ESD-TR-71-9

ESD ACCESSION LIST
TRI Call No. 72578

Copy No. of cvs.

ESD RECORD COPY

RETURN TO
SCIENTIFIC & TECHNICAL INFORMATION DIVISION
(TRI), Building 1210

Technical Note

1971-5

Design
of Multi-Region Pressure Vessels
Using Maximum Shear Theory

A. R. Leyenaar T. E. Stack

27 January 1971

Prepared under Electronic Systems Division Contract F19628-70-C-0230 by

Lincoln Laboratory

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Lexington, Massachusetts

This document has been approved for public release and sale; its distribution is unlimited.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY LINCOLN LABORATORY

DESIGN OF MULTI-REGION PRESSURE VESSELS USING MAXIMUM SHEAR THEORY

A. R. LEYENAAR

Group 71

T. E. STACK

Group 83

TECHNICAL NOTE 1971-5

27 JANUARY 1971

This document has been approved for public release and sale; its distribution is unlimited.

The work reported in this document was performed at Lincoln Laboratory, a center for research operated by Massachusetts Institute of Technology, with the support of the Department of the Air Force under Contract F19628-70-C-0230.

This report may be reproduced to satisfy needs of U.S. Government agencies.

ABSTRACT

A method is outlined for multi-region pressure vessels design calculations using the maximum shear theory. This treatment is employed due to the simplicity of the method and because the results are quite conservative for both ductile and brittle materials.

A procedure for obtaining an optimum design has been given for a desired percentage of auto-frettage on the inner wall of the pressure vessel. A computer program has been written in Fortran II language and the various design possibilities have been executed by IBM-1620 computer.

Accepted for the Air Force Joseph R. Waterman, Lt. Col., USAF Chief, Lincoln Laboratory Project Office

NOMENCLATURE

E = Young's modulus

 $(r - r_0)/(r_1 - r_0)$ ratio of the assumed inelastic region over the wall thickness of the ring

n₄ = Outside to inside radius ratio of first ring

n₂ = Outside to inside radius ratio of second ring

n_k = Total outside to inside radius ratio

 N_{L} = Maximum total outside to inside radius ratio

p = Internal pressure psi

p₄ = External pressure psi

r = Inner radius

r, = Outer radius of first ring

r₂ = Outer radius of second ring

u = Radial deformation

u = Radial deformation of inner fiber

u = Radial deformation of outer fiber of first ring

u, = Radial deformation of inner fiber of second ring

 δ_{Ω} = Radial interference first ring

 δ_A = Radial interference between first and second ring

 $\lambda^{1} = (r/r_{0})^{2}$ ratio of the radius in the elastic range over the inside radius to the second power

 λ = x subscript denotes the percentage of the auto-frettage

 σ_{t} = Tangential stress

σ = Radial stress

 σ_{v} = Yield stress

 τ = Shear stress

 μ = Poisson's ratio

I. Introduction

The purpose of this paper is to outline a method of designing a two-region pressure vessel using the maximum shear theory. This method was chosen because of its simplicity. Moreover, the results obtained in this way are quite conservative for both ductile and brittle materials. An attempt is also made to allow a certain percentage of auto-frettage on the inner wall of the pressure vessel.

II. General Stress Relationship

The stresses in a thick-walled cylinder can be represented by the Lame-Clapeyron 2 equation.

$$\sigma_{t} = \frac{r_{o}^{2} p_{o} - r_{1}^{2} p_{1}}{r_{1}^{2} - r_{o}^{2}} + \frac{r_{o}^{2} r_{1}^{2} (p_{o} - p_{1})}{r^{2} (r_{1}^{2} - r_{o}^{2})}$$
(1)

and

$$\sigma_{r} = \frac{r_{o}^{2} p_{o} - r_{1}^{2} p_{1}}{r_{1}^{2} - r_{o}^{2}} - \frac{r_{o}^{2} r_{1}^{2} (p_{o} - p_{1})}{r^{2} (r_{1}^{2} - r_{o}^{2})}$$
(2)

where σ_t and σ_r represent the tangential and radial stress; r_o and r_1 denote the inner and outer radii of the cylinder, respectively; p_o and p_1 denote the inner and outer pressures, respectively.

Utilizing the Tresca criterion of yielding, i.e.,

$$\begin{array}{ccc}
\sigma & -\sigma & = \sigma \\
t & r & v
\end{array}$$

and substituting the Eqs. (1) and (2) into (3) for $r = r_0$, where σ_y is the largest, elastic breakdown begins on the internal surface at the pressure of

$$p_{O} = \frac{\sigma_{y}(n_{1}^{2} - 1) + 2n_{1}^{2}p_{1}}{2n_{1}^{2}}$$
(4)

where $n_1 = r_1/r_0$.

This works very satisfactorily within the elastic breakdown limit, but often one will find that p_0 is too small to be of value in high pressure vessel design. To increase the pressure limits, auto-frettaging is utilized. Auto-frettage is originally defined as stretching the inner fiber of thick-walled cylinders beyond the elastic breakdown limit. The resultant effect upon release of the overstrain pressure will be that the outside layers will squeeze the inner layer, thus inducing a tangential residual stress that is compressive at the bore. Where multiple ring systems are concerned, the "self-hooping" effect (literal French translation for the term auto-frettage) is developed by the interferences between the consecutive rings. Auto-frettage should now be defined as stress in the inelastic region.

III. Shear Theory

The maximum shear theory which is the most conservative, states:

$$\tau = \frac{1}{2} \sigma_{y} \tag{5}$$

substituting Eqs. (1), (2), and (5) in Eq. (3) gives

$$\tau = \frac{r_1^2}{r^2} \frac{(p_0 - p_1)}{(n_1^2 - 1)}$$
 (6a)

Thus, Eq. (6a) satisfies all possible conditions where τ is maximum for the smallest r in the elastic range.

IV. Design Procedure for Two-Region System

Another expression for Eq. (6a) for a two-region system is

$$\tau_{1} = \frac{n_{1}^{2}(p_{0} - p_{1})}{r^{2}/r_{0}^{2}(n_{1}^{2} - 1)}$$
 first ring (6b)

and

$$\tau_2 = \frac{n_2^2 p_1}{n_2^2 - 1}$$
 second ring (6c)

where $n_1 = r_1/r_0$ and $n_2 = r_2/r_1$, τ_1 and τ_2 are the shear stresses of the inner and outer cylinder. In Fig. 1, r represents the radius of the circle in the elastic range. The amount of auto-frettage can be expressed as a non-dimensional unit

$$\frac{r - r_0}{r_1 - r_0} = K$$

or

$$\frac{r}{r_0} = K(n_1 - 1) + 1$$

or

$$\lambda = K^{2}(n_{1} - 1)^{2} + 2K(n_{1} - 1) + 1$$
 (7)

where

$$\lambda = \left(\frac{r}{r_0}\right)^2$$

Fig. I

Substitution of Eqs.(6c) and (7) into (6b) and expressed for n_k , will give an expression of the form

