

# ISL85410DEMO1Z, ISL85418DEMO1Z Wide $V_{\mbox{\scriptsize IN}}$ 1A and 800mA Synchronous Buck Regulators

## **Description**

The ISL85410DEMO1Z, ISL85418DEMO1Z kits are intended for use for Point-of-Load applications sourcing from 3V to 40V. The kits are used to demonstrate the performance of the ISL85410, ISL85418 Wide  $V_{IN}$  Low Quiescent Current High Efficiency Sync Buck Regulators with 1A (ISL85410) and 800mA (ISL85418) output current.

The ISL85410, ISL85418 are offered in a 4mmx3mm 12 Ld DFN package with 1mm maximum height. The converter occupies 1.516cm<sup>2</sup> area.

#### **Recommended Equipment**

The following materials are recommended to perform testing:

- 0V to 50V Power Supply with at least 2A source current capability
- Electronic loads capable of sinking current up to 2A
- · Digital multimeters (DMMs)
- · 100MHz quad-trace oscilloscope
- · Signal generator

#### **Key Features**

- · Wide input voltage range 3V to 40V
- · Synchronous operation for high efficiency
- · No compensation required
- · Integrated high-side and low-side NMOS devices
- · Selectable PFM or forced PWM mode at light loads
- Internal fixed (500kHz) or adjustable switching frequency 300kHz to 2MHz
- · Continuous output current up to 800mA
- · Internal or external soft-start
- · Minimal external components required
- · Power-good and enable functions available

#### References

- ISL85410 Datasheet
- ISL85418 Datasheet

## **Ordering Information**

| PART NUMBER    | DESCRIPTION                                |  |  |  |
|----------------|--------------------------------------------|--|--|--|
| ISL85410DEM01Z | Demonstration Board (1A output current)    |  |  |  |
| ISL85418DEM01Z | Demonstration Board (800mA output current) |  |  |  |



FIGURE 1. FRONT OF EVALUATION BOARD ISL85410DEM01Z



FIGURE 2. BACK OF EVALUATION BOARD ISL85410DEM01Z

#### **Application Note 1908**

#### **Quick Setup Guide**

- Ensure that the circuit is correctly connected to the supply and loads prior to applying any power.
- 2. Connect the bias supply to VIN, the plus terminal to VIN (P4) and the negative return to GND (P5).
- 3. Turn on the power supply.
- 4. Verify the output voltage is 3.3V for VOUT.

#### **Evaluating the Other Output Voltage**

The ISL85410DEMO1Z, ISL85418DEMO1Z kit outputs are preset to 3.3V; however, output voltages can be adjusted from 0.6V to 15V. The output voltage programming resistor,  $R_2$ , will depend on the desired output voltage of the regulator and the value of the feedback resistor  $R_1$ , as shown in Equation 1.

$$R_2 = R_1 \left( \frac{0.6}{V_{OUT} - 0.6} \right)$$
 (EQ. 1)

If the output voltage desired is 0.6V, then  $R_1$  is shorted. Please note that if  $V_{OUT}$  is less than 1.8V, the switching frequency and compensation must be changed for 300kHz operation due to minimum on-time limitation. Please refer to datasheets <u>ISL85410</u> and <u>ISL85418</u> for further information.

<u>Table 1</u> shows the component selection that should be used for the respective  $V_{OLIT}$ .

