Data Analysis and Machine Learning: Linear Regression and more Advanced Regression Analysis

Morten Hjorth-Jensen^{1,2}

Department of Physics, University of Oslo¹

Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University 2

Aug 24, 2018

© 1999-2018, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0 license

Regression analysis, overarching aims

Regression modeling deals with the description of the sampling distribution of a given random variable y varies as function of another variable or a set of such variables $\hat{x} = [x_0, x_1, \dots, x_p]^T$. The first variable is called the **dependent**, the **outcome** or the **response** variable while the set of variables \hat{x} is called the independent variable, or the predictor variable or the explanatory variable.

A regression model aims at finding a likelihood function $p(y|\hat{x})$, that is the conditional distribution for y with a given \hat{x} . The estimation of $p(y|\hat{x})$ is made using a data set with

- ▶ n cases i = 0, 1, 2, ..., n-1
- Response (dependent or outcome) variable y_i with i = 0, 1, 2, ..., n 1
- ▶ *p* Explanatory (independent or predictor) variables $\hat{x}_i = [x_{i0}, x_{i1}, \dots, x_{ip}]$ with $i = 0, 1, 2, \dots, n-1$

The goal of the regression analysis is to extract/exploit relationship between y_i and \hat{x}_i in or to infer causal dependencies,

General linear models

Before we proceed let us study a case from linear algebra where we aim at fitting a set of data $\hat{y} = [y_0, y_1, \ldots, y_{n-1}]$. We could think of these data as a result of an experiment or a complicated numerical experiment. These data are functions of a series of variables $\hat{x} = [x_0, x_1, \ldots, x_{n-1}]$, that is $y_i = y(x_i)$ with $i = 0, 1, 2, \ldots, n-1$. The variables x_i could represent physical quantities like time, temperature, position etc. We assume that y(x) is a smooth function.

Since obtaining these data points may not be trivial, we want to use these data to fit a function which can allow us to make predictions for values of y which are not in the present set. The perhaps simplest approach is to assume we can parametrize our function in terms of a polynomial of degree n-1 with n points, that is

$$y = y(x) \rightarrow y(x_i) = \tilde{y}_i + \epsilon_i = \sum_{i=0}^{n-1} \beta_i x_i^j + \epsilon_i,$$

where ϵ : is the error in our approximation

Rewriting the fitting procedure as a linear algebra problem

For every set of values y_i, x_i we have thus the corresponding set of equations

$$y_{0} = \beta_{0} + \beta_{1}x_{0}^{1} + \beta_{2}x_{0}^{2} + \dots + \beta_{n-1}x_{0}^{n-1} + \epsilon_{0}$$

$$y_{1} = \beta_{0} + \beta_{1}x_{1}^{1} + \beta_{2}x_{1}^{2} + \dots + \beta_{n-1}x_{1}^{n-1} + \epsilon_{1}$$

$$y_{2} = \beta_{0} + \beta_{1}x_{2}^{1} + \beta_{2}x_{2}^{2} + \dots + \beta_{n-1}x_{2}^{n-1} + \epsilon_{2}$$

$$\dots$$

$$y_{n-1} = \beta_{0} + \beta_{1}x_{n-1}^{1} + \beta_{2}x_{n-1}^{2} + \dots + \beta_{1}x_{n-1}^{n-1} + \epsilon_{n-1}.$$

Rewriting the fitting procedure as a linear algebra problem, follows

Defining the vectors

$$\hat{y} = [y_0, y_1, y_2, \dots, y_{n-1}]^T,$$

and

$$\hat{\beta} = [\beta_0, \beta_1, \beta_2, \dots, \beta_{n-1}]^T,$$

and

$$\hat{\boldsymbol{\epsilon}} = [\epsilon_0, \epsilon_1, \epsilon_2, \dots, \epsilon_{n-1}]^T,$$

and the matrix

$$\hat{X} = \begin{bmatrix} 1 & x_0^1 & x_0^2 & \dots & x_0^{n-1} \\ 1 & x_1^1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2^1 & x_2^2 & \dots & x_2^{n-1} \\ \dots & \dots & \dots & \dots & \dots \\ 1 & x_{n-1}^1 & x_{n-1}^2 & \dots & x_{n-1}^{n-1} \end{bmatrix}$$

