# Lecture 1: Course logistics, Supervised vs. Unsupervised learning, Bias-Variance tradeoff

STATS 202: Data mining and analysis

Rajan Patel

## Syllabus

- ▶ Videos: Every lecture will be recorded by SCPD.
- ► Email policy: Please use the stats202 google group for most questions. Homeworks and all SCPD Exams should be e-mailed to stats202@gmail.com.
- ► Class website: www.stats202.com.

## Prediction challenges

The MNIST dataset is a library of handwritten digits.



In a prediction challenge, you are given a training set of images of handwritten digits, which are labeled from 0 to 9.

You are also given a test set of handwritten digits, which are not identified.

Your job is to assign a digit to each image in the test set.

## The Netflix prize

Netflix popularized prediction challenges by organizing an open, blind contest to improve its recommendation system.

The prize was \$1 million.

Rankings (1 to 5 stars)

Movies

## The Netflix prize

Netflix popularized prediction challenges by organizing an open, blind contest to improve its recommendation system.

The prize was \$1 million.



Some rankings were hidden in the training data

## The Netflix prize

Netflix popularized prediction challenges by organizing an open, blind contest to improve its recommendation system.

The prize was \$1 million.



The challenge was to predict those rankings

In unsupervised learning we start with a data matrix:

Samples or units

Variables or factors

In unsupervised learning we start with a data matrix:

Samples or units

Variables or factors

Quantitative, eg. weight, height, number of children, ...

In unsupervised learning we start with a data matrix:

Samples or units

Variables or factors

Qualitative, eg. college major, profession, gender, ...

In unsupervised learning we start with a data matrix:

Our goal is to:

- Find meaningful relationships between the variables or units. Correlation analysis.
- Find meaningful groupings of the data. Clustering.

Unsupervised learning is also known in Statistics as **exploratory** data analysis.

In **supervised learning**, there are *input* variables, and *output* variables:



In **supervised learning**, there are *input* variables, and *output* variables:



In **supervised learning**, there are *input* variables, and *output* variables:



In **supervised learning**, there are *input* variables, and *output* variables:

If X is the vector of inputs for a particular sample. The output variable is modeled by:

$$Y = f(X) + \underbrace{\varepsilon}_{\text{Random error}}$$

In **supervised learning**, there are *input* variables, and *output* variables:

If X is the vector of inputs for a particular sample. The output variable is modeled by:

$$Y = f(X) + \underbrace{\varepsilon}_{\text{Random error}}$$

Our goal is to learn the function f, using a set of training samples.

$$Y = f(X) + \underbrace{\varepsilon}_{\text{Random error}}$$

#### Motivations:

▶ **Prediction:** Useful when the input variable is readily available, but the output variable is not.

Example: Predict stock prices next month using data from last year.

$$Y = f(X) + \underbrace{\varepsilon}_{\text{Random error}}$$

#### Motivations:

- ▶ **Prediction**: Useful when the input variable is readily available, but the output variable is not.
- ▶ Inference: A model for *f* can help us understand the structure of the data which variables influence the output, and which don't? What is the relationship between each variable and the output, e.g. linear, non-linear?

Example: What is the influence of genetic variations on the incidence of heart disease.

## Parametric and nonparametric methods:

There are two kinds of supervised learning methods:

▶ Parametric methods: We assume that *f* takes a specific form. For example, a linear form:

$$f(X) = X_1 \beta_1 + \dots + X_p \beta_p$$

with parameters  $\beta_1, \ldots, \beta_p$ . Using the training data, we try to *fit* the parameters.

► Non-parametric methods: We don't make any assumptions on the form of f, but we restrict how "wiggly" or "rough" the function can be.

# Parametric vs. nonparametric prediction



Figures 2.4 and 2.5

## Parametric vs. nonparametric prediction



Figures 2.4 and 2.5

Parametric methods have a limit of fit quality. Non-parametric methods keep improving as we add more data to fit.

## Parametric vs. nonparametric prediction



Figures 2.4 and 2.5

Parametric methods have a limit of fit quality. Non-parametric methods keep improving as we add more data to fit.

Parametric methods are often simpler to interpret.

