# **Business case: Target SQL**

**Overview:** Target is one of the world's most recognized brands and one of America's leading retailers. Target makes itself a preferred shopping destination by offering outstanding value, inspiration, innovation and an exceptional guest experience that no other retailer can deliver. This business case has information of 100k orders from 2016 to 2018 made at Target in Brazil. Its features allows viewing an order from multiple dimensions: from order status, price, payment and freight performance to customer location, product attributes and finally reviews written by customers.

- 1. Exploratory analysis steps like checking the structure & characteristics of the dataset:
  - a. Data type of columns in a table (Orders table)

```
select column_name, data_type
from `target-sql-361409.ecommerce.INFORMATION_SCHEMA.COLUMNS`
where table_name = 'orders';
```

| Row | column_name                   | data_type |
|-----|-------------------------------|-----------|
| 1   | order_id                      | STRING    |
| 2   | customer_id                   | STRING    |
| 3   | order_status                  | STRING    |
| 4   | order_purchase_timestamp      | TIMESTAMP |
| 5   | order_approved_at             | TIMESTAMP |
| 6   | order_delivered_carrier_date  | TIMESTAMP |
| 7   | order_delivered_customer_date | TIMESTAMP |
| 8   | order_estimated_delivery_date | TIMESTAMP |

Data type of all the variables are correct.

# b. Time period for which the data is given

```
select min(order_purchase_timestamp) as min_time,
max(order_purchase_timestamp) as max_time

from `ecommerce.orders`;

Row min_time max_time

1 2016-09-04 21:15:19 UTC 2018-10-17 17:30:18 UTC
```

Data is present from 2016 to 2018.

#### c. Cities covered in the dataset

```
select distinct geolocation_city as unique_city
from `ecommerce.geolocation`;
```

| Row | unique_city              |  |
|-----|--------------------------|--|
| 1   | aracaju                  |  |
| 2   | riachuelo                |  |
| 3   | nossa senhora do socorro |  |
| 4   | barra dos coqueiros      |  |
| 5   | itaporanga d'ajuda       |  |
| 6   | sao cristovao            |  |
| 7   | são cristóvão            |  |
| 8   | santo amaro das brotas   |  |
| 9   | pirambu                  |  |
| 10  | laranjeiras              |  |

Total 8011 cities are covered in the dataset.

#### d. Cities covered in the customer data

select distinct customer\_city as unique\_customer\_city

from `ecommerce.customers`;

| Row | unique_customer_city |
|-----|----------------------|
| 1   | acu                  |
| 2   | ico                  |
| 3   | ipe                  |
| 4   | ipu                  |
| 5   | ita                  |
| 6   | itu                  |
| 7   | jau                  |
| 8   | luz                  |
| 9   | poa                  |
| 10  | uba                  |
|     |                      |

Total 4119 cities are covered in customers dataset.

#### e. Cities covered in the seller data

select distinct seller\_city as unique\_seller\_city

from `ecommerce.sellers`;



Total 611 cities are covered in sellers dataset.

#### f. State covered in the dataset

select distinct geolocation\_state as unique\_state

from `ecommerce.geolocation`;

| Row | unique_state |
|-----|--------------|
| 1   | SE           |
| 2   | AL           |
| 3   | PI           |
| 4   | AP           |
| 5   | AM           |
| 6   | RR           |
| 7   | AC           |
| 8   | RO           |
| 9   | ТО           |
| 10  | BA           |
|     |              |

Total 27 states are covered in the dataset.

#### g. States covered in the customer data

select distinct customer\_state as unique\_customer\_state

from `ecommerce.customers`;

| Row | unique_customer_state |
|-----|-----------------------|
| 1   | RN                    |
| 2   | CE                    |
| 3   | RS                    |
| 4   | SC                    |
| 5   | SP                    |
| 6   | MG                    |
| 7   | BA                    |
| 8   | RJ                    |
| 9   | GO                    |
| 10  | MA                    |

Total 27 states are covered in customers dataset.

