

BL606P 射频性能测试

使用手册

Version: 1.4

Copyright @ 2022

www.bouffalolab.com

目录

1	MF	G 固件版	本说明																		3
2	版	本记录																			4
3	概〕	土																			5
4	下载		工具包																		7
5	烧	录/下载测记	战固件																		8
	5.1	下载测记	式固件																		8
	5.2	运行测记	式固件																		10
6	频值	扁补偿设置																			12
7	Wil	Fi 射频性能	 沙测试																		14
	7.1	发射 Wi	Fi 数据	包																	14
	7.2	接收 Wi	Fi 数据	包																	17
	7.3	发射 Wi	Fi 单载	波																	17
8	BL	E 射频性能	沙测试																		19
	8.1	发射 BL	E数据	包	•																19
	8.2	接收 BL	E数据	包																	20
	8.3	发射 BL	E单载	波																	21
9	ВТ	射频性能源	则试 .																		23
	9.1	BT 发送	设置.																		23
	92	BT 接收	设置																		24

MFG 固件版本说明

表 1.1: MFG 版本说明

MFG 版本	release note							
bl606p_mfg_v0.24	1.CW Test mode 下功率发射有概率不能被完全关闭 2.power offset 功能暂不能用							
bl606p_mfg_v0.25	 1. 修复 CW Test mode 下功率发射有概率不能被完全关闭问题 2. 修复 wifi power offset 功能 3. 增加 ble power offset 存储/读取/应用功能 4. 增加 ble 单载波功能 							
bl606p_mfg_v0.26	1. 修正 wifi 单载波不能连续调整 channel 和 power 问题 2. 修正 ble tx_power 错误问题							
bl606p_mfg_v0.27	1.add dts 2.fix ble tx power issue							
bl606p_mfg_v0.28	1.reset ble after ble cw mode test							
bl606p_mfg_v0.29	1.fix call rf_init logic 2.turn off bz_phy_tx_rampup_fm_on, avoid itest coded phy tx test issue							
bl606p_mfg_v0.30	1.turn off bz_phy_tx_rampup_fm_on, avoid itest coded phy tx test issue 2.turn off singen fix en							
bl606p_mfg_v0.31	1.fix cmd o and k							
bl606p_mfg_v0.32	1.add feat flash htol							
bl606p_mfg_v0.33	1.add feat mac write and read							
bl606p_mfg_v0.34	1.add debug msg for reading mac slot							

表 2.1: 修改记录

版本	更新内容							
V1.0	initial version							
V1.1	modify default dts to 8M							
V1.2	add ble test description							
V1.3	remove cmd description							
V1.4	add bt test description							

概述

本文档用于指导终端用户使用射频性能测试工具 (RF MFG) 完成对 BL606P 芯片及模组的射频性能评估测试。射频性能测试之前需要对 BL606P 下载 MFG 测试固件,以便于接收射频性能测试工具下发的串口指令。射频性能测试工具 (RF MFG) 集成于 BLDevCube 工具中。射频性能测试工具 (RF MFG) 界面如下图所示。

图 3.1: RF MFG 界面图

对已经下载了 MFG 固件的 BL606P 芯片,使用射频性能测试工具 (RF MFG) 可以控制 BL606P 芯片实现的以下功能:

• 发射 WiFi/BLE 数据包

- 接收 WiFi/BLE 数据包
- 发射 WiFi/BLE 单载波
- 射频产测校准
- 射频产测校准验证
- 训练功率和频偏经验值

下载开发烧录工具包

如果用户没有开发烧录工具 (BLDevCube),可以通过 Bouffalo Lab Dev Cube,获取开发烧录工具。该工具 (BLDevCube) 内部集成了固件下载工具 (Simple Flasher)、射频性能测试工具 (RF MFG) 以及 MCU 测试工具。另外,本文档使用到的 MFG 测试固件也默认包含在该工具包目录下: bl606p/builtin_imgs/ bl606p_mfg_v0.30/gu/。BLDevCube 工具包解压后的目录文件如下图所示。

