, 这时由 (1) 式知

$$3 \mid x + y + z,$$

于是

$$z \equiv -(x+y) \equiv -2x \equiv x \pmod{3}$$

这表明

$$x \equiv y \equiv z \pmod{3}$$

从而由(1)式知

 $27 \mid x + y + z$.

例 4 是否存在 19 个不同的正整数, 使得在十进制表示下, 它们的数码和相同, 并且这 19 个数之和为 1999?

解此题需要用到一个熟知的结论: 在十进制表示下, 每个正整数与它的数码和对模 9 同余. (这个结论只需利用 $10^k \equiv 1 \pmod{9}$ 即可得证)

若存在 19 个满足条件的不同正整数,则由它们的数码和相同 (设这个相同的数码和为 k),可知 1999 \equiv 19 $k \pmod{9}$,故 $k \equiv 1 \pmod{9}$.又这 19 个数之和为 1999,故其中必有一个数不大于 $\frac{1999}{19}$,即有一个数 \leq 105,所以 $k \leq$ 18. 结合 $k \equiv 1 \pmod{9}$,知 k = 1 或 10 .

若 k = 1, 则这 19 个数为 1, 10, 100, \cdots , 和不可能为 1999, 所以, k = 10. 而当 k = 10 时, 最小的数码和为 10 的 20 个正整数是

$$19, 28, 37, \dots, 91, 109, 118, 127, \dots, 190, 208$$

前面 19 个数之和为 1990, 故符合要求的 19 个正整数中必有一个 ≥ 208, 此时

$$这19$$
个数之和 $≥208 + (19 + 28 + \dots + 91) +$ (2.25)

$$(109 + 118 + 127 + \dots + 181) \tag{2.26}$$

$$=2198 > 1999 \tag{2.27}$$

矛盾.

所以不存在 19 个不同的整数满足条件.

例 5 设 m, n, k 为正整数, $n \ge m+2, k$ 为大于 1 的奇数, 并且 $p = k \times 2^n + 1$ 为素数, $p \mid 2^{2^m} + 1$. 证明: $k^{2^{n-1}} \equiv 1 \pmod{p}$.

证明由条件知 $2^{2^m} \equiv -1 \pmod{p}$,而 $n \ge m+2$,故 2^{m+1} 是 $n \cdot 2^{n-1}$ 的因数,所以, $2^{n \cdot 2^{n-1}} \equiv (-1)^{2t} = 1 \pmod{p}$ (这里 $t = n \cdot 2^{n-m-2}$).

现在, 由 $k \cdot 2^n \equiv -1 \pmod{p}$, 知 $k^{2^{n-1}} \cdot 2^{n \cdot 2^{n-1}} \equiv (-1)^{2^{n-1}} = 1 \pmod{p}$, 结合上面的结论, 即可得 $k^{2^{n-1}} \equiv 1 \pmod{p}$.

说明本题的背景是讨论费马数 (形如 $F_m = 2^{2^m} + 1$ 的数为费马数) 的素因数的性质. 例 6 设 m 为正整数, 证明: 存在整数 a,b,k, 使得 a,b 都是奇数, 而 $k \ge 0$, 并且

$$2m = a^{20} + b^{11} + k \cdot 2^{2011}$$

证明 (1) 式等价于 (在左边不小于右边的情形下)

$$2m \equiv a^{20} + b^{11} \pmod{2^{2011}}$$

我们先证明: 满足 (2) 的奇数 a,b 是存在的. 注意到, 对任意奇数 x,y, 有

$$x^{11} - y^{11} = (x - y) (x^{10} + x^9y + \dots + y^{10})$$

上式右边 $x^{10}+x^9y+\cdots+y^{10}$ 是 11 个奇数之和, 它应为奇数, 因此, $x^{11}-y^{11}\equiv 0\ (\bmod{2^{2011}})\Leftrightarrow x\equiv y\ (\bmod{2^{2011}})$. 这表明: 在 $\bmod{2^{2011}}$ 的意义下, 数 1^{2011} , 3^{2011} , \cdots , $\left(2^{2011}-1\right)^{11}$ 是数 $1,3,5,\cdots$, $2^{2011}-1$ 的一个排列, 从而, 存在奇数 b_0 , 使得 $b_0^{11}\equiv 2m-1\ (\bmod{2^{2011}})$

现在,取一个充分小的负奇数 b,使得 $b \equiv b_0 \pmod{2^{2011}}$,且 $2m-1-b^{11} \ge 0$,则 $2m-1-b^{11} \equiv 2m-1-b_0^{11} \equiv 0 \pmod{2^{2011}}$,于是, 令 $(a,b,k) = \left(1,b,\frac{2m-1-b^{11}}{2^{2011}}\right)$,则符合 (1). 所以, 满足条件的 a,b,k 存在.

2.2.2 剩余系及其应用

对任意正整数 m 而言,一个整数除以 m 所得的余数只能是 $0,1,2,\cdots,m-1$ 中的某一个, 依此可将整数分为 m 个类 (例如 m=2 时, 就是奇数或偶数), 从每一类中各取一个数所组成的集合就称为模 m 的一个完全剩余系, 简称为模 m 的完系. 依此定义, 可以容易地得到下面的两个性质.

性质 1 若整数 a_1, a_2, \dots, a_m 对模 m 两两不同余, 则 a_1, a_2, \dots, a_n 构成模 m 的一个完系.

性质 2 任意连续 m 个整数构成模 m 的一个完系, 其中必有一个数为 m 的倍数.

引入完系的概念, 蕴含了"整体处理"的思想, 在用同余方法处理数论问题时, 我们常常需要选择不同的完系来达到目的, 做出恰当地分析.

例 1 证明: 在十进制表示下, 任意 39 个连续正整数中, 必有一个数的数码和是 11 的倍数.

证明由于连续 10 个正整数中必有一个为 10 的倍数, 故连续 39 个正整数中必有 3 个数为 10 的倍数, 这 3 个数中必有一个数的十位数字不大于 8 , 且该数后有至少 19 个数在所取的 39 个连续的正整数中. 设这个数为 a, 并设它的数码和为 S(a) , 现在考虑数

$$a, a + 1, \dots, a + 9, a + 19$$

这 11 个数都是所取的 39 个数中的数, 并由 a 的选择知, 它们的数码和分别为 $S(a), S(a) + 1, \cdots, S(a) + 10$, 构成 11 个连续的正整数, 其中必有一个数为 11 的倍数. 命题获证.

说明是否命题对连续 38 个连续正整数也对呢? 答案是否定的, 原因是可能找不到由数码和构成的模 11 的完系. 一个反例是: 999981, 999982, , 1000018, 这 38 个数中没有一个数的数码和是 11 的倍数.

例 2 设 n 为正奇数. 证明: 数

$$2-1, 2^2-1, \cdots, 2^{n-1}-1$$

中必有一个数是 n 的倍数. 证明当 n=1 时, 命题显然成立.

