Summary of Synthetic Variables Estimation EES 2019 Voter Study (Belgian sample)

Matthias Körnig

18.04.2022

1 Belgium

Synthetic variables have been estimated for the full set of Belgian parties available in the original 2019 EES Belgian voter study selected according to the criteria stated in the EES 2019 SDM codebook (for the criteria see Sect. XXX; for the relevant parties see Tables 1.1 and 1.2). Note that the Belgian sample is splitted according to the two electoral colleges of Belgium, namely the Dutch and the French electoral college.

Table 1.1: Belgian relevant parties in Dutch electoral college

Dep. Var.	Party	Party name (eng)
$stack_201$	201	Workers Party of Belgium
$\rm stack_202$	202	Christian Democratic and Flemish Party
$stack_203$	203	Socialist Party Different
$stack_204$	204	Open Flemish Liberals and Democrats
$\rm stack_205$	205	New Flemish Alliance
stack_206 stack_207	206 207	Green Flemish Interest

Table 1.2: Belgian relevant parties in French electoral college

Dep. Var.	Party	Party name (eng)
stack_208 stack 209	208 209	Francophone Socialist Party Reform Movement
stack_210	210	Humanist Democratic Centre
stack_211 stack 212	$ \begin{array}{c} 211 \\ 212 \end{array} $	Ecologists National Front (Belgium)
stack_213	213	Workers Party of Belgium
$stack_214$	214	Francophone Democratic Federalists

Full OLS models converge and coefficients do not show any particular issue (see Table 1.11 and Table 1.13).

For the Dutch electoral college: In terms of model fit, the adjusted coefficient of determination (R^2) values vary between a minimum value of 0 for party 203 (Socialist Party Different) and a maximum of 0.062 for party 202 (Christian Democratic and Flemish Party). Moreover, the difference between Akaike Information Criterion (AIC) values for full OLS models and null models shows that in all 7 cases out of 7 null models perform better than full ones (see Table 1.3).

For the French electoral college: In terms of model fit, the adjusted coefficient of determination (R^2) values vary between a minimum value of 0.027 for party 211 (Ecologists) and a maximum of 0.128 for party 213 (Workers Party of Belgium). Moreover, the difference between Akaike Information Criterion (AIC) values for full OLS models and null models shows that in all 7 cases out of 7 null models perform better than full ones (see Table 1.4).

Also all seven logistic regression models in the Dutch electoral college show no issue (see Table 1.12) On the contrary, one out of seven logistic regression models in the French electoral college (see Table 1.14) show inflated standard errors for some of the coefficients of interest:

Table 1.3: Akaike Information Criterion values for OLS full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
$stack_201$	201	218.286	221.796	-3.510
$\rm stack_202$	202	172.948	196.202	-23.255
$stack_203$	203	312.241	302.151	10.090
$stack_204$	204	234.958	251.257	-16.299
$stack_205$	205	433.439	430.468	2.970
stack_206	206 207	259.913	271.127 400.672	-11.213 1.340
$stack_207$	207	498.332	499.672	-1.340

Table 1.4: Akaike Information Criterion values for OLS full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
$stack_208$	208	224.742	243.907	-19.165
$stack_209$	209	238.028	251.788	-13.760
$stack_210$	210	126.949	151.975	-25.026
$stack_211$	211	238.956	240.069	-1.113
$stack_212$	212	150.043	161.937	-11.894
${\rm stack}_213$	213	211.229	254.330	-43.100
$stack_214$	214	132.800	136.790	-3.990

• Model 26a: D8 rec, EDU rec, D7 rec;

Model 26a of the French electoral college presents a more problematic profile, since it affects the models constant terms with its inflated standard errors.

Inflated standard errors are due to separation issues. In short:

- No respondents from rural areas voted for party 212 (Table 1.8);
- No low and high educated respondents voted for party 212 (Table 1.9)
- No upper class respondents voted for party 212 (Table 1.10);

As a consequence, a constrained version of model 26a without said variables was estimated and contrasted with the original, full model. Likelihood-ratio test results show that H_0 (namely, that the constrained model does not fit better than the full model) cannot be rejected at p<0.05 (see Table 1.5). Consequently, synthetic variables for respondents' vote choice for party 212 have been predicted relying on the constrained model.

Table 1.5: Likelihood-ratio Test between Model 26a (Unconstrained) and Model 26b (Constrained)

Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
372	42.18100			
367	29.34199	5	12.83901	0.024935

In the case of the Dutch electoral college: In terms of model fit, adjusted McFadden's pseudo R^2 values for the logistic full models vary between a minimum value of -0.062 for party 207 (Flemish Interest) and a maximum of 0.012 for party 203 (Socialist Party Different).

