Διακριτά Μαθηματικά Εαρινό Εξάμηνο 2022-2023

Ασκήσεις #1 Στοιχεία μαθηματικής λογικής Προτασιακή και κατηγορηματική λογική, έλεγχος εγκυρότητας επιχειρήματος Ανακοίνωση: Τρίτη 4 Απριλίου

1. Δείξτε ότι οι λ.τ. $(p \land (\neg((\neg p) \lor q))) \lor (p \land q)$ και p είναι λογικά ισοδύναμοι.

Απάντηση: Θέλουμε να αποδείξουμε ότι: $(p \land (\neg((\neg p) \lor q))) \lor (p \land q) \Leftrightarrow p$, ή με άλλα λόγια ότι ο λογικός τύπος $(p \land (\neg((\neg p) \lor q))) \lor (p \land q) \leftrightarrow p$ είναι μια ταυτολογία. Έχουμε:

$$(p \land (\neg((\neg p) \lor q))) \lor (p \land q) \Leftrightarrow (p \land (\neg(\neg p) \land \neg q)) \lor (p \land q) (\text{vóμος}$$

$$DeMorgan) \Leftrightarrow (p \land (p \land \neg q)) \lor (p \land q) (\text{vóμος}$$

$$\delta_{\text{I}} \pi \lambda \eta \zeta \text{ άρνησης})$$

 $\Leftrightarrow ((p \land p) \land \neg q) \lor (p \land q) (προσεταιριστικός νόμος)$ $\Leftrightarrow (p \land \neg q) \lor (p \land q) (νόμος ουδετερότητας)$ $\Leftrightarrow p \land (\neg q \lor q) (επιμεριστικός νόμος)$ $\Leftrightarrow p \land (q \lor \neg q) (αντιμεταθετικός νόμος)$ $\Leftrightarrow p \land t (νόμος άρνησης)$ $\Leftrightarrow p (νόμος ταυτότητας)$

Εναλλακτικά, μπορούμε να κατασκευάσουμε τον πίνακα αληθείας για τους δύο λογικούς τύπους – παρακάτω συμβολίζουμε με P το σύνθετο λογικό τύπο $p \land (\neg((\neg p) \lor q))$.

	$pqPV(p \land q)$					
	p ∧ q	¬р	(¬p) ∨ q	¬((¬p) ∨ q)	Р	
	0	1	1	0	0	
ı	0	1	1	0	0	
ı	0	0	0	1	1	
	1	0	1	0	0	

 $0\ 0\ 0 \\ 0\ 1\ 0$

101

111

Παρατηρούμε ότι η 1η και τελευταία στήλη του πίνακα ταυτίζονται, γεγονός που αποδεικνύει ότι $p \Leftrightarrow (p \land (\neg((\neg p) \lor q))) \lor (p \land q)$.

2. Να εξετάσετε αν οι λ.τ. $(p \land q) \lor (\neg p \land q) \lor (\neg p \land \neg q)$ και $\neg p \lor q$ είναι λογικά ισοδύναμοι. Απάντηση: Έχουμε:

$$(p \land q) \lor (\neg p \land q) \lor (\neg p \land \neg q) \Leftrightarrow ((p \lor \neg p) \land q) \lor (\neg p \land \neg q) (επιμεριστικός νόμος) $\Leftrightarrow (t \land q) \lor (\neg p \land \neg q) (νόμος άρνησης)$
$$\Leftrightarrow q \lor (\neg p \land \neg q) (νόμος ταυτότητας)$$

$$\Leftrightarrow (q \lor \neg p) \land (q \lor \neg q) (επιμεριστικός νόμος)$$

$$\Leftrightarrow (q \lor \neg p) \land t (νόμος άρνησης)$$

$$\Leftrightarrow q \lor \neg p (νόμος ταυτότητας)$$

$$\Leftrightarrow \neg p \lor q (αντιμεταθετικός νόμος)$$$$

1

Εναλλακτικά, μπορούμε να κατασκευάσουμε τον πίνακα αληθείας για τους δύο λογικούς τύπους – παρακάτω συμβολίζουμε με P το σύνθετο λογικό τύπο $(p \land q) \lor (\neg p \land q) \lor (\neg p \land \neg q)$:

p q ¬p ∨ q							
¬р	¬q	рΛ	¬p ∧	¬p ∧	Р		
		q	q	¬q			
1	1	0	0	1	1		
1	0	0	1	0	1		
0	1	0	0	0	0		
0	0	1	0	0	1		

001

0 1 1

100

111

Παρατηρούμε ότι οι δύο τελευταίες στήλες του πίνακα ταυτίζονται, γεγονός που αποδεικνύει ότι οι λ.τ. $(p \land q) \lor (\neg p \land \neg q)$ και $\neg p \lor q$ είναι λογικά ισοδύναμοι.

