

EECS E6690 Project Presentation

Lei Lyu (II3433) Yang Yu (yy3102) Wenxiang Zhou (wz2542) Yi Chen (yc4029)

Part 1: Dataset description

QSAR biodegradation Data Set

Dataset Description

- Various kinds of chemicals are left in the environment by industry
- Many of the chemicals are not biodegradable
- Information about biodegradability of chemicals are not yet abundant

alamy

Dataset Description

- QSAR (Quantitative Structure-Activity Relationships) is used to predict the biodegradability of chemicals
- QSAR biodegradation data set was built to develop QSAR models for studying the relationship between chemical structure and biodegradability of molecules
- Experimental values collected from webpage of the National Institute of Technology and Evaluation of Japan (NITE)

Dataset Description

- Number of Instances: 1055
 where 356 molecules are ready
 biodegradable (RB) and 699 are not
 ready biodegradable (NRB)
- Number of Attributes: 41
 selected using many classification
 modeling methods combined with
 genetic algorithms
- Correlations between descriptors:

Heatmap of variable correlations

All Descriptors PCA

Paper's SVM Descriptors PCA

Paper's kNN Descriptors PCA

Loading Plot

Part 2: Paper detail and reproduce KNN, PLSDA, SVM

Quick View

Data set dividing:

41 Attributes, 1055 instances

training set: 837 test set: 218

5-fold cross-validation

2 Class:

RB: ready biodegradable

NRB: not ready biodegradable

Model Validation

• Specificity:

the ability to correctly predict RB molecules

$$Sp = \frac{TN}{TN + FP}$$

TN: # true negatives

FP: # false positives

• Sensitivity:

the ability to correctly predict NRB molecules

$$Sn = \frac{TP}{TP + FN}$$

TP: # true positives

FN: # false negatives

• ER:

the classification error rate

$$ER = 1 - \frac{Sp + Sn}{2}$$

1. k Nearest Neighbors (kNN)

Our reproduce result:

12 descriptors selected

Euclidean distance

Techniques	ER	Sp	Sn
KNN (paper)	0.15	0.90	0.81
KNN (reproduced)	0.12	0.90	0.83

2. Partial Least Squares Discriminant Analysis (PLSDA)

Our reproduce result:

23 descriptors selected

Techniques	ER	Sp	Sn
PLSDA (paper)	0.15	0.87	0.83
PLSDA (reproduced)	0.15	0.92	0.72

3. support vector machines (SVM)

Our reproduce result:

14 descriptors selected

Techniques	ER	Sp	Sn
SVM (paper)	0.14	0.91	0.82
SVM (reproduced)	0.15	0.92	0.72

SVM-improved

Our reproduce result:

all descriptors

5-fold cross-validation ==>7-fold

Techniques	ER	Sp	Sn
SVM (paper)	0.14	0.91	0.82
SVM (reproduced)	0.15	0.92	0.72
SVM (improved)	0.12	0.93	0.76

Part 3: Other Techniques Implementation

Overview

LDA(Linear Discriminant Analysis)

R Code

```
1  lda.fit <- lda(class ~ ., data =
    qsar_train)
2  lda.pred <- predict(lda.fit,
    qsar_test)
3  table(lda.class, qsar_test$class)
4  mean(lda.class == qsar_test$class)</pre>
```

CONFUSION MATRIX

Sensitivity Specificity Precision Recall F1 0.722 0.918 0.812 0.722 0.765 Accuracy Kappa 0.853 0.659

Naive Bayes

R Code

```
nb.fit <- naiveBayes(class ~.,data
= qsar_train)
nb.class <- predict(nb.fit,</pre>
qsar_test)
table(nb.class, qsar_test$class)
mean(nb.class == qsar_test$class)
```

CONFUSION MATRIX

Sensitivity	Specificity	Precision	Recall 0.944	F1
0.944	0.623	0.553		0.697
	Accuracy 0.729		Kappa 0.481	

Decision Tree(Without pruning)

```
q.rpart <- rpart(class~., data=q_train, method = 'class', cp=0)</pre>
```


Decision Tree(Without pruning)

CONFUSION MATRIX

Sensitivity 0.803	Specificity 0.75	Precision 0.857	Recall 0.803	F1 0.829
	Accuracy		Kappa	
	0.784		0.538	

