五、实验数据处理

实验2.激光劳埃镜干涉

(1)原始数据记录

i	1	2	3	4	5	6	7	8	9	10
x_i/mm	3.37	3.515	3.699	3.795	3.935	4.033	4.221	4.375	4.528	4.671
i	11	12	13	14	15	16	17	18	19	20
x_i/mm	4.83	4.92	5.11	5.252	5.395	5.555	5.675	5.83	5.995	6.11

	扩束镜	透镜成小像	透镜成大像
X/cm	6.1	51.3	56.5

	b/mm	(小像)	b'/mm(大像)		
左	4.129	4.125	2.977	3.01	
右	8.047	8.04	7.605	7.615	

(2)数据处理

用逐差法计算条纹间距 Δx :

$$\overline{\Delta x} = \frac{\sum_{i=1}^{10} |x_{i+10} - x_i|}{10 \times 10} = 0.1453mm$$

计算波长λ:

$$\bar{b} = \frac{b_{\mathrm{IE}} + b_{\mathrm{1}}}{2} = \frac{(4.129 - 8.047) + (4.125 - 8.04)}{2} = -3.917mm$$

$$\bar{b'} = \frac{b'_{\text{IE}} + b'_{\text{N}}}{2} = \frac{(2.977 - 7.605) + (3.01 - 7.615)}{2} = -4.617mm$$

$$S = |6.1 - 51.3| = 45.2cm$$

$$S' = |6.1 - 56.5| = 50.4cm$$

$$\lambda = \frac{\Delta x \sqrt{bb'}}{S + S'} = 646.3nm$$

(3)不确定度计算

 $\triangle x$ 的不确定度:

10△x的A类不确定度:

$$u_a(10\triangle x) = \sqrt{\frac{\sum_{i=1}^{10} (10\triangle x_i - 10\overline{\triangle x})^2}{10\times(10-1)}} = 0.01019mm$$

10△x的B类不确定度:

$$u_b(10\triangle x) = \frac{\triangle \cancel{1}}{\sqrt{3}} = \frac{0.01}{2 \times \sqrt{3}} = 0.00289mm$$

10△x的不确定度:

$$u(10\triangle x) = \sqrt{u_a(10\triangle x^2) + u_b(10\triangle x^2)} = 0.01059mm$$

 $\triangle x$ 的不确定度:

$$u(\triangle x) = \frac{u(10\triangle x)}{10} = 0.001059mm$$

$$\frac{\Delta b}{b} = \frac{\Delta b'}{b} = 0.025$$

b'的不确定度:

$$u(b') = \frac{-3.917 \times 0.025}{\sqrt{3}} = -0.05653mm$$

b的不确定度:

$$u(b) = \frac{-4.617 \times 0.025}{\sqrt{3}} = -0.06663mm$$

S的不确定度:

$$\Delta S = \Delta S' = 0.5cm$$

$$u(S+S') = \sqrt{2} \times 0.289 = 0.409cm$$

不确定度的合成:

$$\ln \lambda = \ln \Delta x + \frac{1}{2}(\ln b + \ln b') - \ln(S + S')$$

$$\frac{\ln \lambda}{\lambda} = \frac{\ln \Delta x}{\Delta x} + \frac{1}{2}(\frac{\ln b}{b} + \frac{\ln b'}{b'}) - \frac{\ln \left(S + S'\right)}{S + S'}$$

$$\frac{u(\lambda)}{\lambda} = \sqrt{\left[\frac{u(\Delta x)}{\Delta x}\right]^2 + \frac{1}{4}\left[\frac{u(b)}{b}\right]^2 + \frac{1}{4}\left[\frac{u(b')}{b'}\right]^2 + \left[\frac{u(S+S')}{S+S'}\right]^2} = 0.008447$$

$$u(\lambda) = 5.459nm$$

最终结果为:

$$\lambda \pm u(\lambda) = 646 \pm 6nm$$