IN THE UNITED STATES PATENT AND TRADEMARK OFFIC

IN RE APPLICATION OF: Tomoyo YAMAGUCHI, et al.

GAU:

SERIAL NO: 10/607,537

EXAMINER:

FILED:

June 27, 2003

FOR:

PLASMA PROCESSING METHOD

REQUEST FOR PRIORITY

COMMISSIONER FOR PATENTS ALEXANDRIA, VIRGINIA 22313

S	IR:
-	

☐ Full benefit of the filing date of U.S. Application Serial Number provisions of 35 U.S.C. §120.

, filed

, is claimed pursuant to the

Full benefit of the filing date(s) of U.S. Provisional Application(s) is claimed pursuant to the provisions of 35 U.S.C.

§119(e):

Application No.

Date Filed October 24, 2002

60/420,788 60/423,566

November 5, 2002

Applicants claim any right to priority from any earlier filed applications to which they may be entitled pursuant to the provisions of 35 U.S.C. §119, as noted below.

In the matter of the above-identified application for patent, notice is hereby given that the applicants claim as priority:

COUNTRY	APPLICATION NUMBER	MONTH/DAY/YEAR
Japan	2002-187422	June 27, 2002
Japan	2002-214628	July 24, 2002
Japan	2002-271588	September 18, 2002
Japan	2002-271589	September 18, 2002
Japan	2003-003540	January 9, 2003
Japan	2003-110225	April 15, 2003
Japan	2003-151416	May 28, 2003

Certified copies of the corresponding Convention Application(s)

are submitted herew	vi1	ew	here	tted	submi	are	
---------------------	-----	----	------	------	-------	-----	--

☐ will be submitted prior to payment of the Final Fee

☐ were filed in prior application Serial No.

filed

☐ were submitted to the International Bureau in PCT Application Number

Receipt of the certified copies by the International Bureau in a timely manner under PCT Rule 17.1(a) has been acknowledged as evidenced by the attached PCT/IB/304.

☐ (A) Application Serial No.(s) were filed in prior application Serial No.

filed

; and

☐ (B) Application Serial No.(s)

are submitted herewith

□ will be submitted prior to payment of the Final Fee

Respectfully Submitted,

OBLON, SPIVAK, McCLELLAND, MAIER & NEUSTADT, P.C.

Steven P. Weihrouch

Registration No. 32,829

Customer Number

22850

Tel. (703) 413-3000 Fax. (703) 413-2220 (OSMMN 05/03)

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2002年 6月27日

出 願 番 号

Application Nu nber:

特願2002-187422

[ST.10/C]:

[JP2002-187422]

出 願 人 Applicant(

東京エレクトロン株式会社

2003年 5月23日

特 許 庁 長 官 Commissioner, Japan Patent Office

【書類名】

特許願

【整理番号】

JP022109

【あて先】

特許庁長官 殿

【国際特許分類】

H01L 21/302

H01L 21/3065

【発明者】

【住所又は居所】

東京都港区赤坂五丁目3番6号 TBS放送センター

東京エレクトロン株式会社内

【氏名】

山口 智代

【発明者】

【住所又は居所】

東京都港区赤坂五丁目3番6号 TBS放送センター

東京エレクトロン株式会社内

【氏名】

布瀬 暁志

【特許出願人】

【識別番号】

000219967

【氏名又は名称】

東京エレクトロン株式会社

【代理人】

【識別番号】

100099944

【弁理士】

【氏名又は名称】

高山 宏志

【電話番号】

045-477-3234

【手数料の表示】

【予納台帳番号】

062617

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】

9606708

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 プラズマ照射方法、プラズマ処理方法、プラズマエッチング方法、および半導体装置の製造方法

【特許請求の範囲】

【請求項1】 表面に有機層を有する被処理体に対して、H₂のプラズマを 照射することを特徴とするプラズマ照射方法。

【請求項2】 表面に有機層を有する被処理体に対して、H₂と不活性ガスとを含む処理ガスのプラズマを照射することを特徴とするプラズマ照射方法。

【請求項3】 表面に有機層を有する被処理体に対して、Hを有する物質と不活性ガスとを含む処理ガスのプラズマを照射することを特徴とするプラズマ照射方法。

【請求項4】 前記有機層は、マスク層であることを特徴とする請求項1から請求項3のいずれか1項に記載のプラズマ照射方法。

【請求項5】 前記マスク層は、フォトレジスト層であることを特徴とする 請求項4に記載のプラズマ照射方法。

【請求項6】 前記フォトレジスト層は、ArFフォトレジスト層であることを特徴とする請求項5に記載のプラズマ照射方法。

【請求項7】 表面にArFフォトレジスト層を有する被処理体に対して、 Hを有する物質を含む処理ガスのプラズマを照射させることを特徴とするプラズ マ照射方法。

【請求項8】 前記Hを有する物質は、H₂であることを特徴とする請求項3または請求項7に記載のプラズマ照射方法。

【請求項9】 前記Hを有する物質は、NH3であることを特徴とする請求項3または請求項7に記載のプラズマ照射方法。

【請求項10】 前記処理ガスは、N₂を含むガスであることを特徴とする 請求項2から請求項9のいずれか1項に記載のプラズマ照射方法。

【請求項11】 エッチング対象部と、このエッチング対象部を覆うパターン開口が形成された有機層とを有する被処理体を処理容器内に配置する工程と、前記処理容器に導入されたHを有する物質を含む処理ガスをプラズマ化し、前

