References

- [1] W. H. Organization, "Cardiovascular diseases (cvds)," https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds), 2017, [Online: accessed 31-8-2021].
- [2] N. Poulter, "Coronary heart disease is a multifactorial disease," *American Journal of Hypertension*, vol. 12, no. S6, pp. 92S–95S, 10 1999. doi: 10.1016/S0895-7061(99)00163-6. [Online]. Available: https://doi.org/10.1016/S0895-7061(99)00163-6
- [3] J. Navarro-Pérez, D. Orozco-Beltran, V. Gil-Guillen, F. Pallares, V.and Valls, A. Fernandez, A. M. Perez-Navarro, C. Sanchis, A. Dominguez-Lucas, J. M. Martin-Moreno, J. Redon, and M. Tellez-Plaza, "Mortality and cardiovascular disease burden of uncontrolled diabetes in a registry-based cohort: the escarval-risk study," in *BMC* cardiovascular disorders, vol. 18(1), no. 180, 2018. doi: 10.1186/s12872-018-0914-1
- [4] PubMed, https://pubmed.ncbi.nlm.nih.gov/, 2021, [Online: accessed 31-8-2021].
- [5] C. Krittanawong, H. U. Virk, S. Bangalore, Z. Wang, W. J. Kipp, R. Pinotti, H. Zhang, S. Kaplin, B. Narasimhan, T. Kitai, U. Baber, J. L. Halperin, and W. H. W. Tang, "Machine learning prediction in cardiovascular diseases: a meta-analysis," *Scientific Reports*, 2020. doi: 10.1038/s41598-020-72685-1. [Online]. Available: https://doi.org/10.1038/s41598-020-72685-1
- [6] E. Soria-Olivas, J. D. Martín-Guerrero, J. Redón, M. Tellez-Plaza, and J. Vila-Francés, "Improving mortality prediction in cardiovascular risk patients by balancing classes," in 2015 IEEE International Conference on Data Mining Workshop (ICDMW), 2015. doi: 10.1109/ICDMW.2015.76 pp. 480–484.

- [7] F. Mateo, E. Soria-Olivas, M. Martínez-Sober, M. Tellez-Plaza, J. Gómez-Sanchís, and J. Redon, "Multi-step strategy for mortality assessment in cardiovascular risk patients with imbalanced data," in 24th European Symposium on Artificial Neural Networks, ESANN 2016, Bruges, Belgium, April 27-29, 2016, 2016. [Online]. Available: http://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2016-60.pdf
- [8] R. C. Deo, "Machine learning in medicine," *Circulation, PMC*, vol. 20, pp. 1920–1930, 2018.
- [9] A. Subasi, "Practical machine learning for data analysis using python," in *Practical Machine Learning for Data Analysis Using Python*. Academic Press, 2020. ISBN 978-0-12-821379-7 pp. 8–13.
- [10] R. Soni and K. Mathai, "Improved twitter sentiment prediction through cluster-then-predict model," *ArXiv*, vol. abs/1509.02437, 2015.
- [11] S. Kaufman, S. Rosset, and C. Perlich, "Leakage in data mining: Formulation, detection, and avoidance," vol. 6, 01 2011. doi: 10.1145/2020408.2020496 pp. 556–563.
- [12] PyCaret, https://pycaret.org/, 2021, [Online: accessed 31-8-2021].
- [13] t. PyCaret, "Pycaret, transformations," https://pycaret.org/transformation/, 2021, [Online: accessed 31-8-2021].
- [14] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, "Smote: Synthetic minority over-sampling technique," in *Artificial Intelligence* (cs.AI), vol. 16, 2002. doi: 10.1613/jair.953 pp. 321–357.
- [15] J. Brownlee, "Smote for imbalanced classification with python," https://machinelearningmastery.com/smote-oversampling-for-imbalanced-classification/, 2021, [Online: accessed 31-8-2021].
- [16] Numpy, https://numpy.org/, 2021, [Online: accessed 31-8-2021].
- [17] Pandas, "Pandas," https://pandas.pydata.org/, 2017, [Online: accessed 31-8-2021].
- [18] SciPy, https://www.scipy.org/, 2021, [Online: accessed 31-8-2021].
- [19] V. w. P. Matplotlib, https://matplotlib.org/, 2021, [Online: accessed 31-8-2021].

- [20] s. d. v. Seaborn, https://seaborn.pydata.org/, 2021, [Online: accessed 31-8-2021].
- [21] M. L. in Python, "Machine learning in python," https://scikit-learn.org/stable/, 2021, [Online: accessed 31-8-2021].
- [22] S. Weisberg, *Applied Linear Regression*. John Wiley & Sons, Inc., 2005. ISBN 9780471704096
- [23] D. Koller and N. Friedman, *Probabilistic Graphical Models: Principles and Techniques; Adaptive computation and machine learning.* MIT Press, 2009. ISBN 9780262013192
- [24] M. Sánchez-Montañés, P. Rodríguez-Belenguer, A. J. Serrano-López, E. Soria-Olivas, and Y. Alakhdar-Mohmara, "Machine learning for mortality analysis in patients with covid-19," *Internatinal Journal of Environmental Research and Public Health*, vol. 17, 2020.
- [25] G. James, D. Witten, T. Hastie, and R. Tibshirani, *An Introduction To Statistical Learning*. Springer, 2013. ISBN 9781461471387
- [26] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, "Optuna: A next-generation hyperparameter optimization framework," in *Proceedings* of the 25rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019.
- [27] T. Afonja, "Accuracy paradox," https://towardsdatascience.com/accuracy-paradox-897a69e2dd9b, 2017, [Online: accessed 31-8-2021].
- [28] E. Štrumbelj and I. Kononenko, "Explaining prediction models and individual predictions with feature contributions," vol. 41, 2014. doi: 10.1007/s10115-013-0679-x p. 647–665.
- [29] M. L. McHugh, "The chi-square test of independence," *Biochemia Medica*, vol. 23, pp. 143–149, 2013.
- [30] A. Schneider, G. Hommel, and M. Blettner, "Linear regression analysis," *Evaluation of Scientific Publications*, vol. 107, pp. 776—782, 2010.

Appendix A Results overview

 $Table \ A.1-XGBoost \ Results \ through \ different \ experiments \ in \ test \ data.$

Activity	Model	F 1	Recall	Prec.	Accuracy	AUC
Baseline	XGBoost	0.2328	0.2639	0.2082	0.9695	0.8408
Undersampling	XGBoost	0.0846	0.8090	0.0446	0.6926	0.8308
Oversampling	XGBoost	0.1079	0.0833	0.1529	0.9758	0.7672
SMOTE	XGBoost	0.0889	0.0764	0.1063	0.9725	0.7821

Table A.2 - SVM Results through different experiments in test data.

Activity	Model	F1	Recall	Prec.	Accuracy	AUC
Baseline	SVM	0.0975	0.7083	0.0524	0.7698	0.7396
Undersampling	SVM	0.1213	0.6840	0.0665	0.8260	0.7563
Oversampling	SVM	0.1024	0.7604	0.0549	0.7659	0.7632
SMOTE	SVM	0.1024	0.7604	0.0549	0.7659	0.7632