排序

快速排序: 递归深度

今夫盲者行于道,人谓之左则左,谓之右则右。遇君 子则得其平易,遇小人则蹈于沟壑。

居中 + 偏侧

平均情况 ($\mathcal{O}(\log n)$ 递归深度), 概率极高

 $(1 - \lambda) / 2$

width = λ = Pr.

 $(1 - \lambda) / 2$

- ❖ 实际上:除非过于侧偏的pivot,都会有效地缩短递归深度
- ❖ 准居中: pivot落在宽度为 $\lambda \cdot n$ 的居中区间

(λ 也是这种情况出现的概率)

� 每一递归路径上,至多出现 $\log_{\frac{2}{1+\lambda}} n$ 个准居中的pivots ...

期望深度

- ❖ 每递归一层,都有 λ (1 − λ) 的概率准居中 (准偏侧)
- *深入 $\frac{1}{\lambda} \cdot \log_{\frac{2}{1+\lambda}} n$ 层后,即可期望出现 $\log_{\frac{2}{1+\lambda}} n$ 次准居中,且有极高的概率出现

 $(1 - \lambda) / 2$

width = λ = Pr.

 $(1 - \lambda) / 2$

* 相反情况的概率<</th> $(1-\lambda)^{\left(\frac{1}{\lambda}-1\right)\cdot\log_{\frac{2}{1+\lambda}}n}$ = $n^{\left(\frac{1}{\lambda}-1\right)\cdot\log_{\frac{2}{1+\lambda}}(1-\lambda)}$

且随着 λ 增加而下降, 比如 $\lambda > 1/3$ 之后, 即...

* 至少有 $1-n^{2 \cdot \log_{\frac{3}{2}}(\frac{2}{3})} = 1-n^{-2}$ 的概率,使得

递归深度不超过 $\frac{1}{\lambda} \cdot \log_{\frac{2}{1+\lambda}} n = 3 \cdot \log_{\frac{3}{2}} n \approx 5.129 \cdot \log n$

