考研题目本

五狗砸

2020年9月25日

目录

1 微积分 2

微积分

Example 1.1. 设 f'(x) 连续,f(0) = 0, $f'(0) \neq 0$,求 $\lim_{x \to 0} \frac{\int_0^{x^2} f(x^2 - t) dt}{x^3 \int_0^1 f(xt) dt}$ $\Rightarrow x^2 - t = u, xt = u$

$$\begin{split} \lim_{x \to 0} \frac{\int_0^{x^2} f(x^2 - t) dt}{x^3 \int_0^1 f(xt) dt} &= \lim_{x \to 0} \frac{-\int_{x^2}^0 f(u) du}{x^3 \int_0^x f(u) \frac{du}{x}} = \lim_{x \to 0} \frac{\int_0^{x^2} f(u) du}{x^2 \int_0^x f(u) du} \\ &= \lim_{x \to 0} \frac{2x f(x^2)}{2x \int_0^x f(u) du + x^2 f(x)} \\ &= \lim_{x \to 0} \frac{2f(x^2)}{2 \int_0^x f(u) du + x f(x)} \\ &= \lim_{x \to 0} \frac{4x f'(x^2)}{3 f(x) + x f'(x)} \\ &= \lim_{x \to 0} \frac{4f'(x^2)}{3 f(x) - f(0)} = 1 \end{split}$$

Example 1.2. 求 $\lim_{x\to 0} \frac{\frac{x^2}{2}+1-\sqrt{1+x^2}}{(\cos x-e^{x^2})\sin x^2}$ 利用泰勒展开, $\sqrt{1+x^2}=1+\frac{1}{2}x^2-\frac{1}{8}x^4+o(x^4)$, $\cos x=1-\frac{1}{2}x^2+\frac{1}{2}x^4+o(x^4)$ $o(x^2)e^{x^2} = 1 + x^2 + o(x^2)$, 因此

$$\lim_{x \to 0} \frac{\frac{x^2}{2} + 1 - \sqrt{1 + x^2}}{(\cos x - e^{x^2})\sin x^2} = \lim_{x \to 0} \frac{\frac{x^4}{8} + o(x^4)}{-\frac{3}{2}x^4 + o(x^4)} = -\frac{1}{12}$$

Example 1.3. $\Re \lim_{n\to\infty} \tan^n(\frac{\pi}{4} + \frac{2}{n})$

因为
$$\lim_{x \to \infty} f(x) = A \Rightarrow \lim_{n \to \infty} f(n) = A$$

Example 1.4. suppose $y_n = \left\lceil \frac{(2n)!}{n!n^n} \right\rceil^{\frac{1}{n+1}}$. Compute $\lim_{n\to\infty} y_n$

$$\begin{split} \ln y_n &= \frac{1}{n+1} \ln \frac{(2n)!}{n! n^n} = \frac{1}{n+1} \ln \frac{(2n)(2n-1) \dots (n+1)}{n^n} \\ &= \frac{1}{n+1} \sum_{k=1}^n \ln (1+\frac{k}{n}) = \frac{n}{n+1} \left(\frac{1}{n} \sum_{k=1}^n \ln (1+\frac{k}{n}) \right) \end{split}$$

Hence

$$\begin{split} \lim_{n \to \infty} y_n &= \lim_{n \to \infty} \frac{n}{n+1} \left(\frac{1}{n} \sum_{k=1}^n \ln(1+\frac{k}{n}) \right) \\ &= 1 \cdot \int_0^1 \ln(1+x) dx = x \ln(1+x)|_0^1 - \int_0^1 \frac{x}{1+x} dx \\ &= \ln 2 - 1 + \ln 2 = \ln \frac{4}{e} \end{split}$$

Example 1.5. 已知 $x\to 0$ 时, $e^{-x^4}-\cos(\sqrt{2}x^2)$ 与 ax^n 是等价无穷小,试求 a,n

$$e^{-x^4} = 1 - x^4 + \frac{x^8}{2} + o(x^8)$$
$$\cos(\sqrt{2}x^2) = 1 - x^4 + \frac{x^8}{6} + o(x^8)$$

Hence $a = \frac{1}{3}, n = 8$

Example 1.6. 设 $f(x) = \frac{\sqrt{1+\sin x + \sin^2 x} - (\alpha + \beta \sin x)}{\sin^2 x}$,且点 x = 0 是 f(x) 的可去间断点,求 α, β

由极限存在可知, $\alpha = 1$, 泰勒展开

Example 1.7. let $f(x) = \lim_{n \to \infty} \frac{2x^n - 3x^{-n}}{x^n + x^{-n}} \sin \frac{1}{x}$

$$f(x) = \begin{cases} 2\sin\frac{1}{x}^{x} & x < -1 \\ -\frac{1}{2}\sin\frac{1}{x} & x = -1 \\ -3\sin\frac{1}{x} & -1 < x < 0 \\ -3\sin\frac{1}{x} & 0 < x < 1 \\ -\frac{1}{2}\sin\frac{1}{x} & x = 1 \\ 2\sin\frac{1}{x}^{x} & x > 1 \end{cases}$$

x=0 是第二类间断点, $x=\pm 1$ 是第一类间断点

Example 1.8. 设 f(1) = 0, f'(1) = a, 求极限