Motion, Tracking & Optical Flow II

Gary Overett (Slides adapted from CMU 16-720 2014) Szeliski Chapter 8

Summary so far...

- Motion under constant brightness assumption
- Resolving ambiguities (constant flow, affine motion, planar motion)
- Lucas-Kanade Motion and Tracking
- Mean Shift Tracking
- Background Subtraction, Layer Motion Models etc.
- NOW: optical flow

Optical Flow

Estimate (u,v) at every pixel (x,y)

Optical Flow

Possible approach: minimize

$$E_{intensity} = \sum_{(x,y)} (I_2(x + u(x,y), y + v(x,y)) - I_1(x,y))^2$$

Small motions:

 $E_{intensity}$

$$= \sum_{(x,y)} (u(x,y)I_x + v(x,y)I_y (x,y) + I_t(x,y))^2$$

Optical Flow

Possible approach: minimize

$$E_{intensity} = \sum_{(x,y)} (I_2(x + u(x,y), y + v(x,y)) - I_1(x,y))^2$$

Small motions:

 $E_{intensity}$

$$= \sum_{(x,y)} (u(x,y)I_x + v(x,y)I_y (x,y) + I_t(x,y))^2$$

- Problems:
 - Underconstrained, No consistency enforced across pixels, small motions only

Optical Flow - Smoothness

Estimate (u, v) at every pixel (x, y)

In principle, minimize $E_{intensity}$:

$$\sum_{(x,y)} ||I_2(x+u(x,y),y+v(x,y))-I_1(x,y)||^2$$

Subject to

Smoothness constraints E_{smooth}

$$u(x, y) \approx u(x + \Delta x, y + \Delta y)$$

 $v(x, y) \approx v(x + \Delta x, y + \Delta y)$

Consistent flow field

$$\frac{\partial v}{\partial x} \approx \frac{\partial u}{\partial y}$$

Optical Flow - Smoothness

• Introduce smoothness constraint

$$E_{intensity} + \alpha(\|\nabla u\|^2 + \|\nabla v\|^2)$$

- Two problems:
- $\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2$
- Susceptible to noise
- Assumes only smooth flow → What about discontinuities?

Horn and Schunck. Determining optical flow. Artificial Intelligence. 16. 1981

Sensitive to noise & discontinuity

$$Min_{u(.,.),v(.,.)} \sum_{(x,y)} (I_2(x+u(x,y),y+v(x,y)) - I_1(x,y))^2$$

• General problem:

$$Min_{\theta} \sum_{X} (E(X, \theta))^{2}$$

- Fundamental issue:
 - Outliers (data X that does not fit the model well) is going to overwhelm the objective function because of the quadratic growth
 - Idea: Replace (.) with a "better behaved" function $\Psi(.)$ (slower increase on outliers) \rightarrow Robust estimator

Primer - Robust Estimation

Sparsity

- Simple example:
 - Same error value $\sum_{X} \Psi(E(X, \theta)) = 1$
 - Much sparser solution with L1 (and Laplace) than L2

$$E_{1} = \begin{bmatrix} \sqrt{1/d} \\ \vdots \\ \sqrt{1/d} \end{bmatrix} \quad E_{2} = \begin{bmatrix} 1 \\ \vdots \\ 0 \end{bmatrix}$$

Smooth with sparse discontinuities

Robust to outliers

$$\sum_{x,y} \Psi(uI_x + vI_y + I_t) + \alpha(\Psi(\|\nabla u\|) + \Psi(\|\nabla v\|))$$

Allows sparse discontinuities

Zach, Pock, Bischof. A duality based approach for realtime TV-L1 optical flow. DAGM07. 2007

What about large motions?

- Differential motion (u,v) for places where motion is small
- Motion from feature matching (u_f, v_f) (e.g., SIFT, SURF, etc.), including where there is large motion
- Enforce agreement between the two where they overlap $(u, v) \approx (u_f, v_f)$

Large Motions

- Add two terms to the objective function:
- Error on flow from feature matching
- Agreement between features and differential flow Idea:

Combine with motion estimated from feature matches (e.g., SIFT) $E_{feature}$

$$\sum_{Feature\ locations\ (x,y)} \left\| I_2\left(x+u_f(x,y),y+v_f(x,y)\right) - I_1(x,y) \right\|^2$$

Feature matches can deal with large motion

Combine the two motion estimated by adding new consistency term $E_{consistent}$

$$\sum \left\| \begin{bmatrix} u(x,y) \\ v(x,y) \end{bmatrix} - \begin{bmatrix} u_f(x,y) \\ v_f(x,y) \end{bmatrix} \right\|^2$$

Final form:

$$E_{intensity} + \alpha E_{smooth} + \beta E_{feature} + \gamma E_{consistent}$$

Example

T. Brox, J. Malik. Large Displacement Optical Flow: Descriptor Matching in Variational Motion Estimation. IEEE Trans. PAMI. 2010.

Example Flow with CNN's!

P. Fischer, A. Dosovitskiy, E. Ilg, P. Häusser, C. Hazırbas, V. Golkov P. v.d. Smagt, D. Cremers, T. Brox

FlowNet: Learning Optical Flow with Convolutional Networks