

US GDP & Inflation Dataset

Bayesian Learning and Montecarlo Simulation

Problem Description

US GDP & CPIAUCSL Data

GDP & CPIAUCSLAutocorrelation plots

Project objectives

- Fit each time series independently using AR, MA, ARMA, and GARCH models.
- Fit the two time series jointly using a VAR model.
- Use these models for in-sample and out-of-sample predictions.
- Compare different models using DIC and WAIC criteria.

Jags settings

- 3 Chains.
- Total of 10,000 Iterations.
- 1,000 Burn-in Iterations.
- 10% of the data for comparison with out-of-sample predictions

Autoregressive Model (AR)

Autoregressive Model (AR) General formulation

$$y_t = \mu_0 + \sum_{i=1}^p \alpha_i y_{t-i} + \epsilon_t$$

- p: number of past values considered
- μ_0 : constant value
- α_i : model parameters
- ϵ_t : white noise
- y_{t-1}, \dots, y_{t-p} : past values

Autoregressive Model (AR) AR(1)

• Model:
$$y_t = \mu_0 + \alpha y_{t-1} + \epsilon_t$$

• Likelihood:
$$y_t | \mu_0, \alpha, \sigma^2, y_{t-1} \sim \mathcal{N}(\mu_0 + \alpha y_{t-1}, \sigma^2)$$

 $\mu_0 \sim \mathcal{N}(0.0, 10000)$

• Priors:
$$\tau = 1/\sigma^2 \sim \mathcal{G}(2,0.1)$$

$$\alpha \sim \mathcal{U}(-1.0,1.0)$$

AR(1) Jags

```
# Define model in JAGS
modelAR.string <-"model {</pre>
  ## Parameters: alpha, tau, mu0
  # Likelihood
  mu[1] \leftarrow Y[1]
  Yp[1] <- Y[1]
  for (i in 2:N) {
   Y[i] \sim dnorm(mu[i], tau)
    mu[i] <- mu0 + alpha * Y[i-1]
   Yp[i] ~ dnorm(mu[i],tau) # Prediction in sample
   LogLik[i] <- log(dnorm(Y[i], mu[i], tau))</pre>
  # Prediction out of sample
  ypOut[1] \sim dnorm(muO + alpha * Y[N], tau)
  for(k in 2:Npred){
    ypOut[k] \sim dnorm(muO + alpha * ypOut[k-1], tau)
  sigma2 <- 1/tau
  # Prior
  alpha \sim dunif(-1.0, 1.0)
  tau \sim dgamma(2, 0.1)
  mu0 \sim dnorm(0.0, 1.0E-4)
}"
```

AR(1) Posterior Distribution

Posterior distributions

AR(1) Trace plots

AR(1) In-sample and Out-of-sample Predictions

Moving Average Model (MA)

Moving Average Model (MA) General formulation

$$y_t = \mu_0 + \sum_{i=1}^q \theta_i \epsilon_{t-i} + \epsilon_t$$

- q: number of past error terms considered
- μ_0 : mean of the series
- θ_i : model parameters
- ϵ_t : white noise
- $\epsilon_{t-1}, \dots, \epsilon_{t-q}$: past error terms

Moving Average Model (MA) MA(1)

• Model:
$$y_t = \mu_0 + \theta \epsilon_{t-1} + \epsilon_t$$

• Likelihood:
$$y_t | \mu_0, \theta, \sigma^2, \epsilon_{t-1} \sim \mathcal{N}(\mu_0 + \theta \epsilon_{t-1}, \sigma^2)$$

