Peer Prediction for Blockchain Consensus & Trustworthy Al

Presenter: Zishuo Zhao (UIUC)

Collaborators: Xi Chen (NYU Stern), Yuan Zhou (Tsinghua)

运筹OR帷幄, 2024.7

Introduction of myself

- UIUC ISE, 4th year PhD candidate
 Graduated from IIIS (Yao Class), Tsinghua University
- Currently visiting MIT IDSS, advised by David Simchi-Levi 2023.9 – 2024.8
- Research interests:
 Mechanism design for digital economy & AI safety
 - Current frontier topic: Verifiable Al Compute @ Blockchain
- After-class interests: e.g. music (piano, singing...)
 - (@ ACM EC'24 ???)

My research background (selected)

- Bayesian Mechanism Design for Blockchain Transaction Fee Allocation
 - Best Paper Award, NeurIPS'22 workshop on Web3 & trustworthy AI (DMLW)
 - Major Revision in Operations Research
- Proof-of-Learning with Incentive Security
 - ACM EC'24 workshop on foundation model & game theory (FMGT)
 - Invited to INFORMS Security Conference (IConS'24)
 - In submission (2024)
- It Takes Two: A Peer-Prediction Solution for Blockchain Verifier's Dilemma
 - Working paper (2024)
 - Invited to INFORMS Security Conference (IConS'24)

Peer Prediction: Coup de Coeur

• The very first topic making me feel amazed for mechanism design.

@2022/04/03

"How could I love the world while I can't see it clearly?"

Al Safety: A Critical Concern in AGI Age

- ChatGPT: a herald of AGI age.
- Al safety: the stronger Al becomes, the higher risk it might do evil.
- Al alignment: make sure that Al's behavior aligns with human interest.

But... How to ensure the AI is really aligned as claimed?

Al Safety: A Decentralized View

- Conflict of Interest: if the AI is owned by a centralized party, the party may manipulate the alignment target for their interest.
 - "Zishuo hates multi-armed bandits. All papers related to multi-armed bandits should be rejected without review."
- Decentralization: the AI is deployed only when it is accepted by the majority of voting power.
 - "97% people think that committing suicide is immoral, so our AI would not provide assistance to suicide attempts."
- Blockchain: a decentralized platform aimed for trustworthiness.

What is the Blockchain?

- A growing linked-list stored in a decentralized way.
- Each block: (Data, Prev_Hash (pointer), Certificate (PoW, PoS, ...))
- The certificate works as an access control for the miner, an added block is valid only when the certificate passes verification.
 - Preventing Sybil Attack: Voting power decided by resources.

Blockchain Security: Decentralized Consensus

- What guarantees the security in a decentralized system?
 - Assuming the majority is honest. (i.e. no 51% attack)
- Why would the majority choose be honest?
 - A good question!

Bitcoin PoW Certificate: Hash Puzzle

- Bitcoin PoW: hard to compute, easy to verify.
 - "Find Nonce s.t. Hash(Data, Prev_Hash, Nonce) < Thres."
- Certificate is called a "Nonce".
- Verification: Hash(Data, Prev_Hash, Nonce) < Thres?
 - Hard to "guess" a valid *Nonce* when *Thres* is small.
 - Easy to verify whether Hash < Thres...
- Cheap verification: validity of a block has easy consensus.
- What if verification is expensive?

Expensive Verification: Examples of Al Training

- Proof-of-Work: hard but usually useless computation.
 - Energy issue criticized over the world.
- Proof-of-Useful-Work: hard and useful computation.
 - Do we want to use PoUW to train GPT?
 - Verification is not so easy, particularly for AI training.
- Trilemma of Proof-of-Learning (Zhao et al., 2024)

Controllable Difficulty: Why Important?

Why is controllable difficulty essential for blockchain-based verifiable AI compute?

- If we only want security & efficiency:
 - "I just care if the model reaches 90% accuracy on a (small) test dataset."
- Then we do not know how much computation it needs.
 - Al: How to decide on fair prices (rewards) for the computation?
 - Blockchain: How to control the block production interval?
- Both blockchain and AI need it!

Verifiable AI on Blockchain: Dual Contribution

PoW -> PoUW
 Using AI to make blockchain more energy sustainable.

Verifiable Compute
 Using blockchain to make AI more trustworthy.

