Das Ising-Modell - Teil I

Daniela Söllheim

Grundlegende Definitionen.

- 1. **Energie**: $\mathcal{H}_{\Lambda,\beta,h}^{\#} = -\beta \sum_{i,j \in \mathcal{E}_{\Lambda}} \sigma_i(\omega) \sigma_j(\omega) h \sum_{i \in \Lambda} \sigma_i(\omega)$ für $\omega \in \Omega_{\Lambda}$
- 2. Verteilung: $\mu_{\Lambda,\beta,h}^{\#} = (Z_{\Lambda,\beta,h}^{\#}(\omega))^{-1}e^{-\mathcal{H}_{\Lambda,\beta,h}^{\#}(\omega)}$ mit $Z_{\Lambda,\beta,h}^{\#}(\omega) = \sum_{\omega \in \Omega_{\Lambda}} e^{-\mathcal{H}_{\Lambda,\beta,h}^{\#}(\omega)}$
- 3. Erwartungswert der Funktion f unter $\mu_{\Lambda,\beta,h}^\#:\langle f \rangle_{\Lambda,\beta,h}^\# = \sum_{\omega \in \Omega_{\Lambda}^\#} f(\omega) \mu_{\Lambda,\beta,h}^\#(\omega)$

Defintion 1.

Der **Druck** in $\Lambda \subset \mathbb{Z}^d$, wobei Λ endlich ist, mit beliebiger Randbedingung von Typ # ist definiert durch

$$\psi_{\Lambda}^{\#}(\beta,h) := \frac{1}{|\Lambda|} log Z_{\Lambda,\beta,h}^{\#}$$

Satz 2.

Im thermodynamischen Limes ist der Druck

$$\psi(\beta,h) = \lim_{\Lambda \uparrow \mathbb{Z}^d} \psi_{\Lambda}^{\#}(\beta,h)$$

wohldefiniert und unabhängig von der Folge $\Lambda \uparrow \mathbb{Z}^d$ und von dem Typ der Randbedingung. Außerdem ist ψ konvex (als eine Funktion auf $\mathbb{R}_{>0} \times \mathbb{R}$) und gerade als eine Funktion von h.

Definition 3.

Die Magnetisierungsdichte in $\Lambda \subset \mathbb{Z}^d$ ist definiert als

$$m_{\Lambda} := \frac{1}{|\Lambda|} M_{\Lambda}$$

wobei $M_{\Lambda} := \sum_{i \in \Lambda} \sigma_i$ die **totale Magnetisierung** ist.

Wir definieren ebenso für ein $\Lambda \subset \mathbb{Z}^d$

$$m_{\Lambda}^{\#}(\beta,h) := \langle m_{\Lambda} \rangle_{\Lambda,\beta,h}^{\#}$$

Lemma 4.

Für alle $h \notin \mathfrak{B}_{\beta}$ ist die durchschnittliche Magnetisierungsdichte

$$m(\beta,h) = \lim_{\Lambda \uparrow \mathbb{Z}^d} m_{\Lambda}^{\#}(\beta,h)$$

wohldefiniert, unabhängig von der Folge $\Lambda \uparrow \mathbb{Z}^d$ und von der Randbedingung und erfüllt

$$m(\beta, h) = \frac{\partial \psi}{\partial h}(\beta, h)$$

Außerdem ist die Funktion $h \to m(\beta, h)$ monoton steigend auf $\mathbb{R} \setminus \mathfrak{B}_{\beta}$ und ist stetig in jedem $h \notin \mathfrak{B}_{\beta}$. Allerdings ist es in jedem $h \in \mathfrak{B}_{\beta}$ unstetig:

$$\lim_{h \neq h} m(\beta, h) = \frac{\partial \psi}{\partial h^+}(\beta, h), \quad \lim_{h \neq h} m(\beta, h) = \frac{\partial \psi}{\partial h^-}(\beta, h)$$

Insbesondere ist die spontane Magnetisierung

$$m^*(\beta) = \lim_{h \downarrow 0} m(\beta, h)$$

immer wohldefiniert.

Definition 5.

In dem Punkt (β, h) liegt eine **Zustandsänderung erster Ordnung** vor, wenn $h \to \psi(\beta, h)$ in diesem Punkt nicht differenzierbar ist.

Satz 6.

In der Dimension d=1 ist der Druck $\psi(\beta,h)$ des eindimensionalen Ising-Modells für alle $\beta \geq 0$ und alle $h \in \mathbb{R}$ gegeben durch

$$\psi(\beta, h) = \log[e^{\beta} \cosh(h) + \sqrt{e^{2\beta} \cosh^2(h) - 2\sinh(2\beta)}]$$

Daraus folgt, dass es im eindimensionalen Ising-Modell keine Zustandsänderung erster Ordnung gibt. Außerdem haben wir gesehen, dass in der ersten Dimension paramagnetisches Verhalten vorliegt.

