Assignment 2

Exercise 1

- 1. Simulate n=100 draws from a Normal, N(5,9), distribution (using rnorm). Estimate the mean with the first 1, ..., n (very n) draws. Discuss and visualise convergence of the estimates.
- 2. Simulate n=10000 draws from a Cauchy distribution with scale one by drawing from $\frac{N(0,1)}{N(0,1)}$. Estimate the mean with the first $1, \ldots, n$ draws. Discuss and visualise convergence of the estimates.

Exercise 2

You have observations on daily *Alles Gurgelt* tests in your office $-\mathbf{y}=(y_1,\ldots,y_n)$ — and want to learn about the prevalence. There are 20 colleagues who test everyday. Assume that the data is independent and identically distributed.¹

- 1. What is the class of conjugate priors for this problem? Derive the posterior distribution $p(\theta \mid \mathbf{y})$.
- 2. Assume you have observations for thirty days (n=30) with a total of ten positive test ($\sum_{i=1}^{n} y_i = 10$). Determine and briefly explain several point estimators of θ .
- 3. Discuss sources of prior information for this problem and compare the impact of different priors on your point estimates.
- 4. Discuss the assumption of independent and identically distributed data. How could you (conceptually) improve the model with this in mind?

Exercise 3

Write an **R** function to simulate n observations from the model $\mathbf{y} = \alpha + \mathbf{X}\beta + \mathbf{e}$. Draw the k independent variables from distributions of your choice, and the error from a Normal with mean zero and standard deviation σ . The function should have arguments to set n, k, α , β , and σ ; it should return a list with the simulated data, \mathbf{y} and \mathbf{X} .

- 1. Simulate data with k=1 and $\sigma=1$. Plot the regressor ${\bf x}$ and regressand ${\bf y}$ in a scatterplot; add a LS regression line. Repeat this 1,000 times and store β_{LS} every time. Then create a histogram of the LS estimates what do you see?
- 2. Assume you know that $\sigma^2 = 1$. What are the latent values of the model?
- 3. Come up with a potentially interesting regression you want to run. Explain and draw ways you expect a single coefficient of interest, β_i , to look like a priori.
- 4. Simulate data with k=1 and $\sigma=1$ you can assume you know σ . Set a Normal prior, $N(\mu_0,\sigma_0)$, for β decide on parameters μ_0 and σ_0 for this pior. Compute and plot the posterior density for simulated data with increasing n (e.g. $n \in \{50,100,200\}$).

Exercise 4

- 1. Suppose you have data $\mathbf{y} \sim N(\mu,1)$, and want to estimate μ . Specify a Normal prior $\mu \sim N(\mu_0,\sigma_0^2)$. Derive the posterior $p(\mu \mid \mathbf{y})$ by applying Bayes' theorem. Create histograms of two priors of your choice.
- 2. Suppose you have data $\mathbf{y} \sim N(5, \sigma^2)$, and want to estimate σ^2 . Work with the precision, σ^{-2} , and specify a Gamma prior $\sigma^{-2} \sim G(0.5, \eta)$ with single parameter η . Derive the posterior $p(\sigma^2 \mid \mathbf{y})$ by applying Bayes' theorem. Visualise the prior density for $\eta \in \{0.01, 1, 100\}$.
- 3. Suppose you are uncomfortable with choosing a value for η , and want to include this parameter in your model. Discuss a suitable prior distribution for η , and visualise the prior $\sigma^2 | \eta$ by first simulating draws from η , and then σ^2 repeatedly.

¹The *Binomial distribution*, $Y \sim Binom(20, \theta)$ with unknown parameter θ is relevant to this.

²We generally group α and β together and just use $\bar{X} = [1X]$ for derivations.

 $^{^3}$ The posterior density is given by $N(\mu_n, \sigma_n^2)$, where $\sigma_n = (\sigma_0^{-1} + \mathbf{X}'\mathbf{X})^{-1}$ and $\mu_n = \sigma_n \left[\sigma_0^{-1}\mu_0 + \mathbf{X}'\mathbf{y}\right]$.