Probability

Edward Jex

February 22, 2020

Estimating Probability

There are two ways to estimate probability:

- Experiment
- Theoretical

Experimental

 $p = \frac{n_{\rm events}}{n_{\rm trials}}$ Requires data to be collected.

Theoretical

 $p = \frac{n_{\text{ways}}}{n_{\text{outcomes}}}$

For example, the probability of getting a 6 on a dice is $\frac{1}{6}$

Modelling Probability

If A is impossible, P(A) = 0, if A is certain, P(A) = 1P(A') = 1 - P(A)

If events A and B are $P(A \cap B) = P(A) \times P(B)$

Mutually exclusive

Two events are mutually exclusive events if they cannot both happen. $P(A \cup B) = P(A) + P(B)$

If events are not mutually exclusive $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ We can test for independence as if two events are independent $P(A \cap B) = P(A) \times P(B)$

Discrete Random Variables

A model is a discrete random variable X if it is:

- Discrete
- The actual values of the outcome of the variable can only be predicted with a given probability.

Discrete Random Variables may have a finite or countably infinite number of outcomes.

Notation

The particular values our DRV can take are denoted by r, this P(X = r) means the probability that the DRV X has the outcome r.

The sum of these probabilities equal 1. Formally, $\sum_{r=1}^{n} P(X = r) = p_1 + p_2 + \cdots + p_n = 1$

Expectation

The most useful measure of central tendency is usually the mean (or the expectation). We can apply a similar idea for DRV. We define the expectation as:

$$E(x) = \sum rP(X = r)$$

Note we often use the Greek symbol μ to represent E(x) as well.

 \bar{x} is the mean when it is a sample. μ is the mean when it is a population.