Décidabilité de la rationalité pour les WSTS

Lucas Bueri

Stage M2 - 2021

1 Réseaux de Petri

Un réseau de Petri $N = (P, T, B, F, M_0)$ est la donnée de

- un ensemble fini P de d emplacements,
- un ensemble fini T de transitions,
- une fonction de coût $B: P \times T \to \mathbb{N}$,
- une fonction de production $F: P \times T \to \mathbb{N}$,
- un marquage initial $M_0: P \to \mathbb{N}$.

Les configurations sont les marquages $M: P \to \mathbb{N}$, aussi considérés comme les valeurs possibles de d compteurs (vecteur de \mathbb{N}^d). On peut déclencher la transition t à partir du marquage M si et seulement si $M(p) \ge B(p,t)$ pour tout $p \in P$ (noté $M \ge B(\cdot,t)$).

On obtient alors un nouveau marquage M' défini par $M' \stackrel{def}{=} M + D(\cdot, t)$ où $D \stackrel{def}{=} F - B$. B représente donc le coût de la transition (le nombre de jetons requis et consommés dans chaque emplacement), et F représente sa production (les jetons créés lors du déclenchement).

On notera M(t) lorsque t peut se déclencher sur M, et M(t)M' si déclencher t sur M donne M'. On étendra naturellement cette notation (ainsi que $B(p,\cdot)$ et $F(p,\cdot)$) aux séquences de transitions, ou mots $w \in T^*$.

Deux ensembles nous intéresseront alors : le langage $\mathcal{L}(N) \stackrel{def}{=} \{w \in T^* \mid M_0(w)\}$ du réseau de Petri et les configurations accessibles $\mathcal{R}(N) \stackrel{def}{=} \{M' : P \to \mathbb{N} \mid \exists w \in T^*, M_0(w)M'\}$.

2 VAS

2.1 La structure

Un système d'addition de vecteurs de dimension $d \in \mathbb{N}$ (d-VAS) $S = (A, \mathbf{x}_{init})$ est la donnée d'un vecteur initial $\mathbf{x}_{init} \in \mathbb{N}^d$ et d'un ensemble fini A d'actions. À chaque action $a \in A$ est associé un unique vecteur $\overline{a} \in \mathbb{Z}^d$, de telle manière à ce que deux actions ne soient pas associées au même vecteur de \mathbb{Z}^d .

Les configurations de S sont alors les vecteurs de \mathbb{N}^d (à coordonnées positives), et chaque action $a \in A$ agit sur \mathbb{N}^d en additionnant à la configuration courante le vecteur \overline{a} associé. On a alors une transition entre \mathbf{x} et \mathbf{y} étiquetée par l'action a lorsque $\mathbf{x} + \overline{a} = \mathbf{y}$.

De manière équivalente, on dira que l'action $a \in A$ est franchissable à partir de la configuration $\mathbf{x} \in \mathbb{N}^d$ lorsque $\mathbf{x} + \overline{a} \ge \mathbf{0}$, et son déclenchement aboutit à la configuration $\mathbf{y} = \mathbf{x} + \overline{a}$ à travers la transition $(\mathbf{x}, a, \mathbf{y}) \in \mathbb{N}^d \times A \times \mathbb{N}^d$. On notera $\mathbf{x} \xrightarrow{a}_S \mathbf{y}$ lorsqu'un tel déclenchement est possible (ou simplement $\mathbf{x} \xrightarrow{a} \mathbf{y}$ s'il n'y a pas ambiguïté sur S).

Par la suite, on notera $I\stackrel{def}{=}\{1,\dots,d\}$ l'ensemble des coordonnées pour les configurations.

Lorsqu'une séquence d'actions $w = a_1 \cdots a_k \in A^*$ permet d'aller de \mathbf{x} à \mathbf{y} par la séquence de transition $\mathbf{x} = \mathbf{x_0} \xrightarrow{a_1} \mathbf{x_1} \xrightarrow{a_2} \dots \xrightarrow{a_k} \mathbf{x_k} = \mathbf{y}$ (où $\mathbf{x_0}, \dots, \mathbf{x_k} \in \mathbb{N}^d$ et $\mathbf{x_{i-1}} + \overline{a_i} = \mathbf{x_i}$ pour tout $1 \leq i \leq k$), on dit que w est franchissable à partir de \mathbf{x} , et qu'on a une exécution $\rho : \mathbf{x} \xrightarrow{w}_S \mathbf{y}$. \mathbf{y} est alors dit accessible à partir de \mathbf{x} .

De plus, en notant $\overline{w} \stackrel{\text{def}}{=} \sum_{i=1}^{k} \overline{a_i}$ le vecteur associé à w, on obtient $\mathbf{x} + \overline{w} = \mathbf{y}$. Attention, cette égalité peut-être vérifiée même si w n'est pas franchissable.

Nous allons étudier deux ensembles naturellement associés à un VAS $S = (A, \mathbf{x}_{\text{init}})$:

- 1. $\mathcal{L}(A, \mathbf{x}) \stackrel{def}{=} \left\{ w \in A^* \mid \exists \mathbf{y} \in \mathbb{N}^d, \mathbf{x} \xrightarrow{w}_S \mathbf{y} \right\}$ qui est le *langage* des séquences d'actions franchissables à partir de la configuration \mathbf{x} ,
- 2. $\mathcal{R}(A, \mathbf{x}) \stackrel{def}{=} \left\{ \mathbf{y} \in \mathbb{N}^d \mid \exists w \in A^*, \mathbf{x} \xrightarrow{w}_S \mathbf{y} \right\}$ qui est l'ensemble des configurations accessibles à partir de \mathbf{x} .

En particulier, on regardera $\mathcal{L}(S) \stackrel{def}{=} \mathcal{L}(A, \mathbf{x}_{\text{init}})$ le langage du VAS S, et $\mathcal{R}(S) \stackrel{def}{=} \mathcal{R}(A, \mathbf{x}_{\text{init}})$ l'ensemble d'accessibilité de S.

Définition 1. Un VAS S est rationnel si $\mathcal{L}(S)$ est rationnel sur A^* .

Définition 2. Soit $S = (A, \mathbf{x}_{\text{init}})$ un d-VAS et $J \subseteq I$ un sous-ensemble d'indices.

— S est borné sur J lorsque toute configuration accessible a ses coordonnées de J bornées :

$$\exists k \in \mathbb{N}, \forall \mathbf{y} \in \mathcal{R}(S), \forall j \in J, \mathbf{y}(j) \leqslant k$$

— S est borné inférieurement sur J lorsque toutes les coordonnées de J ne diminue pas plus qu'une certaine borne (même en augmentant les ressources initiales) :

$$\exists k \in \mathbb{N}, \forall n \in \mathbb{N}, \forall \mathbf{y} \in \mathcal{R}(A, \mathbf{x}_{\text{init}} + n \cdot \mathbb{1}_J), \forall j \in J, \mathbf{y}(j) \geqslant \mathbf{x}(j) + n - k$$

Soit Rat l'ensemble des langages rationnels (sur un alphabet fini).

