1 HW1: due 9/9/2016

Problem 1.1. Suppose that $\Omega \in \mathcal{F}$ and that $A, B \in \mathcal{F}$ implies $AB^c \in \mathcal{F}$. Show that \mathcal{F} is a field.

Problem 1.2. Let \mathcal{B}_0 be the collection of all finite and disjoint unions of intervals in (0,1], as defined in class. Show that \mathcal{B}_0 is not a σ -field.

Problem 1.3. Prove by mathematical induction the inclusion-exclusion formula. That is, suppose \mathcal{F} is a field, A_1, \ldots, A_n are members of \mathcal{F} , and P is a probability measure on \mathcal{F} . Show that

$$P(A_1 \cup \dots \cup A_n) = \sum_{i=1}^n A_i - \sum_{i < j} P(A_i A_j) + \dots + (-1)^{n+1} P(A_1 \dots A_n).$$

Problem 1.4. Let A_1, A_2, \ldots be a sequence of sets. Let $B_n = \bigcup_{i=1}^n A_i$. Show that $\bigcup_{n=1}^\infty B_n = \bigcup_{n=1}^\infty A_n$.

Problem 1.5. Let A_1, A_2, \ldots be a sequence of sets. Let

$$B_1 = A_1$$

$$B_2 = A_2 A_1^c$$

$$\vdots$$

$$B_n = A_n A_1^c \cdots A_{n-1}^c$$

$$\vdots$$

Prove the following statements:

- 1. $B_i B_i = \emptyset$ for any $i \neq j$;
- 2. $\bigcup_{i=1}^{n} A_i = \bigcup_{i=1}^{n} B_i$ for any n = 1, 2, ...;
- 3. $\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} B_i$.

Problem 1.6. Let Ω be a nonempty set and $\mathcal{A} \subseteq 2^{\Omega}$. Let

$$\mathbb{F}(\mathcal{A}) = \{ \mathcal{B} \subseteq 2^{\Omega} : \mathcal{A} \subseteq \mathcal{B}, \mathcal{B} \text{ is a field} \}.$$

Prove the following statements:

- 1. $\mathbb{F}(\mathcal{A})$ is nonempty;
- 2. $\phi(\mathcal{A}) = \bigcap \{\mathcal{B} : \mathcal{B} \in \mathbb{F}(\mathcal{A})\}\$ is a field;
- 3. $\phi(\mathcal{A}) \subseteq \sigma(\mathcal{A})$;
- 4. $\sigma(\phi(\mathcal{A})) = \sigma(\mathcal{A})$.

Problem 1.7. Suppose that P is a probability measure on a field \mathcal{F} , that A_1, A_2, \ldots and $\bigcup_{n=1}^{\infty} A_n$ lie in \mathcal{F} , and that A_n are nearly disjoint in the sense that $P(A_i A_j) = 0$ for $i \neq j$. Show that $P(A) = \sum_{n=1}^{\infty} P(A_n)$.

Problem 1.8. Let P be a probability measure on a field \mathcal{F}_0 and for every subset A of Ω , let $P^*(A)$ be the outer measure defined in class. Let \tilde{P} be the extension of P to $\sigma(\mathcal{F}_0)$. Show that

$$P^*(A) = \inf{\{\tilde{P}(B) : A \subseteq B, B \in \mathcal{F}\}}.$$

2 HW2: due 9/23/2016

Problem 2.1. Let Ω be the unit square $(0,1] \times (0,1]$, and let

$$\mathcal{F} = \{ A \times (0,1] : A \in \mathcal{B} \},$$

where \mathcal{B} is the Borel σ -field on (0,1]. For any member $A \times (0,1]$ of \mathcal{F} , define

$$P(A \times (0,1]) = \lambda(A),$$

where λ is the Lebesgue measure on \mathcal{B} . Show that \mathcal{F} is a σ -field and P is a probability on \mathcal{F} .

Problem 2.2. Prove the following statements.

