Guía Práctica 1 - Verilog Risc V

Importante: De cada circuito es necesario diseñar su correspondiente banco de pruebas para detectar y corregir errores qué de otro modo serán difíciles de identificar en etapas posteriores de su aplicación. El banco de pruebas debe crearse y ejecutarse antes de pasar al siguiente desarrollo de circuito.

Parte 1:

Empezaremos por diseñar en verilog los circuitos correspondientes al risc-V qué mantienen el estado del sistema. De cada circuito es necesario diseñar su correspondiente banco de pruebas para detectar y corregir errores qué de otro modo serán difíciles de identificar en etapas posteriores de su aplicación.

1. Registro Contador de programa.

El mismo es un registro de 16 bits de tipo biestable D.

Nombre: PC

Entradas: clk, pcNext(16).

Salidas: pc(16).

2. Memoria de Instrucciones.

El mismo es un arreglo de 64 registros de 32 bits.

Nombre: IM

Entradas: addres(16).

Salidas: rd(32).

Banco de Registros.

El mismo es un arreglo de 32 registros de 32 bits con:

Nombre: BR

Entradas: clk, a1(5), a2(5), a3(5), wd3(32), we.

Salidas: rd1(32), rd2(32).

4. Memoria de Datos.

El mismo es un arreglo de 32 registros de 32 bits con:

Nombre: DM

Entradas: clk, addres(16), wd(32), we.

Salidas: rd(32).

Parte 2:

Continuaremos por diseñar en verilog los circuitos qué resulten auxiliares para el camino de datos.

Extensión de Signo

El mismo es dispositivo qué extiende el bit de signo para operar con la ALU con:

Nombre: SE

Entradas: inm(25) src(2).

Interiores i0(31:20), is1(31:25, 11:7), ib2(31, 7, 30:25, 11:8, 1'b0), i 3()

Salidas: inmExt(32).

Unidad Aritmetico Logica

El mismo es dispositivo qué: suma, resta por C2, AND, OR, SLT. a continuacion su tabla de verdad.

Lic. Eugenio J. Padula 1/3

ALUControl _{2:0}	Function		
000	add		
001	subtract		
010	and		
011	or		
101	SLT		

Nombre: ALU

Entradas: srcA(32), srcB(32), ALUControl(3).

Salidas: res(32).

7. Unidad Aritmetico Logica

El mismo es dispositivo que suma

Nombre: Adder

Entradas: op1(32), op2(32).

Salidas: sal(32).

8. Multiplexor 2x1

El mismo es multiplexor 2x1 de 32 bits

Nombre: Mux2x1

Entradas: e1(32), e2(32) sel.

Salidas: sal(32).

Parte 3:

Continuaremos por diseñar en verilog los circuitos de la unidad de control.

9. Unidad de Control

El mismo es la unidad qué controla el camino de datos y contendra dos modulos: el Decodificador principal y el Decodificador de ALU.

Nombre: UC

Entradas: f7, f3(2:0), op(6:0), zero.

Salidas: sal(0:9) {pcSrc, resSrc, memWrite, ALUcontrol(2:0), aluSrc, inmSrc(1:0), regWrite ...

10. Decodificador Principal

El mismo es la unidad qué decodifica el tipo de instrucción para generar el camino de datos.

A continuación definimos su tabla de verdad.

Lic. Eugenio J. Padula 2/3

op	Instruct	RegWrite	ImmSrc	ALUSre	MemWrite	ResultSrc	Branch	ALUOp
3	1w	1	00	1	0	1	0	00
35	sw	0	01	1	1	Х	0	00
51	R-type	1	XX	0	0	0	0	10
99	beq	0	10	0	0	X	1	01

Nombre: mainDeco Entradas: op(6:0).

Salidas: branch, resSrc(1:0), memWrite, aluSrc, inmSrc(1:0), regWrite, aluOp(1:0)

11. Decodificador de ALU

El mismo es la unidad qué decodifica el tipo de operación para generar el control de la ALU. A continuación definimos su tabla de verdad.

ALUOp	funct3	op ₅ , funct7 ₅	Instruction	ALUControl _{2:0}
00	х	х	lw, sw	000 (add)
01	х	х	beq	001 (subtract)
10	000	00, 01, 10	add	000 (add)
	000	11	sub	001 (subtract)
	010	×	slt	101 (set less than)
	110	х	or	011 (or)
	111	х	and	010 (and)

Nombre: aluDeco

Entradas: op(5), f7, f3(2:0), aluOp(1:0)

Salidas: aluControl(2:0)

Lic. Eugenio J. Padula 3/3