# Markov Decision Processes Part 3: Computing State Utilities and Optimal Policies

CSE 4309 – Machine Learning
Vassilis Athitsos
Computer Science and Engineering Department
University of Texas at Arlington

## Review: the Bellman Equation



$$U(s) = R(s) + \gamma \max_{a \in A(s)} \left\{ \sum_{s'} [p(s'|s,a)U(s')] \right\}$$

- For each state s, we get a Bellman equation.
- If our environment has *N* states, we need to solve a system of *N* Bellman equations.
- In this system of equations, there is a total of Nunknowns:
  - The N values U(s).
- There is an iterative algorithm for solving this system of equations, called the value iteration algorithm.

- The value iteration algorithm computes the utility of each state for a Markov Decision Process.
- The algorithm takes the following inputs:
  - The set of states  $\mathbb{S} = \{s_1, \dots, s_N\}$ .
  - The set A(s) of actions available at each state s.
  - The transition model p(s' | s, a).
  - The reward function R(s)
  - The discount factor  $\gamma$ .
  - $-\varepsilon$ , which is the maximum error allowed in the utility of each state, in the result of the algorithm.

#### **function ValueIteration**( $\mathbb{S}$ , A, p, R, $\gamma$ , $\varepsilon$ )

N = size of S.

U' = new array of doubles, of size N.

Initialize all values of U' to 0.

#### repeat:

U = copy of array U'

$$\delta = 0$$

**for each** state s in S:

$$U'[s] = R(s) + \gamma \max_{a \in A(s)} \{ \sum_{s'} [p(s'|s, a)U[s']] \}$$
if  $|U'[s] - U[s]| > \delta$  then  $\delta = |U'[s] - U[s]|$ 

if 
$$|U'[s] - U[s]| > \delta$$
 then  $\delta = |U'[s] - U[s]$ 

until  $\delta < \varepsilon (1 - \gamma)/\gamma$ 

```
function ValueIteration(\mathbb{S}, A, p, R, \gamma, \varepsilon)
     N = size of S.
     U' = new array of doubles, of size N.
     Initialize all values of U' to 0.
     repeat:
          U = copy of array U'
          \delta = 0
          for each state s in S:
               U'[s] = R(s) + \gamma \max_{a \in A(s)} \{ \sum_{s'} [p(s'|s, a)U[s']] \}
if |U'[s] - U[s]| > \delta then \delta = |U'[s] - U[s]|
     until \delta < \varepsilon (1 - \gamma)/\gamma
     return U
```

- We will skip the proof, but it can be proven that this algorithm converges to the correct solutions of the Bellman equations.
  - Details can be found in S. Russell and P. Norvig, "Artificial Intelligence:
     A Modern Approach", third edition (2009), Prentice Hall.

```
function ValueIteration(\mathbb{S}, A, p, R, \gamma, \varepsilon)
     N = \text{size of } S.
     U' = new array of doubles, of size N.
     Initialize all values of U' to 0.
     repeat:
          U = copy of array U'
          \delta = 0
          for each state s in S:
               U'[s] = R(s) + \gamma \max_{a \in A(s)} \{ \sum_{s'} [p(s'|s, a)U[s']] \}
if |U'[s] - U[s]| > \delta then \delta = |U'[s] - U[s]|
     until \delta < \varepsilon (1 - \gamma)/\gamma
     return U
```

- The main operation of this algorithm is highlighted in red.
- We use the Bellman equation to update values U(s) using the previous estimates for those values.
  - This update step is called a Bellman update.

```
function ValueIteration(\mathbb{S}, A, p, R, \gamma, \varepsilon)
     N = \text{size of } S.
     U' = new array of doubles, of size N.
     Initialize all values of U' to 0.
     repeat:
          U = copy of array U'
          \delta = 0
          for each state s in S:
              U'[s] = R(s) + \gamma \max_{a \in A(s)} \{ \sum_{s'} [p(s'|s, a)U[s']] \}
if |U'[s] - U[s]| > \delta then \delta = |U'[s] - U[s]|
     until \delta < \varepsilon (1 - \gamma)/\gamma
     return U
```

- So, the value iteration algorithm can be summarized as follows:
  - Initialize utilities of states to zero values.
  - Repeat updating utilities of states using Bellman updates, until the estimated values converge.

