目次

無機化学

目次

第Ⅰ部

遷移元素

d 軌道・f 軌道(内殻)の秋に電子が入っていき、最外殻電子の数は[1]1か2

(②ランタノイド・③アクチノイド:f 軌道に入っていく過程)

同族元素だけでなく、同周期元素も性質が似ている。

1 性質

- 単体は密度が4大きく、融点が5高い金属
- d 軌道の一部の電子も価電子
- 化合物やイオンは⑥白色のものが多い
- 安定な[7]錯イオンを形成しやすい(图d 軌道に空きがある)
- 単体や化合物は (9) 触媒になるものが多い*1
- 酸化数が $\left\{ \begin{array}{c} 小さい \\ 大きい \end{array} \right\}$ 酸化物は $\left\{ \begin{array}{c} \boxed{10 \cuple 2007 cm} \\ \boxed{11 \cup be} \end{array} \right\}$ 剤

2 鉄・コバルト・ニッケル

2.1 鉄

2.1.1 性質

- ・ 常温で 12 強磁性
- ◆ イオン化傾向が水素より 13大きい
 - [14]強酸と反応([15]濃硝酸には[16]不動態となり反応しない)
- 17高温の水蒸気と反応して 18 緻密な 19 黒錆が生成(酸化被膜)
- 湿った空気中では 20 粗い 21 赤錆を生成

酸化鉄(III)	Fe_2O_3	22 赤褐色	23 常磁性
四酸化三鉄	Fe_3O_4	24 <u>黒</u> 色	25 強磁性
酸化鉄(Ⅱ)	FeO	26黒色	27 <mark>発火</mark> 性

軟鋼	28	29)	30ステンレス鋼	KS 磁石鋼
C0.2% 未満	C2% 未満	C2% 以上	31 Cr, Ni	Co, W, Cr
加工しやすい	硬くて弾性あり	硬くてもろい	錆びにくい	
鉄筋・鉄骨	レール・バネ	鋳物	キッチン	人工永久磁石

^{*1} \bigcirc VsO₅, MnO₂, Fe₃O₄, Pt

2.1.2 製法

鉄の製錬工業的製法

1. 一酸化炭素の再生

$$C + CO_2 \longrightarrow 2CO$$

2. 石灰石の強熱

$$CaCO_3 \longrightarrow CaO + CO_2$$

3. 49 スラグの生成

$$\operatorname{CaO} + \operatorname{SiO}_2 \longrightarrow \operatorname{CaSiO}_3$$
 $\operatorname{CaO} + \operatorname{Al}_2\operatorname{O}_3 \longrightarrow \operatorname{Ca}(\operatorname{AlO}_2)_2$ $\}$ セメントの原料など

50 転炉

[51]<mark>銑鉄</mark>に高温の[52]<mark>酸素</mark>を吹き付けて[53]鋼になる。

2.1.3 反応

• 塩酸との反応

$$Fe + 2 HCl \longrightarrow FeCl_2 + H_2 \uparrow$$

• 高温の水蒸気との反応

$$3 \operatorname{Fe} + 4 \operatorname{H}_2 O \longrightarrow \operatorname{Fe}_3 O_4 + 4 \operatorname{H}_2 \uparrow$$

• 微量に含まれる炭素・鉄・水による[54]局部電池([55]食塩などが溶けていたら反応速度上昇)

正極(
$$\overline{\mathbf{56}}$$
C) $O_2 + 2 H_2 O + 4 e^- \longrightarrow 4 O H^-$
負極($\overline{\mathbf{57}}$ Fe) $Fe \longrightarrow Fe^{2++} 2 e^-$

58水酸化鉄(Ⅱ)の生成

$$Fe^{2+} + 2OH^{-} \longrightarrow Fe(OH)_{2}$$
 (59)緑色)

● 速やかに 60 水酸化鉄 (Ⅱ) が酸素により酸化

$$4\operatorname{Fe}(\operatorname{OH})_2 + \operatorname{O}_2 + 2\operatorname{H}_2\operatorname{O} \longrightarrow 4\operatorname{Fe}(\operatorname{OH})_2$$

