POCKET COMPANION

CARNEGIE STEEL COMPANY
PITTSBURGH, PA.

Cornell University Library Ithaca, New York

FROM

The Publisher

Cornell University Library

Pocket companion for engineers, architec

3 1924 004 696 245

engr

The original of this book is in the Cornell University Library.

There are no known copyright restrictions in the United States on the use of the text.

POCKET COMPANION

FOR

ENGINEERS, ARCHITECTS AND BUILDERS

CONTAINING

USEFUL INFORMATION AND TABLES

APPERTAINING TO THE USE OF

STEEL

MANUFACTURED BY
CARNEGIÉ STEEL COMPANY

Copyright 1920 by CARNEGIE STEEL COMPANY Pittsburgh, Pa. THE first edition of Carnegie Pocket Companion appeared in 1872 and was issued by Carnegie, Kloman & Company, Proprietors, Union Iron Mills, Pittsburgh, Pa.

Immediately on its appearance this book became indispensable to users of structural iron. More than any other single publication this book and its successive editions have served to advance the interests of standardization in structural practice. Since July 1896, about 254, 000 copies have gone into the hands of engineers, architects and builders.

So far as practicable each successive edition has been placed abreast of the most approved methods in structural design. Each successive edition, therefore, records the stages of development in the manufacture of structural steel and its fabrication into bridges, buildings, cars and ships.

The sections illustrated in the profiles and tables are those deemed most suitable for use in bridge, building, locomotive, car and ship construction. A complete list of all the sections rolled by Carnegie Steel Company, together with tables of weights and other data in regard to these products, is given in Shape Book.

AMERICAN SOCIETY FOR TESTING MATERIALS

PHILADELPHIA, PA., U. S. A.

AFFILIATED WITH THE

INTERNATIONAL ASSOCIATION FOR TESTING MATERIALS

STANDARD SPECIFICATIONS

FOR

STRUCTURAL STEEL FOR BRIDGES

SERIAL DESIGNATION: A7-16.

These specifications are issued under the fixed designation A 7; the final number indicates the year of original adoption as standard or, in the case of revision, the year of last revision.

ADOPTED, 1901; REVISED, 1905, 1909, 1913, 1914, 1915, 1916.

1. Steel Castings. The Standard Specifications for Steel Castings (Serial Designation A-27) adopted by the American Society for Testing Materials shall govern the purchase of steel castings for bridges. Unless otherwise specified, Class B castings, medium grade, shall be used.

I. MANUFACTURE

2. Process. The steel shall be made by the open-hearth process.

II. CHEMICAL PROPERTIES AND TESTS

3. Chemical Composition. The steel shall conform to the following requirements as to chemical composition:

		ST	RUCT	URAL	ST	EEL	R	VET	STEE	L	
Dhoenhouse	Acid Basic	.not	over	0.06	per	cent	not	over	0.04	er	cent
Filosphorus.	Basic	. "	46	0.04	"	"	**	46	0.04		
Sulphur		. "		0.05		• •	**	**	.045	"	**

- 4. Ladle Analyses. An analysis of each melt of steel shall be made by the manufacturer to determine the percentages of carbon, manganese, phosphorus and sulphur. This analysis shall be made from a test ingot taken during the pouring of the melt. The chemical composition thus determined shall be reported to the purchaser or his representative, and shall conform to the requirements specified in sec. 3.
- 5. Check Analyses. Analyses may be made by the purchaser from finished material representing each melt. The phosphorus and sulphur content thus determined shall not exceed that specified in sec. 3 by more than 25 per cent.

III. PHYSICAL PROPERTIES AND TESTS

6. Tension Tests. (a) The material shall conform to the following requirements as to tensile properties:

Properties Considered	Structural Steel	Rivet Steel
Tensile strength lb. per sq. inch	55,000-65,000a	46,000-56,000
Yield point, minlb. per sq. inch	0.5 tens. str.	0.5 tens. str.
Elongation in 8 inches, minper cent	1,500,000b tens. str.	1,500,000 tens. str.
Elongation in 2 inches, min per cent	22	

a See par. (b). b See sec. 7.

- (b) In order to meet the required minimum tensile strength of full-size annealed eye bars, the purchaser may determine the tensile strength to be obtained in specimen tests, the range shall not exceed 14,000 lb. per sq. inch and the maximum shall not exceed 74,000 lb. per sq. inch. The material shall conform to the requirements as to physical properties other than that of tensile strength, specified in sec. 6, 7 and 8 (b).
- (c) The yield point shall be determined by the drop of the beam of the testing machine.
- 7. Modifications in Elongation. (a) For structural steel over $\frac{3}{4}$ inch in thickness, a deduction of 1 from the percentage of elongation in 8 inches specified in sec. 6 (a) shall be made for each increase of $\frac{1}{2}$ inch in thickness above $\frac{3}{4}$ inch to a minimum of 18 per cent.
- (b) For structural steel under %6 inch in thickness, a deduction of 2.5 from the percentage of elongation in 8 inches specified in sec. 6 (a) shall be made for each decrease of 1/16 inch in thickness below %6 inch.

- 8. Bend Tests. (a) The test specimen for plates, shapes and bars, except as specified in par. (b), (c) and (d), shall bend cold through 180 degrees without cracking on the outside of the bent portion, as follows: For material $\frac{3}{4}$ inch or under in thickness, flat on itself; for material over $\frac{3}{4}$ inch to and including $\frac{1}{4}$ inch in thickness, around a pin the diameter of which is equal to the thickness of the specimen; and for material over $\frac{1}{4}$ inch in thickness, around a pin the diameter of which is equal to twice the thickness of the specimen.
- (b) The test specimen for eye-bar flats shall bend cold through 180 degrees without cracking on the outside of the bent portion as follows: For material ¾ inch or under in thickness, around a pin the diameter of which is equal to the thickness of the specimen; for material over ¾ inch to and including 1¼ inch in thickness, around a pin the diameter of which is equal to twice the thickness of the specimen; and for material over 1¼ inch in thickness, around a pin the diameter of which is equal to three times the thickness of the specimen.

FIGURE 1.

- (c) The test specimen for pins, rollers and other bars, when prepared as specified in sec. 9 (e), shall bend cold through 180 degrees around a 1-inch pin without cracking on the outside of the bent portion.
- (d) The test specimen for rivet steel shall bend cold through 180 degrees flat on itself without cracking on the outside of the bent portion.
- 9. Test Specimens. (a) Tension-and bend-test specimens shall be taken from rolled steel in the condition in which it comes from the rolls, except as specified in par. (b).
- (b) Tension-and bend-test specimens for pins and rollers shall be taken from the finished bars, after annealing when annealing is specified.

(c) Tension-and bend-test specimens for plates, shapes and bars, except as specified in par. (d), (e) and (f), shall be of the full thickness of material as rolled. They may be machined to the form and dimensions shown in fig. 1, or with both edges parallel; except that bend-test specimens for eye-bar flats may have three rolled sides.

NOTE:—The gage length, parallel portions and fillets shall be as shown, but the ends may be of any form which will fit the holders of the testing machine.

FIGURE 2.

- (d) Tension-and bend-test specimens for plates, and tension-test specimens for eye-bar flats, over $1\frac{1}{2}$ inch in thickness may be machined to a thickness or diameter of at least $\frac{3}{4}$ inch for a length of at least 9 inches.
- (e) Tension-test specimens for pins, rollers and bars (except eye-bar flats) over 1½ inch in thickness or diameter may conform to the dimensions shown in fig. 2. In this case the ends shall be of a form to fit the holders of the testing machine in such a way that the load shall be axial. Bend-test specimens may be 1 by ½ inch in section. The axis of the specimen shall be located at any point midway between the center and surface and shall be parallel to the axis of the bar.
- (f) Tension-and bend-test specimens for rivet steel shall be of the full-size section of bars as rolled.
- 10. Number of Tests. (a) One tension-and one bend test shall be made from each melt; except that if material from one melt differs 3% inch or more in thickness, one tension-and one bend test shall be made from both the thickest and the thinnest material rolled.
- (b) If any test specimen shows defective machining or develops flaws, it may be discarded and another specimen substituted.
- (c) If the percentage of elongation of any tension-test specimen is less than that specified in sec. 6 (a) and any part of the fracture

is more than 34 inch from the center of the gage length of a 2-inch specimen or is outside the middle third of the gage length of an 8-inch specimen, as indicated by scribe scratches marked on the specimen before testing, a retest shall be allowed.

IV. PERMISSIBLE VARIATIONS IN WEIGHT AND THICKNESS.

11. Permissible Variations. The cross-section or weight of each piece of steel shall not vary more than 2.5 per cent from that specified; except in the case of sheared plates, which shall be covered by the following permissible variations. One cubic inch of rolled steel is assumed to weigh 0.2833 pounds.

(a) When Ordered to Weight per Square Foot:-

The weight of each lot¹ in each shipment shall not vary from the weight ordered more than the amount given in Table I.

TABLE 1.—PERMISSIBLE VARIATIONS OF PLATES ORDERED TO WEIGHT

				PER	rmis Squaresse	RE	Foo:	r of	PL	ATES	FOI	R W	Inte	rs G	IVEN			
Ordered Weight, Pounds per Square Foot		der in.	t	in. o in. cl.	t	in. o in. cl.	·t	in.	96	in. o in.	108	in. o S in.	120	io. o in. cl.	t	in. o in. cl.	(in. or ver
	Over	Under	Over	Under	Over	Under	Over	Under	Over	Under	Over	Under	Over	Under	Over	Under	Over	Under
Under 5	5 4.5 3.5 2.5 2.5 2.2 2	3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5.5 5.5 4.5 3.5 2.5 2.2 2.2 2.2 2.2	3 3 3 3 2.5 2.5 2.5 2 2 2 2 2 2	6 5.5 4.5 4 3.5 2.5 2.5 2 2	3 3 3 3 3 2.5 2.5 2 2 2 2 2	7 6 5.5 5 4.5 3 2.5 2 2 2 2	33333332.5 52.5 22.5	6 5.5 4.5 4.5 2.5 2.5	333332555	7 6 5.5 4.5 4.5 3.5 2.5	33333333325	87 65.5 4.5 43.5	333333333355	87 6 5.5 4.5 4.3.5		9 8 7 6 5.5 4.5	::: : : : : : : : : : : : : : : : : : :

NOTE.—The weight per square foot of individual plates shall not vary from the ordered weight by more than 11/8 times the amount given in this table.

(b) When Ordered to Thickness:—

The thickness of each plate shall not vary more than 0.01 inch under that ordered.

The overweight of each lot² in each shipment shall not exceed the amount given in Table II.

The term 'lot" applied to Table I means all of the plates of each group width and group weight.

The term 'lot" applied to Table II means all of the plates of each group width and group thickness.

A. S. T. M.-STRUCTURAL STEEL FOR BRIDGES

TABLE II.—PERMISSIBLE OVERWEIGHTS OF PLATES ORDERED TO THICKNESS

Ordered Thickness,		PERMISSIBLE EXCESS IN AVERAGE WEIGHTS PER SQUARE FOOT OF PLATES FOR WIDTHS GIVEN, EXPRESSED IN PERCENTAGES OF NOMINAL WEIGHTS											
Thickness, Inches	Under 48 in.	48 in. to 60 in. excl.	60 in. to 72 in. excl.	72 in. to 84 in. excl.	84 in. to 96 in. excl.	96 in. to 108 in. excl.	108 in. to 120 in. excl.	120 in. to 132 in. excl.	132 in. or over				
Under 1/8. 1/8 to 3/8 excl. 3/8 to 5/8 " 1/4 to 5/8 " 1/4 to 5/8 " 1/8 to 1/8 " 1/8 to 1/8 " 1/8 to 1 " 1/8 to 1 "	987654.5 44.5 3.5 2.5	10 9 8 7 6 5 4.5 4.5 3.5 3.5	12 10 9 8 7 6 5 4.5 4 3.5 3	14 12 10 9 8 7 6 5 4.5 4.5	12 10 9 8 7 6 5 4.5	12 10 9 8 7 6 5 4.5	14 12 10 9 8 7 6 5	16 14 12 10 9 8 7	19 17 15 13 11 9 8				

V. FINISH

12. Finish. The finished material shall be free from injurious defects and shall have a workmanlike finish.

VI. MARKING

13. Marking. The name or brand of the manufacturer and the melt number shall be legibly stamped or rolled on all finished material, except that rivet and lattice bars and other small sections shall, when loaded for shipment, be properly separated and marked for identification. The identification marks shall be legibly stamped on the end of each pin and roller. The melt number shall be legibly marked, by stamping, if practicable, on each test specimen.

VII. INSPECTION AND REJECTION

14. Inspection. The inspector representing the purchaser shall have free entry, at all times while work on the contract of the purchaser is being performed, to all parts of the manufacturer's works which concern the manufacture of the material ordered. The manufacturer shall afford the inspector, free of cost, all reasonable facilities to satisfy him that the material is being furnished in accordance with these specifications. All tests (except check

CARNEGIE STEEL COMPANY

analyses) and inspection shall be made at the place of manufacture prior to shipment, unless otherwise specified, and shall be so conducted as not to interfere unnecessarily with the operation of the works.

- 15. Rejection. (a) Unless otherwise specified, any rejection based on tests made in accordance with sec. 5 shall be reported within five working days from the receipt of samples.
- (b) Material which shows injurious defects subsequent to its acceptance at the manufacturer's works will be rejected, and the manufacturer shall be notified.
- 16. Rehearing. Samples tested in accordance with sec. 5, which represent rejected material, shall be preserved for two weeks from the date of the test report. In case of dissatisfaction with the results of the tests, the manufacturer may make claim for a rehearing within that time.

AMERICAN SOCIETY FOR TESTING MATERIALS

PHILADELPHIA, PA., U. S. A.

AFFILIATED WITH THE

INTERNATIONAL ASSOCIATION FOR TESTING MATERIALS

STANDARD SPECIFICATIONS

FOR

STRUCTURAL NICKEL STEEL

SERIAL DESIGNATION: A8-16.

These specifications are issued under the fixed designation A 8; the final number indicates the year of original Issue or, in the case of revision, the year of last revision.

ADOPTED, 1912; REVISED, 1913, 1914, 1916.

I. MANUFACTURE

- 1. Process. The steel shall be made by the open-hearth process.
- 2. Discard. A sufficient discard shall be made from each ingot intended for eye bars to secure freedom from injurious piping and undue segregation.

II. CHEMICAL PROPERTIES AND TESTS

3. Chemical Composition. The steel shall conform to the following requirements as to chemical composition:

STRUCT	URAL	STI	EL		River	STE	EL	
Carbonnot over	0.45	per	cent	not	over			cent
Manganese " "	0.70	"	4.4			0.60	"	"
Phosphorus Acid " " Basic " "	0.05	"	4.6			0.04		**
Phosphorus Basic " "	0.04	"	"		**	0.03		41
Sulphur" "	0.04	44	66	"	44	0.45	"	
Nickeinot under	3.25	"	**	not	under	3.25	"	"

- 4. Ladle Analyses. An analysis of each melt of steel shall be made. by the manufacturer to determine the percentages of the elements specified in sec. 3. This analysis shall be made from a test ingot taken during the pouring of the melt. The chemical composition thus determined shall be reported to the purchaser or his representative, and shall conform to the requirements specified in sec. 3.
- 5. Check Analyses. Analyses may be made by the purchaser from finished material representing each melt. The chemical composition thus determined shall conform to the requirements specified in sec. 3.

PHYSICAL PROPERTIES AND TESTS

Tension Tests. (a) The material shall conform to the following requirements as to tensile properties:

Properties Considered	Rivet Steel	Plates, Shapes and Bars	Eye Bars and Rollers, c Unannealed	Eye Bars, a and Pins, c Annealed
Tenslle strength, lb. per sq. inch	70,000–80,000	85,000-100,000	95,000–110,000	90,000-105,000
Yield point, min., lb. per sq. inch	45,000	50,000	55,000	52,000
Elongation in 8 inches, min., per cent	1,500,000 tens. str.	1,500,000 <i>b</i> tens. str.	1,500,000 b tens. str.	20
Elongation in 2 inches, min., per cent	,		16	20
Reduction of area min., per cent		25	25	35

a Tests of annealed specimens of eye bars shall be made for information only.

- The yield point shall be determined by the drop of the beam of the testing machine.
- 7. Modifications in Elongations. For plates, shapes and unannealed bars over 1 inch in thickness, a deduction of 1 from the percentage of elongation specified in sec. 6 (a) shall be made for each increase of ½ inch in thickness above 1 inch, to a minimum of 14 per cent.
- Character of Fracture. All broken tension-test specimens shall show either a silky or a very fine granular fracture, of uniform color, and free from coarse crystals.
- Bend Tests. (a) The test specimen for plates, shapes and bars shall bend cold through 180 degrees without cracking on the

b See sec. 7. c Elongation shall be measured in 2 inches.

outside of the bent portion, as follows: For material $\frac{3}{4}$ inch or under in thickness, around a pin the diameter of which is equal to the thickness of the specimen; and for material over $\frac{3}{4}$ inch in thickness, around a pin the diameter of which is equal to twice the thickness of the specimen.

- (b) The test specimen for pins and rollers shall bend cold through 180 degrees around a 1-inch pin without cracking on the outside of the bent portion.
- (c) The test specimen for rivet steel shall bend cold through 180 degrees flat on itself without cracking on the outside of the bent portion.
- 10. Drift Tests. Punched rivet holes pitched two diameters from a planed edge shall stand drifting until the diameter is enlarged 50 per cent, without cracking the metal.
- 11. Test Specimens. (a) Tension-and bend-test specimens shall be taken from the finished material. Specimens for pins shall be taken after annealing.

FIGURE 1.

- (b) Tension-and bend-test specimens for plates, shapes and bars, except as specified in par. (c), shall be of the full thickness of material as rolled. They may be machined to the form and dimensions shown in fig. 1, or with both edges parallel; except that bend-test specimens shall not be less than 2 inches in width, and that bend-test specimens for eye-bar flats may have three rolled sides.
- (c) Tension-and bend-test specimens for plates and bars (except eye-bar flats) over 1½ inch in thickness or diameter may be machined to a thickness or diameter of at least ¾ inch for a length of at least 9 inches.
- (d) The axis of tension-and bend-test specimens for pins and rollers shall be 1 inch from the surface and parallel to the axis of the bar. Tension-test specimens shall conform to the dimensions

- shown in fig. 2. The ends shall be of a form to fit the holders of the testing machine in such a way that the load shall be axial. Bendtest specimens shall be 1 by $\frac{1}{2}$ inch in section.
- (e) Tension-and bend-test specimens for rivet steel shall be of the full-size section of bars as rolled.
- 12. Number of Tests. (a) One tension-and one bend test shall be made from each melt; except that if material from one melt differs 3% inch or more in thickness, one tension-and one bend test shall be made from both the thickest and the thinnest material rolled.
- (b) If any test specimen shows defective machining or develops flaws, it may be discarded and another specimen substituted.

NOTE:—The gage length, parallel portions and fillets shall be as shown, but the ends may be of any form which will fit the holders of the testing machine:

FIGURE 2.

(c) If the percentage of elongation of any tension-test specimen is less than that specified in sec. 6 (a) and any part of the fracture is more than ¾ inch from the center of the gage length of a 2-inch specimen or is outside the middle third of the gage length of an 8-inch specimen, as indicated by scribe scratches marked on the specimen before testing, a retest shall be allowed.

IV. PERMISSIBLE VARIATIONS IN WEIGHT AND THICKNESS

13. Permissible Variations. The cross-section or weight of each piece of steel shall not vary more than 2.5 per cent from that specified; except in the case of sheared plates, which shall be covered by the following permissible variations. One cubic inch of rolled steel is assumed to weigh 0.2833 pound.

(a) When Ordered to Weight per Square Foot:—

The weight of each lot in each shipment shall not vary from the weight ordered more than the amount given in Table I.

¹The term 'lot" applied to Table I means all of the plates of each group width and group weight.

A. S. T. M .- STRUCTURAL NICKEL STEEL

TABLE I.—PERMISSIBLE VARIATIONS OF PLATES ORDERED TO WEIGHT

			F	ER	SQUA	RE	Foo	T OF	PL	ATE	Avi FOI OF O	W	HTQI	s G	HTS IVEN IGHT	, 8		
Ordered Weight, Pounds per Square Foot		der in.	60	io. o in. cl.	60 t 72 ex	o in.	84	in. o in. cl.	84 96 ex	o in.		o in.	t	in. o in. cl.				in. r er
	Over	Under	Over	Under	Over	Under	Over	Under	Over	Under	Over	Under	Over	Under	Over	Under	Over	Under
Under 5	5 4.5 3.5 2.5 2.5 2.2 2	3 3 2.5 2.5 2.5 2 2 2 2	5.5 4.5 4.3 3.5 2.5 2.2 2	3 3 3 3 2.5 2.5 2 2 2 2 2	6 5.5 4.5 4.5 2.5 2.2 2	333332.5 2.5 2.5 2.2 2	7 6 5.5 4.5 4 3.5 2.5 2.5	3 3 3 3 3 3 3 2 2 5 5 2 2 2 2 2	65.5 54.5 43.5 2.5 2.5	333332.55 2.55 2.55	7 6 5.5 4.5 4 3.5 2.5	3333333355	87 65.5 4.5 3.5	333333335	87 65.5 4.5 43.5		9 8 7 6 5.5 4.5	

NOTE.—The weight per square foot of individual plates shall not vary from the ordered weight by more than 11/2 times the amount given in this Table.

(b) When Ordered to Thickness:-

The thickness of each plate shall not vary more than 0.01 inch under that ordered.

The overweight of each lot² in each shipment shall not exceed the amount given in Table II.

TABLE II.—PERMISSIBLE OVERWEIGHTS OF PLATES ORDERED TO THICKNESS

Ordered		Permissible Excess in Average Weights per Square Foot of Plates for Widtes Given, Expressed in Percentages of Nominal Weights											
Thickness, Inches	Under 48 in.	43 in. to 60 in. excl.	60 in. to 72 in. excl.	72 in. to 84 in. excl.	84 in. to 96 in. excl.	96 in. to 108 in. excl.	108 in. to 120 in. excl.	120 in. to 132 in. excl.	132 in. or over				
Under 1/8 1/8 to 3/4 excl 3/4 to 5/4	987654.5 44.5 3.5 2.5	10 9 8 7 6 5 4.5 4 3.5 3 2.5	12 10 9 8 7 6 5 4.5 4.5 3.5	14 12 10 9 8 7 6 5 4.5 4 3.5	12 10 9 8 7 6 5 4.5	12 10 9 8 7 6 5 4.5	14 12 10 9 8 7 6 5	16 14 12 10 9 8 7 6	19 17 15 13 11 9 8 7				

V. FINISH

14. Finish The finished material shall be free from injurious defects and shall have a workmanlike finish.

VI. MARKING

15. Marking. The name or brand of the manufacturer and the melt number shall be legibly stamped or rolled on all finished material, except that rivet and lattice bars and other small sections shall, when loaded for shipment, be properly separated and marked for identification. The identification marks shall be legibly stamped on the end of each pin and roller. The melt number shall be legibly marked, by stamping if practicable, on each test specimen.

VII. INSPECTION AND REJECTION

- 16. Inspection. The inspector representing the purchaser shall have free entry, at all times while work on the contract of the purchaser is being performed, to all parts of the manufacturer's works which concern the manufacture of the material ordered. The manufacturer shall afford the inspector, free of cost, all reasonable facilities to satisfy him that the material is being furnished in accordance with these specifications. All tests (except check analyses) and inspection shall be made at the place of manufacture prior to shipment, unless otherwise specified, and shall be so conducted as not to interfere unnecessarily with the operation of the works.
- 17. Rejection. (a) Unless otherwise specified, any rejection based on tests made in accordance with sec. 5 shall be reported within five working days from the receipt of samples.
- (b) Material which shows injurious defects subsequent to its acceptance at the manufacturer's works will be rejected, and the manufacturer shall be notified.
- 18. Rehearing. Samples tested in accordance with sec. 5, which represent rejected material, shall be preserved for two weeks from the date of the test report. In case of dissatisfaction with the results of the tests, the manufacturer may make claim for a rehearing within that time.

A. S. T. M.—STRUCTURAL NICKEL STEEL

VIII. FULL-SIZE TESTS

19. Test of Eye Bars. (a) Full-size tests of annealed eye bars shall conform to the following requirements as to tensile properties:

Tensile strengthlb. per sq. inch	85,000-100,000
Yield point, minlb. per sq. inch	48,000
Elongation in 18 ft., minper cent	10
Reduction of area, minper cent	30

(b) The yield point shall be determined by the halt of the gage of the testing machine.

AMERICAN SOCIETY FOR TESTING MATERIALS

PHILADELPHIA, PA., U. S. A.

AFFILIATED WITH THE

International Association for Testing Materials

STANDARD SPECIFICATIONS

FOR

STRUCTURAL STEEL FOR BUILDINGS

SERIAL DESIGNATION: A9-16.

These specifications are issued under the fixed designation $\bf A$ 9; the final number indicates the year of original issue or, in the case of revision, the year of last revision.

ADOPTED, 1901; REVISED, 1909, 1913, 1914, 1916.

NOTE ADOPTED JUNE 26, 1918.

In view of the abnormal difficulty in obtaining materials in time of war, the rejection limits for Sulphur in all steels and for Phosphorus in acid steels shall be raised 0.01 per cent above the values given in these Specifications. This shall be effective during the period of the war and until otherwise ordered by the Society.

I. MANUFACTURE

- 1. Process. (a) Structural steel, except as noted in par. (b), may be made by the bessemer-or the open-hearth process.
- (b) Rivet steel, and steel for plates or angles over 34 inch in thickness which are to be punched, shall be made by the openhearth process.

II. CHEMICAL PROPERTIES AND TESTS

2. Chemical Composition. The steel shall conform to the following requirements as to chemical composition:

- 3. Ladle Analyses. An analysis of each melt of steel shall be made by the manufacturer to determine the percentages of carbon, manganese, phosphorus and sulphur. This analysis shall be made from a test ingot taken during the pouring of the melt. The chemical composition thus determined shall be reported to the purchaser or his representative, and shall conform to the requirements specified in sec. 2.
- 4. Check Analyses. Analyses may be made by the purchaser from finished material representing each melt. The phosphorus and sulphur content thus determined shall not exceed that specified in sec. 2 by more than 25 per cent.

III. PHYSICAL PROPERTIES AND TESTS

5. Tension Tests. (a) The material shall conform to the following requirements as to tensile properties:

Properties Considered	Structural Steel	Rivet Steel
Tensile strengthlb. per sq. inch	55,000-65,000	46,000-56,000
Yield point, min lb. per sq. inch	0.5 tens. str.	0.5 tens. str.
Elongation in 8 inches, min per cent	$\frac{1,400,000a}{\text{tens. str.}}$	1,400,000 tens. str.
Elongation in 2 inches, min per cent	22	

o See sec. 6.

- (b) The yield point shall be determined by the drop of the beam of the testing machine.
- 6. Modifications in Elongation. (a) For structural steel over $\frac{3}{4}$ inch in thickness, a deduction of 1 from the percentage of elongation in 8 inches specified in sec. 5 (a) shall be made for each increase of $\frac{1}{4}$ inch in thickness above $\frac{3}{4}$ inch to a minimum of 18 per cent.
- (b) For structural steel under \$\cap{5}_{16}\$ inch in thickness, a deduction of 2.5 from the percentage of elongation in 8 inches specified in sec. 5 (a) shall be made for each decrease of \$\cap{1}_{16}\$ inch in thickness below \$\cap{6}_{16}\$ inch.
- 7. Bend Tests. (a) The test specimen for plates, shapes and bars, except as specified in par. (b) and (c), shall bend cold through 180 degrees without cracking on the outside of the bent portion, as follows: For material $\frac{3}{4}$ inch or under in thickness, flat on itself; for material over $\frac{3}{4}$ inch to and including $1\frac{1}{4}$ inch in thickness, around a pin the diameter of which is equal to the thickness of the specimen; and for material over $1\frac{1}{4}$ inch in thickness, around

a pin the diameter of which is equal to twice the thickness of the specimen.

- (b) The test specimen for pins, rollers and other bars, when prepared as specified in sec. 8 (e), shall bend cold through 180 degrees around a 1-inch pin without cracking on the outside of the bent portion.
- (c) The test specimen for rivet steel shall bend cold through 180 degrees flat on itself without cracking on the outside of the bent portion.
- 8. Test Specimens. (a) Tension-and bend-test specimens shall be taken from rolled steel in the condition in which it comes from the rolls, except as specified in par. (b).
- (b) Tension-and bend-test specimens for pins and rollers shall be taken from the finished bars, after annealing when annealing is specified.

FIGURE 1.

- (c) Tension-and bend-test specimens for plates, shapes and bars, except as specified in par. (d), (e) and (f), shall be of the full thickness of material as rolled; and may be machined to the form and dimensions shown in fig. 1, or with both edges parallel.
- (d) Tension-and bend-test specimens for plates over $1\frac{1}{2}$ inch in thickness may be machined to a thickness or diameter of at least $\frac{3}{4}$ inch for a length of at least 9 inches.
- (e) Tension-test specimens for pins, rollers and bars over $1\frac{1}{2}$ inch in thickness or diameter may conform to the dimensions shown in fig. 2. In this case the ends shall be of a form to fit the holders of the testing machine in such a way that the load shall be axial. Bend-test specimens may be 1 by $\frac{1}{2}$ inch in section. The axis of the specimens shall be located at any point midway between the center and surface and shall be parallel to the axis of the bar.

A. S. T. M .- STRUCTURAL STEEL FOR BUILDINGS

- (f) Tension-and bend-test specimens for rivet steel shall be of the full-size section of bars as rolled.
- 9. Number of Tests. (a) One tension-and one bend test shall be made from each melt; except that if material from one melt differs 3% inch or more in thickness, one tension-and one bend test shall be made from both the thickest and the thinnest material rolled.
- (b) If any test specimen shows defective machining or develops flaws, it may be discarded and another specimen substituted.
- (c) If the percentage of elongation of any tension-test specimen is less than that specified in sec. 5 (a) and any part of the fracture is more than ¾ inch from the center of the gage length of a 2-inch specimen or is outside the middle third of the gage length of an 8-inch specimen, as indicated by scribe scratches marked on the specimen before testing, a retest shall be allowed.

NOTE:—The gage length, parallel portions and fillets shall be as shown, but the ends may be of any form which will fit the holder of the testing machine.

FIGURE 2.

IV. PERMISSIBLE VARIATIONS IN WEIGHT AND THICKNESS

10. Permissible Variations. The cross-section or weight of each piece of steel shall not vary more than 2.5 per cent from that specified; except in the case of sheared plates, which shall be covered by the following permissible variations. One cubic inch of rolled steel is assumed to weigh 0.2833 pound.

(a) When Ordered to Weight per Square Foot:-

The weight of each lot¹ in each shipment shall not vary from the weight ordered more than the amount given in Table I.

'The term "lot" applied to Table I means all of the plates of each group width and group weight.

CARNEGIE STEEL COMPANY

TABLE 1.—PERMISSIBLE VARIATIONS OF PLATES ORDERED TO WEIGHT

		Permissible Variations in Average Weights per Square Foot of Plates for Widths Given, Expressed in Percentages of Ordered Weights																
Ordered Weight, Pounds per Square Foot		der in.	60	in. in. in.	72	in, p in. cl.	84	in. io in. cl.	96	in. o in. cl.	108	in. o in. cl.	t	in. o in. cl.	132	in. o in. cl.	C	in. or er
	Over	Under	Over	Under	Over	Under	Over	Under	Over	Under	Over	Under	Over	Under	Over	Under	Over	Under
Under 5	5 4.5 4.5 3.5 2.5 2.5 2.2 2	3 3 3 2.5 2.5 2 2 2 2 2 2	5.5 4.5 43.5 2.5 2.5 2.2 2	3 3 3 2.5 2.5 2.5 2.2 2	6 5.5 4.5 3.5 2.5 2.5 2.5	3 3 3 3 2.5 2.5 2 2.2 2	7 6 5.5 4.5 3.5 2.5 2.5	3333332.5 2.5 2.5 2.5 2.5	6 5.5 5 4.5 4 3.5 2.5 2.5	333333555 2.5 2.5 2.5	7 6 5.5 4.5 4.5 3.5 2.5	3333333355 5	87 65.5 4.5 43.5	33333333325	87 6 5.5 4.5 4.5		987 65.5 4.5	

Note.—The weight per square foot of individual plates shall not vary from the ordered weight by more than 11/3 times the amount given in this table.

(b) When Ordered to Thickness:--

The thickness of each plate shall not vary more than 0.01 inch under that ordered.

The overweight of each lot² in each shipment shall not exceed the amount given in Table II.

TABLE II.—PERMISSIBLE OVERWEIGHTS OF PLATES ORDERED TO THICKNESS

Ordered Thickness, Inches		PERMISSIBLE EXCESS IN AVERAGE WEIGHTS PER SQUARE FOOT OF PLATES FOR WIDTHS CHVEN, EXPRESSED IN PERCENTAGES OF NOMINAL WEIGHTS											
	Under 48 in.	48 in. to 60 in. excl.	60 in. to 72 in. excl.	72 in. to 84 in. excl.	84 in. to 96 in. excl.	96 in. to 108 in. excl.	108 in. to 120 in. excl.	120 in. to 132 in. excl.	132 in or over				
Under 1/8 to 1/8 excl. 1/8 to 1/8 excl. 1/4 to 1/8 excl.	9876554.5 332.5 2.5	10 9 8 7 6 5 4.5 4 3.5 3 2.5	12 10 9 8 7 6 5 4.5 4.5 3.5	14 12 10 9 8 7 6 5 4.5 4.5 3.5	12 10 9 8 7 6 5 4.5	12 10 9 8 7 6 5 4.5	14 12 10 9 8 7 6	16 14 12 10 9 8 7 6	19 17 15 13 11 9 8				

²The term "lot" applied to Table II means all of the plates of each group width and group thickness.

V. FINISH

11. Finish. The finished material shall be free from injurious defects and shall have a workmanlike finish.

VI. MARKING

12. Marking. The name or brand of the manufacturer and the melt number shall be legibly stamped or rolled on all finished material, except that rivet and lattice bars and other small sections shall, when loaded for shipment, be properly separated and marked for identification. The identification marks shall be legibly stamped on the end of each pin and roller. The melt number shall be legibly marked, by stamping, if practicable, on each test specimen.

VII. INSPECTION AND REJECTION

- 13. Inspection. The inspector representing the purchaser shall have free entry, at all times while work on the contract of the purchaser is being performed, to all parts of the manufacturer's works which concern the manufacture of the material ordered. The manufacturer shall afford the inspector, free of cost, all reasonable facilities to satisfy him that the material is being furnished in accordance with these specifications. All tests (except check analyses) and inspection shall be made at the place of manufacture prior to shipment, unless otherwise specified, and shall be so conducted as not to interfere unnecessarily with the operation of the works.
- 14. Rejection. (a) Unless otherwise specified, any rejection based on tests made in accordance with sec. 4 shall be reported within five working days from the receipt of samples.
- (b) Material which shows injurious defects subsequent to its acceptance at the manufacturer's works will be rejected, and the manufacturer shall be notified.
- 15. Rehearing. Samples tested in accordance with sec. 4, which represent rejected material, shall be preserved for two weeks from the date of the test report. In case of dissatisfaction with the results of the tests, the manufacturer may make claim for a rehearing within that time.

AMERICAN SOCIETY FOR TESTING MATERIALS

PHILADELPHIA, PA., U. S. A.

AFFILIATED WITH THE

INTERNATIONAL ASSOCIATION FOR TESTING MATERIALS

STANDARD SPECIFICATIONS

FOR

BILLET STEEL

CONCRETE REINFORCEMENT BARS

SERIAL DESIGNATION: A15-14.

These specifications are issued under the fixed designation A 15; the final number indicates the year of original issue or, in the case of revision, the year of last revision.

ADOPTED, 1911; REVISED, 1912, 1913, 1914.

NOTE ADOPTED JUNE 26, 1918.

In view of the ahnormal difficulty in obtaining materials in time of war, the rejection limits for Sulphur in all steels and for Phosphorus in acid steels shall be raised 0.01 per cent ahove the values given in these Specifications. This shall be effective during the period of the war and until otherwise ordered by the Society.

- 1. Material Covered. (a) These specifications cover three classes of billet steel concrete reinforcement bars, namely: plain, deformed and cold-twisted.
- (b) Plain and deformed bars are of three grades, namely: structural steel, intermediate and hard.
- 2. Basis of Purchase. (a) The structural steel grade shall be used unless otherwise specified.
- (b) If desired, cold-twisted bars may be purchased on the basis of tests of the hot-rolled bars before twisting, in which case such tests shall govern and shall conform to the requirements specified for plain bars of structural steel grade.

I. MANUFACTURE

3. Process. (a) The steel may be made by the bessemer-or the open-hearth process.

A. S. T. M.—CONCRETE REINFORCEMENT BARS

- (b) The bars shall be rolled from new billets. No rerolled material will be accepted.
- 4. Cold-twisted Bars. Cold-twisted bars shall be twisted cold with one complete twist in a length not over 12 times the thickness of the bar.

II. CHEMICAL PROPERTIES AND TESTS

5. Chemical Composition. The steel shall conform to the following requirements as to chemical composition:

Phosphorus	Bessemer	not	over	0.10	per	cent
	Bessemer	**		0.05	"	44

- 6. Ladle Analyses. An analysis of each melt of steel shall be made by the manufacturer to determine the percentages of carbon, manganese, phosphorus and sulphur. This analysis shall be made from a test ingot taken during the pouring of the melt. The chemical composition thus determined shall be reported to the purchaser or his representative, and shall conform to the requirements specified in sec. 5.
- 7. Check Analyses. Analyses may be made by the purchaser from finished bars representing each melt of open-hearth steel, and each melt, or lot of ten tons, of bessemer steel. The phosphorus content thus determined shall not exceed that specified in sec. 5 by more than 25 per cent.

III. PHYSICAL PROPERTIES AND TESTS

8. Tension Tests. (a) The bars shall conform to the following requirements as to tensile properties:

TRACTOR	PROPERTIES

Properties Considered St	1	Plain Bare		De	Cold-		
	Structural- Steel mediate Grade Grade Grade Grade Grade Grade				Inter- mediate Grade	Hard Grads	twisted Bars
Tensile strength, lb. per sq. inch	1 10,000	70,000 to 85,000	80,000 min.	55,000 to 70,000	70,000 to 85,000	80,000 min.	Recorde
Yield point, min., lb. per sq. inch	33,000	40,000	50,000	33,000	40,000	50,000	55,000
Elongstion in 8 inches, min., per cent	1,400,000 <i>a</i> tens. str.	1,300,000 <i>a</i> tens. str.	1,200,000 <i>a</i> tens. str.	1,250,000 <i>a</i> tens. str.	1,125,000 <i>a</i> tens. str.	1,000,000 <i>a</i> tens. str.	5

- (b) The yield point shall be determined by the drop of the beam of the testing machine.
- 9. Modifications in Elongation. (a) For plain and deformed bars over $\frac{3}{4}$ inch in thickness or diameter, a deduction of 1 from the percentages of elongation specified in sec. 8 (a) shall be made for each increase of $\frac{1}{16}$ inch in thickness or diameter above $\frac{3}{4}$ inch.
- (b) For plain and deformed bars under $\%_6$ inch in thickness or diameter, a deduction of 1 from the percentages of elongation specified in sec. 8 (a) shall be made for each decrease of $\%_6$ inch in thickness or diameter below $\%_6$ inch.
- 10. Bend Tests. The test specimen shall bend cold around a pin without cracking on the outside of the bent portion, as follows:

	DEND TEST TESTOTION											
Bar		Plain Bars			Cold-							
	Structural- Steel Grade	Inter- mediate Grade	Hard Grade	Structural- Steel Grade	Inter- mediate Grade	Hard Grade	twisted Bars					
Under ¾ inch	180 deg. d==t	180 deg. d=2t	180 deg. d=3t	180 deg. d==t	180 deg. d=3t	180 deg. d=4t	180 deg. d=2t.					
or over	180 deg. d=t	90 deg. d==2t	90 deg. d=3t	180 deg. d=2t	90 deg. d=3t	90 deg. d=4t	180 deg. d=3t					

BEND TEST REQUIREMENTS

EXPLANATORY NOTE: d = the diameter of pin about which the specimen is bent; t=the thickness or diameter of the specimen.

- 11. Test Specimens. (a) Tension-and bend-test specimens for plain and deformed bars shall be taken from the finished bars, and shall be of the full thickness or diameter of bars as rolled; except that the specimens for deformed bars may be machined for a length of at least 9 inches, if deemed necessary by the manufacturer to obtain uniform cross-section.
- (b) Tension-and bend-test specimens for cold-twisted bars shall be taken from the finished bars, without further treatment; except as specified in sec. 2 (b).
- 12. Number of Tests. (a) One tension-and one bend test shall be made from each melt of open-hearth steel, and from each melt, or lot of ten tons, of bessemer steel; except that if material from one melt differs 3% inch or more in thickness or diameter, one tension-and one bend test shall be made from both the thickest and the thinnest material rolled.
- (b) If any test specimen shows defective machining or develops flaws, it may be discarded and another specimen substituted.

A. S. T. M.—CONCRETE REINFORCEMENT BARS

(c) If the percentage of elongation of any tension-test specimen is less than that specified in sec. 8 (a) and any part of the fracture is outside the middle third of the gage length, as indicated by scribe scratches marked on the specimen before testing, a retest shall be allowed

IV. PERMISSIBLE VARIATIONS IN WEIGHT

13. Permissible Variations. The weight of any lot of bars shall not vary more than 5 per cent from the theoretical weight of that lot

V. FINISH

14. Finish. The finished bars shall be free from injurious defects and shall have a workmanlike finish.

VI. INSPECTION AND REJECTION

- 15. Inspection. The inspector representing the purchaser shall have free entry, at all times while work on the contract of the purchaser is being performed, to all parts of the manufacturer's works which concern the manufacture of the bars ordered. The manufacturer shall afford the inspector, free of cost, all reasonable facilities to satisfy him that the bars are being furnished in accordance with these specifications. All tests (except check analyses) and inspection shall be made at the place of manufacture prior to shipment, unless otherwise specified, and shall be so conducted as not to interfere unnecessarily with the operation of the works.
- 16. Rejection. (a) Unless otherwise specified, any rejection based on tests made in accordance with sec. 7 shall be reported within five working days from the receipt of samples.
- (b) Bars which show injurious defects subsequent to their acceptance at the manufacturer's works will be rejected, and the manufacturer shall be notified.
- 17. Rehearing. Samples tested in accordance with sec. 7, which represent rejected bars, shall be preserved for two weeks from the date of the test report. In case of dissatisfaction with the results of the tests, the manufacturer may make claim for a rehearing within that time.

AMERICAN SOCIETY FOR TESTING MATERIALS

PHILADELPHIA, PA., U. S. A.

AFFILIATED WITH THE

INTERNATIONAL ASSOCIATION FOR TESTING MATERIALS

STANDARD SPECIFICATIONS

FOE

STRUCTURAL STEEL FOR SHIPS

SERIAL DESIGNATION: A12-16.

These specifications are issued under the fixed designation A 12; the final number indicates the year of original issue or, in the case of revision, the year of last revision.

ADOPTED, 1901; REVISED, 1909, 1913, 1914, 1916.

NOTE ADOPTED JUNE 26, 1918.

In view of the abnormal difficulty in obtaining materials in time of war, the rejection limits for Sulphur in all steels and for Phosphorus in acid steels shall be raised 0.01 per cent above the values given in these Specifications. This shall be effective during the psriod of the war and until otherwise ordered by the Society.

I. MANUFACTURE

1. Process. The steel shall be made by the open-hearth process.

II. CHEMICAL PROPERTIES AND TESTS

2. Chemical Composition. The steel shall conform to the following requirements as to chemical composition:

	Acid	not	over	0.06	per	cent
	**	4,4	0.04	4.	44	
Sulphur		**		0.05	**	44

3. Ladle Analyses. An analysis of each melt of steel shall be made by the manufacturer to determine the percentages of carbon, manganese, phosphorus and sulphur. This analysis shall be made from a test ingot taken during the pouring of the melt. The chemical composition thus determined shall be reported to the purchaser or his representative, and shall conform to the requirements specified in sec. 2.

4. Check Analyses. Analyses may be made by the purchaser from finished material representing each melt. The phosphorus and sulphur content thus determined shall not exceed that specified in sec. 2. by more than 25 per cent.

III. PHYSICAL PROPERTIES AND TESTS

5. Tension Tests. (a) The material shall conform to the following requirements as to tensile properties:

Tensile strengthlb. per sq. inch	58,000-68,000
Yield point, minlb. per sq. inch	
Elongation in 8 inches, minper cent	$\frac{1,500,000}{\text{tens. str.}}$

(b) The yield point shall be determined by the drop of the beam of the testing machine.

FIGURE 1.

- 6. Modifications in Elongation. (a) For material over $\frac{3}{4}$ inch in thickness, a deduction of 1 from the percentage of elongation specified in sec. 5 (a) shall be made for each increase of $\frac{1}{6}$ inch in thickness above $\frac{3}{4}$ inch, to a minimum of 18 per cent.
- (b) For material $\frac{1}{4}$ inch or under in thickness, the elongation shall be measured on a gage length of 24 times the thickness of the specimen.
- 7. Bend Tests. The test specimen shall bend cold through 180 degrees without cracking on the outside of the bent portion, as follows: For material ¾ inch or under in thickness, around a pin the diameter of which is equal to the thickness of the specimen; for material over ¾ inch to and including 1¼ inch in thickness, around a pin the diameter of which is equal to 1½ times the thickness of the specimen; and for material over 1¼ inch in thickness, around a pin the diameter of which is equal to twice the thickness of the specimen.

- 8. Teat Specimens. (a) Tension-and bend-test specimens shall be taken from the finished rolled material, and shall not be annealed or otherwise treated, except as specified in par. (b).
- (b) Tension-and bend-test specimens for material which is to be annealed or otherwise treated before use, shall be cut from properly annealed or similarly treated short lengths of the full section of the piece.
- (c) Tension-and bend-test specimens, except as specified in par. (d), shall be of the full thickness of material as rolled; and may be machined to the form and dimensions shown in fig. 1, or with both edges parallel.
- (d) Tension-and bend-test specimens for plates and bars over 1½ inch in thickness or diameter may be machined to a thickness or diameter of at least ¾ inch for a length of at least 9 inches.
- 9. Number of Tests. (a) One tension-and one bend test shall be made from each melt; except that if material from one melt differs % inch or more in thickness, one tension-and one bend test shall be made from both the thickest and the thinnest material rolled.
- (b) If any test specimen shows defective machining or develops flaws, it may be discarded and another specimen substituted.
- (c) If the percentage of elongation of any tension-test specimen is less than that specified in sec. 5 (a) and any part of the fracture is outside the middle third of the gage length, as indicated by scribe scratches marked on the specimen before testing, a retest shall be allowed.

IV. PERMISSIBLE VARIATIONS IN WEIGHT AND THICKNESS

10. Permissible Variations. The cross-section or weight of each piece of steel shall not vary more than 2.5 per cent from that specified; except in the case of sheared plates, which shall be covered by the following permissible variations. One cubic inch of rolled steel is assumed to weigh 0.2833 pound.

(a) When Ordered to Weight per Square Foot:-

The weight of each lot¹ in each shipment shall not vary from the weight ordered more than the amount given in Table I.

¹The term "lot" spplied to Table I means all of the plates of each group width and group weight.

TABLE I.—PERMISSIBLE VARIATIONS OF PLATES ORDERED TO WEIGHT

			ì	PER	SQU	ARE	Foo	T OI	PL	ATE	Avi For O	W	IDTH	вG	IVEN	3		
Ordered Weight, Pounds per Squara Foot		der in.	t	in. o in. cl.	l t	in. o in. cl.	84	in. o in.	t	in. o in. cl.	l t	ia. o in. cl.	t	in. o in. cl.	l t	in. o in. cl.	C	io. er
	Over	Under	Over	Under	Over	Under	Over	Under	Over	Under	Over	Under	Over	Under	Over	Under	Over	Under
Under 5	5 4.5 3.5 2.5 2.5 2.2 2	3 3 3 2.5 2.5 2 2 2 2 2 2 2 2 2	5.5 4.5 4.5 2.5 2.5 2.5 2.5	3 3 3 3 2.5 2.5 2 2 2 2 2	6 5.5 4.5 4.5 3.5 2.5 2.2 2	333333555 2.55 2.2222	7 6 5.5 4.5 4 3.5 2.5 2.5	3333332.55 2.55 2.22 2.55	6 5.5 4.5 4 3 5 2.5 2.5	3 3 3 3 3 3 3 2.5 2.5 2.5	765.5 5.5 4.5 3.5 2.5	3333333322	87 65.5 4.5 3.5	33333333333	87 65.5 4.5 43.5	333333333	987 65.5 4.5	

Note.—The weight per square foot of individual plates shall not vary from the ordered weight by more than 11/2 times the amount given in this table.

(b) When Ordered to Thickness:--

The thickness of each plate shall not vary more than 0.01 inch under that ordered.

The overweight of each lot² in each shipment shall not exceed the amount given in Table II.

TABLE II.—PERMISSIBLE OVERWEIGHTS OF PLATES ORDERED TO THICKNESS

Ordered Thickness, Inches	Permisaible Excess in Average Weights per Square Foot of Plates for Widths Given Expresseo in Percentages of Nominal Weights									
	Under 48 in.	48 in. to 60 in. excl.	60 in. to 72 in. excl.	72 in. to 84 in. excl.	84 in. to 96 in. excl.	96 in. to 108 in. excl.	108 in. to 120 in. excl.	120 in. to 132 in. excl.	132 in. or over	
Under 1/8 1/8 to 3/10 excl. 1/8 to 3/10 excl. 1/8 to 5/10 1/8 to 5/10 1/8 to 5/10 1/8 to 5/10 1/9 to 5	9 8 7 6 5 4 3 5 2 5 2 5 2	10 9 8 7 6 5 4.5 4 3.5 3 2.5	12 10 9 8 7 6 5 4.5 4 3.5 3	14 12 10 9 8 7 6 5 4.5 4 3.5	12 10 9 8 7 6 5 4.5	12 10 9 8 7 6 5 4.5	14 12 10 9 8 7 6	16 14 12 10 9 8 7 6	19 17 15 13 11 9 8	

V. FINISH

11. Finish. The finished material shall be free from injurious defects and shall have a workmanlike finish.

VI. MARKING

12. Marking. The name or brand of the manufacturer and the melt number shall be legibly rolled or stamped on all finished material. The melt number shall be legibly stamped on each test specimen.

VII. INSPECTION AND REJECTION

- 13. Inspection. The inspector representing the purchaser shall have free entry, at all times while work on the contract of the purchaser is being performed, to all parts of the manufacturer's works which concern the manufacture of the material ordered. The manufacturer shall afford the inspector, free of cost, all reasonable facilities to satisfy him that the material is being furnished in accordance with these specifications. All tests (except check analyses) and inspection shall be made at the place of manufacture prior to shipment, unless otherwise specified, and shall be so conducted as not to interfere unnecessarily with the operation of the works.
- 14. Rejection. (a) Unless otherwise specified, any rejection based on tests made in accordance with sec. 4 shall be reported within five working days from the receipt of samples.
- (b) Material which shows injurious defects subsequent to its acceptance at the manufacturer's works will be rejected, and the manufacturer shall be notified.
- 15. Rehearing. Samples tested in accordance with sec. 4, which represent rejected material, shall be preserved for two weeks from the date of the test report. In case of dissatisfaction with the results of the tests, the manufacturer may make claim for a rehearing within that time.

AMERICAN SOCIETY FOR TESTING MATERIALS

PHILADELPHIA, PA., U. S. A.

APPILIATED WITH THE

International Association for Testing Materials

STANDARD SPECIFICATIONS

FOR

RIVET STEEL FOR SHIPS

SERIAL DESIGNATION: A13-14.

These specifications are issued under the fixed designation A 13; the final number indicates the year of original issue or, in the case of revision, the year of last revision.

ADOPTED, 1901; REVISED, 1909, 1913, 1914.

NOTE ADOPTED JUNE 26, 1918.

In view of the abnormal difficulty in obtaining materials in time of war, the rejection limits for Sulphur in all steels and for Phosphorus in acid steels shall be raised 0.01 per cent above the values given in these Specifications. This shall be effective during the period of the war and until otherwise ordered by the Society.

A. Requirements for Rolled Bars.

I. MANUFACTURE

1. Process. The steel shall be made by the open-hearth process.

II. CHEMICAL PROPERTIES AND TESTS

2. Chemical Composition. The steel shall conform to the following requirements as to chemical composition:

Discomb owns	Acid	not	over	0.06	per	cent
Phosphorus:	(Acid (Basic	r	44	0.04	"	**
Sulphur	•	۲6	64	0.045		**

3. Ladle Analyses. An analysis of each melt of steel shall be made by the manufacturer to determine the percentages of carbon, manganese, phosphorus and sulphur. This analysis shall be made from a test ingot taken during the pouring of the melt. The chemical

composition thus determined shall be reported to the purchaser or his representative, and shall conform to the requirements specified in sec. 2.

4. Check Analyses. Analyses may be made by the purchaser from finished bars representing each melt. The phosphorus and sulphur content thus determined shall not exceed that specified in sec. 2 by more than 25 per cent.

III. PHYSICAL PROPERTIES AND TESTS

5. Tension Tests. (a) The bars shall conform to the following requirements as to tensile properties:

Tensile strengthll	b.	pėr	są.	inch	55,000-65,000
Yield point, minl	b.	per	sq.	inch	
Elongation in 8 inches, min			per	cent	1,500,000 tens. str.

- (b) The yield point shall be determined by the drop of the beam of the testing machine.
- 6. Modifications in Elongation. For bars over ¾ inch in diameter, a deduction of 1 from the percentage of elongation specified in sec. 5 (a) shall be made for each increase of ⅓ inch in diameter above ¾ inch.
- 7. Bend Tests. The test specimen shall bend cold through 180 degrees flat on itself without cracking on the outside of the bent portion.
- 8. Test specimens. Tension-and bend-test specimens shall be of the full-size section of bars as rolled.
- 9. Number of Tests. (a) Two tension-and two bend tests shall be made from each melt, each of which shall conform to the requirements specified; except that if bars from one melt differ 3% inch or more in diameter, one tension-and one bend test shall be made from both the greatest and the least diameters rolled.
- (b) If any test specimen develops flaws, it may be discarded and another specimen substituted.
- (c) If the percentage of elongation of any tension-test specimen is less than that specified in sec. 5 (a) and any part of the fracture is outside the middle third of the gage length, as indicated by scribe scratches marked on the specimen before testing, a retest shall be allowed.

IV. PERMISSIBLE VARIATIONS IN GAGE

10. Permissible Variations. The gage of bars 1 inch or under in diameter shall not vary more than 0.01 inch from that specified; the gage bars over 1 inch to and including 2 inches in diameter shall not vary more than \(\frac{1}{164} \) inch under nor more than \(\frac{1}{162} \) inch over that specified.

V. FINISH

11. Finish. The finished bars shall be free from injurious defects and shall have a workmanlike finish.

VI. MARKING

12. Marking. Rivet bars shall, when loaded for shipment, be properly separated and marked with the name or brand of the manufacturer and the melt number for identification. The melt number shall be legibly marked on each test specimen.

VII. INSPECTION AND REJECTION

- 13. Inspection. The inspector representing the purchaser shall have free entry, at all times while work on the contract of the purchaser is being performed, to all parts of the manufacturer's works which concern the manufacture of the bars ordered. The manufacturer shall afford the inspector, free of cost, all reasonable facilities to satisfy him that the bars are being furnished in accordance with these specifications. All tests (except check analyses) and inspection shall be made at the place of manufacture prior to shipment, unless otherwise specified, and shall be so conducted as not to interfere unnecessarily with the operation of the works.
- 14. Rejection. (a) Unless otherwise specified, any rejection based on tests made in accordance with sec. 4 shall be reported within five working days from the receipt of samples.
- (b) Bars which show injurious defects subsequent to their acceptance at the manufacturer's works will be rejected, and the manufacturer shall be notified.
- 15. Rehearing. Samples tested in accordance with sec. 4, which represent rejected bars, shall be preserved for two weeks from the date of the test report. In case of dissatisfaction with the results of the tests, the manufacturer may make claim for a rehearing within that time.

B. Requirements for Rivets.

I. PHYSICAL PROPERTIES AND TESTS

- 16. Test Certificate of Rolled Bars. A copy of the results of tension tests of the rolled bars from which the rivets were made shall be furnished for each lot of rivets.
- 17. Tension Tests. If the test certificate required in sec. 16 cannot be furnished, the rivets shall conform to the requirements as to tensile properties specified in secs. 5 and 6, except that the elongation shall be measured on a gage length as great as the length of the rivets tested will permit.
- 18. Bend Tests. The rivet shank shall bend cold through 180 degrees flat on itself, as shown in fig. 1, without cracking on the outside of the bent portion.

FIGURE 1.

FIGURE 2.

- 19. Flattening Tests. The rivet head shall flatten, while hot, to a diameter 2½ times the diameter of the shank, as shown in fig. 2, without cracking at the edges.
- 20. Number of Tests. (a) When required in accordance with sec. 17, one tension test shall be made from each size in each lot of rivets offered for inspection.
- (b) Three bend-and three flattening tests shall be made from each size in each lot of rivets offered for inspection, each of which shall conform to the requirements specified.

II. WORKMANSHIP AND FINISH

- 21. Workmanship. The rivets shall be true to form, concentric, and shall be made in a workmanlike manner.
- 22. Finish. The finished rivets shall be free from injurious defects.

III. INSPECTION AND REJECTION

- 23. Inspection. The inspector representing the purchaser shall have free entry, at all times while work on the contract of the purchaser is being performed, to all parts of the manufacturer's works which concern the manufacture of the rivets ordered. The manufacturer shall afford the inspector, free of cost, all reasonable facilities to satisfy him that the rivets are being furnished in accordance with these specifications. All tests and inspection shall be made at the place of manufacture prior to shipment, unless otherwise specified, and shall be so conducted as not to interfere unnecessarily with the operation of the works.
- 24. Rejection. Rivets which show injurious defects subsequent to their acceptance at the manufacturer's works will be rejected, and the manufacturer shall be notified.

AMERICAN SOCIETY FOR TESTING MATERIALS

PHILADELPHIA, PA., U. S. A.

AFFILIATED WITH THE

INTERNATIONAL ASSOCIATION FOR TESTING MATERIALS

STANDARD SPECIFICATIONS

FOR

STRUCTURAL STEEL FOR CARS

SERIAL DESIGNATION: A11-16.

These specifications are issued under the fixed designation A 11; the final number indicates the year of original issue or, in the case of revision, the year of last revision.

ADOPTED, 1914: REVISED, 1916.

NOTE ADOPTED JUNE 26, 1918.

In view of the abnormal difficulty in obtaining materials in time of war, the rejection limits for Sulphur in all steels and for Phosphorus in acid steels shall be raised 0.01 per cent above the values given in these Specifications. This shall be effective during the period of the war and until otherwise ordered by the Society.

 Material Covered. These specifications apply to shapes, plates and bars over ½ inch in thickness.

I. MANUFACTURE

2. Process. The steel shall be made by the open-hearth process.

II. CHEMICAL PROPERTIES AND TESTS

3. Chemical Composition. The steel shall conform to the following requirements as to chemical composition:

						L AND RESSING		Riv	ET ST	EEL	
Dhambaua	ſAcid	not	over	0.06	per	cent	not	ove	0.04 g	er	cent
Phosphorus	Basic	4.6	**	0.04	**	4.6	**	**	0.04	44	**
Sulphur						"	44	**	0.045	"	**

- 4. Ladle Analyses. An analysis of each melt of steel shall be made by the manufacturer to determine the percentages of carbon, manganese, phosphorus and sulphur. This analysis shall be made from a test ingot taken during the pouring of the melt. The chemical composition thus determined shall be reported to the purchaser or his representative, and shall conform to the requirements specified in sec. 3.
- 5. Check Analyses. Analyses may be made by the purchaser from finished material representing each melt. The phosphorus and sulphur content thus determined shall not exceed that specified in sec. 3 by more than 25 per cent.

III. PHYSICAL PROPERTIES AND TESTS

6. Tension Tests. (a) The material shall conform to the following requirements as to tensile properties:

Properties Considered	Structural	Rivet	Plates for
	Steel	Steel	Cold Pressing
Tensile strengthlb. per sq. inch Yield point, minlb. per sq. inch Elongation in 8 in., min., per cent ¹	0.5 tens. str.		48,000–58,000 0.5 tens. str. 1,500,000 tens. str.

¹ See sec. 7.

- (b) The yield point shall be determined by the drop of the beam of the testing machine.
- 7. Modifications in Elongation. (a) For material over 34 inch in thickness, a deduction of 1 from the percentage of elongation specified in sec. 6 (a) shall be made for each increase of 16 inch in thickness above 34 inch, to a minimum of 18 per cent.
- (b) For material under $\%_{16}$ inch in thickness, a deduction of 2.5 from the percentage of elongation in 8 inches specified in sec. 6 (a) shall be made for each decrease of $\%_{6}$ inch in thickness below $\%_{6}$ inch.
- 8. Bend Tests. (a) The test specimen for structural steel shall bend cold through 180 degrees without cracking on the outside of the bent portion, as follows: For material $\frac{3}{4}$ inch or under in thickness, flat on itself; for material over $\frac{3}{4}$ inch to and including $\frac{1}{4}$ inch in thickness, around a pin the diameter of which is equal to the thickness of the specimen; and for material over $\frac{1}{4}$ inch in thick-

ness, around a pin the diameter of which is equal to twice the thickness of the specimen.

- (b) The test specimen for rivet steel and plates for cold pressing shall bend cold through 180 degrees flat on itself without cracking on the outside of the bent portion.
- 9. Test Specimens. (a) Tension-and bend-test specimens shall be taken from the finished rolled material.
- (b) Tension-and bend-test specimens, except as specified in par. (c), shall be of the full thickness of material as rolled; and may be machined to the form and dimensions shown in fig. 1, or with both edges parallel.
- (c) Tension-and bend-test specimens for plates and bars over $1\frac{1}{2}$ inch in thickness or diameter may be machined to a thickness or diameter of at least $\frac{3}{2}$ inch for a length of at least 9 inches.
- 10. Number of Tests. (a) One tension-and one bend test shall be made from each melt; except that if material from one melt differs $\frac{3}{8}$ inch or more in thickness, one tension-and one bend test shall be made from both the thickest and the thinnest material rolled. Shapes less than 1 sq. inch in section, and bars, except rivet rods, less than $\frac{1}{2}$ sq. inch in section, need not be subjected to a tension test.

- (b) If any test specimen shows defective machining or develops flaws, it may be discarded and another specimen substituted.
- (c) If the percentage of elongation of any tension-test specimen is less than that specified in sec. 6 (a) and any part of the fracture is outside the middle third of the gage length, as indicated by scribe scratches marked on the specimen before testing, a retest shall be allowed.

IV. PERMISSIBLE VARIATIONS IN WEIGHT AND THICKNESS.

11. Permissible Variations. The cross-section or weight of each piece of steel shall not vary more than 2.5 per cent from that specified; except in the case of sheared plates, which shall be covered by the following permissible variations. One cubic inch of rolled steel is assumed to weigh 0.2833 pound.

(a) When Ordered to Weight per Square Foot:-

The weight of each lot¹ in each shipment shall not vary from the weight ordered more than the amount given in Table I.

TABLE I.—PERMISSIBLE VARIATIONS OF PLATES ORDERED TO WEIGHT

	Permissible Variations in Average Weidets per Square Foot of Plates for Width Given, Expressed in Percentages of Ordered Weights																	
Ordered Weight, Pounds per Square Foot		der in.	60	in. o in. cl.	l t	in. o in. cl.	t	in. o in. cl.	84 t 96 ex	o in.	96 t 108 ex	o in.	t	in. o in. cl.	t	in. o in. cl.	c	in. or ver
•	Over	Under	Over	Under	Over	Under	Over	Under	Over	Under	Over	Under	Over	Under	Over	Under	- Over	Under
Under 5	5 4.5 3.5 2.5 2.5 2.2 2	2	Z.0	3 3 3 3 2.5 2.5 2 2.2 2 2 2 2	6 5.5 4.5 3.5 2.5 2.5 2	333333555 222222	7 6 5.5 4.5 3.5 2.5 2.5	333333555 52222	65.5 4.5 4.5 2.5 2.5	333333555 2.552.5	7 6 5.5 4.5 4.5 2.5	33333333325	87 65.5 4.5 43.5	3	8 7 6 5.5 4.5 4.5		987 65.5 4.5	

Norm.—The weight per square foot of individual plates shall not vary from the ordered weight by more than 11/2 times the amount given in this table.

(b) When Ordered to Thickness:-

The thickness of each plate shall not vary more than 0.01 inch under that ordered.

The overweight of each lot² in each shipment shall not exceed the amount given in Table II.

The term 'lot" applied to Table I means all of the plates of each group width and group weight.
The term 'lot" applied to Table II means all of the plates of each group width and group thickness.

TABLE II.—PERMISSIBLE OVERWEIGHTS OF PLATES ORDERED TO THICKNESS

Ordered		PERMISSIBLE EXCESS IN AVERAGE WEIGHTS PER SQUARE FOOT OF PLATES FOR WIDTHS GIVEN, EXPRESSED IN PERCENTAGES OF NOMINAL WEIGHTS												
Thickness, Inches	Under 48 in.	48 in. to 60 in. excl.	60 in. to 72 in. excl.	72 in. to 84 in. excl.	84 in. to 96 in. excl.	96 in. to 108 in. excl.	108 in. to 120 in. excl.	120 in. to 132 in. excl.	132 in. or over					
Under 1/8. 1/8 to 3/16 excl. 1/8 to 5/16 " 1/4 to 5/16 " 1/8 to 5/16 " 1/8 to 1/8 " 1/8 to 1/8 " 1/8 to 1/8 " 1/8 to 1/8 " 1/8 to 1 1 or over.	9876545 443325 255	10 9 8 7 6 5 4.5 4.5 3.5 3.5 2.5	12 10 9 8 7 6 5 4.5 4.5 3.5	14 12 10 9 8 7 6 5 4.5 4 3.5	12 10 9 8 7 6 5 4.5	12 10 9 8 7 6 5 4.5	14 12 10 9 8 7 6 5	16 14 12 10 9 8 7 6	19 17 15 13 11 9 8 7					

V. FINISH

12. Finish. The finished material shall be free from injurious defects and shall have a workmanlike finish.

VI. MARKING

13. Marking. The name or brand of the manufacturer and the melt number shall be legibly rolled or stamped on all finished material, except that rivet bars and other small sections shall, when loaded for shipment, be properly separated and marked for identification. The melt number shall be legibly marked, by stamping, if practicable, on each test specimen.

VII. INSPECTION AND REJECTION

14. Inspection. The inspector representing the purchaser shall have free entry, at all times while work on the contract of the purchaser is being performed, to all parts of the manufacturer's works which concern the manufacture of the material ordered. The manufacturer shall afford the inspector, free of cost, all reasonable facilities to satisfy him that the material is being furnished in accordance with these specifications. All tests (except check analyses) and inspection shall be made at the place of manufacture prior to shipment, unless otherwise specified, and shall be so conducted as not to interfere unnecessarily with the operation of the works.

A. S. T. M.—STRUCTURAL STEEL FOR CARS

- 15. Rejection. (a) Unless otherwise specified, any rejection based on tests made in accordance with sec. 5 shall be reported within five working days from the receipt of samples.
- (b) Material which shows injurious defects subsequent to its acceptance at the manufacturer's works will be rejected, and the manufacturer shall be notified.
- 16. Rehearing. Samples tested in accordance with sec. 5, which represent rejected material, shall be preserved for two weeks from the date of the test report. In case of dissatisfaction with the results of the tests, the manufacturer may make claim for a rehearing within that time.

AMERICAN SOCIETY FOR TESTING MATERIALS

PHILADELPHIA, PA., U. S. A.

AFFILMATED WITH THE

INTERNATIONAL ASSOCIATION FOR TESTING MATERIALS

STANDARD SPECIFICATIONS

FOR

STRUCTURAL STEEL FOR LOCOMOTIVES

SERIAL DESIGNATION: A10-16.

These specifications are issued under the fixed designation A 10; the final number indicates the year of original issue or, in the case of revision, the year of last revision.

ADOPTED, 1912; REVISED, 1913, 1914, 1916.

NOTE ADOPTED JUNE 26, 1918.

In view of the shnormal difficulty in obtaining materials in time of war, the rejection limits for Sulphur in all steels and for Phosphorus in acid steels shall be raised 0.01 per cent above the values given in these Specifications. This shall be effective during the period of the war and until otherwise ordered by the Society.

1. Material Covered. These specifications apply to shapes, plates (except boiler and firebox plates) and bars over ½ inch in thickness.

I. MANUFACTURE

2. Process. The steel shall be made by the open-hearth process.

II. CHEMICAL PROPERTIES AND TESTS

3. Chemical Composition. The steel shall conform to the following requirements as to chemical composition:

4. Ladle Analyses. An analysis of each melt of steel shall be made by the manufacturer to determine the percentages of carbon, manganese, phosphorus and sulphur. This analysis shall be made from a test ingot taken during the pouring of the melt. The chemical composition thus determined shall be reported to the purchaser or his representative, and shall conform to the requirements specified in sec. 3.

5. Check Analyses. Analyses may be made by the purchaser from finished material representing each melt. The phosphorus and sulphur content thus determined shall conform to the requirements specified in sec. 3.

III. PHYSICAL PROPERTIES AND TESTS

6. Tension Tests. (a) The material shall conform to the following requirements as to tensile properties:

 Tensile strength
 lb. per sq. inch
 55,000-65,000

 Yield point, min
 lb. per sq. inch
 0.5 tens. str.

 Elongation in 8 inches, min
 per cent
 1,500,000 tens. str.

 See sec. 7.
 tens. str.

- (b) The yield point shall be determined by the drop of the beam of the testing machine.
- 7. Modifications in Elongation. (a) For material over $\frac{3}{4}$ inch in thickness, a deduction of 1 from the percentage of elongation specified in sec. 6 (a) shall be made for each increase of $\frac{1}{8}$ inch in thickness above $\frac{3}{4}$ inch, to a minimum of 18 per cent.
- (b) For material under %6 inch in thickness, a deduction of 2.5 from the percentage of elongation in 8 inches specified in sec. 6 (a) shall be made for each decrease of %6 inch in thickness below %6 inch.
- 8. Bend Tests. The test specimen shall bend cold through 180 degrees without cracking on the outside of the bent portion, as follows: For material ¾ inch or under in thickness, flat on itself; for material over ¾ inch to and including 1¼ inch in thickness, around a pin the diameter of which is equal to the thickness of the specimen; and for material over 1¼ inch in thickness, around a pin the diameter of which is equal to twice the thickness of the specimen.
- 9. Test Specimens. (a) Tension-and bend-test specimens shall be taken from the finished rolled material.
- (b) Tension-and bend-test specimens, except as specified in par. (c), shall be of the full thickness of material as rolled; and may be machined to the form and dimensions shown in fig. 1, or with both edges parallel.

- (c) Tension-and bend-test specimens for plates and bars over 1½ inch in thickness or diameter may be machined to a thickness or diameter of at least ¾ inch for a length of at least 9 inches.
- 10. Number of Tests. (a) One tension-and one bend test shall be made from each melt; except that if material from one melt differs $\frac{3}{8}$ inch or over in thickness, one tension-and one bend test shall be made from both the thickest and the thinnest material rolled. Shapes less than 1 sq. inch in section, and bars less than $\frac{1}{2}$ sq. inch in section, need not be subjected to a tension test.
 - (b) If any test specimen shows defective machining or develops flaws, it may be discarded and another specimen substituted.
- (c) If the percentage of elongation of any tension-test specimen is less than that specified in sec. 6 (a) and any part of the fracture is outside the middle third of the gage length, as indicated by scribe scratches marked on the specimen before testing, a retest shall be allowed.

FIGURE 1.

IV. PERMISSIBLE VARIATIONS IN WEIGHT AND THICKNESS.

11. Permissible Variations. The cross-section or weight of each piece of steel shall not vary more than 2.5 per cent from that specified, except in the case of sheared plates, which shall be covered by the following permissible variations. One cubic inch of rolled steel is assumed to weigh 0.2833 pound.

(a) When Ordered to Weight per Square Foot:-

The weight of each lot¹ in each shipment shall not vary from the weight ordered more than the amount given in Table I.

¹The term 'flot" applied to Table I means all of the plates of each group width and group weight,

TABLE I.—PERMISSIBLE VARIATIONS OF PLATES ORDERED TO WEIGHT

ı			P	er S	QUA	RE .	Foor	r of	PL/	TES	FOR	. Wi	DTH	Weig a Gi Wi	VEN,	rs		
Ordered Weight, Pounds per Square Foot		der in.	60	in. in.	72	in. io. cl.	84 84	in. to in.	96	in. to in.	108	in. ko 3 in. kel.	120	3 in. 30 30 in. 3cl.	132) in. 30 2 in. 3cl.	(2 in. or ver
Under 5	54.5 54.5 33.5 52.5	19pun 3332222222222222222222222222222222222	19AO 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.	383822225	65.5 4.5 4.33	333333225 550	7 6 5.5 4.5 4.3	Drder Drder	19AO 65.5 4.5 4.5	n Under	19AO 765.5 443.5 2.5	owwww. : Under	19AO :: 876554433	Topic Session	Jan 0	owwww.		vec es es : : : Under
20 to 25 " 25 to 30 " 30 to 40 " 40 or over	2 2 2	$\frac{2}{2}$	2.5 2 2 2	$\frac{2}{2}$	2.5 2.5 2	$\frac{2.5}{2}$	$\begin{array}{c} 3 \\ 2.5 \\ 2.5 \\ 2 \end{array}$	2.5 2.5 2	3.5 3 2.5 2.5	2.5 2.5 2.5 2.5	3.5 3 2.5	3 2.5 2.5	$\frac{4.5}{4}$	3 3 2.5	5 4.5 4 3.5	3 3 3	5.5 5 4.5 4	3333

Note.—The weight per square foot of individual plates shall not vary from the ordered weight by more than $1\frac{1}{2}$ times the amount given in this table.

(b) When Ordered to Thickness:-

The thickness of each plate shall not vary more than 0.01 inch under that ordered.

The overweight of each lot² in each shipment shall not exceed the amount given in Table II.

TABLE II.—PERMISSIBLE OVERWEIGHTS OF PLATES ORDERED TO THICKNESS

Ordered		PERMISSIBLE EXCESS IN AVERAGE WEIGHTS PER SQUARE FOOT OF PLATES FOR WIGHTE GIVEN, EXPRESSED IN PERCENTAGES OF NOMINAL WEIGHTS												
Thickness, Inches	Under 48 in.	48 in. to 60 in. excl.	60 in. to 72 in. excl.	72 in. to 84 in. excl.	84 in. to 96 in. excl.	96 in. to 108 in. excl.	108 ia. to 120 in. excl.	120 in. to 132 in. excl.	132 in. or over					
Under 16 1/4 to 3/16 exci. 1/4 to 3/16 " 1/4 to 5/16 " 1/5 to 3/2 " 1/5 to 5/2 " 1/5 to 3/4 " 1/4 to 1 1/5 or over.	987654.5 33225	10 9 8 7 6 5 4.5 4.5 3.5 3 2.5	12 10 9 8 7 6 5 4.5 4 3.5	14 12 10 9 8 7 6 5 4.5 4 3.5	12 10 9 8 7 6 5 4.5	12 10 9 8 7 6 5 4.5	14 12 10 9 8 7 6 5	16 14 12 10 9 8 7 6	19 17 15 13 11 9 8					

2The term 'lot" applied to Table II means all of the plates of each group width and group thickness.

V. FINISH

12. Finish. The finished material shall be free from injurious defects and shall have a workmanlike finish.

VI. MARKING

13. Marking. The name or brand of the manufacturer and the melt number shall be legibly stamped or rolled on all finished material, except that small sections shall, when loaded for shipment, be properly separated and marked for identification. The melt number shall be legibly marked, by stamping, if practicable, on each test specimen.

VII. INSPECTION AND REJECTION

- 14. Inspection. The inspector representing the purchaser shall have free entry, at all times while work on the contract of the purchaser is being performed, to all parts of the manufacturer's works which concern the manufacture of the material ordered. The manufacturer shall afford the inspector, free of cost, all reasonable facilities to satisfy him that the material is being furnished in accordance with these specifications. All tests (except check analyses) and inspection shall be made at the place of manufacture prior to shipment, unless otherwise specified, and shall be so conducted as not to interfere unnecessarily with the operation of the works.
- 15. Rejection. (a) Unless otherwise specified, any rejection based on tests made in accordance with sec. 5 shall be reported within five working days from the receipt of samples.
- (b) Material which shows injurious defects subsequent to its acceptance at the manufacturer's works will be rejected, and the manufacturer shall be notified.
- 16. Rehearing. Samples tested in accordance with sec. 5, which represent rejected material, shall be preserved for two weeks from the date of the test report. In case of dissatisfaction with the results of the tests, the manufacturer may make claim for a rehearing within that time.

AMERICAN SOCIETY FOR TESTING MATERIALS

PHILADELPHIA, PA., U. S. A.

AFFILIATED WITH THE

INTERNATIONAL ASSOCIATION FOR TESTING MATERIALS

STANDARD SPECIFICATIONS

FOR

BOILER AND FIREBOX STEEL

FOR

LOCOMOTIVES

SERIAL DESIGNATION: A30-18.

These specifications are issued under the fixed designation A 30; the final number indicates the year of original adoption as standard or, in the case of revision, the year of last revision.

ADOPTED, 1901; REVISED, 1909, 1912, 1913, 1914, 1916, 1918.

1. Material Covered. These specifications cover two grades of steel for boilers for locomotives, namely:

FLANGE

AND

FIREBOX

I. MANUFACTURE

- 2. Process. The steel shall be made by the open-hearth process.
 - II. CHEMICAL PROPERTIES AND TESTS
- 3. Chemical Composition. The steel shall conform to the following requirements as to chemical composition:

	FLA	NGE		Fire Box
Carbon			cent	0.12-0.25 per cent
Manganese	0.30-0.6			0.30-0.60 ""
Phosphorus {Acid not Baslc	over 0.0	5 ''	**	not over 0.04
	" 0.0	4 ''	44	" " 0.035
Sulphur"	" 0.0)5''	**	" " 0.0 4 " "

- 4. Ladle Analyses. An analysis of each melt of steel shall be made by the manufacture to determine the percentages of the elements specified in sec. 3. This analysis shall be made from a test ingot taken during the pouring of the melt. The chemical composition thus determined shall be reported to the purchaser or his representative, and shall conform to the requirements specified in sec. 3.
- 5. Check Analyses. An analysis may be made by the purchaser from a broken tension-test specimen representing each plate as rolled. The chemical composition thus determined shall conform to the requirements specified in sec. 3.

III. PHYSICAL PROPERTIES AND TESTS

6. Tension Tests. (a) The material shall conform to the following requirements as to tensile properties:

Tensile strengthlb. per sq. inch	FLANGE 55,000-65,000	FIREBOX 52,000-62,000
Yield point, minlb. per sq. inch Elongation in 8 inches min, per cent	0.5 tens. str. 1.500,000	0.5 tens. str. 1,500,000
See sec. 7.	tens. str.	tens. str.

- (b) The yield point shall be determined by the drop of the beam of the testing machine.
- 7. Modifications in Elongation. (a) For material over $\frac{3}{4}$ inch in thickness, a deduction of 0.5 from the percentages of elongation specified in sec. 6 (a) shall be made for each increase of $\frac{1}{8}$ inch in thickness above $\frac{3}{4}$ inch.
- (b) For material 1/4 inch or under in thickness, the elongation shall be measured on a gage length of 24 times the thickness of the specimen.
- 8. Bend Tests. (a) The test specimen shall bend cold through 180 degrees without cracking on the outside of the bent portion, as follows: For material 1 inch or under in thickness, around a pin the diameter of which is equal to the thickness of the specimen; and for material over 1 inch in thickness, around a pin the diameter of which is equal to twice the thickness of the specimen.

Homogeneity Tests. For firebox steel, a sample taken from a broken tension-test specimen shall not show any single seam or cavity more than 1/4 inch long, in either of the three fractures obtained in the test for homogeneity, which shall be made as follows: The specimen shall be either nicked with a chisel or grooved on a machine, transversely, about 1/16 inch deep, in three places about 2 inches apart. The first groove shall be made 2 inches from the square end; each succeeding groove shall be made on the opposite side from the preceding one. The specimen shall then be firmly held in a vise, with the first groove about 1/4 inch above the jaws, and the projecting end broken off by light blows of a hammer, the bending being away from the groove. The specimen shall be broken at the other two grooves in the same manner. The object of this test is to open and render visible to the eve any seams due to failure to weld up or to interposed foreign matter, or any cavities due to gas bubbles in the ingot. One side of each fracture shall be examined and the lengths of the seams and cavities determined, a pocket lens being used if necessary.

- 10. Test Specimens. (a) Tension-test specimens shall be taken longitudinally from the bottom of the finished rolled material, and bend-test specimens shall be taken transversely from the middle of the top of the finished rolled material. The longitudinal test specimens shall be taken in the direction of the longitudinal axis of the ingot, and the transverse test specimens at right angles to that axis.
- (b) Tension-and bend-test specimens shall be of the full thickness of material as rolled, and shall be machined to the form and dimensions shown in fig. 1; except that bend-test specimens may be machined with both edges parallel.
- 11. Number of Tests. (a) One tension-, and one bend test shall be made from each plate as rolled.
- (b) If any test specimen shows defective machining or develops flaws, it may be discarded and another specimen substituted.
 - (c) If the percentage of elongation of any tension-test specimen

is less than that specified in sec. 6 (a) and any part of the fracture is outside the middle third of the gage length, as indicated by scribe scratches marked on the specimen before testing, a retest shall be allowed.

IV. PERMISSIBLE VARIATIONS IN WEIGHT AND THICKNESS

12. Permissible Varistions.

The thickness of each plate shall not vary more than 0.01 inch under that ordered.

The overweight of each lot¹ in each shipment shall not exceed the amount given in Table I. One cubic inch of rolled steel is assumed to weigh 0.2833 pound.

TABLE I.—PERMISSIBLE OVERWEIGHTS OF PLATES ORDERED TO THICKNESS

Ordered	PERMISSIBLE EXCESS IN AVERAGE WEIGHTS PER SQUARE FOOT OF PLATES FOR WIDTHS GIVEN, EXPRESSED IN PERCENTAGES OF NOMINAL WEIGHTS											
Thickness, Inches	Under 48 in.	48 in. to 60 in. excl.	60 in. to 72 in. excl.	72 in. to 84 in. excl.	84 in. to 96 in. excl.	96 in. to 108 in. excl.	108 in. to 120 in. excl.	120 in. to 132 in. excl.	132 in. or over			
Under 18 1/2 to 3/16 excl 1/4 to 5/16 1/4 to 1/16 1/4 1/4 1/4 1/4 to 1/16 1/4	9 8 7 6 5 4.5 4.5 3.5 2.5 2.5	10 9 8 7 6 5 4.5 4 3.5 3.5	12 10 9 8 7 6 5 4.5 4 3.5	14 12 10 9 8 7 6 5 4.5 4.5	12 10 9 8 7 6 5 4.5	12 10 9 8 7 6 5 4.5	14 12 10 9 8 7 6	16 14 12 10 9 8 7 6	19 17 15 13 11 9 8			

V. FINISH

13. Finish. The finished material shall be free from injurious defects and shall have a workmanlike finish.

VI. MARKING

14. Marking. (a) The name or brand of the manufacturer, melt or slab number, grade, and lowest tensile strength for its grade specified in sec. 6 (a), shall be legibly stamped on each plate.

The term "lot" applied to Table I means all of the plates of each group width and group thickness.

The melt or slab number shall be legibly stamped on each test specimen.

- (b) When specified on the order, plates shall be match-marked as defined in paragraph (c) so that the test specimens representing them may be identified. When more than one plate is sheared from a single slab or ingot, each shall be match-marked so that they may all be identified with the test specimens representing them.
- (c) Each match mark shall consist of two over-lapping circles each not less than 1½ inches in diameter, placed upon the shear lines, and made by separate impressions of a single-circle steel die.
- (d) Match-marked coupons shall match with the sheets represented and only those which match properly shall be accepted.

VII. INSPECTION AND REJECTION

- 15. Inspection. The inspector representing the purchaser shall have free entry, at all times while work on the contract of the purchaser is being performed, to all parts of the manufacturer's works which concern the manufacture of the material ordered. The manufacturer shall afford the inspector, free of cost, all reasonable facilities to satisfy him that the material is being furnished in accordance with these specifications. All tests (except check analyses) and inspection shall be made at the place of manufacture prior to shipment, unless otherwise specified, and shall be so conducted as not to interfere unnecessarily with the operation of the works.
- 16. Rejection. (a) Unless otherwise specified, any rejection based on tests made in accordance with sec. 5 shall be reported within five working days from the receipt of samples.
- (b) Material which shows injurious defects subsequent to its acceptance at the manufacturer's works will be rejected, and the manufacturer shall be notified.
- 17. Rehearing. Samples tested in accordance with sec. 5, which represent rejected material, shall be preserved for two weeks from the date of the test report. In case of dissatisfaction with the results of the tests, the manufacturer may make claim for a rehearing within that time.

AMERICAN SOCIETY FOR TESTING MATERIALS

PHILADELPHIA, PA., U. S. A.

AFFILIATED WITH THE

INTERNATIONAL ASSOCIATION FOR TESTING MATERIALS

STANDARD SPECIFICATIONS

FOR

BOILER

RIVET STEEL

SERIAL DESIGNATION: A 31-14.

These specifications are issued under the fixed designation A 31; the final number indicates the year of original issue or, in the case of revision, the year of last revision.

ADOPTED, 1901; REVISED, 1909, 1912, 1913, 1914.

A. Requirements for Rolled Bars.

I. MANUFACTURE

- 1. Process. The steel shall be made by the open-hearth process.
 - II. CHEMICAL PROPERTIES AND TESTS
- 2. Chemical Composition. The steel shall conform to the following requirements as to chemical composition:

3. Ladle Analyses. An analysis of each melt of steel shall be made by the manufacturer to determine the percentages of carbon, manganese, phosphorus and sulphur. This analysis shall be made from a test ingot taken during the pouring of the melt. The chemical composition thus determined shall be reported to the purchaser or his representative, and shall conform to the requirements specified in sec. 2.

4. Check Analyses. Analyses may be made by the purchaser from finished bars representing each melt. The chemical composition thus determined shall conform to the requirements specified in sec. 2.

III. PHYSICAL PROPERTIES AND TESTS

5. Tension Tests. (a) The bars shall conform to the following requirements as to tensile properties:

 Tensile strength
 lb. per sq. inch
 45,000-55,000

 Yield point, min
 lb. per sq. inch
 0.5 tens. str.

 Elongation in 8 inches, min
 per cent
 1,500,000 tens. str.

 but need not exceed 30 per cent
 tens. str.

- (b) The yield point shall be determined by the drop of the beam of the testing machine.
- 6. Bend Tests. (a) Cold-bend Tests.—The test specimen shall bend cold through 180 degrees flat on itself without cracking on the outside of the bent portion.
- (b) Quench-bend Tests.—The test specimen, when heated to a light cherry red as seen in the dark (not less than 1200° F.) and quenched at once in water the temperature of which is between 80° and 90° F., shall bend through 180 degrees flat on itself without cracking on the outside of the bent portion.
- 7. Test Specimens. Tension-and bend-test specimens shall be of the full-size section of bars as rolled.
- 8. Number of Tests. (a) Two tension-, two cold-bend-, and two quench-bend tests shall be made from each melt, each of which shall conform to the requirements specified.
- (b) If any test specimen develops flaws, it may be discarded and another specimen substituted.
- (c) If the percentage of elongation of any tension-test specimen is less than that specified in sec. 5 (a) and any part of the fracture is outside the middle third of the gage length, as indicated by scribe scratches marked on the specimen before testing, a retest shall be allowed.

IV. PERMISSIBLE VARIATIONS IN GAGE

9. Permissible Variations. The gage of each bar shall not vary more than 0.01 inch from that specified.

V. WORKMANSHIP AND FINISH

- 10. Workmanship. The finished bars shall be circular within 0.01 inch.
- 11. Finish. The finished bars shall be free from injurious defects and shall have a workmanlike finish.

VI. MARKING

12. Marking. Rivet bars shall, when loaded for shipment, be properly separated and marked with the name or brand of the manufacturer and the melt number for identification. The melt number shall be legibly marked on each test specimen.

VII. INSPECTION AND REJECTION

- 13. Inspection. The inspector representing the purchaser shall have free entry, at all times while work on the contract of the purchaser is being performed, to all parts of the manufacturer's works which concern the manufacture of the bars ordered. The manufacturer shall afford the inspector, free of cost, all reasonable facilities to satisfy him that the bars are being furnished in accordance with these specifications. All tests (except check analyses) and inspection shall be made at the place of manufacture prior to shipment, unless otherwise specified, and shall be so conducted as not to interfere unnecessarily with the operation of the works.
- 14. Rejection. (a) Unless otherwise specified, any rejection based on tests made in accordance with sec. 4 shall be reported within five working days from the receipt of samples.
- (b) Bars which show injurious defects subsequent to their acceptance at the manufacturer's works will be rejected, and the manufacturer shall be notified.
- 15. Rehearing. Samples tested in accordance with sec. 4, which represent rejected bars, shall be preserved for two weeks from the date of the test report. In case of dissatisfaction with the results of the tests, the manufacturer may make claim for a rehearing within that time

B. Requirements for Rivets.

I. PHYSICAL PROPERTIES AND TESTS

16. Tension Tests. The rivets, when tested, shall conform to the requirements as to tensile properties specified in sec. 5, except

that the elongation shall be measured on a gage length not less than four times the diameter of the rivet.

- 17. Bend Tests. The rivet shank shall bend cold through 180 degrees flat on itself, as shown in fig. 1, without cracking on the outside of the bent portion.
- 18. Flattening Tests. The rivet head shall flatten, while hot, to a diameter $2\frac{1}{2}$ times the diameter of the shank, as shown in fig. 2, without cracking at the edges.

FIGURE 1.

FIGURE 2.

- 19. Number of Tests. (a) When specified, one tension test shall be made from each size in each lot of rivets offered for inspection.
- (b) Three bend-and three flattening tests shall be made from each size in each lot of rivets offered for inspection, each of which shall conform to the requirements specified.

II. WORKMANSHIP AND FINISH

- 20. Workmanship. The rivets shall be true to form, concentric, and shall be made in a workmanlike manner.
- 21. Finish. The finished rivets shall be free from injurious defects.

III. INSPECTION AND REJECTION

- 22. Inspection. The inspector representing the purchaser shall have free entry, at all times while work on the contract of the purchaser is being performed, to all parts of the manufacturer's works which concern the manufacture of the rivets ordered. The manufacturer shall afford the inspector, free of cost, all reasonable facilities to satisfy him that the rivets are being furnished in accordance with these specifications. All tests and inspection shall be made at the place of manufacture prior to shipment, unless otherwise specified, and shall be so conducted as not to interfere unnecessarily with the operation of the works.
- 23. Rejection. Rivets which show injurious defects subsequent to their acceptance at the manufacturer's works will be rejected, and the manufacturer shall be notified.

ORDERING MATERIAL

General Instructions

Structural steel for bridges, buildings and ships, steel reinforcement bars and open hearth boiler plate and rivet steel are rolled to permissible variations given in the specifications which precede. In cases of design which require close fitting, allowance should be made for such rolling variations so as to insure ample clearance between abutting or interfitting surfaces.

All dimensions given on profiles are theoretical. Wherever the profile applies to more than one weight of section, the dimensions are for the minimum weight.

Weights of rails are given per lineal yard of section, but unless otherwise indicated, all other weights are per lineal foot. Sections having but one weight specified can be rolled only to the weight given.

Structural Beams, H-Beams, Structural Channels, Shiphuilding Channels, Bulb Angles, Bulb Beams, United States Steel Sheet Piling, Tees and Zees should be ordered to weight per foot; Angles may be ordered either to weight per foot or to thickness.

Orders for Plates should specify all dimensions in inches.

Orders for Rounds, Squares and other Bar Mill Products should specify width and thickness in inches and the length in feet and inches.

Rails, Ties and other track accessories should be ordered by section number and not by the weight per foot. The section number should also be specified on orders for all other sections.

The Association of American Steel Manufacturers has recommended certain angle sections as standard for bridge, car, ship and general building construction, and quicker deliveries can be obtained by ordering these standard sizes and weights. Angles not standard are marked "special" on the profile pages.

In the calculation of the areas and weights of the various sections herein shown, the fillets have been disregarded in accordance with the rules of the Association of American Steel Manufacturers.

The above figures show the method of increasing the sectional areas and weights of structural shapes. Cross hatched portions represent the minimum sections and the blank portions the added areas.

In the case of Channels, I-Beams and Bulb Beams, the enlargement of the section adds an equal amount to the thickness of the web and the width of the flanges. In the case of Angles and Zees, the effect of spreading the rolls is slightly to increase the length of the legs. No general statement can be made with regard to Bulb Angles, in the rolling of which different methods are in use.

Inasmuch as the roll passes are modified in the wear of the rolls, the actual dimensions will not always conform to the theoretical, even in the case of the minimum weight sections. Designers and detailers of structural work should arrange for ample clearances.

BEAMS AND CHANNELS—Common Dimensions

Dimensions for Structural Beams are those adopted by the Association of American Steel Manufacturers and apply to all Structural Beams, except American Standard Sections B 1, B 2 and B 3, also Sections B 24 and B 81.

The dimensions of the Supplementary Beams, B 61 to B 68, inclusive, cannot be readily reduced to formulas. Slope of flange is 1:11=5°11′40″.

Dimensions for Structural Channels are those adopted by the Association of American Steel Manufacturers and apply to all Structural Channels, except Section C 20, which is a Car Building Channel.

Dimensions for Ship Building Channels of the New American Standard conform to those adopted by the British Engineering Standards Committee and apply to all Ship Building Channels.

27/04

21

*Supplementary Beam.

*B 63

STRUCTURAL BEAMS—Continued

Section Index	Depth of Beam,	Weight per Foot.		Width,	Web Thickness, Inches			
Anuca	Inches	Pounds	Decimal	Fractional	Decimal	Fractional		
B 2	20	100.0 95.0 90.0 85.0 80.0	7.284 7.210 7.137 7.063 7.000	7 8 7 1 8 7 1 8 7	0.884 0.810 0.737 0.663 0.600	74 75 74 16: 659 550 11 45 253 153		
В 3	20	75.0 70.0 65.0	6.399 6.325 6.250	613 631 614	0.649 0.575 0.500	312 377 4 1/2		

Section Index	Depth of Beam, Inches	Weight per Foot, Pounds	Flange Width, Inches		Web Thickness, Inches	
			Decimal	Fractional	Decimal	Fractional
B 5	15	75.0	6.292	61%4	0.882	₹8
		70.0	6.194	6%1a	0.784	25/39
		65.0	6.096	6%2	0.686	11/16
		60.0	6.000	6	0.590	19/32
В 7	15	55.0	5.746	5¾	0.656	21/32
		50.0	5.648	541/84	0.558	%18
		45.0	5.550	585/84	0.460	29/84
		42.0	5.500	5½	0.410	13/32
*B 65	15	37.5	6.750	6¾	0.332	21/64

Section Index	Depth of Beam, Inches	Weight per Foot, Pounda	Flange Width, Inches		Web Thickness, Inches	
			Decimal	Fractional	Decimal	Fractional
B 11	10	40.0 35.0 30.0 25.0	5.099 4.952 4.805 4.660	5 ⁴ / ₈₂ 4 ⁶¹ / ₆₄ 4 ¹³ / ₁₆ 4 ²¹ / ₆₂	0.749 0.602 0.455 0.310	3/4 39/64 29/84 5/10
*B 67	10	22.25	5,500	51/2	0.252	1/4
B 13	9	35.0 30.0 25.0 21.0	4.772 4.609 4.446 4.330	4 ⁴⁹ / ₆ ; 4 ²⁰ / ₆ ; 4 ²¹ / ₆ ;	0.732 0.569 0.406 0.290	47/64 9/16 18/32 19/64

*Supplementary Beam.

STRUCTURAL BEAMS-Continued

Section Index	Depth of Beam.	Weight per Foot.		Width,	Web Thickness. Inches	
Index	Inches	Pounds	Decimal	Fractional	Decimal	Fractional
		25.5	4.271	417/64	0.541	85/64
		23.0	4.179	411/64	0.449	28/64
B 15	8	20.5	4.087	4%2	0.357	23/64
		18.0	4.000	4	0.270	17/64
*B 68	8	17.5	5.000	5	0.220	7/82
	12.	20.0	3.868	37/8	0.458	28/64
B 17	7	17.5	3.763	34%4	0.353	2864
	1 ' '	15.0	3.660	321/32	0.250	1/4

^{*}Supplementary Beam.

1_

STRUCTURAL BEAMS—Concluded

Section Index	Depth of Beam,	Weight per Foot,		Width,	Web Thickness, Inches	
Index	Inches	Pounds	Decimal	Fractional	Decimal	Fraction
		17.25	3.575	337	0.475	15
B 19	6	14.75	3.452	322	0.352	\$3
		12.25	3.330	321	0.230	15 84
		14.75	3.294	319	0.504	1/2
$\mathbf{B} 2 1$	5	12.25	3.147	3 64	0.357	83
		9.75	3.000	3	0.210	13
		10.5	2,880	21/8	0.410	13
B 23	4	9.5	2.807	213	0.337	31
D 20	7	8.5	2.733	247	0.263	17
		7.5	2.660	221/32	0.190	78
		7.5	2.521	283	0.361	23
B 77	3	6.5	2.423	227	0.263	17
		5.5	2.330	231	0.170	61

Section	Depth of Beam.	Weight per Foot,		Width,		nickness, ches
Index	Inches	Pounds	Decimal	Fractional	Decimal	Fractional
H 4 H 3 H 2 H 1	8 6 5 4	34.0 23.8 18.7 13.6	8.000 6.000 5.000 4.000	8 6 - 5 4	0.375 0.313 0.313 0.313	3/8 5 18 18 18

H-Beams shown on this sheet are particularly adapted for use in inside mine timbering. Full information as to their properties and uses is given in separate pamphlets entitled "Steel Mine Timbers."

BULB SECTIONS

Section Index		Depth, Inches		Flange Width, Inches		hickness. ches	Weight per Foot.	
Index	Decimal	Fractional	Decimal	Fractional	Decimal	Fractional	Pounds	
B 195	10.000	10	3.500	3½	0.725 0.675	28/32 48/64	35.2 33.2	
B 196	10.000	10	3.500	3 ½	0.625 0.575	⁵ /8 27/64	31.1 29.1	
B 197 (BSBA 18)	10.000	10	3.500	31/2	0.525 0.475	17/32 15/82	26.9 24.9	
B 205	9.500	91/2	3.500	3 ½	0.600 0.550	19/82 25/64	28.8 26.9	
B 206 (BSBA 17)	9.500	9½	3.500	31/2	0.500 0.450	1/2 29/64	24.7 22.8	

Section Index Depth, Inches Decimal Fraction				Flange Width, Inches		Web Thickness, Inches	
	Fractional	Decimal	Fractional	Decimal	Fractional	per Foot, Pounds	
B 201	9.000	9	3.500	3½	0.675 0.625	48/64 5/8	30.4 28.6
В 202	9.000	9	3.500	3½	0.575 0.525	37/64 17/32	26.6 24.8
B 203 (BSBA 16)	9.000	9	3.500	3½	0.475 0.425	15/82 27/64	22.7 20.9
B 208	8.500	8½	3.500	3 ½	0.575 0.525	87/64 17/32	25.3 23.5
B 209 (BSBA 14)	8.500	8½	3.500	31/2	0.475 0.425	15/82 27/64	21.6 19.8

Section Index		Depth, Inches		Flange Width, Inches		hickness, ches	Weight per Foot,
Ludex	Decimal	Fractional	Decimal	Fractional	Decimal	Fractional	Pounds
B 211	8.500	8 1/2	3.000	3	0.550 0.500	85%4 ½	23.4 21.7
B 212 (BSBA 13)	8.500	8½	3.000	3	0.450 0.400	²⁹ %4 18 ₈₂	19.8 18.1
B 214	8.000	8	3.500	31⁄2	0.550 0.500	35%4 ½	23.2 21.6
*B 215 (BSBA 12)	8.000	8	3.500	3½	0.450 0.400	² %4 18%2	19.6 18.0
B 217	8.000	8	3.000	3	0.575 0.5 25	37/64 17/82	23.1 21.4
Dimensio	ns of Britis	h Standard Se	ections are i	indicated in b	old type.		,

Section Index	Depth, Inches		Flange Width, Inches		Web Thickness, Inches		Weight	
Index	Decimal	Fractional	Decimal	Fractional	Decimal	Fractional	Pounda	
B 218 BSBA I I)	8.000	8	3.000	3	0.475 0.425	15/82 27/04	19.6 18.0	
В 220	7.500	7 ½	3.500	31⁄2	0.575 0.525	37/64 17/32	22.8 21.2	
B 221 BSBA 10)	7.500	7 ½	3.500	31⁄2	0.475 0.425	15/82 27/04	19.4 17.8	
B 223	7.500	7 ½	3.000	3	0.525 0.475	17/82 15/82	20.3 18.8	
B 224 BSBA 9)	7.500	7½	3.000	3	0.425 0.375	27/64 3/8	17.1 15.6	

Dimensions of British Standard Sections are indicated in bold type.

Section Index		epth, ches		Flange Width, Inches		Web Thickness, Inches	
inuex	Decimal	Fractional	Decimal	Fractional	Decimal	Fractional	Pounds
В 226	7.000	7	8.500	3½	0.525 0.475	17/82 15/82	20.0 18.6
B 227 (BSBA 8)	7.000	7	3.500	3 1/2	0.425 0.375	²⁷ /64 ³ /8	16.8 15.3
В 229	7.000	7	3.000	3	0.500 0.450	1/2 29/64	18.4 16.9
B 230 (BSBA 7)	7.000	7	3.000	3	0.400 0.350	18/82 11/82	15.3 13.9
B 233 (BSBA 6)	6.500	61/2	3.500	3½	0.400 0.350	18/32 11/82	15.0° 13.6

Dimensions of British Standard Sections are indicated in bold type.

Section Index	Depth, Inches			Flange Width, Inches		Web Thickness, Inches		
Index	Decimal	Fractional	Decimal	Fractional	Decimal	Fractional	Pounds	
B 236 (BSBA 5)	6.500	61/2	3.000	3	0.425 0.375 0.350	27/64 3/8 11/82	15.0 13.6 12.9	
†Lloyd	6.000	6	3.500	31/2	0.475 0.425	15/32 27/64	16.4 14.8	
†Lloyd	6.000	6	3.500	31/2	0.375 0.350	3/8 11/82	13.4 12.8	
B 241	6.000	6	3.900	3	0.525 0.475	17/82 15/82	16.8 15.6	
B 242 (BSBA 4)	6.000	6	3.000	3	0.425 0.375 0.350	27%4 3/8 11/32	14.1 12.8 12.2	

†Rolled by Pencoyd Iron Works (60A).
Dimensions of British Standard Sections are indicated in **bold type**.

Section Index	Depth, Inches			e Width, ches	Web Thickness, Inches		Weight per Foot.	
Thuex	Decimal	Fractional	Decimal	Fractional	Decimal	Fractional	Pounds	
B 244	5.500	5½	3.000	3	0.500 0.450	½ 29 ₆₄	15.1 13.9	
B 245 (BSBA 3)	5.500	5 ½	3.000	3	0.400 0.350 0.325	18/3 ₂ 11/ ₈₂ 21/ ₆₄	12.5 11.3 10.7	
B 251 (BSBA 2)	5.000	5	2.500	2½	0.375 0.325 0.300	3/8 21/ ₆₄ 19/ ₆₄ -	10.4 9.3 8.8	
*B 143	5.000	5	2.500	21/2	0.240	1/4	8.3	
*B 144	4.500	4 1/2	2.250	21/4	0.220	7/82	6.7	
*B 145	3.000	· 3	2.000	2	0.190	8/16	3.60	
*B 146	3.000	3	1.750	1 %	0.160	5/82	3.25	
*B 147	2.500	21/2	1.500	1 ½	0.150	5/82	2.66	

CAR BUILDING BULB ANGLES

Section				Flange Width, Inches		Web Thickness, Inches		
Index	Decimal	Fractional	Decimal	Fractional	Decimal	Fractional	per Foot, Pounds	
*B 125	5.000	5	4.500	4 1/2	0.438	7/10	19.3	
*B 124	5.000	5	3.500	31/2	0.375	3/8	13.2	
*B 122	4.000	4	3.500	3½	0.500	1/2	14.3	
*B 123	4.000	4	3.500	31/2	0.375	_8/a	11.9	

*Furnished only by special arrangement.

CHANNELS

Section	Depth of Channel,	Weight per Foot,		Width, hes	Web Thickness, Inches	
Index	Inches	Pounds	Decimal	Fractional	Decimal	Fractional
†C 60	18	57.7 51.6 45.5 42.5	4.200 4.100 4.000 3.950	413 474 4 381	0.700 0.600 0.500 0.450	54974 2014 20
C 1	15	55.0 50.0 45.0 40.0 35.0 33.0	3.818 3.720 3.622 3.524 3.426 3.400	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0.818 0.720 0.622 0.524 0.426 0.400	200 000 000 000 000 000 000 000 000 000
†C 20	13	50.0 45.0 40.0 37.0 35.0 32.0	4.416 4.303 4.190 4.122 4.077 4.000	4 5 7 4 6 4 4 6 4 4 7 8 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.791 0.678 0.565 0.497 0.452 0.375	11/2 514/6

Section Index	Depth of Channel,	Channel, per Foot,		Flange Width, Inches		Web Thickness, Inches	
IIIdex	Inches	Pounds	Decimal	Fractional	Decimal	Fractiona	
† C 170	12	50.0 48.4 46.3 44.3 40.0 35.0	4.140 4.100 4.050 4.000 3.895 3.773	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.840 0.800 0.750 0.700 0.595 0.473	772 3053/4 453-6 1835-1835-1835-1835-1835-1835-1835-1835-	
C 2	12	40.0 35.0 30.0 25.0 20.5	3.418 3.296 3.173 3.050 2.940	318-64-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4	0.758 0.636 0.513 0.390 0.280	4:0 4:0 CHB	
C 3	10	35.0 30.0 25.0 20.0 15.0	3.183 3.036 2.889 2.742 2.600	315 312 257 247 247 219	0.823 0.676 0.529 0.382 0.240	34 1347 27 20 5 4 5 5 4 5 1 5 20 5 1 4	

CHANNELS

STRUCTURAL CHANNELS -- Continued

Section Index	Depth of Channel,			Flange Width, Inches		Web Thickness, Inches	
Index	Inches	Pounds	Decimal	Fractional	Decimal	Fractiona	
	1	25.0	2.815	213	0.615	39	
0.4	9	20.0	2.652	$2\frac{21}{32}$	0.452	29	
C 4	9	15.0	2.488	231	0.288	32	
	ł	13.25	2.430	2,7	0.230	15	
		21.25	2.622	25/8	0.582	37	
		18.75	2.530	$2\frac{17}{32}$.	0.490	31	
C 5	8	16.25	2.439	27	0.399	$\frac{13}{32}$	
		13.75	2.347	$2\frac{11}{32}$	0.307	5 16	
		11.25	2.260	217	0.220	372	
		19.75	2.513	233	0.633	41	
C 6 7		17.25	2.408	213	0.528	17 32	
	7	14.75	2.303	219	0.423	2 7 6 4	
		12.25	2.198	213	0.318	5 1 e	
	1	9.75	2.090	232	0.210	13	

STRUCTURAL CHANNELS—Concluded

Section Depth of Channel.	Weight per Foot,		Flange Width, Inches		Web Thickness, Inches	
Index	Inches	Pounds	Decimal	Fractional	Decimal	Fractiona
		15.5	2.283	2 9 9	0.563	9 18
C 7	6	13.0	2.160	$2\frac{5}{32}$	0.440	9 7 10 5 16 13 64
0 7		10.5	2.038	232	0.318	16
		8.0	1.920	150	0.200	62
		11.5	2.037	212	0.477	81
C 8	5	9.0	1.890	187	0.330	81
		6.5	1.750	1¾	0.190	136
		7.25	1.725	122	0.325	. 84
C 9	4	6.25	1.652	131	0.252	1/4
	_	5.25	1.580	137	0.180	1/4 1/8
		6.0	1.602	133	0.362	83
C 72	3	5.0	1.504	11/2	0.264	11
	}	4.0	1.410	1 1 1 2	0.170	11

Section	Depth of Channel,	Weight per Foot,	Flange Width, Inches		Web Thickness, Inches	
Index	Inches	Pounda	Decimal	Fractiona!	Decimal	Fractional
C 21 (BSC 26)	12	44.4 40.3 36.2 34.2	4.200 4.100 4.000 3.950	4^{18}_{64} 4^{8}_{82} 4 3^{61}_{64}	0.725 0.625 0.525 0.475	28/32 5/6 17/32 15/82
C 171 (BSC 25)	12	40.8 36.8 32.7 30.6	3.700 3.600 3.500 3.450	3^{45}_{64} 3^{19}_{32} $3^{1/2}$ 3^{29}_{64}	0.700 0.600 0. 500 0.450	45/64 19/82 1/2 29/64
C 26 (BSC 21)	10	36.8 33.4 30.0 28.3	4.200 4.100 4.000 3.950	418/64 48/62 4 361/64	0.675 0.575 0.475 0.425	48/64 87/64 15/62 27/64

Dimensions and properties of the British Standard Sections are indicated in bold type.

SHIP BUILDING CHANNELS—Continued New American Standard Sections—Continued

Section Index	Dapth of Channel,	Weight per Foot,		Flange Width, Inches		Web Thickness, Inches	
Index	Inches	Pounds	Decimal	Fractional	Decimal	Fractional	
C 27 (BSC 20)	10	34.8 31.4 28.0 26.3 24.6	3.700 3.600 3.500 3.450 3.400	345/64 319/82 31/2 329/64 318/82	0.675 0.575 0.475 0.425 0.375	45/64 87/64 15/82 27/84 3/8	
C 28 (BSC 19)	10	25.1 23.4 21.7	3.550 3.500 3.450	$385/64 \\ 31/2 \\ 329/64$	0.425 0.375 0.325	27/64 8/8 21/64	
C 31 (8SC 18)	9	34.5 31.4 28.4 26.8	4.200 4.100 4.000 3.950	418 ₆₄ 45 ₈₂ 4 361 ₆₄	0.675 0.575 0.475 0.425	48/84 87/64 15/32 27/64	

Dimensions and properties of the British Standard Sections are indicated in beld type.

SHIP BUILDING CHANNELS—Continued New American Standard Sections—Continued

Section Depth of Channel.	Weight per Foot,			Weh Thickness, Inches		
Index	Inches	Pounds	Decimal	Fractional	Decimal	Fractional
C 32 (BSC 17)	9	31.3 28.3 25.2 23.7	3.700 3.600 3.500 3.450	3 ⁴⁵ /6 ₄ 31 ⁸ / ₃₂ 3 ¹ / ₂ 3 ² / ₆₄	0.650 0.550 0.450 0.400	21/82 35/84 29/64 18/82
C 36 (BSC 13)	8	28.0 25.3 22.6 21.2	3.700 3.600 3.500 3.450	345/64 318/32 3 1/2 328/64	0.625 0.525 0.425 0.375	5/8 17/32 27/64 3/8
C 37 (BSC 12)	8	25.3 22.6 19.9 19.2 18.5	3.225 3.125 3.025 3.000 2.975	3782 31/8 31/82 3 281/82	0.600 0.500 0.400 0.375 0.350	19/82 1/2 18/82 3/8 11/82

Dimensions and properties of the British Standard Sections are indicated in bold type.

SHIP BUILDING CHANNELS—Continued New American Standard Sections—Continued

Section	Indox Channel,	Weight per Foot,	per Foot, Inches		Web Thickness, Inches	
Index	Inches	Pounds	Decimal	Fractional	Decimal	Fractional
C 41 (BSC 10)	7	24.9 22.5 20.1 18.9	3.700 3.600 3.500 3.450	345%4 31%2 3 ½ 32%4	0.600 0.500 0.400 0.350	19/3 <u>9</u> 1/2 13/62 11/32
C 42 (BSC 9)	7	19.8 17.4 16.3	3.100 3.000 2.950	$3\frac{8}{2}$ 3 2^{6} / ₆₄	0.475 0.375 0.325	15/32 3/8 21/64
C 46 (BSC 8)	6	21.9 19.8 17.8 16.8	3.700 3.600 3.500 3.450	$3^{45}\%_{4}$ $3^{19}\%_{2}$ $3^{1/2}$ $3^{29}\%_{4}$	0.575 0.475 0.375 0.325	87/64 15/32 3/8 21/64
C 109	6	15.3	3.500	31/2	0.340	11/82

Dimensions and properties of the British Standard Sections are indicated in bold typs.

SHIP BUILDING CHANNELS—Concluded New American Standard Sections—Concluded

MISCELLANEOUS CAR BUILDING CHANNELS

Section Index		Weight per Foot,		Width, hes		ickness, hes
Index	Inches	Pounds	Decimal	Fractional	Decimal	Fractional
C 47 (BSC 7)	6	16.2 14.9 \	3.000 2.938	3 2 ¹⁵ / ₁₆	0.375 0.313	3/8 5/16
C 48 (BSC 5)	6	13.3 12.0	2.563 2.500	21/2	0.375 0.313	8/8 5/16

Dimensions of British Standard Sections are indicated in bold type.

MISCELLANEOUS CAR BUILDING CHANNELS

*C 106	5 3/4	. 17.0	3.500	3 1/2	0.375	3/8
*C 200	4	13.6	2.500	21/2	0.500	1/2
*C 220	4	10.1	2.087	2%2	0.394	25/64
*C 190	3	7.1	1.984	168/64	0.250	1/4
	1	1	1	1	1	1

*Furnished only hy special arrangement.

Section Index	Size, Inches	Thickness, Inches	Weight per Foot Pounds
À 113	8 x 8	11/8 1 / 6	* 56.9
A 112	8 x 8 8 x 8	1 10	54.0
A 111	8 x 8	1	51.0
A 110	8 x 8	រ្នំថ្ង	48.1 45.0
A 109	8 x 8 8 x 8 8 x 8 8 x 8	/8	45.0
A 108	8 X 8	1 8	42.0
A 107 A 106	8 X 8	%	38.9 35.8 32.7
A 100 A 105	8 x 8	16	30.8
A 104	0 4 0	%8 8	29.6
A 103	8 x 8 8 x 8		26.4
11 100	0 4 0	/2	20.1
A 86	6 x 6 6 x 6	1	37.4
A 87	6 x 6	18	35.3
A 1	6 x 6 6 x 6	₹8	33.1
A 2	6 x 6	13	31.0 28.7
A 3	6 x 6	9/4	28.7
A 4	6 x 6	10	26.5
A o	6 x 6 6 x 6	½ 8	24.2
A 0	6 x 6 6 x 6 6 x 6	18	21.9 19.6 17.2
Δ 8	6 x 6	72	17.0
A 87 A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 A 88	6 x 6		14.9
12 00	J J	/8	11.0
*A 94	5 x 5	1	30.6
*A 95	, 5 x 5	18	28.9
*A 9	5 x 5	7∕8	27.2
*A 10	5 x 5	13	25.4
*A 11	5 x 5	3/4	23.6
*A 12 *A 13	5 x 5 5 x 5 5 x x 5		21.8
*A 13 *A 14	5 X 5	%8	20.0
*A 14 *A 15	5 X 5 5 X 5	Ď	18.1
*A 16	5 x 5	*22	16.2 14.3
*A 17	5 x 5 5 x 5	I e	12.3

EQUAL ANGLES—Continued

Section Index	Size, Inches	Thickness, Inches	Weight per Foot, Pounds
*A 18	4 x 4	13	19.9
A 19	4 x 4	3/4	18.5
A 20	4 x 4	11	17.1
A 21	4 x 4	5/8	15.7
A 22	4 x 4	9	14.3
A 23	4 x 4	1/2	12.8
A 24	4 x 4	, 7	11.3
A 25	4 x 4	3/8	9.8
A 90	4 x 4	5°	8.2
*A 284	4 x 4	1/4	6.6
*A 26	3½ x 3½	13	17.1
*A 27	3½ x 3½	3/4	16.0
*A 28	3½ x 3½	11	14.8
A 29	3½ x 3½	5/8	13.6
A 30	3½ x 3½	9	12.4
A 31	$3\frac{1}{2} \times 3\frac{1}{2}$	1/2	11.1
A 32	$3\frac{1}{2} \times 3\frac{1}{2}$	7 16	9.8
A 33	$3\frac{1}{2} \times 3\frac{1}{2}$	3/8	8.5 /
A 99	3½ x 3½	. 5 16	7.2
*A 285	3½ x 3½	1/4	5.8
*A 34	3 x 3	5/8	11.5
*A 35	3 x 3	16	10.4
A 36	3 x 3	1/2	9.4
A 37	3 x 3	76	8.3
A 38	3 x 3	3/8	7.2
A 39	3 x 3	18	6.1
A 40	3 x 3	1/4	4.9

^{*}Special, see page 58.

EQUAL ANGLES-Concluded

Section Index	Size, Inches	Thickness, Inches	Weight per Foot Pounds
*A 46	2½ x 2½	1/2	7.7
A 47	$2\frac{1}{2} \times 2\frac{1}{2}$	7.	6.8
A 48	$2\frac{1}{2} \times 2\frac{1}{2}$	8/6	5.9
A 49	$2\frac{1}{2} \times 2\frac{1}{2}$	-5-	5.0
A 50	2½ x 2½	18	4.1
A 100	$2\frac{1}{2} \times 2\frac{1}{2}$	3	3.07
*A 504	2½ x 2½	1/2 1/2 9/8 1/5 1/8	2.08
*A 56	2 x 2	78 %8 18 14 18 18	5.3
A 57	2 x 2	3/8 /	4.7
A 58	2 x 2 2 x 2	18	3.92
A 59	2 x 2	14	3.19
A 60	2 x 2	18	2.44
*A 506	2 x 2	⅓8	1.65
*A 61	1¾ x 1¾	78 88 96 14 14 2 18 18	4.6
*A 62	1¾ x 1¾	3/8	3.99
*A 63	1¾ x 1¾	18 18	3.39
*A 64	134 x 134	1/4	2.77
*A 65	1¾ x 1¾	18 18	2.12
*A 507	1¾ x 1¾	1/8	1.44
*A 66	1½ x 1½	3/5 1/4 1/4 1/6 1/8	3.35
A 67	1½ x 1½	16	2.86
A 68	1½ x 1½	1/4	2.34
A 69	11/2 x 11/2	3 16	1.80
A 102	1½ x 1½	1/8	1.23
*A 70	1¼ x 1¼	16	2.33
*A 71	1¼ x 1¼	1/4	1.92
*A 72	1¼ x 1¼	3 3	1.48
*A 73	1¼ x 1¼	15 1/4 16 1/8	1.01
*A 78	1 x 1	14 18 18	1.49
*A 79	1 x 1	18	1.16
*A 80	1 x 1	1/8	0.80

UNEQUAL ANGLES

Section Index	Size, Inches	Thickness, Inches	Weight per Foot Pounds
*A 138 *A 137	88888888888888888888888888888888888888	1 100 200 200 200 200 200 200 200 200 20	44.2 41.7
*A 136	8 x 6	19	39.1
*A 135	8 x 6	13	36.5
*A 134	8 x 6	16	36.5 33.8
*A 133	8 x 6	1	31.2
*A 132	8 x 6	6%	28.5
*A 131	8 x 6	18	25.7
*A 130	8 x 6	1/2	23.0 20.2
*A 139	8 x 6	$\frac{7}{16}$	20.2
*A 320	8 x 3½	1	35.7
*A 321	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	15 16	33.7
*A 322	8 x 3½	<i>7</i> ∕s	31.7
*A 323	8 x 3½] 3	29.6 27.5
*A 324	8 X 3½	34	27.5
*A 325 *A 326	8 X 3/2	15	25.3 23.2
*A 327	8 v 31/2	73	23.2
*A 328	8 x 31/2	16	18.7
*A 329	00 x 03/2/2 00 x x 03/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2	1 155 (138 (4 15 (2 15))))))))))))))))))))))))))))))}	16.5
*A 150	7 x 3½	1	32.3
*A 151	7 x 3½	15	30.5
*A 152	7 x 3½	¹ / ₈	28.7
*A 153	7 x 33½ 7 x x 33½	1 55 8 55 4 10 8 57 7 18 8	26.8
*A 154 *A 155	7 X 3½	% <u>4</u>	24.9 23.0
*A 156	7 × 314	18	21.0
*A 157	7 x 31/2	₹8 _8	19.1
*A 158	7 x 31%	15	17.0
*A 159	7 x 3½	7	15.0
*A 310	7 x 31/6	\$%	13.0

UNEQUAL ANGLES—Continued

Section Index	Size, Inches	Thickness, Inches	Weight per Foot, Pounds	
*A 89 *A 91 A 160 A 161 A 162 A 163 A 164 A 165 A 166 A 167 A 168	6 x 4 6 x 4	1 150 / 630 / 150 / 630 / 150 / 630 / 150 / 630 / 150	30.6 28.9 27.2 25.4 23.6 21.8 20.0 18.1 16.2 14.3 12.3	
*A 92 *A 93 A 169 A 170 A 171 A 172 A 173 A 174 A 175 A 176 A 177 *A 301	6 x 31/2 6 x 31/2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	28.9 27.3 25.7 24.0 22.4 20.6 18.9 17.1 15.3 13.5 11.7 9.8	
*A 178 *A 179 *A 180 *A 181 *A 182 *A 183 *A 184 *A 185 *A 186	5 x 4 5 x 4	(A mark 4 m to 2	24.2 22.7 21.1 19.5 17.8 16.2 14.5 12.8 11.0	

Section Index	Size, Inches	Thickness, Inches	Weight per Foot, Pounds
*A 187 *A 188 A 189 A 190 A 191 A 192 A 193 A 194 A 195 A 96	55 x x 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	7.55 % A 11.75 %	22.7 21.3 19.8 18.3 16.8 15.2 13.6 12.0 10.4 8.7
*A 196 *A 197 A 198 A 199 A 200 A 201 A 202 A 203 A 280	5 x 3 5 x 3	103/416/30917/2705/3646	19.9 18.5 17.1 15.7 14.3 12.8 11.3 9.8 8.2
*A 204 *A 205 *A 206 *A 207 .*A 208 *A 209 *A 210 *A 211 *A 97	41/2 x 3 41/2 x 3	18 8/41 6/8 911/2 71 /8 8/8 6	18.5 17.3 16.0 14.7 13.3 11.9 10.6 9.1 7.7
*A 212 *A 213 *A 214 *A 216 *A 216 *A 217 *A 218 *A 219 *A 298	4 x 3 ½ 4 x 3 ½	158/415/8	18.5 17.3 16.0 14.7 13.3 11.9 10.6 9.1

UNEQUAL ANGLES—Continued

Section Index	Size,	Thickness	Weight per Foot,
	Inches	Inches	Pounds
*A 220	4 x 3	18 14 14 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	17.1
*A 221	4 x 3		16.0
*A 222	4 x 3		14.8
A 223	4 x 3		13.6
A 224	4 x 3		12.4
A 225	4 x 3		11.1
A 226	4 x 3		9.8
A 227	4 x 3		8.5
A 228	4 x 3		7.2
*A 283	4 x 3		5.8
*A 229 *A 230 *A 231 *A 232 A 233 A 234 A 236 A 237 *A 286	3½ x 3 3½ x 3		15.8 14.7 13.6 12.5 11.4 10.2 9.1 7.9 6.6 5.4
*A 238 *A 239 *A 240 A 241 A 242 A 243 A 244 A 245	3½ x 2½ 3½ x 2½	14. 5/8 112. 27. 17. 17. 17.	12.5 11.5 10.4 9.4 8.3 7.2 6.1 4.9
*A 252	3 x 2½	G B B C C C C C C C C C C C C C C C C C	9.5
*A 253	3 x 2½		8.5
A 254	3 x 2½		7.6
A 255	3 x 2½		6.6
A 256	3 x 2½		5.6
A 257	3 x 2½		4.5
*A 258 *A 259 *A 260 *A 261 *A 262	3 x 2 3 x 2 3 x 2 3 x 2 3 x 2	1/2 1/3 1/6 1/4	7.7 6.8 5.9 5.0 4.1

UNEQUAL ANGLES—Concluded

Section Index	Size, Inches	Thickness, Inches	Weight per Foot Pounds	
*A 264	2½ x 2	1/2	6.8	
*A 265	2½ x 2	78	6.1	
A-266	$2\frac{1}{2} \times 2$	3/3	5.3	
A 267	$2\frac{1}{2} \times 2$	16	4.5	
A 268	2½ x 2	1/4	3.62	
A 269	$2\frac{1}{2} \times 2$	132	2.75	
*A 523	2½ x 2	1/2 1/2 1/3 1/4 1/8	1.86	
*A 610	2½ x 1½	18 14 18	3.92	
*A 611	$2\frac{1}{2} \times 1\frac{1}{2}$	1/4	3.19	
*A 612	$2\frac{1}{2} \times 1\frac{1}{2}$	18	2.44	
*A 270	21/4 x 11/2	1/2 1/8 1/8 1-6 1/4 1/8	5.6	
*A 271	$2\frac{1}{4} \times 1\frac{1}{2}$	1 ⁷ 8	5.0	
*A 272	$2\frac{1}{4} \times 1\frac{1}{2}$	8/8	4.4	
*A 273	$2\frac{1}{4} \times 1\frac{1}{2}$	18	3.66	
*A 274	$2\frac{1}{4} \times 1\frac{1}{2}$	1/4	2.98	
*A 275	2¼ x 1½	18 18	2.28	
*A 631	2 x 1½	3/8 1/5 1/4 1/8	3.99	
*A 614	$2 \times 1\frac{1}{2}$	IE	3.39	
*A 615	$2 \times 1\frac{1}{2}$	1/4	2.77	
*A 616	2 x 1½	ig	2.12	
*A 525	2 x 1½	1∕8	1.44	
*A 646	2 x 11/4	1/4	2.55	
*A 645	2 x 11/4	3 16	1.96	
*A 618	1¾ x 1¼	1/4	2.34	
*A 619	1¾ x 1¼	ış	1.80	
*A 620	$1\frac{3}{4} \times 1\frac{1}{4}$	18 18	1.23	
*A 670	1½ x 1¼	18 14	2.59	
*A 623	$1\frac{1}{2} \times 1\frac{1}{4}$	1/4	2.13	
*A 624	$1\frac{1}{2} \times 1\frac{1}{4}$	18	1.64	

Section	Size, I	nches	Thickness	, Inches	Weight per Foot
Index	Flange	Stem	Flange	Stem	Pounds
T 40 T 1 2 3 T 7 6 7 7 T 7 T 7 T 7 T 7 T 7 T 7 T 7 T	6 ½ 4 3 ½ 3 ½ 3 3 3	6½ 4 . 3½ 3½ 33 3	0.40 to 0.55 ½ to %6 % to %6 ½ to %6 ½ to %6 ½ to %6 % to ½ % to ½ % to ½ % to ½	0.45 ½ to %46 % to ½ ½ to %46 % to ½ % to ½	19.8 13.5 10.5 11.7 9.2 9.9 8.9 7.8 6.7

EQUAL TEES—Concluded

Section	Size, I	nches	Thicknes	s, Inches	Weight
Index	Flange	Stem	Flange	Stem	per Foot, Pounds
Т 10	21/2	21/2	% to 7	3⁄8 to √8	6.4
T 11	21/2	21/2	5 to %	5 to 3/8	5.5
T 12	21/4	21/4	- to %	5 to 1/8	4.9
T 13	21/4	21/4	1/4 to 5/16	¼ to ₺	4.1
T 14	2	2	5 to 3/8	5 to 3/8	4.3
T 15	2	2	1/4 to 1/8	1/4 to 5	3.56
T 16	1¾	1¾	1/4 to 5/8	1/4 to 1/8	3.09
T 17	11/2	1½	1/4 to 3/2	1/4 to 3/2	2.47
T 18	1½	11/2	3 to 7	3 to 7	1.94
T 19	11/4	11/4	1/4 to 9/32	1/4 to 9/32	2.02
T 20	11/4	11/4	3 to 7 32	3 to 7	1.59
T 21	1	1	$\frac{3}{16}$ to $\frac{7}{32}$	3 to 32	1.25
T 22	1	1	1/8 to 5	1/8 to 5	0.89

UNEQUAL TEES

Section	Size, Inches		Thicknes	Weight per Foot.	
Index	Flange	Stem	Flange	Stem	Pounds
†T 50	5	3	3% to 75	13 to 5/8	11.5
‡T 51	5	21/2	8% to 78	7 to 21	10.9
T 52	4½	31/2	7 to 9	13 to 7/8	15.7
T 54	4½	3	8% to 78	3/8 to 7/8	9.8
T 53	4½	3	1 to %	5 to 3/8	8 4

† T 50 can be rolled with flange $\frac{1}{2}$ " to $\frac{2}{16}$ ", and stem $\frac{3}{2}$ "; weight 13.6 lbs. per foot. † T 51 can be rolled with flange $\frac{1}{2}$ " to $\frac{2}{16}$ ", and stem $\frac{2}{2}$ "; weight 13.0 lbs. per foot.

UNEQUAL TEES-Continued

Section Index	Size, Inches		Thicknes	Weight per Foot.	
	Flange	Stem	Flange	Stem	Pounds
T 56	41/2	21/2	3% to ₹8	3% to ₹	9.2
T 55	41/2	21/2	-5 to %	-5 to %	7.8
T 57	4	5	½ to 26	½ to %	15.3
T 58	4	. 5	3/8 to 7/8	3% to ₹	11.9
T 59	4	41/2	½ to 18	½ to 9	14.4
T 60	4	41/2	3/8 to 7/8	% to ₹	11.2

UNEQUAL TEES—Continued

Section	Size, Inches		Thicknes	Thickness, Inches	
Index	Flange	Stem	Flange	Stem	per Foot Pounds
T 61	4	3	% to 75	% to 75	9.2
T 44	4.	3	18 to 38	5 to 8/8	7.8
T 62	4	$2\frac{1}{2}$	% to 7	% to 78	8.5
T 63	4	21/2	5 to %	5 to %	7.2
T 64	4	2	% to 7	% to 7	7.8
T 65	4	2	5 to 3/8	15 to 3/8	6.7
T 66	3½	4	½ to 16	½ to 9	12.6
T 67	3½	4	3/8 to 7/8	% to 78	9.8

UNEQUAL TEES-Continued

Section Index	Size, Inches		Thicknes	Weight	
	Flange	Stem	Flange	Stem	per Foot Pounds
Т 69	31/2	3	½ to 18	½ to 2	10.8
T 70	3½	3	3/8 to 7/8	3% to ₹	8.5
T 71	3½	3	5 to 3/8	3/8	7.5
T 72	3 .	4	½ to 😤	½ to ≗	11.7
T 73	3	4	7 to 1/2	7 to ½	10.5
T 74	3	4	3/8 to 7/8	% to 7/5	9.2
T 75	3	3½	½ to %	½ to 🖁	10.8
T 76	3	31/2	7 to 1/2	7 to ½	9.7
T 77	3	31/2	3% to 78	8% to 78	8.5

UNEQUAL TEES—Concluded

Section	Size, Inches		Thickness, Inches		Weight
Index	Flange	Stem	Flange	Stem	per Foot Pounds
T 78	3	21/2	3% to 7	% to 7	7.1
T 79	3	21/2	5 to %	5 to 3/8	6.1
T 82	21/2	3	3% to 7	% to 7	7.1
T 83	21/2	3	15 to 3/8	5 to %	6.1
T 86	21/2	11/4	3 to 9	Te to Te	2.87
T 87	2	11/2	14 to 15	1/4 to 5/8	3.09
T 519	11/2	2	1 to 1/4	3 to 1/4	2.45
T 605	11/2	11/4	1/8 to 5	1/8 to 5	1.25
*T 603	11/4	5/8	No. 9	1/8 to No. 7	0.88

^{*} Furnished only by special arrangement.

MISCELLANEOUS TEES

Section	Size,	Inches	Thickne	Weight			
Index	Flange	Stem	Flange	Stem	per Foot, Pounds		
*T 156	4	3	See cut	1/4 to 1/2	' 11.3		
*T 157	31/2	21/4	See cut	5/16 to 7/16	7.3		
*T 158	3	21/4	See cut	%6 to %6	7.0		

^{*} Furnished only by special arrangement.

1.1

Section		Size, Inches		Thickness.	Weight per Foot,
Index	Flange	Web	Flange	Inches	Pounds
Z 3	35/8 31/8 31/2	61/8 61/8 6	35/8 318 31/2	7/8 13 16 8/4	$34.6 \\ 32.0 \\ 29.4$
Z 2	35% 318 31/2	6½ 6½ 6	35/8 31/8 31/2	11 5 8 9 16	28.1 25.4 22.8
Z 1	35/8 31/2 31/2	6½ 6½ 6	35/8 3 % 3 1/2	1/2 1/8 8/8	$21.1 \\ 18.4 \\ 15.7$
Z 6	3	51/8 51/8 5	3% 3,5 3,4	13 16 3/4 11	$28.4 \\ 26.0 \\ 23.7$
Z 5	3% 35 37	51/8 51/8 5	3¾ 3¼ 3¼	5/8 1 ⁶ 1/2	$22.6 \\ 20.2 \\ 17.9$
Z 4	38/8 3 [6 3 1/4	5½ 5½ 5	3% 3.% 3.%	7e %8 %8 16	16.4 14.0 11.6

UNITED STATES STEEL SHEET PILING

Section Index	Width, Inches	Web Thickness, Inches	Weight per Foot, Pounds
M 105	13 1/4	1/2	42.5
M 104	13 1/4	3/8	38
M 103	91/4	1/4	16

This Company manufactures Friestedt Interlocking Channel Bar Piling and Symmetrical Interlock Channel Bar Piling, in addition to United States Steel Sheet Filing. Full information as to the properties and uses of these sections is given in a separate pamphlet entitled "Steel Sheet Piling."

FLOOR PLATES

TROUGH PLATES

CORRUGATED PLATES

Section Index	Width, Inches	Depth, Inches	Thickness, Inches	Weight per Foot Pounds
*M 14	91/2	3¾	3/4	23.2
*M 13	$9\frac{1}{2}$	3 3/4	11/16	21.4
*M 12	$9\frac{1}{2}$	3 3/4	5/8	19.7
*M 11	91/2	3 3/4	%16	18.0
*M 10	91/2	3 3/4	1/2	16.3
*M 35	123/16	2 1/8	1/2	23.7
*M 34	$12\frac{8}{16}$	218/18	7/16	20.8
*M 33	$12\frac{3}{16}$	2 3/4	3/8	17.8
*M 32	8 3/4	1 5/8	3/8	12.0
*M 31	8 3/4	1%18	5/18	10.1
*M 30	834	1 1/2	1/4	8.1

^{*} Furnished only by special arrangement.

CHECKERED PLATE

Section at Rib

Section	Thickness.	Widt	h and Length, l	Inches	Weight per
Index	Inches	6 to 111/8	12 to 48	48½ to 60	Square Foot Pounds
M 54	1/2	120	240	240	21.4
M 53	7/1s	120	240	240	18.9
M52	3/8	120	240	240	16.3
M 51	5∕1e	120	240	240	13.8
M 50	1/4	120	240	240	11.2
M49	8/16	120	180		8.7

Checkered plates of greater lengths than shown in the above table may be submitted for special consideration.

FLAT ROLLED STEEL

RECTANGULAR AND CIRCULAR PLATES—Carbon Steel

SHEARED PLATES, THREE-SIXTEENTH INCHES AND UNDER, EXTREME SIZES

Thickness,	Weight,			Dishartes					
Inches, B. W. G.	Lbs. per Sq. Ft.	74	72	70	68	66	64	60	Diameter, Inches
*No. 8 *No. 9 *No. 10 * ½ *No. 11 *No. 12	7.65 6.73 6.04 5.47 5.10	200	220 200	240 210 160	250 216 170 144	270 230 190 170 140 140 120	320 260 220 200 150 150 130	375 280 240 230 160 160 144	77 74 70 68 66 66 66
Thickness, Inches, B. W. G.	Weight, Lbs. per Sq. Ft.	54	48	42	36	30	24		Diameter, Inches
*No. 9 *No. 9 *No. 10 * ½ *No. 11 *No. 11	7.65 6.73 6.04 5.47 5.10	400 300 280 240 200 200 180	400 340 300 260 220 220 220 200	400 350 310 270 230 230 220	375 350 330 300 260 260 240	375 350 330 300 260 260 240	400 340 280 260 260 260 240		77 74 70 68 66 66 64

Rectangular Plates %16" thick, over 74" wide and Circular Plates %16" thick, over 77" diameter can be furnished to gage only and only under certain conditions. Such sizes should be submitted for special consideration.

Plates of greater dimensions than shown in above table, may be submitted for special consideration.

RECTANGULAR UNIVERSAL PLATES—Carbon Steel

UNIVERSAL MILL PLATES, ONE-FOURTH INCH AND OVER, EXTREME SIZES

Thick-	Weight,				Wie	lths an	d Lengi	hs in I	nches			
ness, Inches	Lbs. per Sq. Ft.	48-46	45-41	40-36	35-31	30-26	25-20	19- 17	16- 15	14- 12	11	10-6 }
14 5/18 3/8 7/18 1/2 9/18 1 1/8 1 1/8	10.20 12.75 15.30 17.85 20.40 22.95 25.50 30.60 35.70 40.80 45.90 51.00	1020 1200 1320 1380 1380 1353 1160 1015 903 812	1020 1200 1320 1380 1380 1387 1163 1018 905 814	1140 1320 1380 1380 1380 1383 1363 1169 1023 910 818	1260 1380 1380 1380 1380 1380 1372 1177 1030 916 824	1380 1380 1380 1380 1188	1020 1320 1380 1380 1380 1380 1380 1380 1203 1052 936 842	1020 1080 1080 1080 1080 1080 1080 1080	1020 1080 1080 1080 1080 1080 1080 1080	1020 1080 1080 1080 1080 1080 1080 1080	540 600 900 900 1020 1020 1020 900 900 840 840	540 600 840 840 840 840 840 840 840 840
1 1/8 1 1/4 1 1/8 1 1/8 1 1/8 1 1/8	56.10 61.20	738 677	740 679	744 682	749 687	756 693	766 702	973 892	1080 1059	1080 1080	840 840	840 840
15%	66.30	625 580	626 581	629 584	634 588	640 594	648 601	823 765	978 908	1080 1038	840 720	840 720
2	76.50 81.60	541 507	543 509	545 511	549 515	554 519	561 526	714 669	847 794	968 907	660 600	720 720

Plates of greater dimensions than shown in above table, may be submitted for special consideration.

^{*}Plates under \Re_6 " thick are furnished only by special arrangement. Plates lighter than $\frac{1}{2}$ " should be specified to gage only.

RECTANGULAR AND CIRCULAR PLATES—Carbon Steel

SHEARED PLATES, ONE-FOURTH INCH AND OVER, EXTREME SIZES

Thick-	Weight,			1	Widths	and Le	ngths in	Inche	J			Diam.,
ness, Inches	Lbs. per Sq. Ft.	132	126	120	114	108	102	96	90	-84	78	Inches
1/4	10.20				175	250	280	300	330	375	400	115
5/18	12.75		!	240	270	320	360	380	420	440	460	120
8/8	15.30	180	240	270	320	365	380	410	450	500	550	132
7∕18	17.85	200	270	300	360	370	410	430	460	510	550	132
1/2	20.40	240	270	320	365	400	450	480	510	550	580	134
%1e	22.95	240	270	330	373	420	470	500	530	570	600	134
5/8	25.50	240	300	350	390	450	500	520	540	600	620	134
11/10	28.05	240	300	360	420	450	500	520	540	600	620	134
8/4	30.60	240	300	360	400	450	490	520	540	600	620	134
18/16	33.15	240	300	340	385	440	490	510	530	600	620	134
7/8	35.70	240	300	330	375	440	480	510	530	600	620	134
1 1½	40.80	240 240	300	300 300	340	440	460	500	530	580 550	600 580	134 132
11/4	51.00	230	270	300	330 310	410 380	440 400	450 420	500 490	530	550	132
11/2	61.20	210	230	260	280	330	320	340	420	440	480	132
134	71.40	200	200	220	240	280	270	300	380	380	410	132
2	81.60	180	180	190	210	240	240	260	320	330	360	132
21/4	91.80	132	160	170	190	210	210	230	280	295	320	132
-/*												
Thick- ness, Inches	Weight, Lbs. per Sq. Ft.	72	66	60	54	50	48	42	36	30	24	Diam., Inches
1/4	10,20	430	475	525	530	530	530	530	530	530	530	115
910	12.75	480	500	560	550	575	575	550	550	550	580	120
3/8	15.30	600	600	620	620	620	620	600	580	600	600	132
7/10	17.85	600	630	630	640	640	640	600	580	600	600	132
1/2	20.40	610	630	630	640	640	640	600	580	630	600	134
9/10	22.95	.620	640	640	640	640	640	600	580	630	600	134
5/8	25.50	620	640	640	640	640	640	600	580	600	600	134
11/18	28.05	620	640	640	640	640	640	600	580	600	580	134
3/4	30.60	620	640	640	640	640	640	600	580	600	580	134
13/10	33.15	620	640	640	640	640	640	600	580	570	550	134
7/8	35.70	620	640	640	640	640	640	600	580	550	550	134
1	40.80	600	630	630	640	640	640	580	580	520	530	134
11/8	45.90	580	620	620	640	640	640	580	580	520	500	132
11/4	51.00	550	600	600	600	600	600	560	560	520	450	132
1½ 1¾	61.20 71.40	530 450	600 490	600 550	600	600	600	540	540	470	430	132
2	81.60	400	440	480	550 500	550 500	550 500	540	540	430	380	132
21/4	91.80	350	390	420	450	450	450	500 450	500 450	400 300	350 200	132 132
						200	100	100	100	300	200	102

Plates 48" wide and under can also be rolled on Universal Mills.

For greater length and Universal Mill Sizes, see Universal Mill Plate Table.

Plates of greater dimensions than shown in above tables may be submitted for special consideration.

FLAT ROLLED STEEL

RECTANGULAR PLATES—Nickel Steel SHEARED PLATES, ONE-FOURTH INCH AND OVER, EXTREME SIZES

Thick-						Width	s and	Lengt	he in	Inches					
ness, Inches	102	96	90	84	78	72	66	60	54	50	48	42	36	30	24
						240	240	260	280	280	280	280	280	260	260
5/16					260	260	270	300	310	310	340	340	340	310	310
3/8		280	340	390	420	450	500	500	500	500	480	450	450	430	430
7/16	260	300	360	400	430	480	520	520	520	520	500	490	490	480	480
1/2	270	320	380	420	460	485	520	520	520	520	500	490	490	480	480
%16	270	320	380	420	460	485	520	520	520	520	500	490	490	480	480
5/8	270	300	355	390	440	480	520	520	520	520	500	500	500	480	450
11/10	260	300	355	390	440	460	490	500	500	500	500	500	480	480	450
3/4	260	300	355	390	440	450	460	500	500	500	500	500	480	480	450
13/16	260	300	355	390	440	440	460	480	500	500	500	500	480	460	440
7∕8	260	300	355	390	440	440	460	480	480	480	480	480	480	450	440
1	260	290	320	370	400	430	440	460	480	480	480	480	440	420	420
11/8	250	270	295	330	375	400	410	420	440	440	440	440	440	420	420
11/4	240	260	290	315	330	350	360	380	390	400	400	420	420	400	400
$1\frac{1}{2}$	230	260	290	290	310	330	350	370	390	390	390	390	380	380	360
1 3/4	220	230	250	270	300	310	330	350	370	390	390	360	340	340	320
2	210	230	250	260	290	295	310	330	350	370	370	340	320	320	290

RECTANGULAR PLATES—Nickel Steel UNIVERSAL MILL PLATES, ONE-FOURTH INCH AND OVER, EXTREME SIZES

Thick-				W	idthe an	d Lengtl	he in Inc	hes			
ness, Inches	48-46	45-41	40-36	35-31	30-26	25-20	19-17	16-15	14-12	11	10-6 }
1/4							660	660	660	540	540
5/16	540	540	600	660	720	780	780	780	780	600	600
3/8	720	720	780	840	960	960	1020	1020	1020	900	840
7/18	840	840	960	1020	1080	1080	1020	1020	1020	900	840
1/2	960	960	1080	1140	1200	1200	1020	1020	1020	1020	840
%16	960	960	1080	1140	1200	1200	1020	1020	1020	1020	840
5/8	900	900	1020	1080	1140	1140	1000	1000	1020	1020	840
3/4	840	840	960	1020	1080	1080	1000	1000	1020	900	840
7/8	780	780	840	960	960	960	1000	1000	1000	900	840
1	720	750	780	816	840	900	1000	1000	1000	900	840
11/8	640	667	693	725	744	800	1000	1000	1000	840	840
11/4	575	600	624	652	672	720	1000	1000	1000	840	840
1 3/8	525	545	567	593	600	655	970	1000	1000	840	840
1 1/2	480	500	520	544	540	600	890	1000	980	840	840
15/8	444	461	480	502	504	554	820	978	980	840	840
1 3/4	410	428	445	466	480	514	765	908	980	720	720
1 7/8	384	400	416	435	444	480	710	847	968	660	720
2	360	375	390	408	420	450	670	794	908	600	720

All sizes of Rectangular Nickel Steel Plates given in above tables under ½" thick should be specified to gage only. Plates ½" thick and over can be rolled to either gage or weight per square foot.

٤

SQUARE EDGE FLATS

%" to 3", wide, x any thickness, \%", up to width.

Over 3" to 5", wide, x any thickness, \%" to 3", inclusive.

Over 5" to 7", wide, x any thickness, \%" to 2", inclusive.

Over 7\%" to 7\%", wide, x any thickness, \%\%" to 1\%", inclusive.

Over 7\%" to 8", wide, x any thickness, \%\%\%" to 1" inclusive.

Sizes not listed will be considered.

NUT STEEL FLATS

All sizes of Nut Steel Flats within the range of Square Edge Flats can be furnished. Some of the smaller sizes can be furnished in coils.

BAND EDGE FLATS

wide, x No. 18 to No. 4 B. W. G. 8%", wide, x No. 19 to No. 4 B. W. G. 74e". 1/2". wide, x No. 22 to No. 4 B. W. G. to 1". wide, x No. 23 to No. 4 B. W. G. %16" 11/16" to 2", wide, x No. 22 to No. 4 B. W. G. 21/16" to 3",. wide, x No. 21 to No. 1 B. W. G. 31/16" to 31/2", wide, x No. 20 to No. 1 B. W. G. 3%6" to 4", wide, x No. 19 to No. 1 B. W. G. wide, x No. 18 to No. 1 B. W. G. 41/16" to 41/2", 4%6" to 5\hat{16}", wide, x No. 17 to No. 1 B. W. G. 51/8" to 63/4", wide, x No. 16 to No. 1 B. W. G. 61%'s" to 85%". wide, x No. 14 to No. 1 B. W. G. 811/16" to 95%", wide, x No. 12 to No. 1 B. W. G. 10¼", wide, x No. 12 to No. 1 B. W. G.

From 3/8" to 95/8" intermediate widths can be furnished.

Over $9\%''_8$ in width, the size listed is the only one which is rolled, but intermediate widths will be considered.

SKELP

All sizes within the range of Sheared Plates, Universal Mill Plates and Band Edge Flats can be furnished.

SQUARES

Size

Size \(\frac{\psi_0''}{16} \) to 2", inclusive, advancing by 64ths. Size 2\(\frac{1}{2} \) it o 3\(\frac{1}{2} \)", inclusive, advancing by 32ds. Size 3\(\frac{1}{6} \) it o 5\(\frac{1}{2} \)", inclusive, advancing by 16ths. Squares can also be rolled to decimal dimensions, if so arranged. Squares \(\frac{1}{2} \)" and smaller can be furnished in coils.

ROUND CORNERED SQUARES

Size 1/4" to 3/4", inclusive, advancing by 64ths.

ROUNDS

Slze 7/82" to 11/4", inclusive, advancing by 64ths. Size 12%2" to 31/2", inclusive, advancing by 32ds. Size 31/4" to 7", inclusive, advancing by 16ths. Rounds can also be rolled to decimal dimensions, if so arranged. Rounds 7/4" and smaller can be furnished in coils.

HALF ROUNDS

Size $\frac{5}{16}$ " to $\frac{7}{8}$ ", inclusive, advancing by 64ths. Size $\frac{15}{16}$ " to $\frac{13}{4}$ ", inclusive, advancing by 16ths. Size $\frac{2}{15}$, $\frac{2}{2}$ ", $\frac{3}{2}$ ".

HEXAGONS

Size $\frac{1}{1}$ " to $\frac{1}{1}$ ", inclusive, advancing by 32ds. Size $\frac{1}{3}$ " to $\frac{3}{16}$ ". inclusive, advancing by 16ths. Size $\frac{3}{16}$ "

OCTAGONS

Size 1/4" to 2", inclusive, advancing by 32ds.

