

Übung 3: Einführung Matlab

Einführung

Was ist Matlab?

- Matlab (abkürz. für Matrix Laboratory) ist ein Software-Paket für numerische Berechnung und Visualisierung. Es besteht aus einer großen Anzahl an vorgefertigten Funktionen (z.B. lineare Algebra, Lösen von Differentialgleichungen, ...)
- Bei Matlab steht der Fokus mehr auf numerischer Berechnung, während die Funktionalität von Maple und Mathematica beispielsweise mehr auf symbolische Algebera ausgerichtet ist.
- Bekannte Matlab-ähnliche Open-Source Programme: Scilab, Octave

Grund-Features:

- Automatische Dimensionierung (d.h., keine Dimensionsangaben bei Deklaration von Vektoren und Arrays erforderlich)
- Case-Sensitive (d.h., a und A sind unterschiedliche Variablen)
- Eingebaute Funktionen basieren auf Vektor- und Matrixoperationen und sind dementsprechend auch für diese optimiert.
- Datei-Typen:
 - M-Dateien: Standard ASCII Textdateien mit .m Dateiendung
 - Mat-Dateien: Binärdateien, mit .mat -Dateiendung
 - Mex-Dateien ("MATLAB-Executable"): C, C++ oder Fortran Programme, welche von MATLAB aufgerufen werden können
- Grundlegendes Daten-Objekt ist das Array, welches aus Unterelementen verschiedenster Typen (Integern, Doubles, Matrizen, Characters, Strings, Strukturen und Zellen) bestehen kann.
- Der Typ einzelner Daten-Objekte muss nicht explizit deklariert werden. (z.B. besteht auch keine Notwendigkeit Variablen als Reel oder Komplex zu deklarieren)

Grundbefehle

Hilfe

help <command/>	Hilfe zu <command/>
lookfor <string></string>	listet Hilfe zu <string> auf</string>

Verzeichnisbefehle

pwd	aktuelles Verzeichnis anzeigen
cd	Verzeichnis ändern
$\mathtt{dir} \; / \; \mathtt{ls}$	Inhalt des aktuellen Verzeichnisses anzeigen

Beispiel:

```
>> help cos
COS Cosine.
   COS(X) is the cosine of the elements of X.
Overloaded methods
   help sym/cos.m
```

Variablen

Operatoren

=	einen Wert zuweisen
+ - * / ^ Rechenoperatoren	
, (am Ende der Zeile)	Befehl mit Output
; (am Ende der Zeile)	kein Output
•••	Zeilenumbruch innerhalb eines Befehls

Konstanten

	Imaginärwert $\sqrt{-1}$
-	$\pi = 3.14\dots$
	Unendlich inf
NaN	not a Number, z. B. $\frac{0}{0}$
eps	kleinste positive Zahl, welche sich ausgeben lässt

Variablenmanagement

who	listet die Namen aller im Workspace befindlichen Variablen auf
whos	listet Namen und Größe der Variablen
clear	clear Workspace
clear <var></var>	clear Variable <var></var>
${ m clc} \; / \; { m clf} \; / \; { m cla}$	clear command / figure / axes

Für mehr Informationen: Eingabe von help + in Matlab-Kommandozeile.

Beispiele:

```
>> ( 47 + 1e+02 * 1.5 + 4^2 ) / 4 Die Variable ans ist das Ergebnis der letzten Rechenoperation.

53.2500
>> a = ( 47 + 1e+02 * 1.5 + 4^2 ) / 4 Das Ergebnis wird in Variable a gespeichert.

a = 53.2500
```

Mathematische Funktionen

sqrt(x) xp(x) log(x) / log10	Quadratwurzel Exponentialfunktion Logarithmusfunktionen
sin(x)	Sinus
cos(x)	Cosinus
tan(x)	Tangens
atan(x)	Arkustangens (Winkel $-90^{\circ}+90^{\circ}$)
atan2(y,x)	Arkustangens (Winkel $-180^{\circ}+180^{\circ}$)
abs(x)	Betrag von x
sign(x)	Signum (Vorzeichen von x)

Mehr Infos: Eingabe von help elfun oder help datafun in MATLAB-Kommandozeile.

