## Занятие 2. Линейная регрессия: основы

30 января 2024

#### Путевая диаграмма: регрессия



Y — зависимая переменная (отклик);

X — независимая переменная (объясняющая переменная / предиктор);

 $\varepsilon$  – ошибка

#### Вопрос

Запишем спецификацию парной регрессии в общем виде.

#### Вопрос

Запишем спецификацию парной регрессии в общем виде.

#### Ответ

$$y_i = b_0 + b_1 x_i + e_i,$$

где  $y_i$  – зависимая переменная (отклик),

 $b_0$  – константа (intercept),

 $b_1$  – коэффициент при предикторе (slope coefficient),

 $x_i$  — независимая переменная (предиктор),

 $e_i$  – ошибка.

#### Вопрос

Запишем спецификацию парной регрессии в общем виде.

#### Ответ

$$y_i = b_0 + b_1 x_i + e_i,$$

где  $y_i$  – зависимая переменная (отклик),

 $b_0$  – константа (intercept),

 $b_1$  – коэффициент при предикторе (slope coefficient),

 $x_i$  – независимая переменная (предиктор),

 $e_i$  – ошибка.

 $\hat{y}_{i} = \hat{b}_{0} + \hat{b}_{1}x_{i}$  – это предсказанное значение зависимой переменной;

 $\hat{e}_i = y_i - \hat{y}_i$ , где  $\hat{e}_i$  – это остаток (оценка ошибки).

#### Вопрос

Метод наименьших квадратов (МНК) – один из методов оценивания параметров в регрессии. Покажем основной принцип этого метода.

#### Вопрос

Метод наименьших квадратов (МНК) – один из методов оценивания параметров в регрессии. Покажем основной принцип этого метода.

#### Ответ

В соответствии с МНК выбираем такие оценки коэффициентов, при которых линия предсказания наиболее близка к наблюдениям. Математически происходит минимизация суммы квадратов остатков:

$$\min \sum_{i=1}^{n} (y_i - (\hat{b}_0 + \hat{b}_1 x_i))^2.$$

#### Вопрос

Метод наименьших квадратов (МНК) – один из методов оценивания параметров в регрессии. Покажем основной принцип этого метода.

#### Ответ

В соответствии с МНК выбираем такие оценки коэффициентов, при которых линия предсказания наиболее близка к наблюдениям. Математически происходит минимизация суммы квадратов остатков:

$$\min \sum_{i=1}^{n} (y_i - (\hat{b}_0 + \hat{b}_1 x_i))^2.$$

Или можем переписать это в таком виде: min  $\sum (y_i - \hat{y}_i)^2$ 

### Иллюстрация принципа МНК



Источник картинки: ссылка

Запишем исходную спецификацию:

$$y_i = \beta_0 + \varepsilon_i$$

Запишем исходную спецификацию:

$$y_i = \beta_0 + \varepsilon_i$$

Перепишем в терминах модельных (предсказанных) значений, то есть, отклик (зависимая переменная) в среднем равна константе (некоторому постоянному значению):

$$\hat{y}_i = \hat{\beta}_0$$

$$\frac{\partial \sum_{i=1}^{n} (y_i - \hat{\beta}_0)^2}{\partial \hat{\beta}_0} = 0$$

$$\frac{\partial \sum_{i=1}^{n} (y_i - \hat{\beta}_0)^2}{\partial \hat{\beta}_0} = 0$$
$$\frac{\partial \sum_{i=1}^{n} (y_i^2 - 2y_i \hat{\beta}_0 + \hat{\beta}_0^2)}{\partial \hat{\beta}_0} = 0$$

$$\frac{\partial \sum_{i=1}^{n} (y_i - \hat{\beta}_0)^2}{\partial \hat{\beta}_0} = 0$$

$$\frac{\partial \sum_{i=1}^{n} (y_i^2 - 2y_i \hat{\beta}_0 + \hat{\beta}_0^2)}{\partial \hat{\beta}_0} = 0$$