考虑 n > 1 的情形, 此时, 在数

$$1, 2, \cdots, 2^{n-1}$$

中没有一个数为 n 的倍数, 故它们除以 n 所得的余数只能是 $1, 2, \dots, n-1$. 所以, 这 n 个数中必有两个数对模 n 同余, 即存在 $0 \le i < j \le n-1$, 使得 $2^i \equiv 2^j \pmod{n}$. 又 n 为奇数, 故 $(2^i, n) = 1$, 所以, $2^{j-i} \equiv 1 \pmod{n}$, 即 $n \mid 2^{2^{-i}} - 1$. 命题获证.

说明在处理数论中的一些存在性问题时, 经常需要将同余方法与抽屉原则相结合.

例 3 设 m, n 为正整数, m 为奇数, 且 $(m, 2^n - 1) = 1$. 证明: 数 $1^n + 2^n + \cdots + m^n$ 是 m 的倍数.

证明由于 m 为奇数, 而 $1,2,\cdots,m$ 是模 m 的一个完系, 故 $2\times 1,2\times 2,\cdots,2\times m$ 也是模 m 的一个完系, 所以,

$$1^{n} + 2^{n} + \cdots + m^{n} \equiv (2 \times 1)^{n} + (2 \times 2)^{n} + \cdots + (2 \times m)^{n} \pmod{m}.$$

即 $m \mid (2^n - 1)(1^n + 2^n + \dots + m^n)$,结合 $(m, 2^n - 1) = 1$ 可知命题成立. 说明这里凸现了"整体处理"的妙处. 一个有趣的技巧是: 当 n 为奇数时, 利用因式分解可知对 $1 \le k \le m - 1$,有 $k^n + (m - k)^n$ 是 m 的倍数, 因此, 可对和数 $1^n + \dots + m^n$ 进行配对处理后证出结论. 但这个方法对 n 是偶数的情形就失效了.

例 4(1) 证明: 存在无穷多组整数 (x,a,b,c), 使得

$$x^{2} + a^{2} = (x+1)^{2} + b^{2} = (x+2)^{2} + c^{2}$$

(2) 问: 是否存在整数组 (x, a, b, c, d), 使得

$$x^{2} + a^{2} = (x+1)^{2} + b^{2} = (x+2)^{2} + c^{2} = (x+3)^{2} + d^{2}$$
?

解 (1) 对大于 1 的正整数 k, 令 $x = 4k^3 - 1$, $a = 2k^2 + 2k$, $b = 2k^2 + 1$, $c = 2k^2 - 2k$,可知整数组 (x,a,b,c) 符合要求.

这里 (x, a, b, c) 的构造思路如下:

由题目的要求, 知 $a^2-b^2=2x+1$, $b^2-c^2=2x+3$, 于是, 设 b=c+n, a=b+m=c+n+m, 应有

$$\begin{cases} 2cn + n^2 = 2x + 3 \\ 2cm + 2mn + m^2 = 2x + 1 \end{cases}$$

这要求 m,n 都为奇数, 两式相减后, 得 $c=\frac{1+mm}{n-m}-\frac{n+m}{2}$, 为使其为整数, 取 n=m+2,得 $c=\frac{1+m(m+2)}{2}-\frac{2m+2}{2}=\frac{m^2-1}{2}$,令 m=2k+1,就得到了我们的 构造.

(2) 不存在这样的整数组.

事实上, 对任意整数 y, 我们有

$$y^2 \equiv \begin{cases} 0(\bmod 8), \ \Xi y \equiv 0(\bmod 4); \\ 1(\bmod 8), \ \Xi y \equiv 1 \ \vec{\otimes} 3(\bmod 4); \\ 4(\bmod 8), \ \Xi y \equiv 2(\bmod 4). \end{cases}$$

所以, 对整数 y,z 有

如果存在符合要求的整数组 (x, a, b, c, d), 记 $T = x^2 + a^2$, 由于 x, x+1, x+2, x+3构成模 4 的一个完系, 不妨设 $x \equiv 0 \pmod{4}$, 那么 $x + 1 \equiv 1 \pmod{4}$, $x + 2 \equiv 2 \pmod{4}$, 所以,应有

$$T(\bmod 8) \in \{0,1,4\} \cap \{1,2,5\} \cap \{0,4,5\} = \varnothing$$

这是一个矛盾.

例 5 设 n 为正整数. 证明: 存在一个各数码都是奇数的正整数, 它是 5^n 的倍数.

证明我们利用递推方法构造符合条件的 n 位正整数.

当 n=1 时, 取 $a_1=5$, 即可.

设 n=m 时, 存在一个各数码都是奇数的 m 位正整数 a_m , 使得 $5^m \mid a_m$.

设 $a_m = 5^m \times q$, 其中 $q \equiv r (\bmod 5), r = 0, 1, 2, 3$ 或 4 . 现在考虑数

$$10^m, 3 \times 10^m, 5 \times 10^m, 7 \times 10^m, 9 \times 10^m$$

它们除以 5^m 后, 所得的商数分别为

$$2^{m}, 3 \times 2^{m}, 5 \times 2^{m}, 7 \times 2^{m}, 9 \times 2^{m}$$

其中任意两个数之差不是 5 的倍数, 它们构成模 5 的一个完系. 故其中必有一个 数 $\equiv 5 - r \pmod{5}$, 设 $a \times 2^m \equiv 5 - r \pmod{5}$, 这里 $a \in \{1, 3, 5, 7, 9\}$ 中的某个数. 令 $a_{m+1} = a \times 10^m + a_m ,$ 则

Ħ.

$$\frac{a_{m+1}}{5^m} \equiv a \times 2^m + r \equiv 5 - r + r \equiv 0 \pmod{5}$$

故

$$5^{m+1} \mid a_{m+1}$$

因此, 存在一个 m+1 位正整数 a_{m+1} , 其各数码都是奇数, 且 $5^{m+1} \mid a_{m+1}$. 命题获证.

说明这里我们采用了加强命题的方式,证明了不仅存在满足条件的数,并且该数还是一个n位数.在递推构造中,这个加强带来了很大的方便.

例 6 一次圆桌会议共有 2012 个人参加, 中场休息后, 他们依不同的次序重新围着圆桌坐下. 证明: 至少有两个人, 他们之间的人数在休息前与休息后是相等的.

证明记 n = 1006, 我们对每个座位标号, 将座位的号码依顺时针方向依次记为

$$1, 2, 3, \cdots, 2n$$

因而,每一个人可对应一个数对 (i,j),其中 i,j 分别为他在休息前后的座位号.显然,所有的"横坐标" i 与"纵坐标" j 都取遍 (1),亦即恰好构成模 2n 的完全剩余系.

如果每两个人 (i_1,j_1) , (i_2,j_2) 在休息前后,坐在他们之间的人数都不相同,则应有

$$j_2 - j_1 \neq i_2 - i_1.$$

注意, 上式中当 $j_2 < j_1$ (或 $i_2 < i_1$) 时, j_2 应换成 $2n + j_2$ (或 i_2 应换 $2n + i_2$). 当然更好的写法是

$$j_2 - j_1 \not\equiv i_2 - i_1 \pmod{2n}$$

也就是

$$j_2 - i_2 \not\equiv j_1 - i_1 \pmod{2n}$$

上式的含义是任意两个人的纵横坐标之差都对模 2n 不同余, 从而

$$j_1 - i_1, j_2 - i_2, \cdots, j_{2n} - i_{2n}$$

也是模 2n 的一个完全剩余系.

