

NEBULA LEVEL 06

WORKFLOW

DEBOLEZZE E VULNERABILITA'
INDIVIDUATE

04

MITIGAZIONE

05

01

Introduzione

Level 06

Level 06

"The flag06 account credentials came from a legacy unix system.

To do this level, log in as the level06 account with the password level06. Files for this level can be found in /home/flag06."

OBIETTIVI

- Recupero della password dell'utente flag06
- Autenticazione come utente flag06
- Esecuzione di /bin/getflag con i privileggi di flag06

02

Albero di attacco

Level 06

Esecuzione indiretta

La descrizione del livello su https://exploit.education/nebula/level-06/ ci consiglia di cercare file utili alla sfida nella directory /home/flag06

facciamo l'accesso con le credenziali di level06 e cerchiamo file utili alla nostra sfida... Vediamo quali home directory sono a disposizione dell'utente level06:

```
ls /home/level*
ls /home/flag*
```

L'utente level06 può accedere solamente alle directory

```
/home/level06
/home/flag06
```

/home/flag06

/home/flag06

- Nella directory ci sono solo file di configurazione di Bash, tutti leggibili ma nessuno è un binario o uno script eseguibile
- La descrizione della sfida ci ha però detto che all'interno di questi file potrebbero esserci indizi
- Esaminiamo il contenuto...

Oltre alle configurazioni standard, troviamo questo blocco di codice, che prevede il caricamento opzionale di un file esterno: "/.bash_aliases

```
if [ -f ~/.bash_aliases ]; then
. ~/.bash_aliases
fi
```

- se questo file esiste, viene caricato automaticamente ogni volta che l'utente fa login oppure apre una shell
- Nel nostro caso, questo file non è ancora presente…

Idea 🎬

creiamo un "/.bash_aliases contenente /bin/getflag

- Quando flag06 apre una shell, il file viene caricato automaticamente
- Se accade, /bin/getflag verrebbe eseguito con i suoi privilegi!

Aggiornamento albero di attacco

Iniezione di /bin/getflag

Iniettiamo /bin/getflag nel file .bash_aliases

```
level06@nebula:~$ echo '/bin/getflag' > ~/.bash_aliases
level06@nebula:~$ ./.bash_aliases
–sh: ./.bash_aliases: Permission denied
```

- .bash_aliases è un file di configurazione Bash, non un eseguibile
- Non può essere lanciato con ./
- Lo eseguiamo manualmente con source

Iniezione di /bin/getflag

source carica ed esegue il contenuto del file nella shell attuale

```
level06@nebula:~$ echo '/bin/getflag' > ~/.bash_aliases
level06@nebula:~$ ./.bash_aliases
–sh: ./.bash_aliases: Permission denied
level06@nebula:~$ source ~/.bash_aliases
getflag is executing on a non–flag account, this doesn't count
```

Il comando viene eseguito con i permessi di level06!

- Anche se il file .bash_aliases viene eseguito, ciò accade dopo l'autenticazione, quindi i comandi girano con i permessi di level06
- Non possiamo forzare flag06 ad aprire una shell (serve un suo login reale)
- Possiamo ottenere l'esecuzione privilegiata solo sfruttando un eseguibile con bit SETUID acceso
- Cerchiamo...

Aggiornamento albero di attacco

Fallimento della strategia

- Abbiamo già visto che /home/flag06 non contiene file con bit SETUID acceso
- Anche /home/level06 non ha file vulnerabili
- Ricerca globale con find / -perm /u+s 2>/dev/null ma nulla

Aggiornamento albero di attacco

Richiesta password

- A chi si potrebbe chiedere la password dell'account flag06? Al legittimo proprietario (creatore della macchina virtuale Nebula)
- Il legittimo proprietario sarebbe disposto a darci la password? NO! Altrimenti che sfida sarebbe?
- Si deduce che la richiesta legittima della password non è una strada percorribile...

Possibile rottura della password?

Il sito ufficiale non ci ha solo suggerito di indagare in /home/flag06/, ma ci ha dato anche un altro indizio importante...

"The flag06 account credentials came from a legacy unix system."

Aggiornamento albero di attacco

man passwd

«La sicurezza di una password dipende dalla forza dell'algoritmo di crittografia e dalla dimensione dello spazio key. Il metodo di crittografia legacy UNIX System si basa sull'algoritmo NBS DES. Ora sono consigliati metodi più recenti (vedere ENCRYPT_METHOD).»

FILES

/etc/passwd

Informazioni sull'account utente.

/etc/shadow

Protegge le informazioni sull'account utente.

