

Useful reactions

K_0 regeneration

$$K_L \xrightarrow{\text{decay}} 3\pi^- \quad (\text{CP} = -1)$$

$$K_S \xrightarrow{\text{decay}} 2\pi^- \quad (\text{CP} = +1)$$

(11)

$$\text{CP}(K_0) = -\bar{K}_0$$

$$\text{CP}(\bar{K}_0) = -K_0$$

$$K_L = \frac{1}{2} (K_0 + \bar{K}_0)$$

$$K_S = \frac{1}{2} (K_0 - \bar{K}_0)$$

$$K_0 = \begin{cases} K_L \\ K_S \end{cases} \rightarrow \begin{array}{c} | \\ | \\ | \\ | \\ | \end{array} \rightarrow \begin{array}{c} K_L \\ K_S \end{array}$$

$$\text{Produced } \bar{n} \pi^- + p = \Lambda^0 + K_0^-$$

$$\bar{K}_0 \text{ produced in } \pi^+ + D = K^+ + E_0 + p$$

$$\text{neutrino reactions: } (1) \bar{\nu}_e + p = n + e^+$$

(Heaviside's convention)
negligible $n \rightarrow p + \bar{e} + \bar{\nu}_e$

$$(2) \bar{\nu}_e + n = \bar{\mu}^- + p$$

$$\text{but not } \bar{\nu}_e + n = \bar{e}^- + p.$$

(neutralino
descensus)

$$(3) \bar{\nu}_e + n = \bar{\nu}_e + \text{hadrons} \quad (\text{neutral current})$$

cp Weinberg-Salam (1967) $K_0 \rightarrow \mu^+ + \mu^-$ (mediated by
unbroken e.m.) weak. ($2 W^3$, charged
currents, neutral) and $n \rightarrow p + \bar{e}^- + \bar{\nu}_e$

$$\text{fermions} \quad \bar{p} + N \rightarrow N^* \rightarrow \bar{p} + N \quad (\text{Fermi-reaction for } \bar{N}^* \text{ (long range)})$$

$$\bar{p} + N \rightarrow e^- + N \rightarrow \pi^- + N \quad (\rho \text{-meson decay})$$

$$\text{antiproton} \quad p + p \rightarrow p + p + p + \bar{p}$$

$$\left. \begin{array}{l} \Lambda^0 \text{ decay} \\ \text{pion decay} \end{array} \right| \begin{array}{l} \Lambda^0 \rightarrow \bar{p} + p + \bar{\pi}^0 \\ \bar{\pi}^0 \rightarrow N + \bar{N} \xrightarrow{\text{weak}} \mu + \tau \end{array} \right\} \quad \begin{array}{l} \text{Associated production} \\ (\text{Paris, 1952}) \end{array}$$

$$\bar{\pi}^0 + n \rightarrow \Delta^0 + K^+$$

P-Two

$$E = \frac{1 - \frac{\text{M}_1}{\text{M}_0}}{2}$$

Tacticity measured by $\text{B}\beta$ in 1967
published by $\text{B}\beta$ in 1962 by $\text{B}\beta$, $\text{D}\beta$, $\text{P}\beta$, $\text{S}\beta$

W-Hat, the fraction of one hand up + 4.47 E, May 1973

Conversion of one hand

Conversion of both hands

$$C_A = 1.25 \times$$

$$(H)_{\text{exp}}(x) \frac{\tilde{F}_+(x)}{\tilde{F}_-(x)} \int = H$$

$$\int F_+(x) dx = F_-(x)$$

$$(\alpha_{\text{H}}(s_{\text{L}}+1)) \text{ ml } d_{\text{H}}$$

$$(\alpha_{\text{H}}(s_{\text{L}}+1)) \text{ ml } d_{\text{H}} \int = H$$

W-Hat - Uncontrolled conversion

W-Hat - Uncontrolled conversion

beam energies

28 gev	CERN	1960	<u>12 arts</u>
7 gev.	Rutherford	1963	(Nimrod)
33 gev	Brookhaven	1960	
70 gev	Seriulkev	1967	
200-500 gev.	N.A.L. Batavia, Illinois		(1972) \rightarrow 400 gev
300 gev.	CERN		