Verifiable AI Compute: Existing Work

- Primitive PoL (Jia et al., 2021): Running SGD for PoUW
 - Verification cost: re-run $\Theta(T)$ epochs among T, limited security guarantee.
- OpML (Conway et al., 2024): Re-running the entire program for verification
 - Increased verification cost (at least 1x),
 - Practical incentive security (mixed-strategy NE).
- Incentive-Secure PoL (Zhao et al., 2024), also SGD for PoUW
 - Verification cost: re-run $\Theta(1)$ or $\Theta(\log T)$ epochs among T,
 - Probabilistic verification (may not catch all cheats).
 - Theoretical incentive security (pure-strategy NE).

Verifiable AI Compute: OpML

Verifier re-runs the same task to verify.

- Committee voting when disagreement occurs.
- \geq 1x overhead.
- Subject to Verifier's Dilemma (discussed later)

Verifiable AI Compute: Incentive-Secure PoL

• Verifier randomly verifies a (small) subset of training procedures.

- Incentive guarantees with <1x overhead.
- However, the computing cost of a few epochs is still not negligible!

Verifier's Incentive?

- If a mechanism is "well-designed", then provers are prevented or disincentivized from cheating.
- Verifiers are rewarded for catching cheats.

But...

• If no/little provers actually cheat, why would verifiers verify, instead of lazily report "verification passed"?

Verifier's Dilemma:

For binary-report verification games with positive verification costs, it is impossible to achieve an honest pure-strategy Nash equilibrium.

Verifier's Dilemma: A Non-Binary Escape

- Verifier's Dilemma occurs only for binary verification.
- Why?
- ---If I only need to tell if it is right or wrong...
 I just say it is right.
- ---But what if I have to tell how it is right?

e.g.

- "The epoch is trained via SGD with a random seed in $\{\varphi_0, \varphi_1, \varphi_2\}$. Tell me which one it is."
- "The model classifies k objects correctly among the test dataset. Tell me whether k is odd or even."

"Attention Challenges", \approx "Proof of Verification"!

Attempted Solution: Capture-The-Flag

- Existing works (e.g. Truebit): inject additional information ("flags", non-binary verification) and reward detection of flags.
- Can only prevent lazy behavior, but what about "liars"?
 - If the verification result is also expensive to verify...
 - We need higher-level verifiers to verify the results.
 - How many layers of verifiers do we need?

Intuition: Decentralized Verification Game

• Essential takeaway: verifiers also need to be verified.

---Can we just put them in equal positions to verify each other?

Close to our solution!

Blockchain Consensus Revisited

 Nakamoto Longest-Chain Rule: miners follow longest honest chain when forking (disagreement) happens.

- Economic incentive: miners gets the block reward iff they are on the main (longest) chain.
- The system cannot decide if a block is honest, but does intend to incentivize honest actions.
- Miners' rewards dependent (solely) on all miners' actions.
- How can the system incentivize honesty without being able to judge it?

Peer Prediction: Toy Example

- An unfair coin, head probability $\theta \in \{0.2,0.8\}$. Prior: $P(\theta = 0.2) = P(\theta = 0.8) = 0.5$.
- Alice and Bob independently toss it and are asked to (secretly) report results.

- Mechanism: both rewarded \$1 iff their reports agree.
- Bayes-Nash equilibrium.

Peer Prediction: Toy Example (cont'd)

How this mechanism works?

Suppose Alice gets a head and believes Bob will be honest.

- Since I see a head, θ is probably 0.8
- If θ =0.8, then Bob probably sees a head too.
- So I should report "head" for better chances.

Peer Prediction: Nakamoto Consensus

- I see this chain to be honest and longest so far... Other miners would probably also think so.
- I get the block reward iff I'm on the longest chain...
- So I will follow this chain.

Peer Prediction: Concept

 Peer Prediction: information elicitation mechanisms incentivizing truthful report without access to ground truth.

What is the blockchain?

A (probably) fanciest application of (implicit) peer prediction!

