

"十三五"江苏省高等学校重点教材 工业和信息化部"十四五"规划教材

电力电子技术 · Power Electronics

第8章 软开关直流变换器

- 8.1 软开关变换器的分类
- 8.2 准谐振变换器

8.1 软开关变换器的分类

- 8.1.1 硬开关的概念
- 8.1.2 软开关的概念
- 8.1.3 软开关直流变换器的分类

■ 实际开关管并非理想器件,开关管的开通和关断需要时间。

■ 开关管开通时,其电流上升很快; 开关管关断时,其电压上升很快。 这种开关方式为"硬开关",会产 生很大的功率损耗与电磁干扰。

硬开关时开关管的电压和电流波形

8.1 软开关变换器的分类

- 8.1.1 硬开关的概念
- 8.1.2 软开关的概念
- 8.1.3 软开关直流变换器的分类

软开关的概念

软开关时开关管的电压和电流波形 | 東南大學電系工程學院

■ 软开关的作用:

为了减小开关变换器的体积和重量,必须提高开关频率,但开 关损耗也随之增加,这不仅降低了变换器效率,还导致散热器 体积重量的增加。而软开关能够减小开关损耗。

■ 减小开通损耗的方法:

- (1) 开关管开通时,限制其电流上升率,使其缓慢上升,这样减小了电流和电压交叠区内电流的大小,这就是零电流开通。
- (2) 开关管开通前,使其电压下降到零,这就是零电压开通。

■ 减小关断损耗的方法:

- (1) 开关管关断前,使电流减小到零,这就是零电流关断。
- (2) 开关管关断时,限制其电压的上升率,使其缓慢上升,这 就是零电压关断。

软开关的概念

软开关时开关管的电压和电流波形 | 東南大學電氣工程學院

■ 零电流开关 (ZCS):

如果开关管是零电流开通,那么一定是零电流关断。 开关管开通时,其电流慢慢增加,近似为零电流开通;关断时, 需要提前将其电流减小到零,是真正的零电流关断。

■ 零电压开关 (ZVS):

如果开关管是零电压开通,那么一定是零电压关断。

开关管关断时, 电压慢慢上升, 近似为零电压关断; 开通时, 其反并二极管已提前导通, 将开关管两端电压箝位在零, 是真正的零电压开通。

■ 软开关的概念:

开关管如果实现 ZCS, 开通时电流缓慢上升, 关断时电流为零; 实现 ZVS 时, 关断时电压缓慢上升, 开通时电压为零。开关过程被软化了, 称之为**软开关**。

8.1 软开关变换器的分类

- 8.1.1 硬开关的概念
- 8.1.2 软开关的概念
- 8.1.3 软开关直流变换器的分类

有损缓冲电路

- (1) 并联 RCD 缓冲电路
- (2) 串联 RLD 缓冲电路
- ※ 不会提高变换器效率, 甚至会使效率降低。只是转 移开关损耗的方法。

单管直流变换器

- (1) 准谐振和多谐振变换器
- (2) 零开关 PWM 变换器
- a) ZCS PWM 变换器
- b) ZVS PWM 变换器
- (3) 零转换 PWM 变换器
- a) 零电压转换 PWM 变换器
- b) 零电流转换 PWM 变换器

桥式直流变换器

(1) 全谐振型变换器

按照谐振元件的个数可进一

步分类

- a) 二阶谐振变换器
- b) 三阶谐振变换器

LLC 谐振变换器

LCC 谐振变换器

c)

(2) 移相控制全桥变换器

8.2 准谐振变换器

- 8.2.1 谐振开关
- 8.2.2 零电流开关准谐振变换器
- 8.2.3 零电压开关准谐振变换器

(a) 三端口型

(b) 两端口型

(a) 半波模式

(b) 全波模式

谐振电感: 限制开通时的电流上升率;

谐振电容:与电感谐振工作,使电感电流

在开关管关断前谐振到零。

根据端口数可分为三端口型和两端口型。

半波模式: S 单方向导通

全波模式: S 双方向导通

谐振电容: 限制关断时的电压上升率;

谐振电感: 与电容谐振工作, 使电容电压

在开关管开通前谐振到零。

根据端口数可分为两端口型和三端口型。

半波模式: S 单方向导通

全波模式: S 双方向导通

東南大學電氣工程學院

(a) 两端口型

(b) 三端口型

(a) 半波模式

(b) 全波模式

南京 四牌楼2号 http://ee.seu.edu.cn

8.2 准谐振变换器

- 8.2.1 谐振开关
- 8.2.2 零电流开关准谐振变换器
- 8.2.3 零电压开关准谐振变换器

 $U_{\text{in}} = \begin{pmatrix} C_{\text{r}} \\ L_{\text{l}} \\ C_{\text{b}} \end{pmatrix} = \begin{pmatrix} L_{2} \\ - \\ U_{\text{o}} \\ + \end{pmatrix}$ (d) Cuk

(h) 反激变换器

(g) 正激变换器

東南大學電氣工程學院

南京 四牌楼2号 http://ee.seu.edu.cn

零电流开关准谐振变换器

■ Buck ZCS QRC 的工作原理

所有开关管、二极管均为理想器件;

所有电感和电容均为理想元件;

滤波电感 $L_{\rm f}$ 远大于谐振电感 $L_{\rm r}$, 即 $L_{\rm f}$ >> $L_{\rm r}$;

