ANALOG ELECTRONICS - Project

G.VARSHIT EE19BTECH11020

December 13, 2020

1 Active-RC Maximally Flat Low-Pass Filter

1.1 Hand calculation

Given 3 dB Bandwidth,
$$W_n = 2\pi (1000)H_2 - 2000\pi H_2$$

also gover Rejection > 20dB for $W_0 > 2\pi (2000)H_2$

$$20 \left(\log \left| \frac{1}{1 + \left(\frac{W_0}{W_0} \right)^2 \Lambda} - \log \left| \frac{1}{1 + \left(\frac{W_0}{W_0} \right)^2 \Lambda} \right| \right) > 20$$

$$\log \left| \frac{\sqrt{1 + 2^{2n}}}{\sqrt{1 + 1^{2n}}} \right| > 1$$

$$\frac{\sqrt{1 + 4^n}}{\sqrt{2}} > 10$$

$$\frac{1}{\sqrt{1 + 4^n}} > 100$$

We need a 4th order system to realise the manimally flat low pass filter.
This can be obtained by cascading two second order systems

WK Poles of 4th order system are goven by
$$3 = W_0 e^{\frac{32k+1}{2N}\pi + 3\pi/2}$$
 where $k = 0,1, N-1$

here poles are S=Wne , S2=Wne 8 53= Wne 191 , Sh= Wne 8

> 5,4 = Wn (cos(57/8) + j son(57/8)) -A) 5213 = Wn (cos (771/8) + jour (771/8)) -B)

Si, in one poles of ist second order fitter -> Filter 1 52,3 are poles of 2nd second order filler - Filter 2

But we know from state-space biguad

where 0(5)=52+25Wn5+W2

also [O. cgaun = ods] ->> [R= Pi)

Poles > Roots q O(s) =0

comparing (A) (1)

compound B, O

Component values of 1st state-space biggrad filter

$$\omega_{n} = 2000\pi \text{ Hz}_{2} \quad S_{n} = 0.382$$

Let us assume $R = SK.D.$ $\Rightarrow c = \frac{1}{S\times10^{6}\times2\pi\times10^{6}}$
 $C = 0.0318MF$
 $R_{0} = \frac{6}{SS} \cdot K.D.$ and $R_{1} = SK.D.$

111 component values of 2rd state-space biggrad filter

 $\omega_{n} = 2000\pi \text{ Hz}_{7} \quad S_{2} = 0.923.$

Casider $R' = SK.D.$ $\Rightarrow C' = \frac{1}{S\times0^{2}\times2\pi\times10^{6}} = 0.0318MF$
 $R_{0} = \frac{4}{2\times0.923\times2\pi\times10^{6}} \times 0.0318\times10^{-6} \Rightarrow R_{0} = 2.711KD$
 $R' = R' = SKD.$

1.2 Ordering the filters in the cascade

- As shown in the hand calculations one of the filters has damping factor = 0.923, while the other has damping factor = 0.382.
- So the filter with damping factor of 0.923 ($> \frac{1}{\sqrt{2}}$) shows no peaking.
- Whereas the filter with damping factor of 0.382 ($<\frac{1}{\sqrt{2}}$) shows peaking.
- Hence the filter with damping factor of 0.923 is ordered first in position of cascade, to ensure no peaking at both the output nodes. $(V_{O_1} \text{ and } V_{O_2})$
- Also the output of the cascaded system would be maximally flat response without any peaking.

Output of filter with damping factor 0.923

Output of filter with damping factor 0.382

1.3 Circuit Diagram

1.4 Frequency Response

Magnitude and phase frequency response till 10 kHz

Indicating bandwidth and rejection

- We can observe the 3db bandwidth at approximately 1kHz.
- We can also observe the magnitude of around -24db at 2kHz, which implies rejection is greater than 20dB.

1.5 Input-output DC characteristics

DC characteristics with input varying from 0 V to 5 V.

- We can see that output is constant at 0.145V for a while $(V_{in} < 0.8V)$ and then increases suddenly, due to non ideality of Op-amp.
- Later it suddenly increases and becomes equal to input (until 4.4V), since it is a low pass filter and also the DC gain is zero db.
- Finally it settles at constant value ($\approx 4.4 \text{V}$), this is because the voltage difference between terminals of Op-amp LT1013 settles at some non-zero constant value.

1.6 Magnitude response till 10 MHz

The high frequency behaviour

- We can observe that the above plot is abnormal.
- \bullet This is because of non ideal nature of Op-amp LT1013, as it has finite UGB unlike the ideal Op-amp with infinite UGB.

1.7 Step response

Step response for input going from 2.5 V to 3.5 V in 1 ns

- We can observe output settles to 3.5V at steady state once all the transients die out.
- We can also observe it is a under-damped response because all the poles are complex conjugates.