In the case of the Fench electoral college: In terms of model fit, adjusted McFadden's pseudo R^2 values for the logistic full models vary between a minimum value of -0.158 for party 212 (National Front (Belgium)) and a maximum of 0.02 for party 210 (Humanist Democratic Centre).

Table 1.6: Akaike Information Criterion values for logistic full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
stack_201	201	256.725	261.229	-4.504
$\rm stack_202$	202	317.743	314.286	3.457
$stack_203$	203	572.088	581.032	-8.944
$stack_204$	204	361.724	357.521	4.203
$\rm stack_205$	205	486.627	477.614	9.013
$stack_206$	206	347.090	340.740	6.350
stack_207	207	171.854	163.767	8.087

Table 1.7: Akaike Information Criterion values for logistic full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
stack_208	208	334.675	326.04300	8.632000
$stack_209$	209	292.012	297.36100	-5.349000
$stack_210$	210	200.627	206.63700	-6.010000
$stack_211$	211	331.408	336.11000	-4.702000
$stack_212$	212	51.342	46.34600	4.996000
$stack_212*$	212	54.181	46.34632	7.834681
$stack_213$	213	276.248	277.95700	-1.709000
$stack_214$	214	150.056	140.68100	9.375000

^{*} AIC value of 212 refers to Model 26b (constrained).

Table 1.8: Cross tabulation between vote choice for party 212 and respondents' area of residency

stack_212/D8_rec	0	1	Total
0	152	256	408
1	0	4	4
NA	9	16	25
Total	161	276	437

Table 1.9: Cross tabulation between vote choice for party 212 and respondents' education

stack_212/EDU_rec	1	2	3	NA	Total
0	48	132	223	5	408
1	0	4	0	0	4
NA	4	9	11	1	25
Total	52	145	234	6	437

Table 1.10: Cross tabulation between vote choice for party 212 and respondents' subjective social class

stack_212/D7_rec	0	1	2	NA	Total
0	140	196	64	8	408
1	2	2	0	0	4
NA	7	14	1	3	25
Total	149	212	65	11	437

Table 1.11: Vote choice for a relevant party according to respondents socio-demographic characteristics at Dutch Electoral College (Ordinary square models)

	207	201	204	206	203	202	205
	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7
$D3$ _rec2	0.046	0.023	0.004	0.005	-0.033	0.076**	-0.005
	(0.027)	(0.025)	(0.029)	(0.027)	(0.033)	(0.028)	(0.035)
$D8_rec1$	0.007	-0.044	-0.007	-0.032	-0.042	-0.033	-0.027
	(0.027)	(0.025)	(0.029)	(0.027)	(0.033)	(0.028)	(0.035)
$D5_rec1$	-0.006	0.005	-0.023	-0.013	0.038	-0.025	0.063
	(0.028)	(0.026)	(0.030)	(0.028)	(0.034)	(0.029)	(0.036)
EDU_rec2	0.080	0.014	0.018	-0.108*	-0.039	0.070	0.026
	(0.050)	(0.047)	(0.054)	(0.050)	(0.061)	(0.051)	(0.064)
EDU_rec3	0.070	0.045	0.001	-0.092	0.021	0.093	-0.012
	(0.049)	(0.046)	(0.053)	(0.049)	(0.060)	(0.050)	(0.063)
D1_rec1	0.057^{*}	-0.047	0.067^{*}	0.006	-0.068^*	0.002	-0.004
	(0.028)	(0.026)	(0.030)	(0.028)	(0.034)	(0.029)	(0.036)
$D7_rec1$	-0.015	0.036	0.016	0.091**	-0.012	-0.006	-0.074
	(0.029)	(0.028)	(0.032)	(0.029)	(0.036)	(0.030)	(0.038)
$D7_rec2$	-0.095^*	-0.031	-0.019	0.103^{*}	0.076	-0.018	-0.038
	(0.048)	(0.045)	(0.052)	(0.048)	(0.059)	(0.049)	(0.062)
D4_age	-0.002**	-0.001	-0.001	-0.002**	0.001	-0.003***	-0.003**
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
$D10_rec$	-0.002	0.042^{***}	0.003	0.023**	0.011	0.006	0.016
	(0.008)	(0.008)	(0.009)	(0.008)	(0.010)	(0.008)	(0.010)
Constant	0.281***	0.351***	0.364***	0.501***	0.497***	0.426***	0.577***
	(0.068)	(0.064)	(0.073)	(0.068)	(0.084)	(0.070)	(0.087)
N	508	518	518	519	514	518	519
R-squared	0.045	0.080	0.019	0.068	0.033	0.058	0.040
Adj. R-squared	0.026	0.062	-0.0004	0.049	0.013	0.040	0.021

