IS THE 21ST CENTURY THE PROMISED BAYESIAN CENTURY?

Ali Hebbal

ENGINEERING HORIZONS

A conference for engineers by engineers

Capgemini engineering

"The Future of Statistics: A Bayesian 21st Century" in Advances in Applied Probability , 1975.

Dennis Lindley

What this talk is not:

- A Fisherian vs Bayesian debate
- A technical review of Bayesian methods

What this talk is about:

- The importance of uncertainty quantification
- Bridging the gap between Bayesian and deep learning approaches
- The Bayesian perspective is straight-forward and not that complex

Fitting data: How did we go from over-determined systems to under-determined systems

Fitting data: How did we go from over-determined systems to under-determined systems

Pierre Simon Laplace

 $y = mx + c + \varepsilon$

Essai philosophique sur les probabilités

2 ESSAI PHILOSOPHIQUE

De la Probabilité.

Tous les événemens, ceux même qui par leur petitesse, semblent ne pas tenir aux grandes lois de la nature, en sont une suite aussi nécessaire que les révolutions du soleil. Dans l'ignorance des liens qui les unissent au système entier de l'univers, on les a fait dépendre des causes finales, ou du hasard, suivant qu'ils arrivaient et se succédaient avec régularité, ou sans ordre apparent; mais ces causes imaginaires out été successivement reculées avec les bornes de nos connaissances, et disparaissent entièrement devant la saine philosophie qui ne voit en elles, que l'expression de l'ignorance ou nous sommes des véritables causes.

Les événemens actuels ont avec les précédens, une liaison fondée sur le principe évident, qu'une chose ne peut pas commencer d'être, sans une cause qui la produise. Cet axiome connu sous le nom de principe de la raison suffisante, s'étend aux actions même les plus indifférentes. La volonté la plus libre ne peut sans un motif déterminant, leur donner naissance; car si toutes les circonstances de deux positions étant exactement les mêmes, elle agissait dans l'une et s'abstenait d'agir dans l'autre, son choix serait un effet sans cause : elle serait alors, dit Leibnitz, le hasard aveugle des épicuriens. L'opinion contraire est une illusion de l'esprit qui perdant de vue, les raisons fugitives du choix de la volonté dans les choses indifférentes, se persuade qu'elle s'est déterminée d'ellemême et sans motifs.

Nous devons donc envisager l'état présent de l'univers, comme l'effet de son état antérieur, et comme la cause de celui qui va suivre. Une intelligence qui pour un instant donné, connaîtrait toutes les forces dont la nature est animée, et la situation respective des êtres qui la composent, si d'ailleurs elle était assez vaste pour soumettre ces données à l'analyse, embrasserait dans la même formule, les mouvemens des plus grands corps de l'univers et ceux du plus léger atome : rien ne serait incertain pour elle, et l'avenir comme le passé, serait présent à ses yeux. L'esprit humain offre dans la perfection qu'il a su donner à l'astronomie, une faible esquisse

Essai philosophique sur les probabilités

ESSAI PHILOSOPHIQUE

De la Probabilité.

Tous les événemens, ceux même qui par leur petitesse, semblent ne pas tenir aux grandes lois de la nature, en sont une suite aussi nécessaire que les révolutions du soleil. Dans l'ignorance des liens qui les unissent au système entier de l'univers, on les a fait dépendre des causes finales, ou du hasard, suivant qu'ils arrivaient et se succédaient avec régularité, ou sans ordre apparent; mais ces causes imaginaires ont été successivement reculées avec les bornes de nos connaissances, et disparaissent entièrement devant la saine philosophie qui ne voit en elles, que l'expression de l'ignorance ou nous sommes des véritables causes.

Les événemens actuels ont avec les précédens, une liaison fondée sur le principe évident, qu'une chose ne peut pas commencer d'être, sans une cause qui la produise. Cet axiome connu sous le nom de principe de la raison suffisante, s'étend aux actions même les plus indifférentes. La volonté la plus libre ne peut sans un motif déterminant, leur donner naissance; car si toutes les circonstances de deux positions étant exactement les mêmes, elle agissait dans l'une et s'abstenait d'agir dans l'autre, son choix serait un effet sans cause : elle serait alors, dit Leibnitz, le hasard aveugle des épicuriens. L'opinion contraire est une illusion de l'esprit qui perdant de vue, les raisons fugitives du choix de la volonté dans tles choses indifférentes, se persuade qu'elle s'est déterminée d'ellemême et sans motifs.

