PRIMER ENCUENTRO REGIONAL DE LA UMA SALTA, 22-24 DE MAYO, 2017

Describir, rotular y clasificar

Paulo Tirao

FAMAF - Univ Nac de Córdoba / CIEM - CONICET

- 1. La tabla periódica de los elementos
- 2. Algunos objetos matemáticos
 - a. Círculos
 - b. Triángulos
 - c. Transformaciones rígidas
 - d. Transformaciones lineales
- 3. El atlas de los grupos finitos simples

1. LA TABLA PERIÓDICA DE LOS ELEMENTOS

Row	Group I — R ₂ O	Group II RO	Group III R ₂ O ₃	Group IV RH ₄ RO ₂	Group V RH ₃ R ₂ O ₅	Group VI RH ₂ RO ₃	Group VII RH R ₂ O ₇	Group VIII RO4
1	H = 1				and the second	g days in	4315	
2	Li = 7	Be = 9.4	B=11	C = 12	N = 14	O = 16	F = 19	
3	Na = 23	Mg = 24	A1 = 27.3	Si = 28	P = 31	S = 32	C1 = 35.5	
4	K = 39	Ca = 40	_ = 44	Ti = 48	V = 51	Cr = 52	Mn = 55	Fe = 56, Co = 59, Ni = 59, Cu = 63
5	(Cu = 63)	Zn = 65	-= 68	-= 72	As = 75	Se = 78	Br = 80	
6	Rb = 85	Sr = 87	?Yt = 88	Zr = 90	Nb = 94	Mo = 96	-= 100	Ru = 104, Rh = 104, Pd = 106, Ag = 108
7	(Ag = 108)	Cd = 112	In = 113	Sn = 118	Sb = 122	Te = 125	I = 127	
8	Cs = 133	Ba = 137	?Di = 138	?Ce = 140	30.000000000000000000000000000000000000		and the state of	
9	Series Side of		and the said					
10			?Er = 178	?La = 180	Ta = 182	W = 184		Os = 195, Ir = 197, Pt = 198, Au = 199
11	(Au = 199)	Hg = 200	T1 = 204	Pb = 207	Bi = 208			
12	SECRETARION	a Parkgrands		Th = 231	Nursian La	U = 240	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	THE RESERVE AND SERVE

NOTAS SOBRE LA TABLA

- Tiene períodos y grupos
- No tiene huecos
- Tiene mucha <u>información adicional</u> (configuración de electrones, radio atómico, energía de ionización, electronegatividad, afinidad electrónica, carácter metálico, ...)
- Los elementos 1 al 94 existen naturalmente
- Los elementos 95 al 118 sólo en laboratorio (95 al 100 existieron)

- Hay elementos sin propiedades químicas conocidas: 108 (hassio), 112 (copérnico), 114 (flerovio)
- ¿Existe un último elemento? ¿120, 128, 137, 155?

CONSTRUCCIÓN DE LA TABLA

- (9000 aC) Cobre muestra más antigua 6000 aC Oriente Medio
- (7000 aC 5000 aC) Oro, Plomo, Plata, Hierro: Oriente Asia Egipto
- (4000 aC 1000 aC) Carbono Estaño Azufre Mercurio Zinc Arsénico Antimonio
- (1669) Henning Brand descubre el fósforo
- (1730 1787) Platino Níquel Hidrógeno Oxígeno Nitrógeno Cloro ...
- Antoine Lavoisier (1743 1794) en 1789 presenta la primera lista de 23 "elementos" y agrupa gases, metales, no-metales y tierras
- (1789 1869) Uranio Titanio Potasio Sodio Calcio ...
- John Dalton (1766 1844) peso atómico y propiedades químicas
- Johann Wolfgang Döbereiner (1780 1894) tríadas (li-3, na-11, k-19)
- (1869) <u>Dmitri Mendeléyev</u> presenta la primera tabla periódica con 63 elementos, con huecos e ignorando peso atómico
- Henry Moseley (1887 1915) en 1913 calcula número atómico
- ...
- (1944) 95-Americio (Proyecto Manhattan) ... 100-Fermio ...
- (2002 2010) 118-Oganesón 113-Nihonio 115-Moscovio 117-Teneso

2. ALGUNOS OBJETOS MATEMÁTICOS

Círculos

• **DESCRIPCIÓN** Soluciones de (x-a)²+(y-b)²=r>0

• RÓTULOS Tres de sus puntos

• **CLASIFICACIÓN** Centro y radio = R^2 x R>0

Círculos salvo congruencia

• DESCRIPCIÓN Clases de congruencia de círculos

• RÓTULOS Radio

• CLASIFICACIÓN R>0

Círculos salvo semejanza

• **DESCRIPCIÓN** Clases de semejanza de círculos

RÓTULOS
 No hace falta

• CLASIFICACIÓN {~}

Triángulos

DESCRIPCIÓN Conjunto de tres segmentos que se tocan en sus extremos

RÓTULOS
 Sus tres vértices

CLASIFICACIÓN Tres puntos no alineados

Triángulos salvo congruencia

• **DESCRIPCIÓN** Clases de congruencia de triángulos

RÓTULOS Sus tres lados

• CLASIFICACIÓN Tres números a, b, c >0 tq a+b>c, a+c>b, b+c>a

Triángulos salvo semejanza

• **DESCRIPCIÓN** Clases de semejanza de triángulos

RÓTULOS
 Sus tres (dos) ángulos

• CLASIFICACIÓN Tres números a, b, c tq a+b+c=Pi

TRANSFORMACIONES RÍGIDAS (el grupo de)