3. Να εξετάσετε αν οι λ.τ. $p \to (q \to r)$ και $(p \land q) \to r$ είναι λογικά ισοδύναμοι. Απάντηση: Έχουμε:

$$p o (q o r) \Leftrightarrow \neg p \lor (q o r)$$
 (εξ΄ ορισμού)
 $\Leftrightarrow \neg p \lor (\neg q \lor r)$ (εξ΄ ορισμού)
 $\Leftrightarrow (\neg p \lor \neg q) \lor r$ (προσεταιριστικός νόμος)
 $\Leftrightarrow \neg (p \land q) \lor r$ (νόμος *DeMorgan*)
 $\Leftrightarrow (p \land q) \to r$ (εξ΄ ορισμού)

Εναλλακτικά, μπορούμε να κατασκευάσουμε τον πίνακα αληθείας για τους δύο λογικούς τύπους.

$$p q r (p \land q) \rightarrow r$$

$q \rightarrow r$	$p \rightarrow (q \rightarrow r)$	р Л q
1	1	0
1	1	0
0	1	0
1	1	0
1	1	0
1	1	0
0	0	1
1	1	1

 $\begin{array}{c} 0 \ 0 \ 0 \ 1 \\ 0 \ 0 \ 1 \ 1 \\ 0 \ 1 \ 0 \ 1 \\ 1 \ 0 \ 1 \ 1 \\ 1 \ 0 \ 0 \ 1 \\ 1 \ 1 \ 1 \ 0 \ 0 \\ 1 \ 1 \ 1 \ 1 \end{array}$

Εφόσον στον παραπάνω πίνακα οι στήλες που αντιστοιχούν στους δύο λογικούς τύπους ταυτίζονται συνε πάγεται ότι αυτοί είναι λογικά ισοδύναμοι.

4. Βρείτε τον πίνακα αληθείας του λ.τ. $(p \land q) \lor (q \land \neg r)$. Απάντηση: Παρακάτω φαίνεται ο πίνακας αληθείας.

$pqr(p \land q) \lor (q \land \neg r)$						
¬r	р Л q	q ∧ ¬r				
	4	'				
1	0	0				
0	0	0				
1	0	1				
0	0	0				
1	0	0				
0	0	0				
1	1	1				
0	1	0				

5. Δείξτε ότι
$$P \to (Q \land R) \equiv (P \to Q) \land (P \to R)$$
.

Απάντηση: Έχουμε:

$$P
ightarrow (Q \land R) \Leftrightarrow \neg P \lor (Q \land R)$$
 (εξ΄ ορισμού)
$$\Leftrightarrow (\neg P \lor Q) \land (\neg P \lor R)$$
 (επιμεριστικός νόμος)
$$\Leftrightarrow (P \rightarrow Q) \land (P \rightarrow R)$$
 (εξ΄ ορισμού)

Εναλλακτικά, μπορούμε να κατασκευάσουμε τον πίνακα αληθείας για τους δύο λογικούς τύπους.

$P Q R (P \rightarrow Q) \wedge (P \rightarrow R)$						
Q A R	$P \rightarrow (Q \land R)$	$P \rightarrow Q$	$P \rightarrow R$			
0 0 0 1 0 0	1 1 1 1 0 0	1 1 1 1 0 0	1 1 1 1 0 1			

Εφόσον στον παραπάνω πίνακα οι στήλες που αντιστοιχούν στους δύο λογικούς τύπους ταυτίζονται συνε πάγεται ότι αυτοί είναι λογικά ισοδύναμοι.

6. Σχεδιάστε το κύκλωμα που αντιστοιχεί στην Μπουλιανή έκφραση:

(
$$\alpha$$
) ($\neg P \lor Q$) \land ($P \lor R$).

Απάντηση: Το κύκλωμα είναι το παρακάτω.

(β) $(P \land \neg Q \land R) \lor (Q \land \neg R)$.

Απάντηση: Το κύκλωμα είναι το παρακάτω.

