CS 325 – Asymptotic Analysis

Practice Problems

Big-O, Ω , Θ Examples

For each of the following pairs of functions, either f(n) is O(g(n)), f(n) is $\Omega(g(n))$, or $f(n) = \Theta(g(n))$. Determine which relationship is correct.

1)
$$f(n) 0.00001n^3$$
; $g(n) = 500000n + 4000000$
 $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$
 $f(n) = D(g(n))$ or $g(n) = O(f(n))$

1)
$$f(n) = \log n^3$$
; $g(n) = \log n + 5$
 $f(n) = \log n^3 = 3\log n$
 $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \frac{3\log n}{\log n + 5} = 3$
 $f(n) = \Theta(g(n))$ or $g(n) = \Theta(f(n))$

3)
$$f(n)=\log(\log n)$$
; $g(n)=\log n$

Let $u=\log n$

Compare

 $\log u=O(u)$
 $\log u=O(u)$
 so
 $\log(\log n)=O(\log n)$
 $f(n)=O(g(n))$ or

 $g(n)=\Omega(f(n))$

4)
$$f(n) = \log n^3$$
; $g(n) = \log^3 n$
 $f(n) = 3 \log n$ $g(n) = (\log n)^3$
 $f(n) = 0(g^{(n)})$

5)
$$f(n)=n\log n$$
; $g(n)=\log (n!)$
 $g(n)=\log (n\cdot (n-1)\cdot (n-2)\cdots 1)$
 $=\log n+\log (n-1)+\log (n-2)\cdots 1$
 $=\log n+\log n+\log (n-2)\cdots 1$
 $\leq\log n+\log n+\log n-\log n$
 $g(n)\leq n\log n+\log n$
 $g(n)=O(n\log n)$

By using Wolfram Alpha

 $So g(n)=O(n\log n)$
 $So g(n)=O(n\log n)$

6)
$$f(n)=10$$
; $g(n)=\log 10$
Both are constants
 $f(n)=\Theta(g(n))=\Theta(\iota)$

7)
$$f(n) = 2^n$$
; $g(n) = 10n^2$
 $f(n) = \Omega (g(n))$
 $g(n) = O(f(n))$

8)
$$f(n) = 4^{n}$$
; $g(n) = 2^{2n}$; $h(n) = 2^{n+1}$

$$g(n) = 2^{2n} = (2^{2})^{n} = 4^{n}$$
so $f(n) = \Theta(g(n))$

$$\lim_{n \to \infty} \frac{f(n)}{h(n)} = \lim_{n \to \infty} \frac{4^{n}}{2^{n+1}} = \lim_{n \to \infty} \frac{4^{n}}{2 \cdot 2^{n}} = \lim_{n \to \infty} \frac{1}{2} (2)^{n} = \infty$$
So $f(n) = \Omega(h(n))$ or $h(n) = O(f(n))$

9)
$$g(n) = 2^{2n}$$
; $h(n) = 2^{n/2}$

$$h(n) = 2$$

$$compare 2n to n$$
exponents $2n = O(n^2)$

$$so \qquad g(n) = O(h(n))$$

$$rac{2^n}{n \Rightarrow n} = 0$$

10. Prove or disprove (with a counterexample).

If
$$f_1(n) = O(g_1(n))$$
 and $f_2(n) = O(g_2(n))$ then $f_1(n)+f_2(n) = O(\max\{g_1(n),g_2(n)\})$.

Prove true

If $f_1(n) = O(g_1(n))$ than there exists constants

 $C_1 \notin n_1$ such that

 $C_1 \notin n_2 \in C_1$ for all $n \ge n_1$

If $f_1(n) = O(g_1(n))$ there exist constants

 $f_1(n) = O(g_1(n))$ there exist constants

 $f_1(n) = f_2(n) = f_2(n)$ for all $f_1(n) = f_2(n) = f_2(n)$

Let $f_2(n) \le f_2(n) = f_2(n)$ for all $f_2(n) = f_2(n) = f_2(n) = f_2(n)$

By adding III # IV

O2 f, +fz
$$\leq 9+9$$

O4 f, +fz ≤ 29 for $n \geq (n_1 + n_2)$

Therefore

 $f_1(n) + f_2(n) \leq cg(n)$

and

 $f_1(n) + f_2(n) = O(g(n))$

or

 $f_1(n) + f_2(n) = O(max^2g_1(n), g_2(n)^2)$