Zakrevsky AlA 28122024-101709

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Для полного подавления **верхней** боковой составляющей при преобразовании вверх используются квадратурный смеситель и согласованный по всем плечам делитель мощности. Плечи 2 и 3 делителя развязаны. Известно, что: $s_{21} = s_{31}$.

Плечо 2 подключено непосредственно к синфазному входу ПЧ. Между плечом 3 и квадратурным входом ПЧ включён фазовращатель. В качестве фазовращателя используется симметричный реактивный Т-образный четырёхполюсник, выполненный с помощью сосредоточенных компонентов. Известно, что между синфазным и квадратурным колебаниями гетеродина внутри смесителя существует ошибка квадратуры равная минус 25 градусов.

Чему равна ёмкость компонента фазовращателя, если частота Π Ч равна 212 М Γ _{Π}?

Варианты ОТВЕТА:

1) 9.6 пФ 2) 16.6 пФ 3) 13.6 пФ 4) 23.6 пФ

Ко входу гетеродина двойного балансного смесителя подключён генератор синусоидального колебания частотой 1924 МГц с внутренним сопротивлением 50 Ом и доступной мощностью плюс 5 дБм.

Колебание ПЧ формируется с помощью генератора меандра частотой 295 МГц с внутренним сопротивлением 50 Ом и доступной мощностью первой гармоники минус 1 дБм. Между выходом генератора и входом ПЧ включён фильтр нижних частот, имеющий прямоугольную частотную характеристику с частотой среза 4160 МГц. РЧ выход смесителя подключён в анализатору спектра с входным сопротивлением 50 Ом. Диапазон частот анализа от 2168 МГц до 2218 МГп.

Какова будет мощность наибольшей побочной составляющей, наблюдаемой на экране анализатора спектра? Варианты ОТВЕТА:

- 1) -68 дБм 2) -71 дБм 3) -74 дБм 4) -77 дБм 5) -80 дБм 6) -83 дБм 7) -86 дБм
- 8) -89 дБм 9) -92 дБм

$\mathbf{3}$ Задание 3

При преобразовании частоты вверх с использованием двойного балансного смесителя, получен спектр на выходе РЧ, изображённый на рисунке 1. Как известно, в общем случае он содержит комбинационные составляющие вида $|nf_r|$ $mf_{\Pi\Psi}$ | Какой комбинацией $\{n;m\}$ нельзя было бы объяснить наличие в спектре составляющей, отмеченной маркером 2?

(Значения частот, считываемые с экрана анализатора, округлять до единиц $M\Gamma_{\mathrm{II}}$.)

Рисунок 1 – Экран анализатора спектра

1)
$$\{9; -18\}$$
 2) $\{9; -18\}$ 3) $\{5; -8\}$ 4) $\{7; -13\}$ 5) $\{11; -8\}$ 6) $\{9; -18\}$ 7) $\{11; -23\}$ 8) $\{7; -13\}$ 9) $\{11; -23\}$

7)
$$\{11; -23\}$$
 8) $\{7; -13\}$ 9) $\{11; -23\}$

Ко входам ПЧ квадратурного смесителя подключён согласованный по всем плечам делитель мощности. Развязанные плечи 2 и 3 делителя подключены соответственно к синфазному и квадратурному входам ПЧ. Известно, что: $s_{21} = -0.46545 + 0.21993i, \ s_{31} = -0.2343 - 0.49585i.$

Внутри смесителя квадратура выдержана идеально точно.

Какой относительный уровень мощности будет иметь нижняя боковая составляющая при преобразовании частоты вверх?

- 1) -18 дБн 2) -20 дБн 3) -22 дБн 4) -24 дБн 5) -26 дБн 6) -28 дБн 7) -30 дБн
- 8) -32 дБн 9) 0 дБн

На рисунке 2 изображён двойной балансный смеситель. Диоды в этом смесителе представляют собой разрыв при подаче отрицательного напряжения и сопротивление r_i - при положительном смещении. Известно, что $r_1=r_4$ и что сопротивления двух других диодов также равны. Колебание гетеродина переключает диоды из открытого в закрытое состояние и обратно меновенно.

Рисунок 2 – Двойной балансный смеситель

Частота гетеродина 495 МГц, частота ПЧ 30 МГц.

Колебание какой частоты отсутствует на выходе РЧ?

- 1) 1515 MΓ_Ц
- 2) 465 MΓ_{II}
- 3) $555 \text{ M}\Gamma_{\text{II}}$
- 4) $2475 \text{ M}\Gamma_{\text{II}}$.

Ко входу РЧ двойного балансного смесителя подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью минус 0.3 дБм.

В смесителе использованы диоды с сопротивлением в открытом состоянии 16 Ом. На выходе смесителя путём преобразования на первой гармонике гетеродина получено колебание промежуточной частоты. Мощность колебания промежуточной частоты измерена с помощью анализатора спектра с входным сопротивлением 50 Ом, и получено значение минус 13.6 дБм.

Какова величина потерь в трансформаторе? (Это потери при передаче мощности от генератора с внутренним сопротивлением 50 Ом, подключённого в первичной обмотке, в нагрузку 50 Ом, подключённую к одной из половин вторичной обмотке при условии, что цепь второй половины вторичной обмотки разомкнута. Схема дана на рисунке 3.)

Рисунок 3 – Схема измерения потерь в трансформаторе

- 1) 8 дБ 2) 8.6 дБ 3) 9.2 дБ 4) 9.8 дБ 5) 10.4 дБ 6) 11 дБ 7) 11.6 дБ 8) 12.2 дБ
- 9) 12.8 дБ