考虑到模 2n 的每一个完全剩余系的各数之和应与

$$1+2+3+\cdots+2n = \frac{2n(2n+1)}{2} = n(2n+1)$$

对模 2n 同余, 但 $n(2n+1) \neq 0 \pmod{2n}$, 故 (2) 中各数之和不能被 2n 整除, 从而不能等于 0. 这与

$$\sum_{k=1}^{2n} (j_k - i_k) = \sum_{k=1}^{2n} j_k - \sum_{k=1}^{2n} i_k = \sum_{k=1}^{2n} j - \sum_{k=1}^{2n} i = 0$$

矛盾. 这表明至少有两个人, 他们之间的人数在休息前后是相同的. 说明本质上是因为模 2n 的两个完系对应各数之差不能构成模 2n 的一个完系, 才会有本题的结论.

2.2.3 费马小定理及其应用

费马 (Fermat) 小定理是初等数论中的一个重要定理, 数学竞赛中经常需要用到.

Fermat 小定理设 p 为素数, a 为整数, 则 $a^p \equiv a(\bmod p)$. 特别地, 若 $p \nmid a$, 则 $a^{p-1} \equiv 1(\bmod p)$.

请注意该定理中 p 为素数这个条件, 下面的证明中这个条件是非常重要的.

证明当 $p \mid a$ 时, 结论显然成立.

当 $p \nmid a$ 时, 设 x_1, x_2, \dots, x_{p-1} 是 $1, 2, \dots, p-1$ 的一个排列, 我们先证: $ax_1, ax_2, \dots, ax_{p-1}$ 中任意两个数对模 p 不同余.

事实上, 若存在 $1 \le i < j \le p-1$, 使得 $ax_i \equiv ax_j \pmod{p}$, 则 $p \mid a(x_i - x_j)$, 而 $p \nmid a$, 故 $p \mid x_i - x_j$ (注意, 这里用到 p 为素数), 但 x_i 与 x_j 对模 p 不同余, 矛盾.

又 $ax_1,ax_2,\cdots,ax_{p-1}$ 中显然没有一个数为 p 的倍数, 因此, ax_1 , ax_2,\cdots,ax_{p-1} 除以 p 所得的余数是 $1,2,\cdots,p-1$ 的一个排列, 利用同余的性质, 知

$$(ax_1)(ax_2)\cdots(ax_{p-1})\equiv x_1x_2\cdots x_{p-1}(\bmod p)$$

再由 $x_1x_2\cdots x_{p-1}=(p-1)$, , 它不是 p 的倍数 (注意, 这里再次用到 p 为素数), 所以, $a^{p-1}\equiv 1 \pmod{p}$.

说明这个证明体现了整体处理的思想, 它将模 p 的余数全体对等考虑, 分别将模 p 的两个剩余系 (都不包括零) 作乘积后得到一个同余式, 然后证出要证的式子.

例 1 设 n 为正整数. 证明: $7 \mid 3^n + n^3$ 的充要条件是 $7 \mid 3^n n^3 + 1$. 证明若

 $7 \mid 3^n + n^3$,

于是,由 Fermat 小定理,知

$$n^6 \equiv 1 \pmod{7}$$

从而,由

 $7 \mid 3^n + n^3$,

知

 $7 \mid (3^n + n^3) n^3$

故

$$7 \mid 3^n n^3 + 1$$

反过来, 若

则

并且

即

利用 Fermat 小定理知

故

命题获证.

说明涉及指数的同余式经常需要用到 Fermat 小定理, 因为由 Fermat 小定理得出的结论中, 同余式的一边是 1, 这带来很大的方便.

例 2 设 x 为整数, p 是 x^2+1 的奇素因数, 证明: $p\equiv 1(\bmod 4)$. 证明由于 p 为奇素数, 若 $p\neq 1(\bmod 4)$, 则 $p\equiv 3(\bmod 4)$, 可设 p=4k+3 , 此时, 由 $x^2\equiv -1(\bmod p)$, 得

$$x^{p-1} = x^{4k+2} = (x^2)^{2k+1} \equiv (-1)^{2k+1} \equiv -1 \pmod{p}$$

而由 Fermat 小定理, 应有

$$x^{p-1} \equiv 1 \pmod{p}$$

结合上式将导出 $p \mid 2$. 矛盾.

所以, $p \equiv 1 \pmod{4}$.

说明利用此题的结论, 我们可以证明: 存在无穷多个模 4 余 1 的正整数为素数.

例 3 设 x 为整数, p 是数 $x^6 + x^5 + \cdots + 1$ 的素因数. 证明: p = 7 或 $p \equiv 1 \pmod{7}$. 证明当 x = 1 时, p = 7; 当 $x \neq 1$ 时, p 是 $\frac{x^7 - 1}{x - 1}$ 的素因子, 因此, $x^7 \equiv 1 \pmod{p}$, 这表明 $p \nmid x$, 于是, 由 Fermat 小定理, 可知 $x^{p-1} \equiv 1 \pmod{p}$, 进而 $x^{(7,p-1)} \equiv 1 \pmod{p}$. 如果 $7 \nmid p - 1$,即 $p \neq 1 \pmod{7}$,那么 (7,p-1) = 1,得 $x \equiv 1 \pmod{p}$,于是,

$$0 \equiv x^6 + x^5 + \dots + 1 \equiv 1^6 + 1^5 + \dots + 1 = 7 \pmod{p}$$

得 p = 7.

所以, 命题成立.

说明本题的解答中用到下面的结论: 若 (a,m)=1 , 且 $a^u\equiv 1(\bmod m)$, $a^v\equiv 1(\bmod m)$, 则 $a^{(u,v)}\equiv 1(\bmod m)$.

它可以由下面的方法来得到.

由贝祖定理, 知存在整数 x, y, 使得 ux + vy = (u, v), 于是,

$$a^{(u,v)} = a^{ux+vy} = (a^u)^x \cdot (a^v)^y \equiv 1^x \cdot 1^y = 1 \pmod{m}$$

这里在 x, y 为负整数时, 用数论倒数去理解.

另一方面, 本题的结论可推广为: 设 q 为奇素数, x 为整数, 则数 $x^{q-1}+\cdots+1$ 的素因数 p 满足: p=q 或者 $p\equiv 1 \pmod{q}$.

例 4 设 p 为素数. 证明: 存在无穷多个正整数 n , 使得 $p \mid 2^n - n$. 证明如果 p = 2 , 那么取 n 为偶数, 就有 $p \mid 2^n - n$, 命题成立. 设 p > 2 , 则由 Fermat 小定理知

$$2^{p-1} \equiv 1 (\bmod p)$$

因此, 对任意正整数 k, 都有

$$2^{k(p-1)} \equiv 1(\bmod p)$$

所以,只需证明存在无穷多个正整数 k,使得

$$k(p-1) \equiv 1 \pmod{p}$$
 (这样, 令 $n = k(p-1)$, 就有 $p \mid 2^n - n$).