- Let's see how the value iteration algorithm works on our example.
- Assume:
  - -R(s) = -0.04 if s is a non-terminal state.
  - $-\gamma = 0.9$
- We initialize all utility values to 0.





- Let's see how the value iteration algorithm works on our example.
- Assume:
  - -R(s) = -0.04 if s is a non-terminal state.
  - $-\gamma = 0.9$
- This is the result after one round of updates:
  - The current estimate for each state s is R(s).





 Let's see how the value iteration algorithm works on our example.

#### • Assume:

- -R(s) = -0.04 if s is a non-terminal state.
- $\gamma = 0.9$
- This is the result after two rounds of updates:
  - Information about the +1 reward reached state (3,3).

| 3 |       |   |   | +1 |
|---|-------|---|---|----|
| 2 |       |   |   | -1 |
| 1 | START |   |   |    |
|   | 1     | 2 | 3 | 4  |

| 3                     | -0.08 | -0.08 | 0.67  | +1    |
|-----------------------|-------|-------|-------|-------|
| 2                     | -0.08 |       | -0.08 | -1    |
| 1                     | -0.08 | -0.08 | -0.08 | -0.08 |
|                       | 1     | 2     | 3     | 4     |
| <b>Utility Values</b> |       |       |       |       |

 Let's see how the value iteration algorithm works on our example.

#### Assume:

- -R(s) = -0.04 if s is a non-terminal state.
- $-\gamma = 0.9$
- This is the result after three rounds of updates:
  - Information about the +1 reward reached more states.

| 3 |       |   |   | +1 |
|---|-------|---|---|----|
| 2 |       |   |   | -1 |
| 1 | START |   |   |    |
|   | 1     | 2 | 3 | 4  |

| 3 | -0.11          | 0.43  | 0.73  | +1    |  |
|---|----------------|-------|-------|-------|--|
| 2 | -0.11          |       | 0.35  | -1    |  |
| 1 | -0.11          | -0.11 | -0.11 | -0.11 |  |
|   | 1              | 2     | 3     | 4     |  |
|   | Utility Values |       |       |       |  |

 Let's see how the value iteration algorithm works on our example.

#### Assume:

- -R(s) = -0.04 if s is a non-terminal state.
- $\gamma = 0.9$
- This is the result after four rounds of updates:
  - Information about the +1 reward reached more states.

| 3 |       |   |   | +1 |
|---|-------|---|---|----|
| 2 |       |   |   | -1 |
| 1 | START |   |   |    |
| , | 1     | 2 | 3 | 4  |



 Let's see how the value iteration algorithm works on our example.

#### • Assume:

- -R(s) = -0.04 if s is a non-terminal state.
- $-\gamma = 0.9$
- This is the result after five rounds of updates:
  - Information about the +1 reward reached more states.

| 3 |       |   |   | +1 |
|---|-------|---|---|----|
| 2 |       |   |   | -1 |
| 1 | START |   |   |    |
|   | 1     | 2 | 3 | 4  |

| 3              | 0.38  | 0.62 | 0.79 | +1    |
|----------------|-------|------|------|-------|
| 2              | 0.12  |      | 0.47 | -1    |
|                |       |      |      |       |
| 1              | -0.16 | 0.07 | 0.24 | -0.01 |
|                | 1     | 2    | 3    | 4     |
| Utility Values |       |      |      |       |

 Let's see how the value iteration algorithm works on our example.

