Niveaux: SM PC

Matière: Physique

PROF: Zakaryae Chriki | Résumé N:17

Oscillateurs Mécaniques :Pendule Pesant

I.Pendule Pesant

On appelle pendule pesant tout solide mobile autour d'un axe (Δ) (en principe horizontal) ne passant pas par son centre de gravité et placé dans un champ de pesanteur

1. Equation différentielle :

Système étudié : (S)

Bilan des forces extérieur exercées sur (S):

- * \overrightarrow{P} le poids du système (S)
- * \overrightarrow{R} force exercée par l'axe (Δ) sur (S);

Application de la relation fondamentale de la dynamique : $\mathcal{M}_{\Delta}(\overrightarrow{P}) + \mathcal{M}_{\Delta}(\overrightarrow{R}) = J_{\Delta}.\ddot{\Theta}$

 $\mathcal{M}_{\Delta}(\overrightarrow{R}) = 0$ car la droite d'action de \overrightarrow{R} coupe l'axe (Δ)

On pose d = 0G, où G est le centre d'inertie du système (S). Dans ce

cas nous avons :

$$\mathcal{M}_{\Delta}(\overrightarrow{P}) = -mgdsin\theta$$

$$-mgdsin\theta = J_{\Delta}.\ddot{\theta}$$

$$\ddot{\theta} + \frac{mgd}{J_{\Delta}}sin\theta = 0$$

Position d'équilibre

C'est l'équation différentielle du mouvement du pendule pesant, elle est non linéaire.

Conclusion:

Le mouvement du pendule pesant est un mouvement de rotation oscillatoire, periodique mais non sinusoïdale

2 cas des petites oscillations :

Pour des faibles oscillations ($\theta \le 0.26$ rad) on peut écrire avec une bonne approximation $sin\theta \simeq \theta$

d'où l'équation différentielle dans ce cas est : $\left| \ddot{\theta} + \frac{mgd}{J_{\Delta}} \theta = 0 \right|$

C'est une équation différentielle du mouvement du pendule pesant pour des faibles oscillations.

La solution de cette équation différentielle est de la forme : $\theta(t) = \theta_m cos \left(\frac{2\pi}{T_0}t + \phi_0\right)$

$$\theta(t) = \theta_m cos \left(\frac{2\pi}{T_0}t + \varphi_0\right)$$

 θ_m est l'amplitude des oscillations (rad), φ_0 est la phase à l'origine des dates (rad) et T_0 la période propre du pendule de pesant.

3. Expression de la période propre T_0 :

La période propre d'un pendule pesant libre et non amorti qui effectue des oscillations de faible amplitude, a pour expression :

$$T_0 = 2\pi \sqrt{\frac{J_\Delta}{mgd}}$$

 T_0 la période propre du pendule (s)

 $\frac{T_0 = 2\pi\sqrt{\frac{J_\Delta}{mgd}}}{\frac{J_\Delta}{g}} \frac{\int_0^1 \ln p \operatorname{critcal} p \operatorname{colline}(s)}{\int_\Delta M \operatorname{oment d'inertie du système par rapport à l'axe}(\Delta) \operatorname{en}(kg.m^2)}{\int_\Delta M \operatorname{oment d'inertie du système par rapport à l'axe}(\Delta) \operatorname{en}(kg.m^2)}$ $\frac{d \operatorname{distance séparant le centre d'inertie G du pendule à l'axe}(\Delta) \operatorname{en}(kg.m^2)}{\int_0^2 \operatorname{en}(kg.m^2)}$ $\frac{d \operatorname{distance séparant le centre d'inertie G du pendule à l'axe}(\Delta) \operatorname{en}(kg.m^2)}{\int_0^2 \operatorname{en}(kg.m^2)}$ $\frac{d \operatorname{distance séparant le centre d'inertie G du pendule à l'axe}(\Delta) \operatorname{en}(kg.m^2)}{\int_0^2 \operatorname{en}(kg.m^2)}$ $\frac{d \operatorname{distance séparant le centre d'inertie G du pendule à l'axe}(\Delta) \operatorname{en}(kg.m^2)}{\int_0^2 \operatorname{en}(kg.m^2)}$ $\frac{d \operatorname{distance séparant le centre d'inertie G du pendule à l'axe}(\Delta) \operatorname{en}(kg.m^2)}{\int_0^2 \operatorname{en}(kg.m^2)}$

II. Etude Energitique

1. Energie cinétique :

L'énergie cinétique d'un pendule pesant effectuant un mouvement oscillatoire est définie par la relation :

$$E_c = \frac{1}{2} J_\Delta \dot{\Theta}^2$$

Avec J_{Δ} est le moment d'inertie du pendule par rapport à l'axe Δ $E_c = \frac{1}{2}J_\Delta\dot{\theta}^2$ exprimé en $kg.m^2$; $\dot{\theta}$ est la vitesse angulaire du pendule en rad/s et E_c est l'énergie cinétique en joule (J).

$$\theta = \theta m. \cos\left(\frac{2\pi}{T_0}.t + \phi\right) \quad \text{et} \quad \dot{\theta} = -\theta m. \frac{2\pi}{T_0}. \sin\left(\frac{2\pi}{T_0}.t + \phi\right) \quad \text{avec} \quad \omega_0 = \frac{2\pi}{T_0} = \sqrt{\frac{C}{J_\Delta}}$$

$$Ec = \frac{1}{2}.J_\Delta \dot{\theta^2} = \frac{1}{2}.J_\Delta \left(-\theta m. \frac{2\pi}{T_0}.\sin\left(\frac{2\pi}{T_0}.t + \phi\right)\right)^2 = \frac{1}{2}.C(\theta_m^2 - \theta^2)$$

- Si $\theta = \theta$ m ou $\theta = -\theta$ m alors l'énergie cinétique est nulle donc la vitesse est nulle et l'oscillateur s'arrête et change le sens
- Si $\theta = 0$ alors l'oscillateur passe par sa position d'équilibre et son énergie cinétique est maximale et sa vitesse l'est aussi

Prof.Zakaryae Chriki

2. Energie potentielle de pesanteur:

L'énergie potentielle de pesanteur d'un pendule pesant est donnée par la relation suivante : $|E_{pp} = mgz + Cte|$

Avec m la masse du système en (kg), g intensité de pesanteur en (m/s^2) , z la côte du centre d'inertie G du système sur l'axe O, \vec{k} d'un repère orthonormé $\Re(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ orienté vers le haut.

