Lenguajes y Modelado Matemáticas Computacionales (TC2020)

M.C. Xavier Sánchez Díaz mail@itesm.mx

Tabla de contenidos

- 1 Lenguajes
 - Elementos básicos de un lenguaje
 - Operaciones con lenguajes

¿Qué es un lenguaje?

Elementos básicos de un lenguaje

Según la RAE, un lenguaje es un conjunto de signos y reglas que permite la comunicación (con una computadora). A nivel matemático, usamos otra definición:

Definición 1

Un lenguaje es un conjunto de palabras

Ejemplo de lenguaje

 $L = \{hola, pueblo\}$

¿Qué es un lenguaje?

Elementos básicos de un lenguaje

Según la RAE, un lenguaje es un conjunto de signos y reglas que permite la comunicación (con una computadora). A nivel matemático, usamos otra definición:

Definición 1

Un lenguaje es un conjunto de palabras.

Ejemplo de lenguaje $L = \{hola, pueblo\}$

¿Qué es un lenguaje?

Elementos básicos de un lenguaje

Según la RAE, un lenguaje es un conjunto de signos y reglas que permite la comunicación (con una computadora). A nivel matemático, usamos otra definición:

Definición 1

Un lenguaje es un conjunto de palabras.

Ejemplo de lenguaje

 $L = \{hola, pueblo\}$

¿Qué es una palabra?

Elementos básicos de un lenguaje

La RAE define a **palabra** como una unidad lingüística dotada generalmente de significado, que se separa de las demás mediante pausas potenciales en la pronunciación y blancos en la escritura.

Definición 2

Una palabra es una sucesión de símbolos de algún alfabeto

Ejemplos de palabras

Tanto hola como pueblo son palabras.

¿Qué es una palabra?

Elementos básicos de un lenguaje

La RAE define a **palabra** como una unidad lingüística dotada generalmente de significado, que se separa de las demás mediante pausas potenciales en la pronunciación y blancos en la escritura.

Definición 2

Una palabra es una sucesión de símbolos de algún alfabeto.

Ejemplos de palabras

Tanto hola como pueblo son palabras.

¿Qué es una palabra?

Elementos básicos de un lenguaje

La RAE define a **palabra** como una unidad lingüística dotada generalmente de significado, que se separa de las demás mediante pausas potenciales en la pronunciación y blancos en la escritura.

Definición 2

Una palabra es una sucesión de símbolos de algún alfabeto.

Ejemplos de palabras

Tanto hola como pueblo son palabras.

Elementos básicos de un lenguaje

Definición 3

Un alfabeto es un conjunto finito no vacío de símbolos.

Ejemplo de alfabeto

$$\Sigma = \{a, b, c, \dots, z\}$$
 es un alfabeto

Definición 4

Un símbolo es una unidad atómica de información.

Ejemplos de símbolos

a,b,e,h,l,o,p,u son todos símbolos del **alfabeto** Σ

Elementos básicos de un lenguaje

Definición 3

Un alfabeto es un conjunto finito no vacío de símbolos.

Ejemplo de alfabeto

$$\Sigma = \{a, b, c, \dots, z\}$$
 es un alfabeto

Definición 4

Un símbolo es una unidad atómica de información.

Ejemplos de símbolos

a,b,e,h,l,o,p,u son todos símbolos del **alfabeto** Σ

Elementos básicos de un lenguaje

Definición 3

Un alfabeto es un conjunto finito no vacío de símbolos.

Ejemplo de alfabeto

$$\Sigma = \{a, b, c, \dots, z\}$$
 es un alfabeto

Definición 4

Un símbolo es una unidad atómica de información.

Ejemplos de símbolos

a,b,e,h,l,o,p,u son todos símbolos del **alfabeto** Σ

Elementos básicos de un lenguaje

Definición 3

Un alfabeto es un conjunto finito no vacío de símbolos.

Ejemplo de alfabeto

$$\Sigma = \{a, b, c, \dots, z\}$$
 es un alfabeto

Definición 4

Un símbolo es una unidad atómica de información.

Ejemplos de símbolos

a,b,e,h,l,o,p,u son todos símbolos del **alfabeto** Σ .

Recapitulación

Elementos básicos de un lenguaje

Es decir, los **símbolos** h,o,l,a,p,u,e,b son elementos del **alfabeto** $\Sigma=\{a,b,c,\ldots,z\}.$

Dos palabras que podemos formar con Σ son hola y pueblo.

Podemos agrupar hola y pueblo en un lenguaje: $L = \{hola, pueblo\}$

Recapitulación

Elementos básicos de un lenguaje

Es decir, los **símbolos** h,o,l,a,p,u,e,b son elementos del **alfabeto** $\Sigma=\{a,b,c,\ldots,z\}.$

Dos palabras que podemos formar con Σ son hola y pueblo.

Podemos agrupar hola y pueblo en un lenguaje: $L = \{hola, pueblo\}$

Recapitulación

Elementos básicos de un lenguaje

Es decir, los **símbolos** h,o,l,a,p,u,e,b son elementos del **alfabeto** $\Sigma=\{a,b,c,\ldots,z\}.$

Dos palabras que podemos formar con Σ son *hola* y *pueblo*.

