Competitive Searching over Terrains

Sarita de Berg Utrecht University

Nathan van Beusekom, Max van Mulken, Kevin Verbeek, Jules Wulms TU Eindhoven

Searching over Terrain

Searching over Terrain

Competitive Ratio c

Considers worst-case instance

$$c = \max \frac{|\text{Strategy Path}|}{|\text{Shortest Path}|}$$

Goal: minimize c

Line with unit distances

 p_0

Competitive ratio?

Competitive ratio?

Competitive ratio?

Distance traveled: 3x

Competitive ratio?

Distance traveled: 4x

Competitive ratio?

Distance traveled: 6x

Competitive ratio?

Distance traveled: 8x

Competitive ratio?

Distance traveled: 9x + 1

Competitive ratio?

Competitive ratio: $\frac{9x+1}{x+1}$

Competitive ratio?

Competitive ratio: $\lim_{x \to \infty} \frac{9x+1}{x+1} = 9$

Optimal

Competitive Searching over 1.5D Terrain

1-dimensional height function

1.5D Terrains – Lower Bound

1.5D Terrains – Lower Bound

1.5D Terrains – Lower Bound

Lower bound for any searching strategy:

$$c \ge \sqrt{82}$$

Worst-case instance

Vertical ray *r*

Worst-case instance

Obstructing terrain

Worst-case instance

Obstructing terrain

Worst-case instance

Obstructing terrain

Choose suitable slope: $s = \frac{\sqrt{2}}{6}$

$$c \le 3\sqrt{19/2}$$

 $9.055 \le c \le 9.247$

Can we do anything?

Cannot do anything without knowledge of terrain

Bound maximum slope λ of the terrain

Moving upwards: $O(\lambda)$

2.5D Terrain – Lower Bound

 $c\in\Omega(\sqrt{\lambda})$

 $c\in O(\sqrt{\lambda})$

Conclusion

1.5D Terrain

$$c \ge \sqrt{82}$$

$$c \le 3\sqrt{19/2}$$

$$c\in\Omega(\sqrt{\lambda})$$

$$c\in O(\sqrt{\lambda})$$