Peer Prediction: General Idea

- Peer Prediction:
 - Predict what your peer would do and make decisions accordingly.
- General guideline:
 - Known prior $P(\theta)$ and conditional distribution $P(X_i|\theta)$
 - Compute marginal probability $P(X_i) = \sum_{\theta} P(\theta) P(X_i | \theta)$
 - Compute posterior belief of ground truth: $P(\theta|X_i) = \frac{P(\theta)P(X_i|\theta)}{P(X_i)}$
 - If X_i and X_{-i} independent given θ , then it can be computed that

$$P(X_{-i}|X_i) = \frac{\sum_{\theta} P(\theta)P(X_i|\theta)P(X_{-i}|\theta)}{\sum_{\theta} P(\theta)P(X_i|\theta)}$$

Traditional Peer Prediction without Flags

- PP in one sentence: compute $P(X_{-i}|X_i)$ from $P(\theta)$ and $P(X_i|\theta)$.
- Toy model (2 verifiers X, Y):
 - If the block is honest $(\theta = 0)$, the observation is always honest (" ").
 - If the block is dishonest $(\theta = 1)$, it is caught (" + ") with probability $\frac{1}{2}$.
 - Prior of the block: highly likely to be honest $(P(\theta = 1) = \varepsilon)$

$P(X \theta)$	X = " - "	X = " + "
$\theta = 0$	1	0
$\theta = 1$	1	1_
	2	2

P(Y X)	Y = " - "	Y = " + "	
X = " - "	$1 - \frac{\varepsilon}{4 - 2\varepsilon}$	$\frac{\varepsilon}{4-2\varepsilon}$	
X = " + "	$\frac{1}{2}$	$\frac{1}{2}$	

Traditional Peer Prediction: Log Scoring Rule (1)

• Log scoring rule:

R(X,Y)	Y = " - "	Y = " + "
X = " - "	$\log(1-\frac{\varepsilon}{4-2\varepsilon})$	$\log \frac{\varepsilon}{4-2\varepsilon}$
X = " + "	$log \frac{1}{2}$	$\log \frac{1}{2}$

All negative, need scaling for our design!

$R_X(X,Y)$	Y = " - "	Y = " + "	
X = " - "	$k \cdot \log\left(1 - \frac{\varepsilon}{4 - 2\varepsilon}\right) + b$	$k \cdot \log \frac{\varepsilon}{4 - 2\varepsilon} + b$	
X = " + "	$k \cdot \log \frac{1}{2} + b$	$k \cdot \log \frac{1}{2} + b$	

Traditional Peer Prediction: Log Scoring Rule (2)

- What we additionally desire for a scoring rule?
 - Uninformed no-free-lunch: always reporting or + (or mixed) gains non-positive utility.
 - Ex-ante (weakest) individual rationality: (committing to) truthful reporting gains non-negative expected utility.
- For simplicity we assume verification cost is 1.

$$(1 - \varepsilon)R(-, -) + \varepsilon R(-, +) \le 0$$

$$(1 - \varepsilon)R(+, -) + \varepsilon R(+, +) \le 0$$

$$\left(1 - \frac{3}{4}\varepsilon\right)R(-, -) + \frac{\varepsilon}{4}(R(-, +) + R(+, -) + R(+, +)) \ge 1$$

Traditional Peer Prediction: Log Scoring Rule (3)

- We get $k \geq \Omega(\frac{1}{\varepsilon})$, payment rule highly sensitive to small ε
- Not desirable as ε is neither known nor easy to accurately estimate especially when small.

DMI-based DSIC Peer Prediction

• Kong (2023): assuming tasks are i.i.d. (ε is the same for all blocks), there exists a DSIC 4-task (2C, C=2 is the number of choices) prior-free peer prediction mechanism.

- 4-task is not difficult for blockchain verification (just ask a verifier to verify 4 blocks)
- But... DMI mechanism is not permutation-proof!
 - If saying "pass" when failing and "fail" when passing...
 - Genuinely malicious, but still getting good rewards!

Peer Prediction and Information Theory

- Data processing inequality: strategic processing cannot increase (mutual) information.
- Information-theoretical mechanisms: expected reward is based on informativeness.
 - Log scoring rule;
 - PMI/DMI mechanisms;
 - Etc.
- Take care of no-information-loss transformations.
 (e.g. permutation)

Our Work: Capture-The-Flag (CTF) Peer Prediction

- What would ε be when all provers are honest? 0.
- Is it possible to design a peer prediction mechanism that works robustly for infinitesimal ε ?
- Maybe we want a mechanism that...
 - Has a fixed payment rule and works uniformly for any $\varepsilon \in [0, \varepsilon_0)$.
- How to work even for $\varepsilon = 0$?
 - Insert flags, like existing works...

