תרגילי הוכחות

שאלה A הוכיחו: תהי $A \in \mathbb{R}^{n imes n}$. אם A הפיכה אז למערכת

$$A\mathbf{x} = b, \qquad b \neq 0$$
,

קיים פתרון אחד והוא יחיד.

.dim (Nul A)=0 אם A הפיכה אז $A\in\mathbb{R}^{n\times n}$ הוכיחו: תהי

שאלה 3 הוכיחו: תהי $A \in \mathbb{R}^{n imes n}$ אם למערכת

$$A\mathbf{x} = b$$
, $b \neq \bar{0}$

 $\dim\left(\operatorname{Nul}(A)\right)=0$ קיים רק פתרון אחד והוא יחיד אז

שאלה 4 תהי $A\in\mathbb{R}^{n imes n}$ אם למערכת

$$A\mathbf{x} = b$$
, $b \neq \bar{0}$.

יש יותר מפתרון אחד אז A לא הפיכה.

שאלה $\mathbf{x}\in\mathbb{F}^{1 imes n}$ וקטור שורה. הוכיחו שי $\mathbf{x}\in\mathbb{F}^n$ וקטור עמודה ו- $\mathbf{x}\in\mathbb{F}^{n imes n}$ מטריצה ריבועית, $A\in\mathbb{F}^{n imes n}$ וקטור שורה. הוכיחו שי התנאים הבאים שקולים:

- $\mathbf{x}=ar{\mathbf{0}}$ הוא $A\cdot\mathbf{x}=ar{\mathbf{0}}$ המערכת של היחיד של הפתרון היחיד א
 - בת"ל. A בת"ל.
 - AB=I -כך ש- $B\in\mathbb{F}^{n imes n}$ כיימת מטריצה (3)
- $\mathbf{y}=ar{\mathbf{0}}$ הפתרון היחיד של המערכת y $\mathbf{A}=ar{\mathbf{0}}$ הפתרון היחיד של
 - בת"ל. A בת"ל.
 - .CA=I -כך ש- $C\in\mathbb{F}^{n imes n}$ כל מטריצה (6)
 - .הפיכה A (7)

שאלה 6

. וקטור עמודה. הוכיחו כי התנאים הבאים שקולים: $\mathbf{x} \in \mathbb{F}^n$ מטריצה ריבועית, $A \in \mathbb{F}^{n \times n}$

- .הפיכה A (1)
- $\mathbf{x}=ar{\mathbf{0}}$ את הפתרון $A\cdot\mathbf{x}=ar{\mathbf{0}}$ למערכת (2)
 - I המדורגת של A היא (3)
 - . יש לפחות פתרון אחד $A\cdot \mathbf{x}=b$ למערכת (4)
- AB=I -כך ש- $B\in\mathbb{F}^{n imes n}$ כין ש- (5)

שאלה 7 תהי $A\in\mathbb{F}^{n}$ ויהי ויהי $A\in\mathbb{F}^{n}$ וקטור שמקיים שת המשוואה ההומוגנית

$$A \cdot u = \bar{0}$$
.

|A|=0 אז u
eq ar 0 הוכיחו שאם

שאלה 8 יהי U תת מרחב של \mathbb{R}^n . נניח שU=m, נניח שU=m, נניח שלה 8 יהי U תת מרחב של $B=\{\mathtt{x}_1,\mathtt{x}_2,\ldots,\mathtt{x}_m\}$ ו U. הוכיחו כי U בת"ל אם"ם U

"הוכיחו: \mathbb{R}^n יהי $U \subseteq W$ יהי שאלה 9 יהי

- $.\dim U \leq \dim W$.1
- .U=W אם $\dim U=\dim W$.2

 $A\in\mathbb{R}^{m imes n}$ ותהי ,dim(V)=m ו dim(U)=n נניח ש לניארית. העתרקה ליניארית דישר תהי T:U o V ותהי המטריצה המייצגת הסטנדרטית של דישר המייצגת הסטנדרטית האריצה המייצגת הסטנדרטית ו

התנאים הבאים שקולים:

- על. T (א)
- (ב) במדורגת המתקבלת מ-A קיים איבר מוביל בכל
 - \mathbb{R}^m עמודות A פורשות את (גA

