Contents

1	RF	ESULTS 1
	1.1	1 (3
		1.1.1 Keys 1 1.1.2 Fig and table 2
	1.2	e e e e e e e e e e e e e e e e e e e
	1.3	Ī
	1.4	Ī
2	Re	sult 7
-	2.1	~ ~ ~ ~
	2.2	2. asdf
T,	ist	of Tables
	150	
	1.1	$\mathcal{S}_{\mathrm{eff}}$
	1.2	1 3
	1.3	• •
	1.5	1 0
	2.1	
	2.2	Validation and test loss comparison from 1/16 to 1/22
L	ist	of Figures
	2.1	tesst
	2.1	tesst
1	I	RESULTS
1	1	WESULIS
1.	1	Exp-1 (NH ₃ N baseline model)
1.1	1.1	Keys
		The benefit of data pre-processing by comparing validation and test loss.
		The selection of best model by comparing validation and test loss.
		Test data could be in poor quality.
		Show another test data results and compare the test and valid loss.

1.1.2 Fig and table

• Result 1

- LSTM and GRU have lower test loss than RNN, DNN, and RF.
- $\,$ The lowest test loss of $\mathrm{NH_{3}N}$ forecasting approach has higher validation loss than several approaches.

Table 1.1: Evaluation of each baseline model forecasting approach.

Rank	Model-Dataset	Test loss*	valid loss
1	GRU-sg7	0.0383	1.2508
2	GRU-sg5	0.0385	1.2644
3	LSTM-ew3	0.0388	1.0796
4	LSTM-sg7	0.0388	1.1804
5	LSTM-sg5	0.0388	1.2346
6	GRU-ew2	0.0389	1.1891
7	GRU-ew4	0.0391	1.2390
8	LSTM-ew2	0.0392	1.0969
9	GRU-ew3	0.0392	1.2199
10	LSTM-ew4	0.0395	1.1219
11	GRU-sg9	0.0396	1.3097
12	LSTM-or	0.0398	1.2612
13	LSTM-obs	0.0405	1.2366
14	GRU-or	0.0405	1.3993
15	LSTM-sg9	0.0410	1.3076
16	GRU-obs	0.0414	1.3638
17	RNN-sg5	0.0415	1.5088
18	RNN-ew2	0.0421	1.5425

Rank	Model-Dataset	Test loss*	valid loss
19	RNN-sg7	0.0423	1.6267
20	RNN-ew4	0.0432	1.5992

• Result 2

Test dataset from 1/16 to 1/22 performed differently on the same forecasting approach compared to validation loss.

Table 1.2: Comparison of $\mathrm{NH_{3}N}$ val/test loss from 1/16 to 1/22.

GRU	Test loss*	Val loss	LSTM	Test loss*	Val loss
sg7	0.0383	1.2508	ew3	0.0388	1.0796 (1)
sg5	0.0385	1.2644	sg7	0.0388	1.1804
ew2	0.0389	1.1891 (1)	sg5	0.0388	1.2346
ew4	0.0391	1.2390 (3)	ew2	0.0392	1.0969(2)
ew3	0.0392	1.2199 (2)	ew4	0.0395	1.1219 (3)
sg9	0.0396	1.3097	or	0.0398	1.2612
or	0.0405	1.3993	obs	0.0405	1.2366
obs	0.0414	1.3638	sg9	0.0410	1.3076

• Result 3

- The influence of each pre-processing method on model training is different.

Table 1.3: Evaluation of pre-processing methods on LSTM and GRU models from 1/16 to 1/22.

Rank	GRU	LSTM
1	sg7	ew3
2	sg5	sg7
3	ew2	sg5
4	ew4	ew2
5	ew3	ew4
6	sg9	or
7	or	obs
8	obs	sg9

• Result 4

Test dataset from 10/10 to 10/16 performed similar on the same forecasting approach compared to validation loss.

Table 1.4: Comparison of NH₃N val/test loss from 10/10 to 10/16.

GRU	Test loss*	Val loss	LSTM	Test loss*	Val loss
ew3	0.0167	1.2199 (2)	ew3	0.0158	1.0796 (1)
ew4	0.0169	1.239 (3)	ew2	0.0161	1.0969(2)
ew2	0.017	1.1891 (1)	ew4	0.0163	1.1219 (3)
sg9	0.0174	1.3097	sg5	0.0166	1.2346
sg5	0.0178	1.2644	obs	0.0175	1.2366
sg7	0.018	1.2508	or	0.0177	1.2612
or	0.0187	1.3993	sg7	0.018	1.1804
obs	0.0189	1.3638	sg9	0.0188	1.3076

• Result 5

- EWMA pre-processing method can improve model forecasting performance in general.

Table 1.5: Evaluation of pre-processing methods on LSTM and GRU from 10/10 to 10/16.

Rank	GRU	LSTM
1	ew3	ew3
2	ew4	ew2
3	ew2	ew4
4	sg9	sg5
5	sg5	obs

Rank	GRU	LSTM
6	sg7	or
7	or	sg7
8	obs	sg9

- 1.2 Exp-2
- 1.3 Exp-5
- 1.4 Exp-6

2 Result

2.1 sdfas

Table 2.1: Validation and test loss comparison from 1/16 to 1/22.

Model-dataset	Validation Loss
LSTM-ew3	1.0796
LSTM-ew2	1.0969
LSTM-ew4	1.1219

2.2 asdf

Table 2.2: Validation and test loss comparison from 1/16 to 1/22.

Model-dataset	Validation Loss	Model-dataset	Test loss
LSTM-ew3	1.0796	GRU-sg7	0.0383
LSTM-ew2	1.0969	GRU-sg5	0.0385

Model-dataset	Validation Loss	Model-dataset	Test loss
LSTM-ew4	1.1219	LSTM-ew3	0.0388

Thanks, it works. But I have another problem now. My images are a little large, and when put in the same row they cannot fit into one slide. Is it possible to control the size of the image? Thanks, it works. But I have another problem now. My images are a little large, and when put in the same row they cannot fit into one slide. Is it possible to control the size of the image? Thanks, it works. But I have another problem now. My images are a little large, and when put in the same row they cannot fit into one slide. Is it possible to control the size of the image? Thanks, it works. But I have another problem now. My images are a little large, and when put in the same row they cannot fit into one slide. Is it possible to control the size of the image?

Figure 2.1: tesst

Thanks, it works. But I have another problem now. My images are a little large, and when put in the same row they cannot fit into one slide. Is it possible to control the size of the image? Thanks, it works. But I have another problem now. My images are a little large, and when put in the same row they cannot fit into one slide. Is it possible to control the size of the image? Thanks, it works. But I have another problem now. My images are a little large, and when put in the same row they cannot fit into one slide. Is it possible to control the size of the image?