CS738 Assignment 1

Sankalp Gambhir 180260032

September 3, 2020

1. Prove that the LTL formulae $\mathbf{F} \phi$ and $\neg \mathbf{G} (\neg \phi)$ are equivalent.

Let $M = (S, R, S_0, L)$ be an arbitrary model, and $\pi \in \mathsf{Paths}(M, s)$ an arbitrary path with $s \in S_0$. We prove that $\mathsf{F} \phi$ holds iff $\neg \mathsf{G} (\neg \phi)$ does.

 $(\Rightarrow direction)$. If $M, \pi \models \mathsf{F} \phi$, there exists an $i \in \mathbb{N}$ such that $M, \pi^i \models \phi$ per the definition of the operator F . Consider now the formula $\mathsf{G}(\neg \phi)$ — the semantics of the operator G imply that for this formula to hold, $\forall j \in \mathbb{N} : M, \pi^j \models \neg \phi$, but we know that this does not hold for j = i, as $M, \pi^k \models \neg \phi$ iff $M, \pi^k \not\models \phi$ for any k, as per the definition of \neg . Thus, $M, \pi \not\models \mathsf{G}(\neg \phi)$ and by extension $M, \pi \models \neg \mathsf{G}(\neg \phi)$.

 $(\Leftarrow direction)$. If $M, \pi \models \neg G (\neg \phi)$, then, reducing using the definition of the operator $\neg, M, \pi \not\models G (\neg \phi)$. Negating the definition of the operator G, we see that there must exist an $i \in \mathbb{N}$ such that the subformula does not hold, that is, $M, \pi^i \models \neg \neg \phi$. Reducing this using the double negation axiom, we get that $M, \pi^i \models \phi$. This is precisely the condition for $F \phi$ to hold. So we get that $M, \pi \models F \phi$.

Thus, the two formulae imply each other and are thus equivalent for the pair $\langle M, \pi \rangle$. But, since both were chosen arbitrarily from the respective domains, the equivalence holds true for all $\langle M, \pi \rangle$. Thus, the two formulae are equivalent.