Problem 1. Consider a dielectric ball of radius R with dielectric constant ϵ . Obtain a multipole expansion for the field, $\phi(\mathbf{x})$, of a point charge q placed at a point \mathbf{x}' with $|\mathbf{x}'| = d > R$ (so the charge is outside of the dielectric ball).

Hint: Follow the procedure we used in class to find the multipole expansion of a point charge without the dielectric, but now consider the three regions $r \leq R$, $R \leq r \leq d$, and $r \geq d$. Obtain the form of the solution in these regions and match suitably.

Solution. The multipole expansion in spherical harmonics is given by Eq. (2.79) in the course notes,

$$\phi(\mathbf{x}) = \sum_{l,m} \frac{4\pi}{2l+1} \frac{q_{lm}}{r^{l+1}} Y_{lm}(\theta, \phi), \tag{1}$$

where the spherical multipole moments q_{lm} are defined in Eq. (2.80),

$$q_{lm} \equiv \int \rho(\mathbf{x}') \, r'^l \, Y_{lm}^*(\theta', \phi') \, d^3 x' \,.$$

Note that (1) is valid only for $|\mathbf{x}| \geq R$ when the charge distribution $\rho(\mathbf{x}')$ is nonzero only within $|\mathbf{x}'| \leq R$, which is outside the dielectric.

The spherical harmonics Y_{lm} are given by Eq. (2.58),

$$Y_{lm}(\theta,\phi) = \sqrt{\frac{2l+1}{4\pi}} \sqrt{\frac{(l-m)!}{(l+m)!}} P_l^m(\cos\theta) e^{im\varphi},$$

and the associated Legendre polynomials P_l^m are given by Eq. (2.59),

$$P_l^m(x) = \frac{(-1)^m}{2^l l!} (1 - x^2)^{m/2} \frac{d^{l+m}}{dx^{l+m}} (x^2 - 1)^l.$$

Problem 2. A dielectric ball of radius R and dielectric constant ϵ is placed in the external electrostatic potential $\phi_0 = \alpha(2z^2 - x^2 - y^2)$ where α is a constant, with the center of the ball at $\mathbf{x} = 0$.

2.a Find the total electrostatic potential ϕ everywhere.

Hint: It is useful to note that the external potential is proportional to $r^2 Y_{20}(\theta, \phi)$. This should allow you to determine/guess the form of the total potential inside and outside the dielectric up to unknown constants, which can then be determined by matching.

Solution. Poisson's equation inside a dielectric is given by Eq. (3.22) in the course notes,

$$\nabla^2 \langle \phi \rangle = -\frac{4\pi}{\epsilon} \langle \rho_f \rangle .$$

Here, $\langle \rho_f \rangle = 0$ since there are no free charges within the dielectric, so this reduces to Laplace's equation. The general solution to Laplace's equation is given by Eq. (3.61) in Jackson,

$$\langle \phi \rangle (r, \theta, \varphi) = \sum_{l,m} \left(A_{lm} r^l + \frac{B_{lm}}{r^{l+1}} \right) Y_{lm}(\theta, \phi),$$
 (2)

February 8, 2020

where A_{lm} and B_{lm} are constant coefficients.

In the region r < R, we must have $B_{lm} = 0$ because $1/r^{l+1}$ is undefined at the origin. In the region r > R, we may invoke the boundary condition at infinity:

$$\phi(r > R, \theta, \varphi) \to \alpha r^2 Y_{20}(\theta, \phi),$$

where we note that $\langle \phi \rangle = \phi$ for r > R. This implies that the only nonzero A_{lm} here is $A_{20} = \alpha$. Thus we have

$$\langle \phi \rangle (r, \theta, \varphi) = \begin{cases} \sum_{l,m} A_{lm} r^l Y_{lm}(\theta, \phi) & \text{if } r \leq R, \\ \alpha r^2 Y_{20}(\theta, \phi) + \sum_{l,m} \frac{B_{lm}}{r^{l+1}} Y_{lm}(\theta, \phi) & \text{if } r \geq R. \end{cases}$$

To solve for the remaining coefficients, we invoke the boundary conditions at r=R. Firstly, $\langle \phi \rangle$ must be continuous at the boundary. This gives us

$$\langle \phi \rangle (R, \theta, \varphi) = \sum_{l,m} A_{lm} R^l Y_{lm}(\theta, \phi) = \alpha R^2 Y_{20}(\theta, \phi) + \sum_{l,m} \frac{B_{lm}}{R^{l+1}} Y_{lm}(\theta, \phi),$$

SO

$$A_{20} = \alpha + \frac{B_{20}}{R^5},$$
 $A_{lm} = \frac{B_{lm}}{R^{l+3}} \text{ for } (l, m) \neq (2, 0).$ (3)

Secondly, we require that $\hat{\mathbf{n}} \cdot \langle \mathbf{D} \rangle$ is also continuous at the boundary, where

$$\langle \mathbf{D} \rangle = \epsilon \langle \mathbf{E} \rangle$$

inside a dielectric, from Eq. (3.20) in the course notes. (In vacuum, $\mathbf{D} = \mathbf{E}$.) Here we are only concerned with the r component of $\langle \mathbf{E} \rangle$. Applying $\langle \mathbf{E} \rangle = -\nabla \langle \phi \rangle$, we have

$$\langle E_r \rangle (r, \theta, \phi) = \begin{cases} \sum_{l,m} A_{lm} l r^{l-1} Y_{lm}(\theta, \phi) & \text{if } r \leq R, \\ 2\alpha r Y_{20}(\theta, \phi) - \sum_{l,m} (l+1) \frac{B_{lm}}{r^{l+2}} Y_{lm}(\theta, \phi) & \text{if } r \geq R. \end{cases}$$

Then we need to satisfy

$$\langle \mathbf{D} \rangle (R, \theta, \varphi) = \epsilon \sum_{l,m} A_{lm} l R^{l-1} Y_{lm}(\theta, \phi) = 2\alpha R Y_{20}(\theta, \phi) - \sum_{l,m} (l+1) \frac{B_{lm}}{R^{l+2}} Y_{lm}(\theta, \phi),$$

which stipulates

$$A_{20} = \frac{1}{\epsilon} \left(\alpha - \frac{3}{2} \frac{B_{20}}{R^5} \right), \qquad A_{lm} = -\frac{1}{\epsilon} \frac{(l+1)}{l} \frac{B_{lm}}{R^{2l+1}} \quad \text{for } (l,m) \neq (2,0).$$
 (4)

Eliminating B_{lm} from (3) and (4), we obtain

$$A_{20} = \frac{5\alpha}{2\epsilon + 3},$$
 $A_{lm} = 0$ for $(l, m) \neq (2, 0),$

and substituting back into (3) yields

$$B_{20} = 2\alpha R^5 \frac{1-\epsilon}{2\epsilon+3},$$
 $B_{lm} = 0 \text{ for } (l,m) \neq (2,0).$

Finally, the total electrostatic potential everywhere is

$$\langle \phi \rangle (r, \theta, \varphi) = \begin{cases} \frac{5\alpha}{2\epsilon + 3} r^2 Y_{20}(\theta, \phi) & \text{if } r \leq R, \\ \alpha r^2 Y_{20}(\theta, \phi) + 2\alpha \frac{1 - \epsilon}{2\epsilon + 3} \frac{R^5}{r^{l+1}} Y_{20}(\theta, \phi) & \text{if } r \geq R. \end{cases}$$

February 8, 2020

2.b Calculate the interaction energy between the field produced by the dielectric and the external field. Assume that the potential arises from "distant charges" so that the formula for \mathcal{E}_{int} given in class and the notes can be used.

2.c Calculate the total force needed to hold the dielectric ball in place.

In addition to the course lecture notes, I consulted Jackson's *Classical Electrodynamics* while writing up these solutions.

February 8, 2020 3