თავი 11 დისპერსიული ანალიზი

მეათე თავში განვიხილეთ ორი დამოუკიდებელი ნორმალური შერჩევის საშუალოების შედარების ამოცანა. კერძოდ, შევამოწმეთ ჰიპოთეზა პოპულაციების საშუალოების ტოლობის შესახებ და ავაგეთ ნდობის ინტერვალი პოპულაციების საშუალოთა სხვაობისთვის. ამ მიზნით გამოვიყენეთ t კრიტერიუმი.

ვთქვათ, ახლა გვაქვს ორზე მეტი შერჩევა და გვაინტერესებს შევამოწმოთ ჰიპოთეზა საშუალოთა ტოლობის შესახებ. ჩვენ ამ სიტუაციაში ვერ გამოვიყენებთ t -კრიტერიუმს, რადგანაც მრავალჯერადი შედარების დროს (შერჩევების თითოეული წყვილის შედარებისას), შეცდომების ალბათო-ბა ძალიან სწრაფად იზრდება შედარებების რიცხვის ზრდასთან ერთად.

მეთოდს, რომელიც გვაძლევს რამდენიშე საშუალოს შედარების საშუალებას, ეწოდება დ ი ს პ ე რ ს ი უ ლ ი ა ნ ა ლ ი ზ ი (რომლის აბრევიატურაა — ANOVA). ერთი შეხედვით შეიძლება უცნაურად მოგვეჩვენოს, რომ ტესტს, რომელიც საშუალოთა შესადარებლად გამოიყენება, დისპერ-სიული ანალიზი ეწოდება. მიზეზი იმაში მდგომარეობს, რომ ეს მეთოდი ეყრდნობა დისპერსიების შეფარდებას, როგორც (კვალებადობის საზომს შერჩევების საშუალოებს შორის, ასევე თვით შერჩევის შიგნით.

იმისათვის, რომ გამოვიყენოთ აღნიშნული ტესტი — ANOVA, საჭიროა:

- ყველა პოპულაცია იყოს ნორმალური;
- პოპულაციების დისპერსიები იყოს ტოლი.

ერთფაქტორიანი დისპერსიული ანალიზი ცდის პირთა შორის სქემისათვის (ჰიპოთეზები)

გვინდა შევამოწმოთ ძირითადი

$$H_0: \mu_1 = \mu_2 = \dots = \mu_k$$

ჰიპოთეზა

 $H_{\scriptscriptstyle A}$: ყველა $\mu_{\scriptscriptstyle i}$ არ არის ერთმანეთის ტოლი

ალტერნატივის წინააღმდეგ.

ჩვენ არ მოვითხოვთ, რომ ყველა საშუალო განსხვავებული იყოს ერთმანეთისგან. ნულოვან ჰიპოთეზას უარვყოფთ მაშინაც, როცა თუნდაც საშუალოების რომელიმე ერთი წყვილი მაინც იქნება ერთმანეთისგან განსხვავებული.

კრიტერიუმის სტატისტიკა

გვაქვს დამოუკიდებელი შემთხვევითი შერჩევები k პოპულაციიდან. პირველი პოპულაციიდან გვაქვს n მონაცემი

$$X_{11}, X_{12}, ..., X_{1n}$$

მეორე პოპულაციიდანაც გვაქვს n მონაცემი

$$X_{21}, X_{22}, \dots, X_{2n}$$

და ა. შ. k -ური პოპულაციიდანაც გვაქვს n მონაცემი

$$X_{i1}, X_{i2}, \dots, X_{i}$$

 $X_{k_1}, X_{k_2}, ..., X_{k_n}$. თითოეულ შერჩევას აქვს თავისი საშუალო და სტანდარტული გადახრა. შევადგინოთ 11.1 ცხრილი. შემოვიღოთ აღნიშვნები:

$$ext{SS}T = \sum_{i=1}^k \sum_{j=1}^n \left(X_{ij} - \overline{ar{X}}
ight)^2$$
 — არის X_{ij} მონაცემების მათი საერთო საშუალო მნიშვნელობიდან

გადახრების კვადრატების სრული ჯამური სიდიდე (total sum of squares). ნულოვანი ჰიპოთეზის სამართლიანობისას $ext{MS}T = rac{ ext{SS}T}{n-1}$ არის უცნობი σ^2 დისპერსიის ჩაუნაცვლებელი შეფასება, ანუ S^2

(გვაქვს k ჯგუფი და თითოეულ ჯგუფში n მონაცემი, $j=1,2,\ldots,n$; $i=1,2,\ldots,k$. სულ გვაქვს N=nkმონა(ჯემი).

ცხრილი 11.1						
	ჯგუფი 1	ჯგუფი 2		ჯგუფი <i>k</i>	სულ	
	X_{11}	X_{21}		X_{k1}	k	
	X_{12}	X_{22}		X_{k2}	k	

	•••	•••	•••		•••
	X_{1n}	X_{2n}		X_{kn}	k
შერჩევის მოცულობა	n	n		n	N = kn
საშუალო	\overline{X}_1	\overline{X}_2		\overline{X}_k	$ar{ar{X}}$
სტანდარტული გადახრა	S_1	s_2		\boldsymbol{s}_k	S

აქ $ar{ar{X}}$ არის საშუალოების საშუალო, სრული საშუალო (ანუ ყველა მონაცემთა საშუალო):

$$\overline{\overline{X}} = \frac{X_{11} + \dots + X_{kn}}{N} = \frac{X_1 + X_2 + \dots + X_k}{k}$$
,

სადაც N შერჩევის მთლიანი რაოდენობაა, S არის შერჩევის მონაცემების სტანდარტული გადახრა, S^2 დისპერსიის შეფასებაა.

 $\mathrm{SS}E = \sum_{i=1}^k \sum_{j=1}^n \left(X_{ij} - X_i\right)^2$ — ყოველი ჯგუფის ვარიაციათა ჯამია, მას შეიძლება შევხედოთ, როგ-ორც ჯგუფებში ვარიაციის (ცვალებადობის) მახასიათებელს (sum of square within groups). ნულოვანი ჰიპოთეზის სამართლიანობის დროს $\mathrm{MS}E = \dfrac{\mathrm{SS}E}{N-k}$ უცნობი σ^2 დისპერსიის შეფასებაა.

$$\mathbf{SSR} = \sum_{i=1}^k \sum_{j=1}^n \left(\overline{X}_i - \overline{\overline{X}} \right)^2 = n \cdot \sum_{i=1}^k \left(\overline{X}_i - \overline{\overline{X}} \right)^2$$
 — არის ჯგუფის საშუალო მნიშვნელობის საერთო საშ-

უალოდან გადახრების კვადრატების ჯამი (sum of square between groups). მას შეიძლება შევხედოთ, როგორც ჯგუფთაშორისი ცვალებადობის მახასიათებელს. ნულოვანი ჰიპოთეზის სამართლიანობის დროს $\mathbf{MSR} = \frac{\mathbf{SSR}}{k-1}$ არის იგივე უცნობი σ^2 დისპერსიის შეფასება.

თუ უცნობი σ^2 დისპერსიის აღნიშნული სამი შეფასება გვაძლევს დაახლოებით ერთნაირ რიცხვით მნიშვნელობებს, მაშინ ჯგუფის საშუალოებს შორის არ არის მნიშვნელოვანი სხვაობა. ირიქით, თუ დისპერსიის შეფასებები მნიშვნელოვნად განსხვავდებიან და, ამასთან, $\frac{\mathrm{SSR}}{k-1}$ მნიშვნელოვ-

ნად ჭარბობს $\frac{\mathrm{SSE}}{n-k}$ -ს, მაშინ უნდა უარვყოთ ნულოვანი ჰიპოთეზა, ანუ ჩავთვალოთ, რომ ზოგიერთი ჯგუფის საშუალოებს შორის მნიშვნელოვანი განსხვავებაა.

უცნობი σ^2 დისპერსიის ორი განხილული შეფასება ეფუძნება ჯგუფთა შორის SSR და ჯგუფებში შიგნით ცვალებადობას SSE. მათ ფარდობას ნულოვანი ჰიპოთეზის სამართლიანობის პირობებში აქვს F-განაწილება k-1 და N-k თავისუფლების ხარისხებით. ეს საშუალებას გვაძლევს ჰიპოთეზის შესამოწმებლად გამოვიყენოთ

$$F = \frac{\frac{\text{SSR}}{k-1}}{\frac{\text{SSE}}{N-k}} = \frac{MSR}{MSE} \cong F(k-1, N-k) .$$

სტატისტიკის დაკვირვებული (ჩვენს მიერ გამოთვლილი) მნიშვნელობა.

გადაწყვეტილების მიღების წესი

დავაფიქსიროთ მნიშვნელოვნების დონე α . ვიპოვოთ F-განაწილების შესაბამისი კრიტიკული მნიშვნელობა ფიშერის ზედა კრიტიკული წერტილების α ალბათობის შესაბამისი ცხრილიდან ვიპოვოთ k-1 და N-k თავისუფლების ხარისხების მქონე ფისერის განაწილების ზედა α -კრიტიკული წერტილი — $F_{crit}=F_{k-1,N-k,\alpha}$. თუ F სტატისტიკის დაკვირვებული მნიშვნელობაა f და $f>F_{crit}$, მაშინ $H_0:\mu_1=\mu_2=\dots=\mu_k$ ჰიპოთეზას დავიწუნებთ, წინააღმდეგ შემთხვევაში H_0 -ის უარყოფის საფუძველი არ გაგვაჩნია.

ANOVA ცხრილში არის სამი სტრიქონი: პირველი სტრიქონი შეიცავს ინფორმაციას ჯგუფთა-შორის ცვალებადობაზე, მეორე — ჯგუფთა შიგნით ცვალებადობაზე, ხოლო მესამე სტრიქონი კი ტესტისთვის არ არის საჭირო, მაგრამ საჭიროა გამოთვლების სისწორის შესამოწმებლად:

$$SST = SSR + SSE$$
, $N-1 = N-k+k-1$.

თავისუფლების ხარისხი N-1, რომელიც ნაჩვენებია მესამე სტრიქონში, ეფუძნება N დაკვირვებას მინუს ერთი დამაკავშირებული თანაფარდობა (ერთი ბმა) სრული საშუალოს შეფასებასთან. მეორე სტრიქონის თავისუფლების ხარისხი N-k ეფუძნება N დაკვირვებას მინუს k დამაკავშირებული თანაფარდობა k ჯგუფის საშუალოს შეფასებებთან.

პირველი სტრიქონის თავისუფლების ხარისხი k-1 ეფუძნება k ჯგუფის საშუალოს მინუს ერთი დამაკავშირებული თანაფარდობა სრულ საშუალოსთან.

ცხრილი 11.2						
ცვალებადობის წყარო	SS	df	MS	F		
ჯგუფთა შორის	SSR	<i>k</i> −1	$MSR = \frac{SSR}{k-1}$	$F = \frac{MSR}{MSE}$		
ჯგუფთა შიგნით	SSE	N-k	$MSE = \frac{SSE}{N - k}$			
სულ	SST	N-1				

მ ა გ ა ლ ი თ ი 11.1. ტყის ოთხ უბანზე შეაგროვეს სოკო. ცხრილში მოცემულია თითოეულ უბანზე 5 სხვადასხვა ადგილას ნაპოვნი სოკოს რაოდენობა:

goods again or assention at the region asse							
უბანი		რ	აოდენო	ბა		საშუალო	
1	8	7	6	4	5	$\overline{X}_1 = 6$	
2	14	14	12	7	8	$\overline{X}_2 = 11$	
3	6	9	7	8	5	$\overline{X}_3 = 7$	
4	4	7	4	3	2	$\overline{X}_4 = 4$	
k = 4, $n = 5$, $N = nk = 20$							

შევამოწმოთ $\overline{H_0}$: $\mu_1=\mu_2=\mu_3=\mu_4$ ჰიპოთეზა, $\overline{H_A}$: ყველა μ_A არ არის ერთმანეთის ტოლი ალტერნატივის წინააღმდეგ.

გამოვთვალოთ საერთო საშუალო და ცვალებადობის მახასიათებლები. გვაქვს:

$$\begin{split} & \bar{\bar{X}} = \frac{6+11+7+4}{4} = 7 \;; \\ & \mathrm{SS}R = n[\left(\bar{X}_1 - \bar{\bar{X}}\right)^2 + \left(\bar{X}_2 - \bar{\bar{X}}\right)^2 + \left(\bar{X}_3 - \bar{\bar{X}}\right)^2 + \left(\bar{X}_4 - \bar{\bar{X}}\right)^2] = \\ & = 5[\left(6-7\right)^2 + \left(11-7\right)^2 + \left(7-7\right)^2 + \left(4-7\right)^2] = 5\left(1+16+0+9\right) = 130 \\ & \mathrm{SS}E = \sum_{i=1}^k \sum_{j=1}^n \left(X_{ij} - X_i\right)^2 = \left(8-6\right)^2 + \left(7-6\right)^2 + \left(6-6\right)^2 + \left(4-6\right)^2 + \left(5-6\right)^2 + \\ & + \left(14-11\right)^2 + \left(14-11\right)^2 + \left(12-11\right)^2 + \left(7-11\right)^2 + \left(8-11\right)^2 + \\ & + \left(6-7\right)^2 + \left(9-7\right)^2 + \left(7-7\right)^2 + \left(8-7\right)^2 + \left(5-7\right)^2 + \\ & + \left(4-4\right)^2 + \left(7-4\right)^2 + \left(4-4\right)^2 + \left(3-4\right)^2 + \left(2-4\right)^2 = 78 \;, \\ & k-1 = 4-1 = 3 \;, \quad N-k = 20-4 = 16 \;. \\ & \frac{3}{1938} 3 \log \Omega \; \text{ANOVA} \; (3b \Omega \Omega \Omega). \end{split}$$

ცვალებადობის წყარო	SS	df	MS	F
ჯგუფთა შორის	130	3	43.33	8.888
ჯგუფთა შიგნით	78	16	4.875	
სულ	208	19		

ტესტი ცალმხრივია. ვიპოვოთ კრიტიკული მნიშვნელობა F განაწილების ცხრილიდან. $F_{crit} = F_{3.16.005} = 3.2389$. ტესტის სტატისტიკის 8.888 მნიშვნელობა მეტია 3.2389 კრიტიკულ მნიშვნე-

ლობაზე, ამიტომ ნულოვანი ჰიპოთეზა უნდა უარვყოთ. დასკვნა: სხვადასხვა უბნებზე შეგროვილი სოკოს საშუალო რაოდენობები განსხვავებულია ერთმანეთისაგან.

ტესტი არ განსაზღვრავს კონკრეტულად რომელი საშუალოები განსხვავდებიან ერთმანეთისაგან. როცა გვაქვს ოთხი შერჩევის საშუალო, შეგვიძლია გავაკეთოთ ექვსი შედარება ორ საშუალოს შორის:

 $ar{X}_1$ შევადაროთ $ar{X}_2$ -ს;

 $ar{X}_1$ შევადაროთ $ar{X}_3$ -ს;

 $ar{X}_{\!\scriptscriptstyle 1}$ შევადაროთ $ar{X}_{\!\scriptscriptstyle 4}$ -ს;

 $ar{X}_2$ შევადაროთ $ar{X}_3$ -ს;

 $ar{X}_2$ შევადაროთ $ar{X}_4$ -ს;

 $ar{X}_3$ შევადაროთ $ar{X}_4$ -ს.

შედარებები უნდა მოვახდინოთ მხოლოდ მაშინ, თუ ნულოვანი ჰიპოთეზა უარყოფილია. შედარების მრავალი კრიტერიუმი არსებობს, ჩვენ გამოვიყენებთ ტუკის კრიტერიუმს, რომელიც გამოითვლება ფორმულით:

$$CD = q \sqrt{\frac{MSE}{n}} .$$

ტუკის კრიტერიუმი ინარჩუნებს პირველი გვარის შეცდომის დაშვების ალბათობას lpha -ს ტო-ლად ყველა წყვილთაშორის შედარებაში.

თუ ორ საშუალოს შორის სხვაობის აბსოლუტური მნიშვნელობა მეტია ან ტოლია ტუკის კრიტერიუმის მნიშვნელობაზე, მაშინ პოპულაციების საშუალოები მნიშვნელოვნად განსხვავდებიან ერთმანეთისაგან.

q მნიშვნელობა დამოკიდებულია არჩეულ მნიშვნელოვნების დონეზე, ჯგუფების (შესადარებელი საშუალოების) k რაოდენობაზე და N-k თავისუფლების ხარისხზე. მისი მნიშვნელობა უნდა მოვძებნოთ სტიუდენტის რანგობრივი სტატიტიკის q-ს მნიშვნელობების ცხრილიდან. ჩვენს მაგალითში: $\alpha=0.05$, k=4 და N-k=16. ამიტომ ცხრილიდან დავინახავთ, რომ q=4.05. გარდა ამისა, n=5 და $\mathrm{MSE}=4.875$. შესაბამისად,

$$CD = q\sqrt{\frac{MSE}{n}} = 4.05 \cdot \sqrt{\frac{4.875}{5}} = 3.999$$
.

განსხვავებულია იმ პოპულაციების საშუალოები, რომელთა შერჩევით საშუალოს შორის სხვაობის აბსოლუტური მნიშვნელობა მეტია ან ტოლია 3.999-ზე. ჩვენს მაგალითში გვაქვს:

$$\bar{X}_1 - \bar{X}_2 = |6 - 11| = 5 > 3.999 \rightarrow \mu_1 \neq \mu_2$$
.

$$\overline{X}_1 - \overline{X}_3 = |6 - 7| = 1 < 3.999$$
.

$$\overline{X}_1 - \overline{X}_4 = |6 - 4| = 2 < 3.999$$
.

$$\overline{X}_2 - \overline{X}_3 = |11 - 7| = 4 > 3.999 \rightarrow \mu_2 \neq \mu_3$$
.

$$\overline{X}_2 - \overline{X}_4 = |11 - 4| = 7 > 3.999 \rightarrow \mu_2 \neq \mu_4$$
.

$$\bar{X}_3 - \bar{X}_4 = |7 - 4| = 3 < 3.999$$
.

დასკვნა: მეორე უბანზე სოკოს საშუალო რაოდენობა მნიშვნელოვნად განსხვავდება ყველა დანარჩენ სამ უბანზე სოკოს საშუალო რაოდენობისგან.

განხილულ სტატისტიკურ მეთოდს ენოდება ერთფაქტორიანი დისპერსიული ანალიზი ცდის პირთა შორის სქემისთვის. ის გამოიყენება სამი ან მეტი პოპულაციის საშუალოების შესადარებლად, შერჩევები აღებულია ერთმანეთისაგან დამოუკიდებლად. ამ მაგალითში ფაქტორი არის უბანი და ამ ფაქტორს აქვს 4 დონე.

ცდის პირთა შიდა ორფაქტორიანი სქემა და დისპერსიული ანალიზი

მაგალითი 11.2. შევამოწმოთ ჰიპოთეზა, რომ არ არსებობს განსხვავება სახლების შეფასებაში, რომელიც წარდგენილია სამი განსხვავებული შემფასებელი ექსპერტის მიერ. აფასებენ სახლის მახასიათებლებს: ზომა, ხარისხი, სახლის განლაგება და ა. შ. ასეთ მახასიათებლებს ხშირად ბლოკებს უწოდებენ. ცხრილში მოყვანილია სახლის სამი ექსპერტის შეფასება 5 მახასიათებლის მიხედვით:

	შემფასებელი				
მახასიათებელი	1	2	3	\overline{X}_{j}	
1	78.0	82.0	79.0	79.67	
2	102.0	102.0	99.0	101.00	
3	68.0	74.0	70.0	70.67	
4	83.0	88.0	86.0	85.67	
5	95 0	99.0	92.0	95.33	
\overline{X}_i	85.2	89.0	85.2		

გამოვთვალოთ საერთო საშუალო :

ი საერთო საძუალო :
$$\bar{\bar{X}} = \frac{85.2 + 89.0 + 85.2}{3} = \frac{79.67 + 101.0 + 70.67 + 85.67 + 95.33}{5} = 86.47 \ .$$

ჩვენ უნდა გამოვიყენოთ ორფაქტორიანი დისპერსიული ანალიზი იმისათვის, რომ შევამოწმოთ ჰიპოთეზა, არსებობს თუ არა განსხვავება სამი ექსპერტის შეფასებაში.

შესამოწმებელი გვაქვს:

ძირითადი პიპოთეზა: $H_0: \mu_1 = \mu_2 = \mu_3$,

ალტენატიული ჰიპოთეზა: $H_{\scriptscriptstyle A}$: ყველა საშუალო ერთმანეთის ტოლი არ არის.

ისევე როგორც ერთფაქტორიან ანალიზში, შემოვიღოთ მონაცემთა დისპერსიის შეფასებები:

$$SST = \sum_{i=1}^{k} \sum_{j=1}^{r} \left(X_{ij} - \overline{\overline{X}} \right)^2,$$

სადაც k სვეტების (ექსპერტების) რაოდენობა, r სტრიქონების, ბლოკების (სახლის მახასიათებლების) რაოდენობა, X_{ij} ინდივიდუალური შეფასება (1000 დოლარი), $\overset{=}{X}$ სრული (საერთო) საშუალო (86.47). გვაქვს:

$$SST = (78.0 - 86.47)^{2} + (102.0 - 86.47)^{2} + \dots + (92.0 - 86.47)^{2} = 1829.73.$$

ერთფაქტორიან ANOVA-ში სრულდებოდა ტოლობა:

$$SST = SSR + SSE$$

ორფაქტორიანი ANOVA -ს შემთხვევაში მონაცემთა სრული ცვალებადობა იყოფა სამ ნაწილად ორის ნაცვლად:

$$SST = SSR + SSE + SSB$$
,

სადაც $\mathbf{SST}=$ არის X_{ij} მონაცემების მათი საერთო საშუალო მნიშვნელობიდან გადახრების კვადრატების სრული ჯამური სიდიდე, \mathbf{SSR} — გადახრების კვადრატების ჯამი ჯგუფებს შორის (ექსპერ-ტებს შორის), \mathbf{SSB} — გადახრების კვადრატების ჯამი ბლოკებს შორის (მახასიათებლებს შორის), \mathbf{SSE} — გადახრების კვადრატების ჯამი ჯგუფებს შიგნით.

ჩვენს მაგალითში

$$SSR = \sum_{i=1}^{k} r \left(\overline{X}_i - \overline{\overline{X}} \right)^2 ,$$

სადაც \bar{X}_i თითეული ჯგუფის საშუალოა, r — სტრიქონების, ბლოკების რაოდენობა — r = 5 , k — ჯგუფების (ექსპერტების) რაოდენობა — k = 3 :

$$SSR = 5(85.2 - 86.47)^{2} + 5(89.0 - 86.47)^{2} + 5(85.2 - 86.47)^{2} = 48.13,$$

$$SSB = \sum k \left(\overline{X}_j - \overline{\overline{X}} \right)^2 = 3(79.67 - 86.47)^2 + \dots + 3(95.33 - 86.47)^2 = 1758.42 ,$$

$$SSE = SST - SSR - SSB = 1829.73 - 48.13 - 1758.42 = 23.18$$
.

გამოსათვლელი გვაქვს ორი F სიდიდე, რადგანაც შესამოწმებელი გვაქვს ბლოკებთან დაკავშირებული მეორადი ჰიპოთეზა: ახდენს თუ არა შეფასებაზე გავლენას ის, თუ რა მახასია-თებლით შევაფასებთ სახლს.

მეორადი ჰიპოთეზა:

$$H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$$
,

 $H_{\scriptscriptstyle A}$: ყველა ბლოკის საშუალო არ არის ერთმანეთის ტოლი.

ჩვენ ვამოწმებთ ტოლია თუ არა საშუალო შეფასება მახასიათებლების მიხედვით. თუ H_0 ჰიპოთეზა უარყოფილია, ეს ნიშნავს იმას, რომ ბლოკირება გამართლებულია.

შევავსოთ ANOVA ცხრილი.

ჯგუფთა შორის	SSR	k-1	$\frac{SSR}{k-1}$	$F = \frac{MSR}{MSE}$
ბლოკებს შორის	SSB	r-1	$\frac{SSB}{r-1}$	$F = \frac{MSB}{MSE}$
ჯგუფთა შიგნით	SSE	(k-1)(r-1)		
სულ	SST	N-1		

ცვალებადობის წყარო	SS	df	MS	F
ჯგუფთა შორის	48.13	2	$\frac{48.13}{2} = 24.065$	8.3
ბლოკებს შორის	1758.42	4	$\frac{1758.42}{4} = 439.605$	151.7
ჯგუფთა შიგნით	23.18	8	$\frac{23.18}{8} = 2.898$	
სულ	1829.73	14		

შნიშვნა: SSE = SST - (SSR + SSB).

F -ის კრიტიკული მნიშვნელობა, როცა $\alpha=0.05$ და თავისუფლების ხარისხებია 4 და 8 არის 3.84. ვინაიდან 8.31>3.84-ზე, ამიტომ მეორად ნულოვან ჰიპოთეზას უარვყოფთ: მახასიათებლის არჩევა გავლენას ახდენს შეფასებაზე.

რადგანაც F -ის კრიტიკული მნიშვნელობა, როცა $\alpha=0.05$ და თავისუფლების ხარისხებია 2 და 8 არის 4.46 და 8.31>4.46, ამიტომ ძირითადი ჰიპოთეზაც უარყოფილი იქნება: სამი ექსპერტი განსხვავებულად აფასებს სახლს.

რადგან ნულოვანი ჰიპოთეზა უარყოფილია, უნდა გავიგოთ კონკრეტულად რომელი საშუა-ლოები განსხვავდებიან ერთმანეთისაგან. ამისათვის გამოვთვალოთ საშუალოების სხვაობების აბსო-ლუტური მნიშვნელობები და შევადაროთ CD კრიტიკულ სხვაობას, რომელიც გამოითვლება ფორმულით

$$CD = t_{crit} \cdot \sqrt{\text{MSE}} \cdot \sqrt{\frac{2}{n}} ,$$

სადაც n=5 ჯგუფში მონაცემთა რაოდენობაა, $t_{crit}=t_{(k-1)(r-1),\alpha/2}=t_{8,0.025}=2.306$, $\mathit{MSE}=2.898$. გვაქვს:

$$CD = t_{8,\alpha/2} \cdot \sqrt{\text{MSE}} \cdot \sqrt{\frac{2}{n}} = 2.306 \cdot \sqrt{2.898} \cdot \sqrt{\frac{2}{5}} = 2.483$$
.

თუ ორ საშუალოს შორის სხვაობის აბსოლუტური მნიშვნელობა მეტია ან ტოლია CD კრიტი-კულ სხვაობაზე, მაშინ პოპულაციების საშუალოები მნიშვნელოვნად განსხვავდებიან ერთმანეთი-საგან. გვაქვს:

სხვაობა	გადაწყვეტილება
85.2 - 89.0 = 3.8 > 2.483	$\mu_1 \neq \mu_2$
85.2 - 85.2 = 0.0 < 2.483	$\mu_1 = \mu_2$
89.0 – 85.2 = 3.8 > 2.483	$\mu_2 \neq \mu_3$

მეორე ექსპერტი განსხვავებულად აფასებს.

ცდის პირთა შორის ორფაქტორიანი სქემა და დისპერსიული ანალიზი მაგალითი 11.3. ფსიქოლოგები სწავლობენ მუსიკის გავლენას ადამიანის მიერ სხვადასხვა ამოცანის შესრულებაზე. 4 სტუდენტ გოგონას და 6 სტუდენტ ვაჟს სთხოვეს გაეკეთებინათ მოკლე სტატიის კორექტურა (სტატიაში იყო 25 შეცდომა). ერთი ჯგუფი ასრულებდა სამუშაოს მუსიკის თანხლების გარეშე, მეორე კი პოპულარული მელოდიის თანხლებით. აღმოჩენილი შეცდომების რაოდენობა მოყვანილია ცხრილში:

აღმოჩენილი შეცდომების რაოდენობა				
ფაქტორი \emph{A}				
		მუსიკის გარეშე <i>A</i> _l	მუსიკის თანხლებით A_2	
		4	16	
		5	14	
მამრობითი \emph{B}_{1}		7	17	
		6	19	
		10	16	
		4	20	
$\overline{X}_{A_1B_1} = 6$, $\overline{X}_{A_2B_1} = 1$	$\overline{7}$, $\overline{X}_{B_1} = 11$.	5		
მდედრობითი \emph{B}_2		18	7	
		13	6	
		16	10	
		16	5	
$\overline{X}_{A_1B_2} = 15$, $\overline{X}_{A_2B_2} = 7$, $\overline{X}_{B_2} = 11$				
$\overline{X}_{A_1} = 10.5$, $\overline{X}_{A_2} = 12$	$2, \bar{X} = 11.25$	5		

ფაქტორი A — მუსიკის ტიპი, ფაქტორი B — სქესი. A ფაქტორს აქვს ორი დონე, B ფაქტორსაც აქვს ორი დონე.

 $ar{X}_{_{A_{\! l}B_{\! l}}}$ — ვაჟების მიერ აღმოჩენილი შეცდომების საშუალო რაოდენობა მუსიკის გარეშე ტო-ლია 6-ის (უჯრედის საშუალო);

 $ar{X}_{A_1B_2}$ — გოგონების მიერ აღმოჩენილი შეცდომების საშუალო რაოდენობა მუსიკის გარეშე ტოლია 15-ის (უჯრედის საშუალო);

 $\overline{X}_{A_{\rm I}}$ — შეცდომების საშუალო რაოდენობა აღმოჩენილი მუსიკის გარეშე ტოლია 10.5-ის (სვეტის საშუალო);

 $ar{X}_{_{A_2B_1}}$ — ვაჟების მიერ აღმოჩენილი შეცდომების საშუალო რაოდენობა მუსიკის თანხლებით არის 17 (უჯრედის საშუალო);

 $ar{X}_{A_2B_2}$ — გოგონების მიერ აღმოჩენილი შეცდომების საშუალო რაოდენობა მუსიკის თანხლებით არის 7 (უჯრედის საშუალო);

 $ar{X}_{\scriptscriptstyle{A_2}}$ — შეცდომების საშუალო რაოდენობა აღმოჩენილი მუსიკის თანხლებით არის 12 (სვეტის საშუალო);

 $\overline{X}_{\it B_{\rm I}}$ — შეცდომების საშუალო რაოდენობა აღმოჩენილი ვაჟების მიერ არის 11.5 (სტრიქონის საშუალო);

 \overline{X}_{B_2} — შეცდომების საშუალო რაოდენობა აღმოჩენილი გოგონების მიერ არის 11 (სტრიქონის საშუალო);

$$\bar{\bar{X}} = \frac{\bar{X}_{_{A_{\rm l}}} + \bar{X}_{_{A_{\rm 2}}}}{2} = \frac{\bar{X}_{_{B_{\rm l}}} + \bar{X}_{_{B_{\rm 2}}}}{2} \left(\text{sr ul i saSual o} \right) = 11.25 \, .$$

შესამოწმებელია სამი ჰიპოთეზა:

1. მუსიკა არ მოქმედებს აღმოჩენილი შეცდომების რაოდენობაზე — $H_0: \mu_{A_1} = \mu_{A_2}$,

$$H_A: \mu_{A_1} \neq \mu_{A_2}$$

2. სქესზე არ არის დამოკიდებული აღმოჩენილი შეცდომების რაოდენობა — $H_0: \mu_{B_1} = \mu_{B_2}$, $H_A: \mu_{B_1} \neq \mu_{B_2}$;

3. სქესი და მუსიკის ტიპი ერთმანეთისაგან დამოუკიდებელია.

ამ სამი ჰიპოთეზის შესამოწმებლად საჭიროა ორფაქტორიანი დისპერსიული ანალიზის გამოყენება.

მონაცემთა სრული ცვალებადობა დავყოთ ოთხ ნაწილად

$$SST = SSA + SSB + SSA \cdot B + SSE$$
,

სადაც SST სრული ცვალებადობაა, N მონაცემთა სრული რაოდენობაა, n მონაცემთა რაოდენობაა ჯგუფში, a არის A ფაქტორის დონეების რაოდენობა, b არის B ფაქტორის დონეების რაოდენობა, b არის ცვალებადობა A ფაქტორის გამო (მუსიკის ტიპი), SSB არის ცვალებადობა B ფაქტორის გამო (სქესი), $SSA \cdot B$ არის ცვალებადობა გამოწვეული A და B ფაქტორის ურთიერთქმედებით, SSE არის ცვალებადობა ჯგუფის შიგნით,

$$SSA = N\left(\overline{X}_{A_{1}} - \overline{\overline{X}}\right)^{2} = 24(10.5 - 11.25)^{2} = 13.5;$$

$$SSB = N\left(\overline{X}_{B_{1}} - \overline{\overline{X}}\right)^{2} = 24(11.5 - 11.25)^{2} = 1.5;$$

$$SSA \cdot B = N\left(\overline{X}_{A_{1}B_{1}} - \overline{X}_{A_{1}} - \overline{X}_{B_{1}} + \overline{\overline{X}}\right)^{2} = 24(6 - 10.5 - 11.5 + 11.25)^{2} = 541.5;$$

$$SSE = (4 - 6)^{2} + (5 - 6)^{2} + \dots + (10 - 7)^{2} + (5 - 7)^{2} = 96.0.$$

თავისუფლების ხარისხებია:

$$df A = a - 1,$$
 $df B = b - 1,$
 $df A \cdot B = (a - 1)(b - 1),$

ჯგუფთა შიგნით df = ab(n-1), ამასთანავე

$$a-1+b-1+(a-1)(b-1)+ab(n-1)=abn-1=N-1$$
.

შევავსოთ ორფაქტორიანი ANOVA (გხრილი:

ცვალებადობის წყარო	SS	df	MS	F
მუსიკა	13.5	1	13.5	2.81
სქესი	1.5	1	1.5	0.31
ურთიერთქმედება	541.5	1	541.5	112.81
ჯგუფთა შიგნით	96.0	20	4.8	
სულ	652.5	23		

$$F_A = \frac{\text{MS}A}{\text{MS}E}, \quad F_B = \frac{\text{MS}B}{\text{MS}E}, \quad F_{AB} = \frac{\text{MS}A \cdot B}{\text{MS}E},$$

$$F_{crit} = F_{1,20,0.05} = 4.35.$$

გადაწყვეტილებები:

- 1. მუსიკის ტიპი (ფაქტორი A) არ ახდენს გავლენას (2.81 < 4.35) ;
- 2. სქესი (ფაქტორი B) არ ახდენს გავლენას (0.31 < 4.35) ;
- 3. მუსიკის ტიპი და სქესი ურთიერთქმედებაშია (112.81 > 4.35).

ამიტომ უნდა გავარკვიოთ რომელი უჯრედის საშუალოები განსხვავდებიან ერთმანეთისაგან, ამისათვის გამოვთვალოთ ტუკის კრიტერიუმის მნიშვნელობა

$$CD = q\sqrt{\frac{MSE}{n}} .$$

სტიუდენტის რანგობრივი სტატიტიკის q -ს მნიშვნელობების ცხრილიდან იმის გათვალის-წინებით რომ საქმე გვაქვს ორ ფაქტორიან სქემასთან: $2\cdot 2$, a=2 , b=2 , ვპოულობთ, რომ q=3.58 . ამიტომ

$$CD = 3.58 \cdot \sqrt{\frac{4.8}{6}} = 3.2$$
.

გამოვთვალოთ შერჩევით საშუალოს შორის სხვაობის აბსოლუტური მნიშვნელობები:

$$|6-17|=11$$
, $|15-7|=8$, $|6-15|=9$, $|17-7|=10$.

1. აღმოჩენილი შეცდომების საშუალო რაოდენობა მუსიკის გარეშე და მუსიკის თანხლებით მნიშვნელოვნად არ განსხვავდება ერთმანეთისაგან.

2. შეცდომების საშუალო რაოდენობა, აღმოჩენილი ვაჟების მიერ მნიშვნელოვნად არ განსხვ-

ავდება შეცდომების საშუალო რაოდენობისაგან, აღმოჩენილი ქალების მიერ.

3. მნიშვნელოვანია ურთიერთქმედება: მუსიკის ტიპის ეფექტი დამოკიდებულია სქესზე. ვაჟები, მუსიკის მოსმენის დროს უფრო ბევრ შეცდომას ამჩნევენ, გოგონები კი, უფრო ბევრ შეცდომას პოულობენ, როცა არ უსმენენ მუსიკას. განსხვავება ქალებსა და ვაჟებს შორის დამოკიდებულია მუსიკის ტიპზე: ქალები საშუალოდ უფრო ბევრ შეცდომას ამჩნევენ როცა არ უსმენენ მუსიკას, ვაჟები კი როცა უსმენენ.

ურთიერთქმედების ანალიზი გვიჩვენებს, რომ მუსიკა გავლენას ახდენს აღმოჩენილი შეცდომების რაოდენობაზე, მაგრამ ეფექტის მიმართულება დამოკიდებულია სქესზე. უფრო მეტიც, ქალები და მამაკაცები განსხვავდებიან აღმოჩენილი შეცდომების მხრივ, მაგრამ განსხვავება დამოკიდებულია მუსიკის ტიპზე.

შეჯამება

ორი საშუალოს შესადარებლად იყენებენ t -კრიტერიუმს. თუ შესადარებელია ორზე მეტი საშუალო, გამოიყენება სტატისტიკური მეთოდი ცნობილი, როგორც დისპერსიული ანალიზი.

თუ ყველა შერჩევა აღებულია ნორმალური პოპულაციიდან და პოპულაციების დისპერსიები ტოლია, ნულოვანი ჰიპოთეზის შესამოწმებლად, რომლის თანახმად ყველა შერჩევა აღებულია ერთი

და იგივე პოპულაციიდან ალტერნატივის წინააღმდეგ, იყენებენ $F=rac{ ext{MS}R}{ ext{MS}E}$ სტატისტიკას. ამ სტატის-

ტიკას აქვს F -განაწილება k-1 და N-k თავისუფლების ხარისხებით.

თუ დასტურდება, რომ საშუალოები ერთმანეთის ტოლი არ არის, საჭიროა მრავალჯერადი შედარების კრიტერიუმის გამოყენება, იმის დასადგენად, თუ რომელი საშუალოები განსხვავდებიან მნიშვნელოვნად ერთმანეთისაგან.

არსებობს სიტუაციები, სადაც ერთფაქტორიანი დისპერსიული ანალიზი არ არის საკმარისი. მაგალითად, როცა გვინდა შევაფასოთ სხვადასხვა ტიპის აკუმულატორის მუშაობის ვადა. ჩვენ უნდა მოვათავსოთ სხვადასხვა ტიპის აკუმულატორი მანქანაში და გავიმეოროთ ეს ცდა სხვადასხვა ტიპის მანქანებისთვის. უნდა ვაკონტროლოთ მანქანების ცვალებადობა, იმისათვის, რომ შევამოწმოთ აკუმულატორების მუშაობის ვადები. ასეთი ტიპის ამოცანებისათვის იყენებენ ცდის პირთა შიდა ერთფაქტორიან სქემას.

ცდის პირთა შორის ორფაქტორიან სქემის გამოყენება საჭიროა მაშინ, როცა ცდის შედეგები მიიღება ორი ფაქტორის ზემოქმედებით მაგალითად, როცა გვაინტერესებს განსხვავდება თუ არა ქალებისა და მამაკაცების (პირველი ფაქტორი) რეაქცია ორ განსხვავებულ სტიმულზე (მეორე ფაქტორი).

კითხვები

1. მოქმედებს თუ არა სმენის პრობლემები სტუდენტების შეფასებაზე. ქვემოთ მოცემულია სტუდენტების მიერ ნაკარნახევ ლიტერატურულ ტესტში მიღებული ქულები.

სმენა				
ნორმალური	საშუალო	ცუდი		
31	23	12		
29	27	18		
32	26	17		
38	24	13		
36	20	15		
14	20	15		

ა) რას უდრის n , k , N .

ბ) შეამოწმეთ $\mu_1=\mu_2=\mu_3$ ჰიპოთეზა "სმენის პრობლემები გავლენას ახდენენ მიღებულ ქულ-ებზე" ალტერნატივის წინააღმდეგ. აიღეთ $\alpha=0.05$.

გ) რას უდრის საშუალო ქულის საუკეთესო შეფასება სტუდენტებისთვის ცუდი სმენით. რას უდრის საშუალო ქულის საუკეთესო შეფასება, როცა არ ვიცით რომელ ჯგუფს ეკუთვნის სტუდენტი.

2. შემთხვევით შერჩეული იყო ხუთ-ხუთი სტუდენტი საცხოვრებელი ადგილის მიხედვით, ქვემოთ

მოცემულია მათ მიერ მიღებული ქულები.

სოფელი	დაბა	ქალაქი	დედაქალაქი
4	30	5	25
16	10	40	35
27	6	37	40
33	24	23	7
15	25	10	23

ა) შეამოწმეთ ჰიპოთეზა, მოქმედებს თუ არა საცხოვრებელი ადგილი მომზადების დონეზე. $\alpha=0.05$.

ბ) რა ტიპის შეცდომა შეიძლება იყოს დაშვებული?

გ) რას უდრის სტუდენტის საშუალო ქულის შეფასება?

3. ერთი და იგივე დონის 15 სტუდენტი შემთხვევით გადაანაწილეს ინგლისურის სწავლების სამ

ჯგუფში. ერთი და იგივე ტესტში საკონტროლოში მიღებული ქულებია:

სწავლების მეთოდი								
	1 2 3							
ქულები	19	14	15					
	13	13	10					
	16	16	11					
	17	12	12					
	20	10	12					

ახდენს თუ არა სწავლების მეთოდი გავლენას ტესტში მიღებულ ქულებზე? $\, lpha = 0.05 \, . \,$

4. ავსტრალიის ბაყაყები 30 წელს ცოცხლობენ და მთელი სიცოცხლის განმავლობაში აგრძელებენ ზრდას. 1984 წელს 100 ბაყაყი გადაყვანილი იყო ორ განსხვავებულ ახალ საცხოვრებელ ადგილას. 1996 წელს სამივე საცხოვრებელ ადგილზე დაჭერილი და აწონილი იყო სამ-სამი ბაყაყი. შეამოწმეთ, იქონიაა თუ არა გავლენა ახალმა ადგილმა მათ წონაზე. აიღეთ $\alpha=0.05$.

საცხოვრებელი ადგილი	წონა					
ძირითადი	1.67	0.43	2.72			
ახალი 1	2.93	0.80	4.18			
ახალი 2	2.55	3.80	3.60			

5. სამ ახლომდებარე ტბაში დაჭერილი და აწონილი იყო ხუთ-ხუთი ერთიდაიგივე ჯიშის თევზი. განსხვავებულია თუ არა თევზის საშუალო წონები, $\alpha=0.01$.

პირველი ტბა	285	315	260	290	420
მეორე ტბა	305	340	310	320	270
მესამე ტბა	500	380	480	350	400

ა) ჩამოაყალიბეთ ნულოვანი და ალტერნატიული ჰიპოთეზები და შეავსეთ ANOVA ცხრილი.

- ბ) რას უდრის ამ ჯიშის თევზის საშუალო წონის წერტილოვანი შეფასება?
- გ) რას უდრის მესამე ტბის თევზის საშუალო წონის წერტილოვანი შეფასება?
- 6. ტყის სამ უბანზე გაზომილი იყო ხავსის სისქე (სმ 2). A და B უბანი იყო ქარისგან დაუცველი, D და C ქარისგან დაცული, D უბანი უფრო მშრალია ვიდრე C უბანი. ჩამოაყალიბეთ ნულოვანი და ალტერნატიული ჰიპოთეზები და შეავსეთ ANOVA ცხრილი.
- 7. შეავსეთ გამოტოვებული ადგილები ANOVA ცხრილებში და უპასუხეთ კითხვებს.

ცხრილი 1								
ცვალებადობის წყარო	SS	df	MS	F				
ჯგუფთა შორის	50	1	-	1				
ჯგუფთა შიგნით	270	26	-					
სულ								

ცხრილი 2

ცვალებადობის წყარო SS df MS F

ჯგუფთა შორის - 3 6
ჯგუფთა შიგნით - 60
სულ 170

- ა) რამდენი რესპონდენტი მონაწილეობდა თითოეულ კვლევაში?
- ბ) თუ $\alpha=0.05$, იპოვეთ F -ის კრიტიკული მნიშვნელობები.
- გ) რა გადაწყვეტილებას მიიღებთ თითოეული ცხრილის მიხედვით?
- 8. ინკუბატორში მოთავსებული იყო კვერცხები სხვადასხვა ტემპერატულ რეჟიმში. ქვემოთ მოყვანილია გამოჩეკილი წიწილების წონები:

18° C	82	82	81	82	73
21° C	91	84	90	85	85
22° C	81	83	81	84	81

- ა) ჩამოაყალიბეთ ნულოვანი და ალტერნატიული ჰიპოთეზები და შეავსეთ ANOVA ცხრილი.
- ბ) მოქმედებს თუ არა ტემპერატურული რეჟიმი წიწილების წონაზე? ისარგებლეთ $\alpha=0.05$ მნიშვნელოვნების დონით.
- 9. შემჩნეული იყო რომ ავსტრალიაში მსჯავრდებულის მიღებული სასჯელი ძარცვისთვის (20-25 წლის მამაკაცები) ეროვნებაზეა დამოკიდებული. შეამოწმეთ ამ ინფორმაციის სისწორე.

	სასჯელი (თვე):						
ევროპიელები	12	18	12	12	12	36	
წყნარი ოკეანე	18	24	16	24	22	30	
მაიორი	24	24	36	24	36	44	
სხვები	18	12	16	18	12	12	

10. მოქმედებს თუ არა მდინარის ნაპირზე მომუშავე ტყის დასამუშავებელი საწარმოები მდინარის ტემპერატურაზე? ცხრილში წარმოდგენილია წყლის 5 სინჯის ტემპერატურა მდინარის სხვადასხვა ადგილას:

		\overline{X}				
5 კმ ობიექტიდან მაღლა	7	7	15	11	9	9.8
ობიექტთან	19	25	22	19	23	21.6
5 კმ ობიექტიდან დაბლა	14	18	18	19	19	17.6
10 კმ ობიექტიდან დაბლა	12	17	12	18	18	15.4
25 კმ ობიექტიდან დაბლა	11	7	10	11	15	10.8

11. გამოკვლეული იყო ძილის თავისებურებები 8, 10 და 12 წლის ბავშვებში. ცხრილში მოყვანილია ძილის ხანგრძლივობა (წთ) დაძინებიდან გაღვიძებამდე:

ასაკი						
8	10	12				
580	497	525				
525	515	506				
562	543	475				
590	478	493				
575	567	537				
603	532	532				
594	517	480				
536	534	472				
612	556	463				
592	574	515				

- ა) ჩამოაყალიბეთ სტატისტიკური ჰიპოთეზები.
- ბ) რისი ტოლია F -ის მნიშვნელობა 0.05 დონეზე?
- გ) რა გადაწყვეტილებას მიიღებთ სტატისტიკური ჰიპოთეზების შესახებ?
- დ) საჭიროა თუ არა მრავალჯერადი კრიტერიუმის გამოყენება?
- ე) რისი ტოლია ტუკის ჩ მნიშვნელობა?
- ვ) რომელ წყვილთა შორის განსხვავება არის მნიშვნელოვანი?

12. ფსიქოლოგები სწავლობენ მუსიკის გავლენას ადამიანის მიერ სხვადასხვა ამოცანის შესრულე-ბაზე. 24 ადამიანს სთხოვეს წაეკითხათ მოკლე სტატიის კორექტურა. პირველი ჯგუფის წევრები ამ ამოცანას მუსიკის თანხლების გარეშე ასრულებდნენ, მეორე ჯგუფის წევრები უსმენდნენ პოპულარულ მელოდიას, მესამე ჯგუფის წევრები ასრულებდნენ ამოცანას მძიმე როკის თანხლებით. აღმოჩენილი შეცდომების რაოდენობა 50 შესაძლებლიდან ქვემოთაა მოყვანილი:

მუსიკის გარეშე	პოპულარული მელოდია	მძიმე როკი
40	34	26
41	39	24
39	38	19
36	40	23
35	34	18
32	35	21
31	29	23
34	36	29

ა) ახდენს თუ არა მუსიკა გავლენას აღმოჩენილი შეცდომების რაოდენობაზე, ისარგებლეთ $\alpha=0.05$

ბ) თუ საჭიროა გამოიყენეთ ტუკის კრიტერიუმი.

^{13. 340} დემოკრატი, 313 დამოუკიდებელი, 290 რესპუბლიკელი გამოკითხეს მათი პოლიტიკური იდე- ოლოგიის შესახებ. პოლიტიკური იდეოლოგიის სკალა შედგებოდა 7 კატეგორიიდან: 1 — ექსტრემა- ლური ლიბერალი, 2 — ლიბერალი, 3 — ოდნავ ლიბერალი, 4 — ზომიერი, 5 — ოდნავ კონსერვატო- რი, 6 — კონსერვატორი, 7 — ექსტრემალური კონსერვატორი. გამოკითხვის შედეგები მოყვანილია ცხრილში.

ცხრილი 3. პოლიტიკური იდეოლოგია განპირობებული პარტიული იდენფიკაციით

პოლიტიკური იდეოლოგია		მოცულობა					\bar{x}	S^2	პარტი ა	
დემოკრატი	11	50	60	139	35	39	6	340	3.82	1.74
დამოუკიდებელი	8	33	47	142	37	40	6	313	3.99	1.61
რესპუბლიკელი	2	19	30	99	65	61	14	290	4.53	1.64

დამუშავების შედეგები მოყვანილია ANOVA ცხრილში.

ANOVA ცხრილი

ცვალებადობის წყარო	SS	df	MS	F
ჯგუფთა შორის	85.38	2	42.69	25.6
ჯგუფთა შიგნით	1570.84	940	1.67	
სულ	1656.22	942		

- ა) ჩამოაყალიბეთ ჰიპოთეზები.
- ბ) თუ $\alpha = 0.05$, რა გადაწყვეტილებას მიიღებთ.

გ) საჭიროა თუ არა ტუკის კრიტერიუმის გამოყენება? დ) საშუალოთა რომელი წყვილები განსხვავდებიან მნიშვნელოვნად ერთმანეთისაგან? ამონაწერი კომპიუტერული პროგრამიდან:

Dependent Variable: IDEOLOGY					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > <i>F</i>
Between	2	85.382	42.691	25.55	0.0001
Within	940	1570.84	1.67		
Total	942	1656.22			

14. არსებობს ე. წ. საცხოვრებელი სეგრეგაციის ინდექსი. ეს ინდექსი იცვლება ნულიდან 100-მდე, სადაც უფრო დიდი რიცხვები ნიშნავს უფრო დიდ სეგრეგაციას (1990 წელს აშშ-ს ნაციონალური ინდექსი იყო 65). ცხრილში მოცებულია სეგრეგაციის ინდექსის მნიშვნელობები ქალაქების მიხედ-

ჩრდილოეთი	ცენტრალური	სამხრეთი	დასავლეთი
ბუფალო	გარი	ნიუ ორლეანი	რიჩმონდი
84	91	73	38
ნევარკი	დეტროიტი	ორლანდო	დალასი
83	89	64	64
ფილადელფია	ჩიკაგო	მაიამი	ანაჰაიმი
83	87	75	43
პიტსბურგი	მილუოკი	ატლანტა	ჰიუსტონი
74	85	72	59

შესაბამისი ANOVA ცხრილი:

ცვალებადობის წყარო	SS	df	MS	F
ჯგუფთა შორის	3107.0	3		
ჯგუფთა შიგნით	622.0	12		
სულ				

ა) დაასრულეთ ANOVA ცხრილი.

ბ) ჩამოაყალიბეთ ჰიპოთეზები.

გ) თუ $\alpha = 0.05$, რა გადაწყეტილებას მიიღებთ?

დ) რომელი საშუალოები განსხვავდებიან ერთმანეთისაგან მნიშვნელოვნად?

15. ცხრა პირველკურსელი სტუდენტი გადაანაწილეს იაპონური ენის სწავლების ჯგუფებში. პირველი ჯგუფის სტუდენტებს ჰქონდათ მაღალი ქულები უნარებში, მეორე ჯგუფის სტუდენტებს — საშუა-ლო, მესამე ჯგუფის სტუდენტებს — დაბალი. პირველ "კვიზიში" მიღებული ქულები (მაქსიმალური ქულა 10):

პირველი ჯგუფი	მეორე ჯგუფი	მესამე ჯგუფი
10	6	3
9	4	2
11	5	4

ა) ჩამოაყალიბეთ ჰიპოთეზები.

ბ) რა გადაწყვეტილებას მიიღებთ? $\alpha = 0.05$.

გ) მოქმედებს თუ არა უნარებში მიღებული ქულა "კვიზის" ქულებზე? 16. თავისი ნაკეთობების რეკლამისათვის ფირმა უშვებდა სამ განსხვავებულ კატალოგს. გაყიდვების მენეჯერს დაავალეს გაერკვია რომელი ტიპის კატალოგი იზიდავს მეტ მყიდველს. მენეჯერს ესმოდა რომ განსხვავება კლიენტებს შორის დამალავდა სხვაობას კატალოგებს შორის ამიტომ მიმართა ცდის პირთა შიდა დისპერსიულ ანალიზს. შეარჩიეს 100 კლიენტი და ყოველ მათგანს გაუგზავნეს

სამ-სამი კატალოგი. შესაბამისი შესყიდვები (დოლარი) მოყვანილია ქვემოთ:

	0 0 700 17	7 / 00 -	<u> </u>
კლიენტი	კატალოგი 1	კატალოგი 2	კატალოგი 3
1	44	27	90
2	67	36	80
3	50	20	112
4	80	40	230
5	36	18	60
6	50	30	80
7	110	140	209
8	80	40	140
9	20	12	40
10	30	12	58

- ა) ჩამოაყალიბეთ ნულოვანი და ალტერნატიული ჰიპოთეზები.
- ბ) ააგეთ ANOVA (კხრილი. შეამოწმეთ ჰიპოთეზა, აიღეთ $\alpha=0.01$.

გ) გაარკვიეთ რომელი კატალოგი იზიდავს მეტ კლიენტს.

17. სამი ქარხანა უშვებს მანქანის საბურავებს. შეარჩიეს 20 მანქანა და დაამონტაჟეს თითეული ქარხნის საბურავი. 12.000 მილის გავლის შემდეგ შეამოწმეს საბურავების პროფილი. მიღებული იყო შემდეგი მონაცემები: SST = 200 , SSR = 50 , SSB = 70 .

ა) ჩამოაყალიბეთ ჰიპოთეზები.

ბ) ააგეთ ANOVA (კხრილი. შეამოწმეთ ჰიპოთეზა, აიღეთ $\alpha = 0.05$.

გ) გაარკვიეთ არის თუ არა განსხვავება გამოშვებულ პროდუქციას შორის.

დ) დაასაბუთეთ რატომ მიმართეს ცდის პირთა შიდა ანალიზს ამ კვლევაში.

18. ექსტრავერტებს ახასიათებენ, როგორც ღია, სოციალურ და ხალისით აღსავსე ადამიანებს, ხოლო ინტოოვერტებს — როგორც ჩაკეტილ და ნაკლებად სოციალურ ტიპებს. განსხავებულად რეაგირებენ თუ არა ექსტრავერტები და ინტროვერტები ხმაურზე? ცდის პირები ასრულებდნენ დავალებას: ซึ่งมูกองชี้ულის ฮึกชึ่งงดับกับ ลงออกเหายใจไป ชององชั้งอาก อง ชองอึงอุงอาก ชองๆัศกบ ลูกชี้ชี้กู้. เรื่อกับ ชิกศักชิกใน อกღებული ქულებია:

პიროვნების ტიპი (ფაქტორი A)				
	ინტროვერტული ექსტრავერტული			
	დონე A	დონე A		

	10	15
	8	14
	12	12
	15	15
ხმადაბალი	10	11
B ფაქტორის $B_{\!\scriptscriptstyle 1}$ დონე	9	8
	14	12
	13	8
	14	13
	7	10
	12	9
	11	11
ხმაურის ფონი (ფაქტორი <i>B</i>)	6	13
	8	8
	11	9
	4	14
	5	13
	8	12
ხმამალალი B_2 დონე	9	15
	10	11
	9	9
	10	11
	7	12
	11	10

რა დამოკიდებულება არსებობს პიროვნების ტიპისა და ხმაურის ფონის ეფექტს შორის? თუ ხდება ურთიერთქმედება. აღწერეთ ის. 19. დაასრულეთ ANOVA ცხრილები და უპასუხეთ კითხვებს.

ცვალებადობის წყარო	SS	df	MS	F
დავალების ტიპი $($ ფაქტორი $A)$	-	3	5.0	-
ხმაურის დონე (ფაქტორი B)	16.0	ı	ı	-
$A \cdot B$	36.0	6	-	-
ჯგუფთა შიდა	-	60	2.0	
სულ		-	-	

ცვალებადობის ხყაოო	ცვალებადობის წყარო	SS	df	MS	F
--------------------	--------------------	----	----	----	---

დავალების ტიპი (ფაქტორი A)	40.0	-	10.0	
ხმაურის დონე (ფაქტორი <i>B</i>)	-	3	40.0	
$A \cdot B$	960.0	ı	80.0	
ჯგუფთა შიდა	3200.0	160		

- ა) A ფაქტორის რამდენი დონე იყო ?
- ბ) B ფაქტორის რამდენი დონე იყო ?
- გ) სულ რამდენი ცდის პირი მონაწილეობდა ცდაში?

დ) თუ $\alpha=0.05$, როგორ გადაწყვეტილებებს გააკეთებთ ნულოვანი ჰიპოთეზისათვის? 20. 1980 წლის ზამთრის ოლიმპიადის შემდეგ გაანალიზებული იყო ფიგურულ სრიალში მონაწილეთა შედეგები და მსაჯების გადაწყვეტილებები. კვლევის საგანი იყო რამდენად "პატრიოტული" ან "ნეიტრალური" იყვნენ მსაჯები თავისი თანამემამულე კონკურსატების მიმართ.

7 <u>0 0 3+0 0</u>	0 0 10	0 0 0		
ცვალებადობის წყარო	SS	df	MS	F
კონკურსანტი (A)	40.22	10	4.02	205.9
მსაჯი (B)	0.23	8	0.03	1.45
ურთიერთქმედება	1.58	80	0.02	
შიდა ცვალებადობა	5.80	297	0.02	
სულ	47.83	395		

- ა) რამდენი იყო კონკურსანტი?
- ბ) რამდენი იყო მსაჯი?
- გ) არის თუ არა განსხვავება კონკურსანტებს შორის? დ) არის თუ არა განსხვავება მსაჯებს შორის?
- ე) თუ ურთიერთქმედება მნიშვნელოვანია, ნიშნავს თუ არა ეს "პატრიოტულ" ან "ნეიტრალურ" გადაწყვეტილებას თანამემამულის მიმართ?

თავი 12 არაპარამეტრული სტატისტიკური კრიტერიუმები

მე-8 თავიდან ამ თავამდე, პოპულაციის პარამეტრების შესახებ დასკვნების გასაკეთებლად, განიხილებოდა პარამეტრული სტატისტიკურიკრიტერიუმები.

t -კრიტერიუმის და დისპერსიული ანალიზის პარამეტრული კრიტერიუმების გამოყენებისა-თვის დაშვებული იყო, რომ:

1. პოპულაციებში, რომლიდანაც აღებულია შერჩევა, მონაცემები ნორმალურადაა განაწილებული;

2. სხვადასხვა პოპულაციაში მონაცემების დისპერსიები ერთმანეთის ტოლია;

3. აზრი აქვს მიღებული მონაცემების საშუალოს გამოთვლას (პარამეტრულ კრიტერ-იუმს ვერ გამოიყენებთ, როცა მონაცემები სახელდების სკალაზეა).

არაპარამეტრული სტატისტიკური კრიტერიუმები ამოწმებენ ჰიპოთეზებს, რომლებიც არ ეხება პოპულაციის პარამეტრებს. მათ უფრო ნაკლები დაშვებები აქვთ პოპულაციის განაწილების შესახებ და ამიტომ მათ ზოგჯერ განაწილებისგან თავისუფალ კრიტერიუმებსაც უწოდებენ.