▶ For each α :

$$\min_{T \subseteq T_0} \left\{ \sum_{m=1}^{|T|} \sum_{i: x_i \in R_m} (y_i - \hat{y}_{R_m})^2 + \alpha |T| \right\},\,$$

CP(Complexity Parameter) in rpart

$$\sum_{\text{Terminal Nodes}} Misclass_i + \lambda * (Splits)$$

R Code

- printcp(q.rpart)
- plotcp(q.rpart)


```
1 q.prune <- rpart(class~., data=q_train, method = 'class', cp=0.0089286)</pre>
```


CONFUSION MATRIX

Sensitivity	Specificity	Precision	Recall 0.852	F1
0.852	0.75	0.864		0.858
	Accuracy 0.817		Kappa 0.598	

Bagging

Cross Validation

```
num_trees<-c(50, 100, 150, 200, 300, 400)
    bagging_cv_acc < -seq(0, 0, length = 6)
    for (epoch in 1:6) {
      cv_index<-sample(837, 837)</pre>
      for (i in 1:6) {
        for (k in 1:5) {
          cv_test_index<-cv_index[(1+round(167.4*(k-
    1))):round(167.4*k)]
          qsar.bag.cv<-randomForest(as.factor(class)</pre>
    ~.,data = qsar_train[-cv_test_index, ],
 9
                                      ntree =
    num_trees[i], mtry = 41, importance = TRUE)
10
          bag.cv.pred <- predict(qsar.bag.cv,</pre>
    newdata = qsar_train[cv_test_index, ])
11
          cv.acc<-mean(bag.cv.pred ==</pre>
    qsar_train[cv_test_index, ]$class)
          bagging_cv_acc[i]<-bagging_cv_acc[i] +</pre>
12
    cv.acc
14
15 }
16  num_tree = num_trees[which.max(bagging_cv_acc)]
```


Bagging

R Code

```
qsar.bagging <-
randomForest(as.factor(class) ~.,data =
qsar_train, ntree = num_tree, mtry = 41,
importance = TRUE)
bag.pred <- predict(qsar.bagging, newdata =</pre>
qsar_test)
mean(bag.pred == qsar_test$class)
```

CONFUSION MATRIX

Sensitivity	Specificity	Precision	Recall	F1 0.8
0.75	0.938	0.857	0.75	
	Accuracy 0.876		Kappa 0.711	

Random Forest

Cross Validation

```
1 num_trees_rf<-c(100, 150, 200, 300, 400,
    500)
 2 rf_cv_acc < -seq(0, 0, length = 6)
   for (epoch in 1:6) {
      cv_index<-sample(837, 837)</pre>
     for (i in 1:6) {
       for (k in 1:5) {
          cv_test_index<-
    cv_index[(1+round(167.4*(k-
   1))):round(167.4*k)]
          qsar.rf.cv<-
    randomForest(as.factor(class) ~.,data =
   qsar_train[-cv_test_index, ],
                                    ntree =
    num_trees_rf[i], importance = TRUE)
10
          rf.cv.pred <- predict(gsar.rf.cv,
    newdata = qsar_train[cv_test_index, ])
          cv.acc<-mean(rf.cv.pred ==</pre>
11
   qsar_train[cv_test_index, ]$class)
          rf_cv_acc[i]<-rf_cv_acc[i] + cv.acc
12
13
14
15 }
16 num_tree_rf =
    num_trees_rf[which.max(rf_cv_acc)]
```


Random Forest

R Code

```
qsar.rf <- randomForest(as.factor(class)</pre>
~., data = qsar_train, ntree = num_tree_rf,
 importance = TRUE)
rf.pred <- predict(qsar.rf, newdata =
qsar_test)
mean(rf.pred == qsar_test$class)
```

CONFUSION MATRIX

Sensitivity 0.736	Specificity 0.952	Precision 0.883	Recall 0.736	F1 0.803
	Accuracy		Kappa	
	0.881		0.719	

AdaBoost (with Freund coefficient)

AdaBoost (with Freund coefficient)