Nous devons donc envisager l'état présent de l'univers, comme l'effet de son état antérieur, et comme la cause de celui qui va suivre. Une intelligence qui pour un instant donné, connaîtrait toutes les forces dont la nature est animée, et la situation respective des êtres qui la composent, si d'ailleurs elle était assez vaste pour soumettre ces données à l'analyse, embrasserait dans la même formule, les mouvemens des plus grands corps de l'univers et ceux du plus léger atome : rien ne serait incertain pour elle, et l'avenir comme le passé, serait présent à ses yeux. L'esprit humain offre dans la perfection qu'il a su donner à l'astronomie, une faible esquisse

Laplace's Demon

"We may regard the present state of the universe as the effect of its past and the cause of its future. An intellect which at a certain moment would know all forces that set nature in motion, and all positions of all items of which nature is composed, if this intellect were also vast enough to submit these data to analysis, it would embrace in a single formula the movements of the greatest bodies of the universe and those of the tiniest atom; for such an intellect nothing would be uncertain and the future just like the past would be present before its eyes."

Essai philosophique sur les probabilités

ESSAI PHILOSOPHIQUE

De la Probabilité.

Tous les événemens, ceux même qui par leur petitesse, semblent ne pas tenir aux grandes lois de la nature, en sont une suite aussi nécessaire que les révolutions du soleil. Dans l'ignorance des liens qui les unissent au système entier de l'univers, on les a fait dépendre des causes finales, ou du hasard, suivant qu'ils arrivaient et se succédaient avec régularité, ou sans ordre apparent; mais ces causes imaginaires ont été successivement reculées avec les bornes de nos connaissances, et disparaissent entièrement devant la saine philosophie qui ne voit en elles, que l'expression de l'ignorance ou nous sommes des véritables causes.

Les événemens actuels ont avec les précédens, une liaison fondée sur le principe évident, qu'une chose ne peut pas commencer d'être, sans une cause qui la produise. Cet axiome connu sous le nom de principe de la raison suffisante, s'étend aux actions même les plus indifférentes. La volonté la plus libre ne peut sans un motif déterminant, leur donner naissance; car si toutes les circonstances de deux positions étant exactement les mêmes, elle agissait dans l'une et s'abstenait d'agir dans l'autre, son choix serait un effet sans cause : elle serait alors, dit Leibnitz, le hasard aveugle des épicuriens. L'opinion contraire est une illusion de l'esprit qui perdant de vue, les raisons fugitives du choix de la volonté dans tles choses indifférentes, se persuade qu'elle s'est déterminée d'ellemême et sans motifs.

Nous devons donc envisager l'état présent de l'univers, comme l'effet de son état antérieur, et comme la cause de celui qui va suivre. Une intelligence qui pour un instant donné, connaîtrait toutes les forces dont la nature est animée, et la situation respective des êtres qui la composent, si d'ailleurs elle était assez vaste pour soumettre ces données à l'analyse, embrasserait dans la même formule, les mouvemens des plus grands corps de l'univers et ceux du plus léger atome : rien ne serait incertain pour elle, et l'avenir comme le passé, serait présent à ses yeux. L'esprit humain offre dans la perfection qu'il a su donner à l'astronomie, une faible esquisse

Laplace's Demon

The model Data

Computation

Prediction

"We may regard the present state of the universe as the effect of its past and the cause of its future. An intellect which at a certain moment would know all forces that set nature in motion, and all positions of all items of which nature is composed, if this intellect were also vast enough to submit these data to analysis, it would embrace in a single formula the movements of the greatest bodies of the universe and those of the tiniest atom; for such an intellect nothing would be uncertain and the future just like the past would be present before its eyes."

Neil Lawrence Awesome Introduction in Gaussian process summer school. https://gpss.cc/gpss18/

Essai philosophique sur les probabilités

ESSAI PHILOSOPHIQUE

De la Probabilité.

Tous les événemens, ceux même qui par leur petitesse, semblent ne pas tenir aux grandes lois de la nature, en sont une suite aussi nécessaire que les révolutions du soleil. Dans l'ignorance des liens qui les unissent au système entier de l'univers, on les a fait dépendre des causes finales, ou du hasard, suivant qu'ils arrivaient et se succédaient avec régularité, ou sans ordre apparent; mais ces causes imaginaires ont été successivement reculées avec les bornes de nos connaissances, et disparaissent entièrement devant la saine philosophie qui ne voit en elles, que l'expression de l'ignorance ou nous sommes des véritables causes.

