Lógica - INET

Práctico 2 - Definición inductiva de conjuntos

Ejercicio 1

- 1. Considere el conjunto R de los números reales. Dé ejemplos de conjuntos $A \subseteq R$ que satisfagan los siguientes conjuntos de clausulas:
 - (a) $0 \in A$
 - (b) Si $n \in A$ entonces $(n+1) \in A$
 - (a) $2 \in A$
 - (b) Si $n \in A$ entonces $n + 2 \in A$
 - (a) $3 \in A$
 - (b) Si $n \in A$ entonces $(n+1) \in A$
 - (c) Si $n \in A$ entonces $(n-1) \in A$
- 2. Para cada conjunto de cláusulas, indique cuál es el mínimo subconjunto de R que satisface las clásulas.
- 3. Para cada uno de los conjuntos mínimos de 3 elementos que pertenezcan al conjunto y justifique su pertenecia en términos de la aplicación de las cláusulas.

Ejercicio 2

Defina inductivamente los siguientes conjuntos:

- El conjunto de los naturales múltiplo de 3 (o sea $\{0, 3, 6, 9, \ldots\}$).
- El conjunto de los enteros múltiplos de 3.
- El conjunto de los naturales que sean potencias de 2 (o sea $\{1, 2, 4, 8, 16, \ldots\}$).

Ejercicio 3

Sea $\Sigma = \{a, b, c\}$, defina inductivamente el conjunto Σ^* .

Ejercicio 4

Sea $\Sigma = \{a, b, c\}$. Sea $\Delta \subseteq \Sigma^*$ definido inductivamente por las clausulas:

- 1. $\epsilon \in \Delta$
- 2. Si $\alpha \in \Delta$ entonces $b\alpha bc \in \Delta$
- 3. Si $\alpha \in \Delta$ entonces $b\alpha ba \in \Delta$

Escriba 3 palabras que pertenezcan a Δ y 3 que no pertenezcan.

Ejercicio 5

Sea $\Sigma = \{a, b, c\}$. Sea $\Gamma \subseteq \Sigma^*$ definido inductivamente por las clausulas:

- 1. $\epsilon \in \Gamma$
- 2. $a \in \Gamma$
- 3. Si $\alpha \in \Gamma$ y $\beta \in \Gamma$ entonces $b\alpha c\beta b \in \Gamma$

Cuáles de las siguientes afirmaciones son correctas?

$$bcb \in \Gamma \quad bacab \in \Gamma \quad bccb \in \Gamma \quad bacbcbb \in \Gamma$$

Ejercicio 6

Defina inductivamente los siguientes conjuntos:

- $\{\epsilon, a, aa, aaa, aaaa, \ldots\}$
- {b}*
- $\{\epsilon, ab, aabb, aaabbb, \ldots\}$
- $\{\alpha \in \{1,2,3\}^* / \alpha \text{ es capicua }\}$

Ejercicio 7

Sea $\Sigma = \{a, b, c\}$. Sea $\Delta \subseteq \Sigma^*$ definido inductivamente por las cláusulas:

- 1. $\epsilon \in \Delta$
- 2. Si $\alpha \in \Delta$ entonces $\alpha b \in \Delta$
- 3. Si $\alpha \in \Delta$ entonces $\alpha a \in \Delta$

a) Cuáles de las siguientes afirmaciones son correctas? Justifique su respuesta en términos de la aplicación de las cláusulas.

$$b \in \Delta \quad a \in \Delta \quad c \in \Delta \quad aba \in \Delta \quad babab \in \Delta \quad aaaa \in \Delta$$

- b) Considere $\Gamma \subseteq \Sigma^*$ definido inductivamente por las cláusulas:
 - 1. $\epsilon \in \Gamma$
 - 2. Si $\alpha \in \Gamma$ entonces $b\alpha \in \Gamma$
 - 3. Si $\alpha \in \Gamma$ entonces $a\alpha \in \Gamma$

Cuáles de las siguientes afirmaciones son correctas? Justifique su respuesta en términos de la aplicación de las clausulas.

$$b \in \Gamma$$
 $a \in \Gamma$ $c \in \Gamma$ $aba \in \Gamma$ $babab \in \Gamma$ $aaaa \in \Gamma$

c) Cuáles de las siguientes afirmaciones son correctas?

$$\Delta \subseteq \Gamma \quad \Gamma \subseteq \Delta \quad \Delta = \Gamma.$$

Ejercicio 8

Considere la siguiente definición inductiva del conjunto $S \subseteq N \times N$.

- 1. Si $n \in N$ entonces $(n, n) \in S$
- 2. Si $(n, m) \in S$ entonces $(n, m + 1) \in S$
- a) Indique cuales de las siguientes afirmaciones son correctas y justifique su respuesta usando la definición de S:

$$(0,0) \in S \quad 0 \in S \quad (\pi,\pi) \in S \quad (2,3) \in S \quad (3,2) \in S$$

b) Dé una definición por comprensión del conjunto S.

Ejercicio 9

Considere la siguiente definición inductiva del conjunto $Q \subseteq N \times N$:

- 1. Si $n \in N$ entonces $(0, n) \in Q$
- 2. Si $(n,m) \in Q$ entonces $(n+1,m+1) \in Q$
- a) Indique cuales de las siguientes afirmaciones son correctas y justifique su respuesta usando la definición de Q:

$$(0,0)\in Q \quad 0\in Q \quad (\pi,\pi)\in Q \quad (2,3)\in Q \quad (3,2)\in Q$$

b) Dé una definición por comprensión del conjunto ${\cal Q}.$