ხი–კვადრატ $\left(\chi^2 ight)$ თანხმობის კრიტერიუმი

ვთქვათ, გვაქვს 100 სტუდენტის სია, ზოგი მათგანი პირველ კურსზე სწავლობს, ზოგი მეორე, მესამე ან მეოთხე კურსელია. შერჩევის მოცულობა n=100 და ჩვენ ვანაწილებთ მათ, კურსების მიხედვით, k=4 კატეგორიად.

ზოგადად, თუ n მონაცემი ნაწილდება k კატეგორიად, ამ k კატეგორიაში უნდა მოხვდეს ყველა შესაძლო მონაცემი. მაშინ თუ p_i -ით აღვნიშნავთ i -ურ კატეგორიაში მოხვედრილ მონაცემთა წილს, გვექნება $\sum p_i = 1$.

პიპოთეზები

შესამოწმებელია $H_0: p_1 = \breve{p}_1, p_2 = \breve{p}_2, \ldots, p_k = \breve{p}_k$ ჰიპოთეზა, სადაც $\sum \breve{p}_1 = 1$. \breve{p}_1 — პირველ კატეგორიაში მოხვედრის ალბათობაა, \breve{p}_2 — მეორე კატეგორიაში მოხვედრის ალბათობაა და ა. შ.

ალტერნატიული ჰიპოთეზაა $H_{\scriptscriptstyle A}$: ნულოვანი ჰიპოთეზის რომელიმე ერთი მაინც ტოლობა არ სრულდება.

ამ ჰიპოთეზის სპეციალური სახეა $H_0: p_i = \frac{1}{k}$ — ყველა კატეგორიაში მოხვედრის ალბათობა ერთი და იგივეა.

კრიტერიუმის სტატისტიკა

გვაქვს n მონაცემი. აღვნიშნოთ o_i -ით i-ურ კატეგორიაში მოხვედრილ მონაცემთა რაოდე-ნობა (სიხშირე). o_i — დაკვირვებული სიხშირეა (observed frequency). ცხადია, რადგან გვაქვს n მონაცემი, დაკვირვებულ სიხშირეთა ჯამი იქნება n ($\sum o_i = n$).

დაკვირვებულ სიხშირეებთან ერთად განიხილავენ ე. წ. მოსალოდნელ სიხშირეებს (expected frequency) — e_i , პირობაში, რომ სამართლიანია H_0 ჰიპოთეზა.

 p_1 არის პირველ კატეგორიაში მოხვედრის ალბათობა. პირველ კატეგორიაში მოხვედრილ ინდივიდთა რაოდენობა განაწილებულია ბინომურად არის განაწილებული პარამეტრებით n და p_1 (წარმატების ალბათობა) და საშუალოთი $n\cdot p_1$. ამ სიდიდეს პირველი კატეგორიის შესაბამისი მოსალოდნელი სიხშირე ეწოდება (იგულისხმება, რომ სრულდება ნულოვანი ჰიპოთეზა).

i -ური კატეგორიის შესაბამისი მოსალოდნელი სიხშირეა $e_i = n \cdot p_i$, სადაც p_i არის i -ურ კატეგორიაში მოხვედრის ალბათობა

$$\sum p_i = 1, \quad \sum o_i = n.$$

თუ H_0 ჰიპოთეზა სამართლიანია, მოსალოდნელია, რომ დაკვირვებული სიხშირეები ახლოს იქნებიან მოსალოდნელ სიხშირეებთან. ამიტომ გამოსათვლელია $o_i - e_i$ სხვაობები და კრიტერიუმის სტატისტიკის სახეა:

$$\chi^2 = \sum_{i=1}^k \frac{\left(o_i - e_i\right)^2}{e_i}.$$

ამ სტატისტიკას აქვს ხი-კვადრატ განაწილება თავისუფლების ხარისხით k-1. ეს სტატისტიკა ყოველთვის არაუარყოფითია. როცა ყველა დაკვირვებული სიხშირე უდრის მოსალოდნელ სიხშირეებს სტატისტიკა ნულის ტოლია. თავისუფლების ხარისხი უდრის კატეგორიების რაოდენობას k მინუს ერთი (დაკავშირებული $\sum p_i = 1$ ტოლობასთან).

უარყოფის არეები

ხი-კვადრატ განაწილების კრიტიკული მნიშვნელობები $\chi^2_{k-1,\alpha}$ მოცემული α -თვის უნდა მოვძებნოთ ხი-კვადრატ განაწილების ზედა კრიტიკული წერტილების ცხრილიდან. კრიტიკული არე მარჯვენა ცალმხრივია — $[\chi^2_{k-1,\alpha},+\infty)$.

გადაწყვეტილება

თუ კრიტერიუმის სტატისტიკის მნიშვნელობა მეტია ან ტოილ კრიტიკულ მნიშვნელობაზე $\chi^2_{k-1,\alpha}$, მაშინ ნულოვანი ჰიპოთეზა უნდა უარვყოთ. წინააღმდეგ შემთხვევაში ამის საფუძველი არგაგვაჩნია.

შენიშვნა. სწორი გადაწყვეტილების მისალებად საჭიროა მოსალოდნელი სიხშირეების სულ მცირე 80% იყოს 5-ზე მეტი. თუ მოსალოდნელი სიხშირეების 20% -ზე მეტი ნაკლებია 5-ზე, საჭიროა კატეგორიების გაერთიანება (იხ. მაგალითი 12.4).

მ ა გ ა ლ ი თ ი 1 2 . 1 . მოთამაშე ეჭვობს რომ მისი კამათელი არ არის "სწორი". მან გააგო-რა კამათელი 120-ჯერ და მიიღო შემდეგი შედეგი:

ქულა	1	2	3	4	5	6
სიხშირე	23	18	24	19	25	11

შევამოწმოთ არის თუ არა კამათელი "წესიერი". სანდოობის დონე იყოს $\,lpha=0.05$.

ა მ ო ხ ს ნ ა . H_0 — ნულოვანი ჰიპოთეზა ნიშნავს, რომ $p_i = \frac{1}{n}$ ყველა i -თვის, ანუ

კამათელის ყველა შედეგი არის ტოლშესაძლებელი. ალტერნატიული ჰიპოთეზის თანახმად ყველა $\ p_i$ ერთმანეთის ტოლი არ არის. ყველა მოსალოდნელი სიხშირე არის

$$e_i = n \cdot p_i = 120 \cdot \frac{1}{6} = 20$$
.

კრიტერიუმის სტატისტიკის მნიშვნელობა იქნება

$$\chi^2 = \sum \frac{\left(o_i - e_i\right)^2}{e_i} = \frac{\left(23 - 20\right)^2}{20} + \frac{\left(18 - 20\right)^2}{20} + \dots + \frac{\left(11 - 20\right)^2}{20} = 6.8.$$

ამ სტატისტიკას აქვს ხი-კვადრატ განაწილება k-1=6-1=5 თავისუფლების ხარისხით. კრიტიკული მნიშვნელობა, როცა $\alpha=0.05$, არის $\chi^2_{5,0.05}=11.0705$ და ჩვენ ვერ უარვყოფთ ნულოვან ჰიპოთეზას.

თუ შევამჩნევთ, რომ კენტი ქულები უფრო ხშირად ჯდება ვიდრე ლუწები, და შევამოწმებთ ჰიპოთეზას პროპორციების ტოლობის შესახებ, მოთამაშის ეჭვები შეიძლება გამართლდეს. შეამოწმეთ!

ხი-კვადრატ თანხმობის კრიტერიუმი შეიძლება გამოვიყენოთ შემდეგი ამოცანების გადასაწყვეტად: არის თუ არა მონაცემები მიღებული ბინომური პოპულაციიდან p=0.5 პარამეტრით? ან არის თუ არა პოპულაცია ნორმალურად განაწილებული? და სხვა.

დამოუკიდებლობის ხი-კვადრატ კრიტერიუმი

ორ სიდიდეს შორის კავშირის არსებობის დადგენა სხვადასხვაგვარად შეიძლება: თუ მონაცემები ინტერვალების სკალაზეა გაზომილი, წრფივი კავშირის დასადგენად, გამოვიყენებთ პირსონის კორელაციის კოეფიციენტს, თუ რიგის სკალაზეა – სპირმენის კორელაციის კოეფიციენტს. ორი, სახელდების სკალაზე გაზომილი სიდიდეების კავშირის დადგენა ხდება ხი-კვადრატ დამოუკიდებლობის კრიტერიუმით. მონაცემები, ამ შემთხვევაში, წარმოდგენილია ე. წ. *შეუღლების ცხრილის* სახით. მაგალითი 12.2. დამოკიდებულია თუ არა სახლის გაყიდვის ვადა სახლის ღირებუ-

მაგალითი 12.2. დამოკიდებულია თუ არა სახლის გაყიდვის ვადა სახლის ღირებულებაზე. შეგროვილი იყო შემდეგი მონაცემები, რომელიც წარმოდგენილია შეუღლების ცხრილის სახით (იხ. ცხრილი 12.1).

	რამდენ დღეში გაიყიდა სახლი			
გაყიდვის ფასი	60 დღე ან ნაკლები	61 დღე ან მეტი	სულ	
75 000 დოლარზე ნაკლები	18	12	30	
75 000-დან 125 000-მდე	14	31	45	
125 000 დოლარზე მეტი	4	11	15	
სულ	36	54	90	

 H_0 : აღებული ორი ცვლადი დამოუკიდებელია,

 $H_{\scriptscriptstyle A}$: აღებული ორი ცვლადი დამოკიდებულია.

რას ნიშნავს ამ ამოცანაში, რომ ცვლადები დამოკიდებულია? ეს ნიშნავს, რომ გაყიდვამდე უკვე ცნობილია, რომ ფასზეა დამოკიდებული სწრაფად გაიყიდება სახლი თუ არა. დამოუკიდებლო-ბა ნიშნავს, რომ ფასზე არ არის დამოკიდებული სახლის გაყიდვის ვადები.

ზოგად შემთხვევაში შეუღლების ცხრილს აქვს შემდეგი სახე:

(3	ხრილი	12.2

<u> </u>					
u ama ma R	ცვლადი A				1
ცვლადი <i>B</i>	A_1	A_2		A_C	სულ
B_1	°11	°12		$^{\circ}$ 1 c	r_1
B_2	°21	° 22		$^{\circ}2c$	r_2
:	÷	÷	:	÷	:
B_r	°r1	° r2		$^{\circ}$ rc	r_r
სულ	c_1	c_2		C_c	n

 \circ_{ij} არის ij უჯრაში მონაცემთა რაოდენობა, სადაც i სტრიქონის ნომერია, j კი სვეტის ნომერი, r_i არის i -ურ სტრიქონში მონაცემთა მთლიანი რაოდენობა, c_j არის j -ურ სვეტში მონაცემთა მთლიანი რაოდენობა, $n=\sum r_i=\sum c_j=\sum o_{ij}$.

ჰიპოთეზები

ნულოვანი ჰიპოთეზა ნიშნავს: ცვლადები დამოუკიდებელია. ალტერნატიული ჰიპოთეზა ნიშნავს, რომ ცვლადები დამოკიდებულია.

კრიტერიუმის სტატისტიკა

ნულოვანი ჰიპოთეზის თანახმად, ცვლადები დამოუკიდებელია. ეს კი ნიშნავს რომ $A_i B_j$ უჯრედში მოხვედრის ალბათობა უდრის i -ურ სტრიქონში და j -ურ სვეტში მოხვედრის ალბათობა-თა ნამრავლს

$$P(A_iB_j) = P(A_i)P(B_j) = \frac{r_i}{n} \cdot \frac{c_j}{n} = \frac{r_i \cdot c_j}{n^2}$$
.

ij უჯრაში მოხვედრილი მონაცემების მოსალოდნელი e_{ij} სიხშირე უდრის n -ჯერ ამ უჯრაში მოხვედრის ალბათობას

$$n \cdot \frac{r_i \cdot c_j}{n^2} = \frac{r_i \cdot c_j}{n} .$$

თუ ნულოვანი ჰიპოთეზა სრულდება, მაშინ მოსალოდნელი სიხშირეები გამოითვლება ფორმულით:

$$e_{ij} = \frac{r_i \cdot c_j}{n} \ .$$

კრიტერიუმის სტატისტიკა ეფუძნება მოსაზრებას, რომ თუ ნულოვანი ჰიპოთეზა სამართლიანია, დაკვირვებული სიხშირეები ახლოს იქნებიან მოსალოდნელ სიხშირეებთან, ხოლო თუ ალტერნატიული ჰიპოთეზა სწორია, მაშინ სხვაობა დაკვირვებულ და მოსალოდნელ სიხშირეებს შორის დიდია.

კრიტერიუმის სტატისტიკას აქვს სახე:

$$\chi^2 = \sum \frac{\left(o_{ij} - e_{ij}\right)^2}{e_{ij}}$$

და ამ სტატისტიკას აქვს ხი-კვადრატ განაწილება თავისუფლების ხარისხით $(r-1)\cdot (c-1)$.

უარყოფის არე

თუ ყველა დაკვირვებული სიხშირე უდრის თავის შესაბამის მოსალოდნელ სიშირეს, სხვაობა მათ შორის ნულის ტოლია და კრიტერიუმის სტატისტიკაც ნულის ტოლია. რაც უფრო დიდია განსხვავება დაკვირვებულ და მოსალოდნელ სიხშირეებს შორის, მით უფრო დიდ მნიშვნელობას მიიღებს კრიტერიუმის სტატისტიკა. კრიტიკული მნიშვნელობა $\chi^2_{df,\alpha}$ უნდა ვიპოვოთ ხი-კვადრატ განაწილების კრიტიკული წერტილების ცხრილიდან. უარყოფის არეა — $[\chi^2_{df,\alpha},+\infty)$. კრიტერიუმი მარჯვენა ცალმხრივია.

გადაწყვეტილება

თუ კრიტერიუმის სტატისტიკის მნიშვნელობა მეტია კრიტიკულ მნიშვნელობაზე, ნულოვან ჰიპოთეზას უარვყოფთ, α მნიშვნელოვნების დონით, ალტერნატივის სასარგებლოდ. წინააღმდეგ შემთხვევაში ნულოვანი ჰიპოთეზის უარყოფის საფუძველი არ გაგვაჩნია.

მ ა გ ა ლ ი თ ი 12.3. ცხრილში მოყვანილია პოლიკლინიკაში განკურნების შედეგები სქე-სის მიხედვით (ერთი და იგივე დაავადება).

ცხრილი 12.3

	G*: 7:12	1 2. 0		
	აბებით მკურნალობა	კონსულ- ტაციები	მკურნა- ლობის გარეშე	სულ
მამრობითი	10/6	8/9	6/9	24
მდედრობითი	6/10	16/15	18/15	40
სულ	16	24	24	64

კრიტერიუმის სტატისტიკაის მნიშვნელობაა

$$\chi^{2} = \frac{\left(10-6\right)^{2}}{6} + \frac{\left(8-9\right)^{2}}{9} + \frac{\left(6-9\right)^{2}}{9} + \frac{\left(16-15\right)^{2}}{10} + \frac{\left(18-15\right)^{2}}{15} + \frac{\left(18-15\right)^{2}}{15} = 6.044$$

თუ $\alpha=0.05$, $(r-1)\cdot(c-1)=1\cdot 2=2$ თავისუფლების ხარისხის შესაბამისი კრიტიკული მნიშვნელობა, არის $\chi^2_{2,0.05}=5.9915$ და ვინაიდან 6.044>5.9915, ნულოვან ჰიპოთეზას უარვყოფთ. სქესსა და განკურნების შედეგებს შორის არსებობს კავშირი. აბებით მკურნალობა უფრო შედეგიანია კაცებისათვის. ქალებს განკურნებისათვის უფრო ხშირად მკურნალობა არ სჭირდებათ.

ჰიპოთეზათა შემოწმება 2×2 შეუღლების ცხრილის შემთხვევაში

2×2 ცხრილის შემთხვევაში, კორექციის გათვალისწინებით, კრიტერიუმის სტატისტიკა გამოითვლება ფორმულით:

$$\chi^{2} = \sum \frac{(|o_{ij} - e_{ij}| - 0.5)^{2}}{e_{ii}}$$

და ამ სტატისტიკას აქვს ხი-კვადრატ განაწილება თავისუფლების ხარისხით 1.

ამ შემთხვევაში ყველა უჯრისთვის $\left|o_{ij}-e_{ij}\right|$ სხვაობა ერთი და იგივეა, ამ სხვაობას უნდა გამოვაკლოთ 0.5, მერე ავიყვანოთ კვადრატში, გავყოთ მოსალოდნელ სიხშირეზე და მიღებული რიცხვები შევკრიბოთ.

მ ა გ ა ლ ი თ ი 12.4. მონაცემები შეგროვებული იყო მცირე და საშუალო ბიზნესის მფლობელებისგან მათი მომავალი საქმიანობის პროგნოზის შესახებ:

ცხრილი 12.4

	მფლობელის პროგნოზი				
	გაუმჯობეს- იგივე გაუარეს- _{სულ} დება დარჩება დება				
მცირე ბიზნესის მფლობელი	6	18	8	28	
საშუალო ბიზნესის მფლობელი	3	12	13	23	
სულ	9	30	21	60	

არის თუ არა ბიზნესის ზომა და მფლობელის რწმენა ერთმანეთთან კავშირში? ნულოვანი ჰიპოთეზა: მფლობელის პროგნოზი და ფირმის ზომა ერთმანეთისაგან დამოუკი-დებელია, ისინი დაკავშირებულია ერთმანეთთან — ალტერნატივის საწინააღმდეგოდ. მოსალოდნელი სიხშირეები:

$$e_{ij} = \frac{r_i \cdot c_j}{n},$$

$$e_{11} = \frac{28 \cdot 9}{60} = 4.2, \quad e_{12} = \frac{28 \cdot 30}{60} = 14, \quad e_{13} = \frac{21 \cdot 28}{60} = 9.8,$$

$$e_{21} = \frac{9 \cdot 32}{60} = 4.8, \quad e_{22} = \frac{30 \cdot 32}{60} = 16, \quad e_{23} = \frac{21 \cdot 32}{60} = 11.2.$$

ორი მოსალოდნელი სიხშირე ნაკლებია 5-ზე. ეს კი დაუშვებელია და ამიტომ უნდა მოვახდინოთ კატეგორიების გაერთიანება. ახალი ცხრილი მიიღებს სახეს:

ცხრილი 12.**5**

	მფლობელის პროგნოზი			
	გაუმჯობესდება ან იგივე დარჩება	გაუარესდება	სულ	
მცირე	24/20.8	8/11.2	32	
საშუალო	15/18.2	13/9.8	28	
სულ	39	21	60	

მივიღეთ შეუღლების 2×2 ცხრილი. კრიტერიუმის სტატისტიკის მნიშვნელობა იქნება:

$$\chi^2 = \sum \frac{(|o_{ij} - e_{ij}| - 0.5)^2}{e_{ii}} = \frac{2.7^2}{20.8} + \frac{2.7^2}{11.2} + \frac{2.7^2}{18.2} + \frac{2.7^2}{9.8} = 2.146.$$

სტატისტიკის ტავისუფლების ხარისხია — $(2-1)\cdot(2-1)=1$. ხი-კვადრატ განაწილების ცხრილიდან, კრიტიკული მნიშვნელობა, როცა $\alpha=0.05$ არის $\chi^2_{1,0.05}=3.841$. ვინაიდან 2.146<3.841, ამიტომ ნულოვან ჰიპოთეზას 0.05 დონეზე ვერ უარვყოფთ. ჩვენ ვერ აღმოვაჩინეთ მნიშვნელოვანი კავშირი ბიზნესის ზომასა და მფლობელის აზრს შორის.

მ ა გ ა ლ ი თ ი 1 2 . 5 . მიკრო-საფინანსო ბანკის მენეჯერს დაავალეს შეემუშავებინა ავტომანქანის სესხის გაცემის კრიტერიუმები. ორი წლის განმავლობაში გაცემული იყო 400 სესხი. მენეჯერმა დაახარისხა სესხები შემდეგნაირად:

კატეგორია	სიხშირე
კარგი გადამხდელი (დროზე იხდის)	300
საშუალო (აგვიანებს გადახდას)	60
ცუდი (საჭიროა ზომების მიღება)	40

კლიენტებზე მოძიებული იქნა დამატებითი ინფორმაცია, აქირავებს, თუ ყიდულობს ის სახლს. მონაცემები წარმოდგენილი იყო შეუღლების ცხრილის სახით, რადგანაც მენეჯერს აინტერესებდა არიან, თუ არა მიღებული ცვლადები ერთმანეთზე დამოკიდებული. $\alpha=0.01$.

ცხრილი 12.6

.				
		აქირა- ვებს	ყიდუ - ლობს	სულ
(სვეტის ცვლადი)	კარგი	140	160	300
გადამხდელის კატეგორია	საშუალო	20	40	60
(სტრიქონის ცვლადი)	ცუდი	20	20	40
სულ		180	220	400 = N

180 კლიენტი აქირავებს სახლს, 220 — ყიდულობს. 140 "კარგი" კლიენტი აქირავებს სახლს და ა. შ.

 H_0 : სტრიქონის და სვეტის ცვლადები დამოუკიდებელია,

 $H_{\scriptscriptstyle A}$: სტრიქონის და სვეტის ცვლადები დამოკიდებულია.

თუ ნულოვანი ჰიპოთეზა სრულდება, მაშინ კარგი გადამხდელის ალბათობა, რომელიც აქირავებს სახლს და კარგი გადამხდელის ალბათობა, რომელიც ყიდის სახლს, ტოლია. ეს ორი ალბათობა უდრის კარგი გადამხდელის ალბათობას ქირა-ყიდვის გარეშე.

$$p$$
 (კარგი) = $\frac{\text{kar gi gad amxd el ebis r ao d eno ba}}{\text{sesxebis r ao d eno ba}} = \frac{300}{400} = 0.75$,

თუ სრულდება ნულოვანი ჰიპოთეზა

p (კარგი/აქირავებს) = 0.75,

p (კარგი/ყიდულობს) = 0.75.

180 კაციდან, ვინც სახლს აქირავებს 75% ანუ 135 უნდა იყოს კარგი გადამხდელი. 220 კაცი-დან, ვინც სახლს ყიდულობს 75%, ანუ 165 უნდა იყოს კარგი გადამხდელი. ასეთი მსჯელობით ვიპო-ვით სხვა დანარჩენ მოსალოდნელ სიხშირეს. ცხრილი 12.6 მიიღებს სახეს:

ცხრილი 12.7

0=12				
		აქირა- ვებს	ყიდუ- ლოპს	სულ
(სვეტის ცვლადი)	კარგი	140/135	160/165	300
გადამხდელის კატეგორია	საშუალო	20/27	40/33	60
(სტრიქონის ცვლადი)	ცუდი	20/18	20/22	40
სულ		180	220	400 = N

თუ სრულდება ნულოვანი ჰიპოთეზა განსხვავება დაკვირვებულ და მოსალოდნელ სიხშირეებს შორის პატარაა.

$$\chi^{2} = \sum \frac{\left(o_{ij} - e_{ij}\right)^{2}}{e_{ij}} = \frac{\left(140 - 135\right)^{2}}{135} + \frac{\left(160 - 165\right)^{2}}{165} + \frac{\left(20 - 27\right)^{2}}{27} + \frac{\left(40 - 33\right)^{2}}{33} + \frac{\left(20 - 18\right)^{2}}{18} + \frac{\left(20 - 22\right)^{2}}{22} = 4.04.$$

სვეტის ცვლადს აქვს 2 დონე (აქირავებს, ყიდულობს), სტრიქონის ცვლადს სამი დონე (კარგი, საშუალო, ცუდი),

თავისუფლების ხარისხი = (2-1)(3-1)=2,

როცა $\alpha = 0.01$, $\chi^2_{crit} = 9.21$.

რადგან კრიტერიუმის სტატისტიკის მნიშვნელობა 4.04 < 9.21 , ნულოვან ჰიპოთეზას ვერ უარვყოფთ. ცვლადები დამოუკიდებელია.

ცნობილი იყო კლიენტების შემოსავალი და შედგენილი იყო შეუღლების ცხრილი.

	შემოსავალი (ათასი დოლარი)			lumm	
	0-10	10-20	20-30	30-ზე მეტი	სულ
კარგი	12/37.5	43/54.75	87/84	158/123.75	300
საშუალო	18/7.5	20/10.95	18/16.8	4/24.75	60
ცუდი	20/5	10/7.3	7/11.2	3/16.5	40
სულ	50	73	112	165	400

$$\chi^2 = \sum \frac{(o_{ij} - e_{ij})^2}{e_{ij}} =$$

$$= \frac{(12 - 37.5)^2}{37.5} + \frac{(43 - 54.75)^2}{54.75} + \dots + \frac{(3 - 16.5)^2}{16.5} = 127.73.$$

თავისუფლების ხარისხი = (4-1)(3-1) = 6 , $\alpha = 0.01$, $\chi^2_{crit} = 16.812$.

რადგან 127.72 > 16.812 , ნულოვანი ჰიპოთეზა უნდა უარვყოთ. კლიენტები მაღალი შემოსავ-ლით უფრო კარგი გადამხდელები არიან.

როცა χ^2 სტატისტიკის მნიშვნელობა მეტია კრიტიკულ მნიშვნელობაზე, ნულოვანი ჰიპოთეზა უნდა უარვყოთ. ეს კი ნიშნავს, რომ დაკვირვებულ და მოსალოდნელ სიხშირეებს შორის განსხვავება მნიშვნელოვანია. მაგრამ ეს სტატისტიკა არ გვიჩვენებს რომელი უჯრედები აჩვენებენ გადახრას დამოუკიდებლობისგან და რომელი არა. სხვაობას o_{ij} – e_{ij} ნაშთი ეწოდება.

განვიხილოთ ისევ 12.3 ცხრილი. ნაშთი $o_{11}-e_{11}=10-6=4$ დადებითია, ნაშთი $o_{21}-e_{21}=6-10=-4$ უარყოფითია. ნაშთი დადებითია, როცა დაკვირვებული სიხშირე მეტია მოსა-ლოდნელ სიხშირეზე და უარყოფითია, როცა პირიქით — ნაკლებია. რამდენად დიდი უნდა იყოს ნაშთი, რომ ეს მეტყველებდეს დამოკიდებულებაზე?

იმისათვის, რომ ვუპასუხოთ ამ კითხვას უნდა გამოვთვალოთ სტატისტიკა:

$$t = \frac{|o_{ij} - e_{ij}|}{\sqrt{e_{ij}(1 - r_i)(1 - c_i)}},$$

სადაც r_i არის i -ურ სტრიქონში მონაცემთა მთლიანი რაოდენობა, c_j არის j -ურ სვეტში მონაცემ-თა მთლიანი რაოდენობა.

თუ ამ სტატისტიკის მნიშვნელობა მეტია ან ტოლი 2-ზე, ჩავთლით რომ ამ უჯრედის დაკვირ-ვებული და მოსალოდნელი სიხშირეები მნიშვნელოვნად განსხვავდებიან. 12.3 მაგალითში ასეთია 4 ნაშთი: აბებით მკურნალობა, როგორც ქალებისთვის ასევე მამაკაცებისთვის; მკურნალობის გარეშე, როგორც ქალებისთვის ასევე მამაკაცებისთვის გვიჩვენებს მნიშვნელოვან გადახრას დამოუკიდებლობისგან.

თუ χ^2 სტატისტიკაზე დაყრდნობით ნულოვანი ჰიპოთეზა უარყოფილია, ცვლადებს შორის არის სტატისტიკური კავშირი. მაგრამ იმისათვის, რომ გავარკვიოთ რამდენად ძლიერია ეს კავშირი, უნდა განვიხილოთ შანსების შეფარდება.

შანსების შეფარდება

მაგალითი 12.6. განვიხილოთ 1993 წლის მონაცემების შეუღლების ცხრილი მსხვერ-პლისა და დამნაშავის რასის მიხედვით (ერთი მსხვერპლი, ერთი დამნაშავე)

ცხრილი 12.9

დამნაშავის რასა	მსხვერპლის რასა		Lumm,
(0300303300 0303	თეთრი	შავი	სულ
თეთრი	4686	304	4990

შავი	849	5393	6242
------	-----	------	------

შემოვიღოთ აღვნიშნები:

 $p_{\scriptscriptstyle 1}$ ალბათობა იმისა, რომ მსხვერპლი თეთრია, როცა დამნაშავე თეთრია (განიხილება როგ-ორც წარმატების ალბათობა);

 $1-p_{_1}$ შავი მსხვერპლის ალბათობა, როცა დამნაშავე თეთრია (მარცხის ალბათობა),

 p_2 — ალბათობა იმისა, რომ მსხვერპლი თეთრია, როცა დამნაშავე შავია (წარმატების ალბათობა),

 $1-p_2$ — შავი მსხვერპლის ალბათობა, როცა დამნაშავე შავია (მარცხის ალბათობა). წარმატების შანსი განიმარტება როგორც შეფარდება

$$3 \text{s6bn} = \frac{p}{1-p} = \frac{\text{war mat ebis al baToba}}{\text{marcxis al baToba}} \,.$$

თეთრი დამნაშავისათვის თეთრი მსხვერპლის პროპორციაა $\frac{4686}{4990} = 0.939$ და შავი მსხვერპ-

ლის პროპორცია —
$$\frac{304}{4990} = 0.061$$
.

თეთრი დამნაშავისათვის შანსი, რომ მსხვერპლი იქნება თეთრი არის $\frac{0.939}{0.061}$ = 15.4 . სიდიდე

$$\frac{\frac{4686}{4990}}{\frac{304}{4990}} = \frac{4686}{304} = 15.4$$

ნიშნავს, რომ თეთრი დამნაშავისათვის ყოველ ერთ შავ მსხვერპლზე მოდის 15.4 თეთრი.

შავი დამნაშავისათვის შანსი, რომ მსხვერპლი იქნება თეთრი არის $\frac{849}{5393}$ = 0.157 . ეს კი ნიშ-ნავს, რომ ერთ შავ მსხვერპლზე მოდის 0.157თეთრი.

ანალოგიურად, რადგან $\frac{5393}{849} = \frac{1}{0.157} = 6.4$, შავი დამნაშავისთვის ერთ თეთრ მსხვერპლზე მოდის 6.4 შავი.

შანსების შეფარდება:

 $^{2 imes2}$ ცხრილში ორი სტრიქონის შანსების შეფარდებას ეწოდება შანსების შეფარდება

$$\theta = \frac{\partial \mathcal{S}bbo \, \sigma \partial \sigma \sigma \sigma \, \omega \mathcal{S}\partial \mathcal{S}\partial \mathcal{S}\partial \mathcal{S}}{\partial \mathcal{S}bbo \, \partial \mathcal{S}\partial \, \omega \, \partial \mathcal{S}\partial \, \partial \mathcal{S}\partial \mathcal{S}} = \frac{15.4}{0.157} = 98.089$$
 .

თეთრი მსხვერპლის შანსი თეთრი დამნაშავებისთვის 98.089-ჯერ მეტია, ვიდრე თეთრი მსხვერპლის შანსი შავი დამნაშავებისთვის.

 θ = 98.089 არ ნიშნავს, რომ p_1 ალბათობა 98.089-ჯერ მეტია p_2 -ზე. θ = 98.089 ნიშნავს, რომ პირველ სტრიქონში შანსი 98.089-ჯერ მეტია მეორე სტრიქონის შანსზე.

შანსების შეფარდების თვისებები $2{ imes}2$ შეუღლების ცხრილებისათვის

1.
$$\theta = \frac{o_{11} \cdot o_{22}}{o_{21} \cdot o_{12}}$$
;

2. θ -მ შეიძლება მიიღოს ნებისმიერი დადებითი მნიშვნელობა;

3. როცა $p_1 = p_2$ და ორივე სტრიქონის შანსებიც ტოლია, მაშინ ცვლადები დამოუკიდებელია. $\theta = 1$, როცა ცვლადები დამოუკიდებლებია;

4. რაც უფრო ძლიერია კავშირი ორ ცვლადს შორის, მით უფრო განსხვავდება θ ერთისაგან. როცა $\theta > 1$, წარმატების შანსი პირველ სტრიქონში მეტია წარმატების შანსზე მეორე სტრიქონში. ღოცა $\theta < 1$, წარმატების შანსი პირველ სტრიქონში ნაკლებია წარმატების შანსზე მეორე სტრიქონ-ში.

მან-უიტნის კრიტერიუმი

მაგალითი 12.7. საგზაო სამსახურის მენეჯერის ეჭვით, ქალაქის შიგნით გზების გასარემონტებლად ნაკლებ ასფალტს ხარჯავენ ვიდრე გზებზე ქალაქის გარეთ. შეგროვილი იყო 12 კვირის მონაცემები (იარდი ასფალტი ერთ მილზე).

ცხრილი 12.10

ქალა	ქის შიგნით		ქის გარეთ
	რანგი		რანგი
460	2	600	6
830	16	652	9
720	12	603	7
930	20	594	5
500	4	1402	23
620	8	1111	21
703	11	902	18
407	1	700	10
1521	24	827	15
900	17	490	3
750	13	904	19
800	14	1400	22
	რანგების ჯამი		რანგების ჯამი
	142		158

მიუხედევად იმისა, რომ მონაცემები ინტერვალის სკალებზეა გაზომილი, მენეჯერმა არ გამოიყენა t-კრიტერიუმი (ორი დამოუკიდებელი შერჩევისათვის), რადგანაც გრძნობდა, რომ მონაცემებს არ ექნებოდათ ნორმალური განაწილება. ასეთი ტიპის ამოცანებისათვის არსებობს მან-უიტნის არაპარამეტრული სტატისტიკური კრიტერიუმი ცდის პირთა შორის სქემაში. ეს კრიტერიუმი არის ორი დამოუკიდებელი ჯგუფისათვის t-კრიტერიუმის არაპარამეტრული ანალოგი.

ჰიპოთეზები

ნულოვანი ჰიპოთეზა მან-უიტნის U ტესტში:

 H_0 : ორივე შერჩევა აღებულია ერთი და იგივე პოპულაციიდან,

 $H_{\scriptscriptstyle A}$: შერჩევები აღებულია სხვადასხვა პოპულაციიდან (პოპულაციები განსხვავდებიან მდებარეობის მიმართებაში).

ჩვენი ამოცანის ჰიპოთეზები:

 H_0 : მოხმარებული ასფალტის მონაცემებს ქალაქის შიგნით და ქალაქის გარეთ აქვთ ერთი და იგივე განაწილება,

 $H_{\scriptscriptstyle A}$: ქალაქის გარეთ აღინიშნება ასფალტის მეტი მოხმარების ტენდენცია ვიდრე ქალაქის შიგნით.

ავიღოთ $\alpha = 0.05$.

კრიტერიუმის სტატისტიკა

იმისათვის, რომ გამოვიყენოთ მან-უიტნის კრიტერიუმი ორივე შერჩევის მონაცემები უნდა გავაერთიანოთ და მივუწეროთ რანგები, როგორც ნაჩვენებია 12. 10 ცხრილში. მან-უიტნის კრიტერი-უმის ლოგიკა მდგომარეობს იმაში, რომ თუ ერთი ჯგუფის რანგების ჯამი მნიშვნელოვნად განსხვავდება მეორე ჯგუფის რანგების ჯამისაგან, შეგვიძლია დავასკვნათ, რომ პოპულაციის მდებარეობის პარამეტრები განსხვავებულია.

გამოსათვლელი გვაქვს U სტატისტიკა ორივე შერჩევისთვის.

$$U_1=n_1n_2+rac{n_1\left(n_1+1
ight)}{2}$$
 მინუს პირველი შერჩევის რანგების ჯამი,
$$U_2=n_1n_2+rac{n_2\left(n_2+1
ight)}{2}$$
 მინუს მეორე შერჩევის რანგების ჯამი,

სადაც n_1 და n_2 პირველი და მეორე შერჩევის მოცულობებია. შერჩევის რანგების ჯამი მოცემულია ცხრილში 12.10.

$$U_1 = 12 \cdot 12 + \frac{12 \cdot 13}{2} - 142 = 80,$$

$$U_2 = 12 \cdot 12 + \frac{12 \cdot 13}{2} - 158 = 64.$$

მიაქციეთ ყურადღება, რომ $U_1 + U_2 = n_1 n_2$.

კრიტერიუმის სტატისტიკა U = მინიმუმი $U_{\scriptscriptstyle 1}$ -სა და $U_{\scriptscriptstyle 2}$ -ს შორის (U = $\min(U_{\scriptscriptstyle 1},U_{\scriptscriptstyle 2})$), U = უმცირესი 80-სა და 64-ს შორის = 64 .

უარყოფის არეები

თუ ავირჩევთ ორმხრივ კრიტერიუმს და კრიტერიუმის სტატისტიკის მნიშვნელობა იქნება ნაკლები მან-უიტნის კრიტიკული წერტილების ცხრილში ნაპოვნ კრიტიკულ მნიშვნელობაზე, მაშინ ნულოვან ჰიპოთეზას უარვყოფთ.

ჩვენს მაგალითში, 0.05 მნიშვნელოვნების დონისათვის, $n_1=12$ და $n_2=12$ მოცულობების შესაბამისი U განაწილების კრიტიკულ მნიშვნელობა იქნება $U_{crit}=37$. უარყოფის არეა — $U \leq U_{crit}$.

გადაწყვეტილება

კრიტერიუმის სტატისტიკის მნიშვნელობა — 64 მეტია კრიტიკულ მნიშვნელობაზე — 37, ამი-ტომ ნულოვან ჰიპოთეზას ვერ უარვყოფთ, ვერ ვიტყვით, რომ ქალაქგარეთ ასფალტი იფლანგება. მიაქციეთ ყურადღება, რომ ამ კრიტერიუმით ნულოვანი ჰიპოთეზის უარყოფა ხდება მაშინ, თუ გამოთვლილი კრიტერიუმის სტატისტიკის მნიშვნელობა ნაკლებია ან ტოლი კრიტიკულ მნიშვნელობაზე.

უილკოქსონის ნიშნიანი რანგების კრიტერიუმი

უილკოქსონის ნიშნიანი რანგების კრიტერიუმი არის არაპარამეტრული კრიტერიუმი ცდის პირებს შიგნით სქემისთვის. ის, დაწყვილებული მონაცემებისათვის t-კრიტერიუმის არაპარამეტრული ანალოგია.

à ა გ ა ლ ი თ ი 12.8. ორი დღის განმავლობაში კაფეში აკვირდებოდნენ ერთი და იმავე 11კლიენტის სადილობას. პირველ დღეს უკრავდა ნელი მუსიკა, მეორე დღეს — სწრაფი. ჩაიწერეს თითოეული ცდის პირის მიერ წუთში მიღებული ლუკმების რაოდენობა:

	ന്നറ			

n-						
	მუსიკის ტემპი					
ცდის პირი	სწრაფი	ნელი	d	d	d -ს რანგი	ნიშნიანი რანგი
1	3	4	-1	1	2	2_
2	4	6	-2	2	4.5	4.5_
3	2	3	-1	1	2	2_
4	3	3	0	0		
5	3	8	-5	5	9	9_
6	4	2	+2	2	4.5	4.5,
7	1	4	-3	3	6.5	6.5_
8	5	4	+1	1	2	2,
9	3	6	-3	3	6.5	6.5_

10	5	9	-4	4	8	8_
11	2	8	-6	6	10	10_

ჰიპოთეზე<u>ბი</u>

 H_0 : ერთმანეთთან დაკავშირებული პირველი და მეორე დღის მონაცემების განაწილებები იდენტურია.

 H_1 : ერთმანეთთან დაკავშირებული პირველი და მეორე დღის მონაცემების განაწილებები იდენგური არ არის.

კრიტერიუმის სტატისტიკა

ნიშნიანი რანგების ჯამებს შორის უმცირესი ჯამი

$$T=$$
უმცირესი $\sum R_{\scriptscriptstyle -}$ და $\sum R_{\scriptscriptstyle +}$ შორის,

სადაც $\sum R_-$ უარყოფითი სხვაობების შესაბამისი რანგების ჯამია, ხოლო $\sum R_+$ — დადებითი სხვაობების შესაბამისი რანგების ჯამია.

12. 11 ცხრილიდან

$$\sum R_{-} = 2+4.5+2+9+6.5+6.5+8+10=48.5$$
, $\sum R_{+}=4.5+2=6.5$,

ე. ი.

$$T=$$
უმცირესი $\sum R_{\scriptscriptstyle -}$ -სა და $\sum R_{\scriptscriptstyle +}$ -ს შორის = 6.5 .

უარყოფის არე

უარყოფის არე არის კრიტერიუმის სტატისტიკის ის მნიშვნელობები, რომლებიც ნაკლებია ან ტოლია კრიტიკულ მნიშვნელობაზე.

კრიტიკული მნიშვნელობები დამოკიდებული არიან მნიშვნელოვნების lpha დონეზე და ნულის-

გან განსხვავებული სხვაობების მქონე წყვილების რაოდენობაზე.

T-ს კრიტიკული მნიშვნელობები მოცემულია უილკოქსონის ნიშნიანი რანგების კრიტერიუ-მისათვის T-ს კრიტიკული მნიშვნელობების ცხრილში. როცა $\alpha=0.05$ და ნულისგან განსხვავებული სხვაობების რაოდენობა 10-ის ტოლია, კრიტიკული მნიშვნელობა უდრის 8-ს. მიაქციეთ ყურადღება, რომ ამ ტესტში ნულოვან ჰიპოთეზას უარყოფენ, როცა გამოთვლილი სტატისტიკის მნიშვნელობა ნაკლებია ან ტოლი ცხრილში ნაპოვნ კრიტიკულ მნიშვნელობაზე.

გადაწყვეტილება

კრიტერიუმის სტატისტიკის მნიშვნელობა — 6.5, ნაკლებია კრიტიკულ მნიშვნელობაზე — 8. ამიტომ ნულოვანი ჰიპოთეზა უნდა უარვყოთ. მიღებული ლუკმების რაოდენობის განაწილება მუსი-კის სხვადასხვა ტემპის პირობებში განსხვავდებიან ერთმანეთისგან. ნელ ტემპთან შედარებით სწრაფი ტემპის დროს მეტ ლუკმას იღებენ.

კრუსკალ-უოლისის კრიტერიუმი

ერთფაქტორიანი დისპერსიული ანალიზი გამოიყენება ორზე მეტი საშუალოს შესადარებლად. ამ ანალიზის გამოყენება შეიძლება, თუ შერჩევები აღებულია ნორმალური პოპულაციებიდან და პოპულაციების დისპერსიები ტოლია.

კრუსკალ-უოლისის კრიტერიუმი არის ერთფაქტორიანი ANOVA კრიტერიუმების არაპარა-მეტრული ანალოგი. ამ კრიტერიუმის გამოყენებისას არ არის აუცილებელი ნორმალურობის მოთხო-ვნა.

მ ა გ ა ლ ი თ ი 12.9. შესამოწმებელი იყო სამი ტიპის ელექტრო ჯაგრისის მუშაობის ვაღები (საათი). $\alpha = 0.05$.

ბრენდი 1	40	37	51	20	46	93	27	25	48
ბრენდი 2	69	113	217	92	65	49	122	117	105
ბრენდი 3	5	14	10	17	36	52	13	68	141

ჰიპოთეზებ<u>ი</u>

 $H_{\scriptscriptstyle 0}$: სამი ბრენდის მუშაობის ვადა არ განსხვავდება ერთმანეთისგან.

 $H_{\scriptscriptstyle A}$: სამი ბრენდის მუშაობის ვადა განსხვავებულია.

კრიტერიუმის სტატისტიკა

გავაერთიანოთ სამივე შერჩევის მონაცემები და მოვახდინოთ მათი რანჟირება:

		რანგი								რანგების ჯამი
ბრენდი 1	11	10	15	6	12	21	8	7	13	103
ბრენდი 2	19	23	27	20	17	14	25	24	22	191
ბრენდი 3	1	4	2	5	9	16	3	18	26	84

კრიტერიუმის სტატისტიკას აქვს სახე

$$H = \frac{12}{N(N+1)} \sum_{i=1}^{k} \frac{R_i^2}{n_i} - 3(N+1),$$

სადაც N მონაცემთა სრული რაოდენობაა, k შერჩევების რაოდენობაა, R_i არის i -ური შერჩევის რანგების ჯამი, n_i არის i -ური შერჩევის მოცულობა.

H სტატისტიკას აქვს ხი-კვადრატ განაწილება თავისუფლების ხარისხით k-1. უარყოფის არე — კრიტერიუმის სტატისტიკის ის მნიშვნელობებია, რომლებიც მეტია აანტოლი კრიტიკულ მნიშვნელობაზე $\chi^2_{k-1,\alpha}$.

გადაწყვეტილება

თუ კრიტერიუმის სტატისტიკის მნიშვნელობა მეტია კრიტიკულ მნიშვნელობაზე ნულოვან ჰიპოთეზას უარვყოფთ. ჩვენს მაგალითში

$$H = \frac{12}{N(N+1)} \sum_{i=1}^{k} \frac{R_i^2}{n_i} - 3(N+1) =$$

$$= \frac{12}{27 \cdot (27+1)} \cdot \left[\frac{103^2}{9} + \frac{191^2}{9} + \frac{84^2}{9} \right] - 3 \cdot (27+1) = 11.4956.$$

კრიტიკული მნიშვნელობა, ხი-კვადრატ განაწილების ცხრილიდან, როცა $\alpha=0.05$ და თავისუფლების ხარისხია k-1=3-1=2 უდრის 5.9915-ს.

რადგან 11.4956>5.9915-ზე, ნულოვან ჰიპოთეზას უარვყოფთ. ელექტრო ჯაგრისების მუშაობის ვადები განსხვავებულია.

არსებობს შეზღუდვები კრუსკალ-უოლისის კრიტერიუმის გამოყენებისას: შერჩევის მოცულობები უნდა იყოს ხუთზე მეტი, შერჩევები პოპულაციიდან დამოუკიდებლად არის აღებული, პოპულაციები განსხვავდებიან მხოლოდ მდებარეობის პარამეტრებით.

თუ შერჩევებში ბევრი მონაცემი მეორდება, ანუ არსებობენ "ბმები",H სტატისტიკა უნდა გაიყოს საკორექციო L მამრავლზე

$$L = 1 - \frac{\sum_{i=1}^{g} (t_i^3 - t_i)}{N^3 - N},$$

სადაც g ჯგუფების რაოდენობაა ბმებით, t გამეორებული მონაცემების რაოდენობაა, N კი მონაცემთა სრული რაოდენობაა.

მ ა გ ა ლ ი თ ი 12.10. დამოკიდებულია თუ არა გამოცდაზე მიღებული ქულები გამომცდელების გუნდზე? ქვემოთ მოცემულია 36 აბიტურიენტის ქულები:

გამომცდელების პირველი გუნდი	გამომცდელების მეორე გუნდი	გამომცდელების მესამე გუნდი
90	90	55
65	88	55

72	83	90
83	83	83
65	65	65
50	65	65
65	83	60
83	83	55
83	90	65
55	90	72
72	65	90
65	72	65

ჩამოვაყალიბოთ ნულოვანი და ალტერნატიული ჰიპოთეზა:

 H_0 : აბიტურიენტების საშუალო ქულები არ განსხვავდებიან ერთმანეთისაგან.

 $H_{\scriptscriptstyle A}$: აბიტურიენტების საშუალო ქულები განსხვავდებიან ერთმანეთისაგან.

 $\alpha = 0.10$.

კრუსკალ-უოლისის პროცედურის პირველი ნაბიჯია ქულების გადაყვანა რანგებში. გასა-თვალისწინებელია, რომ ბევრი ქულა მეორდება. რანგები შემდეგნაირია:

	206000000000000000000000000000000000000	30060000	3011230000000
	პირველი გუნდი	მეორე გუნდი	მესამე გუნდი
	33.5	33.5	3.5
	12.0	30.0	3.5
	19.5	25.5	33.5
	25.5	25.5	25.5
	12.0	12.0	12.0
	1.0	12.0	12.0
	12.0	25.5	6.0
	25.5	25.5	3.5
	25.5	33.5	12.0
	3.5	33.5	19.5
	19.5	12.0	33.5
	12.0	19.5	12.0
რანგების ჯამი	201.5	288.0	176.5

ქულა 55 მეორდება 4-ჯერ; ქულა 65 — 11-ჯერ; ქულა 72 — $\,$ 4-ჯერ; ქულა 83 — 6-ჯერ; ქულა 90 — 6-ჯერ. საკორექციო მამრავლი $\,$ $\,$ ტოლი იქნება:

$$L = 1 - \frac{\sum (t^3 - t)}{N^3 - N} =$$

$$= 1 - \frac{(4^3 - 4) + (11^3 - 11) + (4^3 - 4) + (8^3 - 8) + (6^3 - 6)}{36^3 - 36} = 0.9538.$$

კრუსკალ-უოლის სტატისტიის მნიშვნელობაა:

$$H = \frac{\frac{12}{N(N+1)} \sum \frac{R^2}{b} - 3(N+1)}{L} =$$

$$= \frac{\frac{12}{36 \cdot 37} \left(\frac{201.5^2}{12} + \frac{288.0^2}{12} + \frac{176.5^2}{12} \right) - 3 \cdot 37}{0.9538} = \frac{5.1400}{0.9538} = 5.389,$$

ხი-კვადრატ განაწილების ცხრილიდან, როცა $\alpha=0.1$ და თავისუფლების ხარისხი k-1=2 , კრიტიკული მნიშვნელობა უდრის 4.605-ს. რადგან H=5.389>4.605 , ამიტომ ნულოვან ჰიპოთეზას უარვყოფთ. შემფასებელი გუნდები ერთნაირად არ აფასებენ აბიტურიენტების ცოდნას.

შეჯამება

თანხმობის ხი-კვადრატ კრიტერიუმი გამოიყენება იმისათვის, რომ დადგინდეს, რამდენად კარგად შეესაბამება კატეგორიებში მოთავსებული მონაცემები ამ კატეგორიისთვის მიღებულ მოსა-ლოდნელ სიხშირეებს.

თანხმობის ხი-კვადრატ კრიტერიუმი გამოითვლება ფორმულით

$$\chi^2 = \sum_{i=1}^k \frac{\left(o_i - e_i\right)^2}{e_i}.$$

დამოუკიდებლობის ხი-კვადრატ კრიტერიუმი გამოიყენება ორი ცვლადის კავშირის დასად-გენად, როცა მონაცემები სახელდების სკალაზეა მიღებული. დამოუკიდებლობის ხი-კვადრატ კრიტ-ერიუმი გამოითვლება ფორმულით

$$\chi^2 = \sum \frac{\left(o_{ij} - e_{ij}\right)^2}{e_{ij}} .$$

მან-უიტნის U კრიტერიუმი არაპარამეტრული კრიტერიუმია ცდის პირებს შორის სქემისათვის (ორი დამოუკიდებელი ჯგუფისთვის t -კრიტერიუმის ანალოგი).

უილკოქსონის ნიშნიანი რანგების კრიტერიუმი არაპარამეტრული კრიტერიუმია ცდის პირ-ებს შიდა სქემისთვის (დაწყვილებული მონაცემებისათვის t -კრიტერიუმის ანალოგი).

კრუსკალ-უოლისის კრიტერიუმი არის ერთფაქტორიანი ANOVA კრიტერიუმის არაპარამეტ-რული ანალოგი.

კითხვები

1. ერთი თვის განმავლობაში დათვლილი იყო დღეში მარკეტში მოსული მყიდველების რაოდენობა.

კვირის დღე	დაკვირვებული სიხშირე
ორშაბათი	1525
სამშაბათი	1711
ოთხშაბათი	1655
ხუთშაბათი	1497
პარასკევი	1603
შაბათი	1801
კვირა	1500

შეამოწმეთ ჰიპოთეზა: დამოკიდებულია თუ არა მყიდველების რაოდენობა კვირის დღეზე, თუ lpha=0.05 .

2. უსაფრთხოების მენეჯერის ჰიპოთეზით, უბედური შემთხვევების რაოდენობა დამოკიდებულია მუშის პროფესიონალიზმის დონეზე. ერთი წლის განმავლობაში შეგროვილი იყო შემდეგი მონაცემები:

პროფესიული დონე	შ-9	შ-7	შ-5 და შ-3	სულ
შემთხვევათა რაოდენობა	3	7	8	18

- ა) შეამოწმეთ არის თუ არა მოსალოდნელი სიხშირე მეტია 5-ზე;
- ბ) შეამოწმეთ ჰიპოთეზა, აიღეთ $\alpha = 0.05$.

3. ფირმა ყიდის მაცივრებს თავის ოთხ ფილიალში. ერთი თვის გაყიდვის შედეგები მოცემულია ცხრილში:

ფილიალი 1	ფილიალი 2	ფილიალი 3	ფილიალი 4
305	287	112	196

შეამოწმეთ ჰიპოთეზა: განსხვავდება თუ არა გაყიდვის მოცულობები ფილიალების მიხედვით? $\alpha = 0.05$

3. სასტუმროში სამი ტიპის ნომერია: ორადგილიანი, ოთხადგილიანი და ლუქსი. მენეჯერმა დათვალა ამ ნომრებზე დაკვეთების რაოდენობა:

ერთოთახიანი	18
ოროთახიანი	21
ლუქსი	11

შეამოწმეთ ჰიპოთეზა: თანაბრად არის თუ არა განაწილებული დაკვეთები ამ ნომრებზე? $\alpha=0.05$. 4. დამოკიდებულია თუ არა მძღოლის სქესზე ავტო-საგზაო შემთხვევების რაოდენობა? სამი წლის დაკვირვების მონაცემებია:

ავტო-საგზაო	მძღოლის სქესი			
შემთხვევათა რაოდენობა	მამრობითი	მდედრობითი		
0	240	160		
1	80	40		
2	32	18		
3	11	9		
სამზე მეტი	5	4		

შეამოწმეთ ჰიპოთეზა, ისარგებლეთ $\alpha = 0.05$.

5. დამოკიდებულია თუ არა მიმდინარე ანგარიშზე გარიგების რაოდენობა კლიენტების ოჯახურ მდგომარეობაზე. აიღეთ $\alpha=0.05$.

ოჯახური		გარიგების რაოდენობა					
მდგომარეობა	0 -10	11-20	21-30	31-40	40-ზე მეტი		
მარტოხელა	13	23	19	20	11		
დაოჯახებული	6	15	33	45	27		
გაყრილი	4	19	22	20	15		
სხვა	2	11	8	5	2		

6. შეგროვილი იყო ინფორმაცია ერთ-ერთი ფირმის თანამშრომლებზე. რამდენი წელი მუშაობენ ისინი ამ ფირმაში და გაფიცვის შემთხვევაში სავარაუდოდ რამდენი კვირა იქნებიან გაფიცულები.

მუშაობის	გაფიცვის სავარაუდო დრო				
ვადა	ერთ კვირამდე	1-4 კვირა	ოთხ კვირაზე მეტი		
ერთ წლამდე	23	6	3		
1-2 წელი	19	15	8		
2-5 წელი	20	23	19		
5-10 წელი	4	21	29		
10 წელზე მეტი	2	5	18		

ამ მონაცემებზე დაყრდნობით, შეგიძლიათ თუ არა დაასკვნათ, რომ გაფიცვის სავარაუდო დრო დამოკიდებულია მუშაობის სტაჟზე. აიღეთ $\alpha=0.05$.

7. შეგროვილი იყო შემდეგი ორი დამოუკიდებელი შერჩევა:

შერჩევა 1	405	450	290	370	345	460
შერჩევა 2	300	340	400	250	270	410
შერჩევა 1	425	275	380	330	500	215
შერჩევა 2	435	390	225	210	395	315

ა) ამ შერჩევებზე დაყრდნობით, შეგიძლიათ, თუ არა დაასკვნათ, რომ შერჩევები აღებულია ერთიდაიგივე პოპულაციიდან. გამოიყენეთ $\alpha=0.05$ და t-კრიტერიუმი. რა დაშვებები უნდა იყოს შესრულებული, რომ გამოიყენოთ ეს კრიტერიუმი?

ბ) ვთქვათ, არ გვსურს შევამოწმოთ ა)-ში მოთხოვნილი დაშვებები. რომელი არაპარამეტრული ტესტი უნდა გამოვიყენოთ შერჩევის საშუალოების ტოლობის შესამოწმებლად? შეამოწმეთ. აიღეთ $\alpha=0.05$.

8. 27 პროფესიონალს და 24 მომხმარებელს სთხოვეს შეეფასებინათ ახალი კომპიუტერული პროგრამა ას ბალიან სკალაზე, სადაც 100 ნიშნავდა უმაღლეს კმაყოფილებას. განსხვავდება თუ არა პროფესიონალების და მომხმარებლების შეფასება? $\alpha = 0.05$.

პროფესიონალები	მომხმარებლები
n = 27	n = 24
რანგების ჯამი = 348	რანგების ჯამი = 300

9. ეფექტურია თუ არა სწრაფი კითხვის შემსწავლელი კურსები? შემოწმებული იყო 15 მამაკაცის კითხვის სისწრაფე კურსის დასაწყისიდან კურსის დასრულების შემდეგ. დამუშავების შედეგად მიიღეს შემდეგი მონაცემები:

უარყოფითი რანგების ჯამი = 180;

დადებითი რანგების ჯამი = 45.

თუ უფრო მაღალი რანგი ნიშნავს წამში უფრო ბევრი სი&ყვის წაკითხვას, როგორ შეაფასებთ ამ კურსებს აიღეთ lpha=0.05 .

10. შემოწმებული იყო სამი წამყვანი ფირმის ფეხსაცმლის ხარისხი 40 ბალიან სკალაზე, სადაც 40 ნიშნავდა უმაღლეს ხარისხს. მიღებული იყო შემდეგი მონაცემები:

ფირმა 1	21	25	36	35	33	23	31	32
ფირმა 2	17	15	34	22	16	19	30	20
ფირმა 3	29	38	28	27	14	26	39	36

ა) რა დაშვე<mark>ბ</mark>ები უნდა სრულდებოდეს, რომ გამოვიყენოთ ერთფაქტორიანი დისპერსიული ანალიზი?

ბ) ვთქვათ, არ გვსურს შევამოწმოთ ა)-ში მოთხოვნილი დაშვებები, რომელი არაპარამეტრული კრიტერიუმი უნდა გამოვიყენოთ ფირმების საშუალო რეიტინგის ტოლობის შესახებ? შეამოწმეთ ეს ჰიპოთეზა. აიღეთ $\alpha=0.05$.

11. არსებობს თუ არა განსხვავება კალათბურთის გუნდის და ბეისბოლის ნაციონალური ლიგის მოთამაშეების საშუალო ანაზღაურებას შორის?

ა) თუ არ სრულდება ნორმალურობის დაშვება, რა კრიტერიუმს გამოიყენებთ?

ბ) გამოიყენეთ დამუშავების შედეგები და შეამოწმეთ ჰიპოთეზა, თუ $\alpha = 0.05$.

NBA	NFL	ბეისპოლი
n = 20	n = 30	n = 40

R = 1710	R = 1100	R = 1340

12. გარკვეული დეტალის დიამეტრის ზომები ნორმალურადაა განაწილებული საშუალოთი μ = 3 სმ და სტანდარტული გადახრით σ = 0.001 სმ. გაზომილი იყო 500 დეტალის დიამეტრი და მიღებული იქნა შემდეგი მონაცემები:

ცხრილი 12.12					
დიამეტრი	დაკვირვებული სიხშირე	მოსალოდნელი სიხშირე			
2.995 ნაკლები	3	0			
2.995-დან 2.996-მდე	4	0.015			
2.996-დან 2.997-მდე	5	0.635			
2.997-დან 2.998-მდე	19	10750			
2.998-დან 2.999-მდე	98	67.950			
2.999-დან 3.000-მდე	146	170.650			
3.000-დან 3.001-მდე	124	170.650			
3.001-დან 3.002-მდე	83	67950			
3.002-დან 3.003-მდე	11	10750			
3.003-ზე მეტი	7	0.650			
სულ	500				

შევამოწმოთ ჰიპოთეზები:

 H_0 : დიამეგრები ნორმალურადაა განაწილებული μ = 3 სმ საშუალოთი, σ = 0.001 სმ სგანდარგული გადახრით.

