TheNumbersBook.com 2010

Stewart: # 5.3, 5.4, 5.5, 5.8, 5.10, 5.13

5.3 Calculate the norms of ideals mentioned in Exercise 2 and check multiplicativity.

Recall that $P = \langle 2, 1 + \sqrt{-5} \rangle$, $Q = \langle 3, 1 + \sqrt{-5} \rangle$ and $R = \langle 3, 1 - \sqrt{-5} \rangle$ and, by Theorem 3.2, $O_K = \mathbb{Z}[\sqrt{-5}]$.

First, consider P. We will show that any element in $\mathbb{Z}[\sqrt{-5}]$ is either in P or 1+P (that is 1+x for some $x \in P$). Let $a+b\sqrt{-5}=r \in \mathbb{Z}[\sqrt{-5}]$. If $r \in P$, then we're done. Therefore, suppose that $r \notin P$. Rewriting, we get

$$r = (a - b) + b(1 + \sqrt{-5}) = (a - b) + x$$

for $x \in P$. If a - b is even, then $r \in P$, a contradiction. Thus, a - b is odd, and so we have

$$r = (a - b) + x$$

$$= 2n + 1 + x \text{ (for some } n \in \mathbb{Z})$$

$$= 1 + (2n + x)$$

$$= 1 + x' \text{ (for } x' \in P)$$

$$\in 1 + P$$

Thus, any element of $\mathbb{Z}[\sqrt{-5}]$ is either in P or 1 + P. Thus, $O_K/P = \{P, 1 + P\}$ and, by definition of norm, we have

$$N(P) = |O_K/P| = 2$$

Now consider Q. We show that any element in $\mathbb{Z}[\sqrt{-5}]$ is in Q, 1+Q, 2+Q. Let $a+b\sqrt{-5}=r\in\mathbb{Z}[\sqrt{-5}]$. If $r\in Q$, then we're done. Therefore, suppose that $r\notin Q$. Rewriting, we get

$$r = (a - b) + b(1 + \sqrt{-5}) = (a - b) + x$$

for $x \in Q$. There are three possibilities: a - b = 3n, 3n + 1 or 3n + 2 for $n \in \mathbb{Z}$. If a - b = 3n, then $r = a - b + x \in Q$, a contradiction. Thus, a - b is either 3n + 1 or 3n + 2 and so we have

$$r = (a - b) + x$$
 $r = (a - b) + x$
 $r = 3n + 1 + x$ $r = 3n + 2 + x$
 $r = 1 + x'$ $r = 2 + x'$ (for some $x' \in Q$)
 $equiv 1 + Q$ $equiv 2 + Q$

Thus any element of $\mathbb{Z}[\sqrt{-5}]$ is in Q, 1 + Q or 2 + Q. Thus,

$$N(Q) = |O_K/Q| = |\{Q, 1 + Q, 2 + Q\}| = 3$$

Now consider R. We show that any element in $\mathbb{Z}[\sqrt{-5}]$ is in R, 1 + R, 2 + R. Let $a + b\sqrt{-5} = r \in \mathbb{Z}[\sqrt{-5}]$. If $r \in R$, then we're done. Therefore, suppose that $r \notin R$. Rewriting, we get

$$r = (a+b) + b(1-\sqrt{-5}) = (a+b) + x$$

for $x \in R$. There are three possibilities for a + b: a + b = 3n, 3n + 1 or 3n + 2 for $n \in \mathbb{Z}$. If a + b = 3n, then $r = a + b + x \in Q$, a contradiction. Thus, a + b is either 3n + 1 or 3n + 2 and so we have

$$r = (a+b) + x$$
 $r = (a+b) + x$
 $r = 3n + 1 + x$ $r = 3n + 2 + x$
 $r = 1 + x'$ $r = 2 + x'$ (for some $x' \in R$)
 $r = 1 + R$ $r = 2 + R$

Thus any element of $\mathbb{Z}[\sqrt{-5}]$ is in R, 1 + R or 2 + R. Thus,

$$N(R) = |O_K/R| = |\{R, 1 + R, 2 + R\}| = 3$$

Finally, we check multiplicativity. Note that $N(\langle 2 \rangle) = 4$, $N(\langle 3 \rangle) = 9$ and $N(\langle 1 + \sqrt{-5} \rangle) = N(\langle 1 - \sqrt{-5} \rangle) = (1 + \sqrt{-5})(1 - \sqrt{-5}) = 6$. Thus,

$$N(P^2) = N(P)^2 = 4 = N(\langle 2 \rangle)$$

 $N(QR) = N(Q)N(R) = 9 = N(\langle 3 \rangle)$
 $N(PQ) = N(P)N(Q) = 6 = N(\langle 1 + \sqrt{-5} \rangle)$
 $N(PR) = N(P)N(R) = 6 = N(\langle 1 - \sqrt{-5} \rangle)$
 $N(P^2QR) = N(P)^2N(Q)N(R) = 36 = N(\langle 6 \rangle)$

so multiplicativity works out.

