

• Resolver en clase los siguientes ejercicios.

• Nombre del archivo pdf: #lista.Apellido_taller4.pdf

• Subir a turnitin hasta las 9pm

ESCUELA POLITÉCNICA NACIONAL ESCUELA DE FORMACIÓN DE TECNÓLOGOS

GUIA DE PRÁCTICAS LABORATORIO TALLER 4 ANALISIS DE SENSIBILIDAD

CARRERA:	ASA	ASI X	EM	ET				
ASIGNATURA:	Investigación	de Operacione	es CÓDIGO :	TSI-434	GRUPO:	GR1		
FECHA:	10/12/15							
APELLIDOS Y NOMBRES :	Sánchez Arte	eaga Fredy Vice	ente					
CÉDULA DE IDENTIDAD:	1725634552							
1. PROPÓSITO DE LA PRÁCTICA: -Calcular los rangos de optimalidad mediante el análisis de sensibilidad, tanto en restricciones como en coeficientes objetivo.								
2. OBJETIVO GENERAL: - Aplicar los conocimientos adquiridos en cuanto al análisis de sensibilidad.								
3. OBJETIVOS ESPECÍFICOS: -Determinar rangos de optimalidad para variaciones en las restricciones.								
-Determinar rangos de optimalidad para variaciones en las los coeficientes objetivos								
4. DESCRIPCIÓN DE ACTIVIDADES Y PROCEDIMIENTO DE LA PRÁCTICA:								
INSTRUCCIONES:								

EJERCICIOS: [1]

Wild West produce dos tipos de sombreros texanos. Un sombrero tipo 1 requiere dos veces la mano de obra que el tipo 2. La compañía puede producir un total de 400 sombreros tipo 1 y 2 al día. Los límites de mercado respectivos para los dos tipos son 150 y 200 sombreros por día. El ingreso es de \$8 por sombrero tipo 1 y de \$5 por sombrero tipo 2.

- (a) Use la solución grafica para determinar la cantidad de sombreros de cada tipo que maximice el ingreso.
- (b) Si el límite de la demanda diaria del sombrero tipo 1 se reduce a 120, use el precio dual para determinar el efecto

Correspondiente en el ingreso óptimo.

- (c) ¿Cuál es el precio dual de la participación en el mercado del sombrero tipo 2?
- (d) Calcule el intervalo o rango de óptimalidad del coeficiente c1
- 2. Compruebe los resultados obtenidos mediante la herramienta Solver de Excel. Realice una captura de pantalla de los resultados y cópiela a su documento.

ESCUELA POLITÉCNICA NACIONAL ESCUELA DE FORMACIÓN DE TECNÓLOGOS

5. TÉCNICAS E INSTRUMENTOS APLICADOS:

-MS Excel

-Desmos Calculator

6. RESULTADOS

Desarrollo.

Wild West produce dos tipos de sombreros texanos. Un sombrero tipo 1 requiere dos veces la mano de obra que el tipo 2. La compañía puede producir un total de 400 sombreros tipo 1 y 2 al día. Los límites de mercado respectivos para los dos tipos son 150 y 200 sombreros por día. El ingreso es de \$8 por sombrero tipo 1 y de \$5 por sombrero tipo 2.

Maximizar z = 8x1 + 5x2

Sujeto a:

- 1) $x1 + x2 \le 400$
- 2) $x1 \le 150$
- 3) $x2 \le 200$ $x1, x2 \ge 0$

(a) Use la solución grafica para determinar la cantidad de sombreros de cada tipo que maximice el ingreso.

Determinación de la solución óptima:

Función Objetivo:

$$Max z = 8x1 + 5x2$$

Punto A(0,200)

$$z = 8(0) + 5(200)$$

$$z = 1000$$

Punto B(100,200)

$$z = 8(100) + 5(200)$$

$$z = 1800$$

Punto C(150,100)

$$z = 8(150) + 5(100)$$

$$z = 1700$$

Punto D(150,0)

$$z = 8(150) + 5(0)$$

$$z = 1200$$

Se determina que la solución óptima es para obtener la máxima ganancia:

$$x1 = 100$$

$$x2 = 200$$

$$z = 1800$$

(b) Si el límite de la demanda diaria del sombrero tipo 1 se reduce a 120, use el precio dual para determinar el efecto Correspondiente en el ingreso óptimo.