DESCRIPCIÓN: Transformaciones biyectivas del plano que preservan distancia

EJEMPLOS:

- las traslaciones
- las reflexiones
- la simetría central
- las rotaciones
- ...

RÓTULOS:

- ¿Tiene punto fijos?
- ¿Preserva la orientación del plano?

CLASIFICACIÓN:

Pto fijo Preserva	SI	NO
SI	ROTACIÓN	TRASLACIÓN
NO	REFLEXIÓN	REFLEXIÓN DESLIZANTE

LA ESTRUCTURA DE GRUPO

х	ROT	TRAS	REF	RDES
ROT	ROT*	ROT	RDES*	RDES*
TRAS	ROT	TRAS	RDES*	RDES*
REF	RDES*	RDES*	ROT*	ROT*
RDES	RDES*	RDES*	ROT*	ROT*

COMO GRUPO CONOCIDO

• PARTE DE TRASLACIÓN Y PARTE DE ROTACIÓN: $T = L_v \circ R$

• COMO CONJUNTO: R² x O(2)

• **COMO GRUPO**: R² <x O(2)

^{*} genéricamente

TRANSFORMACIONES LINEALES

Datos: $T: V \rightarrow V$

B base de V

CONSIDERAMOS: A=[T]

• si B´ es otra base A y A´ son distintas

• A'=P-1 A P

CLASIFICACIÓN: Clases de conjugación de matrices

INVARIANTES:

- determinante
- traza
- lista de autovalores

CLASIFICACIÓN: Forma de Jordan

lista de autovalores + una partición p/c uno

EJEMPLO

Autovalores: 2, -1, 7 Multiplicidades: 5, 3, 8

2	1														
	2	1													
		2	0												
			2	1											
				2											
					-1	0									
						-1	0								
							-1								
								7	1						
									7	1					
										7	1				
											7	0			
												7	1		
													7	1	
														7	1
															7

3. EL ATLAS DE LOS GRUPOS FINITOS SIMPLES

Autores: John Horton Conway, Robert Turner Curtis, Simon Phillips Norton, Richard Alan Parker y Robert Arnott Wilson (asistencia computacional de J. G. Thackray)

Publicado: Diciembre de 1985 por Oxford University Press

Reimpreso con correcciones en 2003

EL TEOREMA DE CLASIFICACIÓN DE LOS GRUPOS FINITOS SIMPLES

PRÓLOGO

- La clasificación se inició en 1830 con Galois
- Se terminó en 2004 con los 2 trabajos de Aschbacher y Smith:
 - "The classification of quasithin groups I. Structure of strongly quasithin K-groups"
 - o "The classification of quasithin groups II. Main theorems: the classification of simple QTKE-groups"
- La prueba está escrita por unos 100 autores, en unos 500 trabajos, que suman más de 10.000 páginas
- No hay un persona que pueda reproducir toda la clasificación
- Los grupos finitos simples se agrupan en 3 grandes clases:
 - Cíclicos (abelianos) y alternantes (no abelianos)
 - De tipo Lie (clásicos y excepcionales)
 - Esporádicos
- Los grupos de las 2 primeras clases existían en la naturaleza
- Los de la tercera clase, no

BREVE HISTORIA DE LA CLASIFICACIÓN

- 1830 Évariste Galois (1811-1832)
 - o entendió cuándo una ecuación polinomial tiene solución por radicales:
 - cuando la serie de descomposición de su grupo de Galois tiene factores cíclicos,
 - es decir, cuando es soluble
 - o se dió cuenta de la importancia de clasificar los grupos finitos simples
 - sabía que los alternantes A, con n>=5, son simples
 - o construyó PSL₂(p), para p>=5
- 1870 Camille Jordan (1838-1922)
 - "Traité des substitutions"
 - construyó PSL_n(p)
- 1872 <u>Peter Ludwig Mejdell Sylow</u> (1831-1918)
 - Tres teoremas de Sylow
 - o si p divide a |G|, entonces hay un elemento de g de orden p
- 1861 <u>Émile Léonard Mathieu</u> (1835-1890)
 - o construye los grupos M₁₁ y M₁₂
 - construye los grupos M₂₂, M₂₃ y M₂₄
 - o todos como automorfismos de códigos

