Nicolas Beraldo

15102826 ENC

Modelo

Parte 1

Enquanto o gráfico mante-se curvado o transistor encontra-se na região de tríodo, ao começar a se linearizar estamos entrando na região de saturação e o que se encontra embaixo da linha cor vermelha está na região de corte, que é quando o Vgs é menor ou igual a Vt. Então percebemos que quanto maior o Vgs maior será a regia de tríodo logo maior será a corrente capaz de passar por ele. Nos valores máximos que usamos no modelo percebemos que a corrente tende a se tornar cada vez mais linear em 1.2 mA.

Parte 2

Vt=1, Kp=50u, Vgs=1.2V, Vds=2V, W= 3u, L= 1.5u.

Informações obtidas a partir do modelo.

$$I_d = K_p * \frac{W}{L} * \frac{(V_{gs} - V_t)^2}{2}$$

$$I_d = 50 * \frac{3}{1.5} * \frac{(1.2 - 1)^2}{2}$$

$$I_d = 2 \mu A$$

Parte 3

Temos que alterar W de 3u para 3.5u. Feita essa alteração o valor limite alcançado pela corrente do transistor é 1.4 mA em vez de 1.2 mA. Os comentários feitos sobre o gráfico na parte 1 se aplicam novamente a esse gráfico.

Vt=1, Kp=50u, Vgs=1.2V, Vds= 2V, W= 3.5u, L= 1.5u.

Informações obtidas a partir do modelo.

$$I_d = K_p * \frac{W}{L} * \frac{(V_{gs} - V_t)^2}{2}$$

$$I_d = 50 * \frac{3.5}{1.5} * \frac{(1.2 - 1)^2}{2}$$

$$I_d = 2.33 \,\mu A$$

Ao aumentar o valor da largura (W) faz com que o transistor permita a passagem de mais corrente, assim aumentando a região de operação do transistor em 0.2 uA.

Parte 4

$$\Omega = \frac{\Delta V_{ds}}{\Delta I_{ds}}$$

Volts	Variação Vds (V)	Variação lds (uA)	Resistencia de saída incrementada
1.5	4.5	6.56	685975
2.0	4.0	23.33	171453
2.5	3.5	45.94	76186
3.0	3.0	70.00	42857
3.5	2.5	91.15	27427
4.0	2.0	105.00	19047
4.5	1.5	107.19	13993
5.0	1.0	93.33	10714

Passo 5

W	L	Vds	Vgs	ld calculado	ld simulado
(Largura)	(comprimento)		_		
3.50u	1.50u	2.0V	1.20V	2.33 uA	2.80 uA
<mark>3.85u</mark>	1.50u	2.0V	1.20V	2.57 uA	3.08 uA
<mark>3.15u</mark>	1.50u	2.0V	1.20V	2.10 uA	2.52 uA
3.50u	<mark>1.65u</mark>	2.0V	1.20V	2.12 uA	2.54 uA
3.50u	<mark>1.35u</mark>	2.0V	1.20V	2.59 uA	3.11 uA
3.50u	1.50u	2.2V	1.20V	2.33 uA	2.85 uA
3.50u	1.50u	1.8V	1.20V	2.33 uA	2.75 uA
3.50u	1.50u	2.0V	1.32V	5.97 uA	7.17 uA
3.50u	1.50u	2.0V	<mark>1.08V</mark>	0.37 uA	0.45 uA

A maior alteração na corrente de dreno é dada ao alterar o Vgs, enquanto a menor alteração é dada ao alterar o Vds. Isso se dá graças a que a voltagem que é usada no Vgs e a que libera o espaço para a corrente passar, assim aumenta o seu fluxo e valores. Percebemos que apenas alterando o Vgs há grandes mudanças nos valores já que no ld simulado usando Vds alterados a diferença foi mínima e na calculada nem ouve diferença, mas isso se deve ao fato de que na equação utilizada para os cálculos manuais não se utiliza o Vds enquanto no LTSpice esses valores são usados.