Introduction to Artificial Intelligence Logical Agents

Jianmin Li

Department of Computer Science and Technology
Tsinghua University

Spring, 2024

Outline

- Knowledge-based agents
- Logic in general models and entailment
- Propositional (Boolean) logic
- Equivalence, validity, satisfiability
- Inference rules and theorem proving

Knowledge based agent

Inference engine

Knowledge base

 \leftarrow

do

domain-independent algorithms

domain-specific content

Knowledge bases

- Knowledge base
 - a set of sentences in a formal language
- Tell
 - add new sentences about what the agent needs to know
- Ask
 - query what is known or what is to be done
- Inference
 - deriving new sentences from old
 - answers should follow from the KB
 - both Tell and Ask may involve inference

A simple knowledge-based agent

A simple knowledge-based agent

- The agent must be able to:
 - Represent states, actions, etc.
 - Incorporate new percepts
 - Update internal representations of the world
 - Deduce hidden properties of the world
 - Deduce appropriate actions

Knowledge based Agents

- Declarative approach to building an agent
 - TELL sentences one by one
- Procedural approach
 - encodes desired behaviors directly as program code
- Knowledge level
 - what they know, regardless of how implemented
- Implementation level
 - data structures in KB and algorithms that manipulate them

Wumpus World PEAS description

2

- Performance measure
 - gold +1000, death -1000
 - -1 per step, -10 for using the arrow
- Actuators
 - Left turn, Right turn, Forward, Grab, Release, Shoot
- Sensors
 - Breeze, Glitter, Smell

Wumpus World PEAS description

Environment

- Squares adjacent to wumpus are smelly
- Squares adjacent to pit are breezy
- Glitter iff gold is in the same square
- Shooting kills wumpus if you are facing it
- Shooting uses up the only arrow
- Grabbing picks up gold if in same square
- Releasing drops the gold in same square

Wumpus world characterization

- Observable
 - No only local perception
- Deterministic
 - Yes outcomes exactly specified
- Static
 - Yes Wumpus and Pits do not move
- Discrete
 - Yes
- Single-agent
 - Yes Wumpus is essentially a natural feature

Exploring a wumpus world

Other tight spots

Other tight spots

- Smell in (1,1) => cannot move
- Can use a strategy of coercion:
 - shoot straight ahead
- wumpus was there => dead => safe
- wumpus wasn't there => safe

Logic in general

- Logics are formal languages for representing information
- Syntax defines the sentences in the language
 - what is a well-formed sentence
- Semantics define the "meaning" of sentences
 - define truth of a sentence in a world
- E.g., the language of arithmetic
 - x +2 >= y is a sentence; x2+y > is not a sentence
 - x +2 >= y is true iff the number x +2 is no less than the number y
 - $x + 2 \ge y$ is true in a world where x = 7, y = 1
 - x + 2 >= y is false in a world where x = 0, y = 6

Entailment

- Entailment means that one thing follows from another $KB \models a$
- Knowledge base KB entails sentence a if and only if
 - a is true in all worlds where KB is true
- E.g., the KB containing "the Giants won" and "the Reds won"
 - entails "Either the Giants won or the Reds won"
- E.g., x + y = 4 entails 4 = x + y
- Entailment is a relationship between sentences (i.e., syntax)
 - that is based on semantics

Models

- formally structured worlds with respect to which truth can be evaluated
- m satisfies sentence a if a is true M(a) in m
- M(a) is the set of all models of a
- $KB \models a$ if and only if $M(KB) \subseteq M(a)$

Entailment in the wumpus world

- Situation after detecting nothing in [1,1]
 - moving right, breeze in [2,1]
- Consider possible models for ?s assuming only pits

问题1

•假设带?的房间中只可能有坑(pit),存在多少种模型?

A. 0

B. 1

C. 3

D. 8

Wumpus models

• 3 Boolean choices => 8 possible models

Wumpus models

- *KB* = wumpus-world rules + observations
- nothing in [1,1], breeze in [2,1]

问题2

• $a_1 = "[1,2]$ is safe", $KB = a_1$?

A. 是

Wumpus models

• $a_1 = "[1,2]$ is safe"

问题3

• $a_2 = "[2,2]$ is safe", $KB = a_2$?

