アルゴリズムとデータ構造入門 2005年11月1日

アルゴリズムとデータ構造入門

1.手続きによる抽象の構築

1.3 Formulating Abstractions with Higher-Order Procedures (高階手続きによる抽象化)

奥乃博

1. 3, 5, 7で割った時の余りが各々1, 2, 3という数は何か?

11月1日・本日のメニュー

- 1.2.6 Example: Testing for Primality
- 1.3.1 Procedures as Arguments
- 1.3.2 Constructing Procedures Using `Lambda'
- 1.3.3 Procedures as General Methods
- 1.3.4 Procedures as Returned Values

2

左上教科書表紙:http://mitpress.mit.edu/images/products/books/0262011530-f30.jpg

Greatest Common Divisors(最大公約数)

- ユークリッドの互除法
- $GCD(a, b) = GCD(b, a \mod b)$

Chinese Remainder Theorem

連立1次合同式

 $x \equiv b_1 \pmod{d_1}$

 $x \equiv b_2 \pmod{d_2}$

..._ .

 $x \equiv b_t \pmod{d_t}$

の場合、 $\mathbf{d_1}, \mathbf{d_2}, \dots \mathbf{d_t}$ が互いに素であれば、

 $n = d_1 d_2 ... d_t$

を法として、ただ一つの解がある。

まず、 $n/d_i = n_i$ とおけば、 d_i と n_i は互いに素であるから、 n_i $x_i \equiv 1 \ (\text{mod } d_i)$

の解 x_i を求めることができる。ここで、

 $x \equiv b_1 n_1 x_1 + b_2 n_2 x_2 + ... + b_t n_t x_t \pmod{n}$ とすれば、この x は明らかにもとの合同式をすべて満足する。

-

Chinese Remainder Theoremの例

x mod 105は?

- 3 * 5 * 7 = 105
- $x \equiv 1 \pmod{3}$
- $x \equiv 2 \pmod{5}$
- $x \equiv 3 \pmod{7}$
- $35*2 \equiv 1 \pmod{3}$
- 21*1 ≡1 (mod 5)
- ・15*1 ≡1 (mod 7) より、
- x mod 105

 $\equiv 1*35*2 + 2*21*1 + 3*15*1 \mod 105$

=157 mod 105 ≡52 mod 105

Lameの定理

- GCD(a, b) (ただし、b < a)の計算にk step 必要なら、b≥ Fib(k)
- 例えば、GCD(m, n) (ただし、n < m) が k step かかるとすると、n ≥ Fib(k) ≒ Φ^k /√5

$$\phi = \frac{1}{2} (1 + \sqrt{5})$$
 $Fib(n) \cong \frac{\phi^n}{\sqrt{5}}$

- つまり、ステップ数は、nの対数的に増加。
- $\Theta(\log n)$ steps

Order of Growth: Examples				
手続き	ステップ数	スペース		
factorial	$\Theta(\mathbf{n})$	Θ(n)		
fact-iter	$\Theta(\mathbf{n})$	Θ(1)		
テーブル参照型fact	Θ(1)	Θ(n)		
fib	$\Theta(\phi^n)$	Θ(n)		
fib-iter	Θ(n)	Θ(1)		
テーブル参照型fib	Θ(1)	Θ(n)		

F 04

🗽 Probabilistic Algorithms (確率的アルゴリズム)

- Carmichael numbers: 561, 1105, 1072, 2465, a⁵⁶⁰=a² a¹⁰ a¹⁶
 a²≡1 mod 3, a¹⁰≡1 mod 11, a¹⁶≡1 mod 17
 ⇒ a⁵⁶⁰≡1 mod 561 = 3 * 11 * 17
- Fermat's testは、エラーの機会を任意に小さくできる。→ probabilistic algorithm

必要条件のみ満足

■ Algorithm: Wilson's test p is a prime precisely when (p-1)! = -1 mod p
必要十分条件

13

Discussion: Fermat's or Wilson's?

