1. 己知集合 $A = \{1,3,5,7,9\}, B = \{3,6,9,12\}$,则 $A \cap B =$ () A. $\{3,9\}$ B. $\{1,3,5,6,7,9,12\}$ C. $\{1,5,7\}$ D. $\{6,12\}$

2024-02-27

一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.

2. 己知平面向量 $\vec{a} = (1, m), \vec{a} = (-2, 4), \ \vec{B} \cdot \vec{a} / \vec{b}, \ \vec{M} m = ($) A. 2 B. $\frac{1}{2}$ C. $-\frac{1}{2}$ D. -2

3. 已知曲线 $C: \frac{x^2}{4} + \frac{y^2}{m} = 1 (m \neq 0)$,则" $m \in (0,4)$ "是"曲线 C 的焦点在 x 轴上"的(
A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件
4. 在 $\triangle ABC$ 中,角 A , B , C 的对边分别为 a , b , c 已知 $a = a\cos B + b\cos A = 1$, $\sin C = \frac{\sqrt{2}}{2}$, 则()
A. $b = 1$ B. $b = \sqrt{2}$ C. $c = \sqrt{2}$ D. $c = \sqrt{3}$
5. 记数列 $\{a_n\}$ 的前 n 项和为 S_n ,若 $\{\frac{S_n}{n}\}$ 是等差数列, $S_2 = -8, S_6 = 0$,则 $a_3 + a_4 = ($
A8 B4 C. 0 D. 4
6. $(1-x+x^2)^2 \cdot (1+x)^3$ 的展开式中, x^4 的系数为(
7. 在一组样本数据中,1,2,3,4 出现的频率分别为 p_1,p_2,p_3,p_4 ,且 $\sum_{i=1}^4 p_i=1$,则下面四种情形中,对应样本的
标准差最小的一组是(
C. $p_1 = p_4 = 0.1, p_2 = p_3 = 0.4$ D. $p_1 = p_4 = 0.4, p_2 = p_3 = 0.1$
8. 已知抛物线 $C: y^2 = 4x$,过其焦点 F 的直线交 $C \oplus A$, B 两点, M 为 AB 中点,过 M 作准线的垂线,垂足为 N ,
若 $ AF =4$,则 $ NF =$ () A. $\frac{4}{3}$ B. $\frac{4\sqrt{3}}{3}$ C. $\frac{8}{3}$ D. $\frac{8\sqrt{3}}{3}$
二、选择题:本题共 3 小题,每小题 6 分,共 18 分.在每小题给出的选项中,有多项符合题目要求.全部选对的得 6 分,部分选对的得部分分,有选错的得 0 分.
9. 已知函数 $f(x) = \sin(\omega x - \frac{\pi}{6})(\omega > 0)$ 在区间 $(\frac{\pi}{6}, \frac{\pi}{2})$ 上单调递增,则 ω 的值可以是(
A. $\frac{2}{3}$ B. 1 C. $\frac{4}{3}$ D. $\frac{3}{2}$
10. 科学研究表明,物体在空气中冷却的温度变化是有规律的. 如果物体的初始温度为 θ_1 ° C ,空气温度 θ_0 ° C 保持
不变,则 t 分钟后物体的温度 θ (单位: °C)满足: $\theta=\theta_0+(\theta_1-\theta_0)e^{-0.05t}$.若空气温度为 10 °C ,该物体温度从 θ_1 °C
$(90 \le \theta_1 \le 100)$ 下降到 30 °C,大约所需的时间为 t_1 ,若该物体温度从 70 °C, 50 °C 下降到 30 °C,大约所需的时间
分别为 t_2, t_3 ,则()(参考数据: $\ln 2 \approx 0.7, \ln 3 \approx 1.1$)
A. $t_2 = 20$ B. $28 \le t_1 \le 30$ C. $t_1 \ge 2t_3$ D. $t_1 - t_2 \le 6$

