experimental methodology

generalizing

- test set, training set
- cross validation: make the most of data

example:

Training Folds	Testing Fold	Correct	Incorrect	Accuracy
S1, S2, S3, S4	S5	35	15	0.70
S1, S2, S3, S5	S4	30	20	0.60
S1, S2, S4, S5	S3	37	13	0.74
S1, S3, S4, S5	S2	33	17	0.66
S2, S3, S4, S5	S1	40	10	0.80

but one calss might be completely missing in the training data

problem: an infrequent class might be missing at all

- -> solution: stratification, then concatenate all test results
- leave-one-out cross validation

leave only one but not a set out

very computationally expensive

• big pitfall: test data is not necessarilly representative of real data!

Tuning

internal cross-validation

motivation:single tuning set can be unreliable

- CV on training data to select the parameters
- Score setting by average performance
- Pick best one
- Train model on all training data

example:

- spread of values: wide-range, 避免等差数列 (tune之前的参数设置需要拉开差距)
- hyperparameter search search problem

random search (sample possible values) <-> grid search

random search 通常很有效,因为存在一些效果差不多的configurations, grid search效率很低

automated hyperparameter tuning

红色的点是采样点,第二个紫色包中可能存在更好的点

parameter-less algirithm:

internally sets all parameters, rather than user explicitly setting the hyperparameters

to wrap up,

Deploying a System

26

- □ Use 10 fold CV to pick best algorithm
 - Tune each algorithm (parameters, feature sets, etc.)
 - Give performance estimate of best approach to user
- For best algorithm, only use tuning sets to pick settings (features, parameters)
- Train model using all the data and selected settings and deploy this model

comparisons

假设检验 hypothesis testing:
 null hypothesis 原假设 H₀ - 两个模型performance没有显著差异
 alternative hypothesis 备选假设 H_a - 两个模型performance有显著差异
 计算统计量和p值,比较p值和显著性水平;

• McNemar's Test
<u>core:</u> how often was f₁right and f₂ wrong on the sample example, or the other way around?

	f ₁ right	f ₁ wrong
f ₂ right	Α	В
f ₂ wrong	С	D

to see if B and C are significantly different:

$$\chi^2 = \frac{(b-c)^2}{(b+c)},$$

paired t-test

Accuracies on Testsets Algo L1: 79 88 69 72 Algo L2: 75 62 79 74 . . . -3 +9 +7 +5 δ

null hypothesis: algos have equivalent average accuracies

if p-value is low, then reject null hypothesis.

assumptions of the t-test:

- 1. test statistic is normally distributed
 - e.g. if metric is classifier accuracy, then V

AUC ROC then X because usually not normally distributed

- -> wilcoxon signed-rank test: 非参数检验方法,不需要正态性假设
- 2. independent sample of test-examples cross validation通常违反这一条规则,但实际上t检验对独立性假设的偏差是非常 robust的;
- sign test

记录两个算法L1和L2在测试样本上"意见不一致"情况下的"win"次数,M是较大的win次数;

假设两个模型性能相似,用二项分布b(N, 0.5)计算L1或者L2在随机情况下赢至少M次的概率,如果概率很低则拒绝假设;

• wilcoxon signed rank test - on multiple data sets

RF	DT	RF-DT	RF-DT	Rank	Signed Rank
90	88	2	2	2	2
99	66	33	33	10	10
65	75	-10	10	6	-6
67	55	12	12	7	7
87	73	14	14	8	8
69	75	-6	6	4	-4
73	72	1	1	1	1
74	89	-15	15	9	-9
80	85	-5	5	3	-3
77	70	7	7	5	5
		3 and <i>W</i> ₂ = min(33,	= 22 , 22) = 22		

calculation:

step 1 compute performance difference

step 2 rank the absolute differences

step 3 add sign to rank

step 4 sum of positive ranks & sum of negative ranks, take the minimum value meaning:

generallyW值越大说明两个模型差异越大,但需要和P值配合来跟显著性水平比较!

graphical comparison

一个数据点代表一个数据集上的结果,黑色直线代表两个模型性能相同