^{***}p < .001; **p < .01; *p < .05

Table 1.12: Vote choice for a relevant party according to respondents socio-demographic characteristics at Dutch Electoral College (Logistic regression models)

	207	201	204	206	203	202	205
	Model 8	Model 9	Model 10	Model 11	Model 12	Model 13	Model 14
$D3_rec2$	0.010	0.406	-0.039	-0.080	-0.352	-0.106	0.709
	(0.369)	(0.328)	(0.215)	(0.291)	(0.239)	(0.303)	(0.515)
$D8_rec1$	-0.184	0.220	-0.213	0.506	-0.247	-0.013	0.065
	(0.367)	(0.327)	(0.214)	(0.306)	(0.238)	(0.302)	(0.492)
$D5_rec1$	0.129	-0.370	-0.200	0.046	0.436	-0.512	0.191
	(0.380)	(0.325)	(0.222)	(0.312)	(0.261)	(0.307)	(0.537)
EDU_rec2	-1.077	0.782	0.119	0.613	-0.357	-0.398	0.651
	(0.588)	(0.691)	(0.409)	(0.646)	(0.417)	(0.506)	(1.104)
EDU_rec3	-0.520	1.006	0.261	0.382	-0.465	-0.447	0.771
	(0.570)	(0.665)	(0.404)	(0.649)	(0.413)	(0.489)	(1.081)
$D1_rec1$	-0.282	0.164	-0.422	0.847^{**}	0.134	0.158	0.534
	(0.387)	(0.327)	(0.227)	(0.303)	(0.245)	(0.311)	(0.495)
$D7_rec1$	-0.368	-0.220	0.127	0.353	-0.093	0.964*	-0.268
	(0.378)	(0.349)	(0.239)	(0.323)	(0.259)	(0.383)	(0.508)
$D7_rec2$	-1.936	0.260	0.750^{*}	-0.193	-0.386	1.079^*	-0.820
	(1.073)	(0.508)	(0.365)	(0.599)	(0.449)	(0.527)	(1.097)
D4_age	0.008	-0.029**	0.022***	0.016	-0.009	-0.003	-0.008
	(0.011)	(0.010)	(0.006)	(0.009)	(0.007)	(0.009)	(0.015)
$D10_rec$	0.352***	-0.044	-0.121	-0.073	0.060	0.098	-0.634
	(0.086)	(0.100)	(0.069)	(0.090)	(0.069)	(0.083)	(0.324)
Constant	-2.373**	-1.867^{*}	-1.977^{***}	-4.168***	-0.715	-2.152**	-3.768**
	(0.880)	(0.829)	(0.569)	(0.893)	(0.581)	(0.711)	(1.398)
N	503	503	503	503	503	503	503
Log Likelihood	-117.362	-147.872	-275.044	-169.862	-232.314	-162.545	-74.927
AIC	256.725	317.743	572.088	361.724	486.627	347.090	171.854

 $^{^{***}}p < .001; ^{**}p < .01; ^{*}p < .05$

Table 1.13: Vote choice for a relevant party according to respondents socio-demographic characteristics at French Electoral College (OLS regression models)