1

- 11. 已知正方体 $ABCD A_1B_1C_1D_1$ 棱长为 4,点 N 是底面正方形 ABCD 内及边界上的动点,点 M 是棱 DD_1 上的动点 (包括点 D, D_1),已知 MN = 4,P 为 MN 中点,则下列结论正确的是(
- A. 无论 M, N 在何位置,AP, CC_1 为异面直线 B. 若 M 是棱 DD_1 中点,则点 P 的轨迹长度为 $\frac{\sqrt{3}}{2}\pi$
- C. M, N 存在唯一的位置,使 A_iP / / 平面 AB_iC D. AP 与平面 A_iBCD_i 所成角的正弦最大值为 $\frac{1}{2}$
- 三、填空题:本题共3小题,每小题5分,共15分.
- 12. 函数 $f(x) = \frac{\sqrt{1-x}}{\lg x}$ 的定义域为______.
- 13. 已知曲线 $C: x^2 + (y-m)^2 = 2$ 和 $C_1: y = x + 2$, $C_2: y = |x| + 2$, 若 $C = C_1$ 恰有一个公共点,则实数 m = 2 若 $C = C_2$ 恰有两个公共点,则实数 m 的取值范围是______.
- 14. 已知 $\triangle ABC$ 的角 A, B, C 满足 $\tan A \tan B \tan C \le [\tan A] + [\tan B] + [\tan C]$, 其中符号[x] 表示不大于 x 的最大整数,若 $A \le B \le C$,则 $\tan C \tan B =$
- 四、解答题: 本题共5个小题, 共77分.解答应写出说明文字、证明过程或演算步骤.
- 15. (13 分)已知双曲线 $E: \frac{x^2}{a^2} \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的左顶点是 A(-1,0) ,一条渐近线的方程为 y = x .
- (1) 求双曲线 E 的离心率; (2) 设直线 $y = \frac{1}{2}x \frac{1}{2}$ 与双曲线 E 交于点 P, Q, 求线段 PQ 的长.

2024-02-27

- 16. (15 分) 寒假期间小明每天坚持在"跑步 3000 米"和"跳绳 2000 个"中选择一项进行锻炼,在不下雪的时候,他跑步的概率为60%,跳绳的概率为40%,在下雪天,他跑步的概率为20%,跳绳的概率为80%. 若前一天不下雪,则第二天下雪的概率为50%,若前一天下雪,则第二天仍下雪的概率为40%. 已知寒假第一天不下雪,跑步3000米大约消耗能量330卡路里,跳绳2000个大约消耗能量220卡路里. 记寒假第 n 天不下雪的概率为 P.
- (1) 求 p_1, p_2, p_3 的值,并证明 $\{p_n \frac{6}{11}\}$ 是等比数列; (2) 求小明寒假第 n 天通过运动锻炼消耗能量的期望.

- 17. (15 分) 如图,在四棱锥 P-ABCD 中,底面 ABCD 是平行四边形,侧面 PAD 是以 PD 为底的等腰三角形, $AB=PB=2PA=4, AC=2\sqrt{7} \ , \ E \ E \ PD \ \bot, \ AE \ \bot \ BD \ .$
- (1) 证明: 平面 $PAD \perp$ 平面 ABCD; (2) 求二面角 P-BC-A 的余弦值.

- 18. (17 分) 已知函数 $f(x) = \frac{a \sin x}{x}, a \in R$. (1) 当 $a = 1, x \in (0, \frac{\pi}{2})$ 时,证明: $\tan x > x > xf(x)$;
- (2) 若 $\forall x \in (-\frac{\pi}{2}, 0) \cup (0, \frac{\pi}{2}), \frac{x}{\tan x} < f(x)$,求实数 a 的取值范围.