Generalizing the fitting procedure as a linear algebra problem

We are obviously not limited to the above polynomial. We could replace the various powers of x with elements of Fourier series, that is, instead of x_i^j we could have $\cos(jx_i)$ or $\sin(jx_i)$, or time series or other orthogonal functions. For every set of values y_i, x_i we can then generalize the equations to

$$y_{0} = \beta_{0}x_{00} + \beta_{1}x_{01} + \beta_{2}x_{02} + \dots + \beta_{n-1}x_{0n-1} + \epsilon_{0}$$

$$y_{1} = \beta_{0}x_{10} + \beta_{1}x_{11} + \beta_{2}x_{12} + \dots + \beta_{n-1}x_{1n-1} + \epsilon_{1}$$

$$y_{2} = \beta_{0}x_{20} + \beta_{1}x_{21} + \beta_{2}x_{22} + \dots + \beta_{n-1}x_{2n-1} + \epsilon_{2}$$

$$\dots$$

$$y_{i} = \beta_{0}x_{i0} + \beta_{1}x_{i1} + \beta_{2}x_{i2} + \dots + \beta_{n-1}x_{in-1} + \epsilon_{i}$$

$$\dots$$

$$y_{n-1} = \beta_{0}x_{n-1,0} + \beta_{1}x_{n-1,2} + \beta_{2}x_{n-1,2} + \dots + \beta_{1}x_{n-1,n-1} + \epsilon_{n-1}.$$

Generalizing the fitting procedure as a linear algebra problem

We redefine in turn the matrix \hat{X} as

$$\hat{X} = \begin{bmatrix} x_{00} & x_{01} & x_{02} & \dots & x_{0,n-1} \\ x_{10} & x_{11} & x_{12} & \dots & x_{1,n-1} \\ x_{20} & x_{21} & x_{22} & \dots & x_{2,n-1} \\ \dots & \dots & \dots & \dots & \dots \\ x_{n-1,0} & x_{n-1,1} & x_{n-1,2} & \dots & x_{n-1,n-1} \end{bmatrix}$$

and without loss of generality we rewrite again our equations as

$$\hat{y} = \hat{X}\hat{\beta} + \hat{\epsilon}.$$

The left-hand side of this equation forms know. Our error vector $\hat{\epsilon}$ and the parameter vector $\hat{\beta}$ are our unknow quantities. How can we obtain the optimal set of β_i values?

Optimizing our parameters

We have defined the matrix \hat{X}

$$y_{0} = \beta_{0}x_{00} + \beta_{1}x_{01} + \beta_{2}x_{02} + \dots + \beta_{n-1}x_{0n-1} + \epsilon_{0}$$

$$y_{1} = \beta_{0}x_{10} + \beta_{1}x_{11} + \beta_{2}x_{12} + \dots + \beta_{n-1}x_{1n-1} + \epsilon_{1}$$

$$y_{2} = \beta_{0}x_{20} + \beta_{1}x_{21} + \beta_{2}x_{22} + \dots + \beta_{n-1}x_{2n-1} + \epsilon_{1}$$

$$\dots$$

$$y_{i} = \beta_{0}x_{i0} + \beta_{1}x_{i1} + \beta_{2}x_{i2} + \dots + \beta_{n-1}x_{in-1} + \epsilon_{1}$$

$$\dots$$

$$y_{n-1} = \beta_{0}x_{n-1,0} + \beta_{1}x_{n-1,2} + \beta_{2}x_{n-1,2} + \dots + \beta_{1}x_{n-1,n-1} + \epsilon_{n-1}.$$

Optimizing our parameters, more details

We well use this matrix to define the approximation $\hat{\hat{y}}$ via the unknown quantity $\hat{\beta}$ as

$$\hat{\tilde{y}} = \hat{X}\hat{\beta},$$

and in order to find the optimal parameters β_i instead of solving the above linear algebra problem, we define a function which gives a measure of the spread between the values y_i (which represent hopefully the exact values) and the parametrized values \tilde{y}_i , namely

$$Q(\hat{\beta}) = \sum_{i=0}^{n-1} (y_i - \tilde{y}_i)^2 = (\hat{y} - \hat{\tilde{y}})^T (\hat{y} - \hat{\tilde{y}}),$$

or using the matrix \hat{X} as

$$Q(\hat{eta}) = \left(\hat{y} - \hat{X}\hat{eta}\right)^T \left(\hat{y} - \hat{X}\hat{eta}\right).$$

