Électromagnétisme S20 Inductance, énergie magnétique

Iannis Aliferis

Université Nice Sophia Antipolis

Spires et flux magnétique	. 3
Multiplier le flux et la fem	
Inductance mutuelle	4
Inductance mutuelle	5
Exemple: le transformateur	6
Inductance propre	7
Inductance propre	8
Inductance propre en électronique	9
Comment placer la fem de l'inductance propre?	10
	11
Énergie magnétique dans une bobine	12
Énergie magnétique	

Spires et flux magnétique

Multiplier le flux et la fem

▼ De la boucle de courant à la bobine

$$\Phi_{B1} = \int_{S_1} \vec{\boldsymbol{B}} \cdot \hat{\boldsymbol{n}} \, \mathrm{d}S$$

$$\mathsf{fem}_1 = -\frac{\mathrm{d}\Phi_{B1}}{\mathrm{d}t}$$

$$\mathsf{fem}_N = N\mathsf{fem}_1$$

 $\mathsf{Auteur}: \mathsf{M}.\ \mathsf{Lenz}\ /\ \mathsf{CC}\text{-}\mathsf{BY}\text{-}\mathsf{SA}$

$$\Phi_{BN} = \int_{S_N} \vec{\boldsymbol{B}} \cdot \hat{\boldsymbol{n}} \, \mathrm{d}S$$

$$\mathsf{fem}_N = -\frac{\mathrm{d}\Phi_{BN}}{\mathrm{d}t}$$

4

2

Inductance mutuelle

Inductance mutuelle

- ▼ Deux circuits séparés (p.ex. solénoïde et boucle)
- lacktriangledown Courant $I_1 \Rightarrow ec{m{B_1}} \Rightarrow \Phi_2$

$$\Phi_2 = \int_{S_2} \vec{\boldsymbol{B}_1} \cdot \hat{\boldsymbol{n}}_2 \, \mathrm{d}S \quad \text{et} \quad \vec{\boldsymbol{B}_1} = \oint_{\Gamma_1} \frac{\mu_0}{4\pi} \frac{I_1 \, \mathrm{d}\vec{\boldsymbol{l}_1} \wedge \hat{\boldsymbol{s}}}{s^2}$$

▼ Le flux à travers le 2 est *proportionnel* au courant de 1 :

$$\Phi_2 = M_{21} I_1 \tag{1}$$

- ▼ $M_{21} = M_{12} = M$ inductance mutuelle entre les circuits
- lacktriangledown M : paramètre purement *géométrique*
- ▼ Variations de I_1 génèrent un courant $I_2 = \text{fem}_2/R_2$:

$$fem_2 = -\frac{\mathrm{d}\Phi_2}{\mathrm{d}t} = -M_{21}\frac{\mathrm{d}I_1}{\mathrm{d}t} \tag{2}$$

[induction]

Inductance propre

7

Inductance propre

- ▼ Même phénomène [inductance mutuelle] avec un seul circuit!
- **▼** Courant $I \Rightarrow \vec{B} \Rightarrow \Phi_B$

$$\Phi_B = \int_S \vec{\boldsymbol{B}} \cdot \hat{\boldsymbol{n}} \, \mathrm{d}S \quad \text{et} \quad \vec{\boldsymbol{B}} = \oint_\Gamma \mathrm{d}\vec{\boldsymbol{B}} = \oint_\Gamma \frac{\mu_0}{4\pi} \frac{I \, \mathrm{d}\vec{\boldsymbol{l}} \wedge \hat{\boldsymbol{s}}}{s^2}$$

▼ Le flux à travers le circuit est *proportionnel* à son courant :

$$\Phi_B = LI \tag{3}$$

- **▼** L : inductance propre ("self") toujours > 0
- ▼ paramètre purement *géométrique*
- \blacktriangledown unités Henry : $H = \operatorname{Wb} A^{-1} = \operatorname{Tm}^2 A^{-1} = \operatorname{Vs} A^{-1}$
- lacktriangle Variations de I génèrent une fem . . . :

$$fem = -\frac{\mathrm{d}\Phi_B}{\mathrm{d}t} = -L\frac{\mathrm{d}I}{\mathrm{d}t} \tag{4}$$

...qui *s'oppose* aux variations!

surtout si L ou $\frac{\mathrm{d}I}{\mathrm{d}t}$ élévés

Inductance propre en électronique

[inductance propre]
$$\Phi_B = \int_S \vec{B} \cdot \hat{n} \, \mathrm{d}S = LI \quad (L>0)$$

- lacktriangledown sens de $I\longrightarrow ec{m{B}}$ (règle main droite)
- lacktriangledown sens de $\hat{t} \longrightarrow \hat{n}$ (règle main droite)
- lacktriangledown L>0 : il faut choisir $\hat{m{t}}$ dans le sens du courant

$$fem = -L \frac{\mathrm{d}I}{\mathrm{d}t}$$

▼ La fem s'oppose *aux variations* du courant

9

Énergie magnétique

11

Énergie magnétique dans une bobine

[inductance propre électronique]

▼ Puissance « consommée » : emmagasinée dans la bobine

$$P = UI = \left(L\frac{\mathrm{d}I}{\mathrm{d}t}\right)I$$

- ightharpoonup P>0 quand $I\uparrow$
- **▼** I(t=0) = 0 et $I(t=t_0) = I_0$
- ▼ Énergie magnétique stockée dans la self :

$$\mathcal{U}_{\mathsf{m}} = \int_{0}^{t_0} P(t) \, \mathrm{d}t = \int_{0}^{I_0} LI \, \mathrm{d}I = \frac{1}{2} L I_0^2 \tag{5}$$

lacktriangle L'énergie dépensée pour vaincre l'opposition et établir le courant I_0

12

Énergie magnétique

- ▼ Stockée dans le champ magnétique de la bobine
- ▼ Sans démonstration : la (5) devient

$$\mathcal{U}_{\mathsf{m}} = \frac{1}{2} \int_{\mathcal{V}} \frac{1}{\mu_0} B^2(\vec{r}) \, \mathrm{d}\mathcal{V}$$
 (6)

- $lacktriangledown B^2/(2\mu_0)$: densité volumique d'énergie (J m^{-3})
- ▼ Intégrer partout dans l'espace!
- ▼ À comparer avec l'énergie électrostatique :

$$\mathcal{U}_{\mathsf{e}} = rac{1}{2} \int_{\mathcal{V}} \epsilon_0 E^2(\vec{r}) \, \mathrm{d}\mathcal{V}$$

13