 $\mu_0 \sim \mathcal{N}(0.0, 10000)$

• Priors:
$$\tau = 1/\sigma^2 \sim \mathcal{G}(2,0.1)$$

$$\theta \sim \mathcal{U}(-1.0,1.0)$$

MA(1) Jags

```
# Define model in JAGS
modelMA.string <-"model {</pre>
## Parameters: alpha, tau, mu0
  # Likelihood
  Yp[1] \leftarrow mu[1]
  mu[1] <- Y[1]
  eps[1] \leftarrow Y[1] - mu[1]
 for (i in 2:N) {
    Y[i] ~ dnorm(mu[i], tau)
    mu[i] <- mu0 + theta * eps[i-1]
    eps[i] <- Y[i] - mu[i]
    Yp[i] ~ dnorm(mu[i], tau)
    LogLik[i] <- log(dnorm(Y[i], mu[i], tau))</pre>
  # prediction out of sample
  ypOut[1] ~ dnorm(muO+theta*eps[N],tau)
  muOut[1] <- muO+theta*eps[N]</pre>
  epsOut[1] \leftarrow ypOut[1] - muOut[1]
  for(k in 2:Npred){
    ypOut[k] \sim dnorm(muO+theta*epsOut[k-1],tau)
    muOut[k] <- muO+theta*epsOut[k-1]</pre>
    epsOut[k] <- ypOut[k] - muOut[k]
  sigma2<-1/tau
  #prior
  theta \sim dunif(-1.0, 1.0)
        \sim dgamma(2, 0.1)
         \sim dnorm(0.0, 1.0E-4)
  mu0
```

MA(1) Posterior Distribution

MA(1) Trace plots

MA(1) In-sample and Out-of-sample Predictions

Moving Average Model (MA) MA(2)

• Model:
$$y_t = \mu_0 + \theta_1 \epsilon_{t-1} + \theta_2 \epsilon_{t-2} + \epsilon_t$$

 $\mu_0 \sim \mathcal{N}(0.0, 10000)$

• Likelihood:
$$y_t | \mu_0, \theta_1, \theta_2, \sigma^2, \epsilon_{t-1}, \epsilon_{t-2} \sim \mathcal{N}(\mu_0 + \theta_1 \epsilon_{t-1} + \theta_2 \epsilon_{t-2}, \sigma^2)$$

• Priors:
$$\tau = 1/\sigma^2 \sim \mathcal{G}(2,0.1)$$

$$\theta_1 \sim \mathcal{U}(-1.5,1.5)$$

$$\theta_2 \sim \mathcal{U}(-1.0,1.0)$$

MA(2) Jags

```
## Parameters: alpha, tau, mu0
 # Likelihood
 Yp[1] <- mu[1]
 mu[1] \leftarrow Y[1]
 eps[1] \leftarrow Y[1] - mu[1]
 Y[2] \sim dnorm(mu[2], tau)
 Yp[2] \sim dnorm(mu[2], tau)
 mu[2] <- mu0 + theta_1 * eps[1]
 eps[2] \leftarrow Y[2] - mu[2]
 for (i in 3:N) {
   Y[i] ~ dnorm(mu[i], tau)
    mu[i] <- mu0 + theta_1 * eps[i-1] + theta_2 * eps[i-2]</pre>
    eps[i] <- Y[i] - mu[i]
   Yp[i] ~ dnorm(mu[i], tau)
   LogLik[i] <- log(dnorm(Y[i], mu[i], tau))</pre>
 # prediction out of sample
 ypOut[1] ~dnorm(muOut[1],tau)
 muOut[1] <- muO+theta_1*eps[N]+theta_2*eps[N-1]
 epsOut[1] <- ypOut[1] - muOut[1]
 ypOut[2] ~dnorm(muOut[2],tau)
 muOut[2] <- muO+theta_1*epsOut[1]+theta_2*eps[N]</pre>
 epsOut[2] <- ypOut[2] - muOut[2]
 for(k in 3:Npred){
   ypOut[k] ~ dnorm(muOut[k],tau)
    muOut[k] <- muO+theta_1*epsOut[k-1]+theta_2*epsOut[k-2]</pre>
    epsOut[k] <- ypOut[k] - muOut[k]
 sigma2<-1/tau
 #prior
 theta_1 \sim dunif(-1.5, 1.5)
 theta_2 \sim dunif(-1, 1)
 tau \sim dgamma(2, 0.1)
 mu0 \sim dnorm(0.0, 1.0E-4)
```

