

University of Luxembourg

THESIS FOR THE BACHELOR OF MATHEMATICS

High Dimensional Regression Models

BY JORIS LIMONIER

Supervisor: Mark PODOLSKIJ Submitted: June 4, 2021

Abstract

Abstract goes here.

Contents

1	Introduction											1								
	1.1	Notes	or chapter 1										1							
2	Clas	ssical t	neory of Linear Regression														3			
	2.1	Linear	$models \dots \dots \dots \dots$														3			
	2.2	The le	ast squares method														4			
		2.2.1	Estimation of the model parameters .														4			
		2.2.2	$\label{eq:maximum-likelihood} \mbox{Maximum-likelihood estimation} \ \ . \ \ . \ \ .$											•			6			
3	The	Theory for LASSO in high dimensions												9						
	3.1	Assum	ing the truth is linear														9			
			approximation of the truth																	

vi *CONTENTS*

Chapter 1

Introduction

1.1 Notes for chapter 1

Chapter 2

Classical theory of Linear Regression

2.1 Linear models

We consider the setting of having a sample of n observations

$$(\mathbf{X}_1,\mathbf{Y}_1),\ldots,(\mathbf{X}_n,\mathbf{Y}_n)$$

where $X_i \in \mathcal{X} \subseteq \mathbb{R}^p$, i = 1, ..., n and $Y_i \in \mathcal{Y} \subseteq \mathbb{R}$, i = 1, ..., n.

Definition 2.1 (The linear model). The relationship between an observation $X_i \in \mathscr{X}$ and its outcome $Y_i \in \mathscr{Y}$ can be established by a linear model, that is

$$i = 1, \dots, n$$
 $\mathbf{Y}_i = \sum_{j=1}^p \boldsymbol{\beta}_j \mathbf{X}_i^{(j)} + \boldsymbol{\varepsilon}_i$ (2.1)

where $\varepsilon_1, \ldots, \varepsilon_n$ are independent and identically distributed (i.i.d.). Moreover, $\forall i = 1, \ldots, n$, we have that $\mathbb{E}[\varepsilon_i] = 0$ and each ε_i is independent of all of the X_j , $j = 1, \ldots, n$.

Instead of seeing each observation individually we can deal with all of them together by expressing the linear model in matrix notation

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon} \tag{2.2}$$

Definition 2.2.

(a) \mathbf{X} is called the **design matrix**. It has dimension $n \times p$. \mathbf{X} consists of stacking the vectors relative to each observation inside of a matrix

$$X = \begin{bmatrix} - & X_1^T & - \\ & \vdots & \\ - & X_n^T & - \end{bmatrix}$$

- (b) β is called the **parameter vector**. It has dimension $p \times 1$.
- (c) ε is called the **error vector**. It has dimension $n \times 1$.
- (d) Y is called the **response vector**. It has dimension $n \times 1$.

2.2 The least squares method

2.2.1 Estimation of the model parameters

The least squares method consists of finding a vector minimizing a function. We call that function the objective function and we define it as follows.

Definition 2.3. We define the **objective function** S as follows

$$S(\boldsymbol{\beta}) := \boldsymbol{\varepsilon}^T \boldsymbol{\varepsilon} = \|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|_2^2$$
 (2.3)

We may rewrite the objective function as

$$S(\boldsymbol{\beta}) = \|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|_{2}^{2}$$

$$= (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^{T}(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})$$

$$= \mathbf{Y}^{T}\mathbf{Y} - \mathbf{Y}^{T}\mathbf{X}\boldsymbol{\beta} - \boldsymbol{\beta}^{T}\mathbf{X}^{T}\mathbf{Y} + \boldsymbol{\beta}^{T}\mathbf{X}^{T}\mathbf{X}\boldsymbol{\beta}$$

$$= \mathbf{Y}^{T}\mathbf{Y} - 2\boldsymbol{\beta}^{T}\mathbf{X}^{T}\mathbf{Y} + \boldsymbol{\beta}^{T}\mathbf{X}^{T}\mathbf{X}\boldsymbol{\beta}$$

As mentioned previsouly, the least squares method aims at finding the vector $\hat{\beta}$ minimizing S, that is

$$\hat{\boldsymbol{\beta}} := \arg\min_{\boldsymbol{\beta}} S(\boldsymbol{\beta})$$

We find $\hat{\beta}$ by differentiating S with respect to β and setting the result to 0.

$$\frac{\partial}{\partial \boldsymbol{\beta}} S(\boldsymbol{\beta}) \Big|_{\boldsymbol{\beta} = \hat{\boldsymbol{\beta}}} = 0$$

$$\Rightarrow \frac{\partial}{\partial \boldsymbol{\beta}} \left(\mathbf{Y}^T \mathbf{Y} - 2 \boldsymbol{\beta}^T \mathbf{X}^T \mathbf{Y} + \boldsymbol{\beta}^T \mathbf{X}^T \mathbf{X} \boldsymbol{\beta} \right) \Big|_{\boldsymbol{\beta} = \hat{\boldsymbol{\beta}}} = 0$$

$$\Rightarrow -2 \mathbf{X}^T \mathbf{Y} + 2 \mathbf{X}^T \mathbf{X} \hat{\boldsymbol{\beta}} = 0$$

$$\Rightarrow \mathbf{X}^T \mathbf{X} \hat{\boldsymbol{\beta}} = \mathbf{X}^T \mathbf{Y}$$
 (LSNE)

where equation (LSNE) is called the least squares normal equations.

If we assume that $\mathbf{X}^T\mathbf{X}$ is invertible, then (LSNE) yields that our least squares estimator $\hat{\boldsymbol{\beta}}$ is given by

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y} \tag{2.4}$$

Now, we can verify that our estimator has some fundamental properties.

Proposition 2.4. $\hat{\boldsymbol{\beta}}$ is unbiased, that is $\mathbb{E}[\hat{\boldsymbol{\beta}}] = \boldsymbol{\beta}$.

Proof.

$$\mathbb{E}\left[\hat{\boldsymbol{\beta}}\right] = \mathbb{E}\left[\left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{X}^{T}\mathbf{Y}\right]$$

$$= \mathbb{E}\left[\left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{X}^{T}(\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon})\right]$$

$$= \mathbb{E}\left[\left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{X}^{T}\mathbf{X}\boldsymbol{\beta} + \left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{X}^{T}\boldsymbol{\varepsilon}\right]$$

$$= \boldsymbol{\beta}$$

Moreover, we want to take a look at the estimator's variance. For this purpose we will use the covariance matrix. Let $U, V \in \mathbb{R}^p$, recall that the covariance matrix is defined as

$$Cov(U, V) := \mathbb{E}\left[(U - \mathbb{E}(U)) (V - \mathbb{E}(V))^T \right] \in \mathcal{M}_{p \times p}(\mathbb{R})$$

where $\forall i, j = 1, ..., p$, $Cov(U, V)_{ij}$ is the covariance between U_i and V_j . In the particular case U = V, the diagonal of the covariance matrix is nothing else than the variance of U, that is:

$$Var(U)_i = Cov(U, U)_{ii}$$
 $i = 1, ..., p$

Proposition 2.5. For i, j = 1, ..., p, we have that:

(i)
$$\operatorname{Cov}(\hat{\boldsymbol{\beta}}_i, \hat{\boldsymbol{\beta}}_j) = \boldsymbol{\sigma}^2 \left[\left(\mathbf{X}^T \mathbf{X} \right)^{-1} \right]_{ij}$$

(ii)
$$\operatorname{Var}(\hat{\boldsymbol{\beta}}_i) = \boldsymbol{\sigma}^2 \left[\left(\mathbf{X}^T \mathbf{X} \right)^{-1} \right]_{ii}$$

Proof. (i) One can note that

$$\operatorname{Cov}(\hat{\boldsymbol{\beta}}, \hat{\boldsymbol{\beta}}) = \operatorname{Var}\left[\underbrace{\left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{X}^{T}}_{\operatorname{constant}}\mathbf{Y}\right]$$

$$= \left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{X}^{T}\underbrace{\operatorname{Var}(\mathbf{Y})}_{=\boldsymbol{\sigma}^{2}I}\left[\left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{X}^{T}\right]^{T}$$

$$= \boldsymbol{\sigma}^{2}\left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{X}^{T}\mathbf{X}\left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}$$

$$= \boldsymbol{\sigma}^{2}\left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}$$

(ii) This is a direct consequence of the first point.

Now that we confirmed the above properties of $\hat{\beta}$, we are interested in estimating the quality of our prediction. The residuals can help us do that.

Definition 2.6 (Residuals). For a given set of observations Y, the **residuals** (or **vector of residuals**) is the difference between the prediction of our model and the observed value, that is

$$X(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \in \mathbb{R}^n$$

Building up from the residuals, we would like a measure that indicates how far our predictions are from the measurements. We will use the prediction error for that purpose.

Definition 2.7. For a given set of observations \mathbf{Y} , the **prediction error** (also called **residual sum of squares**) is the squared ℓ^2 -norm of the difference between the prediction of our model and the observed value, that is

$$\mathcal{E} = \|\mathbf{Y} - \hat{\mathbf{Y}}\|_2^2 = \|\boldsymbol{\varepsilon}\|_2^2$$

The prediction error can be rewritten as follows:

$$\begin{split} \mathcal{E} &= \|\boldsymbol{\varepsilon}\|_{2}^{2} \\ &= \boldsymbol{\varepsilon}^{T} \boldsymbol{\varepsilon} \\ &= \left(\mathbf{Y} - \mathbf{X} \hat{\boldsymbol{\beta}}\right)^{T} \left(\mathbf{Y} - \mathbf{X} \hat{\boldsymbol{\beta}}\right) \\ &= \mathbf{Y}^{T} \mathbf{Y} - \hat{\boldsymbol{\beta}}^{T} \mathbf{X}^{T} \mathbf{Y} - \mathbf{Y}^{T} \mathbf{X} \hat{\boldsymbol{\beta}} + \hat{\boldsymbol{\beta}}^{T} \mathbf{X}^{T} \mathbf{X} \hat{\boldsymbol{\beta}} \\ &= \mathbf{Y}^{T} \mathbf{Y} - 2 \hat{\boldsymbol{\beta}}^{T} \mathbf{X}^{T} \mathbf{Y} + \hat{\boldsymbol{\beta}}^{T} \underbrace{\mathbf{X}^{T} \mathbf{X} \hat{\boldsymbol{\beta}}}_{=\mathbf{X}^{T} \mathbf{Y}} \\ &= \mathbf{Y}^{T} \mathbf{Y} - \hat{\boldsymbol{\beta}}^{T} \mathbf{X}^{T} \mathbf{Y} \end{split}$$

2.2.2 Maximum-likelihood estimation

Let the error vector $\boldsymbol{\varepsilon}$ be normally and independently distributed with constant variance $\boldsymbol{\sigma}^2$ (in other words, $\boldsymbol{\varepsilon}$ is $\mathcal{N}(0, \boldsymbol{\sigma}^2 I)$). Then the maximum-likelihood estimation model is given by

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

where each component of the error vector has density function:

$$f(\boldsymbol{\varepsilon}_i) = \frac{1}{\boldsymbol{\sigma}\sqrt{2\pi}} \exp\left(-\frac{1}{2\boldsymbol{\sigma}^2}\boldsymbol{\varepsilon}_i^2\right), \quad i = 1,\dots, n$$

Subsequently, the likelihood function is the joint density of $\varepsilon_1, \ldots, \varepsilon_n$, therefore it is given by

$$L\left(\boldsymbol{\varepsilon}, \boldsymbol{\beta}, \boldsymbol{\sigma}^{2}\right) = \prod_{i=1}^{n} f\left(\boldsymbol{\varepsilon}_{i}\right)$$

$$= \left(\frac{1}{\sqrt{2\pi}\boldsymbol{\sigma}}\right)^{n} \exp\left(-\frac{1}{2\boldsymbol{\sigma}^{2}} \sum_{i=1}^{n} \boldsymbol{\varepsilon}_{i}^{2}\right)$$

$$= \frac{1}{(2\pi)^{n/2}\boldsymbol{\sigma}^{n}} \exp\left(-\frac{1}{2\boldsymbol{\sigma}^{2}} \boldsymbol{\varepsilon}^{T} \boldsymbol{\varepsilon}\right)$$

Chapter 3

Theory for LASSO in high dimensions

3.1 Assuming the truth is linear

In this section, we assume that there exists some "true value" that would make the parameter β fit the observations to the predictions perfectly. We call this ideal parameter vector β^0 . However, we work with an underdetermined system: there are more variables than equations, or in our context, there are more parameters than observations (i.e. p > n).

We define $\hat{\boldsymbol{\beta}}$ as follows

$$\hat{\boldsymbol{\beta}} := \arg\min_{\boldsymbol{\beta}} \left\{ \frac{\|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|_{2}^{2}}{n} + \lambda \|\boldsymbol{\beta}\|_{1} \right\}$$
(3.1)

Lemma 3.1 (Basic Inequality).

$$\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^0)\|_2^2}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_1 \le 2 \frac{\varepsilon^T \mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^0)}{n} + \lambda \|\boldsymbol{\beta}^0\|_1$$

Proof. By definition of $\hat{\beta}$, we have that

$$\forall \boldsymbol{\beta} \quad \frac{\|\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}\|_2^2}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_1 \leq \frac{\|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|_2^2}{n} + \lambda \|\boldsymbol{\beta}\|_1$$

In particular for $\beta = \beta^0$ we have

$$\frac{\|\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}\|_2^2}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_1 \le \frac{\|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}^0\|_2^2}{n} + \lambda \|\boldsymbol{\beta}^0\|_1$$

We now replace \mathbf{Y} using equation (2.2):

$$\frac{\|\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{\|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}^{0}\|_{2}^{2}}{n} + \lambda \|\boldsymbol{\beta}^{0}\|_{1}$$

$$\Rightarrow \frac{\|(\mathbf{X}\boldsymbol{\beta}^{0} + \boldsymbol{\varepsilon}) - \mathbf{X}\hat{\boldsymbol{\beta}}\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{\|(\mathbf{X}\boldsymbol{\beta}^{0} + \boldsymbol{\varepsilon}) - \mathbf{X}\boldsymbol{\beta}^{0}\|_{2}^{2}}{n} + \lambda \|\boldsymbol{\beta}^{0}\|_{1}$$

$$\Rightarrow \frac{\langle \mathbf{X}(\boldsymbol{\beta}^{0} - \hat{\boldsymbol{\beta}}) + \boldsymbol{\varepsilon}, \mathbf{X}(\boldsymbol{\beta}^{0} - \hat{\boldsymbol{\beta}}) + \boldsymbol{\varepsilon} \rangle}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{\|\boldsymbol{\varepsilon}\|_{2}^{2}}{n} + \lambda \|\boldsymbol{\beta}^{0}\|_{1}$$

$$\Rightarrow \frac{\|\mathbf{X}(\boldsymbol{\beta}^{0} - \hat{\boldsymbol{\beta}})\|_{2}^{2} + \|\boldsymbol{\varepsilon}\|_{2}^{2} + 2\langle \mathbf{X}(\boldsymbol{\beta}^{0} - \hat{\boldsymbol{\beta}}), \boldsymbol{\varepsilon} \rangle}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{\|\boldsymbol{\varepsilon}\|_{2}^{2}}{n} + \lambda \|\boldsymbol{\beta}^{0}\|_{1}$$

$$\Rightarrow \frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{2\langle \mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0}), \boldsymbol{\varepsilon} \rangle}{n} + \lambda \|\boldsymbol{\beta}^{0}\|_{1}$$

$$\Rightarrow \frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{2\boldsymbol{\varepsilon}^{T}\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})}{n} + \lambda \|\boldsymbol{\beta}^{0}\|_{1}$$

This completes the proof.

Let

$$\mathscr{T} := \left\{ \max_{1 \le j \le p} 2 \frac{\left| \varepsilon^T \mathbf{X}^{(j)} \right|}{n} \le \lambda_0 \right\}$$

Lemma 3.2 (Lemma 6.2.). Suppose $\forall j = 1, \ldots, p, \hat{\sigma}_j^2 = 1$ and for all t > 0 and

$$\lambda_0 := 2\boldsymbol{\sigma}\sqrt{\frac{t^2 + 2\log p}{n}}$$

we have

$$\mathbb{P}(\mathscr{T}) \ge 1 - 2\exp\left[-t^2/2\right]$$

Proof. We define

$$V_j := \frac{\varepsilon^T \mathbf{X}^{(j)}}{\sqrt{n\boldsymbol{\sigma}^2}}$$

Then we have

$$\mathbb{P}(\mathscr{T}) = \mathbb{P}\left(\max_{1 \leq j \leq p} 2 \frac{\left|\varepsilon^{T} \mathbf{X}^{(j)}\right|}{n} \leq 2\boldsymbol{\sigma}\sqrt{\frac{t^{2} + 2\log p}{n}}\right) \\
= \mathbb{P}\left(\max_{1 \leq j \leq p} \left|\frac{\varepsilon^{T} \mathbf{X}^{(j)}}{\sqrt{n\boldsymbol{\sigma}^{2}}}\right| \leq \sqrt{t^{2} + 2\log p}\right) \\
= \mathbb{P}\left(\max_{1 \leq j \leq p} |V_{j}| \leq \sqrt{t^{2} + 2\log p}\right) \\
= 1 - \mathbb{P}\left(\max_{1 \leq j \leq p} |V_{j}| > \sqrt{t^{2} + 2\log p}\right) \\
= 1 - \mathbb{P}\left(\bigcup_{j=1}^{p} \left\{|V_{j}| > \sqrt{t^{2} + 2\log p}\right\}\right) \\
\geq 1 - \sum_{j=1}^{p} \mathbb{P}\left(|V_{j}| > \sqrt{t^{2} + 2\log p}\right) \\
\geq 1 - p \,\mathbb{P}\left(|V_{j}| > \sqrt{t^{2} + 2\log p}\right) \tag{3.2}$$

Now, let us define $\zeta := \sqrt{t^2 + 2 \log p}$. Since V_j is $\mathcal{N}(0,1)$ -distributed and $\zeta > 0$, it follows that

$$\mathbb{P}(V_j > \zeta) = \frac{1}{\sqrt{2\pi}} \int_{\zeta}^{\infty} e^{-y^2/2} dy$$

$$< \frac{1}{\sqrt{2\pi}} \int_{\zeta}^{\infty} \frac{y}{\zeta} e^{-y^2/2} dy$$

$$= \frac{1}{\zeta\sqrt{2\pi}} \int_{\zeta}^{\infty} y e^{-y^2/2} dy$$

$$= \frac{1}{\zeta\sqrt{2\pi}} e^{-\zeta^2/2}$$

We note that $p \geq 2 \implies \zeta \sqrt{2\pi} \geq 1$ therefore

$$\mathbb{P}(V_i > \zeta) < e^{-\zeta^2/2}$$

Moreover by symmetry of the $\mathcal{N}(0,1)$ distribution,

$$\mathbb{P}(|V_j| > \zeta) = 2\mathbb{P}(V_j > \zeta)$$

$$< 2e^{-\zeta^2/2}$$

Inserting this result into (3.2) we obtain

$$\mathbb{P}(\mathscr{T}) \ge 1 - p \, \mathbb{P}\left(|V_j| > \sqrt{t^2 + 2\log p}\right)$$
$$\ge 1 - p \, \frac{2}{p} \exp\left[\frac{-t^2}{2}\right]$$
$$= 1 - 2\exp\left[\frac{-t^2}{2}\right]$$

Corollary 3.3 (Consistency of the LASSO). Assume $\sigma^2 = 1$ for all j. We define the regularization parameter as

$$\lambda = 4\hat{\boldsymbol{\sigma}}^2 \sqrt{\frac{t^2 + 2\log p}{n}}$$

where $\hat{\boldsymbol{\sigma}}$ is some estimator of $\boldsymbol{\sigma}$.

Then with probability at least $1-\alpha$, where $\alpha := 2\exp(-t^2/2) + \mathbb{P}(\hat{\sigma} \leq \sigma)$ we have

$$2\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^0)\|_2^2}{n} \le 3\lambda \|\boldsymbol{\beta}^0\|_1$$

Lemma 3.4 (Lemma 6.3.). We have on \mathscr{T} , with $\lambda \geq 2\lambda_0$,

$$2\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^0)\|_2^2}{n} + \lambda \|\hat{\boldsymbol{\beta}}_{S_0^c}\|_1 \le 3\lambda \|\hat{\boldsymbol{\beta}}_{S_0} - \boldsymbol{\beta}_{S_0}^0\|_1$$

Proof. We start with the Basic Inequality

$$\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^0)\|_2^2}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_1 \le 2 \frac{\varepsilon^T \mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^0)}{n} + \lambda \|\boldsymbol{\beta}^0\|_1$$

Now since we are on \mathscr{T} and since $2\lambda_0 \leq \lambda$

$$\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \lambda_{0} \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0}\|_{1} + \lambda \|\boldsymbol{\beta}^{0}\|_{1}$$

$$2\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^0)\|_2^2}{n} + 2\lambda \|\hat{\boldsymbol{\beta}}\|_1 \le \lambda \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^0\|_1 + 2\lambda \|\boldsymbol{\beta}^0\|_1$$

Let $\beta_{j,S} := \beta_j 1\{j \in S\}$. We use the triangle inequality on the left hand side

$$\begin{split} \|\hat{\boldsymbol{\beta}}\|_{1} &= \|\hat{\boldsymbol{\beta}}_{S_{0}}\|_{1} + \|\hat{\boldsymbol{\beta}}_{S_{0}^{c}}\|_{1} \\ &= \|\boldsymbol{\beta}_{S_{0}}^{0} - \boldsymbol{\beta}_{S_{0}}^{0} + \hat{\boldsymbol{\beta}}_{S_{0}}\|_{1} + \|\hat{\boldsymbol{\beta}}_{S_{0}^{c}}\|_{1} \\ &\geq \|\boldsymbol{\beta}_{S_{0}}^{0}\|_{1} - \|\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0}\|_{1} + \|\hat{\boldsymbol{\beta}}_{S_{0}^{c}}\|_{1} \end{split}$$

whereas on the right hand side

$$\begin{split} \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0}\|_{1} &= \|(\hat{\boldsymbol{\beta}}_{S_{0}} + \hat{\boldsymbol{\beta}}_{S_{0}^{c}}) - (\boldsymbol{\beta}_{S_{0}}^{0} + \underbrace{\boldsymbol{\beta}_{S_{0}^{c}}^{0}}_{=0})\|_{1} \\ &= \|\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0}\|_{1} + \|\hat{\boldsymbol{\beta}}_{S_{0}^{c}}\|_{1} \end{split}$$

Injecting these two results, we get that

$$2\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})\|_{2}^{2}}{n} + 2\lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \lambda \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0}\|_{1} + 2\lambda \|\boldsymbol{\beta}^{0}\|_{1}$$

$$\Rightarrow 2\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})\|_{2}^{2}}{n} + 2\lambda \left(\|\boldsymbol{\beta}_{S_{0}}^{0}\|_{1} - \|\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0}\|_{1} + \|\hat{\boldsymbol{\beta}}_{S_{0}^{c}}\|_{1}\right)$$

$$\leq \lambda \left(\|\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0}\|_{1} + \|\hat{\boldsymbol{\beta}}_{S_{0}^{c}}\|_{1}\right) + 2\lambda \|\boldsymbol{\beta}^{0}\|_{1}$$

$$\Rightarrow 2\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})\|_{2}^{2}}{n} + 2\lambda \|\underbrace{\boldsymbol{\beta}_{S_{0}^{c}}^{0}}_{=\boldsymbol{\beta}^{0}}\|_{1} + \lambda \|\hat{\boldsymbol{\beta}}_{S_{0}^{c}}\|_{1} \leq 3\lambda \|\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0}\|_{1} + 2\lambda \|\boldsymbol{\beta}^{0}\|_{1}$$

$$\Rightarrow 2\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}_{S_{0}^{c}}\|_{1} \leq 3\lambda \|\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0}\|_{1}$$