$$n_{k}^{2} = \frac{n_{1}^{4}}{\lambda_{x}(n_{1}^{2} - 1) + (1 - p_{0}/\tau)n_{1}^{2}}$$
(8)

where

$$n_k = \frac{r_2}{r_0}$$

V. Reverse Yield

This form of yielding occurs if the outside pressure $\,p_1^{}$, on the inner cylinder, develops a hoop stress on the inner fiber exceeding the yield strength of the material. This condition can exist during assembly or during pressure release where $\,p_0^{}=0$ and thus

$$\sigma_{t} = \sigma_{y}$$

or

$$\sigma_{y1} = \frac{-2n_1^2 p_1}{n_1^2 - 1} \tag{9}$$

For the second ring, Eq. (3) can be expressed as

$$\sigma_{y2} = \frac{2N_k^2 p_1}{N_k^2 - n_1^2}$$

$$-\sigma_{y1} = \sigma_{y2}$$

or simply after solving for N_k

$$N_k = n_1^2$$

or simply

$$n_2 = n_1$$

VI. Interferences

Having determined all dimensions for a two-region pressure vessel by the described method the following conditions are imposed to add to the safety of the design.

- a. The inner surface of the first ring (whether at pressure under maximum conditions or employed as support for a die) does not undergo a dimensional change.
 This is true where the inner part is small or where this is made out of very brittle materials.
- Each following ring does not undergo a dimensional change after assembly.

The general equation for the elastic radial deformation, u, at a radius, r, in a thick-walled cylinder is given as

$$u = \frac{1 - \mu}{E} \frac{p_o - n^2 p_1}{(n^2 - 1)} r + \frac{(1 + \mu)}{E} \frac{r_1^2 (p_o - p_1)}{r(n^2 - 1)}$$
(10)

 μ and E denote Poisson's ratio and Young's modulus, respectively. n is the ratio between the outer and inner radii. The radial deformation for the smallest radius of the innermost cylinder is then

$$u_{o} = \frac{1 - \mu}{E} \frac{p_{o} - n_{1}^{2} p_{1}}{n_{1}^{2} - 1} r_{o} + \frac{1 + \mu}{E} \frac{r_{1}^{2} (p_{o} - p_{1})}{r_{o} (n_{1}^{2} - 1)}$$

or simply

$$\delta_{o} = r_{o} \frac{\left[p_{o}(1 - \mu + n_{1}^{2} + \mu n_{1}^{2}) - 2n_{1}^{2}p_{1}\right]}{E(n_{1}^{2} - 1)}$$
(11)

The radial interference at the outside radius r_1 can be expressed as

$$\delta_1 = u_1 - u_{01} \tag{12a}$$

where \mathbf{u}_1 is the total radial deformation and \mathbf{u}_{o1} is the deformation of the outside radius of the inner cylinder where

$$u_1 = \frac{1 - \mu}{E} \frac{p_1}{(n_2^2 - 1)} r_1 + \frac{1 + \mu}{E} \frac{r_2^2}{r_1} \frac{p_1}{(n_2^2 - 1)}$$

or

$$u_{1} = \frac{1 - \mu}{E} \frac{n_{1}^{2} r_{1}^{p}}{(n_{k}^{2} - n_{1}^{2})} + \frac{1 + \mu}{E} \frac{r_{1}^{2} n_{k}^{2} p_{1}}{(n_{k}^{2} - n_{1}^{2})}$$

$$u_{o1} = \frac{1 - \mu}{E} \frac{r_1(p_o - n_1^2 p_1)}{n_1^2 - 1} + \frac{1 + \mu}{E} \frac{r_1(p_o - p_1)}{n_1^2 - 1}$$

which will yield the solution

$$\delta_{1} = \frac{2r_{1}}{E} \frac{n_{1}^{2}(p_{0} - p_{1}) - n_{k}^{2}(p_{0} - n_{1}^{2}p_{1})}{(n_{k}^{2} - n_{1}^{2})(n_{1}^{2} - 1)}$$
(12b)

VII. Program for Multi-Region Pressure Vessel Using Maximum Shear Theory

1. Program Nomenclature

EN1(I) = n_1 , ratio outside to inside radius of first ring (subscripted)

ENK = n_k , total outside to inside radius ratio

 $ENMAX = N_k$, maximum total outside to inside radius ratio

 p_{o} = Internal pressure $p_{o} \times 10^{5} \text{ psi}$

 $p_1 = External pressure p_1 \times 10^5 psi$

RATIO(K) = p_{o}/τ (subscripted)

TAU = Shear stress $\tau \times 10^5$ psi

 $XK(J) = K = (r - r_0)/(r_1 - r_0) \text{ (subscripted)}$

 $XLDA = \lambda = (r/r_0)^2$

2. Program

END

The program written in Fortran II language is as follows.

DIMENSION ENI(25), XK(5), RATIO(35) READ 2, (ENI(I), I=1, 25), (XK(J), J=1.4), (RATIO(K), K=1, 35) 2 FORMAT (5F10.2) TAU = 1.35DO 122 I=1, 25 ENMAX=ENI(I)*ENI(I) PRINT 6, ENI(I), ENMAX, TAU 6 FORMAT (1X, 4HN1= ,F5.1,10X,4HNK= ,F6.2,10X,3HT= ,F5.2/) DO 122 J=1,4 TEMP = (XK(J)*(ENI(I)-1.0)+1.0XLDA=TEMP*TEMP PRINT 100 100 FORMAT (6X, 4HPO/T, 7X, 2HNK, 8X, 2HPO, 8X, 2HPI, 7X, 4HLDA //) PRINT 101. XLDA 101 FORMAT (45X, F6.3) DO 122 K= 1, 35 CODE=ENMAX-1.0 BETA=XLDA*CODE+(1.0-RATIO(K))*ENMAX IF(BETA)122, 122, 8 8 ENK=SQRTF (ENMAX*ENMAX/BETA) IF (ENK-ENMAX) 10, 10, 122 10 IF (ENK-ENI(I)) 122, 12, 12 12 PO= RATIO(K)*TAU Pl=PO-TAU*XLDA*CODE/ENMAX PRINT 20, RATIO(K), ENK, PO, PI 20 FORMAT (1X, 4F10.3) 122 CONTINUE CALL EXIT

3. Input Data

3.6

3.7

			n ₁				
1.6	1.7		1.8		1.9		2.0
2.1	2.2		. 23		2.4		2.5
2.6	2.7		2.8		2.9		3.0
3.1	3.2		3.3		3.4		3.5
3.6	3.7		3.8		3.9		4.0
			K				
0.00		0.10		0.20		0.25	
0.00		0.10	p _o /tau	0.20		0.25	
0.00	1.2	0.10	p _o /tau 1.3	0.20	1.4	0.25	1.5
	1.2	0.10		0.20	1.4	0.25	1.5
1.1		0.10	1.3	0.20		0.25	
1.1	1.7	0.10	1.3	0.20	1.9	0.25	2.0

3.8

3.9

4.0

4. Flow Diagram

Flow chart for two-region system.

