MEASURE ENERGY CONSUMPTION

TEAM MEMBER

510521104039:SASIKUMAR R
PHASE 1: DOCUMENT SUBMISSION

PROJECT TITLE: Measure Energy Consumption

OBJECTIVE:

The objective of this project is to develop an automated system that measures energy consumption, analyze the data, and provides visualizations for informed decision-making. This solution aims to enhance efficiency, accuracy, and ease of understanding in managing energy consumption across various sectors.

OUTLINES:

- 1,Data source
- 2.Data Preprocessing
- 3. Feature Extraction
- 4. Model Development
- 5. Visualization
- **6.** Automation

1.Data Source

An data source is the one of the crucial part in measuring energy consumption it can consists of an various datasets to analyze the energy consumption. we can use the datasets with the help of programming we can make much more understandable.

Dataset Link: https://www.kaggle.com/datasets/robikscube/hourly-energy-consumption

Input

- ▼ hourly-energy-consumption
 - AEP_hourly.csv
 - COMED_hourly.csv
 - DAYTON_hourly.csv
 - DEOK_hourly.csv
 - DOM_hourly.csv
 - DUQ_hourly.csv
 - EKPC_hourly.csv
 - FE_hourly.csv
 - III NI_hourly.csv
 - PJME_hourly.csv
 - PJMW_hourly.csv
 - PJM_Load_hourly.csv
 - est_hourly.paruget
 - pjm_hourly_est.csv

2.Data Preprocessing

The Data preprocessing involves the Clean, transform, and prepare the dataset for analysis. From the above Data source we have data set files such as .csv files with different type of names **NOTE: All the .csv files are linked in one single file : est_hourly.paruget**

Viewing the clean and transform dataset for analysis

CODE:

import pandas as pd

import os

df=pd.read_parquet('../input/hourly-energy-consumption/est_hourly.paruqet')

df.head()

OUTPUT:

2

	AEP	COMED	DAYTON	DEOK	DOM	DUQ	EKPC	FE	NI	РЈМЕ	PJMW	PJM_Load
Datetime												
1998-12-31 01:00:00	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	29309.0
1998-12-31 02:00:00	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	28236.0
1998-12-31 03:00:00	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	27692.0
1998-12-31 04:00:00	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	27596.0
1998-12-31 05:00:00	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	27888.0

3.Feature Extraction

Feature extraction is the process of selecting and transforming raw data into a set of relevant features or metrics that can be used for analysis or as inputs to machine learning models. In the context of energy consumption data, feature extraction aims to capture meaningful patterns, trends, and characteristics of the data that can help in understanding or predicting energy consumption behaviour.

CODE:

import pandas as pd

import os

df=pd.read_parquet('../input/hourly-energy-consumption/est_hourly.paruqet')

df.describe().T

OUTPUT:

	count	mean	std	min	25%	50%	75%	max
AEP	121273.0	15499.513717	2591.399065	9581.0	13630.0	15310.0	17200.00	25695.0
COMED	66497.0	11420.152112	2304.139517	7237.0	9780.0	11152.0	12510.00	23753.0
DAYTON	121275.0	2037.851140	393.403153	982.0	1749.0	2009.0	2279.00	3746.0
DEOK	57739.0	3105.096486	599.859026	907.0	2687.0	3013.0	3449.00	5445.0
DOM	116189.0	10949.203625	2413.946569	1253.0	9322.0	10501.0	12378.00	21651.0
DUQ	119068.0	1658.820296	301.740640	1014.0	1444.0	1630.0	1819.00	3054.0
EKPC	45334.0	1464.218423	378.868404	514.0	1185.0	1386.0	1699.00	3490.0
FE	62874.0	7792.159064	1331.268006	0.0	6807.0	7700.0	8556.00	14032.0
NI	58450.0	11701.682943	2371.498701	7003.0	9954.0	11521.0	12896.75	23631.0
PJME	145366.0	32080.222831	6464.012166	14544.0	27573.0	31421.0	35650.00	62009.0
PJMW	143206.0	5602.375089	979.142872	487.0	4907.0	5530.0	6252.00	9594.0
PJM_Load	32896.0	29766.427408	5849.769954	17461.0	25473.0	29655.0	33073.25	54030.0

4.Model Development

The model development involves Utilization of statistical analysis to uncover trends, patterns and anomalies in the data. With the help of matplotlib we can uncover the dataset for better understanding. As an example I'm gonna to take the

DATASET: (hourly-energy-consumption/AEP_hourly.csv)

From the dataset I'm gonna to extract the JAN 2018 hourly power consumption

CODE:

```
import matplotlib.pyplot as plt
import pandas as pd

df = pd.read_csv('../input/hourly-energy-consumption/AEP_hourly.csv')
plt.figure(figsize=(15, 7))
plt.plot(df['Datetime'][120531:121275], df['AEP_MW'][120531:121275])
plt.title('Jan 2018 Hourly Power Consumption Over Time')
plt.xlabel('Datetime')
plt.ylabel('Power Consumption (MW)')
plt.grid(True)
plt.tight_layout()
plt.savefig('2018_Jan.png')
plt.show()
```

OUTPUT:

5.Visualization

Creating visualizations to present energy consumption trends and insights is a powerful way to convey complex information in a clear and understandable manner. Below, I'll provide examples of different types of graphs and charts that can be used to visualize energy consumption trends and insights. These visualizations can be created using tools like Microsoft Excel, Google Sheets, Tableau, or Python libraries such as Matplotlib and Seaborn.

CODE:

import pandas as pd

import os

df=pd.read_parquet('../input/hourly-energy-consumption/est_hourly.paruqet')

D1= df['PJME'].plot.hist(figsize=(15, 5), bins=200, title='Distribution of PJME Load')

D2= df['DOM'].plot.hist(figsize=(15, 5), bins=200, title='Distribution of DOMINION Load')

D3= df.plot.hist(figsize=(15, 5), bins=200, title='Distribution of Load by Region')

OUTPUT:

6. Automation

Building a script to automate data collection, analysis, and visualization processes involves several steps. I'll outline a high-level process using Python, a popular

programming language for such tasks. You can adapt this process to your specific needs and datasets.

CODE:

import matplotlib.pyplot as plt

import numpy as np

import os

df = pd.read_parquet('../input/hourly-energy-consumption/est_hourly.paruqet')

 $D1 = df[['PJM_Load','PJME','PJMW']] \setminus$

.plot(style='.', figsize=(15, 5), title='PJM Load 1998-2002 - Split East and West 2002-2018')

OUTPUT:

CODE:

import matplotlib.pyplot as plt

import numpy as np

import os

df = pd.read_parquet('../input/hourly-energy-consumption/est_hourly.paruqet')

D2= df['PJME'].loc[(df['PJME'].index >= '2017-11-01') & (df['PJME'].index < '2017-12-01')] \
.plot(figsize=(15, 5), title = 'November 2017')

OUTPUT:

7