**TABLE 1. EXTERNAL COMPONENT SELECTION** 

| V <sub>ОUТ</sub><br>(V) | L <sub>1</sub><br>(µH) | C <sub>5</sub> +C <sub>6</sub><br>(µF) | R <sub>1</sub><br>(kΩ) | R <sub>2</sub><br>(kΩ) | C <sub>4</sub><br>(pF) | R <sub>12</sub><br>(kΩ) | R <sub>3</sub><br>(kΩ) | C <sub>7</sub><br>(pF) |
|-------------------------|------------------------|----------------------------------------|------------------------|------------------------|------------------------|-------------------------|------------------------|------------------------|
| 12                      | 22                     | 2x22                                   | 90.9                   | 4.75                   | 22                     | 115                     | 150                    | 470                    |
| 5                       | 22                     | 47+22                                  | 90.9                   | 12.4                   | 27                     | DNP<br>(Note 1)         | 100                    | 470                    |
| 3.3                     | 22                     | 47+22                                  | 90.9                   | 20                     | 27                     | DNP<br>(Note 1)         | 100                    | 470                    |
| 2.5                     | 22                     | 47+22                                  | 90.9                   | 28.7                   | 27                     | DNP<br>(Note 1)         | 100                    | 470                    |
| 1.8                     | 12                     | 47+22                                  | 90.9                   | 45.5                   | 27                     | DNP<br>(Note 1)         | 70                     | 470                    |

#### NOTE:

1. Connect FS to Vcc

#### **Frequency Control**

The ISL85410, ISL85418 have an FS pin that controls the frequency of operation. Programmable frequency allows for optimization between efficiency and external component size. It also allows low frequency operation for low  $V_{OUTs}$  when minimum on time would limit the operation otherwise. Default switching frequency is 500kHz when FS is tied to  $V_{CC} \, (R_{10} = 0).$  By removing  $R_{10}$ , the switching frequency could be changed from 300kHz ( $R_{12} = 340 k$ ) to 2MHz ( $R_{12} = 32.4 k$ ). Please refer to datasheets  $\underline{|SL85410}$  and  $\underline{|SL85418}$  for calculating the value of  $R_{10}$ . Do not leave this pin floating.

#### **SYNC Control**

The ISL85410, ISL85418 demo boards have a SYNC pin that allows external synchronization frequency to be applied. Default board configuration has  $R_6$  = 200k to  $V_{CC}$ , which defaults to PWM operation mode and also to the preselected switching frequency set by  $R_{12}$  (see datasheet and previous section "Frequency Control" for details). If this pin is tied to GND, the IC will operate in PFM mode. The S2 switch allows forced PFM or PWM modes.

#### Soft-start/COMP Control

 $R_{15}$  selects between internal ( $R_{15}$  = 0) and external soft-start.  $R_{11}$  selects between internal ( $R_{11}$  = 0) and external compensation. For applications where repetitive restarts of the IC are required, it is recommended to add a 350k $\Omega$  resistor in parallel to CSS in order to allow its fast discharge. Please refer to Pin Description Table of the ISL85410 and ISL85418 datasheets.

## ISL85410DEM01Z Schematic



NOTE: The input electrolytic capacitor  $C_{10}$  is optional and it is used to prevent transient voltages when the input test leads have large parasitic inductance. It can be removed if the IC is used in a system application.