VIII. Design Procedure

For the convenience of the designer, the tables in the Appendix are given to aid him in his choice of vessel dimensions. The material in this example has a .01 percent offset yield stress of 270,000 psi. If the problem is to design a pressure vessel with an inner diameter of .500 inch and to withstand pressures of 250,000 psi, the tables would give an enormous choice of pressure vessels that meet these requirements. If, however, a dimensional limit is given and a maximum O.D. of 2-1/2 inches or $N_{\rm k}=5$ is allowed, the following rules have to be applied:

- a. Take λ with smallest K value. Thus, λ_{10} to be preferred over λ_{20} .
- b. Take the largest p_0/τ value.
- c. Choose dimension $\,N_{\mbox{\scriptsize k}}^{}\,$ as close as possible to $n_{\,1}^{\,2}\,$ value.

According to these rules, the problem is reduced to one of designing the pressure vessel where

$$p_{o}/\tau = 1.9$$
 $n_{I} = 2.8$
 $n_{k} = 4.990$
 $p_{o} = 2.565 \times 10^{5} \text{ psi}$
 $p_{I} = .925 \times 10^{5} \text{ psi}$

However, this solution does not exclude any of the other design possibilities that are given by the tables.

The preceding information yields the following vessel dimensions:

- I.D. first ring = .5 inch *
- O.D. first ring = 1.4 inch = I.D. second ring
- O.D. second ring= 2.495 inch or take 2.5 inch

The diametral interference determined from Eq. (12b) is .010 inch.

REFERENCES

- 1. T.E. Davidson, et al, "The Auto-Frettage Principle as Applied to High Strength Lightweight Gun Tubes," Technical Report WVTRI-5907, Watervliet Arsenal, Watervliet, N.Y.
- 2. S. Timoshenko, Strength of Materials (D. Van Nostrand, Inc., New York, 1956), Vol. II, 3rd Edition.

APPENDIX

N ₁ = 1.6	N _k • 2	.56 τ =	: 1.35 x 10 ⁵	psi
P ₀ /T	n _k	p _o x 10 ⁵ psi	Pl x 10 ⁵ psi	² 0
.7 .8 .9 1.0 1.1	1.678 1.778 1.900 2.050 2.242 2.501	.95 1.08 1.215 1.35 1.485 1.62	.122 .257 .392 .527 .662 .797	1
P ₀ /T .8 .9 1.0 1.1 1.2 1.3	n _k 1.612 1.701 1.806 1.933 2.092 2.298 2.579	Po x 10 ⁵ psi .95 1.08 1.215 1.35 1.485 1.62 1.755	P ₁ x 10 ⁵ psi .020 .155 .290 .425 .560 .695 .830	λ ₁₀ 1.124
P ₀ /T .8 .9 1.0 1.1 1.2 1.3 1.4	n _k 1.629 1.721 1.830 1.963 2.130 2.348 2.651	Po x 10 ⁵ psi 1.08 1.215 1.35 1.485 1.62 1.755 1.89	p ₁ x 10 ⁵ psi .048 .183 .318 .453 .588 .723 .858	λ ₂₀ 1.254
P ₀ /T .9 1.0 1.1 1.2 1.3 1.4	nk 1.681 1.782 1.904 2.055 2.249 2.510	p _o x 10 ⁵ psi 1.215 1.35 1.485 1.62 1.755 1.89	p ₁ x 10 ⁵ psi .127 .262 .397 .532 .667 .802	^{\(\lambda\)} 25 1.323

N ₁ = 1.7	N _k = 2.	.89 τ	1.35 x 10 ⁵	psi
p_0/τ	n _k	p _o x 10 ⁵ psi	p _l x 10 ⁵ psi	λ ₀
.7 .8 .9 1.0 1.1 1.2	1.741 1.840 1.958 2.102 2.284 2.523 2.857	.95 1.08 1.215 1.35 1.485 1.62 1.755	.062 .197 .332 .467 .602 .737	1
p ₀ /T	n _k	p _o x 10 ⁵ psi	p _o x 10 ⁵ psi	λ _{l0}
.8 .9 1.0 1.1 1.2 1.3	1.745 1.845 1.965 2.111 2.295 2.538 2.878	1.08 1.215 1.35 1.485 1.62 1.755	.069 .204 .339 .474 .609 .744	1.145
P ₀ /T	nk	$p_0 \times 10^5$	$p_0 \times 10^5$	λ ₂₀
.9 1.0 1.1 1.2 1.3 1.4	1.744 1.844 1.963 2.108 2.292 2.534 2.873	1.215 1.35 1.485 1.62 1.755 1.89 2.025	.067 .202 .337 .472 .607 .742	1.30
p ₀ /T	n_k	$P_0 \times 10^5$	Po × 10 ⁵	^λ 25
1.0 1.1 1.2 1.3 1.4 1.5	1.789 1.897 2.027 2.189 2.397 2.677 3.088	1.35 1.485 1.62 1.755 1.89 2.025	.131 .266 .401 .536 .671 .806	1.381

N ₁ = 1.8	N _k = 3.	24 τ	= 1.35 x 10 ⁵	psi
P_{O}/τ	n _k	p _o x 10 ⁵ psi	p _l x 10 ⁵ psi	λ ₀
.7 .8 .9 1.0 1.1 1.2 1.3	1.808 1.907 2.023 2.165 2.341 2.568 2.877 3.335	.95 1.08 1.215 1.35 1.485 1.62 1.755	.012 .147 .282 .417 .552 .687 .822	1
P_0/T	n _k	p _o x 10 ⁵ psi	p _l x 10 ⁵ psi	λ ₁₀
.9 1.0 1.1 1.2 1.3 1.4	1.891 2.005 2.142 2.312 2.530 2.825 3.253	1.215 1.35 1.485 1.62 1.755 1.89 2.025	.127 .262 .397 .532 .667 .802	1.166
p_{o}/τ	n _k	p _o x 10 ⁵ psi	p _l x 10 ⁵ psi	λ ₂₀
1.0 1.1 1.2 1.3 1.4 1.5	1.866 1.975 2.106 2.267 2.471 2.743 3.131	1.35 1.485 1.62 1.755 1.89 2.025 2.16	.094 .229 .364 .499 .634 .769	1.346
P_{O}/τ	$n_{\mathbf{k}}$	p _o x 10 ⁵	p ₁ × 10 ⁵ psi	λ ₂₅
1.0 1.1 1.2 1.3 1.4 1.5 1.6	1.804 1.902 2.018 2.158 2.332 2.557 2.862 3.311	1.35 1.485 1.62 1.755 1.89 2.025 2.16 2.295	.006 .141 .276 .411 .546 .681 .816	1.44