	208	209	210	211	212	213	214
	Model 15	Model 16	Model 17	Model 18	Model 19	Model 20	Model 21
$D3_rec2$	0.035	0.027	0.025	0.017	-0.056	-0.008	-0.018
	(0.033)	(0.033)	(0.029)	(0.033)	(0.030)	(0.032)	(0.030)
$D8_rec1$	-0.019	-0.021	-0.030	0.031	-0.010	-0.023	0.043
	(0.033)	(0.034)	(0.030)	(0.034)	(0.030)	(0.033)	(0.030)
$D5_rec1$	0.065	-0.018	0.019	-0.004	0.068*	0.044	0.034
	(0.033)	(0.034)	(0.030)	(0.034)	(0.030)	(0.033)	(0.030)
EDU_rec2	-0.184**	0.0001	-0.032	-0.074	0.009	0.090	-0.109^*
	(0.057)	(0.059)	(0.051)	(0.058)	(0.052)	(0.058)	(0.053)
EDU_rec3	-0.172**	0.073	-0.029	0.022	-0.037	-0.020	-0.085
	(0.055)	(0.056)	(0.049)	(0.056)	(0.050)	(0.055)	(0.050)
D1_rec1	0.040	-0.056	-0.080*	0.027	-0.010	0.100**	0.007
	(0.035)	(0.035)	(0.031)	(0.035)	(0.032)	(0.035)	(0.031)
$D7_rec1$	-0.035	0.101**	0.085**	0.052	-0.045	-0.081^*	0.063
	(0.036)	(0.037)	(0.032)	(0.037)	(0.033)	(0.036)	(0.033)
$D7_rec2$	-0.112*	0.168**	0.046	0.066	-0.097^*	-0.142**	0.055
	(0.050)	(0.051)	(0.045)	(0.051)	(0.046)	(0.050)	(0.045)
D4_age	-0.003**	-0.002	-0.003***	-0.002*	-0.002*	-0.004***	-0.001
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
$D10_rec$	0.011	0.024**	0.035^{***}	0.003	0.021**	0.004	0.016*
	(0.009)	(0.009)	(0.008)	(0.009)	(0.008)	(0.009)	(0.008)
Constant	0.652***	0.360***	0.460***	0.479***	0.319***	0.528***	0.401***
	(0.070)	(0.072)	(0.063)	(0.071)	(0.064)	(0.071)	(0.064)
N	395	393	392	396	392	387	384
R-squared	0.094	0.082	0.109	0.052	0.078	0.150	0.061
Adj. R-squared	0.071	0.058	0.085	0.027	0.054	0.128	0.035

 $^{^{***}}p < .001; ^{**}p < .01; ^{*}p < .05$

Table 1.14: Vote choice for a relevant party according to respondents socio-demographic characteristics at French Electoral College (Logistic regression models)

	208	209	210	211	212	212	213	214
	Model 22	Model 23	Model 24	Model 25	Model 26a	Model 26b	Model 27	Model 28
D3_rec2	0.251	0.555	-0.393	-0.092	0.277	0.179	-0.170	-0.132
	(0.296)	(0.327)	(0.440)	(0.298)	(1.084)	(1.033)	(0.334)	(0.525)
D8_rec1	-0.677^*	-0.313	-0.771	0.458	18.905		-0.205	0.646
	(0.297)	(0.327)	(0.420)	(0.316)	(5661.450)		(0.336)	(0.593)
D5_rec1	0.538	0.128	0.601	-0.415	-0.522	-0.428	-0.078	-0.685
	(0.315)	(0.333)	(0.472)	(0.300)	(1.073)	(1.036)	(0.336)	(0.519)
EDU_rec2	-0.288	1.505	0.596	-1.011	19.728		0.083	0.683
	(0.493)	(1.086)	(0.861)	(0.546)	(10629.430)		(0.532)	(1.166)
EDU_rec3	-0.218	1.956	0.545	-0.025	0.037		-0.506	0.342
	(0.466)	(1.056)	(0.824)	(0.471)	(11710.110)		(0.536)	(1.145)
D1_rec1	-0.149	-0.197	-0.631	0.377	0.338	0.419	0.644	0.807
	(0.319)	(0.360)	(0.486)	(0.316)	(1.154)	(1.090)	(0.341)	(0.544)
D7_rec1	-0.287	0.775	0.566	0.799*	-0.089		-0.456	0.996
	(0.323)	(0.418)	(0.500)	(0.382)	(1.103)		(0.340)	(0.695)
D7_rec2	-0.545	1.109*	0.501	1.150*	-18.595		-2.376*	1.282
	(0.482)	(0.518)	(0.624)	(0.456)	(7868.020)		(1.042)	(0.820)
D4_age	-0.009	0.003	0.006	-0.002	-0.001	0.003	-0.001	0.021
	(0.009)	(0.010)	(0.013)	(0.009)	(0.031)	(0.029)	(0.010)	(0.016)
D10_rec	-0.034	-0.204	0.403***	-0.112	0.253	0.290	0.011	0.108
	(0.085)	(0.111)	(0.095)	(0.087)	(0.214)	(0.212)	(0.087)	(0.123)
Constant	-0.850	-4.237***	-4.018***	-1.939**	-41.918	-5.298**	-1.392*	-5.868***
	(0.616)	(1.153)	(1.035)	(0.641)	(12043.120)	(1.873)	(0.699)	(1.442)
N	378	378	378	378	378	378	378	378
Log Likelihood	-156.337	-135.006	-89.313	-154.704	-14.671	-21.091	-127.124	-64.028
AIC	334.675	292.012	200.627	331.408	51.342	54.181	276.248	150.056

^{***}p < .001; **p < .01; *p < .05