5.4 Prove that the ideals *P*, *Q*, *R* of Exercise 2 cannot be principal.

From 5.3, we established that N(P)=2 and N(Q)=N(R)=3. Suppose, by way of contradiction, that P is principal. That is, $P=\langle a+b\sqrt{-5}\rangle$ for some $a+b\sqrt{-5}\in\mathbb{Z}[\sqrt{-5}]$. By Corollary 5.10, we have

$$2 = N(P)$$

$$= N(\langle a + b\sqrt{-5} \rangle)$$

$$= N(a + b\sqrt{-5})$$

$$= (a + b\sqrt{-5})(a - b\sqrt{-5}) \text{ (definition of norm)}$$

$$= a^2 + 5b^2$$

This, however, is a contradiction as there are no integer solutions to $a^2 + 5b^2 = 2$. Thus, P is not principal.

Now, suppose by way of contradiction that Q is principal: $Q = \langle a + b\sqrt{-5} \rangle$ for some $a + b\sqrt{-5} \in \mathbb{Z}[\sqrt{-5}]$. Using the same approach as above, we have $3 = a^2 + 5b^2$, a contradiction since there are no integer solutions. Thus, Q is not principal.

Finally, suppose by way of contradiction that R is principal: $R = \langle a + b\sqrt{-5} \rangle$ for some $a + b\sqrt{-5} \in \mathbb{Z}[\sqrt{-5}]$. Using the same approach as above, we have that $3 = a^2 + 5b^2$, a contradiction. Thus, R is not principal.

5.5 Show the principal ideals $\langle 2 \rangle$, $\langle 3 \rangle$ in Exercise 2 are generated by irreducible elements but the ideals are not prime.

We show that 2 and 3 are irreducible in $\mathbb{Z}[\sqrt{-5}]$. First, suppose that 2 factors into $(a + b\sqrt{-5})$, $(c + d\sqrt{-5}) \in \mathbb{Z}[\sqrt{-5}]$. Taking the norm, we have

$$N(2) = N((a+b\sqrt{-5})(c+d\sqrt{-5}))$$

$$4 = N(a+b\sqrt{-5})N(c+d\sqrt{-5})$$

$$4 = (a^2+5b^2)(c^2+5d^2)$$

Since 4 factors into 4×1 or 2×2 (up to reordering), we have that $4 = a^2 + 5b^2$, $1 = c^2 + 5d^2$ or $2 = a^2 + 5b^2 = c^2 + 5d^2$. From this, the only possibility is a = 2, b = 0, c = 1, d = 0 which implies that 2 factors into 2×1 . Thus, 2 is irreducible in $\mathbb{Z}[\sqrt{-5}]$.

Now suppose that $3 = (a + b\sqrt{-5})(c + d\sqrt{-5})$. Taking the norm, we have

$$N(3) = N((a+b\sqrt{-5})(c+d\sqrt{-5}))$$

$$9 = N(a+b\sqrt{-5})N(c+d\sqrt{-5})$$

$$9 = (a^2+5b^2)(c^2+5d^2)$$

Since 9 factors into 9×1 or 3×3 , we have that $9 = a^2 + 5b^2$, $1 = c^2 + 5d^2$ or $3 = a^2 + 5b^2 = c^2 + 5d^2$. From this, the only possibilities are a = 3, b = 0, c = 1, d = 0 or a = 2, b = 1, c = 1, d = 0. The latter possibility implies $3 = 2 + \sqrt{-5}$, which is impossible. Thus, the only factorization of 3 is 3×1 , implying that 3 is irreducible in $\mathbb{Z}[\sqrt{-5}]$.

Now note that $P = \langle 2, 1 + \sqrt{-5} \rangle \not\subseteq \langle 2 \rangle$ since $1 + \sqrt{-5} \not\in \langle 2 \rangle$. By Proposition 5.7, this implies that $\langle 2 \rangle \nmid P$. However, Exercise 5.5.2 showed that $\langle 2 \rangle = P^2$ and so $\langle 2 \rangle | P^2$. We've just shown that $\langle 2 \rangle | PP$ but $\langle 2 \rangle \nmid P$. Thus, $\langle 2 \rangle$ is not prime.

Finally, note that $Q = \langle 3, 1 + \sqrt{-5} \rangle \not\subseteq \langle 3 \rangle$ (because $1 + \sqrt{-5} \not\in \langle 3 \rangle$) and $R = \langle 3, 1 - \sqrt{-5} \rangle \not\subseteq \langle 3 \rangle$. By Proposition 5.7, this means that $\langle 3 \rangle \nmid Q$ and $\langle 3 \rangle \nmid R$. However, by Exercise 5.5.2, we have that $\langle 3 \rangle |QR$. Thus, $\langle 3 \rangle$ is not prime because we've just shown that $\langle 3 \rangle |QR$ but $\langle 3 \rangle \nmid Q$ or R.