AREAS OF RECTANGULAR SECTIONS

SQUARE INCHES

Width,							Т	hickne	ess, In	ches						
Inches	1/16	1/8	8/16	1/4	· 5/16	3/3	7/16	1/2	6/16	5/8	11/16	8/4	18/16	7/8	15/16	1
1/4 1/2 3/4 1	.016 .031 .047	.031 .063 .094 .125	.047 .094 .141 .188	.063 .125 .188 .250	.078 .156 .234 .313	.094 .188 .281 .375	.109 .219 .328 438	.125 .250 .375 .500	.141 .281 .422 .563	.156 .313 .469 .625	.172 .344 .516 .688	.188 .375 .563 .750	.203 .406 .609 .813	.22 .44 .66 .88	.23 .47 .70 .94	.25 .50 .75 1.00
1 1/4 1 1/2 1 3/4 2	.078 .094 .109 .125	.156 .188 .219 .250	.234 .281 .328 .376	313 .375 .438 .500	.391 .469 .547 .625	.469 .563 .656 .750	.547 .656 .766 .875	.625 .750 .875 1.000		.781 .938 1.094 1.250	1.203	$1.125 \\ 1.313$	1.422	1.09 1.31 1.53 1.75	1.17 1.41 1.64 1.88	1.25 1.50 1.75 2.00
2 1/4 2 1/2 2 3/4 3	.141 .156 .172 .188	.281 .313 .344 .375	.422 .469 .516 .563	.563 .626 .688 .750		1.031	1.094 1.203	1.250 1.375	1.406 1.547	1.406 1.563 1.719 1.875	1.719 1.891	1.875 2.063	$2.031 \\ 2.234$	1.97 2.19 2.41 2.63	2.11 2.34 2.58 2.81	2.25 2.50 2.75 3.00
3 1/4 3 1/2 3 3/4 4	.203 .219 .234 .250	.408 .438 .469 .500	.609 .656 .703 .750	.875 .938	$1.094 \\ 1.172$	1.313 1.406	$1.531 \\ 1.641$	1.750 1.875	1.969 2.109	2.031 2.188 2.344 2.500	2.406 2.578	$2.625 \\ 2.813$	2.844 3.047	2.84 3.06 3.28 3.50	3.05 3.28 3.52 3.75	3.25 3.50 3.75 4.00
4 1/2 4 1/2 4 3/4 6	.266 .281 .297 .313	.531 .563 .594 .625	.844	1.125	1.406	1.688	1.969	2.250	2 531	2.656 2.813 2.969 3.125	3.094	3.375	3.656	3.72 3.94 4.16 4.38	3.98 4.22 4.45 4.69	4.25 4.50 4.75 5.00
614 512 534 . 6	.328 .344 .359 .375	.656 .688 .719 .750	$\frac{1.031}{1.078}$	1.375 1.438	1.719 1.797	$\frac{2.063}{2.156}$	$\frac{2.406}{2.516}$	$\frac{2.750}{2.875}$	$3.094 \\ 3.234$	3.281 3.438 3.594 3.750	3.781 3.953	4.125	4.469 4.672	4.59 4.81 5.03 5.25	4.92 5.16 5.39 5.63	5.25 5.50 5.75 6.00
6 1/4 6 1/2 6 3/4 7	.391 .406 .422 .438	.813 .844	$\frac{1.219}{1.266}$	1.625 1.688	$2.031 \\ 2.109$	$\frac{2.438}{2.531}$	$2.844 \\ 2.953$	3.250 3.375	3.656 3.797	3.906 4.063 4.219 4.375	4.469 4.641	4.875 5.063	5.281 5.484	5.47 5.69 5.91 6.13	5.86 6.09 6.33 6.56	6.25 6.50 6.75 7.00
714 71/2 73/4 8	.453 .469 .484 .500	.938 .969	1.406 1.453	$1.875 \\ 1.938$	$2.344 \\ 2.422$	$\frac{2.813}{2.906}$	$\frac{3.281}{3.391}$	3.750 3.875	4.219 4.359	4.531 4.688 4.844 5.000	5.156 5.328	5.625 5.813	6.094 6.297	6.34 6.56 6.78 7.00	6.80 7.03 7.27 7.50	7.25 7.50 7.75 8.00
814 812 834 9	.531 .547 .563	1.063 1.094 1.1 25	1.594 1.641 1.688	2.125 2.188 2.250	2.656 2.734 2.813	3.188 3.281 3.375	3.719 3.828 3.938	4.250 4.375 4.500	4.781 4.922 5.063	5.156 5.313 5.469 5.625	5.844 5.016 6.188	6.375 6.563 6.750	6.906 7.109 7.313	7.22 7.44 7.66 7.88	7.73 7.97 8.20 8.44	8.25 8.50 8.75 9.00
91/2 91/2 93/4 10	.609 .625	1.188 1.219 1.250	1.781 1.828 1.875	2.375 2.438 2.500	2.969 3.047 3.125	3.563 3.656 3.750	4.156 4.266 4.375	4.750 4.875 5.000	5.344 5.484 5.625	5.781 5.938 6.094 6.250	6.531 6.703 6.875	7.125 7.313 7.500	7.719 7.922 8.125	8.09 8.31 8.53 8.75	8.67 8.91 9.14 9.38	9.25 9.50 9.75 10.00
10 1/4 10 1/2 10 3/4 11	.672 .688	1.313 1.344 1.375	1.969 2.016 2.063	2.625 2.688 2.750	3.281 3.359 3.438	3.938 4.031 4.125	4.594 4.703 4.813	5.250 5.375 5.500	5.905 6.047 6.188	6.406 6.563 6.719 6.875	7.219 7.391 7.563	7.875 8.063 8.250	8.531 8.734 8.938	9.63	9.84 10.08	10.25 10.50 10.75 11.00
11 1/2 11 1/2 11 8/4 12	.734	1.489	2.203	2.875 2.938	3.672	4.406	5.141	5.750	6.469 6.609	7.188	7.906 8.078	8.625	0 547	10.06	10.55 10.78 11.02 11.25	11.50

AREAS OF RECTANGLES

AREAS OF RECTANGULAR SECTIONS—Continued SQUARE INCHES

Width,	Thickness, Inches															
Inches	1/16	1∕8	¾16	1/4	%16	3 %	7/16	1/2	%16	5/8	11/16	8/4	18/16	7∕s	15/16	1
12½ 13 13½ 13½	.813 .844	1.625 1.688		3.25 3.38	4.06 4.22	4.69 4.88 5.06 5.25	5.69 5.91	6.25 6.50 6.75 7.00	7.03 7.31 7.59 7.88	7.81 8.13 8.44 8.75		9.75 10.13	10.56 10.97	11.38 11.81	11.72 12.19 12.66 13.13	13.00 $ 13.50$
14½ 15 15½ 16	.938 .969	1. 675 1.938	2.719 2.813 2.906 3.000	3.75 3.88	4.69 4.84	5.63	6.56 6.78	7.25 7.50 7.75 8.00	8.16 8.44 8.72 9.00	9.38 9.69	9.97 10.31 10.66 11.00	11.25 11.63	12.19 12.59	13.13 13.56	$14.06 \\ 14.53$	15.00 15.50
17 17½	1.063 1.094	2.125 2.188	3.094 3.188 3.281 3.375	4.25 4.38	5.31 5.47	6.38 6.56	7.66	8.25 8.50 8.75 9.00	9.84	10.94	11.34 11.69 12.03 12.38	13.13	14.22	15.31	16.41	17.50
$\frac{19}{19\frac{1}{2}}$	$\frac{1.188}{1.219}$	$\frac{2.375}{2.438}$	3.469 3.563 3.656 3.750	4.75 4.88	5.94 6.09	6.94 7.13 7.31 7.50	8.31 8.53 8.75	9.50 9.75 10.00	10.69 10.97 11.25	11.88 12.19 12.50	12.72 13.06 13.41 13.75	14.26 14.63 15.00	15.44 15.84 16.25	16.63 17.06 17.50	17.81 18.28 18.75	19.0 19.5 20.0
	1.313 1.344	$\frac{2.625}{2.688}$	3.938	5.25 5.38	6.56 6.72	8.06	8.97 9.19 9.41 9.63	10.25 10.50 10.75 11.00	11.53 11.81 12.09 12.38	12.81 13.13 13.44 13.75	14.09 14.44 14.78 15.13	15.38 15.75 16.13 16.50	16.66 17.06 17.47 17.88	17.94 18.38 18.81 19.25	19.22 19.69 20.16 20.63	20.5 21.0 21.5 22.0
22½ 23 23½ 24	1.438 1.469	$\frac{2.875}{2.938}$	4.313	5.75 5.88	7.19 7.34 7:50	8.63 8.81 9.00	10.06 10.28 10.50	11.50 11.75 12.00	12.94 13.22 13.50	14.38 14.69 15.00	15.47 15.81 16.16 16.50	17.25 17.63 18.00	18.69 19.09 19.50	20.13 20.56 21.00	21.56 22.03 22.50	23.0 23.5 24.0
26 27	1.625 1.688	3.250 3.375	4.688 4.875 5.063 5.250	6.50 6.75	I Q 12	Ω 75	11 22	12 00	114 63	16 25	17.19 17.88 18.56 19.25	19.50	21 13.	22.75	24 38	126 U
30 31	1.875 1.938	3.750 3.875		7.50 7.75 8.00	9.38 9.69 10.00	11.25 11.63 12.00	13.13 13.56 1 4. 00	15.00 15.50 16.00	16.88 17.44 18.00	18.75 19.38 20.00	19.94 20.63 21.31 22.00	22.50 23.25 24.00	24.38 25.19 26.00	26.25 27.13 28.00	28.13 29.06 30.00	30.0 31.0 32.0
34 35	2.125 2.188	$\frac{4.250}{4.375}$	6.188 6.375 6.563 6.750	8.50 8.75 9.00	10.63 10.94 11.25	12.75 13.13 13.50	14.88 15.31 15.75	17.00 17.50 18.00	19.13 19.69 20.25	21.25 21.88 22.50	22.69 23.38 24.06 24.75	25.50 26.25 27.00	27.63 28.44 29.25	29.75 30.63 31.50	31.88 32.81 33.75	36.0 36.0
38 39 40	2.375 2.438 2.500	4.750 4.875 5.000	7.500	9.50 9.75 10.00	11.88 12.19 12.50	14.25 14.63 15.00	16.63 17.06 17.50	19.00 19.50 20.00	21.38 21.94 22.50	23.75 24.38 25.00	25.44 26.13 26.81 27.50	28.50 29.25 30.00	30.88 31.69 32.50	33.25 34.13 35.00	35.63 36.56 37.50	39.0 40.0
42 43 44	2.625 2.688 2.750	5.250 5.375 5.500	7.875 8.063 8.250	10.50 10.75 11.00	13.13 13.44 13.75	15.75 16.13 16.50	18.38 18.81 19.25	$21.00 \\ 21.50 \\ 22.00$	24.19 24.75	26.25 26.88 27.50	28.19 28.88 29.56 30.25	32.25 33.00	34.94 35.75	37.63 38.50	40.31 41.25	43.0 44.0
45 46 47 48	2.813 2.875 2.938 3.000	5.625 5.750 5.875 6.000	8.438 8.625 8.813 9.000	11.25 11.50 11.75 12.00	14.06 14.38 14.69 15.00	16.88 17.25 17.63 18.00	19.69 20.13 20.55 21.00	22.50 23.00 23.50 24.00	25.31 25.88 26.44 27.00	28.13 28.75 29.38 30.00	30.94 31.63 32.31 33.00	33.75 34.50 35.25 36.00	36.56 37.38 38.19 39.00	39.38 40.25 41.13 42.00	42.19 43.13 44.06 45.00	45.0 46.0 47.0 48.0

AREAS OF RECTANGULAR SECTIONS—Concluded SQUARE INCHES

W:JAL	Thickness, Inches											_				
Width, Inches	1/16	1/8	8/18	1/4	5/18	3/8·	7/18	1/2	%16	5/8	11/16	8/4	18/16	7/8	15/18	⊉ 1
49 50 51 52	3.06 3.13 3.19 3.25	6.13 6.25 6.38 6.50	9.38 9.56	$\frac{12.50}{12.75}$	15.63 15.94	18.75 19.13	$\frac{21.88}{22.31}$	24.50 25.00 25.50 26.00	28.13 28.69	31.25 31.88	34.38 35.06	37.50 38.25	40.63 41.44	43.75 44. 6 3	46.88 47.81	50.00 51.00
53 54 55 56	3.31 3.38 3.44 3.50	6.75 6.88	10.13 10.31	13.50 13.75	16.88 17.19	20.25 20.63	23.63 24.06	26.50 27.00 27.50 28.00	30.38 30.94	33.75 34.38	37.13 37.81	40.50 41.25	43.88 44.69	47.25 48.13	50.63 51.56	54.00 55.00
57 58 59 6 0	3.56 3.63 3.69 3.75	7.25 7.38	10.88 11.06	14.50 14.75	18.13 18.44	$21.75 \\ 22.13$	25.38 25.81	28.50 29.00 29.50 30.00	$32.63 \\ 33.19$	36.25 36.88	39.88 40.56	43.50 44.25	47.13 47.94	50.75 51.63	54.38 55.31	58.00 59.00
61 62 63 64	3.81 3.88 3.94 4.00	7.75 7.88 8.00	11.63 11.81 12.00	15.50 15.75 16.00	19.38 19.69 20.00	23.25 23.63 24.00	27.13 27.56 28.00	30.50 31.00 31.50 32.00	34.88 35.44 36.00	38.75 39.38 40.00	42.63 43.31 44.00	46.50 47.25 48.00	50.38 51.19 52.00	54.25 55.13 56.00	58.13 59.06 60.00	62.00 63.00 64.00
65 66 67 68	4.08 4.13 4.19 4.25	8.25 8.38 8.50	12.56 12.75	16.75 16.75 17.00	20.63 20.94 21.25	24.75 25.13 25.50	28.88 29.31 29.75	32.50 33.00 33.50 34.00	37.13 37.69 38.25	41.25 41.88 42.50	45.38 46.06 46.75	49.50 50.25 51.00	53.63 54.44 55.25	57.75 58.63 59.50	61.88 62.81 63.75	66.00 67 .00 6 8.0 0
69 70 71 72	4.31 4.38 4.44 4.50	8.75 8.88 9.00	13.13 13.31 13.50	17.50 17.75 18.00	$21.88 \\ 22.19 \\ 22.50$	26.25 26.63 27.00	30.63 31.06 31.50	34.50 35.00 35.50 36.00	39.38 39.94 40.50	43.75 44.38 45.00	48.13 48.81 49.50	52.50 53.25 54.00	56.88 57.69 58.50	61.25 62.13 6 3.00	65.63 66.56 67.50	70.00 71.00 72.00
73 74 75 76	4.58 4.63 4.69 4.75	9.25 9.38 9.50	13.88 14.06 14.25	18.75 18.75 19.00	23.13 23.44 23.75	27.75 28.13 28.50	32.38 32.81 33.25	36.50 37.00 37.50 38.00	41.63 42.19 42.75	46.25 46.88 47.50	50.88 51.56 52.25	55.50 56.25 57.00	60.13 60.94 61.75	64.75 65.63 66.50	69.38 70.31 71.25	74.00 75.00 76.00
77 78 79 80	5.00	9.75 9.88 10.00	14.63 14.81 15.00	19.50 19.75 20.00	24.38 24.69 25.00	29.25 29.63 30.00	34.13 34.56 35.00	38.50 39.00 39.50 40.00	43.88 44.44 45.00	48.75 49.38 50.00	53.63 54.31 55.00	58.50 59.25 60.00	63.38 64.19 65.00	88.25 69.13 70.00	73.13 74.06 75.00	78.00 79.00 80.00
81 82 83 84	5.13 5.19 6.25	10.25 10.38 10.50	15.56 15.75	20.50 20.75 21.00	25.03 25.94 2 6.2 5	30.75 31.13 31.50	36.31 3 6. 75	40.50 41.00 41.50 42.00	46.13 46.69 47.25	51.25 51.88 52.50	56.38 57.06 57.75	61.50 62.25 63.00	86.63 87.44 68.25	71.75 72.63 73.50	76.88 77.81 78.75	82.00 83.00 84.00
85 86 87 88	5.44 5.50	10.75 10.88 11.00	16.31 16.50	21.50 21.75 22.00	27.19 27.50	32.25 32.63 33.00	37.63 38.06 38.50	42.50 43.00 43.50 44.00	48.38 48.94 49.50	53.75 54.38 55.00	59.13 59.81 6 0.50	64. 50 6 5. 25 6 6. 00	69.88 70.69 71.50	75.25 76.13 77.00	80.63 81.56 82.50	86.00 87.00 88.00
91	5.69	11.25 11.38 11.50	7.06 17.25	22.75 22.75 23.00	8.44 28.75	33.75 34.13 34.50	39.38 39.81 40.25	44.50 45.00 45.50 46.00	50.63 51.19 51.75	56.25 56.88 57.50	61.88 62.56 63.25	67.50 68.25 69.00	73.13 73.94 74.75	78.75 79.63 80.50	84.38 85.31 86.25	90.00 91.00 92.00
96	5.94	11.88 12.00	7.81 18.00	23.75 23.75 24.00	9.69 30.00	35.63 36.00	11.13 11.56 12.00	48.50 47.00 47.50 48.00	52.88 53.44 54.00	58.75 59.38 60.00	64.63 65.31 66.00	70.50 71.25 72.00	76.38 77.19 78.00	82,25 83,13 84,00	88.13 89.06 90.00	94.00 95.00 96.00
								48.50 49.00 49.50 50.00								

WEIGHTS OF FLAT ROLLED STEEL

WEIGHTS OF FLAT ROLLED STEEL

POUNDS PER LINEAL FOOT

Width,		Thickness, Inches														
Inches	.1/16	⅓.	8/16	1/4	5⁄1e	8/8	7/16	1/2	%16	5/8	11/16	3/4	18/10	7/8	15/16	1
1/4 1/2 3/4 1	.053 .106 .159 .213	.106 .213 .319 .425	.159 .319 .478 .638	.213 .425 .638 .850	.27 .53 .80 1.06	.32 .64 .96 1.28		.43 .85 1.28 1.70	.48 .96 1.43 1.91	.53 1.06 1.59 2.13	.58 1.17 1.75 2.34	.64 1.28 1.91 2.55	.69 1.38 2.07 2.76	.74 1.49 2.23 2.98	.80 1.59 2.39 3.19	.85 1.70 2.55 3.40
$1\frac{1}{4}$ $1\frac{1}{2}$ $1\frac{3}{4}$ 2	.266 .319 .372 .425					1.59 1.91 2.23 2.55	2.23 2.60	2.13 2.55 2.98 3.40	2.39 2.87 3.35 3.83	2.66 3.19 3.72 4.25	3.51 4.09		4.83	3.72 4.46 5.21 5.95	4.78 5.58	4.25 5.10 5.95 6.80
$2\frac{1}{4}$ $2\frac{1}{2}$ $2\frac{3}{4}$ 3	.584	1.063 1.169	1.434 1.594 1.753 1.913	$\frac{2.125}{2.338}$	2.66 2.92	3.19 3.51	3.72 4.09		4.30 4.78 5.26 5.74	4.78 5.31 6.84 6.38	5.84 6.43	6.38 7.01	8.91 7.60	8.69 7.44 8.18 8.93	7.97 8.77	7.65 8.50 9.35 10.20
3 1/4 3 1/2 3 3/4 4	.744 .797	1.488 1.594	2.072 2.231 2.391 2.550	$\frac{2.975}{3.188}$	3.72 3.98	4.14 4.46 4.78 5.10	5.21 5.58	5.53 5.95 6.38 6.80	6.22 6.69 7.17 7.65	7.44	8.77	8.93 9.56	9.67 10.36	10.41 11.16	10.36 11.16 11.95 12.75	$11.90 \\ 12.75$
4 1/4 4 1/2 4 3/4 5	.956 1.009	$\frac{1.913}{2.019}$	2.709 2.869 3.028 3.188	3.825 4.038	4.78 5.05	5.42 5.74 6.06 6.38	6.69 7.07	7.65 8.08	8.13 8.61 9.08 9.56	10.09	10.52 11.10	11.48 12.11	12.43 13.12	13.39 14.13	13.55 14.34 15.14 15.94	$15.30 \\ 16.15$
51/6	1.116 1.169 1.222 1.275	$\frac{2.338}{2.444}$	3,506	4.675 4.888	5.84 6.11	7.01 7.33	8.18 8.55	9.35 9.78	10.52 11.00	11.69 12.22	12.86 13.44	14.03 14.66	15.19 15.88	16.36 17.11	16.73 17.53 18.33 19.13	18.70 19.55
61/2	1.328 1.381 1.434 1.488	$\frac{2.763}{2.869}$	4.144	5.525 5.738	6.91 7.17	8.29 8.61	9.67 10.04	11.05 11.48	12.43 12.91	13.81 14.34	15.19 15.78	16.58 17.21	17.96 18.65	19.34 20.08	19.92 20.72 21.52 22.31	$\frac{22.10}{22.95}$
7 ½ 7 ½ 7 ¾ 8	1.594 1.647	3.294	4.622 4.781 4.941 5.100	6.588	8.23	9.56 9.88	11.16 11.53	$12.75 \\ 13.18$	$14.34 \\ 14.82$	15.94 16.47	17.53 18.12	19.13 19.76	20.72 21.41	$22.31 \\ 23.06$	23.11 23.91 24.70 25.50	$25.50 \\ 26.35$
8½ 8¾ 9		3.613 3.719 3.825	5.419 5.578 5.738	7.225 7.438 7.650	9.03 9.30 9.56	10.84 11.16 11.48	12.64 13.02 13.39	14.45 14.88 15.30	16.26 16.73 17.21	18.06 18.59 19.13	19.87 20.45 21.04	21.68 22.31 22.95	23.48 24.17 24.86	25.29 26.03 26.78	26.30 27.09 27.89 28.69	28.90 29.75 30.60
10	$2.072 \\ 2.125$	4.144 4.250	6.375	8.288	10.36	12.43 12.75	14.88	17.00	19.13	21.25	23.38	25.50	27.63	29.75	29.48 30.28 31.08 31.88	34.00
10½ 10¾ 11	2.231 2.284 2.338	4.463 4.569 4.675	6.694 6.853 7.013	8.925 9.138 9.350	11.16 11.42 11.69	13.39 13.71 14.03	15.62 15.99 16.36	17.85 18.28 18.70	20.08 20.56 21.04	22.31 22.84 23.38	25.13 25.71	26.78 27.41 28.05	29.01 29.70 30.39	31.24 31.98 32.73	32.67 33.47 34.27 35.06	36.55 37.40
111/2	2.444	4.888	7.331	9.775	12.22	14.00 14.08	17.11	19.98	22.47	24.97	27.47	29.96	32.48	34.96	35.86 36.66 37.45 38.25	39.95

WEIGHTS OF FLAT ROLLED STEEL—Continued POUNDS PER LINEAL FOOT

Width, Thickness, Inch								ches								
Inches	1/16	1/8	%16	1/4	%1в	3/8	%16	1/2	%16	5/8	11/16	8/4	18/16	7/8	15/16	1 .
12½ 13 13½ 14	2.66 2.76 2.87 2.98	5.31 5.53 5.74 5.95	8.29 8.61	11.05 11.48	13.81 14.34	$16.58 \\ 17.21$	$\frac{19.34}{20.08}$	21.25 22.10 22.95 23.80	$24.86 \\ 25.82$	28.69	31.6	31.9 33.2 34.4 35.7	34.5 35.9 37.3 38.7	37.2 38.7 40.2 41.7	39.8 41.4 43.0 44.6	42.5 44.2 45.9 47.6
14½ 15 15½ 16	3.08 3.19 3.29 3.40		9.56 9.88	$\frac{12.75}{13.18}$	$15.94 \\ 16.47$	19.13 19.76	$\frac{22.31}{23.06}$	24.65 25.50 26.35 27.20	28.69 29.64	$31.88 \\ 32.94$	36.2	37.0 38.3 39.5 40.8	40.1 41.4 42.8 44.2		49.4	49.3 51.0 52.7 54.4
16½ 17 17½ 18	3.51 3.61 3.72 3.83	7.23 7.44 7.65	10.84 11.16 11.48	14.45 14.88 15.30	18.06 18.59 19.13	21.68 22.31 22.95	25.29 26.03 26.78	28.05 28.90 29.75 30.60	32.51 33.47 34.43	36.13 37.19 38.25	39.7 40.9	42.1 43.4 44.6 45.9		49.1 50.6 52.1 53.6	55.8	56.1 57.8 59.5 61.2
18½ 19 19½ 20	3.93 4.04 4.14 4.25	8.08 8.29	$\frac{12.11}{12.43}$	16.15 16.58	20.19 20.72	$\frac{24.23}{24.86}$	$28.26 \\ 29.01$	31.45 32.30 33.15 34.00	36.34 37.29	40.38 41.44	45.6	47.2 48.5 49.7 51.0	51.1 52.5 53.9 55.3	55.0 56.5 58.0 59.5		62.9 64.6 66.3 68.0
$20\frac{1}{2}$ 21 $21\frac{1}{2}$ 22	4.36 4.46 4.57 4.68	9.14	13.71	18.28	22.84	27.41	31.98	34.85 35.70 36.55 37.40	41.12	45.69	50.3	52.3 53.6 54.8 56.1	56.6 58.0 59.4 60.8	61.0 62.5 64.0 65.5	66.9 68.5	69.7 71.4 73.1 74.8
$22\frac{1}{2}$ 23 $23\frac{1}{2}$ 24	4.78 4.89 4.99 5.10	9.78 9.99	$14.66 \\ 14.98$	$\frac{19.55}{19.98}$	$24.44 \\ 24.97$	$\frac{29.33}{29.96}$	$\frac{34.21}{34.96}$	38.25 39.10 39.95 40.80	43.99 44.94	48.88 49.94	54.9	57.4 58.7 59.9 61.2	62.2 63.5 64.9 66.3	66.9 68.4 69.9 71.4	74.9	76.5 78.2 79.9 81.6
25 26 27 28	5.53 5.74	11.05 11.48	$16.58 \\ 17.21$	$\frac{22.10}{22.95}$	27.63 28.69	$33.15 \\ 34.43$	38.68 40.16	42.50 44.20 45.90 47.60	49.73 51.64	55.25 57.38	60.8 63.1	63.8 66.3 68.9 71.4	69.1 71.8 74.6 77.4		82.9 86.1	85.0 88.4 91.8 95.2
29 30 31 32	6.38 6.59	$\frac{12.75}{13.18}$	19.13 19.76	25.50 26.35	31.88 32.94	38.25 39.53	$\frac{44.63}{46.11}$	49.30 51.00 52.70 54.40	57.38 59.29	63.75 65.88	70.1 72.5	74.0 76.5 79.1 81.6	80.1 82.9 85.6 88.4	92.2	95.6	98.6 102.0 105.4 108.8
33 34 35 36	7.23 7.44	14.45 14.88	$21.68 \\ 22.31$	28.90 29.75	36.13 37.19	43.35 44.63	50.58 52.06	56.10 57.80 59.50 61.20	65.03 66.94	72.25 74.38	79.5 81.8	84.2 86.7 89.3 91.8	96.7	$101.2 \\ 104.1$	105.2 108.4 111.6 114.8	115.6 119.0
37 38 39 40	8.08 8.29	16.15 16.58	$24.23 \\ 24.86$	32.30 33.15	$\frac{40.38}{41.44}$	48.45 49.73	56.53 58.01	62.90 64.60 66.30 68.00	$72.68 \\ 74.59$	80.75 82.88	88.8 91.2	96.9 99.5	105.0 107.7	113.1 116.0	117.9 121.1 124.3 127.5	129.2 132.6
41 42 43 44	8.93 9.14 9.35	17.85 18.28 18.70	26.78 27.41 28.05	35.70 36.55 37.40	44.63 45.69 46.75	53.55 54.83 56.10	62.48 63.96 65.45	74.80	80.33 82.24 84.15	89.25 91.38 93.50	98.2 100.5 102.9	107.1 109.7 112.2	116.0 118.8 121.6	125.0 127.9 130.9		142.8 146.2 149.6
45 46 47 48	9.78	19.55 19.98	29.33 29.96	39.10 39.95	48.88 49.94	58.65 59.93	68.43 69.91	78.20 79.90	87.98 89.89	97.75 99.88	107.5 109.9	117.3 119.9	127.1 129.8	136.9 139.8	143.4 146.6 149.8 153.0	156.4 159.8

WEIGHTS OF FLAT ROLLED STEEL

WEIGHTS OF FLAT ROLLED STEEL—Concluded . POUNDS PER LINEAL FOOT

Width,	Thickness, Inches															
Inches	1/16	1/8	846	1/4	5/16	8/8	7/16	1/2	%16	5/8	11/16	8/4	13/16	7∕8	15/16	1
49 50 61 52	10.4 10.6 10.8 11.1	20.8 21.3 21.7 22.1	31.2 31.9 32.5 33.2	41.7 42.5 43.4 44.2	52.1 53.1 54.2 55.3	62.5 63.8 65.0 66.3	72.9 74.4 75.9 77.4	83.3 85.0 86.7 88.4	95.6 97.5	106.3 108.4	114.5 116.9 119.2 121.6	$127.5 \\ 130.1$	138.1 140.9	148.8 151.7	$159.4 \\ 162.6$	$170.0 \\ 173.4$
53 54 55 56	11.3 11.5 11.7 11.9	22.5 23.0 23.4 23.8	33.8 34.4 35.1 35.7	45.1 45.9 46.8 47.6		67.6 68.9 70.1 71.4	81.8	93.5	101.4 103.3 105.2 107.1	116.9	128.6	140.3	151.9	163.6	175.3	187.0
57 58 59 60	12.1 12.3 12.5 12.8	24.2 24.7 25.1 25.5	36.3 37.0 37.6 38.3	48.5 49.3 50.2 51.0	60.6 61.6 62.7 63.8	72.7 74.0 75.2 76.5	87.8	96.9 98.6 100.3 102.0		$ 123.3 \\ 125.4$	$135.6 \\ 137.9$	147.9 150.5	160.2 163.0	$172.6 \\ 175.5$	184.9 188.1	197.2 200.6
61 62 63 64	13.0 13.2 13.4 13.6	25.9 26.4 26.8 27.2	39.5 40,2	52.7	65.9	79.1 80.3	92.2 93.7	103.7 105.4 107.1 108.8	118.6 120.5	131.8 133.9	144.9 147.3	158.1 160.7	171.3 174.0	184.5 187.4	$197.6 \\ 200.8$	210.8 214.2
65 66 67 68	13.8 14.0 14.2 14.5	27.6 28.1 28.5 28.9	41.4 42.1 42.7 43.4	56.1 57.0	70.1 71.2	85.4	98.2 99.7	110.5 112.2 113.9 115.6	126.2 128.1	140.3 142.4	154.3 156.6	168.3 170.9	182.3 185.1	196.4 199.3	210.4 213.6	$224.4 \\ 227.8$
69 70 71 72	14.7 14.9 15.1 15.3	29.8 29.8 30.2 30.6	44.6 45.3	60.4	75.4	89.3 90.5	104.1 105.6	117.3 119.0 120.7 122.4	133.9 135.8	148.8 150.9	163.6 166.0	178.5 181.1	193.4 196.1	$208.3 \\ 211.2$	$223.1 \\ 226.3$	$238.0 \\ 241.4$
73 74 75 76	15.5 15.7 15.9 16.2	31.0 31.5 31.9 32.3	47.2 47.8	62.1 62.9 63.8 64.6		94.4 95.6	110.1 111.6	124.1 125.8 127.5 129.2	141.5 143.4	157.3 159.4	173.0 175.3	188.7 191.3	204.4 207.2	$220.2 \\ 223.1$	235.9 239.1	251.6 255.0
77 78 79 80	16.4 16.6 16.8 17.0	32.7 33.2 33.6 34.0		65.5 66.3 67.2 68.0	82.9 83.9	99.5 100.7	116.0 117.5	130.9 132.6 134.3 136.0	$149.2 \\ 151.1$	165.8 167.9	$182.3 \\ 184.7$	198.9 201.5	$215.5 \\ 218.2$	232.1 235.0	248.6 251.8	265.2 268.6
81 82 83 84	17.2 17.4 17.6 17.9	34.4 34.9 35.3 35.7	52.3	68.9 69.7 70.6 71.4	87.1 88.2	104.6 105.8	122.0 123.5	137.7 139.4 141.1 142.8	156.8 158.7	174.3 176.4	191.7 194.0	$209.1 \\ 211.7$	226.5 229.3	244.0 246.9	261.4 264.6	278.8 282.2
85 86 87 88	18.1 18.3 18.5 18.7	36.1 36.6 37.0 37.4	54.2 54.8 55.5 56.1	72.3 73.1 74.0 74.8	91.4 92.4	109.7 110.9	$127.9 \\ 129.4$	144.5 146.2 147.9 149.6	164.5 166.4	182.8 184.9	201.0 203.4	219.3 221.9	$237.6 \\ 240.3$	255.9 258.8	$274.1 \\ 277.3$	292.4 295.8
89 90 91 92	18.9 19.1 19.3 19.6	37.8 38.3 38.7 39.1	56.7 57.4 58.0 58.7	75.7 76.5 77.4 78.2	95.6 96.7	$114.8 \\ 116.0$	$133.9 \\ 135.4$	151.3 153.0 154.7 156.4	172.1 174.0	$191.3 \\ 193.4$	$210.4 \\ 212.7$	$229.5 \\ 232.1$	248.6 251.4	$267.8 \\ 270.7$	286.9 290.1	306.0 309.4
93 94 95 96	19.8 20.0 20.2 20.4	39.5 40.0 40.4 40.8	59.3 59.9 60.6 61.2	79.9 80.8 81.6	99.9 100.9 102.0	119.9 121.1 122.4	139.8 141.3 142.8	158.1 159.8 161.5 163.2	179.8 181.7 183.6	199.8 201.9 204.0	219.7 222.1 224.4	239.7 242.3 244.8	259.7 262.4 265.2	279.7 282.6 285.6	299.6 302.8 306.0	319.6 323.0 326.4
97 98 99 100	20.6 20.8 21.0 21.3	41.2 41.7 42.1 42.5	62.5	83.3	104.1	125.0	$\frac{145.8}{147.3}$	164.9 166.6 168.3 170.0	187.4 189.3	208.3 210.4	$229.1 \\ 231.4$	249.9 252.5	270.7 273.5	291.6 294.5	$312.4 \\ 315.6$	333.2 336.6

SQUARE AND ROUND BARS

WEIGHTS AND AREAS

Size,	Weigh per	nt, Lbs. Foot		Square thes	Size,	Weight per F		Area,	Square thes
Inches		0		0	Inches		0		0
0 18 38 38	.013 .053 .120	.010 .042 .094	.0039 .0156 .0352	.0031 .0123 .0276	3 16 18 3 18	30.60 31.89 33.20 34.54	24.03 25.05 26.08 27.13	9.000 9.379 9.766 10.160	7.069 7.366 7.670 7.980
14 15 38 7	.213 .332 .478 .651	.167 .261 .376 .511	.0625 .0977 .1406 .1914	.0491 .0767 .1105 .1503	1/4 1/6 3/8 7 1/6	35.91 37.31 38.73 40.18	28.21 29.30 30.42 31.55	10.563 10.973 11.391 11.816	8.296 8.618 8.946 9.281
1/2 1/8 1/8 1/8	.850 1.076 1.328 1.607	.668 .845 1.043 1.262	.2500 .3164 .3906 .4727	.1963 .2485 .3068 .3712	1/2 16 5/8 11 16	41.65 43.15 44.68 46.23	32.71 33.89 35.09 36.31	12.250 12.691 13.141 13.598	9.621 9.968 10.321 10.680
3/4 136 856 116	1.913 2.245 2.603 2.988	1.502 1.763 2.044 2.347	.5625 .6602 .7656 .8789	.4418 .5185 .6013 .6903	3/4 17/8 10 10 10	47.81 49.42 51.05 52.71	37.55 38.81 40.10 41.40	14.063 14.535 15.016 15.504	11.045 11.416 11.793 12.177
1 18 18 3	3.400 3.838 4.303 4.795	2.670 3.015 3.380 3.766	$\begin{array}{c} 1.0000 \\ 1.1289 \\ 1.2656 \\ 1.4102 \end{array}$.7854 .8866 .9940 1.1075	4 18 18 3 15	54.40 56.11 57.85 59.62	42.73 44.07 45.44 46.83	16.000 16.504 17.016 17.535	12.566 12.962 13.364 13.772
14 18 8/8 7	5.313 5.857 6.428 7.026	4.172 4.600 5.049 5.518	$\begin{array}{c} 1.5625 \\ 1.7227 \\ 1.8906 \\ 2.0664 \end{array}$	1.2272 1.3530 1.4849 1.6230	1/4 5 8/8 7 1°6	61.41 63.23 65.08 66.95	48.23 49.66 51.11 52.58	18.063 18.598 19.141 19.691	14.186 14.607 15.033 15.466
1/2 1 0 5/8 11 16	7.650 8.301 8.978 9.682	6.008 6.519 7.051 7.604	2.2500 2.4414 2.6406 2.8477	1.7671 1.9175 2.0739 2.2365	1/2 95 5/8 110	68.85 70.78 72.73 74.71	54.07 55.59 57.12 58.67	20.250 20.816 21.391 21.973	15.904 16.349 16.800 17.257
8/4 136 7/8 16 16	10.413 11.170 11.953 12.763	8.178 8.773 9.388 10.024	3.0625 3.2852 3.5156 3.7539	2.4053 2.5802 2.7612 2.9483	8 4 30 8 50 11 7 8 50	76.71 78.74 80.80 82.89	60.25 61.85 63.46 65.10	22.563 23.160 23.766 24.379	17.721 18.190 18.665 19.147
2 18 28 3	13.600 14.463 15.353 16.270	10.681 11.359 12.058 12.778	4.0000 4.2539 4.5156 4.7852	3.1416 3.3410 3.5466 3.7583	5 18 18 38	85.00 87.14 89.30 91.49	66.76 68.44 70.14 71.86	25.000 25.629 26.266 26.910	19.635 20.129 20.629 21.135
1/4 1 6 8/8 7 1 6	17.213 18.182 19.178 20.201	13.519 14.280 15.062 15.866	5.0625 5.3477 5.6406 5.9414	3.9761 4.2000 4.4301 4.6664	1/4 5 8 8 7 16	93.71 95.96 98.23 100.53	73.60 75.36 77.15 78.95	27.563 28.223 28.891 29.566	21.648 22.166 22.691 23.221
1/2 15/8 118	21.250 22.326 23.428 24.557	16.690 17.534 18.400 19.287	6.2500 6.5664 6.8906 7.2227	4.9087 5.1572 5.4119 5.6727	1/2 P 5/8 1 6	102.85 105.20 107.58 109.98	80.78 82.62 84.49 86.38	30.250 30.941 31.641 32.348	23.758 24.301 24.850 25.406
3/4 100 11/2 11/3 11/3	25.713 26.895 28.103 29.338	20.195 21.123 22.072 23.042	7.5625 7.9102 8.2656 8.6289	5.9396 6.2126 6.4918 6.7771	8/13/8/80 58 11/13/8/80 518	112.41 114.87 117.35 119.86	88.29 90.22 92.17 94.14	33.063 33.785 34.516 35.254	25.967 26.535 27.109 27.688
3	30.600	24.033	9.0000	7.0686	6	122.40	96.13	36.000	28.274

WEIGHTS OF BAR

SQUARE AND ROUND BARS

WEIGHTS AND AREAS

Size,	Weigh per	t, Lbs. Foot	Area, i		Size,	Weigh:	t, Lbs. Foot	Area, S Incl	
Inches		Ö		0	Inches		0		0
6 16 1/8 3	122.40 124.96 127.55 130.17	96.13 98.15 100.18 102.23	36.000 36.754 37.516 38.285	28.274 28.866 29.465 30.069	9 1/8 1/8 1/8	275.40 279.24 283.10 286.99	$\begin{array}{c} 216.30 \\ 219.31 \\ 222.35 \\ 225.41 \end{array}$	81.000 82.129 83.266 84.410	63.617 64.504 65.397 66.296
1/4 1/6 3/8 1/0	132.81 135.48 138.18 140.90	104.31 106.41 108.53 110.66	39.063 39.848 40.641 41.441	30.680 31.296 31.919 32.548	1/4 1/8 1/8 1/6	290.91 294.86 298.83 302.83	228.48 231.58 234.70 237.84	85.563 86.723 87.891 89.066	67.201 68.112 69.029 69.953
1/2 96/8 15/16	143.65 146.43 149.23 152.06	112.82 115.00 117.20 119.43	42.250 43.066 43.891 44.723	33.183 33.824 34.472 35.125	1/2 18 5/8 11	306.85 310.90 314.98 319.08	241.00 244.18 247.38 250.61	90.250 91.441 92.641 93.848	70.882 71.818 72.760 73,708
3/4/20 11/20 10/20	154.91 157.79 160.70 163.64	121.67 123.93 126.22 128.52	45.563 46.410 47.266 48.129	35.785 36.450 37.122 37.800	8/4 138 7/8 158	323.21 327.37 331.55 335.76	253.85 257.12 260.40 263.71	95.063 96.285 97.516 98.754	74.662 75.622 76.589 77.561
7 18 18	166.60 169.59 172.60 175.64	130.85 133.19 135.56 137.95	49.000 49,879 50.766 51.660	38.485 39.175 39.871 40.574	10 18 28 18	340.00 344.26 348.55 352.87	267.04 270.38 273.75 277.14	100.000 101.254 102.516 103.785	78.540 79.525 80.516 81.513
1/4 1/6 3/8 1/8	178.71 181.81 184.93 188.07	140.36 142.79 145.24 147.71	52.563 53.473 54.391 55.316	41.282 41.997 42.718 43.445	14 16 3/8 76	357.21 361.58 365.98 370.40	280.55 283.99 287.44 290.91	105.063 106.348 107.641 108.941	82.516 83.525 84.541 85.563
1/2 1 f f 5/8 1 f f f f f f f f f f f f f f f f f f f	191.25 194.45 197.68 200.93	150.21 152.72 155.26 157.81	56.250 57.191 58.141 59.098	44.179 44.918 45.664 46.415	1/2 18 5/8 11	374.85 379.33 383.83 388.36	294.41 297.92 301.46 305.02	110.250 111.566 112.891 114.223	86.590 87.624 88.664 89.710
84 136 156	204.21 207.52 210.85 214.21	160.39 162.99 165.60 168.24	60.063 61.035 62.016 63.004	47.173 47.937 48.707 49.483	84 13 18 78 15 16	$\begin{array}{c} 392.91 \\ 397.49 \\ 402.10 \\ 406.74 \end{array}$	308.59 312.19 315.81 319.45	115.563 116.910 118.266 119.629	90.763 91.821 92.886 93.957
8 18 18 3 3	$\begin{array}{c} 217.60 \\ 221.01 \\ 224.45 \\ 227.92 \end{array}$	170.90 173.58 176.29 179.01	64.000 65.004 66.016 67.035	50.265 51.054 51.849 52.649	11 18 18 18	411.40 416.09 420.80 425.54	323.11 326.80 330.50 334.22	121.000 122.379 123.766 125.160	95.033 96.116 97.205 98.301
1/4 160 3/8 170	231.41 234.93 238.48 242.05	181.75 184.52 187.30 190.11	68.063 69.098 70.141 71.191	53.456 54.269 55.088 55.914	1/4 156 3/8 70	430.31 435.11 439.93 444.78	337.97 341.73 345.52 349.33	126.563 127.973 129.391 130.816	99.402 100.510 101.623 102.743
1/2 1/4 5/8 11/6	245.65 249.28 252.93 256.61	192.93 195.78 198.65 201.54	72.250 73.316 74.391 75.473	56.745 57.583 58.426 59.276	1/2 16 5/8 118	449.65 454.55 459.48 464.43	353.16 357.00 360.87 364.76	132.250 133.691 135.141 136.598	103.869 105.001 106.139 107.284
8/4 136 7/8 146	260.31 264.04 267.80 271.59	204.45 207.38 210.33 213.31	76.563 77.660 78.766 79.879	60.132 60.994 61.863 62.737	8/4/30/80/80/16 10/8/5/6	469.41 474.42 479.45 484.51	368.68 372.61 376.56 380.54	138.063 139.535 141.016 142.504	108.434 109.591 110.754 111.923
9	275.40	216.30	81.000	63.617	12	489.60	384.53	144.000	113.098

COLD TWISTED SQUARE BARS

Size, Inches	Area, Square Inches	Weight per Foot, Pounds
2	4.0000	13.600
1 1/8	3.5156	11.953
1 3/4	3.0625	10.413
1 1/8	2.6406	8.978
11/2	2.2500	7.650
1 3/8	1.8906	6.428
1 1/4	1.5625	5.313
1 1/8	1.2656	4.303
/1	1.0000	3.400
15/18	0.8789	2.988
⅓ s	0.7656	2.603
18/18	0.6602	2.245
3⁄4	0.5625	1.913
11/is	0.4727	1.607
5/8	0.3906	1.328
⁹ ⁄16	0.3164	1.076
1/2	0.2500	0.850
¾1e	0.1914	0.651
3/8	0.1406	0.478
5 ⁄1 0	0.0977	0.332
1/4	0.0625	0.213

Cold twisted bars will conform to Manufacturers' Standard Specifications, unless otherwise specified.

DEFORMED BARS

CUP BAR

Section Index	Size, Inches	Weight per Foot, Pounds
*M 1528	1 ½	7.65
*M 1530	11/4	5.31
*M 1531	1 1/8	4.30
*M 1532	1	3.40
*M 1533	7∕8	2.60
*M 1534	3⁄4	1.91
*M 1535	5/8	1.33
*M 1536	1/2	0.85
*M 1537	3/8	0.48

^{*} Furnished only by special arrangement.

DEFORMED BARS-Continued

TYPE A

CORRUGATED SQUARE BAR CORRUGATED SQUARE BAR TYPE B

Rolled for Corrugated Bar Co.

CORRUGATED ROUND BAR TYPE C

CORRUGATED SQUARE BAR TYPE D

Rolled for Corrugated Bar Co.

Section Index	Size, Inches	Weight per Foot, Pounds	Section Index	Size, Inches	Weight per Foot, Pounds			
Corruga	ted Square Ba	—Туре А	Corruga	Corrugated Square Bar-Type B				
*M 1980 *M 1981 *M 1982 *M 1983	1 ½ 1 76 34	4.00 2.70 1.95 1.35	*M 1550 *M 1551 *M 1552 *M 1553	1 ½ 1 76 34	5.31 3.40 2.60 1.91			
*M 1984	1/2	0.64	*M 1554 *M 1555 *M 1558 *M 1557 *M 1556	5/8 1/2 3/8 1/3 1/4	1.33 0.85 0.48 0.37 0.21			
Corrug	ated Round Bar	Type C	Corruga	ted Square Ba	г—Туре D			
*M 1618 *M 1617 *M 1616 *M 1615 *M 1614 *M 1613 *M 1612 *M 1611 *M 1610	1 ¼ 1 ½ 1 ½ 1 ½ 4 ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½	4.21 3.41 2.69 2.06 1.52 1.05 0.86 0.66 0.38	*M 1732 *M 1731 *M 1650 *M 1651 *M 1652 *M 1653 *M 1654 *M 1655 *M 1656 *M 1656 *M 1657	1 % 1 ½ 1 ¼ 1 ½ 1 ¼ 1 ½ 1 ½ 1 ½ 1 ½ 1 ½ 1 ½ 1 ½ 1 ½ 1 ½ 1 ½	10.48 7.69 5.35 4.34 3.43 2.64 1.94 1.35 0.86 0.49			

CONCRETE REINFORCEMENT BARS

DEFORMED BARS—Continued

LUG BAR-TYPE A

Rolled for Corrugated Bar Co.

HERRINGBONE BAR

Rolled for Corrugated Bar Co.

Section Index	Size, Inches	Weight per Foot, Pounds	Section Index	Size, Inches	Weight per Foot, Pounds			
	Lug Bar—Type	A	Lug Bar—Type B					
*M 1578	1 1/4	5.31	*M 1648	11/4	5.31			
*M 1577	1 1/8	4.30	*M 1647	1 1/8	4.30			
*M 1576	1	3.40	*M 1646	1	3.40			
*M 1575	₹8	2.60	*M 1645	7∕8	2.60			
*M 1571	3/4	1.91	*M 1644	3/4	1.91			
*M 1573	5/8	1.33	*M 1643	5/8	1.33			
*M 1572	1/2	0.85	*M 1642	. 1/2	0.85			
*M 1579	7/18	0.65	*M 1641	3/8	0.48			
*M 1571	3/8	0.48	*M 1640	1/4	. 0.21			
*M 1570	1/4	0.21						

Herringbone Bar

Section Index	Size, Inches	Weight per Foot, Pounds
*M 1673	1 1/2	5.13
*M 1672	11/1	3.62
*M 1671	1	2.38
*M 1670	7/8	1.72
*M 1669	3/4	1.28
*M 1668	5/8	0.91

^{*} Furnished only by special arrangement.

DEFORMED BARS—Continued

HAVEMEYER SQUARE BAR

Rolled for Concrete Steel Co.

HAVEMEYER FLAT BAR

Rolled for	Concrete :	Steel Co.	Rolle	d for Elie	Cannes			
Section Index •	Size, Inches	Weight per Foot, Pounds	Section Index	Size, Inches	Weight per Foot, Pounds			
Hav	emeyer Square	Bar	Havemeyer Round Bar					
*M 1599	11/2	7.65						
*M 1609	1 3/8	6.43						
*M 1608	11/4	5.31	*M 1629	11/4	4.17			
*M 1607	11/8	4.30	*M 1628	11/8	3.38			
*M 1606	í	3.40	*M 1627	1	2.67			
*M 1605	7∕8	2.60	*M 1626	7∕8	2.04			
*M 1604	3/4	1.91	*M 1625	3/4	1.50			
*M 1603	7/8 8/4 5/8 1/2	1.33	*M 1624	5/8	- 1.04			
*M 1602	3/2	0.85	*M 1623	1/2	0.67			
*M 1601	3/8	0.48	*M 1622	3/8	0.38			
*M 1598	5/18	0.33	*M 1600	1/4	0.17			
*M 1621	1/4	0.21						
H	avemeyer Flat	Bar		Elcannes B	ar			
Section	Size	Weight per Foot	Section	Size	Weight per Foot			

H	Iavemeyer Flat	Bar	Elcannes Bar							
Section	Size,	Weight per Foot,	Section	Size,	Weight per Foot,					
Index	Inches	Pounds	Index	Inches	Pounds					
*M 2230	134 x ½	2.98	*M 1901	11/4	5.31					
*M 2231	134 x 1/16	2.60	*M 1902	1 1/8	4.30					
*M 2232	134 x 3/8	2.23	*M 1903	1	3.40					
*M 2233	1½ x ½	2.55	*M 1904	7∕8	2.60					
*M 2234	1½ x ¾	1.91	*M 1905	3∕4	1.91					
*M 2235	1½ x 5/18	1.59	*M 1906	5∕8	1.33					
*M 2236	1¼ x 3/8	1.59	*M 1907	1∕2	0.85					
*M 2237 *M 2238	1 x 3/8 1 x 1/4	1.28 0.85	*M 1908	3/8	0.48					
* Furnished o	nly by special a	rangement.								

DEFORMED BARS—Continued

WING BAR-TYPE A

Rolled for Trussed Concrete Steel Co.

SQUARE RIB BAR-TYPE A

ROUND RIB BAR-TYPE B

Rolled for Trussed Concrete Steel Co.

Section Index	Size, Inches	Weight per Foot, Pounds	Section Index	Size, Inches	Weight per Foot, Pounds
	Wing Bar—Type	A	,	Wing Bar—Typ	е В .
*M 1513 *M 1512	3/4 1/2	2.70 · 1.40	*M 1509 *M 1510 *M 1516	$3\frac{1}{2}$ $2\frac{3}{4}$ $2\frac{1}{4}$	10.2 6.8 4.8

Square Rib Bar-Type A

Round Rib Bar-Type B

			1		
Section Index			Section Index	Size, Inches	Weight per Foot, Pounds
				-3	
*M 1918	11/4	5.31	*M 2508	$1\frac{1}{4}$	4.17
*M 1917	11/8	4.30	*M 2507	1 1/8	3.38
*M 1916	1	3.40	*M 2506	1	2.67
*M 1915	7/8	2.60	*M 2505	7/8	2.04
*M 1914	3/4	1.91	*M 2504	3/4	1.50
*M 1913	5/8 -	1.33	*M 2503	5/8	1.04
*M 1912	1/2	0.85	*M 2502	1/2	0.67
*M 1911	3/8	0.48	*M 2501	3/8	0.38
*M 1910	1/4	0.21			
		1			

^{*} Furnished only by special arrangement.

DEFORMED BARS—Continued MONOTYPE BAR

Rolled for Philadelphia Steel and Wire Co.

WING BAR

Rolled for Thomas Reinforcement Co.

SLANT RIB BAR

Rolled for Mississippi Valley Construction Co.

Section Index	Size, Inches	Weight per Foot, Pounds	Section Index	Size, Inches	Weight per Foot Pounds				
Monotype	Bar—Equiva	lent to Square	Monotype	e Bar—Equiva	lent to Round				
*M 2151	1 1/4	5.39	*M 2161	11/4	4.24				
*M 2152	11/8	4.37	*M 2162	11/8	3.43				
*M 2153	1	3.45	*M 2163	1	2.71				
*M 2154	1∕8	2.64	*M 2164	7∕8	2.08				
*M 2155	8/4	1.94	*M 2165	8/4	1.53				
*M 2156	5/8	1.35	*M 2166	5/8	1.06				
*M 2157	1/2	0.86	*M 2167	1/2	0.68				
*M 2158	3/8	0.49	*M 2168	3/8	0.38				
	Wing Bar		Slant Rib Bar						
*M 2135	21/4	5.08	*M 1297	1 1/4	5.31				
*M 2134	2	4.02	*M 1296	1	3.40				
*M 2133	1 3/4	3.06	*M 1295	7/8	2.60				
*M 2132	1 1/2	2.08	*M 1294	3/4	1.91				
*M 2131	1 1/8	1.08	*M 1293	5/8	1.33				
			*M 1292	1/2	0.85				
			*M 1291	3/8	0.48				
			*M 1290	14	0.21				

^{*} Furnished only by special arrangement.

CONCRETE REINFORCEMENT BARS

DEFORMED BARS—Continued

SCOFIELD BAR

MONOLITH BAR

Section Index			Section Index	Size, Inches	Weight per Foot, Pounds
	Scofield B	ar		Thacher Bai	•
#7.F. 4.0.B.O	-1/	Equivalent to Round	4754810		
*M 1969	1 1/2	6.01	*M 1546	1 1/2	5.20
*M 1968	1 1/4	4.17	*M 1545	1 1/4	3.55
*M 1967	1 1/8	3.38	*M 1544	1	2.32
*M 1966	1	2.67	*M 1543	7/8	1.79
*M 1965	7∕8	2.04	*M 1542	84	1.34
*M 1964	3/4	1.50	*M 1541	5/8	0.92
*M 1963	5/8	1.04	*M 1540	1/2	0.58
*M 1962	1/2	0.67			ļ
*M 1961	3/8	0.38			
		Equivalent to Square			
*M 1583	5/8	1.33			
*M 1582	1/2	0.85			
*M 1581	8/8	0.48			

Monolith Bar

Section Index	Size, Inches	Weight per Foot Pounds				
*M 1500	11/2	7.65				
*M 1508	1 1/4	5.31				
*M 1507	1	3.40				
*M 1517	8/4	1.91				
*M 1506	5/8	1.33				
*M 1505	1/2	0.85				
*M 1504	3/8	0.48				

^{*} Furnished only by special arrangement.

FACING BAR * M 1663

Rolled for Concrete Steel Co.

GIRDER BAR SECTIONS

*M 1853 Customer's No. 705

WASHBOARD SECTION - TYPE A * M 1521

WASHBOARD SECTION - TYPE B

*M 1522

Rolled for Trussed Concrete Steel Co.

Section	Size,	Weight per Foot,
Index	Inches	Pounds
*M 1663	1 1/4 x 1 1/4 x 3/10	1.46
*M 1852	4 x 1 1/5 x 3/10	4.1
*M 1853	1 x 1 x 5/52	1.52
*M 1521	6 1/2 x 3/10 x 3/82	3.20
*M 1522	6 1/2 x 3/10 x 3/82	3.95

^{*}Rolled only by special arrangement.

CONCRETE REINFORCEMENT BARS

Section	Size,	Thickness,	Weight per Foot,
Index	Inches	Inches	Pounds
*M_980	4 ¼ x 1 ¼	14	5.31
	4 ¼ x 1 1864	18/04	4.63
*M 935	4 ¼ x 1 ¼ ₆₄	11/64	4.18
	3 ½ x 1	1/4	4.41
	3 ½ x ⁶ 1⁄ ₆₄	18/64	3.85
*M 981	2½ x ¾ 2½ x %	8/1 s	2.61
*M 982	2 ½ X ¾	*8	1.65
*M 983	2 X ¾	8/16	2.29
*M 984	2 x 5%	1/3	1.43
*M 986	1 x 34	1/4	1.30
*M 987	1 x 11/16	8/16	1.09

Full information as to uses of steel cross ties is given in a separate pamphlet on Steel Cross Ties.

8

8

6

5

3/4 to 88/44

1/4

1/4

18/84

24.0

20.0

14.5

9.5

5

3

41/2

M 29

M 21

M 25

M 24

51/2

51/2

41/4

3

CROSS TIE SECTIONS—Concluded

Section Index	Depth, Inches	Width, Inches	Web Thickness, Inches	Weight per Foot Pounds
M 27	21/4	7	1/4	9.0
M 20	2	6	8/16	6.0
M 18	1 ½	5	5/82	4.0
M 26	18/16	415/16	1/8	3.20
M 19	5/8	4	9/64	2.50

Full information as to uses of steel cross ties is given in a separate pamphlet on Steel Cross Ties.

A. S. C. E. RAILS AND LIGHT RAILS

Section Index	Weight per Yard,	a.	b	c	d	е	f	g	<u>h</u>	i	j	k	1
Index	Pounds	ln.	In.	ln.	In.	In.	In.	In.	ln.	ln.	ln.	In.	In.
10040	100	5%	5 3/4	23/4	145	3,54	31	918	$2\frac{65}{126}$	16	1/4	18	16
9040	90	53/8	58/8	25/8	132	285	59 61		2_{128}^{-128}	16 16	1/4	16 16	16 16
8540	85	518	$5\frac{3}{16}$	2 9	135	234	57 64		$2\frac{1}{4}$	18 5 16	1/4	18	16 16
8040	80	5	5	21/2	11/2	25%	7/8	18 25 64	23	16 5	1/4	10	16
, 7540	75	413	413	$2\frac{15}{32}$	187	235	27	17	2^{16}_{128}	18 16	1/4	10	18
7040	70	45/8	45%	2^{7}_{10}	131	215	13	32 33 64	$2\frac{3}{64}$	16 5	1/4	16	Is Is
6540	65	476	4_{16}^{7}	213	$1\frac{9}{32}$	28/8	16 25 32	1/2	131	18 16	1/4	18	16
6040	60	41/4	41/4	23/8	1 7 32	217	32 49 64		1115 1125	16 16	1/4	18	18
5540	55	418	4_{16}	21/4	111	211	23	15 32	1128	16 16	1/4	18	16
5040	50	37/8	37/8	21/8	11/8	21	11	32 7	133	16	1/4	16	1 1 6 1 1 6
4540	45	311	311	2	116	131	21 32	27 81	141	16 18	1/4	18	16
4040	40	31/2	31/2	11/8	1 d x	185	5/8	25 25	172	16 16	1/4	19	16
3540	35	3,5	35	134	81	135	37	23	135	16 16	1/4	16	16 16
3040	30	31/8	31/8	111	7/8	123	17	21 64	185	5 18	1/4	16	1 6
2540	25	23/4	23/4	11/2	25 32	131	31	19	1,29	1/4	1/4	16	10
2040	20	25%	25/8	131	23 32	133	7	1/4	111	1/4	18	16	18
1640	16	23/8	23/8	131	31	183	%	7 32	1,78	18	.3 T 5		16
1440	14	216	2^{1}_{16}	116	5/8	132	31	1/4	57	5 32	13 16		1 1 0 1 0
1240	12	2	2	1	9	1_{32}^{3}	11	18	57	5 32	16 16		1's
1040	10	1 1 1/4	13/4	15	33	18	12	, 1 ³	49	5 32	3 16		18
840	8	1 18	1 18	13	15 32	13	32	3 2	11	32	18		1,9

AMERICAN RAILWAY ASSOCIATION RAILS

SERIES A

										 			
Section	Weight Per Yard,	8.	Ъ	С	d	е	f	g	h	i	j	k	1
Index	Pounds	In.	In.	In.	In.	In.	In.	In.	In.	In.	In.	In.	In.
10020 9020 8020 7020 6020	100 90 80 70 60	6 55/8 51/8 43/4 41/2	5½ 5½ 4¾ 4¼ 4	218	$1\frac{76}{1\frac{15}{2}}$ $1\frac{7}{76}$ $1\frac{11}{2}$ $1\frac{11}{2}$ $1\frac{15}{6}$	$3\frac{3}{8}$ $3\frac{5}{2}$ $2\frac{23}{32}$ $2\frac{1}{2}$ $2\frac{28}{64}$	116 1 312 32 138 138	16 16 16 33 64 1/2 15 32	218 229 218 213 213 213 217 217	3/8 3/8 3/8 3/8 3/8	3/8 3/8 3/8 3/8 3/8	16 16 16 16	49 48 48 48

SERIES B

Section	Weight Per Yard,	a	ь	С	d	е	f	g	h	i	j	k	1
Index	Pounds	Ia.	In.	In,	In.	In.	In.	In.	In.	In.	In.	In.	In.
10030	100	541	5,9	221	145	255	1.5	18	2 65	3/8	15	1 to	18
9030	90	517	4솮	$2\frac{9}{10}$	189	25/8	$1\frac{1}{32}$	1.6	211	8/8	16	16	18
8030	80	418	476	$2^{7}_{1\overline{6}}$	115	$2\frac{15}{32}$	1	35	215	8/8	16	16	16
*7030	70	435	4 3	2%	123	217	59 64	33	$2_{1\overline{2}\overline{8}}$	3/8	16	18	1,6
*6030	60	413	318	21/8	11/4	2⅓	₹8	용감	132	3/8	18	18	18
									а.				i ·

^{*} Not rolled by Carnegie Steel Company.

SPLICE BARS

A. S. C. E. RAILS AND LIGHT RAILS

Section Index	Weight per Foot, Unfinished	a	b	c	đ	е	f	g	h	i	j	k	1
	Pounds	In.	In.	In.	In.	In.	In.	In.	In.	In.	In.	In.	In.
S 10040 S 9040 S 8540 S 8040 S 7540 S 6540 S 6040 S 5540 S 5540 S 4540	15.80 13.50 12.40 11.50 10.70 10.00 9.20 8.40 7.50 6.62 5.80	$\begin{array}{c} 3_{0}^{-5} \\ 2_{0}^{0} \\ 2_{0}^{-5} \\ 2_{0}^{-5} \\ 2_{0}^{-5} \\ 2_{0}^{-5} \\ 2_{0}^{0} \\ 2_{0}^{-5} \\ 2_{0}^{-5} \\ 2_{0}^{-5} \\ 2_{0}^{-5} \\ 2_{0}^{5} \\ 2_{0}^{-5} \\ 2_{0}^{-5} \\ 2_{0}^{-5} \\ 2_{0}^{-5} \\ 2_{0}^{5} \\ 2_{0}^{-5} \\ 2_{0}^{-5} \\ 2_{0}^{-5} \\ 2_{0}^{-5} \\ 2_{0}^{5} \\ 2_{0}^{-5} \\ 2_{0}^{-5} \\ 2_{0}^{-5} \\ 2_{0}^{-5} \\ 2_{0}^{5} \\ 2_{0}^{-5} \\ 2_{0}^{-5} \\ 2_{0}^{-5} \\ 2_{0}^{-5} \\ 2_{0}^{5} \\ 2_{0}^{-5} \\ 2_{0}^{-5} \\ 2_{0}^{-5} \\ 2_{0}^{-5} \\ 2_{0}^{5} \\ 2_{0}^{-5} \\ 2_{0}^{-5} \\ 2_{0}^{-5} \\ 2_{0}^{-5} \\ 2_{0}^{5} \\ 2_{0}^{-5} \\ 2_{0}^{-5} \\ 2_{0}^{-5} \\ 2_{0}^{-5} \\ 2_{0}^{5} \\ 2_{0}^{-5} \\ 2_{0}^{-5} \\ 2_{0}^{-5} \\ 2_{0}^{-5} \\ 2_{0}^{5$	1 25 8 1 5 8 1 1 5 8 1 1 5 8 1 1 5 8 1 1 5 8 1 1 5 8 1 1 5 8 1 1 5 8 1 1 1 5 8 1 1 1 1	12 12 14 15 15 16 16 16 17 18 15 15 15 15 15 15 15 15 15 15 15 15 15	7/8 35 57 4 37 16 12 8 62 77 12 12 12 12 12 12 12 12 12 12 12 12 12	500 500 500 500 71 200 100 504 80 80 80 80 80 80 80 80 80 80 80 80 80	13/8 1 15/8 1 15/9 1 1/4 1 1/5 1 1/5 1 1/6 1 1/8 1 1/8 1 1/8 1 1/8 2 1/8	1/2 1/2 1/2 1/2 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3	1 128 5 8 7 8 7 8 7 8 8 7 8 8 7 8 8 7 8 8 8 8	다 나는 다른 다른 다른 다른 다른 사람 이 에 다른 다른 사람 이 에 다른 다른 사람이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이	157 157 157 167 179 180 179 180 179 180 179 179 179 179 179 179 179 179 179 179	$\begin{array}{c} 3\frac{1}{8} \\ 2\frac{1}{16} \\ 2\frac{2}{3}\frac{7}{2} \\ 2\frac{3}{3} \\ 2\frac{1}{12} \\ 2\frac{1}{16} \\ 2\frac{7}{3} \\ 2\frac{1}{16} \\ 1\frac{1}{3}\frac{1}{3} \\ 1\frac{1}{3}\frac{1}{3} \\ \end{array}$	1/2 1/3 1/2 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3
S 4040 S 3540	5.00 4.58	155 135	31 32 57 64	1/2 83	15 32 7 16	11 32 5	792 202 203	13 32 11 11	67 128 35	9 16 33	128 64	17/8 13/5	16 16
S 3040 S 2540 S 2040 S 1640 S 1440 S 1240 S 1040 S 840	3.97 2.20 1.87 1.70 1.36 1.36 0.985 0.747	188 184 185 183 183 182 188	72 \4 10 74 72 72 52 70 13 13 13 70 70	70 132 88 74 732 752 755 755 755 755 755 755 755 755 75	132 132 150 160 160 160 160 160 160 160 160 160 16	18 9 32	252 233 110	e cock of the	29 84 59 128	1/2	64	1}}	1ª

Splice Bars S 10040 to S 5040, inclusive, are for A. S. C. E. Rails. Splice Bars S 4540 to S 840, inclusive, are for Light Rails.

SPLICE BARS—Concluded

AMERICAN RAILWAY ASSOCIATION RAILS

Section		Weight per Foot, Unfinished	8	ь	С	d	е	f	g	g1	h	i	j	k	1
I	Index	Pounds	In.	ln.	In.	In.	In.	In.	In.	In.	In.	In.	In.	ln.	In.
-S	10020		33/8	133	31	3/4	15	13/8	$1\frac{7}{32}$	3/4	 31 32	1	15	3,8	7/8
8	9020	16.64	$3\frac{5}{32}$	$1\frac{32}{3\frac{1}{2}}$	32 15 18	23 32	32 15 32	$1\frac{9}{32}$	$1\frac{1}{3}\frac{1}{2}$	19	32 16	15 16	33 7 18	3	13
*S	8020		$2\frac{23}{32}$	$1\frac{1}{3}\frac{7}{2}$	7∕8	33	57 128	11/4	185	39 64	23 64	33	85	2¾	3/4
8	7020	11.64	21/2	187	51 64	5/8	32	13	1 7 64	33	25 64	37	23 64	2 18	18
S	6020	10.63	$2\frac{29}{64}$	184	84	5⁄8	25 64	11/8	1_{128}	128	128	3/4	129	27	5/8

	nters, 2880 ties per mile, mile,
1 of Single Track 1 tin Gross Tons 2 3.03 1.57 1.57 1.4 1.4 1.5 1.4 1.5 1.5 1.4 1.5	- la
Columbia	- la
2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- la
	활별
Mac Mark, Nutse 111111111111111111111111111111111111	R P
Splice Bars	Ties 22 io. centers, 2540 ties per mile,
Spirkes Spirke	Ties 22 io. centers 2540 ties per mile,
Mark Mark Mark Mark Mark Mark Mark Mark	ایت
	full f in. cer Comp
ACCESSORIES Total of Baile Total of Baile Annual of Baile Bolts, N. W. S.	long, Yarying by full feet. long. Ties 24 in. centers, Carnegie Steel Company.
AILS AND ACCESS Accessories for 1000 Tons of Rails Mumber Weight in Gross	, vary g. T negie
O o o o o o o o o o o o o o o o o o o o	long, v. long. Carne
D ACC Meight in a Meigh in a Meight in a Meight in a Meigh in a M	24 ft. l 1 20 ft. lled by
AND Columbia Colu	than s than ot rol
11LS ANI Coessories for 10 Coessories for	t less of less od * n
RAILS Accessories Access	and 10% not less than 24 and 10% not less than 20 Rails marked * not rolled
RAA Pains of	and 10 and 1 Rails
TABLE OF Rail graph of the Paragraph of	00% furnished 33 ft. and 10% not less than 24 ft 90% furnished 30 ft. and 10% not less than 20 low for any excess. Rails marked * not rolled low for any excess.
TABLE Congress of the property of the propert	shed 3 ished iy exc
T T A B C S S S S S S S S S S S S S S S S S S	furo F ar
Traf and single seed and seed	90% fr 90% Ilow fc
19 Size of Bolt 1 1 2 2 2 2 2 2 2 2	Rails 50 pounds and over—Basis of table, 90% furnished 33 ft. and 10% not less than 24 ft. Rails 45 pounds and under—Basis of table, 90% furnished 30 ft. and 10% not less than 20 ft. Number and weight of soccessories do not allow for any excess. Rails marked * not rolled by
108 to sails 1 1111111111111111111111111111111111	sis of asis of ries do
Solido But I Sakaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	r-Ba er-B ecesso
Base of Rail in Base of Rail i	d over
11871	pounds and pounds and and weight
10 idgioH 1 24 % 1 22 8 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	onoc onoc
Weight per H Weight per Nature Weight per Weight per Nature Weight per We	8 50 p 8 45 p
100038	Rails Rails Numb

Rail Clip No.	Size, Inches	Weight per Foot, Pounds	Weight of Finished Clip, Pounds	Rail Section
103	2¼ x2	4.4	0.64	100 to 60 lb. A. S. C. E. Rails.
114	1+4 x1 1/2	2.3	0.25	50 to 20 lb. A. S. C. E. Rails.
118	21/2 x2	5.65	0.85	100 to 60 lb. R. B. Rails.
104	215 x2	7.3	1.10	100 to 60 lb. A.S.C.E. Angle Bars
108	2½ x2	4.8	0.70	Girder Rails.

PIPE—BLACK AND GALVANIZED

NATIONAL TUBE COMPANY STANDARD

STANDARD PIPE

Size, In.		Thick-	Pou	ında	Threada		Couplings		
	External	Internal	ness, Inches	Plain Ende	Threads and Couplings	per Inch	Diameter, Inches	Length, Inches	Weight, Pounds
1/8	.405	.269	.068	.244	.245	27	.562	7∕8	.029
` 1/4	.540	.364	.088	.424	.425	18	.685	1	.043
3/8	.675	.493	.091	.567	.568	· 18	.848	11/8	.070
1/2	.840	.622	.109	.850	.852	14	1.024	1%	.116
3/4	1.050	.824	.113	1.130	1.134	14	1.281	15%	.209
1	1.315	1.049	.133	1.678	1.684	111/2 ·	1.576	17/8	.343
11/4	1.660	1.380	.140	2.272	2.281	111/2	1.950	21/8	.535
11/2	1.900	1.610	.145	2.717	2.731	111/2	2.218	23/8	.743
2	2.375	2.067	.154	3.652	3.678	111/2	2.760	25/8	1.208
21/2	2.875	2.469	.203	5.793	5.819	8	3.276	27/8	1.720
3	3.500	3.068	.216	.7.575	7.616	8	3.948	31/8	2.498
$3\frac{1}{2}$	4.000	3.548	.226	9.109	9.202	8	4.591	35/8	4.241
4	4.500	4.026	.237	10.790	10.889	8	5.091	35/8	4.741
41/2	5.000	4.506	.247	12.538	12.642	8	5.591	35/8	5.241
5	5.563	5.047	.258	14.617	14.810	8	6.296	41/8	8.091
6	6.625	6.065	.280	18.974	19.185	8	7.358	41/8	9.554
7	7.625	7.023	.301	23.544	23.769	8	8.358	41/8	10.932
8	8.625	8.071	.277	24.696	25.000	8	9.358	45/8	13.905
8	8.625	7.981	.322	28.554	28.809	8	9.358	45/8	13.905
9	9.625	8.941	.342	33.907	34.188	8	10.358	$5\frac{1}{8}$	17.236
10	10.750	10.192	.279	31.201	32.000	8	11.721	61/8	29.877
10	10.750	10.136	.307	34.240	35.000	8	11.721	61/8	29.877
10	10.750	10.020	.365	40.483	41.132	8	11.721	61/8	29.877
11	11.750	11.000	.375	45.557	46.247	8	12.721	61/8	32.550
12	12.750	12.090	.330	43.773	45.000	8	13.958	61/8	43.098
12	12.750	12.000	.375	49.562	50.706	8	13.958	61/8	43.098
13	14.000	13.250	.375	54.568	55.824	8	15.208	61/8	47.152
14	15.000	14.250	.375	58.573	60.375	8	16.446	61/8	59.493
15	16.000	15.250	.375	62.579	64.500	8	17.446	61/8	63.294

The permissible variation in weight is 5 per cent. above and 5 per cent. helow.

Furnished with threads and couplings and in random lengths unless otherwise ordered. Taper of threads is 34" diameter per foot length for all sizes.

The weight per foot of pipe with threads and couplings is based on a length of 20 feet, including the coupling, but shipping lengths of small sizes will usually average less than 20 feet.

All weights and dimensions are nominal. On sizes made in more than one weight, weight desired must be epecified.

PIPE-BLACK AND GALVANIZED-Concluded

NATIONAL TUBE COMPANY STANDARD

EXTRA STRONG PIPE

10.750

 $\substack{11.750 \\ 12.750}$

14.000

15.000

16.000

10

11

12

 $\overline{13}$

14

15

9.750

10.750

11.750 13.000 14.000

15,000

.500

.500

.500

.500

.500

DOUBLE EXTRA STRONG PIPE

Size, In.			Thick- ness,	Weight, per Foot, Pounds	per Foot, Since		neters, ches	Thick- ness, Inches	Weight per Foot, Pounda		
	External	Internal	Inches	Plain Ends		External	ternal Internal		Plain Enda		
1 1/2 2 1/2 2 1/2 4	.405 .540 .675 .840 1.050 1.315 1.660 1.900 2.375 2.875 3.500 4.000 4.500	.215 .302 .423 .546 .742 .957 1.278 1.500 1.939 2.323 2.990 3.364 3.826	.095 .119 .126 .147 .154 .179 .191 .200 .218 .276 .300 .318	.314 .535 .738 1.087 1.473 2.171 2.996 3.631 5.022 7.661 10.252 12.505 14.983	1/2 3/4 1 1/4 11/2 2 21/2 3 31/2 4 41/2 5	.840 1.050 1.315 1.660 1.900 2.375 2.875 3.500 4.000 4.500 5.503 6.625	.252 .434 .599 .896 1.100 1.503 1.771 2.300 2.728 3.152 3.580 4.063 4.897	.294 .308 .358 .382 .400 .436 .552 .600 .636 .674 .710 .750	1.714 2.440 3.659 5.214 6.408 9.029 13.695 18.583 22.850 27.541 32.530 38.552 53.160		
4½ 5 6	5.000 5.563 6.625	4.290 4.813 5.761	.355 .375 .432	17.611 20.778 28.573	7 8	7.625 8.625	5.875 6.875	.875 .875	63.079 72.424		
7 8 9	7.625 8.625 9.625	6.625 7.625 8.625	.500 .500 .500	38.048 43.388 48.728	Furnished with plain ends and in random lengths unless otherwise ordered.						

lengths unless otherwise ordered.

Permissible variation in weight, for extra strong pipe, 5 per cent. above and 5 per cent. below.

For double extra strong pipe, 10 per cent. above and 10 per cent. below.

All weights and dimensions are nominal.

LARGE O. D. PIPE

48.728 54.735

60.075

65.415

72.091

77.431

82,771

-	ای		Weight per Foot, Pounds												
, <u>1</u>			Thickness, Inches												
1	ā	1/4	1/4 5/1a 3/4 7/1a 1/2 9/1a 5/8 3/4 7/8 1.												
1 1 1 2	5 6 7 8	39.383 42.053 44.723 47.393	45.682 49.020 52.357 55.695 59.032 65.708	58.573 62.579 66.584 70.589 78.599	68.044 72.716 77.389 82.061 91.407	82.771 88.111 93.451 104.131	92.742	95.954 102.629 109.304 115.979 129.330	114.144 122.154 130.164 138.174 154.194	132.000 141.345 150.690 160.035 178.725					
2 2 2 2 3	8		69.045 72.383	86.609 94.619 102.629	$\begin{array}{c} 100.752 \\ 110.097 \\ 119.442 \\ 128.787 \end{array}$	114.811 125.491 136.172 146.852	$\begin{array}{c} 128.787 \\ 140.802 \end{array}$	142.680 156.030 169.380 182.730	170.215 186.235 202.255 218.275						

Furnished with plain ends and in random lengths, unless otherwise ordered. All weights and dimensions are nominal.

SCREW THREADS

AMERICAN BRIDGE COMPANY STANDARD

BOLTS, RODS, EYE BARS, TURNBUCKLES, SLEEVE NUTS, AND CLEVISES

Diam	neter	A	Area		Diar	neter	A	rea	Number of
Total	Net,	Total Dia., d,	Net Dia., c,	of Threads per	Total,	Net,	Total Dia., d,	Net Dia., c,	Threads
d, In.	In.	Sq. In.	Sq. In.	Inch	In.	In.	Sq. In.	Sq. In.	Ínch
1/4 3/8 1/2 5/8 3/4 7/8	.185	.049	.027	20	2½	2.175	4.909	3.716	4
3/8	.294	.110	.068	16	25/8	2.300	5.412	4.156	4
1/2	.400	.196	.126	13	2%	2.425	5.940	4.619	4 .
- 5/8	.507	.307	.202	11	21/8	2.550	6.492	5.108	4
3/4	.620	.442	.302	10		0.000	7 000	F 400	91/
7/8	.731	.601	.419	9 .	3	2.629	7.069	5.428	3½
	000	705	221		31/4	2.879	8.296		31/2
1	.838	.785	.551	8	31/2	3.100	9.621	7.549	31/4
$1\frac{1}{8}$.939	.994	.693	7	3¾	3.317	11.045	8.641	3
11/4	1.064	1.227	.890	7 6 6	4	3.567	12.566	9.993	3
13/8	1.158	1.485	1.054	6		3.798		11.330	27/8
$1\frac{1}{2}$	1.283	1.767	1.294		41/4				2/8
15/8	1.389	2.074	1.515	51/2	41/2	4.028		12.741	234
$1\frac{3}{4}$	1.490	2.405	1.744	5 5	43/4	4.255	17.721	14.221	25/8
17/8	1.615	2.761	2.049	5	5	4.480	19.635	15.766	21/2
2	1.711	3.142	2.300	4½	51/4	4.730	21.648	17.574	21/2
21/8	1.836	3.547	2.649	41/2	51/2	4.953	23.758	19.268	23/8
21/4	1.961	3.976	3.021	4/2	5%	5.203	25.967	21.262	23/8
23/8	2.086	4.430	3.419	41/2	6	5.423	28.274	23.095	21/4

BOLT HEADS AND NUTS

AMERICAN BRIDGE COMPANY STANDARD

Rough	Nut	Finishe	d Nut	Rough	Head	Finished Head		
f	g	f g		f	f h		h	
1.5d+1/8"	d	1.5d+1/ ₁₈ "	d-1/16"	1.5d+1/8"	0.5 f	1.5d+1/16"	0.5 f—½6″	

For Screw Threads, Bolt Heads and Nuts, the American Bridge Company has adopted the Franklin Institute Standard, commonly known as United States Standard.

BOLT HEADS AND NUTS, DIMENSIONS IN INCHES

AMERICAN BRIDGE COMPANY STANDARD

			HEAD		,		1		NUT			
f Bolt	Hexa	gonal	Hex. or Square	Sq	uare	Bolt,	Hexa	gonal	Hex. or Square	Squ	are	
Diameter of Bolt, Inches			A			Diameter of Bolt, Inches	(<u></u>	m			
Ä	Dian	neter		Diar	neter	1.8	Diameter			Diar	neter	
	Long	Shert	Height	Long	Short		Long	Short	Height	Leng	Short	
74/8/1/8/4/8	5/8 1 1 1/4 1 1/5 1 1/6	1/2 2/1/2 7/8 1/4 1/4 1/7	14 30 T B B B 30 30 4	1 1 14 1 1/2 1 1/8 2 1/8	1/2 1/8 1/8 1/8 1/4 1/7	14881268778	5/8 188 1 11/4 11/5 11/8	1/2 1/8 1/8 1/8 1/4 1/7		1 1 1 1 1 1 1 2 1 2	1/2 1/3 1/4 1/7 1/7	
1 11/8 11/4 13/8 11/5/8 11/5/8 11/7/8	17/8 21/8 21/8 21/8 21/8 31/8 31/8 31/8	15/83 113 2 2 3 4 2 2 3 4 4 2 2 1 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	21-1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	15/8 1136 2 23/8 213/8 213/8 213/4 2150	1 1/8 1 1/8 1 1/8 1 1/5/8 1 1/5/8 1 1/8	17/8 21/8 25/8 25/8 25/8 31/7 31/7 33/7	15/8878 2 118 2 2 13/88 2 2 13/8 2 2 13/8 2 2 13/8 2 2 13/8 2 13/8 2 2 13/8	1 11/8 11/4 18/8 11/2 15/8 18/4 17/8	223333334	15/8 11/8 2 2/18/8 2/18/8 2/18/8 2/18/8 2/18/8 2/18/8	
2 2¼ 2½ 2½ 2¾	35/8 41/8 41/2 41/2	31/8 31/4 37/8 41/4	1 184 184 115 218	415 415 512 6	31/8 31/2 37/8 41/4	2 21/4 21/2 28/4	35/8 41/8 41/2 41/5	31/8 31/2 31/8 41/4	2 2¼ 2½ 2¾ 2¾	418 418 512 6.	3½ 3½ 3½ 4¼	
3 31/4 31/2	5% 51% 61%	45/8 5 58/8	$\begin{array}{c} 2\frac{5}{16} \\ 2\frac{1}{2} \\ 2\frac{11}{16} \end{array}$	$6^{\frac{9}{16}}_{16}$ $7^{\frac{1}{18}}_{7\frac{5}{8}}$	45/8 5 53/8	3 3¼ 3½	5% 5 13 614	45/8 5 58/8	3 3¼ 3½	$\frac{61^{9}}{718}$	45/8 5 53/8	

BOLT THREADS, LENGTH IN INCHES

AMEBICAN BRIDGE COMPANY STANDARD

Length,		Diameter, Inches											
Inches	1/4	3/8	1/2	5/8	3/4	1/8	1	11/8	11/4				
1 to 1½	1/4	B/4	1	11/4									
1% to 2	3/4	8/1	1	11/4	11/2	11/2	1						
21/8 to 21/2		8/4	1	11/4	11/2	13/4	13/4						
25% to 3	7/8	7/8	1	11/4	11/2	18/4	13/4	21/4					
31/8 to 4	7/8	1/8	11/4	11/4	11/2	13/4	13/4	21/4	21/2				
41% to 8	1	1	11/4	11/2	13/4	2	21/4	21/2	23/4				
81/8 to 12	1	1	11/2	13/4	2	21/4	21/2	3	3				
21/8 to 20	٠1	1	11/2	2	2	21/4	21/2	3	3				

Bolts not listed are threaded about 3 times the diameter; in no case are standard belts threaded closer to the head than $\frac{14}{3}$ inch.

BOLTS WITH SQUARE HEADS AND NUTS

AMERICAN BRIDGE COMPANY STANDARD

WEIGHT IN POUNDS PER 100 BOLTS

Length Under				Diamete	er of Bolt	, Inches			
Head, Inches	1/4	5/16	3 %	7/16	1/2	5%	3/4	7/8.	1
1	4	7	11	15	22	37	56		
11/4	4	7	11	16	23 .	39	59		
1½	5	8	12	17.	24	41	62		
13/4	5	8	13	18	26	43	64		
2	5	9	14	19	27	45	67	101	144
21/4	6	9	15	20	28	47	71	104	150
21/2	6	10	15	21	30	49	74	109	155
23/4	6	10	16	22	31	51	77	113	161
3	7	11	17	24	33	54	80	117	167
3½	7	12	18	25	35 *	58	86	126	178
4	8	13	20	28	38	62	92	134	189
41/2	9	14	21	30	41	66	98	142	198
5	10	15	23	32	43	71	104	151	* 209
51/2	10	16	25	34	46	75	111	159	220
6	11	17	26	. 36	49	79	117	168	232
61⁄2			28	38	52	84	123	176	243
7			29	40	55	88	129	185	254
71/2			31	42	57	92	136	193	265
8			32	45	60	97	142	202	276
9			34	49	65	105	154	218	298
10				53	71	114	167	235	320
12				61	82	131	192	269	364
14					93	148	217	303	409
Per Inch Additional	1.4	2.2	3.1	4.3	5.6	8.7	12.5	17.0	22.3

SQUARE NUTS AND BOLT HEADS

AMERICAN BRIDGE COMPANY STANDARD

WEIGHTS IN POUNDS FOR ONE HEAD AND ONE NUT

Diameter of Bolt, Inches	11/4	1½	1%	2	21/2	3
Square Head and Nut	2.05	3.51	5.48	8.08	15.5	26.2
Weight of Shank per Inch	.3477	.5007	.6815	.8900	1.391	2.003

BOLTS WITH HEXAGON HEADS AND NUTS

AMERICAN BRIDGE COMPANY STANDARD

WEIGHT IN POUNDS PER 100 BOLTS

Length Under	Γ	Diamete	of Bol	t, Inch	e s	Length Under	1) Diamete	r of Bo	t, Inch	
Head, Inches	1/2	5/8	8/4	7/8	1	Head, Inches	1/2	5%	8/4	7/8	1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	19 20 22 23 24 26 27 29 30 31 33 34 35 37 38 39 41 44 45 51 52 53 55 56	33 34 36 38 40 43 447 49 51 54 56 62 64 66 68 71 73 77 79 81 84 86 88 89 90	522 544 577 600 63 666 699 72 755 78 88 89 94 997 100 1102 1115 1119 1222 125 128 131 134	93 97 101 105 109 114 118 122 126 130 134 138 143 147 151 166 164 168 177 181 185	132 137 143 148 154 160 165 171 176 180 191 197 202 208 213 225 230 241 247 252 258	8 8½ 9 10 10½ 11 11½ 12 12½ 13 13½ 14 14½ 15 15½ 16 16½ 17 17 17½ 18 18 19 19 20	58 60 63 66 68 71 77 80 82 85 88 91 92 105 107 110 111 116 119 121 124	92 96 100 105 109 114 118 122 127 131 135 139 144 148 152 167 161 177 183 187 191 196	137 143 149 156 162 168 174 181 187 199 206 212 221 225 231 237 243 250 262 268 275 281 287	194 202 210 219 227 236 261 270 278 287 295 304 312 321 321 329 338 346 355 364 372 381 389 398	264 274 285 296 307 318 329 341 352 363 374 385 396 407 418 430 441 452 463 474 485 496 507 519 530
Per Inch Additional	5.6	8.7	12.5	17.0	22.3	Per Inch Additional	5.6	8.7	12.5	17.0	22.3

HEXAGON NUTS AND BOLT HEADS

AMERICAN BRIDGE COMPANY STANDARD

WEIGHTS IN POUNDS FOR ONE HEAD AND ONE NUT

Diameter of Bolt, Inches	11/4	1½	1%	2	21/2	3
Hexagon Head and Nut	1.73	2.95	4.61	6.79	13.0	22.0
Weight of Shank per Inch	.3477	.5007	.6815	.8900	1.391	2.003

UPSET SCREW ENDS FOR SQUARE BARS AMERICAN BRIDGE COMPANY STANDARD

Pitch and Shape of Thread A. B. Co. Standard

	BAR				UPS	SET		
Side of	Area.	Weight	Di	T41	Additional Length	Diameter at	Are	ea
Square d, Inches	Area, Sq. Inches	per Foot, Lbs.	Diameter b, Inches	Length a, Inches	for Upset +10%, Inches	Root of Thread C, Inches	At Root of Thread, Sq. Inches	Excess Over Area of Bar, %
* 3/4	0.563	1.91	11/8	4	4	0.939	0.693	23.2
* 1/8	0.766	2.60	11/4	4	3½	1.064	0.890	16.2
1	1.000	3.40	1½	4	4	1.283	1.294	29.4
$1\frac{1}{8}$	1.266	4.30	15/8	4	31/2	1.389	1.515	19.7
11/4	1.563	5.31	17/8	41/2	41/2	1.615	2.049	31.1
$1\frac{3}{8}$	1.891	6.43	2	$4\frac{1}{2}$	4	1.711	2.300	21.7
1½	2.250	7.65	21/4	5	5	1.961	3.021	34.3
15/8	2.641	8.98	23/8	5	4½	2.086	3.419	29.5
13/4	3.063	10.41	2½	$5\frac{1}{2}$	4½	2.175	3.716	21.3
11/8	3.516	11.95	2¾	51/2	5	2.425	4.619	31.4
2	4.000	13.60	27/8	6	5	2.550	5.108	27.7
$2\frac{1}{8}$	4.516	15.35	3	6	41/2	2.629	5.428	20.2
$2\frac{1}{4}$	5.063	17.21	31/4.	61/2	51/2	2.879	6.509	28.6
23/8	5.641	19.18	3½	7	6½	3.100	7.549	33.8
$2\frac{1}{2}$	6.250	21.25	3¾	7	7	3.317	8.641	38.3
$2\frac{5}{8}$	6.891	23.43	3¾	7	51/2	3.317	8.641	25.4
$2\frac{3}{4}$	7.563	25.71	4	71/2	61/2	3.567	9.993	32.1
$2\frac{7}{8}$	8.266	28.10	41/4	8	7½	3.798	11.330	37.1
3	9.000	30.60	41/4	8	6	3.798	11.330	25.9
$3\frac{1}{8}$	9.766	33.20	41/2	81/2	7	4.028	12.741	30.5
31/4	10.563	35.91	48/4	81/2	71/2	4.255	14.221	34.6

UPSET SCREW ENDS

UPSET SCREW ENDS FOR ROUND BARS

AMERICAN BRIDGE COMPANY STANDARD

Pitch and Shape of Thread A. B. Co. Standard

	BAR		ŀ		UPS	SET		
					Additional	Diameter	A	ea
Diameter d, Inches	Area, Sq. Inches	Weight per Foot, Lbs.	Diameter b, Inches	Length a, Inches	Length for Upset +10%, Inches	at Root of Thread C, Inches	At Root of Thread, Sq. Inches	Excess Over Area of Bar, %
* 3/4	0.442	1.50	1	4	4	0.838	0.551	24.7
* 7/8	0.601	2.04	11/4	4	5	1.064	0.890	48.0
1	0.785	2.67	13/8	4	4	1.158	1.054	34.2
11/8	0.994	3.38	11/2	4	4	1.283	1.294	30.2
11/4	1.227	4.17	15/8	4	4	1.389	1.515	23.5
13/8	1.485	5.05	13/4	4	4	1.490	1.744	17.5
11/2	1.767	6.01	2	41/2	41/2	1.711	2.300	30.2
15/8	2.074	7.05	21/8	41/2	4	1.836	2.649	27.7
134	2.405	8.18	21/4	5	4	1.961	3.021	25.6
17/8	2.761	9.39	23/8	5	4	2.086	3.419	23.8
2	3.142	10.68	21/2	$5\frac{1}{2}$	4	2.175	3.716	18.3
$2\frac{1}{8}$	3.547	12.06	25/8	$5\frac{1}{2}$	31/2	2.300	4.156	17.2
$2\frac{1}{4}$	3.976	13.52	27/8	6	4½	2.550	5.108	28.4
23/8	4.430	15.06	3	6	41/2	2.629	5.428	22.5
21/2	4.909	16.69	31/4	$6\frac{1}{2}$	51/2	2.879	6.509	32.6
25/8	5.412	18.40	31/4	$6\frac{1}{2}$	41/2	2.879	6.509	20.3
2%	5.940	20.19	31/2	7	51/2	3.100	7.549	27.1
$2\frac{7}{8}$	6.492	22.07	3¾	7	6	3.317	8.641	33.1
3	7.069	24.03	3¾	7	5	3.317	8.641	22.2
$3\frac{1}{8}$	7.670	26.08	4	$7\frac{1}{2}$	6	3.567	9.993	30.3
$3\frac{1}{4}$	8.296	28.21	4	$7\frac{1}{2}$	5	3.567	9.993	20.5
33/8	8.946	30.42	41/4	8	5½	3.798	11.330	26.6
$3\frac{1}{2}$	9.621	32.71	41/4	8	5	3.798	11.330	17.8
35/s	10.321	35.09	41/2	81/2	5½	4.028	12.741	23.4
$3\frac{8}{4}$	11.045	37.55	43/4	81/2	6	4.255	14.221	28.8
31∕8	11.793	40.10	43/4	8½	51/2	4.255	14.221	20.6
Upset	s marked	* are spa	ecial.		<u></u>	'\		

EYE BARS

AMERICAN BRIDGE COMPANY STANDARD

ORDINARY EYE BAR

ADJUSTABLE EYE BAR

Minimum length of short end from center of pin to end of screw, 6'-6", preferably 7'-0".

Thread on short end to be left hand. Pitch and Shape of Thread A. B. Co.

Standard.

l								,						
	BAR			I	EAD			В	AR_		SC	REW I	END	
	Thic	kness	Dia.		imum in	Mate Ft. a	itional rial, a, ind In.		Min.	Dia.	Excess		Mater Ft. at	tivnal rial,b, nd In.
Width In.	Max. In.	Min ln.	d, In.	Dia. In.	Excess Head over Bar,	For order- ing Bar	For figuring Weight	Width In.	thick- ness In.	u, In.	over Bar	Length m, In.	For order- ing Bar	For figur- ing Wt.
2	1	1/2	* 6½	$1\frac{3}{4}$ $2\frac{8}{4}$ $3\frac{3}{4}$	37.5	1- 0 1- 4 1- 9	0- 7 0-11 1- 4	2	* 5/8 8/4 7/8	184 178 2	39.6 36.6 31.4	4 4½ 4½ 4½	1- 0 1- 0 0-11	8 71/2 71/2
2½	1	5/8	* 8	$ \begin{array}{r} 2\frac{1}{2} \\ 3\frac{1}{2} \\ 4\frac{1}{2} \end{array} $	40.0	1- 3 1- 7 2- 0	0-10 1- 2 1- 7	2½	* 3/4 7/8	$2\frac{1}{8}$ $2\frac{1}{4}$ $2\frac{3}{8}$	41.2 38.1 36.7	4½ 5 5	1- 0 1- 0 1- 0	8 8 71/2
3	1½	5⁄8	* 91/2	31/4 41/4 51/4	41.7	1- 6 1-11 2- 4	1- 1 1- 5 1-10	3	* 3/4 7/8	$2\frac{1}{4}$ $2\frac{1}{2}$ $2\frac{1}{2}$	$\frac{34.3}{41.6}$ 23.9	5 5½ 5½	1- 0 1 -1 1- 1	7½ .9½ 8½
4	1¾	1 8/4 7/8	*12	4½ 5½ 6½	37.5	1-11 2- 3 2- 8	1- 6 1-10 2- 2	4	* 34 7/8	$\frac{2\frac{1}{2}}{2\frac{3}{4}}$	23.9 32.0 35.7	5½ 5½ 6	1- 1 0-11 1- 1	8½ 7½ 8½
5	2	34 1 1	12 13½ *15	$ \begin{array}{c c} 5\frac{1}{4} \\ 6\frac{8}{4} \\ 8\frac{1}{4} \end{array} $	35.0	2- 1 2- 8 3- 3	1- 8 2- 2 2- 9		1½ * ¾ ½ 7/8	$\frac{3\frac{1}{4}}{2\frac{7}{8}}$	$\frac{44.6}{36.2}$	$\frac{-6\frac{1}{2}}{6}$	1- 2 1- 0 0-11	9½ 8 7
6 ,	2	1 1	$14 \\ 14\frac{1}{4}$ $*16\frac{1}{2}$	534 61/2 81/4	37.5	2- 4 2- 6 3- 2	1-10 2- 1 2- 8	5	1 1½ 1¼ 1¼	31/4 31/2 38/4	30.2 34.2 38.3	6½ 7 7	1- 0 1- 1 1- 2	8 8½ 9
7	2	1 1½ 1½ 1½	$16\frac{1}{2}$ $17\frac{1}{2}$ $*18\frac{1}{2}$	7 8 9	35.7	2- 7 2-11 3- 4	2- 2 2- 6 2-11	6	*1 1½ 1¼	3½ 3¾ 4	25.8 28.0 33.2	7 7 7½	1- 0 1- 0 1- 1	7½ 8 8½
8	2	1 1½ 1¼	*20	7 8 9	37.5	2- 8 3- 0 3- 4	2- 3 2- 6 2-11	7	13/8 *11/8 11/4	41/4 4 41/4	$\frac{37.3}{26.9}$ $\frac{29.5}{29.5}$	$\frac{8}{7\frac{1}{2}}$	1- 2 1- 0 1- 1	9½ 8 8½
9	2	11/8 11/4	20 22	71/2 91/2	38.9	2-11 3- 7	2- 6 3- 1		$\frac{188}{112}$	4½ 484	$\frac{32.4}{35.4}$	8½ 8½	1- 2 1- 2	91/2
10	2	$1\frac{1}{8}$ $1\frac{1}{4}$ $1\frac{3}{8}$	22½ 24 *25	$ \begin{array}{r} \hline 9 \\ 10\frac{1}{2} \\ 11\frac{1}{2} \end{array} $	35.0	3- 5 3- 9 4- 1	2-10 3- 3 3- 7	8	*11/8 11/4 13/8	41/4 41/2 48/4	25.9 27.4 29.3	8 8½ 8½	1- 0 1- 1 1- 1	8 8½ 8½
12	2	$1\frac{1}{4}$ $1\frac{8}{8}$ $1\frac{1}{2}$	$26\frac{1}{2}$ 28 $*29\frac{1}{2}$	$10 \\ 11\frac{1}{2} \\ 13$	37.5	3- 8 4- 2 4- 8	3- 3 3- 8 4- 1		1½ 158	5 5¼	31.4 35.2	91/2	1- 2 1- 3	9 2
14	2	13/8 11/2	31 33 *24	12 14	35.7	4-3 4-10	3- 9 4- 4	Bars	mark	ed *	should	only he	used	when

absolutely unavoidable.

Deduct pin hole when figuring weight.

16

LOOP RODS

AMERICAN BRIDGE COMPANY STANDARD

Pitch and Shape of Thread A. B. Co. Standard
Additional Length "A" in Fert and Inches for One Loop.
A=4.17p+5.89r

of Pin, p		34.	7	7/8		1	1	1/8	1	1/4	1	%	1	1/2	1	5/8	1	8/4	1	7∕8		2
11/8	0-	9½	0-1	.0	0-1	1	0-1	11½			_											
11/4	0-1	.0	0-1	10½	0-1	1½	1-	0	1-	1	1											
11/2	0-1	1	0-1	11½	1-	0½	1-	1	1-	2		$2\frac{1}{2}$			1							
$1\frac{3}{4}$	1-	0	1-	0½	1-	$1\frac{1}{2}$	1-	2	1-	3	1-	$3\frac{1}{2}$	1-	$4\frac{1}{2}$	1-	5	1-	6			:	
2	1-	1	1-	1½	1-	$2\frac{1}{2}$	1-	3	1-	4	1-	4½	1-	5½	1-	6	1-	7	1-	7½	1-	8
21/4	1-	2	1-	3	1-	$3\frac{1}{2}$	1-	4½	1-	5	1-	5½	1-	6½	1-	7	1-	8	1-	8½	1-	9
21/2	1-	3	1-	4	1-	$4\frac{1}{2}$	1-	$5\frac{1}{2}$	1-	6	1-	7	1-	$7\frac{1}{2}$	1-	8	1-	9	1-	$9\frac{1}{2}$		
$2\frac{3}{4}$	1-	4	1-	5	1-	$5\frac{1}{2}$	1-	$6\frac{1}{2}$	1-	7	1-	8	1-	$8\frac{1}{2}$	1-	$9\frac{1}{2}$	1-1	10	1-1	11	1-1	11
3	1-	5	1-	6	1-	$6\frac{1}{2}$	1-	7½	1-	8	1-	9	1-	9½	1-1	0½	1-1	11	2-	0	2-	0
*3½	1-	6	1-	7	1-	71/6	1-	8½	1-	9	1-1	.0	1-1	10½	1-1	11%	2-	0	2-	1	2-	'n
31/2								91/2			1-1			11½					2-		2-	
*3¾	1-	8½	1-	9				10½			2-	0	2-	0½	2-	1½	2-		2-		2-	
4	1-	9½	1-1	LO	1-1	.1	1-:	11½	2-	0½	2-	1	2-	2	2-	2½	2-	3	2-	4	2-	4
*4¼			1-1	(1	2-			0½					2-					41/2			2-	
41/2			2-		2-			$1\frac{1}{2}$					2-					$5\frac{1}{2}$			2-	
*43/4			2-	1	2-	2	2-	$2\frac{1}{2}$	2-	$3\frac{1}{2}$	2-	4	2-	5	2-	$5\frac{1}{2}$	2-	$6\frac{1}{2}$	2-	7	2-	8
5			2-	$2\frac{1}{2}$	2-	3	2-	3½	2-	4½	2-	5	2-	6	2-	6½	2-	7½	2-	8	2-	9
*5¼					2-	4	2-	5	2-	5½	2-	6	2-	7	2-	71/2	2-	8½	2-	9	2-1	ιo
51/2					2-			6	2-	$6\frac{1}{2}$	2-	$7\frac{1}{2}$	2-	8	2-	9	2-	$9\frac{1}{2}$	2-1	10	2-1	11
*53/4					2-	6	2-	7	2-	$7\frac{1}{2}$	2-	8½	2-	9	2-1	l0	2-1	10½	2-1	$11\frac{1}{2}$	3-	0
6					2-	7	2-	8	2-	8½	2-	9½	2-1	10	2-1	11	2-1	11½	3-	0½	3-	1
*6¼							2-	9	2-	9½	2-1	101/6	2-1	11	3-	0	3-	0½	3-	11/2	3-	2
61/2										10½					3-			11/2				
*6¾					l		2-			0					3-	2	3-	$2\frac{1}{2}$	3-	31/2	3-	4
7							3-	0	3-	1	3-	11/2	3-	21/2	3-	3	3-	31/2	3-	41/	3-	5

CLEVISES

AMERICAN BRIDGE COMPANY STANDARD

Grip-thickness of plate + 1/4" but must not exceed dimension f

er .				Не	ad	-					Nut]	Fork		ds.
Clevis	d	w	t	Max.	Min. p	г	x	у	מ	с	Max. u	Mia. u	е	f	a	s	Weight, Pounds
3	3	$1\frac{1}{2}$	1/2	1 1/2	1	21/4	21/4	3	1 1/2	21/4	11/8	1	3,18	11/4	5	4	4
4	4	2	1/2	2	11/4	3	3	4	1 3/4	2 1/8	1 5/8	11/8	3 1/8	$1\frac{3}{4}$	6	5	8
5	5	21/2	5/8	2 1/2	11/2	3 3/4	334	5	21/4	3 3/4	21/8	$1\frac{1}{2}$	4 1/2	21/4	7	6	16
6	6	3	3/4	3	2	4 1/2	4 1/2	6	21/2	4 %	25/8	2	5 3/8	23/4	8	7	26
7	7	31/2		3 1/2	21/2	51/4	51/4	7	13	5	3	$2\frac{1}{4}$	6_{16}^{3}	$3\frac{1}{4}$	9	18	36

CLEVIS NUMBERS FOR VARIOUS RODS AND PINS

	Rods	,						Pins	1	•			
Round	Square	Upset	1	11/4	1½	1%	2	21/4	$2\frac{1}{2}$	2%	3	31/4	31/2
3/4		1	3	3	3								
	3/4	11/8	3	_3	3	4	4						
7∕8	7∕8	11/4		4	4	4	4						
1		13/8		4	4	4	4				i		
11/8	1	11/2		4	4	4	4	5	- 5			1	
11/4	11/8	15/8		4	4	4	4	5	5				l
13/8		134			5	5	5	5	5]
	11/4	17/8			5	5	5	5	5				
11/2	13/8	2			5	5	5	5	5	6	6		1
15/8		21/8			5	5	5	5	1 5	6	6	1	
134	11/2	21/4	İ		-	-	6	6	6	1 6	6	7	7
17/8	15/8	23/8		Ì			6	6	6	6	6	7	7
2	134	21/2					6	6	6	6	i 6	7	7
21/8	-/4	25%					6	6	6	6	6	7	7
-/0	17/8	23/4		1			"	"	7	7	7	7	7
21/4	2	27/3				1			7	7	7	7	7
23/3	21/8	3							7	7	7	7	7

Clevises above and to right of zigzag line may be used with forks straight, those below and to left of this line should have forks closed so as not to overstrain pin.

TURNBUCKLES AND SLEEVE NUTS

TURNBUCKLES AND SLEEVE NUTS

AMERICAN BRIDGE COMPANY STANDARD

All Dimensions in Inches

TURNBUCKLES

a=6"; a=9" for turnbuckles marked *.
Pitch and shape of thread, A. B. Co. Standard.

Pitch and shape of thread, A. B. Co. Standard

Diam. of		Stan	dard	Dimer	sions		Weight, Pounds	Diam. of	١	Star	dard :	Dimen	sions		Weight, Pounds
Screw u	d	1	С	t	g	ь	Wei	Screw	d	1	a	ь	c	t	Wei
3/8	16	71/8	9 16	3 18	1/2	116	1								
76	31	7.5	5/8	1/4	5/3	1%	1								
1/2	3/4	71/2	5/8	1/4	5/8	13/8	1								
18 9	37	711	13	15 16	3/4	1,5	11/2								
5/8	18	77/5	18	16 16	3/4	1 1 5	11/2								
3/4	11/8	81/4	$1\frac{1}{16}$	$\frac{1}{3}\frac{1}{2}$	7/8	2	2								
7∕8	1_{16}^{5}	85/8	11/4	3/8	1	21/4	3	1/8	11/2	7	15/8	17/8	11/8	1/4	3
1	11/2	9	1_{18}^{5}	7 16	11/4	276	4	1	1½	7	15/8	17/8	11/8	1/4	3
11/8	111	93/8	$1\frac{7}{16}$	1/2	11/4	216	5	11/8	11%	7½	2	$2^{\frac{5}{16}}$	13/8	15 16	4
11/4	$1\frac{7}{8}$	93/4	$1\frac{9}{16}$	1/2	1½	2¾	6	11/4	$1\frac{3}{4}$	7½	2	$2\frac{5}{16}$	13/8	1 ⁵ 8	4
13/3	$2\frac{1}{16}$	101/8	111	1/2	15/8	316	7	13/8	2	8	21/8	$2\frac{3}{4}$	$1\frac{5}{8}$	3/3	5
11/2	$2\frac{1}{4}$	101/2	1¾	5/3	$1\frac{8}{4}$	3,3	8	11/2	2	8	28/8	$2\frac{8}{4}$	15/8	3/8	6
15/8	$2\frac{7}{16}$	101/8	2	5/8	$1\frac{7}{8}$	3½	10	15/8	$2\frac{1}{4}$	81/2	$2\frac{3}{4}$	318	$1\frac{7}{8}$	1 ⁷ 6	8
134	25/8	111/4	21/8	5/8	2	3%	11	13/4	$2\frac{1}{4}$	81/2	$2\frac{3}{4}$	3 3 6	17/8	16	9
17/8	$2\frac{13}{18}$	115/8	218	116	$2\frac{1}{8}$	37/8	12	11/3	$2\frac{1}{2}$	9	31/8	35/8	$2\frac{1}{3}$	1/2	10
2	3	12	28/3	11	$2\frac{1}{4}$	41/4	14	2	$2\frac{1}{2}$	9	31/3	35/8	21/8	1/2	11
21/8	$3\frac{3}{16}$	12%	21/2	23 32	$2\frac{1}{2}$	41/2	17	21/8	$2\frac{3}{4}$	91/2	$3\frac{1}{2}$	410	$2\frac{3}{8}$	196	14
21/4	33/8	$12\frac{3}{4}$	$2\frac{11}{16}$	13	$2\frac{1}{2}$	43/4	20	21/4	$2\frac{3}{4}$	$9\frac{1}{2}$	$3\frac{1}{2}$	418	23/8	18	15
23/8	3^{9}_{15}	131/8	$2\frac{8}{4}$	13	$2\frac{3}{4}$	47/8	22	23/8		10	3⅓	41/2	25/8	5/8	18
21/2	3¾	131/2	$3\frac{1}{16}$	$\frac{27}{32}$	3	53/8	25	2½	-	10	$3\frac{7}{8}$	41/2	25/8	5/8	19
23/4	41/8	141/4	31/4	15	$3\frac{1}{4}$	5¾	33	234	, -	10½	41/4	415	$2\frac{7}{8}$	18	23
21/8		$14\frac{5}{8}$	3,7	$1_{\frac{1}{32}}$	$3\frac{1}{4}$	6^{16}	36	27/8	$3\frac{1}{2}$	11	45/8	53/8	31/3	3/4	27
3	41/2	15	35/8	$1\frac{1}{32}$	$3\frac{1}{2}$	63/8	40	3		11	45/8	5%	31/8	3/4	28
31/4	41/8	15¾	37/8	1_{16}	4	6¾	50	31/4		11½	5	518	33/8	13	35
31/2		$16\frac{1}{2}$	41/4	$1\frac{7}{32}$	4	71/4	65	3½		12	5%	$6\frac{1}{4}$	$3\frac{5}{8}$	7∕8	40
33/4		171/4	47	1_{18}^{5}	5	81/4	95	33/4	$4\frac{1}{4}$	$12\frac{1}{2}$	5¾	611	$3\frac{7}{8}$	15	47
4	6	18	45/8	$1\frac{7}{16}$	5	83/4	108	4	$4\frac{1}{2}$		61/8	718	41/8	1	55
*41/4	61/4	211/2	45/8	15/8	$5\frac{5}{32}$	91/4	140	41/4		$13\frac{1}{2}$	61/2	71/2	48/8	1_{16}^{1}	65
*41/2		221/2	51/2	1%		10¾	195	41/2	5	14	$6\frac{7}{8}$	715	43/4	1_{16}	75
*43/4		$23\frac{1}{2}$	55/8	2	6½	111/4	205								
*5	7½	24	6	21/4	6½	117/8	250	l							l

RECESSED PIN NUTS

AMERICAN BRIDGE COMPANY STANDARD All Dimensions in Inches

To obtain grip, add $\frac{1}{18}$ " for each bar.

Nuts threaded 6 threads per inch.

To obtain distance between shoulders, add amount given in table to grip.

		Pin					1	Nut			
Diameter of Pin, d	Thr	ead . b	Add to Grip	Thick-	n	Diamete m	er C	w Depth	Diameter rough bole	Weight, Pounds	Pattern No.
2, 2½ 2½, 2¾ 3, *3¼, 3½ *4¼, 4½, *4¼ 5, *5¼, 6 *6¼, *7 *6¼, *7½, *7¼, *7½, *8½, 8, *8¼ *9½, 10	1½2 2½3 3½4 4½5 5½2 66	1 11/8 11/4 13/8 11/5 13/4 17/8 2 2 21/4 23/8	1414141515151516446464646464646464646464	78 1 11/8 11/4 13/8 11/2 15/8 11/8 17/8 17/8 21/8 21/8 21/4	2158 3156 4458 478 5844 758 8168 988 1014 1114	33/8 41/8 55/3 7/3 87/3 93/3 10 10/3 111/3	25/3 35/3 45/3 45/3 55/3 77/3 88/5 95/3 105/3	14 14 38 38 14 15 83 84 84 84 84 84	518	1.1 1.7 2.5 3.7 4.6 6.2 7.8 9.9 11.8 14.3 18.6 23.8 31.1	PN 21 PN 22 PN 23 PN 25 PN 25 PN 26 PN 27 PN 28 PN 30 PN 31 PN 32 PN 33

Pins marked * are special.

COTTER PINS

MERICAN BRIOGE COMPANY STANDARD

HORIZONTAL OR VERTICAL PIN FINISHED

HORIZONTAL PIN ROUGH OR FINISHED

Pin	Head	g	Co	tter	Pin	0,	Cot	ter
р	h ·		С	d	p1	g ₁	c	d
11/4 11/2 11/4 21/4 21/4 21/4 21/4 21/4	1½ 1¾ 2 2¾ 2½ 2½ 3½ 3½ 3¾ 4 4¼	Net Grip + ½"	2 21/2 23/4 33/4 33/4 5 5 6 6	14/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/	11/4 11/2 18/4 21/2 21/2 28/4 31/4 31/4 31/4 33/4	Net Grip +¾"	21/2 22/3/4 33/4 4 5 6 6	14/4/4/4/0/00/00/00/01/01/01/01/01/01/01/01/01/0

STRUCTURAL RIVETS

AMERICAN BRIDGE COMPANY STANDARD

Dimensions in Inches

GENERAL FORMULAS FOR PROPORTIONS OF RIVETS, IN INCHES

STRUCTURAL RIVETS

AMERICAN BRIDGE COMPANY STANDARD

LENGTHS OF FIELD RIVETS FOR VARIOUS GRIPS Dimensions in Inches

Grip			Diamete	r		Grip			Diamete	r	
a	1/2	5%	8/4	7/8	1	Grip b	1/2	5/8	8/4	7/8	1
1/2/8 3/4/8	1 ½ 1 58 1 34 1 78	1 3/4 1 7/8 2 2 1/8	1 1/8 2 2 1/8 2 1/4	2 2 1/8 2 1/4 2 3/8	21/8 21/4 23/8 21/2	1/2 5/8 8/4 7/8	1 1/8 1 1/4 1 3/8 1 1/2	1 1/4 1 3/8 1 1/2 1 5/8	1 1/4 1 8/8 1 1/2 1 5/8	1 3/8 1 1/2 1 5/8 1 3/4	1 3/8 1 1/2 1 5/8 1 3/4
1 1/8/4/8/5/8/4/8	2 1/8 2 1/4 2 1/4 2 2 3/8 2 2 3/4 3 1/8	2 14 2 3/8 2 1/2 2 1/8 2 1/8 3 1/4 3 3/8	2 3/8 2 1/2 2 5/8 2 3/4 3 1/8 3 3/8 3 1/2	2 1/2 2 5/8 2 7/8 2 2 1/4 2 3 3 1/4 3 3 5/8 3 5/8	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 1/8 1/4 3/8 1/2 5/8 3/4 7/8	15/8 13/4 17/8 21/8 21/4 21/5/8	13/4 11/8 21/8 21/4 23/8 22/3/8 22/3/8	1 3/4 1 7/8 2 1/8 2 1/8 2 1/2 2 1/8 2 1/2 2 1/8	178 218 218 214 238 212 238 2178	178 218 218 214 212 258 278
2 1874 872 874 8	3 1/4 3 3/8 3 1/2 3 5/8 3 7/8 4 4 1/8	3 1/2/8 3 5/8 3 3/7/8 4 1/8 4 1/4/8	35/8 33/8 41/8 41/4 43/8 41/2	3 3/4 3 7/8 4 1/8 4 1/4 4 8/8 4 1/2 4 5/8	3 7/8 4 1/8 4 1/4 4 8/6 4 1/2 4 1/2 4 1/3 4 3/4	2 1/8/4/8/1/8/4/8	2223 1448 33148 33148 33148 33158	2 7/8 3 1/8/4/8 3 3 3/4/8 3 3 3/4/8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 1/8 3 1/4 3 3 1/2 3 3 1/2 3 3 1/8 3 3 1/8 3 3 1/8 3 3 1/8	314 314 328 315 317 337 34 317 4
3	4 3/8 4 1/2 4 5/8 4 4 7/8 5 1/8 5 1/4	45/8/44/8 447/8 55/14/8/5 55/2	4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	55555555555555555555555555555555555555	3 1/8 1/4 3/8 1/2 5/8 3/4/8	378 4 1/8 4 1/4 4 1/4 4 1/2/8 4 1/2/8 4 1/3/4	4 1/8 4 1/4 4 1/4 4 1/2 4 1/5 8 4 1/2 4 1/8 4 1/	4 1/8 4 1/4 4 1/3/8 4 1/2/8 4 1/5/8 4 1/8 4 1/8	414 414 415 415 415 415 415 415 415 415	4 14 4 88 4 12 4 58 • 4 34 4 78 5 18
4 1/8/4/8/2/0/4/8	5 5 5 8 4 5 5 5 5 6 6 1 8 6 6 1 2 6 6 1 2	55/8 57/8 61/4 66/3/8 61/2/8 66/3/4	56666534 6666666666666666666666666666666	5618 6666 6666 667	6 14 8 6 5 8 6 5 7 1 8 7 1 8	4 1/8 1/4 3/8 1/2 8 8/4/8 7/8	4555555556	5555555555566	555858 555378 5566	5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6	514 515 558 558 558 558 56 618 614
5	65%	67/8	7 1/8 1/4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 9 7 7 7 7	718 714 738 7138 7134 7734 78 818	714 738 712 758 778 818 814	5 1/4/8/2/8/1/8/1/8/8/7/8	61/8	61/4	614 638 612 6678 7714	6 6 6 6 6 7 7 7 1/4	6 3/8 6 3/8 6 5/8 7 1/8 7 1/8 7 1/8 7 1/8 7 1/8

STRUCTURAL RIVETS

AMERICAN BRIDGE COMPANY STANDARD

Weight in Pounds per 100 Rivets with Button Heads

Length Under		Di	amet	er of	Rive	t, Inc	hes		Length Under		I	iame	ter of	Rivet	, Inch	es	
Head, Inches	%	1/2	5/8	8/4	7∕8	1	11/8	11/4	Head, Inches	%	1/2	5/8	8/4	7 ∕8	1	11/8	1¼
							_		5	18	33	53	78	109	146	190	252
						1			1/8	18	34	54	80	111	149	193	256
11/4	6	12				- 1		٠ ,	1/4	19	34	55	82	113	152	197	260
3/8	7	13							3/8	19	35	56	83	115	155	200	265
1/2	7	13	23	35	50	68	91	130	1/2	20	36	57	85	118	157	204	269
5/8	7	14	24	36	52	71	95	134	5/3	20	36	58	86	120	160	207	273
3/4	8	15	25	37	54	74	98	139	3/4	20	37	60	88	122	163	211	278
7/8	8	15	26	39	56	77	102	143	7/3	21	38	61	89	124	166	214	282
2	9	16	27	41	58	80		148	6	21	38	62	91	126	169		287
1/8	9	17	28	43	60			152	1/8	22	39	63	93	128	171	222	291
1/4	9	18	29	44	62		112		1/4	22	40	64	94		174		295
3/8	10	18	30	46	64		116		3/3	22	40	65	96	132	177	229	300
1/2	10	19	31	47	67		119		1/2	23	41	66	97	135	180	232	304
5/8	11	20	32.	49	69		123		5/8	23	42	67	99	137	182	236	308
3/4	11	20	34	50	71	96			3/4	24	43	68	100	139	185	239	313
1∕8	11	21	35	52	73	99	130	178	7∕8	24	43	69	102	141	188	243	317
3	12	22	36	54				182	7	24	44	70	104	143	191	246	321
⅓	12	22	37	55	77		137		1/8	25	45	71	105	145	194	250	326
1/4	13	23	38	57	79		141		1/4	25	45	73	107	147	196	253	330
3/8	13	24	39	58	81	_	144		3/8	26	46	74	108	149		257	334
1/2	13	24	40	60			148		1/2	26	47	75	110	152	202	260	339
3/8	14	25	41	61			1	204	5/8	26	47	76	111	154		264	343
3/4	14	26	42	63				208	3/4	27	48	77	113	156	207	267	347
7∕8	15	27	43	64	90	121	158	213	1∕8	27	49	78	114	158	210	271	352
4	15	27	44	66			162		8	27	50	79	116	160		274	356
1∕8	15	28	45	68			165		1/8	28	50	80	118	162	1	278	360
1/4	16	29	47	69		130	l .	226	1/4	28	51	81	119	164		281	365
3/8	16	29	48	71		132	1		3/8	29	52	82	121	166	221	285	369
1/2	16	30	49	72		135			1/2 5/8	29	52	83	122	169		288	373
5/8	17	31	50	74				239	5/8	29	53	84	124	171	227	292	378
3/4	17	31	51	75				243		30	54	86	125	173	230	295	382
₹8	18	32	52	77	107	143	186	247	7/8	30	54	87	127	175	232	299	386
	<u> </u>	<u></u>					1		П	J	1	1	<u> </u>	l	1	1	1

			Diame	eter of	Rivets,	Inches		
Button Heads	8/8	1/2	5/8	8/4	7/8	1	11/8	11/4
100 Heads as made on rivets, Pounds 100 Heads as driven in work, Pounds	2.4 1.9	5.0 4.0	9.7 7.5	16.0 12.5	24.0 18.5	35.0 27.0	49.0 37.5	78.0 51.0

AMERICAN BRIDGE COMPANY

SPECIFICATIONS

FOR

STEEL STRUCTURES

DESIGN, DETAILS OF CONSTRUCTION AND WORKMANSHIP

ADOPTED 1912

DESIGN

- 1. Loads. The steel frame of all structures shall be designed so as to safely support the dead and live loads. The dead load shall consist of the weight of all permanent construction and fixtures, such as walls, floors, roofs, interior partitions, and fixed or permanent appliances. The live load shall consist of movable loads on floors, loads due to machinery or other appliances, and the exterior loads due to snow on the roof and to wind.
- 2. For structures carrying traveling machinery, such as cranes, conveyors, etc., 25 per cent shall be added to the stresses resulting from such live load, to provide for the effect of impact and vibrations.
- 3. The wind pressure shall be assumed acting horizontally in any direction as follows:—

First: For finished structures—A pressure of 20 pounds per square foot on the sides and ends of buildings and on the vertical projection of roof surfaces, or

Second: In process of construction—A pressure of 30 pounds per square foot on vertical surfaces and the vertical projection of inclined surfaces of all exposed metal or other frame work.

CONSTRUCTION SPECIFICATIONS

4. Unit Stresses. All parts of structures shall be proportioned so that the sum of the dead and live loads, together with the impact, if any, shall not cause the stresses to exceed the following amounts in pounds per square inch:

Tension, net section, rolled steel
Direct compression, rolled steel and steel castings16000
Bending, on extreme fibers of rolled shapes,
built sections, girders, and steel castings16000
Bending on extreme fibers of pins24000
Shear on shop rivets and pins12000
Shear on bolts and field rivets10000
Shear—average—on webs of plate girders and
rolled beams, gross section10000
Bearing pressure on shop rivets and pins24000
Bearing on bolts and field rivets20000
Pressure per linear inch on expansion rollers shall not exceed
times the diameter of rollers in inches.
Axial compression of gross sections of columns, for
ratio of l/r up to 12019000—100 l/r
with a maximum of

where l=effective length of member in inches, r=corresponding radius of gyration of section in inches.

600

For ratios of l/r up to 120, and for greater ratios up to 200, use the amounts given in the following table. For intermediate ratios, use proportional amounts.

Ratio	Amount	Amount		
60	13000	130	6500	
70	12000	140	6000	
80	11000	150	5500	
90	10000	160	5000	
100	9000	170	4500	
110	8000	180	4000	
120	7000	190	3500	

5. For bracing and combined stresses due to wind and other loading, the permissible working stresses may be increased 25 per cent—provided the section thus found is not less than that required by the dead and live loads alone.

PROPORTION OF PARTS

- 6. General. The effective or unsupported length of main compression members shall not exceed 120 times, and for secondary members 200 times, the least radius of gyration.
- 7. In proportioning columns, provision must be made for eccentric loading.
- 8. In proportioning tension members, net section must be used. Rivet holes deducted must be taken \(\frac{1}{8} \) inch larger than the nominal size of rivets.
- 9. Members subject to the action of both axial and bending stresses shall be proportioned so that the greatest fiber stress will not exceed the allowed limits in that member.
- 10. Members subject to alternate stresses of tension and compression shall be proportioned for the stress giving the largest section, but their connections shall be proportioned for the sum of the stresses.
- 11. Girders. Rolled beams and channels, and built-up members used as beams and girders shall be proportioned by the moment of inertia of their gross sections.
- 12. Plate girder webs shall have a thickness not less than $\frac{1}{160}$ of the unsupported distance between flange angles. The webs shall have stiffeners, generally in pairs, over bearings, at points of concentrated loading, and at other points where the thickness of the web is less than $\frac{1}{160}$ of the unsupported distance between flange angles, generally not farther apart than the depth of the web plate, with a maximum limit of 6 feet.
- 13. The lateral unsupported length of beams and girders shall not exceed 40 times the width of the compression flange. When the unsupported length (l) exceeds 10 times the width (b) of the compression flange, the stress per square inch in the compression flange shall not exceed 19000—300 l/b.

DETAILS OF STEEL CONSTRUCTION

- 14. General. Adjustable members in any part of structures shall preferably be avoided.
 - 15. Sections shall preferably be made symmetrical.
 - 16. No connection, except lattice bars, shall have less than two rivets.

- 17. Trusses shall preferably be riveted structures. Heavy trusses of long span, where the riveted field connections would become unwieldy, or for other good reasons, may be designed as pin-connected structures.
- 18. Abutting joint in compression members faced for bearing shall be spliced sufficiently to hold the connecting members accurately in place. All other joints in riveted work, whether in tension or compression, shall be fully spliced.
- . 19. Lateral, longitudinal and transverse bracing in all structures shall preferably be composed of rigid members, and shall be designed to be sufficient to withstand wind and other lateral forces when building is in process of erection as well as after completion.
- 20. Girders. When two or more rolled beams are used to form a girder, they shall be connected by bolts and separators at intervals of not more than 5 feet. All beams having a depth of 12 inches and more shall have at least two bolts to each separator.
- 21. The flange plates of all girders shall be limited in width, so as not to extend more than 6 inches beyond the outer line of rivets connecting them to the angles, or 8 times the thickness of the thinnest plate.
- 22. Web stiffeners shall be in pairs, and shall have a close bearing against the flange angles. Those over the end bearing or forming the connection between girder and column shall be on fillers. Intermediate stiffeners may be on fillers or crimped over the flange angles.
- 23. Web plates of girders must be spliced at all points by a plate on each side of the web, capable of transmitting the full stress through splice rivets.
- 24. Riveting. The minimum distance between centers of rivet holes shall be three diameters of the rivet; but the distance shall preferably be not less than 3 inches for ½-inch rivets, 2½ inches for ¾-inch rivets, 2 inches for ½-inch rivets, and 1¾ inches for ½-inch rivets. The maximum pitch in the line of the stress for members composed of plates and shapes will be 6 inches for ¾-inch rivets, 6 inches for ¾-inch rivets, 4½ inches for ½-inch rivets and 4 inches for ½-inch rivets.
- 25. For angles in built sections with two gage lines, with rivets staggered, the maximum pitch in each line shall be twice as great as given above. Where two or more plates are in contact, rivets not more than 12 inches apart in either direction shall be used to hold the plates together.

- 26. The minimum distance from the center of any rivet hole to a sheared edge shall be $1\frac{1}{2}$ inches for $\frac{1}{2}$ -inch rivets, $1\frac{1}{2}$ inches for $\frac{1}{2}$ -inch rivets, $1\frac{1}{2}$ inches for $\frac{1}{2}$ -inch rivets; and 1 inch for $\frac{1}{2}$ -inch rivets; and to a rolled edge, $1\frac{1}{2}$, $1\frac{1}{2}$, 1, and $\frac{1}{2}$ inches, respectively.
- 27. The maximum distance from any edge shall be eight times the thickness of the plate.
- 28. The pitch of rivets at the ends of built compression members shall not exceed four diameters of the rivets for a length equal to one and one-half times the maximum width of the member.
- 29. Latticing. The open sides of compression members shall be provided with lattice bars, having tie plates at each end and at intermediate points where the lattice is interrupted. The tie plates shall be as near the ends as practicable. In main members carrying calculated stresses, the end tie plates shall have a length not less than the distance between the lines of rivets connecting them to the flanges, and intermediate ones not less than half this distance. Their thickness shall not be less than \(\frac{1}{160}\) of the same distance.
- 30. The latticing of compression members shall be proportioned to resist a shearing stress equal to 2 per cent of the direct stress. The minimum thickness of lattice bars shall be for single lattice, $\frac{1}{10}$, and for double lattice, $\frac{1}{10}$ of the distance between the end rivets. Their minimum width shall be as follows:

For 15-inch channels, or

built sections with $3\frac{1}{2}$ and 4-inch angles, $2\frac{1}{2}$ inches ($\frac{7}{8}$ -inch rivets).

For 12-10-and 9-inch channels, or

built sections with 3-inch angles 21/4 inches (3/4-inch rivets).

For 8-and 7-inch channels, or

built sections with 2½-inch angles 2 inches (5%-inch rivets).

For 6-and 5-inch channels, or

built sections with 2-inch angles 13/4 inches (1/2-inch rivets).

- 31. The inclination of lattice bars with the axis of the member shall generally be not less than 45 degrees. When the distance between the rivet lines in the flanges is more than 15 inches, if a single rivet bar is used, the lattice shall be double.
- 32. The pitch of lattice connections, along the flange, divided by the least radius of gyration of the member between connections, shall be less than the corresponding ratio of the member as a whole.

- 33. Pins. Pin holes shall be reinforced by plates where necessary. At least one plate shall be as wide as the projecting flanges will allow; where angles are used, this plate shall be on the same side as the angles. The plates shall contain sufficient rivets to distribute their portion of the pin pressure to the full cross section of the member.
- 34 Pins shall be long enough to insure a full bearing of all parts connected upon the turned-down body of the pin. Members packed on pins shall be held against lateral movement.

WORKMANSHIP

- 35. General. The workmanship shall be equal to the best practice in modern structural works. Shearing shall be done accurately, and all portions of the work exposed to view shall be neatly finished.
- 36. Punching. The diameter of the punch shall not be more than ½6 inch, nor that of the die more than ½8 inch, larger than the diameter of the rivet. Punching shall be done accurately, but an occasional slight inaccuracy in the matching of holes may be corrected with reamer. Drifting to enlarge unfair holes will not be allowed.
- 37. Riveting. The size of rivets shall be as called for on the plans. Rivets shall be driven by pressure tools wherever possible. Pneumatic hammers shall be used in preference to hand driving. Rivets shall look neat and finished, with heads of approved shape, full and of equal size. They shall be centered on the shank and shall grip the assembled pieces firmly.
- 38. Assembling. Riveted members shall have all parts well pinned up and firmly drawn together with bolts before riveting is commenced. Contact surfaces shall be painted. Abutting joints shall be cut or dressed true and straight and fitted closely together. In compression joints depending on contact bearing, the surfaces shall be truly faced, so as to have even bearing after they are riveted up complete and when perfectly aligned. The several pieces forming one built member shall be straight and shall fit closely together, and finished members shall be free from twists, bends or open joints.

- 39. Eye Bars. Eye bars shall be straight and true to size, and shall be free from twists, folds in the neck or head, or any other defect. Heads shall be made by upsetting, rolling or forging. Welding will not be allowed. Before boring, each eye bar shall be perfectly annealed and carefully straightened. Pin holes shall be in the center line of bars and in the center of heads. Bars of the same length shall be bored so accurately that, when placed together, pins ½2 inch smaller in diameter than the pin holes can be passed through the holes at both ends of the bars at the same time.
- 40. Pins. Pins and rollers shall be turned accurately to gages, and shall be straight, smooth and entirely free from flaws. Pin holes shall be bored true to gages, smooth and straight, at right angles to the axis of the member and parallel to each other, unless otherwise called for. Wherever possible, the boring shall be done after the member is riveted up. The distance from center to center of pin holes shall be correct within ½2 inch, and the diameter of the hole not more than ½0 inch larger than that of the pin for pins up to 5 inches diameter, and ½2 inch for larger pins.
- 41. Bed Plates. Expansion bed plates shall be planed true and smooth. The cut of the planing tool shall correspond with the direction of expansion.
- 42. Annealing. Steel, except in minor details, which has been partially heated, shall be properly annealed. Welds in steel will not be allowed. All steel castings shall be annealed.
- 43. Painting. Steel work, before leaving the shop, shall be thoroughly cleaned and given one good coating of such paint as may be called for, well worked into all joints and open spaces.
- 44. In riveted work, the surfaces coming in contact shall be painted before being riveted together.
- 45. Machine-finished bearing surfaces coming in contact with similar surfaces should be coated with white lead and tallow before shipment.
- 46. Inspection. The manufacturer shall furnish all facilities for inspecting and testing the weight, quality of material and workmanship. He shall furnish a suitable testing machine for testing the specimens, as well as prepare the pieces for the machine free of charge.
- 47. He shall give the inspector for the purchaser free access to all parts of the works where the material under inspection is manufactured.

ELEMENTS OF SECTIONS

DEFINITIONS

In the computations of structural designing, certain mathematical expressions are used to designate the values of structural shapes in the various conditions under which they are subjected to stress. In the pages which immediately follow, these values, usually called properties, are given in United States measurements for shapes common in structural designs, and are defined as follows:—

A-Area of Section, expressed in square inches.

r-Radius of Gyration. The distance in inches from the center of moments of a section to the point or line at which its area is considered concentrated. The radius of gyration of a section referred to any axis is always the square root of the moment of inertia of the section referred to that axis divided by the area.

I-Moment of Inertia. The summation, expressed in inches to the fourth power, of the products of the elementary areas of a section by the squares of their distances from its center of gravity or other axis assumed for purposes of computation.

*S-Section Modulus. The moment of inertia divided by the distance (n) from the axis of moments to the extreme fiber. In an unsymmetrical section there are two section moduli for each axis of moments, the least of which determines the safe unit stress.

Neutral Axis. Axis of moments through center of area.

x and y. The distance or distances in an unsymmetrical section from the back or working line of the section to the center of gravity of the section.

The section modulus is used to determine the stress in the extreme fiber of a shape subject to bending by dividing the bending moment by the section modulus, both expressed in like units of measurement. It is also used vice versa in the selection from a table of shapes of the proper section required to support a load by dividing the bending stress by the allowable fiber stress, both in like units of weight.

The radius of gyration is used to ascertain the safe load any section or shape will sustain when used in compression as a strut or column. The unbraced length of the section divided by the radius of gyration is denominated the ratio of slenderness.

The elements of steel sections are based upon the theoretical dimensions given in the pages which precede. No account has been taken of fillets or rounded corners, neither have any approximations entered into any of the calculations.

ELEMENTS, OF SECTIONS

RECTANGLE

Axis of moments through center

$$=\frac{u}{2}$$

$$\frac{1}{1-1} = \frac{12}{\mathbf{b}\mathbf{d}^2}$$

$$r_{1-1} = \frac{d}{\sqrt{12}} = 0.288675d$$

RECTANGLE

AxIs of moments on base

$$A = bd$$

$$\mathbf{x} = \mathbf{d}$$

$$I_{1-1} = \frac{bd^8}{3}$$

$$S_{1-1} = \frac{bd^2}{3}$$

$$\mathbf{r}_{1-1} = \frac{\mathbf{u}}{\sqrt{3}} = 0.577350d$$

RECTANGLE

Axis of moments on diagonal

$$a = \frac{bd}{\sqrt{b^2+d^2}}$$

$$\mathbf{I_{1-1}} = \frac{b^8 d^8}{6 (b^3 + d^2)} \\ b^2 d^2$$

$$s_{1-1} = \frac{1}{6\sqrt{b^2+d^2}}$$

$$r_{1-1} = \frac{bd}{\sqrt{6(b^2+d^2)}}$$

RECTANGLE

Axis of moments any line through center of gravity

$$A = bd$$

$$x = \frac{b \sin \alpha + d \cos \alpha}{2}$$

$$I_{1-1} = \frac{bd (b^2 \sin^2 \alpha + d^2 \cos^2 \alpha)}{12}$$

$$S_{1-1} = \frac{bd (b^3 \sin^2 \alpha + d^2 \cos^2 \alpha)}{6 (b \sin \alpha + d \cos \alpha)}$$

$$r_{1-1} = \sqrt{\frac{b^2 \sin^2 \alpha + d^2 \cos^2 \alpha}{12}}$$

HOLLOW RECTANGLE Axis of moments through center

$$A = bd-b_1 d_1$$

$$x = \frac{d}{2}$$

$$I_{1-1} = \frac{bd^{3}-b_{1} d_{1}^{3}}{12}$$

$$S_{1-1} = \frac{bd^3 - b_1 d_1^3}{6d}$$

$$\mathbf{r_{1-1}} = \sqrt{\frac{bd^3 - b_1 \ d_1^3}{12 \ (bd - b_1 \ d_1)}}$$

ELEMENTS OF SECTIONS

I₂₋₂=

 $\frac{d(b+a)^3-2a^3c-6ab^2c}{12}$

 $\frac{I_{2-2}\cos^2\alpha - I_{1-1}\sin^2\alpha}{\cos 2\alpha}$ $\frac{I_{1-1}\cos^2\alpha - I_{2-2}\sin^2\alpha}{\cos 2\alpha}$

ELEMENTS OF SECTIONS

COMPOUND SECTIONS

MOMENTS OF INERTIA, SECTION MODULI, AND RADII OF GYRATION

The moment of inertia of a compound section about its neutral axis is equal to the sum of the moment of inertia, I, of the component parts about axes through their own centers of gravity, plus the areas A, of the component parts multiplied by the squares of the distances d, of their own centers of gravity from the neutral axis of the compound section, or

Section Modulus
$$S^1 = \frac{1^1}{n}$$

Radius of Gyration
$$r^1 = \sqrt{\frac{I^1}{A^1}}$$

Example 1. Required the moments of inertia and the

section moduli about axes 1-1 and 2-2 of a compound section to be used as a girder, composed of 1 Web Plate 33"x1/2"

4 Flange Angles 6"x4"x5%"

2 Flange Plates 14"x34"

basing the properties on the gross area of the section.

Determine the distances, of the center lines of gravity of plates and angles, from the neutral axes of the compound section, from the dimensions given, then for

AXIS 1-1
$$I_{1-1}$$
 of $4\cdot6''x4''x56''$ Angles = 4×7.52 = 30.08 Inches 4 Ad² of $4\cdot6''x4''x56''$ " = $4 \times 5.86x15.72^2$ = 5792.46 " I_{1-1} of $1\cdot33''x\frac{1}{2}$ " Plate = $1 \times \frac{0.50x 33^3}{12}$ = 1497.38 " I_{1-1} of $2\cdot14''x\frac{3}{2}$ " " = $2 \times \frac{14x0.75^3}{12}$ = 0.98 " $\frac{14x0.75^3}{12}$ = 0.98 " $\frac{14x0.75^3}{12}$ = 0.98 " $\frac{13479.48}{17.50}$ Moment of Inertia, gross section Section Modulus, " "= $\frac{13479.48}{17.50}$ = 770.26 Inches 3 AXIS 2-2 $I_{2\cdot2}$ of $4\cdot6''x4''x\frac{5}{2}$ " Angles = 4×2.107 = 84.28 Inches 4 Ad² of $4\cdot6''x4''x\frac{5}{2}$ " Plate = $1 \times \frac{21.07}{12}$ = 0.34 " $I_{2\cdot2}$ of $1\cdot33''x\frac{1}{2}$ " Plate = $1 \times \frac{3320.50^3}{12}$ = 0.34 " $I_{2\cdot2}$ of $2\cdot14''x\frac{3}{2}$ " " = $2 \times \frac{0.75x14^3}{12}$ = $\frac{343.00}{549.47}$ Inches 4 Moment of Inertia, gross section Section Modulus, " = $\frac{549.47}{7}$ = 78.50 Inches 3

If it is desired to calculate the properties of the net section, viz., to deduct the area of the rivet holes, proceed as follows, assuming that \mathcal{Y}_8'' holes for \mathcal{Y}_8'' rivets are to be deduct the area that not more than one rivet will be driven in any one leg of the angles in the same plane of the section.

one river win.	he driven in any one leg of the angles in the same plane of the	TE BECMON.
AXIS 1-1		13479.48 Inches 4
Deduct	I_{1-1} of 4-0.875"x1.375"Rectangles= $4 \times \frac{0.875 \times 1.375^3}{12}$ =	0.76 "
**	Ad ² of 4-0.875" $x1.375$ " = 4 x 1.203x16.8125 ² =	1360.16 "
"	I_{1-1} of 2-0.875"x1.75" " = 2 x $\frac{1.75 \times 0.875^3}{12}$ =	0.20 "
**	Ad ² of 2-0.875"x1.75" = $2x1.531x14.25^2$ =	621.77 "
	Moment of Inertia, net section	11496.59 Inches 4
	Section Modulus, " $\Rightarrow \frac{11496.59}{17.50} =$	656.95 1nches ⁸
AXIS 2-2	l ₂₋₂ of gross section ==	549.47 Inches 4
Deduct	I_{2-2} of 4-0.875"x1.375" Rectangles =4 x $\frac{1.375 \times 0.875^3}{12}$ =	0.31 "
41	Ad ² of 4-0.875" x1.375" =4 x 1.203x3.75 ² =	67.67 "
**	I_{3-2} of 2-0.875" x1.75" =2 x $\frac{0.875 \times 1.75^3}{12}$ =	0.78 "
	Moment of Inertia, net section	480.71 Inches 4
	Section Modulus, " = $\frac{480.71}{7}$ =	68.67 Inches B

COMPOUND SECTIONS—Concluded

EXAMPLE 2. Required the moments of inertia and radii of gyration about axes 1-1 and 2-2 of a column section composed as follows:—

- 2 Channels 12"x30 pounds per foot,
- 2 Flance Plates 14"x 34".

properties to be besed on the gross section, no deduction being made for holes,

Determine the distances, d, of center lines of gravity for the various sections from the neutral axes 1-1 and 2-2, in accordance with the dimensions given, then for

AXIS 1-1
$$I_{1-1}$$
 of 2-12" Channels 30 lbs. = 2 x $\frac{161.65}{12.00}$ = 323.30 Inches 4 I_{1-1} of 2-14" x 3/4" Plates = 2 x $\frac{14 \times 0.758}{12}$ = 0.98 " $\frac{Ad^2}{12}$ of 2-14" x 3/4" " = 2 x 10.5 x 6.375 = 853.45 " $\frac{Ad^2}{12}$ Moment of Inertia, gross section Radius of Gyration, " " = $\sqrt{\frac{1177.73}{38.64}}$ = 6.52 Inches

AXIS 2-2
$$I_{2-2}$$
 of 2-12" Channels 30 lbs. = 2 x 5.22 = 10.44 Inches 4 Ad² of 2-12" Channels 30 lbs. = 2 x 8.82 x 4.1642 = 305.86 "

 I_{2-2} of 2-14" x¾" Plates = 2 x $\frac{0.75 \text{ x } 14^2}{12}$ = 343.0 "

Moment of Inertia, gross section
Radius of Gyration, " = $\sqrt{\frac{659.30}{38.64}}$ = 4.13 Inches

EXAMPLE 3. Required the radii of gyration about axes 1-1 and 2-2 of a strut section composed as follows:—

4-6"x4"x %" Angles latticed by 5/16" bars, properties to be based on the gross section of angles, no deductions being made for rivet holes nor any allowance for lattice bars.

Determine the distances, d, of center lines of gravity of angles from neutral axes 1-1 and 2-2 in accordance with the dimensions given, then for

AXIS 2-2 From tables of radii of gyration for 2 angles placed back to back page 202, axis 2-2, 5%" apart, r₂-2 of 4-6" x 4" x 5%" angles = 2.97 Inches.

Where sections are assembled without any web or flange plates, as, for example, latticed channel columns or latticed angle struts, the radius of gyration, r₁₋₁ can be readily obtained, without considering the moment of inertia, from the radius of gyration, r₀ of one section about its neutral axis, and the distance, d, between the center of gravity of the section and the neutral axis parallel to the axis of section.

$$r_{1-1} = \sqrt{rac{1+Ad^2}{A}}$$
 , where $rac{I}{A} = r^2$, and $r_{1-1} = \sqrt{r^2+d^2}$

Thus, in the above example,

$$\mathbf{r}_{1,1} = \sqrt{1.17^2 + 5.06^2} = 5.19$$
 Inches

ELEMENTS OF STRUCTURAL BEAMS

Section	Depth of	Weight per	Area of Sec-	Width of	Thick- ness of	4	Axis 1-1			Axis 2-	2
Index	Beam	Foot	tion	Flange	Web	I	r	s	I	r	s
	In.	Lbs.	In.2	In. a	In.	In.4	In.	In.8	In.4	In.	ln.3
B 61	27	90.0	26.33	9.000	0.524	2958.3	10.60	219.1	75. 3	1.69	16.7
В 24	24	115.0 110.0 105.0	33.98 32.48 30.98	7.938	$0.750 \\ 0.688 \\ 0.625$	2955.5 2883.5 2811.5	9.33 9.42 9.53	246.3 240.3 234.3	83.2 81.0 78.9	1.57 1.58 1.60	$20.8 \\ 20.4 \\ 20.0$
B 1	24		29.41 27.94 26.47 25.00 23.32	7.131	0.754 0.693 0.631 0.570 0.500	2379.6 2309.0 2238.4 2167.8 2087.2	9.00 9.09 9.20 9.31 9.46	198.3 192.4 186.5 180.7 173.9	48.6 47.1 45.7 44.4 42.9	1.28 1.30 1.31 1.33 1.36	13.4 13.1 12.8 12.6 12.3
B 62	24	74.0	21.70	9.000	0.476	1950.1	9.48	162.5	61.2	1.68	13.6
B 63	21	60.5	17.68	8.250	0.428	1235.5	8.36	117.7	43.5	1.57	10.6
В 2	20	95.0 90.0	29.41 27.94 26.47 25.00 23.73	7.284 7.210 7.137 7.063 7.000	0.884 0.810 0.737 0.663 0.600	1655.6 1606.6 1557.6 1508.5 1466.3	7.50 7.58 7.67 7.77 7.86	165.6 160.7 155.8 150.9 146.6	50.8 49.0 47.3 45.8	1.34 1.35 1.36 1.37 1.39	14.5 14.1 13.7 13.4 13.1
В 3	20	75.0 70.0 65.0	22.06 20.59 19.08	$\begin{array}{c} 6.399 \\ 6.325 \\ 6.250 \end{array}$	$\begin{array}{c} 0.649 \\ 0.575 \\ 0.500 \end{array}$	1268.8 1219.8 1169.5	7.58 7.70 7.83	$^{126.9}_{122.0}_{117.0}$	30.3 29.0 27.9	1.17 1.19 1.21	9.5 9.2 8.9
В 81	18	85.0 80.0	26.47 25.00 23.53 22.05	7.245 7.163 7.082 7.000	$\begin{array}{c} 0.807 \\ 0.725 \\ 0.644 \\ 0.562 \end{array}$	1260.4 1220.7 1181.0 1141.3	6.90 6.99 7.09 7.19	140.0 135.6 131.2 126.8	$52.0 \\ 50.0 \\ 48.1 \\ 46.2$	1.40 1.42 1.43 1.45	14.4 14.0 13.6 13.2
B. 80	18	70.0 65.0 60.0 55.0	20.59 19.12 17.65 15.93	$\begin{array}{c} 6.259 \\ 6.177 \\ 6.095 \\ 6.000 \end{array}$	$\begin{array}{c} 0.719 \\ 0.637 \\ 0.555 \\ 0.460 \end{array}$	921.2 881.5 841.8 795.6	6.69 6.79 6.91 7.07	102.4 97.9 93.5 88.4	$\begin{array}{c} 24.6 \\ 23.5 \\ 22.4 \\ 21.2 \end{array}$	1.09 1.11 1.13 1.15	7.9 7.6 7.3 7.1
B 64	18	48.0	14.08	7.500	0.380	737.1	7.23	81.9	30.0	1.46	8.0
В 5	15	$\begin{array}{c} 70.0 \\ 65.0 \end{array}$	22.06 20.59 19.12 17.67	6.292 6.194 6.096 6.000	0.882 0.784 0.686 0.590	691.2 663.7 636.1 609.0	5.60 5.68 5.77 5.87	92.2 88.5 84.8 81.2	30.7 29.0 27.4 26.0	1.18 1.19 1.20 1.21	9.8 9.4 9.0 8.7
в 7	15	$\substack{50.0 \\ 45.0}$	$\begin{array}{c} 16.18 \\ 14.71 \\ 13.24 \\ 12.48 \end{array}$	5.746 5.648 5.550 5.500	$\begin{array}{c} 0.656 \\ 0.558 \\ 0.460 \\ 0.410 \end{array}$	511.0 483.4 455.9 441.8	5.62 5.73 5.87 5.95	68.1 64.5 60.8 58.9	17.1 16.0 15.1 14.6	1.02 1.04 1.07 1.08	5.9 5.7 5.4 5.3
B 65	15	37.5	10.91	6.750	0.332	405.5	6.10	54.1	19.9	1.35	5.9

ELEMENTS OF STRUCTURAL BEAMS—Concluded

Section	Depth of	Weight per	Area of Sec-	Width of	Thick- ness of	1	Axis 1-1			Axis 2-2	2
Index	Beam	Foot	tion	Flange	Web	I	r	r S		r	S ^c
	In.	Lbs.	ln.2	Iņ.	In.	in.4	In.	In.8	ln.4	ln.	In.3
B 8	12	50.0 45.0	16.18 14.71 13.24 11.84	5.489 5.366	0.821 0.699 0.576 0.460	321.0 303.4 285.7 269.0	4.45 4.54 4.65 4.77	47.6	17.5 16.1 14.9 13.8	1.04 1.05 1.06 1.08	6.2 5.9 5.6 5.3
В 9	12	$35.0 \\ 31.5$	10.29 9.26	5.086 5.000	0.436 0.350	$228.3 \\ 215.8$	4.71 4.83	38.0 36.0	10.1 9.5	0.99 1.01	4.0 3.8
B 66	12	28.0	8.15	6.000	0.284	199.4	4.95	33.2	12.6	1.24	4.2
B 11	10		11.76 10.29 8.82 7.37	5.099 4.952 4.805 4.660	$\begin{array}{c} 0.749 \\ 0.602 \\ 0.455 \\ 0.310 \end{array}$	158.7 146.4 134.2 122.1	3.67 3.77 3.90 4.07	31.7 29.3 26.8 24.4	9.5 8.5 7.7 6.9	0.90 0.91 0.93 0.97	3.7 3.4 3.2 3.0
B 67	10	22.25	6.54	5.500	0.252	113.6	4.17	22.7	9.0	1.17	3.3
В 13	9	35.0 30.0 25.0 21.0	10.29 8.82 7.35 6.31	4.772 4.609 4.446 4.330	0.732 0.569 0.406 0.290	111.8 101.9 91.9 84.9	3.29 3.40 3.54 3.67	24.8 22.6 20.4 18.9	7.3 6.4 5.7 5.2	0.84 0.85 0.88 0.90	3.1 2.8 2.5 2.4
В 15	8	25.5 23.0 20.5 18.0	7.50 6.76 6.03 5.33	4.271 4.179 4.087 4.000	0.541 0.449 0.357 0.270	68.4 64.5 60.6 56.9	3.02 3.09 3.17 3.27	17.1 16.1 15.2 14.2	4.8 4.4 4.1 3.8	0.80 0.81 0.82 0.84	$2.2 \\ 2.1 \\ 2.0 \\ 1.9$
B 68	8	17.5	5.12	5.000	0.220	58.4	3.38	14.6	6.2	1.10	2.5
В 17	7	20.0 17.5 15.0	5.88 5.15 4.42	3.868 3.763 3.660	0.458 0.353 0.250	42.2 39.2 36.2	2.68 2.76 2.86	$12.1 \\ 11.2 \\ 10.4$	3.2 2.9 2.7	0.74 0.76 0.78	1.7 1.6 1.5
B 19	6	17.25 14.75 12.25	5.07 4.34 3.61	3.575 3.452 3.330	0.475 0.352 0.230	$26.2 \\ 24.0 \\ 21.8$	2.27 2.35 2.46	8.7 8.0 7.3	2.4 2.1 1.9	0.68 0.69 0.72	$1.3 \\ 1.2 \\ 1.1$
B 21	5	14.75 12.25 9.75	$\frac{4.34}{3.60}$ $\frac{2.87}{2.87}$	3.294 3.147 3.000	$0.504 \\ 0.357 \\ 0.210$	15.2 13.6 12.1	1.87 1.94 2.05	6.1 5.5 4.8	1.7 1.5 1.2	0.63 0.63 0.65	1.0 0.92 0.82
B 23	4	10.5 9.5 8.5 7.5	3.09 2.79 2.50 2.21	2.880 2.807 2.733 2.660	$\begin{array}{c} 0.410 \\ 0.337 \\ 0.263 \\ 0.190 \end{array}$	7.1 6.8 6.4 6.0	1.52 1.55 1.59 1.64	3.6 3.4 3.2 3.0	1.0 0.93 0.85 0.77	0.58	0.70 0.66 0.62 0.58
В 77	3	7.5 6.5 5.5	2.21 1.91 1.63	2.521 2.423 2.330	0.361 0.263 0.170	2.9 2.7 2.5	1.15 1.19 1.23	1.9 1.8 1.7	0.60 0.53 0.46		0.48 0.44 0.40

ELEMENTS OF STRUCTURAL CHANNELS

P		Depth of	Weight per	Area of	Width	Thick- ness of	A	Axis 1-1 Azis 2-2		2-2			
Section Index		Channel	Foot	Section	Flange	Web	I	r	S	Ī	r-	s	У
	!	ln.	Lbs.	In.2	In.	In.	In.4	In.	In.8	In.4	In.	In.8	In.
C C	1	15	55.0 50.0 45.0 40.0 35.0 33.0	16.18 14.71 13.24 11.76 10.29 9.90	3.818 3.720 3.622 3.524 3.426 3.400	0.818 0.720 0.622 0.524 0.426 0.400	430.2 402.7 375.1 347.5 319.9 312.6	5.16 5.23 5.32 5.43 5.58 5.62	57.4 53.7 50.0 46.3 42.7 41.7	12.2 11.2 10.3 9.4 8.5 8.2	0.87 0.87 0.88 0.89 0.91 0.91	4.1 3.8 3.6 3.4 3.2 3.2	0.82 0.80 0.79 0.78 0.79 0.79
C	2	12	40.0 35.0 30.0 25.0 20.5	11.76 10.29 8.82 7.35 6.03	3.418 3.296 3.173 3,050 2.940	0.758 0.636 0.513 0.390 0.280	196.9 179.3 161.7. 144.0 128.1	4.09 4.17 4.28 4.43 4.61	32.8 29.9 26.9 24.0 21.4	6.6 5.9 5.2 4.5 3.9	0.75 0.76 0.77 0.79 0.81	2.5 2.3 2.1 1.9 1.7	$0.72 \\ 0.69 \\ 0.68 \\ 0.68 \\ 0.70$
С	3	10	35.0 30.0 25.0 20.0 15.0	10.29 8.82 7.35 5.88 4.46	3.183 3.036 2.889 2.742 2.600	0.823 0.676 0.529 0.382 0.240	115.5 103.2 91.0 78.7 66.9	3.35 3.42 3.52 3.66 3.87	23.1 20.7 18.2 15.7 13.4	4.7 4.0 3.4 2.9 2.3	0.67 0.68 0.70 0.72	1.9 1.7 1.5 1.3 1.2	0.70 0.65 0.62 0.61 0.64
\mathbf{c}	4	9	25.0 20.0 15.0 13.25	7.35 5.88 4.41 3.89	2.815 2.652 2.488 2.430	0.615 0.452 0.288 0.230	70.7 60.8 50.9 47.3	3.10 3.21 3.40 3.49	15.7 13.5 11.3 10.5	3.0 2.5 2.0 1.8	0.64 0.65 0.67 0.67	1.4 1.2 1.0 0.97	0.62 0.59 0.59 0.61
C	5	8	21.25 18.75 16.25 13.75 11.25	6.25 5.51 4.78 4.04 3.35	2.622 2.530 2.439 2.347 2.260	0.582 0.490 0.399 0.307 0.220	47.8 43.8 39.9 36.0 32.3	2.77 2.82 2.89 2.98 3.11	11.9 11.0 10.0 9.0 8.1	2.3 2.0 1.8 1.6 1.3	0.60 0.60 0.61 0.62 0.63	1.1 1.0 0.95 0.87 0.79	0.59 0.57 0.56 0.56 0.58
C	6	7	19.75 17.25 14.75 12.25 9.75	5.81 5.07 4.34 3.60 2.85	2.513 2.408 2.303 2.198 2.090	0.633 0.528 0.423 0.318 0.210	33.2 30.2 27.2 24.2 21.1	2.39 2.44 2.50 2.59 2.72	9.5 8.6 7.8 6.9 6.0	1.9 1.6 1.4 1.2 0.98	0.56 0.57 0.57 0.58 0.59	0.96 0.87 0.79 0.71 0.63	0.58 0.56 0.54 0.53 0.55
C	7	6	15.5 13.0 10.5 8.0	4.56 3.82 3.09 2.38	2.283 2.160 2.038 1.920	$0.563 \\ 0.440 \\ 0.318 \\ 0.200$	19.5 17.3 15.1 13.0	2.07 2.13 2.21 2.34	6.5 5.8 5.0 4.3	1.3 1.1 0.88 0.70	0.53 0.53 0.53 0.54	0.74 0.65 0.57 0.50	0.55 0.52 0.50 0.52
C	8	5	11. 5 9.0 6. 5	3.38 2.65 1.95	2.037 1.890 1.750	0.477 0.330 0.190	10.4 8.9 7.4	1.75 1.83 1.95	4.2 3.6 3.0	0.82 0.64 0.48	0.49 0.49 0.50	0.54 0.45 0.38	0.51 0.48 0.49
C	9	4	7.25 6.25 5.25	2.13 1.84 1.55	1.725 1.652 1.580	$0.325 \\ 0.252 \\ 0.180$	4.6 4.2 3.8	1.46 1.51 1.56	2.3 2.1 1.9	$0.44 \\ 0.38 \\ 0.32$	0.46 0.45 0.45	$0.35 \\ 0.32 \\ 0.29$	0.46 0.46 0.46
C 7	2	3	6.0 5.0 4.0	1.76 1.47 1.19	1.602 1.504 1.410	0.362 0.264 0.170	$\begin{array}{c} 2.1 \\ 1.8 \\ 1.6 \end{array}$	1.08 1.12 1.17	1.4 1.2 1.1	$0.31 \\ 0.25 \\ 0.20$	$0.42 \\ 0.42 \\ 0.41$	$\begin{array}{c} 0.27 \\ 0.24 \\ 0.21 \end{array}$	0.46 0.44 0.44

ELEMENTS OF SHIP BUILDING CHANNELS New American Standard Sections

Section	Depth	Wt.	Area of		Thick- ness of		Axis 1-1			Axis	2-2	
Index	Chan- nel	Foot	Sec- tion	Flange		1	r	S	1	r	S	У
	ln.	Lbs.	In.2	In.	In.	In.4	In.	In.a	In.4	ln.	In.a	In.
†C 60	18	51.6 45.5	15.18 13.38	$\frac{4.100}{4.000}$.600 .500	673.0 624.4 575. 8 551.5	6.41 6.56	74.8 69:4 64.0 61.3	18.5 17.1 15.8 15.0	1.04 1.06 1.09 1.10	5.6 5.3 5.1 4.9	0.88 0.87 0.89 0.90
C 21 (BSC 26)	12	40.3 36.2	13.04 11.84 10.64 10.04	$\frac{4.100}{4.000}$.625 .525	245.0 230.6 216.2 209.0	4.41	40.8 38.4 36.0 34.8	16.8 15.5 14.2 13.5	1.14 1.15 1.16 1.16	5.3 5.1 4.8 4.7	1.04 1.04 1.06 1.07
C 171 (BSC 25)	12	40.8 36.8 32.7 30.6	$12.00 \\ 10.80 \\ 9.60 \\ 9.00$	3.600	.600 .500	217.8 203.4 189.0 181.8	4.34 4.44	36.3 33.9 31.5 30.3	11.3 10.3 9.4 8.9	0.97 0.98 0.99 0.99	4.0 3.8 3.6 3.5	0.89 0.89 0.89 0.90
C 26 (BSC 21)	10	36.8 33.4 30.0 28.3	8.80	$\frac{4.100}{4.000}$.575 .475	146.3 138.0 1 29.7 125.5	3.75 3.84	29.3 27.6 25.9 25.1	14.9 13.7 12.5 11.8	1.18 1.18 1.19 1.19	4.8 4.6 4.3 4.2	1.10 1.11 1.13 1.15
C 27 (BSC 20)	10	34.8 31.4 28.0 26.3 24.6	8.23 7.73	3.600 3.500 3.450	.575 .475 .425	133.6 125.2 116.9 112.7 108.6	3.69 3.77 3.82	26.7 25.0 23.4 22.5 21.7	10.4 9.5 8.6 8.1 7.6	1.01 1.01 1.02 1.02 1.03	3.8 3.6 3.4 3.3 3.2	0.95 0.95 0.96 0.97 0.98
C 28 (BSC 19)	10	25.1 23.4 21.7	6.88	3.500	.375	106.0 101.8 97.6	3.85	21.2 20.4 19.5	7.9 7.5 7.0	1.04 1.04 1.05	$\frac{3.0}{2.9}$ $\frac{2.8}{2.8}$	0.94 0.96 0.98
C 31 (BSC 18)	9	34.5 31.4 28.4 26.8	8.33	4.200 4.100 4 .000 3.950	.575	113.0 106.9 100.9 97.8	3.34 3.40 3.48 3.52	25.1 23.8 22.4 21.7	14.5 13.3 12.1 11.4	1.20 1.20 1.20 1.20	4.8 4.5 4.3 4.2	1.15 1.16 1.18 1.20
C 32 (BSC 17)	9	31.3 28.3 25.2 23.7	8.31 7.41	3.700 3.600 3.500 3.450	.650 .550 .450 .400	87.3	3.29 3.35 3.43 3.48	22.1 20.7 19.4 18.7	9.7 8.8 8.0 7.5	1.03 1.03 1.04 1.04	3.6 3.4 3.2 3.1	0.98 0.98 1.00 1.01
C 36 (BSC 13)	8	28.0 25.3 22.6 21.2	7.43 6.63	3.700 3.600 3.500 3.450	.525 .425	67.6 63.3	2.95 3.02 3.09 3.13	18.0 16.9 15.8 15.3	9.0 8.2 7.4 6.9	1.05 1.05 1.05 1.05	3.4 3.2 3.0 2.9	1.02 1.02 1.04 1.05
C 37 (BSC 12)	8	25.3 22.6 19.9 19.2 18.5		3.125 3.025 3.000	.600 .500 .400 .375 .350	58.3 54.0 53.0	2.90 2.97 3.05 3.07 3.09	15.6 14.6 13.5 13.2 13.0	5.8 5.3 4.7 4.5 4.4	0.89 0.89 0.90 0.90 0.90	2.5 2.3 2.2 2.1 2.1	0.86 0.85 0.86 0.87 0.88

Dimensions and properties of the British Standard Sections are indicated in **bold type**. †C 60 is not a new American Standard Section; profile is shown on page 81 with Structural Channels.

ELEMENTS OF SHIP BUILDING CHANNELS New American Standard Sections—Concluded

Section	Depth	£4 0+	Area		Thick-	A	Axis 1-1			Axis	2-2	•
Index	Chan- nel	Foot	Sec- tion	Flange		1	r	S	I	r	S	у
	In.	Lbs.	In.2	In.	In.	In.4	In.	In.8	In.4	In.	In.8	In.
C 41 (BSC 10)	7	24.9 22.5 20.1 18.9	6.60 5.90	3.600 3.500	0.600 0.500 0.400 0.350	47.1 44.2	2.62 2.67 2.74 2.78	14.3 13.5 12.6 12.2	8.3 7.5 6.7 6.3	1.07 1.07 1.07 1.07	3.2 3.0 2.8 2.7	1.06 1.07 1.09 1.11
C 42 (BSC 9)	7	19.8 17.4 16.3	5.12	3.000	0.475 0.375 0.325	37.3	2.63 2.70 2.74	11.5 10.7 10.2	4.7 4.2 3.9	0.90 0.90 0.90	$2.1 \\ 2.0 \\ 1.9$	0.88 0.90 0.91
C 46 (BSC 8)	6	21.9 19.8 17.8 16.8	5.82 5.22	3.600 3.500	0.575 0.475 0.375 0.325	31.2 29.4	2.27 2.32 2.38 2.41	11.0 10.4 9.8 9.5	7.6 6.9 6.1 5.7	1.09 1.09 1.08 1.08	2.9 2.8 2.6 2.5	1.12 1.13 1.15 1.17
C 109	6	15.3	4.47	3.500	0.340	25.3	2.38	8.4	5.1	1.08	2.1	1.08
C 47 (BSC 7)	6	16.2 14.9			0.375 0.313		2.33 2.38	8.6 8.2	4.0 3.6	0.91 0.91	1.9 1.8	0.95 0.97
C 48 (BSC 5)	6	13.3 12.0			0.375 0.313		2.25 2.30	6.6 6.2	2.1 2.0	0.74 0.75	1.2 1.1	0.71 0.72

Dimensions and properties of the British Standard Sections are indicated in bold type.

ELEMENTS OF CAR BUILDING CHANNELS

†C 20	13	50.0 45.0 40.0 37.0	14.71 13.24 11.76 10.88 10.29	4.416 4.303 4.190 4.122 4.077	0.791 0.678 0.565 0.497 0.452	334.5 313.8 293.1 272.3 259.9 251.6 237.6	4.62 4.71 4.81 4.89 4.95	51.5 48.3 45.1 41.9 40.0 38.7 36.6	18.1 16.7 15.3 13.9 13.1 12.5 11.6	1.06 1.07 1.08 1.09 1.10 1.10 1.12	5.2 4.9 4.6 4.3 4.2 4.1 3.9	1.00 0.98 0.97 0.97 0.98 0.99 1.01
†C 170	12	48.4 46.3 44.3 40.0	14.22 13.62 13.02 11.76	$egin{array}{c} 4.100 \ 4.050 \ 4.000 \ 3.895 \end{array}$	0.800 0.750 0.700 0.595	268.6 262.8 255.6 248.4 233.3 215.8	4.30 4.33 4.37 4.45	44.8 43.8 42.6 41.4 38.9 36.0	17.8 17.3 16.6 16.0 14.6 13.0	1.10 1.10 1.11 1.11 1.11 1.12	5.8 5.7 5.5 5.4 5.1 4.8	1.06 1.05 1.05 1.05 1.05 1.07
C 106	534	17.0	4.99	3.500	0.375	25.8	2.28	9.0	5.8	1.08	2.5	1.15
C 200	4	13.6	4.00	2.500	0.500	8.8	1.49	4.4	2.2	0.74	1.4	0.87
°C 220	4	10.1	2.95	2.087	0.394	6.6	1.49	3.3	1.12	0.62	0.79	0.67
C 190	3	7.1	2.05	1.984	0.250	2.8	1.17	1.9	0.75	0.60	0.60	0.72
†Profiles of C 20 and C 170 are shown un pages 81 and 82 with Structural Channels.												

