Suites géométriques.

Helge Von Koch (1870 ; 1924), est un mathématicien suédois qui a donné son nom à l'une des premières fractales, le flocon de Von Koch.

I. Définition d'une suite géométrique.

On considère la suite (u_n) où le rapport entre un terme et son précédent reste constant et égal à 3. Si le premier
terme est égal à 2, les premiers termes successifs sont : $u_0 = \dots ; u_1 = \dots ; u_2 = \dots ; u_2 = \dots ;$
u_3 = De façon plus générale, pour tout nombre entier n , on a u_{n+1} =
On dit que la suite (un) est une suite géométrique de raison et de premier terme
Définition: On dit qu'une suite (u_n) est une <u>suite géométrique</u> s'il existe un nombre q tel que, pour tout n , $u_{n+1} = \dots$ Le nombre q est appelé la <u>raison</u> de la suite (u_n).
Exemple concret : On place un capital de 1000€ sur un compte dont les intérêts annuels s'élève à 3%. Chaque
année, le capital est multiplié parCe capital suit une progression géométrique de raison
☑ Savoir-faire : Savoir démontrer qu'une suite est géométrique :
La suite (u_n) définie par : $u_n = 2^{n+3}$ est-elle géométrique ?
Propriété : Si (u_n) est une suite géométrique de raison q et de premier terme u_0 alors,
pour tout n , $u_n = u_0 \times q^n$.
Démonstration exigible :
Exemple : On considère la suite géométrique (u_n) de premier terme $u_0 = 3$ et de raison 2.
☑ Savoir faire : Savoir déterminer la raison et le premier terme d'une suite géométrique :
Soit (u_n) la suite géométrique tel que $u_2 = 12$ et $u_5 = -96$. Détermine sa raison et son premier terme.
II. Sons do variations d'una suita géométrique
II. Sens de variations d'une suite géométrique.
On considère la suite (u_n) définie par : pour tout nombre entier n , $u_n = 3 \times 2^n$. Etudions ses variations.

 \odot Cas particulier : $u_0 = 1$, $u_n = q^n$.

Propriété : Si (u_n) la suite géométrique définie par $u_n=q^n$,

- Si q > 1 alors la suite (u_n) est croissante.
- ♦ Si 0 < q < 1 alors la suite (u_n) est décroissante.
- Si q < -1 alors la suite (u_n) n'est pas monotone.

© Cas général:

Propriété : Si (u_n) la suite géométrique de premier terme u_0 et de raison q,

- Si u_0 est positif, alors la suite (u_n) à le même sens de variation que q^n .
- Si u_0 est négatif, alors la suite (u_n) à le sens de variation contraire de celui de q^n .

Exemple : On considère la suite géométrique (u_n) définie par $u_n = -4 \times 2^n$.

IV. Somme des termes consécutifs d'une suite géométrique.

Propriété : $\forall n \in \mathbb{N}^*$ et $q \neq 1$, on a : $1 + q + q^2 + \dots + q^n = \frac{1 - q^{n+1}}{1 - q}$

Démonstration exigible :

☑ Savoir-faire : Savoir calculer la somme des termes d'une suite géométrique : Calcule la somme $S = 1 + 3 + 3^2 + \dots + +3^{13}$