- 1. A λ -system satisfies the following conditions
 - (λ_4) $A, B \in \mathcal{L}$ and $A \cap B = \emptyset$ imply $A \cup B \in \mathcal{L}$;
 - (λ_5) $A_1, A_2, \ldots \in \mathcal{L}$ and $A_n \uparrow A$ imply $A \in \mathcal{L}$;
 - (λ_6) $A_1, A_2, \ldots \in \mathcal{L}$ and $A_n \downarrow A$ imply $A \in \mathcal{L}$.
- 2. \mathcal{L} is a λ -system if and only if it satisfies (λ_1) , (λ_2) and (λ_5) . Recall that (λ_2) means

$$A, B \in \mathcal{L}$$
 and $A \subseteq B$ imply $BA^c \in \mathcal{L}$.

Problem 2.3. Let $\{A_n : n = 1, 2, ...\}$ be a sequence of sets. Prove that

$$I_{\limsup_n A_n} = \limsup_n (I_{A_n}), \quad I_{\liminf_n A_n} = \liminf_n (I_{A_n}).$$

(Recall that, for a sequence of numbers a_n , $\limsup_n a_n$ is defined to be $\lim_n \sup_{k \ge n} a_k$; $\liminf_n a_n$ is defined to be $\lim_n \inf_{k > n} a_k$).

Problem 2.4. Let $\{A_n : n = 1, 2, \ldots\}$ be a sequence of subsets of Ω . Let

$$B_n = \bigcap_{k=n}^{\infty} A_k, \quad C_n = \bigcup_{k=n}^{\infty} A_k.$$

Show that

$$B_n \uparrow \liminf_n A_n$$
, $C_n \downarrow \limsup_n A_n$.

Problem 2.5. (a) Prove that

$$(\limsup_{n} A_{n}) \cap (\limsup_{n} B_{n}) \supseteq \limsup_{n} (A_{n} \cap B_{n}),$$

$$(\limsup_{n} A_{n}) \cup (\limsup_{n} B_{n}) = \limsup_{n} (A_{n} \cup B_{n}),$$

$$(\limsup_{n} A_{n}) \cap (\liminf_{n} B_{n}) = \liminf_{n} (A_{n} \cap B_{n}),$$

$$(\liminf_{n} A_{n}) \cup (\liminf_{n} B_{n}) \subseteq \liminf_{n} (A_{n} \cup A_{n}).$$

(b) Show that

$$\limsup_n A_n^c = (\liminf_n A_n)^c,$$

$$\lim_n \inf A_n^c = (\limsup_n A_n)^c,$$

$$\limsup_n A_n \setminus \liminf_n A_n = \limsup_n (A_n \cap A_{n+1}^c) = \limsup_n (A_n^c \cap A_{n+1}).$$

(c) Show that $A_n \to A$ and B_n together imply that $A_n \cup B_n \to A \cup B$ and $A_n \cap B_n \to A \cap B$.

Problem 2.6. For events A_1, \ldots, A_n , consider the 2^n equations

$$P(B_1 \cdots B_n) = P(B_1) \cdots P(B_n),$$

where $B_i = A_i$ or $B_i = A_i^c$ for each i. Show that A_1, \ldots, A_n are independent if all these equations hold.

Problem 2.7. Suppose A_1, \ldots, A_n are π -systems and $A_1 \perp \cdots \perp A_n$. Let $B_i = A_i \cup \{\Omega\}$. Show that B_1, \ldots, B_n are π -systems and $B_1 \perp \cdots \perp B_n$.

Problem 2.8. Show that $1 - x \le e^{-x}$ for all $x \in \mathbb{R}$.

Problem 2.9. Suppose (Ω, \mathcal{F}, P) is a probability space.

1. Show that, for any sequence of independent \mathcal{F} -sets, say $\{B_n : n = 1, 2, \ldots\}$, we have

$$P(\cap_{n=1}^{\infty} B_n) = \prod_{n=1}^{\infty} P(B_n).$$

2. Use the above relation and the inequality in Problem 2.8 to prove the second Borel-Cantelli Lemma.

Problem 2.10. Show that a λ -system can be equivalently defined by these three conditions:

- 1. $\Omega \in \mathcal{L}$;
- 2. If $A \in \mathcal{L}$, $B \in \mathcal{L}$, and $A \subseteq B$, then $BA^c \in \mathcal{L}$;
- 3. If A_1, A_2, \ldots are a disjoint sequence of members of \mathcal{L} , then $\bigcup_{n=1}^{\infty} A_n \in \mathcal{L}$.