- 1. 単純な素数判定:
- 2. Fermat's test: p が素数なら $\forall a < p, a^{(p-1)} \equiv 1 \mod p$
- 3. Wilson's test: p が素数である必要十分条件は

(p-1)! ≡ -1 mod p ちなみに

 $n! \sim (2\pi n)^{1/2} (n/e)^n$

F-06	Pi-Sum (Pi/8) の計算方法			
	$\sum_{i=1}^{b}$			
	$\sum_{i} \pi term(i)$			
	$i=a,\pi next(i)$			
<pre>(define (pi-sum a b) (define (pi-term x)</pre>				
(/ 1.0 (* x (+ x 2)))) (define (pi-next x)(+ x 4))				
	(sum pi-term a pi-next b))	18		

```
積分(integral) の計算方法

\int_{a}^{b} f(x) dx + \frac{dx}{2} + f(x) + f(x) + \frac{dx}{2} + f(x) +
```

Ex.1.32 Accumulation		
(define (sum term a next b) (if (> a b) 0 (+ (term a)	$\sum_{i=a,next(i)}^{b} f(i)$	
<pre>(sum term (next a) next b)) (define (product term a next b) (if (> a b)</pre>	$\prod_{i=a,next(i)}^{b} f(i)$	
<pre>(define (<combiner> <name> <term> a <next> b) (if (> a b)</next></term></name></combiner></pre>		
(<name> <term> (<next> a) <</next></term></name>	next> b))	

lambda: Anonymous procedure (define (fact n) (if (= n 0) 1 (* n (fact (- n 1))))) は次の式と等価 (define fact (lambda (n) (if (= n 0) 1 (* n (fact (- n 1)))))

```
Using let to create local variables

f(x,y) = x(1+xy)^2 + y(1-y) + (1+xy)(1-y)
a = 1+xy
b - 1-y
(define (f x y)
(define (f-helper a b)
(+ (* x (square a))
(* y b)
(* a b) ))
(f-helper
(+ 1 (* x y))
(- 1 y) ))
```

```
(define (f x y) (define (f x y) ((1ambda (a b) (+ (* x (square a)) (* y b) (* a b) )) (+ 1 (* x x y)) (- 1 y) )) (b (- 1 y) ) (b (- 1 y) ) (+ (* x (square a)) (* y b) (* a b) )) (+ (* x (square a)) (* y b) (* a b) )) (+ (* x (square a)) (* y b) (* a b) )) (+ (* x (square a)) (* y b) (* (v<sub>2</sub> > e<sub>2</sub> >) (v<sub>2</sub> > e<sub>2</sub> >) (v<sub>2</sub> > e<sub>2</sub> >) (v<sub>2</sub> > e<sub>2</sub> >) (v<sub>3</sub> > v<sub>4</sub> > v<sub>5</sub> >
```

```
scope of variables
(let ((x 7))
                          x = 7
 (+ (let ((x 3))
                            x = 3
     (+ x (* x 10))
                              -> 33
                          x = 7 -> 40
     x))
(let ((x 5))
                          x = 5
 (let ((x 3)
                            x = 3
       (y (+ x 2))
                            y = 7
   (* x y) ))
                            -> 21
```


Finding roots of equations by the half-interval method		
(define (close-enough? x y)		
(< (abs (- x y)) 0.001))		
(define (half-interval-method f a b)		
(let ((a-value (f a)) (b-value (f b)))		
<pre>(cond ((and (negative? a-value) (positive? b-value))</pre>		
<pre>((and (negative? b-value) (positive? a-value)) (search f b a))</pre>		
(else		
(error "Values are not of opposite sign" a b)))))		
L:開始時の区間長、T:誤差許容度、ステップ数:@(log(L/T))		

Finding fixed points of functions(不動点) (fixed-point cos 1.0) (fixed-point (lambda (y) (+ (sin y) (cos y))) y*y=x y=x/yと書くと、 Looking for a fix-point of the function y |-> x/y (define (sqrt x) (fixed-point (lambda (y) (/ x y)) 1.0))

What is this instrument?

- A traditional roller-blader?
- A traditional inliner skate?
- Abacus
- ■算盤 (そろばん)

DON' T PANIC!

■そろわん

画像出所:http:// www.newzealand .com/travel/library /847_3.jpg

43

宿題:11月7日午後5時締切

- lambda を組合わせて手続きをくみ上げる
- 宿題は、次の10問:
- Ex.1.21, 1.23, 1.25, 1.29, 1.30, 1.31, 1.32, 1.33, 1.34, 1.35.
- 実行時間の測定は (time (f a))

DON' T PANIC!

