Laser a diodo

Alberto Bordin, Giulio Cappelli

7-8 novembre 2017

Sommario

Misura della corrente di soglia di un diodo laser per varie temperature di operazione. Misura della divergenza del fascio.

Misura della dipendenza della lunghezza d'onda dalla temperatura.

1 To do

- Foto apparato
- Trovare informazioni fotodiodo

2 Teoria

3 Apparato sperimentale

Come si vede in Figura per poter effettuare le varie misure abbiamo a disposizione:

- Un laser a diodo modello HL7812G prodotto dalla Hitachi.
- Un circuito di controllo in corrente del laser.
- Una cella peltier, controllata in corrente, che utilizziamo per variare la temperatura del laser.
- Un sensore ti temperatura DIGIMASTER DM102
- Un analizzatore di spettro USB4000 della Ocean Optics.
- Una fibra ottica utilizzata per portare il segnale del laser al monocromatore.
- Un piccolo ventilatore montato in modo tale da evitare la formazione di gocce d'acqua all'interno del laser durante i processi di riscaldamento e/o raffreddamento del laser.
- Una lente utilizzata per focalizzare il laser nella misura della caratteristica P-I.
- Un supporto per il laser montato su un goniometro con una precisione di 0.5°.
- Un fotodiodo PD300 della Ophir.
- Un altro fotodiodo di cui non sappiamo niente.
- Un power meter NOVA della Ophir.
- Un rilevatore IR per poter osservare il fascio laser ed allinearlo.

3.1 Laser a diodo

Il laser a diodo a nostra disposizione è il modello HL7812G della Hitachi ed è una giunzione di GaAlAs.

Sul datasheet sono riportate le seguenti caratteristiche:

	$_{ m Min}$	Tipico	Max
I_{th} [mA]	_	50	90
$\lambda_p \text{ [nm]}$	770	785	795
$\theta_{//} [\deg]$	7	11	18
θ_{\perp} [deg]	20	30	40

Tabella 1: Caratteristiche laser a diodo $\tt HL7812G$ misurate a $\tt T=25^{\circ}C$

dove I_{th} è la corrente di soglia oltre la quale si è in regime laser, λ_p è la lunghezza d'onda della luce in uscita dal laser e $\theta_{//}$ e θ_{\perp} sono gli angoli di emissione del laser rispetto agli assi della giunzione e sono calcolati misurando l'intensità ad una distanza di 10 cm dal diodo.

Sono inoltre presenti sul datasheet i seguenti grafici:

Figura 2

Figura 3

che mostrano le caratteristiche principali di dispositivi di questo tipo come la dipendenza della corrente di soglia dalla temperatura, l'astigmatismo e la dipendenza della lunghezza d'onda dalla temperatura.

3.2 Monocromatore

L'analizzatore di spettro è costituito da un monocromatore, ovvero un apparato in grado di sfruttare un reticolo di diffrazione (costituito da $\sim\!1000$ specchi \forall mm) in riflessione per separare angolarmente le lunghezze d'onda della luce incidente. Prendendo come riferimento la Figura 4 si nota la presenza di due specchi (4 e 6) che servono, rispettivamente, a collimare il fascio sul reticolo di diffrazione e a focalizzare il primo ordine dello spettro sull'array di fotodiodi (8) che permettono di rilevare l'intensità delle varie lunghezze d'onda che compongono la luce incidente.

Quello a nostra disposizione è un USB4000 della Ocean Optics mostrato in Figura 4, a cui la luce laser viene portata tramite una fibra ottica.

Figura 4

4 Caratteristica P-I

Analizziamo la dipendenza della corrente di soglia del diodo laser dalla temperatura misurando la caratteristica P-I in tre diverse condizioni: $T=12,\ 25,\ 45$ °C.

4.1 Presa dati

Abbiamo misurato la potenza fornita dal diodo laser in funzione della corrente di alimentazione mantenendo la temperatura del diodo costante attraverso l'utilizzo della cella peltier.

Il fascio è stato focalizzato sul fotodiodo attraverso una lente e per ogni valore della corrente abbiamo registrato il corrispondente valore della potenza leggendolo sul power meter NOVA RS232.

Abbiamo effettuato questa misura per tre valori diversi della temperatura del laser a diodo; tutte le misure effettuate sono riportate nelle rispettive tabelle in appendice.

Per ogni valore della temperatura è stato impostato sul power meter il valore previsto della lunghezza d'onda del laser a diodo come riportato sul datasheet (Figura 2).

T [°C]	12	25	43
$\lambda [\mathrm{nm}]$	784	786	790

Tabella 2

4.2 Analisi dati

5 Divergenza del fascio

In questa seconda sezione calcoliamo un'altra caratteristica importante di un diodo laser; i valori dell'allargamento angolare lungo i due assi della giunzione così da poterli confrontare con quelli riportati sul datasheet. Per farlo abbiamo misurato l'andamento della potenza emessa dal diodo laser in funzione dell'angolo di emissione.