L_f 足够大, 其电流近似等于输出电流。

零电流开关准谐振变换器

(1) 开关模态1 [t₀, t₁]

在 t_0 时刻之前,开关管处于关断状态, I_0 从二极管 D流过;此时,谐振电感电流 $i_{\rm r}$ 为0,谐振电容电压 $u_{\rm cr}$ 也为0。

在 t_0 时刻,开关管开通, $U_{\rm in}$ 直接加在 $L_{\rm r}$ 上, $L_{\rm r}$ 的电流 从零开始线性上升。由于 L, 限制了电流的上升速度, 因此是近似零电流开通

(a) 全波模式开关模态 1 等效电路图

Buck ZCS QRC 的主要波形图

(1) 开关模态1 $[t_0, t_1]$

在此开关模态中,谐振电感电流 i_{Lr} 和二极管的电流 i_{D}

的表达式分别为:

$$i_{\rm Lr}(t) = \frac{U_{\rm in}}{L_{\rm r}}(t - t_0)$$

$$i_{\rm D}(t) = I_{\rm o} - \frac{U_{\rm in}}{L_{\rm r}}(t - t_{\rm o})$$

Buck ZCS QRC 的主要波形图

(a) 全波模式开关模态 1 等效电路图

(1) 开关模态1 $[t_0, t_1]$

 $:: i_{D}(t) = I_{o} - \frac{U_{in}}{L_{r}}(t - t_{0})$.: 在 t_{1} 时刻, i_{Lr} 上升到 I_{o} ,此时 $i_{D} = 0$,二极管 D 自然关断。开关模态1的持续时间为:

$$t_{01} = \frac{L_{\rm r}I_{\rm o}}{U_{\rm in}}$$

Buck ZCS QRC 的主要波形图

(a) 全波模式开关模态 1 等效电路图

(2) 开关模态2 [t1, t2]

从 t_1 时刻开始, L_r 和 C_r 开始谐振工作, L_r 的电流和 C_r 的电压的表达式分别为:

$$i_{Lr}(t) = I_o + \frac{U_{in}}{Z_r} \sin \omega_r (t - t_1)$$

$$u_{cr}(t) = U_{in} \left[1 - \cos \omega_r (t - t_1) \right]$$

式中, $\omega_r = 1/\sqrt{L_r C_r}$, 为谐振角频率; $Z_r = \sqrt{L_r/C_r}$, 为谐振电感和谐振电容的特征阻抗。

(b) 全波模式开关模态 2 等效电路图

零电流开关准谐振变换器

(2) 开关模态2 [t1, t2]

始反方向流动。

在 t_{1a} 时刻, i_{Lr} 减小到 I_{o} ,而 u_{cr} 达到最大值 $2U_{in}$ 。 i_{Lr} 继续减小, C_{r} 开始放电,其电压下降。 t_{1b} 时刻, i_{Lr} 减小到0,此时反并二极管 D_{Q} 导通, i_{Lr} 开

 t_2 时刻, i_{Lr} 再次减小到0。在[t_{1b} , t_2]时段, D_Q 导通,Q中的电流为零,这时关断 Q,则 Q 是零电流关断。

Buck ZCS QRC 的主要波形图

(2) 开关模态2 [t1, t2]

t2时刻,谐振电容电压为:

$$u_{\rm cr}(t) = U_{\rm in} \left[1 - \cos \omega_{\rm r}(t - t_1) \right] \qquad U_{\rm cr}(t_2) = U_{\rm in} \left| 1 - \sqrt{1 - \left(\frac{Z_{\rm r}I_{\rm o}}{U_{\rm in}} \right)^2} \right|$$

$$U_{\rm cr}(t_2) = U_{\rm in} \left[1 - \sqrt{1 - \left(\frac{Z_{\rm r}I_{\rm o}}{U_{\rm in}}\right)^2} \right]$$

开关模态2的持续时间为:

$$i_{Lr}(t) = I_o + \frac{U_{in}}{Z_r} \sin \omega_r (t - t_1) \qquad t_{12} = \frac{1}{\omega_r} \left| 2\pi - \sin^{-1} \left(\frac{Z_r I_o}{U_{in}} \right) \right|$$

$$t_{12} = \frac{1}{\omega_{\rm r}} \left| 2\pi - \sin^{-1} \left(\frac{Z_{\rm r} I_{\rm o}}{U_{\rm in}} \right) \right|$$

Buck ZCS QRC 的主要波形图

(b) 开关模态 2 等效电路图

(c) 开关模态 2 等效电路图

(d) 全波模式开关模态 3 等效电路图

(3) 开关模态3 [t2, t3]

在此开关模态中,由于 $i_{Lr} = 0$,<mark>滤波电感电流 I_o 全部流</mark>过谐振电容,电容放电,其电压 u_{cr} 的表达式为:

$$u_{\rm cr}(t) = U_{\rm cr}(t_2) - \frac{I_{\rm o}}{C_{\rm r}}(t - t_2)$$

在 t_3 时刻, u_{cr} 减小到0,即 $u_{cr}(t_3)=0$,二极管 D 导通。此 开关模态的持续时间为: $t_{23}=\frac{C_rU_{cr}(t_2)}{I}$

Buck ZCS QRC 的主要波形图

零电流开关准谐振变换器

(4) 开关模态4 [t3, t4]

在此开关模态中,滤波电感电流 I_0 经过续流二极管 D 续流。 在 t_4 时刻,零电流开通 Q,开始下一个开关周期。

