高中数学知识网络

第一部分 集合与简易逻辑

第二部分映射、函数、导数、定积分与微积分

第三部分 三角函数与平面向量

第四部分 数列

第五部分 不等式

第六部分 立体几何与空间向量

第七部分 解析几何

第八部分排列、组合、二项式定理、推理与证明

第九部分 概率与统计

第十部分 复数

第十一部分 算法

目

录

第

部

分

映

射

函

数

导

数

定

积

分

与

微

积

分

几种常见的直线系:

(1)共点 $P(x_0, y_0)$ 直线系: $y-y_0=k(x-x_0)$; 特殊地y=kx+b表示过点(0, b)的直线系,不包括y轴. (2)平行直线系: y=kx+b(k为参数)表示斜率为k的平行直线系; $Ax+By=\lambda(\lambda$ 为参数)表示与已知 Ax+By+C=0平行的直线系; $Bx-Ay=\lambda(\lambda$ 为参数)表示与已知Ax+By+C=0垂直的直线系. (3)过两直线交点的直线系: $(\lambda$ 为参数) $A_1x+By_1+C_1+\lambda(A_2x+By_2+C_2)=0$ (不包括 l_2); $A_1x+By_2+C_2+\lambda(A_1x+By_1+C_1)=0$ (不包括 l_2).

几种常见的圆系:

(1)同心圆系:
$$(x-a)^2 + (y-b)^2 = r^2(a, r 为参数)$$
或 $x^2 + y^2 + Dx + Ey + F = 0$ $\left(D, E 为常数, F 为参数, E D +$

- (2)圆心在x轴上的圆系: $(x-a)^2 + y^2 = r^2(a, r 为参数)$ 或 $x^2 + y^2 + Dx + F = 0(D, F 为参数, 且<math>D^2 4F > 0$)
- (3)圆心在x轴上的圆系: $x^2 + (y-b)^2 = r^2(b, r)$ 参数)或 $x^2 + y^2 + Ey + F = 0(E, F)$ 参数,且 $E^2 4F > 0$;
- (4)过原点的圆系: $(x-a)^2 + (y-b)^2 = a^2 + b^2$ 或 $x^2 + y^2 + Dx + Ey = 0$;
- (5)过两已知圆交点的圆系: $x^2 + y^2 + D_1 x + E_1 y + F_1 + \lambda (x^2 + y^2 + D_2 x + E_2 y + F_2) = 0$ (不含 C_2); 或 $x^2 + y^2 + D_2 x + E_2 y + F_2 + \lambda (x^2 + y^2 + D_1 x + E_1 y + F_1) = 0$ (不含 C_1).(其中 λ 为参数)

直线与圆锥曲线的位置关系:

1.直线l: Ax + By + C = 0,二次曲线C: $\begin{cases} Ax + By + C = 0 \\ f(x,y) = 0 \end{cases}$ 的位置关系: 交点个数与方程组有几组解一一对应,

其交点坐标就是方程组的解;2.弦长: $|AB| = \sqrt{1+k^2}|x_1-x_2|(k)$ 为直线l的斜率)

3.椭圆上 $M(x_0, y_0)$ 点处的切线为: $\frac{x_0 x}{a^2} + \frac{y_0 y}{b^2} = 1$; 4.双曲线上 $M(x_0, y_0)$ 点处的切线为: $\frac{x_0 x}{a^2} - \frac{y_0 y}{b^2} = 1$

定 义	$ MF_1 + MF_2 = 2a($ 第数 $2a > F_1F_2 = 2c)$				
标准方程	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ $a = b$ 时椭圆变成圆, $x^2 + y^2 = a^2$ $a^2 + \frac{x^2}{b^2} = 1(a > b > 0)$				
图形	$F_1 \circ F_2 \qquad x$	$M(\mathbf{x}_0,\mathbf{y}_0)$ F_2 F_1			
中 心	(0,0)	(0,0)			
顶 点	$(\pm a,0),(0,\pm b)$	$(0,\pm a), (\pm b,0)$			
焦点	$(\pm c,0)$	$(0,\pm c)$			
对称轴		x轴,y轴;原点			
小小小油	x轴,y轴; 原点	, , , , , , , , , , , , , , , , , ,			
范围	x 細, y 細; 原 点 $-a \le x \le a; -b \le y \le b$	$-b \le x \le b; -a \le y \le a$			
范 围	$-a \le x \le a; -b \le y \le b$	$-b \le x \le b; -a \le y \le a$			
范 围 准线方程	$-a \le x \le a; -b \le y \le b$ $x = \pm \frac{a^2}{c}$ $ MF_1 = a + ex_0; MF_2 = a - ex_0$	$-b \le x \le b; -a \le y \le a$ $y = \pm \frac{a^2}{c}$			
范 围 准线方程 焦半径	$-a \le x \le a; -b \le y \le b$ $x = \pm \frac{a^2}{c}$ $ MF_1 = a + ex_0; MF_2 = a - ex_0$	$-b \le x \le b; -a \le y \le a$ $y = \pm \frac{a^2}{c}$ $ MF_1 = a + ey_0; MF_2 = a - ey_0$ $= a^2 - b^2) \underbrace{e \to 1, 椭圆越扁; e \to 0, 越圆}$			

特别提示:1.2a = 2c时,轨迹是线段;2a < 2c时,轨迹不存在; $2.焦点弦 |AB| = |AF_1| + |BF_1| = 2a + e(x_1 + x_2)$;3.椭圆的焦点永远在长轴上;

