Description

Image

Caption

1. Golf ball casings are made of ionomer. © Emi Yañez at Flickr - (CC BY 2.0) 2. Golf ball at a golf course © Felix7634 at en.wikipedia - (CC BY-SA 3.0)

The material

Ionomers, introduced by DuPont in 1964, are flexible thermoplastics but they have ionic cross-links, from which they derive their name. Their thermoplastic character allows them to be processed by blow molding, injection molding and thermoforming, and to be applied as coatings. But cooled below 40C they acquire the characteristic of thermosets: high strength, good adhesion and chemical stability.

Composition (summary)

Ethylene copolymer containing carboxylic acid groups

General properties

Density	58.1	-	59.9	lb/ft^3	
Price	* 1.46	-	1.91	USD/lb	
Date first used	1965				
Mechanical properties					
Young's modulus	0.029	-	0.0615	10^6 psi	
Shear modulus	* 0.00703	-	0.0213	10^6 psi	
Bulk modulus	0.145	-	0.189	10^6 psi	
Poisson's ratio	* 0.436	-	0.453		
Yield strength (elastic limit)	1.2	-	2.31	ksi	
Tensile strength	2.49	-	5.4	ksi	
Compressive strength	1.32	-	2.54	ksi	
Elongation	300	-	700	% strain	
Hardness - Vickers	2.5	-	4.8	HV	
Fatigue strength at 10^7 cycles	* 0.998	-	2.16	ksi	
Fracture toughness	* 1.04	-	3.12	ksi.in^0.5	
Mechanical loss coefficient (tan delta)	* 0.0943	-	0.286		
Thermal properties					
Melting point	178	-	205	°F	
Glass temperature	* 86	-	147	°F	
Maximum service temperature	120	-	143	°F	
Minimum service temperature	* -190	-	-99.7	°F	
Thermal conductor or insulator?	Good insulator				
Thermal conductivity	0.138	-	0.159	BTU.ft/h.ft^2.F	

Specific heat capacity * 0.433 - 0.451 BTU/lb.°F
Thermal expansion coefficient 100 - 170 µstrain/°F

Electrical properties

Electrical conductor or insulator? Good insulator Electrical resistivity 3.3e21 3e22 µohm.cm 2.2 2.4 Dielectric constant (relative permittivity) Dissipation factor (dielectric loss tangent) * 0.00295 0.00305 Dielectric strength (dielectric breakdown) 399 450 V/mil

Optical properties

Transparency Transparent
Refractive index 1.5 - 1.52

Processability

Castability 4 - 5
Moldability 4 - 5
Machinability 3 - 4
Weldability 5

Durability: water and aqueous solutions

Water (fresh)

Water (salt)

Soils, acidic (peat)

Soils, alkaline (clay)

Excellent

Excellent

Excellent

Excellent

Excellent

Limited use

Durability: acids

Acetic acid (10%) Excellent Acetic acid (glacial) Unacceptable Citric acid (10%) Excellent Hydrochloric acid (10%) Excellent Hydrochloric acid (36%) Excellent Hydrofluoric acid (40%) Excellent Nitric acid (10%) Excellent Unacceptable Nitric acid (70%) Phosphoric acid (10%) Excellent Excellent Phosphoric acid (85%) Sulfuric acid (10%) Excellent Sulfuric acid (70%) Unacceptable

Durability: alkalis

Sodium hydroxide (10%) Excellent Sodium hydroxide (60%) Excellent

Durability: fuels, oils and solvents

Amyl acetate Unacceptable Benzene Limited use Carbon tetrachloride Unacceptable Chloroform Unacceptable Crude oil Limited use Diesel oil Acceptable Lubricating oil Limited use Paraffin oil (kerosene) Acceptable Petrol (gasoline) Acceptable

Silicone fluids

Toluene

Unacceptable

Turpentine

Vegetable oils (general)

