Neural Network Model of the Eppler 231 Airfoil Based on Wind Tunnel Data

Jean de Becdelievre March 26, 2020

1 Data

There are 2 batches of data:

- 1. C_L and C_m only
 - 245 measurements

 - \bullet Angle of attack range: [-6.2, 19.32] degrees
- 2. C_L and C_D only
 - 81 measurements
 - Re range: [60800, 400400]
 - Angle of attack range: [-4.57, 11.86] degrees

Below are plots of both batches of data. The second batch is the more interesting one, because it allows to build a polar curve.

Figure 1: Batch 1: C_l versus angle of attack

Figure 2: Batch 1: C_m versus angle of attack

Figure 3: Batch 2: C_L versus angle of attack

Figure 4: Batch 2: C_D versus angle of attack

2 Polar fit

To create an airfoil polar curve, only the second dataset can be used, which only leaves 81 data points. The data was fitted using a 1 hidden layer neural network of 8 units, with gradient descent and a learning rate of 0.002 for 10000 steps. Importantly, the very limited amount of data made testing challenging, and a future work includes a proper cross-validation test loss.

 C_L Figure 5: Neural network prediction versus training data

Figure 6: Contour plot of the neural network fit