

Intro. Problem Statement

Denis Derkach, Maksim Artemev, Artem Ryzhikov

CS HSE faculty, spring 2020

Contents

Intuition

Probability

Estimation

Generative Modeling

Intuition

Generating examples

> You have some amount of measurements:

$$\{1; 0; 1; 1; 0; 1; 0; 1\}$$

- > Can you write out an element of this set?
- > How did you do this?
- > How would you make your action more precise?

What do we want to do

- > We have a sample of data objects.
- We want to have:
 - > way to sample new objects $x \sim p_{\theta}(x)$ that look similar to given ones;
 - > way to estimate $p_{\theta}(x)$;
 - > way to learn common features in unsupervised manner.

 $\theta \in \mathcal{M}$ Model family

Probability

What is a Probability?

- > The quality or state of being probable; the extent to which something is likely to happen or be the case. (Oxford dictionaries).
- > Generally, can be understood without any knowledge of mathematics.
- However, mathematics is quite essential to understand the subject.

see Goodfellow et al. Deep Learning Book Part I Chap 3

Kolmogorov axioms

For event space \mathcal{F} with given function \mathbb{P} :

- > The probability of event $A \in \mathcal{F}$ is assigned a non-negative real number $\mathbb{P}(A)$, which is called the probability of A.
- > The probability of at least one event from ${\mathcal F}$ to occur: ${\mathbb P}({\mathcal F})=1.$
 - ightarrow (*) The probability of an empty set of events is $\mathbb{P}(\emptyset)=0.$
- > If $X_1 \in \mathcal{F}$ and $X_2 \in \mathcal{F}$ are mutually exclusive, than $\mathbb{P}(X_1 + X_2) = \mathbb{P}(X_1) + \mathbb{P}(X_2)$ (also for any countable number of events).

Generally, other sets of axioms are possible. The main question stays: how we interpret what stays behind our probabilities.

Some Properties of Probability

 \rightarrow Joint event probabilities P(A or B) and P(A and B):

$$\mathbb{P}(A \text{ or } B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \text{ and } B)$$

.

> Full probability:

$$\mathbb{P}(A) = \sum_{n} \mathbb{P}(A \text{ and } B_n) \mathbb{P}(B_n),$$

where the whole space can be partitioned into a set of B_n ,

> Conditional probability, $\mathbb{P}(A|B)$, means the probability that A is true, given that B is true.

Bayes Theorem

> For a joint probability:

$$\mathbb{P}(A \text{ and } B) = \mathbb{P}(A|B)\mathbb{P}(B) = \mathbb{P}(B|A)\mathbb{P}(A)$$

.

> Which implies:

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(A|B)\mathbb{P}(B)}{\mathbb{P}(A)}$$

•

> Using Full probability:

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(A|B)\mathbb{P}(B)}{\mathbb{P}(A|B)\mathbb{P}(B) + \mathbb{P}(A|notB)\mathbb{P}(notB)}$$

Example for Bayes Theorem

Suppose we have a particle ID detector designed to identify particle of type K, with the property that if a K hits the detector, the probability that it will produce a positive pulse (T^+) is 0.9:

$$P(T^{+}|K) = 0.9[90\% \text{ acceptance}]$$

and 1% if a noise particle goes through:

$$P(T^+|notK) = 0.01[1\% \text{ background}]$$

Now a particle gives a positive pulse. What is the probability that it is a K?

Example for Bayes Theorem

The answer by Bayes Theorem:

$$\mathbb{P}(K|T^+) = \frac{\mathbb{P}(T^+|K)\mathbb{P}(K)}{\mathbb{P}(T^+|K)\mathbb{P}(K) + \mathbb{P}(T^+|notK)\mathbb{P}(notK)}$$

. In other words, all depends on the $\mathbb{P}(K)$.

\overline{K} in beam	$\mathbb{P}(K) = 1\%$	$\mathbb{P}(K) = 10^{-6}\%$
$\mathbb{P}(K T+)$	0.48	10^{-4}
$\mathbb{P}(K T-)$	0.01	10^{-7}

- > Bayes theorem can be used to easily solve the problem.
- \rightarrow This detector is not very useful if $\mathbb{P}(K)$ is small.
- ightarrow No interpretation of \mathbb{P} is given (you can be Bayesian or Frequentist).

Random Variable

A Random Variable is a variable which will take different values if the experiment is repeated.

These values are unpredictable except that we know in probability:

$$\mathbb{P}(data|parameters),$$

provided any unknowns in the parameters are given some assumed values.