2.2 Clover et le graphe de couverture

On aimerait avoir un meilleur aperçu des configurations accessibles, et notamment décrire de manière finie les capacités pour le VAS d'atteindre des configurations non-bornées. Rappelons d'abord la notion d'idéal :

Définition 3. Soit (X, \leq) un ensemble ordonné et $E \subseteq X$ un sous-ensemble de E.

- E est dit dirigé lorsque pour tous $x, y \in E$ il existe un $z \in E$ vérifiant $x \leq z$ et $u \leq z$.
- E est dit $clos\ par\ le\ bas\ lorsqu'il$ est égal à sa clôture par le bas $\downarrow E \stackrel{def}{=} \{x \in X \mid \exists y \in E, x \leqslant y\}.$
- Enfin, E est un idéal s'il est dirigé et clos par le bas.

On peut maintenant introduire l'ensemble de couverture $\mathcal{C}(A,x) \stackrel{def}{=} \downarrow \mathcal{R}(A,x)$ d'un VAS. Il est clos par le bas dans $(\mathbb{N}^d, \leqslant)$ bien ordonné, donc se décomposition comme une union finie d'idéaux.

Les idéaux de \mathbb{N}^d peuvent se voir comme des éléments de \mathbb{N}^d_{ω} , obtenu en étendant \mathbb{N} en $\mathbb{N}_{\omega} \stackrel{def}{=} \mathbb{N} \cup \{\omega\}$ de façon naturelle.

Définition 4. Soit $S = (A, \mathbf{x}_{init})$ un d-VAS. On définit $Clover(S) \subseteq \mathbb{N}^d_{\omega}$ comme l'ensemble des idéaux maximaux inclus dans $\mathcal{C}(S)$. C'est aussi l'unique ensemble de taille minimale d'idéaux dont l'union correspond à $\mathcal{C}(S)$.

À revoir.

Le graphe de couverture a pour sommets des configurations de \mathbb{N}^d_{ω} et pour arêtes des transitions du VAS, étiquetés par une action de A. Il est obtenu en partant d'un sommet initial $s_0 : \mathbf{x}_{\text{init}}$ étiqueté par la configuration initiale $\mathbf{x}_{\text{init}} \in \mathbb{N}^d$, puis par récurrence sur la profondeur des noeuds en indiquant les voisins des noeuds accessibles :

Pour chaque noeud $s: \mathbf{x}$ associé à la configuration $\mathbf{x} \in \mathbb{N}^d_{\omega}$, on fait partir de s autant d'arêtes que d'actions $a \in A$ qui sont franchissables à partir de \mathbf{x} . Le sommet d'arrivée de l'arête associée à une action a est déterminé ainsi :

- Si $\mathbf{x} \xrightarrow{a} \mathbf{y}$ (déclencher a aboutit à la configuration $\mathbf{y} = \mathbf{x} + \overline{a}$) et qu'il existe un sommet déjà existant $r : \mathbf{y}$ associé à cette configuration, alors on crée une arête étiquetée par a de $s : \mathbf{x}$ vers $r : \mathbf{y}$;
- Si $\mathbf{x} \stackrel{a}{\longrightarrow} \mathbf{y}$ et qu'il existe un ancêtre $r : \mathbf{z}$ de s (c'est-à-dire tel qu'il existe une chemin dans le graphe déjà créé de r à s) avec $\mathbf{y} > \mathbf{z}$, alors on crée un nouveau sommet $s' : \mathbf{y}'$ et une arête de $s : \mathbf{y}$ vers $s' : \mathbf{y}'$ étiquetée par a, où $\mathbf{y}' \in \mathbb{N}^d_\omega$ est la configuration de coordonnées $\mathbf{y}'(i) = \mathbf{y}(i)$ pour les $1 \le i \le d$ tels que $\mathbf{y}(i) = \mathbf{z}(i)$, et $\mathbf{y}'(i) = \omega$ si $\mathbf{y}(i) > \mathbf{z}(i)$;
- Si la configuration \mathbf{y} atteinte n'est pas dans les cas précédents, on crée simplement un nouveau sommet $s': \mathbf{y}$ et une arête de s à s' étiquetée par a.

3 Une caractérisation pour la rationalité

La preuve de décidabilité se divise en deux étapes. Tout d'abord, on va donner une caractérisation mathématique équivalente à la rationalité. On montrera ainsi qu'un VAS est rationnel si et seulement s'il existe une borne $k \in \mathbb{N}$ telle que si on peut accéder à la configuration \mathbf{x} , puis à \mathbf{y} , alors \mathbf{y} reste au dessus de $\mathbf{x} - \mathbf{k}$ (\mathbf{k} désignera le vecteur $(k, k, ..., k) \in \mathbb{N}^d$).

3.1 La relation d'équivalence de Ginzburg et Yoeli n'est pas d'index fini

Ginzburg et Yoeli introduisent dans [2] une relation d'équivalence \equiv_S^{GY} sur les configurations et énoncent que $\mathcal{L}(S)$ est rationnel si et seulement si \equiv_S^{GY} admet un nombre fini de classes d'équivalence dans $\mathcal{R}(S)$ ([2], Théorème 1).

S'il est vrai que $\mathcal{R}(S)/\equiv_S^{\mathrm{GY}}$ fini implique que $\mathcal{L}(S)$ est rationnel, la réciproque est fausse et nous donnerons un contre-exemple d'un langage $\mathcal{L}(S)$ rationnel tel que $\mathcal{R}(S)/\equiv_S^{\mathrm{GY}}$ est infini. Nous proposerons de reprendre l'idée de Ginzburg et Yoeli, mais en définissant une autre relation d'équivalence pour laquelle on obtiendra cette fois-ci l'équivalence entre la rationalité du langage et le quotient fini selon cette relation.

Définition 5 ([2] section 3). Soit $S = (A, \mathbf{x}_{init})$ un VAS. La relation \equiv_S^{GY} est définie pour tout $\mathbf{x}, \mathbf{y} \in \mathcal{R}(S)$ par :

$$\mathbf{x} \equiv_S^{GY} \mathbf{y} \text{ ssi } \forall w \in A^*, (\mathbf{x} + \overline{w} \in \mathcal{R}(S) \Leftrightarrow \mathbf{y} + \overline{w} \in \mathcal{R}(S))$$

ça donne quoi si on définit \equiv_S^{GY} sur tout \mathbb{N}^d ? Une classe de plus seulement? Une infinité?

