# Introduction to Machine Learning

Shahane Arushanyan Machine Learning. Summer 2020

# My Background (in Data Science and ML)

- Ucom LLC (2017-2019)
- Philip Morris Armenia (2020-present)

#### Teaching:

- AUA Machine Learning, Algorithms (2017-2018)
- ISTC (2018)
- ACA (2019-present)

#### Course Outline

- Intro to Python (optional)
- Numpy, Pandas, Matplotlib
- Regression Algorithms (Linear r., Polynomial r., Ridge r.)
- Classification algorithms (Logistic r., SVM, Decision tree, Random forest)
- Introduction to unsupervised learning
- Introduction to Neural networks

### Course Structure

- Lectures
- Practical sessions
- Homeworks (practical + homework)
- 3 Midterm exams (at the end of each month)
- Slack

### Lecture Outline

- What is Machine Learning?
- Set ups
- Github

# Data Science vs Machine Learning

**DS** -> using scientific approach to extract meaning and insights from data

**ML** -> a group of techniques that allow computers to learn from data

# What is Machine Learning?

- Data is everywhere and in every field
- Huge amounts of data collected and stored
- Machine learning techniques in our everyday lives







Face recognition



Vacuum robot



Voice assistant

Movies suggestion

# What is Machine Learning?

Machine learning is a study of computer algorithms that improve automatically through experience.





























**Training Data** 

**Test Data** 









Size of house

Size of garden

**Number of rooms** 

$$$ = 1.2 \times \bigcirc + 0.7 \times \bigcirc + 3.1 \times \bigcirc$$

$$\$ = A \times \bigotimes + B \times \emptyset + C \times \bigotimes$$

Model with unknown A, B and C to be defined

< Model



< Data

Available data to determine A, B and C (to fit the model)



# Supervised Learning

A supervised model is trained on a labeled dataset of (feature, label) pairs.

### Regression Model - numerical label

Problem: Predict weight (number) given height and age



#### **Features:**

Height, Age

#### Label:

Weight





| Height: | 1.50 | 1.70 | 2.10 | 1.55 | 1.62 |
|---------|------|------|------|------|------|
| Age:    | 10   | 24   | 40   | 20   | 30   |

**Weight:** 40 58 80 45

Training data

Test data

### Classification Model - categorical label

**Problem:** Predict if the object is an apple or not (True/False) given color and shape.



#### **Features:**

Color, Shape

#### Label:

True/False





Color: red yellow green yellow Green

Shape: round oval oval round

Apple: True False False ?

Training data

Test data

### Supervised Learning

Regression Model

V

**Numerical Label** 

Classification Model



Categorical Label

# Unsupervised Learning

An unsupervised model is trained on a unlabeled dataset that contains only features but with NO labels

# Clustering model - group similar instances together





# Clustering model - customer segmentation given income and age



# Dimension reduction model - express data with 2-3 dimensions



# Dimension reduction model - express data with 2-3 dimensions





## Anomaly detection - finding outliers



## Anomaly detection - finding outliers



#### **Neural Networks**



### **Convolutional Neural Networks**





# Reinforcement Learning

Train a machine learning model to generate a sequence of decisions

### (Model)

#### **AGENT**



- State  $s \in \mathcal{S}$
- Take action  $\,a\in\mathcal{A}\,$





- Get reward r
- New state  $s' \in \mathcal{S}$

### Mario game



### Autonomous car navigation



**Environment:** street model

**Set of actions:** 



Scoring: penalty/reward

https://www.youtube.com/watch?v=3ROVzjkkCIA

# Thank you!