Probability density function

When the data are continuous, the probability of a random variable ξ , \mathbb{P} , can be rewritten as Probability Density Function, or PDF:

$$p_{\xi|parameters}(x)dx = \mathbb{P}(\xi \in [x; x + dx]|parameters).$$

We normally write something like:

$$\mathbb{P}(\xi|parameters) = p(x; parameters).$$

NB: the same can be written for discrete random variables and is called probability mass function.

Basic discrete distributions

- Bernoulli distribution: (biased) coin flip
 - D = {Heads, Tails}
 - Specify P(X = Heads) = p. Then P(X = Tails) = 1 p.
 - Write: $X \sim Ber(p)$
 - · Sampling: flip a (biased) coin
- Categorical distribution: (biased) m-sided dice
 - $D = \{1, \dots, m\}$
 - Specify $P(Y=i) = p_i$, such that $\sum p_i = 1$
 - Write: $Y \sim Cat(p_1, \dots, p_m)$
 - Sampling: roll a (biased) die

Cumulative Density Function (CDF)

Definition

The cumulative distribution function (cdf) is the probability that the variable takes a value less than or equal to x. That is:

$$F(x) = \mathbb{P}[X \le x].$$

Basic Characteristics of PDF

If we have a PDF $p_{\xi}(x)$ of a random variable ξ .

> Expectation:

$$\mathbb{E}(\xi) = \int x p_{\xi} dx,$$

> Variance:

$$\mathbb{V}ar_{\xi}(\xi) = \mathbb{E}_{\xi} \left[(\xi - \mathbb{E}_{\xi}(\xi))^{2} \right]$$

> Higher central momenta:

$$\mu_{\xi}^{k} = \mathbb{E}_{\xi} \left[(\xi - \mathbb{E}_{\xi} \xi)^{3} \right],$$

Properties of Expectation and Variance

> Expectation

- $\rightarrow \mathbb{E}(c) = c;$
- $\rightarrow \mathbb{E}(aX + bY) = a\mathbb{E}(X) + b\mathbb{E}(Y);$
- \rightarrow For independent X and Y: $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$.

> Variance

- $\Rightarrow \mathbb{V}ar(c) = 0;$
- $\rightarrow \mathbb{V}ar(X) \geq 0;$
- $\Rightarrow \mathbb{V}ar(X+c) = \mathbb{V}ar(X);$
- $\rightarrow \mathbb{V}ar(cX) = c^2 \mathbb{V}ar(X).$

Multidimensional distributions

We often encounter situations where we have to analyze several random variables at once. In this case, we need to analyze a more complex entity, the multidimensional PDF $\mathbb{P}(\xi_1 \leq x_1, \dots, \xi_n \leq x_n)$ for a random vector $\xi = (\xi_1, \dots, \xi_n)$.

Independence of random variables

Definition

Let random variables X and Y have a joint density p(x,y). X and Y will be called independent if

$$p(x,y) = p(x) \cdot p(y).$$

NB: Generally, it is more appropriate to use mutual information concept.

Example of joint distribution

Modeling a single pixel's color. Three discrete random variables:

- Red Channel R. $Val(R) = \{0, \cdots, 255\}$
- Green Channel G. $Val(G) = \{0, \dots, 255\}$
- Blue Channel B. $Val(B) = \{0, \dots, 255\}$

Sampling from the joint distribution $(r, g, b) \sim p(R, G, B)$ randomly generates a color for the pixel. How many parameters do we need to specify the joint distribution p(R = r, G = g, B = b)?

$$256 * 256 * 256 - 1$$

Example of joint distribution

- Suppose $X_1, ..., X_n$ are binary (Bernoulli) random variables, i.e., $Val(X_i) = \{0, 1\} = \{Black, White\}.$
- How many possible states?

$$\underbrace{2 \times 2 \times \cdots \times 2}_{n \text{ times}} = 2^n$$

- Sampling from $p(x_1, ..., x_n)$ generates an image
- How many parameters to specify the joint distribution $p(x_1, ..., x_n)$ over n binary pixels?

$$2^{n} - 1$$

Independent distribution

If X₁,..., X_n are independent, then

$$p(x_1,\ldots,x_n)=p(x_1)p(x_2)\cdots p(x_n)$$

- How many possible states? 2ⁿ
- How many parameters to specify the joint distribution p(x₁,...,x_n)?
 How many to specify the marginal distribution p(x₁)?
- 2^n entries can be described by just n numbers (if $|Val(X_i)| = 2$)!
- Independence assumption is too strong. Model not likely to be useful
 - For example, each pixel chosen independently when we sample from it.