記有機層に照射する工程と、

前記処理容器に導入されたエッチングガスをプラズマ化し、前記パターン開口 を介して前記エッチング対象部をエッチングする工程と、

を有することを特徴とするプラズマ処理方法。

【請求項12】 前記Hを有する物質は、 H_2 であることを特徴とする請求項11に記載のプラズマ処理方法。

【請求項13】 前記Hを有する物質は、 NH_3 であることを特徴とする請求項11に記載のプラズマ処理方法。

【請求項14】 前記処理ガスは、 N_2 を含むガスであることを特徴とする 請求項11から請求項13のいずれか1項に記載のプラズマ処理方法。

【請求項15】 前記有機層は、マスク層であることを特徴とする請求項1 1から請求項14のいずれか1項に記載のプラズマ処理方法。

【請求項16】 前記マスク層は、フォトレジスト層であることを特徴とする請求項15に記載のプラズマ処理方法。

【請求項17】 前記フォトレジスト層は、ArFフォトレジスト層であることを特徴とする請求項16にプラズマ処理方法。

【請求項18】 前記処理ガスと前記エッチングガスは、同じガスであることを特徴とする請求項11から請求項17のいずれか1項に記載のプラズマ処理方法。

【請求項19】 前記エッチングガスは、前記処理ガスに別のガスを添加したガスであることを特徴とする請求項11から請求項17のいずれか1項に記載のプラズマ処理方法。

【請求項20】 前記エッチング対象部は、 SiO_2 層であることを特徴とする請求項11から請求項17および請求項19のうちいずれか1項に記載のプラズマ処理方法。

【請求項21】 前記エッチングガスは、 C_5F_8 を含むガスであることを特徴とする請求項20に記載のプラズマ処理方法。

【請求項22】 表面にArFフォトレジスト層を有する被処理体に対して、Nを有する物質を含む処理ガスのプラズマを照射することを特徴とするプラズ

マ照射方法。

【請求項23】 前記Nを有する物質は、N₂であることを特徴とする請求項22に記載のプラズマ照射方法。

【請求項24】 前記Nを有する物質は、NH₃であることを特徴とする請求項22に記載のプラズマ照射方法。

【請求項25】 前記処理ガスは、Hを有する物質を含むガスであることを 特徴とする請求項22から請求項24のいずれか1項に記載のプラズマ照射方法

【請求項26】 前記Hを有する物質は、 H_2 、 CHF_3 、 CH_2F_2 、 CH_3F_3 の中から選択される1以上であることを特徴とする請求項25に記載のプラズマ照射方法。

【請求項27】 エッチング対象部と、このエッチング対象部を覆う反射防止層と、この反射防止層を覆うパターン開口が形成されたArFフォトレジスト層とを有する被処理体を処理容器内に配置する工程と、

前記処理容器に導入された処理ガスをプラズマ化し、前記パターン開口を介して前記反射防止層をエッチングしながら、このエッチングにより同時に前記Ar Fフォトレジスト層の耐プラズマ性の向上処理を行う工程と、

【請求項28】 エッチング対象部と、このエッチング対象部を覆うパターン開口が形成されたArFフォトレジスト層とを有する被処理体を処理容器内に配置する工程と、

前記処理容器に導入されたNを有する物質を含む処理ガスをプラズマ化し、前記ArFフォトレジスト層に照射する工程と、

前記処理容器に導入されたエッチングガスをプラズマ化し、前記パターン開口 を介して前記エッチング対象部をエッチングする工程と、

を有することを特徴とするプラズマ処理方法。

を備えたプラズマ処理方法。

【請求項29】 エッチング対象部と、このエッチング対象部を覆う反射防止層と、この反射防止層を覆うパターン開口が形成されたArFフォトレジスト層とを有する被処理体を処理容器内に配置する工程と、

前記処理容器に導入されたNを有する物質を含む処理ガスをプラズマ化し、前 記パターン開口を介して前記反射防止層をエッチングする第1エッチング工程と

前記処理容器に導入されたエッチングガスをプラズマ化し、前記パターン開口を 介して前記エッチング対象部をエッチングする第2エッチング工程と、 を備えたプラズマ処理方法。

【請求項30】 前記エッチング対象部は、SiO₂層であることを特徴とする請求項28または請求項29に記載のプラズマ処理方法。

【請求項31】 前記エッチングガスは、フロロカーボンを含むガスであることを特徴とする請求項30に記載のプラズマ処理方法。

【請求項32】 SiO_2 層と、この SiO_2 層を覆う反射防止層と、この 反射防止層を覆うパターン開口が形成されたフォトレジスト層とを有する被処理 体を処理容器内に配置する工程と、