19. (17 分) 对于无穷数列 $a_0, a_1, a_2, \dots, a_n, \dots$,我们称 $f(x) = \sum_{n=0}^{\infty} \frac{a_n}{n!} x^n = a_0 + a_1 x + \frac{a_2}{2!} x^2 + \dots + \frac{a_n}{n!} x^n + \dots$ (规定 0! = 1)

为无穷数列 $\{a_n\}$ 的指数型母函数. 无穷数列 $1,1,\cdots,1,\cdots$ 的指数型母函数记为 $e(x) = \sum_{n=0}^{\infty} \frac{1}{n!} x^n = 1 + x + \frac{x^2}{2!} + \cdots + \frac{x^n}{n!} + \cdots$,

它具有性质 e(x)e(y) = e(x+y). (1)证明: $e(-x) = \frac{1}{e(x)}$; (2)记 $c(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^k \frac{x^{2k}}{(2k)!} + \dots$.

证明: $c(x) = \frac{e(ix) + e(-ix)}{2}$ (其中 i 为虚数单位); (3) 以函数 $\frac{x}{e(x)-1}$ 为指数型母函数生成数列 $\{B_n\}$,

$$\frac{x}{e(x)-1} = \sum_{n=0}^{\infty} \frac{B_n}{n!} x^n = B_0 + B_1 x + \frac{B_2}{2!} x^2 + \dots + \frac{B_n}{n!} x^n + \dots$$
. 其中 B_n 称为伯努利数. 证明: $B_1 = -\frac{1}{2}$. 且

 $B_{2k+1} = 0(k = 1, 2, 3, \cdots)$.

2024-02-27

一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.

1. 己知集合 $A = \{1,3,5,7,9\}, B = \{3,6,9,12\}, 则 A \cap B = (A)$

A. {3,9} B. {1,3,5,6,7,9,12} C. {1,5,7} D. {6,12}

3. 已知曲线 $C: \frac{x^2}{4} + \frac{y^2}{m} = 1 (m \neq 0)$,则" $m \in (0,4)$ "是"曲线 C 的焦点在 x 轴上"的(A)

A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件

4. 在 $\triangle ABC$ 中,角 A, B, C 的对边分别为 a, b, c 已知 $a=a\cos B+b\cos A=1,\sin C=\frac{\sqrt{2}}{2}$,则(B)

A. b = 1 B. $b = \sqrt{2}$ C. $c = \sqrt{2}$ D. $c = \sqrt{3}$

5. 记数列 $\{a_n\}$ 的前n项和为 S_n ,若 $\{\frac{S_n}{n}\}$ 是等差数列, $S_2 = -8, S_6 = 0$,则 $a_3 + a_4 = (C)$

A. -8 B. -4 C. 0 D. 4

6. $(1-x+x^2)^2 \cdot (1+x)^3$ 的展开式中, x^4 的系数为(B)A. 1 B. 2 C. 4 D. 5

7. 在一组样本数据中,1,2,3,4 出现的频率分别为 p_1,p_2,p_3,p_4 ,且 $\sum_{i=1}^4 p_i=1$,则下面四种情形中,对应样本的

标准差最小的一组是(C) A. $p_1 = 0.1, p_2 = 0.2, p_3 = 0.3, p_4 = 0.4$ B. $p_1 = 0.4, p_2 = 0.3, p_3 = 0.2, p_4 = 0.1$

C. $p_1 = p_4 = 0.1, p_2 = p_3 = 0.4$ D. $p_1 = p_4 = 0.4, p_2 = p_3 = 0.1$

8. 已知抛物线 $C: y^2 = 4x$,过其焦点 F 的直线交 $C \oplus A$,B 两点, $M \mapsto AB$ 中点,过 M 作准线的垂线,垂足为 N,

若|AF|=4,则 $|NF|=(B)A. \frac{4}{3}$ B. $\frac{4\sqrt{3}}{3}$ C. $\frac{8}{3}$

二、选择题:本题共 3 小题,每小题 6 分,共 18 分。在每小题给出的选项中,有多项符合题目要求。全部选对的 得 6 分,部分选对的得部分分,有选错的得 0 分。

9. 已知函数 $f(x) = \sin(\omega x - \frac{\pi}{6})(\omega > 0)$ 在区间 $(\frac{\pi}{6}, \frac{\pi}{2})$ 上单调递增,则 ω 的值可以是(ABC)