而这只需 $k \equiv -1 \pmod{p}$, 这样的 k 当然有无穷多个.

所以, 命题成立.

说明用 Fermat 小定理处理数论中的一些存在性问题有时非常方便, 简洁.

例 5 由 Fermat 小定理知, 对任意奇素数 p , 都有 $2^{p-1} \equiv 1 \pmod{p}$. 问: 是否存在合数 n , 使得 $2^{n-1} \equiv 1 \pmod{n}$ 成立?

解这样的合数 n 存在, 而且有无穷多个. 其中最小的满足条件的合数 $n = 341 = 11 \times 31$ (它是从两个不同奇素数作乘积去试算出来的).

事实上,由于

$$2^{10} - 1 = 1023 = 341 \times 3, (2.28)$$

$$2^{10} \equiv 1 \pmod{341} \tag{2.29}$$

$$2^{340} \equiv 1^{34} \equiv 1 \pmod{341} \tag{2.30}$$

故

所以

故 341 符合要求.

进一步, 设 a 是一个符合要求的奇合数, 则 2^a-1 也是一个奇合数 (这一点利用因式分解可知). 再设 $2^{a-1}-1=a\times q,q$ 为正奇数, 则

$$2^{2^{a}-1-1} - 1 = 2^{2(2^{a-1}-1)} - 1 (2.31)$$

$$=2^{2aq}-1\tag{2.32}$$

$$= (2^a)^{2q} - 1 (2.33)$$

$$\equiv 1^{2q} - 1 \tag{2.34}$$

$$\equiv 0 \,(\bmod 2^a - 1) \tag{2.35}$$

因此 $2^a - 1$ 也是一个符合要求的数. 依此递推 (结合 341 符合要求), 可知有无穷多个满足条件的合数.

说明满足题中的合数 n 称为" 伪素数", 如果对任意 (a,n)=1 都有 $a^{n-1}\equiv 1 \pmod{n}$ 成立, 那么合数 n 称为" 绝对伪素数". 请读者寻找" 绝对伪素数".

例 6 求所有的素数 p, 使得 $\frac{2^{p-1}-1}{p}$ 是一个完全平方数.

解设 p 是一个满足条件的素数,则显然 p 是一个奇素数. 由 Fermat 小定理知 而

$$p \mid 2^{p-1} - 1$$

故

$$\begin{split} 2^{\rho-1}-1 &= \left(2^{\frac{p-1}{2}}-1\right)\left(2^{\frac{p-1}{2}}+1\right), \\ p &\left|2^{\frac{p-1}{2}}-1\right| \ \ \overrightarrow{\mathbb{E}}p \left|2^{\frac{p-1}{2}}+1\right. \end{split}$$

由于 $\left(2^{\frac{p-1}{2}}-1,2^{\frac{t-1}{2}}+1\right)=\left(2^{\frac{p-1}{2}}-1,2\right)=1$,所以, $p\left|2^{\frac{p-1}{2}}-1\right|$ 与 $p\left|2^{2^{\frac{p-1}{2}}}+1\right|$ 中 恰有一个成立。

若 $p \mid 2^{\frac{p-1}{2}} - 1$,则由条件及 $\left(2^{\frac{p-1}{2}} - 1, 2^{\frac{p-1}{2}} + 1\right) = 1$ 可知存在正整数 x,使得

$$2^{\frac{n_1^2}{2}} + 1 = x^2,$$

此时

$$(x-1)(x+1) = 2^{\frac{p-1}{2}},$$

这表明 x-1 与 x+1 都是 2 的幂次, 而 x 为奇数, 故 x-1 与 x+1 是两个相邻的偶数, 所以, 只能是

$$x - 1 = 2, x + 1 = 4$$

故

$$x = 3 \tag{2.36}$$

$$p = 7 \tag{2.37}$$

此时

若 $p \mid 2^{\frac{b-1}{2}} + 1$,则同上知存在正整数 x ,使得

$$2^{\frac{p-1}{2}} - 1 = x^2$$

当 p > 3 时, 导致

$$x^2 = 2^{\frac{p-1}{2}} - 1 \equiv -1 \pmod{4}$$

矛盾, 故 p=3.

另一方面, 当 p=3 和 7 时, $\frac{2^{p-1}-1}{p}$ 分别为 1 和 9, 都是完全平方数. 综上可知 p=3 或 7.

2.2.4 奇数与偶数

奇数与偶数是对整数的最简单的分类, 初等数论经常需要对式子两边进行奇偶性分析, 导出矛盾或得出某个变量的特性, 奇偶分析法是一种重要的解题方法.

性质 1 奇数 \neq 偶数.

这个简单的事实对导出矛盾是十分重要的.

性质 2 奇数的因数都是奇数, 即偶数不能整除奇数.

注意, 反过来, 偶数是有奇因数的.

性质 3 奇数个奇数之和为奇数, 偶数个奇数之和为偶数. 任何整数加上一个偶数, 其奇偶性不变, 加上一个奇数, 其奇偶性改变; 任何整数乘以一个奇数, 其奇偶性不变, 乘以一个偶数都变为偶数.

这一节和下一节都是专题讨论,一个是重要的方法,另一个是内容丰富的特殊数.它们在初中阶段是研究和学习的重点之一.

例 1 已知 p 为素数, 求所有的整数对 (x,y) , 使得 $|x+y|+(x-y)^2=p$. 解注意到, x+y 与 x-y 要么都是奇数, 要么都是偶数, 故 $|x+y|+(x-y)^2$ 为偶数, 从 而 p=2 . 这表明 $|x+y|+(x-y)^2=2$.

由于 |x+y| 与 $(x-y)^2$ 具有相同的奇偶性,又 $(x-y)^2$ 是一个完全平方数,故 $\left(|x+y|,(x-y)^2\right)=(2,0),(1,1)$. 分别求解,可知

(x,y) = (1,1), (-1,-1), (0,1), (0,-1), (1,0), (-1,0).

说明从奇偶性出发, 先确定式子中的素数应具有的一些特性, 然后再处理就容易了.

例 2 将 1,2,···,49 填入一个 7×7 的表格 (每格一个数),分别计算每行,每列中的各数之和,得到 14 个和数.用 A 表示这 14 个和数中的奇数之和,B 表示这 14 个和数中的偶数之和.问:是否存在一种填表方式,使得 A=B?

解若有一种填表方式, 使得 A = B, 则

$$A = B = \frac{1}{2}(A+B) = \frac{1}{2} \times 2 \times (1+2+\dots+49) = 25 \times 49$$

这要求 B 为奇数, 但是 B 是若干个偶数之和, 不可能为奇数, 矛盾. 所以, 不存在使 A = B 成立的填表方式.