A. 是

Wumpus models

• a_2 = "[2,2] is safe"

• $KB \not\models a_2$

Inference

- Consequences of KB are a haystack; a is a needle.
- Entailment = needle in haystack; inference = finding it
- $KB \vdash_i a = \text{sentence } a \text{ can be derived from } KB \text{ by procedure } i$
- Soundness: *i* is sound if
 - whenever $KB \vdash_i a$, it is also true that $KB \vDash a$
- Completeness: *i* is complete if
 - whenever $KB \models a$, it is also true that $KB \vdash_i a$

Propositional logic: Syntax

- Propositional logic is the simplest logic
- The proposition symbols P_1 , P_2 , etc are atomic sentences
- If S is a sentence, $\neg S$ is a sentence (negation)
- If S_1 and S_2 are sentences
 - $S_1 \wedge S_2$ is a sentence (conjunction)
 - $S_1 \vee S_2$ is a sentence (disjunction)
 - $S_1 \Rightarrow S_2$ is a sentence (implication)
 - $S_1 \Leftrightarrow S_2$ is a sentence (biconditional)

Propositional logic: Syntax

```
Sentence \rightarrow AtomicSentence \mid ComplexSentence
AtomicSentence \rightarrow True \mid False \mid P \mid Q \mid R \mid \dots
ComplexSentence \rightarrow (Sentence) \mid [Sentence]
\mid \neg Sentence
\mid Sentence \wedge Sentence
\mid Sentence \vee Sentence
\mid Sentence \Rightarrow Sentence
```

Propositional logic: Semantics

- Each model specifies true/false for each proposition symbol
- e.g.

P_{12}	P_{22}	P ₃₁
false	false	true

• With these symbols, 8 possible models, can be enumerated automatically

Propositional logic: Semantics

Rules for evaluating truth with respect to a model m:

$\neg S$	is true iff	S	is false			
$S_1 \wedge S_2$	is true iff	S_1	is true	and	S_2	is true
$S_1 \vee S_2$	is true iff	S_1	is true	or	S_2	is true
$S_1 \Rightarrow S_2$	is true iff	S_1	is false	or	S_2	is true
	is false iff	S_1	is true	and	S_2	is false
$S_1 \Leftrightarrow S_2$	is true iff	$S_1 \Rightarrow S_2$	is true	and	$S_1 \Rightarrow S_2$	is true

Truth tables for connectives

Р	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	P⇔Q
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

Truth tables for connectives

Simple recursive process evaluates an arbitrary sentence

P ₁₂	P_{22}	P_{31}
false	false	true

•
$$\neg P_{12} \land (P_{22} \lor P_{31}) = \text{true} \land (\text{false} \lor \text{true})$$

= true \land true
= true

Wumpus world sentences

- Let P_{ij} be true if there is a pit in [i, j].
- Let B_{ij} be true if there is a breeze in [i, j].

$$\neg P_{11}$$
$$\neg B_{11}$$
$$B_{21}$$

- "Pits cause breezes in adjacent squares"
- "A square is breezy if and only if there is an adjacent pit"

$$B_{11} \Leftrightarrow (P_{12} \vee P_{21})$$

$$B_{21} \Leftrightarrow (P_{11} \vee P_{22} \vee P_{31})$$

Knowledge base

- R₁: ¬ P₁₁
- R_2 : $\neg B_{11}$
- R₃: B₂₁
- R_4 : $B_{11} \Leftrightarrow (P_{12} \vee P_{21})$
- $R_5: B_{21} \Leftrightarrow (P_{11} \vee P_{22} \vee P_{31})$

Truth tables for inference

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R_1	R_2	R_3	R_4	R_5	KB
false	true	true	true	true	false	false						
false	false	false	false	false	false	true	true	true	false	true	false	false
:	:	:	:	1	:	:	:	:	:	:	:	:
false	true	false	false	false	false	false	true	true	false	true	true	false
false	true	false	false	false	false	true	true	true	true	true	true	\underline{true}
false	true	false	false	false	true	false	true	true	true	true	true	\underline{true}
false	true	false	false	false	true	true	true	true	true	true	true	\underline{true}
false	true	false	false	true	false	false	true	false	false	true	true	false
:	:	:	:	:	:	:	:	:	:	:	:	÷
true	false	true	true	false	true	false						

- Enumerate rows (different assignments to symbols),
 - if KB is true in row, check that a is too

Inference by enumeration

```
function TT-ENTAILS? (KB, \alpha) returns true or false
   inputs: KB, the knowledge base, a sentence in propositional logic
            \alpha, the query, a sentence in propositional logic
   symbols \leftarrow a list of the proposition symbols in KB and \alpha
   return TT-CHECK-ALL(KB, \alpha, symbols, [])
function TT-CHECK-ALL(KB, \alpha, symbols, model) returns true or false
   if EMPTY?(symbols) then
        if PL-True? (KB, model) then return PL-True? (\alpha, model)
        else return true
   else do
        P \leftarrow \text{First}(symbols); rest \leftarrow \text{Rest}(symbols)
        return TT-CHECK-ALL(KB, \alpha, rest, EXTEND(P, true, model)) and
                  TT-CHECK-ALL(KB, \alpha, rest, Extend(P, false, model))
```