A. $\frac{2}{3}$ B. 1 C. $\frac{4}{3}$ D. $\frac{3}{2}$

10. 科学研究表明,物体在空气中冷却的温度变化是有规律的. 如果物体的初始温度为 θ_1 °C,空气温度 θ_0 °C 保持不变,则t分钟后物体的温度 θ (单位:°C)满足: $\theta=\theta_0+(\theta_1-\theta_0)e^{-0.05t}$.若空气温度为10°C,该物体温度从 θ_1 °C(90 $\leq \theta_1 \leq 100$)下降到 30°C,大约所需的时间为 t_1 ,若该物体温度从70°C,50°C 下降到 30°C,大约所需的时间分 t_2 0.7, t_3 0 ,则(BC)(参考数据: t_1 1 2 t_2 2 0.7, t_3 3 t_3 1.1)

27.3

A. $t_2 = 20$ B. $28 \le t_1 \le 30$ C. $t_1 \ge 2t_3$ D. $t_1 - t_2 \le 6$

2024-02-27

11. 已知正方体 $ABCD - A_iB_iC_iD_i$ 棱长为 4,点 N 是底面正方形 ABCD 内及边界上的动点,点 M 是棱 DD_i 上的动点 (包括点 D, D₁),已知 MN = 4,P为 MN 中点,则下列结论正确的是(ABD)

A. 无论 M, N 在何位置,AP, CC_1 为异面直线 B. 若 M 是棱 DD_1 中点,则点 P 的轨迹长度为 $\frac{\sqrt{3}}{2}\pi$

C. M, N 存在唯一的位置,使 A_iP // 平面 AB_iC D. AP 与平面 A_iBCD_i 所成角的正弦最大值为 $\frac{1}{2}$

key: 当 $M = D_1, N = B$ 时,AP交 CC_1 于 C_1 , 但此时 $MN = 4\sqrt{3} \neq 4$, A对;

 $DP = \frac{1}{2}MN = 2, \therefore O_1P_1 = \sqrt{3}, \therefore P$ 的轨迹为以 O_1 为圆心,半径为 $\sqrt{3}$ 的 $\frac{1}{4}$ 圆周, $\therefore B$ 对;

:: 平面A₁DC₁ / /平面AB₁C₂,:: A₁P₁, A₁P₂ / /平面AB₁C₂,从错;

由P的轨迹为如图的正方体 $P_1P_2P_3P_4 - P_5P_4P_2D_5$

$$\sin < \overrightarrow{AP},$$
 \forall $\overrightarrow{\text{in}} A_{l}BCD_{l} > = \cos < \overrightarrow{AP}, \overrightarrow{n}_{\forall \overrightarrow{\text{in}} A_{l}BCD_{l}} > 1$

 $=\cos < \overrightarrow{AP}, \overrightarrow{AB_1} > \leq \frac{1}{2}, D$ \overrightarrow{x} \uparrow .

三、填空题:本题共3小题,每小题5分,共15分.

12. 函数
$$f(x) = \frac{\sqrt{1-x}}{\lg x}$$
 的定义域为______. (0,1)

13. 已知曲线 $C: x^2 + (y-m)^2 = 2$ 和 $C_1: y = x + 2, C_2: y = |x| + 2$,若 $C 与 C_1$ 恰有一个公共点,则实数 m = 2 ;

若 C 与 C, 恰有两个公共点,则实数 m 的取值范围是 .

