

1/33 FIG. 1A

CO₂ NH₃ INTEIN FRAGMENTS
FUSED TO PROTEINS A AND B

RECONSTITUTION
A

RECONSTITUTED
INTEIN
FRAGMENTS

EXCISED INTEIN
FRAGMENTS

SPLICED PROTEINS A AND B

FIG. 2B

FIG. 3

FIG. 5

FIG. 6

327	R Tobacco ALSI R Tobacco ALSII N E. Coli ALSIII
357 A K I V H V D I D P A E I G K N K Q P H V S I C A D V K L 386 A K I V H I D I D S A E I G K N K Q P H V S I C A D I K L 383 A K I V H I D I D S A E I G K N K Q P H V S I C A D I K L 298 A T V L II I D I D P T S I S K T V T A D I P I V G D A R Q 288 A S V I H M D I D P A E M N K L R Q A II V A L Q G D L N A	A Tobacco ALSI Tobacco ALSII V E. Coli ALSIII
413 L Q G L N S I L E S K E G K L K L D - F S A W R Q E L T V 328 L E Q M L E L L S Q E S A H Q P L D E I R D W W Q Q I E Q	tobacco ALSI tobacco ALSII
416 K R E F P L G Y K T S N E E I Q P Q Y A I Q V L D E L T K 445 K V K H P L N F K T F G D A I P P Q Y A I Q V L D E L T N 442 K V K Y P L N F K T F G D A I P P Q Y A I Q V L D E L T N 358 R A R Q C L K Y D T H S E K I K P Q A V I E T L W R L T K 338 R D E II S W R Y D H P G D A I Y A P L L L K Q L S D R K P	c tobacco ALSI c tobacco ALSII c E. Coli ALSIII
446 E A I I G T G V G Q H Q M W A A Q Y Y T Y K R P R Q W I. S 475 N A I I S T G V G Q H Q M W A A Q Y Y K Y R K P R Q W I. T 472 S A I I S T G V G Q H Q M W A A Q Y Y K Y R K P R Q W I. T 388 D A Y V T S D V G Q H Q M F A A L Y Y P F D K P R W I N 368 D C V V T T D V G Q H Q M W A A Q H I A H T R P E N F I T	s tobacco ALSI s tobacco ALSII s E. Coli ALSIII
505 GGLGAMGFGLPAAIGAAVGRPDEVVVDID	C 0 11 110TT

BEST AVAILABLE COPY

BEST AVAILABLE COP'

BEST AVAILABLE COPY

FIG. 9B

FIG. 9C

BEST AVAILABLE COP

FIG. 10A

1 2 3 4 5

83 k0 — CALS-14

62 k0 — CALS NON-SPECIFIC CALS (N) - TN-0

FIG. 10B

1 2 3 4 5

62 kD - CALS-14

47.5 kD -

32.5 kD — cALS(C)-IN-c

FIG. 11

BEST AVAILABLE COP'

FIG. 12

FIG. 13A

FIG. 13B

FIG. 15-1

		
EPSPS Insertion Site	Amino acid sequence inserted	Clone
Q7/P8	CLNIQ	pCE-5aa 129
A10/R11	VFKHA	pCE-5aa 47
P35/C36	LFKQP	pCE-5aa 7
D48/D49	CLNSD	pCE-5aa 50
S67/A68	CLNIS	pCE-5aa 8
D69/R70	CLNTD	pCE-5aa 44
R70/T71	CLNNR	pCE-5aa 10
C73/D74	CLNSC	oCE-5aa 32
D74/I75	CLNSD	pCE-5aa 5
L82/R83	CLNTL	pCE-5aa 3
P85/G86	VFKQP	pCE-5aa 12
M121/K122	CLNSM	pCE-5aa 42
Y148/P149	CLNNY	pCE-5aa 37
L 182/A183	CLNTL	pCE-5aa 22
A183/P184	CLNMA	pCE-5aa 11
K185/D186	VFKHK	pCE-5aa 112
K185/D186	CLNTK	pCE-5aa 212
D186/T187	CLNKD	pCE-5aa 33
I188/I189	MFKQI	pCE-5aa 151
I 189/R190	CLNII	pCE-5aa 114
E194/L195	LFKHE	pCE-5aa 227
F211/G212	VFKHF	pCE-5aa 162
V213/E214	CLNSV	pCE-5aa 1
I215/A216	VFKQI	pCE-5aa 2
A216/N217	MFKQA	pCE-5aa 208
H218/H219	LFKHH	pCE-5aa 28
0221/0222	LFKHQ	pCE-5aa 4
V225/K226	MEKHV	pCE-5aa 203
K226/G227	VFKQK	pCE-5aa 25
0230/Y231	LFKQQ	pCE-5aa 102
S233/P234	LFKHS	pCE-5aa 40
G235/R236	CLNTG	pCE-5aa 35
R267/K268	CLNSR	pCE-5aa 23
L238/V239	VFKHL	pCE-5aa 154