Beispiel:

Vektoren und Matrizen

Vektor- und Matrixbefehle

[x1 x2; y1,y2,]	Vektor oder Matrix (',' oder Leerzeichen zwischen Spalten, ';' oder Zeilenumbruch zwischen Reihen)
	* / -
start: <stepsize:> end</stepsize:>	Spaltenoperator (stepsize opt., sonst = 1)
<pre>linspace(start,end,num_steps)</pre>	linearer Zeilenvektor
<pre>logspace(start,end,num_steps)</pre>	logarithmischer Zeilenvektor
eye(rows,columns)	Einheitsmatrix [Zeilen x Spalten]
ones(rows,columns)	Matrix, bei der alle Einträge=1 sind [Zeilen x Spalten]
zeros(rows,columns)	Nullmatrix [Zeilen x Spalten]
rand(rows,columns)	Matrix mit Zufallswerten [Zeilen x Spalten]
a(index)	Element des Vektors a an Position index
A(r,c)	Element der Matrix ${\tt A}$ an Position ${\tt r}$ x ${\tt c}$

Beispiele:

>> x=[1 2	3]			>> A	(1,2)=	- 8			
x =					A =					
1		2	3			1	8	3		
>> y=[4;5;	6]				4	5	6		
у =						7	8	9		
4	<u>:</u>				>> B	=A(2:3)	3,1:3)			
5	,				B =					
6	;					4	5	6		
>> A=[1 2	3;4,5,	6;7 8,9]			7	8	9		
A =					>> v	=0:2:8	3			
1		2	3		v =					
4	<u>:</u>	5	6			0	2	4	6	8
7	•	8	9		>> v	=[8:-2	2:0]			
>> A(2	(3)				v =					
ans =						8	6	4	2	0
6	;									
				Onematica						

Operationen

.* .\ ./ .^	elementweise Berechnung
\ /	linke und rechte Division
transpose(A) oder A.	Transponierte von A
ctranspose(A) or A'	Transponierte von A (komplex Konjugiert)
inv(A)	Inverse von A
<pre>det(A)</pre>	Determinante von A

Dimensionen

[M,N] = SIZE(A)	Dimension von Matrix und Vektor
M = SIZE(A,DIM)	Länge der Komponente DIM der Matrix A

Mathematische Funktionen von Vektoren und Matrizen

sum(a)	Summe der Vektorelemente
<pre>prod(a)</pre>	Produkt der Vektorelemente
min(a)	kleinstes Vektorelement
max(a)	größtes Vektorelement
sort(a)	Elemente in aufsteigender Reihenfolge
find(a)	nicht-Null Elemente

Beispiele:

```
>> A=[1 2 3; 4 5 6; 7 8 9];
                                                  >> c=v+b';
>> B=[1 2 3; 2 4 5; 3 7 8];
                                                   >> c=v-b';
>> b=[2 4 6 8 10];
                                                  >> C=A+B;
>> v=0:2:8;
                                                  >> C=A-B;
                                                  >> C=A*B;
                                                  >> c=A*v(1:3);
>> v*b
ans =
                                                   c =
   160
                                                       16
>> v'*b'
                                                       34
                                                       52
ans =
     0
           0
                  0
                        0
                              0
                                                  >> c=v.*b'
     4
           8
                 12
                       16
                              20
                                                  c =
     8
          16
                 24
                       32
                              40
                                                        0
                                                              8
                                                                    24
                                                                          48
                                                                                80
    12
          24
                 36
                       48
                              60
    16
          32
                 48
                       64
                              80
```

