MACHINE LEARNING - 2 - Assignment

By Prakash Ghosh

1. Build the linear regression model using scikit learn in boston data to predict 'Price' based on other dependent variable.

Here is the code to load the data

```
In [7]: import numpy as np
    import pandas as pd
    import scipy.stats as stats
    import matplotlib.pyplot as plt
    import sklearn
    from sklearn.datasets import load_boston
    boston = load_boston()
    bos = pd.DataFrame(boston.data)
```

Solution

```
In [21]: print(" The keys of boston dataset:\t",boston.keys())
         print("\n Dataset shape:\t",boston.data.shape)
         print("\n Fetures (columns) of Dataset:\t",boston.feature names)
         print('\n First Five Rows:')
         bos.head(5)
```

dict_keys(['data', 'target', 'feature_names', 'DESCR']) The keys of boston dataset:

Dataset shape: (506, 13)

Fetures (columns) of Dataset: ['CRIM' 'ZN' 'INDUS' 'CHAS' 'NOX' 'RM' 'AGE' 'DIS' 'RAD' 'TAX' 'PTRATIO' 'B' 'LSTAT']

First Five Rows:

Out[21]: _____

	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33

In [25]: # Description of Boston Dataset print(boston.DESCR)

```
Boston House Prices dataset
-----
Notes
_____
Data Set Characteristics:
    :Number of Instances: 506
    :Number of Attributes: 13 numeric/categorical predictive
    :Median Value (attribute 14) is usually the target
    :Attribute Information (in order):
        - CRIM
                   per capita crime rate by town
        - ZN
                   proportion of residential land zoned for lots over 25,000 sq.ft.
        - INDUS
                   proportion of non-retail business acres per town
        - CHAS
                   Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
        - NOX
                   nitric oxides concentration (parts per 10 million)
        - RM
                   average number of rooms per dwelling
                   proportion of owner-occupied units built prior to 1940
        AGE
        - DIS
                   weighted distances to five Boston employment centres
                   index of accessibility to radial highways
        RAD
        - TAX
                   full-value property-tax rate per $10,000
        - PTRATIO pupil-teacher ratio by town
        - B
                   1000(Bk - 0.63)<sup>2</sup> where Bk is the proportion of blacks by town
                  % lower status of the population

    LSTAT

                  Median value of owner-occupied homes in $1000's
        MEDV
    :Missing Attribute Values: None
    :Creator: Harrison, D. and Rubinfeld, D.L.
This is a copy of UCI ML housing dataset.
http://archive.ics.uci.edu/ml/datasets/Housing
This dataset was taken from the StatLib library which is maintained at Carnegie Mellon University.
```

The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic prices and the demand for clean air', J. Environ. Economics & Management, vol.5, 81-102, 1978. Used in Belsley, Kuh & Welsch, 'Regression diagnostics ...', Wiley, 1980. N.B. Various transformations are used in the table on pages 244-261 of the latter.

The Boston house-price data has been used in many machine learning papers that address regression problems.

References

- Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Data and Sources of Collinearity', Wile y, 1980. 244-261.
- Quinlan, R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the Tenth International Conference of Machine Learning, 236-243, University of Massachusetts, Amherst. Morgan Kaufmann.
 - many more! (see http://archive.ics.uci.edu/ml/datasets/Housing)

In [26]: #Assign Columns names to Boston DataFrame using feature names bos.columns=boston.feature names bos.head(5)

Out[26]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33

In [29]: # Add target to Boston DataFrame as 'PRICE' bos['PRICE']=boston.target bos.head(5)

Out[29]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	PRICE
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33	36.2

In [31]: bos.describe()

Out[31]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	P1
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.
mean	3.593761	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	3.795043	9.549407	408.237154	18.4
std	8.596783	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	2.105710	8.707259	168.537116	2.16
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.129600	1.000000	187.000000	12.6
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	2.100175	4.000000	279.000000	17.4
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	3.207450	5.000000	330.000000	19.0
75%	3.647423	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	5.188425	24.000000	666.000000	20.2
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.126500	24.000000	711.000000	22.0