#### Assume:

- -R(s) = -0.04 if s is a non-terminal state.
- $-\gamma = 0.9$
- This is the result after six rounds of updates:
  - Information about the +1 reward has reached all states.

| 3 |       |   |   | +1 |
|---|-------|---|---|----|
| 2 |       |   |   | -1 |
| 1 | START |   |   |    |
| · | 1     | 2 | 3 | 4  |



 Let's see how the value iteration algorithm works on our example.

#### Assume:

- -R(s) = -0.04 if s is a non-terminal state.
- $-\gamma = 0.9$
- This is the result after seven rounds of updates:
  - Values keep getting updated.

| 3 |       |   |   | +1 |
|---|-------|---|---|----|
| 2 |       |   |   | -1 |
| 1 | START |   |   |    |
| ' | 1     | 2 | 3 | 4  |

| 3 | 0.48 | 0.65 | 0.79 | +1   |
|---|------|------|------|------|
| 2 | 0.33 |      | 0.48 | -1   |
| 1 | 0.16 | 0.21 | 0.32 | 0.09 |
| • | 1    |      | 2    | 4    |

**Utility Values** 

 Let's see how the value iteration algorithm works on our example.

#### Assume:

- -R(s) = -0.04 if s is a non-terminal state.
- $\gamma = 0.9$
- This is the result after eight rounds of updates:
  - Values continue changing.

| 3 |       |   |   | +1 |
|---|-------|---|---|----|
| 2 |       |   |   | -1 |
| 1 | START |   |   |    |
| · | 1     | 2 | 3 | 4  |

| 3 | 0.50                  | 0.65 | 0.80 | +1   |  |
|---|-----------------------|------|------|------|--|
| 2 | 0.37                  |      | 0.49 | -1   |  |
| 1 | 0.23                  | 0.23 | 0.34 | 0.11 |  |
| , | 1                     | 2    | 3    | 4    |  |
|   | <b>Utility Values</b> |      |      |      |  |

 Let's see how the value iteration algorithm works on our example.

#### Assume:

- -R(s) = -0.04 if s is a non-terminal state.
- $-\gamma = 0.9$
- This is the result after 13 rounds of updates:
  - Values don't change much anymore after this round.

| 3 |       |   |   | +1 |
|---|-------|---|---|----|
| 2 |       |   |   | -1 |
| 1 | START |   |   |    |
|   | 1     | 2 | 3 | 4  |



- The value iteration algorithm computes U(s) for every state s.
- Once we have computed all values U(s), we can get the optimal policy  $\pi^*$  using this equation:

$$\pi^*(s) = \underset{a \in A(s)}{\operatorname{argmax}} \left\{ \sum_{s'} [p(s'|s,a)U(s')] \right\}$$

- Thus,  $\pi^*(s)$  identifies the action that leads to the highest expected utility for the next state, as measured over all possible outcomes of that action.
- This approach is called **one-step look-ahead.**

- At the bottom we see the result of the value iteration algorithm for:
  - -R(s) = -0.02 if s is a non-terminal state.
  - $-\gamma = 1$
- How can we figure out the optimal policy based on that output?



| 0.90                  | 0.93 | 0.95                       | +1                                                             |
|-----------------------|------|----------------------------|----------------------------------------------------------------|
| 0.87                  |      | 0.77                       | -1                                                             |
| 0.85                  | 0.82 | 0.79                       | 0.57                                                           |
| 1                     | 2    | 3                          | 4                                                              |
| <b>Utility Values</b> |      |                            |                                                                |
|                       | 0.87 | 0.87       0.85       0.82 | 0.87     0.77       0.85     0.82     0.79       1     2     3 |

- Consider state (2,3).
- What is the optimal action for that state?
- We must consider each action.
- If the action is "left", these are the possible next states:

| Probability | Next State | Utility |
|-------------|------------|---------|
| 0.8         | (2,3)      | 0.77    |
| 0.1         | (3,3)      | 0.95    |
| 0.1         | (1,3)      | 0.79    |

