

1 Data import and preparation

This part of the document deals with the data preparation of the provided cooper wire data before the data analysis.

1.1 Data import

Abbildung 1: Data import in Stream

The data is imported via the node SAS file. The node Set Globals is used for setting the audited data results of the raw imported data as global values, which get used later on for the data preparation. The node Data Audit is used for analyzing the raw data.

Abbildung 2: Set audit results as global values in the stream

1.2 Data preparation

The outliers and extremes where determined during the audit of the raw data.

Abbildung 3: Audit of the raw data

Abbildung 4: Audit of the raw data

Abbildung 5: Flow of data preparation tasks

This flow prepares the data for the later analysis. The following tasks are performed:

- Null values will be replaced with the mean value set by the Set Global node
- The negative value of the field temp will be replaced with the global mean of this field
- The outliers and extremes will be handled as you can see in image 3
- A new filed will be created quality_bool which represents the quality state good or false
- The fields which are not considered to be relevant will be set as ignored and the field *quality_bool* will be set as the target field for the further analysis

1.3 Predictive Model

Abbildung 6: Flow of further data preparation

Abbildung 7: Flow of predication models

This part of the stream prepares the data by splitting it into test and training data, additionally the False qualtity_bool will be boost to increase their representation in the data. At last the data gets prepared on the one hand with a Feature Selection and on the other hand with a PCA Factor.

Abbildung 8: Badly distributed quality_bool

As we can see that the False quality is underrepresented compared to the True quality.

Abbildung 9: Boost of quality False

The node *Balance* has been generated by the node *Distribution* and boost the representation of the *False* quality. After this nodes follows the node *Field selection* which removes fields which are not related to the *target*.

The node $Field\ selection$ has reduced the count of fields from 15 down to 10, therefore has removed 5 fields.

1.3.1 What are results of the use of Feature Selection and PCA Factor with defaults?

Abbildung 10: C5.0 with Feature Selection compared to PCA

Abbildung 11: Neuronal Net with Feature Selection compared to PCA

Abbildung 12: Logistic Regression with Feature Selection compared to PCA

Abbildung 13: The chart shows the results of the comparison between Feature Selection and PCA

1.3.2 What are results when C5.0 is modified?

Abbildung 14: C5.0 (costs for TF=10) with Feature Selection compared to PCA

Abbildung 15: C5.0 (costs for TF=10, prun serv=10) with Feature Selection compared to PCA

Abbildung 16: C5.0 (costs for TF=10, prun serv=1, rec=100) with PCA

Abbildung 17: C5.0 (costs for TF=10, prun serv=1, rec=100) with PCA

1.3.3 What are results when the Neural Net is modified?

Abbildung 18: Part one of Neural Net settings

Abbildung 19: Part two of Neural Net settings

Abbildung 20: Neural Net with Feature Selection compared to PCA

Abbildung 21: Logistic regression (unit 1.1 to 10.10) with PCA

Abbildung 22: Logistic regression (unit 1.1 to 10.10) with Feature Selection

1.4 What are the results if the Logistic regression is modified?

Abbildung 23: Logistic regression (unit 1.1 to 10.10) with Feature Selection compared to PCA

Abbildung 24: Logistic Regression settings

Abbildung 25: Logistic regression (it=200, steps=200) with PCA

Abbildung 26: Logistic regression (it=200, steps=200) with Feature Selection

Abbildung 27: All results of the experiments in a table