[4]

OR	iv.	Discuss construction and working principle of D.C. motor.	5
Q.5	i.	Explain following reason with reference to a transistor. (a) Emitter region is highly doped	2
	ii.	(b) Base region is narrow and lightly doped What is zenor diode draw its equivalent circuit and also Explain	3
		the application of zenor diode as voltage regulator.	
	iii.	Define α and β of a BJT and establish relationship between then, where α and β denote current gain in CB and CE configurations respectively.	5
OR	iv.	Draw the input and output characteristics of transistor in CE configuration with focus on cut off region, active region and saturation region.	5
Q.6	i.	Explain in short 1's and 2's compliment with a suitable example.	2
	ii.	Convert with suitable & simple example.	3
		(a) Octal to decimal and decimal to octal	
		(b) Octal to hexadecimal and hexadecimal to octal	
		(c) Binary to decimal and decimal to binary	
	iii.	Explain EX-OR and EX-NOR gate with boolean expression, logic diagram and truth table.	5
OR	iv.	Explain full adder with truth table, boolean expression and logic diagram and application.	5

Total No. of Questions: 6

Total No. of Printed Pages:4

Enrollment No.....

Faculty of Engineering

End Sem (Even) Examination May-2019
EN3ES04 Basic Electrical and Electronics Engineering
Programme: B.Tech.
Branch/Specialisation: All

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

(ICQs)	should be written in full instead o	of only a, b, c	e or d.	
i.	When power transferred to the power transfer is.	load is maxi	mum, the efficiency of	
	(a) 25 % (b) 75 % (c	2) 50 %	(d) 100 %	
ii.	i. For an ideal voltage source, internal resistance is			
	(a) Zero (b) Infinite (c	e) 10 ohm	(d) None of these.	
iii. The apparent power and active power drawn are equal for			n are equal for an a.c.	
	circuit of:			
	(a) Inductive load (b) Capacitive	load	
	(c) Resistive load (d	l) None of th	ese	
iv.	The quantity (12+j9) repres	sents the r	resistive and reactive	
	components of the current drawn by an a.c. circuit. The phase			
	angle between the applied voltage and the current is:			
	(a) 41.4 degree (b) 53.13 degr	ee	
	(c) 36.87 degree (d	l) 48.6 degre	e	
v. A transformer has negative voltage regulation, when its load		on, when its load power		
	factor is:			
	(a) Zero (b) Unity (c) Leading	(d) Lagging	
vi.	During open circuit test of a transformer			
	(a) Primary is supplied rated voltage			
	(b) Primary is supplied full-load current			
	(c) Primary is supplied current at reduced voltage			
	i. ii. iii. v.	i. When power transferred to the power transfer is. (a) 25 % (b) 75 % (c) ii. For an ideal voltage source, interest (a) Zero (b) Infinite (c) iii. The apparent power and active circuit of: (a) Inductive load (b) (c) Resistive load (c) iv. The quantity (12+j9) represt components of the current drawangle between the applied voltate (a) 41.4 degree (b) (c) 36.87 degree (c) v. A transformer has negative voltate factor is: (a) Zero (b) Unity (c) vi. During open circuit test of a transformery is supplied rated voltate (a) Primary is supplied full-load.	 i. When power transferred to the load is maxipower transfer is. (a) 25 % (b) 75 % (c) 50 % ii. For an ideal voltage source, internal resistant (a) Zero (b) Infinite (c) 10 ohm iii. The apparent power and active power draw circuit of: (a) Inductive load (b) Capacitive (c) Resistive load (d) None of the components of the current drawn by an angle between the applied voltage and the components of the current drawn by an angle between the applied voltage and the components of the current drawn by an angle between the applied voltage and the components of the current drawn by an angle between the applied voltage and the components of the current drawn by an angle between the applied voltage and the components of the current drawn by an angle between the applied voltage and the components of the current drawn by an angle between the applied voltage regulation factor is: (a) 41.4 degree (b) 53.13 degree v. A transformer has negative voltage regulation factor is: (a) Zero (b) Unity (c) Leading vi. During open circuit test of a transformer (a) Primary is supplied full-load current 	power transfer is. (a) 25 % (b) 75 % (c) 50 % (d) 100 % ii. For an ideal voltage source, internal resistance is (a) Zero (b) Infinite (c) 10 ohm (d) None of these. iii. The apparent power and active power drawn are equal for an a.c. circuit of: (a) Inductive load (b) Capacitive load (c) Resistive load (d) None of these iv. The quantity (12+j9) represents the resistive and reactive components of the current drawn by an a.c. circuit. The phase angle between the applied voltage and the current is: (a) 41.4 degree (b) 53.13 degree (c) 36.87 degree (d) 48.6 degree v. A transformer has negative voltage regulation, when its load power factor is: (a) Zero (b) Unity (c) Leading (d) Lagging vi. During open circuit test of a transformer (a) Primary is supplied rated voltage (b) Primary is supplied full-load current

(d) None of these

P.T.O.

- vii. A transistor is a controlled operated device 1 (a) Current (b) Voltage (c) Both (a) and (b) (d) None of these viii. In a common base configuration, current amplication factor is 0.9. 1 If the emitter current is 1 mA, determine the value of base current. (a) 0.9 mA (b) 0.1 mA (c) 1 mA (d) None of these Addition of two octal no. $(675)_8 + (764)_8$ is. 1 (a) 1661 (b) 1439 (c) 661 (d) None of these
- x. Subtraction of two binary no (1010 0101)₂ is **1**(a) 0101 (b) 0111 (c) 1001 (d) None of these
- Q.2 i. Write only nodal equation of given circuit.