说明这里 A + B 是表格中所有行和之和 (它等于表格中所有数之和) 与所有列和之和 (也等于表格中所有数之和) 的和, 因此 (1) 成立. 这里蕴含了整体处理的思想.

例 3 在十进制表示下, 将某个 17 位数加上它的反序数. 证明: 所得的和数中必有一个数码为偶数.

又问: 将 17 改为一般的正整数 n , 命题成立吗? 对怎样的 n 成立? 证明若存在一个 17 位数 $\overline{a_1a_2\cdots a_{17}}$, 使得 $M=\overline{a_1\cdots a_{17}}+\overline{a_{17}a_{16}\cdots a_1}$ 的各数码都是奇数, 则考察个位数, 可知 a_1+a_{17} 为奇数. 现在再考察最前面一位的求和, 若 a_2+a_{16} 产生进位, 则由 a_1+a_{17} 为奇数, 可知 M 中有一位为偶数, 矛盾. 故 a_2+a_{16} 不产生进位. 依此可知 $\overline{a_3a_4\cdots a_{15}}+\overline{a_{15}a_{14}\cdots a_3}$ 的各数码都是奇数. 同样的推导可知 $\overline{a_5\cdots a_{13}}+\overline{a_{13}\cdots a_5}$ 的各数码都是奇数, \cdots , 最后 a_9+a_9 为奇数, 这是一个矛盾. 所以, M 中必有一个数码

对一般的正整数 n , 同上讨论, 可知 $n \equiv 1 \pmod{4}$ 时, 命题依然成立. 当 n 为偶数时, 设 n = 2m , 则数 $\underbrace{4\cdots 5\cdots 5}_{m \uparrow}$ 与其反序数之和的各数码都是奇数; 当 $n \equiv 3 \pmod{4}$ 时, 设 n = 4k + 3 , 则数 $\underbrace{6464\cdots 645}_{k+1 \uparrow 64}$ 45 与其反序数之和的各数码都是奇数.

所以, 当且仅当 $n \equiv 1 \pmod{4}$ 时, 命题成立.

例 4(1) 已知存在 n 个整数, 它们的和等于零, 而它们的积等于 n. 证明: $4 \mid n$;

(2) 设正整数 n 是 4 的倍数. 证明: 存在 n 个整数, 其和为零, 而积为 n.

解 (1) 设整数 a_1, a_2, \dots, a_n 满足:

为偶数.

$$\begin{cases} a_1 + a_2 + \dots + a_n = 0 \\ a_1 a_2 \dots a_n = n \end{cases}$$

若 n 为奇数,则由 (2) 知 a_1, a_2, \dots, a_n 为奇数,故 $a_1 + a_2 + \dots + a_n$ 是奇数个 (n 个) 奇数之和,这与 (1) 矛盾.所以,n 为偶数.

现在若 n 不是 4 的倍数,则由 (2) 知 a_1, a_2, \dots, a_n 中恰有一个数为偶数,此时 $a_1 + a_2 + \dots + a_n$ 是一个偶数加上奇数个 (n-1 个) 奇数,其和为奇数,同样与 (1) 矛

盾. 所以, 4 | n.

(2) 只需给出一个例子, 按 $n \equiv 0 \pmod{8}$ 与 $n \equiv 4 \pmod{8}$ 分别处理. 当 $n \equiv 0 \pmod{8}$ 时, 设 n = 8k, 此时存在 n 个整数

$$4k, 2, \underbrace{1, \cdots, 1}_{2k-2\uparrow}, \underbrace{-1, -1, \cdots, -1}_{6k\uparrow}$$

满足和为零, 积为 n.

当 $n \equiv 4 \pmod{8}$ 时,设 n = 8k + 4,则存在 n 个整数

$$4k+2,-2,\underbrace{1,\cdots,1}_{2k+1\uparrow},\underbrace{-1,\cdots,-1}_{6k+1\uparrow}$$

满足和为零, 积为 n.

所以, 命题成立.

例 5 已知 4 枚硬币中可能混有假币, 其中真币每枚重 10 克, 假币每枚重 9 克. 现有一台托盘秤, 它可以称出托盘中物体的总重量. 问: 至少需要称几次, 才能保证可以鉴别出每一枚硬币的真假?

解至少称 3 次可以做到.

事实上,设 4 枚硬币分别是 a,b,c,d. 分 3 次称出 a+b+c,a+b+d, a+c+d 的重量. 这 3 个重量之和等于 3a+2(b+c+d), 因此,如果这 3 个重量之和为奇数,那么 a 为假币,否则 a 为真币. 当 a 确定后,解关于 b,c,d 的三元一次方程组可确定 b,c,d 的真假. 所以, 3 次是足够的.

下证: 只称两次不能保证测出每枚硬币的真假.

注意到, 如果有两枚硬币, 例如 a,b, 它们在每次称量中要么同时出现, 要么同时不出现, 那么在 a,b 是一真一假时, 改变 a,b 的真假对称量结果没有影响, 故不能确定 a,b 的真假.

现在如果有一次称量中至多只出现两枚硬币, 例如 a, b, 那么另一次称量中 c, d 只能恰有一个在托盘中出现 (否则对换 c, d 的奇偶性不影响结果), 此

时,有一枚硬币在两次称量中都不出现,它的真假改变不影响称量结果,从而不能断定它的真假. 故每次称量托盘中都至少有 3 枚硬币,这时必有两枚硬币同时在两次称量中出现,亦导致矛盾.

综上可知, 至少需要称 3 次.

例 6 一个边长为 3 的正方体被分割为 27 个单位正方体, 将 1,2,···, 27 随机地放入单位正方体, 每个单位正方体中一个数. 计算每一行 (横, 竖, 列) 上 3 个数之和, 得到 27 个和数. 问: 这 27 个和数中至多有多少个奇数?

解计算这 27 个和数的和 S, 由于每个数恰在 3 行中出现, 故

$$S = 3 \times (1 + 2 + \dots + 27) = 3 \times 27 \times 14$$

即 S 为偶数, 所以, 这 27 个和数中奇数的个数为偶数.

若这 27 个和数中有 26 个奇数, 不妨设那个偶数为图 1 中的第一横行上的 3 个数之和, 即 $a_1 + a_2 + a_3$ 为偶数, 而图 1 中其余的 5 个行和都是奇数. 这时, 分别按横行和坚行求

图 1 中的各数之和, 得

a_1	a_2	a_3
a_4	a_5	a_6
a_7	a_8	a_9

图 1

$$(a_1 + a_2 + a_3) + (a_4 + a_5 + a_6) + (a_7 + a_8 + a_9)$$
(2.38)

$$= (a_1 + a_4 + a_7) + (a_2 + a_5 + a_8) + (a_3 + a_6 + a_9)$$
(2.39)

但此式左边为两奇一偶, 右边为 3 个奇数之和, 导出左边为偶数, 而右边为奇数, 矛盾.

所以,这 27 个和数中至多有 24 个数为奇数.

下面的例子 (如图 2 所示) 表明存在一种填数方式, 使得 27 个和数中可以有 24 个为奇数. 图 2 各表中的 0 表示偶数, 1 表示奇数, 从左到右依次为最上层, 中层和最下层的单位正方体.

