28. Симетрични оператори в крайномерни евклидови пространства. Основни свойства. Теорема за диагонализация.

Нека E е Евклидово пространство.

Деф: Симетричен оператор

Линейният оператор $\varphi: E \to E$ е **симетричен**, ако $(\varphi(x), y) = (x, \varphi(y))$, $\forall x, y \in E$

Деф: Симетрична матрица

Матрицата $A \in M_{n \times n}(F)$ се нарича **симетрична**, когато $A = A^t$, т.е. $a_{ij} = a_{ji}$ за $i \neq j$, i, j - произволни

Теорема:

Нека $\varphi: E \to E$ е линеен оператор.

 φ е симетричен оператор \Rightarrow спрямо ортонормиран базис φ има симетрична матрица Д-во:

Нека φ е симетричен оператор с матрица A спрямо ортонормиран базис $e_1, ..., e_n$. Имаме, че $(\varphi(a), b) = (a, \varphi(b))$, $\forall a, b \in E$. В частност е в сила и за базисните вектори:

Ако
$$\varphi(e_i) = a_{1i}e_1 + a_{2i}e_2 + \dots + a_{ii}e_i + \dots + a_{ni}e_n$$

$$\varphi(e_j) = a_{1j}e_1 + a_{2j}e_2 + \dots + a_{jj}e_j + \dots + a_{nj}e_n$$

$$\left(\varphi(e_i), e_j\right) = \left(a_{1i}e_1 + a_{2i}e_2 + \dots + a_{ii}e_i + \dots + a_{ni}e_n, e_j\right) = a_{1i}\underbrace{\left(e_1, e_j\right)}_{0} + \dots + a_{ji}\underbrace{\left(e_j, e_j\right)}_{1} + \dots + a_{ni}\underbrace{\left(e_n, e_j\right)}_{0} = a_{ji}$$

Аналогично $\left(\varphi\left(e_{j}\right),e_{i}\right)=a_{ij}$

$$\Rightarrow a_{ij} = (\varphi(e_i), e_i) = (e_j, \varphi(e_i)) = (\varphi(e_i), e_j) = a_{ji}$$

Получихме, че $a_{ji}=a_{ij}$ за $i,j\in\{1,...,n\}$ произволни, следователно A е симетрична.

Теорема:

Нека $A \in M_{n \times n}(\mathbb{R})$ е симетрична матрица с реални числа. Характеристичните корени на A са реални числа.

Д-во:

 $f_A(\lambda)=\det(A-\lambda E)=0$. Нека λ_0 е корен на $f_A(\lambda),\ \lambda_0\in\mathbb{C}$. $B=A-\lambda_0 E\in M_{n\times n}(\mathbb{C})$, хомогенната система с матрица $B=A-\lambda_0 E$ има ненулево решение $z=\left(z_1,\ldots,z_n\right)\in\mathbb{C}^n$. Следователно $\left(A-\lambda_0 E\right).z^t=0\Rightarrow Az^t=\lambda_0 z^t$

$$(*) \qquad \left(\overline{z_1}, \overline{z_2}, \dots, \overline{z_n}\right) A \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{pmatrix} = \lambda_0 \left(\overline{z_1}, \overline{z_2}, \dots, \overline{z_n}\right) \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{pmatrix} = \lambda_0 \left(\left|z_1\right|^2 + \dots + \left|z_n\right|^2\right)$$

Транспонираме и получаваме

$$(1) \qquad (z_1, \dots, z_n) A^{t} \begin{pmatrix} \overline{z_1} \\ \vdots \\ \overline{z_n} \end{pmatrix} = (z_1, \dots, z_n) A \begin{pmatrix} \overline{z_1} \\ \vdots \\ \overline{z_n} \end{pmatrix} = \underbrace{\lambda_0 \left(\left| z_1 \right|^2 + \dots + \left| z_n \right|^2 \right)}_{0}$$

Комплексно спрягаме (*)

