

Microwave Engineering (Lab)

Lab 7: Design of Microstrip Patch Antenna

DONG Yunyang

dongyy@sustech.edu.cn

411, No. 2, Hui Yuan

Tencent Meeting: 874-068-9694

Bits2Waves, a 1-day experience on building your own modern digital radio.

天线

天线是一种变换器,它把传输线上传播的导行波,变换成在预定方向上辐射的空间电磁波,或者进行相反的变换。

辐射原理

The patch acts as a resonant cavity.

设计一个微带贴片天线

- 1. 基板FR4,厚度1.6mm
- 2. 中心频率: 2.4GHz
- 3. 端口阻抗50Ω
- 4. 带宽: 50MHz
- 5. S11<-10dB

- ▶ 选择介质基板,估算出辐射贴片的尺寸。
- \triangleright 设介质基板的介电常数为 ε_r ,矩形微带天线工作频率为f,光速为c,辐射贴片的宽度W根据下式确定:

$$W = \frac{c}{2f} \left(\frac{\varepsilon_r + 1}{2}\right)^{-\frac{1}{2}}$$

- ho 辐射贴片的长度一般为 $\lambda_{\rm g}/2$, $\lambda_{\rm g}$ 是介质内的导波波长, $\lambda_{\rm g} = \frac{c}{f\sqrt{\varepsilon_e}}$
- ▶ 考虑到边缘缩短效应后,实际的辐射贴片长度L为,

$$L = \frac{c}{2f\sqrt{\varepsilon_e}} - 2\Delta L$$

式子中, ε_e 是等效介电常数, ΔL 是等效辐射缝隙长度,分别可以用下式计算:

$$\varepsilon_{e} = \frac{\varepsilon_{r} + 1}{2} + \frac{\varepsilon_{r} - 1}{2} \left(1 + 12 \frac{h}{W} \right)^{-\frac{1}{2}}$$

$$\Delta L = 0.412 h \frac{(\varepsilon_{e} + 0.3)(W/h + 0.264)}{(\varepsilon_{e} - 0.258)(W/h + 0.8)}$$

馈电

▶ 辐射贴片输入导纳公式:

$$Y_{in}(l) = 2G \left[\cos^2(\beta l) + \frac{G^2 + B^2}{Y_0^2} \sin^2(\beta l) - \frac{B}{Y_0} \sin(2\beta l) \right]^{-1}$$

▶ 其中,

 Y_0 为将天线视为传输线时的特性导纳

l为馈线到天线边缘的距离

$$G = \frac{I}{120\pi^2} \qquad B = \frac{k\Delta L\sqrt{\varepsilon_e}}{Z_0}$$

$$I = \int_0^{\pi} \sin^2\left(\frac{kW}{2}\cos\theta\right) \tan^2\theta \sin\theta \, d\theta$$

定义变量

介质基板

辐射贴片

地

Properties: PatchAntenna - HFSSDesign1 - Modeler X Command Unit Evaluated... Description Value Name Command CreateRectangle Coordina... Global Position -29.44m... -L0 ,-W0 ,0mm Axis Ζ XSize 1.5*L0+L1+L2 76.87mm YSize 2*W0 76.08mm **Expand All** Anisotropic Impedance... Collapse All Aperture... Select Finite Conductivity... Half Space... Edit > Impedance... Group Layered Impedance... Create 3D Component... Linked Impedance... Lumped RLC... Assign Material... Master... View Perfect E... ☐ Show Hidden Properties... Perfect H... Create Array ... Radiation... Create Open Region ... Slave... Update Open Region Padding... Symmetry... 应用(A) 取消 确定 Assign Boundary PML Setup Wizard...

馈电微带

阻抗变换

辐射边界

波端口

仿真设置

扫频设置

仿真结果

扫参设置

Right Click on Optimetrics

扫参结果

远场方向图

Right Click on Radiation

Homework

Center Frequency: 2.4 GHz

Substrate: FR4, 1.6mm

Bandwidth: 50MHz

Set W0 = 45mm, Observe GainTotal

