

Deep Learning

Abir Das

Assistant Professor
Computer Science and Engineering Department
Indian Institute of Technology Kharagpur

http://cse.iitkgp.ac.in/~adas/

Agenda

- Introduce the concepts of
 - Regularization
 - Dropout
 - Batch normalization

• Resource: Goodfellow Book (Chapter 7)

Regularization

 Machine learning is concerned more about the performance on the test data than on the training data

• According to the Goodfellow book, chapter 7 – "Many strategies used in Machine Learning are explicitly designed to reduce the test error, possibly at the expense of increased training error. These strategies are collectively known as Regularization".

• Also – in the book, regularization is defined as – "Any modification we make to a learning algorithm that is intended to reduce its generalization error but not its training error".

Regularization Strategies

- Adding restrictions on parameter values
- Adding constraints that are designed to encode specific kinds of prior knowledge
- Use of ensemble methods/dropout
- Dataset augmentation
- In practical Deep Learning scenarios, we almost do find the best fitting model (in the sense of minimizing generalization error) is a large model that has been regularized appropriately

Computer Science and Engineering | Indian Institute of Technology Kharagpur cse.iitkap.ac.in

Parameter Norm Penalties

- The most traditional form of regularization to deep learning is adding penalties for high norm of parameters
- This approach limits the capacity of the model by adding penalty $\Omega(\theta)$ to the objective function resulting in

$$\tilde{J}(\theta) = J(\theta) + \alpha \Omega(\theta)$$

• When the optimization procedure tries to minimize the objective function, it will also limit the parameters to grow in an unbounded manner, thus restricting the complexity

Parameter Norm Penalties

 Two most common choices are L2 (also known as weight decay in deep learning community) and L1 norms as penalties

$$\Omega(\theta) = \frac{1}{2} ||\theta||_2^2 = \frac{1}{2} \theta^T \theta$$

$$\Omega(\theta) = ||\theta||_1 = \sum_i \theta_i$$

- In neural networks, we typically, choose the w's as the θ 's to regularize not the biases
- Regularizing bias parameters can introduce significant amount of underfitting
- Thus for neural networks,

$$\tilde{J}(w) = J(w) + \alpha\Omega(w)$$

- L-2 parameter norm penalty is commonly known as Weight Decay
- We can gain some insight into the behavior of weight decay regularization by studying the gradient of the regularized objective function.
- $\tilde{J}(w) = J(w) + \frac{\alpha}{2} w^T w$
- The gradient is $\nabla_{w} \widetilde{J}(w) = \nabla_{w} J(w) + \alpha w$
- So, the update step is

$$w \leftarrow w - \epsilon(\nabla_w J(w) + \alpha w)$$

= $(1 - \epsilon \alpha)w - \epsilon \nabla_w J(w)$

• The addition of weight decay term modifies the learning rule to shrink the weight vector further before performing the usual gradient update

- Further simplification of the analysis will be made by making a quadratic approximation to the unregularized objective function in the neighborhood of the optimum weights w^* , to the unregularized objective function.
- $\hat{J}(w) = J(w^*) + \frac{1}{2}(w w^*)^T H(w w^*)$
- H is the Hessian Matrix of J w.r.t. w evaluated at w*.
- What rule/formula is used to get this approximation?
- Taylor series expansion
- Where is the first order term?
- w^* being the minimizing value, $\nabla_w J(w^*)$ is 0

With this approximation, the regularized objective is given by

$$\hat{J}(w) + \frac{\alpha}{2} w^T w$$

 Computing the gradient of the above and equating it to 0, we get the minimizing w of the regularized and approximated objective as,

$$\widetilde{w} = (H + \alpha I)^{-1} H w^*$$

- As $\alpha \to 0$, $\widetilde{w} = w^*$
- As α grows, we can see the effect by using eigendecomposition of H

- $H = Q\Lambda Q^T$
- Then $\widetilde{w} = (Q\Lambda Q^T + \alpha I)^{-1}Q\Lambda Q^T w^* = Q(\Lambda + \alpha I)^{-1}\Lambda Q^T w^*$
- The effect of weight decay is to rescale w^* along the axes defined by the eigenvectors of H. Specifically, the component of w^* that is aligned with the i^{th} eigenvector of H is

rescaled by a factor $\frac{\lambda_i}{\lambda_i + \alpha}$

Computer Science and Engineering | Indian Institute of Technology Kharagpur cse.iitkgp.ac.in

Regularization Strategies: Dataset Augmentation

- One way to get better generalization is to train on more data.
- But under most circumstances, data is limited. Furthermore, labelling is an extremely tedious task.
- Dataset Augmentation provides a cheap and easy way to increase the amount of training data.

