Algoritmusok és adatszerkezetek II. Sztring,-és számelméleti algoritmusok

Szegedi Tudományegyetem

Mintaillesztés problémája

 $T=[t_1\dots t_n]$ input tartalmazza-e a $P=[p_1\dots p_m]$ mintát? Ha igen, mely inputpozíció(k)tól/eltolási érték(ek)től kezdődően? Tipikusan $n\gg m$

Mintaillesztés problémája

 $T=[t_1\dots t_n]$ input tartalmazza-e a $P=[p_1\dots p_m]$ mintát? Ha igen, mely inputpozíció(k)tól/eltolási érték(ek)től kezdődően? Tipikusan $n\gg m$

Példa

Hányszor szerepel az 'orosz' szó a *Háború és béke* c. műben?

Nyers erőt használva legrosszabb esetben O(mn) vizsgálat kell Milyen hatékonyabb módszerek vannak?

- Mintaillesztés automatával
- Knuth-Morris-Prat
- Rabin-Karp algoritmus

Jelölések

• P_i jelölje P-nek az i hosszúságú prefixét (kezdőszeletét), azaz pl. $P_3 = bab$, $P_1 = b$, illetve $P_0 = \epsilon$ (ϵ az üres szót jelöli)

Jelölések

- P_i jelölje P-nek az i hosszúságú prefixét (kezdőszeletét), azaz pl. $P_3 = bab$, $P_1 = b$, illetve $P_0 = \epsilon$ (ϵ az üres szót jelöli)
- X □ Y jelölje azt, ha X sztring szuffixe Y-nak (azaz Y végződése maga X)

Példa

```
<u>aaba</u> \sqsupset cac<u>aaba</u>, ugyanakkor <u>aaba</u> \npreceq cac<u>aabb</u> Megjegyzés: Az Y \sqsupset Y, valamint az \epsilon \sqsupset Y relációk triviálisan teljesülnek minden Y-ra.
```


Véges állapotú automaták

Automata alatt egy $M = (Q, q_0, A, \Sigma, \delta)$ rendezett ötöst értünk, ahol

- Q a lehetséges állapotok halmaza
- q₀ a kezdőállapot
- ullet $A\subseteq Q$ a végállapotok halmaza
- Σ egy véges ábécé
- ullet $\delta: Q imes \Sigma o Q$ az állapotátmenet-függvény

Mintaillesztés véges állapotú automatákkal

- Q-t válasszuk $\{q_0, q_1, \dots q_m\}$ -nak
- q_i állapot jelentése: az input aktuális pozíciójáig a minta első i karaktere illeszkedik
- q_m állapotba elérve elmondható, hogy megtaláltuk a P-nek egy T-beli előfordulását


```
ÁTMENETFÜGGVÉNYSZÁMÍTÁS (P, \Sigma) {
  m = P.length
  for (q = 0 \text{ to m}) {
     for (a \in \Sigma) {
       k = min(m + 1, q + 2)
       repeat
          k = k - 1
       until P_k \supset P_q a
       \delta(q, a) = k
  return \delta
```

P = baba minta felismerését végző véges automata

Az állapotátmenet-függvény táblázatos formában

	q 0	q_1	q_2	q 3	q_4
а	q 0	q_2	q_0	q ₄	q_0
b	q_1	q_1	q_3	q_1	q_3

Kitöltése és tárolása egyaránt $O(m|\Sigma|)$ költségű

Knuth-Morris-Pratt (KMP) algoritmus

A véges automatával történő feldolgozás korlátai

Előfeldolgozás gyanánt ki kell tölteni egy $m|\Sigma|$ méretű táblázatot (és persze tárolni is kell azt)

Knuth-Morris-Pratt (KMP) algoritmus

A véges automatával történő feldolgozás korlátai

Előfeldolgozás gyanánt ki kell tölteni egy $m|\Sigma|$ méretű táblázatot (és persze tárolni is kell azt)

Észrevételek

- Ha P=aab minta illeszkedett az input i-edik pozíciójára, akkor az i+1 pozíciótól kezdődően biztos nem beszélhetünk illeszkedésről
- ② Ha P=aaa minta nem illeszkedett az input i-edik pozíciójára, akkor az i+1 pozíciótól kezdődően biztos nem beszélhetünk illeszkedésről