N ₁ = 2	N _k = 4	$\tau = 1.35 \times 10^5 \text{ psi}$		psi
P ₀ /T .8 .9 1.0 1.1 1.2 1.3 1.4 1.5	nk 2.0 2.169 2.3.9 2.431 2.697 2.981 3.381 4.000	Po x 10 ⁵ psi 1.08 1.215 1.35 1.485 1.62 1.755 1.89 2.025	Pl x 10 ⁵ psi .067 .202 .337 .472 .607 .742 .877 1.012	λ ₀
P ₀ /T 1.0 1.1 1.2 1.3 1.4 1.5 1.6	nk 2.099 2.226 3.378 2.566 2.807 3.133 3.607	Po x 10 ⁵ psi 1.35 1.435 1.62 1.755 1.89 2.025 2.16	p _l x 10 ⁵ psi .125 .260 .395 .530 .665 .800 .935	λ ₁₀
P ₀ /T 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8	nk 2.020 2.132 2.265 2.425 2.626 2.887 3.244 3.780	Po x 10 ⁵ psi 1.435 1.62 1.755 1.89 2.025 2.16 2.295 2.43	p ₁ x 10 ⁵ psi .027 .162 .297 .432 .567 .702 .837 .972	² 20
P ₀ /T 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9	nk 2.028 2.141 2.276 2.439 2.644 2.910 3.278 3.833	po x 10 ⁵ psi 1.62 1.755 1.89 2.025 2.16 2.295 2.43 2.565	Pl x 10 ⁵ psi .037 .172 .307 .442 .577 .712 .847 .982	^{\(\lambda_{25}\)} 1.563

	N ₁ = 2.1	N _k = 4	.41 τ =	1.35 x 10 ⁵ ps	i
	P ₀ /T .8 .9 1.0 1.1 1.2 1.3 1.4 1.5	nk 2.129 2.247 2.388 2.559 2.774 3.053 3.437 4.017	Po x 10 ⁵ psi 1.08 1.215 1.35 1.485 1.62 1.755 1.89 2.025	psi .036 .171 .306 .441 .576 .711 .846 .981	λ ₀
ส์	Po/T 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7	n _k 2.152 2.274 2.421 2.599 2.325 3.121 3.536 4.178	po x 10 ⁵ psi 1.35 1.485 1.62 1.755 1.89 2.025 2.16 2.295	P ₁ x 10 ⁵ psi .064 .199 .334 .469 .604 .739 .874	¹ 10 1.232
	P ₀ /T 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9	nk 2.154 2.277 2.424 2.604 2.830 3.128 3.547 4.195	Po x 10 ⁵ psi 1.62 1.755 1.89 2.025 2.16 2.295 2.43 2.565	p ₁ x 10 ⁵ psi .067 .202 .337 .472 .607 .742 .877	^{\(\lambda\)} 20 1.488
	P ₀ /T 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0	nk 2.146 2.268 2.413 2.590 2.813 3.105 3.513 4.140	Po x 10 ⁵ psi 1.755 1.89 2.025 2.16 2.295 2.43 2.565 2.70	P ₁ x 10 ⁵ psi .058 .193 .328 .463 .598 .733 .368 1.003	^{\(\lambda\)} 25 1.626

N ₁ = 2.2	N _k = 4	.84 τ = 3	1.35 x 10 ⁵ ps	i.
P_0/T	nk	p _o x 10 ⁵ psi	$p_1 \times 10^5$	λ ₀
.8 .9 1.0 1.1 1.2 1.3 1.4	2.207 2.328 2.470 2.642 2.856 3.132 3.508 4.062	1.08 1.215 1.35 1.485 1.62 1.755 1.89 2.025	.009 .144 .279 .414 .549 .684 .819	1
P_0/T	n _k	p _o x 10 ⁵ psi	p ₁ × 10 ⁵ psi	λ10
1.0 1.1 1.2 1.3 1.4 1.5 1.6	2.206 2.326 2.468 2.639 2.852 3.127 3.501 4.051	1.35 1.485 1.62 1.755 1.89 2.025 2.16 2.295	.007 .142 .277 .412 .547 .682 .817	1.254
P ₀ /T	n _k	Po x 10 ⁵ psi	p ₁ × 10 ⁵	λ ₂₀
1.3 1.4 1.5 1.6 1.7 1.8 1.9	2.293 2.429 2.592 2.793 3.050 3.394 3.888 4.688	1.755 1.89 2.025 2.16 2.295 2.43 2.565 2.70	.108 .243 .378 .513 .648 .783 .918	1.538
P ₀ /T	n _k	P _o x 10 ⁵ psi	p _l x 10 ⁵	λ ₂₅
1.4 1.5 1.6 1.7 1.8 1.9 2.0	2.268 2.399 2.556 2.748 2.992 3.314 3.768 4.483	1.89 2.025 2.16 2.295 2.43 2.565 2.7 2.835	.080 .215 .350 .485 .620 .755 .890	1.69

N ₁ = 2.3	N _k = 5.	.29 τ =	1.35 x 10 ⁵ ps:	I
p ₀/τ	n _k	Po x 10 ⁵ psi	p ₁ × 10 ⁵ psi	λ_{0}
.9 1.0 1.1 1.2 1.3 1.4 1.5	2.410 2.554 2.728 2.943 3.218 3.588 4.125 5.008	1.215 1.35 1.485 1.62 1.755 1.89 2.025	.120 .255 .390 .525 .660 .795 .930	1
P ₀ /T 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8	ⁿ k 2.378 2.516 2.682 2.885 3.143 3.485 3.970 4.738	psi 1.485 1.62 1.755 1.89 2.025 2.16 2.295 2.43	P1 x 10 psi .087 .222 .357 .492 .627 .762 .897 1.032	λ ₁₀ 1.277
P ₀ /τ	ⁿ k 2.324	p _o x 10 ⁵ psi 1.755	P ₁ x 10 ⁵ psi .027	λ ₂₀ 1.578
1.4 1.5 1.6 1.7 1.8 1.9	2.452 2.605 2.790 3.021 3.321 3.733 4.349	1.89 2.025 2.16 2.295 2.43 2.565	.162 .297 .4 3 2 .567 .702 .837	
P ₀ /T 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3	n _k 2.418 2.563 2.739 2.957 3.236 3.613 4.164 5.078	Po x 10 ⁵ psi 2.16 2.295 2.43 2.565 2.7 2.835 2.97 3.105	p ₁ x 10 ⁵ psi .128 .263 .398 .533 .668 .803 .938 1.073	λ ₂₅ 1.856

