

by cmok1996 via cheatography.com/136331/cs/28443/

Variable :	Setting	
Scalar	x <- 5	Set x = 5
Vectors	x <- c(1,2,- 3,4,5)	Create a vector with 5 numeric elements
Named Vectors	x <- c("A" = 1, "B" = 2)	Row index of vectors are named
Matrix	x <- matrix- (c(1:12), byrow = T, nrow=3)	Create a matrix with 3 rows; fill each row first
Arrays	x <- array(- c(1:24), dim = c(4,3,2))	Matrix but with more than 2 dimensions - [row, col, ndim]; All elements must have same datatype
List	x <- list("N- ame1" = c(1,2,3), "- Name2" = c("A", "B", "- C", "D"))	Most unordered structure - Can contain vectors of different type and length
Data Frames	<pre>df <- data.f- rame(numeric_c- olumn = c(1,2,3), char_column = c("A", "B", "C"))</pre>	List but all vectors contains same length
Tibble	library(t- ibble); df <- tibble(x = runif(100), y=rnorm(n- =100))	Create a tibble with 100 observ- ations of x (uniform distri- bution) and y (normal distri- bution)

Variable	Setting (con	t)
Check type	<pre>class(x); typeof(x); is.blah(x)</pre>	Check the data type of variable
Coerce	as.blah(x); as_tibble(x)	Eg, as.character(x) coerce vector x into strings
Program	ming	
Conc- atenate string- +varia- ble	x=5; cat("He- llo", x, sep=" ")	Returns "Hello 5"
Accessing by index	<pre>df[row_id, col_id]; df[col_id]; x[1]</pre>	Returns a vector
Access by name	df\$col- _name ; df[["co- l_n- ame"]]	Extracts the underlying component; Works for all named datatypes including lists
Subset datafr- ame	df[c(col name1, col_na- me2)]	Returns a dataframe
Insp- ect	str(x)	Structure of x
Length	nrow(df); ncol(df)	length(df) gives number of columns
Access	list[[dim]]	Extract a single

Programn	ning (cont)	
If statem- ents	if (logic) {exp} else if (logic) {exp} else {exp}	If statements
Func- tions	func <- functi- on(args) {exp}	if in args, it accepts all arguments; useful if function is chained to another function
For loop	for (i in seq(le- ngth(x))) {exp}	for i in range(len(x)) equivalent
While loop	while (logic) {exp}	While loop
Memb- ership	x %in% c()	Returns a boolean value
Lambda Functi- ons	func <- functi- on(x) <func></func>	No {} is required, used together with apply/map

By cmok1996

cheatography.com/cmok1996/

Not published yet. Last updated 28th June, 2021. Page 1 of 10.

component from the

list

List

by cmok1996 via cheatography.com/136331/cs/28443/

Programming (cont)		
Iterate	map(x, func); map2(x,y,- func); map_dbl(x, func)	If vector is supplied, apply scalar_func to every element in vector x; If dataframe is applied, apply vector_func to every column; map_blah returns a vector instead of a list
Apply across columns	apply(df, margin=2, func)	Apply func across columns (margi- n=2); if margin=1, apply across rows
Shape of matrix	dim(X)	Prints the shape of matrix
Matrix multip- lication	X %*% Y	If X is a (m,n) matrix and Y is a (n,o) matrix; output returns a (m,o) matrix
Determi- nant	det(X)	Returns the determinant of matrix

Programming (cont)		
Inverse	solve(X)	Returns the inverse of matrix X with same shape
Solving SLE	solve(X, y)	Equivalent to solve(X) %*% b; X is (m,n) matrix while y is (n,) vector

	vecto	or
Inspect +	Parse	
Read file	library(readr); df <- read_d- elim(path, skip, col_na- mes=c(), na="?"))	Supports read_csv, read_tsv; Parse "?" into NA values
Read excel	library(r- eadxl); df <- read_deli- m(path, skip, col_names- =c(), na="?"))	Read excel files
Head	head(df, n)	See first n rows
Colu- mn/Row names	names(df); rownames(df)	Variable assign to overwrite column/row names
Desc- ribe	summary(df)	Basic descri- ptive statistics for each column, including count of missing values
Stru-	str(df)	Check column

