

Genesis Solar Wind Sample Curation

WHAT? HOW? WHY?

Bulk Solar Wind	<i>Passive collectors:</i>	High Precision
High Speed	Silicon	Multiple Techniques
Low Speed	Sapphire	Regimes
CME	Aluminum	
	Gold	

WHERE?

Earth-Sun L1

WHEN?

Dec 2001 to
March 2004

***Concentrating
collectors:***
Silicon carbide
^{13C} diamond
Diamond-like-carbon

Astromaterials Acquisition and Curation Office

NASA/Johnson Space Center

Judy Allton
Carla Gonzalez
Kimberly Allums-Spencer, Ph.D.

Last year's focus:

- Genesis ISO 4 cleanroom facility
- Outreach to heliophysics
- Celebration of success of our first virtual workshop

This year:

- History and evolution of collector characterization
- Collaboration with investigators on cleaning and cleanliness assessment of samples
- Usefulness of creating higher fidelity reference specimens

SAMPLES:

Total 4960

Characterized: 2856

Allocated: 736

2021 allocations 6

REFERENCE MATERIALS

Total 2000

Allocated 350

Status of collection

COLLECTOR CHARACTERIZATION TOOLS:

- High resolution optical imaging
- FT-IR
- Ellipsometry

What's new?

- FIB-TEM

SAMPLE CLEANING TOOLS:

- UPW,
- UV ozone

Long history of collaboration for sample cleaning and cleanliness assessment

Don Burnett & Genesis Investigators –

- TXRF
- ToF-SIMS
- SIMS
- SEM
- Chemical cleaning
- CO₂ snow
- Laser and ion beam cleaning
- Ion implantation
- SRIM modeling

60336 bulk SW silicon,
example

2/26/2007	UPW cleaned 5min @40C at JSC
5/14/2013	Imaged using DM6000M at JSC
7/31/2013	SEM analysis at PSI
8/1/2013	Imaged using DM6000M at JSC
8/6/2013	UPW cleaned and imaged at JSC
8/13/2013	Aqua regia and hot xylene at Caltech
9/12/2013	Imaged using DM6000M at JSC
9/16/2013	UPW cleaned and imaged at JSC
10/14/2013	ToF SIMS analysis at Smithsonian
10/21/2013	Optical imaging at Smithsonian
11/12/2013	Low-vacuum nanoSEM at Smithsonian
11/12/2014	Imaged using DM6000M at JSC
11/24/2014	10 min RCA1 cleaning at Dartmouth
12/2/2014	25 min RCA1 cleaning at Dartmouth
12/4/2014	Imaged using DM6000M at JSC
12/4/2014	UPW clean 5min, 40C at JSC
12/4/2014	Imaged using DM6000M at JSC
12/18/2014	ToF SIMS analysis at Smithsonian

Goreva et al, 2015, 46th LPSC #2333

Sample Characterization History – Pre-recovery plan for returned samples

Basic Characterization of Hexagons

Solar wind regime

- Bulk
- Coronal mass ejection
- High speed
- Low speed

Collector Material

Manufacturer, batch, composition and purity. Identified by position in array.

Collector Cleanliness

- Optical inspection (impact craters, haze)
- Ellipsometry (molecular contaminants)

4/15/2022

Layer Thickness

Mean = 24.121
Min = 18.747
Max = 33.541
Std Dev = 4.2545
Uniformity = 17.638 %

Mapping array for impacts and haze.

McNamara, 35th LPSC poster

Mapping molecular contamination using ellipsometry.
Test wafer was half masked. Thickness in Angstroms.
J. A. Woollam Co.

5

Returned with >10,000 fragments. Most unassociated with array position.

Sample Characterization History – Post-recovery practice

Characterization of Fragments

Solar wind regime (by fragment thickness)

- Bulk
- Coronal mass ejection
- High speed
- Low speed

Collector Material Identification

- Visually, microscope
- FT-IR (type silicon)

Fragment Image & Description

- Size and shape
- Condition and visual cleanliness
- Handling history
 - UPW
 - UV ozone
 - Implanted

Sample Characterization Published

- 2700 Samples in catalog

Advanced Search Form

Enter one or more advanced search criteria:

Collector Type: Wafer

Materials: Sapphire

Regime: Coronal Mass Ejection

Sort Options

Sample Number Sample Length Sample Area
Sample Availability Material Condition

Flags

<input type="checkbox"/> UPW Cleaned
<input type="checkbox"/> UV Ozone Cleaned
<input type="checkbox"/> Returned Sample
<input type="checkbox"/> Cleaning Matrix
<input type="checkbox"/> Solar Wind Consumed
<input type="checkbox"/> Implanted

Sample No	Material	Regime	Length	Width	Area	Thin-Film Thickness	Material Condition	Availability
30608.0	SAP	Coronal Mass Ejection	39.216	23.989	592.260		Good	Available
30392.0	SAP	Coronal Mass Ejection	26.548	14.373	298.514		Good	Available

Sample Characterization – Evolving Trends

During analysis of Genesis-flown collectors, evidence that SW damage changed the solubility emerged. TEM cross-sections visualized the collector structural damage.

Bulk solar wind silicon 61202

Protective carbon strap
Pt metal "marker" layer
Amorphized Si – no lattice fringes
Strained Si – dark/light contrast
undamaged Si – uniform contrast

Low speed solar wind silicon 20662
Allums et al (2020) 51st LPSC, #2768

Lindsay Keller team to the rescue with FIB/TEM profiles showing **amorphization of silicon** in bulk solar wind and low speed solar wind samples.

Can we use the TEM profile data to develop a fast, non-destructive screening method for SW radiation damage?

Perhaps ellipsometry? Modeling to date on Genesis samples involve native oxide thickness, a-Si content, void content and surface damage layers, which can distinguish among the regimes, but is not consistent with the physical state seen in TEM cross-sections.

Sample Characterization – Evolving Trends

Also seen in sapphire! – upper 10 nm shows partial amorphization-high damage layer, and below crystalline sapphire is strained with vesicles.

Bulk solar wind sapphire sample 61527.
Keller, L. P. et al. (2022) LPSC #1196
4/13/2022

2018 Characterization Plan-

Acquire TEM cross-sections of all regimes in two materials silicon and sapphire for the purpose of developing a non-destructive ellipsometry screening process.

	Bulk SW	CME	High Speed	Low Speed
Silicon (CZ)	✓			✓
Sapphire	✓			

Past ellipsometry modeling of Genesis sapphire samples has focused on surface roughness. More data points are needed. Are other analytical tools available?

Genesis Solar Wind Collector Reference Materials

	FLOWN	NON-FLOWN	
COLLECTORS	<ul style="list-style-type: none">• 7 types of passive collector materials, each in 4 solar wind regimes• 3 types of concentrator materials	<p>Flight spare collectors:</p> <ul style="list-style-type: none">• Use as blank reference• Use to prepare implanted ion standards• Use to perfect analytical protocols or cleaning methods before using flight samples	<p>Higher fidelity reference collectors are needed</p>
NON-COLLECTORS	<p>AKA “CK” Flown spacecraft hardware</p>	<p>AKA “CK” Lab environment and flight preparation process coupons</p>	

2022 – looking ahead

- **Genesis samples are unique**

Jurewicz *et al.* (2021) 52nd LPSC poster

2022 – looking ahead

- Genesis samples are unique
- Accompanied by measured *in situ* solar wind from spacecraft
- Solar wind exposed materials behave differently than non-exposed reference materials
- Changes in structure can be visualized in TEM cross-sections
- Higher fidelity reference materials would enhance science value

Thank you for your attention!