 $H_{\scriptscriptstyle A}$: ნორმალურობა არ სრულდება.

იმისათვის, რომ ვისარგებლოთ χ^2 -კრიტერიუმით, თითოეული ინტერვალისათვის გამოსათ-ვლელია მოსალოდნელი სიხშირეები

P(დიამეტრის ზომა 2.995 - ზე ნაკლებია) =

$$= P(Z < \frac{2.995 - 3}{0.001}) = P(Z < -5) = 0.$$

ანალოგიურად გამოვთვლით, მაგალითად,

$$P(2.997 < X < 2.998) = P(-3 < Z < -2) = 0.4987 - 0.4772 = 0.0215$$
.

 χ^2 -კრიტერიუმი კარგად არ მუშაობს, თუ მოსალოდნელი სიხშირეების 20%~5-ზე ნაკლებია. ამ შემთხვევაში უნდა გავაერთიანოთ ინტერვალები:

ცხრილი 12.13

დიამეტრი	დაკვირვებული სიხშირე	მოსალოდნელი სიხშირე
2.998-მდე	31	11.4
2.998-დან-2.999-მდე	98	67.95
2.999-დან- 3.000-მდე	146	170.65
3.000-დან- 3.001-მდე	124	170.65
3.001-დან- 3.002-მდე	83	67.95
3.002-ზე მეტი	18	11.40

161

$$\chi^2 = \sum \frac{(o_{ij} - e_{ij})^2}{e_{ii}} = 70.45$$

თავისუფლების ხარისხი = ინტერვალების (კატეგორიების) რაოდენობა მინუს $1\!=\!5$. $\alpha\!=\!0.05$

, $\chi^2_{crit}=11.07$. ნულოვანი ჰიპოთეზა უნდა უარვყოთ, ამის შედეგად დიამეტრები არ არის ნორმალურად განაწილებული და ამიტომ ამოღებული უნდა იქნას პროდუქცია, ხოლო დაზგები, რომელზედაც მზადდებოდა ეს პროდუქცია უნდა იქნას დარეგულირებული ან შეცვლილი.

13. სადაზღვეო კომპანია სწავლობს დამოკიდებულია, თუ არა ავტო-საგზაო შემთხვების რაოდენობა მძღოლის ასაკზე, სქესზე, საოჯახო სტატუსზე და ა. შ. 1000 კლიენტზე დაყრდნობით შევსებული იყო

შეუღლების ცხრილი:

ავტო-	ასაკი					
საგზაო შემთხვებზე	25 წელზე ნაკლები	25-40	40-55	55-ზე მეტი	სულ	
აქვთ სარჩელი	93	72	53	63	281	
არ აქვთ სარჩელი	115	155	265	184	719	
სულ	208	227	318	247	1000 = N	

ამ მონაცემებზე დაყრდნობით დაასკვნის თუ არა სადაზღვევო კომპანია, რომ ახალგაზრდებს მოსალოდნელზე მეტი ავტო-საგზაო შემთხვევები აქვთ და ამიტომ გაზრდილი უნდა იყოს თუ არა მათთვის სადაზღვეო პრემია (გადასახადი)? $\alpha=0.05$.

დამოკიდებულია თუ არა სტატისტიკაში მიღებული საბოლოო ქულა ლექტორზე?

ლექტორი 1	90	65	72	83	65	50
ლექტორი 2	90	88	83	83	65	65
ლექტორი 3	55	55	90	83	65	65
ლექტორი 1	65	83	83	55	72	65
ლექტორი 2	83	83	90	90	65	72
ლექტორი 3	60	55	65	72	90	65

შეამოწმეთ ეს ჰიპოთეზა იმ პირობებში, როდესაც პოპულაციები არ არის ნორმალურად განა-წილებული. იგულისხმეთ, რომ პოპულაციების დისპერსიები ტოლია.

 H_0 : სამივე ლექტორის ჯგუფში მიღებულია ერთნაირი საშუალო ქულები.

 $H_{\scriptscriptstyle A}$: ჯგუფების საშუალო ქულები ერთმანეთისგან განსხვავებულია.

პირველი ნაბიჯი კრუსკალ-უოლისის კრიტერიუმის გამოყენებისას არის შერჩევების გაერთ-იანება და რანჟირება.

მიღებული რანგებია:

ლექტორი 1	ლექტორი 2	ლექტორი 3
33.5	33.5	3.5
12.0	30.0	3.5
19.5	25.5	33.5
25.5	25.5	25.5
12.0	12.0	12.0
1.0	12.0	12.0

12.0	25.5	6.0
25.5	25.5	3.5
25.5	33.5	12.0
3.5	33.5	19.0
19.5	12.0	33.5
12.0	19.5	12.0
ჯამი = 201.5	ჯამი = 288	ჯამი =176.5

მაშინ კრიტერიუმის სტატისტიკის მნიშვნელობა იქნება:

$$H = \frac{12}{N(N+1)} \sum_{i=1}^{k} \frac{R_i^2}{n_i} - 3(N+1) - \frac{\sum_{i=1}^{8} (t_i^3 - t_i)}{N^3 - N} = \frac{12}{36 \cdot 37} \left[\frac{201.5^2}{12} + \frac{288.0^2}{12} + \frac{176.5^2}{12} \right] - 3 \cdot 37$$

$$= \frac{\frac{12}{36 \cdot 37} \left[\frac{201.5^{2}}{12} + \frac{288.0^{2}}{12} + \frac{176.5^{2}}{12} \right] - 3 \cdot 37}{1 - \frac{\left(4^{3} - 4\right) + \left(11^{3} - 11\right) + \left(4^{3} - 4\right) + \left(8^{3} - 8\right) + \left(6^{3} - 6\right)}{36^{3} - 36}} = \frac{51400}{36^{3} - 36}$$

$$=\frac{5.1400}{0.9538}=5.389.$$

19.5 მეორდება 4-ჯერ, 12 მეორდება 11-ჯერ, 3.5 მეორდება 4-ჯერ, 25.5 მეორდება 8-ჯერ, 33.5 მეორდება 6-ჯერ. თავისუფლების ხარისხი k-1=3-1=2 , თუ $\alpha=0.05$, $\chi^2_{2.0.05}=5.991$.

კრიტერიუმის სტატისტიკის მნიშვნელობა 5.389 ნაკლებია კრიტიკულ მნიშვნელობაზე 5.991. ამიტომ ნულოვან ჰიპოთეზას ვერ უარვყოფთ.

14. დამოკიდებულია თუ არა ალკოჰოლის მიღება იმაზე, რომ ადამიანი თამბაქოს მომხმარებელია თუ არა. დაამუშავეთ შეუღლების ცხრილი და შეამოწმეთ ჰიპოთეზა. $\alpha = 0.05$.

00110	, , ,	0	
		ეწე	ევა
		კი	არა
სვამს	კი	1449	500
	არა	46	281

რომელი უჯრედის დაკვირვებული სიხშირე აჩვენებს ყველაზე დიდ გადახრას დამოუკიდებ-ლობისაგან?

15. 100000 პაციენტზე დაყრდნობით შედგენილი იყო შეუღლების ცხრილი, სადაც ერთი ცვლადი დაავადების სტატუსია, მეორი ცვლადი კი ამ დაავადებაზე ტესტის შედეგი.

	სადიაგნოსტიკო ტესტის შედეგი დადებითი უარყოფითი		
დაავადებული	475	25	
ჯანმრთელი	4975	94525	

ა) რამდენი ადამიანია დაავადებული? რამდენია ჯანმრთელი?

ბ) დაავადებული ადამიანებისათვის რას უდრის დადებითი სადიაგნოსტიკო ტესტების პროპორცია? უარყოფითი ტესტების პროპორცია?

გ) დაავადებული ადამიანისათვის რას უდრის შანსი, რომ ტესტი დაადასტურებს დაავადებ-

დ) ჯანმრთელი ადამიანისთვის რას უდრის დადებითი ტესტების პროპორცია? უარყოფითი ტესტების პროპორცია?

ე) ჯანმრთელი ადამიანისთვის რას უდრის ცრუ დადებითი ტესტის შანსი?

- ვ) დაავადებული ადამიანისთვის დაავადების აღმოჩენის შანსი რამდეჯერ მეტია ცრუ შედეგის მიღების შანსზე ჯანმრთელი ადამიანისთვის?
- ზ) დამოკიდებული არის თუ არა ტესტის შედეგი დაავადების სტატუსზე? თ) თუ ტესტის შედეგი დადებითია,აქედან ადამიანების რამდენი % არის დაავადებული? ჯანმრთელი?
- 16. არის თუ არა ახალგაზრდების მისწრაფებები დამოკიდებული ოჯახის შემოსავალზე? იხილეთ ცხრილი და

ოჯახის	მისწრაფება				
შემო- სავალი	მხოლოდ სკოლა	ბაკა- ლავრიატი	მაგის- გრაგურა	დოქტო- რანტურა	
დაბალი	9	44	13	10	
საშუალო	11	52	23	22	
მაღალი	9	41	12	27	

ამ ცხრილის დამუშავების შედეგი წარმოდგენილია SSPS ამონაბეჭდით.

statistic	df	Value	Prob
chi-Square	6	8.871	0.181

- ა) რასუდრისკრიტერიუმისსტატისტიკისმნიშვნელობა?
- ბ) დამოკიდებულია, თუ არა მისწრაფება ოჯახის შემოსავალზე?

17. შეუღლების ცხრილში ერთი ცვლადი პოლიტიკური კუთვნილებაა, მეორე ცვლადი პოლიტიკური იდეოლოგია.

პოლიტი-	პოლიტიკური იდეოლოგია				
კური მიკუთვნე- ბულება	ძალიან ლიბე- რა- ლური	ოდნავ ლიბე- რალურ ი	ზომი ერი	ოდნავ კონსერ ვატორ ი	ძალიან კონსერ ვატორ ი
დემოკრატი	80	81	171	41	55
რესპუბლი- კელი	30	46	148	84	99

- ა) დამოკიდებული არიან თუ არა ეს ცვლადები?
- ბ) რომელი უჯრედის დაკვირვებული სიხშირე აჩვენებს ყველაზე დიდ გადახრას დამოუკიდებლობისგან?

თავი 13 რეგრესია და წინასწარმეტყველება (მარტივი რეგრესიის მოდელი)

ორ რაოდენობრივ ცვლადს შორის დამოკიდებულება შეიძლება იყოს ფუნქციონალური ანუ ისეთი, როცა ერთი ცვლადის მნიშვნელობების მიხედვით ცალსახად შეგვიძლია გამოვთვალოთ მეორე ცვლადის შესაბამისი მნიშვნელობები. ასეთი დამოკიდებულების მრავალ მაგალითს სკოლის პროგრამაში ეცნობოდით. მაგალითად, ვიცით, რომ დროს, სიჩქარესა და განვლილ მანძილს შორის დამოკიდებულება, თანაბარი მოძრაობისას გამოითვლება ფორმულით $s=v \cdot t$. ამ ფორმულის მიხედვით უტყუარად შეგვიძლია გამოვთვალოთ განვლილი მანძილი, თუ ცნობილია სიჩქარე და დრო. ასეთივე მდგომარეობაა სამკუთხედის ფართობის გამოთვლისას. ვიცით, რომ ფართობი სიმაღლისა და

ფუძის სიგრძეების ნამრავლის ნახევრის ტოლია $S=rac{ah}{2}$ (აქ a ფუძის სიგრძეა, h — სიმაღლისა).

ცალსახად შეგვიძლია კვადრატის ფართობის გამოთვლა $S=a^2$ ფორმულით, სადაც a კვადრატის გვერდის სიგრძეა. ასეთი მაგალითები თქვენთვის მრავლადაა ცნობილია.

მეორეს მხრივ, შესაძლებელია ცვლადებს შორის კავშირი არ იყოს ზუსტად ფუნქციონალური. მაგალითად, დათესილი მინდვრის ფართობით მოსავლის რაოდენობა ზუსტად, ფუნქციონალურად, არ შეიძლება აღინეროს. თუმცა შეგვიძლია ვივარაუდოთ, რომ მეტი ფართობის დათესვა ინვევს
აღებული მოსავლის ზრდის ტენდენციას. ანუ ვვარაუდობთ, რომ ეს სიდიდეები (ფართობი და მოსავლიანობა) ერთმანეთთან დაკავშირებულნი არიან. ასეთი ტიპის კავშირები, როცა ერთი ცვლადის
ზრდა ან კლება, ინვევს მეორე ცვლადის ზრდის ან კლების ტენდენციას აღინერება ამ ცვლადებს
შორის კორელაციური კავშირით. თუ ერთი ცვლადის ცვლილება არ ინვევს მეორე ცვლადის ცვლილებას და პირიქით, ვამბობთ, რომ ცვლადები არაკოლერირებულია. სხვა შემთხვევაში ისინი კორელირებულნი არიან. თუ რამდენად ძლიერია ეს კავშირი ცალკე კვლევის საგანია. კორელაციური კავშირის სიდიდეს კორელაციის კოეფიციენტით ვზომავთ. კორელაციის კოეფიციენტის დასადგენად ვატარებთ ცდას და მოვიპოვებთ მონაცემებს.

შეხუთე თავში, შერჩევებზე დაყრდნობით, ორ რაოდენობრივ ცვლადს შორის კავშირის დასადგენად, შემოღებული იყო პირსონის კორელაციის კოეფიციენტი

$$r = \frac{\sum (X - \overline{X})(Y - \overline{Y})}{\sqrt{\sum (X - \overline{X})^2 \sum (Y - \overline{Y})^2}} = \frac{n\sum XY - \sum X \sum Y}{\sqrt{\left[n\sum X^2 - (\sum X)^2\right] \left[n\sum Y^2 - (\sum Y)^2\right]}}.$$

ეს სიდიდე პოპულაციის უცნობი კორელაციის ho კოეფიციენტის წერტილოვანი შეფასებაა. r -ის საშუალებით შეიძლება გაკეთდეს დასკვნები ho -ს მნიშვნელობის შესახებ.

დასკვნები კორელაციის კოეფიციენტის შესახებ

განვიხილოთ შემდეგი ჰიპოთეზის შემოწმების ამოცანა:

$$H_0: \rho = 0, H_A: \rho \neq 0,$$

სადაც ρ პოპულაციის კორელაციის კოეფიციენტია.

ვთქვათ, (X,Y) სიდიდეების განაწილება ნორმალურია. მაშინ H_0 -ის სამართლიანობისას სტატისტიკას

$$t = \frac{r}{\sqrt{\frac{1 - r^2}{n - 2}}}$$

აქვს t -განაწილება, თავისუფლების ხარისხით n-2. ამგვარად, t -განაწილების ცხრილის საშუალებით შეიძლება შემოწმდეს ეს ჰიპოთეზა.

სახელდობრ, H_0 -ს უარვყოფთ, თუ

$$\mid t \mid \geq t_{n-2,\alpha/2}$$
 $\left(t \leq -t_{n-2,\alpha/2} \text{ sf } t \geq t_{n-2,\alpha/2} \right)$

და დავასკვნით რომ ორ ცვლადს შორის ნამდვილად არსებობს კავშირი; წინააღმდეგ შემთხვევაში H_0 ჰიპოთეზის უარყოფის საფუძველი არ გაგვაჩნია.

მე-5 თავში ჩვენ შევისწავლეთ, რომ წრფივი კავშირი ორ ცვლადს შორის აღიწერება განტოლებით:

$$Y = \alpha + \beta X$$
,

სადაც Y დამოკიდებული ცვლადია, X დამოუკიდებელი ცვლადია, α და β უცნობი სიდიდეებია (პოპულაციის პარამეტრებია). α წრფის თანაკვეთაა oy ღერძთან, β წრფის დახრილობა. ამ მოდელს მარტივი რეგრესიის მოდელი ეწოდება (ერთი დამოუკიდებელი ცვლადი X და ერთი დამოკიდებული ცვლადი Y).

უმცირეს კვადრატთა მეთოდის გამოყენებით დავადგენთ, რომ lpha და eta უცნობი პარამეტრე-

ბის შეფასებებია:

$$b = \frac{\sum (X - \overline{X})(Y - \overline{Y})}{\sum (X - \overline{X})^2}, \quad a = \overline{Y} - b\overline{X}.$$

 $\hat{Y}=a+bX$ წრფეს ეწოდება რე გ რე ს ი ი ს წ რფ ი ს შე ფ ა ს ე ბ ა , ან უმცირეს კვადრატთა მეთოდით აგებული წრფე. თუ ამ წრფის განტოლებაში X -ის ნაცვლად ჩავსვამთ მის დაკვირვებულ მნიშვნელობებს, შესაბამის $\hat{Y_i}$ მნიშვნელობებს ეწოდება Y ცვლადის პროგნოზირებული მნიშვნელობები, ხოლო $e_i=Y_i-\hat{Y_i}$ სიდიდეებს კი — ნაშთები (ან ცდომილებები).

ჰიპოთეზის შემოწმება დახრილობის შესახებ

ორ ცვლადს შორის მნიშვნელოვანი კავშირის დადგენის ალტერნატიული გზა მდგომარეობს რეგრესიის წრფის პარამეტრების შესახებ ჰიპოთეზათა შემოწმებაში.

შესამოწმებელია, რომ $\beta=0$, ალტერნატივის საწინააღმდეგოდ — $\beta
eq 0$,

$$H_0: \beta = 0$$
, $H_A: \beta \neq 0$.

თუ რეგრესიის წრფის დახრილობა ნულის ტოლია, ეს ნიშნავს, რომ არ არსებობს წრფივი დამოკიდებულება ორ ცვლადს შორის. ამ შემთხვევაში "ნამდვილი" დამოკიდებულება მოცემულია შემდეგი სახით:

$$y_i = \alpha$$

Y ცვლადი არ არის დამოკიდებული დამოუკიდებელ X ცვლადზე და, უბრალოდ, წარმოადგენს შემთხვევით შერჩევას $\mu=\alpha$ საშუალოთი და მუდმივი დისპერსიით. ამიტომ, როცა ვამოწმებთ ამ ჰიპოთეზას, ფაქტიურად ვამოწმებთ არის თუ არა წრფივი კავშირი Y და X ცვლადებს შორის. როცა უარვყოფთ ნულოვან ჰიპოთეზას, ვრწმუნდებით რომ X წარმოადგენს საჭირო ინფორმაციას Y-თვის.

კრიტერიუმის სტატისტიკა

ვთქვათ, Y_i არის Y ცვლადის დაკვირვებული მნიშვნელობები, $i=1,2,\dots,n$; n — შერჩევის მოცულობაა.

 $\hat{Y_i}$ არის გამოთვლილი მნიშვნელობები, რომლებიც მიღებულია $\hat{Y}=a+bX$ განტოლებიდან, თუ ამ განტოლებაში ჩასმულია X -ის მნიშვნელობები X_i , $i=1,2,\ldots,n$.

 $Y_i - \hat{Y_i} = e_i$ — სხვაობას დაკვირვებულ და გამოთვლილ მნიშვნელობებს შორის ეწოდება ${f 6}$ ა ${f 7}$ - თ ${f n}$ ან ${f (3)}$ დ ო ${f 6}$ ი ლ ${f 7}$ ბ ${f 8}$.

ჰიპოთეზის შესამოწმებლად უნდა დავუშვათ, რომ ნაშთები ნორმალურადაა განაწილებული ნულის ტოლი საშუალოთი და მუდმივი σ^2 დისპერსიით (ამ დაშვების შესამოწმებლად აგებენ $\left(e_i,\hat{Y}_i\right)$ გრაფიკულ დამოკიდებულებას). თუ e_i ნორმალურადაა განაწილებული, b დახრილობის კოეფიციენტი იქნება ნორმალურად განაწილებული საშუალოთი β და დისპერსიით, რომელიც გამოითვლება ფორმულით:

$$\operatorname{se}(b) = \frac{\sigma}{\sqrt{\sum (X - \overline{X})^2}}.$$

 σ^2 -ის შეფასება გამოითვლება ფორმულით:

$$\hat{\sigma}^2 = \frac{\sum e_i^2}{n-2} = \frac{\sum (Y - \overline{Y})^2 - b \sum (X - \overline{X})(Y - \overline{Y})}{n-2}.$$

კრიტერიუმის სტატისტიკაა

$$T = \frac{b - \beta}{\hat{\sigma}}$$

$$\sqrt{\sum (X - \bar{X})^2}$$

და ამ სტატისტიკას აქვს t-განაწილება თავისუფლების ხარისხით n-2 (2 აკლდება, რადგან შესაფასებელი გვაქვს ორი α და β პარამეტრი).

უარყოფის არე

უარყოფის არეს ავაგებთ სტიუდენტის ზედა კრიტიკული წერტილების ცხრილის გამოყენებით, რადგან კრიტერიუმის სტატისტიკას აქვს t-განაწილება თავისუფლების ხარისხით n-2.

გადაწყვეტილება

თუ კრიტერიუმის სტატისტიკის მნიშვნელობა მოხვდა კრიტიკულ არეში, α მნიშვნელოვნების დონით, ნულოვან ჰიპოთეზას უარვყოფთ. თუ კრიტერიუმის სტატისტიკის მნიშვნელობა არ მოხვდა კრიტიკულ არეში ნულოვან ჰიპოთეზას ვერ უარვყოფთ, ეს კი ნიშნავს, რომ დამოკიდებული ცვლადი არ არის წრფივად დამოკიდებული დამოუკიდებელ ცვლადზე.

ჰიპოთეზის შემოწმება თანაკვეთის შესახებ

თუ ნულოვანი ჰიპოთეზა სრულდება, მაშინ a შეფასების საშუალოა lpha და სტანდარტული გადახრა გამოითვლება ფორმულით:

$$\operatorname{se}(a) = \sigma \sqrt{\frac{\frac{1}{n} \sum X^2}{\sum (X - \overline{X})^2}}.$$

კრიტერიუმის სტატისტიკას აქვს სახე:

$$T = \frac{a - \alpha}{\hat{\sigma}\sqrt{\frac{\frac{1}{n}\sum X^2}{\sum (X - \bar{X})^2}}}$$

და ამ სტატისტიკას აქვს t -განაწილება თავისუფლების ზარისხით n-2 . უარყოფის არეს ჩვენ ავაგ-ებთ სტიუდენტის განაწილების ზედა კრიტიკული წერტილების ცხრილის გამოყენებით.

მ ა გ ა ლ ი თ ი 1 3 . 1 . X არის რეკლამაზე დახარჯული ფული (ათასი დოლარი), Y მოგე-

ბაა (ათასი დოლარი).

<i>X</i> :	<i>Y</i> :
0.8	22
1.0	28
1.6	22
2.0	26
2.2	34
2.6	18
3.0	30
3.0	38
4.0	30
4.0	40
4.0	50

4.6	46
$\Sigma = 32.8$	$\Sigma = 384$

არის თუ არა კავშირი ამ ორ ცვლადს შორის? გამოვთვალოთ პირსონის კორელაციის კოეფი-ციენტი. შევავსოთ შემდეგი ცხრილი:

XY:	X ² :	Y^2
17.6	0.64	484
28.0	1.00	784
35.2	2.56	484
52.0	4.00	676
74.8	4.84	1156
46.8	6.76	324
90.0	9.00	900
114.0	9.00	1444
120.0	16.00	900
160.0	16.00	1600
200.0	16	2500
211.6	21.16	2116
$\Sigma = 1.150$	$\Sigma = 106.96$	$\Sigma = 13368$

ფორმულაში

$$r = \frac{\sum (X - \overline{X})(Y - \overline{Y})}{\sqrt{\sum (X - \overline{X})^2 \sum (Y - \overline{Y})^2}} = \frac{n\sum XY - \sum X \sum Y}{\sqrt{(n\sum X^2 - (\sum X)^2)(n\sum Y^2 - (\sum Y)^2)}}.$$

ჩასმის შემდეგ მივიღებთ:

bon:

$$r = \frac{12 \cdot 11500 - 384 \cdot 32.8}{\sqrt{(12 \cdot 106.96 - 32.8^2) \cdot (12 \cdot 13.368 - 384^2)}} = 0.7344.$$

რეკლამაზე დახარჯულ ფულსა და მოგებას შორის არსებობს წრფივი დადებითი კავშირი.

დასკვნები კორელაციის კოეფიციენტის შესახებ

მიუხედავად იმისა, რომ კორელაციის კოეფიციენტი საკმაოდ დიდია, r=0.7343, უნდა გვახსოვდეს, რომ ის არის გამოთვლილი მხოლოდ 12 მონაცემზე დაყრდნობით და ყოველთვის არსებობს შეცდომის ალბათობა. იმისათვის, რომ დავრწმუნდეთ არსებობს თუ არა კავშირი მოგებასა და რეკლამას შორის უნდა შევამოწმოთ ჰიპოთეზა: უდრის თუ არა ნულს პოპულაციის კორელაციის კოეფიციენტი ρ .

$$H_0: \rho = 0$$
, $H_A: \rho \neq 0$.

ამისათვის კი გამოსათვლელია სტატისტიკის მნიშვნელობა:

$$t = \frac{r}{\sqrt{\frac{1 - r^2}{n - 2}}} = \frac{0.7344}{\sqrt{\frac{1 - 0.5393}{10}}} = 3.422.$$

ამ სტატისტიკას აქვს t -განაწილება თავისუფლების ხარისხით n-2. თუ $\alpha=0.05$, $t_{crit}=2.228$. ღადგან t=3.422>2.228, H_0 -ს უარვყოფთ. რეკლამაზე დახარჯულ ფულსა და მოგებას შორის არსებობს წრფივი კავშირი, ე. ი. რაც უფრო მეტ ფულს დავხარჯავთ რეკლამაზე, მით უფრო მეტი მოგებაა მოსალოდნელი.

ორ ცვლადს შორის კავშირის დასადგენად მივმართოთ ალტერნატიულ გზას. საპროგნოზო

განტოლებას აქვს სახე:

$$\hat{Y} = a + bX,$$

$$b = \frac{\sum (X - \overline{X})(Y - \overline{Y})}{\sum (X - \overline{X})^2} = \frac{\sum XY - \frac{\sum X \sum Y}{n}}{\sum X^2 - \frac{(\sum X)^2}{n}} = \frac{1150 - \frac{32.8 \cdot 384}{12}}{106.96 - \frac{32.8^2}{12}} = 5.801,$$

$$a = \overline{Y} - b\overline{X} = 32 - 5.801 \cdot 2.733 = 16.146.$$

უმცირეს კვადრატთა მეთოდით მიღებულ რეგრესიის განტოლებას აქვს შემდეგი სახე: $\hat{Y}=16.146+5.801\cdot X$.

შევამოწმოთ ჰიპოთეზა:

$$H_0: \beta = 0$$
, $H_A: \beta \neq 0$

პოპულაციის დისპერსიის შეფასებაა:

$$\hat{\sigma}^{2} = \frac{\sum e_{i}^{2}}{n-2} = \frac{\sum (Y - \overline{Y})^{2} - b \sum (X - \overline{X}) \sum (Y - \overline{Y})}{n-2} =$$

$$= \frac{1080 - 5.801 \cdot 100.4}{12 - 2} = 49.76,$$

$$\sum e_{i}^{2} = 497.556,$$

$$T = \frac{b - \beta}{\frac{\hat{\sigma}}{\sqrt{\sum (X - \overline{X})^{2}}}} = \frac{5.801 - 0}{\frac{\sqrt{49.76}}{\sqrt{17.31}}} = 3.421,$$

 $\hat{\sigma}$ შეფასების სტანდარტული შეცდომაა.

თავისუფლების n-2=12-2=10 ხარისხისა და $\alpha=0.05$ მნიშვნელოვნების დონისათვის, კრიტიკული მნიშვნელობა იქნება $t_{n-2,\alpha/2}=t_{10,0.025}=2.228$. ვინაიდან 3.421>2.228-ზე, ნულოვანი ჰიპოთეზა უნდა უარვყოთ. რეკლამაზე დახარჯულ ფულსა და მოგებას შორის არსებობს წრფივი დამოკიდებულება. რაც ურო დიდ ფულს ვხარჯავთ რეკლამაზე, მით უფრო დიდია მოგება.

შევამოწმოთ ჰიპოთეზა თანაკვეთის შესახებ.

შევამოწმოთ, მაგალითად, $H_0: a=1$, $H_A: a \neq 1$.

კრიტერიუმის სტატისტიკაა

$$T = \frac{a - \alpha}{\hat{\sigma} \sqrt{\frac{1}{n} \frac{\sum X^2}{\sum (X - \overline{X})^2}}} = 2.99.$$

ვინაიდან 2.99 > 2.228 , ნულოვანი ჰიპოთეზა $\alpha = 0.05$ მნიშვნელოვნების დონით უნდა უარვყოთ.

საპროგნოზო ინტერვალები

განტოლება

$$Y = a + bX$$

გვაძლევს საშუალებას დავინახოთ რა არის მოსალოდნელი, თუ X მიიღებს გარკვეულ მნიშვნელობას. მაგალითად, თუ X რეკლამაზე დახარჯული ფულია, რა მოგებას მოიტანს ის?

სიდიდეს — $\hat{Y_0}=a+bX_0$ აქვს საშუალო $lpha+eta X_0$ და სტანდარტული გადახრა

$$\operatorname{se}(Y_0) = \sigma \sqrt{1 + \frac{1}{n} + \frac{\left(X_0 - \overline{X}\right)^2}{\sum \left(X - \overline{X}\right)^2}}.$$

ნდობის ინტერვალს Y_0 -თვის აქვს სახე:

$$Y_0 \mp t\sigma \sqrt{1 + \frac{1}{n} + \frac{(X_0 - \overline{X})^2}{\sum (X - \overline{X})^2}},$$

სადაც t სიდიდე უნდა ვიპოვოთ t-განაწილების ზედა კრიტიკული წერტილების ცხრილში, n-2 თავისუფლების ხარისხის და $(100-\alpha)\%$ სანდოობის შესაბამისად. ეს ინტერვალი დამოკიდებულია იმაზე, თუ კონკრეტულად რომელი მნიშვნელობისათვისაა ის ასაგები. $\left(X_0-\overline{X}\right)^2$ ზრდასთან ერთად იზრდება სტანდარტული გადახრა და ინტერვალი უფრო განიერი ხდება იმ X_0 -თვის, რომლებიც უფრო შორს არიან გადახრილი \overline{X} -გან და უფრო ვიწროა იმ მნიშვნელობებისათვის, რომლებიც ახლოს არიან \overline{X} -თან.

დავუბრუნდეთ 13.1 მაგალითს და ვუპასუხოთ შემდეგ კითხვებს:

ა) საშუალოდ რა მოგებას უნდა ველოდოთ, თუ რეკლამაზე დავხარჯავთ 2100 დოლარს?

ბ) ააგეთ 95% -იანი ნდობის ინტერვალი ამ მოგებისათვის.

ა მ ო ხ ს ნ ა . ა) საპროგნოზო განტოლებაში ჩასმის შემდეგ მივიღებთ:

$$\hat{Y} = a + bX = 16143 + 5.801 \cdot 2.1 = 28.325$$
.

საშუალოდ მოგება შეადგენს 28.325 დოლარს.

ბ) ამ მოგების 95% -იანი ნდობის ინტერვალია:

$$28.325 \pm 2.228 \cdot 7.05 \sqrt{1 + \frac{1}{12} + \frac{(2.1 - 2.73)^2}{17.31}} = 28.325 \pm 16.52 ,$$

ანუ (11.810;44.840).

დეტერმინაციის კოეფიციენტი. მოდელის ვარგისიანობის შემოწმება

მ ა გ ა ლ ი თ ი 13. 2. განვიხილოთ ისევ 13.1მაგალითი. მოგებებში სრული ცვალებადობა მოცემულია ფორმულით:

SST =
$$\sum_{i=1}^{n} (Y_i - \overline{Y})^2 = \sum Y^2 - \frac{(\sum Y)^2}{n} = 13368 - \frac{(384)^2}{12} = 1080$$
,

სადაც SST დამოკიდებული ცვლადის (მოგებების) სრული ცვალებადობაა, n შერჩევის მოცულობაა, Y_i დამოკიდებული ცვლადის i -ური მნიშვნელობაა, \overline{Y} დამოკიდებული ცვლადის შერჩევის საშუა-ლოს მნიშვნელობაა.

უმცირეს კვადრატთა მეთოდის გამოყენებით ვაგებთ წრფეს, რომლისთვისაც მინიმალურია ნაშთების კვადრატების ჯამი

SSE =
$$\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 = 497.556$$
,

სადაც Y_i არის დამოკიდებული ცვლადის i -ური დაკვირვებული მნიშვნელობა, \hat{Y} რეგრესიის განტო-ლებაში X ჩასმის შემდეგ მიღებული (გამოთვლილი) მნიშვნელობა.

SSE რეგრესიის წრფისგან გადახრების კვადრატების ჯამი წარმოადგენს დამოკიდებული ცვლადის ცვალებადობის ნაწილს, რომელიც არ არის ახსნილი რეგრესიის წრფით.

ცვალებადობის ნაწილი, რომელიც ახსნილია რეგრესიის წრფით, გამოითვლება როგორც ${\rm SSR} = {\rm SST} - {\rm SSE} = 1080 - 497.556 = 582.444 \; .$

სრულ ცვალებადობაში რეგრესიით ახსნილ ცვალებადობის წილს ეწოდება დეტერმინაციის კოეფიციენტი

$$R^2 = \frac{SSR}{SST} = \frac{582.444}{1080} = 0.5393$$
.

ეს ნიშნავს, რომ ამ შერჩევაში მოგებების ცვალებადობის 53.93% აიხსნება რეკლამაზე დახ-არჯული თანხით.

R^2 -ის თვისებები

 R^2 იღებს მნიშვნელობებს ნულსა და ერთს შორის. თუ ცვლადებს შორის ზუსტი წრფივი კავშირია, მაშინ $R^2=1$. ამ დროს ყველა დაკვირვებული მნიშვნელობა ძევს რეგრესიის წრფეზე. რაც უფრო ძლიერია კავშირი ცვლადებს შორის, მით უფრო ახლოსაა R^2 სიდიდე ერთთან.

როგორც ნაჩვენები იყო შე-5 თავში, არსებობს დეტერმინაციის კოეფიციენტის გამოთვლის ალტერნატიული გზა:

$$R^2 = r^2$$
, $r^2 = 0.7344^2 = 0.5393$,

სადაც R^2 დეტერმინაციის კოეფიციენტია, r პირსონის კორელაციის კოეფიციენტია.

თუ R^2 მცირეა, ე. ი. რეგრესიით ახსნილია სრული გაბნევის მცირე წილი, მოსაძებნია სხვა ალტერნატიული მოდელი (ვთქვათ, არაწრფივი ან მრავლობითი წრფივი რეგრესიის მოდელი და სხვა), რომელიც უფრო ეფექტურად ახსნის დამოკიდებული ცვლადის დაკვირვებული მნიშვნელო-ბების სრულ გაბნევას თავისი საშუალო მნიშვნელობის მიმართ.

რეგრესიული ანალიზი მრუდწირული (არაწრფივი) კავშირისთვის

თუ გაბნევის დიაგრამა გვიჩვენებს, რომ კავშირი ორ ცვლადს შორის არ არის წრფივი და ახლოს არის ერთ ერთ ქვემოთ მოყვანილ დამოკიდებულებასთან:

$$Y = X^2$$
, $Y = \sqrt{X}$ so $Y = \log X$ so ubas,

მაშინ ხელოვნურად, ცვლადების ტრანსფორმაციით, კავშირი შეიძლება გარდაიქმნას წრფივ დამოკიდებულებად.

მ ა გ ა ლ ი თ ი 13.3. დამოკიდებულება გამოშვებულ პროდუქციას და ზეგანაკვეთურ სამუშაო საათებს შორის მოცემულია ცხრილით:

გამოშვებული პროდუქცია (ცალი)	200	500	1000	1300	1300	800
ზეგანაკვეთი (საათი)	25	25	75	175	200	75

გამოშვებული პროდუქცია (ცალი)	200	1400	600	1100	900	900	1200
ზეგანაკვეთი (საათი)	50	225	75	125	75	75	175

გამოშვებული პროდუქცია (ცალი)	400	30	160	1100	1200	700	1000
ზეგანაკვეთი (საათი)	50	50	250	150	50	100	

წრფივი რეგრესიული ანალიზის შედეგები მოცემულია 13.1 ცხრილში **ცხრილი 13.1**

REGRESSION EQUATION							
VARIABLE	В	ST. ERROW	T-VALUE				
X	0.1526	0.01858	8.20				
INTERSEPT	-24.78						
CORRELATION COEFF.	0.888						
R SQUARE	0.789						

STANDARD ERROW 0F	32.08	
ESTIMATE	32.08	

რეგრესიის განტოლებას აქვს სახე

$$\hat{Y} = -24.78 + 0.1526X$$
.

გაბნევის დიაგრამა გვიჩვენებს, რომ კავშირი ამ ორ ცვლადს შორის შესაძლებელია უფრო კარგად აისახოს არაწრფივი დამოკიდებულებით.

X -ის ნაცვლად შემოვიღოთ ახალი ცვლადი X^2 და ჩავატაროთ რეგრესიული ანალიზი. ქვემოთ მოცემულია ამონაბეჭდი SPSS პროგრამიდან (იხ. 13.2 ცხრილი).

რეგრესის განტოლებას აქვს სახე:

$$\hat{Y} = 17.224 + 0.0001X^2$$
.

თუ შევადარებთ 13.1 და 13.2 ცხრილების შედეგებს ვნახავთ, რომ ცვლადის ტრანსფორმაციის შედეგად R^2 გაიზარდა 78.9% -დან 90.5% -მდე. სტანდარტული შეცდომა შემცირდა 32.08-დან 21.55-მდე. მეორე წრფე უფრო სასარგებლოა პროგნოზისთვის, მას ახლავს შეფასების ნაკლები შეცდომა.

ცხრილი 13.2

	300.005.00		
REGRESSION EQUATION			
VARIABLE	В	ST. ERROW B	T-VALUE
X SQUARE	0.0001	0.0000076	13.08
INTERSEPT	17.224		
CORRELATION COEFF.	0.9513		
R SQUARE	0.905		
STANDARD ERROW 0F ESTIMATE	21.55		

მრავლობითი რეგრესია და კორელაცია

მარტივი რეგრესიის მოდელი გვეხმარება გარკვევაში, თუ რა გავლენას ახდენს ერთი ცვლადი (დამოუკიდებელი ცვლადი) მეორე ცვლადზე (დამოკიდებულ ცვლადზე). მიუხედავად იმისა, რომ მარტივი რეგრესიის მოდელს იყენებენ მრავალ პრაქტიკულ ამოცანაში, არსებობს ამოცანები, სადაც ერთი დამოუკიდებელი ცვლადით შემოფარგვლა არ არის გამართლებული.
განვიხილოთ მაგალითი.

მ ა გ ა ლ ი თ ი 13.4. რაზე არის დამოკიდებული სახლის გასაყიდი ფასი Y? ჩამოვთვალოთ შესაძლო დამოუკიდებული ცვლადები: X_1 სახლის ფართობია (კვ.მ), X_2 — სახლის "ასაკი", X_3 — საძინებელი ოთახების რაოდენობა, X_4 — სველი წერტილების რაოდენობა, X_5 — ბუხრების რაოდენობა, Y — სახლის გასაყიდი ფასი.

მარტივი რეგრესიის მოდელის განხილვისას, ჩვენ ვიხილავდით ერთ დამოუკიდებელ X ცვლადს და ერთ დამოკიდებულ Y ცვლადს. დამოუკიდებელი ცვლადით ვცდილობდით აგვეხსნა დამოკიდებული ცვლადის ცვალებადობა. როგორც წესი, არ არსებობს ზუსტი კავშირი X და Y ცვლადებს შორის, ეს კი ნიშნავს იმას, რომ თავს იჩენს e_i ნაშთი — სხვაობა დაკვირვებულ და რეგ-რესიით გამოთვლილ სიდიდეებს შორის. დაშვებული იყო, რომ e_i მნიშვნელობები ნორმალურად არიან განაწილებული ნულის ტოლი საშუალოთი და სტანდარტული გადახრით, რომელსაც ეწოდება შეფასების სტანდარტული შეცდომა.

თუ სტანდარტული შეცდომა საკმაოდ დიდია, უნდა ჩავთვალოთ, რომ რეგრესიის მოდელი არ არის სასარგებლო პროგნოზისათვის.

დამოკიდებულ ცვლადზე ჯერ "არახსნილი" ცვალებადობის ასახსნელად მრავლობითი რეგ-რესიის მოდელში დამატებულია დამოუკიდებელი ცვლადები. მრავლობითი რეგრესიის მოდელს ზოგადად აქვს შემდეგი სახე:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k$$
,

სადაც Y დამოკიდებული ცვლადია, X_1, X_2, \ldots, X_k დამოუკიდებული ცვლადებია, რომლებსაც ხშირად ამხსნელ ცვლადებს ან პრედიქტორებს, ანდა რეგრესორებს უწოდებენ. β_i არის X_i ცვლადის რეგრესიის კოეფიციენტი, $i=1,2,\ldots,k$.

იმისათვის, რომ გამოვიყენოთ მრავლობითი რეგრესიის მოდელი უნდა სრულდებოდეს შემდეგი პირობები:

- 1. ნაშთებს აქვს ნორმალური განაწილება;
- 2. ნაშთების საშუალო ნულის ტოლია;
- 3. დამოუკიდებელი ცვლადების ნებისმიერი კომბინაციისთვის ნაშთების დისპერსია არის ერთი და იგივე და σ^2 -ის ტოლი.

როცა გვაქვს დამოკიდებელი ცვლადის და k დამოუკიდებელი ცვლადის n მოცულობის შერ-ჩევები, უმცირეს კვადრატთა მეთოდის გამოყენებით მივიღებთ:

$$\hat{Y} = b_0 + b_1 X_1 + b_2 X_2 + \dots + b_k X_k,$$

$$\hat{Y}_i = b_0 + b_1 X_1 + b_2 X_2 + \dots + b_k X_k,$$

სადაც b_i , $i=1,2,\ldots,k$, დახრილობის კოეფიციენტია, \hat{Y} დამოკიდებული ცვლადის რეგრესიით გამოთ-ვლილი მნიშვნელობაა, X_i — დამოუკიდებული ცვლადია, b_i — უმცირეს კვადრატთა მეთოდით მიღებული β_i პარამეტრების შეფასებებია, $i=1,2,\ldots,k$. რეგრესიის კოეფიციენტები გამოთვლილია უმცირეს კვადრატთა მეთოდის გამოყენებით, ანუ $\sum \left(Y_i - \hat{Y}_i\right)^2$ მინიმალურობის მოთხოვნით.

შენიშვნა. შერჩევის მოცულობა უნდა იყოს 4-ჯერ მეტი მაინც, ვიდრე დამოუკიდებელი ცვლადების რაოდენობა.

ცხოილი 13.3 (მაგალითი 13.3)								
დაკვირვებები	Y	X_1	X_2	X_3	X_4	X_5		
1	21400	1410	3.0	3.0	1.0	0		
2	37275	37275	5.0	3.0	2.5	1		
n = 531	47175	2250	1.0	4.0	2.75	2		

ცხრილი 13.4 სტანდარტული საშუალო მოცულობა ცვლადი გადახრა 45009.6139 14290.2132 531 Y 1715.5273 588.1123 531 X_1 X_{2} 4.3936 7.7781 531 X_3 3.4038 0.0555 531 1.9143 0.6094 531 X_4 X_5 0.9208 0.5608 531

კორელაციური მატრიცა

პირველ რიგში გამოსათვლელია კორელაციის კოეფიციენტები დამოკიდებულ ცვლადსა (სახლის გასაყიდი ფასი) და ცალ-ცალკე ყველა დამოუკიდებელ ცვლადს შორის. კორელაციის კოეფიციენტი ყველა წყვილს შორის გამოითვლება ფორმულით:

ი ყველა ხყვილს მორის გამოითვლება ფ
$$r = \frac{\sum (X - \bar{X})(Y - \bar{Y})}{\sqrt{\sum (X - \bar{X})^2 \sum (Y - \bar{Y})^2}} = \frac{n\sum XY - \sum X \sum Y}{\sqrt{(n\sum X^2 - (\sum X)^2)(n\sum Y^2 - (\sum Y)^2)}}.$$

კორელაციურ მატრიცას აქვს სახე:

ცხრილი 13.5								
	Y	X_1	X_2	X_3	X_4	X_5		

Y	1.000	0.841	-0.068	0.494	0.720	0.599
X_1	0.841	1.000	0.054	0.644	0.680	0.589
X_2	-0.068	0.054	1.000	0.007	-0.149	0.086
X_3	0.494	0.644	0.007	1.000	0.551	0.338
X_4	0.720	0.680	-0.149	0.551	1.000	0.518
X_5	0.599	0.589	0.086	0.338	0.518	1.000

კორელაციის კოეფიციენტი გასაყიდ ფასს და სახლის ფართობს შორის 0.841; კორელაციის კოეფიციენტი გასაყიდ ფასს და სახლის ასაკს შორის უარყოფითია და უდრის -0.068 -ს, კორელაციის კოეფიციენტი სახლის ფართობსა და სახლის ასაკს შორის 0.054-ია და ა. შ.

ამონაბეჭდი SPSS პროგრამიდან

ცხრილი 13.6

		Go.	70 <u>6</u> 70 10.0		
R SQUARE	0.76686				
ADJUSTED R SQUARE	0.76509				
STANDARD ERROW	6926.16662				
ANALYSIS OF VARIANCE	DF	SUM OF SQUARES		MEAN SQUARE	F
REGRESSION	4	82998243602.67404		20749560900.6651	432.53678
RESIDUAL (UNEXPLAINED)	536	252331158443		47971784.11251	
	VARIA	BLE	S IN THE EQUAT	ION	
VARIABLE	В		STD.ERROW B	ROW B T	
X_1	16.43956		0.84287	19.504	
X_3 BEDROOMS	-2845.89318		616.91611	-4.613	
X_4 BATHS	6599.24009		604.46151	9.367	
X ₅ FIREPLACES	2507.93424		681.93968	3.677	
CONSTANT	11549.1426				

რეგრესიის განტოლებას აქვს სახე:

 $Y = 11549.14 + 16.44X_1 - 2845.89X_3 + 6599.24X_4 + 2507.93X_5$.

 X_2 ცვლადი არ არის შეყვანილი, რადგანაც კორელაცია გასაყიდ ფასსა და სახლის ასაკს შორის უმნიშვნელოა (r = 0.068).

გავაკეთოთ პროგნოზი: საშუალოდ რა ფასად გაიყიდება სახლი, თუ $X_1=2100$, $X_3=4$, $X_4 = 1.75$, $X_5 = 2$.

ფასი = 11549.14+16.44 · 2100-2845.89 · 4+6599.24 · 1.75+2507.93 · 2=51253.19 დოლარი.

13.6 ცხრილზე დაყრდნობით შეგვიძლია გავაკეთოთ დასკვნები რეგრესიის კოეფიციენტების შესახებ. შევამოწმოთ $H_0: eta=0$ ჰიპოთეზები $H_A: eta
eq 0$ ალტერნატივის საწინააღმდეგოდ. ამისათვის უნდა გავიგოთ რას უდრის T სტატისტიკის მნიშვნელობა. T -ს ყველა (19.504, -4.613, 9.367, 3.677) მნიშვნელობა მეტია 1.96 კრიტიკულ მნიშვნელობაზე. ამრიგად, არსებული მონაცემებით ნულოვან ჰიპთენას უარვყოფთ და მნიშვნელოვნების დონით სარწმუნოა მტკიცება, რომ სახლის ფასსა და გან-ხილულ დამოუკიდებელ ცვლადებს შორის წრფივი კავშირი არსებობს. რამდენად კარგია პროგნოზი?

13.5 ცხრილის მიხედვით დეტერმინაციის კოეფიციენტი R SQUARE = 0.76686 . ფასების თით-ქმის 77% აიხსნება ოთხი დამოუკიდებელი ცვლადით.

F სტატისტიკაზე დაყრდნობით შეგვიძლია აგრეთვე დავასკვნათ ხსნის თუ არა მოდელი ფასების ცვალებადობის მნიშვნელოვან წილს. F -ის მნიშვნელობა უდრის 432.53678. კრიტიკული მნიშვნელობა, როცა $\alpha=0.01$ და თავისუფლების ხარისხი 531-5=526 (შეფასებულია 5 კოეფიციენტი) არის 3.32.

დასკვნა. რეგრესიის მოდელი ხსნის ფასების ცვალებადობის მნიშვნელოვან ნაწილს. ADJUSTED R SQUARE — შესწორებული დეტერმინაციის კოეფიციენტია (თავისუფლების ხარისხებთან შეთანხმებული). ამ სიდიდის გამოყენების მნიშვნელობა მდგომარეობს იმაში, რომ თუ დამოუკიდებულ ცვლადთა k რაოდენობა შედარებადია n-თან, R^2 -ის მნიშვნელობა შეიძლება არარეალურად დიდი გამოვიდეს და მიგვიყვანოს მცდარ დასკვნამდე. სწორედ ამის ასაცილებლად შემოღებულია ADJUSTED R SQUARE.

იმისათვის, რომ ვუპასუხოთ კითხვას, რამდენად კარგია პროგნოზი (რამდენად ვარგისიანია მოდელი), ჩვენ ასევე უნდა ვნახოთ რას უდრის პროგნოზის სტანდარტული შეცდომა (ცხრილი13.5). მიუხედავად იმისა, რომ დეტერმინაციის კოეფიციენტი დიდია (0.76686), სტანდარტული შეცდომაც დიდია და შეადგენს 6926.17 დოლარს.

ალტერნატიული გზაა ვარიაციის კოეფიციენტის გამოთვლა. Vარიაციის კოეფიციენტია

$$CV$$
 = სტანდარტული შეცდომა/ Y -ის საშუალო =

$$= \frac{6926.17}{45009.6139} \cdot 100 = 15.3\%$$

(ითვლება, რომ თუ მოდელი ვარგისიანია, ის არ უნდა აღემატებოდეს 10% -ს).

როგორ უნდა შევამციროთ პროგნოზის შეცდომა?

სანამ ვუპასუხებთ ამ კითხვას, მაგალითზე ვაჩვენოთ რას ნიშნავს რეგრესიის კოეფიციენტები.

 eta_0 — მოდელში არის თანაკვეთა, eta_0 არის Y -ის საშუალო როცა ყველა $X_i=0$. ჩვენ მაგალითში ეს იქნება ნაკვეთის ფასი.

 $eta_{\rm l}$ — ფასების საშუალო ცვლილება, როცა ფართობი იცვლება ერთი კვადრატული მეტრით. $eta_{\rm l}$ =16.44 ნიშნავს, რომ ფასი საშუალოდ 16.44 დოლარით იზრდება, როცა ფართი იზრდება 1 კვ.მ-ით.

 X_4 -ის კოეფიციენტი (სველი წერტილების რაოდენობა) და X_5 -ის კოეფიციენტი (ბუხრების რაოდენობა) დადებითია, მათი რაოდენობის გაზრდა იწვევს ფასის გაზრდას. ეს მოსალოდნელია, მაგრამ საკვირველია, რომ X_3 -ის კოეფიციენტი (საძინებელი ოთახების რაოდენობა) არის -2845.89. ამ ოთახების ერთით გაზრდა ფასს ამცირებს 2845.89-ით.

13.5 ცხრილის მიხედვით კავშირი ფასსა და ოთახებს შორის დადებითია და შეადგენს 0.494. რაც იმას ნიშნავს, რომ თუ მხედველობაში არ მივიღებთ სხვა ცვლადებს, ოთახების რაოდენობის გაზრდა იწვევს ფასის გაზრდას. რატომ ხდება კავშირი უარყოფითი? იმიტომ რომ გასათვალისწინებელია მულტიკოლინეარულობა (მრავლობითი კორელაცია).

მულტიკოლინეარულობას ადგილი აქვს მაშინ, თუ დამოუკიდებელი ცვლადები ერმანეთთანაა დაკავშირებული. როგორც ვხედავთ:

$$r_{X_3X_1}=0.644, \quad r_{X_3X_4}=0.551, \quad r_{X_3X_5}=0.338 \; ,$$

ანუ ყველა კორელაცია მნიშვნელოვანია.

 X_3 ცვლადი კორელირებს ბევრ დამოუკიდებელ ცვლადთან. დასაშვებია მისი ამოღება მოდელიდან და შესაძლებელია სხვა დამოუკიდებელი ცვლადების შეყვანა, მაგალითად, შეიძლება შეყვანილი იყოს სახლის ადგილმდებარეობა, მაგრამ ეს ცვლადი არის თვისობრივი.

ფიქტიური ცვლადები რეგრესიულ ანალიზში

ხშირ შემთხვევაში რეგრესიულ ანალიზში გვჭირდება თვისებრივი ცვლადების გამოყენება. მაგალითად, თუ გვინდა განვიხილოთ შემოსავლების მოდელი, ერთ-ერთი დამოუკიდებელი ცვლადი შეიძლება იყოს სქესი (სახელდების სკალა), პარტიული კუთვნილება, ეროვნება და ა.შ.

ამ პრომლემის დასაძლევად იყენებენ ფიქტიურ ცვლადებს (dummy variables). მაგალითად, თუ დამოუკიდებელი ცვლადი არის სქესი, ფიქტიური ცვლადი შეგვიძლია განვმარტოთ:

X = 0 — მამრობითი,

X=1 — მდედრობითი.

თუ თვისებრივი ცვლადის კატეგორიების რაოდენობა ორზე მეტია, შეიძლება გამოვიყენოთ რამდენიმე ფიქტიური ცვლადი. მაგალითად, ოჯახური მდგომარეობა:

თუ მარტოხელაა — X_1 = 1 , სხვა დანარჩენ შემთხვევაში X_1 = 0 .

თუ დაოჯახებულია — $X_2 = 1$, სხვა დანარჩენ შემთხვევაში $X_2 = 0$.

თუ ქვრივია — $X_3 = 1$, სხვა დანარჩენ შემთხვევაში $X_3 = 0$.

თუ გაყრილია — X_4 = 1 , სხვა დანარჩენ შემთხვევაში X_4 = 0 .

 θ ა გ ა ლ ი თ ი 1 3 . 5 . რეგრესიის განტოლება სახლის გასაყიდ ფასსა და სახლის ფართობს შორის შემდეგი სახისაა:

გასაყიდი ფასი = 9915.78 + 20.45 (ფართობი).

შემოვიღოთ ახალი (გვლადი:

 $X_6 = 1$ — სახლში არის კონდიციონერი,

 $X_6 = 0$ — სახლში არ არის კონდიციონერი,

მაშინ რეგრესიის განტოლება მიიღებს სახეს

$$\hat{Y} = b_0 + b_1 X_1 + b_6 X_6 = 8739.21 + 18.11 X_1 + 2455.16 X_6$$
.

თუ $X_6 = 0$, მაშინ $\hat{Y} = 8739.21 + 18.11 X_1$.

თუ $X_6 = 1$, მაშინ $\hat{Y} = 11194.37 + 18.11X_1$.

სახლის ფასი საშუალოდ 11194.37-8739.21=2455.16 დოლარით მეტია, თუ სახლში დაყენებულია კონდიციონერები.

შემოვიღოთ კიდევ ერთი ფიქტიური ცვლადი — სახლის ადგილმდებარეობა.

 X_7 = 1 — პრესტიჟული ადგილი,

 $X_7 = 0$ — არაპრესტიჯული ადგილი.

ცხრილი **13.7**

<u> </u>	
R SQUARE	0.8940
ADJUSTED R SQUARE	0.8920
STANDARD ERROW	514.1353

$$\hat{Y} = 1693X_1 + 4154.21X_4 + 2010.45X_5 + 1972.11X_6 + 9699.80X_7$$
.

ჩვენ ვხედავთ, რომ ცვლადის ამოღებით და ორი ახალი ცვლადის შეყვანით პროგნოზის შეცდომა მნიშვნელოვნად შემცირდა.

შეჯამება

რეგრესია და კორელაცია შეისწავლის ორ ცვლადს შორის სტატისტიკური კავშირის ასპექ-ტებს. აღწერილია უცნობი რეგრესიის კოეფიციენტების შეფასების პროცედურები, ჰიპოთეზების შემოწმება და ნდობის ინტერვალების აგება; უცნობი დისპერსიის შეფასება, კორელაციისა და დე-ტერმინაციის კოეფიციენტების გამოთვლა; მოდელის გამოსაყენებლად ვარგისიანობის შემოწმება.

ხშირ შემთხვევაში რაიმე ცვლადის ვარიაბელობის (ცვალებადობის) ახსნა ვერ ხერხდება მხო-ლოდ ერთი ფაქტორის გავლენით და ამიტომ განიხილება უფრო რთული მრავლობითი წრფივი რეგ-რესიული მოდელი.

ასევე განიხილება როგორ შეიძლება ცვლადთა გარდაქმნით არაწრფივი კავშირის შესწავლა.

რამოდენიმე პრაქტიკული ამოცანის ამოხსნა

1. მერიის თანამშრომელს დაავალეს გაერკვია, როგორ არის დამოკიდებული წყლის მოხმარება ოჯახის ზომაზე. მან გადაწყვიტა წრფივი რეგრესიული მოდელის აგება. წინა თვის 15 ოჯახის მონაცემებია:

წყლის მოხმარება (გალონი):	1100	1425	785	950	1200
ოჯახის ზომა:	3	5	2	3	4

წყლის მოხმარება (გალონი):	1152	973	1225	1600	700
ოჯახის ზომა:	4	3	5	4	3

წყლის მოხმარება (გალონი):	1100	1414	700	953	1063
------------------------------	------	------	-----	-----	------

ოჯახის ზომა: 5 4 2 2 2

კორელაციის კოეფიციენტი მიღებული იყო კომპიუტერული პროგრამის მეშვეობით.

ცხრილი 13.8

R-SQUARE	-	0.551986			
CORRELATION COEFFICIENT		0.742958			
F FOR ANALYSIS OF VARIANCE (D.F. = 1.13)		16.1069			
STANDARD ERROW OF ESTIMATE		197.084			
VARIABLE REG.COEFF.		STD. ERR. COEFF.	Т		
Y 188.011		46.978	4.00212		
INTERCEPT	470.094				

კორელაციის კოეფიციენტია r = 0.743.

შევამოწმოთ ჰიპოთეზა: H_0 : ρ = 0 , H_A : ρ \neq 0 , α = 0.05 ,

$$t = \frac{r}{\sqrt{\frac{1 - r^2}{n - 2}}} = \frac{0.743}{\sqrt{\frac{1 - (0.743)^2}{13}}} = 4.002.$$

 $t_{crit} = t_{n-2,\alpha/2} = t_{13,0.025} = 2.160$ და რადგან 4.002 > 2.160 დავასკვნით, რომ ოჯახის ზომასა და მოხმარებულ წყალს შორის დადებითი კავშირი არსებობს.

თუ კომპიუტერით დავთვლით რეგრესიის კოეფიციენტებს, მაშინ მივიღებთ, რომ საპროგნოზო წრფეს აქვს შემდეგი სახე:

$$\hat{Y} = 470.094 + 188.011X$$
.

პროგნოზის სტანდარტული შეცდომაა 197.084. დეტერმინაციის კოეფიციენტი უდრის 0.551986, ანუ ოჯახის ზომა ხსნის წყლის ხარჯვის ცვალებადობის მხოლოდ 55%-ს.

ვთქვათ, ამ მოდელზე დაყრდნობით გვინდა გავიგოთ საშუალოდ რამდენ წყალს ხარჯავს ხუთ კაციანი ოჯახი და ავაგოთ 90% -იანი ნდობის ინტერვალი. გამოვთვალოთ ნაშთები.

