Sums ITT9130 Konkreetne Matemaatika

Chapter Two

Notation

Sums and Recurrences

Manipulation of Sums

Multiple Sums

General Methods

Finite and Infinite Calculus

Infinite Sums

Contents

- 1 Sequences
- 2 Notations for sums
- 3 Sums and Recurrences
 - Repertoire method
 - Perturbation method
 - Reduction to the known solutions
 - Summation factors
- 4 General Methods
 - Looking up
 - Guessing the answer
 - Perturbation
 - Build a repertoire
 - Integrals
 - Expansion
 - More methods

Next section

- 1 Sequences
- 2 Notations for sums
- 3 Sums and Recurrences
 - Repertoire method
 - Perturbation method
 - Reduction to the known solutions
 - Summation factors
- 4 General Methods
 - Looking up
 - Guessing the answer
 - Perturbation
 - Build a repertoire
 - Integrals
 - Expansion
 - More methods

Definition

A sequence of elements of a set A is any function $f: \mathbb{N} \to A$, where \mathbb{N} is set of natural numbers.

Notations used:

- $f = \{a_n\}, \text{ where } a_n = f(n)$
- $\{a_n\}_{n\in\mathbb{N}}$
- || $\{a_n\}$

 a_n is called n-th term of a sequence

Definition

A sequence of elements of a set A is any function $f: \mathbb{N} \to A$, where \mathbb{N} is set of natural numbers.

Notations used:

- $f = \{a_n\}, \text{ where } a_n = f(n)$
- $\{a_n\}_{n\in\mathbb{N}}$
- \blacksquare $\{a_n\}$

 a_n is called n-th term of a sequence

Definition

A sequence of elements of a set A is any function $f: \mathbb{N} \to A$, where \mathbb{N} is set of natural numbers.

Notations used:

- $f = \{a_n\}$, where $a_n = f(n)$
- $\{a_n\}_{n\in\mathbb{N}}$
- \blacksquare $\{a_n\}$

 a_n is called n-th term of a sequence f

Definition

A sequence of elements of a set A is any function $f : \mathbb{N} \to A$, where \mathbb{N} is set of natural numbers.

Notations used:

- $f = \{a_n\}, \text{ where } a_n = f(n)$
- $\{a_n\}_{n\in\mathbb{N}}$
- $\{a_n\}$

 a_n is called n-th term of a sequence f

Example

$$a_0=0,\ a_1=\frac{1}{2\cdot 3},\ a_2=\frac{2}{3\cdot 4},\ a_3=\frac{3}{4\cdot 5},\cdots$$

or

$$\left\langle 0, \ \frac{1}{6}, \ \frac{1}{6}, \ \frac{3}{20}, \ \frac{2}{15}, \cdots, \ \frac{n}{(n+1)(n+2)}, \cdots \right\rangle$$

Definition

A sequence of elements of a set A is any function $f : \mathbb{N} \to A$, where \mathbb{N} is set of natural numbers.

Notations used:

- $f = \{a_n\}, \text{ where } a_n = f(n)$
- $\{a_n\}_{n\in\mathbb{N}}$
- $\{a_n\}$

 a_n is called n-th term of a sequence f

Notation

$$f(n) = \frac{n}{(n+1)(n+2)}$$

or

$$a_n = \frac{n}{(n+1)(n+2)}$$

- \mathbb{N} set of indexes of the sequence $f = \{a_n\}_{n \in \mathbb{N}}$
- Any countably infinite set can be used for index. Examples of other frequently used indexes are:
 - $\mathbb{N}^+ = \mathbb{N} \{0\} \sim \mathbb{N}$
 - $\mathbb{N} K \sim \mathbb{N}$, where K is any finite subset of \mathbb{N}
 - $\mathbb{Z} \sim \mathbb{N}$

 - $\{0, 2, 4, 6, \ldots\} = EVEN \sim \mathbb{N}$

- \mathbb{N} set of indexes of the sequence $f = \{a_n\}_{n \in \mathbb{N}}$
- Any countably infinite set can be used for index. Examples of other frequently used indexes are:

 - $\mathbb{N} K \sim \mathbb{N}$, where K is any finite subset of \mathbb{N}
 - $\mathbb{Z} \sim \mathbb{N}$
 - $\{1,3,5,7,\ldots\} = ODD \sim \mathbb{N}$
 - $\{0, 2, 4, 6, \ldots\} = EVEN \sim \mathbb{N}$

- \mathbb{N} set of indexes of the sequence $f = \{a_n\}_{n \in \mathbb{N}}$
- Any countably infinite set can be used for index. Examples of other frequently used indexes are:

 - $\mathbb{N} K \sim \mathbb{N}$, where K is any finite subset of \mathbb{N}
 - $\mathbb{Z} \sim \mathbb{N}$
 - $\{1,3,5,7,\ldots\} = ODD \sim \mathbb{N}$
 - $\{0,2,4,6,\ldots\} = EVEN \sim \mathbb{N}$

 $A \sim B$ denotes that sets A and B are of the same cardinality, i.e. |A| = |B|.

- \mathbb{N} set of indexes of the sequence $f = \{a_n\}_{n \in \mathbb{N}}$
- Any countably infinite set can be used for index. Examples of other frequently used indexes are:
 - $\quad \blacksquare \ \mathbb{N}^+ = \mathbb{N} \{0\} \sim \mathbb{N}$
 - lacksquare $\mathbb{N}-K\sim\mathbb{N}$, where K is any finite subset of \mathbb{N}
 - $\mathbb{Z} \sim \mathbb{N}$
 - $\{1,3,5,7,\ldots\} = ODD \sim \mathbb{N}$
 - $\{0,2,4,6,\ldots\} = EVEN \sim \mathbb{N}$

Two sets A and B have the same cardinality if there exists a bijection, that is, an injective and surjective function, from A to B.

(See

http://www.mathsisfun.com/sets/injective-surjective-bijective.html for detailed explanation)

Finite sequence

■ Finite sequence of elements of a set A is a function $f: K \to A$, where K is set a finite subset of natural numbers

For example:
$$f: \{1, 2, 3, 4, \dots, n\} n \rightarrow A, n \in \mathbb{N}$$

Special case:
$$n = 0$$
, i.e. empty sequence: $f(\emptyset) = e$

Domain of the sequence

$$f: T \to A$$

$$a_n = \frac{n}{(n-2)(n-5)}$$

Domain of f is $T = \mathbb{N} - \{2, 5\}$

Next section

- 1 Sequences
- 2 Notations for sums
- 3 Sums and Recurrences
 - Repertoire method
 - Perturbation method
 - Reduction to the known solutions
 - Summation factors
- 4 General Methods
 - Looking up
 - Guessing the answer
 - Perturbation
 - Build a repertoire
 - Integrals
 - Expansion
 - More methods

Notation

For a finite set $K = \{1, 2, \dots, m\}$ and a given sequence $f: K \to \mathbb{R}$ with $f(n) = a_n$ we write

$$\sum_{k=1}^m a_k = a_1 + a_2 + \dots + a_m$$

Alternative notations

$$\sum_{k=1}^{m} a_k = \sum_{1 \leqslant k \leqslant m} a_k = \sum_{k \in \{1, \cdots, m\}} a_k = \sum_{K} a_k$$

