3анятие № 11

Feature/Selection

Data Scientist

Содержание

- 1 Введение. Зачем всё это?
- 2 Статистика в отборе признаков
- 3 Декомпозиция данных
- 4) Практика.

Введение. Зачем всё это?

Зачем всё это? Проклятье размерности

Одно измерение - 5 точек

Два измерение - 25 точек

Три измерения - 125 точек

Статистика в отборе признаков

Корреляция

Корреляция

Т-статистика

$$t = \frac{\hat{\beta}_i - 0}{SE(\hat{\beta}_i)}$$

- Если между x_i и у нет зависимости, то t соответсвует tраспределению с n-2 степенями свободы
- p-value вероятность того, что при известном распределении наблюдаемое значение \geq ltl (при условии, что $\beta_i = 0$)
- Если p-value достаточно маленький (< 1%), то мы можем отклонить H_0

P-value

P-value

Декомпозиция данных

Собственный вектор

$$M\vec{x} = \lambda \vec{x}$$

PCA

Зачем он нужен? Он уменьшает размерность! ©

PCA

$$Cov(X_i, X_j) = E\left[\left(X_i - E(X_i)\right) \cdot \left(X_j - E(X_j)\right)\right] = E(X_i X_j) - E(X_i) \cdot E(X_j)$$

$$Var(X^*) = \Sigma^* = E(X^* \cdot X^{*T}) = E\left((\vec{v}^T X) \cdot (\vec{v}^T X)^T\right) =$$
$$= E(\vec{v}^T X \cdot X^T \vec{v}) = \vec{v}^T E(X \cdot X^T) \vec{v} = \vec{v}^T \Sigma \vec{v}$$

LDA

это иерархическая байесовская модель, состоящая из двух уровней:

на первом уровне – смесь, компоненты которой соответствуют «темам»;

на втором уровне – мультиномиальная переменная с априорным распределением Дирихле, которое задаёт «распределение тем» в документе.

$$p(\theta, , , N \mid \alpha, \beta) = p(N \mid \xi)p(\theta \mid \alpha) \prod_{n=1}^{N} p(z_n \mid \theta)p(w_n \mid z_n, \beta).$$

LDA

Сравнение LDA и PCA

PCA:

component axes that maximize the variance

LDA:

maximizing the component axes for class-separation

good projection: separates classes well

SVD

SVD

ПРАКТИКА

Спасибо за внимание!

Сапрыкин Артур
Data Scientist