Remarque. \equiv_S^{GY} est une relation d'équivalence sur l'ensemble $\mathcal{R}(S)$ des configurations accessibles.

On aurait envie d'obtenir un résultat similaire à celui de Nérode, à savoir dire que $\mathcal{L}(S)$ est rationnel si et seulement si \equiv_S^{GY} admet un nombre fini de classes d'équivalence. Cela est malheureusement faux, puisque pour $\mathbf{x} \in \mathcal{R}(S)$ et $w \in A^*$, l'écriture $\mathbf{x} + \overline{w} \in \mathcal{R}(S)$ ne permet pas de dire si la séquence w est franchissable à partir de \mathbf{x} . Il pourrait en effet exister une autre séquence $w' \in A^*$ franchissable à partir de \mathbf{x} aboutissant à la configuration $\mathbf{x} + \overline{w'} = \mathbf{x} + \overline{w}$, voire même un moyen d'accéder à la configuration $\mathbf{x} + \overline{w} = \mathbf{x}_{\mathrm{init}} + \overline{u}$ depuis la configuration initiale par une autre séquence d'action $u \in A^*$ sans que $\mathbf{x}_{\mathrm{init}} + \overline{u}$ ne soit accessible depuis \mathbf{x} .

Plus précisément sur la preuve de Ginzburg et Yoeli, avoir $\mathcal{R}(S)/\equiv_S^{GY}$ fini implique bien $\mathcal{L}(S)$ rationnel, ce qui est prouvé en construisant explicitement l'automate. Par contre, la réciproque est fausse : L'erreur (avant-dernière ligne de la preuve du théorème 1 de [2]) était d'affirmer que savoir $\mathbf{x}_{\text{init}} + \overline{uw} \in \mathcal{R}(S)$ pour $u \in \mathcal{L}(S)$ et $w \in A^*$ permettait d'en déduire que $uw \in \mathcal{L}(S)$.

On donne ci-dessous un contre-exemple pour illustrer ce point. Il est nécessaire de se placer au moins en dimension 3, car le résultat de Ginzburg et Yoeli reste vrai en dimension inférieure.

Ajouter preuve que le résultat reste vrai en dimension inférieure à 2.

Exemple 6. Soit le 3-VAS $S = (A = \{a, b, c\}, \mathbf{x}_{\text{init}} = (0, 0, 0))$ dont les actions sont étiquetés par $\overline{a} = (1, 0, 0), \overline{b} = (0, 1, -1)$ et $\overline{c} = (-1, -1, 1)$. Le langage reconnu $\mathcal{L}(S) = a^*$ est rationnel, et les configurations accessibles sont les $\mathbf{x}_n = (n, 0, 0)$ pour $n \in \mathbb{N}$.

Cependant, pour deux entiers m > n > 0, bien que $\mathcal{L}(A, \mathbf{x}_m) = \mathcal{L}(A, \mathbf{x}_n) = \mathcal{L}(S)$, on a $\mathbf{x}_m \not\equiv_S^{\mathrm{GY}} \mathbf{x}_n$: Cela se constate en considérant la séquence d'actions $b^{n+1}c^{n+1}$ qui n'est jamais franchissable, mais qui vérifie $\mathbf{x}_m + \overline{b^{n+1}c^{n+1}} = (m-n-1,0,0) \in \mathcal{R}(S)$ alors que $\mathbf{x}_n + \overline{b^{n+1}c^{n+1}} = (-1,0,0) \notin \mathcal{R}(S)$.

La relation \equiv_S^{GY} admet alors une infinité de classes d'équivalences $(\{\mathbf{x}_n\})_{n\in\mathbb{N}}$ sur S.

3.2 Une autre relation d'équivalence qui est d'index fini

Pour corriger ce problème, on va aussi regarder si les actions sont franchissables :

Définition 7. Soit $S = (A, \mathbf{x}_{init})$ un VAS. On introduit la relation \equiv_S sur les configurations en posant pour tout $\mathbf{x}, \mathbf{y} \in \mathbb{N}^d$:

$$\mathbf{x} \equiv_S \mathbf{y} \text{ ssi } \mathcal{L}(A, \mathbf{x}) = \mathcal{L}(A, \mathbf{y})$$

Constatons déjà que cette nouvelle relation est plus grande que celle de Ginzburg et Yoeli (au sens de l'inclusion) :

Proposition 8. Soit $S = (A, \mathbf{x}_{init})$ un VAS et $\mathbf{x}, y \in \mathcal{L}(S)$. Si $\mathbf{x} \equiv_S^{GY} y$ alors $\mathbf{x} \equiv_S y$.

Démonstration. Supposons $\mathbf{x} \equiv_S^{\mathrm{GY}} \mathbf{y}$ et montrons $\mathcal{L}(A, \mathbf{x}) \subseteq \mathcal{L}(A, \mathbf{y})$ par récurrence sur la longueur des mots. Soit $w \in \mathcal{L}(A, \mathbf{x})$.

Si $w = \varepsilon$ est le mot vide, $\mathbf{y} \in \mathcal{L}(S)$ assure que $\varepsilon \in \mathcal{L}(S, \mathbf{y})$.

Sinon, on écrit w = ua avec $u \in A^*$ et $a \in A$. $u \in \mathcal{L}(A, \mathbf{x})$ est plus court que w, donc par hypothèse de récurrence on a également $u \in \mathcal{L}(A, \mathbf{y})$. u est donc franchissable depuis \mathbf{y} . Mais $ua \in \mathcal{L}(A, \mathbf{x})$, ce qui assure que $\mathbf{x} + \overline{ua} \in \mathcal{R}(S)$.

Comme $\mathbf{x} \equiv_S^{\mathrm{GY}} \mathbf{y}$, on obtient que $\mathbf{y} + \overline{u}\overline{a} \in \mathcal{R}(S)$, aboutissant à $\mathbf{y} + \overline{u}\overline{a} \geqslant \mathbf{0}$. L'action a est donc franchissable depuis $\mathbf{y} + \overline{u}$. En résumé, on a les transitions valides $\mathbf{x} \xrightarrow{u}_S \mathbf{x} + \overline{u} \xrightarrow{a}_S \mathbf{x} + \overline{w}$, d'où $w \in \mathcal{L}(A, y)$.

On conclut enfin que $\mathcal{L}(A, \mathbf{x}) = \mathcal{L}(A, \mathbf{y})$ par symétrie.

On va établir le lien avec la relation de Nérode \sim_L associée à un langage $L \subseteq A^*$. Pour tout $u, v \in A^*$, on définit :

$$u \sim_L v \text{ ssi } \forall w \in A^*, uw \in L \Leftrightarrow vw \in L$$

On sait que \sim_L est une relation d'équivalence invariante par composition à droite et qu'un langage $L \subseteq A^*$ est rationnel si et seulement si A^*/\sim_L est fini ([1], Théorème 2).