<u>Storage rings</u>	25 gev p.p.	CERN	1971
	$0.55 e^+ e^-$	Sixay	1967
	$0.5 e^+ e^-$	Steinbeck	1966
	$0.7 e^+ e^-$	Novosibirsk	1966

(Berkeley)
 \rightarrow Bevatron 1954, 6.2 GeV it was to be
coherent current set in 1955
by Chamberlain, Segre, Wiegand
and Ocilla
CERN 1953 1.4 GeV (Brookhaven)

Q.I.

$$\left. \begin{array}{l} \text{of reflection} \\ \text{from surface} \end{array} \right\} = \frac{\text{in addition term}}{\text{in original term}} = \frac{E_{\text{Total}}}{E_{\text{out}}} = \sqrt{2E_{\text{out}}}$$

$$\frac{(1 - \alpha) \times 10^{-13} \text{ J}}{10^{-13} \text{ J}} =$$

$$\text{Effectively new surface loss is } \alpha \times 2 \times 10^{-13} \text{ J}$$

$$= 0.4 \text{ J}$$

$$= 65 \text{ Hz power output}$$

$$10^{-13} \text{ J} = 2 \times 10^{-13} \text{ J per half}$$

value of fine is 1.4 fm

$$\text{value of electron} = \frac{e^2/mc^2}{0.3 \times 10^{-13} \text{ J}} = \frac{e^2/mc^2}{10^{-13} \text{ J}}$$

$$\text{value of electron} = \frac{e^2/mc^2}{0.4 \times 10^{-13} \text{ J}}$$

$$\text{value of electron} = \frac{e^2/mc^2}{0.5 \times 10^{-13} \text{ J}}$$

$$\text{Value of electron} = \frac{1 \text{ fm}}{10^{-13} \text{ J}} = 10^{13} \text{ cm}^{-2}$$

⑬

Simple picture of the hadrons

(13)

Strong interactions

Baryon

meson.
(pions for $N^{\pi}(1236)$ etc.
kaons for D^0 etc.)

of real
strong-coupling
theory of
meson-field

meson-field

Pauli 1946
(meson theory of nuclear forces -
but note problem
of strangeness
 Λ involves K meson)

Weak interactions

E.M. Interactions

or in terms of currents

p. J_γO

$$+ \kappa + \nabla = \underline{\underline{\kappa}} + \underline{\underline{\nabla}}$$

Adiabatic process

$\kappa + N \leftarrow \nabla$
at equilibrium pressure

$$\rightarrow \underline{\underline{\kappa}} + \underline{\underline{\kappa}} \xleftarrow{\text{Adiabatic}} N N \xleftarrow{\text{P. const.}} \nabla \xleftarrow{\text{V. const.}} \kappa$$

$$\underline{\underline{\kappa}} \xleftarrow{\text{Slow}} \underbrace{N + N}_{\text{N} + \text{N}} + N \xleftarrow{\text{P. const.}} \nabla \xleftarrow{\text{V. const.}} \kappa$$

Interpretation of coupling constant (ch. term)

(14)

Interaction parameter $\sim e^2/\epsilon c$

Measures - mean no. of particles of type II
surrounding particle of type I.

$$\text{too } U = U_I + \sum_n U_{I+nII} \dots$$

$$\bar{n} \sim e^2/\epsilon c$$

isotopic
spinality

mesons-

baryons

$$\text{mesons } 3 \times 3^* = 8 \oplus 1$$

$$\text{baryons } 3 \times 3 \times 3 = 10 \oplus 8 \oplus 8 \oplus 1$$

$$\begin{aligned} Y &= B + S \\ Q &= \frac{1}{2} Y + T_3 \end{aligned}$$

Range-energy relation

(16)

$$\Delta E = mc^2$$

$$\Delta t = \frac{\hbar}{mc^2}$$

distance travelled $\perp c \Delta t = \hbar/mc$

maximum range is \hbar/mc .