2

- ii. Explain ideal voltage and current sources with neat diagram. How voltage source can be converted into current sources and viceversa?
- iii. Find I_o (current through 3 ohm resistance) using superposition 5 theorem.

OR iv. Determine the current through branch 4 Ohm resistor for the 5 network shown below using Theorem.

- Q.3 i. A 230 V (rms) 50 Hz source voltage is applied first to resistor of value of 100 ohm and then to a capacitor of 100 micro farad.

 Obtain the expressions for the instantaneous current for both cases.
 - ii. Explain Faraday's law of electro-magnetic induction.
 - iii. A choke coil has a resistance of 2 ohm and a inductance of 5 H. A 5 capacitor C is connected in series with the choke coil and the combination is fed from a 230volt, 50 Hz source. What should be the value of C so that the voltage across the choke coil is 250 volts?
- OR iv. Explain series resonance of R-L-C series circuit with derivation, 5 graphical representation and its properties.
- Q.4 i. Drive the EMF equation of 1 phase transformer.
 - ii. Define (or explain in short) the following term of electrical machine 3(a) Field winding & Armature winding
 - (b) Commutator & its function
 - (c) Synchronous speed
 - iii. A 5 kVA, 250/500 V, 50 Hz, 1 phase Transformer gave following 5 result:

No load Test: 250 V, 0.75 A, 60 W (L.V. Side) Short Circuit Test: 9 V, 6 A, 21.6 W (H.V. Side) Calculate and draw the equivalent circuit parameter referred to L.V. side

P.T.O.

3

Marking Scheme

EN3ES04 Basic Electrical and Electronics Engineering

Q.1	i.	When power transferred to the load is maximum, the efficiency of power transfer is. (c) 50 %	1		
	ii.	For an ideal voltage source, internal resistance is (a) Zero	1		
	iii.	The apparent power and active power drawn are equal for an a.c. circuit of: (c) Resistive load	1		
	iv.	The quantity (12+j9) represents the resistive and reactive 1 components of the current drawn by an a.c. circuit. The phase angle between the applied voltage and the current is: (c) 36.87 degree			
	V.	A transformer has negative voltage regulation, when its load power factor is: (c) Leading			
	vi.	During open circuit test of a transformer (a) Primary is supplied rated voltage			
	vii.	A transistor is a controlled operated device (a) Current			
	viii.	In a common base configuration, current amplication factor is 0.9. If the emitter current is 1 mA, determine the value of base current. (b) 0.1 mA			
	ix.	Addition of two octal no. $(675)_8 + (764)_8$ is. (a) 1661	1		
	х.	Subtraction of two binary no $(1010 - 0101)_2$ is (a) 0101	1		
Q.2	i.	Only nodal equation of given circuit. 1 mark for each equation (1 mark * 2)	2		
	ii.	Ideal voltage and current sources with diagram 1.5 marks Voltage source can be converted into current sources & vice-versa 1.5 marks	3		
	iii.	Find I_o (current through 3 ohm resistance) using superposition theorem.	5		

		Current due to 3 V source	2 marks	
		Current due to 1 A source	2 marks	
		Total current	1 mark	
OR	iv.	Current through branch 4 Ohm resistor for the network shown		
		Thevenin Voltage	2 marks	
		Thevenin resistance	2 marks	
		Total current	1 mark	
Q.3	i. Obtain the expressions for the instantaneous current for both ca			
		1 mark for each equation	(1 mark * 2)	
	ii.	Faraday's law of electro-magnetic induction.		3
		First Law	1.5 marks	
		Second law	1.5 marks	
	iii.	What should be the value of C so that the voltage coil is 250 volts?	across the choke	5
		Impedance of Coil	1 mark	
		Total current	1 mark	
		Capacitance calculation	3 marks	
OR	iv.	Series resonance of R-L-C series circuit		5
		Derivation	2 marks	
		Graphical representation	2 marks	
		Properties	1 mark	
Q.4	i.	Derivation of EMF equation of 1 phase transformer	r.	2
	ii.	Define (or explain in short) the following term of e	lectrical machine	3
		(a) Field winding & Armature winding	1 mark	
		(b) Commutator & its function	1 mark	
		(c) Synchronous speed	1 mark	
	iii.	Calculate and draw the equivalent circuit param	neter referred to	5
		L.V. side		
		No load parameters	2 marks	
		Winding parameter	2 marks	
		Equivalent circuit	1 mark	
OR	iv.	Construction of D.C. motor	2 marks	5
		Working principle of D.C. motor.	3 marks	

Q.5	5 i. Explain following reason with reference to a transistor.			2
		(a) Emitter region is highly doped	1 mark	
		(b) Base region is narrow and lightly doped	1 mark	
	ii.	Zenor diode draw its equivalent circuit	1.5 marks	3
		Application of zenor diode as voltage regulator.	1.5 marks	
	iii.	Define α and β of a BJT	2 marks	5
		Derivation	3 marks	
OR	iv.	Input characteristics of transistor	1.5 marks	5
		Output characteristics of transistor	1.5 marks	
		Explanation	2 marks	
Q.6	i.	Short 1's and 2's compliment with example		2
		1 mark for each compliments	(1 mark * 2)	
	ii.	Convert with suitable & simple example.		3
		0.5 mark for each conversion	(0.5 mark *6)	
		(a) Octal to decimal and decimal to octal		
		(b) Octal to hexadecimal and hexadecimal to octal		
		(c) Binary to decimal and decimal to binary		
	iii.	EX-OR gate	2.5 marks	5
		EX-NOR gate	2.5 marks	
OR	iv.	Full adder with		5
		Truth table	1.5 marks	
		Boolean expression	1.5 marks	
		Logic diagram and application	2 marks	