0 或 4; $(2-\sqrt{2},2+\sqrt{2})\cup\{4\}$ (答对第一空给 2 分,答对第二空给 3 分)

14. 已知 $\triangle ABC$ 的角 A, B, C 满足 $\tan A \tan B \tan C \le [\tan A] + [\tan B] + [\tan C]$, 其中符号 [x] 表示不大于 x 的最大整 数,若 $A \le B \le C$,则 $\tan C - \tan B =$. 1

$$key$$
:曲 $tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} = tan(\pi - C) = -tan C$ (公式)

 $\tan A \tan B \tan C = \tan A + \tan B + \tan C \le [\tan A] + [\tan B] + [\tan C]$

 $\overrightarrow{\text{m}} \tan A \ge [\tan A], \tan B \ge [\tan B], \tan C \ge [\tan C],$

∴ $\tan A = [\tan A]$, $\tan B = [\tan B]$, $\tan C = [\tan C]$, $\mathbb{P} \tan A$, $\tan B$, $\tan C \in Z$

 $\overline{m}A \leq B \leq C$, \therefore tan $A \leq \tan B$, \exists tan A, tan $B \in N^*$, \exists tan $A = \tan B$ 不可能同时为1,即tan A tan $B \geq 2$

$$\overrightarrow{\text{mi}} \tan C = \frac{\tan A + \tan B}{\tan A \tan B - 1} \in Z(\overrightarrow{\text{mi}} \tan A \tan B - 1 - \tan A - \tan B = (\tan A - 1)(\tan B - 1) - 2 \ge -1)$$

∴ 若
$$\tan A = 1$$
, 则 $\tan C = \frac{1 + \tan B}{\tan B - 1} = 1 + \frac{2}{\tan B - 1}$, ∴ $\tan B = 2$, $\tan C = 3$, 或, $\tan B = 3$, $\tan C = 2$ 舍去,

若
$$\tan A = 2$$
, 则 $\tan C = \frac{\tan B + 2}{2 \tan B - 1} = \frac{1}{2} + \frac{5}{2(2 \tan B - 1)}$, 且 $\tan B \ge 2$, ∴ $\tan B = 3$, $\tan C = 1$ 舍去

四、解答题:本题共5个小题,共77分。解答应写出说明文字、证明过程或演算步骤。

2024-02-27

15. (13 分) 已知双曲线 $E: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的左顶点是 A(-1,0) ,一条渐近线的方程为 y = x .

(1) 求双曲线 E 的离心率; (2) 设直线 $y = \frac{1}{2}x - \frac{1}{2}$ 与双曲线 E 交于点 P, Q, 求线段 PQ 的长.

解: (1) 由题意知
$$a=1$$
,且 $\frac{b}{a}=1$,∴ $b=1$,

$$\therefore c = \sqrt{a^2 + b^2} = \sqrt{2}$$
,所以双曲线的离心率 $e = \frac{c}{a} = \sqrt{2}$.

(2) 由 (1) 知双曲线方程为 $x^2 - y^2 = 1$,

将
$$y = \frac{1}{2}x - \frac{1}{2}$$
 即 $x - 1 = 2y$ 代入 $x^2 - y^2 = 1$, 得 $3y^2 + 4y = 0$, 9 分

因而
$$y_1 = 0$$
, $y_2 = -\frac{4}{3}$,所以 $|PQ| = \sqrt{1+2^2} \cdot |y_1 - y_2| = \frac{4}{3}\sqrt{5}$.

16.(15 分)寒假期间小明每天坚持在"跑步 3000 米"和"跳绳 2000 个"中选择一项进行锻炼,在不下雪的时候,他跑步的概率为60%,跳绳的概率为40%,在下雪天,他跑步的概率为20%,跳绳的概率为80%.若前一天不下雪,则第二天下雪的概率为50%,若前一天下雪,则第二天仍下雪的概率为40%.已知寒假第一天不下雪,跑步3000米大约消耗能量330卡路里,跳绳2000个大约消耗能量220卡路里.记寒假第n天不下雪的概率为 P_n .

(1) 求 p_1, p_2, p_3 的值,并证明 $\{p_n - \frac{6}{11}\}$ 是等比数列; (2) 求小明寒假第 n 天通过运动锻炼消耗能量的期望.