שאלה 11 תהי $A\in\mathbb{F}^{m imes n}$ שקולים: $A\in\mathbb{F}^{m imes n}$

- $\operatorname{.rank}(A) = n$ (1)
- \mathbb{R}^n את פורשות אל (2)
- \mathbb{R}^m -בת"ל ב- (3)
- . קיים פתרון $\mathbf{x}=ar{\mathbf{0}}$ הוא $A\mathbf{x}=ar{\mathbf{0}}$ המערכת של היחיד הפתרון היחיד $\mathbf{x}\in\mathbb{F}^n$ (4)

שאלה 12 תהי שקולים: $A \in \mathbb{F}^{m \times n}$ תהי תנאים הבאים שקולים:

- $\operatorname{.rank}(A) = m$ (1)
- \mathbb{R}^m את פורשות אל (2)
 - \mathbb{R}^n -בת"ל ב- (3)

שאלה 13

תהי T:V o W העתקה ליניארית.

$$\dim V = \dim (\ker T) + \dim (\operatorname{Im} T)$$

פתרונות

שאלה בההופכית ונקבל $A\mathbf{x}=b$ הפיכה אז נכפיל את המאוואה הפיכה A בההופכית ונקבל

$$A^{-1} \cdot A \cdot \mathbf{x} = A^{-1}b \quad \Rightarrow \quad \mathbf{x} = A^{-1}b \ .$$

ו- $A\mathsf{x}_2=b$ ו- $A\mathsf{x}_1=b$ אז $x_1 \neq x_2$ כך ש- $x_1 \neq x_2$ ו- $x_1 \neq x_2$ אז $x_1 \neq x_2$ אז

$$A(\mathbf{x}_1 - \mathbf{x}_2) = b - b = 0$$

הפיכה אז נכפיל בההופכית ונקבל A

$$A^{-1}A(\mathbf{x}_1 - \mathbf{x}_2) = A^{-1} \cdot 0 = 0$$
 \Rightarrow $I \cdot (\mathbf{x}_1 - \mathbf{x}_2) = 0$ \Rightarrow $\mathbf{x}_1 - \mathbf{x}_2 = 0$ \Rightarrow $\mathbf{x}_1 = \mathbf{x}_2$.

 $\mathbf{x}_1
eq ar{0}$ מטריצה הפיכה. נניח שלמערכת $A \cdot \mathbf{x} = ar{0}$ קיים פתרון $A \cdot \mathbf{x} = ar{0}$ מטריצה הפיכה.

$$A \cdot \mathbf{x}_1 = \bar{0}$$

ונקבל A^{-1} ביכה לכן A^{-1} נכפיל מצד שמאל ב- A^{-1}

$$A^{-1} \cdot A \cdot \mathbf{x}_1 = A^{-1} \cdot \bar{\mathbf{0}} \qquad \Rightarrow \qquad \mathbf{x}_1 = \bar{\mathbf{0}} \ .$$

סתירה.

סתירה.

שאלה 3 למערכת

$$A\mathbf{x} = b \ , \qquad b \neq \bar{0} \ ,$$

יש פתרון יחיד. נסמן אותו ב- $x_1
eq 0$. נניח ש- $x_2
eq 0$ שה למערכת ליים $A \cdot \mathbf{x} = 0$. אז למערכת ליים פתרון $A \cdot \mathbf{x} = 0$. לכן

$$A \cdot (\mathbf{x}_1 + \mathbf{x}_2) = A \cdot \mathbf{x}_1 + A \cdot \mathbf{x}_2 = b + 0 = b.$$

. סתירה. $(\mathbf{x}_1+\mathbf{x}_2)$ ו- $\mathbf{x}_1:A\cdot\mathbf{x}=b$ סתירה.

