ALGORITHM ANALYSIS ~ 08

CSE/IT 122 ~ Algorithms & Data Structures

BIG-OH

- → Formal Definition:
 - Let f and g be functions defined on the same set of nonnegative real numbers. Then f is at order at most g, written f(x) is O(g(x)), iff there exists a positive number c and a non negative real number n_{θ} such that $|f(x)| \le c \cdot |g(x)|$, for all real numbers $x > n_{\theta}$
- → Informal Definition:
 - f(n) is O(g(n)) if f grows at most as fast as g. In other words g is an upper bound.

BIG-OH

BIG-OH

- → To show f(n) = O(g(n)) only need to find a pair of constants c and n_0 such that $|f(x)| \le c \cdot |g(x)|$, if $n > n_0$
 - Not unique
 - Infinite pairs of c and n_{θ}
- → For our RAM Model, define $T(n) \le O(f(n))$ and say that a program whose running time is O(f(n)) is said to have a growth rate of f(n)

POWER FUNCTIONS

- → Definition: Let a be any nonnegative real number. Define p_a the power function with exponent a as follows:
 - $p_a(x) = x^a$ for each nonnegative real number x

ORDERS OF POWER FUNCTIONS

- \rightarrow Observe if 1 < x
 - Then $x < x^2$, since x > 0
 - And $x^2 < x^3$
 - And we can order $1 < x < x^2 < x^3$
- \rightarrow So for any rational numbers r and s, if x > 1 and r < s, then $x^r < x^s$
- → In terms of Big-Oh this can translates to
 - For any rational number r and s, if r < s, then x^r is $O(x^s)$

ORDERS OF POWER FUNCTIONS

- \rightarrow Example: Show if x > 1 then $3x^3+2x+7 \le 12x^3$
 - $2x < 2x^3$ and $7 < 7x^3$, so
 - $4 \quad 3x^3 + 2x + 7 \le 3x^3 + 2x^3 + 7x^3 = 12x^3$
- \rightarrow Example: Show f(x) is O(g(x)) when f(x)=2x⁴+3x³+5 and g(x) = x⁴
 - Use the above technique
 - $2x^4+3x^3+5 \le 2x^4+3x^4+5x^4 = 10x^4$
 - c = 10, and $n_0 = 1$
 - $\bullet \quad f(x) = O(x^4)$

ORDERS OF POWER FUNCTIONS: MORE EXAMPLES

- → Show $3x^3-1000x-200$ is $O(x^3)$
 - Triangle inequality $|a+b| \le |a| + |b|$ for all real numbers a and b
 - Show that $|a-b| \le |a| + |b|$
 - $|a-b| = |a+(-b)| \le |a| + |-b| = |a| + |b|$
 - So now $3x^3 1000x 200 \le 3x^3 + 1000x + 200 \le 3x^3 + 1000x^3 + 200x^3 = 1203x^3$
 - So c = 1203, and $n_0 = 1$

ORDERS OF POLYNOMIALS: YOUR TURN

 \rightarrow Show that $7x^4-95x^3+3$ is $0(x^4)$

 \rightarrow What is the order of $\underline{n(n+1)(2n+1)}$

ORDERS OF POLYNOMIALS: YOUR TURN

- → Show that $7x^4-95x^3+3$ is $0(x^4)$
 - $7x^4 95x^3 + 3 \le 7x^4 + 95x^3 + 3 \le 7x^4 + 95x^4 + 3x^4 = 105x^4$
 - Thus c = 105, $n_0 = 1$
- \rightarrow What is the order of $\frac{n(n+1)(2n+1)}{6}$
 - Can be rewritten as $%[n(n+1)(2n+1)] = 2n^3+3n^2+n$
 - Now our problem looks familiar and we can apply the above technique
 - $2n^3+3n^2+n \le 2n^3+3n^3+n^3 \le 6n^3$
 - $c = 6 \text{ and } n_0 = 1$
 - Thus, $f(n) = \frac{n(n+1)(2n+1)}{2n+1} = 0(n^3)$