图 4.1: 开发烧录工具包目录文件

烧录/下载测试固件

5.1 下载测试固件

本文档以 BL606P 开发板为例演示固件下载过程,指导终端用户将 MFG 测试固件下载到 BL606P 芯片内部 Flash 中。BL606P 开发板如下图所示。

图 5.1: BL606P 开发板

开发板具有两组 USB Type-C 接口,其中一组接口 (Power) 用于给开发板供电,另外一组接口 (Debug) 连接一颗 FT232 USB 转串口芯片,用于 PC 端与 BL606P 模组进行串口通信。当两组接口连接到 PC 端时,会在 PC 端的设备管理器中出现一个串口设备。若 PC 端未显示串口设备或显示串口驱动安装失败,可尝试如下链接https://www.ftdichip.com/Drivers/VCP.htm自行下载驱动程序安装。BL606P 开发板上的 USB 转串口芯片与待测模组串口的连接关系是:

- TXD: 与 BL606P 模组的 RXD(GPIO21) 相连
- RXD: 与 BL606P 模组的 TXD(GPIO20) 相连

PC 端成功识别串口设备后,双击 BLDevCube 文件,在 Chip Type 中选择 bl606p,进入 Simple Flasher 固件下载界面。

图 5.2: 固件下载界面

在上图界面的左侧通信接口设置中:

- Interface: 选择烧录的通信接口,这里选择 uart 进行烧录
- Port/SN: 当选择 UART 进行烧录时,选择 PC 端识别到的待测模组 COM 口号,可以点击 Refresh 按钮进行 COM 号的刷新
- Uart Rate: 当使用 UART 作为烧录接口时,设置 UART 接口的波特率,可以填写 2M 即 2000000
- JLink Rate: 当选择 JLink 接口烧录时, 设置 JLink 接口的通信速率
- Xtal: 选择待测模组所使用的晶振频率,对于 BL606P 开发板晶振频率默认为 40M

其它选项项使用默认配置即可。

在上图界面右侧的烧录文件配置中,分别选择:

- Dts: 选择烧录工具目录下,对应芯片型号 device_tree 目录下的设备树文件,本例中使用 bl606p/device_tree/bl_factory_params_loTKitA_40M.dts
- Pt Table: 选择烧录工具目录下,对应芯片型号 partition 目录下的分区表,本例中使用 bl606p/partition/partition_-cfg_8M.toml

- Boot2: 选择烧录工具目录下,对应芯片型号 builtin_imgs 目录下的 Boot2,本例中使用 bl606p/builtin_imgs/boot2_-iap_ bl606p_v6.0/boot2_iap_release.bin
- MFG Bin:选择烧录工具目录下,对应芯片型号 builtin_imgs 目录下的 mfg,本例中使用 bl606p/builtin_imgs/ bl606p_-mfg_v0.30/gu/ bl606p_mfg_gu_autoboot.bin

完成上述界面配置后,将待测模组进入到 UART 启动模式 (UART 烧录),方法如下:- 先按下开发板上的 Boot 按键,再按下 Reset 按键- 然后松开 Reset 按键,最后松开 Boot 按键

完成将待测模组切换到 UART 启动模式操作后,点击界面中的 Create&Download 按钮,开始 MFG 测试固件的烧录。烧录成功的 log 如下图所示。

图 5.3: 固件烧录成功界面

5.2 运行测试固件

测试固件烧录完成后,在 BLDevCube 工具中,通过 View->RF MFG 进入到 RF MFG 测试界面。选择对应的 COM 号,点击 Open 按钮,打开对应串口,直接按下开发板上 Reset 键,此时 BL606P 芯片就可以正常运行 MFG 测试固件,在 RF MFG 界面的 LOG 窗口位置可以看到固件程序成功运行的 log,如下图所示。