Les événemens actuels ont avec les précédens, une liaison fondée sur le principe évident, qu'une chose ne peut pas commencer d'être, sans une cause qui la produise. Cet axiome connu sous le nom de principe de la raison suffisante, s'étend aux actions même les plus indifférentes. La volonté la plus libre ne peut sans un motif déterminant, leur donner naissance; car si toutes les circonstances de deux positions étant exactement les mêmes, elle agissait dans l'une et s'abstenait d'agir dans l'autre, son choix serait un effet sans cause : elle serait alors, dit Leibnitz, le hasard aveugle des épicuriens. L'opinion contraire est une illusion de l'esprit qui perdant de vue, les raisons fugitives du choix de la volonté dans 'les choses indifférentes, se persuade qu'elle s'est déterminée d'ellemême et sans motifs.

Nous devons donc envisager l'état présent de l'univers, comme l'effet de son état antérieur, et comme la cause de celui qui va suivre. Une intelligence qui pour un instant donné, connaîtrait toutes les forces dont la nature est animée, et la situation respective des êtres qui la composent, si d'ailleurs elle était assez vaste pour soumettre ces données à l'analyse, embrasserait dans la même formule, les mouvemens des plus grands corps de l'univers et ceux du plus léger atome : rien ne serait incertain pour elle, et l'avenir comme le passé, serait présent à ses yeux. L'esprit humain offre dans la perfection qu'il a su donner à l'astronomie, une faible esquisse

→Laplace's Demon

Markov property

The model

The model

Data

Computation

Prediction

"We may regard the present state of the universe as the effect of its past and the cause of its future. An intellect which at a certain moment would know all forces that set nature in motion, and all positions of all items of which nature is composed, if this intellect were also vast enough to submit these data to analysis, it would embrace in a single formula the movements of the greatest bodies of the universe and those of the tiniest atom; for such an intellect nothing would be uncertain and the future just like the past would be present before its eyes."

Essai philosophique sur les probabilités

"The curve described by a simple molecule of air or vapor is regulated in a manner just as certain as the planetary orbits. The only difference between them is that which comes from our ignorance.

Probability is relative, in part to this ignorance, in part to our knowledge.

Laplace's Demon

Markov property

"We may regard the present state of the universe as the effect of its past and the cause of its future. An intellect which at a certain moment would know all forces that set nature in motion, and all positions of all items of which nature is composed, if this intellect were also vast enough to submit these data to analysis, it would embrace in a single formula the movements of the greatest bodies of the universe and those of the tiniest atom; for such an intellect nothing would be uncertain and the future just like the past would be present before its eyes."

The model

Data

Computation

Prediction

Fitting data: what about under-determined systems

$$y = mx + c$$

Fitting data: what about under-determined systems

- **Aleatoric uncertainty** captures noise inherent in the data
- **Epistemic uncertainty** captures model's lack of knowledge

Introduce probability distribution for parameter *c*

Bayesian Treatment

IT'S ALL ABOUT TRUST

Quantify the trust in our model,

A natural Occam's razor effect

A natural paradigm for out-of-domain data detection

A way to diagnostic the behavior of black-box models

Exploration criteria for design of experiments

Quantify the trust in our model,

A natural Occam's razor effect

A natural paradigm for out-of-domain data detection

A way to diagnostic the behavior of black-box models

Exploration criteria for design of experiments

Malinin, Andrey, and Mark Gales. "Predictive uncertainty estimation via prior networks." *Advances in neural information processing systems* 31 (2018).

Quantify the trust in our model,

A natural Occam's razor effect

A natural paradigm for out-of-domain data detection

A way to diagnostic the behavior of black-box models

Exploration criteria for design of experiments

Kendall, Alex, and Yarin Gal. "What uncertainties do we need in Bayesian deep learning for computer vision?." *Advances in neural information processing systems* 30 (2017).

Quantify the trust in our model,

A natural Occam's razor effect

A natural paradigm for out-of-domain data detection

A way to diagnostic the behavior of black-box models

Exploration criteria for design of experiments

PROBABILITY THEORY IS THE LANGUAGE OF UNCERTAINTY

"Do your data analysis but remember, to make sense, you must never forget the rules of coherent behavior (Bayesian rules), any more than an engineer can forget Newton's laws." Lindley, D.V. (1975)

Empirical Bayes graph representation

Bayes rule is the bread-and-butter of Bayesian modeling. In the inference step, the posterior is inferred using Bayes rule.