7. Σχεδιάστε το απλούστερο δυνατό κύκλωμα που αντιστοιχεί στον παρακάτω πίνακα εισόδου/εξόδου:

	είσοδος έξοδος
0000	, , ,
0010	
0100	
0110	
1001	
1011	
1100	
1111	

Απάντηση: Αρχικά γράφουμε μια Μπουλιανή έκφραση που έχει ως πίνακα αληθείας τον πίνακα αυτό. Για να το κάνουμε αυτό ξεχωρίζουμε τις γραμμές στις οποίες η έξοδος είναι 1, δηλαδή στην περίπτωσή μας τις γραμμές 5, 6 και 8. Για κάθε μια απ΄ αυτές τις γραμμές, κατασκευάζουμε μια 'ΚΑΙ' έκφραση που παράγει 1 για τον συνδυασμό των τιμών εισόδου αυτής ακριβώς της γραμμής και 0 για όλους τους άλλους συνδυασμούς των τιμών εισόδου. Για παράδειγμα, για την 8η γραμμή η έκφραση είναι $p \wedge q \wedge r$ γιατί η $p \wedge q \wedge r$ παράγει 1 αν p = 1, q = 1 και r = 1, και 0 για όλες τις άλλες τιμές των p, q και r. Εύκολα βρίσκουμε ότι οι εκφράσεις για την 6η και 5η γραμμή είναι $p \wedge \neg q \wedge r$ και $p \wedge \neg q \wedge r$ αντίστοιχα. Τώρα οποιαδήποτε Μπουλιανή έκφραση με το δοσμένο πίνακα ως πίνακα αλήθειάς της, έχει την τιμή 1 στην περίπτωση που $p \wedge q \wedge r = 1$, ή στην περίπτωση που $p \wedge \neg q \wedge r = 1$, ή στην περίπτωση που $p \wedge \neg q \wedge r = 1$, ή στην περίπτωση που $p \wedge \neg q \wedge r = 1$ και σε καμιά άλλη περίπτωση. Επομένως η Μπουλιανή έκφραση με το δοσμένο πίνακα αληθείας είναι η:

$$(p \land q \land r) \lor (p \land \neg q \land r) \lor (p \land \neg q \land \neg r)$$

Το κύκλωμα που αντιστοιχεί σ΄ αυτή την έκφραση είναι το ακόλουθο:

Το κύκλωμα αυτό δεν είναι το απλούστερο δυνατό. Κατά συνέπεια πρέπει να βρούμε έναν

απλοποιημένο 4

```
ισοδύναμο λογικό τύπο:
```

```
(p \land q \land r) \lor (p \land \neg q \land r) \lor (p \land \neg q \land \neg r) \Leftrightarrow p \land ((q \land r) \lor (\neg q \land r)) \lor (p \land \neg q \land \neg r)
(επιμεριστικός νόμος) \Leftrightarrow p \land ((q \lor \neg q) \land r) \lor (p \land \neg q \land \neg r)
(επιμεριστικός νόμος)
\Leftrightarrow p \land (t \land r) \lor (p \land \neg q \land \neg r) (νόμος άρνησης)
\Leftrightarrow (p \land r) \lor (p \land \neg q \land \neg r) (νόμος ταυτότητας)
\Leftrightarrow p \land (r \lor (\neg q \land \neg r)) (επιμεριστικός νόμος)
\Leftrightarrow p \land ((r \lor \neg q) \land (r \lor \neg r)) (επιμεριστικός νόμος)
\Leftrightarrow p \land ((r \lor \neg q) \land t) (νόμος άρνησης)
\Leftrightarrow p \land (\neg q \lor r) (νόμος ταυτότητας)
```

Το τελικό κύκλωμα είναι το εξής:

- 8. Να προσδιορίσετε την τιμή αληθείας για κάθεμια από τις παρακάτω προτάσεις αν το πεδίο ορισμού όλων των μεταβλητών είναι το R.
 - (α) $\forall x \exists y (2x y = 0)$.

Απάντηση: Αληθής. Για κάθε τιμή της μεταβλητής x η τιμή y = 2x ικανοποιεί την εξίσωση. (β) $\exists y \forall x (2x - y = 0)$.

Απάντηση: Ψευδής. Η μοναδική περίπτωση για να ισχύει η εξίσωση είναι y = 2x. Συνεπώς, δεν υπάρχει τιμή του y για την οποία να ισχύει η εξίσωση για κάθε τιμή του x.