前記処理容器に導入されたNを有する物質を含む処理ガスをプラズマ化し、前 記パターン開口を介して前記反射防止層をエッチングする第1エッチング工程と

前記処理容器に導入されたフロロカーボンを含むエッチングガスをプラズマ化し、前記パターン開口を介して前記 SiO_2 層をエッチングする第2エッチング工程と、

を有することを特徴とするプラズマ処理方法。

【請求項33】 前記Nを有する物質は、N $_2$ であることを特徴とする請求項 $_2$ 8から請求項 $_3$ 2のいずれか $_1$ 項に記載のプラズマ処理方法。

【請求項34】 前記Nを有する物質は、NH₃であることを特徴とする請求項28から請求項32のいずれか1項に記載のプラズマ処理方法。

【請求項35】 前記処理ガスは、Hを有する物質を含むガスであることを 特徴とする請求項28から請求項34のいずれか1項に記載のプラズマ処理方法

【請求項36】 前記Hを有する物質は、 H_2 、 CHF_3 、 CH_2F_2 、 CH_3F_3 0 トの中から選択される1以上であることを特徴とする請求項35に記載のプ

ラズマ処理方法。

【請求項37】 前記フロロカーボンは C_4F_6 であることを特徴とする請求項31または請求項32に記載のプラズマ処理方法。

【請求項38】 前記フロロカーボンは C_5F_8 であることを特徴とする請求項31または請求項32に記載のプラズマ処理方法。

【請求項39】 前記 C_5F_8 は直鎖 C_5F_8 であることを特徴とする請求項38に記載のプラズマ処理方法。

【請求項40】 前記直鎖 C_5F_8 は1, 1, 1, 4, 4, 5, 5, 5-オ クタフルオロー2 -ペンチンであることを特徴とする請求項39に記載のプラズマ処理方法。

【請求項41】 処理容器に導入された処理ガスをプラズマ化して、反射防止層と、この反射防止層を覆うパターン開口が形成されたフォトレジスト層とを有する被処理体の前記反射防止層を、前記パターン開口を介してエッチングするプラズマエッチング方法であって、

前記処理ガスは、 N_2 と H_2 とを含み、前記処理容器内の圧力は、107~160 Pa (800~1200 m Torr) としたことを特徴とするプラズマエッチング方法。

【請求項42】 エッチング対象膜と、このエッチング対象膜を覆うパターン開口が形成されたフォトレジスト膜とを有する基板を処理容器内に配置する工程と、

前記処理容器に導入されたH₂を含む処理ガスをプラズマ化し、前記フォトレジスト膜に照射する工程と、

前記処理容器に導入されたエッチングガスをプラズマ化し、前記パターン開口 を介して前記エッチング対象膜をエッチングする工程と、

を有することを特徴とする半導体装置の製造方法。

【請求項43】 SiO $_2$ 層と、このSiO $_2$ 層を覆う反射防止層と、この反射防止層を覆うパターン開口が形成されたフォトレジスト層とを有する基板を処理容器内に配置する工程と、

前記処理容器に導入されたN₂と、H₂、CHF₃、CH₂F₂、CH₃Fの

中から選択されたいずれか1以上とを含む処理ガスをプラズマ化し、前記パターン開口を介して前記反射防止層をエッチングする第1エッチング工程と、

を有することを特徴とする半導体装置の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、半導体装置の製造工程でなされるプラズマ照射方法、プラズマ処理方法やプラズマエッチング方法、および半導体装置の製造方法に関する。

[0002]

【従来の技術】

従来、被処理体中のエッチング対象部のレジスト材として、ΚェFフォトレジスト、すなわち、ΚェFガスを発光源としたレーザー光で露光するフォトレジストが用いられていたが、近年の微細加工の要求に対応して、使用されるフォトレジストもΚェFフォトレジストに代わって、ΑェFフォトレジスト、すなわち、AェFガスを発光源としたレーザー光で露光するフォトレジストに移行されつつある。AェFフォトレジストは、一般に約0.13μm以下のパターン開口を形成する際に使用される。

[0003]

しかしながら、ArFフォトレジストは耐プラズマ性が低いため、エッチング途中でフォトレジストの表面が荒れてしまうという問題がある。この表面荒れは、KrFフォトレジストではほとんど発生しなかった。このようにフォトレジストの表面が荒れてしまうことで、エッチングの進行とともに、パターンの開口部の形状が変化して、所望の開口形状のエッチングホールが形成できなくなってしまうという不都合が生じていた。また、エッチング途中で、フォトレジストがなくなる箇所ができ、本来エッチングしたくない箇所もエッチングされてしまうという不都合も生じていた。

[0004]

フォトレジストの耐プラズマ性を向上させる方法としては、フォトレジスト表面に紫外線、電子線やイオンビームを照射する方法、フォトレジストを加熱硬化する方法やフォトレジスト表面に薄い硬化層をコーティングする方法が考えられる。また、フォトレジストに限らず、他の有機層においても同様な方法で耐プラズマ性を向上させ得ると考えられる。

[0005]

