1、实验名称及目的

精细化无人车模型代码生成及软硬件在环仿真: 在 Matlab 将 Simulink 文件编译生成精细化无人车的 DLL 模型文件;并对生成的精细化无人车模型进行软硬件在环仿真测试,通过本例程熟悉平台精细化无人车模型的使用。

2. 实验原理

精细化小车模型相对于普通的运动仿真模型,增加了对于轮胎的建模(主要包括车轮制动系统和悬架的弹簧-阻尼系统等)

3. 实验效果

实现精细化无人车 DLL 模型文件生成,以及完成精细化无人车软硬件在环仿真。

4. 文件目录

文件夹/文件名称	说明
Trailer.slx	精细化无人车模型文件。
Trailer_HITLRun.bat	硬件在环仿真批处理文件。
Trailer_SITLRun.bat	软件在环仿真批处理文件。
GenerateModelDLLFile.p	DLL 格式转化文件。
Trailer_Init.m	动力学模型相关参数。

5. 运行环境

序号	软件要求	硬件要求		
大行		名称	数量	
1	Windows 10 及以上版本	笔记本/台式电脑 ^①	1	
2	RflySim 平台免费版	Pixhawk 6C [©]	1	
3	MATLAB 2023a 及以上 [®]	数据线	1	

- ① 推荐配置请见: https://doc.rflysim.com
- ② 平台安装时的推荐编译命令为: px4_fmu-v6c_default、, PX4 固件版本为: 1.13.3。其他配套飞控请见: http://doc.rflysim.com/hardware.html。

6. 实验步骤

6.1. DLL 模型生成

Step 1:

打开"Trailer.slx"文件,点击Build Model 按钮生成代码。

Step 2:

代码生成完毕后,在 Matlab 中右键"GenerateModelDLLFile.p"文件,点击运行,生成 DLL 文件。

6.2. 软件在环仿真

Step 1:

双击运行"Trailer_SITL.bat"批处理文件,在弹出的终端窗口中输入 1,启动一辆车的软件在环仿真。

Step 2:

等待车辆初始化完成。

Step 3:

1、在 QGC 界面左上角点击 "Ready To Fly" 处进行解锁,最后滑动 QGC 下方解锁飞机进度条。

2、在 QGC 中点击地图后确认 "Go to location", 滑动上方 "将飞机移动到指定位置"完成目标位置确定。

3、在UE4与QGC中观察无人车的运动状态与运动轨迹。

6.3. 硬件在环仿真

Step 1:

按下图所示将飞控与计算机连接。

Step 2:

推荐使用 Pixhawk 6C 飞控进行硬件在环仿真,将飞控烧录至 1.13.3 固件版本,机架设置为 "Generic Ground Vehicle"",点击 QGC 右上角的"应用并重启"。

Step 3:

点击"安全",设置硬件在环仿真为"HITL enabled",重新插拔飞控。

Step 4:

点击"参数",在搜索栏中输入"UAVCAN_ENABLE",在弹出框中设置为"Disabled",保存后重新插拔飞控即可。

下图为完成硬件在环仿真相关配置后的示意图。

Step 5:

右键以管理员身份运行"Trailer_HITL.bat"批处理文件,在弹出的终端窗口中根据串口提示输入串口号 5,启动一辆无人车的硬件在环仿真。

PythonCtrlAPI	2023/10/25 14:52	文件夹	
SimulinkCtrlAPI	2023/10/25 15:00	文件夹	
🛅 slprj	2023/10/25 15:48	文件夹	
Trailer_ert_rtw	2023/10/25 15:48	文件夹	
GenerateModelDLLFile.p	2023/9/22 18:47	MATLAB.p.9.14.0	6 KB
MavLinkStruct.mat	2022/5/9 10:27	MATLAB.mat.9.1	5 KB
MulticopterModel.zip	2023/10/25 15:48	360压缩 ZIP 文件	371 KB
readme.docx	2023/10/25 15:08	Microsoft Word	0 KB
Trailer.dll	2023/10/25 15:49	应用程序扩展	354 KB
■ Trailer.exe	2023/10/25 15:48	应用程序	344 KB
Trailer.slx	2023/10/25 14:34	Simulink Model	269 KB
Trailer.slxc	2023/10/25 15:48	MATLAB.slxc.9.1	4,281 KB
▼ Trailer_HITL.bat	2023/9/20 11:43	Windows 批处理	6 KB
🖺 Trailer_init.m	2023/10/25 14:31	MATLAB Code	2 KB
■ Trailer_SITL.bat	2023/9/20 11:43	Windows 批处理	6 KB

Step 6:

之后测试步骤与软件在环仿真的 Step2 到 Step3 相同,运行之后观察精细化无人车能否按照指令飞行。

7. 参考资料

- [1]. DLL/SO 模型与通信接口......API.pdf
- [2]. 外部控制接口...\..\API.pdf

[3].

8. 常见问题

Q1.

A1.