Spring 2015 Statistics 153 (Time Series): Lecture Eight

Aditya Guntuboyina

12 February 2015

1 ARMA Processes

The combination of ideas behind the Autoregressive and Moving Average processes give us ARMA processes, which provide a large class of stationary models for modelling residuals after trend and seasonality are removed.

Definition 1.1 (ARMA(p, q)). The doubly infinite sequence $\{X_t\}$ is said to be an ARMA(p, q) process if

- 1. $\{X_t\}$ is stationary.
- 2. $\{X_t\}$ satisfies the following difference equation

$$X_t - \phi_1 X_{t-1} - \dots - \phi_p X_{t-p} = Z_t + \theta_1 Z_{t-1} + \dots + \theta_q Z_{t-q}$$
 (1)

for every t.

Here $\{Z_t\}$ is white noise.

If we let $\phi(z) = 1 - \phi_1 z - \phi_2 z^2 - \dots - \phi_p z^p$ and $\theta(z) = 1 + \theta_1 z + \theta_2 z^2 + \dots + \theta_q z^q$, the difference equation (1) becomes $\phi(B)X_t = \theta(B)Z_t$. Whenever we talk of an ARMA process, we assume that the polynomials $\theta(z)$ and $\phi(z)$ have no common roots.

This class of models includes the examples of stationary models that we have so far studied:

- 1. White noise: Corresponds to $\phi(z) = 1$ and $\theta(z) = 1$.
- 2. Moving Average: Corresponds to $\phi(z) = 1$ and $\theta(z) = 1 + \theta_1 z + \theta_2 z^2 + \cdots + \theta_q z^q$.
- 3. Autoregressive Process: Corresponds to $\theta(z) = 1$. $\phi(z) = 1 \phi z$ is autoregressive process of order one. $\phi(z) = 1 \phi_1 z \phi_2 z^2 \cdots \phi_p z^p$ is called an autoregressive process of order p.

Definition 1.2 (Causal ARMA process). An ARMA(p, q) process X_t is said to be causal if it can be written as $X_t = Z_t + \psi_1 Z_{t-1} + \psi_2 Z_{t-2} + \cdots = \sum_{j=0}^{\infty} \psi_j Z_{t-j}$ for some sequence ψ_j with $\sum_{j=0}^{\infty} |\psi_j| < \infty$.

We ask the same questions as in the AR(1) case:

- 1. For what values of ϕ_1, \ldots, ϕ_p and $\theta_1, \ldots, \theta_q$ does there exist a stationary solution to the general difference equation (1).
- 2. For what values of ϕ, \ldots, ϕ_p and $\theta_1, \ldots, \theta_q$ does there exist a **causal** stationary solution to (1).

3. How does one calculate the acvf and acf of this process?

The answer to Question 1 is: The difference equation $\phi(B)X_t = \theta(B)Z_t$ has a unique stationary solution if and only if the polynomial $\phi(z)$ has no roots having magnitude exactly equal to one. It should be kept in mind that polynomials in general can have complex roots.

The answer to Question 2 is: The difference equation has a unique stationary solution that is causal if and only if $\phi(z)$ has no roots having magnitude less than or equal to one.

In the case of the AR(1) model, the polynomial ϕ equals $\phi(z) = 1 - \phi z$ whose root is given by $1/\phi$ and its magnitude is $1/|\phi|$. In this case, the above answers give the same conclusions as in the last section.

Heuristic explanation of the answers:

- 1. Stationarity: The stationary solution to $\phi(B)X_t = \theta(B)Z_t$ is $X_t = \theta(B)/\phi(B)Z_t$. Let $\psi(z) = \theta(z)/\phi(z)$ so that the solution becomes $X_t = \psi(B)Z_t$. We have seen that we can make sense of $\psi(B)Z_t$ provided $\psi(z)$ is of the form $\psi(z) = \sum_{j=-\infty}^{\infty} \psi_j z^j$ with $\sum_{j=-\infty}^{\infty} |\psi_j| < \infty$. So a sufficient condition for the existence of a stationary solution to $\phi(B)X_t = \theta(B)Z_t$ is that the ratio $\psi(z) = \theta(z)/\phi(z)$ can be expanded into a series $\sum_{j=-\infty}^{\infty} \psi_j z^j$ for which $\sum_j |\psi_j| < \infty$. The condition $\sum_j |\psi_j| < \infty$ is equivalent to saying that the series $\sum_{j=-\infty}^{\infty} \psi_j z^j$ is absolutely convergent at z with magnitude = 1. This is only possible if $\psi(z)$ does not equal zero at every z with magnitude 1. In other words, all roots of $\phi(z)$ have magnitude not equal to 1.
- 2. Causality: For causality we need $\psi(z) = \theta(z)/\phi(z)$ to be of the form $\sum_{j=0}^{\infty} \psi_j z^j$ (note that the sum is only over $j \geq 0$) where $\sum_{j=0}^{\infty} |\psi_j| < \infty$. In other words $\psi(z)$ is a power series satisfying $\sum_{j\geq 0} |\psi_j| < \infty$. As a consequence, $\psi(z)$ is well-defined for all z with $|z| \leq 1$. This can only happen if $\phi(z)$ is non-zero for all z with $|z| \leq 1$. In other words, all roots of $\phi(z)$ have magnitude strictly larger than one.

Suppose that a causal solution exists i.e., that all roots of $\phi(z)$ have magnitude strictly larger than one. How do we find the solution explicitly? The solution is given by $X_t = \psi(B)Z_t$ where $\psi(z) = \theta(z)/\phi(z)$. Let $\psi(z) = \psi_0 + \psi_1 z + \psi_2 z^2 + \dots$ (note that this is a power series because of causality). Because $\psi(z) = \theta(z)/\phi(z)$, we have

$$(1 - \phi_1 z - \dots - \phi_p z^p)(\psi_0 + \psi_1 z + \dots) = 1 + \theta_1 z + \dots + \theta_q z^q$$

Equate the coefficients of z^j on both sides for $j = 0, 1, 2, \ldots$ to get

$$1 = \psi_0, \quad \theta_1 = \psi_1 - \psi_0 \phi_1, \quad \theta_2 = \psi_2 - \psi_1 \phi_1 - \psi_0 \phi_2, \quad \theta_3 = \psi_3 - \phi_1 \psi_2 - \phi_2 \psi_1 - \phi_3 \psi_0, \quad \dots$$

Another way is to write $\phi(z) = (1 - a_1 z)(1 - a_2 z) \dots (1 - a_p z)$ where $1/a_1, \dots, 1/a_p$ are the (possibly complex) roots of the a_1, \dots, a_p each satisfying $|a_i| < 1$ so that

$$\psi(z) = \frac{\theta(z)}{\phi(z)}$$

$$= \frac{\theta(z)}{(1 - a_1 z) \dots (1 - a_p z)}$$

$$= \theta(z)(1 - a_1 z)^{-1} \dots (1 - a_p z)^{-1}$$

$$= \theta(z)(1 + a_1 z + a_1^2 z^2 + \dots)(1 + a_2 z + a_2^2 z^2 + \dots) \dots (1 + a_p z + a_p^2 z^2 + \dots).$$

The product above can, in principle, be multiplied out to get the expression $\psi_0 + \psi_1 z + \psi_2 z^2 + \dots$

Both these techniques for determining ψ_1, ψ_2, \ldots can be very tedious in some cases.

Example 1.3. Consider the following ARMA(1, 1) difference equation:

$$X_t - 0.5X_{t-1} = Z_t + 0.4Z_{t-1}$$

where $\{Z_t\}$ is white noise. Does this have a unique stationary solution? Is it causal? Find the solution.

The autoregressive polynomial is $\phi(z) = 1 - 0.5z$. The moving average polynomial is $\theta(z) = 1 + 0.4z$. ϕ has only one root: z = 2. This root has magnitude $\neq 1$; hence there exists a unique stationary solution. Moreover, the root also has magnitude > 1; hence the unique stationary solution is causal. To find the solution, we need to find $\psi(z) = \theta(z)/\phi(z)$. In other words:

$$(1 - 0.5z)(\psi_0 + \psi_1 z + \psi_2 z^2 + \dots) = (1 + 0.4z).$$

Equate coefficients of z^j on both sides.

Book Readings: Pages 93, 94, 95, Example 3.10