【発明が解決しようとする課題】

しかしながら、これらいずれの方法も、一般的にその後のエッチング工程で使用する容器とは別の容器内で行うこととなる。フォトレジストの耐プラズマ性の向上処理を行う容器からエッチング容器へ被処理体を搬送することは、搬送工程での歩留まりの低下や搬送時間によるスループットの低下を招く。また、耐プラズマ性の向上処理を行う容器をエッチング容器と別に設けることは、余分なスペースが必要であるばかりでなくコストアップを招く。これらの方法を耐プラズマ性の向上処理を行う容器をエッチング容器と別に設けず、エッチング容器に紫外線照射手段や加熱手段を付加することも可能ではあるが、この場合にも紫外線照射手段や加熱手段が必要であることには変わりなく、やはりコストアップを招いてしまう。

[0006]

本発明はかかる事情に鑑みてなされたものであって、その目的は、歩留まりの低下やスループットの低下をもたらさずに、かつコストアップを招くことなく、有機層の耐エッチング性を向上させることができるプラズマ照射方法、プラズマ処理方法、プラズマエッチング方法、および半導体装置の製造方法を提供することにある。

[0007]

【課題を解決するための手段】

上記課題を解決するための第1の発明は、表面に有機層を有する被処理体に対して、 H_2 のプラズマを照射させることを特徴とするプラズマ照射方法である。 H_2 のプラズマに代えて、 H_2 と H_2 、 N_2 N_3 N_4 N_4 N_5 N_5 N_5 N_5 N_6 N_5 N_6 N_6

スとを含む処理ガスのプラズマや、Hを有する物質と不活性ガスとを含む処理ガスのプラズマを照射してもよい。この照射によって、有機層の耐プラズマ性が向上する。詳細なメカニズムは必ずしも明確ではないが、Hを有するプラズマが有機層の架橋反応を促進して化学的結合が強化され、耐プラズマ性を向上させているものと考えられる。

[0008]

第1の発明において、有機層としてはマスク層を挙げることができ、マスク層 がフォトレジスト層、特に、ArFフォトレジスト層の場合に、顕著な耐プラズ マ性の向上効果をもたらす。なお、ArFフォトレジストとは、前述のようにA rFガスを発光源としたレーザー光で露光するフォトレジストをいう。

[0009]

第2の発明は、表面にArFフォトレジスト層を有する被処理体に対して、Hを有する物質を含む処理ガスのプラズマを照射させることを特徴とするプラズマ 照射方法である。この照射によって、ArFフォトレジスト層の耐プラズマ性が 向上する。

[0010]

第 1 および第 2 の発明において、Hを有する物質としては、取り扱いが容易な H_2 や N_3 を好適に使用することができる。中でも H_2 がより好ましい。また、処理ガスには、 N_2 が含まれていても良い。

[0011]

第3の発明は、エッチング対象部と、このエッチング対象部を覆うパターン開口が形成された有機層とを有する被処理体を処理容器内に配置する工程と、前記処理容器に導入されたHを有する物質を含む処理ガスをプラズマ化し、前記有機層に照射する工程と、前記処理容器に導入されたエッチングガスをプラズマ化し、前記パターン開口を介して前記エッチング対象部をエッチングする工程と、を備えたプラズマ処理方法である。

[0012]

第3の発明においては、第1および第2の発明と同様に、Hを有する物質としては、H $_2$ やNH $_3$ を使用することができ、また、処理ガスには、N $_2$ が含まれ

ていてもよい。ここでは有機層がマスク層として機能している。第3の発明においても、有機層としてはマスク層を挙げることができ、マスク層がフォトレジスト層、特に、ArFフォトレジスト層の場合に、顕著な耐プラズマ性の向上効果をもたらす。

[0013]

第3の発明において、エッチング対象部の材質によっては、処理ガスとエッチングガスを同じにすることもできる。同じガスを使用することで、照射する工程とエッチングする工程との間のガス切り替えが不要となり短時間での処理ができる。具体的には、処理ガスおよびエッチングガスとして N_2 と H_2 との混合ガスを用いて、プラズマ生成電力を低くして照射する工程を行い、その後、プラズマ生成電力を高くし、バイアス電力を印加して、エッチング対象部として例えばアモルファスカーボンをエッチングする工程を行う。また、エッチング対象部の材質によっては、エッチングガスとして、処理ガスに別のガスを添加しただけのガスを使用することができる。照射する工程の後に別のガスを添加するだけでエッチングすることができれば、プラズマ放電を維持したまま、連続で照射する工程とエッチングする工程とを行うことが可能である。具体的には、照射する工程で、処理ガスとして H_2 を用い、その後、エッチングガスとして H_2 とCF $_4$ とArの混合ガスを用いて、エッチング対象部として例えば有機酸化膜をエッチングする工程を行う。

[0014]

第3の発明において、エッチング対象部が SiO_2 層であり、エッチングガスが C_5F_8 を含むガスの場合には、エッチング対象部の有機層に対する選択比(エッチング対象部のエッチングレート/有機層のエッチングレート)が高くなり好ましい。

[0015]

