Devoir maison n°1: Fonctions contractantes, dilatantes et points fixes

Jules Charlier, Thomas Diot, Pierre Gallois, Jim Garnier TE1

Problème 1 -

Partie A - Fonctions contractantes et rétrécissantes.

1) Soient $k \in \mathbb{R}_+^*$, et f une fonction k-lipschitzienne définie sur I. Montrons que cette fonction est continue.

Soit y dans I. Pour tout $\varepsilon>0$, posons $\alpha=\frac{\varepsilon}{k}$. Supposons $|x-y|<\alpha$, on obtient :

$$|x-y|<rac{arepsilon}{k}\Longleftrightarrow k|x-y|$$

Comme f est lipschitzienne, $|f(x)-f(y)|\leqslant k|x-y|<\varepsilon$ donc $|f(x)-f(y)|<\varepsilon$.

Nous avons prouvé que quelque soit le point y que l'on choisit dans le domaine de définition de f, $|x-y|<\alpha \Rightarrow |f(x)-f(y)|<\varepsilon$ ie toute fonction lipschitzienne est continue.

2) Soit f une fonction contractante définie sur I, et $x, y \in I$. Il existe donc $k \in]0,1[$ tel que $|f(x) - f(y)| \le k|x - y|$ (*).

Or,

$$k < 1 \Longrightarrow k|x - y| < |x - y|$$

 $\Longrightarrow |f(x) - f(y)| < |x - y| \text{ d'après (*)}$

f est donc rétrécissante.

De plus,

$$|f(x) - f(y)| < |x - y| \Longrightarrow |f(x) - f(y)| \le 1 \times |x - y|$$

1

f est donc 1-lipschitzienne.

- 3) Soient $a \in \mathbb{R}$, $I = [a, +\infty[$, et $f: x \longmapsto x + \frac{1}{x-a+1}$ pour tous $x \in I$.
 - a) f est dérivable sur I. Pour tout $x \in I$, $f'(x) = 1 \frac{1}{(x-a+1)^2}$. Or,

$$x \in I \Longrightarrow x \geqslant a$$

$$\Longrightarrow x - a \geqslant 0$$

$$\Longrightarrow x - a + 1 \geqslant 1$$

$$\Longrightarrow (x - a + 1)^2 \geqslant 1$$

$$\Longrightarrow \frac{1}{(x - a + 1)^2} \leqslant 1$$

$$\Longrightarrow 0 \leqslant f'(x).$$

La dérivée de f est positive pour tout $x \in I$, donc f est bien croissante sur I.

Soit $x \in I$.

$$\begin{aligned} x \in I &\Longrightarrow x \geqslant a \\ &\Longrightarrow x - a \geqslant 0 \\ &\Longrightarrow x - a + 1 > 0 \\ &\Longrightarrow \frac{1}{x - a + 1} > 0. \end{aligned}$$

 $x\geqslant a$, donc par somme d'inégalités, $x+\frac{1}{x-a+1}\geqslant a$ i.e. $f(x)\in I.$

b) Cherchons désormais à montrer que f est rétrécissante. Soient $x, y \in I$ tel que $x \neq y$. On suppose sans perte de généralité que x < y et comme f est croissante sur I

$$\begin{split} |f(x)-f(y)| < |x-y| &\Leftrightarrow f(y)-f(x) < y-x \\ &\Leftrightarrow y-x+\frac{1}{y-a+1}-\frac{1}{x-a+1} < y-x \\ &\Leftrightarrow y-a+1 > x-a+1 \\ &\Leftrightarrow x < y \end{split}$$

Nous avons prouvé que f est rétrécissante.

c) Démontrons par l'absurde que f n'est pas contractante. On suppose f contractante ie f est k-lipschitzienne avec $k \in]0,1[$.

