FOURIER SERIES

40.1 PERIODIC FUNCTIONS

If the value of each ordinate f(t) repeats itself at equal intervals in the abscissa, then f(t) is said to be a periodic function.

If $f(t) = f(t + T) = f(t + 2 T) = \dots$ then T is called the period of the function f(t).

For example:

The period of $\sin x$, $\cos x$, $\sec x$, and $\csc x$ is 2π .

The period of $\tan x$ and $\cot x$ is π .

 $\sin x = \sin (x + 2 \pi) = \sin (x + 4 \pi) = \dots$ so $\sin x$ is a periodic function with the period 2π .

$$\sin 5x = \sin (5x + 2\pi) = \sin 5\left(x + \frac{2\pi}{5}\right), \text{ Period} = \frac{2\pi}{5}$$

$$\cos 3x = \cos (3x + 2\pi) = \cos 3\left(x + \frac{2\pi}{3}\right), \text{ Period} = \frac{2\pi}{3}$$

$$\cos \frac{2n\pi x}{k} = \cos\left(\frac{2n\pi x}{k} + 2\pi\right) = \cos\frac{2n\pi}{k}\left(x + \frac{2\pi k}{2n\pi}\right)$$

$$= \cos\frac{2n\pi}{k}\left(x + \frac{k}{n}\right), \text{ Period} = \frac{k}{n}$$

$$\tan 2x = \tan (2x + \pi) = \tan 2\left(x + \frac{\pi}{2}\right), \text{ Period} = \frac{\pi}{2}$$

This is also called sinusoidal periodic function.

40.2 FOURIER SERIES

Here we will express a non-sinusoidal periodic function into a fundamental and its harmonics. A series of sines and cosines of an angle and its multiples of the form.

$$\frac{a_0}{2} + a_1 \cos x + a_2 \cos 2x + a_3 \cos 3x + \dots + a_n \cos nx + \dots$$

 $+b_1 \sin x + b_2 \sin 2x + b_3 \sin 3x + ... + b_n \sin nx + ...$

$$= \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx.$$

is called the Fourier series, where $a_0, a_1, a_2, \dots a_n, \dots b_1, b_2, b_3 \dots b_n$ are constants.

A periodic function f(x) can be expanded in a Fourier Series. The series consists of the following:

- (i) A constant term a_0 (called d.c. component in electrical work).
- (ii) A component at the fundamental frequency determined by the values of a_1 , b_1 .
- (iii) Components of the harmonics (multiples of the fundamental frequency) determined by a_2 , $a_3 \dots b_2, b_3 \dots$ And $a_0, a_1, a_2 \dots b_1, b_2 \dots$ are known as *Fourier coefficients* or Fourier constants.

Note. (1) When the function and its derivatives are continuous then the function can be expanded in powers of x by Maclaurin's theorem.

(2) But by Fourier series we can expand continuous and discontinuous both types of functions under certain conditions.

40.3 DIRICHLET'S CONDITIONS FOR A FOURIER SERIES

If the function f(x) for the interval $(-\pi, \pi)$

- (1) is single-valued
- (2) is bounded
- (3) has at most a finite number of maxima and minima.
- (4) has only a finite number of discontinuous
- (5) is $f(x + 2\pi) = f(x)$ for values of x outside $[-\pi, \pi]$, then

$$S_P(x) = \frac{a_0}{2} + \sum_{n=1}^{P} a_n \cos nx + \sum_{n=1}^{P} b_n \sin nx$$

converges to f(x) as $P \to \infty$ at values of x for which f(x) is continuous and the sum of the series is equal to $\frac{1}{2}[f(x+0)+f(x-0)]$ at points of discontinuity.

40.4 ADVANTAGES OF FOURIER SERIES

- 1. Discontinuous function can be represented by Fourier series. Although derivatives of the discontinuous functions do not exist. (This is not true for Taylor's series).
- 2. The Fourier series is useful in expanding the periodic functions since outside the closed interval, there exists a periodic extension of the function.
- 3. Expansion of an oscillating function by Fourier series gives all modes of oscillation (fundamental and all overtones) which is extremely useful in physics.
 - 4. Fourier series of a discontinuous function is not uniformly convergent at all points.
- 5. Term by term integration of a convergent Fourier series is always valid, and it may be valid if the series is not convergent. However, term by term, differentiation of a Fourier series is not valid in most cases.

40.5 USEFUL INTEGRALS

The following integrals are useful in Fourier Series.

$$(i) \int_0^{2\pi} \sin nx \, dx = 0$$

(i)
$$\int_0^{2\pi} \sin nx \, dx = 0$$
 (ii) $\int_0^{2\pi} \cos nx \, dx = 0$

(iii)
$$\int_0^{2\pi} \sin^2 nx \, dx = \pi$$
 (iv) $\int_0^{2\pi} \cos^2 nx \, dx = \pi$

$$(iv) \int_0^{2\pi} \cos^2 nx \, dx = \tau$$

$$(v) \int_0^{2\pi} \sin nx \cdot \sin mx \, dx = 0 \qquad (vi) \int_0^{2\pi} \cos nx \cos mx \, dx = 0$$

$$(vii) \int_0^{2\pi} \sin nx \cdot \cos mx \, dx = 0 \quad (viii) \int_0^{2\pi} \sin nx \cdot \cos nx \, dx = 0$$

$$(ix) [uv]_1 = uv_1 - u'v_2 + u''v_3 - u'''v_4 + \dots$$

where $v_1 = \int v \, dx$, $v_2 = \int v_1 \, dx$ and so on $u' = \frac{du}{dx}$, $u'' = \frac{d^2u}{dx^2}$ and so on and

(x) $\sin n \pi = 0$, $\cos n \pi = (-1)^n$ where $n \in I$

40.6 DETERMINATION OF FOURIER COEFFICIENTS (EULER'S FORMULAE)

$$f(x) = \frac{a_0}{2} + a_1 \cos x + a_2 \cos 2x + \dots + a_n \cos nx + \dots + b_1 \sin x + b_2 \sin 2x + \dots + b_n \sin nx + \dots (i) To find a_0 **:** Integrate both sides of (1) from $x = 0$ to $x = 2$ π .$$

$$\int_{0}^{2\pi} f(x) dx = \frac{a_0}{2} \int_{0}^{2\pi} dx + a_1 \int_{0}^{2\pi} \cos x \, dx + a_2 \int_{0}^{2\pi} \cos 2x \, dx + \dots + a_n \int_{0}^{2\pi} \cos nx \, dx + \dots + a_n \int_{0}^{2\pi} \cos nx \, dx + \dots + a_n \int_{0}^{2\pi} \sin nx \, dx + \dots + a_n \int_{0}^{2\pi} \sin nx \, dx + \dots + a_n \int_{0}^{2\pi} \sin nx \, dx + \dots + a_n \int_{0}^{2\pi} \sin nx \, dx + \dots$$

$$= \frac{a_0}{2} \int_0^{2\pi} dx$$
 (other integrals = 0 by formulae (i) and (ii) of Art 40.5)

$$\int_0^{2\pi} f(x) \, dx = \frac{a_0}{2} \, 2\pi \qquad \Rightarrow \qquad \boxed{a_0 = \frac{1}{\pi} \int_0^{2\pi} f(x) \, dx} \qquad \dots (2)$$

(ii) To find a_n : Multiply each side of (1) by $\cos nx$ and integrate from x = 0 to $x = 2 \pi$.

$$\int_0^{2\pi} f(x) \cos nx \, dx = \frac{a_0}{2} \int_0^{2\pi} \cos nx \, dx + a_1 \int_0^{2\pi} \cos x \cos nx \, dx + \dots + a_n \int_0^{2\pi} \cos^2 nx \, dx \dots + b_1 \int_0^{2\pi} \sin x \cos nx \, dx + b_2 \int_0^{2\pi} \sin 2x \cos nx \, dx + \dots$$

=
$$a_n \int_0^{2\pi} \cos^2 nx \, dx = a_n \pi$$
 (Other integrals = 0, by formulae Art. 40.5)

$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos nx \, dx$$
 ...(3)

By taking $n = 1, 2 \dots$ we can find the values of $a_1, a_2 \dots$

(iii) To find b_n : Multiply each side of (1) by $\sin nx$ and integrate from x = 0 to $x = 2 \pi$.

$$\int_0^{2\pi} f(x) \sin nx \, dx = \frac{a_0}{2} \int_0^{2\pi} \sin nx \, dx + a_1 \int_0^{2\pi} \cos x \sin nx \, dx + \dots + a_n \int_0^{2\pi} \cos nx \sin nx \, dx + \dots$$

.... +
$$b_1 \int_0^{2\pi} \sin x \sin nx \, dx + ... + b_n \int_0^{2\pi} \sin^2 nx \, dx + ...$$

$$= b_n \int_0^{2\pi} \sin^2 nx \, dx$$

$$= b_n \pi$$
(All other integrals = 0, Article No. 40.5)

$$\therefore \qquad \left| b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin nx \, dx \right| \qquad \dots (4)$$

Note: To get similar formula of a_0 , $\frac{1}{2}$ has been written with a_0 in Fourier series.

Example 1. Find the Fourier series representing

$$f(x) = x, \ 0 < x < 2 \pi$$

and sketch its graph from $x = -4 \pi$ to $x = 4 \pi$.

Solution. Let
$$f(x) = \frac{a_0}{2} + a_1 \cos x + a_2 \cos 2x + \dots + b_1 \sin x + b_2 \sin 2x + \dots$$
 ...(1)

Hence
$$a_0 = \frac{1}{\pi} \int_0^{2\pi} f(x) dx = \frac{1}{\pi} \int_0^{2\pi} x dx = \frac{1}{\pi} \left[\frac{x^2}{2} \right]_0^{2\pi} = 2\pi$$

$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos nx dx = \frac{1}{\pi} \int_0^{2\pi} x \cos nx dx$$

$$= \frac{1}{\pi} \left[x \frac{\sin nx}{n} - 1 \cdot \left(-\frac{\cos nx}{n^2} \right) \right]_0^{2\pi} = \frac{1}{\pi} \left[\frac{\cos 2n\pi}{n^2} - \frac{1}{n^2} \right] = \frac{1}{n^2\pi} (1 - 1) = 0$$

$$b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin nx dx = \frac{1}{\pi} \int_0^{2\pi} x \sin nx dx$$

$$= \frac{1}{\pi} \left[x \left(-\frac{\cos nx}{n} \right) - 1 \cdot \left(-\frac{\sin nx}{n^2} \right) \right]_0^{2\pi} = \frac{1}{\pi} \left[-\frac{2\pi \cos 2n\pi}{n} \right] = -\frac{2}{n}$$

Substituting the values of a_0 , a_1 , a_2 ..., b_1 , b_2 ... in (1), we get

$$x = \pi - 2 \left[\sin x + \frac{1}{2} \sin 2x + \frac{1}{3} \sin 3x + \dots \right]$$
 Ans.

Example 2. Given that $f(x) = x + x^2$ for $-\pi < x < \pi$, find the Fourier expression of f(x).

Deduce that
$$\frac{\pi^2}{6} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots$$
(U.P., II Semester, Summer 2003, Uttarakhand, June 2009)

Solution. Let
$$x + x^2 = \frac{a_0}{2} + a_1 \cos x + a_2 \cos 2x + \dots + b_1 \sin x + b_2 \sin 2x + \dots$$
 ...(1)
$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \, dx = \frac{1}{\pi} \int_{-\pi}^{\pi} (x + x^2) \, dx$$

$$= \frac{1}{\pi} \left[\frac{x^2}{2} + \frac{x^3}{3} \right]_{-\pi}^{\pi} = \frac{1}{\pi} \left[\frac{\pi^2}{2} + \frac{\pi^3}{3} - \frac{\pi^2}{2} + \frac{\pi^3}{3} \right] = \frac{2\pi^2}{3}$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx = \int_{-\pi}^{\pi} (x + x^2) \cos nx \, dx$$

$$= \frac{1}{\pi} \left[(x+x^2) \frac{\sin nx}{n} - (2x+1) \frac{(-\cos nx)}{n^2} + (2) \left(-\frac{\sin nx}{n^3} \right) \right]_{-\pi}^{\pi}$$

$$= \frac{1}{\pi} \left[(2\pi+1) \frac{\cos n\pi}{n^2} - (-2\pi+1) \frac{\cos (-n\pi)}{n^2} \right] = \frac{1}{\pi} \left[4\pi \frac{\cos n\pi}{n^2} \right] = \frac{4(-1)^n}{n^2}$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx = \frac{1}{\pi} \int_{-\pi}^{\pi} (x+x^2) \sin nx \, dx$$

$$= \frac{1}{\pi} \left[(x+x^2) \left(-\frac{\cos nx}{n} \right) - (2x+1) \left(\frac{-\sin nx}{n^2} \right) + 2 \frac{\cos nx}{n^3} \right]_{-\pi}^{\pi}$$

$$= \frac{1}{\pi} \left[-(\pi+\pi^2) \frac{\cos n\pi}{n} + 2 \frac{\cos n\pi}{n^3} + (-\pi+\pi^2) \frac{\cos n\pi}{n} - 2 \frac{\cos n\pi}{n^3} \right]$$

$$= \frac{1}{\pi} \left[-\frac{2\pi}{n} \cos n\pi \right] = -\frac{2}{n} (-1)^n$$

Substituting the values of a_0 , a_n , b_n , in (1), we get

$$x + x^{2} = \frac{\pi^{2}}{3} + 4 \left[-\cos x + \frac{1}{2^{2}} \cos 2x - \frac{1}{3^{2}} \cos 3x + \dots \right] - 2 \left[-\sin x + \frac{1}{2} \sin 2x - \frac{1}{3} \sin 3x + \dots \right] \dots (2)$$

Here, $f(x) = x + x^2$ is valid for all values of x between - π and π but not at the end points - π and π due to open interval.

$$f(-\pi) = \frac{1}{2} [f(-\pi - 0) + f(-\pi + 0)]$$

$$= \frac{1}{2} [f(\pi - 0) + f(-\pi + 0)] \qquad [f(x) \text{ is periodic with period } 2\pi)]$$

$$= \frac{1}{2} [(\pi + \pi^2) + \{(-\pi) + (-\pi)^2\}] = \pi^2 \qquad ...(3)$$

Putting the value of $f(-\pi)$ from (3) and $x = -\pi$ in (2), we get

$$\pi^2 = \frac{\pi^2}{3} + 4 \left[\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots \right] \qquad \Rightarrow \frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots$$
 Ans.

Example 3. Find the Fourier series expansion for $f(x) = x + \frac{x^2}{4}, -\pi \le x \le \pi$ (U.P. II Semester, 2009)

Solution. Let $x + \frac{x^2}{4} = \frac{a_0}{2} + a_1 \cos x + a_2 \cos 2x + \dots + b_1 \sin x + b_2 \sin 2x + \dots$ where $a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \int_{-\pi}^{\pi} \left(x + \frac{x^2}{4} \right) dx$ $= \frac{1}{\pi} \left[\frac{x^2}{2} + \frac{x^3}{12} \right]_{-\pi}^{\pi} = \frac{1}{\pi} \left[\frac{\pi^2}{2} + \frac{\pi^3}{12} - \frac{\pi^2}{2} + \frac{\pi^3}{12} \right] = \frac{1}{\pi} \left[\frac{2\pi^3}{12} \right] = \frac{\pi^2}{6}$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n \, x \, dx = \frac{1}{\pi} \int_{-\pi}^{\pi} \left(x + \frac{x^2}{4} \right) \cos n \, x \, dx$$
$$= \frac{1}{\pi} \left[\left(x + \frac{x^2}{4} \right) \left(\frac{\sin nx}{n} \right) - \left(1 + \frac{2x}{4} \right) \left(\frac{-\cos nx}{n^2} \right) + \frac{1}{2} \left(-\frac{\sin nx}{n^3} \right) \right]_{-\pi}^{\pi}$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx = \frac{\pi^2}{12} + \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos nx - \sum_{n=1}^{\infty} \frac{2}{n} (-1)^n \sin nx$$

$$f(x) = \frac{\pi^2}{12} - \cos x + \frac{1}{4} \cos 2x - \frac{1}{9} \cos 3x + \frac{1}{16} \cos 4x + \dots + 2 \sin x - \sin 3x + \frac{2}{3} \sin 4x - \frac{1}{2} \sin 4x + \dots$$

EXERCISE 40.1

1. Find a Fourier series to represent, $f(x) = \pi - x$ for 0 < x < 2 π .

Ans.
$$2\left[\sin x + \frac{1}{2}\sin 2x + \frac{1}{3}\sin 3x + ... + \frac{1}{n}\sin nx + ...\right]$$

2. Find a Fourier series to represent $x - x^2$ from $x = -\pi$ to π and show that

Ans.

$$\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots$$

Ans.
$$-\frac{\pi^2}{3} + 4\left[\frac{\cos x}{1^2} - \frac{\cos 2x}{2^2} + \frac{\cos 3x}{3^2} - \frac{\cos 4x}{4^2} + \dots\right] + 2\left[\frac{\sin x}{1} - \frac{\sin 2x}{2} + \frac{\sin 3x}{3} - \frac{\sin 4x}{4} + \dots\right]$$

1050

3. Find a Fourier series to represent the function $f(x) = e^x$, for $-\pi < x < \pi$ and hence derive a series for

$$\frac{\pi}{\sinh \pi}.$$

$$\mathbf{Ans.} \quad \frac{2\sinh \pi}{\pi} \left[\frac{1}{2} - \frac{1}{1^2 + 1} \cos x + \frac{1}{2^2 + 1} \cos 2x - \frac{1}{3^2 + 1} \cos 3x + \dots \right]$$

$$+ \frac{1}{1^2 + 1} \sin x - \frac{2}{2^2 + 1} \sin 2x - \frac{3}{3^2 + 1} \sin 3x \dots, \right], \quad \frac{\pi}{\sinh \pi} = 1 + 2 \left[-\frac{1}{2} + \frac{1}{5} - \frac{1}{10} + \dots \right]$$

4. Obtain the Fourier series for $f(x) = e^{-x}$ in the interval $0 \le x < 2 \pi$

Ans.
$$\frac{1 - e^{-2\pi}}{\pi} \left[\frac{1}{2} + \frac{1}{2} \cos x + \frac{1}{5} \cos 2x + \frac{1}{10} \cos 3x + \frac{1}{2} \sin x + \frac{2}{5} \sin 2x + \frac{3}{10} \sin 3x + \dots \right]$$

5. If
$$f(x) = \left(\frac{\pi - x}{2}\right)^2$$
, $0 < x < 2\pi$, show that $f(x) = \frac{\pi^2}{12} + \sum_{n=1}^{\infty} \frac{\cos nx}{n^2}$

6. Prove that $x^2 = \frac{\pi^2}{3} + 4 \sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2}, -\pi < x < \pi$. Hence show that

(i)
$$\Sigma \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}$$
 (ii) $\Sigma \frac{1}{n^4} = \frac{\pi^4}{90}$

7. If f(x) is a periodic function defined over a period (0, 2 π) by $f(x) = \frac{(3x^2 - 6x\pi + 2\pi^2)}{12}$

Prove that $f(x) = \sum_{n=1}^{\infty} \frac{\cos nx}{n^2}$ and hence show that $\frac{\pi^2}{6} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + ...$

40.7 FOURIER SERIES FOR DISCONTINUOUS FUNCTIONS

Let the function f(x) be defined by

$$f(x) = f_1(x), \quad c < x < x_0$$

= $f_2(x), \quad x_0 < x < c + 2 \pi,$

where x_0 is the point of discontinuity in the interval $(c, c + 2\pi)$.