The weighted average is 0.79





- Consider state (2,3).
- What is the optimal action for that state?
- We must consider each action.
- If the action is "right", these are the possible next states:

| Probability | Next State | Utility |
|-------------|------------|---------|
| 0.8         | (2,3)      | -1      |
| 0.1         | (3,3)      | 0.95    |
| 0.1         | (1,3)      | 0.79    |

• The weighted average is -0.63





- Consider state (2,3).
- What is the optimal action for that state?
- We must consider each action.
- If the action is "up", these are the possible next states:

| Probability | Next State | Utility |
|-------------|------------|---------|
| 0.8         | (3,3)      | 0.95    |
| 0.1         | (2,4)      | -1.00   |
| 0.1         | (2,3)      | 0.77    |

The weighted average is 0.74





- Consider state (2,3).
- What is the optimal action for that state?
- We must consider each action.
- If the action is "down", these are the possible next states:

| Probability | Next State | Utility |
|-------------|------------|---------|
| 0.8         | (1,3)      | 0.79    |
| 0.1         | (2,4)      | -1.00   |
| 0.1         | (2,3)      | 0.77    |

The weighted average is 0.61





- For state (2,3), action "left" led to the highest expected utility for the next state.
- Thus, action "left" is the best action for state (2,3).
- Note that choosing the best action is not always to try to move towards the best state.
  - At state (2,3) the best action is towards the blocked square, to play it safe.
  - Going up is risky, it has a 10% chance to lead to the -1 state.





- Here is the optimal policy for:
  - -R(s) = -0.02 if s is a non-terminal state.
  - $-\gamma = 1$
- Note that choosing the best policy is more complicated than simply pointing to the direction of highest reward.
  - At state (2,3) the best action is towards the blocked square, to play it safe.
  - Going up is risky, it has a 10% chance to lead to the -1 state.



| 0.90 | 0.93         | 0.95                        | +1             |
|------|--------------|-----------------------------|----------------|
| 0.87 |              | 0.77                        | -1             |
| 0.85 | 0.82         | 0.79                        | 0.57           |
| 1    | 2<br>Utility | 3<br>Value                  | 4              |
|      |              | 0.85     0.82       1     2 | 0.85 0.82 0.79 |

- There is an alternative algorithm for computing optimal policies, that is more efficient.
- Remember that, if we know the utility of each state, we can compute the optimal policy  $\pi^*$  using:

$$\pi^*(s) = \underset{a \in A(s)}{\operatorname{argmax}} \left\{ \sum_{s'} [p(s'|s,a)U(s')] \right\}$$

- However, to get the right  $\pi^*(s)$ , we don't need to know the utilities very accurately.
  - We just need to know the utilities accurately enough, so that, for each state s, argmax chooses the right action.

- This alternative algorithm for computing optimal policies is called the **policy iteration algorithm**.
- It is an iterative algorithm.
- Initialization:
  - Initiate some policy  $\pi_0$  with random choices for the best action at each state.
- Main loop:
  - <u>Policy evaluation</u>: given the current policy  $\pi_i$ , calculate utility values  $U^{\pi_i}(s)$ , corresponding to the utility of each state s **if the agent follows policy**  $\pi_i$ .
  - <u>Policy improvement</u>: Given current utility values  $U^{\pi_i}(s)$ , use one-step look-ahead to compute new policy  $\pi_{i+1}$ .

- To be able to implement the policy iteration algorithm, we need to specify how to carry out each of the two steps of the main loop:
  - Policy evaluation.
  - Policy improvement.

