Adaptive Parallelization of Multi-Agent Simulations with Localized Dynamics

Alexandru-Ionuţ Băbeanu, Tatiana Filatova, Jan H. Kwakkel, Neil Yorke-Smith

The 24th International Workshop on Multi-Agent-Based Simulation

30 May 2023

MABS are computationally very demanding

- MABS are computationally very demanding
- Realistic simulations may require billions of agents

- MABS are computationally very demanding
- Realistic simulations may require billions of agents
- One acceleration strategy combines:
 - System modularity
 - Multicore parallelism

- MABS are computationally very demanding
- Realistic simulations may require billions of agents
- One acceleration strategy combines:
 - System modularity
 - Multicore parallelism
- But there are complications:
 - Shared information, interactions
 - synchronization-related waiting

General intuition

• No parallelization:

General intuition

• Conventional parallelization (rigid, top-down):

General intuition

• Desired parallelization (adaptive, bottom-up):

t-1

t + 1

t + 2

Need-based preregistration of updates

- Need-based preregistration of updates
- Updates grouped into tasks

- Need-based preregistration of updates
- Updates grouped into tasks
- Tasks linked within dynamic chain

- Need-based preregistration of updates
- Updates grouped into tasks
- Tasks linked within dynamic chain
- Several workers (equal roles) operating on chain
- Gracefully handling dependence relations

- Need-based preregistration of updates
- Updates grouped into tasks
- Tasks linked within dynamic chain
- Several workers (equal roles) operating on chain
- Gracefully handling dependence relations
- Shared-memory paradigm
- Relatively easy to plug in any model

Experimental results

Model specifications:

- SIR-type disease spreading
- 4000 agents
- Ring-like network
- 14 links per node
- 3000x2 steps
- 2 types of agent updates:
 - Computing new state
 - Advancing to new state

Experimental results

Model specifications:

- SIR-type disease spreading
- 4000 agents
- Ring-like network
- 14 links per node
- 3000x2 steps
- 2 types of agent updates:
 - Computing new state
 - Advancing to new state

task **recipes**

worker records

task mutex locks

task execution flags

record

class

Adaptive parallelism is a promising way to accelerate MABS

- Adaptive parallelism is a promising way to accelerate MABS
- It behaves as intended:
 - Adding workers reduces simulation time
 - If task size high enough
 - If not too many workers already

- Adaptive parallelism is a promising way to accelerate MABS
- It behaves as intended:
 - Adding workers reduces simulation time
 - If task size high enough
 - If not too many workers already
- More agents allow for larger tasks, hence more workers

- Adaptive parallelism is a promising way to accelerate MABS
- It behaves as intended:
 - Adding workers reduces simulation time
 - If task size high enough
 - If not too many workers already
- More agents allow for larger tasks, hence more workers
- Some upcoming work:
 - More detailed performance evaluation (benchmarks and variants)
 - Applying protocol to a more complicated MABS model (subsequent project)

- Adaptive parallelism is a promising way to accelerate MABS
- It behaves as intended:
 - Adding workers reduces simulation time
 - If task size high enough
 - If not too many workers already
- More agents allow for larger tasks, hence more workers
- Some upcoming work:
 - More detailed performance evaluation (benchmarks and variants)
 - Applying protocol to a more complicated MABS model (subsequent project)
- Workshop-version article (also) available online: arXiv:2304.01724

Backup

More experimental results