$N_1 = 2.4$	N _k = 5	.76 τ = 1	35 x 10 ⁵ ps:	ī
p ₀ /T	n _k	$p_0 \times 10^5$	Pl x 10 ⁵ psi	λ ₀
.9 1.0 1.1 1.2 1.3 1.4 1.5	2.494 2.640 2.816 3.032 3.308 3.675 4.201 5.044	1.215 1.35 1.485 1.62 1.755 1.89 2.025 2.16	.099 .234 .369 .504 .639 .774 .909	1
P ₀ /T	n _k	p _o x 10 ⁵ psi	p _l × 10 ⁵ psi	^{\lambda} 10
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8	2.431 2.567 2.727 2.923 3.167 3.485 3.923 4.582 5.749	1.485 1.62 1.755 1.89 2.025 2.16 2.295 2.43 2.565	.035 .170 .305 .440 .575 .710 .845 .980	1.3
P ₀ /T	n _k	p _o x 10 ⁵ psi	p ₁ x 10 ⁵ psi	λ ₂₀
1.4 1.5 1.6 1.7 1.8 1.9 2.0	2.458 2.598 2.765 2.969 3.226 3.563 4.036 4.766	1.89 2.025 2.16 2.295 2.43 2.565 2.7 2.835	.063 .198 .333 .468 .603 .738 .873	1.638
p_0/τ	n_k	po x 10 ⁵ psi	p _l x 10 ⁵ psi	²⁵
1.6 1.7 1.8 1.9 2.0 2.1 2.2	2.521 2.672 2.855 3.082 3.372 3.764 4.335 5.281	2.16 2.295 2.43 2.565 2.7 2.835 2.97 3.105	.126 .261 .396 .531 .666 .801 .936	1.823

N ₁ = 2.6	N _k = 6	.76 7 =	1.35 x 10 ⁵ psi	
p_0/τ	nk	p _o x 10 ⁵ psi	p ₁ x 10 ⁵ psi	λ_{0}
.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6	2.665 2.817 2.998 3.220 3.499 3.867 4.382 5.179 6.667	1.215 1.35 1.485 1.62 1.755 1.89 2.025 2.16 2.295	.065 .200 .335 .470 .605 .740 .875 1.010	1
P ₀ /T 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0	nk 2.672 2.825 3.008 3.233 3.516 3.889 4.414 5.233 6.784	Po x 10 ⁵ psi 1.62 1.755 1.89 2.025 2.16 2.295 2.43 2.565 2.70	P1 x 10 ⁵ psi .072 .207 .342 .477 .612 .747 .882 1.017	¹ 10 1.346
P ₀ /T 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3	nk 2.736 2.901 3.101 3.348 3.666 4.095 4.723 5.770	po x 10 ⁵ psi 2.16 2.295 2.43 2.565 2.70 2.835 2.97 3.105	p ₁ x 10 ⁵ psi .131 .266 .401 .536 .671 .806 .941 1.076	λ ₂₀ 1.764
P ₀ /T 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5	n _k 2.640 2.787 2.963 3.176 3.444 3.792 4.274 5.003 6.305	Po x 10 ⁵ psi 2.295 2.43 2.565 2.70 2.835 2.97 3.105 3.24 3.375	p ₁ x 10 ⁵ psi .040 .175 .310 .445 .580 .715 .850 .985	²⁵

N ₁ = 2.7	N _k = 7	7.29 τ =	1.35 x 10 ⁵ ps:	L
P ₀ /T	n _k	$p_0 \times 10^5$	Pl x 10 ⁵	λ_0
.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7	2.752 2.907 3.091 3.316 3.509 3.969 4.482 4.267 6.691	1.215 1.35 1.485 1.62 1.755 1.89 2.025 2.16 2.295	.050 .185 .320 .455 .590 .725 .860 .995	1
P_0/T	$n_{\mathbf{k}}$	p _o x 10 ⁵ psi	p _l x 10 ⁵ psi	λ_{10}
1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9	2.726 2.876 3.055 3.271 3.542 3.892 4.373 5.092 6.343	1.62 1.755 1.89 2.025 2.16 2.295 2.43 2.565	.025 .160 .295 .430 .565 .700 .835 .970	1.369
P_0/τ	nk	p _o x 10 ⁵ psi	p _l x 10 ⁵ psi	λ20
1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4	2.771 2.929 3.118 3.350 3.642 4.027 4.566 5.404 6.980	2.16 2.295 2.43 2.565 2.7 2.835 2.97 3.105 3.24	.068 .203 .338 .473 .608 .743 .878 1.013 1.148	1.796
P_0/τ	n_k	p _o x 10 ⁵ psi	p _l x 10 ⁵ psi	λ ₂₅
1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6	2.767 2.924 3.113 3.343 3.633 4.014 4.548 5.374 6.916	2.43 2.565 2.7 2.835 2.97 3.105 3.24 3.375 3.51	.064 .199 .334 .469 .604 .739 .874 1.009	2.031

N1 = 5.8	N _k =	7.84	$\tau = 1.35 \times 10^5$	psi
P_0/T	n _k	p _o x :	10 ⁵ Pl x 10 ⁵	λ ₀
.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6	2.839 2.998 3.186 3.415 3.701 4.074 4.588 5.364 6.743	1.215 1.35 1.485 1.62 1.755 1.89 2.025 2.16 2.295	.037 .172 .307 .442 .577 .712 .847 .982	1
p_0/τ	n_{k}	p _o x :	$10^5 p_1 \times 10^5$	٨10
1.3 1.4 1.5 1.6 1.7 1.8 1.9	2.927 3.102 3.312 3.571 3.902 4.348 4.990 6.041	1.755 1.89 2.025 2.16 2.295 2.43 2.565 2.7	.115 .250 .385 .520 .655 .790 .925	1.3924
P_{O}/τ	n _k	p _o x	10 ⁵ p ₁ x 10 ⁵	λ ₂₀
1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4	2.929 3.104 3.314 3.574 3.907 4.353 4.999 6.057	2.295 2.43 2.565 2.7 2.835 2.97 3.105 3.24	.117 .252 .387 .522 .657 .792 .927	1.8496
P ₀ /T	nk	p _o x	$10^5 p_1 \times 10^5$	²⁵
1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7	2.897 3.065 3.267 3.516 3.831 4.249 4.843 5.784 7.640	2.565 2.7 2.835 2.97 3.105 3.24 3.375 3.51 3.645	.089 .224 .359 .494 .629 .764 .899 1.034 1.169	2 .102 5

$N_1 = 2.9$	N _k =	8.41 τ	• 1.35 x 10 ⁵	p s i
P_0/T	n_k	p _o x 10 ⁵ psi	p ₁ x 10 ⁵ psi	λ_0
.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6	2.928 3.089 3.281 3.514 3.804 4.181 4.698 5.470 6.815	1.215 1.35 1.485 1.62 1.755 1.89 2.025 2.16 2.295	.026 .161 .296 .431 .566 .701 .836 .971	1
P_0/τ	n_k	p _o x 10 ⁵ psi	p _l x 10 ⁵ psi	λ_{10}
1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0	2.979 3.150 3.354 3.603 3.918 4.334 4.918 5.827 7.545	1.755 1.89 2.025 2.16 2.295 2.43 2.565 2.7 2.835	.071 .206 .341 .476 .611 .746 .881 1.016	1.4161
P_0/τ	n_k	p _o x 10 ⁵ psi	p _l x 10 ⁵ psi	у50
1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5	2.933 3.095 3.288 3.522 3.815 4.195 4.717 5.501 6.875	2.295 2.43 2.565 2.7 2.835 2.97 3.105 3.24 3.375	.030 .165 .300 .435 .570 .705 .840 .975	1.9044
P_0/τ	n_{k}	p _o × 10 ⁵ psi	p ₁ × 10 ⁵ psi	25
1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7	2.940 3.103 3.298 3.534 3.830 4.216 4.747 5.548 6.968	2.565 2.7 2.835 2.97 3.105 3.24 3.375 3.51 3.645	.036 .171 .306 .441 .576 .711 .846 .981	2.126