$$\frac{\partial (\sum_{i=1}^{n} y_i^2 - 2\hat{\beta}_0 \sum_{i=1}^{n} y_i + n\hat{\beta}_0^2)}{\partial \hat{\beta}_0} = 0$$

$$\frac{\partial \sum_{i=1}^{n} (y_i - \hat{\beta}_0)^2}{\partial \hat{\beta}_0} = 0$$

$$\frac{\partial \sum_{i=1}^{n} (y_i^2 - 2y_i \hat{\beta}_0 + \hat{\beta}_0^2)}{\partial \hat{\beta}_0} = 0$$

$$\frac{\partial (\sum_{i=1}^{n} y_i^2 - 2\hat{\beta}_0 \sum_{i=1}^{n} y_i + n\hat{\beta}_0^2)}{\partial \hat{\beta}_0} = 0$$

$$-2 \sum_{i=1}^{n} y_i + 2n\hat{\beta}_0 = 0$$

$$\frac{\partial \sum_{i=1}^{n} (y_i - \hat{\beta}_0)^2}{\partial \hat{\beta}_0} = 0$$

$$\frac{\partial \sum_{i=1}^{n} (y_i^2 - 2y_i \hat{\beta}_0 + \hat{\beta}_0^2)}{\partial \hat{\beta}_0} = 0$$

$$\frac{\partial (\sum_{i=1}^{n} y_i^2 - 2\hat{\beta}_0 \sum_{i=1}^{n} y_i + n\hat{\beta}_0^2)}{\partial \hat{\beta}_0} = 0$$

$$-2 \sum_{i=1}^{n} y_i + 2n\hat{\beta}_0 = 0 \Rightarrow \hat{\beta}_0 = \frac{\sum_{i=1}^{n} y_i}{n} = \bar{y}$$

Найдем оптимальную оценку константы  $(\hat{\beta}_0)$  в парной линейной регрессии, при которой сумма квадратов остатков будет минимальна.

$$\frac{\partial \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2}{\partial \hat{\beta}_0} = 0$$

Найдем оптимальную оценку константы  $(\hat{\beta}_0)$  в парной линейной регрессии, при которой сумма квадратов остатков будет минимальна.

$$\frac{\partial \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2}{\partial \hat{\beta}_0} = 0$$

$$(-2)\sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0$$

Найдем оптимальную оценку константы  $(\hat{\beta}_0)$  в парной линейной регрессии, при которой сумма квадратов остатков будет минимальна.

$$\frac{\partial \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2}{\partial \hat{\beta}_0} = 0$$

$$(-2) \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0$$

$$\sum_{i=1}^{n} y_i - n\hat{\beta}_0 - \hat{\beta}_1 \sum_{i=1}^{n} x_i = 0$$

Найдем оптимальную оценку константы  $(\hat{\beta}_0)$  в парной линейной регрессии, при которой сумма квадратов остатков будет минимальна.

$$\frac{\partial \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2}{\partial \hat{\beta}_0} = 0$$

$$(-2) \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0$$

$$\sum_{i=1}^{n} y_i - n\hat{\beta}_0 - \hat{\beta}_1 \sum_{i=1}^{n} x_i = 0$$

$$\hat{\beta}_0 = \frac{\sum_{i=1}^{n} y_i}{n} - \hat{\beta}_1 \frac{\sum_{i=1}^{n} x_i}{n} = \bar{y} - \hat{\beta}_1 \bar{x}$$

$$\frac{\partial \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2}{\partial \hat{\beta}_1} = 0$$

$$\frac{\partial \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2}{\partial \hat{\beta}_1} = 0$$

$$(-2)\sum_{i=1}^{n} (x_i)(y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0$$

$$\frac{\partial \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2}{\partial \hat{\beta}_1} = 0$$

$$(-2)\sum_{i=1}^{n} (x_i)(y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0$$

$$\sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} \hat{\beta}_0 x_i - \sum_{i=1}^{n} \hat{\beta}_1 x_i^2 = 0$$

$$\frac{\partial \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2}{\partial \hat{\beta}_1} = 0$$

$$(-2)\sum_{i=1}^{n} (x_i)(y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0$$

$$\sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} \hat{\beta}_0 x_i - \sum_{i=1}^{n} \hat{\beta}_1 x_i^2 = 0$$