Color Jitter

And many many more

Horizontal Flip

Computer Science and Engineering Indian Institute of Technology Kharagpur cse.iitkgp.ac.in

Regularization Strategies: Dropout

- Bagging is a technique for reducing generalization error through combining several models (Breiman, 1994)
- Bagging: (1) Train k different models on k different subsets of training data, constructed to have the same number of examples as the original dataset through random sampling from that dataset with replacement
- Bagging: (2) Have all of the models vote on the output for test examples
- Dropout is a computationally inexpensive but powerful extension of Bagging
- Training with dropout consists of training sub-networks that can be formed by removing non-output units from an underlying base network

Forces the network to have a redundant representation.

Dropout – At Test Time

- Ideally, the randomness would have to be integrated out.
- Monte Carlo approximation: Do many forward passes with different random neurons dropped out. Then average out all predictions.
- An approximation to this approximation:
 - Can this be done in a single forward pass!
 - Can this be done without dropping out any neuron during forward pass at test time!
 - 1st way: Get the output of the network at test time with all neurons on. Scale down this by multiplying it with the probability value with which neurons are dropped during training.
 - 2nd way: During training compute the output of the network that you get after dropping out neurons with probability 'p'. During training itself, scale up this by multiplying it with (1/p). At test time, get the output as what is coming by keeping all the

Dropout (Fun Intuition)

Dropout (Srivastava et al., 2014) may be the first instance of a human curated artisanal regularization technique that entered wide scale use in machine learning. Dropout, simply described, is the concept that if you can learn how to do a task repeatedly whilst drunk, you should be able to do the task even better when sober. This insight has resulted in numerous state of the art results and a nascent field dedicated to preventing dropout from being used on neural networks.

Batch Normalization

$$\mu = \frac{1}{m} \sum_{i=1}^{m} x^{(i)}$$

$$X = X - \mu$$

$$\sigma^2 = \frac{1}{m} \sum_{i=1}^{m} x^{(i)^2}$$
 (elementwise)

Can we normalize $h^{(2)}$ so as to train $w^{(3)}$, $b^{(3)}$ faster?

Normalize $a^{(2)}$

Computer Science and Engineering | Indian Institute of Technology Kharagpurcse.iitkqp.ac.in

Implementing BatchNorm

Given some intermediate values in NN, $a^{[l](i)}:a^{(1)},a^{(2)},\ldots,a^{(m)}$

$$\mu = \frac{1}{m} \sum_{i=1}^{m} a^{(i)}$$

$$\sigma^2 = \frac{1}{m} \sum_{i=1}^{m} (a^{(i)} - \mu)^2$$

$$a_{norm}^{(i)} = \frac{a^{(i)} - \mu}{\sqrt{\sigma^2 + \epsilon}}$$

$$\gamma = \sqrt{\sigma^2 + \epsilon}$$

$$\beta = \mu$$

then,

$$\tilde{a}^{(i)} = a^{(i)}$$

 $\tilde{a}^{(i)}=\gamma a_{norm}^{(i)}+\beta$, γ and β are the learnable parameters of the model

Use $\tilde{a}^{[l](i)}$ instead of $a^{[l](i)}$ in further calculations

Effect of Batch Normalization on Biases

$$a^{(l)} = w^{(l)} h^{(l-1)} + b^{(l)}$$
We know, $\mu = \frac{1}{m} \sum_{i=1}^{m} a^{(l)}$

$$= \frac{1}{m} \sum_{i=1}^{m} w^{(l)} h^{(l-1)} + \frac{1}{m} \sum_{i=1}^{m} b^{(l)}$$

$$= \frac{1}{m} \sum_{i=1}^{m} w^{(l)} h^{(l-1)} + b^{(l)}$$
So, $a_{norm}^{(i)} = \frac{a^{(i)} - \mu}{\sqrt{\sigma^2 + \epsilon}} = \frac{w^{(l)} h^{(l-1)} + b^{(l)} - (\frac{1}{m} \sum_{i=1}^{m} w^{(l)} h^{(l-1)} + b^{(l)})}{\sqrt{\sigma^2 + \epsilon}}$

$$= \frac{w^{(l)} h^{(l-1)} - \frac{1}{m} \sum_{i=1}^{m} w^{(l)} h^{(l-1)}}{\sqrt{\sigma^2 + \epsilon}}$$

$$\tilde{a}^{(i)} = \gamma a_{norm}^{(i)} + \beta$$