File Format conversion

man 5 passwd ci dice come è strutturato /etc/passwd :

- Nome utente
- Hash della password (opzionale)
- UID
- GID
- Comment field (info addizionali)
- Home directory path
- Shell utilizzata

«Se il campo password è una "x" minuscola, allora la password crittografata viene in realtà memorizzata nel file shadow(5); deve esserci un record corrispondente nel file /etc/shadow, altrimenti l'account utente non è valido. Se il campo password è una stringa qualsiasi, allora verrà trattato come una password crittografata, come specificato da crypt(3).»

UNIX moderni

Gestione delle password separata tra:

- /etc/passwd contiene informazioni sugli account degli utenti (UID,GID), directory home, shell di default. Leggibile da tutti
- /etc/shadow contiene gli hash delle password degli utenti in formato cifrato. Accessibile solo da root

UNIX LEGACY

- hash della password nel secondo campo di ogni record in /etc/passwd
- Accessibile a tutti
- Possibile rottura della password

/etc/passwd

non possiamo leggere il contenuto di /etc/shadow. Vediamo cosa c'è in /etc/passwd:

```
flag04:x:995:995::/home/flag04:/bin/sh
level05:x:1006:1006::/home/level05:/bin/sh
flag05:x:994:994::/home/flag05:/bin/sh
level06:x:1007:1007::/home/level06:/bin/sh
flag06:ueqw0CnSGdsuM:993:993::/home/flag06:/bin/sh
level07:x:1008:1008::/home/level07:/bin/sh
flag07:x:992:992::/home/flag07:/bin/sh
level08:x:1009:1009::/home/level08:/bin/sh
flag08:x:991:991::/home/flag08:/bin/sh
```

/etc/passwd

Nel secondo campo di flag06 compare l'hash della password...

```
level06@nebula:~$ grep flag06 /etc/passwd
flag06:ueqw0CnSGdsuM:993:993::/home/flag06:/bin/sh
```

/etc/passwd

John The Ripper

In Kali Linux è incluso di default un software chiamato John the Ripper, progettato per il cracking delle password.

- supporta molteplici algoritmi di hashing: DES, MD5, SHA, bcrypt, ecc.
- supporta diverse tecniche di rottura delle password…

- provare una lista di parole predefinite come possibili password
- Veloce ed efficace contro password comuni o deboli

Brute-force attack

- Prova tutte le combinazioni di possibili caratteri fino a trovare la password
- Estremamente lento
- Utile se si conosce la lunghezza della password

- JTR ha una wordlist di default password.lst
- Centinaia di parole semplici e frequenti utilizzate come password


```
(kali® kali)-[~]
$ echo flag06:ueqw0CnSGdsuM > crackPasswd.txt

(kali® kali)-[~]
$ john --show crackPasswd.txt
0 password hashes cracked, 1 left
```


Cosa non ha funzionato?

- Abbiamo dato a JTR un file contenente un hash
- Non avendo specificato l'algoritmo di cifratura l'esecuzione fallisce
- Quale algoritmo è stato utilizzato per generare l'hash della password?

man passwd

«La sicurezza di una password dipende dalla forza dell'algoritmo di crittografia e dalla dimensione dello spazio key. <u>Il metodo di crittografia legacy UNIX System si basa sull'algoritmo NBS DES.</u> Ora sono consigliati metodi più recenti (vedere ENCRYPT_METHOD).»

La funzione di cifratura (crypt()) dei sistemi UNIX legacy utilizza l'algoritmo NBS DES...

NBS DES

Versione modificata di DES utilizzata da crypt(). Approvato nel 1977 dall'ente statunitense National Bureau of Standards (NBS)

Principali differenze:

- Cifratura su stringa fissa (tutti zeri)
- 25 round DES
- Utilizzo del salt per modificare la cifratura

NBS DES - salt

stringa casuale di 2 caratteri scelta dall'insieme [a-zA-Z0-9./].

- Genera 4096 varianti del DES
- rende unico l'output anche per password identiche
- Protegge da attacchi con rainbow table

NBS DES - output

stringa di 13 caratteri ASCII:

Wordlist attack

```
—(kali⊛kali)-[~]
john --format=descrypt crackPasswd.txt
Using default input encoding: UTF-8
Loaded 1 password hash (descrypt, traditional crypt(3) [DES 128/128 SSE2])
Will run 2 OpenMP threads
Proceeding with single, rules:Single
Press 'q' or Ctrl-C to abort, almost any other key for status
Almost done: Processing the remaining buffered candidate passwords, if any.
Proceeding with wordlist:/usr/share/john/password.lst
                (flag06)
hello
1g 0:00:00:00 DONE 2/3 (2025-04-13 15:28) 5.263g/s 68789p/s 68789c/s 68789C/s
123456 .. Herman1
Use the "--show" option to display all of the cracked passwords reliably
Session completed.
  -(kali⊕kali)-[~]
$ john -- show crackPasswd.txt
flag06:hello
1 password hash cracked, 0 left
```


La password è «hello»!!!

