Introduction to Numerical Analysis

Day 3: Solving linear equations

Joaquin Cavieres

Geoinformatics, Bayreuth University

Outline

Linear equations

Linear equations

Cholesky decomposition

A linear equation can be expressed as follow:

$$u_1x_1 + u_2x_2, \dots u_nx_n = b,$$
 (1)

where u_1, \ldots, u_n are the coefficients, x_1, \ldots, x_n the variables and b is the response. For the above, we express a linear system of equations as:

$$u_{11}x_1 + u_{12}x_2, \dots, u_{1n}x_n = b_1$$

$$u_{21}x_1 + u_{22}x_2, \dots, u_{2n}x_n = b_2$$

$$\vdots$$

$$u_{m1}x_1 + u_{m2}x_2, \dots, u_{2mn}x_n = b_m$$

The system contains m linear equations associated with n coefficients, and has n variables.

The previous system can be rewrite as:

$$\mathbf{A}\mathbf{x} = \mathbf{b},\tag{2}$$

where the **A** is of dimension $m \times n$ and the coefficients are u_{ij} , the vector \mathbf{x} include the elements x_i and the vector \mathbf{b} have the elements b_i .

The LU decomposition is a simplification of the Gaussian elimination. This type of decomposition is convenient when we want to calculate the inverse of a matrix or when we want to solve a linear system of equations.

Definition

A matrix **A** of dimension $m \times n$ can be written as

$$A = LU \tag{3}$$

where \boldsymbol{L} is a lower triangular matrix $m \times m$ and \boldsymbol{U} is an upper triangular matrix $m \times n$.

Thus, if we have a matrix \bf{A} of dimension 3×3 , it can be expressed as:

$$A = LU$$
 (4)

that is the same as:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$
(5)

The above allows us to use the *LU* decomposition to solve:

$$\mathbf{A}\mathbf{x} = \mathbf{b} \tag{6}$$

since

$$L(Ux) = b (7)$$

The matrix U has m rows and the vector x has m elements, thus the result of their multiplication is also a vector of m elements.

We can define a temporary vector \boldsymbol{t} such that

$$t = Ux$$
 (8)

and substituting t for Ux we have

$$Lt = b \tag{9}$$

Then we can solve for x by initially solving equation 9 for t, then solving equation 8 for x, yielding the expected result.

See the example developed by hand and the $\ensuremath{\mathtt{R}}$ code for LU decomposition.

The Cholesky decomposition of a matrix provides an expression such that $\mathbf{A} = \mathbf{L}\mathbf{L}^T$ where \mathbf{L}^T is transpose of the matrix \mathbf{L} .

Cholesky decomposition is faster than the *LU* decomposition, but it is more limited since the Cholesky decomposition only can be used on symmetric positive definite matrices.

Symmetric positive definite matrices

 Symmetric matrices are matrices that are symmetric about the main diagonal, that is:

$$\forall i \text{ and } j, \ a_{ij} = a_{ji}, \text{ for a matrix } \boldsymbol{A}.$$

Positive definite means that each of the pivot entries is positive.

Besides, for a positive definite matrix, the relationship xAx > 0 for all vectors, x.

So, for a matrix \boldsymbol{A} of dimension 3times3, the Cholesky decomposition can be expressed as:

$$\mathbf{A} = \mathbf{L}\mathbf{L}^{T} \tag{10}$$

that is the same as:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix} \begin{bmatrix} l_{11} & l_{21} & l_{31} \\ 0 & l_{22} & l_{23} \\ 0 & 0 & l_{33} \end{bmatrix}$$
(11)

See the example developed by hand and the $\ensuremath{\mathtt{R}}$ code for Cholesky decomposition.

See you next class!...

Howard, J. P. (2017). Computational Methods for Numerical Analysis with R. CRC Press.