Вспомним, что ранее мы уже получили оценку константы, подставим ее в уравнение:

$$\sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} (\bar{y} - \hat{\beta}_1 \bar{x}) x_i - \sum_{i=1}^{n} \hat{\beta}_1 x_i^2 = 0$$

$$\sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} \bar{y} x_i + \sum_{i=1}^{n} \hat{\beta}_1 \bar{x} x_i - \sum_{i=1}^{n} \hat{\beta}_1 x_i^2 = 0$$

$$\sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} x_i \bar{y} + \hat{\beta}_1 \sum_{i=1}^{n} x_i \bar{x} - \hat{\beta}_1 \sum_{i=1}^{n} x_i^2 = 0$$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{n} x_i (y_i - \bar{y})}{\sum_{i=1}^{n} x_i (x_i - \bar{x})} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} = \frac{\widehat{Cov}(x, y)}{\widehat{Var}(x)}$$

#### Оценки в соответствии с МНК

#### Модель на константу

$$y_i = \beta_0 + e_i$$
$$\hat{\beta}_0 = \bar{y}$$

#### Оценки в соответствии с МНК

#### Модель на константу

$$y_i = \beta_0 + e_i$$
$$\hat{\beta}_0 = \bar{y}$$

#### Модель парной регрессии

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n x_i (y_i - \bar{y})}{\sum_{i=1}^n x_i (x_i - \bar{x})} = \frac{\sum_{i=1}^n (x_i - \bar{x}) (y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{\widehat{Cov}(x, y)}{\widehat{Var}(x)}$$

## Интерпретация оценок коэффициентов



 $\hat{b}_0$  (также обозначается как a) — среднее значение отклика при условии равенства предикторов 0.

 $\hat{b}_1$  – на сколько в среднем изменяется отклик при увеличении предиктора на единицу измерения при прочих равных.

## Разложение вариации зависимой переменной



## Разложение вариации зависимой переменной

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
$$TSS = ESS + RSS$$

## Разложение вариации зависимой переменной

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$TSS = ESS + RSS$$

$$\frac{TSS}{TSS} = \frac{ESS}{TSS} + \frac{RSS}{TSS}$$

$$R^2 = \frac{ESS}{TSS} = 1 - \frac{RSS}{TSS}$$

| ロ ト 4 団 ト 4 圭 ト 4 圭 ト - 圭 - め Q ()

(коэффициент детерминации)

#### Задачка для практики

#### Рассчитайте коэффициент детерминации

Построена регрессия индекса потребительских цен на уровень безработицы на основе данных 50 стран. Несмещенная выборочная оценка дисперсии индекса потребительских цен равна 800, а сумма квадратов остатков регрессии равна 25000.

#### Задачка для практики

#### Рассчитайте коэффициент детерминации

Построена регрессия индекса потребительских цен на уровень безработицы на основе данных 50 стран. Несмещенная выборочная оценка дисперсии индекса потребительских цен равна 800, а сумма квадратов остатков регрессии равна 25000.

#### Решение

$$\frac{\sum_{i=1}^{n} (y_i - \bar{y})^2}{n-1} = 800$$

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = 49 \times 800 = 39200$$

$$R^2 = 1 - \frac{25000}{39200} \approx 0.36$$

### Спецификация

#### Объясняющие переменные

В соответствии с гипотезами включаем набор ключевых предикторов. Второй тип объясняющих переменных – контрольные переменные. Включаются для уменьшения omitted variable bias.

```
y_i = b_0 + b_1 x_{1i} + ... + b_k x_{ki} + e_i, где y_i — зависимая переменная (отклик), b_0 — константа (intercept), b_1, ..., b_k — коэффициенты при соответствующих предикторах (slope coefficients), x_{1i}, ... x_{ki} — предикторы, e_i — ошибка.
```

## Подходящая контрольная переменная – переменная-confounder



Переменная L влияет и на A, и на Y. НУжно включить L как контрольную.