In such cases also, we obtain the Fourier series for f(x) in the usual way. The values of a_0 , a_n , b_n are evaluated by

$$a_{0} = \frac{1}{\pi} \left[\int_{c}^{x_{0}} f_{1}(x) dx + \int_{x_{0}}^{2+2\pi} f_{2}(x) dx \right];$$

$$a_{n} = \frac{1}{\pi} \left[\int_{c}^{x_{0}} f_{1}(x) \cos n x dx + \int_{x_{0}}^{2+2\pi} f_{2}(x) \cos n x dx \right]$$

$$b_{n} = \frac{1}{\pi} \left[\int_{c}^{x_{0}} f_{1}(x) \sin n x dx + \int_{x_{0}}^{c+2\pi} f_{2}(x) \cos n x dx \right]$$

$$O = \frac{1}{\pi} \left[\int_{c}^{x_{0}} f_{1}(x) \sin n x dx + \int_{x_{0}}^{c+2\pi} f_{2}(x) \cos n x dx \right]$$

If $x = x_0$ is the point of finite discontinuity, then the sum of the Fourier series

$$= \frac{1}{2} \left[\lim_{h \to 0} f(x_0 - h) + \lim_{h \to 0} f(x_0 + h) \right]$$
$$= \frac{1}{2} \left[f(x_0 - 0) + f(x_0 + 0) \right] = \frac{1}{2} (FB + FC)$$

Remarks.

- 1. It may be seen from the graph, that at a point of finite discontinuity $x = x_0$, there is a finite jump equal to BC in the value of the function f(x) at $x = x_0$.
- 2. A given function f(x) may be defined by different formulae in different regions. Such types of functions are quite common in Fourier Series.
- 3. At a point of discontinuity the sum of the series is equal to the mean of the limits on the right and left.

40.8 FUNCTION DEFINED IN TWO OR MORE SUB-RANGES

Example 4. Find the fourier series to represent the function f(x) given by:

$$f(x) = \begin{bmatrix} -k & \text{for } -\pi < x < 0 \\ k & \text{for } 0 < x < \pi \end{bmatrix} \quad \text{Hence show that } :$$

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}. \qquad (U.P. II Semester \ 2010)$$

$$Solution. \quad f(x) = \begin{cases} -k, & -\pi < x < 0 \\ k, & 0 < x < \pi \end{cases}$$

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \left[\int_{-\pi}^{0} -k dx + \int_{0}^{\pi} k dx \right] = \frac{1}{\pi} \left[\left[-kx \right]_{-\pi}^{0} + \left[kx \right]_{0}^{\pi} \right]$$

$$= \frac{1}{\pi} k \left[0 - \pi + \pi - 0 \right] = 0$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{1}{\pi} \left[\int_{-\pi}^{0} -k \cos nx dx + \int_{0}^{\pi} k \cos nx dx \right]$$

$$= \frac{1}{\pi} k \left[-\left\{ \frac{\sin nx}{n} \right\}_{-\pi}^{0} + \left\{ \frac{\sin nx}{n} \right\}_{0}^{\pi} \right] = \frac{1}{\pi} k \left[-0 + 0 \right] = 0$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{1}{\pi} \left[\int_{-\pi}^{0} -k \sin nx dx + \int_{0}^{\pi} k \sin nx dx \right]$$

$$= \frac{1}{\pi} k \left[\left\{ \frac{\cos nx}{n} \right\}_{-\pi}^{0} - \left\{ \frac{\cos nx}{n} \right\}_{0}^{\pi} \right]$$

$$= \frac{1}{\pi} k \left[\frac{1}{n} - \frac{(-1)^n}{n} - \frac{(-1)^n}{n} + \frac{1}{n} \right] = \frac{1}{\pi} k \left[\frac{2}{n} - \frac{2(-1)^n}{n} \right]$$
If n is even $b_n = 0$

If n is odd $b_n = \frac{4k}{n\pi}$

$$f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx \qquad ... (1)$$

$$f(x) = \sum_{n=1}^{\infty} b_n \sin nx = b_1 \sin x + b_2 \sin 2x + b_3 \sin 3x + b_4 \sin 4x + \dots$$

Thus required Fourier sine series is

$$f(x) = \frac{4k}{\pi} \sin x + \frac{4k}{3\pi} \sin 3x + \frac{4k}{5\pi} \sin 5x + \dots$$

$$\Rightarrow f(x) = \frac{4k}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right] \qquad \dots (2)$$

Putting $x = \frac{\pi}{2}$ in (2), we get

$$k = \frac{4k}{\pi} \left[\sin \frac{\pi}{2} + \frac{1}{3} \sin \frac{3\pi}{2} + \frac{1}{5} \sin \frac{5\pi}{2} + \dots \right]$$

$$\Rightarrow 1 = \frac{4}{\pi} \left[1 + \frac{1}{3} (-1) + \frac{1}{5} (1) + \frac{1}{7} (-1) + \dots \right]$$

$$= \frac{4}{\pi} \left[1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots \right] \Rightarrow \frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$
Proved.

Example 5. Find the Fourier series of the function

$$f(x) = \begin{cases} -1 & for & -\pi < x < -\frac{\pi}{2} \\ 0 & for & -\frac{\pi}{2} < x < \frac{\pi}{2} \\ +1 & for & \frac{\pi}{2} < x < \pi. \end{cases}$$

Solution. Let
$$f(x) = \frac{a_0}{2} + a_1 \cos x + a_2 \cos 2x + ... + b_1 \sin x + b_2 \sin 2x + ...$$
(1)
$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \int_{-\pi}^{-\pi/2} (-1) dx + \frac{1}{\pi} \int_{-\pi/2}^{\pi/2} 0 dx + \frac{1}{\pi} \int_{\pi/2}^{\pi} 1 dx$$

$$= \frac{1}{\pi} \left[-x \right]_{-\pi}^{\pi/2} + \frac{1}{\pi} \left[x \right]_{\pi/2}^{\pi} = \frac{1}{\pi} \left[\frac{\pi}{2} - \pi + \pi - \frac{\pi}{2} \right] = 0$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$$

$$= \frac{1}{\pi} \int_{-\pi}^{-\pi/2} (-1) \cos nx dx + \frac{1}{\pi} \int_{-\pi/2}^{\pi/2} (0) \cos nx dx + \frac{1}{\pi} \int_{\pi/2}^{\pi} (1) \cos nx dx$$

$$= -\frac{1}{\pi} \left[\frac{\sin nx}{n} \right]_{-\pi}^{-\pi/2} + \frac{1}{\pi} \left[\frac{\sin nx}{n} \right]_{\pi/2}^{\pi}$$

$$= -\frac{1}{\pi} \left[-\frac{\sin \frac{n\pi}{2}}{n} \right] + \frac{1}{\pi} \left[-\frac{\sin \frac{n\pi}{2}}{n} \right] = 0$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$$

$$= \frac{1}{\pi} \int_{-\pi}^{-\pi/2} (-1) \sin nx dx + \frac{1}{\pi} \int_{-\pi/2}^{\pi/2} (0) \sin nx dx$$

$$+ \frac{1}{\pi} \int_{\pi/2}^{\pi} (1) \sin nx dx = \frac{1}{\pi} \left[\frac{\cos nx}{n} \right]_{-\pi}^{-\pi/2} - \frac{1}{\pi} \left[\frac{\cos nx}{n} \right]_{\pi/2}^{\pi}$$

$$= \frac{1}{n\pi} \left[\cos \frac{n\pi}{2} - \cos n\pi \right] - \frac{1}{n\pi} \left(\cos n\pi - \cos \frac{n\pi}{2} \right) = \frac{2}{n\pi} \left[\cos \frac{n\pi}{2} - \cos n\pi \right]$$

$$b_1 = \frac{2}{\pi}, \qquad b_2 = -\frac{2}{\pi}, \qquad b_3 = \frac{2}{2\pi}$$

Putting the values of a_0 , a_n , b_n in (1), we get

$$f(x) = \frac{1}{\pi} \left[2\sin x - 2\sin 2x + \frac{2}{3}\sin 3x + \dots \right]$$
 Ans.

40.9 DISCONTINUOUS FUNCTIONS

At a point of discontinuity, Fourier series gives the value of f(x) as the arithmetic mean of left and right limits.

At the point of discontinuity, x = c

At
$$x = c$$
, $f(x) = \frac{1}{2} [f(c-0) + f(c+0)]$

Example 6. Find the Fourier series for f(x), if $f(x) = \begin{bmatrix} -\pi, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{bmatrix}$

Deduce that
$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$$

Solution. Let
$$f(x) = \frac{a_0}{2} + a_1 \cos x + a_2 \cos 2x + ... + a_n \cos nx + ... + b_1 \sin x + b_2 \sin 2x + ... + b_n \sin nx + ...$$
 ...(1)

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \ dx$$

Then
$$a_0 = \frac{1}{\pi} \left[\int_{-\pi}^0 (-\pi) \, dx + \int_0^{\pi} x \, dx \right] = \frac{1}{\pi} \left[-\pi \left(x \right)_{-\pi}^0 + \left(x^2 / 2 \right)_0^{\pi} \right] = \frac{1}{\pi} \left(-\pi^2 + \pi^2 / 2 \right) = -\frac{\pi}{2};$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx$$

$$a_n = \frac{1}{\pi} \left[\int_{-\pi}^0 (-\pi) \cos nx \, dx + \int_0^{\pi} x \cos nx \, dx \right] = \frac{1}{\pi} \left[-\pi \left(\frac{\sin nx}{n} \right)_{-\pi}^0 + \left(\frac{x \sin nx}{n} + \frac{\cos nx}{n^2} \right)_0^{\pi} \right]$$

$$= \frac{1}{\pi} \left[0 + \frac{1}{n^2} \cos n\pi - \frac{1}{n^2} \right] = \frac{1}{\pi n^2} (\cos n\pi - 1)$$

$$f(x)$$

$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx$$

$$= \frac{1}{\pi} \left[\int_{-\pi}^{0} (-\pi) \sin nx \, dx + \int_{0}^{\pi} x \sin nx \, dx \right]$$

$$= \frac{1}{\pi} \left[\left(\frac{\pi \cos nx}{n} \right)_{-\pi}^{0} + \left(-x \frac{\cos nx}{n} + \frac{\sin nx}{n^{2}} \right)_{0}^{\pi} \right]$$

$$= \frac{1}{\pi} \left[\frac{\pi}{n} (1 - \cos n\pi) - \frac{\pi}{n} \cos n\pi \right] = \frac{1}{n} (1 - 2 \cos n\pi)$$

$$f(x) = -\frac{\pi}{4} - \frac{2}{\pi} \left(\cos x + \frac{\cos 3x}{3^2} + \frac{\cos 5x}{5^2} + \dots \right) + 3\sin x - \frac{\sin 2x}{2} + \frac{3\sin 3x}{3} - \frac{\sin 4x}{4} \quad \dots (2)$$

Putting
$$x = 0$$
 in (2), we get $f(0) = -\frac{\pi}{4} - \frac{2}{\pi} \left(1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots \infty \right)$...(3)

Now, f(x) is discontinuous at x = 0. But $f(0 - 0) = -\pi$ and f(0 + 0) = 0

$$f(0) = \frac{1}{2} [f(0-0) + f(0+0)] = -\pi/2$$
 ... (4)

Form (3) and (4)
$$-\frac{\pi}{2} = -\frac{\pi}{4} - \frac{2}{\pi} \left[\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots \right] \Rightarrow \frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$$
 Proved.

Example 7. Obtain Fourier Series of the function

$$f(x) = \begin{cases} x, & -\pi < x < 0 \\ -x, & 0 < x < \pi \end{cases}$$

and hence show that

$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$$
 (U.P., II Semester, June 2008, 2002)

Solution. We have,
$$f(x) = \begin{cases} x, & -\pi < x < 0 \\ -x, & 0 < x < \pi \end{cases}$$

Here f(x) is an even function so $b_n = 0$

$$a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) \, dx = \frac{2}{\pi} \int_0^{\pi} -x \, dx = -\frac{2}{\pi} \left[\frac{x^2}{2} \right]_0^{\pi} = -\frac{2}{\pi} \left[\frac{\pi^2}{2} \right] = -\pi$$

$$a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx \, dx = \frac{2}{\pi} \int_0^{\pi} -x \cos nx \, dx = -\frac{2}{\pi} \left[x \frac{\sin nx}{n} + \frac{\cos nx}{n^2} \right]_0^{\pi}$$

$$= -\frac{2}{\pi} \left[\frac{(-1)^n}{n^2} - \frac{1}{n^2} \right] = \frac{2}{\pi} \frac{1}{n^2} [1 - (-1)^n] = \begin{cases} 0, & n \text{ is even} \\ \frac{4}{\pi} \frac{1}{n^2}, & n \text{ is odd} \end{cases}$$

Fourier series

$$f(x) = -\frac{\pi}{2} + \frac{4}{\pi} \left[\frac{\cos x}{1^2} + \frac{\cos 3x}{3^2} + \frac{\cos 5x}{5^2} + \dots \right]$$
 ... (1) **Ans.**

Now f(x) is discontinuous at x = 0. At x = 0 the point of discontinuity f[0 - 0) = 0 and f(0 + 0) = 0

$$f(0) = \frac{1}{2} [f(0-0) + f(0+0) = \frac{1}{2} (0+0) = 0]$$

Putting x = 0 in 1, we ge

$$0 = -\frac{\pi}{2} + \frac{4}{\pi} \left(\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots \right) \implies \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$$
 Ans.