Coerce	df\$col %>% as.blah()	Convert vector typeof
Factors	parse factor- (col, levels = c(""))	Factors are integer types where each category is serial- ized; One hot encoding is automatically applied for factors when modelling
Missing values	df %>% filter- (is.na- (col))	Find missing values
Implicit missing values	df %>% comple- te(col1, col2)	Eg, col1 = years, col2 = quarters. Ensure all year-q- uarter combination is captured
Fill Missing Values	df %>% fill(col, .direction = "up")	Direction = "up" -> Forward fill
Impute missing values	ifelse- (is.na(df- \$col), ?, df\$col)	Impute missing values
Drop duplic- ates	df %>% distinct(- col1)	Drop duplicates

By cmok1996 cheatography.com/cmok1996/ Not published yet. Last updated 28th June, 2021. Page 2 of 10.

datatype

cture

by cmok1996 via cheatography.com/136331/cs/28443/

Inspect +	Inspect + Parse (cont)		
Convert to date	library(lubr- idate); as.Dat- e(c("24/05/19- 96"), format = "- %d/%m%Y"); parse_date(v- ector)	Parse date vector; input vector is character	
Create date	ymd(YY- YYMMDD); ymd_hms("Y- YYY-MM-DD HH:MM:SS")	Create a datetime object	
Extract date compo nents	year(dt)	Useful with mutate; month(), mday(), wday(), week(), hour(), minute()	
Date interv- als	(dt1 %% dt2) %/% days(1)	Find number of days between dt1 and dt 2	

		and dt 2
Wrangle (dplyr)		
Chain operator	df %>% func() %>% .\$col_name	Equivalent to func(df), and then access col_name from the returned output
Tibble	df %>% as_tibble()	Works like dataframe with nice features
Access rows by index	<pre>df %>% slice(seq); df[seq,]</pre>	Python iloc equivalent

Wrangle (dplyr) (cont)	
Index of True values	where(<logic->)</logic->	Python .index equivalent; Saved indices could be used to access a vector
Slice on index	df %>% slice(where(- <logic>)</logic>	Application of slicing
Rename	df %>% rename(col1 = newname)	Rename column names
Filter	df %>% filter- (<logic> & <logic> <lo- gic>); df %>% filter- (is.na(col1))</lo- </logic></logic>	Filter based on logical function; Eg, col1 < 50 & col2 %in% c("A", "B")
Filter na values	df %>% filter- (is.na(col1)); df %>% filter- (lis.na(x))	Filter na values based on variable
Subset / Select	df %>% select(col1, col2: col 4, - (remove cols,), everything())	Select columns of dataframe; equivalent to df[c("col1", "-col2",)]
Duplica- tes	df[duplicate- s(df\$col1)]	Returns a df with duplicated values

Wrangle ((dplyr) (cont)	
Drop	df %>% select(-(- col1,))	- to indicate removal
Drop Duplic- ates	df %>% distinct(- col1,, .keep_all = T)	subset based on col inputs (optio- nal); .keep_all = T to return all columns
Drop NA	df %>% drop_n- a(col1,)	Drop na values based on subset columns (optional)
Find missing value counts	sapply(as- _tibble(df), function(x) sum(is.na- (x)))	Find number of missing values per column
Fill missing values	df %>% fill(col, direction = "up"))	Direction controls whether forward or backward fill
Keep / Discard	df %>% keep(i- s.blah) ; df %>% discard(i- s.blah)	Keep/Discard based on a logical function
Sort	df %>% arrange(d- esc(col1))	Sort according to descending order of col1

By cmok1996

cheatography.com/cmok1996/

Not published yet. Last updated 28th June, 2021. Page 3 of 10.

by cmok1996 via cheatography.com/136331/cs/28443/

Wrangle ((dplyr) (cont)	
Create new variable	df %>% mutate(ne- w_col =)	Select all + Create new column; Use transmute() if only want to select new columns
Sepa- rate/U- nite	df %>% separate(col = col1, into = c("newcol1", "-newcol2"), sep = "?"); df %>% unite(-col1, col2,, sep = "?")	Create new columns based on split rule of character vector defined by sep argument; Reverse for unite()
Group by + aggreg- ate	<pre>df %>% group_by(col1) %>% summar- ise(new_col = agg_func(col2, na.rm=T))</pre>	Aggregate based on grouping - mean(), sum(), mean(), max(), n()
Value Counts	df %>% count(col1, sort = T)	Value counts
Nested datafr- ames	df %>% group_by(col1) %>% nest()	Create new column called "data" with a new dataframe of remaining columns for each cell

