

Chapter 3

Combining Factors and Spreadsheet Functions

Lecture slides to accompany

Engineering Economy

8th edition

Leland Blank
Anthony Tarquin

LEARNING OUTCOMES

- 1. Shifted uniform series
- 2. Shifted series and single cash flows
- 3. Shifted gradients

Shifted Uniform Series

A shifted uniform series starts at a time other than period 1

The cash flow diagram below is an example of a shifted series

Series starts in period 2, not period 1

Shifted series
usually
require the use
of
multiple factors

Remember: When using P/A or A/P factor, P_A is always ______ of first A

When using F/A or A/F factor, F_A is in _____ as last A

Example Using P/A Factor: Shifted Uniform Series

The present worth of the cash flow shown below at i = 10% is:

(a) \$25,304

(b) \$29,562

(c) \$34,462

(d) \$37,908

Solution:

(1) Use P/A factor with n = 5 (for 5 arrows) to get P₁ in year 1

(2) Use P/F factor with n = 1 to move P₁ back for P₀ in year 0

$$P_0 = P_1(P/F,10\%,1) = A(P/A,10\%,5)(P/F,10\%,1) = 10,000(3.7908)(0.9091) = $34,462$$

Answer is____

Example Using F/A Factor: Shifted Uniform Series

How much money would be available in year 10 if \$8000 is deposited each year in years 3 through 10 at an interest rate of 10% per year?

Shifted Series and Random Single Amounts

For cash flows that include *uniform series* and *randomly placed* single amounts:

Uniform series procedures are applied to the series amounts

Single amount formulas are applied to the one-time cash flows

The resulting values are then _____ per the problem statement

The following slides illustrate the procedure

Example: Series and Random Single Amounts

Find the present worth in year 0 for the cash flows shown using an interest rate of 10% per year.

First, re-number cash flow diagram to get n for uniform series: n =___

Example: Series and Random Single Amounts

Use P/A to get P_A in year 2: $P_A = 5000(P/A, 10\%, 8) = 5000(5.3349) = $26,675$

Move P_A back to year 0 using P/F: $P_0 = 26,675(P/F,10\%,2) = 26,675(0.8264) = $22,044$

Move \$2000 single amount back to year 0: $P_{2000} = 2000(P/F, 10\%, 8) = 2000(0.4665) = 933

Now, add P_0 and P_{2000} to get P_T : $P_T =$

Example Worked a Different Way

(Using F/A instead of P/A for uniform series)

The same re-numbered diagram from the previous slide is used

Solution:

As shown, there are usually _____ to work equivalency problems

Example: Series and Random Amounts

Convert the cash flows shown below (black arrows) into an equivalent annual worth A in years 1 through 8 (red arrows) at i = 10% per year.

- Approaches:

Solution:

1. Convert all cash flows into P in year 0 and use A/P with n = 8

2. Find F in year 8 and use A/F with n = 8

3-10

Shifted Arithmetic Gradients

Shifted gradient begins at a time other than between periods 1 and 2

Present worth P_G is located _____ gradient starts

Must use multiple factors to find P_T in actual year 0

To find equivalent A series, find P_T at actual time 0 and apply (____, ___, ___)

Example: Shifted Arithmetic Gradient

John Deere expects the cost of a tractor part to increase by \$5 per year beginning 4 years from now. If the cost in years 1-3 is \$60, determine the *present worth in year 0* of the cost through year 10 at an interest rate of 12% per year.

Solution: First find P_2 for G = \$5 and base amount (\\$60) in actual year 2

$$P_2 = 60(P/A,12\%,8) + 5(P/G,12\%,8) = $370.41$$

Next, move P₂ back to year 0

$$P_0 = P_2(P/F, 12\%, 2) = $295.29$$

Next, find P_A for the \$60 amounts of years 1 and 2

$$P_A = 60(P/A, 12\%, 2) = $101.41$$

Finally, add P_0 and P_{Δ} to get P_{T} in year 0

$$P_T = P_0 + P_A = \underline{\hspace{1cm}}$$

Shifted Geometric Gradients

Shifted gradient begins at a time other than between periods 1 and 2

Equation yields P_q for all cash flows (base amount A₁ is included)

Equation (
$$i \neq g$$
):

$$P_g = A_1\{1 - [(1+g)/(1+i)]^n/(i-g)\}$$

For negative gradient, change signs on both g values

There are ____ for geometric gradient factors

Example: Shifted Geometric Gradient

Weirton Steel signed a 5-year contract to purchase water treatment chemicals from a local distributor for \$7000 per year. When the contract ends, the cost of the chemicals is expected to increase by 12% per year for the next 8 years. If an initial investment in storage tanks is \$35,000, determine the equivalent present worth in year 0 of all of the cash flows at i = 15% per year.

Example: Shifted Geometric Gradient

Gradient starts between actual years 5 and 6; these are gradient years 1 and 2. P_{α} is located in gradient year 0, which is actual year 4

$$P_a = 7000\{1-[(1+0.12)/(1+0.15)]^9/(0.15-0.12)\} = $49,401$$

Move P_g and other cash flows to year 0 to calculate P_T

$$P_T = 35,000 + 7000(P/A,15\%,4) + 49,401(P/F,15\%,4) = _____$$

Negative Shifted Gradients

For negative arithmetic gradients, change sign on G term from + to -

General equation for determining P: $P = present worth of base amount P_G$ Changed from + to -

For negative geometric gradients, change signs on both g values

Changed from + to -
$$P_g = A_1 \{1 - [(1-g)/(1+i)]^n/(i+g)\}$$

Changed from - to +

All other procedures are the same as for positive gradients

Example: Negative Shifted Arithmetic Gradient

For the cash flows shown, find the future worth in year 7 at i = 10% per year

Solution: Gradient G first occurs between actual years 2 and 3; these are gradient years 1 and 2

P_G is located in gradient year 0 (actual year 1); base amount of \$700 is in gradient years 1-6

$$P_G = 700(P/A,10\%,6) - 50(P/G,10\%,6) = 700(4.3553) - 50(9.6842) = _____$$

$$F = P_G(F/P,10\%,6) = 2565(1.7716) = _____$$

현금흐름의 형태	사례	연간등가(A)	현재등가(P)
1. 圣기비용 1 2 n	건물	(A/P, i, n)	1
2. 중간발생비용 1 2 = n x	건물의	$(P/F, i, z) \times (A/P, i, n)$	(P/F, i, z)
. 잔존가치 1 2 n	건물의 재판매	. (A/F, i, n)	(P/F, i, n)

Summary of Important Points

P for sh	nifted uniform series is n is equal to number of A valu	of first A;
F for shifted	uniform series is in n is equal to number of A values	as last A;
For gra	adients, <i>first change</i> equal to G or g between gradient years 1 and 2	occurs
For	arithmetic gradients, change sig	n on G from + to -
For negative	vegradients, change sig	n on g from + to -

HOMEWORK

- 1. Please solve every Examples in your textbook. You do not have to submit your works.
- 2. Please upload following "PROBLEMS" solution file on "Assignment" menu in e-Class.
 - **1** 3.10
 - **2** 3.12
 - 3.28
 - **4 3.33**
 - **(5)** 3.42
 - **6** 3.60
 - **(7)** 3.75
 - 8 3.77