Assignment 3: Serial Ab Initio Protein Folding Using PyRosetta

1. Background and Objectives

Proteins perform a myriad of biological functions, and knowing their three-dimensional structures is crucial. When a homologous template is not available, **ab initio folding** methods are used to predict protein structures from first principles. In this assignment, you will build a serial (non-parallel) pipeline for ab initio folding inspired by Rosetta's AbinitioRelax protocol.

You will work with the well-known 35-residue villin headpiece sequence:

Villin Headpiece Sequence:

MLSDEDFKAFGMTRSAFANLPLWKOONLKKEKLLF

This sequence has been widely used as a benchmark in ab initio folding studies (see, e.g., PDB ID 1VII or the work of McKnight and co-workers).

Your pipeline will perform the following tasks:

1. Generate a Starting Pose:

Create an idealized fullatom pose from the villin headpiece sequence using PyRosetta's pose_from_sequence() function.

2. Linearize and Convert to Centroid Mode:

Linearize the pose by setting backbone torsion angles to nearly extended values, then convert the pose into centroid mode to simplify sidechain representation and speed up sampling.

3. Setup MoveMap and Fragment Movers:

Define a MoveMap that allows all backbone motions. Load provided fragment library files (a 9-mer and a 3-mer fragment file) to generate fragment movers using the PyRosetta functions ConstantLengthFragSet() and ClassicFragmentMover(). Input files required:

Long fragment file: e.g. aat000_09.frag

Short fragment file: e.g. aat000_03.frag
 (These files are typically generated from the Robetta server.)

4. Combine Moves with Monte Carlo Sampling:

Chain the fragment insertion moves with a SequenceMover and wrap them in a TrialMover controlled by a Monte Carlo object (using a centroid score function like "score3"). The Monte Carlo object will use the Metropolis criterion to accept or reject moves based on:

 $p(accept)=min(1,exp(-\Delta E/kT))$

where ΔE is the energy change and kT is the temperature parameter (set, for example, to 3.0).

5. Recover and Convert the Best Decoy:

After running a fixed number of cycles (e.g., 300 cycles), recover the lowest-energy decoy using the Monte Carlo object's recovery function, convert it back to fullatom mode, and write the output to a PDB file.

6. (Optional) Analysis and Visualization:

Using BioPython and py3Dmol, align the predicted decoy structure with a provided native structure (e.g., native.pdb) by extracting Ca atoms and using the Superimposer class to compute the RMSD. Visualize the aligned structures using py3Dmol with distinct coloring.

2. Detailed Description of PyRosetta Functions and Components

Below is a step-by-step explanation of each coding component and the PyRosetta functions involved:

A. Initialization and Pose Creation

- pyrosetta.init(extra_options="-in::file::fullatom -mute all")
 Initializes the PyRosetta environment. The flag -in::file::fullatom starts the system in fullatom mode, and -mute all reduces verbosity.
- pose_from_sequence(sequence, "fa_standard")
 Creates an idealized fullatom pose from the input sequence (here, the villin headpiece).
 This function builds the protein's backbone and sidechains using standard geometry.

• Linearization of the Pose:

A custom function loops over each residue in the pose (using pose.total_residue()) and sets:

- \circ ϕ (phi) to -150°
- ψ (psi) to 150°
- ω (omega) to 180°
 This "linearizes" the structure to an extended conformation, ensuring the starting point is unbiased.

B. Centroid Conversion and MoveMap Setup

SwitchResidueTypeSetMover("centroid")

Converts the fullatom pose to a centroid representation where sidechains are reduced to single atoms. This simplifies the energy landscape.

rosetta.core.kinematics.MoveMap()

Creates a MoveMap object to control which degrees of freedom can change. In this assignment, we set the MoveMap to allow all backbone (bb) movements using movemap.set_bb(True).

C. Fragment Library Loading and Movers

• ConstantLengthFragSet(fragment_length, fragment_file)

Reads the provided fragment library file (either for 9-mer or 3-mer fragments) and creates a set of fragments of a given constant length.

ClassicFragmentMover(fragset, movemap)

Applies fragment insertion moves to the pose using the fragments loaded from the library and the defined MoveMap. This simulates local conformational changes.

RepeatMover(mover, repeat_count)

Wraps a mover (e.g., a ClassicFragmentMover) so that it is applied multiple times within each cycle.

SequenceMover()

Combines several movers sequentially. Here, it is used to chain long fragment moves (wrapped in a RepeatMover) and short fragment moves.

D. Monte Carlo Sampling and Trial Moves

• create_score_function("score3")

Creates a centroid-mode score function (here "score3") that estimates the energy of the pose. It is a simplified energy function suitable for low-resolution sampling.