Notation

For a finite set $K = \{1, 2, \dots, m\}$ and a given sequence $f: K \to \mathbb{R}$ with $f(n) = a_n$ we write

$$\sum_{k=1}^m a_k = a_1 + a_2 + \dots + a_m$$

Alternative notations

$$\sum_{k=1}^m a_k = \sum_{1 \leqslant k \leqslant m} a_k = \sum_{k \in \{1, \dots, m\}} a_k = \sum_K a_k$$

Next section

- 1 Sequences
- 2 Notations for sums
- 3 Sums and Recurrences
 - Repertoire method
 - Perturbation method
 - Reduction to the known solutions
 - Summation factors
- 4 General Methods
 - Looking up
 - Guessing the answer
 - Perturbation
 - Build a repertoire
 - Integrals
 - Expansion
 - More methods

Sums and Recurrences

Computation of any sum

$$S_n = \sum_{k=1}^n a_k$$

can be presented in the recursive form:

$$S_0 = a_0$$
$$S_n = S_{n-1} + a_n$$

 \Rightarrow Techniques from CHAPTER ONE can be used for finding closed formulas for evaluating sums.

Recalling repertoire method (presented by Silvio last time)

Given

$$g(0) = \alpha$$

$$g(n) = \Phi(g(n-1)) + \Psi(\beta, \gamma, ...)$$
 for $n > 0$.

where Φ and Ψ are linear, for example if $g(n) = \lambda_1 g_1(n) + \lambda_2 g_2(n)$ then $\Phi(g(n)) = \lambda_1 \Phi(g_1(n)) + \lambda_2 \Phi(g_2(n))$.

Closed form is

$$g(n) = \alpha A(n) + \beta B(n) + \gamma C(n) + \cdots$$
 (1)

■ Functions A(n), B(n), C(n), ... could be found from the system of equations

$$\alpha_{1}A(n) + \beta_{1}B(n) + \gamma_{1}C(n) + \dots = g_{1}(n)$$

$$\vdots$$

$$\alpha_{m}A(n) + \beta_{m}B(n) + \gamma_{m}C(n) + \dots = g_{m}(n)$$

where $\alpha_i, \beta_i, \gamma_i \cdots$ are constants committing (1) and recurrence relationship for the repertoire case $g_i(n)$ and any n.

Recalling repertoire method (presented by Silvio last time)

Given

$$g(0) = \alpha$$

$$g(n) = \Phi(g(n-1)) + \Psi(\beta, \gamma, ...)$$
 for $n > 0$.

where Φ and Ψ are linear, for example if $g(n) = \lambda_1 g_1(n) + \lambda_2 g_2(n)$ then $\Phi(g(n)) = \lambda_1 \Phi(g_1(n)) + \lambda_2 \Phi(g_2(n))$.

Closed form is

$$g(n) = \alpha A(n) + \beta B(n) + \gamma C(n) + \cdots$$
 (1)

■ Functions $A(n), B(n), C(n), \ldots$ could be found from the system of equations

$$\alpha_{1}A(n) + \beta_{1}B(n) + \gamma_{1}C(n) + \dots = g_{1}(n)$$

$$\vdots$$

$$\alpha_{m}A(n) + \beta_{m}B(n) + \gamma_{m}C(n) + \dots = g_{m}(n)$$

where $\alpha_i, \beta_i, \gamma_i \cdots$ are constants committing (1) and recurrence relationship for the repertoire case $g_i(n)$ and any n.

Recalling repertoire method (presented by Silvio last time)

Given

$$g(0) = \alpha$$

$$g(n) = \Phi(g(n-1)) + \Psi(\beta, \gamma, ...)$$
 for $n > 0$.

where Φ and Ψ are linear, for example if $g(n) = \lambda_1 g_1(n) + \lambda_2 g_2(n)$ then $\Phi(g(n)) = \lambda_1 \Phi(g_1(n)) + \lambda_2 \Phi(g_2(n))$.

Closed form is

$$g(n) = \alpha A(n) + \beta B(n) + \gamma C(n) + \cdots$$
 (1)

■ Functions $A(n), B(n), C(n), \ldots$ could be found from the system of equations

$$\alpha_1 A(n) + \beta_1 B(n) + \gamma_1 C(n) + \dots = g_1(n)$$

$$\vdots \qquad \qquad = \vdots$$

$$\alpha_m A(n) + \beta_m B(n) + \gamma_m C(n) + \dots = g_m(n)$$

where $\alpha_i, \beta_i, \gamma_i \cdots$ are constants committing (1) and recurrence relationship for the repertoire case $g_i(n)$ and any n.

Next subsection

- 1 Sequences
- 2 Notations for sums
- 3 Sums and Recurrences
 - Repertoire method
 - Perturbation method
 - Reduction to the known solutions
 - Summation factors
- 4 General Methods
 - Looking up
 - Guessing the answer
 - Perturbation
 - Build a repertoire
 - Integrals
 - Expansion
 - More methods

Example 1: arithmetic sequence

Arithmetic sequence: $a_n = a + bn$

Recurrent equation for the sum $S_n = a_0 + a_1 + a_2 + \cdots + a_n$:

$$S_0=a$$

$$S_n=S_{n-1}+\left(a+bn\right) \text{ , for } n>0.$$

Let's find a closed form for a bit more general recurrent equation:

$$R_0 = lpha$$
 $R_n = R_{n-1} + (eta + \gamma n)$, for $n > 0$

Example 1: arithmetic sequence

Arithmetic sequence: $a_n = a + bn$

Recurrent equation for the sum $S_n = a_0 + a_1 + a_2 + \cdots + a_n$:

$$S_0 = a$$

 $S_n = S_{n-1} + (a+bn)$, for $n > 0$.

Let's find a closed form for a bit more general recurrent equation:

$$R_0 = lpha$$

$$R_n = R_{n-1} + (eta + \gamma n) \; , \; {\sf for} \; \, n > 0 . \label{eq:R0}$$

Evaluation of terms $R_n = R_{n-1} + (\beta + \gamma n)$

$$R_0 = \alpha$$

$$R_1 = \alpha + \beta + \gamma$$

$$R_2 = \alpha + \beta + \gamma + (\beta + 2\gamma) = \alpha + 2\beta + 3\gamma$$

$$R_3 = \alpha + 2\beta + 3\gamma + (\beta + 3\gamma) = \alpha + 3\beta + 6\gamma$$

Observation

$$R_n = A(n)\alpha + B(n)\beta + C(n)\gamma$$

A(n), B(n), C(n) can be evaluated using repertoire method we will consider three cases

- 1 $R_n = 1$ for all n
- 2 $R_n = n$ for all n
- 3 $R_n = n^2$ for all n

Evaluation of terms $R_n = R_{n-1} + (\beta + \gamma n)$

$$R_0 = \alpha$$

$$R_1 = \alpha + \beta + \gamma$$

$$R_2 = \alpha + \beta + \gamma + (\beta + 2\gamma) = \alpha + 2\beta + 3\gamma$$

$$R_3 = \alpha + 2\beta + 3\gamma + (\beta + 3\gamma) = \alpha + 3\beta + 6\gamma$$