ELEMENTS OF SECTIONS

ELEMENTS OF H BEAMS

~	Depth	Weight	,	Width	Thick-		Axis 1-1	,		Axis 2-2	
Section Index	Beam	per Foot	Section	ot Flange	of Web	I	r	s	I	r	s
	In.	Lbs.	In.2	In.	In.	In.4	In.	In.8	In.4	In.	In.8
H 4	8	34.0	10.00	8.0	.375	115.4	3.40	28.9	35.1	1.87	8.8
H 3.	6	23.8	7.00	6.0	.313	45.1	2.54	15.0	14.7	1.45	4.9
H 2	5	18.7	5.50	5.0	.313	23.8	2.08	9.5	7.9	1.20	3.1
_H 1	4	13.6	4.00	4.0	.313	107	1 63	53	3.6	0.95	1.8

ELEMENTS OF BULB TEES

	Depth of		10	Width of	Thick- ness		Axia	s 1-1			Axia	2-2	
Section Index	Beam	per Foot	Sec- tion	Flange	of Web	1	r	s	x	I	r	S	У
	In.	Lbs.	In.2	In.	In.	In.4	In.	ln.8	In.	ln.4	In.	In.8	In.
B 100	10	36.6 28.1			0.625 0.375			25.3 20.7	4.45 4.28	7.6 6.3	0.84 0.88	$\frac{2.8}{2.4}$	2.75 2.63
B 101	9	$\frac{30.1}{24.3}$			0.563 0.375	95.8 84.0	3.29 3.43	19.4 16.6	4.06 3.95	5.4 4.6	0.78 0.80	2.1 1.9	$2.56 \\ 2.47$
В 102	8	$24.2 \\ 20.0$			0.469 0.313	62.8 55.6	$\frac{2.97}{3.08}$	14.1 12.2	3.54 3.43	4.5 3.9	0.79 0.82	1.7 1.6	2.58 2.50
В 103	7	23.3 18.1		5.094 4.875	0.531 0.313	45.5 38.8	$\frac{2.57}{2.70}$	11.7 9.7	3.11 2.98	4.3 3.6	0.79 0.82	1.7 1.5	2.55 2.44
B 105	6	17.2 14.0	5.00 4.11	4.524 4.375	$0.430 \\ 0.281$	$\frac{24.4}{21.6}$	$\frac{2.20}{2.28}$	7.2 6.1	$\frac{2.61}{2.46}$	2.7 2.2	$\begin{array}{c} 0.73 \\ 0.72 \end{array}$	1.2 1.0	2.26 2.19

ELEMENTS OF SHIP BUILDING BULB ANGLES New American Standard Sections

9	Size	Thick- ness	Wt.	Area of		Axis	1-1			Axis	2-2	
Section Index	Size	of Web	Foot	Sec- tion	I	r	S	x	I	r	S	у
,	Inches	In.	Lbs.	In.2	In.4	In.	In.s	In.	In.4	In.	In.8	In.
B 195	10 x3½	0.725 0.675			122.0 115.9		$22.3 \\ 21.2$	4.53 4.52	6.3 5.8	0.78 0.77	2.3 2.1	0.76 0.74
B 196		0.625 0.575	29.1		110.4 104.3		20.3 19.2	4.56 4.56	$\begin{array}{c} \textbf{5.6} \\ \textbf{5.1} \end{array}$	0.78 0.77	2.0 1.9	$0.72 \\ 0.70$
B 197 (BSBA 18)	10 x 3½	0.525 0.475	26.9 24.9	7.90 7.32	1	3.53 3.55	18.3 17.2	4.62 4.63	4. 8 4. 4	0.78 0.78	1.7 1.6	0.69 0.68
B 205	9½x3½	0.600 0.550		8.47 7.91		3.32 3.33	17.9 16.9	4.30 4.29	5.3 4.9	0.79 0.79	1.9 1.8	$0.73 \\ 0.71$
B 206 (B58A 17)	9721372	0.500 0.450	22.8	7.28 6.72		3.37 3.39	16.0 15.1	4.36 4.36	4.6 4.2	0.79 0.79	1.6 1.5	0.69 0.68
B 201	9 x 3½	$0.675 \\ 0.625$	$\frac{30.4}{28.6}$	8.95 8.41	l	3.11 3.12	17.2 16.4	4.00 3.98	5.8 5.4	0.81 0.80	$\frac{2.1}{2.0}$	$\begin{array}{c} 0.76 \\ 0.74 \end{array}$
B 202	9 x 3½	$0.575 \\ 0.525$	$26.6 \\ 24.8$	7.82 7.29		3.15 3.17	15.6 14.8	4.03 4.03	$\frac{5.1}{4.7}$	0.81 0.80	1.8 1.7	0.73 0.71
B 203 (BSBA 16)	9 x 3½	0.475 0. 42 5		6.68 6.14		3.20 3.22	13.9 13.1	4.10 4.10	4.3 3.9	0.81 0.80	1.5 1.4	0.70 0.68
B 208	8½x3½	0.575 0.525		7.43 6.92		2.97 2.98	13.8 13.0	3.74 3.73	$\frac{5.0}{4.6}$	$0.82 \\ 0.82$	1.8 1.7	$\begin{array}{c} 0.74 \\ 0.72 \end{array}$
B 209 (BSBA 14)	8½ x 3½	0.475 0.425		6.34 5.83			12.3 11.5	3.80 3.80	4.3 3.9	0.82 0.82	1.5 1.4	0.71 0.69
B 211	1 0 /2X3	0.550 0.500		6.89 6.39		2.96 2.97	13.1 12.3	3.89 3.89	3.1 2.8	0.67 0.66	1.3 1.2	$\begin{array}{c} 0.63 \\ 0.61 \end{array}$
B 212 (BSBA 13)	8½x3	0.450 0.400		5.84 5.34			11.6 10.8	3.96 3.96	2.6 2.3	0.67 0.66	1.1 0.99	0.60 0.58
Dimensio	ns and pro	perties	of the	Britisb	Standa	rd Secti	ions are	indicat	ed in b	old typ	Β,	

ELEMENTS OF SHIP BUILDING BULB ANGLES New American Standard Sections—Continued

Section	Size	Thick- ness	Wt.	Area of		Axis	1-1			Axi	is 2-2	
Index	D.20	of Web	Foot	Sec- tion	I	r	S	х	1	r	S	у
	Inches	In.	Lbs.	In.2	In.4	In.	In. ^g	In.	In.4	In.	In.8	In.
B 214	8 x3½	0.550 0.500		6.83 6.34	53.7 50.4	$2.81 \\ 2.82$	11.9 11.2	3.49 3.48	4.8 4.4	0.84 0.83	1.7 1.6	0.75 0.73
B 215 (B5BA12)	8 x3½	0.450 0.400		5.78 5.29	47.1 43.8	2.85 2.88	10.6 9.8	3.54 3.54	4.0 3.7	0.84 0.83	1.4 1.3	0.71 0.70
B 217	8 x3	$0.575 \\ 0.525$		6.78 6.31	52.4 49.2	$2.78 \\ 2.79$	12.0 11.3	3.64 3.63	3.2 2.9	0.69 0.68	1.3 1.2	0.65 0.63
B 218 (BSBA11)	8 x3	0.475 0.425		5.78 5.30	46.1 42.9	2.82 2.84	10.6 10.0	3.70 3.70	2.7 2.4	0.69 0.68	1.1 1.0	0.62 0.60
B 220	7½x3½	$0.575 \\ 0.525$		6.71 6.24	46.2 43.4	2.63 2.64	10.8 10.2	3.24 3.23	4.9 4.5	0.86 0.85	1.8 1.7	0.77 0.75
B 221 (BS8A10)	7½x3½	0.475 0.425		1	40.6 37.8	2.67 2.69	9.6 9.0	3.29 3.29	4.2 3.8	0.85 0.85	1.5 1.4	0.73 0.72
B 223	7½x3	$0.525 \\ 0.475$			41.0 38.4	2.62 2.63	9.9 9.3	3.36 3.35	$\frac{2.9}{2.6}$	0.69 0.69	1.2 1.1	$0.64 \\ 0.62$
B 224 (BSBA 9)	7½x3	0.425 0.375		5.02 4.57	35.7 33.1	2.67 2.69	8.8 8.2	3.42 3.42	2.4 2.2	0.69 0.69	1.0 0.92	0.61 0.60
B 226	7 x3½	$0.525 \\ 0.475$		5.90 5.46	35.5 33.2	$2.45 \\ 2.47$	8.8	2.95 2.94	4.5 4.1	0.87 0.88	1.6 1.5	0.77 0.75
B 227 (B5BA 8)	7 x3½	0 .425 0.375		4.94 4.50	30.9 28.6	2.50 2.52	7.7 7.2	3.00 2.99	3.7 3.4	0.87 0.87	1.4 1.2	0.74 0.72
B 229	7 x3	$0.500 \\ 0.450$		5.41 4.98	32.5 30.3	2.45 2.46	8.3 7.8	3.09 3.08	2.7 2.5	0.71 0.70	1.3 1.2	0.65 0.63
B 230 (B5BA 7)	7 x3	0.400 0.350	1	4.50 4.07	28.1 25.9	2.50 2.52	7.3 6.7	3.14 3.14	2.3 2.0	0.71 0.70	1.1 1.0	0.61 0.60

Dimensions and properties of the British Standard Sections are indicated in bold type.

ELEMENTS OF SHIP BUILDING BULB ANGLES New American Standard Sections—Concluded

Section	a.	Thick- ness	Wt.	Area of	1	Axis	1-1			Axis	2-2	
Section Index	Size	of Web	Foot	Sec- tion	I	r	S	x	I	r	S	У
	Inches	In.	Lbs.	Jn.2	In.4	In.	In.8	In.	In.4	In.	In.8	In.
B 233 (B5BA 6)	6½x3½	0.400 0.350		4.42 4.01	23.9 22.1	2.33 2.35	6.3 5.9	2.72 2.71	3.5 3.1	0.89 0.89	1.3 1.2	0.75 0.73
B 236 (B5BA 5)	6½x3	0.425 0.375 0.350	13.6	4.40 4.00 3.80	23.5 21.7 20.8	2.31 2.33 2.34	6.4 6.0 5.7	2.87 2.87 2.86	2.3 2.1 2.0	0.73 0.72 0.72	0.97 0.88 0.84	0.64 0.62 0.61
*Lloyd	6 x3½	$0.475 \\ 0.425$		4.82 4.34	21.4 19.9	$2.11 \\ 2.14$	6.0 5.6	2.44 2.49	4.0 3.6	$0.91 \\ 0.92$	1.5 1.3	0.80 0.78
*Lloyd	6 x3½	0.375 0.350		3.95 3.76	18.4 17.6	2.16 2.17	5.2 5.0	2.49 2.48	3.3 3.1	0.91 0.91	1.2 1.1	0.76 0.76
B 241	6 x3	0.525 0.475		4.95 4.58	21.7 20.2	2.09 2.10	6.3 5.9	$2.56 \\ 2.55$	2.8 2.5	0.75 0.74	1.2 1.1	0.69 0.67
B 242 (B5BA 4)	6 x3	0.425 0.375 0.350	12.8	4.14 3.76 3.58	18.8 17.4 16.6	2.13 2.15 2.16	5.5 5.1 4.9	2.60 2.60 2.59	2.3 2.1 1.9	0.75 0.74 0.74	0.96 0.87 0.83	0.66 0.64 0.63
B 244	5½x3	0.500 0.450		4.45 4.10	16.5 15.3	1.92 1.93	5.1 4.8	2.31 2.30	2.6 2.4	0.76 0.76	1.1 1.0	0.71 0.69
B 245 (8SBA 3)	5 ½x 3	0.400 0.350 0.325	11.3	3.68 3.33 3.16	14.2 13.0 12.5	1.96 1.98 1.99	4.5 4.1 4.0	2.35 2.35 2.34	1	0.76 0.76 0.75	0.90 0.81 0.77	0.67 0.65 0.64
B 251 (BSBA 2)	5 x2½	1 -	1 '	3.06 2.74 2.59			3.4 3.1 3.0	2.20 2.19 2.19	1.0	0.62 0.61 0.61	0.58 0.52 0.49	0.56 0.54 0.53

^{*}Lloyd sections, rolled by Pencoyd Iron Works (Pencoyd 60A).

Dimensions and properties of British Standard Sections are indicated in **bold type**.

ELEMENTS OF SECTIONS

ELEMENTS OF SHIP BUILDING BULB ANGLES Miscellaneous Sections

G4:	Size	Thick- ness	Wt.	Area of		Axis	1-1			Axi	2-2	_
Section Index	Dize	of Web	Foot	Sec- tion	1	r	S	x	ı	r'	S	у
	Inches	In.	Lbs.	In.2	In.4	In.	In.8	In.	In.4	In.	In.8	In.
B 143	5 x 2 ½	0.240	8.3	2.44	8.6	1.89	3.4	2.41	0.91	0.61	0.47	0.55
B 144	4½x 2½	0.220	6.7	1.95	5.6	1.69	2.4	2.12	0.60	0.56	0.34	0.50
B 145	3 x 2	0.190	3.60	1.08	1.3	1.09	0.74	1.24	0.31	0.54	0.20	0.45
B 146	3 x 1 1 1 1 1 1	0.160	3.25	0.97	1.2	1.13	0.72	1.31	0.21	0.47	0.16	0.41
B 147	2½x 1½	0.150	2.66	0.84	0.74	0.94	0.55	1.17	0.12	0.38	0.11	0.36

ELEMENTS OF CAR BUILDING BULB ANGLES

,	Size	Thick- ness	W 0.	Area of		Axis	1-1			Axis	2-2	
Section Index	Dize	of Web	Foot	Sec- tion	I	r	s	х	I	r	s	y
	Inches	In.	Lbs.	In.2	ln.4	In.	In.8	In.	In.4	In.	In.8	In.
B 125	5 x 4½	0.438	19.3	5.66	20.8	1.91	7.9	2.39	7.9	1.18	2.4	1.23
B 124	5 x 3½	0.375	13.2	3.82	13.5	1.88	4.9	2.22	3.3	0.92	1.2	0.86
B 122	4 x 3 ½	0.500	14.3	4.21	8.7	1.44	3.7	1.65	3.9	0.96	1.5	0.99
B 123	4 x 3 ½	0.375	11.9	3.48	7.9	1.50	3.5	1.77	3.1	0.94	1.2	0.94

CARNEGIE STEEL COMPANY

ELEMENTS OF EQUAL ANGLES

		Weight	Area of		Axis 1-1 ar	d Axis 2-2	2	Axis 3-3
Section Index		Foot	Section	I	Г	S	x	r min.
	Inches	Pounds	In.2	In.4	In.	In.8	ln.	In.
A 113 A 112 A 111 A 110 A 109 A 108 A 107 A 106 A 105 A 104 A 103	8 x 8 x 1/6 8 x 8 x x 1 8 x 8 x x 1 8 x 8 x x 1 8 x 8 x x 1/6 8 x 8 x 8 x x 1/6 8 x 8 x 8 x x 1/6 8 x 8 x x 8 x x 1/6 8 x 8 x 8 x 8 x 8 x 1/6 8 x 8 x 8 x 8 x 8 x 1/6 8 x 8 x 8 x 8 x 8 x 1/6 8 x 8 x 8 x 1/6 8 x 8 x 8 x 1/6 8 x 1/	56.9 54.0 51.0 48.1 45.0 42.0 38.9 35.8 32.7 29.6 26.4	16.73 15.87 15.00 14.12 13.23 12.34 11.44 10.53 9.61 8.68 7.75	98.0 93.5 89.0 84.3 79.6 74.7 69.7 64.6 59.4 54.1	2.42 2.43 2.44 2.44 2.45 2.46 2.47 2.48 2.49 2.50 2.51	17.5 16.7 15.8 14.9 14.0 13.1 12.2 11.2 10.3 9.3 8.4	2.41 2.39 2.37 2.34 2.32 2.30 2.28 2.25 2.23 2.21 2.19	1.55 1.56 1.56 1.56 1.57 1.57 1.58 1.58 1.58
A 86 A 87 A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 8	6 x 6 x 1 6 x 6 x 1 6 x 6 x 1 6 x 6 x 3 6 x 6 x 3 6 x 6 x 1 6 x 6 x 1 6 x 6 x 5 6 x 6 x 5 6 x 6 x 3 6 x 6 x 3 7 8 6 x 6 x 3 8 6 x 6 x 6 x 6 x 3 8 6 x 6 x 6 x 3 8 6 x 6 x 6 x 6 x 3 8 6 x 6 x 6 x 6 x 3 8 6 x 6 x 6 x 6 x 3 8 6 x 6 x 6 x 6 x 3 8 6 x 6 x 6 x 6 x 6 x 6 x 6 x 6 x 6 x 6	37.4 35.3 33.1 31.0 28.7 26.5 24.2 21.9 19.6 17.2 14.9	11.00 10.37 9.73 9.09 8.44 7.78 7.11 6.43 5.75 5.06 4.36	35.5 33.7 31.9 30.1 28.2 26.2 24.2 22.1 19.9 17.7 15.4	1.80 1.81 1.82 1.83 1.83 1.84 1.85 1.86 1.87	8.6 8.1 7.6 7.2 6.2 5.7 4.6 4.1 3.5	1.86 1.84 1.82 1.80 1.75 1.75 1.71 1.68 1.66	1.16 1.16 1.17 1.17 1.17 1.17 1.17 1.18 1.18 1.19
A 94 A 95 A 9 A 10 A 11 A 12 A 13 A 14 A 15 A 16 A 17	5 x 5 5 x 1 5 5 x 5 5 x 3 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	30.6 28.9 27.2 25.4 23.6 21.8 20.0 18.1 16.2 14.3 12.3	9.00 8.50 7.98 7.47 6.94 6.40 5.31 4.75 4.18 3.61	19.6 18.7 17.8 16.8 15.7 14.7 13.6 12.4 11.3 10.0 8.7	1.48 1.49 1.50 1.51 1.52 1.53 1.54 1.55	55.29 5.529 4.52 3.52 3.28 2.4	1.61 1.59 1.57 1.55 1.52 1.50 1.48 1.46 1.43 1.41	0.96 0.96 0.96 0.97 0.97 0.97 0.98 0.98 0.98
A 18 A 19 A 20 A 21 A 22 A 23 A 24 A 25 A 90 A 284	4 x 4 x 34 4 x 4 x 4 x 14 4 x 4 x 2 x 14 4 x 4 x 2 x 2 4 x 4 x 2 x 36 4 x 4 x 4 x 14 4 x 4 x 14 4 x 4 x 14	19.9 18.5 17,1 15.7 14.3 12.8 11.3 9.8 8.2 6.6	5.84 5:44 5.03 4.61 4.18 3.75 3.31 2.86 2.40	8.1 7.7 7.2 6.7 6.1 5.6 5.0 4.4 3.7 3.0	1.18 1.19 1.19 1.20 1.21 1.22 1.23 1.23 1.24 1.25	3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.5 1.3	1.29 1.27 1.25 1.23 1.21 1.18 1.16 1.14 1.12 1.09	0.77 0.77 0.77 0.77 0.78 0.78 0.78 0.79 0.79

ELEMENTS OF EQUAL ANGLES—Concluded

Section	Size	Weight per Foot	Area of	A	xia 1-1 an	d Axis 2-2	2	Axis 3-3
Index		Foot	Section	I	r	s	X.	r min.
	Inches	Pounds	In.2	In.4	In.	In.8	In.	In.
A 26 A 27 A 28 A 29 A 30 A 31 A 32 A 33 A 99 A 285	31/2 x x x x x x x x x x x x x x x x x x x	17.1 16.0 14.8 13.6 12.4 11.1 9.8 8.5 7.2 5.8	5.03 4.69 4.34 3.98 3.62 3.25 2.87 2.48 2.09 1.69	5.3 5.0 4.7 4.3 4.0 3.3 2.9 2.5 2.0	1.02 1.03 1.04 1.04 1.05 1.06 1.07 1.07 1.08 1.09	2.3 2.1 2.0 1.8 1.6 1.5 1.3 1.2 0.98 0.79	1.17 1.15 1.12 1.10 1.08 1.06 1.04 1.01 0.99 0.97	0.67 0.67 0.68 0.68 0.68 0.68 0.69 0.69
A 34 A 35 A 36 A 37 A 38 A 39 A 40 A 46 A 47	3 X X X X X X X X X X X X X X X X X X X	11.5 10.4 9.4 8.3 7.2 6.1 4.9 7.7	3.36 3.06 2.75 2.43 2.11 1.78 1.44 2.25	2.6 2.4 2.2 2.0 1.8 1.5 1.2 1.2	0.88 0.89 0.90 0.91 0.91 0.92 0.93	1.3 1.2 1.1 0.95 0.83 0.71 0.58 0.73	0.98 0.95 0.93 0.91 0.89 0.87 0.84 0.81	0.57 0.58 0.58 0.58 0.58 0.59 0.59
A 48 A 49 A 50 A 100 A 504	2½ x 2½ x 88 2½ x 2½ x 15 2½ x 2½ x 44 2½ x 2½ x 3 2½ x 2½ x 3 2½ x 2½ x 3	6.8 5.9 5.0 4.1 3.07 2.08	2.00 1.73 1.47 1.19 0.90 0.61	0.98 0.85 0.70 0.55 0.38	0.75 0.75 0.76 0.77 0.78 0.79 0.59	0.65 0.57 0.48 0.39 0.30 0.20 0.40	0.78 0.76 0.74 0.72 0.69 0.67 0.66	0.48 0.48 0.49 0.49 0.49 0.50 0.39
A 56 A 57 A 58 A 59 A 60 A 506	2 x 2 x 77 2 x 2 x 88 2 x 2 x 15 2 x 2 x 14 2 x 2 x 2 2 x 2 x 18	5.3 4.7 3.92 3.19 2.44 1.65	1.56 1.36 1.15 0.94 0.71 0.48	0.54 0.48 0.42 0.35 0.28 0,19 0.35	0.59 0.60 0.61 0.62 0.63 0.51	0.35 0.30 0.25 0.19 0.13 0.30	0.64 0.61 0.59 0.57 0.55 0.55	0.39 0.39 0.39 0.40 0.40 0.33
A 61 A 62 A 63 A 64 A 65 A 507	1 % x 1 % x 7 x 7 x 1 %	4.6 3.99 3.39 2.77 2.12 1.44	1.34 1.17 1.00 0.81 0.62 0.42	0.31 0.27 0.23 0.18 0.13	0.51 0.52 0.53 0.54 0.55	0.26 0.23 0.19 0.14 0.10	0.57 0.55 0.53 0.51 0.48	0.34 0.34 0.34 0.35 0.35
A 66 A 67 A 68 A 69 A 102 A 70	1½ x 1½ x 3% 1½ x 1½ x 1½ x 4 1½ x 1½ x 1½ x ¼ 1½ x 1½ x 1½ x 1% 1½ x 1½ x 1%	3.35 2.86 2.34 1.80 1.23 2.33	0.98 0.84 0.69 0.53 0.36 0.68	0.19 0.16 0.14 0.11 0.08 0.09	0.44 0.45 0.46 0.46 0.36	0.19 0.16 0.13 0.10 0.07 0.11	0.51 0.49 0.47 0.44 0.42 0.42	0.29 0.29 0.29 0.30 0.24
A 71 A 72 A 73	1¼ x 1¼ x ¼ 1¼ x 1¼ x ⅓ 1¼ x 1¼ x ⅓	1.92 1.48 1.01	0.56 0.43 0.30 0.44	0.08 0.06 0.04 0.04	0.37 0.38 0.38 0.29	0.09 0.07 0.05 0.06	0.40 0.38 0.35 0.34	0.24 0.24 0.25 0.19
A 78 A 79 A 80	1 x 1 x 3	1.16	0.34 0.23	0.03	0.30	0.04	0.32	0.19

ELEMENTS OF UNEQUAL ANGLES

	Size	Weight per	Ot		Axis	1-1			Axie	2-2		Axis 3-3
Section Index		Foot	Sec- tion	I	r	s	х	I	r	ß	3,	rmin.
•	Inches	Lbs.	In.2	In.4	In.	In.8	In.	In.4	In.	In.8	In.	In.
A 135 A 134 A 133 A 132 A 131 A 130	8 x 6 x 7	28.5 25.7 23.0	7.56 6.75	76.6 72.3 67.9 63.4	2.49 2.50 2.51 2.52 2.53 2.54 2.54 2.55 2.56 2.57	15.1 14.3 13.4 12.5 11.7 10.8 9.9 8.9 8.0 7.1	2.65 2.63 2.61 2.59 2.56 2.54 2.52 2.50 2.47 2.45	38.8 36.8 34.9 32.8 30.7 28.6 26.3 24.0 21.7 19.3	1.73 1.73 1.74 1.75 1.76 1.77 1.77 1.78 1.79	8.9 8.4 7.9 7.4 6.9 6.4 5.9 5.3 4.2	1.65 1.63 1.61 1.59 1.56 1.54 1.52 1.50 1.47	1.28 1.28 1.28 1.29 1.29 1.30 1.30 1.30
A 328 A 324 A 325 A 326 A 327	8 x 3 ½ x 1 3 x 3 ½ x 1 8 x 3 ½ x 1	31.7 29.6 27.5 25.3 23.2 21.0 18.7	9.30 8.68 8.06 7.43 6.80 6.15	66.2 62.9 59.4 55.9 52.3 48.5 44.7 40.8 36.7 32.5	2.51 2.52 2.53 2.54 2.55 2.56 2.57 2.57 2.58 2.59	13.7 12.9 12.2 11.4 10.6 9.8 9.0 8.2 7.3 6.4	3.17 3.14 3.12 3.10 3.07 3.05 3.03 3.00 2.98 2.95	7.8 7.4 7.1 6.7 6.3 5.9 5.4 5.0 4.5	0.86 0.87 0.87 0.88 0.88 0.89 0.90 0.90 0.91 0.92	3.0 2.9 2.7 2.5 2.3 2.2 2.0 1.8 1.6	0.92 0.89 0.87 0.85 0.82 0.80 0.78 0.75 0.73 0.70	0.73 0.73 0.73 0.73 0.73 0.73 0.74 0.74 0.74
A 151 A 152 A 153 A 154 A 155 A 156 A 157 A 158	7 x 3 ½ x 1 7 x 3 ½ x 1 7 x 3 ½ x ½ 7 x 3 ½ x ½	28.7 26.8 24.9 23.0 21.0 19.1 17.0 15.0	8.97 8.42 7.87 7.31 6.75 6.17 5.59 5.00 4.40	40.8	2.19 2.20 2.21 2.22 2.23 2.24 2.25 2.25 2.26 2.27	10.6 10.0 9.4 8.8 8.2 7.6 7.0 6.3 5.7 5.0 4.3	2.70 2.69 2.64 2.62 2.60 2.57 2.55 2.53 2.48	7.5 7.2 6.8 6.5 6.1 5.7 5.3 4.9 4.0 3.5	0.89 0.89 0.90 0.91 0.92 0.93 0.93 0.94 0.95 0.96	3.0 2.8 2.6 2.5 2.3 2.1 2.0 1.8 1.6 1.4	0.96 0.94 0.91 0.89 0.87 0.85 0.82 0.80 0.78 0.73	0.74 0.74 0.74 0.74 0.74 0.75 0.75 0.75 0.76 0.76
A 91 A 160 A 161 A 162 A 163 A 164 A 165		23.6 21.8 20.0 18.1 16.2	7.47 6.94 6.40 5.86 5.31 4.75 4.18	29.3 27.7 26.1 24.5 22.8 21.1 19.3 17.4	1.85 1.86 1.87 1.88 1.89 1.90 1.91 1.92 1.93	8.0 7.6 7.2 6.7 6.2 5.8 5.3 4.8 4.3 3.8 3.3	2.17 2.14 2.12 2.10 2.08 2.06 2.03 2.01 1.99 1.96		1.09 1.10 1.11 1.11 1.12 1.13 1.14 1.15 1.16	3.8 3.6 3.4 3.2 3.0 2.8 2.5 2.3 2.1 1.6	1.17 1.14 1.12 1.10 1.08 1.06 1.03 1.01 0.99 0.96 0.94	0.85 0.85 0.86 0.86 0.86 0.86 0.86 0.87 0.87 0.87

ELEMENTS OF UNEQUAL ANGLES-Continued

Section	Size	per c	Area of Sec-		Axis	1-1			Axia	2-2		*Axis 3-3
Index		I Frank I k	tion	I	r	S	x	I	r	S	У	rmin.
	Inches	Lbs. J	[n.2	In.4	Įn.	In.8	In.	In.4	Ĭη.	In.8	In.	In.
A 93 A 169 A 170 A 171 A 172 A 173 A 174 A 175	6 x 3 3 ½ x x ½ 6 6 x 3 3 ½ x x ½ 6 6 x 3 3 ½ x x ½ 6 6 x 3 3 ½ x x ½ x x ½ x x ½ x x x ½ x x x x	27.3 8 25.7 7 24.0 7 22.4 6 20.6 6 18.9 5 17.1 5	7.06 5.56 5.06	29.2 27.8 26.4 24.9 23.3 21.7 20.1 16.6 14.8 12.9 10.9	1.85 1.86 1.87 1.88 1.89 1.90 1.91 1.92 1.93 1.94 1.95	7.8 7.4 7.0 6.6 6.1 5.2 4.2 4.2 3.7 3.3 2.7	2.26 2.24 2.22 2.20 2.18 2.15 2.13 2.11 2.08 2.06 2.04 2.01	7.2 6.6 6.2 5.5 5.5 4.3 3.3 2.9	0.92 0.93 0.93 0.94 0.95 0.96 0.96 0.97 0.98 0.99	2.9 2.7 2.6 2.4 2.3 2.1 1.8 1.6 1.4	1.01 0.99 0.97 0.95 0.93 0.88 0.86 0.83 0.81 0.79	0.74 0.74 0.75 0.75 0.75 0.75 0.75 0.75 0.76 0.76 0.76 0.77
A 180 A 181 A 182 A 183 A 184	5 x 4 x % 5 x 4 x % 5 x 4 x % 5 x 4 x %	$ 19.5 5 \\ 17.8 5$	7.11 3.65 3.19 5.72 5.23 1.75 1.25 3.75 3.23	16.4 15.5 14.6 13.6 12.6 11.6 10.5 9.3 8.1	1.52 1.53 1.54 1.55 1.55 1.56 1.57 1.58 1.59	5.0 4.7 4.4 4.1 3.7 3.4 3.1 2.7 2.3	1.71 1.68 1.66 1.64 1.62 1.60 1.57 1.55 1.53	9.2 8.7 8.2 7.7 7.1 6.6 6.0 5.3 4.7	1.14 1.15 1.15 1.16 1.17 1.18 1.18 1.19	3.3 3.1 2.9 2.7 2.5 2.3 2.0 1.8 1.6	1.21 1.18 1.16 1.14 1.12 1.10 1.07 1.05 1.03	0.84 0.84 0.84 0.84 0.85 0.85 0.85 0.85
A 195	5 x 3 ½ x ½ x ½ 5 x 3 ½ x ½ x ½ 5 x 3 ½ x ½ x ½ 5 x 3 ½ x ½ x ½ 5 x 3 ½ x ½ x ½ 5 x 3 ½ x ½ x ½ 5 x 3 ½ x ½ x ½ x ½ x ½ x ½ x ½ x ½ x ½ x	10.4 3	5.67 5.25 5.81 5.37 1.92 1.47 1.00 3.53 3.05 2.56	15.7 14.8 13.9 13.0 12.0 11.0 10.0 8.9 7.8 6.6	1.53 1.54 1.55 1.56 1.56 1.57 1.58 1.59 1.60 1.61	4.9 4.6 4.3 4.0 3.7 3.3 3.0 2.6 2.3 1.9	1.79 1.77 1.75 1.72 1.70 1.68 1.66 1.63 1.61 1.59	6.2 5.9 5.6 5.2 4.8 4.4 4.0 3.6 3.2 2.7	0.96 0.97 0.98 0.98 0.99 1.00 1.01 1.01 1.02 1.03	2.5 2.4 2.2 2.1 1.9 1.7 1.6 1.4 1.2	1.04 1.02 1.00 0.97 0.95 0.93 0.91 0.88 0.86 0.84	0.75 0.75 0.75 0.75 0.75 0.75 0.76 0.76 0.76
A 196 A 197 A 198 A 199 A 200 A 201 A 202 A 203 A 280	5 x 3 x ½ 5 x 3 x ½	18.5 5 17.1 5	5.84 5.44 5.03 4.61 4.18 3.75 3.31 2.86 2.40	14.0 13.2 12.3 11.4 10.4 9.5 8.4 7.4 6.3	1.55 1.55 1.56 1.57 1.58 1.59 1.60 1.61	4.5 4.2 3.9 3.5 3.2 2.9 2.6 2.2 1.9	1.86 1.84 1.82 1.80 1.77 1.75 1.73 1.70 1.68	3.7 3.5 3.3 3.1 2.8 2.6 2.3 2.0 1.8	0.80 0.80 0.81 0.81 0.82 0.83 0.84 0.84	1.7 1.6 1.5 1.4 1.3 1.1 1.0 0.89 0.75	0.86 0.84 0.82 0.80 0.77 0.75 0.73 0.70 0.68	0.64 0.64 0.64 0.65 0.65 0.65 0.65

ELEMENTS OF UNEQUAL ANGLES—Continued

Section	Size	Weight per	Area of		Axis	: 1-1			Axis	2-2		Axis 3-3
Index		Foot	Sec- tion	I	r	s	x	I	r	S	У	rmin
, -	Inches	Lbs.	In.2	In.4	In.	In.8	In.	In.4	In.	In.8	In.	In.
A 204 A 205 A 206 A 207 A 208 A 209 A 210 A 211 A 97	4½x 3 x¼ 4½x 3 x¼	18.5 17.3 16.0 14.7 13.3 11.9 10.6 9.1 7.7	5.43 5.06 4.68 4.30 3.90 3.50 3.50 2.67 2.25	10.3 9.7 9.1 8.4 7.8 7.0 6.3 5.5 4.7	1.38 1.39 1.39 1.40 1.41 1.42 1.43 1.44,	3.6 3.4 3.1 2.9 2.6 2.4 2.1 1.8	1.65 1.63 1.60 1.58 1.56 1.54 1.51 1.49	3.6 3.4 3.2 3.0 2.8 2.5 2.3 2.0 1.7	0.81 0.82 0.83 0.83 0.85 0.85 0.85 0.86 0.87	1.7 1.6 1.5 1.4 1.3 1.1 1.0 0.88 0.75	0.90 0.88 0.85 0.83 0.81 0.79 0.76 0.74 0.72	0.64 0.64 0.64 0.64 0.65 0.65 0.66 0.66
A212 A213 A214 A215 A216 A217 A218 A219 A 98	4 x3½x¼ 4 x3½x¼	18.5 17.3 16.0 14.7 13.3 11.9 10.6 9.1 7.7	5.43 5.06 4.68 4.30 3.90 3.50 3.09 2.67 2.25	7.8 7.3 6.9 6.4 5.9 5.3 4.8 4.2 3.6	1.19 1.20 1.21 1.22 1.23 1.23 1.24 1.25 1.26	2.9 2.8 2.6 2.4 2.1 1.9 1.7 1.5 1.3	1.36 1.34 1.32 1.29 1.27 1.25 1.23 1.21 1.18	5.5 5.2 4.5 4.5 4.8 3.4 3.0 2.6	1.01 1.02 1.03 1.03 1.04 1.05 1.06 1.07	2.3 2.1 2.0 1.8 1.7 1.5 1.3 1.2	1.11 1.09 1.07 1.04 1.02 1.00 0.98 0.96 0.93	0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.73 0.73
A 220 A 221 A 222 A 223 A 224 A 225 A 226 A 227 A 228 A 283	4 x 3 x 1 8 4 x 3 x 5 4 x 3 x 5 6 4 x 3 x 5 6 4 x 3 x 5 6 4 x 3 x 5 6 4 x 3 x 5 6 4 x 3 x 5 6 4 x 3 x 5 6 4 x 3 x 5 6 4 x 3 x 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	17.1 16.0 14.8 13.6 12.4 11.1 9.8 8.5 7.2 5.8	5.03 4.69 4.34 3.98 3.62 3.25 2.87 2.48 2.09 1.69	7.3 6.9 6.5 6.0 5.6 4.5 4.0 3.4 2.8	1.21 1.22 1.23 1.24 1.25 1.25 1.26 1.27	2.9 2.7 2.5 2.3 2.1 1.9 1.7 1.5 1.2	1.44 1.42 1.39 1.37 1.35 1.30 1.28 1.26 1.24	3.5 3.3 3.1 2.9 2.7 2.4 2.2 1.9 1.7	0.83 0.84 0.85 0.86 0.86 0.87 0.88 0.89	1.7 1.6 1.5 1.4 1.2 1.1 1.0 0.87 0.74 0.60	0.94 0.92 0.89 0.87 0.85 0.80 0.78 0.76 0.74	0.64 0.64 0.64 0.64 0.64 0.64 0.65 0.65
A 232	31/2x 3 x 1/3 31/2x 3 x 3/4 31/2x 3 x 1/3 31/2x 3 x 1/4 31/2x 3 x 1/4	$\begin{array}{c c} 12.5 \\ 11.4 \end{array}$	4.62 4.31 4.00 3.67 3.34 3.00 2.65 2.30 1.93 1.56	5.0 4.7 4.4 4.1 3.8 3.5 3.1 2.7 2.3 1.9	1.04 1.04 1.05 1.06 1.07 1.07 1.08 1.09 1.10	2.2 2.1 1.9 1.8 1.6 1.5 1.3 1.1 0.96 0.78	1.23 1.21 1.19 1.17 1.15 1.13 1.10 1.08 1.06 1.04	3.3 3.1 3.0 2.8 2.5 2.3 2.1 1.8 1.6 1.3	0.85 0.85 0.86 0.87 0.88 0.89 0.90 0.90	1.7 1.5 1.4 1.3 1.2 1.1 0.98 0.85 0.72 0.58	0.98 0.96 0.94 0.92 0.90 0.88 0.85 0.83 0.81 0.79	0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.63 0.63
A 238 A 239 A 240 A 241 A 242 A 243 A 244 A 245	3½x2½x¼ 3½x2½x½ 3½x2½x¼ 3½x2½x¼ 3½x2½x¼ 3½x2½x¼ 3½x2½x¼ 3½x2½x¼ 3½x2½x¼ 3½x2½x¼	12.5 11.5 10.4 9.4 8.3 7.2 6.1 4.9	3.65 3.36 3.06 2.75 2.43 2.11 1.78 1.44	4.1 3.8 3.6 3.2 2.9 2.6 2.2 1.8	1.06 1.07 1.08 1.09 1.09 1.10 1.11	1.9 1.7 1.6 1.4 1.3 1.1 0.93 0.75	1.27 1.25 1.23 1.20 1.18 1.16 1.14 1.11	1.7 1.6 1.5 1.4 1.2 1.1 0.94 0.78	0.69 0.69 0.70 0.70 0.71 0.72 0.73 0.74	0.99 0.92 0.84 0.76 0.68 0.59 0.50 0.41	0.77 0.75 0.73 0.70 0.68 0.66 0.64 0.61	0.53 0.53 0.53 0.53 0.54 0.54 0.54 0.54

ELEMENTS OF SECTIONS

ELEMENTS OF UNEQUAL ANGLES-Concluded

Section	Size	Weight per	Area of Sec-		Axis	1-1			Axis	2-2		Axis 3-3
Index		Foot	tion	I	r	S	x	I	r	s	У	rmin.
	Inches	Lbs.	In.	In.4	In.	In.8	In.	In.4	In.	ln.s	In.	In.
A 252 A 253 A 254 A 255 A 256 A 257	3 x2½x½ 3 x2½x½ 3 x2½x⅓ 3 x2½x⅓ 3 x2½x⅓ 3 x2½x⅓ 3 x2½x⅓	9.5 8.5 7.6 6.6 5.6 4.5	2.78 2.50 2.21 1.92 1.62 1.31	2.3 2.1 1.9 1.7 1.4 1.2	0.91 0.91 0.92 0.93 0.94 0.95	1.2 1.0 0.93 0.81 0.69 0.56	1.02 1.00 0.98 0.96 0.93 0.91	1.4 1.3 1.2 1.0 0.90 0.74	0.72 0.72 0.73 0.74 0.74 0.75	0.82 0.74 0.66 0.58 0.49 0.40	0.77 0.75 0.73 0.71 0.68 0.66	0.52 0.52 0.52 0.52 0.53 0.53
A258 A259 A260 A261 A262	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7.7 6.8 5.9 5.0 4.1	2.25 2.00 1.73 1.47 1.19	1.9 1.7 1.5 1.3 1.1	0.92 0.93 0.94 0.95 0.95	1.0 0.89 0.78 0.66 0.54	1.08 1.06 1.04 1.02 0.99	0.67 0.61 0.54 0.47 0.39	0.55 0.55 0.56 0.57 0.57	$\begin{array}{c} 0.47 \\ 0.42 \\ 0.37 \\ 0.32 \\ 0.25 \end{array}$	0.58 0.56 0.54 0.52 0.49	$\begin{array}{c} 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \\ 0.43 \end{array}$
A 265 A 266 A 267 A 268 A 269	$2\frac{1}{2}$ x 2 x $\frac{5}{16}$ 2 $\frac{1}{2}$ x 2 x $\frac{1}{4}$	6.8 6.1 5.3 4.5 3.62 2.75 1.86	2.00 1.78 1.55 1.31 1.06 0.81 0.55	1.1 1.0 0.91 0.79 0.65 0.51 0.35	0.75 0.76 0.77 0.78 0.78 0.79 0.80	0.70 0.62 0.55 0.47 0.38 0.29 0.20	0.88 0.85 0.83 0.81 0.79 0.76 0.74	0.64 0.58 0.51 0.45 0.37 0.29 0.20	0.56 0.57 0.58 0.58 0.59 0.60 0.61	0.41	$0.56 \\ 0.54 \\ 0.51$	0.42 0.42 0.42 0.42 0.42 0.43 0.43
A 610 A 611 A 612	2½x1½x½ 2½x1½x¼ 2½x1½x½	$3.92 \\ 3.19 \\ 2.44$	$1.15 \\ 0.94 \\ 0.72$	0.71 0.59 0.46	0.79 0.79 0.80	0.44 0.36 0.28	0.90 0.88 0.85	0.19 0.16 0.13	$0.41 \\ 0.41 \\ 0.42$	0.17 0.14 0.11	0.40 0.38 0.35	0.32 0.32 0.33
A 271 A 272 A 273 A 274	$2\frac{1}{4}$ x $1\frac{1}{2}$ x $\frac{1}{2}$ $2\frac{1}{4}$ x $1\frac{1}{2}$ x $\frac{7}{16}$	5.6 5.0 4.4 3.66 2.98 2.28	1.63 1.45 1.27 1.07 0.88 0.67	0.75 0.68 0.61 0.53 0.44 0.34	0.68 0.69 0.69 0.70 0.71 0.72	0.54 0.48 0.42 0.36 0.30 0.23	0.86 0.83 0.81 0.79 0.77 0.75	$\begin{array}{c} 0.26 \\ 0.24 \\ 0.21 \\ 0.19 \\ 0.16 \\ 0.12 \end{array}$	0.40 0.41 0.41 0.42 0.42 0.43	0.26 0.23 0.20 0.17 0.14 0.11	0.48 0.46 0.44 0.42 0.39 0.37	0.32 0.32 0.32 0.32 0.32 0.33
A 631 A 614 A 615 A 616 A 525	2 x1½x¾ 2 x1½x¼ 2 x1½x¼ 2 x1½x¾ 2 x1½x¾ 2 x1½x¾	3.99 3.39 2.77 2.12 1.44	$\begin{array}{c} 1.17 \\ 1.00 \\ 0.81 \\ 0.62 \\ 0.42 \end{array}$	0.43 0.38 0.32 0.25 0.17	0.61 0.62 0.62 0.63 0.64	0.34 0.29 0.24 0.18 0.13	$\begin{array}{c} 0.71 \\ 0.69 \\ 0.66 \\ 0.64 \\ 0.62 \end{array}$	0.21 0.18 0.15 0.12 0.09	0.42 0.42 0.43 0.44 0.45	0.20 0.17 0.14 0.11 0.08	$0.46 \\ 0.44 \\ 0.41 \\ 0.39 \\ 0.37$	0.32 0.32 0.32 0.32 0.33
A 646 A 645	2 x1¼x¼ 2 x1¼x¾	$\frac{2.55}{1.96}$	0.75 0.57	$0.30 \\ 0.23$	0.63 0.64	0.23 0.18	0.71 0.69	0.09 0.07	0.34 0.35	0.10 0.08	$0.33 \\ 0.31$	0.27 0.27
A619	134x114x14 134x114x18 134x114x18	$2.34 \\ 1.80 \\ 1.23$	0.69 0.53 0.36	0.20 0.16 0.11	$0.54 \\ 0.55 \\ 0.56$	$0.18 \\ 0.14 \\ 0.09$	0.60 0.58 0.56	0.09 0.07 0.05	0.35 0.36 0.37	0.10 0.08 0.05	$0.35 \\ 0.33 \\ 0.31$	0.27 0.27 0.27
A 670 A 623 A 624	1½x1¼x 1 8 1½x1¼x¼ 1½x1¼x²8	2.59 2.13 1.64	0.76 0.63 0.48	0.16 0.13 0.10	0.45 0.46 0 46	0.16 0.13 0.10	$\begin{array}{c} 0.52 \\ 0.50 \\ 0.48 \end{array}$	0.10 0.08 0.07	0.35 0.36 0.37	0.11 0.09 0.07	0.40 0.38 0.35	0.26 0.26 0.26

CARNEGIE STEEL COMPANY

ELEMENTS OF EQUAL TEES

		S	ize		W-1-1-	Area		Axi	s 1-1			Axia 2-2	
Section Index	Flange	Stem		kness	Weight per Foot	of Sec- tion	I	r	ß	x	1	r	s
	In.	In.	In.	In.	Lbs.	In.2	In.4	In.	In.8	In.	In.4	In.	In.8
T 40	6½	6½	0.40	0.45	19.8	5.80	23.5	2.01	5.0	1.76	10.1	1.32	3.1
T 1	4	4	1/2	1/2	13.5	3.97	5.7	1.20	2.0	1.18	2.8	0.84	1.4
T 2	4	4	3/8	3/8	10.5	3.09	4.5	1.21	1.6	1.13	2.1	0.83	1.1
T 3	3½	3½	⅓2	1/2	11.7	3.44	3.7	1.04	1.5	1.05	1.9	0.74	1.1
T 4	3½	31/2	3/8	3/8	9.2	2.68	3.0	1.05	1.2	1.01	1.4	0.73	0.81
T 6	3	3	1/2	1/2	9.9	2.91	2.3	0,88	1.1	0.93	1.2	0.64	0.80
T 7	3	3	178	1 ⁷ 6	8.9	2.59	2.1	0.89	0.98	0.91	1.0	0.63	0.70
T 8	3	3	3∕8	3/8	7.8	2.27	1.8	0.90	0.86	0.88	0.90	0.63	0.60
T 9	3	3	1 ⁵ 8	5 16	6.7	1.95	1.6	0.90	0.74	0.86	0.75	0.62	0.50
T 10	21/2	$2\frac{1}{2}$	<i>8</i> ⁄8	8/8	6.4	1.87	1.0	0.74	0.59	0.76	0.52	0.53	0.42
T 11	21/2	$2\frac{1}{2}$	1 g	16	5.5	1.60	0.88	0.74	0.50	0.74	0.44	0.52	0.35
T 12	$2\frac{1}{4}$	21/4	18 18	18	4.9	1.43	0.65	0.67	0.41	0.68	0.33	0.48	0.29
T 13	21/4	$2\frac{1}{4}$	1/4	. 1/4	4.1	1.19	0.52	0.66	0.32	0.65	0.25	0.46	0.22
T 14	2	2	1,8	1 ⁵ 8	4.3	1.26	0.44	0.59	0.31	0.61	0.23	0.43	0.23
T 15	2	2	1/4	1/4	3.56	1.05	0.37	0.59	0.26	0.59	0.18	0.42	0.18
T 16	1¾	1¾	1/4	1/4	3.09	0.91	0.23	0.51	0.19	0.54	0.12	0.37	0.14
T 17	1½	1½	1/4	1/4	2.47	0.73	0.15	0.45	0.14	0.47	0.08	0.32	0.10
T 18	11/2	$1\frac{1}{2}$	3 18	r³e	1.94	0.57	0.11	0.45	0.11	0.44	0.06	0.32	0.08
T 19	1¼	11/4	1/4	1/4	2.02	0.59	0.08	0.37	0.10	0.40	0.05	0.28	0.07
T 20	11/4	11/4	18 18	16	1.59	0.47	0.06	0.37	0.07	0.38	0.03	0.27	0.05
T 21	1	1	1 ³ 6	1 ³ 6	1.25	0.37	0.03	0.29	0.05	0.32	0.02	0.22	0.04
T 22	1	1	1/8	⅓	0.89	0.26	0.02	0.30	0.03	0.29	0.01	0.21	0.02

ELEMENTS OF SECTIONS

ELEMENTS OF UNEQUAL TEES

		Si	ze		Weight	Area	1	Axis	1-1		A	xis 2-	2
Section Index	Flange	Stem	Mini Thicl Flange	sness	per Foot	of Sec- tion	I	r	s	· x	I.	r	s
	In.	In.	In.	In.	Lbs.	In.2	In,4	ln.	In.8	In.	In.4	<u>In</u> .	In.8
		111.	111.	111.	LD8.	In	111.*	111.	111.0	In.	111.*		TIT.º
Т 50	5	3	3/8	13	11.5	3.37	2.4	0.84	1.1	0.76	3.9	1.10	1.6
T 51	5	21/2	8/8	78	10.9	3.18	1.5	0.68	0.78	0.63	4.1	1.14	
T 52	41/2	31/2	16	Ì₿,	15.7	4.60	5.1	1.05	2.1	1.11	3.7	0.90	
T 54	41/2	3	3/8	3∕8	9.8	2.88	2.1	0.84	0.91	0.74	3.0	1.02	
T 53	41/2	3	7€ 3⁄8	5 16	8.4	2.46	1.8	0.85	0.78	0.71	2.5	1.01	
T 56	41/2	21/2	3/8	3∕8	9.2	2.68	1.2	0.67	0.63	0.59	3.0	1.05	
T 55	41/2	21/2	16	18	7.8	2.29	1.0	0.68	0.54	0.57	2.5	1.05	1.1
T 57	4	5	1/2 3/8 1/2 8/8	1/2	15.3	4.50	10.8	1.55	3.1	1.56	2.8	0.79	1.4
T 58	4	5	3/8	3/8	11.9	3.49	8.5	1.56	2.4	1.51	2.1	0.78	
T 59	4	41/2	1/2	1/2	14.4	4.23	7.9	1.37	2.5	1.37	2.8	0.81	
T 60	4	41/2	9/8	3/8	11.2	3.29	6.3	1.39 0.86	2.0 0.90	1.31 0.78	2.1	0.80	
T 61 T 44	4	3	8/8 16 16	8∕8	9.2	2.68	2.0 1.7	0.86	0.90	0.75	2.1 1.8		0.88
T 44 T 62	4	3	18	16 8/	8.5	$2.29 \\ 2.48$	1.2	0.69	0.62	0.62	2.1	0.92	
T 63	4	21/2	3/8 5	3/8 5	7.2	2.12	1.0	0.69	0.53	0.60	1.8		0.88
T 64	4	$\frac{2\frac{1}{2}}{2}$	18 8/8	18 3/8	7.8	2.27	0.60		0.40	0.48	2.1	0.96	
T 65	4	2	78 18	78 16	6.7	1.95	0.53		0.34	0.46	1.8		0.88
T 66	31/2	4	18	16	12.6	3.70	5.5	1.21	2.0	1.24	1.9	0.72	
T 67	31/2	4	8/8	3/8	9.8	2.88	4.3	1.23	1.5	1.19	1.4		0.81
T 69	31/2	3		1/2	10.8	3.17	2.4	0.87	1.1	0.88	1.9	0.77	
T 70	31/2	3	1/2 3/8	3/8	8.5	2.48	1.9	0.88	0.89	0.83	1.4		0.81
T 71	31/2	3	5 16	8/8	7.5	2.20	1.8	0.91	0.85	0.85	1.2		0.68
T 72	3	4	1/2	1/2	11.7	3.44	5.2	1.23	1.9	1.32	1.2	0.59	0.81
T 73	3	4	73	7.	10.5	3.06	4.7	1.23	1.7	1.29	1.1		0.70
T 74	3	4	8/8	16 3/8	9.2	2.68	4.1	1.24	1.5	1.27	0.90		0.60
T 75	3	31/2	1/2 18 8/8	1/2	10.8	3.17	3.5	1.06	1.5	1.12	1.2		0.80
T 76	3	31/2	178	73	9.7	2.83	3.2	1.06	1.3	1.10	1.0		0.69
T 77	3	$3\frac{1}{2}$	3/8	3/8	8.5	2.48	2.8	1.07	1.2	1.07	0.93		0.62
T 78	3	21/2	3 ∕8 ∣	3/8	7.1	2.07	1.1	0.72	0.60	0.71	0.89		0.59
T 79	3	21/2	16	16	6.1	1.77	0.94		0.52	0.68	0.75		0.50
T 82	21/2	3	3/8	8/8	7.1	2.07	1.7	0.91	0.84	0.95	0.53		0.42
T 83	21/2	3	18	18	6.1	1.77	1.5	0.92	0.72	0.92	0.44		0.35
T 86	21/2	11/4	18 14	16	2.87	0.84		0.31	0.09	0.32	0.29		0.23
T 87	2	11/2	1/4	1/4	3.09	0.91		0.42	0.15	0.42	0.18		0.18
T 519	11/2	2	18 1/8	18 18	2.45 1.25	$0.72 \\ 0.37$		0.61 0.37	0.19	0.63 0.33	0.06		0.08
T 605	11/2	11/4	⅓8 No.9	/ 8 1∕8		0.37			0.03				
T 603	11/4	5/8	[140.9 [- ∕8	1 0.00	0.20	0.01	0.10		(0.10	0.02	10.01	0.04

CARNEGIE STEEL COMPANY

ELEMENTS OF ZEES

		Size		Weight per	ı OL		Axis 1-1			Axis 2-2		Axis 3-3
Section Index	Depth.	Flanges	Thick- ness	Foot	Sec- tion	I	r	s	1	r	ន	rmin.
	In.	In.	In.	Lbs.	In.2	In.4	In.	In.3	In.4	In.	In.8	In.
Z 3	6½ 6½ 6	35/8 31/8 31/2	7/8 13 8/4	34.6 32.0 29.4	10.17 9.40 8.63	50.2 46.1 42.1	2.22 2.22 2.21	16.4 15.2 14.0	19.2 17.3 15.4	1.37 1.36 1.34	6.0 5.5 4.9	0.83 0.82 0.81
Z 2	$6\frac{1}{8}$ $6\frac{1}{6}$	35/8 31/8 31/2	16 8 16 16	28.1 25.4 22.8	8.25 7.46 6.68	43.2 38.9 34.6	2.29 2.28 2.28	14.1 12.8 11.5	16.3 14.4 12.6	1.41 1.39 1.37	5.0 4.4 3.9	0.84 0.82 0.81
Z 1	6½ 616 6	$3\frac{5}{8}$ $3\frac{9}{18}$ $3\frac{1}{2}$	1/2 7 18 8	21.1 18.4 15.7	6.19 5.39 4.59	34.4 29.8 25.3	2.36 2.35 2.35	11.2 9.8 8.4	12.9 11.0 9.1	1.44 1.43 1.41	3.8 3.3 2.8	0.84 0.83 0.83
Z 6	5½ 5½ 5	3	136 3/4 11 16	$28.4 \\ 26.0 \\ 23.7$	8.33 7.64 6.96	28.7 26.2 23.7	1.86 1.85 1.84	11.2 10.3 9.5	14.4 12.8 11.4	1.31 1.30 1.28	4.8 4.4 3.9	0.76 0.74 0.73
Z 5	5½ 5½ 5	3 1 8 3 1 8 3 1 4	5/8 18 1/2	$22.6 \\ 20.2 \\ 17.9$	6.64 5.94 5.25	24.5 21.8 19.2	1.92 1.91 1.91	9.6 8.6 7.7	12.1 10.5 9.1	1.35 1.33 1.31	3.9 3.5 3.0	0.76 0.75 0.74
Z 4	5½ 5½ 5	3% 3% 3¼	78 8 8 8 18	16.4 14.0 11.6	4.81 4.10 3.40	19.1 16.2 13.4	1.99 1.99 1.98	7.4 6.4 5.3	9.2 7.7 6.2	1.38 1.37 1.35	2.9 2.5 2.0	0.77 0.76 0.75
Z 9	4½ 4½ 4	318 318 316	3/4 118 6/8	23.0 20.9 18.9	6.75 6.14 5.55	15.0 13.5 12.1	1.49 1.48 1.48	7.3 6.7 6.1	11.2 10.0 8.7	1.29 1.27 1.25	4.0 3.6 3.2	0.68 0.67 0.66
Z 8	4½ 4½ 4	318 318 318	16 1/2 7 16	18.0 15.9 13.8	5.27 4.66 4.05	12.7 11.2 9.7	1.55 1.55 1.55	6.2 5.5 4.8	9.3 8.0 6.7	1.33 1.31 1.29	3.2 2.8 2.4	0.68 0.67 0.66
Z 7	4½ 4½ 4	318 318 318	8/8 18 14	12.5 10.3 8.2	3.66 3.03 2.41	9.6 7.9 6.3	$1.62 \\ 1.62 \\ 1.62$	4.7 3.9 3.1	6.8 5.5 4.2	$1.36 \\ 1.34 \\ 1.33$	2.3 1.8 1.4	0.69 0.68 0.67
Z 12	316	2¾ 2⅓	18 12	$\begin{array}{c} 14.3 \\ 12.6 \end{array}$	4.18 3.69	5.3 4.6	1.12 1.12	3.4 3.1	5.7 4.9	1.17 1.15	2.3 2.0	0.54 0.53
Z 11	316	2¾ 2¼	7 8 8 8	11.5 9.8	3.36 2.86	4.6 3.9	1.17 1.16	3.0 2.6	4.8 3.9	1.19 1.17	1.9 1.6	0.55 0.54
Z 10	3,18	2% 214	10 14	8.5 6.7	2.48 1.97	3.6 2.9	$1.21 \\ 1.21$	9.4 1.9	3.6 2.8	1.21 1.19	1.4 1.1	0.56 0.55

ELEMENTS OF CROSS TIES

	Depth	Wt.	Area		th of	Thick-		Axis	1-1			Axis 2-	2
Section Index	Sec- tion	per Foot	of Sec- tion	Тор	Bottom	ness of Web	I	r	s	x	1	r	S
	In.	Lbs.	In.2	In.	In.	In.	In.4	In.	In.8	In.	ln.4	In.	In.8
M 28A	6.50	29.8	8.76	5.0	10.0	.438	59.4	2 47	15.0	2.55	30.8	1.88	6.2
M 28	6.50	27.8	8.09	5.0	10.0	.313	57.5	2.67	14.3	2.49	30.8	1.95	6.2
M 29	5.50	24.0	7.01	5.0	8.0	.375	35.4	2.25	11.3	2.38	16.8	1.55	4.2
M 21	5.50	20.0	5.71	4.5	8.0	.250	30.9	2.33	9.7	2.33	14.9	1.62	3.7
M 25	4.25	14.5	4.10	4.0	6.0	.250	13.0	1.78	5.5	1.88	6.1	1.22	2.0
M 24	3.00	9.5	2.80	3.0	50	.203	4.3	1.24	2.5	1.27	3.1	1.05	1.2

	Depth	Wt.	Area		th of tion	7 11 1		Axis	1-1		I	xis 2-2	
Section Index	Sec- tion	per Foot	of Sec- tion	Тор	Bottom	Thick- ness	1	r	s	x	I	r	s
	In.	Lbs.	In.2	In.	In.	In.	In.4	In.	In.8	In.	In.4	In.	In.8
M 27	2.25	9.0	2.62	5.5	7.0	.250	1.28	0.70	0.79	1.62	16.8	2.53	4.8
M 20	2.00	6.0	1.72	4.5	6.0	.188	0.71	0.64	0.51	1.41	8.4	2.22	2.8
M 18	1.50	4.0	1.21	3.4	5.0	.156	0.31	0.50	0.31	1.00	3.6	1.73	1.5

	Depth	Wt.	Area	Width	m · 1		Axis	1-1			Axis 2–2	!
Section Index	of Sec- tion	per Foot	Sec- tion	of Sec- tion	Thick- ness	I	r	s	x	I	r	s
	In.	Lbs.	In.2	In.	In.	In.4	In.	In.8	In.	ln.4	In.	In.8
M 26	18	3.20	0.97	415	.125	0.059	0.25	0.110	0.54	2.44	1.58	0.99
M 19	5/8	2.50	0.74	4	.141	0.024	0.18	0.057	0.43	1.15	1.25	0.58

ELEMENTS OF TROUGH PLATES

		I) Jimensio	n8		Weight			Axi	e 1-1	
Section Index	a,	b	d	t	$\mathbf{t_1}$	Pont	Section	I	r	S	х
	In.	In.	ln.	In.	In.	Lba.	In.2	In.4	In.	In. 8	ln.
M 14 M 13 M 12 M 11 M 10	9½ 9½ 9½ 9½ 9½	5 5 5 5 5	3 ³ / ₄ 3 ⁸ / ₄ 3 ⁸ / ₄ 3 ⁸ / ₄	8/4 110 5/8 10 12	3/8 11/3/2 5/6 3/2 1/4	23.2 21.4 19.7 18.0 16.3	6.82 6.30 5.79 5.28 4.78	5.5 5.0 4.6 4.1 3.7	0.90 0.90 0.90 0.91 0.91	2 2 2 0 1.8 1.6 1.4	1.21 1.19 1.16 1.12 1.08

ELEMENTS OF CORRUGATED PLATES

		. I	Dimension	18		Weight	Area uf		Axi	ė 1-1	`	
Section Index	a	, b	d	t	r	Fout	Section	I	r	s	х	
	In.	În.	În.	In.	ln.	Lbe.	In.2	ln.4	In.	In.8	In.	_
M 35 M 34 M 33 M 32 M 31	12 13 12 13 12 13 12 13 12 13 12 13 12 13 12 13 12 13 12 13 13 12 13 13 12 13	7 13 7 13 7 13 5 1/2 5 1/2	27/8 21/3 23/4 15/8 11/6	1/2 1'6 3/8 8/8 1'6	37/8 37/8 37/8 35/8 35/8	23.7 20.8 17.8 12.0 10.1	3.97 6.10 5.22 3.53 2.96	6.8 5.8 4.8 1.3 0.95	0.99 0.98 0.96 0.62 0.57	4.5 3.9 3.3 1.4	1.34 1.32 1.31 0.74 0.72	
M 30	834	51/2	11/2	16	35%	8.1	2.38	0.64	0.52	0.80	0.70	

ELEMENTS OF U. S. STEEL SHEET PILING SECTIONS

Section		Dimen	sions		Weight	Area		Axis 1-1	
Index	b	c	d	t	per Foot	Section	I	r	S
	In.	In.	In.	In.	Lbs.	In.2	In.4	In.	In.3
M 105 M 104 M 103	13 ¼ 13 ¼ 9 ¼	315 315 216	2 ½ 2 ½ 15%	1/2 8/8 1/4	42.5 38 16	12.51 11.30 4.71	8.56 8.50 1.45	0.83 0.87 0.56	4.35 4.32 1.13

ELEMENTS OF SECTIONS

ELEMENTS OF RAIL AND SPLICE BARS

	Weight per	Depth	Area	A	xis 1-1	L			Weight	Depth	Area of	Ax	is 1-1	
Section Index	Yard	Section		I	S	x		tion dex		Section		I	S	x'
	Lbs.	In.	In.2	In.4	In.8	In.			Lbs.	In.	In.2	In.4	In.8	1n.
	Α.	s. c.	E. R	ILS					A. S.	C. E.	Splic	e Ba	RS	
10040 9040 8540 8040 7540 7040	100 90 85 80 75 70	5 3/4 5 3/8 5 1/8 4 1/8 4 5/8	8.83 8.33 7.86 7.33	43.97 34.39 30.07 26.38 22.86 19.70	12.19 11.08 10.07	$2.55 \\ 2.47 \\ 2.38 \\ 2.30$	20000	040 3540 3040 7540	15.80 13.50 12.40 11.50 10.70 10.00	351 315 312 312	4.65 3.97 3.65 3.38 3.15 2.95	$7.39 \\ 6.02$		1,81 1.71 1.68 1.65
6540 6040 5540 5040	65 60 55 50	475 414 415 378	6.33 5.93	16.90 14.56 12.03 9.94	5.75	2.22 2.14 2.05 1.97 1.88	S 5	5540 6040 6540 6040	9.20 8.40 7.50 6.62	311 311 311 311	2.71 2.47 2.21 1.95	4.85 4.04 3.41	2.73 2.38 2.07 1.74	$1.56 \\ 1.51 \\ 1.41$
	A. R. A. RAILS-TYPE A							A. R. A. SPLICE BARS-TYPE A						
10020 9020 8020 7020 6020	100 90 80 70 60	6 5 1/8 5 1/8 4 1/2	9.84 8.82 7.86 6.82 5.86	48.94 38.70 28.80 21.05 15.41	15.04 12.56 10.24 8.21 6.50	2.75 2.54 2.31 2.20 2.13	S10 S 9 S 7 S 6	0020 0020 8020 7020 6020	19.04 16.64 13.43 11.64 10.63	423 477 316 317 317 317 317	4.90	21.30 16.10 10.13 7.42 6.22	6.36	1.91 1.72 1.48
-	A. R.	A. R	AILS—	Туре	В		A. R. A. SPLICE BARS-TYPE B						В	
10030 9030 8030	100 90 80	544 544 415	8.87	32.30	11.45	2.44	18 g	1030	16.92 14.42 12.65	344	4.98 4.24 3.72	14.34 10.16 7.70	4.71	1.67
		Light	RAIL	s					Ligh	т Ваг	L Spli	CE B	ARS	_
4540 4040 3540 3040 2540 2040 1640 1240 1040 840	45 40 35 30 25 20 16 14 12	311-2 311-2 311-3 31-3 31-3 31-3 31-3 31	4.40 3.94 3.44 3.00 2.39 2.00 1.55 1.34 1.18 0.96 0.77	8.13 6.57 5.17 4.06 2.50 1.94 1.24 0.76 0.66 0.40 0.26	3.62 3.02 2.53 1.77 1.43 1.01 0.73 0.63	1.78 1.68 1.60 1.52 1.33 1.27 1.15 1.02 0.96 0.87	S 4 S 3 S 5 S 5 S 1 S 1 S 1 S 1	1040 1540 1540 1540 1040 1440 1240 1040	5.80 5.00 4.58 3.97 2.20 1.87 1.70 1.36 0.985 0.747		1.70 1.47 1.35 1.17 0.65 0.55 0.50 0.40 0.40 0.29 0.22		,	1.29 1.27 1.19 1.10 0.90 0.86 0.79 0.65 0.65 0.56 0.49
							05							

MOMENTS OF INERTIA OF RECTANGLES

IN WIDTHS FROM 1/4 TO 5/8 INCH AND 1 INCH

Neutral Axis Through Center Normal to Depth

This and the following table may be used in computing the Moments of Inertia of Plate Girders, Columns and other compound sections in which plates are used; see pages 172 and 173.

Depth, Inches				Wid	th, Inches			
Q'E	1/4	16	3/8	1 ⁷ 8	1/2	18	5⁄8	1
1 2 3 4	.021 .167 .563 1.333	.026 .208 .703 1.667	.031 .250 .844 2.000	.037 .292 .984 2.333	.333	.375 1.266	.052 .417 1.406 3.333	.083 .667 2.250 5.333
5 6 7 8 9	2.604 4.500 7.146 10.667 15.188	3.255 5.625 8.932 13.333 18.984	3.906 6.750 10.719 16.000 22.781	4.557 7.875 12.505 18.667 26.578	5.208 9.000 14.292 21.333 30.375	10.125 16.078 24.000	6.510 11.250 17.865 26.667 37.969	10.417 18.000 28.583 42.667 60.750
10 11 12 13 14	20.833 27.729 36.000 45.771 57.167	26.042 34.662 45.000 57.214 71.458	31.250 41.594 54.000 68.656 85.750	36.458 48.526 63.000 80.099 100.042	41.667 55.458 72.000 91.542 114.333	102.984	52.083 69.323 90.000 114.427 142.917	83.333 110.917 144.000 183.083 228.667
15 16 17 18 19	70.313 85.333 102.354 121.500 142.896	87.891 106.667 127.943 151.875 178.620	105.469 128.000 153.531 182.250 214.344	123.047 149.333 179.120 212.625 250.068	140.625 170.667 204.708 243.000 285.792	158.203 192.000 230.297 273.375 321.516	175.781 213.333 255.885 303.750 357.240	281.250 341.333 409.417 486.000 571.583
20 21 22 23 24	166.667 192.938 221.833 253.479 288.000	208.333 241.172 277.292 316.849 360.000	250.000 289.406 332.750 380.219 432.000	291.667 337.641 388.208 443.589 504.000	333.333 385.875 443.667 506.958 576.000	375.000 434.109 499.125 570.328 648.000	416.667 482.344 554.583 633.698 720.000	666.667 771.750 887.333 1013.917 1152.000
25 26 27 28 29	325.521 366.167 410.063 457.333 508.104	406.901 457.708 512.578 571.667 635.130	488.281 549.250 615.094 686.000 762.156	569.662 640.792 717.609 800.333 889.182	651.042 732.333 820.125 914.667 1016.208	732.422 823.875 922.641 1029.000 1143.234	813.802 915.417 1025.156 1143.333 1270.260	1302.083 1464.667 1640.250 1829.333 2032.417
30 32 34 36 38	562.500 682.667 818.833 972.000 1143,167	1023.542 1215.000	1228.250 1458.000	1701.000ii	1365.333 1637.667	1265.625 1536.000 1842.375 2187.000 2572.125	1406.250 1706.667 2047.083 2430.000 2857.917	2250.000 2730.667 3275.333 3888.000 4572.667
40 1 42 1 44 1 46 2	1333.333 1543.500 1774.667 2027.833 2304.000	1666.667 1929.375 2218.333	2000.000 2315.250 2662.000	2333.333 2701.125 3105.667	2666.667 3087.000 3549.333	3000.000 3472.875 3993.000 4562.625 5184.000	3333.333 3858.750 4436.667 5069.583 5760.000	5333.333 6174.000 7098.667 8111.333 9216.000
50 2 52 2 54 3 56 3 58 4	2604.1673 2929.3333 3280.5004 3658.6674 1064.833	3255.2083 3661.6674 4100.6254 4573.333 5081.0426	3906.250 1394.000 1920.750 5488.000	4557,2925 5126,3335 5740,8756 8402,667	5208.333 5858.667 5561.000 7317.338	5859.375 6591.000 7381.125 8232.000 9145.875 10125.000	6510.417 7323.333 8201.250 9146.667	10416.667 11717.333 13122.000 14634.667

MOMENTS OF INERTIA OF RECTANGLES

Neutral Axis Through Center Normal to Depth

To obtain the Moment of Inertia of any rectangle, multiply the tabular value for its depth by its width in inches. For deeper rectangles of tabular thickness, multiply the tabular values for half their depth by 8: or for one-third their depth by 27, etc.

==											
Depth, Inches	l ₁₋₁ lnches 4	Depth, Inches	I ₁₋₁ Inches 4	Depth, Inches	l ₁₋₁ Inches 4	Depth, Inches	l ₁₋₁ Inches 4	Depth, Inches	I _{1 1} Inches 4	Depth, Inches	I ₁₋₁ Inches 4
0	.000	6	18.000	12	144.000	18	486.000	24	1152.000	30	2250.000
1/8	.000	1/8	19.149	1/8	148.547	1/8	496.195	1/8	1170.094	1/8	
1/4	.001	14	20.345	1/8 1/4 8/8 1/3/8 5/8	153.189	14	506.533		1188.376	14	2306.721
1 %	.004	1 38	21.590	1 3/8	157.926	8/8	517.012	8/8	1206.848	3/8	2335.434
1/2	.010	1 22	22.885 24.231	32	162.760 167.692	2	527.635 538.403	32	1225.510	\$2	2364.385 2393.575
8%	.035	3,4	25.629	82	172.723	8/4	549.317	8%	1244.364 1263.410	8,4	2423.004
1/8/4/8/5/8/4/8	.056	1/4 8/8 1/2 3/8 3/4 7/8	27.079	84 78	177.853	1/8 1/4/8 1/3/8 1/3/8 1/8 1/8	560.376	1/8	1282.650	1 7/8	2452.674
1	.083	7	28.583	13	183.083	19	571.583	25	1302.083	31	2482.583
1/8	.119	1/8	30.142	1/8	188.416	1/8	582.939	1/8	1321.713	1/8	2512.737 2543.132 2573.771
1/8/4/8/3/8/3/8/4/8	.163	1/8/14/8/1/2/8/8/1/8/8/1/8/8/1/8	31.757	1/8 1/4 8/8 1/2 5/8 3/4 7/8	193.850	1/8 1/4/8 1/2/8 1/5/8 1/8 1/8	594.444	1/4	1341.538	1/4	2543.132
. %	.217 .281	13	33.428 35.156	18	199.389 205.031	18	606. 0 99 617.906	19	1361.561 1381.781	19	25/3.//1
82	.358	82	36.944	5/8	210.779	5%	629.866	5%	1402.202	8/2	2604.656 2635.787
3%	.447	82	38.790	%	216.634	32	641.978	8,4	1422.821	8/4	2667.165
7/8	.549	7/8	40.698	_7/8	222.596	7/8	654.245	_ 7/8	1443.644	7/8	2698.792
2	.667	8	42.667	14	228.667	20	666.667	26	1464.667	32	2730.667
101418118	.800	1/8/14/8	44.698	1/8 1/4/8 1/2 5/8/4/8 7/8	234.847	1/8/4/8/27/8/4/8	679.245	1/8 1/4	1485.893	` <u>¼</u>	2762.792 2795.168
14	.949	14	46.793	<u>14</u>	241.137	14	691.840	1/4	1507.324	14	2795.168 2827.797
128	1.116 1.302	12	48.952 51.177	128	247.538 254.052	8	704.874 717.927	%	1528.961 1550.802 1572.851	8	2860.677
5/2 5/6	1.507	3/2	53.468	5/6	260.679	3%	731.141	3%	1572.851	3/8	
3%	1.733	34	55.827	84	267.421	84	744.514	34	1595.108	84	2927.202
	1.980	7/8	58.254		274.277	7/8	758.051	_7/8	1617.575	7/8	
3	2.250	9	60.750	15	281.250	21_	771.750	27	1640.250		2994.750
1/8	2.543	1/8	63.317	1814/81/3/8/4/8	288.340	18/4/8/27/8/4/8	785.613	1/8	1663.136	1/8	3028.911
7874787878787878	2.861	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	65.954 68.665	14	295.548 302.875	14	799.652 813.836	1/4	1686.236	14	3063.329 3098.009
12	3.204 3.573	128	71.448	12	310.323	128	828.198	1 28	1709.547 1733.073	3/8 1/2	3132.948
5/8	3.970	3/6	74.305	5%	317.891	5/8	842.727	5/8	1733.073 1756.814	3.6	2162 150
34	4.395	84	77.238	84	325.582	8/4	857.426	8/4	1780.770	9/4	3203.614
<u>_7/8</u>	4.849		80.247		333.396		872.294		1804.943		3239.341
4	5.333	10	83.333	16	341.333	22	887.333		1829.333		3275.333
1/8/4/8/2/8/4/8	5.849	1814812884	86.498 89.741	1/8 1/4 8/8	349.396 357.585	18/4/8/1/8/4/8	902.545	1/8 1/4	1853.943 1878.773	1/8 1/4 8/8	3311.592
14	6.397 6.978	34	93.064	82	365.900	82	917.928 933.486	34	1903.823	82	3348.117 3384.909
18	7.594	1,8	96.469	1%	374.344	1%	949.219	1,8	1929.094	I 1/6	3421.969
5/8	8.244	5%	99.955	58 84 78	382.916	5/8	965.127	5/8	1929.094 1954.588	3/8	3459.300 3496.900
34	8.931	84	103.525	84	391.618	84	981.212	94	1980.305	84	3496.900
	9.655	7/8	107.178		400.452		997.475	_~	2006.249		
5	10.417	11_	110.917	17	409.417		1013.917			35	3572.917
1/8/14/8 1/4/8 1/5/8/4/8	11.218	1/8 1/4 8/8	$\frac{114.741}{118.652}$	1848488	418.515 427.746	1/8 1/4	1030.538 1047.340		2058.811 2085.434	1/8 1/4	3611.334 3650.027
82	12.059 12.941	84	122.652	82	437.113	8/8	1064.323	82	2085.434 2112.285	32	3688 994
1,8	13.865	1,8	126.740	1%	446.615	1,3	1081.490	1 3/2	2139.365	1%	3728.240
5/8	14.832	58	130.918	5/8	456.253	3/8	1098.839		2166.676	3/8	3767.763
34	15.843	8/4 7/8	135.186	34	466.030	84	1116.374	3/8 8/4 7/8	2194.218	84	3688.994 3728.240 3767.763 3807.561 3847.641
	16.898		139.547		475.945		1134.094		2221.992	<u>/8</u>	3847.641
6 (18.000	12	144.000	18	486.000	24	1152.000	30	2250 .000	36	3888.000

HOLLOW ROUND SECTIONS

AREAS AND RADII OF GYRATION

Area = $\frac{\pi(D^2-d^2)}{4}$ = 0.7854 (D²-d²) sq. in. Radius of gyration = $\frac{\sqrt{D^2+d^2}}{4}$ in.

Dia.	Elements		Thickness in Inches														
D, Inches	Elem	1/4	5/18	%	1/2	5/8	8/4	7/8	1	11/8	11/4	1%	1½	1%	1%	17/8	2
2	A	1.37	1.66				_										
3	A	2.16	2.64	_	_	=		_							_		
4	A	2.95 1.33	3.62 1.31	4.27 1.29	5.50 1.25					_			_	_		_	
5	A	3.73	4.60 1.66	5.45 1.64	7.07	8.59 1.56	10.01					_	_				-
6	A	4.52 2.03	5,58 2.01	6,63 1,99	1.95	1.91	1.88	1.84	1.80		_						_
7	A	5.30 2.39	6.57 2.37	2.35	10.21 2.30	2,27	14.73 2.23	2.19	2.15	2.12	2.08	_					=
8	A	6.09 2.74	7.55 2.72	8.98 2.70	2.66			2.54		2.46	2.43	28.62 2.39	30.63 2.36	_			=
9	$\frac{\mathbf{A}}{\mathbf{r}}$	6.87 3.09	3.07	3.05		2.97	2.93	22.33	2.85	27 83 2.81	2.78	32.94 2.74	35,34 2.70	37.65 2.67	39.86 2.64		=
	A	7.66 3.45	3.43	3.41	14.92 3.36	3.32	21.79 3.28	3.24	3.20	31,37 3,16	3.13	37.26 3.09	40.06 3.05	42.76 3.02	45.36 2.98	47.86 2.95	50.27 2.92
11	A r	3.80		3.76	3.72	3.67	3.63	27.83 3.59	3.55	3.51	38.29 3.48	41.58 3.44	3.40	47.86 3.36	50,85 3.33	53,75 3,29	56.55 3.26
12	A r	4.16	11.47 4.13	4.11	18.06 4.07	4.03	26.51 3.99	3.95	3,91	3.87	41.22 3.83	45.90 3.79	49.48 3.75	52.97 3.71	56.35 3.68	59.64 3.64	62.83 3.61
13	A r	10.01 4.51	4.49	4.47	19.63 4.42	4.38	4.34	33.33 4.30	4.26	4.22	46.14 4.18	50.22 4.14	54.19 4.10	58.07 4.06	61,85 4,03	65.53 5.99	69.12 3.95
14	A r	4,86		4.82	4.78	4.73	4.69	36.08 4.65	4.61	45.50 4.57	4.53	54,54 4,49	58.91 4.45	63.18 4.41	67.35 4.38	71.42 4.34	75,40 4,30
15	A	11.58 5.22 12.37	5.19	5.17	5.13	5.09	5.05	38.83 5.00	4.96	4.92	54,00 4.88	58.86 4.84	63.62 4.80	68.28 4.76	72.85	77.31 4,69	81.68 4.65
16	A	5.57	5.55 16.38	5,53	5.48	5.44	35.93 5.40	5.36 44.20	5.32	5.27	57.92 5.23	63.18 5.19	68.33 5.15	73.39	78.34 5.08	83.20 5.04	87.97 5.00
	$\frac{A}{r}$	5.92 13.94	5.90	5.88	5,84	5.79	5.75	44.33 5.71	5.67	56.11 5.63	5.59	67.50 5.55	73.04 5.51	78.49 5.47	83.84 5.43	89.09 5.39	94,25 5.35
	r A	6.28	6.25	6.23	6.19	6.15	6.10	47.07 6.06 49.82	6.02	59.64 5.98	5.94	71.82 5.90	77.75 5.86 82.47	5.82	89.34 5.78	5.74	5.70
	$\frac{\frac{A}{r}}{A}$	8.63 15.51	6.61	6.59	6.54	6.50	6.46	6.42	6.37	6.33	69.70 6.29	76.13 6.25	6.21	88.70 6.17	94.84 6.13	6.09	6.05
20	$\frac{A}{r}$			8.94	30.63 6.90	38,04 6.85		52.57 6.77	6.73	6,89	73.63 8.64	80.45 6.60	87.18 6.56	6.52	6.48	106.77 6.44	6.40

HOLLOW SQUARE SECTIONS

AREAS AND RADII OF GYRATION

Side	Elements		Thickness, t, Inches														
D, Inches	Elex	1/4	%16	%	1/2	5/8	3/4	7/8	1	11/8	11/4	1%	1½	1%	1¾	1%	2
2	A	1.75	2.11						_	_							
3	A	2.75 1.13	3.36	_		_		=		=		_					
4	A	3.75 1.53	4.61	5.44 1.49	7.00	_	_		_	_					_		_
5	A	4 75 1.94	68.5 1.92	6.94 1.89	9.00	10.94 1.80	12.75 1.76					_				_	_
6	A r	5.75 2.35		2.30	2.25	2.21	2.17		80.8				\equiv				<u> </u>
7	A	6.75 2.76	8,36 2.73	2.71	2,66	2.62	2.57		2.48	2.44	2.40	_					_
8	A	7.75 3.17	9.61 3.14	3,12	3.07	3.02		2.93			08.8	36.44 2.76	39.00 2.72	_			
9	A	8.75 3.57	10.86 3.55	3.53	3.48	3.43	3.38	28.44 3.34	3.29	3.25	3.20	41.94 3.16	45.00 3.12	47.94 3.08	50.75 3.05		
10	A r	9.75 3.98	3.98	3.93	3.88	3.84	3.79	31.94	3.70	3.65	3.61	47.44 3.57	51.00 3.52	3,48	57.75 3.44	3.40	3.37
11	A	4.39	4.37	4.34	4.29	4.24	4.20	35.44 4.15	4.10	4.06	4.01	52.94 3.97	57.00 3.93	3.88	64.75 3.84	3,80	72.00 3.76
	A	4.80	4.77	4.75	4.70	4.65	4.60	38.94 4.56	4.51	4.46	4.42	58.44 4.37	63.00 4.33	67.44 4.29 73.94	71.75 4.25 78.75	4,20	80.00 4.16 88.00
13	A r	12.75 5.21	5.18	5.16	5.11	5.06	5.01	42.44	4.92	4.87	4.82	63.94 4.78	69.00 4.74 75.00	4.69 80.44	4.65 85.75	4.61	4.56 96.00
14	A r	5.61	5.59	5.56	5.51	5.47	5.42		5.32	5.28	5.23	69,44 5.18 74,94	5,14 81,00	5.10 86.94	5.05 92.75	5.01	4.97 104.00
15	A r	14.75 6,02 15.75	6.00		5.92	5.87	5.83	49.44 5.78 52.94	5.73	5.68	5.64	5.59 80.44	5.55 87.00	5.50	5.46		5.37
16	A r A	6.43	6.41	6.38	6.33	6.28	6.23		6.14	6,09	6.04	6.00	5.95	5.91	5.86 106.75	5.82	5.77 120.00
17	r A	6,84	6.81		6.74	6.69	6.64	6.59	6.54	6.50		6.40	6.36	6.31	6.27	6.23	6,18
	r A	7.25	7.22	7.20	7.15	7.10	7.05	7.00	6.95	6,90		6.81	6.76	6.72	6.67	6.63	6.58
	r A	7.66	7.63	7.61	7.56	7.51	7.46	7.41	7.36	7.31	7.26	7.22	7.17	7.12	7.08	7.03	6.99 144.00
20	r	8,06	8.04	8.01	7.96	7.91	7.87	7.82	7.77	7.72	7.67	7,62	7.58				

RADII OF GYRATION FOR TWO EQUAL ANGLES

Single A	ngle	Two Angles		R	adii of Gyr	ation, Incl	nes	
Size.	Weight,	Area.			,	Axis 2-2		
Inches	Pounds per Foot	Inches ²	Axis 1-1	ln Contact	14" Apart	3∕8″ Apart	½" Apart	¾" Apart
8, x 8 x1 1/8	56.9	33.46	2.42	3.42	3.51	3.55	3.60	3.69
	42.0	24.68	2.46	3.37	3.46	3.50	3.55	3.64
	26.4	15.50	2.50	3.33	3.41	3.45	3.50	3.59
6 x 6 x 1	37.4	22.00	1.80	2.59	2.68	2.72	2.77	2.87
	26.5	15.56	1.83	2.54	2.63	2.67	2.71	2.81
	14.9	8.72	1.88	2.49	2.58	2.62	2.66	2.75
5 x 5 x 1	30.6	18.00	1.48	2.19	2.28	2.33	2.38	2.47
	21.8	12.80	1.51	2.13	2.22	2.26	2.31	2.40
	12.3	7.22	1.56	2.09	2.17	2.21	2.26	2.35
4 x 4 x 13	19.9	11.68	1.18	1.75	1.85 a	1.89	1.94	2.04
	6.6	3.88	1.25	1.66	1.75	1.79	1.84	1.93
3½x3½x 13	17.1	10.06	1.02	1.55	1.65	1.70	$1.75 \\ 1.64$	1.85
¼	5.8	3.38	1.09	1.46	1.55	1.59		1.73
3 x 3 x 5/8	$\frac{11.5}{4.9}$	6.72 2.88	0.88 0.93	$\frac{1.32}{1.25}$	1.41 1.34	$\frac{1.46}{1.38}$	1.51 1.43	1.61 1.53
2½x2½x½	7.7	4.50	0.74	1.09	1.19	1.24	1.29	1.39
¼	4.1	2.38	0.77	1.05	1.14	1.19	1.24	1.34
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.3 3.19	3.12 1.88	0.59 0.61	0.88 0.85	0.98 0.94	$\frac{1.03}{0.99}$	1.08 1.04	1.19´ 1.14

This table and the two following are employed in computing the safe resistance to compressive stress of two angles, back to back, used as a strut or as the compression chord of a roof truss, etc., as follows:

Obtain from the compression formula in use the allowed stress per square inch corresponding to the ratio of slenderness of the section, and multiply that value by the area. The result will be the allowable compressive stress.

Example 1. Section given. Required the safe load in compression as per formula f=19000-100 l/r on a strut composed of two angles 4" x 4" x 1/4". back to back, with an unsupported length of 9 feet.

Area of Section, A=3.88 square inches; Least Radius, r=1.25.

Ratio of Slenderness, $1/r = 9 \times 12 \div 1.25 = 86.4$

Allowed Unit Stress, $f = 19000 - 100 \times 86.4 = 10360$ pounds per square inch.

Safe Load, $Af = 3.88 \times 10360 = 40200$ pounds.

Example 2. Stress given. Required a section for a member in compression 12' 3" long, made of two angles separated by ½ inch gusset plates, to resist a total stress of 35000 pounds; ratio of slenderness not to exceed 120.

Assume 2 angles, $5'' \times 3'' \times \frac{5}{8}''$, long legs, back to back.

Area of Section, A = 4.80 square inches; Least Radius, r = 1.26 inches.

Ratio of Slenderness, $1/r = 12.25 \times 12 \div 1.26 = 116.7$.

Allowed Unit Stress, $f = 19000 - 100 \times 116.7 = 7330$ pounds per square inch.

Safe Stress, $Af = 4.80 \times 7330 = 35200$ pounds.

In the first case the least radius is that about axis 1-1; in the second case about axis 2-2; in all cases the least radius determines the ratio of slenderness and therewith the allowed safe compressive stress. In all cases also the two angles are to be secured together by stay rivets so spaced as to insure that the section acts as a unit. The ratio of slenderness of any single angle between rivets must always be less than that of the strut or compression chord.

ELEMENTS OF SECTIONS

RADII OF GYRATION FOR TWO UNEQUAL ANGLES

Long Legs Vertical

Single Ar	igle	Two Angles	,	Ra	dii of Gyra	tion, Inch	ea	
Size, 1nches	Weight, Pounds per Foot	Area, Inches ²	Axis 1-1	In Contact	1/4" Apart	Axis 2-2	½" Apart	¾" Apart
8 x 6 x 1	44.2 33.8 20.2	26.00 19.88 11.86	2.49 2.53 2.57	2.39 2.35 2.31	2.48 2.44 2.39	2.52 2.48 2.43	2.57 2.52 2.48	2.66 2.61 2.56
8 x3½x 1 ¾ ¼	35.7 27.5 16.5	21.00 16.12 9.68	2.51 2.55 2.59	1.26 1.20 1.15	1.35 1.29 1.23	1.40 1.34 1.28	1.45 1.39 1.32	1.55 1.49 1.41
7 x3½x 1	32.3 23.0 13.0	19.00 13.50 7.60	2.19 2.23 2.27	1.31 1.25 1.20	1.40 1.34 1.28	1.45 1.39 1.33	1.50 1.44 1.37	1.60 1.53 1.46
6 x 4 x 1	30.6 21.8 12.3	18.00 12.80 7.22	1.85 1.89 1.93	1.60 1.55 1.50	1.69 1.63 1.58	1.74 1.68 1.62	1.79 1.73 1.67	1.89 1.82 1.76
6 x3½x 1	28.9 20.6 9.8	17.00 12.12 5.74	1.85 1.89 1.95	1.37 1.31 1.25	1.47 1.41 1.33	1.51 1.45 1.37	1.56 1.49 1.42	1.66 1.60 1.50
5 x 4 x 7/8	24.2 11.0	14.22 6.46	$1.52 \\ 1.59$	1.66 1.58	1.76 1.66	$\frac{1.80}{1.70}$	1.85 1.75	1.95 1.85
5 x3½x⅓ 15 15	22.7 8.7	13.34 5.12	1.53 1.61	1.42 1.33	1.51 1.41	$1.56 \\ 1.45$	1.61 1.50	1.71 1.59
5 x 3 x 13 x 13 x 15	19.9 8.2	11.68 4.80	1.55 1.61	1.18 1.09	1.27 1.17	$1.32 \\ 1.22$	$1.37 \\ 1.26$	1.47 1.35
4½x 3 x 13 ra	18.5 7.7	10.86 4.50	1.38 1.44	1.21 1.13	1.31 1.22	$1.36 \\ 1.26$	1.41 1.30	$1.51 \\ 1.40$
4 x3½x 13	18.5 7.7	10.86 4.50	1.19 1.26	1.50 1.42	1.59 1.51	$1.64 \\ 1.55$	1.69 1.60	1.79 1.69
4 x 3 x 13	17.1 5.8	10.06 3.38	1.21 1.28	$1.25 \\ 1.16$	$1.35 \\ 1.24$	1.40 1.28	1.45 1.33	$1.55 \\ 1.43$
3½x 3 x 13	15.8 5.4	$9.24 \\ 3.12$.1.04 1.11	1.30 1.20	1.40 1.29	$1.45 \\ 1.34$	1.50 1.38	1.60 1.48 .
3½x2½x 11 ¼	12.5 4.9	7.30 2.88	1.06 1.12	1.03 0.95	1.13 1.04	$\frac{1.18}{1.09}$	1.23 1.13	$1.33 \\ 1.23$
3 x2½x 18 14	9.5 4.5	5.56 2.64	0.91 0.95	1.05 1.00	1.15 1.09	$1.20 \\ 1.13$	$1.25 \\ 1.18$	1.35 1.28
3 x 2 x ½ ½	7.7 4.1	4.50 2.38	0.92 0.95	$0.80 \\ 0.74$	0.89 0.84	0.94 0.88	1.00 0.93	1.10 1.03
2½x 2 x½	6.8 3.62	4.00 2.12	0.75 0.78	0.84 0.80	0.94 0.89	0.99 0.93	1.04 0.98	1.15 1.08

RADII OF GYRATION FOR TWO UNEQUAL ANGLES

Short Legs Vertical

Single A	ngle	Two Angles		R	adii of Gyr	ation, Incl	1es	
Size, Inches	Weight, Pounds per Foot	Area, 1nches ²	Axis 1-1	In Contact	1/4" Apart	Axis 2-2 8⁄8″ Apart	½" Apart	¾" Apart
8 x 6 x 1	44.2 33.8 20.2	26.00 19.88 11.86	1.73 1.76 1.80	3.64 3.60 3.55	3.73 3.69 3.64	3.78 3.73 3.68	3.83 3.78 3.73	3.92 3.87 3.82
8 x3½x 1 ¾ 16	$35.7 \\ 27.5 \\ 16.5$	21.00 16.12 9.68	0.86 0.88 0.92	4.04 3.99 3.93	4.14 4.09 4.02	4.19 4.13 4.07	4.24 4.18 4.12	4.34 4.28 4.22
7 x3½x 1	32.3 23.0 13.0	19.00 13.50 7.60	0.89 0.92 0.96	3.48 3.42 3.36	3.58 3.52 3.46	3.63 3.57 3.50	3.68 3.62 3.55	3.78 3.72 3.65
6 x 4 x 1	30.6 21.8 12.3	18.00 12.80 7.22	1.09 1.13 1.17	2.85 2.79 2.74	2.95 2.89 2.83	2.99 2.93 2.87	3.04 2.98 2.92	3.14 3.08 3.02
6 x3½x 1	28.9 20.6 9.8	17.00 12.12 5.74	0.92 0.95 1.00	2.92 2.87 2.81	3.02 2.96 2.90	3.07 3.01 2.95	3.12 3.06 3.00	3.22 3.16 3.09
5 x 4 x 7/8	$\frac{24.2}{11.0}$	14.22 6.46	$1.14 \\ 1.20$	$\frac{2.29}{2.20}$	2.38 2.29	2.43 2.34	2.48 2.38	2.58 2.48
5 x3½x½ 18	22.7 8.7	$13.34 \\ 5.12$	0.96 1.03	2.36 2.26	$2.45 \\ 2.35$	$\frac{2.50}{2.39}$	$2.55 \\ 2.44$	$2.65 \\ 2.54$
5 x 3 x 13 rs	19.9 8.2	11.68 4.80	0.80 0.85	2.42 2.33	$\frac{2.52}{2.42}$	$2.57 \\ 2.47$	2.62 2.52	$\substack{2.72\\2.61}$
4½x 3 x 13 r5	18.5 7.7	10.86 4.50	0.81 0.87	$\frac{2.15}{2.06}$	$2.25 \\ 2.15$	2.30 2.20	$\frac{2.35}{2.25}$	$2.45 \\ 2.34$
4 x3 ½x 13	18.5 7.7	10.86 4.50	1.01 1.07	1.81 1.73	1.91 1.81	1.96 1.86	2.01 1.91	$\frac{2.11}{2.00}$
4 x 3 x 13	17.1 5.8	10.06 3.38	0.83 0.89	1.88 1.78	1.98 1.87	2.03 1.92	2.08 1.96	$\frac{2.18}{2.06}$
3½x 3 x 13	15.8 5.4	9.24 3.12	0.85 0.91	1.61 1.52	1.71 ·1.61	1.76 1.65	1.81 1.70	$\frac{1.91}{1.80}$
3 ½x2 ½x ¼	12.5 4.9	7.30 2.88	$0.69 \\ 0.74$	1.66 1.58	1. 75 1.67	1.80 1.71	1.86 1.76	$\frac{1.96}{1.86}$
3 x2½x 3 10 14	9.5 4.5	$5.56 \\ 2.64$	0.72 0.75	1.37 1.31	1.46 1.40	1.51 1.45	$\frac{1.56}{1.50}$	$\frac{1.66}{1.59}$
3 x 2 x ½ ¼	7.7 4.1	4.50 2.38	0.55 0.57	$\frac{1.42}{1.38}$	$1.52 \\ 1.47$	$1.57 \\ 1.52$	1.62 1.57	$\substack{1.72\\1.67}$
2½x 2 x½	6.8 3.62	$\frac{4.00}{2.12}$	0.56 0.59	1.15 1.11	$\begin{array}{c} 1.25 \\ 1.20 \end{array}$	$\frac{1.30}{1.25}$	1.35 1.30	$1.46 \\ 1.40$

STRESSES IN BEAMS

In the application of the principles of structural mechanics to determine what sections should be used safely to sustain superimposed loads under specified conditions of loading, it is necessary to ascertain, first, the effects produced on the structure by the loads under those conditions; second, to decide what unit strength the material, the use of which is contemplated, has to resist the stresses produced within the structure by the loading; and, third, to select a section whose section modulus is equivalent to the ratio found to exist between the stresses tending to cause deformation within the structure and the unit strength of the material to resist them.

Reactions. In the simple case of a beam supported at both ends, each support reacts with an upward pressure called the reaction of the support. The sum of these two reactions is equal to the total load on the beam.

Shear. The loads and the reactions of the supports are vertical forces tending to shear or cut the beam across and the stresses they produce within the beam are, therefore, called shearing stresses. The shear at each support is equal to the reaction of the support; the shear at any point between the supports is equal to the reaction of a support less the total load between that support and the point; or, if the reaction acting upward is considered as positive and the loads, acting downwards, as negative, the shear at any point is the algebraic sum of the vertical forces acting on the beam between that point and either support.

If such a simple beam supported at both ends carries a load uniformly distributed over its entire length, the reaction and the shear at each support is equal to one-half the total load on the beam, but the shear decreases uniformly to zero at the center of the span; if the load is concentrated at the center of the span, the reaction and the shear at each support are also equal to one-half the total load, but the shear is uniform throughout the entire length of the beam.

Bending Moment. The loads on the beam and the reactions of the supports constitute external forces which produce bending stress in the beam. The summation of the moments of the external forces about any point is called the bending moment and varies from point to point. It attains a maximum value at a point where the shear is either zero or changes from positive to negative or vice versa. If the loads are concentrated at several points, the maximum bending moment always occurs at the point of application of

one of the loads so located that the sum of all the loads on the beam between one support up to and including that load is equal to or greater than the reaction of the support.

Vertical Deflection. Bending stress within a beam produces flexure, and the deflection, or the amount of its departure from a straight line, is the measure of the deformation which the beam has undergone in its resistance to bending stress. So long as the stress is within the safe limits allowed for the material, the deflection is negligible so far as concerns the beam itself; it may, however, be of sufficient magnitude to cause the disruption of other materials in contact with or supported by the beam but of less strength, such as plaster. In such cases the limit of allowable deflection may determine or at least influence the choice of a section.

Lateral Deflection. The stresses within a beam under transverse loading are compressive on one side of the neutral axis and tensile on the other. The tensile stresses tend to hold the beam in a straight line between the supports, while the compressive stresses tend to deflect it in a lateral direction, just as the bending stresses as a whole tend to deflect it in a vertical plane. On long spans unsupported against sidewise deflection, this consideration may influence the choice of sections.

Method of Computation. A complete investigation of the strength of beams under transverse loading must take into account all the elements, the bending moment, the vertical deflection, the lateral deflection and the shearing stress; though under the usual loading conditions the first alone determines the size and weight of section.

In the calculation of bending stresses, the loads are usually expressed in pounds, the span length and the distance between the loads in feet; the resulting bending moments are in terms of foot pounds, which necessitates conversion to inch pounds before the section can be selected from the tables. The section modulus of the required section is obtained by dividing the maximum bending moment in inch pounds by the allowed fiber stress in pounds per square inch. In such calculations it is assumed that the neutral axis of the section is normal to the line of action of the load. When this is not the case, correction must be made for the eccentricity of the loading.

In the pages which immediately follow are given general formulas for the bending moments and vertical deflections of beams under the usual conditions of loading, and also diagrams illustrative of those conditions. The general method for the computation of the maximum bending moment of a beam supported at its ends and loaded at various points is as follows:—

First. Find the reaction at the left (right) support by multiplying each load by its distance from the right (left) support and dividing the sum of these products by the length of the span.

Second. Starting from the left (right) end of the beam, add the successive loads until a point is reached where the sum of the loads equals or exceeds the reaction of the left (right) support; the point of maximum bending moment is located at this point.

Third. Multiply the reaction at the left (right) support by its distance from the point of maximum bending moment and subtract the sum of the products of all loads to the left (right) of this point by the corresponding distance from this point; the difference between these moments is then the maximum bending moment.

Example: Required the size of a steel beam to support the following quiescent loads over a clear span of 16 feet between supports, at a maximum fiber stress not to exceed 16000 pounds per square inch.

 $W_1 = 16000$ pounds, 4 feet from left support.

W₂=18000 " 9 " " " '

 $W_3 = 2000$ " per foot, uniform up to 4 feet from right support.

 $W_4{\Longrightarrow}-60$ " " " assumed weight of beam uniformly distributed over entire span.

Left Reaction, $\frac{16000 \times 12 + (60 \times 16) \times 8 + 18000 \times 7 + (2000 \times 4) \times 2}{16} = 21355 \text{ lbs.}$

Right Reaction, $\frac{16000 \times 4 + (60 \times 16) 8 + 18000 \times 9 + (2000 \times 4) \times 14}{16} = 21605 \text{ lbs}.$

Sum of reactions=sum of loads= $W_1 + W_2 + W_3 + W_4$ =42960 lbs.

Points of maximum moment (60 x 4) + 16000 = 16240 < 21355

 $(60 \times 9) + 16000 + 18000 = 34540 > 21355$

therefore the point of maximum bending moment is at point of load W_2 .

Maximum bending moment, 21355x9-16000x5-(60x9)x4.5 =109765 ft. lbs.

or, $21605 \times 7 - (2000 \times 4) \times 5 - (60 \times 7) \times 3.5 = 109765$ ft. lbs.

Required section modulus = $\frac{109765 \times 12}{16000} = \frac{1317180}{16000} = 82.4$

As the section modulus of the 15 inch 65 pound or the 18 inch 55 pound beam is greater than this, either of these sections may be used. If it is decided that the 18 inch 48 pound supplementary beam is strong enough for the purpose, the actual fiber stress on that section would be $\frac{1317180}{31.9} = 16082$ pounds per square inch. If the allowed fiber stress were 12500 pounds per square inch, the required section modulus would be $\frac{109765 \times 12}{12500} = \frac{1317180}{12500} = 105.38$ and the permissible minimum sections would be 20 inch 65 pound, 21 inch 60.5 pound beams, etc.

NOTATION USED IN FORMULAS

- A = Area of section, in square inches.
- n =Distance from center line of gravity to extreme fiber, in inches.
- I =Moment of inertia about center line of gravity, in inches4.
- Ms=Static moment, in inches3.
- S =Section modulus=I/n, in inches3.
- r = Radius of gyration = $\sqrt{I/A}$, in inches.
- f =Bending stress in extreme fiber, in pounds per square inch.
- fb =Resistance of web, in pounds per square inch.
- E = Modulus of elasticity, in pounds per square inch.
- L =Length of section, in feet.
- I =Length of section, in inches.
- d =Depth of section, in inches.
- b =Width of section, in inches.
- t =Thickness of section, in inches.
- W, W₁, W₂=Superimposed loads supported by beam, in pounds.
- w =Superimposed load, in pounds per unit length or area.
 W max =Maximum safe load at point given, in pounds.
- R. R₁ =Reactions at points of support, in pounds.
- V = Vertical shear, in pounds.
- M, M₁, M₂=Bending moments at points given, in inch pounds.
- M max = Maximum bending moment, in inch pounds.
- Mr = Maximum resisting moment, in inch pounds=f I/n = f S.
- D, D₁ =Deflections at points given, in inches.
- D max = Maximum deflection at point given, in inches

COMPARISON OF VARIOUS LOADING CONDITIONS

The formulas and diagrams on pages 208 to 211 give the various stresses in sections used as beams, resulting from usual conditions of loading.

Taking as a unit of comparison a uniformly distributed safe load on beams of equal length and section, supported at the extreme ends, the following table gives the relative maximum safe loads or bending moments and deflections.

As a check on the accuracy of a computation, the safe load obtained from the formula for any condition of loading may be multiplied by the reciprocal given in the table corresponding to such loading condition; the result should be the maximum allowable uniform load as taken from beam safe load tables.

Conditions of Loading	Case		num Safe Joad	Maximum Deflection
<u> </u>	No.	Relative	Reciprocal	Relative
BEAM SUPPORTED AT ENDS				
Load uniformly distributed over span	IX	1	1	1
Load concentrated at center of span	v	1/2	2	.80
${\bf Two equal loads symmetrically concentrated}$	VII	1/4a	4a/l	
Load increasing uniformly to one end	X	.9743	1.0264	.976
Load increasing uniformly to center	XII	3/4	11/8	.96
Load decreasing uniformly to center	XI	3/2	2 /8	1.08
BEAM FIXED AT ONE END, CANTILEVER				
Load uniformly distributed over span	II	1/4	4	2.40
Load concentrated at end	I	1/8	8	3.20
Load increasing uniformly to fixed end	ш	3/8	23%	1.92
BEAM CONTINUOUS OVER TWO SUPPORTS EQUIDISTANT FROM ENDS				:
Load uniformly distributed over span	XVI			
1. If distance a > 0.2071 1		l ² /4a ²	$4a^{2}/l^{2}$	
2. If distance a <0.2071 l		1 1-4a	<u>l-4a</u>	
3. If distance $a = 0.2071 1$		5.8285	.1716	1
Two equal loads concentrated at ends	xv	1/4a	4a/1	

CARNEGIE STEEL COMPLEY.

The Marine Trust Co. Bldg.

FRED C. DEMING,

BEAMS UNDER VARIOUS LOADING CONDITIONS BENDING MOMENTS AND DEFLECTIONS

M max, at R1

CANTILEVER BEAM—Concentrated load at free end

$$R_1(\max, \text{shear}) = W$$

$$W \max = \frac{fS}{I}$$

$$D \max = \frac{Wl}{3E}$$

II. CANTILEVER BEAM-Uniformly distributed load

M, distance x =
$$\frac{W_2}{2l}$$

M max. at R₁ = $\frac{Wl}{2}$

III. CANTILEVER BEAM—Load increasing uniformly to fixed end

D max.

$$R_1$$
(max. shear)
M. distance x

$$= \frac{1}{3} \frac{\Lambda^{3}}{1^{2}}$$
wi

M max. at
$$R_1 = \frac{W}{3}$$

W max.
$$=\frac{3fS}{1}$$

$$D_{\text{max.}} = \frac{Wl^3}{15EI}$$

IV. BEAM SUPPORTED AT ENDS-Concentrated load near one end

R(max. shear if b>a) =
$$\frac{Wb}{1}$$

$$R_1(max. shear if a>b) = \frac{Wa}{1}$$

M, distance x =
$$\frac{W \, \text{dx}}{1}$$

M max., at point of load = $\frac{W \, \text{ab}}{1}$

$$\mathbf{W}_{\mathbf{max}} = \frac{\mathbf{fSl}}{\mathbf{ab}}$$

D max.
$$= \frac{\frac{ab}{Wab} (a+2b) \sqrt{3a (a+2b)}}{27EU}$$

BEAMS UNDER VARIOUS LOADING CONDITIONS BENDING MOMENTS AND DEFINITIONS

V. BEAM SUPPORTED AT ENDS—Concentrated load at center

$$M_{\text{max}}$$
, R (max. shear) = R₁ = $\frac{W}{2}$

M, distance
$$x = \frac{Wx}{2}$$

M max., at point of load
$$=\frac{W1}{4}$$

W max. $=\frac{4fS}{4}$

$$D \max = \frac{Wl^3}{48EI}$$

VI. BEAM SUPPORTED AT ENDS—Two unsymmetrical concentrated loada

R (max. shear if a < b)
$$= \frac{W}{2l}(l-a+b)$$

$$= \frac{W}{2l}(l+a-b)$$

$$R_1$$
 = $\frac{\gamma}{2l}(l+a-b)$
 M , distance a = $Ra = \frac{Wa}{2l}(l-a+b)$

$$M_1$$
 max., distance b (b>a) = R_1 b= $\frac{Wb}{2l}$ (l+a-b)

$$\mathbf{M}_2$$
, distance $\mathbf{x} = \mathbf{R}\mathbf{x} - \frac{\mathbf{W}}{2}(\mathbf{x} - \mathbf{a})$

W max. (b>a)
$$= \frac{2lfS}{b(l+a-b)}$$

VII. BEAM SUPPORTED AT ENDS—Two symmetrical concentrated loads

$$M_{\text{max}}$$
, R (max. shear) = R₁ = $\frac{W}{2}$

M, distance x = $\frac{Wx}{2}$

M max.atand between loads =
$$\frac{Wa}{2}$$

W max.
$$=\frac{2fS}{2}$$

D max.
$$=\frac{Wa}{12EI}(8/12-a^2)$$

VIII. BEAM SUPPORTED AT ENDS-Three concentrated loads

$$R = \frac{Wa+W_1a_1+W}{1}$$

$$R_1 = \frac{Wa+W_1a_1+W}{1}$$

$$= Ra.$$

$$M \max$$
, if $W = \text{or} > R$
 $M \text{ at } W_1 = Ra_1 - W(a_1 - a)$

$$M \max if W_1+W = R \text{ or } > R$$

 $M \max if W_1+W_2 = R_1 \text{ or } > R_1$

$$M \text{ max. if } W_1 + W_2 = R_1 \text{ or } S_1$$
 $M \text{ at } W_2 = R_2 - W (a_2 - a_1) - W_1 (a_2 - a_1)$
 $M \text{ max. if } W_2 = R_1 \text{ or } > R_1$

BEAMS UNDER VARIOUS LOADING CONDITIONS

BENDING MOMENTS AND DEFLECTIONS

 $=\frac{\overline{\mathbf{W}}\mathbf{x}}{2}(1-\frac{\mathbf{x}}{1})$

 $=\frac{5W18}{384E1}$

IX. BEAM SUPPORTED AT ENDS-Uniformly distributed load

X BEAM SUPPORTED AT ENDS-Load increasing uniformly to one end

XI. BEAM SUPPORTED AT ENDS-Load decreasing uniformly to center

XII. BEAM SUPPORTED AT ENDS-Load increasing uniformly to center

BEAMS UNDER VARIOUS LOADING CONDITIONS

BENDING MOMENTS AND DEFLECTIONS—Concluded

XIII. BEAM SUPPORTED AT ENDS-Uniform load partially distributed

R (max. shear if a < c) = $\frac{W(2c+b)}{2l}$

$$R_1 = \frac{W(2a+b)}{2l}$$

M, dlst.
$$x=a$$
 or $< a$, $= Rx$

$$M_1 \text{ dist. } \mathbf{x} > \mathbf{a}, \qquad = \mathbf{R} \mathbf{x} - \frac{\mathbf{W}(\mathbf{x} - \mathbf{a})^2}{2\mathbf{b}}$$

$$M_2$$
, dist. $x > (a+b)$, $= Rx - \frac{W(2x-2a-b)}{2}$

Mmax., dist.
$$a + \frac{Rb}{W} = \frac{W(2c+b)[4al+b(2c+b)]}{8l^2}$$

W max.
$$=\frac{8l^2IS}{(2c+b)[4al+b(2c+b)]}$$

XIV. BEAM SUPPORTED AT ENDS-Uniform load partially discontinuous

 $R_{1} = \frac{W(2l-a)+V}{2l}$ $R_{1} = \frac{W_{1}(2l-c)+V}{2l}$

$$M_1$$
 distance $x > a$, $= Rx - \frac{W}{W}$
 $M \max_{x \in A} dist_{x} = \frac{R^2a}{2WI} = \frac{R^2a}{2WI}$

W max.
$$= \frac{R^2a}{360}$$

XV. BEAM CONTINUOUS OVER TWO SUPPORTS—Two exterior symmetrical loads

 $R(\text{max. shear}) = R_1$ $= \frac{W}{2}$ M, distance x $= \frac{Wx}{2}$

 $M \max_{n} from R to R_1 = \frac{Wa}{2}$

W max. = 218

D, distance a $=\frac{Wa(3al-4a^2)}{12 EI}$

 D_1 , distance $\frac{1}{2}$ -a $=\frac{Wa(l-2a)^2}{16EI}$

XVI. BEAM CONTINUOUS OVER TWO SUPPORTS—Uniformly distributed load $M_2 = R_1 = \frac{W}{2}, \text{ max. ehear } \frac{Wa}{1} \text{ or } \frac{W}{1} (\frac{1}{2} - a)$ $M_1 \text{ M, distance } x = \frac{W(x^2 - |x + a|)}{2!} \text{ o, if } x = \frac{1}{2} + \sqrt{\frac{|(-4a)|}{4}}$

 $M_1 \operatorname{atR} \operatorname{and} R_1 = \frac{Wa^2}{2l} \qquad \max \text{ if } a > l(\sqrt{\frac{1}{2} - \frac{1}{2}})$ $M_2 \text{ at center} = \frac{W(l - 4a)}{8} \qquad \max \text{ if } a < l(\sqrt{\frac{1}{2} - \frac{1}{2}})$

 $W_1 \ max. \qquad = \frac{2lfS}{a^2} \qquad \text{max. if } a > l(\sqrt{\cancel{1}_2} - \cancel{1}_2)$

 $W_2 \text{ max.} = \frac{8fS}{1-4a}$ max. if $a < l(\sqrt{1/2}-1/2)$

SAFE LOADS FOR SECTIONS USED AS BEAMS

EXPLANATION OF TABLES

The tables of safe loads for structural and supplementary beams, H-beams, cross tie sections and channels, used as beams under conditions of transverse loading, give the uniformly distributed safe loads in thousands of pounds for spans customary in bridge and building construction based upon an extreme fiber stress of 16,000 pounds per square inch. The tables of safe loads for angles, tees and zees give the values at the same fiber stress on spans of one foot from which the safe load for any span length may be obtained by direct division and also the values for those spans at which the allowed safe load will produce a deflection of $\frac{1}{360}$ of the span length. The loads in all cases include the weight of the section, which should be deducted in order to arrive at the net load which the section will support.

In addition to these usual tables of safe loads, there follow, on the same basis, tables of the allowable uniform load in pounds per foot on beams and channels for various span lengths, which may be used in proportioning the floor systems of buildings. The choice between various weights and depths of sections for any given span or any uniform load per running foot may be made on inspection.

It is assumed in all cases that the loads are applied normal to the axis 1-1 as shown in the tables of elements of sections, and that the beam deflects vertically in the plane of bending only. If the conditions of loading involve the introduction of forces outside this plane of loading, the allowable safe loads must be determined from the general theory of flexure in accordance with the mode of application of the load and its character. This applies particularly to unsymmetrical sections, such as zee bars and angles, which should be used only under those conditions of loading where the section can deflect vertically only, being rigidly secured against lateral deflection or twisting throughout the entire span. In all such cases of eccentric loading, the actual safe loads would be considerably lower than the tabulated safe loads which have been based upon the most favorable conditions of loading.

Vertical Deflection of Beams. In the case of beams intended to carry plastered ceilings, experience indicates that the vertical deflection to avoid cracking the plaster should be limited to not more than \%60 of the span length. This span limit for steel beams is approximately in feet twice the depth in inches and is indicated in the tables by the lower zigzag line. Beams intended for such purposes

should not be used for greater spans unless the allowable tabular safe load exceeds the actual load to be supported. As the dead load of the floor is supported by the beams before the plaster is applied, only the deflection due to the live load really needs to be considered.

The coefficients given below may be used to obtain the deflection, in inches, of sections subjected to transverse stresses due to uniformly distributed loads at various fiber stresses and are based upon the following formulas, using the notation given on page 206,

Deflection,
$$D = \frac{Wl^3}{76.8 EI}$$
, when $Wl = \frac{8fI}{n}$ or $D = \frac{8fI^2}{76.8 En} = \frac{15fL^2}{E} \times \frac{1}{n}$
For symmetrical sections, $n = \frac{d}{2}$, $D = \frac{30fL^2}{E} \times \frac{1}{d} = \frac{Coefficient}{depth in inches}$

COEFFICIENTS OF DEFLECTION UNIFORMLY DISTRIBUTED LOADS

Span,	Fiber Stress	Pounda per	Squara Inch	Span,	Fiber Stress	, Pounds per	Square Inch
Feet	16000	14000	12500	Feet	16000	14000	12500
1	0.017	0.014 0.058	0.013 0.052	26 27	11.189 12.066	9.790 10.558	8.741
2 3	0.066 0.149	0.058	0.052	28	12.000	11.354	9.427 10.138
4	0.265	0.232	0.207	29	13.920	12.180	10.135
4 5	0.414	0.362	0.323	30	14.897	13.034	11.638
6	0.596	0.521	0.466	31	15.906	13.918	12.427
6 7 8	0.811	0.710	0.634	32	16.949	14.830	13.241
	1.059	0.927	0.828	. 33	18.025	15.772	14.082
9	1.341	1.173	1.047	34	19.134	16.742	14.948
10	1.655	1.448	1.293	35	20.276	17.741	15.841
11	2.003	1.752	1.565	36	21.451	18.770	16.759
12	2.383	2.086	1.862	37	22.659	19.827	17.703
13	2.797	2.448	2.185	38	23.901	20.913	18.672
14	3.244	2.839	2.534	39	25.175	22.028	19.668
15	3.724	3.259	2.909	40	26.483	23.172	20.690
16	4.237	3.708	3.310	41	27.823	24.346	21.737
17	4.783	4.186	3.737	42	29.197	25.548	22.810
18	5.363	4.692	4.190	43	30.604	26.779	23.909
19	5.975	5.228	4.668	44	32.044	28.039	25.034
20	6.621	5.793	5.172	45	33.517	29.328	26.185
21	7.299	6.387	5.703	46	35.023	30.646	27.362
22	8.011	7.010	6.259	47	36.562	31.992	28.565
23	8.756	7.661	6.841	48	38.135	33.368	29.793
24	9.534	8.342	7.448	49	39.741	34.773	31.047
25	10.345	9.052	8.082	50	41.379	36.207	32.328

To find the deflection in inches of a section symmetrical about the neutral axis, such as beams, channels, zees, etc., divide the coefficient in the table corresponding to given span and fiber stress by the depth of the section in inches.

To find the deflection in inches of a section not symmetrical about the neutral axis, such as angles, tecs, etc., divide the coefficient corresponding to given span and fiber stress by twice the distance of extreme fiber from neutral axis obtained from table of elements of sections, pages 174 to 195, inclusive.

. To find the deflection in inches of a section for any other fiber stress than those given, multiply this fiber stress by any of the coefficients in the table for the given span and divide by the fiber stress corresponding to the coefficient used.

Lateral Deflection of Beams. The tabular safe loads are based on the assumption that the compression flanges of the various sections are secured against lateral deflection by the use of tie rods or by other means at proper intervals. According to the Construction Specifications, page 160, the lateral unbraced length of beams and girders should not exceed forty times the width of the compression flanges. When the unbraced length exceeds ten times the width, the tabular safe loads should be reduced in accordance with the ratios given in the following table in order to insure that the stresses in the compression flanges should not exceed the allowed safe unit stress:—

	Jubrace gth of		Allowa	ble Safe	Load		Unbrace gth of a		Allowa	ble Safe	Load
5 x f	lange	width	Full ta	bular	load	25 x :	flange	width	71.9% 62.5%		r load
15 x	64	**	90.6%	tabula	ar load		**	**	53.1%		**
20 x		"	81.2%		44	40 x	14	**	43.8%	**	**

In addition to this lateral deflection which is induced within the beam by the action of pure bending stresses, lateral deflection may be induced by the thrust of floor arches or other loading acting on an axis perpendicular to the line of principal bending stress. The thrust of these arches should either be neutralized by tie rods, or the safe carrying capacity of the beam should be computed in accordance with the general formulas of flexure to provide for the combined stresses due to the action of both vertical and horizontal forces; that is to say, the safe loads should be figured around both the axes 1-1 and 2-2, and the unit stress computed so as not to exceed 16,000 pounds per square inch.

Effect of Impact on Stresses. The formulas upon which the tables of safe loads are based assume all loads to be quiescent or static. The effect of moving loads may be taken care of either by reducing the allowable unit stresses, or else by increasing the theoretical loads. See Construction Specifications, page 158, paragraph 2.

When the load is suddenly applied, the resultant stresses are greater than those due to an equal static load. When the load is instantaneously applied, the resultant stresses are double.

When an instantaneously applied load produces impact or percussion, the resultant stresses are dynamic and are measured by the laws governing the energy of bodies in motion. The following empirical formulas may be used to ascertain the approximate fiber stress and deflection due to a load falling on the center of a beam supported at both ends, when no account is taken of the distortion due to the impact or percussion at the point of application of the load:—Let

W = Weight of load, in pounds.

W1=Weight of beam, in pounds.

h = Height of fall, in inches.

Extreme fiber stress due to static load, W+W₁, in pounds per square inch.

 f_d =Extreme fiber stress due to dynamic load, W, in pounds per square inch.

D =Deflection due to static load, W+W1, in inches.

Dd = Deflection due to dynamic load, W, in inches.

$$m = \frac{35 \text{ W}}{35 \text{ W} + 17 \text{ W}_1},$$
 Then
 $f_d = f (1 + \sqrt{\frac{2mh}{D} + 1}) \text{ and } D_d = D (1 + \sqrt{\frac{2mh}{D} + 1})$

Shearing Stresses. The safe load tables for beams and channels are computed solely with reference to safe unit stresses due to flexure, and the safe loads uniformly distributed on the spans given will not produce average shearing stresses in the web greater than the 10,000 pounds per square inch allowed by the Construction Specifications. When, however, beams are loaded with heavy loads concentrated near the supports, or when beams of short span are loaded with uniformly distributed loads to their full carrying capacity as regards flexure, the bending moments may be small in comparison with the reactions at the supports, and the beams may fail along the neutral plane as a result of longitudinal shearing stresses, or may buckle as a result of the combined longitudinal and vertical web stresses. On such spans the safe shearing or buckling strength of the web may limit the carrying capacity of the beam rather than the resistance of the flanges to bending stresses.

Longitudinal Shear. At any point in any section of a beam, the horizontal and vertical components of the web stress are equal to each other and proportional to the vertical shear; their intensities are

dependent upon the distance of the point from the neutral axis. In order to determine the intensity of the vertical shearing stress at a given point in a vertical section of the beam, therefore, it is sufficient to find the equal intensity of the horizontal shearing stress at the same point in the horizontal plane.

The longitudinal unit shear is zero at the upper and lower flanges of the beam and a maximum at the neutral plane. It is greatest at the supports and zero where there is no vertical shear.

The intensity of the longitudinal shear at any point in any section is the product of the vertical shear, V, for that section and the statical moment, Ms of the section included between the horizontal plane of shear through that point and the extreme fibers on the same side of the neutral plane divided by the product of the moment of inertia of the beam around the proper axis and the thickness at the plane of shear; or

 $\label{eq:longitudinal} \text{Longitudinal shear per square inch} \!=\! \frac{V\,M_S}{t\,\,I}.$

Example—Required the maximum longitudinal shear per square inch in a 24"80 lb. beam loaded with two symmetrical loads of 100,000 pounds each, disregarding the weight of the beam.

 M_S of Flange Rectangle=7x.60x11.7 = 49.14 M_S of Flange Triangles =3.25x.542x11.219= 19.76

 M_8 of Web =11.40x.50x5.70 = 32.49 Total Static Moment 101.39

Moment of Inertia of Beam I=2087.2 Longitudinal Shear= $\frac{100000x101.39}{2087.2x.50}$

=9715 pounds per square inch.

· Under usual conditions of loading, the vertical shear need not be taken into consideration.

Buckling Values of Beam Webs. The vertical shearing stresses or the vertical compressive components of the web stress may under some conditions exceed the safe resistance of the beam to buckling, and there remains the possibility that a web or web plate which is amply secure as against the safe allowed shear of 10,000 pounds per square inch will not be of sufficient strength when considered as a column. In such cases provision must be made for security against buckling either in the way of stiffeners or by increasing the thickness of the web or web plate.

A series of experiments have been carried out on beams of various depths and web thicknesses to arrive at a basis for a simpler method of computation to use in the investigation of the safe buckling

BEAM SAFE LOADS

resistance of beams with unsupported webs, and from these experiments the following formulas have been deduced:

Safe end reaction
$$R = f_b \times t$$
 (a $\frac{d}{4}$)

Safe interior load $W = 2 f_b \times t$ (a $1 + \frac{d}{4}$)

In these formulas R is the end reaction, W the concentrated load, t the web thickness, d the depth of the beam, a¹ half the distance over which the concentrated load is applied and a the whole distance over which the end reaction is applied, while fb is the safe resistance of the web to buckling in pounds per square inch by the formula 19000—100 d/2r (d/2=l in column formula).

The first formula is general and applies to any condition of loading. The second formula covers the case of a single load concentrated at the center of a span; it can be extended to cover a system of concentrated loads provided the sum of the distances a¹ is not less than a.

The tables which immediately follow give for beams and channels with unsupported webs:

- 1. Allowed web resistance fb, in pounds per square inch computed from this compression formula.
- 2. The distance a, or the distance over which the end reaction must be distributed when the shearing stress, V, in the web is the maximum allowable of 10,000 pounds per square inch.
- 3. The allowable end reaction (R) when a is taken at $3\frac{1}{2}$ " which is the usual length of beam actually resting on the 4" angles ordinarily used in building construction for beam seats.
- 4. The allowable shear V, on the gross area of beam or channel webs at 10,000 pounds per square inch.

In addition to these data which have to do with the maximum loads on beams and channels as computed from the web resistance, these tables also give the maximum bending moments in foot pounds, obtained by the multiplication of the section modulus of each section by the allowed fiber stress of 16,000 pounds and the division of the product by 12 in order to reduce to a foot pound basis. These maximum bending moments may be used on inspection instead of the table of properties to ascertain the proper size section to be used in any particular instance.

EXAMPLES OF THE USE OF BEAM SAFE LOAD TABLES

Example 1. Direct Bending. Required the proper size of a beam laterally braced to support a superimposed or net load of 30,000 pounds uniformly distributed over a clear span of 20 feet.

From the table of safe loads, page 224, it is found that a 15 inch 42 pound beam will support a gross load of 31,400 pounds. The weight of a beam 20 feet long is 840 pounds. The net safe load is, therefore, 31,400-840=30,560 pounds. A 15 inch 42 pound beam will, therefore, carry the net load specified.

Example 2. Shear. Required the maximum load which a 20 inch 85 pound beam can support without exceeding the safe web resistance of the section.

From the table, page 223, the maximum load for this section given in small figures above the upper zigzag line is found to be 265,200 pounds.

Example 3. Vertical Deflection. Required the proper size and the deflection of a channel supporting a net load of 10,000 pounds concentrated in the middle of a 14-foot span, assuming that the channel is braced against lateral deflection.

The specified load is equivalent on the given span to a uniformly distributed load of $2 \times 10,000 = 20,000$ pounds.

In the table, page 232, it is found that a 12 inch 30 pound channel will support a gross load of 20,500 pounds or a net load of $20,500-14 \times 30=20,080$ pounds. The net safe load concentrated at the middle of the span will be one-half this or 10,040 pounds.

The deflection produced by a uniformly distributed load of 20,500 pounds is found from the coefficient given in the same table and page 213 to be $\frac{3.24}{12}$ =0.270". The deflection for the specified load concentrated in the middle of the span is approximately $\frac{0.270 \times 4}{5}$ =0.216". See page 207.

Example 4. Vertical Deflection. Required the deflection of a riveted girder 37 inches deep for a span of 35 feet and a fiber stress of 14,000 pounds per square inch.

Required deflection, see table, page 213, $=\frac{17.741}{37}=0.479$ ".

Example 5. Vertical Deflection. Required the deflection of an angle $6 \times 4 \times \%$ about an axis parallel to the short leg for a span of 14 feet and a fiber stress of 16,000 pounds.

Required deflection, see table, pages 213 and 214, is $\frac{3.244}{2 \text{ x } (6-1.96)} = 0.401''$.

Example 6. Vertical Deflection. Required the deflection of a 10 inch beam for a span of 18 feet with a fiber stress of 11,000 pounds.

Required deflection, see table, pages 213 and 214, $=\frac{11,000 \times 5.363}{16,000 \times 10} = 0.369$ ".

Example 7. Lateral Deflection. Required the safe load on a 12 inch 31½ pound beam for a span of 16 feet without any lateral support or bracing.

Tabular load, page 225,=24,000 pounds.

Ratio Length of span = $\frac{16 \times 12}{5} = 38.4$

Reduced safe load, page 214, 24,000 x 0.468=11,232 pounds.

BEAMS

MAXIMUM BENDING MOMENTS AND WEB RESISTANCE

							
Mmax	d		t	V	fb	a	R
Maximum Bending Moment	Depth of Beam	Weight per Foot	Thickness of Web	Allowable Web Shear	Allowable Buckling Resistance	Min. End Bearing	End Reaction a=3½"
Foot Pounds	Inches	Pounds	Inches	Founds	Pounds per Sq. In.	Inches	Pounds
292130	27	90.0	.524	141480	10080	20.0	54140
328390		115.0	.750	180000	13460	11.8	95880
.320390		110.0	.688	165120	12960	12.5	84690
312390		105.0	.625	150000	12350	13.4	73320
264400		100.0	.754	180960	13490	11.8	96620
256560	24	95.0	.693	166320	13000	12.5	85610
248710		90.0	.631	151440	12410	13.3	74410
240870		85.0	.570	136800	11710	14.5	63410
231920		80.0	.500	120000	10690	16.5	50780
216670		74.0	.476	114240	10260	17.4	46400
156930	21	60.5	.428	89880	10500	14.8	39320
220750		100.0	.884	176800	15080	8.3	113320
214210		95.0	.810	162000	14720	8.6	101370
207680		90.0	.737	147400	14300	9.0	89590
201140	20	85.0	.663	132600	13780	9.5	. 77630
195510	20	80.0	.600	120000	13230	10.1	67460
169170		75.0	.649	129800	13660	9.6	75380
162640		70.0	.575	115000	12980	10.4	63420
155930		65.0	.500	100000	12080	11.6	51320
186720		90.0	.807	145260	15140	7.4	97730
180840		85.0	.725	130500	14700	7.7	85260
174960		80.0	.644	115920	14160	8.2	72940
169080		75.0	.562	101160	13450	8.9	60480
136480	18	70.0	.719	129420	14670	7.8	84350
130590		65.0	.637	114660	14110	8.3	71890
124710		60.0	.555	99900	13380	9.0	59420
117860		55.0	.460	82800	12220	10.2	44980
109200		48.0	.380	68400	10800	12.2	32830
122890		75.0	.882	132300	16050	5.6	102660
117980		70.0	.784	117600	15690	5.8	89160
113080		65.0	.686	102900	15210	6.1	75650
108270	1	60.0	.590	88500	14600	6.5	62440
90850	15	55.0	.656	98400	15040	6.2	71530
85940		50.0	.558	83700	14340	6.7	58020
81040		45.0	.460	69000	13350	7.5	44520
78530		42.0	.410	61500	12670	8.1	37660 26910
72130	J	37.5	.332	49800	11180	9.7	20910

BEAMS
MAXIMUM BENDING MOMENTS AND WEB RESISTANCES

Mmax	d		t	V	fb	a	R
Maximum Bending Moment	Depth of Beam	Weight per Foot	Thickness of Web	Allowable Weh Shear	Allowable Buckling Resistance	Min. End Bearing	End Reaction a=3½"
Foot Pounds	Inches	Pounds	Inches	Pounds	Pounds per Sq. In.	Inches	Pounds
71330		55.0	.821	98520	16470	4.3	87890
67410	1	50.0	.699	83880	16030	4.5	72830
63490		45.0	.576	69120	15390	4.8	57620
59770	12	40.0	.460	55200	14480	5.3	43300
50730		35.0	.436	52320	14230	5.4	40330
47960		31.5	.350	42000	13060	6.2	29710
44270		28.0	.284	34080	11680	7.3	21560
42320		40.0	.749	74900	16690	3.5	75010
39050		35.0	.602	60200	16120	3.7	58220
35780	10	30.0	.455	45500	15190	4.1	41470
32560		25.0	.310	31000	13410	5.0	24940
30270		22.25	.252	25200	12130	5.7	18340
33120		35.0	.732	65880	16870	3.1	71010
30180	.9	30.0	.569	51210	16260	3.3	53200
27240	1	25.0	.406	36540	15160	3.7	35390
25160		21.0	.290	26100	13620	4.4	22710
22810		25.5	.541	43280	16440	2.9	48920
21500		23.0	.449	35920	15910	3.0	39290 '
20190	8	20.5	.357	28560	15120	3.3	29690
18960		18.0	.270	21600	13870	3.8	20600
19470	1	17.5	.220	17600	12700	4.3	15370
16070	_	20.0	.458	32060	16350	2.5	39310
14930	7	17.5	.353	24710	15570	2.7	28850
13800		15.0	.250	17500	14150	3.2	18580
11640		17.25	.475	28500	16810	2.1	39930
10660	6	14.75	.352	21120	16050	2.2	28250
9680		12.25	.230	13800	14480	2.6	16650
8080		14.75	.504	25200	17280	1.6	41370
7260	5	12.25	.357	17850	16580	1.8	28120
6450		9.75	.210	10500	14870	2.1	14830
4760		10.5	.410	16400	17310	1.3	31940
4500	4	9.5	.337	13480	16940	1.4	25690
4240	~	8.5	.263	10520	16360	1.4	19360
3980		7.5	.190	7600	15360	1.6	13130
2590		7.5	.361	10830	17560	1.0	26940
2390	3	6.5	.263	7890	17020	1.0	19020
2210	1	5.5	.170	5100	15950	1.1	11530

CHANNELS

MAXIMUM BENDING MOMENTS AND WEB RESISTANCES

			1				
Mmax	d		t	V	f _b	a	R
Maximum	Depth	Weight	Thickness	Allowable	Allowable	Min.	End
Bending	of	per	of	Web	Buckling	End	Reaction
Moment	Chaonel	Foot	Web	Shear	Resistance	Bearing	a=3½"
Foot Pounds	Inches	Pounds	Inches	Pounds	Pounds per Sq. In.	laches	Pounds
76490	15	55.0	.818	122700	15820	5.7	93830
71590		50.0	.720	108000	15390	6.0	80350
66680		45.0	.622	93300	14820	6.4	66840
61780		40.0	.524	78600	14040	6.9	53350
56880		35.0	.426	63900	12900	7.9	39850
55570		33.0	.400	60000	12510	8.2	36270
64360	13	50.0	.791	102830	16150	4.8	86250
60110		45.0	.678	88140	15680	5.0	71760
55870		40.0	.565	73450	15020	5.4	57260
53320		37.0	.497	64610	14470	5.7	48540
51620		35.0	.452	58760	14020	6.0	42770
48740		32.0	.375	48750	13000	6.8	32900
43760	12	40.0	.758	90960	16260	4.4	80090
39840		35.0	.636	76320	15730	4.6	65040
35920		30.0	.513	61560	14950	5.0	49850
32000		25.0	.390	46800	13670	5.8	34660
28470		20.5	.280	33600	11570	7.4	21060
30800	10	35.0	.823	82300	16900	3.4	83430
27530		30.0	.676	67600	16440	3.6	66670
24260		25.0	.529	52900	15730	3.9	49910
20990		20.0	.382	38200	14470	4.4	33160
17840		15.0	.240	24000	11780	6.0	16970
20950	9	25.0	.615	55350	16470	3.2	58220
18010		20.0	.452	40680	15550	3.5	40420
15070		15.0	.288	25920	13590	4.4	22500
14020		13.25	.230	20700	12220	5.1	16170
15920	8	21.25	.582	46560	16620	2.8	53200
14610		18.75	.490	39200	16170	2.9	43580
13310		16.25	.399	31920	15530	3.2	34070
12000		13.75	.307	24560	14490	3.5	24460
10770		11.25	.220	17600	12700	4.3	15370
12640	7	19.75	.633	44310	17090	2.3	56780
11490		17.25	.528	36960	16700	2.4	46300
10350		14.75	.423	29610	16130	2.6	35830
9210		12.25	.318	22260	15190	2.9	25360
8030		9.75	.210	14700	13230	3.5	14580
8680	6	15.5	.563	33780	17150	2.0	48280
7700		13.0	.440	26400	16640	2.1	36610
6720		10.5	.318	19080	15730	2.3	25010
5780		8.0	.200	12000	13810	2.8	13810
5550	5	11.5	.477	23850	17180	1.7	38920
4730		9.0	.330	16500	16380	1.8	25670
3960		6.5	.190	9500	14450	2.2	13040
3050	4	7.25	.325	13000	16870	1.4	24670
2790		6.25	.252	10080	16250	1.5	18430
2530		5.25	.180	7200	15150	1.6	12270
1840	3	6.0	.362	10860	17560	1.0	27020
1640		5.0	.264	7920	17030	1.0	19110
1450		4.0	.170	5100	15940	1.1	11520

BEAMS

ALLOWABLE UNIFORM LOAD IN THOUSANDS OF POUNDS

Maximum Bending Stress, 16,000 Pounds per Square Inch

	Depth and Weight of Sections 21 In. 24 Inch 21 In.											ent
Span	27 ln.		***			24 Incl	1				21 In.	Coefficient of Deflection
Feet	90 lbs.	115 lbs.	110 lbs.	105 lbs.	100 lbs.	95 lbs.	90 lbs.	85 lbs.	80 1bs.	74 lbs.	60½ lbs.	రీ A ———
6 7 8 9	288.0 259.3 233.4	201 0	830.2 320.4 284.8 256.3	800.0 277.7 249.9	225 D	256.6 228.0	221.1	214.1	240.0 231.9 206.1 185.5	$\frac{228.5}{216.7}$ 192.6 173.3	179.8 179.3 156.9 139.5 125.5	0.60 0.81 1.06 1.34 1.66
11 12 13 14 15	212.2 194.5 179.5 166.7 156.6	238.8 218.9 202.1 187.7 175.1	233.0 213.6 197.2 183.1 170.9	227.2 208.3 192.2 178.5 166.6	192.3 176.3 162.7 151.1 141.0	186.6 171.0 157.9 146.6 136.8	180.9 165.8 153.1 142.1 132.6	175.2 160.6 148.2 137.6 128.5	168.7 154.6 142.7 132.5 123.7	157.6 144.5 133.3 123.8 115.6	114.1 104.6 96.5 89.7 83.7	2.00 2.38 2.80 3.24 3.72
16 17 18 19 20	145.9 137.3 129.7 122.8 116.7	164.2 154.5 146.0 138.3 131.4	160.2 150.8 142.4 134.9 128.2	156.2 147.0 138.8 131.5 125.0	132.2 124.4 117.5 111.3 105.8	128.3 120.7 114.0 108.0 102.6	124.4 117.0 110.5 104.7 99.5	120.4 113.4 107.1 101.4 96.3	92.8	86.7	66.1 62.8	ĺ
21 22 23 24 25	106.1 101.5 97.3	119.4 114.2 109.5	122.1 116.5 111.4 106.8 102.5	$113.6 \\ 108.7 \\ 104.1$	100.7 96.1 92.0 88.1 84.6	85.5	94.7 90.4 86.5 82.9 79.6	91.8 87.6 83.8 80.3 77.1	88.3 84.3 80.7 77.3 74.2	82.5 78.8 75.4 72.2 69.3	59.8 57.1 54.6 52.3 50.2	8.01 8.76 9.53
26 27 28 29 30	89.8 86.4 83.4 80.5 77.8	93.8 90.6	94.9 91.5 88.4		81.4 78.3 75.5 72.9 70.5	76.0 73.3 70.8	76.5 73.7 71.1 68.6 66.3	74.1 71.4 68.8 66.4 64.2	71.4 68.7 66.3 64.0 61.8	66.7 64.2 61.9 59.8 57.8	48.3 46.5 44.8 43.3 41.8	$12.98 \\ 13.92$
31 32 33 34 35	75.3 72.9 70.7 68.6 66.7	82.1 79.6 77.3	80.1 77.7 75.4	80.6 78.1 75.7 73.5 71.4	1	1	-	62.2 60.2 58.4 56.7 55.1	59.8 58.0 56.2 54.6 53.0	55.9 54.2 52.5 51.0 49.5	40.5 39.2 38.0 36.9 35.9	16.95 18.03 19.13 20.28
36 37 38 39 40	64.8 63.1 61.4 59.8 58.4	71.0 69.1 67.4	69.3 67.5 65.7	65.8	55.7 54.2	55.5 54.0 52.6	53.8 52.4 51.0	53.5 52.1 50.7 49.4 48.2	51.5 50.1 48.8 47.6 46.4	48.2 46.8 45.6 44.4 43.3	34.9 33.9 33.0 32.2 31.4	22.66 23.90 25.18
41 42 43 44 45	56.9 55.6 54.3 53.0 51.9	62.6 61.1 59.7	61.0 59.6 58.3 57.0	59.5 58.1 56.8 55.5	51.6 50.4 49.2 48.1 47.0	48.9 47.7 46.6	46.3 45.2	45.9 44.8 43.8	44.2 43.1 42.2	41.3 40.3 39.4 38.5	28.5	27.82 29.20 30.60 32.04 33.52
46 47 48 49 50	50.7 49.7 48.6 47.6 46.7	55.9 54.7 58.8 52.5	54.1 53.4 52.8 51.8	53.2 52.1 51.0 50.0	45.0 44.1 48.2 42.8	43.7	42.3 41.5 40.6 89.8	41.0 40.1 89.8 88.5	39.5 38.7 87.9 87.1			35.02 36.56 38.14 39.74 41.38

Loads above upper horizontal lines will produce maximum allowable shear in webs. Loads below lower horizontal lines will produce excessive deflections. For maximum safe loads, see page 219.

BEAMS

ALLOWABLE UNIFORM LOAD IN THOUSANDS OF POUNDS

Maximum Bending Stress, 16,000 Pounds per Square Inch

Span				D	epth a	nd Wei	ight of	Section	ns				nt on
in				20 I	nch					18 1	Inch		Coefficient of Deflection
Feet	100 lbs,	95 lba.	90 lbs.	85 lbs.	80 lbs.	75 lbs.	70 1bs.	65 lbs.	90 lbs.	85 lbs.	80 lbs.	75 lbs.	å å
5	858.6 353.2						•						0.41
6 7 8 9	252.3 220.7 196.2	$244.8 \\ 214.2 \\ 190.4$	184.6	$\frac{229.9}{201.1}$ $\frac{178.8}{1}$	223.4 195.5 173.8	$193.3 \\ 169.2 \\ 150.4$	280.0 216.8 185.9 162.6 144.6 130.1	$178.2 \\ 155.9 \\ 138.6$	$213.4 \\ 186.7 \\ 166.0$	241.1 206.7 180.8 160.7	$200.0 \\ 175.0 \\ 155.5$	193.2 169.1 150.3	1.34
11 12 13 14 15	160.5 147.2 135.8 126.1	155.8 142.8 131.8 122.4	151.0	146.3 134.1 123.8 114.9	142.2 130.3 120.3 111.7	123.0 112.8 104.1 96.7	118.3 108.4 100.1 92.9 86.7	113.4 104.0 96.0 89.1	135.8	131.5 120.6 111.3 103.3	127.2 116.6 107.7 100.0	123.0 112.7 104.1 96.6	2.00 2.38 2.80 3.24
16 17 18 19 20		100.8 95.2 90.2	92.3 87.4	94.1 89.4 84.7	92.0 86.9 82.3	79.6 76.3 71.2	76.5 72.3	69.3	83.0 78.6	85.1 80.4	82.3 77.8 73.7	79.6 75.1 71.2	4.78 5.36 5.98
21 22 23 24 25	84.1 80.3 76.8 73.6 70.6	74.5 71.4	75.5 72.2 69.2	70.0 67.0	71.1 68.0 65.2	61.5 58.8 56.4	59.1 56.6 54.2	56.7 54.2 52.0	67.9 64.9 62.2	62.9 60.3	63.6 60.9 58.3	58.8 56.4	8.01 8.76
26 27 28 29 30	67.9 65.4 63.1 60.9 58.9	63.5 61.2 59.1	61.5 59.3 57.3	59.6 57.5 55.5	57.9 55.9 53.9	50.1 48.3 46.7	48.2 46.5 44.9	46.2 44.6 43.0	55.3 53.3 51.5	53.6 51.7 49.9	51.8 50.0 48.3	50.1 48.3 46.6	11.19 12.07 12.98 13.92 14.90
31 32 33 34 35	57.0 55.2 53.5 51.9 50.5	53.6 51.9 50.4	51.9 50.4 48.9	50.3 48.8 47.3	48.9 47.4 46.0	42.3 41.0 39.8	40.7 39.4 38.3	39.0 37.8 36.7	46.7 45.3 43.9	45.2 43.8 42.6	43.7 42.4 41.2	42.3 41.0 39.8	15.91 16.95 18.03 19.13 20.28
36 37 38 39 40	49.1 47.7 46.5 45.3 44.1	46.3 45.1 43.9	44.9 43.7 42.6	43.5 42.3 41.3	42.3 41.2 40.1	36.6 35.6 34.7	35.2 34.2 33.4	33.7 32.8 32.0	40.4 89.8	89.1	38.9 87.8 86.8	37.6 86.6 85.6	
41 42	43.1 42.0	41.8 40.8	40.5 89.6	89.2 85.8	88.1 37.2			80.4 29.7					27.82 29.20

Loads above upper horizontal lines will produce maximum allowable shear in webs. Loads below lower horizontal lines will produce excessive deflections. For maximum safe loads, see page 219.

BEAMS

ALLOWABLE UNIFORM LOAD IN THOUSANDS OF POUNDS Maximum Bending Stress, 16,000 Pounds per Square Inch

_	Depth and Weight of Sections							on spt						
Span in			18 Inch	ı				J	15 In	cb				Coefficient of Deflection
Feet	70 1bs.	65 1bs.	60 lhs.	55 lbs.	48 1bs.	75 1bs.	70 1bs.	65 Ibs.	60 1bs.	55 lbs.	50 lbs.	45 lbs.	42 1bs.	S A
4 5	256.8 218.4	229.8 208.9				$ \begin{array}{r} 264 \cdot 6 \\ \hline 245.8 \\ 196.6 \end{array} $		205.8 180.9	$\frac{177.0}{173.2}$	196.8 181.7 145.4	187.4 137.5	188.0 129.7	128.0	0.27 0.41
6 7 8 9 10	182.0 156.0 136.5 121.3 109.2	149.2 130.6	142.5 124.7	134.7	124.8 109.2	140.4 122.9	134.8 118.0	129.2 113.1	123.7 108.3	103.8	$98.2 \\ 85.9 \\ 76.4$	$92.6 \\ 81.0 \\ 72.0$	104.7	0.60 0.81 1.06
11 12 13 14 15	99.3 91.0 84.0 78.0 72.8	95.0 87.1 80.4 74.6 69.6	83.1 76.7 71.3	78.6 72.5 67.3	79.4 72.8 67.2 62.4 58.2	81.9 75.6 70.2	78.7 72.6 67.4	75.4 69.6 64.6	72.2 66.6 61.9	60.6 55.9 51.9	$\frac{52.9}{49.1}$	54.0 49.9 46.3	$\frac{52.4}{48.3}$	$\frac{2.80}{3.24}$
16 17 18 19 20	68.2 64.2 60.7 57.5 54.6	65.3 61.5 58.0 55.0 52.2	62.4 58.7 55.4 52.5 49.9	58.9 55.5 52.4 49.6 47.1	51.4 48.5 46.0	61.4 57.8 54.6 51.7 49.2	55.5 52.4 49.7		50.9 48.1 45.6	40.4 38.3	$\frac{40.4}{38.2}$ $\frac{36.2}{36.2}$	38.1 36.0 34.1	$\frac{37.0}{34.9}$	4.24 4.78 5.36 5.98 6.62
21 22 23 24 25	52.0 49.6 47.5 45.5 43.7	49.7 47.5 45.4 43.5 41.8	47.5 45.3 43.4 41.6 39.9	44.9 42.9 41.0 39.3 37.7	39.7 38.0 36.4	46.8 44.7 42.7 41.0 39.3	44.9 42.9 41.0 39.3 37.8		41.2 39.4 37.7 36.1 34.6	33.0 31.6 30.3	$31.3 \\ 29.9 \\ 28.6$	29.5 28.2 27.0	$28.6 \\ 27.3 \\ 26.2$	7.30 8.01 8.76 9.53 10.35
26 27 28 29 30	42.0 40.4 39.0 37.6 36.4	40.2 38.7 37.3 36.0 34.8	38.4 37.0 35.6 34.4 33.3	36.3 34.9 33.7 32.5 31.4	$32.4 \\ 31.2 \\ 30.1$	37.8 36.4 35.1 33.9 32.8	35.0 33.7 32.5	34.8 33.5 32.3 31.2 30.2	30.9 29.9	26.9 26.0 25.1	$25.5 \\ 24.6 \\ 23.7$	$24.0 \\ 23.2 \\ 22.4$	$23.3 \\ 22.4 \\ 21.7$	11.19 12.07 12.98 13.92 14.90
31 32 33 34 35	35.2 34.1 33.1 32.1 31.2	33.7 32.6 31.7 30.7 29.8	32.2 31.2 30.2 29.3 28.5	30.4 29.5 28.6 27.7 26.9	$27.3 \\ 26.5 \\ 25.7$	31.7 30.7	80.4 29.5	29.2 28.8	27.9 27.1	23.4 22.7	22.2 21.5	20.9 20.8	19.8	15.91 16.95 18.03 19.13 20.28
36 37 38	30.3 29.5 26.7	29.0 28.2 27.5	27.7 27.0 28.8	26.2 25.5 24.8	23.6								ŀ	21.45 22.66 23.90

Loads above upper horizontal lines will produce maximum allowable shear in webs. Loads below lower horizontal lines will produce excessive deflections. For maximum safe loads, see page 219.

BEAMS

ALLOWABLE UNIFORM LOAD IN THOUSANDS OF POUNDS Maximum Bending Stress, 16,000 Pounds Per Square Inch

,			•		Depth	and V	Veight	of Sec	tions					n it
Span in	15 In.		/.	1	2 Inch	1				1	0 Inch	1	•	Coefficient of Deflection
Feet	37½ l bs.	55 lbs.	50 lbs.	45 lbs.	40 lbs.	35 lbs.	31½ lbs.	28 lhs.	40 lbs.	35 lbs.	30 lbs.	25 1bs	22½ lbs.	Š Ž
3 4 5		142.7		188.2 127.0 101.6			84.0 76.7		149.8 112.8 84.6 67.7	78.1	91.0 71.6 57.2	$\frac{62.0}{52.1}$	50.4 48.5	0.15 0.27 0.41
6 7 8 9	$ \begin{array}{r} 99.8 \\ \hline 96.1 \\ 82.4 \\ 72.1 \\ 64.1 \\ 57.7 $	95.1 81.5 71.3 63.4 57.1	67.4 59.9	72.6 63.5 56.4	68.3 59.8 53.1	67.6 58.0 50.7 45.1 40.6	54.8 48.0 42.6	88.2 59.1 50.6 44.3 39.4 35.5		44.6 39.0 34.7	40.9 35.8 31.8	43.4 37.2 32.6 28.9 26.0	$34.6 \\ 30.3 \\ 26.9$	0.81 1.06
11 12 13 14 15	52.4 48.1 44.4 41.2 38.4	40.8	44.9 41.5 38.5	39.1 36.3	43.5 39.8 36.8 34.2 31.9	$\begin{vmatrix} 31.2 \\ 29.0 \end{vmatrix}$	34.9 32.0 29.5 27.4 25.6	32.2 29.5 27.3 25.3 23.6	30.8 28.2 26.0 24.2 22.6	26.0 24.0 22.3	$23.9 \\ 22.0 \\ 20.4$	23.7 21.7 20.0 18.6 17.4	$ \begin{array}{c} 20.2 \\ 18.6 \\ 17.3 \end{array} $	2.38 2.80
16 17 18 19 20	36.0 33.9 32.0 30.4 28.8		31.7 30.0 28.4	29.9 28.2 26.7	28.1 26.6	25.4 23.9 22.5 21.4 20.3	$22.6 \\ 21.3 \\ 20.2$	22.2 20.9 19.7 18.7 17.7	21.2 19.9 18.8 17.8 16.9	18.4 17.4 16.4	16.8 15.9 15.1	16.3 15.3 14.5 13.7 13.0	$14.3 \\ 13.5$	4.24 4.78 5.36 5.98 6.62
21 22 23 24 25	27.5 26.2 25.1 24.0 23.1	27.2 25.9 24.8 23.8	24.5 23.4	23.1 22.1	$21.7 \\ 20.8$	19.3 18.4 17.6 16.9	17.4	16.9 16.1 15.4 14.8	16.1 15.4	14.9 14.2	18.6 13.0	12,4 11.8	11.5 11.0	7.30 8.01 8.76 9.53 10.35
26 27 28 29 30	22.2 21.4 20.6 19.9 19.2	21.9	90.7	19.5	18.4	15.6	14.8	13.8						11.19 12.07 12.98 13.92 14.90
31 32	18.6 18.0													15.91 16.95

Loads above upper horizontal lines will produce maximum allowable shear in webs. Loads below lower horizontal lines will produce excessive deflections. For maximum safe loads, see pages 219 and 220.

BEAMS

ALLOWABLE UNIFORM LOAD IN THOUSANDS OF POUNDS Maximum Bending Stress, 16,000 Pounds per Square Inch

Span				D	epth a	nd Wei	gbt of	Section	В	•			it of
in		9]	nch				8 Inch				7 Incb		icier
Feet	35 lbs.	30 lbs.	25 lbs.	21 lbs.	25½ lbs.	23 1bs.	20½ lbs.	18 lbs.	20 lbs.	17½ lbs.	15 lbs.	Coefficient Oeffection	
3 4 5	181.8 88.3 66.2 53.0	60.4	73.1 72.6 54.5 43.6	52.2 50.3 40.3	86.6 60.8 45.6 36.5	71.8 57.3 43.0 34.4	57.1 53.9 40.4 32.3	43.2 37.9 30.3	85.2 31.1	$\begin{array}{r} 64.1 \\ 42.9 \\ 32.1 \\ 25.7 \end{array}$	49.4 39.8 29.9 23.9	$\begin{array}{r} 85.0 \\ \hline 27.6 \\ 22.1 \end{array}$	0.15 0.27 0.41
6 7 8 9	37.9 33.1 29.4		36,3 31.1 27.2 24.2 21.8	33.6 28.8 25.2 22.4 20.1	30.4 26.1 22.8 20.3 18.2	28.7 24.6 21.5 19.1 17.2	$23.1 \\ 20.2$	25.3 21.7 19.0 16.9 15.2	25.9 22.2 19.5 17.3 15.6	21.4 18.4 16.1 14.3 12.9	19.9 17.1 14.9 13.3 11.9	18.4 15.8 13.8 12.3 11.0	0.60 0.81 1.06 1.34 1.66
11 12 13 14 15		$20.1 \\ 18.6 \\ 17.2$	19.8 18.2 16.8 15.6 14.5	18.3 16.8 15.5 14.4 13.4	16.6 15.2 14.0 13.0 12.2	15.6 14.3 13.2 12.3 11.5	14.7 13.5 12.4 11.5 10.8	13.8 12.6 11.7 10.8 10.1	14.2 13.0 12.0 11.1 10.4	11.7 10.7 9.9 9.2	10.9 10.0 9.2 8.5	10.0 9.2 8.5 7.9	2.00 2.38 2.80 3.24 3.72
16 17 18 19 20	16.6 15.6 14.7 18.9 18.8		13.6 12.8 12.1 11.5 10.9	$12.6 \\ 11.8 \\ 11.2 \\ 10.8 \\ 10.1$	11.4 10.7 10.1	10.8 10.1 9.6	10.1 9.5 9.0	9.5 8.9 8.4	9.7 9.2 8.6	8.0	7.5	8.9	4.24 4.78 5.36 5.98 6.62

Span				D	epth an	nd We	ight o	f Sec	tions					t of
in		6 Incb			5 Inch			4	Inch			3 Inch		cien
Feet	171/4 1bs.	148/4 lbs.	121/4 lbs.	14% lbs.	121/4 lbs.	93/4 lbs.	10½ lbs.	9½ lbs.	8½ lbs.	7½ lbs.	7½ lbs.	6½ 1bs.	5½ 1bs.	Coefficient o Deflection
1	57.0			50.4	85.7		82.8	27.0	21.0		$\frac{21.7}{20.7}$	15.8		0.02
2 3 4 5	46.6 31.0	$\frac{42.2}{28.4}$	$\frac{27.6}{25.8}$	$\frac{32.3}{21.5}$	$\frac{29.1}{19.4}$	$\frac{21.0}{17.2}$	$\frac{19.0}{12.7}$	18.0	$\frac{16.9}{11.3}$	$\tfrac{15.2}{10.6}$	10.4 6.9	9.6 6.4	8.8	$0.07 \\ 0.15$
4	23.3	21.3	19.4	16.2	14.5	12.9	9.5	9.0	8.5	8.0	5.2	4.8	4.4	0.27
_	18.6	17.1	15.5	12.9	11.6	10.3		7.2	6.8	6.4	4.1	3.8	3.5	0.41
6 7	15.5 13.3	$14.2 \\ 12.2$	$12.9 \\ 11.1$	10.8 9.2	9.7 8.3	8.6 7.4	6.3 5.4			5.3 4.5	3.5	3.2		$0.60 \\ 0.81$
8	11.6	10.7	9.7	8.1	7.3	6.4	4.8	4.5	4.2	4.0	8.0 2.6	2.7	2.5 2.2	1.06
10 10	10.3	9.5 8.5	8.6 7.7	7.2 6.5	6.5 5.8	5.7 5.2		4.0 3.8	3.8 8.4	3.5 3.2				$1.34 \\ 1.66$
11	8.5	7.8	7.0	5,9	5.3	4.7	3.0	3.0	3.1	3.2				
12	7.8	7.1	6.5	5.4	4.8	4.3		İ						$\frac{2.00}{2.38}$
$\frac{13}{14}$	7.2 8.7	6.6 8.1	8.0 5.5											$\frac{2.80}{3.24}$
	11 0.1	0.1	0.0				1)		<u>' </u>					10.24

Loads above upper borizontal lines will produce maximum allowable sbear in webs. Loads below lower borizontal lines will produce excessive deflections. For maximum safe loads, see page 220.