On choisit deux réels a+t et a+t+1 dans $I=[a,+\infty[$ avec $t\in\mathbb{R}.$ f doit vérifier en particulier :

$$\begin{split} &|f(a+t+1)-f(a+t)|\leqslant k|a+t+1-a-t|\\ \Leftrightarrow &\left|\frac{(a+t+1-a-t)\left((a+t+1-a+1)(a+t-a+1)-1\right)}{(a+t+1-a+1)(a+t-a+1)}\right|\leqslant k\\ \Leftrightarrow &\left|\frac{(1)\left((t+1)(t+2)-1\right)}{(t+1)(t+2)}\right|\leqslant k\\ \Leftrightarrow &\left|1-\frac{1}{(t+1)(t+2)}\right|\leqslant k \end{split}$$

$$\mathrm{Or}\, \lim_{t\to +\infty} (t+1)(t+2) = +\infty \, \operatorname{donc}\, \lim_{t\to +\infty} \left|1-\tfrac{1}{(t+1)(t+2)}\right| = 1.$$

On en conclue que |f(a+t+1)-f(a+t)| tendant vers 1 lorsque t tend vers $+\infty$, il n'est pas possible de majorer cette expression dans tous les cas possibles par un réel k compris dans]0,1[. Nous arrivons à une contradiction, f n'est donc pas contractante.

- **4)** Soit la fonction $f \mapsto \begin{cases} 2 & \text{si } x \leqslant 1 \\ x + \frac{1}{x} & \text{si } x > 1 \end{cases}$ définie sur \mathbb{R} .
 - a) On cherche à prouver que f est croissante sur \mathbb{R} .
- Sur l'intervalle] $-\infty$, 1], f est constante.
- Sur l'intervalle $]1,+\infty[$, f est dérivable comme de fonctions dérivables.

On a alors $f'(x) = 1 - \frac{1}{x^2}$. Pour tout $x \in]1, +\infty[$,

$$x>1 \Longleftrightarrow x^2>1 \Longleftrightarrow \frac{1}{x^2}<1 \Longleftrightarrow -\frac{1}{x^2}>-1 \Longleftrightarrow 1-\frac{1}{x^2}>0 \Longleftrightarrow f'(x)>0$$

f est croissante sur $]1, +\infty[$

• Prouvons que f est continue en 1.

$$f(1) = 2$$
 $\lim_{x \to 1^{-}} f(x) = 2$ $\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} x + \frac{1}{x} = 2$

Comme $f(1) = \lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x)$, f est continue en 1.

f est donc croissante sur \mathbb{R} .

- **b)** Cherchons à prouver que f est rétrécissante. Soient $x, y \in \mathbb{R}$ avec $x \neq y$. Dans la définition d'une fonction rétrécissante, x et y sont interchangeables, on suppose donc sans perte de généralité que x < y.
- Si $x < y \le 1$,

$$|f(x) - f(y)| < |x - y| \Leftrightarrow |2 - 2| < |x - y| \Leftrightarrow 0 < |x - y|$$

Ce qui est toujours vrai puisque $x \neq y$.

• Si $x \leq 1 < y$,

$$x \leqslant 1 \Leftrightarrow y-1 \leqslant y-x \Leftrightarrow (y-1)^2 \leqslant (y-1)(y-x)$$

 $\operatorname{car} y - 1 > 0.$ Comme $(y-1)^2 \leqslant (y-1)(y-x),$ alors $(y-1)^2 < y(y-x).$ On a alors :

$$|y-1|^2 < y(y-x) \Leftrightarrow \left| -\frac{(y-1)^2}{y} \right| < |x-y|$$

$$\Leftrightarrow \left| 2 - \left(y + \frac{1}{y} \right) \right| < |x-y|$$

$$\Leftrightarrow |f(x) - f(y)| < |x-y|$$

• Si
$$1 < x < y$$
,

$$\begin{split} |f(x) - f(y)| < |x - y| \Leftrightarrow \left| (x - y) + \left(\frac{1}{x} - \frac{1}{y} \right) \right| < y - x \\ \Leftrightarrow \left| (y - x) + \left(\frac{1}{y} - \frac{1}{x} \right) \right| < y - x \end{split}$$

Or y-x>0 et par croissance de la fonction inverse sur \mathbb{R}_+ , $x< y \Leftrightarrow \frac{1}{x}<\frac{1}{y} \Leftrightarrow \frac{1}{y}-\frac{1}{x}>0$. L'intérieur de la valeur absolue est donc positif soit :

$$\left| (y-x) + \left(\frac{1}{y} - \frac{1}{x} \right) \right| < y - x \Leftrightarrow (y-x) + \left(\frac{1}{y} - \frac{1}{x} \right) < y - x$$

$$\Leftrightarrow \frac{1}{y} < \frac{1}{x}$$

$$\Leftrightarrow x < y$$

Nous avons prouvé dans les trois cas distincts que f est rétrécissante.

c) Démontrons par l'absurde que f n'est pas contractante. On suppose f contractante ie f est k-lipschitzienne avec $k \in]0,1[$.