#### h. States covered in the seller data

```
select distinct seller_state as unique_seller_state
from `ecommerce.sellers`;
```

| Row | unique_seller_state |
|-----|---------------------|
| 1   | AC                  |
| 2   | AM                  |
| 3   | BA                  |
| 4   | CE                  |
| 5   | DF                  |
| 6   | ES                  |
| 7   | GO                  |
| 8   | MA                  |
| 9   | MG                  |
| 10  | MS                  |
|     |                     |

Total 23 states are covered in the sellers dataset.

# 2. In-depth Exploration:

#### a. Is there a growing trend on e-commerce in Brazil? (year wise)

```
select order_year, sum(payment_value) as sale, count(distinct order_id) as
total_order
FROM
(select o.order_id,extract(year from o.order_purchase_timestamp) as order_year,
p.payment_value
from `ecommerce.orders` o
JOIN `ecommerce.payments` p
ON o.order_id = p.order_id) x
group by order_year
order by sum(payment_value);
```

| Row order_year |      | sale //    | total_order |  |
|----------------|------|------------|-------------|--|
| 1              | 2016 | 59362.3400 | 328         |  |
| 2              | 2017 | 7249746.72 | 45101       |  |
| 3              | 2018 | 8699763.04 | 54011       |  |

Yes, Total orders and sale both are increasing year wise.

#### b. Is there a seasonality with peaks at specific months?

```
select order_month, sum(payment_value) as sale, count(distinct order_id) as
total_order
FROM
(select o.order_id,extract(month from o.order_purchase_timestamp) as
order_month, p.payment_value
from `ecommerce.orders` o
JOIN `ecommerce.payments` p
ON o.order_id = p.order_id) x
group by order_month
order by sum(payment_value) desc;
```

| Row | order_month / | sale //    | total_order |
|-----|---------------|------------|-------------|
| 1   | 5             | 1746900.97 | 10573       |
| 2   | 8             | 1696821.64 | 10843       |
| 3   | 7             | 1658923.67 | 10318       |
| 4   | 3             | 1609515.72 | 9893        |
| 5   | 4             | 1578573.51 | 9343        |
| 6   | 6             | 1535156.88 | 9412        |
| 7   | 2             | 1284371.35 | 8508        |
| 8   | 1             | 1253492.22 | 8069        |
| 9   | 11            | 1194882.80 | 7544        |
| 10  | 12            | 878421.100 | 5674        |
|     |               |            |             |

Maximum sale is in June month (may be due to summer vacation). Minimum sale is in last quarter (september to december). (September is having very minimum sale)

# c. What time do Brazilian customers tend to buy (Morning/Dawn, Afternoon, Evening or Night)?

```
Morning: 4 - 11 hour
Afternoon: 12 - 16 hour
Evening: 17 - 22 hour
Night: 23 - 3 hour
select count(distinct order_id) as order_count,
Day_part
FROM
(select order_id,
CASE
WHEN extract(hour from order_purchase_timestamp) >= 4 and extract(hour from
order_purchase_timestamp) <= 11 THEN "Morning"</pre>
WHEN extract(hour from order_purchase_timestamp) >= 12 and extract(hour from
order_purchase_timestamp) <= 16 THEN "Afternoon"</pre>
WHEN extract(hour from order_purchase_timestamp) >= 17 and extract(hour from
order_purchase_timestamp) <= 22 THEN "Evening"</pre>
WHEN extract(hour from order_purchase_timestamp) >= 23 or extract(hour from
order_purchase_timestamp) <= 3 THEN "Night"</pre>
END AS Day_part
from `ecommerce.orders`) y
group by Day_part
order by count(distinct order_id);
```

| Row | order_count | Day_part  |
|-----|-------------|-----------|
| 1   | 8469        | Night     |
| 2   | 22634       | Morning   |
| 3   | 32211       | Afternoon |
| 4   | 36127       | Evening   |

Customers are mostly purchasing the items in the Evening. In the night, customers are purchasing the items very minimum.

