## Risk Classification

Mansoor Baba Shaik November 28, 2016

```
rm(list=ls())
setwd("~/IS665/risk")

classify_risk = read.csv("ClassifyRisk_historical.csv", header=TRUE, sep=",", dec=".")

require(ggplot2)

ggplot(data=classify_risk) + geom_point(aes(x=age, y=income, color=risk)) + theme_light()
```



```
require(class)
require(magrittr)
summary(classify_risk)
```

| ## | mortgage | gage loans |        | age     |        | marital_status |      | income  |        |
|----|----------|------------|--------|---------|--------|----------------|------|---------|--------|
| ## | n: 64    | Min.       | :0.000 | Min.    | :17.00 | married        | 1:65 | Min.    | :15301 |
| ## | y:153    | 1st Qu.    | :1.000 | 1st Qu. | :32.00 | other          | :53  | 1st Qu. | :26857 |
| ## |          | Median     | :1.000 | Median  | :40.00 | single         | :99  | Median  | :37363 |
| ## |          | Mean       | :1.336 | Mean    | :40.54 |                |      | Mean    | :38401 |
| ## |          | 3rd Qu.    | :2.000 | 3rd Qu. | :50.00 |                |      | 3rd Qu. | :47335 |

```
##
                     :3.000 Max. :66.00
                                                               Max.
                                                                      :78399
##
           risk
  bad loss :111
##
   good risk:106
##
##
##
##
##
n.classify_risk <- data.frame(sapply(classify_risk[,c(2,3,5)], function(x) {</pre>
(x - min(x))/(max(x) - min(x))
}))
head(n.classify_risk)
         loans
                      age
                             income
## 1 0.3333333 0.3877551 0.2929044
## 2 0.3333333 0.7346939 0.4444643
## 3 0.3333333 0.9387755 0.6051203
## 4 0.3333333 0.6122449 0.6025608
## 5 0.6666667 0.6734694 0.3317385
## 6 0.0000000 0.6938776 0.7360926
# Split
set.seed(1234) # makes it repeatable
ind <- sample(2, nrow(classify_risk), replace = TRUE, prob = c(0.67, 0.33))
classify_risk.training <- n.classify_risk[ind == 1, 1:3]</pre>
classify_risk.test <- n.classify_risk[ind == 2, 1:3]</pre>
n.classify_risk[,"risk"] <- classify_risk[,"risk"]</pre>
## Label Split
classify_risk.trainLabels <- n.classify_risk[ind == 1, 4]</pre>
classify_risk.testLabels <- n.classify_risk[ind == 2, 4]</pre>
classify_risk_pred <- knn(train = classify_risk.training, test =</pre>
                             classify_risk.test, cl =
                             classify_risk.trainLabels, k = 5)
results = data.frame(classify_risk_pred, classify_risk.testLabels)
table(results)
                      classify_risk.testLabels
## classify_risk_pred bad loss good risk
                             27
##
            bad loss
                                        1
                                        32
##
            good risk
# install.packages('caret')
require(caret)
# install.packages('e1071')
require(e1071)
confusionMatrix(table(results))
## Confusion Matrix and Statistics
##
##
                      classify_risk.testLabels
```

```
## classify_risk_pred bad loss good risk
##
            bad loss
                            27
                                        1
##
            good risk
                             2
                                       32
##
##
                  Accuracy: 0.9516
##
                    95% CI: (0.865, 0.9899)
##
       No Information Rate: 0.5323
       P-Value [Acc > NIR] : 2.844e-13
##
##
##
                     Kappa: 0.9026
##
    Mcnemar's Test P-Value : 1
##
               Sensitivity: 0.9310
##
##
               Specificity: 0.9697
##
            Pos Pred Value: 0.9643
##
            Neg Pred Value: 0.9412
##
                Prevalence: 0.4677
##
            Detection Rate: 0.4355
##
      Detection Prevalence: 0.4516
##
         Balanced Accuracy: 0.9504
##
##
          'Positive' Class : bad loss
##
test_classify_risk <- read.csv("classifyrisk.csv", header=TRUE, sep=",", dec=".")</pre>
n.test_classify_risk <- data.frame(sapply(test_classify_risk[,c(2,3,5)], function(x) {</pre>
  (x - \min(x))/(\max(x) - \min(x))
}))
classify_risk_pred.test <- n.test_classify_risk</pre>
head(classify_risk_pred.test)
##
         loans
                     age
                            income
## 1 0.3333333 0.8139535 0.6121850
## 2 0.0000000 0.5813953 0.6242710
## 3 0.3333333 0.4418605 0.8957524
## 4 0.3333333 0.8372093 0.7006266
## 5 0.0000000 0.3720930 0.6875295
## 6 0.0000000 0.5581395 0.8846504
classify_test_result <- knn(train = classify_risk.training, test = classify_risk_pred.test,</pre>
                             cl = classify_risk[ind == 1, 6], k = 5)
(classify_test_result)
## [1] good risk good risk good risk good risk good risk bad loss
## [8] bad loss bad loss good risk bad loss good risk good risk good risk
## [15] good risk bad loss good risk good risk bad loss bad loss good risk
## [22] good risk good risk good risk bad loss bad loss bad loss good risk
## [29] bad loss
## Levels: bad loss good risk
test_classify_risk[,"risk"] <- classify_test_result</pre>
test_classify_risk
```