MonteCarlo(pose, scorefxn, kT)

Initializes a Monte Carlo object with the current pose, a score function, and a temperature parameter kTkTkT. The object tracks energy changes and implements the Metropolis criterion.

• TrialMover(seq_mover, mc)

Wraps the SequenceMover so that after each set of fragment insertions, the Monte Carlo object decides whether to accept or reject the move.

RepeatMover(trial_mover, cycles)

Applies the entire trial move repeatedly for a fixed number of cycles, enabling thorough sampling of conformational space.

E. Recovery and Conversion

mc.recover_low(pose)

Recovers the lowest-energy (best) decoy recorded by the Monte Carlo object during the simulation.

SwitchResidueTypeSetMover("fa_standard")

Converts the decoy from centroid back to fullatom mode for detailed analysis and visualization.

pose.dump_pdb(filename)

Writes the final fullatom pose to a PDB file.

F. Analysis and Visualization (Optional)

- BioPython's PDBParser and Superimposer:
 - o PDBParser() loads PDB files of the native and decoy structures.
 - Superimposer() aligns two sets of Cα atoms and calculates the RMSD.

py3Dmol:

Used for interactive 3D visualization of the aligned structures, allowing you to color-code the native and predicted models (for example, native in green and decoy in magenta).

3. Input Files and Their Sources

Students will be required to provide the following files:

1. Protein Sequence:

Villin Headpiece Sequence:

MLSDEDFKAFGMTRSAFANLPLWKOONLKKEKLLF

Reference: Commonly used in ab initio folding studies; see e.g., literature related to PDB ID 1VII.

2. Fragment Library Files:

- Long Fragment File: e.g., aat000_09.frag (9-mer fragments)
- Short Fragment File: e.g., aat000_03.frag (3-mer fragments)
 These files can be generated using the Robetta server's fragment library service.

3. Native Structure PDB File (Optional, for Analysis):

 A PDB file (e.g., native.pdb) representing the experimentally determined structure of the villin headpiece for alignment and RMSD calculation.

4. (For Template-Based Modeling Option) Template Files:

 A homologous template PDB file and an alignment file in PIR format (if students choose the template-based approach). These files must be placed in a directory called templates.

4. Assignment Instructions

Assignment Tasks

Part I – Structure Prediction (50 marks)

Choose one of the following approaches:

Option A: Template-Based Modeling (if a homolog is available)

- Generate an automated alignment using Biopython and build an ensemble of models with Modeller.
- Evaluate the models using a DOPE score (or similar scoring function) and select the best model.
- Save the selected model as a PDB file.

Option B: Ab Initio Folding (if no homolog is available)

Pose Creation:

Generate a starting pose from the provided villin headpiece sequence using pose_from_sequence().

• Linearization:

Linearize the pose by setting backbone torsion angles.

Centroid Conversion:

Convert the pose to centroid mode using SwitchResidueTypeSetMover("centroid").

MoveMap Setup:

Create a MoveMap with full backbone flexibility.

• Fragment Insertion:

Load provided fragment libraries (long and short) using ConstantLengthFragSet() and create fragment movers with ClassicFragmentMover().

Wrap these with RepeatMover and combine them with a SequenceMover.

Monte Carlo Sampling:

Set up a Monte Carlo object with MonteCarlo(), wrap your sequence moves in a TrialMover, and repeat the process with a RepeatMover for a fixed number of cycles.

• Recovery and Conversion:

Recover the lowest-energy decoy using mc.recover_low(), convert it back to fullatom mode with SwitchResidueTypeSetMover("fa_standard"), and output the final structure as a PDB file.

Part II – Analysis and Visualization (20 marks)

• Structural Alignment:

Use BioPython's PDBParser and Superimposer to align the predicted structure (decoy) with the provided native structure and compute the RMSD.

Visualization:

Visualize both structures using py3Dmol with distinct coloring.

Part III – Reporting and Discussion (10 marks)

Documentation:

Provide clear, well-commented code and a report (max 5 pages) describing:

- Your design choices and parameter selection.
- The functioning of each PyRosetta function used.
- A discussion comparing template-based and ab initio methods.
- o An interpretation of your RMSD and energy results.

Submission Requirements

1. **Code:**

A complete, self-contained Python script (or scripts) implementing your pipeline.

2. Output Files:

- Final predicted structure (PDB file).
- o Energy convergence plots (if applicable).
- o RMSD calculation output.

3. Report:

A PDF document detailing your approach, analysis, and discussion.

4. References:

Cite the villin headpiece sequence source (e.g., literature or PDB ID 1VII) and any key Rosetta or PyRosetta documentation used.