Observation

$$R_n = A(n)\alpha + B(n)\beta + C(n)\gamma$$

A(n), B(n), C(n) can be evaluated using repertoire method: we will consider three cases

- $R_n = n$ for all n
- $R_n = n^2 for all n$

Repertoire method: case 1

Lemma 1: A(n) = 1 for all n

- $1 = R_0 = \alpha$
- From $R_n = R_{n-1} + (\beta + \gamma n)$ follows that $1 = 1 + (\beta + \gamma n)$. This is possible only when $\beta = \gamma = 0$

Hence

$$1 = A(n) \cdot 1 + B(n) \cdot 0 + C(n) \cdot 0$$

Repertoire method: case 2

Lemma 2: B(n) = n for all n

- $\alpha = R_0 = 0$
- From $R_n = R_{n-1} + (\beta + \gamma n)$ follows that $n = (n-1) + (\beta + \gamma n)$. I.e. $1 = \beta + \gamma n$. This gives that $\beta = 1$ and $\gamma = 0$

Hence

$$n = A(n) \cdot 0 + B(n) \cdot 1 + C(n) \cdot 0$$

Repertoire method: case 3

Lemma 3:
$$C(n) = \frac{n^2+n}{2}$$
 for all n

$$\alpha = R_0 = 0^2 = 0$$

Equation
$$R_n=R_{n-1}+(\beta+\gamma n)$$
 can be transformed as $n^2=(n-1)^2+\beta+\gamma n$ $n^2=n^2-2n+1+\beta+\gamma n$ $0=(1+\beta)+n(\gamma-2)$ This is valid iff $1+\beta=0$ and $\gamma-2=0$

Hence

$$n^2 = A(n) \cdot 0 + B(n) \cdot (-1) + C(n)\gamma \cdot 2$$

Due to Lemma 2 we get

$$n^2 = -n + 2C(n)$$

Repertoire method: summing up

According to Lemma 1, 2, 3, we get

1
$$R_n = 1$$
 for all $n \implies A(n) = 1$

$$\Longrightarrow$$

$$R_n = 1$$
 for all r

$$\Rightarrow$$
 $B(n)$

$$\frac{1}{2}$$
 $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$

2
$$R_n = n$$
 for all n \Longrightarrow $B(n) = n$
3 $R_n = n^2$ for all n \Longrightarrow $C(n) = (n^2 + n)/2$

Repertoire method: summing up

According to Lemma 1, 2, 3, we get

2
$$R_n = n$$
 for all n \Longrightarrow $B(n) = n$
3 $R_n = n^2$ for all n \Longrightarrow $C(n) = (n^2 + n)/2$

$$R_n = n^2 \text{ for all } n \implies C(n) = (n^2 + n)/2$$

That means that

$$R_n = \alpha + n\beta + \left(\frac{n^2 + n}{2}\right)\gamma$$

Repertoire method: summing up

According to Lemma 1, 2, 3, we get

2
$$R_n = n$$
 for all n \Longrightarrow $B(n) = n$
3 $R_n = n^2$ for all n \Longrightarrow $C(n) = (n^2 + n)/2$

That means that

$$R_n = \alpha + n\beta + \left(\frac{n^2 + n}{2}\right)\gamma$$

The sum for arithmetic sequence we obtain taking $\alpha = \beta = a$ and $\gamma = b$:

$$S_n = \sum_{k=0}^n (a+bk) = (n+1)a + \frac{n(n+1)}{2}b$$

Next subsection

- 1 Sequences
- 2 Notations for sums
- 3 Sums and Recurrences
 - Repertoire method
 - Perturbation method
 - Reduction to the known solutions
 - Summation factors
- 4 General Methods
 - Looking up
 - Guessing the answer
 - Perturbation
 - Build a repertoire
 - Integrals
 - Expansion
 - More methods

Perturbation method

Finding the closed form for $S_n = \sum_{0 \le k \le n} a_k$:

Rewrite S_{n+1} by splitting off first and last term:

$$S_n + a_{n+1} = a_0 + \sum_{1 \le k \le n+1} a_k =$$

$$= a_0 + \sum_{1 \le k+1 \le n+1} a_{k+1} =$$

$$= a_0 + \sum_{0 \le k \le n} a_{k+1}$$

- Work on last sum and express in terms of S_n .
- Finally, solve for S_n .

Example 2: geometric sequence

Geometric sequence: $a_n = ax^n$

Recurrent equation for the sum $S_n = a_0 + a_1 + a_2 + \cdots + a_n = \sum_{0 \le k \le n} a_k x^k$:

$$S_0 = a$$

$$S_n = S_{n-1} + ax^n \text{ , for } n > 0.$$

Geometric sequence: $a_n = ax^n$

Recurrent equation for the sum $S_n = a_0 + a_1 + a_2 + \cdots + a_n = \sum_{0 \le k \le n} ax^k$:

$$S_0 = a$$

 $S_n = S_{n-1} + ax^n$, for $n > 0$.

Splitting off the first term gives

$$S_n + a_{n+1} = a_0 + \sum_{0 \leqslant k \leqslant n} a_{k+1} =$$

$$= a + \sum_{0 \leqslant k \leqslant n} ax^{k+1} =$$

$$= a + x \sum_{0 \leqslant k \leqslant n} ax^k =$$

$$= a + xS_n$$

Geometric sequence: $a_n = ax^n$

Recurrent equation for the sum $S_n = a_0 + a_1 + a_2 + \cdots + a_n = \sum_{0 \le k \le n} ax^k$:

$$S_0 = a$$

 $S_n = S_{n-1} + ax^n$, for $n > 0$.

■ Hence, we have the equation

$$S_n + ax^{n+1} = a + xS_n$$

Solution:

$$S_n = \frac{a - ax^{n+1}}{1 - x}$$

Geometric sequence: $a_n = ax^n$

Recurrent equation for the sum $S_n = a_0 + a_1 + a_2 + \cdots + a_n = \sum_{0 \le k \le n} ax^k$:

$$S_0 = a$$

 $S_n = S_{n-1} + ax^n$, for $n > 0$.

■ Hence, we have the equation

$$S_n + ax^{n+1} = a + xS_n$$

Solution:

$$S_n = \frac{a - ax^{n+1}}{1 - x}$$

Geometric sequence: $a_n = ax^n$

Recurrent equation for the sum $S_n = a_0 + a_1 + a_2 + \cdots + a_n = \sum_{0 \le k \le n} a_k x^k$:

$$S_0 = a$$

 $S_n = S_{n-1} + ax^n$, for $n > 0$.