Beispiel:

```
>> A=[5 -3 2; -3 8 4; 2 4 -9]; Lösen des linearen Gleichungssystems: Ax = b

>> b=[10;20;9];

>> x=A\b 5x = 3y - 2z + 10

x = 8y + 4z = 3x + 20

3.4442 2x + 4y - 9z = 9

1.1868
```


Skripte und Funktionen

• Skript:

Wenn ein Skript aufgerufen wird, führt MATLAB schlicht die in der Datei befindlichen Befehle aus. Skripte können im Workspace bereits vorhandene Daten bearbeiten oder auch neue Daten erzeugen. Auch wenn Skriptdateien keine Outputargumente aufweisen, werden alle erzeugten Variablen im Workspace gespeichert und können in darauffolgenden Rechenoperationen verwendet werden.

• Funktion:

Funktionen sind .m-Dateien, welche Inputargumente aufnehmen und Outputargumente wiedergeben. Der Name der .m-Datei und der Funktion sollten übereinstimmen. Funktionen arbeiten mit lokalen Variablen in einem funktioneigenen Worskpace unabhängig des von der MATLAB-Kommandozeile bearbeiteten Workspaces.

Sowohl Skripte als auch Funktionen werden als .m-Datei gespeichert.

Struktur von Funktionen:

```
function [a_out,b_out] = name_of_function(a_in,b_in)
          output list
                                           input list
%
% Description of function can be placed here
% by using the comment-operator '%'. This
% informations can be displyed by typing
% 'help name_of_function' at MATLAB-command-line.
a_out = a_in - a_out;
b_out = a_in + a_out;
Beispiel: Länge eines Vektors berechnen
function vlength = fvectorlength(vector)
% Computation of the length 'vlength' of
% a column vector 'vector'
vlength = sqrt(vector'*vector);
Aufrufen der Funktion:
>> fvectorlength([-1;3;5])
ans =
    5.9161
```


Logikoperatoren

< , <=	gleich, nicht gleich kleiner als, kleiner gleich größer als, größer gleich		
~	logisches NOT	&	elementweise logiesches AND
	elementweise logisches OR	xor	logisches EXCLUSIVE-OR

Mehr Infos: Eingabe von help + in Matlab-Kommandozeile.

IF-/Fallunterscheidungen und Schleifen

IF expression (z.B. a==1)	IF-Statement Bedingung
statements	
ELSEIF expression	ELSE und ELSEIF sind optional
statements	
ELSE	
statements	
END	
SWITCH switch-expr (z.B. id)	SWITCH-Statement Fall
CASE case-expr. $(z.B. 1)$	
statement,, statement	
CASE {case-expr1, case-expr2, case-expr3,}	
statement,, statement	
OTHERWISE,	
statement,, statement	
END	
FOR variable = $\exp(z.B. ii=1:10)$	Wiederholung der Statements
statement,, statement	in einer spezifischen Anzahl.
END	
WHILE expression (z.B. ii <imax)< td=""><td>Wiederholung der Statements eine</td></imax)<>	Wiederholung der Statements eine
statements	unbestimmte Anzahl bis Bedingnung erfüllt.
END	

Plotten von Schaubildern

Bedienen des 'figure'-Fensters

figure , figure(no)	erstellen, aktivieren eines Schaubilds mit Nummer no
<pre>subplot(num_rows,num_cols,index)</pre>	erstellen eines Subplots
	z.B., subplot(2,3,2): Subplot mit 2 Zeilen
	und 3 Spalten, aktivieren eines 2. Subplots
gcf	'get current figure'
clf	'clear active figure'
delete(id)	Objekte mit id löschen
<pre>close(index)</pre>	'figure'-Fenster Nr. index löschen
close all	alle 'figure'-Fenster löschen
hold <on off="" =""></on>	aktuelles 'figure'-Fenster geöffnet lassen
	bei Generierung neuer Plots an/aus

2-D Plot Befehle

<pre>plot(<x,>y<,plotstyle>,)</x,></pre>	Plot, Linear $(> = \text{opt.})$	
<pre>fplot(func,range)</pre>	Plot einer expliziten Funktion	
line(x,y)	erstellen der Linie durch Koordinatenvektoren x,y	
<pre>text(x,y,string)</pre>	platzieren von string an Position x,y	
Für mehr Infos über 2-D Plots: aufrufen von help plot in Kommandozeile.		