Example 8. Find the Fourier series of the function defined

 $= \frac{1}{\pi} \int_{-\pi}^{0} (-x - \pi) \sin nx \, dx + \frac{1}{\pi} \int_{0}^{\pi} (x + \pi) \sin nx \, dx$

$$f(x) = \begin{cases} x + \pi, & \text{for } 0 \le x \le \pi, \\ -x - \pi, & \text{for } -\pi \le x < 0 \end{cases}$$
 and
$$f(x + 2\pi) = f(x).$$
 (U.P., II Semester Summer 2006)

Solution.
$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \int_{-\pi}^{0} f(x) dx + \frac{1}{\pi} \int_{0}^{\pi} f(x) dx$$

$$= \frac{1}{\pi} \int_{-\pi}^{0} (-x - \pi) dx + \frac{1}{\pi} \int_{0}^{\pi} (x + \pi) dx = \frac{1}{\pi} \left(-\frac{x^2}{2} - \pi x \right)_{-\pi}^{0} + \frac{1}{\pi} \left(\frac{x^2}{2} + \pi x \right)_{0}^{\pi}$$

$$= \frac{1}{\pi} \left(\frac{\pi^2}{2} - \pi^2 \right) + \frac{1}{\pi} \left(\frac{\pi^2}{2} + \pi^2 \right) = \pi \left(\frac{1}{2} - 1 \right) + \pi \left(\frac{1}{2} + 1 \right) = \pi$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{0} f(x) \cos nx dx = \frac{1}{\pi} \int_{-\pi}^{0} f(x) \cos nx dx + \frac{1}{\pi} \int_{0}^{\pi} f(x) \cos nx dx$$

$$= \frac{1}{\pi} \int_{-\pi}^{0} (-x - \pi) \cos nx dx + \frac{1}{\pi} \int_{0}^{\pi} (x + \pi) \cos nx dx$$

$$= \frac{1}{\pi} \left[(-x - \pi) \frac{\sin nx}{n} - (-1) \left\{ -\frac{\cos nx}{n^2} \right\} \right]_{-\pi}^{0} + \frac{1}{\pi} \left[(x + \pi) \frac{\sin nx}{n} - (-1) \left\{ -\frac{\cos nx}{n^2} \right\} \right]_{0}^{\pi}$$

$$= \frac{1}{\pi} \left[-\frac{1}{n^2} + \frac{(-1)^n}{n^2} \right] + \frac{1}{\pi} \left[\frac{(-1)^n}{n^2} - \frac{1}{n^2} \right] = \frac{2}{n^2 \pi} \left[(-1)^n - 1 \right] = \frac{-4}{n^2 \pi}, \text{ if } n \text{ is odd.}$$

$$= 0, \text{ if } n \text{ is even.}$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{1}{\pi} \int_{-\pi}^{0} f(x) \sin nx dx + \frac{1}{\pi} \int_{0}^{\pi} f(x) \sin nx dx$$

$$= \frac{1}{\pi} \left[(-x - \pi) \left(-\frac{\cos nx}{n} \right) - (-1) \left(-\frac{\sin nx}{n^2} \right) \right]_{-\pi}^{0}$$

$$+ \frac{1}{\pi} \left[(x + \pi) \left(-\frac{\cos nx}{n} \right) - (-1) \left(-\frac{\sin nx}{n^2} \right) \right]_{0}^{\pi}$$

$$= \frac{1}{\pi} \left[\frac{\pi}{n} \right] + \frac{1}{\pi} \left[-\frac{2\pi}{n} (-1)^n + \frac{\pi}{n} \right] = \frac{1}{n} [(1) - 2 (-1)^n + (1)] = \frac{2}{n} [1 - (-1)^n]$$

$$= \frac{4}{n}, \qquad \text{if } n \text{ is odd.}$$

$$= 0, \qquad \text{if } n \text{ is even.}$$

Fourier series is

$$f(x) = \frac{a_0}{2} + a_1 \cos x + a_2 \cos 2x + \dots + b_1 \sin x + b_2 \sin 2x + \dots$$

$$f(x) = \frac{\pi}{2} - \frac{4}{\pi} \left(\frac{\cos x}{1^2} + \frac{\cos 3x}{3^2} + \dots \right) + 4 \left(\frac{\sin x}{1} + \frac{\sin 3x}{3} + \dots \right)$$
Ans.

EXERCISE 40.2

1. Find the Fourier series of the function

$$f(x) = \begin{cases} -1 & \text{for } -\pi < x < 0 \\ 1 & \text{for } 0 < x < \pi \end{cases}$$

$$\text{where } f(x+2\pi) = f(x).$$

$$Ans. \frac{4}{\pi} \left[\frac{1}{1} \sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \frac{1}{7} \sin 7x + \dots \right]$$

2. Find the Fourier series of the function

$$f(x) = \begin{cases} 0 & \text{for } -\pi \le x \le 0 \\ 1 & \text{for } 0 < x < \frac{\pi}{2} \\ 0 & \text{for } \frac{\pi}{2} \le x \le \pi \end{cases}$$

Ans.
$$\frac{1}{4} + \frac{1}{\pi} \left[\frac{\cos x}{1} - \frac{\cos 3x}{3} + \frac{\cos 5x}{5} + \dots + \frac{\sin x}{1} + \frac{\sin 2x}{2} + \frac{\sin 3x}{3} + \dots \right]$$

3. Obtain a Fourier series to represent the following periodic function f(x) = 0 when $0 < x < \pi$

$$f(x) = 1 \text{ when } \pi < x < 2 \pi$$

$$\mathbf{Ans.} \quad \frac{1}{2} - \frac{2}{\pi} \left(\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right)$$

4. Find the Fourier expansion of the function defined in a single period by the relations.

$$f(x) = \begin{cases} 1 & \text{for } 0 < x < \pi \\ 2 & \text{for } \pi < x < 2\pi \end{cases}$$

and from it deduce that $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$ Ans. $\frac{3}{2} - \frac{2}{\pi} \left(\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right)$

5. Find a Fourier series to represent the function

$$f(x) = \begin{cases} 0 & \text{for } -\pi < x \le 0 \\ \frac{1}{4} \pi x & \text{for } 0 < x < \pi \end{cases} \text{ and hence deduce that } \frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$$

Ans.
$$\frac{\pi^2}{16} + \sum_{n=1}^{\infty} \left[\frac{[(-1)^n - 1]}{4n^2} \cos nx - \frac{(-1)^n \pi}{4n} \sin nx + \dots \right]$$

6. Find the Fourier series for f(x), if

for
$$-\pi$$
 for $-\pi < x \le 0$

$$f(x) = x$$
 for $0 < x < \pi$

$$\frac{-\pi}{2}$$
 for $x = 0$

Deduce that
$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$$

Ans.
$$-\frac{\pi}{4} - \frac{2}{\pi} \left(\cos x + \frac{\cos 3x}{3^2} + \frac{\cos 5x}{5^2} + \dots \right) + 3\sin x - \frac{1}{2}\sin 2x + \frac{3}{3}\sin 3x - \frac{1}{4}\sin 4x + \dots$$

7. Obtain a Fourier series to represent the function

$$f(x) = |x| \qquad \text{for} \qquad -\pi < x < \pi$$

and hence deduce
$$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$$
 Ans. $\frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \dots \right]$

8. Expand as a Fourier series, the function f(x) defined as

and as a Fourier series, the function
$$f(x)$$
 defined as
$$f(x) \begin{cases} \pi + x & \text{for } -\pi < x < -\frac{\pi}{2} \\ \frac{\pi}{2} & \text{for } -\frac{\pi}{2} < x < \frac{\pi}{2} \\ \pi - x & \text{for } \frac{\pi}{2} < x < \pi \end{cases}$$
Ans. $\frac{3\pi}{8} + \frac{2}{\pi} \left[\frac{1}{1^2} \cos x - \frac{2}{2^2} \cos 2x + \frac{1}{3^2} \cos 3x + \dots \right]$
ain a Fourier series to represent the function

9. Obtain a Fourier series to represent the function

$$f(x) = |\sin x| \quad \text{for } -\pi < x < \pi$$

$$\begin{cases} \mathbf{Hint} \ f(x) = -\sin x & \text{for } -\pi < x < 0 \\ = \sin x & \text{for } 0 < x < \pi \end{cases}$$

Ans.
$$\frac{2}{\pi} - \frac{4}{\pi} \left[\frac{1}{3} \cos 2x + \frac{1}{15} \cos 4x + \frac{1}{35} \cos 6x + \dots \right]$$

10. An alternating current after passing through a rectifier has the form

$$i = I \sin \theta$$
 for $0 < \theta < \pi$
= 0 for $\pi < \theta < 2 \pi$

Find the Fourier series of the function.

Ans.
$$\frac{I}{\pi} - \frac{2I}{\pi} \left(\frac{\cos 2\theta}{3} + \frac{\cos 4\theta}{15} + \dots \right) + \frac{I}{2} \sin \theta$$

11. If
$$f(x) = 0$$
 for $-\pi < x < 0$
= $\sin x$ for $0 < x < \pi$

Prove that
$$f(x) = \frac{1}{\pi} + \frac{\sin x}{2} - \frac{2}{\pi} \sum_{m=1}^{\infty} \frac{\cos 2mx}{4m^2 - 1}$$
. Hence show that $\frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} \dots \infty = \frac{1}{4} (\pi - 2)$

40.10 EVEN FUNCTION AND ODD FUNCTION

(a) Even Function

A function f(x) is said to be even (or symmetric) function if, f(-x) = f(x)

The graph of such a function is symmetrical with respect to y-axis [f(x)] axis. Here y-axis is a mirror for the reflection of the curve.

The area under such a curve from $-\pi$ to π is double the area from 0 to π .

$$\therefore \qquad \int_{-\pi}^{\pi} f(x) \, dx = 2 \int_{0}^{\pi} f(x) \, dx$$

(b) Odd Function

A function f(x) is called odd (or skew symmetric) function if

$$f(-x) = -f(x)$$

Here the area under the curve from $-\pi$ to π is zero.

$$\int_{-\pi}^{\pi} f(x) \ dx = 0$$

Expansion of an even function:

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \, dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \, dx$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx \, dx$$

As f(x) and $\cos nx$ are both even functions, therefore, the product of f(x). $\cos nx$ is also an even function.

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx = 0$$

As $\sin nx$ is an odd function so f(x). $\sin nx$ is also an odd function. We need not to calculate b_n . It saves our labour a lot.

The series of the even function will contain only cosine terms. (U.P. II Semester 2010)

Expansion of an odd function:

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \, dx = \mathbf{0}$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx = 0 \qquad [f(x) \cdot \cos nx \text{ is odd function.}]$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin nx \, dx$$

$$[f(x) \cdot \sin nx \text{ is even function.}]$$

The series of the odd function will contain only sine terms.

The function shown below is neither odd nor even so it contains both sine and cosine terms

Example 9. Find the Fourier series expansion of the periodic function of period 2π $f(x) = x^2, -\pi \le x \le \pi.$

Hence, find the sum of the series $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + ...$ (U.P., II Semester 2004)

$$f(x) = x^2, -\pi \le x \le \pi$$

Solution. $f(x) = x^{2}, -\pi \le x \le \pi$ This is an even function. $b_{n} = 0$

$$[f(-x) = f(x)]$$

$$a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) \, dx = \frac{2}{\pi} \int_0^{\pi} x^2 \, dx = \frac{2}{\pi} \left[\frac{x^3}{3} \right]_0^{\pi} = \frac{2\pi^2}{3}$$

$$a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx \, dx = \frac{2}{\pi} \int_0^{\pi} x^2 \cos nx \, dx$$

$$= \frac{2}{\pi} \left[x^2 \left(\frac{\sin nx}{n} \right) - (2x) \left(-\frac{\cos nx}{n^2} \right) + (2) \left(-\frac{\sin nx}{n^3} \right) \right]_0^{\pi}$$

$$= \frac{2}{\pi} \left[\frac{\pi^2 \sin n\pi}{n} + \frac{2\pi \cos n\pi}{n^2} - \frac{2\sin n\pi}{n^3} \right] = \frac{4(-1)^n}{n^2}$$

Fourier series is

$$f(x) = \frac{a_0}{2} + a_1 \cos x + a_2 \cos 2x + a_3 \cos 3x + \dots + a_n \cos nx + \dots$$

$$x^{2} = \frac{\pi^{2}}{3} - 4 \left[\frac{\cos x}{1^{2}} - \frac{\cos 2x}{2^{2}} + \frac{\cos 3x}{3^{2}} - \frac{\cos 4x}{4^{2}} + \dots \right]$$

On putting x = 0, we have

$$0 = \frac{\pi^2}{3} - 4 \left[\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} \dots \right]$$

$$\Rightarrow \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} \dots = \frac{\pi^2}{12}$$

Ans.

Example 10. Obtain a Fourier expression for $f(x) = x^3$ for $-\pi < x < \pi$. **Solution.** $f(x) = x^3$ is an odd function.

$$\therefore a_0 = 0 \text{ and } a_n = 0 \qquad [f(-x) = -f(x)]$$

$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx \, dx = \frac{2}{\pi} \int_0^{\pi} x^3 \sin nx \, dx \quad \left[\int uv = uv_1 - u'v_2 + u''v_3 - u'''v_4 + \dots \right]$$

$$= \frac{2}{\pi} \left[x^3 \left(-\frac{\cos nx}{n} \right) - 3x^2 \left(-\frac{\sin nx}{n^2} \right) + 6x \left(\frac{\cos nx}{n^3} \right) - 6 \left(\frac{\sin nx}{n^4} \right) \right]_0^{\pi}$$

$$= \frac{2}{\pi} \left[-\frac{\pi^3 \cos n\pi}{n} + \frac{6\pi \cos n\pi}{n^3} \right] = 2 \cdot (-1)^n \left[-\frac{\pi^2}{n} + \frac{6}{n^3} \right]$$

$$f(x) = b_1 \sin x + b_2 \sin 2x + b_3 \sin 3x + \dots$$

$$\therefore x^3 = 2 \left[-\left(-\frac{\pi^2}{1} + \frac{6}{1^3} \right) \sin x + \left(-\frac{\pi^2}{2} + \frac{6}{2^3} \right) \sin 2x - \left(-\frac{\pi^2}{3} + \frac{6}{3^3} \right) \sin 3x + \dots \right] \quad \text{Ans}$$

Example 11. Expand the function $f(x) = x \sin x$, as a Fourier series in the interval $-\pi \le x \le \pi$.

Hence deduce that
$$\frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \frac{1}{7.9} + \dots = \frac{\pi - 2}{4}$$

(MDU, Dec. 2010, U.P., II Sem., Summer 2008, 2001, Uttarakhand, II Sem., June 2007) **Solution.** $f(x) = x \sin x$

$$a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) \, dx = \frac{2}{\pi} \int_0^{\pi} x \sin x \, dx \qquad \text{(Here } x \sin x \text{ is an even function)}$$

$$= \frac{2}{\pi} \left[x (-\cos x) - (1) (-\sin x) \right]_0^{\pi} = \frac{2}{\pi} (\pi) = 2$$

$$a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx \, dx = \frac{2}{\pi} \int_0^{\pi} x \sin x \cos nx \, dx$$

$$= \frac{1}{\pi} \int_0^{\pi} x \left\{ \sin (n+1) x - \sin (n-1) x \right\} \, dx$$

$$= \frac{1}{\pi} \left[x \left(-\frac{\cos (n+1)x}{n+1} \right) - (1) \left\{ -\frac{\sin (n+1)x}{(n+1)^2} \right\} \right]_0^{\pi}$$

$$- \frac{1}{\pi} \left[x \left(-\frac{\cos (n-1)x}{(n-1)} \right) - (1) \left\{ -\frac{\sin (n-1)x}{(n-1)^2} \right\} \right]_0^{\pi}$$

$$= \frac{1}{\pi} \left[-\pi \frac{(-1)^{(n+1)}}{n+1} + 0 \right] - \frac{1}{\pi} \left[-\pi \frac{(-1)^{(n-1)}}{n-1} - 0 \right]$$

$$= -\frac{(-1)^{n+1}}{n+1} + \frac{(-1)^{n-1}}{n-1} = (-1)^{n+1} \left[-\frac{1}{n+1} + \frac{1}{n-1} \right] = \frac{2(-1)^{n+1}}{n^2 - 1}$$

$$a_1 = \frac{2}{\pi} \int_0^{\pi} x \sin x \cos x \, dx = \frac{1}{\pi} \int_0^{\pi} x \sin 2x \, dx$$

$$= \frac{1}{\pi} \left[x \left(-\frac{\cos 2x}{2} \right) - (1) \left(-\frac{\sin 2x}{4} \right) \right]_0^{\pi} = \frac{1}{\pi} \left[-\frac{\pi}{2} \right] = -\frac{1}{2}$$

$$b_n = 0$$

$$[As x \sin x \sin n x \sin n x \sin n d d function]$$
Hence $f(x) = 1 - \frac{1}{2} \cos x + 2 \sum_{n=2}^{\infty} \frac{(-1)^{n+1}}{n^2 - 1} \cos nx = 1 - \frac{1}{2} \cos x + 2 \sum_{n=2}^{\infty} \frac{(-1)^{n+1}}{(n-1)(n+1)} \cos nx$

$$x \sin x = 1 + 2 \left[-\frac{1}{4} \cos x - \frac{1}{1.3} \cos 2x + \frac{1}{2.4} \cos 3x - \frac{1}{3.5} \cos 4x + \dots \right] \qquad \dots (1)$$
Putting $x = \frac{\pi}{2} \text{ in (1)}$, we get $\frac{\pi}{2} = 1 + 2 \left\{ \frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \dots \right\}$
or $\frac{\pi}{4} = \frac{1}{2} + \frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \dots \Rightarrow \frac{\pi}{4} - \frac{1}{2} = \frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \dots$

$$\Rightarrow \frac{\pi - 2}{4} = \frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \dots$$
Proved.

Example 12. Find the Fourier Series expansion for the function

$$f(x) = x \cos x, -\pi < x < \pi.$$
 (U.P., II Semester, Summer 2002)

Solution. Since $x \cos x$ is an odd function therefore, $a_0 = a_n = 0$.

