BHK Interpretation of Minimal Logic

Constructions proved by BHK often use some fun? as input and output some other for!

$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$

These are called higher order fu?. Ordinary math does not have any notation to deal with such cafa?

There is a convenient notation a notation which we can use

2x.x+y Free variable y Cx is no longes a fru vou.)
closed turns
sheafies ifor eachy, of one argument.

 $A \vdash (B \rightarrow A)$ CATB HAIX $A \vdash (B \rightarrow A)$

又十七十分

Example

No free variables (all closed terms) dy.dx. xty This is a fu? which takes y as an objument, and gives out fr:, Ax.x+yo as output All output fur are fur of one argument λy: R λx: R· x+y $A \rightarrow (B \rightarrow A)$] construction for this is, $Ax:A Ay:B.x:A \rightarrow (B\rightarrow A)$ y x is inhlication of $A \longrightarrow 77A$ Ax: A Ay: A→ I . yx (Instead of y(x), we pist write x.) fur application associates to the left. 7 A → 1 $A \rightarrow (\neg A \rightarrow \bot)$ $(A \rightarrow B) \rightarrow (7B \rightarrow 7A)$ Ax: A→B ay: 7B Az: A y (xz)

2: A → By: Ayz.7B - 12(xy) A -> B - 7B -> 7A

functional languages: Haskell

Logic	P L
Proposition	Types
Construction	Program
Argument deri- of proposition	Type assig= to program
Normalization	Evaluation
Cury-Howard Isomerisation	

Theosem

Every proposition derivable in IL, admits a BHK interpretation

Proof.

By induction on size of derivation of the propositions.

Base Case: $x:A \vdash x:A$

anduction Step: case defending on the last rule en the derivation.

 $\frac{T \vdash A \quad T \vdash B}{T, T' \vdash A \land B}.$

 $T \vdash A \rightarrow B$, $T' \vdash A$ $T, T' \vdash B$.

Exercise

1. Complete the other cases of Induction Steh 2. Also state the theorem more precicely and one complete proof.