0	1	0
1	1	1
0	1	0

1	1	1
1	0	0
1	0	0

0	1	1
1	0	0
0	0	1

图 2

所以,这27个和数中最多有24个为奇数.

2.2.5 完全平方数

数学竞赛中的许多问题涉及到完全平方数,需要用到完全平方数的一些特性.

性质 1 完全平方数 $\equiv 0$ 或 $1 \pmod{4}$, 奇数的平方 $\equiv 1 \pmod{8}$.

性质 2 相邻两个完全平方数之间没有一个正整数是完全平方数. (这个性质经常用来证明某一类数不是完全平方数)

性质 3 若两个互素的正整数之积是完全平方数,则这两个数都是完全平方数.

注意,"两个完全平方数之积是完全平方数"这个结论是显然的.

这里的性质 2 与性质 3 对一般的 n 次方数都成立, 而性质 1 只列出了完全平方数模 4

和模 8 的性质, 模其余的数亦有一些相应的性质. 例如: 完全平方数 $\equiv 0$ 或 $1 \pmod{3}$, 完全平方数的末尾数字只能是 0,1,4,5,6,9 等等.

例 1 设素数从小到大依次排列为 p_1, p_2, \cdots . 证明: 对任意大于 1 的正整数 n , 数 $p_1p_2\cdots p_n-1$ 和 $p_1p_2\cdots p_n+1$ 都不是完全平方数.

证明注意到, $n \ge 2$ 时, $3 \mid p_1 p_2 \cdots p_n$, 故

$$p_1p_2\cdots p_n-1\equiv 2(\bmod 3)$$

所以, $p_1p_2\cdots p_n-1$ 不是完全平方数.

又 $n \ge 2$ 时, $p_2 \cdots p_n$ 为奇数, 设 $p_2 \cdots p_n = 2k + 1$, 就有

$$p_1p_2\cdots p_n+1=2(2k+1)+1=4k+3\equiv 3 \pmod{4}$$

所以, $p_1p_2\cdots p_n+1$ 也不是完全平方数.

说明在处理与完全平方数有关的问题时,经常要用到同余的方法,其中取恰当的"参照物"(即模哪个数)是非常关键的.

例 2 已知正整数 a,b 满足关系式

$$2a^2 + a = 3b^2 + b$$

证明: a - b 和 2a + 2b + 1 都是完全平方数. 证明由条件, 知

$$b^2 = 2a^2 + a - (2b^2 + b) = (a - b)(2a + 2b + 1)$$

上式左边大于零, 右边中 2a + 2b + 1 大于零, 故 a - b 大于零.

由 (1) 知, 要证 a-b 与 2a+2b+1 都是完全平方数, 只需证明

$$(a-b, 2a+2b+1) = 1$$

设 (a-b,2a+2b+1)=d,则由 (1) 知 $d^2\mid b^2$,故 $d\mid b$.进而结合 $d\mid a-b$,知 $d\mid a$,故 $d\mid 2(a+b)$.又 $d\mid 2a+2b+1$,所以, $d\mid 1$,进而 d=1.

命题获证.

说明这里我们并没有求出 (1) 中 a,b 的值 (这是比较困难的), 但是我们对 (1) 作恰当变形, 使一边为完全平方数, 另一边是两个式子之积后, 问题解决起来就容易了.

例 3 设正整数 x, y, z 满足 (x, y, z) = 1,并且 $\frac{1}{x} + \frac{1}{y} = \frac{1}{z}$. 证明: x + y, x - z, y - z都是完全平方数.

证明设 (x,y)=m , 并设 x=mn,y=ml , 这里 m,l,n 都是正整数, 且 (l,n)=1. 从而, 由条件可知

$$(l+n)z = mln$$

利用 (x,y,z)=1 ,知 (m,z)=1 ,于是,由 (1) 知 $z\mid\ln$. 而 (l,n)=1 ,故 (l,l+n)=1,(n,l+n)=1 ,因此,由 (1) 知 l|z,n|z ,再由 (l,n)=1 ,知 $ln\mid z$.所以, z=ln ,进而 m=l+n .这样,我们有

$$x + y = m(l + n) = (l + n)^{2}$$

 $x - z = mn - ln = n(m - l) = n^{2}$
 $y - z = ml - ln = l(m - n) = l^{2}$

命题获证.

说明另一种处理方式基于下面的变形:

$$\frac{x+y}{xy} = \frac{1}{z} \Rightarrow \frac{x+y}{x} = \frac{y}{z} \tag{2.40}$$

$$\Rightarrow \frac{x+y}{x} = \frac{x}{x-z} \tag{2.41}$$

$$\Rightarrow (x+y)(x-z) = x^2 \tag{2.42}$$

然后对最后一式利用上例的方法可证 x + y 与 x - z 都是完全平方数, 这种处理或许更能体现问题的本质.

例 4 求所有的素数 p, 使得 $p^3 - 4p + 9$ 是一个完全平方数.

解设 $p^3 - 4p + 9 = x^2, x$ 为非负整数, 则 $p \mid x^2 - 9$, 即 $p \mid (x - 3)(x + 3)$, 结合 p 为素数, 可设 $x = kp \pm 3, k$ 为非负整数. 于是,

$$p^3 - 4p = x^2 - 9 = k^2 p^2 \pm 6kp$$

得 $p^2 - 4 = k^2 p \pm 6k$, 这表明: $p \mid 6k \pm 4$.

当 p > 2 时, p 为奇素数, 可知 $p \mid 3k \pm 2$, 故总有 $p \leqslant 3k + 2$, 这表明: $\frac{1}{3} \left(p^2 - 2p - 9 \right) \leqslant pk - 3 \leqslant x$.

若 $x \leqslant \frac{p^2}{4}$, 则 $\frac{1}{3} \left(p^2 - 2p - 9 \right) \leqslant \frac{p^2}{4}$, 得 $p \leqslant 8 + \frac{36}{p}$, 可知 $p \leqslant 11$; 若 $x > \frac{p^2}{4}$, 则 $p^3 - 4p + 9 = x^2 > \frac{p^4}{16}$, 得 $p < 16 - \frac{16(4p - 9)}{p^3}$, 可知 $p \leqslant 13$.

综上可知, $p \le 13$, 直接枚举, 得 (p,x) = (2,3), (7,18), (11,36). 求得 p = 2,7 或 11. 说明此例所处理的等式两边不是齐次的, 想方设法得到素数 p 的一个范围后去枚举是常用的方法, 这时一些数论知识的运用结合不等式估计往往是有效的.

例 5 已知 n 为正整数, 且 2n+1 与 3n+1 都是完全平方数. 证明: $40 \mid n$. 证明设 $2n+1=x^2, 3n+1=y^2$, 其中 x,y 都是正整数.