(2)
$$\left(z_{1}, \dots, z_{n}\right) \overline{A} \begin{pmatrix} \overline{z_{1}} \\ \vdots \\ \overline{z_{n}} \end{pmatrix} = \left(z_{1}, \dots, z_{n}\right) A \begin{pmatrix} \overline{z_{1}} \\ \vdots \\ \overline{z_{n}} \end{pmatrix} = \overline{\lambda_{0}} \left(\left|z_{1}\right|^{2} + \dots + \left|z_{n}\right|^{2}\right)$$

$$(1) = (2) \Rightarrow \underbrace{\lambda_0 \left(\left| z_1 \right|^2 + \dots + \left| z_n \right|^2 \right)}_{\neq 0} = \underbrace{\overline{\lambda_0} \left(\left| z_1 \right|^2 + \dots + \left| z_n \right|^2 \right)}_{\neq 0} \Rightarrow \lambda_0 = \overline{\lambda_0} \Rightarrow \lambda_0 \in \mathbb{R}.$$

Твърдение:

Нека $\varphi: E \to E$ е симетричен оператор и g_1, g_2 са собствени вектори за φ с различни собствени стойности: $\varphi(g_1) = \lambda_1 g_1$ и $\varphi(g_2) = \lambda_2 g_2$ и $\lambda_1 \neq \lambda_2$. Тогава $g_1 \perp g_2$.

Д-во:

От
$$\varphi$$
 симетричен имаме, че $\left(\varphi(g_1),g_2\right)=\left(g_1,\varphi(g_2)\right)$ $\left(\varphi(g_1),g_2\right)=\left(\lambda_1g_1,g_2\right)=\lambda_1(g_1,g_2)$ $\Rightarrow \lambda_1(g_1,g_2)=\lambda_2(g_1,g_2)$ $\Rightarrow \lambda_1(g_1,g_2)=\lambda_2(g_1,g_2)$ $\Rightarrow (\lambda_1-\lambda_2)\big(g_1,g_2\big)=0$ /: $(\lambda_1-\lambda_2)$, знаем че $\lambda_1\neq\lambda_2$ по усл. $\Rightarrow (g_1,g_2)=0 \Rightarrow g_1\perp g_2$

Теорема: За канонизация

Нека E - Евклидово пространство, dim $E < \infty$ и $\varphi : E \to E$ е симетричен оператор. Съществува ортонормиран базис на пространството E, спрямо който матрицата на φ е диагонална. Т.е. Съществува ортонормиран базис от собствени вектори за φ .

Д-во:

Индукция по $n = \dim E$:

- \circ n=1: e_1 единичен вектор. $E=l(e_1)$ и e_1 собствен вектор \Rightarrow изпълнено е
- \circ Нека е изпълнено за dim $E \le n-1$
- \circ Нека E Евклидово пространство, $\dim E = n$, A матрица на φ спрямо ортонормиран базис \Rightarrow A симетрична \Rightarrow $\lambda_1 \in \mathbb{R}$ е характеристичен корен \Rightarrow λ_1 собствена стойност \Rightarrow $\exists g_1 \neq 0$: $\varphi(g_1) = \lambda_1 g_1$

Нека
$$U=\left(l(g_1)\right)^{\perp}$$
, $l(g_1)$ е φ -инвариантно $\Rightarrow U$ също е φ -инвариантно $\dim U=n-1$, $\varphi_{iu}\colon U\to U$ симетричен

$$\Rightarrow$$
 по индукция за $U \Rightarrow \exists$ ортонормиран базис $e_2, ..., e_n$ на U .

$$\phi(e_i) = \lambda_i e_i, \qquad l_i \perp g_i, \qquad i = 2, ..., n$$
 $\Rightarrow e_1 = \frac{1}{|g_1|} g_1, \quad \phi(g_1) = \lambda_1 g_1 \text{ и } e_1, ..., e_n \text{ е ортонормиран базис на } E.$

$$D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_n \end{pmatrix}$$