A וגם ($b
eq ar{0}$ ווב $\mathbf{x}_1 \neq \mathbf{x}_2$ (כאשר $\mathbf{x}_2 \neq \mathbf{x}_2$ ווב אז (כאשר $\mathbf{x}_1 \neq \mathbf{x}_2 \neq \mathbf{x}_3$) וגם אז

$$Ax_1 = b$$

-1

$$Ax_2 = b$$

לכן

$$A\cdot(\mathbf{x}_1-\mathbf{x}_2)=b-b=\bar{0}.$$

ונקבל שמאל שמאל ב- A^{-1} ם קיימת. לכפיל A^{-1} אז הפיכה אז A

$$A^{-1} \cdot A \cdot (\mathbf{x}_1 - \mathbf{x}_2) = A^{-1} \cdot \bar{\mathbf{0}} \quad \Rightarrow \quad I \cdot (\mathbf{x}_1 - \mathbf{x}_2) = \bar{\mathbf{0}} \quad \Rightarrow \quad \mathbf{x}_1 - \mathbf{x}_2 = \bar{\mathbf{0}} \quad \Rightarrow \quad \mathbf{x}_1 = \mathbf{x}_2 \ .$$

סתירה.

שאלה 5

(2) ((1) •

$$\mathbf{x}=ar{0}$$
 אם הפתרון היחיד של המערכת . $\mathbf{x}=egin{pmatrix} x_1\\x_2\\\vdots\\x_n \end{pmatrix}$ -ו $A=egin{pmatrix} |&&&|\\c_1&c_2&\cdots&c_n\\|&&&&|\end{pmatrix}$ נרשום

$$\begin{pmatrix} \begin{vmatrix} & & & & \\ c_1 & c_2 & \cdots & c_n \\ & & & & \end{vmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = x_1c_1 + x_2c_2 + \ldots + x_nc_n = \bar{0}$$

.ל. בת"ל. c_1, c_2, \ldots, c_n ולכן העמודות $x_1 = 0, x_2 = 0, \ldots, x_n = 0$ בת"ל.

(3) (€(2) •

לכן קיימים .span $\{m{c}_1,m{c}_2,\dots,m{c}_n\}=\mathbb{F}^n$ לכן העמודות של $A=egin{pmatrix} |&&&&|\\ \mathbf{c}_1&\mathbf{c}_2&\dots&\mathbf{c}_n\\ &&&&|\end{pmatrix}$ נרשום כך ש-

$$b_{11}\boldsymbol{c}_{1} + b_{21}\boldsymbol{c}_{2} + \ldots + b_{n1}\boldsymbol{c}_{n} = \begin{pmatrix} 1\\0\\\vdots\\0 \end{pmatrix} ,$$

$$b_{12}\boldsymbol{c}_{1} + b_{22}\boldsymbol{c}_{2} + \ldots + b_{n2}\boldsymbol{c}_{n} = \begin{pmatrix} 0\\1\\\vdots\\0 \end{pmatrix} ,$$

$$b_{1n}\boldsymbol{c}_{1} + b_{2n}\boldsymbol{c}_{2} + \ldots + b_{nn}\boldsymbol{c}_{n} = \begin{pmatrix} 0\\0\\\vdots\\1 \end{pmatrix} .$$

$$\vdots$$

$$B=egin{pmatrix} b_{11} & b_{12} & \dots & b_{1n} \ b_{21} & b_{22} & \dots & b_{2n} \ dots & dots & \ddots & dots \ b_{n1} & b_{n2} & \dots & b_{nn} \end{pmatrix}$$

$$A \cdot B = \begin{pmatrix} | & | & & | \\ \mathbf{c}_1 & \mathbf{c}_2 & \cdots & \mathbf{c}_n \\ | & | & & | \end{pmatrix} \cdot \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nn} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix} ,$$

כלומר

(4) (€(3) •

אם $A=ar{0}$ אז לפי (3), אז לפי

$$\mathbf{y} \cdot A \cdot B = \bar{\mathbf{0}} \cdot B = 0 \qquad \Rightarrow \qquad \mathbf{y} \cdot I = 0 \qquad \Rightarrow \qquad \mathbf{y} = \bar{\mathbf{0}} \ .$$

(5) ((4) •

גרשום
$$\mathbf{y}\cdot A\cdot=ar{0}$$
 ו- $A\cdot=egin{pmatrix} -&r_1&-\\-&r_2&-\\&\vdots&\\-&r_n&-\end{pmatrix}$ אם הפתרון היחיד של המערכת $\mathbf{y}\cdot A\cdot=egin{pmatrix} -&r_1&-\\-&r_2&-\\\vdots&\\-&r_n&-\end{pmatrix}$ הוא $\mathbf{y}\cdot \mathbf{y}\cdot \mathbf{y}\cdot \mathbf{y}$

$$(y_1 \quad y_2 \quad \cdots \quad y_n) \cdot \begin{pmatrix} - & r_1 & - \\ - & r_2 & - \\ & \vdots & \\ - & r_n & - \end{pmatrix} = y_1 r_1 + y_2 r_2 + \ldots + y_n r_n = \bar{0}$$

. בת"ל. r_1, r_2, \ldots, r_n ולכן השורות $y_1 = 0, y_2 = 0, \ldots, y_n = 0$ בת"ל.