3 HW3: due October 7, 2016

Problem 3.1. Show that, in the definition of measure on a field, if condition (i) and (iii) hold, and if $\mu(A) < \infty$ for some $A \in \mathcal{F}$, then condition (ii) holds.

Problem 3.2. On a σ -field of all subsets of $\Omega = \{1, 2, \ldots\}$, define the set function

$$\mu(A) = \begin{cases} \sum_{k \in A} 2^{-k} & \text{if } A \text{ is finite} \\ \infty & \text{if } A \text{ is infinite} \end{cases}$$

Is μ finitely additive? Is μ countably additive?

Problem 3.3.

- 1. In connection with Theorem 10.2 (ii), show that if $A_n \downarrow A$ and $\mu(A_k) < \infty$ for some k, then $\mu(A_n) \downarrow \mu(A)$.
- 2. Find an example in which $A_n \downarrow A$, $\mu(A_n) = \infty$ for all n, and $A = \emptyset$.

Problem 3.4. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. The following is a generalization of Theorem 4.1, part (i).

1. Show that

$$\mu\left(\liminf_{n} A_{n}\right) \leq \liminf_{n} \mu(A_{n})$$

2. If $\mu(\bigcup_{k\geq n} A_k) < \infty$ for some n then

$$\limsup_{n} \mu(A_n) \le \mu\left(\limsup_{n} A_n\right).$$

Show that this equality can fail if $\mu(\bigcup_{k\geq n} A_k) = \infty$ for all n.

The next three problems give an alternative approach to extend a measure from a field to the σ -field generated by it.

Problem 3.5. Extend Theorem 3.1 to finite measure. That is, a finite measure on a field has a unique extension to the generated σ -field. Hint: a finite measure can always be re-scaled to a probability measure.

Problem 3.6. Suppose Ω is a nonempty set, \mathcal{F}_0 is a field on Ω , and μ is a measure on \mathcal{F}_0 . Let A be a nonempty set in \mathcal{F}_0 and $\mu(A) < \infty$. Let μ_A be μ restricted on $\mathcal{F}_0 \cap A$; that is, μ_A is the set function

$$\mathcal{F}_0 \cap A \to [0, \infty], \quad BA \mapsto \mu(BA).$$

- 1. Show that $\mathcal{F}_0 \cap A$ is a field;
- 2. μ_A is a measure on $\mathcal{F}_0 \cap A$;
- 3. μ_A has an extension $\hat{\mu}_A$ on $\mathcal{F} \cap A$, where $\mathcal{F} = \sigma(\mathcal{F}_0)$, and $\hat{\mu}_A$ is also a finite measure.

Problem 3.7. Define a set function $\hat{\mu}$ on \mathcal{F} as follows. For any $E \in \mathcal{F}$, if there exists a sequence of disjoint \mathcal{F}_0 -sets A_n such that $E \subseteq \bigcup_n A_n$ and $\mu(A_n) < \infty$, then let

$$\hat{\mu}(E) = \sum_{n} \hat{\mu}_{A_n}(E \cap A_n);$$

if there exists no such sequence then let $\hat{\mu}(E) = \infty$.

- 1. Show that this definition doesn't depend on the choice of sequence $\{A_n\}$.
- 2. Show that $\hat{\mu}$ is a measure on \mathcal{F} , and agrees with μ on \mathcal{F}_0 .

4 HW4: due October 28, 2016

This week's homework problems are taken from Billingsley's book *Probability and Measure*. You can either use the second edition or the Anniversary edition (the problem numbers match but the page numbers don't match; so I only give problem numbers).

11.2 (a), 12.10, 12.11, 12.12, 13.2(a,c), 13.3, 13.5, 13.8, I may add more problems later on.

5 HW5: due November 18

In the following problems concern an alternative definition of integral with respect to a measure. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Let $f: \Omega \to \mathbb{R}$ be a function, which may not be measurable. Let \mathcal{P} be the collection of all finite \mathcal{F} -partition of Ω . Let

$$\int_* f d\mu = \sup_{\{A_i\} \in \mathcal{P}} \sum_i \left[\inf_{A_i} f(\omega) \right] \mu(A_i), \quad \int^* f d\mu = \inf_{\{A_i\} \in \mathcal{P}} \sum_i \left[\sup_{A_i} f(\omega) \right] \mu(A_i).$$

Problem 5.1. Suppose that f is measurable and nonnegative. Show that $\int^* f d\mu = \infty$ if $\mu(\{\omega : f(\omega) > 0\}) = \infty$.