MA(2) Posterior Distribution

Posterior distributions

MA(2) Trace plots

MA(2) In-sample and Out-of-sample Predictions

Autoregressive Moving Average Model (ARMA)

Autoregressive Moving Average Model (ARMA)General formulation

$$y_t = \mu_0 + \sum_{i=1}^p \alpha_i y_{t-i} + \sum_{j=1}^q \theta_j \epsilon_{t-j} + \epsilon_t$$

- p: number of past values considered
- *q*: number of past error terms
- μ_0 : constant value
- α_i : model parameters
- θ_i : model parameters
- ϵ_t : white noise
- y_{t-1}, \dots, y_{t-p} : past values
- $\epsilon_{t-1}, \dots, \epsilon_{t-q}$: past error terms

Autoregressive Moving Average Model (ARMA) ARMA(1, 1)

• Model:
$$y_t = \mu_0 + \alpha y_{t-1} + \theta \epsilon_{t-1} + \epsilon_t$$

• Likelihood:
$$y_t | \mu_0, \alpha, \theta, \sigma^2, y_{t-1}, \epsilon_{t-1} \sim \mathcal{N}(\mu_0 + \alpha y_{t-1} + \theta \epsilon_{t-1}, \sigma^2)$$

$$\mu_0 \sim \mathcal{N}(0.0, 10000)$$
• Priors: $au = 1/\sigma^2 \sim \mathcal{G}(2, 0.1)$
 $au \sim \mathcal{U}(-1.0, 1.0)$
 $au \sim \mathcal{U}(-1.0, 1.0)$

ARMA(1,1) Jags

```
# Define model in JAGS
modelARMA.string <-"model {</pre>
  ## Parameters: alpha, tau, mu0
  # Likelihood
  Yp[1] \leftarrow mu[1]
  mu[1] <- Y[1]
  eps[1] \leftarrow Y[1] - mu[1]
  for (i in 2:N) {
    Y[i] ~ dnorm(mu[i], tau)
    Yp[i] ~ dnorm(mu[i], tau)
                                     # Prediction in sample
    mu[i] <- mu0 + alpha * Y[i-1] + theta * eps[i-1]
    eps[i] <- Y[i] - mu[i]
    LogLik[i] <- log(dnorm(Y[i], mu[i], tau))</pre>
  # Prediction out of sample
  ypOut[1] \sim dnorm(muOut[1], tau)
  muOut[1] \leftarrow muO + alpha * Y[N] + theta * eps[N]
  epsOut[1] \leftarrow ypOut[1] - muOut[1]
  for (k in 2:Npred) {
    ypOut[k] ~ dnorm(muOut[k], tau)
    muOut[k] \leftarrow muO + alpha * ypOut[k-1] + theta * epsOut[k-1]
    epsOut[k] \leftarrow ypOut[k] - muOut[k]
  sigma2 <- 1/tau
  # Prior
  alpha \sim dunif(-1, 1)
  theta \sim dunif(-1, 1)
  tau \sim dgamma(2, 0.1)
         \sim dnorm(0.0, 1.0E-4)
  mu0
```

ARMA(1, 1) Posterior Distribution

Posterior distributions

ARMA(1, 1) Trace plots

ARMA(1, 1) In-sample and Out-of-sample Predictions

Generalized Autoregressive Conditional Heteroskedasticity Model (GARCH)

Generalized Autoregressive Conditional Heteroskedasticity Model (GARCH) General formulation

$$\sigma_t^2 = a_0 + \sum_{i=1}^p a_i \epsilon_{t-i}^2 + \sum_{j=1}^q a_{j+p} \sigma_{t-j}^2$$

- *p*: number of past squared error terms
- q: number of past variances considered
- α_i : model parameters
- ϵ_t : white noise
- $\epsilon_{t-1}^2, \dots, \epsilon_{t-p}^2$: past squared error terms
- σ_{t-1}^2 , ..., σ_{t-q}^2 : past variances

Generalized Autoregressive Conditional Heteroskedasticity Model (GARCH) AR(1) + GARCH(1,1)

