Computing Local Thickness of 3D Structures with ImageJ

Robert P. Dougherty OptiNav, Inc. Bellevue, WA, USA

Karl-Heinz Kunzelmann
Poliklinik für Zahnerhaltung und Parodontologie Ludwig-Maximilians-Universität-München,
München, Germany

Microscopy & Microanalysis 2007 Meeting August 5-9, 2007 Broward County Convention Center Ft. Lauderdale, Florida

Outline

- Introduction
- Definition
- Properties
- Computation
- Examples

Local Thickness Plugin

- Grande Custom ImageJ Plugin from OptiNav, Inc.
- Ordered by Prof. Dr. Kunzelmann Aug. 2006
- He sent with the order:
 - 7 papers
 - Sample data files
 - c-code by David Coeurjolly

Key Paper

"A new method for the model-independent assessment of thickness in three-dimensional images"

T. Hildebrand and P. Rüesgsegger,

J. of Microscopy, 185 (1996) 67-75.

Another Key Paper

"New algorithms for Euclidean distance transformation on an n-dimensional digitized picture with applications," T. Saito and J. Toriwaki,

Pattern Recognition 27 (1994) 1551-1565

Local Thickness Definition

Local Thickness $\tau(\vec{p}) = 2 \max(\{r | \vec{p} \in sph(\vec{x}, r) \subseteq \Omega, \vec{x} \in \Omega\})$

"The diameter of the largest sphere that fits inside the object and contains the point"

Local Thickness Properties

- Inherently 3D
 - Does not depend on structural assumptions
 - Expected results for plates, cylinders, cubes
 - Suited to 3D imaging data
 - Thickness distributions: mean, variance
- Applications
 - Thickness of trabecular bone structures
 - Thickness of paper fibers
 - Planning dental surgery

Local Thickness Properties

Intersecting balls

Local Thickness Properties

Finite Cylinders

Length 146 Diameter 80

Isosurface 78

Direct application of the definition would be slow

$$\tau(\vec{p}) = 2 \max(\{r | \vec{p} \in sph(\vec{x}, r) \subseteq \Omega, \vec{x} \in \Omega\})$$

$$for(\vec{p} \in \Omega) \{ \\ r_{\text{max}} = 0; \\ for(\vec{x} \in \Omega) \{ \\ for(r = 0; r \le R; r + = \delta r) \{ \\ Sphere s = \text{new Sphere}(x, r); \\ if(s \subseteq \Omega) \{ \\ if(\vec{p} \in s) r_{\text{max}} = r; \\ \} \\ \} \\ \tau(\vec{p}) = r_{\text{max}}; \\ \}$$

$$O(n^9)$$
?

 $n = 256 \Rightarrow 4.7 \times 10^{21}$ operations At least 37,000 years on a PC

First compute the distance map by the "Distance Transformation"

Distance Map
$$D_{map}(\vec{q}) = \max(\{r > 0 | sph(\vec{q}, r) \subseteq \Omega\})$$

"The radius of the largest sphere centered at \vec{q} that fits inside the object"

Distance map of a finite cylinder

Length 146 Diameter 80

Express local thickness in terms of distance map

Local Thickness
$$\tau(\vec{p}) = 2 \max(D_{map}(\vec{q}))$$

 $\vec{q} \in X(\vec{p})$

$$X(\vec{p}) = {\vec{x} \in \Omega | \vec{p} \in sph(\vec{x}, D_{map}(\vec{x}))}$$

 $X(\vec{p})$ = the set of \vec{q} s whose distance map spheres contain \vec{p}

$$X(\vec{p})$$
 = the set of \vec{q} s that own \vec{p}

Simplify the search set to the Distance Ridge

$$X_R(\vec{p}) = \{\vec{x} \in \Omega_R | \vec{p} \in sph(\vec{x}, D_{map}(\vec{x}))\}$$

where

$$\Omega_{R} = \{ \vec{p} \in \Omega \middle| sph(\vec{p}, D_{map}(\vec{p})) \not\subseteq sph(\vec{x}, D_{map}(\vec{x})), \vec{p} \neq \vec{x}, \vec{x} \in \Omega \}$$

"The center points of all nonredundant spheres"

- 1. Perform the distance transformation to produce the distance map
- 2. Remove redundant points to produce the distance ridge
- 3. Compute the local thickness at each point \vec{p} by scanning the distance ridge to find the "largest" \vec{q} that "owns" \vec{p}

Distance Transformation (Step 1 in LT)

Naïve algorithm:

For each \vec{q} , scan the surface points, \vec{x}_s , to minimize $||\vec{x}_s - \vec{q}||$

 $O(n^5)$

Dramatically better algorithm: Saito-Toriwaki

Saito-Toriwaki Euclidean Distance Transformation Algorithm

Notation:

Digitized w×h×d $F = \{f_{ijk}\}, 0 \le i < w, 0 \le j < h, 0 \le k < d \}$ picture: $f_{ijk} = 1$ if $(i, j, k) \in \Omega$, 0 else

$$\begin{split} D_{map}(i,j,k) &= \{d_{ijk}\} \\ S(i,j,k) &= \{s_{ijk}\}, \, s_{ijk} = d_{ijk}^2, \, 0 \le i < w, \, 0 \le j < h, \, 0 \le k < d \\ s_{ijk} &= \min_{p \neq r} \{(i-p)^2 + (j-q)^2 + (k-r)^2 \middle| f_{pqr} = 0\} \end{split}$$

Algorithm:

Transformation 1. Derive picture G from F according to

$$g_{ijk} = \min_{x} \{ (i - x)^2 | f_{xjk} = 0, 0 \le x < w \}$$

Transformation 2. Derive picture H from G according to

$$h_{ijk} = \min_{y} \{ g_{iyk} + (j - y)^2, 0 \le y < h \}$$

Transformation 3. Derive picture S from H according to

$$s_{ijk} = \min\{h_{ijz} + (k - z)^2, 0 \le z < d\}$$

O(n⁴), easy parallel processing, no 3D work arrays needed.