# 3. Evolution of E-commerce orders in the Brazil region:

#### a. Get month on month orders by region, states

```
select o.year, o.month, c.customer_state, count(*) as total_order
FROM `ecommerce.customers` c
JOIN
(select customer_id,
extract(year from order_purchase_timestamp) as year,
extract(month from order_purchase_timestamp) as month
FROM `ecommerce.orders`) o
ON c.customer_id = o.customer_id
group by o.year, o.month, c.customer_state
order by o.year, o.month, c.customer_state;
```

| Row | year // | month / | customer_state | total_order | 11 |
|-----|---------|---------|----------------|-------------|----|
| 1   | 2016    | 9       | RR             | 1           | ı  |
| 2   | 2016    | 9       | RS             | 1           | ı  |
| 3   | 2016    | 9       | SP             | 2           | 2  |
| 4   | 2016    | 10      | AL             | 2           | 2  |
| 5   | 2016    | 10      | BA             | 4           | 1  |
| 6   | 2016    | 10      | CE             | 8           | 3  |
| 7   | 2016    | 10      | DF             | 6           | 5  |
| 8   | 2016    | 10      | ES             | 4           | 1  |
| 9   | 2016    | 10      | GO             | 9           | )  |
| 10  | 2016    | 10      | MA             | 4           | 1  |

Mostly orders are from SP customer\_state in each month.

#### b. How are customers distributed in Brazil

```
select customer_state, count(*) as customer_count,
round((count(*) / 99441)*100, 1) as percent_of_customer
FROM `ecommerce.customers`
group by customer_state
order by count(*) desc;
```

| Row | customer_state | 11 | customer_c | percent_of |
|-----|----------------|----|------------|------------|
| 1   | SP             |    | 41746      | 42.0       |
| 2   | RJ             |    | 12852      | 12.9       |
| 3   | MG             |    | 11635      | 11.7       |
| 4   | RS             |    | 5466       | 5.5        |
| 5   | PR             |    | 5045       | 5.1        |
| 6   | SC             |    | 3637       | 3.7        |
| 7   | BA             |    | 3380       | 3.4        |
| 8   | DF             |    | 2140       | 2.2        |
| 9   | ES             |    | 2033       | 2.0        |
| 10  | GO             |    | 2020       | 2.0        |
|     |                |    |            |            |

Mostly customers are from SP customer\_state. (42 % customers are from SP state)

- 4. Impact on Economy: Analyze the money movemented by e-commerce by looking at order prices, freight and others:
  - a. Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only)

```
select year, month,

((current_year_order - last_year_order) / last_year_order) * 100 as
percent_increase_order,

((current_year_price - last_year_price) / last_year_price) * 100 as
percent_increase_price,

((current_year_freight - last_year_freight) / last_year_freight) * 100 as
percent_increase_freight

FROM

(select year, month, count(*) as current_year_order, sum(price) as
current_year_price, sum(freight_value) as current_year_freight,
```

```
lag(count(*), 1) over(partition by month order by year) as last_year_order,
lag(sum(price), 1) over(partition by month order by year) as last_year_price,
lag(sum(freight_value), 1) over(partition by month order by year) as
last_year_freight
from
(select o.order_id,i.price, i.freight_value,
extract(year from o.order_purchase_timestamp) as year,
extract(month from o.order_purchase_timestamp) as month
from 'ecommerce.orders' o

JOIN
'ecommerce.order_items' i ON o.order_id = i.order_id) x
where year IN (2017, 2018) and (month <= 8)
group by year, month) x
where last_year_order is not null
order by month;</pre>
```