61 水酸化鉄 (Ⅲ) の脱水

$$Fe(OH)_3 \longrightarrow FeO(OH) + H_2O$$
(酸化水酸化鉄(III)濃橙色)

$$2 \operatorname{Fe}(OH)_3 \longrightarrow \operatorname{Fe}_2O_3 \cdot n \operatorname{H}_2O + (3-n)\operatorname{H}_2O$$
 (62)赤褐色)

(エバンスの実験)

2.2 硫酸鉄(Ⅱ)7水和物

化学式: [63] FeSO₄·7 H₂O

2.2.1 性質

- 64 青緑色の固体
- Fe²⁺ 半反応式

$$\overline{(65)}$$
Fe²⁺ \longrightarrow Fe³⁺ + e⁻

● 空気中で表面が[66]Fe₂(SO₄)₃([67]黄褐色)

2.2.2 製法

鉄に 68 希硫酸を加えて、蒸発濃縮

 $Fe + H_2SO_4 \longrightarrow FeSO_4 + H_2 \uparrow$

2.3 塩化鉄(III)6水和物

化学式: [69] FeCl₃·6 H₂O

2.3.1 性質

- [70]黄褐色で[71]潮解性のある固体
- 72 酸性

($\overline{(73)} \text{Fe}^{3+} + \text{H}_2\text{O} \Longrightarrow \text{FE}(\text{OH})^{2+} + \text{H}^+$ $K_1 = 6.0 \times 10^{-3} \text{ mol/L}$)

2.3.2 製法

鉄に希塩酸を加えてから、塩素を通じる。

 $\mathrm{Fe} + 2\,\mathrm{HCl} \longrightarrow \mathrm{FeCl}_2 + \mathrm{H}_2 \,\!\!\uparrow$

 $2\operatorname{FeCl}_2+\operatorname{Cl}_2 \longrightarrow 2\operatorname{FeCl}_3$

2.4 鉄イオンの反応

	NaOH	$K_4[Fe(CN)_6]$	$K_3[Fe(CN)_6]$		
Fe ²⁺	74)Fe(OH) ₂ ↓	$\text{Fe}_2[\text{Fe}(\text{CN})_6]\downarrow$	$KFe[Fe(CN)_6] \downarrow$	75)変化なし	76 変化なし
77 淡緑色	78 緑白色	79青白色	80 濃青色	81 淡緑色	82 <u>淡緑</u> 色
Fe^{3+}	(83) Fe(OH) ₃ ↓	$KFe[Fe(CN)_6]\downarrow$	$Fe[Fe(CN)_6]aq$	84)Fe ²⁺ aq	$[Fe(NCS)]^{2+}$
85 黄褐色	86 赤褐色	87 濃青色	[88] <mark>暗褐</mark> 色	89 淡緑色	90血赤色

- Fe²⁺, Fe³⁺ は、 91 OH⁻ とも 92 OH⁻ とも錯イオンを形成しない
- ベルリンブルーとターンブルブルーは [93]同一物質

2.5 塩化コバルト(II)

化学式: 94 CoCl₂

2.5.1 性質

- [95]青色で[96]潮解性のある固体
- 6水和物は 97 淡赤色
- 塩化コバルト紙を用いた 98 水の検出
- CO³⁺ は 99 NH₃ と錯イオンを形成

2.6 硫酸ニッケル(Ⅱ)

化学式: [100]NiSO₄

- 黄緑色で潮解性のある固体
- 6 水和物は青緑色
- Ni²⁺ は 101 NH₃ と錯イオンを形成

3 銅

3.1 銅

3.1.1 性質

- 102赤色の金属光沢
- 他の金属とさまざまな色の 103 合金
- 展性・延性が 104 大きく、電気・熱伝導性が 105 高い
- イオン化傾向が水素より [106]低く、酸化力のある酸と反応
- 空気中で徐々に酸化して、緻密な錆([107]酸に溶解)が生成 [108]赤色の酸化銅(I)乾・[109]青緑の錆([110]緑青)湿