Distance Ridge Computation (Step 2 in LT)

Objective: remove redundant points, such as \vec{q}_1 , from the distance map to improve the speed of the subsequent local thickness search.

- Difficult
- Complete removal not required

Distance Ridge Computation

Brute force algorithm adapted from Saito & Toriwaki:*

Scan everything in sight

Seems to be O(n⁶) and require 4 3D work arrays

*"Reverse Distance Transformation and Skeletons Based upon the Euclidean Metric For n-Dimensional Binary Pictures,"
T. Saito and J. Toriwaki, IEICE Trans. Inf. & Syst., Vol E77-D, No. 9, Sept. 1994

The reference also gives a more-efficient algorithm for a different skeleton.

Distance Ridge Computation

Template approach implemented in the plugin.

Loosely inspired by Remy & Thiel*

Input: distance map

Output: distance map with some redundant points removed

Algorithm:

Scan points in the distance map. For each point,

Scan neighboring points

Use a template to evaluate the point and the neighboring point

If the neighboring point does not "own" any more points than the scan point, based on a template, then delete the neighbor point

Limitation:

Does not remove all redundant points

*"Exact medial axis with euclidean distance," E. Remy and E. Thiel, Image and Vision Computing **23** (2005) 167-175.

Distance Ridge Examples

Cube

Distance map

One slice of distance ridge

3D rendering of distance ridge

Distance Ridge Examples

Finite Cylinder

Distance Ridge Examples

Elliptical Cylinder

Local Thickness from Distance Ridge (Step 3)

$$\tau(\vec{p}) = 2 \max(D_{map}(\vec{q}))$$
$$\vec{q} \in X_R(\vec{p})$$

```
Input: distance ridge: H = \{h_{ijk}\}
Output: local thickness: T = \{\tau_{ijk}\}
```

Output $\tau_{ijk} = 2\sqrt{t_{ijk}} \ \forall ijk$

Let t_{ijk} be the square of half of the local thickness

Make a list of non-zero distance ridge points: $(i_l, j_l, k_l, h_l), l = 0, ..., L - 1$ Initialize $t_{ijk} = 0 \forall ijk$ for points (u, v, w) {

for ridge points, 1 {

if $((i_l - u)^2 + (j_l - v)^2 + (k_l - w)^2 < h_l)$ {

if $(h_l > t_{uvw})$ update $t_{uvw} = h_l$;

}

Local Thickness Detail: Small Surface Values Due to Voxel Effects

Infinite cylinder, nominal diameter = 50

Distance map

Distance ridge

Local Thickness

Local Thickness Detail: Surface Cleanup Algorithm

Definitions

- A voxel has 26 <u>neighbor</u> voxels
- A <u>surface voxel</u> is an object voxel with at least one background neighbor

Algorithm

Replace the local thickness value of every surface voxel by the average of the local thicknesses of its neighboring, non-surface, object voxels.

Infinite cylinder nominal diameter = 50

Original Local Thickness Local Thickness after Cleanup

Example: Cylinder with Diameter Change

Example: Elliptical Cylinder with Transition

Example: µMRI Quail Embryo

Caltech MRI Atlases http://atlasserv.caltech.edu/

Binary image after 3D blur and threshold of 3

Local thickness (z=88 slice)

Example: µMRI Quail Embryo

Local thicknes: surface projection

μMRI Quail Embryo: Internal Structure

Caltech MRI Atlases http://atlasserv.caltech.edu/ z = 109 slice

Binary image with threshold = 44

Local thickness (z=109 slice)

Example: µMRI Quail Embryo

Render the local thickness using VolumeJ with different thickness thresholds

2 10 20 30

Example: MRI Stack

(Expanded by 5 in z)

VolumeJ

Distance ridge

Slice 42

Distance map (threshold=40)

Example: µCT of Trabecular Rabbit Femur

Dr. Miriam Draenert
Poliklinik für Zahnerhaltung und Parodontologie
Ludwig-Maximilians-Universität-München

- Hole drilled in rabbit femur
- Hole filled with hydroxyapatite particles
- Bone morphogenetic proteins (BMPs) to stimulate growth
- Rabbits sacrificed after 90 days
- Femur prepared for evaluations, including μCT
- Mean local thickness evaluated statistically to compare different BMPs

Example: µCT of Trabecular Rabbit Femur

Slice 173 of µCT

Local thickness (z=173 slice)

Example: Tooth

Enamel, dentin and pulp segmented from μ CT ParaView 2.4 (Kitware, www.kitware.com)

Local thickness of pulp VolumeJ plugin for ImageJ (v. 1.7a, Michael Abramoff)

Summary

- New, Quantitative, 3D Tool
- Open Source, Freely available

1. EDT_S1D.java

- Inputs an 8-bit image stack describing the 3D geometry
- Distance map: Saito-Toriwaki Euclidean Distance Transformation
- Parallel processing using all available processors
- Output is a 32-bit stack

2. Distance_Ridge.java

- Inputs a 32-bit distance map stack
- Applies a template algorithm to remove many of the redundant points
- Overwrites the input stack with the resulting quasi-distance ridge

3. Local_Thickness_Parallel.java

- Inputs a distance map or distance ridge stack
- Uses a direct search method to compute the local thickness stack
- Parallel processing using all available processors

4. Clean_Up_Local_Thickness.java

• Adjusts surface values of a local thickness stack to compensate for voxel artifacts

Conclusion

Different types of local thickness results can be obtained using different threshold values when the image stacks have a range of density values