	დაკვირვებული <i>Y</i>	გამოთვლილი \hat{Y}	ნაშთი $e=Y-\hat{Y}$
1	1100	1034.13	65.8713
2	1425	1410.15	14.8486
3	785	846.17	-61.1173
4	950	1034.13	-84.1287
5	1200	1222.14	-22.1401
6	1152	1222.14	-70.1401
7	973	1034.13	-61.1287
8	1525	1410.15	114.849
9	1600	1222.14	377.860
10	700	1034.13	-334.129
11	1100	1410.15	-310.151

12	1412	1222.14	191.860
13	700	846.117	-146.117
14	953	846.117	106.883
15	1063	846.117	216.883

ნდობის ინტერვალია

$$\hat{Y} \pm t_{\alpha/2} \sqrt{\frac{\text{SSE}}{n-2} \sqrt{1 + \frac{1}{n} + \frac{\left(X - \overline{X}\right)^2}{\sum X^2 - \frac{\left(\sum X\right)^2}{n}}}}.$$

 \hat{Y} -ის გამოსათვლელად საპროგნოზო განტოლებაში ჩავსვათ X=5 ,

$$\hat{Y} = 470.097 + 188.01 \cdot 5 = 1410.152$$
.

ხუთკაციანი ოჯახი საშუალოდ ხარჯავს 1410.152 გალონს.

13.8 ცხრილიდან
$$\sqrt{\frac{\mathrm{SSE}}{n-2}}=197.84$$
 (სტანდარტული შეცდომა), $t_{lpha/2}=1.771$, $lpha=0.1$.

ნდობის ინტერვალია:

$$1410 \pm 1.771 \cdot 197.084 \sqrt{1 + \frac{1}{n} + \frac{\left(5 - 3.4\right)^2}{191 - \frac{2601}{15}}} = 1410 \pm 384.28.$$

ხუთკაციანი ოჯახი ხარჯავს 1025 გალონიდან 1794.28 გალონამდე. მიუხედავად იმისა, რომ ეს შეიძლება იყოს სასარგებლო ინფორმაცია, შეფასების სიზუსტე არ არის საკმარისი.

კითხვები

1. არსებობს თუ არა კავშირი ადამიანების ასაკსა და საცურაო აუზზე დასწრებას შორის?

ასაკი X	16	15	28	16	29	38
კვირაში დასწრება $\it Y$	7	3	6	5	1	2

ასაკი X	48	18	24	33	56
კვირაში დასწრება <i>Y</i>	4	7	4	5	1

- ა) ააგეთ გაბნევის დიაგრამა.
- ბ) გამოთვალეთ კორელაციის კოეფიციენტი და შეამოწმეთ მნიშვნელოვნად განსხვავდება თუ არა ის პოპულაციაში ნულოვანი კორელაციისაგან 0.05 დონეზე.
- გ) გააკეთეთ დასკვნები მოდელის პარამეტრების შესახებ.
- დ) შეამოწმეთ მოდელის ვარგისიანობა.
- ე) კვირაში რამდენჯერ მიდის აუზზე 55 წლის ადამიანი? ააგეთ 95% -იანი ნდობის ინტერვალი ამ ასაკის ადამიანთა დასწრების რაოდენობისათვის. როგორ ფიქრობთ ეს ინტერვალი 29 წლის ადამიანის შესაბამის ინტერვალთან უფრო ვიწრო იქნება თუ განიერი ?
- 2. ცხრილში მოცემულია სკოლების კურსდამთავრებულთა რაოდენობა და სკოლისათვის შემოწირული ფულის რაოდენობა.

სკოლა	1	2	3	4	5
კურსდამთ.	987	1350	2345	1300	12569
თანხა	234700	769000	1230000	450780	645000

		I	I	
სკოლა	6	7	8	9

კურსდამთ.	8560	3450	1890	23456
თანხა	2650000	143000	230000	4560000

ა) გამოთვალეთ კორელაციის კოეფიციენტი და შეამოწმეთ მნიშვნელოვნად განსხვავდება თუარა ის პოპულაციაში ნულოვანი კორელაციისაგან 0.05 დონეზე.

ბ) საშუალოდ რა თანხა ჩაირიცხება სკოლის ანგარიშზე, თუ 12000 კურსდამთავრებულია? 3. კომპანია ამზადებს კვების დანამატებს მსხვილფეხა რქოსანი პირუტყვისათვის. 335 ხბოს წონაში ყოველდღიური ზრდასა და დანამატის რაოდენობას შორის კორელაციის კოეფიციენტია r=0.104. ამ სიდიდეზე დაყრდნობით რა დასკვნის გაკეთება შეგიძლიათ ამ ორი სიდიდის რეალურ კავშირზე. 4. კომპანია რეცხავს და წმენდს მანქანებს. მომსახურების გაუმჯობესებისათვის კლიენტებს სთხოვეს შეეფასებინათ სერვისის მუშაობა სარეინტინგო სკალაზე (0 — ძალიან ცუდი, 100 — საუკეთესო მომსახურება). მიღებული იყო შემდეგი მონაცემები:

მომსახურების დრო (საათი), X	1.5	0.2	0.3	0.35	1.0	0.23	0.32
შეფასება, $\it Y$	85	60	70	72	80	65	70
მომსახურების დრო (საათი), X	2.5	1.6	0.27	1.6	0.40	0.45	2.0
შეფასება, <i>Y</i>	90	84	70	82	75	77	89

- ა) ააგეთ გაბნევის დიაგრამა და აღწერეთ დამოკიდებულება ამ ორ ცვლადს შორის.
- ბ) ააგეთ წრფივი რეგრესიის მოდელი და შეაფასეთ პროგნოზის შეცდომა.
- გ) მიღებული შედეგების გათვალისწინებით როგორ გარდაქმნიდით დამოუკიდებელ ცვლადს?
- 5. საფეხბურთო კლუბის მენეჯერს სურს მრავლობითი რეგრესიის მოდელის აგება, რომელიც ახსნის კლუბის თამაშებზე დასწრებას. მან შეაგროვა საკუთარ მოედანზე ათი სეზონის 16 თამაშის მონაცემები.
 - Y თამაშებზე დასწრება (game attendance),
 - X_1 გუნდის მოგება/წაგების პროცენტი,
 - X_2 მოწინააღმდეგების მოგება/წაგების პროცენტი,
 - X_3 სეზონში თამაშების რაოდენობა,
 - X_4 ჰაერის ტემპერატურა თამაშის დროს.

Y	14502	12459	15600	16780	14600	19300
X_1	33.3	25.0	80.0	75.0	60.0	100.0
X_2	80.0	50.0	66.6	100.0	80.0	60.0
X_3	6	4	5	8	10	10
X_4	47	56	55	60	55	49

Y	14603	15789	17800	19450	13890
X_1	66.6	50.0	80.0	75.0	20.0
X_2	25.0	50.0	40.0	100.0	75.0
X_3	3	6	10	8	5
X_4	67	55	53	48	65

Y	15097	17666	12500	16780	17543	
---	-------	-------	-------	-------	-------	--

X_1	70.0	83.3	20.0	80.0	80.0
X_2	70.0	66.6	20.0	100.0	70.0
X_3	10	6	5	8	10
X_4	56	60	59	46	50

ა) გამოთვალეთ კორელაციის მატრიცა;

- ბ) ააგეთ ოთხი მარტივი რეგრესიის მოდელი თითეული დამოუკიდებელი ცვლადით. აღნიშნეთ ოთხიდან რომელია საუკეთესო;
- გ) ააგეთ მრავლობითი რეგრესიის მოდელი ოთხი დამოუკიდებელი ცვლადით;
- დ) ცვალებადობის რა წილს ხსნის დამოკიდებულ ცვლადში მრავლობითი მოდელი?
- ე) რომელი დამოუკიდებელი ცვლადია სტატისტიკურად მნიშვნელოვანი $\alpha=0.05$ დონით?
- ვ) ააგეთ 95% -იანი ნდობის ინტერვალი თითეული რეგრესიის კოეფიციენტისათვის;

თ) არსებობს თუ არა მულტიკოლინეარულობის პრობლემა ამ ამოცანაში?

- 6. მენეჯერს სურს რეგრესიულ მოდელში ახალი ცვლადის დამატება, რომელიც იზომება სახელდების სკალაზე კატეგორიებით განათლების დონე: 1 დაწყებითი; 2 არასრული საშუალო; 3 საშუალო ზოგადი; 4 საშუალო პროფესიული.
 - ა) რამდენი ფიქტიური ცვლადის გამოყენება დასჭირდება მენეჯერს?
 - ბ) განსაზღვრეთ ეს ცვლადები.
- 7. რეგრესიის განტოლება შემდეგი სახისაა:

$$Y = -23200 + 4.2X_1 + 2345X_2 + 4607X_3$$
,

სადაც Y ფერმის წლიური შემოსავალია, X_1 დასამუშავებელი ფართობია, $X_2=1$ მიწის სტრიქონური მორწყვაა, $X_2=0$ არაა მორწყვა, $X_3=1$ სპრინკლერ მორწყვაა, $X_3=0$ არაა მორწყვა. ახსენით თითული რეგრესიის კოეფიციენტი.

8. მიღებული მომგებიანობის ასახსნელად მიღებული იყო შემდეგი მონაცემები:

Y	-2345	4200	278	1211	1406	500
X_1	-45	56	26	56	24	23
X_2	-1	2	3	2	2	3

Y	-700	3457	3478	1975	206
X_1	34	45	47	24	32
X_2	3	1	1	2	3

სადაც Y კლიენტისგან მიღებული სუფთა მოგებაა, X_1 კლიენტთან მუშაობის საათების რაოდენო-ბაა, X_2 კლიენტის ტიპია: 1 — თუ კლიენტია წარმოების სფერო, 2 — თუ კლიენტია მომსახურების სფერო, 3 — თუ კლიენტი სამთავრობოა.

- ა) ააგეთ სამი გაბნევის დიაგრამა თითეული დამოუკიდებელი ცვლადით;
- ბ) ააგეთ რეგრესიის განტოლება თუ დამოუკიდებელი ცვლადია $X_1\,;$
- გ) ააგეთ რეგრესიის განტოლება ორივე დამოუკიდებელი ცვლადით. შესაყვანი გექნებათ ფიქტიური ცვლადები.
- 9. შესწავლილი იყო 25 კლიენტის (Y) შესყიდვების დამოკიდებულება (X_1) ასაკზე, (X_2) ოჯახის შემოსავალზე, (X_3) ოჯახის მოცულობაზე. მიღებული იყო კორელაციის მატრიცა:

	Y	X_{1}	X_2	X_3
Y	1.00	-0.4057	0.4591	-0.2444
X_1		1.00	0.0512	-0.5037
X_2			1.00	0.2718

X_3			1.00
-------	--	--	------

შეამოწმეთ $\,lpha=0.05\,$ დონით რომელი კორელაციის კოეფიციენტია მნიშვნელოვანი.

10. რა პირადული მონაცემებით უნდა ხასიათთებოდეს მენეჯერი კარიერის გასაკეთებლად? გადაწყვეტილი იყო მრავლობითი რეგრესიის აგება სამუშაო რეიტინგსა და კომუნიკაბელურობის უნარს შო-რის. კომუნიკალუბელურობა შეფასებული იყო რამოდენიმე ფაქტორით. შერჩეული იყო 15 საშუალო დონის მენეჯერი. მათ მისცეს გასაანალიზებლად რამდენიმე სამუშაო სიტუაცია და სთხოვეს წარედგინათ წერილობითი და ვერბალური პრეზენტაცია.

სამუშაო რეიტინგი	შემთხვევათა ანალიზის ქულა	წერილობითი პრეზენტაციის ქულა	ვერბალური პრეზენტაციის ქულა
87	8.4	8.7	9.2
93	8.2	9.4	9.4
91	9.3	9.7	9.5
85	7.9	8.1	8.7
86	8.1	8.3	8.8
97	9.4	9.3	9.6
90	9.1	9.0	9.2
93	8.9	9.2	9.5
88	8.6	8.4	8.5
96	9.7	9.5	9.6
86	8.3	7.9	8.4
89	8.7	8.5	8.7
94	9.2	9.1	9.6
91	8.1	9.5	9.2
95	9.3	9.1	9.7

- ა) გამოიყენეთ კომპიუტერული პროგრამა და შეამოწმეთ არიან, თუ არა ცვლადები კორელირეპული ერთმანეთთან;
- ბ) შეამოწმეთ მოდელის ვარგისიანობა;
- გ) თუ თქვენ საშუალო დონის მენეჯერი ბრძანდებით, თანახმა იქნებით თუ არა, თქვენი სამუშაო რეიტინგი შეფასდეს ამ მოდელით?
- დ) სამუშაო რეიტინგის ცვალებადობის რამდენი პროცენტია ახსნილი სამი დამოუკიდებელი (კვლადით;
- ე) არის თუ არა ყველა დამოუკიდებელი ცვლადი მნიშვნელოვანი ამ მოდელში? თ) ერთ-ერთმა მენეჯერმა მიიღო შემდეგი ქულები: შემთხვევათა ანალიზის ქულა 9.1, წერ-ილობითი პრეზენტაციის ქულა 9.4, ვერბალური პრეზენტაციის ქულა 9.3. ამ მონაცემებზე დაყრდნობით, რას უდრის სამუშაო რეიტინგის ქულის საუკეთესო წერტილოვანი შეფასება?
- ვ) ღირს თუ არა ამ მოდელის გამოყენება ახალი თანამშრომლების მისაღებად? 11. გამომცემლობას სურს დაადგინოს მომზადებული წიგნების საუკეთესო გასაყიდი ფასები. შეგროვებული იყო შემდეგი მონაცემები 15 გამოშვებულ წიგნზე.

გაყიდული გვერდების წიგნების რაოდენობა, X_1	კონკურენტული წიგნების რაოდენობა, X_2	სარეკლამო ბიუჯეტი, $X_{\scriptscriptstyle 3}$	ავტორის ასაკი, X_4
--	---	---	----------------------------

15000	176	5	\$25000	49
140000	296	10	83000	57
75000	483	7	40000	29
100000	811	14	29000	37
26000	302	9	52000	35
33000	411	15	33000	43
59000	333	7	19000	51
103000	602	4	37000	62
88000	504	12	51000	33
10000	204	3	30000	50
9000	376	4	19000	26
77000	600	7	41000	40
59000	400	3	26000	44
183000	597	8	51000	59
16000	126	1	27000	38

ა) გამოიყენეთ კომპიუტერული პროგრამა და შეამოწმეთ რომელი დამოუკიდებელი ცვლადი კორელირებს მნიშვნელოვნად დამოკიდებულ ცვლადთან; ბ) შეადგინეთ რეგრესიის განტოლება ოთხივე დამოუკიდებელი ცვლადით; გ) ცვალებადობის რამდენი პროცენტი აიხსნება ამ ოთხი ცვლადით.

სიხშირეთა განაწილებები

ქულის ფარდობითი სიხშირე — rf=f/n , სადაც f — ქულის სიხშირეა, ხოლო n — შერ-ჩევის მოცულობაა.

ქულის პროცენტული სიხშირე — $\% f = rf \cdot 100\%$.

ცენტრალური ტენდენციის საზომები

მედიანა. ვარიაციულ მწკრივში შუაში მდგომი მონაცემი, თუ მონაცემთა რაოდენობა კენტია და ორი შუაში მდგომი მონაცემის საშუალო არითმეტიკული, თუ მონაცემთა რაოდენობა ლუწია.

შერჩევის საშუალო. მონაცემთა საშუალო არითმეტიკული —
$$\overline{X} = \frac{\sum X}{n}$$
 .

პოპულაციის საშუალო —
$$\mu=rac{\sum X}{N}$$
 , სადაც N — პოპულაციის მოცულობაა.

შერჩევის საშუალო — $ar{X}$ პოპულაციის საშუალოს — μ -ს წერტილოვანი შეფასებაა. მოდა — ყველაზე ხშირად განმეორებადი მონაცემი.

ცვალებადობის საზომები

დიაპაზონი. $R = x_{\max} - x_{\min}$.

$$P$$
 -პროცენტილი. $x_p = x_{([n\alpha]+1)}$, როცა $nP/100 \equiv n\alpha$ არ არის მთელი რიცხვი, და

$$x_p = \frac{x_{(n\alpha)} + x_{(n\alpha+1)}}{2}$$
, როცა $n\alpha$ მთელი რიცხვია.

პირველი კვარტილი — \mathcal{Q}_1 . 25-პროცენტილი ანუ იმ მონაცემების მედიანა, რომლებიც არ აღემატება მედიანას.

მესამე კვარტილი — \mathcal{Q}_3 . 75-პროცენტილი ანუ იმ მონაცემების მედიანა, რომლებიც მეტია ან ტოლი მედიანაზე.

კვარტილთშორისი გაბნევის დიაპაზონი $-\mathit{IQR} = Q_3 - Q_1$.

რანგი — r . მონაცემის ნომერი ვარიაციულ მწკრივში.

პროცენტული რანგი —
$$rac{2r-1}{2n}\cdot 100\%$$
 .

შესწორებული შერჩევითი დისპერსია —
$$S^2 = rac{\sum (X-\overline{X})^2}{n-1} = rac{1}{n-1} [\sum X^2 - n(\overline{X})^2]$$
 .

პოპულაციის დისპერსია —
$$\sigma^2 = rac{\sum (X-\mu)^2}{N}$$
 .

შერჩევის დისპერსია — S^2 პოპულაციის დისპერსიის — σ^2 -ის წერტილოვანი შეფასებაა.

შერჩევის სტანდარტული გადახრა —
$$S=\sqrt{S^2}$$
 .

პოპულაციის სტანდარტული გადახრა —
$$\sigma$$
 = $\sqrt{\sigma^2}$.

შერჩევის სტანდარტული გადახრა — S პოპულაციის სტანდარტული გადახრის — σ -ს წერტილოვანი შეფასებაა.

Z -ქულები

ერთეული ქულა —
$$z=rac{X-\mu}{\sigma}$$
 .

z ქულა გვიჩვენებს რამდენი სტანდარტული გადახრით (რამდენი σ -თი) არის X ქულა დაშორებული μ საშუალოსგან.

სტანდარტული ქულა —
$$z=rac{X-\overline{X}}{S}=rac{X-\overline{X}}{\sqrt{\sum(X-\overline{X})^2/n}}$$
 .

შერჩევის საშუალოს ქულა —
$$z=rac{ar{X}-\mu}{\sigma/\sqrt{n}}$$
 .

დიდი შერჩევები

შერჩევა დიდია, თუ მისი მოცულობა $n \ge 30$.

კრიტერიუმი საშუალოსათვის

დაშვებულია, რომ $\sigma \approx s$, სადაც σ — პოპულაციის სტანდარტული გადახრაა, s — შერჩევის სტანდარტული გადახრა. კრიტერიუმის სტატისტიკას აქვს შემდეგი სახე

$$Z = \frac{\overline{X} - \mu}{s / \sqrt{n}}$$
.

Z სტატისტიკა მიახლოებით ნორმალურადაა განაწილებული ნულის ტოლი საშუალოთი და ერთის ტოლი სტანდარტული გადახრით, N(0,1). 95% სანდოობით, პოპულაციის უცნობი μ საშუალო მოთავსებულია ორ საზღვარს შორის

$$\overline{X} \pm z \frac{s}{\sqrt{n}}$$
, bychig $z = 1.96$.

კრიტერიუმი ორი საშუალოსათვის

 $\sigma \approx s$ დაშვებულია თითეული პოპულაციისათვის. თუ შერჩევები დამოუკიდებელია, კრიტე-რიუმის სტატისტიკას აქვს შემდეგი სახე

$$Z = \frac{\overline{X}_1 - \overline{X}_2 - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}},$$

სადაც n_1 — პირველი შერჩევის მოცულობაა, n_2 — მეორე შერჩევის მოცულობაა. ეს სტატისტიკა მიახლოებით ნორმალურადაა განაწილებული N(0,1).

95%-ანი სანდოობით, საშუალოების სხვაობა $\mu_1 - \mu_2$ მოთავსებულია შემდეგ საზღვრებში

$$\overline{X}_1 - \overline{X}_2 \pm 1.96 \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$
.

კრიტერიუმი პროპორციისათვის

 $\widehat{p}=rac{X}{n}$ — შერჩევის პროპორცია (ფარდობითი სიხშირე), სადაც X — წარმატებათა რაო-

დენობაა n დამოუკიდებელ ცდაში. აუცილებელია, რომ შესრულდეს შემდეგი ორი პირობა

$$0 < \hat{p} \pm 3\sqrt{\hat{p}(1-\hat{p})/n} < 1$$
 gs $0 .$

კრიტერიუმის სტატისტიკას აქვს შემდეგი სახე:

$$Z = \frac{\widehat{p} - p}{\sqrt{\frac{p(1-p)}{n}}} \ .$$

ეს სტატისტიკა მიახლოებით ნორმალურადაა განაწილებული $N(0,\!1)$.

95% -ანი სანდოობით, პოპულაციის პროპორცია მოთავსებულია შემდეგ საზღვრებში

$$\hat{p} \pm 1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$
.

კრიტერიუმი ორი პროპორციისათვის

საჭიროა შემდეგი პირობების შესრულება

$$0 < \hat{p}_1 \pm 3\sqrt{rac{\hat{p}_1(1-\hat{p}_1)}{n_1}} < 1$$
 go $0 < \hat{p}_2 \pm 3\sqrt{rac{\hat{p}_2(1-\hat{p}_2)}{n_2}} < 1$,

$$0 < p_1 \pm 3 \sqrt{\frac{p_1(1-p_1)}{n_1}} < 1$$
 gs $0 < p_2 \pm 3 \sqrt{\frac{p_2(1-p_2)}{n_2}} < 1$.

თუ H_0 : $p_1=p_2$ კრიტერიუმის სტატისტიკას აქვს შემდეგი სახე:

$$Z = \frac{\hat{p}_1 - \hat{p}_2 - (p_1 - p_2)}{\sqrt{\tilde{p}(1 - \tilde{p})(\frac{1}{n_1} + \frac{1}{n_2})}},$$

სადაც

$$\label{eq:power_power} \widetilde{p} = \frac{n_1 \widehat{p}_1 + n_2 \widehat{p}_2}{n_1 + n_2} \; .$$

ეს სტატისტიკა მიახლოებით ნორმალურადაა განაწილებული N(0,1) .

95%-ანი სანდოობით პროპორციების სხვაობა $\,p_1-p_2\,$ მოთავსებულია შემდეგ საზღვრებში

$$\widehat{p}_1 - \widehat{p}_2 \pm 1.96 \sqrt{\frac{\widehat{p}_1(1-\widehat{p}_1)}{n_1} + \frac{\widehat{p}_2(1-\widehat{p}_2)}{n_2}} \ .$$

პატარა შერჩევები. ნორმალური პოპულაციიდან

იგულისხმება, რომ შერჩევების მოცულობებიდან ერთი მაინც < 30-ზე და ორივე შერჩევა მიღებულია ნორმალური პოპულაციებიდან. ამის შემოწმება შეიძლება ჰისტოგრამის ან ბოქსპლოტის აგებით.

კრიტერიუმი საშუალოსათვის

კრიტერიუმის სტატისტიკას აქვს შემდეგი სახე:

$$T = \frac{\overline{X} - \mu}{\frac{s}{\sqrt{n}}}.$$

ამ სტატისტიკას აქვს t — განაწილება თავისუფლების ხარისხით $n\!-\!1$.

95% სანდოობით, პოპულაციის უცნობი საშუალო μ მოთავსებულია ორ საზღვარს შორის

$$\overline{X} \mp t_{n-1,\alpha/2} \cdot \frac{s}{\sqrt{n}}$$
,

სადაც t მოსაძებნია t- განაწილების ცხრილიდან თავისუფლების n-1 ხარისხის გათვალისწინებით.

კრიტერიუმი დისპერსიისათვის

სტატისტიკური ჰიპოთეზის შემოწმება ნორმალური $N(a,\sigma^2)$ განაწილების დისპერსიის შესახებ:

ჰიპოთეზა: H_0 : $\sigma^2=\sigma_0^2$ მნიშვნელოვნების დონე: lpha

კრიტერიუმის სტატისტიკა:
$$\begin{cases} \frac{\sum\limits_{i=1}^n(X_i-a)^2}{\sigma_0^2} \cong \chi^2(n), \ \text{თუ a } \text{ } \text{$_{\mathcal{G}}$ be documents}, \\ \\ \frac{(n-1)S^2}{\sigma_0^2} \cong \chi^2(n-1), \ \text{$_{\mathcal{G}}$ a } \text{ } \text{$_{\mathcal{G}}$ be documents}. \end{cases}$$

ალტერნატივა კრიტიკული არე C.R. ($oldsymbol{H}_0$ -ის უარყოფის არე)

$$H_{A}:\sigma^{2}\neq\sigma_{0}^{2} \qquad \begin{cases} (0,\chi_{n,\mathbf{l}-\alpha/2}^{2}]\bigcup[\chi_{n,\alpha/2}^{2},+\infty), \text{ or a a bondowns,} \\ (0,\chi_{n-\mathbf{l},\mathbf{l}-\alpha/2}^{2}]\bigcup[\chi_{n-\mathbf{l},\alpha/2}^{2},+\infty), \text{ or a a bondowns.} \end{cases}$$

lpha მნიშვნელოვნების დონის მქონე ნდობის ინტერვალი ნორმალური $N(a,\sigma^2)$ პოპულაციის დისპერსიისათვის უცნობი საშუალოს შემთხვევაში:

$$\left(\frac{(n-1)s^{2}}{\chi^{2}_{n-1,\alpha/2}},\frac{(n-1)s^{2}}{\chi^{2}_{n-1,1-\alpha/2}}\right),\,$$

სადაც $\chi^2_{m,lpha}$ — თავისუფლების m ხარისხის მქონე ხი-კვადრატ განაწილების ($\chi^2(m)$) ზედა lpha -კრი-ტიკული წერტილია.

კრიტერიუმი ორი საშუალოსათვის

იგულისხმება, რომ $\sigma_1^2=\sigma_2^2=\sigma^2$ — უცნობია. ამ საერთო დისპერსიის წერტილოვანი შეფასებაა s_p^2

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$
,

სადაც n_1 და s_1^2 — შესაბამისად პირველი შერჩევის მოცულობა და დისპერსიაა; n_2 და s_2^2 — მეო-რე შერჩევის მოცულობა და დისპერსიაა.

თუ შერჩევები ერთმანეთისაგან დამოუკიდებელია, მაშინ კრიტერიუმის სტატისტიკას აქვს შემდეგი სახე

$$T = \frac{\overline{X}_1 - \overline{X}_2 - (\mu_1 - \mu_2)}{\sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \cong t(n_1 + n_2 - 2) .$$

ამ სტატისტიკას აქვს $\,t$ - განაწილება თავისუფლების ხარისხით $\,n_{\!\scriptscriptstyle 1}+n_{\!\scriptscriptstyle 2}-2$.

95% -ანი სანდოობით, საშუალოების სხვაობა მოთავსებულია შემდეგ საზღვრებში

$$\overline{X}_1 - \overline{X}_2 \mp t_{n_1 + n_2 - 2, \alpha/2} \cdot s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$
,

სადაც $t_{n_1+n_2-2,\alpha/2}$ თავისუფლების n_1+n_2-2 ხარისხის მქონე სტიუდენტის განაწილების ზედა $\alpha/2$ - კრიტიკული წერტილია.

თუ შერჩევები ერთმანეთზე დამოკიდებულია, განიხილება სხვაობები $d_i=x_i-y_i$, სადაც x_i — i-ური მონაცემია პირველი შერჩევიდან, y_i — i-ური მონაცემია მეორე შერჩევიდან. n სხვაობის საშუალოა — \overline{X} , პოპულაციის სხვაობების საშუალოა — μ_d ; სხვაობების სტანდარტული გადახრაა — s, პოპულაციის სტანდარტული გადახრა — σ_d . იგულისხმება, რომ $\sigma_d \approx s$. კრიტერიუმის სტატისტიკას აქვს შემდეგი სახე

$$T = \frac{\overline{X} - \mu_d}{\frac{s}{\sqrt{n}}} = \frac{\overline{X}_1 - \overline{X}_2 - \mu_d}{\sqrt{\frac{\sum d^2 - (\sum d)^2 / n}{n(n-1)}}},$$

სადაც n — წყვილების რაოდენობაა. ამ სტატისტიკას აქვს t —განაწილება თავისუფლების ხარის-ხით $n\!-\!1$.

95%-იანი სანდოობით, პოპულაციის საშუალო მოთავსებულია შემდეგ საზღვრებში

$$\overline{X} \mp t_{n-1,\alpha/2} \cdot \frac{s}{\sqrt{n}}$$
,

სადაც $t_{n-1,\alpha/2}$ თავისუფლების n-1 ხარისხის მქონე სტიუდენტის განაწილების ზედა $\alpha/2$ -კრიტიკუ-ლი წერტილია.

კრიტერიუმი ორი დისპერსიისათვის

კრიტერიუმის სტატისტიკას აქვს შემდეგი სახე

$$F=\frac{s_1^2}{s_2^2},$$

სადაც $s_1^2>s_2^2$. ამ სტატისტიკას აქვს F- განაწილება n_1-1 და n_2-1 თავისუფლების ხარისხებით.

დისპერსიათა σ_1^2/σ_2^2 შეფარდების $(1-lpha)\cdot 100\%$ -იანი ნდობის ინტერვალი მოიცემა ფორმუ-ლით:

$$(\frac{1}{F_{n_2-1,n_1-1,\alpha/2}}\cdot\frac{s_1^2}{s_2^2},F_{n_1-1,n_2-1,\alpha/2}\cdot\frac{s_1^2}{s_2^2})\,,$$

სადაც $F_{n,m,\alpha}$ თავისუფლების n და m ხარისხების მქონე ფიშერის განაწილების ზედა α -კრიტიკული წერტილია.

კრიტერიუმი ორზე მეტი საშუალოსათვის.

იგულისხმება, რომ k შერჩევის დისპერსია მნიშვნელოვნად არ განსხვავდება ერთმანეთისა-გან. კრიგერიუმის სგაგისგიკას აქვს შემდეგი სახე

$$F = \frac{MSR}{MSE}$$

სადაც

$$MSR = \frac{\sum \sum (\overline{X}_i - \overline{\overline{X}})^2}{k-1} \quad \text{as} \quad MSE = \frac{\sum \sum (X - \overline{X})^2}{N-k} ,$$

 $\overline{X}_i = i$ -ური შერჩევის საშუალოა, $\overline{\overline{X}}_i = \lambda$ გაერთიანებული შერჩევების საშუალოა, k=i შერჩევების რაოდენობაა, N=i მონაცემთა სრული რაოდენობაა. სტატისტიკას აქვს F - განაწილება k=1 და N-k თავისუფლების ხარისხებით.

პატარა შერჩევები, როცა პოპულაციის განაწილება არაა ნორმალური

თუ შერჩევები ერთმანეთისაგან დამოუკიდებელია , მან-უიტნის U კრიტერიუმს აქვს შემდეგი სახე

$$U_1 = n_1 n_2 + \frac{n_1 \left(n_1 + 1 \right)}{2}$$
 მინუს პირველი შერჩევის რანგების ჯამი,

$$U_2 = n_1 n_2 + \frac{n_2 \left(n_2 + 1\right)}{2}$$
 მინუს მეორე შერჩევის რანგების ჯამი,

$$U = \min(U_1, U_2).$$

თუ შერჩევები დამოკიდებულია ერთმანეთზე, უილკოკსონის T კრიტერიუმს აქვს შემდეგი სახე

$$T$$
 = უმცირესი $\sum R_{\scriptscriptstyle -}$ -სა და $\sum R_{\scriptscriptstyle +}$ -ს შორის,

სადაც $\sum R_-$ — უარყოფითი სხვაობების რანგების ჯამია, $\sum R_+$ — დადებითი სხვაობების რანგების ჯამია.

თუ შერჩევების რაოდენობა k>2 .

კრუსკალ-უოლისის H კრიტერიუმის სტატისტიკას აქვს შემდეგი სახე

$$H = \frac{12}{N(N+1)} \sum_{i=1}^{K} \frac{R_i^2}{n_i} - 3(N+1).$$

ამ სტატისტიკას აქვს ხი-კვადრატ განაწილება თავისუფლების ხარისხით k-1 .

კავშირი ორ ცვლადს შორის. კრიტერიუმი ორი კატეგორიული ცვლადისთვის

იგულისხმება, რომ კატეგორიები ურთიერთგამომრიცხვავია და მოსალოდნელი სიხშირეების სულ ცოტა 80%, 5-ზე მეტია.

კრიტერიუმის სტატისტიკას აქვს შემდეგი სახე

$$\chi^2 = \sum \frac{(o_{ij} - e_{ij})^2}{e_{ij}}$$
.

ამ სტატისტიკას აქვს ხი-კვადრატ განაწილება თავისუფლების ხარისხით (r-1)(c-1) .

თუ r=c=2 , გამოსაყენებელია მამრავლი უწყვეტობაზე და კრიტერიუმის სტატისტიკას აქვს შემდეგი სახე

$$\chi^2 = \sum \frac{(\mid o_{ij} - e_{ij} \mid -0.5)^2}{e_{ii}} \; .$$

ამ სტატისტიკას აქვს ხი-კვადრატ განაწილება 1-ის ტოლი თავისუფლების ხარისხით.

ორი რაოდენობრივი ცვლადის წრფივი კავშირის კრიტერიუმი

კორელალაციური კვლევის მიზანია ორ ან მეტ ცვლადს შორის კავშირის ხარისხის დადგენა. დადებითი კავშირის შემთხვევაში X ცვლადის მნიშვნელობის ზრდასთან ერთად იზრდება Y ცვლადის მნიშვნელობაც. უარყოფითი კავშირის შემთხვევაში X ცვლადის მნიშვნელობის ზრდასთან ერთად Y ცვლადის მნიშვნელობა მცირდება.

. თუ ორივე ცვლადი გაზომილია ინტერვალების სკალაზე კავშირის მიმართულების და ხარის-

ხის დასადგენად გამოიყენება პირსონის კორელაციის კოეფიციენტი:

$$r = \frac{\sum (X - \overline{X})(Y - \overline{Y})}{\sqrt{\sum (X - \overline{X})^2 \sum (Y - \overline{Y})^2}} \; .$$

პოპულაციაში X და Y ცვლადებს შორის კავშირი წარმოდგენილია ρ - თი. თუ (X , Y) სი-დიდეების განაწილება ნორმალურია, მაშინ H_0 -ის სამართლიანობისას, H_0 : $\rho=0$, სტატისტიკას

$$t = \frac{r}{\sqrt{\frac{1 - r^2}{n - 2}}}$$

აქვს t - განაწილება თავისუფლების ხარისხით n-2 .

დეტერმინაციის კოეფიციენტი r^2 გამოხატავს X ცვლადის ცვალებადობის იმ პროპორციას, რომელიც დაკავშირებულია Y ცვლადის ცვალებადობასთან. წრფივი კავშირი ორ ცვლადს შორის მოცემულია განტოლებით

$$Y = a + bX$$
,

სადაც

$$b = \frac{\sum (X - \overline{X})(Y - \overline{Y})}{\sum (X - \overline{X})^2} , \quad a = \overline{Y} - b\overline{X}.$$

კრიტერიუმის სტატისტიკას აქვს შემდეგი სახე

$$T = \frac{b - \beta}{\widehat{\sigma}} ,$$

$$\sqrt{\sum (X - \overline{X})^2}$$

სადაც

$$\hat{\sigma}^2 = \frac{\sum e_i^2}{n-2} = \frac{\sum (Y-\overline{Y})^2 - b\sum (X-\overline{X})(Y-\overline{Y})}{n-2}.$$

T სტატისტიკას აქვს t - განაწილება თავისუფლების ხარისხით $n\!-\!2$.

EXCEL-ის სტატისტიკური ფუნქციების აღწერა

ალბათობა

ფაქტორიალი – FACT(n): = n!; წყობა – PERMUT(n,k): = n!/(n-k)!; ჯუფდება – COMBIN(n,k): = n!/[k!(n-k)!];

EXCEL-ში დისკრეტული განაწილებების ჩაწერისას გამოიყენება შემდეგი აღნიშვნები:

აღნიშვნა	შინაარსი
X	განაწილების სიმკვრივის ან განაწილების ფუნქციის არგუმენტის რიცხვითი მნიშვნელობა
X range	არე, სადაც მითითებულია შემთხვევითი სიდიდის შესაძლო მნიშვნელობები
Prob_range	არე, სადაც მითითებულია შემთხვევითი სიდიდის შესაძლო მნიშვნელობების ალბათობები
Lower_limit	ქვედა საზღვარი
Upper_limit	ზედა საზღვარი
Mean	განაწილების მათემატიკური ლოდინი
Numbers	რაოდენობა (წარმატებათა)
Trials	ცდათა სერიის სიგრძე
Probability_s	ალბათობა
Sample_s	I სახის ობიექტთა რაოდენობა შერჩევაში
Number_sample	შემთხვევით (დაბრუნების გარეშე) ამორჩეულ ობიექტთა რაოდენობა – შერჩევის მოცულობა
Population_s	I სახის ობიექტთა რაოდენობა პოპულაციაში
Number_pop.	ობიექტების რაოდენობა პოპულაციაში
Cumullative	თუ Cumullative პარამეტრის რიცხვითი მნიშვნელობა ნულის ტოლია, მაშინ გამოიანგარიშება $P\{X=k\}$ ალბათობა; თუ Cumullative პარამეტრის რიცხვითი მნიშვნელობა ერთის ტოლია, მაშინ გამოიანგარიშება $P\{X \le k\}$ ალბათობა

PROB(x_range,prob_range,lower_limit,upper_limit) – ფუნქციით გამოითვლება ალბათობა: $P\{Lower\ limit \le X \le Upper\ limit\}$; მაგალითად, თუ X შემთხვევითი სიდიდის კანონი EXCEL-ში არის:

	A	В	С	D	Е	F
1	-1	0	2	4	6	9
2	0.05	0.15	0.18	0.22	0.3	0.1

მაშინ **PROB**(**A1:F1,A2:F2,0,7**) – გამოითვლის *P*{*0*≤*X*≤*5*}=**0.45**-ს.

BINOMDIST(number_s,trials,probabilitys,cumullative) — ფუნქციით გამოითვლება ბინომურად განაწილებული შემთხვევითი სიდიდისათვის $P\{X=k\}$ ალბათობა, თუ cumullative = 0-ს და $P\{X\leq k\}$ ალბათობა, თუ cumullative =1-ს.

CRITBINOM(trials,probability_s,alpha) — ფუნქციით, მოცემული a-სათვის, გამოითვლება ის მინიმალური k, რომლისთვისაც: $\sum_{m=0}^k P_n(m) \ge a$.

HYPGEOMDIST(sample_s,number_sample,population_s,number_pop.) — ფუნქციით გამოითვლება ჰიპერგ-ეომეტრიული განაწილებისათვის $P\{X=k\}$ ალბათობა. მაგალითად, თუ ყუთში 100 ბურთია, რომელთა შორის 30 თეთრია და შემთხვევით, დაბრუნების გარეშე, ვიღებთ 45 ბურთს, მაშინ ალბათობა იმისა, რომ მათ შორის აღმოჩნდება 10 თეთრი ბურთი გამოითვლება შემდეგნაირად:

HYPGEOMDIST(10,40,30,100) = $C_{30}^{10} \cdot C_{70}^{35} / C_{100}^{45}$.

POISSON(x,mean,cumulative) — ფუნქციით გამოითვლება პუასონის კანონით განაწილებული შემთხვევითი სიდიდისათვის $P\{X=k\}$ ალბათობა, თუ cumulative = 0-ს და $P\{X\leq k\}$ ალბათობა, თუ cumulative = 1-ს.

EXCEL-ში უწყვეტი განაწილებების ჩაწერისას გამოიყენება შემდეგი აღნიშვნები:

აღნიშვნა	შინაარსი
X	განაწილების სიმკვრივის ან განაწილების ფუნქციის
	არგუმენტის რიცხვითი მნიშვნელობა
Mean	განაწილების მათემატიკური ლოდინი
Standard_dev	განაწილების საშუალო კვადრატული გადახრა
Cumullative	თუ Cumullative პარამეტრის რიცხვითი მნიშვნელობა
	ნულის ტოლია, მაშინ გამოითვლება განაწილების
	სიმკვრივის რიცხვითი მნიშვნელობა;
	თუ Cumullative პარამეტრის რიცხვითი მნიშვნელობა
	ერთის ტოლია, მაშინ გამოითვლება განაწილების
	ფუნქციის რიცხვითი მნიშვნელობა
Lambda	λ პარამეტრი
Probability	ალბათობის P დონე, რომლისთვისაც გამოითვლება
	კვანტილი
Deg_freedom	განაწილების თავისუფლების ხარისხი
Probability	$P\{X>k\}$ ალბათობის მნიშვნელობა
Tails	თუ Tails პარამეტრის რიცხვითი მნიშვნელობა ერთის ტო-
	ლია, მაშინ TDIST ფუნქცია გვაძლევს ცალმხრივ $T(n)>x$
	არეში მოხვედრის ალბათობას, $P\{T(n)>x\}$, სტიუდენტის
	განაწილებისათვის; თუ Tails პარამეტრის რიცხვითი
	მნიშვნელობა ორის ტოლია, მაშინ TDIST ფუნქცია გვაძ-
	ლევს ორმხრივ $ T(n) > x$ არეში მოხვედრის ალბათობას,
	$P\{ T(n) >x\}$ -ს, სტიუდენტის განაწილებისათვის

NORMSDIST(x) — ფუნქციით გამოითვლება სტანდარტული ნორმალური N(0,1) შემთხვევითი სიდიდი-სათვის $P\{\ N(0,1) \le x\}$ ლბათობა.

NORMDIST(x,mean,standard_dev,cumullative) — ფუნქციით, თუ cumullative პარამეგრის რიცხვითი მნიშვნელობა ნულის ტოლია, გამოითვლება $N(\mu,\sigma^2)$ -ის (არასტანდარტული ნორმალური) განაწილების სიმკვრივის მნიშვნელობა; ხოლო თუ cumullative პარამეტრის რიცხვითი მნიშვნელობა ერთის ტოლია, გამოითვლება $N(\mu,\sigma^2)$ -ის განაწილების ფუნქციის მნიშვნელობა.

NORMSINV(probability) — ფუნქციით გამოითვლება სტანდარტული ნორმალური განაწილების p დონის კვანტილი. მაგალითად, NORMSINV(0.65) = $x_{0.65}$ = 0.39.

NORMINV(probability,mean,standard_dev) – ფუნქციით გამოითვლება არასტანდარტული ნორმალური განაწილების p დონის კვანტილი.

EXPONDIST(**x,lambda,cumullative**) – ითვლის $\lambda e^{-\lambda x}$ ფუნქციის მნიშვნელობას, როცა Cumullative = 0-ს და $1-e^{-\lambda x}$ ფუნქციის მნიშვნელობას, როცა Cumullative = 1-ს.

CHIDIST(x,deg_freedom) – ითვლის $P\{\aleph^2(k) > x\}$ ალბათობას ხი-კვადრატ განაწილებისათვის. CHIINV(probability,deg_freedom) – ითვლის ხი-კვადრატ განაწილების ზედა კრიტიკულ წერტილს, ანუ ისეთ x რიცხვს, რომლისთვისაც $P\{\aleph^2(Deg\ freedom) > x\} = Probability$.

TDIST(x,deg_freedom,tails): TDIST(x,k,1) – ითვლის $P\{T(k)>x\}$ ალბათობას სტიუღენტის T(k) შემთხვევითი სიდიდისათვის, ხოლო TDIST(x,k,2) – კი ითვლის $P\{|T(k)|>x\}$ ალბათობას სტიუღენტის T(k) შემთხვევითი სიდიდისათვის.

TINV(probability,deg_freedom): TINV(α ,k) — პოულობს ისეთ x-ს, რომლისთვისაც $P\{|T(k)|>x\}=a$ (ფაქტიურად x იქნება სტიუდენტის T(k) შემთხვევითი სიდიდის ზედა a/2-კრიტიკული წერტილი). FDIST(x,deg_freedom1,deg_freedom2): FDIST(x,n,m) — ითვლის $P\{F(n,m)>x\}$ ალბათობას ფიშერის F(n,m) შემთხვევითი სიდიდისათვის.

FINV(probability,deg_freedom1,deg_freedom2): FDIST(*a,n,m*) – პოულობს ფიშერის F(n,m)განაწილების ზედა a-კრიტიკულ წერტილს, ანუ ისეთ x-ს, რომლისთვისაც $P\{F(n,m)>x\}=a$.

სტატისტიკა

EXCEL-ის ქვეპროგრამა Tools/Data Analysis/Random Number Generation საშუალებას იძლევა მივილოთ ფსევდოშემთხვევითი რიცხვების რეალიზაციები. ამ დროს გამოიყენება შემდეგი აღნიშვნები:

აღნიშვნა	შინაარსი
Number of variables	დაკვირვებულ სერიათა რაოდენობა
Number of Random	მონაცემთა რაოდენობა სერიაში
Numbers	
Distribution	განაწილების კანონი
Discrete	დისკრეტული
Value and Probability Input Range	ეთითება ვერტიკალურად ჩაწერილი დისკრეტული განაწილების კანონი, რომლის მიხედვითაც უნდა
	გათამაშდეს ფსევდოშემთხვევითი სიდიდეები
Uniform	თანაბარი
Parameters	ეთითება თანაბარი განაწილების a და b პარამეტრები
Normal	ნორმალური
Mean	საშუალო
Standard Deviation	სტანდარტული გადახრა
Bernouli	ბერნული
Binomial	<u>გინომური</u>
p-Value	p პარამეტრის რიცხვითი მნიშვნელობა
Number of Trials	<i>n</i> პარამეტრის რიცხვითი მნიშვნელობა ბერნულის სქემაში
Poisson	პუასონი
Lambda	λ პარამეტრი

CONFIDENCE(alpha,standard_dev,size): CONFIDENCE(a, σ,n) – ნორმალური პოპულაციის საშუალოსათვის ითვლის (1-lpha) საიმედოობის ნდობის ინტერვალის სიგრძის ნახევარს – $z_{lpha/2}\cdot\sigma$ / \sqrt{n} -ს.

p-მნიშვნელობა

ZTEST ფუნქცია გამოიყენება Z სტატისტიკის p-მნიშვნელობის გამოსათვლელად. ამ დროს გამოიყენება შემდეგი აღნიშვნები:

აღნიშვნა	შინაარსი
Array	დაკვირვებულ მონაცემთა არე
X	პოპულაციის საშუალო
Sigma	პოპულაციის სტანდარტული გადახრა

Sigma პოპულაციის სტახდარტული გადახრა $ZTEST(array,x,sigma) - Z სტატისტიკის დაკვირვებული <math> z = \frac{\overline{x} - a_0}{\sigma/\sqrt{n}}$ მნიშვნელობისათვის (მარჯვენა ცალმხრივი კრიტერიუმის შემთხვევაში) ითვლის p -მნიშვნელობას, ანუ $P \left\{ Z \geq \frac{\overline{x} - a_0}{\sigma/\sqrt{n}} \right\}$ ალბათო-

CHITEST ფუნქცია გამოიყენება ხი-კვადრატ განაწილების p-მნიშვნელობის გამოსათვლელად. ამ დროს გამოიყენება შემდეგი აღნიშვნები:

აღნიშვნა	შინაარსი
Actual_range	დაკვირვებული სიხშირეები
Expected_range	მოსალოდნელი სიხშირეები

CHITEST(actual_range,expected_range) – ითვლის (R-1)(C-1) თავისუფლების ხარისხის მქონე ხი-კვადრატ განაწილების p-მნიშვნელობას.

ორამოკრეფიანი ამოცანები

TTEST(array1,array2,tails,type)-ისა და FTEST(array1,array2)-ით სარგებლობის დროს გამოიყენება აღნიშვნები:

აღნიშვნა	შინაარსი
Array	არე
Tails	კრიტიკული არე
Туре	ტიპი

და ქვეპროგრამები:

- 🌣 z-Test: Two Sample for Means Z-ტესტი (ორამოკრეფიან ამოცანაში) საშუალოების შესახებ;
- 🌣 t-Test: Paired Two Sample for Mean T-ტესტი დაწყვილებული მონაცემთა საშუალოებისათვის;
- ❖ t-Test: Two Sample Assuming Equal Variances T-ტესტი უცნობი ტოლი დისპერსიების შემთხვევაში;
- t-Test: Two Sample Assuming Unequal Variances T-ტესტი უცნობი არატოლი დისპერსიების შემთხვევაში;
- F-Test: Two Sample for Variances F-ტესტი დისპერსიებისათვის.
- ამ ქვეპროგრამებით სარგებლობისას გამოიყენება შემდეგი აღნიშვნები:

აღნიშვნა	შინაარსი
Input	შემავალი მონაცემები
Variable 1(2) Range	დაკვირვებათა არე
Variance (known)	პოპულაციათა დისპერსიების მნიშვნელობები
Labels	მონიშვნა
Hypothesized Mean	ძირითადი ჰიპოთეზით განსაზღრული
Difference	პოპულაციათა საშუალოების სხვაობა (ანუ ნული)
Alpha	მნიშვნელოვნების დონე (0.05)

z-Test-ის გამოყენების მაგალითი. ორი დამოუკიდებელი ნორმალური პოპულაციიდან დისპერსიებით შესაბამისად, 5 და 9 მიღებულია შემდეგი შერჩევები: I) 2.4, -2.3, 5.2, 10.3, 9.9, 12.6, -6.9, 2.8, 9.4, -1.4 და II) -8.2, 17.4, 16.4, 4, 21.7, -3.2, -2.9. 0.05 მნიშვნელოვნების დონით შევამოწმოთ ჰიპოთეზა საშუალოთა ტოლობის შესახებ.

ამოხსნა. მოწმდება ძირითადი ჰიპოთეზა $H_0: a_1-a_2=0$ ცალმხრივი $H_1: a_1-a_2<0$ და ორმხრივი $H_1: a_1-a_2\neq 0$ ალტერნატივების წინააღმდეგ. ქვეპროგრამა **z-Test: Two Sample for Means** გვაძლევს:

	I	Ш
Mean / საშუალო	4.2	6.5
known Variance / ცნობილი დისპერსიები	5	9
Observations / დაკვირვებები	10	7
Hypothesized Mean Difference / ძირითადი ჰიპოთეზით	()
განსაზღრული საშუალოთა სხვაობა		
z Stat /Z-სტატისტიკის დაკვირვებული მნიშვნელობა	-1.6	589
$P\{Z \le z\}$ one-tail / p -მნიშვნელობა ცალმხრივი კრიტიკული	0.0	146
არისათვის		
z Critical one-tail / კრიტიკული წერტილი ცალმხრივი კრი-	1.6	45
ტიკული არისათვის		
$P\{Z \le z\}$ two-tail / p -მნიშვნელობა ორმხრივი კრიტიკული	0.0	191
არისათვის		
z Critical two-tail / კრიტიკული წერტილი ორმხრივი კრიტი-	1.	96

კული არისათვის

დასკვნა:

- ა ცალმხრივი $H_1: a_1-a_2<0$ ალტერნატივისათვის p-მნიშვნელობა = 0.046<lpha=0.05. შესაბამისად, 0.05 მნიშვნელოვნების დონით ძირითად ჰიპოთეზას უარვყოფთ;
- ა ორმხრივი $H_1: a_1-a_2 \neq 0$ ალტერნატივისათვის p-მნიშვნელობა = $091 < \alpha = 0.05$. შესაბამისად, 0.05 მნიშვნელოვნების დონით ძირითადი ჰიპოთეზის უარვყოფის საფუძველი არ გვაქვს.

 ${f t-Test-nb}$ გამოყენების მაგალითი. კომპანიის მენეჯერს სურს შეადაროს ორი ${f A}$ და ${f B}$ შეთანხმებიდან შემოსული თვიური შემოსავლები. ${f A}$ შეთანხმება გულისხმობს დაბალ საარენდო გადასახადს, მაგრამ ავალდებულებს არენდატორს დაზიანებული საარენდო ქონების აღდგენის ხარჯების დაფარვას. ${f B}$ შეთანხმება ადგენს მაღალ საარენდო გადასახადს, მაგრამ კომპანია თავის თავზე იღებს დაზიანებული საარენდო ქონების აღდგენის ხარჯებს. მენეჯერმა შეაგროვა თითოეული შეთანხმების თვიური შემოსავლები და ${m \alpha}={f 0.05}$ მნიშვნელოვნების დონით სურს შეამოწმოს ჰიპოთეზა, რომ ამ შეთანხმებების საშუალო შემოსავლები არ განსხვავდება ერთმანეთისაგან. ეს მონაცემებია:

$rac{A}{$ შეთანხმება	84.5	102.6	79.1	92.5	101.7	78.7	88.5	93	72.2	8.96	92.6	93.7
<i>B</i> შეთანხმება	106	102.1	105.1	91.5	82.3	88.4	101.1	97.5	75.7	93.6		

ამოხსნა 1. ვიგულისხმოთ, რომ ორივე პოპულაცია ნორმალურადაა განაწილებული და უცნობი დისპერსიები ტოლია. უნდა შემოწმდეს ძირითადი ჰიპოთეზა $H_0: a_1-a_2=0$ ცალმხრივი $H_1: a_1-a_2 \neq 0$ ალტერნატივების წინააღმდეგ. ქვეპროგრამა **t-Test: Two Assuming Equal Variances** გვაძლევს:

	\boldsymbol{A}	В	
Mean / საშუალო	89.658	94.33	
Variance / დისპერსია	88.366	100.438	
Observations / დაკვირვებები	12	10	
Pooled Variance / დაწყვილებული მონაცემების დისპერსია	93.	799	
Hypothesized Mean Difference / ძირითადი ჰიპოთეზით		0	
განსაზღრული საშუალოთა სხვაობა			
df / თავისუფლების ხარისხი	2	20	
t Stat /T-სტატისტიკის დაკვირვებული მნიშვნელობა	-1.1266		
$P\{T \le t\}$ one-tail / p -მნიშვნელობა ცალმხრივი კრიტიკუ-ლი არისათვის	0.1	366	
[000 30000300300			
t Critical one-tail / კრიტიკული წერტილი ცალმხრივი კრიტიკული არისათვის	1.7	247	
$P\{T \le t\}$ two-tail p -მნიშვნელობა ორმხრივი კრიტიკული არისათვის	0.2	733	
t Critical two-tail / კრიტიკული წერტილი ორმხრივი კრ- იტიკული არისათვის	2.0	086	

დასკვნა:

- ა ცალმხრივი $H_1: a_1-a_2<0$ ალტერნატივისათვის p-მნიშვნელობა = 0.1366>lpha=0.05. შესაბამისად, 0.05 მნიშვნელოვნების დონით, ძირითადი ჰიპოთეზის უარვყოფის საფუძველი არ გაგვაჩნია;
- ა ორმხრივი $H_1: a_1-a_2 \neq 0$ ალტერნატივისათვის p-მნიშვნელობა = $0.2733 > \alpha = 0.05$. შესაბამისად, 0.05 მნიშვნელოვნების დონით, ძირითადი ჰიპოთეზის უარვყოფის საფუძველი არ გვაქვს.

შენიშვნა. სტატისტიკური ფუნქციით **TTEST(array1,array2,1,2)** — გამოითვლება სტიუდენტის განაწილების p-მნიშვნელობა ცალმხრივი ალტერნატივისათვის, ხოლო **TTEST(array1,array2,2,2)**-ით კი p-მნიშვნელობა ორმხრივი ალტერნატივისათვის.

ამოხსნა 2. ვიგულისხმოთ, რომ ორივე პოპულაცია ნორმალურადაა განაწილებული და უცნობი დისპერსიები არაა ტოლი. ვამოწმებთ ძირითად ჰიპოთეზას $H_0: a_1 - a_2 = 0$ ცალმხრივი $H_1: a_1 - a_2 < 0$ და

ორმხრივი $H_1: a_1-a_2 \neq 0$ ალტერნატივების წინააღმდეგ. ქვეპროგრამა **t-Test: Two Assuming Unequal Variances** გვაძლევს:

	A	В
Mean / საშუალო	89.658	94.33
Variance / დისპერსია	88.366	100.438
Observations / დაკვირვებები	12	10
Hypothesized Mean Difference / ძირითადი ჰიპოთეზით განსაზღრული საშუალოთა სხვაობა	()
df / თავისუფლების ხარისხი	1	9
t Stat /T-სტატისტიკის დაკვირვებული მნიშვნელობა	-1.1197	
$P{T ≤ t}$ one-tail / p -მნიშვნელობა ცალმხრივი კრიტიკუ-ლი არისათვის	0.1	384
t Critical one-tail / კრიტიკული წერტილი ცალმხრივი კრიტიკული არისათვის	1.7	291
$P\{T \le t\}$ two-tail $/ p$ -მნიშვნელობა ორმხრივი კრიტიკუ-ლი არისათვის	0.2	768
t Critical two-tail / კრიტიკული ნერტილი ორმხრივი კრ- იტიკული არისათვის	2.0	193

დასკვნა:

- ა ცალმხრივი $H_1: a_1-a_2<0$ ალტერნატივისათვის p-მნიშვნელობა= 0.1384>a=0.05. შესაბამისად, 0.05 მნიშვნელოვნების დონით, ძირითადი ჰიპოთეზის უარვყოფის საფუძველი არ გაგვაჩნია;
- ა ორმხრივი $H_1: a_1-a_2 \neq 0$ ალტერნატივისათვის p-მნიშვნელობა=0.2768 > a = 0.05. შესაბამისად, 0.05 მნიშვნელოვნების დონით, ძირითადი ჰიპოთეზის უარვყოფის საფუძველი არ გვაქვს.

შენიშვნა 1. როგორც ვხედავთ, ამოხსნა 1-საგან განსხვავებით აქ ამოიბეჭდა სხვა თავისუფ-ლების ხარისხი და T სტატისტიკის სხვა დაკვირვებული მნიშვნელობა. ეს აიხსნება იმით, რომ უკანა-სკნელ შემთხვევაში სარგებლობენ ე. წ. **სატერტვაიტის** მეთოდით.

შენიშვნა 2. სტატისტიკური ფუნქციით **TTEST(array1,array2,1,3**) — გამოითვლება სტიუდენტის განაწილების p-მნიშვნელობა ცალმხრივი ალტერნატივისათვის, ხოლო **TTEST(array1,array2,2,3**)-ით კი p-მნიშვნელობა ორმხრივი ალტერნატივისათვის.

t-Test-ი დაწყვილებული მონაცემებისათვის. ორჰექტარიანი 10 ნაკვეთი დაიყო ორ-ორ ტოლ ნაწილად, ერთ ნაწილზე გამოიყენეს I ტიპის სასუქი, ხოლო მეორეზე კი II ტიპის სასუქი. მოსავლი-ანობამ შესაბამისად შეადგინა:

				9	ოსავღ	ღიანო	ბა			
ნაკვეთის №	1	2	3	4	5	` 6	7	8	9	10
I სასუქი	1.2	1.4	1.6	1.1	1.4	1.1	0.7	1.5	1.3	1
II სასუქი	1.4	1.2	1.5	1.1	1.6	1.2	1	1.4	1.3	1.5

0.05 მნიშვნელოვნების დონით შეამოწმეთ ზრდის თუ არა II ტიპის სასუქის გამოყენება მოსავლიანობას I ტიპის სასუქის გამოყენებასთან შედარებით.