Primero determinamos los puntos A y C en la ecuacion de la primera restriccion y la funcion objetivo.

Punto A:
$$x1 = 0$$
: $x2 = 200$

Punto C:
$$x1 = 150$$
; $x2 = 200$

Capacidad minima en
$$A(0,200)$$
:

$$2x1 + x2 = ?$$
$$2(0) + 200 = 200$$

$$z = 8(0) + 5(200) = $1000$$

Capacidad maxima en C(150,200):

$$2x1 + x2 = ?$$
$$2(150) + 200 = 500$$

$$z = 8(150) + 5(200) = $2200$$

RANGO:

$200 \le Capacidad de sombreros \le 500$

$$Precio\ sombra\ =\ \frac{2200-1000}{500-200} = \$\ 4\ por\ cada\ sombrero.$$

(c) ¿Cuál es el precio dual de la participación en el mercado del sombrero tipo 2?

Cuando $x1 \le 120$ no hay combio porque el valor optimo esta en x2, y el ingreso sigue siendo de 1800 Dolares.

(d) Calcule el intervalo o rango de óptimalidad del coeficiente c1

El punto D (150, 100) es nuestro límite de demanda por sombrero tipo 2.

Punto D:
$$x1 = 150$$
; $x2 = 100$

Punto F:
$$x1 = 0$$
; $x2 = 400$

Punto D(150,100) y determinamos la demanda del sombreso tipo 2: $Demanda \ x2 = 100$

$$z = 8(150) + 5(100) = $1700$$

Punto F(0,400) y determinamos la demanda del sombreso tipo 2: Demanda x2 = 400

$$z = 8(0) + 5(400) = $2000$$

RANGO:

$100 \le Capacidad de sombreros tipo <math>2 \le 400$

$$Precio\ sombra\ =\ \frac{2000-1700}{400-100} = \$\ 1\ por\ cada\ sombrero\ tipo\ 2.$$

El maximo incremento de demanda de sombreros del tipo 2=400-200=200 sombreros.

2. Compruebe los resultados obtenidos mediante la herramienta Solver de Excel. Realice una captura de pantalla de los resultados y cópiela a su documento.

Datos del probl	ema							
	X1	X2	Total					
Objetivo z	8	5	1800		Limites			
Restriccion 1	2	1	400	<=	400	Produccion de sombreros por dia.		
Restriccion 2	1	0	100	<=	150	Demanda de sombrero tipo 1.		
Restriccion 3	0	1	200	<=	200	Demanda de sombrero tipo 2.		
Solucion								
	X1	X2	Z					
Solucion	100	200	1800					
Fredy Vicente S	Sánchez Arte	eaga	Qui	ito, Diciembre	10 de 2015			

Microsoft Excel 15.0 Informe de confidencialidad

Hoja de cálculo: [13.Sánchez_Taller3p2.xlsx]

Informe creado: 10/12/2015 20:46:40

Celdas de variables

		Final Reducido		Objetivo	Permisible Permisible	
Celda	Nombre	Valor	Coste	Coeficiente	Aumentar	Reducir
\$C\$11 S	olucion X1	100	0	8	2	8
\$D\$11 S	olucion X2	200	0	5	1E+30	1

Restricciones

		Final	Sombra	Restricción	Permisible	Permisible
Celda	Nombre	Valor	Precio	Lado derecho	Aumentar	Reducir
\$E\$5	Restriccion 1 Total	400	4	400	100	200
\$E\$6	Restriccion 2 Total	100	0	150	1E+30	50
\$E\$7	Restriccion 3 Total	200	1	200	200	100

7. CONCLUSIONES

- Mediante la aplicación del uso de Solver y su muestra en el análisis de sensibilidad es posible demostrar los resultados obtenidos a partir de los cálculos realizados.
- Los rangos de óptimalidad determinan los valores que podemos incrementar o reducir las variables del lado derecho de las restricciones para mantener con la solución óptima.

8. BIBLIOGRAFÍA REFERENCIAL:

[1] H. Taha, Investigación de operaciones, 9th ed. México: PEARSON, 2012.

Fredy Sánchez Arteaga

FIRMA DEL ESTUDIANTE