BEAMS-Allowable Uniform Load in Pounds per Foot

	30	2590	2920 2850 2780 2350 2280 2210 2210 2140 2060	1400	1960 1900 1850 1790 1740 1500 1450 1390	1660 1610 1560 1500 1210 11160 1110 1050
	28	2980	3350 3350 3190 2700 2620 2540 2370 2370	1600	2250 2190 2120 2050 2000 1730 1660 1590	1910 1730 1730 1730 1330 1270 1200
	27	3200	3600 3520 3520 2900 2820 2730 2640 2550 2380	2010 1860 1720	2420 2350 2280 2210 2210 2150 1790 1710	2050 1980 1920 1860 1500 1370 1290 1290
	26	3450	3890 3790 3790 3130 3040 2940 2850 2750	1860	2610 2540 2460 2380 2310 2000 1920 1850	2210 2140 2070 2000 2000 1620 1480 1400
	25	3730	4200 4100 44000 3280 3280 3180 2770		3070 2830 2980 2740 2880 2640 2790 2570 2720 2500 2350 2170 2260 2080 2170 2000	2590 2390 2310 22430 2240 2240 2250 2160 1750 1750 11730 1670 1600 1600 1620 1520 1400 1
•	24	4050	4560 4450 4340 3670 3560 3350 3350 3320 3010	2180	3070 2980 2980 2720 2720 2350 2260 2170	2590 2510 2510 2510 2350 1900 11730 11640 1520
	23	4410	4970 4850 4720 4000 3880 3760 3510 3280	2370	3340 3240 3140 3040 2960 2560 2460 2360	2820 2740 2556 2560 2560 1970 11890 1650
	22	4820	5430 5300 5160 4370 4240 4110 3980 3580	2850 2590	3650 3540 3540 3320 33230 2800 2690 2580	23090 23090 22000 22200 22200 22200 13000 13000 13000
	21	5290	5960 5810 5670 4800 4650 4510 4210 3930		4000 3890 3770 3650 3550 3070 2950 2830	3390 3280 3170 3070 22480 2250 2140 1980
eet	20	5840	6570 6410 6250 5290 5130 4970 4820 4830	3140	4420 4280 4150 4020 33910 33250 3120	3730 3520 3500 3380 2730 2730 2730 2730 2730 2730 2730 273
Span in Feet	19	6470	7280 7100 6920 5860 5690 5510 5340 5140	3870 3480	5450 4890 5290 4750 5130 4600 4970 4460 4830 4330 4180 3750 4020 3600 3850 3460	4130 4010 3880 3750 3020 2890 2760 2610
Sp	18	7200	8110 7910 7710 6530 6340 6140 5950 5730		5450 5290 5130 4970 4830 4180 4020 3850	4610 4470 4320 4180 3320 3320 3080 2910 2700
	17	8080	9090 8870 8650 7320 7100 6880 6420 6420	4340	6110 5930 5750 5770 5410 4680 4320	5170 5010 4840 4680 3780 3320 3260 3020
	16	9120	10260 10010 10010 8760 8260 7770 7770 7750 6770 6770	4900	6900 6690 6490 6290 6110 5290 5290 5290	5840 5650 5470 5280 4260 4080 3900 3680 3410
	15	10370	11680 111390 111110 9400 9400 9120 8840 8560 8250	5580	7850 7620 7380 7150 6950 6020 5780 5540	6640 6430 6220 6220 6010 4850 4640 4190 8880
	14	11910	13400 13080 12750 10770 10470 10150 9830 9470 8840	6400	9010 8740 8480 8210 7980 6910 6640	7620 7380 7140 6900 5570 55330 5090 4810 4460
:	13	13810	15550 15170 14790 12520 12150 11770 11400 10980	7430	10450 10140 9830 9520 9260 8010 7700 7380	8840 8560 8280 8000 6460 6180 5500 5170
	12		18240 17360 17360 14690 14250 13820 13380 12880 12040	8720	12260 11900 11540 11170 11170 9400 9040 8660	10370 10050 9720 9390 7580 7260 6930 6550
1	11	19290 16210	21710 21180 20650 17480 16960 16940 15930 15330	10370	14590 14160 13730 13300 12930 11180 10750	12350 11960 111570 11180 9020 9020 8630 7790 7720
	10	23340	26270 25630 24990 21150 20520 19570 19270 17330	60.5 12550 10370	17660 17140 16610 16690 16690 15640 13530 13010	14940 14470 14400 13530 10920 10450 9980 9430
de per		06	1115 1110 1105 100 95 96 85 87 87	60.5	100 95 95 90 75 75 65	90 77 75 65 65 65 65 65 84 85
TUCUGS	Depth	27	4.	21	02	18

FOOT
PER
Pounds
Z
LOAD
UNIFORM
BEAMS—ALLOWABLE

		,		,	m
	26	1450 1400 1340 1280 1080 1020 960 930 850	840 800 750 710 600 570 520		l lines lear. l lines
	25	1570 1510 1450 1390 1160 1100 1010 920	910 860 810 770 650 610		izonta web sh isonta effectio
	24	1710 1640 1570 1500 1260 1190 1130 1090	990 940 880 830 700 670		ry hor is for ed hor sive de
	23	2230 2030 1860 1710 1570 1450 21450 21450 1570 1640 1510 1440 2050 1870 1770 1570 1450 1340 1950 1780 1840 150 1380 1280 1850 1350 1350 1350 1470 1340 1190 1090 1010 930 1350 1190 1090 1010 930 1310 1190 1090 1010 930 1310 1190 1090 10	1080 1020 960 900 770 730 670		660 Loads within heavy horizontal lines 600 are maximum loads for web shear. 540 Loads below dotted horisontal lines 560 will produce excessive deflection.
	22	2230 2030 2140 1950 2050 1870 1960 17790 1560 1420 1470 1340 1310 11190	1180 11110 1050 990 840 790 730	700 650 590 540 500	withinsximu below produce
	21	22305 2140 2050 1960 1650 1560 1470 1430	1220 1220 1150 1150 1080 920 870 870	770 710 650 590 550	Loads are n Loads will 1
,	20	2460 2230 2030 1860 1710 1570 1450 2360 2140 1950 1780 1640 1510 1440 2260 2050 1870 1770 1570 1450 1340 2260 2050 1870 1770 1570 1450 1380 1280 18720 1650 1450 1380 1190 1090 11720 1470 1340 1250 1370 1190 1090 1010 1020 1570 1470 1340 1250 130 1190 1090 1010 930 1570 1430 130 1190 1090 1010 930 1440 1310 1190 1090 1010 930 1440 1310 1190 1090 1010 930 1830 1340 1310 1190 1090 1000 920 830	1430 1290 1180 1350 1220 1110 1270 1150 1050 990 1020 870 790 89	850 780 720 650 610	660 600 540 500
	19	2720 2460 2230 2030 1860 1710 2610 2366 2140 1950 1730 1640 2510 2260 2050 1870 1710 1570 2400 2170 1660 1790 1640 1500 1870 1720 1660 1420 1300 1800 1620 1470 1340 1230 1390 1740 1570 1430 1300 1190 1090 1600 1440 1310 1190 1090 1000	1580 1490 1410 1320 1120 1060 980	940 870 790 720 670	730 670 600 560
	18	3400 3030 2720 3270 2910 2610 3130 2790 2510 3500 2670 2400 2520 2240 2010 2240 2000 1800 2170 1940 1740 2000 1780 1600	1760 1580 1660 1490 1570 1410 1480 1320 1250 1120 1180 1060 1090 980	1040 960 880 800 750	820 750 670 620
, l	17	3400 3030 3270 2910 3130 2790 3000 2670 2520 2240 2380 2120 2240 2000 2170 1940	2230 1980 1760 2110 1870 1660 1980 1760 1570 1870 1650 1480 1580 1400 1250 1500 1330 1180 1390 1230 1090	1170 1080 990 900 840	920 840 750 700
in Feet	16	3840 3690 3530 3380 2840 2690 2530 2250	2230 1980 2110 1870 1980 1760 1870 1650 1580 1400 1500 1330 1390 1230	1320 1220 1120 1020 950	1040 940 850 790
Span in	15	4370 3840 3400 3030 2720 4200 8890 3370 2910 2610 4020 3530 3130 2790 2510 3856 3380 3000 2670 2400 3230 2840 2520 2240 2010 32306 2260 2380 210 1910 2880 2530 2240 2000 1800 2790 2450 2170 1940 1740 2560 2250 2000 1780 1600	5710 4720 3960 3380 2910 2540 2230 1980 1760 1580 1430 1290 1180 1080 5830 4460 3750 3190 2750 2400 2110 1870 1660 1490 1350 1120 1100 1020 560 560 150 1200 1110 1020 560 1100 1200 1110 1020 360	1500 1390 1270 1160 1080	11180 1070 970 900
	14		2910 2750 2590 2440 2070 1960 1810		
	13	6830 5820 5020 6550 5590 4820 6280 5350 4620 6010 5130 4420 5050 4300 3710 4780 4070 3510 4500 3840 3310 4360 3720 3210 4310 3410 2940	3960 3380 2910 3750 3190 2750 3530 3010 2590 3320 2830 2440 2820 2400 2070 2660 2270 1960 2460 2100 1810	2000 1730 1850 1590 1690 1460 1540 1330 1430 1240	2650 2190 1840 1570 1350 2420 2000 1680 1430 1230 2180 1800 1510 1290 1110 2010 1660 1400 1190 1030
ļ	12	12140 9830 8120 6830 5820 11650 9440 7800 6550 5590 11170 9050 7480 6280 5350 10090 8660 7160 6010 5130 8970 7270 6010 5050 4300 8400 6880 5680 4780 4070 8000 6480 5360 4500 3840 7760 6280 5190 4360 3720 7120 5770 4770 4010 3410	3960 3750 3530 3320 2820 2660 2460		1840 1680 1510 1400
	11	12140 9830 8120 6830 11150 9440 7800 6550 11170 9050 7480 6280 10600 8600 7160 6010 8970 7270 6010 5050 8490 6880 5680 4780 7760 6280 5360 4500 7760 6280 5190 4360	4720 4460 4200 3950 3350 3170 2930	3390 2800 2350 3120 2580 2170 2860 2370 1990 2610 2150 1810 2420 2000 1680	3270 2650 2190 1840 2980 2420 2000 1680 2690 2180 1800 1510 2490 2010 1660 1400
	10	9830 8120 9440 7800 90540 7480 8660 7160 7270 6010 6880 5680 6480 5360 6280 5190	5710 4720 5390 4460 5080 4200 4780 3950 4060 3350 3840 3170 3550 2930	3390 2800 3120 2580 2860 2370 2610 2150 2420 2000	2650 2190 2420 2000 2180 1800 2010 1660
	6	12140 111650 11170 10690 8970 8490 8000 8000 7760 7120	7050 5 6660 5 6270 5 5900 4 4740 3 4380 3	4180 3 3860 3 3530 2 3220 2 2990 2	3270 2980 2690 2490 2490
5		15360 14750 14140 13530 11360 10740 10130 9820 9820	8920 8430 7940 7470 6340 6000 5540	4880 4470 4070 3790	4140 3770 3410 3150
	2	20060 19260 18460 17680 14830 14030 13230 11770	5850 11650 4980 11010 4110 10370 3280 9760 1270 8280 0660 7830 9850 7240	6910 6380 5840 5320 4950	5410 4930 4450 4110
	9	75 27310 20060 15360 65 25130 18460 14750 66 24060 17680 13530 55 20190 14430 11360 50 19100 14030 10740 45 18010 13230 10130 42 17450 12820 9820 37.5 16020 11770 9010	15850 11650 14980 11010 14110 10370 13280 9760 11270 8280 11270 8280 10660 7830 9850 7240	9400 8680 7950 7240 6730	7360 6710 6050 5590
per	abano¶ 1004	75 70 65 60 55 50 42 37.5	55 50 45 40 35 31.5	40 35 30 25 22.25	35 30 25 21
осрев	Depth, I.	15	12	2/	6

FOOT
PER
Pounds
Z
LOAD
UNIFORM
BEAMS-ALLOWABLE

1	18	9	30	8	20	20									1			lines	lines	!		
	17	305	3005	990	304	404						-		-	-							
	16	710 630 560	670 600 530	630 560 500	590 530 470		2,000	430		_					-			Loads within heavy horizontal	are maximum loads for wen snear. Toads below dotted horizontal	will produce excessive deflection		
	15	810	260	720	029	•	070	490							-			avy	s ror w	ive de		
	14	930	880	820	770	96,6	000	560		480	400	-			-			ig i	m load	excess		
	13	0801	1020	096	006	0 0	2 5	650		550	460				-		` '	ds wit	aximus da hel	roduce		
	12	270	1190	1120	0201	000	080	770		650	540		450	400	360			Log	are m	will p		
	11	510	420	340	250	1060		910	í	7.70	040	Ì	530	480	430	~						_
	10	830 1	720	620	520 1	000		100	- 0	930	780		650	580	520	380	360	340	320		_	_
	6	2501	1201	5340 4490 3820 3300 2520 1990 1620 1340 1120	9480 7490 6070 5010 4210 3590 3100 2370 1870 1520 1250 1050	2040 6250 6140 4050 0550 0500 0100 2450 1550 1500	7460 5900 4780 3950 3830 2440 1870 1470 1190	6900 5450 4420 3650 3070 2610 2250 1730 1360 1100		150	096	•	800	720	640	470	440	420	390			_
eet		8502	690	520 1	370 1	100	270	7301		5820 4600 3720 3080 2590 2200 1900 1450 1150 5330 4210 3410 9820 9370 9020 1740 1330 1050	210		010	910	810	590	560	530	200	_		_
Span in Feet	- 2	7202	5102	300	1002	001	440 1	2501		9001	5801		320/1	190	1050	780	730	690	650	420	390	360
Spa	642	3203	020	8203	590 3		230	6102	- 5	2007	8301	_	530	380 1	220	006	850	800	750	490	450	420
	9	070	780 4	4903	2103	0 0 0	2000	070	- 0	590 Z	4840 3830 3100 2560 2150 1830 1580 1210		4040 3190 2590 2140 1800 1530 1320 1010	3630 2870 2320 1920 1610 1380 1190	3220 2550 2060 1710 1430 1220			940	880	580	530	490
	51/2	030 5	690	340 4	0104	1001	950 3	6503		2080	5602		140	$\frac{620}{1}$	710/1	2380 1880 1520 1260 1060	2250 1780 1440 1190 1000			089	630	280
	.c.	300	880 5	460 5	070 5	0 0	780 4	4203	_	410 3	100		200	$\frac{320}{1}$	090	520 1	440 1	2120 1670 1360 1120	1990 1570 1270 1050	830	220	710
	41/2	010	49068	980	4906	250	900	4504		2103	8303	_	1902	8702	5502	880	780	670 1	570		940	870
	4	410	7508	100	480 7		4605	9005	-	3304	8403		0403	6302	2202	380	2501	120	990	1290 1020	1200	1100
		00 11	40 10	90 10	909	0 0									4210 3	3110 2		2770 2	2600 1	1690 1	1560 1	1440 1
İ	31/2	0 149	0140	0131	00123		4															
	က	32028	191	179	11440	1428	1327	21170	8	0 10350					0 5730	0 4230		0 3770	3530	2300	0 2130	0 1960
	21/3	29200	2752(2284(1728(2057	19100	14000	1 40	1365(11040				8250	6090	5760	5420	5090	3310	3060	2820
	61	<u>43280</u> 29200 20280 14900 11410 9010 7300 6030 5070 4320 3720 2850 2250 1830 1510 1270 1080	35920 27520 19110 14040 10750 8490 6880 5690 4780 4070 3510 2690 2120 1720 1420 1190 1020 1020 1020 1020 1020 1020 10	285602284017950131901010079806460	21600172801440012340 948074906070 5010 4210 3590 3100 2370 1870 1520 1250 1050 1750 1	32060 20570 14280 10490	247101910013270	17500 14000 11700	00000	2112013650 9470	13800 11040		16160	14530	10500	9520	9000	8470	7600	5180	4780	4410
reg ab	mod oa	70		ທ	18.		10		7				14.75	12.25	9.75	10.5	9.5	80 73	7.5	7.5	6.5	5.5
вэцэиІ	Depth,			00			7			9				ð				4			က	_

MISCELLANEOUS BEAMS

ALLOWABLE UNIFORM LOAD IN THOUSANDS OF POUNDS

Maximum Bending Stress, 16,000 Pounds per Square Inch

H BEAMS

Span		Depth and Weight of Sections									
in Feet	8 Inch 34.0 Pounds	6 Inch 23.8 Pounds	5 Inch 18.7 Pounds	4 Inch 13.6 Pounds	of Deflection						
3 4 5		37 6 32.1	81.8 25.4 20.3	25.0 19.0 14.3 11.4	0.15 0.27 0.41						
6 7 8 9	51.3 44.0 38.5 34.2 30.8	26.7 22.9 20.1 17.8 16.0	16.9 14.5 12.7 11.3 10.1	9.5 8.1 7.1 6.8 5.7	0.60 0.81 1.06 1.34 1.66						
11 12 13 14 15	28.0 25.6 23.7 22.0 20.5	14.6 13.4 12.8 11.5	9.2 8.5	5.7	2.00 2.38 2.80 3.24 3.72						
16 17 18	19.2 18.1 17.1				4.24 4.78 5.36						

CROSS TIE SECTIONS

Span		Depth and Weight of Sections									
in Feet	6.5 Inch 27.8 Pounds	5.5 Inch 24.0 Pounds	5.5 Inch 20.0 Pounds	4.25 Inch 14.5 Pounds	3 Inch 9.5 Pounds	Coefficients of Deflection					
3 4 5	38.2 30.6	41.8 40.3 30.2 24.2	27.5 26.0 20.8	21.8 19.6 14.7 11.8	8.9 6.7 5.4	0.15 0.27 0.41					
6 7 8 9 10	25.5 21.8 19.1 17.0 15.3	20.2 17.3 15.1 13.4 12.1	17.3 14.8 13.0 11.5 10.4	9.8 8.4 7.3 6.5	4.5 3.8 8.3 8.0 2.7	0.60 0.81 1.06 1.34 1.66					
11 12 13 14 15	13.9 12.7 11.8 10.9 10.2	11.0 10.1 6.8 8.6	9.4 8.7 8.0 7.4	5.8		2.00 2.38 2.80 3.24 3.72					
16 17	9.5 9.0					4.24 4.78					

Loads above upper horizontal lines will produce maximum allowable shear in webs. Loads below lower horizontal lines will produce excessive deflections.

CHANNELS

ALLOWABLE UNIFORM LOAD IN THOUSANDS OF POUNDS Maximum Bending Stress, 16,000 Pounds per Square Inch

	Depth and Weight of Sections										t of		
Span			15 1	nch					13 1	nch			cien
Feet	55 lbs.	50 lbs.	45 lbs.	40 lbs.	35 lbs.	33. lbs.	50 lbs.	45 lbs.	40 lbs.	37 1bs.	35 lbs.	32 lbs.	Coefficient of Deflection
3	246.4		186.6 177.8	157 0	127.8	120.0	205.7	176.8 160.3	148 0	129.2	117.5	97.5	0.15
4 5	153.0	143.2	133.4 106.7	123.6	113.8	$\overline{111.1}$	128.7 103.0		111.7	106.6	103.2	97.5	0.27 0.41
6 7 8 9 10	102.0 87.4 76.5 68.0 61.2	81.8 71.6 63.6	76.2 66.7 59.3	70.6 61.8 54.9	65.0 56.9 50.6	63.5 55.6 49.4	64.4 57.2	68.7 60.1 53.4	63.8 55.9	60.9 53.3 47.4	59.0 51.6 45.9	65.0 55.7 48.7 43.3 39.0	0.60 0.81 1.06 1.34 1.66
11 12 13 14 15	55.6 51.0 47.1 43.7 40.8	47.7 44.1 40.9	41.0 38.1	41.2 38.0 35.3	37.9 35.0 32.5	37.0 34.2 31.8	42.9 39.6 36.8	40.1 37.0 34.4	37.2 34.4 31.9	35.5 32.8 30.5	34.4 31.8 29.5	35.4 32.5 30.0 27.9 26.0	2.00 2.38 2.80 3.24 3.72
16 17 18 19 20	38.2 36.0 34.0 32.2 30.6	33.7 31.8 30.1	31.4 29.6 28.1	29.1 27.5 26.0	26.8 25.3 23.9	26.1 24.7 23.4	30.3 28.6 27.1	28.3 26.7	26.3 24.8 23.5	25.1 23.7 22.4	24.3 22.9 21.7	$\frac{22.9}{21.7}$	4.24 4.78 5.36 5.98 6.62
21 22 23 24 25	29.1 27.8 26.6 25.5 24.5	26.0 24.9 23.9	24.3 23.2 22.2	22.5 21.5 20.6	20.7 19.8 19.0	20.2 19.3 18.5	23.4 22.4 21.5	21.9 20.9 20.0	20.3 19.4 18.6	19.4 18.5 17.8	18.8 18.0 17.2	18.6 17.7 17.0 16.2 15.6	7.30 8.01 8.76 9.53 10.35
26 27 28 29 30	23.5 22.7 21.9 21.1 20.4	21.2 20.5 19.7	19.8 19.1 18.4	18.3 17.7 17.0	16.9 16.3 15.7	16.5 15.9 15.3	19.1 18.4	18.5 17.8 17.2	17.2 16.8 18.0	15.8	15.9 15.8 14.7	15.0 14.4 18.9	11.19 12.07 12.98 13.92 14.90
$\frac{31}{32}$	19.7 19.1			15.9 15.4	14.7 14.2	14.3 13.9						1	$15.91 \\ 16.95$

Loads above upper horizontal lines will produce maximum allowable shear in webs. Loads below lower horizontal lines will produce excessive deflections. For maximum safe loads, see page 221.

CHANNELS

ALLOWABLE UNIFORM LOAD IN THOUSANDS OF POUNDS Maximum Bending Stress, 16,000 Pounds per Square Inch

·	Depth and Weight of Sections											
Span in		1	12 lnch				,	10 Incl	h,		Coefficient of Deffection	
Feet	40 lbs.	35 lbs.	30 1bs.	25 lbs.	20½ lbs.	35 lbs.	30 lbs.	25 lbs.	20 lbs.	15 lbs.	රී. අ	
2 3 4 5	181.9 175.1 116.7 87.5 70.0	152.8 106.2 79.7 63.7	128.1 95.8 71.8 57.5	98.6 85.3 64.0 51.2	67.2 56.9 45.5	164.8 123.2 82.1 61.6 49.3	185.2 110.1 73.4 55.1 44.0	97.0 64.7 48.5 38.8	78.4 56.0 42.0 33.6	48.0 47.6 35.7 28.5	0.07 0.15 0.27 0.41	
6 7 8 9 10	58.4 50.0 43.8 38.9 35.0	53.1 45.5 39.8 35.4 31.9	47.9 41.1 35.9 31.9 28.7	42.7 36.6 32.0 28.4 25.6	38.0 32.5 28.5 25.3 22.8	41.1 35.2 30.8 27.4 24.6	36.7 31.5 27.5 24.5 22.0	32.3 27.7 24.3 21.6 19.4	28.0 24.0 21.0 18.7 16.8	23.8 20.4 17.8 15.9 14.3	0.60 0.81 1.06 1.34 1.66	
11 12 13 14 15	31.8 29.2 26.9 25.0 23.3	29.0 26.6 24.5 22.8 21.2	26.1 23.9 22.1 20.5 19.2	23.3 21.3 19.7 18.3 17.1	20.7 19.0 17.5 16.3 15.2	22.4 20.5 19.0 17.6 16.4	20.0 18.4 16.9 15.7 14.7	17.6 16.2 14.9 13.9 12.9	15.3 14.0 12.9 12.0 11.2	13.0 11.9 11.0 10.2 9.5	2.00 2.38 2.80 3.24 3.72	
16 17 18 19 20	21.9 20.6 19.5 18.4 17.5	19.9 18.7 17.7 16.8 15.9	18.0 16.9 16.0 15.1 14.4	16.0 15.1 14.2 13.5 12.8	14.2 13.4 12.7 12.0 11.4	15.4 14.5 13.7 13.0 12.3	13.8 13.0 12.2 11.6 11.0	12.1 11.4 10.8 10.2 9.7	10.5 9.9 9.3 8.8 8.4	8.9 8.4 7.9 7.5 7.1	4.24 4.78 5.36 5.98 6.62	
21 22 23 24 25	16.7 15.9 15.2 14.6	15.2 14.5 13.9 13.3	13.7 13.1 12.5 12.0	12.2 11.6 11.1 10.7	10.8 10.4 9.9 9.5	11.7 11.2	10.5 10.0	9.2 8.8	8.0 7.8	6.8 6.5	7.30 8.01 8.76 9.53 10.35	
_26	18.5	12.3	11.1	9.8	8.8						11.19	

Loads above upper horizontal lines will produce maximum allowable shear in webs. Loads below lower horizontal lines will produce excessive deflections. For maximum safe loads, see page 221.

CHANNELS

Allowable Uniform Load in Thousands of Pounds

Maximum Bending Stress, 16,000 Pounds per Square Inch

	Depth and Weight of Sections									t of					
Span		9 I r	ıcb			1	8 Incb	l .	-			7 Inch	ı		cien
Feet	25 lbs.	20 lbs.	15 lbs.	13¼ 1bs.	21¼ lbs.	18% lbs	16¼ lbs.	1384 1bs.	11¼ lbs.	198/4 lbs.	17¼ lbs.	14% lbs.	121/4 lbs.	93/4 1 bs.	Coefficient o Deflection
2 3 4 5	55.9 41.9	72.0 48.0 36.0	$\frac{40.2}{30.1}$	$\frac{41.4}{37.4}$ 28.0 22.4	$\frac{42.5}{31.8}$	$\frac{39.0}{29.2}$	$\frac{53.2}{35.5}$ $\frac{26.6}{2}$	24.0	$\frac{28.7}{21.5}$	$\frac{33.7}{25.3}$	23.0	$\frac{27.6}{20.7}$	$\frac{24.6}{18.4}$		0.07 0.15 0.27 0.41
6 7 8 9 10	23.9 20.9 18.6	20.6 18.0 16.0	$17.2 \\ 15.1 \\ 13.4$	18.7 16.0 14.0 12.5 11.2	$18.2 \\ 15.9 \\ 14.2$	$16.7 \\ 14.6 \\ 13.0$	15.2 13.3 11.8	13.7 12.0 10.7	$12.3 \\ 10.8 \\ 9.6$	$14.4 \\ 12.6$	$13.1 \\ 11.5 \\ 10.2$	$11.8 \\ 10.4 \\ 9.2$	$10.5 \\ 9.2 \\ 8.2$	9.2 8.0 7.1	0.60 0.81 1.06 1.34 1.66
11 12 13 14 15	14.0 12.9	12.0 11.1 10.3	10.1 9.3 8.6	8.6 8.0	10.6 9.8 9.1	9.7	8.9 8.2	8.7 8.0 7.4 6.9 6.4	6.6 6.2	8.4 7.8 7.2	7.7	6.9 6.4	6.1	5.4 4.9 4.6	2.00 2.38 2.80 3.24 3.72
16 17 18 19 20	10.5 9.9 9.3 6.8 6.4	8.5	7.1	7.0 6.6 6.2 5.9 5.5	7.5	7.3 6.9 6.5	6.7 6.8 5.9	6.0 5.8 5.8	5.4 6.1 4.8	6.8	5.7	5.2	4.8	4.0	4.24 4.78 5.36 5.98 6.62

	Depth and Weight of Sections										o g			
Span in		6 I	nch			5 Inch	1	ĺ	4 Inch	1		3 lnch		cient
Feet	15½ 1bs.	13 1bs.	10½ lbs.	lbs.	11½ lbs.	9 lbs.	6½ lbs.	71/4 lbs.	61/4 lbs.	5½ lbs.	lbs.	bs.	lbs.	Coefficient o
1 2 3 4 5	17.4	52.8 30.8 20.5 15.4 12.3	13.4	11.6		38.0 18.9 12.6 9.5 7.6	7.9	8.1	$ \begin{array}{r} 20.2 \\ \hline 11.1 \\ 7.4 \\ 5.6 \\ 4.5 \end{array} $	14.4 10.1 6.7 5.1 4.1	4.9 3.7	4.4 3.3	10.2 5.8 3.9 2.9 2.3	0.02 0.07 0.15 0.27 0.41
6 7 8 9	11.6 9.9 8.7 7.7 6.9		9.0 7.7 6.7 6.0 5.4	7.7 6.6 5.8 5.1 4.6	7.4 6.3 5.5 4.9 4.4	6.3 5.4 4.7 4.2 3.8	5.3 4.5 4.0 3.5 3.2	3.5 3.0 2.7	3.7 3.2 2.8 2.5 2.2	3.4 2.9 2.5 2.2 2.0	2.1	2.2 1.9 1.3	1.9 1.7 1.5	0.60 0.81 1.06 1.34 1.66
11 12 13 14	6.3 5.8 5.3 5.0	5.6 5.1 4.7 4.4	4.9 4.5 4.1 8.8	4.2 3.9 8.6 8.8	4.0 8.7	3.4 8.2	2.9 2.8							2.00 2.38 2.80 3.24

Loads above upper horizontal lines will produce maximum allowable shear in webs. Loads below lower horizontal lines will produce excessive deflections. For maximum safe loads, see page 221.

CHANNELS-Allowable Uniform Load in Pounds per Foot

	26	910 850 790 730 670 660	760 710 660 630 610 580	520 470 430 380 340		l lines ear. l lines
	25	980 920 850 790 710	820 770 720 680 680 620	560 510 460 410 360		horizontal lines or web shear. horizontal lines e deflection.
	24	1060 990 930 790 770	890 840 780 740 720 680	610 550 500 440 400		y hor ls for d
	23	1160 1080 1010 930 860 840	970 910 840 810 780 740	660 600 540 480 430		oads within heavy horizontal lines are maximum loads for web shear. eads below dotted horizontal lines will produce excessive deflection.
	22	1260 1180 1100 1020 940 920	1060 990 920 880 850 810	720 660 590 530 470	510 460 400 350 290	within maximun below produce
	21	1390 1300 1210 1120 1030 1010	1170 1090 1010 970 940 880	790 720 650 580 520	560 500 440 380 320	Loads are m Loads will p
	20	1530 1430 1330 1240 1140 1110	1290 1200 1120 1070 1030 970	880 800 720 640 570	620 550 490 360	420 360 280
	19	690 590 590 370 280 280	1430 1330 1240 1180 1140 1080	970 880 800 710 630	680 610 540 470 400	460 400 330 310
	18	1890 1770 1650 1530 1400 1370	1780 1590 1660 1480 1550 1380 1480 1320 1430 1270 1350 1200	1080 980 890 790 700	760 680 600 520 440	520 450 370 350
Feet	17	0 2390 2120 1890 11 0 2240 1980 1770 1 0 2080 1850 1650 1 0 1930 1710 1530 1 0 1780 1570 1400 1 0 1740 1540 1370 1	1780 1660 1550 1480 1430 1350	1210 11100 1000 890 780	850 760 670 580 490	580 500 420 390
Span in Feet	16	2390 2240 2080 1930 1740	2630 2290 2010 1780 2450 2140 1880 1660 2280 1990 1750 1550 2280 1990 1670 1480 2110 1840 1610 1430 1590 1730 1520 1350	1790 1560 1370 1630 1420 1250 1470 1280 1120 1310 1140 1000 1160 1010 890	960 860 760 660 560	650 560 470 440
ďΩ	15	222 232 232 198 198	2290 2140 1990 1900 1840 1730	1560 1420 1280 1140 1010	1100 980 860 750 630	750 640 540 500
	14	3120 2920 2720 2520 2320 2270	2630 2450 2280 2280 2180 2110 1990	1790 1630 1470 1310 1160	11260 1120 990 860 730	860 740 620 570
	13	3620 3390 3160 2920 2690 2630	3050 2850 2640 2520 2440 2310	2430 2070 2210 1890 2000 1700 1780 1520 1580 1350	1460 1300 1150 990 840	990 850 710 660
	12	4250 3980 3700 3430 3160 3090	3580 3340 3100 2960 2870 2710	2430 2070 2210 1890 2000 1700 1780 1520 1580 1350	2040 1710 1460 1820 1530 1300 1600 1350 1150 1390 1170 990 1180 990 840	1160 1000 840 780
	11	5060 4730 4410 4080 3760 3670	4260 3970 3690 3530 3410 3220	2890 2630 2380 2120 2120 280	2040 1710 1820 1530 1500 1330 1170 1180 990	1390 1190 1000 930
	10	6120 5730 5330 4940 4550 4450	5150 4810 4470 4270 4130 3900	3500 3190 2870 2560 2560	2460 2200 1940 1680 1430	2070 1680 1780 1440 1490 1210 1380 1120
	6	7550 7070 6590 6100 5620 5490	6360 5940 5520 5270 5100	4320 3940 3550 3160 2810	3040 2460 2720 2200 2400 1940 2070 1680 1760 1430	2070 1680 1780 1440 1490 1210 1380 1120
	oo .	9560 8950 8340 7720 7110 6950	8050 7510 6980 6660 6450 6090	5470 4980 4490 4000 3560	3850 3440 3030 2620 2230	2620 2250 1880 1750
	7	12490 11690 10890 10090 9290 9070	10510 9810 9120 8710 8430 7960	7150 6500 5860 5220 4650	5030 4490 3960 3430 2910	3420 2940 2460 2290
	9	17000 15910 14820 13730 12640	14300 13360 12410 11850 11470 10830	9730 8850 7980 7110 6330	6840 6120 5390 4670 3960	4660 4000 3350 3120
la per ot	bano¶ oA	55 50 45 35 33	50 45 40 37 32	40 35 30 25 20.5	35 30 25 15	25 20 15 13.25
Bdoal	Depth,	15	13	12	10	6

		18	390 380 300 270		, `		
		17	440 410 370 330 300			,	l lines
		91	500 460 420 370 340	400 360 320 290 250			Loads within heavy horizontal lines are maximum loads for web shear. Loads below dotted horizontal lines will produce excessive deflection.
		15	570 520 470 430 380	450 410 370 330 290			Loads within heavy horizont are maximum loads for web sha Loads below dotted horizont will produce excessive deflection.
. 1		14	650 600 540 440	520 470 420 380 330	350 310 270 240		un bea loads w dott
Foor	,	13	750 690 630 570 510	600 540 490 440 380	410 360 320 270		ds with kimum ds belo oduce e
PER		12	880 810 740 670	700 640 580 510 450	480 430 370 320	310 260 220	Load tre max Load will pro
NDS		11	1050 970 880 790 710	840 760 680 610 530	570 510 440 380	370 310 260	,
Pounds		10	1570 1270 1440 1170 1310 1060 1190 960 1060 860	1010 920 830 740 640	690 620 540 460	380 320	240 220 200
Z.		6	0400 7960 6290 5090 4210 35540 3010 26600 1990 1570 1270 9540 7310 5770 4680 3860 3250 2770 2390 1830 1440 1170 8690 6650 5260 4260 3520 2960 5250 2170 1660 1310 1060 7840 6000 4740 3840 3170 2670 2270 1960 1500 1190 960 7030 5380 4250 3450 2850 2390 2040 1760 1350 1060 860	8250 6320 4990 40403340'2810 2380'2060 1580 1250 1010 7510 5750 4540 38803040'2550 2180 1880 1440 1140 920 6760 5180 4090 3310'2740'2300 19601690 1250 1020 830 6010 4600 3640 29502430 2050 17401500'1150 910 740 5250 4020 3170 2570'2120 17790 1520 1310 1000 790 640	860 760 660 570	550 470 390	300 280 250
UNIFORM LOAD IN	Span in Feet	œ	0400 7960 6290 5090 4210 3540 3010 2600 1990 1570 9540 7310 5770 4680 3860 3250 2770 2390 1830 1440 8690 6650 5260 4260 3580 2960 5270 2770 1660 1310 7840 6000 4740 3840 3170 2670 2270 1960 1500 1190 7380 4250 3450 2850 2390 2040 1760 1350 1060	8250 6320 4990 40403340 810 239020601580 7510 5750 4540 3680[3040]2550 21801880[440]6760 5180 4090 3310[2740]2300 1960[690]290 6010 4600 3640 2950[2430]2050 1740[501150]250 4220 4020 3170 2570[2120]1790 1520[1310]1000	1090 960 840 720	690 590 490	380 350 320
вм 1	Span i	-1	2600 2390 2170 1960 1760	2060 1880 1690 1500 1310	1420 1260 1100 940	910 770 650	500 460 410 300 270 240
NIFO		61/3	3010 2770 2520 2270 2040	2390 2180 1960 1740 1520	1640 1460 1270 1090	1050 900 750	580 530 480 350 310 280
		9	3540 3250 2960 2670 2670	2810 2550 2300 2050 1790	1930 1710 1490 1280	1230 1050 880	620 620 560 410 370 320
VABL		57/2	4210 3860 3520 3170 2850	3340 3040 2740 2430 2120	2300 2040 1780 1530	1470 1250 1050	810 740 670 670 430 380
LLOV		ro	5090 4680 4260 3840 3450	4040 3680 3310 2950 2570	2780 2460 2150 1850	1780 1510 1270	980 890 810 590 530 470
- A		41/2	6290 5770 5260 4740 4250	4990 4540 4090 3640 3170	4340 3430 27802300 1930 1640 3850 3040 24602040 1710 1460 3360 2650 21501780 1490 1270 2890 2280 1850 1630 1280 1090	2190 1870 1560	1520 1200 1390 1100 1260 1000 920 730 820 650 730 570
ELS		4	7960 7310 6650 6000 5380	8250 6320 4990 40403340 2810 2390 2060 1580 7510 5750 4540 3680 3840 2550 2180 1880 1440 6760 5180 46090 3310 2740 2300 1960 1690 1290 6010 4600 3640 2950 2430 2050 1740 1500 1150 5250 4020 3170 2570 2120 1790 1520 1310 1000	5670 4340 3430 27802300 1930 1640 1420 1090 5030 3850 3040 24602040 1710 1460 1260 960 4390 3360 2650 2150 1780 1490 1270 1100 840 3770 2890 2280 1850 1850 1280 1090 940 720	$\begin{array}{c} 3620 \\ 2770 \\ 2190 \\ 2370 \\ 21870 \\ 2150 \\ 2280 \\ 2$	1990 1520 1200 1820 1390 1100 1650 1260 1000 1200 920 730 1070 820 650 950 730 570
CHANNELS-Allowable		31/2	_				
СН		ಣ		11230 10220 9200 8180 7140	7720 6840 5970 5130	4930 4210 3520	2710 2480 2250 1630 1460 1290
		21/2	20380 14150 18710 12990 17030 11830 15360 10670 13780 9570	16180 14710 13250 11780 10280	11110 9860 8600 7390	7100 6060 5060	3900 3570 3240 2350 2100 1860
		73	31840 29230 26610 24000 17600	$\begin{array}{c} 19.75 \ 25280 \ 16180 \ 11230 \\ 17.25 \ 22290 \ 14710 \ 10220 \\ 14.75 \ 20700 \ 13250 \ 9200 \\ 12.25 \ 18410 \ 11780 \ 8180 \\ 9.75 \ \overline{14700} \ 10280 \ 7140 \end{array}$	17360 15400 13440 11550	11100 9460 7910	6090 5570 5060 3680 3290 2910
	la per	onno4 o4	21.25 18.75 16.25 13.75 11.25	19.75 17.25 14.75 12.25 9.75	15.5 13.0 10.5 8.0	11.5 9.0 6.5	7.25 6.25 5.25 5.25 6.0 5.0
	гэцэц	Depth,	00	-	9	rð.	4 છ

EQUAL ANGLES

ALLOWABLE UNIFORM LOAD IN THOUSANDS OF POUNDS

Neutral Axia Parallel to Either Leg

Size.	Thick-	1 Foot Span		ım Span eflection	Size	Thick-	1 Foot Span		um Span Deflection
Inches	ness, Inches	Safe Load	Safe Load	Length, Feet	Inches	Size,	Safe Load	Safe Load	Length, Feet
88888888888888888888888888888888888888	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	186.99 177.81 168.53 159.15 149.55 139.84 130.03 120.00 109.87 99.63 89.28 91.41 86.51 81.39 76.27 71.04 65.81 60.37 54.83	8.31 7.87 7.43 6.98 6.53 6.53 5.18 4.28 3.82 5.48 5.16 4.51 4.51 4.51 4.51 4.51 4.51 5.63	22.5 22.6 22.7 22.8 22.9 23.0 23.1 23.2 23.3 23.4 16.7 16.8 16.9 17.0 17.1 17.2	Windship and an an an an an an an an an an an an an	120/4-12/40-12/4-12/4-12/4-12/4-12/4-12/4-12/4-12/4	24.00 22.51 20.91 19.31 17.60 15.89 14.08 12.27 10.45 8.43 13.87 10.13 10.13 7.57 6.93 6.93 6.08 5.12	2.55 2.37 2.18 2.00 1.81 1.62 1.42 1.23 1.04 0.83 1.53 1.31 1.04 0.87 0.71	9.4 9.5 9.6 9.7 9.7 9.8 9.9 10.1 10.2 8.3 8.4 8.5 8.7 7.1 7.1
6 x 6 6 x 6 6 x 6	1/2 1/8 8/8	49.17 43.41 37.65	2.83 2.48 2.14	17.4 17.5 17.6	$2\frac{72}{2}\frac{272}{2}$	14 14 8 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4.16 3.20 2.13 4.27	0.58 0.44 0.29 0.79	7.3 7.4 5.4
5 x 5 5 x 5 5 x 5 5 x 5 5 x 5 5 x 5 5 x 5	1 117/8 118/41-18/8	61.87 58.56 55.15 51.73 48.32 44.80 41.17	4.55 4.28 4.00 3.73 3.45 3.18 2.90	13.6 13.7 13.8 13.9 14.0 14.1 14.2	2 x 2 2 x 2 2 x 2 2 x 2 1% x 1% 1% x 1%	7 13 8 11 4 5 8 7 6 8	3.73 3.20 2.67 2.03 1.39 3.20 2.77	0.68 0.57 0.46 0.35 0.24 0.68 0.60	5.5 5.6 5.7 5.8 5.8 4.7 4.7
5 x 5 5 x 5 5 x 5 5 x 5	1/2 1/2 7 3 88	37.44 33.60 29.76 25.81	2.62 2.34 2.06 1.78	14.3 14.4 14.5 14.5	134 x 134 134 x 134 134 x 134 134 x 134	7183861431188	2.45 2.03 1.49 1.07	0.51 0.41 0.30 0.21	4.8 4.9 5.0 5.1
4 x 4 4 x 4 4 x 4 4 x 4 4 x 4 4 x 4 4 x 4 4 x 4 4 x 4 4 x 4	110 (4 10 (8 00 (2 00 (8 00 (4 10 00 (8 0) (8 00 (8 0) (8 00 (8 0) (8 00 (8 0)	32.11 29.97 27.84 25.60 23.36 21.01 18.67 16.21 13.76 11.20	2.95 2.73 2.51 2.29 2.07 1.85 1.63 1.41 1.19 0.96	10.9 11.0 11.1 11.2 11.3 11.4 11.5 11.6 11.7	1½x1½ 1½x1½ 1½x1½ 1½x1½ 1½x1½ 1½x1½ 1¼x1¼ 1¼x1¼ 1¼x1¼ 1¼x1¼ 1 x 1 1 x 1	3/8-5/4-5/8 59/4-5/8 1/4-5/8	2.03 1.71 1.39 1.07 0.77 1.17 0.97 0.52 0.60 0.47 0.33	0.51 0.42 0.33 0.25 0.17 0.36 0.29 0.22 0.14 0.22 0.17 0.12	4.0 4.1 4.2 4.3 4.4 3.4 3.5 3.6 2.6 2.7 2.8

UNEQUAL ANGLES

ALLOWABLE UNIFORM LOAD IN THOUSANDS OF POUNDS

Neutral Axis Parallel to Shorter Leg

Size.	Thick-	1 Foot Span 360 x Deflection		ım Span eflection	Size.	Thick-	1 Foot Span		
Inches	ness, Inches	Safe Load	Safe Load	Length, Feet	Inches	ness, Inches	Safe Load	Safe Load	Length, Feet
8 x 6	1	161.17	7.49	21.5	6 x 3½	· 1	83.52	5.57	15.0
8 x 6	15	152.21	7.04	21.6	6 x 3½	18	79.04	5.24	15.1
8 x 6	₹8	143.04	6.59	21.7	6 x 3½	₹8	74.45	4.90	15.2
8 x 6	13	133.87	6.14	21.8	6 x 3½	13	69.87	4.57	15.3
8 x 6	3/4	124.48	5.68	21.9	6 x 3½	8/4	65.07	4.23	15.4
8 x 6	16	114.88	5.22	22.0	6 x 3½	11	60.27	3.89	15.5
8 x 6	5/8	105.28	4.76	22.1	6 x 3½	5/8	55.36	3.55	15.6
8 x 6	18	95.47	4.30	22.2	6 x 3½	18	50.35	3.21	15.7
8 x 6	1/2	85.55	3.84	22.3	6 x 3 1/2	1/2	45.23	2.86	15.8
8 x 6	176	75.41	3.37	22.4	6 x 3½	16	40.00	2.52	15.9
8 x 3½	1	146.03	7.53	19.4	6 x 3½	3/8	34.67	2.17	16.0
8 x 3½	18	138.03	7.08	19.5	6 x 3½	16	29.23	1.83	16.0
8 x 3½	7/8	129.92	6.63	19.6					
8 x 3½	13	121.60	6.17	19.7	5 x 4	1∕8	53.23	4.00	13.3
8 x 3½	8/4	113.17	5.72	19.8	5 x 4	13	50.03	3.73	13.4
8 x 3½	11	104.58	5.23	19.9	5 x 4	3/4	46.61	3.46	13.5
8 x 3½	5/8	95.79	4.78	20.0	5 x 4	110	43.20	3.19	13.5
8 x 3½	n a	86.93	4.32	20.1	5 x 4	5/8	39.79	2.92	13.6
8 x 3½	1/2	77.97	3.86	20.2	5 x 4	18	36.16	2.64	13.7
8 x 3½	1 ⁷ 6	68.80	3.39	20.3	5 x 4	1/2	32.53	2.36	13.8
7 x 3½	1	112.85	6.52	17.3	5 x 4	16	28.80	2.07	13.9
7 x 3½	15	106.67	6.13	17.4	5 x 4	3/8	24.96	1.78	14.0
7 x 3½	7/8	100.48	5.75	17.5		7∕8	52.05	4.04	12.9
7 x 3½	13	94.08	5.36	17.6	5 x 3½		48.85	3.76	13.0
7 x 3½	8/4	87.68	4.97	17.6	5 x 3½ 5 x 3½	18 8∕4	45.65	3.49	13.1
7 x 3½	18	81.07	4.58	17.7	5 x 3½	11	42.35	3.21	13.2
7 x 3½	5/8	74.35	4.18	17.8	5 x 3½	5/8	38.93	2.93	13.3
7 x 3½	18	67.52	3.77	17.9	5 x 3½	18	35.41	2.64	13.4
7 x 3½	1/2	60.59	3.37	18.0	5 x 3½	12	31.89	2.36	13.5
7 x 3½	176	53.44	2.96	18.1	5 x 3½	178	28.16	2.07	13.6
7 x 3½	3/8	46.19	2.54	18.2	5 x 3½	3/8	24.43	1.79	13.7
6 x 4	1	85.55	5.56	15.4	5 x 3½	15 18	20.69	1.51	13.7
6 x 4	15	80.96	5.22	15.5					
6 x 4	7/8	76.27	4.89	15.6	5 x 3	18	47.47	3.77	12.6
6 x 4	/8 13	71.47	4.55	15.7	5 x 3	34	44.37	3.49	12.7
6 x 4	3/4	66.67	4.22	15.8	5 x 3	11	41.17	3.22	12.8
6 x 4	11	61.65	3.88	15.9	5 x 3	5/8	37.87	2.94	12.9
6 x 4	5/8	56.64	3.54	16.0	5 x 3	18	34.45	2.65	13.0
6 x 4	18	51.52	3.20	16.1	5 x 3	1/2	31.04	2.37	13.1
6 x 4	1/2	46.19	2.85	16.2	5 x 3	176	27.52	2.09	13.2
6 x 4	7 1 ē	40.85	2.51	16.3	5 x 3	5/8	23.89	1.80	13.3
6 x 4	3/8	35.41	2.16	16.4	5 x 3	- 14	20.16	1.51	13.4

UNEQUAL ANGLES

ALLOWABLE UNIFORM LOAD IN THOUSANDS OF POUNDS

Neutral Axia Parallel to Shorter Leg

Size,	Thick-	1 Foot Span	Maximu 360x D	m Span effection	Size,	Thick-	1 Foot Span	Maximum Spa 360x Deflectio	
Inches	ness, Inches	Safe Load	Safe Load	Length, Feet	Inches	ness, Inches	Safe Load	Safe Load	Length, Feet
4½ x 3 4½ x 3	118/416/80/8/2 G 8 /2 G	38.61 36.05 33.49 30.83 28.16 25.28 22.40	3.36 3.11 2.87 2.62 2.38 2.13 1.87	11.5 11.6 11.7 11.8 11.8 11.9 12.0	3 x2½ 3 x2½ 3 x2½ 3 x2½ 3 x2½ 3 x2½ 3 x2½	9 1 2 7 5 8 8 5 5 1 1 4	12.27 11.09 9.92 8.64 7.36 5.97	1.53 1.37 1.22 1.06 0.89 0.71	8.0 8.1 8.1 8.2 8.3 8.4
4½ x 3 4½ x 3		19.52 16.43 31.15	1.61 1.35 2.94	12.1 12.2 10.6	3 x 2 3 x 2 3 x 2 3 x 2 3 x 2	1/2 7 to 8/8 5 to 1/4	10.67 9.49 8.32 7.04	1.39 1.22 1.05 0.88	7.7 7.8 7.9 8.0
4 x3½ 4 x3½ 4 x3½ 4 x3½ 4 x3½ 4 x3½ 4 x3½ 4 x3½ 4 x3½ 4 x3½	10 /4 / 6 / 8 / 5 / 7 E /8 6 1	29.23 27.20 25.07 22.93 20.69 18.35 16.00 13.44	2.73 2.52 2.30 2.08 1.86 1.64 1.41 1.18	10.7 10.8 10.9 11.0 11.1 11.2 11.3 11.4	3 x 2 2½x 2 2½x 2 2½x 2 2½x 2 2½x 2 2½x 2 2½x 2 2½x 2	1/2 7 E 3/8 5 E 1/4 3 a 1/8	5.76 7.47 6.72 5.87 5.01 4.05 3.09 2.13	0.71 1.15 1.02 0.88 0.74 0.59 0.44 0.30	8.1 6.5 6.6 6.7 6.8 6.9 7.0 7.1
4 x 3 4 x 3 4 x 3 4 x 3 4 x 3 4 x 3	30 /4 10 /8 00 /2/ 5/8 6/4	30.61 28.59 26.56 24.53 22.40 20.16 17.92	2.97 2.75 2.53 2.31 2.09 1.87 1.64	10.3 10.4 10.5 10.6 10.7 10.8 10.9	2½ x 1½ 2½ x 1½ 2½ x 1½	16 14 3 16	4.69 3.84 2.99 5.76	0.73 0.59 0.45	6.4 6.5 6.6
4 x 3 4 x 3 4 x 3		15.57 13.12 10.67	1.42 1.19 0.96	11.0 11.0 11.1	2¼ x 1½ 2¼ x 1½ 2¼ x 1½ 2¼ x 1½ 2¼ x 1½ 2¼ x 1½	1/2 1/6 3/8 5 1/4 3/8	5.12 4.48 3.84 3.20 2.45	0.90 0.77 0.65 0.53 0.40	5.7 5.8 5.9 6.0 6.0
31/2 x 3 31/2 x 3	\$6\416\898\8\6\4	23.47 21.87 20.37 18.77 17.17 15.47 13.76 12.05	2.57 2.38 2.19 2.00 1.81 1.62 1.43 1.24	9.1 9.2 9.3 9.4 9.5 9.5 9.6 9.7	2 x1½ 2 x1½ 2 x1½ 2 x1½ 2 x1½ 2 x1½	i	3.63 3.09 2.56 1.92 1.39	0.70 0.58 0.47 0.35 0.24	5.2 5.3 5.4 5.5 5.6
		10.24 8.32	1.05 0.84	9.8 9.9	2 x1¼ 2 x1¼	1/4 3 10	2.45 1.92	0.47 0.36	5.2 5.3
3½ x 2½ 3½ x 2½	16 8 8 2 7 8 8 6 4	19.73 18.24 16.64 15.04 13.44	2.19 2.00 1.82 1.63 1.44	9.0 9.1 9.1 9.2 9.3	1¾ x 1¼ 1¾ x 1¼ 1¾ x 1¼		1.92 1.49 1.00	0.42 0.32 0.21	4.6 4.7 4.8
3½x2½ 3½x2½ 3½x2½	% 16 14	9.92 8.00	1.24 1.04 0.83	9.4 9.5 9.6	1½x1¼ 1½x1¼ 1½x1¼	16 14 16 16	1.71 1.39 1.07	$0.44 \\ 0.35 \\ 0.26$	3.9 4.0 4.1

UNEQUAL ANGLES

ALLOWABLE UNIFORM LOAD IN THOUSANDS OF POUNDS

Neutral Axis Parallel to Longer Leg

Size,	Thick-	1 Foot Span	Maximu 360 x D	ım Span eflection	Size,	Thick-	1 Foot Span		um Span effection
Inches	ness, Inches	Safe Load	Safe Load	Length, Feet	Inches	ness, Inches	Safe Load	Safe Load	Length, Feet
8 x 6	1	95.15	5.44	17.5	6 x 3½	1	30.93	3.09	10.0
8 x 6	18	89.92	5.11	17.6	6 x 3½	18	29.23	2.90	10.1
8 x 6	3/8	84.69	4.79	17.7	6 x 3½	7/8	27.63	2.71	10.2
8 x 6	13	79.36	4.45	17.8	6 x 3½	13	25.92	2.52	10.3
8 x 6	3/4	73.92	4.13	17.9	6 x 3½	3/4	24.21	2.33	10.4
8 x 6	11	68.37	3.80	18.0	6 x 3½	11	22.51	2.14	10.5
8 x 6	5/8	62.72	3.48	18.0	6 x 3½	5/8	20.69	1.95	10.6
8 x 6	18	56.96	3.15	18.1	6 x 3½	18	18.88	1.76	10.7
8 x 6	1/2	51.09	2.81	18.2	6 x 3½	1/2	16.96	1.57	10.8
8 x 6	76	45.12	2.47	18.3	6 x 3½	17g	15.04	1.38	10.9
	}				6 x 3½	3/8	13.12	1.19	11.0
$8 \times 3\frac{1}{2}$	1	32.21	3.10	10.4	6 x 3½	16	11.09	1.00	11.1
8 x 3½	15	30.40	2.90	10.5	/ -				
8 x 3½	7∕8	28.69	2.71	10.6	5 x 4	7∕8	35.31	3.15	11.2
8 x 3½	18	26.88	2.52	10.7	5 x 4	13	33.17	2.93	11.3
8 x 3½	8/4	25.07	2.33	10.8	5 x 4	84	30.93	2.71	11.4
8 x 3½	11	23.15	2.13	10.9	5 x 4	11	28.69	2.50	11.5
8 x 3½	5/8	21.33	1.94	11.0	5 x 4	16 5/8	26.45	2.28	11.6
8 x 3½	16	19.41	1.74	11.1	5 x 4	/8 18	24.11	2.16	11.7
8 x 3½	1/2	17.49	1.57	11.2	5 x 4	16	21.76	1.84	11.8
8 x 3½	7 16	15.57	1.38	11.3	5 x 4	77	19.31	1.62	11.9
7 x 31/4	1	31.57	3.10	10.2	5 x 4	3/8	16.75	1.40	12.0
		29.87	2.90	10.2	0 1 1	78	10.75	1.40	12.0
	15 16	28.16	$\frac{2.90}{2.71}$	10.3	5 x 3½	3∕8	26.88	2.71	9.9
	7/8	26.45	2.71	10.4	$5 \times 3\frac{7}{2}$	/3 13	25.28	2.53	10.0
	18	24.64	2.32	10.5	$5 \times 3\frac{7}{2}$		23.68	2.34	10.0
7 x 3½	8/4	22.83	2.33	10.0	$5 \times 3\frac{1}{2}$	3/4 11	21.97	2.34	10.1
7 x 3½	116	21.01	$\frac{2.14}{1.95}$	10.7	/ 2	16	20.27	1.97	10.2
7 x 3½ 7 x 3½	5/8	19.20	1.76	10.8	$5 \times 3\frac{1}{2}$ $5 \times 3\frac{1}{2}$	5/8	18.45	1.78	10.3
	18	17.28	1.57	11.0	/ 4	18 17	16.64	1.60	10.4
	3/2	15.36	1.38	11.0		1/2	14.83		10.4
7 x 3½	18	13.44	1.19	11.1	/2	176 37	12.91	$\frac{1.41}{1.22}$	10.5
7 x 3½	3/8	13.44	1.19	11.2	/ 2	3/8	10.88	$\frac{1.22}{1.02}$	
6 x 4	1	40.43	3.55	11.4	5 x 3½	1 ⁶ .	10.00	1.02	10.7
6 x 4	15	38.29	3.33	11.5					
6 x 4	7/8	36.16	3.12	11.6	5 x 3	13	18.56	2.16	8.6
6 x 4	18	33.92	2.90	11.7	5 x 3	3/4	17.39	2.00	8.7
6 x 4	34	31.68	2.69	11.8	5 x 3	11	16.11	1.83	8.8
6 x 4	ίį	29.44	2.47	11.9	5 x 3	5/8	14.83	1.67	8.9
6 x 4	118 5/8	27.09	2.26	12.0	5 x 3	18	13.55	1.51	9.0
6 x 4	18	24.64	2.05	12.0	5 x 3	1/2	12.27	1.35	9.1
6 x 4	1/2	22.19	1.84	12.1	5 x 3	1 ⁷ e	10.88	1.18	9.2
6 x 4	16 1/2 7 18 8/8	19.73	1.62	12.2	5 x 3	3/8	9.49	1.02	9.3
6 x 4	8/6	17.07	1.39	12.3	5 x 3	16	8.00	0.85	9.4

UNEQUAL ANGLES

ALLOWABLE UNIFORM LOAD IN THOUSANDS OF POUNDS

Neutral Axia Parallel to Longer Leg

	Thick-	1 Foot Span		ım Span eflection	g:	Thick-	1 Foot Span	Maximu 360x D	m Span effection
Size, Inches	ness, Inches	Safe Load	Safe Load	Length, Feet	Size, Inches	ness, Inches	Safe Load	Safe Load	Length, Feet
41/2 x 3 41/2 x 3	30 31-10 8 PE 27-10 20 0	18.24 17.07 15.89 14.61 13.33 12.05 10.77 9.39	2.15 1.99 1.83 1.67 1.51 1.35 1.19	8.5 8.6 8.7 8.8 8.9 9.0	3 x2½ 3 x2½ 3 x2½ 3 x2½ 3 x2½ 3 x2½	74	8.75 7.89 7.04 6.19 5.23 4.27	1.25 1.12 0.99 0.85 0.72 0.58	7.0 7.0 7.1 7.2 7.3 7.4
4 x3½ 4 x3½ 4 x3½ 4 x3½		8.00 24.53 22.93 21.33	0.87 2.56 2.37 2.18	9.2 9.6 9.7 9.8	3 x 2 3 x 2 3 x 2 3 x 2 3 x 2	1/2 7 5 8 8 5 6 1/4	3.95 3.41 2.77	0.88 0.77 0.67 0.57 0.46	5.8 5.9 6.0 6.1
4 x3½ 4 x3½ 4 x3½ 4 x3½ 4 x3½ 4 x3½ 4 x3½	1180 1915 9 11 77 180 56	19.63 17.92 16.21 14.40 12.59 10.67	1.98 1.79 1.60 1.41 1.22 1.03	9.9 10.0 10.1 10.2 10.3 10.4	2½x 2 2½x 2 2½x 2 2½x 2 2½x 2 2½x 2 2½x 2	1/2 7 8/8 5 8 1/4 5 6 1/8	4.91 4.37 3.84 3.31 2.67 2.13	0.89 0.78 0.67 0.57 0.46 0.35	5.5 5.6 5.7 5.8 5.9 6.0
4 x 3 4 x 3 4 x 3 4 x 3 4 x 3 4 x 3 4 x 3	710/41-10/80-10/77-10/80-10/41-10/80-10/77-10/80-10/41-10/80-10/77-10/80-10/41-10/80-10/41-10/80-10/41-10/80-10/41-10/80-10/41-10/80	17.92 16.75 15.57 14.40 13.12 11.84	2.15 1.99 1.83 1.67 1.51 1.35 1.19	8.3 8.4 8.5 8.6 8.7	2½x 1½ 2½x1½ 2½x1½ 2½x1½	16 1/4 5 16	1.49 1.81 1.49 1.17	0.23 0.41 0.33 0.25	6.1 4.4 4.5 4.6
4 x 3 4 x 3 4 x 3		10.56 9.28 7.89 6.40	1.19 1.03 0.87 0.70	8.9 9.0 9.1 8.1	2¼ x 1½ 2¼ x 1½ 2¼ x 1½ 2¼ x 1½ 2¼ x 1½ 2¼ x 1½ 2¼ x 1½	1/2 70/8 50/4 11/4 10	2.45 2.13 1.81 1.49 1.17	0.67 0.58 0.50 0.41 0.33	4.1 4.2 4.3 4.4 4.5 4.6
SAN SAN SAN SAN SAN SAN SAN SAN SAN SAN	36 41 5 8 6 5 1 2 7 5 7 8 5 6 1 4	16.43 15.36 14.19 12.91 11.73 10.45 9.07	2.01 1.85 1.69 1.52 1.36 1.20	8.3 8.4 8.5 8.6 8.7 8.7	2 x1½ 2 x1½ 2 x1½ 2 x1½ 2 x1½ 2 x1½ 2 x1½		2.13 1.81 1.49 1.17 0.80	0.25 0.51 0.42 0.34 0.26 0.17	4.2 4.3 4.4 4.5 4.6
		7.68 6.19	0.87 0.70	8.8 8.9	2 x1¼ 2 x1¼	1/4 13	1.04 0.80	$0.28 \\ 0.21$	3.7 3.8
3½x2½ 3½x2½ 3½x2½ 3½x2½ 3½x2½ 3½x2½ 3½x2½ 3½x2½	16/8 6 6 7 7 8 8 6 6 7 4	10.56 9.81 8.96 8.11 7.25	1.51 1.39 1.26 1.13 0.99	7.0 7.1 7.1 7.2 7.3	1¾ x 1¼ 1¾ x 1¼ 1¾ x 1¼	1/4 18 1/8	1.01 0.80 0.56	0.28 0.22 0.15	3.6 3.7 3.8
3½x2½ 3½x2½ 3½x2½	\$\\ \frac{8}{16} \\ \frac{1}{4} \end{align*}	6.29 5.33 4.37	0.85 0.71 0.58	7.4 7.5 7.6	1½x1¼ 1½x1¼ 1½x1¼	18 1/4 3 16	1.17 0.99 0.78	$0.34 \\ 0.28 \\ 0.22$	3.4 3.5 3.6

TEES

ALLOWABLE UNIFORM LOAD IN THOUSANDS OF POUNDS

Neutral Axis Parallel to Flange

Maximum Bending Stress, 16,000 Pounds per Square Inch

EQUAL TEES

	Si	ze		1 Font	Maximu	ım Span		ze		1 Foot	Maximu	ım Span
	·		Weight per	Span	360 x D	eflection			Weight per	Span	360 × D	eflection
	lange, Inches		Foot, Pounda	Safe Load	Safe Load	Length, Feet	Flange, Inches	Stem, Inches	Foot, Pounds	Safa Lnad	Safe Load	Length, Feet
-	61/2	61/2	19.8	52.80	2.77	19.1	21/4	21/4	4.9	4.37	0.69	6.3
	4	4	13.5	21.55	1.89	11.4	21/4	21/4	4.1	3.41	0.53	6.4
•	4	4	10.5	16.85	1.45	11.6	2	2	4.3	3.31	0.59	5.6
	31/2	3½	11.7	16.32	1.65	9.9	2	2	3.56	2.77	0.49	5.7
	31/2	31/2	9.2	12.69	1.27	10.0	1%	13/4	3.09	2:03	0.41	4.9
	3	3	9.9	11.73	1.41	8.3	1½	11/2	2.47	1.49	0.36	4.1
	3	3	8.9	10.45	1.24	8.4	1½	11/2	1.94	1.17	0.27	4.3
	3	3	7.8	9.17	1.08	8.5	11/4	11/4	2.02	1.01	0.30	3.4
	3	3	6.7	7.89	0.92	8.6	11/4	11/4	1.59	0.78	0.22	3.5
	$2\frac{1}{2}$	$2\frac{1}{2}$	6.4	6.29	0.90	7.0	1	1	1.25	0.49	0.18	2.7
_	21/2	21/2	5.5	5.33	0.75	7.1	1	1	0.89	0.35	0.12	2.9

UNEQUAL TEES

Si	zc	Weight per	1 Foot Span		m Span effection	- Si	z e	Weight	1 Foot Span		m Span effection
Flange, Inches		Foot, Pounds	Safe Lnad	Safe Lnad	Length, Feet	Flange, Inches	Stem, Inches	Foot, Pounds	Safe Load	Safe Load	Length, Feet
5	3	11.5	11.33	1.25	9.0	3½	3	10.8	12.05	1.42	8.5
5	21/2	10.9	8.96	1.20	7.5	31/2	3	8.5	9.49	1.09	8.7
41/2	31/2	15.7	22.72	2.37	9.6	3½	3	7.5	9.07	1.04	8.7
41/2	3	9.8	9.71	1.07	9.1	3	4	11.7	20.69	1.92	10.8
41/2	- 3	8.4	8.32	0.90	9.2	3	4	10.5	18.35	1.68	10.9
41/2	21/2	9.2	6.72	0.87	7.7	3	4	9.2	16.11	1.47	11.0
41/2	2½	7.8	5.76	0.74	7.8	3	31/2	10.8	15.89	1.66	9.6
4	5	15.3	33.39	2.40	13.9	3	3 1/2	9.7	14.19	1.46	9.7
4	5	11.9	25.92	1.84	14.1	3	3½	8.5	12.37	1.26	9.8
4	41/2	14.4	27.09	2.15	12.6	3	21/2	7.1	6.40	0.89	7.2
4	41/2	11.2	21.12	1.65	12.8	3	21/2	6.1	5.55	0.76	7.3
4	3	9.2	9.60	1.08	8.9	2½	3	7.1	8.96	1.08	8.3
4	3	7.8	8.21	0.90	9.1	. 21/2	3	6.1	7.68	0.91	8.4
4	21/2	8.5	6.61	0.87	7.6	21/2	11/4	2.87	0.93	0.25	3.7
4	21/2	7.2	5.65	0.73	7.7	2	11/2	3.09	1.60	0.36	4.4
4	2	7.8	4.27	0.70	6.1	1½	2	2.45	2.03	0.37	5.5
4	2	6.7	3.63	0.59	6.2	11/2	11/4	1.25	0.57	0.15	3.7
$3\frac{1}{2}$	4	12.6	21.12	1.90	11.1	11/4	5/8	0.88	0.14	0.07	1.9
31/2	4	9.8	16.53	1.46	11.3						1

ZEES

ALLOWABLE UNIFORM LOAD IN THOUSANDS OF POUNDS

Neutral Axis Parallel to Flanges

	Size		. 1	1 Foot	Maximum Span 360 x Deflection		
Depth, Inches	Flanges, Inches	Thickness, Inches	Weight per Foot, Pounds,	Span Safe Load	Safe Load	Length, Feet	
61/8	35/8	1/8	34.6	174.93	14.18	12.3	
$6_{r_6}^{r_6}$	* 3 ₁₆	13	32.0	162.35	13.30	12.2	
6	3 1/2	84	29.4	149.76	12.40	12.1	
61/8	35/8	11	28.1	150.40	12.19	12.3	
6_{16}	3,8	5/8	25.4	136.75	11.20	12.2	
6	3 1/2	1 ⁹	22.8	123.20	10.20	12.1	
61/8	35/8	1/2	21.1	119.68	9.70	12.3	
$61_{\mathbf{d}}$	319	178	18.4	104.85	8.59	12.2	
6	3 1/2	3/8	15.7	90.03	7.45	12.1	
$5\frac{1}{8}$	33/8	13	28.4	119.47	11.58	10.3	
5_{16}^{1}	3 ₁₈	3/4	26.0	110.29	10.82	10.2	
5	31/4	11	23.7	101.01	10.03	10.1	
51/8	33/8	5/8	22.6	102.08	9.89	10.3	
5 ₁₈	3^{5}_{16}	9 18	20.2	91.95	9.02	10.2	
5	$3\frac{1}{4}$	1/2	17.9	81.92	8.14	10.1	
51/8	. 3¾	r ⁷ s	16.4	79.36	7.69	10.3	
5_{18}^1	$3\frac{5}{18}$	3/8	14.0	68.16	6.69	10.2	
5	$3\frac{1}{4}$	1.9	11.6	56.96	5.66	10.1	
41/8	3^3_{16}	8/4	23.0	77.44	9.32	8.3	
416	$3\frac{1}{8}$	11	20.9	70.93	8.67	8.2	
4	3^{18}	5⁄8	18.9	64.53	8.01	8.1	
41/8	3^3_{16}	18	18.0	65.92	7.93	8.3	
4 16	31/8	1/2 .	15.9	58.67	/ 7.17	8.2	
4	318	176	13.8	51.52	6.40	8.1	
41/8	$3\frac{3}{16}$	3/8	12.5	49.81	6.00	8.3	
416	31/8	1 _e	10.3	41.71	5.10	8.2	
4	3^{16}	1/4	8.2	33.49	4.16	8.1	
312	23/4	X g	14.3	36.59	5.93	6.2	
3	211	1/2	12.6	32.64	5.40	6.1	
316	2¾	1 ⁷ 8	11.5	31.79	5.15	6.2	
3	211	3/8	9.8	27.41	4.54	6.1	
348	2%	15 16	8.5	25.39	4.12	6.2	
3	211	1/4	6.7	20.48	3.39	- 6.1	

STANDARD GAGES AND DIMENSIONS FOR BEAMS

Nominal dimensions are:—flange width and "o" in eighths, web thickness in sixteenths. Gages for connection angles are determined by ½ web thickness. Standard gages may be varied if conditions require.

Depth of	Weight	Flange	Web Thick-	1/2 Web Thick-	Gage	Grip		Distance		Max. Rivet in
Beam	per Foot	Width	ness	nesa	g	_ p	f	o	h	Flange
In.	Lhs.	In.	In.	In.	In.	In.	In.	In.	In.	In.
27	90.0	9	1/2	1/4	4	3/4	22 ½	21/4	5/18	7/8
24	115.0 110.0 105.0	8 8 7 1/8	11/1 ₆ 5/8	3/8 3/8 5/18	4 4 4	1 1/8 1 1/8 1 1/8	20 ¼ 20 ¼ 20 ¼	1 7/8 1 7/8 1 7/8	7/16 7/18 3/8	₹8
24	100.0 95.0 90.0 85.0 80.0	7 1/4 7 1/4 7 1/8 7 1/8 7 1/8	3/4 11/16 5/8 9/18 1/2	3/8 5/16 5/16 1/4	4 4 4 4	7/8 7/8 7/8 7/8 7/8	$\begin{array}{c} 20 {}^{3}4 \\ 20 {}^{3}4 \\ 20 {}^{3}4 \\ 20 {}^{3}4 \\ 20 {}^{3}4 \end{array}$	15/8 15/8 15/8 15/8 15/8	7/16 7/16 8/8 8/8 5/16	7/8
24	74 0	9	1/2	1/4	4	5/8	20	2	5∕18	₹8
21	60 5	81/4	7∕18	8∕1e	4	948	17 1/2	1 3/4	1/4	7∕8
20	100.0 95.0 90.0 85.0 80.0	7 1/4 7 1/4 7 1/8 7 1/8 7 1/8	7/8 18/18 3/4 11/16 5/8	7/16 7/16 3/8 3/8 3/8 5/18	4 4 4 4	1 1 1 1	16½ 16½ 16½ 16½ 16½ 16½	$\begin{array}{c} 1\frac{3}{4} \\ 1\frac{3}{4} \\ 1\frac{3}{4} \\ 1\frac{3}{4} \\ 1\frac{3}{4} \end{array}$	1/2 1/2 7/16 3/3 3/8	½
20	75.0 70.0 65.0	6 3/8 6 3/8 6 1/4	11/ ₁₆ %16 ½	5/16 5/16 1/4	4 4 4	3/4 3/4 3/4	17 17 17	1 ½ 1 ½ 1 ½	3/8 3/8 5/18	₹8
18	90.0 85.0 80.0 75.0	7 1/4 7 1/8 71/16 7	13/16 3/4 5/8 9/18	7/16 3/8 5/16 5/16	4 4 4 4	1 1 1 1	14½ 14½ 14½ 14½ 14½	$ \begin{array}{c} 1 \frac{3}{4} \\ 1 \frac{3}{4} \\ 1 \frac{3}{4} \\ 1 \frac{3}{4} \end{array} $	1/2 7/16 3/3 8/8	⅓ 8
18	70.0 65.0 60.0 55.0	6 14 6 14 6 18 6	3/4 5/8 3/16 1/2	8/8 5/18 5/18 1/4	3 84 3 84 3 84 3 84	3/4 3/4 3/4 3/4	15¼ 15¼ 15¼ 15¼	1 8/8 1 3/8 1 3/8 1 3/8	7/18 8/8 8/8 5/18	₹8
18	48.0	7 ½	3/8	8/18	3¾	1/2	14 3/4	15/8	1/4	₹8
15 ~	75.0 70.0 65.0 60.0	6 8 8 6 14 6 1/8 6	7/3 18/18 11/16 5/8	7/16 8/8 8/8 5/18	3 ½ 3 ½ 3 ½ 3 ½ 3 ½	7/8 7/8 7/8 7/8	1184 1134 1184 1184	1 5/8 1 5/8 1 5/8 1 5/8	1/2 7/18 7/16 3/8	3⁄4
15	55.0 50.0 45.0 42.0	5 5 5 8 5 1 2	11/16 8/16 1/2 7/16	5/18 5/18 1/4 8/18	3 1/2 3 1/2 3 1/2 3 1/2 3 1/2	5/8/8/8/8/8/8	12 ½ 12 ½ 12 ½ 12 ½ 12 ½	1 1/4 1 1/4 1 1/4 1 1/4	3/8 5/18 1/4	3/4
15	37.5		5/1e	8/16	31/2	748	121/4	1 3/8	1/4	3/4

STANDARD GAGES AND DIMENSIONS FOR BEAMS

Nominal dimensions are:—flange width and "o" in eighths, web thickness in sixteenths. Gages for connection angles are determined by ½ web thickness. Standard gages may be varied if conditions require.

		gages i		varieu	11 COHO	101161	equiro.			1.35
Depth of	Weight per	Flange	Web Thick-	½Web Thick-	Gage	Grip		Distance		Max. Rivet in
Beam	Foot	Width	ness	ness	g	p	f	0_	h	Flange
In.	Lbs.	In.	In.	In.	In.	In.	In.	In.	In.	In.
12	55.0 50.0 45.0 40.0	5 1/2 5 1/2 5 3/8 5 1/4	13/16 11/16 9/16 1/2	7/16 8/8 5/16 1/4	3 ½ 3 ½ 3 3 3	2/2/2/2/2/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4	914 914 914 914	1 % 8 1 % 8 1 3 % 1 3 %	1/2 7/16 3/8 5/16	3/4
12	35.0 31.5	51/8 5	7/16 3/8	1/4 8/16	3 3	%16 %16	934 934	1 ½ 1 ½	5/16 1/4	5/4
12	28.0	6	5/16	1/8	3	7∕16	9½	11/4	%1e	3/4
10	40.0 35.0 30.0 25.0	5 1/8 5 4 7/8 4 5/8	34 5/8 1/2 5/16	%8 5/16 1/4 8/16	$2\frac{84}{284}$ $2\frac{84}{284}$	1/31/31/31	8 8 8	1 1 1 1	7/16 3/8 5/10 1/4	3/4
10	22.25	5½	1/4	1/8	2¾	8/8	7 3/4	11/8	8/1e	3/4
9	35.0 30.0 25.0 21.0	4 3/4 4 5/6 4 1/2 4 3/8	3/4 9/16 7/16 5/16	%6 5/16 3/16 1/6	2 ½ 2 ½ 2 ½ 2 ½ 2 ½	73,73,73	7 7 7 7	1 1 1 1	7/16 3/8 1/4 8/16	3/4
8	25.5 23.0 20.5 18.0	4 14 4 14 4 16 4	9/16 7/16 3/8 1/4	5/16 1/4 3/16 1/8	2 1/4 2 1/4 2 1/4 2 1/4 2 1/4	1/2 7/16 7/16 7/16	6 14 6 14 6 14 6 14	7/8 7/8 7/8 7/8	5/16 5/16 1/4 8/16	3/4
8	17.5	5,	1/4	1/8	21/4	3/8	6	1	8/16	3⁄4
7	20.0 17.5 15.0	3 7/6 3 3/4 3 5/8	1/2 8/8 1/4	1/4 8/16 1/8	21/4 21/4 21/4	3/8 8/8 3/8	514 514 514	7/8 7/8 7/8	5/16 1/4 8/16	5/8
6	17.25 14.75 12.25	3 1/2 3 1/2 3 3/8	1/2 3/3 1/4	3/16 3/16 1/8	2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4½ 4½ 4½ 4½	84 84 84	5/16 1/4 8/16	5/8
5 ·	14.75 12.25 9.75	3 1/8 3 1/8 3	1/2 8/8 1/4	8/16 1/8	1 3/4 1 3/4 1 3/4	8/6 8/6 8/8	3½ 3½ 3½ 3½	84 84 84	5/16 1/4 8/16	1/2
4	10.5 9.5 8.5 7.5	2 7/8 2 7/8 2 8/4 2 5/8	7/16 3/8 1/4 8/16	1/4 8/16 1/8 1/8	1 ½ 1 ½ 1 ½ 1 ½ 1 ½	5/16 5/16 5/16 5/16 5/16	2 3/4 2 3/4 2 3/4 2 3/4	5/8 5/8 5/8 8	1/4 1/4 8/16 8/16	1/2
3	7.5 6.5 5.5	2 ½ 2 ½ 2 ½ 2 %	3/8 1/4 8/16	8/16 1/8 1/8	1 ½ 1 ½ 1 ½	5/16 5/16 5/16	1 %4 1 %4 1 %4	5/8 5/8	1/4 8/18 1/8	3/8

STRUCTURAL DETAILS

STANDARD GAGES AND DIMENSIONS FOR CHANNELS

Nominal dimensions are:—flange width and "o" in eighths, web thickness in sixteenths. Gages for connection angles are determined by web thickness. Standard gages may be varied if conditions require.

Ga	ges for	channe	ls in ri	veted cl	annelo	olumns	aregiv	en on pa	ges 297	to 307.
Depth of	Weight	Flange	Web Thick-	½Web Thick-	Gage	Grip		Distance		Max. Rivet in
Channel	per Foot	Width	ness	ness	g	р	f	0	h	Flange
In.	Lbs.	In.	In.	In.	ln.	In.	In.	In.	In.	In.
15	55.0 50.0 45.0 40.0 35.0 33.0	378 384 358 312 312 338	1816 34 56 1/2 7/16 7/16	7/16 5/3 5/16 1/4 8/16	21/2 22/2 22/2 22/2 22/2	11/16 11/16 5/8/8/8/8	12 ¼ 12 ¼ 12 ¼ 12 ¼ 12 ¼ 12 ¼ 12 ¼	11111111111111111111111111111111111111	18/16 11/16 9/16 14/2 18/2 18/3 18/3 18/3 18/3 18/3 18/3 18/3 18/3	3 ⁄8
13	50.0 45.0 40.0 37.0 35.0 32.0	4 3/8 4 1/4 4 1/8 4 1/8 4 1/8	18/16 11/16 9/16 1/2 7/16 8/8	% 5/16 5/16 1/4 1/4 8/16	322222	%6 %6 %6 %6 %6 %6	10 ¼ 10 ¼ 10 ¼ 10 ¼ 10 ¼ 10 ¼		78 5/8 9/16 1/2 7/16	₹8
12	40.0 35.0 30.0 25.0 20.5	3½ 3¾ 3¼ 3¼ 3½ 3	916 746 746 8 8 15/8 15/8 15/8 15/8 15/8 15/8 15/8	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1 3/4 1 3/4 1 3/4	8 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	10 10 10 10 10	1 1 1 1	1846 1146 940 746 38 8 8 946 746 546	₹⁄8
10	35.0 30.0 25.0 20.0 15.0	3 1/4 3 1/4 2 1/4 2 1/4 2 1/4 2 1/4	18/16 11/16 1/2 3/8 1/4 5/16 5/16 1/4	7/16 3/8 1/4 8/16 1/8	1 84 1 84 1 1 34 1 1 36 1 1 32	1/2 1/2 1/2 7/16	814 814 814 814 814	7/8/8/8/8	% % % % % % % % %	3/4
9	25.0 20.0 15.0 13.25	27/8 25/8 21/2 21/2	5/8 7/16 5/16	5/16 1/4 8/16 1/4	1½ 1½ 1¾ 1¾ 1¾	1/2 1/2 1/2 1/16 1/16	7 1/4 7 1/4 7 1/4	78 78 78 78	11/16 1/2 3/8 5/16	3/4
8	21.25 18.75 16.25 13.75	SCHOOL STAND MANAGE STANDS COLORS COL	5/8 1/2 1/16 5/16	5/16 1/4 8/16 8/16 1/8	111288 12144 88588 111111111111111111111111111111111	7/16 8 8 9 7/16 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	6 ¼ 6 ¼ 6 ¼ 6 ¼ 6 ¼		11/16 5/16 11/16 9/16 11/16 9/16 11/16 9/16 11/16 9/16 11/16 9/16 11/16 9/16 11/16 9/16 11/16 9/16 11/16 9/16 11/16 9/16 11/16 9/16 11/16 9/16 11/16 9/16 9	3⁄4
7	19.75 17.25 14.75 12.25 9.75	21/2 21/2 23/8 21/4 21/8	5/8 1/2 7/16 5/16	5/16 1/4 1/4 8/16 1/8	1½ 1½ 1¼ 1¼ 1¼	7/16 7/16 7/16 3/8 3/8	5 ½ 5 ½ 5 ½ 5 ½ 5 ½	8/4 8/4 8/4 8/4 8/4	11/16 1/16 1/2 3/8 5/16	5⁄8
6	15.5 13.0 10.5 8.0	2 1/4 2 1/4 2 1/8 2	646 746 546 846	5/16 1/4 8/16 1/8	13/8 13/8 11/8 11/8	3/8 3/8 5/16	4 ½ 4 ½ 4 ½ 4 ½ 3 ¾ 3 ¾ 3 ¾	34 34 34 34	5/8 1/2 3/8 1/4	5/8
5	11.5 9.0 6.5	2 1/8 1 7/8 1 3/4	5/16 8/16	8/18 1/8	1 1/8 1 1/8 1 1/6	5/16 5/16 5/16	3 3/4 3 3/4 3 3/4	5/8 5/8	9/16 3/8 1/4	1/2
4	7.25 6.25 5.25	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	%16 %16	8/16 1/8 1/8	1 1 1	5/16 5/16 5/16	2 3/4 2 3/4 2 3/4	5/8 5/8 5/8	3/8 5/16 1/4	1/2
3	6.0 5.0 4.0	15/8 11/2 11/2	3/8 1/4 8/16	8/16 1/8 1/8	7/8 7/8 7/8	14 14 14	1 3/4 1 3/4 1 3/4	5/8 5/8 8/8	7/16 5/16 1/4	1/2

BEAM CONNECTIONS

Rivets and bolts 34" diameter.

Weights given are for $\frac{3}{4}$ -inch shop rivets and angle connections; about 20 per cent should be added for field rivets or bolts.

STRUCTURAL DETAILS

BEAM CONNECTIONS—Concluded

LIMITING VALUES OF BEAM CONNECTIONS

		Value of	.Val	ues of Outstan	ding L	egs of Connect	tion Angles	
1 Be	eams	Web Connection	Fi	eld Rivets		F	ield Bolts	
	Weight Pounds per Foot	Shop Rivets in Enclosed Bearing, Pounds	34" Rivets or Turned Bolts, Single Shear, Pounds	Minimum Allowable Span in Feet, Uniform Load	t, In.	Rough Bolts, Single Shear, Pounds	Minimum Allowable Span in Feet, Uniform Load	t, Ia.
27	90	82530	61900	18.9	5/8	49500	23.6	5/g
24	80 74	67500 64260	53000 53000	17.5 16.4	5/8 5/8	42400 42400	21.9 20.4	5/8 5/8
21	60½	48150	44200	14.2	5/8	35300	17.8	5/8
20	65	45000	35300	17.6	5/8	28300	22.1	5/8
18	55 48	41400 34200	35300 35300	13.3 12.8	5/8 1 ⁹ 6	28300 28300	16.7 15.4	5/8 5/a
15	42 37½	36900 29880	35300 35300	8.9 9.7	5/8 1/2	28300 28300	11.1 10.2	5⁄a 1 ⁹ 6
12	31½ 28	23600 19170	26500 26500	8.1 9.2	18 18	21200 21200	9.0 9.2	5/8 1/2
10	25 22¼	27900 22680	17700 17700	7.4 6.8	5/8 5/a	14100 14100	9.2 8.6	5/8 5/a
9	21	26100	17700	5.7	5/9	14100	7.1	5/8
8	18 17½	24300 19800	17700 17700	4.3 4.4	5/8 5/8	14100 14100	5.4 5.5	5/g 5/a
7	15	11300	8800	6.2	5/g	7100	7.8	5/8
6	121/4	10400	8800	4.4	5/8	7100	5.5	5∕a
5	9¾	9500	8800	2.9	5/8	7100	3.6	5/8
4	7½	8600	8800	2.2	18 18	7100	2.7	5/g
3	5½	7700	8800	1.3	1/2	7100	1.4	5/8
	Depth, Inches 27 24 21 20 18 15 12 10 9 8 7 6 5 4	Depth, Pounds per Foot 27 90 24 80 74 21 60½ 20 65 18 48 15 42 37½ 28 10 25 22¼ 9 21 8 18 17½ 7 15 6 12¼ 5 9¾ 4 7½	The ams Web Connection	The beams Weight Connection Fi	The beams	The bams Connection Field Rivets	The beams	The last

ALLOWABLE UNIT STRESS IN POUNDS PER SQUARE INCH

t=Web thickness, in bearing, to develop max. allowable reactions, when beams frame opposite. Connections are figured for bearing and shear (no moment considered).

The above values agree with tests made on beams under ordinary conditions of use.

Where web is enclosed between connection angles (enclosed bearing), values are greater because of the increased efficiency due to friction and grip.

Special connections shall be used when any of the limiting conditions given above are exceeded—such as end reaction from loaded beam being greater than value of connection; shorter span with beam fully loaded; or a less thickness of web when maximum allowable reactions are used.

BEAM SEPARATORS

AMERICAN BRIDGE COMPANY STANDARD

Beams					Separator					84" Bolts			
Depth, Inches	Weight per Foot, Pounds	Center to Center of Beams, Inches	Out to Out of Flanges, Inches	w In.	Dimer h In.	d In.	t In	Weight, Pounds	Increase in Weight for 1" Add. Width	Length, Inches	Weight, Pounds Hex. Head and Nut	Increase in Weight for 1" Add. Length	Diagrams
24	115-110-105	83/4	16¾	8	20	12	5/8	31	3.6	10½	3.4	0.25	
24	100 95 and 90 85 80	8888	15½ 15¼ 15¼ 15¼ 15	714 714 712 712	20 20 20 20	12 12 12 12	5888	28 28 29 29	3.6 3.6 3.6 3.6	10 10 9½ 9½	$3.2 \\ 3.2 \\ 3.1 \\ 3.1$	0.25 0.25 0.25 0.25	
20	100 and 95 90 85 and 80	8 7½ 7½	$15\frac{1}{4}$ $14\frac{1}{2}$	7 6¾ 6¾	16 16 16	12 12 12	5/8 5/8 5/8	$\frac{22}{22}$	2.9 2.9 2.9	10 9½ 9	3.0	$\begin{array}{c} 0.25 \\ 0.25 \\ 0.25 \end{array}$	
20	75 70 65	7½ 7 7	$14 \\ 13\frac{1}{4} \\ 13\frac{1}{4}$		16 16				2.9 2.9 2.9	9 9 8½	$\frac{3.0}{3.0}$	0.25 0.25 0.25	
18	90 85 and 80 75	8000	1514 1518 15	7 7⅓ 7⅓		9 9 9	5/8			10 10 10	$\frac{3.2}{3.2}$	$0.25 \\ 0.25 \\ 0.25$	11/16 12/16
18	70 and 65 60 55	7 7 7	$\frac{13}{4}$	$6\frac{1}{2}$	14 14 14	9 9 9		18 19 19		9 8½ 8½	$\frac{3.0}{3.0}$	0.25 0.25 0.25	
15	75 70 and 65 60	7 7 6½	$13\frac{1}{4}$ $13\frac{1}{4}$ $12\frac{1}{2}$		11 11 11	7½ 7½ 7½ 7½	1/2 1/2 1/2	$\frac{12}{12}$			$\frac{3.0}{2.7}$	0.25 0.25 0.25	jt. 111/15
15	55 50 and 45 42	$6\frac{1}{2}$ $6\frac{1}{2}$ $6\frac{1}{2}$	$12\frac{1}{4}$ $12\frac{1}{4}$ 12	5¾ 6 6	11 11 11	$7\frac{1}{2}$ $7\frac{1}{2}$ $7\frac{1}{2}$		$\frac{11}{12}$	1.6 1.6 1.6	8000	$2.7 \\ 2.7 \\ 2.7$	$0.25 \\ 0.25 \\ 0.25$	78 Colou Holos
12	55 50	6	$11\frac{8}{1}$	5¼ 5¼	8¾ 8¾	5 5	$\frac{1}{2}$ $\frac{1}{2}$	9	$\frac{1.3}{1.3}$	8	$\frac{2.7}{2.7}$	$0.25 \\ 0.25$	
12	45 40 and 35 31.5	6 6 6		$5\frac{1}{4}$ $5\frac{1}{2}$ $5\frac{1}{2}$	83/4 83/4 83/4	5 5 5	1/2 1/2 1/2	9 9	$1.3 \\ 1.3 \\ 1.3$	7½ 7½ 7½ 7½	$2.6 \\ 2.6 \\ 2.6$		
10	40 35 30 25	$5\frac{1}{2}$ $5\frac{1}{2}$ $5\frac{1}{2}$ $5\frac{1}{2}$	$ \begin{array}{c} 10\frac{3}{4} \\ 10\frac{1}{2} \\ 10\frac{1}{2} \\ 10 \end{array} $	b	7½ 7½ 7½ 7½ 7½		1/2 1/2 1/2 1/2 1/2	6 7 7	1.1 1.1 1.1 1.1	7½ 7 7 7	1.3 1.3 1.3 1.3	$0.13 \\ 0.13 \\ 0.13 \\ 0.13$	
9	35 30 25 21	5 5 5	10 9½ 9½ 9½ 9¼	41/4 41/4 41/2 41/2	6½ 6½ 6½ 6½		1/2 1/2 1/2 1/2	5 5 5 5	0.9 0.9 0.9	7 6½ 6½ 6½	$1.3 \\ 1.2 \\ 1.2 \\ 1.2$	$0.13 \\ 0.13 \\ 0.13 \\ 0.13$	1"
8	25.5 23 20.5 and 18	4½ 4½ 4½	9 8 ³ / ₄ 8 ¹ / ₂	4 4 4	$5\frac{1}{2}$ $5\frac{1}{2}$ $5\frac{1}{2}$		1/2 1/2 1/2	444	0.8 0.8	6		0.13	
7	20 17.5 15	4½ 4½ 4½			5 5 5		1/2 1/2 1/2		0.7 0.7		$\begin{vmatrix} 1.1 \\ 1.1 \\ 1.1 \end{vmatrix}$	0.13	11/16. W
6	17.25 14.75 12.25	4 4	784 71/2 71/2		1 4 1/2		1/2 1/2 1/2	4	0.6	$5\frac{1}{2}$		0.13	yg Cored Hold
	For 5", 4" a	ad 3′	' bear	as, u	se 1''	gas p	ips	31/2	í", 8	3" and	23/4	"long	g'respectively.

TIE RODS AND ANCHORS

AMERICAN BRIDGE COMPANY STANDARD

1 INCH TIE RODS

LENGTHS AND WEIGHTS FOR VARIOUS DISTANCES C. TO C. OF BEAMS
Weights include two Nuts

C. to C.	Length	Weight	C. to C.	Length	Weight	C. to C.	Length	Weight	C. to C.	Length	Weight
FtIn.	FtIn.	Pounds	FtIn.	FtIn.	Pounds	FtIn.	FtIn.	Pounds	FtIn.	FtIn.	Pounds
1-0	1-3	2.30	1-3	1-6	2.67	1-6	1-9	3.05	1-9	2-0	3.42
2-0	2-3	3.80	2-3	2-6	4.17	2-6	2-9	4.55	2-9	3-0	4.92
3-0	3-3	5.30	3-3	3-6	5.67	3-6	3-9	6.05	3-9	4-0	6.42
4-0	4-3	6.80	4-3	4-6	7.17	4-6	4-9	7.55	4-9	5-0	7.92
5-0	5-3	8.30	5-3	5-6	8.67	5-6	5-9	9.05	5-9	6-0	9.42
6-0	6-3	9.80	6-3	6-6	10.17	6-6	6-9	10.55	6-9	7-0	10.92
7-0	7-3	11.30	7-3	7-6	11.67	7-6	7-9	12.05	7-9	8-0	12.42
8-0	8-3	12.80	8-3	8-6	13.17	8-6	8-9	13.55	8-9	9-0	13.92

ANCHORS

SWEDGE BOLT

Weight includes Nut

Diameter	Length	Weight
Inches	Feet - Inches	Pounds
3/4 7/6 1 11/4	0-9 1-0 1-0 1-3	1.3 2.3 3.1 6.1

BUILT-IN ANCHOR BOLTS

When center to center of anchors is less than width of washer, use washer with two holes.

GOVERNMENT ANCHOR

34" Rod 1'9" long. Wt., 3 lbs.

ANGLE ANCHOR

2 Angles 6" x 4" x7/18" x 0' 2½" Weight with ¾" bolts, 7 lbs.

BEARING PLATES

The size and thickness of steel bearing plates depend on the end reaction, length of bearing, and unit pressure. The following table gives sizes for beams of usual spans, the allowable safe loads in thousands of pounds and the span of beams giving equivalent end reactions.

STANDARD BEARING PLATES

Be	am	ing,	Bearin	g Pla	te	Lim.	Be	am	ing.	Beari	ng Pla	ate	Lim.
Depth, In.	Wt., Lbs. per Ft.	Wall Bearing, Inches	Size, In.	Wt., Lbs.	Max. Safe Load	Span of Beam, Ft.	Depth, In.	Wt., Lbs. per Ft.	Wall Bearing, Inches	Size, In.	Wt., Lbs	Max. Safe Load	Span of Beam, Ft.
	90		16x16x1	73	48.8	24.0		25	8	12x8x¾	21	13.1	9.9
24	80	16	16x16x1	73	37.9	24.5	9	21	8	12x8x5/8		8.7	11.6
21	60.5	16	16x16x1	73	44.0	14.2	8	18	8	8x8x5/8	12	16.7	4.5
20	65	16	16x16x1	73	35.0	17.8	7	15	8	8x8x5/8	12	15.4	3.6
18	55		16x16x1	73	34.1	13.8	6	12.25	6	6x6x1/2	5	12.0	3.2
15	60		16x16x1	73	34.1	12.6	5	9.75		6x6x1/2		10.7	2.4
15	42		16x12x1	55	24.4	12.9	4	7.50		4x4x3/8	2	9.0	1.8
$^{15}_{12}$	31.50	12	12x12x¾	31	20 6	9.3	3	5.50		4x4x3/8		7. <u>2</u>	1.3

Allowable loads given for standard beams will apply also to supplementary and other beams of equal depth and end reactions.

Plates of special sizes may be taken from the table of projection coefficients given below, calculated from the following formula. Let

A =length of bearing plate, in inches.

B =width of bearing plate, in inches.

t = thickness of bearing plate, in inches. b = flange width of beam, in inches.

R =reaction on bearing plate, in pounds.

 $w = R \div AxB$, allowable unit pressure on masonry.

$$\mathbf{M} = \frac{\mathbf{R}(\mathbf{B} - \mathbf{b})}{8} = \frac{\mathbf{w} \mathbf{A} \mathbf{B}(\mathbf{B} - \mathbf{b})}{8} = \mathbf{f} \mathbf{S} = \frac{\mathbf{f} \mathbf{A} \mathbf{t}^2}{6}; \ \mathbf{B}(\mathbf{B} - \mathbf{b}) = \frac{4\mathbf{f} \mathbf{t}^2}{3\mathbf{w}}, \text{ or when } \mathbf{f} = 16000,$$

$$\mathbf{B}(\mathbf{B} - \mathbf{b}) = \frac{64000 \ \mathbf{t}^2}{3\mathbf{w}}, \text{ the same as the formula for rolled steel slabs, page 265.}$$

RULE:—Take from table on opposite page the proper size bearing plate for the reaction and unit pressure. Multiply the width of the plate by the width minus the width of the beam flange and select from the table below the thickness corresponding to the value for the given unit pressure.

PROJECTION COEFFICIENTS

Unit Pressure,					Thick	ness of	Beari	ng Pla	tes, in	Inche	8		-	
Lbs. per Sq. ln.	3/8	1/2	5/8	8/4	7∕8	1	11/8	1,1/4	13%	1½	15/8	1¾	11%	2
75 100 125 150 175 200 250 300 350 400	$\frac{12.0}{10.0}$	42.7	$\begin{array}{r} 41.7 \\ 33.3 \\ 27.8 \end{array}$	96 80 69 60 48	218 163 131 109 93 82 65 54 47 41	284 213 171 142 122 107 85 71 61 53	360 270 216 180 154 135 108 90 77 68	444 333 267 222 190 167 133 111 95 83	538 403 323 269 230 202 161 134 115	640 480 384 320 274 240 192 160 137 120	751 563 451 376 322 282 225 188 161	871 653 523 436 373 327 261 218 187 163	1000 750 600 500 429 375 300 250 214 188	683 569 488 427 341 284

STRUCTURAL DETAILS

BEARING PLATES

Safe Resistances in Thousands of Pounds Bearing Plates Pressure in Pounds per Square Inch Wall Bearing, Length, Width, Inches Inches 75 100 125 150 175 200 250 300 350 400 1.2 1.6 5.6 4 4 4 2.0 2.4 2.8 3.2 4.0 4.8 6.4 4 6 1.8 3.0 4.2 4.8 6.0 7.2 8.4 9.6 4 2.4 3.6 4 4 8 2.4 3.2 4.0 4.8 5.6 6.4 8.0 9.6 11.2 12.8 6 6 6 2.7 3.6 4.5 5.46.3 7.2 9.0 10.8 12.6 14.4 6 16.8 19.2 6 8 3.6 4.8 6.0 7.2 8.4 9.6 12.0 14.4 6 6 7.5 10.5 12.0 15.0 18.0 21.0 24.0 10 4.5 6.0 9.0 8 8 8 4.8 6.4 8.0 9.6 11.2 12.8 16.0 19.2 22.4 25.6 8 8 6.0 8.0 10.0 14.0 16.0 20.0 24.0 28.0 32.0 10 12.0 16.8 33.6 38.4 8 8 7.2 12.0 19.2 24.0 28.8 12 9.6 14.4 35.0 12.5 17.5 20.0 25.0 30.0 40.0 10 10 10 7.5 10.0 15.0 42.0 12.0 21.0 30.0 36.0 48.0 10 10 12 9.0 15.0 18.0 24.0 28.0 35.0 42.0 49.0 56.0 10 10 14 10.5 14.0 17.5 21.0 24.5 12 12 12 10.8 14.4 18.0 21.6 25.2 28.8 36 O 43.2 50.4 57.6 16.8 21.0 25.2 29.4 33.6 42.0 50.4 58.8 67.2 12 12 14 12.6 67.2 76.8 12 12 19.2 24.0 28.8 33.6 38.4 48.0 57.6 16 14.4 49.0 68.6 14.7 19.6 24.5 29.4 34.3 39.2 58.8 78.4 14 14 14 78.4 89.6 16 16.8 22.4 28.0 33.6 39.2 44.8 56.0 67.2 14 14 75.6 44.1 63.0 88.2 100.8 14 14 18 18.9 25.2 31.5 37.8 50.4 14 20 21.0 28.0 35.0 42.049.0 56.0 70.0 84.0 98.0 112.0 14 19.2 32.0 44.8 64.0 76.8 89.6 102.4 16 16 16 25.6 38.4 51.2 36.0 50.4 57.6 72.0 86.4 100.8 115.2 16 16 18 21.6 28.8 43.2 40.0 96.0 112.0 128.0 56.0 64.0 80.0 16 16 20 24.0 32.0 48.0 70.4 88.0 105.6 123.2 140.8 . 22 26.4 35.2 44.0 52.8 61.6 16 16 40.5 56.7 97.2 113.4 129.6 18 18 18 24.3 32.4 48.6 64.8 81.0 90.0 108.0 126.0 144.0 20 27.0 36.0 45.0 54.0 63.0 72.0 18 18 69.3 79.2 99.0 118.8 138.6 158.4 22 29.7 39.6 49.5 59.4 18 18 75.6 86.4 108.0 129.6 151.2 172.8 24 32.4 43.2 54.0 64.8 18 18 70.0 80.0 100.0 120.0 140.0 160.0 20 20 20 30.0 40.0 50.0 60.0 88.0 110.0 132.0 154.0 176.0 44.0 55.0 66.0 77.0

72.0

78.0

72.6

79.2

84.0

84.7

96.0 120.0 144.0 168.0 192.0

96.8 121.0 145.2 169.4 193.6

91.0 104.0 130.0 156.0 182.0 208.0

92.4 105.6 132.0 158.4 184.8 211.2

85.8 100.1 114.4 143.0 171.6 200.2 228.8

92.4 | 107.8 | 123.2 | 154.0 | 184.8 | 215.6 | 246.4

86.4 100.8 115.2 144.0 172.8 201.6 230.4

93.6|109.2|124.8|156.0|187.2|218.4|249.6

67.2 84.0 100.8 117.6 134.4 168.0 201.6 235.2 268.8

54.0 72.0 90.0 108.0 126.0 144.0 180.0 216.0 252.0 288.0

20

20

20

22

22

22

22

24

24

24

24

20

20

20

22

22

22

22

24

24

24

24

22

24

26

22

24

26

28

24

26

28

30

33.0

36.0

39.0 52.0

36.3

39.6

42.9

46.2 61.6 57.6 72.0

43.2

46.8

50.4

48.0 60.0

48.4

52.8

57.2

65.0

60.5

66.0

71.5

77.0

62.4 78.0

DETAILS FOR PUNCHING AND RIVETING

AMERICAN BRIDGE COMPANY STANDARD

CONVENTIONAL SIGNS FOR RIVETING

Sh	op Ri	vets		I	ield	Rive	ts'
	41 -	inters d chip			unter d chi		
Two full heads	Near side	Far side	Both sides	Two full heads	Near sids	Far sids	Both sides
+ +	\ ₩	-	··)数·		Ø		X

	Shop Rivets	
Countersunk but not chipped ,, Max. height, ½	Flattened to 1/4" high 1/2" and 5/6" Rivets	Flattened to % high 84", 78",1"Rivets
Néar side Far side	Near side Far side	Rar side
\$\pi_1 \pi_2 \cdot \pi_2	*************************************	新 6 1 %

GAGES FOR ANGLES, INCHES

3.

Leg	8	7	6	5	4	3½	3	2½	2	1¾	$1\frac{1}{2}$	13/8	1¼	1	3/4
g1	$4\frac{1}{2}$	4	$3\frac{1}{2}$	3	2½	2	1%	13/8	11/8	1	7/8	7∕8	3/4	5/8	1/2
g2	3	$2\frac{1}{2}$	$2\frac{1}{2}$	2											
g 3	3	3	$2\frac{1}{4}$	$1\frac{3}{4}$											
Max. rivet	11/8	1	7∕8	1/8	7∕8	7∕8	7∕8	3/4	5/8	1/2	3/8	8/8	8/8	1/4	1/4

For column details, 6'' leg ($\frac{1}{2}$ inch thick or less) against column shaft, $g^2 = 1\frac{1}{4}''$, $g^3 = 3''$. For diagonal angles, etc., gage in middle, where riveted leg equals or exceeds 3'' for $\frac{3}{4}''$ rivets, $\frac{3}{2}''$ for $\frac{1}{4}''$ rivets.

Use special gages to adapt work to multiple punch, or to secure desirable details.

CLEARANCE FOR WEB RIVETING

RIVETS IN CRIMPED ANGLES

Distance x should be 1½" plus thickness of chord angles, but never less than 2".

STANDARD RIVET DIES

CLEARANCE FOR COVER PLATE RIVETING

1						101191	опа.	111 11	CHES				
-	_e_	1/2	_1_	1½	2_	2½	_3_	21/2	4_	41/2	5	51/2	6
- 1	d	$2\frac{1}{2}$	25/8	$2\frac{3}{4}$	23/4	21/8	27/8	3	31/8	31/8	31/4	31/4	38%
ļ	f	0	1/2	1	11/2	2	21/2						-20
	đ	$2\frac{1}{2}$	21/4	21/8	2	11/2	0						
-										`			

Dimensions in Inches

RIVET SPACING

AMERICAN BRIDGE COMPANY STANDARD

MINIMUM STAGGER FOR RIVETS

Dis.							Miz	imun	a stag	ger, d,	inch	28					
of Rivet,		c, Inches															
Inches	11/8	1%16	11/4	15/16	1%	1,7	1½	1%16	15/8	111/16	1¾	118/16	11/8	115/18	21/16	2%6	25/1 G
5/8	15	7/8	13	11	1/2	15	0						İ				
3/4	11/4	1_{16}^{3}	11/8	116	15	7/8	3/4	18	3/8	0							
7€	11/2	1,7	1%	118	11/4	113		1	15	13	5/8	18	0_	Ì	_		
1	113	134	111	15/8	116	1½		1%	1_{10}^{5}	113	11/8	1	7∕8	3/4	0		
11/8	218	2 _	115	118	17/8	113	13/4	111	15/8	1,8	11/2	13/8	1,5	11/4	1	118	0

DISTANCE CENTER TO CENTER OF STAGGERED RIVETS Values of x for varying values of a and b

b,							a, In	ches						
In.	7/8	1	11/8	11/4	13/8	1½	15/8	1¾	11%	2	21/8	21/4	23/8	2½
11/8	1,7	1½	1,9	1}}	1¾	17/8	2	218	2_{18}^3	$2r_{\bar{a}}$	23%	21/2	25/8	23/4
11/4	1,8	15%	111	1¾	17/8	118	$2\frac{1}{16}$	21/8	21/4	23/8	27	2_{16}^{9}	211	213
1%	15/8	111	1¾	11/8	115	2.	21/8	2_{10}^3	$2^{\frac{5}{16}}$	2,7	21/2	25/8	23/4	$2\frac{7}{8}$
11/2	1¾	113	11/8	115	2	21/8	2_{1B}^3	2_{16}	23/8	2½	25/8	211	213	215
15/8	11/8	11/8	2	$2\frac{1}{16}$	21/8	$2\frac{3}{16}$	2^{5}_{16}	28/8	21/2	2_{1^6}	211	23/4	27/8	3
134	115	2	$2r_{\rm t}$	21/8	2^3_{16}	216	28/8	$2\frac{7}{16}$	2_{16}^9	25/8	2¾	21/8	215	3,10
17/8	21	21/8	2^{3}_{16}	21/4	$2_{1^{\frac{5}{6}}}$	2%	21/2	218	25/8	2¾	213	215	3	33/8
2	213	21/4	2_{18}^{5}	23/8	270	21/2	2 9	25%	2¾	213	215	3	31/8	3_{10}^{3}
21/8	$2^{\frac{5}{10}}$	$2^{5}_{1\overline{6}}$	23/8	2_{18}^{7}	2½	25/8	211	2¾	213	215	3	31/2	3_{10}^{3}	31/4
21/4	27	2,7	21/2	216	25/8	211	2¾	27/8	215	3	34	3,3	31/4	33/8
23/8	21/2	218	25/8	214	23/4	213	21/8	215	3	31/8	3,3	31/4	33/8	3,7
21/2	25/8	211	23/4	213	21/8	215	3	316	31/8	3,3	31/4	33%	3_{16}^{7}	3,%

Values below and to right of upper zigzag line are large enough for $\frac{34}{2}$ rivets. Values below and to right of lower zigzag line are large enough for $\frac{34}{8}$ rivets.

MINIMUM RIVET SPACING

Dia. of Rivet, Inches	1/4	3/8	1/2	5/8	3/4	7∕8	1	11/8	Ī
x, Minimum, Inches.	1	11/4	1¾	2	21/4	25/8	3	38/8	1

REDUCTION OF AREA FOR RIVET HOLES

Area in Square Inches-Diameter of Hole by Thickness of Metal

Thickness				1	Diamete	r of H	ole in :	Inches				
of Metal, Inches	1/4	1/2	%16	5/8	11/16	3/4	18/18	7/8	15/16	1	11/18	11/8
1 ³ 6	.05	.09	.11	.12	.13	.14	.15	.16	.18	.19	.20	.21
1/4	.06	.13	.14	.16	.17	.19	.20	.22	.23	.25	.27	.28
18 18	.08	.16	.18	.20	.21	.23	.25	.27	.29	.31	.33	.35
3/8	.09	.19	.21	.23	.26	.28	.30	.33	.35	.38	.40	.42
7 18	.11	.22	.25	.27	.30	.33	.36	.38	.41	.44	.46	.49
1/2	.13	.25	.28	.31	.34	.38	.41	.44	.47	.50	.53	.56
18.	.14	.28	.32	.35	.39	.42	.46	.49	.53	.56	.60	.63
5/8	.16	.31	.35	.39	.43	.47	.51	.55	.59	.63	.66	.70
11	.17	.34	.39	.43	.47	.52	.56	.60	.64	.69	.73	.77
8/4	.19	.38	.42	.47	.52	.56	.61	.66	.70	.75	.80	.84
18	.20	.41	.46	.51	.56	.61	.66	.71	.76	.81	.86	.91
7∕8	.22	.44	.49	.55	.60	.66	.71	.77	.82	.88	.93	.98
15	.23	.47	.53	.59	.64	.70	.76	.82	.88	.94	1.00	1.05
1	.25	.50	.56	.63	.69	.75	.81	.88	.94	1.00	1.06	1.13
1_{18}^{1}	.27	.53	.60	.66	.73	.80	.86	.93	1.00	1.06	1.13	1.20
11/8	.28	.56	.63	.70	.77	.84	.91	.98	1.05	1.13	1.20	1.27
1_{16}^3	.30	.59	.67	.74	.82	.89	.96	1.04	1.11	1.19	1.26	1.34
11/4	.31	.63	.70	.78	.86	.94	1.02	1.09	1.17	1.25	1.33	1.41
1,5	.33	.66	.74	.82	.90	.98	1.07	1.15	1.23	1.31	1.39	1.48
13/8	.34	.69	.77	.86	.95	1.03	1.12	1.20	1.29	1.38	1.46	1.55
1,7	.36	.72	.81	.90	.99	1.08	1.17	1.26	1.35	1.44	1.53	1.62
1½	.38	.75	.84	.94	1.03	1.13	1.22	1.31	1.41	1.50	1.59	1.69

STAGGER OF RIVETS TO MAINTAIN NET SECTION

AMERICAN BRIDGE COMPANY STANDARD

 $b = \sqrt{2ay + y^2}$

	a	84'' Rivet	%'' Rivet	g1	%// Rivet	7/8" Rivet	
		_ b	b		b	b	
•	1 1½ 2 2½ 3 3 4 4½ 4½	17/8 21/4 21/4 21/4 21/6 21/6 21/6 21/6 21/6 21/6 21/6	184 214 216 258 216 316	5 5½ 6 6½ 7 7½ 8½ 8½	33331388478	31/2 31/2 35/8 37/8 4 41/4	

Dimensions in Inches

a=sum of gauges minus thickness of angle. $\frac{1}{2}$ rivets, can be taken at $\frac{1}{2}$ less than for $\frac{1}{2}$ rivets. 1" rivets, can be taken at $\frac{1}{2}$ more than for $\frac{1}{2}$ rivets.

 $a^{1}-2y = \sqrt{a^{2}+b^{2}}-3y$ $b = \sqrt{2ay + y^2}$

STRESSES IN RIVETS AND PINS

Rivets. In transmitting stresses between riveted pieces, it is customary to disregard friction and to proportion rivets to the entire stress to be transmitted. They must be of sufficient size and number to resist shear and to afford such bearing area as not to cause distortion of the metal at the rivet holes. In the case of beams which frame opposite and of single web girders, this latter condition often necessitates a greater thickness of web than required by the shearing stresses. In a plate girder with \(\frac{5}{16}'' \) web, \(\frac{3}{4}'' \) rivets connecting the web with the flange angles would have a bearing value at 24,000 pounds unit stress of 5,630 pounds per rivet, while their value in double shear at 12,000 pounds unit stress is 10,600 pounds per rivet; and it might be necessary to increase the web thickness to \(\frac{3}{6}'' \) or more in order that the pressure of the rivets upon the metal be not excessive.

Pins. Pins must be calculated for shearing, bending and bearing stresses, but one of the latter two will in most cases determine the size. When groups of bars are connected to the same pin, as in the lower chord of truss bridges, the size of the bars must be so chosen and the bars so placed that at no point on the pin will there be any excessive bending stress. When the size of pin has been determined from the bending stress, the thickness of the bars or web of the post should be investigated to provide sufficient bearing area, the bars being thickened or pin plates added if necessary.

The following is the formula for flexure applied to pins: $M = f \pi d^3 + 32$ or = f A d + 8, in which M = moment of forces for any section through pin, f = fiber stress per square inch in bending, A = the area of section, d = diameter, $\pi = 3.14159$. The forces are assumed to act in a plane passing through the axis of the pin.

EXAMPLE 1.—A pin, see figure, has to carry a load of 64,000 pounds; required the size at 24,000 pounds fiber stress, assuming the distance between points of support to be 5 inches.

Bending moment=64,000 x 5 \div 4=80,000 inch pounds; use a 3 $\frac{1}{4}$ inch pin; allowed moment: 80,900 inch pounds.

EXAMPLE 2.—Required the thickness of metal in the top chord of a bridge to give sufficient bearing area to a 33%-inch pin, having to transmit a stress of 121,400 pounds at an allowed bearing pressure of 24,000 pounds per square inch.

The bearing value of a 3%-inch pin for 1 inch thickness of metal is 81,000 pounds; therefore, the thickness of metal required= $121,400 \div 81,000=1\%$ inch, or each web of the chord must be $\frac{3}{2}$ inch thick, including pin plates.

RIVETS

SHEARING AND BEARING VALUES

		Values	in Poun	ds, all D	imension	s in Inch	es					
		3%-INC	H RIVE	ETS—Are	a .1104 S	quare In	ch					
Unit, Lbs. per Sq. In. 7000 8000 9000 10000 11000 12000 Single Shear per Rivet 770 880 990 1100 1210 1320												
hear	Sin	gle Shear per Rivet	770	880	990	1100	1210	1320				
6/2	Dou	ble Shear per Rivet	1540	1760	1980	2200	2420	2640				
	Un	it, Lbs. per Sq. In.	14000	16000	18000	20000	22000	24000				
Bearing	in Inches	1/8 16 1/4	660 980	750 1130 1500	840 1270 1690	940 1410 1880	1030 1550 2060	1130 1690 2250				
Be	Thickness in Inches	74 5 16 3/8	1310 1640 1910	1880 2250	2110 2530	2340 2810	2580 3090	2810 3380				
		½-INC	H RIVI	ETS—Are	a .1963 S	quare In	ch					
1/2-INCH RIVETS—Area .1963 Square Inch Unit, Lbs. per Sq. In. 7000 8000 9000 10000 11000 1200												
Shear	Sing	gle Shear per Rivet	1370	1570	1770	1960	2160	2360				
02	Dou	ble Shear per Rivet	2750	3140	3530	3930	4320	4710				
	Uni	t, Lbs. per Sq. In.	14000	16000	18000	20000	22000	24000				
Bearing	Thickness in Inches	18 14 15 38	1310 1750 2190 2630	1500 2000 2500 3000	1690 2250 2810 3380	1880 2500 3130 3750	2060 2750 3440 4130	2250 3000 3750 4500				
		1/6 1/2	3060 3500	3500 4000	3940 4500	4380 5000	4810 5500	5250 6000				
		5%-INC	H RIVE	TS-Are	a .3068 S	quare Inc	eh					
	Uni	t, Lbs. per Sq. In.	7000	8000	9000	10000	11000	12000				
Shear	Sing	le Shear per Rivet	2150	2450	2760	3070	3370	3680				
02	Dou	ble Shear per Rivet	4300	4910	5520	6140	6750	7360				
100	Uni	t, Lbs. per Sq. In.	14000	16000	18000	20000	22000	24000				
Bearing	Thickness in Inches	13 14 15 88 13	1640 2190 2730 3280 3830	1880 2500 3130 3750 4380	2110 2810 3520 4220 4920	2340 3130 3910 4690 5470	2580 3440 4300 5160 6020	2810 3750 4690 5630 6560				
-	Thick	1/2 1°6 5/8	4380 4920 5470	5000 5630 6250	5630 6330 7040	6250 7030 7810	6880 7730 8590	7500 8440 9380				

Values below dotted lines are greater than double shear.

RIVETS

SHEARING AND BEARING VALUES

Values in Pounds, Dimensions in Inches

34-INCH RIVETS-Area..4418 Square Inch

								~-
Lie C	Uni	t, Lbs. per Sq. In	7000	8000	9000	10000	11000	12000
Shear	Sing	le Shear per Rivet	3090	3530	3980	4420	4860	5300
02	Dou	ble Shear per Rivet	6190	7070	7950	8840	9720	10600
Bearing	Uni	t, Lbs. per Sq. In.	14000	16000	18000	20000	22000	24000
	in Inches	1/4	2630	3000	3380	3750	4130	4500
		16 3/8	3280 3940	3750 4500	4220 5060	4690 5630	5160 6190	5630 6750
Bea		7 18	4590	5250	5910	6560	7220	7880
	Thickness	1/2	5250	6000	6750	7500	8250	9000
	lic l	i d	5910	6750	7590	8440	9280	10130
	H	5/8	6560	7500	8440	9380	10310	11250

%-INCH RIVETS—Area .6013 Square Inch

_								
ų.	Uni	t, Lbs. per Sq. In.	7000	8000	9000	10000	11000	12000
Shear	Sing	le Shear per Rivet	4210	4810	5410	6010	6610	7220
02	Dou	ble Sbear per Rivet	8420	9620	10820	12030	13230	14430
	Uni	t, Lbs. per Sq. In.	14000	16000	18000	20000	22000	24000
	Inches	1/4 15 16	3060 3830	3500 4380	3940 4920	4380 5470	4810 6020	5250 6560
50	.E		4590	5250	5910	6560	7220	7880
Bearing		3/8 17 G	5360	6130	6890	7660	8420	9190
Ã	Thickness	1/2	6130	7000	7880	8750	9630	10500
	cki	16	6890	7880	8860	9840	10830	11810
	温	5/8	7660	8750	9840	10940	12030	13130
	-	11	8420	9630	10830	12030	_13230_	14430

1-INCH RIVETS-Area .7854 Square Inch

	Uni	t, Lbs. per Sq. In.	7000	8000	9000	10000	11000	12000
Shear	Sing	le Shear per Rivet	5500	6280	7070	7850	8640	9420
5/2	Dou	ble Shear per Rivet	11000	12570	14140	15710	17280	18850
	Uni	t, Lbs. per Sq. In.	14000	16000	18000	20000	22000	24000
		1/4	3500	4000	4500	5000	5500	6000
	Inches	16	4380	5000	5630	6250	6880	7500
		3/8	5250	6000	6750	7500	8250	9000
Bearing		176	6130	7000	7880	8750	9630	10500
123	. .	1/2	7000	8000	9000	10000	11000	12000
Ã	8	10	7880	9000	10130	11250	12380	13500
	ğ	5/8	8750	10000	11250	12500	13750	15000
	Thickness	11	9630	11000	12380	13750	15130	16500
	F	34	10500	12000	13500	15000	16500	18000
		13	11380	13000	14630	16250	17880	19500

Values above upper dotted lines are less than single shear. Values below lower dotted lines are greater than double shear.

PINS

BEARING VALUES IN POUNDS ON METAL ONE INCH THICK

Bearing Value—Diameter of Pin x Bearing Stress per Square Inch

I	Pin		Bearing Stresse	s in Pounds p	er Square Inc	1
Diameter, Inches	Area, Sq. In.	12000	15000	20000	22000	24000
1	.785	12000	15000	20000	22000	24000
1 ¼	1.227	15000	18800	25000	27500	30000
1 ½	1.767	18000	22500	30000	33000	36000
1 ¾	2.405	21000	26300	35000	38500	42000
2	3.142	24000	30000	40000	44000	48000
2 ¼	3.976	27000	33800	45000	49500	54000
2 ½	4.909	30000	37500	50000	55000	60000
2 ¾	5.940	33000	41300	55000	60500	66000
3	7.069	36000	45000	60000	66000	72000
3 ¼	8.296	39000	48800	65000	71500	78000
3 ½	9.621	42000	52500	70000	77000	84000
3 ¾	11.045	45000	56300	75000	82500	90000
4	12.566	48000	60000	80000	88000	96000
4 14	14.186	51000	63800	85000	93500	102000
4 12	15.904	54000	67500	90000	99000	108000
4 34	17.721	57000	71300	95000	104500	114000
5	19.635	60000	75000	100000	110000	120000
5 1/4	21.648	63000	78800	105000	115500	126000
5 1/2	23.758	66000	82500	110000	121000	132000
5 8/4	25.967	69000	86300	115000	126500	138000
6	28.274	72000	90000	120000	132000	144000
6 1/4	30.680	75000	93800	125000	137500	150000
6 1/2	33.183	78000	97500	130000	143000	156000
6 8/4	35.785	81000	101300	135000	148500	162000
7	38.485	84000	105000	140000	154000	168000
714	41.282	87000	108800	145000	159500	174000
712	44.179	90000	112500	150000	165000	180000
734	47.173	93000	116300	155000	170500	186000
8 8 14 8 12 8 8 4	50/265 53.456 56.745 60.132	96000 99000 102000 105000	120000 123800 127500 131300	160000 165000 170000 175000	176000 181500 187000 192500	192000 198000 204000 210000
9 9 14 9 15 9 8 4	63.617 67.201 70.882 74.662	108000 111000 114000 117000	135000 138800 142500 146300	180000 185000 190000 195000	198000 203500 209000 214500	216000 222000 228000 234000
10	78.540	120000	150000	200000	220000	240000
10 ¼	82.516	123000	153800	205000	225500	246000
10 ½	86.590	126000	157500	210000	231000	252000
10 ¾	90.763	129000	161300	215000	236500	258000
11	95.033.	132000	165000	220000	242000	264000
11 ¼	99.402	135000	168800	225000	247500	270000
11 ½	103.869	138000	172500	230000	253000	276000
11 ¾	108.434	141000	176300	235000	258500	282000
12	113.097	144000	180000	240000	264000	288000

PINS

ļ

BENDING MOMENTS IN INCH POUNDS

Bending Moment—(Diameter of Pin)³ x 0.098175 x Stress per Square Inch

P	in		Fib	er Stress in	Pounds po	r Square Ir	ich	
Diameter, Inches	Area, Sq. In.	15000	18000	20000	22000	22500	24000	25000
1	.785	1500	1800	2000	2200	2200	2400	2500
1 1/4	1.227	2900	3500	3800	4200	4300	4600	4800
1 1/2	1.767	5000	6000	6600	7300	7500	8000	8300
1 8/4	2.405	7900	9500	10500	11600	11800	12600	13200
2	3.142	11800	14100	15700	17300	17700	18800	19600
2 1/4	3.976	16800	20100	22400	24600	25200	26800	28000
2 1/2	4.909	23000	27600	30700	33700	34500	36800	38300
2 3/4	5.940	30600	36800	40800	44900	45900	49000	51000
3	7.069	39800	47700	53000	58300	59600	63600	66300
3 ¼	8.296	50600	60700	67400	74100	75800	80900	84300
3 ½	9.621	63100	75800	84200	92600	94700	101000	105200
3 ¾	11.045	77700	93200	103500	113900	116500	124300	129400
4	12.566	94200	113100	125700	138200	141400	150800	157100
4 14	14.186	113000	135700	150700	165800	169600	180900	188400
4 12	15.904	134200	161000	178900	196800	201300	214700	223700
4 84	17.721	157800	189400	210400	231500	236700	252500	263000
5	19.635	184100	220900	245400	270000	276100	294500	306800
5 1/4	21.648	213100	255700	284100	312500	319600	340900	355200
5 1/2	23.758	245000	294000	326700	359300	367500	392000	408300
5 3/4	25.967	280000	336000	373300	410600	419900	447900	466600
6	28.274	318100	381700	424100	466500	477100	508900	530100
6 1/4	30.680	359500	431400	479400	527300	539300	575200	599200
6 1/2	33.183	404400	485300	539200	593100	606600	647100	674000
6 3/4	35.785	452900	543500	603900	664300	679400	724600	754800
7	38.485	505100	606100	673500	740800	757700	808200	841800
7 14	41.282	561200	673400	748200	823100	841800	897900	935300
7 12	44.179	621300	745500	828400	911200	931900	994000	1035400
7 84	47.173	685500	822600	914000	1005400	1028200	1096800	1142500
8 8 1/4 8 1/2 8 3/4	50.265 53.456 56.745 60.132	754000 826900 904400 986500	992300 1085300	$1102500 \\ 1205800$	1105800 1212800 1326400 1446900	1240400 1356600	1323000 1447000	1378200 1507300
9 9 14 9 12 9 34	67.201	1165500	1398600 1515100	1554000 1683500	1574500 1709400 1851800 2001900	1748300 1893900	1864800 2020100	1942500 2104300
10 10 ¼ 10 ½ 10 ¾	82.516 86.590	1472600 1585900 1704700 1829400	1903000 2045700	2114500 2273000	2325900 2500300	2378800 2557100	2537400 2727600	2643100 2841200
11	95.033	1960100	2352100	2613400	2874800	2940100	3136100	3266800
11 ¼	99.402	2096800	2516100	2795700	3075200	3145100	3354800	3494600
11 ½	103.869	2239700	2687600	2986200	3284900	3359500	3583500	3732800
11 ¾	108.434	2388900	2866700	3185300	3503800	3583400	3822300	3981600
12	113.097	2544700	3053600	3392900	3732200	3817000	4071500	4241200

ANGLES

ALLOWABLE TENSION VALUES IN THOUSANDS OF POUNDS Maximum Fiber Stress, 16000 Pounds per Square Inch

				No	t Areas a	nd Stressee	Two H	nles Deduc	ted
Size, Inches	Thick- ness,	Weight per Fnot,	Area, Inches 2	⅓-Inch	Rivets	¾-Incl	Rivets	5/8-Inch Rivets	
	Inches	Pnunds		Area, Inches 2	Stress	Area, Inches 2	Stress	Arca, Inches ²	Stress
8 x 8 8 x 8 8 x 8 8 x 8 8 x 8 8 x 8 8 x 8 8 x 8	1 +17/2030 (41-6) 80 0 (2)	51.0 48.1 45.0 42.0 38.9 35.8 32.7 29.6 26.4	15.00 14.12 13.23 12.34 11.44 10.53 9.61 8.68 7.75	13.00 12.24 11.48 10.72 9.94 9.16 8.36 7.55 6.75	208.0 195.8 183.7 171.5 159.0 146.6 133.8 120.8	13.25 12.48 11.70 10.92 10.13 9.33 8.52 7.70 6.87	212.0 199.7 187.2 174.7 162.1 149.3 136.3 123.2 109.9	8.67 7.84 7.00	138.7 125.4 112.0
8 x 6 8 x 6 8 x 6 8 x 6 8 x 6 8 x 6 8 x 6 8 x 6	1 17/11/80 9 17/11/80 9 17/17/80 9 17/	44.2 41.7 39.1 36.5 33.8 31.2 28.5 25.7 23.0 20.2	13.00 12.25 11.48 10.72 9.94 9.15 8.36 7.56 6.75 5.93	11.00 10.37 9.73 9.10 8.44 7.78 7.11 6.43 5.75 5.05	176.0 165.9 155.7 145.6 135.0 124.5 113.8 102.9 92.0 80.8	11.25 10.61 9.95 9.30 8.63 7.95 7.27 6.58 5.87 5.16	180.0 169.8 159.2 148.8 138.1 127.2 116.3 105.3 93.9 82.6	7.42 6.72 6.00 5.27	118.7 107.5 96.0 84.3
6 x 6 6 x 6 6 x 6 6 x 6 6 x 6 6 x 6 6 x 6 6 x 6	7/8 30 /4 10/80 pa /2 7 18/80	33.1 31.0 28.7 26.5 24.2 21.9 19.6 17.2 14.9	9.73 9.09 8.44 7.78 7.11 6.43 5.75 5.06 4.36	7.98 7.47 6.94 6.41 5.86 5.30 4.75 4.18 3.61	127.7 119.5 111.0 102.6 93.8 84.8 76.0 66.9 57.8	8.20 7.67 7.13 6.58 6.02 5.45 4.87 4.29 3.70	131.2 122.7 114.1 105.3 96.3 87.2 77.9 68.6 59.2	6.17 5.59 5.00 4.40 3.80	98.7 89.4 80.0 70.4 60.8
6 x 4 6 x 4 6 x 4 6 x 4 6 x 4 6 x 4 6 x 4	7/8780/4160/8865/27/5/8	27.2 25.4 23.6 21.8 20.0 18.1 16.2 14.3 12.3	7.98 7.47 6.94 6.40 5.86 5.31 4.75 4.18 3.61	6.23 5.85 5.44 5.03 4.61 4.18 3.75 3.30 2.86	99.7 93.6 87.0 80.5 73.8 66.9 60.0 52.8 45.8	6.45 6.05 5.63 5.20 4.77 4.33 3.87 3.41 2.95	103.2 96.8 90.1 83.2 76.3 69.3 61.9 54.6	4.92 4.47 4.00 3.52 3.05	78.7 71.5 64.0 56.3 48.8
5 x 3 ½ 5 x 3 ½ 5 x 3 ½ 5 x 3 ½ 5 x 3 ½ 5 x 3 ½ 5 x 3 ½	5/8 9 1 6 1 7 7 8 8 6 6	16.8 15.2 13.6 12.0 10.4 8.7	4.92 4.47 4.00 3.53 3.05 2.56	3.67 3.34 3.00 2.65 2.30 1.93	58.7 53.4 48.0 42.4 36.8 30.9	3.83 3.49 3.12 2.76 2.39 2.01	61.3 55.8 49.9 44.2 38.2 32.2	3.98 3.63 3.25 2.87 2.49 2.09	63.7 58.1 52.0 45.9 39.8 33.4
5 x 3 5 x 3 5 x 3 5 x 3	1/2 7 1 e 3/8 1 5	12.8 11.3 9.8 8.2	3.75 3.31 2.86 2.40	2.75 2.43 2.11 1.77	44.0 38.9 33.8 28.3	2.87 2.54 2.20 1.85	45.9 40.6 35.2 29.6	3.00 2.65 2.30 1.93	48.0 42.4 36.8 30.9

ANGLES

ALLOWABLE TENSION VALUES IN THOUSANDS OF POUNDS Maximum Fiber Stress, 16000 Pounds per Square Inch

Net Areas and Stresses—One Hole Deducted										
Size, Inche		Thick- ness,	Weight per Foot,	Area, Inches ²	⅓-Inch	Rivets	34-Inch	Rivets	5/8-Inch	Rivets
		Inches	Pounds		Area, Inches ²	Stress	Area, Inches 2	Stress	Area, Inches ²	Stress
x (3	7/8	33.1	9.73	8.85	141.6	8.96	143.4		
x (3	13	31.0	9.09	8.28	132.5	8.38	134.1		
x (6	3/4	28.7	8.44	7.69	123.0	7.78	124.5		
х (6	11	26.5	7.78	7.09	113.4	7.18	114.9		
	3	5/8	24.2	7.11	6.48	103.7	6.56	105.0	6.64	106.2
	6	18	21.9	6.43	5.87	93.9	5.94	95.0	6.01	96.2
	6	1/2	19.6	5.75	5.25	84.0	5.31	85.0	5.37	85.9
	6	170	17.2	5.06	4.62	73.9	4.68	74.9	4.73	75.7
x (6	3∕8	14.9	4.36	3.98	63.7	4.03	64.5	4.08	65.3
	4	7/8	27.2	7.98	7.10	113.6	7.21	115.4		
	1	13	25.4	7.47	6.66	106.6	6.76	108.2		
	4	3/4	23.6	6.94	6.19	99.0	6.28	100.5		
	4	11	21.8	6.40	5.71	91.4	5.80	92.8	W 00'	
	4	5/8	20,0	5.86	5.23	83.7	5.31	85.0 77.1	5.39	86.2
	4	16	18.1	5.31 4.75	4.75 4.25	76.0 68.0	4.82	69.0	4.89	78.2 69.9
	4	1/2	16.2 14.3	4.18	3.74	59.8	4.31 3.80	60.8	4.37 3.85	61.6
	4	178 3/8	12.3	3.61	3.23	51.7	3.28	52.5	3.33	53.3
х 3	1,6	5/8	16.8	4.92	4.29	68.6	4.37	69.9	4.45	71.2
x 3		200	15.2	4.47	3.91	62.6	3.98	63.7	4.05	64.8
5 x 3		16 1/2 7 16	13.6	4.00	3.50	56.0	3.56	57.0	3.62	57.9
x 3		77	12.0	3.53	3.09	49.4	3.15	50.4	3.20	51.2
x 3	1/2	3/8	10.4	3.05	2.67	42.7	2.72	43.5	2.77	44.3
x 3	1/2	16	8.7	2.56	2.25	36.0	2.29	36.6	2.33	37.3
	3	5/8	15.7	4.61	3.98	63.7	4.06	65.0	4.14	66.2
	3	18	14.3	4.18	3.62	57.9	3.69	59.0	3.76	60.2
	3	1 2	12.8	3.75	3.25	52.0	3.31	53.0	3.37	53.9
	3	170	11.3	3.31	2.87	45.9	2.93	46.9	2.98	47.7 41.3
	3	3/8 1 ⁵ 6	9.8 8.2	2.86 2.40	2.48 2.09	39.7 33.4	2.53 2.13	40.5 34.1	2.58 2.17	34.7
Łx ·	4		15.7	4.61	3.98	63.7	4.06	65.0	4.14	66.2
	4	5/8 1°6	14.3	4.18	3.62	57.9	3.69	59.0	3.76	60.2
	4	16 1/2	12.8	3.75	3.25	52.0	3.31	53.0	3.37	53.9
	4	72 18	11.3	3.31	2.87	45.9	2.93	46.9	2.98	47.7
	4	3/8	9.8	2.86	2.48	39.7	2.53	40.5	2.58	41.3
	4	78 16	8.2	2.40	2.09	33.4	2.13	34.1	2.17	34.7
	4	14	6.6	1.94	1.69	27.0	1.72	27.5	1.75	28.0
4 x	3	1/2	11.1	3.25	2.75	44.0	2.81	45.0	2.87	45.9
	3	1/2 1 ⁷ 3	9.8	2.87	2.43	38.9	2.49	39.8	2.54	40.6
	3	3/8	8.5	2.48	2.10	33.6	2.15	34.4	2.20	35.2
1 x	3	า _อ ์	7.2	2.09	1.78	28.5	1.82	29.1	1.86	29.8
	3	1/4	5.8	1.69	1,44	23.0	1.47	23.5	1.50	24.0

ANGLES ALLOWABLE TENSION VALUES IN THOUSANDS OF POUNDS

Maximum Fiber Stress, 16000 Pounds per Square Inch

,	,			N	et Areas	and Stresse	s—One E	ole Deduc	ted
Size, Inches	Thick- ness,	Weight per Foot,	Area, Inches?	₹ ₈ -Inch	Rivets	%4-Inch	Rivets	5%-Inch	Rivets
inches	Inches	Pounds	Inches;	Area, Inches ²	Stress	Arca, Inches ²	Stress	Area, Inches ²	Stress
3 ½x3 ½ 3 ½x3 ½ 3 ½x3 ½ 3 ½x3 ½ 3 ½x3 ½ 3 ½x3 ½ 3 ½x3 ½ 3 ½x3 ½	5/8 9/8 1/2 7/8/8 6/8 1/4	13.6 12.4 11.1 9.8 8.5 7.2 5.8	3.98 3.62 3.25 2.87 2.48 2.09 1.69	3.35 3.06 2.75 2.43 2.10 1.78 1.44	53.6 49.0 44.0 38.9 33.6 28.5 23.0	3.43 3.13 2.81 2.49 2.15 1.82 1.47	54.9 50.1 45.0 39.8 34.4 29.1 23.5	3.51 3.20 2.87 2.54 2.20 1.86 1.50	56.2 51.2 45.9 40.6 35.2 29.8 24.0
3½x 3 3½x 3 3½x 3 3½x 3 3½x 3	1/2 17 16 3/8 18 18 1/4	10.2 9.1 7.9 6.6 5.4	3.00 2.65 2.30 1.93 1.56	2.50 2.21 1.92 1.62 1.31	40.0 35.4 30.7 25.9 21.0	2.56 2.27 1.97 1.66 1.34	41.0 36.3 31.5 26.6 21.4	2.62 2.32 2.02 1.70 1.37	41.9 37.1 32.3 27.2 21.9
3 ½x2 ½ 3 ½x2 ½ 3 ½x2 ½ 3 ½x2 ½ 3 ½x2 ½ 3 ½x2 ½	1/2 7 1 8 8 1 8 1/4	9.4 8.3 7.2 6.1 4.9	2.75 2.43 2.11 1.78 1.44	2.25 1.99 1.73 1.47 1.19	36.0 31.8 27.7 23.5 19.0	2.31 2.05 1.78 1.51 1.22	37.0 32.8 28.5 24.2 19.5	2.37 2.10 1.83 1.55 1.25	37.9 33.6 29.3 24.8 20.0
3 x 3 3 x 3 3 x 3 3 x 3 3 x 3	1/2 77 1 0 2/8 1 0 1/4	9.4 8.3 7.2 6.1 4.9	2.75 2.43 2.11 1.78 1.44	2.25 1.99 1.73 1.47 1.19	36.0 31.8 27.7 23.5 19.0	2.31 2.05 1.78 1.51 1.22	37.0 32.8 28.5 24.2 19.5	2.37 2.10 1.83 1.55 1.25	37.9 33.6 29.3 24.8 20.0
3 x2½ 3 x2½ 3 x2½	3/8 16 1/4	6.6 5.6 4.5	1.92 1.62 1.31	1.54 1.31 1.06	24.6 21.0 17.0	1.59 1.35 1.09	25.4 21.6 17.4	1.64 1.39 1.12	26.2 22.2 17.9
2 ½ x2 ½ 2 ½ x2 ½ 2 ½ x2 ½ 2 ½ x2 ½ 2 ½ x2 ½	3/8 100 1/4 3 16	5.9 5.0 4.1 3.07	1.73 1.47 1.19 0.90			1.40 1.20 0.97 0.74	22.4 19.2 15.5 11.8	1.45 1.24 1.00 0.76	23.2 19.8 16.0 12.2
2½x 2 2½x 2 2½x 2 2½x 2 2½x 2	3/8 16 1/4 18	5.3 4.5 3.62 2.75	1.55 1.31 1.06 0.81	,		1.22 1.04 0.84 0.65	19.5 16.6 13.4 10.4	1.27 1.08 0.87 0.67	20.3 17.3 13.9 10.7
2 x 2 2 x 2 2 x 2 2 x 2 2 x 2	3/8 1 0 1/4 1 8	4.7 3.92 3.19 2,44	1.36 1.15 0.94 0.71					1.08 0.92 0.75 0.57	17.3 14.7 12.0 9.1
2 x1 ½ 2 x1 ½ 2 x1 ½	16 1/4 2 16	3.39 2.77 2.12	1.00 0.81 0.62		,			0.77 0.62 0.48	12.3 9.9 7.7

BARS
ALLOWABLE TENSION VALUES IN THOUSANDS OF POUNDS
ROUND BARS SQUARE BARS

Size, Inches	Area, Inches ²	Weight per Foot, Pounds	Unit Stress 16,000 Lbs. per Square Inch	Unit Stress 20,000 Lbs. per Square Inch	Size, Inches	Area, Inches ²	Weight per Foot, Pounds	Unit Stress 16,000 Lbs. per Square Inch	Unit Stress 20,000 Lbs. per Square Inch
1/8 3 1 d 1/4	$0.012 \\ 0.028 \\ 0.049$	0.042 0.094 0.167	0.2 0.4 0.8	0.3 0.6 1.0	1/8 1 ³ 6 1/4	0.016 0.035 0.063	0.053 0.119 0.212	0.3 0.6 1.0	0.3 0.7 1.3
158 3/8 178 1/2	0.077 0.110 0.150 0.196	0.261 0.375 0.511 0.667	1.2 1.8 2.4 3.1	1.5 2.2 3.0 3.9	156 8/8 178 112	0.098 0.141 0.191 0.250	0.333 0.478 0.651 0.850	1.6 2.3 3.1 4.0	2.0 2.8 3.8 5.0
98 15/8 116 4	0.249 0.307 0.371 0.442	0.845 1.04 1.26 1.50	4.0 4.9 5.9 7.1	5.0 6.1 7.4 8.8	P6 5/81	0.316 0.391 0.473 0.563	1.08 1.33 1.61 1.91	5.1 6.3 7.6 9.0	6.3 7.8 9.5 11.3
1 3 7 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8	0.519 0.601 0.690 0.785	1.76 2.04 2.35 2.67	8.3 9.6 11.0 12.6	10.4 12.0 13.8 15.7	1 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0.660 0.766 0.879 1.00	2.25 2.60 2.99 3.40	10.6 12.3 14.1 16.0	13.2 15.3 17.6 20.0
1_{16}^{1} 1_{18}^{1} 1_{16}^{3} 1_{14}^{3}	0.887 0.994 1.11 1.23	3.01 3.38 3.77 4.17	14.2 15.9 17.7 19.6	17.7 19.9 22.2 24.5	1 1/8 1 1/8 1 1/8 1 1/4	1.13 1.27 1.41 1.56	3.84 4.30 4.80 5.31	18.1 20.3 22.6 25.0	22.6 25.3 28.2 31.3
1_{186}^{156} 1_{178}^{188} 1_{12}^{16}	1.35 1.48 1.62 1.77	4.60 5.05 5.52 6.01	21.6 23.8 26.0 28.3	27.1 29.7 32.5 35.3	1_{1}^{5} 1_{8}^{8} 1_{7}^{7} 1_{2}^{1}	1.72 1.89 2.07 2.25	5.86 6.43 7.03 7.65	27.6 30.3 33.1 36.0	34.5 37.8 41.3 45.0
1186 158 1116 134	1.92 2.07 2.24 2.41	6.52 7.05 7.60 8.18	30.7 33.2 35.8 38.5	38.4 41.5 44.7 48.1	118 158 118 124	2.44 2.64 2.85 3.06	8.30 8.98 9.68 10.41	39.1 42.3 45.6 49.0	48.8 52.8 57.0 61.3
1 1 3 8 1 1 1 5 8 1 1 1 5 8 2	2.58 2.76 2.95 3.14	8.77 9.39 10.02 10.68	41.3 44.2 47.2 50.3	51.6 55.2 59.0 62.8	118 178 118 2	3.29 3.52 3.75 4.00	11.17 11.95 12.76 13.60	52.6 56.3 60.1 64.0	65.7 70.3 75.1 80.0
2^{16}_{18} 2^{18}_{18} 2^{16}_{14}	3.34 3.55 3.76 3.98	11.36 12.06 12.78 13.52	53.5 56.7 60.1 63.6	66.8 70.9 75.2 79.5	218 218 218 218 214	4.25 4.52 4.79 5.06	14.46 15.35 16.27 17.22	68.1 72.3 76.6 81.0	85.1 90.3 95.7 101.3
$2^{\frac{5}{16}}_{18}$ $2^{\frac{3}{8}}_{18}$ $2^{\frac{7}{16}}_{12}$	4.20 4.43 4.67 4.91	14.28 15.07 15.86 16.69	67.2 70.9 74.7 78.5	84.0 88.6 93.3 98.2	2 15 2 3/8 2 1/2 2 1/2	5.35 5.64 5.94 6.25	18.19 19.18 20.20 21.25	85.6 90.3 95.1 100.0	107.0 112.8 118.8 125.0
2^{18}_{58} 2^{5}_{8} 2^{11}_{11} 2^{3}_{4}	5.16 5.41 5.67 5.94	17.53 18.40 19.29 20.20	82.5 86.6 90.8 95.0	103.1 108.2 113.5 118.8	218 258 218 218 234	6.57 6.89 7.22 7.5 6	22.33 23.43 24.56 25.71	105.1 110.3 115.6 121.0	131.3 137.8 144.5 151.3
218 278 215 215 3	6.21 6.49 6.78 7.07	21.12 22.07 23.04 24.03	99.4 103.9 108.4 113.1	124.3 129.8 135.5 141.4	213e 278 215e 3	7.91 8.27 8.63 9.00	26.90 28.10 29.34 30.60	126.6 132.3 138.1 144.0	158.2 165.3 172.6 180.0

GRILLAGE FOUNDATIONS

Grillage Beams. In the design of foundations for columns, piers and walls, provision must be made for the uniform distribution of the load over the footing. This is best done by the use of a grillage of steel beams and concrete. This method of construction eliminates deep excavations and large masses of masonry and is, therefore, truly economical. For heavy loads on soils of small bearing capacity, three tiers of beams may be necessary; while for lighter loads or better soils two tiers, or even one, may suffice.

The lower tier should rest upon a solid bed of concrete of sufficient thickness to distribute the load to the soil. Good practice requires the spaces between the beams in all the tiers to be filled with, and the beams enclosed in concrete not less than four inches thick.

The clear distance between the flanges of the beams in each tier should not be less than $2\frac{1}{2}$ inches, nor more than three times the flange width. The first requirement is necessary to permit the introduction and proper tamping of the concrete, the second, to insure uniform distribution of the load. When separators are used to hold the beams in position, they should be of gas pipe, as cast iron separators tend to break the continuity of the concrete. Grillage beams should not be painted, as concrete does not adhere well to painted surfaces but is itself an excellent preservative of steel.

To determine the area in square feet required for the foundation, divide the total load on the column, pier or wall by the allowable pressure per square foot on the soil. This gives the area of the footing, the shape of which is determined by local conditions. On the assumption that the loads on the soil are uniformly distributed, the number, size and weight of the beams required are determined from the maximum bending moment, the maximum shear, or the maximum web resistance to buckling, as follows:—Let

W=Total load on the foundation, in pounds. L=Length of beam, in feet.

a =Length of loaded portion, in feet.

d =Depth of beam, in inches.

t =Thickness of beam web, in inches. n =Number of beams in a tier.

fb=Allowable unit web buckling resistance.

The maximum bending moment occurs at the center of the beam and is equal in foot pounds to W (L-a) ÷ s; this formula is identical with the formula of maximum bending moment for a beam of length (L-a) under a uniformly distributed load. W.

The proper size of beam in any tier as regards flexure at a fiber stress of 16,000 pounds per square inch may be found in the beam

safe load table for the length corresponding to (L—a), by dividing the total load by the number of beams.

Or may be found from the table of maximum bending moments, by dividing the total bending moment by the number of beams;

Or from the table of properties, by dividing by the number of beams in the tier the total section modulus required, which is equal to $\frac{3 \text{ W (L-a)}}{32,000}$

Note, however, that the load on the beam for any span must not exceed the maximum tabular safe load for shear.

The maximum vertical shear occurs at the edge of the column base or at a distance in feet of $\frac{L-a}{2}$ from each end of the beam and is equal to $\frac{W}{L} \times \frac{L-a}{2}$

Web thickness, t, to resist average shear $\frac{W}{L} \times \frac{L-a}{2} \times \frac{1}{n \times d \times 10,000}$ Or, the average vertical shear $\frac{W}{L} \times \frac{L-a}{2} \times \frac{1}{n \times d \times t}$, which must not exceed 10,000 pounds per square inch.

The maximum buckling stress occurs on a length in inches of 12 a + d/2 and is equal in total per lineal inch of web to $\frac{W}{12 a + d/2}$.

The required thickness of web, t, to resist buckling $= \frac{W}{n \times (12 \text{ a} + d/2) \times \text{fb}}$.

Or the average web resistance per square inch to buckling $\frac{W}{n \times (12 \text{ a} + \tilde{d}/2) \times t}$ which must not exceed the tabular values for the allowable buckling resistance on beam webs.

Rolled Steel Slabs. To distribute the loads from columns over girders, grillage beams, etc., solid slabs of rolled steel may be advantageously used in the place of cast iron or riveted steel bases, etc. The size of the slab is usually fixed by the dimensions of the column and its thickness is determined from the maximum bending moment, on the assumption of uniform loading, as follows:—Let

W=Total load, in pounds.

A ==Width of slab, in inches.

B = Length of slab, in inches.

t =Thickness of slab, in inches.

a =Outside dimension of column, in inches.

b =Outside dimension of column, in inches.

The maximum bending moment will occur at the center of the slab and equals, in inch pounds, $\frac{W(A-a)}{8}$ or $\frac{W(B-b)}{8}$, and at a fiber stress of 16,000 pounds per square inch, the required thickness of slab, $t, = \sqrt{\frac{3 W(A-a)}{64,000 B}}$ or $= \sqrt{\frac{3 W(B-b)}{64,000 A}}$

EXAMPLE: Required to design a grillage foundation for a column load of 1,040,000 pounds on soil with an allowable bearing capacity of 6,000 pounds per square foot. Column composed of 1 web plate, $14'' \times \frac{1}{2}6''$, 4 flange angles, $6'' \times 4'' \times \frac{1}{2}6''$ and 4 flange plates, $14'' \times \frac{1}{2}6''$, outside dimensions $14'' \times 18''$.

Required area of footing= $1,040,000 \div 6,000$ =173.33 square feet.

Use area 12' 0" x 15' 0"=180 square feet.

Assume 3' 0" square as the dimensions of the rolled steel slab or column base and allow 9" for concrete on the sides and ends of beams, then the dimensions of the steel grillage will be 10' 6" x 13' 6", concrete being assumed of sufficient thickness and strength to distribute to the edges.

Rolled Steel Slab
Thickness required, t,= $\sqrt{\frac{3 \times 1,040,000 \times 22}{64,000 \times 36}}$ =5.46 in.
Use 5½".

GRILLAGE FOUNDATIONS

Beams-Section Modulus Method.

Bottom tier-L=13.5 feet; a= 3.0 feet.

Required total section modulus, S, $\frac{3 \times 1,040,000 \times 10.5}{32,000} = 1,023.75$ in.²

Use 13-15" 60 lb. beams-Total section modulus=1,055.6 in.8

Average shear= $\frac{1,040,000}{13.5}$ x $\frac{10.5}{2}$ x $\frac{1}{13 \times 15 \times .59}$ = 3,515 lbs. per sq. ln.

Average buckling stress $\frac{1,040,000}{13 \times 43.5 \times .59}$ =3,120 lbs. per sq. in.

Top tier-L=10.5 feet; a=3.0 feet.

Required total section modulus, S,= $\frac{3 \times 1,040,000 \times 7.5}{32,000}$ ==731.25 in.³

Use 4—24" 90 lb. beams—Total section modulus=746.0 in.3

Average shear $=\frac{1,040,000}{10.5} \times \frac{7.5}{2} \times \frac{1}{4 \times 24 \times .63} = 6,140$ lbs. per sq. in.

Average buckling stress $=\frac{1,040,000}{4 \times 48 \times .63}$ =8,600 lbs. per sq. in.

Plate Girder Grillage Foundations. In those cases where columns carry very heavy loads, plate girders are used for the top tier of the grillage rather than beams. In the case of symmetrical foundations, the method of computation is the same as has already been illustrated in the case of beams. The following example indicates the procedure in the quite frequent case of unsymmetrical loading conditions:

EXAMPLE:—Required to design a grillage foundation under an exterior or wall column carrying a load of 840,000 pounds, and an interior column with a load of 1,260,000 pounds, on soil with an allowable bearing capacity of 8,000 pounds per square foot.

Required footing area of wall column= $\frac{840,000}{8,000}$ =105 square feet.

Use area 8' 0" x 14' 0"= 112 square feet.

Required area of interior column footing= $\frac{1,260,000}{8,000}$ =157.5 square feet.

Use area 12' 0" x 14' 0"=168 square feet.

With these dimensions and areas, the load on the soil will be uniform at 7,500 pounds per square foot, and the footings the same width, both of which are desirable from the standpoint of uniform settlement.

Rolled Steel Slabs for Column Footings: Assume a width of $30^{\prime\prime}$ and a length of $32^{\prime\prime}$, then the required thickness will be as follows:—

Wall column,
$$t_1 = \sqrt{\frac{3 \times 840,000 \times (32 - 14)}{64,000 \times 30}} = 4.86 \text{ in.; use } 5''$$

Interior column, $t_2 = \sqrt{\frac{3 \times 1,260,000 \times (32 - 16)}{64,000 \times 30}} = 5.61 \text{ in.; use } 5\%''$

Plate Girders: Maximum bending moment occurs at the inner beams of the respective footings, and is equal to the load on the column multiplied by the distance of its center from the center of moments.

M max. from wall column = $840,000 \times 2' 6''=2,100,000$ foot pounds. M max. from interior column= $1.260,000 \times 1' 8''=2,100,000$ foot pounds.

Required section modulus of two girders
$$\frac{2,100,000 \times 12}{16,000}$$
 =1,575.0 in.8

Select from girder safe load table, page 284, two girders composed each of 1 web plate $36'' \times \frac{1}{2}''$, 4 angles $6'' \times 4'' \times \frac{1}{2}''$, and 2 flange plates $14'' \times \frac{1}{2}''$. Total section modulus, $S=2 \times 792.3=1,584.6$ in.³

Maximum shear occurs at the inside edge of the steel slab under the interior column, and is equal in total for the two girders to the load carried by the portion of the footing between that point and the inside edge of the footing, or $\frac{1,260,000 \times 68}{126} = 680,000$ or 340,000 pounds per girder.

At 10,000 pounds per square inch, the 36" x $\frac{1}{2}$ " plate girder web is good for 180,000 pounds; therefore, it is necessary to use reinforcing web plates where the shear exceeds that amount.

Beams, Lower Tier, Interior Column:

Required total section modulus, S, = $\frac{3 \times 1,260,000 \times 9.67}{32,000}$ = 1,142.3 in.3

Use 13-18" 55 lb. beams — Total section modulus = 1,149.2 in.8

Average shear = $\frac{1,260,000}{12.5}$ x $\frac{9.67}{2}$ x $\frac{1}{13 \times 18 \times .46}$ = 4,520 lbs. per sq. in.

Average buckling stress = $\frac{1,260,000}{13 \times 43 \times .46}$ = 4,900 lbs. per sq. in.

For exterior column use 9-18" 55 lb. beams.

Note.—In order to facilitate manufacture and shipment, it is desirable to use for the entire foundation as few sizes and weights of beams as possible, and the rolled steel slabs should be of the same thickness or at least of as few thicknesses as really convenient.

RIVETED BEAM AND PLATE GIRDERS

Where single rolled beams are insufficient to carry the loads, the required capacity may be secured by fabrication in various methods.

Two beams can be used, connected together by bolts and separators. The total strength of these is twice that of the single beam of the same depth and weight. Care should be taken, however, to see that the loads are applied on them equally, and where it is necessary for the beams to act as a unit, the separators should be of plates and angles and not of cast iron. If the loading is not uniform on the two sections, their strength must be computed separately.

The use of single beam girders with plates top and bottom to sustain a given load is often more economical in material than the use of two beams connected by bolts and separators.

Box girders formed of two beams with flange plates riveted thereto are often used for supporting interior walls in buildings. They are not, however, as economical in material as single beams with flange plates or plate girders. Their interior surfaces do not admit of repainting and they should, therefore, not be used in exposed places.

The most economical section to sustain heavy loads is the single web plate girder and it is sufficient for all ordinary purposes. When not so, two single web plate girders may be used, together with tie plates extending clear across the angles, or box girders may be made of four flange angles, two web plates and top and bottom flange plates. In case there is unequal distribution of the load, the two girders or half girders must be figured as separate units.

In the design of beam or plate girders, care must be taken to see that the web is of sufficient thickness to resist buckling stress and, therefore, attention is called to the construction specifications and to the remarks made on page 216 as to shearing stresses in general.

The tables which follow give first, a selected line of riveted beam girders of approximately twice the carrying capacity of the single beams of which the sections are built; second, a selected line of riveted plate girders of various depths and carrying capacities such as are customary in building work; third, elements of riveted plate girders of various depths from which it is possible to select economical sections for almost any ordinary condition of loading. In addition to the properties, the first two tables give the safe loads in thousands of pounds uniformly distributed.

In accordance with the construction specifications, these girder tables are based upon the section modulus of the gross area of the section, with bending stress allowed at 16,000 pounds per square inch.

RIVETED BEAM GIRDERS

ALLOWABLE UNIFORM LOAD IN THOUSANDS OF POUNDS Maximum Bending Stress, 16000 Pounds per Square Inch

Span in	1-Beam 27"x90 lbs. 2-Plates 12"x3"		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1			Coefficients of Deflection	
Feet	1-Beam 2 2-Plates Safa Loads	7"x90 lbs. 12"x¾" Increase in Safe Loada for ¼6 lnch Increase in Thickness of Flange Platea	1-Beam 2-2-Plates Safe Loads	4"x80 lbs. 12"x¾" Increase in Safe Loads for ¼6 Inch Increase in Thickness of Flange Plates	1-Beam 2 2-Plates Safe Loada	4"x80 lbs. 10"x58" Increase in Safe Loads for 1/12 Inch Increase in Thickness of Flange Plates	1-Beam 26 2-Plates Safe Loads		Coefficients
13	370	15.9	312	14.2	259	11.7	235	9.7	$2.80 \\ 3.24 \\ 3.72$
14	343	14.8	289	13.2	240	10.9	218	9.0	
15	321	13.8	270	12.3	224	10.1	204	8.4	
16	301	13.0	253	11.5	210	9.5	191	7.9	4.24
17	283	12.2	238	10.9	198	9.0	180	7.4	4.78
18	267	11.5	225	10.3	187	8.4	170	7.0	5.36
19	253	10.9	213	9.7	177	8.0	161	6.6	5.98
20	240	10.4	203	9.2	168	7.6	153	6.3	6.62
21 22 23 24 25	229 219 209 200 192	9.9 9.4 9.0 8.6 8.3	193 184 176 169 162	8.8 8.4 8.0 7.7 •	160 153 146 140 135	7.2 6.9 6.6 6.3 6.1	146 139 133 127 122	6.0 5.7 5.5 5.3 5.0	7.30 8.01 8.76 9.53 10.35
26	185	8.0	156	7.1	129	5.9	118	4.8	11.19
27	178	7.7	150	6.8	125	5.6	113	4.7	12.07
28	172	7.4	145	6.6	120	5.4	109	4.5	12.98
29	166	7.1	140	6.4	116	5.2	105	4.3	13.92
30	160	6.9	135	6.2	112	5.1	102	4.2	14.90
31	155	6.7	131	6.0	109	4.9	99	4.1	15.91
32	150	6.5	127	5.8	105	4.8	96	3.9	16.95
33	146	6.3	123	5.6	102	4.6	93	3.8	18.03
34	141	6.1	119	5.4	99	4.5	90	3.7	19.13
35	137	5.9	116	5.3	96	4.3	87	3.6	20.28
Area S 1-1 Weight	44.33 is 450.8 is 151.2 l	nches ⁸ bs. per ft.	41.32 in 380.0 in 141.2 ll		35.82 is 315.5 is 122.5 ll	nches ⁸ ba. per ft.	131.0 1	nches ² nches ² os. per ft.	

Safe loads above horizontal lines exceed the web resistance and girders abould be provided with atiffeners; for limiting conditions see explanatory notes and Construction Specifications.

Weights given for girdera do not include atiffeners, rivat heads or other details.

RIVETED BEAM GIRDERS-Concluded

ALLOWABLE UNIFORM LOAD IN THOUSANDS OF POUNDS

Maximum Bending Stress, 16000 Pounds per Square Inch

Span in	7.77	10"	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	9"	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8"	Coefficients of Deflection
Feet	1-Beam 2	0''x 65 lbs. 10''x 5%''	1-Beam 18	$3'' \times 55$ lbs.	1-Beam 18	"x 60 lbs.	1-Beam 18	'' x 42 lbe.	- 92
T.ec.	2-Plates	10′′ x 5⁄8′′	2-Plates	9″x 5⁄8″	2-Plates 9	9″x 5⁄8″	2-Plates	8" x ½"	i i
	Safe Loads	Increase in Safe Loads for ½10 Inch Increase in Thickness of Flange Plstes	Safe Loads	Increase in Safe Loads for 1/16 Inch Increase in Thickness of Flange Plates	Safe Loads	Increase in Safe Loads for ½6 Inch Increase in Thickness of Flange Plates		Increase in Safe Loads for ½6 Inch Increase in Thickness of Flange Plates	
9	279	14.2	218	11.5	189	9.4	137	8.5	1.34
10	251	12.7	196	10.3	170	8.5	123	7.6	1.66
11	228	11.6	178	9.4	155	7.7	112	6.9	2.00
12	209	10.6	164	8.6	142	7.1	102	6.4	2.38
				7.9	131	6.5			2.80
13	193	9.8 9.1	151 140	7.4	122	6.1	95 88	5.9 • 5.5	3.24
14 15	179 167	8.5	131	6.9	113	5.7	82	5.1	3.72
		1				1 .			
16	157	8.0	123	6.5	106	5.3	77	4.8	4.24
17	148	7.5	115	6.1	100	5.0	72	4.5	4.78
18	139	7.1	109	5.7	95	4.7	68	4.2	5.36
19	132	6.7	103	5.4	90	4.5	65	4.0	5.98
20	125	6.4	98	5.2	85	4.3	61	3.8	6.62
21	119	6.1	93	4.9	81	4.0	59	3.6	7.30
22	114	5.8	89	4.7	77	3.9	56	3.5	8.01
23	109	5.5	85	4.5	74	3.7	53	3.3	8.76
24	105	5.3	82	4.3	71	3.5	51	3.2	9.53
25	100	5.1	79	4.1	68	3.4	49	3.1	10.35
26	97	4.9	76	4.0	65	3.3	47	2.9	11.19
27 27	93	4.7	73	3.8	63	3.1	46	2.8	12.07
28	90	4.6	70	3.7	61	3.0	44	2.7	12.98
29	87	4.4	68	3.6	59	2.9	42	2.6	13.92
30	84	4.2	65	3.4	57	2.8	41	2.5	14.90
00	51	i -:							
Ares	31.58 is	nches2	27.18 ir	nches2	28.92 in	nches2	20.48 i	nches2	
S 1-1	235.2 in	nchess	184.1 ir	ches ²	159.5 in	iches ⁶	115.3 in	nchess	
Weight		bs. per ft.	93.3 11	e. per ft.	98.3 11	os. per ft.	69.2 11	os. per ft.	
		ove horizo	ntal lines	exceed th	e web res	istance an	d girders	should be	provided

Safe loads above horizontal lines exceed the web resistance and girders should be provided with stiffeners; for limiting conditions see explanatory notes and Construction Specifications.