ამოხსნა. ვამონმებთ ძირითად ჰიპოთეზას H_0 : $a_{\rm D}=a_1-a_2=0$ ცალმხრივი H_1 : $a_{\rm D}=a_1-a_2<0$ და ორმხრივი H_1 : $a_{\rm D}=a_1-a_2\neq 0$ ალტერნატივების წინააღმდეგ. ქვეპროგრამა **t-Test: Paired Two Sample for Means** გვაძლევს:

	Variable 1	Variable 2
Mean / საშუალო	1.23	1.32
Variance / დისპერსია	0.0712	0.0373
Observations / დაკვირვებები	10	10
Pearson Correlation / პირსონის კორელაცია	0.6	12
Hypothesized Mean Difference / ძირითადი	()
ჰიპოთეზით განსაზღრული საშუალოთა სხვაობა		
df / თავისუფლების ხარისხი	Ç)
t Stat /T-სტატისტიკის დაკვირვებული მნიშვნელობა	-1.3	351
$P\{T \le t\}$ one-tail / p -მნიშვნელობა (კალმხრივი	0.1	073
კრიტიკული არისათვის		

t Critical one-tail / კრიტიკული წერტილი ცალმხრივი	1.8331
კრიტიკული არისათვის	
$P{T ≤ t}$ two-tail / p -მნიშვნელობა ორმხრივი	0.2146
კრიტიკული არისათვის	
t Critical two-tail / კრიტიკული წერტილი ორმხრივი	2.2622
კრიტიკული არისათვის	

დასკვნა:

- ა ცალმხრივი $H_1: a_D = a_1 a_2 < 0$ ალტერნატივისათვის p-მნიშვნელობა = 0.1073 > a = 0.05. შესაბა-მისად, 0.05 მნიშვნელოვნების დონით ძირითადი ჰიპოთეზის უარვყოფის საფუძველი არ გაგ-ვაჩნია;
- ა ორმხრივი $H_1: a_D = a_1 a_2 \neq 0$ ალტერნატივისათვის p-მნიშვნელობა = 0.2146 > a = 0.05. შესაბა-მისად, 0.05 მნიშვნელოვნების დონით ძირითადი ჰიპოთეზის უარვყოფის საფუძველი არ გვაქვს.

შენიშვნა. სტატისტიკური ფუნქციით **TTEST(array1,array2,1,1)** – გამოითვლება სტიუდენტის განაწილების p-მნიშვნელობა ცალმხრივი ალტერნატივისათვის, ხოლო **TTEST(array1,array2, 2,1)**-ით კი p-მნიშვნელობა ორმხრივი ალტერნატივისათვის.

F-Test-ის გამოყენების მაგალითი. 0.05 მნიშვნელოვნების დონით შეამოწმეთ ჰიპოთეზა ორი დამოუკიდებელი ნორმალური პოპულაციის დისპერსიების ტოლობის შესახებ, თუ მათგან მიღებული შერჩევებია:

ამოხსნა. მოწმდება ძირითადი ჰიპოთეზა $H_0: \sigma_1^2 = \sigma_2^2$ ცალმხრივი $H_1: \sigma_1^2 > \sigma_2^2$ ალტერნატივის წინააღმდეგ. ქვეპროგრამა **F-Test: Two Sample for Variances** გვაძლევს:

		II
Mean / საშუალო	7.16	9.54
Variance / დისპერსია	28.463	6.874
Observations / დაკვირვებები	10	8
df / თავისუფლების ხარისხი	9	7
F Stat /F სტატისტიკის დაკვირვებული მნიშვნელობა	4.141	
$P{F ≤ t}$ one-tail / p -მნიშვნელობა ცალმხრივი კრიტიკული არისათვის	0.037	
F Critical one-tail / კრიტიკული წერტილი ცალმხრივი კრ- იტიკული არისათვის	3.677	

დასკვნა: ცალმხრივი H_1 : $\sigma_1^2 > \sigma_2^2$ ალტერნატივისათვის p-მნიშვნელობა=0.037<a=0.05. შესაბამისად, 0.05 მნიშვნელოვნების დონით ძირითად ჰიპოთეზას უარვყოფთ.

შენიშვნა. სტატისტიკური ფუნქციით FTEST(array1,array2) — გამოითვლება ფიშერის განაწილების p-მნიშვნელობა ცალმხრივი ალტერნატივისათვის.

დისპერსიული ანალიზი

ქვეპროგრამა Anova: Single Factor სარგებლობისას გამოიყენება შემდეგი აღნიშვნები:

აღნიშვნა	შინაარსი
Input range	შემავალი მონაცემები
Grouped by	დაჯგუფებული
Labels	მონიშვნა

მაგალითი. მენეჯერის მიზანია 0.05 მნიშვნელოვნების დონით შეამოწმოს შემთხვევით შერჩეული 3 ჩარხის ერთგვაროვნება მათზე გამოჩარხული ერთი და იმავე დეტალების ზომების მონ-აცემების ცვალებადობის მიხედვით:

I ჩარხი	6.783	6.781	6.776	6.788	6.785	6.789
II ჩარხი	6.775	6.77	6.772	6.771	6.779	6.773

III ჩარხი 6.778 6.776 6.769 6.772 6.78 6.777

Anova: Single Factor ქვეპროგრამის გამოყენება გვაძლევს:

SUMMARX

Caunt Groups Sum Average Variance Colomn 1 502 23.07 6 83.67 440 6 73.33 Colomn 2 10.67 Colomn 3 6 452 75.33 16.67

ANOVA

-----Source of Variation SS df MS F P-value

F crit

ვარიაციის წყარო

Between Groups 360.44 2 180.22 10.73 0.00 3.68

Within Groups 252 15 16.8

Total 612.44 17

დასკვნა: ვინაიდან $f=10.73>F_{2,15.0.05}=3.68$ ამიტომ უარვყოფთ ჰიპოთეზას ჩარხების ერთგვაროვნების შესახებ – 0.05 მნიშვნელოვნების დონით ჩარხები არაერთგვაროვანია.

კორელაცია

ფუნქცია COVAR(array1,array2) – გამოიყენება კოვარიაციის გამოსათვლელად.

ფუნქცია CORREL(array1,array2) – გამოიყენება კორელაციის კოეფიციენტის გამოსათვლელად (CORREL-ის იდენტურია PEARSON ფუნქცია)

Covariance ქვეპროგრამით გამოითვლება ერთნაირი მოცულობის მონაცემთა რამდენიმე მასი-ვის კოვარიაციული მატრიცა.

Correlation ქვეპროგრამით გამოითვლება ერთნაირი მოცულობის მონაცემთა რამდენიმე მასი-ვის კორელაციური მატრიცა.

რეგრესია

წრფივი რეგრესიული ანალიზის ჩასატარებლად გამოიყენება ფუნქცია Tools/Data Analysis /Regression. თუ აღნიშნული ფუნქცია მიუწვდომელია, მაშინ უნდა შესრულდეს შემდეგი მოქმედებები: Tools/ add-ins-ში უნდა გააქტიურდეს Analysis ToolPak, Analysis ToolPak-VBA.

მარტივ წრფივ რეგრესიულ მოდელთან დაკავშირებით გამოიყენება შემდეგი აღნიშვნები:

აღნიშვნა	შინაარსი
Known_y's	ცნობილი დამოკიდებული ცვლადის მნიშვნელობები
Known_x's	ცნობილი დამოუკიდებული ცვლადის მნიშვნელობები
X	დამოუკიდებული ცვლადის მნიშვნელობა
Const	თუ $\mathbf{Const} = 0$, მაშინ რეგრესიის წრფე გადის სათავეზე

ფუნქცია **DEVSQ(number1,2umber2,...)** – ითვლის დაკვირვებული მონაცემების საშუალოდან გადახრების კვადრატების ჯამს.

ფუნქცია $INTERCEPT(known_y)^2s$, $known_x)^2s$, — ითვლის B_0 კოეფიციენტის b_0 შეფასებას.

ფუნქცია LINEST(known_y's,known_x's,const,stats) – ითვლის B_1 კოეფიციენტის b_1 შეფასებას (თუ Const = 0, მაშინ გამოითვლება B_1 კოეფიციენტის შეფასება $Y = B_1 x + \varepsilon$ მოდელისათვის, ხოლო თუ Const =

1, მაშინ გამოითვლება B_1 -ის შეფასება $Y=B_0+B_1x+arepsilon$ მოდელისათვის). **LINEST**-ის იდენტურია **SLOPE** ფუნქცია.

ფუნქცია $FORECAST(x,known_y's,known_x's)$ – ითვლის საპროგნოზო მნიშვნელობას.

ფუნქცია RSQ(known_y's,known_x's) – ითვლის პირსონის კორელაციის კოეფიციენტის კვად-რატს (ანუ ე. წ. დეტერმინაციის კოეფიციენტს).

ფუნქცია TREND(known_y's,known_x's,new_x's,const) – ითვლის საპროგნოზო მნიშვნელობას (თუ Const = 0, მაშინ გამოითვლება B_1 კოეფიციენტის შეფასება $Y = b_1 x$ მოდელისათვის, ხოლო თუ Const = 1, მაშინ გამოითვლება B_1 -ის შეფასება $Y = b_0 + b_1 x$ მოდელისათვის).

ფუნქცია GROWTH(known_y's,known_x's,new_x's,const) – ითვლის საპროგნოზო მნიშვნელო-ბას (თუ Const = 0, მაშინ გამოითვლება Y-ის შეფასება $Y=(\beta_1)^x$ მოდელისათვის, ხოლო თუ Const = 1, მაშინ კი გამოითვლება Y-ის შეფასება $Y=\beta_0\cdot(\beta_1)^x$ მოდელისათვის).

მაგალითი XVIII. 1-ის მონაცემების ანალიზი. Regression ფუნქციის გამოყენება გვაძლევს: **SUMMARY OUTPUT**

Regression Statistics

Multiple R 0.8047 R Square 0.6476 Adjusted R Square 0.6204 Standard Error 12.9965

Observations 12.5903

Observations 15

შესაბამისად, ამონაბეჭდი გვაძლევს კორელაციისა (Multiple R) და დეტერმინაციის (R Square) კოეფიციენტების, შეთანხმებული დეტერმინაციის კოეფიციენტის (Adjusted R Square) და სტანდარტული შეცდომის (Standard Error) რიცხვით მნიშვნელობებს. დეტერმინაციის კოეფიციენტი 0.6476 გვიჩვენებს, რომ მარტივი რეგრესიით აიხსნება სახლის გასაყიდი ფასის ვარიაციის მხოლოდ 64.76%, დანარჩენი 35.24% კი აუხსნელი რჩება. საჭიროა შეირჩეს სხვა მოდელი.

ᲓᲐᲜᲐᲠᲗᲘ 2 (ᲡᲢᲐᲢᲘᲡᲢᲘᲙᲣᲠᲘ ᲪᲮᲠᲘᲚᲔᲑᲘ)

თანაბრად განაწილებული შემთხვევითი რიცხვები

11164	36318	75061	37674	26320	75100	10431	20418	19228	91792
21215	91791	76831	58678	87054	31687	93205	43685	19732	08468
10438	44482	66558	37649	08882	90870	12462	41810	01806	02977
36792	26236	33266	66583	60881	97395	20461	36742	02852	50564
73944	04773	12032	51414	82384	38370	00249	80709	72605	67497
73311	01773	12032	31111	02301	30370	002 13	00703	72003	07 137
49563	12872	14063	93104	78483	72717	68714	18048	25005	04151
64208	48237	41701	73117	33242	42314	83049	21933	92813	04763
51486	72875	38605	29341	80749	80151	33835	52602	79147	08868
99756	26360	64516	17971	48478	09610	04638	17141	09227	10606
71325	55217	13015	72907	00431	45117	33827	92873	02953	85474
65285	97198	12138	53010	94601	15838	16805	61004	43516	17020
17264	57327	38224	29301	31381	38109	34976	65692	98566	29550
95639	99754	31199	92558	68368	04985	51092	37780	40261	14479
61555	76404	86210	11808	12841	45147	97438	60022	12645	62000
78137	98768	04689	87130	79225	08153	84967	64539	79493	74917
62490	99215	84987	28759	19177	14733	24550	28067	68894	38490
24216	63444	21283	07044	92729	37284	13211	37485	10415	36457
16975	95428	33226	55903	31605	43817	22250	03918	46999	98501
59138	39542	71168	57609	91510	77904	74244	50940	31553	62562
29478	59652	50414	31966	87912	87154	12944	49862	96566	48825
96155	95009	27429	72918	08457	78134	48407	26061	58754	05326
29621	66583	62966	12468	20245	14015	04014	35713	03980	03024
12639	75291	71020	17265	41598	64074	64629	63293	53307	48766
14544	37134	54714	02401	63228	26831	19386	15457	17999	18306
83403	88827	09834	11333	68431	31706	26652	04711	34593	22561
67642	05204	20607	44906	06080	69402	05621	45556	25424	00522
67642	05204	30697	44806	96989 09482	68403 62864	85621	45556	35434	09532
64041	99011	14610	40273			01573	82274	81446	32477
17048	94523	97444	59904	16936	39384	97551	09620	63932	03091
93039	89416	52795	10631	09728	68202	20963	02477	55494	39563
82244	34392	96607	17220	51984	10753	76272	50985	97593	34320
96990	55244	70693	25255	40029	23289	48819	07159	60172	81697
09119	74803	97303	88701	51380	73143	98251	78635	27556	20712
57666	41204	47589	78364	38266	94393	70713	53388	79865	92069
46492	61594	26729	58272	81754	14648	77210	12923	53712	87771
08433	19172	08320	20839	13715	10597	17234	39355	74816	03363
10011	75004	86054	41190	10061	19660	03500	68412	57812	57929
92420	65431	16530	05547	10683	88102	30176	84750	10115	69220
35542	55865	07304	47010	43233	57022	52161	82976	47981	46588
86595	26247	18552	29491	33712	32285	64844	69395	41387	87195
72115	34985	58036	99137	47482	06204	24138	24272	16196	04393
07428	58863	96023	88936	51343	70958	96768	74317	27176	29600
35379	27922	28906	55013	26937	48174	04197	36074	65315	12537
10982	22807	10920	26299	23593	64629	57801	10437	43965	15344
90127	33341	77806	12446	15444	49244	47277	11346	15884	28131
63002	12990	23510	68774	48983	20481	59815	67248	17076	78910
40770	00202	40454	CE3CO	04220	45000	45300	E 40 47	77040	44405
40779	86382	48454	65269	91239	45989	45389	54847	77919	41105

43216	12608	18167	84631	94058	82458	15139	76856	86019	47928
96167	64375	74108	93643	09204	98855	59051	56492	11933	64958
70975	62693	35684	72607	23026	37004	32989	24843	01128	74658
85812	61875	23570	75754	29090	40264	80399	47254	40135	69916

კუმულატური ბინომური განაწილების ცხრილი
$$\left(P\{Bin(n,p) \leq x\} = \sum_{k=0}^x C_n^k \, p^k \, (1-p)^{n-k} \, \right)$$

		k=0										
n	x	.01	.05	.10	.15	.20	.25	.30	.35	.40	.45	.50
n	л	.01	.05	.10	.15	.20	.25	.30	.33	.40	.45	.50
2	0	0.9801	0.9025	0.8100	0.7225	0.6400	0.5625	0.4900		0.3600	0.3025	0.2500
	1 2	0.9999 1.0000	0.9975 1.0000	0.9900 1.0000	0.9775 1.0000	0.9600 1.0000	0.9375 1.0000	0.9100 1.0000	0.8775 1.0000	0.8400 1.0000	0.7975 1.0000	0.7500 1.0000
	2	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
3	0	0.97030	0.85738	0.729	0.61413	0.512	0.42187	0.343	0.27463	0.216	0.16638	0.125
	1		0.99275		0.93925		0.84375		0.71825		0.57475	0.500
	2		0.99988		0.99663		0.98437		0.95713		0.90887	0.875
	3	1.00000	1.00000	1.000	1.00000	1.000	1.00000	1.000	1.00000	1.000	1.00000	1.000
4	0	0.96060	0.81451	0.6561	0.52201	0.4096	0.31641	0.2401	0.17851	0.1296	0.09151	0.0625
	1		0.98598		0.89048		0.73828	0.6517	0.56298		0.39098	
	2		0.99952		0.98802		0.94922		0.87352	0.8208	0.75852	0.6875
	3		0.99999		0.99949		0.99609		0.98499		0.95899	
	4	1.00000	1.00000	1.0000	1.00000	1.0000	1.00000	1.0000	1.00000	1.0000	1.00000	1.0000
5	0	0.95099	0.77378	0.59049	0.44371	0.32768	0.23730	0.16807	0.11603	0.07776	0.05033	0.03125
	1										0.25622	
	2										0.59313	
	3										0.86878	
	4										0.98155	
	5	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
6	0	0.94148	0.73509	0.53144	0.37715	0.26214	0.17798	0.11765	0.07542	0.04666	0.02768	0.01563
	1	0.99854	0.96723	0.88573	0.77648	0.65536	0.53394	0.42017	0.31908	0.23328	0.16357	0.10938
	2										0.44152	
	3										0.74474	
	4										0.93080	
	5 6										0.99170 1.00000	
	U	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
7	0	0.93207	0.69834	0.47830	0.32058	0.20972	0.13348	0.08235	0.04902	0.02799	0.01522	0.00781
	1										0.10242	
	2										0.31644	
	3										0.60829	
	4 5										0.84707 0.96429	
	6										0.99626	
	7										1.00000	
8	0										0.00837	
	1 2										0.06318 0.22013	
	3										0.47696	
	4										0.73962	
	5										0.91154	
	6										0.98188	
	7										0.99832	
	8	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
9	0	0.91352	0.63025	0.38742	0.23162	0.13422	0.07508	0.04035	0.02071	0.01008	0.00461	0.00195
	1										0.03852	
	2	0.99992	0.99164	0.94703	0.85915	0.73820	0.60068	0.46283	0.33727	0.23179	0.14950	0.08984
	3										0.36138	
	4										0.62142	
	5 6										0.83418 0.95023	
	7										0.93023	
	,	1.00000	2.00000	1.00000	1.00000	5.77770	5.77767	3.77731	5.77000	5.77020	5.77072	J., J. UUT /

```
1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99998 0.99992 0.99974 0.99924 0.99805
           1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
10 0
          0.90438 0.59874 0.34868 0.19687 0.10737 0.05631 0.02825 0.01346 0.00605 0.00253 0.00098
          0.99573 0.91386 0.73610 0.54430 0.37581 0.24403 0.14931 0.08595 0.04636 0.02326 0.01074
          0.99989 0.98850 0.92981 0.82020 0.67780 0.52559 0.38278 0.26161 0.16729 0.09956 0.05469
           1.00000 0.99897 0.98720 0.95003 0.87913 0.77588 0.64961 0.51383 0.38228 0.26604 0.17188
           1.00000 0.99994 0.99837 0.99013 0.96721 0.92187 0.84973 0.75150 0.63310 0.50440 0.37695
           1.00000 1.00000 0.99985 0.99862 0.99363 0.98027 0.95265 0.90507 0.83376 0.73844 0.62305
           1.00000\ 1.00000\ 0.99999\ 0.99987\ 0.99914\ 0.99649\ 0.98941\ 0.97398\ 0.94524\ 0.89801\ 0.82812
           1.00000 1.00000 1.00000 0.99999 0.99992 0.99958 0.99841 0.99518 0.98771 0.97261 0.94531
           1.00000 1.00000 1.00000 1.00000 1.00000 0.99997 0.99986 0.99946 0.99832 0.99550 0.98926
           1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99999 0.99997 0.99990 0.99966 0.99902
           1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
           0.89534 \ 0.56880 \ 0.31381 \ 0.16734 \ 0.08590 \ 0.04224 \ 0.01977 \ 0.00875 \ 0.00363 \ 0.00139 \ 0.00049
11 0
           0.99482\ 0.89811\ 0.69736\ 0.49219\ 0.32212\ 0.19710\ 0.11299\ 0.06058\ 0.03023\ 0.01393\ 0.00586
          0.99984 \ 0.98476 \ 0.91044 \ 0.77881 \ 0.61740 \ 0.45520 \ 0.31274 \ 0.20013 \ 0.11892 \ 0.06522 \ 0.03271
           1.00000\ 0.99845\ 0.98147\ 0.93056\ 0.83886\ 0.71330\ 0.56956\ 0.42555\ 0.29628\ 0.19112\ 0.11328
           1.00000\ 0.99989\ 0.99725\ 0.98411\ 0.94959\ 0.88537\ 0.78970\ 0.66831\ 0.53277\ 0.39714\ 0.27441
           1.00000 0.99999 0.99970 0.99734 0.98835 0.96567 0.92178 0.85132 0.75350 0.63312 0.50000
           1.00000\ 1.00000\ 0.99998\ 0.99968\ 0.99803\ 0.99244\ 0.97838\ 0.94986\ 0.90065\ 0.82620\ 0.72559
           1.00000\ 1.00000\ 1.00000\ 0.99997\ 0.99976\ 0.99881\ 0.99571\ 0.98776\ 0.97072\ 0.93904\ 0.88672
           1.00000 1.00000 1.00000 1.00000 0.99998 0.99987 0.99942 0.99796 0.99408 0.98520 0.96729
           1.00000 1.00000 1.00000 1.00000 1.00000 0.99999 0.99995 0.99979 0.99927 0.99779 0.99414
           1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99999 0.99996 0.99985 0.99951
           1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
          0.88638 \ 0.54036 \ 0.28243 \ 0.14224 \ 0.06872 \ 0.03168 \ 0.01384 \ 0.00569 \ 0.00218 \ 0.00077 \ 0.00024
          0.99383 0.88164 0.65900 0.44346 0.27488 0.15838 0.08503 0.04244 0.01959 0.00829 0.00317
           0.99979 0.98043 0.88913 0.73582 0.55835 0.39068 0.25282 0.15129 0.08344 0.04214 0.01929
           1.00000\ 0.99776\ 0.97436\ 0.90779\ 0.79457\ 0.64878\ 0.49252\ 0.34665\ 0.22534\ 0.13447\ 0.07300
           1.00000 0.99982 0.99567 0.97608 0.92744 0.84236 0.72366 0.58335 0.43818 0.30443 0.19385
           1.00000\ 0.99999\ 0.99946\ 0.99536\ 0.98059\ 0.94560\ 0.88215\ 0.78726\ 0.66521\ 0.52693\ 0.38721
           1.00000 \ 1.00000 \ 0.99995 \ 0.99933 \ 0.99610 \ 0.98575 \ 0.96140 \ 0.91537 \ 0.84179 \ 0.73931 \ 0.61279
           1.00000 1.00000 1.00000 0.99993 0.99942 0.99722 0.99051 0.97449 0.94269 0.88826 0.80615
           1.00000 1.00000 1.00000 0.99999 0.99994 0.99961 0.99831 0.99439 0.98473 0.96443 0.92700
           1.00000\ 1.00000\ 1.00000\ 1.00000\ 1.00000\ 0.99996\ 0.99979\ 0.99915\ 0.99719\ 0.99212\ 0.98071
           1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99998 0.99992 0.99968 0.99892 0.99683
           1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99998 0.99993 0.99976
           1.00000 \ 1.00000 \ 1.00000 \ 1.00000 \ 1.00000 \ 1.00000 \ 1.00000 \ 1.00000 \ 1.00000 \ 1.00000
13 0
          0.87752 0.51334 0.25419 0.12091 0.05498 0.02376 0.00969 0.00370 0.00131 0.00042 0.00012
          0.99275 0.86458 0.62134 0.39828 0.23365 0.12671 0.06367 0.02958 0.01263 0.00490 0.00171
          0.99973 0.97549 0.86612 0.69196 0.50165 0.33260 0.20248 0.11319 0.05790 0.02691 0.01123
          0.99999 0.99690 0.96584 0.88200 0.74732 0.58425 0.42061 0.27827 0.16858 0.09292 0.04614
           1.00000\ 0.99971\ 0.99354\ 0.96584\ 0.90087\ 0.79396\ 0.65431\ 0.50050\ 0.35304\ 0.22795\ 0.13342
          1,00000 0,99998 0,99908 0,99247 0,96996 0,91979 0,83460 0,71589 0,57440 0,42681 0,29053
           1.00000 1.00000 0.99990 0.99873 0.99300 0.97571 0.93762 0.87053 0.77116 0.64374 0.50000
           1.00000 1.00000 0.99999 0.99984 0.99875 0.99435 0.98178 0.95380 0.90233 0.82123 0.70947
           1.00000\ 1.00000\ 1.00000\ 0.99998\ 0.99983\ 0.99901\ 0.99597\ 0.98743\ 0.96792\ 0.93015\ 0.86658
           1.00000 1.00000 1.00000 1.00000 0.99998 0.99987 0.99935 0.99749 0.99221 0.97966 0.95386
           1.00000 1.00000 1.00000 1.00000 1.00000 0.99999 0.99993 0.99965 0.99868 0.99586 0.98877
           1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99999 0.99997 0.99986 0.99948 0.99829
    11
           1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99999 0.99997 0.99988
    12
           1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
           0.86875 \ \ 0.48767 \ \ 0.22877 \ \ 0.10277 \ \ 0.04398 \ \ 0.01782 \ \ 0.00678 \ \ 0.00240 \ \ 0.00078 \ \ 0.00023 \ \ 0.00006
           0.99160\ 0.84701\ 0.58463\ 0.35667\ 0.19791\ 0.10097\ 0.04748\ 0.02052\ 0.00810\ 0.00289\ 0.00092
           0.99966 \ \ 0.96995 \ \ 0.84164 \ \ 0.64791 \ \ 0.44805 \ \ 0.28113 \ \ 0.16084 \ \ 0.08393 \ \ 0.03979 \ \ 0.01701 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 0.006479 \ \ 
          0.99999 0.99583 0.95587 0.85349 0.69819 0.52134 0.35517 0.22050 0.12431 0.06322 0.02869
           1.00000\ 0.99957\ 0.99077\ 0.95326\ 0.87016\ 0.74153\ 0.58420\ 0.42272\ 0.27926\ 0.16719\ 0.08978
           1.00000\ 0.99997\ 0.99853\ 0.98847\ 0.95615\ 0.88833\ 0.78052\ 0.64051\ 0.48585\ 0.33732\ 0.21198
           1.00000 1.00000 0.99982 0.99779 0.98839 0.96173 0.90672 0.81641 0.69245 0.54612 0.39526
           1.00000\ 1.00000\ 0.99998\ 0.99967\ 0.99760\ 0.98969\ 0.96853\ 0.92466\ 0.84986\ 0.74136\ 0.60474
           1.00000 \ 1.00000 \ 1.00000 \ 0.99996 \ 0.99962 \ 0.99785 \ 0.99171 \ 0.97566 \ 0.94168 \ 0.88114 \ 0.78802
           1.00000 1.00000 1.00000 1.00000 0.99995 0.99966 0.99833 0.99396 0.98249 0.95738 0.91022
           1.00000 1.00000 1.00000 1.00000 1.00000 0.99996 0.99975 0.99889 0.99609 0.98857 0.97131
           1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99997 0.99986 0.99939 0.99785 0.99353
           1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99999 0.99994 0.99975 0.99908
           1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99999 0.99994
```

```
1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
       0.86006 0.46329 0.20589 0.08735 0.03518 0.01336 0.00475 0.00156 0.00047 0.00013 0.00003
        0.99037 \ \ 0.82905 \ \ 0.54904 \ \ 0.31859 \ \ 0.16713 \ \ 0.08018 \ \ 0.03527 \ \ 0.01418 \ \ 0.00517 \ \ 0.00169 \ \ 0.00049
        0.99958\ 0.96380\ 0.81594\ 0.60423\ 0.39802\ 0.23609\ 0.12683\ 0.06173\ 0.02711\ 0.01065\ 0.00369
        0.99999 0.99453 0.94444 0.82266 0.64816 0.46129 0.29687 0.17270 0.09050 0.04242 0.01758
        1.00000 0.99939 0.98728 0.93829 0.83577 0.68649 0.51549 0.35194 0.21728 0.12040 0.05923
        1.00000 0.99995 0.99775 0.98319 0.93895 0.85163 0.72162 0.56428 0.40322 0.26076 0.15088
        1.00000 1.00000 0.99969 0.99639 0.98194 0.94338 0.86886 0.75484 0.60981 0.45216 0.30362
        1.00000\ 1.00000\ 0.99997\ 0.99939\ 0.99576\ 0.98270\ 0.94999\ 0.88677\ 0.78690\ 0.65350\ 0.50000
        1.00000 1.00000 1.00000 0.99992 0.99922 0.99581 0.98476 0.95781 0.90495 0.81824 0.69638
        1.00000 1.00000 1.00000 0.99999 0.99989 0.99921 0.99635 0.98756 0.96617 0.92307 0.84912
        1.00000 1.00000 1.00000 1.00000 0.99999 0.99988 0.99933 0.99717 0.99065 0.97453 0.94077
   10
        1.00000 1.00000 1.00000 1.00000 1.00000 0.99999 0.99991 0.99952 0.99807 0.99367 0.98242
        1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99999 0.99994 0.99972 0.99889 0.99631
        1.00000\ 1.00000\ 1.00000\ 1.00000\ 1.00000\ 1.00000\ 1.00000\ 0.99997\ 0.99988\ 0.99951
        1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99999 0.99997
   14
        1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
20 0
        0.81791 \ \ 0.35849 \ \ 0.12158 \ \ 0.03876 \ \ 0.01153 \ \ 0.00317 \ \ 0.00080 \ \ 0.00018 \ \ 0.00004 \ \ 0.00001 \ \ 0.00000
        0.98314\ 0.73584\ 0.39175\ 0.17556\ 0.06918\ 0.02431\ 0.00764\ 0.00213\ 0.00052\ 0.00011\ 0.00002
        0.99900\ 0.92452\ 0.67693\ 0.40490\ 0.20608\ 0.09126\ 0.03548\ 0.01212\ 0.00361\ 0.00093\ 0.00020
        0.99996\ 0.98410\ 0.86705\ 0.64773\ 0.41145\ 0.22516\ 0.10709\ 0.04438\ 0.01596\ 0.00493\ 0.00129
        1.00000\ 0.99743\ 0.95683\ 0.82985\ 0.62965\ 0.41484\ 0.23751\ 0.11820\ 0.05095\ 0.01886\ 0.00591
        1.00000\ 0.99967\ 0.98875\ 0.93269\ 0.80421\ 0.61717\ 0.41637\ 0.24540\ 0.12560\ 0.05533\ 0.02069
        1.00000\ 0.99997\ 0.99761\ 0.97806\ 0.91331\ 0.78578\ 0.60801\ 0.41663\ 0.25001\ 0.12993\ 0.05766
        1.00000 1.00000 0.99958 0.99408 0.96786 0.89819 0.77227 0.60103 0.41589 0.25201 0.13159
        1.00000 1.00000 0.99994 0.99867 0.99002 0.95907 0.88667 0.76238 0.59560 0.41431 0.25172
        1.00000 1.00000 0.99999 0.99975 0.99741 0.98614 0.95204 0.87822 0.75534 0.59136 0.41190
        1.00000 1.00000 1.00000 0.99996 0.99944 0.99606 0.98286 0.94683 0.87248 0.75071 0.58810
   10
        1.00000 1.00000 1.00000 0.99999 0.99990 0.99906 0.99486 0.98042 0.94347 0.86923 0.74828
        1.00000\ 1.00000\ 1.00000\ 1.00000\ 0.99998\ 0.99982\ 0.99872\ 0.99398\ 0.97897\ 0.94197\ 0.86841
        1.00000 1.00000 1.00000 1.00000 1.00000 0.99997 0.99974 0.99848 0.99353 0.97859 0.94234
        1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99996 0.99969 0.99839 0.99357 0.97931
        1.00000 \ 1.00000 \ 1.00000 \ 1.00000 \ 1.00000 \ 1.00000 \ 0.99999 \ 0.99995 \ 0.99968 \ 0.99847 \ 0.99409
        1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99999 0.99995 0.99972 0.99871
        1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99999 0.99996 0.99980
        1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99998
   19
        1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
        1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
        0.77782 0.27739 0.07179 0.01720 0.00378 0.00075 0.00013 0.00002 0.00000 0.00000 0.00000
        0.97424 \ 0.64238 \ 0.27121 \ 0.09307 \ 0.02739 \ 0.00702 \ 0.00157 \ 0.00030 \ 0.00005 \ 0.00001 \ 0.00000
        0.99805 0.87289 0.53709 0.25374 0.09823 0.03211 0.00896 0.00213 0.00043 0.00007 0.00001
        0.99989 \ 0.96591 \ 0.76359 \ 0.47112 \ 0.23399 \ 0.09621 \ 0.03324 \ 0.00968 \ 0.00237 \ 0.00048 \ 0.00008
        1.00000 0.99284 0.90201 0.68211 0.42067 0.21374 0.09047 0.03205 0.00947 0.00231 0.00046
        1.00000\ 0.99879\ 0.96660\ 0.83848\ 0.61669\ 0.37828\ 0.19349\ 0.08262\ 0.02936\ 0.00860\ 0.00204
        1.00000 0.99983 0.99052 0.93047 0.78004 0.56110 0.34065 0.17340 0.07357 0.02575 0.00732
        1.00000 0.99998 0.99774 0.97453 0.89088 0.72651 0.51185 0.30608 0.15355 0.06385 0.02164
        1.00000 1.00000 0.99954 0.99203 0.95323 0.85056 0.67693 0.46682 0.27353 0.13398 0.05388
        1.00000\ 1.00000\ 0.99992\ 0.99786\ 0.98267\ 0.92867\ 0.81056\ 0.63031\ 0.42462\ 0.24237\ 0.11476
        1.00000 1.00000 0.99999 0.99951 0.99445 0.97033 0.90220 0.77116 0.58577 0.38426 0.21218
        1.00000\ 1.00000\ 1.00000\ 0.99990\ 0.99846\ 0.98927\ 0.95575\ 0.87458\ 0.73228\ 0.54257\ 0.34502
        1.00000\ 1.00000\ 1.00000\ 0.99998\ 0.99963\ 0.99663\ 0.98253\ 0.93956\ 0.84623\ 0.69368\ 0.50000
   12
        1.00000 1.00000 1.00000 1.00000 0.99992 0.99908 0.99401 0.97454 0.92220 0.81731 0.65498
        1.00000\ 1.00000\ 1.00000\ 1.00000\ 0.99999\ 0.99979\ 0.99822\ 0.99069\ 0.96561\ 0.90402\ 0.78782
        1.00000\ 1.00000\ 1.00000\ 1.00000\ 1.00000\ 0.99996\ 0.99955\ 0.99706\ 0.98683\ 0.95604\ 0.88524
        1.00000 1.00000 1.00000 1.00000 1.00000 0.99999 0.99990 0.99921 0.99567 0.98264 0.94612
        1.00000\ 1.00000\ 1.00000\ 1.00000\ 1.00000\ 1.00000\ 0.99998\ 0.99982\ 0.99879\ 0.99417\ 0.97836
   17
        1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99997 0.99972 0.99836 0.99268
        1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99999 0.99995 0.99962 0.99796
   19
        1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99999 0.99993 0.99954
        1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99999 0.99992
        1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99999
        1.00000 \ 1.00000 \ 1.00000 \ 1.00000 \ 1.00000 \ 1.00000 \ 1.00000 \ 1.00000 \ 1.00000 \ 1.00000 \ 1.00000
   24
        1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
        1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
       0.60501 0.07694 0.00515 0.00030 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
        0.91056 \ 0.27943 \ 0.03379 \ 0.00291 \ 0.00019 \ 0.00001 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000
        0.98618 0.54053 0.11173 0.01419 0.00129 0.00009 0.00000 0.00000 0.00000 0.00000
```

```
0.99840\ 0.76041\ 0.25029\ 0.04605\ 0.00566\ 0.00050\ 0.00003\ 0.00000\ 0.00000\ 0.00000\ 0.00000
        0.99985 \ \ 0.89638 \ \ 0.43120 \ \ 0.11211 \ \ 0.01850 \ \ 0.00211 \ \ 0.00017 \ \ 0.00001 \ \ 0.00000 \ \ 0.00000 \ \ 0.00000
        0.99999 \ 0.96222 \ 0.61612 \ 0.21935 \ 0.04803 \ 0.00705 \ 0.00072 \ 0.00005 \ 0.00000 \ 0.00000 \ 0.00000
        1.00000 \,\, 0.98821 \,\, 0.77023 \,\, 0.36130 \,\, 0.10340 \,\, 0.01939 \,\, 0.00249 \,\, 0.00022 \,\, 0.00001 \,\, 0.00000 \,\, 0.00000
        1.00000\ 0.99681\ 0.87785\ 0.51875\ 0.19041\ 0.04526\ 0.00726\ 0.00080\ 0.00006\ 0.00000\ 0.00000
        1.00000 0.99924 0.94213 0.66810 0.30733 0.09160 0.01825 0.00248 0.00023 0.00001 0.00000
        1.00000\ 0.99984\ 0.97546\ 0.79109\ 0.44374\ 0.16368\ 0.04023\ 0.00670\ 0.00076\ 0.00006\ 0.00000
        1.00000\ 0.99997\ 0.99065\ 0.88008\ 0.58356\ 0.26220\ 0.07885\ 0.01601\ 0.00220\ 0.00020\ 0.00001
        1.00000 1.00000 0.99678 0.93719 0.71067 0.38162 0.13904 0.03423 0.00569 0.00063 0.00005
   11
        1.00000 1.00000 0.99900 0.96994 0.81394 0.51099 0.22287 0.06613 0.01325 0.00177 0.00015
        1.00000 1.00000 0.99971 0.98683 0.88941 0.63704 0.32788 0.11633 0.02799 0.00449 0.00047
   13
        1.00000 1.00000 0.99993 0.99471 0.93928 0.74808 0.44683 0.18778 0.05395 0.01038 0.00130
        1.00000 1.00000 0.99998 0.99805 0.96920 0.83692 0.56918 0.28010 0.09550 0.02195 0.00330
   15
        1.00000\ 1.00000\ 1.00000\ 0.99934\ 0.98556\ 0.90169\ 0.68388\ 0.38886\ 0.15609\ 0.04265\ 0.00767
        1.00000 1.00000 1.00000 0.99979 0.99374 0.94488 0.78219 0.50597 0.23688 0.07653 0.01642
   17
        1.00000\ 1.00000\ 1.00000\ 0.99994\ 0.99749\ 0.97127\ 0.85944\ 0.62159\ 0.33561\ 0.12734\ 0.03245
        1.00000\ 1.00000\ 1.00000\ 0.99998\ 0.99907\ 0.98608\ 0.91520\ 0.72644\ 0.44648\ 0.19737\ 0.05946
        1.00000 1.00000 1.00000 1.00000 0.99968 0.99374 0.95224 0.81394 0.56103 0.28617 0.10132
        1.00000\ 1.00000\ 1.00000\ 1.00000\ 0.99990\ 0.99738\ 0.97491\ 0.88126\ 0.67014\ 0.38996\ 0.16112
        1.00000 1.00000 1.00000 1.00000 0.99997 0.99898 0.98772 0.92904 0.76602 0.50191 0.23994
       1.00000 1.00000 1.00000 1.00000 0.99999 0.99963 0.99441 0.96036 0.84383 0.61341 0.33591
   24 1.00000 1.00000 1.00000 1.00000 1.00000 0.99988 0.99763 0.97933 0.90219 0.71604 0.44386
        1.00000 1.00000 1.00000 1.00000 1.00000 0.99996 0.99907 0.98996 0.94266 0.80337 0.55614
        1.00000 1.00000 1.00000 1.00000 1.00000 0.99999 0.99966 0.99546 0.96859 0.87207 0.66409
        1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99988 0.99809 0.98397 0.92204 0.76006
        1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99996 0.99925 0.99238 0.95562 0.83888
        1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99999 0.99973 0.99664 0.97646 0.89868
       1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99991 0.99863 0.98840 0.94054
        1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99997 0.99948 0.99470 0.96755
        1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99999 0.99982 0.99776 0.98358
        1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99994 0.99913 0.99233
        1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99998 0.99969 0.99670
       1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99990 0.99870
       1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99997 0.99953
        1.00000\ 1.00000\ 1.00000\ 1.00000\ 1.00000\ 1.00000\ 1.00000\ 1.00000\ 1.00000\ 0.99999\ 0.99985
       1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99995
    39 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99999
   1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
   42 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
       1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
        1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
        1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
        1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
        1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
        1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
        1.00000\ 1.00000\ 1.00000\ 1.00000\ 1.00000\ 1.00000\ 1.00000\ 1.00000\ 1.00000\ 1.00000
       1,00000 1,00000 1,00000 1,00000 1,00000 1,00000 1,00000 1,00000 1,00000 1,00000 1,00000
100 0 0.36603 0.00592 0.00003 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
        0.73576\ 0.03708\ 0.00032\ 0.00000\ 0.00000\ 0.00000\ 0.00000\ 0.00000\ 0.00000\ 0.00000\ 0.00000
     2\quad 0.92063\ 0.11826\ 0.00194\ 0.00002\ 0.00000\ 0.00000\ 0.00000\ 0.00000\ 0.00000\ 0.00000\ 0.00000
     3 \quad 0.98163 \quad 0.25784 \quad 0.00784 \quad 0.00009 \quad 0.00000 \quad 0.00000 \quad 0.00000 \quad 0.00000 \quad 0.00000 \quad 0.00000 \quad 0.00000
     4\quad 0.99657\ 0.43598\ 0.02371\ 0.00043\ 0.00000\ 0.00000\ 0.00000\ 0.00000\ 0.00000\ 0.00000\ 0.00000
     5 \quad 0.99947 \quad 0.61600 \quad 0.05758 \quad 0.00155 \quad 0.00002 \quad 0.00000 \quad 0.00000 \quad 0.00000 \quad 0.00000 \quad 0.00000 \quad 0.00000
     6\quad 0.99993\ 0.76601\ 0.11716\ 0.00470\ 0.00008\ 0.00000\ 0.00000\ 0.00000\ 0.00000\ 0.00000\ 0.00000
       0.99999 \ 0.87204 \ 0.20605 \ 0.01217 \ 0.00028 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000
        1.00000\ 0.93691\ 0.32087\ 0.02748\ 0.00086\ 0.00001\ 0.00000\ 0.00000\ 0.00000\ 0.00000\ 0.00000
        1.00000\ 0.97181\ 0.45129\ 0.05509\ 0.00233\ 0.00004\ 0.00000\ 0.00000\ 0.00000\ 0.00000\ 0.00000
    10 \quad 1.00000 \ 0.98853 \ 0.58316 \ 0.09945 \ 0.00570 \ 0.00014 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000
    11 1.00000 0.99573 0.70303 0.16349 0.01257 0.00039 0.00001 0.00000 0.00000 0.00000 0.00000
        1.00000\ 0.99854\ 0.80182\ 0.24730\ 0.02533\ 0.00103\ 0.00002\ 0.00000\ 0.00000\ 0.00000\ 0.00000
       1.00000 0.99954 0.87612 0.34742 0.04691 0.00246 0.00006 0.00000 0.00000 0.00000 0.00000
    14 1.00000 0.99986 0.92743 0.45722 0.08044 0.00542 0.00016 0.00000 0.00000 0.00000 0.00000
    15 1.00000 0.99996 0.96011 0.56832 0.12851 0.01108 0.00040 0.00001 0.00000 0.00000 0.00000
       1.00000\ 0.99999\ 0.97940\ 0.67246\ 0.19234\ 0.02111\ 0.00097\ 0.00002\ 0.00000\ 0.00000\ 0.00000
    17 \quad 1.00000 \quad 1.00000 \quad 0.98999 \quad 0.76328 \quad 0.27119 \quad 0.03763 \quad 0.00216 \quad 0.00005 \quad 0.00000 \quad 0.00000 \quad 0.00000
    18 \quad 1.00000 \quad 1.00000 \quad 0.99542 \quad 0.83717 \quad 0.36209 \quad 0.06301 \quad 0.00452 \quad 0.00014 \quad 0.00000 \quad 0.00000 \quad 0.00000
    19 \quad 1.00000 \quad 1.00000 \quad 0.99802 \quad 0.89346 \quad 0.46016 \quad 0.09953 \quad 0.00889 \quad 0.00034 \quad 0.00001 \quad 0.00000 \quad 0.00000
    20 1.00000 1.00000 0.99919 0.93368 0.55946 0.14883 0.01646 0.00078 0.00002 0.00000 0.00000
    21 1.00000 1.00000 0.99969 0.96072 0.65403 0.21144 0.02883 0.00169 0.00004 0.00000 0.00000
```

22 1.00000 1.00000 0.99989 0.97786 0.73893 0.28637 0.04787 0.00343 0.00011 0.00000 0.00000 $23 \quad 1.00000 \quad 1.00000 \quad 0.99996 \quad 0.98811 \quad 0.81091 \quad 0.37108 \quad 0.07553 \quad 0.00662 \quad 0.00025 \quad 0.00000 \quad 0.00000$ 24 1.00000 1.00000 0.99999 0.99392 0.86865 0.46167 0.11357 0.01213 0.00056 0.00001 0.00000 $1.00000 \ 1.00000 \ 1.00000 \ 0.99703 \ 0.91252 \ 0.55347 \ 0.16313 \ 0.02114 \ 0.00119 \ 0.00003 \ 0.00000$ $26 \quad 1.00000 \quad 1.00000 \quad 1.00000 \quad 0.99862 \quad 0.94417 \quad 0.64174 \quad 0.22440 \quad 0.03514 \quad 0.00240 \quad 0.00007 \quad 0.00000$ 27 1.00000 1.00000 1.00000 0.99939 0.96585 0.72238 0.29637 0.05581 0.00460 0.00016 0.00000 $28 \quad 1.00000 \quad 1.00000 \quad 1.00000 \quad 0.99974 \quad 0.97998 \quad 0.79246 \quad 0.37678 \quad 0.08482 \quad 0.00843 \quad 0.00036 \quad 0.00001 \quad$ 1.00000 1.00000 1.00000 0.99989 0.98875 0.85046 0.46234 0.12360 0.01478 0.00076 0.00002 30 1.00000 1.00000 1.00000 0.99996 0.99394 0.89621 0.54912 0.17302 0.02478 0.00154 0.00004 $31 \quad 1.00000 \quad 1.00000 \quad 1.00000 \quad 0.99998 \quad 0.99687 \quad 0.93065 \quad 0.63311 \quad 0.23311 \quad 0.03985 \quad 0.00297 \quad 0.00009 \quad 0.000009 \quad 0.00009 \quad 0.000009 \quad 0.00009 \quad 0.000009 \quad 0.00009 \quad 0.000009 \quad 0.000000$ 32 1.00000 1.00000 1.00000 0.99999 0.99845 0.95540 0.71072 0.30288 0.06150 0.00550 0.00020 33 1.00000 1.00000 1.00000 1.00000 0.99926 0.97241 0.77926 0.38029 0.09125 0.00976 0.00044 34 1.00000 1.00000 1.00000 1.00000 0.99966 0.98357 0.83714 0.46243 0.13034 0.01663 0.00089 35 1.00000 1.00000 1.00000 1.00000 0.99985 0.99059 0.88392 0.54584 0.17947 0.02724 0.00176 36 1.00000 1.00000 1.00000 1.00000 0.99994 0.99482 0.92012 0.62692 0.23861 0.04290 0.00332 37 1.00000 1.00000 1.00000 1.00000 0.99998 0.99725 0.94695 0.70245 0.30681 0.06507 0.00602 38 1.00000 1.00000 1.00000 1.00000 0.99999 0.99860 0.96602 0.76987 0.38219 0.09514 0.01049 39 1.00000 1.00000 1.00000 1.00000 1.00000 0.99931 0.97901 0.82758 0.46208 0.13425 0.01760 40 1.00000 1.00000 1.00000 1.00000 1.00000 0.99968 0.98750 0.87498 0.54329 0.18306 0.02844 41 1.00000 1.00000 1.00000 1.00000 1.00000 0.99985 0.99283 0.91232 0.62253 0.24149 0.04431 42 1.00000 1.00000 1.00000 1.00000 1.00000 0.99994 0.99603 0.94057 0.69674 0.30865 0.06661 43 1.00000 1.00000 1.00000 1.00000 1.00000 0.99997 0.99789 0.96109 0.76347 0.38277 0.09667 44 1.00000 1.00000 1.00000 1.00000 1.00000 0.99999 0.99891 0.97540 0.82110 0.46133 0.13563 45 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99946 0.98499 0.86891 0.54132 0.18410 46 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99974 0.99116 0.90702 0.61956 0.24206 47 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99988 0.99498 0.93621 0.69312 0.30865 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99995 0.99725 0.95770 0.75957 0.38218 49 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99998 0.99855 0.97290 0.81727 0.46020 50 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99999 0.99926 0.98324 0.86542 0.53979 51 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99964 0.98999 0.90405 0.61782 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99983 0.99424 0.93383 0.69135 53 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99992 0.99680 0.95589 0.75794 54 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99997 0.99829 0.97161 0.81590 55 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99999 0.99912 0.98236 0.86437 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99999 0.99956 0.98943 0.90333 57 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99979 0.99389 0.93339 58 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99990 0.99660 0.95569 59 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99996 0.99818 0.97156 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99998 0.99906 0.98240 $61 \quad 1.00000 \quad 0.99999 \quad 0.99953 \quad 0.98951$ $62 \quad 1.00000 \quad 0.99978 \quad 0.99398$ 63 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99990 0.99668 64 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99996 0.99824 65 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99998 0.99911 $66\quad 1.00000\quad 1.00000\quad 1.00000\quad 1.00000\quad 1.00000\quad 1.00000\quad 1.00000\quad 1.00000\quad 1.00000\quad 0.99999\quad 0.99956$ 67 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99980 68 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99991 69 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99996 70 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99998 71 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99999 $72 \quad 1.00000 \quad 1.00000$ 73 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 74 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 75 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 76 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 77 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 78 1.00000 80 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 81 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 82 1.00000 84 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 85 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 86 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 $1.00000 \ 1.00000 \ 1.00000 \ 1.00000 \ 1.00000 \ 1.00000 \ 1.00000 \ 1.00000 \ 1.00000 \ 1.00000$ 88 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 89 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 90 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 91 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 92 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

```
93 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
         94 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
         95 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
         96 \quad 1.00000 \quad 1.000000 \quad 1.00000 \quad 1.000000 \quad 1.00000 \quad 1.00000
         97 \quad 1.00000 \quad 1.000000 \quad 1.00000 \quad 1.000000 \quad 1.00000 \quad 1.000000 \quad 1.000000 \quad 1.000000 \quad 1.000000 \quad 1.000000 \quad 1.000000 \quad 1
         98 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
         99 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
100 \quad 1.00000 \quad 1.000000 \quad 1.00000 \quad 1.00000
```

კუმულატური პუასონის განაწილების ცხრილი

$$(P\{Po(\lambda) \le x\} = \sum_{k=0}^{x} \frac{\lambda^{k}}{k!} e^{-\lambda})$$

						ı				
X	0.01	0.01	0.02	0.03	0.04	0.05	0.06	0.07	80.0	0.09
0	0.9950	0.9900	0.9802	0.9704	0.9608	0.9512	0.9418	0.9324	0.9231	0.9139
1	1.0000	1.0000	0.9998	0.9996	0.9992	0.9988	0.9983	0.9977	0.9970	0.9962
2	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999	0.9999
3	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
х	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1
0	0.9048	0.8187	0.7408	0.6703	0.6065	0.5488	0.4966	0.4493	0.4066	0.3679
1	0.9953	0.9825	0.9631	0.9384	0.9098	0.8781	0.8442	0.8088	0.7725	0.7358
2	0.9998	0.9989	0.9964	0.9921	0.9856	0.9769	0.9659	0.9526	0.9371	0.9197
3	1.0000	0.9999	0.9997	0.9992	0.9982	0.9966	0.9942	0.9909	0.9865	0.9810
4	1.0000	1.0000	1.0000	0.9999	0.9998	0.9996	0.9992	0.9986	0.9977	0.9963
5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	0.9997	0.9994
6	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999
7	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
х	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2
0	0.3329	0.3012	0.2725	0.2466	0.2231	0.2019	0.1827	0.1653	0.1496	0.1353
1	0.6990	0.6626	0.6268	0.5918	0.5578	0.5249	0.4932	0.4628	0.4337	0.4060
2	0.9004	0.8795	0.8571	0.8335	0.8088	0.7834	0.7572	0.7306	0.7037	0.6767
3	0.9743	0.9662	0.9569	0.9463	0.9344	0.9212	0.9068	0.8913	0.8747	0.8571
4	0.9946	0.9923	0.9893	0.9857	0.9814	0.9763	0.9704	0.9636	0.9559	0.9473
5	0.9990	0.9985	0.9978	0.9968	0.9955	0.9940	0.9920	0.9896	0.9868	0.9834
6	0.9999	0.9997	0.9996	0.9994	0.9991	0.9987	0.9981	0.9974	0.9966	0.9955
7	1.0000	1.0000	0.9999	0.9999	0.9998	0.9997	0.9996	0.9994	0.9992	0.9989
8	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999	0.9998	0.9998
9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
X	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3
0	0.1225	0.1108	0.1003	0.0907	0.0821	0.0743	0.0672	0.0608	0.0550	0.0498
1	0.3796	0.3546	0.3309	0.3084	0.2873	0.2674	0.2487	0.2311	0.2146	0.1991
2	0.6496	0.6227	0.5960	0.5697	0.5438	0.5184	0.4936	0.4695	0.4460	0.4232
3	0.8386	0.8194	0.7993	0.7787	0.7576	0.7360	0.7141	0.6919	0.6696	0.6472
4	0.9379	0.9275	0.9162	0.9041	0.8912	0.8774	0.8629	0.8477	0.8318	0.8153
5	0.9796	0.9751	0.9700	0.9643	0.9580	0.9510	0.9433	0.9349	0.9258	0.9161
6	0.9941	0.9925	0.9906	0.9884	0.9858	0.9828	0.9794	0.9756	0.9713	0.9665
7	0.9985	0.9980	0.9974	0.9967	0.9958	0.9947	0.9934	0.9919	0.9901	0.9881
8	0.9997	0.9995	0.9994	0.9991	0.9989	0.9985	0.9981	0.9976	0.9969	0.9962
9	0.9999	0.9999	0.9999	0.9998	0.9997	0.9996	0.9995	0.9993	0.9991	0.9989
10	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999	0.9999	0.9998	0.9998	0.9997
11	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999

12	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
X	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4
0	0.0450	0.0408	0.0369	0.0334	0.0302	0.0273	0.0247	0.0224	0.0202	0.0183
1	0.1847	0.1712	0.1586	0.1468	0.1359	0.1257	0.1162	0.1074	0.0992	0.0916
2	0.4012	0.3799	0.3594	0.3397	0.3208	0.3027	0.2854	0.2689	0.2531	0.2381
3	0.6248	0.6025	0.5803	0.5584	0.5366	0.5152	0.4942	0.4735	0.4532	0.4335
4	0.7982	0.7806	0.7626	0.7442	0.7254	0.7064	0.6872	0.6678	0.6484	0.6288
5	0.9057	0.8946	0.8829	0.8705	0.8576	0.8441	0.8301	0.8156	0.8006	0.7851
6	0.9612	0.9554	0.9490	0.9421	0.9347	0.9267	0.9182	0.9091	0.8995	0.8893
7	0.9858	0.9832	0.9802	0.9769	0.9733	0.9692	0.9648	0.9599	0.9546	0.9489
8	0.9953	0.9943	0.9931	0.9917	0.9901	0.9883	0.9863	0.9840	0.9815	0.9786
9	0.9986	0.9982	0.9978	0.9973	0.9967	0.9960	0.9952	0.9942	0.9931	0.9919
10	0.9996	0.9995	0.9994	0.9992	0.9990	0.9987	0.9984	0.9981	0.9977	0.9972
11	0.9999	0.9999	0.9998	0.9998	0.9997	0.9996	0.9995	0.9994	0.9993	0.9991
12	1.0000	1.0000	1.0000	0.9999	0.9999	0.9999	0.9999	0.9998	0.9998	0.9997
13	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999
14	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
X	4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5
0	0.0166	0.0150	0.0136	0.0123	0.0111	0.0101	0.0091	0.0082	0.0074	0.0067
1	0.0845	0.0780	0.0719	0.0663	0.0611	0.0563	0.0518	0.0477	0.0439	0.0404
2	0.2238	0.2102	0.1974	0.1851	0.1736	0.1626	0.1523	0.1425	0.1333	0.1247
3	0.4142	0.3954	0.3772	0.3594	0.3423	0.3257	0.3097	0.2942	0.2793	0.2650
4	0.6093	0.5898	0.5704	0.5512	0.5321	0.5132	0.4946	0.4763	0.4582	0.4405
5	0.7693	0.7531	0.7367	0.7199	0.7029	0.6858	0.6684	0.6510	0.6335	0.6160
6	0.8786	0.8675	0.8558	0.8436	0.8311	0.8180	0.8046	0.7908	0.7767	0.7622
7	0.9427	0.9361	0.9290	0.9214	0.9134	0.9049	0.8960	0.8867	0.8769	0.8666
8	0.9755	0.9721	0.9683	0.9642	0.9597	0.9549	0.9497	0.9442	0.9382	0.9319
9	0.9905	0.9889	0.9871	0.9851	0.9829	0.9805	0.9778	0.9749	0.9717	0.9682
10	0.9966	0.9959	0.9952	0.9943	0.9933	0.9922	0.9910	0.9896	0.9880	0.9863
11	0.9989	0.9986	0.9983	0.9980	0.9976	0.9971	0.9966	0.9960	0.9953	0.9945
12	0.9997	0.9996	0.9995	0.9993	0.9992	0.9990	0.9988	0.9986	0.9983	0.9980
13	0.9999	0.9999	0.9998	0.9998	0.9997	0.9997	0.9996	0.9995	0.9994	0.9993
14	1.0000	1.0000	1.0000	0.9999	0.9999	0.9999	0.9999	0.9999	0.9998	0.9998
15	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999
16	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Х	5.1	5.2	5.3	5.4	5.5	5.6	5.7	5.8	5.9	6
0	0.0061	0.0055	0.0050	0.0045	0.0041	0.0037	0.0033	0.0030	0.0027	0.0025
1	0.0372	0.0342	0.0314	0.0289	0.0266	0.0244	0.0224	0.0206	0.0189	0.0174
2	0.1165	0.1088	0.1016	0.0948	0.0884	0.0824	0.0768	0.0715	0.0666	0.0620
3	0.2513	0.2381	0.2254	0.2133	0.2017	0.1906	0.1800	0.1700	0.1604	0.1512
4	0.4231	0.4061	0.3895	0.3733	0.3575	0.3422	0.3272	0.3127	0.2987	0.2851
5	0.5984	0.5809	0.5635	0.5461	0.5289	0.5119	0.4950	0.4783	0.4619	0.4457
6	0.7474	0.7324	0.7171	0.7017	0.6860	0.6703	0.6544	0.6384	0.6224	0.6063
7	0.8560	0.8449	0.8335	0.8217	0.8095	0.7970	0.7841	0.7710	0.7576	0.7440
8	0.9252	0.9181	0.9106	0.9027	0.8944	0.8857	0.8766	0.8672	0.8574	0.8472
9	0.9644	0.9603	0.9559	0.9512	0.9462	0.9409	0.9352	0.9292	0.9228	0.9161
10	0.9844	0.9823	0.9800	0.9775	0.9747	0.9718	0.9686	0.9651	0.9614	0.9574
11	0.9937	0.9927	0.9916	0.9904	0.9890	0.9875	0.9859	0.9841	0.9821	0.9799
12	0.9976	0.9972	0.9967	0.9962	0.9955	0.9949	0.9941	0.9932	0.9922	0.9912