# Переменную-collider включать как контрольную нельзя



На переменную L влияет A и Y. Включение L в качестве контрольной привнесет только лишнее смещение в оценку коэффициента при A.

# Условия для получения идентифицируемой модели линейной регрессии и BLUE-оценок

Для того, чтобы модель была идентифицируемая,

- наблюдений должно быть больше, чем количество оцениваемых параметров
- не должно быть строгой мультиколлинеарности (то есть, нет линейно зависимых предикторов)

Для получения BLUE-оценок (то есть, наиболее эффективных среди класса всех линейных несмещенных оценок) ошибки в модели должны удовлетворять ряду свойств:

- $Cov(e_i, x) = 0$  экзогенность
- $Var(e_i|x) = const$  гомоскедастичность
- $Cov(e_i, e_i|x) = 0$  отсутствие автокорреляции Daria Salnikova

# Мультиколлинеарность

#### Виды

- Строгая (линейная зависимость предикторов)
- Сильная (предикторы довольно сильно связаны, негативно отражающаяся на оценках в модели)
- Слабая (слабая связь между предикторами допустима)

### Последствия мультиколлинеарности

- В случае строгой мультиколлинеарности невозможность получить оценки
- 2 В случае сильной мультиколлинеарности незначимые оценки при высоком  $\mathbb{R}^2$
- В случае сильной мультиколлинеарности неустойчивые результаты

### Диагностика мультиколлинеарности

- корреляционная матрица
- 2 визуализация
- VIF (Variance Inflation Factor) Переоцениваем набор вспомогательных регрессий. К примеру, одна из таких моделей:

$$x_{1i} = a_0 + a_1 x_{2i} + \dots a_{k-1} x_{k-1i} + u_i$$

Рассчитываем  $\mathbb{R}^2$  из вспомогательной модели и считаем

$$VIF_{j} = \frac{1}{1 - R^{2}}$$
. Показатель более 10 сигнализирует о довольно сильной мультиколлинеарности.

# Иллюстрация гетероскедастичности



# Why should we care?

#### Последствия гетероскедастичности

- неэффективность оценок, при этом остаются состоятельными и несмещенными
- 2 распределение статистик уже другое

### Why should we care?

#### Последствия гетероскедастичности

- неэффективность оценок, при этом остаются состоятельными и несмещенными
- 2 распределение статистик уже другое

#### Итог: главная проблема

Эти последствия делают проверку гипотез о незначимости коэффициентов проблематичной.

### Откуда берется гетероскедастичность?



### Откуда берется гетероскедастичность?

#### Источники гетероскедастичности

- работаем с объектами разного «размера»
- 2 нетипичные наблюдения
- неверно определена функциональная форма взаимосвязи
- 🛮 пропущены важные факторы
- разные методики сбора данных

# Как выявить гетероскедастичность?



### Как выявить гетероскедастичность?

#### Диагностики

- еще до диагностик важно обратиться к Вашим теоретическим предпосылкам, они и будут самыми важными для того, чтобы принять решение о том, как работать далее с оценками модели
- визуализация
- формальные тесты

### Диагностики, основанные на визуализации

#### Графики

- ОУ зависимая переменная, ОХ предиктор
- OY зависимая переменная, OX предсказанное значение  $(\hat{y})$
- ОУ остатки в квадрате, ОХ предиктор
- $\bullet$  OY остатки в квадрате, ОХ предсказанное значение  $(\hat{y})$

Изменяется ли вариация при разных значениях Х?

#### Диагностики: тест Уайта

#### Предпосылки

- большая выборка
- отсутствуют требования о нормальности распределения ошибок

#### Шаги реализации:

- ullet оцениваем модель и сохраняем остатки  $(\hat{e})$
- строим дополнительную модель остатков в квадрате (в качестве зависимой переменной) на все исходные предикторы, их квадраты и попарные произведения
- ullet сохраняем из дополнительной модели  $R^2$
- считаем статистику критерия:  $nR^2 \sim \chi_{k-1}^2$ , где k количество параметров в дополнительной модели