equivalent sets of oscillators
set of particles

ter Drie⁽¹⁹²⁷⁾
Jordan, Klein⁽¹⁹²⁷⁾
Jordan, Fock⁽¹⁹²⁸⁾
Fermi, Jordan, Wigner⁽¹⁹²⁸⁾

N classical particles $\xrightarrow{\text{quantized}} N$ quantized particles $\xrightarrow{\text{set of oscillators}}$ quantized field
 $\xrightarrow{\text{Schrodinger eqn}}$ (set of quantized oscillators)

(1927) Dirac (photon)
(1927) Jordan, Klein (Bohrs A.R.)
(1928) Jordan, Wigner (Fermions A.R.)

classical field $\xrightarrow{\text{field quantization}}$ quantized field
 $\xrightarrow{\text{set of oscillators}}$ $\Rightarrow N$ particles
(1928) Jordan, Pauli
(1929, 1930) Heisenberg, Pauli
[(1934) Pauli, Weisskopf
(Dirac, scalar field)]

Scattering & localized zone

(19)

$$\theta \approx mc/p$$
$$D\theta \approx \lambda/D = \frac{\hbar}{pD} \Rightarrow \frac{mc}{p} = \theta.$$

But $D \ll \hbar/me$

$$\text{forward peak} \approx \frac{1}{q^2 + m^2} = \frac{1}{\frac{p^2}{m^2} \sin^2 \theta + m^2}$$

parallel to screen

$$pD\theta \approx m \quad D\theta \approx m/p$$

the paraguan

(20)

$$d\sigma \sim \left(\int e^{-ch \cdot n} v(n) e^{ch \cdot n} dn \right)^2$$

$$\sim V(q) = \frac{1}{q^4} / q \text{ is regular w.r.t. } q = 2\beta m^2 \theta.$$

now $\nabla^2 V \propto \rho$

$$V(n) = \int v(q) e^{iq \cdot n} dq$$

$$\nabla^2 V = \underbrace{\int q^2 V(q) e^{iq \cdot n} dq}_{\rho(q)} = \rho(n) \quad (\text{so } V(q) = \rho(q) \cdot \frac{1}{q^2})$$

$$\rho(q) \text{ for } \rho(n) = \int \rho(q) e^{iq \cdot n} dq$$

$$\text{if } \rho(0) = 0 \\ (\text{by symmetry } q(q_1 - q_2) = -q(q_2 - q_1)) \\ \text{or } q(0) = -q(0) = 0.$$

$$\text{then } \int \rho(q) dq = 0$$

N.B. χ -problem \propto

chew, Self-Drazen & Rosenfeld Sci Am. 210(2): 74
' popular article - (1964)

(27)

Sum Rule

$$\langle \psi (A\beta - \beta A) \psi \rangle = \langle \psi | c | \psi \rangle$$
$$= \sum_n (\langle \psi | A | \phi_n \rangle \langle \phi_n | B | \psi \rangle) - \sum_n (\overline{\psi_n | A | \psi})^2 = \langle \psi | c | \psi \rangle.$$

↳ Sum of transition
strengths to ψ
(from all states.) | Pot

Hewerford's Unified Field Theory

(25)

Universal length uses just 3 constns as needed to establish

a system of units e.g. c, h & l

$$\text{then } m = \frac{h}{lc} \text{ gives scale of masses}$$

"Eq. of motion for matter is a quantized non-linear wave equation for a wavefield of operators that simply represents matter, not any specified kind of waves or particles." This wave equation will lead to integral equations with regular solutions representing the particles they are the mathematical forms replacing the regular solids of the Pythagoreans.

$$\text{Eq is: } -c\sigma^2 \frac{\partial^2 \chi}{\partial x^2} + l\sigma \chi (\chi^* \sigma \chi) = 0$$

χ is a 2- component spinor, proposed
1959

described as last 1966