Wrangle (dplyr) (cont)		
From wide to long	df %>% pivot_lon- ger(c(col1, col2,), names_to = "newname", values_to = "newname", values_dr- op_na =T)	Transform a dataframe with columns as values to tidy dataframe; Lengthens the data by increasing number of rows and reducing number of columns
From long to wide	df %>% pivot_wid- er(nam- es_from = "col1", valuesfrom = "- col2")	Inverse transf- ormation of pivot_longer; Increases number of columns and reduces number of rows
Hori- zontal append	df1 %>% cbind(<na- med_vecto- r> <dataf- rame>)</dataf- </na- 	Increase number of columns
Vertical append	df1 %>% rbind(df2)	Increase number of rows

Wrangle (dplyr) (cont)		
Mutating	df1	Supports left_join,
Joins	%>%	right_join, inner_join,
	left_j-	full_join ; Ensure that
	oin-	join is by primary key
	(df2,	of left table ; by =
	by = "-	c("col1" = "col2") if
	col1")	column names are not
		identical
Self	df1	df1 does not merge
joins	%>%	with df2, but instead
	semi_j	only returns the
	oin-	existence of the
	(df2,	match
	by="-	
	col")	

By **cmok1996**

cheatography.com/cmok1996/

Not published yet. Last updated 28th June, 2021. Page 4 of 10.

by cmok1996 via cheatography.com/136331/cs/28443/

Wrangle (dplyr) (cont)

Mapping row	sapply- (df\$col, func); ifelse- (df\$col > 0.5, NA, df\$col)	Apply function iteration to each element; apply -> map; sapply -> map_blah; ~ lambda function. When map is used on a dataframe instead of a vector, it applies the function to each column
Mapping across columns	functi-	Apply lambda across all columns

Wrangle (dplyr) (cont)

Crosstab	xtabs(~	Crosstab with col1
/ Contin-	col1 +	unique values as
gency	col2,	rows and col2-u-
Table	data =	nique values as
	df);	columns; Print value
	table(-	counts for (col1,
	df\$col1,	col2) grouping,
	df\$col2)	useful for discrete
		factor variables

Modelling (caret) (cont)

C۷

Boot-	createRes-	Returns a list of
strap	ample(y=d-	k elements,
	f\$col,	each element
	times=k,	contains a
	list=T)	bootstrap
		sample (with
		replacement)
Time	createTim-	Returns a list of
series	eSlices(y=df,	2 lists - train &
Blocked	initialWindo-	test. In each

	horizon=10)	the indices of
		each time-w-
		indow partition
ature	library(p-	Correlation

list, it contains

w=20,

Feature	library(p-	Correlation
Plot	sych);	Scatter Plot
	pairs.pan-	with Density
	el(df, method	plots in the
	= "pearson",	diagonals
	hist.col = "-	
	#00AFBB",	
	density = T)	

Modelling (caret)

Trai-	inTrain <-	1. Create a
n/Test	sample.int(n-	vector of
Split	row(df), n) OR	indices to split
	inTrain <-	on; 2. Filter the
	createDataPa-	vector based
	rtition(y =	on the masked
	df\$col, p=?,	index vector
	list=F); training	
	<- df[inTrain,];	
	testing <- df[-in-	
	Train,]	
k Fold	createFolds(-	Returns a list of
	y=df\$col, $k = ?$,	k elements,
	list=T, return-	each element
	Train = T)	contains each

dataframe fold

C

By cmok1996 cheatography.com/cmok1996/ Not published yet. Last updated 28th June, 2021. Page 5 of 10.