CTF Peer Prediction: System Model

- For any block, it can be classified as
 - Honest $(\theta = 0)$, with probability $1 \varepsilon \sum_{i} \alpha_{i}$;
 - Flagged with the *i*-th flag ($\theta = F_i$), with probability α_i ;
 - Dishonest $(\theta = 1)$, with probability $\varepsilon \ll 1$.
- Lossy-channel model:
 - An honest block is always observed as honest (X = 0);
 - The flag i can be detected $(X=F_i)$ with probability p_i , otherwise observed as honest;
 - A dishonest block can be caught (X=1) with probability κ , otherwise observed in any known distribution.
- $\{\alpha_i\}$, $\{p_i\}$, κ are fixed and known, from systematic design.
- Intuition: incentivize verifiers to distinguish flag types, even if dishonest blocks can be arbitrarily scarce.

CTF Peer Prediction: Verifiers' Actions

- Nature secretly chooses $\theta \sim P(\theta)$.
- Every verifier *i* independently chooses to be active or lazy.
 - If active, she performs the information and observes $X_i \sim P(X_i | \theta)$, taking a computational cost of $c(X_i)$.
 - If lazy, she observes $X_i = \bot$ at no cost, i.e., $c(\bot) = 0$.
- From her observation, verifier i updates her belief of X_{-i} to be $P(X_{-i}|X_i)$, in which $P(X_{-i}|\bot) = P(X_{-i})$.
- She reports Z_i that maximizes $\sum_{x} R(Z_i, x) P(X_{-i} = x | X_i)$.

CTF Peer Prediction: Toy Example

•
$$\alpha_1 = \alpha_2 = 1/3$$
, $p_1 = p_2 = p_+ = 3/4$, assuming $\epsilon = 0$.

	Observation			
$\theta = 0$	0	0	0	0
$\theta = F_1$	0	F_1	F_1	F_1
$\theta = F_2$	0	F_2	F_2	F_2

P(Y X)	Y = 0	$Y = F_1$	$Y = F_2$
X = 0	3/4	1/8	1/8
$X = F_1$	1/4	3/4	0
$X = F_2$	1/4	0	3/4

• Simple agreement scoring rule:
$$R_X(X,Y) = \begin{cases} +r, X = Y \\ -r, X \neq Y \end{cases}, r \geq 2.$$

- NFL, Interim IC, Interim IR for $\varepsilon = 0$.
- For any r > 2, works uniformly for $\varepsilon \le \varepsilon(r)$, $\varepsilon(r) > 0$.

CTF Peer Prediction: Toy Example ($\varepsilon > 0$)

• As long as ε is small enough

P(Y X)	Y = 0	$Y = F_1$	$Y = F_2$	Y = 1
X = 0	≈ 3/4	≈ 1/8	≈ 1/8	0(ε)
$X = F_1$	1/4	3/4	0	0
$X = F_2$	1/4	0	3/4	0
X = 1	1/4	0	0	3/4

• The same scoring rule still works!

CTF Peer Prediction: Versus Traditional

- Freedom in participation. Given the others report truthfully,
 - NFL: uninformed parties (e.g. always reporting one signal) get ≤ 0 expected reward.
 - lazy participation should not be profitable.
 - Interim IR: given observing any signal X_i , reporting it gets $\geq c(X_i)$ expected reward.
 - verifiers should be willing to verify and report.
- Robustness
 - Works uniformly for any small ε.
 - Small |payments| in scoring rule.

Value of computation

CTF Peer Prediction: Theoretical Guarantees

Main Theorem:

For any non-degenerate 2-party DVG and some $\epsilon > 0$, there exists a CTF-PP mechanism satisfying all the required properties for any $P(\theta = 1) \leq \epsilon$

- How to find the mechanism?
- Linear Programming!

CTF Peer Prediction: LP Modeling

- Belief matrix $B_{xy} = P(X_{-i} = y | X_i = x)$.
- Scoring matrix R_{xy} : reward to i when (i, -i) report (x, y)
- Let W = BR', then W_{xy} is the expected reward to i when she observes x and reports y.
- ullet We want W to have large diagonals and small off-diagonal entries.
- When B is invertible, then $R = (B^{-1}W)'$ We can compute a R from any W.

CTF Peer Prediction: LP Construction

• Construction of W:

	0	F_1	F_2	1
0	+	ı	I	1
F_1	ı	+	ı	l
F_2	1	_	+	-
1	_	_	_	+

- What about uninformed (lazy) strategies?
 - Reward (row vector) is convex combination of the rows.
 - Let " " have significantly larger magnitude than " + ".