5.8 Suppose P, Q are distinct prime ideals in O_K . Show $P + Q = O_K$ and $P \cap Q = PQ$.

Assume that P and Q are nonzero. By Theorem 5.3(d), P and Q are maximal. Now note that $P + Q \subseteq O_K$ is an ideal because

- (1) P + Q consists of elements of the form p + q for $p \in P, q \in Q$. Note that $(p + q) + (p' + q') = (p + p') + (q + q') \in P + Q$ and
- (2) For any $r \in O_K$,

$$r(p+q) = rp + rq$$

= $p' + q'$ (because P, Q are ideals)
 $\in P + Q$

Moreover, P is properly contained in P+Q since we can choose any $0 \neq \alpha \in Q$ and get an element outside of P. Thus, $P \subset P+Q \subseteq O_K$ and since P is maximal (by Theorem 5.3d) and not equal to P+Q, it must be that $P+Q=O_K$.

Now consider $P \cap Q$. First, note that for $r, r' \in P \cap Q$, we have $r + r' \in P \cap Q$ because $r + r' \in P$ and $r + r' \in Q$ (because P, Q are ideals). Similarly, for any $\alpha \in O_K$, $\alpha r \in P \cap Q$ because $\alpha r \in P$ and $\alpha r \in Q$. Thus, $P \cap Q$ is an ideal of O_K .

Since P is an ideal, then $Pr \subseteq P$ for any $r \in O_K$. Specifically, $PQ \subseteq P$. At the same time, $PQ \subseteq Q$ because Q is also an ideal. Thus, $PQ \subseteq P \cap Q$. On the other hand, $P \cap Q \subseteq P$ and $P \cap Q \subseteq Q$ which by Proposition 5.7, implies $P|P \cap Q$ and $Q|P \cap Q$. Now, by Theorem 5.6, $P \cap Q$ can be written as a product of prime ideals, two of which are P and Q. Call the product of remaining ideals R. Then we have the following equality:

$$P \cap Q = PQR$$

This immediately implies that $PQ|P \cap Q$, or equivalently $P \cap Q \subseteq PQ$. The results of this paragraph imply that $P \cap Q = PQ$.

5.10 Find all fractional ideals of \mathbb{Z} and of $\mathbb{Z}[\sqrt{-1}]$.

By Example 5.4, all fractional ideals of \mathbb{Z} are of the form $r\mathbb{Z}$ for $r \in \mathbb{Q}$.

Since $-1 \equiv 3 \not\equiv 1 \pmod{4}$, $\mathbb{Z}[i]$ is its own ring of integers by Theorem 3.2(a). We know from class that $\mathbb{Z}[i]$ is a UFD so Theorem 5.21 guarantees that every ideal of $\mathbb{Z}[i]$ is principal. Consider any ideal $\langle a+bi\rangle\subseteq\mathbb{Z}[i]$ for $a,b\in\mathbb{Z}$. By Theorem 5.3(a), the fractional ideals are of the form $\alpha\langle a+bi\rangle$ where $\alpha\in\mathbb{Q}[i]$ (the field of fractions of $\mathbb{Z}[i]$).

5.13 Find all the ideals in $\mathbb{Z}[\sqrt{2}]$ with norm 18.

By Theorem 3.2a, $O_K = \mathbb{Z}[\sqrt{2}]$. Theorem 4.19 asserts that $\mathbb{Z}[\sqrt{2}]$ is Euclidean, and so a UFD. By Theorem 5.21, every ideal in $\mathbb{Z}[\sqrt{2}]$ is principal.

Since any ideal in $\mathbb{Z}[\sqrt{2}]$ is principal, let $I = \langle a + b\sqrt{2} \rangle$ be any ideal. By Corollary 5.10,

$$N(I) = |N(a + b\sqrt{2})|$$

= $|(a + b\sqrt{2})(a - b\sqrt{2})|$
= $|a^2 - 2b^2|$

so a necessary condition for *I* to have norm 18 is that $a^2 - 2b^2 = \pm 18$.

At this point, there are several directions we can take. One possibility is to note that $a^2 - 2b^2 = 18$ is a curve. One integer point is (6,3). Similarly, $a^2 - 2b^2 = -18$ is a curve. One integer point is (0,3). One way, of course, is to look for integer points on these curves. Another characterization of the solutions is the recursive system:

$$a_{n+1} = 3a_n + 4b_n$$
$$b_{n+1} = 2a_n + 3b_n$$

We prove by induction that a_{n+1} , b_{n+1} is a solution. Let n = 0: $a_1 = 6$, $b_1 = 3$ is one solution. Now suppose that (a_n, b_n) is a solution. Plugging in a_{n+1} , b_{n+1} , we get

$$a_{n+1} - 2b_{n+1} = (3a_n + 4b_n)^2 - 2(2a_n + 3b_n)^2$$

= $9a_n^2 + 24a_nb_n + 16b_n^2 - 2(4a_n^2 + 12a_nb_n + 9b_n^2)$
= $a_n^2 - 2b_n^2$

which, by induction, we know must equal ± 18 . Thus, the above recursive formula provides infinitely many solutions.