Let $x \cos x = \sum b_n \sin bx$, where

$$b_n = \frac{2}{\pi} \int_0^{\pi} x \cos x \cdot \sin nx \, dx, = \frac{1}{\pi} \int_0^{\pi} x \left\{ \sin (n+1) x + \sin (n-1) x \right\} dx$$

$$= \frac{1}{\pi} \int_0^{\pi} x \sin (n+1) x \, dx + \frac{1}{\pi} \int_0^{\pi} x \sin (n-1) x \, dx$$

$$= \frac{1}{\pi} \left[x \left(\frac{-\cos (n+1) x}{n+1} \right) + \frac{\sin (n+1) x}{(n+1)^2} \right]_0^{\pi} + \frac{1}{\pi} \left[-x \frac{\cos (n-1) x}{n-1} + \frac{\sin (n-1) x}{(n-1)^2} \right]_0^{\pi}$$

$$= \frac{1}{\pi} \left[x \cdot \left\{ -\frac{\cos (n+1) x}{(n+1)} - \frac{\cos (n-1) x}{(n-1)} \right\} + 1 \cdot \left\{ \frac{\sin (n+1) x}{(n+1)^2} + \frac{\sin (n-1) x}{(n-1)^2} \right\} \right]_0^{\pi}$$

$$= \frac{1}{\pi} \left[\pi \cdot \left\{ -\frac{\cos (n+1) \pi}{(n+1)} - \frac{\cos (n-1) \pi}{(n-1)} \right\} \right]$$

$$\Rightarrow b_n = \left\{ -\frac{(-1)^{n+1}}{n+1} - \frac{(-1)^{n-1}}{n-1} \right\}, n \neq 1$$

$$b_n = -(-1)^{n+1} \left[\frac{1}{n+1} + \frac{1}{n-1} \right]$$

$$= -\left\{ \frac{1}{(n+1)} + \frac{1}{(n-1)} \right\} = \frac{-2n}{n^2 - 1}, \quad \text{If } n \text{ is odd; } n \neq 1.$$
But $b_n = \left\{ \frac{1}{n+1} + \frac{1}{n-1} \right\} = \frac{2n}{n^2 - 1}, \quad \text{If } n \text{ is even; } n \neq 1$
If $n = 1$, then $b_1 = \frac{2}{\pi} \int_0^{\pi} x \cos x \cdot \sin x \, dx = \frac{1}{\pi} \int_0^{\pi} x \cdot \sin 2x \, dx$

$$= \frac{1}{\pi} \left[x \cdot \left(-\frac{\cos 2x}{2} \right) - 1 \left(-\frac{\sin 2x}{4} \right) \right]_0^{\pi} = \frac{1}{\pi} \left[\pi \left(-\frac{1}{2} \right) \right] = -\frac{1}{2}$$

$$\therefore x \cos x = b_1 \sin x + b_2 \sin 2x + b_3 \sin 3x + \dots$$

$$= -\frac{1}{2} \sin x + \frac{4 \sin 2x}{2^2 - 1} - \frac{6 \sin 3x}{3^2 - 1} + \dots$$
Ans.

40.11 HALF-RANGE SERIES, PERIOD 0 TO π

The given function is defined in the interval $(0, \pi)$ and it is immaterial whatever the function may be outside the interval $(0, \pi)$. To get the series of cosines only we assume that f(x) is an even function in the interval $(-\pi, \pi)$.

$$a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx \, dx \text{ and } b_n = 0$$

To expand f(x) as a sine series we extend the function in the interval $(-\pi, \pi)$ as an odd function.

$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx \, dx \text{ and } a_n = 0$$

Example 13. Represent the following function by a Fourier sine series:

Solution.
$$b_n = \frac{2}{\pi} \int_0^{\pi} f(t) \sin nt \, dt$$

$$= \frac{2}{\pi} \int_0^{\pi/2} t \sin nt \, dt + \frac{2}{\pi} \int_{\pi/2}^{\pi} \frac{\pi}{2} \sin nt \, dt$$

$$= \frac{2}{\pi} \left[t \left(-\frac{\cos nt}{n} \right) - (1) \left(-\frac{\sin nt}{n^2} \right) \right]_0^{\pi/2} + \frac{2}{\pi} \frac{\pi}{2} \left[-\frac{\cos nt}{n} \right]_{\pi/2}^{\pi}$$

$$= \frac{2}{\pi} \left[-\frac{\pi}{2} \cos \frac{n\pi}{2} + \frac{\sin \frac{n\pi}{2}}{n^2} \right] + \left[-\frac{\cos n\pi}{n} + \frac{\cos \frac{n\pi}{2}}{n} \right]$$

$$b_1 = \frac{2}{\pi} \left[-\frac{\pi}{2} \cos \frac{\pi}{2} + \sin \frac{\pi}{2} \right] + \left[-\cos \pi + \cos \frac{\pi}{2} \right] = \frac{2}{\pi} \left[0 + 1 \right] + \left[1 \right] = \frac{2}{\pi} + 1$$

$$b_2 = \frac{2}{\pi} \left[-\frac{\pi}{2} \cos \frac{\pi}{2} + \frac{\sin \pi}{2} \right] + \left[-\frac{\cos 2\pi}{2} + \frac{\cos \pi}{2} \right] = \frac{2}{\pi} \left[-\frac{\pi}{2} \frac{(-1)}{2} + 0 \right] + \left[-\frac{1}{2} - \frac{1}{2} \right]$$

$$= \frac{2}{\pi} \left[\frac{\pi}{4} \right] - 1 = \frac{1}{2} - 1 = -\frac{1}{2}$$

$$b_3 = \frac{2}{\pi} \left[-\frac{\pi}{2} \frac{\cos \frac{3\pi}{2}}{3} + \frac{\sin \frac{3\pi}{2}}{3^2} \right] + \left[-\frac{\cos 3\pi}{3} + \frac{\cos \frac{3\pi}{2}}{3} \right]$$

$$= \frac{2}{\pi} \left[-\frac{\pi}{2} (0) - \frac{1}{9} \right] + \left[\frac{1}{3} + 0 \right] = -\frac{2}{9\pi} + \frac{1}{3}$$

$$f(t) = \left(\frac{2}{\pi} + 1\right) \sin t - \frac{1}{2} \sin 2t + \left(-\frac{2}{9\pi} + \frac{1}{3}\right) \sin 3t + \dots$$
Example 14. Find the Fourier sine series for the function
$$f(x) = e^{ax} \text{ for } 0 < x < \pi$$

where a is constant.

 $b_n = \frac{2}{\pi} \int_0^{\pi} e^{ax} \sin nx \, dx \qquad \left[\int e^{ax} \sin bx \, dx \, = \, \frac{e^{ax}}{a^2 + b^2} [a \sin bx - b \cos bx] \right]$ Solution. $= \frac{2}{\pi} \left| \frac{e^{ax}}{a^2 + n^2} (a \sin nx - n \cos nx) \right|$ $= \frac{2}{\pi} \left| \frac{e^{a\pi}}{a^2 + n^2} (a \sin n\pi - n \cos n\pi) + \frac{n}{a^2 + n^2} \right|$ $= \frac{2}{\pi} \frac{n}{a^2 + n^2} \left[-(-1)^n e^{a\pi} + 1 \right] = \frac{2n}{(a^2 + n^2)\pi} \left[1 - (-1)^n e^{a\pi} \right]$

Ans.

$$b_1 = \frac{2(1+e^{a\pi})}{(a^2+1^2)\pi}, \qquad b_2 = \frac{2 \cdot 2 \cdot (1-e^{a\pi})}{\cdot (a^2+2^2)\pi}$$

$$e^{ax} = \frac{2}{\pi} \left[\frac{1+e^{a\pi}}{a^2+1^2} \sin x + \frac{2(1-e^{a\pi})}{a^2+2^2} \sin 2x + \dots \right]$$
Ans.

EXERCISE 40.3

1. Find the Fourier cosine series for the function

$$f(x) = \begin{cases} 1 & \text{for } 0 < x < \frac{\pi}{2} \\ 0 & \text{for } \frac{\pi}{2} < x < \pi. \end{cases}$$

$$Ans \frac{1}{2} + \frac{2}{2} \left[\cos x - \frac{1}{2} \cos 3x + \frac{1}{2} \right]$$

2. Find a series of cosine of multiples of x which will represent f(x) in $(0, \pi)$ where

$$f(x) = \begin{cases} 0 & \text{for } 0 < x < \frac{\pi}{2} \\ \frac{\pi}{2} & \text{for } \frac{\pi}{2} < x < \pi \end{cases}$$

Deduce that
$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + ... \propto = \frac{\pi}{4}$$

Ans.
$$\frac{\pi}{4} - \cos x + \frac{1}{3} \cos 3x - \frac{1}{5} \cos 5x + \dots$$

3. Express
$$f(x) = x$$
 as a sine series in $0 < x < \pi$.

Ans.
$$2 \left[\sin x - \frac{1}{2} \sin 2x + \frac{1}{3} \sin 3x - \dots \right]$$

4. Find the cosine series for $f(x) = \pi - x$ in the interval $0 < x < \pi$.

Ans.
$$\frac{\pi}{2} + \frac{4}{\pi} \left(\cos x + \frac{\cos 3x}{3^2} + \frac{\cos 5x}{5^2} + \dots \right)$$

5. If
$$f(x) = \begin{cases} 0 & \text{for } 0 < x < \frac{\pi}{2} \\ \pi - x, & \text{for } \frac{\pi}{2} < x < \pi \end{cases}$$

Show that: (i)
$$f(x) = \frac{4}{\pi} \left(\sin x - \frac{1}{3^2} \sin 3x + \frac{1}{5^2} \sin 5x - \dots \right)$$

(ii)
$$f(x) = \frac{\pi}{4} - \frac{2}{\pi} \left(\frac{1}{1^2} \cos 2x + \frac{1}{3^2} \cos 6x + \frac{1}{5^2} \cos 10x + \dots \right)$$

6. Obtain the half-range cosine series for $f(x) = x^2$ in $0 < x < \pi$

Ans.
$$\frac{\pi^2}{3} - \frac{4}{\pi} \left(\cos x - \frac{1}{2^2} \cos 2x + \frac{1}{3^2} \cos 3x - \dots \right)$$

7. Find (i) sine series and (ii) cosine series for the function $f(x) = e^x$ for $0 < x < \pi$.

Ans. (i)
$$\frac{2}{\pi} \sum_{1}^{\infty} n \left[\frac{1 - (-1)^n e^{\pi}}{n^2 + 1} \right] \sin nx$$
 (ii) $\frac{e^{\pi} - 1}{\pi} - \frac{2}{\pi} \sum_{1}^{\infty} \frac{1 - (-1)^n e^{\pi}}{n^2 + 1} \cos nx$

8. If f(x) = x + 1, for $0 < x < \pi$, find its Fourier (i) sine series (ii) cosine series. Hence deduce that

(i)
$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$$
 (ii) $1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots = \frac{\pi^2}{8}$

Ans. (i) $\frac{2}{\pi} \left[(\pi + 2) \sin x - \frac{\pi}{2} \sin 2x + \frac{1}{3} (\pi + 2) \sin 3x - \frac{\pi}{4} \sin 4x + \dots \right]$

(ii) $\frac{\pi}{2} + 1 - 4 \left(\cos x + \frac{\cos 3x}{3^2} + \frac{\cos 5x}{5^2} + \dots \right)$

9. Find the Fourier series expansion of the function $f(x) = \cos(sx), -\pi \le x \le \pi$

where s is a fraction. Hence, show that
$$\cot \theta = \frac{1}{\theta} + \frac{2\theta}{\theta^2 - \pi^2} + \frac{2\theta}{\theta^2 - 4\pi^2} + \dots$$

Ans.
$$\frac{\sin \pi x}{\pi s} + \frac{1}{\pi} \sum \left(\frac{\sin (s \pi + n \pi)}{s + n} + \frac{\sin (s \pi - n \pi)}{s - n} \right) \cos nx$$

40.12 CHANGE OF INTERVAL AND FUNCTIONS HAVING ARBITRARY PERIOD

In electrical engineering problems, the period of the function is not always 2 π but T or 2c. This period must be converted to the length 2π . The independent variable x is also to be changed proportionally.

Let the function f(x) be defined in the interval (-c, c). Now we want to change the function to the period of 2 π so that we can use the formulae of a_n , b_n as discussed in Article 40.6.

 \therefore 2 c is the interval for the variable x.

$$\therefore$$
 1 is the interval for the variable = $\frac{x}{2c}$

$$\therefore$$
 2 π is the interval for the variable = $\frac{x 2 \pi}{2 c} = \frac{\pi x}{c}$

$$z = \frac{\pi x}{c}$$
 or $x = \frac{z c}{\pi}$

so put $z = \frac{\pi x}{c} \text{ or } x = \frac{z c}{\pi}$ Thus the function f(x) of period 2c is transformed to the function

$$f\left(\frac{cz}{\pi}\right)$$
 or $F(z)$ of period 2 π .

F(z) can be expanded in the Fourier series.

$$F(z) = f\left(\frac{cz}{\pi}\right) = \frac{a_0}{2} + a_1 \cos z + a_2 \cos 2z + ... + b_1 \sin z + b_2 \sin 2z + ...$$

where
$$a_0 = \frac{1}{\pi} \int_0^{2\pi} F(z) dz = \frac{1}{\pi} \int_0^{2\pi} f\left(\frac{cz}{\pi}\right) dz$$

 $= \frac{1}{\pi} \int_0^{2c} f(x) d\left(\frac{\pi x}{c}\right) = \frac{1}{c} \int_0^{2c} f(x) dx$ [put $z = \frac{\pi x}{c}$]
 $a_0 = \frac{1}{c} \int_0^{2c} f(x) dx$

$$a_n = \frac{1}{\pi} \int_0^{2\pi} F(z) \cos nz \, dz = \frac{1}{\pi} \int_0^{2\pi} f\left(\frac{cz}{\pi}\right) \cos nz \, dz$$

$$= \frac{1}{\pi} \int_0^{2c} f(x) \cos \frac{n \pi x}{c} \, d\left(\frac{\pi x}{c}\right) = \frac{1}{c} \int_0^{2c} f(x) \cos \frac{n \pi x}{c} \, dx. \qquad \left[\text{Put } z = \frac{\pi x}{c} \right]$$

$$a_n = \frac{1}{c} \int_0^{2c} f(x) \cos \frac{n \pi x}{c} \, dx$$

Similarly,

$$b_n = \frac{1}{c} \int_0^{2c} f(x) \sin \frac{n \pi x}{c} dx$$

Example 15. Find the Fourier series corresponding to the function f(x) defined in (-2, 2) as follows

$$f(x) = \begin{cases} 2 & in \quad -2 \le x \le 0 \\ x & in \quad 0 < x < 2 \end{cases}$$

Solution. Here the interval is (-2, 2) and c = 2

$$a_0 = \frac{1}{c} \int_{-c}^{c} f(x) dx = \frac{1}{2} \left[\int_{-2}^{0} 2 \cdot dx + \int_{0}^{2} x \cdot dx \right]$$
$$= \frac{1}{2} \left[\left[2x \right]_{-2}^{0} + \left(\frac{x^2}{2} \right)_{0}^{2} \right] = \frac{1}{2} \left[4 + 2 \right] = 3$$

$$a_n = \frac{1}{c} \int_{-c}^{c} f(x) \cos\left(\frac{n\pi x}{c}\right) dx = \frac{1}{2} \left[\int_{-2}^{0} 2 \cos\frac{n\pi x}{2} dx + \int_{0}^{2} x \cos\frac{n\pi x}{2} dx \right]$$

$$= \frac{1}{2} \left[\frac{4}{n\pi} \left(\sin\frac{n\pi x}{2} \right)_{-2}^{0} + \left(x \frac{2}{n\pi} \sin\frac{n\pi x}{2} + \frac{4}{n^2\pi^2} \cos\frac{n\pi x}{2} \right)_{0}^{2} \right]$$

$$= \frac{1}{2} \left[\frac{4}{n^2\pi^2} \cos n\pi - \frac{4}{n^2\pi^2} \right] = \frac{2}{n^2\pi^2} \left[(-1)^n - 1 \right]$$

$$= -\frac{4}{n^2\pi^2}, \quad \text{when } n \text{ is odd}$$

$$= 0. \quad \text{when } n \text{ is even.}$$

$$b_n = \frac{1}{c} \int_{-c}^{c} f(x) \sin \frac{n\pi x}{c} dx = \frac{1}{2} \int_{-2}^{0} 2 \sin \frac{n\pi x}{2} dx + \frac{1}{2} \int_{0}^{2} x \sin \frac{n\pi x}{2} dx$$

$$= \frac{1}{2} \left[2 \left(-\frac{2}{n\pi} \cos \frac{n\pi x}{2} \right) \right]_{-2}^{0} + \frac{1}{2} \left[x \left(-\frac{2}{n\pi} \cos \frac{n\pi x}{2} \right) + (1) \frac{4}{n^2 \pi^2} \sin \frac{n\pi x}{2} \right]_{0}^{2}$$

$$= \frac{1}{2} \left[-\frac{4}{n\pi} + \frac{4}{n\pi} \cos n\pi \right] + \frac{1}{2} \left[-\frac{4}{n\pi} \cos n\pi + \frac{4}{n^2 \pi^2} \sin n\pi \right] = \frac{1}{2} \left[-\frac{4}{n\pi} \right] = -\frac{2}{n\pi}$$

$$f(x) = \frac{a_0}{2} + a_1 \cos \frac{\pi x}{c} + a_2 \cos \frac{2\pi x}{c} + a_3 \cos \frac{3\pi x}{c} + \dots$$

$$+b_{1} \sin \frac{\pi x}{c} + b_{2} \sin \frac{2\pi x}{c} + b_{3} \sin \frac{3\pi x}{c} + \dots$$

$$= \frac{3}{2} - \frac{4}{\pi^{2}} \left\{ \frac{1}{1^{2}} \cos \frac{\pi x}{2} + \frac{1}{3^{2}} \cos \frac{3\pi x}{2} + \dots \right\}$$

$$- \frac{2}{\pi} \left\{ \frac{1}{1} \sin \frac{\pi x}{2} + \frac{1}{2} \sin \frac{2\pi x}{2} + \frac{1}{3} \sin \frac{3\pi x}{2} + \dots \right\} \quad \text{Ans.}$$

Example 16. A periodic function of period 4 is defined as

$$f(x) = |x|, -2 < x < 2.$$

Find its Fourier series expansion.

