填空题(每空3分,共15题)

1.
$$\frac{1}{e}$$
 2. $\frac{1}{2}$ 3. $\frac{1}{3}$ 4. $\frac{4}{3}$ 5.1

$$2 \cdot \frac{1}{2}$$

3.
$$\frac{1}{3}$$

$$4_{\circ} \frac{4}{3}$$

$$7. \quad x^x (1 + \ln x) dx$$

6. 第一类间断点 7。
$$x^x(1+\ln x)dx$$
 8。 $2x\cos(x^2+1)e^{\sin(x^2+1)}$

9. 0
$$10 \cdot \left(e^x + \frac{1}{x}\right)^{-1}$$
 11. $xe^x + ne^x$ 12. 13 13. 0

11.
$$xe^x + ne^x$$

14.
$$y = -\frac{\sqrt[3]{2}}{2}(x+1)$$
 15. $y = x + \frac{1}{3}$

15.
$$y = x + \frac{1}{3}$$

二. 计算题

1.
$$mathbb{M}$$
: $\lim_{x \to 0^-} f(x) = 0$, $\lim_{x \to 0^+} f(x) = b$, $\text{in } b = 0$.

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x} = a$$

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x} = 1$$

a = 1

故当
$$a=1$$
, $b=0$ 时, $f(x)$ 在 $(-\infty,+\infty)$ 内可导。

2. #:
$$\lim_{x \to +\infty} \ln[(\frac{\pi}{2} - \arctan x)^{1/\ln x}] = \lim_{x \to +\infty} \frac{\ln(\frac{\pi}{2} - \arctan x)}{\ln x} = \lim_{x \to +\infty} \frac{\frac{-1/(1+x^2)}{\frac{\pi}{2} - \arctan x}}{1/x}$$

$$= \lim_{x \to +\infty} \frac{x/(1+x^2)}{-\frac{\pi}{2} + \arctan x} = \lim_{x \to +\infty} \frac{(1-x^2)/(1+x^2)^2}{1/(1+x^2)} = \lim_{x \to +\infty} \frac{1-x^2}{1+x^2} = -1$$

3.
$$ext{M}: y' = f'(x+y)(1+y')$$
, $ext{th} y' = \frac{f'(x+y)}{1-f'(x+y)} = \frac{1}{1-f'(x+y)} - 1$;4 $ext{th}$

$$y'' = \frac{f''(x+y)(1+y')}{[1-f'(x+y)]^2} = \frac{f''(x+y)}{[1-f'(x+y)]^3} \dots 6 \ \%$$

4.解:

$$f(x) = \begin{cases} -(x^3 - 2x^2 + x) & x < 0\\ x^3 - 2x^2 + x & x \ge 0 \end{cases}$$

$$\exists g(x) = x^3 - 2x^2 + x$$
, $\bigcup g'(x) = 3x^2 - 4x + 1$, $g''(x) = 6x - 4$,

$$g(x) = x^3 - 2x^2 + x = 0, x_1 = 0, x_2 = 1$$

$$g'(x) = 3x^2 - 4x + 1 = 0, x_3 = \frac{1}{3}, x_4 = 1$$

$$g''(x) = 6x^2 - 4 = 0, x_5 = \frac{2}{3}$$

草图4分

证明题

2. (1)当
$$x > x_0$$
 时,存在 $\xi \in (x_0 x)$ 使得 $\frac{f(x) - f(x_0)}{x - x_0} = f'(\xi)$ 。 又因为设

$$f(x) \in C^{(1)}(-\infty, +\infty)$$
 为下凸函数, $f'(x)$ 为单调增函数, $\frac{f(x) - f(x_0)}{x - x_0} = f'(\xi) \ge f'(x_0)$,

即
$$f(x) \ge f(x_0) + f'(x_0)(x - x_0), (x > x_0)$$
 。 同 理 可 证 , 当 $x < x_0$ 时 ,

$$f(x) > f(\xi) + k(x - \xi)$$
 $\stackrel{\text{def}}{=} x > \xi$ \forall

故 $x \to +\infty$ 时 $f(x) \to +\infty$,与 $f(x) \in C^{(1)}(-\infty, +\infty)$,且有界矛盾。即 f(x) 为常数函数。 …… 3 分