Binary Algebraic Structures

Definition

A binary algebraic structure is a non-empty set S equipped with a binary operator '*' and is denoted (S, *).

When the binary operation is understood, the structure is simply referred to as S and operations are written using the more convenient ab form (juxtaposition) instead of a*b.

Definition

Let $\langle S, * \rangle$ and $\langle T, *' \rangle$ be two binary algebraic structures and $\phi: S \to T$. To say that S is homomorphic to T means there exists $\phi: S \to T$ such that:

$$\forall a, b \in S, \phi(a * b) = \phi(a) *' \phi(b)$$

If such a ϕ exists then it is referred to as a homomorphism.

When the binary operations are understood, the statement of homomorphism is written using the shorted $\phi(ab) = \phi(a)\phi(b)$ form. Note that the ab operation takes place is structure S with its equipped binary operator, and the $\phi(a)\phi(b)$ operation takes place in structure T with its equipped binary operator.

Definition

Let $\langle S, * \rangle$ and $\langle T, *' \rangle$ be two binary algebraic structures. To say that S is *isomorphic* to T, denoted $S \simeq T$, means there exists $\phi: S \to T$ such that:

1). ϕ is a bijection

 $\phi\left(e^{i\theta}\right) = \theta$

2). ϕ is a homomorphism

If such a ϕ exists then it is referred to as an *isomorphism*.

Example

It was previously shown that $\langle U, \cdot \rangle \simeq \langle \mathbb{R}_{2\pi}, +_{2\pi} \rangle$. In particular:

$$\phi(u_1 u_2) = \phi\left(e^{i\theta_1} e^{1\theta_2}\right)
= \phi\left(e^{i(\theta_1 + 2\pi \theta_2)}\right)
= \theta_1 + 2\pi \theta_2
= \phi\left(e^{i\theta_1}\right) + 2\pi \phi\left(e^{i\theta_2}\right)
= \phi(u_1) + 2\pi \phi(u_2)$$

Similarly,
$$\langle U_n, \cdot \rangle \simeq \langle \mathbb{Z}_n, +_n \rangle$$
:
$$\phi\left(e^{i\left[\frac{2\pi k}{n}\right]}\right) = k$$

$$\phi(\zeta^h \zeta^k) = \phi\left(e^{i\left[\frac{2\pi h}{n}\right]}e^{i\left[\frac{2\pi k}{n}\right]}\right)$$

$$= \phi\left(e^{i\left[\frac{2\pi (h+_n k)}{n}\right]}\right)$$

$$= \phi\left(e^{i\left[\frac{2\pi(h+n)k}{n}\right]}\right)$$

$$= h +_n k$$

$$= \phi\left(e^{i\left[\frac{2\pi h}{n}\right]}\right) +_n \phi\left(e^{i\left[\frac{2\pi k}{n}\right]}\right)$$

$$= \phi(\zeta^h) +_n \phi(\zeta^k)$$

Let n=4:

$$\begin{array}{c|cccc} \zeta & \phi(\zeta) \\ \hline 1 & 0 \\ i & 1 \\ -1 & 2 \\ -i & 3 \\ \hline \end{array}$$

$$\phi((-1)(-i)) = \phi(i) = 1$$

$$\phi((-1)(-i)) = \phi(-1) +_4 \phi(-i) = 2 +_4 3 = 1$$

Example

Prove: $\langle \mathbb{R}, + \rangle \simeq \langle \mathbb{R}^+, \cdot \rangle$

Let $\phi:\mathbb{R}\to\mathbb{R}^+$ be defined by $\phi(x)=e^x$

 $\begin{array}{ll} \underline{\text{one-to-one}} & \underline{\text{onto}} \\ \text{Assume } \phi(x) = \phi(y) & \text{Assume } y \in \mathbb{R}^+ \\ e^x = e^y & \text{Let } x = \ln y \in \mathbb{R} \\ x = y & e^x = y \\ \therefore \phi \text{ is one-to-one} & \therefore \phi \text{ is onto} \end{array}$

<u>homo</u>

```
Assume x, y \in \mathbb{R}^+

\phi(x+y) = e^{x+y} = e^x e^y = \phi(x)\phi(y)

\therefore \phi is a homomorphism
```

Thus, ϕ is an isomorphism and therefore $\langle \mathbb{R}, + \rangle \simeq \langle \mathbb{R}^+, \cdot \rangle$

Theorem

Let S and T be binary algebraic structures.

 $\phi:S\to T$ is an isomorphism $\iff \phi^{-1}:T\to S$ is an isomorphism

Proof

```
\Longrightarrow : Assume \phi:S\to T is an isomorphism
     \phi is a bijection
     \phi^{-1} also exists and is a bijection
     Assume t_1, t_2 \in T
     \phi is onto
     \exists s_1, s_2 \in S, \phi(s_1) = t_1 \text{ and } \phi(s_2) = t_2
     \phi is a homomorphism
     \phi^{-1}(t_1t_2) = \phi^{-1}(\phi(s_1)\phi(s_2)) = \phi^{-1}(\phi(s_1s_2)) = (\phi^{-1}\phi)(s_1s_2) = s_1s_2 = \phi^{-1}(t_1)\phi^{-1}(t_2)
     \phi^{-1} is a homomorphism
     \therefore \phi^{-1}: T \to S is an isomorphism
\iff : Assume \phi^{-1}: T \to S is an isomorphism
     \phi^{-1} is a bijection
     \phi also exists and is a bijection
     Assume s_1, s_2 \in S
     \phi^{-1} is onto
     \exists\, t_1,t_2\in T, \phi^{-1}(t_1)=s_1 \text{ and } \phi^{-1}(t_2)=s_2
     \phi^{-1} is a homomorphism
     \phi(s_1s_2) = \phi(\phi^{-1}(t_1)\phi^{-1}(t_2)) = \phi(\phi^{-1}(t_1t_2)) = (\phi\phi^{-1})(t_1t_2) = t_1t_2 = \phi(s_1)\phi(s_2)
     \phi is a homomorphism
     \therefore \phi: S \to T is an isomorphism
```

Theorem

Let S,T,U be binary algebraic structures such that $\phi:S\to T$ is an isomorphism and $\gamma:T\to U$ is an isomorphism.

 $\gamma \phi: S \to U$ is an isomorphism

Proof

```
\phi and \gamma are bijections and homomorphisms \gamma\phi is a bijection Assume s_1,s_2\in S (\gamma\phi)(s_1s_2)=\gamma(\phi(s_1s_2))=\gamma(\phi(s_1)\phi(s_2))=\gamma(\phi(s_1))\gamma(\phi(s_2))=(\gamma\phi)(s_1)(\gamma\phi)(s_2) \gamma\phi is a homomorphism \therefore \gamma\phi is an isomorphism
```

Theorem

Let $\mathscr S$ be the set of all binary algebraic structures. Isomorphism is an equivalence relation on $\mathscr S$.

Proof

Reflexive

Assume $S \in \mathscr{S}$ The identity function i_S is clearly bijective and homomorphic $i_S: S \to S$ is an isomorphism $\therefore S \simeq S$

• Symmetric

Assume $S \simeq T$ There exists isomorphism $\phi: S \to T$ So there exists isomorphism $\phi^{-1}: T \to S$ $\therefore T \simeq S$

Transitive

Assume $S \simeq T$ and $T \simeq U$ There exists isomorphisms $\phi \to T$ and $\gamma: T \to U$ So $\gamma \phi: S \to U$ is an isomorphism $\therefore S \simeq U$