Since this program is an amplitude modulation,

$$\omega = 2*pi*f0/RATE$$

$$\theta = \theta + \omega$$

 $output_block[n] = int(input_tuple[n] * cos(\theta))$

$$cos\theta = \frac{1}{2}(ej\theta + e - j\theta)$$

So $H(ejw) = \frac{1}{2}H(ej(w-\theta)) + \frac{1}{2}H(ej(w+\theta))$, it is the sum of two signals which have shift compare to the origin. The shift distance is equal to f0.

The figures show clear change when input signal is whistle.

• When f0 = 400

• When f0 = 200