N ₁ = 3	N _k = 9	τ = 1	.35 x 10 ⁵ psi	
p_0/τ	n _k	p _o x 10 ⁵ psi	p ₁ × 10 ⁵ psi	\sim
1.0 1.1 1.2 1.3 1.4 1.5 1.6	3.017 3.182 3.378 3.614 3.909 4.291 4.811 5.582 6.903	1.215 1.35 1.485 1.62 1.755 1.89 2.025 2.16 2.295	.015 .150 .285 .420 .555 .690 .825 .960 1.095	1
P _O /T	nk	p _o x 10 ⁵ psi	p _l x 10 ⁵ psi	λ _{lo}
1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1	3.030 3.198 3.397 3.638 3.939 4.330 4.867 5.669 7.071	1.755 1.89 2.025 2.16 2.295 2.43 2.565 2.7 2.835	.027 .162 .297 .432 .567 .702 .837 .972	1.44
P ₀ /T	n_k	p _o x 10 ⁵ psi	p ₁ x 10 ⁵ psi	λ20
1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6	3.091 3.269 3.482 3.744 4.074 4.511 5.128 6.096 7.955	2.43 2.565 2.7 2.835 2.97 3.105 3.24 3.375 3.51	.078 .213 .348 .483 .618 .753 .888 1.023 1.158	1.96
P ₀ /T	n _k	p _o x 10 ⁵ psi	p _l × 10 ⁵ psi	λ ₂₅
2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8	3.000 3.162 3.354 3.586 3.873 4.243 4.743 5.477 6.708	2.7 2.835 2.97 3.105 3.24 3.375 3.51 3.645 3.78	.000 .135 .270 .405 .540 .675 .810 .945 1.080	2.25

N ₁ = 3.1	N _k =		= 1.35 x 10 ⁵	psi
P_0/τ	n_k	$p_0 \times 10^5$	Pl x 10 ⁵ psi	λ_{0}
.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6	3.106 3.275 3.475 3.716 4.016 4.402 4.927 5.698 7.003	1.215 1.35 1.485 1.62 1.755 1.89 2.025 2.16 2.295	.005 .140 .275 .410 .545 .680 .815 .950 1.085	1
P ₀ /T	nk	p _o x 10 ⁵ psi	p _l x 10 ⁵ psi	λ_{10}
1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1	3.096 3.263 3.460 3.698 3.993 4.372 4.885 5.634 6.884 9.669	1.755 1.89 2.025 2.16 2.295 2.43 2.565 2.7 2.835	004 .131 .266 .401 .536 .671 .806 .941 1.076	1.4541
P_0/τ	n _k	p _o x 10 ⁵ psi	p _l x 10 ⁵ psi	y ⁵⁰
1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7	3.090 3.256 3.452 3.688 3.980 4.356 4.862 5.599 6.821 9.496	2.43 2.565 2.7 2.835 2.97 3.105 3.24 3.375 3.51 3.645	009 .126 .261 .396 .531 .666 .801 .936 1.071	2.0164
P_0/τ	n _k	$p_0 \times 10^5$	p ₁ x 10 ⁵ psi	λ ₂₅
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9	3.126 3.298 3.502 3.749 4.058 4.458 5.005 5.821 7.234	2.835 2.97 3.105 3.24 3.375 3.51 3.645 3.78 3.915	.022 .157 .292 .427 .562 .697 .832 .967	2.325625

$N_1 = 3.2$	N _k = 1	0.24 τ =	1.35 x 10 ⁵	psi
P_0/τ	n_k	p _o x 10 ⁵ psi	Pl x 10 ⁵ psi	λ_0
.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7	3.196 3.369 3.572 3.818 4.123 4.515 5.045 5.820 7.114 10.003	1.215 1.35 1.485 1.62 1.755 1.89 2.025 2.16 2.295 2.43	003 .132 .267 .402 .537 .672 .807 .942 1.077	1
P_{O}/T	n_k	p _o x 10 ⁵ psi	p _l x 10 ⁵ psi	λ10
1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1	3.295 3.485 3.712 3.991 4.342 4.808 5.464 6.491 8.461	1.89 2.025 2.16 2.295 2.43 2.565 2.7 2.835 2.97	.077 .212 .347 .482 .617 .752 .887 1.022	1.4884
P_{O}/T	n _k	p _o x 10 ⁵ psi	$p_1 \times 10^5$	y ⁵⁰
1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7	3.247 3.429 3.644 3.906 4.234 4.662 5.253 6.146 7.736	2.656 2.7 2.835 2.97 3.105 3.24 3.375 3.51 3.645	.039 .174 .309 .444 .579 .714 .849 .984	2.0736
P_0/τ	n _k	$p_0 \times 10^5$	$p_1 \times 10^5$	25
2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0	3.253 3.435 3.652 3.916 4.246 4.678 5.276 6.183 7.810	2.97 3.105 3.24 3.375 3.51 3.645 3.78 3.915 4.05	.043 .178 .313 .448 .583 .718 .853 .988 1.123	2.4025

N ₁ = 3.3	N _k = 10).89 τ	1.35 x 10 ⁵	psi
p ₀ /T	n_k	p _o x 10 ⁵ psi	p ₁ × 10 ⁵ psi	λ_0
.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8	3.463 3.671 3.921 4.232 4.629 5.165 5.945	2.16 2.295	011 .124 .259 .394 .529 .664 .799 .934 1.069	1
P ₀ /T	n _k	p _o x 10 ⁵ psi	p _l x 10 ⁵ psi	λ ₁₀
1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1	3.530 3.751 4.020 4.356 4.793 5.396	1.89 2.025 2.16 2.295 2.43 2.565 2.7 2.835	.035 .170 .305 .440 .575 .710 .845 .980	1.5129
P_0/τ	nk	p _o x 10 ⁵ psi	p ₁ × 10 ⁵ psi	λ20
2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8	3.411 3.609 3.847 4.138 4.508 4.999 5.694 6.795 8.953	2.7 2.835 2.97 3.105 3.24 3.375 3.51 3.645 3.78	.087 .222 .357 .492 .627 .762 .897 1.032	
P ₀ /T	n _k	Po x 10 ⁵	p ₁ x 10 ⁵ psi	λ ₂₅
2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1	3.381 3.573 3.803 4.084 4.438 4.904 5.556 6.563 8.441	3.105 3.24 3.375 3.51 3.645 3.78 3.915 4.050 4.185	.064 .199 .334 .469 .604 .739 .874 1.009	2.480625

