# МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа прикладной математики и информатики

# Отчёт о выполнении лабораторной работы 5.1

Измерение коэффициента ослабления потока  $\gamma$ -лучей в веществе и определение их энергии (+дозиметрия)

Соболевский Федор Александрович Старокожко Иван Георгиевич Б05-111

# Теоретические положения

Проходя через вещество, пучок  $\gamma$ -квантов постепенно ослабляется, ослабление происходит по экспоненциальному закону, который может быть записан в двух эквивалентных формах:

$$I = I_0 e^{-\mu l},$$
  

$$I = I_0 e^{-\mu' m_l},$$

где  $I, I_0$  — интенсивности прошедшего и падающего излучений, l — длина пути, пройденного пучком  $\gamma$ -лучей,  $m_l$  — масса пройденного вещества на единицу площади,  $\mu$ ,  $\mu'$  — константы, зависящие от вещества. Ослабление потока  $\gamma$ -лучей возникает из-за фотоэлектрического поглощения, комптоновского рассеяния и генерации электрон-позитронных пар (при достаточных энергиях).

Считая, что опыт поставлен в хорошей геометрии, то есть сквозь вещество всегда идёт узкий параллельный пучок, можно считать, что комптоновское рассеяние выводит  $\gamma$ -кванты из пучка и в итоге меняется количество, но не энергия  $\gamma$ -квантов. Это означает, что  $\mu$  не зависит от l. Число выбывших на пути dl из пучка  $\gamma$ -квантов

$$-dN = \mu N dl,$$

откуда

$$N = N_0 e^{\mu l},$$

или

$$\mu = \frac{1}{l} \ln \frac{N_0}{N}.\tag{1}$$

### Описание установки



Рис. 1: Схема установки.

На Рис. 1 изображена схема установки. Свинцовый коллиматор выделяет узкий почти параллельный пучок  $\gamma$ -квантов, проходящий через набор поглотителей  $\Pi$  и регистрируемый сцинтилляционным счётчиком. Сигналы от счётчика усиливаются и регистрируются пересчётным прибором  $\Pi\Pi$ . Высоковольтный выпрямитель BB обеспечивает питание сцинтилляционного счётчика. Чтобы уменьшить влияние плохой геометрии, счётчик расположен на большим расстоянии от источника, поглотители имеют небольшие размеры, а так же устанавливаются на расстоянии друг от друга, чтобы испытавшие комптоновское рассеяние кванты с меньшей вероятностью могли в него вернуться.

# Ход работы, результаты

#### Измерение фона

В ходе работы были проведены измерения для определения коэффициента поглащения трех металлов: алюминия (Al), свинца (Pb) и железа (Fe). Промежуток времени, на котором считалось число частиц в каждом наблюдении, сохранялся равным 10с.

Первое измерение – фон. Образец был закрыт специальным считом, при этом дачик показал приблизительно постоянные измерения. Результаты представлены в таблице

| № измерения | $N_0$ |
|-------------|-------|
| 1           | 336   |
| 2           | 309   |
| 3           | 317   |
| 4           | 329   |
| 5           | 320   |
| 6           | 311   |
| 7           | 318   |
| 8           | 334   |
| 9           | 308   |
| 10          | 331   |
| среднее     | 321   |
| погрешность | ± 1   |

Полученное значение бедут вычитаться из всех последующих измерений, чтобы компенсировать фоновое излучение.

#### Измерение Al

Первая серия измерений проводилась с образцами из алюминия. Для регулирования толщины поглащающего/рассеивающего слоя использовались металлические бруски толщиной  $l_0=2.2$ см. Результаты измерений представлены в таблице 1.

| $l_0$ Fe, mm | $\sum l_i$ , mm | N     | $\frac{l_0}{l}$ | $\ln\left(\frac{N}{N_0}\right)$ |
|--------------|-----------------|-------|-----------------|---------------------------------|
| 2,2          | 2,2             | 71526 | 1,000           | 1                               |
| 2,2          | 4,4             | 48000 | 0,500           | 0,6696                          |
| 2,2          | 6,6             | 31844 | 0,333           | 0,4427                          |
| 2,2          | 8,8             | 20932 | 0,250           | 0,2895                          |
| 2,2          | 11              | 14321 | 0,200           | 0,1966                          |
| 2,2          | 13,2            | 9675  | 0,167           | 0,1314                          |
| 3,2          | 16,4            | 6815  | 0,195           | 0,0912                          |

Таблица 1: Измерения Al

По результатам измерений построим график в логарифмированных координатах. График представлен на рис. 2. Из него получаем коэффициент  $\mu_{Al}=1.47\pm0.04$ , что соответствует энергии  $\gamma$ -кванта, равной 0.6 МэВ.