由性质 1, 知 $x^2 \equiv 1 \pmod{8}$ (因为 x^2 为奇数, 故 x 为奇数), 从而

$$n \equiv 0 \pmod{4}$$

进而 3n+1 为奇数, 故即

$$y^2 \equiv 1 \pmod{8}$$

$$3n + 1 \equiv 1 \pmod{8}$$

于是

$$n \equiv 0 \pmod{8}$$

另一方面, 对任意整数 a, 有

$$a \equiv 0, \pm 1, \pm 2 \pmod{5}$$
$$a^2 \equiv 0, 1 \text{ } \vec{\boxtimes} 4 \pmod{5}.$$

故

由条件知 $x^2 + y^2 = 5n + 2 \equiv 2 \pmod{5}$,

结合前面推出的结论, 可知

故

从而

$$x^{2} \equiv y^{2} \equiv 1 \pmod{5}$$
$$2n + 1 \equiv 1 \pmod{5}$$
$$n \equiv 0 \pmod{5}$$

利用 (5,8) = 1, 可知 $40 \mid n$.

说明最小的使得 2n+1 与 3n+1 都是完全平方数的正整数 n=40, 请读者找到下一个符合要求的正整数 n.

例 6 若 a,b 是使得 ab+1 为完全平方数的正整数, 则记 $a \sim b$. 证明: 若 $a \sim b$, 则存在正整数 c, 使得 $a \sim c, b \sim c$.

证明由 $a \sim b$, 可设 $ab+1=x^2$, 这里 x 为正整数, 下一个与 a,b,x 有关的完全平方数是 $(a+x)^2$ 或 $(b+x)^2$, 于是, 我们取 c=2x+a+b , 则

$$ac + 1 = a(2x + a + b) + 1$$
 (2.43)

$$= 2ax + a^2 + ab + 1 (2.44)$$

$$= 2ax + a^2 + x^2 = (x+a)^2 (2.45)$$

$$bc + 1 = (x+b)^2 (2.46)$$

命题获证.

说明此题对代数式变形的能力要求较高. 在寻找完全平方数时, 往往需要构造完全平方式, 因为当一个整式中的字母都取整数时, 这个整式的平方显然是完全平方数. 当然, 反过来并不需要这样的条件.

题中的 c 还可以这样来找: 设 $ac+1=y^2$,则 $a(c-b)=y^2-x^2=(y-x)(y+x)$,取 y-x=a (此时 c-b=y+x) 可符合此式,依此知应取 c=b+y+x=2x+a+b .

例 7 求所有的正整数数对 (a,b), 使得

$$a^3 + 6ab + 1$$
, $b^3 + 6ab + 1$

都是完全立方数.

解不妨设 $a \leq b$,则

$$b^3 < b^3 + 6ab + 1 \le b^3 + 6b^2 + 1 < (b+2)^3$$

由 $b^3 + 6ab + 1$ 是一个完全立方数, 可知

$$b^3 + 6ab + 1 = (b+1)^3$$

即有

$$6ab = 3b^2 + 3b \tag{2.47}$$

$$b = 2a - 1 (2.48)$$

从而

$$a^3 + 6ab + 1 = a^3 + 12a^2 - 6a + 1$$

注意到 $(a+1)^3 \le a^3 + 12a^2 - 6a + 1 < (a+4)^3$,

因此, 由 $a^3 + 12a^2 - 6a + 1$ 是完全立方数, 可知只能是

$$a^{3} + 12a^{2} - 6a + 1 = (a+1)^{3}, (a+2)^{3}, (a+3)^{3}.$$

分别求解, 可得只能是 a=1.

所以, 满足条件的数对 (a,b) = (1,1).

说明先确定某个 n 次方数夹在哪两个 n 次方数之间, 然后确定该 n 次方数的取值. 这是用不等式估计处理问题的常见方法.

例 8 求最小的正整数 n, 使得存在整数 x_1, x_2, \dots, x_n , 满足

$$x_1^4 + x_2^4 + \dots + x_n^4 = 1599$$

解由性质 1, 对任意整数 a, 可知

$$a^2 \equiv 0 \pmod{4}$$
 $\vec{\boxtimes} a^2 \equiv 1 \pmod{8}$,

由此可得

$$a^4 \equiv 0 \ \vec{\boxtimes} 1 \pmod{16}$$
.

利用这个结论,可知,若n < 15,设

$$x_1^4 + x_2^4 + \dots + x_n^4 \equiv m \pmod{16}$$

则

$$m \leqslant n < 15$$

而

$$1599 \equiv 15 \pmod{16}$$

矛盾, 所以

$$n \geqslant 15$$

另外, 当 n=15 时, 要求

$$x_1^4 \equiv x_2^4 \equiv \dots \equiv x_n^4 \equiv 1 \pmod{16}$$

即 x_1, x_2, \dots, x_n 都为奇数, 这为我们找到合适的数指明了方向. 事实上, 在 x_1, x_2, \dots, x_{15} 中, 1 个数取为 5,12 个取为 3, 另外两个取为 1, 就有

$$x_1^4 + x_2^4 + \dots + x_{15}^4 \tag{2.49}$$

$$=5^4 + 12 \times 3^4 + 2 \tag{2.50}$$

$$=625 + 972 + 2 \tag{2.51}$$

$$=1599.$$
 (2.52)

所以, n 的最小值为 15.

习题 2

- 1 设 p,q 都是素数, 且 7p+q,pq+11 也都为素数, 求 $(p^2+q^p)(q^2+p^q)$ 的值.
- 2 设 $p_1 < p_2 < p_3 < p_4 < p_5$ 是 5 个素数, 且 p_1, p_2, p_3, p_4, p_5 成等差数列. 求 p_5 的最小值.
- 3 对每个正整数 n , 用 S(n) 表示 n 在十进制表示下各数码之和. 证明: 对任意正整数 m , 存在正整数 n , 使得 S(n)=mS(3n) .
- 4 求最大的正整数 k, 使得存在正整数 n, 满足 $2^k \mid 3^n + 1$.
- 5 设 n 为正整数. 证明: 存在十进制表示中只出现数码 0 和 1 的正整数 m , 使得 $n \mid m$.
- 6 设 n 是一个正奇数. 证明: 存在一个十进制表示中每个数码都是奇数的正整数 m , 使 得 $n \mid m$.
- 7 证明: 对每个正整数 n, 数 $19 \times 8^n + 17$ 都是合数.
- 8 Fibonaccia 数列 $\{F_n\}$ 定义如下: $F_1 = F_2 = 1, F_{n+2} = F_{n+1} + F_n, n = 1, 2, \cdots$
- (1) 证明: 该数列任意连续 10 项之和是 11 的倍数;
- (2) 求最小的正整数 k, 使得该数列中任意连续 k 项之和是 12 的倍数.
- 9 设整数 a, b 满足: $21 \mid a^2 + b^2$. 证明: $441 \mid a^2 + b^2$.
- 10 正整数 a, b, c 满足: $c^2 = a^2 + b^2 + ab$. 证明: c 有一个大于 5 的素因子.
- 11 将整数 $1, 2, \dots, 9$ 填入一个 3×3 的表格, 每格一个数, 使得每行, 每列及每条对角线上各数之和都是 9 的倍数.
- (1) 证明: 该表格中正当中那个方格内的数是 3 的倍数;
- (2) 给出一个正当中方格内所填数为 6 的满足条件的放置方法.
- 12 下面的算式给出了一种判别一个数是否为 19 的倍数的方法:每次去掉该数的最后一位数字,将其两倍与剩下的数相加,依此类推,直到数变为 20 以内的数为止,若最后一个数为 19,则最初的那个数为 19 的倍数,否则原数不是 19 的倍数.

