CHRISTIAN NEUMANN AUFGABEN DIENSTAG FERIENKURS LINEARE ALGEBRA FÜR PHYSIKER WS 2008/09

Aufgabe 1 zum warmwerden

Berechnen sie

a)
$$\begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 - 3 + 6 \\ 3 - 5 + 6 \\ 6 - 6 + 8 \end{pmatrix} = \begin{pmatrix} 4 \\ 4 \\ 8 \end{pmatrix}$$

b)
$$\begin{pmatrix} 5 & 7 & 9 \\ 8 & -6 & 3 \\ 4 & 10 & -2 \end{pmatrix} + \begin{pmatrix} -5 & 3 & 1 \\ 2 & -4 & -3 \\ 1 & 3 & 15 \end{pmatrix} = \begin{pmatrix} 5 - 5 & 7 + 3 & 9 + 1 \\ 8 + 2 & -6 - 4 & 3 - 3 \\ 4 + 1 & 10 + 3 & -2 + 15 \end{pmatrix} \begin{pmatrix} 0 & 10 & 10 \\ 10 & -10 & 0 \\ 5 & 13 & 13 \end{pmatrix}$$

c)
$$\begin{pmatrix} 4 & -4 & 4 \\ 7 & -9 & 7 \\ 15 & -17 & 11 \end{pmatrix} \begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 4-4 & -4+4 & 4-4+8 \\ 7-9 & -7+7 & 7-9+14 \\ 15-17 & -15+11 & 15-17+22 \end{pmatrix} \begin{pmatrix} 0 & 0 & 8 \\ -2 & 0 & 12 \\ -2 & -4 & 20 \end{pmatrix}$$

Aufgabe 2 inverse einer 2×2 Matrix

$$BA = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \frac{1}{ad-bc} \begin{pmatrix} ad-bc & db-bd \\ -ac+ac & -b+ad \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = E_2 = AB$$

Aufgabe 3 lineare Abbildungen

a) nicht linear,
$$f(x+y) = \binom{(x+y)+4}{-(x+y)} \neq f(x) + f(y) = \binom{(x+y)+8}{-(x+y)}$$

injektiv $f(x) = f(y) \Leftrightarrow \binom{x+4}{-x} = \binom{y+4}{-y} \Rightarrow x = y$
nicht surjektiv z.B $(0,0)^T$ hat kein Urbild

b) linear
$$\underline{A} = \begin{pmatrix} 1 & -i \\ 0 & 1 \end{pmatrix}$$
,
bijektiv, da $A^{-1} = \begin{pmatrix} 1 & i \\ 0 & 1 \end{pmatrix}$ existiert

c) nicht linear,
$$f\begin{pmatrix} x_1+y_1\\ x_2+y_2 \end{pmatrix} = \begin{pmatrix} x_1x_2\\ x_1-x_2 \end{pmatrix} + \begin{pmatrix} y_1y_2\\ y_1-y_2 \end{pmatrix} + \begin{pmatrix} x_1y_2+y_1x_2\\ 0 \end{pmatrix}$$

$$f\begin{pmatrix} x_1\\ x_2 \end{pmatrix} + f\begin{pmatrix} y_1\\ y_2 \end{pmatrix} = \begin{pmatrix} x_1x_2\\ x_1-x_2 \end{pmatrix} + \begin{pmatrix} y_1y_2\\ y_1-y_2 \end{pmatrix}$$
 nicht injektiv $f(-1,-1) = f(1,1)$, nicht surjektiv z.B $(-10,5)^T$ hat kein Urbild

- d) linear $\underline{A} = \underline{B} \cdot \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$, injektiv, da Kern $\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \{0\}$ (Lemma 2.15) und die Komposition injektiver Abbildungen wieder injektiv ist, nicht surjektiv $\mathbb{R}^2 \to \mathbb{R}^3$ und damit nach dem Dimensionssatz Rang $(f) \leq 2$ und dim $\mathbb{R}^3 = 3$ (Lemma 2.14)
- e) nicht linear, bijektiv, da inverse Funktion $\begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} \mapsto \underline{B}^{-1} \begin{pmatrix} \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} \begin{pmatrix} 1 \\ i \\ 1+i \end{pmatrix} \end{pmatrix} \quad \underline{B}^{-1} \text{ existiert wegen } \operatorname{Kern}(\underline{B}) = \{0\}$

