EXTRACT SDMES FOR RH00

Nicholaus Trotta

MOTIVATION

- Generalized Parton Distrubutions
 (GPDs) give insight into the 3D structure
 of hadrons
- Accessing GPDs can be done using deeply virtual vector meson production (DVMP)
 - DVMP is sensitive to higher order twist terms and chiral odd GPDs
- In the Goloskokov-Kroll (GK) model, SDMEs are relate to GPDs
 - This allows for constrictions on the theoretical calculation of GPDs

$$\frac{2\pi}{\Gamma(Q^2, x_B, E)} \frac{d^4\sigma}{dQ^2 dx_B dt d\phi_{\pi}} = \sigma_T + \epsilon \sigma_L + \epsilon \sigma_{TT} \cos 2\phi + \sqrt{2\epsilon (1 + \epsilon)} \sigma_{LT} \cos \phi + P_b \sqrt{2\epsilon (1 - \epsilon)} \sigma_{LT'} \sin \phi$$

MOTIVATION

- The 3D angular distribution can be shown from experimental results of the pion decay
 - Schilling-Wolf showed that Spin Density Matrix Elements (SDMEs) are parameters of the angular distributions
- The SDMEs can be express through helicity amplitudes
 - These helicity amplitudes depend on Q2, W and –t
- The spin density matrix can be expressed in terms of the matrices that depend on the photon polarization and R
 - Where R is the longitudinal-to-transverse virtual-photon differential cross-section ratio
- For the photon polarization:
 - \circ $\alpha = [0,3]$ transversely
 - \circ $\alpha = [4]$ longitudinal
 - $\alpha = [5,8]$ interference

$$\mathcal{W}^{U}(\Phi, \phi, \cos \Theta) = \frac{3}{8\pi^{2}} \left[\frac{1}{2} (1 - r_{00}^{04}) + \frac{1}{2} (3r_{00}^{04} - 1) \cos^{2} \Theta \right.$$

$$- \sqrt{2} \operatorname{Re}\{r_{10}^{04}\} \sin 2\Theta \cos \phi - r_{1-1}^{04} \sin^{2} \Theta \cos 2\phi - \epsilon \cos 2\Phi \left(r_{11}^{1} \sin^{2} \Theta + r_{00}^{1} \cos^{2} \Theta - \sqrt{2} \operatorname{Re}\{r_{10}^{1}\} \sin 2\Theta \cos \phi - r_{1-1}^{1} \sin^{2} \Theta \cos 2\phi\right)$$

$$- \epsilon \sin 2\Phi \left(\sqrt{2} \operatorname{Im}\{r_{10}^{2}\} \sin 2\Theta \sin \phi + \operatorname{Im}\{r_{1-1}^{2}\} \sin^{2} \Theta \sin 2\phi\right)$$

$$+ \sqrt{2\epsilon(1+\epsilon)} \cos \Phi \left(r_{11}^{5} \sin^{2} \Theta + r_{00}^{5} \cos^{2} \Theta - \sqrt{2} \operatorname{Re}\{r_{10}^{5}\} \sin 2\Theta \cos \phi\right)$$

$$- r_{1-1}^{5} \sin^{2} \Theta \cos 2\phi\right) + \sqrt{2\epsilon(1+\epsilon)} \sin \Phi \left(\sqrt{2} \operatorname{Im}\{r_{10}^{6}\} \sin 2\Theta \sin \phi\right)$$

$$+ \operatorname{Im}\{r_{1-1}^{6}\} \sin^{2} \Theta \sin 2\phi\right), \qquad (2.19)$$

190

$$\mathcal{W}^{L}(\Phi, \phi, \cos \Theta) = \frac{3}{8\pi^{2}} \left[\sqrt{1 - \epsilon^{2}} \left(\sqrt{2} \operatorname{Im}\{r_{10}^{3}\} \sin 2\Theta \sin \phi + \operatorname{Im}\{r_{1-1}^{3}\} \sin^{2}\Theta \sin 2\phi \right) \right. \\
+ \sqrt{2\epsilon(1 - \epsilon)} \cos \Phi \left(\sqrt{2} \operatorname{Im}\{r_{10}^{7}\} \sin 2\Theta \sin \phi + \operatorname{Im}\{r_{1-1}^{7}\} \sin^{2}\Theta \sin 2\phi \right) \\
+ \sqrt{2\epsilon(1 - \epsilon)} \sin \Phi \left(r_{11}^{8} \sin^{2}\Theta + r_{00}^{8} \cos^{2}\Theta - \sqrt{2} \operatorname{Re}\{r_{10}^{8}\} \sin 2\Theta \cos \phi \right. \\
- \left. r_{1-1}^{8} \sin^{2}\Theta \cos 2\phi \right) \right].$$
(2.20)

