Classifying 2020 Presidential Candidate Speeches

Daniel Oshiro

LIGN 167 Final Project, Fall 2019

Gathering and Cleaning Data


```
oject > candidate widoo data > \Private \ youtube \ yout
```

- I used data from the Council on Foreign Relations Site: "The 2020 Candidates in Their Own Words"
 - This data was in a variety of forms, including op-ed articles, speech transcripts, policy positions, videos and podcasts
 - I used <u>this api</u> to download transcripts from YouTube videos, and cleaned the data by filtering and tokenizing the data, and splitting into paragraphs.

Turning Data into Suitable Input for Learning

 After cleaning and tokenizing the data, I used the 300 dimensional, <u>GloVe</u> "6B" model for pre-trained word embeddings

- The result was 4719 data pairs x_i, y_i
 - X_i was a list of 1x300 word embeddings corresponding to each paragraph
 - The longest x_i was 394 words while the shortest was just 5!
 - Y_i is a 1x12 one-hot vector corresponding to which candidate said the paragraph
 - These data pairs were split into a training set of size 3230 and a test set of size 1489

Model 1: RNN Implementation

GRU-based RNN that processes each paragraph

MLP that classifies final hidden output of RNN

- The RNN has a hidden dimension of 100, and takes in 300 dimensional word embeddings at each time step
- For the Recurrent Unit, I used a Gated Recurrent Unit (GRU) in order to avoid the vanishing gradient problem
- The final hidden state is used as the input to a fully-connected multi-layer perceptron with a single, 100 dimensional hidden layer
- The output of the MLP is run through Softmax and the prediction is made by taking the max

Model 1: GRU Cell and Training

- The GRU acts similarly to an RNN in that it takes in a hidden state from the previous time step and the next word in the sequence
- The GRU calculates the next hidden state using an update gate, z_t, and a relevance gate, r_t in order to save prior states, thus avoiding the vanishing gradient problem

- For the loss function, I ran the output of the MLP through the Softmax to interpret each entry as a probability and summed the negative log probabilities
- Training was carried out over 40 Epochs, with shuffled batches of size 256 training examples

Model 2: CNN Implementation

- To the left is the convolution layer, which, for each of the word embedding dimensions, reads 3, 4, and 5 consecutive words
- These tensors are then passed through a ReLU activation function

- To the right is the concatenation and max-pooling layer
- The convolution tensors are concatenated, a max-pool is done to keep the two most important features, and the layers are unraveled to make a single 2d tensor, xi

Model 2: Classification and Training

- The output from the CNN is passed into an MLP that returns a 12-dimensional vector used as a guess
- Just as in the RNN, y-hat is passed through a softmax, then a negative log probability to calculate the loss of the network

```
cnn_model.py - python - Visual Studio Code
                                                               cnn model.py X
ject > 🅏 cnn_model.py > ધ CNNClassifier > 🗘 __init__
train_loader = DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shufffle=True)
test_dataset = PresidentialCandidateDataset.PresidentialCandidateDataset(CANDIDATES, tr
test loader = DataLoader(dataset=test dataset, batch size=BATCH SIZE, shuffle=False)
class CNNClassifier(nn.Module):
    def __init__(self):
        super(CNNClassifier, self). init ()
        self.conv1 = nn.Conv1d(394, 30, kernel size=3)
        self.conv2 = nn.Conv1d(394, 30, kernel size=4)
        self.conv3 = nn.Conv1d(394, 30, kernel size=5)
        # large kernel to get good info despite padding
        self.mp = nn.MaxPool1d(kernel size=50)
        # there are 12 candidates to choose from
        self.hidden = nn.Linear(450, 150)
        self.output = nn.Linear(150, 12)
        self.dropout = nn.Dropout(.5)
    # input is batch size x #numwords in sentence (340) x dim word embedding (300)
    def forward(self, input):
        in size = input.size(0)
        input1 = self.mp(nn.functional.relu(self.conv1(input)))
        input2 = self.mp(nn.functional.relu(self.conv2(input)))
        input3 = self.mp(nn.functional.relu(self.conv3(input)))
```

Results

Type of Model	% of Test Set Correctly Classified
RNN + Classifier	47.347% (705/1489)
CNN + Classifier	33.311% (496/1489)
Softmax Distribution Over # of Datapoints / Candidate	22.633% (337/1489)
Linear Distribution Over # of Datapoints / Candidate	10.208% (152/1489)

These results show that the networks are significantly better than baseline, but that the results aren't great. I mostly blame the small, somewhat inconsistent dataset that relied on Youtube Transcripts, which are imperfect and lack punctuation / other indicators. I'd love to try on more data!

Citations

- Title slide democrats Image https://www.reuters.com/article/us-usa-election-debate-impeachment-factb/factbox-democratic-presidential-candid-ates-on-impeaching-donald-trump-idUSKBN1WT183
- Trump Image https://www.whitehouse.gov/people/donald-j-trump/
- Andrew Yang Image https://en.wikipedia.org/wiki/Andrew Yang
- GRU Image https://towardsdatascience.com/grus-and-lstm-s-741709a9b9b1
- CNN Architecture Inspiration https://arxiv.org/pdf/1408.5882.pdf