Exercice 1 – (Intégrale à paramètres)

Soit f continue et intégrable sur \mathbb{R} . On suppose qu'il existe M>0 telle que, pour tout x>0, $\int_{-\infty}^{\infty}\frac{|e^{itx}-1|}{|x|}|f(t)|dt\leq M$

- 1. Montrer que $t \mapsto tf(t)$ est intégrable sur \mathbb{R} .
- 2. Limite en 0^+ de $h(x) = \int_{-\infty}^{\infty} \frac{e^{itx}-1}{x} f(t) dt$

Exercice 2 – (Théorème de Weierstrass trigonométrique)

Soit E l'ensemble des applications de $\mathbb R$ dans $\mathbb C$ continues et 2π -périodiques. Pour f et g dans E, on définit le produit de convulotion par $f*g:=\int_0^{2\pi}f(x-t)g(t)dt$.

- 1. Montrer que f * g est un élément de E.
- 2. Que dire de f * q si f est C^{∞} ?

Pour $n \in \mathbb{N}$, on considère l'application $u_n : \mathbb{R} \to \mathbb{R}$ définie par $u_n(x) = c_n(1 + \cos(x))^n$ où $c_n \in \mathbb{R}$ est choisi tel que $\int_0^{2\pi} u_n(t) dt = 1$. On pose alors $f_n = f * u_n$. On va montrer que (f_n) CVU vers f sur \mathbb{R} .

- 3. Soit $\epsilon > 0$, on suppose qu'il existe $\eta \in]0, \pi[$ tel que si $|s-t| \le \eta$ alors $|f(s)-f(t)| \le \epsilon$. Montrer que $\forall x \in \mathbb{R}$, $\int_{-\pi}^{\pi} |f(x-t)-f(x)| u_n(t) dt \le \epsilon + 4 ||f||_{\infty} \int_{\eta}^{\pi} u_n(t) dt$
- 4. Justifier que $\int_0^{\pi} (1 + \cos(t))^n \sin(t) dt \leq \int_0^{\pi} (1 + \cos(t))^n dt$.
- 5. Conclure.

Exercice 3 - (Fermés et ouverts)

Soit $E = \mathcal{C}([0,1], \mathbb{R})$ On pose $A = \left\{ f \in E; \ f(0) = 0 \text{ et } \int_0^1 f(t)dt \ge 1 \right\}$ et $O = \left\{ f \in E: \ f(1) > 0 \right\}.$

- 1. Démontrer que A est un fermé de $(E, ||.||_{\infty})$.
- 2. Démontrer O est un ouvert de $(E, \|.\|_{\infty})$, mais pas de $(E, \|.\|_{1})$.
- 3. $\mathbb{O}_n(\mathbb{R})$ et $GL_n(\mathbb{R})$ sont-ils des ouverts? fermés?
- 4. Montrer de plus que $\mathbb{O}_n(\mathbb{R})$ est borné. Que peut-on alors dire sur $\mathbb{O}_n(\mathbb{R})$.

Exercice 4 – (Valeur d'adhérence)

Soit $(E, \|.\|)$ un EVN et (u_n) une suite de E. On note V l'ensemble des valeurs d'adhérence de (u_n) dans E: l est une valeur d'adhérence de (u_n) si et seulement si il existe une sous-suite de (u_n) qui converge vers l.

- 1. Montrer que $V = \bigcap_{n \in \mathbb{N}} \overline{\{u_p : p \ge n\}}$
- 2. En déduire que V est fermé.

Exercice 5 - (Fonctions logarithmiquement convexes)

- 1. Soit f une fonction convexe croissante et g une fonction convexe. Montrer que $f \circ g$ est convexe.
- 2. Soit $f: \mathbb{R} \to \mathbb{R}_*^+$. Montrer que $\ln(f)$ est convexe si et seulement si, $\forall \alpha > 0, f^{\alpha}$ est convexe.

Exercice 6 - (Suites dans un EVN)

Soit E l'ensemble des suites (a_n) complexes telles que $\sum |a_n|$ converge. Pour $a \in E$, on pose alors $||a|| = \sum_{n=0}^{+\infty} |a_n|$

- 1. Montrer que ||.|| est une norme sur E.
- 2. Soit $F = \left\{ a \in E, \sum_{n=0}^{+\infty} a_n = 1 \right\}$. F est-il ouvert, fermé, borné?

Exercice 7 - (Intégrale de Gauss)

On pose
$$f(x) = \int_0^1 \frac{e^{-x^2(1+t^2)}}{1+t^2} dt$$

- 1. Montrer que f est de classe C^1 sur \mathbb{R} .
- 2. Relier f' à $F: x \mapsto \int_0^x e^{-t^2} dt$ et en déduire $\int_0^\infty e^{-t^2} dt$

Questions de cours

- La distance a un fermé est atteinte.
- f est continue ssi l'image reciproque d'un ouvert est un ouvert.
- Soient E et F des espaces vectoriels normés et $f \in \mathcal{L}(E, F)$. Les propriétés suivantes sont équivalentes :
 - 1. f est continue
 - 2. f est continue en 0
 - 3. f est lipschitzienne
 - 4. f est bornée sur une boule unité (ouverte ou fermée)
 - 5. $\exists A, \forall x \in E, ||f(x)|| \le A||x||$