Definition 7.

Eine Funktion $f: \Omega \to \mathbb{R}$ ist **lokal**, wenn ein endliches $\Delta \subset \mathbb{Z}^d$ existiert, sodass $f(\omega) = f(\omega')$ sofern sich ω und ω' auf Δ entsprechen.

Die kleinste dieser Mengen Δ wird der **Träger** von f genannt und mit supp(f) bezeichnet.

Definition 8.

Ein **Zustand** (im unendlichen Raum) ist eine Abbildung, die zu jeder lokalen Funktion f eine reelle Zahl $\langle f \rangle$ zuordnet, sodass

- 1. $\langle 1 \rangle = 1$ (Normalisation)
- 2. $f \ge 0 \Rightarrow \langle f \rangle \ge 0$ (Positivität)
- 3. Für $\lambda \in \mathbb{R} : \langle f + \lambda g \rangle = \langle f \rangle + \lambda \langle g \rangle$ (Linearität)

Die Zahl $\langle f \rangle$ nennt man **Durchschnitt von f** im Zustand $\langle \cdot \rangle$

Definition 9.

Sei $\Lambda \uparrow \mathbb{Z}^d$ und $(\#_n)_{n \geq 1}$ eine Folge von Randbedingungen. Die Folge der Gibbsverteilungen $(\mu_{\Lambda_n,\beta,h}^{\#_n})_{n \geq 1}$ konvergiert zu dem Zustand $\langle \cdot \rangle$ genau dann, wenn $\lim_{n \to \infty} \langle f \rangle_{\Lambda_n,\beta,h}^{\#_n} = \langle f \rangle$ für jede lokale Funktion f. Den Zustand nennt man **Gibbs** – **Zustand** (in (β,h)).

Definition 10.

Die **Translation** von $j \in \mathbb{Z}^d$ ist die Abbildung $\Theta_j : \mathbb{Z}^d \to \mathbb{Z}^d$, die definiert ist durch $\Theta_j i = i + j$

Für eine Konfiguration $\omega \in \Omega$ gilt dann, dass Θ_{ω} definiert ist durch $(\Theta_j \omega)_i = \omega_{\omega_{i-j}}$

Ein Zustand $\langle \cdot \rangle$ ist **translationsinvariant**, wenn $\langle f \circ \Theta_j \rangle = \langle f \rangle$ für jede lokale Funktion f und für alle $j \in \mathbb{Z}^d$

Definition 11.

Für alle endlichen $A \subset \mathbb{Z}^d$ sei

$$\sigma_A := \prod_{j \in A} \sigma_j \qquad \mathfrak{n}_A := \prod_{j \in A} \mathfrak{n}_j$$

wobei $\mathfrak{n}_{\mathfrak{j}} := \frac{1}{2}(1+\sigma_{\mathfrak{j}})$

Satz 13. (GKS – Ungleichung)

Seien $\beta \geq 0, h \geq 0$ Für alle $A, B \subset \Lambda$ gilt

$$\langle \sigma_A \rangle_{\Lambda,\beta h}^+ \ge 0$$
$$\langle \sigma_A \sigma_B \rangle_{\Lambda,\beta,h}^+ \ge \langle \sigma_A \rangle_{\Lambda,\beta,h}^+ \langle \sigma_A \rangle_{\Lambda,\beta,h}^+$$

Die Ungleichungen gelten für die Randbedingungen +, \varnothing , per

Satz 14. (FKG – Ungleichung)

Seien $\beta > 0, h \ge 0$. Sei $\Lambda \subset \mathbb{Z}^d$ endlich und # eine beliebige Randbedingung. Dann gilt für jedes Paar monton steigender Funktionen f und g:

$$\langle f \circ g \rangle_{\Lambda,\beta,b}^{\#} \ge \langle f \rangle_{\Lambda,\beta,h}^{\#} \langle g \rangle_{\Lambda,\beta,h}^{\#}$$

Satz 17.

Sei $\beta \geq 0, h \in \mathbb{R}$ und $\Lambda_n \uparrow \mathbb{Z}^d$. Die Gibbs-Verteilung im endlichen Volumen mit + oder – Randbedingung konvergiert zum Gibbs-Zustand im unendlichen Volumen:

$$\langle\cdot\rangle_{\beta,h}^+ = \lim_{n\to\infty}\langle\cdot\rangle^+ \quad \text{bzw.} \quad \langle\cdot\rangle_{\beta,h}^- = \lim_{n\to\infty}\langle\cdot\rangle^-$$

Die Zustände $\langle \cdot \rangle_{\beta,h}^+$, $\langle \cdot \rangle_{\beta,h}^-$ sind unabhängig von $(\Lambda)_{n\geq 1}$ und beide translationsinvariant.