Project Title: Hand Tracking and Gesture-Based System Control

Team Name: BitMasters

Team Members:

23B81A6676 Dhanush Chiraboina

- 23B81A6684 Harshavardhan Kanchumoni
- 23B81A6689 Karthik Reddy Thummalapalli
- 23B81A66C5 Viishweshwar Gouni
- 23B81A66C8 Zenith Golusu

Phase-1: Brainstorming & Ideation

Objective: Develop a hand tracking and gesture-based system using OpenCV, MediaPipe, and PyAutoGUI to control system functions such as volume, scrolling, and cursor movement without a physical input device.

Key Points:

1. Problem Statement:

- Traditional input devices (mouse) require physical contact, leading to ergonomic issues over prolonged use.
- Accessibility challenges for individuals with disabilities in using conventional input methods.

2. Proposed Solution:

- A computer vision-based system that recognizes hand gestures and translates them into system commands.
- Uses OpenCV and MediaPipe for real-time hand tracking and PyAutoGUI for system interaction.

3. Target Users:

- General computer users seeking an innovative, touch-free way to interact with their system.
- o Individuals with physical disabilities needing an alternative control mechanism.
- Professionals in fields like design and presentation where hands-free control is beneficial.

4. Expected Outcome:

 A functional, real-time gesture-based system control application that improves accessibility and usability.

Phase-2: Requirement Analysis

Objective: Define the technical and functional requirements for the hand tracking project.

Key Points:

1. Technical Requirements:

o **Programming Language:** Python

o Computer Vision: OpenCV, MediaPipe

System Interaction: PyAutoGUI

o Hardware: Camera (webcam or built-in laptop camera)

2. Functional Requirements:

Detect hand landmarks in real time.

- Recognize different hand gestures for performing system actions (e.g., volume control, scrolling, cursor movement).
- Provide smooth and responsive interactions with low latency.

3. Constraints & Challenges:

- o Accuracy of hand detection under varying lighting conditions.
- o Ensuring minimal lag for real-time interaction.
- o Handling multiple gestures efficiently without false triggers.

Phase-3: Project Design

Objective: Develop the architecture and user flow of the application.

Key Points:

1. System Architecture:

- Captures video input from the camera.
- o Processes frames using OpenCV and MediaPipe for hand tracking.
- Recognizes specific gestures and maps them to corresponding system functions.
- Uses PyAutoGUI to execute system commands like scrolling, volume control, and cursor movement.

2. User Flow:

- o Step 1: The user moves their hand in front of the camera.
- o Step 2: The system detects and tracks hand landmarks.
- Step 3: Specific hand gestures are mapped to predefined system commands.

 Step 4: The corresponding action (e.g., volume adjustment) is performed in real time.

3. UI/UX Considerations:

- o Minimalist, real-time visual feedback of hand detection.
- o User-friendly instructions and gesture explanations.
- o Low latency for seamless user experience.

Phase-4: Project Planning (Agile Methodologies)

Sprint	Task	Priority	Duration	Deadline	Assigned To	Dependencies	Expected Outcome
Sprint 1	Environment Setup & Library Installation	High	3 hours	Day 1	Entire Team	Python, OpenCV, MediaPipe, PyAutoGUI	Successful environment setup
Sprint 1	Hand Detection Implementation	High	5 hours	Day 1	Dhanush	OpenCV, MediaPipe	Hands detected in real-time
Sprint 2	Gesture Recognition	High	6 hours	Day 2	Karthik	Hand landmarks	Hand gestures mapped to commands
Sprint 2	System Control Integration	High	5 hours	Day 2	Harshavardhan	PyAutoGUI	System functions controlled via gestures
Sprint 3	Testing & Debugging	Medium	4 hours	Day 3	zenith	Completed implementation	Smooth & responsive interaction
Sprint 3	Final Presentation & Deployment	Low	2 hours	Day 3	Viishweshwar	Working prototype	Demo-ready application

Phase-5: Project Development

Objective: Implement core features of the hand tracking system.

Key Points:

1. Technology Stack Used:

Computer Vision: OpenCV, MediaPipe

Gesture Recognition: MediaPipe Hand Landmarks

System Control: PyAutoGUI

o **Programming Language:** Python

2. Development Process:

o Implement real-time hand tracking with MediaPipe.

o Recognize gestures and map them to system actions.

o Optimize interaction responsiveness.

3. Challenges & Fixes:

o **Challenge:** Hand detection accuracy in varying lighting.

• **Fix:** Adjust brightness thresholds and use adaptive image preprocessing.

o **Challenge:** Gesture misclassification.

• Fix: Introduce confidence thresholds and gesture smoothing techniques.

o **Challenge:** Lag in gesture recognition.

• **Fix:** Optimize frame processing and reduce computation load.

Phase-6: Functional & Performance Testing

Test Case ID	Category	Test Scenario	Expected Outcome	Status	Tester
TC-001	Functional Testing	Hand detection in normal lighting	Hands detected accurately	Passed	Dhanush
TC-002	Functional Testing	Hand detection in low light	Hands detected with minor delay	Needs Optimization	Karthik
TC-003	Functional Testing	Gesture-based volume control	Volume changes accordingly	Passed	Harshavardhan
TC-004	Functional Testing	Cursor movement with hand gestures	Smooth cursor movement	Passed	Viishweshwar
TC-005	Performance Testing	Response time of hand tracking	Real-time interaction (< 200ms)	Passed	Zenith
TC-006	Bug Fixes & Improvements	Fix incorrect gesture recognition	Higher accuracy of gesture mapping	Fixed	Zenith

GitHub/Code Repository Link: https://github.com/Dhanush04925/Hand-Gesture.git								