Nombre: DNI:

NORMAS DE REALIZACIÓN DEL EXAMEN

- No se corregirán las respuestas a lápiz.
- Las respuestas han de ser correctamente detalladas y razonadas.
- A la hora de entregar las respuestas, se entregará también esta hoja de enunciados.
- El DNI o documento de identificación similar se dejará sobre la mesa mientras se realiza el examen, y se mostrará al profesor en el momento de entregar.
- **1.** Un sistema de alarma está constituido por cuatro detectores A, B, C y D. El sistema debe activarse cuando se activen tres o cuatro detectores. Si sólo se activan dos detectores, es indiferente la activación o no del sistema. Por último, el sistema no deberá activarse si se dispara un único detector o ninguno. Además, por razones de seguridad, la combinación A=B=C=0; D=1 hará que se active el sistema. Se pide (2,5 puntos):
- a) Tabla de verdad.
- b) Simplificación por tabla de Karnaugh.
- c) Función lógica que describe el sistema expresada en suma de productos.
- d) Función lógica que describe el sistema expresada en producto de sumas.
- e) Circuito implementado con el número mínimo de puertas NAND y negadores.
- **2.** Se desea diseñar un sistema combinacional que forme parte de un calendario. El objetivo del circuito es proporcionar una salida que indique si se trata de un día festivo o no, partiendo del número del día del mes codificado en binario. Tomando como entradas los datos del mes de junio, se pide (2,5 puntos):
- a) Obtener su tabla de verdad.
- b) Simplificar la función mediante tablas de Karnaugh y obtener su expresión en forma de suma de productos y de producto de sumas.
- c) Obtener la expresión que nos permitiría implementar el circuito mediante puertas NAND (no dibujar el circuito).
- d) Implementar la función mediante un multiplexor de 16 entradas de información.
- e) Implementar la función mediante dos decodificadores de 16 entradas de información.

Lu	Ma	Mi	Ju	Vi	Sá	Do
						1
2	3	4	5	6	7	8
9	10	11	12	13	14	15
16	17	18	19	20	21	22
23	24	25	26	27	28	29
30						

3. Sea el siguiente formato binario de representación numérica:

15	9	8	••••	0
Exponente <i>e</i> : C2 con	7 bits	Mantis	a m : sesgada cor	n 9 bits

De forma que cada número N queda representado como $N = m \cdot 2^e$

- a) Representar en el formato anterior los siguientes números decimales (1,5 puntos):
 - a.1) -12.25
 - a.2) 10⁻²
 - a.3) 8192
- b) Dados los siguientes valores, representados en el formato anterior y empaquetados en hexadecimal, indicar a qué números en base 10 corresponden (1 punto):
 - b.1) FFFF_{he}
 - b.2) 0400_{he}
- **4.** Determinar la salida Q de un biestable JK sincronizado por flanco de bajada con entradas asíncronas de PRESET y CLEAR activas a nivel BAJO. Suponer Q=0 inicialmente. (0,5 puntos).

5. Analizar el comportamiento del siguiente circuito, determinar la evolución de las salidas Q1 y Q2 y completar el cronograma, partiendo del instante inicial Q1=Q2=0 (1 punto).

Responder a las siguientes preguntas.

- a) ¿Cuál es la función del circuito? (0,5 puntos)
- b) Determinar la relación entre las frecuencias de las señales de Q1 y Q2 con respecto a la señal de reloj (CK) (0,5 puntos)