Weights given for girders do not include stiffeners, rivet heads or other details.

RIVETED PLATE GIRDERS

SAFE LOADS IN THOUSANDS OF POUNDS UNIFORMLY DISTRIBUTED

Maximum Bending Stress, 16000 Pounds Per Square Inch

Span	14"		14"	14" "%;18"	r-12%, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		14",7867	14",7867	Deflection
in				mension					5
Feet	Web Plate Fange Angles Flange Plates	Web Plate Flange Angles	Web Plate 8 Flange Angles Flange Plates	Web Plate Flange Angles Flange Plates	Web Plate Flange Angles Flange Plates	Coefficients of Deflection			
	1-30x1/5 4-6x6x1/5 2-14x5/8	1-30x3/6 4-6x4x5/8 2-14x5/8	1-30x3/8 4-6x4x1/2 2-14x5/8	1-30x% 4-6x4x½ 2-14x½	1-30x3/8 4-6x4x5/8	1-28x3/8 4-5x3/9x3/8 2-12x1/5	1-28x½ 4-6x6x½ 2-14x%	1-28x3/8 4-6x4x1/3 2-14x5/8	
20	325	331	301	274	196	196	299	278	6.62
$21 \\ 22 \\ 23 \\ \cdot 24 \\ 25$	310	31 5	287	261	187	186	285	265	7.30
	296	301	274	249	178	178	272	253	8.01
	283	288	262	238	171	170	260	242	8.76
	271	276	251	228	164	163	249	232	9.53
	• 260	265	241	219	157	156	239	223	10.35
26	250	255	232	211	151	150	230	214	11.19
27	241	245	223	203	145	145	222	206	12.07
28	232	236	215	196	140	140	214	199	12.98
29	224	228	208	189	135	135	206	192	13.92
30	217	221	201	183	131	130	199	186	14.90
31	210	214	194	177	127	126	193	180	15.91
32	203	207	188	171	123	122	187	174	16.95
33	197	201	183	166	119	119	181	169	18.03
34	191	195	177	161	115	115	176	164	19.13
35	186	189	172	157	112	112	171	159	20.28
36	181	184	167	152	109	109	166	155	21.45
37	176	179	163	148	106	106	162	150	22.66
38	171	174	159	144	103	103	157	147	23.90
39	167	170	155	141	101	100	153	143	25.18
40	163	166	151	137	98	98	150	139	26.48
41	159	161	147	134	96	95	146	136	27.82
42	155	158	144	131	94	93	142	133	29.20
Area	55.50	52.19	47.75	44.25	34.69	34.70	54.50	47.00	In.2
S ₁₋₁	609.7	620.6	565.1	514.0	368.1	366.7	560.7	521.9	In.8
Wt. per Ft.	188.9	177.8	162.6	150.7	118.3	118.1	185.5	160.0	Lbs.

Safe loads above horizontal lines exceed the end resistance and girders should be provided with stiffeners; for limiting conditions see explanatory notes and Construction Specifications.

RIVETED PLATE GIRDERS-Continued

SAFE LOADS IN THOUSANDS OF POUNDS UNIFORMLY DISTRIBUTED Maximum Bending Stress, 16000 Pounds Per Square Inch

									1
C	-14"	14"	12%	10%	14"	24.12	14"	12 12 11/1/1/2	Deflection
Span in			Din	ensions	in Inch	es			of
Feet	Web Plate Flange Angles Flange Plates	Web Plate Flange Angles Flange Plates	Web Plate Flange Angles	Web Plate Flange Angles	Web Plate Flange Angles Flange Plates	Web Plate Flange Angles Flange Plates	Web Plate Flange-Angles Flange Plates	Web Plate Flange Angles Flange Plates	Coefficiente of Deflection
	1-28x3% W 4-6x4x½ F 2-14x½ F	1-28x3/8 V 4-6x4x3/8 F 2-14x1/2 F	1-28x3% W 4-6x4x½ F	1-28x3% W 4-5x3½x½ F	1-26x3/8 V 4-6x4x3/2 F 2-14x3/2 F	1-26x3% W 4-6x4x3% F 2-14x3/5 F	1-26x% V 4-6x4x% F 2-14x% F	1-26x3% V 4-5x3½x3% F 2-12x3% F	
18	281	249	168	148	258	229	202	176	5.36
19	266	236	160	140	244	217	192	167	5.98
20	253	224	152	133	232	206	182	159	6.62
21	241	214	144	127	221	196	173	151	7.30
22	230	204	138	121	211	187	166	144	8.01
23	220	195	132	116	202	179	158	138	8.76
24	211	187	126	111	193	172	152	132	9.53
25	202	180	121	106	186	165	146	127	10.35
26	195	173	117	102	178	158	140	122	11.19
27	187	166	112	98	172	153	135	118	12.07
28	181	160	108	95	159	147	130	114	12.98
29	174	155	105	92	160	142	126	110	13.92
30	169	150	101	89	155	137	121	106	14.90
31	163	145	98	86	150	133	118	103	15.91
32	158	140	95	83	145	129	114	99	16.95
33	153	136	92	81	141	125	110	96	18.03
34	149	132	89	78	136	121	107	93	19.13
35	145	128	87	76	133	118	104	91	20.28
36	141	125	84	74	129	114	101	88	21.45
37	137	121	82	72	125	111	98	86	22.66
38	133	118	80	70	122	108	96	84	23.90
39	130	115	78	68	119	106	93	81	25.18
40	126	112	76	66	116	103	91	79	26.48
Area	43.50	38.94	29.50	26.50	42.75	38.19	34.69	30.95	In. ²
S ₁₋₁	474.3	420.8	284.3	249.1	435.1	386.1	341.5	298.0	In. ⁸
Wt. per Fi	148.1	132.5	100.5	90.1	145.6	130.0	118.1	105.4	Lbs.

Safe loads above horizontal lines exceed the end resistance and girders should be provided with stiffeners; for limiting conditions see explanatory notes and Construction Specifications.

RIVETED PLATE GIRDERS—Concluded

SAFE LOADS IN THOUSANDS OF POUNDS UNIFORMLY DISTRIBUTED

Maximum Bending Stress, 16000 Pounds Per Square Inch

	123%	103%	12 12 12 12 12 12 12 12 12 12 12 12 12 1	127, 329, 329	12",",12"	12","/197	24%	10%"	Coefficients of Deffection
Span in			Di	mension	s in Inc	hes		,	<u> </u>
Feet	Web Plate Flange Angles	Web Plate Flange Anglea	Web Plate Flange Angles Flange Plates	Web Plate Flange Angles Flange Plates	Web Plate Flange Angles Flange Plates	Web Plate Flange Angles Flange Plates	Web Plate Flange Angles	Web Plate Flange Angles	Coefficien
	1-26x3/8 4-6x4x1/2	1-26x% 4-5x3½x½	1-24x% 4-5x3½x½ 2-12x%	1-24x 3/8 4-5x3 1/5x 1/2 2-12x 1/2	1-24x3/8 4-5x31/5x3/8 2-12x1/2	1-24x3/8 4-5x3/5x3/8 2-12x3/8	1-24x8% 4-5x3½x½	1-24x3% 4-5x3½x3%	
18	153	134	224	204	181	161	121	98	5.36
19	145	127	212	193	172	152	115	93	5.98
20	138	121	202	183	163	144	109	88	6.62
21	131	115	192	175	155	138	104	84	7.30
22	126	110	184	167	148	131	99	80	8.01
23	120	105	176	159	142	126	95	77	8.76
24	115	101	168	153	136	120	91	74	9.53
25	110	97	162	147	131	116	87	71	10.35
26	106	93	155	141	126	111	84	68	11.19
27	102	90	150	136	121	107	81	65	12.07
28	99	86	144	131	117	103	78	63	12.98
29	95	83	139	126	113	100	75	61	13.92
30	92	81	135	122	109	96	73	59	14.90
31	89	78	130	118	105	93	70	57	15.91
32	86	76	126	115	102	90	68	55	16.95
33	84	73	122	111	99	88	66	53	18.03
34	81	71	119	108	96	85	64	52	19.13
35	79	69	115	105	93	83	62	50	20.28
36	77	67	112	102	91	80	61	49	21.45
37	75	65	109	99	88	78	59	48	22.66
38	73	64	106	96	86	76	57	46	23.90
39	71	62	104	94	84	74	56	45	25.18
40	69	60	101	92	82	72	55	44	26.48
Area	28.75	25.75	40.00	37.00	33.20	30.20	25.00	21.20	In. ²
S ₁₋₁	258.9	226.6	378.5	343.6	306.1	270.9	204.6	165.5	In. ⁸
Wt. per Ft.	98.0	87.6	136.0	125.8	113.0	102.8	85.0	72.2	Lbs.

Safe loads above horizontal lines exceed the end resistance and girders should be provided with stiffeners; for limiting conditions see explanatory notes and Construction Specifications.

Weights given for girders do not include stiffeners, rivet heads, or other details.

RIVETED PLATE GIRDERS

To obtain a girder suitable to carry any specified loading, determine the maximum end reaction in pounds and the maximum bending moment in inch-pounds.

Select from the table a girder having the desired depth, a thickness of web as determined by the maximum end reaction and a suitable section modulus as determined by dividing the bending moment by the permissible stress per square inch.

For limiting conditions see explanatory notes and Construction Specifications.

Weights given do not include stiffeners, rivet heads, or other details.

Section	:	Size in Inches		Weight p		Maximum End Reaction
Modulus, Axis 1-1, Inches ³	Web Plate	Flange Angles	Flangs Plates	Web Plate and Flange Angles	Flange Plates	in Thousands of Pounds
136.6 168.6 198.7 236.1 238.0 372.9 408.5	24 x 51s	4x 3 x 3/4 4x 3 x 1/4 5x 31/2 x 1/4 5x 31/2 x 5/6 5x 31/2 x 1/2 5x 31/2 x 5/6	12 x ½ 12 x ½ 12 x ½ 12 x %	59.5 69.9 79.9 92.7 79.9 79.9 92.7	40.8 51.0 51.0	50.6 50.6 50.6 50.6 50.6 50.6 50.6
142.5 165.5 174.5 204.5 204.6 242.0 270.9 306.1 343.6 378.5 414.1	24 x 3/6	4 x 3 x 3/4 x 3/4 x 3 x 1/2 4 x 3 x 1/2 4 x 3 x 1/2 1/2 x 3/4 x 3/	12 x 3% 12 x 34 12 x 34 12 x 36 12 x 36	64.6 72.2 75.0 85.0 97.8 72.2 72.2 85.0 85.0 97.8	30.6 40.8 40.8 51.0 51.0	60.8 60.8 60.8 60.8 60.8 60.8 60.8 60.8
151.5 176.8 186.6 201.2 219.6 252.0 260.7 291.3 301.0 329.5 334.8 370.7 379.4 408.6	26 x 5/18	4x 3 x 34 5x 31/4 x 3/4 4x 3 x 3/4 5x 31/2 x 3/2 6x 4 x 3/4 5x 31/2 x 3/2 6x 4 x 3/4 5x 31/2 x 3/4 6x 4 x 3/4 5x 33/2 x 3/4 6x 4 x 3/4 5x 33/2 x 3/4 6x 4 x 3/4 5x 33/2 x 3/4 6x 4 x 3/4 5x 33/2 x 3/4 5x 33/2 x 3/4	12 x 3/8 12 x 1/2 14 x 3/4 12 x 1/2 14 x 1/4 12 x 5/8	61.6 69.2 72.0 76.8 82.0 92.4 94.8 69.2 107.6 69.2 76.8 82.0 76.8 82.0	30.6 40.8 35.7 40.8 47.6 51.0	56.3 56.3 56.3 56.3 56.3 56.3 56.3 56.3

Section Modulus.		Size in Inches		Weight pe Pour	er Foot, ads	Maximum End Reaction
Axis 1-1, Inches ³	Web Plate	Flange Angles	Flange Plates	Web Plate and Flange Angles	Flange Plates	Thousand of Pounds
428.4		6x 4 x½	14 x ½	92.4	47.6	56.3
447.9		5x3½x5%	12 x 5/8	94.8	51.0	56.3
472.7	26 x 5/16	6x 4 x ½	14 x 5%	92.4	59.5	56.3
519.5		6x 4 x 5/8	14 x 5/8	107.6	59.5	56.3
563.4		6x 4 x 5/8	14 x ¾	107.6	71.4	56.3
158.5		4x 3 x3/8		67.2	•	67.5
183.8		5x3½x¾		74.8		67.5
193.5		4x 3 x 1/2		77.6		67.5
208.1	ļ.	6x 4 x 3/8		82.4		67.5
226.5		4x 3 x 1/8		87.6		67.5
226.6		5x3½x½		87.6		67.5
258.9		6x 4 x½		98.0		67.5
267.6		5x3½x5%		100.4		67.5
298.0		5x3½x¾	12 x ⅓	74.8	30.6	67.5
307.9		6x 4 x 5/8		113.2		67.5
336.2		5x3½x¾	12 x ⅓	74.8	40.8	67.5
341.5	26 x 3/8	6x 4 x 3/8	14 x ⅓	82.4	35.7	67.5
354.4		6x 4 x¾		127.6		67.5
377.4		5x3½x½	12 x ½	87.6	40.8	67.5
386.1	1	6x 4 x 3/8	14 x ½	82.4	47.6	67.5
415.2	1	5 x 3 ½ x ½	12 x 5/8	87.6	51.0	67.5
435.1	1	6x 4 x ½	14 x ½	98.0	47.6	67.5
454.5	ł	5x3½x5/8	12 x ¾	100.4	51.0	67.5
479.3		6x 4 x ½	14 x 5%	98.0	59.5	67.5
526.1	1	6x 4 x 5/8	14 x 5/8	113.2	59.5	67.5
569.9	1	6x 4 x 5/8	14 x ¾	113.2	71.4	67.5
613.9		6x 4 x¾	14 x ¾	127.6	71.4	67.5
200.4		4x 3 x 1/2		83.1		78.8
233.4		4x 3 x 5/8		93.1		78.8
233.5	•	5x3½x½		93.1		78.8
265.8		6x 4 x ½		103.5		78.8
274.5		5x3½x5%		105.9		78.8
314.8	1	6x 4 x 1/8		118.7		78.8
361.3		6x 4 x ¾		133.1		78.8
384.0	26 x 1/16	5x3½x½	12 x ½	93.1	40.8	78.8
421.8		5x3½x½	12 x 1/8	93.1	51.0	78.8
441.7		6x 4 x ½	14 x ½	103.5	47.6	78.8
461.1 485.9		5 x 3½ x 5/8	12 x 1/8	105.9	51.0	78.8
485.9 532.7		6x 4 x½	14 x 5%	103.5	59.5	78.8
532.7 576.5		6x 4 x 1/8	14 x 5/8	118.7	59.5	78.8
620.5	}·	6x 4 x 5/8	14 x ¾	118.7	71.4	78.8
040.0	1	6x 4 x¾	14 x ¾	133.1	71.4	78.8

Section Modulus,		Size in Inches		Weight pe Pour	r Foot, ids	Maximum End Reaction
Axis 1-1, Inches ³	Web Plate	Flange Angles	Flange Plates	Web Plate and Flange Angles	Flange Plates	in Thousand of Pounds
185.6		5x3½x¾		70.3		56.3
211.0		6x 4 x 3/8		77.9		56.3
230.3		5x3½x½		83.1		56.3
264.1		6x 4 x ½		93.5		56.3
273.2		5x3½x5/8		95.9		56.3
304.5		5x3½x¾	12 x 3/3	70.3	30.6	56.3
315.3		6x 4 x 5/8		108.7		56.3
344.2		5x3½x3/8	12 x ½	70.3	40.8	56.3
349.8	27 x 5/16	6x 4 x 3/8	14 x 3/8	77.9	35.7	56.3
387.3	1	5x3½x½	12 x ½	83.1	40.8	56.3
396.2		6x 4 x 3/8	14 x ½	77.9	47.6	56.3
426.7	1	5x3½x½	12 x 5/8	83.1	51.0	56.3
447.4		6x 4 x 1/2	14 x ½	93.5	47.6	56.3
467.7		5x31/2x5/8	12 x ½	95.9	51.0	56.3
493.4		6x 4 x 1/2	14 x ½	93.5	59.5	56.3
542.4		6x 4 x 5/8	14 x ½	108.7	59.5	56.3
588.0		6x 4 x 5/8	14 x ¾	108.7	71.4	56.3
193.1		5x3½x¾		76.0		67.5
218.5		6x 4 x 3/8		83.6		67.5
237.8		5x3½x½		88.8		67.5
271.5		6x 4 x 1/2		99.2		67.5
280.6		5x3½x5/8		101.6		67.5
311.7	1	5x3½x¾	12 x 3/8	76.0	30.6	67.5
322.7	i	6x 4 x 5/8	,	114.4		67.5
351.4		5x3½x3/8	12 x ½	76.0	40.8	67.5
357.1		6x 4 x3/8	14 x 3/8	83.6	35.7	67.5
371.4	27 x %	6x 4 x¾		128.8		67.5
394.5		5x3½x½	12 x ⅓	88.8	40.8	67.5
403.4		6x 4 x 3/8	14 x ½	83.6	47.6	67.5
417.9	ł	6x 4 x 1/2		143.2		67.5
433.8	!	5x3½x½	12 x ½	88.8	51.0	67.5
454.6	[6x 4 x 1/2	14 x ½	99.2	47.6	67.5
474.8		5x3½x5/8	12 x 1/8	101.6	51.0	67.5
500.5		6x 4 x ½	14 x 1/8	99.2	59.5	67.5
549.5		6x 4 x 1/8	14 x 5/3	114.4	59.5	67.5
595.1	1	6x 4 x 5/3	14 x ¾	114.4	71.4	67.5
641.2		6x 4 x 3/4	14 x %	128.8	71.4	67.5
245.2		5x3½x½		94.6		78.8
279.0	27 x 7/16	6x 4 x ½		105.0		78.8
288.1	2. A /16	5 x 3 1/2 x 5/8		107.4		78.8
330.2]	6x 4 x 5%		120.2		78.8

Section Modulus.	,	Size in Inches		Weight po Pour	er Foot, ids	Maximum End Reaction
Axis 1-1, Inches ³	Web Plate	Flange Angles	Flange Plates	Web Plate and Flange Angles	Flange Plates	in Thousand of Pounds
378.8		6x 4 x 8/4		134.6		78.8
401.7		5x3½x½	12 x ⅓	94.6	40.8	78.8
425.3		6x 4 x 1/8	/2	149.0		78.8
440.9		5x3½x½	12 x 5/8	94.6	51.0	78.8
461.8	27 x 1/16	6x 4 x ½	14 x ½	105.0	47.6	78.8
482.0		5 x 3 ½ x 5/8	12 x ½	107.4	51.0	78.8
507.7		6x 4 x½	14 x 5/8	105.0	59.5	78.8
556.6		6x 4 x 5/8	14 x 5/8	120.2	59.5	78.8
602.4		6x 4 x 5/8	14 x %	120.2	71.4	78.8
648.2		6x 4 x 3/4	14 x ¾	134.6	71.4	78.8
194.5		5x3½x3%		71.4		56.3
221.0		6x 4 x 3/8		79.0		56.3
241.1		5x3½x½		84.2		56.3
276.3		6x 4 x ½		94.6		56.3
285.8		5x3½x5/8		97.0		56.3
317.8		5x3½x3/8	12 x ⅓	71.4	30.6	56.3
329.7		6x 4 x 5/8		109.8	40.0	56.3
359.0	99 5/	5x3½x¾	12 x 1/2	71.4	40.8	56.3
365.0	28 x 1/18	6x 4 x 3/8	14 x %	79.0	35.7	56.3
404.0		5x3½x½	12 x 1/2	84.2 79.0	40.8	56.3 56.3
413.1 444.8		6x 4 x 1/8 5x 31/2 x 1/2	14 x ½	79.0 84.2	47.6	56.3
444.8 466.5		$6x 4 x \frac{1}{2}$	12 x 5/8	94.6	51.0 47.6	56.3
487.6		$5x3\frac{1}{2}x\frac{5}{8}$	14 x ½ 12 x ½	97.0	47.0 51.0	56.3
514.2		$\begin{array}{c} 3x 3 72 x 78 \\ 6x 4 x \frac{1}{2} \end{array}$	12 x % 14 x 5%	94.6	59.5	56.3
565.4		6x 4 x 5/8	14 x 5/8	109.8	59.5	56.3
612.7		6x 4 x 5/8	14 x %	109.8	71.4	56.3
202.5		5x3½x3%		77.3		67.5
229.0		6x 4 x 3/8		84.9		67.5
249.1		5x3½x½		90.1		67.5
284.3		6x 4 x ½		100.5		67.5
293.8	1	5x3½x5%		102.9		67.5
325.6		5x3½x3/8	12 x ¾	77.3	30.6	67.5
337.7	28 x 1/8	6x 4 x 5/8		115.7		67.5
366.7		5 x 3 ½ x 3/8	12 x ⅓	77.3	40.8	67.5
372.8		6x 4 x 1/8	14 x 8/8	84.9	35.7	67.5
388.5		6x 4 x 34		130.1		67.5
411.7	1	5x3½x½	12 x ½	90.1	40.8	67.5
420.8		6x 4 x 3/8	14 x ½	84.9	47.6	67.5
437.0 452.5		6x 4 x 1/8	10 "	144.5		67.5
402.0	1	5x3½x½	12 x ½	90.1	51.0	67.5

GIRDERS

Section Modulus.		Size in Inches		Weight p	per Foot, ads	Maximum End Reaction
Axis 1-1, Inches ⁸	Web Plates	Flange Angles	Flange Plates	Web Plate and Flange Angles	Flange Plates	Thousands of Pounds
474.3		6x 4 x ½	14 x ½	100.5	47.6	67.5
495.3	ļ	5x3½x5/8	12 x 5/8	102.9	51.0	67.5
521.9	28 x 3/8	6 x 4 x ½	14 x 5/8	100.5	59.5	67.5
573.1		6x 4 x 5/8	14 x ½	115.7	59.5	67.5
620.4		6 x 4 x 5/8	14 x ¾	115.7	71.4	67.5 .
668.6		6x 4 x 3/4	14 x ¾	130.1	71.4	67.5
257.1		5x3½x½		96.1		78.8
292.4	1	6x 4 x½		106.5		78.8
301.8	-	5 x 3 ½ x 5/8		108.9		78.8
345.8		6x 4 x 5/8		121.7	ľ	78.8
396.5		6x 4 x 3/4		136.1		78.8
419.5		5x3½x½	12 x ⅓	96.1	40.8	78.8
445.1	28 x 1/18	6x 4 x 1/8		150.5		78.8
460.2		5x3½x½	12 x 5/8	96.1	51.0	78.8
482.0		6x 4 x ½	14 x ½	106.5	47.6	78.8
503.0		5x31/2x5/8	12 x 5/8	108.9	51.0	78.8
529.6		6x 4 x 1/2	14 x 5/8	106.5	59.5	78.8
580.8	1	6x 4 x 5/8	14 x 5/8	121.7	59.5	78.8
628.0		6x 4 x 5/8	14 x ¾	121.7	71.4	78.8
676.2		6x 4 x 3/4	14 x ¾	136.1	71.4	78.8
221.8		5 x 3½ x 3/8		79.9		74.3
250.5	1	6x 4 x 3/8		87.5		74.3
272.1		5x31/2x1/2		92.7		74.3
310.3		6x 4 x ½		103.1		74.3
320.5		5 x 3 1/2 x 5/8		105.5		74.3
353.8		5 x 3 1/2 x 3/8	12 x 3/8	79.9	30.6	74.3
366.2		5x3½x¾		117.5		74.3
368.1		6x 4 x 5/8		118.3		74.3
397.8		5x3½x3/8	12 x ½	79.9	40.8	74.3
404.7		6 x 4 x 3/8	14 x 3/8	87.5	35.7	74.3
423.1	30 x 3/8	6x 4 x 84	/*	132.7		74.3
446.6	30 12 /8	5 x 3 ½ x ½	12 x ½	92.7	40.8	74.3
456.1		6x 4 x 3/8	14 x ½	87.5	47.6	74.3
475.8		6x 4 x 7/8	/2	147.1		74.3
490.3		5x3½x½	12 x 5/8	92.7	51.0	74.3
514.0		6x 4 x 1/2	14 x ½	103.1	47.6	74.3
536.7		5x3½x5/8	12 x 5/8	105.5	51.0	74.3
565.1		6x 4 x ½	14 x 5/8	103.1	59.5	74.3
620.6		6x 4 x 5/8	14 x 5/8	118.3	59.5	74.3
671.3		6x 4 x 5/8	14 x %	118.3	71.4	74.3
,723.8		6x 4 x 8/4		132.7	71.4	74.3

Section		Size in Inches		Weight p Pour	er Foot, nds	Maximum End Reaction
Modulus, Axis 1-1, Inches ³	Weh Plates	Flange Angles	Flange Plates	Weh Plate and Flange Angles	Flange Plates	Thousands of Pounds
281.4 319.5 329.7 375.5 377.3 432.3 455.5 485.0 499.2 523.0 545.6 574.0 629.5 680.1 732.6	30 x 1/1c	5x3½x½x 6x 4 x½ 5x3½x¾ 6x 4 x¾ 6x 4 x¾ 6x 4 x¾ 6x 4 x¾ 6x 4 x¾ 6x 4 x¾ 6x 4 x¾ 6x 4 x½ 5x3½x½ 6x 4 x½ 5x3½x¾ 6x 4 x½ 6x 4 x½ 6x 4 x¾	12 x ½ 12 x 5% 14 x ½ 12 x 5% 14 x 5% 14 x 5% 14 x 5% 14 x 3% 14 x 3%	99.0 109.4 111.8 123.8 124.6 139.0 99.0 153.4 99.0 109.4 111.8 109.4 124.6 139.0	40.8 51.0 47.6 51.0 59.5 59.5 71.4 71.4	86.6 86.6 86.6 86.6 86.6 86.6 86.6 86.6
290.6 328.8 338.9 384.7 386.5 441.5 464.4 494.2 531.9 554.5 582.8 638.3 688.9 741.3	30 x ½	5x3½x½ 6x 4 x½ 5x3½x¾ 5x3½x¾ 6x 4 x¾ 6x 4 x¾ 5x3½x½ 6x 4 x½ 6x 4 x½ 5x3½x½ 6x 4 x½ 6x 4 x½ 6x 4 x½ 6x 4 x½ 6x 4 x¾ 6x 4 x½ 6x 4 x¾ 6x 4 x¾ 6x 4 x¾ 6x 4 x¾	12 x ½ 12 x ½ 14 x ½ 12 x ½ 12 x ½ 14 x ½ 14 x ½ 14 x ½ 14 x ¾ 14 x ¾	105.4 115.8 118.2 130.2 131.0 145.4 105.4 159.8 105.4 115.8 118.2 115.8 131.0 131.0	40.8 51.0 47.6 51.0 59.5 59.5 71.4 71.4	99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0
251.7 283.7 307.7 308.4 350.3 361.5 383.6 396.9 412.5 414.7 445.5 453.4	33 x ¾	5x3½x¾ 6x 4 x¾ 5x3½x½ 6x 6 x¾ 6x 4 x½ 5x3½x¾ 6x 6 x½ 5x3½x¾ 5x3½x¾ 6x 4 x¾ 5x3½x¾ 6x 4 x¾ 6x 4 x¾	12 x %	83.7 91.3 96.5 101.7 106.9 109.3 120.5 83.7 121.3 122.1 83.7 91.3	30.6 40.8 35.7	81.0 81.0 81.0 121.5 81.0 121.5 81.0 81.0 81.0 81.0 81.0

GIRDERS

Section Modulus.		Size in Inches		Weight p Pour	er Foot,	Maximum End
Axis 1-1, Inches ³	Web Plate	Flangs Angles	Flange Plates	Web Plate and Flange Angles	Flange Plates	Reaction in Thousand of Pounds
455.9		6x 6 x 5/8		138.9		121.5
476.1		6x 4 x 3/4		136.5		81.0
477.6		6x 6 x 3/8	14 x 3/8	101.7	35.7	121.5
499.8		5x3½x½	12 x ½	96.5	40.8	81.0
510.0		6x 4 x 3/8	14 x ½	91.3	47.6	81.0
525.4	1	6x 6 x 3/4		156.9		121.5
534.1		6x 6 x 1/8	14 x ½	101.7	47.6	121.5
548.0		5 x 3 ½ x ½	12 x ½	96.5	51.0	81.0
574.7		6x 4 x 1/2	14 x ½	106.9	47.6	81.0
590.6	33 x 3/8	6x 6 x 3/8	14 x 5/8	101.7	59.5	121.5
592.6	30 A 78	6x 6 x 1/8		174.5		121.5
599.9		5x3½x58	12 x 5/8	109.3	51.0	81.0
607.1		$6 \times 6 \times \frac{1}{2}$	14 x ½	120.5	47.6	121.5
630.9		6x 4 x ½	14 x ½	106.9	59.5	81.0
663.1		6x 6 x ½	14 x ⁵ / ₈	120.5	59.5	121.5
693.0	,	6x 4 x 5/8	14 x 5/8	122.1	59.5	81.0
719.2		6x 6 x 1/2	14 x %	120.5	71.4	121.5
732.7		6x 6 x 5/8	14 x 5/8	138.9	59.5	121.5
748.9		6x 4 x 5/8	14 x ¾	122.1	71.4	81.0
788.3		6x 6 x 5/8	14 x 3/4	138.9	71.4	121.5
807.6		6x 4 x 34	14 x ¾ 14 x ¾	136.5	71.4	81.0
854.9		6x 6 x 1/4	14 X %	156.9	71.4	121.5
318.9	[5x3½x½	1	103.5		94.5
361.5	['	6x 4 x ½		113.9		94.5
372.7	'	5x3½x5/8		116.3		94.5
394.8		6x 6 x ½		127.5		141.8
423.7		5x3½x¾	l l	128.3		94.5
425.8	1	6x 4 x 5/8		129.1		94.5
467.0		6x 6 x 5/8		145.9		141.8
487.2	22 - 76-	6x 4 x 1/4	10 - 14	143.5 103.5	40.0	94.5
510.7	33 x 7/16	5 x 3 ½ x ½ 6 x 6 x ¾	12 x ½	-163.9	40.8	94.5 141.8
536.6	i l	5x3½x½	12 x 5/8	103.5	*1 A	94.5
558.8 585.6	1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12 x 1/8 14 x 1/2	113.9	$51.0 \\ 47.6$	94.5
603.8	i 1	6x 6 x 1/8	14 A 72	181.5	47.0	141.8
610.6	i 1	$5 \times 3\frac{1}{2} \times \frac{5}{8}$	12 x 5/8	116.3	51.0	94.5
617.9		$6 \times 6 \times \frac{1}{2}$	14 x ½	127.5	51.0 47.6	141.8
641.7		6x 4 x ½	14 x 5/8	113.9	59.5	94.5
673.9	.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14 x 5%	127.5	59.5 59.5	94.5 141.8
703.8		$6x 4 x \frac{5}{8}$	14 x 5/8	127.3	59.5 59.5	94.5

Section Modulus,		Size in Inches		Weight per Pour	Foot, ids	Maximum End Reaction
Axis 1-1, Inches ³	Weh Plates	Flange Angles	Flange Plates	Web Plate and Flange Angles	Flange Plates	Thousands
729.9		6x 6 x ½	14 x ¾	127.5	71.4	141.8
743.5		6x 6 x 5/8	14 x 5/8	145.9	59.5	141.8
759.6	33 x 7/1a	6x 4 x 5/8	14 x ¾	129.1	71.4	94.5
799.0	710	6x 6 x 5/8	14 x 3/4	145.9	71.4	141.8
818.3		6x 4 x 3/4	14 x ¾	143.5	71.4	94.5
865.6		6x 6 x 1/4	14 x ¾	163.9	71.4	141.8
330.0		5x3½x½		110.5		108.0
372.6	ĺ	6x 4 x ½		120.9		108.0
383.9	j	5x3½x5%		123.3		108.0
406.0		6x 6 x 1/2	,	134.5		162.0
434.9		5x3½x¾		135.3		108.0
437.0		6x 4 x 5/8		136.1		108.0
478.2		6x 6 x 5/8		152.9		162.0
498.4		Gx 4 x 34		150.5		108.0
521.5		5x3½x½	12 x ⅓	110.5	40.8	108.0
547.8	ı	6x 6 x 3/4		170.9		162.0
569.5		5x3½x½	12 x ⅓	110.5	51.0	108.0
596.4	33 x ½	6x 4 x 1/2	14 x ½	120.9	47.6	108.0
615.0		6x 6 x 1/8		188.5		162.0
621.4		5x3½x5/8	12 x ½	123.3	51.0	108.0
628.8		6x 6 x 1/2	14 x ⅓	134.5	47.6	162.0
652.5		6x 4 x½	14 x 5/8	120.9	59.5	108.0
684.6		6x 6 x 1/2	14 x 5/8	134.5	59.5	162.0
714.5		6x 4 x 5/8	14 x 5/8	136.1	59.5	108.0
740.6		6x 6 x 1/2	14 x ¾	134.5	71.4	162.0
754.3		6x 6 x 5/8	14 x 5/8	152.9	59.5	162.0
770.3		6x 4 x 5/8	14 x 3/4	136.1	71.4	108.0
809.7		6x 6 x 5/8	14 x ¾	152.9	71.4	162.0
829.0		6x 4 x %	14 x ¾	150.5	71.4	108.0
876.3		6x 6 x¾	14 x ¾	170.9	71.4	162.0
318.0		6x 4 x 3/8		95.1	1	87.8
344.4		5x3½x½		100.3		87.8
346.9		6x 6 x 3/8		105.5		135.0
391.4		6x 4 x 1/2		110.7		87.8
403.7		5x31/2x5/8		113.1		87.8
430.3	36 x 3/8	6x 6 x ½		124.3		135.0
460.0		5x3½x¾		125.1		87.8
462.4		6x 4 x 5/8		125.9		87.8
503.3		6x 4 x 3/8	14 x %	95.1	35.7	87.8
510.5		6x 6 x 5/8	. •	142.7		135.0
530.2		6x 4 x 3/4		140.3		87.8
531.6		6x 6 x 1/8	14 x 8/8	105.5	35.7	135.0

GIRDERS

Section Modulus, Axis 1-1, Inches ⁸	, Size in Inches			Weight per Foot, Pounds		Maximum End
	Web Plates	Flange Angles	Flange Plates	Web Plate and Flange Angles	Flange Plates	Resction in Thousands of Pounds
554.3		5x3½x½	12 x ½	100.3	40.8	87.8
565.1		6x 4 x 3/8	14 x ½	95.1	47.6	87.8
593.2		6x 6 x 8/8	14 x ½	105.5	47.6	135.0
595.3		6x 4 x 1/8		154.7		87.8
606.8		5x3½x½	12 x 1/8	100.3	51.0	87.8
636.5		6x 4 x ½	14 x ½	110.7	47.6	87.8
654.9		6x 6 x 1/8	14 x 1/8	105.5	59.5	1 35.0
664.2	36 x 3/8	5x3½x5/8	12 x 1/8	113.1	51.0	87.8
674.4	30 1/8	6x 6 x 1/2	14 x ½	124.3	47.6	135.0
698.0		6x 4 x ½	14 x ½	110.7	59.5	87.8
735.5	ļ	6x 6 x ½	14 x 1/8	124.3	59.5	135.0
766.6		6x 4 x 1/8	14 x 1/8	125.9	59.5	87.8
796.8		6x 6 x 1/2	14 x ¾	124.3	71.4	135.0
813.1		6x 6 x 5/8	14 x 5/8	142.7	59.5	135.0
827.6		6x 4 x 5/8	14 x ¾	125.9	71.4	87.8
873.8		6x 6 x 5/8	14 x 3/4	142.7	71.4	135.0 87.8
892.8		6x 4 x 34	14 x ¾	140.3	71.4	81.8
357.7		5x3½x½		108.0		102.4
404.7		6x 4 x ½		118.4		102.4
417.0		5 x 3½ x 5/8		120.8		102.4
443.6		6x 6 x ½		132.0		157.5
473.3		5x3½x¾		132.8		102.4
475.7		6x 4 x 1/8		133.6		102.4
523.8		6x 6 x 5/8		150.4		157.5
543.5	1	6x 4 x 34		148.0	40.0	102.4
567.2	1	$5 \times 3 \frac{1}{2} \times \frac{1}{2}$	12 x ½	108.0	40.8	102.4 102.4
608.6	36 x 1/10	6x 4 x 1/8		162.4	~1.O	102.4
619.7		5x3½x½	12 x 5/8	108.0 118.4	51.0 47.6	102.4
649.5		6x 4 x ½	14 x ½	120.8	51.0	102.4
677.1	1	5 x 3½ x 5/8	12 x 5/8 14 x 1/2	132.0	47.6	157.5
687.3		6x 6 x ½	14 x ½ 14 x ½	118.4	59.5	102.4
710.8		6x 4 x ½ 6x 6 x ½	14 x %	132.0	59.5	157.5
748.4	1	6x 4 x 5%	14 x 5/8		59.5	102.4
779.5		6x 6 x 1/2	14 x 3/4	132.0	71.4	157.5
809.5		$6 \times 6 \times \frac{5}{8}$	14 x 5/8	150.4	59.5	157.5
825.9		6x 4 x 5%	14 x 34	133.6	71.4	102.4
840.4 886.6		6x 6 x 5/8	14 x %	150.4	71.4	157.5
905.5		6x 4 x 3/4		148.0	71.4	102.4

Section Modulus, Axis 1-1, Inches ³	Size in Inches			Weight per Foot, Pounds		Maximum End Reaction
	Web Plates	Flange Angles	Flange Plates	Web Plate and Flange Angles	Flange Plates	in Thousands of Pounds
418.0 456.9 489.0 537.1 556.9 614.5 621.9 662.5 689.2 700.3 723.7 761.3 792.3 822.3 838.8 853.2 899.4 918.3 973.7 1039.4 1094.1 1101.1 1164.9	36 x ⅓	6 x 4 x ½ 6 x 6 x ½ 6 x 6 x 5% 6 x 6 x 5% 6 x 4 x 3% 6 x 4 x 3% 6 x 4 x 3% 6 x 4 x 3% 6 x 6 x 2% 6 x 6 x 2% 6 x 6 x 2% 6 x 6 x 3% 6 x 6 x 5% 6 x 6 x 5% 6 x 4 x 3% 6 x 6 x 4 x 3% 6 x 6 x 4 x 3% 6 x 6 x 4 x 3% 6 x 6 x 5% 6 x 6 x 6 x 5% 6 x 6 x 6 x 5% 6 x 6 x 6 x 5% 6 x 6 x 6 x 6 x 6 x 6 x 6 x 6 x 6 x 6 x	14 x ½ 14 x ½ 14 x ½ 14 x ½ 14 x ½ 14 x ½ 14 x ½ 14 x ¾ 14 x ¾ 14 x ¾ 14 x ¾ 14 x 1 14 x 1	126.0 139.6 141.2 158.0 155.6 176.0 193.6 139.6 126.0 139.6 141.2 139.6 141.2 158.0 155.6 176.0 155.6 176.0 170.0 193.6	47.6 47.6 59.5 59.5 59.5 71.4 59.5 71.4 71.4 71.4 95.2 95.2 95.2 95.2	117.0 180.0 117.0 180.0 117.0 180.0 117.0 180.0 117.0 180.0 117.0 180.0 117.0 180.0 117.0 180.0 117.0 180.0 117.0 180.0 117.0 180.0 117.0 180.0
444.7 483.5 515.7 563.7 563.5 641.2 648.5 688.4 715.8 726.2 749.4 787.0 818.1 847.9 864.6 878.8 924.9	36 x 5%	6 x 4 x ½ 6 x 6 x ½ 6 x 4 x ¾ 6 x 4 x ¾ 6 x 6 x ¾ 6 x 4 x ¾ 6 x 6 x ½ 6 x 6 x ¾ 6 x 6 x ¾	14 x 5/8 14 x 5/8 14 x 5/8 14 x 3/4 14 x 5/8 14 x 3/4	141.3 154.9 156.5 173.3 170.9 191.3 185.3 141.3 208.9 154.9 141.3 154.9 156.5 154.9 173.3 156.5 173.3	47.6 47.6 59.5 59.5 59.5 71.4 59.5 71.4 71.4	146.3 225.0 146.3 225.0 146.3 225.0 146.3 225.0 146.3 225.0 146.3 225.0 225.0 146.3 225.0

GIRDERS

RIVETED PLATE GIRDERS-Continued

Section ~		Size in Inches		Weight pe Pour		Maximum End Reaction	
Axis 1-1, Inches ³	Web Plates	Flange Angles	Flange Plates	Web Plate and Flange Angles	Flange Plates	in Thousand of Pounds	
943.9		6 x 4 x ¾	14 x ¾	170.9	71.4	146.3	
999.3		6 x 6 x 34	14 x ¾	191.3	71.4	225.0	
1045.9	ĺ	6 x 6 x 5/8	14 x 1	173.3	95.2	225.0	
1064.7	36 x 5/8	6 x 4 x ¾	14 x 1	170.9	95.2	146.3	
1119.3		6 x 6 x 34	14 x 1	191.3	95.2	225.0	
1126.3	!	6 x 4 x 1/8	14 x 1	185.3	95.2	146.3	
1190.1		6 x 6 x 1/8	14 x 1	208.9	95.2	225.0	
390.2		6 x 4 x 3/8		102.8		101.3	
427.5	}	6 x 6 x 3/8		113.2		157.5	
477.2		6 x 4 x ½		118.4		101.3	
527.2		6 x 6 x ½		132.0		157.5	
561.4		6 x 4 x 5/8		133.6		101.3	
606.6	•	6 x 4 x 3/8	14 x %	102.8	35.7	101.3	
623.5		6 x 6 x 5/8		150.4		157.5	
638.3		6 x 4 x 1/8	16 x %	102.8	40.8	101.3	
642.1		6 x 4 x 34		1480		101.3	
64 3.2		6 x 6 x 3/8	14 x %	113.2	35.7	157.5	
675.1		6 x 6 x 3/8	16 x 3/8	113.2	40.8	157.5	
678.6	ļ	6 x 4 x 3/8	14 x ⅓	102.8	47.6	101.3	
715.2	1	6 x 6 x 3/8	14 x ⅓	113.2	47.6	157.5	
716.5		6 x 6 x 34		168.4		157.5	
719.5		6 x 4 x 1/8		162.4		101.3	
757.7		6 x 6 x 3/8	16 x ½	113.2	54.4	157.5	
763.7	42 x 3/8	6 x 4 x ½	14 x ½	118.4	47.6	101.3	
787.2		6 x 6 x 3/8	14 x 1/8	113.2	59.5	157.5	
806.2		6 x 4 x ½	16 x ½	118.4	54.4	101.3	
806.4		6 x 6 x 1/8		186.0		157.5	
812.7		6 x 6 x ½	14 x ½	132.0	47.6	157.5	
835.5	!	6 x 4 x ½	14 x ½	118.4	59.5	101.3	
855.2	1	$6 \times 6 \times \frac{1}{2}$	16 x ⅓	132.0	54.4	157.5	
884.2		6 x 6 x ½	14 x 5/8	132.0	59.5	157.5	
917.3		6 x 4 x 5/8	14 x ½	133.6	59.5	101.3	
937.3	1	6 x 6 x ½	16 x 5/8	132.0	68.0	157.5	
955.7		6 x 6 x ½	14 x ¾	132.0	71.4	157.5	
970.4		6 x 4 x %	16 x 1/8	133.6	68.0	101.3	
977.6		6 x 6 x 5/8	14 x 5/8	150.4	59.5	157.5	
988.7		6 x 4 x 5/8	14 x ¾	133.6	71.4	101.3	
1030.8		6 x 6 x 5/8	16 x 1/3	150.4	68.0	157.5	
104 8.6	1	6 x 6 x 5/8	14 x ¾	150.4	71.4	157.5	
1066.6	1	6 x 4 x %	14 x ¾	148.0	71.4	101.3	
1112.4	1	6 x 6 x 5/8	16 x ¾	150.4	81.6	157.5	

CARNEGIE STEEL COMPANY

RIVETED PLATE GIRDERS—Continued

Section Modulus,		Size in Inches		Weight p Pou	er Foot, nds	Maximum End Reaction
Axis 1-1, Inches ⁸	Web Plates	Flange Angles	Flange Plates	Web Plate and Flange Angles	Flange Plates	in Thousands of Pounds
1130.4 1138.5 1194.1 1202.3 1283.5 1286.4 1369.9	42 x 3/8	6 x 4 x ¾ 6 x 6 x ¾ 6 x 6 x ¾ 6 x 6 x ¾ 6 x 6 x ¾ 6 x 4 x % 6 x 6 x ¾ 6 x 6 x ¾	16 x 3/4 14 x 3/4 16 x 3/4 16 x 3/4 16 x 3/6 16 x 3/6	148.0 168.4 150.4 168.4 162.4 186.0	81.6 71.4 95.2 81.6 95.2 95.2 95.2	101.3 157.5 157.5 157.5 157.5 101.3 157.5
495.3 545.4 579.5 641.6 660.2 734.7 737.6 781.5 824.0 824.6 830.4 853.1 872.9 901.8 934.9 973.2 988.1 1995.3 1006.2 1048.4 1066.2 1048.4 1129.9 1147.9 1156.0 1211.6	42 x 7/16	6 x 4 x ½ 6 x 6 x ½ 6 x 4 x ¾ 6 x 4 x ¾ 6 x 4 x ¾ 6 x 4 x ½ 6 x 4 x ½ 6 x 6 x ½	14 x ½ 16 x ½ 14 x ½ 14 x ½ 16 x ½ 16 x ½ 16 x ¾ 16 x ¾ 16 x ¾ 16 x ¾ 16 x ¾ 16 x ¾ 16 x ¾ 16 x ¾ 16 x ¾ 16 x ¾ 16 x ¾	127.3 140.9 142.5 159.3 156.9 177.3 127.3 127.3 194.9 140.9 142.5 140.9 142.5 140.9 142.5 159.3 156.9 159.3 156.9 177.3	47.6 54.4 47.6 59.5 54.4 59.5 68.0 71.4 68.0 71.4 81.6 81.6 71.4 95.2 81.6	118.1 183.8 118.1 183.8 118.1 118.1 118.1 118.1 118.1 183.8 118.1 183.8 118.1 183.8 118.1 183.8 118.1 183.8 118.1 183.8 118.1 183.8 118.1 183.8 118.1 183.8 183.8
1300.9 1387.3 513.5 563.5 597.7 659.8 678.4	42 x ½	6 x 6 x 3/4 6 x 6 x 3/8 6 x 4 x 3/2 6 x 6 x 3/2 6 x 4 x 5/6 6 x 6 x 5/8 6 x 4 x 3/4	16 x 7/8 16 x 7/8	177.3 194.9 136.2 149.3 151.4 168.2 165.8	95.2 95.2	183.8 183.8 185.0 210.0 135.0 210.0 135.0

GIRDERS

RIVETED PLATE GIRDERS-Continued

Section Modulus,		Siza in Inches		Weight 1	per Foot,	Maximum End Reaction	
Axis 1-1, Inches ³ ,	Web Plates	Flange Angles	Fange Plates	Web Plate and Flange Angles	Flange Plates	Thousands of Pounds	
752.8		6 x 6 x 3/4		186.2		210.0	
755.8		6 x 4 x 1/8		180.2		135.0	
799.2		6 x 4 x ½	14 x ½	136.2	47.6	135.0	
841.7		6 x 4 x ½	16 x ½	136.2	54.4	135.0	
842.7	1	6 x 6 x 1/8		203.8	•	210.0	
848.1	1	6 x 6 x ½	14 x ½	149.8	47.6	210.0	
870.8		6 x 4 x ½	14 x 5/8	136.2	59.5	135.0	
890.6		6 x 6 x ½	16 x ½	149.8	54.4	210.0	
919.4		6 x 6 x ½	14 x ½	149.8	59.5	210.0	
952.6	į	6 x 4 x 5/8	14 x 5/8	151.4	59.5	135.0	
972.6	į	6 x 6 x ½	16 x ½	149.8	68.0	210.0	
990.8		6 x 6 x 1/2	14 x 3/4	149.8	71.4	210.0	
1005.7		6 x 4 x 5/8	16 x ½	151.4	68.0	135.0	
1012.9	42 x 1/2	6 x 6 x 5/8	14 x 5/8	168.2	59.5	210.0	
1023.7	1	6 x 4 x 5/8	14 x 3/4	151.4	71.4	135.0	
1066.0	•	6 x 6 x 5/8	16 x ½	168.2	68.0	210.0	
1083.7	ł	6 x 6 x 5/8	14 x 3/4	168.2	71.4	210.0	
1101.7		6 x 4 x 34	14 x ¾	165.8	71.4	135.0	
1147.5		6 x 6 x 5/8	16 x 3/4	168.2	81.6	210.0	
1165.4		6 x 4 x 3/4	16 x ¾	165.8	81.6	135.0	
1173.6		6 x 6 x 34	14 x 3/4	186.2	71.4	210.0	
1229.0	Ì	6 x 6 x 5/8	16 x 1/8	168.2	95.2	210.0	
1237.4		6 x 6 x 34	16 x 3/4	186.2	81.6	210.0	
1318.4	Ì	6 x 6 x 34	16 x 1/8	186.2	95.2	210.0	
1321.2		6 x 4 x 1/8	16 x 1/8	180.2	95.2	135.0	
1404.7		6 x 6 x 1/8	16 x 1/8	203.8	95.2	210.0	
466.9		6 x 4 x 3/8		110.4		121.5	
512.7	1	6 x 6 x 3/8		120.8		180.0	
567.4	i	6 x 4 x ½		126.0		121.5	
628.9	1	6 x 6 x ½		139.6		180.0	
664.9	i	6 x 4 x 5/8		141.2	~-	121.5	
714.4		6 x 4 x 3/8	14 x 3/8	110.4	35.7	121.5	
741.3		6 x 6 x 5/8		158.0	40.0	180.0	
750.8		6 x 4 x %	16 x ¾	110.4	40.8	121.5	
758.5	48 x 3/8	6 x 4 x 34		155.6	0	121.5	
759.5		6 x 6 x 3/8	14 x %	120.8	35.7	180.0	
795.9	1	6 x 6 x %	16 x %	120.8	40.8	180.0	
797.0		6 x 4 x %	14 x ½	110.4	47.6	121.5	
841.9		6 x 6 x 3/8	14 x ½	120.8	47.6	180.0	
848.3		6 x 4 x 1/8		170.0		121.5	
850.1		6 x 6 x 34		176.0	.	180.0	
890.4	1	6 x 6 x 3/8	16 x ½	120.8	54.4	180.0	
895.5		6 x 4 x ½	14 x 1/2	126.0	47.6	121.5	

CARNEGIE STEEL COMPANY

RIVETED PLATE GIRDERS—Continued

Section Modulus		Size in Inches		Weight I	per Foot,	Maximum End Reaction	
Axis 1-1, Inches ³	Web Plates	Flange Angles	Flange Plates	Web Plate and Flange Angles	Flange Plates	in Thousands of Pounds	
924.3 944.0 955.2 955.8 977.7 1004.3 1037.6 1072.7 1098.2 1119.5 1133.3 1147.1 1154.4 1207.8 1228.4 1245.2 1301.2 1317.9 1334.0 1394.7 1496.7 1498.1 1499.7 1601.3	48 x %	6 x 6 x 36 6 x 4 x 1/2 6 x 6 x 3/2 6 x 6 x 6 x 3/2 6 x 6 x 6 x 3/2 6 x 6 x 6 x 3/2 6 x 6 x 6 x 3/2 6 x 6 x 6 x 3/2 6 x 6 x 6 x 6 x 3/2 6 x 6 x 6 x 6 x 6 x 6 x 3/2 6 x 6 x 6 x 6 x 6 x 6 x 6 x 6 x 6 x 6 x	14 x 5% 16 x 12 14 x 5% 14 x 5% 16 x 5% 14 x 5% 14 x 5% 14 x 5% 14 x 5% 14 x 5% 14 x 5% 14 x 5% 14 x 5% 14 x 5% 16 x 5% 14 x 5% 16	120.8 126.0 193.6 139.6 126.0 139.6 139.6 139.6 139.6 141.2 158.0 158.0 158.0 158.0 158.0 176.0 176.0 176.0 176.0 193.6	59.5 54.4 47.6 59.5 54.4 59.5 68.0 71.4 68.0 71.4 68.0 71.4 81.6 81.6 71.4 95.2 81.6 95.2 95.2	180.0 121.5 180.0 121.5 180.0 121.5 180.0 120.0 121.5 180.0 121.5 180.0 121.5 180.0 121.5 180.0 121.5 180.0 121.5 180.0 121.5 180.0 121.5 180.0 180.0 180.0	
591.2 652.7 688.7 765.0 782.3 872.1 873.8 918.8 967.3 979.0 1000.8 1027.6 1060.8 1095.8 1121.4 1142.5 1156.5	48 x 7/18	6 x 4 x ½ 6 x 6 x ½ 6 x 4 x % 6 x 6 x ½ 6 x 4 x ½ 6 x 4 x ½ 6 x 6 x 6 x ½ 6 x 6 x 6 x 6 x 6 x 6 x 6 x 6 x 6 x 6 x	14 x ½ 16 x ½ 14 x ½ 14 x ½ 14 x ½ 14 x ½ 14 x ½ 14 x ½ 14 x ½ 14 x ½ 14 x ½ 16 x ½	136.2 149.8 151.4 168.2 165.8 180.2 136.2 136.2 136.2 149.8 149.8 149.8 149.8 151.4	47.6 54.4 . 47.6 59.5 54.4 59.5 59.5 68.0 71.4 68.0	141.8 210.0 141.8 210.0 141.8 210.0 141.8 141.8 210.0 210.0 210.0 141.8 210.0 210.0 141.8 210.0 210.0	

GIRDERS

RIVETED PLATE GIRDERS-Continued

Section Modulus,		Size in Inches		Weight pe Pour		Maximum End Reaction	
Axis 1-1, Inches ³	Web Plates	Flange Angles	Flange Plates	Web Plate and Flange Angles	Flange Plates	in Thousand of Pounds	
1170.3 1177.4 1230.9 1251.5 1268.2 1324.3 1341.0 1357.0 1417.7 1429.8 1521.0 1522.7 1624.2	48 x 7/1e	6 x 6 x 5/4 6 x 6 x 6 x 5/4 6 x 6 x 6 x 6 x 6 x 6 x 6 x 6 x 6 x 6 x	14 x % 14 x % 16 x 5% 14 x % 14 x % 16 x % 16 x % 16 x % 16 x % 16 x % 16 x % 16 x % 16 x % 16 x % 16 x %	168.2 151.4 168.2 168.2 168.2 165.8 166.2 166.2 186.2 180.2 186.2 203.8	59.5 71.4 68.0 71.4 71.4 81.6 81.6 71.4 95.2 95.2 95.2 95.2	210.0 141.8 210.0 210.0 141.8 210.0 141.8 210.0 210.0 210.0 141.8 210.0 210.0	
615.0 676.4 712.4 778.8 806.0 895.8 897.6 942.1 990.6 1002.7 1024.0 1050.8 1119.0 1144.5 1165.6 1179.6 1193.4 1200.5 1254.1 1274.5 1291.2 1364.0 1380.0 1440.6 1452.8 1545.6 1647.1	48 x ½	6 x 4 x ½ 6 x 6 x ½ 6 x 4 x ½ 6 x 4 x ½ 6 x 4 x ½ 6 x 4 x ½ 6 x 4 x ½ 6 x 4 x ½ 6 x 6 x 6 x 4 x ½ 6 x 6 x 6 x 4 x ½ 6 x 6 x 6 x 6 x 4 x ½ 6 x 6 x 6 x 6 x 6 x 6 x 6 x 6 x 6 x 6 x	14 x ½ 16 x ½ 14 x ½ 14 x ½ 14 x ½ 14 x ½ 14 x ½ 14 x ½ 14 x ½ 14 x ½ 14 x ½ 14 x ½ 14 x ½ 14 x ½ 14 x ½ 14 x ½ 16 x ½ 14 x ½ 16 x ½ 16 x ½ 16 x ½ 16 x ½ 16 x ½ 16 x ½ 16 x ½	146.4 160.0 161.6 178.4 176.0 190.4 146.4 146.4 160.0 160.0 161.6 160.0 161.6 178.4 176.0 178.4 176.0 178.4 176.0 196.4 178.4 176.0	47.6 54.4 47.6 59.5 54.4 59.5 68.0 71.4 68.0 71.4 71.4 81.6 81.6 95.2 95.2 95.2	162.0 240.0 162.0 162.0 162.0 162.0 162.0 240.0 162.0 240.0 240.0 240.0 240.0 162.0 240.0 162.0 240.0 162.0 240.0 162.0 240.0 162.0 240.0 162.0 240.0	

CARNEGIE STEEL COMPANY

RIVETED PLATE GIRDERS-Concluded

Section Modulus,		Size in Inches		Weight pe	r Foot, ads	Maximum End Resetion
Axis 1-1, Inches ³	Web Plates	Flange Angles	Flange Plates	Web Plate and Flange Angles	Flange Plates	Reaction in Thousands of Pounds
194.7 245.7 294.2 340.7	24 x 1/10	6 x 6 x 3/8 6 x 6 x 3/2 6 x 6 x 5/8 6 x 6 x 3/4		85.1 103.9 122.3 140.3		67.5 67.5 67.5 67.5
200.6 251.5 300.1 346.6	24 x 3/8	6 x 6 x 3/8 6 x 6 x 1/2 6 x 6 x 5/8 6 x 6 x 3/4		90.2 109.0 127.4 145.4		81.0 81.0 81.0 81.0
216.6 272.9 326.7 378.2	26 x 5/18	6 x 6 x 3/8 6 x 6 x 1/2 6 x 6 x 5/8 6 x 6 x 3/4		87.2 106.0 124.4 142.4		78.8 78.8 78.8 78.8
223.5 279.8 333.6 385.2	26 x 3/8	6 x 6 x ⁸ / ₈ 6 x 6 x ¹ / ₂ 6 x 6 x ⁵ / ₈ 6 x 6 x ⁸ / ₄		92.8 111.6 130.0 148.0		94.5 94.5 94.5 94.5
230.4 286.7 340.5 392.1	26 x 7/16	6 x 6 x 3/8 6 x 6 x 1/2 6 x 6 x 5/8 6 x 6 x 3/4		98.3 117.1 135.5 153.5		110.3 110.3 110.3 110.3
227.8 286.8 343.1 397.3	27 x 5/18	6 x 6 x 3/8 6 x 6 x 1/2 6 x 6 x 5/8 6 x 6 x 3/4		88.3 107.1 125.5 143.5		78.8 78.8 78.8 78.8
235.2 294.2 350.6 404.7	27 x ¾	6 x 6 x 8/8 6 x 6 x 1/2 6 x 6 x 5/8 6 x 6 x 8/4		94.0 112.8 131.2 149.2		94.5 94.5 94.5 94.5
242.7 301.7 358.1 412.2	27 x ½6	6 x 6 x 3/8 6 x 6 x 1/2 6 x 6 x 5/8 6 x 6 x 3/4	,	99.8 118.6 137.0 155.0		110.3 110.3 110.3 110.3
271.2 338.3 402.6 464.4	30 x 3/8	6 x 6 x 3/8 6 x 6 x 1/2 6 x 6 x 5/8 6 x 6 x 3/4	t	97.9 116.7 135.1 153.1		108.0 108.0 108.0 108.0
280.4 347.5 411.8 473.6	30 x 1/16	6 x 6 x 3/8 6 x 6 x 1/2 6 x 6 x 5/8 6 x 6 x 3/4		104.2 123.0 141.4 159.4		126.0 126.0 126.0 126.0
289.6 356.7 421.0 482.8	30 x ½	6 x 6 x 8 8 6 x 6 x 1/2 6 x 6 x 5/8 6 x 6 x 8/4		110.6 129.4 147.8 165.8		144.0 144.0 144.0 144.0

COLUMNS AND STRUTS

Compression members in structures are called posts, struts or columns. No exact theoretical formula has been found which will give the strength of such members under various conditions of loading. The formulas in current use are based on the assumption that the members under stress may fail by direct compression, by compression and bending combined, or by bending alone. The empirical formulas based on these assumptions practically agree with results obtained by experiment on full size members. These experiments show that steel columns of ordinary sizes and lengths fail at nearly a constant stress which corresponds to the yield point of that material, and that the load which will cause a column to fail decreases in the ratio of its length to its least lateral dimension.

Radius of Gyration. As the strength of a column depends on its ability to resist flexural stress, the moment of inertia of its cross section is an important factor in the determination of its carrying capacity. For the purpose of computation, however, it is much more convenient to use the radius of gyration which depends on the moment of inertia.

Ratio of Slenderness. The ratio of slenderness is the unsupported length of a compression member divided by its radius of gyration, and the unsupported length of a column is determined by such points of support as will prevent deflection of the column in the direction which corresponds to the particular radius of gyration under consideration. Columns of unsymmetrical section have more than one radius of gyration. It is, therefore, necessary to determine the ratio of slenderness for the different radii of gyration of such columns and to use the proper ratio in any particular case.

The unit stresses for different ratios of slenderness given in the construction specifications and on page 294 are consistent with present practice in column construction and their use does not involve the refinements of the more complicated formulas, which refinements are often vitiated by uncertainties in the application of loads or other practical features.

The construction specifications limit the maximum ratio of slenderness to 120 for main members under steady stresses. For secondary members under temporary stress, such as those used in wind bracing, higher ratios may be used, but in no case should the ratio exceed 200.

Important as it may be to have the metal Form and Size of Section. in the column section distributed as far as possible from the neutral axis, that is, with as large a radius of gyration as possible, considerations of ease in fabrication and simplicity in connections are of greater weight. The economical column section is not that which affords the least weight of metal in the shaft, but that which, with a reasonable radius of gyration, provides the least weight of member, shaft and details with the minimum amount of riveting. practice, therefore, eliminates earlier forms of construction which represented the minimum amount of metal for the maximum radius of gyration, such, for example, as the column composed of three I-beams or one I-beam and two channels placed either with the flanges in or the flanges out. The Z-bar column has also fallen into disuse, likewise a number of patented sections and other sections shown in earlier editions of this publication.

The most practical column is one the surfaces of which are readily accessible for painting and, therefore, it is desirable to use open angle and plate columns rather than closed channel and plate columns.

The column sections should be of such size as to permit ready framing of beams and girders thereto and so placed in the construction as to permit the simplest details. Experience indicates that eight inches is the smallest desirable dimension in ordinary building work. For struts and light loads, smaller angle columns are still in use, while the H-beams are excellent for such purposes. I-beams and single angles may be used with economy where the conditions of lengths and loading permit.

Explanation of Tables. The tables which immediately follow give the safe loads in thousands of pounds on H-beam and I-beam columns and on a selected line of channel and angle columns which, in the light of experience, seem to be desirable for use in ordinary building and bridge construction. In addition to the safe loads, they give moments of inertia and radii of gyration about both axes of symmetry, areas of sections, and weights in pounds per foot without allowance for rivet heads or other details.

These tables have been computed for the least radius of gyration in accordance with the formula given in the construction specifications. The values may be adjusted to other formulas or to different values of the ratio of slenderness by use of the comparative table on page 294. This table is also suitable for use in figuring columns so braced against flexure, that their safe strength may be computed for the greater radius of gyration.

Combined Bending and Compression Stresses. It is assumed in the tables that the loads are direct and equally distributed over the cross section of the column or balanced on opposite sides thereof. In the case of beams carried on brackets or other forms of eccentric loading, bending stresses are produced which should be taken into consideration and the column sections so proportioned that the combined fiber stresses do not exceed the allowable axial compressive stresses. There is no direct simple solution of this problem; the following trial method is suited to the tables:—

Let

W = Direct load, in pounds.

W1=Eccentric load, in pounds.

M = Bending moment due to eccentric load, in inch $pounds = <math>W_1x$

I = Moment of inertia of column in direction of bending.

n = Extreme fiber distance in direction of bending.

A = Area of column section, in square inches.

f = Allowable axial unit compression, in pounds per square inch; then f should be equal to or greater than $\frac{W+W_1}{A} + \frac{Mn}{1}$ the fiber stresses due to compression and bending respectively.

Rule:—Assume a section in excess of that required for the direct compression $W+W_1$ and compute the combined fiber stress. If it works out too large or too small, try again.

EXAMPLE:—Required to select a plate and angle column 20 feet long to sustain a balanced load of 210,000 pounds and an eccentric load of 40,000 pounds applied 15 inches from the column center on axis 1-1.

Assume a section made up of 14''x%'' web plate, four angles $6''x4''x\%_6''$ and two flange plates 14''x%'', page 313.

A = 32.47, $I_{1-1} = 1351$, $r_{2-2} = 3.09$, ratio of slenderness = 20x12 + 3.09 = 77.

Allowable fiber stress, 19,000-100 l/r = 11,300 pounds per square inch, page 294.

Actual fiber stress= $\frac{210,000+40,000}{32.47} + \frac{40,000 \times 15 \times 7.625}{1351} = 7,700+3,390 = 11,090$ pounds per square inch.

COMPARISON OF COMPRESSION FORMULAS

ALLOWABLE UNIT STRESSES IN POUNDS PER SQUARE INCH

Ratio	American Bridge Co.	A. R. E. Ass'n Chicago	New York	Boston	Philadelphia	Gordon
$\frac{1}{r}$	See Construction Specifications	16000-70 1/r 14000 max.	$16000-70\frac{1}{r}$ 16000 max .	$1 + \frac{16000}{120000 \mathbf{r}^2}$	$16250 \\ 1 + \frac{12}{11000 r^2}$	$12500 \\ 1 + \frac{12}{36000 \mathbf{r}^2}$
0 5 10 15 20 25 30 45 50 65 70 85 90 90 100 105 115 125	13000 13000 13000 13000 13000 13000 13000 13000 13000 13000 13000 13000 12000 12000 12500 10500 10500 10500 9000 8500 9000 8500 7500 7000 6756	14000 14000 14000 14000 14000 14000 13900 13550 13250 12550 12550 12500 12150 11800 11450 11450 11450 110050 9700 9350 99000 8650 8300 7950 7600 7600	16000 max. 16000 15650 15300 14950 14950 14250 13900 13550 13200 12550 12500 12150 11800 10750 10400 10050 9700 9700 9350 9000 8650 8300 7950	16000 15980 15980 15820 15820 15820 15690 15515 14815 14815 14530 14220 13900 13560 12240 12240 12240 12120 11755 11390 11025 11025 10670 10315 9970 9630 9300	16250 16215 16100 15925 15680 15375 15020 14620 14185 13725 13240 117740 11240 117740 11240 10775 9810 9830 8930 8930 88510 8115 77740 7380 7035 6715	12500 12490 12490 12460 12420 12365 12285 12195 12990 11970 11835 11690 11530 11365 11185 11000 10810 10810 10915 9985 9785 9385 9140 8930 8715
130 135 140 145 150 155 160 165 170 175 180 185 190 195 200	6500 6250. 6000 , 5750 5500 5250 5000 4750 4500 4250 4000 3750 3500 3250 3000	6900 6550 6200 5850 5500			6405 6115 58 <u>4</u> 0	8510 8300 8095 7890 7690 7495 7120 6935 6755 6580 6410 6240 6080

Maximum Ratios of $\frac{1}{r}$

Compression Formula		Secondary Members		Main Members	Secondary Members
American Bridge Company American R'y Engrg Ass'n. Chicago Building Law	100	120	New York Building Law. Boston Building Law Pbiladelphia Building Law		120 120 140

BEAM COLUMNS

SAFE LOADS IN THOUSANDS OF POUNDS

Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under, reduced for lengths over 60 radii; see Construction Specifications.

Weights do not include details.

		Depth and Weight of Sections												
Effective		НВ	eams					I	Beams	3		,		
Length in Feet	8 in. 34 Ibs.	6 in. 23.8 lbs.	5 in. 18.7 lbs.	4 in. 13.6 lbs.	15 in. 42 lbs.	12 in. 31½ Ibs.	10 in. 25 lbs.	9 in. 21 lbs.	8 in. 18 1bs.	7 in. 15 lbs.	6 in. 12½ lbs.	5 in. 93/4 lbs.	4 in. 7½ lbs.	
4 5	130.0 130.0 130.0 130.0	91.0 91.0 91.0	71.5	52.0 52.0 50.7	162.2 162.2 162.2 162.2	120.4 120.4 120.4	95.8 95.8 94.4		69.3 69.3 63.2	57.5 56.8 50.0	46.9 46.9 44.5 38.5	37.3 37.3 33.3 28.0 22.7	28.7 28.5 24.0 19.5	
6 7 8 9 10	130.0 130.0 130.0 130.0 125.8	$\frac{91.0}{86.7}$	71.5 66.0 60.5 55.0 49.5	40.6 35.6	153.9 140.1 126.2 112.3 98.5	98.9 87.9 76.9	76.2 67.1 58.0 50.2	61.0 52.6 44.2 40.0	55.6 48.0 40.4 35.0 31.2	43.2 36.4 30.3 26.9 23.5	32.5 26.5 22.9 19.9 16.8	18.8 16.1 13.5 10.8	15.2 13.0 10.8 8.5	
11 12 13 14 15	119.4 113.0 106.6 100.2 93.8	63.5 57.7	44.0 38.5 35.8 33.0 30.3	24.2 21.7 19.2 16.6 14.1	86.0 79.0 72.1 65.2 58.2	54.4 48.9 43.4	45.7 41.1 36.5 32.0 27.4	35.8 31.5 27.3 23.1 18.9	27.4 23.6 19.8 16.0	20.1 16.7 13.3	13.8 10.8			
16 17 18 19 20	80.9 74.5 69.0	44.7 41.8 38.9 36.0 33.1	27.5 24.8 22.0 19.3 16.5		51.3 44.4 37.4		22.9			-				
21 22 23 24 25	59.4 56.2	30.2 27.3 24.4 21.5											,	
26 27 28 29 30	46.6 43.4 40.2 37.0 33.7		,											
31	30.5	 	 	1 25				 				1		
$\frac{\text{Area, in.}^2}{I_{1-1}, \text{in.}^4}$	I	7.00 45.1	5.50 23.8	10.7	12.48	9.26 215.8	7.37	6.31 84.9	56.9	4.42	3.61	2.87	6.0	
r ₁₋₁ , in. l ₂₋₂ , in. ⁴ r ₂₋₂ , in.	3.40	2.54 14.7 1.45	2.08 7.9 1.20	1.63 3.6 0.95	5.95 14.6 1.08	4.83 9.5 1.01	4.07 6.9 0.97	3.67 5.2 0.90	3.27 3.8 0.84	36.2 2.86 2.7 0.78	21.8 2.46 1.9 0.72	2.05 1.2 0.65	1.64 0.77 0.59	
Weight, Lbs. per Foot	34	23.8	18.7	13.6	42	31½	25	21	18	15	121/4	93/4	71/2	

Safe load values above upper zigzag line are for ratios of 1/r not over 60, those between the zigzag lines are for ratios up to $120\,1/r$ and those below lower zigzag line are for ratios not over $200\,1/r$.

10 INCH CHANNEL COLUMNS

SAFE LOADS IN THOUSANDS OF POUNDS

Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under, reduced for lengths over 60 radii; see Construction Specifications.

Weights do not include rivet heads or other details.

Feet		in. C					2-	-10 ir	ı. Ch	annel	3, 2	-12 ir	ı. Pla	tes			_
Effective Length in Feet	15 lb. Channels, Single Lattice	20 lb. Channels, Single Lattice	25 lb. Channels, Single Lattice	15 lb. Channels, 5/10 in. Plates	15 lb. Channels, % in. Plates	15 lb. Channels, 74e in. Plates	15 lb. Channels,	20 lb. Channels,	20 lb. Channels, 1% in. Plates	20 lb. Channels,	20 lb. Channels,	25 lb. Channels,	25 lb. Channels, 5% in. Plates	301b. Channels,	30 lb. Channels, 5% in. Plates	35 lb. Channels,	351b. Channels, 5% in. Plates
11 12 13 14 15	116 116 116	153 153 153		 213	1233	1252	272 272 272 272 272 272	1289	309	$ 328 \\ 328 $	348	367 367 367 367 367	386 386 386	405 405 405		443 443 443	463 463 463
16 17 18 19	116 116 115	$153 \\ 152 \\ 148$	181	213 213 208	233	252 252	272 272 271 264 257	289 286	309 305	328 324	348 343	367 367 359 349 339	386 378	403 392 381	411 399	437 424 412	457 444 431
20 21 22 23 24 25	109 106	140 136 132	176 165 160 155 150	197 192 186	215 209 203	232 226 219	250 243 236	263 256 248	280 272 264	298 289 281	316 307 297	329 319 310 300	347 336 326	359 348 337 326	376 364 353 341	375 362	418 405 392 379 366 354
26 27 28 29	95 92 89 86 86	120 116 112 108	145 140	I	i		215 208 201 194 187		l	l		280 270 260	295 285 274	303 292 281	318 306 295 283	325	341 328 315 302 289
31 32 33 34 35	80 77 75 72 69	96 92 88	119 114 109 103	142 137 131 126	155 149 143 137	167 161 154 148	180 173	187 179 172 164	199 191 183 174	211 203 194 185	224 215 206 196	$\frac{221}{211}$ $\frac{201}{201}$	$233 \\ 222 \\ 212$	248 237 226 216 211	260 248 237 227 221	263 251 239 232 226	276 263 250 243 237
Area, in.2	8.92	11.76	14,70	16.42	17.92	19.42	20,92	22.26	23.76	25.26	26.76	28.20	29,70	31.14	32.64	34.08	35.58
I ₁₋₁ , in.4 r ₁₋₁ , in. I ₂₋₂ , in.4 r ₂₋₂ , in.	134 3.87 123 3.72	158 3.66 148 3.55	182 3.52 171 3.41	333 4.50 213 3.60	376 4.58 231 3.59	420 4.65 249 3.58	465 4.71 267 3.58	444 4.46 274 3.51	489 4.53 292 3.50	534 4.60 310 3.50	581 4.66 328 3.50	559 4,45 333 3,44	606 4.52 351 3.44	583 4.33 354 3.37	630 4.39 372 3.37	608 4.22 379 3.30	655 4.29 390 3.31
Weight, Lbs. per Foot	37.8	47.8	57.8	55,5	60.6	65,7	70.8	75.7	80.8		91.0		101.0			115.9	

Safe load values above upper zigzag line are for ratios of 1/r not over 60, those between the zigzag lines are for ratios up to $120\,1/r$, and those below lower zigzag line are for ratios not over $200\,1/r$.

SAFE LOADS IN THOUSANDS OF POUNDS

Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under, reduced for lengths over 60 radii; see Construction Specifications.

Weights do not include rivet heads or other details.

Feet	2-10	in. C Latti	hanne ced	ls			2-	10 in.	Chann	els, 2	2-14 in	. Plat	es	1	
Effective Length in Feet	15 lb. Channels, Single Lattice	20 lb. Channels, Single Lattice	25 lb. Channels, Single Lattice	30 lb. Channels, Single Lattice	151b. Channels, % in. Plates	15 lb. Channels, 7/10 in. Plates	15 lb. Channels, ½ in. Plates	20 lb. Channels, 7/10 in. Plates	20 lb. Channels, ½ in. Plates	20 lb. Channels, % in. Plates	20 lb. Channels, 5% in. Plates	25 lb. Channels, % in. Plates	25 lb. Channels, 5/3 in. Plates	25 lb. Channels, 11/16 in. Plates	25 lb. Channels, 34 in. Plates
11 12 13 14 15	116 116 116 116 116	153 153 153 153 153	191 191 191 191 191	229 229 229 229 229 229	252 252 252 252 252 252	275 275 275 275 275 275	298 298 298 298 298	312 312 312 312 312 312	335 335 335 335 335	358 358 358 358 358	380 380 380 380 380	396 396 396 396 396	419 419 419 419 419	441 441 441 441 441	464 464 464 464 464
16 17 18 19 20	116 116 116 116 114	153 153 153 150 146	191 191 189 184 179	229 229 224 218 211	252 252 252 252 252 252	275 275 275 275 275 275	298 298 298 298 298	312 312 312 312 312	335 335 335 335 335	358 358 358 358 358	380 380 380 380 380	396 396 396 396 396	419 419 419 419 419	441 441 441 441 441	464 464 464 464 464
21 22 23 24 25	111 109 106 103 100	142 139 135 131 127	174 169 164 159 154	205 199 193 187 180	252 251 246 241 235	275 273 267 261 256	298 295 289 282 276	312 308 302 295 288	335 330 323 316 308	358 352 344 337 329	380 374 365 357 349	396 388 379 371 362	419 410 401 392 382	441 432 422 412 403	464 453 443 433 423
26 27 28 29 30	98 95 92 89 87	123 119 115 112 108	149 144 139 134 129	174 168 162 156 149	230 225 219 214 209	250 244 238 232 226	270 263 257 250 244	282 275 268 261 255	301 294 287 279 272	321 313 306 298 290	341 332 324 316 308	353 345 336 327 319	373 364 355 346 336	393 383 373 364 354	412 402 392 382 372
31 32 33 34 35	84 81 78 75 73	104 100 96 92 88	124 119 114 109 104	143 137 131 125 121	203 198 193 187 182	220 214 209 203 197	238 231 225 219 212	248 241 235 228 221	265 258 251 243 236	282 275 267 259 251	299 291 283 274 266	310 301 293 284 275	327 318 309 300 291	344 335 325 315 306	361 351 341 331 320
Area, in.2	8.92	11.76	14.70	17.64	19.42	21.17	22.92	24.01	25.76	27.51	29.26	30.45	32.20	33.95	
l ₁₋₁ , in.4 r ₁₋₁ , in l ₂₋₂ , in.4 r ₂₋₂ , in.	134 3.87 197 4.70	158 3.66 241 4.53	182 3.52 284 4.39	207 3.42 323 4.28	416 4.63 369 4.36	468 4.70 398 4.33	520 4.76 426 4.31	491 4.52 442 4.29	544 4.59 470 4.27	597 4.66 499 4.26	652 4.72 527 4.24	622 4.52 541 4.22	676 4.58 570 4.21	732 4.64 598 4.20	790 4.70 627 4.19
Weight, Lbs. per Foot	39.3	49.4	59.4	69.4	65.7	71.7	77.6	81.7	87.6	93.6	99.5	103.6	109.5	115.5	121.4

Safe load values above upper zigzag lina are for ratios of l/r not over 60, those between the zigzag lines are for ratios up to 120 l/r, and those below lower zigzag line are for ratios not over 200 l/r.

SAFE LOADS IN THOUSANDS OF POUNDS

Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under, reduced for lengths over 60 radii; see Construction Specifications.

Weights do not include rivet heads or other details.

n Feet		2-10 in. Channels, 2-14 in. Plates												
Effective Length in Feet	30 lb. Channels, 14/6 in. Plates	30 lb. Channels, % in. Plates	30 lb. Channels, 18/16 in. Plates	30 lb. Channels, 7/8 in. Plates	30 lb. Channels, 15/18 in. Plates	30 lb. Channels, 1 in. Plates	35 lb. Channels, 15/19 in. Plates	35 lb. Channels, 1 in. Plates	35 lb. Channels, 14/18 in. Plates	35 lb. Channels, 11% in. Plates	35 lb. Channels, 1846 in. Plates	35 lb. Channels, 1⅓ in. Plates		
11 12 13 14 15	480 480 480 480 480	502 502 502 502 502 502	525 525 525 525 525 525	548 548 548 548 548	571 571 571 571 571 571	593 593 593 593 593	609 609 609 609 609	632 632 632 632 632	654 654 654 654 654	677 677 677 677 677	700 700 700 700 700 700	723 723 723 723 723 723		
16 17 18 19 20	480 480 480 480 480	502 502 502 502 502 502	525 525 525 525 525 525	548 548 548 548 548	571 571 571 571 571 571	593 593 593 593 593	609 609 609 609	632 632 632 632 632	654 654 654 654 654	677 677 677 677 677	700 700 700 700 700 700	723 723 723 723 723 723		
21 22 23 24 25	477 467 456 446 435	500 488 477 466 455	522 510 499 487 475	544 532 520 508 495	567 554 541 529 516	589 575 562 549 536	602 588 575 561 547	624 610 596 582 568	647 632 617 603 588	669 654 639 624 608	691 675 660 644 628	714 697 681 665 648		
26 27 28 29 30	424 414 403 392 382	444 432 421 410 399	464 452 440 429 417	483 471 459 446 434	503 490 478 465 452	522 509 496 483 469	533 520 506 492 479	553 539 525 511 496	573 559 544 529 514	593 578 563 547 532	612 596 581 565 549	632 616 599 583 567		
31 32 33 34 35	371 360 350 339 328	388 377 365 354 343	405 394 382 370 359	422 410 398 385 373	440 427 414 401 389	456 443 430 416 403	465 451 437 424 410	482 468 454 440 425	500 485 470 455 441	517 502 487 471 456	533 517 502 486 470	550 534 518 502 485		
Area,in.2	36.89	38.64	40.39	42.14	43.89	45.64	46.83	48.58	50.33	52\08	53.83	55.58		
I ₁₋₁ ,in.4 r ₁₋₁ ,in. I ₂₋₂ ,in.4 r ₂₋₂ ,in.	757 4.53 637 4.16	814 4.59 666 4.15	873 4.65 695 4.15	932 4.70 723 4.14	994 4.76 752 4.14	1056 4.81 780 4.13	1018 4.66 788 4.10	1080 4.72 816 4.10	1144 4.77 845 4.10	1209 4.82 874 4.10	1275 4.87 902 4.09	1343 4.92 931 4.09		
Weight, Lbs. per Foot	125.5	131.4	137.4	143.3	149.3	155.2	159.3	165.2	171.2	177.1	183,1	189.0		

Safe load values above heavy line are for ratios of 1/r not over 60, those below heavy line are for ratios not over $120 \, 1/r$.

SAFE LOADS IN THOUSANDS OF POUNDS

Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under, reduced for lengths over 60 radii; see Construction Specifications.

Weights do not include rivet heads or other details.

ı Feet	2-1	l2 in. (Latt		els			2-12	in. Cl	nannel	a, 2-	14 in.	Plates		
Effective Length in Feet	2012 lb. Channels, Single Lattice	25 lb. Channels, Single Lattice	30 lb. Channels, Single Lattice	35 lb. Channels, Single Lattice	20½1b. Channels, ¾ in. Plates	20½ lb. Channele, 74σ in. Plates	20½ lh. Channels, ½ in. Plates	20½1b. Channels, % in. Plates	20½ lb. Channels, 58 in. Plates	25 Ih. Channels, % in. Plates	25 lb. Channels, 5% in. Plates	25 lh. Channele, 11/16 in. Plates	25 lb. Channels, ¾ in. Plates	25 ib. Channels, 13/16 in. Plates
11 12 13 14 15	157 157 157 157 157	191 191 191 191 191	229 229 229 229 229	268 268 268 268 268	293 293 293 293 293	316 316 316 316 316 316	339 339 339 339 339	362 362 362 362 362	384 384 384 384 384	396 396 396 396 396	419 419 419 419 419	441 441 441 441 441	464 464 464 464 464	487 487 487 487 487
16 17 18 19 20	157 157 157 157 157	191 191 191 191 191	229 229 229 229 229 229	268 268 268 268 268	293 293 293 293 293	316 316 316 316 316	339 339 339 339 339	362 362 362 362 362	384 384 384 384 384	396 396 396 396 396	419 419 419 419 419	441 441 441 441 441	464 464 464 464 464	487 487 487 487 487
21 22	157	191 190	$\frac{229}{225}$	265	293	316 312	339	362	384	396	418	440	463	485
23	157 155	186	220	259 253	290 283		334 326	355 347	377 369	387 378	409 400	431 421	453 443	474 464
24 25	152 149	182 178	$\frac{215}{210}$	248 242	277	305 298 291	319	339	360	370	390	411	432	453
26 27 28 29 30	146 142 139 136 133	174 170 166 162 158	205 200 195 190 185	236 230 224 218 212	271 265 258 252 246 239	284 277 271 264 257	304 297 290 282 275	332 324 316 308 300 292	352 344 335 327 318 310	352 344 335 326 318	381 372 363 354 344 335	392 382 372 362 353	412 402 391 381 371	442 431 421 410 399 388
$\frac{31}{32}$	129	154	180	206	233	250	268	284 277	302	309	326	343	361	377
32 33	$ ^{126}_{123} $	150 146	175 170	$\frac{200}{194}$	$\frac{227}{220}$	$\frac{243}{236}$	260 253	277 269	293 285	300 291	317 307	333 323	350 340	367 356
34 35	120 117	142 138	165 160	188 182	214 208	230 223	246 238	261 253	277 268	283 274	298 289	314 304	330 320	345 334
Area, in.2	12.06	14.70	17.64	20.58	22.56	24.31	26.06	27.81	29.56	30.45	32.20	33.95	35.70	37.45
I 1-1, in 4	256	288	323	359	658	730	803	878 5.62	954	910	986	1063	1142	1223
r ₁₋₁ , in. I ₂₋₂ , in.4	4.61 244	4.43 279	4.28 316	4.17 351	5.40 415	5.48 444	5.55 473	5.62 501	5.68 530	5.47 537	5.53 565	5.60 594	5.66 622	5.71 651
r ₂₋₂ , in.	4.50	4.36	4.23	4.13	4.29	4.27	4.26	4.24	4.23	4.20	4.19	4.18	4.18	4.17
Waight, Libs. par Foot	50.4	l	69.4	79.4		82.7	88.6	94.6	100.5	103.6	109.5	115.5	121.4	127.4

Safe load values above zigzag line are for ratios of l/r not over 60, those below zigzag line are for ratios not over $120\,l/r$.

SAFE LOADS IN THOUSANDS OF POUNDS

Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under, reduced for lengths over 60 radii; see Construction Specifications.

Weights do not include rivet heads or other details.

n Feet					2-	12 in.	Chan	nels, 2	8-14 ir	ı, Plat	tes				
Effective Length in	30 lb. Channels,	30 lb. Channels, 1846 in. Plates	30 lb. Channels, 78 in. Plates	30 lb. Channels, 15/16 in. Plates	30 lb. Channels, 1 in. Plates	35 lb. Channels, 15/16 in. Plates	35 lb. Channels, 1 in. Plates	35 lb. Channels, 14,6 in. Plates	35 lb. Channels, 11/8 in. Plates	35 lb. Channels, 13/16 in. Plates	35 lb. Channels, 114 in. Plates	35 lb. Channels, 15/6 in. Plates	35 lb. Channels, 1% in. Plates	35 lb. Channels, 174s in. Plates	35 lb. Channels, 1½ in. Plates
11 12 13 14 15	502 502 502 502 502	525 525 525 525 525	548 548 548 548 548	571 571 571 571 571	593 593 593 593 593	609 609 609 609	632 632 632 632 632	654 654 654 654 654	677 677 677 677 677	700 700 700 700 700 700	723 723 723 723 723 723	745 745 745 745 745	768 768 768 768 768	791 791 791 791 791	814 814 814 814 814
16 17 18 19 20	502 502 502 502 502	525 525 525 525 525 525	548 548 548 548 548	571 571 571 571 571 571	593 593 593 593 593	609 609 609 609	632 632 632 632 632	654 654 654 654 654	677 677 677 677 677	700 700 700 700 700 700	723 723 723 723 723 723	745 745 745 745 745	768 768 768 768 768	791 791 791 791 791 791	814 814 814 814 814
21 22 23 24 25	498 487 476 465 453	521 509 497 486 474	543 531 518 506 494	565 553 540 527 514	588 575 561 548 535	601 587 573 559 545	623 609 594 580 566	645 631 616 601 586	668 653 637 622 607	689 674 658 642 626	712 695 679 663 646	734 717 700 684 667	757 739 722 704 687	779 761 743 725 707	802 783 765 746 728
26 27 28 29 30	442 431 420 409 397	462 451 439 427 415	482 469 457 445 432	502 489 476 463 450	522 508 495 482 468	532 518 504 490 477	552 537 523 509 494	571 557 542 527 512	591 576 561 545 530	610 594 578 563 547	630 614 597 581 564	650 633 616 599 582	670 652 635 617 600	689 672 654 636 618	709 691 672 654 635
31 32 33 34 35	386 375 364 352 341	404 392 380 368 357	420 408 396 383 371	438 425 412 399 386	455 442 428 415 402	463 449 435 421 408	480 466 452 437 423	497 483 468 453 438	515 499 484 469 453	531 515 499 483 467	548 532 515 499 482	565 548 531 515 498	583 565 548 530 513	600 582 564 546 528	617 599 580 562 543
Area, in.2	38.64	40.39		43.89							55.58		59.08		62.58
$egin{array}{l} I_{1-1}, & \text{in.}^4 \\ r_{1-1}, & \text{in.} \\ I_{2-2}, & \text{in.}^4 \\ r_{2-2}, & \text{in.} \end{array}$	1174 5.52 659 4.13	1258 5.58 688 4.13	1340 5.64 717 4.12	1424 5.70 745 4.12	1509 5.75 774 4.12	1459 5.58 779 4.08	1544 5.64 808 4.08	1630 5.69 837 4.08	1719 5.74 865 4.08	1808 5.80 894 4.07	1899 5.85 922 4.07	1992 5.89 951 4.07	980	2183 5.99 1008 4.07	2280 6.04 1037 4.07
Weight, Lbe. per Foot	131.4	137.4	143.3	149.3	155.2	159.3	165.2	171.2	177.1	183.1	189.0	195.0	200.9	206.9	212.8

Safe load values above heavy line are for ratios of 1/r not over 60, those below heavy line are for ratios not over $120 \, l/r$.

SAFE LOADS IN THOUSANDS OF POUNDS

Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under, reduced for lengths over 60 radii; see Construction Specifications.

Weights do not include rivet heads or other details.

in Feet					ı. Channe	els, 2-16 i				
Effective Length in Feet	30 lb. Channels, 15/18 in. Plates	30 lb. Channels, 1 in. Plates	30 lb. Channels, 14/16 in. Plates	30 lb. Channels, 1½ in. Plates	30 lb. Channels, 1846 in. Plates	30 lb. Channels, 1¼ in. Plates	35 lb. Channels, 1846 in. Plates	35 lb. Channels, 1½ in. Plates	35 lb. Channels, 15/16 in. Plates	35 lb. Channels, 1% in. Plates
11 12 13 14 15	619 619 619 619 619	645 645 645 645 645	671 671 671 671 671 671	697 697 697 697 697	723 723 723 723 723 723	749 749 749 749 749	762 762 762 762 762 762	788 788 788 788 788 788	814 814 814 814 814	840 840 840 840 840
16 17 18 19 20	619 619 619 619 619	645 645 645 645 645	671 671 671 671 671	697 697 697 697 697	723 723 723 723 723 723	749 749 749 749 749	762 762 762 762 762 762	788 788 788 788 788 788	814 814 814 814 814	840 840 840 840 840
21 22 23 24 25	619 619 619 619	645 645 645 645	671 671 671 671 660	697 697 697 697	723 723 723 723 711	749 749 749 749 736	762 762 762 762 747	788 788 788 787 772	814 814 814 813 797	840 840 840 838 822
26 27 28 29 30	599 · 587 575 563 552	623 611 599 586 574	648 635 622 609 596	673 659 646 633 619	697 683 669 655 642	721 707 693 678 664	732 718 703 688 674	756 741 726 711 696	781 766 750 734 719	805 789 773 757 741
31 32 33 34 35	540 528 516 504 493	562 549 537 525 512	583 571 558 545 532	606 593 579 566 553	628 614 600 586 572	649 635 621 606 592	659 644 630 615 600	681 665 650 635 620	703 687 672 656 640	724 708 692 676 660
Area, in.2	47.64	49.64	51.64	53.64	55.64	57.64	58.58	60.58	62.58	64.58
I_{1-1} , in.4 r_{1-1} , in. I_{2-2} , in.4 r_{2-2} , in.	1581 5.76 1121 4.85	1678 5.81 1164 4.84	1777 5.87 1206 4.83	1878 5.92 1249 4.83	1980 5.97 1292 4.82	2084 6.01 1334 4.81	2015 5.87 1349 4.80	2119 5.91 1392 4.79	2225 5.96 1434 4.79	2333 6.01 1477 4.78
Weight, Lbe. per Foot	162.0	168.8	175.6	182.4	189.2	196.0	199.2	206.0	212.8	219.6

Safe load values above zigzag line are for ratios of 1/r not over 60, those below zigzag line are for ratios not over 120 1/r.

SAFE LOADS IN THOUSANDS OF POUNDS

Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under, reduced for lengths over 60 radii; see Construction Specifications.

Weights do not include rivet heads or other details.

1 Feet				2-12 in. (Channels,	2-16 i	n. Plates		-	
Effective Length in Feet	35 lb. Channels,	35 lb. Channels,	35 lb. Channels,	35 lb. Channels,	35 lb. Channels,	35 lb. Channels,				
	1740 in. Plates	1½ in. Plates	1% in. Plates	15% in. Plates	1 ¹ ½ ₀ in. Plates	134 in. Plates	118/16 in. Plates	178 in. Plates	115/16 in. Plates	2 in. Plates
11	866	892	918	944	970	996	1022	1048	1074	1100
12	866	892	918	944	970	996	1022	1048	1074	1100
13	866	892	918	944	970	996	1022	1048	1074	1100
14	866	892	918	944	970	996	1022	1048	1074	1100
15	866	892	918	944	970	996	1022	1048	1074	1100
16 17 18 19 20	866 866 866 866 866	892 892 892 892 892	918 918 918 918 918	944 944 944 944 944	970 970 970 970 970	996 996 996 996 996	1022 1022 1022 1022 1022 1022	1048 1048 1048 1048 1048	1074 1074 1074 1074 1074 1074	1100 1100 1100 1100 1100
21	866	892	918	944	970	996	$\begin{array}{c} 1022 \\ 1022 \\ 1022 \end{array}$	1048	1074	1100
22	866	892	918	944	970	996		1048	1074	1100
23	866	892	918	944	970	996		1048	1074	1100
24 25	864 847	889 872	915 897	$940 \\ 922$	966 9 4 7	992 972	1017 997	$1042 \\ 1022$	1068 1047	$1093 \\ 1072$
26	830	854	879	903	928	953	977	1002	1027	1050
27	814	837	862	885	909	934	957	981	1006	1029
28	797	820	844	867	891	914	937	961	985	1007
29	780	803	826	848	872	895	917	941	964	986
30	764	785	808	830	853	876	897	920	943	965
31	747	768	791	812	834	857	878	900	922	943
32	730	751	773	794	815	837	858	880	901	922
33	713	734	755	775	797	818	838	859	881	900
34	697	716	737	757	778	799	818	839	860	879
35	680	699	720	739	759	779	798	819	839	858
Ārea, in.2	66.58	68.58	70.58	72.58	74.58	76.58	78.58	80.58	82.58	84.58
l ₁₋₁ , in 4	2443	2555	2668	2783	2901	3020	3141	3264	3389	3516
r ₁₋₁ , in.	6.06	6.10	6.15	6.19	6.24	6.28	6.32	6.36	6.41	6.45
l ₂₋₂ , in.4	1520	1562	1605	1648	1690	1733	1776	1818	1861	1904
r ₂₋₂ , in.	4.78	4.77	4.77	4.76	4.76	4.76	4.75	4.75	4.75	4.74
Waight, Lbs. par Foot	226.4	233.2	240.0	246.8	253.6	260.4	267.2	274.0	280.8	287.6

Safe load values above heavy line are for ratios of 1/r not over 60, those below heavy line are for ratios not over 120 1/r.

SAFE LOADS IN THOUSANDS OF POUNDS

Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under, reduced for lengths over 60 radii; see Construction Specifications.

Weights do not include rivet heads or other details.

n Feet	2-	15 in. Lat	Chann ticed	ele			2-15	in. Ch	annels	, 2-10	in. P	lates		
Effective Length in	33 lb. Channels, Single Lattice	35 lb. Channels, Single Lattice	40 lb. Channels, Single Lattice	45 lb. Channels, Single Lattice	33 lb. Channels, 3/8 in. Plates	33 lb. Channels, 740 in. Plates	33 lb. Chánnels, ½ in. Plates	33 lb. Channels, %16 in. Plates	33 lb. Channels, 5% in. Plates	35 lb. Channels, 5% in. Plates	35 lb. Channels, 11/16 in. Plates	35 lb. Channels, % in. Plates	35 lb. Channels,	35 lb. Channels, 7/8 in. Plates
11 12 13 14 15	257 257 257 257 257 257	268 268 268 268 268	306 306 306 306 306	344 344 344 344 344	413 413 413 413 413	439 439 439 439 439	465 465 465 465 465	491 491 491 491 491	517 517 517 517 517 517	528 528 528 528 528 528	554 554 554 554 554 554	580 580 580 580 580 580	606 606 606 606 606	632 632 632 632 632
16 17 18 19 20	257 257 257 257 257 257	268 268 268 268 268	306 306 306 306 306	344 344 344 344 344	413 413 413 413 413	439 439 439 439 439	465 465 465 465 465	491 491 491 491 491	517 517 517 517 517	528 528 528 528 528 528	554 554 554 554 554	580 580 580 580 580	606 606 606 606 606	632 632 632 632
21 22 23 24	257 257 257 257	268 268 268 268	306 306 306 306	344 344 343	413 413 413 413	439 439 439 439	465 465 465 465	491 491 491 491	517 517 517 517	528 528 528 527	554 554 554 552	580 580 580 578	606 606 604	632 632 632 629
25	257	266	301	336	407	432	457	482	507	517	542	567	592	617
26 27 28 29 30 31 32	252 247 243 238 238 233 228 224 219	261 256 251 246 241 236 231 226	295 289 284 278 272 266 260 254	329 322 316 309 302 296 289 282	400 392 384 376 368 360 352 345	424 415 407 399 390 382 373 365	448 440 431 422 413 404 395 386	473 464 454 445 435 426 416 407	498 488 478 468 458 448 438 428	507 497 486 476 466 456 446 436	531 520 510 499 488 478 467 456	555 544 533 522 511 499 488 477	580 569 557 545 533 522 510 498	605 592 580 568 556 543 531 519
34 35	214 209	221 216	249 243	276 269	337 329	357 348	377 368	398 388	418 408	425 415	446 435	466 454	487 475	507 494
Area, in.2	19.80	20.58	23.52	26.48	31.80	33.80	35.80	37.80	39.80	40.58	42.58	44.58	46.58	48.58
I_{1-1} , in.4 r_{1-1} , in. I_{2-2} , in.4 r_{2-2} , in.	625 5.62 491 4.98	640 5.58 504 4.95	695 5.43 552 4.84	750 5.32 597 4.75	1334 6.48 747 4.85	1459 6.67 789 4.83	1586 6.66 832 4.82	1715 6.74 875 4.81	1847 6.81 917 4.80	1861 6.77 930 4.79	1994 6.84 973 4.78	2129 6.91 1016 4.77	2267 6.98 1058 4.77	2406 7.04 1101 4.76
Weight, Lbs. per Foot	80.2	84.2	92.1	102.2	106.8	113.6	120.4	127.2	134.0	138.0	144.8	151.6	158.4	165.2

Safe load values above zigzag line are for ratios of l/r not over 60, those below zigzag line are for ratioe not over 120 l/r.

for ratios not over 120 l/r.

15 INCH CHANNEL COLUMNS—Continued

SAFE LOADS IN THOUSANDS OF POUNDS

Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under, reduced for lengths over 60 radii; see Construction Specifications.

Weights do not include rivet heads or other details.

n Feet					2-15	in. C	nannel	s, 2-	16 in.]	Plates				
Effective Length in Feet	40 lb. Channels,	40 lb. Channels, 78 in. Plates	40 lb. Channels,	40 lb. Channels, 1 in. Plates	40 lb. Channels, 14/16 in. Plates	40 lb. Channels, 11/6 in. Plates	45 lb. Channels, 145 in. Plates	45 lb. Channels, 11/8 in. Plates	45 lb. Channels, 1% in. Plates	45 lb. Channels 11/4 in. Plates	45 lb. Channels, 15/16 in. Plates	45 lb. Channels, 1% in. Plates	45 lb. Channels, I716 in. Plates	45 lb. Channels, 142 in. Plates
11 . 12 13 14 15	644 644 644 644 644	670 670 670 670 670	696 696 696 696	722 722 722 722 722 722	748 748 748 748 748	774 774 774 774 774 774	786 786 786 786 786	812 812 812 812 812	838 838 838 838 838	864 864 864 864	890 890 890 890 890	916 916 916 916 916	942 942 942 942 942	968 968 968 968 968
16 17 18 19 20	644 644 644 644	670 670 670 670 670	696 696 696 696	722 722 722 722 722 722	748 748 748 748 748	774 774 774 774 774	786 786 786 786 786	812 812 812 812 812	838 838 838 838 838	864 864 864 864	890 890 890 890 890	916 916 916 916 916	942 942 942 942 942	968 968 968 968 968
21 22 23 24 25	644 644 644 639 627	670 670 670 665 651	696 696 690 677	$\begin{array}{r} 722 \\ 722 \\ 722 \\ 715 \\ 701 \end{array}$	748 748 748 741 727	774 774 774 767 752	786 786 786 777 761	812 812 812 802 786	838 838 838 827 811	864 864 864 853 836	890 890 890 879 861	916 916 916 904 886	942 942 942 930 912	968 968 968 956 937
26 27 28 29 30	614 602 589 577 564	638 625 612 599 586	663 649 636 622 609	687 673 659 645 631	712 697 683 668 653	737 721 706 691 676	746 730 715 699 684	770 754 738 722 705	794 778 761 745 728	819 802 785 768 751	844 826 808 791 773	868 850 832 814 796	893 874 856 837 818	918 898 879 860 841
31 32 33 34 35	551 539 526 514 501	573 560 547 534 520	595 581 568 554 541	616 602 588 574 560	639 624 609 595 580	661 646 630 615 600	668 653 637 622 606	689 673 657 641 625	711 695 678 662 645	734 716 699 682 665	756 738 720 703 685	778 760 741 723 705	800 781 763 744 725	822 803 784 764 745
Area, 1n2	49.52	51.52	53.52	55.52	57.52	59.52	60.48	62.48	64.48	66.48	68.48	70.48	72.48	74.48
l ₁₋₁ , in.4 r ₁₋₁ , in. I ₂₋₂ , in.4 r ₂₋₂ , in.	2322 6.85 1106 4.73	2461 6.91 1149 4.72	2602 6.97 1192 4.72	2746 7.03 1234 4.71	2891 7.09 1277 4.71	3039 7.15 1320 4.71	2946 6.98 1322 4.68	3094 7.04 1365 4.67	3244 7.09 1408 4.67	3396 7.15 1450 4.67	3550 7.20 1493 4.67	3707 7.25 1536 4.67	3865 7.30 1578 4.67	4026 7.35 1621 4.67
Weight, Lbs. per Foot	168.4 oad va		182.0		195.6			212.4		226.0	232.8	239.6	246.4	253.2

SAFE LOADS IN THOUSANDS OF POUNDS

Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under, reduced for lengths over 60 radii; see Construction Specifications.

Weights do not include rivet heads or other details.

																
n Feet					2	-15 in	. Cha	nnels,	2-1	18 in.	Plate	3				
Effective Length in	33 lb. Channels, 3% in. Plates	33 lb. Channels, 7/16 in. Plates	33 lb. Channels, ½ in. Plates	33 lb. Channels, %10 in. Plates	33 lb. Channels, 5% in. Plates	35 lb. Channels, 5% in. Plates	35 lb. Channels, 11/10 in. Plates	35 lb. Channels, 1 in. Plates	35 lb. Channels, 18/10 in. Plates	35 lb. Channels, 7% in. Plates	40 lb. Channels, 18/16 in. Plates	40 lb. Channels, 78 in. Plates	40 lb. Channels, 15/16 in. Plates	40 lb. Channels, 1 in. Plates	40 lb. Channels, 1410 in. Plates	40 lb. Channels, 11% in. Plates
11 12 13 14 15	433 433 433 433 433	462 462 462	491 491 491 491 491	521 521 521 521 521 521	550 550 550 550 550	560 560 560 560 560	589 589 589	619 619 619 619	648 648 648	677 677 677	686 686 686 686	715 715 715	745 745 745 745 745	774 774 774 774 774	803 803 803	832
16 17 18 19 20	433 433 433 433	$\frac{462}{462}$	491 491 491 491 491	521 521 521 521 521 521	550 550 550 550 550	560 560 560 560 560	589 589 589	619 619 619 619 619	648 648 648	677 677	686 686 686 686	715 715 715 715 715	745 745 745 745 745	774 774 774 774 774	803 803 803	832 832 832
21 22 23 24 25	433 433 433 433 433	462 462 462	491 491 491 491 491	521 521 521 521 521 521	550 550 550 550 550	560 560 560 560	589 589 589	619 619 619 619	648 648	677 677 677	686 686 686 686	715 715 715 715 715 715	745 745 745 745 745	774 774 774 774 774	803 803 803	832 832 832
26 27 28 29 30	433 433 433 428 421	462 462 462 456 449	491 491 491 484 476	520	550 550 549 539 530	560 560 558 549 540	589 589 586 577 567	619 619 615 605 594		677 677 671 660 649	686 686 680 668 657	715 715 708 696 684	745 745 736 723 711	774 774 764 751 738	803 803 793 779 766	832 832 821 807 793
31 32 33 34 35	414 407 400 393 386	$\frac{433}{426}$ $\frac{418}{418}$	468 459 451 443 435	494 486 477 469 460	521 512 503 494 485	530 521 512 502 493	557 547 537 527 518	584 574 563 553 543	610 599 589 578 567	626	645 634 622 610 599	672 660 648 636 624	698 685 673 660 648	725 712 698 685 672	752 738 725 711 698	779 764 750 736 722
Area, in.2	33.30	35.55	37.80	40.05	42.30	43.08	45.33	47.58	49.83	52.08	52.77	55.02	57.27	59.52	61.77	64.02
I ₁₋₁ , in.4 r ₁₋₁ , in I ₂₋₂ , in.4 r ₂₋₂ , in.	1423 6.54 1069 5.67	6.63 1130	1707 6.72 1190 5.61	1852 6.80 1251 5.59	1312	2014 6.84 1332 5.56	6.91 1393	2316 6.98 1453 5.53	2470 7.04 1514 5.51	2627 7.10 1575 5.50	2525 6.92 1589 5.49	2682 6.98 1649 5.48	2841 7.04 1710 5.46	3002 7.10 1771 5.45	3166 7.16 1832 5.45	7.21 1892
Weight, Lbe. per Foot	111.9	119.6	127.2	134.9	142.5	146.5	154.2	161.8	169.5	177.1	179.5	187.1	194.8	202.4	210.1	217.7

Safe load values above zigzag line are for ratios of l/r not over 60, those below zigzag line are for ratios not over 120 l/r.

SAFE LOADS IN THOUSANDS OF POUNDS

Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under, reduced for lengths over 60 radii; see Construction Specifications.

Weights do not include rivet heads or other details.

n Feet					2-1	5 in. (hanne	ls, 2-1	8 in. F	lates				
Effective Length in Feet	45 lb. Channels, 14/1a in. Plates	45 lb. Channels, 11% in. Plates	45 lb. Channels, 1%19 in. Plates	45 lb. Channels, 1½ in. Plates	45 lb. Channels, 15/1a in. Plates	45 lb. Channels, 1% in. Plates	45 lb. Channels, 17/1g in. Plates	45 lb. Channels, 1½ in. Plates	45 lb. Channels, 19/18 in. Plates	45 lb. Channels, 15% in. Plates	45 lb. Channels, 114 in. Plates	45 lb. Channels, 134 in. Plates	45 lb. Channels, 1% in. Plates	45 lb. Channels, 2 in. Plates
11 12 13 14 15	841 841 841 841 841	871 871 871 871 871 871	900 900 900 900 900	929 929 929 929 929	958 958 958 958 958 958	988 988 988	1017 1017 1017	1046 1046 1046	1075 1075 1075 1075 1075	$1105 \\ 1105 \\ 1105$	1134 1134 1134	1163 1163 1163	$1222 \\ 1222 \\ 1222$	1280 1280 1280 1280 1280 1280
16 17 18 19 20	841 841 841 841 841	871 871 871 871 871	900 900 900 900 900	929 929 929 929 929	958 958 958 958 958 958	988 988 988	1017 1017	1046	1075 1075	$\frac{1105}{1105}$	1134 1134 1134 1134 1134	$\frac{1163}{1163}$	1222	$\begin{array}{c} 1280 \\ 1280 \\ 1280 \\ 1280 \\ 1280 \\ 1280 \end{array}$
21 22 23 24 25	841 841 841 841 841	871 871 871 871 871	900 900 900 900	929 929 929 929 929	958 958 958 958 958	988 988 988	1017 1017 1017	1046 1046 1046	1075 1075 1075 1075 1075	$1105 \\ 1105 \\ 1105$	$1134 \\ 1134 \\ 1134$	1163 1163 1163	$1222 \\ 1222 \\ 1222$	1280 1280 1280 1280 1280 1280
26	841	871	900	929	958			1046			1134			1280
27 28	841 829	871 857	900 885	929 913	958 942	987 970			1073 1054			1159 1139		$1275 \\ 1253$
29 30	814 800	843 828	870 855	897 882	926 909	953 936	980 963	1009	1036	1064	1092	1119	1174 1153	1231
31 32 33 34 35	786 771 757 743 728	813 798 783 768 754	839 824 809 793 778	866 850 834 818 802	893 877 860 844 827	919 902 885 868 852	945 928 911 893 876	973 955 937 919 901	999 980 962 943 925	1026 1007 988 969 950		1059 1039 1019	1132 1111 1090 1069 1048	1120
Area, in.2	64.73	66.98	69.23	71.48	73.73	75.98	78.23	80.48	82.73			89.48	93.98	98.48
I ₁₋₁ ,in. ⁴ r ₁₋₁ ,in. I ₂₋₂ ,in. ⁴ r ₂₋₂ ,in.	3221 7.05 1903 5.42	3387 7.11 1964 5.42	3556 7.17 2025 5.41	7.22	7.27 2146	7.32	7.37 2268	7.42	4619 7.47 2389 5.37	4805 7.52 2450 5.37	7.57 2511		7.70 2693	5976 7.79 2815 5.35
Weight, Lbs. per Foot	220.1	227.7	235.4	243.0	250.0	258.3	266.0	273.6	281.3	288.9	ا 	304.2	319.5	334.8

Safe load values above zigzag line are for ratios of 1/r not over 60, those below zigzag line are for ratios not over 120 1/r.

15 INCH CHANNEL COLUMNS-Concluded

SAFE LOADS IN THOUSANDS OF POUNDS

Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under, reduced for lengths over 60 radii; see Construction Specifications.

Weights do not include rivet heads or other details.

	2-15	in. Cha	nnels				0.15	n. 45 l	- Char	an ala			
Feet	35	lb.	45 lb.				2-151	.D., 40 II	о. спа	шев			
Effective Length in]	Flange Plates Web Plates	Flange Plates 16 Web Plates	Flange Plates 6 Web Plates	% Flange Plates Web Plates	Flange Plates Web Plates	% Flange Plates Web Plates	14 Flange Plates Web Plates	% Flange Plates Web Plates	1/2 Flange Plates 8 Web Plates	% Flange Plates Web Plates	34 Flange Plates 8 Web Plates	% Flange Plates 8 Web Plates	Flange Plates 8 Web Plates
Effe	2-18 x 2 2-14 x 3%	2-18 x 2 2-14 x 9/16	2-18 x 2 2-14 x %16	2-20 x 17/8 2-14 x 5/8	2-20 x 2 2-14 x 5%	2-20 x 2 1/8 2-14 x 5/8	2-20 x 214 2-14 x 58	2-20 x 2% 2-14 x 5%	2-20 x 2½ I 2-14 x 5%	2-20 x 25%] 2-14 x 5%	2-20 x 234] 2-14 x 3/8	$2-20 \times 2\%$ 2-14 × 5%	2-20 x 3 2-14 x 5/8
11 12 13 14 15	1340 1340 1340 1340 1340	1408 1408	$1485 \\ 1485$	1547 1547 1547 1547 1547	1612 1612 1612 1612 1612	1677 1677 1677 1677 1677	$1742 \\ 1742$	1807 1807 1807 1807 1807	1872 1872 1872 1872 1872	1937	2002 2002 2002 2002 2002	2067 2067 2067 2067 2067	2132 2132 2132 2132 2132
16 17 18 19 20	1340 1340 1340 1340 1340	1408 1408 1408 1408 1408	1485	1547 1547 1547	1612 1612 1612 1612 1612	1677 1677	1742	1807 1807 1807 1807 1807	1872 1872 1872 1872 1872	1937 1937 1937	2002 2002 2002 2002 2002	2067 2067 2067 2067 2067	2132 2132 2132 2132 2132
21 22 23 24 25	1340 1340 1340 1340 1340	1408 1408 1408 1408 1408	1485 1485 1485	$ 1547 \\ 1547$	1612 1612 1612 1612 1612	$1677 \\ 1677$	$1742 \\ 1742 \\ 1742$	1807 1807 1807 1807 1807	1872 1872 1872 1872 1872	1937 1937 1937 1937 1937	2002 2002 2002 2002 2002 2002	2067 2067 2067 2067 2067	2132 2132 2132 2132 2132
26 27	1340 1331	1408 1394	1465	1547 1547	1612	1677	1742	1807 1807	1872	1937 1937	$\begin{array}{c} 2002 \\ 2002 \end{array}$	2067 2067	2132 2132
27 28 29	$1307 \\ 1284$	1369 1344		1547 1547	1612		$1742 \\ 1742$	1807 1807	$\frac{1872}{1872}$	$\frac{1937}{1937}$	$\frac{2002}{2002}$	2067 2067	$\frac{2132}{2132}$
30	1261			1543			1735	1798	1863		1991	2054	2118
31 32 33 34 35	1238 1214 1191 1168 1145	1295 1270 1246 1221 1197	1335 1309 1283	1495 1471 1447	1582 1557 1532 1507 1482	1618 1592 1566	1708 1681 1654 1627 1600	$1742 \\ 1714 \\ 1686$	1834 1805 1776 1747 1718	1896 1866 1836 1806 1775	1960 1929 1897 1866 1835	2022 1989 1957 1925 1893	2085 2052 2019 1985 1952
Area, in.2	103.08	108.33	114.23	118.98	123.98	128.98	133.98	138.98	143.98	148.98	153.98	158.98	163.98
I ₁₋₁ , in. ⁴ r ₁₋₁ , in. I ₂₋₂ , in. ⁴ r ₂₋₂ , in.	6037 7.65 2919 5.32	6123 7.52 3021 5.28	6233 7.39 3148 5.25	6397 7.33 4240 5.97	6843 7.43 4407 5.96	7300 7.52 4573 5.95	7769 7.61 4740 5.95	8251 7.70 4907 5.94	8744 7.79 5073 5.94	9251 7.88 5240 5.93	9770 7.97 5407 5.93	10301 8.05 5573 5.92	10846 8.13 5740 5.92
Weight, Lbs. psr Foot	350.5	368.4	388.4	404.5	421.5	438.5	455.5	472.5	489.5	506.5	523.5	540.5	557.5

PLATE AND ANGLE COLUMNS

SAFE LOADS IN THOUSANDS OF POUNDS

Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under, reduced for lengths over 60 radii; see Construction Specifications.

Weights do not include rivet heads or other details.

	Web	Dloso	6-1/	11 1	17 - L TO		11	11				11		
i ^g et			6 x 1/4	. '	Veb Pl	ate 8 x		-11	eb Pla	te 8 x	%16	Web		8 x %
Effective Length in Feet	2 x 1/4	2 x 1/4	x 2½ x 1⁄4	x 2½ x ¼	x 21/2 x 5/16	Angles 3½ x 2½ x 1/4	4 Angles 3½ x 2½ x 5⁄16	4 Angles 31/2 x 21/2 x 5/16	Angles 31/2 x 21/2 x 3/8	3 x 5/16	3 x %	3 x 3/8	3 x7/16	3 x ½
15	1 × 1	₩ ₩	₩ ₩	83 M	₩ M	\2×2	N Z	X	Z X	4 x	H	×	H	M
ive	83	1				38.33	333	33,3	333	1	4	4	4	4.
₩ ₩	4 Angles 21/2 x	Angles	4 Angles	Angles	Angles	j	Light	lg l	lag.	4 Angles				
	4	1 4	4	4	4	4	4	4	4	4	4	4	4	4.4
6	69	81	88	94	110	101	119	125	142	141	161	168	188	208
7 8	63 56	78 72	82 76	86 79	103 95	101	119	$\frac{125}{120}$	142 138	141 141	161	168	188	208
	49	66	69	72	87	89	107	1120	130	136	161 158	168 163	188 185	208
$\frac{9}{10}$	43	60	63	65	78	83	100	104	121	128	149	154	175	196
11	38	54	56	57	70	76	92	96	112	121	140	145	165	185
12	*35	49	50	50	62	70	85	89	104	113	131	136	155	174
13 14	32 28	43	45 42	47 43	56 52	63 57	78 70	81 73	95 86	105 97	123 114	127 118	145 135	163 152
15	25	37	39	39	48	52	63	66	77	89	105	109	124	141
16	22	34	35	36	44	49	60	62	73	81	97	100	114	130
17	18	32	32	32	40	46	56	58	68	75	88	90	104	120
18 19		29 26	29 26	28 25	36 32	43 39	52 49	54 50	64 60	71 67	83 79	86	98 93	110
20		23	22	20	28	36	45	47	55	63	74	81 77	88	105 100
21 22 23		20		ļ		33	41	43	51	59	76	72 68	83 78	94
22 23						30 27	38 34	39 35	47 42	55 51	66 61	68	78	89 83
24 25						23	30	31	38	48	61 57	59	73 68	83 78 72
				Ì					34	44	53	54	63	
26 27 28										40 36	48 44	49 45	.58 53	67 62
28										•	39	40	48	56
29 30]]											51
Area, in.2	5.74	6.26	6.74	7.24	8.48	7.76	9.12	9.62	10.94	10.86	12.42	12.92	14.48	16.00
I ₁₋₁ , in.4	34.3	39 1	42.6	81.2	96.9	90.1	107	110	127	122	141	143	161	178
r ₁₋₁ , in,	2.45	2.50	2.51 10.3	3.35 10.3	3.38 12.9	3.41 16.0	3.43 20.2	3.38	3.40 24.9	3.35 30.3	3.36 36.3	3.33 37.2	3.34 43.5	3.33 50.2
I ₂₋₂ , in.4 r ₂₋₂ , in.	6.2 1.04	10.3 1.28	1.24	1.19	1.23	1.44	1.49	1.47	1.51	1.67	1.71	1.70	1.73	1.77
Weight,				24.6	20.0	50.4	01.0	20.0	07.0	27.0	40.5		40.	
Lbs. per Foot	19.6	21.5	23.1	24.8	29.2	26.4	31.2	32.9	37.3	37.3	42.5	44.2	49.4	54.6
								- 1:		-				

Safe load values above and to right of upper zigzag line are for ratios of l/r not over 60, those between the zigzag lines are for ratioe up to 120 l/r, and those below lower zigzag line are for ratios not over 2001/r.

SAFE LOADS IN THOUSANDS OF POUNDS

Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under, reduced for lengths over 60 radii; see Construction Specifications.

Weights do not include rivet heads or other

details

											_						
eet		b Pl 0 x ½			b Pla		V	W	eb P	ate 1	0 x %				eb Pla 0 x 3		Web Pl. 10x%
Effective Length in Feet	3 x21/2x 1/4	Angles 3½x2½x ¼	31/2x21/2x5/16	342x242x516	4 x 3 x5/16	4 x 3 x %	4 x 3 x %	4 x 3 x7/16	5 x3½x %	5 x31/2x7/16	6 x 4 x %	6 x 4 x7/16	6 x 4 x 1/2	6 x 4 x 1/2	6 x 4 x ⁹ / ₁₆	6 x 4 x 5/8	6 x 4 x 5/8
Effectiv	4 Angles	4 Angles	4 Angles	4 Angles	4 Angles	4 Angles	4 Angles	4 Angles	4 Angles	4 Angles	4 Angles	4 Angles	4 Angles	4 Angles	4 Angles	4 Angles	4 Angles
6 7 8 9 10	91	107 100 93	$119 \\ 111$	$\frac{133}{125}$	$\frac{149}{142}$	$\frac{170}{164}$	178 170	198 198	207 207 207	232 232 232 232 232 232	236 236 236	266 266 266 266 266	296 296 296	312 312 312 312 312	341 341 341 341 341	370 370 370 370 370	386 386 386 386 386
11 12 13 14 15	58 52 48 44 40	79 71 64 57 54	95 87 79 71 65	99 91 82 73 68	116 108	117	$\frac{140}{130}$	160 149 138	194 185 175	220	236 235 226	$\frac{266}{257}$	296 296 288	$\begin{array}{c} 312 \\ 312 \\ 312 \\ \hline 302 \\ 291 \\ \end{array}$	$\frac{341}{333}$	370	386 386 386 378 365
16 17 18 19 20	36 32 28 24	50 47 43 40 36	61 57 53 49 45	64 60 55 51 47	82 77 73 69 64	98 90 85 81 76	93 88 83 78	106 101 95		150	$201 \\ 192 \\ 184$	$\frac{229}{220}$ $\frac{210}{210}$	$\frac{257}{247}$	280 269 258 247 236	297	299	351 338 325 312 298
21 22 23 24 25		33 29 2 5	41 37 34 30	42 38 34	60 56 51 47 43	71 67 62 57 52	73 68 63 58 53	79 74 68	98	$\frac{123}{118}$	158 150 141	$182 \\ 172 \\ 163$	216 206 195 185 175	$214 \\ 203 \\ 192$	$\frac{238}{226}$	249	285 272 258 245 232
26 27 28 29 30					39 34	48 43	48 43		89 84 80 75 71	98 93 88	$121 \\ 117 \\ 113$	139	164 157 152 146 141	164 158	181 175 169	192	218 207 200 193 187
Årea, in.2	7.74	8.26	9.62	10.25	11.49	13.05	13.67	15.23	15.95	17.87	18.19	20.47	22.75	24.00	26.24	28.44	29.69
I ₁₋₁ ,in. ⁴ r ₁₋₁ ,in. I ₂₋₂ ,in. ⁴ r ₂₋₂ ,in.	4.16 10.3	4,23	4.28 20.2	181 4,20 20,7 1,42	201 4.18 30.3 1.62	232 4.22 36.3 1.67	237 4.17 37.2 1.65	267 4.19 43.5 1.69	279 4.18 70.6 2.10	315 4,20 82,3 2,15	319 4,19 119 2,56	361 4.20 139 2.61	401 4.20 160 2.65	412 4.14 165 2.62	451 4.15 186 2.66	489 4.15 206 2.69	500 4.10 213 2.68
Weight, Lbs. per Foot	26.5	28,1	32.9	35.0	39.4	44.6	46.8	52.0	54.4	60.8	62.0	70.0	77.6	81.8	89.4	97.0	101.3

Safe load values above and to right of upper zigzag line are for ratios of 1/r not over 60, those between the zigzag lines are for ratios up to $120 \ l/r$, and those below lower zigzag line are for ratios not over $200 \ l/r$.

SAFE LOADS IN THOUSANDS OF POUNDS

Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under, reduced for lengths over 60 radii; see Construction Specifications.

Weights do not include rivet heads or other details.

																		
jeet.		eb Pl 2 x ½			b Pl. ¤⁵∕1e		Web	Pla	te 12	x 8/8		W	eb F	late	12 x	1/2		Plate 12x ‡
Effective Length in Feet	74	31/2x21/2x5/10	x ⁶ / ₁₆	x6/18	%	%	%	x31/2x7/16	122	x7/16	72	72	81/6x	2%	17/18	%	%	18
ng th	72 X	17/2×	3 x	3 3	. K	3 X	x3½x	17%	x3½x	4- X	4 x	4 x	A.	4 ×	4 X	4 x	4 x	4 ×
ទី	7×2	×2.	4 x	x 7	A X	4 x	5 x3	5 x3	5 x3	¥ 9	¥ 9	y 9	y 9	¥ 9	, y	y 9	x 9	м
9Aļ	83	88		1			1	ı	-	ĺ		11	_	_	-		_	9
E E	Angles 31/5x21/5x	Angles	Angles	Angles	Angles	Angles	Angles	Angles	Angles	Angles	Angles	Angles	Angles	Angles	Angles	Angles	Angles	Angles
_ E	4 A	4 A	4 A	4 A	4 A	4 A	4 A	4 A	4 A	4 A	4 A	4 A	4 A	4 A	4 A	4 A	4 A	4 A)
6	114	132	148	157	178	187	217	242	266	276	305	325	354	383	411	439	458	478
7	112	132	148	157	178	187	217	242	266	276	305	325	354	383	411	439	458	
8 9																	458 458	478 478
10	89	106	131	138	159	167	217	242	266	276	305	325	354	383	411	439	458	478
11	81	98	123	129	149	156	210	237	264	276	305	325	354	383	411	439	458	478
12 13	73 65											325 323					458	478
14	59											323 312					$\frac{458}{451}$	$\frac{478}{469}$
15	55																435	
16	52	63	80	84	99	102	162	184	206	244	274	288	317	346	375	403	419	436
17 18	48	58	76 71	79 75	92	96	152	173	195	234	263	$\frac{277}{265}$	305	333	361	388	404	420
19	44 40	50	67	70	82	85	132	152	172	214	241	253	280	306	333	358	388 372	403 387
20	36	45	63	65	77	80	123	141	161	204	230	242	267	293	318	344	357	370
21	32	41	59	61	72	75	115	130	149	194	220	230	255	279	304	329	341	354
22 23	28	37 33	55 50	56 52	67 62	69 64	110	125	141	184 174	209 198	$\frac{218}{207}$	$\frac{242}{230}$	$\frac{266}{253}$	$\frac{290}{276}$	314	$\frac{325}{310}$	338
24		00	46	47	57	58	100	114	129	164	187	195	217	239	262	284	294	305
25			42	42		53	95	109	123	155	1170	183	204	220	248	269	278	288
26 27			38	38	47 42	48						173						
28					+12		86 81					167 162					247 239	256 248
29 30							76 71	88 82	101	132	149	156	173	189	206	223	231 223	240
	9.76	10 12	11 26	19 11	12.67	11 19		_	_			_	_	_	_		35.26	
Area, in.2		├ -	—			 			526		_	623	683	741	794	—	867	
I ₁₋₁ , in.4 r ₁₋₁ , in.	222 5.04		295 5.09	304 5.01	5.06			476 5.05	5.07	544 5.06		4.99	5.01	5.02	5.01	5.01	4.96	885 4.91
I ₂₋₂ , in.4 r ₂₋₂ , in.	16.0 1.35		29.6 1.61	30.3 1,58			70.6 2.06	82.3 2.10	94,6 2,15	139 2.56			186 2.61			249 2.72	257 2.70	266 2.69
Weight,	1,00		1,01					—			-		_	_			<u> </u>	-
Lbe. per	29.8	34.6	39.0	41.6	46.8	49.3	56.9	63.3	69.7	72.5	80.1	85.2	92.8	100.4	107.6	114.8	119.9	125.0
Foot	لبا	لب					لب		لبا	!		<u></u>	<u></u> .				لييا	<u> </u>

Safe load values above and to right of upper zigzag line are for ratios of 1/r not over 60, those between zigzag lines are for ratios up to 120 l/r, and those below lower zigzag line are for ratios not over 200 l/r.

SAFE LOADS IN THOUSANDS OF POUNDS

Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under, reduced for lengths over 60 radii; see Construction Specifications.

Weights do not include rivet heads or other

Weights do not include rivet heads or other details.

11	***	C.L. DI.	- 10 - 1	/ 1	1 11	7ab 101-4	n 19 m 1	/	Web Plate 12 x 5/8				
+	Web Plate 12 x 3/8				W	eb Plat	e 12 x 3	2	Men Liffe 15 x 2/8				
h in Feet	% 3/8 3/8	x 8/8	x 7/16	*27.72	x 1/2	x 3/2	x %16	x 2/8	× 2 %	×%.	x 2x 28	x 1 %	
nget)	4 ×	41 M	44 X	44 K	4 K	44 X	4 ×	4 ×	4 K	4 x	4 ×	x 4 14 x	
Ler	6 x 14	6 x	9										
Effective Length in	4 Angles 2 Plates	4 Angles 2 Plates											
	4.0	4.62	4.01	4.01	4.04	4.01		4.07			4.01		
11 12 13 14 15	383 383 383 383 383	428 428 428 428 428	458 458 458 458 458	487 487 487 487 487	507 507 507 507 507	553 553 553 553 553	582 582 582 582 582	610 610 610 610 610	630 630 630 630 630	675 675 675 675 675	721 721 721 721 721 721	766 766 766 766 766	
16	379	428	458	487	506	553	582	610	630	675	721	766	
17 18 19 20	368 357 346 334	419 407 395 383	447 434 421 407	475 461 447 433	491 476 461 447	542 526 510 495	569 553 536 520	596 579 562 544	613 594 576 558	663 644 625 606	714 694 674 654	763 742 721 700	
21 22 23 24 25	323 312 301 289 278	370 358 346 334 322	394 381 368 355 342	419 405 391 377 363	432 417 403 388 373	479 463 448 432 416	503 487 470 454 437	527 509 492 475 457	540 522 504 486 468	587 568 548 529 510	634 614 594 574 554	679 658 637 616 595	
26 27 28 29 30	267 256 244 233 222	310 297 285 273 261	329 316 303 290 277	349 335 321 307 293	358 344 329 314 299	401 385 369 354 338	421 404 388 371 354	440 422 405 388 370	450 431 413 395 377	491 472 453 434 415	534 514 494 474 454	574 553 532 511 490	
31	211	249	264	279	285	323	338	353	359	396	434	469	
32	203	237	250	265	272	307	321	336	341	377	414	448	
33	197	228	242	257	264	294	309	323	331	361	394	427	
34 35	191 186	221 215	235 229	250 243	257 249	287 279	301 293	315 306	322 313	351 342	381 371	409 399	
Area, in.2	29.44	32.94	35.22	37.50	39.00	42.50	44.74	46.94	48.44	51.94	55.44	58.94	
I ₁₋₁ , in. ⁴ -r ₁₋₁ , in. l ₂₋₂ , in. ⁴ r ₂₋₂ , in.	916 5.58 291 3.14	1073 5.71 348 3.25	1136 5.68 368 3.23	1197 5.65 388 3.22	1215 5.58 394 3.18	1377 5.69 451 3.26	1437 5.67 472 3.25	1495 5.64 492 3.24	1513 5.59 499 3.21	1682 5.69 556 3.27	1856 5.79 613 3.33	2037 5.88 671 3.37	
Weight, Lbs. per Foot	100.2	112.1	120.1	127.7	132.8	144.7	152.3	159.9	165.0	176.9	188.8	200.7	

Safe load values above and to right of upper zigzag line are for ratios of 1/r not over 60, those between zigzag lines are for ratios up to 120 1/r, and those below lower zigzag line are for ratios not over 200 1/r.

SAFE LOADS IN THOUSANDS OF POUNDS

Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under, reduced for lengths over 60 radii; see Construction Specifications.

Weights do not include rivet heads or other details.

٠	Web Plate 12 x 1/8									Web	Plate 1	4 x 3/8	
Effective Length in Feet	4 Angles 6 x 4 x 58 2 Plates 14 x 118	4 Angles 6 x 4 x 5/8 2 Plates 14 x 11/4	4 Angles 6 x 4 x 5% 2 Plates 14 x 1%	4 Angles 6 x 4 x 5/8 2 Plates 14 x 11/2	4 Angles 6 x 4 x 5/8 2 Plates 14 x 15/8	4 Angles 6 x 4 x 5/8 2 Plates 14 x 1%	4 Angles 6 x 4 x 5/8 2 Plates 14 x 17/8	4 Angles 6 x 4 x 5/8 2 Plates 14 x 2	4 Angles 6 x 4 x 3/8 2 Plates 14 x 3/8	4 Angles 6 x 4 x 7/16 2 Plates 14 x %	4 Angles 6 x 4 x ½ 2 Plates 14 x %	4 Angles 6 x 4 x 1/2 2 Plates 14 x 7/16	4 Angles 6 x 4 x 1/2 2 Plates 14 x 1/2
11 12 13 14 15	812 812 812 812 812 812	857 857 857 857 857	903 903 903 903 903	948 948 948 948 948	994 994 994 994 994	1039 1039 1039 1039 1039	1085 1085 1085	1130	392 392 392	422 422 422 422 422 422	452 452 452 452 452 452	474 474 474 474 474	497 497 497 497 497
16 17 18 19 20	812 812 791 769 747	857 857 840 817 794	903 903 888 864 840	948 948 937 912 887	994 994 986 960 934	1039 1039 1034 1007 980	1085 1082 1054	$\begin{array}{c} 1130 \\ 1130 \\ 1130 \\ \hline 1101 \\ 1072 \\ \end{array}$	375 363	415 403 390 377 365	444 431 417 404 390	470 456 442 428 415	497 482 468 453 439
21 22 23 24 25	725 703 681 659 637	771 748 725 702 679	817 793 769 745 721	862 837 812 787 762	908 882 856 830 805	953 926 899 872 845	998 970 942 914 886	1014 985 956	317 305	352 340 327 314 302	377 363 350 336 323	401 387 373 359 345	425 410 396 381 367
26 27 28 29 30	615 593 571 549 527	657 634 611 588 565	697 673 649 625 601	738 713 688 663 638	779 753 727 701 675	818 791 764 737 710	858 830 802 774 746	898 869 840 811 782	270 258 246 235 223	289 276 264 251 239	309 296 282 269 255	331 317 303 289 275	353 338 324 309 295
31 32 33 34 35	505 483 461 439 427	542 519 496 473 456	577 553 529 505 484	588 563 538 513	649 623 597 571 545	684 657 630 603 576	718 690 662 634 606	753 725 696 667 638		227 220 214 208 201	243 236 229 222 216	261 251 244 237 230	281 267 260 253 245
Ārea, in.2	62.44	65.94	69.44	72.94	76.44	79.94	83.44	86.94	30.19	32.47	34.75	36.50	38.25
I ₁₋₁ , in. ⁴ r ₁₋₁ , in. I ₂₋₂ , in. ⁴ r ₂₋₂ , in.	2224 5.97 728 3.41	2418 6.06 785 3.45	2618 6.14 842 3.48	2825 6.22 899 3.51	3038 6.30 956 3.54	3259 6.38 1014 3.56	3486 6.46 1071 3.58	3721 6.54 1128 3.60	1261 6.46 291 3.10	1351 6.45 311 3.09	1436 6.43 331 3.09	1539 6.49 360 3.14	1643 6.55 388 3.19
Weight, Lbs. per Foot	212.6	224.5	236.4	248.3	260.2	272.1	284.0		102.8	110.8	118.4		130.3

Safe load values above and to right of upper zigzag line are for ratios of l/r not over 60, those between zigzag lines are for ratios up to 120 l/r, and those below lower zigzag line are for ratios not over 200 l/r.

SAFE LOADS IN THOUSANDS OF POUNDS

Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under, reduced for lengths over 60 radii; see Construction Specifications.

Weights do not include rivet heads or other details.

+8	Web Plate 14 x 3/8		Web Plate 14 x 3/8 Web Plate 14 x 1/2			Web Plate 14 x 5%							
Effective Length in Feet	4 Angles 6 x 4 x ½ 2 Plates 14 x %16	4 Angles 6 x 4 x 1/2 2 Plates 14 x 5/8	4 Angles 6 x 4 x 1/5 2 Plates 14 x 5/8	4 Angles 6 x 4 x %16 2 Plates 14 x 5/8	4 Angles 6 x 4 x 5/8 2 Plates 14 x 5/8	4 Angles 6 x 4 x 5% 2 Plates 14 x 5%	4 Angles 6 x 4 x 5% 2 Plates 14 x 3%	4 Angles 6 x 4 x 56 2 Plates 14 x 76	4 Angles 6 x 4 x 5% 2 Plates 14 x 1	4 Angles 6 x 4 x 58 2 Plates 14 x 138	4 Angles 6 x 4 x $\frac{5}{8}$ 2 Plates 14 x $1\frac{5}{8}$	4 Angles 6 x 4 x 5/8 2 Plates 14 x 19/8	
11 12 13 14 15	520 520 520 520 520 520	543 543 543 543 543	566 566 566 566	595 595 595 595 595	623 623 623 623 623	646 646 646 646 646	691 691 691 691 691	737 737 737 737 737 737	782 782 782 782 782 782	828 828 828 828 828	873 873 873 873 873	919 919 919 919 919	
16 17 .18 19 20	520 507 493 478 463	543 533 517 502 487	566 551 535 518 502	595 578 561 544 527	623 605 587 569 551	643 624 606 587 568	691 675 655 635 615	737 726 705 684 664	782 776 754 733 711	828 826 803 780 758	873 873 852 829 805	919 919 901 876 851	
21 22 23 24 25	448 433 418 403 388	472 456 441 426 410	486 470 454 437 421	510 493 476 459 442	533 515 497 479 461	549 530 511 493 474	596 576 556 536 51 7	643 622 602 581 560	689 668 646 625 603	735 713 690 667 645	782 758 734 711 687	827 802 778 753 728	
26 27 28 29 30	374 359 344 329 314	395 380 364 349 334	405 389 373 356 340	424 407 390 373 356	443 425 407 390 372	455 436 417 399 380	497 477 457 438 418	540 519 498 477 457	581 560 538 516 495	622 600 577 554 532	664 640 617 593 569	704 679 655 630 605	
31 32 33 34 35	299 284 275 267 260	318 303 290 282 275	324 308 298 290 282	339 322 312 304 295	354 336 327 318 309	361 345 336 326 317	398 378 365 356 346	436 415 396 385 375	473 452 430 415 404	509 487 464 444 432	546 522 499 475 461	581 556 532 507 489	
Area, in.2 I ₁₋₁ , in.4 r ₁₋₁ , in. I ₂₋₂ , in.4 r ₂₋₂ , in.	40.00 1749 6.61 417 3.23	41.75 1857 6.67 446 3.27	1885 6.58 451 3.22	45.74 1970 6.56 472 3.21	2053 6.54 492 3.20	49.69 2081 6.47 499 3.17	53.19 2302 6.58 556 3.23	56.69 2529 6.68 613 3.29	60.19 2764 6.78 671 3.34	63.69 3006 6.87 728 3.38	67.19 3255 6.96 785 3.42	70.69 3512 7.05 842 3.45	
Weight, Lbs. per Foot	136.2	142.2	148.1	155.7	163.3	169.3	181.2	193.1	205.0	216.9	228.8	240.7	

Safe load values above and to right of upper zigzag line are for ratios of 1/r not over 60, those between the zigzag lines are for ratios up to 120 1/r, and those below lower zigzag line are for ratios not over 200 1/r.

SAFE LOADS IN THOUSANDS OF POUNDS

Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under, reduced for lengths over 60 radii; see Construction Specifications.

Weights do not include rivet heads or other details.

-						Web Pl	ate 14 >	5/9	1	Web Plate 14 x 5%											
e e	l	1,		1	1 1	ī ī	1	i i		ī	ī -	ī -									
Effective Length in Feet	13.58	x 5% 15%	13%	x 5/8 17/8	2%	17.8 17.8	2%	12%	2×2	×2.74	3, 2 kg	27% 27%									
व	4 x	4 x x	4 x	4 x	44 X	4- N	44 K	N CA	9 x (2,	6 X	8 X	R SA									
g l	M-4i	M 4i	× 44	M 44	×4	M 60	M SO	МФ	×Φ	Мæ	N G	м 9									
l e I	■ ●	1 9 1	9		1 ° 2 1	•	9	9		9		U -									
ctiv	Angles Plates	Angles Plates	Angles Plates	Angles Plates	Angles Plates	Angles Plates	Angles Plates	Angles Plates	Angles Plates	Angles Plates	Angles Plates	Angles Plates									
Big	4 Ar 2 Pl	4 Ar 2 Pl	4 Ar	4 Ar	2 Pi	2 Pl	2 PJ	2 Pl	2 Pl		4 Ar	A L									
اا	41.04	4.04	4.04	4.04	41.04	41.04	4104	4.01	41.04	4101	41.01	4.63									
11	964	1010	1055	1101	1146	1198	1250	1315	1367	1419	1471	1523									
11 12 13 14 15	964	1010 1010	1055	1101	1146 1146	1198 1198	1250 1250	1315 1315	1367 1367	1419 1419	1471	1523									
13 14	964 964	1010	1055 1055	1101 1101	1146 1146	1198 1198	1250 1250	1315 1315	1367 1367	1419	1471 1471	1523 1523									
	964	1010	1055	1101	1146	1198	1250	1315	1367	1419	1471	1523									
16 17	964	1010	1055	1101	1146 1146	1198 1198	1250 1250	1315 1315	1367 1367	1419 1419	1471	1523 1523									
18	964	1010 998	1055 1046	1101 1095	1146	11198	1250	1315	1367	1419 1419	1471 1471	1523 1523									
18 19	924	971	1018	1067	1114	1198	1250	1315	1367	1419	1471	1523									
20	898	945	991	1038	1084	i		1308	1364	1419	1471	1523									
21	872 847	918	963	1010	1055	1174	1229 1201 1172 1144	1277 1246	1333	1388 1356	1443	1497 1463									
21 22 23	821	918 892 865 839	935 908	981 953	1025 996	1174 1146 1119	$\begin{array}{c} 1201 \\ 1172 \end{array}$	1246 1216	1301 1269	1356 1323 1290	1409 1375 1342	1405 1428									
24 25	796 770	839 812	880 853	924 895	966 937	1091 1064	$\frac{1144}{1115}$	1185 1154	1269 1237 1206	1290 1258	1342 1308	1428 1393 1359									
	1	I I	1 1		1 1			1	1	1 1	i I										
26 27 28 29	744 719	786 759	825 797	867 838	907 877	1036 1009	1087 1058	1123 1093	$1174 \\ 1142$	$1225 \\ 1192$	1274 1241 1207	1324 1289 1254									
28	693 668	732 706	770 742	810 781	848 818	981 954	1030 1001	1062 1031	1111 1079	1160	$\frac{1207}{1173}$	1254									
29 30	642	679	715	753	789	926	973	1000	1047	1127 1094	1139	$1220 \\ 1185$									
31	617	653	687	724 696	759	899	944	970	1015	1062	1106 1072	1150 1115									
32	591 565	626	659 632	696 667	730 700	871 843	916 887	939 908 877	984 952	1029 996	1072 1038	1115 1081									
31 32 33 34	540_	600 573	604	639	671	816	859	877	920	964	1005	1046									
35	517	546	577	610	641	788	830	847	889	931	971	1011									
Area, in.2	74.19	77.69	81.19	84.69	88.19	92.19	96.19	101.19	105.19	109.19	113.19	117.19									
I ₁₋₁ , in.4	3776	4048	4327	4615 7.38	4910	5120	5457	5484	5830	6187	6552	6928									
r ₁₋₁ , in.	7.13 899	7.22	7.30 1014	7.38 1071	7.46 1128	7.45 1493	7.53 1579	7.36 1581	7.44 1666	7.53 1752	7.61 1837	7.69 1922									
I ₂₋₂ , in.4 r ₂₋₂ , in.	3.48	956 3.51	3.53	3.56	3.58	4.02	4.05	3.95	3.98	4.01	4.03	4.05									
Weight, Lbs. psr Foot	252.6	264.5	276.4	288.3	300.2	313.8	327.4	344.2	357.8	371.4	385.0	398.6									
	202.0	204.0	410.1	200.0	<u> </u>]]	antion of			<u> </u>									

Safe load values above and to right of upper zigzag line are for ratios of 1/r not over 60, those between the zigzag lines are for ratios up to 120 1/r and those below lower zigzag line are for ratios not over 200 1/r.

No. 4 Park 1

PLATE AND ANGLE COLUMNS—Concluded

SAFE LOADS IN THOUSANDS OF POUNDS

Allowable Fiber Stress per square inch, 13,000 pounds for lengths of 60 radii or under, reduced for lengths over 60 radii; see Construction Specifications.

Weights do not include rivet heads or other details.

	Two Web Plates 14 x ½							Two Web Plates 14 x 5/8						
Effective Length in Feet	4 Angles 6 x 6 x 5% 2 Plates 16 x 21/2	4 Angles 8 x 6 x 5% 2 Plates 16 x 2½	4 Angles 8 x 6 x 5% 2 Plates 18 x 23%	4 Angles 8 x 6 x 5% 2 Plates 18 x 2½	4 Angles 8 x 6 x 5/8 2 Plates 18 x 25/8	4 Angles 8 x 6 x 5% 2 Plates 18 x 234	4 Angles 8 x 6 x 5% 2 Plates 18 x 2%	4 Angles 8 x 6 x 5% 2 Plates 20 x 25%	4 Angles 8 x 6 x 5% 2 Plates 20 x 2%	4 Angles 8 x 6 x 5/8 2 Plates 20 x 27/8	4 Angles-8 x 6 x 5% 2 Plates 20 x 3	4 Angles 8 x 6 x 5% 2 Plates 20 x 33%		
11 12 13 14 15	1592 1592 1592 1592 1592	1657 1657 1657 1657 1657	1728 1728 1728 1728 1728 1728	1787 1787 1787 1787 1787 1787	1845 1845 1845 1845 1845	1904 1904 1904 1904 1904	1949 1949 1949 1949 1949	2027 2027 2027 2027 2027 2027	2092 2092 2092 2092 2092	2157 2157 2157 2157 2157 2157	2222 2222 2222 2222 2222	2287 2287 2287 2287 2287 2287		
16 17 18 19 20	1592 1592 1592 1592 1590	1657 1657 1657 1657 1657	1728 1728 1728 1728 1728	1787 1787 1787 1787 1787	1845 1845 1845 1845 1845	1904 1904 1904 1904 1904	1949 1949 1949 1949 1949	2027 2027 2027 2027 2027 2027	2092 2092 2092 2092 2092	2157 2157 2157 2157 2157 2157	2222 2222 2222 2222 2222	2287 2287 2287 2287 2287 2287		
21 22 23 24 25	1553 ⁶ 1516 1479 1443 1406	1653 1616 1580 1543 1507	1728 1728 1728 1695 1661	1787 1787 1787 1756 1721	1845 1845 1845 1818 1781	1904 1904 1904 1879 1842	1949 1949 1949 1918 1879	2027 2027 2027 2027 2027 2027	2092 2092 2092 2092 2092	2157 2157 2157 2157 2157 2157	2222 2222 2222 2222 2222	2287 2287 2287 2287 2287 2287		
26 27 28 29 30	1369 1332 1295 1258 1222	1470 1434 1397 1360 1324	1626 1592 1557 1522 1488	1685 1650 1614 1578 1543	1744 1708 1671 1635 1598	1804 1766 1729 1691 1653	1841 1802 1763 1724 1686	2009 1972 1935 1899 1862	2077 2039 2002 1964 1926	2146 2107 2068 2029 1991	2214 2175 2135 2095 2055	2283 2242 2202 2161 2120		
31 32 33 34 35	1185 1148 1111 1074 1038	1287 1251 1214 1177 1141	1453 1419 1384 1349 1315	1507 1471 1436 1400 1365	1561 1525 1488 1451 1415	1616 1578 1541 1503 1465	1647 1608 1569 1530 1492	1825 1789 1752 1715 1679	1889 1851 1813 1775 1738	1952 1913 1874 1836 1797	2016 1976 1936 1896 1857	2079 2039 1998 1957 1916		
Area, in.2	122.44	127.44	132.94	137.44	141.94	146.44	149.94	155.94	160.94	165.94	170.94	175.94		
1 ₁₋₁ ,in.4 r ₁₋₁ ,in. I ₂₋₂ ,in.4 r ₂₋₂ ,in,	7014 7.57 1946 3.99	7254 7.54 2229 4.18	7559 7.54 2831 4.61	7981 7.62 2953 4 63	8415 7.70 3074 4.65	8859 7.78 3196 4.67	8916 7.71 3222 4.64	9248 7.70 4049 5.10	9741 7.78 4216 5.12	10248 7.86 4383 5.14	10767 7.94 4549 5.16	11298 8.01 4716 5.18		
Weight, Lbs. per Foot	416.4	433.6	452.3	467.6	482.9	498.2	510.1	530.5	547.5	564.5	581.5	598.5		

Safe load values above and to right of zigzag line are for ratios of 1/r not over 60, those below zigzag line are for ratios not over 120 1/r.

TYPICAL COLUMN DETAILS

Bearing on Masonry

MILL BUILDING COLUMN

Simplicity in details is essential to economical construction. To eliminate bending or secondary stresses, it is desirable in making designs and details that loads be transmitted from beams, girders and trusses to columns directly and with the minimum number of connecting pieces, rivets, or bolts, and that the rivets or bolts be stressed in shear or bearing only.

The column connections shown on this page and the two pages which follow represent the best modern practice and conform to these fundamental conditions and cover the range of cases met with in ordinary mill and office building construction.

Where columns rest on steel slabs or castings, the loads are transmitted directly into the footing, and shoe angles may be provided for proper anchorage. Where they rest on masonry, gusset plates may be required to distribute the load.

Columns should be milled to accurate bearing at joints, with splice plates sufficient to hold the sections in line and to resist bending stresses. Horizontal bearing plates must be used between column sections of different forms or general dimensions. Rivet spacing in column shafts and at beam connections should be uniform to permit the use of multiple punches; spacing should be in multiples of one-quarter inch.

Erection requirements should not be overlooked; beams should frame with ample clearances, particularly to column webs, and rivets should be countersunk or flattened where necessary to swing beams into position.

TYPICAL COLUMN DETAILS OFFICE BUILDING CONSTRUCTION Section A-A Section B-B Section A-A Section B-B ۰ 00 ٥ TYPICAL ANGLE COLUMN TYPICAL ANGLE COLUMN Bearing on Masonry Bearing on Steel

TYPICAL COLUMN DETAILS OFFICE BUILDING CONSTRUCTION Section B-B TYPICAL SPLICE Angle Column to Channel Column TYPICAL SPLICE Angle Columns, different sizes

TYPICAL CHANNEL COLUMN

Bearing on Steel

TYPICAL SPLICE
Channel Columns, different sizes

CAST IRON COLUMNS

ALLOWABLE UNIT STRESSES IN POUNDS PER SQUARE INCH

By FORMULA OF NEW YORK BUILDING LAW, 1916

9000-40 l/r lbs. per square inch

l/r	Lbs. per Sq. In.	1/ r	Lbs. per Sq. In.	1/r	Lbs. per Sq. In
0	9000	30	7800	51	6960
10	8600	31	7760	52	6920
11	8560	32	7720	53	6880
12	8520	33	7680	54	6840
13	8480	34	7640	55	6800
14	8440	35	7600	56	6760
15	8400	36	7560	57	6720
16	8360	37	7520	58	6680
17	8320	38	7480	59	6640
18	8280	39	7440	60	6600
19	8240	40	7400	61	6560
20	8200	41	7360	62	6520
21	8160	42	7320	63	6480
22	8120	43	7280	64	6440
23	8080	44	7240	65	6400
24	8040	45	7200	66	6360
25	8000	46	7160	67	6320
26	7960	47	7120	68	6280
27	7920	48	7080	69	6240
28	7880	49	7040	70	6200
29	7840	50	7000		

The safe load for a cast iron column of given dimensions is determined from the above table by obtaining the ratio of 1/r and multiplying the corresponding unit stress by the sectional area of column.

Example:—Required the safe load of a cast iron column, 15 inches square, % inch in thickness, and 16 feet long.

From table of Hollow Square Sections, page 199, the radius of gyration is 5.78 inches and the sectional area is 49.44 square inches; hence the ratio of $1/r = 16 \times 12 \div 5.78 = 33.2$, corresponding to a stress of 7672 pounds per square lnch, giving a total safe load of 49.44 \times 7672 = 379300 pounds.

The minimum size of a cast iron column of a certain length to safely support a given load is determined as follows:

Divide the length in inches by 70; the quotient is the minimum allowable radius of gyration required. Divide the total load by 6200 pounds; the quotient is the minimum sectional area.

Example:—Required the minimum size of a round cast iron column, 20 feet long, to support a load of 235000 pounds.

The minimum radius of gyration is $20 \times 12 \div 70 = 3.43$ inches; the minimum area is $235000 \div 6200 = 37.90$ square inches. From table of Hollow Round Sections, page 198, the nearest minimum size for this radius of gyration and this area is found to be a column 11 inches in diameter and $1\frac{1}{4}$ inches in thickness.

CAST IRON COLUMNS

ROUND CAST IRON COLUMNS

Allowable Loads in Thousands of Pounds

By Formula of New York Building Law, 1916

Weights do not include details

Outer	Thick-	Area,	Weight per	Lieasi			Effe	ctive	Lengt	h of	Colun	n in	Feet		
Dia., Inches	ness, Inches	Inches ²		Radius, Inches	8	10	12	14	16	18	20	22	24	26	28
6	1/2/8/8/4/8	8.64 10.55 12.37 14.09	27.0 33.0 38.7 44.0	1.95 1.91 1.88 1.84	61 74 86 97	56 68 80 90									
7	5/8 8/4 7/8	12.52 14.73 16.84 18.85	39.1 46.0 52.6 58.9	2.27 2.23 2.19 2.15	92 107 122 136	86 101 115 128	81 95 107 119								
8	1 1 1 1/8	17.08 19.59 21.99 24.30	53.4 61.2 68.7 75.9	2.58 2.54 2.50 2.46	147 164	$122 \\ 139 \\ 156 \\ 171$	132 147	109 124 139 152							
9	1 1 1 1/8 1 1/4	22.34 25.13 27.83 30.43	69.8 78.5 87.0 95.1	2.89 2.85 2.81 2.78	$ 192 \\ 212$	184 203	$\frac{175}{193}$	149 167 184 200	158 174						
10	1 11/8 11/4 18/8	28.28 31.37 34.36 37.26	88.4 98.0 107.4 116.4	3.20 3.16 3.13 3.09	244 267	257	$\frac{225}{246}$	$\frac{216}{235}$	187 206 225 243	197 214					
11	1 1/8 1 1/4 1 3/8 1 1/2	34.90 38.29 41.58 44.77	109.1 119.7 129.9 139.9	3.51 3.48 3.44 3.40	302 328	$\frac{292}{316}$	281 305	$247 \\ 271 \\ 293 \\ 314$	238 260 281 302	250 270	239 258				
12	1 3/4 1 8/8 1 1/2 1 5/8	42.22 45.90 49.48 52.97	131.9 143.4 154.6 165.5	3.83 3.79 3.75 3.71	367 395	355 382	343 369	332 357	295 320 344 367	$ 308 \\ 331$	319	285 306			
13	1 3/8 1 1/2 1 8/8 1 3/4	50.22 54.19 58.07 61.85	156.9 169.4 181.5 193.3	4.14 4.10 4.06 4.03	437 468	424 454	412	370 399 427 454	386 413	374 399	361 385	324 348 372 395	335 358		
14	1 1/2 1 5/8 1 8/4 1 7/8	58.91 63.18 67.35 71.42	184.1 197.4 210.5 223.2	4.45 4.41 4.38 4.34	514 547	467 500 532 564	486 518	441 472 503 532	459 488	445 473	431 459	390 417 444 469	404 429		
15	1 5/8 1 8/4 1 7/8 2	68.29 72.85 77.31 81.68	213.4 227.6 241.6 255.3	4.76 4.73 4.69 4.65	597 632 668	-	601 634	585 617	600	553 583	538 566	493 522 550	478 506 533	463 490 516	
16	1 34 1 78 2 2 1/8	78.34 83.20 87.97 92.63	244.8 260.0 274.9 289.5	5.08 5.04 5.00 4.96	685	670	654	638	587 622 657 690	606	590 623	542 574 606 636	559 589	543 572	527 555

SQUARE CAST IRON COLUMNS

ALLOWABLE LOADS IN THOUSANDS OF POUNDS

By Formula of New York Building Law, 1916
Weights do not include details

Outer	Thick-		Weight	Least		,	Effec	tive I	engt	h of C	olum	n in F	eet		
Width, Inches	ness, Inches	Area, Inches ²	Foot, Pounds	Radius,	8	10	12	14	16	18	20	22	24	26	28
6	1/3/8 3/4/8	11.00 13.44 15.75 17.94	34.4 42.0 49.2 56.1	2.26 2.21 2.17 2.12	80 98 114 129	76 92 107 121	71 86 100 113								
7	1 5/8 1 7/8	15.94 18.75 20.44 24.00	49.8 58.6 63.9 75.0	2.62 2.57 2.53 2.48	141 153	134 145	108 127 137 160	103 120 130 151							
8	1 1 1 1 1/8	21.75 24.94 28.00 30.94	68.0 77.9 87.5 96.7	2.98 2.93 2.89 2.84	$\frac{192}{215}$	$\frac{184}{205}$		167	140 159 178 195						
9	7/8 1 13/8 13/4		85.8 100.0 110.8 121.1	3.34 3.29 3.25 3.21	251 277	241 267		192 223 246 268		$\begin{array}{c} 176 \\ 204 \\ 225 \\ 244 \end{array}$					
10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	39.94 43.75	112.5 124.8 136.7 148.3	3.70 3.65 3.61 3.57	$\frac{317}{347}$	$ 307 \\ 336$	268 296 324 350	259 286 312 338	249 275 301 325	$\begin{array}{c} 240 \\ 265 \\ 289 \\ 312 \end{array}$	231 254 277 299				
11	1 1/8 1 1/4 1 1/2	44.44 48.75 52.94 57.00	152.3	4.06 4.01 3.97 3.93	392 425	412	400		316 345 374 402		295 322 348 374	336			
12	1 1/4 1 3/8 1 1/2 1 5/3	58.44 63.00	168.1 182.6 196.9 210.8	4.42 4.37 4.33 4.29	511	462 497		436	423 455	410 441	367 398 427 456	413	372 399	i	
13	1 3/8 1 1/2 1 5/8 1 3/4	69.00 73.94	199.8 215.6 231.1 246.1	4.78 4.74 4.69 4.65	565 605		537 575	486 523 560 595	509 544	495 529	447 481 514 546	467	421 453 484 514	439 469	
14	1 ½ 1 5 8 1 3 4 1 7 8	75.00 80.44 85.75 90.94	267.9	5.14 5.10 5.05 5.01	663 707	648 690	591 633 674 714	618	641	588 625	572 609	557	542 576	493 527 560 592	512 544
15 ,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	92.75	271.7 289.8 307.6 325.0	5.50 5.46 5.41 5.37		753 799	691 737 782 824	676 721 764 806	704 746	646 688 729 769	631 672 711 750	655 694	639 676	585 623 659 694	606 642
16	$ \begin{array}{c c} 1 & 34 \\ 1 & 78 \\ 2 & 18 \end{array} $	99.75 105.94 112.00 117.94	331 1	5.86 5.82 5.77 5.73	884	266	240	783 831 878 923	214	706	1770	1761	744	685 726 766 804	700

FLOORS AND FLOOR LOADS

Kinds of Loads. Two kinds of loads are carried by structures. Live loads consist of the weight of carriages, cranes or other handling devices and their supported loads, machinery, merchandise, persons or other moving objects, the support of which is the purpose of the structure, including also wind stresses. Dead loads consist of the actual weight of the structure itself with the walls, floors, partitions, roofs, and all other permanent construction and fixtures. The dead loads stress the structure at all times and it must, therefore, be proportioned to sustain them at all times without reduction. The live loads may be taken at their full values or reduced in accordance with the probabilities that the structure as a whole or its principal members will not be subject at all times to the full theoretical live loading.

