Filesystem Maintenance

René Serral-Gracià¹

¹Universitat Politècnica de Catalunya (UPC)

February 21, 2022

Filesystems Disk verification LVM Backups 000000 000000000 000 000000000

Lectures

- System administration introduction
- Operating System installation
- User management
- Application management
- System monitoring
- Filesystem Maintenance
- Local services
- Network services
- Security and Protection
- Virtualization

- Introduction Goals

Disk verification LVM Backups
000000000 000 00000000

Goals

Introduction

Knowledge

- Filesystems
- Backup tools
- Backup media

Abilities

- Filesystem resizing
- Filesystem verification

Filesystems

Perform and restore backups

Disk verification LVM Backups
000000000 000 00000000

Outline

Introduction

- Introduction
- 2 Filesystems
- 3 Disk verification
- Logical Volume Manager (LVM)

Filesystems

•00000

Backups

Disk verification LVM Backups

Filesystems (I)

- FAT (FAT16) -> DOS
 - Small disks (< 4GB)
 - File names 8+3
- FAT32 (VFAT) -> Win95
 - Larger disks
 - Long filenames
 - Partial definition of soft-links
 - No owner or file access privileges
- exFAT
 - FAT32 Extension
 - Theoretical maximum capacity of 64ZiB (512TiB real)
- NTFS -> WinNT, XP, Vista, Windows 7
 - Integrates ownership and privileges (create, modify, access...)
 - Maps to Windows NT security model

Filesystems (II)

- ext2
 - UNIX Filesystem
 - Soft/hard links
 - Access privileges
 - Long filenames
- ext3
 - Adds journaling (eases error recovery)
- reiserfs
 - Files and directories organized similarly to a database
 - Features journaling
 - Very efficient in small files
 - No internal block fragmentation

Filesystems (III)

- xfs
 - journaling
 - Dynamic i-node management
 - ACLs
 - Very large disk sizes
 - Filesystem activity log
- ifs
 - journaling
 - Dynamic i-node management
 - ACLs and MAC (Mandatory Acess Control)
 - Very large disk sizes

Filesystems (i IV)

- ext4
 - 64 bits addressing, improvements in journaling
 - Delayed allocation
 - Extents
 - 1 exbibyte (EiB) maximum size
- btrfs
 - Extents
 - Online resizing
 - Online balancing
 - Online filesystem check

- Journal: disk operation registry
 - Eases the recovery of the FS in case of crash or error
 - Slightly decrease in disk operations performance
- Journal outside the buffer cache
 - Journal can be stored in another disk or partition
- Ext3/4, reiserfs, JFS, XFS, NTFS, BTRFS have journal

Outline

- 1 Introduction
- 2 Filesystems
- Disk verification
 - Filesystem ampliation
 - Disk quota management
- Logical Volume Manager (LVM)
- Backups

Disk verification (I)

Introduction

Reason for errors

- Hardware errors
- Power shortage
- Operating system bugs
- Administration errors
 - Incorrect machine shutdown

Never verify a filesystem while mounted

- High probability of disk corruption
- Verification access skips the buffer cache and acts directlu on the device

Disk verification (II)

Introduction

Logical verification

- Filesystem metadata
- Directory structure
- Lost data recovery
 - Directory lost+found

Physical recovery

- Disk blocks with Input/output errors
- Command: badblocks

Filesystem ampliation

- Install and configure the new disk
 - Partition
 - or recycle existing ones...
- Create filesystem
- Decide mountpoints
- Transfer the required data to the new partition
- Mount the partition
 - Update /etc/fstab
- Maybe you have to reorganize existing directories
 - /home → /homeA + /homeB
 - home → /home/students + /home/professors

oduction Filesystems Disk verification LVM Backups

Plan and issue a filesystem resizing for the parititons

- /home
- /var

 Introduction
 Filesystems
 Disk verification
 LVM
 Backups

 ○○
 ○○○○○
 ○○○○○
 ○○○○
 ○○○○

Disk quota (I)

Quota

Ability to limit the amount of data a user (or user group) is able to use in a filesystem (partition)

Requires

- Support from the filesystem
- Support from the kernel

Quota management (II)

Introduction

Partition preparation

- Mounted using options 'usrquota' and/or 'grpquota'
- It can be done from /etc/fstab

```
/dev/sda9 /home ext4 defaults,usrquota,grpquota 1 1
```

quotacheck command to create the quota files

```
quotacheck -v -a -g -u -m verbose all group user no-remount
```

- Creates
 - /aquota.user
 - /aquota.group

Quota management (III)