| Row | year // | month | percent_increase_order | percent_increase_price | percent_increase_freight |
|-----|---------|-------|------------------------|------------------------|--------------------------|
| 1   | 2018    | 1     | 759.47643979057591     | 689.63319551768632     | 831.94519668019836       |
| 2   | 2018    | 2     | 293.23423885187083     | 241.3539834653252      | 266.18532182587603       |
| 3   | 2018    | 3     | 173.9                  | 162.64950207603766     | 197.92131572887169       |
| 4   | 2018    | 4     | 197.13114754098359     | 176.90257000006085     | 210.60150288570694       |
| 5   | 2018    | 5     | 91.610251450676984     | 96.912568458262811     | 91.293688789327192       |
| 6   | 2018    | 6     | 97.543957577449063     | 99.779952641638118     | 125.3186439533887        |
| 7   | 2018    | 7     | 56.93737552555875      | 79.8093606452357       | 87.739299706671034       |
| 8   | 2018    | 8     | 47.617107942973526     | 48.90740428168904      | 57.717854864308947       |

Total orders, price and freight value all increased from 2017 to 2018. For January month, there is maximum increment and for August month, there is minimum increment.

#### b. Mean & Sum of price and freight value by customer state

```
select c.customer_state,
sum(i.price) as price_sum, avg(i.price) as price_mean,
sum(i.freight_value) as freight_sum, avg(i.freight_value) as freight_avg
from `ecommerce.customers` c

JOIN `ecommerce.orders` o ON c.customer_id = o.customer_id

JOIN `ecommerce.order_items` i on o.order_id = i.order_id
group by c.customer_state
order by c.customer_state;
```

| Row | customer_state | price_sum          | price_mean         | freight_sum        | freight_avg        |
|-----|----------------|--------------------|--------------------|--------------------|--------------------|
| 1   | AC             | 15982.94999999988  | 173.72771739130434 | 3686.7499999999991 | 40.073369565217405 |
| 2   | AL             | 80314.81           | 180.88921171171171 | 15914.589999999991 | 35.843671171171152 |
| 3   | AM             | 22356.840000000011 | 135.4959999999995  | 5478.8899999999967 | 33.205393939393936 |
| 4   | AP             | 13474.29999999999  | 164.32073170731707 | 2788.5000000000009 | 34.006097560975618 |
| 5   | BA             | 511349.99000000674 | 134.6012082126874  | 100156.67999999883 | 26.363958936562248 |
| 6   | CE             | 227254.70999999763 | 153.7582611637348  | 48351.589999999924 | 32.714201623815995 |
| 7   | DF             | 302603.93999999797 | 125.77054862842893 | 50625.499999999811 | 21.041354945968383 |
| 8   | ES             | 275037.30999999633 | 121.91370124113466 | 49764.599999999889 | 22.058776595744682 |
| 9   | GO             | 294591.94999999728 | 126.27173167595369 | 53114.979999999865 | 22.766815259322794 |
| 10  | MA             | 119648.21999999993 | 145.20415048543691 | 31523.770000000033 | 38.25700242718446  |

Total price and total freight value are maximum for SP state.

Total price and total freight value are minimum for RR state.

Average price and average freight value are minimum for SP state.

Average price is maximum for PB state and average freight value is maximum for RR state.

#### 5. Analysis on sales, freight and delivery time:

a. Top 5 states with highest average freight value

```
WITH state_order_detail AS
(select x.customer_state,
avg(x.freight_value) as mean_freight_value,
avg(x.time_to_delivery) as avg_time_to_delivery,
avg(x.diff_estimated_delivery) as avg_diff_estimated_delivery
FROM
(select c.customer_state, i.freight_value,
TIMESTAMP_DIFF(o.order_delivered_customer_date, o.order_purchase_timestamp,
DAY) as time_to_delivery,
TIMESTAMP_DIFF(o.order_estimated_delivery_date,
o.order_delivered_customer_date, DAY) as diff_estimated_delivery
from 'ecommerce.orders' o
JOIN `ecommerce.order_items` i ON i.order_id = o.order_id
JOIN `ecommerce.customers` c ON c.customer_id = o.customer_id) x
group by customer_state)
SELECT customer_state, mean_freight_value from state_order_detail order by
mean_freight_value desc LIMIT 5;
```