(6) ((5) ●

נרשום
$$\{m{r}_1,m{r}_2,\dots,m{r}_n\}=\mathbb{F}^{1 imes n}$$
 אם השורות של A בת"ל, אז $A=egin{pmatrix} -&m{r}_1&-\\-&m{r}_2&-\\\vdots&-&m{r}_n&-\end{pmatrix}$ נרשום כך ש-

$$c_{11}\mathbf{r}_{1} + c_{12}\mathbf{r}_{2} + \ldots + c_{1n}\mathbf{r}_{n} = \begin{pmatrix} 1 & 0 & \ldots & 0 \end{pmatrix} ,$$

$$c_{21}\mathbf{r}_{1} + c_{22}\mathbf{r}_{2} + \ldots + b_{2n}\mathbf{r}_{n} = \begin{pmatrix} 0 & 1 & \ldots & 0 \end{pmatrix} ,$$

$$c_{n1}\mathbf{r}_{1} + c_{n2}\mathbf{r}_{2} + \ldots + c_{nn}\mathbf{r}_{n} = \begin{pmatrix} 0 & 0 & \ldots & 1 \end{pmatrix} .$$
(*2)

אז אפשר לרשום (*2) אז אפשר לרשום
$$C = \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \dots & c_{nn} \end{pmatrix}$$

$$C \cdot A = \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \dots & c_{nn} \end{pmatrix} \cdot \begin{pmatrix} - & \boldsymbol{r}_1 & - \\ - & \boldsymbol{r}_2 & - \\ \vdots & \vdots & \\ - & \boldsymbol{r}_n & - \end{pmatrix} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix} ,$$

כלומר

(5)⇔(2) ●

נוכיח (2)⇒(5)

השורות של $\mathbf{y}=\bar{0}$ הוא $\mathbf{y}\cdot A=\bar{0}$ הפתרון היחיד של $\mathbf{A}=B=I$ השורות כך ש- B היימת של בת"ל בת"ל.

נוכיח (5)⇒(2)

העמודות של $\mathbf{x}=\bar{\mathbf{0}}$ הוא $A\cdot\mathbf{x}=\bar{\mathbf{0}}$ הפתרון היחיד של C בת"ל $A\cdot\mathbf{x}=\bar{\mathbf{0}}$ הוא הפתרון היחיד של C בת"ל.

(7)⇐(5) •

-כך שC כלומר (6), כלומר (5)

CA = I

נכפיל מצד שמאל ב-A ונקבל

 $ACA = A \Rightarrow AC = I$.

-כלומר קיימת C כך ש

CA = AC = I,

A לכן A הפיכה

<u>(7)</u> (2) ●

-כך שB כלומר (2) \Leftarrow (2)

AB = I

נכפיל מצד ימין ב-A ונקבל

 $ABA = A \Rightarrow BA = I$.

-כלומר קיימת B כך ש

AB = BA = I,

A לכן A הפיכה

שאלה 6

(2) ((1) •

אם A הפיכה אז קיימת A^{-1} . לכן

 $A\mathbf{x} = \bar{\mathbf{0}} \qquad \Rightarrow \qquad A^{-1}A\mathbf{x} = A^{-1}\bar{\mathbf{0}} = \bar{\mathbf{0}} \qquad \Rightarrow \qquad \mathbf{x} = \bar{\mathbf{0}} \ .$

(3) (€(2) •

נניח שלמערכת A אינה שווה ל- $x=ar{0}$ אבל הפתרון הפתרון לווה ל- $A \cdot x=ar{0}$ אינה שווה ל- U: נרשום את המטריצה המורחבת של המערכת, ונסמן את המטריצה המדורגת ב-U:

$$(A|\bar{0}) \rightarrow (U|\bar{0})$$
.