La congruence de Nérode concerne donc les mots plutôt que les configurations, mais est liée à l'équivalence \equiv_S sur les VAS de la manière suivante :

Lemme 9. Soient $S = (A, \mathbf{x}_{init})$ un VAS et $u, v \in \mathcal{L}(S)$. On a $u \sim_{\mathcal{L}(S)} v$ si et seulement si $\mathbf{x}_{init} + \overline{u} \equiv_S \mathbf{x}_{init} + \overline{v}$.

Démonstration. Si $u \in \mathcal{L}(S)$, alors pour tout mot $w \in A^*$, on a l'équivalence :

$$uw \in \mathcal{L}(S) \Leftrightarrow w \in \mathcal{L}(A, \mathbf{x}_{\text{init}} + \overline{u})$$

On en déduit immédiatement le résultat en reprenant les définitions de chaque relation.

Remarque. La relation de Nérode ne s'intéresse qu'aux mots du langage, et $\{w \in A^* \mid w \notin \mathcal{L}(S)\}$ forme une unique classe d'équivalence pour $\sim_{\mathcal{L}(S)}$. Ainsi, le lemme 9 devient faux dès lors que $u, v \notin \mathcal{L}(S)$, puisque l'on a toujours $u \sim_{\mathcal{L}(S)} v$ dans ce cas sans que $\mathbf{x}_{\text{init}} + \overline{u} \equiv_S \mathbf{x}_{\text{init}} + \overline{v}$ ne soit nécessairement vrai.

Théorème 10. Pour un VAS S, $\mathcal{L}(S)$ est rationnel si et seulement si $\mathcal{R}(S)/\equiv_S$ est fini.

Démonstration. On a les équivalences suivantes :

```
\mathcal{L}(S) est rationnel ssi A^*/\sim_{\mathcal{L}(S)} est fini (propriété de la relation de Nérode) ssi \mathcal{L}(S)/\sim_{\mathcal{L}(S)} est fini (car \sim_{\mathcal{L}(S)} admet un seule classe d'équivalence sur A^*\setminus\mathcal{L}(S)) ssi \mathcal{R}(S)/\equiv_S est fini (par le lemme 9).
```

Enfin, on donne une propriété de monotonie pour cette relation, qui appuie son intérêt pour l'étude du système de transition S.

Proposition 11. La relation d'équivalence \equiv_S sur les configurations d'un d-VAS S est compatible/monotone avec les actions : Pour tout $\mathbf{x}, \mathbf{y} \in \mathbb{N}^d$, $\mathbf{x} \equiv_S \mathbf{y}$ implique $\forall a \in A, \mathbf{x} + \overline{a} \equiv_S \mathbf{y} + \overline{a}$.

Remarque. La relation \equiv_S^{GY} de Ginzburg et Yoeli vérifie également cette propriété.

3.3 Borne sur la décroissance

Pour obtenir un nombre fini de classes d'équivalence pour \equiv_S , on cherche une borne à partir de laquelle les configurations accessibles sont indiscernables. Comme la seule règle restreignant les actions franchissables est un test de positivité, on va exiger que les configurations ne puissent pas trop décroître.

Ginzburg et Yoeli proposent une caractérisation au travers des deux lemmes suivants :

Énoncé ([2] Lemme 1). Supposons que dans un VAS $S = (A, \mathbf{x}_{init})$, les n premières coordonnées soient non-bornées. Supposons aussi qu'il existe n entiers positifs k_1, k_2, \ldots, k_n tels que pour tout $\mathbf{x} \in \mathcal{R}(S)$, tout $w \in A^*$ et tout $i = 1, 2, \ldots, n$, $(\mathbf{x} + \overline{w}) \in \mathcal{R}(S)$ implique $\mathbf{x}(i) - (\mathbf{x} + \overline{w})(i) \leq k_i$. Alors $\mathcal{R}(S)/\equiv_S^{GY}$ est fini.

Ce résultat est correct, et nous l'adapterons facilement à la relation \equiv_S en modifiant la propriété requise en conséquence. Notons qu'il n'est pas nécessaire de prendre des valeurs différentes pour les k_i , il est tout à fait possible de considérer leur maximum.

Énoncé ([2] Lemme 2). Soit $S = (A, \mathbf{x}_{\text{init}})$ un VAS, et supposons qu'il existe une coordonnée non-bornée j telle que pour tout $k \geqslant 0$, il existe une configuration $\mathbf{x} \in \mathcal{R}(S)$ et un mot $w \in A^*$ tels que $(\mathbf{x} + \overline{w}) \in \mathcal{R}(S)$ et $\mathbf{x}(j) - (\mathbf{x} + \overline{w})(j) > k$. Alors l'ensemble $\mathcal{R}(S) / \equiv_S^{GY}$ est infini.

Cette fois, la preuve donnée comporte une erreur de même nature que précédemment : Il est affirmé que si $\mathbf{x} + \overline{w} \in \mathcal{R}(S)$, alors toutes les étapes intermédiaires sont accessibles, ce qui n'est pas forcément vrai. Le résultat semble cependant vrai (à vérifier), mais n'apporte pas la caractérisation souhaitée.

Donnons maintenant une caractérisation similaire pour la relation \equiv_S . La preuve suit les idées de Ginzburg et Yoeli [2] en effectuant les modifications nécessaires.

Théorème 12. Soit $S = (A, \mathbf{x}_{init})$ un VAS. Alors $\mathcal{L}(S)$ est rationnel si et seulement si

$$\exists k \in \mathbb{N}, \forall \mathbf{x}, \mathbf{y} \in \mathbb{N}^d, (\mathbf{x}_{\text{init}} \xrightarrow{*}_S \mathbf{x} \xrightarrow{*}_S \mathbf{y} \implies \mathbf{y} \geqslant \mathbf{x} - \mathbf{k})$$
 (1)

Démonstration. Commençons par montrer le sens ((1) $\Rightarrow \mathcal{L}(S)$ rationnel). Soit S un VAS vérifiant la propriété (1) pour un $k \in \mathbb{N}$.

Soit $\mathbf{x}, \mathbf{y} \in \mathcal{R}(S)$. Supposons que \mathbf{x} et \mathbf{y} sont indiscernables pour les petites valeurs, c'est-à-dire que pour toute coordonnée $i \in I$, on a soit $\mathbf{x}(i) = \mathbf{y}(i)$, soit $(\mathbf{x}(i) \ge k \text{ et } \mathbf{y}(i) \ge k)$. Alors $\mathbf{x} \equiv_S \mathbf{y}$. En effet, on a $\mathbf{x} + \overline{w} \ge \mathbf{0} \Leftrightarrow \mathbf{y} + \overline{w} \ge \mathbf{0}$ pour tout $w \in A^*$, puisque les coordonnées qui diffèrent entre x et y ne peuvent devenir négatives.