Inference by enumeration

- Depth-first enumeration of all models
- Sound and Complete
- $O(2^n)$ for n symbols

Proof methods

- Proof methods divide into (roughly) two kinds:
 - Model checking
 - truth table enumeration (always exponential in n)
 - improved backtracking, e.g., Davis Putnam Logemann -Loveland
 - heuristic search in model space (sound but incomplete), e.g., min-conflicts-like hill-climbing algorithms
 - Application of inference rules
 - Legitimate (sound) generation of new sentences from old
 - Proof = a sequence of inference rule applications
 - Can use inference rules as operators in a standard search alg.
 - Typically require translation of sentences into a normal form

Logical equivalence

- Two sentences are logically equivalent iff true in same models:
 - $a \equiv \beta$ if and only if $a \models \beta$ and $\beta \models a$

Logical equivalence

$\alpha \wedge \beta$	=	$eta \wedge lpha$	commutativity of \wedge
$\alpha \lor \beta$		$eta \lor lpha$	commutativity of ∨
$(\alpha \wedge \beta) \wedge \gamma$	=	$\alpha \wedge (\beta \wedge \gamma)$	associativity of \land
$(\alpha \vee \beta) \vee \gamma$	=	$\alpha \vee (\beta \vee \gamma)$	associativity of \vee
$\neg(\neg\alpha)$	=	α	double-negation elimination
$\alpha \Rightarrow \beta$		$\neg \beta \Rightarrow \neg \alpha$	contraposition
$\alpha \Rightarrow \beta$		$\neg \alpha \lor \beta$	implication elimination
$\alpha \Leftrightarrow \beta$		$(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$	biconditional elimination
$\neg(\alpha \land \beta)$		$\neg \alpha \lor \neg \beta$	De Morgan
$\neg(\alpha \lor \beta)$		$\neg \alpha \land \neg \beta$	De Morgan
$\alpha \wedge (\beta \vee \gamma)$		$(\alpha \wedge \beta) \vee (\alpha \wedge \gamma)$	distributivity of ∧ over ∨
$\alpha \vee (\beta \wedge \gamma)$		$(\alpha \vee \beta) \wedge (\alpha \vee \gamma)$	distributivity of \vee over \wedge

Validity and satisfiability

- A sentence is valid if it is true in all models
 - e.g. True, $A \lor \neg A$, $A \Rightarrow A$, $(A \land (A \Rightarrow B)) \Rightarrow B$
- Validity is connected to inference via the Deduction Theorem:
 - $a \models \beta$ if and only if $a \Longrightarrow \beta$ is valid
- A sentence is satisfiable if it is true in some model
 - e.g. A > B, C
- A sentence is unsatisfiable if it is true in no models
 - e.g. A∧¬A
- Satisfiability is connected to inference via the following:
 - $a \models \beta$ if and only if $a \land \neg \beta$ is unsatisfiable
 - i.e., prove β by *reductio ad absurdum*

Forward and backward chaining

- Horn Form (restricted)
 - KB = conjunction of Horn clauses
 - Horn clause
 - a disjunction of literals of which at most one is positive
 - proposition symbol; or
 - (conjunction of symbols) ⇒ symbol
 - Definite clause
 - a disjunction of literals of which exactly one is positive
 - E.g., $C \wedge (B \Rightarrow A) \wedge (C \wedge D \Rightarrow B)$

Forward and backward chaining

 Modus Ponens (for Horn Form): complete for Horn KBs

$$\frac{a_1, ..., a_n, a_1 \wedge ... \wedge a_n \Rightarrow \beta}{\beta}$$

- Can be used with forward chaining or backward chaining
- These algorithms are very natural and run in linear time

Forward chaining

- Idea
 - fire any rule whose premises are satisfied in the KB
 - add its conclusion to the KB, until query is found

Forward chaining algorithm

```
function PL-FC-ENTAILS?(KB, q) returns true or false
  inputs: KB, the knowledge base, a set of propositional definite clauses
           q, the query, a proposition symbol
   count \leftarrow a table, where count[c] is the number of symbols in c's premise
  inferred \leftarrow a table, where inferred[s] is initially false for all symbols
   agenda \leftarrow a queue of symbols, initially symbols known to be true in KB
  while agenda is not empty do
      p \leftarrow POP(agenda)
      if p = q then return true
      if inferred[p] = false then
          inferred[p] \leftarrow true
          for each clause c in KB where p is in c.PREMISE do
              decrement count[c]
              if count[c] = 0 then add c. CONCLUSION to agenda
  return false
```

Forward chaining example

- $P \Rightarrow Q$
- $L \wedge M \Rightarrow P$
- $B \wedge L \Rightarrow M$
- $A \wedge P \Rightarrow L$
- $A \wedge B \Rightarrow L$
- A
- B