Podemos agrupar hola y pueblo en un lenguaje: $L = \{\mathit{hola}, \mathit{pueblo}\}$

Operaciones con lenguajes

Cuando dos lenguajes son definidos con respecto al mismo alfabeto, podemos aplicarles las mismas operaciones de conjuntos que ya conocemos.

- Unión
- Intersección
- Diferencia

Operaciones con lenguajes

Cuando dos lenguajes son definidos con respecto al mismo alfabeto, podemos aplicarles las mismas operaciones de conjuntos que ya conocemos.

- Unión
- Intersección
- Diferencia

Operaciones con lenguajes

Cuando dos lenguajes son definidos con respecto al mismo alfabeto, podemos aplicarles las mismas operaciones de conjuntos que ya conocemos.

- Unión
- Intersección
- Diferencia

Operaciones con lenguajes

Cuando dos lenguajes son definidos con respecto al mismo alfabeto, podemos aplicarles las mismas operaciones de conjuntos que ya conocemos.

- Unión
- Intersección
- Diferencia

Operaciones con lenguajes

Cuando dos lenguajes son definidos con respecto al mismo alfabeto, podemos aplicarles las mismas operaciones de conjuntos que ya conocemos.

- Unión
- Intersección
- Diferencia

Concatenación

Operaciones con lenguajes

Definición 5

La concatenación de dos lenguajes A y B se define como

$$AB = \{ww' : w \in A, w' \in B\}$$

Es decir, AB es el conjunto de todas las palabras obtenidas tomando una palabra arbitraria w en A y otra palabra arbitraria w' en B, y juntándolas.

Ejemplo de concatenación

$$A = \{hola, chao\}$$
 $B = \{pueblo, mundo\}$

 $AB = \{holapueblo, holamundo, chaopueblo, chaomundo\}$

Concatenación

Operaciones con lenguajes

Definición 5

La concatenación de dos lenguajes A y B se define como

$$AB = \{ww' : w \in A, w' \in B\}$$

Es decir, AB es el conjunto de todas las palabras obtenidas tomando una palabra arbitraria w en A y otra palabra arbitraria w' en B, y juntándolas.

Ejemplo de concatenación

$$A = \{hola, chao\}$$
 $B = \{pueblo, mundo\}$

 $AB = \{holapueblo, holamundo, chaopueblo, chaomundo\}$

Concatenación

Operaciones con lenguajes

Definición 5

La concatenación de dos lenguajes A y B se define como

$$AB = \{ww' : w \in A, w' \in B\}$$

Es decir, AB es el conjunto de todas las palabras obtenidas tomando una palabra arbitraria w en A y otra palabra arbitraria w' en B, y juntándolas.

Ejemplo de concatenación

$$A = \{hola, chao\}$$
 $B = \{pueblo, mundo\}$

 $AB = \{holapueblo, holamundo, chaopueblo, chaomundo\}$

Cerradura de Kleene

Operaciones con lenguajes

Definición 6

La Kleene Star (también llamada estrella de Kleene) de un lenguaje A se define como

$$A^* = \{u_1 u_2 u_3 \dots u_k : k \ge 0, u_i \in A, i = 1, 2, 3, \dots, k\}$$

En otras palabras, la concatenación de **todas** las palabras **posibles** en A, incluyendo la palabra vacía (de longitud 0, que representamos con ε).

Ejemplo de Kleene Star

 $A* = \{\varepsilon, hola, ola, holaola, holahola, olaolaola, olaholaolahola, \dots\}$

Cerradura de Kleene

Operaciones con lenguajes

Definición 6

La Kleene Star (también llamada estrella de Kleene) de un lenguaje ${\cal A}$ se define como

$$A^* = \{u_1 u_2 u_3 \dots u_k : k \ge 0, u_i \in A, i = 1, 2, 3, \dots, k\}$$

En otras palabras, la concatenación de **todas** las palabras **posibles** en A, incluyendo la palabra vacía (de longitud 0, que representamos con ε).

Ejemplo de Kleene Star

 $A* = \{\varepsilon, hola, ola, holaola, holahola, olaolaola, olaholaolahola, \dots\}$

Cerradura de Kleene

Operaciones con lenguajes

Definición 6

La Kleene Star (también llamada estrella de Kleene) de un lenguaje ${\cal A}$ se define como

$$A^* = \{u_1 u_2 u_3 \dots u_k : k \ge 0, u_i \in A, i = 1, 2, 3, \dots, k\}$$

En otras palabras, la concatenación de **todas** las palabras **posibles** en A, incluyendo la palabra vacía (de longitud 0, que representamos con ε).

