進捗報告

金沢大学大学院 自然科学研究科 機械科学専攻

M1 高林 奎吾

今回の報告

- ①リザバーチップの損失について
- ② リザバーチップを用いた20step先までのカオス時系列予測
- ③ランダム波形を用いた記憶保持性能の評価

リザバーを用いた時系列予測・画像分類

① リザバーチップの損失について

Po =	9.64	(dBm)	
チップ1a			挿入損失(dB)
114	-24.6	(dBm)	34.24
115	-15.4	(dBm)	25.04
116	-21.6	(dBm)	31.24
117	-25	(dBm)	34.64
118	-19.5	(dBm)	29.14
119	-22.8	(dBm)	32.44
1110	-26.1	(dBm)	35.74
1111	-16.2	(dBm)	25.84

このリザバーチップでは $2.67 \times 10^{-4} \sim 3.13 \times 10^{-3}$ の損失

② New-Reservoir chip によるカオス時系列予測

Laser Input: 1550nm, 10mW

タスク:1ステップ先のデータを予測する

実験結果 1step先

リッジ回帰により学習

(alpha = 1e-06でnmseが最小値)

Train 3000点

Test 1000点

Training NMSE: 0.04966

Test NMSE: 0.05341

実験結果:1~20step先の予測

カオス波形のistep先の予測結果

20step先の予測までをNMSE約0.5以下で予測できることがわかる

Laser Input: 1550nm, 10mW

タスク:1ステップ前のデータを予測する → 記憶保持性能がわかる

AWG: 12.5(GS/s)

x8ポートのデータを取得

(50K)

Oscillo: 50(GS/s)

タスク:iステップ前の入力信号(Random)を予測する

ytagをiステップ前にずらす

予測値とターゲットの相関^2

$$Ci = rac{S(ytag, ypred)}{\sqrt{Vypred * Vytag}}$$
 $S(x,y)$: 共分散 $\forall x$: 分散

memory capacity =
$$\sum_{i=1}^{20} corr(i)^2$$

= 3.649017

予測値とターゲットの相関^2

記憶保持が可能な時間について

先行研究において、Corr2=0.5以上において 記憶保持性能があるとしていた。

<u>本実験では、i = 4まで</u>

1stepで記憶できる時間は0.08ns (波形生成器の入力レート12.5GS/s)

およそ320psの時系列情報の記憶が可能

本実験(12.5GS/s)

memory capacity = 3.6490

記憶時間:320ps

先行研究(25GS/s, サンプリング13点)

記憶時間:240ps

先行研究では13点のサンプリングである一方で、本研究では8点のサンプリング点数にも関わらず、記憶保持の時間が長いことがわかる。

本実験(12.5GS/s)

memory capacity = 3.6490

記憶時間:320ps

先行研究(12.5GS/s, サンプリング100点)

memory capacity = 3.159

記憶時間:240ps

先行研究では100点のサンプリングである一方で、本研究では8点のサンプリング点数にも関わらず、記憶保持の時間が長いことがわかる.

まとめ

- ・リザバーチップの損失を調査した
- ・リザバーを用いて、1~20step先のカオス波形予測が可能であることを示した
- ・iステップ前のランダム波形の予測により、記憶保持性能を調べることができた