3-D Plot Befehle

<pre>plot3(x,y,z <,plotstyle> ,)</pre>	dreidimensionaler Plot
sphere	plotten einer Kugel
[x,y,z] = sphere	Koordinaten einer Einheitskugel unter x,y,z speichern
line(x,y,z)	erstellen einer Linie durch Koordinatenvektoren x,y,z
<pre>text(x,y,z,string)</pre>	platzieren von string an Position x,y,z

Plotstyles

	Farben:			Linienst	yles:
k schwarz	r rot	g grün	- durchgängig	o Kreis	. Punkte
b blau	m magenta	w weiß	gestrichelt	* sterne	ХX
c cyan	y gelb		: gepunktet	+ plut	Punkt-Strichlinie
Mehr Infos: help p	olot				

Beispiele:

```
>> figure(1)
>> clf
>> t=0:pi/20:2*pi;
>> plot(t,sin(t),'-.r*')
>> hold on
>> plot(t,(sin(t-pi/2)),'linestyle','--',...
    'marker','o','color','m')
>> plot(t,sin(t-pi),':bs')
>> hold off
```

Labeln von Achsen und Figures

<pre>axis([xmin,xmax,ymin,ymax<,zmin,zmax>)</pre>	Skalierung (min=-inf oder	
	$\max = \inf \rightarrow Auto Skalierung)$	
<pre>axis <on auto="" equal="" off="" square="" =""></on></pre>	verschiedene Achsen-Befehle	
	Mehr: help axis	
grid <on off="" =""></on>	Gitter an/aus	
gca	Wiedergabe der aktuellen Achse	
cla	löschen der aktuellen Achse	
xlabel(string)	Label der x-Achse	
<pre>ylabel(string)</pre>	Label der y-Achse	
zlabel(string)	Label der z-Achse	
title(string)	Titel der aktuellen Achse	
<pre>legend(string_1,string_2,<,pos>)</pre>	Legende platzieren	
	pos = 0,1,2,3,4,-1	

Prof. Dr.-Ing. habil. Daniel Balzani

Aufgabe 3.1: Animation eines rotierenden Kragarms

Ein Kragarm der Länge L ist am oberen Ende (Punkt P2) an einer vertikalen Stange (höhe H) befestigt. Der Kragarm ist im Winkel α zur Stange geneigt. Die Stange ist am unteren Ende (Punkt P1) drehbar gelagert mit der z-Achse als Rotationsachse. Am Freien Ende des Kragarms (Punkt P3) ist eine Kugel mit dem Radius R befestigt.

Programmieren Sie ein Matlab-Skript (.m-file), in welchem die Rotation φ um die z-Achse des dargestellten Systems in animierter Form dargestellt wird.

Hinweis: Nutzen sie die Rotationsmatrix

$$\mathbf{R} = \begin{bmatrix} \cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

welche mit $\bar{\boldsymbol{v}} = \boldsymbol{R} \cdot \boldsymbol{v}$ die Rotation eines Vektors \boldsymbol{v} um die z-Achse beschreibt.

Aufgabe 3.2: Animation mithilfe einer Subroutine

Das Matlab-Skript aus der vorherigen Aufgabe soll nun modifiziert werden. Eine selbst programmierte Funktion soll die rotierten Koordinaten für die Animation berechnen. Input parameter sollen die die Ursprungskoordinaten und der Rotationswinkel φ sein. Der Output der Funktion sollten die Koordinaten des rotierten Systems sein.