

Plant Model without control

Tomato Leaf Curl Virus Disease Using an Epidemiological Mode

Hypothesis:

- Susceptible plants will become infected when an infected whitefly feeds on it, both latent and infected we will remove and re-plant susceptible plants
- Whiteflies become infected when they feed on an infected plant,
- there will be entry of whiteflies that come from alternative hosts.

	Mot	vatio	n
	0	bjetiv	e
Epider	nical	Mode	ı
		Mode	

Others Controls

Consider the following ordinary differential equations:

$$\begin{aligned}
\frac{dS_p}{dt} &= -\beta_p S_p I_v + r(L_p + I_p), \\
\frac{dL_p}{dt} &= \beta_p S_p I_v - bL_p - rL_p, \\
\frac{dI_p}{dt} &= bL_p - rI_p, \\
\frac{dS_v}{dt} &= -\beta_v S_v I_p - \gamma S_v - (1 - \theta)\mu, \\
\frac{dI_v}{dt} &= \beta_v S_v I_p - \gamma I_v - \theta\mu, \\
S_p(0) &= S_{p0}, L_p(0) = L_{p0}, I_p(0) = I_{p0}, \end{aligned}$$

Gabriel Adrián Salcedo Varela

 $S_{\nu}(0) = S_{\nu 0}, I_{\nu}(0) = I_{\nu 0}.$

Par.
$$\beta_p$$

of stand plants Ip

0.2

- Value

0.075

0.06

0.2 0.003

- Descrip.

plant infectious rate

vector infected rate

vector die or depar rate mmigration rate nfected vectors arrival

Plant Model with control

Tomato Leaf Curl Virus Disease Using an Epidemiological Model

Tomato Leaf Curl Virus Disease Using an Epidemiological Mode
$$\frac{dS_p}{dt} = \frac{dS_p}{dt} = \frac{dS_p}{dt} + \frac{dL_p}{dt} = \frac{dL_p}{dt} = \frac{dL_p}{dt} + \frac{dL_p}{dt} = \frac{dL_p}{dt} + \frac{dL_p}{dt} + \frac{dL_p}{dt} = \frac{dL_p}{dt} + \frac{dL_p}{d$$

$$\frac{dI_p}{dt} = bL_p - (r + u_2)I_p,$$

$$\frac{dS_{\nu}}{dt} = -\beta_{\nu} S_{\nu} I_{p} - (\gamma + u_{3}) S_{\nu} - (1 - \theta) \mu,$$

$$\frac{dI_{\nu}}{dt} = \beta_{\nu} S_{\nu} I_{p} - (\gamma + u_{3}) I_{\nu} - \theta \mu,$$

Let $T \in (0, \infty)$ be fixed. Consider the control system:

$$\begin{cases} \dot{X}(s) = f(s, u(s), X(s)) \ s \in [t, T], \\ X(t) = x, \end{cases}$$

with terminal state constraint $X(T; t, x, u(\cdot)) \in M$

where $M \subseteq \mathbb{R}^n$ is fixed.

Any map $M:\mathbb{R}_+ o 2^{\mathbb{R}^n}$ is called a moving target in \mathbb{R}^n if for any $t \in \mathbb{R}_+$, M(t) is a measurable set in \mathbb{R}^n .

(C1)

The map $f: \mathbb{R}_+ \times U \times \mathbb{R}^n \to \mathbb{R}^n$ is measurable and there exists a constant L > 0 such that

$$\begin{cases} |f(t, u, x_1) - f(t, u, x_2)| \le L|x_1 - x_2|, \ (t, u) \in \mathbb{R}_+ \times U, \ x_1, x_2 \in \mathbb{R}^n, \\ |f(t, u, 0)| \le L, \text{ for every } (t, u) \in \mathbb{R}_+ \times U. \end{cases}$$

(C2)

The maps $g: \mathbb{R}_+ \times U \times \mathbb{R}^n \to \mathbb{R}$ and $h.\mathbb{R}^n \to \mathbb{R}$ are measurable and there exists a continuous function $\omega: \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$, called a local modulus of continuity, which is increasing in each argument, and $\omega(r,0)=0$ for every r>0, such that

$$|g(s, u, x_1) - g(s, u, x_2)| + |h(x_1) - h(x_2)| \le \omega(|x_1| \lor |x_2|, |x_1 - x_2|)$$

for every $(s, u) \in \mathbb{R}_+ \times U, x_1, x_2 \in \mathbb{R}^n$, where $|x_1| \vee |x_2| = \max\{|x_1|, |x_2|\}$.

For any $(t,x) \in [0,T] \times \mathbb{R}^n$, let us introduce the following set:

$$F(t, u, x) = \{(z^0, z) \in \mathbb{R} \times \mathbb{R} \mid g_0^0 \ge g(t, u, x) = f(t, u, x) \mid u \in U\} - 120$$

The following assumption gives some compatibility between the control system and the cost functional.

(C3)

For almost all $t \in [0, T]$, the following Cesari property holds for any $x \in \mathbb{R}^n$,

$$\bigcap_{\delta>0}\bar{co}\mathbb{E}(t,B_{\delta}(x))=\mathbb{E}(t,x),$$

where, we recall that $B_{\delta}(x)$ is the open ball centered at x with radius $\delta > 0$, and $\bar{co}(E)$ stands for the closed convex hull of the set E (the smallest closed convex set containing E).

							ı	pide Conti	O mical	vatio bjetiv Mode Mode	e :l	Pla	nt me	odel						
	Exi	ste	nce	e Ti	neo	ren	า													
	Let (C1)-(C3) hold. Let $M \subseteq \mathbb{R}^n$ be a non-empty closed set. Let $(t,x) \in [0,T] \times \mathbb{R}^n$ be given and $\tilde{\mathcal{U}}_x^M[t,T] \neq \emptyset$. Then problem $(OC)^T$ admits at least one optimal pair.																			
		— 4 —	0 —																	
		— 6	0 —																	
		— 8	 0 —																	
					G	abriel	Adriá	n Sa	cedo	Vare	a									