BL606P 射频性能测试使用手册 10/ 24 @2022 Bouffalo Lab

图 5.4: MFG 测试固件成功运行

注解: RF MFG 界面与 MFG 测试固件通过串口通信,使用的波特率是 115200,数据位为 8 位,没有奇偶校验。

频偏补偿设置

晶体为整个芯片 soc 系统提供精准的时钟源,时钟源的精准程度对射频收发机有着至关重要的作用,其中一项射频指标是载波频偏。IEEE802.11 协议中针对载波频偏范围具有严格的规范要求 (±20ppm 以内),如果频偏过大,会直接造成 WiFi 系统在实际使用过程中丢包率增加,降低数据吞吐率。晶体的负载电容 (CapCode) 可以微调晶体自身的振荡频率,通过调节晶体的负载电容 (CapCode),可以优化载波频偏该项射频指标。BL606P 芯片内部自带晶振负载电容阵列,根据晶振原厂提供的手册,可以调节不同晶振负载电容值以达到补偿载波频偏的目的。

表 6.1: BL606P 对应的电容补偿值

XTAL Loading Capacity (pF)	Capacity Code							
12	32~36							
15	38~43							

设置方法如下:

- 1. 在 Cap Code 中填写负载电容需要补偿的值,每一个值代表实际电容大小为 0.4pF。
- 2. 点击 Misc Set 按键更新补偿值到 BL606P 芯片内部。

图 6.1: 频偏补偿设定

注解:实际 PCB 走线也存在一定的寄生电容,所以最佳频偏补偿值以实际测试结果为准。

WiFi 射频性能测试

7.1 发射 WiFi 数据包

7.1.1 Channel 及 Power 设置

通过 Channel 和 Power 下拉选项框,可以设置数据包的发射信道和发射功率。Channel 选择范围为 1-14,Power 选择范围为 10-23dBm。

图 7.1: 设置 Channel 和 Power 参数

WiFi 不同模式以及速率使用的调制方式不同,对信号质量 (如: EVM) 也有不同的要求。为了满足 WiFi 标准要求,建议不同速率下的发射功率不要超过最大发射功率限制,不同速率的最大发射功率如下表所示。

表 7.1: 最大发射功率表

Mode	Rate	Maximum Power(dBm)					
	MCS7	17					
	MCS6	18					
	MCS5	18					
11n	MCS4	18					
11 n	MCS3	18					
	MCS2	18					
	MCS1	18					
	MCS0	18					
	54Mbps	18					
11g	48Mbps	19					
	36Mbps	20					
	24Mbps	20					
	18Mbps	20					
	12Mbps	20					
	9Mbps	20					
	6Mbps	20					
	11Mbps	20					
11b	5.5Mbps	20					
ווט	2Mbps	20					
	1Mbps	20					

BL606P 针对每个信道提供了功率校准机制,用户可在产测环节中对 BL606P 模组或产品的各个 Channel 进行功率校准,最后的校准值将写入到 flash 中,后续正常应用程序启动后,将根据保存的校准值补偿模组的发射功率。

BL606P 对所有信道的功率补偿值预留了长度为 14 的数组空间(Power_Offset[14]),数组中的每个元素长度为 4bit,最高位(MSB)为符号位,允许的功率补偿数值范围为-16~15(即-4dB~3.75dB),超出该取值范围则表示产测校准失败。

关于 BL60X 系列芯片详细的产测校准机制,请参考《BL60X_产测校准算法》。

7.1.2 模式及速率设置

发射 11b 数据包

11b 数据包可以选择速率: 1Mbps,2Mbps,5.5Mbps,11Mbps,前导默认使用 Long preamble。设置完毕后,点击 802.11b Start 按钮开始发射 11b 数据包,在数据包发射过程中,log 区域会打印已经发送数据包的个数。如果想要停止发射,点击 802.11b Stop 按钮即可。

图 7.2: 11b 数据包速率设置

发射 11g 数据包

11g 数据包可以选择速率: 6Mbps, 9Mbps, 12Mbps,18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps, 设置完毕后, 点击 802.11g Start 按钮开始 11g 发射数据包,在数据包发射过程中,log 区域会打印已经发送数据包的个数。如果想要停止发射,点击 802.11g Stop 按钮即可。