Solution. f(x) = |x| -2 < x < 2 $\Rightarrow f(x) = \begin{cases} x, & 0 < x < 2 \\ -x, & -2 < x < 0 \end{cases}$ $a_0 = \frac{1}{2} \int_{-c}^{c} f(x) dx = \frac{1}{2} \int_{0}^{2} x dx + \frac{1}{2} \int_{-2}^{0} (-x) dx$

$$= \frac{1}{2} \left[\frac{x^2}{2} \right]_0^2 + \frac{1}{2} \left[\frac{-x^2}{2} \right]_{-2}^0 = \frac{1}{4} (4 - 0) + \frac{1}{4} (0 + 4) = 2$$

$$a_n = \frac{1}{c} \int_{-c}^c f(x) \cos \frac{n\pi x}{c} dx = \frac{1}{2} \int_0^2 x \cos \frac{n\pi x}{2} dx + \frac{1}{2} \int_{-2}^0 (-x) \cos \frac{n\pi x}{2} dx$$

$$= \frac{1}{2} \left[x \left(\frac{2}{n\pi} \sin \frac{n\pi x}{2} \right) - (1) \left(-\frac{4}{n^2 \pi^2} \cos \frac{n\pi x}{2} \right) \right]_0^2$$

$$+ \frac{1}{2} \left[(-x) \left(\frac{2}{n\pi} \sin \frac{n\pi x}{2} \right) - (-1) \left(-\frac{4}{n^2 \pi^2} \right) \cos \frac{n\pi x}{2} \right]_{-2}^0$$

$$= \frac{1}{2} \left[0 + \frac{4}{n^2 \pi^2} (-1)^n - \frac{4}{n^2 \pi^2} \right] + \frac{1}{2} \left[0 - \frac{4}{n^2 \pi^2} + \frac{4}{n^2 \pi^2} (-1)^n \right]$$

$$= \frac{1}{2} \frac{4}{n^2 \pi^2} \left[(-1)^n - 1 - 1 + (-1)^n \right] = \frac{4}{n^2 \pi^2} \left[(-1)^n - 1 \right]$$

$$= -\frac{8}{n^2 \pi^2} \qquad \text{(If } n \text{ is odd.)}$$

$$= 0 \qquad \text{(If } n \text{ is even)}$$

$$b_n = 0 \text{ as } f(x) \text{ is even function.}$$
Fourier series is

$$f(x) = \frac{a_0}{2} + a_1 \cos \frac{\pi x}{c} + a_2 \cos \frac{2\pi x}{c} + \dots + b_1 \sin \frac{\pi x}{c} + b_2 \sin \frac{2\pi x}{c} + \dots$$

$$f(x) = 1 - \frac{8}{\pi^2} \left[\frac{\cos \frac{\pi x}{2}}{1^2} + \frac{\cos \frac{3\pi x}{2}}{3^2} + \frac{\cos \frac{5\pi x}{2}}{5^2} + \dots \right]$$
Ans.

Example 17. Prove that

Example 17. Prove that
$$\frac{1}{2} - x = \frac{l}{\pi} \sum_{l=1}^{\infty} \frac{l}{n} \sin \frac{2n\pi x}{l}, 0 < x$$
Solution.
$$f(x) = \frac{1}{2} - x$$

$$a_0 = \frac{1}{l/2} \int_0^l f(x) dx = \frac{2}{l} \int_0^l \left(\frac{1}{2} - x\right) dx = \frac{2}{l} \left[\frac{lx}{2} - \frac{x^2}{2}\right]_0^l = 0$$

$$a_n = \frac{1}{l/2} \int_0^l f(x) \cos \frac{n\pi x}{l/2} dx = \frac{2}{l} \int_0^l \left(\frac{l}{2} - x\right) \cos \frac{2n\pi x}{l} dx$$

$$= \frac{2}{l} \left[\left(\frac{l}{2} - x\right) \frac{l}{2n\pi} \sin \frac{2n\pi x}{l} + (-1) \frac{l^2}{4n^2\pi^2} \cos \frac{2n\pi x}{l} \right]_0^l$$

$$= \frac{2}{l} \left[0 - \frac{l^2}{4n^2\pi^2} \cos 2n\pi + \frac{l^2}{4n^2\pi^2} \right]$$

$$= \frac{2}{l} \frac{l^2}{4n^2\pi^2} (-\cos 2n\pi + 1) = \frac{l}{2n^2\pi^2} (-1 + 1) = 0$$

$$b_n = \frac{1}{1/2} \int_0^l f(x) \sin \frac{n\pi x}{l/2} dx = \frac{2}{l} \int_0^l \left(\frac{1}{2} - x\right) \sin \frac{2n\pi x}{l} dx$$

$$= \frac{2}{l} \left[\left(\frac{1}{2} - x\right) \left(-\frac{1}{2n\pi} \cos \frac{2n\pi x}{l} \right) - (-1) \left(-\frac{l^2}{4n^2\pi^2} \sin \frac{2n\pi x}{l} \right) \right]_0^l$$

$$= \frac{2}{l} \left[\frac{l}{2n\pi} \cos 2n\pi - 0 + \frac{l}{2} \cdot \frac{l}{2n\pi} (1) \right] = \frac{2}{l} \left[\frac{l^2}{2n\pi} \right] = \frac{l}{n\pi}$$
Fourier series is
$$f(x) = \frac{a_0}{2} + a_1 \cos \frac{\pi x}{l/2} + a_2 \cos \frac{2\pi x}{l/2} + a_3 \cos \frac{3\pi x}{l/2} + \dots$$

$$+ b_1 \sin \frac{\pi x}{l/2} + b_2 \sin \frac{2\pi x}{l/2} + b_3 \sin \frac{3\pi x}{l/2} + \dots$$

$$\frac{l}{2} - x = \frac{l}{\pi} \sin \frac{2\pi x}{l} + \frac{l}{2\pi} \sin \frac{4\pi x}{l} + \frac{l}{3\pi} \sin \frac{6\pi x}{l} + \dots$$

40.13 HALF PERIOD SERIES

 $= \frac{l}{\pi} \sum_{1}^{\infty} \frac{1}{n} \sin \frac{2n\pi x}{l}$

Cosine series:
$$f(x) = \frac{a_0}{2} + a_1 \cos \frac{\pi x}{c} + a_2 \cos \frac{2\pi x}{c} + ... + a_n \cos \frac{n\pi x}{c} + ...$$

where $a_0 = \frac{2}{c} \int_0^c f(x) dx, \, a_n = \frac{2}{c} \int_0^c f(x) \cos \frac{n\pi x}{c} dx$

Sine series:
$$f(x) = b_1 \sin \frac{\pi x}{c} + b_2 \sin \frac{2\pi x}{c} + \dots + b_n \sin \frac{n\pi x}{c} + \dots$$

where
$$b_n = \frac{2}{c} \int_0^c f(x) \sin \frac{n \pi x}{c} dx.$$

Example 18. Expand for f(x) = k for $0 \le x \le 2$ in a half range sine series.

(U.P., II Semester, June 2007)

Proved.

Solution.
$$f(x) = k$$

$$b_n = \frac{2}{c} \int_0^c f(x) \cdot \sin \frac{n\pi x}{c} dx \text{ in half range } (0, c) = \frac{2}{2} \int_0^2 k \sin \frac{n\pi x}{2} dx$$
$$= k \frac{2}{n\pi} \left(-\cos \frac{n\pi x}{2} \right)_0^2 = \frac{2k}{n\pi} [-\cos n\pi + 1]$$

Half range sine series is

$$f(x) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{2}$$

$$k = \sum_{n=1}^{\infty} \frac{2k}{n\pi} [1 - \cos n\pi] \sin \frac{n\pi x}{2}$$
Ans.

Example 19. Obtain the half-range sine series for the function $f(x) = x^2$ in the interval $0 \le x \le 3$. (U.P., II Semester, Summer 2002)

Solution. We know that half range sine series is given by $f(x) = \sum b_n \sin nx$

Where

$$b_n = \frac{2}{c} \int_0^c f(x) \sin \frac{n\pi x}{c} dx$$
 in the half-range $(0, c)$.

Here, we have half range 0 < x < 3 and $f(x) = x^2$

$$b_n = \frac{2}{3} \int_0^3 x^2 \sin \frac{n\pi x}{3} dx$$

$$=\frac{2}{3}\left[x^2\left(\frac{3}{n\pi}\right)\left(-\cos\frac{n\pi x}{3}\right)+2x\times\left(\frac{3}{n\pi}\right)\left(\frac{3}{n\pi}\right)\sin\frac{n\pi x}{3}-2\left(\frac{3}{n\pi}\right)\left(\frac{3}{n\pi}\right)\left(\frac{3}{n\pi}\right)\left(-\cos\frac{n\pi x}{3}\right)\right]_0^3$$

$$\Rightarrow b_n = \frac{2}{3} \left[\left\{ -\frac{27}{n\pi} (-1)^n - \frac{54}{n^3 \pi^3} (-1)^n \right\} + \frac{54}{n^3 \pi^3} \right]$$

$$\Rightarrow b_n = \frac{2}{3} \left[\frac{54}{n^3 \pi^3} \left\{ 1 - (-1)^n \right\} - \frac{27}{n \pi} (-1)^n \right] \Rightarrow b_n = \frac{2}{3} \left[\frac{108}{n^3 \pi^3} + \frac{27}{n \pi} \right] \text{ when } n \text{ is odd}$$

And
$$b_n = -\frac{18}{n\pi}$$
 when *n* is even

:. Half range sine series

$$f(x) = b_1 \sin x + b_2 \sin 2x + b_3 \sin 3x + \dots$$

$$= \frac{2}{3} \left[\frac{108}{\pi^3} \left(\frac{\sin x}{1^3} + \frac{\sin 3x}{3^3} + \frac{\sin 5x}{5^3} + \dots \right) + \frac{27}{\pi} \left(\frac{\sin x}{1} + \frac{\sin 3x}{3} + \frac{\sin 5x}{5} + \dots \right) \right] - \frac{18}{\pi} \left(\frac{\sin 2x}{2} + \frac{\sin 4x}{4} + \dots \right)$$
Ans.

Example 20. Expand $f(x) = e^x$ in a cosine series over (0, 1). **Solution.** Here, we have $f(x) = e^x$ and c = 1

$$a_0 = \frac{2}{c} \int_0^c f(x) \, dx = \frac{2}{1} \int_0^1 e^x \, dx = 2 (e - 1)$$

$$a_n = \frac{2}{c} \int_0^c f(x) \cos \frac{n\pi x}{c} \, dx = \frac{2}{1} \int_0^1 e^x \cos \frac{n\pi x}{1} \, dx$$

$$= 2 \left[\frac{e^x}{n^2 \pi^2 + 1} (n \pi \sin n \pi x + \cos n \pi x) \right]_0^1$$

$$= 2 \left[\frac{e^1}{n^2 \pi^2 + 1} (n \pi \sin n \pi + \cos n \pi) - \frac{1}{n^2 \pi^2 + 1} \right]$$

$$= \frac{2}{n^2 \pi^2 + 1} [(-1)^n e - 1]$$

$$f(x) = \frac{a_0}{2} + a_1 \cos \pi x + a_2 \cos 2\pi x + a_3 \cos 3\pi x + \dots$$

$$e^{x} = e - 1 + 2 \left[\frac{-e - 1}{\pi^{2} + 1} \cos \pi x + \frac{e - 1}{4 \pi^{2} + 1} \cos 2 \pi x + \frac{-e - 1}{9 \pi^{2} + 1} \cos 3 \pi x + \dots \right]$$
 Ans.

Example 21. Find the Fourier half-range cosine series of the function

$$f(t) = \begin{cases} 2t, & 0 < t < 1 \\ 2(2-t), & 1 < t < 2 \end{cases}$$
 (U.P., II Semester, Summer 2007, 2006, 2001)

Solution.
$$f(t) = \begin{cases} 2t, & 0 < t < 1 \\ 2(2-t), & 1 < t < 2 \end{cases}$$

Let
$$f(t) = \frac{a_0}{2} + a_1 \cos \frac{\pi t}{c} + a_2 \cos \frac{2\pi t}{c} + a_3 \cos \frac{3\pi t}{c} + \dots$$
$$+ b_1 \sin \frac{\pi t}{c} + b_2 \sin \frac{2\pi t}{c} + b_3 \sin \frac{3\pi t}{c} + \dots \dots (1)$$

Here, c = 2, because it is half range series

Hence,
$$a_0 = \frac{2}{c} \int_0^c f(t) dt = \frac{2}{2} \int_0^1 2t dt + \frac{2}{2} \int_1^2 2(2-t) dt$$

$$= [t^2]_0^1 + \left[2 \left(2t - \frac{t^2}{2} \right) \right]_1^2 = 1 + [4t - t^2]_1^2 = 1 + (8 - 4 - 4 + 1) = 2$$

$$a_n = \frac{2}{c} \int_0^c f(t) \cos \frac{n\pi t}{c} dt = \frac{2}{2} \int_0^1 2t \cos \frac{n\pi t}{2} dt + \frac{2}{2} \int_1^2 2(2-t) \cos \frac{n\pi t}{2} dt$$

$$= \left[2t \left(\frac{2}{n\pi} \sin \frac{n\pi t}{2} \right) - (2) \left(-\frac{4}{n^2 \pi^2} \cos \frac{n\pi t}{2} \right) \right]_0^1$$

$$+ \left[(4 - 2t) \left(\frac{2}{n\pi} \sin \frac{n\pi t}{2} \right) - (-2) \left(-\frac{4}{n^2 \pi^2} \cos \frac{n\pi t}{2} \right) \right]_1^2$$

$$= \left[\frac{4}{n\pi} \sin \frac{n\pi}{2} + \frac{8}{n^2 \pi^2} \cos \frac{n\pi}{2} - \frac{8}{n^2 \pi^2} \right] + \left[0 - \frac{8}{n^2 \pi^2} \cos n\pi - \frac{4}{n\pi} \sin \frac{n\pi}{2} + \frac{8}{n^2 \pi^2} \cos \frac{n\pi}{2} \right]$$

$$= \frac{16}{n^2 \pi^2} \cos \frac{n\pi}{2} - \frac{8}{n^2 \pi^2} - \frac{8}{n^2 \pi^2} \cos n\pi = \frac{8}{n^2 \pi^2} \left[2\cos \frac{n\pi}{2} - 1 - \cos n\pi \right]$$

$$f(t) = 1 + \frac{8}{\pi^2} \sum_{n=0}^{\infty} \left[2\cos \frac{n\pi}{2} - 1 - \cos n\pi \right] \cos \frac{n\pi t}{2}$$
Ans.