Problem 5.2. Suppose that f is measurable and nonnegative. Show that $\int^* f d\mu = \infty$ if, for any a > 0, $\mu(\{\omega : f(\omega) > a\}) > 0$.

Problem 5.3. Let $\{A_i\}$ and $\{B_j\}$ be members of \mathcal{P} . We say that $\{B_j\}$ refines $\{A_i\}$ if for every $B_j \in \{B_j\}$ there exists an $A_i \in \{A_i\}$ such that $B_j \subseteq A_i$.

- 1. Show that for any $A_i \in \{A_i\}$, there is a $B_j \in \{B_j\}$ such that $A_i \supseteq B_j$;
- 2. Show that for each i,

$$A_i = \bigcup_{\{j: B_j \subseteq A_i\}} B_j.$$

Problem 5.4. Show that, if $\{B_i\}$ refines $\{A_i\}$, then

$$\sum_{i} \left[\inf_{\omega \in A_{i}} f(\omega) \right] \mu(A_{i}) \leq \sum_{i} \left[\inf_{\omega \in B_{j}} f(\omega) \right] \mu(B_{j})$$

Problem 5.5. Show that, if $\{B_i\}$ refines $\{A_i\}$, then

$$\sum_{i} \left[\sup_{\omega \in A_{i}} f(\omega) \right] \mu(A_{i}) \ge \sum_{j} \left[\sup_{\omega \in B_{j}} f(\omega) \right] \mu(B_{j})$$

Problem 5.6. Show that, if $\{B_i\}$ refines $\{A_i\}$, then

$$\int f d\mu \le \int^* f d\mu.$$

Note that, in the above three problems, f is not required to be measurable.

Problem 5.7. Now suppose $\mu(\Omega) < \infty$, f is bounded; that is, there is an $M < \infty$ such that $|f(\omega)| \leq M$ for all $\omega \in \Omega$, and f is measurable \mathcal{F}/\mathcal{R} . Consider the partition

$$A_i\{\omega : i\epsilon < f(\omega) \le (i+1)\epsilon\}, \quad i = -N, -N+1, \dots, N-1, N,$$

where N is an integer such that $\epsilon N > M$. Show that

$$\sum_{i} \left[\sup_{\omega \in A_{i}} f(\omega) \right] \mu(A_{i}) - \sum_{i} \left[\inf_{\omega \in A_{i}} f(\omega) \right] \mu(A_{i}) \leq \epsilon \mu(\Omega).$$

Conclude that

$$\int_{\mathbb{T}} f d\mu = \int_{\mathbb{T}}^* f d\mu.$$

Where did you use the condition that f is measurable?

Problem 5.8. Define set functions $\mu^*: 2^{\Omega} \to \overline{\mathbb{R}}$ and $\mu_*: 2^{\Omega} \to \overline{\mathbb{R}}$ as follows: for any $A \in 2^{\Omega}$,

$$\mu^*(A) = \inf\{\mu(B) : B \supseteq A, B \in \mathcal{F}\}\$$

$$\mu_*(A) = \sup\{\mu(B) : B \subseteq A, B \in \mathcal{F}\}.$$

1. Show that, for any $B \in \mathcal{F}$, $B \supseteq A$, there is $\{A_i\} \in \mathcal{P}$ such that

$$\sum_{i} \left[\sup_{A_{i}} I_{A} \right] \mu(A_{i}) \leq \mu(B).$$

Conclude that $\int^* I_A d\mu \leq \mu(B)$, and hence that $\int^* I_A d\mu \leq \mu^*(A)$.

2. Show that, for any $\{A_i\} \in \mathcal{P}$, there is $B \supseteq A$, $B \in \mathcal{F}$ such that

$$\sum_{i} \left[\sup_{A_i} I_A \right] \mu(A_i) = \mu(B).$$

Conclude that $\sum_{i} [\sup_{A_i} I_A] \mu(A_i) \ge \mu^*(A)$, and hence that $\int^* I_A d\mu \ge \mu^*(A)$.

