Energia Livre

Gabriel Braun

Colégio e Curso Pensi, Coordenação de Química

Sumário

1		nergia livre de Gibbs Um olhar sobre o sistema	1 1	
2		quilíbrios de fase Os diagramas de fase de um componente	2 3	
3	A espontaneidade das reações			
	3.1	A energia livre de Gibbs de reação	3	
		A energia livre de Gibbs e o trabalho de não expansão	3	
	3.3	O efeito da temperatura	4	

1 A energia livre de Gibbs

Um dos problemas com o uso da segunda lei da termodinâmica para verificar se uma reação é espontânea é que, para avaliar a variação de entropia total, a variação de entropia do sistema e a variação de entropia da vizinhança precisam ser calculadas e somadas. Grande parte desse trabalho poderia ser evitada se uma única propriedade reunisse os cálculos de entropia do sistema e da vizinhança. Mas é possível simplificar empregando a energia livre de Gibbs, uma função de estado nova que é, provavelmente, a propriedade mais usada e mais útil nas aplicações da termodinâmica em química. Ela tem este nome em homenagem ao físico norte-americano do século XIX Josiah Willard Gibbs, responsável pela transformação da termodinâmica de uma mera teoria abstrata em um tema de grande relevância.

1.1 Um olhar sobre o sistema

A variação total de entropia, ΔS_{tot} , é a soma das variações no sistema, ΔS , e sua vizinhança, ΔS_{viz} , com $\Delta S_{tot} = \Delta S + \Delta S_{viz}$. Em um processo em temperatura e pressão constantes, a variação de entropia da vizinhança é dada por $\Delta S_{viz} = -\Delta H/T$. Portanto,

$$\Delta S_{tot} = \Delta S + \Delta S_{viz} = \Delta S - \frac{\Delta H}{T} \tag{1}$$

Essa equação permite calcular a variação total de entropia usando informações somente do sistema. A limitação é que a equação só é válida em pressão e temperatura constantes.

A próxima etapa é introduzir a **energia livre de Gibbs**, G, definida como

$$G = H - TS \tag{2a}$$

Essa quantidade, comumente conhecida como energia livre e, mais formalmente, como energia livre de Gibbs, é definida somente em termos de funções de estado, logo, G é uma função de estado. Em um processo que ocorre em temperatura constante, a variação de energia livre é

$$\Delta G = \Delta H - T \Delta S \tag{2b}$$

Comparando essa expressão com a Equação 1, em que existe a restrição adicional da pressão constante, vemos que

$$\Delta G = -T\Delta S_{\text{tot}} \tag{3}$$

O sinal negativo dessa equação significa que, em pressão e temperatura constantes, um aumento na entropia total corresponde a uma diminuição da energia livre de Gibbs. Portanto (Figura 1),

 Em temperatura e pressão constantes, a direção da mudança espontânea é a direção da diminuição da energia livre de Gibbs.

FIGURA 1 Em pressão e temperatura constantes, a direção da mudança espontânea é a diminuição da energia livre. O eixo horizontal representa a evolução da reação ou do processo. O estado de equilíbrio de um sistema corresponde ao ponto mais baixo na curva.

A grande importância da introdução da energia livre de Gibbs é que, se a pressão e a temperatura permanecem constantes, é possível predizer se um processo é espontâneo somente em termos das propriedades termodinâmicas do sistema.

A Equação 2b resume os fatores que determinam a direção da mudança espontânea em temperatura e pressão constantes: para uma variação espontânea, procuramos valores de ΔH , ΔS e T que levam a um valor negativo de ΔG . Uma condição que pode levar a um ΔG negativo é um grande valor negativo de ΔH , como em uma reação de combustão. Um grande valor negativo de ΔH corresponde a um grande aumento de entropia da vizinhança. Entretanto, um valor negativo de ΔG pode ocorrer mesmo se ΔH for positivo (uma reação endotérmica), quando ΔG é grande e positivo. Neste caso, a força condutora da reação, a origem da espontaneidade, é o aumento de entropia do sistema.