3.1.2 製法

銅の製錬 粗銅・ [111] 電解精錬 純銅 工業的製法

[112] 高炉 | [113] 黄銅鉱(「114] CuFeS₂)・ [115] コークス ・ [116] 石灰石 ・ [117] ケイ砂 を高温で反応

[119]転炉 | 硫化銅(I)に(120)酸素を吹き付けて、(121)粗銅にする。

$$2 \operatorname{Cu}_2 S + 3 \operatorname{O}_2 \longrightarrow 2 \operatorname{Cu}_2 O + 2 \operatorname{SO}_2$$

$$\operatorname{Cu}_2 S + 2 \operatorname{Cu}_2 O \longrightarrow 6 \operatorname{Cu} + \operatorname{SO}_2$$

3.1.3 反応

• 銅と希硝酸

$$3 \,\mathrm{Cu} + 8 \,\mathrm{HNO}_3 \longrightarrow 3 \,\mathrm{Cu}(\mathrm{NO}_3)_2 + 4 \,\mathrm{H}_2\mathrm{O} + 2 \,\mathrm{NO} \uparrow$$

• 銅と濃硝酸

$$Cu + 4 HNO_3 \longrightarrow Cu(NO_3)_2 + 2 H_2O + 2 NO_2 \uparrow$$

• 銅と熱濃硫酸

$$Cu + 2 H_2 SO_4 \longrightarrow CuSO_4 + 2 H_2 O + SO_2 \uparrow$$

- 空気中で 1000°C 未満で加熱して、(122)黒色の(123)酸化銅(Ⅱ) 生成 $2 \operatorname{Cu} + \operatorname{O}_2 \longrightarrow 2 \operatorname{CuO}$
- さらに 1000°C 以上で加熱して、 124赤色の 125酸化銅 (I) 生成 $4 \, \mathrm{CuO} \longrightarrow 2 \, \mathrm{Cu}_2\mathrm{O} + \mathrm{O}_2$
- 銅イオンから水酸化銅(Ⅱ)の生成

$$\operatorname{Cu_2}^+ + 2\operatorname{OH}^- \longrightarrow \operatorname{Cu}(\operatorname{OH})_2 \downarrow$$

• 水酸化銅(Ⅱ)とアンモニアの反応

$$Cu(OH)_2 + 4NH_3 \longrightarrow [Cu(NH_3)_4]^{2+} + 2OH^{-1}$$

水酸化銅(Ⅱ)の加熱

$$Cu(OH)_2 \longrightarrow CuO + H_2O$$

3.2 硫酸銅(Ⅱ)5 水和物 4 銀

3.2 硫酸銅(Ⅱ)5水和物

3.2.1 性質

- [126] 青色の固体 (結晶中の [127] [Cu(H₂O)₄]²⁺の色)
- 温度による物質変化

$$5$$
 水和物 $\xrightarrow{102^{\circ}\text{C}}$ $\xrightarrow{128|3}$ 水和物 $\xrightarrow{113^{\circ}\text{C}}$ $\xrightarrow{129|1}$ 水和物 $\xrightarrow{150^{\circ}\text{C}}$ $\xrightarrow{130|\text{無水和物}}$ $\xrightarrow{650^{\circ}\text{C}}$ $\xrightarrow{131|\text{隆化銅}$ (II) $\xrightarrow{132|5}$ 色 $\xrightarrow{133|6}$ $\xrightarrow{133|6}$

- ◆ Cu²⁺ による (134) 殺菌作用(農薬)
- 還元性を持つ有機化合物の検出*2
 135赤色の酸化銅(I)が生成

3.2.2 製法

銅に[136] 濃硫酸をかけてから[137] 加熱。

3.2.3 反応

3.3 銅(II) イオンの反応

	少々の塩基	過剰の NH ₃	濃塩酸	H ₂ S(138 全液性)
Cu^{2+}	[139]Ca(OH) ₂ ↓	$[140][Ca(NH_3)_4]^{2+}$ aq	[141] [CuCl ₄] ²⁻ aq	142]CuS↓
143青色	144青白色	145 深青 色	[146]黄緑色	147黒色

