Série 11

Problème 1

Une émission de radio permet à ses auditeurs de s'exprimer. Afin de gérer les appels, l'animateur désire établir un modèle sur le nombre d'appels par heure à son émission. Il veut vérifier si le nombre d'appels est distribué selon une distribution de Poisson de moyenne 5 appels/heure. Pour cela, il a collecté les données suivantes lors des 100 dernières heures de ses émissions :

Nombre d'appels /heure	0	1	2	3	4	5	6	7	8	≥ 9
Fréquence	0	2	4	10	7	14	11	13	5	34

- En tant que consultant, aidez-le à effectuer le test avec un niveau de signification de 0.05.
- Quel type d'erreur pourriez-vous commettre?

Problème 2

Les amendes d'ordre des automobilistes à genève sont représentées ci-dessous en fonction du sexe du conducteur.

Infraction	Homme	\mathbf{Femme}
Vitesse	240	160
Parcage	80	40
Feux grillés	32	18
Service anti-pollution	11	9
Autres	5	4

Utilisez un niveau de signification de 0.05 pour déterminer si les deux variables sont indépendantes.

Indication : Voici le résultat donné par le logiciel R

Pearson's Chi-squared test

data: amendes

X-squared = 2.3537, df = 4, p-value = 0.671

Warning message:

In chisq.test(amendes) : l'approximation du Chi-2 est peut-être incorrecte