```
Sometimes you want heat
 to flow from cold to bot
   e.g. refrigerator
                            hot
   2.9. 4
2.8. 4
2.8. 2
             heat pump
             air conditioner
coefficient of performance
  C-O.P. = What you want what you pay
for coolings
                       for heating,
C.O.P. = Qc
                     C.O.P.
        ideally we want W to be try & C.O.P. to be high
                     due to 2nd Law
of Thermodynamics
                            W + Qc = Oh
W = Oh - Oc
cooling
   C.O.P. =
                   and then a
                   nuracle happens
 cooling C.D.P. < To The TE
e.g. refractor

E = 5^{\circ}C = 278K   T_h = 20^{\circ}C = 293K

Cop < \frac{278}{293-278} = 18.5
       -> Qu < 18.5 -> W> 3c.5
```

[0] = 10 $\frac{Q_c}{10} = 10 \rightarrow W = \frac{Q_c}{10}$ to remove 40J of heat From fridge, I do UJ of work as Ala? USR Fridge roomyy room gets more heat out 100m than 10

Irreversible Process
only happens in one direction in time - reverse the video a
:4 lank ≤ 1 in national
eg. break a cup, spill paper crips
heat flow hot - and
At microscopic level, processes are reversible
puetrons of revise
1
At macroscopic level, objects tend
At macroscopic level, objects tend towards equilibrium
towards equilibrium e.g. thank speads out in a room thank speads out in a room thanks
energy
aguilibrium is the most probable state system con be in
what's the chance the up?
Very low/
There are a lot more everys to make a mess
The probability that a system can
The probability that a system can end up in a state is characterar
by its entropy
disordered systems have higher entropy
than ordered systems, and ore more probable
Equilibrium: state of maximum entropy
•
hat cold forly organized
worm war kess organised more entropy
and Law of Thermodynamics
outropy of an isolated system
never decreases.
Entropy can decrease in one
System of it increases somewhere
else. Wen I
es. Clean my office, I convert food energy
into thermal energy, increasing my entropy
eg. Sun's entropy is increasing as
life to form.
increases On you have to get
entraph or engine was the cyclic -
increase entrops

Evergy conservation "= entropy minimization Universe is gaining entropy all the time a approaching equilibrium wheat death of the Universe" unless -

another Big Bany?