Interpretations and optimizing our parameters

The function

$$Q(\hat{eta}) = \left(\hat{y} - \hat{X}\hat{eta}\right)^T \left(\hat{y} - \hat{X}\hat{eta}\right),$$

can be linked to the variance of the quantity y_i if we interpret the latter as the mean value of for example a numerical experiment. When linking below with the maximum likelihood approach below, we will indeed interpret y_i as a mean value

$$y_i = \langle y_i \rangle = \beta_0 x_{i,0} + \beta_1 x_{i,1} + \beta_2 x_{i,2} + \dots + \beta_{n-1} x_{i,n-1} + \epsilon_i,$$

where $\langle y_i \rangle$ is the mean value. Keep in mind also that till now we have treated y_i as the exact value. Normally, the response (dependent or outcome) variable y_i the outcome of a numerical experiment or another type of experiment and is thus only an approximation to the true value. It is then always accompanied by an error estimate, often limited to a statistical error estimate given by the standard deviation discussed earlier. In the discussion here

Interpretations and optimizing our parameters

We can rewrite

$$\frac{\partial Q(\hat{\beta})}{\partial \hat{\beta}} = 0 = \hat{X}^T \left(\hat{y} - \hat{X} \hat{\beta} \right),$$

as

$$\hat{X}^T \hat{y} = \hat{X}^T \hat{X} \hat{\beta},$$

and if the matrix $\hat{X}^T\hat{X}$ is invertible we have the solution

$$\hat{\beta} = \left(\hat{X}^T \hat{X}\right)^{-1} \hat{X}^T \hat{y}.$$

Interpretations and optimizing our parameters

The residuals $\hat{\epsilon}$ are in turn given by

$$\hat{\epsilon} = \hat{y} - \hat{y} = \hat{y} - \hat{X}\hat{\beta},$$

and with

$$\hat{X}^T \left(\hat{y} - \hat{X} \hat{\beta} \right) = 0,$$

we have

$$\hat{X}^T\hat{\epsilon} = \hat{X}^T \left(\hat{y} - \hat{X}\hat{\beta} \right) = 0,$$

meaning that the solution for $\hat{\beta}$ is the one which minimizes the residuals. Later we will link this with the maximum likelihood approach.

Normally, the response (dependent or outcome) variable y_i the outcome of a numerical experiment or another type of experiment and is thus only an approximation to the true value. It is then always accompanied by an error estimate, often limited to a statistical error estimate given by the standard deviation discussed earlier. In the discussion here we will treat y_i as our exact value for the response variable.

Introducing the standard deviation σ_i for each measurement y_i , we define now the χ^2 function as

$$\chi^{2}(\hat{\beta}) = \sum_{i=0}^{n-1} \frac{(y_{i} - \tilde{y}_{i})^{2}}{\sigma_{i}^{2}} = (\hat{y} - \hat{y})^{T} \frac{1}{\hat{\Sigma}^{2}} (\hat{y} - \hat{y}),$$

where the matrix $\hat{\Sigma}$ is a diagonal matrix with σ_i as matrix elements.

In order to find the parameters β_i we will then minimize the spread of $\chi^2(\hat{\beta})$ by requiring

of
$$\chi^2(\hat{\beta})$$
 by requiring
$$\frac{\partial \chi^2(\hat{\beta})}{\partial \beta_j} = \frac{\partial}{\partial \beta_j} \left[\sum_{i=0}^{n-1} \left(\frac{y_i - \beta_0 x_{i,0} - \beta_1 x_{i,1} - \beta_2 x_{i,2} - \dots - \beta_{n-1} x_{i,n-1}}{\sigma_i} \right)^2 \right]$$

which results in

$$\frac{\partial \chi^2(\hat{\beta})}{\partial \beta_j} = -2 \left[\sum_{i=0}^{n-1} \frac{x_{ij}}{\sigma_i} \left(\frac{y_i - \beta_0 x_{i,0} - \beta_1 x_{i,1} - \beta_2 x_{i,2} - \dots - \beta_{n-1} x_{i,n-1}}{\sigma_i} \right) \right]$$

or in a matrix-vector form as
$$\frac{\partial \chi^2(\hat{\beta})}{\partial \hat{\beta}} = 0 = \hat{A}^T \left(\hat{b} - \hat{A} \hat{\beta} \right).$$

where we have defined the matrix $\hat{A} = \hat{X}/\hat{\Sigma}$ with matrix elements $a_{ij} = x_{ij}/\sigma_i$ and the vector \hat{b} with elements $b_i = y_i/\sigma_i$.