$$\rho_{\lambda_V \lambda_V'} = \frac{1}{2\mathcal{N}} \sum_{\lambda_\gamma \lambda_\gamma' \lambda_N \lambda_N'} F_{\lambda_V \lambda_N' \lambda_\gamma \lambda_N} \varrho_{\lambda_\gamma \lambda_\gamma'}^{U+L} F_{\lambda_V' \lambda_N' \lambda_\gamma' \lambda_N}^*$$

$$r_{\lambda_V \lambda_V'}^{04} = (\rho_{\lambda_V \lambda_V'}^0 + \epsilon R \rho_{\lambda_V \lambda_V'}^4) (1 + \epsilon R)^{-1},$$

$$r^{\alpha}_{\lambda_V \lambda_V'} = \begin{cases} \rho^{\alpha}_{\lambda_V \lambda_V'} (1 + \epsilon R)^{-1}, & \alpha = 1, 2, 3, \\ \sqrt{R} \rho^{\alpha}_{\lambda_V \lambda_V'} (1 + \epsilon R)^{-1}, & \alpha = 5, 6, 7, 8. \end{cases}$$

MAXIMUM LIKELIHOOD METHOD

UNBINNED MAXIMUM LIKELIHOOD METHOD

- The Maximum Likelihood Method (MLM) is used to find the best fit of parameters without needing kinematic binning
- The process involves find the Probability Density Function (PDF) which is given by angular distributions and efficiencies:

$$w(\mathcal{R}, \Phi, \phi, \cos \Theta) = \frac{\mathcal{W}^{U+L}(\mathcal{R}; \Phi, \phi, \cos \Theta) \mathcal{E}(\Phi, \phi, \cos \Theta)}{\int \mathcal{W}^{U+L}(\mathcal{R}; \Phi, \phi, \cos \Theta) \mathcal{E}(\Phi, \phi, \cos \Theta) d\Omega}$$

• The likelihood function, L(R), is then calculated and the parameters are determined by minimizing the negative log of the likelihood function

$$-\ln L(\mathcal{R}) = -\sum_{i=1}^{N} \ln \frac{\mathcal{W}^{U+L}(\mathcal{R}; \Phi_i, \phi_i, \cos \Theta_i)}{\widetilde{\mathcal{N}}(\mathcal{R})}$$

EXTRACTING SDME

• 23 SDME elements are extract using the MLM:

$$-\ln L(\mathcal{R}) = -\sum_{i=1}^{N} \ln \frac{\mathcal{W}^{U+L}(\mathcal{R}; \Phi_i, \phi_i, \cos \Theta_i)}{\widetilde{\mathcal{N}}(\mathcal{R})}$$

- W is the angular distribution which is part of the unnormalized Probability Density Function
 - o R is the 23 spin density matrix elements
 - o Both phis and theta are the decay angles from the reaction:

•
$$\mu p \longrightarrow \mu' \rho^0 P \longrightarrow \mu' \pi^+ \pi^- P$$

• Tilde N is the normalization and can be found using a Monte Carlo:

$$\widetilde{\mathcal{N}} = \int \mathcal{W}^{U+L}(\mathcal{R}; \Phi, \phi, \cos \Theta) \mathcal{E}(\Phi, \phi, \cos \Theta) d\Omega \approx \sum_{j=1}^{N_{MC}} \mathcal{W}^{U+L}(\mathcal{R}; \Phi_j, \phi_j, \cos \Theta_j)$$

BACKGROUND SUBTRACTION STEPS

BACKGROUND SUBTRACTION USING MISSING ENERGY

- Missing Energy should be centered around zero so background events should be subtracted
- The largest component of the background is SIDIS events. This can be estimated by comparing the same charged hadron events for data and lepto (SCHAD)
- The opposite charged pion lepto events can be weighted to match data using SCHAD events

$$w(E_{\text{miss}}) = \frac{N_{rd}^{sc}(E_{\text{miss}})}{N_{MC}^{sc}(E_{\text{miss}})}.$$

- Here N is the number of events with same charged pions found in the data (numerator) and the Monte Carlo (denominator)
- The fractional background, fbkg, can be calculated in our signal region [-2.5,2.5] during subtraction
 - This is used to remove the background events for SDME extraction

