Homework Problem Set #3

Harvey Mudd College January 2020

Let R be a ring with identity $1 \neq 0$, let F be a field, and let x be an indeterminate over F.

9.1.7 Prove that a polynomial ring in more than one variable over R is not a Principal Ideal Domain.

9.2.1 Let $f(x) \in F[x]$ be a polynomial of degree $n \geq 1$ and let bars denote passage to the quotient F[x]/f(x). Prove that for each $\overline{g(x)}$ there is a unique polynomial $g_0(x)$ of degree $\leq n-1$ such that $\overline{g(x)} = \overline{g_0(x)}$ (equivalently, the elements $\overline{1}, \overline{x}, ..., \overline{x^{n-1}}$ are a basis of the vector space F[x]/((f(x))) in particular, the dimension of this space is n). [Use the Division Algorithm.].

9.2.2 Let F be a finite field of order q and let f(x) be a polynomial in F[x] of degree $n \ge 1$. Prove that F[x]/(f(x)) has q^n elements. [Use the preceding exercise.]

9.2.3 Let f(x) be a polynomial in F[x]. Prove that F[x]/(f(x)) is a field if and only if f(x) is irreducible. [Use Proposition 7, Section 8.2.]

9.3.3 Let F be a field. Prove that the set R of polynomials in F[x] whose coefficient of x is equal to 0 is a subring of F[x] and that R is not a U.F.D.

[Show that $x^6 = (x^2)^3 = (x^3)^2$ gives two distinct factorizations of x^6 into irreducibles.]