 $(\gamma) \forall x \exists y(x-2y=0).$

Απάντηση: Αληθής. Για κάθε τιμή της μεταβλητής x η τιμή $y=\frac{x}{2}$ ικανοποιεί την εξίσωση. (δ) $\exists y\exists z(y+z=100)$.

Απάντηση: Αληθής. Οι τιμές y = 1 και z = 99 ικανοποιούν την εξίσωση.

(ϵ) $\forall x \exists y(y > x \land \exists z(y + z = 100))$.

Απάντηση: Αληθής. Για κάθε αριθμό x, η τιμή y = x + 1 ικανοποιεί το κατηγόρημα y > x. Θέτοντας z = 100 - y ικανοποιείται το κατηγόρημα y + z = 100. Εφόσον υπάρχουν τιμές των y και z που ικανοποιούν τα δύο κατηγορήματα, η παραπάνω πρόταση είναι αληθής.

 $(\sigma T) \exists x \exists y (x + y 6 = y + x).$

Απάντηση: Ψευδής. Για την πράξη της πρόσθεσης ισχύει η αντιμεταθετική ιδιότητα.

 $(\zeta) \ \forall x(x \ 6=0 \rightarrow \exists y(xy=1)).$

Απάντηση: Αληθής. Η τιμή $y = \frac{1}{x}$, x = 0 ικανοποιεί την εξίσωση.

5

(η) $\exists x \forall y (y 6=0 \rightarrow xy=1)$.

Απάντηση: Ψευδής. Δεν υπάρχει ένας αριθμός x που για κάθε τιμή y 6= 0 να ικανοποιεί την xy = 1.

 $(\theta) \ \forall x \exists y (x + y = 2 \land 2x - y = 1).$

Απάντηση: Ψευδής. Υπάρχει η τιμή x = 0 για την οποία το σύστημα δεν έχει λύση.

- 9. Να προσδιορίσετε την τιμή αληθείας για κάθεμια από τις παρακάτω προτάσεις αν το πεδίο ορισμού όλων των μεταβλητών είναι το Ν.
 - (a) $\forall x(x < 7 \rightarrow \exists a \exists b \exists c(a^2 + b^2 + c^2 = x)).$

Απάντηση: Αληθής. Αρκεί να δείξουμε ότι για κάθε ακέραιο μικρότερο του επτά, μπορούμε να βρούμε a, b και c τέτοια ώστε το άθροισμα των τετραγώνων τους να ισούται με το x. Ο παρακάτω πίνακας δείχνει τις τιμές των a, b και c για κάθε δυνατή τιμή του x < 7, $x \in \mathbb{N}$.

(β) $\exists x \exists y((x-4)^2 = 25 \land (y-4)^2 = 25).$

Απάντηση: Αληθής. Αρκεί να δείξουμε ότι υπάρχει τουλάχιστον μια τιμή για τα x και y που να ικανοποιεί και τις δύο εξισώσεις. Αυτό ισχύει για τις τιμές x = 9 και y = 9.

- 10. Τρεις άνθρωποι είναι ύποπτοι για ληστεία κοσμηματοπωλείου: ο Αντώνης, ο Βασίλης και ο Γιώργος. Η προκαταρκτική έρευνα οδήγησε στα ακόλουθα συμπεράσματα:
 - (α) Αν ο Γιώργος εμπλέκεται στο έγκλημα, τότε εμπλέκεται και ο Βασίλης.
 - (β) Αν ο Αντώνης είναι ένοχος, τότε ο Βασίλης είναι επίσης ένοχος.

Το πρώτο συμπέρασμα της προκαταρκτικής έρευνας αποδείχθηκε αληθές και το δεύτερο αποδείχθηκε ψευδές. Ποιος διέπραξε τη ληστεία;

Απάντηση: Έστω A - 'ο Αντώνης είναι ένοχος', B - 'ο Βασίλης είναι ένοχος', G - 'ο Γιώργος είναι ένοχος'. Έστω επίσης, $S = (G \to B) \land \neg(A \to B) = P \land Q$, όπου $P = (G \to B)$ και $Q = \neg(A \to B)$. Ο πίνακας αληθείας της S είναι:

AS					
В	G	Р	$A \rightarrow B$	Q	
F F T F F T	FTFTFT	T F T T F T	T T T F F T	F F F T F F	

F F F F T T T F T F

FF

Από τα συμπεράσματα (α) και (β) της προκαταρκτικής έρευνας συνεπάγεται ότι η τιμή αληθείας της S είναι T, αφού η τιμή αληθείας της P και της Q είναι T. Από τον πίνακα αληθείας έχουμε ότι η σύνθετη πρόταση S παίρνει την τιμή αληθείας T μόνο σε μία περίπτωση, συγκεκριμένα όταν οι προτάσεις B και G είναι ψευδείς και η πρόταση A είναι αληθής. Το συμπέρασμα επομένως είναι ότι ο Αντώνης είναι ο ένοχος της ληστείας.

11. Μια ροή εργασίας παρέχει το ακόλουθο σχήμα λειτουργίας τεσσάρων μηχανών $S_1 - S_4$. Αν η πρώτη μηχανή λειτουργεί, τότε η δεύτερη και η τρίτη λειτουργούν επίσης. Η τρίτη μηχανή λειτουργεί, αν και μόνο αν η τέταρτη λειτουργεί. Επιπλέον, αν η δεύτερη μηχανή λειτουργεί, πρέπει να σταματήσει η τέταρτη. Βρείτε ποιες μηχανές λειτουργούν αυτή τη στιγμή, αν είναι γνωστό ότι τώρα λειτουργεί η πρώτη ή η δεύτερη μηχανή (αλλά όχι και οι δυο ταυτόχρονα).

Απάντηση: Έστω $S_i = T$, αν η i-μηχανή λειτουργεί, όπου i = 1, 2, 3, 4, και $S_i = F$ διαφορετικά. Από τα δεδομένα της άσκησης συμπεραίνουμε ότι οι ακόλουθες σύνθετες προτάσεις έχουν τιμή αληθείας Τ:

$$P_1 = S_1 \rightarrow (S_2 \land S_3)$$

$$P_2 = S_3 \leftrightarrow S_4$$

$$P_3 = S_2 \rightarrow \neg S_4$$

$$P_4 = (S_1 \oplus S_2)$$

Ας συντάξουμε τον πίνακα αληθείας για τις λογικές εκφράσεις που αντιστοιχούν στις συνθήκες λειτουργίας των μηχανών.

S ₁ P ₄						
S ₂	S_3			P_2	P_3	
S ₂ T T F F F T T F F F F F F F F F F F F	S ₃	S ₄ T F T F T F T F T F T F T F T F T F T	P ₁ T T F F F F F T T T T T T T T T T T T	P ₂ T F F T T T F F T T T T F F T T T F F T T T T F F T T T T F F T T T T T F F T T T T T F F T	P3 F T F T T T T F T F T T T T T T T T T T	

Από τον πίνακα αληθείας έπεται ότι κρίσιμη γραμμή είναι η γραμμή 12, όπου όλες οι λογικές εκφράσεις που αντιστοιχούν στις συνθήκες λειτουργίας των μηχανών είναι T, δηλ. $P_1 = P_2 = P_3 = P_4 = T$. Στη γραμμή αυτή $S_1 = S_3 = S_4 = F$, $S_2 = T$.

Συνεπώς, μόνο η δεύτερη μηχανή λειτουργεί τώρα.

12. Έστω λογική συνάρτηση F τεσσάρων μεταβλητών A, B, X και Y, η οποία παίρνει τιμή 1 αν ο διψήφιος δυαδικός αριθμός AB είναι μικρότερος από τον διψήφιο δυαδικό αριθμό XY και 0 διαφορετικά. Να κατα σκευάσετε τον πίνακα αληθείας της συνάρτησης F. Υπόδειξη: αν A = 1, B = 0, X = 1 και Y = 1, τότε ο AB είναι ο δυαδικός αριθμός $(10)_2$ και είναι μικρότερος του XY που είναι ο δυαδικός αριθμός $(11)_2$, οπότε η τιμή της F θα είναι 1.

Απάντηση: Ο πίνακας αληθείας της συνάρτησης *F* είναι:.

7						
<u> </u>						
В	X	Υ				
0 0 0 0 1 1 1 1 0 0 0 1 1 1	0 0 1 1 0 0 1 1 0 0 1 1 0 0	0 1 0 1 0 1 0 1 0 1 0 1 0				

 $0\ 0\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 0$ $0\ 0\ 0\ 1\ 0\ 1\ 0\ 1\ 0$