[Aula 09] Propriedades das LRs – Minimização de AFD

Prof. João F. Mari

joaof.mari@ufv.br

[AULA 09] Propriedades das LRs – Minimização de AFD

SIN 131 – Introdução à Teoria da Computação (PER-3)

ROTEIRO

- Minimização de um AFD
 - Igualdade de LRs
 - Minimização de um Autômato Finito
 - Pré-requisitos do algoritmo de minimização
 - Algoritmo de minimização
 - [EX] Algoritmo de minimização
- Propriedades das LRs
 - Operações fechadas sobre as LRs
 - União e concatenação
 - Complemento
 - Intersecção
- Outras propriedades
 - LR é finita, infinita ou vazia
 - [EX] LR finita, infinita ou vazia
 - Igualdade de LRs

Outras propriedades

Minimização de um AFD

Prof. João Fernando Mari (joaof.mari@ufv.br)

3

[AULA 09] Propriedades das LRs – Minimização de AFD

SIN 131 – Introdução à Teoria da Computação (PER-3)

Outras propriedades

Igualdade de LRs

- AFD Mínimo ou Autômato Finito Mínimo
 - AFD equivalente, com o menor número de estados **possível**.
- Minimização em algumas aplicações especiais:
 - Não necessariamente o menor custo de implementação.
 - [EX] circuitos lógicos ou redes lógicas:
 - Pode ser desejável introduzir estados intermediários de forma a melhorar eficiência ou facilitar ligações físicas.
 - Prever variáveis específicas da aplicação.
- Autômato finito mínimo é único
 - A menos de isomorfismo;
 - Diferenciando-se, eventualmente, na identificação dos estados.

Outras propriedades

Minimização de um Autômato Finito

- Algoritmo de minimização:
 - Unifica os estados equivalentes.
- Estados equivalentes:
 - Processamento de uma entrada qualquer;
 - A partir de estados equivalentes;
 - Resulta na mesma condição de aceitação.
- [DEFINIÇÃO] Estados Equivalentes:
 - M = $(\Sigma, Q, \delta, q_0, F)$ é um AFD qualquer:
 - − q e p de Q são **Estados Equivalentes** sse, para qualquer $w \in Σ^*$

$$\delta(q, w) = \delta(p, w)$$

- resultam simultaneamente em estados finais, ou não-finais.

Prof. João Fernando Mari (joaof.mari@ufv.br)

.

[AULA 09] Propriedades das LRs – Minimização de AFD

SIN 131 – Introdução à Teoria da Computação (PER-3)

Outras propriedades

Autômato Finito Mínimo

- Seja L uma linguagem regular.
 - O Autômato Finito Mínimo é um AFD Mm:

$$M_m = (\Sigma, Q_m, \delta_m, q_{0m}, F_m)$$

- Tal que ACEITA(M_m) = L.
- Para qualquer AFD M = (Σ, Q, δ, q₀, F) tal que ACEITA(M) = L
 #Q ≥ #Qm

Pré-requisitos do algoritmo de minimização

- Autômato Finito Determinístico.
 - Todos os estados <u>alcançáveis</u> a partir do estado inicial.
 - Função programa total.
- Caso não satisfaça algum dos pré-requisitos:
 - Gerar um autômato determinístico equivalente;
 - Algoritmos de tradução apresentados nos teoremas.
- Eliminar estados inacessíveis (e transições)
- Função programa total:
 - Introduzir um estado não-final d;
 - Incluir transições não-previstas, tendo d como estado destino;
 - Incluir um ciclo em d para todos os símbolos do alfabeto.

Prof. João Fernando Mari (joaof.mari@ufv.br)

7

[AULA 09] Propriedades das LRs – Minimização de AFD

SIN 131 – Introdução à Teoria da Computação (PER-3)

Algoritmo de Minimização

- Identifica os estados equivalentes por exclusão.
- Montar uma Tabela de Estados:
 - Marcar os <u>estados não-equivalentes.</u>
 - Entradas não-marcadas:
 - São estados equivalentes.