EXTRACTING SDME WITHOUT BACKGROUND

• Introduce 23 more SDME for just the background events:

$$-\ln L(\mathcal{R}) = -\sum_{i=1}^{N} \ln \left[\frac{(1 - f_{bg}) * \mathcal{W}^{U+L}(\mathcal{R}; \Phi_i, \phi_i, \cos \Theta_i)}{\widetilde{\mathcal{N}}(\mathcal{R}, \mathcal{B})} + \frac{f_{bg} * \mathcal{W}^{U+L}(\mathcal{B}; \Phi_i, \phi_i, \cos \Theta_i)}{\widetilde{\mathcal{N}}(\mathcal{R}, \mathcal{B})} \right]$$

$$\widetilde{\mathcal{N}}(\mathcal{R}, \mathcal{B}) = \sum_{j=1}^{N_{MC}} [(1 - f_{bg}) * \mathcal{W}^{U+L}(\mathcal{R}; \Phi_j, \phi_j, \cos \Theta_j) + f_{bg} * \mathcal{W}^{U+L}(\mathcal{B}; \Phi_j, \phi_j, \cos \Theta_j)]$$

- Here R is the 23 SDME for the signal, and B is the 23 SDME for the background. MLM has to fit 46 parameters
- Fbkg is the fractional background

9

BINNING SCHEME

Binning for Background Subtraction

- 1. Overall Goal is 3D binning {Q2,xB,-t}
 - O Q2 xB bin not final
- 2. 1D which can be done with P09 data
 - \circ Bins: Q2,xB, and –t
- 3. Also look at the different muon beams

11

5/2/2025

STEP BY STEP PROCESS

- 1. Create and match a Monte Carlo for the reaction
 - o Using HepGen as the Generator and COMPASS detector simulation
 - o Using MLM calculate SDME integrated over all kinematics (WITH BACKGROUND)
- 2. Use a Monte Carlo to subtract the background
 - Lepto Generator is used
 - Find Fbkg
 - o Reweight HepGen to match background subtracted data
- 3. Use the MLM background subtraction to find SDMEs for the signal (23) and background (23)
- 4. 3D binning in Q2, W and –t since our SDME depends on them
 - O Statistics might be lacking for full 3D binning, start with 1D for each
 - O Use xB instead of W since our cross-section has this dependence, greater kinematic coverage between jlab and compass
 - \circ COMPASS used pt2 for 2012 data instead of -t: |t| t0 ~ Pt2
- 5. Repeat step 4 for bins of Q2, xB and –t and Look at the different muon beams

MU+ VS MU- BEAMS

EMiss per Muon beam

EMiss per Muon beam Same Charge Hadron Events

Data

EMiss per Muon Beam Opposite Charge Hadron Events

Fractional Background and SDME for Muon Beam

Background is subtracted for all three cases

CROSS CHECK

CROSS CHECK WITH BAKUR

Bakur's Data

RD: mu^+- beam,	h+- data
bin	N(RD)
Q2 [1.0;1.3]	12444
Q2 [1.3;2.0]	13600
Q2 [2.0;4.0]	10319
Q2 [4.0;10.0]	4341
total: 40704	

Nick's Data

RD h+-: Q2 bin 1:16231 Q2bin 2: 18084 Q2bin 3: 14192 Q2 bin4: 6696 total N: 55203 total B: 40704

A large difference between the data, LEPTO and HEPGEN. Further investigation into each cut needed

CROSS CHECK WITH BAKUR- RUN275515

- Ran with microDST
 - o First few cuts are redundant
- Bakur is away this week still waiting on his values

Cut	Nick's Count Bakur's Count	√ Nick/Bak	ur
Total Events	14331	1	14331
Events with Primary Vertex	14331	1	14331
Beam Measured before Target	14331	1	14331
Beam Momentum	14331	1	14331
Beam Momentum Error	14331	1	14331
Deteceted by BMS	14331	1	14331
Deteceted by SCIFI	14330	1	14330
Detected by SI	14330	1	14330
Beam Crosses Full length of target	12634	1	12634
beam track meantime	6674	1	6674
beam track spills	5890	1	5890
vertex is in target	7655	1	7655
Phyiscs Triggers	5445	1	5445
Scattered Muon Pass Hodoscope	4652	1	4652
Scattered Muon has same charge	4652	1	4652
first and last scattered muon z coord. are measured before and after SM1	4648	1	4648
Tracks have three outgoing particles	618	1	618
Penetration length of Hadron	524	1	524
Hadrons tracks have good quality of fit	510	1	510
The track of the hadron is before the first magnet	508	1	508
Hadrons have opposite charge	364	1	364
W Cut	321	1	321
y Cut	305	1	305
Q2 Cut	238	1	238
nu Cut	236	1	236
pt2 Cut	182	1	182
Mrho0 Cut	92	1	92
Emiss Cut	22	1	22
Mom_rho Cut	22	1	22

SPIN DENSITY MATRIX ELEMENTS

SDME EXTRACTION

COMPASS 2012

60