Ejemplo de Kleene Star

 $A* = \{\varepsilon, hola, ola, holaola, holahola, olaolaola, olaholaolahola, \dots\}$

Kleene Plus

Operaciones con lenguajes

Existe una variante de la cerradura de Kleene llamada Kleene Plus:

Definición 7

$$A^{+} = \{u_1 u_2 u_3 \dots u_k : k \ge 1, u_i \in A, i = 1, 2, 3, \dots, k\}$$

Es decir,
$$A^+ = A^* - \{\varepsilon\}$$

Kleene Plus

Operaciones con lenguajes

Existe una variante de la cerradura de Kleene llamada Kleene Plus:

Definición 7

$$A^{+} = \{u_1 u_2 u_3 \dots u_k : k \ge 1, u_i \in A, i = 1, 2, 3, \dots, k\}$$

Es decir,
$$A^+ = A^* - \{\varepsilon\}$$

Kleene Plus

Operaciones con lenguajes

Existe una variante de la cerradura de Kleene llamada Kleene Plus:

Definición 7

$$A^{+} = \{u_1 u_2 u_3 \dots u_k : k \ge 1, u_i \in A, i = 1, 2, 3, \dots, k\}$$

Es decir,
$$A^+ = A^* - \{\varepsilon\}$$

¿Qué se puede modelar?

- Procesos por medio de **estados** y **eventos** o **transiciones**.
- Los estados son situaciones por las que el proceso atraviesa. Algunos de los estados son transitorios.
- Los eventos son acciones instantáneas que provocan cambios en el estado del proceso modelado.

¿Qué se puede modelar?

- Procesos por medio de **estados** y **eventos** o **transiciones**.
- Los estados son situaciones por las que el proceso atraviesa. Algunos de los estados son transitorios.
- Los eventos son acciones instantáneas que provocan cambios en el estado del proceso modelado.

¿Qué se puede modelar?

- Procesos por medio de estados y eventos o transiciones.
- Los estados son situaciones por las que el proceso atraviesa. Algunos de los estados son transitorios.
- Los eventos son acciones instantáneas que provocan cambios en el estado del proceso modelado.

Ejemplo

Modelado con autómatas

Definición 8

$$M = (Q, \Sigma, \delta, q, F)$$

- Q es un conjunto de estados que es finito,
- Σ es el **alfabeto** aceptado,
- $\delta: Q \times \Sigma \to Q$ es la función de transición,
- $q \in Q$ es el **estado inicial**,
- ullet $F\subseteq Q$ es un conjunto de estados finales.

Modelado con autómatas

Definición 8

$$M = (Q, \Sigma, \delta, q, F)$$

- ullet Q es un **conjunto de estados** que es finito,
- Σ es el **alfabeto** aceptado,
- $\delta: Q \times \Sigma \to Q$ es la función de transición,
- $q \in Q$ es el **estado inicial**,
- ullet $F\subseteq Q$ es un conjunto de estados finales.

Modelado con autómatas

Definición 8

$$M = (Q, \Sigma, \delta, q, F)$$

- ullet Q es un **conjunto de estados** que es finito,
- Σ es el **alfabeto** aceptado,
- $\delta: Q \times \Sigma \to Q$ es la función de transición,
- $q \in Q$ es el estado inicial,
- $F \subseteq Q$ es un conjunto de estados finales.

Modelado con autómatas

Definición 8

$$M = (Q, \Sigma, \delta, q, F)$$

- ullet Q es un **conjunto de estados** que es finito,
- Σ es el **alfabeto** aceptado,
- $\delta: Q \times \Sigma \to Q$ es la función de transición,
- $q \in Q$ es el **estado inicial**,
- $F \subseteq Q$ es un conjunto de estados finales.

Modelado con autómatas

Definición 8

$$M = (Q, \Sigma, \delta, q, F)$$

- ullet Q es un **conjunto de estados** que es finito,
- Σ es el **alfabeto** aceptado,
- $\delta: Q \times \Sigma \to Q$ es la función de transición,
- $q \in Q$ es el **estado inicial**,
- $F \subseteq Q$ es un conjunto de estados finales.

Modelado con autómatas

Definición 8

$$M = (Q, \Sigma, \delta, q, F)$$

- ullet Q es un **conjunto de estados** que es finito,
- Σ es el **alfabeto** aceptado,
- $\delta: Q \times \Sigma \to Q$ es la función de transición,
- $q \in Q$ es el **estado inicial**,
- $F \subseteq Q$ es un conjunto de estados finales.

- Dada una acción, el siguiente estado será siempre el mismo.
- Para cada par de estados y acciones del AFD hay un solo estado siguiente.
- La función de transición está definida para todas las entradas posibles.
- Hay un solo estado inicial pero cualquier cantidad de estados finales.

- Dada una acción, el siguiente estado será siempre el mismo.
- Para cada par de estados y acciones del AFD hay un solo estado siguiente.
- La función de transición está definida para todas las entradas posibles.
- Hay un solo estado inicial pero cualquier cantidad de estados finales.

- Dada una acción, el siguiente estado será siempre el mismo.
- Para cada par de estados y acciones del AFD hay un solo estado siguiente.
- La función de transición está definida para **todas** las entradas posibles.
- Hay un solo estado inicial pero cualquier cantidad de estados finales.

- Dada una acción, el siguiente estado será siempre el mismo.
- Para cada par de estados y acciones del AFD hay un solo estado siguiente.
- La función de transición está definida para todas las entradas posibles.
- Hay un solo estado inicial pero cualquier cantidad de estados finales.