On choisit le réel t et son successeur t + 1. f doit vérifier en particulier :

$$|f(t+1)-f(t)|\leqslant k|t+1-t|\Leftrightarrow |f(t+1)-f(t)|\leqslant k$$

En particulier, on pose 1 < t < t + 1.

$$|f(t+1) - f(t)| = \left|t + 1 + \frac{1}{t+1} - t - \frac{1}{t}\right| = \left|1 - \frac{1}{t(t+1)}\right|$$

$$\text{Or } \lim_{t \to +\infty} t(t+1) = +\infty \ \operatorname{donc \, lim}_{t \to +\infty} \left| 1 - \tfrac{1}{t(t+1)} \right| = 1.$$

On en conclue que |f(t+1)-f(t)| tendant vers 1 lorsque t tend vers $+\infty$, il n'est pas possible de majorer cette expression dans tous les cas possibles par un réel k compris dans]0,1[. Nous arrivons à une contradiction, f n'est donc pas contractante.

Partie B - Fonctions rétrécissantes et point fixe.

1) a) Posons $g: x \mapsto f(x) - x$. Comme I est stable par $f, f(a), f(b) \in I$. Comme I = [a; b], on en déduit que $f(a) \geqslant a$ et $f(b) \leqslant b$, c'est à dire que $g(a) \geqslant 0$ et $g(b) \leqslant 0$.

Comme g est continue et change de signe, par corollaire du TVI, g s'annule en $x_o \in I$, qui est donc un point fixe de f.

b) Supposons que $\alpha, \beta \in I$ soient des points fixes distincts de f. Alors :

$$|f(\alpha) - f(\beta)| = |\alpha - \beta| \overset{\text{r\'etr\'ecissante}}{<} |\alpha - \beta|$$

Ce qui est impossible. Donc $\alpha = \beta$ et le point fixe de f est fixe.

2) Comme I n'est pas borné en haut, on peut prendre $f: x \mapsto x+1$ qui laisse bien I fixe : si $x \in I$ i.e $x \geqslant a$, alors $f(x) = x + 1 \geqslant a$, donc $f(x) \in I$. Clairement, f n'a pas de point fixe.

Partie C - Fonctions dilatantes.

On fixe $f : \mathbb{R} \to \mathbb{R}$ continue et dilatante.

1) a) La fonction $g: x \mapsto x + e^x$ est continue sur \mathbb{R} comme de fonctions continues. De plus, si $x, y \in \mathbb{R}$,

$$|g(x) - g(y)| = |(x - y) + (e^x - e^y)| \overset{\text{Triangulaire}}{\geqslant} |x - y| + |e^x - e^y|$$

$$\geqslant |x - y|$$

Donc g est bien dilatante.

b) La fonction g_{λ} est continue sur $]-\infty;\lambda[$ et sur $]\lambda;+\infty[$ car ses restrictions à ces intervalles sont continues. Montrons que g_{λ} est continue en λ . D'une part,

$$\lim_{x\to\lambda^-}g(x)=\lim_{x\to\lambda^-}-x=-\lambda$$

et d'autre part,

$$\lim_{x\to\lambda^+}g(x)=\lim_{x\to\lambda^+}\lambda-2x=\lambda-2\lambda=-\lambda$$

Comme les limites de g (qui existent par continuité avant et après λ) en λ coïncident avec $g(\lambda) = -\lambda$, on en déduit que g est continue en λ et donc sur tout \mathbb{R} . Montrons maintenant que g est dilatante. On distingue trois cas :

- $x, y < \lambda : |g(x) g(y)| = |y x| = |x y| \ge |x y|$
- $x, y \geqslant \lambda : |g(x) g(y)| = |2y 2x| = 2|x y| \geqslant |x y|$

$$\begin{array}{l} \bullet \ \ x,y\geqslant \lambda: |g(x)-g(y)|=|2y-2x|=2|x-y|\geqslant |x-y| \\ \bullet \ \ x<\lambda \ \text{et} \ y\geqslant \lambda: |g(x)-g(y)|=|2y-\lambda-x|=|(y-\lambda)+(y-x)| \end{array} \stackrel{\text{Triangulaire}}{\geqslant} |x-y|$$

Ce qui montre que g est bien dilatante.

