HW2

chaofan tao

February 2019

Contents

1	Problem 1	2
2	Problem 2	3
3	Problem 3	5
4	Problem 4	6

Let set A={n: $(3^{n+2}+2^{4n+2})\%13 \neq 0$ }. Since A is a subset of positive integers, according to WOP, there must be a least element in A. Denote that as b+1. Then $3^{b+1+2}+2^{4(b+1)+2}\in A$. $3^{b+3}+2^{4b+4+2}=3*3^{b+2}+16*2^{4b+2}=3*(3^{b+2}+2^{4b+2})+13*2^{4b+2}$ Since $13*2^{4b+2}$ is divisible by 13, then $3*(3^{b+2}+2^{4b+2})$ must not be divisible by $13\implies (3^{b+2}+2^{4b+2})$ is not divisible by 13 Since b< b+1, contradict! \implies there is no such set $A\implies 3^{n+2}+2^{4n+2}$ are all divisible by 13 Q.E.D.

a. A is well-ordered, with a lower bound of 0 (k = 1)

$$\forall k \geq 1, 2^k \geq 2^1 \implies \tfrac{1}{2^k} \leq \tfrac{1}{2^1} \implies \tfrac{1}{2} - \tfrac{1}{2^k} \geq 0 = \tfrac{1}{2} - \tfrac{1}{2^1}$$

 \implies 0 is the lower bound, and the lowest element in A is when k=1

Then we consider the subsets of A. Let M be any subset of A, and $N = \{k : k \in \mathbb{N} \mid k \in \mathbb{N} \}$

$$\frac{1}{2}-\frac{1}{2^k}\in M\}.$$
 We first prove that $\forall k,\frac{1}{2}-\frac{1}{2^k}<\frac{1}{2}-\frac{1}{2^{k+1}}$

Let
$$m = \frac{1}{2} - \frac{1}{2^k}$$
, $n = \frac{1}{2} - \frac{1}{2^{k+1}}$.

$$2^{k+1} > 2^k \implies \frac{1}{2^{k+1}} < \frac{1}{2^k} \implies \frac{1}{2} - \frac{1}{2^k} < \frac{1}{2} - \frac{1}{2^{k+1}} \implies m < n$$

Since N is a subset of positive integers, it is well-ordered \implies There is a least element p in N. According to the proof above, $\frac{1}{2} - \frac{1}{2^p} < \frac{1}{2} - \frac{1}{2^q}, p < q \implies M$ has a least element as well

Q.E.D.

b. B is not well-ordered. Prove by contradict.

Lets assume B is well-ordered, then there is a smallest $b = \frac{1}{2} + \frac{1}{2^m}$ in B as a lower bound, where m is a positive integer.

Let
$$c = \frac{1}{2} + \frac{1}{2^{m+1}}$$
. $2^{m+1} > 2^m \implies \frac{1}{2^{m+1}} < \frac{1}{2^m} \implies \frac{1}{2} + \frac{1}{2^m} > \frac{1}{2} + \frac{1}{2^{m+1}} \implies b > c$

Contradict! \implies there is no lower bounds

Q.E.D.

c. We first prove that \forall x s.t. $0 < x < \frac{1}{2}$, there is an element in A that is larger then x.

Lets assume there is no such element $\implies x - a \ge 0 \ \forall a$ that is in A

Then for the set of x - a, there must be a least element according to WOP.

Assume the least element is x-m, where $m = \frac{1}{2} - \frac{1}{2^k}$. Let $n = \frac{1}{2} - \frac{1}{2^{k+1}}$.

$$2^{k+1} > 2^k \implies \frac{1}{2^{k+1}} < \frac{1}{2^k} \implies \frac{1}{2} - \frac{1}{2^k} < \frac{1}{2} - \frac{1}{2^{k+1}} \implies m < n \implies x - m > x - m$$

Contradict! So there must be an element a in A s.t. a > x

Then, let the element that is greater than x be $\frac{1}{2} - \frac{1}{2^p}$. As we proved above, $\frac{1}{2} - \frac{1}{2^{p+1}} > \frac{1}{2} - \frac{1}{2^p}$, and similarly $\frac{1}{2} - \frac{1}{2^{p+2}} > \frac{1}{2} - \frac{1}{2^{p+1}}$.

Then for an arbitrary n, we have $\frac{1}{2} - \frac{1}{2^{p+n-1}} > \frac{1}{2} - \frac{1}{2^{p+n-2}} > \frac{1}{2} - \frac{1}{2^{p+n-3}} > \dots > \frac{1}{2} - \frac{1}{2^p} > x$

Q.E.D.

d. According to problem a, we proved that A is well-ordered. If there is an infinite decreasing sequence in A, let S be A's subset s.t. $S = \{a_1, a_2, a_3, ...\}$ and $a_1 > a_2 > a_3 > a_4...$ In other words, let S be the set of infinite decreasing sequence.

 \implies there is no least element in S \implies Contradict with the definition of well-ordered set! \implies There is no such sequence.

Q.E.D.

It is noteworthy that $A \oplus B \leftrightarrow A \cdot \overline{B} + \overline{A} \cdot B$

Proof:

$$\mathbf{a.} \quad (A \oplus B) \oplus C \leftrightarrow (A \cdot \overline{B} + \overline{A} \cdot B) \cdot \overline{C} + \overline{(A \cdot \overline{B} + \overline{A} \cdot B)} \cdot C \leftrightarrow A \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot \overline{C} + \overline{C} + \overline{C} \overline{C$$

$$B\cdot \overline{C} + \overline{A}\cdot \overline{B}\cdot C + A\cdot B\cdot C$$

$$A \oplus (B \oplus C) \leftrightarrow \overline{A} \cdot (C \cdot \overline{B} + \overline{C} \cdot B) + A \cdot \overline{(C \cdot \overline{B} + \overline{C} \cdot B)} \leftrightarrow A \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot B \cdot \overline{C} + \overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot \overline{C} + \overline{C} \cdot$$

$$\overline{C} + \overline{A} \cdot \overline{B} \cdot C + A \cdot B \cdot C$$

$$\implies (A \oplus B) \oplus C \leftrightarrow A \oplus (B \oplus C)$$

Q.E.D.

b.
$$A \oplus B \leftrightarrow A \cdot \overline{B} + \overline{A} \cdot B \leftrightarrow \overline{A} \cdot B + A \cdot \overline{B} \leftrightarrow B \oplus A$$

Q.E.D.

$$\mathbf{c.} \quad A \oplus A \leftrightarrow A \cdot \overline{A} + \overline{A} \cdot A \leftrightarrow 0 + 0 \leftrightarrow 0 \not \leftrightarrow A$$

 \implies the operation is not idempotent.

 $\mathrm{Q.E.D}$

d.
$$P \oplus Q \leftrightarrow P \cdot \overline{Q} + \overline{P} \cdot Q \implies$$
 all we need to prove is $\overline{P} \cdot Q \leftrightarrow \overline{(Q \to P)}$

Q.E.D

a.
$$P \cap Q \leftrightarrow P \cdot Q \leftrightarrow \overline{P} \# Q$$

b.
$$P \cup Q \leftrightarrow P + Q \leftrightarrow \overline{P\#\overline{Q}}$$

$$\mathbf{c.} \quad P \to Q \leftrightarrow \overline{\overline{P} \# \overline{Q}}$$

$$\begin{array}{c|ccccc} P & Q & \overline{P\#Q} \\ 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}$$