Passo 1 – Construção da tabela

- Seja M = $(\Sigma, Q, \delta, q_0, F)$
 - AFD que satisfaz aos pré-requisitos.
- Construção da tabela:

$$M = \{q_0, q_1, q_2, ..., q_n\}$$

Prof. João Fernando Mari (joaof.mari@ufv.br)

[AULA 09] Propriedades das LRs – Minimização de AFD

SIN 131 – Introdução à Teoria da Computação (PER-3)

Algoritmo de Minimização

Passo 2: Estados trivialmente não-equivalentes

- Marcação dos Estados Trivialmente Não-Equivalentes:
 - Pares do tipo { estado final, estado não-final }

Passo 3: Estados não-equivalentes

• Para $\{q_{ij}, q_{ij}\}$ não-marcado e $a \in \Sigma$, suponha que

$$\delta(q_u, a) = p_u \quad e \quad \delta(q_v, a) = p_v$$

- pu = pv
 - qu é equivalente a qv para a: não marcar.
- pu ≠ pv e { pu, pv } não está marcado
 - { qu, qv } incluído na lista encabeçada por { pu, pv }.
- pu ≠ pv e { pu, pv } está marcado
 - { qu, qv } não é equivalente: marcar.
 - Se { qu, qv } encabeça uma lista:
 - Marcar todos os pares da lista;
 - E, recursivamente, se algum par da lista encabeça outra lista.

Prof. João Fernando Mari (joaof.mari@ufv.br)

11

[AULA 09] Propriedades das LRs – Minimização de AFD

SIN 131 – Introdução à Teoria da Computação (PER-3)

Algoritmo de Minimização

Passo 4: Unificação dos Estados Equivalentes

- Pares não-marcados são equivalentes:
 - Equivalência de estados é transitiva;
 - Os pares de estados não finais equivalentes.
 - geram um único estado não final.
 - Pares de estados finais equivalentes
 - geram um único estado final.
 - Se algum dos estados equivalentes é inicial
 - O estado unificado é inicial.
 - Transições com origem (destino) em um estado equivalente
 - origem (destino) no estado unificado.

Passo 5: Exclusão dos Estados Inúteis

- q é um estado inútil se:
 - É não-final;
 - A partir de q não é possível atingir um estado final.
- O estado d (se incluído) sempre é inútil.
- Excluir as transições com origem ou destino em estado inútil.

Prof. João Fernando Mari (joaof.mari@ufv.br)

13

[AULA 09] Propriedades das LRs – Minimização de AFD

SIN 131 – Introdução à Teoria da Computação (PER-3)

Algoritmo de Minimização

[EX] Algoritmo de minimização

[EX] Algoritmo de minimização

- Passo 1
 - Construção da tabela

× 91

Passo 2

Marcação dos pares { estado final, estado

	q ₂	X		3.5	não	-final
	q ₃	×				
	q ₄		×	×	×	
	q 5		×	×	×	
30		q ₀	q 1	q ₂	q ₃	q ₄

SIN 131 – Introdução à Teoria da Computação (PER-3)

Prof. João Fernando Mari (joaof.mari@ufv.br)

15

[AULA 09] Propriedades das LRs – Minimização de AFD

Algoritmo de Minimização

[EX] Algoritmo de minimização

- Analisando o par {q0, q4}:
 - Para a: $\delta(q0, a) = q2 e \delta(q4, a) = q3$, então {q2, q3}
 - {q2, q3} é não-marcado...
 - Incluir {q0, q4} nas listas de {q2, q3}.
 - Para b: $\delta(q0, b) = q1 e \delta(q4, b) = q2$, então $\{q1, q2\}$
 - {q1, q2} é não-marcado...
 - Incluir {q0, q4} na listas de {q1, q2}.

- Analisando o par {q0, q5}:
 - Para a: δ (q0, a) = q2 e δ (q5, a) = q2, então {q2, q2}
 - {q2, q2} é trivialmente equivalente...
 - Nada a fazer.
 - Para b: δ (q0, b) = q1 e δ (q5, b) = q3, então {q0, q5}
 - {q1, q3} é não-marcado...
 - Incluir {q0, q5} na lista de {q1, q3}.

[EX] Algoritmo de minimização

- Analisando {q1, q2}:
 - Para a: $\delta(q1, a) = q1 e \delta(q2, a) = q4$, então $\{q1, q4\}$
 - {q1, q4} é marcado → marcar {q1, q2}.
 - {q1, q2} encabeça lista: marcar {q0, q4}.
 - {q0, q4} não encabeça lista: interrompe o processo.
 - Para b: $\delta(q2, b) = q5 e \delta(q1, b) = q0$, então {q0, q5}
 - {q0, q5} é não-marcado...
 - Incluir {q1, q2} na lista de {q0, q5}.

