

Previsão de Consumo de Energia para Campi Universitários baseada em IA

Paulo Oliveira^{1*}

1: Escola Superior de Tecnologia e Gestão – IPLeiria

*e-mail: 2213002@my.ipleiria.pt, proberto3122@gmail.com

João Sousa^{1,2}, Luís M.N.Távora^{1,3}, Pedro Marques^{1,2}, Carlos Grilo^{1,4}

2: INESC Coimbra, Delegação de Leiria

3: Instituto de Telecomunicações, Pólo de Leiria

4: CIIC, IPLeiria

DO CAMPUS À COMUNIDADE

AGENDA

- Introdução
- Cenário
- Objetivo
- Metodologia
- Dados
- Algoritmos utilizados
- Resultados
- o Conclusão

SUSTENTABILIDADE DO CAMPUS

Deve incluir previsão do consumo de energia elétrica e de gás, já que poderá viabilizar:

- dimensionamento de sistemas de produção fotovoltaica (regime de autoconsumo)
- maior flexibilização da procura de energia em função da disponibilidade de produção fotovoltaica
- estimativa de encargos futuros com a energia
- gestão de procura de energia

DO CAMPUS À COMUNIDADE

CAMPUS 2 ESTG/IPLeiria

Previsão do consumo de energia elétrica do dia seguinte

OBJETIVO

Construção de modelos de previsão de consumo para o dia seguinte com base em janelas temporais dos 7 e 14 dias anteriores

CAPACITAÇÃO PARA A AÇÃO CLIMÁTICA:

METODOLOGIA

 Dados de consumo de energia entre outubro de 2015 e outubro de 2022, recolhidos a cada 15 minutos

DADOS

- Início e fim do horário de verão >

 ausência de dados ou duplicidade
- Tratamento dos dados → conversão para resolução diária

- Modelação com base no comportamento de dados históricos
- Utilização de Redes Neuronais

PROPOSTA

- Otimização de parâmetros de redes neuronais para obter o menor erro possível
- Avaliação do desempenho dos modelos considerados

MODELOS ADOTADOS

Testados diversos modelos de redes neuronais:

- Multilayer Perceptron (MLP)
- Long Short-Term Memory (LSTM)
- Gated Recurrent Unit (GRU)

Resultados obtidos:

➤ Mean Absolute Percentage Error (MAPE): 7.75% - 8.5%

MAPE

(Mean Absolute Percentual Error)

MAPE	Rede Neuronal	Dias Anteriores
<u>7.75%</u>	<u>MLP</u>	<u>14</u>
8.20%	GRU	14
8.47%	LSTM	14
<u>7.79%</u>	MLP	<u>7</u>
8.07%	GRU	7
8.40%	LSTM	7

PREVISÃO vs REAL

(MLP14)

11

DO CAMPÚS À COMUNIDADE

✓ Modelação Redes Neuronais

CONCLUSÃO

✓ Resultados entre 7.8% a 8.5% (MAPE)

Robustez dos Modelos

TRABALHO FUTURO

✓ Inclusão de variáveis exógenas (temperatura, feriado, domingo)

√ Similar Days

(previsão de consumo de uma 3^a feira, com base no consumo das últimas *n* 3^a feiras)

✓ Granularidade (previsão horária)