- 炎色反応: 148 青緑色
- 加熱すると 149分解
- Cu²⁺ は [150] NH₃ と錯イオンを形成し、 [151] OH⁻ とは形成しない

3.4 銅の合金

[152] <mark>黄銅</mark> (真鍮)	[152] <mark>黄銅</mark> (真鍮) [153] <u>洋銀</u> (洋白)		[155]青銅	[156]ジュラルミン	
157 Zn	158) Zn, Ni	(159)Ni	160) <mark>Sn</mark>	161 AI (主成分)	
適度な強度と加工性	柔軟で錆びにくい	柔軟で錆びにくい	硬くて錆びにくい	軽くて丈夫	
楽器・水道用具	食器・装飾品	五十円玉・五百円玉	像	航空機・車両	

4 銀

4.1 銀

4.1.1 性質

- 展性・延性が 162 大きく、電気・熱伝導性が 163 最も高い
- イオン化傾向が水素より 164小さい165酸化力のある酸(166)硝酸・167熱濃硫酸)と反応
- 空気中で酸化しにくいが、 [168]硫化水素とは容易に反応

4.1.2 製法

● 銅の電解精錬の [169] 陽極泥 工業的製法

^{*&}lt;sup>2</sup> フェーリング液・ベネディクト液

 4.2 銀(I)イオンの反応
 4 銀

• 銀の化合物の熱分解・光分解 酸化銀の熱分解 $2\,\mathrm{Ag_2O} \longrightarrow 4\,\mathrm{Ag} + \mathrm{O_2}$ ハロゲン化銀 AgX の感光 $2\,\mathrm{AgX} \longrightarrow 2\,\mathrm{Ag} + \mathrm{X_2}$

4.1.3 反応

• 銀と希硝酸

$$3\,\mathrm{Ag} + 4\,\mathrm{HNO_3} \longrightarrow 3\,\mathrm{AgNO_3} + 2\,\mathrm{H_2O} + \mathrm{NO} \,\!\uparrow$$

• 銀と濃硝酸

$$Ag + 2 HNO_3 \longrightarrow AgNO_3 + H_2O + NO_2 \uparrow$$

• 銀と熱濃硫酸

$$2\,\mathrm{Ag} + 2\,\mathrm{H}_2\mathrm{SO}_4 \longrightarrow \mathrm{Ag}_2\mathrm{SO}_4 + 2\,\mathrm{H}_2\mathrm{O} + \mathrm{SO}_2 \,\uparrow$$

• 銀と硫化水素

$$4 \operatorname{Ag} + 2 \operatorname{H}_2 \operatorname{S} + \operatorname{O}_2 \longrightarrow 2 \operatorname{Ag}_2 \operatorname{S} + 2 \operatorname{H}_2 \operatorname{O}$$

4.2 銀(I) イオンの反応

170 硝酸銀水溶液

	少量の塩基	過剰の NH ₃	HCl	H_2S (171 全液性)	K_2CrO_4
Ag^{2+}	172 Ag ₂ O↓	$[173][Ag(NH_3)_2]^+$	174]AgCl↓	175)Ag ₂ S↓	176)Ag ₂ CrO ₄ ↓
<u>177無</u> 色	178 褐色	〔179 <mark>無</mark> 色	180	181)黒色	182 赤褐色

• 銀と少量の塩基

$$2 \operatorname{Ag}^+ + 2 \operatorname{OH}^- \longrightarrow \operatorname{Ag}_2 \operatorname{O} \downarrow + \operatorname{H}_2 \operatorname{O}$$

銀と過剰の NH₃

$$Ag_2O + 4NH_3 + H_2O \longrightarrow 2[Ag(NH_3)_2]^+ + 2OH^-$$

● 銀と HCl

$$Ag^+ + Cl^- \longrightarrow AgCl \downarrow$$

銀と H₂S

$$2\,\mathrm{Ag}^{+} + \mathrm{S_2}^{-} \longrightarrow \mathrm{Ag_2S} \downarrow$$

