DSC 40B Theoretical Foundations II

Lecture 7 | Part 1

The Median and Order Statistics

The Median

► How fast can we find a **median** of *n* numbers?

Algorithms

- We have seen several ways of computing a median:
 - Alg. 1: Minimize absolute error, brute force.
 - Alg. 2: Use definition (half ≤, half ≥).
 - · ...

Exercise

Using what we know so far, what approach for finding the median has the best **worst-case time complexity**?

Best so far...

Sort the list with mergesort, return middle element.

Time complexity: $Θ(n \log n)$.

Is sorting necessary?

- Need to sort the whole list just to find middle?
- Seems like more work than necessary.

Today

- We'll design an algorithm which runs in $\Theta(n)$ expected time.
- Much more useful than just finding median...

Order Statistics

► The median is an example of an order statistic.

Definition

Given *n* numbers, the *k*th order statistic is the *k*th smallest number in the collection.

Example

- ► 1st order statistic: +7
- ► 2nd order statistic: -12
- ► 4th order statistic: 99

Exercise

Some special cases of order statistics go by different names. Can you think of some?

Special Cases

- ► Minimum: 1st order statistic.
- Maximum: *n*th order statistic.
- ▶ **Median**: [n/2]th order statistic¹.
- **pth Percentile**: $\left[\frac{p}{100} \cdot n\right]$ th order statistic.

¹What if *n* is even?

Goal

- Fast algorithm for computing any order statistic.
- Interestingly, some seem easier than others.
- Our algorithm will find **any** order statistic in $\Theta(n)$ expected time.

Approach #1

We can modify selection_sort to find the kth order statistic.

Loop invariant: after kth iteration, first k elements are in final sorted order.

```
def selection_sort(arr):
    """In-place selection sort."""
    n = len(arr)
    if n <= 1:
        return
    for barrier ix in range(n-1):
        # find index of min in arr[start:]
        min ix = find minimum(arr, start=barrier ix)
        #swap
```

arr[min_ix], arr[barrier_ix]

arr[barrier ix], arr[min ix] = (

```
Select_k(arr, k):

"""Find kth order statistic."""

N = len(arr)

Sest cone: (In)

Worst cone: (In)

R=10(n)
def select k(arr, k):
    if n <= 1:
         return
    for barrier ix in range(k):
         # find index of min in arr[start:]
         min ix = find minimum(arr, start=barrier ix)
         #swap
         arr[barrier ix], arr[min ix] = (
                   arr[min ix]. arr[barrier ix]
    return arr[k-1]
```

Exercise

What are the best case and worst case time complexities of select_k?

Approach #1

- ▶ 1st order statistic: $\Theta(n)$.
- ightharpoonup nth order statistic: Θ(n^2).
- Median: $Θ(n^2)$.
- \triangleright kth order statistic: Θ(kn).

Exercise

Describe how to find any order statistic in $\Theta(n \log n)$ time.

Approach #2

- Sort with mergesort, return arr[k-1]
- \triangleright $\Theta(n \log n)$ time. Could be better...

DSC 40B Theoretical Foundations II

Lecture 7 | Part 2

Quickselect

The Goal

- Given a collection of n numbers and an order, k.
- Find the kth smallest number in the collection.

22	101	42	19	14	84	20

Game Show

- ► **Goal**: tell the host the **largest** number.
- Caution: with every door opened, your money is reduced.

- **Twist**: After opening a door, the host tells you:
 - which doors are smaller.
 - which doors are larger.
 - they partition the doors into higher and lower by moving them.

after partitioning

after partitioning

Main Idea

After partitioning, the just-opened door is in the **correct place** in the sorted order (but the other doors may not be).

But, every door to the left is smaller (\leq), every door to the right is larger (\geq).

In general...

Let's generalize strategy for kth order statistic.

 \triangleright Example: k = 2.

after partitioning

after partitioning

Strategy

- Open arbitrary door (that hasn't been ruled out).
- Partition the doors around this number:
 - Move doors smaller than this to the left,
 - Larger than this to the right.
- Let *p* be our door's new position, *k* be the order we want.
 - If p = k, return this door.
 - ► If *p* < *k*, rule out doors to left.
 - ► If p > k, rule out doors to right.
- Repeat.