13	0.9992	0.9990	0.9988	0.9986	0.9983	0.9980	0.9977	0.9973	0.9969	0.9964
14	0.9997	0.9997	0.9996	0.9995	0.9994	0.9993	0.9991	0.9990	0.9988	0.9986
15	0.9999	0.9999	0.9999	0.9998	0.9998	0.9998	0.9997	0.9996	0.9996	0.9995
16	1.0000	1.0000	1.0000	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9998
17	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999
18	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
X	6.1	6.2	6.3	6.4	6.5	6.6	6.7	6.8	6.9	7
0	0.0022	0.0020	0.0018	0.0017	0.0015	0.0014	0.0012	0.0011	0.0010	0.0009
1	0.0159	0.0146	0.0134	0.0123	0.0113	0.0103	0.0095	0.0087	0.0080	0.0073
2	0.0577	0.0536	0.0498	0.0463	0.0430	0.0400	0.0371	0.0344	0.0320	0.0296
3	0.1425	0.1342	0.1264	0.1189	0.1118	0.1052	0.0988	0.0928	0.0871	0.0818
4	0.2719	0.2592	0.2469	0.2351	0.2237	0.2127	0.2022	0.1920	0.1823	0.1730
5	0.4298	0.4141	0.3988	0.3837	0.3690	0.3547	0.3406	0.3270	0.3137	0.3007
6	0.5902	0.5742	0.5582	0.5423	0.5265	0.5108	0.4953	0.4799	0.4647	0.4497
7	0.7301	0.7160	0.7017	0.6873	0.6728	0.6581	0.6433	0.6285	0.6136	0.5987
8	0.8367	0.8259	0.8148	0.8033	0.7916	0.7796	0.7673	0.7548	0.7420	0.7291
9	0.9090	0.9016	0.8939	0.8858	0.8774	0.8686	0.8596	0.8502	0.8405	0.8305
10	0.9531	0.9486	0.9437	0.9386	0.9332	0.9274	0.9214	0.9151	0.9084	0.9015
11	0.9776	0.9750	0.9723	0.9693	0.9661	0.9627	0.9591	0.9552	0.9510	0.9467
12	0.9900	0.9887	0.9873	0.9857	0.9840	0.9821	0.9801	0.9779	0.9755	0.9730
13	0.9958	0.9952	0.9945	0.9937	0.9929	0.9920	0.9909	0.9898	0.9885	0.9872
14	0.9984	0.9981	0.9978	0.9974	0.9970	0.9966	0.9961	0.9956	0.9950	0.9943
15	0.9994	0.9993	0.9992	0.9990	0.9988	0.9986	0.9984	0.9982	0.9979	0.9976
16	0.9998	0.9997	0.9997	0.9996	0.9996	0.9995	0.9994	0.9993	0.9992	0.9990
17	0.9999	0.9999	0.9999	0.9999	0.9998	0.9998	0.9998	0.9997	0.9997	0.9996
18	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
19	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
20	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
x	7.1	7.2	7.3	7.4	7.5	7.6	7.7	7.8	7.9	8
0	0.0008	0.0007	0.0007	0.0006	0.0006	0.0005	0.0005	0.0004	0.0004	0.0003
1	0.0067	0.0061	0.0056	0.0051	0.0047	0.0043	0.0039	0.0036	0.0033	0.0030
2	0.0275	0.0255	0.0236	0.0219	0.0203	0.0188	0.0174	0.0161	0.0149	0.0138
3	0.0767	0.0719	0.0674	0.0632	0.0591	0.0554	0.0518	0.0485	0.0453	0.0424
4	0.1641	0.1555	0.1473	0.1395	0.1321	0.1249	0.1181	0.1117	0.1055	0.0996
5	0.2881	0.2759	0.2640	0.2526	0.2414	0.2307	0.2203	0.2103	0.2006	0.1912
6	0.4349	0.4204	0.4060	0.3920	0.3782	0.3646	0.3514	0.3384	0.3257	0.3134
7	0.5838	0.5689	0.5541	0.5393	0.5246	0.5100	0.4956	0.4812	0.4670	0.4530
8	0.7160	0.7027	0.6892	0.6757	0.6620	0.6482	0.6343	0.6204	0.6065	0.5925
9	0.8202	0.8096	0.7988	0.7877	0.7764	0.7649	0.7531	0.7411	0.7290	0.7166
10	0.8942	0.8867	0.8788	0.8707	0.8622	0.8535	0.8445	0.8352	0.8257	0.8159
11	0.9420	0.9371	0.9319	0.9265	0.9208	0.9148	0.9085	0.9020	0.8952	0.8881
12	0.9703	0.9673	0.9642	0.9609	0.9573	0.9536	0.9496	0.9454	0.9409	0.9362
13	0.9857	0.9841	0.9824	0.9805	0.9784	0.9762	0.9739	0.9714	0.9687	0.9658
14	0.9935	0.9927	0.9918	0.9908	0.9897	0.9886	0.9873	0.9859	0.9844	0.9827
15	0.9972	0.9969	0.9964	0.9959	0.9954	0.9948	0.9941	0.9934	0.9926	0.9918
16	0.9989	0.9987	0.9985	0.9983	0.9980	0.9978	0.9974	0.9971	0.9967	0.9963
17	0.9996	0.9995	0.9994	0.9993	0.9992	0.9991	0.9989	0.9988	0.9986	0.9984
18	0.9998	0.9998	0.9998	0.9997	0.9997	0.9996	0.9996	0.9995	0.9994	0.9993
19	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9998	0.9998	0.9998	0.9997

20	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999	0.9999	0.9999
21	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
X	8.1	8.2	8.3	8.4	8.5	8.6	8.7	8.8	8.9	9
0	0.0003	0.0003	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0001	0.0001
1	0.0028	0.0025	0.0023	0.0021	0.0019	0.0018	0.0016	0.0015	0.0014	0.0012
2	0.0127	0.0118	0.0109	0.0100	0.0093	0.0086	0.0079	0.0073	0.0068	0.0062
3	0.0396	0.0370	0.0346	0.0323	0.0301	0.0281	0.0262	0.0244	0.0228	0.0212
4	0.0940	0.0887	0.0837	0.0789	0.0744	0.0701	0.0660	0.0621	0.0584	0.0550
5	0.1822	0.1736	0.1653	0.1573	0.1496	0.1422	0.1352	0.1284	0.1219	0.1157
6	0.3013	0.2896	0.2781	0.2670	0.2562	0.2457	0.2355	0.2256	0.2160	0.2068
7	0.4391	0.4254	0.4119	0.3987	0.3856	0.3728	0.3602	0.3478	0.3357	0.3239
8	0.5786	0.5647	0.5507	0.5369	0.5231	0.5094	0.4958	0.4823	0.4689	0.4557
9	0.7041	0.6915	0.6788	0.6659	0.6530	0.6400	0.6269	0.6137	0.6006	0.5874
10	0.8058	0.7955	0.7850	0.7743	0.7634	0.7522	0.7409	0.7294	0.7178	0.7060
11	0.8807	0.8731	0.8652	0.8571	0.8487	0.8400	0.8311	0.8220	0.8126	0.8030
12	0.9313	0.9261	0.9207	0.9150	0.9091	0.9029	0.8965	0.8898	0.8829	0.8758
13	0.9628	0.9595	0.9561	0.9524	0.9486	0.9445	0.9403	0.9358	0.9311	0.9261
14	0.9810	0.9791	0.9771	0.9749	0.9726	0.9701	0.9675	0.9647	0.9617	0.9585
15	0.9908	0.9898	0.9887	0.9875	0.9862	0.9848	0.9832	0.9816	0.9798	0.9780
16	0.9958	0.9953	0.9947	0.9941	0.9934	0.9926	0.9918	0.9909	0.9899	0.9889
17	0.9982	0.9979	0.9977	0.9973	0.9970	0.9966	0.9962	0.9957	0.9952	0.9947
18	0.9992	0.9991	0.9990	0.9989	0.9987	0.9985	0.9983	0.9981	0.9978	0.9976
19	0.9997	0.9997	0.9996	0.9995	0.9995	0.9994	0.9993	0.9992	0.9991	0.9989
20	0.9999	0.9999	0.9998	0.9998	0.9998	0.9998	0.9997	0.9997	0.9996	0.9996
21	1.0000	1.0000	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9998	0.9998
22	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999
23	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
X	9.1	9.2	9.3	9.4	9.5	9.6	9.7	9.8	9.9	10
0	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0000
1	0.0011	0.0010	0.0009	0.0009	0.0008	0.0007	0.0007	0.0006	0.0005	0.0005
2	0.0058	0.0053	0.0049	0.0045	0.0042	0.0038	0.0035	0.0033	0.0030	0.0028
3	0.0198	0.0184	0.0172	0.0160	0.0149	0.0138	0.0129	0.0120	0.0111	0.0103
4	0.0517	0.0486	0.0456	0.0429	0.0403	0.0378	0.0355	0.0333	0.0312	0.0293
5	0.1098	0.1041	0.0986	0.0935	0.0885	0.0838	0.0793	0.0750	0.0710	0.0671
6	0.1978	0.1892	0.1808	0.1727	0.1649	0.1574	0.1502	0.1433	0.1366	0.1301
7	0.3123	0.3010	0.2900	0.2792	0.2687	0.2584	0.2485	0.2388	0.2294	0.2202
8	0.4426	0.4296	0.4168	0.4042	0.3918	0.3796	0.3676	0.3558	0.3442	0.3328
9	0.5742	0.5611	0.5479	0.5349	0.5218	0.5089	0.4960	0.4832	0.4705	0.4579
10	0.6941	0.6820	0.6699	0.6576	0.6453	0.6329	0.6205	0.6080	0.5955	0.5830
11	0.7932	0.7832	0.7730	0.7626	0.7520	0.7412	0.7303	0.7193	0.7081	0.6968
12	0.8684	0.8607	0.8529	0.8448	0.8364	0.8279	0.8191	0.8101	0.8009	0.7916
13	0.9210	0.9156	0.9100	0.9042	0.8981	0.8919	0.8853	0.8786	0.8716	0.8645
14	0.9552	0.9517	0.9480	0.9441	0.9400	0.9357	0.9312	0.9265	0.9216	0.9165
15	0.9760	0.9738	0.9715	0.9691	0.9665	0.9638	0.9609	0.9579	0.9546	0.9513
16	0.9878	0.9865	0.9852	0.9838	0.9823	0.9806	0.9789	0.9770	0.9751	0.9730
17	0.9941	0.9934	0.9927	0.9919	0.9911	0.9902	0.9892	0.9881	0.9870	0.9857
18	0.9973	0.9969	0.9966	0.9962	0.9957	0.9952	0.9947	0.9941	0.9935	0.9928
19	0.9988	0.9986	0.9985	0.9983	0.9980	0.9978	0.9975	0.9972	0.9969	0.9965
20	0.9995	0.9994	0.9993	0.9992	0.9991	0.9990	0.9989	0.9987	0.9986	0.9984

21	0.9998	0.9998	0.9997	0.9997	0.9996	0.9996	0.9995	0.9995	0.9994	0.9993
22	0.9999	0.9999	0.9999	0.9999	0.9999	0.9998	0.9998	0.9998	0.9997	0.9997
23	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
24	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
X	11	12	13	14	15	16	17	18	19	20
0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1	0.0002	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2	0.0012	0.0005	0.0002	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
3	0.0049	0.0023	0.0011	0.0005	0.0002	0.0001	0.0000	0.0000	0.0000	0.0000
4	0.0151	0.0076	0.0037	0.0018	0.0009	0.0004	0.0002	0.0001	0.0000	0.0000
5	0.0375	0.0203	0.0107	0.0055	0.0028	0.0014	0.0007	0.0003	0.0002	0.0001
6	0.0786	0.0458	0.0259	0.0142	0.0076	0.0040	0.0021	0.0010	0.0005	0.0003
7	0.1432	0.0895	0.0540	0.0316	0.0180	0.0100	0.0054	0.0029	0.0015	0.0008
8	0.2320	0.1550	0.0998	0.0621	0.0374	0.0220	0.0126	0.0071	0.0039	0.0021
9	0.3405	0.2424	0.1658	0.1094	0.0699	0.0433	0.0261	0.0154	0.0089	0.0050
10	0.4599	0.3472	0.2517	0.1757	0.1185	0.0774	0.0491	0.0304	0.0183	0.0108
11	0.5793	0.4616	0.3532	0.2600	0.1848	0.1270	0.0847	0.0549	0.0347	0.0214
12	0.6887	0.5760	0.4631	0.3585	0.2676	0.1931	0.1350	0.0917	0.0606	0.0390
13	0.7813	0.6815	0.5730	0.4644	0.3632	0.2745	0.2009	0.1426	0.0984	0.0661
14	0.8540	0.7720	0.6751	0.5704	0.4657	0.3675	0.2808	0.2081	0.1497	0.1049
15	0.9074	0.8444	0.7636	0.6694	0.5681	0.4667	0.3715	0.2867	0.2148	0.1565
16	0.9441	0.8987	0.8355	0.7559	0.6641	0.5660	0.4677	0.3751	0.2920	0.2211
17	0.9678	0.9370	0.8905	0.8272	0.7489	0.6593	0.5640	0.4686	0.3784	0.2970
18	0.9823	0.9626	0.9302	0.8826	0.8195	0.7423	0.6550	0.5622	0.4695	0.3814
19	0.9907	0.9787	0.9573	0.9235	0.8752	0.8122	0.7363	0.6509	0.5606	0.4703
20	0.9953	0.9884	0.9750	0.9521	0.9170	0.8682	0.8055	0.7307	0.6472	0.5591
21	0.9977	0.9939	0.9859	0.9712	0.9469	0.9108	0.8615	0.7991	0.7255	0.6437
22	0.9990	0.9970	0.9924	0.9833	0.9673	0.9418	0.9047	0.8551	0.7931	0.7206
23	0.9995	0.9985	0.9960	0.9907	0.9805	0.9633	0.9367	0.8989	0.8490	0.7875
24	0.9998	0.9993	0.9980	0.9950	0.9888	0.9777	0.9594	0.9317	0.8933	0.8432
25	0.9999	0.9997	0.9990	0.9974	0.9938	0.9869	0.9748	0.9554	0.9269	0.8878
26	1.0000	0.9999	0.9995	0.9987	0.9967	0.9925	0.9848	0.9718	0.9514	0.9221
27	1.0000	0.9999	0.9998	0.9994	0.9983	0.9959	0.9912	0.9827	0.9687	0.9475
28	1.0000	1.0000	0.9999	0.9997	0.9991	0.9978	0.9950	0.9897	0.9805	0.9657
29	1.0000	1.0000	1.0000	0.9999	0.9996	0.9989	0.9973	0.9941	0.9882	0.9782
30	1.0000	1.0000	1.0000	0.9999	0.9998	0.9994	0.9986	0.9967	0.9930	0.9865
31	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9993	0.9982	0.9960	0.9919
32	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9996	0.9990	0.9978	0.9953
33	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	0.9995	0.9988	0.9973
34	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	0.9994	0.9985
35	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9992
36	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	0.9996
37	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998
38	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999
39	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

N(0,1) –ის სიმკვრივის ($\varphi(z)=rac{1}{\sqrt{2\pi}}e^{-z^2/2}$) მნიშვნელობები

					0	Z				
Z	0	1	2	3	4	5	6	7	8	9
0.0	.398942	.398922	.398862	.398763	.398623	.398444	.398225	.397966	.397668	.397330
0.1	.396953	.396536	.396080	.395585	.395052	.394479	.393868	.393219	.392531	.391806
0.2	.391043	.390242	.389404	.388529	.387617	.386668	.385683	.384663	.383606	.382515
0.3	.381388	.380226	.379031	.377801	.376537	.375240	.373911	.372548	.371154	.369728
0.4	.368270	.366782	.365263	.363714	.362135	.360527	.358890	.357225	.355533	.353812
0.5	.352065	.350292	.348493	.346668	.344818	.342944	.341046	.339124	.337180	.335213
0.6	.333225	.331215	.329184	.327133	.325062	.322972	.320864	.318737	.316593	.314432
0.7	.312254	.310060	.307851	.305627	.303389	.301137	.298872	.296595	.294305	.292004
0.8	.289692	.287369	.285036	.282694	.280344	.277985	.275618	.273244	.270864	.268477
0.9	.266085	.263688	.261286	.258881	.256471	.254059	.251644	.249228	.246809	.244390
Z	0	1	2	3	4	5	6	7	8	9
1.0	.241971	.239551	.237132	.234714	.232297	.229882	.227470	.225060	.222653	.220251
1.1	.217852	.215458	.213069	.210686	.208308	.205936	.203571	.201214	.198863	.196520
1.2	.194186	.191860	.189543	.187235	.184937	.182649	.180371	.178104	.175847	.173602
1.3	.171369	.169147	.166937	.164740	.162555	.160383	.158225	.156080	.153948	.151831
1.4	.149727	.147639	.145564	.143505	.141460	.139431	.137417	.135418	.133435	.131468
1.5	.129518	.127583	.125665	.123763	.121878	.120009	.118157	.116323	.114505	.112704
1.6	.110921	.109155	.107406	.105675	.103961	.102265	.100586	.098925	.097282	.095657
1.7	.094049	.092459	.090887	.089333	.087796	.086277	.084776	.083293	.081828	.080380
1.8	.078950	.077538	.076143	.074766	.073407	.072065	.070740	.069433	.068144	.066871
1.9	.065616	.064378	.063157	.061952	.060765	.059595	.058441	.057304	.056183	.055079
Z	0	1	2	3	4	5	6	7	8	9
2.0	.053991	.052919	.051864	.050824	.049800	.048792	.047800	.046823	.045861	.044915
2.1	.043984	.043067	.042166	.041280	.040408	.039550	.038707	.037878	.037063	.036262
2.2	.035475	.034701	.033941	.033194	.032460	.031740	.031032	.030337	.029655	.028985
2.3	.028327	.027682	.027048	.026426	.025817	.025218	.024631	.024056	.023491	.022937
2.4	.022395	.021862	.021341	.020829	.020328	.019837	.019356	.018885	.018423	.017971
2.5	.017528	.017095	.016670	.016254	.015848	.015449	.015060	.014678	.014305	.013940
2.6	.013583	.013234	.012892	.012558	.012232	.011912	.011600	.011295	.010997	.010706
2.7	.010421	.010143	3z98712	3z96058	3z93466	3z90936	3z88465	3z86052	3z83697	3z81398
2.8	3z79155	3z76965	3z74829	3z72744	3z70711	3z68728	3z66793	3z64907	3z63067	3z61274
2.9	3z59525	3z57821	3z56160	3z54541	3z52963	3z51426	3z49929	3z48470	3z47050	3z45666

სტანდარტული ნორმალური განაწილების ფუნქციის

$$\Phi(x) = P\{N(0,1) \le x\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt$$
 მნიშვნელობები ($x \ge 0$)

х	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.50000	0.50399	0.50798	0.51197	0.51595	0.51994	0.52392	0.52790	0.53188	0.53586
0.1	0.53983	0.54380	0.54776	0.55172	0.55567	0.55962	0.56356	0.56749	0.57142	0.57535
0.2	0.57926	0.58317	0.58706	0.59095	0.59483	0.59871	0.60257	0.60642	0.61026	0.61409
0.3	0.61791	0.62172	0.62552	0.62930	0.63307	0.63683	0.64058	0.64431	0.64803	0.65173
0.4	0.65542	0.65910	0.66276	0.66640	0.67003	0.67364	0.67724	0.68082	0.68439	0.68793
0.5	0.69146	0.69497	0.69847	0.70194	0.70540	0.70884	0.71226	0.71566	0.71904	0.72240
0.6	0.72575	0.72907	0.73237	0.73565	0.73891	0.74215	0.74537	0.74857	0.75175	0.75490
0.7	0.75804	0.76115	0.76424	0.76730	0.77035	0.77337	0.77637	0.77935	0.78230	0.78524
0.8	0.78814	0.79103	0.79389	0.79673	0.79955	0.80234	0.80511	0.80785	0.81057	0.81327
0.9	0.81594	0.81859	0.82121	0.82381	0.82639	0.82894	0.83147	0.83398	0.83646	0.83891
1.0	0.84134	0.84375	0.84614	0.84849	0.85083	0.85314	0.85543	0.85769	0.85993	0.86214
1.1	0.86433	0.86650	0.86864	0.87076	0.87286	0.87493	0.87698	0.87900	0.88100	0.88298
1.2	0.88493	0.88686	0.88877	0.89065	0.89251	0.89435	0.89617	0.89796	0.89973	0.90147
1.3	0.90320	0.90490	0.90658	0.90824	0.90988	0.91149	0.91308	0.91466	0.91621	0.91774
1.4	0.91924	0.92073	0.92220	0.92364	0.92507	0.92647	0.92785	0.92922	0.93056	0.93189
1.5	0.93319	0.93448	0.93574	0.93699	0.93822	0.93943	0.94062	0.94179	0.94295	0.94408
1.6	0.94520	0.94630	0.94738	0.94845	0.94950	0.95053	0.95154	0.95254	0.95352	0.95449
1.7	0.95543	0.95637	0.95728	0.95818	0.95907	0.95994	0.96080	0.96164	0.96246	0.96327
1.8	0.96407	0.96485	0.96562	0.96638	0.96712	0.96784	0.96856	0.96926	0.96995	0.97062
1.9	0.97128	0.97193	0.97257	0.97320	0.97381	0.97441	0.97500	0.97558	0.97615	0.97670
2.0		0.97778								
2.1		0.98257								
2.2		0.98645								
2.3		0.98956								
2.4		0.99202								
2.5		0.99396								
2.6		0.99547								
2.7		0.99664				0.99702				
2.8		0.99752			0.99774			0.99795		0.99807
2.9		0.99819			0.99836			0.99851	0.99856	
3.0		0.99869								
3.1		0.99906								
3.2		0.99934								
3.3		0.99953								
3.4		0.99968								
3.5	0.99977	0.99978	0.99978	0.99979	0.99980	0.99981	0.99981	0.99982	0.99983	0.99983

სტანდარტული ნორმალური განაწილების ფუნქციის მნიშვნელობები $(-x \le 0)$

-x	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.50000	0.49601	0.49202	0.48803	0.48405	0.48006	0.47608	0.47210	0.46812	0.46414
0.1	0.46017	0.45621	0.45224	0.44828	0.44433	0.44038	0.43644	0.43251	0.42858	0.42466
0.2	0.42074	0.41683	0.41294	0.40905	0.40517	0.40129	0.39743	0.39358	0.38974	0.38591

0.3	0.38209	0.37828	0.37448	0.37070	0.36693	0.36317	0.35942	0.35569	0.35197	0.34827
0.4	0.34458	0.34090	0.33724	0.33360	0.32997	0.32636	0.32276	0.31918	0.31561	0.31207
0.5	0.30854	0.30503	0.30153	0.29806	0.29460	0.29116	0.28774	0.28434	0.28096	0.27760
0.6	0.27425	0.27093	0.26763	0.26435	0.26109	0.25785	0.25463	0.25143	0.24825	0.24510
0.7	0.24196	0.23885	0.23576	0.23270	0.22965	0.22663	0.22363	0.22065	0.21770	0.21476
0.8	0.21186	0.20897	0.20611	0.20327	0.20045	0.19766	0.19489	0.19215	0.18943	0.18673
0.9	0.18406	0.18141	0.17879	0.17619	0.17361	0.17106	0.16853	0.16602	0.16354	0.16109
1.0	0.15866	0.15625	0.15386	0.15151	0.14917	0.14686	0.14457	0.14231	0.14007	0.13786
1.1	0.13567	0.13350	0.13136	0.12924	0.12714	0.12507	0.12302	0.12100	0.11900	0.11702
1.2	0.11507	0.11314	0.11123	0.10935	0.10749	0.10565	0.10384	0.10204	0.10027	0.09853
1.3	0.09680	0.09510	0.09342	0.09176	0.09012	0.08851	0.08692	0.08534	0.08379	0.08226
1.4	0.08076	0.07927	0.07780	0.07636	0.07493	0.07353	0.07215	0.07078	0.06944	0.06811
1.5	0.06681	0.06552	0.06426	0.06301	0.06178	0.06057	0.05938	0.05821	0.05705	0.05592
1.6	0.05480	0.05370	0.05262	0.05155	0.05050	0.04947	0.04846	0.04746	0.04648	0.04551
1.7	0.04457	0.04363	0.04272	0.04182	0.04093	0.04006	0.03920	0.03836	0.03754	0.03673
1.8	0.03593	0.03515	0.03438	0.03363	0.03288	0.03216	0.03144	0.03074	0.03005	0.02938
1.9	0.02872	0.02807	0.02743	0.02680	0.02619	0.02559	0.02500	0.02442	0.02385	0.02330
2.0	0.02275	0.02222	0.02169	0.02118	0.02068	0.02018	0.01970	0.01923	0.01876	0.01831
2.1	0.01786	0.01743	0.01700	0.01659	0.01618	0.01578	0.01539	0.01500	0.01463	0.01426
2.2	0.01390	0.01355	0.01321	0.01287	0.01255	0.01222	0.01191	0.01160	0.01130	0.01101
2.3	0.01072	0.01044	0.01017	0.00990	0.00964	0.00939	0.00914	0.00889	0.00866	0.00842
2.4	0.00820	0.00798	0.00776	0.00755	0.00734	0.00714	0.00695	0.00676	0.00657	0.00639
2.5	0.00621	0.00604	0.00587	0.00570	0.00554	0.00539	0.00523	0.00509	0.00494	0.00480
2.6	0.00466	0.00453	0.00440	0.00427	0.00415	0.00403	0.00391	0.00379	0.00368	0.00357
2.7	0.00347	0.00336	0.00326	0.00317	0.00307	0.00298	0.00289	0.00280	0.00272	0.00264
2.8	0.00256	0.00248	0.00240	0.00233	0.00226	0.00219	0.00212	0.00205	0.00199	0.00193
2.9	0.00187	0.00181	0.00175	0.00170	0.00164	0.00159	0.00154	0.00149	0.00144	0.00140
3.0	0.00135	0.00131	0.00126	0.00122	0.00118	0.00114	0.00111	0.00107	0.00104	0.00100
3.1	0.00097	0.00094	0.00090	0.00087	0.00085	0.00082	0.00079	0.00076	0.00074	0.00071
3.2	0.00069	0.00066	0.00064	0.00062	0.00060	0.00058	0.00056	0.00054	0.00052	0.00050
3.3	0.00048	0.00047	0.00045	0.00043	0.00042	0.00040	0.00039	0.00038	0.00036	0.00035
3.4	0.00034	0.00033	0.00031	0.00030	0.00029	0.00028	0.00027	0.00026	0.00025	0.00024
3.5	0.00023	0.00022	0.00022	0.00021	0.00020	0.00019	0.00019	0.00018	0.00017	0.00017

სტანდარტული ნორმალური განაწილების ზედა $\,lpha$ -კრიტიკული წერტილები (z_lpha)

	0.1	0.05	0.025	0.125	0.01	0.005	0.0025	0.001
z_{\square}	1.28	1.645	1.96	2.24	2.33	2.575	2.81	3.08

 $\Phi_0(z) = P\{0 \le N(0,1) \le z\} = \frac{1}{\sqrt{2\pi}} \int\limits_0^z e^{-t^2/2} dt$ ფუნქციის მნიშვნელობები ($z \ge 0$)

Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.0000	.0040	.0080	.0120	.0160	.0199	.0239	.0279	.0319	.0359
0.1	.0398	.0438	.0478	.0517	.0557	.0596	.0636	.0675	.0714	.0753
0.2	.0793	.0832	.0871	.0910	.0948	.0987	.1026	.1064	.1103	.1141
0.3	.1179	.1217	.1255	.1293	.1331	.1368	.1406	.1443	.1480	.1517
0.4	.1554	.1591	.1628	.1664	.1700	.1736	.1772	.1808	.1844	.1879
0.5	.1915	.1950	.1985	.2019	.2054	.2088	.2123	.2157	.2190	.2224
0.6	.2257	.2291	.2324	.2357	.2389	.2422	.2454	.2486	.2518	.2549
0.7	.2580	.2612	.2642	.2673	.2704	.2734	.2764	.2794	.2823	.2852
8.0	.2881	.2910	.2939	.2967	.2995	.3023	.3051	.3078	.3106	.3133
0.9	.3159	.3186	.3212	.3238	.3264	.3289	.3315	.3340	.3365	.3389
1.0	.3413	.3438	.3461	.3485	.3508	.3531	.3554	.3577	.3599	.3621
1.1	.3643	.3665	.3686	.3708	.3729	.3749	.3770	.3790	.3810	.3830
1.2	.3849	.3869	.3888	.3907	.3925	.3944	.3962	.3980	.3997	.4015
1.3	.4032	.4049	.4066	.4082	.4099	.4115	.4131	.4147	.4162	.4177
1.4	.4192	.4207	.4222	.4236	.4251	.4265	.4279	.4292	.4306	.4319
1.5	.4332	.4345	.4357	.4370	.4382	.4394	.4406	.4418	.4429	.4441
1.6	.4452	.4463	.4474	.4484	.4495	.4505	.4515	.4525	.4535	.4545
1.7	.4554	.4564	.4573	.4582	.4591	.4599	.4608	.4616	.4625	.4633
1.8	.4641	.4649	.4656	.4664	.4671	.4678	.4686	.4693	.4699	.4706
1.9	.4713	.4719	.4726	.4732	.4738	.4744	.4750	.4756	.4761	.4767
2.0	.4772	.4778	.4783	.4788	.4793	.4798	.4803	.4808	.4812	.4817
2.1	.4821	.4826	.4830	.4834	.4838	.4842	.4846	.4850	.4854	.4857
2.2	.4861	.4864	.4868	.4871	.4875	.4878	.4881	.4884	.4887	.4890
2.3	.4893	.4896	.4898	.4901	.4904	.4906	.4909	.4911	.4913	.4916
2.4	.4918	.4920	.4922	.4925	.4927	.4929	.4931	.4932	.4934	.4936
2.5	.4938	.4940	.4941	.4943	.4945	.4946	.4948	.4949	.4951	.4952
2.6	.4953	.4955	.4956	.4957	.4959	.4960	.4961	.4962	.4963	.4964
2.7	.4965	.4966	.4967	.4968	.4969	.4970	.4971	.4972	.4973	.4974
2.8	.4974	.4975	.4976	.4977	.4977	.4978	.4979	.4979	.4980	.4981
2.9	.4981	.4982	.4982	.4983	.4984	.4984	.4985	.4985	.4986	.4986
3.0	.49865	.49869	.49874	.49878	.49882	.49886	.49889	.49893	.49897	.49900
3.1	.49903	.49906	.49910	.49913	.49916	.49918	.49921	.49924	.49926	.49929
3.2	.49931	.49934	.49936	.49938	.49940	.49942	.49944	.49946	.49948	.49950
3.3	.49952	.49953	.49955	.49957	.49958	.49960	.49961	.49962	.49964	.49965
3.4	.49966	.49968	.49969	.49970	.49971	.49972	.49973	.49974	.49975	.49976
3.5	.49977	.49978	.49978	.49979	.49980	.49981	.49981	.49982	.49983	.49983
3.6	.49984	.49985	.49985	.49986	.49986	.49987	.49987	.49988	.49988	.49989
3.7	.49989	.49990	.49990	.49990	.49991	.49991	.49992	.49992	.49992	.49992
3.8	.49993	.49993	.49993	.49994	.49994	.49994	.49994	.49995	.49995	.49995
3.9	.49995	.49995	.49996	.49996	.49996	.49996	.49996	.49996	.49997	.49997

 $\chi^2(n)$ (ხი კვადრატ) განაწილების ზედა lpha -კრიტიკული წერტილები ($\chi^2_{n,lpha}$)

თავისუფლების ხარისხი

	_	_	_		ე <u>ფლე</u> ნიი				
α	1	2	3	4	5	6	7	8	9
0.005			12.8382						23.5893
0.010	6.63491		11.3449					20.0902	
0.025	5.02389					14.4494		17.5346	
0.050	3.84146		7.8147			12.5916		15.5073	
0.100	2.70554		6.2514	7.7794		10.6446		13.3616	
0.900	0.01579	0.2107	0.5844	1.0636	1.6103	2.2041	2.8331	3.4895	4.1682
0.950	0.00393	0.1026	0.3518	0.7107	1.1455	1.6354	2.1674	2.7326	3.3251
0.975	0.00098	0.0506	0.2158	0.4844	0.8312	1.2373	1.6899	2.1797	2.7004
0.990	0.00016		0.1148	0.2971	0.5543	0.8721	1.2390	1.6465	2.0879
0.995	0.00004	0.0100	0.0717	0.2070	0.4117	0.6757	0.9893	1.344	1.7349
α	10	11	12	13	14	15	16	17	18
0.005		26.7569						35.7182	
0.010		24.7250						33.4085	
0.025		21.9201						30.1910	
0.050		19.6751						27.5871	
0.100		17.2750						24.7690	
0.900	4.8652	5.5778	6.3038	7.0415	7.7895	8.5468	9.3122	10.0852	
0.950	3.9403	4.5748	5.2260	5.8919	6.5706	7.2609	7.9616	8.6718	9.3905
0.975	3.2470	3.8157	4.4038	5.0088	5.6287	6.2621	6.9077	7.5642	8.2307
0.990	2.5582	3.0535	3.5706	4.1069	4.6604	5.2293	5.8122	6.4078	7.0149
0.995	2.1559	2.6032	3.0738	3.5650	4.0747	4.6009	5.1422	5.6972	6.2648
α	19	20	21	22	23	24	25	26	27
α 0.005	19 38.5820	20 39.9968	21 41.4011	22 42.7960	23 44.1808	24 45.5586	25 46.9285	26 48.2903	27 49.6452
α 0.005 0.010	19 38.5820 36.1907	20 39.9968 37.5662	21 41.4011 38.9322	22 42.7960 40.2895	23 44.1808 41.6382	24 45.5586 42.9798	25 46.9285 44.3144	26 48.2903 45.6419	27 49.6452 46.9631
α 0.005 0.010 0.025	19 38.5820 36.1907 32.8523	20 39.9968 37.5662 34.1696	21 41.4011 38.9322 35.4789	22 42.7960 40.2895 36.7808	23 44.1808 41.6382 38.0755	24 45.5586 42.9798 39.3641	25 46.9285 44.3144 40.6466	26 48.2903 45.6419 41.9233	27 49.6452 46.9631 43.1946
α 0.005 0.010 0.025 0.050	19 38.5820 36.1907 32.8523 30.1435	20 39.9968 37.5662 34.1696 31.4104	21 41.4011 38.9322 35.4789 32.6706	22 42.7960 40.2895 36.7808 33.9245	23 44.1808 41.6382 38.0755 35.1724	24 45.5586 42.9798 39.3641 36.4150	25 46.9285 44.3144 40.6466 37.6525	26 48.2903 45.6419 41.9233 38.8852	27 49.6452 46.9631 43.1946 40.1133
α 0.005 0.010 0.025 0.050 0.100	19 38.5820 36.1907 32.8523 30.1435 27.2036	20 39.9968 37.5662 34.1696 31.4104 28.4120	21 41.4011 38.9322 35.4789 32.6706 29.6151	22 42.7960 40.2895 36.7808 33.9245 30.8133	23 44.1808 41.6382 38.0755 35.1724 32.0069	24 45.5586 42.9798 39.3641 36.4150 33.1962	25 46.9285 44.3144 40.6466 37.6525 34.3816	26 48.2903 45.6419 41.9233 38.8852 35.5632	27 49.6452 46.9631 43.1946 40.1133 36.7412
α 0.005 0.010 0.025 0.050 0.100 0.900	19 38.5820 36.1907 32.8523 30.1435 27.2036 11.6509	20 39.9968 37.5662 34.1696 31.4104 28.4120 12.4426	21 41.4011 38.9322 35.4789 32.6706 29.6151 13.2396	22 42.7960 40.2895 36.7808 33.9245 30.8133 14.0415	23 44.1808 41.6382 38.0755 35.1724 32.0069 14.8480	24 45.5586 42.9798 39.3641 36.4150 33.1962 15.6587	25 46.9285 44.3144 40.6466 37.6525 34.3816 16.4734	26 48.2903 45.6419 41.9233 38.8852 35.5632 17.2919	27 49.6452 46.9631 43.1946 40.1133 36.7412 18.1139
α 0.005 0.010 0.025 0.050 0.100 0.900 0.950	19 38.5820 36.1907 32.8523 30.1435 27.2036 11.6509 10.1170	20 39.9968 37.5662 34.1696 31.4104 28.4120 12.4426 10.8508	21 41.4011 38.9322 35.4789 32.6706 29.6151 13.2396 11.5913	22 42.7960 40.2895 36.7808 33.9245 30.8133 14.0415 12.3380	23 44.1808 41.6382 38.0755 35.1724 32.0069 14.8480 13.0905	24 45.5586 42.9798 39.3641 36.4150 33.1962 15.6587 13.8484	25 46.9285 44.3144 40.6466 37.6525 34.3816 16.4734 14.6114	26 48.2903 45.6419 41.9233 38.8852 35.5632 17.2919 15.3792	27 49.6452 46.9631 43.1946 40.1133 36.7412 18.1139 16.1514
α 0.005 0.010 0.025 0.050 0.100 0.900 0.950 0.975	19 38.5820 36.1907 32.8523 30.1435 27.2036 11.6509 10.1170 8.9065	20 39.9968 37.5662 34.1696 31.4104 28.4120 12.4426 10.8508 9.5908	21 41.4011 38.9322 35.4789 32.6706 29.6151 13.2396 11.5913 10.2829	22 42.7960 40.2895 36.7808 33.9245 30.8133 14.0415 12.3380 10.9823	23 44.1808 41.6382 38.0755 35.1724 32.0069 14.8480 13.0905 11.6886	24 45.5586 42.9798 39.3641 36.4150 33.1962 15.6587 13.8484 12.4012	25 46.9285 44.3144 40.6466 37.6525 34.3816 16.4734 14.6114 13.1197	26 48.2903 45.6419 41.9233 38.8852 35.5632 17.2919 15.3792 13.8439	27 49.6452 46.9631 43.1946 40.1133 36.7412 18.1139 16.1514 14.5734
α 0.005 0.010 0.025 0.050 0.100 0.900 0.950 0.975	19 38.5820 36.1907 32.8523 30.1435 27.2036 11.6509 10.1170 8.9065 7.6327	20 39.9968 37.5662 34.1696 31.4104 28.4120 12.4426 10.8508 9.5908 8.2604	21 41.4011 38.9322 35.4789 32.6706 29.6151 13.2396 11.5913 10.2829 8.8972	22 42.7960 40.2895 36.7808 33.9245 30.8133 14.0415 12.3380 10.9823 9.5425	23 44.1808 41.6382 38.0755 35.1724 32.0069 14.8480 13.0905 11.6886 10.1957	24 45.5586 42.9798 39.3641 36.4150 33.1962 15.6587 13.8484 12.4012 10.8564	25 46.9285 44.3144 40.6466 37.6525 34.3816 16.4734 14.6114 13.1197 11.5240	26 48.2903 45.6419 41.9233 38.8852 35.5632 17.2919 15.3792 13.8439 12.1981	27 49.6452 46.9631 43.1946 40.1133 36.7412 18.1139 16.1514 14.5734 12.8785
α 0.005 0.010 0.025 0.050 0.100 0.900 0.950 0.975 0.990 0.995	19 38.5820 36.1907 32.8523 30.1435 27.2036 11.6509 10.1170 8.9065 7.6327 6.8440	20 39.9968 37.5662 34.1696 31.4104 28.4120 12.4426 10.8508 9.5908 8.2604 7.4338	21 41.4011 38.9322 35.4789 32.6706 29.6151 13.2396 11.5913 10.2829 8.8972 8.0337	22 42.7960 40.2895 36.7808 33.9245 30.8133 14.0415 12.3380 10.9823 9.5425 8.6427	23 44.1808 41.6382 38.0755 35.1724 32.0069 14.8480 13.0905 11.6886 10.1957 9.2604	24 45.5586 42.9798 39.3641 36.4150 33.1962 15.6587 13.8484 12.4012 10.8564 9.8862	25 46.9285 44.3144 40.6466 37.6525 34.3816 16.4734 14.6114 13.1197 11.5240 10.5197	26 48.2903 45.6419 41.9233 38.8852 35.5632 17.2919 15.3792 13.8439	27 49.6452 46.9631 43.1946 40.1133 36.7412 18.1139 16.1514 14.5734 12.8785
α 0.005 0.010 0.025 0.050 0.100 0.900 0.950 0.975 0.990 0.995	19 38.5820 36.1907 32.8523 30.1435 27.2036 11.6509 10.1170 8.9065 7.6327 6.8440 28	20 39.9968 37.5662 34.1696 31.4104 28.4120 12.4426 10.8508 9.5908 8.2604 7.4338 29	21 41.4011 38.9322 35.4789 32.6706 29.6151 13.2396 11.5913 10.2829 8.8972 8.0337 30	22 42.7960 40.2895 36.7808 33.9245 30.8133 14.0415 12.3380 10.9823 9.5425 8.6427 40	23 44.1808 41.6382 38.0755 35.1724 32.0069 14.8480 13.0905 11.6886 10.1957 9.2604 50	24 45.5586 42.9798 39.3641 36.4150 33.1962 15.6587 13.8484 12.4012 10.8564 9.8862 60	25 46.9285 44.3144 40.6466 37.6525 34.3816 16.4734 14.6114 13.1197 11.5240 10.5197 100	26 48.2903 45.6419 41.9233 38.8852 35.5632 17.2919 15.3792 13.8439 12.1981	27 49.6452 46.9631 43.1946 40.1133 36.7412 18.1139 16.1514 14.5734 12.8785
α 0.005 0.010 0.025 0.050 0.100 0.900 0.955 0.995 α 0.005	19 38.5820 36.1907 32.8523 30.1435 27.2036 11.6509 10.1170 8.9065 7.6327 6.8440 28 50.9936	20 39.9968 37.5662 34.1696 31.4104 28.4120 12.4426 10.8508 9.5908 8.2604 7.4338 29 52.3360	21 41.4011 38.9322 35.4789 32.6706 29.6151 13.2396 11.5913 10.2829 8.8972 8.0337 30 53.6720	22 42.7960 40.2895 36.7808 33.9245 30.8133 14.0415 12.3380 10.9823 9.5425 8.6427 40 66.7673	23 44.1808 41.6382 38.0755 35.1724 32.0069 14.8480 13.0905 11.6886 10.1957 9.2604 50 79.4896	24 45.5586 42.9798 39.3641 36.4150 33.1962 15.6587 13.8484 12.4012 10.8564 9.8862 60 91.9547	25 46.9285 44.3144 40.6466 37.6525 34.3816 16.4734 14.6114 13.1197 11.5240 10.5197 100 140.177	26 48.2903 45.6419 41.9233 38.8852 35.5632 17.2919 15.3792 13.8439 12.1981	27 49.6452 46.9631 43.1946 40.1133 36.7412 18.1139 16.1514 14.5734 12.8785
$\begin{array}{c} \alpha \\ 0.005 \\ 0.010 \\ 0.025 \\ 0.050 \\ 0.100 \\ 0.900 \\ 0.950 \\ 0.975 \\ 0.995 \\ \alpha \\ 0.005 \\ 0.010 \\ \end{array}$	19 38.5820 36.1907 32.8523 30.1435 27.2036 11.6509 10.1170 8.9065 7.6327 6.8440 28 50.9936 48.2783	20 39.9968 37.5662 34.1696 31.4104 28.4120 12.4426 10.8508 9.5908 8.2604 7.4338 29 52.3360 49.5881	21 41.4011 38.9322 35.4789 32.6706 29.6151 13.2396 11.5913 10.2829 8.8972 8.0337 30 53.6720 50.8922	22 42.7960 40.2895 36.7808 33.9245 30.8133 14.0415 12.3380 10.9823 9.5425 8.6427 40 66.7673 63.6914	23 44.1808 41.6382 38.0755 35.1724 32.0069 14.8480 13.0905 11.6886 10.1957 9.2604 50 79.4896 76.1537	24 45.5586 42.9798 39.3641 36.4150 33.1962 15.6587 13.8484 12.4012 10.8564 9.8862 60 91.9547 88.3810	25 46.9285 44.3144 40.6466 37.6525 34.3816 16.4734 14.6114 13.1197 11.5240 10.5197 100 140.177 135.811	26 48.2903 45.6419 41.9233 38.8852 35.5632 17.2919 15.3792 13.8439 12.1981	27 49.6452 46.9631 43.1946 40.1133 36.7412 18.1139 16.1514 14.5734 12.8785
α 0.005 0.010 0.025 0.050 0.100 0.900 0.950 0.975 0.995 α 0.005 0.010 0.025	19 38.5820 36.1907 32.8523 30.1435 27.2036 11.6509 10.1170 8.9065 7.6327 6.8440 28 50.9936 48.2783 44.4608	20 39.9968 37.5662 34.1696 31.4104 28.4120 12.4426 10.8508 9.5908 8.2604 7.4338 29 52.3360 49.5881 45.7224	21 41.4011 38.9322 35.4789 32.6706 29.6151 13.2396 11.5913 10.2829 8.8972 8.0337 30 53.6720 50.8922 46.9793	22 42.7960 40.2895 36.7808 33.9245 30.8133 14.0415 12.3380 10.9823 9.5425 8.6427 40 66.7673 63.6914 59.3420	23 44.1808 41.6382 38.0755 35.1724 32.0069 14.8480 13.0905 11.6886 10.1957 9.2604 50 79.4896 76.1537 71.4201	24 45.5586 42.9798 39.3641 36.4150 33.1962 15.6587 13.8484 12.4012 10.8564 9.8862 60 91.9547 88.3810 83.2984	25 46.9285 44.3144 40.6466 37.6525 34.3816 16.4734 14.6114 13.1197 11.5240 10.5197 100 140.177 135.811 129.563	26 48.2903 45.6419 41.9233 38.8852 35.5632 17.2919 15.3792 13.8439 12.1981	27 49.6452 46.9631 43.1946 40.1133 36.7412 18.1139 16.1514 14.5734 12.8785
$\begin{array}{c} \alpha \\ 0.005 \\ 0.010 \\ 0.025 \\ 0.050 \\ 0.100 \\ 0.900 \\ 0.950 \\ 0.975 \\ 0.995 \\ \alpha \\ 0.005 \\ 0.010 \\ 0.025 \\ 0.050 \end{array}$	19 38.5820 36.1907 32.8523 30.1435 27.2036 11.6509 10.1170 8.9065 7.6327 6.8440 28 50.9936 48.2783 44.4608 41.3372	20 39.9968 37.5662 34.1696 31.4104 28.4120 12.4426 10.8508 9.5908 8.2604 7.4338 29 52.3360 49.5881 45.7224 42.5570	21 41.4011 38.9322 35.4789 32.6706 29.6151 13.2396 11.5913 10.2829 8.8972 8.0337 30 53.6720 50.8922 46.9793 43.7730	22 42.7960 40.2895 36.7808 33.9245 30.8133 14.0415 12.3380 10.9823 9.5425 8.6427 40 66.7673 63.6914 59.3420 55.7586	23 44.1808 41.6382 38.0755 35.1724 32.0069 14.8480 13.0905 11.6886 10.1957 9.2604 50 79.4896 76.1537 71.4201 67.5048	24 45.5586 42.9798 39.3641 36.4150 33.1962 15.6587 13.8484 12.4012 10.8564 9.8862 60 91.9547 88.3810 83.2984 79.0823	25 46.9285 44.3144 40.6466 37.6525 34.3816 16.4734 14.6114 13.1197 11.5240 10.5197 100 140.177 135.811 129.563 124.343	26 48.2903 45.6419 41.9233 38.8852 35.5632 17.2919 15.3792 13.8439 12.1981	27 49.6452 46.9631 43.1946 40.1133 36.7412 18.1139 16.1514 14.5734 12.8785
α 0.005 0.010 0.025 0.050 0.100 0.900 0.950 0.975 0.995 α 0.005 0.010 0.025 0.050 0.100	19 38.5820 36.1907 32.8523 30.1435 27.2036 11.6509 10.1170 8.9065 7.6327 6.8440 28 50.9936 48.2783 44.4608 41.3372 37.9159	20 39.9968 37.5662 34.1696 31.4104 28.4120 12.4426 10.8508 9.5908 8.2604 7.4338 29 52.3360 49.5881 45.7224 42.5570 39.0875	21 41.4011 38.9322 35.4789 32.6706 29.6151 13.2396 11.5913 10.2829 8.8972 8.0337 30 53.6720 50.8922 46.9793 43.7730 40.2560	22 42.7960 40.2895 36.7808 33.9245 30.8133 14.0415 12.3380 10.9823 9.5425 8.6427 40 66.7673 63.6914 59.3420 55.7586 51.8051	23 44.1808 41.6382 38.0755 35.1724 32.0069 14.8480 13.0905 11.6886 10.1957 9.2604 50 79.4896 76.1537 71.4201 67.5048 63.1671	24 45.5586 42.9798 39.3641 36.4150 33.1962 15.6587 13.8484 12.4012 10.8564 9.8862 60 91.9547 88.3810 83.2984 79.0823 74.3972	25 46.9285 44.3144 40.6466 37.6525 34.3816 16.4734 14.6114 13.1197 11.5240 10.5197 100 140.177 135.811 129.563 124.343 118.499	26 48.2903 45.6419 41.9233 38.8852 35.5632 17.2919 15.3792 13.8439 12.1981	27 49.6452 46.9631 43.1946 40.1133 36.7412 18.1139 16.1514 14.5734 12.8785
α 0.005 0.010 0.025 0.050 0.100 0.900 0.950 0.975 0.995 α 0.005 0.010 0.025 0.050 0.100 0.900	19 38.5820 36.1907 32.8523 30.1435 27.2036 11.6509 10.1170 8.9065 7.6327 6.8440 28 50.9936 48.2783 44.4608 41.3372 37.9159 18.9392	20 39.9968 37.5662 34.1696 31.4104 28.4120 12.4426 10.8508 9.5908 8.2604 7.4338 29 52.3360 49.5881 45.7224 42.5570 39.0875 19.7677	21 41.4011 38.9322 35.4789 32.6706 29.6151 13.2396 11.5913 10.2829 8.8972 8.0337 30 53.6720 50.8922 46.9793 43.7730 40.2560 20.5992	22 42.7960 40.2895 36.7808 33.9245 30.8133 14.0415 12.3380 10.9823 9.5425 8.6427 40 66.7673 63.6914 59.3420 55.7586 51.8051 29.0505	23 44.1808 41.6382 38.0755 35.1724 32.0069 14.8480 13.0905 11.6886 10.1957 9.2604 50 79.4896 76.1537 71.4201 67.5048 63.1671 37.6886	24 45.5586 42.9798 39.3641 36.4150 33.1962 15.6587 13.8484 12.4012 10.8564 9.8862 60 91.9547 88.3810 83.2984 79.0823 74.3972 46.4589	25 46.9285 44.3144 40.6466 37.6525 34.3816 16.4734 14.6114 13.1197 11.5240 10.5197 100 140.177 135.811 129.563 124.343 118.499 82.358	26 48.2903 45.6419 41.9233 38.8852 35.5632 17.2919 15.3792 13.8439 12.1981	27 49.6452 46.9631 43.1946 40.1133 36.7412 18.1139 16.1514 14.5734 12.8785
α 0.005 0.010 0.025 0.050 0.100 0.900 0.950 0.975 0.995 α 0.005 0.010 0.025 0.050 0.100 0.900	19 38.5820 36.1907 32.8523 30.1435 27.2036 11.6509 10.1170 8.9065 7.6327 6.8440 28 50.9936 48.2783 44.4608 41.3372 37.9159 18.9392 16.9279	20 39.9968 37.5662 34.1696 31.4104 28.4120 12.4426 10.8508 9.5908 8.2604 7.4338 29 52.3360 49.5881 45.7224 42.5570 39.0875 19.7677 17.7084	21 41.4011 38.9322 35.4789 32.6706 29.6151 13.2396 11.5913 10.2829 8.8972 8.0337 30 53.6720 50.8922 46.9793 43.7730 40.2560 20.5992 18.4927	22 42.7960 40.2895 36.7808 33.9245 30.8133 14.0415 12.3380 10.9823 9.5425 8.6427 40 66.7673 63.6914 59.3420 55.7586 51.8051 29.0505 26.5093	23 44.1808 41.6382 38.0755 35.1724 32.0069 14.8480 13.0905 11.6886 10.1957 9.2604 50 79.4896 76.1537 71.4201 67.5048 63.1671 37.6886 34.7643	24 45.5586 42.9798 39.3641 36.4150 33.1962 15.6587 13.8484 12.4012 10.8564 9.8862 60 91.9547 88.3810 83.2984 79.0823 74.3972 46.4589 43.1880	25 46.9285 44.3144 40.6466 37.6525 34.3816 16.4734 14.6114 13.1197 11.5240 10.5197 100 140.177 135.811 129.563 124.343 118.499 82.358 77.930	26 48.2903 45.6419 41.9233 38.8852 35.5632 17.2919 15.3792 13.8439 12.1981	27 49.6452 46.9631 43.1946 40.1133 36.7412 18.1139 16.1514 14.5734 12.8785
α 0.005 0.010 0.025 0.050 0.100 0.900 0.975 0.990 0.995 α 0.005 0.010 0.025 0.050 0.100 0.900 0.950 0.975	19 38.5820 36.1907 32.8523 30.1435 27.2036 11.6509 10.1170 8.9065 7.6327 6.8440 28 50.9936 48.2783 44.4608 41.3372 37.9159 18.9392 16.9279 15.3079	20 39.9968 37.5662 34.1696 31.4104 28.4120 12.4426 10.8508 9.5908 8.2604 7.4338 29 52.3360 49.5881 45.7224 42.5570 39.0875 19.7677 17.7084 16.0471	21 41.4011 38.9322 35.4789 32.6706 29.6151 13.2396 11.5913 10.2829 8.8972 8.0337 30 53.6720 50.8922 46.9793 43.7730 40.2560 20.5992 18.4927 16.7908	22 42.7960 40.2895 36.7808 33.9245 30.8133 14.0415 12.3380 10.9823 9.5425 8.6427 40 66.7673 63.6914 59.3420 55.7586 51.8051 29.0505 26.5093 24.4330	23 44.1808 41.6382 38.0755 35.1724 32.0069 14.8480 13.0905 11.6886 10.1957 9.2604 50 79.4896 76.1537 71.4201 67.5048 63.1671 37.6886 34.7643 32.3574	24 45.5586 42.9798 39.3641 36.4150 33.1962 15.6587 13.8484 12.4012 10.8564 9.8862 60 91.9547 88.3810 83.2984 79.0823 74.3972 46.4589 43.1880 40.4818	25 46.9285 44.3144 40.6466 37.6525 34.3816 16.4734 14.6114 13.1197 11.5240 10.5197 100 140.177 135.811 129.563 124.343 118.499 82.358 77.930 74.222	26 48.2903 45.6419 41.9233 38.8852 35.5632 17.2919 15.3792 13.8439 12.1981	27 49.6452 46.9631 43.1946 40.1133 36.7412 18.1139 16.1514 14.5734 12.8785
α 0.005 0.010 0.025 0.050 0.100 0.900 0.975 0.995 α 0.005 0.010 0.025 0.050 0.100 0.950 0.975	19 38.5820 36.1907 32.8523 30.1435 27.2036 11.6509 10.1170 8.9065 7.6327 6.8440 28 50.9936 48.2783 44.4608 41.3372 37.9159 18.9392 16.9279	20 39.9968 37.5662 34.1696 31.4104 28.4120 12.4426 10.8508 9.5908 8.2604 7.4338 29 52.3360 49.5881 45.7224 42.5570 39.0875 19.7677 17.7084 16.0471 14.2565	21 41.4011 38.9322 35.4789 32.6706 29.6151 13.2396 11.5913 10.2829 8.8972 8.0337 30 53.6720 50.8922 46.9793 43.7730 40.2560 20.5992 18.4927 16.7908 14.9535	22 42.7960 40.2895 36.7808 33.9245 30.8133 14.0415 12.3380 10.9823 9.5425 8.6427 40 66.7673 63.6914 59.3420 55.7586 51.8051 29.0505 26.5093 24.4330 22.1643	23 44.1808 41.6382 38.0755 35.1724 32.0069 14.8480 13.0905 11.6886 10.1957 9.2604 50 79.4896 76.1537 71.4201 67.5048 63.1671 37.6886 34.7643 32.3574	24 45.5586 42.9798 39.3641 36.4150 33.1962 15.6587 13.8484 12.4012 10.8564 9.8862 60 91.9547 88.3810 83.2984 79.0823 74.3972 46.4589 43.1880 40.4818 37.4849	25 46.9285 44.3144 40.6466 37.6525 34.3816 16.4734 14.6114 13.1197 11.5240 10.5197 100 140.177 135.811 129.563 124.343 118.499 82.358 77.930	26 48.2903 45.6419 41.9233 38.8852 35.5632 17.2919 15.3792 13.8439 12.1981	27 49.6452 46.9631 43.1946 40.1133 36.7412 18.1139 16.1514 14.5734 12.8785

t(n) (სტიუდენტის) განაწილების ზედა lpha -კრიტიკული წერტილები

მნიშვნელოვნების დონე (α)

df .45 .40 .35 .30 .25 .20 .15 .10 .05 .025 .01 .005 .001 1 0.158 0.325 0.510 0.727 1.000 1.376 1.963 3.078 6.314 12.71 31.82 63.66 318.3 0.142 0.289 0.445 0.617 0.816 1.061 1.386 1.886 2.920 4.303 6.965 9.925 22.33 0.137 0.277 0.424 0.584 0.765 0.978 1.250 1.638 2.353 3.182 4.541 5.841 10.21 0.134 0.271 0.414 0.569 0.741 0.941 1.190 1.533 2.132 2.776 3.747 4.604 7.173 0.132 0.267 0.408 0.559 0.727 0.920 1.156 1.476 2.015 2.571 3.365 4.032 5.893 0.131 0.265 0.404 0.553 0.718 0.906 1.134 1.440 1.943 2.447 3.143 3.707 5.208 7 0.130 0.263 0.402 0.549 0.711 0.896 1.119 1.415 1.895 2.365 2.998 3.499 4.785 0.130 0.262 0.399 0.546 0.706 0.889 1.108 1.397 1.860 2.306 2.896 3.355 4.501 0.129 0.261 0.398 0.543 0.703 0.883 1.100 1.383 1.833 2.262 2.821 3.250 4.297 0.129 0.260 0.397 0.542 0.700 0.879 1.093 1.372 1.812 2.228 2.764 3.169 4.144 0.129 0.260 0.396 0.540 0.697 0.876 1.088 1.363 1.796 2.201 2.718 3.106 4.025 0.128 0.259 0.395 0.539 0.695 0.873 1.083 1.356 1.782 2.179 2.681 3.055 3.930 0.128 0.259 0.394 0.538 0.694 0.870 1.079 1.350 1.771 2.160 2.650 3.012 3.852 0.128 0.258 0.393 0.537 0.692 0.868 1.076 1.345 1.761 2.145 2.624 2.977 3.787 0.128 0.258 0.393 0.536 0.691 0.866 1.074 1.341 1.753 2.131 2.602 2.947 3.733 0.128 0.258 0.392 0.535 0.690 0.865 1.071 1.337 1.746 2.120 2.583 2.921 3.686 0.128 0.257 0.392 0.534 0.689 0.863 1.069 1.333 1.740 2.110 2.567 2.898 3.646 0.127 0.257 0.392 0.534 0.688 0.862 1.067 1.330 1.734 2.101 2.552 2.878 3.611 0.127 0.257 0.391 0.533 0.688 0.861 1.066 1.328 1.729 2.093 2.539 2.861 3.579 0.127 0.257 0.391 0.533 0.687 0.860 1.064 1.325 1.725 2.086 2.528 2.845 3.552 0.127 0.257 0.391 0.532 0.686 0.859 1.063 1.323 1.721 2.080 2.518 2.831 3.527 0.127 0.256 0.390 0.532 0.686 0.858 1.061 1.321 1.717 2.074 2.508 2.819 3.505 0.127 0.256 0.390 0.532 0.685 0.858 1.060 1.319 1.714 2.069 2.500 2.807 3.485 0.127 0.256 0.390 0.531 0.685 0.857 1.059 1.318 1.711 2.064 2.492 2.797 3.467 0.127 0.256 0.390 0.531 0.684 0.856 1.058 1.316 1.708 2.060 2.485 2.787 3.450 0.127 0.256 0.390 0.531 0.684 0.856 1.058 1.315 1.706 2.056 2.479 2.779 3.435 0.127 0.256 0.389 0.531 0.684 0.855 1.057 1.314 1.703 2.052 2.473 2.771 3.421 0.127 0.256 0.389 0.530 0.683 0.855 1.056 1.313 1.701 2.048 2.467 2.763 3.408 0.127 0.256 0.389 0.530 0.683 0.854 1.055 1.311 1.699 2.045 2.462 2.756 3.396 0.127 0.256 0.389 0.530 0.683 0.854 1.055 1.310 1.697 2.042 2.457 2.750 3.385 0.127 0.256 0.389 0.530 0.682 0.853 1.054 1.309 1.696 2.040 2.453 2.744 3.375 0.127 0.255 0.389 0.530 0.682 0.853 1.054 1.309 1.694 2.037 2.449 2.738 3.365 0.127 0.255 0.389 0.530 0.682 0.853 1.053 1.308 1.692 2.035 2.445 2.733 3.356 0.127 0.255 0.389 0.529 0.682 0.852 1.052 1.307 1.691 2.032 2.441 2.728 3.348 0.127 0.255 0.388 0.529 0.682 0.852 1.052 1.306 1.690 2.030 2.438 2.724 3.340 0.127 0.255 0.388 0.529 0.681 0.852 1.052 1.306 1.688 2.028 2.434 2.719 3.333 0.127 0.255 0.388 0.529 0.681 0.851 1.051 1.305 1.687 2.026 2.431 2.715 3.326 0.127 0.255 0.388 0.529 0.681 0.851 1.051 1.304 1.686 2.024 2.429 2.712 3.319 0.126 0.255 0.388 0.529 0.681 0.851 1.050 1.304 1.685 2.023 2.426 2.708 3.313 0.126 0.255 0.388 0.529 0.681 0.851 1.050 1.303 1.684 2.021 2.423 2.704 3.307 0.126 0.255 0.388 0.529 0.681 0.850 1.050 1.303 1.683 2.020 2.421 2.701 3.301 0.126 0.255 0.388 0.528 0.680 0.850 1.049 1.302 1.682 2.018 2.418 2.698 3.296 0.126 0.255 0.388 0.528 0.680 0.850 1.049 1.302 1.681 2.017 2.416 2.695 3.291 0.126 0.255 0.388 0.528 0.680 0.850 1.049 1.301 1.680 2.015 2.414 2.692 3.286 0.126 0.255 0.388 0.528 0.680 0.850 1.049 1.301 1.679 2.014 2.412 2.690 3.281