● 銀と K₂CrO₄

$$AgCl + 2NH_3 \longrightarrow [Ag(NH_3)_2]^+ + Cl^-$$

4.3 難溶性化合物の溶解性

		HNO_3	NH_3	NaS_2O_3	KCN
${ m Ag_2S}\!\downarrow$	[183]黒色	[184] <mark>溶ける</mark>	[185]溶けない	[186]溶けない	〔187〕 <mark>溶ける</mark>
$Ag_2O\downarrow$	188 褐色	[189] <mark>溶ける</mark>	190 <u>溶ける</u>	[191] <mark>溶ける</mark>	192 <u>溶ける</u>
AgCl↓	193 白	[194]溶けない	195 溶ける	[196] <mark>溶ける</mark>	(197)溶ける
$\mathrm{AgBr}\!\downarrow$	198)淡黄色	[199]溶けない	200 やや溶ける	(201)溶ける	(202)溶ける
AgI↓	203黄色	(204)溶けない	205)溶けない	[206]溶ける	(207)溶ける
溶解している物質	208 無色	(209) Ag $^+$ (AgNO ₃)	$[210][Ag(NH_3)_2]^+$	$[211][Ag(S_2O_3)_2]^{3-}$	[212][Ag(CN) ₂] ⁻

5 クロム・マンガン

- 5.1 単体
- 5.2 クロム酸カリウム・二クロム酸カリウム
- 5.3 過マンガン酸カリウム
- 5.4 マンガンの安定な酸化数

第川部

APPENDIX

A 気体の乾燥剤

固体の乾燥剤は[213] U字管につめて、液体の乾燥剤は[214]洗気瓶に入れて使用。

性質	乾燥剤	化学式	対象	対象外 (不適)
酸性	[215]十酸化四リン	216)P ₄ O ₁₀	酸性・中性	塩基性の気体([217]NH ₃)
政江	218) 濃硫酸	219 H ₂ SO ₄	1 段任、中任	+ (220)H ₂ S ((221)還元剤)
中性	222 塩化カルシウム	223 CaCl ₂	ほとんど全て	224]NH ₃
十庄	225シリカゲル	226SiO ₂ · n H ₂ O	はこんと主じ	特になし
 右	227酸化カルシウム	228 CaO	中性・塩基性	酸性の気体
塩基性	(229)ソーダ石灰	230 CaO と NaOH	中住。塩基住	$\boxed{231} \textcolor{red}{\text{Cl}_2}, \boxed{232} \textcolor{red}{\text{HCI}}, \boxed{233} \textcolor{red}{\text{H}_2} \textcolor{red}{\text{S}}, \boxed{234} \textcolor{red}{\text{SO}_2}, \boxed{235} \textcolor{red}{\text{CO}_2}, \boxed{236} \textcolor{red}{\text{NO}_2}$

B 水の硬度

水の中の重荷 $\mathrm{Ca^{2+}}$ と $\mathrm{Mg^{2+}}$ を $\mathrm{CaCO_3}$ として換算した時の濃度 $[\mathrm{mg/L}]$

C 錯イオンの命名法

(主に遷移) 金属イオンに対して、[238] 非共有電子対を持つ[239] 分子や[240] イオンが[241] 配位結合

「配位子の数(数詞)配位子 金属 (価数) 酸 (陰イオンの場合) イオン」

金属イ	オン	Ag^+	Cu	ı ⁺	Cu ²⁺	Zn^{2+}	-	Fe ²⁺	Fe ³⁺	Co ³⁺	Ni ²⁺	Cr^{3+}	Al^{3+}	
配位	数	2	42) <mark>2</mark>			243 <mark>4</mark>				24	4) <mark>6</mark>			
		245	直線	系 (246] <mark>正方</mark> 形	247 正四页	1体 形			(248) <u>IE</u> /	\面体 开	邕		
数	1		2	2	3	4		5		6		7	8	
数詞	数詞 249 モノ 250 ジ)ジ	251	<u>J</u> (252) −	トラ	(253) [^] >	ノタ	(254)ヘキサ	25	55)ヘプタ	256 7	ウタ	
		257ビス 258トリス												
配位子	:	NH_3			CN^-	$_{\mathrm{H_2O}}$		OH^-		Cl-		H_2N-C	$\overline{\mathrm{CH_{2}CH_{2}}}$	$-NH_2$
名称	25	9アン	ミン	260	シアニド	(261)アクア	26	2)ヒドロ=	Fシド	(263)クロ	リド	(264) <u></u>	チレンジ	アミン

エチレンジアミン \dots 1 分子あたり 2 か所で 265 配位結合

する (2 座配位子) (266 キレート 錯体)