- Task: calculate utility values  $U^{\pi_i}(s)$ , corresponding to the assumption that **the agent follows policy**  $\pi_i$ .
- When the policy was not known, we used the Bellman equation:

$$U(s) = R(s) + \gamma \max_{a \in A(s)} \left\{ \sum_{s'} [p(s'|s,a)U(s')] \right\}$$

• Now that the policy  $\pi_i$  is specified, we can instead use a simplified version of the **Bellman equation**:

$$U^{\pi_i}(s) = R(s) + \gamma \sum_{s'} [p(s'|s, \pi_i(s))U^{\pi_i}(s')]$$

• Key difference: now  $\pi_i(s)$  specifies the action for each state s, so we do not need to look for the max over all possible actions.

$$U^{\pi_i}(s) = R(s) + \gamma \sum_{s'} [p(s'|s, \pi_i(s))U^{\pi_i}(s')]$$

- This is a linear equation.
  - The original Bellman equation, taking the max out of all possible actions, is **not** a linear equation.
- If we have *N* states, we get *N* linear equations of this form, with *N* unknowns.
- We can solve those N linear equations in  $O(N^3)$  time, using standard linear algebra methods.

- For large state spaces,  $O(N^3)$  is prohibitive.
- Alternative: do some rounds of iterations.

```
function PolicyEvaluation(\mathbb{S}, \mathbb{p}, \mathbb{R}, \gamma, \pi_i, K, \mathbb{U})
 \mathbb{U}_0 = \text{copy of } \mathbb{U} 
for k = 1 to K:
  for each state \mathbb{S} in \mathbb{S}:
 \mathbb{U}_k(s) = \mathbb{R}(s) + \gamma \sum_{s'} [p(s'|s,\pi_i(s)) \mathbb{U}_{k-1}(s')] 
return \mathbb{U}_k
```

- Obviously, doing K iterations does not guarantee that the utilities are computed correctly.
- Parameter K allows us to trade speed for accuracy. Larger values lead to slower runtimes and higher accuracy.

- For large state spaces,  $O(N^3)$  is prohibitive.
- Alternative: do some rounds of iterations.

```
function PolicyEvaluation(\mathbb{S}, p, R, \gamma, \pi_i, K, U)
U_0 = \text{copy of } U
\text{for } k = 1 \text{ to } K:
\text{for each state } s \text{ in } \mathbb{S}:
U_k(s) = R(s) + \gamma \sum_{s'} [p(s'|s, \pi_i(s)) U_{k-1}(s')]
\text{return } U_k
```

- The PolicyEvaluation function takes as argument a current estimate U.
  - See later how the PolicyEvaluation function is called from the PolicyIteration function.

#### function PolicyIteration( $\mathbb{S}$ , A, p, R, $\gamma$ , K)

```
N= size of \mathbb{S}. U = new array of size N, all values initialized to 0 \pi= new array of actions, of size N Initialize all values of \pi to random (but legal) actions repeat:
```

 $U = PolicyEvaluation(S, p, R, \gamma, \pi, K, U)$ unchanged = **true for each** state s in S:

$$\begin{aligned} &\inf\max_{a\in A(s)} \left\{ \sum_{s'} \left[ p(s'|s,a) \mathsf{U}[s'] \right] \right\} > \sum_{s'} \left[ p(s'|s,\pi[s]) \mathsf{U}[s'] \right] \\ &\pi[s] = \underset{a\in A(s)}{\operatorname{argmax}} \left\{ \sum_{s'} \left[ p(s'|s,a) \mathsf{U}[s'] \right] \right\} \\ &\operatorname{unchanged} = \mathbf{false} \end{aligned}$$

until unchanged == true

return  $\pi$ 

#### function PolicyIteration( $\mathbb{S}$ , A, p, R, $\gamma$ , K)

N= size of  $\mathbb{S}$ . U = new array of size N, all values initialized to 0  $\pi=$  new array of actions, of size N Initialize all values of  $\pi$  to random (but legal) actions repeat:

 $U = PolicyEvaluation(S, p, R, \gamma, \pi, K, U)$ unchanged = **true for each** state s in S: The main loop alternates between:

- Updating the utilities given the policy.
- Updating the policy given the utilities.