O critério do equilíbrio é $\Delta S_{tot}=0$. Da Equação 3, resulta que, para um processo em temperatura e pressão constantes, a condição do equilíbrio é

No equilíbrio:
$$\Delta G = 0$$
 (4)

Se $\Delta G=0$ para o processo, então fica claro que o sistema está em equilíbrio. Por exemplo, quando gelo e água estão em equilíbrio em uma determinada temperatura e pressão, sabemos que a energia livre de Gibbs de 1 mol de $H_2O\left(l\right)$ deve ser igual à energia livre de Gibbs de 1 mol de $H_2O\left(s\right)$. Em outras palavras, a energia livre de Gibbs por mol de água em cada fase é a mesma.

EXEMPLO 1 Determinar se um processo é espontâneo

A energia livre de Gibbs de uma substância diminui (isto é, se torna menos positiva ou mais negativa) quando a temperatura aumenta em pressão constante. Esta conclusão é uma consequência da definição G = H - TS e do fato de que a entropia de uma substância pura é sempre positiva. Quando T aumenta, TS também aumenta e uma quantidade maior é subtraída de H. Outra importante conclusão é que a energia livre de Gibbs diminui mais rapidamente com a temperatura na fase gás de uma substância do que na fase líquido. O mesmo acontece com a energia livre de Gibbs do líquido, que diminui mais rapidamente do que a energia livre de Gibbs do sólido (Figura 2).

Agora você tem condições de entender a origem termodinâmica das transições de fase. Em temperaturas baixas, a energia livre molar do sólido é a mais baixa, logo, existe a tendência para que o líquido congele e reduza sua energia livre. Acima de uma determinada temperatura, a energia livre do líquido torna-se menor do que a do sólido e a substância tem a tendência espontânea de fundir. Em temperaturas ainda mais altas, a energia livre molar da fase gás fica abaixo da linha do líquido e a substância tende espontaneamente a vaporizar. A temperatura de cada mudança de fase corresponde ao ponto de interseção das linhas das duas fases, como mostrado na Figura 2.

FIGURA 2 Variação da energia livre (molar) com a temperatura para três fases de uma substância em uma dada pressão. A fase mais estável é a que tem a energia livre molar mais baixa. Observe que, quando a temperatura aumenta, a fase sólido, a fase líquido e a fase vapor tornam-se, sucessivamente, a fase mais estável.

As posições relativas das três linhas da Figura 2 são diferentes para cada substância. Uma possibilidade – que depende da energia das interações intermoleculares nas fases condensa- das – é o líquido ficar na posição mostrada na Fig. 3. Neste caso, o estado líquido nunca é a linha mais baixa, em qualquer temperatura. Quando a temperatura sobe acima do ponto de interseção das linhas do sólido e do gás, a transição direta do sólido ao vapor, chamada de sublimação, torna-se espontânea. Este é o tipo de gráfico esperado para uma substância como o dióxido de carbono, que sublima na pressão atmosférica.

A variação de energia livre de Gibbs de um processo é uma medida da variação da entropia total de um sistema e sua vizinhança quando a temperatura e a pressão são constantes. Os processos

FIGURA 3 No caso de certas substâncias e em certas pressões, a energia livre molar da fase líquido pode não ficar, em algum momento, abaixo das outras duas fases. Nestes casos, o líquido nunca é a fase estável e, em pressão constante, o sólido sublima quando a temperatura aumenta até o ponto de interseção das linhas do sólido e do vapor.

espontâneos, em temperatura e pressão constantes, são acompanhados pela diminuição da energia livre de Gibbs.

2 Os equilíbrios de fase

A vaporização é um tipo importante de transição de fase, o congelamento é outro. Um líquido solidifica quando a energia das moléculas é tão baixa que elas não são capazes de afastar-se muito de suas vizinhas. No sólido, as moléculas vibram em torno de suas posições médias, mas raramente se movem de um ponto a outro. A temperatura de congelamento, a temperatura em que as fases sólido e líquido estão em equilíbrio dinâmico, varia ligeiramente quando a pressão é alterada. O ponto de congelamento normal, T_f, de um líquido é a temperatura na qual ele congela, em 1 atm. Na prática, um líquido às vezes só congela quando a temperatura está alguns graus abaixo do ponto de congelamento, especialmente se o esfriamento é rápido. Um líquido que sobrevive abaixo de seu ponto de congelamento é chamado de super-resfriado. A fusão é o processo oposto ao congelamento, quando um sólido se transforma em líquido. O ponto normal de fusão de um sólido é igual ao ponto normal de congelamento do líquido. Ele também é representado por T_f.

