Final Presentation for BiGCaT Internship

GÜNGÖR BUDAK 2013 SUMMER

Outline

- Introduction
- Methods
- R Scripts, Results & Scores
- Discussion/Conclusion/Ending notes
- Acknowledgements

Introduction

HPN-DREAM Challenge

Network inference using (breast cancer) experimental data & in silico data

 Finding out directed and causal edges with confidence scores having nodes from data

Methods

I applied the method given by the Challenge. I take time series data for intervention and no intervention cases, integrate over both series, and compare those results. If intervention is larger than no intervention, this means there is an inhibition and vice versa.

Methods

in silico Data Part

netInfPlotter_insilico.R - reads MIDAS file &
plots expression profiles

Parameters:

- MIDAS file
- Child antibody
- No intervention case
- Intervention case

It reads MIDAS file and gets treatments, time points & data points for the child antibody given as parameter.

Next, it **plots the graph** using intervention information given as parameters.

AB1, IoLIG1 & INH1+IoLIG1

AB1, hiLIG1 & INH1+hiLIG1

netInf_insilico.R - reads MIDAS file & infers
network

Parameters:

MIDAS file

It has pre-defined relations of inhibitors, stimuli & targets. Using this definition, it infers the network.

Functions in **netInf_insilico.R**:

- midasReader reads entire dataset into (and returns) a list
- dataOptimizer optimizes data by organizing data according to intervention / no intervention cases and returns a list

Functions in **netInf_insilico.R**:

 networkInferrer – gets optimized data, integrates over time series data for each case (using simp.R from StreamMetabolism R package), sends this to edgeScrorer and gets scores, then compares integration results and prints network and edge scores

Functions in **netInf_insilico.R**:

 edgeScorer – gets re-optimized data, takes differences of intervention - no intervention pairs and divides each by the maximum difference (relative scoring)

NETWORK	EDGE SCORES
	AB12 (-1) AB4 = 0.125607648039895 AB12 (1) AB5 = 0.387315114804341
AB12 1 AB3 AB12 1 AB7	
	* /
AB12 1 AB12	
	AB12 (1) AB15 = 0.297747320601138
	AB12 (1) AB17 = 0.468965200447113
AB5 1 AB1	AB5 (1) AB1 = 0.153406258028158
	AB5 (1) AB2 = 0.117095967751232
	AB5 (1) AB1 = 0.107801371147316
	AB5 (1) AB2 = 0.332762092748331
	AB5 (1) AB10 = 0.402011060478378
	AB5 (1) $AB14 = 0.101422253565245$
	AB5 (1) AB20 = 0.187229273608587
AB8 1 AB4	AB8 (1) AB4 = 0.148796767963238
AB8 1 AB14	AB8 (1) AB14 = 0.114983286025325
	AB8 (-1) AB2 = 0.118139381346698
AB8 1 AB5	AB8 (1) AB5 = 0.155706529550716
AB8 1 AB7	AB8 (1) $AB7 = 0.261809022643912$
AB8 1 AB12	AB8 (1) AB12 = 0.25995770151247
AB8 1 AB14	AB8 (1) AB14 = 0.187371053492683
AB8 1 AB19	AB8 (1) AB19 = 0.154069954144077
AB8 -1 AB2	AB8 (-1) AB2 = 0.111852460947932
AB8 1 AB10	AB8 (1) AB10 = 0.110119528817645
	AB8 (-1) AB2 = 0.488162055334542
AB8 1 AB4	AB8 (1) AB4 = 0.123109029618681
	AB8 (1) AB10 = 0.374531112926
	AB8 (1) AB14 = 0.189420081141146
	AB8 (-1) AB20 = 0.584969034521593
	· · · · · · · · · · · · · · · · · · ·

EDGE SCORES

NETHODIZ

Experimental Data Part

netInfPlotter_experimental.R – reads MIDASfile, optimizes data (this will be mentioned later)& plots expression profiles

Parameters:

- Cell line
- Child antibody
- No intervention case
- Intervention case

netInfPlotter_experimental.R – steps in the same manner as in *in silico* script. It has some functions for handling experimental data.

AKT_pT308 Expression Data (Cell line: MCF7 & Stimulus: Serum)

Parameters:

- MCF7
- AKT_pT308
- Serum
- Serum__GSK690693

This result shows an

inhibition

netInf experimental.R – reads MIDAS file into a list, optimizes data and infers network Unlike in silico script, while being read, data is ordered. Duplicates are removed; missing data points are checked and NAs are put and missing data points in middle are estimated.

Additional Functions in this script:

- orderData gets data and orders it in a special way
- duplicateHandler data points for the same condition are detected and by taking mean of them they are reduced to singles

Additional Functions in this script:

- fashionChecker checks if there is any missing data point and adds NAs to them
- estimateDataPoints if missing data points are in the middle, they are estimated by taking mean of neighboring data points

Scores on Leaderboards

Experimental part

- Rank **70**/83
- Z-score -0.01

in silico part

- Rank 49/86
- Z-score 1.3

Discussion/Conclusion/Ending notes

- I had to use better statistical methods for network inference
- I couldn't make use of existing tools due to nature of the data
- The challenge was a nice work to deal with to learn more on bioinformatics

Discussion/Conclusion/Ending notes

- It was nice to learn R and program in R
- It was a good experience for me to be a part of BiGCaT group and live in beautiful
 Maastricht

Scripts & Notes Online

Scripts in a **GitHub** repo

gungorbudak / netinf-bigcat

Notes on **Blogger**

http://biyoenformatik.blogspot.com

Acknowledgments

- Martina Kutmon
- Anwesha Bohler
- Susan Coort
- Chris Evelo