#returnTrain = F
returns Test set

by cmok1996 via cheatography.com/136331/cs/28443/

Modelling	(caret) (cont)	
Feature Selection - Zero Covari- ates	nearZeroV- ar(df, saveMe- trics = T)	Explanatory variables with small values of percen- tUnique and nzv==T should be removed as they have little variation
Train & Predict	train_model <- train(y ~ ., data, method,, trControl = trainControl- (), tuneGrid = expand.gr- id(), preProcess = c(method)); pred <- predic- t(train_model, newdata)	General pipeline for model training; Grid Search CV on k-folds with applied transform- ations for imputation/s- caling/etc; predict() returns a vector
Scaling	preObj <- preProcess(df, method = c("c- enter", "sca- le")); predict(p- reObj, df)	Normal standardization; Always fit using training data; Transform (predict) using trained fitted object
Scaling using baseR	m <- apply(df, margin=2, FUN=mean); s <- apply(df, margin=2, FUN=sd); scale <- (z,m,s)	Normal standardi- zation

Modelling	(caret) (cont)	
Impute	preObj <- preProces- s(df, method = c("medi- anImpute")); df\$col <- predict(p- reObj, df)\$col	Median imputation using fit and transform
One-hot encoding	dummies <- dummyV- ars(y ~ x, data); dummy_df <- predict(d- ummies, newdata = df)	Fit and transform using one-hot encoder
PCA - prePro- cess	preProc <- preProces- s(df, method="pc- a", pcaCom- p=2); dfPC <- predict(p- reProc, df)	Fit and transform PCA on dataframe to reduce dimensions
Grid Search	, tuneGrid = expand.gr- id(par- ameter1 = c(), parameter 2 = c(),)	Parameters as defined by ? method in train()
Cross Valida- tion	, trControl = trainCont- rol("cv", number = 5)	To be used within the train function; Other methods include "repeatedcv", "-oob" for RF, "-LOOCV", etc

Modelling (caret) (cont)		
CV Errors	train_model\$- results\$R- MSE/Accuracy	Average cross-validation errors for regression and classification tasks -> Each row represent a particular grid combination
Conf- usion Matrix	predict(trai- n_model, newdata) %>% confus- ionMatrix(ne- wdata\$y)	confusionMat- rix(pred, actual); pred as rows, actual as columns
Linear Regres sion	library(olsrr); Im_model <- Im(y~x1 + x2 + , data=df); summary(I- m_model); predict(Im_m- odel, newdata); plot(Im_model)	1. Fit the MLR onto training data; 2. Check coefficients and statistical significance; 3. Predict new data; 4.Diagnostic checks

By cmok1996

cheatography.com/cmok1996/

Not published yet. Last updated 28th June, 2021. Page 6 of 10.

by cmok1996 via cheatography.com/136331/cs/28443/

Modelling (caret) (cont) 1. Create panel **Panel** library(plm); Models pdf <- pdata.fdataframe rame(df, index indicating the = c("indiv", "indices; 2.Fit time")); FE/RE; 3. plm model <-Check coefficients and plm(y~x, model = c("wstatistical ithin", "ransignificance; 4. dom", "fd",...); Conduct summary(p-Hausman Test, if null is not Im_model); phtest(ferejected -> RE and FE are the _model, re_model); same and hence should use RE as more efficient Elastic net Regulasso <larized train(y ~., model; alpha = Linear 1 is lambda data, method Models = "glmnet", penalty, alpha = family?, 0 is ridge, trControl = ..., lambda is the tuneGrid = penalty expand.grid(parameter; alpha = c(...),family = c("blambda = inomial", "multinomial") to c(...), preProcess = turn into classification task c("scale", "center"));

lasso_coefs <coef(lasso\$finalModel, lasso\$bestTune\$lambda)

Modelli	ng (caret) (cont)	
Trees	mod_rf <- train(y~ ., data, method = "ran- ger", importance = "- impurity", trControl = trainControl- ("oob"), tuneGrid = expand.gr- id(mtry = c(), num.trees = c(), min.no- de.size = c(), splitrule = "gin- i")); varimp <- mod_rf\$final- Model\$variab- le.importance %>% sort(d- ecreasing = T)	Train Random Forest Model using "ranger" method, and then inspect the variable importance depending on impurity
SVM	svm <- train(y ~., data, method = c("s- vmLinear", "- svmPoly", "- svmRadial"), trControl =, tuneGrid = expand.grid(C = c(), degree = c() #for polynomial kernel, sigma=c() #for rbf, preProcess = c("scale", "cen- ter")); lasso coefs <- coef(l- asso\$fina-	Train a Support Vector Machine. Hyperpara- meters depend on C :regulari- zation is inversely related, degree : Controls the kernel function; sigma : Aka gamma, defines how far the influence of a single training example reaches (higher values = closer reach = less linear/smooth