Para a maior parte das substâncias, a densidade da fase sólido é maior do que a da fase líquido, porque as moléculas têm empacotamento mais compacto na fase sólido. A pressão aplicada ajuda a manter as moléculas juntas, logo uma temperatura mais alta deve ser alcançada antes que elas possam separar-se. Em consequência, a maior parte dos sólidos funde em temperaturas mais elevadas quando sob pressões altas. Entretanto, exceto em pressões extremamente altas, o efeito da pressão no ponto de congelamento normalmente é muito pequeno. O ferro, por exemplo, funde em 1800 K em 1 atm, e o ponto de fusão é somente alguns graus mais alto quando a pressão é mil vezes maior. No centro da Terra, porém, a pressão é suficientemente alta para que o ferro seja sólido apesar das temperaturas elevadas. Por isso, acredita-se que o centro da Terra seja sólido. No ponto de fusão do gelo, o volume molar da água líquida é inferior ao do gelo. Como resultado, o gelo funde-se a uma temperatura ligeiramente mais baixa sob alta pressão, e o ponto de fusão da água diminui

com o aumento da pressão. Esse comportamento anômalo é devido às ligações hidrogênio do gelo, que provocam uma estrutura muito aberta. Quando o gelo derrete, muitas dessas ligações hidrogênio se rompem e isso permite que as moléculas de água se aproximem.

2.1 Os diagramas de fase de um componente

Como conseguimos monitorar as condições nas quais as diferentes fases de uma substância são estáveis? Como avaliamos o efeito da pressão na mudança de fase? Um diagrama de fases é um gráfico que mostra as fases mais estáveis em pressões e temperaturas diferentes. Os diagramas de fase são muito usados para representar os estados da matéria e são muito úteis quando a amostra é uma mistura e suas propriedades dependem da composição dela.

3 A espontaneidade das reações

A diminuição da energia livre como um indicador de mudança espontânea e $\Delta G=0$ como critério de equilíbrio aplicam-se a qualquer tipo de processo, desde que ele ocorra em pressão e temperatura constantes.

3.1 A energia livre de Gibbs de reação

A função termodinâmica usada como critério de espontaneidade para uma reação química é a **energia livre de Gibbs de reação**, ΔG_r (comumente chamada de *energia livre de reação*). Esta quantidade é definida como a diferença entre as energias livres de Gibbs molares, G_m , de produtos e reagentes.

$$\Delta G_{r} = \sum_{\text{produtos}} nG_{m} - \sum_{\text{reagentes}} nG_{m}$$
 (6)

Nessa expressão, os valores de $\mathfrak n$ são os coeficientes estequiométricos da equação química. Por exemplo, para a formação da amônia,

$$N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$$

A energia livre de Gibbs de reação é

$$\Delta G_{\rm r} = 2G_{\rm m,NH_3} - G_{\rm m,N_2} - 3G_{\rm m,H_2}$$

A energia livre de Gibbs molar de uma substância em uma mistura depende de que moléculas ela tem como vizinhos, logo, as energias livres de Gibbs molares de NH $_3$, N $_2$ e H $_2$ mudam quando a reação prossegue. No início da reação, por exemplo, uma molécula de NH $_3$ tem como vizinhos principalmente moléculas de N $_2$ e H $_2$, mas, em um estágio avançado da reação, a maior parte dos vizinhos é de moléculas de NH $_3$. Como as energias livres de Gibbs mudam quando a reação prossegue, a energia livre de Gibbs da reação também muda. Se $\Delta G < 0$ em uma determinada composição, então a reação direta é espontânea. Se $\Delta G > 0$ em uma determinada composição, então a reação inversa (a decomposição da amônia em nosso exemplo) é espontânea.

A **energia livre de Gibbs padrão de reação**, ΔG_r° , é definida da mesma forma que a energia livre de Gibbs da reação, mas em termos das energias livres de Gibbs molares padrão dos reagentes e produtos.

$$\Delta G_{r}^{\circ} = \sum_{produtos} nG_{m}^{\circ} - \sum_{reagentes} nG_{m}^{\circ}$$
 (7)

Em outras palavras, a energia livre de Gibbs padrão de reação é a diferença de energia livre de Gibbs entre os produtos nos seus estados padrão e os reagentes nos seus estados padrão (na temperatura especificada). Como o estado padrão de uma substância é

sua forma pura em 1 bar, a energia livre de Gibbs padrão de reação é a diferença de energia livre de Gibbs entre os produtos puros e os reagentes puros: é uma quantidade fixa para uma dada reação e não varia quando a reação prossegue. Lembre-se desses dois pontos importantes:

- ΔG_{r}° é fixo para uma dada reação e temperatura e, por isso, não varia durante a reação.
- ΔG_r depende da composição da mistura de reação; logo, varia
 e pode até trocar de sinal quando a reação prossegue.

