Al for health "ethics by design"

Baptiste Couvy-Duchesne
The University of Queensland

@BaptisteCouvy

Ethics recommendations

https://op.europa.eu/fr/publication -detail/-/publication/d3988569-0434-11ea-8c1f-01aa75ed71a

https://apps.who.int/iris/rest/bitstreams/1352854/retrieve

https://fr.unesco.org/artificialintelligence/ethics#recommandat ion

https://oecd.ai/en/ai-principles

https://www.fda.gov/media/15348 6/download

Liberté Égalité Fraternité

Recommendations for good practice to integrate ethics from the development stage of Artificial Intelligence solutions in Health:
Implementing "ethics by design"

Digital Health Ethics Unit of the French Ministerial Delegation for Digital Health - April 2022

https://esante.gouv.fr/sites/default/files/media entity/documents/ethic by design guide vf.pdf

Definition of Al

- Al aims at developing devices, hardware and software,
- capable of implementing a tool
- aiming at producing the same result as the one obtained by the cognitive mechanisms of a human expert engaged in a problem-solving task,
- for the purpose of assisting or replacing human activities.

Ethics by design

- By Design means:
 - By and from conception
 - Intentionally, consciously and premeditated
- Core ethical values:
 - Protection of personal data
 - Human guarantee of any highstake decision
 - Thinking about the action, its legitimacy and its consequences

Ethics by design – steps

Framing stage

Define the purpose of the Al solution and validate the ethics of the purpose

Step 1 –

Data collection

Step 2 –

Data pretreatment

Step 3 –

Build the algorithm

Step 4 Evaluation of

the algorithm and preparation of production

Possible use-cases of Alzheimer's disease (risk) prediction

Diagnostic

- Not really a clinician need
- Actual diagnosis not tedious, long process or particularity expensive
- Current diagnosis fairly accurate
- Limited treatment options

Possible use-cases of Alzheimer's disease (risk) prediction

Prognostic

- Limited preventative treatments
- Actionable factors (e.g. exercise, stimulation) not specific

Possible use-cases of Alzheimer's disease (risk) prediction

- Quantify risk
- Research

- Recruitment in clinical trials
- Measure of Alzheimer's risk in cohorts where information not available
- Progress understanding of disorder (e.g. genetics, biology, brain markers...)

Purpose of the Al solution.

Target users

Type of learning used

The subjects for which it will be used

For example

- Quantify the genetic risk of Alzheimer's disease, to study the link between Alzheimer's risk and Major Depressive Disorder.
- To use in research.

- We will build a linear predictor using the latest Genome Wide Association Study to date.
- We will apply the risk predictor in a local cohort of (mostly European) adults (age range 20-40) who have been screened for psychiatric disorders

Informed consent

Proportionality of the data collected

Non direct reidentification of data: pseudoanonymization

Quality of the data

Representativeness of the analysis population/ target population + prevention of discrimination

User involvement

Secure data transfer + Quality of data hosting + State of the art cyber security

Measures to ensure non-ethical reuse of data

Informed consent

Proportionality of the data collected

Non direct reidentification of data: pseudoanonymization

Quality of the data

Representativeness of the analysis population/ target population + prevention of discrimination

User involvement

Secure data transfer + Quality of data hosting + State of the art cyber security

Measures to ensure non-ethical reuse of data

Required size of training sample

Power analysis

=> Sample size required to detect hypothesised association in local cohort

Informed consent

Proportionality of the data collected

Non direct reidentification of data: pseudoanonymization

Quality of the data

Representativeness of the analysis population/ target population + prevention of discrimination

User involvement

Secure data transfer + Quality of data hosting + State of the art cyber security

Measures to ensure non-ethical reuse of data

Recruit
 participants from
 European as well
 as diverse ancestry
 present in
 Australia

Recruit males and females

Informed consent

Proportionality of the data collected

Non direct reidentification of data: pseudoanonymization

Quality of the data

Representativeness of the analysis population/ target population + prevention of discrimination

User involvement

Secure data transfer + Quality of data hosting + State of the art cyber security

Measures to ensure non-ethical reuse of data

Meetings with people involved in project: researchers, geneticists, clinicians...

Step 2 – data pre-treatment

GAGTCCTCGGCGTCCTGCCTCT GCATTCGCCTCGTATTGGGAGT CTCCTTTGCGCAGTAGCATTCGCC AGCCTCGCATTGGGATCCCTCGGC **CCTCGTATTGGGAGTCCTCGGCGT** AGTAGCATTCGCCTCGCATCGGGAG GAAGCATCAGCCTCGCATTGGGATC GCAGTAGCATCAGCCTCGCATCGGG GCAGTAGCATCAGCCTCGCATCGGG GCGCAGTAGCATCAGCCTCGCATCG

Handling missing data (bias reduction)

Data segregation (representativeness of the learning and evaluation sample)

Rebalancing of minority populations (bias reduction)

Expert and users involvements

Missingness in MDD diagnosis (bias, stigma?)

Step 2 – data pre-treatment

SCGCAGTAGCATTCGCCT GAGTCCTCGGCGTCCTGCCTCTA GCATTCGCCTCGTATTGGGAGT CTCCTTTGCGCAGTAGCATTCGCC AGCCTCGCATTGGGATCCCTCGGC **CCTCGTATTGGGAGTCCTCGGCGT** AGTAGCATTCGCCTCGCATCGGGAG' GAAGCATCAGCCTCGCATTGGGATC GCAGTAGCATCAGCCTCGCATCGGG GCAGTAGCATCAGCCTCGCATCGGG GCGCAGTAGCATCAGCCTCGCATCG

Handling missing data (bias reduction)

Data segregation (representativeness of the learning and evaluation sample)

Rebalancing of minority populations (bias reduction)

Expert and users involvements

Include **covariates in** analysis (age, sex, site, MRI machine)

Oversampling in training

Quality policy

Transparency measures

Traceability of the algorithm construction process

Explainability policy for explainable results, auditability

Use State of the art
algorithm OR
Pre-select algorithms
to benchmark (to
avoid overfitting test
data)

Choose a pertinent metric to evaluate algorithm

Quality policy

Transparency measures

Traceability of the algorithm construction process

Explainability policy for explainable results, auditability

Keep track of all decisions to help reproducibility

Quality policy

Transparency measures

Traceability of the algorithm construction process

Explainability policy for explainable results, auditability

Code stored and versioned (e.g. Github)

Quality policy

Transparency measures

Traceability of the algorithm construction process

Explainability policy for explainable results, auditability

individuals have a high estimate of genetic risk & how risk is calculated

Step 4 - Evaluation of the algorithm before the production phase

Technical (bugs), clinical (accuracy score)

Usability

Non-discrimination

Robustness/ reproducibility

Information (fair and equal) of the users

Procedure in the event of a cyberattack

Human guarantees

Regulatory body (audit, label)

Impact on the care pathway

Societal impacts, impacts on people or on the environment?

Step 4 - Evaluation of the algorithm before the production phase

Evaluate algorithm performance and report results

- In each sex group

Step 4 - Evaluation of the algorithm before the production phase

All details of analysis in **publication / readme** that accompanies score

Key recommendations to be implemented Responsibilities of researchers

Thank you

Special thanks to Pr. Ségolène Aymé – head of the Ethics Committee of the Paris Brain Institute for her contributions to this presentation.

Thank you to the funding agencies: NHMRC (CJ Martin Fellowship) and INRIA.