• $[Zn(OH)_4]^{2-}$

[267]テトラヒドロキシド亜鉛(Ⅱ)酸イオン

 $\bullet \left[\operatorname{Zn}(\operatorname{NH}_3)_4\right]^{2+}$

[268]テトラアンミン亜鉛(Ⅱ)イオン

• $[Ag(S_2O_3)_2]^{3-}$

[269]ビス (チオスルファト) 銀(1) イオン

• $[Cu(H_2NCH_2CH_2NH_2)]^{2+}$

[270]ビス(エチレンジアミン)銅(Ⅱ)イオン

D 金属イオンの難容性化合物

Cl^-	$\mathrm{SO_4}^{2-}$	H_2S	$\mathrm{H_2S}$	OH^-	OH^-	NH_3
		酸性	中・塩基性	NH3	過剰	過剰

			酸性 中・塩	基性 NH3 過	過剰 過剰		
K ⁺	[271]沈殿しない	272 沈殿しない	273 沈殿しない	(274)沈殿しない	275)沈殿しない	[276]沈殿しない	277 沈殿し
	(278)無色	279 <mark>無</mark> 色	280 <mark>無</mark> 色	(281)無色	(282)無色	(283)無色	(284)無
Ba^{2+}	[285]沈殿しない	286)BaSO ₄	(287)沈殿しない	[288]沈殿しない	[289]沈殿しない	[290]沈殿しない	[291]沈殿し
	(292)無色	293)白色	(294)無色	(295)無色	(296)無色	(297)無色	(298) 無 (
Sr^{2+}	[299]沈殿しない	300)SrSO ₄	301)沈殿しない	302 沈殿しない	303 沈殿しない	304)沈殿しない	(305)沈殿し
	(306)無色	307 白 色	308 <u>無</u> 色	(309)無色	310無色	311 <u>無</u> 色	(312) <u>#</u> (
Ca ²⁺	(313)沈殿しない	(314)CaSO ₄	315 沈殿しない	316 沈殿しない	317)Ca(OH) ₂	318)Ca(OH) ₂	319 Ca(O
	320 <u>無</u> 色	321	322 <u>無</u> 色	323 <mark>無</mark> 色	324	325 白 色	(326) <u></u>
Na ⁺	327 沈殿しない	(328)沈殿しない	(329)沈殿しない	330 沈殿しない	331 沈殿しない	332 沈殿しない	333 沈殿し
	(334)無色	335 <u>無</u> 色	336 <u>無</u> 色	(337)無色	(338)無色	(339)無色	(340) <u>#</u> (
Mg^{2+}	341 沈殿しない	(342)沈殿しない	(343)沈殿しない	(344)沈殿しない	345 Mg(OH) ₂	346 Mg(OH) ₂	(347)沈殿し
	(348)無色	(349)無色	350 <u>無</u> 色	(351)無色	(352) <u>台</u> 色	353) 白色	(354)無
Al^{3+}	355 沈殿しない	356)沈殿しない	357 沈殿しない	358)AI(OH) ₃	(359)AI(OH) ₃	(360)[AI(OH) ₄] ⁻	361)AI(O
	(362)無色	(363)無色	(364)無色	365) 白	366	<u>367</u> 色	(368) <u>≐</u> 1
Mn ²⁺	369 沈殿しない	370 沈殿しない	(371) <mark>沈殿しない</mark>	372)MnS	373 Mn(OH) ₂	374)Mn(OH) ₂	(375)Mn(O
	(376)無色	377 <u>無</u> 色	378 <u>無</u> 色	379)淡桃色	380	381 白 色	(382) <u>≐</u> 1
Zn ²⁺	383 沈殿しない	384)沈殿しない	385 沈殿しない	(386) <mark>ZnS</mark>	387 Zn(OH) ₂	388 [Zn(OH) ₄] ²⁻	(389)[Zn(NH
	(390)無色	<u>391)無</u> 色	392 <u>無</u> 色	393 白 色	394) 白 色	(395)無色	(396) <u>#</u> 1
Cr^{3+}	397 沈殿しない	398)沈殿しない	399沈殿しない	(400)沈殿しない	401)Cr(OH) ₃	[402][Cr(OH) ₄]	(403)Cr(O