5.1 Presa dati

Per queste misure utilizziamo un fotodiodo collegato ad un multimetro, configurato come amperometro, con una risoluzione del nA. I valori misurati sono stati letti sul monitor del pc attraverso il programma DIGITAL MULTIMETER.

Le misure di allargamento angolare sono comunemente eseguite ad una distanza di 10 cm dal diodo laser, quindi per poter effettuare un confronto con quanto riportato sul datasheet ci siamo adeguati a questo standard.

Abbiamo fissato il laser su di un sostegno alla cui base è presente un goniometro, con una risoluzione del mezzo grado, e l'abbiamo posizionato in modo tale che l'allargamento angolare misurato sia quello relativo ad uno degli assi dell'ellisse di emissione. Per fare ciò abbiamo sfruttato il polarizzatore e il power meter dato che la luce emessa dal diodo laser è polarizzata per circa il 90% lungo il semiasse minore dell'ellisse di emissione. Questo procedimento non ci ha soddisfatto, quindi abbiamo utilizzato il rivelatore IR osservando la forma del fascio e poi abbiamo controllato col polarizzatore di essere entro la sua precisione.

Le misure sono fatte a 23°C e con una corrente di controllo di 82.1 mA. I dati ottenuti sono riportati nella rispettive tabelle in appendice. 6

- 5.2 Analisi dati
- 6 Dipendenza λ da T
- 6.1 Presa dati
- 6.2 Analisi dati

Appendice

$I(\Delta I)$ [mA]	$P [\mu W]$	$I(\Delta I)$ [mA]	$P [\mu W]$	$I(\Delta I)$ [mA]	$P [\mu W]$	$I(\Delta I)$ [mA]	$P \left[\mu W \right]$
82.0(1)	6230	67.3(1)	2990	50.8(1)	64.1	43.2(1)	34.8
81.0(1)	6030	64.8(1)	2468	51.3(1)	69.3	41.8(1)	32.2
79.9(1)	5800	63.0(1)	2077	52.6(1)	89.8	39.7(1)	28.5
78.8(1)	5480	60.5(1)	1544	49.9(1)	57.5	38.1(1)	26.10
77.8(1)	5290	58.5(1)	1100	49.4(1)	54.8	36.5(1)	23.96
76.6(1)	5050	57.3(1)	848	48.8(1)	51.9	34.4(1)	21.34
75.3(1)	4740	56.1(1)	578	48.1(1)	48.6	31.8(1)	18.53
73.9(1)	4430	55.1(1)	385	47.0(1)	44.8	29.5(1)	16.25
71.0(1)	3800	54.3(1)	218.9	45.9(1)	41.4	26.7(1)	13.82
69.1(1)	3380	53.7(1)	142.3	44.5(1)	37.8	25.1(1)	12.56

Tabella 3: Valori misurati di corrente e potenza alla temperatura di T $=12^{\circ}\mathrm{C}$

$\mid I(\Delta I) \text{ [mA]}$	$P [\mu W]$	$I(\Delta I)$ [mA]	$P [\mu W]$	$I(\Delta I)$ [mA]	$P [\mu W]$	$I(\Delta I)$ [mA]	P $[\mu W]$
81.9(1)	5180	72.1(1)	3090	60.5(1)	655	47.2(1)	38.2
80.8(1)	4940	71.3(1)	2907	59.7(1)	497	45.8(1)	35.3
80.3(1)	4830	69.7(1)	2585	58.6(1)	270.9	43.3(1)	31.0
79.2(1)	4610	68.3(1)	2267	57.6(1)	138.5	40.5(1)	26.80
78.4(1)	4420	67.2(1)	2082	56.8(1)	101.3	38(1)	23.61
77.7(1)	4280	66.3(1)	1836	55.2(1)	72.2	35.6(1)	20.91
77.2(1)	4170	65.5(1)	1675	54.6(1)	67.4	32.5(1)	17.83
76.1(1)	3950	64.5(1)	1471	53.6(1)	60.3	30.6(1)	16.14
75.2(1)	3750	63.1(1)	1190	52.7(1)	55.5	28.3(1)	14.20
74.7(1)	3640	62.5(1)	1098	50.4(1)	46.5	26.8(1)	13.04
73.7(1)	3430	61.7(1)	924	48.4(1)	40.9	25.1(1)	11.80

Tabella 4: Valori misurati di corrente e potenza alla temperatura di $T=25^{\circ}\mathrm{C}$