Closed formula for geometric sum:

$$S_n = \frac{a(x^{n+1}-1)}{x-1}$$

Next subsection

- 1 Sequences
- 2 Notations for sums
- 3 Sums and Recurrences
 - Repertoire method
 - Perturbation method
 - Reduction to the known solutions
 - Summation factors
- 4 General Methods
 - Looking up
 - Guessing the answer
 - Perturbation
 - Build a repertoire
 - Integrals
 - Expansion
 - More methods

The Tower of Hanoi recurrence:

$$T_0 = 0$$

 $T_n = 2T_{n-1} + 1$

The Tower of Hanoi recurrence:

$$T_0 = 0$$
$$T_n = 2T_{n-1} + 1$$

This sequence can be transformed into geometric sum using following manipulations:

■ Divide equations by 2^n :

$$T_0/2^0 = 0$$

 $T_n/2^n = T_{n-1}/2^{n-1} + 1/2^n$

Set $S_n = T_n/2^n$ to have

$$S_0 = 0$$

$$S_n = S_{n-1} + 2^{-n}$$

The Tower of Hanoi recurrence:

$$T_0 = 0$$
$$T_n = 2T_{n-1} + 1$$

This sequence can be transformed into geometric sum using following manipulations:

■ Divide equations by 2ⁿ:

$$T_0/2^0 = 0$$

 $T_n/2^n = T_{n-1}/2^{n-1} + 1/2^n$

• Set $S_n = T_n/2^n$ to have:

$$S_0 = 0$$

$$S_n = S_{n-1} + 2^-$$

(This is geometric sum with the parameters a=1 and x=1/2.)

The Tower of Hanoi recurrence:

$$T_0 = 0$$
$$T_n = 2T_{n-1} + 1$$

Hence,

$$S_n = \frac{0.5(0.5^n - 1)}{0.5 - 1}$$
 (a₀ = 0 has been left out of the sum)
= 1 - 2⁻ⁿ

$$T_n = 2^n S_n = 2^n - 1$$

The Tower of Hanoi recurrence:

$$T_0 = 0$$
$$T_n = 2T_{n-1} + 1$$

Hence,

$$S_n = \frac{0.5(0.5^n - 1)}{0.5 - 1}$$
 (a₀ = 0 has been left out of the sum)
= 1 - 2⁻ⁿ

$$T_n = 2^n S_n = 2^n - 1$$

Next subsection

- 1 Sequences
- 2 Notations for sums
- 3 Sums and Recurrences
 - Repertoire method
 - Perturbation method
 - Reduction to the known solutions
 - Summation factors
- 4 General Methods
 - Looking up
 - Guessing the answer
 - Perturbation
 - Build a repertoire
 - Integrals
 - Expansion
 - More methods

Linear recurrence in form $a_n T_n = b_n T_{n-1} + c_n$

Here $\{a_n\}$, $\{b_n\}$ and $\{c_n\}$ are any sequences and initial value T_0 is a constant.

The idea:

Find a summation factor s_n satisfying the property

$$s_n b_n = s_{n-1} a_{n-1}$$

for any n

If such a factor exists, one can do following transformations:

- $s_n a_n T_n = s_n b_n T_{n-1} + s_n c_n = s_{n-1} a_{n-1} T_{n-1} + s_n c_n$
- Setting $S_n = s_n a_n T_n$, to rewrite the equation as

$$S_0 = s_0 a_0 T_0$$

$$S_n = S_{n-1} + s_n c_0$$

Closed formula (!) for solution:

$$T_n = \frac{1}{s_n a_n} (s_0 a_0 T_0 + \sum_{k=1}^n s_k c_k) = \frac{1}{s_n a_n} (s_1 b_1 T_0 + \sum_{k=1}^n s_k c_k)$$

Linear recurrence in form $a_n T_n = b_n T_{n-1} + c_n$

Here $\{a_n\}$, $\{b_n\}$ and $\{c_n\}$ are any sequences and initial value T_0 is a constant.

The idea:

Find a summation factor s_n satisfying the property

$$s_n b_n = s_{n-1} a_{n-1}$$
 for any n

If such a factor exists, one can do following transformations:

- $s_n a_n T_n = s_n b_n T_{n-1} + s_n c_n = s_{n-1} a_{n-1} T_{n-1} + s_n c_n$
- Setting $S_n = s_n a_n T_n$, to rewrite the equation as

$$S_0 = s_0 a_0 T_0$$
$$S_n = S_{n-1} + s_n c_n$$

Closed formula (!) for solution:

$$T_n = \frac{1}{s_n a_n} (s_0 a_0 T_0 + \sum_{k=1}^n s_k c_k) = \frac{1}{s_n a_n} (s_1 b_1 T_0 + \sum_{k=1}^n s_k c_k)$$

Finding summation factor

Assuming that $b_n \neq 0$ for all n:

- Set $s_0 = 1$
- Compute next elements using the property $s_n b_n = s_{n-1} a_{n-1}$:

$$s_{1} = \frac{a_{0}}{b_{1}}$$

$$s_{2} = \frac{s_{1}a_{1}}{b_{2}} = \frac{a_{0}a_{1}}{b_{1}b_{2}}$$

$$s_{3} = \frac{s_{2}a_{2}}{b_{3}} = \frac{a_{0}a_{1}a_{2}}{b_{1}b_{2}b_{3}}$$
......
$$s_{n} = \frac{s_{n-1}a_{n-1}}{b_{n}} = \frac{a_{0}a_{1}...a_{n-1}}{b_{1}b_{2}...b_{n}}$$

(To be proved by induction!)

Example: application of summation factor

$a_n = c_n = 1$ and $b_n = 2$ gives Hanoi Tower sequence:

Evaluate summation factor

$$s_n = \frac{s_{n-1}a_{n-1}}{b_n} = \frac{a_0a_1 \dots a_{n-1}}{b_1b_2 \dots b_n} = \frac{1}{2^n}$$

Solution is

$$T_n = \frac{1}{s_n a_n} (s_1 b_1 T_0 + \sum_{k=1}^n s_k c_k) = 2^n \sum_{k=1}^n \frac{1}{2^k} = 2^n (1 - 2^{-n}) = 2^n - 1$$

YAE: constant coefficients

Equation $Z_n = aZ_{n-1} + b$

Taking $a_n = 1, b_n = a$ and $c_n = b$:

■ Evaluate summation factor

$$s_n = \frac{s_{n-1}a_{n-1}}{b_n} = \frac{a_0a_1...a_{n-1}}{b_1b_2...b_n} = \frac{1}{a^n}$$

Solution is

$$Z_n = \frac{1}{s_n a_n} \left(s_1 b_1 Z_0 + \sum_{k=1}^n s_k c_k \right) = a^n \left(Z_0 + b \sum_{k=1}^n \frac{1}{a^k} \right)$$
$$= a^n Z_0 + b (1 + a + a^2 + \dots + a^{n-1})$$
$$= a^n Z_0 + \frac{a^n - 1}{a - 1} b$$