$N_1 = 3.4$	N _k =	11.56 τ:	1.35 x 10 ⁵	psi
P ₀ /T	n _k	po x 10 ⁵ psi	p ₁ × 10 ⁵ psi	λ_0
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7	3.557 3.770 4.025 4.341 4.745 5.287 6.072 7.358 10.092	1.35 1.485 1.62 1.755 1.89 2.025 2.16 2.295 2.43	.117 .252 .387 .522 .657 .792 .927 1.062 1.197	1
P ₀ /T 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3	n _k 3.392 3.575 3.790 4.051 4.373 4.786 5.345 6.161 7.517	Po x 10 ⁵ psi 1.89 2.025 2.16 2.295 2.43 2.565 2.7 2.835 2.97 3.105	p ₁ x 10 ⁵ psi006 .129 .264 .399 .534 .669 .804 .939 1.074 1.209	λ ₁₀ 1.5376
Po/T 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9	nk 3.398 3.582 3.799 4.061 4.386 4.804 5.370 6.198 7.585 10.703	po x 10 ⁵ psi 2.7 2.835 2.97 3.105 3.24 3.375 3.51 3.645 3.78 3.915	P ₁ x 10 ⁵ psi001 .134 .269 .404 .539 .674 .809 .944 1.079 1.214	λ ₂₀ 2.1904
P ₀ /T 2.4 2.5 2.6 2.7 2.8 2.9 3.1 3.2	n _k 3.510 3.713 3.956 4.255 4.633 5.134 5.843 6.961 9.134	po x 10 ⁵ psi 3.24 3.375 3.51 3.645 3.78 3.915 4.05 4.185 4.32	P1 x 10 ⁵ psi .083 .218 .353 .488 .623 .758 .893 1.028 1.163	λ ₂₅ 2.56

N ₁ = 3.5	N _k = 1	2.25 τ =	: 1.35 x 10 ⁵	psi
P_0/T	nk	p _o x 10 ⁵ psi	p ₁ x 10 ⁵ psi	λ_{0}
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7	3.652 3.869 4.129 4.451 4.861 5.411 6.203 7.490 10.173	1.35 1.485 1.62 1.755 1.89 2.025 2.16 2.295 2.43	.110 .245 .380 .515 .650 .785 .920 1.055 1.190	1
p_0/τ	n _k	p _o x 10 ⁵ psi	$p_1 \times 10^5$	λ _{lo}
1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2	3.620 3.830 4.083 4.392 4.785 5.307 6.048 7.221 9.528	2.025 2.16 2.295 2.43 2.565 2.7 2.835 2.97 3.105	.088 .223 .358 .493 .628 .763 .898 1.033	1.5625
p_{o}/τ	n_k	p _o x 10 ⁵	p ₁ x 10 ⁵ psi	y ⁵⁰
2.1 2.3 2.4 2.5 2.6 2.7 2.8 2.9	3.560 3.760 3.998 4.288 4.651 5.125 5.783 6.782 8.582	2.835 2.97 3.105 3.24 3.375 3.51 3.645 3.78 3.915	.045 .180 .315 .450 .585 .720 .855 .990	2.25
P ₀ /T	n _k	p _o x 10 ⁵ psi	p ₁ x 10 ⁵ psi	\ ₂₅
2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3	3.639 3.853 4.110 4.427 4.830 5.368 6.139 7.378 9.897	3.375 3.51 3.645 3.78 3.915 4.05 4.185 4.32 4.455	.101 .236 .371 .506 .641 .776 .911 1.047	2.640625

N ₁ = 3.6	N _k = 12	2.96 τ	1.35 x 10 ⁵	psi
P ₀ /τ	n _k	p _o x 10 ⁵ psi	p _l x 10 ⁵ psi	λ ₀
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7	3.747 3.969 4.234 4.562 4.979 5.536 6.336 7.626 10.271	1.35 1.485 1.62 1.755 1.89 2.025 2.16 2.295 2.43	.104 .239 .374 .509 .644 .779 .914 1.049	1
P_0/τ	n _k	p _o x 10 ⁵ psi	p _l x 10 ⁵ psi	λ ₁₀
1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2	3.665 3.871 4.116 4.414 4.789 5.279 5.958 6.992 8.860	2.025 2.16 2.295 2.43 2.565 2.7 2.835 2.97 3.105	.047 .182 .317 .452 .587 .722 .857 .992	1.5876
P ₀ /T	n _k	p _o x 10 ⁵ psi	p _l x 10 ⁵ psi	y ⁵⁰
2.2 2.4 2.5 2.6 2.7 2.8 2.9 3.0	3.729 3.946 4.207 4.528 4.935 5.476 6.247 7.472 9.904	2.97 3.105 3.24 3.375 3.51 3.645 3.78 3.915	.092 .227 .362 .497 .632 .767 .902 1.037	2.3104
P_0/T	n _k	p _o x 10 ⁵ psi	p _l x 10 ⁵ psi	25
2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.4	3.769 3.994 4.265 4.600 5.029 5.606 6.441 7.811	3.51 3.645 3.78 3.915 4.05 4.185 4.320 4.455 4.59	.118 .253 .388 .523 .658 .793 .928 1.063 1.198	2.7225

N ₁ = 3.7	N _k =	13.69 τ	= 1.35 x 10 ⁵	psi
P_0/T	n _k	p _o x 10 ⁵ psi	p _l x 10 ⁵ psi	λ_{0}
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7	3.843 4.069 4.340 4.673 5.097 5.663 6.471 7.767 10.384	1.35 1.485 1.62 1.755 1.89 2.025 2.16 2.295 2.43	.099 .234 .369 .504 .639 .774 .909 1.044 1.179	1
P_0/τ	n _k	$p_0 \times 10^5$	pl x 10 ⁵ psi	λ ₁₀
1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4	3.709 3.911 4.149 4.438 4.796 5.259 5.886 6.811 8.377 11.999	2.025 2.16 2.295 2.43 2.565 2.7 2.835 2.97 3.105 3.24	.007 .142 .277 .412 .547 .682 .817 .952 1.087	1.6129
P_{O}/τ	n _k	$p_0 \times 10^5$	p _l x 10 ⁵ psi	λ20
2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1	3.706 3.908 4.146 4.433 4.791 5.251 5.876 6.795 8.347 11.910	2.97 3.105 3.24 3.375 3.51 3.645 3.78 3.915 4.05	.005 .140 .275 .410 .545 .680 .815 .950 1.085	2 .3 696
p_{o}/τ	nk	P _o x 10 ⁵ psi	pl x 10 ⁵ psi	25
2.6 2.7 2.8 2.9 3.1 3.2 3.4 3.5	3.699 3.899 4.135 4.420 4.774 5.229 5.845 6.748 8.259 11.661	3.51 3.645 3.78 3.915 4.05 4.185 4.32 4.455 4.59	001 .134 .269 .404 .539 .674 .809 .944 1.079	2.805625