CTF Peer Prediction: LP Construction (cont'd)

• Construction of *W*:

	0	F_1	F_2	1
0	+ 100	- 1000	- 1000	- 1000
F_1	- 1000	+ 100	- 1000	- 1000
F_2	- 1000	- 1000	+ 100	- 1000
1	- 1000	- 1000	- 1000	+ 100

- It is a feasible solution.
- The LP is feasible.
- Our solution works for all non-degenerate (B invertible) cases.
- But the ex-post reward/penalty can be extremely high...
 - Mining? Gambling!

CTF Peer Prediction: Optimization

How to define a "good" scoring rule?

• Satisfying incentive guarantees with small ex-post reward/penalty.

```
\begin{array}{ccc} & & & & & & & M \\ s.t. & & & \text{honest net utility} & \geq & \delta \\ & & & \text{dishonest net utility} & \leq -\delta \\ & & & & |R| & \leq & M \end{array}
```

• δ margin guarantees incentive properties for small $\epsilon > 0$.

CTF Peer Prediction: Experiments

- Setting: verification of Incentive-Secure PoL
- CTF Protocol: a dishonest stage might be observed as a flag.
- Reward matrix R:

	0	F_1	F_2	1
0	+2.10	-7.16	-7.16	-1.08
F_1	-1.54	+6.47	-4.45	-1.24
F_2	-1.54	-4.45	+6.47	-1.24
1	-2.20	+5.80	+5.80	+7.40

CTF Peer Prediction: Experiments (cont'd)

• Utility matrix W, $\varepsilon = 0$ (margin $\delta = 0.2$):

	0	F_1	F_2	1
0	+0.22	-1.45	-1.45	-1.20
F_1	-4.53	+0.47	-5.00	-0.20
F_2	-4.53	-5.00	+0.47	-0.20
1	-3.01	-2.83	-2.83	+0.20
Lazy	-0.22	-0.90	-0.90	-0.20

Gaining positive expected utility iff honest.

CTF Peer Prediction: Robustness

• When $\epsilon > 0$:

• Works robustly when $\epsilon < 0.045$.

Discussion: Future Work

- General case of n-party DVG
 - Current method: LP of size $\Omega(3^n)$, inefficient when n is (even slightly) large, e.g. $n \approx 10$.
 - TODO: poly-time algorithm for good scoring rules.
 - (Information-theoretical approaches may work?)
- Collusion-proof / sybil-proof mechanism for DVG
 - Intuition: 2-CP for large n is not difficult.
 - SP almost equivalent to CP.
 - Is $\Theta(n)$ -CP possible? (e.g. comparable to n/3?)
- Will multi-task peer prediction mechanisms do better?

Discussion: Other Applications in Al

- Manipulation-proof data elicitation & valuation
 - Reward data providers for the mutual information between their data and others'.

Truthful Data Acquisition via Peer Prediction, NeurIPS'20 Yiling Chen, Yiheng Shen, Shuran Zheng

- Feedback acquisition for Al generated contents
 - Elicit comparison data from user feedback to improve the quality of AI performance.

Carrot and Stick: Eliciting Comparison Data and Beyond Yiling Chen, Shi Feng, Fang-Yi Yu

Conclusion: Peer Prediction x Decentralized Al

- Resources of AI: data & computation
- Decentralization: crowdsourcing w/o centralized control
- Peer Prediction: a (meta-)methodology to incentivize honesty (incl. data & computation) in a decentralized environment
- Blockchain: a decentralized trustworthy platform driven by cryptography & economic incentives

Blockchain-based decentralized trustworthy AI: a starry-eyed dream?

Challenges and Thoughts of Blockchain & Al

- AI: "model collapse" of LLM
 - When AI is trained by AI-generated data, garbage in garbage out
 - Would advanced data valuation methods work?
- Blockchain: the rich may take all?
 - Money can buy a lot of things, including computing power...
 - Would "something between" permissionless & permissioned chains work?

Meta-Conclusion

所有的转折隐藏在密集的鸟群中 天空与海洋都无法察觉 怀着美梦却可以看见 摸索颠倒的一瞬间

"Even if you cannot see the world clearly

There is still a way to follow your mind."

Q&A