• Model:
$$y_t = \mu_0 + \alpha y_{t-1} + \epsilon_t$$
 $\sigma_t^2 = a_0 + a_1 \epsilon_{t-1}^2 + a_2 \sigma_{t-1}^2$

• Likelihood:
$$y_t | \mu_0, \alpha, y_{t-1}, a_0, a_1, a_2, \sigma_{t-1}^2 \sim \mathcal{N}(\mu_0 + \alpha y_{t-1}, a_0 + a_1 \epsilon_{t-1}^2 + a_2 \sigma_{t-1}^2)$$

• Priors:
$$\mu_0 \sim \mathcal{N}(0.0, 10000)$$
 $lpha \sim \mathcal{U}(-1.0, 1.0)$
 $a_0 \sim \mathcal{G}(0.01, 0.01)$
 $a_1 \sim \mathcal{G}(0.01, 0.01)$
 $a_2 \sim \mathcal{G}(0.01, 0.01)$

AR(1) + GARCH(1, 1) Jags

```
# Define model in JAGS
modelGARCH.string <-"model {</pre>
  # Likelihood
  Yp[1]
           <- Y[1]
  mu[1]
            <- Y[1]
         <- 1 / sigma2[1]
  tau[1]
  sigma2[1] <- a[1]
  eps2[1] \leftarrow (Y[1] - mu[1]) * (Y[1] - mu[1])
  for(i in 2:N) {
   Y[i] \sim dnorm(mu[i], tau[i])
   Yp[i]
             ~ dnorm(mu[i], tau[i])
                                           # Prediction in sample
   mu[i] <- mu0 + alpha * Y[i-1]
    tau[i] <- 1 / sigma2[i]
   sigma2[i] \leftarrow a[1] + a[2] * eps2[i-1] + a[3] * sigma2[i-1]
   eps2[i] <- (Y[i] - mu[i]) * (Y[i] - mu[i])
   LogLik[i] <- log(dnorm(Y[i], mu[i], tau[i]))</pre>
  # Prediction out of sample
  ypOut[1]
               ~ dnorm(muOut[1], tauOut[1])
             \leftarrow mu0 + alpha * Y[N]
  muOut[1]
  tauOut[1] <-1 / sigma2Out[1]
 sigma2Out[1] \leftarrow a[1] + a[2] * eps2[N] + a[3] * sigma2[N]
  eps2Out[1] <- (ypOut[1] - muOut[1]) * (ypOut[1] - muOut[1])
  for (k in 2:Npred) {
   ypOut[k]
             ~ dnorm(muOut[k], tauOut[k])
             <- mu0 + alpha * yp0ut[k-1]
   muOut[k]
   tauOut[k] <-1 / sigma2Out[k]
   sigma2Out[k] <- a[1] + a[2] * eps2Out[k-1] + a[3] * sigma2Out[k-1]
   eps2Out[k] \leftarrow (ypOut[k] - muOut[k]) * (ypOut[k] - muOut[k])
  # Prior
  for(j in 1:3) {
   a[j] \sim dgamma(0.01, 0.01)
  alpha \sim dunif(-1, 1)
  mu0 \sim dnorm(0.0, 1.0E-4)
```

AR(1) + GARCH(1, 1) Posterior Distribution

AR(1) + GARCH(1, 1) Trace plots

AR(1) + GARCH(1, 1) In-sample and Out-of-sample Predictions

Vector Autoregressive Model (VAR)

Vector Autoregressive Model (VAR) General formulation

$$y_t = \mu_0 + A_1 y_{t-1} + A_2 y_{t-2} + \dots + A_p y_{t-p} + \epsilon_t$$

- p: number of past vectors of variables considered
- μ_0 : is a K × 1 vector of constants.
- $A_1, ..., A_p$: are K × K coefficient matrices.
- ϵ_t : is a K × 1 vector of error terms at time t.
- y_t : is a K × 1 vector of variables at time t.