第4の発明は、表面にArFフォトレジスト層を有する被処理体に対して、Nを有する物質を含む処理ガスのプラズマを照射させることを特徴とするプラズマ 照射方法である。この照射により、ArFフォトレジスト層の耐プラズマが向上 する。ArFフォトレジスト層の耐プラズマが向上する詳細なメカニズムは必ず しも明確ではないが、NとArFフォトレジスト中のCとが結合して、ArFフォトレジスト表面にCN系の保護膜ができ、ArFフォトレジストの耐プラズマ性が向上するものと考えられる。

[0016]

第4の発明において、Nを有する物質としては、取り扱いが容易なN $_2$ やNH $_3$ を好適に使用することができる。また、処理ガスには、Hを有する物質が含まれていることが好ましい。Hの存在によりNとCとの結合が促進されると考えられるからである。Hを有する物質としては、H $_2$ 、CHF $_3$ 、CH $_2$ F $_2$ 、CH $_3$ Fの中から選択される1以上を使用することができる。

[0017]

第5の発明は、エッチング対象部と、このエッチング対象部を覆う反射防止層と、この反射防止層を覆うパターン開口が形成されたArFフォトレジスト層とを有する被処理体を処理容器内に配置する工程と、前記処理容器に導入された処理ガスをプラズマ化し、前記パターン開口を介して前記反射防止層をエッチングしながら、このエッチングにより同時に前記ArFフォトレジスト層の耐プラズマ性の向上処理を行う工程と、を備えたプラズマ処理方法である。これにより、反射防止層を有する被処理体のエッチングにおいて、反射防止層のエッチングのついでにArFフォトレジスト層の耐プラズマ性の向上処理を行うことができる。したがって、スループットの向上を図ることができる。さらに、耐プラズマ性の向上処理を行う手段が別途必要ないため、余分な装置や空間が不要となりコストダウンを図ることができる。

[0018]

第6の発明は、エッチング対象部と、このエッチング対象部を覆うパターン開口が形成されたArFフォトレジスト層とを有する被処理体を処理容器内に配置する工程と、前記処理容器に導入されたNを有する物質を含む処理ガスをプラズマ化し、前記ArFフォトレジスト層に照射する工程と、前記処理容器に導入されたエッチングガスをプラズマ化し、前記パターン開口を介して前記エッチング対象部をエッチングする工程と、を有することを特徴とするプラズマ処理方法である。

[0019]

第7の発明は、エッチング対象部と、このエッチング対象部を覆う反射防止層と、この反射防止層を覆うパターン開口が形成されたArFフォトレジスト層とを有する被処理体を処理容器内に配置する工程と、前記処理容器に導入されたNを有する物質を含む処理ガスをプラズマ化し、前記パターン開口を介して前記反射防止層をエッチングする第1エッチング工程と、前記処理容器に導入されたエッチングガスをプラズマ化し、前記パターン開口を介して前記エッチング対象部をエッチングする第2エッチング工程と、を有することを特徴とするプラズマ処理方法である。

[0020]

第6および第7の発明において、エッチング対象部は SiO_2 層であり、エッチングガスはフロロカーボン、特に C_5F_8 または C_4F_6 を含むガスであることが好ましい。これにより、反射防止層のエッチングによって同時にArFフォトレジスト層の耐プラズマ性の向上処理を行うことができ、その結果、その後のフロロカーボンを含むエッチングガスのプラズマで SiO_2 層をエッチングする工程で、ArFフォトレジスト層に対する SiO_2 層の選択比(SiO_2 層のエッチングレート/ArFフォトレジスト層のエッチングレート)がかなり大きくなる。 C_5F_8 の中でも、直鎖 C_5F_8 が好ましい。直鎖 C_5F_8 のうち1,1,1,4,4,5,5,5ーオクタフルオロー2ーペンチン(以下「2ー C_5F_8 」と記載する。)を用いた場合の上記選択比は極めて大きくなる。また、 C_4F_6 を用いた場合は、エッチング工程でArFフォトレジスト上にポリマーが堆積されるため、ArFフォトレジストの目減りがなく、所望の開口形状を維持したままエッチングホールを形成することができる。

[0021]

第8の発明は、 SiO_2 層と、 $ZoSiO_2$ 層を覆う反射防止層と、Zo反射防止層を覆うパターン開口が形成されたフォトレジスト層とを有する被処理体を処理容器内に配置する工程と、前記処理容器に導入されたNを有する物質を含む処理ガスをプラズマ化し、前記パターン開口を介して前記反射防止層をエッチングする第1エッチング工程と、前記処理容器に導入されたフロロカーボンを含む

エッチングガスをプラズマ化し、前記パターン開口を介して前記 SiO_2 層をエッチングする第2エッチング工程と、を有することを特徴とするプラズマ処理方法である。フロロカーボンとしては、 C_4 F_6 や C_5 F_8 、好ましくは直鎖 C_5 F_8 、より好ましくは2 $-C_5$ F_8 を使用することができる。

[0022]

第 6、第 7 および第 8 の発明において、Nを有する物質としてはN $_2$ やN H $_3$ を好適に使用することができる。また、処理ガスには、Hを有する物質が含まれていることが好ましい。Hを有する物質としては、H $_2$ 、C H F $_3$ 、C H $_2$ F $_2$ 、C H $_3$ F の中から選択される $_1$ 以上を使用することができる。

[0023]

第9の発明は、処理容器に導入された処理ガスをプラズマ化して、反射防止層と、この反射防止層を覆うパターン開口が形成されたフォトレジスト層とを有する被処理体の前記反射防止層を、前記パターン開口を介してエッチングするプラズマエッチング方法であって、前記処理ガスは N_2 と H_2 とを含み、前記処理容器内の圧力は107~160Pa(800~1200mTorr)としたことを特徴とするプラズマエッチング方法である。これにより、フォトレジストのエッチングをできるだけ抑えながら、反射防止層のエッチングをすることができる。

[0024]

第10の発明は、エッチング対象膜と、このエッチング対象膜を覆うパターン 開口が形成されたフォトレジスト膜とを有する基板を処理容器内に配置する工程 と、前記処理容器に導入されたH₂を含む処理ガスをプラズマ化し、前記フォト レジスト膜に照射する工程と、前記処理容器に導入されたエッチングガスをプラ ズマ化し、前記パターン開口を介して前記エッチング対象膜をエッチングする工 程と、を有することを特徴とする半導体装置の製造方法である。

[0025]

第11の発明は、 SiO_2 層と、 $ZoSiO_2$ 層を覆う反射防止層と、Zo反射防止層を覆うパターン開口が形成されたフォトレジスト層とを有する基板を処理容器内に配置する工程と、前記処理容器に導入された N_2 と、 H_2 、 CHF_3 、 CH_2 F2、 CH_3 Fの中から選択されたいずれか1以上とを含む処理ガスを

プラズマ化し、前記パターン開口を介して前記反射防止層をエッチングする第1 エッチング工程と、前記処理容器に導入された C_5 F_8 EC_4 F_6 の中から選択されたいずれか1 以上を含むエッチングガスをプラズマ化し、前記パターン開口を介して前記S i O_2 層をエッチングする第2 エッチング工程と、を有することを特徴とする半導体装置の製造方法である。

[0026]

【発明の実施の形態】

以下、添付図面を参照して本発明の実施の形態について説明する。

図1は、本発明が実施されるプラズマエッチング装置1を示す断面図である。 処理容器2は金属、例えば、表面が酸化処理されたアルミニウムにより形成されていて、保安接地されている。処理容器2内の底部には絶縁体3を介して、平行平板電極の下部電極として機能するサセプタ5が設けられている。このサセプタ5には、ハイパスフィルタ(HPF)6が接続されている。サセプタ5の上には静電チャック11が設けられ、その上には半導体ウエハ等の被処理体Wが載置されている。静電チャック11は、絶縁体間に電極12が介在された構成をしており、電極12に接続された直流電源13を印加することにより、クーロン力で被処理体Wを静電吸着する。そして、被処理体Wを囲むようにフォーカスリング15が配置されている。このフォーカスリング15はSiやSiO2等からなり、エッチングの均一性を向上させている。

[0027]

また、サセプタ5の上方には、サセプタ5と対向して上部電極21が設けられている。この上部電極21は、絶縁体22を介して、処理容器2の上部に支持されていて、シャワーヘッド状の電極板24と、この電極板24を支持する支持体25とから構成される。

[0028]

Ar等が供給される。

[0029]

一方、処理容器2の底部には排気管31が接続されており、この排気管31には排気装置35が接続されている。また、処理容器2の側壁にはゲートバルブ32があり、被処理体Wが、隣接するロードロック室(図示せず)との間で搬送されるようになっている。

[0030]

上部電極21には、ローパスフィルタ(LPF)42と、整合器41を介して 第1の高周波電源40とがそれぞれ接続されている。下部電極であるサセプタ5 には、整合器51を介して第2の高周波電源50が接続されている。

[0031]

[0032]

まず、ゲートバルブ32を開放して、被処理体Wを処理容器2内に搬入し、静電チャック11上に配置する。次いで、ゲートバルブ32を閉じ、排気装置35によって処理容器2内を減圧した後、バルブ28を開放し、処理ガス供給源30から処理ガス、例えばH2を供給し、処理容器2内の圧力を所定の値、例えば6.7Pa(50mTorr)とする。この状態で、上部電極21と下部電極であるサセプタ5に高周波電力を印加し、処理ガスをプラズマ化して被処理体W中のArFフォトレジスト層62にプラズマ照射する。一方、上下電極に高周波電力を印加するタイミングの前後に、直流電源13を静電チャック11内の電極12に印加して、被処理体Wを静電チャック11上に静電吸着する。

[0033]

所定の時間だけプラズマを照射した後、処理ガスの供給及び高周波電力の印加を停止する。

[0034]

[0035]

エッチング中に、所定の発光強度を終点検出器(図示せず)によって検出し、 これに基いてエッチングを終了する。ArFフォトレジストとしては、脂環族含 有アクリル樹脂、シクロオレフィン樹脂、シクロオレフィンー無水マレイン酸樹 脂が使用できる。

[0036]