N ₁ = 3.8	N _k =		1.35 x 10 ⁵	psi
P_0/τ	n_k	p _o x 10 ⁵ psi	Pl x 10 ⁵ psi	λ_{0}
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7	3.939 4.169 4.445 4.785 5.216 5.790 6.607 7.911 10.509	1.35 1.485 1.62 1.755 1.89 2.025 2.16 2.295 2.43	.093 .228 .363 .498 .633 .768 .903 1.038	1
p_0/τ	n _k	p _o x 10 ⁵ psi	$p_1 \times 10^5$	λ ₁₀
1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4	3.951 4.184 4.463 4.807 5.245 5.829 6.666 8.012	2.16 2.295 2.43 2.565 2.7 2.835 2.97 3.105 3.24	.101 .236 .371 .506 .641 .776 .911 1.046	1.6384
P ₀ /T	n_k	Po x 10 ⁵ psi	P ₁ x 10 ⁵ psi	λ ₂₀
2.4 2.5 2.6 2.8 2.9 3.1 3.2	3.868 4.086 4.344 4.660 5.055 5.572 6.289 7.381 9.353 14.897	3.105 3.24 3.375 3.51 3.645 3.78 3.915 4.05 4.185	.047 .182 .317 .452 .587 .722 .857 .992 1.127	2.4336
P_0/T	nk	p _o x 10 ⁵ psi	p ₁ × 10 ⁵ psi	²⁵
2.7 2.8 2.9 3.1 3.2 3.4 3.6	3.819 4.028 4.276 4.575 4.948 5.429 6.086 7.058 8.721 12.676	3.645 3.78 3.915 4.05 4.185 4.320 4.455 4.59 4.725 4.86	.014 .149 .284 .419 .554 .689 .824 .959 1.094	2.89

N ₁ = 3.9	N _k =	15.21 7 =	1.35 x 10 ⁵ y	osi
P_0/τ	n _k	$p_0 \times 10^5$	$p_1 \times 10^5$	λ_{0}
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7	4.035 4.270 4.551 4.897 5.336 5.918 6.746 8.058 10.644	1.35 1.485 1.62 1.755 1.89 2.025 2.16 2.295 2.43	.089 .224 .359 .494 .629 .764 .899 1.034	1
P_0/τ	n_k	P _o x 10 ^{5.} psi	p _l x 10 ⁵ psi	λ ₁₀
1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4	3.991 4.219 4.489 4.820 5.236 5.784 6.548 7.728 9.916	2.16 2.295 2.43 2.565 2.7 2.835 2.97 3.105 3.24	.061 .196 .331 .466 .601 .736 .871 1.006	1.6641
P_0/τ	n_k	p _o × 10 ⁵ psi	Pl x 10 ⁵ psi	у ⁵⁰
2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2	4.039 4.275 4.558 4.905 5.346 5.932 6.766 8.092	3.24 3.375 3.51 3.645 3.78 3.915 4.05 4.185 4.320	.091 .226 .361 .496 .631 .766 .901 1.036	2.4964
P_{o}/τ	n_{k}	$p_0 \times 10^5$	p _l x 10 ⁵ psi	λ ₂₅
2.8 2.9 3.1 3.2 3.4 3.5 3.7	3.938 4.156 4.414 4.727 5.118 5.626 6.322 7.363 9.178 13.739	3.78 3.915 4.05 4.185 4.32 4.455 4.590 4.725 4.860 4.995	.026 .161 .296 .431 .566 .701 .836 .971 1.106	2.97625

N ₁ = 4	N _k = 16		35 x 10 ⁵ ps	i
p ₀ /τ	n_k	Po x 10 ⁵ psi	$p_1 \times 10^5$	λ_0
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7	4.131 4.371 4.658 5.010 5.456 6.047 6.885 8.208 10.787	1.35 1.485 1.62 1.755 1.89 2.025 2.16 2.295 2.43	.084 .219 .354 .489 .624 .759 .894 1.029	1
PJT	n _k	p _o x 10 ⁵ psi	p _l x 10 ⁵ psi	λ_{10}
1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5	4.032 4.253 4.516 4.835 5.233 5.747 6.452 7.501 9.316 13.771	2.16 2.295 2.43 2.565 2.7 2.835 2.97 3.105 3.24 3.375	.021 .156 .291 .426 .561 .696 .831 .966 1.101	1.69
P ₀ /T	n _k	p _o x 10 ⁵ psi	Pl x 10 ⁵ psi	λ20
2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3	4.000 4.216 4.472 4.781 5.164 5.657 6.325 7.303 8.944 12.649	3.24 3.375 3.51 3.645 3.78 3.915 4.05 4.185 4.32 4.455	.000 .135 .270 .405 .540 .675 .810 .945 1.080	2.56
P_0/T	n _k	p _o x 10 ⁵ psi	p ₁ x 10 ⁵ psi	2 5
2.9 3.0 3.1 3.2 3.4 3.5 3.6 3.8	4.059 4.286 4.555 4.883 5.293 5.828 6.566 7.682 9.670 15.002	3.915 4.05 4.185 4.32 4.455 4.59 4.725 4.86 4.995 5.13	.039 .174 .309 .444 .579 .714 .849 .984 1.119	3.0625

UNCLASSIFIED Security Classification

DOCUMENT CONTROL DATA - R&D				
(Security classification of title, body of abstract and indexing annotation must be 1. ORIGINATING ACTIVITY (Corporate author)		2a. REPORT SECURITY CLASSIFICATION		
Lincoln Laboratory, M.I.T.		Unclassified		
		2b. GROUP None		
3. REPORT TITLE				
Design of Multi-Region Pressure Vessels Using Maximum Shear Thoory				
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)				
Technical Note				
5. AUTHOR(S) (Last name, first name, initial)				
Leyenaar, Antonio R. and Stack, Thomas E.				
6. REPORT OATE	78. TOTAL NO. OF PAGES		7b. NO. OF REFS	
27 January 1971			2	
88. CONTRACT OR GRANT NO. F19628-70-C-0230	9a. ORIGI	. ORIGINATOR'S REPORT NUMBER(S)		
		Technical Note 1971-5		
b. Project no. 649L	9b. OTHER REPORT NO(S) assigned this report)		(Any other numbers that may be	
c. d.	ESD-TR-71-9			
10. AVAILABILITY/LIMITATION NOTICES				
This document has been approved for public release and sale; its distribution is unlimited.				
11. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY			
None	Air Force System		as Command, USAF	
A method is outlined for multi-region pressure vessels design calculations using the maximum shear theory. This treatment is employed due to the simplicity of the method and because the results are quite conservative for both ductile and brittle materials. A procedure for obtaining an optimum design has been given for a desired percentage of auto-frettage on the inner wall of the pressure vessel. A computer program has been written in Fortran II language and the various design possibilities have been executed by IBM-1620 computer.				
14. KEY WORDS pressure vessels		shear theory		