As Equações 6 e 7 não são muito úteis na prática porque só as variações das energias livres de Gibbs das substâncias são conhecidas, não os seus valores absolutos. Entretanto, a mesma técnica usada para encontrar a entalpia padrão de reação pode ser empregada, em que uma entalpia padrão de formação, $\Delta H_{\rm f}^{\rm o}$, é atribuída a cada componente. De modo análogo, a energia livre de Gibbs padrão de formação, $\Delta G_{\rm f}^{\rm o}$ (a energia livre padrão de formação), de uma substância é a energia livre de Gibbs padrão de reação por mol de formação de um composto a partir de seus elementos na forma mais estável.

3.2 A energia livre de Gibbs e o trabalho de não expansão

A variação de energia livre de Gibbs que acompanha um processo permite predizer o trabalho máximo de não expansão que um processo pode realizar em temperatura e pressão constantes. Em outras palavras, a energia livre de Gibbs é uma medida da energia que está livre para realizar o trabalho de não expansão (daí seu nome, energia livre). O trabalho de não expansão, w_e , é qualquer tipo de trabalho que não seja devido à expansão contra uma pressão e inclui o trabalho elétrico e o trabalho mecânico (como o alongamento de uma mola ou o carregamento de um peso ladeira acima). O trabalho de não expansão também inclui o trabalho de atividade muscular, o trabalho envolvido na ligação dos amino-ácidos para formar as moléculas de proteínas e o trabalho de enviar sinais nervosos através dos neurônios. Assim, o conhecimento das variações na energia livre é fundamental para a compreensão da bioenergética, o desenvolvimento e a utilização da energia nas células vivas.

O desafio consiste em obter uma relação quantitativa entre a energia livre e o trabalho de não expansão máximo que um sistema consegue realizar.

COMO ISSO É FEITO?

Para encontrar a relação entre a energia livre e o trabalho de não expansão máximo, comece com a Equação 2 referente a uma mudança infinitesimal (representada por d) em G em temperatura constante:

$$dG = dH - T dS$$

Use a definição de entalpia (H=U+PV) para expressar a variação infinitesimal de entalpia em pressão constante em termos da variação de energia interna e do volume:

$$dH = dU - P dV$$

A variação de energia livre de Gibbs de um processo é igual ao trabalho máximo de não expansão que o sistema pode realizar em temperatura e pressão constantes.

TABELA 1 Critérios para espontaneidade								
ΔH°	ΔS°	Espontâneo						
_	+	Sempre						
+	_	Nunca						
_	_	Se T $< \Delta H/\Delta S$						
+	+	Se T $> \Delta H/\Delta S$						

3.3 O efeito da temperatura

As entalpias dos reagentes e produtos dependem da temperatura, mas a *diferença* entre as variações de entalpia varia pouco com a temperatura. O mesmo vale para a entropia. Como resultado, os valores de ΔH° e ΔS° não variam muito com a temperatura. Entretanto, ΔG° depende da temperatura (lembre-se de T em $\Delta G^{\circ} = \Delta H^{\circ} = T\Delta S^{\circ}$) e pode mudar de sinal quando a temperatura se altera. Temos de considerar quatro casos (Tabela 1):