Proof of completeness

- FC derives every atomic sentence that is entailed by KB
 - FC reaches a fixed point where no new atomic sentences are derived
 - Consider the final state of infered table as a model m, assigning true/false to symbols
 - Every definite clause in the original KB is true in m
 - Proof: Suppose a clause $a_1 \land ... \land a_n \Rightarrow \beta$ is false in m
 - Then $a_1 \wedge ... \wedge a_n$ is true in m and b is false in m
 - Therefore the algorithm has not reached a fixed point!
 - Hence m is a model of KB
 - If $KB \models q, q$ is true in every model of KB, including m

Backward chaining

- Idea:
 - work backwards from the query q:
 - to prove q by BC,
 - check if q is known already, or
 - prove by BC all premises of some rule concluding q
- Avoid loops: check if new subgoal is already on the goal stack

Backward chaining example

- $P \Rightarrow Q$
- $L \wedge M \Rightarrow P$
- $B \wedge L \Rightarrow M$
- $A \wedge P \Rightarrow L$
- $A \wedge B \Rightarrow L$
- A
- B

Forward vs. backward chaining

- FC is data-driven
 - May do lots of work that is irrelevant to the goal
- BC is goal-driven, appropriate for problem-solving
 - e.g., Where are my keys? How do I get into a PhD program?
- Complexity of BC can be much less than linear in size of KB

Resolution

- Conjunctive Normal Form (CNF—universal)
 - conjunction of <u>disjunction of literals</u>
 - clauses
 - E.g., (A∨¬B) ∧ (B∨¬C∨¬D)
- Resolution inference rule (for CNF):

$$\frac{\ell_1 \vee \cdots \vee \ell_k, \quad m_1 \vee \cdots \vee m_n}{\ell_1 \vee \cdots \vee \ell_{i-1} \vee \ell_{i+1} \vee \cdots \vee \ell_k \vee m_1 \vee \cdots \vee m_{j-1} \vee m_{j+1} \vee \cdots \vee m_n}$$

- where l_i and m_i are complementary literals
- Sound and complete for propositional logic

Resolution

$$\frac{P_{1,3} \vee P_{2,2}, \qquad \neg P_{2,2}}{P_{1,3}}$$

Conversion to CNF

$$B_{11} \Leftrightarrow (P_{12} \lor P_{21})$$

- Eliminate \Leftrightarrow , replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$ $(B_{11} \Rightarrow (P_{12} \lor P_{21})) \land ((P_{12} \lor P_{21}) \Rightarrow B_{11})$
- Eliminate \Rightarrow , replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$ $(\neg B_{11} \lor P_{12} \lor P_{21}) \land (\neg (P_{12} \lor P_{21}) \lor B_{11})$
- Move ¬ inwards using de Morgan's rules and doublenegation

$$(\neg B_{11} \lor P_{12} \lor P_{21}) \land ((\neg P_{12} \land \neg P_{21}) \lor B_{11})$$

• Apply distributivity law (\vee over \wedge) and flatten $(\neg B_{11} \lor P_{12} \lor P_{21}) \land (\neg P_{12} \lor B_{11}) \land (\neg P_{21} \lor B_{11})$

Resolution algorithm

• Proof by contradiction, i.e., show $KB \land \neg a$ unsatisfiable

```
function PL-RESOLUTION(KB, \alpha) returns true or false
   inputs: KB, the knowledge base, a sentence in propositional logic
              \alpha, the query, a sentence in propositional logic
   clauses \leftarrow the set of clauses in the CNF representation of KB \wedge \neg \alpha
   new \leftarrow \{ \}
   loop do
        for each C_i, C_j in clauses do
              resolvents \leftarrow PL-Resolve(C_i, C_i)
              if resolvents contains the empty clause then return true
              new \leftarrow new \cup resolvents
        if new \subseteq clauses then return false
         clauses \leftarrow clauses \cup new
```

Resolution example

$$KB = (B_{11} \Leftrightarrow (P_{12} \vee P_{21})) \wedge \neg B_{11}$$
$$a = \neg P_{12}$$

Summary

- Logical agents apply inference to a knowledge base
 - to derive new information and make decisions
- Basic concepts of logic:
 - syntax: formal structure of sentences
 - semantics: truth of sentences wrt models
 - entailment: necessary truth of one sentence given another
 - inference: deriving sentences from other sentences
 - soundness: derivations produce only entailed sentences
 - completeness: derivations can produce all entailed sentences
- Forward, backward chaining are linear-time, complete for Horn clauses
- Resolution is complete for propositional logic
- Propositional logic lacks expressive power