- Analisando {q1, q3}:
 - Para a: $\delta(q1, a) = q1 e \delta(q3, a) = q5$, então $\{q1, q5\}$
 - {q1, q5} é marcados → marcar {q1, q3}
 - {q1, q3} encabeça lista: marcar {q0, q5}
 - {q0, q5} encabeça lista: marcar {q1, q2}
 - {q1, q2} encabeça lista: marcar {q0, q4}.
 - {q0, q4} não encabeça lista: interrompe o processo.
 - Para b: $\delta(q3, b) = q4 e \delta(q1, b) = q0$, então $\{q0, q4\}$
 - {q0, q4} é marcado: marcar {q1, q3}
 - {q1, q3} encabeça uma lista: (ver acima)

Prof. João Fernando Mari (joaof.mari@ufv.br)

[AULA 09] Propriedades das LRs – Minimização de AFD

SIN 131 – Introdução à Teoria da Computação (PER-3)

Algoritmo de Minimização

[EX] Algoritmo de minimização

- Analisando {q2, q3}:
 - Para a: $\delta(q2, a) = q4 e \delta(q3, a) = q5$, então {q4, q5}
 - Para b: $\delta(q2, b) = q5 e \delta(q3, b) = q4$, então {q4, q5}
 - {q4, q5} é não-marcado
 - incluir {q2, q3} na lista de {q4, q5}

- Analisando {q4, q5}:
 - Para a: $\delta(q4, a) = q3 e \delta(q5, a) = q2$, então {q2, q3}
 - Para b: $\delta(q4, b) = q2 e \delta(q5, b) = q3$, então {q2, q3}
 - {q2, q3} é não-marcado
 - Incluir {q4, q5} na lista de {q2, q3}

17

[EX] Algoritmo de minimização

Prof. João Fernando Mari (joaof.mari@ufv.br)

[AULA 09] Propriedades das LRs – Minimização de AFD

SIN 131 – Introdução à Teoria da Computação (PER-3)

Algoritmo de Minimização

[EX] Algoritmo de minimização

Passo 4. { q₂, q₃ } e { q₄, q₅ } são não-marcados

 $-q_{23}$: unificação dos estados q_2 e q_3 .

 $-q_{45}$: unificação dos estados finais q_4 e q_5 .

[EX] Algoritmo de minimização

AFD

AFD Mínimo

Prof. João Fernando Mari (joaof.mari@ufv.br)

[AULA 09] Propriedades das LRs – Minimização de AFD

SIN 131 – Introdução à Teoria da Computação (PER-3)

Algoritmo de Minimização

[EX] Algoritmo de minimização

- Teorema: Autômato Finito Mínimo
 - O autômato construído usando o algoritmo de minimização
 - AFD com menor número de estados que aceita a linguagem
- Teorema: Unicidade do Autômato Finito Mínimo
 - AFD mínimo de uma linguagem é único
 - A menos de isomorfismo
 - Usual ser referido como o (e não como um) autômato mínimo.
- Isomorfismo de AFD:
 - Diferencia-se, eventualmente, na identificação (nome) dos estados

21

PROPRIEDADES DAS LRS

Prof. João Fernando Mari (joaof.mari@ufv.br)

23

[AULA 09] Propriedades das LRs – Minimização de AFD

SIN 131 – Introdução à Teoria da Computação (PER-3)

Operações fechadas sobre as LR

- Operações sobre LR podem ser usadas para:
 - Construir novas linguagens a partir de linguagens conhecidas:
 - Álgebra de LR.
 - Provar propriedades e construir algoritmos.
- Classe de Linguagens Regulares é fechada para:
 - União;
 - Concatenação;
 - Complemento;
 - Intersecção.

Operações fechadas sobre as LR

União e Concatenação

 Decorrem trivialmente da definição de expressão regular (ER).