	(404)無色	(405)無色	406 <u>無</u> 色	(407)無色	408 灰緑色	409 緑色	(410)灰緑
Fe ²⁺	(411) <mark>沈殿しない</mark>	(412)沈殿しない	(413)沈殿しない	414)FeS	415)Fe(OH) ₂	416)Fe(OH) ₂	(417)Fe(C
	(418)無色	(419)無色	420無色	421黒色	422 緑白色	423 緑白色	424)緑白
Fe ³⁺	(425)沈殿しない	(426)沈殿しない	427)Fe ²⁺	428 FeS	429 Fe(OH) ₃	430)Fe(OH) ₃	(431)Fe(C
	432無色	433無色	434)淡緑色	435黒色	(436) <mark>赤褐</mark> 色	437 赤褐色	438)赤褐
Cd^{2+}	(439)沈殿しない	(440)沈殿しない	441 CdS	442 CdS	443 Cd(OH) ₂	444 Cd(OH) ₂	445)[Cd(NF
	(446)無色	(447)無色	(448)黄色	(449)黄色	450 白 色	451 白色	(452) <u>#</u>
Co^{2+}	453 沈殿しない	(454)沈殿しない	455 CoS	456 Co(OH) ₂	457 Co(OH) ₂	458 Co(OH) ₂	459 Co(C
	(460)無色	(461)無色	462黒色	463青色	464)青色	465 青色	466)青
Ni ²⁺	467 沈殿しない	(468)沈殿しない	469 NiS	470 Ni(OH) ₂	471)Ni(OH) ₂	472)Ni(OH) ₂	473][Ni(NF
	<u>474)無</u> 色	<u>475)無</u> 色	<u>476</u> <u>黒</u> 色	477 緑白 色	478 緑白色	479 緑白 色	480 青紫
Sn ²⁺	481 沈殿しない	(482)沈殿しない	(483)SnS	(484)SnS	(485)Sn(OH) ₂	(486)[Sn(OH) ₄] ²⁻	(487)Sn(C
	色	(489)無色	490 褐色	491 褐色	492 白 色	493 白 色	494 白
Pb ²⁺	495)PbCI	496)PbSO ₄	(497)PbS	498)PbS	499)Pb(OH) ₂	[Pb(OH) ₄] ²⁻	501)Pb(C
2.	502 白 色	<u>503</u> 色	<u>504</u> <u></u> 色	<u>505</u> <u>黒</u> 色	506 白 色	<u>507無</u> 色	508白
Cu ²⁺	509 沈殿しない	510 沈殿しない	511)CuS	512)CuS	513)Cu(OH) ₂	514)Cu(OH) ₂	515 Cu(NF
2.	<u>516無</u> 色	<u>517無</u> 色	518 白 色	519 白 色	520青白色	521青白色	522 深青
Hg^{2+}	523 沈殿しない	524)沈殿しない	525 HgS	526)HgS	527 HgO	528 HgO	(529)Hg
-	<u>530無</u> 色	<u>531無</u> 色	<u>532</u> 黒色	<u>533</u> 黒色	<u>[534]黄</u> 色	535黄色	536)黄
${\rm Hg_2}^{2+}$	537 Hg ₂ Cl ₂	538)沈殿しない	539 HgS	540 HgS	541 HgO	542 HgO	(543)Hg
	544 白 色	<u>545</u> 無色	<u>[546]</u> 色	<u>547</u> <u>黒</u> 色	548 <u>黄</u> 色	(549) <u>黄</u> 色	550黄

 NH_3

			酸性 中・塩	基性 NH3	過剰 過剰		
Ag^+	(551)AgCl	552 沈殿しない	553 Ag ₂ S	(554)Ag ₂ S	(555)Ag ₂ O	556)Ag ₂ O	557)[Ag(N
	558 白 色	559 <u>無</u> 色	<u>560</u> 黒色	<u>561</u> <u>黒</u> 色	562 褐色	563 褐色	(564) 無

 OH^-

 OH^-

 H_2S

SO₄²⁻

 H_2S

 Cl^-

E 金属イオンの系統分離