16. (15 分)解: (1) 依题意,
$$p_1 = 1, p_2 = 0.5$$
, $p_3 = p_2 \times 0.5 + (1 - p_2) \times (1 - 0.4) = 0.6 - 0.1 p_2 = 0.55$. 6分

依题意
$$p_n = p_{n-1} \times 0.5 + (1 - p_{n-1}) \times (1 - 0.4) = 0.6 - 0.1 p_{n-1}$$

整理得
$$p_n - \frac{6}{11} = -\frac{1}{10} \left(p_{n-1} - \frac{6}{11} \right)$$
,又 $p_1 - \frac{6}{11} = \frac{5}{11} \neq 0$,

所以
$$\left\{p_n - \frac{6}{11}\right\}$$
是首项为 $\frac{5}{11}$,公比为 $-\frac{1}{10}$ 的等比数列. 9分

(2) 由 (1),寒假第
$$n$$
 天不下雪的概率 $p_n = \frac{5}{11} \left(-\frac{1}{10} \right)^{n-1} + \frac{6}{11}$, 11 分

从而小明寒假第
$$n$$
 天跑步的概率为 $q_n = p_n \times 0.6 + (1 - p_n) \times 0.2 = 0.2 + 0.4 p_n = \frac{23}{55} + \frac{2}{11} \left(-\frac{1}{10} \right)^{n-1}$, 13 分

则他第
$$n$$
 天通过运动锻炼消耗能量为 $330q_n + 220(1-q_n) = 220 + 110q_n = 266 + 20\left(-\frac{1}{10}\right)^{n-1}$. 15 分

2024-02-27

17. (15 分)如图,在四棱锥 P-ABCD 中,底面 ABCD 是平行四边形,侧面 PAD 是以 PD 为底的等腰三角形,

AB = PB = 2PA = 4, $AC = 2\sqrt{7}$, $E \oplus PD \perp$, $AE \perp BD$.

(1) 证明: 平面 $PAD \perp$ 平面 ABCD; (2) 求二面角 P - BC - A 的余弦值.

17. (15 分)解: (1)由题意知AD = BC = PA = 2,则在 $\triangle ABC$ 中,

$$\cos \angle ABC = \frac{AB^2 + BC^2 - AC^2}{2AB \cdot BC} = \frac{4^2 + 2^2 - (2\sqrt{7})^2}{2 \times 4 \times 2} = -\frac{1}{2},$$

$$\because \angle ABC \in (0,\pi) \therefore \angle ABC = \frac{2\pi}{3}, \text{ 从而} \angle DAB = \frac{\pi}{3},$$

3分

 $\triangle ABD + BD^2 = AD^2 + AB^2 - 2AD \cdot AB \cdot \cos \frac{\pi}{3} = 2^2 + 4^2 - 2 \times 2 \times 4 \times \frac{1}{2} = 12$

则
$$BD^2 + AD^2 = 12 + 4 = 16 = AB^2$$
 , $\therefore BD \perp AD$,

5分

又 $BD \perp AE$, $AD \cap AE = A$,所以 $BD \perp$ 平面PAD,

而 $BD \subset$ 平面 ABCD, **∴** 平面 $PAD \perp$ 平面 ABCD.

8分

(2) 由 (1) 知 *BD* ⊥ 平面 *PAD*, *PD* ⊂ 平面 *PAD*,

$$\therefore BD \perp PD$$
 , $\therefore PD = \sqrt{PB^2 - BD^2} = 2$, 所以 $\triangle PAD$ 为等边三角形 ,

10分

如图,在平面 PAD 内作 $DH \perp AD$,则 $DH \perp$ 平面 ABCD,

以 DA, DB, DH 分别为 x 轴, y 轴, z 轴建立空间直角坐标系 (如图所示),

则
$$D(0,0,0)$$
, $B(0,2\sqrt{3},0)$, $C(-2,2\sqrt{3},0)$, $P(1,0,\sqrt{3})$,

12分

从而 $\overrightarrow{BP} = (1, -2\sqrt{3}, \sqrt{3}), \overrightarrow{BC} = (-2, 0, 0)$,显然平面 ABC 的一个法向量为 n = (0, 0, 1) P