Posterior
$$p(\mathbf{w}|\mathbf{X}, \mathbf{y}) = \frac{\boxed{p(\mathbf{y}|\mathbf{X}, \mathbf{w})p(\mathbf{w})} \quad \text{Prior}}{\boxed{p(\mathbf{y}|\mathbf{X})} \quad \text{Evidence}}$$

$$= \frac{p(\mathbf{y}|\mathbf{X}, \mathbf{w})p(\mathbf{w})}{\int p(\mathbf{y}|\mathbf{X}, \mathbf{w})p(\mathbf{w})d\mathbf{w}}$$

APPROXIMATE BAYESIAN INFERENCE

	Approach	Concept	Advantages	Drawbacks	
	MAP esti-	Mode of the pos-	Easy to compute	Not Bayesian, patholo-	
	mate	terior		gies of the mode	
	Laplace	Gaussian approx-	for $n \to \infty$ posterior \to	Computation of the	
	Approxi-	imation around	Gaussian	Hessian, scarce data	
	mation	the MAP		case, pathologies of the	
				mode	
	Variational	Minimization of	Flexible, ELBO, differ-	Mean-field approxima-	
	Inference	the reverse KL	ent variants	tions, under-estimate	
				the variance, log expec-	
Щ				tation term	
	Expectation	Minimization of	Highly parallelizable,	Multi-modal posterior,	
	Propaga-	the direct KL	the exponential family,	scarce data case,	
	tion		Fast to converge	high-dimensionnal	
				problems	
	Monte-	Sampling	Easy to implement,	Computationally	
	Carlo	through a	Adaptation to prob-	intensive, stopping	
	Markov-	defined Markov	lems	criteria	
	Chain	chain			

DEEP LEARNING IS COOL BUT ...

How to trust the model?

How can we interpret the model?

Lacks solid mathematical background

Relies on big data

BAYESIAN DEEP LEARNING

A BAYESIAN PERSPECTIVE TO DEMYSTIFY DEEP LEARNING

BAYESIAN DEEP LEARNING MODELS

Bayesian neural networks and dropout

Gaussian processes,

Deep Gaussian processes

Variational auto-encoder

Dropout

Standard neural net

Neural net with dropout

What it does:

Works by setting units to zero given some probability p.

Circumvent over-fitting.

Improves generalization performance of the network

Why does it work:

Bayesian neural network

Inference is intractable:

Given a Gaussian prior over each weight parameter:

$$p(\mathbf{w}) \sim \mathcal{N}(0, I)$$

The inference of the posterior distribution is analytically not tractable.

Variational inference:

Minimize the reverse KL divergence

$$\hat{\boldsymbol{\theta}}_{q} = \underset{\boldsymbol{\theta}_{q}}{\operatorname{argmin}} \ \mathbb{KL}(q_{\boldsymbol{\theta}_{q}}||\tilde{p})$$

$$= \underset{\boldsymbol{\theta}_{q}}{\operatorname{argmin}} \int_{\mathbf{w}} q_{\boldsymbol{\theta}_{q}}(\mathbf{w}) \log \frac{q_{\boldsymbol{\theta}_{q}}(\mathbf{w})}{\tilde{p}(\mathbf{w})} d\mathbf{w}$$

$$\hat{\boldsymbol{\theta}}_{q} = \underset{\boldsymbol{\theta}_{q}}{\operatorname{argmin}} \int_{\mathbf{w}} q(\mathbf{w}) \log \frac{q(\mathbf{w})}{\tilde{p}(\mathbf{y}, \mathbf{w})} d\mathbf{w} + \int_{\mathbf{w}} q(\mathbf{w}) \log p(\mathbf{y}|X) d\mathbf{w}$$

$$= \underset{\boldsymbol{\theta}_{q}}{\operatorname{argmin}} \int_{\mathbf{w}} -q(\mathbf{w}) \log p(\mathbf{y}|\mathbf{w}) d\mathbf{w} + \mathbb{KL}[q||p] + C$$

$$= \underset{\boldsymbol{\theta}_{q}}{\operatorname{argmin}} \ \mathbb{E}_{q} \left[-\log p(\mathbf{y}|\mathbf{w}) \right] + \mathbb{KL}[q||p]$$

Specification of the variational distribution:

pecinicación di che variacióna discribación

Define:

$$q_M(W_i) = M \operatorname{diag}(\operatorname{Bernouli}(p_i))$$

With variational parameters M

With this variational distribution we have exactly the objective function of a neural network with dropout.