Example 22. Obtain the Fourier cosine series expansion of the periodic function defined by (πt)

$$f(t) = \sin\left(\frac{\pi t}{l}\right), \ 0 < t < l$$
 (U.P., II Semester, Summer 2001)

Solution. We have,
$$f(t) = \sin\left(\frac{\pi t}{l}\right)$$
, $0 < t < l$

$$a_{0} = \frac{2}{l} \int_{0}^{l} \sin\left(\frac{\pi t}{l}\right) dt = \frac{2}{l} \left(-\frac{l}{\pi} \cos\frac{\pi t}{l}\right)_{0}^{l} = -\frac{2}{\pi} (\cos\pi - \cos0) = -\frac{2}{\pi} (-1 - 1) = \frac{4}{\pi}$$

$$a_{n} = \frac{2}{l} \int_{0}^{l} \sin\left(\frac{\pi t}{l}\right) \cos\frac{n\pi t}{l} dt = \frac{1}{l} \int_{0}^{l} \left[\sin\left(\frac{\pi t}{l} + \frac{n\pi t}{l}\right) - \sin\left(\frac{n\pi t}{l} - \frac{\pi t}{l}\right)\right] dt$$

$$= \frac{1}{l} \int_{0}^{l} \sin\left(n + 1\right) \frac{\pi t}{l} dt - \frac{1}{l} \int_{0}^{l} \sin\left(n - 1\right) \frac{\pi t}{l} dt$$

$$= \frac{1}{l} \left[-\frac{l}{(n + 1)\pi} \cos\frac{(n + 1)\pi t}{l}\right]_{0}^{l} - \frac{1}{l} \left[\frac{l}{(n - 1)\pi} \cos\frac{(n - 1)\pi t}{l}\right]_{0}^{l}$$

$$= \frac{-1}{(n + 1)\pi} \left[\cos\left(n + 1\right)\pi - \cos0\right] + \frac{1}{(n - 1)\pi} \left[\cos\left(n - 1\right)\pi - \cos0\right]$$

$$= \frac{1}{(n + 1)\pi} \left[(-1)^{n+1} - 1\right] + \frac{1}{(n - 1)\pi} \left[(-1)^{n+1} - 1\right]$$

$$= (-1)^{n+1} \left[\frac{1}{(n + 1)\pi} + \frac{1}{(n - 1)\pi}\right] + \frac{1}{(n + 1)\pi} - \frac{1}{(n - 1)\pi}$$

$$= (-1)^{n+1} \frac{2}{(n^{2} - 1)\pi} - \frac{2}{(n^{2} - 1)\pi} = \frac{2}{(n^{2} - 1)\pi} \left[(-1)^{n+1} - 1\right]$$

$$= \frac{-4}{(n^{2} - 1)\pi}, \quad \text{when } n \text{ is even}$$

$$= 0, \quad \text{when } n \text{ is odd.}$$

The above formula for finding the value of a_1 is not applicable.

$$a_{1} = \frac{2}{l} \int_{0}^{l} \sin \frac{\pi t}{l} \cos \frac{\pi t}{l} dt = \frac{1}{l} \int_{0}^{l} \sin \frac{2\pi t}{l} dt$$

$$= \frac{1}{l} \left(-\frac{l}{2\pi} \cos \frac{2\pi t}{l} \right)_{0}^{l} = -\frac{l}{2\pi l} (\cos 2\pi - \cos 0) = -\frac{1}{2\pi} (1 - 1) = 0$$

$$f(t) = \frac{a_{0}}{2} + a_{1} \cos \frac{\pi t}{l} + a_{2} \cos \frac{2\pi t}{l} + a_{3} \cos \frac{3\pi t}{l} + a_{4} \cos \frac{4\pi t}{l} + \dots$$

$$= \frac{2}{\pi} - \frac{4}{\pi} \left[\frac{1}{3} \cos \frac{2\pi t}{l} + \frac{1}{15} \cos \frac{4\pi t}{l} + \frac{1}{35} \cos \frac{6\pi t}{l} + \dots \right]$$
Ans.

Example 23. Find the Fourier cosine series expansion of the periodic function of period 1

$$f(x) = \begin{cases} \frac{1}{2} + x, & -\frac{1}{2} < x \le 0 \\ \frac{1}{2} - x, & 0 < x < \frac{1}{2} \end{cases}$$
Solution. Let $f(x) = \frac{a_0}{2} + a_1 \cos \frac{\pi x}{c} + a_2 \cos \frac{2\pi x}{c} + \dots$... (1) as $f(x)$ is a cosine series.

Here
$$2 c = 1 \Rightarrow c = \frac{1}{2}$$

$$a_0 = \frac{1}{c} \int_{-c}^{c} f(x) dx = \frac{1}{1/2} \int_{-1/2}^{0} \left(\frac{1}{2} + x\right) dx + \frac{1}{1/2} \int_{0}^{1/2} \left(\frac{1}{2} - x\right) dx$$

$$= 2 \left[\frac{x}{2} + \frac{x^2}{2}\right]_{-1/2}^{0} + 2 \left[\frac{x}{2} - \frac{x^2}{2}\right]_{0}^{1/2} = 2 \left[\frac{1}{4} - \frac{1}{8}\right] + 2 \left[\frac{1}{4} - \frac{1}{8}\right] = \frac{1}{2}$$

$$a_n = \frac{1}{c} \int_{-c}^{c} f(x) \cos \frac{n\pi x}{c} dx$$

$$= \frac{1}{1/2} \int_{-1/2}^{0} \left(\frac{1}{2} + x\right) \cos \frac{n\pi x}{1/2} dx + \frac{1}{1/2} \int_{0}^{1/2} \left(\frac{1}{2} - x\right) \cos \frac{n\pi x}{1/2} dx$$

$$= 2 \int_{-1/2}^{0} \left(\frac{1}{2} + x\right) \cos 2n\pi x dx + 2 \int_{0}^{1/2} \left(\frac{1}{2} - x\right) \cos 2n\pi x dx$$

$$= 2 \left[\left(\frac{1}{2} + x\right) \frac{\sin 2n\pi x}{2n\pi} - (1) \left(-\frac{\cos 2n\pi x}{4n^2\pi^2}\right)\right]_{-1/2}^{0}$$

$$+ 2 \left[\left(\frac{1}{2} - x\right) \frac{\sin 2n\pi x}{2n\pi} - (-1) \left(\frac{-\cos 2n\pi x}{4n^2\pi^2}\right)\right]_{0}^{1/2}$$

$$= 2 \left[0 + \frac{1}{4n^2\pi^2} - \frac{(-1)^n}{4n^2\pi^2}\right] + 2 \left[0 - \frac{(-1)^n}{4n^2\pi^2} + \frac{1}{4n^2\pi^2}\right] = \frac{1}{\pi^2} \left[\frac{1}{n^2} - \frac{(-1)^n}{n^2}\right]$$

$$= \frac{2}{n^2\pi^2} \qquad \text{(if } n \text{ is odd)}$$

$$= 0 \qquad \text{(if } n \text{ is even)}$$

Substituting the values of a_0 , a_1 , a_2 , a_3 , ... in (1), we have

$$f(x) = \frac{1}{4} + \frac{2}{\pi^2} \left[\frac{\cos 2\pi x}{1^2} + \frac{\cos 6\pi x}{3^2} + \frac{\cos 10\pi x}{5^2} + \dots \right]$$
Ans.

Example 24. Let $f(x) = \begin{cases} wx, & \text{where } 0 \le x \le \frac{l}{2} \\ w(l-x), & \text{where } \frac{l}{2} \le x \le l \end{cases}$

Show that
$$f(x) = \frac{4wl}{\pi^2} \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^2} \sin \frac{(2n+1)\pi x}{l}$$

Show that

$$\pi_{n=0}(2n+1)$$
Hence, obtain the sum of the series

 $1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots$ (U.P., Second Semester 2003)

Solution. Half range sine series is

$$f(x) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{l}$$
...(1)
where,
$$b_n = \frac{2}{l} \int_0^l f(x) \sin \frac{n\pi x}{l} dx$$

$$b_n = \frac{2}{l} \left[\int_0^{\frac{l}{2}} f(x) \sin \frac{n\pi x}{l} dx + \int_{\frac{l}{2}}^l f(x) \sin \frac{n\pi x}{l} dx \right]$$

$$= \frac{2}{l} \left[\int_{0}^{\frac{1}{2}} wx \sin \frac{n\pi x}{l} dx + \int_{\frac{1}{2}}^{l} w(l-x) \sin \frac{n\pi x}{l} dx \right]$$

$$= \frac{2}{l} \left[\left\{ wx \left(-\cos \frac{n\pi x}{l} \right) - w \left(-\sin \frac{n\pi x}{l} \right) \right\}_{0}^{l} + \left\{ w(l-x) \left(-\cos \frac{n\pi x}{l} \right) - w(-1) \left(-\sin \frac{n\pi x}{l} \right) \right\}_{\frac{1}{2}}^{l} \right\} \right]$$

$$= \frac{2}{l} \left[\left\{ wl \left(-\cos \frac{n\pi x}{l} \right) - w \left(-\sin \frac{n\pi x}{l} \right) \right\}_{\frac{1}{2}}^{l} + \left\{ w(l-x) \left(-\cos \frac{n\pi x}{l} \right) - w(-1) \left(-\sin \frac{n\pi x}{l} \right) \right\}_{\frac{1}{2}}^{l} \right\} \right]$$

$$= \frac{2}{l} \left[\left\{ wl \left(-\cos \frac{n\pi}{2} \right) + \frac{w \sin \frac{n\pi}{2}}{(n\pi^{2})^{2}} - 0 - 0 \right\} - \left\{ \frac{wl}{2} \left(-\cos \frac{n\pi}{2} \right) - \frac{w \sin \frac{n\pi}{2}}{(n\pi^{2})^{2}} \right\} \right]$$

$$= \frac{2w}{l} \left[-\frac{l^{2}}{2n\pi} \cos \frac{n\pi}{2} + \frac{l^{2}}{n^{2}\pi^{2}} \sin \frac{n\pi}{2} - \frac{l^{2}}{2n\pi} \cos \frac{n\pi}{2} + \frac{l^{2}}{l^{2}\pi^{2}} \sin \frac{n\pi}{2} \right]$$

$$= \frac{2w}{l} \left[\frac{l^{2}}{2n\pi} \cos \frac{n\pi}{2} + \frac{l^{2}}{n^{2}\pi^{2}} \sin \frac{n\pi}{2} + \frac{l^{2}}{2n\pi} \cos \frac{n\pi}{2} + \frac{l^{2}}{l^{2}\pi^{2}} \sin \frac{n\pi}{2} \right]$$

$$= \frac{2w}{l} \left[\frac{l^{2}}{n^{2}\pi^{2}} \sin \frac{n\pi}{2} + \frac{l^{2}}{n^{2}\pi^{2}} \sin \frac{n\pi}{2} \right]$$

$$= \frac{4wl}{n^{2}\pi^{2}} \sin \frac{n\pi}{2}, \text{ when } n \text{ is odd.}$$

$$b_{n} = 0, \text{ when } n \text{ is even.}$$
Now, putting the value of b_{n} in (1), we get
$$f(x) = \sum_{n=1}^{\infty} \frac{4wl}{n^{2}(2n+1)^{2}\pi^{2}} \sin \frac{n\pi}{2} \sin \frac{n\pi x}{l}, \text{ when } n \text{ is odd}$$

$$f(x) = \sum_{n=1}^{\infty} \frac{4wl}{(2n+1)^{2}\pi^{2}} \sin \frac{(2n+1)\pi x}{l}$$

$$f(x) = \frac{4wl}{\pi^{2}} \left[\frac{1}{l^{2}} \sin \frac{\pi x}{l} - \frac{1}{3^{2}} \sin \frac{3\pi x}{l} + \frac{1}{5^{2}} \sin \frac{5\pi x}{l} + \dots \right]$$

$$putting $x = \frac{l}{l}, f(x) = wx$ and $f\left(\frac{l}{l} \right) = \frac{wl}{2} \text{ in } (2), \text{ we get}$

$$\frac{wl}{2} = \frac{4wl}{\pi^{2}} \left[\frac{1}{l^{2}} \sin \frac{\pi}{2} - \frac{1}{3^{2}} \sin \frac{3\pi}{2} + \frac{1}{5^{2}} \sin \frac{5\pi}{2} + \dots \right]$$

$$\Rightarrow \frac{\pi^{2}}{8} = \frac{1}{l^{2}} + \frac{1}{l^{2}} + \frac{1}{l^{2}} + \dots$$
Ans.$$

Example 25. Find the half period sine series for f(x) given in the range (0, l) by the graph OPQ as shown in figure. (U.P. II semester, 2009)

Solution. The equation of line
$$OP$$
 is $y - 0 = \frac{0 - k}{l - \frac{l}{2}}(x - l) \Rightarrow y = \frac{2kx}{l} + 2k$

and the equation of the line PQ is $y = -\frac{kx}{l} \Rightarrow y = -\frac{2kx}{l}$

f(x) is the half period

$$f(x) = \begin{cases} \frac{2kx}{l}, & 0 < x < \frac{l}{2} \\ -\frac{2kx}{l} + 2k, & \frac{l}{2} < x < l \end{cases}$$

f(x) is half period series. It is to be expanded as sine series. Here, $a_0 = 0$ and $a_n = 0$

$$b_{n} = \frac{2}{l} \int_{0}^{\frac{1}{2}} f(x) \sin \frac{n\pi x}{l} dx + \frac{2}{l} \int_{\frac{1}{2}}^{l} f(x) \sin \frac{n\pi x}{l} dx$$

$$= \frac{2}{l} \int_{0}^{\frac{1}{2}} \frac{2kx}{l} \sin \frac{n\pi x}{l} dx + \frac{2}{l} \int_{\frac{1}{2}}^{l} \left(-2kx + 2k \right) \sin \frac{n\pi x}{l} dx$$

$$= \frac{4k}{l^{2}} \int_{0}^{\frac{1}{2}} x \sin \frac{n\pi x}{l} dx + \frac{4k}{l^{2}} \int_{\frac{1}{2}}^{l} (-x + l) \sin \frac{n\pi x}{l} dx$$

$$= \frac{4k}{l^{2}} \left[x \left(\frac{-l}{n\pi} \cos \frac{n\pi x}{l} \right) - \left(\frac{-l^{2}}{n^{2}\pi^{2}} \sin \frac{n\pi x}{l} \right) \right]_{0}^{\frac{1}{2}} + \frac{4k}{l^{2}} \left[(-x + l) \left(\frac{-l}{n\pi} \cos \frac{n\pi x}{l} \right) - (-1) \left(\frac{-l^{2}}{n^{2}\pi^{2}} \sin \frac{n\pi x}{l} \right) \right]_{\frac{1}{2}}^{l}$$

$$= \frac{4k}{l^{2}} \left[-\frac{l}{2} \left(\frac{l}{n\pi} \right) \cos \frac{n\pi \frac{l}{2}}{l} + \frac{l^{2}}{n^{2}\pi^{2}} \sin \frac{n\pi \frac{l}{2}}{l} \right]$$

$$+ \frac{4k}{l^{2}} \left[(-l + l) \left(-\frac{l}{n\pi} \cos n\pi \right) - \frac{l^{2}}{n^{2}\pi^{2}} \sin n\pi - \left(-\frac{l}{2} + l \right) \left(-\frac{l}{n\pi} \cos \frac{n\pi \frac{l}{2}}{l} \right) + \frac{l^{2}}{n^{2}\pi^{2}} \sin \frac{n\pi \frac{l}{2}}{l} \right]$$

$$= \frac{4k}{l^{2}} \left[-\frac{l^{2}}{2n\pi} \cos \frac{n\pi}{2} + \frac{l^{2}}{n^{2}\pi^{2}} \sin \frac{n\pi}{2} \right] + \frac{4k}{l^{2}} \left[0 - 0 + \frac{l^{2}}{2n\pi} \cos \frac{n\pi}{2} + \frac{l^{2}}{n^{2}\pi^{2}} \sin \frac{n\pi}{2} \right]$$

$$= \frac{4k}{l^{2}} \left(\frac{l^{2}}{2n\pi} \right) \left[-\cos \frac{n\pi}{2} + \frac{2}{n\pi} \sin \frac{n\pi}{2} + \cos \frac{n\pi}{2} + \frac{2}{n\pi} \sin \frac{n\pi}{2} \right]$$

$$= \frac{2k}{n\pi} \left[\frac{4}{n\pi} \sin \frac{n\pi}{2} \right] = \frac{8k}{n^{2}} \sin \frac{n\pi}{2}$$

$$= \frac{2k}{n\pi} \left[\frac{4}{n\pi} \sin \frac{n\pi}{2} \right] = \frac{8k}{n^{2}} \sin \frac{n\pi}{2}$$

Hence, Fourier series of f(x) is

$$f(x) = \frac{8k}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \sin \frac{n\pi}{2} \sin \frac{n\pi x}{l}$$
 Ans.