אם אחד. לפחות משתנה חופשי אחד. לכן מרטריצה ריבועית שורת אפסים. U יש שורת אפסים. עד מרכת עד היה למערכת שורת אינסוף פתרונות. סתירה. למערכת $d\mathbf{x}=\bar{\mathbf{0}}$

<u>(4)</u>(3) ●

היא $A\mathbf{x}=b$ היא

(A|b).

לפי (3) המדורגת של A היא I לכן אחרי דירוג נקבל

$$(A|b) \to (I|c)$$

 $\mathbf{x} = c$ יש פתרון יחיד: $A\mathbf{x} = b$ כאשר כאור. לכן למערכת

(5)⇐(4) •

$$A$$
x $=e_i$ למערכת (4) לפי $e_1=egin{pmatrix}1\\0\\\vdots\\0\end{pmatrix},e_2=egin{pmatrix}0\\1\\\vdots\\0\end{pmatrix},\dots,e_n=egin{pmatrix}0\\0\\\vdots\\1\end{pmatrix}$ למערכת $I=egin{pmatrix}e_1&e_2&\cdots e_n\end{pmatrix}$ נרשום

-ש יחידה כך $C=\begin{pmatrix} |&|&&&|\\c_1&c_2&\dots&c_n\\|&&|&&|\end{pmatrix}$ איים פתרון יחיד $\mathbf{x}=c_i$ לכל $\mathbf{x}=c_i$ לכל $\mathbf{x}=c_i$

$$AC = I$$
.

(1)⇐**(5)** •

נניח ש-AC = I. אז

$$ACA = A \Rightarrow CA = I$$
.

לכן הפיכה. A כך ש- A כך ש- A לכן לכן הפיכה.

 A^{-1} -ב שמאל ב- A^{-1} נניח ש- $\bar{0}$ ו- $u
eq \bar{0}$ ו- $u \neq \bar{0}$ אז A הפיכה, כלומר ההופכית החופכית נכפיל מצד שמאל ב- $u \neq \bar{0}$ ונקבל

$$A^{-1} \cdot A \cdot u = \bar{0} \qquad \Rightarrow \qquad u = \bar{0} .$$

סתירה.

\Rightarrow 8 שאלה

 ${\it .}U$ את פורשת ש פורשת דרך השלילה ש ${\it B}$ בת"ל. נוכיח את

m -ניח ש U. בבסיס חדש יהיו יותר מ- B כדי לקבל בסיס של U. בבסיס חדש יהיו יותר מ- נניח ש B לא פורשת את U. אז ניתן להוסיף וקטורים. ז"א D -מתירה.

 $\underline{\leftarrow}$

B נניח שB פורשת את U ו מיל.

 $\dim(U) < m$ וקטורים. ז"א m וקטורים מ- ניתן להוריד מ- B וקטורים כדי לקבל בסיס של U. בבסיס החדש יהיו פחות מ-

 $.k = \dim(W)$ יהי B בסיס של .U נסמן יהי B יהי

- לכן מירה. לכן מ- יותר מ- א יותר מ- א וקטורים. סתירה. לכן אז א $\dim(U) > \dim(W)$ אם יותר מ- ל $\dim(U) > \dim(W)$. $\dim U < \dim W$
- פורשת לכן, B וקטורים. לכן, $k=\dim(W)$ שבה יש שבה ע קבוצה בת"ל של וקטורים. לכן, B קבוצה הת"ל אז $W=\mathrm{span}\ B=U$ את את את לכן .W

שאלה 11

(2)⇔**(1)** □

$$row(A) \subseteq \mathbb{F}^n$$

 $\operatorname{crow}(A) = \mathbb{F}^n$ לכן לכן $\dim(\operatorname{row}\,A) = n$ -1

<u>(3)⇔(2)</u> □

לפי (2), n עמודות של n אז $\operatorname{rank}(A)=n$ אז $\operatorname{rank}(A)=n$ מכיוון שה- n עמודות של $\operatorname{row}(A)=\mathbb{R}^n$ לפי (2), אז הן.

