Оптимизации поиска приближенных решений в эволюционирующих клеточных автоматах

Бакалаврская работа студента 451 группы А. А. Григорьева

Саратовский государственный университет им. Н. Г. Чернышевского

Кафедра математической кибернетики и компьютерных наук

Научный руководитель: доцент Семенов М. С.

2020г.

Рис.: Элементы двумерного клеточного автомата первого порядка с возможными состояниями ячеек 0 и 1.

Рис.: Элементы двумерного клеточного автомата первого порядка с возможными состояниями ячеек 0 и 1.

Рис.: Элементы двумерного клеточного автомата первого порядка с возможными состояниями ячеек 0 и 1.

Рис.: Элементы двумерного клеточного автомата первого порядка с возможными состояниями ячеек 0 и 1.

- создание и оптимизация приложения для моделирования и визуализации клеточных автоматов.
- написание конфигурируемого генетического алгоритма для поиска автоматов, воспроизводящих целевое изображение.
- сбор данных и их анализ для определения лучших параметров модели.

Цель эксперимента — стабильное воспроизведение клеточными автоматами целевого изображения (паттерна).

Рис.: Примеры паттернов.

Рис.: Снимок экрана внутри среды разработки Unity.

Создана программа для обновления множества клеточных автоматов с визуализацией на шейдерах.

Рис.: Визуализация клеточного автомата.

Для «обучения» клеточных автоматов воспроизводить паттерн, использовался генетический алгоритм.

Рис.: Генофонд популяции клеточных автоматов в начале эксперимента. По оси X — биты генов от 0 до 512, по оси Y — клеточные автоматы в популяции (256)

Для «обучения» клеточных автоматов воспроизводить паттерн, использовался генетический алгоритм.

Рис.: Генофонд популяции клеточных автоматов в конце эксперимента. По оси X — биты генов от 0 до 512, по оси Y — клеточные автоматы в популяции (256)

Начиная каждую итерацию в случайном состоянии, клеточный автомат способен воспроизводить заданные паттерны.

Рис.: Клеточный автомат на первой, десятой и сотой итерации.

Создана гибкая программа для конфигурации параметров эксперимента.

Simulation settings		
Update Period	0.001	
Screen Size In Pixels	64	
Virtual Screens In Simulation	256	
Screens In Simulation	32	
Update Check Screen	✓	
Datapath	C:\Users\Public\Documents\Unity Projects\Cell	ularAutomati
Evolution		
Time To Evolution	1.5	
Mutation Percent	25	
Mutate Bits Up To	4	
Pattern File	PtnElkaSS1	0
Pivot Bit Fitness Threshold	15	
Write To Global Pivot Bits	☑	
Genofond Screen	GenofondScreen (Mesh Renderer)	0
Patterns		
Fitness Screen	★FitnessFigure (Transform)	0
Performance-based fields		
Fitness Calculations Needed	25	
Fitness Calc Screens Per Frame	128	
Multisimulation settings		
Ms Fitness Threshold	25	
Ms Calculations After Threshold	100	
Evolution Step Limit	1000	
Cross Separation		

Рис.: Возможность настраивать количество автоматов, процент и количество мутаций, желаемое значение приспособленности особей, количество итераций, на которых происходит подсчет приспособленности, время до этапа эволюции и другое.

Особое внимание уделялось оптимизации алгоритмов.

Total	Self	Calls	GC Alloc	Time ms	Self ms	Self	Calls	GC Alloc	Time ms	Self ms
99.1%	0.0%	2	16.2 MB	4543.61	0.06	0.0%	2	22.0 KB	164.77	0.05
99.0%	0.0%	1	16.2 MB	4536.29	0.00	0.0%	1	22.0 KB	162.96	0.00
99.0%	0.0%	1	16.2 MB	4536.29	0.01	0.0%	1	22,0 KB	162.96	0.01
99.0%	0.0%	1	16.2 MB	4536.23	0.00	0.0%	-	22.0 KB	162.82	0.00
99.0%	0.0%	1	16.2 MB	4536.23	0.06	0.000000	-			
99.0%	0.0%	1	16.2 MB	4535.46	0.86	0.0%	1	22.0 KB	162.82	0.05
90.9%	0.0%	1	110.0 KB	4163.74	0.17	0.0%	1	22.0 KB	140.82	0.04
90.8%	0.0%	256	110.0 KB	4162.75	0.30	81.3%				
90.8%	0.0%	256	110.0 KB	4159.79	0.55	0.0%	256	0 B	0.01	0.01
90.7%	16.1%	256	110.0 KB	4158.49	737.58	0.0%	256	0 B	0.01	0.01
37.4%	11.6%	4194304	0 B	1716.87	535.87	12.0%	256	0 B	20.76	20.76
14.1%	8.5%	4227072	0 B	648.66	391.01	0.3%	1	0 B	1.13	0.58
						500100000				
4.0%	4.0%	4194304	0 B	187.52	187.52	0.0%	512	0 B	0.02	0.02
0.8%	0.0%	256	100.0 KB	40.60	0.05	0.0%	32	0 B	0.01	0.00
0.2%	0.0%	256	0 B	12.95	0.06	0.0%	33	0 B	0.00	0.00
0.1%	0.0%	33024	0 B	8.91	4.17	0.0%	32	0 B	0.00	0.00
0.0%	0.0%	256	10.0 KB	0.13	0.13	0.0%	2	0 B	0.00	0.00
0.0%	0.0%	256	0 B	0.27	0.27	0.0%	4	0.8	0.00	0.00