| ## |    | mortgage | loans | age | marital_status | income   |              | risk |
|----|----|----------|-------|-----|----------------|----------|--------------|------|
| ## | 1  | n        | 1     | 54  | married        | 50203.25 | good         | risk |
| ## | 2  | у        | 0     | 44  | married        | 50793.46 | good         | risk |
| ## | 3  | у        | 1     | 38  | single         | 64051.12 | good         | risk |
| ## | 4  | у        | 1     | 55  | married        | 54522.25 | good         | risk |
| ## | 5  | у        | 0     | 35  | single         | 53882.66 | good         | risk |
| ## | 6  | у        | 0     | 43  | single         | 63508.96 | good         | risk |
| ## | 7  | n        | 2     | 62  | married        | 27030.50 | bad          | loss |
| ## | 8  | у        | 3     | 41  | other          | 20307.50 | bad          | loss |
| ## | 9  | у        | 1     | 26  | single         | 24777.08 | bad          | loss |
| ## | 10 | У        | 0     | 50  | married        | 48931.66 | ${\tt good}$ | risk |
| ## | 11 | n        | 2     | 30  | other          | 23575.22 | bad          | loss |
| ## | 12 | У        | 0     | 54  | married        | 53242.06 | ${\tt good}$ | risk |
| ## | 13 | n        | 1     | 48  | single         | 39527.75 | ${\tt good}$ | risk |
| ## | 14 | У        | 0     | 37  | married        | 51852.40 | ${\tt good}$ | risk |
| ## | 15 | У        | 1     | 43  | single         | 69142.00 | ${\tt good}$ | risk |
| ## | 16 | У        | 2     | 23  | other          | 22039.40 | bad          | loss |
| ## | 17 | У        | 1     | 34  | married        | 54180.75 | good         | risk |
| ## | 18 | У        | 1     | 54  |                | 53011.50 | _            |      |
| ## | 19 | У        | 2     | 33  | single         | 35558.00 | bad          | loss |
| ## | 20 | n        | 1     | 19  | married        | 20954.50 | bad          | loss |
| ## | 21 | У        | 0     | 49  | married        | 50873.56 | good         | risk |
| ## | 22 | У        | 2     | 48  | single         | 39826.60 | good         | risk |
| ## | 23 | У        | 3     | 55  | other          | 39417.88 | good         | risk |
| ## | 24 | У        | 1     | 38  | married        | 52561.75 | good         | risk |
| ## | 25 | У        | 2     | 24  | single         | 32626.00 | bad          | loss |
| ## |    | У        | 1     | 23  | _              | 24314.50 |              |      |
|    | 27 | У        | 1     | 39  | _              | 23785.64 |              | loss |
| ## | 28 | n        | 1     | 52  |                | 35380.75 | _            |      |
| ## | 29 | n        | 1     | 49  | single         | 29352.50 | bad          | loss |