FIGURE 3. ISL85410DEM01Z SCHEMATIC

# **Application Note 1908**

# ISL85410DEMO1Z, ISL85418DEMO1Z BOM

| MANUFACTURER PART                                                |   | UNITS | REFERENCE<br>DESIGNATOR | DESCRIPTION                                          | MANUFACTURER         |
|------------------------------------------------------------------|---|-------|-------------------------|------------------------------------------------------|----------------------|
| ISL85400EVAL2ZREVAPCB                                            | 1 | ea    | LABEL-RENAME<br>BOARD   | PWB-PCB, ISL85400EVAL2Z, REVA, ROHS                  | INTERSIL             |
| EEE-FK1H151P                                                     | 1 | ea    | C10 (Optional)          | CAP, SMD, 10.3mm, 150µF, 50V, 20%, ROHS, ALUM.ELEC.  | PANASONIC            |
| GRM36C0G270J050AQ                                                | 1 | ea    | C4                      | CAP, SMD, 0402, 27pF, 50V, 5%, NPO, ROHS             | MURATA               |
| GRM36X7R333K016AQ                                                | 1 | ea    | css                     | CAP, SMD, 0402, 33000pF, 16V, 10%, X7R, ROHS         | MURATA               |
| ECJ-0EB1H471K                                                    |   | ea    | <b>C7</b>               | CAP, SMD, 0402, 470pF, 50V, 10%, X7R, ROHS           | PANASONIC            |
|                                                                  | 0 | ea    | C8                      | CAP, SMD, 0402, DNP-PLACE HOLDER, ROHS               |                      |
| 06035C104KAT2A                                                   | 1 | ea    | C3                      | CAP, SMD, 0603, 0.1µF, 50V, 10%, X7R, ROHS           | AVX                  |
| GRM188R61C105KA12D                                               | 1 | ea    | <b>C</b> 9              | CAP, SMD, 0603, 1µF, 16V, 10%, X5R, ROHS             | MURATA               |
| C3216X5R1H106K                                                   | 2 | ea    | C1, C2                  | CAP, SMD, 1206, 10µF, 50V, 10%, X5R, ROHS            | TDK                  |
| GRM31CR60J226KE19L                                               | 2 | ea    | <b>C</b> 6              | CAP, SMD, 1206, 22µF, 6.3V, 10%, X5R, ROHS           | MURATA               |
| GRM31CR60J476KE19L                                               | 1 | ea    | C5                      | CAP, SMD, 1206, 47µF, 6.3V, 10%, X5R, ROHS           | MURATA               |
| 74408943220                                                      | 1 | ea    | L1                      | COIL-PWR INDUCTOR, SMD, 4.8mm, 22µH, 20%, 1.1A, ROHS | WURTH<br>ELECTRONICS |
| 5000                                                             | 2 | ea    | P4, P7                  | CONN-MINI TEST PT, VERTICAL, RED, ROHS               | KEYSTONE             |
| 5001                                                             | 2 | ea    | P5, P9                  | CONN-MINI TEST PT, VERTICAL, BLK, ROHS               | KEYSTONE             |
| 5002                                                             | 2 | ea    | P1, P2                  | CONN-MINI TEST POINT, VERTICAL, WHITE, ROHS          | KEYSTONE             |
| ISL85410FRZ for ISL85410DEM01Z<br>ISL85418FRZ for ISL85418DEM01Z | 1 | ea    | U1                      | IC-500mA BUCK REGULATOR, 12P, DFN, 3X4, ROHS         | INTERSIL             |
| CR0402-16W-00T                                                   | 2 | ea    | R10, R15                | RES, SMD, 0402, 0Ω, 1/16W, 5%, TF, ROHS              | VENKEL               |
| ERJ2RKF1003                                                      | 1 | ea    | R3                      | RES, SMD, 0402, 100k, 1/16W, 1%, TF, ROHS            | PANASONIC            |
| ERJ2RKF2001                                                      | 1 | ea    | R2                      | RES, SMD, 0402, 20k, 1/16W, 1%, TF, ROHS             | PANASONIC            |
| MCR01MZPF2003                                                    | 2 | ea    | R6, R7                  | RES, SMD, 0402, 200k, 1/16W, 1%, TF, ROHS            | ROHM                 |
| CRCW040290K9FKED                                                 | 1 | ea    | R1                      | RES, SMD, 0402, 90.9k, 1/16W, 1%, TF, ROHS           | VISHAY/DALE          |
|                                                                  | 0 | ea    | R12                     | RES, SMD, 0402, DNP, DNP, DNP, TF, ROHS              |                      |
|                                                                  | 0 | ea    | R8, R9, R11             | RES, SMD, 0402, DNP, DNP, DNP, TF, ROHS              |                      |