YAE: check up on results

Equation $Z_n = aZ_{n-1} + b$

$$Z_{n} = aZ_{n-1} + b =$$

$$= a^{2}Z_{n-2} + ab + b =$$

$$= a^{3}Z_{n-3} + a^{2}b + ab + b =$$
.....
$$= a^{k}Z_{n-k} + (a^{k-1} + a^{k-2} + ... + 1)b =$$

$$= a^{k}Z_{n-k} + \frac{a^{k} - 1}{a - 1}b \quad (assuming \ a \neq 1)$$

Continuing until k = n

$$Z_n = a^n Z_{n-n} + \frac{a^n - 1}{a - 1} b =$$

$$= a^n Z_0 + \frac{a^n - 1}{a - 1} b$$

YAE: check up on results

Equation $Z_n = aZ_{n-1} + b$

$$Z_{n} = aZ_{n-1} + b =$$

$$= a^{2}Z_{n-2} + ab + b =$$

$$= a^{3}Z_{n-3} + a^{2}b + ab + b =$$
.....
$$= a^{k}Z_{n-k} + (a^{k-1} + a^{k-2} + ... + 1)b =$$

$$= a^{k}Z_{n-k} + \frac{a^{k} - 1}{a - 1}b \quad (assuming \ a \neq 1)$$

Continuing until k = n:

$$Z_n = a^n Z_{n-n} + \frac{a^n - 1}{a - 1} b =$$

$$= a^n Z_0 + \frac{a^n - 1}{a - 1} b$$

Average number of comparisons: $C_n = n + 1 + \frac{2}{n} \sum_{k=0}^{n-1} C_k$

The average number of comparison steps when it is applied to n items

$$C_0 = 0$$

$$C_n = n + 1 + \frac{2}{n} \sum_{k=0}^{n-1} C_k$$

The following transformations reduce this equation

$$nC_n = n^2 + n + 2\sum_{k=0}^{n-2} C_k + 2C_{n-1}$$

$$(n-1)C_{n-1} = (n-1)^2 + (n-1) + 2\sum_{k=0}^{n-2} C_k$$

The average number of comparison steps when it is applied to n items

$$C_0 = 0$$

$$C_n = n + 1 + \frac{2}{n} \sum_{k=0}^{n-1} C_k$$

The following transformations reduce this equation

$$nC_n = n^2 + n + 2\sum_{k=0}^{n-2} C_k + 2C_{n-1}$$

$$(n-1)C_{n-1} = (n-1)^2 + (n-1) + 2\sum_{k=0}^{n-2} C_k$$

$$nC_n - (n-1)C_{n-1} = n^2 + n + 2C_{n-1} - (n-1)^2 - (n-1)$$

The average number of comparison steps when it is applied to n items

$$C_0 = 0$$

$$C_n = n + 1 + \frac{2}{n} \sum_{k=0}^{n-1} C_k$$

The following transformations reduce this equation

$$nC_n = n^2 + n + 2\sum_{k=0}^{n-2} C_k + 2C_{n-1}$$

$$(n-1)C_{n-1} = (n-1)^2 + (n-1) + 2\sum_{k=0}^{n-2} C_k$$

$$nC_n - nC_{n-1} + C_{n-1} = n^2 + n + 2C_{n-1} - n^2 + 2n - 1 - n + 1$$

The average number of comparison steps when it is applied to n items

$$C_0 = 0$$

$$C_n = n + 1 + \frac{2}{n} \sum_{k=0}^{n-1} C_k$$

The following transformations reduce this equation

$$nC_n = n^2 + n + 2\sum_{k=0}^{n-2} C_k + 2C_{n-1}$$

$$(n-1)C_{n-1} = (n-1)^2 + (n-1) + 2\sum_{k=0}^{n-2} C_k$$

$$nC_n - nC_{n-1} = C_{n-1} + 2n$$

The average number of comparison steps when it is applied to n items

$$C_0 = 0$$

$$C_n = n + 1 + \frac{2}{n} \sum_{k=0}^{n-1} C_k$$

The following transformations reduce this equation

$$nC_n = n^2 + n + 2\sum_{k=0}^{n-2} C_k + 2C_{n-1}$$

$$(n-1)C_{n-1} = (n-1)^2 + (n-1) + 2\sum_{k=0}^{n-2} C_k$$

$$nC_n = (n+1)C_{n-1} + 2n$$

Equation $nC_n = (n+1)C_{n-1} + 2n$

■ Assuming $a_n = n, b_n = n+1$ and $c_n = 2n$ evaluate summation factor

$$s_n = \frac{a_1 a_2 \dots a_{n-1}}{b_2 b_3 \dots b_n} = \frac{1 \cdot 2 \cdot \dots \cdot (n-1)}{3 \cdot 4 \cdot \dots \cdot (n+1)} = \frac{2}{n(n+1)}$$

■ Solution is

$$C_n = \frac{1}{s_n a_n} \left(s_1 b_1 C_0 + \sum_{k=1}^n s_k c_k \right)$$

$$= \frac{n+1}{2} \sum_{k=1}^n \frac{4k}{k(k+1)}$$

$$= 2(n+1) \sum_{k=1}^n \frac{1}{k+1} = 2(n+1) \left(\sum_{k=1}^n \frac{1}{k} + \frac{1}{n+1} - 1 \right)$$

$$= 2(n+1) H_n - 2n$$

where $H_n = 1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{n}$ is *n*-th harmonic number.

Equation $nC_n = (n+1)C_{n-1} + 2n$

■ Assuming $a_n = n, b_n = n+1$ and $c_n = 2n$ evaluate summation factor

$$s_n = \frac{a_1 a_2 \dots a_{n-1}}{b_2 b_3 \dots b_n} = \frac{1 \cdot 2 \cdot \dots \cdot (n-1)}{3 \cdot 4 \cdot \dots \cdot (n+1)} = \frac{2}{n(n+1)}$$

Solution is

$$C_n = \frac{1}{s_n a_n} \left(s_1 b_1 C_0 + \sum_{k=1}^n s_k c_k \right)$$

$$= \frac{n+1}{2} \sum_{k=1}^n \frac{4k}{k(k+1)}$$

$$= 2(n+1) \sum_{k=1}^n \frac{1}{k+1} = 2(n+1) \left(\sum_{k=1}^n \frac{1}{k} + \frac{1}{n+1} - 1 \right)$$

$$= 2(n+1) H_n - 2n$$

where $H_n = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}$ is *n*-th harmonic number.

Equation $nC_n = (n+1)C_{n-1} + 2n$

■ Assuming $a_n = n, b_n = n+1$ and $c_n = 2n$ evaluate summation factor

$$s_n = \frac{a_1 a_2 \dots a_{n-1}}{b_2 b_3 \dots b_n} = \frac{1 \cdot 2 \cdot \dots \cdot (n-1)}{3 \cdot 4 \cdot \dots \cdot (n+1)} = \frac{2}{n(n+1)}$$

Solution is

$$C_n = \frac{1}{s_n a_n} \left(s_1 b_1 C_0 + \sum_{k=1}^n s_k c_k \right)$$

$$= \frac{n+1}{2} \sum_{k=1}^n \frac{4k}{k(k+1)}$$

$$= 2(n+1) \sum_{k=1}^n \frac{1}{k+1} = 2(n+1) \left(\sum_{k=1}^n \frac{1}{k} + \frac{1}{n+1} - 1 \right)$$

$$= 2(n+1) H_n - 2n$$

where $H_n = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} \approx \ln n$.

