Combining Inductive and Analytical Learning

[Read Ch. 12] [Suggested exercises: 12.1, 12.2, 12.6, 12.7, 12.8]

- Why combine inductive and analytical learning?
- KBANN: Prior knowledge to initialize the hypothesis
- TangetProp, EBNN: Prior knowledge alters search objective
- FOCL: Prior knowledge alters search operators

Inductive and Analytical Learning

Inductive learning

Hypothesis fits data Statistical inference Requires little prior knowledge Learns from scarce data Syntactic inductive bias

Analytical learning

Hypothesis fits domain the Deductive inference Bias is domain theory

What We Would Like

Inductive learning

Analytical learning

Plentiful data No prior knowledge

Perfect prior knowledge Scarce data

General purpose learning method:

- No domain theory \rightarrow learn as well as inductive methods
- ullet Perfect domain theory \to learn as well as Prolog-EBG
- Accomodate arbitrary and unknown errors in domain theory
- Accomodate arbitrary and unknown errors in training data

Domain theory:

 $\begin{aligned} \text{Cup} \leftarrow \text{Stable}, \text{Liftable}, \text{OpenVessel} \\ \text{Stable} \leftarrow \text{BottomIsFlat} \\ \text{Liftable} \leftarrow \text{Graspable}, \text{Light} \\ \text{Graspable} \leftarrow \text{HasHandle} \\ \text{OpenVessel} \leftarrow \text{HasConcavity}, \text{ConcavityPointsUp} \end{aligned}$

Training examples:

	Cups			Non-Cups					
BottomIsFlat	 								
ConcavityPoints Up	 								
Expensive								$\sqrt{}$	
Fragile	 								
HandleOnTop									
HandleOnSide									
HasConcavity	 							$\sqrt{}$	
HasHandle									
Light	 							$\sqrt{}$	
MadeOfCeramic									
MadeOfPaper								$\sqrt{}$	
MadeOfStyrofoam									

KBANN

KBANN (data D, domain theory B)

- 1. Create a feedforward network h equivalent to B
- 2. Use Backprop to tune h to fit D

Neural Net Equivalent to Domain Theory

Creating Network Equivalent to Domain Theory

Create one unit per horn clause rule (i.e., an AND unit)

- Connect unit inputs to corresponding clause antecedents
- For each non-negated antecedent, corresponding input weight $w \leftarrow W$, where W is some constant
- For each negated antecedent, input weight $w \leftarrow -W$
- Threshold weight $w_0 \leftarrow -(n-.5)W$, where n is number of non-negated antecedents

Finally, add many additional connections with near-zero weights

 $Liftable \leftarrow Graspable, \neg Heavy$

Result of refining the network

KBANN Results

Classifying promoter regions in DNA leave one out testing:

• Backpropagation: error rate 8/106

• KBANN: 4/106

Similar improvements on other classification, control tasks.

Hypothesis space search in KBANN

Hypothesis Space

EBNN

Key idea:

- Previously learned approximate domain theory
- Domain theory represented by collection of neural networks
- Learn target function as another neural network

Modified Objective for Gradient Descent

$$E = \sum_{i} \left[(f(x_i) - \hat{f}(x_i))^2 + \mu_i \sum_{j} \left(\frac{\partial A(x)}{\partial x^j} - \frac{\partial \hat{f}(x)}{\partial x^j} \right)_{(x=x_i)}^2 \right]$$

where

$$\mu_i \equiv 1 - \frac{|A(x_i) - f(x_i)|}{c}$$

- f(x) is target function
- $\hat{f}(x)$ is neural net approximation to f(x)
- A(x) is domain theory approximation to f(x)

Hypothesis Space Search in EBNN

Hypothesis Space

Search in FOCL

FOCL Results

Recognizing legal chess endgame positions:

- 30 positive, 30 negative examples
- FOIL: 86%
- FOCL: 94% (using domain theory with 76% accuracy)

NYNEX telephone network diagnosis

- 500 training examples
- FOIL: 90%
- FOCL: 98% (using domain theory with 95% accuracy)