K- means cluste ring	kmeans1 <- (normalizd_c centers = k); ized_df\$clus kmeans1\$clu qplot(x, y, co clusters, data alized_df)	kmeans- If, normal- ter <- uster; lor =	K means clustering
Hier- arc- hical cluste ring	distance <- coormalized_df hclust(distan method = c(" "complete", " e"); plot(hc);	ce, single",	Hierar- chical clustering on distance function
Plottine	g (ggplot)		
Gen eral	ggplot(data) + geom_f- unc(ma- pping = aes(x, y,), stat="", position = "",) + scale_fun- c() + coord_func() + labs() + theme(leg- end.position = "") + facet_wra- p(~col, nrow = ?) + theme_bw()	data, opt global m which ca overwritt geom_fu geom_fu graph ae layer sep + geom_ scale_fu control a labels/tic ale/etc; la title, lab etc; face	apping n be en by nc; nc -> esthetic barated by func2(); nc -> xes ks/sc- abs() -> el names,

By cmok1996 cheatography.com/cmok1996/ Not published yet. Last updated 28th June, 2021. Page 7 of 10.

IModel, lasso\$-

bestTune\$-

lambda)

decision

overfit)

boundary =

by cmok1996 via cheatography.com/136331/cs/28443/

Plotting	(ggplot) (cont)	
Grap- hical layers	geom_func- (mapping = aes(x=col1, y=col2, color = col3, size = col4, group = col5, fill = col6, group = col7), stat=c("ident- ity", "count"), position = c("dodge", "- stacked"), lwd = ?, pch = ?, cex = ?, alpha = ?)),)	Creates an aesthetic layer on the graph (scatt- erplot, barchart, boxplot, etc). The drawing is defined inside aes(). Plot options are outside aes() where it applies a stats function, adjust the position of the plots wherever relevant, and other global options
Quick plot	<pre>qplot(x, y, data, geom = "", stat = "", main = "- title", xlab = "", ylab = "")</pre>	Another way to generate plots

Plotting	(ggplot) (cont)	
Scale	+ scale x_continu- ous(limits = range(df\$- col)) + scale_y_c- ontinuous- (breaks = seq(x, y, by=z))	Predefined axes limits
Scale log axes	+ scale x_log10(); scale_x_l- og2()	Log scale axis
Scale color	+ scale color manual(values = c(col1 = "- red", col2 = "blue")	Used when geom_func(ma- pping = aes(color = col)) is available; Manually define the color for each class in the aesthetic mapping
Hide axes labels	+ scale x_continu- ous(labels = NULL)	Turn off axes labels
Hide legend	+ theme(- legend.po- sition="no- ne")	Hide auto-legends due to aes(color)

Plotting	(ggplot) (cont)	
Modify axis, legend and plot labels	+ labs(title, subtitle, caption, x, y); xlab(""); ylab(""); ggtitle("")	Modify axis, legend and plot labels
Facet	+ facet wrap(~col, nrow = ?); facet_grid(c- ol1~col2)	facet_grid -> 2d facet
Scatter plot	<pre>ggplot(data) + geom_poin- t(mapping = aes(x, y), position = "jit- ter")</pre>	Create a scatte- rplot with y against x; position = "jit- ter" prevents overplotting
Line chart	ggplot(data) + geom_line- (mapping = aes(x, y))	Connect the points using a line; Useful to plot residuals or time-plots

By cmok1996

cheatography.com/cmok1996/

Not published yet.

Last updated 28th June, 2021.

Page 8 of 10.

Sponsored by ${f CrosswordCheats.com}$

Learn to solve cryptic crosswords!

http://crosswordcheats.com

by cmok1996 via cheatography.com/136331/cs/28443/

Plotting (ggp	olot) (cont)	
Regression Line	ggplot(data) + geom_smoo- th(mapping = aes(x,y, color), method = "Im", se=F)	Draw a best fit line; se to include standard errors
Histogram	ggplot(data) + geom_histogr- am(mapping = aes(x = col1), binwidth = ?) + coord_cartes- ian(ylim = c(a,b))	Plot histogram of col1; zoom in using coord_car- tesian()
Plot Regression line + Confidence Interval	predslm <- predict(Im_m- odel, interval = "confidence"); combin- ed_data <- cbind(data, predslm); ggplot(combi- ned_data, aes(x, y)) + geom_point() + geom_ribbon(- aes(ymin = lwr, ymax = upr, group=cyl, color=NULL), alpha=0.15) + geom_smoo- th(aes(y=fit), se=F, method= ='lm')	geom_r- ibbon plots out an area, useful to plot confidence interval as controlled by alpha
Bar chart	ggplot(data) + geom_bar(- mapping = aes(x, fill), stat="count", position = c("d- odge", "sta-	Each bar represents the count of unique values