Prof. João Fernando Mari (joaof.mari@ufv.br)

25

[AULA 09] Propriedades das LRs – Minimização de AFD

SIN 131 – Introdução à Teoria da Computação (PER-3)

Operações fechadas sobre as LR

Complemento

Suponha L uma LR sobre Σ*. Então existe um AFD M:

$$M = (\Sigma, Q, \delta, q_0, F)$$

- tal que ACEITA(M) = L.
- Construir um AFD M_C tal que ACEITA(M_C) = ~L

MC =
$$(\Sigma, Q_C, \delta_C, q_0, F_C)$$

- Como?
 - Introduzir um novo estado (não final) d:
 - Destino de todas as transações indefinidas;
 - $Q_C = Q \cup \{d\}$ (suponha $d \notin Q$).
 - Um ciclo em **d** para todo símbolo de **Σ**
 - Garante a leitura de toda a entrada.
 - Transformar estados finais em não finais e vice-versa:
 - $F_C = Q_C F$
- Claramente, o autômato finito M_C é tal que

$$ACEITA(M_C) = {^{\sim}L}$$
 ou seja $ACEITA(M_C) = REJEITA(M)$

Operações fechadas sobre as LR

Complemento

• M = ({ a, b }, { q_0 , q_1 , q_2 , q_f }, δ , q_0 , { q_f })

• MC = ({ a, b }, { q_0 , q_1 , q_2 , q_f , d }, δ_C , q_0 , { q_0 , q_1 , q_2 , d })

Prof. João Fernando Mari (joaof.mari@ufv.br)

27

[AULA 09] Propriedades das LRs – Minimização de AFD

SIN 131 – Introdução à Teoria da Computação (PER-3)

Operações fechadas sobre as LR

Intersecção

- Suponha L₁ e L₂ LR
- Propriedade de DeMorgan para conjuntos

$$L_1 \cap L_2 = {\sim}({\sim}L_1 \cup {\sim}L_2)$$

- Como a Classe das LR é fechada para complemento e união:
 - Então também é fechada para a intersecção.

OUTRAS PROPRIEDADES

Prof. João Fernando Mari (joaof.mari@ufv.br)

29

[AULA 09] Propriedades das LRs – Minimização de AFD

SIN 131 – Introdução à Teoria da Computação (PER-3)

Outras propriedades

LR finita, infinita ou vazia

- Se L é uma LR aceita por um autômato finito M = $(\Sigma, Q, \delta, q_0, F)$ com n estados, então L é:
 - Vazia:
 - Sse M não aceita qualquer palavra w tal que
 - |w| < n
 - Infinita:
 - Sse M aceita pelo menos uma palavra w tal que
 - n ≤ | w | < 2n
 - Finita:
 - Sse M não aceita qualquer palavra w tal que
 - n ≤ | w | < 2n
 - Contraposição sobre L infinita.

Outras propriedades

[EX] LR finita, infinita ou vazia

- A linguagem é infinita sse aceita uma palavra w tal que:
 - $n \le |w| < 2n$:
 - aabaa é aceita
 - 3 ≤ | aabaa | < 6
- Logo, a linguagem é infinita.

Prof. João Fernando Mari (joaof.mari@ufv.br)

21

[AULA 09] Propriedades das LRs – Minimização de AFD

SIN 131 – Introdução à Teoria da Computação (PER-3)

Outras propriedades

Igualdade de LRs

- Teorema mostra que:
 - Existe um algoritmo para verificar se dois autômatos finitos são equivalentes:
 - Reconhecem a mesma linguagem.
- Importante consequência:
 - Existe um algoritmo que permite verificar se duas implementações são equivalentes.

Outras propriedades

Igualdade de LRs

 Se M₁ e M₂ são AF, então existe um algoritmo para determinar se:

$$ACEITA(M_1) = ACEITA(M_2)$$

- PROVA:
- Suponha M₁ e M₂ AFs
 - ACEITA(M_1) = L_1 e ACEITA(M2) = L_2
- Portanto, é possível construir um AF M3:
 - Tal que ACEITA(M_3) = L_3

$$L_3 = (L_1 \cap {}^{\sim}L_2) \cup ({}^{\sim}L_1 \cap L_2)$$

- Claramente, L₁ = L₂ sse L₃ é vazia.
 - Existe um algoritmo para verificar se uma LR é vazia.

Prof. João Fernando Mari (joaof.mari@ufv.br)

33

[AULA 09] Propriedades das LRs – Minimização de AFD

SIN 131 – Introdução à Teoria da Computação (PER-3)

BIBLIOGRAFIA

- MENEZES, P. B. Linguagens formais e autômatos,
 6. ed., Bookman, 2011.
 - Capítulo 4.
 - + Slides disponibilizados pelo autor do livro.