なお、エッチング対象部は、 SiO_2 膜に限るものではなく、TEOS、BPSG、PSG、SOG、熱酸化膜、HTO、FSG、有機系酸化シリコン膜、CORAL (ノベラス社)等の酸化膜(酸素化合物)や低誘電体有機絶縁膜等のエッチングに適用可能である。また、エッチング装置の構成も図1のものに限るものではない。

[0037]

次に、上記第1の実施形態に係る方法の実施例について説明する。

ここでは、プラズマを照射する工程での諸条件としては、処理容器内圧力を6.7 Pa (50mTorr)とし、処理ガス H_2 の流量を0.05~0.2 L/min (50~200sccm)とし、照射時間を30秒とし、上部電極には60MHzの周波数の高周波電力を500~1000Wのパワーで印加し、下部電極には高周波電力を印加しなかった。また、エッチング工程での諸条件としては、処理容器内圧力を2.0 Pa (15mTorr)とし、エッチングガス C_5 F8、Ar、 O_2 の流量をそれぞれ0.015 L/min (15sccm)、0.38 L/min (380sccm)、0.019 L/min (19sccm)とし、上部電極には60MHzの周波数の高周波電力を2170Wのパワーで印加し、下部電極には2MHzの周波数の高周波電力を1550Wのパワーで印加し、下部電極には2MHzの周波数の高周波電力を1550Wのパワーで印加

た。

[0038]

このような実施例と、プラズマを照射する工程を省略した比較例とで、エッチング工程でのSi〇₂膜のArFフォトレジストマスクに対する選択比(Si〇₂膜のエッチングレート/ArFフォトレジストマスクのエッチングレート)を比較した。被処理体Wの測定箇所4点全てについて、実施例のようにプラズマ照射を行うことにより、プラズマ照射を行わない比較例に比べて上記選択比が上昇した。上昇率は6~19%だった。

[0039]

次に、上記のプラズマエッチング装置 1 を用いて、図 3 のような S i O 2 膜 7 1 と、この S i O 2 膜 7 1 を覆う反射防止膜 7 2 と、この反射防止膜 7 2 を覆う A r F 7 3 を有する被処理体Wに対して、A r F 7 3 を有する被処理体Wに対して、A r F 7 3 のパターン開口を介して反射防止膜 7 2 をエッチングするとともに、A r F 7 3 の耐プラズマ性を向上させる第 1 エッチング工程(図 3 (a))と、この工程の後のA r F 7 3 を介して S i O 2 膜 7 1 をプラズマエッチングする第 2 エッチング工程(図 3 (b))を行う第 2 の 実施形態について説明する。

[0040]

まず、被処理体Wを処理容器2内に搬入・配置し、処理ガス供給源30から第1エッチングガスを兼ねた処理ガス、例えばN2とH2を供給するとともに、処理容器2内の圧力を所定の値、例えば107Pa(800mTorr)にする。この際の処理容器内圧力は107~160Pa(800~1200mTorr)が好ましい。107Paより低いとフォトレジスト、特にパターン開口の肩部もエッチングされてしまうからであり、160Paより大きいと開口部分のエッチングが進行しないからである。次いで、上下部電極に髙周波電力を印加し、第1エッチングガスをプラズマ化して、ArFフォトレジスト層73をマスクとして反射防止膜72をエッチングする。反射防止膜としては、アモルファスカーボン等を使用することができる。このエッチングは、同時にArFフォトレジスト層73の耐プラズマ性を向上させる処理も兼ねている。所定の時間だけエッチング

したところで第1エッチングを終了する。

 $[0\ 0.4\ 1]$

処理ガス(第1エッチングガス)をエッチングガス(第2エッチングガス)に切り替えて、第1エッチングと同様に、ArFフォトレジスト73を介してSiO $_2$ 膜71をプラズマエッチングする第2エッチングを行う。

[0042]

なお、この第2の実施形態においても、エッチング対象部は、 SiO_2 膜に限るものではなく、TEOS、BPSG、PSG、SOG、熱酸化膜、HTO、FSG、有機系酸化シリコン膜、CORAL (ノベラス社)等の酸化膜(酸素化合物)や低誘電体有機絶縁膜等のエッチングに適用可能である。また、エッチング装置の構成も図1のものに限るものではない。

[0043]