Aufgabe 4

- a) $A = \begin{pmatrix} 1 & -3 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ Ist in dem Fall nicht eindeutig, da nur das Bild(f) angegeben ist und nicht die Bilder der Basen, permutieren der Spalten von A liefert die anderen möglichen Lösungen.
- b) Mit der Matrix aus a). Wähle $V = \text{span } (1, x), V' = \text{span } (x^2)$. Dann ist $V \oplus V' = P_2$. Es gibt nun zwei einfachere Abbildungen:

$$h: V \to V$$
 mit Matrix $B = \begin{pmatrix} 1 & -3 \\ -2 & 5 \end{pmatrix}$ und $g: V' \to V'$ mit Matrix $C = (3)$.

 B^{-1} ist nach Aufgabe 2 $B^{-1} = \begin{pmatrix} -5 & -1 \\ -2 & 5 \end{pmatrix}$, $C^{-1} = (1/3)$.

 A^{-1} ergibt sich durch zusammensetzen aus B^{-1} und C^{-1} zu

$$A^{-1} = \begin{pmatrix} -5 & -3 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1/3 \end{pmatrix}$$

Probe:
$$AA^{-1} = \begin{pmatrix} 1 & -3 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} -5 & -3 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1/3 \end{pmatrix} = \begin{pmatrix} -5 - -6 & -3 - -3 & 0 \\ --10 - 10 & --6 - 5 & 0 \\ 0 & 0 & 3 \cdot 1/3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

c) Nachdem A und A^{-1} existiern ist f bijektiv. Damit folgt aus der Dimensionsformel dim Bild(f) = 3. Da das Bild von f als Span von 3 Vektoren gegeben ist, folgt dass diese linear unabhängig ist. Da dim P_2 3 folgt zudem das die Vektoren zusätzlich eine Basis bilden.

Aufgabe 5 lineare Abbildungen II

a)
$$f \begin{pmatrix} -7 \\ 6 \\ 3 \end{pmatrix} = f \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + 2 \cdot f \begin{pmatrix} -4 \\ 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 4 \\ 18 \\ -8 \end{pmatrix} + 2 \cdot \begin{pmatrix} 3 \\ -2 \\ -3 \end{pmatrix} = \begin{pmatrix} 10 \\ 14 \\ -14 \end{pmatrix}$$

b)
$$-5 \cdot \begin{pmatrix} 3 \\ -2 \\ -3 \end{pmatrix} = \begin{pmatrix} -15 \\ 10 \\ 15 \end{pmatrix}$$
, $\begin{pmatrix} 3 \\ -2 \\ -3 \end{pmatrix}$ und $\begin{pmatrix} 4 \\ 18 \\ -8 \end{pmatrix}$ sind linear unabhängig.

$$\Rightarrow \operatorname{Kern}(f) = f^{-1} \left(\operatorname{span} \left(5 \cdot \begin{pmatrix} 3 \\ -2 \\ -3 \end{pmatrix} + \begin{pmatrix} -15 \\ 10 \\ 15 \end{pmatrix} \right) \right) = \operatorname{span} \left(5 \cdot \begin{pmatrix} -4 \\ 2 \\ 0 \end{pmatrix} + \begin{pmatrix} -3 \\ -6 \\ 5 \end{pmatrix} \right) = \operatorname{span} \left(\begin{pmatrix} -23 \\ 4 \\ 5 \end{pmatrix} \right)$$

- c) Nach dem Dimensionssatz folgt dim Bild (f) = 2= Ranfg(f) , (dim $\mathbb{R}^3=3$,nach b) dim Kern(f) = 1)
- d) Nach b) ist span $\begin{pmatrix} 4 \\ 18 \\ 8 \end{pmatrix}$, $\begin{pmatrix} 3 \\ -5 \\ 2 \end{pmatrix}$ eine Basis (Da der 2. und 3. Bildvektor linear abhängig sind). Die

2

Vektoren sind schon Orthogonal, müssen also nur noch normiert werden. Also ist eine ONB $\frac{1}{\sqrt{404}}\begin{pmatrix} 4\\18\\2 \end{pmatrix}, \frac{1}{\sqrt{22}}\begin{pmatrix} 3\\-2\\2 \end{pmatrix}$