Introduction

Quota enabling

```
quotaon -v -a -g -u verbose all group user
```

- Activates quota mechanisms, usually from /etc/init.d/
- Quota disabling
 - /sbin/quotaoff
- Quota editing (edquota)

```
Disk quotas for user xavim (uid 500):
Filesystem blocks soft hard inodes soft hard /dev/sdb1 3 16 32 2 0 0
```

- Data blocs and i-nodes quota
- It is not possible to edit the used blocks/inodes, but the limits of the guota can be changed

Introduction

Quota management (and IV)

Visualize quotas: quota -v

```
Disk quotas for user xavim (uid 500):
  Filesystem blocks quota
                              limit
                                      grace
                                             files quota
                                                          limit
                                                                    grace
  /dev/sdb1
                 32*
                         16
                                 32
                                      6davs
```

Disk verification

000000000

- * We are above the quotas, within the "hard" limit!!
- "Grace period"
 - Grace time where the user can reach the hard limit, it only raises warnings
 - If the grace period expires, then the system does not allow to go above the soft limit

Other maintenance tasks

Monitoring

Introduction

- Free space (df)
 - Most systems reserve a (5%) of the space to be exclusively used by root
- Occupied space (du)

Synchronization

- Write to disk the modified buffers
 - sync
 - Update daemon

Backups

Outline

- Introduction
- 2 Filesystems
- 3 Disk verification
- 4 Logical Volume Manager (LVM)
- Backups

 Introduction
 Filesystems
 Disk verification
 LVM
 Backups

 ○○
 ○○○○○
 ○○○○○○○○
 ○○○○

Logical Volume Manager (LVM) (I)

Logical Volume Manager (and II)

- High level abstraction of the disk space
- Aggregates multiple physical partitions/disks
 - Allows to add more partitions to the volume
- It allows logical partitions within the volume
 - They can be assigned logical names
 - Customized distribution among the physical volumes
 - Resizing
 - Move
- Example: /etc/fstab

```
/boot /dev/sda1 ...
swap /dev/vg00/swap ...
/ /dev/vg00/root ...
/home /dev/vg00/home ...
/usr /dev/vg00/usr ...
```


Filesystems Disk verification LVM Backups

○○○○○

○○○○○○○○

Disk verification LVM Backups

•••○○○○○○

•••○○○○○○○

Outline

- Introduction
- 2 Filesystems
- 3 Disk verification
- 4 Logical Volume Manager (LVM)
- Backups
 - Full Backup
 - Incremental Backup
 - Reverse Incremental Backup

Filesystems Disk verification LVM Backups

○○○○○ ○○○○○○○ ○○○○○○○○

Backups

- Data to copy
 - User data (home, mail, ...)
 - Program data (BBDDs, CVS, web, ...)
 - System configuration
 - Binary?
- Backup frequency
 - Data confidence
 - Data importance
- Backup types
 - Full Backup (all)
 - Incremental Backup (only changes)
 - Reverse Incremental Backup (only changes)

Full Backup

- Always copy all the data
 - Fast to restore
 - Large size

Incremental Backup

Only backup the changed files

Advantages

- Small size
- It can be done in any media

Inconveniences

- Slower to restore
 - The first one is equal to a full backup

Do not create a large backup sequence

 Introduction
 Filesystems
 Disk verification
 LVM
 Backups

 ○0
 ○00000
 ○0000000
 ○00
 ○00000000

Reverse Incremental Backup

 Everything is copied but in the former backup only the changes are kept

Advantages

- Fast to restore
- Little space

Inconveniences

 Only possible in random access media

Backups

Physical support

- Floppy, disc, CD, tape, network...
- To consider:
 - Cost size ratio
 - Reliability

- Availability
- Usability
- Speed

Copy location

- Accident protection
- Fireproof boxes
- Keep some backups outside the company premises
- Stealing protection

Exercise

Introduction

Define a backup policy (data to backup, backup type, frequency, device, compression, ...) for a multi-user server within a company with:

- 500 Gb. disk and 80 users
- Mail
 - 50Mb per user
- Web pages
 - 20 Mb per user
 - 100 Mb company web
- Code repository
 - 10 GB distributed among 20 projects
 - Only 5 active projects

Other considerations

Introduction

- When having different servers it is recommended to
 - Define specific backup machines
 - cheaper
 - easy to administer

Tools: tar+rsync/ssh, amanda, bacula

Personal Homework

- Task automation
 - Programming language: bash, perl
 - Information search: find, grep...