| Row | customer_state | 11 | mean_freight_value |
|-----|----------------|----|--------------------|
| 1   | RR             |    | 42.984423076923093 |
| 2   | PB             |    | 42.723803986710941 |
| 3   | RO             |    | 41.069712230215842 |
| 4   | AC             |    | 40.073369565217405 |
| 5   | PI             |    | 39.147970479704767 |

Average freight value is maximum for RR state and PB state.

#### b. Top 5 states with lowest average freight value

```
WITH state_order_detail AS
(select x.customer_state,
avg(x.freight_value) as mean_freight_value,
avg(x.time_to_delivery) as avg_time_to_delivery,
avg(x.diff_estimated_delivery) as avg_diff_estimated_delivery
FROM
(select c.customer_state, i.freight_value,
TIMESTAMP_DIFF(o.order_delivered_customer_date, o.order_purchase_timestamp,
DAY) as time_to_delivery,
TIMESTAMP_DIFF(o.order_estimated_delivery_date,
o.order_delivered_customer_date, DAY) as diff_estimated_delivery
from `ecommerce.orders` o
JOIN `ecommerce.order_items` i ON i.order_id = o.order_id
JOIN `ecommerce.customers` c ON c.customer_id = o.customer_id) x
group by customer_state)
SELECT customer_state, mean_freight_value from state_order_detail order by
mean_freight_value LIMIT 5;
```

| Row | customer_state | mean_freight_value |
|-----|----------------|--------------------|
| 1   | SP             | 15.147275390419248 |
| 2   | PR             | 20.531651567944248 |
| 3   | MG             | 20.630166806306541 |
| 4   | RJ             | 20.96092393168248  |
| 5   | DF             | 21.041354945968383 |

Average freight value is minimum for SP state.

#### c. Top 5 states with highest average time to delivery

```
WITH state_order_detail AS
(select x.customer_state,
avg(x.freight_value) as mean_freight_value,
avg(x.time_to_delivery) as avg_time_to_delivery,
avg(x.diff_estimated_delivery) as avg_diff_estimated_delivery
FROM
(select c.customer_state, i.freight_value,
TIMESTAMP_DIFF(o.order_delivered_customer_date, o.order_purchase_timestamp,
DAY) as time_to_delivery,
TIMESTAMP_DIFF(o.order_estimated_delivery_date,
o.order_delivered_customer_date, DAY) as diff_estimated_delivery
from `ecommerce.orders` o
JOIN `ecommerce.order_items` i ON i.order_id = o.order_id
JOIN `ecommerce.customers` c ON c.customer_id = o.customer_id) x
group by customer_state)
SELECT customer_state, avg_time_to_delivery from state_order_detail order by
avg_time_to_delivery desc LIMIT 5;
```

| Row | customer_state | avg_time_to_delivery |
|-----|----------------|----------------------|
| 1   | RR             | 27.826086956521738   |
| 2   | AP             | 27.753086419753075   |
| 3   | AM             | 25.963190184049076   |
| 4   | AL             | 23.992974238875881   |
| 5   | PA             | 23.301707779886126   |

Average delivery time is maximum for RR and AP state.

