Applied Machine Learning

12-02-2025

Lecture 1-4: Machine Learning Algorithms

Lecture: 1-4 Student:

READ THE FOLLOWING CAREFULLY:

Deadline for Assignment Submission:

11:59 PM, 01 March 2025 (strict deadline—no late submissions will be accepted).

- Assignments must be submitted via the **Taxila eLearn portal** using the provided submission link.
- Use a **Jupyter Notebook** for your solutions:
 - For theoretical questions: Solve them in a handwritten note and upload clear images of your solutions into the Jupyter Notebook.
 - For coding/implementation tasks: Write and execute your code directly in the notebook.
 - Ensure that all images are properly displayed in the Jupyter Notebook before submission.
- Each answer must include the corresponding question number.
- File naming format: rollno_firstname_lastname_assignmentno.ipynb

Failure to follow the guidelines may result in penalties.

-3.1 Assignments

-3.1.1 Programming Questions

Consider the Iris dataset. The dataset is available here: https://scikit-learn.org/stable/auto_examples/datasets/plot_iris_dataset.html.

1. Write a small paragraph describing the Iris dataset.

2 Marks

2. Identify the features/ attributes in Iris dataset?

4 Marks

3. Identify the total number of classes in Iris dataset?

- 3 Marks
- 4. In a table, summarize the total data instances of each class (Remember table and figure should have self contained appropriate captions.)
- 5. Split the Iris dataset randomly into training (80%) and testing (20%) (you can use sklearn train-test split randomseed= 42)

 2 Marks.
- 6. In a table, provide the number of data instances used for training and testing for each class. 2 Marks

2 Marks

2 Marks

- 7. Using the train data (obtained after splitting the total data into training and testing), perform three fold crossvalidation to find the best value of k in k Nearest Neighbour classifier (the k value can range from 1 to 25, and use euclidean norm to compute the distance). (You can use the k-fold crossvalidation package provided in sklearn for hyperparameter tuning https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html).

 5 Marks
- 8. Plot the average macro f1-score obtained using three fold crossvalidation with respect to the different values of k considered in three fold crossvalidation.

 3 Marks
- 9. Identify the best value of k for which you get the peak performance in three fold crossvalidation. 2 Marks
- 10. Using the best value of k, evaluate the performance of the k nearest neighbour classifier on the testdata (Remember testing should be done only once!). 2 Marks
- 11. Report the test accuracy, precision, recall, f1-score and macro f1-score.

 4 Marks

-3.1.2 Vector Space

12. Define the following (Refer to chapter 3 of the book: Introduction to Linear Algebra (Fifth Edition) by Prof. Gilbert Strang):

	• Vector Space.	1 Mark
	\bullet Column Space of a Matrix A .	1 Mark
	• Row Space of a Matrix A .	1 Mark
	• Right Null Space of a Matrix A .	1 Mark
	\bullet Left Null Space of a Matrix A .	1 Mark
	• Dimension of a Vector Space.	1 Mark
	• Basis set of a Vector Space.	1 Mark
	• Rank of a Matrix A.	1 Mark
	• $L2$ norm of a vector x .	1 Mark
	Fill in the blanks:	
13.	Ax = b has a solution when b lies in space of A.	1 Mark
14.	Two nonzero vectors are orthogonal when their is	2 Marks
15.	Two nonzero vectors are orthonormal when their dot product is and the L2 norm of are respectively.	of two vectors 2 Marks
16.	Consider matrices A of size $m \times n$ and $B = [A \ A]$ of size $m \times 2n$ (repeated A twice). same space and space.	A and B has 2 Marks
17.	Are the following statements True or False? Justify or give examples to support your reasoning.	
	• Orthogonality of two nonzero vectors implies linear independence.	2 Marks
	• Linear independence of two vectors implies orthogonality.	2 Marks

• Dimension of row space and column space of an $m \times n$ matrix A are same.

• Row rank and Column rank of an $m \times n$ matrix A are same.

- If two $m \times n$ matrices A and B have the same row space, column space, right null space and left null space, then A = B.
- 18. For the given matrix A, find the basis set for column space and row space. Also geometrically depict the basis set that spans the column space.

 5 Marks

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \end{bmatrix}$$

-3.1.3 Programming Question

- 19. Create a random 5×4 matrix A with rank 2 and a 5×1 vector b such that Ax = b has infinite solution. Write the python code and also generate infinite solutions using loop.

 5 Marks
- 20. Create a 3×4 matrix with rank 3, check whether right null space and left null space exist. Comment. Write a python code to verify. 2 Marks
- 21. Is it possible to create a no solution case for the above question. Justify if Yes or No. 1 Mark
- 22. Write a python code for generating ten b vectors such that Ax = b has no solution. The matrix A is given below. 5 Marks

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 5 & 8 & 11 & 14 \\ 3 & 5 & 7 & 9 \end{bmatrix}$$

-3.1.4 Linear Regression using Least Squares

23. Mathematically derive the matrix formulation for linear regression.

- 2 Marks
- 24. Does the following system of linear equations Ax = b has a solution? If it does not have a solution can you find an approximate solution using the following:

 1 Marks
 - Method of least squares (you can use python for this) and justify why the system of linear equations does not have a solution.

 2 Marks

The system of linear equations Ax = b is as follows:

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} v_{11} \\ v_{21} \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

- 25. For the data (data.txt) attached in the email find the following using python:
- 2 Marks
- Find a line that best fit the data with minimum error (sum of squares). [Don't use inbuilt code in python].
- Find a second degree, third degree and fourth degree polynomial that fits the data respectively. Also find the error in each case and note down your inference. ([Don't use inbuilt code in python]. Refer the slides for help).