Ainsi, \equiv_S admet au plus $(k+1)^d$ classes d'équivalences, donc $\mathcal{L}(S)$ est rationnel (théorème 10).

Prouvons maintenant la réciproque $(\mathcal{L}(S) \text{ rationnel} \Rightarrow (1))$ par contraposée. Si S ne vérifie pas la propriété (1), alors pour tout $k \in \mathbb{N}$, il existe une configuration accessible x, un mot $w \in \mathcal{L}(A, \mathbf{x})$ et une coordonnée $i \in I$ tels que $(\mathbf{x} + \overline{w})(i) \leq \mathbf{x}(i) - k$.

On note $\mathbf{x_p} = \mathbf{x} + \overline{a_1 \cdots a_p} \in \mathcal{R}(S)$ les différentes configurations obtenues en lisant $w = a_1 \cdots a_n$. On a alors $\mathbf{x} = \mathbf{x_0} \xrightarrow{a_1} \mathbf{x_1} \xrightarrow{a_2} \dots \xrightarrow{a_n} \mathbf{x}_n = \mathbf{x} + \overline{w}$.

Notons $\xi = \max\{|\overline{a}(j)| \mid a \in A, j \in I\}$ la valeur de la plus grande variation d'une coordonnée possible par une action. Alors, au moins k/ξ configurations \mathbf{x}_p voient leur coordonnée i décroître, et l'on a une sous-séquence d'extractrice φ vérifiant $\mathbf{x}_{\varphi(0)}(i) > \mathbf{x}_{\varphi(1)}(i) > \cdots > \mathbf{x}_{\varphi(h)}(i)$ où $h \geqslant k/\xi$.

Ces configurations ne sont pas équivalentes pour \equiv_S : En effet, si l'on avait $\mathbf{x}_{\varphi(p)} \equiv_S \mathbf{x}_{\varphi(q)} =$ $(\mathbf{x}_{\varphi(p)} + \overline{u})$ avec $0 \leqslant p \leqslant q \leqslant h$ et en notant $u = a_{\varphi(p)+1} \cdots a_{\varphi(q)}$, alors on aurait $(\mathbf{x}_{\varphi(p)} + \overline{u^r}) \equiv_S$ $(\mathbf{x}_{\varphi(p)} + \overline{u^{r+1}})$ pour tout $r \in \mathbb{N}$ (en procédant par récurrence sur r avec la proposition 11).

Or $\overline{u^r}(i) = r \times \overline{u}(i) = r \times (\mathbf{x}_{\varphi(q)}(i) - \mathbf{x}_{\varphi(p)}(i)) < -r$, ce qui prouve que $(\mathbf{x}_{\varphi(p)} + \overline{u^r})(i) < 0$ à partir d'un certain $r \in \mathbb{N}$, et donc $(\mathbf{x}_{\varphi(p)} + \overline{u^r}) \not\equiv_S \mathbf{x}_{\varphi(p)}$, d'où une contradiction.

On conclut qu'il existe au moins k/ξ classes d'équivalences pour \equiv_S (et ce pour tout $k \in \mathbb{N}$), ainsi $\mathcal{R}(S)/\equiv_S$ est infini.

Décider la caractérisation

La procédure de décision nécessite de connaître deux choses :

- 1. D'abord, on veut pouvoir accéder à la liste des idéaux maximaux Clover(S) du VAS étudié,
- 2. Ensuite, il nous faut une procédure pour décider si un VAS donné est bornées.

Lemme 13 ([2] lemme 3). Soit $S = (A, \mathbf{x}_{init})$ un VAS et $k \in \mathbb{N}$. Supposons qu'il existe une configuration $\mathbf{x} \in \mathcal{R}(S)$ et un mot $v \in \mathcal{L}(A,\mathbf{x})$ franchissable tel que $\overline{v}(i) < -k$ pour un certain $i \in I$. Alors on peut trouver une autre configuration y et un autre mot $w \in \mathcal{L}(A, \mathbf{y})$ tel que $\overline{w}(i) < -k \text{ et } \overline{u}(i) \leq 0 \text{ pour tout préfixe } u \text{ de } w.$

Démonstration. Notons z le plus long préfixe de v tel que $\overline{z}(i) \geqslant 0$. On a alors v = zw, et le mot w ainsi obtenu est franchissable à partir de $\mathbf{y} = \mathbf{x} + \overline{z}$, et vérifie $\overline{w}(i) = \overline{v}(i) - \overline{z}(i) \leqslant \overline{v}(i) \leqslant k$. De plus, pour tout préfixe u de w, on a $\overline{u}(i) = \overline{zu}(i) - \overline{z}(i) \leqslant \overline{zu}(i) < 0$ puisque zu est un préfixe de vplus long que z.

Définition 14. Soit $S = (A, \mathbf{x}_{\text{init}})$ un d-VAS. Pour tout idéal maximal $\mathfrak{m} \in Clover(S)$ de l'ensemble de couverture, notons $J_{\mathfrak{m}} \stackrel{def}{=} \{j \mid \mathfrak{m}(j) \neq \omega\}$ l'ensemble des coordonnées bornées pour les configurations de \mathfrak{m} . On écrit $J_{\mathfrak{m}} = \{j_1, \ldots, j_r\}$. Pour tout $i \notin J_{\mathfrak{m}}$, on définit un (r+1)-VAS $S(\mathfrak{m}, i) = (A(\mathfrak{m}, i), \mathbf{x}_{\mathfrak{m}})$ en posant

 $-A(\mathfrak{m},i) \stackrel{def}{=} \{a(\mathfrak{m},i) \mid a \in A\}$ les actions étiquetées par $\overline{a(\mathfrak{m},i)} \stackrel{def}{=} (\overline{a}(j_1),\ldots,\overline{a}(j_r),-\overline{a}(i)),$

 $-\mathbf{x}_{\mathfrak{m}} \stackrel{def}{=} (\mathfrak{m}(j_1), \dots, \mathfrak{m}(j_r), 0) \in \mathbb{N}^{r+1}$ la configuration initiale.

On regarde ainsi le comportement de chaque coordonnée non-bornée indépendamment des autres. On étend la correspondance entre les actions de S et celles de $S(\mathfrak{m},i)$ aux mots : pour $w=a_1\cdots a_n\in A^*$, on pose $w(\mathfrak{m},i)\stackrel{def}{=}a_1(\mathfrak{m},i)\cdots a_n(\mathfrak{m},i)\in A(\mathfrak{m},i)^*$.