次に、上記第2の実施形態に係る方法の実施例について説明する。

ここでは、第1エッチングの諸条件としては、処理容器内圧力を107Pa(800mTorr) とし、処理ガス(第1エッチングガス) N_2 、 H_2 の流量を それぞれ0. 6L/min (600sccm)とし、上部電極には60MHzの 周波数の高周波電力を1000Wのパワーで印加し、下部電極には2MHzの周 波数の高周波電源を300Wのパワーで印加した。第2エッチングの諸条件とし ては、エッチングガスが1, 2, 3, 3, 4, 4, 5, 5-オクタフルオローシ クロー1 - ペンテン(以下「c - C_5 F_8 」と記載する。)を含むガスの場合(実施例1)には、処理容器内圧力を2.0Pa(15mTorr)とし、エッチ ングガスc-C₅F₈、Ar、O₂の流量をそれぞれ0.015L/min(1 $5 \, \text{sccm}$), 0. $3 \, 8 \, \text{L/min}$ ($3 \, 8 \, 0 \, \text{sccm}$), 0. $0 \, 1 \, 9 \, \text{L/min}$ (19 s c c m) とし、上部電極には周波数60MHz、パワー2170Wで、 下部電極には周波数2MHz、パワー1550Wで髙周波電力を印加し、エッチ ングガスが $2-C_5F_8$ を含むガスの場合(実施例2)には、処理容器内圧力を 2. 7 Pa (20mTorr) EU, $xy + y + y + z = C_5 F_8$, Ar, O_2 、COの流量をそれぞれ0.027L/min(27sccm)、0.5L/m in $(500 \, \text{sccm})$, 0. $027 \, \text{L/min}$ $(27 \, \text{sccm})$, 0. $05 \, \text{L}$

/min(50sccm)とし、上部電極には周波数60MHz、パワー1600Wで、下部電極には周波数2MHz、パワー2000Wで高周波電力を印加した。

[0044]

これに対して、処理ガスがArFフォトレジストの耐プラズマ性の向上作用がないと思われる CF_4 で第1エッチングを行った後、実施例1と同様にして $c-C_5$ F $_8$ を含むガスで第2エッチングを行ったものを比較例1とし、実施例2と同様にして $2-C_5$ F $_8$ を含むガスで第2エッチングを行ったものを比較例2とした。結果を表1に示す。

[0045]

【表1】

	処理ガス	エッチングガス	第2エッチング工程での、SiO ₂ のエッチングレート/ArFフォト レジストのエッチングレート
実施例1	N ₂ +H ₂	c−C₅F₂含有ガス	8. 3
比較例1	CF₄	cーC₅F₅含有ガス	6.3
実施例2	N ₂ +H ₂	2-C ₅ F ₈ 含有ガス	63. 3
比較例2	CF₄	2-C ₅ F ₈ 含有ガス	22. 5

[0046]

表 1 に示すように、反射防止膜をエッチングする第 1 エッチング工程で、 N $_2$ と H $_2$ との混合ガスのプラズマを用いたことにより、 A $_1$ F フォトレジスト膜の耐プラズマ性が向上し、 その後の S $_1$ O $_2$ 膜をエッチングする第 2 エッチング工程で、 S $_1$ O $_2$ 膜の A $_1$ F フォトレジスト膜に対する選択比(S $_1$ O $_2$ のエッチングレート/A $_1$ F フォトレジストのエッチングレート)が高くなることが確認された。

[0047]

【発明の効果】

以上説明したように、本発明によれば、表面に有機層を有する被処理体に対し

て、 H_2 や N_2 と H_2 との混合ガス等のプラズマを照射することにより、歩留まりの低下やスループットの低下をもたらさずに、かつコストアップを招くことなく、有機層、特にArFフォトレジスト層の耐エッチング性を向上させることができる。

【図面の簡単な説明】

【図1】

本発明が適用できるプラズマエッチング装置の概略断面図。

【図2】

第1の実施形態の実施に用いる被処理体のエッチング対象部を模式的に示す断 面図。

【図3】

第2の実施形態の実施に用いる被処理体のエッチング対象部を模式的に示す断 面図。

【符号の説明】

- 1:プラズマエッチング装置
- 5;サセプタ
- 21;上部電極
- 30;処理ガス供給源
- 40,50;高周波電源
- 61、71;SiO₂膜
- 62、73; Ar Fフォトレジスト層
- 72;反射防止膜

W:被処理体

【書類名】 図面【図1】

【図2】

【図3】

【書類名】 要約書

【要約】

【課題】 歩留まりの低下やスループットの低下をもたらさずに、かつコストアップを招くことなく、有機層の耐エッチング性を向上させること。

【解決手段】 ArFフォトレジスト層 73表面に、 H_2 ガスや N_2 と H_2 の混合ガスのプラズマを照射することで、ArFフォトレジスト層 73の耐プラズマ性を向上させる。エッチング対象部 71とArFフォトレジスト層 73の間に反射防止膜 72が有る場合には、ArFフォトレジスト層 73のパターン開口部を介して、反射防止膜 72を N_2 と H_2 の混合ガスのプラズマでエッチングすることにより、同時にArFフォトレジスト層 73の耐プラズマ性を向上させる。

【選択図】 図3

特2002-187422

認定・付加情報

特許出願の番号

特願2002-187422

受付番号

50200941547

書類名

特許願

担当官

第五担当上席 0094

作成日

平成14年 6月28日

<認定情報・付加情報>

【提出日】

平成14年 6月27日

出願人履歴情報

識別番号

[000219967]

1. 変更年月日 1994年 9月 5日

[変更理由] 住所変更

住 所 東京都港区赤坂5丁目3番6号

氏 名 東京エレクトロン株式会社

2. 変更年月日 2003年 4月 2日

[変更理由] 住所変更

住 所 東京都港区赤坂五丁目3番6号

氏 名 東京エレクトロン株式会社