PH-105 Assignment Sheet - 1

Vipul Singh

11.08.2012

- 7. Two observers A and B, sitting at the origin of their respective inertial frames are moving with respect to each other with a relative speed of 0.6c. The observer A sends a light signal to observer B, 3×10^{-6} s after B passes A, as measured in A's frame. The observer B receives this light signal, He waits for 2×10^{-6} s after receiving the light signal as per his watch and then sends a light signal back to A.
 - (a) Find the time when the light signal is received by B as per the watches of A and B.
 - (b) Find the time when the light signal is received back by A as per the watches of A and B.
 - (c) What was the distance of B from A when B had sent the light signal according to A and B?
 - (d) What was the time taken by light to reach A after it was emitted from B, according to A and B?

Solution:

Relative speed, v=0.6c. Hence γ =1.25.

The following events can be identified in the above problem :

E1: A sends light signal.

E2: B receives light signal.

E3: B sends light signal.

E4: A receives light signal.

Let $(x_1, t_1), (x_2, t_2), (x_3, t_3)$ and (x_4, t_4) be the coordinates of the events in A's frame.

Similarly, let $(x'_1, t'_1), (x'_2, t'_2), (x'_3, t'_3)$ and (x'_4, t'_4) be the corresponding coordinates in B's frame.

Now, we find all unknown values, one event at a time.

E1:

$$x_1 = 0
 t_1 = 3 \times 10^{-6} s$$

$$x'_1 = \gamma(x_1 - vt_1) = -675m
 t'_1 = \gamma(t_1 - \frac{vx_1}{c^2}) = 3.75 \times 10^{-6} s$$
(A is at origin of 1st frame)
(from given data)

E2:
$$x_2' = 0$$
 (B is at origin of 2^{nd} frame)
$$t_2' = t_1' + \frac{|x_1'|}{c} = 6 \times 10^{-6} s$$
 (Light was emitted at a distance $|x_1'|$ away and travelled at speed c)
$$x_2 = \gamma(x_2' + vt_2') = 1350m$$

$$t_2 = \gamma(t_2' + \frac{vx_2'}{c^2}) = 7.5 \times 10^{-6} s$$

E3:
$$x_3' = 0$$
 (B is at origin of 2^{nd} frame)
$$t_3' = t_2' + 2 \times 10^{-6} s = 8 \times 10^{-6} s$$
 (wait-time of $2 \times 10^{-6} s$ between receiving and sending)
$$x_3 = \gamma (x_3' + v t_3') = 1800m$$

$$t_3 = \gamma (t_3' + \frac{v x_3'}{c^2}) = 10 \times 10^{-6} s$$

E4:

$$x_4=0 \qquad \qquad \text{(A is at origin of } 1^{st} \text{ frame)} \\ t_4=t_3+\frac{|x_3|}{c}=16\times 10^{-6}s \qquad \qquad \text{(Light was emitted at } |x_3| \text{ distance away at time } t_3 \text{ and moved at speed c)} \\ x_4'=\gamma(x_4-vt_4)=-3600m \\ t_4'=\gamma(t_4-\frac{vx_4}{c^2})=20\times 10^{-6}s$$

So, the solutions are as follows:

- (a) Time when the light signal is received by B as per the watch of A = $t_2 = 7.5 \times 10^{-6} s$ Time when the light signal is received by B as per the watch of B = $t_2' = 6 \times 10^{-6} s$
- (b) Time when the light signal is received back by A as per the watch of A = $t_4 = 16 \times 10^{-6} s$. Time when the light signal is received back by A as per the watch of B = $t_4' = 20 \times 10^{-6} s$.
- (c) Distance of B from A when B had sent the light signal according to $A=x_3=1800m$ Distance of B from A when B had sent the light signal according to $B=vt_3'=1440m$
- (d) Time taken by light to reach A after it was emitted from B, according to $A = t_4 t_3 = 6 \times 10^{-6} s$ Time taken by light to reach A after it was emitted from B, according to $B = t_4' - t_3' = 12 \times 10^{-6} s$