In Code

```
import random
def quickselect(arr, k, start, stop):
    """Finds kth order statistic in numbers[start:stop])"""
    pivot ix = random.randrange(start, stop)
    pivot ix = partition(arr. start. stop. pivot ix)
    pivot order = pivot ix + 1
    if pivot order == k:
        return arr[pivot ix]
    elif pivot order < k:
        return quickselect(arr, k, pivot_ix + 1, stop)
    else:
        return quickselect(arr, k, start, pivot ix)
```

Example

```
arr = [77, 42, 11, 99, 0, 101]  k = 3  [0]  [0]  [0]  [0]  [0]  [0]  [0]  [0]  [0]  [0]
```

DSC 40B Theoretical Foundations II

Lecture 7 | Part 3

Partition

Paritioning

- Given an array of n numbers and the index of a pivot p.
- Rearrange elements so that:
 - Everything
 - Everything = p is next.
 - Everything > p is last.
- ▶ Return index of first element $\geq p$.

```
def partition(arr, start, stop, pivot ix):
    """Partition arr[start:stop] around pivot."""
    left = []
    pivot count = ⊙
    right = []
    pivot = arr[pivot ix]
    for ix in range(start, stop):
        if arr[ix] < pivot:</pre>
            left.append(arr[ix])
        elif arr[ix] == pivot:
            pivot count += 1
        else:
            right.append(arr[ix])
    ix = start
    for x in left:
        arr[ix] = x
        ix += 1
    for i in range(pivot_count):
        arr[ix] = pivot
        ix += 1
    for x in right:
        arr[ix] = x
        ix += 1
    return start + len(left)
```

Partition

- \triangleright partition takes $\Theta(n)$ time.
 - ► This is **optimal**.
- But we can use memory more efficiently.

Motivation

- Similar to selection sort, we'll use two barriers:
- "Middle" barrier:
 - Separates things < pivot from things ≥</p>
 - Points to first thing in "right"
- "End" barrier:
 - Separates processed from processed.
 - Points to first unprocessed thing.

Example

Simplification: start by moving pivot to end.

arr =
$$[77, 42, 11, 99, 0, 101]$$
 pivot = 1

```
def in place partition(arr, start, stop, pivot ix):
    def swap(ix 1, ix 2):
        arr[ix 1], arr[ix 2] = arr[ix 2], arr[ix 1]
    pivot = arr[pivot ix]
    swap(pivot ix, stop-1)
    middle barrier = start
    for end barrier in range(start, stop - 1):
        if arr[end barrier] < pivot:</pre>
            swap(middle_barrier, end_barrier)
            middle barrier += 1
```

else:

do nothing
swap(middle barrier, stop-1)

return middle_barrier

Efficiency

- ightharpoonup Also takes $\Theta(n)$ time.
- ► No auxiliary memory required.

DSC 40B Theoretical Foundations II

Lecture 7 | Part 4

Time Complexity Analysis

Time Complexity

rinic complexity

► What is time complexity of quickselect?

```
T(n) = (-)(n) + T(
 import random
 def quickselect(arr, k, start, stop);
     """Finds kth order statistic in numbers[start:stop])"""
     pivot_ix = random.randrarge(start, stop)
     pivot_ix = partition(arr, start, stop, pivot_ix)
     pivot order = pivot ix + 1
     if pivot order == k:
         return arr[pivot ix]
     elif pivot order < k:
         return quickselect(arr, k, pivot_ix + 1, stop)
```

else:

Problem

- We don't know the size of the subproblem.
 - ▶ Is random, can be anywhere from 1 to n 1.
- Difficult to write recurrence relation.

Good and Bad Pivots

- Some pivots are better than others.
 - Good: splits array into roughly balanced halves.
 - Bad: splits array into wildly unbalanced pieces.

Exercise

Suppose we're searching for the minimum. What would be the worst possible pivot?

Worst Case

- Suppose we're searching for k = 1 (minimum).
- Worst pivot: the maximum.
- Worst case: use max as pivot every time.
- Subproblem size: n − 1.

Worst Case

 \triangleright Every recursive call is on problem of size n-1.

$$T(n) = T(n-1) + \Theta(n).$$

Solution: $Θ(n^2)$.

Intuitively, randomly choosing largest number as pivot every time is very unlikely!

$$\frac{1}{n} \times \frac{1}{n-1} \times \frac{1}{n-2} \times \dots \times \frac{1}{3} \times \frac{1}{2} = \frac{1}{n!}$$

Equally Unlikely

- Pivot falls exactly in the middle, every time.
- ▶ Subproblems are of size n/2.
- $T(n) = T(n/2) + \Theta(n).$
 - ▶ Solution: $\Theta(n)$.

Typically

- Pivot falls somewhere in the middle.
- Sometimes good, sometimes bad.
- But good pivots reduce problem size by so much that they make up for bad pivots.

Analogy

- You're 100 miles away from home.
- You have a button that, if you press it, teleports you **1 mile** closer to home.
- How many times must you press it before you're 1 mile away from home?