Рис.: Снимки из профилировщика для подсчета приспособленности 256 клеточных автоматов на каждом кадре: до и после.

Особое внимание уделялось оптимизации алгоритмов.

```
    3
    4
    5
    6
    20
    21
    22
    ...
    3
    5
    6
    20
    21
    22
    ...
    3
    5
    6
    20
    21
    22
    ...
    21
    22
    21
    22
    ...

    6
    6
    8
    9
    30
    31
    32
    ...
    31
    32
    ...
```

Рис.: Использование побитовых операций для достижения максимальной производительности.

Для каждого эксперимента создается график приспособленности, и сохраняется полная история прироста приспособленности.

Рис.: График приспособленности.

Программа сохраняет наиболее важные биты правил для поиска закономерностей в правилах для конкретного паттерна.

Рис.: «Опорные» биты правил клеточных автоматов выделены оранжевым.

Программа сохраняет наиболее важные биты правил для поиска закономерностей в правилах для конкретного паттерна.

Рис.: Глобальные «Опорные» биты правил клеточных автоматов выделены бирюзовым.

Проведено 1306 экспериментов над 10 паттернами.

Общее время работы: 32 дня и 1 час.

Создана программа на языке Python в среде интерактивных вычислений Jupyter Notebook.

Вход: файлы с данными по проведенным экспериментам.

```
Simulation [9185.813] -- 09.06.2020 10:28:01
ABORT Simulation aborted for PtnFive755 after 1001 evolutions.
Time spent: 4583,473. Average good fitness: 0.
Virtual screens: 128. Update period: 0.001. Time to evolution: 1.5.
Fitness calculations between evolution: 25.
Fitness threshold: 25. Additional steps after threshold: 100.
Simple cross separation: False.
Mutation percent: 25. Mutate up to 8 bits.
Simulation [7321,073] -- 09.06.2020 11:30:24
OK Simulation finished successfully for PtnFive755 after 966 evolutions.
Time spent: 4074,686. Average good fitness: 25,2676.
Virtual screens: 128. Update period: 0,001. Time to evolution: 1,5.
Fitness calculations between evolution: 25.
Fitness threshold: 25. Additional steps after threshold: 100.
Simple cross separation: False.
Mutation percent: 8. Mutate up to 8 bits.
```

Рис.: Блоки с данными составляются по результатам каждого эксперимента.

Выход: статистика по экспериментам в текстовом или графическом представлении.

Рис.: Результаты экспериментов для паттерна «треугольник 5×7 » с шестью допустимыми ошибками в целевом изображении.

Получены оптимальные параметры генетического алгоритма. Применимы к большинству паттернов с различной размерностью и формой.

В результате бакалаврской работы:

- создано приложение для моделирования двумерных клеточных автоматов первого порядка и их «обучения» воспроизводить паттерн;
- проведены эксперименты по воспроизведению разных паттернов, используя несколько конфигураций генетического алгоритма;
- определены оптимальные параметры генетического алгоритма.

Исследовать влияние на поиск приближенного решения:

- клеточных автоматов высшего порядка;
- измененных множеств начальных состояний, входных сигналов;

Исследовать влияние на поиск приближенного решения:

- альтернативных правил подсчета приспособленности;
- модификация генетических операторов для особей с высокой и низкой приспособленностью.

Mordvintsev, Alexander and Randazzo, Ettore and Niklasson, Eyvind and Levin, Michael

Growing Neural Cellular Automata Distill, 2020.

Chavoya, Arturo and Duthen, Yves Using a genetic algorithm to evolve cellular automata for 2D/3D computational development

Genetic and Evolutionary Computation Conference, 2012.

- https://graphics.stanford.edu/seander/bithacks.html
 Bit Twiddling Hacks
- https://mathworld.wolfram.com/GameofLife.html
 Game of Life

СПАСИБО ЗА ВНИМАНИЕ!