Training data:  $(x_1, y_1), (x_2, y_2) \dots (x_n, y_n)$ Predicted function:  $\hat{f}$ .

Our goal in supervised learning is to minimize the prediction error.

Training data:  $(x_1, y_1), (x_2, y_2) \dots (x_n, y_n)$ Predicted function:  $\hat{f}$ .

Our goal in supervised learning is to minimize the prediction error. For regression models, this is typically the *Mean Squared Error*:

$$MSE(\hat{f}) = E(y_0 - \hat{f}(x_0))^2.$$

Training data:  $(x_1, y_1), (x_2, y_2) \dots (x_n, y_n)$ Predicted function:  $\hat{f}$ .

Our goal in supervised learning is to minimize the prediction error. For regression models, this is typically the *Mean Squared Error*:

$$MSE(\hat{f}) = E(y_0 - \hat{f}(x_0))^2.$$

Unfortunately, this quantity cannot be computed, because we don't know the true joint distribution of (X,Y).

Training data:  $(x_1, y_1), (x_2, y_2) \dots (x_n, y_n)$ Predicted function:  $\hat{f}$ .

Our goal in supervised learning is to minimize the prediction error. For regression models, this is typically the *Mean Squared Error*:

$$MSE(\hat{f}) = E(y_0 - \hat{f}(x_0))^2.$$

Unfortunately, this quantity cannot be computed, because we don't know the true joint distribution of (X,Y). We can compute a sample average using the training data; this is known as the training MSE:

$$MSE_{\mathsf{training}}(\hat{f}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2.$$

The main challenge of statistical learning is that a low training MSE does not imply a low MSE.

The main challenge of statistical learning is that a low training MSE does not imply a low MSE.

If we have test data  $\{(x_i',y_i'); i=1,\ldots,m\}$  which were not used to fit the model, a better measure of quality for  $\hat{f}$  is the test MSE:

$$MSE_{\mathsf{test}}(\hat{f}) = \frac{1}{m} \sum_{i=1}^{m} (y_i' - \hat{f}(x_i'))^2.$$

Figure: \*

Figure 2.9.



The circles are simulated data from the black curve.

Figure: \*

Figure 2.9.



The circles are simulated data from the black curve. In this artificial example, we *know* what f is.

Figure: \*

Figure 2.9.



## Three estimates $\hat{f}$ are shown:

- 1. Linear regression.
- 2. Splines (very smooth).
- 3. Splines (quite rough).

Figure: \*

Figure 2.9.



Red line: Test MSE.

Gray line: Training MSE.





Figure 2.10

The function f is now almost linear.





Figure 2.11

When the noise  $\varepsilon$  has small variance, the third method does well.

## The bias variance decomposition

Let  $x_0$  be a fixed test point,  $y_0 = f(x_0) + \varepsilon_0$ , and  $\hat{f}$  be estimated from n training samples  $(x_1, y_1) \dots (x_n, y_n)$ .

Let E denote the expectation over  $y_0$  and the training outputs  $(y_1,\ldots,y_n)$ . Then, the Mean Squared Error at  $x_0$  can be decomposed:

$$MSE(x_0) = E(y_0 - \hat{f}(x_0))^2 = \mathsf{Var}(\hat{f}(x_0)) + [\mathsf{Bias}(\hat{f}(x_0))]^2 + \mathsf{Var}(\varepsilon_0).$$

## The bias variance decomposition

Let  $x_0$  be a fixed test point,  $y_0 = f(x_0) + \varepsilon_0$ , and  $\hat{f}$  be estimated from n training samples  $(x_1, y_1) \dots (x_n, y_n)$ .

Let E denote the expectation over  $y_0$  and the training outputs  $(y_1, \ldots, y_n)$ . Then, the Mean Squared Error at  $x_0$  can be decomposed:

$$MSE(x_0) = E(y_0 - \hat{f}(x_0))^2 = \operatorname{Var}(\hat{f}(x_0)) + [\operatorname{Bias}(\hat{f}(x_0))]^2 + \operatorname{Var}(\varepsilon_0).$$

Irreducible error

# The bias variance decomposition

Let  $x_0$  be a fixed test point,  $y_0 = f(x_0) + \varepsilon_0$ , and  $\hat{f}$  be estimated from n training samples  $(x_1, y_1) \dots (x_n, y_n)$ .