定 义	$ MF_1 - MF_2 = 2a(常数2a < 2c = F_1F_2)$				
标准方程	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$	$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1(a > 0, b > 0)$			
图形	$ \begin{array}{c c} & y \\ & M & (x_0, y_0) \\ \hline F_2 & X \end{array} $	F_{2} $M(x_{0},y_{0})$ F_{1}			
中 心	(0,0)	(0,0)			
顶点	$(\pm a,0)$	$(0,\pm a)$			
焦点	$(\pm c,0)$	$(0,\pm c)$			
对称轴	x轴,y轴;原点	x轴,y轴;原点			
范 围	$ x \ge a, y \in R$	$ y \ge a, x \in R$			
准线方程	$x = \pm \frac{a^2}{c}$	$y = \pm \frac{a^2}{c}$			
焦半径	M 在右支上: $ MF_1 = ex_0 + a; MF_2 = ex_0 - a;$	M 在上支上: $ MF_1 = ey_0 + a; MF_2 = ey_0 - a;$			
l	1 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '				
	M在左支上: $ MF_1 = -(ex_0 + a); MF_2 = -(ex_0 - a)$	<i>M</i> 在下支上: $ MF_1 = -(ey_0 + a); MF_2 = -(ey_0 - a)$			
渐近线	M在左支上: $ MF_1 = -(ex_0 + a); MF_2 = -(ex_0 - a)$ $y = \pm \frac{b}{a} x$	M在下支上: $ MF_1 = -(ey_0 + a)$; $ MF_2 = -(ey_0 - a)$ $y = \pm \frac{a}{b} x$			
渐近线 实轴虚轴	<u> </u>	$y = \pm \frac{a}{b}x$			

特别提示:1.2a = 2c时,M点的轨迹是两条射线;2a > 2c时轨迹不存在;2.双曲线焦点永远在实轴上;

3.等轴双曲线方程: $x^2 - y^2 = a^2$ 或 $y^2 - x^2 = a^2$,其中 $e = \sqrt{2}$,渐近线 $y = \pm x$;4.共轭双曲线: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ 与 $\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$,

同渐近线,四个焦点共圆,且 $\frac{1}{e_1^2}$ + $\frac{1}{e_2^2}$ =1;5.若直线与双曲线只有一个交点,则直线与双曲线相切或直线与渐近线平行。

定 义	平面与定点F和一条定直线I的距离相等的点的轨迹叫做抛物线。即 $ MF =d$				
标准方程	$y^2 = 2px(p > 0)$	$y^2 = -2px(p>0)$	$x^2 = 2py(p > 0)$	$x^2 = 2py(p > 0)$	
简 图	$I \xrightarrow{y} M(x_0, y_0)$	$\frac{M(x_0,y_0)}{F} = \frac{1}{x}$	$ \begin{array}{c c} & & \\ & & \\ \hline & &$	$ \begin{array}{c c} l & & y \\ \hline 0 & & x \\ \hline M(x_0,y_0) \end{array} $	
焦点	$\left(\frac{p}{2},0\right)$	$\left(-\frac{p}{2},0\right)$	$\left(0,\frac{p}{2}\right)$	$\left(0,-\frac{p}{2}\right)$	
顶点	(0,0)	(0,0)	(0,0)	(0,0)	
准线方程	$x = -\frac{p}{2}$	$x = \frac{p}{2}$	$y = -\frac{p}{2}$	$y = \frac{p}{2}$	
通径端点	$\left(\frac{p}{2},\pm p\right)$	$\left(-\frac{p}{2},\pm p\right)$	$\left(\pm p, \frac{p}{2}\right)$	$\left(\pm p, -\frac{p}{2}\right)$	
对称轴	x轴	<i>x</i> 轴	y轴	y轴	
范 围	$x \ge 0, y \in R$	$x \le 0, y \in R$	$y \ge 0, x \in R$	$y \le 0, x \in R$	
焦半径	$ MF = x_0 + \frac{p}{2}$	$ MF = \frac{p}{2} - x_0$	$ MF = y_0 + \frac{p}{2}$	$ MF = \frac{p}{2} - y_0$	
离心率		e=1			

特别提示: 1.抛物线定义中定点F不能在定直线/上,否则轨迹是过定点且垂直于/的直线; 2.p的几何意义是焦点到准线的距离,p越大,抛物线开口越大; 3.直线与抛物线只有一个公共点时,则直线与抛物线相切或直线与抛物线对称轴平行或重合。

数

第

部

分

复

(3)如果 $n \in N^*$,有 $i^{4n} = 1$: $i^{4n+1} = i$: $i^{4n+2} = -1$: $i^{4n+3} = -i$: (4)复平面内两点 Z_1 、 Z_2 间距离 $d = |z_2 - z_1| = |(x_2 + y_2 i) - (x_1 + y_1 i)| = |(x_2 - x_1) + (y_2 - y_1) i|$; (5)圆的方程: $|z-z_0| = r(r>0)$:(6)线段*EF*中垂线方程: $|z-z_1| = |z-z_2|$; (7)椭圆方程: $|z-z_1|+|z-z_2|=2a$;(8)双曲线方程: $||z-z_1|-|z-z_2||=2a$.

复数模的运算性质: 设 z_1 、 $z_2 \in C$ 有

$$(1)||z_1| - |z_2|| \le |z_1 \pm z_2| \le |z_1| + |z_2|;$$

$$(2)|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2|z_1|^2 + 2|z_2|^2;$$

$$(3)|z_1z_2| = |z_1||z_2|; (4) \left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|};$$

$$(5)|z^{n}| = |z|^{n} (n \in N^{*}) (6)|z|^{2} = |\overline{z}|^{2} = z \cdot \overline{z}.$$

