Ломоносовские чтения 2018

Результаты проведения пусковых работ ускорителя Сдиапазона для мобильного инспекционно-досмотрового комплекса

18.04.2018

с. н. с. Ермаков Андрей Николаевич (a.ermak1978@mail.ru)

м. н. с. Овчинникова Любовь Юрьевна

г. н. с. Шведунов Василий Иванович

Инспекционно-досмотровый комплекс CT-2630M

Комплекс предназначен для контроля автотранспортных средств и контейнеров.

Сканирование (Процесс работы комплекса)

Изображение

Характеристики ускорителя

Рабочая частота	5712 МГц
Энергия пучка электронов	6 / 3.5 МэВ
Частота повторения импульсов	2х200 Гц
ускорителя	

Ускоряющая система

Калибровка ускорителя

Низкая энергия E_1 =3.5 МэВ, D_1 =0.1 Гр/мин

Настройка энергии ускоренного пучка низкой и высокой энергий выбора счёт осуществляется за напряжений **ВЫСОКОВОЛЬТНЫХ** источников модулятора, U_{HVPS1} , U_{HVPS2} , при ЭТОМ управляющие напряжения pin-аттенюаторов, U_{pin1} , и U_{pin2} , выбираются из условия работы клистрона в оптимальном режиме, т.е. в области максимума амплитудной характеристики.

Измерения энергии ускоренного пучка электронов проводилось методом ослабления тормозного излучения поглощающим барьером в геометрии узкого пучка.

Высокая энергия E_2 =6 МэВ, D_2 =0.1 Гр/мин

Установка мощности дозы

Настройка мощности дозы для заданной частоты следования импульсов проводилась за счёт выбора тока пушки высокой низкой энергий ДЛЯ посредством изменения напряжений на управляющем электроде, U_{CE1} , и U_{CE2} . Измерение мощности дозы производилось дозиметром ДКС-101. Длительность импульса тока пушки составляла 3 мкс. Задержка времени запуска относительно импульса запуска модулятора 3.2 мкс

Алгоритм управления частотой

Вычисляется полная и погонная средние мощности СВЧ потерь в стенках ускоряющей структуры

$$\bar{P} = T_{RF} \times f_{rep} [A_2^P E^2 + A_1^P E + A_0^P] 10^{-3} (\text{KBT})$$

Вычисляется погонная средняя мощность СВЧ потерь в стенках

$$\bar{p} = \frac{\bar{P}}{L} (\kappa B_T/M)$$

Вычисляется сдвиг частоты ускоряющих ячеек за счёт деформаций

$$\Delta f_{ac2} = -cdef \left[A_{f2} + A_{f1} \cdot e^{-\frac{\alpha}{B_{f1}}} + A_{f0} \cdot e^{-\frac{\alpha}{B_{f0}}} \right] \bar{p} \left(\text{M} \Gamma \text{II} \right)$$

Вычисляется сдвиг частоты за счёт равномерного нагрева ускоряющей структуры

$$\Delta f_{ac1} = -f_0 A_{Cu} \left(\frac{c_1 \bar{P}_{tot}}{2q} + T_{in} - T_0 \right)$$

Вычисляется полный сдвиг частоты

$$\Delta f_{ac} = \Delta f_{ac1} + \Delta f_{ac2}$$

Измерение утечек радиации

D / D0

0.001 0.0001 1E-05 1E-06 Основной 1E-07 вклад в 1E-08 паразитную 135 180 225 270 315 радиацию от 1.0E-03 темнового тока 1.0E-04 1.0E-05 1.0E-06 1.0E-07 1.0E-08 135 180 225 270 315 angle [deg]

Заводские испытания

Спасибо за внимание!

