sine basis 04

Statistics: p-values adjusted for search volume

oot lovel		di iotor	lovo		pool lovol							
set-level	cluster-level				peak-level					mm mm mm		
рс	ρ_{FWE-c}	$p_{\text{FWE-corrFDR-corr}} k p_{\text{uncorr}}$			$\rho_{FWE-corr} q_{FDR-corr}$			$(Z_{\equiv}) p_{\text{uncorr}}$				
	1.000	0.777	4	0.530	1.000	0.890	2.72	2.71	0.003	-10	-70	30
	1.000	0.754	9	0.337	1.000	0.890	2.71	2.70	0.003	18	-44	-6
	1.000	0.777	5	0.479	1.000	0.890	2.71	2.70	0.003	-38	16	6
	1.000	0.777	4	0.530	1.000	0.890	2.71	2.70	0.004	-12	38	46
	1.000	0.777	6	0.436	1.000	0.894	2.70	2.69	0.004	0	26	30
	1.000	0.777	7	0.398	1.000	0.894	2.69	2.68	0.004	36	26	-10
	1.000	0.777	2	0.671	1.000	0.894	2.69	2.68	0.004	66	-36	32
	1.000	0.777	3	0.592	1.000	0.894	2.68	2.67	0.004	-58	-40	-22
	1.000	0.777	7	0.398	1.000	0.897	2.66	2.65	0.004	-4	-10	70
	1.000	0.777	5	0.479	1.000	0.916	2.64	2.63	0.004	-26	-80	14
	1.000	0.777	2	0.671	1.000	0.916	2.64	2.63	0.004	-38	-84	10
	1.000	0.777	2	0.671	1.000	0.916	2.63	2.62	0.004	12	-92	18
	1.000	0.777	6	0.436	1.000	0.916	2.62	2.61	0.005	-18	54	-14
	1.000	0.777	2	0.671	1.000	0.916	2.62	2.61	0.005	32	-4	66
	1.000	0.777	3	0.592	1.000	0.937	2.58	2.57	0.005	-24	-28	-12
	1.000	0.777	2	0.671	1.000	0.937	2.57	2.56	0.005	46	-6	56
	1.000	0.777	5	0.479	1.000	0.937	2.55	2.54	0.006	-14	-64	-6
	1.000	0.777	4	0.530	1.000	0.937	2.54	2.53	0.006	-2	-90	22
	1.000	0.777	3	0.592	1.000	0.937	2.54	2.53	0.006	14	-38	76
	1.000	0.777	2	0.671	1.000	0.937	2.53	2.52	0.006	-56	-10	44
	1.000	0.777	2	0.671	1.000	0.937	2.53	2.52	0.006	36	28	10
	1.000	0.777	4	0.530	1.000	0.937	2.52	2.52	0.006	42	44	-12

table shows 3 local maxima more than 8.0mm apart

Height threshold: T = 2.33, p = 0.010 (1.000) egrees of freedom = [1.0, 498.0]

Extent threshold: k = 0 voxels

FWHM = 6.7 6.6 6.6 mm mm mm; 3.4 3.3 3.3 {voxels}

Expected voxels per cluster, $\langle k \rangle = 10.527$ Volume: 1691824 = 211478 voxels = 5370.1 resels

Expected number of clusters, $\langle c \rangle = 225.09$ Voxel size: 2.0 2.0 2.0 mm mm mm; (resel = 36.58 voxels)

FWEp: 5.104, FDRp: 4.471, FWEc: 210, FDRage 148