Conditional Independence

Definition

Two events A, B are conditionally independent given event C if

$$\mathbb{P}(AandB|C) = \mathbb{P}(A|C)\mathbb{P}(B|C)$$

Equivalent definition holds for random variables.

We will write $X \perp Y | Z$.

Chain Rule

Definition

For a given set of events $\{S_i\}$:

$$p(S_1$$
 and S_2 and \ldots and $S_n) = p(S_1)p(S_2|S_1)\ldots p(S_n|S_1$ and \ldots and S_{n1}

Note that the amount of parameters remain the same:

 $p(x_2|x_1=0)$ and $p(x_2|x_1=1)$ are parameterised by two parameters.

Structure through Chain Rule

Using Chain Rule

$$p(x_1,...,x_n) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_1,x_2)\cdots p(x_n \mid x_1,\cdots,x_{n-1})$$

- How many parameters? $1 + 2 + \cdots + 2^{n-1} = 2^n 1$
 - p(x₁) requires 1 parameter
 - p(x₂ | x₁ = 0) requires 1 parameter, p(x₂ | x₁ = 1) requires 1 parameter Total 2 parameters.
 - ...
- 2ⁿ 1 is still exponential, chain rule does not buy us anything.
- Now suppose $X_{i+1} \perp X_1, \ldots, X_{i-1} \mid X_i$, then

$$p(x_1,...,x_n) = p(x_1)p(x_2 | x_1)p(x_3 | x_1,x_2) \cdots p(x_n | x_1,x_{n-1})$$

= $p(x_1)p(x_2 | x_1)p(x_3 | x_2) \cdots p(x_n | x_{n-1})$

Estimation

Likelihood

Notice, that when we write PDF, we did not assume anything about parameters. What if know the data:

$$\mathbb{P}(data|parameters)\big|_{dataobs.} = \mathcal{L}(parameters)$$

 \mathcal{L} is called the Likelihood Function.

NB: it's not a probability.

Maximum Likelihood Estimator

Definition

Maximum Likelihood Estimator (MLE) is defined as the estimate $\widehat{\theta}_n$ of parameter θ , which maximizes likelihood: $\mathcal{L}_n(\theta)$ (with n being the number of events in a sample).

Some MLE properties

- 1. MLE is consistent: $\widehat{\theta}_n \xrightarrow{\mathbb{P}} \theta$.
- 2. MLE does not depend on the parameterisation: $\widehat{\theta}_n$ MLE for θ , than $g(\widehat{\theta}_n)$ MLE for $g(\theta)$;
- 3. MLE is asymptotically normal: $(\widehat{\theta} \theta_*)/\widehat{se} \rightsquigarrow \mathcal{N}(0,1)$;
- 4. MLE is asymptotically optimal.

Example of MLE:

Find $\widehat{\mu}$ and $\widehat{\sigma}$ for Normal function with number of events in sample n:

$$f(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

Rewrite as log-likelihood:

$$\ell_n(\mu, \sigma) = \sum_{i=1}^n \left(\ln \frac{1}{\sqrt{2\pi}} - \ln \sigma - \frac{(x-\mu)^2}{2\sigma^2} \right)$$

Take derivatives:

$$\frac{\partial \ell_n}{\partial \mu} = \sum_{i=1}^n \frac{x_i - \mu}{\sigma^2} \quad \frac{\partial \ell_n}{\partial \sigma} = \sum_{i=1}^n \left(\frac{(x_i - \mu)^2}{2\sigma^4} - \frac{1}{2\sigma^2} \right)$$

31

Example of MLE:

Thus:

$$\widehat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i,$$

and:

$$\widehat{\sigma} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \widehat{\mu})^2$$

MLE estimate gives not biased $\hat{\sigma}$!

Generative Modeling

Quote

All models are generative models.

-Eric Jang

Generative vs Discriminative Modeling

Discriminative model

- \rightarrow learn $\mathbb{P}(y|x)$
- Directly characterizes the decision boundary between classes only
- Examples: Logistic
 Regression, SVM, etc

Generative model

- ightarrow learn $\mathbb{P}(x|y)$ (and eventually $\mathbb{P}(y,x)$)
- Characterize how data is generated (distribution of individual class)
- Examples: Naive Bayes, HMM, etc.