FIG. 15-2

EPSPS Insertion Site I311/P312 Q375/H376 Q375/H376 H376/A377 Y382/N383 E418/Q419 Q419/L420 S424/T425	Amino acid sequence inserted CLNNI LFKHQ CLNIQ CLNKH MFKQY LFKHE CLNKQ CLNMS	Clone pCE-5aa 29 pCE-5aa 15 pCE-5aa 223 pCE-5aa 38 pCE-5aa 31 pCE-5aa 36 pCE-5aa 46 pCE-5aa 9
--	---	---

FIG. 16

FIG. 17

FIG. 18

EXPRESSION PLASMID pAGR3: 5910 bp. PROMOTER AND CLONING SITE MAP:

lac operator 1 GA<u>ATTGTGAG CGCTCACA</u>AT TCTAGGATGT TAATTGCGCC GACATCATAA

-35 region 51 CGGTTCTGGC AAATATTCTG AAATGAGCTG TT<u>GACAA</u>TTA ATCATCGGCT

-10 region lac operator rbs
101 CGTATAATGT GTGGAATTGT GAGCGGATAA CAATTTCACA CAGGAAACAG

start
151 ACCATGGTGA ATTCTAGAGC TCGAGGATCC GCGGTACCCG GGCATGCATT
Ncol EcoRl Xbal Sacl Xhol BamHl Sacll Kpnl Smal BstBl

201 CGAAGCTTCC TTAAGCGGCC GTCGACCGAT GCCCTTGAGA GCCTTCAACC HindIII AflII EagI SalI

20/33 FIG. 19A

28 -

20

31 kDa

smGFP

FIG. 24

GAATAGATCTACATACACCTTGGTTGACACGAGTATATAAGTCATGTT ATACTGTTGAATAACAAGCCTTCCATTTTCTATTTTGATTTGTAGAAA ACTAGTGTGCTTGGGAGTCCCTGATGATTAAATAAACCAAGATTTTAC CTTAATTAAG

FIG. 25

FIG. 26

catATGGCgTCcATGATcTCCTCgTCcGCgGTGACcACgGTCAGCCGcGCgTCcACGGTCCAGTCGGCCGCGTGGCcCCgTTCGGCGGCCTCAAGTCCATGACcGGcTTCCCgGTcAAGAAGGTCAACACgGACATcACgTCCATcACgAGCAAcACGGCGGCAGgGTgAAGTGCATGcgaagagc

GTTAACTACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCC CTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATG AGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAG TATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGG CATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTA AAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACT GGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAAC GTTCTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTA TTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACA CTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGC ATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATA ACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGG AGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATG TAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCA AACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTT GCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAAC AATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTG CGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGC CGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATG GTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCA ACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACT GATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTT AGATTGATTTACCCCGGTTGATAATCAGAAAAGCCCCAAAAACAGGA AGATTGTATAAGCAAATATTTAAATTGTAAACGTTAATATTTTGTTA AAATTCGCGTTAAATTTTTGTTAAATCAGCTCATTTTTTAACCAATA GGCCGAAATCGGCAAAATCCCTTATAAATCAAAAGAATAGCCCGAGA TAGGGTTGAGTGTTGTTCCAGTTTGGAACAAGAGTCCACTATTAAAG AACGTGGACTCCAACGTCAAAGGGCGAAAAACCGTCTATCAGGGCGA TGGCCCACTACGTGAACCATCACCCAAATCAAGTTTTTTGGGGTCGA GGTGCCGTAAAGCACTAAATCGGAACCCTAAAGGGAGCCCCCGATTT GCGAAAGGAGCGGCGCTAGGGCGCTGGCAAGTGTAGCGGTCACGCT GCGCGTAACCACCACCCCGCCGCGCTTAATGCGCCGCTACAGGGCG CGTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAA AATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAG AAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATC GCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCA GCAGAGCGCAGATACCAAATACTGTTCTTCTAGTGTAGCCGTAGTTA GGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCT GCTAATCCTGTTAC

CAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGA CTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACG GGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCG AACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCC CGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGA ACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATC TTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATT TTTGTGATGCTCGTCAGGGGGGGGGGGGCCTATGGAAAAACGCCAGC AACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTC ACATGTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTAC ACTITATGCTTCCGGCTCGTATGTTGTGTGGGAATTGTGAGCGGATA ACAATTTCACACAGGAAACAGCTATGACCATGATTACGCCAAGCTA CGTAATACGACTCACTAGTGGGCAGATCTTCGAATGCATCGCGCGC TTGACGATATAGCAATTTTGCTTGGATTTATCAGTCGAAGCAGGAG ACAATATACCTTGATATTCTCGATCATTCTTTGATTCAAAGCATCG TTCCATCTCAATTGAAAAAGCAAATAACGTTTCAAGAACAAATCTA GTTCTGCTTCCGTGTTGCTTTTGTATTGTTTTTTCTTTTTACCCTT CTTTGTGTCTGATTCCGCGTAATCTTTTTTAAGAGCGTTTTGATGT TTTGAGAGAACAGGGCCCAGATTTCCTTTGTTTTCTATATCTGATC CACGCTCTTTTCTCCTTGACTTGCGGGTTCTTTTGCTTCTTGAAT TCGATTCTTTATTTTTATTTGATCGTAGAAAAAAGTTTTGTTTT TGGTTTTTATTGATGTTTTTATTTTGACTAACATTTTCATTTGTAT TCAAATTTAAAAGAAGTAATTTGCTTGGTATAATCCACGGTTTTAT TTTATATACATTATAAAGTGGTACAAATTCTGGGAAGAACCAAAAT TCCAATCAAAAAAGGCTTTTTTCGAATTTTTTTGATTGTTTTCTGG ATTTTGATGAATCGTAAGATAAAAAAAGCCTTTTTTATCAATTTTA TCAATTATTTGATAATTATTAATACCAATTTTAGTATTTGGATTAC TGTTGGTATCGATCTTAACCCAGGCCTCAATATCTTCTTTTTGTCT AAGAGAAAAATGGATAATTTTCCAATCAAAATATTTTCTATCGAGA TTTCTTTCTATATATAGAATATTGCCTTTTCTTAGATAATTATTGA TATGAAGATTGCCGAGCATATCAAAAAGGTTGTGTTTGGACGTGTT GGAATTAGAAGAAATTTCGAGGTTCTTATTTACTTGAAAGGGTAAT CTAGAAATAAAAGAGTCATTTTTTTTTTCATAATTAATCGATTTAT ATGCTAAAAGATCATATCTATAACATTTTTGAAAATTATCTTTTTG GTTTGCTAATGAATAGAGCTCAGAATCATTTTCTTTTTTGTAATGA ATTAATTGGTCTTTTCATATGAATTCCATTTGTTTAAATTTCGAT TTTGAGCCATACAACCTTGATTAACCCTATTTCGCCATTTTTGTGG CATTAATCTAGACCATCTAATCTGAGATAAATCGTACGagaatact caatCATGAATAAATGCAAGAAAATAACCTCTCCTTCTTŤTTCTAT AAAAAGAAAAAAAGAAAGGAGCAATAGCACCCTCTTGATAGAACAA GAAAATGATTAT