Prefixfüggvény

- $\pi: \{1,2,\ldots,m\} \to \{0,1,\ldots,m-1\}$ $P = [p_1\ldots p_m]$ minta prefixfüggvénye, ha $\pi[q] = \max\{k: k < q \land \mathbb{P}_k \sqsupset \mathbb{P}_q\}$
- Azaz $\pi[q]$ megadja P azon leghosszabb (q-nál rövidebb) prefixének hosszát, ami valódi szuffixe $P_q = [p_0 \dots p_q]$ -nak
- Értelmezése: ha nem sikerül továbbillesszük a mintát az inputra, az legalább mely állapotig vet minket vissza

Prefixfüggvény

- $\pi: \{1, 2, \ldots, m\} \to \{0, 1, \ldots, m-1\}$ $P = [p_1 \ldots p_m]$ minta prefixfüggvénye, ha $\pi[q] = \max\{k: k < q \land P_k \sqsupset P_q\}$
- Azaz $\pi[q]$ megadja P azon leghosszabb (q-nál rövidebb) prefixének hosszát, ami valódi szuffixe $P_q = [p_0 \dots p_q]$ -nak
- Értelmezése: ha nem sikerül továbbillesszük a mintát az inputra, az legalább mely állapotig vet minket vissza

Példa

T=abaabababaca inputban keressük a P=ababababaca mintát

i	1	2	3	4	5	6	7	8	9	10
P[i]	а	b	а	b	а	b	а	b	С	а
$\frac{P[i]}{\pi[i]}$	0	0	1	2	3	4	5	6	0	1

A prefixfüggvény növekedése

Indirekt belátható, hogy $\pi[i+1] - \pi[i] \leq 1$ minden esetben teljesül

A prefixfüggvény növekedése

Indirekt belátható, hogy $\pi[i+1] - \pi[i] \leq 1$ minden esetben teljesül $\underbrace{\frac{\pi[i]=2}{S_1 \ S_2} \ S_3 \ S_4}_{\pi[i+1]=4} \ \cdots \ \underbrace{\frac{s_{i-1} \ S_i}{s_{i-1} \ S_i} \ s_{i+1}}_{\pi[i+1]=4}$

Azaz $\pi[i+1] - \pi[i] > 1$ csak úgy teljesülhet, ha $\pi[i]$ nem P_i leghosszabb valódi szuffixének a hossza, ami ellentmondás.

Prefixfüggvény viselkedése

Folytatódó illeszkedés

$$\underbrace{\frac{\pi[i]}{S_1} \underbrace{s_4 = s_{i+1}}_{\pi[i+1] = \pi[i]+1} \dots \underbrace{\frac{\pi[i]}{S_{i-2}} \underbrace{s_4 = s_i + 1}_{S_{i-1}}}_{\pi[i+1] = \pi[i]+1}$$

Nem (közvetlen) folytatódó illeszkedés

$$\underbrace{\underbrace{\underbrace{s_1 \ s_2}_{j} \ s_3 \ s_4}_{j} \ \ldots \ \underbrace{s_{i-3} \ s_{i-2}}_{j=\pi[\pi[i]]} \ s_{i+1}}_{\pi[i]}$$

Prefixfüggvény kiszámítása

```
PrefixSzámít(P) {
  m = P.length
  \pi[1] = 0
  i = 0
  for (q=2 to m) {
    while i > 0 and P[i+1] \neq P[q]
      i = \pi[i]
    if P[i+1] = P[q]
      i = i+1
    \pi[q]=i
  }
  return \pi
```

KMP algoritmus

```
KMP-ILLESZTÕ(T, P) {
  n = T.length
  m = P.length
  \pi = PREFIXSZÁMÍT(P)
  q = 0
  for (i = 1 to n)
    while q > 0 and P[q + 1] \neq T [i]
      q = \pi[q]
    if P[q + 1] = T [i]
      q = q + 1
    if q = m
      print("Illeszkedés a %d. pozícióval bezárólag" % i)
      q = \pi[m]
```

Rabin-Karp algoritmus

Az egyszerűség kedvéért a mintára és az inputra tekintsünk 10-es számrendszerbeli számokként

Alapötlet

P mintára alkalmazzunk egy $h_q(x)=x \mod q$ hasítófüggvényt. T-nek csak azon $S=[t_j]_{j=i}^{i+m-1}$ réssztringjei egyezhetnek meg P-vel, melyekre $h_q(S)=h_q(P)$ $h_q(S)=h_q(P)$ természetesen csak szükségességi feltételt támaszt

Rabin-Karp algoritmus illusztráció (Forrás: CLRS 32.5 ábra)

$$P = 31415, h_q(x) = x \mod 13$$

$$2 \ 3 \ 5 \ 9 \ 0 \ 2 \ 3 \ 1 \ 4 \ 1 \ 5 \ 2 \ 6 \ 7 \ 3 \ 9 \ 9 \ 2 \ 1$$

$$\mod 13$$

$$1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 17 \ 18 \ 19$$

$$2 \ 3 \ 5 \ 9 \ 0 \ 2 \ 3 \ 1 \ 4 \ 1 \ 5 \ 2 \ 6 \ 7 \ 3 \ 9 \ 9 \ 2 \ 1$$

$$\dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots \mod 13$$

$$8 \ 9 \ 3 \ 11 \ 0 \ 1 \ 7 \ 8 \ 4 \ 5 \ 10 \ 11 \ 7 \ 9 \ 11$$

$$\text{valódi} \qquad \text{hamis} \qquad \text{illesztés} \qquad \text{találat} \qquad \text{tegiagagyobb helyi értékű} \qquad \text{legkisebb helyi értékű} \qquad \text{l$$

Rabin-Karp – a hasítófüggvény csúsztatása

Észrevétel

 h_q -nak az input minden indexén kezdődő kiszámítása költséges

Rabin-Karp – a hasítófüggvény csúsztatása

Észrevétel

 h_q -nak az input minden indexén kezdődő kiszámítása költséges

A hatékonyság záloga

Ahogy abc és bcd számpárral teljesül

$$bcd = 10 * (abc - 100 * a) + d$$

egyenlőség, hasonlóan igaz

$$h_q(bcd) = h_q(10 * (h_q(abc) - h_q(100) * a) + d)$$

összefüggés is.

Kis kitérő: Bloom filterek

- Probabilisztikus adatszerkezet a Keres műveletre nézve
- Implementációja: (egyenletesen szóró) h hasítófüggvény és egy (kezdetben csupa 0) bitvektor
 - x elem beszúrásakor a bitvektor h(x) indexét 1-re állítjuk
 - x elem keresésnél ha a bitvektor h(x) indexe 1, akkor azt mondjuk, hogy x-et tartalmazza a bloom filterünk
 - Hamis elutasítás soha nem teszünk, ugyanakkor hamis pozitív választ adhatunk
- Hatékonysága függ h hasítófüggvénytől, valamint az eltárolt elemek számától (ami kihat a bitvektor kitöltöttségére)
- Linkek: Bloom filter demo és Guava API

Bloom filterek tévesztési arányának elemzése

- Egy bloom filter olyan arányban ad egy elem tartalmazására nézve igenlő választ, mint amennyi bitje egyesre lett állítva a beszúrások hatására
 - Feltesszük, hogy az alkalmazott h hasítófüggvény jól szór, azaz m ekvivalenciaosztályba való sorolás esetén az objektumok közelítőleg $\frac{1}{m}$ részét sorolja az összes osztályba

Hány bitje lesz egy m hosszú bloom filternek 1-es n beszúrás után?

1 beszúrás során $\frac{1}{m}$ valószínűséggel töltünk föl egy bitet

1 beszúrás során $1 - \frac{1}{m}$ valószínűséggel *nem* töltünk föl egy bitet

n beszúrás során $\left(1-\frac{1}{m}\right)^n$ valószínűséggel nem töltünk föl egy bitet

Bloom filterek tévesztési arányának elemzése

- Egy bloom filter olyan arányban ad egy elem tartalmazására nézve igenlő választ, mint amennyi bitje egyesre lett állítva a beszúrások hatására
 - Feltesszük, hogy az alkalmazott h hasítófüggvény jól szór, azaz m ekvivalenciaosztályba való sorolás esetén az objektumok közelítőleg $\frac{1}{m}$ részét sorolja az összes osztályba

Hány bitje lesz egy m hosszú bloom filternek 1-es n beszúrás után?

1 beszúrás során $\frac{1}{m}$ valószínűséggel töltünk föl egy bitet 1 beszúrás során $1-\frac{1}{m}$ valószínűséggel nem töltünk föl egy bitet n beszúrás során $\left(1-\frac{1}{m}\right)^n$ valószínűséggel nem töltünk föl egy bitet

$$\left(1-\frac{1}{m}\right)^n = \left[\left(1-\frac{1}{m}\right)^m\right]^{\frac{n}{m}} \approx e^{-\frac{n}{m}} \text{ (nagy } m \text{ eset\'en)}$$

n beszúrást követően $1-e^{-\frac{n}{m}}$ valószínűséggel lesz a bloom filter valamely bitje 1-esre állítva

Mintaillesztés főbb megközelítései

Algoritmus	Előfeldolgozás	Illesztés ¹
Nyers erő	0	O(mn)
Rabin-Karp	$\Theta(m)$	O(mn)
Véges automata	$O(m \Sigma)$	$\Theta(n)$
Knuth-Morris-Prat	$\Theta(m)$	$\Theta(n)$

- Rabin-Karp a nyers erő módszerének heurisztikus kiterjesztéseként tekinthető
- KMP pedig a véges automatákkal való illesztés egy hatékonyabb verziója

¹legrosszabb eset

A moduláris hatványozás

Alapprobléma: Mi az $a^b \mod n$ kifejezés értéke?

Gyakorlati jelentőség: titkosító eljárások (pl. RSA) használata során szükségünk lehet ilyen számítások elvégzésére

Már viszonylag kis b-re is rengeteg bitműveletet kell elvégezzünk

A moduláris hatványozás

Alapprobléma: Mi az $a^b \mod n$ kifejezés értéke?

Gyakorlati jelentőség: titkosító eljárások (pl. RSA) használata során szükségünk lehet ilyen számítások elvégzésére

Már viszonylag kis b-re is rengeteg bitműveletet kell elvégezzünk

Példa – Mi lesz 7⁵⁶⁰ mod 561 értéke? Avagy

 $\begin{array}{l} 179846672920572906577258722224560336083856608137007342561\\ 612636144396089769552955665549135995604075608096691162101\\ 184113545972526638255004784055311390598542305958357097082\\ 391225061077433281620117130013826448606281708665937931659\\ 796736755253074977366471063146923373865223501532185753076\\ 292710887401801774392779475679510556311966981952826025487\\ 057204699261913973664257857993744045143447531121540574215\\ 969802961003872086163860991702035506591312847029674260362\\ 509156745965136001\ \mathrm{mod}\ 561=? \end{array}$

Moduláris hatványozás

```
MODULÁRIS-HATVÁNYOZÓ(a, b, n){
  B = [bk \dots b1 b0]
  for (i=k; k >=0; --k) {
     c = 2*c
    d = (d*d) \mod n
    if (B[i] == 1) {
      d = (d*a) \mod n
  return d
```

Megjegyzések

- b-nek k bites bináris alakja B
- c csak egy segédváltozó

Moduláris hatványozás

```
MODULÁRIS-HATVÁNYOZÓ(a, b, n){
  B = [bk \dots b1 b0]
  for (i=k; k >=0; --k) {
     c = 2*c
     = (d*d) \mod n
    if (B[i] == 1) {
      d = (d*a) \mod n
    }
  return d
```

Megjegyzések

- b-nek k bites bináris alakja B
- c csak egy segédváltozó

Kérdés

• Mi lesz d és c értéke a for ciklus első végrehajtása után?

Moduláris hatványozás

```
MODULÁRIS-HATVÁNYOZÓ(a. b. n){
  B = [bk \dots b1 b0]
  for (i=k; k >=0; --k) {
     c = 2*c
     = (d*d) \mod n
    if (B[i] == 1) {
      d = (d*a) \mod n
  return d
```

Megjegyzések

- b-nek k bites bináris alakja B
- c csak egy segédváltozó

Kérdés

• Mi lesz d és c értéke a for ciklus első végrehajtása után?

Műveletigény

Ha a, b és n k biten elfér, mindez O(k) aritmetikai műveletet és $O(k^3)$ bitműveletet jelent

A moduláris hatványozás működése

- Az algoritmus for ciklusában minden egyes iteráció megkezdése előtt a *c* és *d* változók értékeire teljesül, hogy:
 - $oldsymbol{0}$ c változó értéke megegyezik a $[b_k \dots b_{i+1}]$ bináris értékkel
- ullet A fenti ciklusinvariáns teljesül, megmarad és befejeződik ightarrow

Moduláris hatványozás példa

$7^{\overline{560}} \mod 561 = ?$ a = 7, b = 560, n = 561 (B = [1000110000]) b_i С d