46 0.126 0.255 0.388 0.528 0.680 0.850 1.048 1.300 1.679 2.013 2.410 2.687 3.277 **47** 0.126 0.255 0.388 0.528 0.680 0.849 1.048 1.300 1.678 2.012 2.408 2.685 3.273 **48** 0.126 0.255 0.388 0.528 0.680 0.849 1.048 1.299 1.677 2.011 2.407 2.682 3.269 **49** 0.126 0.255 0.388 0.528 0.680 0.849 1.048 1.299 1.677 2.010 2.405 2.680 3.265 **50** 0.126 0.255 0.388 0.528 0.679 0.849 1.047 1.299 1.676 2.009 2.403 2.678 3.261 მნიშვნელოვნების დონე (α)

.25 .20 .15 .10 .40 .35 .30 .05 .025 .01 *df* .45 0.126 0.255 0.387 0.528 0.679 0.849 1.047 1.298 1.675 2.008 2.402 2.676 3.258 0.126 0.255 0.387 0.528 0.679 0.849 1.047 1.298 1.675 2.007 2.400 2.674 3.255 0.126 0.255 0.387 0.528 0.679 0.848 1.047 1.298 1.674 2.006 2.399 2.672 3.251 0.126 0.255 0.387 0.528 0.679 0.848 1.046 1.297 1.674 2.005 2.397 2.670 3.248 0.126 0.255 0.387 0.527 0.679 0.848 1.046 1.297 1.673 2.004 2.396 2.668 3.245 0.126 0.255 0.387 0.527 0.679 0.848 1.046 1.297 1.673 2.003 2.395 2.667 3.242 0.126 0.255 0.387 0.527 0.679 0.848 1.046 1.297 1.672 2.002 2.394 2.665 3.239 0.126 0.255 0.387 0.527 0.679 0.848 1.046 1.296 1.672 2.002 2.392 2.663 3.237 0.126 0.254 0.387 0.527 0.679 0.848 1.046 1.296 1.671 2.001 2.391 2.662 3.234 0.126 0.254 0.387 0.527 0.679 0.848 1.045 1.296 1.671 2.000 2.390 2.660 3.232 0.126 0.254 0.387 0.527 0.679 0.848 1.045 1.296 1.670 2.000 2.389 2.659 3.229 0.126 0.254 0.387 0.527 0.678 0.847 1.045 1.295 1.670 1.999 2.388 2.658 3.227 0.126 0.254 0.387 0.527 0.678 0.847 1.045 1.295 1.669 1.998 2.387 2.656 3.225 0.126 0.254 0.387 0.527 0.678 0.847 1.045 1.295 1.669 1.998 2.386 2.655 3.223 0.126 0.254 0.387 0.527 0.678 0.847 1.045 1.295 1.669 1.997 2.385 2.654 3.221 0.126 0.254 0.387 0.527 0.678 0.847 1.045 1.295 1.668 1.997 2.384 2.652 3.218 0.126 0.254 0.387 0.527 0.678 0.847 1.045 1.294 1.668 1.996 2.383 2.651 3.217 0.126 0.254 0.387 0.527 0.678 0.847 1.044 1.294 1.668 1.995 2.382 2.650 3.215 0.126 0.254 0.387 0.527 0.678 0.847 1.044 1.294 1.667 1.995 2.382 2.649 3.213 0.126 0.254 0.387 0.527 0.678 0.847 1.044 1.294 1.667 1.994 2.381 2.648 3.211 0.126 0.254 0.387 0.527 0.678 0.847 1.044 1.294 1.667 1.994 2.380 2.647 3.209 0.126 0.254 0.387 0.527 0.678 0.847 1.044 1.293 1.666 1.993 2.379 2.646 3.207 0.126 0.254 0.387 0.527 0.678 0.847 1.044 1.293 1.666 1.993 2.379 2.645 3.206 0.126 0.254 0.387 0.527 0.678 0.846 1.044 1.293 1.666 1.993 2.378 2.644 3.204 0.126 0.254 0.387 0.527 0.678 0.846 1.044 1.293 1.665 1.992 2.377 2.643 3.203 0.126 0.254 0.387 0.527 0.678 0.846 1.044 1.293 1.665 1.992 2.376 2.642 3.201 77 0.126 0.254 0.387 0.527 0.678 0.846 1.043 1.293 1.665 1.991 2.376 2.641 3.200 0.126 0.254 0.387 0.527 0.678 0.846 1.043 1.292 1.665 1.991 2.375 2.640 3.198 0.126 0.254 0.387 0.527 0.678 0.846 1.043 1.292 1.664 1.990 2.375 2.640 3.197 0.126 0.254 0.387 0.526 0.678 0.846 1.043 1.292 1.664 1.990 2.374 2.639 3.195 0.126 0.254 0.387 0.526 0.678 0.846 1.043 1.292 1.664 1.990 2.373 2.638 3.194 0.126 0.254 0.387 0.526 0.677 0.846 1.043 1.292 1.664 1.989 2.373 2.637 3.193 0.126 0.254 0.387 0.526 0.677 0.846 1.043 1.292 1.663 1.989 2.372 2.636 3.191 0.126 0.254 0.387 0.526 0.677 0.846 1.043 1.292 1.663 1.989 2.372 2.636 3.190 0.126 0.254 0.387 0.526 0.677 0.846 1.043 1.292 1.663 1.988 2.371 2.635 3.189 0.126 0.254 0.387 0.526 0.677 0.846 1.043 1.291 1.663 1.988 2.371 2.634 3.188 0.126 0.254 0.387 0.526 0.677 0.846 1.043 1.291 1.663 1.988 2.370 2.634 3.187 0.126 0.254 0.387 0.526 0.677 0.846 1.043 1.291 1.662 1.987 2.369 2.633 3.186 89 0.126 0.254 0.387 0.526 0.677 0.846 1.043 1.291 1.662 1.987 2.369 2.632 3.184 0.126 0.254 0.387 0.526 0.677 0.846 1.042 1.291 1.662 1.987 2.369 2.632 3.183 0.126 0.254 0.387 0.526 0.677 0.846 1.042 1.291 1.662 1.986 2.368 2.631 3.182 0.126 0.254 0.387 0.526 0.677 0.846 1.042 1.291 1.662 1.986 2.368 2.630 3.181 0.126 0.254 0.387 0.526 0.677 0.845 1.042 1.291 1.661 1.986 2.367 2.630 3.180 0.126 0.254 0.386 0.526 0.677 0.845 1.042 1.291 1.661 1.986 2.367 2.629 3.179 0.126 0.254 0.386 0.526 0.677 0.845 1.042 1.291 1.661 1.985 2.366 2.629 3.178 0.126 0.254 0.386 0.526 0.677 0.845 1.042 1.290 1.661 1.985 2.366 2.628 3.177 0.126 0.254 0.386 0.526 0.677 0.845 1.042 1.290 1.661 1.985 2.365 2.627 3.176 0.126 0.254 0.386 0.526 0.677 0.845 1.042 1.290 1.661 1.984 2.365 2.627 3.176 0.126 0.254 0.386 0.526 0.677 0.845 1.042 1.290 1.660 1.984 2.365 2.626 3.175 0.126 0.254 0.386 0.526 0.677 0.845 1.042 1.290 1.660 1.984 2.364 2.626 3.174 **120** 0.126 0.254 0.386 0.526 0.677 0.845 1.041 1.289 1.658 1.980 2.358 2.617 3.160 **140** 0.126 0.254 0.386 0.526 0.676 0.844 1.040 1.288 1.656 1.977 2.353 2.611 3.149 **160** 0.126 0.254 0.386 0.525 0.676 0.844 1.040 1.287 1.654 1.975 2.350 2.607 3.142 **180** 0.126 0.254 0.386 0.525 0.676 0.844 1.039 1.286 1.653 1.973 2.347 2.603 3.136 **200** 0.126 0.254 0.386 0.525 0.676 0.843 1.039 1.286 1.653 1.972 2.345 2.601 3.131 ∞ 0.126 0.253 0.385 0.524 0.675 0.842 1.036 1.282 1.645 1.960 2.327 2.576 3.091

შევნიშნოთ, რომ თუ $df=\infty$, მაშინ სტიუდენტის კრიტიკული მნიშვნელობები ემთხვევა სტანდარტული ნორმალური განაწილების კრიტიკულ მნიშნელობებს ($t_{\infty,\alpha}=z_{\alpha}$).

t(n) განაწილების ზედა $\alpha/2$ –კრიტიკული წერტილები $t_{n,\alpha/2}$ (ორკუდიანი)

F(n,m) (ფიშერის) განაწილების ზედა lpha –კრიტიკული წერტილები ($F_{n,m,lpha}$)

					1	n						
α	1	2	3	4	5	6	7	8	9	10	11	12
m=1	*	*	*	*	*	*	* *	*	*	*	*	*
0.100		49.5	53.6	55.8	57.2	58.2	58.9	59.4	59.9	60.2	60.5	60.7
0.050	161	200	216	225	230	234	237	239	241	242	243	244
0.025	648	800 5000	864 5403	900 5625	922 5764	937 5859	948 5928	957 5981	963 6022	968 6056	973 6083	977 6106
m = 2	*	*	*	* ;		3039	J9Z0 *	× 3901	*	* ,		0100
m-2	8.53	9.00	9.16	9.24	9.29	9.33	9.35	9.37	9.38	9.39	9.40	9.41
0.050			19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40	19.40	19.41
0.025			39.17	39.25	39.30	39.33	39.36	39.37	39.39	39.40	39.41	39.41
0.010	98.50	99.00	99.17	99.25	99.30	99.33	99.36	99.37	99.39	99.40	99.41	99.42
m = 3	*	*	*	*	*	*	* *	*	*	*	*	*
0.100	5.54	5.46	5.39	5.34	5.31	5.28	5.27	5.25	5.24	5.23	5.22	5.22
0.050		9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.76	8.74
0.025			15.44 29.46	15.10 28.71	14.88 28.24	14.73 27.91	14.62 27.67	14.54 27.49	14.47 27.35	14.42 27.23	14.37 27.13	14.34 27.05
m=4	34.12	30.02	29.40 *	20./I *	20.24 *		* *	Z1.49 *	×	×	*	*
m - 4	4.54	4.32	4.19	4.11	4.05	4.01	3.98	3.95	3.94	3.92	3.91	3.90
0.050	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.94	5.91
0.025			9.98	9.60	9.36	9.20	9.07	8.98	8.90	8.84	8.79	8.75
0.010	21.20	18.00	16.69	15.98	15.52	15.21	14.98	14.80	14.66	14.55	14.45	14.37
m = 5	*	*	*	*	*	*	* *	*	*	*	*	*
0.100	4.06	3.78	3.62	3.52	3.45	3.40	3.37	3.34	3.32	3.30	3.28	3.27
0.050	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.70	4.68
0.025		8.43	7.76 12.06	7.39 11.39	7.15	6.98 10.67	6.85 10.46	6.76 10.29	6.68 10.16	6.62 10.05	6.57 9.96	6.52 9.89
m = 6	*	*	*	*	*		* *	*	*	*	*	*
0.100	3.78	3.46	3.29	3.18	3.11	3.05	3.01	2.98	2.96	2.94	2.92	2.90
0.050	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.03	4.00
0.025	8.81	7.26	6.60	6.23	5.99	5.82	5.70	5.60	5.52	5.46	5.41	5.37
0.010	13.75	10.92	9.78	9.15	8.75	8.47	8.26	8.10	7.98	7.87	7.79	7.72
m = 7	*	*	*	*	*		* *	*	*	*	*	*
0.100	3.59	3.26	3.07	2.96	2.88	2.83	2.78	2.75	2.72	2.70	2.68	2.67
0.050	5.59 8.07	4.74 6.54	4.35 5.89	4.12 5.52	3.97 5.29	3.87 5.12	3.79 4.99	3.73 4.90	3.68 4.82	3.64 4.76	3.60 4.71	3.57 4.67
0.023		9.55	8.45	7.85	7.46	7.19	6.99	6.84	6.72	6.62	6.54	6.47
m=8	*	*	*	*	*		* *	*	*	*	*	*
0.100	3.46	3.11	2.92	2.81	2.73	2.67	2.62	2.59	2.56	2.54	2.52	2.50
0.050	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.31	3.28
0.025	7.57	6.06	5.42	5.05	4.82	4.65	4.53	4.43	4.36	4.30	4.24	4.20
	11.26	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.91	5.81	5.73	5.67
m = 9	*	*	*	*		* *	*	*	*	*	*	
0.100	3.36	3.01	2.81	2.69	2.61	2.55	2.51	2.47	2.44	2.42	2.40	2.38
0.050	5.12 7.21	4.26 5.71	3.86 5.08	3.63 4.72	3.48 4.48	3.37 4.32	3.29 4.20	3.23 4.10	3.18 4.03	3.14 3.96	3.10 3.91	3.07 3.87
0.023		8.02	6.99	6.42	6.06		5.61	5.47	5.35	5.26	5.18	5.11
m = 10		*	*	*		*		*	*	*	*	*
0.100			2.73	2.61	2.52	2.46		2.38	2.35	2.32	2.30	2.28
0.050			3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.94	2.91
0.025		5.46	4.83	4.47	4.24	4.07	3.95	3.85	3.78	3.72	3.66	3.62
0.010		7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.94	4.85	4.77	4.71
m = 11		*	*	*	*	*		*	*	*	*	*
0.100	3.23	2.86	2.66	2.54	2.45	2.39	2.34	2.30	2.27	2.25	2.23	2.21

0.050 4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.82	2.79
0.025 6.72	5.26	4.63	4.28	4.04	3.88	3.76	3.66	3.59	3.53	3.47	3.43
0.010 9.65	7.21	6.22	5.67	5.32	5.07	4.89	4.74	4.63	4.54	4.46	4.40
m = 12 *	*	*	*	*	* *	*	*	*	*	*	*
0.100 3.18	2.81	2.61	2.48	2.39	2.33	2.28	2.24	2.21	2.19	2.17	2.15
0.050 4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.72	2.69
0.025 6.55	5.10	4.47	4.12	3.89	3.73	3.61	3.51	3.44	3.37	3.32	3.28
0.010 9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.39	4.30	4.22	4.16
m = 13 *	*	*	*	*	* *	*	*	*	*	*	*
0.100 3.14	2.76	2.56	2.43	2.35	2.28	2.23	2.20	2.16	2.14	2.12	2.10
0.050 4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.63	2.60
0.025 6.41	4.97	4.35	4.00	3.77	3.60	3.48	3.39	3.31	3.25	3.20	3.15
0.010 9.07	6.70	5.74	5.21	4.86	4.62	4.44	4.30	4.19	4.10	4.02	3.96
m = 14 *	*	*	*	*	* *	*	*	*	*	*	*
		0 50					0 4 5		0 40		
0.100 3.10	2.73	2.52	2.39	2.31	2.24	2.19	2.15	2.12	2.10	2.07	2.05
0.050 4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.57	2.53
0.025 6.30	4.86	4.24	3.89	3.66	3.50	3.38	3.29	3.21	3.15	3.09	3.05
0.010 8.86	6.51	5.56	5.04	4.69	4.46	4.28	4.14	4.03	3.94	3.86	3.80
m = 15 *	*	*	*	*	* *	*	*	*	*	*	*
-	0 70	0 40	0 06	0 07	0 01	0 16	0 10	0 00	0 06	0 0 1	0 00
0.100 3.07	2.70	2.49	2.36	2.27	2.21	2.16	2.12	2.09	2.06	2.04	2.02
0.050 4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.51	2.48
0.025 6.20	4.77	4.15	3.80	3.58	3.41	3.29	3.20	3.12	3.06	3.01	2.96
0.010 8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.89	3.80	3.73	3.67
m = 16 *	*	*	*	*	* *	*	*	*	*	*	*
0.100 3.05	2.67	2.46	2.33	2.24	2.18	2.13	2.09	2.06	2.03	2.01	1.99
0.050 4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.46	2.42
0.025 6.12	4.69	4.08	3.73	3.50	3.34	3.22	3.12	3.05	2.99	2.93	2.89
0.010 8.53	6.23	5.29	4.77	4.44	4.20	4.03	3.89	3.78	3.69	3.62	3.55
m = 17 *	*	*	*	*	* *	*	*	*	*	*	*
<i></i> 17											
0.100 3.03	2.64	2.44	2.31	2.22	2.15	2.10	2.06	2.03	2.00	1.98	1.96
0.050 4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.41	2.38
0.025 6.04	4.62	4.01	3.66	3.44	3.28	3.16	3.06	2.98	2.92	2.87	2.82
0.010 8.40	6.11	5.19	4.67	4.34	4.10	3.93	3.79	3.68	3.59	3.52	3.46
m = 18 *	*	*	*	*	* *	*	*	*	*	*	*
0.100 3.01	2.62	2.42	2.29	2.20	2.13	2.08	2.04	2.00	1.98	1.95	1.93
0.050 4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.37	2.34
0.025 5.98	4.56	3.95	3.61	3.38	3.22	3.10	3.01	2.93	2.87	2.81	2.77
0.010 8.29	6.01	5.09	4.58	4.25	4.01	3.84	3.71	3.60	3.51	3.43	3.37
m = 19 *	*	*	*	*	* *	*	*	*	*	*	*
0.100 2.99	2.61	2.40	2.27	2.18	2.11	2.06	2.02	1.98	1.96	1.93	1.91
0.050 4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.34	2.31
0.025 5.92	4.51	3.90	3.56	3.33	3.17	3.05	2.96	2.88	2.82	2.76	2.72
0.010 8.19	5.93	5.01	4.50	4.17	3.94	3.77	3.63	3.52	3.43	3.36	3.30
m = 20 *	*	*	*	*	* *	*	*	*	*	*	*
0.100 2.97	2.59	2.38	2.25	2.16	2.09	2.04	2.00	1.96	1.94	1.91	1.89
0.050 4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.31	2.28
0.025 5.87	4.46	3.86	3.51	3.29	3.13	3.01	2.91	2.84	2.77	2.72	2.68
0.010 8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.46	3.37	3.29	3.23
m = 21 *	*	*	*	*	* *	*	*	*	*	*	*
0.100 2.96	2.57	2.36	2.23	2.14	2.08	2.02	1.98	1.95	1.92	1.90	1.87
		3.07						2.37	2.32	2.28	
	3.47		2.84	2.68	2.57	2.49	2.42				2.25
0.025 5.83	4.42	3.82	3.48	3.25	3.09	2.97	2.87	2.80	2.73	2.68	2.64
0.010 8.02	5.78	4.87	4.37	4.04	3.81	3.64	3.51	3.40	3.31	3.24	3.17
m = 22 *	*	*	*	*	* *	*	*	*	*	*	*
0.100 2.95	2.56	2.35	2.22	2.13	2.06	2.01	1.97	1.93	1.90	1.88	1.86
	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30	2.26	2.23
0.025 5.79	4.38	3.78	3.44	3.22	3.05	2.93	2.84	2.76	2.70	2.65	2.60
0.010 7.95	5.72	4.82	4.31	3.99	3.76	3.59	3.45	3.35	3.26	3.18	3.12
m = 23 *	*	*	*				*	*	*		*
0.100 2.94	2.55	2.34	2.21	2.11	2.05	1.99	1.95	1.92	1.89	1.87	1.84
0.050 4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37		2.27	2.24	2.20
0.000 4.28	J.42							2.32			
		3.75	3.41	3.18	3.02	2.90	2.81	2.73	2.67	2.62	2.57
0.025 5.75	4.35	0.70		2 0 4	3.71	3.54	3.41	3.30	3.21	2 1 /	
		4.76	4.26	3.94					J • Z I	3.14	3.07
0.025 5.75 0.010 7.88	4.35 5.66	4.76									
0.025 5.75 0.010 7.88 m = 24 *	4.35 5.66 *	4.76	*	*	* *	*	*	*	*	*	*
0.025 5.75 0.010 7.88	4.35 5.66	4.76									
0.025 5.75 0.010 7.88 m = 24 * 0.100 2.93	4.35 5.66 * 2.54	4.76 * 2.33	* 2.19	* 2.10	* 2.04	* 1.98	* 1.94	* 1.91	* 1.88	* 1.85	* 1.83
0.025 5.75 0.010 7.88 m = 24 * 0.100 2.93 0.050 4.26	4.35 5.66 * 2.54 3.40	4.76 * 2.33 3.01	* 2.19 2.78	* 2.10 2.62	* 2.04 2.51	1.98 2.42	* 1.94 2.36	* 1.91 2.30	* 1.88 2.25	* 1.85 2.22	* 1.83 2.18
0.025 5.75 0.010 7.88 m = 24 * 0.100 2.93 0.050 4.26 0.025 5.72	4.35 5.66 * 2.54 3.40 4.32	4.76 * 2.33 3.01 3.72	* 2.19 2.78 3.38	* 2.10 2.62 3.15	* 2.04 2.51 2.99	1.98 2.42 2.87	* 1.94 2.36 2.78	* 1.91 2.30 2.70	* 1.88 2.25 2.64	* 1.85 2.22 2.59	* 1.83 2.18 2.54
0.025 5.75 0.010 7.88 m = 24 * 0.100 2.93 0.050 4.26	4.35 5.66 * 2.54 3.40	4.76 * 2.33 3.01	* 2.19 2.78	* 2.10 2.62	* 2.04 2.51	1.98 2.42	* 1.94 2.36	* 1.91 2.30	* 1.88 2.25	* 1.85 2.22	* 1.83 2.18 2.54
0.025 5.75 0.010 7.88 m = 24 * 0.100 2.93 0.050 4.26 0.025 5.72	4.35 5.66 * 2.54 3.40 4.32	4.76 * 2.33 3.01 3.72	* 2.19 2.78 3.38	* 2.10 2.62 3.15 3.90	* 2.04 2.51 2.99	1.98 2.42 2.87 3.50	* 1.94 2.36 2.78	* 1.91 2.30 2.70	* 1.88 2.25 2.64	* 1.85 2.22 2.59 3.09	* 1.83 2.18

0.100	2.92	2.53	2.32	2.18	2.09	2.02	1.97	1.93	1.89	1.87	1.84	1.82
0.050	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24	2.20	2.16
0.025	5.69	4.29	3.69	3.35	3.13	2.97	2.85	2.75	2.68	2.61	2.56	2.51
0.010	7.77	5.57	4.68	4.18	3.85	3.63	3.46	3.32	3.22	3.13	3.06	2.99
			*	*		* *		*	*	*		
m = 26											*	
	2.91	2.52	2.31	2.17	2.08	2.01	1.96	1.92	1.88	1.86	1.83	1.81
0.050	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	2.22	2.18	2.15
0.025	5.66	4.27	3.67	3.33	3.10	2.94	2.82	2.73	2.65	2.59	2.54	2.49
0.010	7.72	5.53	4.64	4.14	3.82	3.59	3.42	3.29	3.18	3.09	3.02	2.96
m = 27	*	*	*	*	*	* *	*	*	*	*	*	*
	2.90	2.51	2.30	2.17	2.07	2.00	1.95	1.91	1.87	1.85	1.82	1.80
0.050	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25	2.20	2.17	
0.025	5.63	4.24	3.65	3.31	3.08	2.92	2.80	2.71	2.63	2.57	2.51	2.47
	7.68	5.49	4.60	4.11	3.78	3.56	3.39	3.26	3.15	3.06	2.99	2.93
m = 28			*	*		* *		*	*	*	*	
0.100	2.89	2.50	2.29	2.16	2.06	2.00	1.94	1.90	1.87	1.84	1.81	1.79
0.050	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19	2.15	2.12
0.025	5.61	4.22	3.63	3.29	3.06	2.90	2.78	2.69	2.61	2.55	2.49	2.45
0.010	7.64	5.45	4.57	4.07	3.75	3.53	3.36	3.23	3.12	3.03	2.96	2.90
m = 29	*	*	*	*	*	* *	*	*	*	*	*	*
-	2.89		2.28	2.15	2.06	1.99	1.93	1.89	1.86	1.83	1.80	1.78
0.050	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22	2.18	2.14	2.10
0.030				3.27		2.43						
	5.59		3.61 4.54		3.04		2.76	2.67	2.59	2.53	2.48	2.43
0.010	7.60	5.42		4.04	3.73	3.50	3.33	3.20	3.09	3.00	2.93	2.87
m = 30	*	*	*	*	*	* *	*	*	*	*	*	*
0.100	2.88	2.49	2.28	2.14	2.05	1.98	1.93	1.88	1.85	1.82	1.79	1.77
0.050	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.13	2.09
0.025	5.57	4.18	3.59	3.25	3.03	2.87	2.75	2.65	2.57	2.51	2.46	2.41
0.010	7.56	5.39	4.51	4.02	3.70	3.47	3.30	3.17	3.07	2.98	2.91	2.84
m = 31	*	*	*	*	*	* *	*	*	*	*	*	*
		2.48	2.27	2.14	2.04	1.97	1.92	1.88	1.84	1.81	1.79	
0.050	4.16	3.30	2.91		2.52	2.41	2.32	2.25	2.20	2.15	2.11	
				2.68								2.08
0.025	5.55	4.16	3.57	3.23	3.01	2.85	2.73	2.64	2.56	2.50	2.44	2.40
0.010	7.53	5.36	4.48	3.99	3.67	3.45	3.28	3.15	3.04	2.96	2.88	
m = 32	*	*	*	*	*	* *	*	*	*	*	*	*
0.100	2.87	2.48	2.26	2.13	2.04	1.97	1.91	1.87	1.83	1.81	1.78	1.76
0.050	4.15	3.29	2.90	2.67	2.51	2.40	2.31	2.24	2.19	2.14	2.10	2.07
0.025	5.53	4.15	3.56	3.22	3.00	2.84	2.71	2.62	2.54	2.48	2.43	2.38
0.010	7.50	5.34	4.46	3.97	3.65	3.43	3.26	3.13	3.02	2.93	2.86	2.80
m = 34	*	*	*	*	*	* *	*	*	*	*	*	*
	2.86		2.25	2.12	2.02	1.96	1.90	1.86	1.82	1.79	1.77	1.75
0.050	4.13	3.28	2.88	2.65	2.49	2.38	2.29	2.23	2.17	2.12	2.08	2.05
0.025	5.50	4.12	3.53	3.19	2.97	2.81	2.69	2.59	2.52	2.45	2.40	2.35
0.010	7.44	5.29	4.42			3.39	3.22	3.09	2.98		2.82	2.76
			*			* *		J.UJ *	2.90 *			*
m = 36										*		
0.100		2.46	2.24	2.11	2.01	1.94	1.89	1.85	1.81	1.78	1.76	1.73
0.050	4.11	3.26	2.87	2.63	2.48	2.36	2.28	2.21	2.15	2.11	2.07	2.03
0.025	5.47	4.09	3.50	3.17	2.94	2.78	2.66	2.57	2.49	2.43	2.37	2.33
0.010	7.40	5.25	4.38	3.89	3.57	3.35	3.18	3.05	2.95	2.86	2.79	2.72
m = 38	*	*	*	*	*	* *	*	*	*	*	*	*
0.100	2.84	2.45	2.23	2.10	2.01	1.94	1.88	1.84	1.80	1.77	1.75	1.72
0.050	4.10	3.24	2.85	2.62	2.46	2.35	2.26	2.19	2.14	2.09	2.05	2.02
0.025	5.45	4.07	3.48	3.15	2.92	2.76	2.64	2.55	2.47	2.41	2.35	2.31
0.010	7.35	5.21	4.34	3.86	3.54	3.32	3.15	3.02	2.92	2.83	2.75	2.69
m = 40		*	*	*	*	* *		*	*	*		*
0.100	2.84	2.44	2.23	2.09	2.00	1.93	1.87	1.83	1.79	1.76	1.74	1.71
0.050	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	2.04	2.00
0.025	5.42	4.05	3.46	3.13	2.90	2.74	2.62	2.53	2.45	2.39	2.33	2.29
0.010	7.31	5.18	4.31	3.83	3.51	3.29	3.12	2.99	2.89	2.80	2.73	2.66
m = 42	*	*	*	*	*	* *	*	*	*	*	*	*
0.100	2.83	2.43	2.22	2.08	1.99	1.92	1.86	1.82	1.78	1.75	1.73	1.71
0.050	4.07	3.22	2.83	2.59	2.44	2.32	2.24	2.17	2.11	2.06	2.03	1.99
0.025	5.40	4.03	3.45	3.11	2.89	2.73	2.61	2.51	2.43	2.37	2.32	2.27
0.010	7.28	5.15	4.29	3.80	3.49	3.27	3.10	2.97	2.86	2.78	2.70	2.64
m = 44		*	*	*	*	* *		*	*	*		*
0.100	2.82	2.43	2.21	2.08	1.98	1.91	1.86	1.81	1.78	1.75	1.72	1.70
0.050	4.06	3.21	2.82	2.58	2.43	2.31	2.23	2.16	2.10	2.05	2.01	1.98
0.025	5.39	4.02	3.43	3.09	2.87	2.71	2.59	2.50	2.42	2.36	2.30	2.26
0.010	7.25	5.12	4.26	3.78	3.47	3.24	3.08	2.95	2.84	2.75	2.68	2.62

<i>m</i> = 46 *	*	*	*	*	* ;	* *	*	*	*	*	*
0.100 2.82	2.42	2.21	2.07	1.98	1.91	1.85	1.81	1.77	1.74	1.71	1.69
0.050 4.05 0.025 5.37	3.20 4.00	2.81 3.42	2.57 3.08	2.42	2.30	2.22	2.15	2.09	2.04	2.00	1.97 2.24
0.010 7.22	5.10	4.24	3.76	3.44	3.22	3.06	2.93	2.82	2.73	2.66	2.60
m = 48 *	*	*	*		* *		*	*	*	*	*
0.100 2.81 0.050 4.04	2.42 3.19	2.20	2.07 2.57	1.97 2.41	1.90 2.29	1.85 2.21	1.80 2.14	1.77 2.08	1.73	1.71 1.99	1.69 1.96
0.025 5.35	3.99	3.40	3.07	2.84	2.69	2.56	2.47	2.39	2.33	2.27	2.23
0.010 7.19 m = 50 *	5.08 *	4.22	3.74 *	3.43	3.20 * *	3.04	2.91	2.80	2.71	2.64	2.58
m = 30	2.41	2.20	2.06	1.97	1.90	1.84	1.80	1.76	1.73	1.70	1.68
0.050 4.03	3.18	2.79	2.56	2.40	2.29	2.20	2.13	2.07	2.03	1.99	1.95
0.025 5.34 0.010 7.17	3.97 5.06	3.39 4.20	3.05 3.72	2.83	2.67 3.19	2.55 3.02	2.46 2.89	2.38	2.32	2.26	2.22
m = 55 *	*	*	*		* *		*	*	*	*	*
0.100 2.80	2.40	2.19	2.05	1.95	1.88	1.83	1.78	1.75	1.72	1.69	1.67
0.050 4.02 0.025 5.31	3.17 3.95	2.77 3.36	2.54	2.38	2.27	2.18 2.53	2.11	2.06	2.01	1.97 2.24	1.93 2.19
0.010 7.12	5.01	4.16	3.68	3.37	3.15	2.98	2.85	2.75	2.66	2.59	2.53
m = 60 * 0.100 2.79	* 2.39	* 2.18	* 2.04	* 1.95	* * 1.87	* 1.82	* 1.77	* 1.74	* 1.71	* 1.68	*
0.100 2.79	3.15	2.18	2.53	2.37	2.25	2.17	2.10	2.04	1.71	1.08	1.66 1.92
0.025 5.29	3.93	3.34	3.01	2.79	2.63	2.51	2.41	2.33	2.27	2.22	2.17
0.010 7.08 m = 65 *	4.98	4.13 *	3.65 *	3.34 *	3.12 * *	2.95	2.82	2.72	2.63	2.56 *	2.50
0.100 2.78	2.39	2.17	2.03	1.94	1.87	1.81	1.77	1.73	1.70	1.67	1.65
0.050 3.99	3.14	2.75	2.51	2.36	2.24	2.15	2.08	2.03	1.98	1.94	1.90
0.025 5.26 0.010 7.04	3.91 4.95	3.32 4.10	2.99 3.62	2.77 3.31	2.61 3.09	2.49	2.39	2.32	2.25 2.61	2.20	2.15
m = 70 *	*	*	*		* *		*	*	*	*	*
0.100 2.78 0.050 3.98	2.38	2.16	2.03	1.93 2.35	1.86 2.23	1.80 2.14	1.76 2.07	1.72 2.02	1.69	1.66	1.64
0.030 3.98	3.89	3.31	2.30	2.35	2.23	2.14	2.07	2.02	1.97 2.24	1.93 2.18	1.89 2.14
0.010 7.01	4.92	4.07	3.60	3.29	3.07	2.91	2.78	2.67	2.59	2.51	2.45
m = 80 * 0.100 2.77	* 2.37	* 2.15	* 2.02	* 1.92	* * 1.85	* 1.79	* 1.75	* 1.71	* 1.68	* 1.65	* 1.63
0.050 3.96	3.11	2.72	2.49	2.33	2.21	2.13	2.06	2.00	1.95	1.91	1.88
0.025 5.22 0.010 6.96	3.86 4.88	3.28 4.04	2.95	2.73 3.26	2.57	2.45	2.35	2.28	2.21	2.16	2.11
m = 100 *	4.00 *	*	3.56 *		* *		∠./4 *	2.04 *	*	2.48	2.42
0.100 2.76	2.36	2.14	2.00	1.91	1.83	1.78	1.73	1.69	1.66	1.64	1.61
0.050 3.94 0.025 5.18	3.09 3.83	2.70 3.25	2.46	2.31	2.19	2.10	2.03	1.97 2.24	1.93 2.18	1.89 2.12	1.85
0.010 6.90	4.82	3.98	3.51	3.21	2.99	2.82	2.69	2.59	2.50	2.43	2.37
m = 125 *	*	*	*	*	* +		*	*	*	*	*
0.100 2.75 0.050 3.92	2.35	2.13	1.99 2.44	1.89 2.29	1.82 2.17	1.77 2.08	1.72 2.01	1.68 1.96	1.65 1.91	1.62 1.87	1.60 1.83
0.025 5.15	3.80	3.22	2.89	2.67	2.51	2.39	2.30	2.22	2.15	2.10	2.05
0.010 6.84 m = 200 *	4.78 *	3.94 *	3.47 *	3.17 *	2.95	2.79	2.66 *	2.55 *	2.47	2.39 *	2.33
$m = 200$ ^ 0.100 2.73	2.33	2.11	1.97	1.88	1.80	1.75	1.70	1.66	1.63	1.60	1.58
0.050 3.89	3.04	2.65	2.42	2.26	2.14	2.06	1.98	1.93	1.88	1.84	1.80
0.025 5.10 0.010 6.76	3.76 4.71	3.18 3.88	2.85 3.41	2.63 3.11	2.47	2.35 2.73	2.26 2.60	2.18 2.50	2.11	2.06	2.01
m = 400 *	*	*	*		* *		*	*	*	*	*
0.100 2.72	2.32	2.10	1.96	1.86	1.79	1.73	1.69	1.65	1.61	1.59	1.56
0.050 3.86 0.025 5.06	3.02 3.72	2.63 3.15	2.39 2.82	2.24	2.12	2.03 2.32	1.96 2.22	1.90 2.15	1.85 2.08	1.81 2.03	1.78 1.98
0.010 6.70	4.66	3.83	3.37	3.06	2.85	2.68	2.56	2.45	2.37	2.29	2.23
m = 1000 *	* 2 21	*	* 1 05		* *		* 1 60	* 1 61	* 1 61		* 1 55
0.100 2.71 0.050 3.85	2.31	2.09 2.61	1.95 2.38	1.85 2.22	1.78 2.11	1.72 2.02	1.68 1.95	1.64 1.89	1.61 1.84	1.58 1.80	1.55 1.76
0.025 5.04	3.70	3.13	2.80	2.58	2.42	2.30	2.20	2.13	2.06	2.01	1.96
0.010 6.66 $m = 5000 *$	4.63 *	3.80 *	3.34 *	3.04 *	2.82 *	2.66	2.53	2.43	2.34	2.27 *	2.20
0.100 2.71	2.30	2.08	1.95	1.85	1.78	1.72	1.67	1.63	1.60	1.57	1.55
0.050 3.84 0.025 5.02	3.00 3.69	2.61 3.12	2.37	2.22	2.10	2.01 2.29	1.94 2.19	1.88 2.12	1.83 2.05	1.79 2.00	1.75 1.95
0.020 0.02	J. 0J	J • 1 4	2.10	2.07	~ •	2.27		- •	2.00	2.00	1.00

0.100 61.1 61.4 61.7 62.0 62.3 62.5 62.7 62.9 62.3 0.0 63.0 63.2 63.3 63.0 63.0 63.0 63.2 63.3 63.0 63.0 63.5 63.6 63.0 63.0 63.2 63.3 63.0 63.0 63.2 63.3 63.0 63.0 63.2 63.3 63.0 63.0 63.2 63.3 63.0 63.0 63.2 63.3 63.0 63.0 63.2 63.3 63.0 63.0 63.2 63.0 63.0 63.0 63.0 63.0 63.0 63.0 63.0						n							
0.10	α	14	16	20	24	30	40	50	75	100	200	500 10	0000
0.050	m=1	*	*	*	*	*	*	*	*	*	*	*	*
0.025 983 987 993 997 1001 1006 1008 1011 1014 1016 1017 107 m=2	0.100	61.1	61.4	61.7	62.0	62.3	62.5	62.7	62.9	63.0	63.2	63.3	63.7
	0.050	245	246	248	249	250	251	252	253	253	254	254	256
	0.025	983	987	993	997	1001	1006	1008	1011	1014	1016	1017	1025
	0.010	6143	6170	6209	6235	6261	6287	6303	6324	6334	6350	6360	6366
	m=2	*	*	*	*	*	*	*	*	*	*	*	*
0.050 19.42 19.43 19.45 19.46 19.47 19.48 19.48 19.49 19.49 19.49 19.49 19.40 19.4		9.42	9.43	9.44	9.45	9.46	9.47	9.47	9.48	9.48	9.49	9.49	9.51
### ### ### ### ### ### ### ### ### ##													
100													
.0.010 26.92 26.83 26.69 26.60 26.50 26.41 26.35 26.28 26.24 26.18 26.15 26.18 mesh 4													
0.1000													
0.050 5.87 5.84 5.80 5.77 5.75 5.72 5.70 5.68 5.68 5.66 5.65 5.64 5.6 0.025 8.68 8.63 8.56 8.51 8.46 8.41 8.38 8.34 8.32 8.29 8.27 8.27 8.2 0.010 14.25 14.15 14.02 13.93 13.84 13.75 13.69 13.61 13.58 13.52 13.49 13.4 m=5	m = 4	*	*	*	*			*	*			*	*
0.025 8.68 8.63 8.56 8.51 8.46 8.41 8.38 8.34 8.32 8.29 8.27 8.27 8.25 10.010 14.25 14.15 14.02 13.93 13.84 13.75 13.69 13.61 13.58 13.52 13.49 13.4 13.5	0.100	3.88	3.86	3.84	3.83		3.80	3.80	3.78			3.76	3.7
	0.050	5.87	5.84	5.80	5.77	5.75	5.72	5.70	5.68	5.66			5.63
## 5 * * * * * * * * * * * * * * * * * *	0.025	8.68	8.63	8.56	8.51	8.46	8.41	8.38	8.34	8.32	8.29	8.27	8.2
0.100	0.010	14.25	14.15	14.02	13.93	13.84	13.75	13.69	13.61	13.58	13.52	13.49	13.47
0.100	m = 5	*	*	*	*	*	*	*	*	*	*	*	*
0.050			3.23	3.21	3.19	3.17	3.16	3.15	3.13	3.13	3.12	3.11	3.10
0.025 6.46 6.40 6.33 6.28 6.23 6.18 6.14 6.10 6.08 6.05 6.03 6.03 m=6 * * * * * * * * * * * * * * * * * *													4.3
## 6													
1.100													
0.050													
0.025 5.30 5.24 5.17 5.12 5.07 5.01 4.98 4.94 4.92 4.88 4.86 4.8 0.1010 7.60 7.52 7.40 7.31 7.23 7.14 7.09 7.02 6.99 6.93 6.90 6.8 0.0010 7.60 7.52 7.40 7.31 7.23 7.14 7.09 7.02 6.99 6.93 6.90 6.8 0.0010 2.64 2.62 2.59 2.58 2.56 2.54 2.52 2.51 2.50 2.48 2.48 2.4 0.1050 3.53 3.49 3.44 3.41 3.38 3.34 3.32 3.29 3.27 3.25 3.24 3.2 0.025 4.60 4.54 4.47 4.24 3.6 4.31 4.28 4.23 4.21 4.18 4.16 4.1 0.010 6.36 6.28 6.16 6.07 5.99 5.91 5.86 5.79 5.75 5.70 5.67 5.6 0.0025 4.03 3.24 3.20 3.15 3.12 3.08 3.04 3.02 2.99 2.97 2.95 2.94 0.050 3.53 3.24 3.20 3.15 3.12 3.08 3.04 3.02 2.99 2.97 2.95 2.94 2.9 0.055 3.24 3.20 3.15 3.12 3.08 3.04 3.02 2.99 2.97 2.95 2.94 2.9 0.025 4.13 4.08 4.00 3.95 3.89 3.84 3.81 3.76 3.74 3.70 3.68 3.6 0.010 5.56 5.48 5.36 5.28 5.20 5.12 5.07 5.00 4.96 4.91 4.88 4.8 0.010 2.35 2.33 2.30 2.28 2.25 2.23 2.22 2.20 2.19 2.17 2.17 2.1 0.050 3.03 2.99 2.94 2.90 2.86 2.83 2.80 2.77 2.76 2.73 2.72 2.7 0.050 3.03 3.29 2.94 2.90 2.86 2.83 2.80 2.77 2.76 2.73 2.72 2.7 0.050 3.03 3.99 2.94 2.90 2.86 2.83 2.80 2.77 2.76 2.73 2.72 2.7 0.050 3.03 3.24 3.27 3.17 3.12 3.08 3.04 3.02 2.90 2.90 2.80 0.050 3.86 3.80 3.74 3.67 3.61 3.56 3.51 3.47 3.43 3.40 3.37 3.35 3.3 0.010 5.01 4.92 4.81 4.73 4.65 4.57 4.52 4.45 4.41 4.36 4.33 4.3 0.010 5.01 4.92 4.81 4.73 4.65 4.57 4.52 4.45 4.41 4.36 4.33 4.3 0.010 5.01 4.92 4.81 4.73 4.65 4.57 4.52 4.45 4.41 4.36 4.33 4.3 0.010 2.26 2.23 2.20 2.18 2.16 2.13 2.12 2.10 2.09 2.07 2.06 2.0 0.050 3.36 3.30 3.23 3.17 3.12 3.06 3.03 2.98 2.96 2.92 2.90 2.8 0.050 3.36 3.30 3.23 3.17 3.12 3.06 3.03 2.98 2.96 2.92 2.90 2.8 0.050 3.36 3.30 3.23 3.17 3.12 3.06 3.03 2.98 2.96 2.92 2.90 2.8 0.0100 2.18 2.16 2.12 2.10 2.08 2.05 2.53 2.51 2.47 2.46 2.43 2.42 2.4 0.025 3.26 2.26 2.25 2.26 2.57 2.53 2.51 2.47 2.46 2.43 2.42 2.4 0.025 3.26 2.24 2.09 2.06 2.04 2.01 1.99 1.99 1.97 1.95 1.94 1.92 1.91 1.9 0.050 2.64 2.60 2.54 2.51 2.47 2.43 2.40 2.37 2.35 2.32 2.31 2.3 0.010 4.05 3.97 3.86 3.78 3.70 3.62 3.57 3.50 3.47 3.41 3.38 3.3 0.010 4.0													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
m = 7													
1.100													
0.050	m = 7	*	*	*	*	*	*	*	*	*	*	*	*
0.025	0.100	2.64	2.62	2.59	2.58	2.56	2.54	2.52	2.51	2.50	2.48	2.48	2.47
0.010 6.36 6.28 6.16 6.07 5.99 5.91 5.86 5.79 5.75 5.70 5.67 5.68 m = 8	0.050	3.53	3.49	3.44	3.41	3.38	3.34	3.32	3.29	3.27	3.25	3.24	3.23
m = 8 * * * * * * * * * * * * * * * * * * * * * * * * </td <td>0.025</td> <td>4.60</td> <td>4.54</td> <td>4.47</td> <td>4.42</td> <td>4.36</td> <td>4.31</td> <td>4.28</td> <td>4.23</td> <td>4.21</td> <td>4.18</td> <td>4.16</td> <td>4.15</td>	0.025	4.60	4.54	4.47	4.42	4.36	4.31	4.28	4.23	4.21	4.18	4.16	4.15
0.100	0.010	6.36	6.28	6.16	6.07	5.99	5.91	5.86	5.79	5.75	5.70	5.67	5.65
0.100	m = 8	*	*	*	*	*	*	*	*	*	*	*	*
0.050		2.48	2.45	2.42	2.40	2.38	2.36	2.35	2.33	2.32	2.31	2.30	2.29
0.025													2.93
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
m = 9 * * * * * * * * * * * * * * * * * * * * * * * * </td <td></td> <td>4.8</td>													4.8
0.100													
0.050 3.03 2.99 2.94 2.90 2.86 2.83 2.80 2.77 2.76 2.73 2.72 2.75 2.025 3.80 3.74 3.67 3.61 3.56 3.51 3.47 3.43 3.40 3.37 3.35 3.35 3.36 3.010 5.01 4.92 4.81 4.73 4.65 4.57 4.52 4.45 4.41 4.36 4.33 4.35 4.35 4.35 4.35 4.45 4.41 4.36 4.33 4.35 4.35 4.35 4.35 4.35 4.45 4.41 4.36 4.33 4.35 4.35 4.35 4.35 4.35 4.45 4.41 4.36 4.33 4.35													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
m = 10 * <td></td>													
0.100													4.32
0.050 2.86 2.83 2.77 2.74 2.70 2.66 2.64 2.60 2.59 2.56 2.55 2.5 0.025 3.55 3.50 3.42 3.37 3.31 3.26 3.22 3.18 3.15 3.12 3.09 3.0 0.010 4.60 4.52 4.41 4.33 4.25 4.17 4.12 4.05 4.01 3.96 3.93 3.93 m=11 *													*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						2.16		2.12	2.10				2.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.050	2.86	2.83	2.77	2.74	2.70	2.66	2.64	2.60	2.59	2.56	2.55	2.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.025	3.55	3.50	3.42			3.26	3.22	3.18	3.15			3.08
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.010	4.60	4.52	4.41	4.33	4.25	4.17	4.12	4.05	4.01	3.96	3.93	3.93
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	m = 11	*	*	*	*		*	*	*	*	*	*	*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													1.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
m=12 * * * * * * * * * * * * * * * * * * *													
0.100													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
0.010 4.05 3.97 3.86 3.78 3.70 3.62 3.57 3.50 3.47 3.41 3.38 3.39 $m=13$ * * * * * * * * * * * * * * * * * * *													
m=13 * * * * * * * * * * * * * * * * * * *													
0.100 2.07 2.04 2.01 1.98 1.96 1.93 1.92 1.89 1.88 1.86 1.85 1.8 0.050 2.55 2.51 2.46 2.42 2.38 2.34 2.31 2.28 2.26 2.23 2.22 2.2													3.36
0.050 2.55 2.51 2.46 2.42 2.38 2.34 2.31 2.28 2.26 2.23 2.22 2.2	m = 13	3 *	*	*	*	*	*	*	*	*	*	*	*
0.050 2.55 2.51 2.46 2.42 2.38 2.34 2.31 2.28 2.26 2.23 2.22 2.2	.100	2.07	2.04	2.01	1.98	1.96	1.93	1.92	1.89	1.88	1.86	1.85	1.85
													2.2
				2.95	2.89		2.78	2.74		2.67			2.60

0.010 3.86	3.78	3.66	3.59	3.51	3.43	3.38	3.31	3.27	3.22	3.19	3.17
m = 14 *	*	*	*	*	*	*	*	*	*	*	*
0.100 2.02	2.00	1.96	1.94	1.91	1.89	1.87	1.85	1.83	1.82	1.80	1.80
0.050 2.48 0.025 2.98	2.44	2.39	2.35	2.31	2.27	2.24	2.21 2.59	2.19	2.16 2.53	2.14	2.13
0.025 2.98	2.92 3.62	2.84 3.51	2.79 3.43	3.35	2.67 3.27	3.22	3.15	3.11	3.06	3.03	2.49
m = 15 *	*	*	*	*	*	*	*	*	*	*	*
0.100 1.99	1.96	1.92	1.90	1.87	1.85	1.83	1.80	1.79	1.77	1.76	1.76
0.050 2.42	2.38	2.33	2.29	2.25	2.20	2.18	2.14	2.12	2.10	2.08	2.07
0.025 2.89	2.84	2.76	2.70	2.64	2.59	2.55	2.50	2.47	2.44	2.41	2.40
0.010 3.56	3.49	3.37	3.29	3.21	3.13	3.08	3.01	2.98	2.92	2.89	2.87
m = 16 *	*	*	*	*	*	*	*	*	*	*	*
0.100 1.95	1.93	1.89	1.87	1.84	1.81	1.79	1.77	1.76	1.74	1.73	1.72
0.050 2.37	2.33	2.28	2.24	2.19	2.15	2.12	2.09	2.07	2.04	2.02	2.01
0.025 2.82 0.010 3.45	2.76 3.37	2.68 3.26	2.63 3.18	2.57 3.10	2.51 3.02	2.47 2.97	2.42	2.40	2.36 2.81	2.33	2.32
m = 17 *	*	*	*	*	*	*	*	*	*	*	*
0.100 1.93	1.90	1.86	1.84	1.81	1.78	1.76	1.74	1.73	1.71	1.69	1.69
0.050 2.33	2.29	2.23	2.19	2.15	2.10	2.08	2.04	2.02	1.99	1.97	1.96
0.025 2.75	2.70	2.62	2.56	2.50	2.44	2.41	2.35	2.33	2.29	2.26	2.25
0.010 3.35	3.27	3.16	3.08	3.00	2.92	2.87	2.80	2.76	2.71	2.68	2.65
m = 18 *	*	*	*	*	*	*	*	*	*	*	*
0.100 1.90	1.87	1.84	1.81	1.78	1.75	1.74	1.71	1.70	1.68	1.67	1.66
0.050 2.29	2.25	2.19	2.15	2.11	2.06	2.04	2.00	1.98	1.95	1.93	1.92
0.025 2.70 0.010 3.27	2.64 3.19	2.56 3.08	2.50	2.44	2.38	2.35 2.78	2.30 2.71	2.27	2.23	2.20	2.19
m = 19 *	*	*	*	*	*	*	*	*	2.02 *	*	*
m = 19 0.100 1.88	1.85	1.81	1.79	1.76	1.73	1.71	1.69	1.67	1.65	1.64	1.63
0.050 2.26	2.21	2.16	2.11	2.07	2.03	2.00	1.96	1.94	1.91	1.89	1.88
0.025 2.65	2.59	2.51	2.45	2.39	2.33	2.30	2.24	2.22	2.18	2.15	2.13
0.010 3.19	3.12	3.00	2.92	2.84	2.76	2.71	2.64	2.60	2.55	2.51	2.49
m = 20 *	*	*	*	*	*	*	*	*	*	*	*
0.100 1.86	1.83	1.79	1.77	1.74	1.71	1.69	1.66	1.65	1.63	1.62	1.61
0.050 2.22	2.18	2.12	2.08	2.04	1.99	1.97	1.93	1.91	1.88	1.86	1.84
0.025 2.60	2.55	2.46	2.41	2.35	2.29	2.25	2.20	2.17	2.13	2.10	2.09
0.010 3.13 $m = 21 *$	3.05 *	2.94	2.86	2.78	2.69	2.64	2.57 *	2.54	2.48	2.44	2.42
m = 21 0.100 1.84	1.81	1.78	1.75	1.72	1.69	1.67	1.64	1.63	1.61	1.60	1.59
0.050 2.20	2.16	2.10	2.05	2.01	1.96	1.94	1.90	1.88	1.84	1.83	1.81
0.025 2.56	2.51	2.42	2.37	2.31	2.25	2.21	2.16	2.13	2.09	2.06	2.04
0.010 3.07	2.99	2.88	2.80	2.72	2.64	2.58	2.51	2.48	2.42	2.38	2.36
m = 22 *	*	*	*	*	*	*	*	*	*	*	*
0.100 1.83	1.80	1.76	1.73	1.70	1.67	1.65	1.63	1.61	1.59	1.58	1.57
0.050 2.17	2.13	2.07	2.03	1.98	1.94	1.91	1.87	1.85	1.82	1.80	1.78
0.025 2.53 0.010 3.02	2.47	2.39	2.33	2.27	2.21	2.17	2.12	2.09	2.05	2.02	2.01
m=23 *	*	*	*	*	*	*	*	*	*	*	*
m = 23 0.100 1.81	1.78	1.74	1.72	1.69	1.66	1.64	1.61	1.59	1.57	1.56	1.55
0.050 2.15	2.11	2.05	2.01	1.96	1.91	1.88	1.84	1.82	1.79	1.77	1.76
0.025 2.50	2.44	2.36	2.30	2.24	2.18	2.14	2.08	2.06	2.01	1.99	1.97
0.010 2.97	2.89	2.78	2.70	2.62	2.54	2.48	2.41	2.37	2.32	2.28	2.26
m = 24 *	*	*	*	*	*	*	*	*	*	*	*
0.100 1.80	1.77	1.73	1.70	1.67	1.64	1.62	1.59	1.58	1.56	1.54	1.53
0.050 2.13 0.025 2.47	2.09	2.03	1.98	1.94	1.89	1.86	1.82	1.80	1.77	1.75	1.73
0.025 2.47 0.010 2.93	2.41	2.33 2.74	2.27 2.66	2.21 2.58	2.15 2.49	2.11	2.05 2.37	2.02	1.98 2.27	1.95 2.24	1.94 2.21
m=25 *	*	*	*	*	*	*	*	*	*	*	*
m = 23 0.100 1.79	1.76	1.72	1.69	1.66	1.63	1.61	1.58	1.56	1.54	1.53	1.52
0.050 2.11	2.07	2.01	1.96	1.92	1.87	1.84	1.80	1.78	1.75	1.73	1.71
0.025 2.44	2.38	2.30	2.24	2.18	2.12	2.08	2.02	2.00	1.95	1.92	1.91
0.010 2.89	2.81	2.70	2.62	2.54	2.45	2.40	2.33	2.29	2.23	2.19	2.17
m = 26 *	*	*	*	*	*	*	*	*	*	*	*
0.100 1.77	1.75	1.71	1.68	1.65	1.61	1.59	1.57	1.55	1.53	1.51	1.50
0.050 2.09	2.05	1.99	1.95	1.90	1.85	1.82	1.78	1.76	1.73	1.71	1.69
0.025 2.42 0.010 2.86	2.36 2.78	2.28 2.66	2.22 2.58	2.16 2.50	2.09 2.42	2.05 2.36	2.00 2.29	1.97 2.25	1.92 2.19	1.90 2.16	1.88
m = 27 *	∠./8 *	∠.00 *	2.58 *	2.5U *	Z.4Z *	2.36 *	∠.∠9 *	Z.Z5 *	∠.19 *	∠.⊥o *	2.13 *
m = 27 * 0.100 1.76	1.74	1.70	1.67	1.64	1.60	1.58	1.55	1.54	1.52	1.50	1.49
0.050 2.08	2.04	1.70	1.93	1.88	1.84	1.81	1.76	1.74	1.71	1.69	1.49
				•	-	-					