#### d. Top 5 states with lowest average time to delivery

```
WITH state_order_detail AS
(select x.customer_state,
avg(x.freight_value) as mean_freight_value,
avg(x.time_to_delivery) as avg_time_to_delivery,
avg(x.diff_estimated_delivery) as avg_diff_estimated_delivery
FROM
(select c.customer_state, i.freight_value,
TIMESTAMP_DIFF(o.order_delivered_customer_date, o.order_purchase_timestamp,
DAY) as time_to_delivery,
TIMESTAMP_DIFF(o.order_estimated_delivery_date,
o.order_delivered_customer_date, DAY) as diff_estimated_delivery
from `ecommerce.orders` o
JOIN `ecommerce.order_items` i ON i.order_id = o.order_id
JOIN `ecommerce.customers` c ON c.customer_id = o.customer_id) x
group by customer_state)
SELECT customer_state, avg_time_to_delivery from state_order_detail order by
avg_time_to_delivery LIMIT 5;
```

| Row | customer_state | avg_time_to_delivery |
|-----|----------------|----------------------|
| 1   | SP             | 8.25960855241909     |
| 2   | PR             | 11.480793060718735   |
| 3   | MG             | 11.515522180072811   |
| 4   | DF             | 12.501486199575384   |
| 5   | SC             | 14.520985846754517   |

Average delivery time is minimum for SP state.

#### e. Top 5 states where delivery is really fast compared to estimated date

```
WITH state_order_detail AS
(select x.customer_state,
avg(x.freight_value) as mean_freight_value,
avg(x.time_to_delivery) as avg_time_to_delivery,
avg(x.diff_estimated_delivery) as avg_diff_estimated_delivery
FROM
(select c.customer_state, i.freight_value,
TIMESTAMP_DIFF(o.order_delivered_customer_date, o.order_purchase_timestamp,
DAY) as time_to_delivery,
TIMESTAMP_DIFF(o.order_estimated_delivery_date,
o.order_delivered_customer_date, DAY) as diff_estimated_delivery
from `ecommerce.orders` o
JOIN `ecommerce.order_items` i ON i.order_id = o.order_id
JOIN `ecommerce.customers` c ON c.customer_id = o.customer_id) x
group by customer_state)
SELECT customer_state, avg_diff_estimated_delivery from state_order_detail
```

order by avg\_diff\_estimated\_delivery desc LIMIT 5;

| Row | customer_state | avg_diff_estimated_del |
|-----|----------------|------------------------|
| 1   | AC             | 20.010989010989018     |
| 2   | RO             | 19.080586080586084     |
| 3   | AM             | 18.975460122699381     |
| 4   | AP             | 17.4444444444443       |
| 5   | RR             | 17.434782608695652     |

Delivery is very fast in AC state.

#### f. Top 5 states where delivery is not so fast compared to estimated date

```
WITH state_order_detail AS
(select x.customer_state,
avg(x.freight_value) as mean_freight_value,
avg(x.time_to_delivery) as avg_time_to_delivery,
avg(x.diff_estimated_delivery) as avg_diff_estimated_delivery
FROM
(select c.customer_state, i.freight_value,
TIMESTAMP_DIFF(o.order_delivered_customer_date, o.order_purchase_timestamp,
DAY) as time_to_delivery,
TIMESTAMP_DIFF(o.order_estimated_delivery_date,
o.order_delivered_customer_date, DAY) as diff_estimated_delivery
from `ecommerce.orders` o
JOIN `ecommerce.order_items` i ON i.order_id = o.order_id
JOIN `ecommerce.customers` c ON c.customer_id = o.customer_id) x
group by customer_state)
SELECT customer_state, avg_diff_estimated_delivery from state_order_detail
order by avg_diff_estimated_delivery LIMIT 5;
```

| Row | customer_state | 11 | avg_diff_estimated_delivery |
|-----|----------------|----|-----------------------------|
| 1   | AL             |    | 7.9765807962529349          |
| 2   | MA             |    | 9.109999999999923           |
| 3   | SE             |    | 9.1653333333333276          |
| 4   | ES             |    | 9.7685393258427116          |
| 5   | BA             |    | 10.119467825142538          |

Delivery is very slow in AL state.