Variational inference:

Minimize the reverse KL divergence

$$\hat{\boldsymbol{\theta}}_{q} = \underset{\boldsymbol{\theta}_{q}}{\operatorname{argmin}} \ \mathbb{KL}(q_{\boldsymbol{\theta}_{q}}||\tilde{p})$$

$$= \underset{\boldsymbol{\theta}_{q}}{\operatorname{argmin}} \int_{\mathbf{w}} q_{\boldsymbol{\theta}_{q}}(\mathbf{w}) \log \frac{q_{\boldsymbol{\theta}_{q}}(\mathbf{w})}{\tilde{p}(\mathbf{w})} d\mathbf{w}$$

$$\hat{\boldsymbol{\theta}}_{q} = \underset{\boldsymbol{\theta}_{q}}{\operatorname{argmin}} \int_{\mathbf{w}} q(\mathbf{w}) \log \frac{q(\mathbf{w})}{p(\mathbf{y}, \mathbf{w})} d\mathbf{w} + \int_{\mathbf{w}} q(\mathbf{w}) \log p(\mathbf{y}|X) d\mathbf{w}$$

$$= \underset{\boldsymbol{\theta}_{q}}{\operatorname{argmin}} \int_{\mathbf{w}} -q(\mathbf{w}) \log p(\mathbf{y}|\mathbf{w}) d\mathbf{w} + \mathbb{KL}[q||p] + C$$

$$= \underset{\boldsymbol{\theta}_{q}}{\operatorname{argmin}} \ \mathbb{E}_{q} \left[-\log p(\mathbf{y}|\mathbf{w}) \right] + \mathbb{KL}[q||p]$$

Specification of the variational distribution:

Define:

$$q_M(W_i) = M \operatorname{diag}(\operatorname{Bernouli}(p_i))$$

With variational parameters M

With this variational distribution we have exactly the objective function of a neural network with dropout.

Bayesian interpretation --> predictive distribution function

Variational inference:

Minimize the reverse KL divergence

$$\hat{\boldsymbol{\theta}}_{q} = \underset{\boldsymbol{\theta}_{q}}{\operatorname{argmin}} \mathbb{KL}(q_{\boldsymbol{\theta}_{q}}||\tilde{p})$$

$$= \underset{\boldsymbol{\theta}_{q}}{\operatorname{argmin}} \int_{\mathbf{w}} q_{\boldsymbol{\theta}_{q}}(\mathbf{w}) \log \frac{q_{\boldsymbol{\theta}_{q}}(\mathbf{w})}{\tilde{p}(\mathbf{w})} d\mathbf{w}$$

$$\hat{\boldsymbol{\theta}}_{q} = \underset{\boldsymbol{\theta}_{q}}{\operatorname{argmin}} \int_{\mathbf{w}} q(\mathbf{w}) \log \frac{q(\mathbf{w})}{p(\mathbf{y}, \mathbf{w})} d\mathbf{w} + \int_{\mathbf{w}} q(\mathbf{w}) \log p(\mathbf{y}|X) d\mathbf{w}$$

$$= \underset{\boldsymbol{\theta}_{q}}{\operatorname{argmin}} \int_{\mathbf{w}} -q(\mathbf{w}) \log p(\mathbf{y}|\mathbf{w}) d\mathbf{w} + \mathbb{KL}[q||p] + C$$

$$= \underset{\boldsymbol{\theta}_{q}}{\operatorname{argmin}} \mathbb{E}_{q} \left[-\log p(\mathbf{y}|\mathbf{w}) \right] + \mathbb{KL}[q||p]$$

Specification of the variational distribution:

Define:

$$q_M(W_i) = M \operatorname{diag}(\operatorname{Bernouli}(p_i))$$

With variational parameters M

With this variational distribution we have exactly the objective function of a neural network with dropout.