Siamo riusciti a rompere la password…

03

Soluzione

Level 06

Aggiornamento albero di attacco

Aggiornamento albero di attacco

Nell'albero di attacco sono colorati in verde i nodi e gli archi che rappresentano le azioni da effettuare

Tali azioni sono eseguibili dall'utente level06?

- Ottenimento della password dell'utente flag06: SI
- Login come utente flag06: SI
- Esecuzione diretta di /bin/getflag come utente flag06: SI

Aggiornamento albero di attacco

Sfida vinta!

level06@nebula:~\$ su flag06 Password: sh-4.2\$ whoami flag06 sh-4.2\$ getflag You have successfully executed getflag on a target account 04

Debolezze e vulnerabilità

Level 06

Debolezze [1/2]

- <u>CWE-200</u> Exposure of Sensitive Information to an Unauthorized Actor: l'utente level06 ha accesso all'hash di flag06
- <u>CWE-312</u> Cleartext Storage of Sensitive Information
 l'hash è salvato in un file accessibile a tutti

Debolezze [2/2]

- <u>CWE-257</u> Storage of Passwords in a Recoverable Format: l'hash di flag06 è generato da un algoritmo di hashing vulnerabile
- <u>CWE-328</u> Use of weak hash l'attaccante può risalire facilmente alla password partendo dall'hash
- <u>CWE-521</u> Weak Password Requirements utilizzo di password facilmente indovinabile

Vulnerabilità

 <u>CVE-2025-27595</u> Weak hashing algohrythm: il sistema utilizza un algoritmo di cifratura debole. Un aggressore può facilmente calcolare una password corrispondente 05

Mitigazione

Level 06

Aggiornamento password

- Comando passwd per aggiornare
- Scegliere password lunga e complessa
- Evitare parole comuni

```
flag06@nebula:~$ passwd
Changing password for flag06.
(current) UNIX password:
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully
```

Aggiornamento password

- Generato nuovo hash
- Nebula utilizza SHA-512 (sicuro, fino a 16 caratteri per il salt)
- Hash ancora scoperto...

```
flag06@nebula:~$ grep ENCRYPT_METHOD /etc/login.defs
# This variable is deprecated. You should use ENCRYPT_METHOD.
ENCRYPT_METHOD SHA512
# Only used if ENCRYPT_METHOD is set to SHA256 or SHA512.
```

password

flagO6@nebula:~\$ grep flagO6 /etc/passwd flagO6:\$6\$dJoBSOWT\$jITtxOwZRrytajV4nOVuxiXg.n8pW51Lw3iWFBpTf4o4QMAde6QRUbI9mDed8 P9PS9s1RGtuO9.ẁsFAbuRQB21:993:993::/home/flagO6:/bin/sh

-R12

salt

Password shadowing

- ! indica che la password non è ancora in /etc/shadow
- pwconv per spostare gli hash da /etc/passwd a /etc/shadow

- pwconv mette una 'x' al posto dell'hash in /etc/passwd
- Hash protetto!!!

```
nebula@nebula:~$ grep flagO6 /etc/passwd
flagO6:$6$ezNBfUXp$5Ohu2HZSPSAO5IhRdkVdI8ndulreuJeOVKCxnxGq9eZXknkb6/5AhGMKNaAwE
rDtJsjAR7IF8/ncJHfA6SoSxO:993:993::/home/flagO6:/bin/sh
nebula@nebula:~$ sudo grep flagO6 /etc/shadow
flagO6:!:15299:::::
```

```
nebula@nebula:~$ sudo pwconv
nebula@nebula:~$ grep flag06 /etc/passwd
flag0(:x:)93:993::/home/flag06:/bin/sh
nebula@nebula:~$ sudo grep flag06 /etc/shadow
flag06:$6$ezNBfUXp$50hu2HZSPSA05IhRdkVdI8ndulreuJeOVKCxnxGq9eZXknkb6/5AhGMKNaAwE
rDtJsjAR7IF8/ncJHfA6SoSx0:20197:::::
```

Nuovo attacco

- Proviamo ad effettuare un nuovo attacco
- Autentichiamoci come level06
- Proviamo a leggere il contenuto di

/etc/passwd

```
level06@nebula:~$ grep flag06 /etc/passwd
flag06:x:993:993::/home/flag06:/bin/sh
```

- Impossibile recuperare l'hash
- x nel secondo campo del record flag06
- Attacco fallito!

■ Dello Russo Daniele

- Lezzi Mario