Naive Bayes

- Classify e-mails as spam (Y = 1) or not spam (Y = 0)
 - Let 1: n index the words in our vocabulary (e.g., English)
 - $X_i = 1$ if word i appears in an e-mail, and 0 otherwise
 - E-mails are drawn according to some distribution $p(Y, X_1, \dots, X_n)$
- Words are conditionally independent given Y:

Features

Then

$$p(y,x_1,\ldots x_n)=p(y)\prod_{i=1}^n p(x_i\mid y)$$

Naive Bayes: Discrimination

- ullet Classify e-mails as spam (Y=1) or not spam (Y=0)
 - Let 1: n index the words in our vocabulary (e.g., English)
 - $X_i = 1$ if word i appears in an e-mail, and 0 otherwise
 - E-mails are drawn according to some distribution $p(Y, X_1, \dots, X_n)$
- Suppose that the words are conditionally independent given Y. Then,

$$p(y,x_1,\ldots x_n)=p(y)\prod_{i=1}^n p(x_i\mid y)$$

Estimate parameters from training data. Predict with Bayes rule:

$$p(Y = 1 \mid x_1, ... x_n) = \frac{p(Y = 1) \prod_{i=1}^n p(x_i \mid Y = 1)}{\sum_{y=\{0,1\}} p(Y = y) \prod_{i=1}^n p(x_i \mid Y = y)}$$

Discriminative vs Generative Modeling

- Since X is a random vector, chain rules will give
 - $p(Y, \mathbf{X}) = p(Y)p(X_1 \mid Y)p(X_2 \mid Y, X_1) \cdots p(X_n \mid Y, X_1, \cdots, X_{n-1})$
 - $p(Y, \mathbf{X}) = p(X_1)p(X_2 \mid X_1)p(X_3 \mid X_1, X_2) \cdots p(Y \mid X_1, \cdots, X_{n-1}, X_n)$

We must make the following choices:

- 1 In the generative model, p(Y) is simple, but how do we parameterize $p(X_i | \mathbf{X}_{pa(i)}, Y)$?
- ② In the discriminative model, how do we parameterize $p(Y \mid X)$? Here we assume we don't care about modeling p(X) because X is always given to us in a classification problem

Discriminative outcome

- Logistic model does *not* assume $X_i \perp \mathbf{X}_{-i} \mid Y$, unlike naive Bayes
- This can make a big difference in many applications
- For example, in spam classification, let $X_1 = 1$ ["bank" in e-mail] and $X_2 = 1$ ["account" in e-mail]
- Regardless of whether spam, these always appear together, i.e. $X_1 = X_2$
- Learning in naive Bayes results in $p(X_1 \mid Y) = p(X_2 \mid Y)$. Thus, naive Bayes double counts the evidence
- Learning with logistic regression sets $\alpha_1=0$ or $\alpha_2=0$, in effect ignoring it

Generative outcome

Using chain rule $p(Y, \mathbf{X}) = p(\mathbf{X} \mid Y)p(Y) = p(Y \mid \mathbf{X})p(\mathbf{X})$. Corresponding Bayesian networks:

- Using a conditional model is only possible when X is always observed
 - When some X_i variables are unobserved, the generative model allows us to compute p(Y | X_{evidence}) by marginalizing over the unseen variables

Testing the outcome

Figure 1: Results of 15 experiments on datasets from the UCI Machine Learning repository. Plots are of generalization error vs. m (averaged over 1000 random train/test splits). Dashed line is logistic regression; solid line is naive Bayes.

Indeed in case we have not enough events, Naive Bayes tend to win.

From A. Ng et al.

Generative Modeling: problem statement

Three major tasks, given a generative model f from a class of models \mathcal{F} :

- 1. Estimation: find the f in \mathcal{F} that best matches observed data.
- 2. Evaluate Likelihood: compute f(z) for a given z.
- 3. Sampling: drawing from f.

From S. Nowozin et al.

Sampling ideas

If we have a parametric model, the life simplifies dramatically:

- > Specify a latent p(z) followed by a procedure $f_{\theta}: Z \to X$.
- > Key point: in this setting, sampling data is almost always easy.
- Sometimes the whole problem is easy: remember inversion sampling?

$$z \sim Unif(0;1); x = F_{\phi}^{-1}(z); x \sim Exp(\phi).$$

Here F_ϕ is the CDF of the exponential distribution, $F_\phi(x)=1-\exp(x\phi)$, with $F_\phi^{-1}(z)=-\phi\log(1-z)$.

> Unfortunately, more often f_{θ} induces an intractable log likelihood.

Taxonomy of Generative Model Techniques

- > Nonparametric
 - > histograms
 - > kernel density estimation
- > likelihood-based parametric
 - > autoregressive models
 - > variational autoencoders
 - > normalizing flow models
- > likelihood-free parametric
 - > Generative Adversarial Networks

Wrap up

- Generative modeling includes estimation, evaluation and sampling.
- > Some generative models can have problems with components.

> Next: evaluation of Generative models.