- 1890 Wilhelm Karl Joseph Killing (1847-1923)
 - o clasificó las álgebras de Lie simples complejas
- 1894 Élie Joseph Cartan (1869-1951)
 - o unifica la clasificación de Killing y les pone nombres: A_n, B_n, C_n, D_n; E₆, E₇, E₈, F₄, G₂
- ~1900 <u>Leonard Eugene Dickson</u> (1874-1954)
 - o construyó grupos simples de tipo Lie: An, Bn, Cn, Dn, G2 y E6 (no de tipo F₄, E₇ y E₈)
- 1955 Claude Chevalley (1909-1984)
 - o construcción unificada para todos los tipos de Lie
- ~1955 Steinberg, Tits, Hertzig, Suzuki y Ree
 - agregan algunos por "twist"
- ~1960 Se preguntan: la clasificación está lista?
- 1963 Walter Feit y John Griggs Thompson
 - o Teorema de Feit-Thompson: si el orden de un G es impar, entonces G es soluble
 - o Corolario: si G es simple, tiene orden par y tiene un elemento de orden 2 (involución)
 - Señala un camino para decidir sobre la clasificación pues: Si |C_G(g)|=c, entonces |G|<= (c!)²
- 1964 **Zvonimir Janko** avanza y observa que puede ser más difícil de lo esperado
- ~1970 Se construyen 20 esporádicos más
- 1980 Hay una impresión generalizada de que la clasificación está terminada!

EL TEOREMA DE CLASIFICACIÓN

GRUPO	SÍMBOLO	ORDEN
Cíclico	Z _p	p
Alternante	A _n , n>4	n! / 2

DE TIPO LIE

GRUPO	SÍMBOLO	GRUPO	SÍMBOLO
Chevalley clásicos	A _n (q)	Steinberg	$^{2}A_{n}(q^{2})$
	B _n (q)		$^{2}D_{n}(q^{2})$
	C _n (q)		² E ₆ (q ²)
	D _n (q)		³ D₄(q ³)
Chevalley excepcionales	E ₆ (q)	Suzuki	² B ₂ (2 ²ⁿ⁺¹)
	E ₇ (q)	Ree - Tits	² F ₄ (2 ²ⁿ⁺¹)
	E ₈ (q)		² F ₄ (2) ⁻
	F₄(q)		² G ₂ (3 ²ⁿ⁺¹)
	G ₂ (q)		

26 ESPORÁDICOS

GRUPOS	SÍMBOLO	DESCUBRIDOR	ORDEN	CONJ	SUB MAX
Mathieu	M ₁₁	Mathieu	7.920	10	5
	M ₁₂	Mathieu	95.040	15	11
	M ₂₂	Mathieu	443.520	12	8
	M ₂₃	Mathieu	10.200.960	17	7
	M ₂₄	Mathieu	244.823.040	26	9
Leech lattice	Co ₁	Conway	4.157.776.806.543.360.000	101	22
	Co ₂	Conway	42.305.421.312.000	60	11
	Co ₃	Conway	495.766.656.000	42	14
	McL	McLaughlin	898.128.000	24	12
	HS	Higman-Sims	44.352.000	24	12
	Suz	Suzuki	448.345.497.600	43	17
	J ₂	Janko	604.800	21	9

GRUPOS	SÍMBOLO	DESCUBRIDOR	ORDEN	CONJ	SUB MAX
Fisher	Fi ₂₂	Fischer	64.561.751.654.400	65	14
	Fi ₂₃	Fischer	4.089.470.473.293.004.800	98	14
	Fi′ ₂₄	Fischer	1.255.205.709.190.661.721.292.800	108	25
Monstrous	He	Held	4.030.387.200	33	11
	HN	Harada-Norton	273.030.912.000.000	54	14
	Th	Thompson	90.745.943.887.872.000	48	16
	В	Fisher-Griess	4.154.781.481.226.426.191.177.580.544.000.000	184	30
	М	Fisher-Griess	808.017.424.794.512.875.886.459.904.961.710.757.005.754.368.000.000.000	194	43*
Pariahs	J ₁	Janko	175.560	15	7
	J_3	Janko	50.232.960	21	9
	J_4	Janko	86.775.571.046.077.562.880	62	13
	O'N	O'Nan	460.815.505.920	30	13
	Ly	Lyons	51.765.179.004.000.000	53	9
	Ru	Rudvalis	145.926.144.000	36	15

NOTAS SOBRE LA CLASIFICACIÓN

- La clasificación impulsó y permitió resolver distintos problemas de teoría de grupos
- Hay una confianza generalizada sobre su certeza
- Daniel Gorenstein (1923-1992): en 1972 presentó un programa para terminar la clasificación
- Proyecto de unificación de la prueba: Gorenstein, Lyon y Solomon
 - Se calculan 12 volúmenes de unas 4.000 páginas en total
 - Ya se han publicado 6