Le théorème suivant est alors obtenu :

Théorème 15 ([2] théorème 2). Soit $S = (A, \mathbf{x}_{\text{init}})$ un d-VAS. Alors S est rationnel si et seulement si tous les VAS $S(\mathfrak{m}, i)$ sont bornés pour tout idéal maximal $\mathfrak{m} \in Clover(S)$ et tout $i \in I \setminus J_{\mathfrak{m}}$.

Démonstration. Supposons que l'un des $S(\mathfrak{m},i)$ ne soit pas borné, et posons $r=|J_{\mathfrak{m}}|$. La coordonnée r+1 (associée à $\mathfrak{m}(i)$) est la seule à pouvoir être non-bornée. Pour tout $k\in\mathbb{N}$, il existe donc un mot $w(\mathfrak{m},i)\in\mathcal{L}(S(\mathfrak{m},i))$ vérifiant $\overline{w(\mathfrak{m},i)}(r+1)>k$.

Alors on peut trouver une configuration $\mathbf{x} \in \mathcal{R}(S)$ de \mathfrak{m} telle que $w \in \mathcal{L}(A, \mathbf{x})$. En effet, w a le même effet sur les coordonnées $j_p \in J_{\mathfrak{m}}$ que $w(\mathfrak{m}, i)$ sur $p \leq r$, puisque pour tout $x \in \mathcal{R}(S)$ et tout préfixe u de w, on a $(\mathbf{x} + \overline{u})(j_p) = \mathfrak{m}(j_p) + \overline{u}(j_p) = \mathbf{x}_{\mathfrak{m}}(p) + \overline{u}(\mathfrak{m}, i))(p) \geqslant 0$. Les autres coordonnées (non-bornées dans \mathfrak{m}) peuvent ensuite être choisies aussi grandes que nécessaire pour franchir w.

Comme $\overline{w}(i) = -\overline{w(\mathfrak{m},i)}(r+1) < -k$, on sait que S ne vérifie pas (1) pour ce k, ce qui assure que $\mathcal{L}(S)$ n'est pas rationnel (par le théorème 12).

On suppose maintenant qu'il existe un entier $k \in \mathbb{N}$ majorant les coordonnées de toutes les configurations accessibles de tous les $S(\mathfrak{m},i)$. Par l'absurde, supposons que la propriété (1) n'est pas vérifiée pour ce k. Par le lemme 13, il existe une coordonnée $i \leq d$, une configuration \mathbf{y} et un mot $w \in \mathcal{L}(A, \mathbf{y})$ tel que $\overline{w}(i) < -k$ et $\overline{u}(i) \leq 0$ pour tout préfixe u de w.

Soit $\mathfrak{m} \in Clover(S)$ un élément maximal contenant \mathbf{y} . Alors il existe une configuration $\mathbf{z} \in \mathfrak{m}$ vérifiant $\mathbf{y} \leq \mathbf{z}$. Dans le VAS $S(\mathfrak{m}, i)$, le mot $w(\mathfrak{m}, i)$ appartient au langage $\mathcal{L}(S(\mathfrak{m}, i))$ puisque pour tout préfixe $u(\mathfrak{m}, i)$ de $w(\mathfrak{m}, i)$, on a

- $(\mathbf{x}_{\mathfrak{m}} + \overline{u(\mathfrak{m}, i)})(p) = (\mathbf{z} + \overline{u})(j_p) \geqslant (\mathbf{y} + \overline{u})(j_p) \geqslant 0 \text{ pour tout } p \text{ car } u \text{ est franchissable sur } \mathbf{y},$
- $-(\mathbf{x}_{\mathfrak{m}} + \overline{u(\mathfrak{m},i)})(r+1) = -\overline{u}(i) \geqslant 0 \text{ où } r = |J_{\mathfrak{m}}|.$

Néanmoins, la configuration accessible $(\mathbf{x}_{\mathfrak{m}} + \overline{w(\mathfrak{m},i)}) \in \mathcal{R}(S(\mathfrak{m},i))$ contredit l'hypothèse de borne puisque $\overline{w(\mathfrak{m},i)}(r+1) = -\overline{w}(i) > k$.

5 Rationalité structurelle

Dans cette partie, les VAS n'auront pas de configuration initiale fixée. Nous allons considérer l'ensemble des configurations \mathbf{x} pour lesquelles $\mathcal{L}(A, \mathbf{x})$ n'est pas rationnel ainsi que l'ensemble de ses éléments minimaux. Posons donc $R(A) = \{\mathbf{x} \mid \mathcal{L}(A, \mathbf{x}) \text{ est rationnel}\}, \overline{R(A)} = \{\mathbf{x} \mid \mathcal{L}(A, \mathbf{x}) \text{ n'est pas rationnel}\} = \mathbb{N}^d - R(A)$ et $M_A = Min(\overline{R(A)})$ l'ensemble des configurations minimales de $\overline{R(A)}$.

Commençons par énoncer une propriété de monotonie de la non-rationalité.

Proposition 16. Pour tout d-VAS A, l'ensemble $\overline{R(A)} = \uparrow M_A$ et M_A est fini.

Démonstration. Montrons que $\overline{R(A)}$ est clos par le haut. Soit $\mathbf{x}, \mathbf{x}' \in \mathbb{N}^d$ deux configurations vérifiant $\mathbf{x} \leq \mathbf{x}'$. Supposons que $\mathcal{L}(A, \mathbf{x})$ ne soit pas rationnel.

D'après le théorème 12, il existe pour tout $k \in \mathbb{N}$ une exécution $\mathbf{x} \xrightarrow{u}_S \mathbf{y}_k \xrightarrow{v}_S \mathbf{z}_k$ vérifiant $\overline{v} = \mathbf{z}_k - \mathbf{y}_k \not\geq -k$. Comme $\mathbf{x} \leqslant \mathbf{x}'$, du fait de la monotonie des VAS, la séquence uv est aussi franchissable à partir de \mathbf{x}' , et l'on obtient l'exécution $\mathbf{x}' \xrightarrow{u}_S \mathbf{y}'_k \xrightarrow{v}_S \mathbf{z}'_k$. où $\mathbf{y}'_k = \mathbf{y}_k + (\mathbf{x}' - \mathbf{x})$ et $\mathbf{z}'_k = \mathbf{z}_k + (\mathbf{x}' - \mathbf{x})$.

On a alors $\mathbf{z'}_k - \mathbf{y'}_k = \overline{v} \geqslant -k$, donc $(A, \mathbf{x'})$ ne satisfait pas non plus la propriété (1). On en déduit que $\mathcal{L}(A, \mathbf{x'})$ n'est pas rationnel.