Dead Loads. The permanent load should be calculated from known weights per unit of the material composing floors, partitions, walls, or other permanent construction. The weight assumed for the steel frame itself should be checked after the sections are determined and then the sizes readjusted if necessary.

Live Loads. Live loads vary with the character of the structures. In buildings they consist of uniform loads per square foot of floor area, concentrated loads, such as heavy safes, which may be applied at any point of the floor, and uniform loads per lineal foot of beams or girders. The load which produces the maximum bending moment or reaction is to be used in proportioning sections. The floor system between beams must of course be of sufficient strength to transmit any concentrated load to the beam.

In cities the minimum live loads to be used on the various classes of buildings are fixed by public ordinances, and are given on page 324 for the principal cities of the United States in accordance with the most recent building laws, which are intended to cover general conditions and do not include machinery or other concentrations. If such concentrations, like safes, armatures, generators, or printing presses, occur on floors, special provision should be made for them in the floor framing. Flat roofs of buildings which may be loaded with people, should be treated the same as floors and the same uniform live loads used as given in the table for dwellings, hotels or assembly rooms.

FLOORS AND ROOFS

MINIMUM LIVE LOADS, POUNDS PER SQUARE FOOT By Building Laws of Various Cities

Description of Building	Baltimore, 1908	Boston, 1912	Chicago, 1911	Cleveland, 1911	New York, 1916	Philadelphia, 1913	Pittsburgh, 1914	St. Louis, 1910	San Francisco 1910
Apartment Houses, etc.: Floors	60	50	40	50	40	70	50	60	60
Hospitals, Asylums: Floors Assembly Rooms, etc			50 100	60 80		70 120	70 125		60 125
Hotels: FloorsAssembly Rooms, etc	60 125	50 100	50 100	50 80	40 100	70 120	70 125	60 100	60 75
Factories: Floors, light manufacture beavier	125a 175a	125a	100s	125s 200s	120a	120s 150a	125a	150s	125a 250a
Mercantile Buildings: Stores, light goods heavier goods Warehouse floors	125 175 250	125 250 250	100	100b 200 200	120	120 150 150	125 200 200	150 150 150	125 250 250
Office Buildings: FloorsAssembly Rooms, etc	75 125	100 125	50 100	60 100	60 100	100 120	70 125	, 70 100	60 125
Public Assembly Halls: Auditoriums, fixed seats "movable seats Churches Dance and Drill Halls Theaters	75 125 75 75	125 125 125 200 125	100 100 100 100 100	80 100 80 150 80	100 100 100	120 120 120 120	125 125 125 150 125	100 100 100	75 125 75 75
Schools: Class Rooms Assembly Rooms, etc	75 75	60 125	40 75	60 80	75 100	70 120	70 125	100 100	75 125
Sidewalks	200			200	300				150
Stables, Garages, etc	100		100	80			125		75
Stairways, Fire Escapes.		70	100	80					
Roofs: Flat, slope under 20° Steep, slope over 20°	40 20	40	25 25d	40 40d	40 30	30d	50c 50c	40	30 20
Wind Pressure	30		20	30e	30	30e	25	30	20

a Floor loads do not include weight or impact load of machinery.
b Ground or First Floor: Baltimore 150, Cleveland 125, St. Louis 150 pounds.
c Dead and live load; snow load 25 pounds, reduced 1 pound for each degree between 20° and 45°.
d Load per square foot of superficial roof area; other roof loads are for the projected area.
e Wind pressure for high buildings in built-up districts 35 pounds; buildings 14 stories high or over: 25 pounds at tenth story, 2½ pounds less each story below.

Reduced Live Loads. Floor beams in buildings should be computed to sustain floor by floor the full live and dead loads. probable that all the floors will be fully loaded at all times, and, therefore, good practice permits a reduction of the theoretical live load in the computations of column sections. The New York and Pittsburgh building laws do not permit any reduction on columns supporting the roof and top floor. These building laws permit for buildings more than five stories in height on columns supporting each succeeding floor a reduction of 5 per cent of the total live floor load until 50 per cent is reached, which reduced load is to be used for the columns supporting the remaining floors. Pittsburgh building law. however, does not permit any reduction of live floor loads over 150 pounds per square foot (bulk storage). The Chicago building law requires columns to sustain the full live load on roofs. 85 per cent of the full live floor load on the top floor with a 5 per cent reduction on each succeeding floor down to 50 per cent.

When the character of the loading will permit, it is also considered good practice to reduce the live load on the main girders to which the primary supporting beams are framed. The amount of the reduction will depend on the probable distribution of the loads.

Footings should be so designed that the loads Foundation Loads. they sustain per unit of area shall be as nearly uniform as possible. and the dead loads carried by the footings should include the actual weight of the superstructure and foundations down to the bottom of the footing. The live load should be assumed to be the same as the live load in the lowest tier of columns or in the footings under According to the proposed New York building law, the area of the footing which has the largest percentage of live load to total load shall be determined by dividing the total load by the unit working stress. From the area thus calculated all the other footings of the building shall be proportioned according to the ratios of their respective dead loads only. In no case shall the load per square foot under any portion of any footing due to the combined dead, live, and wind loads, exceed the safe sustaining power of the soil upon which the footing rests.

Fireproof Floor Systems. A modern office or mercantile building is essentially a steel framed structure which supports the dead load of the building and its contents and is itself protected on all sides by refractory materials. The floors are made fireproof by the use of terra cotta tiles or arches or of a composite flooring made of concrete or reinforced concrete. While brick arches may still be used in special locations where great floor strength is needed, and concrete arches are sometimes thrown between the beams,

modern practice is limited substantially to the hollow tile arch sprung between the beams and the reinforced concrete slab laid on their tops, the ceiling construction being modified to suit. Each system has advantages of its own.

Terra Cotta Arches. Hollow tile arches fill the total depth of the floor beams, and, therefore, tend to stiffen and brace the building; their weight per square foot is light as compared with other forms of fireproof floor construction of equal strength. Hollow terra cotta floor arches are made either flat or segmental. The segmental arch will develop much greater strength than the flat arch of the same width and depth, and may be designed to carry a given load with tile of less depth than flat arches. They are, therefore, more economical, though not always acceptable from the standpoint of architectural appearance. In office buildings the ceilings under such arches are usually suspended. A correctly designed and constructed flat arch will always develop the full strength of the steel beam which supports it.

When arch blocks are the same depth as the beams, they are usually laid to project 1½ inches below the bottom of the beams, and the space above the arch is filled in either with cinder concrete, in which can be laid pipes, conduits, and wooden nailing strips supporting wood flooring, or with thin terra cotta blocks made for this purpose, or with a layer of plastic composition of cement, which forms the wearing surface for the floor.

Thrust of Floor Arches. All forms of terra cotta arches produce side thrust on the floor beams. In the flat arch the blocks have tapered faces and the central block or key wedges the others together; in the segmental arch the thrust is that due to all arch action. thrusts it is found necessary to counterbalance by means of tie rods which connect the floor beams and relieve them from the tendency to deflect sidewise. In the central bays, owing to the action of adjacent arches, the tie rods are sometimes omitted, but it is necessary to investigate outer beams and channels around openings for additional thrust stresses so that the combined fiber stresses produced by vertical loading and horizontal thrusts may not be excessive. With flat arches 3/4 inch tie rods spaced apart not over fifteen times the width of the beam flanges will usually be sufficient. The total thrust of arch, the net area of tie rods required, the maximum distance between tie rods and the section of outer beams for any condition, may be found as follows:

T	۵.	+	
_	ıυ	U	

w =load on arch, in pounds per square foot.

L =span of arch, in feet.

L_b =length of floor beam supporting the arch, in feet.

R =effective rise of arch, in inches.

p =thrust of arch per lineal foot, in pounds.

P =total thrust of arch per panel, in pounds.

A =total net area of tie rods per panel, in square inches.

a =net area of one tie rod, in square inches.

Ls = spacing of tie rods, center to center, in feet.

f =allowable combined fiber stress not to exceed 16,000 pounds per square inch.

S₁₋₁ =Section Modulus of beam, axis 1-1, in inches³.

S2-2 = Section Modulus of beam, axis 2-2, in inches3.

M₁₋₁=Bending Moment due to vertical loading, inch pounds.

M₂₋₂=Bending Moment due to arch thrust, inch pounds; then,

$$\begin{array}{ll} p & = \frac{3wL^2}{2R} & P = \frac{3wL^2L_b}{2R} \\ A & = \frac{3wL^2L_b}{2fR} = \frac{wL^2L_b}{10667R} \\ L_s & = \frac{2faR}{3wL^2} = \frac{10667aR}{wL^2} \\ M_{1-1} = \frac{12L_b}{8} \frac{(\frac{1}{2}wL \ L_b)}{8} = \frac{3wL \ L_b^2}{4} \\ M_{2-2} = \frac{12L_s \ (pL_s)}{12} = pL_s^2 \\ f & = \frac{M_{1-1}}{S_{1-1}} + \frac{M_{2-2}}{S_{2-2}} \end{array}$$

In the formula given for M_{2-2} , the beam is considered continuous and supported at intervals by the tie rods. In segmental arches the effective rise is equal to the vertical distance between the highest point of the concave surface and the springing line or chord; the effective rise of a flat arch may be taken at 2.4 inches less than the arch depth.

The net areas of usual sizes of tie rods are as follows:-

Diameter of Rod, Inches	5/8	3/4	7/8	1
Net area, a, square inches	0.202	0.302	0.420	0.550

CARNEGIE STEEL COMPANY

EXAMPLE.—A floor panel 18 feet by 6 feet, made of 12 inch flat terra cotta blocks, is to support a uniform load, live and dead, of 150 pounds per square foot. Required the total thrust, total area of rods per panel, maximum spacing of rods, and the proper size beam to carry one-half of the panel without other lateral support than the tie rods.

Entire panel load is 18x6x150=16,200 pounds. Assume a 12 inch 31.5 pound beam and ¾ inch tie rods, then we have—

Thrust of arch per lineal foot, $p = \frac{3x150x6x6}{2(12-2.4)} = 840$ pounds.

Total thrust of arch, $P = \frac{3x150x6x6x18}{2(12-2.4)} = 15,200$ pounds.

Total area of tie rods, $A = \frac{150 \times 6 \times 6 \times 18}{10.667(12-2.4)} = 0.95$ square inches.

Maximum spacing of tie rods, $L_S = \frac{10667x \cdot .302x(12-2.4)}{150x6x6} = 5.73$ feet.

Bending Moment, vertical loading, $M_{1-1} = \frac{6x18x150x18x12}{8x2} = 218,700$ in. lbs.

Bending Moment, horizontal thrust, M $_{2\text{--}2}$ — $840 \times 5.73 \times 5.73 \times 12$ —27,580 in. lbs.

Combined fiber stress, $f = \frac{218,700}{36} + \frac{27,580}{3.8} = 13,330$ pounds per square inch.

If tie rods are spaced $6'\ 0''$ centers, then the

Bending Moment, horizontal thrust, M_{2-2} =840x6x6=30,240 inch pounds. Combined fiber stress, $f = \frac{218,700}{36} + \frac{30,240}{3.8} = 14,030$ pounds per square inch.

When used, tie rods should be placed in the line of thrust if possible, usually 3 inches above the bottom of the beam.

MAXIMUM SPACING OF 34 INCH TIE RODS, Loads of 100 Pounds per Square Foot

Span,		Effective Rise of Arch, R, in Inches												
Feet	4	5	6	7	8	9	10	11 .	12	13	14	15		
3	14.3						_	i						
4	8.1	10.1	12.1	14.1	ŀ		ĺ							
5	5.2	6.4	7.7	9.0	10.3	11.6	12.9	14.2				[
6	3.6	4.5	5.4	6.3	7.2	8.1	8.9	9.8	10.7	11.6	12.5	13.4		
7		3.3	3.9	4.6	5.3	5.9	6.6	7.2	7.9	8.5	9.2	9.9		
8			3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.6		
9					3.2	3.6	4.0	4.4	4.8	5.2	5.6	6.0		
10			١				3.2	3.5	3.9	4.2	4.5	4.8		

For any other loading, multiply tabular values by 100 and divide by total new load per square foot.

The tables which follow give the weights per square foot for terra cotta arches, both flat and segmental, of various depths, their area in square inches, and the safe loads they will sustain on various spans. These tables should be used as a general guide only, as conditions may make it possible to design more economical arches for a given load than indicated by the tables. Where a paneled ceiling is not objectionable, for example, a shallow arch may be used on raised skewbacks with a considerable economy in material.

FLAT TERRA COTTA ARCHES

MANUFACTURERS' STANDARD

SAFE LOADS IN POUNDS PER SQUARE FOOT Factor of Safety = 7

			Depth of	Arch Blocks,	Inches		
Span of	6	7	8	9	10	12	15
Arch, Ftln.			Area of Arch	Blocks, Squ	are Inches		
F 0111.	31	34	37	40	43	49	58
3-0 3-3 3-6 3-9 4-0 4-3 4-6 4-9 5-0 5-6	458 386 330 284 247 216 190 168 149	588 496 424 365 318 278 245 217 193 172 154	735 622 531 459 399 350 309 274 244 218	901 763 653 565 493 433 382 340 304 272 245	1084 916 785 679 593 521 461 410 367 330 297	1487 1262 1083 938 820 722 640 571 511 460 416	2210 1877 1612 1398 1223 1079 951 855 767 691 626
5-9 6-0 6-3 6-6 6-9 7-0 7-6 8-0 8-6 9-0 9-6		139	176 159 144 131	222 201 183 166 152 139	269 244 222 203 186 170 144	378 344 314 287 264 243 206 177 153 132	569 518 474 435 400 369 315 272 236 205 180 158

This table and the two following are employed in computing the safe loads of floor arches of hollow terra cotta blocks. The area given is that of a cross section at right angles to the webs, and, generally, end-construction blocks of various shapes but of the same depth and cross-sectional area have equal strength.

The weight of the terra cotta arch has been deducted from the safe load given in the tables, so that only the dead load of the concrete fill, plastering, etc., must be deducted to obtain the net safe live load for any arch and span; blocks of different areas and for other factors of safety are calculated as follows:

EXAMPLE.—Required the load per square foot for a 5'-6" span and 8 inch arch blocks with three horizontal and four vertical webs, ¾ inch thick, set ln end construction, cross-section through webs of blocks parallel to webs of beams.

Sectional area of the blocks is $8"x \frac{3}{4}"x4+(12"-4x \frac{3}{4}")x \frac{3}{4}"x3=44.25$ sq. in. at 0.06 pounds per cu. in., the weight is 44.25x12x0.06=32 pounds.

The net safe load of the 8 inch block given in the table is 196 pounds. Adding the weight of the block, 37x12x0.06=26 pounds, the total safe load is 222 pounds. The net safe load for blocks with an area of 44.25 sq. in. and a safety factor of 5 is (44.25 + 37x222x7/5)=340 pounds per sq. ft.

CARNEGIE STEEL COMPANY

SEGMENTAL TERRA COTTA ARCHES

MANUFACTURERS' STANDARD

SAFE LOADS IN POUNDS PER SQUARE FOOT Factor of Safety=7

							-				
	n:	Depth	of Arch	Blocks,	Inches	Span	Rise	Depth	of Arch	Blocks,	Inches
Span of	Rise of	4	6	8.	10	of	of	4	6	8	10
Arch,	Arch,	Area of	Arch B	locks, Sq	. Inches	Arch,	Arch,	Area of	Arch B	locks, Sq	.Inches
FtIn.	In.	28	36	43	47	FtIn.	In.	28	36	43	47
. ——	3/4	702	902	1078	1178		3/4	366	471	563	615
	1	920	1184	1414	1545		1	482	621	741	810
4-0	11/4	1155	1485	1774	1939	7-6	11/4	602	774	925	1011
	1 1/2	1353	1740	2079	2272	,-0	11/2	715	920 1049	1099 1253	1201
	$\begin{vmatrix} 1\frac{3}{4} \\ 2 \end{vmatrix}$	1545 1736	1986 2233	2373 2667	2593 2915		$\frac{1\frac{3}{4}}{2}$	815 915	1176	1405	$1369 \\ 1536$
	34	616	792	946	1034		34 1	341	439	525 703	573
	1 1 1/4	812 1020	1044 1313	1247 1568	1363 1713		11/4	457 562	588 724	864	768 944
4- 6	11/2	1196	1539	1838	2009	8-0	11/2	668	859	1026	1122
	1 34	1381	1775	2121	2318		1 3/4	767	987	1179	1288
	2	1536	1975	2359	2578		2	854	1099	1312	1434
	3/4	551	709	847	926		3/4	319	411	491	536
	1	744	957	1143	1249		1	428	551	658	719
= 0	11/4	911	1172	1400	1530		11/4	527	678	810	885
5-0	1 ½	1072	1379	1647	1800	8-6	1 1/2	626	806	963	1052
	1 3/4	1238	1592	1902	2078		1 3/4	719	926	1106	1208
	2	1379	1773	2118	2315		2	807	1037	1239	1354
	3/4	499	641	766	837		3/4	300	386	461	504
	1	672	864	1032	1128		1	403	518	619	677
5-6	$\frac{1\frac{1}{4}}{1\frac{1}{2}}$	826 984	1062 1266	1269 1512	1387 1652	9-0	11/4	501 590	645 758	770 906	842 990
	1 3/4	1119	1439	1719	1879	" "	1 3/4	677	871	1041	1137
	2	1258	1619	1933	2113		2	759	977	1167	1275
	3/4	455	585	699	764		97	000	264	435	475
	1 74	612	788	941	1028		34 1	283 380	364 489	584	475 638
	11/4	753	969	1157	1265		11/4	472	608	726	793
6-0	11/2	898	1154	1379	1507	9-6	11/2	561	721	862	942
	1 34	1022	1315	1570	1716		1 34	639	823	983	1074
	2	1148	1476	1763	1927		2	717	923	1102	1204
	3/4	428	551	658	719		3/4	267	344	411	449
	1	562	724	864	944		1	359	462	552	603
6-6	11/4	701	902	1077	1177	10-0	11/4	447	576	688	751
0-0	1 1/2	823	1058	1264	1382	10-0	1 1/2	531	683	816	892
	$\frac{1\frac{3}{4}}{2}$	947	1218	1455	1590	1	1 3/4	610	784	937	1024
		1055	1358	1622	1772		2	683	879	1050	1147
	3/4	394	508	606	662		3/4	251	330	394	429
	1 1 1/4	520 648	669 834	799 996	873 1089		1	342	442	528	577
7-0	11/2	762	981	1171	1280	10-6	11/4	426 504	547 646	655 776	717 849
	134	876	1127	1346	1471		1 3/4	581	749	891	974
	2			1510		1	2	650	837		

FLOOR CONSTRUCTION

SEGMENTAL TERRA COTTA ARCHES-CONCLUDED

-		Depth	of Arch	Blocks,	Inches			Depth	of Arch	Blocks,	Inches
Span of	Rise of	4	6	8 -	10	Span of	Rise of	4	6	8	10
Arch, FtIn.	Arch, In.	Area of	Arch Bl	ocks, Sq	Inches	Arch, FtIn.	Arch, In.	Area of	Arch B	locks, Sq	. Inches
11.		28	36	43	47	1 0111.	111.	28	36	43	47
11-0	1 1 1 1/4 1 1/2 1 3/4	244 327 404 479 551 617	315 421 519 617 709 794	376 503 621 737 847 948	411 550 678 805 925 1036	17-0	34 1 1 1/4 1 1/2 1 3/4 2	151 205 256 304 351 393	194 265 330 392 452 506	232 316 394 468 540 605	254 345 430 512 590 661
11-6	34 1 1 1/4 1 1/2 1 3/4 2	233 312 388 460 528 591	299 401 499 592 680 761	358 480 596 707 812 909	391 524 652 773 887 993	18-0	34 1 1 14 1 1/2 1 3/4 2	141 192 240 287 330 371	182 248 310 370 425 477	218 296 370 442 507 570	238 324 404 482 554 623
12-0	34 1 1 1/4 1 1/2 1 3/4 2	222 297 370 439 505 565	285 383 477 566 649 727	341 458 569 676 776 869	372 500 622 738 848 949	19-0	3/4 1 1 1/4 1 1/2 1 3/4 2	134 181 227 271 312 351	173 233 293 348 402 451	206 279 350 416 480 539	225 304 382 455 524 589
12-6	34 1 1 14 1 1/2 1 8/4 2	212 284 354 420 483 541	273 366 456 541 621 696	326 437 545 646 742 832	356 478 595 706 811 909	20-0	$ \begin{array}{c c} 34 \\ 1 \\ 1 \frac{1}{4} \\ 1 \frac{1}{2} \\ 1 \frac{3}{4} \\ 2 \end{array} $	126 172 215 257 296 332	163 221 277 330 381 427	194 265 331 395 455 510	212 289 361 431 497 558
13-0	34 1 1 14 1 1/2 1 3/4 2	203 272 339 403 463 521	261 351 437 519 596 670	312 419 522 620 712 801	341 458 570 677 778 875	21-0	34 1 1 1/4 1 1/2 1 3/4 2	119 163 205 243 281 315	153 209 263 314 361 406	183 250 315 375 432 485	200 273 344 409 472 530
14-0	34 1 1 1/4 1 1/2 1 3/4 2	186 253 315 374 430 481	240 326 406 482 553 619	287 390 485 575 661 740	313 426 530 629 722 808	22-0	34 1 114 112 134 2	113 154 194 232 268 301	145 199 250 299 344 377	174 237 298 357 412 462	190 259 326 399 450 505
15-0	34 1 1 1/4 1 1/2 1 3/4 2	174 234 292 347 401 449	225 302 377 447 515 577	268 361 450 534 616 690	293 394 491 583 673 754	23-0	34 1 1 14 1 12 1 34 2	108 147 185 221 255 286	139 190 238 284 328 369	166 227 284 340 392 440	181 247 310 371 428 481
16-0	$\begin{array}{c c} & 34 \\ 1 \\ 1 & 14 \\ 1 & 12 \\ 1 & 34 \\ 2 \\ \end{array}$	162 218 274 325 374 420	209 281 353 419 481 540	249 336 421 500 575 645	272 367 460 546 628 705	24-0	34 1 1 ½ 1 ½ 1 1 ½ 2	102 140 177 211 244 274	132 181 227 272 314 353	157 216 272 325 375 421	172 236 297 355 410 460

TERRA COTTA ARCHES

For

Floor Load of 150 Pounds per Square Foot

	7041	Depth	Depth	Span	App	rox. V	/eight	, Lbs.	per S	q.Ft.
	Depth of Beam, Inches	of Arch Blocks, Inches	of Floor, Inches	of Arch, Feet	Steel	Terra Cotta	Concrete	Flooring	Ceiling	Total
	6	6	11	51/4	6	22	30	4	5	67
T ARCH	7	6	12	51/4	7	22	38	4	5. 5	-76
	8	6	13	51/4	8	22	45	4		84
ARCH	7	7	12	6	8	24	30	4	5 5	71
A No.	8	7	13	6		24	38	4		79
AT AB	9	7	14	6	8	24	45	4	5	86
	8	8 8	13	6 1/2	.8	27	30	4	5	74
FLAT	9	8	14	61/2	8	27	38	4	5	82
F 155	10	8	15	61/2	8	27	45	4	5	89
	9	9	14	71/2	8	,29	30	4	5	76 85
FLA Typical of arch 1	10	9	15	71/2	9	29	38	4	5	85
	12	9	17	71/2	9	29	53	4	5	100
	10	10	15	8	9	31	30	4	5	79
\$ 12 E	12	10	17	8	9	31	45	4	5	94
3% E	12	12	17	91/2	10	35	30	4	5	84
Marian	15	12	20	91/2	10	35	53	4	5	107
	15	15	20	11	12	42	30	4	5	93

For flat arches on raised skews, where the top of the arch is level with the top of the floor heam, deduct about 7 pounds per inch of difference between the height of the floor heam and the arch.

addi or die	OT OHOU HO								
Denth	Donth	Rige	Snan	App	rox. W		, Lhs.	per S	q. Ft,
of Beam, Inches	of Arch Blocks, Inches	of Arch, Inches	of Arch, Feet	Steel /	Terra Cotta	Concrete	Flooring	Ceiling	Total
6	4	3/4	4 1/2	7	20	27	4	5	63
		1				28-	4		64
			$5\frac{1}{2}$		20	29	4	5	65
	4	1 1/2	6	8	20	30	4	5	67
8		3/4	5	8	26	27	4	5	70
9	6	1	$5\frac{1}{2}$	8	26	28	4	5	71
10	6	11/4	6	9	26	29	4	5	73
12	6	1 1/2	6 1/2	9	26	30	4	5	74
10	8	3/4	51/2	9	31	27	4	5	76
12	8	1	6	9	31	28	4	5	77
12	8	11/4	6 1/2	10	31	29	4	5	79
15	8	1 1/2	7	10	31	30	4	5	80
12	10	3/4	$5\frac{3}{4}$	10	34	27	4	5	80
. 12	10	1	61/2	11	34	28	4	5	82
15	10	11/4	7	11	34	29	4	5	83
15	10	1 1/2	71/2	12	34	30	4	5	85
	Beam, Inches 6 7 8 9 8 9 10 12 10 12 12 15 12	of Beam, Inches Blocks, Inches Blocks, Inches Blocks, Inches 4 6 4 7 4 8 4 9 4 8 6 9 6 10 6 112 6 110 8 112 8 112 8 112 8 115 8 112 10 115 10	of Beam, Blocks, Inches Blocks, Inches Blocks, Inches Blocks, Inches Inches Blocks, Inches Inches Inches Blocks, Inches Blocks	of Beam, Inches of Arch, Blocks, Inches of Arch, Inches of Arch, Arch, Inches of Arch, Feet 6 4 3/4 4 ½ 7 4 1 5 8 4 1½ 5½ 9 4 1½ 6 9 6 1 5½ 10 6 1½ 6 12 8 1½ 6 12 8 1½ 6½ 12 8 1½ 6½ 15 8 1½ 6 12 10 3/4 5¾ 12 10 3/4 5¾ 12 10 1 6½ 12 10 1 6½ 12 10 1 6½ 12 10 1 6 12 10 1 7	Depth of of Arch of Beam, Inches Depth of Arch Blocks, Inches Inches Depth of Arch Blocks, Inches Depth of Arch Blocks, Inches Depth of Arch Blocks Depth of Arch Dept	Depth of of Arch of Beam, Inches In	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	of Beam, Inches of Arch, Blocks, Inches of Arch, Inches of

TERRA COTTA PARTITION, CEILING, ROOFING AND FURRING BLOCKS

Thick-	Approx.	Weight, P	ounds per	Sq. Foot		Approx.	Weight, P	ounds per	Sq. Foot
ness, Inches	Partition	Ceiling	Roofing	Furring	ness, Inches	Partition	Ceiling	Roofing	Furring
1 1/2				9	4	16-18		22	, ,
2	12-14	12		10	5	18-20			1
3	15-17	20	20		6	24-26			

REINFORCED CONCRETE BEAMS AND FLOOR SLABS

For a complete mathematical analysis of the stresses occuring in reinforced concrete structures, reference may be made to standard text books on the theory and practice of reinforced concrete.

Girders and Floor Beams. The arrangement of girders and floor beams follows the same principles as in structural steel construction. On short spans floor cross beams may be omitted or used only at columns to secure lateral stiffness. Beams are usually designed as tee beams, and thereby a part of the floor slab is utilized as a part of the beam. The width of the slab thus considered to act as part of the beam should not exceed one-fourth of the span length, and the overhanging width ou either side of the web should not be over six times the thickness of the slab.

Floor Slabs. Reinforcement may be of small rods, wires or metal fabric, the latter especially on short spans. Cross reinforcement of small rods or wires about two feet apart laid parallel to the beam supporting the slab should be used to prevent cracks, shrinkage, etc. If the length of the slab exceeds $1\frac{1}{2}$ times its width, the entire load should be carried by transverse reinforcement. For rectangular slabs, the length of which does not exceed $1\frac{1}{2}$ times the width and which are supported on four sides and reinforced in both directions, the proportion of the load is determined by the formula: R=1/b=0.5, where R is the ratio of the load, I the length and b the width of the slab. An effective bond should be provided at the junction of beam and slab, and if the principal reinforcement of the slab is parallel to the beam, transverse reinforcement should be used extending over the beam and well into the slab.

Spacing of Reinforcing Bars. The lateral spacing of parallel bars should not be less than 3 diameters, nor should the clear vertical space between layers of bars be less than 1 inch; distance from edge or side of beam or slab should not be less than 2 diameters.

Shear or Web Reinforcement. In the calculation of web reinforcement, concrete may be assumed to carry ½ of the total shear; the remaining ¾ to be taken by additional reinforcement arranged in intervals equal to the depth of the beam. The usual method of reinforcing beams against failure by diagonal tension or shear is to use bent rods or stirrups in either vertical or inclined position. The longitudinal spacing of such rods or stirrups should not exceed ¾ of depth of beam if inclined, and ½ of depth if vertical.

Formulas. The following formulas are those given by the Committee of the American Society of Civil Engineers on Concrete and Reinforced Concrete (Transactions, Vol. LXXXI—No. 1398, December, 1917.)

REINFORCED CONCRETE BEAMS-NOTATION

Rectangular Beams, Reinforcement for Tension only.

- fs =Tensile unit stress in steel, in pounds per sq. inch.
- fc =Compressive unit stress in concrete, in pounds per sq. inch.
- Es = Modulus of elasticity of steel, in pounds per sq. inch.
- Ec = Modulus of elasticity of concrete, in pounds per sq. inch.
- n =Elasiteity ratio, E_s+E_c.
- M =Bending moment or Moment of Resistance, in inch pounds.
- M_s=Moment of resistance of steel, in inch pounds.
- Mc-Moment of resistance of concrete, in inch pounds.
- As =Area of steel in tension, in square inches.
- b =Width of beam, in inches.
- d =Depth of beam to center of steel in tension, in inches.
- k =Ratio of depth of neutral axis to effective depth, d.
- =Ratio of lever arm of resisting couple to depth, d.
- z =Distance, from top to resultant of compression, in inches.
- id =Arm of resisting couple, in inches=d-z.
- p =Ratio of areas, steel in tension to rectangle, bd,=A+bd.
- kd =Distance from top of beam to neutral axis, in inches.

Tee Beams, Reinforced for Tension only.

- b =Width of flange, in inches.
- b' =Width of stem, in inches.
- t =Thickness of flange, in inches.

Rectangular Beams, Reinforced for Tension and Compression.

- A' = Area of steel in compression, in square inches.
- p' =Ratio of areas, steel in compression to rectangle, bd,=A'+bd.
- f's = Compressive unit stress in steel, in pounds per sq. inch.
- C =Total compressive stress in concrete, in pounds per sq.inch.
- C' =Total compressive stress in steel, in pounds per sq. inch.
- d' =Depth to center of steel in compression, in inches.
- z = Depth to resultant of C+C', in inches.

Shear and Bond.

- V =Total shear, in pounds.
- V' =Total Shear producing stress in reinforcement, in pounds,=2/3V.
- v =Shearing unit stress, in pounds per sq. inch.
- u =Bond stress per unit surface of bar, in pounds per sq. inch.
- Σ_0 =Sum of perimeters of tension bars, in inches.
- T =Total stress in single reinforcing member, in pounds.
- s = Horizontal spacing of reinforcing members, in inches.

REINFORCED CONCRETE BEAMS—FORMULAS

Rectangular Beams, Reinforced for Tension only,

$$kd = d\left(\sqrt{2pn + (pn)^2} - pn\right)$$

$$z = \frac{1}{2}kd \qquad jd = d\left(l - \frac{1}{2}k\right)$$

$$M = f_S A_S jd = f_S p jbd^2$$

$$\begin{array}{ll} M = \frac{1}{2} f_{c} k j b d^{2} \\ f_{s} = \frac{M}{A_{s} j d} = & \frac{M}{p j b d^{2}} \end{array}$$

$$f_{\rm c} = \frac{2M}{1 \text{kbd}^2} = \frac{2pf_{\rm s}}{k}$$

Balanced Reinforcement:

Reinforcement:
Steel ratio, p =
$$2\frac{1}{I_{\rm S}} \left[\frac{f_{\rm S}}{n_{\rm C}} + 1 \right]$$
 bd3 = $\frac{M}{I_{\rm S}pj} = \frac{M}{\frac{1}{2}{\rm fc} \, kj}$

$$bd^3 = \frac{M}{f_8 pj} = \frac{M}{\frac{1}{2}fc \ kj}$$

Tee Beams, Reinfored for Tension only,

 $M = \frac{f_c bt (kd - \frac{1}{2}t)jd}{kd}$

 $\mathbf{M} = \mathbf{f}_{\mathbf{S}} \mathbf{A}_{\mathbf{S}} \mathbf{j} \mathbf{d}$

$$kd = \frac{2ndA_S + bt^2}{2nA_S + 2bt}$$

Neutral axis in flange-(use formulas for rectangular beams.)

Neutral axis in stem-

$$z = \frac{t(3kd-2t)}{3(2kd-t)}$$
 jd = (d-z)

$$f_S \ = \frac{M}{A_S j d} \quad = \quad \frac{f_C n (1-k)}{k}$$

$$f_c = \frac{Mkd}{bt(kd-it)jd} = \frac{f_sk}{n(1-k)}$$

Rectangular Beams, Reinforced for Tension and Compression. $kd = d \left[\sqrt{2n(p+p'\frac{d'}{d}) + n^2(p+p')^2 - n(p+p')} \right]$

$$z = \frac{\frac{1}{3}k^{8}d + 2p'nd'(k - \frac{d'}{d})}{k^{2} + 2p'n(k - \frac{d'}{d})} \quad \text{id} = (d-z)$$

$$f_{\rm s} = \frac{\rm M}{\rm pjbd^2} = \frac{\rm nf_{\rm c}(1-k)}{\rm k}$$

$$t'_{s} = \frac{nf_{c}(k - \frac{d'}{d})}{k}$$

$$f_{\mathbf{C}} = \frac{6M}{bd^2\left[3k-k^2+\frac{6p'n}{k}(k-\frac{d'}{d})(l-\frac{d'}{d})\right]}$$

Shear and Bond.

Rectangular Beams

$$\begin{array}{ll} v &= \frac{V}{b\mathrm{j}\mathrm{d}} & \mathrm{T} = \frac{V'_S}{\mathrm{j}\mathrm{d}} & \mathrm{u} = \frac{V}{\mathrm{j}\mathrm{d}} \underline{\Sigma}_0 \\ \\ v &= \frac{v}{b'\mathrm{j}\mathrm{d}} & \mathrm{T} = \frac{V'_S}{\mathrm{j}\mathrm{d}} & \mathrm{u} = \frac{V''}{\mathrm{j}\mathrm{d}} \underline{\Sigma}_0 \end{array}$$

If reinforcing bars are bent up at angles between 20° and 45°, and web members inclined at 45°

$$T = \frac{8V'}{4id}$$

The formulas are based upon the following assumptions:

- 1. The applied forces are perpendicular to the neutral plane.
- 2. The deformation of any fiber is proportional to its distance from the neutral axis.
- 3. The resisting moment of the beam is the sum of the moments above the neutral axis, due to the concrete area in compression, and of those below the neutral axis, due to the steel area in tension.
 - 4. The tensile strength of the concrete is negligible.

Bending Moments. If slabs and girders are reinforced over supports to take care of negative bending moments, they act as continuous beams, and the bending moment at the center of the span will be reduced. It is considered good practice to use the following values:

Floor slabs, M at center and at supports= $\frac{1}{12}$ wl².

Beams, M at center and at supports= $\frac{1}{12}$ wl² for interior spans, and $\frac{1}{10}$ wl² for end spans.

If beams are freely supported at ends, $M = \frac{1}{8} wl^2$.

Columns. Columns may be reinforced by means of longitudinal bars, by bands or hoops, or by both. The general effect of the banding or hooping is to permit the use of somewhat higher working stresses; the values of As and p given in the formula which follows, refer to longitudinal steel reinforcement only:

P =total load on columns, in pounds.

A =total area of column section, in square inches.

Ac=area of concrete, in square inches.

As = area of steel, in square inches.

p = ratio of steel area to total section, $A_s \div A$.

fc =unit compressive stress in concrete, in pounds per sq. inch:

Working Stresses. The following working stresses are in current use for reinforcing bars of medium structural steel and good Portland cement and gravel concrete of a 1:2:4 mixture:

fc=unit compressive stress of concrete		650	lb.	sq.	in.
fv=unit shearing stress of concrete,				-	
straight horizontal reinforcement		40	"	"	"
special shear reinforcement	90 to	120	"	"	"
fu = unit bond stress of concrete, smooth					
rods and deformed bars					
fs =unit tensile stress of steel	16	,000	"	"	"
rod reinforcement	16	.000	"	"	"
wire reinforcement	20	,000	"	66	"
fk=unit compressive stress of steel	16	,000	"	"	"
$n = E_c \div E_a = 15$.					

FLOOR CONSTRUCTION

Substituting in the formulas given for rectangular beams, reinforced for tension only, the values for fc=650, fs=16,000 and 20,000, and n=15, the following constants are obtained for equal moments of resistance Mc=Ms.

Notation	fc=	=650	Notation	fc==650			
11002000	fs=16,000	fs==20,000	14062000	fs==16,000	fs==20,000		
p k j	0.00769 0.37864 0.87379	0.00533 0.32773 0.89076	pj kj fspj—}fckj	0.00672 0.33085 107.526	0.00474 0.29193 94.877		

For approximate calculations, the arm of the resisting couple, jd, may be taken at 0.9d, and ordinarily accepted working stresses of 16,000 for steel and 650 for concrete will not be exceeded if the steel ratio, p, does not exceed 0.008.

Explanation of Tables. Reinforced Concrete Slabs: The tables given on page 338 are based upon the preceding formulas for rectangular beams reinforced for tension only, and upon fiber stresses of 650 pounds per square inch for concrete, 16,000 pounds for steel bar or rod reinforcement, 20,000 pounds for steel wire reinforcement, and for an elasticity ratio of n=15.

The bending moments are given in foot pounds per foot of width; below and to the left of the zigzag lines the values are determined by the maximum allowable fiber stress on steel; above and to the right they are determined by the maximum allowable stresses in concrete.

The first column gives the total thickness of the slab, the second, the distance from the center of the steel to the bottom of the slab, and the third the approximate weight of concrete slabs one foot square.

EXAMPLE.—Required the reinforcement for a slab continuous at four sides and 5 inches thick to carry a superimposed load of 150 pounds per square foot over a clear span of 8 feet.

Assuming the weight of the concrete slab in pounds at twelve times the thickness of the slab in inches, then the weight of the slab per foot is 12x5=60 pounds, and the total weight, W, for a span of 8 feet is (60+150)x8=1680 pounds.

M=WL+12=1680x8+12=1120 foot-pounds.

If medium structural steel bars or rods are used, the required area, by the upper table, page 338, is 0.24 square inches, and the sizes may be taken from page 122.

If triangle mesh is used, the steel area required by lower table, page 338, computed for a 5 inch slab, is, by interpolation, 0.185 square inches, requiring by table, page 339, triangle mesh style number 208.

CARNEGIE STEEL COMPANY

REINFORCED CONCRETE SLABS

BENDING MOMENTS IN FOOT POUNDS PER FOOT OF WIDTH

Allowable Fiber Stress: Steel, 16,000 and Concrete, 650 Pounds per Sq. Inch

	of 1 Sc	1. Ft.		A	rea of	Steel F	leinfor	cemen	t in Sa	uare I	nches	per Fo	ot of	Width	
8.88	iea iea	ئة. تة ب													
Thickness, Inches	Distance, a, Inches	Weight, Pounds	.10	.20	.30	.40	.50	.60	.70	.80	.90	1.00	1.10	1.25	1.50
21/2	3/4	30	209	353											
3 -	84	36	272	525	599										
31/2	3/4	42	335	650	858					İ	ì				
4	3/4	48	398	775	1135	1245			ţ						
41/2	3/4	54	461	900	1235	1584	l			}					
5	1	60	497	961	1412	1766	1894								
$5\frac{1}{2}$	1	66	558	1087	1600	2101	2312								
6	1	72	621	1213	1787	2349	2760	2922							
$6\frac{1}{2}$	1	78	686	1340	1975	2596	3205	3431							
7.	1	84	751	1466	2162	2844	3515	3974	4173						
71/2	11/4	90	783	1531	2257	2969	3669	4254	4465						
8	11/4	96		1658	2446	3218	3977	4728	5097	5309	5494				
81/2	11/4	102		1785	2634	3467	4288	5099	5734	5982	6206				
9	1½	108		1849	2730	3594	4444	5283	6069	6338	6574				
91/2	11/2	114		1977	2919	3845	4757	5656	6543	7063	7330				
10	11/2	120		2104	3109	4096	5068	6027		7826	8120				
101/2	13/4	126	1		3205	4222	5224	6213	7192	8163	8525				
11	13/4	132			3395	4475	5537	6588	7625	8652	9359			10369	
111/2	13/4	138			3586	4726	5850	6960	8058		10224				
12	2	144	l	1	3681	4852	6007	7148	18276	9393	10500	11037	11376	11858	12494

Allowable Fiber Stress: Steel, 20,000 and Concrete, 650 Pounds per Sq. Inch

	of 1S	q. Ft		A	rea of	Steel	Reinf	orcem	ent ir	. Squ	are In	ches 1	oer F	oot of	Widt	h	
Thickness, Inches	Distance, a, Inches	Weight, Pounds	.04	.06	.08	.10	.12	.14	.16	.18	.20	.25	.30	.35	.40	.45	.50
21/2	3/4	30	108	160	211	261	295	311		342							
3 3½	8/4 8/4	36 42	140	207 256	273 338	338 419	404 499		656	724	750	808	858	900			
4 4½ 5	8/4 8/4	48 64	205 237	304 352 377	401	498 577	594 688	798	907		1123	1354	1439	1194 1516	1584		
5½ 6	1	60 66 72		421	500 560 624	621 697 777	740 832 928	965	1097	1228	1359	1682	1950	1690 2056 2449	2151	2236	2312
6½ 7	1	78 84			691	859 939	1025	1189	1352	1514	1675	2075	2469	2858 3131	3002	3124	323
7½ 8	11/4	90 96				978	1168	1356	1543	1729	1913	2370	2821	3268 3542	3711	3863	400
8½ 9		102 108					1358	1578	1797	2015	2231	2766	3292	3815 3955	4334	4850	512
9½ 10		114 120							1990	2231		3063	3649	4230	4806	5378	594

TRIANGLE MESH CONCRETE REINFORCEMENT

AMERICAN STEEL AND WIRE COMPANY STANDARD

Triangle Mesh Reinforcement

Ultimate Strength (minimum), 85,000 lbs. per square inch

Elastic Limit (minimum), 55,000 lbs. per square inch

Longitudinal Wires, Spaced 4" Centers

Cross Wires. Spaced 4" Centers

Triangle Mesh is a woven fabric of cold drawn steel wire, providing a continuous reinforcement, an even distribution of metal, and a perfect bond,

Made with both single and stranded tension members in lengths up to 300 feet and in widths up to 56 inches.

TRIANGLE MESH-STYLES, AREAS, AND WEIGHTS Longitudinal and Cross Wires (No. 14 A. S. & W. Co. Gage), Spaced 4 Inches.

mi 1- M	I	ongitudinal Wi	re	Triangl	e Mesh
Triangle Mesh	Number	Thicknes,	Net Area	Total Area	Approx. Weight
Style	of	A.S. & W. Co.	per Foot Width,	per Foot Width,	per 100 Sq. Ft.
Number	Strands	Wire Gage	Sq. Inches	Sq. Inches	Pounds
032	1	No. 12	.026	.032	22
040	1	" 11	.034	.040	25
049	1	" 10	.043	.049	28
058	1	" 9	.052	.058	32
068	1	" 8	.062	.068	35
080	1	" 7	.074	.080	40
093	1	" 6	.087	.093	45
107	1	" 5	.101	.107	50
126	1	" 4	.120	.126	57
146 153 168	1 1 1 2	" 3 14" " 2 " 6	.140 .147 .162 .174	.146 .153 .168 .180	65 68 74 78
180 208 245	2 2 2 3	" 5 " 4	.202 .239 .261	.208 .245 .267	89 103 111
267 287 309 336	3 3 3	" 5½" 5 4½ " 5 " 4½	.201 .281 .303 .330	.207 .287 .309 .336	119 128 138
365	3	" 4	.359	,365	149
395		" 3½	.389	.395	160

Length of Rolls: 150, 200 and 300 feet.

Width of Rolls: 16, 20, 24, 28, 32, 36, 40, 44, 48, 52 and 56 inches, approximately. Triangle Mesh is furnished either with or without galvanizing; unless otherwise specified

material will be shipped not galvanized.

BUCKLE PLATES

Buckle Plates, as generally used on highway bridges with paved floors, are subjected to a concentrated live load due to the weight of a wagon or truck wheel and to a uniform dead load due to the weight of the roadway paving.

Buckle Plates should be placed with the buckle turned down; then the live load which can be placed on a buckle in addition to the uniform dead load can be obtained from the following formula. Let:

P =Total allowable concentrated load on buckle plate, in pounds.

w = Uniform load, in pounds per square foot.

d =Rise of buckle, in inches.

1 =Length of buckle, in inches.

b =Width of buckle, in inches.

t =Thickness of buckle plate, in inches,

$$P = t \left(\frac{300 \text{ fdt} - 0.525 \text{ wlb}}{6 \text{ d} + 15 \text{ t}} \right)$$
 pounds, per buckle.

The following table gives, for a fiber stress of 9000 pounds, the maximum concentrated live load in pounds allowed on buckles (turned down), in addition to a uniform load assumed to be the average weight of paving, etc., of 120 pounds per square foot.

Thickness of Buckle Plate.	Rise, d, in Inches								
Inches	2	2½	3	3½					
1/4	20000	22000	22000	22500					
%16	30000	33000	34000	34000					
3 ⁄8	41000	45000	47000	47500					
7/16	53000	58000	61000	63000					

The total allowable uniformly distributed load which a buckle plate will safely support may be obtained from the formula:

W = 12 fdt pounds, per buckle.

When the buckles are turned up, use one-third of above values.

BUCKLE PLATES

AMERICAN BRIDGE COMPANY STANDARD

mper	Size of Buckle	Rise	Radii of	Buckle	Number of Buckles		of Flanges	and Fillets
Die Number	Side l, Side h FtIn. FtIn	d, In.	Side l, FtIn.	Side b, FtIn.	in One Plate	End Flanges l ₁ , l ₈	Fillets	Side Flanges b ₁ , b ₂
1 2 3 3 4 4 5 6 6 7 8 9 9 0 11 1 12 2 1 14 1 19 0 20 2 2 2 4 2 5 6 2 7 2 8 8 2 9 9 0 3 1 1 3 2 3 3 3 4 4	3-11 4-6 4-6 3-11 3-11 3-6 3-13-9 3-13-9 3-13-9 3-13-13-13-13-13-13-13-13-13-13-13-13-13	31/2/33/33 33 33 33 33 33 33 33 33 33 33 33	6-856 8-976 7-972 6-3 7-178 4-1057 7-178 10-2 6-1074 3-1074 3-1074 3-1074 3-1074 3-1074 3-1074 3-1074 3-1074 3-1074 3-1074 3-1076 3-107	7-1758 10-2 10-2 10-2 10-2 10-3 10-3 10-4 10-3 3-10-4 4-7-10-4 3-10-4 4-7-1	1 to 11 1 to 12 1 to 11 1 to 12 1 to 9 1 to 9 1 to 9 1 to 9 1 to 10 1 to 10 1 to 10 1 to 10 1 to 15 1 to 5	Preferably made alike Minimum = $2''$ Maximum = $1'-6''$ If wider than $1'-6''$ use angles riveted across the plate for stiffeners	Minimum = $2''$ Maximum = $6''$	Preferably made alike $Minimum = 2'' \qquad Maximum = 6 1 \%''$ Norz.—When the side flanges by and be are of unequal width, the material should be ordered wide enough to make twee flanges of the greater width, the narrower flange to be sheared to required width after buckling.

Thickness of Plates, $\frac{1}{4}$ ", $\frac{1}{16}$ ", $\frac{1}{16}$ ", $\frac{1}{8}$ " or $\frac{7}{16}$ ". Plates of greater length than given in table may be made by splicing with bars, angles, or tees. All plates are made with buckles up, unless otherwise ordered. When buckles are turned down. a drain hole should be punched in the center of each buckle and should be shown on sketch.

Buckles of different sizes should not be used as it increases the cost of the plate.

Connection holes are generally for 5%", 54" or 7%" rivets or holts. Holes of different sizes in same plate will increase the cost of the plate.

Spacing for holes lengthwise of plate should be in multiples of 3" and should not exceed 12". Odd spaces to be at end of plate and in even 1/4". Minimum spacing crosswise 41/2", usually 6".

Die number must be shown on drawings. Sketches for Buckle Plates should indicate allowable overrun in length and width

ELEMENTS OF TROUGH PLATES

1 /	Single Section		Riveted Section						
Section Index	Size, Inches	Weight per Foot, Pounds	a, Inches	d, Inches	Weight per Square Foot, Pounds	Section Modulus, One Foot Width, Inches ³			
M 14	9½ x 3¾	23.2	8	61/2	34.8	15.58			
M 13	91/2 x 3 3/4	21.4	8	63/8	32.1	14.28			
M 12	9½ x 3¾	19.7	8	61/4	29.6	13.00			
M 11	9 1/2 x 3 3/4	18.0	8	61/8	27.0	11.79			
M 10	9½ x 3¾	16.3	8	6	24.5	10.69			

ALLOWABLE UNIFORM LOAD IN POUNDS PER SQUARE FOOT

Span	Fibe	er Stress,	16000 Lb	s. per Sq	. In.	. Fibe	er Stress,	12000 Lb	s. per Sq	. In.
Feet	M 14	M 13	M 12	M 11	M 10	M 14	M 13	M 12	M 11	M 10
5	6647	6093	5547	5030	4561	4986	4570	4160	3773	3421
6	4616	4231	3852	3493	3167	3462	3173	2889	2620	2376
7	3392	3109	2830	2567	2327	2543	2331	2124	1925	1745
8	2597	2380	2167	1965	1782	1948	1785	1625	1474	1336
9	2052	1880	1712	1553	1408	1539	1410	1284	1164	1058
10	1662	1523	1387	1258	1140	1246	1142	1040	943	855
11	1373	1259	1146	1039	942	1030	944	860	780	707
12	1154	1058	963	873	792	866	793	722	655	594
13	983	901	821	744	675	738	676	615	558	506
14	848	777	707	642	582	636	583	531	481	436
15	739	677	616	559	507	554	509	462	419	. 381
16	649	595	542	491	445	. 487	446	406	368	. 334
17	575	527	480	435	395	431	395	360	328	296
18	513	470	428	388	352	385	353	321	291	264
19	460	422	384	349	316	345	316	288	261	237
20	415	381	347	314	285	312	286	260	236	214

The values given in above tables are the safe loads per square foot of floor surface and are based upon the average resistance of the riveted portion within

distance, a.

The weight of the plates are included in the safe loads and must be deducted

to obtain the net superimposed safe load.

Safe loads for other fiber stresses than those given in table may be obtained from the values given by direct proportion of the fiber stresses.

The weight per square foot does not include the weight of rivet heads or other details.

CORRUGATED PLATES

ELEMENTS OF CORRUGATED PLATES

	Single Section	1	Riveted Section						
Section Index	Size, Inches	Weight per Foot, Pounds	a, Inches	d, Inches	Weight per Square Foot, Pounds	Section Modulus, One Foot Width, Inches ⁸			
M 35	12 ₁₆ x 27/8	23.7	$12_{16\over 6}$	21/8	23.3	4.39			
M34	$12_{16}^3 \times 2_{16}^{13}$	20.8	12^{3}_{16}	213	20.4	3.84			
M33	$12^{3}_{16} \times 2^{3}_{4}$	17.8_	$12^{\frac{3}{16}}$	23/4	17.5	3.28			
M32	8¾ x 15/8	12.0	884	15/8	/ 16.5	1.95			
M 31	834 x 118	10.1	834	1,8	13.8	1.55			
M 30	8¾ x 1½	8.1	834	11/2	11.5	1.10			

ALLOWABLE UNIFORM LOAD IN POUNDS PER SQUARE FOOT

Span	Fil	er Stre	ss, 1600	0 lbs. p	per sq. i	n.	Fiber Stress, 12000 lbs. per sq. in.					
in Feet	M 35	M 34	М 33	M 32	M 31	M 30	M 35	M 34	М 33	M 32	М 31	М 30
5	1873	1638	1400	832	661	469	1405	1229	1050	624	496	352
6	1301	1138	972	578	459	326	976	853	729	433	344	244
7	956			425	337	240	717	627	536	318	253	180
8	732	640	547	325	258	183	549	480	410	244	194	138
9	578	506	432	257	204	145	434	379	324	193	153	109
10	468	410	350	208	165	117	351	307	262	156	124	88
11:	387	339	289	172	137	97	290	255	217	129	103	73
12	325	284	243	144	115	82	244	213	182	108	86	61
13	277	242	207	123	98	69	208	182	155	92	73	52
14	239	209	179	106	84	60		157	134	80	63	45
15	208	182	156	92	74	52	156	137	117	69	51	39
		!		1		1		1				

The values given in above tables are the safe loads per square foot of floor surface and are based upon the average resistance of the riveted portion within distance, a

The weight of the plates are included in the safe loads and must be deducted to obtain the net superimposed safe load.

Safe loads for other fiber stresses than those given in table may be obtained from the values given by direct proportion of the fiber stresses.

The weight per square foot does not include the weight of splice bars, rivet heads or other details.

ELEMENTS OF CHECKERED PLATES

Section	Wid	th, a	Thickness,	Weight per	Section Modulus for-
Index	Minimum, Inches	Maximum, Inches	t, Inches		One Foot Width, Inches
M 54	12	60	1/2	21.4	0.500
M 53	12	60	176	18.9	0.383
M 52	12	60	3∕8	16.3	0.281
M51	12	60	16	13.8	0.195
M 50	12	60	1/4	11.2	0.125
M49	12	48	1 ³	8.7	0.070

ALLOWABLE UNIFORM LOAD IN POUNDS PER SQUARE FOOT

Span	Fiber	Stress, 1	(6000 P	ounds p	er Squa	Fiher Stress, 12000 Pounds per Square Inch						
in Feet	M 54	M 53	M 52	M 51	M 50	M 49	M 54	M 53	M 52	M 51	M 50	M 49
1	5333	4083	3000	2083	1333	746	4000	3064	2248	1560	1000	560
2	1333	1021	750	520	333	187	1000	766	562	390	250	140
3	593	454	333	232	148	83	444	340	250	173	111	62
4	333	255	188	130	83	47	250	191	141	97	63	
5	213	163	120	83	53		160	122	90	62		
-6	148	113	83	58		l	111	85	62	1		
7	109	83	61			1	82	63		•	!	
8	83	64		1		ľ	62		İ			
9	66				1		1		l			

The values given in above table are the safe loads per square foot of plates supported on two sides only and are based upon the resistance of rectangular sections, 12 inches by the net section, t.

The weight of the plates are included in the safe loads and must be deducted to obtain the net superimposed safe load.
Safe loads for other fiber stresses than those given in table may be obtained from the values given by direct proportion of the fiber stresses.

ROOFS AND ROOF LOADS

The design of roofs and the selection of suitable roofing materials depend on the character of the building, whether monumental, public, residence, mill or shop; permanent or temporary; geographical location as regards allowance for snow and wind loads, and also availability of materials and familiarity of workmen with the construction; atmospheric conditions as concerns presence of industrial or other plants producing deleterious gases; watertightness or resistance of the roof layers to penetration of water, snow or ice under storm and long continued exposure; wind resistance or the strength of materials to resist displacement of the entire surface or disruption between points of support; type and pitch of roof, whether self-supporting on wide spans or requiring the use of sheathing, and whether materials can be laid safely on steep surfaces.

A good roof on a permanent structure should be fireproof from within as well as without, made of refractory materials supported by equally refractory framing. It should last without repair as long as the building stands without repair. Its maintenance cost should be low and its materials purchased on the probable life and service of the structure.

Snow Loads. The snow loads on roofs vary with the geographical location, the altitude and humidity of the place, and with the slope of the roof. Where snow is likely to occur, the minimum load per horizontal square foot of roof should be taken at 25 pounds for all slopes up to 20 degrees; this load to be reduced one pound for each degree of increase in slope up to 45 degrees, above which no snow load need be considered. In severe climates these loads should be increased in accordance with actual conditions. Regard should also be taken to the possibility of partial snow load with local concentration.

Wind Loads. These vary also with the geographical location and the slope of the roof, and, when not fixed by building laws, are usually taken as acting horizontally at 40 pounds per square foot on vertical surfaces of the most exposed structures, and 30 pounds on less exposed structures. On inclined surfaces only the normal components of the wind pressure need be considered. The following normal pressures are based on the formula given by Duchemin: $P = P_1 \frac{2 \sin \alpha}{1 + \sin^2 \alpha}$, where P_1 is the direct horizontal pressure assumed at 30 pounds per square foot on the vertical surface and P the normal pressure on a unit of surface, sloping at angle α with the horizontal.

CARNEGIE STEEL COMPANY

NORMAL WIND PRESSURE, IN POUNDS PER SQUARE FOOT

Slope a °	Pressure per Square Foot, Pounds	Slope a °	Pressure per Square Foot, Pounds	Slope a O	Pressure per Square Foot, Pounds	Slope a O	Pressure per Square Foot, Pounds
5	5.19	20	18.37	35	25.90	50	28.97
10	10.11	25	21.51	40	27.29	55	29.41
15	14.55	30	24.00	45	28.28	60	29.69

For other pressures than 30 pounds per square foot, the values given above change in proportion. For slopes over 60° the values assumed for horizontal pressure are applied.

Combined Roof Loads. In climates corresponding to that of Pittsburgh, and where the roof loads are not fixed by building laws, ordinary roofs up to 80 feet span should carry the following minimum loads per square foot of exposed surface, applied vertically, to provide for dead, wind and snow loads combined.

Roof Covering							
Gravel or on boards, flat slope, 1 to 6 or less	. 50						
Composition on boards, steep slope, more than 1 to 6	. 45						
Roofing on 3 inch flat tile or cinder concrete	. 60						
Corrugated sheeting on boards or purlins	. 40						
Slate on boards or purlins							
on 3 inch flat tile or cinder concrete	. 65						
Tile on steel purlins	. 55						
Glass	. 45						

For roofs in climates where no snow is likely to occur, reduce these loads by 10 pounds per square foot, but no roof or any part thereof should be designed for a total live and dead load less than 40 pounds per square foot.

Roof Covering. As stated above, suitable protection of a building against rain, snow, etc., depends on the character and location of the building, and the slope or pitch of the roof. Tin, tar, gravel, asphalt roofings and similar compositions are used for flat roofs; slate, tiles, and tin are used for slant roofs of public buildings and residences, shingles for smaller dwelling houses, and corrugated sheeting for shops and warehouses. Slate, tile, tin, and shingles are usually attached to a layer of planking, called sheathing, which in turn is supported by rafters, often called jack rafters, resting upon the roof purlins, or placed directly upon the purlins of the roof.

ROOF CONSTRUCTION

APPROXIMATE WEIGHT OF ROOFING MATERIAL

Roofing Material	Weight per Sq. Foot, Pounds
Copper, No. 22 B. W. G	11/4
Corrugated galvanized iron. No. 20 B. W. G.	
Corrugated galvanized iron, No. 26 B. W. G.	
Felt, 2 layers	
Felt and asphalt or coal-tar.	
Glass, 1/8 inch thick	1 3/4
Lath and plaster ceiling.	6-8
Lead, 1/8 inch thick	71/4
Mackite, 1 inch thick, with plaster	10
Sheathing, hemlock, 1 inch thick.	2
Sheathing, white pine, spruce, 1 inch thick	
Sheathing, yellow pine, 1 inch thick	2 1/4 - 2 1/2
Shingles, 6x18 inches, 6 inches to weather	
Skylight, glass 18 to 1/2 inch, including frame	
Slag roof, 4-ply, with cement and sand	
Slate, 1/8 inch thick, 3 inch double lap	4 1/2
Slate, 3 inch thick, 3 inch double iap	
Terneplate, IC	
Terneplate, IX	
Tiles (plain), $10\frac{1}{2}$ x $6\frac{1}{4}$ x $\frac{5}{8}$ inches, $5\frac{1}{4}$ inches to weather	18
Tiles (Spanish), 14½x10½ inches, 7¼ inches to weather	81/2
Zinc, No. 20 B. W. G	11/2
,	

Roof Trusses. Trusses are used where wide roof openings are to be spanned; they form a structure of compression and tension members and produce vertical reactions under vertical loads; the total load of the roof, that is, the weight of the truss, purlins, roof covering, ceiling, and often also the snow and wind load, is usually considered a uniformly distributed load, equally divided between the two supports and producing equal and vertical end reactions.

The purlins usually rest on the upper chord of the truss, transmitting to the latter the load of the roof covering, the wind and snow load, that of the jack rafters and their own, and are often so arranged as to carry the dead load directly to the truss joints or panel points to avoid transverse stresses. The distance between two consecutive joints of the top chord is the panel length, the distance between two adjacent trusses the bay length.

The transverse strength of the sheathing or of the corrugated iron used for the roof covering generally determines the spaces between the jack rafters or the purlins. These purlins or rafters are small steel shapes, such as beams, channels and angles, or wooden beams, if the roof is not of fireproof construction.

TRUSSES-COEFFICIENTS OF STRESSES

Memher	n	=Sr	an ÷	Heig	ht =	2 cot	а		$n = Span \div Height = 2 \cot \alpha$						
	3	24/7	2 cot 30°	4	24/5	5	6	Member	3	24/7	2 cot 30°	4.	24/5	5	6
Aa Bb					3.90 3.52		4.74	Aa Bb			5.00 4.00				
La	2.25	2.57	2.60	3.00	3.60	3.75	4.50	Ce	3.40	3.95	4.00	4.70	6.73	5.99	7.27
Lc ah	0.83	0.86	0.87	0.89	2.40 0.92	0.93	0.95	La Ld	2.25	2.67	4.33 2.60	3.00	3.60	3.75	4.50
be	0.75	0.86	0.87	1.00	1.20	1.25	1.50	ab, be			1.00 1.73				

n	_	т	/H	_	9	co	t. i

	n	— Sp	an ÷	Heig	ht ==	2 cot	a a		n	=Sp	an ÷	Heig	ht =	2 cot	a
Member	3	24/7	2 cot 30°	4	24/5	5	6	Memher	3	24/7	2 cot 30°	4	24/5	5	6
Aa Bh	6.31	6.95 6.44					11.07 10.75		9.92 8.95					14.81 13.66	
Ce	5.20	5.94	6.00	6.93	8.33	8.68	10.43	Cc	8.81					14.07	
\mathbf{Df}	4.65	5.43					10.12		8.25					13.70	
La		6.00					10.50		7.28	8.41				12.55	
Lo			5.20					Fh	7.14					12.95	
Lg	3.00	3.43	3.46				6.00	La	8.25	9.43				13.75	
ab, ef	0.83	0.86	0.87	0.89	0.92	0.93	0.95	Ld	6.75	7.71				11.25	
ød	1.66	1.73	1.73		1.85		1.90	Li	4.50	5.14	-			7.50	
be, de	0.75	0.86	0.87	1.00	1.20	1.25	1.50	ab, bc, fg, gh	0.93	0.99				1.21	
dg	1.50	1.71			2.40		3.00		2.50	2.59				2.79	
fg	2.25	2.57	2.60	3.00	3.60	3.75	4.50	ed, ef	1.50	1.71					
•							[ei	2.25	2.57					
]]	hi	3.75	4.29	4.33	5.00	6.00	6.25	7.50

The pitch of a truss is the ratio of the rise or height to the span length of the truss. Pitch = H/L = 1/n, n = L/H = 1/pitch,

To obtain the stress in any member of a given truss, multiply the corresponding coefficient by the panel load W.

Compression members are designated by + and tension members by -

CARNEGIE STEEL COMPANY

TRUSSES—FORMULAS FOR STRESSES AND LENGTHS

I	RATT T	TRUSS	-4 P	ANE	LS		PRAT	TT TRUS	S6	6 PANELS					
Member	S	tress		1	Length	Member		Stress			Length				
Aa, Bb	+8/1/1	$n^2 + 4$	xW 1	4	L sec a	Aa, Bb	+ 5/4 1/	$n^2 + 4$	хW	, 0	L sec α				
$_{ m La}$	-84 I	1	xW 3	4	L	Cd	+ 1	$n^2 + 4$	xW	1∕8	$_{\text{L sec }} \alpha$				
Lc	_1/2 r	1	xW 3	2	L	La	5/4	\mathbf{n}	xW	1/8	L				
ab	+1		xW1	/2	h	Lc	<u> </u>	n	xW	1∕8	L				
bc	-1/1/1	12 + 16	xW	41∕	$L^2 + 16h^2$	Le	8/4	n	xW	1/8	L				

ab

cd

bc

de

+ 3/2

xW 3/3

 $-\frac{1}{4}\sqrt{n^2+16} \times W \frac{1}{6}\sqrt{L^2+16h^2}$

 $-\frac{1}{4}\sqrt{n^2+36} \text{ xW} \frac{1}{6}\sqrt{L^2+36h^2}$

h

I	PRATT	TRUS	8S-8 I	AN	ELS		PRATT TRUSS—10 PANELS						
Member		Stress			Length		Member		Stress			Lengt	h.
Aa, Bb Cd Df La Lc Le Lg ab cd ef bc	+¾√ +¾√ +¾√ -¾ -¾ - +1 +¾ +2 -¼√	n2+ n2+ n2+ n n n n	4xW 4xW xW xW xW xW xW xW xW	18 18 18 14 14 15 18 18 18 18 18 18 18 18 18 18 18 18 18	$egin{array}{c} \mathbf{L} & \mathbf{sec} \\ \mathbf{L} & \mathbf{sec} \\ \mathbf{L} & \mathbf{sec} \\ \mathbf{L} \\ \mathbf{L} \\ \mathbf{h} \\ \mathbf{h} \\ \mathbf{h} \\ \mathbf{h} \\ \mathbf{L}^{2}+1 \\ \end{array}$	а а а	Aa, Bb Cd Df Eh La Lc Le Lg Li ab	+2V $+34V$ $+34V$ -34 -2 -34 -34 $+1$ $+32$		xW xW xW xW xW xW xW xW xW xW	ል ል ል ል ል ል ል ል % % % %	L sec L sec L sec L sec L L L L h	а а а
de fg					$rac{ ext{L}^2+3}{ ext{L}^2+6}$			-1/4 V	$\frac{n^2+}{n^2+}$	xW xW 16xW 36xW 64xW	% ሴ/ ሴ/	$\frac{L^2+1}{L^2+1}$	36h ² 64h ²

ROOF CONSTRUCTION

TRUSSES—Coefficients of Stresses

n=L	$/\mathbf{H} =$	2 cot	¢
-----	-----------------	-------	---

Member	n	= Sp	an ÷	Heig	bt=	2 cot	a	n = Span + Height = 2 cot							a
	3	24/7	2 cot 30°	4	24/5	5	6	Member	3	24/7	2 cot	4	24/5	5	6
Aa, Bb	2.70	2.98	3.00	3.35	3.90	4.04	4.74	Aa, Bb	4.51	4.96	5.00	5.59	6.50	6.73	7.91
La	2.25	2.57	2.60	3.00	3.60	3.75	4.50	Cd	3.61	3.97	4.00	4.47	5.20	5.39	6.32
Lc	1.50	1.71	1.73	2.00	2.40	2.50	3.00	La	3.75	4.29	4.33	5.00	6.00	6.25	7.50
ab '	1.00	1.00	1.00	1.00	1.00	1.00	1.00	Lc			3.46				
bc	1.25	1.32	1.32	1.41	1.56	1.60	1.80	Le			2.60				
								ab			1.00				
	1							ed			1.50				
	1							bc			1.32				
								de	1.68	1.73	1.73	1.80	1.92	1.95	2.12

	n:	Sp	an ÷	Heigi	nt == :	2 cot	a	3.5	n = Span ÷ Height = 2 cot α						
Member	3	24/7	2 cot 30°	4	24/5	5	6	Member	3	24/7	2 cot 30°	4	24/5	5	6
Aa, Bb Cd Df La Lc Lc Le Lg ab cd ef bc de fg	5.41 4.51 5.25 4.50 3.75 3.00 1.00 1.50 2.00 1.25	5.95 4.97 6.00 5.14 4.29 3.43 1.00 1.50 2.00 1.32 1.73	6.00 5.00	6.71 5.59 7.00 6.00 5.00 4.00 1.50 2.00 1.41 1.80	7.80 6.50 8.40 7.20 6.00 4.80 1.00 1.50 2.00 1.56 1.92	8.08 6.73 8.75 7.50 6.25 5.00 1.00 1.50 2.00 1.60 1.95	7.91 10.50 9.00 7.50 6.00	Lg Li ab cd ef	6.31 5.41 6.75 6.00 5.25 4.50 3.75 1.00 1.50 2.00 2.50 1.25 1.68	6.95 5.95 7.71 6.86 6.00 5.14 4.29 1.00 1.50 2.50 1.32 1.73	8.00 7.00 6.00 7.79 6.93 6.06	8.94 7.83 6.71 9.00 8.00 7.00 6.00 5.00 1.50 2.50 1.41 1.80	10.40 9.10 7.80 10.80 9.60 8.40 7.20 6.00 1.50 2.50 1.56 1.92	9.42 8.08 11.25 10.00 8.75 7.50 6.25 1.00 2.00 2.50 1.60 1.95	12.65
				l				hi	2.61	2.64	2.65	2.69	2.77	2.80	2.92

CORRUGATED SHEETS

Corrugated sheets are used for roofs and sides of buildings. are usually laid directly upon the roof purlins and held in place by means of clips of steel hoops which encircle the purlin and are placed about 12 inches apart. Special care must be taken that the projecting edges of the sheets at the eaves and gable ends of the roof are well secured, otherwise the wind will loosen the sheets.

Corrugated sheets are made in the sizes given on opposite page, the size most generally used has nominally 21/2-inch corrugations. actual width 2% inches, about 1/2 inch in depth. The gages frequently used for roofing are Nos. 20 and 22, U. S. Standard Gage.

By one corrugation is meant the double curve between corresponding points, and by depth of corrugation the greatest deviation of the curved surfaces from the straight line.

One and one-half corrugations are allowed for lap in the width of the sheet and 6 inches in the length for the usual quarter pitch roof; one corrugation in width and 4 inches in the length of the sheet is usually allowed for sidings.

Corrugated sheets of 2, 21/2 and 3 corrugations are furnished in standard lengths of 5, 6, 7, 8, 9 and 10 feet and with a standard covering width of 24 inches, when laid with a lap of either one or one and one-half corrugations.

By experiment it has been determined that corrugated sheet steel, 5% inch deep and 0.035 inch thick, spanning 6 feet, began to give a permanent deflection with a load of 30 pounds per sq. foot, and that it collapsed with a load of 60 pounds per sq. foot. The distance between centers of purlins should, therefore, not exceed 6 feet and should preferably be less than this.

Approximately the uniformly distributed safe load of corrugated sheets may be obtained from the formulas given below, using the following notations:-

W=Total allowable uniform load, in pounds.

b—Curvilinear width of sheet, in inches (b=1.075 x covering width).

l=Unsupported length of sheet, in inches.

t=Thickness of sheet, in inches.

d-Depth of corrugations, in inches.

f=Allowable fiber stress, in pounds per sq. inch.

Then: W=
$$\frac{8fS}{I} = \frac{8f}{1} \times \frac{4bdt}{15} = \frac{32fbdt}{151}$$

for $f = 12000$ W = 25,600 bdt

for

CORRUGATED SHEETS

AMERICAN SHEET AND TIN PLATE COMPANY

DESCRIPTION OF SHEETS

AREAS OF SHEETS

	Corru	Width,	Inches	of	Sq. I	Ft. in 1 8	Sheet	Sheets in 100 Sq. Ft.					
Width,	Inches Num-				Cover-	딒급		orrugatio	ns	Corrugations			
Nomi- nal	Actual	Depth, Inches	ber per Sheet	Sheet	ing	Leng Sheet,	5''	3",2½", 2",	1½″, 5/8″,	5′′	3",2½", 2"	11/4",	
5 3 *2½	5	7/8	6	28 26	25 24		$11.67 \\ 14.00$	10.83 13.00	$10.42 \\ 12.50$		9.23 7.69	9.60 8.00	
*2½ 2½	2% 2%	1/2	10½ 10	27½ 26	24 24 24		$16.33 \\ 18.67$		14.58 16.67	6.12	6.59 5.77	6.86 6.00	
2 1¼ 5/8	2 11/4 5/8	7/8 16/2/27 1/27 18/8 3/6	$\frac{13}{20}$	26 25	$\frac{24}{23\%}$	120	$\frac{21.00}{23.33}$	21.67	$18.75 \\ 20.83$	4.29	5.13 4.62	5.33 4.80	
5/8	5/8	16	40	25	24%	144	28.00	26.00	25.00	3.57	3.85	4.00	

Standard lengths 5, 6, 7, 8, 9 and 10 ft. Maximum length, 12 ft. except for $\frac{5}{6}$ " corrugation. Sizes denoted $\frac{27}{2}$ are for the $\frac{27}{2}$ " width.

PAINTED SHEETS-Weights in Pounds per 100 Square Feet.

Cor-			, ,		Thic	kness,	Unite	d Sta	tes Sta	andard	Gage	•			
rug., In.	10	12	14	16	18	20	21	22	23	24	25	26	27	28	29
5 3 *2 ½ 2 ½ 2 ½ 1 ¼	615 607	470 472 478 472	336 338 342 338	269 270 274 270 270	215 216 219 216 216 216	162 163 165 163 163 169	148 149 151 149 149 155	135 136 137 136 136 141	122 122 124 122 122 122 127	108 109 110 109 109 113 113	95 95 97 95 95 99	81 82 83 82 82 85 85	75 75 76 75 75 78 78	68 69 68 68 68 71 71	

Galvanized Sheets—Weights in Pounds per 100 Square Feet.

Cor-					Thic	kness,	Unite	d Sta	tes Sta	andard	Gage				
rug., In.	10	12	14	16	18	20	21	22	23	24	25	26	27	28	29
5 *2 ½ 2 ½ 2 ½ 2 1 ¼ 5/8		486 488 494 488	352 353 358 358 353	285 286 290 286 286	231 232 235 232 232	178 178 181 178 178 178 186	164 165 167 165 165 172	151 151 153 151 151 151 158	137 138 140 138 138 144	124 125 126 125 125 130 130	111 111 113 111 111 116 116	97 98 99 98 98 102 102	90 91. 92 91 91 95 95	84 84 85 84 84 88	77 77 78 77 77 77 81 81

The weights per 100 square feet given in preceding tables do not include allowances for end or side laps. The following table gives the approximate number of square feet of sheeting necessary to cover an area of 100 square feet and is based on sheets of standard width, 96 inches long. If longer or shorter sheets are used, the number of square feet required will vary accordingly,

Sq. Feet of $2\frac{1}{2}$ In. Standard Sheets to Cover Area of 100 Sq. Ft.

		End Lap, Inches										
Side Lap	1	_2	3	4	5	6						
1 Corrugation	109 116 123	111 117 124	112 118 126	113 120 127	114 121 129	116 122 130						

STEEL SHEET PILING

The introduction of steel sheet piling in substitution for wood has made possible the extension and indeed the practical rejuvenation of the cofferdam method of making excavations. Its use has led to great ultimate economies, greater safety in working and to the extension in size and depth of open excavations to limits which otherwise were regarded as impossible of attainment. The cellular cofferdam, first used in the Black Rock Lock, Buffalo, is a very successful method for the elimination of the expensive, slow, and not always reliable, pneumatic caisson on work of large magnitude.

Steel sheet piling by its positive interlock enables the sub-surface diaphragms of diaphragm dams to be made with a certainty not possible with wooden sheet piling, and with an economy not possible with concrete by reason of the elimination of the excavation necessary in the case of the ordinary puddle core, concrete core or masonry core wall. A diaphragm made of such imperishable materials fulfills all the requirements of the ordinary core wall with the additional advantage of accommodating itself, by its flexibility, to slight irregularities of settlement in the dam. It is also used in the construction of curtain walls, sea walls and loading slips, foundations for cylinder piers, sewers and trenches, etc.

In addition to temporary cofferdams, steel sheet piling has found large use in the construction of permanent retaining walls for buildings. Driven before excavation in soils containing quicksand or water-bearing strata, its use prevents the undermining of adjacent building foundations by movement of the strata. prevents in many cases the delay; expense and danger of underpinning adjacent buildings. It may be employed in this way alone or reinforced by steel buckstays as shown in the illustration, which represents the method followed by D. H. Burnham & Company in constructing retaining walls for the Marshall Field and Stevens Building, Chicago, where sheeting with its attached buckstays was driven its full depth and the basement and sub-basement floors placed as the excavation went forward. The rigidity of the buckstays with the bracing supported by the floors eliminated the necessity and expense of shoring. After excavation concrete was filled in between the buckstays and the total expense did not exceed 60 per cent. of its cost by the ordinary method.

Types. The Carnegie Steel Company manufactures United States Steel Sheet Piling, Friestedt Interlocking Channel Bar Piling, and Symmetrical Interlock Channel Bar Piling.

United States Steel Sheet Piling is a simple, plain, rolled section ready for use as it comes from the mill without further fabrication. Each piece is complete in itself and all pieces of the same width are interchangeable. Its profile incorporates the advantages of the ball and socket joint, with sufficient clearance in the interlock for ease in driving and sufficient space for the use of a packing substance between its adjacent edges to insure watertightness. United States Steel Sheet Piling is more easily driven and pulled than any other section hitherto placed on the market. The reason for this is believed to be the absence of a leading groove combined with the line contact obtained in the joints.

Friestedt Interlocking Channel Bar Piling is a fabricated section made of channels and zee bars; unsymmetrical as regards adjacent pieces, one channel having two zee bars full length and the next adjacent channel being plain, that is, without zee bars.

Symmetrical Interlock Channel Bar Piling is a fabricated section made of channels and zee bars in which each piece has a short zee bar on one edge and a long zee bar on the other. The long zee bar forms the interlock with the next adjacent section, while the short zee reinforces the top of the pile and serves to distribute the blow from the pile driving hammer over the width of the section.

All the sections have positive interlocks continuous throughout the entire length in both lateral and horizontal directions, affording maximum strength against sidewise deflection, distortion or separation of the pieces due to pressures, deformation in driving, etc. Strength of Section. When driven and under pressure, steel sheet piling must have strength similar to that possessed by any other beam loaded equally or unequally with earth or water pressure, and the resistance of the piling to transverse bending can be calculated by the known laws of flexure from the properties of the section as given in the tables on page 351. In the case of Symmetrical Interlock Channel Bar Piling, the center line of the assemblement is not the center line of the individual members. Calculations are referred, therefore, to a theoretical neutral axis and give the properties of the sections on the assumption that when interlocked they will act as a unit. In the case of United States Steel Sheet Piling, the properties of the individual pieces are the same as the properties of the sections interlocked in place.

During driving the sections are forced to act as loaded columns. and the tables, therefore, show the radius of gyration of the sections for computing their compressive resistance under load or the blow of the pile driving hammer. The radius of gyration of the section. however, need not bear any definite proportion to its length and blocks of wood may be bolted to the leads of the pile driver if the piling shows a tendency to spring. As the piling actually enters the earth, it is supported laterally and stiffened by the adjacent soil, and the blows of the hammer need but overcome the friction. In an ordinary cofferdam braced in the usual manner, strength in the interlock to resist the tearing apart of the sections by direct tension in a longitudinal direction is not often required, but if it is. United States Steel Sheet Piling is recommended for use, as its longitudinal strength is greater than that of the fabricated sections. This interlock strength in a longitudinal direction depends on the type of section, the opening of the jaw, the character of the soil. etc.. and can only be determined by tests. The average longitudinal strength per lineal inch of medium steel sections is as follows:

Steel sheet piling is usually made of medium steel manufactured to standard specifications. Where the construction is permanent and possible corrosion is a serious factor, it may be made of steel containing about 0.25% copper, experiments on which, as well as analyses of old structures, indicate that such an addition goes very far towards making the steel practically indestructible.

Full information on this specialty and its various uses is given in a separate pamphlet entitled "Steel Sheet Piling," copies of which can be had on request.

STEEL SHEET PILING

ELEMENTS OF SECTIONS, AXIS X-X

Section		Descrip	otion		In	terlockè	ed or Si	ngle Se	etion	Regular Corner, Weight,
Index	Width	Single	Section	Weight,					h	Pounds
	ь,	Lbs. per	Ares,	Lhs. per	1	r	S	S*	2	per Lineal
	Inches	Lin. Ft.	Sq. In.	Sq. Ft.	In.4	In.	In.8	In.8	In.	Fnot
M 105	13 14	42.5	12.51	38	8.56			3.93	13 14	42.5
M 104 M 103	13 ¼ 9 ¼	38 16	$\frac{11.30}{4.71}$	$\frac{35}{21}$		$0.87 \\ 0.56$	4.32 1.13	1.3.91	$13\frac{1}{4}$	38 16

SYMMETRICAL INTERLOCK CHANNEL BAR PILING

Composition and Dimensions of Sections

ii ii		Cha	nnels	Zee	3			Dia	nensi	ons, I	nches		T= 1
Number	Designation of Section	Depth, In.	Lbs. per Ft.	Size, In.	Lbs. per Ft.	a	Ь	С	\mathbf{d}_{t_q}	C ,	f	g	<u>h</u>
1 2 3 4 5 6	10"x28 lbs. 10"x34 lbs. 12"x34 lbs. 12"x39 lbs. 15"x39 lbs. 15"x45 lbs.	10 10 12 12 15 15	15 20 20.5 25 33 40	3 \(\) x \(\) 4 3 \(\) x \(\) 4 3 \(\) x \(\) 4 3 \(\) x \(\) 8 3 \(\) x \(\) 8 4 \(\) x \(\) 8 4 \(\) x \(\) 8 4 \(\) x \(\) 8	4.8 4.8 8.6 8.6 9.2 9.2	1 16 1 18 1 8/8 1 16 1 16 1 16 1 16	1 1/4 1 1/4 1 1/6 1 1/8	3 3 3 8 8 8 8 4 1/2 4 1/2	2 2 2 1/4 2 1/4 3 3	1 1 1/8 1 1/8 1 1/2 1 1/2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 6 6 7 1/2 7 1/2	9 10 % 10 % 13 ½ 13 ½

ELEMENTS OF SECTIONS, AXIS X-X

		Descr	ription		ln	terlock	ed Section	m	Sing	gle Sact	ion	Regular Corner, Weight,
Number	Width of Channel, Inches	Single S Lbs. per Lin. Ft.	Area,	Weight, Lhs. per Sq. Ft.	I In.4	r In.	S In.8	S* In.8	I In.4	r In.	S In.8	Pounds per Lineal Foot
1 2 3 4 5 6	10 10 12 12 12 15 15	21 26 30 35 44 51	5.87 7.29 8.54 9.86 12.60 14.46	34 34 39 39	7.09 10.26 14.59 18.66 28.96 36.82	1.10 1.19 1.31 1.38 1.52 1.60	3.64 5.27 6.63 8.48 11.44 14.55	$9.36 \\ 10.17$		0.97 0.95 1.14 1.13 1.24 1.22	2.24 2.50 3.95 4.23 5.68 6.07	26 31 38 42 51 58

S* is the average section modulus per horizontal foot of wall interlocked in place.

STRUCTURAL TIMBER

The strength of structural timbers depends upon a number of factors; the kind of wood, the age of the tree, the time of the year in which it was felled, the method of sawing, the character of the seasoning and therewith its moisture content, the proportion of heartwood to sapwood and the proportion of knots to clear wood.

In consequence of these variable factors, the working unit stresses approved by the building laws of different cities vary widely, as well also as the unit stresses given in the proceedings of the various engineering associations. They go back in some cases to the studies made in 1895 by the Association of Railway Superintendents of Bridges and Buildings.

The most recent studies in this direction have been made by the American Railway Engineering Association, and the tables for wooden beams and columns which follow are based on the working unit stresses for structural timbers adopted by that Association. The table of working unit stresses has been reprinted, by permission, from the Manual, edition of 1911.

These unit stresses vary with the class of construction. They are intended, as noted, for railway bridges and trestles. For highway bridges and trestles and for buildings and similar structures, the unit stresses may be increased in accordance with the more quiescent character of the loading and freedom from deleterious weather conditions. The values are based on carefully selected timber purchased in accordance with the standard specifications of the Association and subject to careful inspection.

The commercial timbers which are in common use in building construction will not meet these specifications, and, therefore, the unit stresses approved by good building practice as evidenced in the building laws of various cities are rightly lower. The tables as they stand are in accord with the average practice as represented by these building laws, and may, therefore, be used as they stand for ordinary building work executed with the commercial grades of timber, such as can be purchased in the open market.

The allowable loads may be adjusted to other species of wood than those stated in the headings of the tables and to other unit stresses by the direct proportion which such unit stresses bear to those for which the tables are computed. In the case of columns the values may be adjusted to any working unit stress by direct proportion based on the relations of 1/d.

WORKING UNIT STRESSES FOR STRUCTURAL TIMBER

ADOPTED BY THE AMERICAN RAILWAY ENGINEERING ASSOCIATION

The working unit stresses given in the table are intended for railroad bridges and trestles. For highway bridges and trestles, the unit stresses may be increased 25 per cent. For buildings and similar structures, in which the timber is protected from the weather and practically free from impact, the unit stresses may be increased 50 per cent. To compute the deflection of a beam under long continued loading instead of that when the load is first applied, only 50 per cent. of the corresponding modulus of elasticity given in the table is to be employed.

WOODEN BEAMS

The safe load tables of wooden beams which follow, based upon the working unit stresses adopted by the American Railway Engineering Association, give the uniformly distributed safe loads for rectangular sections one inch thick; the safe load for a beam of any thickness is found by multiplying the tabular value by the thickness of the beam in inches. The safe loads include the weight of the beams and are computed on the assumption that the beams are braced against lateral deflection. These tables also give minimum and maximum spans and coefficients of deflection.

The maximum safe loads as limited by the allowable shearing stresses along horizontal axes of beams have been calculated from the formula: Maximum safe load = \% x area of section x safe unit stress for longitudinal shear. These limits, indicated also by horizontal lines in the tables, should not be exceeded to avoid failure of the beam in horizontal direction of the grain of the wood.

The theoretical deflection in the center of the span for uniformly distributed and permanently applied loads is obtained from the coefficients of deflection by dividing the depth of the beam, in inches, into the corresponding coefficient; the result obtained only approximates the actual deflection, as the modulus of elasticity varies with the moisture content of the wood.

The deflection of beams intended to carry plastered ceilings should not exceed $\frac{1}{360}$ of the span; the table gives the maximum spans for this limit, for uniformly distributed and permanently applied loads.

For loads concentrated in the center of the span, use one-half the values for the tabular loads and four-fifths of the coefficients of deflection. For special cases of loading, see pages 206 to 211.

EXAMPLE 1.—Required the thickness and the approximate deflection of a beam of white oak, 14 inches deep, supporting a uniformly distributed and permanent dead and live load of 10,000 pounds over a span of 19 feet.

The tabular value for a beam one inch thick and for a span of 19 feet is 1,261 pounds; the required thickness is therefore 10,000÷1,261=8 inches, and the deflection is 20.72÷14=1.48 inches.

EXAMPLE 2.—Required the safe load of a beam of white pine, 8 inches deep and 6 inches thick, without exceeding the longitudinal shearing stress.

The table gives for a corresponding beam 1 inch thick a safe load of 747 pounds; the total safe load is therefore 6 x 747=4,482 pounds, or the safe load which can be safely supported over a span of 8.6 feet.

EXAMPLE 3.—Required the safe load, concentrated in the center of a span 26 feet long, and the deflection of a beam of longleaf pine, 18 inches deep and 12 inches thick.

The table gives for a corresponding beam 1 inch thick a uniformly distributed safe load of 1,800 pounds, or for a load in center of span 1,800 \pm 2=900 pounds; for a beam 12 inches wide the safe load is therefore 900 x 12=10,800 pounds, and the deflection is approximately % x 32.75 \pm 18=1.46 inches.

TIMBER SAFE LOADS

RECTANGULAR WOODEN BEAMS-ONE INCH THICK

MAXIMUM SAFE LOADS AND LIMITING SPANS

Beam,	Wh Oa		Long Pi		Short Pir		Wh Pin		Doug Fi		Wes Hem		Spri	ıce
h of	Max. Load, Lbs.	Min. Span, Ft.	Max. Load, Lbs.		Max. Load, Lbs.				Max. Load, Lbs.		Max. Load, Lbs.		Max. Load, Lbs.	Min. Span, Ft.
2 4 6 8 10 12 14 16 18 20 22 24		11.7 13.4 15.0 16.7 18.4	2240 2560 2880 3200 3520	5.4 7.2 9.0 10.8 12.6 14.4 16.3 18.1 19.9	693 1040 1387 1733 2080 2427 2773 3120 3467 3813	4.2 5.6 7.1 8.5 9.3 12.7 14.1 15.5	1680 1867	6.4 8.6 10.7 12.9 15.0 17.1 19.3 21.4 23.6	587 880 1173 1467 1760 2053 2347 2640 2933 3227	10.9 12.8 14.6 16.4 18.2 20.0	1867 2133 2400 2667	5.5 7.3 9.2 11.0 12.8 14.7 16.5 18.3 20.2	373 560 747 933 1120 1307 1493 1680 1867 2053	7.1 9.5 11.9 14.3 16.7 19.0 21.4 23.8 26.2

COEFFICIENTS OF DEFLECTION FOR PERMANENT LOADS

Span in Feet	White Oak	Long- leaf . Pine	Short- leaf Pine, Western Hem- lock	White Pine, Douglas Fir	Spruce	Span in Feet	White- Oak	Long- leaf Pine	Short- leaf Pine, Western Hem- lock	White Pine, Douglas Fir	Spruce
1 2 3 4 5 6 7 8 9	0.06 0.23 0.52 0.92 1.44 2.07 2.81 3.67 4.65	0.05 0.19 0.44 0.78 1.21 1.74 2.37 3.10 3.92	0.05 0.18 0.40 0.71 1.12 1.61 2.19 2.85 3.61	0.76 1.19 1.72 2.34 3.06 3.87	0.05 0.18 0.41 0.73 1.15 1.65 2.24 2.93 3.71	21 22 23 24 25 26 27 28 29	25.31 27.78 30.37 33.06 35.88 38.80 41.85 45.00 48.27	27.91 30.28 32.75 35.32 37.99 40.75	23.59 25.69 27.88 30.15 32.51 34.97 37.51	21.05 23.10 25.25 27.49 29.83 32.27 34.80 37.42 40.14	24.23 26.38 28.63 30.96 33.39 35.91 38.52
10 11 12 13	5.74 6.95 8.27 9.70	4.85 5.86 6.98 8.19	4.46 5.40 6.42 7.54	4.77 5.78 6.87 8.07	4.58 5.54 6.60 7.74	30 31 32 33	51.66 55.16 58.78 62.51	43.61 46.56 49.61 52.76	45.67	42.96 45.87 48.88 51.98	44.01 46.90
14 15 16 17	11.25 12.92 14.69 16.59	9.50 10.90	8.74 10.04 11.42 12.89	9.36 10.74	8.98 10.31 11.73 13.24	34 35 36 37	66,35 70.32 74.39 78.58	56.01 59.35 62.79 66.33	51.56 54.64 57.80 61.06	55.18 58.47 61.86	52.95 56.11 59.36 62.70
18 19 20	$18.60 \\ 20.72$	15.70 17.49 19.38	$14.45 \\ 16.10$	15.47	14.84 16.53 18.32	38 39 40	82.89 87.31 91.84	69.96 73.69 77.52	64.40 67.84	68.92 72.60 76.37	66.14 69.66

MAXIMUM SPANS IN FEET FOR DEFLECTIONS = 1/360 SPAN

a ami t]	Depth	of Be	am ir	Inch	ies.			
Species of Timber	2	4	в	8	10	12	14	16	18	20	22	24
White Oak Longleaf Pine Shortleaf Pine, Hemlock White Pine, Douglas Fir Spruce	1.2 1.4 1.5 1.4 1.5	2.3 2.8 3.0 2.8 2.9	3.5 4.1 4.5 4.2 4.4	5.5 6.0 5.6	7.5 7.0	8.3 9.0 8.4	10.5	$11.0 \\ 12.0 \\ 11.2$	$12.4 \\ 13.5 \\ 12.6$	$13.8 \\ 15.0 \\ 14.0$	$16.4 \\ 15.4$	16.5 17.9 16.7

RECTANGULAR WOODEN BEAMS—ONE INCH THICK DOUGLAS FIR

ALLOWABLE UNIFORM LOAD IN POUNDS Maximum Bending Stress, 1200 Pounds per Square Inch

Span					Dept	h of Be	am in I	iches				
in Feet	2	4	6	8	10	12	14	16	18	20	22	24
2 3 4 5	298 267 178 133 107	537 533 427										
6 7 8 9 10	89 76 67	356 305 267 237 213	800 686 600 533 480	1178 1067 948 853	1467 1333	1760		-				
11 12 13 14 15		194 178	436 400 369 343 320	776 711 656 610 569	1212 1111 1026 952 889	1745 1600 1477 1371 1280	2053 2010 1867 1742	2347 2276				
16 17 18 19 20	1		300	533 502 474 449 427	833 784 741 702 667	1200 1129 1067 1011 960	1633 1537 1452 1375 1307	2133 2008 1896 1796 1707	$\begin{array}{r} 2640 \\ \hline 2541 \\ 2400 \\ 2274 \\ 2160 \\ \end{array}$	2933 2807 2667	3227 3227	
21 22 23 24 25					635 606 580 556	914 873 835 800 768	1244 1188 1136 1089 1045	1625 1552 1484 1422 1365	2057 1964 1878 1800 1728	2540 2424 2319 2222 2133	3073 2933 2806 2689 2581	349 333 320 307
26 27 28 29 30						738 711 686	1005 968 933 901 871	1313 1264 1219 1177 1138	1662 1600 1543 1490 1440	2051 1975 1905 1839 1778	2482 2390 2305 2225 2151	295 284 274 264 256
31 32 33 34 35			1				843 817	1101 1067 1034 1004 975	1394 1350 1309 1271 1234	1720 1667 1616 1569 1524	2082 2017 1956 1898 1844	247 240 232 225 219
36 37 38 39 40								948	1200 1168 1137 1108 1080	1481 1441 1404 1368 1333	1793 1744 1698 1655 1613	213 207 202 196 192

TIMBER SAFE LOADS

RECTANGULAR WOODEN BEAMS—ONE INCH THICK LONGLEAF PINE

ALLOWABLE UNIFORM LOAD IN POUNDS

Maximum Bending Stress, 1300 Pounds per Square Inch

Span	Depth of Beam in Inches													
in Feet	2	4	6	8	10	12	14	16	18	20	22	24		
2 3 4 5	320 289 193 144 116	578 462	960							,				
6 7 8 9	96 83 72	385 330 289 257 231	867 743 650 578 520	1280 1156 1027 924	1600 1444	,	·					f.		
11 12 13 14 15		210 193	473 433 400 371 347	840 770 711 660 616	1313 1204 1111 1032 963	1920 1891 1733 1600 1486 1387	2240 2178 2022 1887	2560 2465						
16 17 18 19 20			325	578 544 514 487 462	903 850 802 760 722	1300 1224 1156 1095 1040	1769 1665 1573 1490 1416	2311 2175 2054 1946 1849	2880 2753 2600 2463 2340	3200 3041 2889	8520 3496			
21 22 23 24 25					688 657 628 602	991 945 904 867 832	1348 1287 1231 1180 1132	1761 1681 1608 1541 1479	2229 2127 2035 1950 1872	2751 2626 2512 2407 2311	3329 3178 3040 2913 2796	8840 3782 3617 3467 3328		
26 27 28 29 30						800 770 743	1089 1049 1011 976 944	1422 1370 1321 1275 1233	1800 1733 1671 1614 1560	2222 2140 2064 1992 1926	2689 2589 2497 2411 2330	3200 3082 2971 2869 2773		
31 32 33 34 35							913 885	1193 1156 1121 1088 1057	1510 1463 1418 1377 1337	1864 1806 1751 1699 1651	2255 2185 2119 2056 1998	2684 2600 2521 2447 2377		
36 37 38 39 40				,				1027	1300 1265 1232 1200 1170	1605 1562 1521 1482 1444	1942 1890 1840 1793 1748	2311 2249 2189 2133 2080		

RECTANGULAR WOODEN BEAMS—ONE INCH THICK SHORTLEAF PINE, WESTERN HEMLOCK AND WHITE OAK

ALLOWABLE UNIFORM LOAD IN POUNDS
Maximum Bending Stress, 1100 Pounds per Square Inch

Span			•		Dept	h of Be	am in I	nches				
Feet	2	4	6	8	10	12	14	16	18	20	22	24
-	347					ĺ						
2	245	693										
3	163	652										
4	122	489	1040									
5	98	391	880	1387								
6	82	326	733	1304								
7	70	279	629	1117	1783							
. 8	61	245	550	978	1528	2080						
9		217	489	869	1358	1956	2427	1		ŀ	İ	
10		196	440	782	1222	1760		ĺ			Ì	
11		178	400	711	1111	1600	2178	2778				
12		163	367	652	1019	1467	1996	2607				
13		200	338	602	940	1354	1843	2407	3120 3046	l		
14			314	559	873	1257	1711	2235	2829			
15			293	522	816	1173	1597	2086	2640	3259		
			275	489		1100		l		1	3813	
16 17			275	460	764 719	1035	1497	1956	2475	3055	3697	4160
				435	679	978	1409	1841	2329	2876	3480	4141
18		,		412	1		1331	1738	2200	2716	3287	3911
19				391	643	926	1261	1647	2084	2573	3113	3705
20	, ,			991	611	880	1198	1564	1980	2444	2958	3520
. 21	menia - t				583	838	1141	1490	1886	2328	2817	3352
22					556	800	1089	1422	1800	2222	2689	3200
23					531	765	1042	1361	1722	2126	2572	3061
24	ĺ				509	733	998	1304	1650	2037	2465	2933
25						704	958	1252	1584	1956	2366	2816
26						677	921	1203	1523	1880	2275	2708
27	1					652	887	1159	1467	1811	2191	2608
28	,					629	856	1118	1414	1746	2113	2514
29							826	1079	1366	1686	2040	2428
30							799	1043	1320	1630	1973	2348
31							773	1009	1278	1577	1908	2271
32							749	978	1238	1528	1849	2200
33	1							948	1200	1482	1793	2133
.34								920	1165	1438	1740	2071
35 🕔	-							894	1131	1397	1690	2011
36								869	1100	1358	1643	1956
37									1070	1321	1599	1903
38									1042	1287	1557	1853
39									1015	1254	1517	1805
40										1222		
	ner mic	idle on	d lower	horizo	otal lia	oo india	oto the	limits				

Upper, middle, and lower horizontal linea indicate the limits for resistance to shear in the horizontal direction of the grain of Shortleaf Pine, White Oak, and Hemlock respectively.

TIMBER SAFE LOADS

RECTANGULAR WOODEN BEAMS—ONE INCH THICK WHITE PINE

ALLOWABLE ÜNIFORM LOAD IN POUNDS Maximum Bending Stress, 900 Pounds per Square Inch

Span in					Dep	th of Be	am in)	Inches				
Feet	2	4	6	8	10	12	14	16	18	20	22	24
2 3 4 5	187 133 100 80	878 320						,				
6 7 8 9 10	67 57 50	267 229 200 178 160	560 514 450 400 360	747 711 640								
11 12 13 14 15		145 133	327 300 277 257 240	582 533 492 457 427	933 909 833 769 714 667	1120 1108 1029 960	1307 1307					
16 17 18 19 20		•	225	400 377 356 337 320	625 588 556 526 500	900 847 800 758 720	1225 1153 1089 1032 980	1498 1422 1347 1280	1680 1620			
21 22 23 24 25					476 455 435 417	686 655 626 600 576	933 891 852 817 784	1219 1164 1113 1067 1024	1543 1473 1409 1350 1296	1867 1818 1739 1667 1600	2058 2017 1936	
26 27 28 29 30						554 533 514	754 726 700 676 653	985 948 914 883 853	1246 1200 1157 1117 1080	1538 1481 1429 1379 1333	1862 1793 1729 1669 1613	2240 2215 2133 2057 1986 1920
31 32 33 34 35							632 613	826 800 776 753 731	1045 1013 982 953 926	1290 1250 1212 1176 1143	1561 1513 1467 1424 1383	1858 1800 1746 1694 1646
36 37 38 39 40						,		711	900 876 853 831 810	1111 1081 1053 1026 1000	1344 1308 1274 1241 1210	1600 1557 1516 1477 1440

Horizontal lines indicate the limit for resistance to shear in the horizontal direction of the grain.

RECTANGULAR WOODEN BEAMS—ONE INCH THICK SPRICE

ALLOWABLE UNIFORM LOAD IN POUNDS

Maximum Bending Stress, 1000 Pounds per Square Inch

Span			, t		Dept	th of Be	em in Ir	iches				
in Feet	2	4	6	8	10	12	14	16	18	20	22	24
2 3 4 5	187 148 111 89	⁸⁷⁸ 356										ţ
6 7 8 9	74 63 56	296 254 222 198 178	500 500 444 400	747 711					,			
11 12 13 14 15		162 148	364 333 308 286 267	646 593 547 508 474	933 926 855 794 741	1120 1067					ļ	
16 17 18 19 20			250	444 418 395 374 356	694 654 617 585 556	1000 941 889 842 800	1307 1281 1210 1146 1089	$\frac{1498}{1422}$	/		,	
21 22 23 24 25					529 505 483 463	762 727 696 667 640	1037 990 947 907 871	1354 1293 1237 1185 1138	1680 1636 1565 1500 1440	1867 1852 1778		
26 27 28 29 30						615 593 571	838 807 778 751 726	1094 1053 1016 981 948	1385 1333 1286 1241 1200	1709 1646 1587 1533 1481	2053 1992 1921 1854 1793	2240 2207 2133
31 32 33 34 35							703 681	918 889 862 837 813	1161 1125 1091 1059 1029	1434 1389 1347 1307 1270	1735 1681 1630 1582 1537	2065 2000 1939 1882 1829
36 37 38 39 40								790	1000 973 947 923 900	1235 1201 1169 1140 1111	1494 1453 1415 1379 1344	1778 1730 1684 1641 1600

WOODEN COLUMNS

The safe load tables of wooden columns which follow, based upon the working unit stresses adopted by the American Railway Engineering Association, give the allowable direct compressive loads for square and round columns.

The safe loads of rectangular columns may be found from the safe loads of square columns by direct proportion of areas, using the safe load unit stress of the square column whose side is equal to the least side of the rectangular section.

The following table gives the safe load in pounds per square inch of sectional area for ratios of

 $\frac{1}{d} = \frac{\text{effective length of column, in inches}}{\text{least side or diameter, in inches}},$

ranging between limits of 15 and 30.

Unit Working Stresses in Pounds per Square Inch

1 d	Longleaf Pine, White Oak	Douglas Fir, Western Hemlock	Shortleaf Pine, Spruce, Bald Cypress	White Pine, Tamarack	Red Cedar, Redwood	Norway Pine
	1300 (11/d60)	1200 (1—l/d60)	1100 (1—l/d60)	1000 (1—l/d60)	900 (1—l/d60)	800 (1—1/d60)
15	975	900	825	750	675	600
16	953	880	807	733	660	587
17	931	860	788	717	645	573
18	910	840	770	700	630	560
19	888	820	752	683	615	547
20	867	800	733	667	600	533
21	845	780	715	650	585	520
22	823	760	697	633	570	507
23	802	740	678	617	555	493
24	780	720	660	600	540	480
25	758	700	642	583	525	467
26	737	680	623	567	510	553
27	715	660	605	550	495	440
28	693	640	587	533	480	427
29	672	620	568	517	465	413
30	650	600	550	500	450	400

EXAMPLE 1.—Required the allowable load for a column of white oak 10" x 8", 14 feet long.

The safe load given in the table for a square white oak column $8'' \times 8''$, 14 feet long, is 54,100 pounds. The load for the $10'' \times 8''$ section is $10 \times 54,100 \div 8 = 67,600$ pounds.

 E_{XAMPLE} 2.—Required the allowable load for a spruce pile, 9'' diameter and 18 feet long.

The unit stress given in the above table for the corresponding ratio of 1/d, $18 \times 12 + 9 = 24$ is 660 pounds, and the sectional area for a 9" round is 63.62 square inches. The safe load, therefore, is $63.62 \times 660 = 42,000$ pounds.

SQUARE WOODEN COLUMNS

SAFE LOADS IN THOUSANDS OF POUNDS

American Railway Engineering Association Formulas

	Length,				Side of	Square,	Inches			
	Feet	4	6	8	10	12	14	16	18	20
LONGLĒAF PÍNĒ WHITE OAK 1300 (1—1/60d)	5 6 7 8 9 10 11 12 14 16 18	15.6 14.6 13.5 12.5 11.4 10.4	34.3 32.8 31.2 29.6 28.1 25.0	62.4 62.4 60.3 58.2 54.1 49.9 45.8 41.6	97.5 93.6 88.4 83.2 78.0	140.4 137.3 131.0 124.8	191.1 189.3 182.0	249.6 249.6	315.9	390.0
DOUGLAS FIR WESTERN HEMLOCK 1200 (11/60d)	5 6 7 8 9 10 11 12 14 16 18 20	14.4 14.4 13.4 12.5 11.5 10.6 9.6	32.4 31.7 30.2 28.8 27.4 25.9 23.0	57.6 57.6 55.7 53.8 49.9 46.1 42.2 38.4	90.0 86.4 81.6 76.8 72.0	129.6 126.7 121.0 115.2	176.4 174.7 168.0	230.4 230.4	291.6	360.0
SHORTLEAF PINE SPRUCE 1100 (1—1/60d)	5 6 7 8 9 10 11 12 14 16 18 20	13.2 13.2 12.3 11.4 10.6 9.7 8.8	29.7 29.0 27.7 26.4 25.1 23.8 21.1	52.8 51.0 49.3 45.8 42.2 38.7 35.2	82.5 79.2 74.8 70.4 66.0	118.8 116.2 110.9 105.6	161.7 160.2 154.0	211.2 211.2	267.3	380.6
WHITE FINE TAMARACK 1000 (1—1/60d)	5 6 7 8 9 10 11 12 14 16 18 20	12.0 12.0 11.2 10.4 9.6 8.8 8.0	27.0 26.4 25.2 24.0 22.8 21.6 19.2	48.0 48.0 46.4 44.8 41.6 38.4 35.2 32.0	75.0 72.0 68.0 64.0 60.0	108.0 105.6 100.8 96.0	147.0 145.6 140.0	192.0 192.0	248.0	800.6

Loads in small figures above horizontal lines are the maximum allowable safe loads.

TIMBER SAFE LOADS

ROUND WOODEN COLUMNS

SAFE LOADS IN THOUSANDS OF POUNDS

American Railway Engineering Association Formulas

	Length,				Dia	meter, In	ches			
	Feet	4	6	- 8	10	12	14	, 16	18	20
LONGLEAF PINE, WHITE OAK 1300 (1—1/60d)	5 6 7 8 9 10 11 12 14 16 18 20	12.3 11.4 10.6 9.8 9.0 8.2	27.6 27.0 25.7 24.5 23.3 22.1 19.6	49.0 47.4 45.7 42.5 39.2 35.9 32.7	78.6 73.5 69.4 65.3 61.3	110.3 107.8 102.9 98.0	150.1 148.7 142.9	196.0 196.0	248.1	806.8
DOUGLAS FIR, WESTERN HEMLOCK 1200 (1—1/60d)	5 6 7 8 9 10 11 12 14 16 18 20	11.3 11.3 10.6 9.8 9.1 8.3 7.5	25.4 24.9 23.7 22.6 21.5 20.4 18.1	45.2 45.2 43.7 42.2 39.2 36.2 33.2 30.2	70.7 67.9 64.1 60.3 56.5	101.8 99.5 95.0 90.5	188.5 137.2 132.0	181.0 181.0	229.0	232.7
SHORTLEAF PINE, SPRUCE 1100 (1—1/60d)	5 6 7 8 9 10 11 12 14 16 18	10.4 10.4 9.7 9.0 8.3 7.6 6.9	23.3 22.8 21.8 20.7 19.7 18.7 16.6	41.5 41.5 40.1 38.7 35.9 33.2 30.4 27.6	64.3 62.2 58.7 55.3 51.8	93.3 91.2 87.1 82.9	127.0 125.8 121.0	195.9 165.9	209.9	259.2
WHITE PINE, TAMARACK 1000 (1—1/60d)	5 6 7 8 9 10 11 12 14 16 18 20	9.4 9.4 8.8 8.2 7.5 6.9 6.3	21.2 20.7 19.8 18.9 17.9 17.0 15.1	37.7 36.4 35.2 32.7 30.2 27.6 25.1	58.9 56.5 53.4 50.3 47.1	34.6 82.9 79.2 75.4	115.5 114.4 110.0	150.8 150.8	190.9	235.8

SPECIFIC GRAVITIES AND WEIGHTS

			-		
Substance	Specific Gravity	Weight, Pounds per Cu. Ft.	Substance	Specific Gravity	Weight, Pounda per Cu. Ft.
Metals, Alloys, Ores			Timber, U. S. Seasoned		
Aluminum, cast-hammered	2.55-2.75	165	Ash, white-red	0.62-0.65	40
" bronze	7.7	481	Cedar, white-red	0.32-0.38	22
Antimony	6.62-6.72 5.73	416 358	Chestnút	0.66 0.48	41 30
Arsenic	9.70-9.78	608	Fir, Douglas apruce	0.51	32
Brass, cast-rolled	8.4-8.7	534	" eastern	0.40 0.72	25 45
Bronze, 7.9 to 14% Sn Chromium	7.4-8.9 6.80-6.92	509 428	Elm, white	0.42-0.52	29
Cobalt	6.80-6.92 8.72-8.95	552	Hickory	0.74-0.84	49
Copper, cast-rolled	8.8-9.0 4.1-4.3	556 262	Locust	0.73 0.68	46 43
" ore, pyrites Gold, cast-hammered	19.25-19.35	1205	" white	0.53	33*
Iron, cast, pig	7.2	450	Oak, chestnut	0.86 0.95	54 59
" wrought	7.6-7.9 7.8-7.9	485 490	" live	0.65	41
" apiegel-eisen	7.5	468	" white	0.74	46
" ferro-silicon	6.7-7.3	437	Pine, Oregon	0.51 0.48	32 30
" " in bank	5.2	325 160-180	" red	0.41	26
" " loose		120-160	" vellow, long-leaf	0.70	44
" " limonite " magnetite	3.6-4.0 4.9-5.2	237 315	" short-leaf	0.61	38 30
PP glog	1 25-30	172	Redwood, California	0.42	26
Lead	11.28-11.35	706	Spruce, white, black	0.40-0.46 0.61	27 38
" ore, galena	7.3-7.6 1.74	465 109	Walnut, blackwhite	0.41	26
Manganese	7.20-7.42	456	Moisture Contents:		
" ore, pyrolusite Mercury	3.7-4.6 - 13.59	259 848	Seasoned timber 15 to 20%		
Molylodenum	9.01	562	Green timber up to 50%		
Nickelmonel metal	8.57-8.90	545	Various Liquids		
Platinum, cast-hammered	21.1-21.5	556 1330	Alcohol, 100%	0.79	49
Silver, cast-hammered	10.4-10.6	656	Alcohol, 100%	1.20 1.50	75 94
Tin, cast-hammered		459 443	" aulphuric 87%	1.80	112
ore, cassiterite	6.4-7.0	418	" aulphuric 87% Lye, soda66%	1.70	106
Tungsten	18.7-19.1	1180	Oils, vegetable	0.91-0.94	58 57
VanadiumZinc, cast-rolled	5.5-5.7 6.9-7.2	350 440	Petroleum	0.88	65
ore, blende		253	Gasoline	0.66-0.69	62.428
Various Solids			" 100°C	0.9584	59.830
Carbon,amorphous,graphitic	1.88-2.25	129	" ice	0.88-0.92	56
Cork		15	" snow, fresh fallen " aea water	.125 1.02-1.03	8 64
EhonyFats	1.22	76 58		1.02	-
Glass, common, plate	2.40-2.72	160	Gases, Air = 1		
" cryetal	2.90-3.00 3.15-3.90	184 220	Air, 0°C, 760 mm Ammonia	1.0 0.5920	.08071
Phoaphorus, white	1.83	114	Carbon dioxide	1.5291	.1234
Phosphorus, white	2.30-2.50	150	Carbon monoxide	0.9673	.0781
Resins, Rosin, Amber Rubher, caoutchouc		67 58	Gas, illuminating		.028036
Silicon	2.49	165	Hydrogen	0.0693	.00559
Sulphur, amorphous	2.05	128 60	Nitrogen	0.9714	.0784
Wax			Oxygen		.0892

The specific gravities of solids and liquids refer to water at 4°C., those of gases to air at 0°C. and 760 mm pressure. The weights per cubic foot are derived from average specific gravities except where stated that weights are for bulk, heaped or loose material, etc.

PHYSICAL PROPERTIES OF SUBSTANCES

SPECIFIC GRAVITIES AND WEIGHTS

Substance	Specific Gravity	Weight, Pounde per Cu. Ft.	Substance	Specific Gravity	Weight, Pounds per Cu. Ft.
Minerals	,		Ashlar Masonry		
Asbestoa	2.1-2.8	153	Granite, syenite, gneiss	2.3-3.0	165
BarytesBasalt	$\frac{4.50}{2.7-3.2}$	281 184	Limestone, marble	2.3-2.8 2.1-2.4	160 140
Bauxite	2.55	159			140
Borax	1.7-1.8	109	Mortar Rubble Masonry Granite, syenite, gnciss		155
Chalk	1.8-2.6 1.8-2.6	137 137	Limestone, marble	2.2-2.6	150
Dolomite	2.9	181	Sandetone, bluestone	2.0-2.2	130
Feldspar, orthoclase	2.5-2.6	159	Dry Rubble Masonry	1	
Goeiss, gerpentine	2.4-2.7	159	Granite, syenite, gneiss	1.9-2.3	130
Granite, ayenite Greenstone, trap	2.5-3.1 2.8-3.2	175 187	Limestone, marhle	1.9-2.1 1.8-1.9	125 110
Gypsum, alabaster	2.3-2.8	159	Sandstone, bluestone	1.5~1.8	110
Hornblende	3.0	187	Brick Masonry	0000	140
Limestons, marble	2.5-2.8 3.0	165 187	Pressed brick	2.2-2.3 1.8-2.0	140 120
Magaesite	3.2	200	Soft brick	1.5-1.7	100
Porphyry	2.6-2.9	172	Concrete Masonry	1	
Pumice, natural	0.37-0.90	40	Cement, etone, sand	2.2-2.4	144
Quartz, fint Sandatone, bluestone	2.5-2.8 2.2-2.5	165 147	" alag, etc	1.9-2.3	130
Shale, glate	2.7-2.9	175	" cinder, etc	1.5-1.7	100
Soapstone, talc	2.6-2.8	169	Various Building Mat'l		
Ct Oind Biled			Achea, cinders		40-45 90
Stone, Quarried, Piled		96	Cement, portland, loose set	2.7-3.2	183
Basalt, granite, gneiss Limestooe, marble, quartz.		95	Lime, gypsum, loose		65-75
Sandatone		82	Mortar, set	1.4-1.9	103 67-72
Shale		92 107	Slage, bank glag		98-117
Greenstone, hornblende		107	" machine alag	1	96
Bituminous Substances			" slag asod		49-55
Asphaltum	1.1-1.5	81	Earth, etc., Excavated		63
Coal, anthracitebituminous	1.4-1.7 1.2-1.5	97 84	Clay, dry		110
" lignite		78	Clay and gravel, dry	i	100
" next turf dry	L0.65-0.85	47	Earth, dry, loose	1	76 95
" charcoal, pine	0.28-0.44	23 33	moist, loose		78
" coke	.0.47-0.57 1.0-1.4	75	" backed		96
Graphite	1.9-2.3	131	" mud, flowing		108
Paraffine	0.87-0.91	56	" " packed Riprap, limestone	Į .	115 80-85
Petroleum, crude	0.88	55 50	sandatone		90
" refined benzine	0.73-0.82	46	" ghale		105
" gasolene	0.66-0.69	42	Sand, gravel, dry, loose		90-10
Pitch	1.07-1.15 1.20	69 75	sand, gravel, dry, loose " " packed " " wet		118-12
,	1.20	"	Excavations in Water		1
Coal and Coke, Piled			Sand or gravel		60
Coal, anthracite		47-58			65 80
" bituminous, lignite		40-54 20-26	Clay	1	90
" peat, turf	1	10-14	Soil		70
" coke			Stone riprap		65

The specific gravities of sblids and liquids refer to water at 4° C., those of gases to air at 0° C. and 760 mm pressure. The weights per cubic foot are derived from average specific gravities, except where stated that weights are for bulk, heaped or loose material, etc.

CONTENTS OF STORAGE WAREHOUSES

Material	Pounds per Cubic Foot of Space,	Height of Pile, Feet	Pounds per Square Foot of Floor	Recommended Live Loads, Pounda per Square Foot
Produce, Grain, Fruit, Etc.				
Grain, in bulk Barley aod Corn. Oats. Rye and Wheat. Fruit and Vegetables, in bulk	37 26 48	8 8 8	296 208 384	
Apples, Peara, etc	38 44 *	8	304 352	,
Beans, in baga Corn, io baga Corn, io baga Cornmeal, in barrels Oats, in baga Rice, in bags Wheat, in bags Wheat Flour, io barrels Hay, in bales, not compressed Hay, in bales, compressed Straw, in bales, compressed	24	8 8 1/2 9 5 8 7 9 9	320 248 240 234 290 312 280 126 216 171	250 to 300
Groceries				
Miscellaneous Articles, packed Butter, Lard, etc., in barrels. Canned Goods, Preserves, etc.,in cases Cheese. Coffee, green, in bags. Coffee, roasted, in bags. Dates and Fige, in cases, average. Meat, Boef, Pork, etc., in barrels. Molasses, in barrels. Salt, finely ground, in sacka Soap Powder, in cases Starcb, in barrels. Sugar, in barrels. Sugar, in barrels. Tea, in chests. Wines, Liquora, etc., in barrels.	32 58 30 39 33 65 37 48 60 38 25 48	668885555875885	192 348 240 312 204 325 185 240 300 288 175 215 200 240	250 to 300
Ory Goods, Cotton, Wool, Etc. Cotton, in bales, compressed, average. "unbleached goods, in bales. "tickings and duck, in bales. "printed goods, in bales. "printed goods, in bales. "printed goods, in cases. "quilts and flancels, in cases. "yarn, in cases. "Manilas, io bales, compressed. "Manilas, io bales, compressed. "Tow, in bales, compressed. "Tow, in bales, compressed. "Linea, bleached goods, in cases. "damask goods, in cases. "damask goods, in cases. "in bales, compressed. "in bales, compressed. "worsted goods, in cases. "worsted goods, in cases. "Age, in bales, compressed. "age, in bales, compressed.	35 19 31 16 25 22 26 24 29 43 41 35 50 13 48 18 27	998989889906675959999	225 216 280 171 248 144 200 176 234 216 261 258 246 245 246 245 240 117 240 162 243 171	200 to 250

PHYSICAL PROPERTIES OF SUBSTANCES

CONTENTS OF STORAGE WAREHOUSES

Material	Pounds per . Cubic Foot of Space,	Height of Pile, Feet	Pounda per Square Foot of Floor	Recommended Live Loads, Pounds per Square Foot
Drugs, Oils, Paints, Etc.			,	
Chemicals: Acids, Muriatic and Nitric, in carboys "Sulphuric, in carhoye Ammonia, in carboys	45 60 30	1% 1% 1%	75 100 50	
Alum, Pearl Alum, in barrela Bleaching Powder, in bogaheads Copper Sulphate, Blue Vitriol, in bbla.	33 31 45	7 3½ 5	231 103 225	
Soda, Caustic Soda, in iron drums Soda, Soda Ash, in hogsheads Soda Crystals, Sal Soda, in barrela	88 62 30	31/8 2 ³ /4 5	294 170 150	1
Soda Nitrate, Niter, in barrels Soda Silicate, in barrels Zinc Sulphate, White Vitriol, in barrels	45 53 40	5 5 5	225 265 200	۸.
Oils, Fats, Resins, etc.: Glycerine, in cases. Oils, Animal, Lard, etc., in barrels. " Vegetable, Linseed, in barrels. " Mineral, Lubricants, in barrels. " Petroleum, Kernoene, in barrels.	52 34 36 35 33	6 6 6 6	312 204 216 210 198	200 to 250
"Petroleum, Kerosene, in harrels. "Naphtha, Gasolene, in barrels. Rosin, in barrels. Sbellae Gum, in hoxes. Tallow, in harrels. Dye Stuffs, Paints, etc.:	28 48 38 37	6 6 6	168 288 228 222	
Indigo, in boxes. Logwood Extract, in boxes. Sumac, in boxes. Red Lead, Litharge, dry, in barrels. White Lead, dry, in barrels. White Lead, paste, in cans.	43 70 39 132 86 174	6 4 ¹ / ₂ 5 3 ³ / ₄ 4 ³ / ₄ 3 ¹ / ₂	258 315 195 495 409 609	
Building Materials				
Cement, Natural, in barrels Portland, in barrels Lime, Quick Lime, ground, in barrels Plaster of Paris, ground, in harrels	59 73 50 53	6 6 5 5	354 438 250 265	300 to 400
Sheet Metal and Wire	278	11/	417	,
Sheet Tin, in hoxes	63 74 75	$ \begin{array}{c} 1\frac{1}{2} \\ 5 \\ 4\frac{1}{2} \\ 6 \end{array} $	315 333 450	300 to 400 ,
Miacellaneous	40	8	320	2
Chinaware, Glassware, in crates in casks	60	9 6	126 360	
Hardware, door and sash checks, in cases hinges, in cases	104±	6 6 6 4	276 384 186 404	
Hides, raw, not compressed, in bales	13 23 16	10 10 10	130 230 160	300 to 400
Leather, in hales. Paper, calendered paper. newspaper, manila, strawboarda. writing paper. Rope in Coils.	50 35 64	6 6 6	300 210 384 252	

STRENGTH OF MATERIALS

STRESSES PER SQUARE INCH

	Stre	esses in 7	Chousan	ds of Po	unds		-
Metals and Alloys	Tension, Ultimate	Elastic Limit	Compression, Ultimate	Bending, Ultimate	Shearing, Ultimate	Modulus of Elasticity, Pounds	Elongation,
Aluminum, cast. " hars, sheets " wire, bard. " 2—7% Ni, Cu, Fe, etc. Aluminum Bronze, 5% to 7½% Al. Copper, cast. " plates, rods, bolts. " wire, hard. " 30% " " 39% " " 39% " " 39% " " 39% " " 39% " " 39% " " 39% " " 39% " " 50% " " 39% " " 50% " " 39% " " 50% " " 81% Sh. " 13% " " 13% Sh. " 13% " " 13% Sh. " 13% " " 13% Sh. " 13% " " 13% Sh. " 13% " " 13% Sh. " 13% " " 13% Sh. " 13% " " 13% Sh. " 13% " " 13% Sh. " 13% " " 13% Sh. " 13% Sh. " 13% " " 13% Sh. " 13% " " 13% Sh. " 13% " " 13% Sh. " 13% Sh. " 13% Sh. " 13% Sh. " 13% Sh. " 13% Sh. " 13% Sh. " 13% Sh. " 13% Sh. " 13% Sh. " 13% Sh. " 13% Sh. " 13% Sh. " 13% Sh. " 14% Sh. " 15% Sh. "	255-65 36 32.6 28.1 41.1 31 18-24 80 28.5 29.4 23.3 22 5.6 25-55 60 100 50 100 55 108 80 100 45 68 85 100 20 30 50 50 50 50 50 50 50 50 50 50 50 50 50	6.5 12-14 16-30 14 25 40 60 6 10 10 8.2 7.6 8.6 17.4 17.9 6 16 19 20 22 5 6 10 30 80 24	120 40 32 75 117 30 42 53 78 114 1147 125	22 23.2 22.3 26.9 33.5 20 43.7 34.5 56.7 32 12.1 52	30 36	11,000,000 10,000,000 18,000,000 15,000,000 14,000,000 10,000,000 4,500,000 1,000,000 1,000,000 1,000,000 1,000,000	26.7 35.8 20.7 20.7 5.0 5.5 3.3 0.04 0
" antimony, 10 Sn, 1 Sh	11	1.5–1.8	6	4		4,000,000	
Zinc, cast	4-6 7-16	4	18	7		13,000,000	

PHYSICAL PROPERTIES OF SUBSTANCES

STRENGTH OF MATERIALS

STRESSES PER SQUARE, INCH

Steel Shapes, Plates, Bara* bridges. huildings. cars. locomotives ahips. Boiler Plates* fre hox	8949949 999999 8999999 8999999	Elastic con Elastic con con con con con con con con con co	Compression,	Bending, Ultimate	Shearing, Ultimate	Modulus of Elasticity, Pounds	Elongation,
Shapes, Plates, Bara* bridges buildings cars. locomotives ahips boiler Plates* fre hox	55-65 50-65 55-65	"	tensile,				
" bridges huldings driver sars locomotives ahips Boiler Plates" " fire hox	55-65 50-65 55-65	"	tensile,		1	1	
" " fire hox		"	"	tenaile	% tens.	29,000,000 29,000,000 29,000,000 29,000,000 29,000,000	27.3–23.0 25.4–21.5 30.0–23.0 27.3–23.0 25.9–22.1
Tange places	55–65 52–62	½ tena.	tensile	tensile	%4 tens.		27.3–23.0 28.8–24.2
" hridges. " " huildings. " " cars. " " ships. "	45-55 46-56 46-56 48-58 55-65	½ tens.	tensile	tensile	%4 tens.	29,000,000 29,000,000 29,000,000 29,000,000 29,000,000	33.3-27.3 32.6-26.8 30.4-25.0 31.3-25.9 27.3-23.0
" intermediate hard deformed atruct'l grade " intermediate " hard hard	55–70 70–85 80 55–70 70–85 80	33 40 50 33 40 50 55	tensile	tensile	%4 tens.	29,000,000 29,000,000 29,000,000 29,000,000 29,000,000 29,000,000 29,000,000	25.4-20.0 18.6-15.3 15.0 22.7-17.9 16.1-13.2 12.5 5.0
Castings* " soft " medium " hard Forgings*	60 70 80	27 31.5 36	tensile	tensile	84 tens.	7	22.0 18.0 15.0
" riveta	85-100 70-80 96-110 90-105 60-68	50 45 55 52 37–38	tensile	tensile	84 tens.	29,000,000 29,000,000 29,000,000 29,000,000 29,000,000	17.6–15.0 21.4–18.8 15.8–13.6 20.0 29.0–23.0
Steel Springs and Wire Springs, untempered	65–110 120 80 200	40-70 60 40 95					
Wrought Iron Shapes	48 50 80 60	26 27 27	teosile	tensile	5% tens		
Cast Iron Common	15–18 18–24 27–35	6	80 46	30 25–33 30	18–20 40	12,000,000	

STRENGTH OF MATERIALS STRESSES IN POUNDS PER SQUARE INCH

Stone	740 740 320 340 Modul	Bending 1,600 1,500 1,200 5,000	g Elasticity 7,000,000 7,000,000 3,000,000 14,000,000 Reinforce ,000,000 for ,500,000 for	7 Compress. 1 1,200 1 1,200 2 500 1 1,000 4 20 3 50 2 80 1 40 1 70 1 70 2 10	1,200 800 500 1,000 600 500 400 250 250 250 300 300					
Compress	740 740 320 340	1,600 1,500 1,200 5,000	Reinforce ,000,000 for,500,000 for	1,200 0 800 0 500 1,000 420 350 280 140 170 170 210	1,200 800 500 1,000 600 500 400 250 250 250 300 300	200 150 150				
Cranite, goeiss, bluestone	1,200 800 150 3,000 740 740 320 340	1,500 1,200 5,000	Reinforce ,000,000 for ,500,000 for	800 0 500 1,000 420 350 280 140 170 170 210	800 500 1,000 600 500 400 250 250 250 300 300	150 150				
Cranite, goeiss, bluestone	740 740 320 340	1,500 1,200 5,000	Reinforce ,000,000 for ,500,000 for	800 0 500 1,000 420 350 280 140 170 170 210	800 500 1,000 600 500 400 250 250 250 300 300	150 150				
Granite Limestone, bluestone Sandstone Rubble Coursed Brick, medium hurned hard burned pressed, paving brick Cement, Portland Neat, 28 daya 7,350 1,350 1,350 2,3 asnd, 28 days 1,250 Concrete, P. C. Granite, trap rock 3,000 Lime and Sandstone, hard Lime and Sandstone, aoft Cinders Cinde	740 740 320 340 Modul	.us 2,	,000,000 for ,500,000 for	350 280 140 170 170 210	500 400 250 250 300 300	-				
Cement, Portland	740 320 340 Modul of	.us 2,	,000,000 for ,500,000 for		e	-				
90 days. 7,350 1,230 90 days. 1,290 Concrete, P. C. Granite, trap rock. 3,000 Lime and Sandstone, and Lime and Sandstone, and Lime and Sandstone, bard 1,250 Cinders. 2,800 Granite, trap rock. 2,800 Furnace Slag. 2,500 Lime and Sandstone, bard 2,500 Lime and Sandstone, bard 1,500 Granite, trap rock. 2,200 Furnace Slag. 2,500 Lime and Sandstone, soft Cinders. 2,000 Furnace Slag. 2,000 Cinders. 3,000 Granite, trap rock. 2,200 Lime and Sandstone, soft Cinders. 1,500 Cinders. 1,500 Granite, trap rock. 1,500 Cinders. 1,800 Furnace Slag. 1,600	740 320 340 Modul of	.us 2,	,000,000 for ,500,000 for		e					
Granite, trap rock 3,300 Furnace Slag 3,000 Lime and Sandstone, and 2,200 Cinders 2,200 Granite, trap rock 2,200 Furnace Slag 2,500 Lime and Sandstone, hard 1,500 Cinders 2,500 Thime and Sandstone, eart 2,500 Lime and Sandstone, eart 2,500 Furnace Slag 2,000 Furnace Slag 2,000 Furnace Slag 2,000 Cinders 1,500 Cinders 1,500 Cinders 1,500 Cinders 1,500 Cinders 1,800 Granite, trap rock 1,800 Furnace Slag 1,600	of	.us 2,	,000,000 for ,500,000 for		e					
Furnace Slag	of	.us 2,	,000,000 for ,500,000 for		е					
Turnace Slag		Modulus 3,000,000 for ult. compression over 2,900								
Furnace Slag			cent of Ulti	Safe Working Stresses ent of Ultimate Compression						
Lime and Sandstone, soft 1,500 600	Compression Reinforced Columns, 12 22 22 Reinforced Beams, 32									
Granite, trap rock 1,800 Furnace Slag 1,600	Bearin	ng Si	urface twice	the loaded	area	35.0%				
Lime and Sandatone, hard 1,600 Lime and Sandatone, soft 1,200	Shear and Diag. Tension Bent Bars and vertical stirrups. 4 Bent Bars and vertical stirrups. 5 Same, securely attached 6.									
Cinders		(1)	Boad Stress { Plaio reinforcing bars							
Lime and Sandstone, hard Lime and Sandstone, act 1,300 Cinders	For complete data see Transactions of the Am									
Miscellaneous	Society (omplete of Civil E	data ace T	ransactions	of the No. 1398, I	Americao Dec. 1917				
Class, common 30,000 Plaster 700	Society (omplete of Civil E	data ace Tingineers, Vo	ransactions l LXXXI-l	of the No. 1398, I	Americao Dec. 1917				

EXPANSION OF BODIES BY HEAT

The linear coefficient of expansion of a body is the rate at which the unit of length changes, under constant pressure, with an increase of unit or one degree of temperature; the square surface coefficient of expansion is, approximately, two times, and the cubical or volumetric coefficient three times the linear coefficient of expansion. A bar, if not fixed, undergoes a change in length—ltn, where I is the length of the bar in inches, t the number of degrees, n the corresponding linear coefficient; if fixed at both ends, the internal stress per unit of area—tnE, pounds per square inch, where E is the modulus of elasticity, and the total temperature stress—AtnE, pounds, where A is the cross section of the bar in square inches.

To find the increase of a bar due to an increase in temperature, from the table, multiply the length of the bar by the increase in degrees and by the coefficient for 100 degrees, and divide by 100.

COEFFICIENTS OF EXPANSION FOR 100 DEGREES=100n

Substance	Linear E	xpansion	Substance	Linear E	xpansion
Substance	Centigrade	Fahrenheit	Substance	Centigrade	Fahrenheit
Metals and Alloys			Stone and Masonry		
Aluminum, wrought	.00231	.00128	Ashlar masonry	.00063	.00035
Brass	.00188	.00104	Brick masonry	.00055	.00031
" wire		.00107	Cement, portland	.00107	.00059
Bronze	.00181	.00101	Concrete	.00143	.00079
Copper	.00168	.00093	" masonry	.00120	.00067
German Silver	.00183	.00102	Granite	.00084	.00047
Gold	.00150	.00083	Limestone	.00080	.00044
		.00059	Marble	.00100	.00056
Iron, cast, gray	.00120	.00067	Plaster	.00166	.00092
" wrought	.00124	.00069	Rubble masonry	.00063	.00035
_ " wire		.00159	Sandatone	.00110	.00061
Lead	.00200	.00070	Slate	.00104	.00058
	.00126	.00070	Timber		
Platinum	.00090				
Platinum-Iridium, 15%Ir	.00081	.00045	Fir } · (.00037	.00021
Silver	.00192	.00107	Maple parallel to fiber	.00064	.00036
Steel, cast	.00110	.00061	Oak (paramer to meet)	.00049	.00027
" hard	.00132	.00073	Pine	.00054	.00030
" medium	.00120	.00067	Fir	.0058	.0032
" aoft	.00110	.00061	Maple perpendicular	.0048	.0027
Tin	.00210	.00117	Oak to fiber	.0054	.0030
Zinc, rolled	.00311	.00173	Pine	.0034	.0019
Miacellaneoua Solida			Liquid Subatancea		Expansion
Glass	.00085	.00047	Alcohol	.104	.058
	.00079	.00044	Acid. nitric	.110	.061
Graphite		.03322	Acid, nitric	.063	.035
Gutta-percha	.02785	.01547	Mercury	.018	.010
Paraffin		.00020	Oil, turpentine		.050
Porcelain	.00036	.00020	On, surpentine	1000	1 .000

EXPANSION OF WATER, MAXIMUM DENSITY=1

C°	Volume	C°	Volume	C°	Volume	C°	Volume	·C°	Volume	C°	Volume
0	1.000126	10 20	1.000257 1.001732	30 40	1.004234 1.007627	50 60	1.011877 1.016954	70 80	1.022384 1.029003	90 100	1.035829 1.043116

EQUIVALENTS OF MEASURE

LENGTHS

1 meter, m=10 decimeters, dm=100 centimeters, cm=1000 millimeters, mm. 1 meter, m=0.1 decameter, dkm=0.01 hectometer, hm=0.001 kilometer, km. 1 meter, m=39.37 inches, U. S. Standard = 39.370113 inches, British Standard. 1 millimeter, mm = 1000 microns, μ = 0.03937 inch = 39.37 mils.

Meters.	Inches.	Feet,	Yard.	Rods.	Chains,	Miles	. T. S.	Kilo-
m	in.	ft.	yd.	r.	ch.	Statute	Nautical	meters, km.
1	39.37	3.28083	1.09361	0.19884	0.04971	0.86214	0. 5396	0.001
0.02540	1	0.08333	0.02778			0.41578		
0.30480	12	1	0.33333	0.06061		0.31894		
0.91440	36	8	1	0.18182	0.04545	0.85682	0.54934	0.89144
5.02921	198	16.5	5.5	1	0.25	0.33125	0.22714	0.55029
20.1168	792	66	22	4	1	0.01250	0.01085	0.02012
1609.35	63360	5280	1760	320	80	1	0.86839	1.60935
1853.25	72962.5	6080.20	2026.73	368.497	92.1243	1.15155	1	1.85325
1000	39370	3280.83	1093.61	198.838	49.7096	0.62137	0.53959	1

- 1 yard, U.S. =1.0000029 yards British 1 yard British = 0.9999971 yard U 1 chain, Gunter's = 100 links 1 link = 7.92 inches.
 1 cable length, U.S. = 120 fathoms = 960 spans = 720 feet = 219.457 meters.
 1 league, U.S. = 3 statute miles = 24 furlongs.
 1 international geographical mile = $\frac{1}{15}$ ° at equator = 7422 m = 4.611808 U.S. statute miles. British 1 yard British = 0.9999971 yard U.S. 1 link = 7.92 inches.

- =4.61808 U.S. statute miles.
 1 international nautical mile = $\frac{1}{60}$ ° at meridian =1852 m
 =0.999326 U.S. nautical miles.
 1 U.S. nautical mile= $\frac{1}{30}$ ° of circumference of sphere whose surface equals that of the earth =6080.27 feet=1.15155 statute miles=1853.27 meters.
 1 British nautical mile=6080.00 feet=1.15152 statute miles=1853.19 meters.

SURFACES AND AREAS

- 1 sq. meter, $m^2=100$ sq. decimeters, $dm^2=10000$ sq. centimeters, cm^2 . 1 sq. meter, $m^2=0.01$ are, a=0.0001 hectare, ha. 1 sq. millimeter, $mm^2=0.01$ cm²=0.00155 sq. inch=1973.5 circular mlls. 1 are, a=1 sq. decameter, dkm=0.0247104 acre.

						·		
Sq. Meters, m ²	Sq. Inches, sq. in.	Sq. Feet, eq. ft.	Sq. Yerde, sq. yd.	Sq. Rods, sq. r.	Acres,	Hectares, ha.	Sq. Miles, Statute	Sq. Kilo- meters, km ²
1	1550.00	10.7639	1.19599	0.03954	0.82471	0.0001	0.83861	0.51
0.86452	1	0.026944	0.37716	0.52551	0.61594	0.76452	0.02491	0.06452
0.09290	144	1	0:11111		0.42296			
0.83613	1296	9	1	0.03306	0.82066	0.48361	0.63228	0.68361
25.2930	39204	272.25	30.25	1	0.00625			
4046.87	6272640	43560	4840	160	1	0.40469	0.21563	0.84047
10000	15499969	107639	11959.9	395.366	2.47104	1	0.33861	0.01
2589999	ŀ	27878400	3097600	102400	640	259.000	1	2.59000
1000000	١,	10763867	1195985	39536.6	247.104	100	0.38610	1

- 1 sq. rod, sq. pole, or sq. perch=625 sq. links= $\frac{1}{100}$ acre. 1 sq. chain, Gunter's=16 sq. rods= $\frac{1}{10}$ acre. 1 acre=4 sq. roods=160 sq. rods. Square of 1 acre=208.7103 feet square.

Notations $^{\circ}_{0}$, $^{\circ}_{0}$, $^{\circ}_{0}$, etc., indicate that the $^{\circ}_{0}$, $^{\circ}_{0}$, $^{\circ}_{0}$, etc., are to be replaced by 2, 3, 4, etc., ciphers.

EXAMPLE—1 sq. rod = 0.09766 = 0.000009766 sq. miles.

EQUIVALENTS OF MEASURE VOLUME AND CAPACITY

1 cn. meter, m³ = 1000 cu. decimeter, dm³ = 1000000 cu. centimeters, cm³ 1 liter, l=10 deciliters, dl=100 centiliters, cl=1000 milliliters, ml =1000 cu. centimeters, cm³. or cc.
1 liter, l=0.1 decaliter, dkl=0.01 hectoliter, hl=1 cu. decimeter, dm³.

Cubio	Cubic	Cubic	Cubic	U. S. 0	Quarts	U. S. C	dallons	U.S.
Decimeter, dm ³ , l	Inobes, cu. in.	Feet, cu. ft.	Yarde, cu. yd.	Liquid, l. qt.	Dry, d. qt.	Liquid, l. gal.	Dry, d. gal.	Bushels, bu.
1	61.0234	0.03531	0.021308	1.05668	0.90808	0.26417	0.22702	0.02833
0.01639	1	0.85787	0.62143	0.01732	0.01488	0.24329	0.23720	0.84650
28.3170	1728	1	0.03704	29.9221	25.7140	7.48055	6.42851	0.80356
764.559	46656	27	1	807.896	694.279	201.974	173.570	21.6962
0.94636	57.75	0.03342	$0.\frac{2}{0}1238$	1	0.85937	0.25	0.21484	0.02686
1.10123	67.2006	0.03889	0.71440	1.16365	1	0.29091	0.25	0.03125
3.78543	231	0.13368	0.24951	4	3.43747	1	0.85937	0.10742
4.40492	268.803	0.15556	0.25761	4.65460	4	1.16365	1	0.125
35.2393	2150.42	1.24446	0.04609	37.2368	32	9.30920	8	1

U. S. Dry Measure: I bushel=4 pecks=8 gallons=32 quarts=64 pints. U. S. Liquid Measure: I gallon=4 quarts=8 pints=32 gills=128 fluid ounces. U. S. Apoth. Measure: I fl. ounce, f3 = 8 fl. drams, f3 = 480 minims, m

U. S. Apoth. Measure: 1 fl. ounce, f3 = 8 fl. drams, f3 = 480 minims, \$\hat{n}_t\$ = 29.574 cu. cm^3\$.

British Imperial gallon dry and liquid measure = 1.03202 U. S. dry gal. = 1.2009! U. S. liquid gal.

British Imperial gallon = 277.410 cu. in. = 4545.9631 cm^3\$.

Weight of water at maximum density, 4°C, 45° Lat., and sea level.

1 cu. ft. = 62.4283 lbs. av. = 28.3170 kg l cu. in. = 0.57804 oz. av. = 16.3872 g.

1 gal., U. S. liquid = 8.34545 lbs. = 3.78543 kg.

1 gal., British Imperial = 10.0221 lbs. = 4.5459631 kg.

Masses and Weights

I gram, g=10 decigrams, dg=100 centigrams, cg=1000 milligrams, mg. I gram, g=0.1 decagram, dkg=0.01 hectogram, lg=0.001 kilogram, lg=0.001

	,	· Ou	nces	Pou	nds		Tons	
Kilo- grams, kg.	Grains, gr.	Troy, oz. t.	Avoir, oz. av.	Troy, lb. t.	Avoir, lb. av.	Net, Short, 2000 lbs.	Gross, Long, 2240 lbs.	Metric, 1000 kg.
1	15432.4	32.1507	35.2740	2.67923	2.20462	$0.\frac{2}{0}1102$	$0.\frac{8}{9}9842$	0.001
0.66480) 1	0.22083					0.76378	
0.03110	480	1					0.53061	
0.02835		0.91146	1	0.07595			0.52790	
0.37324	5760	12	13.1657	1			0.83674	
0.45359	7000	14.5833	16	1.21528	1	0.00050	0.84464	
907.185	14000000	29166.7	32000	2430.56	2000	1	0.89286	0.90719
1016.05	15680000	32666.7	35840	2722.22	2240	1.12	1	1.01605
1000	15432356	32150.7	35274.0	2679.23	2204.62	1.10231	0.98421	11

1 ounce avoir. = 16 drams, avoir. 1 ounce troy = 20 pennyweight, dwt. 1 ounce apoth., 3 = 8 drams, 3 = 24 scruples, 9 = 480 grains, gr = 31.1035 g. 1 hundredweight = 1/20 long ton = 4 quarters = 8 stone = 112 lbs. = 50.8024 kg.

Notations $\stackrel{2}{0}$, $\stackrel{3}{0}$, $\stackrel{4}{0}$, etc., indicate that the $\stackrel{2}{0}$, $\stackrel{3}{0}$, $\stackrel{4}{0}$, etc., are to be replaced by 2, 3, 4, etc., ciphers. E_{XAMPLE} grain = 0.02083 = 0.002083 oz. t. 1 grain = 0.06480 = 0.00006480 kg.

EQUIVALENTS OF MEASURE

FORCES OR WEIGHTS PER UNITS OF LENGTH, LINEAR WEIGHTS

1 dyne per centimeter = 0.00101979 g/cm = 0.000183719 poundal/in.

1 gram per centimeter = 980.5966 dynes/cm = 0.180154 poundal/in.
1 poundal per inch = 5443.11 dynes/cm = 5.55081 g/cm = 0.0310832 pound/in.

Grame per Centi- meter g/cm	Graine per Inch, gr./in.	Pounds per Inch, lb./in.	Pounds per Foot, lb./ft.		Kilograms per Meter, kg/m		Gross Tons, 2240 lbs., per Mile	Metric Tons, 1000 kg, per Kilometer
1	39.1983	0.25600					0.15839	
0.02551	1	0.81429	0.21714	0.25143	0.52551	0.84526	0.24041	0.02551
178.579	7000	1	12	36	17.8579	31.6800	28.2857	17.8579
14.8816	583.333	0.08333	1	3	1.48816	2.64000	2.35714	1.48816
4.96054	194.444	0.02778	0.33333	1	0.49605	0.88000	0.78571	0.49605
10	391.983	0.05600	0.67197	2.01591	1 '	1.77400	1.58393	1.
5.63698	220.960	0.03157	0.37879	1.13636	0.56370	1	0.89286	0.56370
6.31342	247.475	0.03535	0.42424	1.27273	0.63134	1.12	1	0.63134
10	391,983	0.05600	0.67197	2.01591	1 1	1.77400	1.58393	1

Forces or Weights per Units of Area, Pressure

 $\begin{array}{lll} 1 \; dyneper sq. centimeter = 0.00101979 \; g/cm^2 & = 0.000466646 \; poundals/in^2. \\ 1 \; gram per sq. centimeter = 980.5966 \; dynes/cm^2 = 0.457592 \quad poundals/in^2. \\ 1 \; poundal per sq. inch & = 2142.95 \; dynes/cm^2 = 2.18536 \; g/cm^2 = 0.0310832 \; pound/in^2. \end{array}$

Net Tons, 2000 lbs.	pberes.	Columns o Hg. 13.59	f Mercury, 593 Sp. G.	Columns Max. Den	of Water, sity 4° C	1
per / Sq. Foot	Standard, 760 mm	Milli- meters	Inches	Meters	Feet	
1.02408	0.96778	735.514	28.9572	10	32.8083	i
0.07/200	0.06804	51.7116	2.03588	0.70307	2.30665	
0.00050	0.84725	0.35911	0.01414	0.34882	0.01602	İ
1	0.94502	718.216	28.2762	9.76482	32.0367	:
1.05818	1	760	29.9212	10.3329	33.9006	•
$1/_0^2$ 1392	0.21316	1	0.03937	0.01360	0.04461	1
0.03537	0.03342	25.4001	1	0.34534	1.13299	١
0.10241	0.09678	73.5514	2.89572	1	3.28083	
0.03121	0.02950	22.4185	0.88262	0.30480	1	
	2000 lbs. per / Sq. Foot 1.02408 0.07200 0.00050 1 1.05818 1,61392 0.03537 0.10241	2000 lbs. per / Standard, 760 mm	Mg 13.59 Mg 13.59 Mg 13.59 Mg Mg Mg Mg Mg Mg Mg M	Mg 13.59593 Sp. G Milli- Meters Inches Milli- Meters Inches Milli- Meters Inches Milli- Meters Inches Milli- Meters Inches Milli- Meters Inches Milli- Meters Inches Milli- Meters Inches Milli- Meters Inches Milli- Meters Inches Milli- Meters Inches Milli- Meters Inches Milli- Meters Inches Milli- Meters Inches Milli- Meters Inches Milli- Meters Inches Milli- Meters Inches Meters Milli- Milli- Meters Milli- Milli- Meters Milli- Milli- Meters Milli- Milli- Meters Milli- Milli- Meters Milli- Milli- Meters Milli-	No. Post P	Max. Density 4° C Max.

Forces or Weights per Units of Volume, Density

1 dyne per cu. centimeter=0.00101979 gram/cm³ =0.00118528 poundals/in³.

1 gram per cu. centimeter=980.5966 dynes/cm³ = 1.162283 poundals/in³.

1 poundal per cu. inch =843.683 dynes/cm³=0.860378 g/cm³=0.0310832 pound/in³.

Grams per Cu. Centi- meter, g/cm ³	lb./in.3	lb./ft.8	Pounds per Cu. Yard, lb./yd. ³	Kilograms per Cu. Meter, kg/m ³		Pounds per Gallon, Dry, U. S.	Pounds per Gallon, Liquid, U. S.	Kilograms per Hectoliter, kg/bl
1	0.03613	62.4283	1685.56	1000	77.6893	9.71116	8.34545	100
27.6797	.1	1728	46656	27679.7	2150.42	268.803	.231	2767.97
	0.85787		27	16.0184	1.24446	0.15556	0.13368	1.60184
0.85933		0.03704	1		0.04609	0.25762	0.24951	0.05933
0.001		0.06243				0.59711	0.28345	0.10
				12.8718	1	0.125	0.10742	1.28718
0.10297	0.83720	6.42851	173.570	102.974	8	1 .	0.85937	10.2974
0.11983	0.54329	7.48052	201.974	119.826	9.30920	1.16365	1	11.9826
0.01	0.83613	0.62428	16.8557	10	0.77689	0.09711	0.08345	1

Notations 3_0 , 3_0 , 4_0 , etc., indicate that the 2_0 , 3_0 , 4_0 , etc., are to be replaced by 2, 3, 4, etc. ciphers. Example—I kg/m³ = $0.{}^4_03613 = 0.00003613$ Ib./in³.

EQUIVALENTS OF MEASURE ENERGY, WORK, HEAT

- 1 dyne-centimeter=1 erg=0.00101979 gram-centimeter=0.7737612 foot-pound.
- 1 gram-centimeter=980.5966 ergs=0.67233 foot-pound.
- 1 foot-pound=13557300 ergs=13825.5 gram-centimeters.

	Kilogram-	Foot-	Horsepo	wer-hour	Poncelet-	Kilowatt-	Joules.	Therma	l Units
	meters, kg-m	Pounds, ftlhs.	U. S., H. Ph	Metric, 75 kg-m-h	hours, 100 kg-m-h	hours, kw-h	107 ergs, j-s	B. T. U. b. t. u.	Calorie, kg-cal
	1	7.23300	0.53653	0.53704	0.52778	0.52724	9.80597	0.09296	0.02342
	0.13826	1	0.85051	0.85121	0.83840	0.83766	1.35573	0.01285	0.83239
1	273745	1980000			0.76040				
	270000		0.98632		0.75		2647610		
	360000		1.31509				3530147		
1	367123		1.34111				3600000	3412.66	859.975
		0.73761						0.89480	0.02389
		778.104							0.25200
	426.900	3087.77	0.81559	0.01581	0.71186	0.21163	4186.17	3.96832	1

POWER, RATE OF ENERGY AND HEAT

1 erg per sec.=1 dyne-cm/sec. = 0.00101979 gram-cm/sec. = 0.0737612 foot-pounds/sec.1 gram-centimeter per second = 980.5966 ergs/sec. = 0.07238 foot-pounds/sec. 1 foot-pound per second = 13557300 ergs/sec = 13825.5 gram-cm/sec.

Kilogram- meters	Foot- pounds		power	Poncelet,	IZ:144	Watts,		l Units Sec.
per Second, kg-m/s	per Second, ftlbs./s	U. S., 550 ftlbs./s	Metric, 75 kg-m/s	100 ° kg-m/s	Kilowatt, kw.	107ergs/s	B. T. U. btu/s	Calorie kg-cal/s
1	7.23300	0.01315	0.01333	0.01	0.29806	9.80597	0.29296	0.02342
0.13826	1	0.21818	0.31843					0.53237
76.0404	550	1	1.01387	0.76040	0.74565	745.650	0.70685	0.17812
75	542.475	0.98632	1	0.75	0.73545	735.448		
100	723.300		1.33333	1	0.98060		0.92957	
101.979	737.612	1.34111	1.35972	1.01979	/ 1		0.94796	
0.10198	0.73761	0.01341	0.71360	0.1020	0.001	1	0.89480	0.82389
107.577	778.104	1.41474	1.43436	1.07577	1.05490	1054.90	1	0.25200
426.900	3087.77	5.61412	5.69200	4.26900	4.18617	4186.17	3,96832	1

VELOCITIES AND ACCELERATIONS

1 kine=1 centimeter per second=0.0328083 foot per second.
1 radian per second=57.2958 degrees per sec.=0.159155 revolutions per sec.
1 gravity=980.5966 centimeters per sec. per sec.=32.1717 feet per sec. per sec.

Meters per Second, m/s	Feet per Second, ft./s	Miles per Hour, M/h	Knots per Hour, U. S.	Kilo- meters Hour, km/h	Meter per sec/sec m/s ²	Feet per sec/sec ft./s ²	Miles per hour/sec M/h-s	Kilometer per hour/sec km/h-s
	1 1.46667 1.68894	2.23693 0.68182 1 1.15155 0.62137	0.59209 0.86839 1		,	. ,		
						3.28083 1 1.46667 0.91134	2.23693 0.68182 1 0.62137	3.6 1.09728 1.60935
					0.21110	0.01101	0.02101	

Notations $\stackrel{?}{0}$, $\stackrel{?}{0}$, $\stackrel{4}{0}$, etc., indicate that the $\stackrel{?}{0}$, $\stackrel{?}{0}$, $\stackrel{4}{0}$, etc., are to be replaced by 3. 4. etc., ciphers. Example—1 Calorie—0.21163—0.001163 kilowatt-hours. 2. 3. 4. etc., ciphers.

