4005-800 Algorithms

Homework 1

Christopher Wood March 23, 2012

PROBLEM 1.

Solution. TODO: explain reasoning here...

$$2^{2^{n+1}}$$

$$2^{2^n}$$

$$(n+1)!$$

$$n!$$

TODO: continue

PROBLEM 2-a. Using the definition of O, prove that $n = O(n^2)$.

Solution. If $n \ge 1$, then $n^2 \ge n$. Further, $0^2 \ge 0$. Therefore, $n^2 \ge n$ for any $n \in \mathbb{N}$. Thus, $cn^2 \ge n$ when $n \ge 0$ and $c \ge 1$. Finally, by definition, this means that $n \in O(n^2)$, or simply $n = O(n^2)$.

PROBLEM 2-b. Using the definition of O, prove that $n^k = O(n^{k'})$ if $k \leq k'$.

Solution.

If $k \leq k'$, then we know that $n^k \leq n^{k'}$. Furthermore, dividing each term in this inequality by n^k yields the following new inequality,

$$1 \le n^{k'-k},$$

where $n^{k'-k} \ge 1$ because $k \le k'$.

PROBLEM 3. Write a function fib that implements the recurrence relation for the Fibonacci numbers. What is the smallest n such that you notice fib running slowly?

Solution.

PROBLEM 4.

Solution.

PROBLEM 5.

Solution.