Plotting (ggp	lot) (cont)	
Identity bar chart	ggplot(data) + geom_bar(- mapping = aes(x,y), stat="identit- y", position = c("dodge", "- stack"))	Used for plotting a summarized dataframe where y=count
Boxplot	ggplot(data) + geom_b- oxplot(ma- pping = aes(x,y))	Boxplot where x is a categorical variable and y is continuous variable
Boxplot for continuous variables	ggplot(data) + geom_b- oxplot(ma- pping = aes(x,y, group = cut_width(x, ?))	cut_width- (col, dbl) argument to bin the continuous variable into categories

Plotting (ggplot) (cont)				
Count	ggplot-	To visualize relati-		
plots	(data) +	onship between 2		
	geom_h	continuous variables		
	ex(-	and to reduce overpl-		
	mapping	otting, bin each		
	= aes(x,	section by hexagons		
	y))	and its fill depends on		
		the count of observ-		
		ations in the bin		
Heat-	ggplot-	Works on summarized		
maps	(data) +	dataframe; inputs x		
	geom_t-	and y are categorical		
	ile(ma-	variables while the		
	pping =	intensity is adjusted		
	aes(x,y,	using the fill parameter		
	fill))			

By cmok1996

ck"))

cheatography.com/cmok1996/

Not published yet. Last updated 28th June, 2021. Page 9 of 10.

by cmok1996 via cheatography.com/136331/cs/28443/

Plotting (ggplot) (cont)				
Corr- elation heatmaps	library(r-eshape); cor_melt <- df %>% keep(is.n- umeric) %>% cor() %>% melt(); ggplot(co- r_melt) + geom_tile- (aes(Var1, Var2, fill=value))	1. Create correlation matrix with all the variables in the dataframe; 2. Melt the dataframe to only contain the columns ("Var1", "Var2", "value"); Plot the melted correlation dataframe using geom_tile()		
Corr- elation Scatter Plot	library(G-Gally); df %>% keep(is.n-umeric) %>% ggpairs()	Scatter plot + kernel density at diagonals + pearson correl- ation		

Plotting (ggplot) (cont)			
Annotate at corner	abel <- mpg %>% summar- ise(col =, label = ""); + geom_text(ae- s(label = label), data=label, vjust="top", hjust = "right")	1. Create a 1-row dataframe with the same columns with any value + label column for the text; 2.Apply geom_t- ext() to annotate	
Annotate	extra_df <- df %>% group_by(- col_color) %>% summarise(col = median(col),); ggplot(df) + geom_point(a- es(x,y,color = col_color) + ggrepel::geom_l- abel_repel(aes(- label = col_co- lor), data = extra_df, size = ?)	Annotation is just another geom_func layer; Annotate the color "-legend" based on label argument (x,y) input are the coordinates of the plot	

Plotting (ggplot) (cont)			Plotting	(ggplot) (cont)	
Annotate at corner	abel <- mpg %>% summar- ise(col =, label = ""); + geom_text(ae- s(label = label), data=label, vjust="top", hjust = "right")	1. Create a 1-row dataframe with the same columns with any value + label column for the text; 2. Apply geom_t- ext() to annotate	Saving plots	ggsave("filename.pdf", width = ?, height = ?, device = "pdf")	Save the latest ggplot
Annotate	extra_df <- df %>% group_by(- col_color) %>% summarise(col = median(col),); ggplot(df) + geom_point(a- es(x,y,color = col_color) + ggrepel::geom_l- abel_repel(aes(- label = col_co- lor), data = extra_df, size = ?)	Annotation is just another geom_func layer; Annotate the color "-legend" based on label argument (x,y) input are the coordinates of the plot			

By cmok1996 cheatography.com/cmok1996/ Not published yet. Last updated 28th June, 2021. Page 10 of 10.