Vector Autoregressive Model (VAR) VAR(1)

• Model(K=2):
$$\begin{pmatrix} y_{1,t} \\ y_{2,t} \end{pmatrix} = \begin{pmatrix} \mu_{0,1} \\ \mu_{0,2} \end{pmatrix} + \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} y_{1,t-1} \\ y_{2,t-1} \end{pmatrix} + \begin{pmatrix} \epsilon_{1,t} \\ \epsilon_{2,t} \end{pmatrix}$$

• Likelihood: $\mathbf{y}_t | \mu_0, A, \Sigma, \mathbf{y}_{t-1} \sim \mathcal{N}_2(\mu_0 + A\mathbf{y}_{t-1}, \Sigma)$

• Priors:

$$\mu_{0,i} \sim \mathcal{N}(0.0, 10000)$$
 $i = 1, 2$
 $a_{ij} \sim \mathcal{U}(-1, 1)$ $i, j = 1, 2$

$$\Omega = \Sigma^{-1} \sim Wishart(R, 3)$$

$$R = \left(\begin{array}{cc} 1 & 0.5 \\ 0.5 & 1 \end{array}\right)$$

VAR(1) Jags

```
# Define model in JAGS
modelVAR.string <-"model {</pre>
  # Likelihood
 Yp[1:2, 1] \leftarrow Y[1:2, 1]
  mu[1:2, 1] <- Y[1:2, 1]
  for (i in 2:N) {
   Y[1:2, i] \sim dmnorm(mu[1:2, i], omega[1:2, 1:2])
   Yp[1:2, i] \sim dmnorm(mu[1:2, i], omega[1:2, 1:2])
                                                          # Prediction in sample
               \leftarrow mu0[1] + A[1,1] * Y[1,i-1] + A[1,2] * Y[2,i-1]
    mu[2,i]
                \leftarrow mu0[2] + A[2,1] * Y[1,i-1] + A[2,2] * Y[2,i-1]
    LogLik[i] <- logdensity.mnorm(Y[1:2, i], mu[1:2, i], omega[1:2, 1:2])
  # Prediction out of sample
 ypOut[1:2, 1] \sim dmnorm(muOut[1:2, 1], omega[1:2, 1:2])
 muOut[1.1]
                  \leftarrow \text{mu0}[1] + A[1,1] * Y[1,N] + A[1,2] * Y[2,N]
  muOut[2.1]
                  \leftarrow mu0[2] + A[2,1] * Y[1,N] + A[2,2] * Y[2,N]
  for (k in 2:Npred) {
   ypOut[1:2, k] \sim dmnorm(muOut[1:2, k], omega[1:2, 1:2])
               \leftarrow \text{mu0}[1] + A[1,1] * ypOut[1,k-1] + A[1,2] * ypOut[2,k-1]
    muOut[1,k]
    muOut[2,k] <- muO[2] + A[2,1] * ypOut[1,k-1] + A[2,2] * ypOut[2,k-1]
 sigma <- inverse(omega)
  # Prior
  for(j in 1:2) {
    for(h in 1:2) {
      A[j, h] \sim dunif(-1, 1)
    mu0[j] \sim dnorm(0.0, 1.0E-4)
 omega \sim dwish(R,k)
 k < -3
 R[1.1] <- 1.0
 R[1,2] < -0.5
 R[2,1] = R[1,2]
 R[2,2] <- 1.0
```

VAR(1) Posterior Distribution

Posterior distributions

VAR(1) Trace plots

VAR(1) In-sample and Out-of-sample Predictions

Model Comparison

Model Comparison

	DIC		WAIC	
Model	GDP	CPIAUCSL	GDP	CPIAUCSL
AR(1)	1029.708	769.6079	1031.7	773.0
MA(1)	1154.302	1057.921	1154.5	1058.6
MA(2)	1074.749	965.4048	1068.2	949.8
ARMA(1,1)	960.1701	754.3378	962.3	759.6
AR(1) + GARCH(1,1)	932.1271	714.7022	934.5	727.5
VAR(1)	1755.134		1762.2	

Thanks for your attention