CONFUSION MATRIX

Sensitivity 0.75	Specificity 0.911	Precision 0.806	Recall 0.75	F1 0.777
	Accuracy 0.858		Kappa 0.673	

AdaBoost with Breiman coefficient

- 1. Set $w_i = 1/n, i = 1, 2, ..., n$, where n is the number of training points.
- 2. For $m = 1, \ldots, M$, repeat:
 - (a) Fit a (weak) classifier $G_m(x)$ to training data using wights w_i .
 - (b) Compute the weighted error

$$e_m = \frac{\sum_{i=1}^{n} w_i 1_{\{y_i \neq G_m(x_i)\}}}{\sum_{i=1}^{n} w_i}$$

- (c) Compute $\alpha_m = \log((1 e_m)/e_m)$.
- (d) Update

$$w_i \leftarrow w_i \exp(\alpha_m 1_{\{y_i \neq G_m(x_i)\}}), \quad , i = 1, 2, \dots, n.$$

3. Final classifier

$$G(x) = \operatorname{sign}\left[\sum_{m=1}^{M} \alpha_m G_m(x)\right]$$

AdaBoost with Breiman coefficient

AdaBoost with Breiman coefficient

Sensitivity 0.764	Specificity 0.925	Precision 0.833	Recall 0.764	F1 0.797
	Accuracy		Карра	
	0.872		0.703	

Neural Network (NN): 1 hidden layer

Neural Network (NN): 1 hidden layer

CONFUSION MATRIX

Sensitivity 0.889	Specificity 0.884	Precision 0.79	Recall 0.889	F1 0.837
	Accuracy 0.885		Kappa 0.749	

Deep Neural Network (DNN): 2 hidden layers

Deep Neural Network (DNN): 2 hidden layers

Sensitivity 0.778	Specificity 0.925	Precision 0.836	Recall 0.778	F1 0.806
Accuracy 0.876			Kappa 0.715	

Part 4: Conclusion

Individual Model Summary

D.S. = descriptors selection

Techniques	Accuracy	Specificity	Sensitivity	
SVM+D.S.	85.3%	91.8%	72.2%	
KNN+D.S.	87.6%	89.7%	83.3%	
PLSDA+D.S.	85.3%	91.8%	72.2%	
LDA	85.3%	91.8%	72.2%	
Naive Bayes	72.9%	62.3%	94.4%	
Tree	78.4%	75%	80.3%	
Pruning Tree 81.7%		75%	85.2%	
SVM	87.6%	93.2%	76.4%	

Techniques	Accuracy	Specificity	Sensitivity
Bagging	87.6%	93.8%	75.0%
Random Forest	88.1%	95.2%	73.6%
Adaboost (with Breiman coef.)	87.2%	92.5%	76.4%
Adaboost (with Freud coef.)	85.8%	91.1%	75.0%
Neural Network (NN)	88.5%	88.4%	88.9%
DNN	87.6%	92.5%	77.8%

Individual Model Summary

Sensitivity	Specificity	Precision	Recall 0.778	F1
0.778	0.925	0.836		0.806
Accuracy 0.876			Kappa 0.715	

Consensus Model

Consensus Model	Accuracy	Specificity	Sensitivity
C1: (SVM+D.S.) + (KNN+D.S.) + (PLSDA+D.S.)	87.61%	93.15%	76.39%
C2: NN + SVM + (KNN+D.S.)	88.99%	92.47%	81.94%
C3: NN + DNN + (KNN+D.S.)	89.91%	92.47%	84.72%
C4: NN + Adaboost (with Breiman coef.) + (KNN+D.S.)	90.37%	93.15%	84.72%
C5: NN + Random Forest + (KNN+D.S.)	89.91%	93.15%	83.33%
C6: NN + Bagging + (KNN+D.S.)	88.99%	91.78%	83.33%
C7: NN + Adaboost (with Freund coef.) + (KNN+D.S.)	90.37%	93.84%	83.33%
C8: NN * 2 + Adaboost (with Freud coef.) + Adaboost (with Breiman coef.) + (KNN+D.S.)	90.83%	93.84%	84.72%

Thanks For Listening

Lei Lyu (ll3433)
Yang Yu (yy3102)
Wenxiang Zhou (wz2542)
Yi Chen (yc4029)