Analogy

- You're 100 miles away from home.
- You have a button that, if you press it, teleports you **half the distance** to home.
- How many times must you press it before you're 1 mile away from home?

Analogy

- You're 100 miles away from home.
- You have a button that, if you press it, teleports you **half the distance** to home with probability 1/2, does nothing with probability 1/2.
- How many times must you press it before you're 1 mile away from home?

Analysis

- ▶ We'll call a pivot **good** if it falls in $\left[\frac{n}{4}, \frac{3n}{4}\right]$.
 - ▶ Probability: 1/2
 - ► Max problem size: 3*n*/4.
- ▶ We'll call a pivot **bad** if it falls outside $\left[\frac{n}{4}, \frac{3n}{4}\right]$.
 - Probability: 1/2
 - \triangleright Max problem size: n-1.

T(n) = time to get from n to base case

$$T(n)$$
 = time to get from n to $\frac{3}{4}n$

+ time to get from
$$\frac{3}{4}n$$
 to $\left(\frac{3}{4}\right)^2 n$

+ time to get from
$$\left(\frac{3}{4}\right)^2 n$$
 to $\left(\frac{3}{4}\right)^3 n$

Expected
$$T(n)$$
 = expected time to get from n to $\frac{3}{4}n$

+ expected time to get from
$$\frac{3}{4}n$$
 to $\left(\frac{3}{4}\right)^2n$

+ expected time to get from
$$\left(\frac{3}{4}\right)^2 n$$
 to $\left(\frac{3}{4}\right)^3 n$

+ ...

Related

What is the expected number of coin flips necessary in order to see "heads"?

Related

What is the expected number of coin flips necessary in order to see "heads"?

Answer: 2

Implication

Expected number of calls necessary to go from n to 3n/4 is two.

First call does *cn* work, second does $c \times (3/4)n$, third does $c \times (3/4)^2 n$, ...

Expected
$$T(n)$$
 = expected time to get from n to $\frac{3}{4}n$

+ expected time to get from
$$\frac{3}{4}n$$
 to $\left(\frac{3}{4}\right)^2n$

+ expected time to get from
$$\left(\frac{3}{4}\right)^2 n$$
 to $\left(\frac{3}{4}\right)^3 n$

Total Expected Time

$$2cn + 2\left(\frac{3}{4}\right)cn + 2\left(\frac{3}{4}\right)^2cn + \dots = 2cn \cdot \sum_{p=0}^{\infty} \left(\frac{3}{4}\right)^p$$

Quickselect

- Expected time complexity: $\Theta(n)$.
- Morst case: $Θ(n^2)$, but **very unlikely**.

Median

► We can find the median in expected linear time with **quickselect**.

DSC 40B Theoretical Foundations II

Lecture 7 | Part 5

Quicksort

Last Time

- ► We saw mergesort.
- Divide: split list directly down the middle
- Conquer: sort each half
- ► **Combine**: merge sorted halves together

merge does all the work

- ▶ In mergesort, we are lazy when we divide.
- So we have to work to combine.

```
[4,1,3,2] \rightarrow [4,1],[3,2] \rightarrow [4,3],[2,3] \rightarrow [1,2,3,4]
```

What if?

- Suppose we divide so that everything in left is smaller than everything in right:
- After sorting, no need for merge.
- $[5,1,3,8,6,2] \rightarrow [1,3,2], [5,8,6]$

What if?

- Suppose we divide so that everything in left is smaller than everything in right:
- After sorting, no need for merge.
- $[5,1,3,8,6,2] \rightarrow [1,3,2], [5,8,6]$
- This is what partition does!

Quicksort

```
def quicksort(arr, start, stop):
    """Sort arr[start:stop] in-place."""
    if stop - start > 1:
        pivot_ix = random.randrange(start, stop)
        pivot_ix = partition(arr, start, stop, pivot_ix)
        quicksort(arr, start, pivot_ix)
        quicksort(arr, pivot_ix+1, stop)
```

Time Complexity

► Average case: $\Theta(n \log n)$

2T(1/2) + O(n)

- ▶ Worst case: $\Theta(n^2)$.
- Like with quickselect, worst case is very rare.

Mergesort vs Quicksort

- Mergesort has better worst case complexity.
- But in practice, Quicksort is often faster.

Takes less memory, too.

Memory Requirements

- ightharpoonup merges requires output array, Θ(n) additional space.
- partition works in-place, requires no additional space²
- Example: sorting 3 GB of data with 4 GB of RAM.

²Call stack for quicksort requires $\Theta(\log n)$ additional space.