EXERCISE 40.4

1. Find the Fourier series to represent f(x), where

$$f(x) = \begin{cases} -a, & -c < x < 0 \\ a, & 0 < x < c \end{cases}$$
 Ans. $\frac{4a}{\pi} \left[\sin \frac{\pi x}{c} + \frac{1}{3} \sin \frac{3\pi x}{c} + \frac{1}{5} \sin \frac{5\pi x}{c} + \dots \right]$

2. Find the half-range sine series for the function

$$f(x) = 2 x - 1$$
 $0 < x < 1$ $Ans. -\frac{2}{\pi} \left[\sin 2 \pi x + \frac{1}{2} \sin 4 \pi x + \frac{1}{3} \sin 6 \pi x + \dots \right]$

3. Express f(x) = x as a cosine, half range series in 0 < x < 2

Ans.
$$1 - \frac{8}{\pi^2} \left[\frac{1}{1^2} \cos \frac{\pi x}{2} + \frac{1}{3^2} \cos \frac{3\pi x}{2} + \frac{1}{5^2} \cos \frac{5\pi x}{2} + \dots \right]$$

4. Find the Fourier series of the function

$$f(x) = \begin{cases} -2 & \text{for } -4 < x < -2 \\ x & \text{for } -2 < x < 2 \\ 2 & \text{for } 2 < x < 4 \end{cases}$$

Ans.
$$\frac{4}{\pi} + \frac{8}{\pi^2} \sin \frac{\pi x}{4} - \frac{2}{\pi} \sin \frac{2\pi x}{4} + \left(\frac{4}{3\pi} - \frac{8}{3^2 \pi}\right) \sin \frac{3\pi x}{4} - \frac{2}{2\pi} \sin \frac{4\pi x}{4} + \dots$$

5. Find the Fourier series to represent $f(x) = x^2 - 2$ from -2 < x < 2.

Ans.
$$-\frac{2}{3} - \frac{16}{\pi^2} \left[\cos \frac{\pi x}{2^2} - \frac{1}{4} \cos \pi x + \frac{1}{9} \cos \frac{3 \pi x}{2} + \dots \right]$$

6. If $f(x) = e^{-x}$, -c < x < c, show that

$$f(x) = (e^{c} - e^{-c}) \left\{ \frac{1}{2c} - c \left(\frac{1}{c^{2} + \pi^{2}} \cos \frac{\pi x}{c} - \frac{1}{c^{2} + 4\pi^{2}} \cos \frac{2\pi x}{c} + \dots \right) - \pi \left(\frac{1}{c^{2} + \pi^{2}} \sin \frac{\pi x}{c} - \frac{2}{c^{2} + 4\pi^{2}} \sin \frac{2\pi x}{c} \dots \right) \right\}$$
 (MDU, Dec. 2010)

7. A sinusoidal voltage E sin ω t is passed through a half wave rectifier which clips the negative portion of the wave. Develop the resulting portion of the function

$$u(t) = \begin{cases} 0, & \text{when } -\frac{T}{2} < t < 0 \\ E \sin \omega t, & \text{when } 0 < t < \frac{T}{2} \end{cases} \qquad \left(T = \frac{2\pi}{\omega}\right)$$

Ans.
$$\frac{E}{\pi} + \frac{E}{2} \sin \omega t - \frac{2E}{\pi} \left[\frac{1}{1.3} \cos 2\omega t + \frac{1}{3.5} \cos 4\omega t + \frac{1}{5.7} \cos 6\omega t + \dots \right]$$

8. A periodic square wave has a period 4. The function generating the square is

$$f(t) = \begin{cases} 0 & \text{for } -2 < t < -1 \\ k & \text{for } -1 < t < 1 \\ 0 & \text{for } 1 < t < 2 \end{cases}$$

Find the Fourier series of the function.

Ans.
$$f(t) = \frac{k}{2} + \frac{2k}{\pi} \left[\cos \frac{\pi t}{2} - \frac{1}{3} \cos \frac{3\pi t}{2} + \dots \right]$$

9. Find a Fourier series to represent x^2 in the interval (-l, l).

Ans.
$$\frac{l^2}{3} - \frac{4l^2}{\pi^2} \left[\cos \pi x - \frac{\cos \pi x}{2^2} + \frac{\cos 3\pi x}{3^2} \right]$$

40.14. PARSEVAL'S FORMULA

$$\int_{-c}^{c} [f(x)]^2 dx = c \left\{ \frac{1}{2} a_0^2 + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) \right\}$$
We know that $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n \pi x}{c} + b_n \sin \frac{n \pi x}{c} \right)$...(1)

Multiplying (1) by f(x), we get

$$\left[f(x)\right]^2 = \frac{a_0}{2} f(x) + \sum_{n=1}^{\infty} a_n f(x) \cos \frac{n\pi x}{c} + \sum_{n=1}^{\infty} b_n f(x) \sin \frac{n\pi x}{c} ...(2)$$

Intergrating term by term from -c to c, we have

$$\int_{-c}^{c} [f(x)]^{2} dx = \frac{a_{0}}{2} \int_{-c}^{c} f(x) dx + \sum_{n=1}^{\infty} a_{n} \int_{-c}^{c} f(x) \cos \frac{n\pi x}{c} dx + \sum_{n=1}^{\infty} b_{n} \int_{-c}^{c} f(x) \sin \frac{n\pi x}{c} dx \dots (3)$$

In article 40.12, we have the following results

$$\int_{-c}^{c} f(x) dx = c \ a_0$$

$$\int_{-c}^{c} f(x) \cos \frac{n\pi x}{c} dx = c \ a_n$$

$$\int_{-c}^{c} f(x) \sin \frac{n\pi x}{c} dx = c \ b_n$$
On putting these integrals in (3), we get

$$\int_{-c}^{c} [f(x)]^2 dx = c \frac{a_0^2}{2} + \sum_{n=1}^{\infty} c \, a_n^2 + \sum_{n=1}^{\infty} c \, b_n^2 = c \left| \frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) \right|$$

This is the Parseval's formula.

Note.1. If
$$0 < x < 2c$$
, then $\int_0^{2c} [f(x)]^2 dx = c \left[\frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) \right]$

2. If
$$0 < x < c$$
 (Half range consine series), $\int_0^c [f(x)]^2 dx = \frac{c}{2} \left[\frac{a_0^2}{2} + \sum_{n=1}^\infty a_n^2 \right]$

3. If
$$0 < x < c$$
 (Half range sine series), $\int_0^c [f(x)]^2 dx = \frac{c}{2} \left[\sum_{n=1}^\infty b_n^2 \right]$

4. R.M.S. =
$$\left\{ \frac{\int_{a}^{b} [f(x)]^{2} dx}{b-a} \right\}^{\frac{1}{2}}$$

Example 26. By using the series for f(x) = 1 in $0 < x < \pi$ show that

$$\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots$$

Solution. Sine series is $f(x) = \sum b_n \sin nx$

$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx \, dx$$

$$= \frac{2}{\pi} \int_0^{\pi} (1) \sin nx \, dx = \frac{2}{\pi} \left(\frac{-\cos nx}{n} \right)_0^{\pi} = \frac{-2}{n\pi} \left[\cos n\pi - 1 \right] = \frac{-2}{n\pi} \left[(-1)^n - 1 \right]$$

$$=\frac{4}{n\pi}$$
 if n is odd $=0$ if n is even

Then the sine series is

$$1 = \frac{4}{\pi} \sin x + \frac{4}{3\pi} \sin 3x + \frac{4}{5\pi} \sin 5x + \frac{4}{7\pi} \sin 7x + \dots$$

$$\int_{0}^{c} [f(x)]^{2} dx = \frac{c}{2} \left[b_{1}^{2} + b_{2}^{2} + b_{3}^{2} + b_{4}^{2} + b_{5}^{2} + \dots \right]$$

$$\int_{0}^{\pi} (1)^{2} dx = \frac{\pi}{2} \left[\left(\frac{4}{\pi} \right)^{2} + \left(\frac{4}{3\pi} \right)^{2} + \left(\frac{4}{5\pi} \right)^{2} + \left(\frac{4}{7\pi} \right)^{2} + \dots \right]$$

$$[x]_{0}^{\pi} = \left(\frac{\pi}{2} \right) \left(\frac{16}{\pi^{2}} \right) \left[1 + \frac{1}{3^{2}} + \frac{1}{5^{2}} + \frac{1}{7^{2}} + \dots \right]$$

$$\pi = \frac{\pi}{2} \left(\frac{16}{\pi^{2}} \right) \left[1 + \frac{1}{3^{2}} + \frac{1}{5^{2}} + \frac{1}{7^{2}} + \dots \right]$$

$$\frac{\pi^{2}}{8} = 1 + \frac{1}{3^{2}} + \frac{1}{5^{2}} + \frac{1}{7^{2}} + \dots$$

Proved.

Example 27. If $f(x) = \begin{cases} \pi x & 0 < x < 1 \\ \pi (2 - x), & 1 < x < 2 \end{cases}$

using half range cosine series, show tha

$$\frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \dots = \frac{\pi^4}{96}$$

Solution. Half range consine series is

$$f(x) = \frac{a_0}{2} + \sum a_n \cos \frac{n\pi x}{c}$$
where $a_0 = \frac{2}{c} \int_0^c f(x) dx = \frac{2}{2} \left[\int_0^1 \pi x dx + \int_1^2 \pi (2 - x) dx \right]$

$$= \pi \left(\frac{x^2}{2} \right)_0^1 + \pi \left(2x - \frac{x^2}{2} \right)_1^2 = \frac{\pi}{2} + \pi \left[(4 - 2) - \left(2 - \frac{1}{2} \right) \right] = \pi$$

$$a_n = \frac{2}{c} \int_0^c f(x) \cos \frac{n\pi x}{c} dx$$

$$= \frac{2}{2} \left[\int_0^1 \pi x \cos \frac{n\pi x}{2} dx + \int_1^2 \pi (2 - x) \cos \frac{n\pi x}{2} dx \right]$$

$$= \pi \left[\frac{x \frac{\sin n\pi x}{2}}{\frac{n\pi}{2}} - \left(\frac{-\cos \frac{n\pi x}{2}}{\frac{n^2\pi^2}{4}} \right) \right]_0^1 + \pi \left[(2 - x) \frac{\sin \frac{n\pi x}{2}}{\frac{n\pi}{2}} - (-1) \left(\frac{-\cos \frac{n\pi x}{2}}{\frac{n^2\pi^2}{4}} \right) \right]_1^2$$

$$= \pi \left[\frac{2}{n\pi} \sin \frac{n\pi}{2} + \frac{4}{n^2\pi^2} \cos \frac{n\pi}{2} - \frac{4}{n^2\pi^2} \right] + \pi \left[0 - \frac{4}{n^2\pi^2} \cos n\pi - \frac{2}{n\pi} \sin \frac{n\pi}{2} + \frac{4}{n^2\pi^2} \cos \frac{n\pi}{2} \right]$$

$$= \pi \left[\frac{8}{n^2\pi^2} \cos \frac{n\pi}{2} - \frac{4}{n^2\pi^2} - \frac{4}{n^2\pi^2} \cos n\pi \right] = \frac{4}{n^2\pi} \left[2 \cos \frac{n\pi}{2} - 1 - \cos n\pi \right]$$

$$a_{1} = 0, \ a_{2} = \frac{-4}{\pi}, \ a_{3} = 0, \ a_{4} = 0, \ a_{5} = 0, \ a_{6} = \frac{-4}{9\pi} \dots$$

$$\int_{0}^{c} [f(x)]^{2} dx = \frac{c}{2} \left[\frac{a_{0}^{2}}{2} + a_{1}^{2} + a_{2}^{2} + a_{3}^{2} + \dots \right]$$

$$\int_{0}^{1} (\pi x)^{2} dx + \int_{1}^{2} \pi^{2} (2 - x)^{2} dx = \frac{2}{2} \left[\frac{\pi^{2}}{2} + \frac{16}{\pi^{2}} + \frac{16}{81\pi^{2}} + \dots \right]$$

$$\pi^{2} \left[\frac{x^{3}}{3} \right]_{0}^{1} - \pi^{2} \left[\frac{(2 - x)^{3}}{3} \right]_{1}^{2} = \frac{\pi^{2}}{2} + \frac{16}{\pi^{2}} + \frac{16}{81\pi^{2}} + \dots$$

$$\frac{\pi^{2}}{3} - \pi^{2} \left(0 - \frac{1}{3} \right) = \frac{\pi^{2}}{2} + \frac{16}{\pi^{2}} \left[1 + \frac{1}{81} + \dots \right]$$

$$\frac{2\pi^{2}}{3} - \frac{\pi^{2}}{2} = \frac{16}{\pi^{2}} \left[1 + \frac{1}{3^{4}} + \frac{1}{5^{4}} + \dots \right]$$

$$\frac{\pi^{2}}{6} = \frac{16}{\pi^{2}} \left[1 + \frac{1}{3^{4}} + \frac{1}{5^{4}} + \dots \right]$$

$$\frac{\pi^{4}}{96} = 1 + \frac{1}{3^{4}} + \frac{1}{5^{4}} + \dots$$
Ans.

Example 28. Prove that for $0 \le x \le \pi$

(a)
$$x(\pi - x) = \frac{\pi^2}{6} - \left[\frac{\cos 2x}{l^2} + \frac{\cos 4x}{2^2} + \frac{\cos 6x}{3^2} + \dots \right]$$

(b) $x(\pi - x) = \frac{8}{\pi} \left[\frac{\sin x}{l^2} + \frac{\sin 3x}{3^2} + \frac{\sin 5x}{5^2} + \dots \right]$

Deduce from (a) and (b) respectively that

(c)
$$\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$$
 (d) $\sum_{n=1}^{\infty} \frac{1}{n^6} = \frac{\pi^4}{945}$

Solution. (a) Half range cosine series

$$a_0 = \frac{2}{\pi} \int_0^{\pi} x (\pi - x) = \frac{2}{\pi} \left[\frac{\pi x^2}{2} - \frac{x^3}{3} \right]_0^{\pi} = \frac{2}{\pi} \left[\frac{\pi^3}{2} - \frac{\pi^3}{3} \right] = \frac{\pi^2}{3}$$

$$a_n = \frac{2}{\pi} \int_0^{\pi} x (\pi - x) \cos nx \, dx$$

$$= \frac{2}{\pi} \left[(\pi x - x^2) \frac{\sin nx}{n} - (\pi - 2x) \left(\frac{-\cos nx}{n^2} \right) + (-2) \left(\frac{-\sin nx}{n^3} \right) \right]_0^{\pi}$$

$$= \frac{2}{\pi} \left[0 - \frac{\pi (-1)^n}{n^2} + 0 - \frac{\pi}{n^2} \right] = \frac{2}{\pi} \left(\frac{\pi}{n^2} \right) [-(-1)^n - 1]$$

$$= -\frac{4}{n^2}$$
(when n is even)
$$= 0$$

$$\pi^2 = \left[\cos 2x - \cos 4x - \frac{\pi}{n^2} \right]$$

Hence,
$$x (\pi - x) = \frac{\pi^2}{6} - 4 \left[\frac{\cos 2x}{2^2} + \frac{\cos 4x}{4^2} + \dots \right]$$

By Parseval's formula
$$\frac{2}{\pi} \int_0^{\pi} x^2 (\pi - x)^2 dx = \frac{a_0^2}{2} + \sum a_n^2$$

$$\frac{2}{\pi} \int_0^{\pi} (\pi^2 x^2 - 2\pi x^3 + x^4) dx = \frac{1}{2} \left(\frac{\pi^4}{9} \right) + 16 \left[\frac{1}{2^4} + \frac{1}{4^4} + \frac{1}{6^4} + \dots \right]$$

$$\frac{2}{\pi} \left[\frac{\pi^2 x^3}{3} - \frac{2\pi x^4}{4} + \frac{x^5}{5} \right]_0^{\pi} = \frac{\pi^4}{18} + \left[\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots \right]$$

$$\frac{2}{\pi} \left[\frac{\pi^5}{3} - \frac{2\pi^5}{4} + \frac{\pi^5}{5} \right] = \frac{\pi^4}{18} + \left[\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots \right]$$

$$\frac{\pi^4}{15} = \frac{\pi^4}{18} + \sum_{n=1}^{\infty} \frac{1}{n^4} \qquad \text{or} \qquad \sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$$

(b) Half range sine series

$$b_n = \frac{2}{\pi} \int_0^{\pi} x (\pi - x) \sin nx \, dx$$

$$= \frac{2}{\pi} \left[(\pi x - x^2) \left(\frac{-\cos nx}{n} \right) - (\pi - 2x) \left(\frac{-\sin nx}{n^2} \right) + (-2) \frac{\cos nx}{n^3} \right]_0^{\pi}$$

$$= \frac{2}{\pi} \left[-2 \frac{(-1)^n}{n^3} + \frac{2}{n^3} \right] = \frac{4}{\pi n^3} \left[-(-1)^n + 1 \right]$$

$$= \frac{8}{n^3 \pi}$$
(when *n* is odd)
$$= 0$$
(when *n* is even)

$$\therefore x (\pi - x) = \frac{8}{\pi} \left[\frac{\sin x}{1^3} + \frac{\sin 3x}{3^3} + \frac{\sin 5x}{5^3} + \dots \right]$$

By Parseval's formula

$$\frac{2}{\pi} \int_0^{\pi} x^2 (\pi - x^2) dx = \sum b_n^2$$

$$\frac{\pi^4}{15} = \frac{64}{\pi^2} \left[\frac{1}{1^6} + \frac{1}{3^6} + \frac{1}{5^6} + \dots \right]$$

$$\frac{\pi^6}{960} = \frac{1}{1^6} + \frac{1}{3^6} + \frac{1}{5^6} + \dots$$

$$\text{Let } S = \frac{1}{1^6} + \frac{1}{2^6} + \frac{1}{3^6} + \frac{1}{4^6} + \dots = \left(\frac{1}{1^6} + \frac{1}{3^6} + \frac{1}{5^6} \dots \right) + \left(\frac{1}{2^6} + \frac{1}{4^6} + \frac{1}{6^6} + \dots \right)$$

$$S = \frac{\pi^6}{960} + \left(\frac{1}{2^6} + \frac{1}{4^6} + \frac{1}{6^6} + \dots \right) = \frac{\pi^6}{960} + \frac{1}{2^6} \left[\frac{1}{1^6} + \frac{1}{2^6} + \frac{1}{3^6} + \dots \right]$$

$$S = \frac{\pi^6}{960} + \frac{S}{64}$$

$$S - \frac{S}{64} = \frac{\pi^6}{960} \implies \frac{63}{64} S = \frac{\pi^6}{960}$$

$$S = \frac{\pi^6}{960} \times \frac{64}{63} = \frac{\pi^6}{945}$$
Proved.