METRIC CONVERSION TABLES

	I	CHES	то С	ENTIM	ETERS	1 m.	==2.540	JUU5 CII	1	
Tens Units	0	1	2	3,	4	5	6	7	8	9
0		2.540	5.080	7.620	10.160	12,700	15.240	17.780	20.320	22.860
1	25.400	27.940	30,480	33.020	35.560	38.100	40.640	43.180	45,720	48,260
2 ·	50.800	53.340	55.880	58.420	60.960	63.500	66.040	68.580	71.120	73.660
3	76.200	78.740	81.280	83.820	86.360	88.900	91.440	93.980	96.520	99,060
			106.680	109.220	111.760		116.840			
. 4	101.600								147.320	149.860
5	127.000	129.540	132.080	134.620	137.160	139.700	142.240			175.260
6 .	152.400	154.940	157.480	160.020	162.560		167.640		172.720	
7	177.800	180.340	182.880	185.420	187.960		193.040		198.120	200.660
8	203.200	205.740	208.280	210.820	213.360	215.900	218.440	220.980	223.520	226.060
9		231.140								251.460
	INC	HES ²	го СЕ	NTIME	TERS2	—1 in	2==6.45	51625 c	m ²	
Tens Units	Õ	1	2	`3	4	5	6	7	8	9
Tens Dits										
0		6.452	12.903	19.355	25.807	32.258	38.710	45.161	51.613	58.065
1	64.516	70.968	77.420	83.871.		96.774	103.226	109.678	116.129	122.581
2	129.033	135.484	141.936	148.387		161.291	167.742			
3.	193.549	200.000	206.452	212.904		225.807	232.259		245.162	
4	258.065	264.517	270.968	277.420	283.872	290.323	296.775		309.678	
5	322.581	329.033	335.485		348.388	354.839	361.291		374.194	
6	387.098	393.549	400.001	406.452	412.904	419.356	425.807		438.711	445.162
7	451.614	458.065	464.517	470.969	477.420	483.872	490.324			
7							554.840		567.743	574.195
8	516.130	522.582	529.033	535.485	541.937	548.388		625.808		
9	580.040	587.098	090.000	000.001	606.453	612.904	019.550	020.000	002.209	000.711
	Inc	HES ³	го СЕ	NTIME	TERS 3.	-1 in	3 <u>—16.</u>	38716	m ³	
Tone Unite	1	1	Į.	•		1	ı	ĺ		
.608 A	0	1	2 ,	3	4	5	6	7	8	9
Tens 0	0.	16.39	32.77	49.16	65.55	5 81.94	6 98.32	7 114.71	8	9 147.48
0	163.87									
0	163.87	16.39 180.26	32.77 196.66	49.16 213.03	65.55 229.42	81.94	98.32	114.71	131.10	147.48
0 1 2	163.87 327.74	16.39 180.26 344.13	32.77 196.66 360.52	49.16 213.03 376.90	65.55 229.42 393.29	81.94 245.81 409.68	98.32 262.19 426.07	114.71 278.58 442.45	131.10 294.97 458.84	147.48 311.36
0 1 2 3	163.87 327.74 491.61	16.39 180.26 344.13 508.00	32.77 196.66 360.52 524.39	49.16 213.03 376.90 540.78	65.55 229.42 393.29 557.16	81.94 245.81 409.68 573.55	98.32 262.19 426.07 589.94	114.71 278.58 442.45 606.32	131.10 294.97 458.84 622.71	147.48 311.36 475.23 639.10
0 1 2 3 4	163.87 327.74 491.61 655.49	16.39 180.26 344.13 508.00 671.87	32.77 196.66 360.52 524.39 688.26	49.16 213.03 376.90 540.78 704.65	65.55 229.42 393.29 557.16 721.04	81.94 245.81 409.68 573.55 737.42	98.32 262.19 426.07 589.94 753.81	114.71 278.58 442.45 606.32 770.20	131.10 294.97 458.84 622.71 786.58	147.48 311.36 475.23 639.10 802.97
0 1 2 3 4 5	163.87 327.74 491.61 655.49 819.36	16.39 180.26 344.13 508.00 671.87 835.75	32.77 196.66 360.52 524.39 688.26 852.13	49.16 213.03 376.90 540.78 704.65 868.52	65.55 229.42 393.29 557.16 721.04 884.91	81.94 245.81 409.68 573.55 737.42 901.29	98.32 262.19 426.07 589.94 753.81 917.68	114.71 278.58 442.45 606.32 770.20 934.07	131.10 294.97 458.84 622.71 786.58 950.46	147.48 311.36 475.23 639.10 802.97 966.84
0 1 2 3 4 5	163.87 327.74 491.61 655.49 819.36 983.23	16.39 180.26 344.13 508.00 671.87 835.75 999.62	32.77 196.66 360.52 524.39 688.26 852.13 1016.00	49.16 213.03 376.90 540.78 704.65 868.52 1032.39	65.55 229.42 393.29 557.16 721.04 884.91 1048.78	81.94 245.81 409.68 573.55 737.42 901.29 1065.17	98.32 262.19 426.07 589.94 753.81 917.68 1081.55	114.71 278.58 442.45 606.32 770.20 934.07 1097.94	131.10 294.97 458.84 622.71 786.58 950.46 1114.33	147.48 311.36 475.23 639.10 802.97 966.84 1130.71
0 1 2 3 4 5 6 7	163.87 327.74 491.61 655.49 819.36 983.23 1147.10	16.39 180.26 344.13 508.00 671.87 835.75 999.62 1163.49	32.77 196.66 360.52 524.39 688.26 852.13 1016.00 1179.88	49.16 213.03 376.90 540.78 704.65 868.52 1032.39 1196.26	65.55 229.42 393.29 557.16 721.04 884.91 1048.78 1212.65	81.94 245.81 409.68 573.55 737.42 901.29 1065.17 1229.04	98.32 262.19 426.07 589.94 753.81 917.68 1081.55 1245.42	114.71 278.58 442.45 606.32 770.20 934.07 1097.94 1261.81	131.10 294.97 458.84 622.71 786.58 950.46 1114.33 1278.20	147.48 311.36 475.23 639.10 802.97 966.84 1130.71 1294.59
0 1 2 3 4 5	163.87 327.74 491.61 655.49 819.36 983.23 1147.10 1310.97	16.39 180.26 344.13 508.00 671.87 835.75 999.62 1163.49 1327.36	32.77 196.66 360.52 524.39 688.26 852.13 1016.00 1179.88 1343.75	49.16 213.03 376.90 540.78 704.65 868.52 1032.39 1196.26 1360.13	65.55 229.42 393.29 557.16 721.04 884.91 1048.78 1212.65 1376.52	81.94 245.81 409.68 573.55 737.42 901.29 1065.17 1229.04 1392.91	98.32 262.19 426.07 589.94 753.81 917.68 1081.55 1245.42 1409.30	114.71 278.58 442.45 606.32 770.20 934.07 1097.94 1261.81 1425.68	131.10 294.97 458.84 622.71 786.58 950.46 1114.33 1278.20 1442.07	147.48 311.36 475.23 639.10 802.97 966.84 1130.71 1294.59 1458.46
0 1 2 3 4 5 6 7 8	163.87 327.74 491.61 655.49 819.36 983.23 1147.10 1310.97 1474.84	16.39 180.26 344.13 508.00 671.87 835.75 999.62 1163.49	32.77 196.66 360.52 524.39 688.26 852.13 1016.00 1179.88 1343.75 1507.62	49.16 213.03 376.90 540.78 704.65 868.52 1032.39 1196.26 1360.13 1524.01	65.55 229.42 393.29 557.16 721.04 884.91 1048.78 1212.65 1376.52 1540.39	81.94 245.81 409.68 573.55 737.42 901.29 1065.17 1229.04 1392.91 1556.78	98,32 262,19 426,07 589,94 753,81 917,68 1081,55 1245,42 1409,30 1573,17	114.71 278.58 442.45 606.32 770.20 934.07 1097.94 1261.81 1425.68 1589.55	131.10 294.97 458.84 622.71 786.58 950.46 1114.33 1278.20 1442.07 1605.94	147.48 311.36 475.23 639.10 802.97 966.84 1130.71 1294.59 1458.46
0 1 2 3 4 5 6 7 8	163.87 327.74 491.61 655.49 819.36 983.23 1147.10 1310.97 1474.84	16.39 180.26 344.13 508.00 671.87 835.75 999.62 1163.49 1327.36 1491.23	32.77 196.66 360.52 524.39 688.26 852.13 1016.00 1179.88 1343.75 1507.62	49.16 213.03 376.90 540.78 704.65 868.52 1032.39 1196.26 1360.13 1524.01	65.55 229.42 393.29 557.16 721.04 884.91 1048.78 1212.65 1376.52 1540.39	81.94 245.81 409.68 573.55 737.42 901.29 1065.17 1229.04 1392.91 1556.78	98,32 262,19 426,07 589,94 753,81 917,68 1081,55 1245,42 1409,30 1573,17	114.71 278.58 442.45 606.32 770.20 934.07 1097.94 1261.81 1425.68 1589.55	131.10 294.97 458.84 622.71 786.58 950.46 1114.33 1278.20 1442.07 1605.94	147.48 311.36 475.23 639.10 802.97 966.84 1130.71 1294.59 1458.46
0 1 2 3 4 5 6 7 8	163.87 327.74 491.61 655.49 819.36 983.23 1147.10 1310.97 1474.84	16.39 180.26 344.13 508.00 671.87 835.75 999.62 1163.49 1327.36 1491.23	32.77 196.66 360.52 524.39 688.26 852.13 1016.00 1179.88 1343.75 1507.62	49.16 213.03 376.90 540.78 704.65 868.52 1032.39 1196.26 1360.13 1524.01	65.55 229.42 393.29 557.16 721.04 884.91 1048.78 1212.65 1376.52 1540.39	81.94 245.81 409.68 573.55 737.42 901.29 1065.17 1229.04 1392.91 1556.78	98,32 262,19 426,07 589,94 753,81 917,68 1081,55 1245,42 1409,30 1573,17	114.71 278.58 442.45 606.32 770.20 934.07 1097.94 1261.81 1425.68 1589.55	131.10 294.97 458.84 622.71 786.58 950.46 1114.33 1278.20 1442.07 1605.94	147.48 311.36 475.23 639.10 802.97 966.84 1130.71 1294.59 1458.46
0 1 2 3 4 5 6 7 8 9	163.87 327.74 491.61 655.49 819.36 983.23 1147.10 1310.97 1474.84	16.39 180.26 344.13 508.00 671.87 835.75 999.62 1163.49 1327.36 1491.23	32.77 196.66 360.52 524.39 688.26 852.13 1016.00 1179.88 1343.75 1507.62	49.16 213.03 376.90 540.78 704.65 868.52 1032.39 1196.26 1360.13 1524.01	65.55 229.42 393.29 557.16 721.04 884.91 1048.78 1212.65 1376.52 1540.39 TERS ⁴	81.94 245.81 409.68 573.55 737.42 901.29 1065.17 1229.04 1392.91 1556.78	98.32 262.19 426.07 589.94 753.81 917.68 1081.55 1245.42 1409.30 1573.17	114.71 278.58 442.45 606.32 770.20 934.07 1097.94 1261.81 1425.68 1589.55	131.10 294.97 458.84 622.71 786.58 950.46 1114.33 1278.20 1442.07 1605.94	147.48 311.36 475.23 639.10 802.97 966.84 1130.71 1294.59 1458.46 1622.33
0 1 2 3 4 5 6 7 8 9	163.87 327.74 491.61 655.49 819.36 983.23 1147.10 1310.97 1474.84	16.39 180.26 344.13 508.00 671.87 835.75 999.62 1163.49 11327.36 1491.23	32.77 196.66 360.52 524.39 688.26 852.13 1016.00 1179.88 1343.75 1507.62	49.16 213.03 376.90 540.78 704.65 868.52 1032.39 1196.26 1360.13 1524.01 N TIME	65.55 229.42 393.29 557.16 721.04 884.91 1048.78 1212.65 1376.52 1540.39 TERS ⁴	81.94 245.81 409.68 573.55 737.42 901.29 1065.17 1229.04 1392.91 1556.78	98.32 262.19 426.07 589.94 753.81 917.68 1081.55 1245.42 1409.30 1573.17 4—41.6	114.71 278.58 442.45 606.32 770.20 934.07 1097.94 1261.81 1425.68 1589.55 62347 C	131.10 294.97 458.84 622.71 786.58 950.46 1114.33 1278.20 1442.07 1605.94 m4	147.48 311.36 475.23 639.10 802.97 966.84 1130.71 1294.59 1458.46 1622.33
0 1 2 3 4 5 6 7 8 9	163.87 327.74 491.61 655.49 819.36 983.23 1147.10 1310.97 1474.84 INC	16.39 180.26 344.13 508.00 671.87 835.75 999.62 1163.49 1327.36 1491.23 HES ⁴	32.77 196.66 360.52 524.39 688.26 852.13 1016.00 1179.88 1343.75 1507.62	49.16 213.03 376.90 540.78 704.65 868.52 1032.39 1196.26 1360.13 1524.01 N TIME 3	65.55 229.42 393.29 557.16 721.04 884.91 1048.78 1212.65 1376.52 1540.39 TERS4	81.94 245.81 409.68 573.55 737.42 901.29 1065.17 1229.04 1392.91 1556.78 1 in.	98.32 262.19 426.07 589.94 753.81 917.68 1081.55 1245.42 1409.30 1573.17 4—41.6	114.71 278.58 442.45 606.32 770.20 934.07 1097.94 1261.81 1425.68 1589.55 32347 C	131.10 294.97 458.84 622.71 786.58 950.46 1114.33 1278.20 1442.07 1605.94 8 332.99 749.22	147.48 311.36 475.23 639.10 802.97 966.84 1130.71 1294.59 1458.46 1622.33
0 1 2 3 4 5 6 7 8 9	163.87 327.74 491.61 655.49 819.36 983.23 1147.10 1310.97 1474.84 INC	16.39 180.26 344.13 508.00 671.87 835.75 999.62 1163.49 1327.36 1491.23 HES ⁴	32.77 196.66 360.52 524.39 688.26 852.13 1016.00 1179.88 1343.75 1507.62 2 83.25 499.48 915.72	49.16 213.03 376.90 540.78 704.65 868.52 1032.39 1196.26 1360.13 1524.01 N TIME 3 124.87 541.11 957.34	65.55 229.42 393.29 557.16 721.04 884.91 1048.5 1376.52 1540.39 TERS4 4	81.94 245.81 409.68 573.55 737.42 901.29 1065.17 1229.04 1392.91 1556.78 1 in. 5 208.12 624.35 1040.59	98.32 262.19 426.07 589.94 753.81 917.68 1081.55 1245.42 1409.30 1573.17 4—41.6	114.71 278.58 442.45 606.32 770.20 934.07 1097.94 1261.81 1425.68 1589.55 32347 C 7	131.10 294.97 458.84 622.71 786.58 950.46 1114.33 1278.20 1442.07 1605.94 8 332.99 749.22 1165.46	147.48 311.36 475.23 639.10 802.97 966.84 1130.71 1130.71 11294.59 1458.46 1622.33
0 1 2 3 4 5 6 7 8 9	163.87 327.74 491.61 655.49 819.36 983.23 1147.10 1310.97 1474.84 INC 0 416.23 832.47 1248.70	16.39 180.26 344.13 508.00 671.87 835.75 999.62 1163.49 1327.36 1491.23 1491.23 1 41.62 457.86 874.09 1290.33	32.77 196.66 360.52 524.39 688.26 852.13 1016.00 1179.88 1343.75 1507.62 CO CE 2 83.25 499.48 915.72 1331.95	49.16 213.03 376.90 540.78 704.65 868.52 1032.39 1196.26 1360.13 1524.01 N TIME 3 124.87 541.11 957.34 1373.57	65.55 229.42 393.29 557.16 721.04 884.91 1048.78 1212.65 1376.52 1540.39 TERS4 4 166.49 582.73 998.96 1415.20	81.94 245.81 409.68 573.55 737.42 901.29 1065.17 1229.04 1392.91 1556.78 1 in. 5 208.12 624.35 1040.59 1456.82	98.32 262.19 426.07 589.94 753.81 917.68 1081.55 1245.42 1409.30 1573.17 4—41.6 6 249.74 665.98 1082.21 1498.44	114.71 278.58 442.45 606.32 770.20 934.07 1097.94 1261.81 1425.68 1589.55 32347 C 291.36 707.60 1123.83 1540.07	131.10 294.97 458.84 622.71 786.58 950.46 1114.33 1278.20 1442.07 1605.94 8 332.99 749.22 1165.46 1581.69	147.48 311.36 475.23 639.10 802.97 966.84 1130.71 11294.59 1458.46 1622.33 9 374.61 790.85 1207.08 1623.32
0 1 2 3 4 5 6 7 8 9	163.87 327.74 491.61 655.49 819.36 983.23 1147.10 1310.97 1474.84 INC 0 416.23 832.47 1248.70 1664.94	16.39 180.26 344.13 508.00 671.87 835.75 999.62 1163.49 1327.36 1491.23 HES ⁴ 1 41.62 457.86 874.09 1290.33 1706.53	32.77 196.66 360.52 524.39 688.26 852.13 1016.00 1179.88 1343.75 1507.62 2 83.25 499.48 915.72 1331.95 1748.19	49.16 213.03 376.90 540.78 704.65 868.52 1032.39 1196.26 1360.13 1524.01 N TIME 3 124.87 541.11 957.34 1373.57 1789.81	65.55 229.42 393.29 557.16 721.04 884.91 1048.78 1212.65 1376.52 1540.39 TERS 4 166.49 582.73 998.96 1415.20 1831.43	81.94 245.81 409.68 573.55 737.42 901.29 1065.17 1229.04 1392.91 1556.78 — 1 in. 5 208.12 624.35 1040.59 1456.82	98.32 262.19 426.07 589.94 753.81 917.68 1081.55 1245.42 1409.30 1573.17 4—41.6 6 249.74 665.98 1082.21 1498.44	114.71 278.58 442.45 606.32 770.20 934.07 1097.94 1261.81 1425.68 1589.55 7 291.36 707.60 1123.83 1540.07	131.10 294.97 458.84 622.71 786.58 950.46 1114.33 1278.20 1442.07 1605.94 8 8 332.99 749.22 1165.46 1581.69	147.48 311.36 475.23 639.10 802.97 966.84 1130.71 1294.59 1458.46 1622.33 9 374.61 790.85 1207.08 1623.32 2039.63
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 4 5 6 7 8 9	163.87 327.74 491.61 655.49 819.36 983.23 1147.10 1310.97 1474.84 INC 0 416.23 832.47 1248.70 1664.94 2081.17	16.39 180.26 344.13 508.00 671.87 835.75 999.62 1163.49 1327.36 1491.23 HES ⁴ 1 41.62 457.86 874.09 1290.33 1706.56 2122.80	32.77 196.66 360.52 524.39 688.26 852.13 1016.00 1179.88 1343.75 1507.62 2 2 83.25 499.48 915.72 1331.95 1748.19 2164.42	49.16 213.03 376.90 540.78 704.65 868.52 1032.39 1196.26 1360.13 3 124.87 541.11 957.34 1373.57 1789.81	65.55 229.42 393.29 557.16 721.04 884.91 1048.78 1212.65 1376.52 1540.39 TERS ⁴ 4 166.49 582.73 998.96 1415.20 1431.43 2247.67	81.94 245.81 409.68 573.55 737.42 901.29 1065.17 1229.04 1392.91 1556.78 —1 in. 5 208.12 624.35 1040.59 1456.82 1873.06 2289.29	98.32 262.19 426.07 589.94 753.81 917.68 1081.55 1245.42 1409.30 4—41.6 6 249.74 665.98 1082.21 1498.44 1914.68 2330.91	114.71 278.58 442.45 606.32 770.20 934.07 1097.94 1261.81 1425.68 1589.55 62347 C 291.36 707.60 1123.83 1540.07 1956.30 2372.54	131.10 294.97 458.84 622.71 786.58 950.46 1114.33 1278.20 1442.07 1605.94 8 332.99 749.22 1165.46 1581.69 1997.93 2414.16	147.48 311.36 475.23 639.10 802.97 966.84 1130.71 1294.59 1458.46 1622.33 9 374.61 790.85 1207.08 1623.32 2039.65 2455.78
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 6 7 8 9	163.87 327.74 491.61 655.49 819.36 983.23 1147.10 1310.97 1474.84 INC 0 416.23 832.47 1248.70 1664.94 2081.17	16.39 180.26 344.13 508.00 671.87 835.75 999.62 1163.49 1327.36 1491.23 HES ⁴ 1 41.62 457.86 874.09 1290.33 1706.56 2122.80 2539.03	32.77 196.66 360.52 524.39 688.26 852.13 1016.00 1179.88 1343.75 1507.62 2 83.25 499.48 915.72 1331.95 1748.19 2164.42 2580.66	49.16 213.03 376.90 540.78 704.65 868.52 1032.39 1196.26 1360.13 1524.01 N TIME 3 124.87 541.11 957.34 1373.57 1789.81 2206.04 2622.28	65.55 229.42 393.29 557.16 721.04 884.91 1048.78 1212.65 1540.39 TERS 4 166.49 582.73 998.96 1415.20 1831.43 2247.67	81.94 245.81 409.68 573.55 737.42 901.29 1065.17 1229.04 1392.91 1556.78 1 in. 5 208.12 624.35 1040.59 1456.82 1873.06 2289.29 2705.53	98.32 262.19 426.07 589.94 753.81 917.68 1081.55 1245.42 1409.30 1573.17 4—41.6 249.74 665.98 1082.21 1498.44 1914.68 2330.91 2747.15	114.71 278.58 442.45 606.32 770.20 934.07 1097.94 1261.81 1425.68 1589.55 22347 C 291.36 707.60 1123.83 1540.07 1956.30 2372.54 2788.77	131.10 294.97 458.84 622.71 786.58 950.46 1114.33 1278.20 1442.07 1605.94 8 332.99 749.22 1165.46 1581.69 1997.93 2414.16	147.48 311.36 475.23 639.10 802.97 966.84 1130.71 1294.59 1458.46 1622.33 9 374.61 790.85 1207.08 1623.32 2039.65 2455.78 2872.02
0 1 2 3 4 5 6 6 7 8 8 9 0 1 2 3 4 4 5 6 6 7	163.87 327.74 491.61 655.49 819.36 983.23 1147.10 1310.97 1474.84 INC 0 416.23 832.47 1248.70 1664.94 2081.17 2497.41	16.39 180.26 344.13 508.00 671.87 835.75 999.62 1163.49 1327.36 1491.23 HES ⁴ 1 41.62 457.86 874.09 1290.33 1706.56 2122.80 2539.03	32.77 196.66 360.52 524.39 688.26 852.13 1016.00 1179.88 1343.75 1507.62 2 83.25 499.48 915.72 1331.95 1748.19 2164.42 2580.66 25906.89	49.16 213.03 376.90 540.78 704.65 868.52 1032.39 1196.26 1360.13 1524.01 N TIME 3 124.87 541.11 957.34 1373.57 1789.81 2206.04 2622.28 3038.51	65.55 229.42 393.29 557.16 721.04 884.91 1048.78 1212.65 1376.52 1540.39 TERS 4 166.49 582.73 998.96 1415.20 1831.43 2247.67 2263.90 3080.14	81.94 245.81 409.68 573.55 737.42 901.29 1065.17 1229.04 1392.91 1556.78 1 in. 5 208.12 624.35 1040.59 1456.82 1873.06 2289.29 2705.53 3121.76	98.32 262.19 426.07 589.94 753.81 1917.68 1081.55 1245.42 1409.30 1573.17 4—41.6 6 249.74 665.98 1082.21 1498.44 1914.68 2330.91 2747.15 3163.38	114.71 278.58 442.45 606.32 770.20 934.07 1097.94 1261.81 1425.68 1589.55 7 291.36 707.60 1123.83 1540.07 1956.30 2372.54 2788.77 3205.01	131.10 294.97 458.84 622.71 786.58 950.46 1114.33 1278.20 1442.07 1605.94 8 332.99 749.22 1165.46 1581.69 1997.93 2414.16 2830.40 3246.63	147.48 311.36 475.23 639.10 802.97 966.84 1130.71 1294.59 1458.46 1622.33 9 374.61 790.85 1207.08 1623.32 2039.65 2455.78 2872.02 3288.25
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9	163.87 327.74 491.61 655.49 819.36 983.23 1147.10 1310.97 1474.84 INC 0 416.23 832.47 1248.70 1664.94 2081.17 2497.41 2913.64 3329.84	16.39 180.26 344.13 508.00 671.87 835.75 999.62 1163.49 1327.36 1491.23 HES ⁴ 1 41.62 457.86 874.09 1290.33 1706.56 2122.80 2539.03	32.77 196.66 360.52 524.39 688.26 852.13 1016.00 1179.88 1343.75 1507.62 2 83.25 499.48 915.72 1331.95 1748.19 2164.42 2580.66 2996.89	49.16 213.03 376.90 540.78 704.65 868.52 1032.39 1196.26 1360.13 1524.01 N TIME 3 124.87 541.11 957.34 1373.57 1789.81 1206.04 2622.28 3038.51 3454.75	65.55 229.42 393.29 557.16 721.04 884.91 1048.78 11212.65 1376.52 1540.39 TERS ⁴ 4 166.49 582.73 998.96 1415.20 1831.43 2247.67 2663.90 3080.14 3496.37	81.94 245.81 409.68 573.55 737.42 901.29 1065.17 1229.04 1392.91 1556.78 — 1 in. 5 208.12 624.35 1040.59 1456.82 1873.06 2289.29 2705.53 3121.76 3537.99	98.32 262.19 426.07 589.94 753.81 917.68 1081.55 1245.42 1409.30 1573.17 4—41.6 665.98 1082.21 1498.44 1914.68 2330.91 2747.15 3163.38	114.71 278.58 442.45 606.32 770.20 934.07 1097.94 1261.81 1425.68 1589.55 32347 C 291.36 707.60 1123.83 1540.07 1956.30 2372.54 2788.77 3205.01 3621.24	131.10 294.97 458.84 622.71 786.58 950.46 1114.33 1278.20 1442.07 1605.94 8 332.99 749.22 1165.46 1581.69 1997.93 2414.16 2830.40 3246.63 3662.87	147.48 311.36 475.23 639.10 802.97 966.84 1130.71 11294.59 1458.46 1622.33 9 374.61 790.85 1207.08 1623.32 2455.78 2872.02 3288.25 3704.49

MEASURES AND WEIGHTS

METRIC CONVERSION TABLES

			TRIC		VERS		TABI			
		CENT	(METE	RS TO	Inchi	es—l c	m=0.3	937 in		
Tens	0	1	2	3	4	5	6	7	8	9
0		0.3937	0.7874	1.1811	1.5748	1.9685	2.3622	2.7559	3.1496	3.543
1	3.9370	4.3307	4.7244	5.1181	5.5118	5.9055	6.2992	6.6929	7.0866	7.480
2	7.8740	8.2677	8.6614	9.0551	9.4488	9.8425	10.2362	10.6299	11.0236	11.417
3	11.8110	12.2047	12.5984	12.9921		13.7795	14.1732	14.5669		15.354
4	15.7480	16.1417	16.5354		17.3228	17.7165		18.5039		19.291
5	19.6850	20.0787	20.4724	20.8661		21.6535		22.4409		23.228
6	23.6220	24.0157	24.4094			25.5905		26.3779		27.165
7	27.5590	27.9527	28.3464	28.7401	29.1338	29.5275		30.3149	30.7086	31.102
8	31.4900	31.8897	32.2834		33.0708					
9		35.8267	36 9904	36.6141	37 0078	27 4015	27 7052	20 1000	20 5008	20.038
										199-970
	CEN	TIMET	ERS ²	ro Inc	CHES2-	−l cm²	=0.154	199969	in.².	
Tens Unite	0	1	2	3	4	5	6	7	8	9
0		0.1550	0.3100	0.4650	0.6200	0.7750	0.9300	1.0850	1.2400	1.395
i	1.5500	1.7050	1.8600	2.0150	2.1700	2.3250	2.4800	2.6350	2.7900	2.945
2	3.1000	3.2550	3.4100	3.5650	3.7200	3.8750	4.0300	4.1850	4.3400	4.495
3	4.6500	4.8050	4.9600	5.1150	5.2700	5.4250	5.5800	5.7350	5.8900	6.045
4	6.2000	6.3550	6.5100	6.6650	6.8200	6.9750	7.1300	7.2850	7.4400	7.595
5	7.7500	7.9050	8.0600	8.2150	8.3700	8.5250	8.6800	8.8350	8.9900	9.145
ß	9.3000	9.4550	9.6100	9.7650	9.9200	10.0750	10.2300		10.5400	10.695
6 7	10.8500	11.0050	11.1600			11.6250	11.7800	11.9350	12.0900	12.245
8	12.4000	12.5550	12.7100	12.8650	13.0200		13.3300	13.4850	13.6400	13.795
9	13.9500			14.4150						
3 7)										
						•				10.010
		TIMET		TO IN		•				10.010
Tens						•				9
	CEN	TIME I	ERS ³	TO IN	CHES ³ -	—1 cm	6	10234 i	n. ³ .	9
0	Cen 0	1 0.06102	2 0.12205	3 0.18307	4 0.24409	_l cm ²	6 0.36614	10234 i 7 0.42716	n. ³ . 8 0.48819	9
0 1	0 0.61023	1 0.06102 0.67126	2 0.12205 0.73228	3 0.18307 0.79330	4 0.24409 0.85433	-l cm ² 5 0.30512 0.91535	6 0.36614 0.97637	7 0.42716 1.03740	8 0.48819 1.09842	9 0.5492 1.1594
0 1 2	0 0.61023 1.32047	1 0.06102 0.67126 1.28149	2 0.12205 0.73228 1.34251	3 0.18307 0.79330 1.40354	4 0.24409 0.85433 1.46456	-l cm ² 0.30512 0.91535 1.52559	6 0.36614 0.97637 1.58661	7 0.42716 1.03740 1.64763	8 0.48819 1.09842 1.70866	9 0.5492 1.1594 1.7696
0 1 2 3	0 0.61023 1.32047 1.83070	1 0.06102 0.67126 1.28149 1.89173	2 0.12205 0.73228 1.34251 1.95275	3 0.18307 0.79330 1.40354 2.01377	4 0.24409 0.85433 1.46456 2.07480	5 0.30512 0.91535 1.52559 2.13582	6 0.36614 0.97637 1.58661 2.19684	7 0.42716 1.03740 1.64763 2.25787	8 0.48819 1.09842 1.70866 2.31889	9 0.5492 1.1594 1.7696 2.3799
0 1 2 3 4	0 0.61023 1.32047 1.83070 2.44094	1 0.06102 0.67126 1.28149 1.89173 2.50196	2 0.12205 0.73228 1.34251 1.95275 2.56298	3 0.18307 0.79330 1.40354 2.01377 2.62401	4 0.24409 0.85433 1.46456 2.07480 2.68503	5 0.30512 0.91535 1.52559 2.13582 2.74605	6 0.36614 0.97637 1.58661 2.19684 2.80708	7 0.42716 1.03740 1.64763 2.25787 2.86810	8 0.48819 1.09842 1.70866 2.31889 2.92912	9 0.5492 1.1594 1.7696 2.3799 2.9901
0 1 2 3 4 5	0 0.61023 1.32047 1.83070 2.44094 3.05117	1 0.06102 0.67126 1.28149 1.89173 2.50196 3.11219	2 0.12205 0.73228 1.34251 1.95275 2.56298 3.17322	3 0.18307 0.79330 1.40354 2.01377 2.62401 3.23424	4 0.24409 0.85433 1.46456 2.07480 2.68503 3.29526	5 0.30512 0.91535 1.52559 2.13582 2.74605 3.35629	6 0.36614 0.97637 1.58661 2.19684 2.80708 3.41731	7 0.42716 1.03740 1.64763 2.25787 2.86810 3.47833	8 0.48819 1.09842 1.70866 2.31889 2.92912 3.53936	9 0.5492 1.1594 1.7696 2.3799 2.9901 3.6003
0 1 2 3 4 5 6	0 0.61023 1.32047 1.83070 2.44094 3.05117 3.66140	1 0.06102 0.67126 1.28149 1.89173 2.50196 3.11219 3.72243	2 0.12205 0.73228 1.34251 1.95275 2.56298 3.17322 3.78345	3 0.18307 0.79330 1.40354 2.01377 2.62401 3.23424 3.84447	4 0.24409 0.85433 1.46456 2.07480 2.68503 3.29526 3.90550	5 0.30512 0.91535 1.52559 2.13582 2.74605 3.35629 3.96652	6 0.36614 0.97637 1.58661 2.19684 2.80708 3.41731 4.02754	7 0.42716 1.03740 1.64763 2.25787 2.86810 3.47833 4.08857	8 0.48819 1.09842 1.70866 2.31889 2.92912 3.53936 4.14959	9 0.5492 1.1594 1.7696 2.3799 2.9901 3.6003 4.2106
0 1 2 3 4 5 6 7	0 0.61023 1.32047 1.83070 2.44094 3.05117 3.66140 4.27164	1 0.06102 0.67126 1.28149 1.89173 2.50196 3.11219 3.72243 4.33266	2 0.12205 0.73228 1.34251 1.95275 2.56298 3.17322 3.78345 4.39368	3 0.18307 0.79330 1.40354 2.01377 2.62401 3.23424 3.84447 4.45471	4 0.24409 0.85433 1.46456 2.07480 2.68503 3.29526 3.90550 4.51573	5 0.30512 0.91535 1.52559 2.13582 2.74605 3.35629 3.96652 4.57675	6 0.36614 0.97637 1.58661 2.19684 2.80708 3.41731 4.02754 4.63778	7 0.42716 1.03740 1.64763 2.25787 2.86810 3.47833 4.08857 4.69880	8 0.48819 1.09842 1.79869 2.31889 2.92912 3.53936 4.14959 4.75983	9 0.5492 1.1594 1.7696 2.3799 2.9901 3.6003 4.2106 4.8208
0 1 2 3 4 5 6 7 8	0 0.61023 1.32047 1.83070 2.44094 3.05117 3.05140 4.27164 4.88187	1 0.06102 0.67126 1.28149 1.89173 2.50196 3.11219 3.72243 4.33266 4.94290	2 0.12205 0.73228 1.34251 1.95275 2.56298 3.17322 3.78345 4.39368 5.00392	3 0.18307 0.79330 1.40354 2.01377 2.622401 3.23424 3.84447 4.45471 5.06494	4 0.24409 0.85433 1.46456 2.074803 3.29526 3.99550 4.51573 5.12597	5 0.30512 0.91535 1.52559 2.13552 2.74605 3.35629 3.36652 4.57675 5.18699	6 0.36614 0.97637 1.58661 2.19684 3.41731 4.02754 4.63778 5.24801	7 0.42716 1.03740 1.64763 2.25787 2.86810 3.47833 4.08857 4.69880 5.30904	0.48819 1.09842 1.70866 2.31889 2.92912 3.53936 4.14959 4.75983 5.37006	9 0.5492 1.1594 1.7696 2.3799 2.9901 3.6003 4.2106 4.8208 5.4310
0 1 2 3 4 5 6 7	0 0.61023 1.32047 1.83070 2.44094 3.05117 3.66140 4.27164 4.88187 5.49211	1 0.06102 0.67126 1.28149 1.89173 2.50196 3.11219 3.72243 4.33266	2 0.12205 0.73228 1.34251 1.95275 2.56298 3.17322 3.78345 4.39368 5.00392 5.61415	3 0.18307 0.79330 1.40354 2.01377 2.62401 3.23424 3.24447 4.45471 5.06494 5.67518	4 0.24409 0.85433 1.46456 2.07480 2.68503 3.29526 3.29526 4.51573 5.12597 5.73620	5 0.30512 0.91535 1.52559 2.13582 2.74605 3.35629 3.96652 4.57675 5.18699 5.79722	3=0.06 6 0.36614 0.97637 1.58661 2.19684 2.80708 3.41731 4.02754 4.63778 5.24801 5.85825	7 0.42716 1.03740 1.64763 2.25787 2.86810 3.47833 4.08857 4.69880 5.30904 5.91927	8 0.48819 1.09842 1.70866 2.31889 2.92912 3.53936 4.14959 4.75983 5.37006 5.98029	9 0.5492 1.1594 1.7696 2.3799 2.9901 3.6003 4.2106 4.8208 5.4310
0 1 2 3 4 5 6 7 8	0 0.61023 1.32047 1.83070 2.44094 3.05117 3.66140 4.27164 4.88187 5.49211	1 0.06102 0.67126 1.28149 1.89173 2.50196 3.11219 3.72243 4.33266 4.94290 5.55313	2 0.12205 0.73228 1.34251 1.95275 2.56298 3.17322 3.78345 4.39368 5.00392 5.61415	3 0.18307 0.79330 1.40354 2.01377 2.622401 3.23424 3.84447 4.45471 5.06494	4 0.24409 0.85433 1.46456 2.07480 2.68503 3.29526 3.29526 4.51573 5.12597 5.73620	5 0.30512 0.91535 1.52559 2.13582 2.74605 3.35629 3.96652 4.57675 5.18699 5.79722	3=0.06 6 0.36614 0.97637 1.58661 2.19684 2.80708 3.41731 4.02754 4.63778 5.24801 5.85825	7 0.42716 1.03740 1.64763 2.25787 2.86810 3.47833 4.08857 4.69880 5.30904 5.91927	8 0.48819 1.09842 1.70866 2.31889 2.92912 3.53936 4.14959 4.75983 5.37006 5.98029	9 0.5492 1.1594 1.7696 2.3799 2.9901 3.6003 4.2106 4.8208 5.4310
0 1 2 3 4 5 6 7 8	0 0.61023 1.32047 1.83070 2.44094 3.05117 3.66140 4.27164 4.88187 5.49211	1 0.06102 0.67126 1.28149 1.89173 2.50196 3.11219 3.72243 4.33266 4.94290 5.55313	2 0.12205 0.73228 1.34251 1.95275 2.56298 3.17322 3.78345 4.39368 5.00392 5.61415	3 0.18307 0.79330 1.40354 2.01377 2.62401 3.23424 3.24447 4.45471 5.06494 5.67518	4 0.24409 0.85433 1.46456 2.07480 2.68503 3.29526 3.29526 4.51573 5.12597 5.73620	5 0.30512 0.91535 1.52559 2.13582 2.74605 3.35629 3.96652 4.57675 5.18699 5.79722	3=0.06 6 0.36614 0.97637 1.58661 2.19684 2.80708 3.41731 4.02754 4.63778 5.24801 5.85825	7 0.42716 1.03740 1.64763 2.25787 2.86810 3.47833 4.08857 4.69880 5.30904 5.91927	8 0.48819 1.09842 1.70866 2.31889 2.92912 3.53936 4.14959 4.75983 5.37006 5.98029	9 0.5492 1.1594 1.7696 2.3799 2.9901 3.6003 4.2106 4.8208 5.4310
0 1 2 3 4 5 6 7 8	0.61023 1.32047 1.83070 2.44094 3.05117 3.66140 4.27164 4.88187 5.49211	1 0.06102 0.67126 1.28149 1.89173 2.50196 3.11219 3.72243 4.33266 4.94290 5.55313	2 0.12205 0.73228 1.34251 1.95275 2.56298 3.17322 3.78345 5.00392 5.61415	3 0.18307 0.79330 1.40354 2.01377 2.62401 3.23424 3.84447 5.67518 TO IN	0.24409 0.85433 1.46456 2.07480 2.68503 3.29526 3.90550 4.51573 5.12597 5.73620	-1 cm ² 5 0.30512 0.91535 1.52559 2.13582 2.74605 3.35629 3.396652 4.57675 5.18699 5.79722 -1 cm ²	3=0.06 6 0.36614 0.97637 1.58661 2.19684 2.80708 3.41731 4.02754 4.63778 5.24801 5.85825	7 0.42716 1.03740 1.64763 2.25787 2.86810 3.47833 4.08857 4.69880 5.30904 5.91927	8 0.48819 1.09842 1.70866 2.31889 2.92912 3.53936 4.14959 5.37006 5.98029 n.4.	9 0.5492 1.1594 1.7696 2.3799 2.9901 3.6003 4.2106 4.8208 5.4310 6.0413
0 1 2 3 4 5 6 7 8 9	0.61023 1.32047 1.83070 2.44094 3.05117 3.66140 4.27164 4.88187 5.49211	1 0.06102 0.67126 1.28149 1.89173 2.50196 3.11219 3.72243 4.33266 4.94290 5.55313 VIIME 1	2 0.12205 0.73228 1.34251 1.95275 2.56298 3.17322 4.39368 5.00392 5.61415 TERS ⁴	3 0.18307 0.79330 1.40354 2.01377 2.62401 3.23424 4.45471 5.06494 5.67518	0.24409 0.85433 1.46456 2.07480 2.88503 3.29526 3.90550 4.51573 5.12597 5.73620 CHES ⁴	-1 cm ² 5 0.30512 0.91535 1.52559 2.13582 2.74605 3.35629 3.96652 4.57675 5.18699 5.79722 —1 cm ² 5 0.12012 0.36037	3—0.06 6 0.36614 0.97637 1.58661 2.19684 2.80708 3.41731 4.02754 4.63778 5.24801 5.85825 4—0.02	7 0.42716 1.03740 1.64763 2.25787 2.36810 3.47833 4.08357 4.69380 5.30904 5.91927	8 0.48819 1.09842 1.70866 2.31889 2.92912 3.53936 4.14959 4.75983 5.37006 5.98029 m.4.	9 0.5492 1.1594 1.7696 2.3799 2.9901 3.6003 4.2106 4.8208 5.4310 6.0413
0 1 2 3 4 5 6 7 8 9	0 0.61023 1.32047 1.83070 2.44094 3.05117 3.66140 4.27164 4.88187 5.49211 CEN	1 0.06102 0.67126 1.28149 1.89173 2.50196 3.11219 3.72243 4.33266 4.94290 5.55313 VTIME 1 0.02402 0.28427	2 0.12205 0.73228 1.34251 1.95275 2.56298 3.17322 3.78345 4.39368 5.00392 5.61415 PERS ⁴ 2 0.04805	3 0.18307 0.79330 1.40354 2.01377 2.622401 3.23424 3.84447 4.45471 5.06494 5.67518 TO IN	4 0.24409 0.85433 1.46456 2.07480 2.88503 3.29526 3.29550 4.51573 5.12597 5.73620 CHES ⁴ 4 0.09610	1 cm ² 5 0.30512 0.91535 1.52559 2.13582 2.74605 3.35629 3.96652 4.57675 5.18699 5.79722 —1 cm ² 5 0.12012	3=0.06 6 0.36614 0.97637 1.58661 2.19684 2.80708 3.41731 4.02754 4.63778 5.24801 5.85825 4=0.02 6 0.14415	7 0.42716 1.03740 1.64763 2.25787 2.86810 3.47833 4.08857 4.69880 5.30904 5.91927 40249 i 7 0.16817	8 0.48819 1.09842 1.70866 2.31889 2.92912 3.53936 4.14959 4.75983 5.37006 5.98029 n.4.	9 0.5492 1.1594 1.7696 2.3799 2.9901 3.6003 4.2106 4.8208 5.4310 6.0413
0 1 2 3 4 5 6 6 7 8 9	0 0.61023 1.32047 1.83070 2.44094 3.05117 3.66140 4.27164 4.88187 5.49211 CEN	1 0.06102 0.67126 1.28149 1.89173 2.50196 3.11219 3.72243 4.33266 4.33266 5.55313 VIIME I	2 0.12205 0.73228 1.34251 1.95275 2.56298 2.56298 2.56345 4.39368 5.00392 5.61415 FERS4 2 0.04805 0.28830	3 0.18307 0.79330 1.40354 2.01377 2.62401 3.23424 3.84447 4.45471 5.06494 5.67518 TO IN 3 0.07207 0.31232	CHES ³ - 4 0.24409 0.85433 1.46456 2.07480 2.68503 3.29526 4.51573 5.12597 5.73620 CHES ⁴ 4 0.09610 0.33635	-1 cm ² 5 0.30512 0.91535 1.52559 2.13582 2.74605 3.35629 3.96652 4.57675 5.18699 5.79722 —1 cm ² 5 0.12012 0.36037	3—0.06 6 0.36614 0.97637 1.58661 2.19684 2.80708 3.41731 4.02754 4.63778 5.24801 5.85825 0.14415 0.38440	7 0.42716 1.03740 1.64763 2.25787 2.86810 3.47833 4.08857 4.69880 5.30904 5.91927 7 0.16817 0.40842	8 0.48819 1.09842 1.70866 2.31889 2.92912 3.53936 4.14959 4.75983 5.37006 5.98029 n.4.	9 0.5492 1.1594 1.7696 2.3799 2.9901 3.6003 4.2106 4.8208 5.4310 6.0413
0 1 2 3 4 5 6 7 8 9	0 0.61023 1.32047 1.83070 2.44094 3.05117 3.66140 4.27164 4.88187 5.49211 CEN 0 0.24025 0.48050 0.72075	1 0.06102 0.67126 1.28149 1.89173 2.50196 3.11219 3.72243 4.33266 4.34290 5.55313 VTIME 3 1 0.02402 0.26427 0.50452 0.74477	2 0.12205 0.73228 1.34251 1.95275 2.56298 3.17322 3.78345 4.39368 5.00392 5.61415 PERS ⁴ 2 0.04805 0.28880 0.52855 0.76880	3 0.18307 0.79330 1.40354 2.01377 2.62401 3.23424 3.84447 4.45471 5.67518 TO IN 3 0.07207 0.31232 0.55257 0.79282	4 0.24409 0.85433 1.46456 2.07480 2.08503 3.29526 3.90550 4.51573 5.12597 5.73620 CHES ⁴ 4 0.09610 0.33635 0.57660 0.81685	1 cm ² 5 0.30512 0.91535 1.52559 2.13582 2.74605 3.35629 3.96652 4.57675 5.18699 5.79722 —1 cm ² 5 0.12012 0.36037 0.60062 0.84087	3=0.06 6 0.36614 0.97637 1.58661 2.19684 2.80708 3.41731 4.02754 4.63778 5.24801 5.85825 4=0.02 6 0.14415 0.38440 0.62465 0.86490	7 0.42716 1.03740 1.64763 2.25787 2.86810 3.47833 4.08857 4.69880 5.30904 5.91927 40249 i 7 0.16817 0.40842 0.64867 0.88892	8 0.48819 1.09842 1.70866 2.31889 2.92912 3.53936 4.14959 4.75983 5.37006 5.98029 n.4. 8 0.19220 0.43245 0.67270 0.91295	9 0.5492 1.1594 1.7696 2.3799 2.9901 3.6003 4.2106 4.8208 5.4310 6.0413 9 0.2162 0.4564 0.9369
0 1 2 3 4 5 6 7 8 9	0.61023 1.32047 1.83070 2.44094 3.05117 3.66140 4.27164 4.88187 5.49211 CEP 0 0.24025 0.48050 0.72075	1 0.06102 0.67126 1.28149 1.89173 2.50196 3.11219 3.172243 4.33266 4.94290 5.55313 VIIME 1 0.02402 0.28427 0.50452 0.74477 0.98502	2 0.12205 0.73228 1.34251 1.95275 2.56298 3.17322 3.78345 4.39368 5.00392 5.61415 VERS4 2 0.04805 0.28830 0.52855 0.76880	0.18307 0.18307 0.79330 1.40354 2.01377 2.62401 3.23424 4.45471 5.667518 TO IN 3 0.07207 0.31232 0.55257 0.79282 0.79282	4 0.24409 0.85433 1.46456 2.07480 2.68503 3.29556 4.51573 5.12597 5.73620 CHES ⁴ 4 0.09610 0.33635 0.57660 0.81685	-1 cm ² 5 0.30512 0.91535 1.52559 2.13582 2.74605 3.35629 3.36652 4.57675 5.18699 5.79722 -1 cm ² 5 0.12012 0.36037 0.60062 0.84087 1.08112	3=0.06 6 0.36614 0.97637 1.58661 2.19684 2.80708 3.41731 4.02754 4.63778 5.24801 5.85825 4=0.02 6 0.14415 0.38440 0.62465 0.84490 1.10515	7 0.42716 1.03740 1.64763 2.25787 2.86810 3.47833 4.08857 4.69880 5.30904 5.91927 7 0.16817 0.40842 0.64867 0.88892 1.12917	0.48819 1.09842 1.70866 2.31889 2.92912 3.53936 4.14959 4.75983 5.37006 5.98029 m.4. 8 0.19220 0.43245 0.67270 0.91252	9 0.5492 1.1594 1.7696 2.3799 2.9901 3.6003 4.2106 4.2106 6.0413 9 0.2162 0.4564 0.6967 0.9369 1.1772
0 1 2 3 4 5 6 7 8 9	0 0.61023 1.32047 1.83070 2.44094 3.05117 3.66140 4.27164 4.87181 CEN 0 0.24025 0.48050 0.96100 0.96100 0.90125	1 0.06102 0.67126 1.28149 1.89173 3.121219 3.72243 4.33266 4.94290 5.55313 VTIME 1 0.02402 0.26427 0.50452 0.74477 0.985257	2 0.12205 0.73228 1.34251 1.95275 2.56298 3.17322 3.78346 4.39368 5.00392 5.61415 TERS4 2 0.04805 0.28830 0.52855 0.76880 1.06985 1.24930	3 0.18307 0.79330 1.40354 2.01377 2.62401 3.23424 3.84447 5.67518 TO IN 3 0.07207 0.31232 0.55257 0.79382 1.07382	CHES ³ - 4 0.24409 0.85433 1.46456 2.07480 2.08503 3.29556 3.90550 5.73620 CHES ⁴ - 4 0.09610 0.33635 0.57660 0.81685 1.05710	-1 cm ⁻¹ 5 0.30512 0.91535 1.52559 2.13582 2.13582 2.13582 3.96652 4.57675 5.18699 5.79722 —1 cm ⁻² 5 0.12012 0.36037 0.60062 0.36037 1.08112 1.32137	3=0.06 6 0.36614 0.97637 1.58661 2.19684 2.80708 3.41731 4.02754 4.63778 5.24801 5.85825 0.02 6 0.14415 0.038440 0.62465 0.38440 1.104539	7 0.42716 1.03740 1.64763 2.25787 2.258810 3.47833 4.08857 4.69880 5.30904 5.91927 7 0.16817 7 0.16817 0.40842 0.64867 0.48891 1.36942	0.48819 1.09842 1.70866 2.31889 2.92912 3.53936 4.14959 6.475983 5.37006 5.98029 1.4. 8 0.19220 0.43245 0.67270 0.91295 1.153204	9 0.5492 1.1594 1.7696 2.3799 2.9901 4.2106 4.8208 6.0413 9 0.2162 0.4564 0.6967 0.9369 1.1772 1.4174
0 1 2 3 4 5 5 6 7 8 9 0 1 2 2 3 4 4 5 5 6	0 0.61023 1.32047 1.83070 2.44094 3.05117 3.66140 4.27164 4.88187 5.49211 CEN 0 0.24025 0.48050 0.72075 0.96100 1.20125	1 0.06102 0.67126 1.28149 1.89173 2.50196 3.11219 3.72243 4.33266 4.94290 5.55313 VTIME 1 0.02402 0.28427 0.50452 0.74477 0.98502 1.22527 1.22527	2 0.12205 0.73228 1.34251 1.95275 2.56298 3.17322 3.78345 4.39368 5.00392 5.61415 PERS ⁴ 2 0.04805 0.28830 0.28830 1.09005 1.24930 1.48954	3 0.18307 0.79330 1.40354 2.01377 2.622401 3.23424 3.24447 4.45471 5.06494 5.67518 TO IN 3 0.07207 0.31232 0.55257 0.79282 1.03307 1.27332 1.27332 1.27332	4 0.24409 0.85433 1.46456 2.07480 2.68503 3.29526 3.90550 4.51573 5.12597 5.73620 CHES ⁴ 4 0.09610 0.33636 0.57660 0.81685 1.057710 1.29734 1.53759	1 cm ² 5 0.30512 0.91535 1.52559 2.13582 2.74605 3.35629 3.96652 4.57675 5.18699 5.79722 1 cm ² 5 0.12012 0.36037 0.60062 0.84087 1.08112 1.32137 1.56162	3=0.06 6 0.36614 0.97637 1.58661 2.19684 4.02754 4.02754 5.24801 5.85825 4=0.02 6 0.14415 0.38440 0.62465 0.88490 1.10515 1.34539 1.34539	7 0.42716 1.03740 1.64763 2.25787 2.258810 3.47833 4.08857 4.69380 5.30904 5.91927 7 0.16817 0.40842 0.64867 0.88892 1.12917 1.36942 1.60967	8 0.48819 1.09842 1.70866 2.31889 2.92912 3.53936 4.14959 4.75983 5.37006 5.98029 1.4. 8 0.19220 0.43245 0.67270 0.91295 1.15320 1.39344 1.63369	9 0.5402 1.1504 1.7696 2.3799 3.6003 4.2106 6.0413 9 0.2162 0.4564 0.967 0.9369 1.1772 1.4174 1.6577
0 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 7 8 9	0 0.61023 1.32047 1.83070 2.44094 3.05117 3.66140 4.27164 4.87181 CEN 0 0.24025 0.48050 0.96100 0.96100 0.90125	1 0.06102 0.67126 1.28149 1.89173 3.121219 3.72243 4.33266 4.94290 5.55313 VTIME 1 0.02402 0.26427 0.50452 0.74477 0.985257	2 0.12205 0.73228 1.34251 1.95275 2.56298 3.17322 3.78346 4.39368 5.00392 5.61415 TERS4 2 0.04805 0.28830 0.52855 0.0880 1.06905 1.24930	3 0.18307 0.79330 1.40354 2.01377 2.62401 3.23424 3.84447 5.67518 TO IN 3 0.07207 0.31232 0.55257 0.79382 1.07382	CHES ³ - 4 0.24409 0.85433 1.46456 2.07480 2.08503 3.29556 3.90550 5.73620 CHES ⁴ - 4 0.09610 0.33635 0.57660 0.81685 1.05710	-1 cm ⁻¹ 5 0.30512 0.91535 1.52559 2.13582 2.13582 2.13582 3.96652 4.57675 5.18699 5.79722 —1 cm ⁻² 5 0.12012 0.36037 0.60062 0.36037 1.08112 1.32137	3=0.06 6 0.36614 0.97637 1.58661 2.19684 2.80708 3.41731 4.02754 4.63778 5.24801 5.85825 0.02 6 0.14415 0.038440 0.62465 0.38440 1.104539	7 0.42716 1.03740 1.64763 2.25787 2.258810 3.47833 4.08857 4.69880 5.30904 5.91927 7 0.16817 7 0.16817 0.40842 0.64867 0.48891 1.36942	0.48819 1.09842 1.70866 2.31889 2.92912 3.53936 4.14959 6.475983 5.37006 5.98029 1.4. 8 0.19220 0.43245 0.67270 0.91295 1.153204	9 0.5492 1.1594 1.7696 2.3799 2.9901 3.6003 4.2106 4.8208 5.4310 6.0413

METRIC CONVERSION TABLES

	FEET TO METERS—1 ft.=0.3048006 m										
Tens Units	0	1	2	3	4	5	6	7	8	9	
0	1	0.3048	0.6096	0.9144	1.2192	1.5240	1.8288	2.1336	2.4384	2.7432	
	3.0480						4.8768			5.7912	
1 2 3 4	6.0960					7.6200	7.9248	8.2296	8.5344	8.8392	
2	9.1440				10.3632			11.2776	11.5824	11.8872	
4	12.1920				13.4112				14.6304	14.9352	
5	15.2400				16.4592				17.6784	17.9832	
6		18.5928		19.2024	19.5072					21.0312	
7	21.3360				22.5552			23.4696	23.7744	24.0792	
8	24.3840			25.2984				26.5177		27.1273	
9	97 4391	27 7360	28 0417	28 3465	28 6513	28.9561	29.2609	29.5657	29.8705	30.1753	
										1 kg/m	
		1001	10 1112	I I	1 1 1 1 1	1	1			1	
Tens Inite	0	1	2	3	4	5	6	7	8	9 ,	
0	1	1.488	2.976	4.464	5.953	7.441	8.929	10.417	11.905	13.393	
1 2	14.882	16.370	17.858	19.346	20.834	22.322	23.811	25.299	26.787	28.275	
2	29.763	31.251	32.740	34.228	35.716	37.204	38.692	40.180	41.669	43.157	
3	44.645	46.133	47.621	49.109	50.597	52.086	53.574	55.062	56.550	58.038	
4	59.526	61.015	62.503	63.991	65.479	66.967	68.455	69.944	71.432	72.920	
5	74.408	75.896	77.384	78.873	80.361	81.849	83.337	84.825	86.313	87.802	
6	89.290	90.778	92.266	93.754	95.242	96.730	98.219		101.195	102.683	
7	104.171	105.659	107.148	108.636	110.124	111.612	113.100	114.688	116.077	117.565	
. 8	119.053	120.541	122.029	123.517	125.006	126.494	127.982	129.470	130.958	132.446	
9	133.934	135.423	136.911	138.399	139.887	141.375	142.863	144.352	145.840	147.328	
POUND Teste	S PER	SQ. IN	сн то] 2	KG. PE	R SQ. (См.—1 5	lb./in.	² ==0.07	03067 k	g/cm ²	
			0.14001		0.00100		0.40104	0.40015	0.50045	0.00070	
0	0 70007	0.07031	0.14061	0.21092			0.42184	0.49215	0.56245	0.63276	
1	0.70307	0.77337	0.84368	0.91399		1.05460		1.19521	1.26552	1.33583	
2 ,		1.47644				1.75767		1.89828	1.96859		
3		2.17951			2.39043		2.53104		2.67165		
4	2.81227	2.88257	2.95288	3.02319	3.09349	3.16380	3.23411	3.30441	3.37472	3.44503	
5		3.58564		3.72626		3.86687		4.00748	4.07779	4.14810	
6	4.21840	4.28871		4.42932	4.49963	4.56994	4.64024	4.71055	4.78086		
7	4.92147	4.99178		5.13239			5.34331	5.41362	5.48392		
8		5.69484		0.83546	5.90576	5.97607	6.04638	6.11668	6.18699	6.25730	
INCH-							6.74944 —1 in-				
Tens Units	0	1	2	\ 3	4	5	6	7	8	9	
0		1.152	2.304	2 450	4 800	E 701	8 019	8 065	9.217	10.200	
1	11.521	12.673	13.826	3.456	4.609 16.130	5.761 17.282	6.913 18.434	8.065 19.586		10.369	
2	23.043	24.195	25.347	14.978		28.803	29.955	31.107	20.738 32.260	21.890	
3				26.499	27.651					33.412	
4	34.564 46.085	35.716 47.237	36.868 48.389	38.020	39.172	40.324	41.477	42.629	43.781	44.933	
		4(.25/	40.3691	49.541	50.694	51.846	52.998	84.150	55.302	56.454	
				01 000	00 01 "	20 007			gg con l		
5	57.606	58.758	59.911	61.063	62.215	63.367	64.519	65.671	66.823	67.975	
6	57.606 69.128	58.758 70.280	59.911 71.432	72.584	73.736	74.888	76.040	77.193	78.345	79.497	
6 7	57.606 69.128 80.649	58.758 70.280 81.801	59.911 71.432 82.953	72.584 84.105	73.736 85.257	74.888 86.410	76.040 87.562	77.193 88.714	78.345 89.866	79.497 91.018	
6 7 8	57.606 69.128 80.649 92.170	58.758 70.280 81.801 93.322	59.911 71.432 82.953 94.474	72.584 84.105 95.627	73.736 85.257 96.779	74.888 86.410 97.931	76.040 87.562	77.193 88.714 100.235	78.345 89.866 101.387	79.497 91.018 102.539	

MEASURES AND WEIGHTS

METRIC	CONVERSION	TABLES
Метера л	ro Frer—1 m—s	2808333 ft

Tens Unite	0	1	2	. 3	4	5	6	7	8	9
0		3.281	6.562	9.843	13.123	16.404	19.685	22.966	26.247	29.528
1	32.808	36.089	39.370	42.651	45.932	49.213	52.493	55.774	59.055	62.336
2	65.617	68.898	72.178	75.459	78.740	82.021	85,302	88.583	91.863	95.144
3	98.425	101.706	104.987	108.268	111.548	114.829	118.110	121.391	124.672	127.953
4	131.233	134.514	137.795	141.076	144.357	147.638	150.918	154.199	157.480	160.761
5	164.042	167.323	170.603	173.884	177.165	180.446	183.727	187.008	190.288	193.569
6	196.850	200.131	203.412	206.693	209.973	213.254	216.535	219.816	223.097	226.378
7	229.658	232.939	236.220	239.501	242.782	246.063	249.343	252.624	255.905	259.186
8	262.467	265.748	269.028	272.309	275.590	278.871	282.152	285.433	288.713	291.994
9	295.275	298.556	301.837	305.118	308.398	311.679	314.960	318.241	321.522	324.803

KILOGRAMS PER METER TO POUNDS PER FOOT—lkg/m=0.67197 lb./ft.

Tens Units	0	1	2	3	4	5	6	7	8 .	9
0		0.6720	1.3439	2.0159	2.6879	3.3599	4.0318	4.7038	5.3758	6.0477
1	6.7197	7.3917	8.0636	8.7356	9.4076	10.0796	10.7515	11.4235	12.0955	12.7674
2 ′	13.4394	14.1114	14.7833	15.4553	16.1273	16.7993	17.4712	18.1432	18.8152	19.4871
3	20.1591	20.8311	21.5030	22.1750	22.8470	23.5190	24.1909	24.8629	25.6349	26.2068
4	26.8788	27.5508	28.2227	28.8947	29.5667	30.2387	30.9106	31.5826	32.2546	32.9265
5	33.5985	34.2705	34.9424	35.6144	36.2864	36.9584	37.6308	38.3022	38.9743	39.6462
6	40.3182	40.9902	41.6621	42.3341	43.0061	43.6781	44.3500	45.0220	45.6940	46.3659
7	47.0379	47.7099	48.3818	49.0538	49.7258	50.3978	51.0697	51.7417	52.4137	53.0856
.8	53.7576	54.4296	55.1015	55.7735	56.4455	57.1175	57.7894	58.4614	59.1334	59.8053
9	60.4773	61.1493	61.8212	62.4932	63.1652	63.8372	64.5091	65.1811	65.8531	66.5250

Kg. per Sq. Cm. to Pounds per Sq. Inch—l kg/cm²=14.2234 lbs./in.²

Tens	0	1	2	3	4	5	6	7	8	9
0		14.22	28.45	42.67	56.89	71.12	85.34	99.56	113.79	128.01
1	142.23	156.46	170.68	184.90	199.13	213.35	227.57	241.80	256.02	270.24
2	284.47	298.69	312.91	327.14	341.36	355.59	369.81	384.03	398.26	412.48
3	426.70	440.93	455.15	469.37	483.60	497.82	512.04	526.27	540.49	554.71
4	568.94	583.16	597.38	611.61	625.83	640.05	654.28	668.50	682.72	
5	711.17	725.39	739.62	753.84	768.06	782.29	796.51	810.73	824.96	839.18
6	853.40	867.63	881.85	896.07	910.30	924.52			967.19	
7	995.64	1009.86	1024.08	1038.31	1052.53	1066.76	1080.98	1095.20	1109.43	1123.65
8		1152.10								1265.88
9	1280.11	1294.33	1308.55	1322.78	1337.00	1351.22	1365.45	1379.67	1393.89	1408.12

KILOGRAM-CENTIMETERS TO INCH-POUNDS—l kg/cm=0.86796 in./lb.

Tensits	0	1	2	3	4	5	6	7	8	9
0 1 . 2 3 4 5	8.6796 17.3592 26.0388 34.7184 43.3980	18.2272 26.9068 35.5864 44.2660	19.0951 27.7747 36.4543 45.1339	11.2835 19.9631 28.6427 37.3223 46.0019	12.1514 20.8310 29.5106 38.1902 46.8698	13.0194 21.6990 30.3786 39.0582 47.7378	22.5670 31.2466 39.9262 48.6058	14.7553 23.4349 32.1145 40.7941 49.4737	15.6233 24.3029 32.9825 41.6621 50.3417	16.4912 25.1708 33.8504 42.6300 51.2096
6 7 8 9	60.7572 69.4368	52.9456 61.6252 70.3048 78.9844	62.4931 71.1727	63.3611 72.0407	64.2290 72.9086	65.0970 73.7766	65.9650 74.6446	66.8329 75.5125	67.7009 76.3805	68.5688 77.2484

METRIC CONVERSION TABLE

INCHES TO MILLIMETERS

39.37 inches, U. S. Standard=1 meter=100 centimeters=1000 millimeters.

Inches	0	1/16	1/8	8/16	1/4	5/16	8/8	7/16
0	0.00	1.59	3.18	4.76	6.35	7.94	9.53	11.11
1	25.40	26.99	28.58	30.16	31.75	33.34	34.93	36.51
2	50.80	52.39	53.98	55.56	57.15	58.74	60.33	61.91
3	76.20	77.79	79.38	80.96	82.55	84.14	85.73	87.31
4	101.60	103.19	104.78	106.36	107.95	109.54	111.13	112.71
5	127.00	128.59	130.18	131.76	133.35	134.94	136.53	138.11
6 7 8 9	152.40 177.80 203.20 228.60 254.00	153.99 179.39 204.79 230.19 255.59	155.58 180.98 206.38 231.78 257.18	157.16 182.56 207.96 233.36 258.76	158.75 184.15 209.55 234.95 260.35	160.34 185.74 211.14 236.54 261.94	161.93 187.33 212.73 238.13 263.53	163.51 188.91 214.31 239.71 265.11
11	279.40	280.99	282.58	284.16	285.75	287.34	288.93	290.51
12	304.80	306.39	307.98	309.56	311.15	312.74	314.33	315.91
13	330.20	331.79	333.38	334.96	336.55	338.14	339.73	341.31
14	355.60	357.19	358.78	360.36	361.95	363.54	365.13	366.71
15	381.00	382.59	384.18	385.76	387.35	388.94	390.53	392,11
16	406.40	407.99	409.58	411.16	412.75	414.34	415.93	417.51
17	431.80	433.39	434.98	436.56	438.15	439.74	441.33	442.91
18	457.20	458.79	460.38	461.96	463.55	465.14	466.73	468.31
19	482.60	484.19	485.78	487.36	488.95	490.54	492.13	493.71
20	508.00	509.59	511.18	512.76	514.35	515.94	51 7. 53	519. <u>1</u> 1
21	533.40	534.99	536.58	538.16	539.75	541.34	542.93	544.51
22	558.80	560.39	561.98	563.56	565.15	566.74	568.33	569.91
23	584.20	585.79	587.38	588.96	590.55	592.14	593.73	595.31
24	609.60	611.19	612.78	614.36	615.95	617.54	619.13	620.71
25	635.00	636.59	638.18	639.76	641.35	642.94	644.53	646.11
26	660.40	661.99	663.58	665.16	666.75	668.34	669.93	671.51
27	685.80	687.39	688.98	690.56	692.15	693.74	695.33	696.91
28	711.20	712.79	714.38	715.96	717.55	719.14	720.73	722.31
29	736.60	738.19	739.78	741.36	742.95	744.54	746.13	747.71
30	762.00	763.59	765.18	766.76	768.35	769.94	771.53	773.11
31	787.40	788.99	790.58	7/92.16	793.75	795.34	796.93	798.51
32	812.80	814.39	815.98	817.56	819.15	820.74	822.33	823.91
33	838.20	839.79	841.38	842.96	844.55	846.14	847.73	849.31
34	863.60	865.19	866.78	868.36	869.95	871.54	873.13	874.71
35	889.00	890.59	892.18	893.76	895.35	896.94	898.53	900.11
36	914.40	915.99	917.58	919.16	920.75	922.34	923.93	925.51
37	939.80	941.39	942.98	944.56	946.15	947.74	949.33	950.91
38	965.20	966.79	968.38	969.96	971.55	973.14	974.73	976.31
39	990.60	992.19	993.78	995.36	996.95	998.54	1000.13	1001.71
40	1016.00	1017.59	1019.18	1020.76	1022.35	1023.94	1025.53	1027.11
41	1041.40	1042.99	1044.58	1046.16	1047.75	1049.34	1050.93	1052.51
42	1066.80	1068.39	1069.98	1071.56	1073.15	1074.74	1076.33	1077.91
43	1092.20	1093.79	1095.38	1096.96	1098.55	1100.14	1101.73	1103.31
44	1117.60	1119.19	1120.78	1122.36	1123.95	1125.54	1127.13	1128.71
45	1143.00	1144.59	1146.18	1147.76	1149.35	1150.94	1152.53	1154.11
46	1168.40	1169.99	1171.58	1173.16	1174.75	1176.34	1177.93	1179.51
47	1193.80	1195.39	1196.98	1198.56	1200.15	1201.74	1203.33	1204.91
48	1219.20	1220.79	1222.38	1223.96	1225.55	1227.14	1228.73	1230.31
49	1244.60	1246.19	1247.78	1249.36	1250.95	1252.54	1254.13	1255.71
50	1270.00	1271.59	1273.18	1274.76	1276.35	1277.94	1279.53	1281.11

MEASURES AND WEIGHTS

METRIC CONVERSION TABLE

INCHES TO MILLIMETERS

39.37 inches, U. S. Standard=1 meter=100 centimeters=1000 millimeters

Inches	1/2	%16	5/8	11/16	8/4	18/16	7/8	15/16
0	12.70	14.29	15.88	17.46	19.05	20.64	22.23	23.81
1	38.10	39.69	41.28	42.86	44.45	46.04	47.63	49.21
2	63.50	65.09	66.68	68.26	69.85	71.44	73.03	74.61
3	88.90	90.49	92.08	93.66	95.25	96.84	98.43	100.01
4	114.30	115.89	117.48	119.06	120.65	122.24	123.83	125.41
5	139.70	141.29	142.88	144.46	146.05	147.64	149.23	150.81
6	165.10	166.69	168.28	169.86	171.45	173.04	174.63	176.21
7	190.50	192.09	193.68	195.26	196.85	198.44	200.03	201.61
8	215.90	217.49	219.08	220.66	222.25	223.84	225.43	227.01
9	241.30	242.89	244.48	246.06	247.65	249.24	250.83	252.41
10	266.70	268.29	269.88	271.46	273.05	274.64	276.23	277.81
11	292.10	293.69	295.28	296.86	298.45	300.04	301.63	303.21
12	317.50	319.09	320.68	322.26	323.85	325.44	327.03	328.61
13	342.90	344.49	346.08	347.66	349.25	350.84	352.43	354.01
14	368.30	369.89	371.48	373.06	374.65	376.24	377.83	379.41
15	393.70	395.29	396.88	398.46	400.05	401.64	403.23	404.81
16	419.10	420.69	422.28	423.86	425.45	427.04	428.63	430.21
17	444.50	446.09	447.68	449.26	450.85	452.44	454.03	455.61
18	469.90	471.49	473.08	474.66	476.25	477.84	479.43	481.01
19	495.30	496.89	498.48	500.06	501.65	503.24	504.83	506.41
20	520.70	522.29	523.88	525.46	527.05	528.64	530.23	531.81
21	546.10	547.69	549.28	550.86	552.45	554.04	555.63	557.21
22	571.50	573.09	574.68	576.26	577.85	579.44	581.03	582.61
23	596.90	598.49	600.08	601.66	603.25	604.84	606.43	608.01
24	622,30	623.89	625.48	627.06	628.65	630.24	631.83	633.41
25	647.70	649.29	650.88	652.46	654.05	655.64	657.23	658.81
26	673.10	674.69	676.28	677.86	679.45	681.04	682.63	684.21
27	698.50	700.09	701.68	703.26	704.85	706.44	708.03	709.61
28	723.90	725.49	727.08	728.66	730.25	731.84	733.43	735.01
29	749.30	750.89	752.48	754.06	755.65	757.24	758.83	760.41
30	774.70	776.29	777.88	779.46	781.05	782.64	784.23	785.81
31	800.10	801.69	803.28	804.86	806.45	808.04	809.63	811.21
32	825.50	827.09	828.68	830.26	831.85	833.44	835.03	836.61
33	850.90	852.49	854.08	855.66	857.25	858.84	860.43	862.01
34	876.30	877.89	879.48	881.06	882.65	884.24	885.83	887.41
35	901.70	903.29	904.88	906.46	908.05	909.64	911.23	912.81
36	927.10	928.69	930.28	931.86	933.45	935.04	936.63	938.21
37	952.50	954.09	955.68	957.26	958.85	960.44	962.03	963.61
38	977.90	979.49	981.08	982.66	984.25	985.84	987.43	989.01
39	1003.30	1004.89	1006.48	1008.06	1009.65	1011.24	1012.83	1014.41
40	1028.70	1030.29	1031.88	1033.46	1035.05	1036.64	1038.23	1039.81
41	1054.10	1055.69	1057.28	1058.86	1060.45	1062.04	1063.63	1065.21
42	1079.50	1081.09	1082.68	1084.26	1085.85	1087.44	1089.03	1090.61
43	1104.90	1106.49	1108.08	1109.66	1111.25	1112.84	1114.43	1116.01
44	1130.30	1131.89	1133.48	1135.06	1136.65	1138.24	1139.83	1141.41
45	1155.70	1157.29	1158.88	1160.46	1162.05	1163.64	1165.23	1166.81
46	1181.10	1182.69	1184.28	1185.86	1187.45	1189.04	1190.63	1192.21
47	1206.50	1208.09	1209.68	1211.26	1212.85	1214.44	1216.03	1217.61
48	1231.90	1233.49	1235.08	1236.66	1238.25	1239.84	1241.43	1243.01
49	1257.30	1258.89	1260.48	1262.06	1263.65	1265.24	1266.83	1268.41
50	1282.70	1284.29	1285.88	1287.46	1289.05	1290.64	1292.23	1293.81

METRIC CONVERSION TABLE

Pounds Avoirdupois to Kilograms

1 Pound=0.45359 Kilograms

Pounds	0	1	2	3	4	5	6	7	8	9
0 1 2 3 4 5	4.54 9.07 13.61 18.14 22.68	0.45 4.99 9.53 14.06 18.60 23.13	0.91 5.44 9.98 14.51 19.05 23.59	1.36 5.90 10.43 14.97 19.50 24.04	1.81 6.35 10.89 15.42 19.96 24.49	2.27 6.80 11.34 15.88 20.41 24.95	2.72 7.26 11.79 16.33 20.87 25.40	3.18 7.71 12.25 16.78 21.32 25.85	3.63 8.16 12.70 17.24 21.77 26.31	4.08 8.62 13.15 17.69 22.23 26.76
6 7 8 9 10	27.22 31.75 36.29 40.82 45.36	27.67 32.21 36.74 41.28 45.81	28.12 32.66 37.19 41.73 46.27	28.58 33.11 37.65 42.18 46.72	29.03 33.57 38.10 42.64 47.17	29.48 34.02 38.56 43.09 47.63	29.94 34.47 39.01 43.54 48.08	30.39 34.93 39.46 44.00 48.53	30.84 35.38 39.92 44.45 48.99	31.30 35.83 40.37 44.91 49.44
11 12 13 14 15	49.90 54.43 58.97 63.50 68.04	50.35 54.88 59.42 63.96 68.49	50.80 55.34 59.87 64.41 68.95	51.26 55.79 60.33 64.86 69.40	51.71 56.25 60.78 65.32 69.85	52.16 56.70 61.23 65.77 70.31	52.62 57.15 61.69 66.22 70.76	53.07 57.61 62.14 66.68 71.21	53.52 58.06 62.60 67.13 71.67	53.98 58.51 63.05 67.59 72.12
16 17 18 19 20	72.57 77.11 81.65 86.18 90.72	73.03 77.56 82.10 86.64 91.17	82.55	73.94 78.47 83.01 87.54 92.08	74.39 78.93 83.46 88.00 92.53	83.91 88.45	79.83 84.37 88.90		76.20 80.74 85.28 89.81 94.35	76.66 81.19 85.73 90.26 94.80
21 22 23 24 25	104.33 108.86	95.71 100.24 104.78 109.32 113.85	105.23 109.77	96.62 101.15 105.69 110.22 114.76	106.14		$\begin{array}{c} 102.51 \\ 107.05 \\ 111.58 \end{array}$	112.04	107.96 112.49	108.41
26 27 28 29 30	117.93 122.47 127.01 131.54 136.08	122.92 127.46 132.00	123.38 127.91	123.83 128.37 132.90	124.28 128.82 133.36	124.74 129.27 133.81	125.19 129.73	$\begin{array}{c} 125.65 \\ 130.18 \\ 134.72 \end{array}$	126.10 130.63 135.17	135.62
31 32 33 34 35	154.22	145.60 150.14	146.06 150.59 155.13	146.51 151.05 155.58	146.96 151.50 156.04	147.42 151.95	147,87 152,41 156,94	148.32 152.86	148.78 153.31 157.85	149.23 153.77 158.30
36 37 38 39 40	163.29 167.83 172.37 176.90 181.44	168.28 172.82 177.35	168.74 173.27 177.81	169.19 173.73 178.26	174.18 178.72	170.10	170.55 175.09 179.62	171.00 175.54 180.08	166.92 171.46 175.99 180.53 185.07	171.91 176.45 180.98
41 42 43 44 45	185.97 190.51 195.04 199.58 204.12	190.96 195.50 200.03	191.42 195.95 200.49	$\begin{array}{c} 191.87 \\ 196.41 \\ 200.94 \end{array}$	$\begin{array}{c} 192.32 \\ 196.86 \\ 201.40 \end{array}$	192.78 197.31 201.85	193.23 197.77	193.68 198.22 202.76	194.14 198.67 203.21	194.59 199.13 203.66
46 47 48 49	217.72	$213.64 \\ 218.18$	214.10 218.63	219.09	215.00 219.54	$215.46 \\ 219.99$	211.37 215.91 220.45 224.98	216.36 220.90	216.82 221.35	217.27

MEASURES AND WEIGHTS

METRIC CONVERSION TABLE

Pounds Avoirdupois to Kilograms

1 Pound=0.45359 Kilograms

Pounds	0	1	2	3	4	5	6	7	8	9
50 51 52 53 54 55	226.80 231.33 235.87 240.40 244.94 249.48	231.79	232.24 236.78 241.31 245.85	232.69 237.23 241.76 246.30	233.15 237.68 242.22 246.75	$233.60 \\ 238.14$	243.13 247.66	229.97 234.51 239.04 243.58 248.12 252.65	230.42 234.96 239.50 244.03 248.57 253.10	235.41 239.95 244.49 249.02
56 57 58 59 60	258.55 263.08 267.62	254.47 259.00 263.54 268.07 272.61	259.45 263.99 268.53	259.91 264.44 268.98	$260.36 \\ 264.90 \\ 269.43$	256.28 260.82 265.35 269.89 274.42	$261.27 \\ 265.81 \\ 270.34$	257.19 261.72 266.26 270.79 275.33	266.71	262.63 267.17 271.70
61 62 63 64 65	290.30		291.21	282.59 287.12 291.66	283.04 287.58 292.11	278.96 283.50 288.03 292.57 297.10	283.95 288.48 293.02	279.87 284.40 288.94 293.47 298.01	289.39 293.93	280.77 285.31 289.85 294.38 298.92
66 67 68 69 70	299.37 303.91 308.44 312.98 317.51	304.36 308.90 313.43	313.89	305.27 309.80 314.34	305.72 310.26	301.64 306.17 310.71 315.25 319.78	306.63 311.16 315.70	307.08 311.62 316.15	303.00 307.54 312.07 316.61 321.14	307.99 312.53 317.06
71 72 73 74 75	322.05 326.59 331.12 335.66 340.19	327.04 331.58	322.96 327.49 332.03 336.57 341.10	$327.95 \\ 332.48 \\ 337.02$	328.40 332.94 337.47	324.32 328.85 333.39 337.93 342.46	329.31 333.84	325.23 329.76 334.30 338.83 343.37	325.68 330.22 334.75 339.29 343.82	330.67 335.20 339.74
76 77 78 79 80	344.73 349.27 353.80 358.34 362.87	349.72 354.26 358.79	345.64 350.17 354.71 359.25 363.78	350.63 355.16 359.70	351.08 355.62 360.15	347.00 351.53 356.07 360.61 365.14	361.06	$356.98 \\ 361.51$	357.43 361.97	353.35 357.88 362.42
81 82 83 84 85	367.41 371.95 376.48 381.02 385.55	372.40 376.94 381.47	368.32 372.85 377.39 381.92 386.46	$\begin{vmatrix} 373.31 \\ 377.84 \\ 382.33 \end{vmatrix}$	373.76 378.30 382.83	369.68 374.21 378.75 383.29 387.82	374.67 379.20 383.74	$379.66 \\ 384.19$	375.57 380.11 384.65	376.03 380.56
86 87 88 89 90	390.09 394.63 399.16 403.78 408.23	399.61 404.15	391.00 395.53 400.07 404.60 409.14	$ 400.52 \\ 405.06$	396.44 400.98 405.51	401.43 $ 405.97 $	397.35 401.88 406.42	402.34 406.87	398.25 402.79 407.33	398.71 403.24
91 92 93 94 95	$421.84 \\ 426.38$	417.76 422.29	422.75	418.67 423.20	419.12 423.66	419.57 424.11	424.56	420.48 425.02 429.55	420.93 425.47 430.01	
96 97 98 99	439.98	440.44	440.89	441.35	441.80	442.25	442.71	443.10	448.15	439.53 444.07 448.60 453.14

PROPERTIES OF THE CIRCLE

Circumference of Circle of Dia. $1 = \pi = 3.14159265$

Circumference of Circle = $2 \pi r$

Dia. of Circle = Circumference x 0.31831

Diameter of Circle of equal periphery as square = side x 1.27324 Side of Square of equal periphery as circle = diameter x 0.78540 Diameter of Circle circumscribed about square = side x 1.41421

ide of Square inscribed in Circle = diameter x 0.70711

Side of Square inscribed in Circle

Arc,
$$a = \frac{\pi r A^{\circ}}{180} = 0.017453 r A^{\circ}$$

Angle,
$$A = \frac{180^{\circ} a}{\pi r} = 57.29578 \frac{a}{r}$$

Radius,
$$r = \frac{4b^2 + c^2}{8b}$$
 Diameter, $d = \frac{4b^2 + c^2}{4b}$

Chord,
$$c = 2\sqrt{2 b r - b^2} = 2 r \sin \frac{A^{\circ}}{2}$$

Rise,
$$b = r - \frac{1}{2} \sqrt{4 r^2 - c^2} = \frac{c}{2} \tan \frac{A^{\circ}}{4} = 2 r \sin^2 \frac{A}{4}$$

Rise,
$$b = r + y - \sqrt{r^2 - x^2}$$
. $y = b - r + \sqrt{r^2 - x^2}$ $x = \sqrt{r^2 - (r + y - b)^2}$

$$\pi = 3.14159265, \log = 0.4971499$$

$$\frac{1}{\pi} = 0.3183099, \log = 1.5028501$$

$$\pi^2 = 9.8696044, \log = 0.9942997$$

$$\frac{1}{\pi^2}$$
 = 0.1013212, $\log = 1.0057003$

$$\sqrt{\pi} = 1.7724539$$
, $\log = 0.2485749$

$$\sqrt{\frac{1}{\pi}} = 0.5641896, \log = 1.7514251$$

$$\frac{\pi}{180} = 0.0174533, \log = 2.2418774$$

$$\frac{180}{\pi} = 57.2957795, \log = 1.7581226$$

MENSURATION TABLES

AREA OF PLANE FIGURES

Triangle: Base $x \frac{1}{2}$ perpendicular height.

 $\sqrt{s(s-a) (s-b) (s-c)}$

s=1/2 sum of the three sides a, b and c.

Trapezium: Sum of area of the two triangles.

Trapezoid: ½ sum of parallel sides x perpendicular height.

Parallelogram: Base x perpendicular height.

Regular Polygon: $\frac{1}{2}$ sum of sides x inside radius.

Circle: $\pi r^2 = 0.78540 \text{ x dia.}^2 = 0.07958 \text{ x circumference}^2$.

Sector of Circle: $\frac{\pi r^2 A^{\circ}}{360} = 0.0087266 r^2 A^{\circ} = arc \times \frac{1}{2} radius.$

Segment of Circle: $\frac{r^2}{2} \left(\frac{\pi A^{\circ}}{180} - \sin A^{\circ} \right)$

Circle of same area as square: diameter = side x 1.12838

Square of same area as circle: side = diameter x 0.88623

Ellipse: Long diameter x short diameter x 0.78540

Parabola: Base x 3/3 perpendicular height.

Irregular plane surface.

Divide any plane surface A, B, C, D, along a line a-b into an even number, n, of parallel and sufficiently small strips, d, whose ordinates are h_1 , h_2 , h_3 , h_4 , h_5 h_{n-1} , h_n , h_{n+1} , and considering contours between three ordinates as parabolic curves, then for section ABCD,

Area = $\frac{d}{3} \left[h_1 + h_{n+1} + 4(h_2 + h_4 + h_6 ... + h_n) + 2(h_3 + h_5 + h_7 ... + h_{n-1}) \right]$

or, approximately, Area = Sum of ordinates x width, d.

TRIGONOMETRIC FORMULAS

Quadrant	1	11	, III	IV	Angle			
Angles	0° to 90°	90° to 180°	180° to 270°	270° to 360°	30°	450	60°	
Functions		Values vary from Equivalent values						
sin	+0 to +1	+1 to +0	0 to1	−1 to −0	3/2	1/2√2	1/2√3	
cas	+1 to +0	-0 to -1	-1 to -0	+0 to +1	½√3	1/2√2	1/2	
tan	+0 to+∝	-∞to-0	+0to+@	-∞ to-0	⅓ √3	1	√3	
cot	+∞ to+(0 to−α	+co to+0	0to-∞	$\sqrt{3}$	1	1/5√3	

Angle a < 90°									
Angle	, sin	coe	tan	cot .					
φ°	φ°	φο	φ°	φ° √					
0° <u>+</u> a	±sin e	+cos a	±tan e	±cot a					
90°±a	+cos 6	∓sin n	∓cot a	干tan a					
180°±1	Tsin n	сов в	±tan a	±cot a					
270° <u>+</u> a	—съв а	±sin a	∓cot a	Ŧtan a					

MENSURATION TABLES

TRIGONOMETRIC SOLUTION OF TRIANGLES

Sought

Given

Formulae

		RIGHT-ANGLED TRIANGLES
a, c	A, B, b	$\sin A = \frac{a}{c}$, $\cos B = \frac{a}{c}$, $b = \sqrt{c^2 - a^2}$
	Area	$Area = \frac{a}{2} \sqrt{c^2 - a^2}$
a, b	А, В, с	$ an A = \frac{a}{b}, an B = \frac{b}{a}, ag{c} = \sqrt{a^2 + b^2}$
	Area	$Area = \frac{ab}{2}$
A, a	B, b, c	$B \stackrel{!}{=} 90^{\circ}-A$, $b = a \cot A$, $c = \frac{a}{\sin A}$
	Area	$Area = \frac{a^2 \cot A}{2}$
A, b	В, а, с	$B = 90^{\circ}-A$, $a = b \tan A$, $c = \frac{b}{\cos A}$
	Area	$Area = \frac{b^2 \tan A}{2}$
A, c	B, a, b	$B = 90^{\circ}-A$, $a = c \sin A$, $b = c \cos A$
	Area	$Area = \frac{c^2 \sin A \cos A}{2} \text{ or } \frac{c^2 \sin 2 A}{4}$
		Oblique-Angled Triangles
a, b, c	A	$\sin \frac{1}{2} A = \sqrt{\frac{(s-b) (s-c)}{b c}}, \cos \frac{1}{2} A = \sqrt{\frac{s (s-s)}{b c}}, \tan \frac{1}{2} A = \sqrt{\frac{(s-b) (s-c)}{s (s-a)}}$
	В	$\sin \frac{1}{2} B = \sqrt{\frac{(s-a)(s-c)}{a c}}, \cos \frac{1}{2} B = \sqrt{\frac{s(s-b)}{a c}}, \tan \frac{1}{2} B = \sqrt{\frac{(s-a)(s-c)}{s(s-b)}}$
	С	$\sin \frac{1}{2} \cdot C = \sqrt{\frac{(s-a)(s-b)}{a b}}, \cos \frac{1}{2} C = \sqrt{\frac{s(s-c)}{a b}}, \tan \frac{1}{2} C = \sqrt{\frac{(s-a)(s-b)}{s(s-c)}}$
	Area	$Area = \sqrt{s (s-a) (s-b) (s-c)}$
a, A, B	b, c	$b = \frac{a \sin B}{\sin A} \qquad c = \frac{a \sin C}{\sin A} = \frac{a \sin (A + B)}{\sin A}$
	Area	$Area = \frac{1}{2} a b \sin C = \frac{a^2 \sin B \sin C}{2 \sin A}$
a, b, A	В	$\sin B = \frac{b \sin A}{a}$
	С	$c = \frac{a \sin C}{\sin A} = \frac{b \sin C}{\sin B} = \sqrt{a^2 + b^2 - 2 ab \cos C}$
	Area	Area = ½ a b sin C
a, b, C	A	$\tan A = \frac{a \sin C}{b - a \cos C}, \qquad \tan \frac{1}{2} (A - B) = \frac{a - b}{a + b} \cot \frac{1}{2} C$
	С	$c = \sqrt{a^2 + b^2 - 2 ab \cos C} = \frac{a \sin C}{\sin A}$
	Area	Area = ½ ab sin C
$\mathbf{a}^2 = \mathbf{b}^2$	+ c2-2b	oc cos A, $b^2=a^2+c^2-2$ a c cos B, $c^2=a^2+b^2-2$ ab cos C

AREA OF CIRCULAR SECTIONS

Circular Sector, monp

Area= $\frac{1}{2}$ (length of arc, mpn x radius, r) =area of circle x $\frac{\text{arc, mpn, in degrees}}{360}$

==0.0087266 x square of radius, r2, x angle of arc, mpn, in degrees.

Circular Segment, mpn, less than half circle.

Area—area of sector, mon p—area of triangle, mon = $\frac{\text{(length of arc, mpn, x radius, r)} - (\text{radius, r, - rise, b) x chord, e}}{2}$

Circular Segment, m q n, greater than half circle.

Area=area of circle-area of segment, mnp

Circular Segment, from Table I, page 395.

Given: rlse, b, and chord, c.

Area=product of rise and chord, b x c, multiplied by the coefficient given opposite the quotient of $\frac{\mathbf{b}}{\mathbf{c}}$;

Intermediate coefficients for values of $\frac{b}{c}$ not given in tables are obtained by interpolation.

Example - Given: rise = 1.49 and chord = 3.52,

 $\frac{b}{c} = \frac{1.49}{3.52} = 0.4233$. Coefficient = 0.7542. Area=b x c x coeff.=1.49 x 3.52 x 0.7542=3.9556.

Circular Segment, from Table II, pages 396 and 397.

Given: rise, b, and diameter, d = 2r.

Area—square of diameter, d^2 , multiplied by the coefficient given opposite the quotient of $\frac{b}{d}$.

Intermediate coefficients for values of $\frac{b}{d}$ not given in tables are obtained by interpolation,

Example – Given: rise = $2\frac{7}{16}$ and diameter = $5\frac{4}{2}$.

 $\frac{b}{d} = 2\%_0 \div 5\%_2 = 0.478528.$

Coefficient by interpolation = 0.371233. Area= $d^2 \times coeff$. = $25.94629 \times 0.371233 = 9.6321$.

Circular Zone, tuwv

Area area of circle - (area of segment, tpu + area of segment, vqw).

Circular Lune, mpna

Area—segment, m p n - segment, m s n.

MENSURATION TABLES

AREAS OF CIRCULAR SEGMENTS TABLE 1—For RATIOS OF RISE AND CHORD

Area=C x b x coefficient

L		,										
	A°	Coeffi- clent	· <u>C</u>	A°	Coeffi-	b C	Α°	Coeffi- cient	. <u>b</u>	Α°	Coeffi- cient	<u>b</u>
	1 2 3 4 5	.6667 .6667 .6667 .6667	.0022 .0044 .0066 .0087 .0109	46 47 48 49 50	.6722 .6724 .6727 .6729 .6732	.1017 .1040 .1063 .1086 .1109	91 92 93 94 95	.6895 .6901 .6906 .6912 .6918	.2097 .2122 .2148 .2174 .2200	136 137 138 139 140	.7239 .7249 .7260 .7270 .7281	.3373 .3404 .3436 .3469 .3501
	6 7 8 9	.6667 .6668 .6669 .6670	.0131 .0153 .0175 .0197 .0218	51 52 53 54 55	.6734 .6737 .6740 .6743 .6746	.1131 .1154 .1177 .1200 .1224	96 97 98 99 100	.6924 .6930 .6936 .6942 .6948	.2226 .2252 .2279 .2305 .2332	141 142 143 144 145	.7292 .7303 .7314 .7325 .7336	.3534 .3567 .3600 .3633 .3666
	11 12 13 14 15	.6670 .6671 .6672 .6672	.0240 .0262 .0284 .0306 .0328	56 57 58 59 60	.6749 .6752 .6755 .6758 .6761	.1247 .1270 .1293 .1316 .1340	101 102 103 104 105	.6954 .6961 .6967 .6974 .6980	.2358 .2385 .2412 .2439 .2466	146 147 148 149 150	.7348 .7360 .7372 .7384 .7396	.3700 .3734 .3768 .3802 .3837
	16 17 18 19 20	.6674 .6674 .6675 .6676	.0350 .0372 .0394 .0416 .0437	61 62 63 64 65	.6764 .6768 .6771 .6775 .6779	.1363 .1387 .1410 .1434 .1457	106 107 108 109 110	.6987 .6994 .7001 .7008 .7015	.2493 .2520 .2548 .2575 .2603	151 152 153 154 155	.7408 .7421 .7434 .7447 .7460	.3871 .3906 .3942 .3977 .4013
	21 22 23 24 25	.6678 .6679 .6680 .6681 .6682	.0459 .0481 .0504 .0526 .0548	66 67 68 69 70	.6782 .6786 .6790 .6794 .6797	.1481 .1505 .1529 .1553 .1577	111 112 113 114 115	.7022 .7030 .7037 .7045 .7052	.2631 .2659 .2687 .2715 .2743	156 157 158 159 160	.7473 .7486 .7500 .7514 .7528	.4049 .4085 .4122 .4159 .4196
	26 27 28 29 30	.6684 .6685 .6687 .6688 .6690	.0570 .0592 .0614 .0636 .0658	71 72 73 74 75	.6801 .6805 .6809 .6814 .6818	.1601 .1625 .1649 .1673 .1697	116 117 118 119 120	.7060 .7068 .7076 .7084 .7092	.2772 .2800 .2829 .2858 .2887	161 162 163 164 165	.7586	.4233 .4270 .4308 .4346 .4385
	31 32 33 34 35	.6691 .6693 .6694 .6696	.0681 .0703 .0725 .0747 .0770	76 77 78 79 80	.6822 .6826 .6831 .6835 .6840	.1722 .1746 .1771 .1795 .1820	121 122 123 124 125	.7100 .7109 .7117 .7126 .7134	.2916 .2945 .2975 .3004 .3034	166 167 168 169 170	.7632 .7648 .7664 .7680	.4424 .4463 .4502 .4542 .4582
	36 37 38 39 40	.6700 .6702 .6704 .6706 .6708	.0792 .0814 .0837 .0859 .0882	81 82 83 84 85	.6844 .6849 .6854 .6859 .6864	.1845 .1869 .1894 .1919 .1944	126 127 128 129 130	.7143 .7152 .7161 .7170 .7180	.3064 .3094 .3124 .3155 .3185	171 172 173 174 175	.7746 .7763	.4622 .4663 .4704 .4745 .4787
	41 42 43 44 45	.6710 .6712 .6714 .6717 .6719	.0904 .0927 .0949 .0972 .0995	86 87 88 89 90	.6869 .6874 .6879 .6884 .6890	.1970 .1995 .2020 .2046 .2071	131 132 133 134 135	.7189 .7199 .7209 .7219 .7229	.3216 .3247 .3278 .3309 .3341	176 177 178 179 180	.7799 .7817 .7835	.4828 .4871 .4914 .4957 .5000

AREAS OF CIRCULAR SEGMENTS TABLE II, FOR RATIOS OF RISE AND DIAMETER

Area=d2 x Coefficient

			11.	- u	ar Cocinica				
<u>b</u>	Coefficient	b d	Coefficient	b d	Coefficient	b d	Coefficient	<u>b</u>	Coefficient
.001 .002 .003 .004 .005	.000042 .000119 .000219 .000337 .000471	.051 .052 .053 .054 .055	.015119 .015561 .016008 .016458 .016912	.101 .102 .103 .104 .105	.041477 .042081 .042687 .043296 .043908	.151 .152 .153 .154 .155	.074590 .075307 .076026 .076747 .077470	.201 .202 .203 .204 .205	.112625 .113427 .114231 .115036 .115842
.006 .007 .008 .009 .010	.000619 .000779 .000952 .001135 .001329	.056 .057 .058 .059	.017369 .017831 .018297 .018766 .019239	.106 .107 .108 .109 .110	.044523 .045140 .045759 .046381 .047006	.156 .157 .158 .159 .160	.078194 .078921 .079650 .080380 .081112	.206 .207 .208 .209 .210	.116651 .117460 .118271 .119084 .119898
.011 .012 .013 .014 .015	.001533 .001746 .001969 .002199 .002438	.061 .062 .063 .064 .065	.019716 .020197 .020681 .021168 .021660	.111 .112 .113 .114 .115	.047633 .048262 .048894 .049529 .050165	.161 .162 .163 .164 .165	.081847 .082582 .083320 .084060 .084801	.211 .212 .213 .214 .215	.120713 .121530 .122348 .123167 .123988
.016 .017 .018 .019 .020	.002685 .002940 .003202 .003472 .003749	.066 .067 .068 .069	.022653 .023155 .023660 .024168	.116 .117 .118 .119 .120	.050805 .051446 .052090 .052737 .053385	.166 .167 .168 .169 .170	.085545 .086290 .087037 .087785 .088536	.216 .217 .218 .219 .220	.124811 .125634 .126459 .127286 .128114
.022 .023 .024 .025	.004032 .004322 .004619 .004922 .005231	.071 .072 .073 .074 .075	.024680 .025196 .025714 .026236 .026761	.122 .123 .124 .125	.054037 .054690 .055346 .056004 .056664	.171 .172 .173 .174 .175	.090042 .090797 .091555 .092314	.221 .222 .223 .224 .225	.128943 .129773 .130605 .131438 .132273
.026 .027 .028 .029 .030	.005546 .005867 .006194 .006527 .006866	.077 .078 .079 .080	.027821 .028356 .028894 .029435	.127 .128 .129 .130	.057327 .057991 .058658 .059328 .059999	.176 .177 .178 .179 .180	.093074 .093837 .094601 .095367 .096135	.226 .227 .228 .229 .230	.133109 .133946 .134784 .135624 .136465
.031 .032 .033 .034 .035	.007209 .007559 .007913 .008273 .008638	.081 .082 .083 .084 .085	.029979 .030526 .031077 .031630 .032186	.131 .132 .133 .134 .135	.060673 .061349 .062027 .062707 .063389	.181 .182 .183 .184 .185	.096904 .097675 .098447 .099221 .099997	.231 .232 .233 .234 .235	.137307 .138151 .138996 .139842 .140689
.037 .038 .039 .040	.009383 .009764 .010148 .010538	.086 .087 .088 .089 .090	.032746 .033308 .033873 .034441 .035012	.136 .137 .138 .139 .140	.064074 .064761 .065449 .066140 .066833	.186 .187 .188 .189 .190	.100774 .101553 .102334 .103116 .103900	.236 .237 .238 .239 .240	.141538 .142388 .143239 .144091 .144945
.041 .042 .043 .044	.010932 .011331 .011734 .012142 .012555	.091 .092 .093 .094 .095	.035586 .036162 .036742 .037324 .037909	.141 .142 .143 .144 .145	.067528 .068225 .068924 .069626 .070329	.191 .192 .193 .194 .195	.104686 .105472 .106261 .107051 .107843	.241 .242 .243 .244 .245	.145800 .146656 .147513 .148371 .149231
.046 .047 .048 .049	.012971 .013393 .013818 .014248 .014681	.096 .097 .098 .099 .100	.038497 .039087 .039681 .040277 .040875	.146 .147 .148 .149 .150	.071034 .071741 .072450 .073162 .073875	.196 .197 .198 .199 .200	.108636 .109431 .110227 .111025 .111824	.246 .247 .248 .249 .250	.150091 .150953 .151816 .152681 .153546
				OO1		.001 .000042 .051 .015119 .101 .041477 .002 .000119 .052 .015561 .102 .042081 .003 .000219 .053 .016008 .103 .042687 .004 .000337 .054 .016458 .104 .043296 .005 .000471 .055 .016912 .105 .043908 .006 .00619 .056 .017369 .106 .044523 .007 .00077 .00779 .057 .017831 .107 .045140 .008 .00952 .058 .018297 .108 .045759 .009 .001135 .059 .018766 .109 .046381 .010 .001329 .060 .019239 .110 .047006 .011 .001533 .061 .019716 .111 .047633 .012 .001746 .062 .020197 .112 .048262 .013 .001969 .063 .020681 .113 .04894 .014 .002199 .064 .021168 .114 .049529 .015 .002438 .065 .021660 .115 .050165 .017 .002940 .067 .022663 .117 .051446 .018 .003202 .068 .023155 .116 .050805 .017 .003472 .069 .023660 .119 .052737 .020 .003749 .070 .024168 .120 .052385 .021 .004032 .071 .024680 .121 .054037 .022 .004322 .072 .025196 .122 .054890 .023 .004619 .073 .025714 .123 .055346 .026 .026 .005546 .076 .027290 .126 .057327 .026 .005231 .075 .028068 .028356 .128 .056042 .026 .026 .005546 .076 .027290 .126 .057327 .028 .006194 .078 .028356 .128 .056044 .033 .007913 .083 .036794 .131 .006673 .034 .008273 .084 .03290 .088 .032156 .132 .056664 .026 .005546 .076 .027290 .126 .057327 .027 .005867 .077 .027821 .127 .057991 .028 .006194 .078 .028356 .128 .058658 .029 .030 .006866 .080 .029435 .130 .059999 .031 .007209 .081 .029979 .131 .060673 .034 .008273 .084 .031630 .134 .062707 .035 .008638 .087 .033308 .137 .064761 .038 .009088 .086 .032746 .136 .0644074 .039 .010148 .089 .034441 .139 .066144 .039 .010148 .089 .034441 .139 .066144 .039 .010148 .089 .034441 .139 .066144 .039 .010148 .089 .034441 .139 .066144 .040 .010338 .007913 .083 .031077 .133 .062027 .046 .01231 .004688 .086 .032746 .136 .064761 .038 .009088 .086 .032746 .136 .064774 .048 .039 .010148 .089 .034441 .139 .066144 .040 .010338 .090 .035012 .140 .066832 .044 .012142 .094 .037324 .144 .069626 .045 .012313 .0090 .035012 .140 .066832 .044 .012142 .094 .037324 .144 .069626 .045 .012313 .0090 .035012 .140 .066838 .090 .035012 .140 .066838 .090 .035012 .140 .066838 .090 .035012 .140 .066	O01	O01	

MENSURATION TABLES

AREAS OF CIRCULAR SEGMENTS TABLE II, FOR RATIOS OF RISE AND DIAMETER—Concluded

Area=d2 x coefficient

	Area—u~ x coemicient									
b d	Coefficient	<u>b</u>	Coefficient	b d	Coefficient	<u>b</u>	Coefficient	<u>b</u>	Coefficient	
.251	.154413	.301	.199085	.351	.245935	.401	.294350	.451	.343778	
.252	.155281	.302	.200003	.352	.246890	.402	.295330	.452	.344773	
.253	.156149	.303	.200922	.353	.247845	.403	.296311	.453	.345768	
.254	.157019	.304	.201841	.354	.248801	.404	.297292	.454	.346764	
• .255	.157891	.305	.202762	.355	.249758	.405	.298274	.455	.347760	
.256	.158763	.306	.203683	.356	.250715	.406	.299256	.456	.348756	
.257	.159636	.307	.204605	.357	.251673	.407	.300238	.457	.349752	
.258	.160511	.308	.205528	.358	.252632	.408	.301221	.458	.350749	
.259	.161386	.309	.206452	.359	.253591	.409	.302204	.459	.351745	
.260	.162263	.310	.207376	.360	.254551	.410	.303187	.460	.352742	
.261	.163141	.311	.208302	.361	.255511	.411	.304171	.461	.353739	
.262	.164020	.312	.209228	.362	.256472	.412	.305156	.462	.354736	
.263	.164900	.313	.210155	.363	.257433	.413	.306140	.463	.355733	
.264	.165781	.314	.211083	.364	.258395	.414	.307125	.464	.356730	
.265	.166663	.315	.212011	.365	.259358	.415	.308110	.465	.357728	
.266	.167546	.316	.212941	.366	.260321	.416	.309096	.466	.358725	
.267	.168431	.317	.213871	.367	.261285	.417	.310082	.467	.359723	
.268	.169316	.318	.214802	.368	.262249	.418	.311068	.468	.360721	
.269	.170202	.319	.215734	.369	.263214	.419	.312055	.469	.361719	
.270	.171090	.320	.216666	.370	.264179	.420	.313042	.470	.362717	
.271	.171978	.321	.217600	.371	.265145	.421	.314029	.471	.363715	
.272	.172868	.322	.218534	.372	.266111	.422	.315017	.472	.364714	
.273	.173758	.323	.219469	.373	.267078	.423	.316005	.473	.365712	
.274	.174650	.324	.220404	.374	.268046	.424	.316993	.474	.366711	
.275	.175542	.325	.221341	.375	.269014	.425	.317981	.475	.367710	
.276	.176436	.326	.222278	.376	.269982	.426	.318970	.476	.368708	
.277	.177330	.327	.223216	.377	.270951	.427	.319959	.477	.369707	
.278	.178226	.328	.224154	.378	.271921	.428	.320949	.478	.370706	
.279	.179122	.329	.225094	.379	.272891	.429	.321938	.479	.371705	
.280	.180020	.330	.226034	.380	.273861	.430	.322928	.480	.372704	
.281	.180918	.331	.226974	.381	.274832	.431	.323919	.481	.373704	
.282	.181818	.332	.227916	.382	.275804	.432	.324909	.482	.374703	
.283	.182718	.333	.228858	.383	.276776	.433	.325900	.483	.375702	
.284	.183619	.334	.229801	.384	.277748	.434	.326891	.484	.376702	
.285	.184522	.335	.230745	.385	.278721	.435	.327883	.485	.377701	
.286	.185425	.336	.231689	.386	.279695	.436	.328874	.486	.378701	
.287	.186329	.337	.232634	.387	.280669	.437	.329866	.487	.379701	
.288	.187235	.338	.233580	.388	.281643	.438	.330858	.488	.380700	
.289	.188141	.339	.234526	.389	.282618	.439	.331851	.489	.381700	
.290	.189048	.340	.235473	.390	.283593	.440	.332843	.490	.382700	
.291 .292 .293 .294 .295	.189956 .190865 .191774 .192685 .193597	.341 .342 .343 .344 .345	.236421 .237369 .238319 .239268 .240219	.391 .392 .393 .394 .395	.284569 .285545 .286521 .287499 .288476	.441 .442 .443 .444 .445	.333836 .334829 .335823 .336816 .337810	.491 .492 .493 .494 .495	.383700 .384699 .385699 .386699	
.296 .297 .298 .299 .300	.194509 .195423 .196337 .197252 .198168	.346 .347 .348 .349 .350	.241170 .242122 .243074 .244027 .244980	.396 .397 .398 .399 .400	.289454 .290432 .291411 .292390 .293370	.446 .447 .448 .449 .450	.338804 .339799 .340793 .341788 .342783	.496 .497 .498 .499	.388699 .389699 .390699 .391699 .392699	

SURFACE AND VOLUME OF SOLIDS

S=LATERAL OR CONVEX SURFACE. V=VOLUME

S=perimeter, P, perp. to sides x lat. length, l: V=area of base, B x perpendicular height, h: Bh V=area of section, A, perp. to sides x lat. length, l: Al

Parallelopiped

Prism, Right or Oblique, Regular or Irregular
S=perimeter, P, perp. to sides x lat. length, l:
V=area of base, B x perpendicular height, h:
V=area of section, A, perp, to sides x lat. length, l:
Al

Cylinder, Right or Oblique, Circular or Elliptic, etc.

S=perimeter of base, C x perp. height, h:
S=perimeter, P, perp. to sides x lat. length, 1:
Parea of base, B x perpendicular height, h:
W=area of section, A, perp. to sides x lat. length, 1:
Al

Frustum of any Prism or Cylinder

V=area of base, B x perp. distance, h, from base to center of gravity of opposite face:

Bh

For cylinder: $\frac{1}{2}A(l_1 + l_2)$

Pyramid or Cone, Right and Regular
S=perimeter of hase, B x ½ slant height, 1:
V=area of base, B x ½ perp. height, h:

½ Bl

Pyramid or Cone, Right or Oblique, Regular or Irregular V=area of base, B x ½ perp. height, h: ½ Bh V=½ volume of prism or cylinder of same base and perpendicular height V=½ volume of hemisphere of same base and

perpendicular height

Frustum of Pyramid or Cone, Right and Regular,
Parallel Ends

S=(sum of perimeter of base, B, and top, b) x ½ slant height, 1:

V=(sum of areas of base, B, and top, h + square root of their products) x ½ perp. height, h:

 $\frac{1}{8} h \left(B + b + \sqrt{B b}\right)$

Frustum of any Pyramid or Cone, Parallel Ends V=(sum of areas of base, B, and top, h + square root of their products) x ½ perp. height, h:

 $\frac{1}{3} h (B + b + \sqrt{B b})$

Wedge, Parallelogram Face

 $V=\frac{1}{6}$ (sum of three edges, a b a x perpendicular height, hxperpendicular width, d): $\frac{1}{6}$ d h (2a + b)

Prismatoid

V= $\frac{1}{2}$ perp. height, h (sum of areas of base, B, and top b, +4 x area of section, M, parallel to bases and midway between them):

The Prismatoid formula applies also to any of the foregoing solids with parallel bases, to pyramids, cones, spherical sections, and to many solids with irregular surfaces.

SURFACE AND VOLUME OF SOLIDS—Concluded S=LATERAL OR CONVEX SURFACE. V=VOLUME

$V = \frac{1}{3} \pi r^3 = \frac{1}{3} \pi d^3 = 0.52359878 d^3$

Spherical Sector

Spherical Segment

Circular Ring

 $S=4 \pi^2 Rr$ $V=2 \pi^2 R r^2$

Ungula of Right, Regular Cylinder

 $V=(\frac{2}{3} \text{ m}^3-0 \text{ x area, b a b}) \frac{1}{r-0}$ Base=Segment, cac

V=% r2 h Base=Circle

 $S=(2r n + p x arc, c a c) \frac{n}{r+p}$

 $S=r \pi h$ V=1/2 r2 π h

 $V=(\frac{2}{3} n^3 + p \times area, c a c) \frac{n}{r+p}$ Ellipsoid

V=½ π r a b

Paraboloid

Bodies Generated by Partial or Complete Revolution

l =length of a curve \ rotating about an axis 1-1 on one side and in plane of axis A=area of a plane r =distance of center of gravity of line or plane from axis 1-1 and for any angle of revolution, ao,

 $\frac{2 r \pi a^{\circ}}{2 c \alpha}$ length of arc described by center of gravity. S=length of curve x length of arc about axis =1 $\frac{2 r \pi a^{\circ}}{}$

For complete revolution $S=2r\pi 1$ 360 V=area of plane x length of arc about axis

 $=A \frac{2 r \pi a^{\circ}}{}$

For complete revolution $V=2 r \pi A$

FUNCTIONS OF NUMBERS, 1 TO 49

		 .						
NT-		Chile	Square Root	Cubic	T	1000 x	No. =	Diameter
No.	Square	Cube	Root	Root	Logarithm	Reciprocal	Circum.	Area
1	1	1	1.0000	1.0000	0.00000	1000.000	3.142	0.7854
$\hat{2}$	4	8	1.4142	1.2599	0.30103	500.000	6.283	3.1416
3	9	27	1.7321	1.4422	0.47712	333.333	9.425	7.0686
4	16	64	2.0000	1.5874	0.60206	250.000	12.566	12.5664
5	25	125	2.2361	1.7100	0.69897	200.000	15.708	19.6350
6	36	216	2.4495	1.8171	0.77815	166.667	18.850	28.2743
7	49	343	2.6458	1.9129	0.84510	142.857	21.991	38.4845
8	64	512	2.8284	2.0000	0.90309	125.000	25.133	50.2655
9	81	729	3.0000	2.0801	0.95424	111.111	28.274	63.6173
10	100	1000	3.1623	2.1544	1.00000	100.000	31.416	78.5398
11	121	1331	3.3166	2.2240	1.04139	90.9091	34.558	95.0332
12	144	1728	3.4641	2.2894	1.07918	83.3333	37.699	113.097
13	169	2197	3.6056	2.3513	1.11394	76.9231	40.841	132.732
14	196	2744	3.7417	2.4101	1.14613	71.4286	43.982	153.938
15	225	3375	3.8730	2.4662	1.17609	66.6667	47.124	176.715
16	256	4096	4.0000	2.5198	1.20412	62.5000	50.265	201.062
17	289	4913	4.1231	2.5713	1.23045	58.8235	53.407	226.980
18	324	5832	4.2426	2.6207	1.25527	55.5556	56.549	254.469
19 20	361	6859	4.3589	2.6684	1.27875	52.6316	59.690	283.529
20	400	8000	4.4721	2.7144	1.30103	50.0000	62.832	314.159
21	441	9261	4.5826	2.7589	1.32222	47.6190	65.973	346.361
22	484	10648	4.6904	2.8020	1 34242	45.4545	69.115	380.133
23	529	12167	4.7958	2.8439	1.36173	43.4783	72.257	415.476
24	576	13824 15625	4.8990	2.8845	1.38021	41.6667	75.398	452.389
25 26	625 676	17576	5.0000 5.0990	2.9240 2.9625	1.39794 1.41497	40.0000	78.540	490.874
27	729	19683	5.1962	3.0000	1.43136	38.4615 37.0370	81.681 84.823	530.929 572.555
28	784	21952	5.2915	3.0366	1.44716	35.7143	87.965	615.752
29	841	24389	5,3852	3.0723	1.46240	34.4828	91.106	660.520
30	900	27000	5.4772	3.1072	1.47712	33.3333	94.248	706.858
31	961	29791	5.5678	3.1414	1.49136	32.2581	97.389	754.768
32	1024	32768	5.6569	3.1748	1.50515	31.2500	100.531	804.248
33	1089	35937	5.7446	3.2075	1.51851	30.3030	103.673	855.299
34	1156	39304	5.8310	3.2396	1.53148	29.4118	106.814	907.920
35	1225	42875	5.9161	3.2711	1.54407	28.5714	109.956	962.113
36	1296	46656	6.0000	3.3019	1.55630	27.7778	113.097	1017.88
37	1369	50653	6.0828	3.3322	1.56820	27.0270	116.239	1075.21
38	1444	54872	6.1644	3.3620	1.57978	26.3158	119.381	1134.11
39	1521	59319	6.2450	3.3912	1.59106	25.6410	122.522	1194.59
40	1600	64000	6.3246	3.4200	1.60206	25.0000	125.66	1256.64
41	1681	68921	6.4031	3.4482	1.61278	24.3902	128.81	1320.25
42	1764	74088	6.4807	3.4760	1.62325	23.8095	131.95	1385.44
43	1849	79507	6.5574	3.5034	1.63347	23.2558	135.09	1452.20
44	1936	85184	6.6332	3.5303	1.64345	22.7273	138.23	1520.53
45	2025	91125	6.7082	3.5569	1.65321	22.2222	141.37	1590.43
46	2116	97336	6.7823	3.5830	1.66276	21.7391	144.51	1661.90
47	2209	103823	6.8557	3.6088	1.67210	21.2766	147.65	1734.94
48	2304	110592	6.9282	3.6342	1.68124	20.8333	150.80	1809.56
49	2401 J	117049	1.0000	3.6593	1.69020	20.4082	153.94	1885.74

Functions of Numbers 50 to 99

				12.00				
N T -	G	0.1	Square	Cubic		1000	No. =	Diameter
No.	Square	Cube	Root	Root	Logarithm	Reciprocal	Circum.	, Area
50	2500	125000	7.0711	3.6840	1.69897	20.0000	157.08	1963.50
51	2601	132651	7.1414	3.7084	1.70757	19.6078	160.22	2042.82
52	2704	140608	7.2111	3.7325	1.71600	19.2308	163.36	2123.72
53	2809	148877	7.2801	3.7563	1.72428	18.8679	166.50	2206.48
54	2916	157464	7.3485	3.7798	1.73239	18.5185	169.65	2290.22
55	3025	166375	7.4162	3.8030	1.74036	18.1818	172.79	2375.83
56	3136	175616	7.4833	3.8259	1.74819	17.8571	175.93	2463.01
57	3249	185193	7.5498	3.8485	1.75587	17.5439	179.07	2551.76
58	3364	195112	7.6158	3.8709	1.76343	17.2414	182.21	2642.08
59	3481	205379	7.6811	3.8930	1.77085	16.9492	185.35	2733.97
60	3600	216000	7.7460	3.9149	1.77815	16.6667	188.50	2827.43
61	3721	226981	7.8102	3.9365	1.78533	16.3934	191.64	2922.47
62	3844	238328	7.8740	3.9579	1.79239	16.1290	194.78	3019.07
63	3969	250047	7.9373	3.9791	1.79934	15.8730	197.92	3117.25
64	4096	262144	8.0000	4.0000	1.80618	15.6250	201.06	3216.99
65	4225	274625	8.0623	4.0207	1.81291	15.3846	204.20	3318.31
66	4356	287496	8.1240	4.0412	1.81954	15.1515	207.35	3421.19
67	4489	300763	8.1854	4.0615	1.82607	14.9254	210.49	3525.65
68	4624	314432	8.2462	4.0817	1.83251	14.7059	213.63	3631.68
69	4761	328509	8.3066	4.1016	1.83885	14.4928	216.77	3739.28
70	4900	343000	8.3666	4.1213	1.84510	14.2857	219.91	3848.45
71	5041	357911	8.4261	4.1408	1.85126	14.0845	223.05	3959.19
72	5184	373248	8.4853	4.1602	1.85733	13.8889	226.19	4071.50
73	5329	389017	8.5440	4.1793	1.86332	13.6986	229.34	4185.39
74	5476	405224	8.6023	4.1983	1.86923	13.5135	232.48	4300.84
75	5625	421875	8.6603	4.2172	1.87506	13.3333	235.62	4417.86
76	5776	438976	8.7178	4.2358	1.88081	13.1579	238.76	4536.46
77	5929	456533	8.7750	4.2543	1.88649	12.9870	241.90	4656.63
78	6084	474552	8.8318	4.2727	1.89209	12.8205	245.04	4778.36
79	6241	493039	8.8882	4.2908	1.89763	12.6582	248.19	4901.67
80	6400	512000	8.9443	4.3089	1.90309	12.5000	251.33	5026.55
81	6561	531441	9.0000	4.3267	1.90849	12.3457	254.47	5153.00
82	6724	551368	9.0554	4.3445	1.91381	12.1951	257.61	5281.02
83	6889	571787	9.1104	4.3621	1.91908	12.0482	260.75	5410.61
84	7056	592704	9.1652	4.3795	1.92428	11.9048	263.89	5541.77
85	7225	614125	9.2195	4.3968	1.92942	11.7647	267.04	5674.50
86	7396	636056	9.2736	4.4140	1.93450	11.6279	270.18	5808.80
87	7569	658503	9.3274	4.4310	1.93952	11.4943	273.32	5944.68
88	7744	681472	9.3808	4.4480	1.94448	11.3636	276.46	6082.12
89	7921	704969	9.4340	4.4647	1.94939	11.2360	279.60	6221.14
90	8100	729000	9.4868	4.4814	1.95424	11.1111	282.74	6361.73
91	8281	753571	9.5394	4.4979	1.95904	10.9890	285.88	6503.88
92	8464	778688	9.5917	4.5144	1.96379	10.8696	289.03	6647.61
93	8649	804357	9.6437	4.5307	1.96848	10.7527	292.17	6792.91
94	8836	830584	9.6954	4.5468	1.97313	10.6383	295.31	6939.78
95	9025	857375	9.7468	4.5629	1.97772	10.5263	298.45	7088.22
96	9216	884736	9.7980	4.5789	1.98227	10.4167	301.59	7238.23
97	9409	912673	9.8489	4.5947	1.98677	10.3093	304.73	7389.81
98	9604	941192	9.8995	4.6104	1.99123	10.2041	307.88	7542.96
99	9801	970299	9.9499	4.6261	1.99564	10.1010	311.02	7697.69

Functions of Numbers, 100 to 149

				, , , , ,				
		G.	Square	Cubic		1000	No. ==	Diameter
No.	Square	Cube	Root	Root	Logarithm	Reciprocal	Circum.	Area
	10000		10 0000	4 0440	0.0000		01410	70-0
100	10000	1000000	10.0000	4.6416	2.00000	10.0000	314.16	7853.98
101	10201	1030301	10.0499	4.6570	2.00432	9.90099	317.30 320.44	8011.85
102	10404	1061208	10.0995		2.00860	9.80392 9.70874	323.58	8171.28 8332.29
108 104	10609 10816	1092727 1124864	10.1489 10.1980	4.6875 4.7027	2.01284 2.01703	9.61538	326.73	8494.87
		1157625	10.1980	4.7177	2.01703	9.52381	329.87	8659.01
105 106	11025 11236	1191016	10.2470	4.7326	2.02531	9.43396	333.01	8824.73
107	11449	1225043	10.2550	4.7475	2.02938	9.34579	336.15	8992.02
108	11664	1259712	10.3923	4.7622	2.03342	9.25926	339.29	9160.88
109	11881	1295029	10.4403	4.7769	2.03743	9.17431	342.43	9331.32
110	12100	1331000	10.4881	4.7914	2.04139	9.09091	345.58	9503.32
111	12321	1367631	10.5357	4.8059	2.04532	9.00901	348.72	9676.89
112	12544	1404928	10.5830	4.8203	2.04922	8.92857	351.86	9852.03
113	12769	1442897	10.6301	4.8346	2.05308	8.84956	355.00	10028.7
114	12996	1481544	10.6771	4.8488	2.05690	8.77193	358.14	10207.0
115	13225	1520875	10.7238	4.8629	2.06070	8.69565	361.28	10386.9
116	13456	1560896	10.7703	4.8770	2.06446	8.62069	364.42	10568.3
117	13689	1601613	10.8167	4.8910	2.06819	8.54701	367.57	10751.3
118	13924	1643032	10.8628	4.9049	2.07188	8.47458	370.71	10935.9
119	14161	1685159	10.9087	4.9187	2.07555	8.40336	373.85	11122.0
120	14400	1728000	10.9545	4.9324	2.07918	8.33333	376.99	11309.7
121	14641	1771561	11.0000	4.9461	2.08279	8.26446	380.13	11499.0
122	14884	1815848	11.0454	4.9597	2.08636	8.19672	383.27	11689.9
123	15129	1860867	11.0905	4.9732	2.08991	8.13008	386.42	11882.3
124	15376	1906624	11.1355	4.9866	2.09342	8.06452	389.56	12076.3
125	15625	1953125	11.1803	5.0000	2.09691	8.00000	392.70	12271.8
126	15876	2000376	11.2250	5.0133	2.10037	7.93651	395.84	12469.0
127	16129	2048383	11.2694	5.0265	2.10380	7.87402	398.98	12667.7
128	16384	2097152	11.3137	5.0397	2.10721	7.81250	402.12	12868.0
129	16641	2146689	11.3578	5.0528	2.11059	7.75194	405.27	13069.8
130	16900	2197000	11.4018	5.0658	2.11394	7.69231	408.41	13273.2
131	17161	2248091	11.4455	5.0788	2.11727	7.63359	411.55	13478.2
132	17424	2299968	11,4891	5.0916	2.12057	7.57576	414.69	13684.8
133	17689	2352637	11.5326	5.1045	2.12385	7.51880	417.83	13892.9
134	17956	2406104	11.5758	5.1172	2.12710	7.46269	420.97	14102.6
135	18225	2460375	11.6190	5.1299	2.13033	7.40741	424.12	14313.9
136	18496	2515456	11.6619	5.1426	2.13354	7.35294	427.26	14526.7
137	18769	2571353	11.7047	5.4551	2.13672	7.29927	430.40	14741.1
138	19044	2628072	11.7473	5.1676	2.13988	7.24638	433.54	14957.1
139	19321	2685619	11.7898	5.1801	2.14301	7.19424	436.68	15174. 7
140	19600	2744000	11.8322	5.1925	2.14613	7.14286	439.82	15393.8
141	19881	2803221	11.8743	5.2048	2.14922	7.09220	442.96	15614.5
142	20164	2863288	11.9164	5.2171	2.15229	7.04225	446.11	15836.8
143	20449	2924207	11.9583	5.2293	2.15534	6.99301	449.25	16060.6
144	20736	2985984	12.0000	5.2415	2.15836	6.94444	452.39	16286.0
145	21025	3048625	12.0416	5.2536	2.16137	6.89655	455.53	16513.0
$\frac{146}{147}$	21316 21609	3112136 3176523	12.0830	5.2656	2.16435	6.84932	458.67	16741.5
148	21904	3241792	12.1244 12.1655	5.2776 5.2896	2.16732 2.17026	6.80272	461.81	16971.7 17203.4
149		3307949				6.75676	464.96	17203.4 17436.6
110	. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	. 5501 515	12.2000	, 0.0010	. 2.11019	0.71141	1 400.10	11490.0

Functions of Numbers, 150 to 199

No. Square Cube Root Root Cubic Root Logarithm Reciprocal Circum. Area									
150 22500 3375000 12.2474 5.3133 2.17609 6.66667 471.24 17671.5	Me	G	0.1			T		No. =	Diameter
151 22801 3442951 12.2882 5.3361 2.17898 6.62252 474.38 1790776 152 23104 3511808 12.2883 5.3368 2.18149 6.53895 477.52 18145.8 153 23409 3581577 12.3693 5.3485 2.18149 6.53895 480.66 1885.4 154 23716 3652264 12.4097 5.3601 2.18752 6.49551 486.95 18869.2 155 24025 3723875 12.4499 5.3717 2.19033 6.45161 486.95 18869.2 156 24336 3796416 12.4900 5.3832 2.19312 6.41026 490.09 191134 157 24964 386993 12.5300 5.3947 2.19590 6.36943 493.23 19359.3 158 24964 3944312 12.5698 5.4061 2.19866 6.28931 496.37 19606.7 169 25281 4019679 12.6095 5.4175 2.20140 6.28931 499.51 19855.7 160 25600 4096000 12.6491 5.4828 2.20412 6.25000 502.65 20106.2 161 25921 4173281 12.6886 5.4401 2.20858 6.21118 505.80 20358.3 162 26244 4251528 12.7279 5.4514 2.20952 6.17284 505.80 20358.3 163 26569 4330747 12.7671 5.4626 2.21129 6.13497 512.08 20667.2 164 26896 4410944 12.8062 5.4737 2.21484 6.09756 515.22 21124.1 165 27225 4492125 12.8452 5.4848 2.21748 6.09756 515.22 21124.1 166 27556 457469 12.8941 5.4918 2.22011 6.02410 521.50 21642.4 167 27889 4657463 12.92615 5.5178 2.22531 5.95288 5.2779 22167.1 169 28561 4826809 13.0000 5.5288 2.22789 5.91716 530.93 22431.8 170 28900 4913000 13.0384 5.5397 2.23045 5.88235 534.07 22698.0 171 29241 5000211 13.0767 5.5505 2.23300 5.84795 537.21 22965.8 173 29929 5177717 13.1529 5.5721 2.23805 5.74713 544.64 23778.7 174 30276 5268024 13.5677 5.5656 2.24655 5.74713 544.64 23778.7 178 31684 5639752 13.3417 5.6657 2.24055 5.74713 544.64 23778.7 183 33489 6128457 13.5677 5.6677 2.24055 5.5856 566.94 2.24055 5.3660 546.67 2.24665 5.6041	140.	oquare	Cube	Root	Root	Logarithm	Reciprocal	Circum.	Area
151 22801 3442951 12.2882 5.3361 2.17898 6.62252 474.38 1790776 152 23104 3511808 12.2883 5.3368 2.18149 6.53895 477.52 18145.8 153 23409 3581577 12.3693 5.3485 2.18149 6.53895 480.66 1885.4 154 23716 3652264 12.4097 5.3601 2.18752 6.49551 486.95 18869.2 155 24025 3723875 12.4499 5.3717 2.19033 6.45161 486.95 18869.2 156 24336 3796416 12.4900 5.3832 2.19312 6.41026 490.09 191134 157 24964 386993 12.5300 5.3947 2.19590 6.36943 493.23 19359.3 158 24964 3944312 12.5698 5.4061 2.19866 6.28931 496.37 19606.7 169 25281 4019679 12.6095 5.4175 2.20140 6.28931 499.51 19855.7 160 25600 4096000 12.6491 5.4828 2.20412 6.25000 502.65 20106.2 161 25921 4173281 12.6886 5.4401 2.20858 6.21118 505.80 20358.3 162 26244 4251528 12.7279 5.4514 2.20952 6.17284 505.80 20358.3 163 26569 4330747 12.7671 5.4626 2.21129 6.13497 512.08 20667.2 164 26896 4410944 12.8062 5.4737 2.21484 6.09756 515.22 21124.1 165 27225 4492125 12.8452 5.4848 2.21748 6.09756 515.22 21124.1 166 27556 457469 12.8941 5.4918 2.22011 6.02410 521.50 21642.4 167 27889 4657463 12.92615 5.5178 2.22531 5.95288 5.2779 22167.1 169 28561 4826809 13.0000 5.5288 2.22789 5.91716 530.93 22431.8 170 28900 4913000 13.0384 5.5397 2.23045 5.88235 534.07 22698.0 171 29241 5000211 13.0767 5.5505 2.23300 5.84795 537.21 22965.8 173 29929 5177717 13.1529 5.5721 2.23805 5.74713 544.64 23778.7 174 30276 5268024 13.5677 5.5656 2.24655 5.74713 544.64 23778.7 178 31684 5639752 13.3417 5.6657 2.24055 5.74713 544.64 23778.7 183 33489 6128457 13.5677 5.6677 2.24055 5.5856 566.94 2.24055 5.3660 546.67 2.24665 5.6041	150	99500	2275000	10 0474	g 9199	9.17600	6 66667	471.04	17071 5
152 23104 3511808 12.3288 5.3368 2.18469 6.53595 477.52 1845.5 154 23716 3652264 12.4097 5.3601 2.18752 6.49351 483.81 18626.5 155 24023 3798416 12.4900 5.3832 2.19312 6.41026 490.09 19113 4 157 24649 3869893 12.5300 5.3947 2.19506 6.32941 496.37 19606.7 159 25281 4019679 12.6095 5.4175 2.20140 6.28911 496.37 19606.7 160 25600 4096000 12.6491 5.4288 2.20412 6.25000 502.65 20106.2 161 25921 4173281 12.6761 5.4288 2.20412 6.25000 502.65 20106.2 162 26694 4291044 12.5666 5.4401 2.20683 6.21118 505.90 20358.3 162 26894 4104044 12.8062 5.4737 2									
153 23409 3581577 12.3693 5.3485 2.18469 6.53595 480.66 1835.4 154 23716 365224 12.4499 5.3717 2.19033 6.45161 486.95 1869.2 155 24025 3723875 12.4499 5.3717 2.19033 6.45161 486.95 1869.2 156 24336 3796416 12.4900 5.3832 2.19312 6.41026 490.09 19113 4 157 24649 3869893 12.5300 5.3937 2.19590 6.36943 493.23 1935.9 3 158 24964 3944312 12.5698 5.4061 2.19866 6.32911 496.37 19606.7 159 25281 4019679 12.6095 5.4175 2.20140 6.28931 499.51 19855.7 160 25600 4096000 12.6491 5.4288 2.20412 6.25000 502.65 2016.2 161 25921 4173281 12.6886 5.4401 2.20683 6.21118 505.80 20358.3 162 26244 4251528 12.7279 5.4514 2.20952 6.17284 508.94 20612.0 163 26566 430747 12.6711 5.4626 2.21219 6.13497 512.08 20867.2 164 26896 4410944 12.8062 5.4737 2.21484 6.09756 515.22 21124.1 165 27225 4492125 12.8452 5.4848 2.21748 6.06061 512.08 20867.2 166 27556 4574296 12.8841 5.4999 2.22011 6.02410 521.50 21642.4 167 27889 4657463 12.9228 5.5069 2.22272 5.98802 524.65 21904.0 168 28224 4741632 12.9615 5.5178 2.22531 5.95238 527.79 22167.1 169 28561 4826809 13.0000 5.5288 2.22789 5.91716 530.93 22431.8 170 28900 4913000 13.0384 5.5397 2.23045 5.88235 534.07 22698.0 171 29241 5000211 13.0767 5.5505 2.23300 5.84795 537.21 22965.8 173 39929 5177717 13.1529 5.5721 2.23805 5.78035 543.50 23255.2 173 329584 508844 33.1149 5.5613 2.23552 5.74713 546.64 23778.7 178 31684 5639752 13.3417 5.6652 2.25642 5.1948 552.92 24328.5 180 32400 535300 13.4164 5.6462 2.25527 5.55566 566.49 566.04 20378 3.3494 5.6464 2.24578 5.46484 5.511.9 2.6465.2 2.25768 5.52486 568.63 25730.4 180 32400									
155 24025 3723375 12.4499 5.3717 2.1903 6.49551 483.81 18926.5 1852 24025 3723375 12.4499 5.3717 2.1903 6.45161 486.95 1869.2 1852									
155 24025 3728375 12.4499 5.3717 2.19033 6.45161 486.95 18869.2 18569.2 2.19310 6.41026 490.00 19113 4 157 24049 3809893 12.5300 5.3947 2.19590 6.36943 493.23 19359.3 158 24964 3944312 12.5698 5.4061 2.19856 6.329911 496.37 19606.7 160 25600 4096000 12.6491 5.4288 2.20142 6.25900 502.65 20106.2 161 25921 4173281 12.6886 5.4401 2.20683 6.21118 505.80 20358.3 162 26244 4251528 12.7279 5.4514 2.20952 6.17284 508.94 20612.0 163 26569 430747 12.7671 5.4626 2.21219 6.13497 512.08 2.9867.2 164 26396 4410944 12.8062 5.4848 2.21748 6.00661 515.32 21112									
156 24336 3796416 12.4900 5.3832 2.19312 6.41026 490.09 19113 19359.3 158 24964 3869893 12.5698 5.4061 2.19866 6.32911 496.37 19906.7 159 25281 4019679 12.6695 5.4175 2.20140 6.28931 499.51 19955.7 160 25600 4096000 12.6491 5.4288 2.20412 6.25000 502.65 20106.2 161 25921 4173281 12.6886 5.4401 2.20683 6.21118 505.80 20358.3 162 26244 4251528 12.7279 5.4514 2.20952 6.13497 512.08 20358.3 163 26896 410944 12.8062 5.4737 2.21484 6.09765 515.22 21124.1 165 27225 4492125 12.8451 5.4959 2.22011 6.00601 518.36 2182.5 168 28224 4741632 12.9228 5.5069									
157 24649 3869893 12.5300 5.3947 2.19860 6.36943 49.3.23 19359.3 158 24964 3944312 12.6095 5.4061 2.19860 6.32911 496.37 19606.7 160 25600 4096000 12.6491 5.4288 2.20412 6.25000 502.65 20106.2 161 25921 4173281 12.6886 5.4401 2.20683 6.21118 505.80 20358.3 162 26244 4251528 12.7279 5.4514 2.20952 6.17284 508.94 20612.0 163 26569 4330747 12.7671 5.4626 2.21219 6.13497 512.08 20867.2 165 27225 4492125 12.8452 5.4848 2.21748 6.09756 515.22 21124.1 167 27859 4657463 12.9925 5.5006 2.22272 5.98802 524.65 21904.0 168 28294 474632 12.9615 5.173 2.22372									
158 24964 3944312 12.5698 5.4061 2.19866 6.32911 496.37 19606.7 160 25600 4096000 12.6491 5.4288 2.20412 6.28931 499.51 19855.7 161 25921 4173281 12.6886 5.4401 2.20683 6.21118 505.80 20358.3 162 26244 4251528 12.7279 5.4514 2.20952 6.17284 508.94 20612.0 164 26896 4410944 12.8062 5.4737 2.21484 6.09756 515.22 21124.1 165 27255 4492125 12.8452 5.4848 2.21748 6.06061 518.36 21382.5 166 27556 4574296 12.8841 5.4995 2.22011 6.02410 521.632 21824.4 167 27889 4657463 12.9228 5.5069 2.22272 5.98802 524.65 21904.0 170 28900 4913000 13.0384 5.5397 2.23045									
159 25281 4019679 12.6095 5.4175 2.20140 6.28931 499.51 19855.7 160 25600 4096000 12.6491 5.4288 2.20412 6.25000 502.65 20106.2 161 25921 4173281 12.6886 5.4401 2.20683 6.21118 505.80 20358.3 162 26244 4251528 12.7279 5.4626 2.21219 6.13497 512.08 20867.2 164 26896 4410944 12.8062 5.4737 2.21484 6.09756 515.22 21124.1 165 27225 4492125 12.8452 5.4848 2.21748 6.06061 518.32 21862.2 167 27889 4657463 12.9228 5.5069 2.22271 5.98802 524.65 21904.0 169 28561 4826809 13.0000 5.5288 2.22789 5.91716 530.93 22431.8 170 28900 4913000 13.0384 5.5397 2.23045									
160 25600 4096000 12.6491 5.4288 2.20412 6.25000 502.65 20106.2 161 25921 4173281 12.6886 5.4401 2.20683 6.21118 505.80 20358.3 162 26244 4251528 12.7279 5.4514 2.20952 6.17284 508.94 20612.0 164 26896 4410944 12.8662 5.4737 2.21484 6.09756 515.22 21124.1 165 27255 4492125 12.8452 5.4848 2.21748 6.06061 518.36 21882.5 166 27556 4574296 12.8841 5.4959 2.2211 6.02410 521.36 21882.5 168 28224 4741632 12.9615 5.5178 2.22531 5.95238 527.79 22167.1 169 28561 4826809 13.0000 5.5288 2.22789 5.91716 530.93 224318.5 172 292584 5088248 13.1149 5.5613 2.23505									
161 25921 4173281 12.6886 5.4401 2.20683 6.21118 505.80 20358.3 162 26244 4251528 12.7279 5.4514 2.20952 6.17284 508.94 20612.0 163 26569 4330747 12.7671 5.4626 2.21219 6.13497 512.0 20867.2 165 27225 4492125 12.8452 5.4848 2.21748 6.09661 518.36 21382.5 166 27556 4574296 12.8841 5.4959 2.22011 6.02410 521.50 21642.4 167 27889 4657463 12.9228 5.5069 2.22272 5.98802 524.65 21904.0 168 28224 4741632 12.9615 5.5178 2.22531 5.95238 527.92 22167.1 169 28561 4826809 13.00767 5.5505 2.23005 5.84795 537.21 22965.8 171 29241 500211 13.0767 5.5505 2.23300	100	20201	1010010	12.0000	0.11.0	2.20110	0.20001	100.01	10000.1
163 26244 4251528 12.7279 5.4514 2.20952 6.17284 508.94 20612.0 163 26569 4330747 12.7671 5.462 2.21219 6.13497 512.08 20867.2 165 27255 4492125 12.8452 5.4848 2.21748 6.06061 518.36 21382.5 166 27556 4574296 12.8451 5.4959 2.22011 6.02410 521.50 21642.4 167 27889 4657463 12.9228 5.5069 2.22272 5.98802 524.65 21904.0 168 28224 4741632 12.9615 5.5178 2.22531 5.95238 527.79 22167.1 169 28561 4826809 13.0000 5.5288 2.22789 5.91716 530.93 22431.8 170 28900 4913000 13.0384 5.5397 2.23045 5.88235 534.07 229665.8 172 29584 5088448 13.1499 5.5613 2.23555									
163 26569 4330747 12.7671 5.4626 2.21219 6.13497 512.08 20867.2 164 26896 4410944 12.8062 5.4737 2.21484 6.096756 515.22 21124.1 165 27255 4492125 12.8452 5.4848 2.21748 6.06061 518.36 21382.5 167 27889 4657463 12.9228 5.5069 2.22272 5.98802 524.65 21904.0 169 28561 4826809 13.0000 5.5288 2.22789 5.91716 530.93 22431.8 170 28900 4913000 13.0384 5.5397 2.23045 5.88235 537.21 22965.8 171 29241 500211 13.0767 5.5503 2.23355 5.81395 540.35 22265.2 172 29584 5088448 13.1149 5.5613 2.23553 5.81395 540.35 22355.2 173 30276 5458233 13.1909 5.5828 2.24055									
164 26896 4410944 12.8062 5.4737 2.21484 6.09756 515.22 21124.1 165 27255 4492125 12.8341 5.4848 2.21748 6.06061 518.36 21382.5 167 27889 4657463 12.9228 5.5069 2.22272 5.98802 524.65 21904.0 168 28561 4826809 13.0000 5.5288 2.22789 5.95238 527.79 22167.1 170 28900 4913000 13.0384 5.5372 2.23045 5.88235 537.21 22968.0 171 29241 5000211 13.0767 5.5505 2.23300 5.84795 537.21 22965.8 172 29584 508448 13.1149 5.5613 2.23553 5.81395 540.35 23355.2 173 29929 517771 13.1529 5.5721 2.23805 57.4713 546.64 23778.7 175 30625 5359375 13.2288 5.5924 2.24055									
165 27225 4492125 12.8452 5.4848 2.21748 6.06061 518.36 21382.5 166 27556 4574296 12.8841 5.4959 2.22011 6.02410 521.50 21642.4 168 28224 4741632 12.9285 5.5069 2.22725 5.98202 524.65 21904.0 170 28900 4913000 13.0384 5.5397 2.23045 5.84795 537.79 22167.1 172 29584 5088448 13.1149 5.5613 2.23535 5.81395 540.35 23306.2 173 29929 5177717 13.1529 5.5521 2.23805 5.78035 543.50 23506.2 174 30276 5268024 13.1909 5.5828 2.24055 5.74713 546.64 23778.7 175 36625 5359375 13.2288 5.5934 2.24304 5.71429 549.78 24052.8 176 30976 5451776 13.2665 5.6041 2.24505									
166 27556 4574296 12.8841 5.4959 2.22011 6.02410 521.50 21642.4 167 27889 4657463 12.9228 5.5069 2.22272 5.988802 524.65 21904.0 169 28561 4826809 13.0000 5.5288 2.22789 5.91716 530.93 22431.8 170 28900 4913000 13.0384 5.5397 2.23045 5.88235 534.07 22698.0 171 29241 5000211 13.0767 5.5505 2.23300 5.84795 537.21 22965.8 173 29929 517771 13.1529 5.5721 2.23805 5.78035 543.50 23506.2 174 30276 5268024 13.1909 5.5828 2.24055 5.74713 546.64 23778.7 175 30625 5359375 13.2288 5.5934 2.24551 5.68182 552.92 24328.5 176 30976 545176 13.2665 5.6041 2.24551									
167 27889 4657463 12.9228 5.5069 2.22272 5.98802 524.65 21904.0 168 28224 4741632 12.9615 5.5178 2.22531 5.95238 527.79 22167.1 169 28561 4826809 13.0000 5.5288 2.22789 5.91716 530.93 22431.8 170 28900 4913000 13.0384 5.5397 2.23045 5.88235 534.07 22698.0 171 29241 5000211 13.0767 5.5505 2.23005 5.84795 537.21 22965.8 173 29929 5177717 13.1529 5.5721 2.23805 5.78035 543.50 23236.2 174 30276 5268024 13.1909 5.5828 2.24505 5.74713 546.64 23778.7 175 30625 5359375 13.298 5.5934 2.24304 5.7129 549.78 24052.8 176 30976 5451776 13.2665 5.6041 2.2451									
168 28224 4741632 12.9615 5.5178 2.22531 5.95238 527.79 22167.1 169 28561 4826809 13.0000 5.5288 2.22789 5.91716 530.93 22431.8 170 28900 4913000 13.0384 5.5397 2.23045 5.88235 534.07 22698.0 171 29241 5008211 13.0767 5.5505 2.23300 5.84795 537.21 22965.8 173 29929 5177717 13.1529 5.5721 2.23805 5.78035 543.50 23506.2 174 30276 5268024 13.1909 5.5828 2.24055 5.74713 546.64 23778.7 175 30625 5359375 13.2288 5.5934 2.24304 5.71429 549.78 24052.8 176 31329 5545233 13.3041 5.6147 2.24797 5.64912 552.92 24328.5 177 31684 5639752 13.3417 5.6252 2.25526									
169 28561 4826809 13.0000 5.5288 2.22789 5.91716 530.93 22431.8 170 28900 4913000 13.0384 5.5397 2.23045 5.88235 534.07 22698.0 171 29241 5000211 13.0767 5.5505 2.23300 5.84795 537.21 22965.8 172 29584 5088448 13.1149 5.56013 2.23553 5.81395 540.35 23235.2 173 29929 5177717 13.1529 5.5721 2.23805 5.78035 543.50 23506.2 174 30276 5268024 13.1909 5.5828 2.24055 5.74713 546.64 23778.7 175 30625 5359375 13.22685 5.6041 2.24551 5.68182 552.92 24328.5 177 31329 5545233 13.3417 5.6257 2.24571 5.64972 556.06 24605.7 178 31684 5639752 13.3416 5.6467 2.25585									
170 28900 4913000 13.0384 5.5397 2.23045 5.88235 534.07 22698.0 171 29241 5000211 13.0767 5.5505 2.23300 5.84795 537.21 22965.8 172 29584 5088448 13.1149 5.5613 2.23553 5.81395 540.35 23235.2 23206.2 173 29929 5177717 13.1529 5.5721 2.23805 5.78035 543.50 23256.2 174 30276 5268024 13.1909 5.5828 2.24055 5.74713 546.64 23778.7 175 30625 5359375 13.2288 5.5934 2.24304 5.71429 549.78 24052.8 176 30976 545233 13.3041 5.6147 224797 56.4972 24805.2 178 31684 5639752 13.3417 5.6252 2.25042 5.61798 559.20 24884.6 179 32401 573539 13.4164 5.6462 2.25768									
171 29241 5008211 13.0767 5.5505 2.23300 5.84795 537.21 22965.8 172 29584 5088448 13.1149 5.5613 2.23553 5.81395 540.35 23235.2 174 30276 5268024 13.1909 5.5828 2.24055 5.78015 543.50 23506.2 175 30625 5359375 13.2288 5.5934 2.24055 5.74713 546.64 23778.7 176 30625 5451776 13.2665 5.6041 2.24551 5.68182 552.92 24328.5 177 31329 5545233 13.3417 5.6252 2.25042 5.61798 552.92 24328.5 178 31684 5639752 13.3417 5.6252 2.25042 5.61798 559.20 24884.6 180 32400 5832000 13.4164 5.6462 2.25527 5.55566 565.49 25446.9 180 32240 583200 13.4536 5.6677 2.25627	169	28561	4826809	13.0000	5.5288	2.22789	5.91716	530.93	22431.8
171 29241 5008211 13.0767 5.5505 2.23300 5.84795 537.21 22965.8 172 29984 5078448 13.1149 5.5613 2.23553 5.81395 540.35 23235.2 174 30276 5268024 13.1909 5.5828 2.24055 5.74713 546.64 23778.7 175 30625 5359375 13.2288 5.5934 2.24304 5.71429 549.78 24052.8 176 30976 5451776 13.2665 5.6041 2.24591 5.68182 552.92 24328.5 177 31329 5545233 13.3417 5.6252 2.25042 5.6179 559.20 24884.6 179 32041 573539 13.3417 5.6257 2.252685 5.58659 562.35 25164.9 180 32400 5832000 13.4164 5.6462 2.25527 5.55566 565.49 25446.9 181 32761 5929741 13.4536 5.6567 2.25768	170	28900	4913000	13.0384	5.5397	2.23045	5.88235	534.07	22698.0
172 29584 5088448 13.1149 5.5613 2.23553 5.81395 540.35 23235.2 173 29929 5177717 13.1529 5.5721 2.23805 5.78035 543.50 23506.2 174 30276 5268024 13.1909 5.5828 2.24055 5.74713 546.64 23778.7 175 30625 5359375 13.2865 5.6041 2.24551 5.68182 522.92 24328.5 177 31329 5545233 13.3041 5.6147 2.24591 5.64972 556.06 24605.7 178 31684 5639752 13.3417 5.6252 2.25042 5.61798 559.20 24884.6 179 32041 573539 13.3791 5.6567 2.25585 5.55566 562.32 25164.9 180 32400 5832000 13.4536 5.6567 2.25768 5.55248 566.33 25730.4 181 33724 6028568 13.4907 5.6677 2.26007			5000211	13.0767	5.5505	2.23300	5.84795	537.21	22965.8
173 29929 5177717 13.1529 5.5721 2.23805 5.78035 543.50 23506.2 23778.7 174 30276 5268024 13.1909 5.5828 2.24055 5.74713 546.64 23778.7 175 30976 5451776 13.2288 5.5934 2.24304 5.71429 549.78 24052.8 176 30976 5451776 13.2685 5.6041 2.24551 5.68182 552.92 24328.5 178 31684 5639752 13.3417 5.6252 2.25042 561798 559.20 24884.6 179 32041 5735339 13.3791 5.6357 2.25042 5.56569 562.35 25164.9 180 32400 5832000 13.4164 5.6462 2.25762 5.55566 565.49 25446.9 181 32761 5929741 13.4536 5.6677 2.26045 5.46448 571.77 26015.5 183 33489 6128487 13.5277 5.6774				13.1149	5.5613	2.23553	5.81395	540.35	23235.2
174 30276 5268024 13.1909 5.5828 2.24055 5.74713 546.64 23778.7 175 30625 5359375 13.2288 5.5934 2.24304 5.71429 549.78 24052.8 176 30976 5451776 13.2665 5.6041 2.24551 5.68182 552.92 24328.5 177 31329 5545233 13.3041 5.6147 2.24797 5.64972 556.06 24605.7 178 31684 5639752 13.3417 5.6252 2.25042 5.61798 559.20 24384.6 179 32041 5735339 13.3791 5.6367 2.25525 5.56569 562.35 25164.9 180 32400 5832000 13.4164 5.6462 2.25527 5.55566 566.30 25730.4 181 32761 5929741 13.4536 5.6567 2.26007 5.49451 571.77 26015.5 183 33489 6128487 13.5277 5.6774 2.26007					5.5721	2.23805	5.78035	543.50	23506.2
175 30625 5359375 13.2288 5.5934 2.24304 5.71429 549.78 24052.8 176 30976 5451776 13.2665 5.6041 2.24551 5.68182 552.92 24328.5 177 31239 5545233 13.3417 5.6252 2.25042 5.61798 559.20 24884.6 179 32041 5735339 13.3417 5.6252 2.25042 5.61798 559.20 24884.6 180 32400 5832000 13.4164 5.6467 2.25585 5.55556 565.49 2544.9 181 32761 5929741 13.4536 5.6567 2.25768 5.55556 568.63 25730.4 182 33124 6028568 13.4907 5.6671 2.26007 5.49451 571.77 26015.5 183 33489 6128487 13.5615 5.6977 2.26482 5.49451 571.77 26015.5 185 34225 6331625 13.6015 5.6980 2.26717			5268024	13.1909	5.5828	2.24055	5.74713	546.64	23778.7
177 31329 5545233 13.3041 5.6147 2.24797 5.64972 556.06 24605.7 178 31684 5639752 13.3417 5.6252 2.25042 5.61798 559.20 24884.6 179 32041 5735339 13.3791 5.6357 2.25285 5.58659 562.35 25164.9 180 32400 5832000 13.4164 5.6462 2.25527 5.55566 565.49 25446.9 181 32761 5929741 13.4536 5.6567 2.25728 5.52486 568.63 25730.4 182 33124 6028568 13.4907 5.6671 2.26007 5.49451 571.77 26015.5 183 33489 6128487 13.5647 5.68774 2.26245 5.49451 571.77 26015.5 184 33856 6229504 13.5647 5.68774 2.26482 5.43478 578.05 26590.4 185 34596 6434856 13.6915 5.7983 2.26915	175	30625	5359375	13.2288	5.5934	2.24304			
178 31684 5639752 13.3417 5.6252 2.25042 5.61798 559.20 24884.6 179 32041 5735339 13.3417 5.6252 2.25042 5.61798 559.20 24884.6 180 32400 5832000 13.4164 5.6462 2.25527 5.55565 565.49 25446.9 181 32761 5929741 13.4536 5.6677 2.25768 5.52486 568.63 25730.4 182 33124 6028568 13.4907 5.6671 2.26045 5.49451 571.77 26015.5 183 33489 6128487 13.5277 5.6774 2.26245 5.49451 571.77 26015.5 184 33856 6229504 13.5615 5.6980 2.26717 5.40541 581.19 26880.3 185 34225 631625 13.6015 5.6980 2.26915 5.37634 584.34 27171.6 187 34969 6539203 13.6748 5.7185 2.27146	176	30976	5451776						
179 32041 5735339 13.3791 5.6357 2.25285 5.58659 562.35 25164.9 180 32400 5832000 13.4164 5.6462 2.25527 5.55556 565.49 25446.9 181 32761 5929741 13.4536 5.6567 2.25768 5.52486 568.63 25730.4 182 33124 6028568 13.4907 5.6671 2.26007 5.49451 571.77 26015.5 183 33856 6229504 13.5647 5.6877 2.26485 5.46448 574.91 26302.2 185 34225 6331625 13.6015 5.6980 2.26717 5.40541 581.19 26880.3 187 34969 6539203 13.6748 5.7185 2.27184 5.34759 587.48 27171.6 189 35721 6751269 13.7477 5.7388 2.27646 5.29101 593.76 28055.2 190 36100 6859000 13.7840 5.7489 2.27875	177	31329	5545233	13.3041					
180 32400 5832000 13.4164 5.6462 2.25527 5.55556 565.49 25446.9 181 32761 5929741 13.4536 5.6567 2.25768 5.52486 568.63 25730.4 182 33124 6028568 13.4907 5.6671 2.26007 5.49451 571.77 26015.5 183 33489 6128487 13.5277 5.6774 2.26245 5.49448 574.91 26300.2 184 33856 6229504 13.5647 5.6877 2.26482 5.43478 578.05 26590.4 185 34225 6331625 13.6015 5.6980 2.26717 5.40541 581.19 26880.3 186 34596 6434856 13.6382 5.7185 2.27184 5.34759 587.48 27171.6 187 34969 6539203 13.6748 5.7185 2.27184 5.34759 587.48 27464.6 188 35721 6751269 13.7477 5.7388 2.27646									
181 32761 5929741 13.4536 5.6567 2.25768 5.52486 568.63 25730.4 182 33124 6028568 13.4907 5.6671 2.26007 5.49451 571.77 26015.5 183 33489 6128487 13.5277 5.6774 2.26245 5.46448 574.91 26302.2 184 33856 6229504 13.5647 5.6877 2.26482 5.43478 578.05 26590.4 185 34225 6331625 13.6015 5.6980 2.26717 5.40541 581.19 26880.3 186 34596 6434856 13.6382 5.7083 2.26951 5.37634 581.19 26880.3 187 34969 6539203 13.6748 5.7185 2.27184 5.34759 587.48 27171.6 189 35721 6751269 13.7477 5.7388 2.27646 5.29101 593.76 28055.2 190 36100 6859000 13.7840 5.7489 2.28103	179	32041	5735339	13.3791	5.6357	2.25285	5.58659	562.35	25164.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	180	32400	5832000	13.4164	5.6462				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		32761	5929741	13.4536	5.6567				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		33124	6028568	13.4907					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		33489	6128487	13.5277					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			6229504						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			6331625						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
189 35721 6751269 13.7477 5.7388 2.27646 5.29101 593.76 28055.2 190 36100 6859000 13.7840 5.7489 2.27875 5.26316 596.90 28352.9 191 36481 6967871 13.8203 5.7590 2.28103 5.23560 600.04 28652.1 192 36864 7077888 13.8924 5.7690 2.28330 5.20833 603.19 28952.9 193 37249 7189057 13.8924 5.7890 2.28780 5.15464 609.47 29559.2 194 37636 7301384 13.9284 5.7890 2.28780 5.15464 609.47 29559.2 195 38025 7414875 13.9642 5.7989 2.29003 5.12221 612.61 29864.2 196 38416 7529536 14.0000 5.8088 2.29245 5.07614 618.89 30480.5 198 39204 7762392 14.0712 5.8285 2.29667			6644672						
190 36100 363600 363600 363600 363600 363600 36360 36603			6751269	13.7477	5.7388	2.27646	5.29101	593.76	28055.2
190 36481 6967871 13.8203 5.7590 2.28103 5.23560 600.04 28652.1 192 36864 7077888 13.8564 5.7690 2.28330 5.20833 603.19 28952.9 193 37249 7189057 13.8924 5.7790 2.28556 5.18135 606.33 29255.3 194 37636 7301384 13.9284 5.7890 2.28780 5.15464 609.47 29559.2 195 38025 7414875 13.9642 5.7989 2.29003 5.12821 612.61 29864.8 196 38416 7529536 14.0000 5.8088 2.29246 5.10204 615.75 30171.9 197 38809 7645373 14.0357 5.8186 2.29447 5.07614 618.89 30480.5 198 39204 7762392 14.0712 5.8285 2.29667 5.02513 622.04 30790.7 198 5.29546 5.2856 5.2856 5.02513 625.18	100	26100	6859000	13.7840	5.7489	2.27875	5.26316	596.90	28352.9
191 36864 7077888 13.8564 5.7690 2.28330 5.20833 603.19 28952.9 193 37249 7189057 13.8924 5.7790 2.28556 5.18135 606.33 29255.3 194 37636 7301384 13.9284 5.7890 2.28780 5.15464 609.47 29559.2 195 38026 7414875 13.9642 5.7989 2.29003 5.12821 612.61 29864.8 196 38416 7529536 14.0000 5.8088 2.29226 5.10204 615.75 30171.9 197 38809 7645373 14.0357 5.8186 2.29447 5.05051 622.04 30790.7 198 39204 7762392 14.1067 5.8285 2.29867 5.02513 625.18 31102.6									
193 37249 7189057 13.8924 5.7790 2.28556 5.18135 606.33 29255.3 194 37636 7301384 13.9284 5.7890 2.285780 5.15464 609.47 29559.2 195 38025 7414875 13.9642 5.7989 2.29003 5.12821 612.61 29864.8 196 38416 7529536 14.0000 5.8088 2.29226 5.10204 615.75 30171.9 197 38809 7645373 14.0357 5.8186 2.29447 5.07614 618.89 30480.5 198 39204 7762392 14.0712 5.8285 2.29667 5.02513 625.18 31102.6						2.28330	5.20833		
194 37636 7301384 13.9284 5.7890 2.22780 5.15464 609.47 29559.2 195 38025 7414875 13.9642 5.7989 2.29003 5.12821 612.61 29864.8 196 38416 7529536 14.0000 5.8088 2.29226 5.10204 615.75 30171.9 197 38809 7645373 14.0357 5.8186 2.29447 5.07614 618.89 30480.5 198 39204 7762392 14.0712 5.8285 2.29667 5.02513 622.04 30790.7 198 39204 762392 14.0876 5.8383 2.29855 5.02513 625.18 31102.6									
195 38025 7414875 13.9642 5.7989 2.29003 5.12821 612.61 29864.8 196 38416 7529536 14.0000 5.8088 2.29226 5.10204 615.75 30171.9 197 38809 7645373 14.0357 5.8186 2.29447 5.07614 618.89 30480.5 198 39204 7762392 14.0712 5.8285 2.29667 5.05051 622.04 30790.7 198 39204 7762392 14.1067 5.8383 2.29865 5.02513 625.18 31102.6					5.7890				
196 38416 7529536 14.0000 5.8088 2.29226 5.10204 615.75 30171.9 197 38809 7645373 14.0357 5.8186 2.29447 5.07614 618.89 30480.5 198 39204 7762392 14.0712 5.8285 2.29667 5.05051 622.04 30790.7					5.7989				
197 38809 7645373 14.0357 5.8186 2.29447 5.07614 618.89 30480.5 198 39204 7762392 14.0712 5.8285 2.29667 5.05051 622.04 30790.7									
198 39204 7762392 14.0712 5.8285 2.29667 5.05051 622.04 30790.7			7645373						
		39601	7880599	14.1067	15.8383	1 2.29885	0.02513	025.18	191102.0

Functions of Numbers, 200 to 249

-		-	Square	Cubie		1000	No.=	Diameter
No.	Square	Cube	Root	Root	Logarithm	Reciprocal	Circum.	Area
	·							
200	40000	8000000	14.1421	5.8480	2.30103	5.00000	628.32	31415.9
201	40401	8120601	14.1774	5.8578	2.30320 2.30535	4.97512 4.95050	631.46 634.60	31730.9 32047.4
202 203	40804	8242408 8365427	14.2127 14.2478	5.8675 5.8771	2.30750	4.92611	637.74	32365.5
203	41616	8489664	14.2829	5.8868	2.30963	4.90196	640.88	32685.1
205	42025	8615125	14.3178	5.8964	2.31175	4.87805	644.03	33006.4
206	42436	8741816	14.3527	5.9059	2.31387	4.85437	647.17	33329,2
207	42849	8869743	14.3875	5.9155	2.31597	4.83092	650.31	33653.5
208	43264	8998912	14.4222	5.9250	2.31806	4.80769	653.45	33979.5
209	43681	9129329	14.4568	5.9345	2.32015	4.78469	656.59	34307.0
210	44100	9261000	14.4914	5.9439	2.32222	4.76190	659.73	34636.1
211	44521	9393931	14.5258	5.9533	2.32428	4.73934	662.88	34966.7
212	44944	9528128	14.5602	5.9627	2.32634	4.71698	666.02	35298.9
213	45369	9663597	14.5945	5.9721	2.32838	4.69484	669.16	35632.7
214	45796	9800344	14.6287	5.9814	2.33041	4.67290	672.30	35968.1
215	46225	9938375	14.6629	5.9907	2.33244	4.65116	675.44	36305.0
216	46656	10077696	14.6969	6.0000 6.0092	2.33445 2.33646	4.62963 4.60829	678.58 681.73	36643.5 36983.6
$\frac{217}{218}$	47089 47524	10218313 10360232	14.7309 14.7648	6.0185	2.33846	4.58716	684.87	37325.3
219	47961	10503252	14.7986	6.0277	2.34044	4.56621	688.01	37668.5
220	48400	10648000	14.8324	6.0368	2.34242	4.54545	691.15	38013.3
$\frac{221}{222}$	48841 49284	10793861 10941048	14.8661 14.8997	6.0459 6.0550	2.34439 2.34635	4.52489 4.50450	694.29 697.43	38359.6 38707.6
223	49284	11089567	14.9332	6.0641	2.34830	4.48430	700.58	39057.1
224	50176	11239424	14.9666	6.0732	2.35025	4.46429	703.72	39408.1
225	50625	11390625	15.0000	6.0822	2.35218	4.44444	706.86	39760.8
226	51076	11543176	15.0333	6.0912	2.35411	4.42478	710.00	40115.0
227	51529	11697083	15.0665	6.1002	2.35603	4.40529	713.14	40470.8
228	51984	11852352	15.0997	6.1091	2.35793	4.38596	716.28	40828.1
229	52441	12008989	15.1327	6.1180	2.35984	4.36681	719.42	41187.1
230	52900	12167000	15.1658	6.1269	2.36173	4.34783	722.57	41547.6
231	53361	12326391	15.1987	6.1358	2.36361	4.32900	725.71	41909.6
232	53824	12487168	15.2315	6.1446	2.36549	4.31034	728.85	42273.3
233	54289	12649337	15.2643	6.1534	2.36736	4.29185	731.99	42638.5
234	54756	12812904 12977875	15.2971	6.1622	2.36922	4.27350	735.13	43005.3
235 236	55225 55696	13144256	15.3297 15.3623	6.1710 6.1797	$2.37107 \\ 2.37291$	4.25532 4.23729	738.27 741.42	43373.6 43743.5
237	56169	13312053	15.3948	6.1885	2.37475	4.21941	744.56	44115.0
238	56644	13481272	15.4272	6.1972	2.37658	4.20168	747.70	44488.1
239	57121	13651919	15.4596	6.2058	2.37840	4.18410	750.84	44862.7
940	E7600	12894000	15 4010	6 9145	9 20001	4 16667	752.00	450000
240 241	57600 58081	13824000 13997521	15.4919 15.5242	6.2145 6.2231	2.38021 2.38202	4.16667 4.14938	753.98 757.12	45238.9 45616.7
242	58564	14172488	15.5563	6.2317	2.38382	4.13223	760.27	45996.1
243	59049	14348907	15.5885	6.2403	2.38561	4.11523	763.41	46377.0
244	59536	14526784	15.6205	6.2488	2.38739	4.09836	766.55	46759.5
245	60025	14706125	15.6525	6.2573	2.38917	4.08163	769.69	47143.5
246	60516	14886936	15.6844	6.2658	2.39094	4.06504	772.83	47529.2
247	61009	15069223	15.7162	6.2743	2.39270	4.04858	775.97	47916.4
248	61504	15252992	15.7480	6.2828	2.39445	4.03226	779.12	48305.1
249	62001	15438249	15.7797	6.2912	2.39620	4.01606	782.26	48695.5