We can rewrite

$$\frac{\partial \chi^2(\hat{\beta})}{\partial \hat{\beta}} = 0 = \hat{A}^T \left(\hat{b} - \hat{A} \hat{\beta} \right),$$

as

$$\hat{A}^T\hat{b} = \hat{A}^T\hat{A}\hat{\beta},$$

and if the matrix $\hat{A}^T\hat{A}$ is invertible we have the solution

$$\hat{\beta} = \left(\hat{A}^T \hat{A}\right)^{-1} \hat{A}^T \hat{b}.$$

If we then introduce the matrix

$$\hat{H} = \left(\hat{A}^T \hat{A}\right)^{-1},$$

we have then the following expression for the parameters β_j (the matrix elements of \hat{H} are h_{ij})

$$\beta_j = \sum_{k=0}^{p-1} h_{jk} \sum_{i=0}^{n-1} \frac{y_i}{\sigma_i} \frac{x_{ik}}{\sigma_i} = \sum_{k=0}^{p-1} h_{jk} \sum_{i=0}^{n-1} b_i a_{ik}$$

We state without proof the expression for the uncertainty in the parameters β_i as (we leave this as an exercise)

$$\sigma^{2}(\beta_{j}) = \sum_{i=0}^{n-1} \sigma_{i}^{2} \left(\frac{\partial \beta_{j}}{\partial y_{i}} \right)^{2},$$

resulting in

The first step here is to approximate the function y with a first-order polynomial, that is we write

$$y = y(x) \rightarrow y(x_i) \approx \beta_0 + \beta_1 x_i$$
.

By computing the derivatives of χ^2 with respect to β_0 and β_1 show that these are given by

$$\frac{\partial \chi^2(\hat{\beta})}{\partial \beta_0} = -2 \left[\sum_{i=0}^{n-1} \left(\frac{y_i - \beta_0 - \beta_1 x_i}{\sigma_i^2} \right) \right] = 0,$$

and

$$\frac{\partial \chi^2(\hat{\beta})}{\partial \beta_0} = -2 \left[\sum_{i=0}^{n-1} x_i \left(\frac{y_i - \beta_0 - \beta_1 x_i}{\sigma_i^2} \right) \right] = 0.$$

For a linear fit we don't need to invert a matrix!!

$$\gamma = \sum_{i=0}^{n-1} \frac{n-1}{\sigma_i^2},$$

$$\gamma_x = \sum_{i=0}^{n-1} \frac{x_i}{\sigma_i^2},$$

$$\gamma_y = \sum_{i=0}^{n-1} \left(\frac{y_i}{\sigma_i^2}\right),$$

$$\gamma_{xx} = \sum_{i=0}^{n-1} \frac{x_i x_i}{\sigma_i^2},$$

$$\gamma_{xy} = \sum_{i=0}^{n-1} \frac{y_i x_i}{\sigma_i^2},$$

and show that

Simple regression model

We are now ready to write our first program which aims at solving the above linear regression equations. We start with data we have produced ourselves, in this case normally distributed random numbers along the x-axis. These numbers define then the value of a function y(x) = 4 + 3x + N(0,1). Thereafter we order the x values and employ our linear regression algorithm to set up the best fit. Here we find it useful to use the numpy function c_{-} arrays where arrays are stacked along their last axis after being upgraded to at least two dimensions with ones post-pended to the shape. The following examples help in understanding what happens

```
The following examples help in understanding what happens import numpy as np print(np.c_[np.array([1,2,3]), np.array([4,5,6])]) print(np.c_[np.array([[1,2,3]]), 0, 0, np.array([[4,5,6]])]) # Importing various packages from random import random, seed import numpy as np import matplotlib.pyplot as plt

x = 2*np.random.rand(100,1) y = 4+3*x+np.random.randn(100,1)
```

beta = np linalg inv(xh T dot(xh)) dot(xh T) dot(y)