TGCTCCTTTCTTTCAAAACCTCCTATAGACTAGGCCAGGATCCTCGA GcttaattaaGGTAAAATCTTGGTTTATTTAATCATCAGGGACTCCCA AGCACACTAGTTTTCTACAAATCAAAATAGAAAATAGAAAATGGAAGG CTTTTTATTCAACAGTATAACATGACTTATATACTCGTGTCAACCAAG GTGTATGTAGATCtattcCTGCAGGATATCTGGATCCACGAAGCTTCC CATGGGAATAGATCTACATACACCTTGGTTGACACGAGTATATAAGTC ATGTTATACTGTTGAATAAAAAGCCTTCCATTTTCTATTTTGATTTGT TTTACCGTTTAAACACCGGTGATCCTGGCCTAGTCTATAGGAGGTTTT GAAAAGAAAGGAGCAATAATCATTTTCTTGTTCTATCAAGAGGGTGCT ATTGCTCCTTTCTTTTTTCTTTTTATTTATTTACTAGTATTTTACTT ACATAGACTTTTTGTTTACATTATAGAAAAAGAAGGAGAGGTTATTT TCTTGCATTTATTCATGATTGAGTATTCTcctaggCGTATTGATAATG CCGTCTTAACCAGTTTTTCCATTGATTGATTCTĂŤAACTCTGAAGTTT CTTATGTTTTAATTCAGAATGAAATATTCCTAGTGTTCGAAAATAGTC CTTTATTTTAGTCTTAAGGAAAAAAGACGTTCTGTTATATTGAAGAAC AGATCTTAATTTAGACAAATTAATAACTTGGGGTTGTGATAATTTGTA ATTTTTCTTACTAATATTATAAAGTGACTTTTTTATAGTCGAAATAAA TGTATTAATTCTGGGAATATTAATGATAGATAAAAAATAGATCGATGTA TAATCTTTGAATGAATAATTTTAGAAAATAATGGAATTTCCATATTAA TCGAGTATTTCTTCTTTTTAATATTTGGAAAATCTTTTTTGGCGATTC GAATTTTTTAATATTATTTGTTTTATTAGGACTAATGTCTATTTCTGG AGTTACTTTCTTTTTCTCTTTTGTAATTCTTTCTATTTGATTTTTGAT TGTACTTGTTCTATCAGTCAAATCCTTCATTTTGCTTTCTATCAGTGA AGAATTTGGCCAATTTCCAGATTCAATTTGACTAAATGATTCGTTAAT TATCTGATTACTCATTAGAGAATCTTTTTCTTTTTCGTTTCATTCGA TTCATCTATTTCTTTGAGTCTAAATAATACAATTGGATTTACTTTTGA AAGTTCTTTTTCATTTTTTTTATAAATAGACTACTTTTGATAAGCCA TTTTTTGGTTTCTTTTGAAATTCTTCGAAATAATTTTATTTTTCCTTT GAAAACTTTTAGAGTTATAAAATATTTCTTTTTGAATTTTCCAATTTT TTTTTCGAGTTCCTTAAAAATGGGCTCAAAAAAAGAAGGGCGTTTTCG GGGAGAACCAAAGGGAAGTTCAGCTTCCATTCCCCAAACTGTTAAAAA ACAAAAATCATCTTTTTGTTTTTTCTTTTTCATTAGCTCTCCACGGGA GGAGTACAGTTTAGATATATGCCAAGGTTTCAGACAAAAAGGAAATAA TATTTTGATCTGAATGCCATCTTTCAACCAATTTTTTGGAAATTCTGT TTCTGATAATTGAACACCATTATAAGTACATTTAATATGCATTTCTCT ATTCCATTCCTGCAAATCTTCAGACCATTCAGGAAGTTGCAAGACTAA CATACGCCCGAGATTTTTGGCTATTATCAATGAAGGTAATACAATATA TTTTCGAAGAATTG

GTTAACTACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACC CCTATTIGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCA TGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAA GAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTT GCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGA AAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACAT CGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCC GAAGAACGTTCTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTG GCGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCG CCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTC ACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCA GACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAAC ATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGA ATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGC CTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAG TGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATT GCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCT ACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGAT CGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGAC CAAGTTTACTCATATATACTTTAGATTGATTTACCCCGGTTGATAA TCAGAAAAGCCCCAAAAACAGGAAGATTGTATAAGCAAATATTTAA ATTGTAAACGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTT AAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCC TTATAAATCAAAAGAATAGCCCGAGATAGGGTTGAGTGTTGTTCCA GTTTGGAACAAGAGTCCACTATTAAAGAACGTGGACTCCAACGTCA AAGGGCGAAAAACCGTCTATCAGGGCGATGGCCCACTACGTGAACC ATCACCCAAATCAAGTTTTTTGGGGTCGAGGTGCCGTAAAGCACTA AATCGGAACCCTAAAGGGAGCCCCCGATTTAGAGCTTGACGGGGAA AGCGAACGTGGCGAGAAAGGAAGGAAGGAAGGAAGGAGCGGGC GCTAGGGCGCTGGCAAGTGTAGCGGTCACGCTGCGCGTAACCACCA CACCCGCCGCGCTTAATGCGCCGCTACAGGGCGCGTAAAAGGATCT AGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACG TGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAA GGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGC AAACAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCA AGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCG CAGATACCAAATACTGTTCTTCTAGTGTAGCCGTAGTTAGGCCACC ACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAAT CCTGTTAC

CAGTGGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGA CTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACG GGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCG AACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCC CGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGA ACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATC TTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATT TTTGTGATGCTCGTCAGGGGGGGGGGGGCCTATGGAAAAACGCCAGC AACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTC ACATGTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTAC ACTITATGCTTCCGGCTCGTATGTTGTGTGGAATTGTGAGCGGATA ACAATTTCACACAGGAAACAGCTATGACCATGATTACGCCAAGCTA CGTAATACGACTCACTAGTGGGCAGATCTTCGAATGCATCGCGCGC AATTCACCGCCGTATGGCTGACCGGCGATTACTAGCGATTCCGGCT TCATGCAGGCGAGTTGCAGCCTGCAATCCGAACTGAGGACGGGTTT TTGGGGTTAGCTCACCCTCGCGGGATCGCGACCCTTTGTCCCGGCC ATTGTAGCACGTGTGTCGCCCAGGGCATAAGGGGCATGATGACTTG ACGTCATCCTCACCTTCCTCCGGCTTATCACCGGCAGTCTGTTCAG GGTTCCAAACTCAACGATGGCAACTAAACACGAGGGTTGCGCTCGT TGCGGGACTTAACCCAACACCTTACGGCACGAGCTGACGACAGCCA TGCACCACCTGTGTCCGCGTTCCCGAAGGCACCCCTCTCTTTCAAG AGGATTCGCGGCATGTCAAGCCCTGGTAAGGTTCTTCGCTTTGCAT CGAATTAAACCACATGCTCCACCGCTTGTGCGGGCCCCCGTCAATT CCTTTGAGTTTCATTCTTGCGAACGTACTCCCCAGGCGGGATACTT AACGCGTTAGCTACAGCACTGCACGGGTCGATACGCACAGCGCCTA GTATCCATCGTTTACGGCTAGGACTACTGGGGTATCTAATCCCATT CGCTCCCCTAGCTTTCGTCTCTCAGTGTCAGTGTCGGCCCAGCAGA GTGCTTTCGCCGTTGGTGTTCTTTCCGATCTCTACGCATTTCACCG CTCCACCGGAAATTCCCTCTGCCCCTACCGTACTCCAGCTTGGTAG TTTCCACCGCCTGTCCAGGGTTGAGCCCTGGGATTTGACGGCGGAC TTAAAAAGCCACCTACAGACGCTTTACGCCCAATCATTCCGGATAA CGCTTGCATCCTCTGTATTACCGCGGCTGCTGGCACAGAGTTAGCC GATGCTTATTCCCCAGATACCGTCATTGCTTCTTCTCCGGGAAAAG AAGTTCACGACCCGTGGGCCTTCTACCTCCACGCGGCATTGCTCCG TCAGCTTTCGCCCATTGCGGAAAATTCCCCACTGCTGCCTCCCGTA GGAGTCTGGGCCGTGTCTCAGTCCCAGTGTGGCTGATCATCCTCTC GGACCAGCTACTGATCATCGCCTTGGTAAGCTATTGCCTCACCAAC TAGCTAATCAGACGCGAGCCCCTCCTCGGGCGGATTCCTCCTTTTG CTCCTCAGCCTACGGGGTATTAGCAGCCGTTTCCAGCTGTTGTTCC CCTCCCAAGGCAGGTTCTTACGCGTTACTCACCCGTCCGCCACTG GAAACACCACTTCCCGTCCGACTTGCATGTGTTAAGC