Functions of Numbers, 250 to 299

							<u> </u>	
			Square	Cubic		1000	No. =1	Diameter
No.	Square	Cube	Root	Root	Logarithm	Reciprocal	Circum.	Area
250	62500	15625000	15.8114	6.2996	2.39794	4.00000	785.40	49087.4
251	63001	15813251	15.8430	6.3080	2.39967	3.98406	788.54	49480.9
252	63504	16003008	15.8745	6.3164	2.40140	3.96825	791.68	49875.9
253	64009	16194277	15.9060	6.3247	2.40312	3.95257	794.82	50272.6
254	64516	16387064	15.9374	6.3330	2.40483	3.93701	797.96	50670.7
255	65025	16581375	15.9687	6.3413	2.40654	3.92157	801.11	51070.5
256	65536	16777216	16.0000	6.3496	2.40824	3.90625	804.25	51471.9
257	66049	16974593	16.0312	6.3579	2.40993	3.89105	807.39	51874.8
258	66564	17173512	16.0624	6.3661	2.41162	3.87597	810.53	52279.2
259	67081	17373979	16.0935	6.3743	2.41330	3.86100	813.67	52685.3
209	01001	11010019	10.0000	0.01 10	2.41000	0.00100	0.0.01	02000.0
260	67600	17576000	16.1245	6.3825	2.41497	3.84615	816.81	53092.9
261	68121	17779581	16.1555	6.3907	2.41664	3.83142	819.96	53502.1
262	68644	17984728	16.1864	6.3988	2.41830	3.81679	823.10	53912.9
263	69169	18191447	16.2173	6.4070	2.41996	3.80228	826.24	54325.2
264	69696	18399744	16.2481	6.4151	2.42160	3.78788	829.38	54739.1
265	70225	18609625	16.2788	6.4232	2.42325	3.77358	832.52	55154.6
		18821096	16.3095	6.4312	2.42488	3.75940	835.66	55571.6
266	70756		16.3401	6.4393	2.42651	3.74532	838.81	55990.2
267	71289	19034163	16.3707	6.4473	2.42813	3.73134	841.95	56410.4
268	71824	19248832			2.42975	3.71747	845.09	56832.2
269	72361	19465109	16.4012	6.4553	2.42910	3.11141	040.00	00002.2
270	72900	19683000	16.4317	6.4633	2.43136	3.70370	848.23	57255.5
271	73441	19902511	16.4621	6.4713	2.43297	3.69004	851.37	57680.4
272	73984	20123648	16.4924	6.4792	2.43457	3.67647	854.51	58106.9
273	74529	20346417	16.5227	6.4872	2.43616	3.66300	857.65	58534.9
274	75076	20570824	16.5529	6.4951	2.43775	3.64964	860.80	58964.6
275	75625	20796875	16.5831	6.5030	2.43933	3.63636	863.94	59395.7
276	76176	21024576	16.6132	6.5108	2.44091	3.62319	867.08	59828.5
277	76729	21253933	16.6433	6.5187	2.44248	3.61011	870.22	60262.8
278	77284	21484952	16.6733	6.5265	2.44404	3.59712	873:36	60698.7
279	77841	21717639	16.7033	6.5343	2.44560	3.58423	876.50	61136.2
							050.05	61595 0
280	78400	21952000	16.7332	6.5421	2.44716	3.57143	879.65	61575.2
281	78961	22188041	16.7631	6.5499	2.44871	3.55872	882.79	62015.8
282	79524	22425768	16.7929	6.5577	2.45025	3.54610	885.93	62458.0
283	80089	22665187	16.8226	6.5654	2.45179	3.53357	889.07	62901.8
284	80656	22906304	16.8523	6.5731	2.45332	3.52113	892.21	63347.1
285	81225	23149125	16.8819	6.5808	2.45484	3.50877	895.35	63794.0
286	81796	23393656	16.9115	6.5885	2.45637	3.49650	898.50	64242.4
287	82369	23639903	16.9411	6.5962	2.45788	3.48432	901.64	64692.5
288	82944	23887872	16.9706	6.6039	2.45939	3.47222	904.78	65144.1
289	83521	24137569	17.0000	6.6115	2.46090	3.46021	907.92	65597.2
_					0.40040	0.44000	011.00	66052 0
290	84100	24389000	17.0294	6.6191	2.46240	3.44828	911.06 914.20	66052.0 66508.3
291	84681	24642171	17.0587	6.6267	2.46389	3.43643		66966.2
292	85264	24897088	17.0880	6.6343	2.46538	3.42466	917.35	67425.6
293	85849	25153757	17.1172	6.6419	2.46687	3.41297	920.49	
294	86436	25412184	17.1464	6.6494	2.46835	3.40136	923.63	67886.7
295	87025	25672375	17.1756	6.6569	2.46982	3.38983	926.77	68349.3
296	87616	25934336	17.2047	6.6644	2.47129	3.37838	929.91	68813.4
297	88209	26198073	17.2337	6.6719	2.47276	3.36700	933.05	69279.2
298	88804	26463592	17.2627	6.6794	2.47422	3.35570	936.19	69746.5
299		26730899	17.2916	6.6869	2.47567	3.34448	939.34	70215.4
200	, 50 101							

Functions of Numbers, 300 to 349

No. Square										
No. Square Cube Root Root Logantum Reciprocal Circum. Area				Square	Cubic			No.=I	Diameter	
17.3494 6.7018 2.47857 3.32226 945.62 71157.9	No.	Square	Cube			Logarithm	Reciprocal	Circum.	Area	
17.3494 6.7018 2.47857 3.32226 945.62 71157.9	200	90000	27000000	17 3205	6 6942	2-47712	3.33333	942.48	70685.8	
303 91809 27543608 17.3781 6.7092 2.48001 3.31126 948.76 71631.5 304 92416 28094464 17.4356 6.7240 2.48287 3.28947 955.04 72583.4 305 93025 28372625 17.4642 6.7331 2.48430 3.27869 958.19 73061.7 306 93686 28652616 17.4929 6.7387 2.48572 3.28947 955.04 72583.4 307 94249 28934443 17.5214 6.7460 2.48287 3.28737 964.47 74023.0 308 94864 29218112 17.5499 6.7538 2.48575 3.24675 967.61 74560.0 309 95481 29503629 17.5784 6.7606 2.48996 3.23625 970.75 74990.6 310 96100 29791000 17.6068 6.7679 2.49136 3.22581 973.89 75476.8 311 96721 30080231 17.6352 6.7752 2.49276 3.21543 977.04 75904.5 312 97344 30371328 17.6635 6.7894 2.49454 3.19489 983.32 76944.7 314 98596 30959144 17.7200 6.7969 2.49634 3.19449 983.32 76944.7 315 99225 31255875 17.7482 6.8041 2.49881 3.17460 998.00 77931.1 316 99856 31554496 17.7764 6.8113 2.49881 3.17460 999.60 77931.1 317 10496 31855013 17.8605 6.8256 2.50243 3.14465 999.30 79422.6 320 102400 32768000 17.8855 6.8256 2.50243 3.14465 990.3 79422.6 321 103041 33076101 17.9165 6.8470 2.50651 3.11526 1008.5 80928.2 322 103684 33386248 17.9444 6.8541 2.50786 3.10559 1011.6 81433.2 323 104329 33698867 17.7922 6.8612 2.50925 3.08684 1014.7 8193.2 324 104976 34012224 18.0000 6.8633 2.51055 3.08642 1014.7 82448.8 329 108241 35611289 18.1384 6.9034 2.51587 3.09581 1014.7 8193.2 321 103641 336076161 18.0555 6.8824 2.51587 3.09581 1014.7 8193.2 323 104329 336986787 17.9722 6.8612 2.50965 3.10559 1011.6 81433.2 323 104329 336985787 17.9727 2.8612 2.50965 3.08642 1017.9 82448.0 323 104924 35694368 18.2209 6.9244 2.51587 3.09581 1003.6 85092.3 324 116964 3408257 17.8757 6.9869										
\$\frac{91809}{304} \$\frac{92416}{28094464} \$17.4356 6.7156 2.48144 3.30033 951.90 72106.6 \$305 \$9055 28572625 17.4642 6.7313 2.48430 3.27869 955.04 72583.4 \$306 \$93636 28652616 17.4929 6.7387 2.48572 3.26797 961.33 73541.5 \$307 \$9429 2893443 17.5214 6.7460 2.48714 3.26733 964.47 74023.0 \$308 94864 29218112 17.5499 6.7533 2.48855 3.24675 967.61 74506.0 \$309 95481 29503629 17.5784 6.7606 2.4896 3.23625 970.75 74990.6 \$310 96100 29791000 17.6068 6.7679 2.49916 3.22581 973.89 75476.8 \$311 96721 30080231 17.6352 6.7762 2.49276 3.21543 977.04 75964.5 \$312 97344 30371328 17.6635 6.7824 2.49415 3.20513 980.18 76453.8 \$313 97969 30664297 17.6918 6.7897 2.49654 3.19489 983.32 76944.7 \$315 99225 31255875 17.7482 6.8041 2.49831 3.17460 989.60 777931.1 \$316 99856 31554496 17.7764 6.8113 2.49969 3.16456 992.74 78426.7 \$317 100489 31855013 17.8045 6.8185 2.50106 3.15457 995.88 78923.9 \$318 101124 32157432 17.8326 6.8256 2.50243 3.14465 990.03 79422.6 \$321 103041 33076161 17.9165 6.8470 2.50651 3.11526 1008.5 80928.2 \$322 103684 33868248 17.4444 6.8541 2.50786 3.10559 1011.6 81433.2 \$323 104329 33698267 17.9722 6.8612 2.50920 3.09598 1014.7 81939.8 \$324 104976 34645976 18.0555 6.8824 2.51362 3.06649 1011.6 81433.2 \$330 10890 35693700 18.1659 6.9044 2.51851 3.03030 1036.7 82448.0 \$331 10894 33695438 18.2948 6.9034 2.51857 3.04878 1001.6 81433.2 \$336 12896 3939306 18.3030 6.9451 2.50962 3.09598 1014.7 81939.8 \$321 10341 33661289 18.2480 6.9034 2.51587 3.04878 1001.6 8.09862 3.09862 3.09862 3.09862 3.09862 3.09862 3.09862 3.09862 3.09862 3.09862 3.09862 3.09862 3.09862 3.09862										
304 92416 28094464 17.4356 6.7240 2.48287 3.28047 955.04 72583.4 306 93636 28652616 17.4929 6.7387 2.48872 3.26797 961.33 73541.5 307 94249 28934443 17.5214 6.7460 2.48714 3.25733 964.47 74023.0 308 94864 29218112 17.5784 6.7606 2.48996 3.23625 970.75 74900.6 310 96100 29791000 17.6068 6.7679 2.49136 3.22581 973.89 75476.8 311 96721 30080231 17.6352 6.7752 2.49276 3.21543 977.04 75904.5 314 98566 3059914 17.7200 6.7699 2.49663 3.18471 986.18 74451.3 315 99225 31255875 17.7742 6.8913 2.49554 3.19489 983.32 76944.7 317 104992 31855513 17.8046 6.8152 2.50613<										
305 93026 28372625 17.4642 6.7313 2.48430 3.27869 958.19 73041.7 73541.5 307 94249 28934443 17.5214 6.7460 2.48714 3.25733 964.47 74023.0 308 94864 29218112 17.5499 6.7533 2.48855 3.24675 967.61 74506.0 310 96100 29791000 17.6068 6.7679 2.49136 3.22581 970.75 74990.6 311 96721 30080231 17.6635 6.7679 2.49136 3.22581 977.04 75964.5 312 97344 30371228 17.6635 6.7824 2.49415 3.21543 977.04 75964.5 314 98596 30959144 17.7200 6.7969 2.49633 3.18471 986.46 77437.1 316 9855 3155496 17.7764 6.8132 2.50043 3.1460 989.60 7992.9 320 102400 32768000 17.8856 6.8392 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
\$\begin{array}{c c c c c c c c c c c c c c c c c c c										
307 94249 28934443 17.5214 6.7460 2.48714 3.25733 964.47 74020.0 309 95481 299503629 17.5499 6.7533 2.48855 3.24675 967.61 74506.0 310 96100 29791000 17.6068 6.7679 2.49136 3.22581 973.89 75476.8 311 96721 30080231 17.6352 6.7752 2.49276 3.21543 977.04 75964.5 312 97344 30371228 17.6635 6.7824 2.49415 3.20513 980.18 76453.8 314 98596 30959144 17.7200 6.7969 2.49633 3.14471 986.46 77437.1 316 99856 31554496 17.7764 6.8185 2.50106 3.15456 7992.9 317 100489 31855013 17.8066 6.8328 2.50379 3.13480 1002.2 79922.9 320 102400 32768000 17.8886 6.8399 2.50515 3.125										
308 04864 29218112 17.5499 6.7533 2.48855 3.24675 967.61 74506.0 310 96100 29791000 17.6068 6.7679 2.48136 3.22581 973.89 75468.5 311 96721 30080231 17.6352 6.7752 2.49276 3.21543 977.04 75964.5 313 97969 30664297 17.6918 6.7897 2.49554 3.19489 983.32 76944.7 314 98596 30959144 17.7200 6.7969 2.49693 3.18471 988.60 77437.1 316 99856 31554496 17.7764 6.8113 2.49693 3.14465 992.74 78426. 317 100489 318550313 17.8045 6.8185 2.50106 3.15460 992.74 78426. 319 101761 32461759 17.8046 6.8185 2.50106 3.1550 1002.2 79922.9 320 102400 32768000 17.8866 6.8392 2.50515										
309 95481 29503629 17.5784 6.7606 2.48996 3.23625 970.75 74990.6 310 96100 29791000 17.6068 6.7679 2.49276 3.21543 977.04 75964.5 311 96721 30080231 17.6635 6.7824 2.49415 3.20513 980.9 75464.5 313 97969 30664297 17.6918 6.7897 2.49554 3.19489 983.32 76944.7 314 98596 30959144 17.7700 6.7969 2.49693 3.18471 986.46 77437.1 316 99856 31554496 17.7764 6.8113 2.49969 3.16456 992.74 78426.7 317 100489 31855013 17.8806 6.8256 2.50243 3.14465 992.74 78422.6 320 102400 32768000 17.8856 6.8399 2.50515 3.1250 1005.3 80424.8 321 103041 33076161 17.9165 6.8470 2.50651										
311 96721 30080231 17.6352 6.7752 2.49276 3.21543 977.04 75964.5 312 97344 30371328 17.6635 6.7824 2.49454 3.20513 980.18 76453.8 313 97969 30664297 17.6918 6.7867 2.49554 3.19489 983.2 76944.7 315 99225 31255875 17.7482 6.8041 2.49861 3.18471 986.46 77437.1 316 99856 31554496 17.7764 6.8113 2.49969 3.16456 992.74 78426.7 317 100489 31855013 17.8045 6.8136 2.50106 3.16456 992.74 78426.7 318 10124 32157432 17.8326 6.8256 2.50243 3.14465 999.03 79422.6 320 102400 32768000 17.8885 6.8370 2.50651 3.12500 1005.3 80424.8 321 103041 33076161 17.9165 6.8470 2.5065										
311 96721 30080231 17.6352 6.7752 2.49276 3.21543 977.04 75964.5 312 97344 30371328 17.6635 6.7824 2.49454 3.20513 980.18 76453.8 313 97969 30664297 17.6918 6.7867 2.49554 3.19489 983.2 76944.7 315 99225 31255875 17.7482 6.8041 2.49861 3.18471 986.46 77437.1 316 99856 31554496 17.7764 6.8113 2.49969 3.16456 992.74 78426.7 317 100489 31855013 17.8045 6.8136 2.50106 3.16456 992.74 78426.7 318 10124 32157432 17.8326 6.8256 2.50243 3.14465 999.03 79422.6 320 102400 32768000 17.8885 6.8370 2.50651 3.12500 1005.3 80424.8 321 103041 33076161 17.9165 6.8470 2.5065	210	06100	20701000	17 6069	6 7670.	9 40196	2 99581	073 80	75476.9	
312 97344 30371328 17.6635 6.7824 2.49415 3.20513 980.18 76453.8 313 97969 30664297 17.6918 6.7897 2.49554 3.19489 983.32 76944.7 314 98566 30959144 17.7200 6.7969 2.49693 3.18471 986.46 77437.1 315 99255 31255875 17.77482 6.8041 2.49831 3.17460 989.60 77031.1 316 99856 31854013 17.8045 6.8185 2.50106 3.15467 995.88 78923.9 318 101124 32157432 17.8326 6.8256 2.50243 3.14465 999.03 79422.6 319 101761 32461759 17.8606 6.8328 2.50379 3.13480 1002.2 79922.9 320 102400 32768000 17.8885 6.8399 2.50515 3.12500 1005.3 80424.8 321 103041 33076161 17.9166 6.8470 2.5										
313 97969 30664297 17.6918 6.7897 2.49554 3.19489 983.32 76044.7 314 98596 30959144 17.7200 6.7969 2.49693 3.18471 986.46 77437.1 316 99856 31554496 17.7764 6.8113 2.49969 3.16456 992.74 78426.7 317 100489 31855013 17.8045 6.8185 2.50106 3.15467 995.88 78923.9 318 101124 32157432 17.8606 6.8256 2.50243 3.14465 999.03 79422.6 319 101761 32461759 17.8606 6.8328 2.50379 3.13480 1002.2 79922.9 320 102400 32768000 17.8885 6.8399 2.50515 3.12500 1005.3 80424.8 321 103041 33076161 17.9165 6.8470 2.50651 3.11526 1008.5 80928.2 322 103684 33386248 17.9722 6.8612 2.										
314 98596 30959144 17.7200 6.7969 2.49693 3.18471 986.46 77437.1 315 99255 31255875 17.7742 6.8041 2.49893 3.17400 989.60 77931.1 316 99856 31854496 1.77764 6.8113 2.49969 3.16456 992.74 78426.7 317 100489 31855013 17.8045 6.8185 2.50106 3.15457 995.88 78923.9 318 101124 32157432 17.8366 6.8256 2.50243 3.14465 999.03 79422.6 320 102400 32768000 17.8885 6.8399 2.50515 3.12500 1005.2 79922.9 320 102400 32768000 17.8885 6.8399 2.50515 3.12500 1005.2 802424.8 321 103041 330698267 17.9722 6.8612 2.50621 3.10599 1011.6 81433.2 322 105625 34328125 18.0278 6.8753				1.						
316 99256 31255875 17.7482 6.8041 2.49831 3.17460 989.00 77931.1 316 99856 31554496 17.7764 6.8183 2.49969 3.16456 992.74 78426.7 317 100489 31855013 17.8045 6.8185 2.50106 3.15457 998.58 78923.9 318 101124 32157432 17.8606 6.8328 2.50243 3.14465 999.03 79422.6 320 102400 32768000 17.8885 6.8399 2.50515 3.12500 1005.3 80424.8 321 103041 33076161 17.9165 6.8470 2.50651 3.10509 1011.6 81433.2 322 103684 33386248 17.9742 6.8612 2.50920 3.09598 1011.6 81433.2 323 104329 34965783 18.0000 6.8683 2.51158 3.07692 1011.6 82448.0 325 105625 3462875 18.0555 6.8824 2.										
316 99856 31554496 17.7764 6.8113 2.49969 3.16456 992.74 78426.7 317 100489 31855013 17.8045 6.8185 2.50106 3.15457 995.88 78923.9 318 1011761 32461759 17.8606 6.8328 2.50379 3.13480 1002.2 79922.9 320 102400 32768000 17.8885 6.8399 2.50515 3.12500 1005.3 80424.8 321 103041 33076161 17.9165 6.8470 2.50651 3.11526 1008.5 80928.2 322 103684 33386248 17.9424 6.8512 2.50920 3.05958 1011.6 81433.2 324 104976 34012224 18.0000 6.8682 2.51055 3.08642 1017.9 82448.0 325 105625 34985783 18.0831 6.8874 2.51455 3.08642 1017.9 82448.0 327 106929 34965783 18.0831 6.8964 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
317 100489 31855013 17.8045 6.8185 2.50106 3.15457 995.88 78923.9 318 101124 32157432 17.8326 6.8266 2.50243 3.14465 999.03 79422.6 319 107f01 32461759 17.8606 6.8328 2.50379 3.13480 1002.2 79922.9 320 102400 32768000 17.8885 6.8399 2.50515 3.12500 1005.3 80424.8 321 103041 33076161 17.9165 6.8470 2.50651 3.10559 1011.6 81433.2 322 103684 33386248 17.9722 6.8612 2.50920 3.09588 1014.7 81939.8 324 104976 34012224 18.0000 6.8632 2.51055 3.08642 1017.9 82448.0 325 105625 34328125 18.0278 6.8753 2.51183 3.07692 1021.0 82957.7 326 106276 34645976 18.0555 6.8824 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
318 101124 32157432 17.8326 6.8256 2.50243 3.14465 999.03 79422.6 319 101761 32461759 17.8606 6.8328 2.50379 3.13480 1002.2 79922.9 320 102400 32768000 17.8885 6.8399 2.50515 3.12500 1005.3 80424.8 321 103684 33386248 17.9444 6.8541 2.50786 3.10559 1011.6 81433.2 323 104329 33698267 17.9722 6.8612 2.50920 3.09598 1014.7 81939.8 324 104976 3401224 18.0000 6.8683 2.511555 3.08642 1017.9 82448.0 325 105625 34628758 18.0681 6.8894 2.51322 3.06749 1024.2 83499.0 327 106929 34965783 18.0831 6.8894 2.51455 3.05810 1027.3 83981.8 328 107584 35287552 18.1086 6.8964 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
319 101761 32461759 17.8606 6.8328 2.50379 3.13480 1002.2 79922.9 320 102400 32768000 17.8885 6.8399 2.50515 3.12500 1005.3 80424.8 321 103041 33076161 17.9165 6.8470 2.50651 3.11526 1008.5 80928.2 322 103684 33386248 17.9424 6.8612 2.50920 3.09598 1011.6 81433.2 324 104976 34012224 18.0000 6.8683 2.51055 3.08642 1017.9 82448.0 325 105625 34528125 18.0278 6.8753 2.51188 3.07602 1021.0 82957.7 326 106276 34645976 18.0555 6.8824 2.51455 3.05810 1027.3 83481.8 328 107584 35287552 18.1108 6.8964 2.51455 3.04878 1030.4 84496.3 331 109561 36264691 18.1934 6.9174 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
320 102400 32768000 17.8885 6.8399 2.50515 3.12500 1005.3 80424.8 321 103041 33076161 17.9165 6.8470 2.50661 3.11526 1008.5 80928.2 322 103684 33386248 17.9444 6.8541 2.50786 3.10559 1011.6 81433.2 323 104329 33698267 17.9722 6.8612 2.50920 3.09584 1014.7 82448.0 325 105625 34528125 18.0278 6.8753 2.51188 3.07692 1021.0 82957.7 326 106276 34645976 18.0555 6.8824 2.51322 3.06749 1024.2 83469.0 27 106929 34965783 18.0831 6.8894 2.51455 3.05810 1027.3 83981.8 328 107584 35287552 18.1108 6.8942 2.51455 3.04878 1030.4 84496.3 330 108900 35937000 18.1659 6.9104										
321 103041 33076161 17.9165 6.8470 2.50651 3.11526 1008.5 80928.2 322 103684 33386248 17.9444 6.8541 2.50786 3.10559 1011.6 81939.8 324 104976 34012224 18.0000 6.8683 2.51055 3.08642 1017.9 82448.0 325 105625 34528125 18.0278 6.8753 2.51188 3.07602 1021.0 82957.7 326 106276 34645976 18.0555 6.8824 2.51455 3.05810 1021.2 82957.7 327 106929 34965783 18.0831 6.8894 2.51455 3.05810 1027.3 83981.8 328 107584 35287552 18.1108 6.8964 2.51455 3.04878 1030.4 84496.3 330 108900 35937000 18.1659 6.9104 2.51851 3.03030 1036.7 85529.9 331 109561 36264691 18.1934 6.9174 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
322 103684 33386248 17.9444 6.8541 2.50786 3.10559 1011.6 81433.2 323 104329 33698287 17.9722 6.8612 2.50920 3.09598 1014.7 82448.0 324 104976 34012224 18.0000 6.8683 2.51055 3.08642 1017.9 82448.0 325 105625 34528125 18.0278 6.8753 2.51188 3.07692 1021.0 82957.7 326 106276 34645976 18.0555 6.8824 2.51322 3.06749 1024.2 83469.0 327 106929 34965783 18.0831 6.8894 2.51455 3.05810 1027.3 83981.8 328 107584 35287552 18.1108 6.8964 2.51455 3.04878 1030.4 84496.3 330 108900 35937000 18.1659 6.9104 2.51851 3.03030 1036.7 85529.9 331 109561 36264691 18.1934 6.9174 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
323 104329 34098267 17.9722 6.8612 2.50920 3.09598 1014.7 81939.8 324 104976 34012224 18.0000 6.8683 2.51055 3.08642 1017.9 82448.0 325 105625 34528125 18.0278 6.8753 2.51188 3.07602 1021.0 82957.7 326 106276 34645976 18.0555 6.8894 2.51322 3.06749 1024.2 83469.0 327 106929 34965783 18.1081 6.894 2.51525 3.04878 1030.4 8496.3 329 108241 35611289 18.1384 6.9034 2.51720 3.03951 1033.6 85012.3 330 108900 35937000 18.1659 6.9104 2.51851 3.03030 1036.7 85529.9 331 109561 36264691 18.1934 6.9174 2.51831 3.02105 1030.9 86649.0 332 110224 36594368 18.2299 6.9244 2										
324 104976 34012224 18.0000 6.8683 2.51055 3.08642 1017.9 82448.0 325 105625 34528125 18.0278 6.8753 2.51188 3.07692 1021.0 82957.7 326 106276 34645976 18.0555 6.8824 2.51322 3.06749 1024.2 8349.0 327 106929 34965783 18.0831 6.8894 2.51455 3.05810 1027.3 83981.8 328 107584 35287552 18.1108 6.8964 2.51587 3.04878 1030.4 84496.3 329 108241 35611289 18.1659 6.9104 2.51851 3.03951 1033.6 85012.3 330 108900 35937000 18.1659 6.9104 2.51851 3.03030 1036.7 8529.9 331 109561 36264691 18.1934 6.9174 2.51983 3.02115 1039.9 86549.0 332 110224 36594368 18.2296 6.9244 2										
325 105625 34528125 18.0278 6.8753 2.51188 3.07692 1021.0 82957.7 326 106276 34045976 18.0555 6.8824 2.51322 3.06749 1024.2 83469.0 327 106929 340465783 18.0831 6.8894 2.51455 3.05810 1027.3 83981.8 328 107584 35287552 18.1108 6.8964 2.51587 3.04878 1030.4 84496.3 329 108241 35611289 18.1384 6.9034 2.51720 3.03951 1033.6 85012.3 330 108900 35937000 18.1659 6.9104 2.51851 3.03030 1036.7 85529.9 331 109561 36264691 18.1934 6.9174 2.51983 3.02115 1039.9 86649.0 332 110224 36594368 18.2209 6.9244 2.52114 3.01205 1043.0 8659.7 333 110565 37259704 18.2757 6.9382 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
326 106276 34645976 18.0555 6.8824 2.51322 3.06749 1024.2 83469.0 327 106929 34965783 18.0831 6.8894 2.51455 3.05810 1027.3 38981.8 328 107584 35287552 18.1108 6.8964 2.51587 3.04878 1030.4 84496.3 329 108241 35611289 18.1384 6.9034 2.51720 3.03951 1033.6 85012.3 330 108900 35937000 18.1659 6.9104 2.51851 3.03030 1036.7 85529.9 331 109561 36264691 18.1934 6.9174 2.51983 3.02115 1039.9 86049.0 332 110224 36594368 18.2229 6.9244 2.52144 3.00300 1046.2 87092.0 334 111556 37259704 18.2757 6.9382 2.52375 2.9401 1049.3 87615.9 335 112295 37595375 18.3036 6.9521										
327 106929 34965783 18.0831 6.8894 2.51455 3.05810 1027.3 83981.8 328 107584 35287552 18.1108 6.8964 2.51587 3.04878 1030.4 84496.3 329 108241 35611289 18.1384 6.9034 2.51720 3.03951 1033.6 85012.3 330 108900 35937000 18.1659 6.9104 2.51851 3.03030 1036.7 85529.9 331 109561 36246691 18.1934 6.9174 2.51983 3.02115 1039.9 86049.0 332 110224 36594368 18.2209 6.9244 2.52114 3.01205 1043.0 86669.7 334 111556 37259704 18.2757 6.9382 2.52244 3.00300 1046.2 87615.9 335 112896 37933056 18.3030 6.9451 2.52642 2.98507 1052.4 88141.3 336 112896 37933056 18.3946 6.9589 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
328 107584 35287552 18.1108 6.8964 2.51587 3.04878 1030.4 84496.3 329 108241 35611289 18.1384 6.9034 2.51720 3.03951 1033.6 85012.3 330 108900 35937000 18.1659 6.9104 2.51851 3.03030 1036.7 85529.9 331 109561 36264691 18.1934 6.9174 2.51983 3.02115 1039.9 86649.0 332 110224 36594368 18.2209 6.9244 2.52114 3.01205 1043.0 8659.7 333 110889 36926037 18.2483 6.9313 2.52244 3.00300 1046.2 87615.9 334 111556 37259704 18.2757 6.9382 2.52504 2.99401 1049.3 87615.9 335 112896 37933056 18.3303 6.9521 2.52634 2.97619 1055.6 88141.3 338 114244 38614472 18.3848 6.9589										
329 108241 35611289 18.1384 6.9034 2.51720 3.03951 1033.6 85012.3 330 108900 35937000 18.1659 6.9104 2.51851 3.03030 1036.7 85529.9 331 109561 36264691 18.1934 6.9174 2.51983 3.02115 1039.9 86049.0 332 110224 36594368 18.2290 6.9244 2.52114 3.01030 1040.2 87692.0 333 110889 36926037 18.2483 6.9313 2.52244 3.00300 1040.2 87092.0 344 111556 37259704 18.2757 6.9382 2.52504 2.98507 1052.4 88141.3 336 112896 37933056 18.3303 6.9521 2.52634 2.97619 1055.6 88668.3 337 113569 38272753 18.3576 6.9589 2.52634 2.96736 1055.6 88668.3 337 114294 38958219 18.4120 6.9727 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
330 108900 35937000 18.1659 6.9104 2.51851 3.03030 1036.7 85529.9 331 109561 36264691 18.1934 6.9174 2.51983 3.02115 1039.9 86049.0 332 110224 36594368 18.2209 6.9244 2.52114 3.01205 1043.0 86569.7 333 110889 36926037 18.2483 6.9313 2.52244 3.00300 1046.2 87092.0 334 111556 37259704 18.2757 6.9382 2.52375 2.99401 1049.3 87615.9 335 112896 37933056 18.3030 6.9451 2.52634 2.98507 1052.4 88141.3 336 112896 37933056 18.3576 6.9589 2.52763 2.96736 1058.7 89166.9 338 114244 38614472 18.3848 6.9658 2.52892 2.95858 1061.9 89727.0 340 115600 39304000 18.4391 6.9795 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
331 109561 36264691 18.1934 6.9174 2.51983 3.02115 1039.9 86649.0 332 110224 36594368 18.2929 6.9244 2.52114 3.01205 1043.0 86669.7 333 110889 36926037 18.2483 6.9313 2.52244 3.00300 1040.2 87092.0 334 111556 37259704 18.2757 6.9382 2.52375 2.99401 1049.3 87615.9 335 112295 375933056 18.3303 6.9521 2.52634 2.97619 1055.6 88668.3 337 113569 38272753 18.3576 6.9529 2.52634 2.96736 1055.6 88668.3 338 114244 38014472 18.3848 6.96589 2.52763 2.96736 1055.6 89196.9 339 114921 38958219 18.4120 6.9727 2.53148 2.94118 1068.0 90725.0 340 115600 39304000 18.4391 6.9795 <						١ ٠				
332 110224 36594368 18.2209 6.9244 2.52144 3.01205 1043.0 86569.7 333 110889 36926037 18.2483 6.9313 2.52244 3.00300 1046.2 87615.9 334 111556 37595757 18.3030 6.9451 2.52504 2.98507 1052.4 887615.9 335 112295 37595375 18.3030 6.9451 2.52504 2.98507 1052.4 88141.3 336 112896 37933056 18.3303 6.9521 2.52634 2.97619 1055.6 88668.3 337 113569 38272753 18.3576 6.9589 2.52763 2.96736 1055.7 89196.9 338 114244 38614472 18.3848 6.9658 2.52892 2.95858 1061.9 89727.0 340 115600 39304000 18.4391 6.9795 2.53148 2.94118 1068.1 90792.0 341 116281 39651821 18.4662 6.9864 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
333 110889 36926037 18.2483 6.9313 2.52244 3.00300 1046.2 87092.0 334 111556 37259704 18.2757 6.9382 2.52504 2.99401 1049.3 87615.9 335 112295 3793056 18.3303 6.9451 2.52504 2.98507 1052.4 88141.3 336 112896 37933056 18.3303 6.9521 2.52634 2.97619 1055.6 88668.3 337 13569 38272753 18.3576 6.9589 2.52763 2.96736 1058.7 89797.0 339 114921 38958219 18.4120 6.9727 2.53020 2.94985 1065.0 90258.7 340 115600 39304000 18.4391 6.9795 2.53148 2.94118 1068.1 90792.0 341 116281 39651821 18.4662 6.9864 2.53275 2.93255 1071.3 91326.9 342 116964 40001688 18.4932 6.9932 2										
334 111556 37259704 18.2757 6.9382 2.52375 2.99401 1049.3 87615.9 335 112225 37595375 18.3030 6.9451 2.52504 2.98507 1052.4 88141.3 336 112896 37933056 18.3376 6.9521 2.52634 2.967619 1055.6 88668.3 337 13569 38272753 18.3576 6.9589 2.52632 2.95858 1055.6 89196.9 338 114244 38614472 18.3848 6.9658 2.52892 2.95858 1061.9 89727.0 340 115600 39304000 18.4391 6.9795 2.53148 2.94118 1068.1 90792.0 341 116281 39651821 18.4662 6.9864 2.53275 2.93255 1071.3 91326.9 342 116964 40001688 18.4932 6.9932 2.53403 2.92398 1074.4 91863.3 343 117649 40353607 18.5472 7.0068 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
335 112225 37595375 18.3030 6.9451 2.52504 2.98507 1052.4 88141.3 336 112896 37933056 18.3303 6.9521 2.52634 2.97619 1055.6 88968.3 337 113569 38272753 18.3848 6.9589 2.52763 2.96736 1058.7 89196.9 338 114244 38614472 18.3848 6.9658 2.52892 2.95858 1061.9 89727.0 339 114921 38958219 18.4120 6.9727 2.53020 2.94985 1065.0 90258.7 340 115600 39304000 18.4391 6.9795 2.53148 2.94118 1068.1 90792.0 341 116281 39651821 18.4662 6.9864 2.53275 2.93255 1071.3 91326.9 342 116964 40001688 18.4932 6.9932 2.53403 2.92398 1074.4 91863.3 344 11836 40707584 18.5472 7.0000										
336 112896 37933056 18.3303 6.9521 2.52634 2.97619 1055.6 88668.3 337 113569 38272753 18.3576 6.9589 2.52763 2.96736 1058.7 89196.9 338 114244 38614472 18.3848 6.9658 2.52892 2.95858 1066.9 89727.0 349 114921 38958219 18.4120 6.9727 2.53020 2.94985 1065.0 90258.7 340 115600 39304000 18.4391 6.9795 2.53148 2.94118 1068.1 90792.0 341 116281 39651821 18.4662 6.9864 2.53275 2.93255 1071.3 91326.9 342 116964 40001688 18.4932 6.9932 2.53403 2.92398 1074.4 91863.3 343 117649 40353607 18.5203 7.0000 2.53529 2.91545 1077.6 92401.3 344 118336 40707584 18.5472 7.016										
337 113569 38272753 18.3576 6.9589 2.52763 2.96736 1058.7 89196.9 338 114244 38614472 18.3848 6.9658 2.52892 2.95858 1061.9 89727.0 339 114921 38958219 18.4120 6.9727 2.53020 2.94985 1065.0 90258.7 340 115600 39304000 18.4391 6.9795 2.53148 2.94118 1068.1 90792.0 341 116281 39651821 18.4662 6.9864 2.53275 2.93255 1071.3 91326.9 342 116964 40001688 18.4932 6.9932 2.53403 2.92398 1074.4 91863.3 343 117649 40353607 18.5472 7.0068 2.53656 2.90698 1080.7 92401.3 345 119025 41063625 18.5742 7.0136 2.53782 2.89855 1083.8 93482.0 346 119716 41421736 18.6079 7.0271 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
338 114244 38614472 18.3848 6.9658 2.52892 2.95858 1061.9 89727.0 339 114921 38958219 18.4120 6.9727 2.53020 2.94985 1065.0 90258.7 340 115600 39304000 18.4391 6.9795 2.53148 2.94118 1068.1 90792.0 341 116281 39651821 18.4662 6.9864 2.53275 2.93255 1071.3 91326.9 342 116964 40001688 18.4932 6.9932 2.53403 2.92398 1074.4 9163.3 343 117649 40355607 18.5203 7.0000 2.53529 2.91545 1077.6 92401.3 344 11836 40707584 18.5472 7.0068 2.53656 2.90698 1080.7 92940.9 345 119025 41063625 18.5742 7.0136 2.53782 2.89855 1083.8 93482.0 346 119716 41421736 18.6011 7.0203 2										
339 114921 38958219 18.4120 6.9727 2.53020 2.94985 1065.0 90258.7 340 115600 39304000 18.4391 6.9795 2.53148 2.94118 1068.1 90792.0 341 116281 39651821 18.4662 6.9864 2.53275 2.93255 1071.3 91326.9 342 116964 40001688 18.4932 6.9932 2.53403 2.92398 1074.4 91863.3 343 117649 40353607 18.5203 7.0000 2.53529 2.91545 1077.6 92401.3 344 118336 40707584 18.5472 7.0068 2.53656 2.90698 1080.7 92940.9 345 119025 41063625 18.5742 7.0136 2.53782 2.89855 1083.8 93482.0 346 119716 41421736 18.6011 7.0203 2.53038 2.89017 1087.0 94024.7 347 120409 41781923 18.6279 7.0271 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
340 115600 39304000 18.4391 6.9795 2.53148 2.94118 1068.1 90792.0 341 116281 39651821 18.4662 6.9864 2.53275 2.93255 1071.3 91326.9 342 116964 40001688 18.4932 6.9932 2.53403 2.92398 1074.4 91863.3 343 117649 40353607 18.5472 7.0068 2.53656 2.90698 1808.7 92401.3 345 119025 41063625 18.5742 7.0136 2.53782 2.89855 1083.8 93482.0 346 119716 41421736 18.6011 7.0203 2.53908 2.89017 1087.0 94024.7 347 120409 41781923 18.6279 7.0271 2.54033 2.8184 1090.1 94569.0 348 121104 42144192 18.6548 7.0338 2.54158 2.87356 1093.3 95114.9										
341 116281 39651821 18.4662 6.9864 2.53275 2.93255 1071.3 91326.9 342 116964 40001688 18.4932 6.9932 2.53403 2.92398 1074.4 91863.3 343 117649 40353607 18.5203 7.0000 2.53529 2.91545 1077.6 92401.3 344 118336 40707584 18.5472 7.0068 2.53656 2.90698 1080.7 92940.9 345 119025 41063625 18.5742 7.0136 2.53782 2.89855 1083.8 93482.0 346 119716 41421736 18.6011 7.0271 2.54033 2.88184 1090.1 94569.0 348 121104 42144192 18.6548 7.0338 2.54158 2.87356 1093.3 95114.9	5 59	114921	56958219	18.4120	0.9727	△.53020	2.94985	1005.0	90200.7	
342 116964 40001688 18.4932 6.9932 2.53403 2.92398 1074.4 91863.3 343 117649 40353607 18.5203 7.0000 2.53529 2.91545 1077.6 92940.9 344 118336 40707584 18.5472 7.0068 2.53656 2.90698 1080.7 92940.9 345 119025 41063625 18.5742 7.0136 2.53782 2.89855 1083.8 93482.0 346 119716 41421736 18.6011 7.0203 2.53908 2.89017 1087.0 94024.7 347 120409 41781923 18.6279 7.0271 2.54033 2.88184 1090.1 94569.0 348 121104 42144192 18.6548 7.0338 2.54158 2.87356 1093.3 95114.9										
343 117649 40353607 18.5203 7.0000 2.53529 2.91545 1077.6 92401.3 344 118336 40707584 18.5472 7.0068 2.53656 2.90698 1080.7 92940.9 345 119025 41063625 18.5742 7.0136 2.53782 2.89855 1083.8 93482.0 346 119716 41421736 18.6011 7.0203 2.53908 2.8917 1087.0 94024.7 347 120409 41781923 18.6279 7.0271 2.54033 2.88184 1090.1 94569.0 348 121104 42144192 18.6548 7.0338 2.54158 2.87356 1093.3 95114.9										
344 118336 40707584 18.5472 7.0068 2.53656 2.90698 1080.7 92940.9 345 119025 41063625 18.5742 7.0136 2.53782 2.89855 1083.8 93482.0 346 119716 41421736 18.6011 7.0203 2.53908 2.89017 1087.0 94024.7 347 120409 41781923 18.6279 7.0271 2.54033 2.88184 1090.1 94569.0 348 121104 42144192 18.6548 7.0338 2.54158 2.87356 1093.3 95114.9										
345 119025 41063625 18.5742 7.0136 2.53782 2.89855 1083.8 93482.0 346 119716 41421736 18.6011 7.0203 2.53908 2.89017 1087.0 94024.7 347 120409 41781923 18.6279 7.0271 2.54033 2.88184 1090.1 94569.0 348 121104 42144192 18.6548 7.0338 2.54158 2.87356 1093.3 95114.9										
346 119716 41421736 18.6011 7.0203 2.53908 2.89017 1087.0 94024.7 347 120409 41781923 18.6279 7.0271 2.54033 2.88184 1090.1 94569.0 348 121104 42144192 18.6548 7.0338 2.54158 2.87356 1093.3 95114.9										
347 120409 41781923 18.6279 7.0271 2.54033 2.88184 1090.1 94569.0 348 121104 42144192 18.6548 7.0338 2.54158 2.87356 1093.3 95114.9										
348 121104 42144192 18.6548 7.0338 2.54158 2.87356 1093.3 95114.9										
349 121801 42508549 18.6815 7.0406 2.54283 2.86533 1096.4 95662.3										
	349	1121801	142508549	18.6815	7.0406	12.54283	12.86533	1096.4	95662.3	

Functions of Numbers, 350 to 399

No.	Square	Cube	Square	Cubic	T amazith	1000	No. =1	Diameter
	oquare	Cube	Root	Root	Logarithm	Reciprocal	Circum.	Area
350	122500	42875000	18.7083	7.0473	2.54407	2.85714	1099.6	96211.3
351	123201	43243551	18.7350	7.0540	2.54531	2.84900	1102.7	
352	123904	43614208	18.7617	7.0607	2.54654	2.84900	1102.7	96761.8 97314.0
353	124609	43986977	18.7883	7.0674	2.54777	2.83286	1109.0	97867.7
354	125316	44361864	18.8149	7.0740	2.54900	2.82486	1112.1	98423.0
355	126025	44738875	18.8414	7.0807	2.55023	2.81690	1115.3	98979.8
356	126736	45118016	18.8680	7.0873	2.55145	2.80899	1118.4	99538.2
357	127449	45499293	18.8944	7.0940	2.55267	2.80112	1121.5	100098
358	128164	45882712	18.9209	7.1006	2.55388	2.79330	1124.7	100660
359	128881	46268279	18.9473	7.1072	2.55509	2.78552	1127.8	101223
360	129600	46656000	18.9737	7.1138	2.55630	2.77778	1131.0	101788
361	130321	47045881	19.0000	7.1204	2.55751	2.77008	1134.1	102354
362	131044	47437928	19.0263	7.1269	2.55871	2.76243	1137.3	102922
363	131769	47832147	19.0526	7.1335	2.55991	2.75482	1140.4	103491
364	132496	48228544	19.0788	7.1400	2.56110	2.74725	1143.5	104062
365	133225	48627125	19.1050	7.1466	2.56229	2.73973	1146.7	104635
366	133956	49027896	19.1311	7.1531	2.56348	2.73224	1149.8	105209
367	134689	49430863	19.1572	7.1596	2.56467	2.72480	1153.0	105785
368	135424	49836032	19.1833	7.1661	2.56585	2.71739	1156.1	106362
369	136161	50243409	19.2094	7.1726	2.56703	2.71003	1159.2	106941
370	136900	50653000	19.2354	7.1791	2.56820	2.70270	1162.4	107521
371	137641	51064811	19.2614	7.1855	2.56937	2.69542	1165.5	108103
372	138384	51478848	19.2873	7.1920	2.57054	2.68817	1168.7	108687
373	139129	51895117	19.3132	7.1984	2.57171	2.68097	1171.8	109272
374	139876	52313624	19.3391	7.2048	2.57287	2.67380	1175.0	109858
375	140625	52734375	19.3649	7.2112	2.57403	2.66667	1178.1	110447
376	141376	53157376	19.3907	7.2177	2.57519	2.65957	1181.2	111036 111628
377	142129	53582633	19.4165	7.2240	2.57634 2.57749	2.65252 2.64550	1184.4 1187.5	111028
378 379	142884 143641	54010152 54439939	19.4422 19.4679	7.2304 7.2368	2.57864	2.63852	1190.7	112815
						2.63158	1193.8	113411
380	144400	54872000	19.4936	7.2432	2.57978		1196.9	114009
381	145161	55306341	19.5192	7.2495	2.58093	2.62467 2.61780	1200.1	114608
382	145924	55742968	19.5448	7.2558 7.2622	2.58206 2.58320	2.61097	1200.1	115209
383	146689	56181887	19.5704 19.5959	7.2685	2.58433	2.60417	1206.4	115812
384	147456	56623104	19.5959	7.2748	2.58546	2.59740	1200.4	116416
385	148225	57066625 57512456	19.6214	7.2811	2.58659	2.59067	1212.7	117021
386	148996	57960603	19.6723	7.2874	2.58771	2.58398	1215.8	117628
387	149769	58411072	19.6977	7.2936	2.58883	2.57732	1218.9	118237
388 389	150544 151321	58863869	19.7231	7.2999	2.58995	2.57069	1222.1	118847
		59319000	19.7484	7.3061	2.59106	2.56410	1225.2	119459
390	152100	59319000	19.7484	7.3124	2.59100	2.55754	1228.4	120072
391	152881	60236288	19.7990	7.3124	2.59329	2.55102	1231.5	120687
392	153664	60698457	19.7990	7.3248	2.59439	2.54453	1234.6	121304
393	154449	61162984	19.8494	7.3310	2.59550	2.53807	1237.8	121922
394	155236	61629875	19.8746	7.3372	2.59660	2.53165	1240.9	122542
395	156025 156816	62099136	19.8997	7.3434	2.59770	2.52525	1244.1	123163
396	157609	62570773	19.9249	7.3496	2.59879	2.51889	1247.2	123786
397 398	158404	63044792	19.9499	7.3558	2.59988	2.51256	1250.4	124410
399		63521199					1253.5	125036
000	00_51							

Functions of Numbers 400 to 449

	1		1	1				
NT-	g	0.1.	Square	Cubic		1000	No.=	Diameter
No.	Square	Cube	Root	Root	Logarithm	Reciprocal	Circum.	Area
400	160000	64000000	20.0000	7.3681	2.60206	2.50000	1256.6	125664
401	160801	64481201	20.0250	7.3742	2.60314	2.49377	1259.8	126293
402	161604	64964808	20.0499	7.3803	2.60423	2.48756	1262.9	126923
403	162409	65450827	20.0749	7.3864	2.60531	2.48139	1266.1	127556
404	163216	65939264	20.0998	7.3925	2.60638	2.47525	1269.2	128190
405	164025	66430125	20.1246	7.3986	2.60746	2.46914	1272.3	128825
406	164836	66923416	20.1494	7.4047	2.60853	2.46305	1275.5	129462
407	165649	67419143	20.1742	7.4108	2.60959	2.45700	1278.6	130100
408	166464	67917312	20.1990	7.4169	2.61066	2.45098	1281.8	130741
409	167281	68417929	20.2237	7.4229	2.61172	2.44499	1284.9	131382
410	168100	68921000	20.2485	7.4290	2,61278	2.43902	1288.1	132025
411	168921	69426531	20.2731	7.4350	2.61384	2.43309	1291.2	132670
412	169744	69934528	20.2978	7.4410	2.61490	2.42718	1294.3	133317
413	170569	70444997	20.3224	7.4470	2.61595	2.42131	1297.5	133965
414	171396	70957944	20.3470	7.4530	2.61700	2.41546	1300.6	134614
415	172225	71473375	20.3715	7.4590	2.61805	2.40964	1303.8	135265
416	173056	71991296	20.3961	7.4650	2.61909	2.40385	1306.9	135918
417	173889	72511713	20.4206	7.4710	2.62014	2.39808	1310.0	136572
418	174724	73034632	20.4450	7.4770	2.62118	2.39234	1313.2	137228
419	175561	73560059	20.4695	7.4829	2.62221	2.38663	1316.3	137885
420	176400	74088000	20.4939	7.4889	2.62325	2.38095	1319.5	138544
421	177241	74618461	20.5183	7.4948	2.62428	2.37530	1322.6	139205
422	178084	75151448	20.5426	7.5007	2.62531	2.36967	1325.8	139867
423	178929	75686967	20.5670	7.5067	2.62634	2.36407	1328.9	140531
424	179776	76225024	20.5913	7.5126	2.62737	2.35849	1332.0	141196
425	180625	76765625	20.6155	7.5185	2.62839	2.35294	1335.2	141863
$\frac{426}{427}$	181476 182329	77308776 77854483	20.6398	7.5244	2.62941	2.34742	1338.3 1341.5	142531
428	183184	78402752	20.6640	7.5302	2.63043	2.34192		$143201 \\ 143872$
42 9	184041	78953589	20.6882 20.7123	7.5361 7.5420	$2.63144 \\ 2.63246$	2.33645 2.33100	1344.6 1347.7	144545
430	184900	79507000	20.7364	7.5478	2.63347	2.32558	1350.9	145220
431	185761	80062991	20.7605	7.5537	2.63448	2.32019	1354.0	145896
432	186624	80621568	20.7846	7.5595	2.63548	2.31481	1357.2	146574
433	187489	81182737	20.8087	7.5654	2.63649	2.30947	1360.3	147254
434	188356	81746504	20.8327	7.5712	2.63749	2.30415	1363.5	147934
435	189225	82312875	20.8567	7.5770	2.63849	2.29885	1366.6	148617
436	190096	82881856	20.8806	7.5828	2.63949	2.29358	1369.7	149301
437	190969	83453453	20.9045	7.5886	2.64048	2.28833	1372.9	149987
4 38	191844	84027672	20.9284	7.5944	2.64147	2.28311	1376.0	150674
439	192721	84604519	20.9523	7.6001	2.64246	2.27790	1379.2	151363
440	193600	85184000	20.9762	7.6059	2.64345	2.27273	1382.3	152053
441	194481	85766121	21.0000	7.6117	2.64444	2.26757	1385.4	152745
442	195364	86350888	21.0238	7.6174	2.64542	2.26244	1388.6	153439
443	196249	86938307	21.0476	7.6232	2.64640	2.25734	1391.7	154134
444	197136	87528384	21.0713	7.6289	2.64738	2.25225	1394.9	154830
445	198025	88121125	21.0950	7.6346	2,64836	2.24719	1398.0	155528
446	198916	88716536	21.1187	7.6403	2.64933	2.24215	1401.2	156228
447	199809	89314623	21.1424	7.6460	2.65031	2.23714	1404.3	156930
448	200704	89915392	21.1660	7.6517	2.65128	2.23214	1407.4	157633
449	201601	90518849	21,1896	7.6574	2.65225	2.22717	1410.6	158337

Functions of Numbers, 450 to 499

No.	Square	Cube	Square	Cubic	Logarithm	1000	No.=I	Diameter			
		Cube	Root	Root	Logaritam	Reciprocal	Circum.	Area			
450	202500	91125000	21.2132	7.6631	2.65321	2.22222	1413.7	159043			
451	203401	91733851	21.2368	7.6688	2.65418	2.21729	1416.9	159751			
452	204304	92345408	21.2603	7.6744	2.65514	2.21239	1420.0	160460			
453	205209	92959677	21.2838	7.6801	2.65610	2.20751	1423.1	161171			
454	206116	93576664	21.3073	7.6857	2.65706	2.20264	1426.3	161883			
455	207025	94196375	21.3307	7.6914	2.65801	2.19780	1429.4	162597			
456	207936	94818816	21.3542	7.6970	2.65896	2.19298	1432.6	163313			
457	208849	95443993	21.3776	7.7026	2.65992	2.18818	1435.7	164030			
458	209764	96071912	21.4009	7.7082	2.66087	2.18341	1438.8	164748			
459	210681	96702579	21.4243	7.7138	2.66181	2.17865	1442.0	165468			
460	211600	97336000	21.4476	7.7194	2.66276	2.17391	1445.1	166190			
461	212521	97972181	21.4709	7.7250	2.66370	2.16920	1448.3	166914			
462	213444	98611128	21.4942	7.7306	2.66464	2.16450	1451.4	167639			
463	214369	99252847	21.5174	7.7362	2.66558	2.15983	1454.6	168365			
464	215296	99897344	21.5407	7.7418	2.66652	2.15517	1457.7	169093			
465	216225	100544625	21.5639	7.7473	2.66745	2.15054	1460.8	169823			
466	217156	101194696	21.5870	7.7529	2.66839	2.14592	1464.0	170554			
467	218089	101847563	21.6102	7.7584	2.66932	2.14133	1467.1	171287			
468	219024	102503232	21.6333	7.7639	2.67025	2.13675	1470.3	172021			
469	219961	103161709	21.6564	7.7695	2.67117	2.13220	1473.4	172757			
470	220900	103823000	21.6795	7.7750	2.67210	2.12766	1476.5	173494			
471	221841	104487111	21.7025	7.7805	2.67302	2.12314	1479.7	174234			
472	222784	105154048	21.7256	7.7860	2.67394	2.11864	1482.8	174974			
473	223729	105823817	21.7486	7.7915	2.67486	2.11416	1486.0	175716			
474	224676	106496424	21.7715	7.7970	2.67578	2.10970	1489.1	176460			
475	225625	107171875	21.7945	7.8025	2.67669	2.10526	1492.3	177205			
476	226576	107850176	21.8174	7.8079	2.67761	2.10084	1495.4	177952			
477	227529	108531333	21.8403	7.8134	2.67852	2.09644	1498.5	178701			
478	228484	109215352	21.8632	7.8188	2.67943	2.09205	1501.7	179451			
479	229441	109902239	21.8861	7.8243	2.68034	2.08768	1504.8	180203			
480	230400	110592000	21.9089	7.8297	2.68124	2.08333	1508.0	180956			
481	231361	111284641	21.9317	7.8352	2.68215	2.07900	1511.1	181711			
482	232324	111980168	21.9545	7.8406	2.68305	2.07469	1514.2	182467			
483	233289	112678587	21.9773	7.8460	2.68395	2.07039	1517.4	183225			
484	234256	113379904	22.0000	7.8514	2.68485	2.06612	1520.5	183984			
485	235225	114084125	22.0227	7.8568	2.68574	2.06186	1523.7	184745			
486	236196	114791256	22.0454	7.8622	2.68664	2.05761	1526.8 1530.0	185508 186272			
487	237169	115501303	22.0681	7.8676	2.68753	2.05339	1533.1	187038			
488	238144	116214272	22.0907	7.8730	2.68842	2.04918		187805			
489	239121	116930169	22.1133	7.8784	2.68931	2.04499	1536.2	101000			
490	240100	117649000	22.1359 22.1585	7.8837 7.8891	2.69020 2.69108	2.04082 2.03666	1539.4 1542.5	188574 189345			
491	241081	118370771 119095488	22.1585	7.8891	2.69108	2.03000	1542.5	190117			
492	242064	119823157	22.1811	7.8944	2.69197	2.03232	1548.8	190890			
493	243049	120553784	22.2030	7.9051	2.69373	2.02429	1551.9	191665			
494	244036	121287375	22.2486	7.9105	2.69461	2.02429	1555.1	192442			
495	245025 246016	122023936	22.2711	7.9158	2.69548	2.02020	1558.2	193221			
496 497	247009	122763473	22.2935	7.9211	2.69636	2.01207	1561.4	194000			
497	248004	123505992	22.3159	7.9264	2.69723	2.00803	1564.5	194782			
499	249001				2.69810						
400	_ TOUGE _					_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					

Functions of Numbers 500 to 549

			Square	Cubic	<u> </u>	1000	No.=D	iameter
No.	Square	Cube	Root	Root	Logarithm	Reciprocal	Circum.	Area
500	250000	125000000	22.3607	7.9370	2.69897	2.00000	1570.8	196350
501	251001	125751501	22.3830	7.9423	2.69984	1.99601	1573.9	197136
502	252004	126506008	22.4054	7.9476	2.70070	1.99203	1577.1	197923
503	253009	127263527	22.4277	7.9528	2.70157	1.98807	1580.2	198713
504	254016	128024064	22.4499	7.9581	2.70243	1.98413	1583.4	199504
505	255025	128787625	22.4722	7.9634	2.70329	1.98020	1586.5	200296
506	256036	129554216	22.4944	7.9686	2.70415	1.97628	1589.6	201090
507	257049	130323843	22.5167	7.9739	2.70501	1.97239	1592.8	201886
508	258064	131096512	22.5389	7.9791	2.70586	1.96850	1595.9	202683
509	259081	131872229	22.5610	7.9843	2.70672	1.96464	1599.1	203482
510	260100	132651000	22.5832	7.9896	2.70757	1.96078	1602.2	204282
511	261121	133432831	22.6053	7.9948	2.70842	1.95695	1605.4	205084
512	262144	134217728	22.6274	8.0000	2.70927	1.95312	1608.5	205887
513	263169	135005697	22.6495	8.0052	2.71012	1.94932	1611.6	206692
514	264196	135796744	22.6716	8.0104	2.71096	1.94553	1614.8	207499
515	265225	136590875	22.6936	8.0156	2.71181	1.94175	1617.9	208307
516	266256	137388096	22.7156	8.0208	2.71265	1.93798	1621.1	209117
517	267289	138188413	22.7376	8.0260	2.71349	1.93424	1624.2	209928
518 510	268324	138991832	22.7596	8.0311	2.71433	1.93050	1627.3	210741
519	269361	139798359	22.7 816	8.0363	2.71517	1.92678	1630.5	211556
520	270400	140608000	22.8035	8.0415	2.71600	1.92308	1633.6	212372
521	271441	141420761	22.8254	8.0466	2.71684	1.91939	1636.8	213189
522	272484	142236648	22.8473	8.0517	2.71767	1.91571	1639.9	214008
523	273529	143055667	22.8692	8.0569	2.71850	1.91205	1643.1	214829
524	274576	143877824	22.8910	8.0620	2.71933	1.90840	1646.2	215651
525	275625	144703125	22.9129	8.0671	2.72016	1.90476	1649.3	216475
526	276676	145531576	22.9347	8.0723	2.72099	1.90114	1652.5	217301
527	277729 278784	146363183	22.9565 22.9783	8.0774 8.0825	2.72181 2.72263	1.89753	1655.6	218128
528 529	278784	147197952 148035889	23.0000	8.0825	2.72263	1.89394	1658.8 1661.9	218956 219787
048	2.0011	110000000	25.0000	0.0010	2040	1.03000	T001.8	213131
530	280900	148877000	23.0217	8.0927	2.72428	1.88679	1665.0	220618
531	281961	149721291	23.0434	8.0978	2.72509	1.88324	1668.2	221452
532	283024	150568768	23.0651	8.1028	2.72591	1.87970	1671.3	222287
533	284089	151419437	23.0868	8.1079	2.72673	1.87617	1674.5	223123
534	285156	152273304	23.1084	8.1130	2.72754	1.87266	1677.6	223961
535 536	286225 287296	153130375	23.1301 23.1517	8.1180 8.1231	2.72835 2.72916	1.86916 1.86567	1680.8	224801
537	287296	153990656 154854153	23.1517	8.1231	2.72916	1.86220	1683.9 1687.0	225642 226484
538	289444	155720872	23.1733	8.1332	2.72997	1.85220	1690.2	220484
539	290521	156590819	23.2164	8.1382	2.73159	1.85529	1693.3	228175
333		100000018		0.1002		1.50023	1000.0	
540	291600	157464000	23.2379	8.1433	2.73239	1.85185	1696.5	229022
541	292681	158340421	23.2594	8.1483	2.73320	1.84843	1699.6	229871
542	293764	159220088	23.2809	8.1533	2.73400	1.84502	1702.7	230722
543	294849	160103007	23.3024	8.1583	2.73480	1.84162	1705.9	231574
544	295936	160989184	23.3238	8.1633	2.73560	1.83824	1709.0	232428
545	297025	161878625	23.3452	8.1683	2.73640	1.83486	1712.2	233283
546 547	298116	162771336	23.3666	8.1733	2.73719	1.83150	1715.3	234140
547 548	299209 300304	163667323 164566592	23.3880 23.4094	8.1783	2.73799 2.73878	1.82815	1718.5	234998
548 549		164566592		8.1833		1.82482	1721.6 1724.7	235858 236720
0.40	. 551401	. 200103143	. 20.2001	. 0.1002	- 2110801	1.02149	1144.1	200120

Functions of Numbers, 550 to 599

M-	Same	0.1	Square	Cubic	Loganista	1000	No.—D	iameter
No.	Square	Cube	Root	Root	Logarithm	Reciprocal	Circum.	Area
550	302500	166375000	23.4521	8.1932	2.74036	1 01010	1707.0	007500
551	302500					1.81818	1727.9	237583
551 552		167284151	23.4734	8.1982	2.74115	1.81488	1731.0	238448
553	304704	168196608 169112377	23.4947	8.2031	2.74194	1.81159	1734.2	239314
			23.5160	8.2081	2.74273	1.80832	1737.3	240182
554	306916	170031464	23.5372	8.2130	2.74351	1.80505	1740.4	241051
555	308025	170953875	23.5584	8.2180	2.74429	1.80180	1743.6	241922
556	309136	171879616	23.5797	8.2229	2.74507	1.79856	1746.7	242795
557	310249	172808693	23.6008	8.2278	2.74586	1.79533	1749.9	243669
558 550	311364	173741112	23.6220	8.2327	2.74663	1.79211	1753.0	244545
559	312481	174676879	23.6432	8.2377	2.74741	1.78891	1756.2	245422
560	313600	175616000	23.6643	8.2426	2.74819	1.78571	1759.3	246301
561	314721	176558481	23.6854	8.2475	2.74896	1.78253	1762.4	247181
562	315844	177504328	23.7065	8.2524	2.74974	1.77936	1765.6	248063
563	316969	178453547	23.7276	8.2573	2.75051	1.77620	1768.7	248947
564		179406144	23.7487	8.2621	2.75128	1.77305	1771.9	249832
565	319225	180362125	23.7697	8.2670	2.75205	1.76991	1775.0	250719
566	320356	181321496	23.7908	8.2719	2.75282	1.76678	1778.1	251607
567	321489	182284263	23.8118	8.2768	2.75358	1.76367	1781.3	252497
568	322624	183250432	23.8328	8.2816	2.75435	1.76056	1784.4	253388
569		184220009	23.8537	8.2865	2.75511	1.75747	1787.6	254281
	001000	105100000	00.05.5	0.5011	9.77705	1 77 100	1700 7	055150
570		185193000	23.8747	8.2913	2.75587	1.75439	1790.7	255176
571	326041	186169411	23.8956	8.2962	2.75664	1.75131	1793.8	256072
572		187149248	23.9165	8.3010	2.75740	1.74825	1797.0	256970
573		188132517	23.9374	8.3059	2.75815	1.74520	1800.1	257869
574		189119224	23.9583	8.3107	2.75891	1.74216	1803.3	258770
575		190109375	23.9792	8.3155	2.75967	1.73913	1806.4	259672
576		191102976	24.0000	8.3203	2.76042	1.73611	1809.6	260576
577		192100033	24.0208	8.3251	2.76118	1.73310	1812.7	261482
578		193100552	24.0416	8.3300	2.76193	1.73010	1815.8	262389
579	335241	194104539	24.0624	8.3348	2.76268	1.72712	1819.0	263298
580	336400	195112000	24.0832	8.3396	2.76343	1.72414	1822.1	264208
581		196122941	24.1039	8.3443	2.76418	1.72117	1825.3	265120
582		197137368	24.1247	8.3491	2.76492	1.71821	1828.4	,266033
583		198155287	24.1454	8.3539	2.76567	1.71527	1831.6	266948
584		199176704	24.1661	8.3587	2.76641	1.71233	1834.7	267865
585		200201625	24.1868	8.3634	2.76716	1.70940	1837.8	268783
586		201230056	24.2074	8.3682	2.76790	1.70648	1841.0	269703
587		202262003	24.2281	8.3730	2.76864	1.70358	1844.1	270624
588		203297472	24.2487	8.3777	2.76938	1.70068	1847.3	271547
589		204336469	24.2693	8.3825	2.77012	1.69779	1850.4	272471
				0.00=-	9 77007	1 60400	1853.5	273397
590		205379000	24.2899	8.3872	2.77085	1.69492	1853.5	273397
591		206425071	24.3105		2.77159	1.69205		
592	350464	207474688	24.3311	8.3967	2.77232	1.68919	1859.8 1863.0	275254 276184
593		208527857	24.3516		2.77305	1.68634		
594		209584584	24.3721	8.4061	2.77379	1.68350	1866.1	277117 278051
595	354025	210644875	24.3926		2.77452	1.68067	1869.2	278051
596	355216	211708736	24.4131	8.4155	2.77525	1.67785	1872.4	278986
597	356409	212776173	24.4336	8.4202	2.77597	1.67504	1875.5	279923
598	357604	213847192	24.4540		2.77670		1878.7	
599	358801	214921799	24.4745	8.4296	2.77743	1.66945	, 1001.8	281802
1								

Functions of Numbers 600 to 649

•								
	_		Square	Cubic		1000	No.=E	liameter
No.	Square	Cube	Root	Root	Logarithm	Reciprocal	Circum.	Area
200	000000	01000000	04 4040	0.40.40	0 ==0.4	1 00007	1885.0	282743
600 601	360000 361201	216000000	24.4949	8.4343	2.77815	1.66667 1.66389	1888.1	283687
602	362404	217081801 218167208	24.5153	8.4390	2.77887	1.66113	1891.2	284631
603	363609	219256227	24.5357 24.5561	8.4437 8.4484	2.77960 2.78032	1.65837	1894.4	285578
604	364816	220348864	24.5764	8.4530	2.78104	1.65563	1897.5	286526
605	366025	221445125	24.5764	8.4577	2.78104	1.65289	1900.7	287475
606	367236	222545016	24.6171	8.4623	2.78247	1.65017	1903.8	288426
607	368449	223648543	24.6374	8.4670	2.78319	1.64745	1906.9	289379
608	369664	224755712	24.6577	8.4716	2.78390	1.64474	1910.1	290333
609	370881	225866529	24.6779	8.4763	2.78462	1.64204	1913.2	291289
000	010001	220000023	21.0110	0.1100	2.10402	1.01201	1010.2	201200
610	372100	226981000	24.6982	8.4809	2.78533	1.63934	1916.4	292247
611	373321	228099131	24.7184	8.4856	2.78604	1.63666	1919.5	293206
612	374544	229220928	24.7386	8,4902	2.78675	1.63399	1922.7	294166
613	375769	230346397	24.7588	8.4948	2.78746	1.63132	1925.8	295128
614	376996	231475544	24.7790	8.4994	2.78817	1.62866	1928.9	296092
615	378225	232608375	24.7992	8.5040	2.78888	1.62602	1932.1	297057
616	379456	233744896	24.8193	8.5086	2.78958	1.62338	1935.2	298024
617	380689	234885113	24.8395	8.5132	2.79029	1.62075	1938.4	298992
618	381924	236029032	24.8596	8.5178	2.79099	1.61812	1941.5	299962
619	383161	237176659	24,8797	8.5224	2.79169	1.61551	1944.6	300934
		i	1					
620	384400	238328000	24.8998	8.5270	2.79239	1.61290	1947.8	301907
621	385641	239483061	24.9199	8.5316	2.79309	1.61031	1950.9	302882
622	386884	240641848	24.9399	8.5362	2.79379	1.60772	1954.1	303858
623	388129	241804367	24.9600	8.5408	2.79449	1.60514	1957.2	304836
624	389376	242970624	24.9800	8.5453	2.79518	1.60256	1960.4	305815
625	390625	244140625	25.0000	8.5499	2.79588	1.60000	1963.5	306796
626	391876	245314376	25.0200	8.5544	2.79657	1.59744	1966.6	307779
627	393129	246491883	25.0400	8.5590	2.79727	1.59490	1969.8	308763
628	394384	247673152	25.0599	8.5635	2.79796	1.59236	1972.9	309748
629	395641	248858189	25.0799	8.5681	2.79865	1.58983	1976.1	310736
630	396900	250047000	25.0998	8.5726	2.79934	1.58730	1979.2	311725
631	398161	251239591	25.1197	8.5772	2.80003	1.58479	1982.3	312715
632	399424	252435968	25.1396	8.5817	2.80072	1.58228	1985.5	313707
633	400689	253636137	25.1595	8.5862	2.80140	1.57978	1988.6	314700
634	401956	254840104	25.1794	8.5907	2.80209	1.57729	1991.8	315696
635	403225	256047875	25.1992	8.5952	2.80277	1.57480	1994.9	316692
636	404496	257259456	25.2190	8.5997	2.80346	1.57233	1998.1	317690
637	405769	258474853	25.2389	8.6043	2.80414	1.56986	2001.2	318690
638	407044	259694072	25.2587	8.6088	2.80482	1.56740	2004.3	319692
639	408321	260917119	25.2784	8.6132	2.80550	1.56495	2007.5	320695
640	409600	262144000	25.2982	8.6177	2.80618	1 56950	2010.0	201800
641	410881	263374721	25.2982	8.6222	2.80686	1.56250	2010.6	321699
642	412164	264609288	25.3377	8.6267	2.80754	1.56006 1.55763	2013.8 2016.9	322705 323713
643	413449	265847707	25.3574	8.6312	2.80734	1.55521	2010.9	323713
644	414736	267089984	25.3772	8.6357	2.80889	1.55280	2020.0	325733
645	416025	268336125	25.3969	8.6401	2.80956	1.55039	2025.2	326745
646	417316	269586136	25.4165	8.6446	2.81023	1.54799	2029.5	327759
647	418609	270840023	25.4362	8.6490	2.81090	1.54560	2032.6	328775
648	419904	272097792	25.4558	8.6535	2.81158	1.54321	2035.8	329792
649		273359449				1.54083		330810
								000010

Functions of Numbers, 650 to 699

1						1000	No.=D	iameter
No.	Square	Cube	Square Root	Cubic Root	Logarithm	x	i	
			1,000	1000		Reciprocal	Circum.	Area
650	400700	074605000	07 4071	0.0004	0.01001	1 50040	20100	001001
650	422500	274625000	25.4951	8.6624	2.81291	1.53846	2042.0	331831
651	423801	275894451	25.5147	8.6668	2.81358	1.53610	2045.2	332853
652	425104	277167808	25.5343	8.6713	2.81425	1.53374	2048.3	333876
653	426409	278445077	25.5539	8.6757	2.81491	1.53139	2051.5	334901
654	427716	279726264	25.5734	8.6801	2.81558	1.52905	2054.6	335927
655	429025	281011375	25.5930	8.6845	2.81624	1.52672	2057.7	336955
656	430336	282300416	25.6125	8.6890	2.81690	1.52439	2060.9	337985
657	431649	283593393	25.6320	8.6934	2.81757	1.52207	2064.0	339016
658	432964	284890312	25.6515	8.6978	2.81823	1.51976	2067.2	340049
659	434281	286191179	25.6710	8.7022	2.81889	1.51745	2070.3	341084
660	435600	287496000	25.6905	8.7066	2.81954	1.51515	2073.5	342119
661	436921	288804781	25.7099	8.7110	2.82020	1.51286	2076.6	343157
662	438244	290117528	25.7294	8.7154	2.82086	1.51057	2079.7	344196
663	439569	291434247	25.7488	8.7198	2.82151	1.50830	2082.9	345237
664	440896	292754944	25.7682	8.7241	2.82217	1.50602	2086.0	346279
665	442225	294079625	25.7876	8.7285	2.82282	1.50376	2089.2	347323
666	443556	295408296	25.8070	8.7329	2.82347	1.50150	2092.3	348368
667	444889	296740963	25.8263	8.7373	2.82413	1.49925	2095.4	349415
668	446224	298077632	25.8457	8.7416	2.82478	1.49701	2098.6	350464
669	447561	299418309	25.8650	8.7460	2.82543	1.49477	2101.7	351514
670	448900	300763000	25.8844	8.7503	2.82607	1.49254	2104.9	352565
671	450241	302111711	25.9037	8.7547	2.82672	1.49031	2108.0	353618
672	451584	303464448	25.9230	8.7590	2.82737	1.48810	2111.2	354673
673	452929	304821217	25.9422	8.7634	2.82802	1.48588	2114.3	355730
674	454276	306182024	25.9615	8.7677	2.82866	1.48368	2117.4	356788
675	455625	307546875	25.9808	8.7721	2.82930	1.48148	2120.6	357847
676	456976	308915776	26.0000	8.7764	2.82995	1.47929	2123.7	358908
677	458329	310288733	26.0192	8.7807	2.83059	1.47710	2126.9	359971
678	459684	311665752	26.0384	8.7850	2.83123	1.47493	2130.0	361035
679	461041	313046839	26.0576	8.7893	2.83187	1.47275	2133.1	362101
680	462400	314432000	26.0768	8.7937	2.83251	1.47059	2136.3	363168
681	463761	315821241	26.0960		2.83315	1.46843	2139.4	364237
682	465124	317214568	26.1151	8.8023	2.83378	1.46628		365308
683	466489	318611987	26.1343	8.8066	2:83442	1.46413	2145.7	366380
684	467856	320013504	26.1534	8.8109	2.83506	1.46199		367453
685	469225	321419125	26.1725	8.8152	2.83569	1.45985		368528
686	470596	322828856	26.1916	8.8194	2.83632	1.45773		369605
687	471969	324242703	26.2107	8.8237	2.83696	1.45560	2158.3	370684
688	473344	325660672	26.2298	8.8280	2.83759	1.45349		371764
689	474721	327082769	26.2488	8.8323	2.83822	1.45138	2164.6	372845
600	476100	328509000	26.2679	8.8366	2.83885	1.44928	2167.7	373928
690 691	477481	329939371	26.2869		2.83948			375013
	478864	331373888	26.3059		2.84011			376099
692 693	480249	332812557	26.3249					377187
	480249		26.3439					378276
694	481030		26.3629					379367
695	484416		26.3818					
696			26.4008					
697	485809 487204		26.4197	8.8706				
698 699		341532099		8.8748			2196.0	383746
999	, 400001	, 51,002000	. =0.1000	. 0.01 20				

Functions of Numbers, 700 to 749

-										
			Square	Cubic		1000	No.=E	iameter		
No.	Square	Cube	Root	Root	Logarithm	Reciprocal	Circum.	Area		
700	490000	343000000	26.4575	8.8790	2.84510	1.42857	2199.1	384845		
701	491401	344472101	26.4764	8.8833	2.84572	1.42653	2202.3	385945		
702	492804	345948408	26,4953	8.8875	2.84634	1.42450	2205.4	387047		
703	494209	347428927	26.5141	8.8917	2.84696	1.42248	2208.5	388151		
704	495616	348913664	26.5330	8.8959	2.84757	1.42045	2211.7	389256		
705	497025	350402625	26.5518	8.9001	2.84819	1.41844	2214.8	390363		
706	498436	351895816	26.5707	8.9043	2.84880	1.41643	2218.0	391471		
707	499849	353393243	26.5895	8.9085	2.84942	1.41443	2221.1	392580		
708	501264	354894912	26.6083	8.9127	2.85003	1.41243	2224.2	393692		
709	502681	356400829	26.6271	8.9169	2.85065	1.41044	2227.4	394805		
710	504100	357911000	26,6458	8.9211	2.85126	1.40845	2230.5	395919		
711	505521	359425431	26.6646	8.9253	2.85187	1.40647	2233.7	397035		
712	506944	360944128	26.6833	8.9295	2.85248	1.40449	2236.8	398153		
713	508369	362467097	26.7021	8.9337	2.85309	1.40252	2240.0	399272		
714	509796	363994344	26.7208	8.9378	2.85370	1.40056	2243.1	400393		
715	511225	365525875	26.7395	8.9420	2.85431	1.39860	2246.2	401515		
716	512656	367061696	26.7582	8.9462	2.85491	1.39665	2249.4	402639		
717	514089	368601813	26.7769	8.9503	2.85552	1.39470	2252.5	403765		
718	515524	370146232	26.7955	8.9545	2.85612	1.39276	2255.7	404892		
719	516961	371694959	26.8142	8.9587	2.85673	1.39082	2258.8	406020		
720	518400	373248000	26.8328	8.9628	2.85733	1.38889	2261.9	407150		
721	519841	374805361	26.8514	8.9670	2.85794	1.38696	2265.1	408282		
722	521284	376367048	26.8701	8.9711	2.85854	1.38504	2268.2	409415		
723	522729	377933067	26.8887	8.9752	2.85914	1.38313	2271.4	410550		
724	524176	379503424	26.9072	8.9794	2.85974	1.38122	2274.5	411687		
725	525625	381078125	26.9258	8.9835	2.86034	1.37931	2277.7	412825		
726	527076	382657176	26.9444	8.9876	2.86094	1.37741	2280.8	413965		
727	528529	384240583	26.9629	8.9918	2.86153	1.37552	2283.9	415106		
728	529984	385828352	26.9815	8.9959	2.86213	1.37363	2287.1	416248		
729	531441	387420489	27.0000	9.0000	2.86273	1.37174	2290.2	417393		
730	532900	389017000	27.0185	9.0041	2.86332	1.36986	2293.4	418539		
731	534361	390617891	27.0370	9.0082	-2.86392	1.36799	2296.5	419686		
732	535824	392223168	27.0555	9.0123	2.86451	1.36612	2299.6	420835		
733	537289	393832837	27.0740	9.0164	2.86510	1.36426	2302.8	421986		
734	538756	395446904	27.0924	9.0205	2.86570	1.36240	2305.9	423138		
735	540225	397065375	27.1109	9.0246	2.86629	1.36054	2309.1	424293		
736	541696	398688256	27.1293	9.0287	2.86688	1.35870	2312.2	425447		
737	543169	400315553	27.1477	9.0328	2.86747	1.35685	2315.4	426604		
738	544644	401947272	27.1662	9.0369	2.86806	1.35501	2318.5	427762		
739	546121	403583419	27.1846	9.0410	2.86864	1.35318	2321.6	428922		
740	F 477000	405004000	07.0000	0.0450	0.00000	. 0510-	0004.0	400004		
740	547600	405224000	27.2029	9.0450	2.86923	1.35135	2324.8	430084		
741	549081	406869021	27.2213	9.0491	2.86982	1.34953	2327.9	431247		
742 743	550564	408518488	27.2397	9.0532	2.87040	1.34771	2331.1	432412		
744	552049 553536	410172407	27.2580	9.0572	2.87099	1.34590	2334.2	433578		
745	555025	411830784	27.2764 27.2947	9.0613 9.0654	2.87157 2.87216	1.34409	2337.3 2340.5	434746		
746	556516	415160936	27.2947		2.87216	1.34228	2340.5	435916 437087		
747	558009	416832723	27.3130	9.0694 0.0735	2.87332	1.34048 1.33869	2343.0	438259		
748	559504	418508992	27.3313	9.0775	2.87332	1.33690	2346.8	438259		
749		420189749						440609		
•••	. 501001	. 120100.40	. 21.0010	. 2.0010	· 2.01 770	. 1.00011	. 2000.1	440000		

Functions of Numbers, 750 to 799

`			Square	Cubic	T	1000	No.=D	iameter	
No.	Square	Cube _.	Root	Root	Logarithm	Reciprocal	Circum.	Area	
750	562500	421875000	27.3861	9.0856	2.87506	1.33333	2356.2	441786	
751	564001	423564751	27.4044	9.0896	2.87564	1.33156	2359.3	442965	
752	565504	425259008	27.4226	9.0937	2.87622	1.32979	2362.5	444146	
7 53	567009	426957777	27.4408	9.0977	2.87680	1.32802	2365.6	445328	
754	568516	428661064	27.4591	9.1017	2.87737	1.32626	2368.8	446511	
755	570025	430368875	27.4773	9.1057	2.87795	1.32450	2371.9	447697	
756	571536	432081216	27.4955	9.1098	2.87852	1.32275	2375.0	448883	
757	573049	433798093	27.5136	9.1138	2.87910	1.32100	2378.2	450072	
758	574564	435519512	27.5318	9.1178	2.87967	1.31926	2381.3	451262	
759	576081	437245479	27.5500	9.1218	2.88024	1.31752	2384.5	452453	
760	577600	438976000	27.5681	9.1258	2.88081	1.31579	2387.6	453646	
761	579121	440711081	27.5862	9.1298	2.88138	1.31406	2390.8	454841	
762	580644	442450728	27.6043	9.1338	2.88196	1.31234	2393.9	456037	
763	582169	444194947	27.6225	9.1378	2.88252	1.31062	2397.0	457234	
764	583696	445943744	27.6405	9.1418	2.88309	1.30890	2400.2	458434	
765	585225	447697125	27.6586	9.1458	2.88366	1.30719	2403.3	459635	
766	586756	449455096	27.6767	9.1498	2.88423	1.30548	2406.5	460837	
767	588289	451217663	27.6948	9.1537	2.88480	1.30378	2409.6	462041	
768	589824	452984832	27.7128	9.1577	2.88536	1.30208	2412.7	463247	
769	591361	454756609	27.7308	9.1617	2.88593	1.30039	2415.9	464454	
770	592900	456533000	27.7489	9.1657	2.88649	1.29870	2419.0	465663	
771	594441	458314011	27.7669	9.1696	2.88705	1.29702	2422.2	466873	
772	595984	460099648	27.7849	9.1736	2.88762	1.29534	2425.3	468085	
773	597529	461889917	27.8029	9.1775	2.88818	1.29366	2428.5	469298	
774	599076	463684824	27.8209	9.1815	2.88874	1.29199	2431.6	470513	
775	600625	465484375	27.8388	9.1855	2.88930	1.29032	2434.7	471730	
776	602176	467288576	27.8568	9.1894	2.88986	1.28866	2437.9	472948	
777	603729	469097433	27.8747	9.1933	2.89042	1.28700	2441.0	474168	
778	605284	470910952	27.8927	9.1973	2.89098	1.28535	2444.2	475389	
779	606841	472729139	27.9106	9.2012	2.89154	1.28370	2447.3	476612	
			1			-		477836	
780	608400	474552000	27.9285	9.2052	2.89209	1.28205	2450.4 2453.6	479062	
781	609961	476379541	27.9464	9.2091	2.89265	1.28041			
782	611524	478211768	27.9643	9.2130	2.89321	1.27877	2456.7	480290	
783	613089	480048687	27.9821	9.2170	2.89376	1.27714	2459.9	481519	
784	614656	481890304			2.89432	1.27551	2463.0	482750 483982	
785	616225	483736625	28.0179	9.2248	2.89487	1.27389	2466.2		
786	617796	485587656	28.0357	9.2287	2.89542	1.27226	2469.3	485216	
787	619369	487443403	28.0535	9.2326	2.89597	1.27065	2472.4	486451	
788	620944	489303872	28.0713	9.2365		1.26904	2475.6	487688	
789	622521	491169069	28.0891	9.2404	2.89708	1.26743	2478.7	488927	
790	624100	493039000	28.1069	9.2443			2481.9	490167	
791	625681	494913671	28.1247	9.2482			2485.0	491409	
792	627264	496793088	28.1425	9.2521	2.89873		2488.1	492652	
793	628849	498677257	28.1603	9.2560			2491.3		
794	630436	500566184	28.1780			1.25945	2494.4	495143	
795	632025	502459875	28.1957	9.2638		1.25786	2497.6	496391	
796	633616	504358336	1		2.90091	1.25628	2500.7	497641	
	635209	506261573	28.2312	9.2716		1.25471	2503.8	498892	
797	636804	508169592	28.2489			1.25313	2507.0	500145	
798 799						1.25156	2510.1	501399	

Functions of Numbers, 800 to 849

	_		Square	Cubic		1000	No.=I	Diameter	
No.	Square	Cube	Root	Root	Logarithm	Reciprocal	Circum.	Area	
	0.10000	#1.0000000	20.0040	0.0000	0.0000		~~~	F000FF	
800	640000	512000000	28.2843	9.2832	2.90309	1.25000	2513.3	502655	
801	641601	513922401	28.3019	9.2870	2.90363	1.24844	2516.4	503912	
802 803	643204 644809	515849608 517781627	28.3196 28.3373	9.2909 9.2948	2.90417 2.90472	1.24688 1.24533	2519.6 2522.7	505171 506432	
804	646416	519718464	28.3549	9.2986	2.90526	1.24333	2525.8	507694	
805	648025	521660125	28.3725	9.3025	2.90580	1.24224	2529.0	508958	
806	649636	523606616	28.3901	9.3063	2.90634	1.24069	2532.1	510223	
807	651249	525557943	28.4077	9.3102	2.90687	1.23916	2535.3	511490	
808	652864	527514112	28.4253	9.3140	2.90741	1.23762	2538.4	512758	
809	654481	529475129	28.4429	9.3179	2.90795	1.23609	2541.5	514028	
810	656100	531441000	28.4605	9.3217	2.90849	1.23457	2544.7	515300	
811	657721	533411731	28.4781	9.3255	2.90902	1.23305	2547.8	516573	
812	659344	535387328	28.4956	9.3294	2.90956	1.23153	2551.0	517848	
813	660969	537367797	28.5132	9.3332	2.91009	1.23001	2554.1	519124	
814	662596	539353144	28.5307	9.3370	2.91062	1.22850	2557.3	520402	
815	664225	541343375	28.5482	9.3408	2.91116	1.22699	2560.4	521681	
816	665856	543338496	28.5657	9.3447	2.91169	1.22549	2563.5	522962	
817	667489	545338513	28.5832	9.3485	2.91222	1.22399	2566.7	524245	
818	669124	547343432	28.6007	9.3523	2.91275	1.22249	2569.8	525529	
819	670761	549353259	28.6182	9.3561	2.91328	1.22100	2573.0	526814	
820	672400	551368000	28.6356	9.3599	2.91381	1.21951	2576.1	528102	
821	674041	553387661	28.6531	9.3637	2.91434	1.21803	2579.2	529391	
822	675684	555412248	28.6705	9.3675	2.91487	1.21655	2582.4	530681	
823	677329	557441767	28.6880	9.3713	2.91540	1.21507	2585.5	531973	
824	678976	559476224	28.7054	9.3751	2.91593	1.21359	2588.7	533267	
825	680625	561515625	28.7228	9.3789	2.91645	1.21212	2591.8	534562	
826	682276	563559976	28.7402	9.3827	2.91698	1.21065	2595.0	535858	
827 828	683929 685584	565609283 567663552	28.7576 28.7750	9.3865	2.91751 2.91803	1.20919	2598.1	537157	
829	687241	569722789	28.7924	9.3940	2.91855	1.20773 1.20627	2601.2 2604.4	538456 539758	
830	688900	57178 7 000	28,8097	9.3978	2.91908	1.20482	2607.5	541061	
831	690561	573856191	28.8271	9.4016	2.91960	1.20337	2610.7	542365	
832	692224	575930368	28.8444	9.4053	2.92012	1.20192	2613.8	543671	
833	693889	578009537	28.8617	9.4091	2.92065	1.20048	2616.9	544979	
834	695556	580093704	28.8791	9.4129	2.92117	1.19904	2620.1	546288	
835	697225	582182875	28.8964	9.4166	2.92169	1.19760	2623.2	547599	
836	698896	584277056	28.9137	9.4204	2.92221	1.19617	2626.4	548912	
837	700569	586376253	28.9310	9.4241	2.92273	1.19474	2629.5	550226	
838	702244	588480472	28.9482	9.4279	2.92324	1.19332	2632.7	551541	
839	703921	590589719	28.9655	9.4316	2.92376	1.19190	2635.8	552858	
840	705600	592704000	28.9828	9.4354	2.92428	1.19048	2638.9	554177	
841	707281	594823321	29.0000	9.4391	2.92480	1.18906	2642.1	555497	
842	708964	596947688	29.0172	9.4429	2.92531	1.18765	2645.2	556819	
843	710649	599077107	29.0345	9.4466	2.92583	1.18624	2648.4	558142	
844	712336	601211584	29.0517	9.4503	2.92634	1.18483	2651.5	559467	
845	714025	603351125	29.0689	9.4541	2.92686	1.18343	2654.6	560794	
846	715716	605495736	29.0861	9.4578	2.92737	1.18203	2657.8	562122	
847	717409	607645423	29.1033	9.4615	2.92788	1.18064	2660.9	563452	
848 849	719104	609800192	29.1204	9.4652	2.92840	1.17925	2664.1	564783	
049	120801	611960049	29.13/6	9.4090	2.92891	1.17786	2667.2	56611 6	

Functions of Numbers, 850 to 899

No.	Square	Cubo	Square	"Cubic	T	1000	No.=	Diameter	
		Cube	Root	Root	Logarithm	Reciprocal	Circum.	Area	
850	722500	614125000	29.1548	9.4727	2.92942	1.17647	2670.4	567450	
851	724201	616295051	29.1719	9.4764	2.92993	1.17509	2673.5	568786	
852	725904	618470208	29.1890	9.4801	2.93044	1.17371	2676.6	570124	
853	727609	620650477	29.2062	9.4838	2.93095	1.17233	2679.8	571463	
854	729316	622835864	29.2233	9.4875	2.93146	1.17096	2682.9	572803	
855	731025	625026375	29.2404	9.4912	2.93197	1.16959	2686.1	574146	
856	732736	627222016	29.2575	9.4949	2.93247	1.16822	2689.2	575490	
857	734449	629422793	29.2746	9.4986	2.93298	1.16686	2692.3	576835	
858	736164	631628712	29.2916	9.5023	2.93349	1.16550	2695.5	578182	
859	737881	633839779	29.3087	9.5060	2.93399	1.16414	2698.6	579530	
√860	739600	636056000	29.3258	9.5097	2.93450	1.16279	2701.8	580880	
861	741321	638277381	29.3428	9.5134	2.93500	1.16144	2704.9	582232	
862	743044	640503928	29.3598	9.5171	2.93551	1.16009	2708.1	583585	
863	744769	642735647	29.3769	9.5207	2.93601	1.15875	2711.2	584940	
864	746496	644972544	29.3939	9.5244	2.93651	1.15741	2714.3	586297	
865	748225	647214625	29.4109	9.5281	2.93702	1.15607	2717.5	587655	
866	749956	649461896	29.4279	9.5317	2.93752	1.15473	2720.6	589014	
867	751689	651714363	29.4449	9.5354	2.93802	1.15340	2723.8	590375	
868	753424	653972032	29.4618	9.5391	2.93852	1.15207	2726.9	591738	
869	755161	656234909	29.4788	9.5427	2.93902	1.15075	2730.0	593102	
870	756900	658503000	29.4958	9.5464	2.93952	1.14943	2733.2	594468	
871	758641	660776311	29.5127	9.5501	2.94002	1.14811	2736.3	595835	
872	760384	663054848	29.5296	9.5537	2.94052	1.14679	2739.5	597204	
873	762129	665338617	29.5466	9.5574	2.94101	1.14548	2742.6	598575	
874	763876	667627624	29,5635	9.5610	2.94151	1.14416	2745.8	599947	
875	765625	669921875	29.5804	9.5647	2.94201	1.14286	2748.9	601320	
876	767376	672221376	29.5973	9.5683	2.94250	1.14155	2752.0	602696	
877	769129	674526133	29.6142	9.5719	2.94300	1.14025	2755.2	604073	
878	770884	676836152	29.6311	9.5756	2.94349	1.13895	2758.3	605451	
879	772641	679151439	29.6479	9.5792	2.94399	1.13766	2761.5	606831	
880	774400	681472000	29.6648	9.5828	2.94448	1.13636	2764.6	608212	
881	776161	683797841	29.6816	9.5865	2.94498	1.13507	2767.7	609595	
882	777924	686128968	29.6985	9.5901	2.94547	1.13379	2770.9	610980	
883	779689	688465387	29.7153	9.5937	2.94596	1.13250	2774.0	612366	
884	781456	690807104	29.7321	9.5973	2.94645	1.13122	2777.2	613754	
885	783225	693154125	29.7489	9.6010	2.94694	1.12994	2780.3	615143	
886	784996	695506456	29.7658	9.6046	2.94743	1.12867	2783.5	616534	
887	786769	697864103	29.7825	9.6082	2.94792	1.12740	2786.6	617927	
888	788544	700227072	29,7993	9.6118	2.94841	1.12613	2789.7	619321	
889	790321	702595369	29.8161	8.6154	2.94890	1.12486	2792.9	620717	
890	792100	704969000	29.8329	9.6190	2.94939	1.12360	2796.0	622114	
891	793881	707347971	29.8496	9.6226	2.94988	1.12233	2799.2	623513	
892	795664	709732288	29.8664	9.6262	2.95036	1.12108	2802.3	624913	
893	797449	712121957	29.8831	9.6298	2.95085	1.11982	2805.4 2808.6	626315	
894	799236	714516984	29.8998	9.6334	2.95134	1.11857		627718	
895	801025	716917375	29.9166	9.6370	2.95182	1.11732 1.11607	2811.7 2814.9	629124 630530	
896	802816	719323136	29.9333	9.6406	2.95231		2814.9	631938	
897	804609	721734273	29.9500	9.6442	2.95279	1.11483 1.11359	2813.0	633348	
898	806404	724150792	29.9666	9.6477	2.95328				
899	808201	726572699	29.9833	9.0013	2.93310	1.11235	2024.3	094100	

Functions of Numbers, 900 to 949

		J. supreguence of						
			Square	Cubic "		1000	No.=D	iameter
No.	Square	Cube	Root	Root	Logarithm	Reciprocal	Circum.	Area
000	910000	79000000	20.0000	0.6540	2.95424	1.11111	2827.4	636173
900	810000	729000000	30.0000	9.6549	2.95424	1.10988	2830.6	637587
901	811801	731432701	30.0167	9.6585			2833.7	639003
902	813604	733870808	30.0333	9.6620	2.95521	1.10865	2836.9	640421
903	815409	736314327	30.0500	9.6656	2.95569	1.10742	2840.0	641840
904	817216	738763264	30.0666	9.6692	2.95617	1.10619		643261
905	819025	741217625	30.0832	9.6727	2.95665	1.10497	2843.1	
906	820836	743677416	30.0998	9.6763	2.95713	1.10375	2846.3	644683
907	822649	746142643	30.1164	9.6799	2.95761	1.10254	2849.4	646107
908	824464	748613312	30.1330	9.6834	2.95809	1.10132	2852.6	647533
909	826281	751089429	30.1496	9.6870	2.95856	1.10011	2855.7	648960
910	828100	753571000	30,1662	9.6905	2.95904	1.09890	2858.8	650388
911	829921	756058031	30.1828	9.6941	2.95952	1.09769	2862.0	651818
912	831744	758550528	30.1993	9.6976	2.95999	1.09649	2865.1	653250
913	833569	761048497	30.2159	9.7012	2.96047	1.09529	2868.3	654684
914	835396	763551944	30.2324	9.7047	2.96095	1.09409	2871.4	656118
915	837225	766060875	30.2490	9.7082	2.96142	1.09290	2874.6	657555
916	839056	768575296	30.2655	9.7118	2.96190	1.09170	2877.7	658993
917	840889	771095213	30.2820	9.7153	2.96237	1.09051	2880.8	660433
918	842724	773620632	30.2985	9.7188	2.96284	1.08932	2884.0	661874
919	844561	776151559	30.3150	9.7224	2.96332	1.08814	2887.1	663317
000	0.40400	770000000	30.3315	9.7259	2.96379	1.08696	2890.3	664761
920	846400	778688000	30.3480	9.7259	2.96426	1.08578	2893.4	666207
921	848241	781229961					2896.5	667654
922	850084	783777448	30.3645	9.7329	2.96473 2.96520	1.08460 1.08342	2899.7	669103
923	851929	786330467	30.3809 30.3974	9.7364	2.96567	1.08225	2902.8	670554
- 924	853776	788889024	30.3974	9.7435	2.96614	1.08223	2906.0	672006
925	855625	791453125						673460
926	857476	794022776	30.4302	9.7470		1.07991	2909.1	
927	859329	796597983	30.4467	9.7505	2.96708	1.07875	2912.3	674915
928 929	861184 863041	799178752 801765089	30.4631 30.4795	9.7540	2.96755 2.96802	1.07759 1.07643	2915.4 2918.5	677831
		ŀ					i	
930	864900	804357000	30.4959	9.7610	2.96848		2921.7	679291
931	866761	806954491	30.5123	9.7645	2.96895		2924.8	680752
932	868624	809557568	30.5287	9.7680	2.96942			682216
933	870489	812166237	30.5450	9.7715			2931.1	683680
934	872356	814780504	30.5614	9.7750				685147
935	874225	817400375	30.5778	9.7785	2.97081	1.06952		686615
936	876096	820025856	30.5941	9.7819				688084
937	877969	822656953	30.6105	9.7854				689555
938	879844	825293672	30.6268	9.7889				691028
939	881721	827936019	30.6431	9.7924	2.97267	1.06496	2950.0	692502
940	883600	830584000	30.6594	9.7959	2.97313	1.06383	2953.1	693978
941	885481	833237621	30.6757	9.7993				695455
942	887364	835896888	30.6920	9.8028	2.97405		2959.4	696934
943	889249	838561807	30.7083	9.8063		1.06045	2962.5	698415
944	891136	841232384	30.7246	9.8097	2.97497	1.05932		699897
945	893025	843908625	30.7409	9.8132				701380
946	894916	846590536	30.7571	9.8167	2.97589		2971.9	702865
947	896809	849278123	30.7734	9.8201	2.97635	1.05597	2975.1	704352
948	898704	851971392	30.7896	9.8236			2978.2	705840
949		854670349			2.97727		2981.4	
520		30 -0 100 10		2.52.0		1.00017	. =-01.1	

Functions of Numbers, 950 to 999

	_							
	_		Square	Cubic	_	1000	No.—I	Diameter
No.	Square	Cube	Root	Root	Logarithm	X Reciprocal	Circum.	Area
950	902500	857375000	30.8221	9.8305	2.97772	1.05263	2984.5	708822
951	904401	860085351	30.8383	9.8339	2.97818	1.05152	2987.7	710315
952	906304	862801408	30.8545	9.8374	2.97864	1.05042	2990.8	711809
953	908209	865523177	30.8707	9.8408	2.97909	1.04932	2993.9	713306
954	910116	868250664	30.8869	9.8443	2.97955	1.04822	2997.1	714803
955	912025	870983875	30.9031	9.8477	2.98000	1.04712	3000.2	716303
956	913936	873722816	30.9192	9.8511	2.98046	1.04603	3003.4	717804
957	915849	876467493	30.9354	9.8546	2.98091	1.04493	3006.5	719306
958	917764	879217912	30.9516	9.8580	2.98137	1.04384	3009.6	720810
959	919681	881974079	30.9677	9.8614	2.98182	1.04275	3012.8	722316
960	921600	884736000	30.9839	9.8648	2.98227	1.04167	3015.9	723823
961	923521	887503681	31.0000	9.8683	2.98272	1.04058	3019.1	725332
962	925444	890277128	31.0161	9.8717	2.98318	1.03950	3022.2	726842
963	927369	893056347	31.0322	9.8751	2.98363	1.03842	3025.4	728354
964	929296	895841344	31.0483	9.8785	2.98408	1.03734	3028.5	729867
965	931225	898632125	31.0644	9.8819	2.98453	1.03627	3031.6	731382
966	933156	901428696	31.0805	9.8854	2.98498	1.03520	3034.8	732899
967	935089	904231063	31.0966	9.8888	2.98543	1.03413	3037.9	734417
968	937024	907039232	31.1127	9.8922	2.98588	1.03306	3041.1	735937
969	938961	909853209	31.1288	9.8956	2.98632	1.03199	3044.2	737458
970	940900	912673000	31.1448	9.8990	2.98677	1.03093	3047.3	738981
971	942841	915498611	31.1609	9.9024	2.98722	1.02987	3050.5	740506
972	944784	918330048	31.1769	9.9058	2.98767	1.02881	3053.6	742032
973	946729	921167317	31.1929	9.9092	2.98811	1.02775	3056.8	743559
974	948676	924010424	31.2090	9.9126			3059.9	745088
975	950625	926859375	31.2250	9.9160			3063.1	746619
976	952576		31.2410			1.02459	3066.2	748151
977	954529	932574833	31.2570		2.98989		3069.3	749685
978	956484		31.2730		2.99034		3072.5	751221
979	958441	938313739	31.2890	9.9295	2.99078	1.02145	3075.6	752758
980	960400	941192000	31.3050				3078.8	754296
981	962361	944076141	31.3209				3081.9	755837
982	964324	946966168	31.3369			1.01833		757378
983	966289		31.3528					758922
984	968256							760466
985	970225		31.3847	9.9497				762013 763561
986	972196		31.4006		2.99388			765111
987	974169		31.4166					766662
988	976144		31.4325					768214
989	978121	967361669	31.4484	9.9032	2,99020	1.01112		
990	980100	970299000	31.4643					769769
991	982081	973242271	31.4802					771325
992	984064		31.4960					772882
993	986049		31.5119					774441
994	988036		31.5278					776002
995	990025		31.5436					777564
996	992016		31.5595					779128
997	994009		31.5753					780693
998	996004		31.5911					782260 783828
999	998001	997002999	31.6070	9.9967	2.99957	11.00100	3138.5	100040
l								

S				SINES				83
Degrees	0′	10′	20′	30′	40′	50′	60′	Совіпев
0	0.00000	0.00291	0.00582	0.00873	0.01164	0.01454	0.01745	89
1	0.01745	0.02036	0.02327	0.02618	0.02908	0.03199	0.03490	88
2	0.03490	0.03781	0.04071	0.04362	0.04653	0.04943	0.05234	87
3	0.05234	0.05524	0.05814	0.06105	0.06395	0.06685	0.06976	86
4	0.06976	0.07266	0.07556	0.07846	0.08136	0.08426	0.08716	85
5 6 7 8	0.08716 0.10453 0.12187 0.13917 0.15643	0.09005 0.10742 0.12476 0.14205 0.15931	0.09295 0.11031 0.12764 0.14493 0.16218	0.09585 0.11320 0.13053 0.14781 0.16505	$\begin{array}{c} 0.09874 \\ 0.11609 \\ 0.13341 \\ 0.15069 \\ 0.16792 \end{array}$	0.10164 0.11898 0.13629 0.15356 0.17078	0.10453 0.12187 0.13917 0.15643 0.17365	84 83 82 81 80
10	$\begin{array}{c} 0.17365 \\ 0.19081 \\ 0.20791 \\ 0.22495 \\ 0.24192 \end{array}$	0.17651	0.17937	0.18224	0.18509	0.18795	0.19081	79
11		0.19366	0.19652	0.19937	0.20222	0.20507	0.20791	78
12		0.21076	0.21360	0.21644	0.21928	0.22212	0.22495	77
13		0.22778	0.23062	0.23345	0.23627	0.23910	0.24192	76
14		0.24474	0.24756	0.25038	0.25320	0.25601	0.25882	75
15	0.25882	0.26163	0.26443	0.26724	0.27004	0.27284	0.27564	74
16	0.27564	0.27843	0.28123	0.28402	0.28680	0.28959	0.29237	78
17	0.29237	0.29515	0.29793	0.30071	0.30348	0.30625	0.30902	72
18	0.30902	0.31178	0.31454	0.31730	0.32006	0.32282	0.32557	71
19	0.32557	0.32832	0.33106	0.33381	0.33655	0.33929	0.34202	70
20	0.34202	0.34475	0.34748	0.35021	$\begin{array}{c} 0.35293 \\ 0.36921 \\ 0.38537 \\ 0.40142 \\ 0.41734 \end{array}$	0.35565	0.35837	69
21	0.35837	0.36108	0.36379	0.36650		0.37191	0.37461	68
22	0.37461	0.37730	0.37999	0.38268		0.38805	0.39073	67
23	0.39073	0.39341	0.39608	0.39875		0.40408	0.40674	66
24	0.40674	0.40939	0.41204	0.41469		0.41998	0.42262	65
25	0.42262	0.42525	0.42788	0.43051	0.43313	0.43575	0.43837	64
26	0.43837	0.44098	0.44359	0.44620	0.44880	0.45140	0.45399	63
27	0.45399	0.45658	0.45917	0.46175	0.46433	0.46690	0.46947	62
28	0.46947	0.47204	0.47460	0.47716	0.47971	0.48226	0.48481	61
29	0.48481	0.48735	0.48989	0.49242	0.49495	0.49748	0.50000	60
30	0.50000	0.50252	0.50503	0.50754	0.51004	0.51254	0.51504	59
31	0.51504	0.51753	0.52002	0.52250	0.52498	0.52745	0.52992	58
32	0.52992	0.53238	0.53484	0.53730	0.53975	0.54220	0.54464	57
33	0.54464	0.54708	0.54951	0.55194	0.55436	0.55678	0.55919	56
34	0.55919	0.56160	0.56401	0.56641	0.56880	0.57119	0.57358	55
35	0.57358	0.57596	0.57833	0.58070	0.58307	0.58543	0.58779	54
36	0.58779	0.59014	0.59248	0.59482	0.59716	0.59949	0.60182	53
37	0.60182	0.60414	0.60645	0.60876	0.61107	0.61337	0.61566	52
38	0.61566	0.61795	0.62024	0.62251	0.62479	0.62706	0.62932	51
39	0.62932	0.63158	0.63383	0.63608	0.63832	0.64056	0.64279	50
40	0.64279	0.64501	0.64723	0.64945	0.65166	0.65386	0.65606	49
41	0.65606	0.65825	0.66044	0.66262	0.66480	0.66697	0.66913	48
42	0.66913	0.67129	0.67344	0.67559	0.67773	0.67987	0.68200	47
43	0.68200	0.68412	0.68624	0.68835	0.69046	0.69256	0.69466	46
44	0.69466	0.69675	0.69883	0.70091	0.70298	0.70505	0.70711	45
S	60′	50'	40'	3o′	20'	10'	0'	888
Sines				COSINE	3			Degrees

Degrees				COSINES				Sines
Deg	0′	10′	20′	30′	40′	50′	60′	1 22
0 1 2 3 4	1.00000 0.99985 0.99939 0.99863 0.99756	1.00000 0.99979 0.99929 0.99847 0.99736	0.99998 0.99973 0.99917 0.99831 0.99714	0.99996 0.99966 0.99905 0.99813 0.99692	0.99993 0.99958 0.99892 0.99795 0.99668	0.99989 0.99949 0.99878 0.99776 0.99644	0.99985 0.99939 0.99863 0.99756 0.99619	89 88 87 86 85
5 6 7 8 9	0.99619 0.99452 0.99255 0.99027 0.98769	$\begin{array}{c} 0.99594 \\ 0.99421 \\ 0.99219 \\ 0.98986 \\ 0.98723 \end{array}$	0.99567 0.99390 0.99182 0.98944 0.98676	0.99540 0.99357 0.99144 0.98902 0.98629	0.99511 0.99324 0.99106 0.98858 0.98580	0.99482 0.99290 0.99067 0.98814 0.98531	0.99452 0.99255 0.99027 0.98769 0.98481	84 83 82 81 80
10 11 12 13 14	0.98481 0.98163 0.97815 0.97437 0.97030	0.98430 0.98107 0.97754 0.97371 0.96959	0.98378 0.98050 0.97692 0.97304 0.96887	0:98325 0.97992 0.97630 0.97237 0.96815	0.98272 0.97934 0.97566 0.97169 0.96742	0.98218 0.97875 0.97502 0.97100 0.96667	0.98163 0.97815 0.97437 0.97030 0.96593	79 78 77 76 78
15 16 17 18 19	0.96593 0.96126 0.95630 0.95106 0.94552	0.96517 0.96046 0.95545 0.95015 0.94457	0.96440 0.95964 0.95459 0.94924 0.94361	0.96363 0.95882 0.95372 0.94832 0.94264	0.96285 0.95799 0.95284 0.94740 0.94167	0.96206 0.95715 0.95195 0.94646 0.94068	0.96126 0.95630 0.95106 0.94552 0.93969	74 73 72 71 70
20 21 22 23 24	0.93969 0.93358 0.92718 0.92050 0.91355	0.93869 0.93253 0.92609 0.91936 0.91236	$\begin{array}{c} 0.93769 \\ 0.93148 \\ 0.92499 \\ 0.91822 \\ 0.91116 \end{array}$	0.93667 0.93042 0.92388 0.91706 0.90996	0.93565 0.92935 0.92276 0.91590 0.90875	0.93462 0.92827 0.92164 0.91472 0.90753	0.93358 0.92718 0.92050 0.91355 0.90631	69 67 68 68
25 26 27 28 29	0.90631 0.89879 0.89101 0.88295 0.87462	0.90507 0.89752 0.88968 0.88158 0.87321	0.90383 0.89623 0.88835 0.88020 0.87178	0.90259 0.89493 0.88701 0.87882 0.87036	0.90133 0.89363 0.88566 0.87743 0.86892	0.90007 0.89232 0.88431 0.87603 0.86748	0.89879 0.89101 0.88295 0.87462 0.86603	64 63 62 61
30 ' 31 32 33 34	0.86603 0.85717 0.84805 0.83867 0.82904	0.86457 0.85567 0.84650 0.83708 0.82741	0.86310 0.85416 0.84495 0.83549 0.82577	0.86163 0.85264 0.84339 0.83389 0.82413	0.86015 0.85112 0.84182 0.83228 0.82248	0.85866 0.84959 0.84025 0.83066 0.82082	0.85717 0.84805 0.83867 0.82904 0.81915	59 57 57 56
35 36 37 38 39	0.81915 0.80902 0.79864 0.78801 0.77715	$\begin{array}{c} 0.81748 \\ 0.80730 \\ 0.79688 \\ 0.78622 \\ 0.77531 \end{array}$	0.81580 0.80558 0.79512 0.78442 0.77347	0.81412 0.80386 0.79335 0.78261 0.77162	$\begin{array}{c} 0.81242 \\ 0.80212 \\ 0.79158 \\ 0.78079 \\ 0.76977 \end{array}$	0.81072 0.80038 0.78980 0.77897 0.76791	0.80902 0.79864 0.78801 0.77715 0.76604	54 53 52 51 50
40 41 42 43 44	0.76604 0.75471 0.74314 0.73135 0.71934	0.76417 0.75280 0.74120 0.72937 0.71732	0.76229 0.75088 0.73924 0.72737 0.71529	0.76041 0.74896 0.73728 0.72537 0.71325	0.75851 0.74703 0.73531 0.72337 0.71121	0.75661 0.74509 0.73333 0.72136 0.70916	0.75471 0.74314 0.73135 0.71934 0.70711	48 47 46 45
es .	60′	50′	40′	30′	20′	10′	0′	rees
Cosines				SINES				Degrees

ses				FANGENT	'S			gents
Degrees	0′	10,	20′	30′	40′	50′	60′	Cotangents
0	0.00000	0.00291	0.00582	0.00873	0.01164	0.01455	0.01746	89
1	0.01746	0.02036	0.02328	0.02619	0.02910	0.03201	0.03492	88
2	0.03492	0.03783	0.04075	0.04366	0.04658	0.04949	0.05241	87
3	0.05241	0.05533	0.05824	0.06116	0.06408	0.06700	0.06993	86
4	0.06993	0.07285	0.07578	0.07870	0.08163	0.08456	0.08749	85
5	0.08749	0.09042	0.09335	0.09629	0.09923	0.10216	0.10510	84
6	0.10510	0.10805	0.11099	0.11394	0.11688	0.11983	0.12278	83
7	0.12278	0.12574	0.12869	0.13165	0.13461	0.13758	0.14054	82
8	0.14054	0.14351	0.14648	0.14945	0.15243	0.15540	0.15838	81
9	0.15838	0.16137	0.16435	0.16734	0.17033	0.17333	0.17633	80
10	0.17633	0.17933	0.18233	0.18534	0.18835	0.19136	0.19438	79
11	0.19438	0.19740	0.20042	0.20345	0.20648	0.20952	0.21256	78
12	0.21256	0.21560	0.21864	0.22169	0.22475	0.22781	0.23087	77
13	0.23087	0.23393	0.23700	0.24008	0.24316	0.24624	0.24933	76
14	0.24933	0.25242	0.25552	0.25862	0.26172	0.26483	0.26795	75
15	0.26795	0.27107	0.27419	0.27732	0.28046	0.28360	0.28675	74
16	0.28675	0.28990	0.29305	0.29621	0.29938	0.30255	0.30573	73
17	0.30573	0.30891	0.31210	0.31530	0.31850	0.32171	0.32492	72
18	0.32492	0.32814	0.33136	0.33460	0.33783	0.34108	0.34433	71
19	0.34433	0.34758	0.35085	0.35412	0.35740	0.36068	0.36397	70
20	0.36397	0.36727	0.37057	0.37388	0.37720	0.38053	0.38386	69
21	0.38386	0.38721	0.39055	0.39391	0.39727	0.40065	0.40403	68
22	0.40403	0.40741	0.41081	0.41421	0.41763	0.42105	0.42447	67
23	0.42447	0.42791	0.43136	0.43481	0.43828	0.44175	0.44523	66
24	0.44523	0.44872	0.45222	0.45573	0.45924	0.46277	0.46631	65
25	0.46631	0.46985	0.47341	0.47698	0.48055	0.48414	0.48773	$64 \\ 63 \\ 62 \\ 61 \\ 60$
26	0.48773	0.49134	0.49495	0.49858	0.50222	0.50587	0.50953	
27	0.50953	0.51320	0.51688	0.52057	0.52427	0.52798	0.53171	
28	0.53171	0.53545	0.53920	0.54296	0.54674	0.55051	0.55431	
29	0.55431	0.55812	0.56194	0.56577	0.56962	0.57348	0.57735	
30	0.57735	0.58124	0.58513	0.58905	0.59297	0.59691	0.60086	59
31	0.60086	0.60483	0.60881	0.61280	0.61681	0.62083	0.62487	58
32	0.62487	0.62892	0.63299	0.63707	0.64117	0.64528	0.64941	57
33	0.64941	0.65355	0.65771	0.66189	0.66608	0.67028	0.67451	56
34	0.67451	0.67875	0.68301	0.68728	0.69157	0.69588	0.70021	55
35	0.70021	0.70455	0.70891	0.71329	0.71769	0.72211	0.72654	54
36	0.72654	0.73100	0.73547	0.73996	0.74447	0.74900	0.75355	53
37	0.75355	0.75812	0.76272	0.76733	0.77196	0.77661	0.78129	52
38	0.78129	0.78598	0.79070	0.79544	0.80020	0.80498	0.80978	51
39	0.80978	0.81461	0.81946	0.82434	0.82923	0.83415	0.83910	50
40	0.83910	0.84407	0.84906	0.85408	0.85912	0.86419	0.86929	49
41	0.86929	0.87441	0.87955	0.88473	0.88992	0.89515	0.90040	48
42	0.90040	0.90569	0.91099	0.91633	0.92170	0.92709	0.93252	47
43	0.93252	0.93797	0.94345	0.94896	0.95451	0.96008	0.96569	46
44	0.96569	0.97133	0.97700	0.98270	0.98843	0.99420	1.00000	45
ents	60′	50'	40′	30′	20′	10′	0′	sees
Tangents			CC	TANGEN	TS		1	Degrees

Degrees			COT	TANGENTS				ents
Deg	0′	10'	20′	30′	40′	50′	60′	Tangents
0 1 2 3 4	∞ 57.28996 28.63625 19.08114 14.30067	343.77371 49.10388 26.43160 18.07498 13.72674	171.88540 42.96408 24.54176 17.16934 13.19688	114.58865 38.18846 22.90377 16.34986 12.70621	34.36777 21.47040 15.60478	68.75009 31.24158 20.20555 14.92442 11.82617	28.63625 19.08114 14.30067	89 88 87 86 85
5 6 7 8 9	11.43005 9.51436 8.14435 7.11537 6.31375	11.05943 9.25530 7.95302 6.96823 6.19703	10.71191 9.00983 7.77035 6.82694 6.08444	10.38540 8.77689 7.59575 6.69116 5.97576		8.34496 7.26873 6.43484	9.51436 8.14435 7.11537 6.31375 5.67128	84 83 82 81 80
10 11 12 13 14	5.67128 5.14455 4.70463 4.33148 4.01078	5.57638 5.06584 4.63825 4.27471 3.96165	5.48451 4.98940 4.57363 4.21933 3.91364	5.39552 4.91516 4.51071 4.16530 3.86671	4.84300 4.44942	4.77286 4.38969 4.06107	5.14455 4.70463 4.33148 4.01078 3.73205	79 78 77 76 75
15 16 17 18 19	3.73205 3.48741 3.27085 3.07768 2.90421	3.68909 3.44951 3.23714 3.04749 2.87700	3.64705 3.41236 3.20406 3.01783 2.85023	3.60588 3.37594 3.17159 2.98869 2.82391	3.34023 3.13972	3.10842 2.93189	3.48741 3.27085 3.07768 2.90421 2.74748	74 73 72 71 70
20 21 22 23 24	2.74748 2.60509 2.47509 2.35585 2.24604	2.72281 2.58261 2.45451 2.33693 2.22857	2.69853 2.56046 2.43422 2.31826 2.21132	2.67462 2.53865 2.41421 2.29984 2.19430	2.65109 2.51715 2.39449 2.28167 2.17749	2.49597 2.37504 2.26374	2.60509 2.47509 2.35585 2.24604 2.14451	69 68 67 66 65
25 26 27 28 29	2.14451 2.05030 1.96261 1.88073 1.80405	2.12832 2.03526 1.94858 1.86760 1.79174	2.11233 2.02039 1.93470 1.85462 1.77955	2.09654 2.00569 1.92098 1.84177 1.76749	1.90741	1.97680 1.89400 1.81649	2.05030 1.96261 1.88073 1.80405 1.73205	64 63 62 61 60
30 31 32 33 34	1.73205 1.66428 1.60033 1.53987 1.48256	1.72047 1.65337 1.59002 1.53010 1.47330	1.70901 1.64256 1.57981 1.52043 1.46411	1.69766 1.63185 1.56969 1.51084 1.45501	1.68643 1.62125 1.55966 1.50133 1.44598	1.67530 1.61074 1.54972 1.49190 1.43703	1.66428 1.60033 1.53987 1.48256 1.42815	59 58 57 56 55
35 36 37 38 39	1.42815 1.37638 1.32704 1.27994 1.23490	1.41934 1.36800 1.31904 1.27230 1.22758	1.41061 1.35968 1.31110 1.26471 1.22031	1.40195 1.35142 1.30323 1.25717 1.21310	1.39336 1.34323 1.29541 1.24969 1.20593	1.38484 1.33511 1.28764 1.24227 1.19882	1.37638 1.32704 1.27994 1.23490 1.19175	54 53 52 51 50
40 41 42 43 44	1.19175 1.15037 1.11061 1.07237 1.03553	1.18474 1.14363 1.10414 1.06613 1.02952	1.17777 1.13694 1.09770 1.05994 1.02355	1.17085 1.13029 1.09131 1.05378 1.01761	1.16398 1.12369 1.08496 1.04766 1.01170	1.15715 1.11713 1.07864 1.04158 1.00583	1.15037 1.11061 1.07237 1.03553 1.00000	49 48 47 46 45
Cotangents	60′	50′	40′	30′	20′	10′	0′	Degrees
Cota			Т.	ANGENTS		- '		Deg

sees			S	ECANTS				Ants
Degrees	0′	10′	20'	30′	40′	50′	60′	Cosecants
0 1 2 3 4	1.00000 1.00015 1.00061 1.00137 1.00244	1.00000 1.00021 1.00072 1.00153 1.00265	1.00002 1.00027 1.00083 1.00169 1.00287	1.00004 1.00034 1.00095 1.00187 1.00309	1.00007 1.00042 1.00108 1.00205 1.00333	1.00011 1.00051 1.00122 1.00224 1.00357	1.00015 1.00061 1.00137 1.00244 1.00382	89 88 87 86
5 6 7 8 9	1.00382 1.00551 1.00751 1.00983 1.01247	1.00408 1.00582 1.00787 1.01024 1.01294	1.00435 1.00614 1.00825 1.01067 1.01342	1.00463 1.00647 1.00863 1.01111 1.01391	1.00491 1.00681 1.00902 1.01155 1.01440	1.00521 1.00715 1.00942 1.01200 1.01491	1.00551 1.00751 1.00983 1.01247 1.01543	84 82 82 81
10 11 12 13 14	1.01543 1.01872 1.02234 1.02630 1.03061	1.01595 1.01930 1.02298 1.02700 1.03137	1.01649 1.01989 1.02362 1.02770 1.03213	1.01703 1.02049 1.02428 1.02842 1.03290	1.01758 1.02110 1.02494 1.02914 1.03368	1.01815 1.02171 1.02562 1.02987 1.03447	1.01872 1.02234 1.02630 1.03061 1.03528	79 78 77 78
15 16 17 18 19	1.03528 1.04030 1.04569 1.05146 1.05762	1.03609 1.04117 1.04663 1.05246 1.05869	1.03691 1.04206 1.04757 1.05347 1.05976	1.03774 1.04295 1.04853 1.05449 1.06085	1.03858 1.04385 1.04950 1.05552 1.06195	1.03944 1.04477 1.05047 1.05657 1.06306	1.04030 1.04569 1.05146 1.05762 1.06418	74 75 75 70
20 21 22 23 24	1.06418 1.07115 1.07853 1.08636 1.09464	1.06531 1.07235 1.07981 1.08771 1.09606	1.06645 1.07356 1.08109 1.08907 1.09750	1.06761 1.07479 1.08239 1.09044 1.09895	1.06878 1.07602 1.08370 1.09183 1.10041	1.06995 1.07727 1.08503 1.09323 1.10189	1.07115 1.07853 1.08636 1.09464 1.10338	68 68 68 68
25 26 27 28 29	1.10338 1.11260 1.12233 1.13257 1.14335	1.10488 1.11419 1.12400 1.13433 1.14521	1.10640 1.11579 1.12568 1.13610 1.14707	1.10793 1.11740 1.12738 1.13789 1.14896	1.10947 1.11903 1.12910 1.13970 1.15085	1.11103 1.12067 1.13083 1.14152 1.15277	1.11260 1.12233 1.13257 1.14335 1.15470	64 65 65 66
30 31 32 33 34	1.15470 1.16663 1.17918 1.19236 1.20622	1.15665 1.16868 1.18133 1.19463 1.20859	1.15861 1.17075 1.18350 1.19691 1.21099	1.16059 1.17283 1.18569 1.19920 1.21341	1.16259 1.17493 1.18790 1.20152 1.21584	1.16460 1.17704 1.19012 1.20386 1.21830	1.16663 1.17918 1.19236 1.20622 1.22077	59 57 58 58
35 36 37 38 39	1.22077 1.23607 1.25214 1.26902 1.28676	1.22327 1.23869 1.25489 1.27191 1.28980	1.22579 1.24134 1.25767 1.27483 1.29287	1.22833 1.24400 1.26047 1.27778 1.29597	1.23089 1.24669 1.26330 1.28075 1.29909	1.23347 1.24940 1.26615 1.28374 1.30223	1.23607 1.25214 1.26902 1.28676 1.30541	5 5 5 5
40 41 42 43 44	1.30541 1.32501 1.34563 1.36733 1.39016	1.30861 1.32838 1.34917 1.37105 1.39409	1.31183 1.33177 1.35274 1.37481 1.39804	1.31509 1.33519 1.35634 1.37860 1.40203	1.31837 1.33864 1.35997 1.38242 1.40606	1.32168 1.34212 1.36363 1.38628 1.41012	1.32501 1.34563 1.36733 1.39016 1.41421	49 42 41 41
ınts	60′	50′	40′	30′	20′	10′	0′	Dogrados
Secants			C	OSECAN	rs			ام ا

20	COSECANTS								
Degrees	0'	10'	20′	30'	40′	50′	60′	Secants	
0 1 2 3 4	∞ 57.29869 28.65371 19.10732 14.33559	343.77516 49.11406 26.45051 18.10262 13.76312	171.88831 42.97571 24.56212 17.19843 13.23472	114.59301 38.20155 22.92559 16.38041 12.74550	85.94561 34.38232 21.49368 15.63679 12.29125	68.75736 31.25758 20.23028 14.95788 11.86837	57.29869 28.65371 19.10732 14.33559 11.47371	89 88 87 86 85	
5 6 7 8 9	11.47371 9.56677 8.20551 7.18530 6.39245	11.10455 9.30917 8.01565 7.03962 6.27719	10.75849 9.06515 7.83443 6.89979 6.16607	10.43343 8.83367 7.66130 6.76547 6.05886	10.12752 8.61379 7.49571 6.63633 5.95536		9.56677 8.20551 7.18530 6.39245 5.75877	84 83 82 81 80	
10 11 12 13 14	5.75877 5.24084 4.80973 4.44541 4.13357	5.66533 5.16359 4.74482 4.39012 4.08591	5.57493 5.08863 4.68167 4.33622 4.03938	5.48740 5.01585 4.62023 4.28366 3.99393	5.40263 4.94517 4.56041 4.23239 3.94952	5.32049 4.87649 4.50216 4.18238 3.90613	4.80973 4.44541 4.13357	79 78 77 76 75	
15 16 17 18 19	3.86370 3.62796 3.42030 3.23607 3.07155	3.38808 3.20737	3.78166 3.55587 3.35649 3.17920 3.02057	3.74198 3.52094 3.32551 3.15155 2.99574	3.70315 3.48671 3.29512 3.12440 2.97135	3.45317 3.26531 3.09774	3.62796 3.42030 3.23607 3.07155 2.92380	74 73 72 71 70	
20 21 22 23 24	2.92380 2.79043 2.66947 2.55930 2.45859		2.87785 2.74881 2.63162 2.52474 2.42692	2.85545 2.72850 2.61313 2.50784 2.41142	2.83342 2.70851 2.59491 2.49119 2.39614	2.57698 2.47477	2.55930 2.45859	69 68 67 66 65	
25 26 27 28 29	2.36620 2.28117 2.20269 2.13005 2.06267	2.26766	2.33708 2.25432 2.17786 2.10704 2.04128	2.32282 2.24116 2.16568 2.09574 2.03077	2.15366	2.21535 2.14178 2.07356	2.13005 2.06267	64 63 62 61 60	
30 31 32 33 34	2.00000 1.94160 1.88708 1.83608 1.78829		1.98008 1.92302 1.86970 1.81981 1.77303	1.97029 1.91388 1.86116 1.81180 1.76552	1.96062 1.90485 1.85271 1.80388 1.75808	1.89591 1.84435 1.79604	1.88709 1.83608 1.78829	59 58 57 56 55	
35 36 37 38 39	1.74345 1.70130 1.66164 1.62427 1.58902	1.69452 1.65526 1.61825	1.72911 1.68782 1.64894 1.61229 1.57771	1.72205 1.68117 1.64268 1.60639 1.57213	1.60054	1.66809 1.63035 1.59475	1.66164 1.62427 1.58902	54 53 52 51 50	
40 41 42 43 44	1.55572 1.52425 1.49448 1.46628 1.43956	1.55036 1.51918 1.48967 1.46173 1.43524	1.54504 1.51415 1.48491 1.45721 1.43096	1.53977 1.50916 1.48019 1.45274 1.42672	1.53455 1.50422 1.47551 1.44831 1.42251		1.52425 1.49448 1.46628 1.43956 1.41421	49 48 47 46 45	
ants	60′	50′	40′	30′	20′	10′	0′	Degrees	
Cosecants	SECANTS							Deg	

BIRMINGHAM WIRE GAGE EQUIVALENTS IN INCHES

CORRESPONDING WEIGHTS OF FLAT ROLLED STEEL

Gage	Thickness,	Pounds	Thickne	ess, Inches	Pounds
Number	Inches	per Squars Foot	Fractional	Decimal	per Square Foot
			1/2	.5	20.4
0000	.454	18,5232	15	.46875	19.125
000	.425	17.34	178	.4375	17.85
,			13	.40625	16.575
00	.380	15.504	8/8	.375	15.3
0	.340	13.872	11	.34375	14.025
			1 ⁵ 6	.3125	12.75
1	.300	12.24	12	.296875	12.1125
2	.284	11.5872	9 32	.28125	11.475
3	.259	10.5672	17	.265625	10.8375
			1/4	.25	10.2
4	.238	9.7104	15	.234375	9.5625
5	.220	8.976	372	.21875	8.925
. 6	.203	8.2824	13	.203125	8.2875
7	.180	7.344	18 ·	.1875	7.65
8	.165	6.732	11	.171875	7.0125
9	.148	6.0384	32	.15625	6.375
10	.134	5.4672	9	.140625	5.7375
11	.120	4.896	⅓	.125	5.1
12	.109	4.4472	7 84	.109375	4.4625
13	.095	3.876	32	.09375	3.825
14	.083	3.3864	8 ⁵ 4	.078125	3.1875
15	.072	2.9376	1		
16	.065	2.652	16	.0625	2.55
17	.058	2.3664			
18	.049	1.9992	री द	.046875	1.9125
19	.042	1.7136			,
20	.035	1.428			• • • • • • • • • • • • • • • • • • • •
21	.032	1.3056	32	.03125	1.275
22	.028	1.1424	•••		
23	.025	1.02	•••	• ; • • • • •	
24	/ .022	0.8976	•••		
25	.020	0.816	••		• • • • • • • • • • • • • • • • • • • •
26	.018	0.7344	∥ ∵	015005	0.0075
27	.016	0.6528	हैं-	.015625	0.6375
28	.014	0.5712	••		• • • • • • • • • • • • • • • • • • • •
29	.013	0.5304	••		
30 31	.012 .010	0.4896 0.408			
32		1	.	• • • • • • • • • • • • • • • • • • • •	
	.009	0.3672	ļ ;	0079195	0.21075
33 34	.008	0.3264 0.2856	152	.0078125	0.31875
34 35	.007	0.2856	••		
35 36	.005	0.2040	∥ ∵	.00390625	0.159375
36	,004	0.1032	250	.00390025	0.199979

Unless otherwise specified, all orders for flat rolled steel in gages will be executed by Carnegis Steel Company to Birmingham Wire Gage.

MEASURES AND WEIGHTS

UNITED STATES STANDARD GAGE

FOR SHEET AND PLATE IRON AND STEEL

	1	Approximate Thi	ckness	W-i-l-4	Wainkton	<u></u>
Gage Number	Fractional Inches	Decimal Inches	Millimeters	Weight per Square Foot, Ounces, Avoirdupois	Weight per Square Foot, Pounda, Avoirdupois	Weight per SquareMeter, Kilograms
0000000 000000 00000 0000 000 000 12 3 4 4 5 5 6 6 7 8 9 10 11 12 13 14 15 16 16 17 18 19 20 21 22 23 34 25 27 28 29 30 31 33 34 34 36 36 37 38 38 38 38 38 38 38 38 38 38 38 38 38	840 810 810 810 810 810 840 840 840 840 840 840	.5 .46875 .4375 .40625 .375 .34375 .3125 .28125 .2265625 .25 .234375 .21875 .21875 .171875 .171875 .171875 .140625 .125 .109375 .078125 .078125 .0625 .05625 .05625 .0503375 .034375 .034375 .034375 .034375 .03125 .028125 .028125 .028125 .01015625 .01015625 .01015625 .01015625 .01015625 .000859375 .000859375 .0078125 .000859375 .0078125 .000640625 .000640625 .000640625	12.7 11.90625 11.1125 10.31875 9.525 8.73125 7.9375 7.14375 6.35 5.953125 5.55625 4.7625 4.365625 3.96875 3.778125 2.38125 1.984375 1.287 1.1125 9.9525 8.7312	320 300 280 280 240 220 200 180 170 140 130 120 100 90 80 70 60 50 45 45 40 36 32 22 20 18 16 11 10 10 10 10 10 10 10 10 10	20.00 18.75 17.50 16.25 15.00 11.25 10.625 10.005 8.75 8.75 8.75 6.25 7.50 6.875 6.25 5.625 5.600 4.375 3.125 2.8125 2.8125 2.00 1.75 1.25 1.100 875 6825 5.625 5.625 5.625 5.625 5.625 5.625 5.625 5.625 5.625 5.625 5.34375 3.125 2.8125	97.65 91.55 85.44 79.33 78.24 67.13 61.03 54.93 54.93 55.1.88 48.82 45.77 42.72 36.67 36.67 36.52 27.44 21.36 18.31 15.26 13.73 12.21 10.99 9.765 8.544 7.324 4.872 3.662 3.052 2.746 1.136 1.1983 1.1

The United States Standard Gage is a weight gage based upon the weights per square foot in ounces avoirdupois and approximate thickness based upon 480 pounds per cubic foot.

In the practical use and application of the United States Standard Gage, a weight variation of 2½ per cent either way may be allowed.

Unless otherwise specified, all orders for flat rolled steel in gages will be executed by Carnegie Steel Company to Birmingham Wire Gage.

STANDARD GAGES

COMPARATIVE TABLE

1	`	Thic	kness in Deci	mals of an I	nch	
Gage Number	Birmingham Wire (B. W. G.) also known as Stubs Iron Wire	American Wire or Browne & Sharpe	American Steel & Wire Co. formerly Washburn & Moen	Trenton Iron Company	British Imperial Standard Wire (S. W. G.)	Standard Birmingham Sheet and Hoop (B. G.)
0000000 000000 00000 0000 000 000		.58000 .518500 .460000 .499642 .364796 .324861 .289297 .227627 .229423 .204307 .181940 .162023 .144285 .128490 .114423 .101897 .080742 .080808 .071962 .064084 .0570821 .045257 .040303 .035890 .031961 .0252546 .022572 .020101 .017900 .015941 .011257 .020101 .015941 .011257 .0007080 .0008028 .007080 .007080 .007080 .005000 .006305 .005501 .00	.4900 .4615 .4305 .3938 .3625 .2830 .2625 .2437 .2437 .2437 .2253 .2070 .1770 .1620 .1483 .1350 .1055 .0915 .0925 .0540 .0410 .03175 .0258 .0258 .0230 .0230 .0181 .0162 .0152 .0162 .0075 .0085		.500 .464 .432 .400 .372 .348 .324 .300 .276 .252 .232 .212 .176 .160 .144 .128 .104 .092 .080 .072 .064 .056 .048 .040 .036 .032 .028 .024 .022 .020 .018 .0148 .0108 .0124 .0116 .0124 .0116 .0108 .0109 .0068 .0060 .0068 .0060 .0068 .0060 .0052 .0048	

Unless otherwise specified, all orders for flat rolled steel in gages will be executed by Carnegie Steel Company to Birmingham Wire Gage.

MEASURES AND WEIGHTS

DECIMAL OF AN INCH AND OF A FOOT

	ractions of h or Foot	Inch Equiva- lents to Foot Fractions		ractions of h or Foot	Inch Equiva- lents to Foot Fractions		ractions of h or Foot	Inch Equiva- lents to Foot Fractions		ractions of h or Foot	Inch Equiva- lents to Foot Fractions
	.0052 .0104	118 1/8		.2552 .2604	3½ 3½		.5052 .5104	618 618		.7552 .7604	9^{16}_{18}
18	.015625 .0208 .0260	18 14 4 16	17	.265625 .2708 .2760	313 314 315	33 84	.515625 .5208 .5260	6_{15}^{3} $6\frac{1}{4}$ $6\frac{5}{15}$	49 64	.765625 .7708 .7760	$9^{\frac{3}{18}}$ $9^{\frac{1}{4}}$ $9^{\frac{5}{18}}$
32	.03125 .0365 .0417	8/8 1/8 1/2	9 32	.28125 .2865 .2917	3 % 317 3 ½	37	.53125 .5365 .5417	6 3/8 6 1/8 6 1/2	32	.78125 .7865 .7917	$9\frac{9}{18}$ $9\frac{7}{18}$ $9\frac{1}{2}$
3 64	.046875 .0521 .0573	18 5/8 11	19 64	.296875 .3021 .3073	3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	35	.546875 .5521 .5573	61% 65% 611	£1.	.796875 .8021 .8073	9 ₁₈ 958 911
18	.0625 .0677 .0729	8/4 13 7/8	15	.3125 .3177 .3229	3 3/4 3 1 8 3 7/8	18	.5625 .5677 .5729	6 3/4 613 6 7/8	13	.8125 .8177 .8229	9 84 9 1 8 9 7 8
\$ 26	.078125 .0833 .0885	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	21	.328125 .3333 .3385	318 4 4 ₁ 5	37 64	.578125 .5833 .5885	618 7 718	84	.828125 .8333 .8385	915 10 1016
3 32	.09375 .0990 .1042	1 1/8 1 1/8 1 1/4	11 32	.34375 .3490 .3542	4 1/8 4 1/8 4 1/4	19	.59375 .5990 .6042	7 1/8 7 1/8 7 1/4	27	.84375 .8490 .8542	10 1/8 10 1/8 10 1/4
7 64	.109375 .1146 .1198	1 5 1 3 8 1 7 8	23	.359375 .3646 .3698	$\begin{array}{c} \mathbf{4_{15}^{5}} \\ \mathbf{4_{36}^{3}} \\ \mathbf{4_{15}^{7}} \end{array}$	39	.609375 .6146 .6198	7.5 73/8 7.7	55 64	.859375 .8646 .8698	$\begin{array}{c} 10\frac{5}{16} \\ 10\frac{8}{8} \\ 10\frac{7}{8} \end{array}$
1/8	.1250 .1302 .1354	1½ 1% 1%	3/8	.3750 .3802 .3854	4½ 4½ 4½ 458	5/8	.6250 .6302 .6354	7½ 7% 7%	7/8	.8750 .8802 .8854	$10\frac{1}{2}$ $10\frac{1}{6}$ $10\frac{5}{8}$
84	.140625 .1458 .1510	1 1 3 4 1 3 4 1 1 3	254	.390625 .3958 .4010	411 434 418	81	.640625 .6458 .6510	711 734 713	87 64	.890625 .8958 .9010	1011 1084 1018
5 32	.15625 .1615 .1667	1 1/8 115 2	33	.40625 .4115 .4167	47/8 418 5	21 32	.65625 .6615 .6667	77/8 718 8	2 <u>9</u>	.90625 .9115 .9167	10 1/8 10 1 8 11
11	.171875 .1771 .1823	218 218 218 218	27 64	.421875 .4271 .4323	518 518 518	43	.671875 .6771 .6823	818 818 838	59	.921875 .9271 .9323	111/8 111/8 11/8
1 ³ 6	.1875 .1927 .1979	2 ½ 2 ½ 2 ½ 2 ¾ 2 ¾	178	.4375 .4427 .4479	5 1/4 515 53/8	11	.6875 .6927 .6979	8 ½ 8 5 8 3/8	18	.9375 .9427 .9479	11 1/4 11 1/8 11 3/8
13	.203125 .2083 .2135	$2\frac{7}{16}$ $2\frac{1}{2}$ $2\frac{1}{2}$	29 64	.453125 .4583 .4635	518 51/2 518	45	.703125 .7083 .7135	818 812 818	64	.953125 .9583 .9635	1178 111/2 1118
7 32	.21875 .2240 .2292	2 5/8 2 11 2 3/4	35	.46875 .4740 .4792	5 1/8 51/8 53/4	23 32	.71875 .7240 .7292	85/8 811 83/4	31	.96875 .9740 .9792	11 5/8 11 11 11 11 3/4
15	.234375 .2396 .2448	218 278 218 218	81	.484375 .4896 .4948	1 ' -	47	.734375 .7396 .7448	813 878 818	83	.984375 .9896 .9948	1113 1178 1115
1/4		3	1/2	.5000	6	84	.7500	9	1	1.0000	12

SUBJECT INDEX

	PAGE
American Bridge Co specifications for steel structures	.158-164
A. S. T. M standard specifications	
billet steel reinforcement bars	24-27
poiler and fire box steel for locomotives,	. 49-53
boiler rivet steel for locomotives	. 54-57
nickel steel, structural	. 11–17
ship rivet steel	
structural steel for bridges	
" " buildings	. 18–23
" " cars	. 38-43
" " locomotives	. 44-48
" " sbips	28-32
Anchors standard wall and pier anchors	249
Angles elements of sections	1,184-189
profiles, dimensions and weights	. 90-97
safe loads, explanatory notes	212
safe load tables	236-240
standard connections	246, 247
structural details for punching and riveting	z.252-254
tension values	260-262
Angles, Back to Back radii of gyration	
Arches, Floor Arches explanatory notes	326-328
terra cotta, safe load tables and weights	329-332
Areas circles, diameters 1 to 999	400419
circular segments	394–3 97
method of increasing sectional areas	59
net areas of angles	260–262
plane figures	
rectangular sections	
reduction of area for rivet boles	
square and round bars	
structural shapes	
surface of solids	3 98, 3 9 9
Band Edge Flats list of sizes	114
Bars cold twisted square bars, sizes and weights	
concrete reinforcement bars, sizes and weigh	
eye bars, sizes and dimensions	
hanger bars, sizes and weights	
lattice bars, dimensions for columns	
merchant bars, list of sizes	
rounds and squares, weights and areas	122, 123
splice bars, profiles, dimensions and weights	
standard test bars, see A. S. T. M. Specificatio	
tension values, rounds and squares	
upset screw ends, sizes and dimensions,	
The state of the s	

	$\mathbf{P}_{\mathbf{A}\mathbf{G}}$	E
Beams, H-Beams	see H-Beams71, 179, 230, 2	296
	bending moments, tables219, 2	
	common dimensions	60
	details, connection angles	
		250
		248
	" standard gages for punching243, 2	
	elements of sections	
	griliage, notes and calculations	
	profiles, weights and dimensions	
	safe loads, explanation of tables	
	safe load tables	
D 01	web resistance, tables	
		296
		269
	safe load tables	
Beam Stresses	explanatory notes	
	bending stresses	
	buckling stresses	
	deflection, lateral	
	" vertical	
	flexure formulas for various loading conditions 206-	
	impact stresses	
	shearing stresses, longitudinal and vertical .203, 215,	
		204
Bearing Plates	cupiline of the control of the contr	250
		251
	200200200200	250
Bearing Values	pins and rivets, explanatory notes	255
	pino, tuologitti t	25 8
	rivets, tables256,	257
Bending Moments	Chpiunuccij notobitititititititititititi	203
	beams, tables219,	220
	channels, tables	221
	pins, tables	259
	various loading conditions, formulas208-	211
Bolts	standard dimensions144,	145
	screw threads, standard dimensions144,	145
	weights, bolts with hexagon heads and nuts	147
	weights, boits with square heads and nuts	146
Bolt Heads and Nuts	standard dimensions144,	145
	weights146,	147
Buckle Plates		340
		340
		341
Buckling of Webs	explanatory notes	218
Duesting of Webs	web resistance of beams and channels, tables .219-	221
Building Laws.		324
Roll Sections	bulb angles, bulb tees72–80, 179–	183
2010 Dections	bulb angles, elements	183
	" " profiles, weights and dimensions 73	8-80
	promos, worker and amountain	179
	" " profiles, weights and dimensions	72
I .	promos, nospitos and dimensions	_

	מ	AGE
	allowable unit stresses	320
Cast Iron Columns		
	hollow round and square, elements	
	Sale loaus	
Ceilings	deflection of plastered ceilings	
	weight of ceilings	332
	see Neutral Axis	
Channels, Ship and Car.	elements of sections	
		35–89
Channels, Structural	bending moments, table	221
	common dimensions	60
	details, standard gages for punching	245
	elements of sections	
		1-89
	safe loads, explanation of tables212	-218
	safe load tables	-235
	web resistance, table	221
Checkered Plates	elements and safe loads	344
	profiles, weights and dimensions	110
Circles	areas and circumferences, dia. 1 to 999400	-419
	properties of the circle	390
Circular Plates	extreme sizes, carbon steel111	, 112
Circular Segments	areas, tables of coefficients394	-397
Clevises	sizes and weights	152
Coefficients	circular segments,	-397
	deflection under uniform load	213
	expansion due to heat	377
Cold Twisted Squares	sizes and weights	124
	allowable unit stresses	320
	hollow round and square, elements198	3. 199
	" safe loads321	
Columns, Steel	explanatory notes	
,	calculation of elements	
	" stresses	293
	compression formulas	
	elements, angle and plate columns 309	
	" channel and plate columns	
	" miscellaneous beam columns	296
	safe loads, angle and plate columns309	
	" channel and plate columns297	
	" miscellaneous beam columns	296
	typical details for mill and office buildings 317	
Columns Wood	allowable unit stresses	367
Columns, Wood	square and round, safe loads	
Commound Sections	calculation of elements	
-	strength, unit fiber stresses	376
Concrete, Masonry		371
Concrete Rainforced	specific gravity and weight	
Concrete, Actiniorced	beams and slabs, formulas	
	bending moments of slabs	338
	columns, formulas	336
	reinforcements, deformed bars, etc124	
	round and square pars,122	•
	" triangle mesh	339

	PA	ĐΕ
Connection Angles s	tandard for beams246,	247
Construction Specif'ns . A	American Bridge Company	-164
Conversion Tables	neasures, metric and U. S. Standard378-	-389
	elements of sections	194
	profiles, weights and dimensions	109
	assembled sections, elements and safe loads.	343
	explanatory notes	352
	izes and weights	353
	sizes and dimensions	154
Cross Tie Sections e	elements of sections	193
	profiles, weights and dimensions	135
	safe load tables	230
	numbers 1 to 999	
CANCO BIRE ORDE INCUES I	14440010 1 00 000 111111111111111111111	***
Decimal Table e	equivalents of an inch and of a foot	429
	explanatory notes and formula160, 204,	214
	explanatory notes	
	coefficients, calculation and table	213
	coefficients for beams and channels	
	limit for plastered ceilings	212
	formulas for loading under various conditions . 208	
Deformed Bars	sizes and weights124	-131
	elastic limit of substances	275
Elasticity 6	erastic limit of substances	070
	modulus of elasticity of substances 206, 359, 374	
Elements of Sections	explanatory notes	165
Í	formulas for calculation of elements 166	
E	structural shapes174	-202
Equivalent Measures	metric and U.S. standard378	-389
Evnancion Heat	table of coefficients	377
Eve Dans	sizes, dimensions and weights	150
Eye Dars	drace, drawersone and morganism	
Fiber Stresses	concrete, reinforced concrete	376
1	masonry, stone	376
	metals, alloys374	, 375
	miscellaneous substances	376
	structural steel	
	structural timber	359
	Structural tullior	
Fireproof Floors	see Floor Construction323	-339
Flat Rolled Steel 1	list of sizes	-114
1	tables of weights119	-121
Flexure of Beams	explanatory notes and formulas203	-211
Floor Construction	explanatory notes323	-328
21002 COMBERGEORIAL	fireproof floor systems325	, 326
	live loads, various building laws	324
	reinforced concrete beams and slabs333	-339
	terra cotta arches, safe loads and weights329	_332
_	thrust in arches326	941
Floor Plates	buckle plates340	044
	checkered plates	344
	corrugated plates, assembled	343
	trough plates, assembled	342
	,-	

	PAG	 1B
Formulas	bending moments and deflection206-	
	elements of sections	
	geometric and trigonometric 390-394, 398,	
,	roof trusses, stresses and length of members348-	
	stresses in beams, bending	
	" " buckling	
	" " impact	
	" " shearing	
	stresses in columns, cast iron	320
	" structural steel294,	295
	" structural timber	359
	stresses in bearing plates and steel slabs 250, 264,	265
Functions	. numbers 1 to 999400-	
	trigonometric420-	-425
Conn	. specific gravity and weight	370
Gages		246
Gages	beams, for punching	
	Birmingham wire gage	426
	channels, for punching	245
	comparative table of various gages	428
	United States standard gage	427
Gaga Variation		4-57
	explanatory notes	269
	angle and plate girders, safe loads272-	-290
*	beam and plate girders, safe loads	
	elements of compound sections	
	grillage foundations	
Grillage Foundations .	explanatory notes and calculation264	-268
Grips of Rivets	. length of field rivets	156
H-Reams	. beam safe load tables	230
II-Dealis	column safe load tables	296
	elements of sections	179
	profiles, dimensions and weights	71
Half Rounds	list of sizes	115
	. list of sizes	115
	rounds and squares, elements	. 199
	cast iron columns320	
		~-=
	effect on beams214	
Increase of Sections	method of rolling	59
Lateral Deflection	. explanatory notes and formula160, 204.	214
	dimensions for columns	162
	coefficients of expansion	377
	specific gravity and weight	370
Live Loads, Floors	building laws of various cities	324
	numbers 1 to 999	
	explanation and formula	
	sizes and dimensions	151

	PA	GE
Masoury and Stone	coefficients of expansion	377
	specific gravity and weight	371
	strength, unit fiber stresses	376
Materials	coefficients of expansion	377
MANUFACTION	specific gravity and weight	
	strength, unit fiber stresses374	
Manauras and Waishta	equivalents of U. S. and metric	
	mathematical formulas390	
	coefficients of expansion	377
Metals and Alloys		370
	specific gravity and weight	
	strength, unit fiber stresses	
Metric Tables	weights and measures	
Minerals	specific gravity and weight	371
Modulus of Elasticity	various substances	-3/0
Moments of Inertia	definition and formulas	
	structural sections, tables174	-197
	4	
Neutral Axis	definition and formulas165	
	structural shapes, tables	
Nuts	dimensions and weights144	L-147
	recessed pin nuts, sizes and dimensions	154
	sleeve nuts, sizes and dimensions	153
Nut Steel Flats	list of sizes	114
Ontonomo	list of sizes	115
Ordering Materials	general instructions	58
Oldelink Materians	Bowers with a contract to the second	
	25/	1_256
Piling, Steel Sheet	explanatory notes	957
	elements, rolled and assembled sections 194	108
	profiles, rolled sections	
Pins	explanatory notes	255
	bearing values, tables	258
	bending moments, tables	259
	cotter pins, sizes and dimensions	154
Pipe	black and galvanized142	143
Plata Girdara	. see Girders	L-290
Plates, Flat Rolled Steel	. extreme sizes	-113
	carbon steel, sheared, rectangular and circular . 111	1,112
	" , universal rectangular	111
	nickel steel, sheared, rectangular	113
	" universal, rectangular	113
Plates. Floor Plates	buckle plates, explanatory notes and sizes 340	, 341
	checkered plates, elements and safe loads	344
	" profiles, weights, dimensions	110
	corrugated plates, elements and safe loads 194	, 343
	" profiles, weights, dimensions	109
	trough plates, elements and safe loads194	, 342
	" profiles, weights, dimensions	109
Dist of Wall Plates	see Bearing Plates	, 251
n Cl	dimensions and weights	1-141
Pronies of Sections	details for punching and riveting25	2-254
Punching	construction specifications	163
- "	explanatory notes,	347
Purlins	· CAPIGHGUOIJ HOUGE, ,	

	PAGE
Radius of Gyration definition	165
angles back to back, tables	00-202
formulas for elements of sections	
structural shapes, tables1	74-195
Rails elements of A. R. A. and A. S. C. E. sections	195
profiles, weights and dimensions1	36. 137
Rails and Accessories weights and dimensions	140
Rail Clips profiles, dimensions and weights	141
Ratio of Slenderness definition	291
unit stresses for compression formulas	294
Recessed Pin Nuts, sizes and dimensions	154
Reciprocals numbers 1 to 999	
Rectangular Plates extreme sizes, carbon-and nickel steel	
Rectangular Sections areas.	
moments of inertia	
Reinforced Concrete see Concrete, Reinforced 122–133, 3	
Riveting construction specifications	
details for punching and riveting	
Rivets areas of rivet holes	254
conventional signs	252
dimensions	155
lengths for various grips	156
stresses, shearing and bearing values2	
structural details for riveting	
weights	157
Roofs explanatory notes	
live loads, building laws of various cities	324
snow and wind loads	345
trusses, stresses and length of members	
weights, roof covering and roof trusses	146, 347
Screw Threads Franklin Institute, U.S. and A.B. Co. standards	144
Section Modulus definition and formulas	165-173
structural shapes	
Segments, Circular coefficients of areas	
Separators standard for beams	248
Shearing Stresses longitudinal and vertical	
Sheared Plates extreme sizes, carbon-and nickel steel	
Shearing Values, Rivets. tables.	
Ship and Car Channels, see Channels, Ship and Car85-89, 1	
Skelp list of sizes	114
Sleeve Nuts sizes and dimensions	153
Snow Loads roofs and trusses.	345
Specifications American Bridge Company	
	108–104 4–57
American Society for Testing Materials	
Specific Gravity various substances	
Splice Bars elements of A. R. A. and A. S. C. E. sections	195
profiles, dimensions and weights	
Square and Round Bars area and weight	
Square Edge Flats list of sizes	
Squares, Square Roots . numbers 1 to 999	
Strength of Materials. unit fiber stresses	
Stresses see Beam Stresses	203-218

	PAG	
Tees	elements of sections	191
	profiles, weights and dimensions 98-	-105
	safe load tables	241
Terra Cotta	arches, ceilings, furring, partition, roofing326-	
Test Bars		L-57
Threads	length of bolt threads	145
	standard dimensions of screw thread	144
Thrust in Arches	effect in floor construction	
Tie Rods	length and weight	249
	spacing	328
Timber, Structural	A. R. E. A. unit stresses and explanatory notes. 358,	
	beams, deflections, limiting loads and spans	361
	" explanatory notes	360
	" safe load tables	
	coefficients of expansion	377
	columns, explanatory notes.	367
	" safe load tables	
	specific gravity and weight	370
Triangle Mach	concrete reinforcement	339
	functions of angles and triangles	
	natural420	
		194
1rough Plates	elements of sections	109
	profiles, weights and dimensions	
M	riveted sections, elements and safe loads	342
Trusses	explanatory notes	347
	stresses and length of members	
	weights of trusses	347
Turnbnckles	size and dimensions	153
Unit Stronger	see Fiber Stresses	-376
Universal Mill Plates	extreme sizes, carbon- and nickel steel	113
Unget Screw Ends	square and round bars148,	149
Opace Sciew Edua	Equate wile round sometimes and the second	
Vertical Shear	explanation	215
	formulas for various conditions of loading 207-	-211
Volume and Surface	solids398,	399
	2	001
Web Resistances	beams and channels	101
Weights	flat rolled steel, tables	
	rounds and squares	141
	shapes	-141
	various substances	-373
Weights and Measures	metric and U. S. Standard	-39T
Wind Loads, Pressure.	building specifications of various cities	324
	roofs and trusses	345
Wire and Sheet Metal	standard gages426	-428
Wooden Beams, Columns	see Timber, Structural360	-367
7 D	elements of sections170	192
Zee Dars	profiles, weights and dimensions106,	107
	safe load tables	242
	Sale load tables	212

PRODUCTS

PIG IRON AND FURNACE PRODUCTS
FERRO-MANGANESE AND SPIEGELEISEN
OPEN-HEARTH AND BESSEMER STEEL, ALLOY STEELS
INGOTS, BILLETS, BLOOMS, SLABS, SHEET BARS
ARMOR AND VAULT PLATE

PLATES FOR BRIDGES, SHIPS, TANKS, BOILERS, AND CARS
ROLLED STRUCTURAL SHAPES

BEAMS, CHANNELS, ANGLES, TEES, ZEES
STEEL MINE TIMBERS AND STEEL SHEET PILING
BAR MILL PRODUCTS

CONCRETE REINFORCEMENT BARS, AGRICULTURAL SHAPES

MISCELLANEOUS AND SPECIAL SHAPES

ELECTRIC TOOL STEELS

MERCHANT BARS

Squares, Rounds, Half Rounds, Hexagons, Ovals, Half Ovals
Flats, Skelp, Bands, Hoops, Cotton Ties

FLATS, SKELP, BANDS, HOOPS, COTTON TIES
HOOPS FOR SLACK BARREL COOPERAGE
TIRE AND VEHICLE SPRING STEEL

TRACK MATERIAL

RAILS AND SPLICE BARS, DUQUESNE RAIL JOINTS,
TRACK ACCESSORIES, STEEL CROSS TIES
FORGINGS

STANDARD FORGED AND HEAT-TREATED AXLES
CONNECTING RODS, CRANK SHAFTS AND ARCH BARS
WHEELS AND GEAR BLANKS,

AUTOMOBILE FLYWHEELS, PIPE FLANGES, SHAFT COUPLINGS
LOCOMOTIVE PISTONS

DERRICKS AND DRILLING RIGS

WORKS

COKE WORKS

BLAST FURNACES

 Carrie Furnaces.
 Rankin, Pa.

 Edith Furnace
 Pittsburgh, N. S., Pa.

 Isabella Furnaces.
 Etna, Pa.

 Lucy Furnaces
 Pittsburgh, Pa.

 Neville Furnace
 Neville Island, Pa.

 Niles Furnace
 Niles, O.

 Steubenville Furnace
 Steubenville, O.

 Zanesville Furnace
 Zanesville, O.

STEEL WORKS, FURNACES AND ROLLING MILLS

ROLLING MILLS

Clark Mills Pittsburgh, Pa.
Greenville Mills Greenville, Pa.
McCutcheon Mills Pittsburgh, N. S., Pa.
McDonald Bar Mills McDonald, O.
Monessen Mills Monessen, Pa.
Painter Mills Pittsburgh, N. S., Pa.
Upper Union Mills Pittsburgh, Pa.
Lower Union Mills Pittsburgh, Pa.
Upper Union Mills Youngstown, O.
Tower Union Mills Youngstown, O.

FORGE AND WHEEL WORKS

WAREHOUSES

Baltimore Warehouse Baltimore, Md.
Cleveland Warehouse Cleveland, O.
New England Warehouse Allston, Mass.
Pittsburgh Warehouse Pittsburgh, Pa.
Waverly Warehouses Newark, N. J.

The Marine I rust vo. Dius.

FRED C. DEMING, MANAGER OF SALES

GENERAL OFFICES:

Pittsburgh, Carnegie Building.

DISTRICT OFFICES:

Birmingham, Brown-Marx Building,
Boston, 120 Franklin Street,
Buffalo, The Marine Trust Company Building,
Chicago, 208 South La Salle Street,
Cincinnati, Union Trust Building,
Cleveland, Rockefeller Building,
Denver, First National Bank Building,
Detroit, Ford Building,
New Orleans, Maison Blanche,
New York, Hudson Terminal, 30 Church Street,
Philadelphia, Widener Building,
Pittsburgh, Carnegie Building,
St. Louis, Third National Bank Building,
St. Paul, Pioneer Building.

EXPORT REPRESENTATIVES:

UNITED STATES STEEL PRODUCTS CO., New York, Hudson Terminal, 30 Church Street.

PACIFIC COAST REPRESENTATIVES:

UNITED STATES STEEL PRODUCTS CO., PACIFIC COAST DEPT.

Los Angeles, Jackson Street and Central Avenue,

Portland, Selling Building,

San Francisco, Rialto Building,

Seattle, Fourth Avenue South and Connecticut Avenue.

The Marine Trust Co. Bldg.

A COMPANY