3. Show that, for any $B \subseteq A$, $B \in \mathcal{F}$, there is $\{A_i\} \in \mathcal{P}$ such that

$$\mu(B) \le \sum_{i} \left[\inf_{A_i} I_A \right] \mu(A_i).$$

Conclude that $\mu(B) \leq \int_* f d\mu$, and hence that $\mu_*(A) \leq \int_* I_A d\mu$.

4. Show that, for any $\{A_i\} \in \mathcal{P}$, there is $B \subseteq A$, $B \in \mathcal{F}$ such that

$$\mu(B) = \sum_{i} \left[\inf_{A_i} I_A \right] \mu(A_i).$$

Conclude that $\mu_*(A) \geq \sum_i [\inf_{A_i} I_A] \mu(A_i)$, and hence that $\mu_*(A) \geq \int_* I_A d\mu$.

6 HW6: due 12/9/2016

Problem 6.1. Suppose that $\Omega = \{1, 2, \ldots\}, \mathcal{F} = 2^{\Omega}$. Let κ be the set function

$$\mu: 2^{\Omega} \to \mathbb{R}, \quad A \mapsto \#(A),$$

where #(A) is the number of elements in A if A is finite, and is infinity if A is infinite. Show that μ is a measure on (Ω, \mathcal{F}) .

Problem 6.2. Suppose, for each $n = 1, 2, ..., \{x_{nm} : m = 1, 2, ...\}$ is a nonnegative sequence.

1. Show that, if $0 \le x_{nm} \uparrow x_m$ for each m, then

$$\lim_{n} \sum_{m} x_{nm} = \sum_{m} x_{m},$$

where, as usual, \sum_{k} is a shorthand for $\sum_{k=1}^{\infty}$. Identify each components of $(\Omega, \mathcal{F}, \mu)$, as well as the integral $\int f d\mu$, in this setting.

2. Show that (without the monotone condition in part 1),

$$\sum_{n}\sum_{m}x_{nm} = \sum_{m}\sum_{n}x_{nm}.$$

Problem 6.3. Let (Ω, \mathcal{F}) be a measurable space and $\mu_n, n = 1, 2, ...$ be a sequence of measures on (Ω, \mathcal{F}) . Define the set function

$$\mu: \mathcal{F} \to \mathbb{R}, \quad A \mapsto \sum_{n} \mu_n(A).$$

- 1. Use part 2 of Problem 6.2 to show that μ is a measure on (Ω, \mathcal{F}) .
- 2. Show that, for any indicator function $f = I_A$, $A \in \mathcal{F}$, we have

$$\int f d\mu = \sum_{n} \int f d\mu_{n} \tag{1}$$

- 3. Show that (1) is satisfied if f is a nonnegative simple function.
- 4. Show that (1) is satisfied if f is a nonnegative measurable function.

Problem 6.4. Suppose $(\Omega, \mathcal{F}, \mu)$ is a measure space and f_n and f are measurable. Prove that if $0 \le f_n \to f$ a.e. μ and $\int f_n d\mu \le A$, for some $A < \infty$. Show that f is integrable μ and $\int f d\mu \le A$.

Problem 6.5. Suppose $(\Omega, \mathcal{F}, \mu)$ is a measure space and f_n are measurable. Suppose that f_n are integrable μ and $\sup_n \int f_n d\mu < \infty$. Show that, if $f_n \uparrow f$, then f is integrable and $\int f_n d\mu \to \int f d\mu$.

Problem 6.6. Suppose $(\Omega, \mathcal{F}, \mu)$ is a measure space and f_n are measurable. Suppose that f_n are integrable μ and $\inf_n \int f_n d\mu > -\infty$. Show that, if $f_n \downarrow f$, then f is integrable and $\int f_n d\mu \to \int f d\mu$.

Problem 6.7. Suppose $(\Omega, \mathcal{F}, \mu)$ is a measure space and a_n , b_n , and f_n are measurable functions and a_n and b_n are integrable with respect to μ . Suppose that

$$a_n \to a$$
, $b_n \to b$, $f_n \to f$, $a.e. \mu$.