Next section

- 1 Sequences
- 2 Notations for sums
- 3 Sums and Recurrences
 - Repertoire method
 - Perturbation method
 - Reduction to the known solutions
 - Summation factors
- 4 General Methods
 - Looking up
 - Guessing the answer
 - Perturbation
 - Build a repertoire
 - Integrals
 - Expansion
 - More methods

General Methods: a Review

$$\Box_n = \sum_{0 \leqslant k \leqslant n} k^2 \qquad \text{for } n \geqslant 0$$

n	0	1	2	3	4	5	6	7	8	9	10	11	12
								49					
\Box_n	0	1	5	14	30	55	91	140	204	285	385	506	650

Next subsection

- 1 Sequences
- 2 Notations for sums
- 3 Sums and Recurrences
 - Repertoire method
 - Perturbation method
 - Reduction to the known solutions
 - Summation factors
- 4 General Methods
 - Looking up
 - Guessing the answer
 - Perturbation
 - Build a repertoire
 - Integrals
 - Expansion
 - More methods

Example;
$$\Box_n = \sum_{0 \leqslant k \leqslant n} k^2$$

for $n \geqslant 0$

- "CRC Standard Mathematical Tables"
- "Valemeid matemaatikast"
- "The On-Line Encyclopedia of Integer Sequences (OEIS)" (http://oeis.org/)
- etc

Example;
$$\Box_n = \sum_{0 \leqslant k \leqslant n} k^2$$

for $n \geqslant 0$

- "CRC Standard Mathematical Tables"
- "Valemeid matemaatikast"
- "The On-Line Encyclopedia of Integer Sequences (OEIS)" (http://oeis.org/)
- etc

Example;
$$\Box_n = \sum_{0 \leqslant k \leqslant n} k^2$$

for $n \geqslant 0$

- "CRC Standard Mathematical Tables"
- "Valemeid matemaatikast"
- \blacksquare "The On-Line Encyclopedia of Integer Sequences (OEIS)" (http://oeis.org/)
- etc

Example;
$$\Box_n = \sum_{0 \leqslant k \leqslant n} k^2$$

for $n \geqslant 0$

- "CRC Standard Mathematical Tables"
- "Valemeid matemaatikast"
- \blacksquare "The On-Line Encyclopedia of Integer Sequences (OEIS)" (http://oeis.org/)
- etc

Example;
$$\Box_n = \sum_{0 \leqslant k \leqslant n} k^2$$
 for $n \geqslant 0$

Find solution from a reference books:

- "CRC Standard Mathematical Tables"
- "Valemeid matemaatikast"
- "The On-Line Encyclopedia of Integer Sequences (OEIS)" (http://oeis.org/)
- etc

Possible answer:

$$\Box_n = \frac{n(n+1)(2n+1)}{6} \qquad \text{for } n \geqslant 0$$

Next subsection

- 1 Sequences
- 2 Notations for sums
- 3 Sums and Recurrences
 - Repertoire method
 - Perturbation method
 - Reduction to the known solutions
 - Summation factors
- 4 General Methods
 - Looking up
 - Guessing the answer
 - Perturbation
 - Build a repertoire
 - Integrals
 - Expansion
 - More methods

Example;
$$\Box_n = \sum_{0 \leqslant k \leqslant n} k^2$$
 for $n \geqslant 0$

Guess the answer, prove it by induction.

	0	1	2	3	4	5	6	7	8	9
n ²	0	1	4	9	16	25	36	49	64	81
		•				•		•		

Example;
$$\Box_n = \sum_{0 \leqslant k \leqslant n} k^2$$
 for $n \geqslant 0$

Guess the answer, prove it by induction.

n	0	1	2	3	4	5	6	7	8	9				
n ²	0	1	4	9	16	25	36	49	64	81				
\Box_n	0	1	5	14	30	55	91	140	204	285				

Example;
$$\Box_n = \sum_{0 \leqslant k \leqslant n} k^2$$
 for $n \geqslant 0$

Guess the answer, prove it by induction.

n	0	1	2	3	4	5	6	7	8	9				
n ²	0	1	4	9	16	25	36	49	64	81				
\Box_n	0	1	5	14	30	55	91	140	204	285				
\Box_n/n^2	_	1	1.25	1.56	1.88	2.2	2.53	2.86	3.19	3.52				

Example;
$$\Box_n = \sum_{0 \leqslant k \leqslant n} k^2$$
 for $n \geqslant 0$

Guess the answer, prove it by induction.

n .	0	1	2	3	4	5	6	7	8	9
n ²	0	1	4	9	16	25	36	49	64	81
\square_n	0	1	5	14	30	55	91	140	204	285
\Box_n/n^2	_	1	1.25	1.56	1.88	2.2	2.53	2.86	3.19	3.52
$3\square_n/n^2$	-	3	3.75	4.67	5.63	6.6	7.58	8.57	9.56	10.56

Example;
$$\Box_n = \sum_{0 \leqslant k \leqslant n} k^2$$
 for $n \geqslant 0$

Guess the answer, prove it by induction.

n	0	1	2	3	4	5	6	7	8	9
n ²	0	1	4	9	16	25	36	49	64	81
\Box_n	0	1	5	14	30	55	91	140	204	285
\Box_n/n^2	_	1	1.25	1.56	1.88	2.2	2.53	2.86	3.19	3.52
$3\square_n/n^2$	_	3	3.75	4.67	5.63	6.6	7.58	8.57	9.56	10.56
n(n+1)	0	2	6	12	20	30	42	56	72	90

Example;
$$\Box_n = \sum_{0 \le k \le n} k^2$$
 for $n \ge 0$

Guess the answer, prove it by induction.

	n	0	1	2	3	4	5	6	7	8	9
_	n ²	0	1	4	9	16	25	36	49	64	81
	\square_n	0	1	5	14	30	55	91	140	204	285
	\square_n/n^2	_	1	1.25	1.56	1.88	2.2	2.53	2.86	3.19	3.52
_	$3\square_n/n^2$	_	3	3.75	4.67	5.63	6.6	7.58	8.57	9.56	10.56
	n(n+1)	0	2	6	12	20	30	42	56	72	90
	$3\square_n/n(n+1)$	-	1.5	2.5	3.5	4.5	5.5	6.5	7.5	8.5	9.5

Example;
$$\Box_n = \sum_{0 \le k \le n} k^2$$

for $n \geqslant 0$

Guess the answer, prove it by induction.