- No caso de uma reação exotérmica ($\Delta H^{\circ} < 0$) com uma entropia de reação negativa ($\Delta S^{\circ} < 0$), $-T\Delta S^{\circ}$ contribui como termo positivo para ΔG° . Em temperaturas elevadas, $T\Delta S^{\circ}$ prevalece sobre ΔH° , e ΔG° é positivo (e a reação inversa, a decomposição dos produtos puros, é espontânea). Em temperaturas baixas, ΔH° prevalece sobre $-T\Delta S^{\circ}$ e, por isso, ΔG° é negativo (e a formação de produtos é espontânea). A temperatura na qual ΔG° muda de sinal é $T = \Delta H^{\circ}/\Delta S^{\circ}$.
- No caso de uma reação endotérmica ($\Delta H^{\circ} > 0$) com uma entropia de reação positiva ($\Delta S^{\circ} > 0$), o inverso é verdadeiro. Neste caso, ΔG° é positivo em temperaturas baixas, mas pode tornarse negativa quando a temperatura cresce e $T\Delta S^{\circ}$ supera ΔH° . A formação de produtos a partir dos reagentes puros torna-se espontânea quando a temperatura é suficientemente alta. Na reação exotérmica, a temperatura na qual ΔG° muda de sinal é $T = \Delta H^{\circ}/\Delta S^{\circ}$.
- Para uma reação endotérmica ($\Delta H^{\circ} > 0$) com uma entropia de reação negativa ($\Delta S^{\circ} < 0$), $\Delta G^{\circ} > 0$ em todas as temperaturas, e a reação direta não é espontânea qualquer que seja a temperatura porque as entropias do sistema e da vizinhança diminuem durante o processo.
- Para uma reação exotérmica ($\Delta H^{\circ} < 0$) com uma entropia de reação positiva ($\Delta S^{\circ} > 0$), $\Delta G^{\circ} < 0$ e a formação de produtos a partir dos reagentes puros é espontânea em qualquer temperatura porque as entropias do sistema e da vizinhança aumentam durante o processo.

EXEMPLO 2 Cálculo da temperatura na qual uma reação endotérmica torna-se espontânea

A produção de aço a partir do minério de ferro é endotérmica. Para reduzir a quantidade de calor que deve ser fornecida, os engenheiros precisam descobrir a menor temperatura em que as reações são espontâneas.

$$2 \operatorname{Fe}_2 \operatorname{O}_3(s) + 3 \operatorname{C}(s) \longrightarrow 4 \operatorname{Fe}(s) + 3 \operatorname{CO}_2(g)$$

Calcule a temperatura mínima na qual a reação é espontânea.

	$Fe_2O_3(s) \\$	C(s)	Fe(s)	$CO_2(g)$
$\Delta {\sf H_f^{\circ}}/{{{\rm kJ}\over{ m mol}}}$	-824			-394
$S_m^\circ/\tfrac{J}{\text{K.mol}}$	87	6	27	214

Etapa 1. Calcule a entalpia padrão de reação.

De
$$\Delta H_r^\circ = \sum_{produtos} n \Delta H_f^\circ - \sum_{reagentes} n \Delta H_f^\circ$$

$$\Delta H_r^\circ = 3 \Delta H_{f,CO_2(g)}^\circ - 2 \Delta H_{f,Fe_2O_3(s)}^\circ$$

logo,

$$\begin{split} \Delta \text{H}_r^\circ &= \left\{ 3 (-394) - 2 (-824) \right\} \tfrac{kJ}{\text{mol}} \\ &= +466 \, kJ \, \text{mol}^{-1} \end{split}$$

Etapa 2. Calcule a entropia padrão de reação.

De
$$\Delta S_r^\circ = \sum_{produtos} nS_m^\circ - \sum_{reagentes} nS_m^\circ$$

$$\Delta S_r^\circ = 4S_{m,Fe\,(s)}^\circ + 3S_{m,CO_2(g)}^\circ - 2S_{m,Fe_2O_3(s)}^\circ - 3S_{m,C\,(s)}^\circ$$

logo,

$$\begin{split} \Delta S_r^\circ &= \left\{ 4(27) + 3(214) - 2(87) - 3(6) \right\} \frac{\text{J}}{\text{K.mol}} \\ &= +558 \, \text{J} \, \text{K}^{-1} \, \text{mol}^{-1} \end{split}$$

Etapa 3. Calcule a temperatura na qual a energia livre de reação torna-se negativa.

De
$$\Delta G = \Delta H - T \Delta S = 0$$

$$T = \frac{\Delta H}{\Delta S}$$

logo,

$$T = \frac{(466 \times 10^3 \frac{J}{mol})}{(558 \frac{J}{K.mol})} = \boxed{835 \, \text{K}}$$

A energia livre de Gibbs cresce com a temperatura em reações em que ΔS° é negativo e decresce com a temperatura em reações em que ΔS° é positivo.