Definition 3.5 (Compatibility condition). We say that the compatibility condition is met for the set S_0 , if for some $\phi_0 > 0$, and for all $\boldsymbol{\beta}$ satisfying $\|\boldsymbol{\beta}_{S_0^c}\|_1 \leq 3\|\boldsymbol{\beta}_{S_0}\|_1$, it holds that

$$\|\boldsymbol{\beta}_{S_0}\|_1^2 \le \left(\boldsymbol{\beta}^T \hat{\boldsymbol{\Sigma}} \boldsymbol{\beta}\right) \frac{s_0}{\phi_0^2} \tag{3.3}$$

Theorem 3.6 (Theorem 6.1.). Suppose the compatibility condition holds for S_0 . Then on \mathscr{T} , we have for $\lambda \geq 2\lambda_0$,

$$\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0}\|_{1} \le 4\lambda^{2} \frac{s_{0}}{\phi_{0}^{2}}$$

Proof. Using Lemma 3.4 we have that

$$2\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0}\|_{1}$$

$$= 2\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}_{S_{0}} + \hat{\boldsymbol{\beta}}_{S_{0}^{c}} - \boldsymbol{\beta}_{S_{0}}^{0} - \underline{\boldsymbol{\beta}}_{S_{0}^{c}}^{0}\|_{1}$$

$$= 2\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0}\|_{1} + \lambda \|\hat{\boldsymbol{\beta}}_{S_{0}^{c}}\|_{1} \quad (by \ lemma \ 3.4)$$

$$\leq 4\lambda \|\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0}\|_{1}$$

$$= 4\lambda \sqrt{\left(\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0}\right)^{T}} \hat{\boldsymbol{\Sigma}} \left(\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0}\right) s_{0}/\phi_{0}^{2}$$

$$\leq \sqrt{\left(\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0}\right)^{T}} \mathbf{X}^{T} \mathbf{X} \left(\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0}\right) \frac{4\lambda \sqrt{s_{0}}}{\phi_{0}\sqrt{n}}}$$

$$\leq \|\mathbf{X}(\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0})\|_{2}^{2} \frac{4\lambda \sqrt{s_{0}}}{\phi_{0}\sqrt{n}}$$

$$\leq \|\mathbf{X}(\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0})\|_{2}^{2} + \frac{4\lambda^{2}s_{0}}{\phi_{0}^{2}n}$$

Where the last inequality follows from $4uv \le u^2 + 4v^2$.

3.2 Linear approximation of the truth

Now $\mathbf{Y} := \mathbf{f}^0 + \boldsymbol{\varepsilon}$, therefore $\mathbb{E}[\mathbf{Y}] := \mathbf{f}^0$.

Lemma 3.7 (New version of the Basic Inequality). $\forall \boldsymbol{\beta}^* \in \mathbb{R}^p$ we have

$$\frac{\|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{f}^0\|_2^2}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_1 \le \frac{2\boldsymbol{\varepsilon}^T \mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^*)}{n} + \lambda \|\boldsymbol{\beta}^*\|_1 + \frac{\|\mathbf{X}\boldsymbol{\beta}^* - \mathbf{f}^0\|_2^2}{n}$$
(3.4)

Proof. By definition of $\hat{\beta}$, we have that

$$\forall \boldsymbol{\beta} \quad \frac{\|\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{\|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|_{2}^{2}}{n} + \lambda \|\boldsymbol{\beta}\|_{1}$$

In particular for $\beta = \beta^*$ we have

$$\forall \boldsymbol{\beta}^* \quad \frac{\|\mathbf{Y} - \mathbf{X}\boldsymbol{\hat{\beta}}\|_2^2}{n} + \lambda \|\boldsymbol{\hat{\beta}}\|_1 \leq \frac{\|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}^*\|_2^2}{n} + \lambda \|\boldsymbol{\beta}^*\|_1$$