Let's compute

n	0	1	2	3	4	5	6	7	8	9
n ²	0	1	4	9	16	25	36	49	64	81
\square_n	0	1	5	14	30	55	91	140	204	285
\square_n/n^2	_	1	1.25	1.56	1.88	2.2	2.53	2.86	3.19	3.52
$3\square_n/n^2$	_	3	3.75	4.67	5.63	6.6	7.58	8.57	9.56	10.56
n(n+1)	0	2	6	12	20	30	42	56	72	90
$3\square_n/n(n+1)$	_	1.5	2.5	3.5	4.5	5.5	6.5	7.5	8.5	9.5

Hypothesis:

$$\frac{3\square_{n}}{n(n+1)} = n + \frac{1}{2} \Longrightarrow$$

$$\square_{n} = \frac{n(n+1/2)(n+1)}{3} = \frac{n(n+1)(2n+1)}{6}$$

Proof. $3\Box_n = n(n + \frac{1}{2})(n+1)$

Assume that the formula is true for n-1

We know that $\square_n = \square_{n-1} + n^2$

$$3\Box_n = (n-1)(n-\frac{1}{2})n+3n^2$$
$$= (n^3 - \frac{3}{2}n^2 + \frac{1}{2}n) + 3n$$
$$= n^3 + \frac{3}{2}n^2 + \frac{1}{2}n$$
$$= n(n+\frac{1}{2})(n+1)$$

Proof. $3\Box_n = n(n + \frac{1}{2})(n+1)$

Assume that the formula is true for n-1

We know that
$$\Box_n = \Box_{n-1} + n^2$$

$$3\Box_n = (n-1)(n-\frac{1}{2})n + 3n^2$$

$$= (n^3 - \frac{3}{2}n^2 + \frac{1}{2}n) + 3n^2$$

$$= n^3 + \frac{3}{2}n^2 + \frac{1}{2}n$$

$$= n(n+\frac{1}{2})(n+1)$$

Proof. $3\Box_n = n(n + \frac{1}{2})(n+1)$

Assume that the formula is true for n-1

We know that
$$\square_n = \square_{n-1} + n^2$$

$$3\square_n = (n-1)(n-\frac{1}{2})n+3n^2$$

$$= (n^3 - \frac{3}{2}n^2 + \frac{1}{2}n) + 3n^2$$

$$= n^3 + \frac{3}{2}n^2 + \frac{1}{2}n$$

$$= n(n+\frac{1}{2})(n+1)$$

Proof. $3\Box_n = n(n + \frac{1}{2})(n+1)$

Assume that the formula is true for n-1

We know that $\square_n = \square_{n-1} + n^2$

$$3\square_n = (n-1)(n-\frac{1}{2})n + 3n^2$$

$$= (n^3 - \frac{3}{2}n^2 + \frac{1}{2}n) + 3n^2$$

$$= n^3 + \frac{3}{2}n^2 + \frac{1}{2}n$$

$$= n(n+\frac{1}{2})(n+1)$$

Next subsection

- 1 Sequences
- 2 Notations for sums
- 3 Sums and Recurrences
 - Repertoire method
 - Perturbation method
 - Reduction to the known solutions
 - Summation factors
- 4 General Methods
 - Looking up
 - Guessing the answer
 - Perturbation
 - Build a repertoire
 - Integrals
 - Expansion
 - More methods

Example; $\Box_n = \overline{\sum_{0 \leqslant k \leqslant n} k^2}$

for $n \geqslant 0$

Perturb the sum.

- Define a sum $\square_n = 0^3 + 1^3 + 2^3 + ... + n^3$
- Then we have

$$\mathbb{D}_n + (n+1)^3 = \sum_{0 \le k \le n} (k+1)^3 = \sum_{0 \le k \le n} (k^3 + 3k^2 + 3k + 1) \\
= \mathbb{D}_n + 3\square_n + 3\frac{(n+1)n}{2} + (n+1).$$

■ Cancel \square_n and extract \square_r

$$3\square_n = (n+1)^3 - 3(n+1)n/2 - (n+1)$$
$$= (n+1)(n^2 + 2n + 1 - \frac{3}{2}n - 1)$$
$$= (n+1)(n + \frac{1}{2})n.$$

Example; $\Box_n = \sum_{0 \leqslant k \leqslant n} k^2$

for $n \geqslant 0$

Perturb the sum.

- Define a sum $\square_n = 0^3 + 1^3 + 2^3 + ... + n^3$.
- Then we have

$$\mathbb{Z}_n + (n+1)^3 = \sum_{0 \le k \le n} (k+1)^3 = \sum_{0 \le k \le n} (k^3 + 3k^2 + 3k + 1)$$

$$= \mathbb{Z}_n + 3\square_n + 3\frac{(n+1)n}{2} + (n+1).$$

■ Cancel \square_n and extract \square_r

$$3\square_n = (n+1)^3 - 3(n+1)n/2 - (n+1)$$
$$= (n+1)(n^2 + 2n + 1 - \frac{3}{2}n - 1)$$
$$= (n+1)(n + \frac{1}{2})n.$$

Example; $\Box_n = \sum_{0 \leqslant k \leqslant n} k^2$

for $n \geqslant 0$

Perturb the sum.

- Define a sum $\square_n = 0^3 + 1^3 + 2^3 + ... + n^3$.
- Then we have

$$\mathfrak{D}_n + (n+1)^3 = \sum_{0 \leqslant k \leqslant n} (k+1)^3 = \sum_{0 \leqslant k \leqslant n} (k^3 + 3k^2 + 3k + 1)$$

$$= \mathfrak{D}_n + 3\square_n + 3\frac{(n+1)n}{2} + (n+1).$$

■ Cancel \square_n and extract \square_n

$$3\square_n = (n+1)^3 - 3(n+1)n/2 - (n+1)$$
$$= (n+1)(n^2 + 2n + 1 - \frac{3}{2}n - 1)$$
$$= (n+1)(n + \frac{1}{2})n.$$

Example; $\square_n = \sum_{0 \leqslant k \leqslant n} k^2$

for $n \geqslant 0$

Perturb the sum.

- Define a sum $\square_n = 0^3 + 1^3 + 2^3 + ... + n^3$.
- Then we have

$$\mathfrak{D}_n + (n+1)^3 = \sum_{0 \leqslant k \leqslant n} (k+1)^3 = \sum_{0 \leqslant k \leqslant n} (k^3 + 3k^2 + 3k + 1)$$

$$= \mathfrak{D}_n + 3\square_n + 3\frac{(n+1)n}{2} + (n+1).$$

■ Cancel \square_n and extract \square_n

$$3\Box_n = (n+1)^3 - 3(n+1)n/2 - (n+1)$$
$$= (n+1)(n^2 + 2n + 1 - \frac{3}{2}n - 1)$$
$$= (n+1)(n + \frac{1}{2})n.$$

Next subsection

- 1 Sequences
- 2 Notations for sums
- 3 Sums and Recurrences
 - Repertoire method
 - Perturbation method
 - Reduction to the known solutions
 - Summation factors
- 4 General Methods
 - Looking up
 - Guessing the answer
 - Perturbation
 - Build a repertoire
 - Integrals
 - Expansion
 - More methods

Example;
$$\Box_n = \sum_{0 \leqslant k \leqslant n} k^2$$
 for $n \geqslant 0$

Build a repertoire.

$$R_0 = 0$$
Recurrence:
$$R_n = R_{n-1} + \alpha + \beta \, n + \gamma n^2$$
We look a solution in the form $R_n = A(n)\alpha + B(n)\beta + C(n)\gamma$

Example; $\Box_n = \sum_{0 \leqslant k \leqslant n} k^2$

for $n \ge 0$

Build a repertoire.

$$R_0 = 0$$
 Recurrence:

$$R_n = R_{n-1} + \alpha + \beta n + \gamma n^2$$

We look a solution in the form $R_n = A(n)\alpha + B(n)\beta + C(n)\gamma$

Case: $R_n = n$

- Equation: $n = n 1 + \alpha + \beta n + \gamma n^2$
- That is $\alpha = 1$; $\beta = \gamma = 0$,
- and the solution has a form n = A(n).