L'ensemble M_A est fini car \leq est un belordre sur \mathbb{N}^d . On déduit que $\overline{R(A)} = \uparrow M_A$.

du coup on sait que $Min\{\mathbf{x}; \mathcal{L}(A, \mathbf{x}) \notin Rat\}$ est fini. Montrons qu'il est calculable. Pour cela on applique un autre résultat de Valk (Théorème 2.14) qui caractérise les ensembles $K \subseteq \mathbb{N}^d$ clos par haut "calculables" ssi pour tout $x \in \mathbb{N}^d_\omega$ le prédicat suivant $P_K(\mathbf{x}) = (\downarrow \mathbf{x} \cap \mathbb{N}^d \cap K \neq \emptyset)$ est décidable, je t'envoie le papier sur skype [?]

Proposition 17. L'ensemble M_A est calculable pour tout VAS A.rapprocher le "d" du "VAS"

Démonstration. Montrons que le prédicat $P_K(\mathbf{x}) = (\downarrow \mathbf{x} \cap \mathbb{N}^d \cap K \neq \emptyset)$ est décidable pour $K = \overline{R(A)}$. Le principe doit être le même que la preuve du théorème 3.11 (toujours dans Valk) pour les 4 ensembles de marquages étudiés.

Définition 18. On dit qu'un d-VAS A est $structurellement rationnel lorsque <math>R_A = \emptyset$

Pour $\mathbf{x}, \mathbf{y} \in \mathbb{Z}^d$ (pas forcément positifs), on note $\mathbf{x} \stackrel{u}{\leadsto} \mathbf{y}$ pour $u \in A^*$ lorsque $\mathbf{y} = \mathbf{x} + \overline{u}$. Il s'agit ici d'une simple égalité vectorielle dans \mathbb{Z}^d , sans notion de franchissement (on pourra parler de \mathbb{Z} -VAS). On écrira $\mathbf{x} \stackrel{*}{\leadsto} \mathbf{y}$ quand il existe $u \in A^*$ tel que $\mathbf{x} \stackrel{u}{\leadsto} \mathbf{y}$.

Valk et Vidal-Naquet proposent une caractérisation pour la propriété de rationalité structurelle.

Théorème 19 ([3] théorème 6). Un d-VAS S = (A) n'est pas structurellement rationnel si et seulement s'il existe $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4 \in \mathbb{Z}^d$ tels que

- 1. $\mathbf{x}_1 < \mathbf{x}_2$
- 2. Pour tout $i \in I$, $\mathbf{x}_1(i) = \mathbf{x}_2(i)$ implique $\mathbf{x}_3(i) \leqslant \mathbf{x}_4(i)$,
- 3. Il existe un $i \in I$ tel que $\mathbf{x}_3(i) > \mathbf{x}_4(i)$.
- 4. $\mathbf{0} \overset{*}{\leadsto} \mathbf{x}_1 \overset{*}{\leadsto} \mathbf{x}_2 \overset{*}{\leadsto} \mathbf{x}_3 \overset{*}{\leadsto} \mathbf{x}_4$,

Lister les configurations rencontrés comme dans le point 4 ci-dessus est inutile pour la rationalité structurelle, puisqu'on peut augmenter au besoin la configuration initiale pour permettre les étapes intermédiaires. On propose ainsi une définition équivalente simplifiée avec des mots, dont on donnera une démonstration.

Théorème 20. Un d-VAS S=(A) n'est pas structurellement rationnel si et seulement s'il existe $u, v \in A^*$ tels que

- 1. $\overline{u} > 0$,
- 2. Pour tout $i \in I$, $\overline{u}(i) = 0$ implique $\overline{v}(i) \ge 0$,
- 3. Il existe $i \in I$ tel que $\overline{v}(i) < 0$.

Remarque. Les propriétés des théorèmes 17 et 18 sont bien équivalentes :

À partir des configurations $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4$, on choisit simplement pour u le mot permettant d'aller de \mathbf{x}_1 à \mathbf{x}_2 , et pour v le mot allant de \mathbf{x}_3 à \mathbf{x}_4 .

Dans l'autre sens, avec les mots u, v, on regarde simplement l'exécution $\mathbf{0} = \mathbf{x}_1 \stackrel{u}{\leadsto} \mathbf{x}_2 = \mathbf{x}_3 \stackrel{v}{\leadsto} \mathbf{x}_4$.

Démonstration. Supposons que S ne soit pas structurellement rationnel. Si $\mathcal{L}(A, \mathbf{x}_{\text{init}})$ n'est pas rationnel pour une configuration initiale $\mathbf{x}_{\text{init}} \in \mathbb{N}^d$, il existe (d'après le théorème 12) pour tout $k \in \mathbb{N}$ une séquence d'actions franchissable $\mathbf{x}_{\text{init}} \xrightarrow{u_k}_S \mathbf{x}_k \xrightarrow{v_k}_S \mathbf{y}_k$ et une coordonnée $i_k \in I$ tels que $\overline{v_k}(i_k) \leq k$.

Remarquons qu'une séquence d'action qui convient pour un certain $k \in \mathbb{N}$ fonctionne aussi pour les valeurs de k inférieures. Par conséquent, on peut sélectionner uniquement les séquences qui nous intéresse, pour peu qu'il en reste une infinité :

- Comme I est fini, les indices i_k ne peuvent prendre qu'un nombre fini de valeurs possibles, donc (par le principe des tiroirs) il existe un $\iota \in I$ apparaissant une infinité de fois. On peut ainsi supposer que $i_k = \iota$ pour tout k.
- Comme $(\mathbb{N}^d, \leqslant)$ forme un bel ordre, la suite $(\overline{u_k})_{k \in \mathbb{N}}$ admet une sous-suite croissante pour \leqslant . On peut donc se ramener au cas où $(\overline{u_k})_{k \in \mathbb{N}}$ est croissante.

Notons $J \subseteq I$ l'ensemble des coordonnées bornées dans les $\overline{u_k}$. Formellement, on définit

$$J = \{j \in I \mid \exists h_j \in \mathbb{N}, \forall k \in \mathbb{N}, \overline{u_k}(j) \leqslant h_j\}, \text{ et pour } j \in J, h_j = \max\{\overline{u_k}(j) \mid k \in \mathbb{N}\}$$

on peut définir J = j tel que $\sup(uk(j)/k$ est fini Il nous faut maintenant définir des mots u et v vérifiant les trois points du théorème. Commençons par fabriquer u satisfaisant le point 1:

- Pour que les coordonnées dans J des $\overline{u_k}$ soient positives pour chaque $k \in \mathbb{N}$, on construit u'_k en retirant de u_k pour tout $j \in J$ les h_j premières actions qui font décroître la coordonnée j (ou moins s'il n'y en a plus). On obtient ainsi $\overline{u'_k}(j) \geqslant 0$ pour tout $k \in \mathbb{N}$ et $j \in J$.
- Posons $\xi = \{|\overline{a}(i)| \mid a \in A, i \in I\}$. Lors du passage de u_k à u_k' , les coordonnées $i \in I \setminus J$ ne peuvent décroître d'au plus $\xi \times \sum_{j \in J} h_j$. Par ailleurs, comme $(\overline{u_k})_{k \in \mathbb{N}}$ est croissante et que pour tout $i \in I \setminus J$, la suite d'entiers $(\overline{u_k}(i))_{k \in \mathbb{N}}$ tend vers l'infini, il existe un $k_0 \in \mathbb{N}$ tel que pour tout $i \in I \setminus J$, $\overline{u_{k_0}}(i) > \xi \times \sum_{j \in J} h_j$. On en déduit que $\forall i \in I \setminus J$, $\overline{u_{k_0}}(i) > 0$.