		6	7	9	4	A
<u> </u>					8	
		6	8	0	2	
16				4		
		6	8	A		
·			8			
		7	8			
<u> </u>	1	7 2				
	1	9				

		4	4	9	7	6
				1	2	
		4	5	0	9	
100			1	8		
		4	6	8		
		1	6			
		6	2			
J <u></u>		4				
	1	0				

例如上面判定了 67944 为 19 的倍数, 而 44976 不是 19 的倍数.

- (1) 试证明: 上面的判别方法是正确的;
- (2) 请给出判别一个数是否为 29 的倍数的类似方法.
- 13 能否将 2010 × 2010 的方格表的每个方格染成黑色或白色, 使得关于表格的中心对称的方格颜色不同, 且每行, 每列中黑格数与白格数都各占一半?

14 标号为 1,2,···,100 的火柴盒中有一些火柴,如果每次提问允许问其中任意 15 盒中所有火柴数之和的奇偶性. 那么要确定 1 号盒中火柴数的奇偶性,至少需要提问几次?

15 求所有的正整数 n,使得可以在一个 $n \times n$ 的方格表的每个方格内写上 +1 或 -1,满足: 每个标号为 +1 的方格的相邻格中恰有一个标号是 -1,而每个标号为 -1 的方格的相邻格中恰有一个标号是 +1.

16 设 a_1, a_2, \dots, a_{100} 是 $1, 2, \dots, 100$ 的一个排列,令 $b_i = a_1 + a_2 + \dots + a_i$, $i = 1, 2, \dots, 100$,记 r_i 为 b_i 除以 100 所得的余数. 证明: r_1, r_2, \dots, r_{100} 中至少有 11 个不同的数.

17 求所有满足下述条件的正整数 a 的个数: 存在非负整数 $x_0, x_1, x_2, \dots, x_{2001}$,使得 $a^{x_0} = a^{x_1} + a^{x_2} + \dots + a^{x_{2001}}$.

- 18 设 m, n 为正整数, m > 1. 证明: $m(2^m 1) | n$ 的充要条件是 $(2^m 1)^2 | 2^n 1$.
- 19 设正整数 a,b 互素, p 为奇素数. 证明: $\left(a+b,\frac{a^p+b^p}{a+b}\right)=1$ 或 p.
- 20 求最小的正整数 a, 使得对任意整数 x, 都有 $65 \mid (5x^{13} + 13x^5 + 9ax)$.
- 21 是否存在整数 a,b,c,使得方程

$$ax^{2} + bx + c = 0$$
 $\Re(a+1)x^{2} + (b+1)x + (c+1) = 0$

都有两个整数根?

- 22 求所有的正整数组 (x, y, z, w), 使得 x! + y! + z! = w!.
- 23 求满足下述条件的整数数组 (a,b) 的组数: $0 \le a,b \le 36$, 且 $a^2 + b^2 = 0 \pmod{37}$.
- 24 设 m, n 为正整数, 且 $mn \mid m^2 + n^2 + m$. 证明: m 是一个完全平方数.
- 25 证明: 若正整数 n 可以表示为三个正整数的平方和的形式, 则 n^2 也可以表示为三个正整数的平方和的形式.
- 26 求所有的正整数 n . 使得 n 的三次方根等于 n 去掉最后三位数字后得到的正整数.
- 27 证明: 存在无穷多个整数 n, 使得数 n, n+1, n+2 都可以表示为两个整数 (不必不

- 同) 的平方和. 例如: $0 = 0^2 + 0^2$, $1 = 0^2 + 1^2$, $2 = 1^2 + 1^2$, 故 n = 0 即为一个满足条件的整数.
- 28 求最小的正整数 n, 使得在十进制表示下 n^3 的末三位数字是 888.
- 29 设正整数 n > 1, 证明: 数 $2^n 1$ 既不是完全平方数, 也不是完全立方数.
- 30 设 a,b,c 为正整数, 且 $\sqrt{a} + \sqrt{b} + \sqrt{c}$ 为整数. 证明: a,b,c 都是完全平方数.
- 31 已知正整数 c 是一个奇合数. 证明: 存在正整数 a, 使得 $a \leq \frac{c}{3} 1$, 且 $(2a 1)^2 + 8c$ 是一个完全平方数.
- 32 设整数 a, b 满足: 对任意正整数 n, 数 $2^n \cdot a + b$ 都是完全平方数. 证明: a = 0.
- 33 求不能表示为 42 的正倍数与一个合数之和的最大正整数.
- 34 求一个正整数 n, 使得数 $n, n+1, \dots, n+20$ 中每个数都与 30030 不互素.
- 35 是否存在连续 13 个正整数, 其中每个数都是 2,3,5,7,11 中的某个数的倍数? 连续 14 个呢?
- 36 设 p 为素数, a, n 都是正整数, 且 $2^p + 3^p = a^n$. 证明: n = 1.
- 37 圆周上排列着 2000 个点, 在某个点上标上数 1, 按顺时针方向数两个点, 在其上标数 2, 再数 3 个点标数 3, 依此继续, 标出数 1, 2, · · · , 2000. 这样, 有些点上没有标数, 有些
- 点上所标的数不止一个. 问: 被标上 2000 的那个点上所标的数中最小的是多少?
- 38 圆周上有 800 个点, 依顺时针方向标号为 $1, 2, \cdots, 800$, 它们将圆周分为 800 个间隙. 现在选定某个点, 将其染上红色, 然后进行下述操作: 如果第 k 号点染成了红色, 那么依顺时针方向转过 k 个间隙, 将所到达的点染成红色. 问: 依此规则, 圆周上最多有多少个点被染成了红色? 证明你的结论.
- 39 设 m 为正整数, 且 $m \equiv 2 \pmod{4}$. 证明: 至多存在一对正整数 (a,b) , 使得 m=ab , 且 $0 < a-b < \sqrt{5+4\sqrt{4m+1}}$.
- 40 设 n 是一个大于 10 的正整数, 且 n 的每个数码都为 1,3,7 或 9. 证明: n 有一个大于 10 的素因子.
- 41 求所有的素数对 (p,q), 使得 $pq \mid p^p + q^q + 1$.
- 42 设 $f(n) = 1 + n + n^2 + \dots + n^{2010}$. 证明: 对任意整数 m, 若 $2 \le m \le 2010$, 则不存在正整数 n, 使得 $m \mid f(n)$.
- 43 是否存在整数 x, y, 使得 $x^{2012} 2010 = 4y^{2011} + 4y^{2010} + 2011y$?