Aufgabe 6 Verknüpfung von Matrizen

$$\underline{\mathbf{C}} := \underline{\underline{\mathbf{B}}} \, \underline{\underline{\mathbf{A}}}$$

$$c_{jl} = \sum_{k=1}^m b_{jk} a_{kl} = \sum_{k=1}^m \delta_{jk} \lambda_{jk} a_{kl} = \delta_{jj} \lambda_{jj} a_{jl} = \lambda_{jj} a_{jl}.$$
 Da $a_{jl} = 0$ für $j < l$ folgt $c_{jl} = 0$ für $j < l \Rightarrow \underline{\mathbf{C}}$ ist obere Dreiecksmatrix

Aufgabe 7 Basistransformation

a)
$$\langle w_i, w_j \rangle = \delta_{ij}$$
 $\Rightarrow w_1, ..., w_4$ bilden eine ONB des \mathbb{R}^4

b)
$$\underline{A} = \begin{pmatrix} 1/\sqrt{2} & 0 & 1/2 & -1/2 \\ 0 & 1/\sqrt{2} & 1/2 & 1/2 \\ 0 & 1/\sqrt{2} & -1/2 & -1/2 \\ 1/\sqrt{2} & 0 & -1/2 & 1/2 \end{pmatrix}$$

- c) Da die w_i eine ONB bilden ist dim Bild(f) = 4 = Rang(f). AUs der Dimensionsformel folgt, dass dim Kern(f) = 0
- d) aus c) folgt $\operatorname{Kern}(\underline{A}) = \{0\}$, Basis $\operatorname{Bild}(A) = \operatorname{span}(w_1, w_2, w_3, w_4)$
- e) Sei \underline{C} die Abbildende Matrix der Funktion $h: \mathbb{R}^4 \to \mathbb{R}^4$ mit $f(e_i) = \underline{b_i}$ (e_i bezeichne die Standardbasis des \mathbb{R}^4). Dann ist die gesuchte Matrix \underline{B} gegeben durch $\underline{B} = \underline{CA}^{-1}$. (Anwendung des Satzes über Basiswechsel, wobei $\underline{A}^{-1} = \underline{S}$)

Aufgabe 8 alte Klausuraufgabe

a) Nach der Dimensionsformel muss m = n - 1

b)
$$f(b_i) = 0 \forall i \in \{0, ..., m\}, f(b_n) = a = (a_1, ..., a_n)^T \Rightarrow \underline{A} = \begin{pmatrix} 0 & 0 & \cdots & a_1 \\ 0 & 0 & \cdots & a_2 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & a_n \end{pmatrix}.$$

c)
$$\underline{A}^2 = \begin{pmatrix} 0 & 0 & \cdots & a_1 a_n \\ 0 & 0 & \cdots & a_2 a_n \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & a_n^2 \end{pmatrix} . = a_n \underline{A} \Rightarrow \alpha = a_n$$

d)
$$f^k = \alpha f^{k-1} = \cdots \alpha^{k-1} f \Rightarrow \text{dim Bild } (f^k) = \text{dim Bild } (\alpha^{k-1} f) = \begin{cases} 1 & \text{falls } \alpha \neq 0 \\ 0 & \text{falls } \alpha = 0 \end{cases}$$

Aufgabe 9 schwer

- a) $Aw_1 = (1,0)^T, Aw_2 = (0,1)$
- b) $< w_1, w_2 >= 0$, damit sind w_1, w_2 linear unabhängig, d.h dim Span $(w_1, w_2) = 2$. Damit ist $U := span(w_1, w_2) \simeq \mathbb{R}^2$.

c)
$$B := \begin{pmatrix} 1 & 2 \\ 1 & -4 \\ 2 & 1 \end{pmatrix}$$
 ist de gesuchte Matrix

 $AB = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ Dies ist die Darstellung der Identitäsabbildung in \mathbb{R}^2 ,

$$BA = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3/2 & 1/2 & 0 \end{pmatrix} =: C$$

 $Cw_1 = w_1; Cw_2 = w_2$, jeder Vektor $u \in U$ lässt sich als Linearkombination der Basisvektoren w_1, w_2 darstellen $u = a \cdot w_1 + b \cdot w_2$. Das heißt $Cu = C(a \cdot w_1 + b \cdot w_2) = (a \cdot w_1 + b \cdot w_2) = u$. Damit ist C datstellung der Identitätsabbildung $id(u) = u \forall u \in U$.