Example;
$$\Box_n = \sum_{0 \leqslant k \leqslant n} k^2$$

for $n \ge 0$

Build a repertoire.

$$R_0 = 0$$
 Recurrence:

$$R_n = R_{n-1} + \alpha + \beta n + \gamma n^2$$

We look a solution in the form $R_n = A(n)\alpha + B(n)\beta + C(n)\gamma$

Case:
$$R_n = n^2$$

- Equation: $n^2 = (n-1)^2 + \alpha + \beta n + \gamma n^2$
- or: $0 = (\alpha + 1) + (\beta 2)n + \gamma n^2$
- That is $\alpha = -1$; $\beta = 2$; $\gamma = 0$,
- and hence, the solution has a form $n^2 = -A(n) + 2B(n) = -n + 2B(n)$.
- That gives $B(n) = \frac{n^2 + n}{2}$.

Example; $\Box_n = \sum_{0 \leqslant k \leqslant n} k^2$

for $n \ge 0$

Build a repertoire.

$$R_0 = 0$$
 Recurrence:

$$R_n = R_{n-1} + \alpha + \beta n + \gamma n^2$$

We look a solution in the form $R_n = A(n)\alpha + B(n)\beta + C(n)\gamma$

Case: $R_n = n^3$

- Equation: $n^3 = (n-1)^3 + \alpha + \beta n + \gamma n^2 = n^3 3n^2 + 3n 1 + \alpha + \beta n + \gamma n^2$
- or: $0 = (\alpha 1) + (\beta + 3)n + (\gamma 3)n^2$
- That is $\alpha = 1$; $\beta = -3$; $\gamma = 3$,
- and hence, the solution has a form $n^3 = A(n) 3B(n) + 3C(n) = n 3\frac{n^2 + n}{2} + 3C(n).$
- That gives $6C(n) = 2n^3 2n + 3n^2 + 3n = 2n^3 + 3n^2 + n = n(2n+1)(n+1)$.

Example; $\Box_n = \sum_{0 \leqslant k \leqslant n} k^2$

for $n \geqslant 0$

Build a repertoire.

$$R_0 = 0$$
 Recurrence:

$$R_n = R_{n-1} + \alpha + \beta n + \gamma n^2$$

We look a solution in the form $R_n = A(n)\alpha + B(n)\beta + C(n)\gamma$

To resume

- $R_n = \square_n$ iff $\alpha = \beta = 0$; $\gamma = 1$
- The solution is

$$\square_n = \frac{n(n+1)(2n+1)}{6}$$

Next subsection

- 1 Sequences
- 2 Notations for sums
- 3 Sums and Recurrences
 - Repertoire method
 - Perturbation method
 - Reduction to the known solutions
 - Summation factors
- 4 General Methods
 - Looking up
 - Guessing the answer
 - Perturbation
 - Build a repertoire
 - Integrals
 - Expansion
 - More methods

Example;
$$\Box_n = \sum_{0 \le k \le n} k^2$$

for $n \ge 0$

Replace sums by integrals.

$$f(x) = x^2$$

$$123 n x$$

$$\int_0^n x^2 dx = \frac{n^3}{3}$$
 (2)

$$\Box_n = \int_0^n x^2 \mathrm{d}x + E_n \tag{3}$$

$$E_n = \sum_{k=1}^n \left(k^2 - \int_{k-1}^k x^2 dx \right)$$
 (4)

Example;
$$\Box_n = \sum_{0 \leqslant k \leqslant n} k^2$$

for $n \geqslant 0$

Replace sums by integrals.

Evaluate (4):

$$E_n = \sum_{k=1}^{n} \left(k^2 - \int_{k-1}^{k} x^2 dx \right)$$

$$= \sum_{k=1}^{n} \left(k^2 - \frac{k^3 - (k-1)^3}{3} \right)$$

$$= \sum_{k=1}^{n} \left(k - \frac{1}{3} \right)$$

$$= \frac{(n+1)n}{2} - \frac{n}{3} = \frac{3n^2 + n}{6}.$$

Finally, from (3) and (2) we get :

$$\Box_n = \frac{n^3}{3} + \frac{3n^2 + n}{6} = \frac{n(n+1)(2n+1)}{6}$$

Next subsection

- 1 Sequences
- 2 Notations for sums
- 3 Sums and Recurrences
 - Repertoire method
 - Perturbation method
 - Reduction to the known solutions
 - Summation factors
- 4 General Methods
 - Looking up
 - Guessing the answer
 - Perturbation
 - Build a repertoire
 - Integrals
 - Expansion
 - More methods

Example; $\Box_n = \sum_{0 \leqslant k \leqslant n} k^2$

for $n \geqslant 0$

Expand and Contract.

$$\Box_{n} = \sum_{1 \leq k \leq n} k^{2} = \sum_{1 \leq j \leq k \leq n} k$$

$$= \sum_{1 \leq j \leq n} \sum_{j \leq k \leq n} k$$

$$= \sum_{1 \leq j \leq n} \frac{(j+n)(n-j+1)}{2}$$

$$= \frac{1}{2} \sum_{1 \leq j \leq n} (j-j^{2}+n(n+1))$$

$$= \frac{1}{4} n(n+1) - \frac{1}{2} \Box_{n} + \frac{1}{2} n^{2}(n+1)$$

Hence

$$\frac{3}{2}\Box_n = \frac{n+1}{4} \cdot \left(2n^2 + n\right)$$

Example; $\Box_n = \sum_{0 \le k \le n} k^2$

for $n \ge 0$

Expand and Contract.

$$\Box_{n} = \sum_{1 \leqslant k \leqslant n} k^{2} = \sum_{1 \leqslant j \leqslant k \leqslant n} k$$

$$= \sum_{1 \leqslant j \leqslant n} \sum_{j \leqslant k \leqslant n} k$$

$$= \sum_{1 \leqslant j \leqslant n} \frac{(j+n)(n-j+1)}{2}$$

$$= \frac{1}{2} \sum_{1 \leqslant j \leqslant n} (j-j^{2}+n(n+1))$$

$$= \frac{1}{4} n(n+1) - \frac{1}{2} \Box_{n} + \frac{1}{2} n^{2}(n+1)$$

$$\frac{3}{2} \Box_{n} = \frac{n+1}{4} \cdot (2n^{2}+n)$$

Hence

Next subsection

- 1 Sequences
- 2 Notations for sums
- 3 Sums and Recurrences
 - Repertoire method
 - Perturbation method
 - Reduction to the known solutions
 - Summation factors
- 4 General Methods
 - Looking up
 - Guessing the answer
 - Perturbation
 - Build a repertoire
 - Integrals
 - Expansion
 - More methods

Review: Other methods

Example;
$$\Box_n = \sum_{0 \leqslant k \leqslant n} k^2$$

for $n \geqslant 0$

- Finite calculus
- Generating functions