- 2) a) Soit $\lambda \in [f(a_1); f(a_2)] \cap [f(a_3); f(a_2)]$. Cette intersection n'est pas vide, car elle contient au moins] $\max(f(a_1),f(a_3));f(a_2)[$. Alors en posant $g:x\mapsto f(x)-\lambda$, qui est continue par somme, comme $g(a_1),g(a_3)<0$ et $g(a_2)>0$, on obtient en appliquant TVI un $b\in]a_1;a_2[$ et un $c\in]a_2;a_3[$ tels que g(b)=g(c)=0, c'est à dire $f(b)=f(c)=\lambda.$
 - **b)** Comme f est dilatante,

$$|f(b) - f(c)| = 0 \geqslant |b - c| \geqslant 0$$

On en déduit que |b-c|=0, donc b=c. Donc f dilatante implique f injective.

c) Supposons que f ne soit pas strictement monotone, i.e f n'est ni strictement croissante ni strictement décroissante. Comme f n'est pas strictement décroissante, il existe $a_1 < a_2$ tels que $f(a_1) \leqslant f(a_2)$; a fortiori, comme f est injective, $f(a_1) < f(a_2)$.

TODO: l'argument est long

3) On sait que f est continue et strictement monotone. Quitte à travailler avec -f au lieu de f, supposons que f est strictement croissante.

Soit $x \ge 0$. Alors $|f(x) - f(0)| \ge |x|$, c'est à dire que $f(x) \ge x + f(0)$. Comme la fonction $x \mapsto x + f(0)$ n'est pas majorée sur \mathbb{R}^+ , a fortiori, f n'est pas majorée sur \mathbb{R}^+ et donc sur \mathbb{R} .

Similairement, soit $x \le 0$. Alors $|f(x) - f(0)| = f(0) - f(x) \ge |x| = -x$, et on obtient $x + f(0) \ge f(x)$. On en déduit donc que f n'est pas minorée sur \mathbb{R}^- et donc sur \mathbb{R} .

Donc f n'est pas bornée.

4) a) Soient $x \geqslant y \in \mathbb{R}$. Alors :

$$\begin{split} h(x) - h(y) &= f(x) - f(y) + y - x \geqslant 0 \\ \iff f(x) - f(y) &\stackrel{\text{croissance}}{=} |f(x) - f(y)| \geqslant x - y = |x - y| \end{split}$$

Où cette dernière inégalité est vraie car f est dilatante. Donc h est bien croissante.

b) La fonction $h: x \mapsto f(x) - x$ est strictement négative, mais est croissante. Par le théorème de la limite monotone, on déduit l'existence de $\lim_{x \to +\infty} h(x) \leqslant 0$. Ainsi, par quotient de limites :

$$\frac{h(x)}{x} = \frac{f(x)}{x} - 1 \xrightarrow{x \to +\infty} 0$$

D'où $\lim_{x\to+\infty} \frac{f(x)}{x} = 1$.

c) La fonction $h: x \mapsto f(x) - x$ est strictement positive et croissante. En particulier, la fonction décroissante $x \mapsto h(-x)$ est strictement positive et on déduit du théorème de la limite monotone l'existence de

$$\lim_{x \to +\infty} h(-x) = \lim_{x \to -\infty} h(x) \geqslant 0$$

Ainsi, encore par quotient de limites,

$$\frac{h(x)}{x} = \frac{f(x)}{x} - 1 \xrightarrow{x \to -\infty} 0$$

D'où $\lim_{x\to-\infty}\frac{f(x)}{x}=1$.

d) Si a, b sont des points fixes de f, alors h(a) = h(b) = 0. Comme h est croissante, pour tous $c \in [a; b]$,

$$h(a)=0\leqslant h(c)\leqslant h(b)=0$$

D'où h(c) = 0. Donc c est un point fixe de f, et $[a; b] \subseteq F$.