# 6. Payment type analysis:

#### a. Month over Month count of orders for different payment types

```
select year, month, payment_type, count(*) total_order
FROM

(select o.order_id, p.payment_type,

extract(year from o.order_purchase_timestamp) as year,

extract(month from o.order_purchase_timestamp) as month

from `ecommerce.orders` o

JOIN

`ecommerce.payments` p ON o.order_id = p.order_id) x

group by year, month, payment_type

order by year, month, count(*);
```

| Row | year // | month | payment_type | total_order |
|-----|---------|-------|--------------|-------------|
| 1   | 2016    | 9     | credit_card  | 3           |
| 2   | 2016    | 10    | debit_card   | 2           |
| 3   | 2016    | 10    | voucher      | 23          |
| 4   | 2016    | 10    | UPI          | 63          |
| 5   | 2016    | 10    | credit_card  | 254         |
| 6   | 2016    | 12    | credit_card  | 1           |
| 7   | 2017    | 1     | debit_card   | 9           |
| 8   | 2017    | 1     | voucher      | 61          |
| 9   | 2017    | 1     | UPI          | 197         |
| 10  | 2017    | 1     | credit_card  | 583         |

Mostly customers are using credit card for bill payment.

Customers are using debit card very less for bill payment.

#### b. Distribution of payment installments and count of orders

```
select payment_installments, count(*) as total_order from `ecommerce.payments`
group by payment_installments
order by count(*) desc;
```

| Row | payment_in | total_order |
|-----|------------|-------------|
| 1   | 1          | 52546       |
| 2   | 2          | 12413       |
| 3   | 3          | 10461       |
| 4   | 4          | 7098        |
| 5   | 10         | 5328        |
| 6   | 5          | 5239        |
| 7   | 8          | 4268        |
| 8   | 6          | 3920        |
| 9   | 7          | 1626        |
| 10  | 9          | 644         |

Mostly customers are preferring 1 installment for bill payments.

# 7. Product category analysis:

#### a. Distribution of product category and count of orders

```
select p.product_category, count(*) as total_orders
FROM `ecommerce.orders` o

JOIN `ecommerce.order_items` i ON o.order_id = i.order_id

JOIN `ecommerce.products` p ON i.product_id = p.product_id

group by p.product_category
order by count(*) desc;
```

| Row | product_category     | total_orders // |
|-----|----------------------|-----------------|
| 1   | bed table bath       | 11115           |
| 2   | HEALTH BEAUTY        | 9670            |
| 3   | sport leisure        | 8641            |
| 4   | Furniture Decoration | 8334            |
| 5   | computer accessories | 7827            |
| 6   | housewares           | 6964            |
| 7   | Watches present      | 5991            |
| 8   | telephony            | 4545            |
| 9   | Garden tools         | 4347            |
| 10  | automotive           | 4235            |
|     |                      |                 |

Bed table bath, Health beauty, sport leisure, furniture decoration and computer accessories are the top 5 popular product categories.

# **Recommendations:**

(As total orders / sales are increasing continuously, we can say that current system is working well for target.)

- Mostly customers are purchasing the items in evening so target can add new products or start sale/offer at this time.
- Mostly customers are from SP state so target can reduce the difference between estimated delivery and actual delivery date for SP state. (means delivery should be fast in SP state)
- Mostly customers are paying the bills using credit card so target can show more offers on credit card payments.
- Mostly customers are purchasing the items in June, July, August, september months so target can add more products / offers in these months.
- Bed table bath, Health beauty, sport leisure, furniture decoration and computer accessories are the top 5 popular categories for which target can add more products.

# **Actionable insights:**

- There has been an increase in ecommerce in brazil from 2016 to 2019.
- Peak Orders during the month may july and august.
- Brazilian customers tend to buy during the afternoon hours
- Sau paulo has the highest number of e customers in brazil

- The percentage increase in brazil from 2017 to 2018 is 57.8%
- Sp has the lowest avg delivery time among all states
- RR has the highest avg delivery time among all states.
- Credit card is the preferred method of payment followed by upi,voucher and debit card payment
- Most payments were made in a single payment