The main loop exits when the policy stops changing.

$$\begin{aligned} &\inf\max_{a\in A(s)} \left\{ \sum_{s'} \left[ p(s'|s,a) \mathsf{U}[s'] \right] \right\} > \sum_{s'} \left[ p(s'|s,\pi[s]) \mathsf{U}[s'] \right] \\ &\pi[s] = \underset{a\in A(s)}{\operatorname{argmax}} \left\{ \sum_{s'} \left[ p(s'|s,a) \mathsf{U}[s'] \right] \right\} \\ &\operatorname{unchanged} = \mathbf{false} \end{aligned}$$

until unchanged == true

return  $\pi$ 

#### function PolicyIteration( $\mathbb{S}$ , A, p, R, $\gamma$ , K)

```
N= size of \mathbb{S}. U= new array of size N, all values initialized to 0 \pi= new array of actions, of size N Initialize all values of \pi to random (but legal) actions repeat:
```

```
U = PolicyEvaluation(S, p, R, \gamma, \pi, K, U)
unchanged = true
for each state s in S:
```

The main loop alternates between:

- Updating the utilities given the policy.
- Updating the policy given the utilities.

The main loop exits when the policy stops changing.

```
\begin{aligned} &\inf\max_{a\in A(s)} \left\{ \sum_{s'} \left[ p(s'|s,a) \mathsf{U}[s'] \right] \right\} > \sum_{s'} \left[ p(s'|s,\pi[s]) \mathsf{U}[s'] \right] \\ &\pi[s] = \underset{a\in A(s)}{\operatorname{argmax}} \left\{ \sum_{s'} \left[ p(s'|s,a) \mathsf{U}[s'] \right] \right\} \\ &\operatorname{unchanged} = \mathbf{false} \end{aligned}
```

until unchanged == true

#### function PolicyIteration( $\mathbb{S}$ , A, p, R, $\gamma$ , K)

N= size of  $\mathbb{S}$ . U= new array of size N, all values initialized to 0  $\pi=$  new array of actions, of size N Initialize all values of  $\pi$  to random (but legal) actions **repeat:** 

 $U = PolicyEvaluation(S, p, R, \gamma, \pi, K, U)$ unchanged = **true** 

**for each** state s in S:

 $\inf_{a \in A(s)} \{ \sum_{s'} [p(s'|s,a) \mathbf{U}[s']] \} > \sum_{s'} [p(s'|s,\pi[s]) \mathbf{U}[s']]$   $\pi[s] = \underset{a \in A(s)}{\operatorname{argmax}} \{ \sum_{s'} [p(s'|s,a) \mathbf{U}[s']] \}$ 

unchanged = false

until unchanged == true

The main loop alternates between:

- Updating the utilities given the policy.
- Updating the policy given the utilities.

The main loop exits when the policy stops changing.

#### Markov Decision Processes: Recap

#### In Markov Decision Processes:

- Each state has a reward R(s).
- Each state sequence  $(s_0, s_1, ..., s_T)$  has a utility  $U_h$  which is computed by adding the discounted rewards of all states in the sequence.
- An action can lead to multiple outcomes. The probability of each outcome given the state and the action is known.
- A policy is a function mapping states to actions.
- The utility of a state  $s_0$  is the expected utility measured over all state sequences that can lead from  $s_0$  to a terminal state, under the assumption that the agent follows the optimal policy.

#### Markov Decision Processes: Recap

- The value iteration algorithm computes the utility of each state using an iterative approach.
  - Once the utilities of all states have been computed, the optimal policy is defined by identifying, for each state, the action leading to the highest expected utility.
- The policy iteration algorithm is a more efficient alternative, at the cost of possibly losing some accuracy.
  - It computes the optimal policy directly, without computing exact values for the utilities.
  - Utility values are updated for a few rounds only, and not until convergence.