EXERCISE 40.5

1. Prove that in 0 < x < c,

$$x = \frac{c}{2} - \frac{4c}{\pi^2} \left(\cos \frac{\pi x}{c} + \frac{1}{3^2} \cos \frac{3\pi x}{c} + \frac{1}{5^2} \cos \frac{5\pi x}{c} + \dots \right) \text{ and deduce that}$$

(i)
$$\frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \dots = \frac{\pi^4}{96}$$
 (ii) $\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4} + \dots = \frac{\pi^4}{90}$

40.15 FOURIER SERIES IN COMPLEX FORM

Fourier series of a function f(x) of period 2l is

We know that $\cos x = \frac{e^{ix} + e^{-ix}}{2}$ and $\sin x = \frac{e^{ix} - e^{-ix}}{2i}$

On putting the values of $\cos x$ and $\sin x$ in (1), we get

$$f(x) = \frac{a_0}{2} + a_1 \frac{\frac{i\pi x}{l} + e^{\frac{-i\pi x}{l}}}{2} + a_2 \frac{e^{\frac{2i\pi x}{l}} + e^{\frac{-2i\pi x}{l}}}{2} + \dots + b_1 \frac{e^{\frac{i\pi x}{l}} - e^{\frac{i\pi x}{l}}}{2i} + b_2 \frac{e^{\frac{2i\pi x}{l}} - e^{\frac{-2i\pi x}{l}}}{2i} + \dots$$

$$= \frac{a_0}{2} + (a_1 - ib_1) e^{\frac{i\pi x}{l}} + (a_2 - ib_2) e^{\frac{2i\pi x}{l}} + \dots + (a_1 + ib_1) e^{\frac{-i\pi x}{l}} + (a_2 + ib_2) e^{\frac{-2i\pi x}{l}} + \dots$$

$$= c_0 + c_1 e^{\frac{i\pi x}{l}} + c_2 e^{\frac{2i\pi x}{l}} + \dots + c_{-1} e^{\frac{-i\pi x}{l}} + c_{-2} e^{\frac{-2i\pi x}{l}} + \dots$$

$$= c_0 + \sum_{n=1}^{\infty} c_n e^{\frac{i\pi n x}{l}} + \sum_{n=1}^{\infty} c_{-n} e^{\frac{-i\pi n x}{l}}$$

$$c_n = \frac{1}{2} (a_n - ib_n), c_{-n} = \frac{1}{2} (a_n + ib_n)$$
where $c_0 = \frac{a_0}{2} = \frac{1}{2} \frac{1}{l} \int_0^{2l} f(x) dx$

$$c_n = \frac{1}{2} \left[\frac{1}{l} \int_0^{2l} f(x) \cos \frac{n\pi x}{l} dx - \frac{i}{l} \int_0^{2l} f(x) \sin \frac{n\pi x}{l} dx \right]$$

$$\Rightarrow c_n = \frac{1}{2l} \int_0^{2l} f(x) \left\{ \cos \frac{n\pi x}{l} - i \sin \frac{n\pi x}{l} \right\} dx$$

$$c_{-n} = \frac{1}{2l} \int_0^{2l} f(x) e^{\frac{-i\pi n x}{l}} dx,$$

$$c_{-n} = \frac{1}{2l} \int_0^{2l} f(x) e^{\frac{-i\pi n x}{l}} dx$$

Example 29. Obtain the complex form of the Fourier series of the function

$$f(x) = \begin{cases} 0, & -\pi \le x \le 0 \\ 1, & 0 \le x \le \pi \end{cases}$$
$$c_0 = \frac{1}{2\pi} \int_0^{\pi} dx = \frac{1}{2}$$

Solution.

$$c_{n} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx$$

$$= \frac{1}{2\pi} \left[\int_{-\pi}^{0} 0 \cdot e^{-inx} dx + \int_{0}^{\pi} 1 \cdot e^{-inx} dx \right] = \frac{1}{2\pi} \int_{0}^{\pi} e^{-inx} dx = \frac{1}{2\pi} \left[\frac{e^{-inx}}{-in} \right]_{0}^{\pi}$$

$$= -\frac{1}{2n\pi i} \left[e^{-inx} - 1 \right] = -\frac{1}{2n\pi i} \left[\cos n\pi - i \sin n\pi - 1 \right] = -\frac{1}{2n\pi i} \left[(-1)^{n} - 0 - 1 \right]$$

$$= \begin{cases} \frac{1}{in\pi}, & n \text{ is odd} \\ 0, & n \text{ is even} \end{cases}$$

$$f(x) = \frac{1}{2} + \frac{1}{i\pi} \left[\frac{e^{ix}}{1} + \frac{e^{3ix}}{3} + \frac{e^{5ix}}{5} + \dots \right] + \frac{1}{i\pi} \left[\frac{e^{-ix}}{-1} + \frac{e^{-3ix}}{-3} + \frac{e^{-5ix}}{-5} + \dots \right]$$

$$= \frac{1}{2} - \frac{1}{i\pi} \left[\left(e^{ix} - e^{-ix} \right) + \frac{1}{3} \left(e^{3ix} - e^{-3ix} \right) + \frac{1}{5} \left(e^{5ix} - e^{-5ix} \right) + \dots \right]$$

$$= \frac{1}{2} - \frac{2}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right]$$
Ans.

EXERCISE 40.6

Find the complex form of the Fourier series of

1.
$$f(x) = e^{-x}$$
, $-1 \le x \le 1$.
Ans. $\sum_{n = -\infty}^{\infty} \frac{(-1)^n (1 - in\pi)}{1 + n^2 \pi^2} \sinh 1 e^{in\pi x}$
2. $f(x) = e^{ax}$, $-l < x < l$
Ans. $\frac{2}{\pi} - \frac{2}{\pi} \left[\frac{e^{2it} + e^{-2it}}{1 \cdot 3} + \frac{e^{4it} + e^{-4it}}{3 \cdot 5} + \frac{e^{6it} + e^{-6it}}{5 - 7} + \dots \right]$
3. $f(x) = \cos ax$, $-\pi < x < \pi$
Ans. $\frac{a}{\pi} \sin a\pi \sum_{-\infty}^{\infty} \frac{(-1)^n e^{inx}}{a^2 - n^2}$

40.16 PRACTICAL HARMONIC ANALYSIS

Some times the function is not given by a formula, but by a graph or by a table of corresponding values. The process of finding the Fourier series for a function given by such values of the function and independent variable is known as Harmonic Analysis. The Fourier constants are evaluated by the following formulae:

(1)
$$a_{0} = \frac{1}{\pi} \int_{0}^{2\pi} f(x) dx$$

$$= 2 \frac{1}{2\pi - 0} \int_{0}^{2\pi} f(x) dx \qquad \left[\text{Mean} = \frac{1}{b - a} \int_{a}^{b} f(x) dx \right]$$

$$\Rightarrow \qquad a_{0} = 2 \text{ [mean value of } f(x) \text{ in } (0, 2\pi) \text{]}$$
(2)
$$a_{n} = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \cos nx dx = 2 \frac{1}{2\pi - 0} \int_{0}^{2\pi} f(x) \cos nx dx$$

$$= 2 \text{ [mean value of } f(x) \cos nx \text{ in } (0, 2\pi) \text{]}$$
(3)
$$b_{n} = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \sin nx dx = 2 \frac{1}{2\pi - 0} \int_{0}^{2\pi} f(x) \sin nx dx$$

$$= 2 \text{ [mean value of } f(x) \sin nx \text{ in } (0, 2\pi) \text{]}$$

Fundamental or first harmonic. The term $(a_1 \cos x + b_1 \sin x)$ in Fourier series is called the fundamental or first harmonic.

Second harmonic. The term $(a_2 \cos 2 x + b_2 \sin 2x)$ in Fourier series is called the second harmonic and so on.

Example 30. Find the Fourier series as far as the second harmonic to represent the function given by table below:

x	0°	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°
f(x)	2.34	3.01	3.69	4.15	3.69	2.20	0.83	0.51	0.88	1.09	1.19	1.64

Solution.

x°	sin x	sin 2x	cos x	cos 2x	f(x)	f(x)	f(x)	f(x)	f(x)
						sin x	sin 2x	cos x	cos 2x
0°	0	0	1	1	2.34	0	0	2.340	2.340
30°	0.50	0.87	0.87	0.50	3.01	1.505	2.619	2.619	1.505
60°	0.87	0.87	0.50	- 0.50	3.69	3.210	3.210	1.845	- 1.845
90°	1.00	0	0	- 1.00	4.15	4.150	0	0	- 4.150
120°	0.87	- 0.87	-0.50	-0.50	3.69	3.210	- 3.210	- 1.845	-1.845
150°	0.50	-0.87	-0.87	0.50	2.20	1.100	- 1.914	- 1.914	1.100
180°	0	0	- 1	1.00	0.83	0	0	- 0.830	0.830
210°	-0.50	0.87	-0.87	0.50	0.51	-0.255	0.444	- 0.444	0.255
240°	-0.87	0.87	-0.50	- 0.50	0.88	- 0.766	0.766	-0.440	- 0.440
270°	-1.00	0	0	- 1.00	1.09	- 1.090	0	0	- 1.090
300°	-0.87	-0.87	0.50	- 0.50	1.19	- 1.035	- 1.035	0.595	- 0.595
330°	-0.50	-0.87	0.87	0.50	1.64	- 0.820	- 1.427	1.427	0.820
					25.22	9.209	- 0.547	3.353	- 3.115

$$a_0 = 2 \times \text{Mean of } f(x) = 2 \times \frac{25.22}{12} = 4.203$$
 $a_1 = 2 \times \text{Mean of } f(x) \cos x = 2 \times \frac{3.353}{12} = 0.559$
 $a_2 = 2 \times \text{Mean of } f(x) \cos 2x = 2 \times \frac{-3.115}{12} = -0.519$
 $b_1 = 2 \times \text{Mean of } f(x) \sin x = 2 \times \frac{9.209}{12} = 1.535$
 $b_2 = 2 \times \text{Mean of } f(x) \sin 2x = 2 \times \frac{-0.547}{12} = -0.091$

Fourier series is

$$f(x) = \frac{a_0}{2} + a_1 \cos x + a_2 \cos 2x + \dots + b_1 \sin x + b_2 \sin 2x + \dots$$

= 2.1015 + 0.559 \cos x - 0.519 \cos 2 x + \dots + 1.535 \sin x - 0.091\sin 2 x + \dots \tag{Ans.}

Example 31. A machine completes its cycle of operations every time as certain pulley completes a revolution. The displacement f(x) of a point on a certain portion of the machine is given in the table given below for twelve positions of the pulley, x being the angle in degree turned through by the pulley. Find a Fourier series to represent f(x) for all values of x.

x	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°	360°
f(x)	7.976	8.026	7.204	5.676	3.674	1.764	0.552	0.262	0.904	2.492	4.736	6.824

Solution.

x	sin x	sin	sin	cos x	cos	cos	f(x)	$f(x) \times$					
		2x	3x		2x	3x		sin x	sin 2x	sin 3x	cos x	cos 2x	cos 3x
30°	0.50	0.87	1	0.87	0.50	0	7.976	3.988	6.939	7.976	6.939	3.988	0
60°	0.87	0.87	0	0.50	- 0.50	- 1	8.026	6.983	6.983	0	4.013	4.013	- 8.026
90°	1.00	0	- 1	0	-1	0	7.204	7.204	0	- 7.204	0	- 7.204	0
120°	0.87	- 0.87	0	- 0.50	- 0.50	1	5.676	4.938	- 4.939	0	- 2.838	- 2.838	5.676
150°	0.50	- 0.87	1	-0.87	0.50	0	3.674	1.837	- 3.196	- 3.196	- 3.196	1.837	0
180°	0	0	0	-1	1	- 1	1.764	0	0	- 1.764	- 1.764	1.764	- 1.764
210°	- 0.50	0.87	- 1	- 0.87	0.50	0	0.552	- 0.276	0.480	0.480	-0.480	0.276	0
240°	- 0.87	0.87	0	- 0.50	- 0.50	1	0.262	- 0.228	0.228	- 0.131	- 0.131	0.131	0.262
270°	- 1.00	0	1	0	- 1.00	0	0.904	- 0.904	0	0	0	- 0.904	0
300°	- 0.87	- 0.87	0	0.50	- 0.50	- 1	2.492	- 2.168	- 2.168	1.246	1.246	-1.296	- 2.492
330°	- 0.50	- 0.87	- 1	0.87	0.50	0	4.736	-2.368	- 4.120	4.120	4.120	2.368	0
360°	0	0	0	1	1	1	6.824	0	0	0	6.824	6.824	6.824
						Σ	50.09	19.206	0.207	0.062	14.733	0.721	0.460

$$a_0 = 2 \times \text{Mean value of } f(x)$$
 = $2 \times \frac{50.09}{12} = 8.34$
 $a_1 = 2 \times \text{Mean value of } f(x) \cos x = 2 \times \frac{14.733}{12} = 2.45$
 $a_2 = 2 \times \text{Mean value of } f(x) \cos 2x = 2 \times \frac{0.721}{12} = 0.12$
 $a_3 = 2 \times \text{Mean value of } f(x) \cos 3x = 2 \times \frac{0.460}{12} = 0.08$
 $b_1 = 2 \times \text{Mean value of } f(x) \sin x = 2 \times \frac{19.206}{12} = 3.16$
 $b_2 = 2 \times \text{Mean value of } f(x) \sin 2x = 2 \times \frac{0.207}{12} = 0.03$

 $b_3 = 2 \times \text{Mean value of } f(x) \sin 3x = 2 \times \frac{0.062}{12} = 0.01$

Fourier series is

$$f(x) = \frac{a_0}{2} + a_1 \cos x + a_2 \cos 2x + a_3 \cos 3x + \dots + b_1 \sin x + b_2 \sin 2x + b_3 \sin 3x + \dots$$
$$= 4.17 + 2.45 \cos x + 0.12 \cos 2x + 0.08 \cos 3x + \dots$$

 $+ 3.16 \sin x + 0.03 \sin 2 x + 0.01 \sin 3 x + \dots$ Ans.

Example 32. Obtain the constant term and the coefficient of the first sine and cosine terms in the Fourier series of f(x) as given in the following table.

x	0	1	2	3	4	5
f(x)	9	18	24	28	26	20

Solution.

x	$\frac{x \pi}{3}$	$\sin\frac{\pi x}{3}$	$\cos\frac{\pi x}{3}$	f(x)	$f(x) \sin \frac{\pi x}{3}$	$f(x)\cos\frac{\pi x}{3}$
0	0	0	1.0	9	0	9
1	$\frac{\pi}{3}$	0.87	0.5	18	15.66	9
2	$\frac{2\pi}{3}$	0.87	- 0.5	24	20.88	- 12
3	$\frac{3\pi}{3}$	0	- 1.0	28	0	- 28
4	$\frac{4\pi}{3}$	- 0.87	- 0.5	26	- 22.62	- 13
5	$\frac{5\pi}{3}$	-0.87	-0.87 0.5		- 17.4	10
				$\Sigma = 125$	$\Sigma = -3.468$	$\Sigma = 25$

$$a_0 = 2 \text{ Mean value of } f(x) = 2 \times \frac{125}{6} = 41.67$$

$$a_1 = 2 \text{ Mean value of } f(x) \cos \frac{\pi x}{3} = 2 \times \frac{-25}{6} = -8.33$$

$$b_1 = 2 \text{ Mean value of } f(x) \sin \frac{\pi x}{3} = 2 \times \frac{-3.48}{6} = -1.16$$
Fourier series is
$$f(x) = \frac{a_0}{2} + a_1 \cos \frac{\pi x}{3} + \dots + b_1 \sin \frac{\pi x}{3} + \dots$$

$$= 20.84 - 8.33 \cos \frac{\pi x}{3} + \dots - 1.16 \sin \frac{\pi x}{3} + \dots$$
Ans.

EXERCISE 40.7

1. In a machine the displacement f(x) of a given point is given for a certain angle x° as follows:

x°	0°	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°
f(x)	7.9	8.0	7.2	5.6	3.6	1.7	0.5	0.2	0.9	2.5	4.7	6.8

Find the coefficient of $\sin 2x$ in the Fourier series representing the above variations. Ans. -0.072

2. The displacement f(x) of a part of a machine is tabulated with corresponding angular moment 'x' of the crank. Express f(x) as a Fourier series upto third harmonic.

x °	0°	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°
f(x)	1.80	1.10	0.30	0.16	0.50	1.30	2.16	1.25	1.30	1.52	1.76	2.00

Ans.
$$f(x) = 1.26 + 0.04 \cos x + 0.53 \cos 2 x - 0.1 \cos 3 x + ...$$

 $-0.63 \sin x - 0.23 \sin 2 x + 0.085 \sin 3 x + ...$

- 3. Fourier coefficient ' a_0 ' in Fourier series expansion of a function represents the:
 - (i) maximum value of the function
- (ii) 2 mean value of the function
- (iii) minimum value of the function
- (iv) None of these (U.P. II Semester 2010) Ans. (ii)
- **4.** If the Fourier series of f(x) has only cosine terms then f(x) must be:
 - (i) odd function

- (ii) even function
- Ans. (ii) (U.P. II Semester 2010)