Since
$$\mathbf{Y} = \mathbf{f}^0 + \boldsymbol{\varepsilon}$$
:

$$\frac{\|\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{\|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}^{*}\|_{2}^{2}}{n} + \lambda \|\boldsymbol{\beta}^{*}\|_{1}$$

$$\Rightarrow \frac{\|(\mathbf{f}^{0} - \mathbf{X}\hat{\boldsymbol{\beta}}) + \boldsymbol{\varepsilon}\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{\|(\mathbf{f}^{0} - \mathbf{X}\boldsymbol{\beta}^{*}) + \boldsymbol{\varepsilon}\|_{2}^{2}}{n} + \lambda \|\boldsymbol{\beta}^{*}\|_{1}$$

$$\Rightarrow \frac{\langle(\mathbf{f}^{0} - \mathbf{X}\hat{\boldsymbol{\beta}}) + \boldsymbol{\varepsilon}, (\mathbf{f}^{0} - \mathbf{X}\hat{\boldsymbol{\beta}}) + \boldsymbol{\varepsilon}\rangle}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1}$$

$$\leq \frac{\langle(\mathbf{f}^{0} - \mathbf{X}\boldsymbol{\beta}^{*}) + \boldsymbol{\varepsilon}, (\mathbf{f}^{0} - \mathbf{X}\boldsymbol{\beta}^{*}) + \boldsymbol{\varepsilon}\rangle}{n} + \lambda \|\boldsymbol{\beta}^{*}\|_{1}$$

$$\Rightarrow \frac{\|\mathbf{f}^{0} - \mathbf{X}\hat{\boldsymbol{\beta}}\|_{2}^{2} + \|\boldsymbol{\varepsilon}\|_{2}^{2} + 2\langle\mathbf{f}^{0} - \mathbf{X}\hat{\boldsymbol{\beta}}, \boldsymbol{\varepsilon}\rangle}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1}$$

$$\leq \frac{\|\mathbf{f}^{0} - \mathbf{X}\boldsymbol{\beta}^{*}\|_{2}^{2} + \|\boldsymbol{\varepsilon}\|_{2}^{2} + 2\langle\mathbf{f}^{0} - \mathbf{X}\boldsymbol{\beta}^{*}, \boldsymbol{\varepsilon}\rangle}{n} + \lambda \|\boldsymbol{\beta}^{*}\|_{1}$$

$$\Rightarrow \frac{\|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{f}^{0}\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{2\boldsymbol{\varepsilon}^{T}\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{*})}{n} + \lambda \|\boldsymbol{\beta}^{*}\|_{1} + \frac{\|\mathbf{X}\boldsymbol{\beta}^{*} - \mathbf{f}^{0}\|_{2}^{2}}{n}$$

Lemma 3.8 (New version of Lemma 6.3.). We have on \mathscr{T} , with $\lambda \geq 4\lambda_0$,

$$\frac{4\|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{f}^0\|_2^2}{n} + 3\lambda \|\hat{\boldsymbol{\beta}}_{S_*^c}\|_1 \le 5\lambda \|\hat{\boldsymbol{\beta}}_{S_*} - \boldsymbol{\beta}_{S_*}^*\|_1 + \frac{4\|\mathbf{X}\boldsymbol{\beta}^* - \mathbf{f}^0\|_2^2}{n}$$
(3.5)

where $S_* := \{j : \beta_j^* \neq 0\}.$

Proof. We start with the Basic Inequality

$$\frac{\|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{f}^0\|_2^2}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_1 \le \frac{2\boldsymbol{\varepsilon}^T \mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^*)}{n} + \lambda \|\boldsymbol{\beta}^*\|_1 + \frac{\|\mathbf{X}\boldsymbol{\beta}^* - \mathbf{f}^0\|_2^2}{n}$$

Now since we are on \mathcal{T} and since $4\lambda_0 \leq \lambda$

$$\frac{\|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{f}^0\|_2^2}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_1 \le \frac{2\boldsymbol{\varepsilon}^T \mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^*)}{n} + \lambda \|\boldsymbol{\beta}^*\|_1 + \frac{\|\mathbf{X}\boldsymbol{\beta}^* - \mathbf{f}^0\|_2^2}{n}$$
$$\implies 4\frac{\|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{f}^0\|_2^2}{n} + 4\lambda \|\hat{\boldsymbol{\beta}}\|_1 \le \lambda \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^*\|_1 + 4\lambda \|\boldsymbol{\beta}^*\|_1 + 4\frac{\|\mathbf{X}\boldsymbol{\beta}^* - \mathbf{f}^0\|_2^2}{n}$$

We use the triangle inequality on the left hand side

$$\begin{split} \|\hat{\boldsymbol{\beta}}\|_{1} &= \|\hat{\boldsymbol{\beta}}_{S_{*}}\|_{1} + \|\hat{\boldsymbol{\beta}}_{S_{*}^{c}}\|_{1} \\ &= \|\boldsymbol{\beta}_{S_{*}}^{*} - \boldsymbol{\beta}_{S_{*}}^{*} + \hat{\boldsymbol{\beta}}_{S_{*}}\|_{1} + \|\hat{\boldsymbol{\beta}}_{S_{*}^{c}}\|_{1} \\ &\geq \|\boldsymbol{\beta}_{S_{*}}^{*}\|_{1} - \|\hat{\boldsymbol{\beta}}_{S_{*}} - \boldsymbol{\beta}_{S_{*}}^{*}\|_{1} + \|\hat{\boldsymbol{\beta}}_{S_{*}^{c}}\|_{1} \end{split}$$

whereas on the right hand side

$$\begin{split} \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^*\|_1 &= \|(\hat{\boldsymbol{\beta}}_{S_*} + \hat{\boldsymbol{\beta}}_{S_*^c}) - (\boldsymbol{\beta}_{S_*}^* + \underbrace{\boldsymbol{\beta}_{S_*^c}^*}_{=0})\|_1 \\ &= \|\hat{\boldsymbol{\beta}}_{S_*} - \boldsymbol{\beta}_{S_*}^*\|_1 + \|\hat{\boldsymbol{\beta}}_{S_*^c}\|_1 \end{split}$$

Injecting these two results, we get that

$$4\frac{\|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{f}^{0}\|_{2}^{2}}{n} + 4\lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \lambda \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{*}\|_{1} + 4\lambda \|\boldsymbol{\beta}^{*}\|_{1} + 4\frac{\|\mathbf{X}\boldsymbol{\beta}^{*} - \mathbf{f}^{0}\|_{2}^{2}}{n}$$

$$\Rightarrow 4\frac{\|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{f}^{0}\|_{2}^{2}}{n} + 4\lambda \left(\|\boldsymbol{\beta}_{S_{*}}^{*}\|_{1} - \|\hat{\boldsymbol{\beta}}_{S_{*}} - \boldsymbol{\beta}_{S_{*}}^{*}\|_{1} + \|\hat{\boldsymbol{\beta}}_{S_{*}^{c}}\|_{1}\right)$$

$$\leq \lambda \left(\|\hat{\boldsymbol{\beta}}_{S_{*}} - \boldsymbol{\beta}_{S_{*}}^{*}\|_{1} + \|\hat{\boldsymbol{\beta}}_{S_{*}^{c}}\|_{1}\right) + 4\lambda \|\boldsymbol{\beta}^{*}\|_{1} + 4\frac{\|\mathbf{X}\boldsymbol{\beta}^{*} - \mathbf{f}^{0}\|_{2}^{2}}{n}$$

$$\Rightarrow 4\frac{\|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{f}^{0}\|_{2}^{2}}{n} + 4\lambda \|\underbrace{\boldsymbol{\beta}_{S_{*}^{*}}^{*}}\|_{1} + 3\lambda \|\hat{\boldsymbol{\beta}}_{S_{*}^{c}}^{*}\|_{1}$$

$$\leq 5\lambda \|\hat{\boldsymbol{\beta}}_{S_{*}} - \boldsymbol{\beta}_{S_{*}}^{*}\|_{1} + 4\lambda \|\boldsymbol{\beta}^{*}\|_{1} + 4\frac{\|\mathbf{X}\boldsymbol{\beta}^{*} - \mathbf{f}^{0}\|_{2}^{2}}{n}$$

$$\Rightarrow 4\frac{\|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{f}^{0}\|_{2}^{2}}{n} + 3\lambda \|\hat{\boldsymbol{\beta}}_{S_{*}^{c}}^{*}\|_{1} \leq 5\lambda \|\hat{\boldsymbol{\beta}}_{S_{*}} - \boldsymbol{\beta}_{S_{*}}^{*}\|_{1} + 4\frac{\|\mathbf{X}\boldsymbol{\beta}^{*} - \mathbf{f}^{0}\|_{2}^{2}}{n}$$

Definition 3.9 (Compatibility condition for general sets). We say that the compatibility condition holds for the set S, if for some constant $\phi(S) > 0$, and for all β , with $\|\beta_{S^c}\|_1 \leq 3 \|\beta_S\|_1$, one has

$$\|\boldsymbol{\beta}_S\|_1^2 \leq \left(\boldsymbol{\beta}^T \hat{\boldsymbol{\sigma}} \boldsymbol{\beta}\right) \frac{|S|}{\phi^2(S)}$$

We define $\mathscr S$ as the collection of sets S for which the compatibility condition holds.

Definition 3.10 (The oracle). We define the oracle β^* as

$$\boldsymbol{\beta}^* = \arg\min_{\boldsymbol{\beta}: S_{\boldsymbol{\beta}} \in \mathcal{S}} \left\{ \frac{\|\mathbf{X}\boldsymbol{\beta} - \mathbf{f}^0\|_2^2}{n} + \frac{4\lambda^2 s_{\boldsymbol{\beta}}}{\phi^2(S_{\boldsymbol{\beta}})} \right\}$$

where $S_{\beta} := \{j : \beta_j \neq 0\}$, $s_{\beta} := |S_{\beta}|$ denotes the cardinality of S_{β} and the factor 4 in the right hand side comes from choosing $\lambda \geq \lambda_0$.