The Relationship Between Gene Publication Count, Disease Specificity, and Biological Processes

Raghu Ram Sattanapalle

Gene Symbol	Biological Process (GO Term)
TP53	Negative regulation of transcription by RNA polymerase II, Mitophagy, In utero embryonic development
EGFR	MAPK cascade, Cell morphogenesis, Ossification
ERBB2	Positive regulation of protein phosphorylation
TNF	Negative regulation of transcription by RNA polymerase II
BRCA1	Protein polyubiquitination, Double- strand break repair
VEGFA	Negative regulation of transcription by RNA polymerase II
ESR1	Negative regulation of transcription by RNA polymerase II
IL6	Neutrophil apoptotic process, Germinal center formation
PIK3CA	Angiogenesis, Liver development, Vasculature development
CDKN2A	Regulation of cyclin-dependent protein serine/threonine kinase activity

- · Genes with more publications aren't necessarily more disease-specific.
- TP53 tops the publication list but is not the most disease-specific.
- BRCA1, with fewer publications than TP53, shows a higher DSI, suggesting a more disease-specific role.
- The number of publications and DSI are valuable indicators of a gene's significance in disease processes, highlighting the importance of studying a gene's disease-specific role.