$I(\Delta I)$ [mA]	$P [\mu W]$	$I(\Delta I)$ [mA]	$P [\mu W]$	$I(\Delta I)$ [mA]	$P [\mu W]$	$I(\Delta I)$ [mA]	$P \left[\mu W \right]$
82.4(1)	3760	72.8(1)	1659	64.4(1)	128.5	52.7(1)	40.8
81.1(1)	3480	71.1(1)	1314	63.8(1)	106.8	50.2(1)	36.2
80.4(1)	3330	70.0(1)	1077	62.9(1)	90.0	48.8(1)	33.9
79.5(1)	3130	68.8(1)	839	61.1(1)	71.3	45.3(1)	28.9
77.8(1)	2772	68.2(1)	695	60.3(1)	66.1	43.9(1)	27.2
77.4(1)	2679	67.5(1)	558	59.5(1)	61.4	37.8(1)	20.63
76.3(1)	2431	66.8(1)	423	58.2(1)	55.9	33.9(1)	17.09
75.4(1)	2228	65.6(1)	338	57.2(1)	52.2	29.9(1)	13.98
74.5(1)	2027	65.0(1)	168.5	55.7(1)	48.0	25.2(1)	10.77

Tabella 5: Valori misurati di corrente e potenza alla temperatura di $T=43^{\circ}\mathrm{C}$

$\theta_{//}$ [°]	I $[\mu A]$						
0.0(5)	4.30	11.0(5)	0.57	-3.5(5)	2.38	-1.5(5)	3.56
1.0(5)	4.53	12.0(5)	0.33	-4.0(5)	2.16	-0.5(5)	4.10
2.0(5)	4.83	14.0(5)	0.16	-4.5(5)	1.85	0.5(5)	4.69
3.0(5)	4.59	16.0(5)	0.06	-5.0(5)	1.54	0.0(5)	4.64
4.0(5)	4.26	19.0(5)	0.04	-5.5(5)	1.20	1.5(5)	4.52
5.0(5)	3.75	23.0(5)	0.03	-6.0(5)	1.05	2.5(5)	4.82
5.5(5)	3.38	30.0(5)	0.02	-7.0(5)	0.71	2.0(5)	4.95
6.0(5)	2.99	45.0(5)	0.02	-8.0(5)	0.44	2.0(5)	4.96
6.5(5)	2.58	90.0(5)	0.02	-10.0(5)	0.17	3.5(5)	4.37
7.0(5)	2.30	0.0(5)	4.40	-12.0(5)	0.07	4.5(5)	3.89
7.5(5)	1.98	-1.0(5)	3.73	-15.0(5)	0.03	-2.5(5)	3.19
8.0(5)	1.79	-2.0(5)	3.42	-30.0(5)	0.03	1.5(5)	4.44
9.0(5)	1.25	-2.5(5)	3.05	-45.0(5)	0.02	2.0(5)	4.61
10.0(5)	0.86	-3.0(5)	2.66	-85.0(5)	0.02	2.5(5)	4.27

Tabella 6: P vs angolo di incidenza parallelo

θ_{\perp} [°]	I $[\mu A]$	θ_{\perp} [°]	I $[\mu A]$	θ_{\perp} [°]	I $[\mu A]$	θ_{\perp} [°]	Ι [μΑ]
-85.0(5)	0.02	-17.0(5)	1.73	-1.0(5)	4.27	14.0(5)	2.51
-70.0(5)	0.02	-16.0(5)	1.92	0.0(5)	4.71	15.0(5)	2.27
-60.0(5)	0.03	-15.0(5)	2.08	1.0(5)	4.22	16.0(5)	2.05
-50.0(5)	0.03	-14.0(5)	2.37	2.0(5)	4.31	17.0(5)	1.82
-45.0(5)	0.10	-13.0(5)	2.58	3.0(5)	4.38	18.0(5)	1.87
-40.0(5)	0.15	-12.0(5)	2.73	4.0(5)	4.47	19.0(5)	1.45
-37.0(5)	0.20	-11.0(5)	3.01	5.0(5)	4.16	21.0(5)	1.21
-34.0(5)	0.28	-10.0(5)	2.99	6.0(5)	4.15	23.0(5)	0.96
-31.0(5)	0.35	-11.0(5)	3.04	7.0(5)	3.90	25.0(5)	0.87
-28.0(5)	0.51	-10.0(5)	2.99	8.0(5)	3.31	27.0(5)	0.62
-25.0(5)	0.70	-8.0(5)	3.39	9.0(5)	3.72	30.0(5)	0.44
-23.0(5)	0.88	-6.0(5)	4.12	10.0(5)	3.21	35.0(5)	0.10
-21.0(5)	1.13	-4.0(5)	4.15	11.0(5)	3.13	45.0(5)	0.11
-19.0(5)	1.37	-3.0(5)	3.98	12.0(5)	2.88	40.0(5)	0.17
-18.0(5)	1.55	-2.0(5)	4.23	13.0(5)	2.70	50.0(5)	0.04
60.0(5)	0.02	90.0(5)	0.02				

Tabella 7: P vs angolo di incidenza perpendicolare