WŁASNOŚCI ESTYMATORA MNK.

I. Nieobciążoność

- 1. Mamy estymator $\hat{\boldsymbol{\beta}} = (\boldsymbol{X}'\boldsymbol{X} + \lambda \boldsymbol{I})^{-1}\boldsymbol{X}'y$ gdzie λ jest skalarem.
 - (i) Czy estymator ten jest liniowy?
 - (ii) Udowodnij że dla każdego $\lambda>0$ estymator ten przy spełnieniu założeń KMRL jest obciążony.
- 2. Mamy prosty model liniowy:

$$y = \beta_0 + \beta_1 x_1 + \varepsilon$$

Pokazaliśmy, że estymator parametru β_1 ma następującą postać:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n x_i y_i - n\bar{y}\bar{x}}{\sum_{i=1}^n x_i^2 - n\bar{x}^2}$$

Pokaż, że ten estymator jest nieobciążony.

3. Dany jest model regresji liniowej, spełniający założenia KMRL:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \varepsilon$$

Jesteśmy zainteresowani szacowaniem sumy parametrów przy x_1 oraz x_2 , niech $\theta=\beta_1+\beta_2$. Pokaż, że estymator $\hat{\theta}=\hat{\beta}_1+\hat{\beta}_2$ jest nieobciążony

II. Założenia KMRL.

- 1. Które z poniższych przyczyn mogą spowodować, że estymator MNK będzie obciążony?
 - (i) Heteroskedastyczność
 - (ii) Pominięcie istotnej zmiennej
 - (iii) Korelacja z próby wynosząca 0.95 między dwoma zmiennymi objaśniającymi, uwzględnionymi w modelu
- 2. Które z poniższych warunków są niezbędne, aby pokazać że estymator MNK jest nieobciążony i efektywny?
 - (i) $\mathbb{E}[\boldsymbol{\varepsilon}] = 0$
 - (ii) $Var[\varepsilon] = \sigma^2$
 - (iii) $Cov(\varepsilon_i, \varepsilon_j) = 0 \ \forall j \neq i$
 - (iv) $\varepsilon \sim \mathcal{N}(0, \sigma^2)$
- 3. Jakie jest znaczenie terminu heteroskedastyczność?
 - (i) Wariancja błędów nie jest stała.
 - (ii) Wariancja zmiennej zależnej nie jest stała.
 - (iii) Błędy nie są od siebie liniowo niezależne.
 - (iv) Błędy mają średnią niezerową.
- 4. Które z poniższych sytuacji mogą być konsekwencją naruszenia jednego lub większej liczby założeń KMRL?
 - (i) Oszacowania współczynników nie są optymalne.
 - (ii) Oszacowania błędu standardowego nie są optymalne.
 - (iii) Rozkłady przyjęte dla statystyk testowych są niewłaściwe.
 - (iv) Wnioski dotyczące siły relacji pomiędzy osobą zależną a zmienne niezależne mogą być nieprawidłowe.
- 5. Jakie byłyby konsekwencje dla estymatora MNK, gdyby heteroskedastyczność była obecna w modelu regresji, ale została zignorowana?
 - (i) Estymator będzie obciążony.
 - (ii) Estymator nie będzie zgodny.
 - (iii) Estymator będzie nieefektywny.
 - (iv) Wszystkie powyższe punkty będą prawdziwe.
- 6. Dany jest model z 5 zmiennymi objaśniającymi szacowany na 100 obserwacjach
 - (i) Jaki jest rozmiar macierzy wariancji estymatora modelu?
 - (ii) Zapisz postać macierzy z poprzedniego podpunktu w KMRL.
 - (iii) Jaki jest rozmiar macierzy wariancji wariancji składnika losowego?
 - (iv) Zapisz postać macierzy z poprzedniego podpunktu w KMRL.