Evaluating Investment Strategies: Beyond Buy and Hold

A Quantitative Analysis of S&P 500 and Bond Yields

Farhan Sadeek, Jalen Francis, Jayson Clark Adhitya Bhati, Andrew McKenzie

Department of Mathematics The Ohio State University

March 2, 2025

Project Overview

• Problem Space:

- Investigating whether market-based probabilities can predict Bull/Bear markets
- Developing investment strategies that outperform buy-and-hold

• Our Approach:

- Market state classification using drawdown analysis
- Ensemble prediction models with attention mechanisms
- Advanced anomaly detection for risk management
- Combined Anomaly-Regime investment strategy

• Key Results:

- Superior returns to buy-and-hold (56.34% vs 52.97%)
- Significantly better risk-adjusted performance (Sharpe: 1.09 vs 0.58)
- Dramatically lower maximum drawdown (-10.28% vs -33.92%)
- Higher win rate (58.13% vs 54.12%)

Problem Statement

- It is widely accepted that short-term movements in individual stock prices cannot be predicted
- However, some investors believe aggregate market fluctuations can be predicted
- Bear markets are defined as periods with market drawdown exceeding 20%
- Bull markets are all other periods
- Research Questions:
 - Can we accurately classify market states as Bear, Bull, or Static?
 - Can market-based probabilities predict Bear/Bull markets?
 - Can we create a prediction-based investment strategy that outperforms buy-and-hold?

Market Classification

- Objective: Classify market states (Bear, Bull, Static) using S&P 500 data
- Methodology:
 - Calculate running peak for each price point
 - Compute drawdown (current price / peak 1)
 - Bear: Drawdown from peak > 20%
 - Bull: Not in Bear market state
- Implementation:
 - MarketClassifier class with classify_markets() method
 - Labels periods with unique Bear_Period IDs for analysis

Advanced Model Architecture

Ensemble Learning Approach

- Combines multiple model types:
 - Random Forest
 - Attention-based neural network
 - Temporal Convolutional Network
- Averages predictions for greater stability
- Reduces overfitting through model diversity

Attention Mechanism

- Focuses on most relevant time points
- Learns important market relationships
- Early stopping prevents overfitting
- Multi-head attention for different patterns

Anomaly Detection System

Market Anomalies:

• COVID-19 crash: March 2020

Post-COVID volatility: April-May 2020

• Inflation concerns: 2021-2022

Detection Methods:

• Isolation Forest: Statistical outlier detection

• Volatility spikes: Unusual price movements

• Price gaps: Sudden market dislocations

Ensemble approach: Combines multiple signals

Risk Management Integration:

- Rapid position reduction during detected anomalies
- Gradual re-entry with quadratic recovery function
- Separate handling for different anomaly types

Investment Strategy Overview

Strategy Constraints:

- Portfolio limited to S&P 500 and short-term bonds
- No transaction costs, short-selling, or leverage
- Only using provided market data (2019-2022)

Strategy Evolution:

- Buy-and-Hold: Benchmark strategy (100% S&P 500)
- Prediction-Based: Binary allocation based on predictions
- Dynamic Allocation: Variable allocation based on probabilities
- Combined Strategy: Integration of signals
- Combined Anomaly-Regime: Our most sophisticated approach

Combined Anomaly-Regime Strategy

Key Components:

- Market regime identification (Bull/Bear/Static)
- Anomaly detection and handling
- Multi-timeframe trend analysis
- Volatility-based position sizing

Optimization Parameters:

- anomaly_recovery_period: 8 days
- recovery_factor: quadratic (faster recovery)
- bearish_reduction: 0.5 (50% reduction in bearish regimes)
- vol_reduction: 0.7 (30% reduction during high volatility)
- min_allocation: 0.05 (5% minimum market exposure)

Multi-trend Analysis:

- Short-term trend: 20-day lookback
- Medium-term trend: 45-day lookback
- Long-term trend: 180-day lookback

System Architecture

The system is designed with a modular architecture to ensure flexibility and scalability. Here is an overview of how the components interact with each other:

- 1. Data Loader: Imports and preprocesses market data from various sources.
- 2. Market Classifier: Identifies market states (Bear, Bull, Static) based on historical data.
- 3. Prediction Model: Utilizes machine learning models to predict future market states.
- 4. **Backtesting Engine**: Simulates investment strategies based on historical data and model predictions.
- 5. **Anomaly Detection**: Identifies unusual market behaviors that may impact strategy performance.
- 6. **Risk Analysis**: Evaluates the risk associated with different strategies using advanced metrics.
- 7. **Performance Evaluation**: Assesses the performance of strategies using various financial metrics.

System Architecture

Figure: System Architecture and Component Interaction

Risk Management Features

Dynamic Volatility Targeting:

- Reduces exposure when volatility increases
- Scales position size inversely with market risk
- Target volatility: 11.5% annualized

Anomaly Response System:

- Immediate position reduction during anomalies
- Customized handling based on anomaly severity
- Recovery phase with gradual re-entry

Regime-Specific Allocations:

- Bullish regime: Up to 100% equity allocation
- Bearish regime: Maximum 50% equity allocation
- Volatile regime: Maximum 70% of standard allocation
- Combined Effect: Better risk-adjusted returns without sacrificing performance

Performance Results (2019-2022)

Metric	Buy & Hold	Prediction	Dynamic	Combined	Anomaly
Total Return	52.97%	44.89%	53.49%	41.77%	56.41%
Annual Return	11.21%	9.71%	11.31%	9.12%	11.83%
Sharpe Ratio	0.58	0.89	0.93	1.00	1.10
Max Drawdown	-33.92%	-13.89%	-13.62%	-11.70%	-10.68%
Win Rate	54.12%	54.76%	58.13%	58.13%	59.03%

 ${\sf Table: Strategy\ Performance\ Comparison\ (Anomaly = Combined\ Anomaly\ Regime)}$

Visual Performance Comparison

Figure: Cumulative Returns of Investment Strategies (2019-2022)

COVID-19 Market Crash Response

March 2020 Market Crash:

- Buy & Hold: -33.92% drawdown
- Prediction Strategy: -13.89% drawdown
- Combined Anomaly-Regime: -10.68% drawdown

Risk Management in Action:

- Anomaly detected before major market decline
- Position reduced quickly before worst of the crash
- Gradual re-entry during recovery phase
- Captured upside with only 30% of downside risk

Key Findings

- Market State Prediction is Viable
 - Our models successfully predict Bear and Bull markets
 - Good win rates (58.13%) demonstrates predictive power
- Risk-Adjusted Performance Superiority
 - Combined Anomaly-Regime achieves 1.9x better Sharpe ratio (1.10 vs 0.58)
 - 67% reduction in maximum drawdown (-10.68% vs -33.92%)
- Return-Risk Tradeoff
 - Better total returns (56.41% vs 52.97%)
 - Dramatically improved risk metrics
 - Combined Anomaly-Regime achieves highest return (56.41%)
- **Conclusion**: Combined Anomaly-Regime strategy outperforms buy-and-hold on both absolute and risk-adjusted returns

Visual Performance Comparison

 $Figure: \ Cumulative \ Returns \ of \ Combined \ Anomaly-Regime \ and \ Buy-and-Hold \ (2019-2022)$

Future Research Directions

- Incorporate alternative data sources (news sentiment, economic indicators)
- Explore reinforcement learning for dynamic strategy optimization
- Implement multi-asset portfolio allocation beyond binary equity/bond
- Further enhance combined strategy to improve overall performance
- Extend analysis to different time periods and market regimes

Thank You