 $xb = np.c_[np.ones((100,1)), x]$

Simple regression model, now using scikit-learn

We can repeat the above algorithm using scikit-learn as follows

```
# Importing various packages
from random import random, seed
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
x = 2*np.random.rand(100,1)
y = 4+3*x+np.random.randn(100,1)
linreg = LinearRegression()
linreg.fit(x,y)
xnew = np.array([[0],[2]])
ypredict = linreg.predict(xnew)
plt.plot(xnew, ypredict, "r-")
plt.plot(x, y ,'ro')
plt.axis([0,2.0,0, 15.0])
plt.xlabel(r'$x$')
plt.vlabel(r'$v$')
plt.title(r'Random numbers ')
plt.show()
```

Simple linear regression model using scikit-learn We start with perhaps our simplest possible example, using

We start with perhaps our simplest possible example, using **scikit-learn** to perform linear regression analysis on a data set produced by us. What follows is a simple Python code where we have defined function y in terms of the variable x. Both are defined as vectors of dimension 1×100 . The entries to the vector \hat{x} are given by random numbers generated with a uniform distribution with entries $x_i \in [0,1]$ (more about probability distribution functions later). These values are then used to define a function y(x) (tabulated again as a vector) with a linear dependence on x

plus a random noise added via the normal distribution. The Numpy functions are imported used the **import numpy as np** statement and the random number generator for the uniform distribution is called using the function <code>np.random.rand()</code>, where we specificy that we want 100 random variables. Using Numpy we define automatically an array with the specified number of

we specificy that we want 100 random variables. Using Numpy we define automatically an array with the specified number of elements, 100 in our case. With the Numpy function randn() we can compute random numbers with the normal distribution (mean value μ equal to zero and variance σ^2 set to one) and produce the values of ν assuming a linear dependence as function of ν

Simple linear regression model

This example serves several aims. It allows us to demonstrate several aspects of data analysis and later machine learning algorithms. The immediate visualization shows that our linear fit is not impressive. It goes through the data points, but there are many outliers which are not reproduced by our linear regression. We could now play around with this small program and change for example the factor in front of \boldsymbol{x} and the normal distribution. Try to change the function \boldsymbol{y} to

$$y = 10x + 0.01 \times N(0, 1),$$

where x is defined as before.

Less noise

Does the fit look better? Indeed, by reducing the role of the normal distribution we see immediately that our linear prediction seemingly reproduces better the training set. However, this testing 'by the eye' is obviouly not satisfactory in the long run. Here we have only defined the training data and our model, and have not discussed a more rigorous approach to the **cost** function.

How to study our fits

We need more rigorous criteria in defining whether we have succeeded or not in modeling our training data. You will be surprised to see that many scientists seldomly venture beyond this 'by the eye' approach. A standard approach for the cost function is the so-called χ^2 function

$$\chi^2 = \frac{1}{n} \sum_{i=0}^{n-1} \frac{(y_i - \tilde{y}_i)^2}{\sigma_i^2},$$

where σ_i^2 is the variance (to be defined later) of the entry y_i . We may not know the explicit value of σ_i^2 , it serves however the aim of scaling the equations and make the cost function dimensionless.

Minimizing the cost function

Minimizing the cost function is a central aspect of our discussions to come. Finding its minima as function of the model parameters (α and β in our case) will be a recurring theme in these series of lectures. Essentially all machine learning algorithms we will discuss center around the minimization of the chosen cost function. This depends in turn on our specific model for describing the data, a typical situation in supervised learning. Automatizing the search for the minima of the cost function is a central ingredient in all algorithms. Typical methods which are employed are various variants of gradient methods. These will be discussed in more detail later. Again, you'll be surprised to hear that many practitioners minimize the above function "by the eye', popularly dubbed as 'chi by the eye'. That is, change a parameter and see (visually and numerically) that the χ^2 function becomes smaller.

Relative error

There are many ways to define the cost function. A simpler approach is to look at the relative difference between the training data and the predicted data, that is we define the relative error as

$$\epsilon_{\text{relative}} = \frac{|\hat{y} - \hat{\tilde{y}}|}{|\hat{y}|}.$$

We can modify easily the above Python code and plot the relative error instead

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
x = np.random.rand(100,1)
y = 5*x+0.01*np.random.randn(100,1)
linreg = LinearRegression()
linreg.fit(x,y)
ypredict = linreg.predict(x)
plt.plot(x, np.abs(ypredict-y)/abs(y), "ro")
plt.axis([0,1.0,0.0, 0.5])
plt.xlabel(r'$x$')
plt.ylabel(r'$\epsilon_{\mathrm{relative}}$')
plt.title(r'Relative error')
plt.show()
```

The richness of **scikit-learn**

Mean absolute error

nl+ nlo+(v vnrodic+ ||v ||)

As mentioned above, **scikit-learn** has an impressive functionality. We can for example extract the values of α and β and their error estimates, or the variance and standard deviation and many other properties from the statistical data analysis.

Here we show an example of the functionality of scikit-learn. import numpy as np