Furthermore, suppose that $\int a_n d\mu \to \int a d\mu$, $\int b_n d\mu \to \int b d\mu$ where a and b are integrable μ . Finally suppose $a_n \leq f_n \leq b_n$ a.e. μ .

- 1. Show that $\int f_n d\mu \to \int f d\mu$.
- 2. Deduce the Dominated Convergence Theorem from part 1.

Problem 6.8. Suppose $(\Omega, \mathcal{F}, \mu)$ is a measure space. Suppose $\{f(\cdot, t) : t \in (a, b)\}$ is a class of measurable functions on Ω . Let $t_0 \in (a, b)$. Suppose that the class of functions is Lipschitz in the following sense: there exist an integrable $g(\omega)$ and a set $A \in \mathcal{F}$ with $\mu(A^c) = 0$ such that, for all distinct $t_1, t_2 \in (a, b)$

$$\left| \frac{f(\omega, t_2) - f(\omega, t_1)}{t_2 - t_1} \right| \le g(\omega).$$

Show that, if the function $t \mapsto f(\omega, t)$ is differentiable at $t = t_0$ for each $\omega \in A$, then the function $t \mapsto \int f(\omega, t) d\mu(\omega)$ is differentiable at t_0 and

$$\frac{d}{dt} \int f(\omega, t_0) d\mu(\omega) = \int \left[\frac{\partial f(\omega, t_0)}{\partial t} \right] d\mu(\omega).$$

Problem 6.9. Suppose $(\Omega, \mathcal{F}, \mu)$ is a measure space and $f \geq 0$ is measurable. Show that the set function

$$u: \mathcal{F} \to \mathbb{R}, \quad A \mapsto \int_A f d\mu$$

is a measure on (Ω, \mathcal{F}) , and that $\nu(A) = 0$ whenever $A \in \mathcal{F}$, $\mu(A) = 0$.

Problem 6.10. Suppose $(\Omega, \mathcal{F}, \mu)$ is a measure space, f is a measurable function, and $\mu(\Omega) < \infty$.

1. Use DCT to show that, if f is integrable with respect to μ , then

$$\lim_{\alpha \to \infty} \int_{|f| > \alpha} |f| d\mu = 0. \tag{2}$$

2. Show that (2) implies f is integrable with respect to μ .

Problem 6.11. Suppose $(\Omega, \mathcal{F}, \mu)$ is a measure space, f_n and g are measurable functions.

- 1. Use Problem 6.10 to show that if $|f_n| \leq g$ where g is integrable with respect to μ , then $\{f_n\}$ is uniformly integrable. State which part of the assumptions in Theorem 16.4 is stronger than 16.14(i), and which part of the assumptions in Theorem 16.14(i) is stronger than 16.4.
- 2. Let $\Omega = (0,1]$ and \mathcal{F} be the σ -field of Borel sets in (0,1], and λ the Lebesgue measure on (0,1]. Let

$$f_n = (n/\log n)I_{(0,n^{-1})}, \quad n = 3, 4, \dots$$

Show that $\{f_n\}$ are uniformly integrable with respect to μ although they are not dominated by any integrable g.

3. In the same setting as part 2, let

$$f_n = nI_{(0,n^{-1})} - nI_{(n^{-1},2n^{-1})}$$

Show that $\lim_{n\to\infty} \int f_n d\lambda = \int \lim_{n\to\infty} f_n d\lambda$ even though $\{f_n\}$ are not uniformly integrable with respect to μ .

Problem 6.12. Suppose $(\Omega, \mathcal{F}, \mu)$ is a measure space and f is a measurable function. Show that, if f is integrable, then there is a $\delta > 0$ such that, for each $A \in \mathcal{F}$ and $\mu(A) < \delta$, we have $\int_A |f| d\mu < \epsilon$.

Problem 6.13. (Related to Problem 6.12) Suppose that $\mu(\Omega) < \infty$. Show that $\{f_n\}$ then the following statements hold true:

- 1. $\sup_{n} \int |f_n| d\mu < \infty;$
- 2. for each $\epsilon > 0$ there is a $\delta > 0$ such that, whenever $A \in \mathcal{F}$, $\mu(A) < \delta$, we have $\int_A |f_n| d\mu < \epsilon$ for all n.