· Linear regression using least square method

[19.5347558] [11.51696539] [18.91981483]]

```
In [61]: df feature = bos.iloc[:,:-1]
                                            # Select all features (cloumns) except "PRICE" column
         df_price = bos.iloc[:,-1:]
                                            # Select "PRICE" column
In [68]: # import librarie for LinearRegression model
         from sklearn.linear model import LinearRegression as lr
         lr model = lr()
         lr model.fit(df feature,df price)
                                                                   # Fit the data
         lr model R square =lr model.score(df feature,df price) # Calculate the R square
         1r model price pred = 1r model.predict(df feature) # Prediction of Price based on features (Training data)
         print(" R-square:\t", lr model R square)
         print("\n The Estimated Intercept:\t", 1r model.intercept [0])
         print("\n No. of Estimated coefficients :", len(lr model.coef [0]), "\n" )
         print("\n The Predicted Prices based on features: \n", lr model price pred[0:10])
          R-square:
                          0.7406077428649428
          The Estimated Intercept:
                                           36.49110328036135
          No. of Estimated coefficients: 13
          The Predicted Prices based on features:
          [[30.00821269]
          [25.0298606]
          [30.5702317]
          [28.60814055]
          [27.94288232]
          [25.25940048]
          [23.00433994]
```

Features and their estimated coefficients

Out[71]:

	Features	Estimated_Coefficients
0	CRIM	-0.107171
1	ZN	0.046395
2	INDUS	0.020860
3	CHAS	2.688561
4	NOX	-17.795759
5	RM	3.804752
6	AGE	0.000751
7	DIS	-1.475759
8	RAD	0.305655
9	TAX	-0.012329
10	PTRATIO	-0.953464
11	В	0.009393
12	LSTAT	-0.525467

```
In [72]: # Correlation between Target variable (PRICE) and Fatures
         fig, axs = plt.subplots(7, 2 , sharey=False)
         bos.plot(kind='scatter', x=bos.columns[0], y='PRICE', ax=axs[0][0], figsize=(16,25), grid=True)
         bos.plot(kind='scatter', x=bos.columns[1], y='PRICE', ax=axs[0][1], grid=True)
         bos.plot(kind='scatter', x=bos.columns[2], y='PRICE', ax=axs[1][0], grid=True)
         bos.plot(kind='scatter', x=bos.columns[3], y='PRICE', ax=axs[1][1], grid=True)
         bos.plot(kind='scatter', x=bos.columns[4], y='PRICE', ax=axs[2][0], grid=True)
         bos.plot(kind='scatter', x=bos.columns[5], y='PRICE', ax=axs[2][1], grid=True)
         bos.plot(kind='scatter', x=bos.columns[6], y='PRICE', ax=axs[3][0], grid=True)
         bos.plot(kind='scatter', x=bos.columns[7], y='PRICE', ax=axs[3][1], grid=True)
         bos.plot(kind='scatter', x=bos.columns[8], y='PRICE', ax=axs[4][0], grid=True)
         bos.plot(kind='scatter', x=bos.columns[9], y='PRICE', ax=axs[4][1], grid=True)
         bos.plot(kind='scatter', x=bos.columns[10], y='PRICE', ax=axs[5][0], grid=True)
         bos.plot(kind='scatter', x=bos.columns[11], y='PRICE', ax=axs[5][1], grid=True)
         bos.plot(kind='scatter', x=bos.columns[12], y='PRICE', ax=axs[6][0], grid=True)
         plt.show()
```



```
In [78]: # Calulation of mean square error
         mean_square_error = np.mean((bos['PRICE'] - lr_model.predict(df_feature).flatten())**2)
         print("Mean Squared Error:\t\t",mean square error)
         # Residual sum of squares
         residual_square_error = np.sum((bos.PRICE - lr_model.predict(df_feature).flatten()) ** 2)
         print("Residual Sum of Squares:\t", residual square error)
```

Mean Squared Error: 21.897779217687496 Residual Sum of Squares: 11080.276284149873