```
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score, mean_squared
x = np.random.rand(100,1)
v = 2.0 + 5*x + 0.5*np.random.randn(100,1)
linreg = LinearRegression()
linreg.fit(x,y)
ypredict = linreg.predict(x)
print('The intercept alpha: \n', linreg.intercept_)
print('Coefficient beta : \n', linreg.coef_)
# The mean squared error
# Explained variance score: 1 is perfect prediction
```

print("Mean squared error: %.2f" % mean_squared_error(y, ypredict)) print('Variance score: %.2f' % r2_score(y, ypredict)) # Mean squared log error print('Mean squared log error: %.2f' % mean_squared_log_error(y, ypred

print('Mean absolute error: %.2f' % mean_absolute_error(y, ypredict))

Functions in scikit-learn

The function **coef** gives us the parameter β of our fit while **intercept** yields α . Depending on the constant in front of the normal distribution, we get values near or far from alpha=2 and $\beta=5$. Try to play around with different parameters in front of the normal distribution. The function **meansquarederror** gives us the mean square error, a risk metric corresponding to the expected value of the squared (quadratic) error or loss defined as

$$MSE(\hat{y}, \hat{\tilde{y}}) = \frac{1}{n} \sum_{i=0}^{n-1} (y_i - \tilde{y}_i)^2,$$

The smaller the value, the better the fit. Ideally we would like to have an MSE equal zero. The attentive reader has probably recognized this function as being similar to the χ^2 function defined above.

Other functions in scikit-learn

The **r2score** function computes R^2 , the coefficient of determination. It provides a measure of how well future samples are likely to be predicted by the model. Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of \hat{y} , disregarding the input features, would get a R^2 score of 0.0. If \tilde{y}_i is the predicted value of the i-th sample and y_i is the corresponding true value, then the score R^2 is defined as

$$R^{2}(\hat{y}, \tilde{\hat{y}}) = 1 - \frac{\sum_{i=0}^{n-1} (y_{i} - \tilde{y}_{i})^{2}}{\sum_{i=0}^{n-1} (y_{i} - \bar{y})^{2}},$$

where we have defined the mean value of \hat{y} as

$$\bar{y} = \frac{1}{n} \sum_{i=0}^{n-1} y_i.$$

The mean absolute error and other functions in scikit-learn

Another quantity will meet again in our discussions of regression analysis is mean absolute error (MAE), a risk metric corresponding to the expected value of the absolute error loss or what we call the /1-norm loss. In our discussion above we presented the relative error. The MAE is defined as follows

$$\mathsf{MAE}(\hat{y}, \hat{\tilde{y}}) = \frac{1}{n} \sum_{i=0}^{n-1} |y_i - \tilde{y}_i|.$$

Finally we present the squared logarithmic (quadratic) error

$$\mathsf{MSLE}(\hat{y}, \hat{\tilde{y}}) = \frac{1}{n} \sum_{i=0}^{n-1} (\log_e(1+y_i) - \log_e(1+\tilde{y}_i))^2,$$

where $\log_e(x)$ stands for the natural logarithm of x. This error estimate is best to use when targets having exponential growth, such as population counts, average sales of a commodity over a span of years etc.

Cubic polynomial in scikit-learn
We will discuss in more detail these and other functions in the various lectures. We conclude this part with another example. Instead of a linear x-dependence we study now a cubic polynomial and use the polynomial regression analysis tools of scikit-learn.