ATGCCGCCAGCGTTCATCCTGAGCCAGGATCGAACTCTCCATGAGAT TCATAGTTGCATTACTTATAGCTTCCTTGTTCGTAGACAAAGCGGAT TCGGAATTGTCTTTCATTCCAAGGCATAACTTGTATCCATGCGCTTC ATATTCGCCCGGAGTTCGCTCCCAGAAATATAGCCATCCCTGCCCCC TCACGTCAATCCCACGAGCCTCTTATCCATTCTCATTGAACGACGGC GGGGGAGCAAATCCAACTAGAAAAACTCACATTGGGCTTAGGGATAA TCAGGCTCGAACTGATGACTTCCACCACGTCAAGGTGACACTCTACC GCTGAGTTATATCCCTTCCCCGCCCCATCGAGAAATAGAACTGACTA ATCCTAAGTCAAAGGCGTACGagaatactcaatCATGAATAAATGCA AGAAAATAACCTCTCCTTCTTTŤTCTATAATGTAAACAAAAAAGTCT GCAATAGCACCCTCTTGATAGAACAAGAAAATGATTATTGCTCCTTT CTTTTCAAAACCTCCTATAGACTAGGCCAGGATCCTCGAGcttaatt aaGGTAAAATCTTGGTTTATTTAATCATCAGGGACTCCCAAGCACAC TAGTTTTCTACAAATCAAAATAGAAAATAGAAAATGGAAGGCTTTTT ATTCAACAGTATAACATGACTTATATACTCGTGTCAACCAAGGTGTA TGTAGATCtattcCTGCAGGATATCTGGATCCACGAAGCTTCCCATG GGAATAGATCTACATACACCTTGGTTGACACGAGTATATAAGTCATG TTATACTGTTGAATAAAAAGCCTTCCATTTTCTATTTTGATTTGTAG AAAACTAGTGTGCTTGGGAGTCCCTGATGATTAAATAAACCAAGATT TTACCGTTTAAACACCGGTGATCCTGGCCTAGTCTATAGGAGGTTTT GAAAAGAAAGGAGCAATAATCATTTTCTTGTTCTATCAAGAGGGTGC TATTGCTCCTTTCTTTTTTCTTTTTATTTATTTACTAGTATTTTAC TTACATAGACTTTTTTGTTTACATTATAGAAAAAGAAGGAGAGGTTA TTTTCTTGCATTTATTCATGATTGAGTATTCTcctaqqGTCGAGAAA CTCAACGCCACTATTCTTGAACAACTTGGAGCCGGGČČTTCTTTTCG CACTATTACGGATATGAAAATAATGGTCAAAATCGGATTCAATTGTC AACTGCCCCTATCGGAAATAGGATTGACTACCGATTCCGAAGGAACT GGAGTTACATCTCTTTTCCATTCAAGAGTTCTTATGCGTTTCCACGC CCCTTTGAGACCCCGAAAAATGGACAAATTCCTTTTCTTAGGAACAC ATACAAGATTCGTCACTACAAAAAGGATAATGGTAACCCTACCATTA ACTACTTCATTTATGAATTTCATAGTAATAGAAATACATGTCCTACC GAGACAGAATTTGGAACTTGCTATCCTCTTGCCTAGCAGGCAAAGAT TTACCTCCGTGGAAAGGATGATTCATTCGGATCGACATGAGAGTCCA ACTACATTGCCAGAATCCATGTTGTATATTTGAAAGAGGTTGACCTC CTTGCTTCTCTCATGGTACACTCCTCTTCCCGCCGAGCCCCTTTTCT CCTCGGTCCACAGAGACAAAATGTAGGACTGGTGCCAACAATTCATC AGACTCACTAAGTCGGGATCACTAACTAATACTAATCTAATATAATA GTCTAATATATCTAATATAATAGAAAATACTAATATAATAGAAAAGA ACTGTCTTTTCTGTATACTTTCCCCGGTTCCGTTGCTACCGCGGGCT TTACGCAATCGATCGGATTAGATAGATATCCCTTCAACATAGGTCAT CGA

AAGGATCTCGGAGACCCACCAAAGTACGAAAGCCAGGATCTTTCAG AAAACGGATTCCTATTCAAAGAGTGCATAACCGCATGGATAAGCTC ACACTAACCCGTCAATTTGGGATCCAAATTCGAGATTTTCCTTGGG AGGTATCGGGAAGGATTTGGAATGGAATAATATCGATTCATACAGA AGAAAAGGTTCTCTATTGATTCAAACACTGTACCTAACCTATGGGA TAGGGATCGAGGAAGGGGAAAAACCGAAGATTTCACATGGTACTTT TATCAATCTGATTTATTTCGTACCTTTCGTTCAATGAGAAAATGGG TCAAATTCTACAGGATCAAACCTATGGGACTTAAGGAATGATATAA AAAAAAGAGAGGGAAAATATTCATATTAAATAAATATGAAGTAGAA GAACCCAGATTCCAAATGAACAAATTCAAACTTGAAAAGGATCTTC TTTTGTTCTTCTTATATATAAGATCGTGATGGTACCCTCTAGTCAA GGCCTTAAGTGAGTCGTATTACGGACTGGCCGTCGTTTTACAACGT CGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAG CACATCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCAC CGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGC