Redes Industriais e Sistemas Supervisórios

Bacharelado em Engenharia de Controle e Automação

RS232 - RS485

EIA232 - EIA485

RS232 - EIA232

- Criado em 1969
- Padrão para comunicação entre dois dispositivos
 - O Baseado na UART
 - Universal asynchronous receiver-transmitter
 - O Ponto a ponto
- Conector DB9 ou DB25
- Encontrados em:
 - o PCs
 - Equipamentos industriais
 - o Projetores
 - o Instrumentos de medição

RS232 - EIA232

- O Padrão define:
 - O Características elétricas
 - O Características mecânicas
 - O Descrição funcional dos circuitos
- Taxa máxima de 115200bps
 - O Recomendado menos de 20000 bps
- Distância máxima recomendada
 - o 15 metros

Dispositivos

Data Terminal Equipment

Pinagem do conector

Pinagem do conector

Pin	Logogram	Explanation
Pin 1	CD	Carrier Detect
Pin 2	RXD	Receive
Pin 3	TXD	Transmit
Pin 4	DTR	Data Terminal Ready
Pin 5	GND	Ground
Pin 6	DSR	Data Set Ready
Pin 7	RTS	Request To Send
Pin 8	CTS	Clear to Send
Pin 9	RI .	Ring Indicator

DB9 Male Plug Front

DB9 Female Socket Front

Pinagem do conector

Função	Sigla	Uso
Portadora detectada, (Data Carrier Detect)	DCD	Controle
Recepção de dados, (Receive Data)	RX, RD	Dados
Transmissão de dados, (Transmitted Data)	TX, TD	Dados
Terminal de dados pronto, (Data Terminal Ready)	DTR	Controle
Terra, (Signal Ground)	GND	Comum
Conjunto de dados pronto, (Data Set Ready)	DSR	Controle
Pronto para enviar(computador), (Request To Send)	RTS	Controle
Envie os dados (modem), (Clear To Send)	CTS	Controle
Sinal de portadora	Ring	Controle

Características elétricas

- Nível lógico '0'
 - o Space
 - Tensão positiva
 - Tensão no transmissor: +5 a +25 V
 - Tensão no receptor: +3 a +25 V
- Nível lógico '1'
 - o Mark
 - Tensão negativa
 - Tensão no transmissor: -5 a -25 V
 - Tensão no receptor: -3 a -25 V

Características elétricas

Distâncias típicas - Empíricas

Baudrate	Distância (m)
1200	500
2400	200
4800	100
9600	70
19200	50
115200	20

Controle de fluxo por hardware

- Inicialização
 - O DTR Data Terminal Ready
 - O DTE indica que está pronto
 - o DSR Data Set Ready
 - O DCE indica que está pronto
- Handshake
 - o RTS Request to Send
 - DTE ou DCE sinalizam que querem enviar dados
 - O CTS Clear to Send
 - DTE ou DCE indica que pode receber dados
 - Evita receber dados sem poder processar
 - O Ring Antigos modems

Cabo DTE - DTE sem controle de fluxo

- Null modem cable
- Usa Rx, Tx e GND

Cabo DTE - DCE com controle de fluxo

Looping de Handshake

Conversor USB-RS232

Transceiver - MAX232 / Conversor TTL - EIA232

Transceiver - MAX232 / Conversor TTL - EIA232

Desvantagens

- Exige variações grandes de tensão
 - Alguns transceivers exigem fontes de -12V e +12V
- Pouca imunidade a ruído
- Pequenas distâncias
 - o 15m recomendado
- Ponto a ponto
 - Somente dois dispositivos
- Controle de fluxo não é implementado em todos os tipos de dispositivos
- Dois tipos de pinagem: DCE e DTE
- Não envia alimentação pelo conector

Cuidados e Diagnósticos de Problemas

- Tipo de dispositivo e cabos utilizados
 - O DCE e DTE
 - O Pinagem e montagem corretas
 - O Atenuação e capacitância do fio
- Taxas e distâncias configuradas
 - O Configuração de taxa igual em ambos os dispositivos
 - O Paridade e baudrate
 - O Distância atende as especificações

Cuidados e Diagnósticos de Problemas

- Controle de fluxo
 - o é necessário utilizar ou não
 - Está configurado igual em ambos dispositivos
 - O cabo possui os fios necessários
- Como está o ruído no ambiente
 - O Testar com osciloscópio os sinais TX e RX durante o envio
- O protocolo utilizado é o mesmo em ambos dispositivos
- Está ocorrendo de fato o envio de dados

Recommended Standard

TIA/EIA485

Telecommunications Industry Association Electronic Industries Alliance

Padrão EIA-485 / RS485

Define características funcionais e elétricas de cabos para a rede de comunicação.

Aplicações EIA-485 / RS485

- Indústria
- Comércio
- Equipamentos médicos
- Embarcações
- Laboratórios

- → Robustez
- → Imunidade a interferências elétricas
- → Capacidade de transmissão a longas distâncias

Topologias EIA-485

Par de fios com sinais diferenciais

Sinal diferencial EIA-485

Níveis de tensão EIA-485

Níveis de tensão EIA-485

Níveis de tensão EIA-485

Cabo par trançado

- Seção mínima de 24AWG (0,20mm²)
- Deve possuir blindagem sempre que possível
- Capacitância no máximo 17pf/ft (55pf/m)
- Impedância maior que 100 ohms
- Se não for utilizado o fio terra em comum com os dispositivos da rede a blindagem do cabo deve ser aterrada em apenas uma de suas extremidades.

Cabo par trançado

Resistor de terminação EIA-485

- Necessita de resistores de terminação
 - Evita propagação de ruídos e reflexão
- Geralmente equipamentos possuem um jumper para ativar ou não o resistor de terminação.

Resistores de terminação - EIA-485

Distância máxima da rede: 4000 pés ou 1219 m

Padrão EIA-485

Padrão EIA-422

INSTITUTO FEDERAL
São Paulo
Câmpus Salto

D-

D+

Padrão EIA-485 e EIA-422

A norma adverte:

a máxima ddp entre os equipamentos da rede deve estar entre -7V e +12V

Multiponto

- O padrão RS-485 é multiponto, o que permite até 32 dispositivos em uma única rede:
 - o O padrão define cada dispositivo da rede como **unidade de carga**", definindo em uma rede o número máximo de 32 unidades de carga;
- A definição de uma carga unitária é como uma resistência de $15~k\Omega$ ligado a uma fonte -3V ou 5V;
- Dispositivos comerciais com 1/2 ,1/4 e 1/8 de unidade de carga.

Transceivers comerciais MAX485 ou 75176

- Driver
 - O Ativado quando o dispositivo quer enviar dados
- Receiver
 - O Ativado quando o dispositivo está recebendo dados
 - Geralmente está sempre ativo

Transceiver MAX485

MEGA8*P

Referências

- FREITAS, C. M. **Redes de comunicação em RS-485**. [S. l.: s. n.], 2017. Disponível em: https://embarcados.com.br/redes-de-comunicacao-em-rs-485/. Acesso em: 1 out. 2024.
- GUSE, R. **O que é RS-485: Funcionamento e aplicações**. [S. l.: s. n.], 2024. Disponível em: https://www.makerhero.com/blog/o-que-e-rs-485/. Acesso em: 1 out. 2024.
- MOHANAN, VISHNU. What is RS-485 & How to Use MAX485 with Arduino for Reliable Long-Distance Serial Communication. [S. l.: s. n.], 2023. Disponível em: https://www.circuitstate.com/tutorials/what-is-rs-485-how-to-use-max485-with-arduino-for-reliable-long-distance-serial-communication/#. Acesso em: 1 out. 2024.
- RIBAS, F. **Blog Ageon**. [S. l.: s. n.], 2024. Disponível em: https://blog.ageon.com.br/rs485/. Acesso em: 1 out. 2024.
- ROISENBERG, L. Aprenda tudo sobre RS 485 O protocolo de comunicação serial mais utilizado no mundo» Blog LRI Automação Industrial. [S. l.: s. n.], 2024. Disponível em: https://blog.lri.com.br/aprenda-tudo-sobre-rs-485-o-protocolo-de-comunicacao-serial-mais-utilizado-no-mundo/. Acesso em: 1 out. 2024.
- SEALEVEL. **Serial Electrical Interfaces**. [S. l.: s. n.], 2018. Disponível em: https://www.sealevel.com/support/serial-electrical-interfaces/. Acesso em: 2 out. 2024.