Cte une constante qui dépend de l'état de référence choisi où l'énergie potentielle est nulle ($E_{pp} = 0$ et $z = z_{ref}$

L'énergie potentielle de pesanteur en fonction de θ est :

 $E_{pp} = mgd(1 - cos\theta)$ avec d = OG.

$$E_{pp} = mgd(1 - cos\theta)$$

ΔEp_p: Variation de l'Energie potentielle de pesanteur

$$\Delta E p_p = m. g. (Z_2 - Z_1) = -W_{1 \rightarrow 2}(\vec{P})$$

4. Energie mécanique :

L'expression de l'énergie mécanique d'un pendule pesant dans un référentielle terrestre est : $E_m = \frac{1}{2}J_\Delta\dot{\theta}^2 + mgz + Cte$

$$E_m = \frac{1}{2}J_\Delta \dot{\theta}^2 + mgz + Cte$$

 $E_{pp} = 0$

5. Diagramms d'énergie d'un penddule pesant :

Diagramme des énergies en fonction de z : (en absence de frottement)

* $E_{pp} = mgz$ avec $0 \le z \le +z_m$

* l'énergie mécanique : pour $0 \le z \le z_m$ on a $E_m = E_c + mgz$ lorsque

 $z = z_m$ on a $E_m = mgz_m$

lorsqu'il passe par la position d'équilibre on a z = 0 et $E_m = E_c = \frac{1}{2} J_\Delta \dot{\theta}_m^2$

 E_m est constante et il y a une échange d'énergie au cours des oscillations , soit $\Delta E_c = -\Delta E_{pp}$

Diagramme des énergies en fonction de θ

* L'expression de l'énergie potentielle en fonction de θ est :

 $E_{pp} = mgd(1 - cos\theta)$ avec $-\theta_m \le \theta \le \theta_m$.

Cas 1 : $E_m > 2mgd \Longrightarrow E_c = E_m - E_{pp} > 0$ le pendule ne s'arrête pas et il tourne autour de l'axe (Δ) .

Cas 2: $E_m < 2mgd \Longrightarrow E_c = E_m - E_{pp} < 0$ et puisque E_c ne peut pas être négative alors dans ce cas $E_c \geqslant 0$ alors pour $E_c = 0$ l'élongation $\theta = \theta_m$ ou $\theta = -\theta_m$ et le pendule pesant a un mouvement oscillatoire libre et amorti

III. Pendule simple

Le pendule simple est une masse ponctuelle fixée à l'extrémité d'un fil inextensible de masse négligeable, et oscillant sous l'effet de la pesanteur.

$$d=\ell$$
 et $J_{\Delta}=m.\ell$

Expression de la période T₀

$$T_0 = 2\pi$$
. $\sqrt{\frac{J_{\Delta}}{m. g. d}} = 2\pi$. $\sqrt{\frac{m. \ell^2}{m. g. \ell}} = 2\pi$. $\sqrt{\frac{\ell}{g}}$

La longueur du pendule simple synchrone avec le pendule pesant (ont même période propre T₀)

$$T_0 = 2\pi$$
. $\sqrt{\frac{J_{\Delta}}{m.g.d}} = 2\pi$. $\sqrt{\frac{\ell}{g}}$ donc $\frac{J_{\Delta}}{m.g.d} = \frac{\ell}{g}$ d'où $\ell = \frac{J_{\Delta}}{m.d}$

Position d'équilibre

Amortissement des oscillations mecaniques

L'amortissement d'un système est une atténuation de l'amplitude de son mouvement par dissipation (perte) de l'énergie mécanique

$$\Delta E_{\rm m} = W_{A \to B}(\vec{R}) < 0$$

On en distingue deux types d'amortissement

Un solide qui oscille dans un fluide (liquide ou gaz) est soumis à un amortissement

Amortissement solide

Le frottement entre deux solides correspond à une dissipation sous la forme de chaleur.

Cas de faible amortissement

- L'amplitude diminue jusqu'as arrêt du mobile
- Mouvement de l'oscillateur est pseudo periodique

T: pseudo période

T=T₀ : la pseudo période et la période propre sont égales (pour les fortement solide)

Différents régimes de retour à l'équilibre d'un système en fonction du frottement On observe les régimes :

- Pseudopériodique (1)
- Critique (2)
- Apériodique (3)

Service : Oscillations forcées et résonance

Le phénomène de résonance mécanique se produit lorsque la période T_e des oscillations forcées est voisine de la période propre T_e

du résonateur

Influence de l'amortissement sue la résonance :

Dans le cas d'un amortissement faible du résonateur, l'amplitude des oscillations forcées à la résonance prend une valeur grande; on dit que la résonance est aigue. Dans le cas d'un amortissement du résonateur fort, l'amplitude des oscillations prend une valeur faible, on dit que la résonance est floue ou obtûe.