

République Tunisienne Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université de Gabès Ecole Nationale d'Ingénieurs de Gabès

Ref : DE-EX-01 Indice: 3 Date: 02/12/2019

EPREUVE D'EVALUATION

Année Universitaire:	2023-2024	Date de l'Examen:	04/03/2024
Nature:	DC ·	Durée:	1h30min
Diplôme:	Ingénieur	Nombre de pages:	1
Section:	GCR	Enseignant:	Ben Salah Warda
Niveau d'études:	1ère année	Doc autorisés:	Non
Matière:	Mathématiques II	Remarque:	

Partout H désigne la fonction de Heaviside définie sur \mathbb{R} par H(x) = 0 si x < 0 et $H(x) = 1 \ si \ x > 0.$

Exercice 1. (06 points)

Soit $\lambda \geq 0$ et $\alpha, \beta \in \mathbb{R}$. Soit P l'opérateur différentiel défini sur \mathbb{R}^3 , par

$$P = \frac{\partial}{\partial t} + \alpha \frac{\partial}{\partial x} + \beta \frac{\partial}{\partial y} + \lambda.$$

Pour $\varphi \in \mathcal{D}(\mathbb{R}^3)$, on pose

$$< E, \varphi > = \int_0^{+\infty} e^{-\lambda t} \varphi(t, \alpha t, \beta t) dt.$$

- 1. Montrer que E définit une distribution sur \mathbb{R}^3 .
- 2. Calculer PE.

Exercice 2. (04 points)

Soit f la fonction périodique de période a définie sur [0,a] par $f(x) = \frac{x}{a}$

- 1. Justifier pourquoi f définie-elle une distribution.
- 2. Calculer sa dérivée au sens des distributions.

Exercice 3. (05 points)

Calculer les limites, dans $\mathcal{D}'(\mathbb{R})$, des suite de distributions suivantes :

- 1. $T_n = n^{100} T_{e^{inx}}$
- $2. T_n = T_{\cos^2(nx)}$
- 3. $T_n = n \sin(nx) T_{H(x)}$ 4. $T_n = n(\delta_{\frac{1}{n}} \delta_{-\frac{1}{n}})$

Exercice 4. (05 points)

- 1. Calculer les dérivées successives au sens des distributions des fonctions suivantes :
 - (a) H(x)
 - (b) $f_k = \frac{x^k}{k!} T_{H(x)}$ pour $k \in \mathbb{N}^*$ (utiliser deux façons différentes pour calculer T'_{f_k} puis déduire $(T_{f_k})^{(n)}, n \geq 1$.
- 2. Calculer les dérivées secondes au sens des distributions des fonctions suivantes :
 - (a) f(x) = 1 |x| si |x| < 1 et f(x) = 0 sinon.
 - (b) $g(x) = |\cos x|$