In [81]: # import regression libraries import statsmodels.api as sm from statsmodels.formula.api import ols

```
In [86]: # statistical analysis of the linear regression model
         bos_ols = ols(formula='PRICE ~ CRIM + ZN + INDUS + CHAS + NOX + RM + AGE + DIS + RAD + TAX + PTRATIO + B + LSTAT + PRI
         CE ', \
                       data=bos).fit()
                     # Pass the feature to create the formula for Ordinary least squares
         print(' Statistical Analysis:', bos_ols.summary())
```

Statistical Analysis:

OLS Regression Results

============	:==========		=========
Dep. Variable:	PRICE	R-squared:	1.000
Model:	OLS	Adj. R-squared:	1.000
Method:	Least Squares	F-statistic:	6.603e+30
Date:	Sat, 27 Oct 2018	<pre>Prob (F-statistic):</pre>	0.00
Time:	18:06:52	Log-Likelihood:	15214.
No. Observations:	506	AIC:	-3.040e+04
Df Residuals:	491	BIC:	-3.033e+04
Df Model:	14		

Covariance Type: nonrobust

=======	========	========	========	========	========	========
	coef	std err	t	P> t	[0.025	0.975]
Intercept	-2.132e-14	2.43e-14	-0.877	0.381	-6.9e-14	2.64e-14
CRIM	-8.039e-16	1.5e-16	-5.367	0.000	-1.1e-15	-5.1e-16
ZN	-1.388e-17	6.29e-17	-0.221	0.825	-1. 37e - 16	1.1e-16
INDUS	4.718e-16	2.79e - 16	1.694	0.091	-7.55e-17	1.02e-15
CHAS	8.882e-16	3.94e-15	0.225	0.822	-6.86e-15	8.63e-15
NOX	1.354e-14	1.77e-14	0.766	0.444	-2.12e-14	4.83e-14
RM	1.11e-15	2.05e-15	0.542	0.588	-2.91e-15	5.13e-15
AGE	3.747e-16	5.98e-17	6.262	0.000	2.57e-16	4.92e -1 6
DIS	-9.992e-16	9.53e-16	-1.049	0.295	-2.87e-15	8.72e-16
RAD	4.094e-16	3.07e-16	1.334	0.183	-1. 94e -1 6	1.01e-15
TAX	-6.072e-17	1.72e-17	- 3.526	0.000	-9.46e-17	-2.69e- 1 7
PTRATIO	2.914e-16	6.24e-16	0.467	0.641	-9.34e-16	1.52e-15
В	-3.816e-17	1.23e-17	-3.101	0.002	-6.23e-17	-1.4e-17
LSTAT	-1.013e-15	2.53e-16	-3.997	0.000	-1.51e-15	-5.15e-16
PRICE	1.0000	2.04e-16	4.9e+15	0.000	1.000	1.000
Omnibus:	=========	:======== 26	======== .847	:======= in-Watson:	========	0.509
Prob(Omnib	uc).			ue-Bera (JB	١.	70.889
Skew:	us).			рие-вега (зв р(ЗВ):	7) •	4.04e-16
				• •		
Kurtosis:	=======	4 	./94 CONU	l. No.		1.59e+04

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.59e+04. This might indicate that there are strong multicollinearity or other numerical problems.

In [93]: # Scatter plot between Actual Price Data and Predictd Price print("Actual Price vs Predictd Price") fig = plt.figure() plt.title('Actual Price vs Predictd Price') plt.scatter(bos['PRICE'],lr_model.predict(df_feature) , linewidths=2) plt.xlabel("Actual Price") plt.ylabel("Predictd Price")

Actual Price vs Predictd Price

Out[93]: Text(0,0.5,'Predictd Price')


```
In [94]: # Scatter plot between Actual Price Data and Predictd fittedvalues
         plt.scatter(bos_ols.fittedvalues, bos.PRICE)
         plt.xlabel("Predictd fittedvalues")
         plt.ylabel("Actual Price")
         plt.title("Actual Price vs Predictd fittedvalues")
```

Out[94]: Text(0.5,1,'Actual Price vs Predictd fittedvalues')

print("R-sqaure value:\t\t\t",bos_ols.rsquared) In [96]: print("Adjusted R-sqaure value:\t",bos_ols.rsquared_adj)

R-sqaure value: 1.0 Adjusted R-sqaure value: 1.0