Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1. (previously presented) A fuel cell feed processing system consisting of:
- A A fuel reformer further comprising a means for introducing gaseous fuel and air directly into said reformer, said reformer selected from at least one of the group consisting of autothermal, steam, and microchannel types.
 - B A heat exchanger communicably connected directly to said fuel reformer, and
- C A scrubber communicably connected directly to said heat exchanger and further comprising a means for passing scrubbed reformate from said scrubber;

wherein said reformer, said heat exchanger, and said scrubber are communicably connected directly in series so that gaseous material may pass through said reformer, said heat exchanger and said scrubber sequentially, and

wherein said system further comprises a means for recycling gases from said scrubber to said reformer wherein said recycled gases are selected from at least one of the group consisting of carbon monoxide and methane.

(original) The fuel cell feed processing system as described in Claim 1 wherein said heat exchanger comprises graphitic carbon foam.

APPL. No. 10/635,311

Amdt. Dated: August 13, 2007

Reply to Notice of Non-Compliant Amendment of: 8/7/2007

3. (original) The fuel cell feed processing system as described in Claim 2 wherein said

graphitic carbon foam heat exchanger is a radiant cooler.

 (original) The fuel cell feed processing system as described in Claim 1 wherein said scrubber comprises carbon fiber composite molecular sieve material.

5. (canceled)

6. (canceled)

7. (canceled)

(withdrawn) The fuel cell feed processing system as described in Claim 1 further comprising a pre-scrubber for removal of sulfur compounds, said pre-scrubber further comprising CFCMS material.

9. (withdrawn) A fuel cell feed processing system comprising:

A A catalytic fuel reactor comprising a catalyst, a catalyst support and a means for introducing gaseous fuel and air into said catalytic fuel reactor, said catalyst support further comprising carbon fiber composite molecular sieve material;

B A heat exchanger communicably connected to said fuel reactor;

C A scrubber communicably connected to said heat exchanger, said scrubber further comprising a means for passing scrubbed reformate from said scrubber, and

 A fuel reformer communicably connected to said scrubber and said heat exchanger;

APPL, No. 10/635,311

Amdt. Dated: August 13, 2007

Reply to Notice of Non-Compliant Amendment of: 8/7/2007

wherein said reactor, said heat exchanger, and said scrubber are communicably

connected in series so that gaseous material may pass through said reformer, said heat

exchanger, and said scrubber sequentially; said reformer being connected in parallel

so that a portion of said gaseous material may be recycled from said scrubber into and

through said fuel reformer and returning to said heat exchanger.

10, (withdrawn) The fuel cell feed processing system as described in Claim 9 wherein

said heat exchanger comprises graphitic carbon foam.

11. (withdrawn) The fuel cell feed processing system as described in Claim 10 wherein

said graphitic carbon foam heat exchanger is configured as a radiant cooler.

12. (withdrawn) The fuel cell feed processing system as described in Claim 9 wherein

said scrubber comprises carbon fiber composite molecular sieve material.

13. (withdrawn) The fuel cell feed processing system as described in Claim 12 wherein

said carbon fiber composite molecular sieve material is activated to adsorb and

remove recycled gas from said gaseous material, wherein said recycled gas is selected

from at least one of the group consisting of carbon monoxide and methane.

14. (withdrawn) The fuel cell feed processing system as described in Claim 12 wherein

said scrubber is a two-stage unit capable of isolating carbon monoxide by adsorption.

15. (withdrawn) The fuel cell feed processing system as described in Claim 9 wherein

said catalytic fuel reactor is located at a point of fuel supply.

16. (withdrawn) The fuel cell feed processing system as described in Claim 9 wherein

said catalytic fuel reactor is located at a point of fuel usage.

APPL, No. 10/635,311

Amdt, Dated: August 13, 2007

Reply to Notice of Non-Compliant Amendment of: 8/7/2007

17. (withdrawn) The fuel cell feed processing system as described in Claim 9 further

comprising a means for recycling gases from said scrubber to said heat exchanger

wherein said recycling gases are selected from at least one of the group consisting of

carbon monoxide and methane.

18. (withdrawn) The fuel cell feed processing system as described in Claim 9 further

comprising a pre-scrubber for removal of sulfur compounds, said pre-scrubber further

comprising CFCMS material.

19. (withdrawn) A method for processing fuel cell feed comprising the sequential steps

of:

Α

C

Reforming a gaseous fuel input in a fuel reformer thereby forming a gas

mixture comprising H2, CO, CO2, and CH4, called reformate,

В Cooling said reformate using a heat exchanger communicably connected to

said fuel reformer.

Scrubbing said cooled reformate, in a scrubber communicably connected to

said heat exchanger, thereby removing CO, CO2, H2S, and CH4 from the

cooled reformate.

D Supplying the cooled and scrubbed reformate to a fuel cell for power

generation.

20. (withdrawn) The method of Claim 19 further comprising the step of recycling a

portion of the cooled and scrubbed reformate back into the reformer wherein said

portion comprises at least one of the gases selected from the group consisting of

carbon monoxide and methane.

APPL, No. 10/635,311

Amdt. Dated: August 13, 2007

Reply to Notice of Non-Compliant Amendment of: 8/7/2007

21. (withdrawn) The method of Claim 19 wherein said gaseous fuel input is selected from at least one of the group consisting of natural gas, gasoline, and air.

22. (withdrawn) The method of Claim 19 further comprising the initial step of prescrubbing the gaseous fuel input to remove at least one of the sulfur compounds selected from the group consisting of thiophene, mercaptan, dimethyl sulfide, and methyl sulfide.