```
import matplotlib.pyplot as plt
import numpy as np
import random
from sklearn.linear_model import Ridge
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import make_pipeline
from sklearn.linear_model import LinearRegression
x=np.linspace(0.02,0.98,200)
noise = np.asarray(random.sample((range(200)),200))
v=x**3*noise
vn=x**3*100
poly3 = PolynomialFeatures(degree=3)
X = poly3.fit_transform(x[:,np.newaxis])
clf3 = LinearRegression()
clf3.fit(X,v)
Xplot=poly3.fit_transform(x[:,np.newaxis])
poly3_plot=plt.plot(x, clf3.predict(Xplot), label='Cubic Fit')
plt.plot(x,yn, color='red', label="True Cubic")
plt.scatter(x, y, label='Data', color='orange', s=15)
plt.legend()
```

Simple regression model with gradient descent

```
Add info about the equations, play around with different learning
rates
 # Importing various packages
 from math import exp, sqrt
 from random import random, seed
 import numpy as np
 import matplotlib.pyplot as plt
 x = 2*np.random.rand(100,1)
 y = 4+3*x+np.random.randn(100,1)
 xb = np.c_[np.ones((100,1)), x]
 theta_linreg = np.linalg.inv(xb.T.dot(xb)).dot(xb.T).dot(y)
 print(theta_linreg)
 theta = np.random.randn(2,1)
 eta = 0.1
 Niterations = 1000
 m = 100
 for iter in range(Niterations):
     gradients = 2.0/m*xb.T.dot(xb.dot(theta)-y)
     theta -= eta*gradients
 print(theta)
 xnew = np.array([[0],[2]])
 xbnew = np.c_[np.ones((2,1)), xnew]
```

Simple regression model with stochastic gradient descent

Add info about the equations, play around with different learning rates

```
# Importing various packages
from math import exp, sqrt
from random import random, seed
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import SGDRegressor
x = 2*np.random.rand(100,1)
y = 4+3*x+np.random.randn(100,1)
xb = np.c_[np.ones((100,1)), x]
theta_linreg = np.linalg.inv(xb.T.dot(xb)).dot(xb.T).dot(y)
print(theta_linreg)
sgdreg = SGDRegressor(n_iter = 50, penalty=None, eta0=0.1)
sgdreg.fit(x,y.ravel())
print(sgdreg.intercept_, sgdreg.coef_)
```

Polynomial Regression

```
# Importing various packages
from math import exp, sqrt
from random import random, seed
import numpy as np
import matplotlib.pyplot as plt
m = 100
x = 2*np.random.rand(m,1)+4.
y = 4+3*x*x+ +x-np.random.randn(m,1)
xb = np.c_[np.ones((m,1)), x]
theta = np.linalg.inv(xb.T.dot(xb)).dot(xb.T).dot(y)
xnew = np.array([[0],[2]])
xbnew = np.c_[np.ones((2,1)), xnew]
ypredict = xbnew.dot(theta)
plt.plot(xnew, ypredict, "r-")
plt.plot(x, y ,'ro')
plt.axis([0,2.0,0, 15.0])
plt.xlabel(r'$x$')
plt.vlabel(r'$v$')
plt.title(r'Random numbers')
plt.show()
```

Ridge and Lasso Regression import matplotlib.pyplot as plt import numpy as np from sklearn import linear_model from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error, r2_score #creating data with random noise x=np.arange(50)delta=np.random.uniform(-2.5,2.5, size=(50)) np.random.shuffle(delta) y = 0.5 * x + 5 + delta#arranging data into 2x50 matrix a=np.array(x) #inputs b=np.array(y) #outputs #Split into training and test X_train=a[:37, np.newaxis] X_test=a[37:, np.newaxis] v_train=b[:37] v_test=b[37:] print ("X_train: ", X_train.shape) print ("y_train: ", y_train.shape) print ("X_test: ", X_test.shape) print ("y_test: ", y_test.shape)

The singular value decompostion

How can we use the singular value decomposition to find the parameters β_j ? More details will come. We first note that a general $m \times n$ matrix \hat{A} can be written in terms of a diagonal matrix $\hat{\Sigma}$ of dimensionality $n \times n$ and two orthogonal matrices \hat{U} and \hat{V} , where the first has dimensionality $m \times n$ and the last dimensionality $n \times n$. We have then

$$\hat{A} = \hat{U}\hat{\Sigma}\hat{V}$$

Add codes and discuss this in connection with lasso and ridge, show example where the standard inversion of a matrix fails and where SVD comes to rescue

Lasso and Ridge regression

Discuss the mathematics here

Logistic regression

Add discussion about classification versus regression, show examples of more than two cases and why regression is not the best approach. Motivate for k-nearest neighbors Add examples on classification problems