24 Projektive Varietäten

Definition 57 (orig. 54). Abgeschlossene Unterprävarietäten eines projektiven Raumes $\mathbb{P}^n(k)$ heißen **projektive Varietäten**.

Vorsicht: für $x = (x_0 : \ldots : x_n) \in \mathbb{P}^n$, $f \in k[X_0, \ldots, X_n]$ ist $f(x_1, \ldots, x_n)$ nicht wohldefiniert, da von Repräsentaten abhängig, d.h. f kann nicht als Funktion auf \mathbb{P}^n aufgefasst werden. Für homogene Polynome $f_1, \ldots, f_n \in k[X_0, \ldots X_n]$ (nicht notwendig vom selben Grad) können wir demnoch die Verschwindungsmengen definieren:

$$V_{+}(f_{1},...,f_{n}) = \{(x_{0}:\cdots:x_{n}) \in \mathbb{P}^{n} \mid f_{i}(x_{0},...,x_{n}) = 0 \ \forall j\}$$

Da $V_+(f_1,\ldots,f_n)\cap U_i=V(\Phi_i(f_1),\ldots,\Phi_i(f_m))$ ist $V_+(f_1,\ldots,f_m)$ abgeschlossen in \mathbb{P}^n . Ist $V_+(f_1,\ldots,f_n)$ irreduzibel, so erhalten wir eine projektive Varietät. In der Tat entstehen alle projektiven Varietäten auf diese Weise.

Proposition 58 (orig. 55). Sei $Z \subseteq \mathbb{P}^n(k)$ eine projektive Varietät. Dann existieren homogene Polynome $f_1, \ldots, f_n \in k[X_0, \ldots, X_n]$, so dass

$$Z = V_+(f_1, \ldots, f_n)$$

gilt.

Proof. Betrachte:

 $f|_{f^{-1}(U_i)}: f^{-1}(U_i) \longrightarrow U_i$ ist Morphismus von Prävarietäten. Dann ist f selber ein Morphismus von Prävarietäten.

$$\overline{Y} := Y \cup \{0\}$$
 Abschluss von Y in $\mathbb{A}^{n+1}(k)$
 $\mathfrak{A} := I(\overline{Y}) \subseteq k[X_0, \dots, X_n]$

Behauptung: \mathfrak{A} wird von homogenen Polynomen erzeugt. Denn: für $g \in \mathfrak{A}$, $g = \sum_d g_d$ Zerlegung in homogene Bestandteile vom Grad d. \overline{Y} ist Vereinigung von Ursprungsgeraden im k^{n+1} , d.h. $\forall \lambda \in k^{\times}$ gilt:

$$g(x_0, \dots, x_n) = 0 \iff g(\lambda x_0, \dots, \lambda x_n) = 0$$

Beweis durch Widerspruch. Nicht alle g_d liegen in \mathfrak{A} .

$$\Rightarrow \exists (x_0,\ldots,x_n) \in \mathbb{A}^{n+1}(k)$$
, so dass $g(x_0,\ldots,x_n)=0$, aber $g_{d_0}(x_0,\ldots,x_n)\neq 0$.

$$\Rightarrow 0 \not\equiv \sum_d g_d(x_0, \dots, x_n) T^d \in k[T]$$

 $\Rightarrow (\exists \lambda \in k^{\times}) \ 0 \neq \sum_{d} g_d(x_0, \dots, x_n) \lambda^d = \sum_{d} g_d(\lambda x_0, \dots, \lambda x_n) = g(\lambda x_0, \dots, \lambda x_n) = 0.$ Widerspruch.

$$\Rightarrow \mathfrak{A} = (f_1, \dots, f_m), f_j \text{ homogen.}$$

$$\Rightarrow Z = V_+(f_1, \ldots, f_m).$$

$$Z \ni (x_0 : \dots : x_n) \Leftrightarrow (\lambda x_0, \dots, \lambda x_n) \in \overline{Y} \ \forall \lambda \in k^{\times} \ \text{und} \ \neq 0$$

$$\Leftrightarrow f_i(x_0, \dots, x_n) = 0 \ \forall 1 \le i \le n, \ (x_0, \dots, x_n) \in \mathbb{P}^n$$

Zu Bemerkung 49

Nach Satz 51 und Definition von \mathcal{O}_Z' folgt: Ist X eine projektive Varietät und $U\subset X$ offen, so können wir

 $\mathcal{O}_X(U) = \{ f : U \to k \mid \forall x \in U \ \exists x \in V \subset U, \ g, h \in k[X_0, \dots, X_n] \ \text{homogen vom gleichen}$ Grad mit $h(v) \neq 0, \ f(v) = \frac{g(v)}{h(v)}, \ \forall v \in V \}.$ (*)

Insbesondere gilt:

Proposition 59 (orig. 56). Seien $V \subseteq \mathbb{P}^m(k)$, $W \subset \mathbb{P}^n(k)$ projektive Varietäten und

$$V \subseteq \mathbb{P}^m(k) \xrightarrow{\phi} W \subseteq \mathbb{P}^n(k)$$

eine Abbildung. Dann ist ϕ eine Morphismus genau dann, wenn es zu jedem $x \in V$ eine offene Menge $x \in U_x \subset V$ und homogene Polynome $f_0, \ldots, f_n \subseteq k[X_0, \ldots, X_m]$ vom selben Grad existiert mit

$$\phi(y) = (f_0(y), \dots, f_n(y)) \quad \forall y \in U_x$$

Proof.

- "⇒", Übung.
- "⇐".
 - (i) ϕ stetig: Sei $Z \subseteq W$ abgeschlossen. Ohne Einschränkung $Z = V_+(g) \cap W$ für ein homogenes Polynom g. Dann berechnet sich das Urbild

$$\phi^{-1}(Z) = V_+(g \circ \phi) \cap V.$$

Auf U_x , $x \in V$, ist $g \circ \phi$ als homogenes Polynom in X_0, \ldots, X_n gegeben.

 $\Rightarrow V(g \circ \phi) \cap U_x = \phi^{-1}(Z) \cap U_x$ abgeschlossen in U_x für alle x.

 $\Rightarrow \phi^{-1}(Z) \subseteq V$ abgeschlossen.

- (ii) Zu zeigen: $\forall W' \subseteq W$ offen, $g \in \mathcal{O}_W(W')$ ist $g \circ \phi \in \mathcal{O}_V(\phi^{-1}(W'))$.
 - \Rightarrow (*) Es ex. eine offene Umgebung W_y in W' mit $g = \frac{h}{q}$ auf W_y , h,q homogen vom Grad d.
 - $\Rightarrow \phi_{|U_x\cap\phi^{-1}(W_y):=\tilde{U}_x}$ ist auch von dieser Gestalt.
 - $\Rightarrow (*) \frac{h(f_0, \dots, f_n)}{q(f_0, \dots, f_n)} = g \circ \phi_{|\tilde{U}_x} \in \mathcal{O}_V(\tilde{U}_x).$
- \Rightarrow (Verkleben) $g \circ \phi \in \mathcal{O}_V(\phi^{-1}(V))$.