# ISL85410DEMO1Z, ISL85418DEMO1Z Board Layout



FIGURE 4. SILK SCREEN TOP



FIGURE 5. SILK SCREEN BOTTOM

## ISL85410 Efficiency Curves f<sub>SW</sub> = 500kHz, T<sub>A</sub> = +25°C



FIGURE 6. EFFICIENCY vs LOAD, PFM,  $V_{OUT} = 12V$ 



FIGURE 7. EFFICIENCY vs LOAD, PWM, V<sub>OUT</sub> = 12V



FIGURE 8. EFFICIENCY vs LOAD, PFM,  $V_{OUT}$  = 5V,  $L_1$  = 30 $\mu$ H



FIGURE 9. EFFICIENCY vs LOAD, PWM,  $V_{OUT} = 5V$ ,  $L_1 = 30\mu H$ 



FIGURE 10. EFFICIENCY vs LOAD, PFM, Volit = 3.3V



FIGURE 11. EFFICIENCY vs LOAD, PWM, V<sub>OUT</sub> = 3.3V

# ISL85410 Efficiency Curves $f_{SW} = 500 \text{kHz}, T_A = +25 \,^{\circ}\text{C}$ (Continued)



FIGURE 12. EFFICIENCY vs LOAD, PFM,  $V_{OUT} = 1.8V$ 



FIGURE 13. EFFICIENCY vs LOAD, PWM, V<sub>OUT</sub> = 1.8V



FIGURE 14. EFFICIENCY vs LOAD, PWM,  $V_{OUT} = 5V$ ,  $L_1 = 30\mu H$ 



FIGURE 15.  $V_{OUT}$  REGULATION vs LOAD, PFM,  $V_{OUT}$  = 5V,  $L_1$  =  $30\mu H$ 



FIGURE 16. V<sub>OUT</sub> REGULATION vs LOAD, PWM, V<sub>OUT</sub> = 3.3V



FIGURE 17.  $V_{OUT}$  REGULATION vs LOAD, PFM,  $V_{OUT} = 3.3V$ 

## ISL85410 Efficiency Curves f<sub>SW</sub> = 500kHz, T<sub>A</sub> = +25°C (Continued)



FIGURE 18.  $V_{OUT}$  REGULATION vs LOAD, PWM,  $V_{OUT} = 1.8V$ 



FIGURE 19. V<sub>OUT</sub> REGULATION vs LOAD, PFM, V<sub>OUT</sub> = 1.8V

## ISL85410 Typical Performance Curves f<sub>SW</sub> = 500kHz, V<sub>IN</sub> = 24V, V<sub>OUT</sub> = 3.3V, T<sub>A</sub> = +25°C



FIGURE 20. START-UP AT NO LOAD, PFM



FIGURE 21. START-UP AT 1A, PWM



FIGURE 22. SHUTDOWN AT 1A, PWM



FIGURE 23. JITTER AT 1A LOAD, PWM

# ISL85410 Typical Performance Curves $f_{SW}$ = 500kHz, $V_{IN}$ = 24V, $V_{OUT}$ = 3.3V, $T_A$ = +25°C (Continued)



FIGURE 24. STEADY STATE AT NO LOAD, PFM



FIGURE 25. STEADY STATE AT NO LOAD, PWM



FIGURE 26. STEADY STATE AT 1A, PWM



FIGURE 27. LIGHT LOAD OPERATION AT 20mA, PFM



FIGURE 28. LOAD TRANSIENT, PFM



FIGURE 29. LOAD TRANSIENT, PWM

# ISL85410 Typical Performance Curves $f_{SW} = 500 \text{kHz}, V_{IN} = 24 \text{V}, V_{OUT} = 3.3 \text{V}, T_A = +25 ^{\circ} \text{C}$ (Continued)



FIGURE 30. PFM TO PWM TRANSITION



FIGURE 31. OVERCURRENT PROTECTION, PWM



FIGURE 32. OVERCURRENT PROTECTION HICCUP, PWM



FIGURE 33. SYNC AT 1A LOAD, PWM



FIGURE 34. NEGATIVE CURRENT LIMIT, PWM

## **Application Note 1908**

# ISL85410 Typical Performance Curves $f_{SW}$ = 500kHz, $V_{IN}$ = 24V, $V_{OUT}$ = 3.3V, $T_A$ = +25°C (Continued)



FIGURE 35. NEGATIVE CURRENT LIMIT RECOVERY, PWM



FIGURE 36. OVER-TEMPERATURE PROTECTION, PWM

Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that the Application Note or Technical Brief is current before proceeding.