IT 775 Database Technology

SQL-DML

Transaction Management

Transaction Support

Transaction

Action, or series of actions, carried out by user or application, which reads or updates contents of database.

- Logical unit of work on the database.
- Application program is series of transactions with nondatabase processing in between.
- Transforms database from one consistent state to another, although consistency may be violated during transaction.

Transaction Support

Can have one of two outcomes:

Success - transaction *commits* and database reaches a new consistent state.

Failure - transaction *aborts*, and database must be restored to consistent state before it started.

Such a transaction is *rolled back* or *undone*.

Committed transaction cannot be aborted.

Aborted transaction that is rolled back can be restarted later.

Lost Update Problem

Successfully completed update is overridden by another user.

T₁ withdrawing \$10 from an account with bal_x, initially \$100.

T₂ depositing \$100 into same account. Serially, final balance would be \$190.

Lost Update Problem

Time	T_1	T_2	bal _x
t_1		begin_transaction	100
t_2	begin_transaction	$read(\mathbf{bal_x})$	100
t_3	$\operatorname{read}(\mathbf{bal_X})$	$bal_{X} = bal_{X} + 100$	100
t_4	$\mathbf{bal_x} = \mathbf{bal_x} - 10$	write(bal_x)	200
t ₅	$write(\mathbf{bal_x})$	commit	90
t ₆	commit		90

Loss of T₂'s update avoided by preventing T₁ from reading bal_x until after update.

Uncommitted Dependency Problem

Occurs when one transaction can see intermediate results of another transaction before it has committed.

T₄ updates bal_x to \$200 but it aborts, so bal_x should be back at original value of \$100.

T₃ has read new value of bal_x (\$200) and uses value as basis of \$10 reduction, giving a new balance of \$190, instead of \$90.

Uncommitted Dependency Problem

Time	T_3	$\mathrm{T_4}$	bal _x
t_1		begin_transaction	100
t_2		$\operatorname{read}(\mathbf{bal_x})$	100
t_3		$bal_{X} = bal_{X} + 100$	100
t_4	begin_transaction	write(bal_x)	200
t_5	$\mathrm{read}(\mathbf{bal_x})$	i	200
t_6	$bal_{X} = bal_{X} - 10$	rollback	100
t ₇	write(bal_x)		190
t ₈	commit		190

Problem avoided by preventing T₃ from reading bal_x until after T₄ commits or aborts.

Inconsistent Analysis Problem

Occurs when transaction reads several values but second transaction updates some of them during execution of first.

Sometimes referred to as *dirty read* or *unrepeatable read*.

 T_6 is totaling balances of account x (\$100), account y (\$50), and account z (\$25).

Meantime, T_5 has transferred \$10 from bal_x to bal_z, so T_6 now has wrong result (\$10 too high).

Inconsistent Analysis Problem

Time	T ₅	Т ₆	bal _x	bal _y	bal _z	sum
t_1		begin_transaction	100	50	25	
t_2	begin_transaction	sum = 0	100	50	25	0
t_3	$\operatorname{read}(\mathbf{bal_x})$	read(bal _x)	100	50	25	0
t_4	$bal_{X} = bal_{X} - 10$	$sum = sum + \mathbf{bal}_{\mathbf{X}}$	100	50	25	100
t ₅	$write(\mathbf{bal_x})$	read(bal_y)	90	50	25	100
t_6	$\operatorname{read}(\mathbf{bal_z})$	$sum = sum + bal_y$	90	50	25	150
t ₇	$\mathbf{bal_z} = \mathbf{bal_z} + 10$	·	90	50	25	150
t ₈	write(bal _z)		90	50	35	150
t ₉	commit	$read(\mathbf{bal_z})$	90	50	35	150
t ₁₀		$sum = sum + \mathbf{bal_z}$	90	50	35	185
t ₁₁		commit	90	50	35	185

Problem avoided by preventing T₆ from reading bal_x and bal_z until after T₅

Slicompleted updates atabase Technology
Transaction Management University of New Hampshire