Bayesian interpretation --> predictive distribution function

MC Dropout:

First moment for mean prediction:

$$\mathbb{E}(\mathbf{y}^*) \approx \frac{1}{T} \sum_{t=1}^{T} \widehat{\mathbf{y}}_t$$

Second moment for uncertainty:

$$\mathsf{Var} ig(\mathbf{y}^* ig) pprox rac{1}{T} \sum_{t=1}^T \widehat{\mathbf{y}}_t^T \widehat{\mathbf{y}}_t - \mathbb{E} (\mathbf{y}^*)^T \mathbb{E} (\mathbf{y}^*) + au^{-1} \mathbf{I}$$

Where:

$$\hat{\mathbf{y}}_t \sim \mathsf{DropoutNetwork}(\mathbf{x}^*)$$

Gal, Yarin, and Zoubin Ghahramani. "Dropout as a bayesian approximation: Representing model uncertainty in deep learning." international conference on machine learning. PMLR, 2016.

- A Bayesian perspective allows us to:
 - explain why a certain model works well
 - obtain well-calibrated uncertainty (MCdropout)

Definition

Gaussian process [Rasmussen, 2004]

A Gaussian process is used to describe a distribution over function. It is a collection of infinite random variables, any finite number of which have a joint Gaussian distribution.

It is defined by its mean function $\mu(.)$ and covariance function $k^{\Theta}(.)$ (Kernel) : $f(.) \sim \mathcal{GP}(\mu(.), k^{\Theta}(.))$

Definition

Gaussian process [Rasmussen, 2004]

A Gaussian process is used to describe a distribution over function. It is a collection of infinite random variables, any finite number of which have a joint Gaussian distribution.

It is defined by its mean function $\mu(.)$ and covariance function $k^{\Theta}(.)$ (Kernel) : $f(.) \sim \mathcal{GP}(\mu(.), k^{\Theta}(.))$

GP with a squared exponential kernel prior samples

Definition

Gaussian process [Rasmussen, 2004]

A Gaussian process is used to describe a distribution over function. It is a collection of infinite random variables, any finite number of which have a joint Gaussian distribution.

It is defined by its mean function $\mu(.)$ and covariance function $k^{\Theta}(.)$ (Kernel) : $f(.) \sim \mathcal{GP}(\mu(.), k^{\Theta}(.))$

GP with a squared exponential kernel prior samples

SPARSE GAUSSIAN PROCESSES

Gaussian process training and prediction complexity:

$$\mathcal{O}(n^3)$$

Sparse Gaussian processes introduce latent variables to obtain a low rank approximation of the covariance matrix:

$$\mathcal{O}(nm^2)$$

FROM LINEAR REGRESSION TO GAUSSIAN PROCESSES

The Ghahramani cube

FROM NEURAL NETWORKS TO GAUSSIAN PROCESSES

The GP/NN spectrum

$$f(\mathbf{x}) = \frac{1}{K} \mathbf{w}^\mathsf{T} \mathbf{h}(\mathbf{x}) = \frac{1}{K} \sum_{i=1}^K w_i h_i(\mathbf{x})$$

- Bayesian model can be well suited for big data (sparse GP)
- Non-parametric Bayesian models have an increased power of representation (asymptotic convergence of NN to GP)

DEEP GAUSSIAN PROCESSES

Definition

Deep Gaussian processes are a hierarchical generalization of Gaussian processes.

It considers the statistical relationship between the inputs and the response as a functional composition of Gaussian processes.

A distribution with observed instantiations

Definition

Deep Gaussian processes are a hierarchical generalization of Gaussian processes.

It considers the statistical relationship between the inputs and the response as a functional composition of Gaussian processes.

- X A deterministic observed variable
- $H_{[i]}$ A distribution with Non-observed instantiations
- y A distribution with observed instantiations

$$p\left(\mathbf{y}|\mathbf{X}\right) = \int_{\left\{H_{[i]}\right\}_{1}^{l-1}} p(\mathbf{y}|\mathbf{H}_{[l-1]}) \dots p(\mathbf{H}_{[1]}|\mathbf{X}) \mathrm{d}\left\{\mathbf{H}_{[i]}\right\}_{1}^{l-1}$$
 Analytically Intractable