[FIM]

- FIM:
 - [AULA 09] Propriedades das LRs Minimização de AFD
- Próxima aula:
 - [AULA 10] Máquina de Mealy e máquina de Moore

Prof. João Fernando Mari (joaof.mari@ufv.br)

35

[AULA 09] Propriedades das LRs – Minimização de AFD

SIN 131 – Introdução à Teoria da Computação (PER-3)

Apendice A – Minimização – Exemplo do livro

[EX] Algoritmo de minimização

Prof. João Fernando Mari (joaof.mari@ufv.br)

37

[AULA 09] Propriedades das LRs – Minimização de AFD

SIN 131 – Introdução à Teoria da Computação (PER-3)

Algoritmo de Minimização

[EX] Algoritmo de minimização

- Passo 1
 - Construção da tabela

q₁ ×

- Passo 2
 - Marcação dos pares { estado final, estado não-final }

X **q**2 X q₃ X X X **q**4 X X X 95 qo 91 **q**2 q₃ **q**4

[EX] Algoritmo de minimização

• $\{q_0, q_4\}$

$$\delta(q_0, a) = q_2 \delta(q_0, b) = q_1$$

 $\delta(q_4, a) = q_3 \delta(q_4, b) = q_2$

- $\{q_1, q_2\} e \{q_2, q_3\}$ são não-marcados.
 - Incluir { q_0 , q_4 } nas listas de { q_1 , q_2 } e { q_2 , q_3 }.
- { q₀, q₅ }

$$\delta(q_0, a) = q_2 \delta(q_0, b) = q_1$$

 $\delta(q_5, a) = q_2 \delta(q_5, b) = q_3$

- $\{q_1, q_3\}$ é não-marcado (e $\{q_2, q_2\}$ é trivialmente equivalente).
 - Incluir $\{q_0, q_5\}$ na lista de $\{q_1, q_3\}$.
- $\{q_1, q_2\}$

$$\delta(q_1, a) = q_1 \delta(q_1, b) = q_0$$

 $\delta(q_2, a) = q_4 \delta(q_2, b) = q_5$

- $\{ q_1, q_4 \}$ é marcado: marcar $\{ q_1, q_2 \}$.
- $\{q_1, q_2\}$ encabeça uma lista: marcar $\{q_0, q_4\}$.

Prof. João Fernando Mari (joaof.mari@ufv.br)

[AULA 09] Propriedades das LRs – Minimização de AFD

SIN 131 – Introdução à Teoria da Computação (PER-3)

Algoritmo de Minimização

[EX] Algoritmo de minimização

• $\{q_1, q_3\}$

$$\delta(q_1, a) = q_1 \delta(q_1, b) = q_0$$

 $\delta(q_3, a) = q_5 \delta(q_3, b) = q_4$

- $\{ q_1, q_5 \} e \{ q_0, q_4 \}$ são marcados: marcar $\{ q_1, q_3 \}$
- $\{ q_1, q_3 \}$ encabeça uma lista: marcar $\{ q_0, q_5 \}$
- $\{q_2, q_3\}$

$$\delta(q_2, a) = q_4 \delta(q_2, b) = q_5$$

 $\delta(q_3, a) = q_5 \delta(q_3, b) = q_4$

- $\{ q_4, q_5 \}$ é não-marcado: incluir $\{ q_2, q_3 \}$ na lista de $\{ q_4, q_5 \}$
- { q₄, q₅ }

$$\delta(q_4, a) = q_3 \delta(q_4, b) = q_2$$

 $\delta(q_5, a) = q_2 \delta(q_5, b) = q_3$

 $- \{ q_2, q_3 \}$ é não-marcado: incluir $\{ q_4, q_5 \}$ na lista de $\{ q_2, q_3 \}$

[EX] Algoritmo de minimização

Prof. João Fernando Mari (joaof.mari@ufv.br)

41

[AULA 09] Propriedades das LRs – Minimização de AFD

SIN 131 – Introdução à Teoria da Computação (PER-3)

Algoritmo de Minimização

[EX] Algoritmo de minimização

- Passo 4. { q₂, q₃ } e { q₄, q₅ } são não-marcados
 - $-q_{23}$: unificação dos estados q_2 e q_3 .
 - $-q_{45}$: unificação dos estados finais q_4 e q_5 .

[EX] Algoritmo de minimização

• AFD

AFD Mínimo

Prof. João Fernando Mari (joaof.mari@ufv.br)

43