Thermometry

1.2 kg of water in the kettle after the latter has been plugged to a 240 V power supply for 42 seconds?		
[Assume that the specific heat capacity of water is 4.2 Jg ⁻¹ °C ⁻¹ and the loss of heat to the surroundings is negligible]		
A. 2° B. 10°	C. 20°	D. 30°
U77-10 A bath contains 150 kg of water at 50 °C. Hot water at 60 °C flows into the bath at the rate of 20 kg per minute and at the same time cold water at 10 °C flows into the bath at a rate of 35 kg per minute. Assuming no heat loss or gain from the surrounding, find the time taken for the water in the bath to become 30 °C. Assume the water in the bath is uniform in temperature. A. 30 minutes B. 20 minutes C. 10 minutes D. 5 minutes		
 U83-8 A thermally insulated crystal of mass 0.0 W. The following readings of the tempers t/s 0 200 400 560 640 T/K 179 196 207 210 210 Draw a graph of T against t. (a) Use the graph to find the specific heat cap showing clearly how you arrive at your a 	ature T of the crystal way $740 800 1000$ $210 215 230$ pacity of the crystal at a	ere taken at various time <i>t</i> : 0 1200 1400 1520 243 256 264
U85-16 A solid of mass 2 kg whose heat capacity the amount of heat required? A. 144 J B. 80 J	y is 0.8 J K^{-1} is heated f $\text{C. } 72 \text{ J}$	From 30 °C to 80 °C. What is D. 40 J E. 20 J
 U88-13 A resistor of resistance 2 kΩ has a thermal capacity of 10.0 J K⁻¹. When a voltage of 12 V is applied across it for 100 s, what is the rise in temperature of the resistor if it is thermally insulated? A. 0.3 K B. 0.72 K C. 12.6 K D. 200 K E. 1000 K 		
 U92-13 Which of the following statements concerning the definitions or concepts of specific heat capacity is incorrect? A. The value of the specific heat capacity of a body depends on the mass of the body. B. The value of the specific heat capacity of a body is independent of the weight of the body. C. The amount of heat absorbed by unit mass of a substance, when its temperature is raised by 1 °C, is equivalent to the specific heat capacity of the substance. D. The amount of heat liberated by unit mass of a substance, when its temperature is lowered by 1 °C, is equivalent to the specific heat capacity of the substance. 		
U93-14 The temperature of a substance of 5 kg increased by 0.4 °C after absorbing 2000 J of heat. What is the specific heat capacity of this substance? A. $10^3 \mathrm{J} \mathrm{kg}^{-1} \mathrm{K}^{-1}$ B. $10^4 \mathrm{J} \mathrm{kg}^{-1} \mathrm{K}^{-1}$ C. $10^5 \mathrm{J} \mathrm{kg}^{-1} \mathrm{K}^{-1}$ D. $10^6 \mathrm{J} \mathrm{kg}^{-1} \mathrm{K}^{-1}$		
U93-P7c Two identical copper calorimeters are 60 g in mass each. One contains 40 g of water and the other 50 g of alcohol. Both calorimeters and their contents are heated and then allowed to cool off from 60 °C to 50 °C. The time taken for water to cool from 60 °C to 50 °C is 240 s and the corresponding time for alcohol is 79 s. If the specific heat capacity of copper is 400 J kg ⁻¹ K ⁻¹ and that of water is 4200 J kg ⁻¹ K ⁻¹ , find the specific heat capacity of alcohol. [784 J kg ⁻¹ K ⁻¹]		
U2k-14 If the ratio of mass of two substances X increase is 3: 1, then the ratio of their specific absorption will be A. 3: 41: 8 B. 2: 53: 5	e heat will be an	nd the ratio of their heat
U99-12 After two objects A and B of equal masses and initial temperature absorb an equal amount of heat, it is found that object A has higher temperature than object B. We can conclude that A. object A has a greater volume that object B B. object B has a greater volume that object A C. object A has a higher specific heat capacity that object B D. object B has a higher specific heat capacity that object A		
Prepared by UCSCAM Arranged by 吴 德 安, 徐 嘉 敏, 周 思 洁	Thermometry	Copyright

U75-5 An electric kettle has a heating coil of 48ohms resistance. What is the rise in temperature of

- U2k03-10 A solar furnace has a concave mirror of collecting area 0.8 m². The average thermal radiation rate from the sun reaching the earth is 750 W m⁻². A small sphere of mass 0.05 kg having a specific heat capacity 2000 J kg ⁻¹ K⁻¹ is heated by the furnace from 20 °C to 50 °C. Calculate the time needed for the heating.
 - A. 50 s
- B. 20 s
- C. 10 s
- D. 5 s
- U2k13-13 Equal masses of three liquids A, B, and C with specific heat capacities c_1 , c_2 , c_3 and at temperatures of θ_1 , θ_2 and θ_3 respectively is mixed thoroughly. If there is no change of state and the mixture is thermally isolated, what is its final temperature?

 - C. $\frac{c_1\theta_1 + c_2\theta_2 + c_3\theta_3}{3}$

- B. $\frac{c_1\theta_1 + c_2\theta_2 + c_3\theta_3}{c_1 + c_2 + c_3}$ D. $\frac{c_1 + c_2 + c_3}{3(c_1\theta_1 + c_2\theta_2 + c_3\theta_3)}$