Deep Gaussian process inference

Approach	Inference approach	Approximation approach
[Damianou and Lawrence, 2013]	Variational inference	Variational sparse GPs
[Dai et al., 2015]	Variational inference	Variational sparse GPs
[Salimbeni and Deisenroth, 2017]	Variational inference	Variational sparse GPs
[Haibin et al., 2019]	Variational inference	Variational sparse GPs
[Cutajar et al., 2017]	Variational inference	Random feature-based GP
[Bui et al., 2016]	Expectation propagation	Fully independent training conditional GPs
[Havasi et al., 2018]	Markov-Chain Monte-Carlo	Variational sparse GPs
[Rossi et al., 2020]	Markov-Chain Monte-Carlo	Variational sparse GPs

- X A deterministic observed variable
- $H_{[i]}$ A distribution with Non-observed instantiations
- y A distribution with observed instantiations

$$p\left(\mathbf{y}|\mathbf{X}\right) = \int_{\left\{H_{[i]}\right\}_{1}^{l-1}} p(\mathbf{y}|\mathbf{H}_{[l-1]}) \dots p(\mathbf{H}_{[1]}|\mathbf{X}) \mathrm{d}\left\{\mathbf{H}_{[i]}\right\}_{1}^{l-1}$$
 Analytically Intractable

A Gaussian process prediction

A deep Gaussian process prediction

- A non-parametric equivalent to deep neural network
- The hierarchical generalization increases the power of representation

Auto-encoder

$$L_{ ext{AE}}(heta,\phi) = rac{1}{n} \sum_{i=1}^n (\mathbf{x}^{(i)} - f_{ heta}(g_{\phi}(\mathbf{x}^{(i)})))^2$$

Limitations

- Regularity of the latent space
- Over-fitting

Auto-encoder

$$L_{ ext{AE}}(heta,\phi) = rac{1}{n} \sum_{i=1}^n (\mathbf{x}^{(i)} - f_{ heta}(g_{\phi}(\mathbf{x}^{(i)})))^2$$

Limitations

- Regularity of the latent space
- Over-fitting

Auto-encoder

$$L_{ ext{AE}}(heta,\phi) = rac{1}{n} \sum_{i=1}^n (\mathbf{x}^{(i)} - f_{ heta}(g_{\phi}(\mathbf{x}^{(i)})))^2$$

Auto-encoder

Input reconstructed input Low dimensional embedding z z x'

$$L_{ ext{AE}}(heta,\phi) = rac{1}{n} \sum_{i=1}^n (\mathbf{x}^{(i)} - f_{ heta}(g_{\phi}(\mathbf{x}^{(i)})))^2$$

Auto-encoder

$$L_{ ext{AE}}(heta,\phi) = rac{1}{n} \sum_{i=1}^n (\mathbf{x}^{(i)} - f_{ heta}(g_{\phi}(\mathbf{x}^{(i)})))^2$$

Auto-encoder

$$L_{ ext{AE}}(heta,\phi) = rac{1}{n} \sum_{i=1}^n (\mathbf{x}^{(i)} - f_{ heta}(g_{\phi}(\mathbf{x}^{(i)})))^2$$

$$L_{VAE}(\theta, \phi) = \mathbb{E}_{q_{\phi}}(\log(p(\mathbf{x}|\mathbf{z}))) - \mathbb{KL}(q_{\phi}(\mathbf{z}), p(\mathbf{z}))$$

- Encoding and decoding are Bayesian transformation
- A Bayesian perspective induce a regularized latent space

CONCLUSIONS

THE 21ST CENTURY IS INDEED THE BAYESIAN CENTURY

SUMMARY OF THE REVIEWED MODELS

- A Bayesian perspective allows us to:
 - Explain the mechanism behind a certain model
 - Obtain well-calibrated uncertainty
 - Increase the power of representation
 - Regularize the predictive space and the latent space

CURRENT LIMITATIONS

- Prior selection
- The optimization of the ELBO for variational inference (non-Euclidian space)
- MCMC approaches still computationally intensive

CURRENT LIMITATIONS

- Prior selection
- The optimization of the ELBO for variational inference (non-Euclidian space)
- MCMC approaches still computationally intensive

The best is yet to come ...

- An increasing interest by the ML research community
- Research on more efficient Bayesian approximations,
- More combinations of Bayesian and deep learning,
- Mysterious results in deep learning are resolved by thinking about model construction and generalization from a probabilistic perspective.

THAT'S ALL FOLKS

BAYESIAN IMPLEMENTATIONS

- Bayesian inference:
 - PyMC3
- Gaussian Processes:
 - GPflow/GPtorch
- Deep Gaussian processes:
 - GPFlux