ם (3)⇔(4) לפי (3): נשרום □

$$A\mathbf{x} = \bar{\mathbf{0}} \ . \tag{#1}$$

גרשום
$$1\leq i\leq n$$
 כאשר $1\leq i\leq n$ העמודות של $1\leq i\leq n$ העמודות של $1\leq i\leq n$ כאשר $1\leq i\leq n$ העמודות א $1\leq i\leq n$ העמודות א $1\leq i\leq n$ כאשר $1\leq i\leq n$ העמודות א $1\leq i\leq n$ באשר $1\leq i\leq n$ העמודות א $1\leq i\leq n$ באשר $1\leq i\leq n$ העמודות א $1\leq i\leq n$ באשר $1\leq i\leq n$ העמודות א $1\leq i\leq n$ באשר $1\leq i\leq n$ העמודות א $1\leq i\leq n$ באשר $1\leq i\leq n$ העמודות א $1\leq i\leq n$ באשר $1\leq i\leq n$ העמודות א $1\leq i\leq n$ באשר $1\leq i\leq n$ העמודות א $1\leq i\leq n$ באשר $1\leq i\leq$

$$A\mathbf{x} = \bar{0} \quad \Rightarrow \quad x_1c_1 + x_2c_2 + \dots + x_nc_n = \bar{0} \ .$$
 (#2)

לפי (3), $x_1=x_2=\ldots=x_n=0$ מתקיים רק אם (#2) בת"ל לכן (בע"ל לכן $\{c_1,c_2,\cdots,c_n\}$ לפי (#1) הוא (#1) הוא

(1)⇔**(4)** □

לפי (4) הפתרון היחיד של המערכת . $x=ar{0}$ הוא הוא $Ax=ar{0}$ הוא הפתרון היחיד של המערכת משפט איל. $Ax=ar{0}$ הוא המערכת .rankA=n .dim $(\cot A)=n$

שאלה 12

(2)⇔**(1)** □

 $\operatorname{col}\left(A
ight)=\mathbb{F}^{m}$ כני (1), $\operatorname{dim}(\operatorname{col}A)=m$ לפי (1),

(3)⇔(2) □

לפי (2), m שורות של A פורשות את .rank(A)=m אז היא m שורות של m פורשות את .rank(A)=m אז הן בת"ל. row A

(1)⇔(3) □

 $\operatorname{crank}(A)=m$ ולכן, $\operatorname{dim}(\operatorname{row} A)=m$ לפי (3), ה-m שורות של A בת"ל, לכן

V פורשת B (1

אם $T(\mathbf{v}) \in \operatorname{Im} T$ אז $\mathbf{v} \in V$ אם

$$T(\mathbf{v}) = t_1 T(e_1) + \ldots + t_r T(e_r) , \qquad t_i \in \mathbb{R} .$$

אזי v לכן לכן ינארי אל (לינארי א גירוף לינארי אירי יירוף אינארי א אירי א אירים א אירי א לכן הוקטור א לכן הוקטורים ב פון א אירי א לכן הוקטורים ב פון אירים ב

בת"ל B

נניח

$$t_1e_1 + \ldots + t_re_r + s_1f_1 + \ldots + s_kf_k = \bar{0}$$
 (#)

עבור סקלרים $s_i \in \mathbb{R}$ ו ו $t_i \in \mathbb{R}$

$$t_1T(e_1) + \ldots + t_rT(e_r) + s_1T(f_1) + \ldots + s_kT(f_k) = \bar{0}$$
 (*1)

אבל $T(f_i)=ar{0}$ לכן

$$t_1T(e_1) + \ldots + t_rT(e_r) = \bar{0}$$

 $t_1=\ldots=t_r=0$ בת"ל, לכן $\{T(e_1),\ldots,T(e_r)\}$ בסיס של Im T בסיס של בסיס לוש ($T(e_1),\ldots,T(e_r)\}$ מכאן (#) הופך ל

$$s_1 f_1 + \ldots + s_k f_k = \bar{0} \tag{*2}$$

עם אייכ הייכ אייכ אייכ א בח"ל לכן $s_1=\ldots=s_k=0$ לכן לכן קבוצה א לכן לכן $\{f_1,\ldots,f_k\}$ לכן לכן א בסיט של $\{f_1,\ldots,f_k\}$ בסיט של B