设平面 PBC 的法向量为 m = (x, y, z),则

$$\begin{cases} \overrightarrow{BP} \cdot m = 0, \\ \overrightarrow{BC} \cdot m = 0, \end{cases} \bowtie \begin{cases} x - 2\sqrt{3}y + \sqrt{3}z = 0, \\ -2x = 0, \end{cases} \bowtie m = (0, 1, 2),$$

记二面角 P-BC-A 的平面角为 α ,则 $\cos \alpha = |\cos\langle m,n\rangle| = \frac{|m\cdot n|}{|m|\cdot |n|} = \frac{1\times 2}{1\times \sqrt{5}} = \frac{2\sqrt{5}}{5}$

即二面角
$$P-BC-A$$
的余弦值为 $\frac{2\sqrt{5}}{5}$.

15 分

18. (17 分) 已知函数 $f(x) = \frac{a \sin x}{x}, a \in R$. (1) 当 $a = 1, x \in (0, \frac{\pi}{2})$ 时,证明: $\tan x > x > xf(x)$;

(2) 若
$$\forall x \in (-\frac{\pi}{2}, 0) \cup (0, \frac{\pi}{2}), \frac{x}{\tan x} < f(x)$$
,求实数 *a* 的取值范围.

(1) 证明:
$$:: a = 1, x \in (0, \frac{\pi}{2}), :: \tan x > x > xf(x) \Leftrightarrow \tan x > x > \sin x \cdots (*)$$

2024-02-27

$$\mathbb{M}p'(x) = \frac{1}{\cos^2 x} - 1 = \tan^2 x > 0, q'(x) = 1 - \cos x > 0,$$

$$\therefore p(x)$$
与 $q(x)$ 在 $(0,\frac{\pi}{2})$ 上都递增, $\therefore p(x) > p(0) = 0$,且 $q(x) > q(0) = 0$

$$\therefore \tan x - x > 0$$
,且 $x - \sin x > 0$,∴(*)成立,证毕

(2) 解:由f(x)是偶函数, $\frac{x}{\tan x}$ 也是偶函数,

$$\therefore \forall x \in (-\frac{\pi}{2}, 0) \cup (0, \frac{\pi}{2}), \frac{x}{\tan x} < f(x) \Leftrightarrow f(x) > \frac{x}{\tan x} \forall x \in (0, \frac{\pi}{2})$$
恒成立,

$$\Leftrightarrow \frac{a \sin x}{x} > \frac{x \cos x}{\sin x} \Leftrightarrow 0 < a \sin^2 x - x^2 \cos x$$
 $\exists \exists g(x) (0 < x < \frac{\pi}{2})$

$$\mathbb{N}[g'(x) = a\sin 2x - 2x\cos x + x^2\sin x, g''(x) = 2a\cos 2x - 2\cos x + 2x\sin x + 2x\sin x + x^2\cos x, \exists g(0) = 0, g'(0) = 0]$$

$$\therefore g''(0) = 2a - 2 \ge 0 \exists \exists a \ge 1$$

下面证明: $a\sin^2 x - x^2\cos x > 0$ 对 $a \ge 1, x \in (0, \frac{\pi}{2})$ 恒成立···(*)

只需: $\sin^2 x - x^2 \cos x > 0$ 即 $\tan x \sin x - x^2 > 0$ 对 $x \in (0, \frac{\pi}{2})$ 恒成立

设
$$r(x) = \tan x \sin x - x^2$$
,则 $r'(x) = \frac{\sin x}{\cos^2 x} + \sin x - 2x$, $r''(x) = \frac{1}{\cos x} + \cos x - 2 + \frac{2\sin x}{\cos^2 x} > 0$

$$\therefore r'(x) > r'(0) = 0, \therefore r(x) > r(0) = 0, \therefore (*)$$
成立... a的取值范围为[1,+∞)

