PARISHRAM 2025

Mathematics

DPP: 2

Determinants

Q1 The minor of a_{23} of the matrix A

$$A = egin{bmatrix} 5 & -2 & -8 \ 1 & -3 & 1 \ 6 & 7 & 0 \end{bmatrix}$$

(A) 47

(B) 48

(C) 42

- (D) 46
- **Q2** The cofactor of a_{21} of the matrix A

$$A = \begin{bmatrix} -5 & 0 & 4 \\ 2 & 1 & 5 \\ -1 & 3 & 6 \end{bmatrix}$$

(A) -11

(B) 12

(C) -12

- (D) 10
- **Q3** The value of cofactor of a_{23} of matrix

$$A=egin{bmatrix}1&-6&1\5&2&5\7&3&0\end{bmatrix}$$
 is equal to

(A) - 45

(B) 45

(C) 47

- (D) -47
- The adjoint of matrix $A=\begin{bmatrix}1&-7\\5&6\end{bmatrix}$ is
 - $\begin{array}{c} \text{(A)} \quad \begin{bmatrix} 6 & 7 \\ -5 & 1 \end{bmatrix} \\ \text{(B)} \quad \begin{bmatrix} 6 & -5 \\ 7 & 1 \end{bmatrix} \\ \text{(C)} \quad \begin{bmatrix} 6 & 5 \\ 1 & 7 \end{bmatrix} \\ \text{(D)} \quad \begin{bmatrix} -6 & -5 \\ -1 & -7 \end{bmatrix} \\ \end{array}$

- **Q5** If A is the square matrix of order n, then $|\operatorname{adj} A|$ is
 - equal to
 - (A) $\left|A\right|^{n-1}$
 - (B) $\left|A
 ight|^{n+1}$
 - (C) $\left|A\right|^{n^2}$
 - (D) $|A|^n$
- **Q6** The values of k for which matrix

$$A=\left[egin{array}{ccc} k & 2 & 3 \ -1 & 0 & 5 \ 3 & 1 & 1 \end{array}
ight]$$
 is

- invertible, is

- (A) $k \neq \frac{29}{5}$ (B) $k \neq \frac{27}{5}$ (C) $k \neq \frac{23}{5}$ (D) $k \neq \frac{21}{5}$
- **Q7** If |A|=5 of matrix A of order 3 then the value of $|\mathrm{adj}A|$ is equal to
 - (A) 5
- (B) 125

(C) 25

- (D) 625
- **Q8** If **A** is a 3×3 matrix such that |5 adj A = 5, then |A| is equal to:
 - (A) $\pm \frac{1}{5}$
 - (B) ± 5
 - (C) ± 1
 - (D) $\pm \frac{1}{25}$
- **Q9** If $A = \begin{bmatrix} 5a & -b \\ 3 & 2 \end{bmatrix}$ and A adj $A = AA^T$, then 5a+b is equal to:
 - (A) 13

(B) -1

Q10 If
$$A$$
 is $3 imes 3$ matrix and $|A| = 4$, then $\left|A^{-1}\right|$ is equal to

- (A) $\frac{1}{4}$ (B) $\frac{1}{16}$
- (C) 4
- (D) 2

Q11 If
$$A=\begin{bmatrix}1&3&3\\1&4&3\\1&3&4\end{bmatrix}$$
 then A^{-1} is equal to

(A)
$$\begin{bmatrix} 7 & -3 & 4 \\ 7 & -3 & -3 \\ 0 & 1 & 0 \\ -1 & 0 & 5 \end{bmatrix}$$
(B)
$$\begin{bmatrix} 7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$
(C)
$$\begin{bmatrix} 7 & -3 & -3 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

(C)
$$\begin{bmatrix} 7 & -3 & -3 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

(D) None of these

Q12 Find the minors of the matrix
$$A = \begin{bmatrix} 5 & -6 & 8 \\ 1 & -2 & 1 \\ 2 & 7 & 0 \end{bmatrix}.$$

Q13 Find the cofactors of the matrix
$$A = \begin{bmatrix} 1 & 2 & -3 \\ 0 & -2 & 4 \\ -1 & 0 & 7 \end{bmatrix}.$$

Q14 Find the adjoint of the matrix
$$X = \begin{bmatrix} 1 & -3 & 5 \\ -7 & 4 & 1 \\ 2 & 3 & 0 \end{bmatrix}.$$

Find the inverse of
$$A=\begin{bmatrix}1&2&4\\-1&3&0\\0&-3&1\end{bmatrix}$$
 .

Answer Key

Q1 (A)

Q2 (B)

Q3 (A)

Q4 (A)

Q5 (A)

Q6 (A)

Q7 (C)

Q8 (A)

Q9 (C)

Q10 (A)

Q11 (B)

Q12 $M_{11}=-7,\ M_{12}=-2,\ M_{13}=11$ $M_{11}=-56,\ M_{12}=-16,\ M_{13}=47$ $M_{11}=10,\ M_{12}=-3,\ M_{13}=-4$

Q13 $C_{11}=-14,\ C_{12}=-4,\ C_{13}=-2$ $C_{21}=-14,\ C_{22}=4,\ C_{23}=-2$ $C_{31}=2,\ C_{32}=-4,\ C_{33}=-2$

Q14 $\operatorname{adj} X = \begin{bmatrix} -3 & 15 & -23 \\ 2 & -10 & -36 \\ = 29 & -9 & -17 \end{bmatrix}$

Q15 $A^{-1} = \begin{bmatrix} \frac{3}{17} & \frac{-14}{17} & \frac{-12}{17} \\ \frac{1}{17} & \frac{1}{17} & -\frac{4}{17} \\ \frac{3}{17} & \frac{3}{17} & \frac{5}{17} \end{bmatrix}$

Android App | iOS App | PW Website