期末附加实验报告

GeorgeDong32

附加实验一

一、实验内容

修改部分电路, 使得同相和反相比例放大电路的放大倍数调整至2倍:

- 1.测量和记录通频带及上限频率,与实验六相应电路对比分析(通频带变宽X倍)
- 2.将实验八产生的四个波形, 先用电阻(选择合适的电阻)分压的方式将幅值衰减到一半, 然后分别加入同相和反相比例放大电路(2倍放大), 观察记录和对比输入(定义分压之前的为输入点)、输出波形(输入输出需要在同一幅图上, 且示波器两个通道的纵向刻度应该一致, 这样才能直观看到输入输出尺度变化)
- 3.用交流档测量记录输入输出有效值。

二、实验结果和报告

1. 实验电路图

- 2. 上限频率: 同相放大器: 92.7kHz; 反相放大器: 92.7kHz
- 3. 实验波形: 黄色为波形发生电路输出, 蓝色为放大器输出

同相放大方波

反相放大方波

同向放大可调方波

同相可调方波错位

反相可调方波

同相三角波

反相三角波

反相锯齿波

同相锯齿波

4. 输入输出有效值表

	反相放大器		同相放大器	
	输入有效值	输出有效值	输入有效值	输出有效值
方波	5.43	5.43	5.63	5.62
可调方波	5.01	4.91	4.89	4.88
三角波	2.79	2.81	3.05	3.03
锯齿波	2.80	2.77	3.14	3.03

附加实验二

一、实验内容

利用实验箱上的运算放大器(核心器件)及一些分立电阻电容二极管等,设计正弦波发生电路,可以在网上找些电路图作为参考:

- 1.能产生频率稳定不失真的正弦波,测出其幅度和频率
- 2.画出该方案实际电路图,根据电路图计算理论频率,并和实际测出的频率做对比
- 3.如果设计的电路能做到可连续调整所产生正弦波的频率,有加分,需要理论计算和实际测量出频率可调节范围(当然是越大越好啦)
- 4.如果能设计出压控(电压控制)的方式(类似于实验八预习要求 5)调整正弦波的频率,额外再加分

二、实验结果和报告

5. 产生的波形如下, 含连续可调频率电路波形

不可调频正弦波

可连续调频正弦波 X3

6. 设计电路图如下, 其理论频率为 159.2Hz; 实际频率为 158.2Hz;

7. 设计电路图如下, 其理论频率范围为 15.92Hz-15.9kHz; 实际测得频率范围 为 153Hz-16kHz

8. 设计电路图如下