图 7.3: 11g 数据包速率设置

发射 11n 数据包

11n 数据包可以选择速率选项为 MCS0-MCS7, 默认带宽 20MHz, Long GI, 使用 HT-MF 模式。

注解:目前 HT_GF 模式不支持。

设置完毕后,就可以点击 802.11n Start 按钮开始发射 11n 数据包,在数据包发射过程中,log 区域会打印已经发送数据包的个数。如果想要停止发射,点击 802.11n Stop 按钮即可。

图 7.4: 11n 数据包速率设置

7.2 接收 WiFi 数据包

WiFi 接收数据包设置较为简单,点击 RX Start 按钮后即可进入 WiFi 数据包接收模式,点击 RX Frm Cnt 按钮可以显示当前为止接收到的数据包个数以及数据包的 RSSI 平均值,如下图所示。

图 7.5: 接收 WiFi 数据包

注解: 在开始测试接收性能之前,需要先手动停止发射性能测试。

7.3 发射 WiFi 单载波

发送 WiFi 的单载波时, 需要先设定发射信道(Channel)和功率(Power), 再将测试模式(Mode)选择到连续波 Test(CW)模式, 停止发射 WiFi 单载波时, 将测试模式 (Mode)选择为 Normal 即可, 如下图所示。

图 7.6: 发射 WiFi 单载波

图 7.7: 停止发射 WiFi 单载波

BLE 射频性能测试

8.1 发射 BLE 数据包

发射 BLE 数据包时, 需要选择信道(PHY Channel), 速率(Tx Rate), 数据包长度(Tx Data Length), 数据包类型(Tx Payload Type), 发射功率(Power), 然后点击 Tx Start 按钮进入 BLE 数据包发射模式, 当 LOG 窗口中出现"le tx test starts successfully" 信息时, 表示 BLE 成功进入发射模式, 如下图。

图 8.1: 发射 BLE 数据包

停止发射数据包可以点击 Stop 按钮,当 LOG 中出现"le test stopped"时,表示停止发射成功,如下图所示。

图 8.2: 停止 BLE 发射数据包

8.2 接收 BLE 数据包

BLE 接收数据包时, 选择需要测试的信道(PHY Channel), 速率(Rx Rate), 然后点击 Rx Start 按钮即可进入 BLE 数据包的接收模式, 当 LOG 中出现"le rx test starts successfully" 信息时, 表示 BLE 成功进入接收模式, 如下图所示。

图 8.3: 接收 BLE 数据包

当 BLE 停止接收时,点击 Stop 按钮,LOG 窗口中会显示接收到的数据包个数,如下图。

图 8.4: 停止 BLE 接收数据包

8.3 发射 BLE 单载波

发射 BLE 单载波时, 需要先将测试模式(Mode)选择到连续波 Test(CW) 模式, 然后设置 BLE 的信道(PHY Channel)和功率(Power), 最后点击 BLE 的 Tx Start 按钮。关闭 BLE 单载波时, 需要点击 BLE 的 Stop 按钮, 如下图。

图 8.5: 发送 BLE 单载波

图 8.6: 关闭 BLE 单载波

BT 射频性能测试

9.1 BT 发送设置

BT 发送时,选择需要的 PHY Channel,Packet Type,Tx Payload Type,Power,点击 Tx Start 进入 BT 的发送模式,当 LOG 中出现"bt tx test starts successfully"时,表示 BT 进入发送模式成功,如下图。

图 9.1: BT 发送数据包

测试可以使用 Stop 按钮停止, 当 LOG 中出现"nb_packet_tx=xxxx"时,表示停止成功,并显示发送的数据包个数,如下图。

图 9.2: BT 停止发送数据包

9.2 BT 接收设置

BT 接收时,选择需要的 PHY Channel,Packet Type,点击 Rx Start 即可进入数据包的接收模式,当 LOG 中出现"bt rx test starts successfully"时,表示 BT 进入接收模式成功,如下图。

图 9.3: BT 接收数据包

测试可以使用 Stop 按钮停止, 当 LOG 中出现"nb_packet_rx=xxxx"时,表示停止成功,并显示收到的数据包个数,如下图。

图 9.4: BT 停止接收数据包