19. (17 分)对于无穷数列
$$a_0, a_1, a_2, \dots, a_n, \dots$$
,我们称 $f(x) = \sum_{n=0}^{\infty} \frac{a_n}{n!} x^n = a_0 + a_1 x + \frac{a_2}{2!} x^2 + \dots + \frac{a_n}{n!} x^n + \dots$ (规定 $0! = 1$)

为无穷数列 $\{a_n\}$ 的指数型母函数. 无穷数列 $\{1,1,\cdots,1,\cdots$ 的指数型母函数记为 $\{a_n\}$ 的指数型母函数. 无穷数列 $\{x_n\}$ = 1 + x + $\frac{x^2}{2!}$ + \cdots + $\frac{x^n}{n!}$ + \cdots ,

它具有性质
$$e(x)e(y) = e(x+y)$$
. (1)证明: $e(-x) = \frac{1}{e(x)}$; (2)记 $c(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^k \frac{x^{2k}}{(2k)!} + \dots$.

证明:
$$c(x) = \frac{e(ix) + e(-ix)}{2}$$
 (其中 i 为虚数单位);

(3) 以函数
$$\frac{x}{e(x)-1}$$
 为指数型母函数生成数列 $\{B_n\}$, $\frac{x}{e(x)-1} = \sum_{n=0}^{\infty} \frac{B_n}{n!} x^n = B_0 + B_1 x + \frac{B_2}{2!} x^2 + \dots + \frac{B_n}{n!} x^n + \dots$. 其中 B_n

称为伯努利数. 证明: $B_1 = -\frac{1}{2}$. 且 $B_{2k+1} = 0 (k = 1, 2, 3, \cdots)$.

证明: (1):
$$e(x)e(y) = e(x+y)$$
, $e(-x)e(x) = e(-x+x) = e(0) = 1 + 0 + \frac{0^2}{2!} + \dots + \frac{0^n}{n!} + \dots = 1$, $e(-x) = \frac{1}{e}$ (2)

(2)
$$\pm e(ix) = 1 + \sum_{n=1}^{\infty} \frac{(ix)^n}{n!} = 1 + \frac{ix}{1!} - \frac{x^2}{2!} + \frac{-ix^3}{3!} + \frac{x^4}{4!} + \dots + \frac{i^n \cdot x^n}{n!} + \dots$$

$$e(-ix) = 1 + \sum_{n=1}^{\infty} \frac{(-ix)^n}{n!} = 1 - \frac{ix}{1!} - \frac{x^2}{2!} + \frac{ix^3}{3!} + \frac{x^4}{4!} + \dots + \frac{(-i)^n \cdot x^n}{n!} + \dots$$

$$\therefore \frac{e(ix) + e(-ix)}{2} = \frac{1}{2} \left(2 - \frac{2x^2}{2!} + \frac{2x^4}{4!} - \frac{2x^6}{6!} + \cdots\right) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots + \frac{(-1)^k \cdot x^{2k}}{(2k)!} + \cdots = c(x), \quad \text{if } \neq 0$$

2024-02-27

(3) 由己知得:
$$\frac{x}{e(x)-1} = B_0 + B_1 x + \frac{B_2}{2!} x^2 + \dots + \frac{B_n}{n!} x^n + \dots$$

$$\therefore \frac{-x}{e(-x)-1} = B_0 - B_1 x + \frac{B_2}{2!} x^2 + \dots + \frac{B_n}{n!} (-1)^n x^n = \frac{-x}{\frac{1}{e(x)} - 1} = \frac{-x \cdot e(x)}{1 - e(x)} = \frac{x \cdot e(x)}{e(x) - 1}$$

$$\therefore x = \frac{x \cdot e(x)}{e(x) - 1} - \frac{x}{e(x) - 1} = -2B_1 x - \frac{2B_3}{3!} x^3 - \frac{2B_{2k+1}}{(2k+1)!} x^{2k+1} - \dots + (k \ge 1)$$

$$\therefore -2B_1 = 1, \, \exists 1, \, \exists$$