# Измерение Pb

Вторая серия измерений проводилась аналогично с образцами из свинца.  $l_0 = 0.47$ см. Результаты измерений представлены в таблице 2.



Рис. 2: График для Al

| $l_0$ Fe, mm | $\sum l_i$ , mm | N     | $\frac{l_0}{l}$ | $\ln\left(\frac{N}{N_0}\right)$ |
|--------------|-----------------|-------|-----------------|---------------------------------|
| 0,47         | 0,47            | 58182 | 1,000           | 1                               |
| 0,47         | 0,94            | 32415 | 0,500           | 0,5547                          |
| 0,47         | 1,41            | 18851 | 0,333           | 0,3202                          |
| 0,47         | 1,88            | 11189 | 0,250           | 0,1878                          |
| 0,47         | 2,35            | 6628  | 0,200           | 0,1090                          |
| 0,47         | 2,82            | 4064  | 0,167           | 0,0647                          |

Таблица 2: Измерения Pb

По результатам измерений построим график в логарифмированных координатах. График представлен на рис. 3. Из него получаем коэффициент  $\mu_{Pb}=0.249\pm0.01$ , что соответствует энергии  $\gamma$ -кванта, равной 0.6 МэВ.

# Измерение Fe

Третья серия измерений проводилась с образцами из железа.  $l_0 = 1.01$ см. Результаты измерений представлены в таблице 3.

По результатам измерений построим график в логарифмированных координатах. График представлен на рис. 4. Из него получаем коэффициент  $\mu_{Al}=0.691\pm0.01$ , что соответствует энергии  $\gamma$ -кванта, равной 0.5 МэВ.



Рис. 3: График для Pb

| $l_0$ Fe, mm | $\sum l_i$ , mm | N     | $\frac{l_0}{l}$ | $\ln\left(\frac{N}{N_0}\right)$ |
|--------------|-----------------|-------|-----------------|---------------------------------|
| 1,01         | 1,01            | 60826 | 1,000           | 1                               |
| 1,01         | 2,02            | 34441 | 0,500           | 0,5639                          |
| 1,01         | 3,03            | 19734 | 0,333           | 0,3208                          |
| 1,01         | 4,04            | 11367 | 0,250           | 0,1826                          |
| 1,01         | 5,05            | 6751  | 0,200           | 0,1063                          |
| 1,01         | 6,06            | 4072  | 0,167           | 0,0620                          |

Таблица 3: Измерения Fe

#### Выводы

В ходе выполнения лабораторной работы были проведены измерения коэффициента ослабления  $\mu$  для гамма-квантов при прохождении через различные материалы: алюминий (Al), свинец (Pb) и железо (Fe).

Для алюминия был получен коэффициент ослабления  $\mu_{\rm Al}=1.47\pm0.04$ , что соответствует энергии  $\gamma$ -кванта, равной приблизительно 0.6 МэВ. Для свинца получен коэффициент  $\mu_{\rm Pb}=0.249\pm0.01$ , что также соответствует энергии  $\gamma$ -кванта около 0.6 МэВ. Наконец, для железа получен коэффициент  $\mu_{\rm Fe}=0.691\pm0.01$ , что соответствует энергии  $\gamma$ -кванта около 0.5 МэВ.

В действительности изучаемое излучение испускает  $^{137}Cs$  по каналу  $\beta^-$ , что означает табличное значение энергии гамма-кванта в 0.6617. Таким образом, отклонение составляет менее 10%, что достаточно хорошо сходится с теорией.

Результаты эксперимента согласуются с теорией ослабления гамма-квантов в веществе и позволяют оценить энергии используемых  $\gamma$ -квантов. Погрешности измерений в пределах указанных значений свидетельствуют о хорошей точности проведенных измерений.



Рис. 4: График для Fe