Let E denote the expectation over  $y_0$  and the training outputs  $(y_1,\ldots,y_n)$ . Then, the Mean Squared Error at  $x_0$  can be decomposed:

$$MSE(x_0) = E(y_0 - \hat{f}(x_0))^2 = \operatorname{Var}(\hat{f}(x_0)) + [\operatorname{Bias}(\hat{f}(x_0))]^2 + \operatorname{Var}(\varepsilon_0).$$

The variance of the estimate of Y:  $E[\hat{f}(x_0) - E(\hat{f}(x_0))]^2$ 

This measures how much the estimate of  $\hat{f}$  at  $x_0$  changes when we sample new training data.

# The bias variance decomposition

Let  $x_0$  be a fixed test point,  $y_0 = f(x_0) + \varepsilon_0$ , and  $\hat{f}$  be estimated from n training samples  $(x_1, y_1) \dots (x_n, y_n)$ .

Let E denote the expectation over  $y_0$  and the training outputs  $(y_1,\ldots,y_n)$ . Then, the Mean Squared Error at  $x_0$  can be decomposed:

$$MSE(x_0) = E(y_0 - \hat{f}(x_0))^2 = \mathrm{Var}(\hat{f}(x_0)) + [\mathrm{Bias}(\hat{f}(x_0))]^2 + \mathrm{Var}(\varepsilon_0).$$

The squared bias of the estimate of Y:  $[E(\hat{f}(x_0)) - f(x_0)]^2$ 

This measures the deviation of the average prediction  $\hat{f}(x_0)$  from the truth  $f(x_0)$ .























## Implications of bias variance decomposition

$$MSE(x_0) = E(y_0 - \hat{f}(x_0))^2 = \mathsf{Var}(\hat{f}(x_0)) + [\mathsf{Bias}(\hat{f}(x_0))]^2 + \mathsf{Var}(\varepsilon).$$

- ► The MSE is always positive.
- ► Each element on the right hand side is always positive.
- ► Therefore, typically when we decrease the bias beyond some point, we increase the variance, and vice-versa.

More flexibility ←⇒ Higher variance ←⇒ Lower bias.







Figure: \*

Figure 2.12

In a classification setting, the output takes values in a discrete set.

For example, if we are predicting the brand of a car based on a number of variables, the function f takes values in the set  $\{Ford, Toyota, Mercedes-Benz, ...\}$ .

In a classification setting, the output takes values in a discrete set.

For example, if we are predicting the brand of a car based on a number of variables, the function f takes values in the set  $\{Ford, Toyota, Mercedes-Benz, ...\}$ .

The model:

$$Y = f(X) + \varepsilon$$

becomes insufficient, as  $\boldsymbol{X}$  is not necessarily real-valued.

In a classification setting, the output takes values in a discrete set.

For example, if we are predicting the brand of a car based on a number of variables, the function f takes values in the set  $\{Ford, Toyota, Mercedes-Benz, ...\}$ .

The model:

$$Y \equiv f(X) + \varepsilon$$

becomes insufficient, as  $\boldsymbol{X}$  is not necessarily real-valued.

In a classification setting, the output takes values in a discrete set.

For example, if we are predicting the brand of a car based on a number of variables, the function f takes values in the set  $\{Ford, Toyota, Mercedes-Benz, ...\}$ .

We will use slightly different notation:

```
\begin{split} P(X,Y) : \text{joint distribution of } (X,Y), \\ P(Y\mid X) : \text{conditional distribution of } X \text{ given } Y, \\ \hat{y}_i : \text{prediction for } x_i. \end{split}
```

#### Loss function for classification

There are many ways to measure the error of a classification prediction. One of the most common is the 0-1 loss:

$$E(\mathbf{1}(y_0 \neq \hat{y}_0))$$

Like the MSE, this quantity can be estimated from training and test data by taking a sample average:

$$\frac{1}{n}\sum_{i=1}^{n}\mathbf{1}(y_i\neq\hat{y}_i)$$