Par conséquent, le mot u'_{k_0} vérifie le point $1 : \overline{u'_{k_0}} > \mathbf{0}$.

Maintenant, procédons de façon similaire sur les v_k . Pour tout $j \in J$, $(\overline{u_k}(j))_{k \in \mathbb{N}}$ est borné, donc $(\mathbf{x}_k(j))_{k \in \mathbb{N}}$ est borné également par $\ell_j = h_j + \mathbf{x}_{\text{init}}(j)$. On construit alors v_k' en retirant de v_k

pour tout $j \in J$ les ℓ_j premières actions qui font décroître la coordonnée j. Tous les v_k' vérifient le point 2 (avec $u = u_{k_0}'$), puisque si pour un $i \in I$, $\overline{u_{k_0}'}(i) = 0$, alors $i \in J$, d'où $\overline{v_k'}(i) \geqslant 0$.

Enfin, en prenant $k_1=1+\xi\times\sum_{j\in J}\ell_j$, on a $\overline{v_{k_1}}(\iota)\leqslant k_1$, d'où $\overline{v_{k_1}'}(\iota)<0$, et v_{k_1}' vérifie aussi le point 3. Finalement, u_{k_0}' et v_{k_1}' vérifient les trois points , ce qui montre l'implication directe.

Réciproquement, supposons qu'il existe deux mots $u, v \in A^*$ vérifiant les points 1, 2, et 3. Soit \mathbf{x}_{init} une configuration sur laquelle u est franchissable (on choisit des coordonnées aussi grandes que nécessaire). Montrons que $\mathcal{L}(A, \mathbf{x}_{\text{init}})$ n'est pas rationnel.

Soit $k \in \mathbb{N}$. Notons $\rho = \max\{-\overline{v}(i) \mid i \in I\}$, et montrons alors que $u^{\rho \times k}v^k \in \mathcal{L}(A, \mathbf{x}_{\text{init}})$.

- D'après le point 1, on a $\overline{u} > \mathbf{0}$, donc $\mathbf{x}_{\text{init}} + \overline{u} > \underline{\mathbf{x}_{\text{init}}}$. Comme u est franchissable sur \mathbf{x}_{init} , le mot $u^{\rho \times k}$ l'est également. Posons $\mathbf{x}_k = \mathbf{x}_{\text{init}} + \overline{u^{\rho \times k}}$ la configuration atteinte.
- D'après le point 2, si pour un $i \in I$, on a $\overline{v^k}(i) < 0$, alors $\overline{u}(i) > 0$, d'où $\mathbf{x}_k(i) \ge \rho \times k$. Par définition de ρ , on en déduit que $\overline{v^k}$ a bien les ressources nécessaires pour se déclencher sur \mathbf{x}_k , donc est bien franchissable. Posons $\mathbf{y}_k = \mathbf{x}_k + \overline{v^k}$ la nouvelle configuration atteinte.
- Enfin, d'après le point 3, il existe un $i \in I$ tel que $\overline{v}(i) < 0$, d'où $\overline{v^k}(i) \leqslant -k$.

Par conséquent, l'exécution $\mathbf{x}_{\text{init}} \xrightarrow{u^{\rho \times k}}_{S} \mathbf{x}_{k} \xrightarrow{v^{k}}_{S} \mathbf{y}_{k}$ vérifie la propriété (1) pour ce k. On notera que \mathbf{x}_{init} est bien indépendant de k. Le langage $\mathcal{L}(A, \mathbf{x}_{\text{init}})$ n'est donc pas rationnel, et S n'est pas structurellement rationnel.

Proposition 21. Problème de décision

Donnée : un ensemble de vecteurs $\mathfrak{A} \subseteq \mathbb{Z}^d$ (les étiquettes des actions de A).

Question : Existe-t-il deux vecteurs ${\bf u}$ et ${\bf v}$ obtenus comme combinaison semi-linéaire de ${\mathfrak A}$ vérifiant les 3 conditions suivantes :

- 1. u > 0,
- 2. Pour tout $i \in I$, $\mathbf{u}(i) = 0$ implique $\mathbf{v}(i) \ge 0$,
- 3. $\neg (\mathbf{v} \geqslant 0)$.

C'est du Presburger existentiel sans autre quantificateur et c'est dans NP

6 Commentaires

Vérifier qu'on peut énoncer Vidal-Naquet sur le graphe de couverture minimal défini par le graphe de Karp-Miller dans lequel on a gardé que les marquages maximaux.

Vérifier que ce nouveau graphe peut être obtenu à partir de Clover en ajoutant les transitions possibles (prolongées par continuité sur \mathbb{N}^d). Vérifier qu'il ne manque pas de transitions utiles.

Tenter de se débarrasser du graphe, de Clover, voire plus dans la preuve de Valk et Vidal-Naquet.

Simplifier le thm 12 pour avoir un calcul facile dans les cas faciles (borné).

Voir Garey, Johnson : référence pour les problèmes de complexité sur les vecteurs

Regarder taille de l'automate (minimal?) construit par GY et VVN. Est-ce Ackermann?

Regarder les propriétés de monotonie des VAS pour la rationalité : Augmenter la configuration initiale peut-il permettre de retrouver la rationalité ? Voir ainsi si l'ensemble des configurations qui lorsque choisit initialement aboutissent à un VAS non-rationnel est clos par le haut.

Réduire la rationalité à la bornitude, la terminaison ou la couverture.

Références

- [1] M. O. Rabin and D. Scott. Finite Automata and Their Decision Problems. *IBM Journal of Research and Development*, vol. 3, pages 114-125, 1959.
- [2] A. Ginzburg and M. Yoeli. Vector Addition Systems and Regular Languages. *Journal of Computer and System Science* 20, pages 277-284, 1980.
- [3] R. Valk and G. Vidal-Naquet. Petri Nets and Regular Languages. *Journal of Computer and System Science* 23, pages 299-325, 1981.