■ Camera Sensor in ADAS

1■■ What is a Camera Sensor?

A camera sensor is an electronic vision device that captures real-time images or videos of the surroundings. It acts as the "eyes" of the ADAS system, helping the vehicle recognize lanes, vehicles, pedestrians, traffic signs, and obstacles, just like a human driver.

2 How It Works

- 1. Image Capture: Continuously captures frames of the environment.
- **2. Image Processing (Computer Vision):** Processes images using CNNs (Convolutional Neural Networks) or similar algorithms.
- **3. Decision Making:** Based on processed data, ADAS decides actions like lane departure warning, automatic braking, etc.

3■■ Types of Cameras in ADAS

Туре	Position	Function
Front Camera	Behind windshield	Detects lanes, vehicles, pedestrians, and traffic signs
Rear Camera	Back side of car	Assists in reversing and parking
Side Cameras	Side mirrors	Used for blind-spot monitoring and lane-change assist
Surround (360°) Cam	e Ars und vehicle	Provides bird's-eye view for parking and maneuvering

4■■ Applications

Camera sensors enable functions such as Lane Departure Warning, Lane Keeping Assist, Traffic Sign Recognition, Automatic Emergency Braking, Pedestrian Detection, Driver Monitoring, and Parking Assistance.

5■■ Technologies Used

- Image Sensors: CMOS (Complementary Metal-Oxide-Semiconductor)
- Lenses: Wide-angle for maximum field of view
- Processing Unit: Deep Learning or Computer Vision (CNN, YOLO)
- Sensor Fusion: Works with Radar and LiDAR for higher accuracy

6■■ Challenges

Issue	Description
Poor Lighting	Low light or glare can reduce visibility
Weather Conditions	Fog, rain, or snow can blur camera image
Lens Contamination	Dust, mud, or water drops affect image clarity
Processing Delay	Real-time analysis requires powerful processors

7■■ Real-World Examples

- Tesla Autopilot Uses cameras and AI for perception.
- Mobileye (Intel) Supplies camera-based ADAS to major automakers.

BMW / Mercedes-Benz – Use stereo cameras for 3D depth perception.