자동장치이론 HW1

20181593 계인혜

1.12

a. DFA:

b. Regular expression : b(bb)*(aa)*

1.22

a. DFA:

b. Regular expression : $/\#(a \cup b \cup / \cup (\#^*(a \cup b)))^*\#/$

1,30

Example 1.73:

Let p be the pumping length and choose s to be the string 0^p1^p . You know that s is a member of 0^*1^* and has length at least p. |xy| must be \le p, so y consists of all zeros. Let i=0, so then the string xz contains fewer zeros and therefore the string s cannot be pumped. Thus, we have a contradiction, so 0^*1^* is not regular.

Error: The string xz does contain fewer zeros. However, the resulting string is still in the language because 0*1* allows an arbitrary number of zeros. In other words, the language 0*1* allows string with different number of 0's and 1's. Hence, there is no contradiction.

1.31

Let $D_A = (Q_A, \Sigma, \delta_A, q_A, F_A)$, $D_B = (Q_B, \Sigma, \delta_B, q_B, F_B)$ be two DFAs that recognize A and B, respectively. Here, we shall construct a DFA $D = (Q, \Sigma, \delta, q, F)$, that recognizes the perfect shuffle of A and B.

At first, DFA D can be defined as follows.

- Q = $Q_A \times Q_B \times \{A, B\}$, which keeps track of all possible current states of two DFAs and which DFA to match.
- $q = (q_A, q_B, A)$, which states that D starts with D_A, D_B and the next character should be in D_A .
- F = $F_A \times F_A \times \{A\}$, which states that D accepts the string if both D_A and D_B are in accept states, and the next character should be in D_A .

And we have to make D switch from running D_A and running D_B after each character is read. So D needs to keep track of the current state of D_A and D_B .

- $\delta = \delta \big((x, y, A), a \big) = (\delta_A(x, a), y, B)$, which x is current state of D_A , y is current state of D_B , and next character is a. We should change the current state of A to $\delta_A(x, a)$, B's current state is same, and the next character will be in D_B .

Plus, we have to keep track of whether the next character should be matched in D_A and D_B .

 $\delta = \delta((x,y,B),b) = (x,\delta_B(y,b),A)$, which x is current state of D_A , y is current state of D_B , and next character is b. We should change the current state of B to $\delta_B(y,b)$, A's current state is same, and the next character will be in D_A .

1.40

The proof is by contradiction. Assume that E is a regular language. By the pumping Lemma, there is a constant p associated with E.

At first, choose the string $s = \begin{bmatrix} 1 \\ 0 \end{bmatrix}^p \begin{bmatrix} 0 \\ 1 \end{bmatrix}^p$. $s \in L$ because $1^p 0^p = (0^p 1^p)^R$, and $|s| = 2p \ge p$.

Then, s can be written as s = xyz such that $x = \varepsilon$, $y = \begin{bmatrix} 1 \\ 0 \end{bmatrix}^p$, $z = \begin{bmatrix} 0 \\ 1 \end{bmatrix}^p$, and $|y| = p \ge p$.

In any possible division y = uvw, we mush have $v = \begin{bmatrix} 1 \\ 0 \end{bmatrix}^m$, where $0 < m \le p$.

Choose i=2, then $xyz = xuv^2wz = \begin{bmatrix} 1 \\ 0 \end{bmatrix}^{p+m} \begin{bmatrix} 0 \\ 1 \end{bmatrix}^p$. Because m > 0, $1^{p+m}0^p \neq (0^{p+m}1^p)^R$, that is the top row can't be the reverse of the bottom row. Thus, $xuv^2wz \notin L$. This is a contradiction. Hence, L is not a regular language.

1.52

Suppose that Y is regular. Let p be the pumping length given by pumping lemma. Let s = $1^p \# 1^{p+1} \# ... \# 1^{2p}$. Because $s \in Y$ and $|s| \ge p$, we can split s into xyz such that for $i \ge 0$, $xy^iz \in Y$ by the pumping lemma.

Because $|xy| \le p$ and $|y| \ge 0$, y must consist of between 1 and p ones. The string xyyz would generate between p+1 and 2p of 1s before the first #. In each case, $s \notin Y$ because some $x_i \ne x_i$, $for i \ne j$. This violates the pumping lemma, therefore Y is not regular.

1.38

For a top row with n bits and a bottom row with n bits, denote them as $t = t_{n-1} t_{n-2} \dots t_1 t_0$,

B= b_{n-1} b ... b_1 b_0 separately. Read w in reverse order because for any language A, if A is regular then the reverse of A is also regular. In order to be the bottom row is three times the top row, the following conditions must be satisfied where c_i is carry bit, t_i and b_i is LSB, $t_{-1} = c_0 = 0$ and

$$a \oplus b = (a \wedge b) \vee (a \vee b)$$
.

-
$$b_i = t_i \oplus t_{i-1} \oplus c_i$$

-
$$b_i = t_i$$

$$c_i = (t_i \wedge t_{i-1}) \vee (t_i \vee t_{i-1}) \wedge c_i$$

Now we need to construct DFA M with 4 states, and a trap state.

$$q_0: \{c_i, t_{i-1}\} = \{0, 0\}$$

$$q_1: \{c_i, t_{i-1}\} = \{0,1\}$$

$$q_2: \{c_i, t_{i-1}\} = \{1,1\}$$

$$q_3: \{c_i, t_{i-1}\} = \{1, 0\}$$