0.025 2.39	2.34	2.25	2.19	2.13	2.07	2.03	1.97	1.94	1.90	1.87	1.85
0.010 2.82	2.75	2.63	2.55	2.47	2.38	2.33	2.26	2.22	2.16	2.12	2.10
m = 28 *	*	*	*	*	*	*	*	*	*	*	*
0.100 1.75	1.73	1.69	1.66	1.63	1.59	1.57	1.54	1.53	1.50	1.49	1.48
0.050 2.06	2.02	1.96	1.91	1.87	1.82	1.79	1.75	1.73	1.69	1.67	1.66
0.025 2.37	2.32	2.23	2.17	2.11	2.05	2.01	1.95	1.92	1.88	1.85	1.83
0.010 2.79	2.72	2.60	2.52	2.44	2.35	2.30	2.23	2.19	2.13	2.09	2.07
m = 29 *	*	*	*	*	*	*	*	*	*	*	*
0.100 1.75	1.72	1.68	1.65	1.62	1.58	1.56	1.53	1.52	1.49	1.48	1.47
0.050 2.05	2.01	1.94	1.90	1.85	1.81	1.77	1.73	1.71	1.67	1.65	1.64
0.025 2.36	2.30	2.21	2.15	2.09	2.03	1.99	1.93	1.90	1.86	1.83	1.81
0.010 2.77	2.69	2.57	2.49	2.41	2.33	2.27	2.20	2.16	2.10	2.06	2.04
m = 30 *	*	*	*	*	*	*	*	*	*	*	*
0.100 1.74	1.71	1.67	1.64	1.61	1.57	1.55	1.52	1.51	1.48	1.47	1.46
0.050 2.04	1.99	1.93	1.89	1.84	1.79	1.76	1.72	1.70	1.66	1.64	1.62
0.025 2.34	2.28	2.20	2.14	2.07	2.01	1.97	1.91	1.88	1.84	1.81	1.79
0.010 2.74	2.66	2.55	2.47	2.39	2.30	2.25	2.17	2.13	2.07	2.03	2.01
m = 31 *	*	*	*	*	*	*	*	*	*	*	*
0.100 1.73	1.70	1.66	1.63	1.60	1.56	1.54	1.51	1.50	1.47	1.46	1.45
0.050 2.03	1.98	1.92	1.88	1.83	1.78	1.75	1.70	1.68	1.65	1.62	1.61
0.025 2.32 0.010 2.72	2.26	2.18	2.12	2.06	1.99 2.27	1.95 2.22	1.89	1.86	1.82	1.79	1.77
	2.64	2.52	2.45	2.36			2.14	2.11	2.04	2.01	1.98
m = 32 *	*	*	*	*	*	*	*	*	*	*	*
0.100 1.72	1.69	1.65	1.62	1.59	1.56	1.53	1.50	1.49	1.46	1.45	1.44
0.050 2.01	1.97	1.91	1.86	1.82	1.77	1.74	1.69	1.67	1.63	1.61	1.60
0.025 2.31 0.010 2.70	2.25	2.16 2.50	2.10	2.04	1.98 2.25	1.93 2.20	1.88 2.12	1.85	1.80	1.77 1.98	1.75 1.96
m = 34 *	2.02 *	*	Z.4Z *	Z.34 *	*	*	*	2.UO *	Z.UZ *	*	*
· -											
0.100 1.71	1.68	1.64	1.61	1.58	1.54	1.52	1.49	1.47	1.45	1.43	1.42
0.050 1.99 0.025 2.28	1.95 2.22	1.89 2.13	1.84	1.80	1.75 1.95	1.71 1.90	1.67 1.85	1.65 1.82	1.61 1.77	1.59 1.74	1.57 1.72
0.023 2.28	2.58	2.13	2.38	2.30	2.21	2.16	2.08	2.04	1.77	1.74	1.72
m = 36 *	*	*	*	*	*	*	*	*	*	*	*
$m = 30$ ^ 0.100 1.70	1.67	1.63	1.60	1.56	1.53	1.51					1.40
0.100 1.70	1.07	1.87	1.82	1.78	1.73	1.69	1.47 1.65	1.46 1.62	1.43 1.59	1.42 1.56	1.40
0.030 1.98	2.20	2.11	2.05	1.70	1.73	1.88	1.82	1.79	1.74	1.71	1.69
0.010 2.62	2.54	2.43	2.35	2.26	2.18	2.12	2.04	2.00	1.94	1.90	1.87
m = 38 *	*	*	*	*	*	*	*	*	*	*	*
0.100 1.69	1.66	1.61	1.58	1.55	1.52	1.49	1.46	1.45	1.42	1.40	1.39
0.050 1.96	1.92	1.85	1.81	1.76	1.71	1.68	1.63	1.43	1.57	1.54	1.53
0.025 2.23	2.17	2.09	2.03	1.96	1.90	1.85	1.79	1.76	1.71	1.68	1.66
0.010 2.59	2.51	2.40	2.32	2.23	2.14	2.09	2.01	1.97	1.90	1.86	1.84
m = 40 *	*	*	*	*	*	*	*	*	*	*	*
0.100 1.68	1.65	1.61	1.57	1.54	1.51	1.48	1.45	1.43	1.41	1.39	1.38
0.050 1.95	1.90	1.84	1.79	1.74	1.69	1.66	1.61	1.59	1.55	1.53	1.51
0.025 2.21	2.15	2.07	2.01	1.94	1.88	1.83	1.77	1.74	1.69	1.66	1.64
0.010 2.56	2.48	2.37	2.29	2.20	2.11	2.06	1.98	1.94	1.87	1.83	1.81
m = 42 *	*	*	*	*	*	*	*	*	*	*	*
0.100 1.67	1.64	1.60	1.57	1.53	1.50	1.47	1.44	1.42	1.40	1.38	1.37
0.050 1.94	1.89	1.83	1.78	1.73	1.68	1.65	1.60	1.57	1.53	1.51	1.49
0.025 2.20	2.14	2.05	1.99	1.92	1.86	1.81	1.75	1.72	1.67	1.64	1.62
0.010 2.54	2.46	2.34	2.26	2.18	2.09	2.03	1.95	1.91	1.85	1.80	1.78
m = 44 *	*	*	*	*	*	*	*	*	*	*	*
0.100 1.66	1.63	1.59	1.56	1.52	1.49	1.46	1.43	1.41	1.39	1.37	1.36
0.050 1.92	1.88	1.81	1.77	1.72	1.67	1.63	1.59	1.56	1.52	1.49	1.48
0.025 2.18		2.03	1.97	1.91	1.84	1.80	1.73	1.70	1.65	1.62	1.60
0.010 2.52	2.44	2.32	2.24	2.15	2.07	2.01	1.93	1.89	1.82	1.78	1.75
m = 46 *	*	*	*	*	*	*	*	*	*	*	*
0.100 1.65	1.63	1.58	1.55	1.52	1.48	1.46	1.42	1.40	1.38	1.36	1.35
0.050 1.91	1.87	1.80	1.76	1.71	1.65	1.62	1.57	1.55	1.51	1.48	1.46
0.025 2.17	2.11	2.02	1.96	1.89	1.82	1.78	1.72	1.69	1.63	1.60	1.58
0.010 2.50	2.42	2.30	2.22	2.13	2.04	1.99	1.91	1.86	1.80	1.76	1.73
m = 48 *	*	*	*	*	*	*	*	*	*	*	*
0.100 1.65	1.62	1.57	1.54	1.51	1.47	1.45	1.41	1.40	1.37	1.35	1.34
0.050 1.90	1.86	1.79	1.75	1.70	1.64	1.61	1.56	1.54	1.49	1.47	1.45
0.025 2.15		2.01	1.94	1.88	1.81	1.77	1.70	1.67	1.62	1.58	1.56
0.010 2.48	2.40	2.28	2.20	2.12	2.02	1.97	1.89	1.84	1.78	1.73	1.71
m = 50 *	*	*	*	*	*	*	*	*	*	*	*
0.100 1.64	1.61	1.57	1.54	1.50	1.46	1.44	1.41	1.39	1.36	1.34	1.33

0.050	1.89	1.85	1.78	1.74	1.69	1.63	1.60	1.55	1.52	1.48	1.46	1.44
0.025	2.14	2.08	1.99	1.93	1.87	1.80	1.75	1.69	1.66	1.60	1.57	1.55
0.010	2.46	2.38	2.27	2.18	2.10	2.01	1.95	1.87	1.82	1.76	1.71	1.69
m = 55	*	*	*	*	*	*	*	*	*	*	*	*
0.100	1.63	1.60	1.55	1.52	1.49	1.45	1.43	1.39	1.37	1.34	1.32	1.31
0.050	1.88	1.83	1.76	1.72	1.67	1.61	1.58	1.53	1.50	1.46	1.43	1.41
0.025	2.11	2.05	1.97	1.90	1.84	1.77	1.72	1.66	1.62	1.57	1.54	1.51
0.010 $m = 60$	2.42) *	2.34	2.23	2.15	2.06	1.97 *	1.91 *	1.83	1.78 *	1.71 *	1.67 *	1.64 *
m = 00	1.62	1.59	1.54	1.51	1.48	1.44	1.41	1.38	1.36	1.33	1.31	1.29
0.100	1.86	1.82	1.75	1.70	1.40	1.59	1.56	1.50	1.48	1.44	1.41	1.39
0.025	2.09	2.03	1.94	1.88	1.82	1.74	1.70	1.63	1.60	1.54	1.51	1.48
0.010	2.39	2.31	2.20	2.12	2.03	1.94	1.88	1.79	1.75	1.68	1.63	1.60
m = 65	*	*	*	*	*	*	*	*	*	*	*	*
0.100	1.61	1.58	1.53	1.50	1.47	1.43	1.40	1.37	1.35	1.31	1.29	1.28
0.050	1.85	1.80	1.73	1.69	1.63	1.58	1.54	1.49	1.46	1.42	1.39	1.37
0.025	2.07	2.01	1.93	1.86	1.80	1.72	1.68	1.61	1.58	1.52	1.48	1.46
0.010	2.37	2.29	2.17	2.09	2.00	1.91	1.85	1.77	1.72	1.65	1.60	1.57
m = 70		*	*	*	*	*	*	*	*	*	*	*
0.100	1.60 1.84	1.57 1.79	1.53 1.72	1.49 1.67	1.46 1.62	1.42 1.57	1.39 1.53	1.36 1.48	1.34 1.45	1.30	1.28	1.27 1.35
0.030	2.06	2.00	1.72	1.85	1.78	1.71	1.66	1.59	1.56	1.50	1.46	1.44
0.010	2.35	2.27	2.15	2.07	1.98	1.89	1.83	1.74	1.70	1.62	1.57	1.54
m = 80		*	*	*	*	*	*	*	*	*	*	*
0.100	1.59	1.56	1.51	1.48	1.44	1.40	1.38	1.34	1.32	1.28	1.26	1.25
0.050	1.82	1.77	1.70	1.65	1.60	1.54	1.51	1.45	1.43	1.38	1.35	1.33
0.025	2.03	1.97	1.88	1.82	1.75	1.68	1.63	1.56	1.53	1.47	1.43	1.40
0.010	2.31	2.23	2.12	2.03	1.94	1.85	1.79	1.70	1.65	1.58	1.53	1.50
m = 10		*	*	*	*	*	*	*	*	*	*	*
0.100	1.57	1.54	1.49	1.46	1.42	1.38	1.35	1.32	1.29	1.26	1.23	1.22
0.050	1.79	1.75	1.68	1.63	1.57	1.52	1.48	1.42	1.39	1.34	1.31	1.28
0.025	2.00	1.94 2.19	1.85 2.07	1.78 1.98	1.71 1.89	1.64 1.80	1.59 1.74	1.52 1.65	1.48 1.60	1.42 1.52	1.38 1.47	1.35 1.43
m = 12		*	*	*	*	*	*	*	*	*	*	*
0.100	1.56	1.53	1.48	1.44	1.41	1.36	1.34	1.30	1.27	1.23	1.21	1.19
0.050	1.77	1.73	1.66	1.60	1.55	1.49	1.45	1.40	1.36	1.31	1.27	1.25
0.025	1.97	1.91	1.82	1.75	1.68	1.61	1.56	1.49	1.45	1.38	1.34	1.30
0.010	2.23	2.15	2.03	1.94	1.85	1.76	1.69	1.60	1.55	1.47	1.41	1.37
m = 20		*	*	*	*	*	*	*	*	*	*	*
0.100	1.54	1.51	1.46	1.42	1.38	1.34	1.31	1.27	1.24	1.20	1.17	1.15
0.050	1.74	1.69	1.62	1.57	1.52	1.46	1.41	1.35	1.32	1.26	1.22	1.19
0.025	1.93 2.17	1.87 2.09	1.78 1.97	1.71 1.89	1.64 1.79	1.56 1.69	1.51 1.63	1.44 1.53	1.39 1.48	1.32 1.39	1.27 1.33	1.23
m = 40		*	*	*	*	*	*	*	*	*	*	*
0.100	1.52	1.49	1.44	1.40	1.36	1.32	1.29	1.24	1.21	1.17	1.13	1.10
0.050	1.72	1.67	1.60	1.54	1.49	1.42	1.38	1.32	1.28	1.22	1.17	1.13
0.025	1.90	1.84	1.74	1.68	1.60	1.52	1.47	1.39	1.35	1.27	1.21	1.16
0.010	2.13	2.05	1.92	1.84	1.75	1.64	1.58	1.48	1.42	1.32	1.25	1.19
m = 10		*	*	*	*	*	*	*	*	*	*	*
0.100	1.51	1.48	1.43	1.39	1.35	1.30	1.27	1.22	1.20	1.15	1.10	1.06
0.050	1.70	1.65	1.58	1.53	1.47	1.41	1.36	1.30	1.26	1.19	1.13	1.08
0.025	1.88	1.82	1.72	1.65	1.58	1.50	1.45	1.36	1.32	1.23	1.16 1.19	1.10
0.010 $m = 50$	2.10	2.02	1.90	1.81	1.72	1.61 *	1.54	1.44	1.38 *	1.28	*	1.12
m = 30	1.51	1.47	1.42	1.38	1.34	1.30	1.27	1.22	1.19	1.13	1.09	1.03
0.100	1.69	1.47	1.57	1.52	1.46	1.40	1.35	1.22	1.19	1.17	1.11	1.03
0.025	1.87	1.81	1.71	1.64	1.57	1.49	1.43	1.35	1.30	1.21	1.14	1.05
0.010	2.09	2.00	1.88	1.79	1.70	1.60	1.53	1.42	1.36	1.25	1.16	1.06

სტიუდენტის რანგობრივი სტატისტიკის $\it q$ -ს მნიშვნელობები

		<u> </u>		არებელი ს				<u> </u>	
α	2	3	4	5	6	7	8	9	10
df = 1	*	* *	*	* *	*	* *	*	* *	*
0.05 0.01	17.97 90.03	26.98 135.0	32.82 164.3	37.08 185.6	40.41 202.2	43.12 215.8	45.40 227.2	47.36 237.0	49.07 245.6
df = 2	*	* *	*	* *	*		*		*
0.05	6.08	8.33		10.88		12.44	13.03	13.54	13.99
0.01 $df = 3$	14.04	19.02	22.29	24.72	26.63	28.20	29.53	30.68	31.69
0.05	4.50		9.80	10.88	11.74	12.44	13.03	13.54	13.99
0.01	8.26	10.62	12.17	13.33	14.24	15.00	11.55	11.93	12.27
df = 4	*	* *	*	* *	*		*	* *	*
0.05	3.93 6.51	5.04 8.12	5.76 9.17	6.29 9.96	6.71 10.58	7.05 11.10	7.35 11.55	7.60 11.93	7.83 12.27
df = 5	*	* *	*	* *	*	* *	*	* *	*
0.05	3.64	4.60	5.22	5.67	6.03	6.33	6.58	6.80	6.99
0.01 $df = 6$	5.70 *	6.98	7.80 *	8.42 * *	8.91 *	9.32	9.67 *	9.97	10.24
0.05	3.46	4.34	4.90	5.30	5.63	5.90	6.12	6.32	6.49
0.01 # _ 7	5.25	6.33	7.03 *	7.56	7.97 *	8.32	8.61	8.87	9.10
df = 7	*	* * 4.16	* 4.68	* * 5.06	* 5.36	* * 5.61	* 5.82	* *	* 6.16
0.01	4.95	5.92	6.54	7.01	7.37	7.68	7.94	8.17	8.37
df = 8	*	* *	*	* *	*		*	* *	*
0.05	3.26 4.75	4.04 5.64	4.53 6.20	4.89 6.62	5.17 6.96	5.40 7.24	5.60 7.47	5.77 7.68	5.92 7.86
df = 9	* *		* *		*			* *	*
0.05	3.20	3.95	4.41	4.76	5.02	5.24	5.43	5.59	5.74
0.01 $df = 10$	4.60 *	5.43	5.96 *	6.35	6.66 *	6.91 * *	7.13	7.33	7.49 *
0.05	3.15	3.88	4.33	4.65	4.91	5.12	5.30	5.46	5.60
0.01	4.48	5.27	5.77	6.14	6.43	6.67	6.87	7.05	7.21
df = 11	* 3.11	* * * 3.82	* 4.26	* * 4.57	* 4.82	* * 5.03	* 5.20	* * 5.35	* 5.49
0.03	4.39	5.15	5.62	5.97	6.25	6.48	6.67	6.84	6.99
df = 12	*	* *	*	* *	*	* *	*	* *	*
0.05	3.08 4.32	3.77 5.05	4.20 5.50	4.51 5.84	4.75 6.10	4.95 6.32	5.12 6.51	5.27 6.67	5.39 6.81
df = 13	*	* *	*	* *	*	* *	*	* *	*
0.05	3.06	3.73	4.15	4.45	4.69	4.88			
0.01 $df = 14$	4.26	4.96	5.40	5.73		6.19		6.53 * *	6.67 *
v				4.41					5.20
0.01	4.21	4.89	5.32	5.63	5.88	6.08	6.26	6.41	6.54
		* *		* *		* *		* *	*
0.05 0.01	3.01 4.17	3.67 4.84	4.08 5.25	4.37 5.56	4.59 5.80	4.78 5.99	4.94 6.16	5.08 6.31	5.20 6.44
df = 16				* *		* *		* *	*
			4.05			4.74		5.03	5.15
0.01 $df = 17$		4.79 * *	5.19 *	5.49	5.72 *	5.92		6.22 * *	6.35 *
									5.11
0.05 0.01			4.02 5.14		4.52 5.66			4.99 6.15	6.27
		* *		* *		* *		* *	*
			4.00 5.09	4.28 5.38				4.96 6.02	
	-							-	· · · · -

df =	19 *	* *	*	* *	*	* *	*	* *	*	
0.05	2.96	3.59	3.98	4.25	4.47	4.65		4.92	5.04	1
		1	შესად		საშუალო	-		, ,		
α	2	3	4	5	6	7	8	9	10	
0.01	4.05	4.67	5.05	5.33	5.55	5.73	5.89	6.02	6.14	1
df =		* *	*	* *	*	* *	*	* *	*	
0.05	2.95 4.02	3.58 4.64	3.96 5.02	4.23 5.29	4.45 5.51	4.62 5.69	4.77 5.84	4.90 5.97	5.01 6.09	
df =		* *	*	* *	*	* *	*	* *	*	
0.05	2.92	3.53	3.90	4.17	4.37	4.54	4.68	4.81	4.92	2
0.01	3.96	4.55	4.91	5.17	5.37	5.54	5.69	5.81	5.92	2
df =	30 *	* *	*	* *	*	* *	*	* *	*	
0.05	2.89 3.89	3.49	3.85	4.10	4.30	4.46	4.60	4.63	4.73	
0.01 $df =$		4.45 * *	4.80	5.05	5.24	5.40	5.54	5.65	5.76 *)
<i>uj</i> – 0.05	2.86	3.44	3.79	4.04	4.23	4.39		4.63	4.73	2
0.03	3.82	4.37	4.70	4.04	5.11	5.26	5.39	5.50	5.60	
df =	60 *	* *	*	* *	*	* *	*	* *	*	
0.05	2.83	3.40	3.74	3.98	4.16	4.31	4.44	4.55	4.65	5
0.01		4.28	4.59	4.82	4.99	5.13		5.36	5.45	5
df =		* *	*	*		*		* *		
0.05	2.80 3.70	3.36 4.20	3.68 4.50	3.92 4.71	4.10 4.87	4.24 5.01	4.36 5.12	4.47 5.21	4.56 5.30	
df =		* *	*	* *	*	* *	*	* *	*	,
0.05	2.77	3.31	3.63	3.86	4.03	4.17	4.29	4.39	4.47	7
0.01	3.64	4.12	4.40	4.60	4.76	4.88	4.99	5.08	5.16	
				დარებელ	ი საშუალ	ოების რა				
α	11	12 1	3	14	15	16	17	18	19	20
df = 1	* *	*	* *	*	* *	*	* *	*	*	
0.05	50.59		3.20	54.33	55.30	56.32	57.22	58.04	58.83	59.56
0.01 $df = 2$	253.2	260.0 2	266.2	271.8	277.0	281.8	286.3	290.4	294.3	298.0
0.05	14.39		5.08	15.38	15.65	15.91	16.14	16.37	16.57	16.77
0.01	32.59		34.13	34.81	35.43	36.00	36.53	37.03	37.50	37.95
df = 3	* *	*	* *	*	* *	*	* *	*	*	
0.05	9.72		0.15	10.35	10.52	10.69	10.84	10.98	11.11	11.24
0.01	17.13		7.89	18.22	18.52	18.81	19.07	19.32	19.55	19.77
df = 4	* *		* *	*	* *	*	* *	*	*	0 00
0.05 0.01	8.03 12.57		8.37	8.52 13.32	8.66 13.53	8.79 13.73	8.91 13.91	9.03 14.08	9.13 14.24	9.23 14.40
df = 5	* *		* *	*	* *		* *	*	*	
0.05	7.17	7.32	7.47	7.60	7.72	7.83	7.93	8.03	8.12	8.21
0.01	10.48		.0.89	11.08	11.24	11.40	11.55	8.03 11.68		11.93
df = 6		*		*		*		*	*	
0.05 0.01	6.65 9.30		6.92 9.65	7.03 9.81	7.14 9.95	7.24 10.08		7.43 10.32	7.51 10.43	7.59 10.54
df = 7		*	* *		* *		* *		*	10.54
0.05	6.30		6.55	6.66	6.76	6.85	6.94	7.02	7.10	7.17
0.01	8.55	8.71	8.86	9.00	9.12	9.24	9.35	9.46	9.55	9.65
df = 8	* *	*	* *	*	* *	*	* *	*	*	
0.05	6.05		6.29		6.48	6.57	6.65	6.73	6.80	6.87
0.01	8.03		8.31	8.44	8.55	8.66	8.76	8.85	8.94	9.03
df = 9	* *	* *	*	*	* *	*	* *	*	*	6.6.
0.05	5.87 7.65		6.09 7.91	6.19 8.03	6.28 8.13	6.36 8.23	6.44 8.33	6.51 8.41	6.58 8.49	6.64 8.57
0.01	/ • 0.)									/
0.01 $df = 10$	* *		* *		* *		* *	*	*	
df = 10 0.05								*		6.47

df = 11	*	* *	*	* *	*	* *	*	* *	*	
0.05	5.61	5.71	5.81	5.90	5.98	6.06	6.13	6.20	6.27	6.33
0.01	7.13	7.25	7.36 Aol s	7 . 4 6 ადარებელ	7.56 no Isadense	7.65 mmodals 6	7.73 აოთინობ	7.81	7.88	7.95
α	11	12	13	14	15	16	17	18	19	20
df = 12	*	* *		* *		* *		* *	*	20
0.05	5.51	5.61	5.71	5.80	5.88	5.95	6.02	6.09	6.15	6.21
0.01	6.94	7.06	7.17	7.26	7.36	7.44	7.52	7.59	7.66	7.73
df = 13	*	* *	*	* *		* *	*	* *	*	
0.05 0.01	5.43 6.79	5.53 6.90	5.63 7.01	5.71 7.10	5.79 7.19	5.86 7.27	5.93 7.35	5.99 7.42	6.05 7.48	6.11 7.55
df = 14	*	* *		* *		* *		* *	*	, . 00
0.05	5.36	5.46	5.55	5.64	5.71	5.79	5.85	5.91	5.97	6.03
0.01	6.66	6.77	6.87	6.96	7.05	7.13	7.20	7.27	7.33	7.39
df = 15	*	* *		* *		* *		* *	*	- 00
0.05 0.01	5.31 6.55	5.40 6.66	5.49 6.76	5.57 6.84	5.65 6.93	5.72 7.00	5.78 7.07	5.85 7.14	5.90 7.20	5.96 7.26
df = 16	*	* *		* *		* *		* *	*	
0.05	5.26	5.35	5.44	5.52	5.59	5.66	5.73	5.79	5.84	5.90
0.01	6.46	6.56	6.66	6.74	6.82	6.90	6.97	7.03	7.09	7.15
df = 17	*	* *	*	* *		* *	*	* *	*	F 04
0.05 0.01	5.21 6.38	5.31 6.48	5.39 6.57	5.47 6.66	5.54 6.73	5.61 6.81	5.67 6.87	5.73 6.94	5.79 7.00	5.84 7.05
df = 18	*	* *	*	* *	*	* *	*	* *	*	
0.05	5.17	5.27	5.35	5.43	5.50	5.57	5.63	5.69	5.74	5.79
0.01	6.31 *	6.41	6.50 *	6.58 * *	6.65 *	6.73 * *	6.79 *	6.85 * *	6.91 *	6.97
df = 19	* 5.14	5.23	5.31	5.39	5.46	5.53	* 5.59	* * 5.65	* 5.70	5.75
0.03	6.25	6.34	6.43	6.51	6.58	6.65	6.72	6.78	6.84	6.89
df = 20	*	* *	*	* *	*	* *	*	* *	*	
0.05	5.11	5.20	5.28	5.36	5.43	5.49	5.55	5.61	5.66	5.71
0.01 $df = 24$	6.19 *	6.28	6.37 *	6.45 * *	6.52	6.59 * *	6.65 *	6.71 * *	6.77 *	6.82
$u_j = 24$	5.01	5.10	5.18	5.25	5.32	5.38	5.44	5.49	5.55	5.59
0.01	6.02	6.11	6.19	6.26	6.33	6.39	6.45	6.51	6.56	6.61
df = 30	*	* *		* *		* *	*	* *	*	
0.05	4.92	5.00	5.08	5.15	5.21	5.27 6.20	5.33	5.38	5.43	5.47
0.01 $df = 40$	5.85 *	5.93	6.01 *	6.08 * *	6.14	v.∠∪ * *	6.26 *	6.31	6.36 *	6.41
0.05	4.82	4.90	4.98	5.04	5.11	5.16	5.22	5.27	5.31	5.36
0.01	5.69	5.76	5.83	5.90	5.96	6.02	6.07	6.12	6.16	6.21
df = 60	*	* *		* *		* *		* *	*	
0.05 0.01	4.73 5.53	4.81 5.60	4.88 5.67	4.94 5.73	5.00 5.78	5.06 5.84	5.11 5.89	5.15 5.93	5.20 5.97	5.24 6.01
df = 120	*	* *	*	* *	*	* *	*	* *	*	0.01
0.05	4.64		4.78	4.84	4.90	4.95	5.00	5.04	5.09	5.13
0.01	5.37	5.44	5.50	5.56	5.61	5.66	5.71	5.75	5.79	5.83
$df = \infty$		* *	*		* *		*		*	
0.05 0.01	4.55 5.23	4.62 5.29	4.68 5.35	4.74 5.40	4.80 5.45	4.85 5.49	4.89 5.54	4.93 5.57	4.97 5.61	5.01 5.65
0.0±	J • Z J	5.25	J.JJ	0.40	J.7J	0.30	J.J.	5.57	J.∪⊥	5.05

ფაქტორულ სქემაში უბრალო ეფექტების კრიტერიუმის CD-სთვის q-ს მოსაძებნად საჭირო სვეტის დასადგენად გამოიყენება შემდეგი გარდაქმნა:

0 000 1 100 10	00 0 0 100 0 1 0
სქემის ტიპი	სვეტის ნომერი
2X2	3
2X3	5
3X2	5
3X3	7
3X4	8

4X3	8
4X4	10

პირსონი კორელაციის კოეფიციენტის (*r*) კრიტიკული მნიშვნელობები

		5%	α (ცალ	ემხრივი) 1%	0.50/			(ცალმხრი		
		5%	2.5% a (ორმ	1% ()	0.5%		5%	2.5%		0.5%
_	_	100/		_	10/			ურმხრივი		
ı	n	10%	5%	2%	1%	n	10%	5%	2%	1%
						·				
	3	0.9877	0.9969	0.9995	0.9999	40	0.2638	0.3120	0.3665	0.4026
	4	0.9000	0.9500	0.9800	0.9900	41	0.2605	0.3081	0.3621	0.3978
	5	0.8054	0.8783	0.9343	0.9587	42	0.2573	0.3044	0.3578	0.3932
	6	0.7293	0.8114	0.8822	0.9172	43	0.2542	0.3008	0.3536	0.3887
	7	0.6694	0.7545	0.8329	0.8745	44	0.2512	0.2973	0.3496	0.3843
	8	0.6215	0.7067	0.7887	0.8343	45	0.2483	0.2940	0.3457	0.3801
	9	0.5822	0.6664	0.7498	0.7977	46	0.2455	0.2907	0.3420	0.3761
1	0	0.5494	0.6319	0.7155	0.7646	47	0.2429	0.2876	0.3384	0.3721
	1	0.5214	0.6021	0.6851	0.7348	48	0.2403	0.2845	0.3348	0.3683
1	2	0.4973	0.5760	0.6581	0.7079	49	0.2377	0.2816	0.3314	0.3646
1	3	0.4762	0.5529	0.6339	0.6835	50	0.2353	0.2787	0.3281	0.3610
1	4	0.4575	0.5324	0.6120	0.6614	55	0.2241	0.2656	0.3129	0.3445
1	5	0.4409	0.5140	0.5923	0.6411	60	0.2144	0.2542	0.2997	0.3301
1	6	0.4259	0.4973	0.5742	0.6226	65	0.2058	0.2441	0.2880	0.3173
1	7	0.4124	0.4821	0.5577	0.6055	70	0.1982	0.2352	0.2776	0.3060
1	8	0.4000	0.4683	0.5425	0.5897	75	0.1914	0.2272	0.2682	0.2957
1	9	0.3887	0.4555	0.5285	0.5751	80	0.1852	0.2199	0.2597	0.2864
2	0.	0.3783	0.4438	0.5155	0.5614	85	0.1796	0.2133	0.2520	0.2780
2		0.3687	0.4329	0.5034	0.5487	90	0.1745	0.2072	0.2449	0.2702
	2	0.3598	0.4227	0.4921	0.5368	95	0.1698	0.2017	0.2384	0.2631
	3	0.3515	0.4132	0.4815	0.5256	100			0.2324	0.2565
	4	0.3438	0.4044	0.4716	0.5151	110	0.1654 0.1576	0.1966 0.1874	0.2324	0.2363
	5	0.3365	0.3961	0.4622	0.5052	120	0.1570	0.1874	0.2122	0.2343
	6	0.3297	0.3882	0.4534	0.4958	130	0.1309	0.1793	0.2122	0.2343
	7	0.3233	0.3809	0.4451	0.4869	140	0.1396	0.1723	0.2035	0.2232
	8	0.3172	0.3739	0.4372	0.4785	150	0.1348	0.1603	0.1898	0.2097
2	9	0.3115	0.3673	0.4297	0.4705	160	0.1346	0.1552	0.1838	0.2031
3	0	0.3061	0.3610	0.4226	0.4629	170	0.1266	0.1506	0.1783	0.1971
	1	0.3009	0.3550	0.4158	0.4556	180	0.1230	0.1463	0.1733	0.1915
	2	0.2960	0.3494	0.4093	0.4487	190	0.1197	0.1424	0.1687	0.1865
	3	0.2913	0.3440	0.4032	0.4421	200				
	4	0.2869	0.3388	0.3972	0.4357		0.1166	0.1388	0.1644	0.1818
	5	0.2826	0.3338	0.3916	0.4296	210 220	0.1138	0.1354	0.1604	0.1774
	6	0.2785	0.3330	0.3862	0.4238	230	0.1112	0.1323	0.1568	0.1733
	7	0.2746	0.3246	0.3810	0.4182	230 240	0.1087	0.1294	0.1533	0.1695
	8	0.2709	0.3202	0.3760	0.4128	250	0.1064	0.1267	0.1501	0.1660
	9	0.2673	0.3160	0.3712	0.4076		0.1043	0.1241	0.1471	0.1626
5	_	0.2073	3.3100	5.5712	3.1070	500	0.0736	0.0877	0.1040	0.1151

სპირმენის კორელაციის კოეფიციენტის (r_i) კრიტიკული მნიშვნელობები

n	$\alpha = .100$	$\alpha = .050$	$\alpha = .025$	$\alpha = .010$	$\alpha = .005$	$\alpha = .001$
4	.8000	.8000				
5	.7000	.8000	.9000	.9000		
6	.6000	.7714	.8286	.8857	.9429	
7	.5357	.6786	.7450	.8571	.8929	.9643
8	.5000	.6190	.7143	.8095	.8571	.9286
9	.4667	.5833	.6833	.7667	.8167	.9000
10	.4424	.5515	.6364	.7333	.8167	.8667
11	.4182	.5273	.6091	.7000	.7818	.8364
12	.3986	.4965	.5804	.6713	.7455	.8182
13	.3791	.4760	.5549	.6429	.7273	.7912
14	.3626	.4593	.5341	.6220	.6978	.7670
15	.3500	.4429	.5179	.6000	.6747	.7464
16	.3382	.4265	.5000	.5824	.6536	.7265
17	.3260	.4118	.4853	.5637	.6324	.7083
18	.3148	.3994	.4716	.5480	.6152	.6904
19	.3070	.3895	.4579	.5333	.5975	.6737
20	.2977	.3789	.4451	.5203	.5684	.6586
21	.2909	.3688	.4351	.5078	.5545	.6455
22	.2829	.3597	.4241	.4963	.5426	.6318
23	.2767	.3518	.4150	.4852	.5306	.6186
24	.2704	.3435	.4061	.4748	.5200	.6070
25	.2646	.3362	.3977	.4654	.5100	.5962
26	.2588	.3299	.3894	.4564	.5002	.5856
27	.2540	.3236	.3822	.4481	.4915	.5757
28	.2490	.3175	.3749	.4401	.4828	.5660
29	.2443	.3113	.3685	.4320	.4744	.5567
30	.2400	.3059	.3620	.4251	.4665	.5479

კენდალის კრიტიკული მნიშვნელობები

$\alpha = .05$	i				
m	n = 3	n = 4	n = 5	n = 6	n = 7
3			64.4	103.9	157.3
4		49.5	88.4	143.3	217.0
5		62.6	112.3	182.4	276.2
6		75.7	136.1	221.4	335.2
8	48.1	101.7	183.7	299.0	453.1
10	60.0	127.8	231.2	376.7	571.0
15	89.8	192.9	349.8	570.5	864.9
20	119.7	258.0	468.5	764.4	1158.7
$\alpha = .0$	1				
m	n = 3	n = 4	n = 5	n = 6	n = 7
3			75.6	122.8	185.6
4		61.4	109.3	176.2	265.0
5		80.5	142.8	229.4	343.8
6		99.5	176.1	282.4	422.6
8	66.8	137.4	242.7	388.3	579.9
10	85.1	175.3	309.1	494.0	737.0
15	131.0	269.8	475.2	758.2	1129.5
20	177.0	364.2	641.2	764.4	1158.7

დამატებითი მნიშვნელობები, როცა n=3 $\alpha=.05$ $\alpha=.01$

m	$\alpha = .05$	$\alpha = .0$
9	54.0	75.9
12	71.9	103.5
14	83.8	121.9
16	95.8	140.2
18	107.7	158.6

მან-უიტნი/უილკოქსონის კრიტერიუმის კრიტიკული მნიშვნელობები (α: 5%-იანი ცალმხრივი,10%-იანი ორმხრივი)

$n_{_{1}}$	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	
2	_	_	_	0	0	0	1	1	1	1	2	2	2	3	3	3	4	4	4	5	5	5	6	6	
3	_	_	0	1	2	2	3	3	4	5	5	6	7	7	8	9	9	10	11	11	12	13	13	14	
4	_	0	1	2	3	4	5	6	7	8	9	10	11	12	14	15	16	17	18	19	20	21	22	23	
5	0	1	2	4	5	6	8	9	11	12	13	15	16	18	19	20	22	23	25	26	28	29	30	32	
6	0	2	3	5	7	8	10	12	14	16	17	19	21	23	25	26	28	30	32	34	36	37	39	41	
7	0	2	4	6	8	11	13	15	17	19	21	24	26	28	30	33	35	37	39	41	44	46	48	50	
8	1	3	5	-	10				20	23		28	31	33	36	39	41	44	47	49	52	54	57	60	
9	1	3	6	9	12	15	18	21	24	27	30	33	36	39	42	45	48	51	54	57	60	63	66	69	
10	1	4	7	11	14	17	20	24	27	31	34	37	41	44	48	51	55	58	62	65	68	72	75	79	
11	1	5	8	12	16	19	23	27	31	34	38	42	46	50	54	57	61	65	69	73	77	81	85	89	
12	2	5	9	13	17	21	26	30	34	38	42	47	51	55	60	64	68	72	77	81	85	90	94	98	
13	2	6	10	15	19	24	28	33	37	42	47	51	56	61	65	70	75	80	84	89	94	98	103	108	
14	2				21				41	46	51	56	61	66	71	77	82	87	92	97	102	107	113	118	
15	3				23				44		55	61	66	72	77	83	88	94	100	105	111	116	122	128	
16	3				25				48		60	65	71	77	83	89	95	101	107	113	119	125	131	137	
17	3				26				51		64	70	77	83	89	96	102	109	115	121	128	134	141	147	
18	4				28				55	61		75	82	88	95	102	109	116	123	130	136	143	150	157	
19	4				30				58	65		80	87	94	101	109		123	130	138	145	152	160	167	
20	4	11	18	25	32	39	47	54	62	69	77	84	92	100	107	115	123	130	138	146	154	161	169	177	
21	5	11			-				65	73		89	97	105	113		130	138	146	154	162	170	179	187	
22	5				36				68	77		94	102	111	119	128	136	145	154	162	171	179	188	197	
23		13							72		90	98	107	116	125	134	143	152	161	170	179	189	198	207	
24								66				103	113	122	131	141	150	160	169	179	188	198	207	217	
25	6	14	23	32	41	50	60	69	79	89	98	108	118	128	137	147	157	167	177	187	197	207	217	227	

მან-უიტნი/უილკოქსონის კრიტერიუმის კრიტიკული მნიშვნელობები (α: 2.5%-იანი ცალმხრივი,5%-იანი ორმხრივი)

															n_2										
$n_{_{1}}$	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	
2	-	_	_	_	_	_	0	0	0	0	1	1	1	1	1	2	2	2	2	3	3	3	3	3	
3	-	_	-	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8	9	9	10	10	
4	-	-	0	1	2	3	4	4	5	6	7	8	9	10	11	11	12	13	14	15	16	17	17	18	
5	_	0	1	2	3	5	6	7	8	9	11	12	13	14	15	17	18	19	20	22	23	24	25	27	
6	_	1	2	3	5	6	8	10	11	13	14	16	17	19	21	22	24	25	27	29	30	32	33	35	
7	-	1	3	5	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	
8	0	2	4	6	8	10	13	15	17	19	22	24	26	29	31	34	36	38	41	43	45	48	50	53	
9	0	2	4	7	10	12	15	17	20	23	26	28	31	34	37	39	42	45	48	50	53	56	59	62	
10	0	3	5	8	11	14	17	20	23	26	29	33	36	39	42	45	48	52	55	58	61	64	67	71	
11	0	3	6	9	13	16	19	23	26	30	33	37	40	44	47	51	55	58	62	65	69	73	76	80	
12	1	4	7	11	14	18	22	26	29	33	37	41	45	49	53	57	61	65	69	73	77	81	85	89	
13	1	4	8	12	16	20	24	28	33	37	41	45	50	54	59	63	67	72	76	80	85	89	94	98	
14	1	5	9	13	17	22	26	31	36	40	45	50	55	59	64	69	74	78	83	88	93	98	102	107	
15	1	5	10	14	19	24	29	34	39	44	49	54	59	64	70	75	80	85	90	96	101	106	111	117	
16	1	6	11	15	21	26	31	37	42	47	53	59	64	70	75	81	86	92	98	103	109	115	120	126	
17	2	6	11	17	22	28	34	39	45	51	57	63	69	75	81	87	93	99	105	111	117	123	129	135	
18	2	7	12	18	24	30	36	42	48	55	61	67	74	80	86	93	99	106	112	119	125	132	138	145	
19	2	7	13	19	25	32	38	45	52	58	65	72	78	85	92	99	106	113	119	126	133	140	147	154	
20	2	8	14	20	27	34	41	48	55	62	69	76	83	90	98	105	112	119	127	134	141	149	156	163	

21 3 8 15 22 29 36 43 50 58 65 73 80 88 96 103 111 119 126 134 142 150 157 165 173 22 3 9 16 23 30 38 45 53 61 69 77 85 93 101 109 117 125 133 141 150 158 166 174 182 23 3 9 17 24 32 40 48 56 64 73 81 89 98 106 115 123 132 140 149 157 166 175 183 192 24 3 10 17 25 33 42 50 59 67 76 85 94 102 111 120 129 138 147 156 165 174 183 192 201 25 3 10 18 27 35 44 53 62 71 80 89 98 107 117 126 135 145 154 163 173 182 192 201 211

უილკოქსონის კრიტერიუმის კრიტიკული მნიშვნელობები

	5%	α (ცალ ⁶ 2.5%	მხრივი 1%		α (ცალმხრივი) 						α (ც	ალმხრივ	₃ 0)	
			ხრივი)			α (σ	ომხრი;	- , -	0.1070		5%	2.5%	1% 0	1.5%
n	10%	5%	2%	1%	n	10%	5%	2%	1%			α (ორმხ	რივი)	
1					31	163	147	130	118	n	10%	5%	2%	1%
2	_	_	_	_	32	175	159	140	128	61	715	672	623	589
3	_	_	_	_	33	187	170	151	138	62	741	697	646	611
4	_	_	_	_	34	200	182	162	148	63	767	721	669	634
5	0	_	_	_	35	213	195	173	159	64	793	747	693	657
6	2	0	_	_	36	227	208	185	171	65	820	772	718	681
7	3	2	0	_	37	241	221	198	182	66	847	798	742	705
8	5	3	1	0	38	256	235	211	194	67	875	825	768	729
9	8	5	3	1	39	271	249	224	207	68	903	852	793	754
10	10	8	5	3	40	286	264	238	220	69	931	879	819	779
11	13	10	7	5	41	302	279	252	233	70	960	907	846	805
12	17	13	9	7	42	319	294	266	247	71	990	936	873	831
13	21	17	12	9	43	336	310	281	261	72	1020	964	901	858
14	25	21	15	12	44	353	327	296	276	73	1050	994	928	884
15	30	25	19	15	45	371	343	312	291	74	1081	1023	957	912
16	35	29	23	19	46	389	361	328	307	75	1112	1053	986	940
17	41	34	27	23	47	407	378	345	322	76	1144	1084	1015	968
18	47	40	32	27	48	426	396	362	339	77	1176	1115	1044	997
19	53	46	37	32	49	446	415	379	355	78	1209	1147	1075	1026
20	60	52	43	37	50	466	434	397	373	79	1242	1179	1105	1056
21	67	58	49	42	51	486	453	416	390	80	1276	1211	1136	1086
22	75	65	55	48	52	507	473	434	408	81	1310	1244	1168	1116
23	83	73	62	54	53	529	494	454	427	82	1345	1277	1200	1147
24	91	81	69	61	54	550	514	473	445	83	1380	1311	1232	1178
25	100	89	76	68	55	573	536	493	465	84	1415	1345	1265	1210
26	110	98	84	75	56	595	557	514	484	85	1451	1380	1298	1242
27	119	107	92	83	57	618	579	535	504	86	1487	1415	1332	1275
28	130	116	101	91	58	642	602	556	525	87	1524	1451	1366	1308
29	140	126	110	100	59	666	625	578	546	88	1561	1487	1400	1342
30	151	137	120	109	60	690	648	600	567	89	1599	1523	1435	1376
										90	1638	1560	1471	1410

კოლმოგოროვ-სმირნოვის კრიტერიუმის კრიტიკული მნიშვნელობები

n	$\alpha = .20$	<i>α</i> = .10	$\alpha = .05$	$\alpha = .02$	$\alpha = .01$	n	$\alpha = .20$	$\alpha = .10$	$\alpha = .05$	$\alpha = .02$	$\alpha = .01$
1	.900	.950	.975	.990	.995	21	.226	.259	.287	.321	.344
2	.684	.776	.842	.900	.929	22	.221	.253	.281	.314	.337
3	.565	.636	.708	.785	.829	23	.216	.247	.275	.307	.330
4	.493	.565	.624	.689	.734	24	.212	.242	.269	.301	.323
5	.447	.509	.563	.627	.669	25	.208	.238	.264	.295	.317
6	.410	.468	.519	.577	.617	26	.204	.233	.259	.290	.311
7	.381	.436	.483	.538	.576	27	.200	.229	.254	.284	.305
8	.358	.410	.454	.507	.542	28	.197	.225	.250	.279	.300
9	.339	.387	.430	.480	.513	29	.193	.221	.246	.275	.295
10	.323	.369	.409	.457	.489	30	.190	.218	.242	.270	.290
11	.308	.352	.391	.437	.468	31	.187	.214	.238	.266	.285
12	.296	.338	.375	.419	.449	32	.184	.211	.234	.262	.281
13	.285	.325	.361	.404	.432	33	.182	.208	.231	.258	.277
14	.275	.314	.349	.390	.418	34	.179	.205	.227	.254	.273
15	.266	.304	.338	.377	.404	35	.177	.202	.224	.251	.269
16	.258	.295	.327	.366	.392	36	.174	.199	.221	.247	.265
17	.250	.286	.318	.355	.381	37	.172	.196	.218	.244	.262
18	.244	.279	.309	.346	.371	38	.170	.194	.215	.241	.258
19	.237	.271	.301	.337	.361	39	.168	.191	.213	.238	.255
20	.232	.265	.294	.329	.352	40	.165	.189	.210	.235	.252
						> 40	1.07	1.22	1.36	1.52	1.63
						/ 40	\sqrt{n}	\sqrt{n}	\sqrt{n}	\sqrt{n}	\sqrt{n}

კრასკელ–უოლისის სტატისტიკის $\it p$ –მნიშვნელობები

n_1	n_1	n_1	H	p -მნიშვნელობა	n_1	n_1	n_1	H	p -მნიშვნელობა
2	1	1	2.7000	.500	4	3	2	6.4444	.009
								6.3000	.011
2	2	1	3.6000	.267				5.444	.046
								5.400	.051
2	2	2	4.5714	.067				4.5111	.098
			3.7143	.200				4.4444	.102
3	1	1	3.2000	.300	4	3	3	6.7455	.010
	•	•	2.2000	.500	•			6.7091	.013
3	2	1	4.2857	.100				5.7909	.046
			3.8571	.133				5.7273	.050
								4.7091	.092
3	2	2	5.3572	.029				4.7000	.101
			4.7143	.048					
			4.5000	.067	4	4	1	6.6667	.010
			4.4643	.105				6.1667	.022
								4.9667	.048
3	3	1	5.1429	.043				4.8667	.054
			4.5714	.100				4.1667	.082
			4.0000	.129				4.0667	.102
3	3	2	6.2500	.011	4	4	2	7.0364	.006
_	-	_	5.3611	.032	•		_	8.8727	.011
			5.1389	.061				5.4545	.046
			4.5556	.100				5.2364	.052

			4.2500	.121					4.5545	.098
									4.4455	.103
3	3	3	7.2000	.004						
			6.4889	.001		4	4	3	7.1439	.010
			5.6889	.029					7.1364	.011
			5.6000	.050					5.5985	.049
			5.0667	.086					5.5758	.051
			4.6222	.100					4.5455	.099
									4.4773	.102
4	1	1	3.5714	.200						
						4	4	4	7.6538	.008
4	2	1	4.8214	.057					7.5385	.011
			4.5000	.076					5.6923	.049
			4.0179	.114					5.6538	.054
									4.6539	.097
4	3	1	5.8333	.021					4.5001	.104
			5.2083	.050						
			5.0000	.057		5	1	1	3.8571	.143
			4.0556	.093						
			3.8889	.129		5	2	1	5.2500	.036
									5.0000	.048
									4.4500	.071
									4.2000	.095
									4.0500	.119
_	_					_				
5	2	2	6.5333	.008		5	4	4	7.7604	.009
			6.1333	.013					7.7440	.011
			5.1600	.034					5.6571	.049
			5.0400	.056					5.6176	.050
			4.3733	.090					4.6187	.100
			4.2933	.112					4.5527	.102
_	2	1	c 4000	012		_	_	1	7 2001	000
5	3	1	6.4000	.012		5	5	1	7.3091	.009
			4.9600	.048					6.8364	.011
			4.8711	.052					5.1273	.046
			4.0178	.095					4.9091	.053
			3.8400	.123					4.1091	.086
_	2	2	6,0001	000					4.0364	.105
5	3	2	6.9091	.009		_	_	2	7 2205	010
			6.8281	.010		5	5	2	7.3385	.010
			5.2509	.049 .052					7.2692 5.3385	.010 .047
			5.1055							
			4.6509 4.4945	.091 .101					5.2462 4.6231	.051 .097
			4.4943	.101					4.5077	.100
5	3	3	7.0788	.009					4.5077	.100
3	3	3	6.9818	.011		5	5	3	7.5780	.010
			5.6485	.049		5	3	3	7.5429	.010
			5.5152	.051					5.7055	.046
			4.5333	.097					5.6264	.051
			4.4121	.109					4.5451	.100
			7.7141	.107					4.5363	.100
5	4	1	6.9545	.008					7.5505	.102
5	7	1	6.8400	.011		5	5	4	7.8229	.010
			4.9855	.044		5	5	4	7.7914	.010
			4.8600	.056					5.6657	.049
			3.9873	.098					5.6429	.050
			3.9600	.102					4.5229	.100
			3.7000	.102					4.5200	.101
5	4	2	7.2045	.009					1.5200	.101
5	_	_	7.1182	.010		5	5	5	8.0000	.009
			5.2727	.049		_	_	5	7.9800	.010
			5.2682	.050					5.7800	.049
			4.5609	.098					5.6600	.051
			4.5182	.101					4.5600	.100
			1.5102	.101					4.5000	.102
5	4	3	7.4449	.010					1.5000	.102
,	•	5	7.3949	.011						
			5.6564	.049						
			5.6308	.050						
			2.3300	.550						

ლიტერატურა

- 1. ნ. ლაზრიევა, მ. მანია, გ. მარი, ა. მოსიძე, ა. ტორონჯაძე, თ. ტორონჯაძე, თ. შერვაშიძე. ალბათობის თეორია და მათემატიკური სტატისტიკა ეკონომისტებისათვის. ფონდი «ევრაზია», თბილისი, 2000. 661 გვ.
- 2. ჰარალდ კისი. სტატისტიკა სოციალურ მეცნიერებებში. თსუ გამომცემლობა, თბილისი, 2008. 532 გვ.
- 3. ო.ფურთუხია. აღნერითი სტატისტიკა, ალბათობა, სტატისტიკური დასკვნების თეორია. თბილისი, 2008. 418 გვ. .
- 4. ო. ფურთუხია. ალბათობა და სტატისტიკა მაგალითებსა და ამოცანებში. თბილისი, 2009. 268 გვ.
- 5. ო. ფურთუხია, ზ. ციგროშვილი, ქ. მანჯგალაძე. უმაღლესი მათემატიკა, ნაწილი III, ალბათობა და მათემატიკური სტატისტიკა. თსუ გამომცემლობა, თბილისი, 2009. 251 გვ.
- 6. ო. ფურთუხია. ალბათურ-სტატისტიკური ამოცანები. თსუ გამომცემლობა, თბილისი, მეორე გამოცემა, 2013. 562 გვ.
- 7. კეკელია ნორა, სოხაძე გრიგოლი, ფაცაცია მზევინარი. მათემატიკის ელემენტები (რიცხვითი სისტემები, ფუნქციები, ალბათობა). თბილისი, 2014, 334 გვ.
- 8. Denis Anthony. Statistics for Health, Life and Social Sciences. Free eBook. Bookboon.com. 2011. 292 p.
- 9. Dato N. M. de Gruijter, Leo J. Th. Van der Kamp. Statistical Test Theory for the Behavioral Sciences. Chapman&Hall/CRC. 2008. 282 p.
- 10. Mark S. Handcock, Martina Morris. Relative Distribution Methods in the Social Sciences. Springer. 1999. 280 p.
- 11. David A. Kenny. Statistics for the Social and Behavioral Sciences. Library of Congress Cataloging-in-Publication Data. 1987. 434 p.
- 12. James Stevens. Applied Multivariate Statistics for the Social Sciences. Lawrence Erlbaum Associates, Publishers. 2002. 699 p.
- 13. Артемиева Е. Ю. Сборник задач по теории вероятностей и математической статистике для психологов. Изд-во МГУ. 1969. 92 стр.
- 14. Ахтямов А. М. Математика для социологов и экономистов. ФИЗМАТЛИТ. Москва, 2004. 464 стр.
- 15. Крамер Д. Математическая обработка данных в социальных наукахю Современные методы. Издательский центр «Академия», Москва. 2007ю 288 стр.
- 16. Мациевский С. В. Высшая математика для гуманитариев. Изд-во Россиийского государственного университета им И. Канта. Москва. 2010. 299 с.
- 17. Наследов А. Д. Математические методы психологического исследования. Анализ и интенпретация данных. Изд-во «Речь», Санкт-Петербург. 2004. 388 стр.
- 18. Рамси Д. Статистика для «Чайников». Изд-во «Диалектика», Москва Санкт-Петербург Киев. 2008. 316 стр.
- 19. Ростовцев П. С., Ковалева Г. Д., Нуртдинов А. Н. Курс лекций по теории вероятностей и математической статистике для социологов. Изд-во Новосибирского госуниверситета, Новосибирск. 2004. 95 стр.

სᲐᲒᲜᲝᲒᲠᲘᲕᲘ ᲡᲐᲫᲘᲔᲑᲔᲚᲘ

სტატისტიკური მეთოდოლოგია. სტატისტიკური მეთოდების დანიშნულება. აღნერა და დასკვნა. პოპულაცია და შერჩევა.

დასკვნითი სტატისტიკური მეთოდები. პარამეტრები და სტატისტიკა. პოპულაციის განსაზღვრა. კომპიუტერის როლი სტატისტიკაში. რატომ არის საჭირო სტატისტიკა. შეჯამება. კითხვები. ცვლადები და მათი გაზომვა. ცვლადი. თვისებრივი და რაოდენობრივი მონაცემები. ინტერვალების სკალა. რიგის სკალა. რიგის სკალის მონაცემთა რაოდენობრივი ბუნება. სტატისტიკური მეთოდები და გაზომვის ტიპი. დისკრეტული და უწყვეტი ცვლადები. შერჩევის სახეობები. შერჩევის შეცდომა. მარტივი შემთხვევითი შერჩევა. ალბათური და არაალბათური შერჩევა. (ჯდომილება. საიმედობა. შეჯამება. კითხვები. რაოდენობრივი მონაცემების სიხშირეთა განაწილება და მისი გრაფიკული წარმოდგენა. სიხშირეთა განაწილება. სიხშირეთა განაწილების გრაფიკულად გამოსახვა. ჰისტოგრამები. სიხშირეთა პოლიგონი. თვისობრივი მონაცემების სიხშირეთა განაწილება. სვეტოვანი და წრიული დიაგრამები. ფოთლებიანი ღეროების მსგავსი დიაგრამები. პოპულაციის და შერჩევის განაწილება. შეჯამება. კითხვები. აღნერითი სტატისტიკები. პარამეტრები. სტატისტიკები. საშუალო. დამრგვალების ზოგადი წესი. საშუალოს დამოგვალების წესი. საშუალოს შეფასება. საშუალოს თვისებები. მედიანა. მედიანის შეფასება. მედიანის თვისები. მოდა. მოდალური ინტერვალი. შეჯამება. კითხვები. გაბნევის დიაპაზონი. პროცენტილი. კვარტილები. კვარტილთშორისი გაბნევის დიაპაზონი. რანგები და პროცენტული რანგები. დისპერსია და სტანდარტული გადახრა. შერჩევითი დისერსია. შესწორებულ შერჩევით დისპერსია. სტანდარტული გადახრა. შესწორებული სტანდარტული გადახრა. ვარიაციის კოეფიციენტი. ემპირიული წესი. ჩებიშევის თეორემა. ბოქსპლოტი. შეჯამება. კითხვები. დამოუკიდებელი სიდიდე. დამოკიდებული სიდიდე. გაბნევის დიაგრამა. მისადაგების წირი. რეგრესიული ანალიზი. უმცირეს კვადრატთა მეთოდი. კორელაციის კოეფიციენტი. კოვარიაციის კოეფიციენტი. სპირმენის რანობრივი კორელაციის კოეფიციენტი. რეგრესია. რეგრესიის წრფე. წინასწარმეტყველება (პროგნოზირება). დეტემინაციის კოეფიციენტი. შეჯამება. კითხვები. რა არის ალბათობა? ალბათობის თვისებები. დენდროგრამა (ხისებრი დიაგრამა). შემთხვევითი სიდიდეები და მათი განაწილებები. განაწილების კანონი. ჯამის ალბათობის ფორმულა. პირობითი ალბათობა. ნამრავლის ალბათობის ფორმულა. სრული ალბათობის ფორმულით. ბაიესის ფორმულა. შეჯამება. კითხვები. ბინომური განაწილება. ბინომური განაწილების თვისებები. ბინომური ალბათობების გამოთვლა. ბერნულის ფორმულა. უალბათესი რიცხვი. ბინომური შემთხვევითი სიდიდის საშუალო და დისპერსია. ნორმალური მიახლოება. პუასონის მიახლოება. ფარდობითი სიხშირეები. შერჩევის ფარდობითი სიხშირის საშუალო და დისპერია. შეჯამება. კითხვები. ნორმალური განაწილების თვისებები. სტანდარტული ნორმალური განაწილების ცხრილის გამოყენება. 🏅 სიდიდე. მოცემული ალბათობით 💈 სიდიდის პოვნა. სტანდარტული ნორმალური განაწილების წირის ქვეშ მდებარე არის ფართობის მოსაძებნი პროცედურული ცხრილი. ცენტრალური ზღვარითი თეორემა (ცზთ). რამდენად დიდი უნდა იყოს შერჩევის მოცულობა n , რომ სრულდებოდეს ცზთ? შერჩევითი განაწილებები. ბინომური განაწილების ნორმალური აპროქსიმაცია. ცენტრალური ზღვარითი თეორემა და სიხშირეები. p - სიდიდეები. შეჯამება. კითხვები. ნდობის ინტერვალი პოპულაციის საშუალოსთვის. ჰიპოთეზათა შემოწმება საშუალოსთვის. ჰიპოთეზების ფორმულირება. კრიტერიუმის სტატისტიკის მნიშვნელობის გამოთვლა. უარყოფის არის დადგენა. კრიტერიუმის მნიშვნელოვნებს დონე. გადაწყვეტილების მიღება. $\,p\,$ -სიდიდეების გამოყენება ჰიპოთეზათა შემოწმებაში. პირველი და მეორე გვარის შეცდომები სტატისტიკური კრიტერიუმების გამოყენებისას. ჰიპოთეზათა შემოწმება ნორმალური პოპულაციის საშუალოსათვის (n < 30).ნდობის ინტერვალი დისპერსიისათვის. ჰიპოთეზათა შემოწმება (პოპულაცია ნორმალურია, n < 30). ჰიპოთეზათა შემონმება პოპულაციის პროპორციისათვის ($n \ge 30$).ჰიპოთეზათა შემონმება პოპულაციის პროპორციისათვის, როცა შერჩევის მოცულობა პატარაა. სასრული პოპულაციები. ცდომილება, სიზუსტე და შერჩევის მოცულობა. ჰიპოთეზათა შე-მოწმება დისპერსიისათვის. შეჯამება. კითხვები. საშუალოთა შორის განსხვავების ჰიპოთეზის შემოწმება დიდი მოცულობის მქონე შერჩევებისას. ჰიპოთეზათა შემოწმება $\mu_1-\mu_2$ -ის შესახებ. ორი დამოუკიდებელი პოპულაციის საშუალოთა შორის განსხვავების ჰიპოთეზათა შემოწმება (ორივე, ან ერთ-ერთი შერჩევის მოცულობა ნაკლებია 30-ზე). $\,\mu_{_{
m l}} - \mu_{_{
m l}}$ -ის ნდობის ინტერვალი მცირე მოცულობის შერჩევებისათვის. ჰიპოთეზათა შემოწმება ორი დამოუკიდებელი ნორმალური პოპულაციის დისპერსიების შესახებ. ჰიპოთეზათა შემოწმება დაწყვილებულ მონაცემთა საშუალოების სხვაობებისათვის. ორამოკრეფიანი ამოცანები ორი ალბათობის შედარებისას. ტესტი პროპორციათა სხვაობისთვის. შეჯამება. კითხვები. ერთფაქტორიანი ღისპერსიული ანალიზი ცდის პირთა შორის სქემისათვის (ჰიპოთეზები). (ჯდის პირთა შიდა ორფაქტორიანი სქემა და დისპერსიული ანალიზი. (ჯდის პირთა შორის ორფაქტორიანი სქემა და დისპერსიული ანალიზი. შეჯამება. კითხვები. ხი-კვადრატ (χ^2) თანხმობის კრიტერიუმი. დამოუკიდებლობის ხი-კვადრატ კრიტერიუმი. ჰიპოთეზები. ჰიპოთეზათა შემოწმება $2 \! imes 2$ შეუღლების ცხრილის შემთხვევაში. შანსების შეფარდება. შანსების შეფარდების თვისებები 2 imes 2 შეუღლების ცხრილებისათვის. მან-უიტნის კრიტერიუმი. უილკოქსონის ნიშნიანი რანგების კრიტერიუმი. კრუსკალ-უოლისის კრიტერიუმი. შეჯამება. კითხვები. დასკვნები კორელაციის კოეფიციენტის შესახებ. ჰიპოთეზის შემოწმება დახრილობის შესახებ. ჰიპოთეზის შემოწმება თანაკვეთის შესახებ. დასკვნები კორელაციის კოეფიციენტის შესახებ. საპროგნოზო ინტერვალები. დეტერმინაციის კოეფიციენტი. მოდელის ვარგისიანობის შემონმება. R^2 -ის თვისებები. რეგრესიული ანალიზი მრუდნირული (არაწრფივი) კავშირისთვის. მრავლობითი რეგრესია და კორელაცია. კორელაციური მატრიცა. ფიქტიური ცვლადები რეგრესიულ ანალიზში. შეჯამება. კითხვები

EXCEL-ის სტატისტიკური ფუნქციების აღწერა სტატისტიკური ცხრილები