White spirit

Acceptable

Limited use

Durability: alcohols, aldehydes, ketones

Acetaldehyde Limited use
Acetone Excellent
Ethyl alcohol (ethanol) Limited use
Ethylene glycol Limited use
Formaldehyde (40%) Limited use
Glycerol Excellent
Methyl alcohol (methanol) Limited use

Durability: halogens and gases

Chlorine gas (dry)

Fluorine (gas)

O2 (oxygen gas)

Sulfur dioxide (gas)

Unacceptable

Excellent

Durability: built environments

Industrial atmosphereExcellentRural atmosphereExcellentMarine atmosphereExcellentUV radiation (sunlight)Fair

Durability: flammability

Flammability Highly flammable

Durability: thermal environments

Tolerance to cryogenic temperatures

Tolerance up to 150 C (302 F)

Acceptable
Tolerance up to 250 C (482 F)

Tolerance up to 450 C (842 F)

Tolerance up to 850 C (1562 F)

Tolerance above 850 C (1562 F)

Unacceptable
Unacceptable
Unacceptable
Unacceptable

Primary material production: energy, CO2 and water

Embodied energy, primary production	1.11e4	-	1.21e4	kcal/lb
CO2 footprint, primary production	3.96	-	4.37	lb/lb
Water usage	* 32	-	35.3	gal(US)/lb

Material processing: energy

Polymer extrusion energy	* 644	-	711	kcal/lb
Polymer molding energy	* 2.38e3	-	2.63e3	kcal/lb
Coarse machining energy (per unit wt removed)	* 68.3	-	75.5	kcal/lb
Fine machining energy (per unit wt removed)	* 220	-	243	kcal/lb
Grinding energy (per unit wt removed)	* 388	-	429	kcal/lb

Material processing: CO2 footprint

Polymer extrusion CO2	* 0.445	-	0.492	lb/lb
Polymer molding CO2	* 1.65	-	1.82	lb/lb
Coarse machining CO2 (per unit wt removed)	* 0.0473	-	0.0523	lb/lb
Fine machining CO2 (per unit wt removed)	* 0.152	-	0.168	lb/lb

Grinding CO2 (per unit wt removed)

* 0.269 - 0.297 lb/lb

Material recycling: energy, CO2 and recycle fraction

Recycle	✓			
Embodied energy, recycling	* 4.44e3	-	5.42e3	kcal/lb
CO2 footprint, recycling	* 2.5	-	3	lb/lb
Recycle fraction in current supply	0.5	-	1	%
Downcycle	✓			
Combust for energy recovery	✓			
Heat of combustion (net)	* 3.95e3	-	4.15e3	kcal/lb
Combustion CO2	* 2.68	-	2.82	lb/lb
Landfill	✓			
Biodegrade	×			
Toxicity rating	Non-toxic	:		
A renewable resource?	×			

A renewable resource? Environmental notes

Ionomers have properties that resemble thermosets, yet they can be recycled like thermoplastics -- an attractive combination.

Recycle mark

Supporting information

Design guidelines

Ionomers are very tough, they have high tensile strength and excellent impact, tear, grease and abrasion resistance. Optical clarity is also quite high. They are most often produced as film. Ionomers have outstanding hot tack (10 times that of LDPE). Their resistance to weather is similar to that of PE, and like PE, they can be stabilized with the addition of carbon black. Permeability is also similar to that of PE, except for carbon dioxide where the permeability is lower. Low temperature flexibility is excellent but they should not be used at temperatures above 71 C. Because of the ionic nature of the molecules, ionomers have good adhesion to metal foil, nylon and other packaging films. Foil and extrusion coating are common. Ionomers have higher moisture vapor permeability (due to the low crystallinity) than polyethylene, are easily sealed by heat and retain their resilience over a wide temperature range.

Technical notes

Ionomers are co-polymers of ethylene and methacrylic acid. Some grades contain sodium and those have better optical properties and grease resistance; some contain zinc and have better adhesion. The ionic crosslinks are stable at room temperature, but break down upon heating above about 40 C. The advantages of crosslinking are seen in the room temperature toughness and stiffness. At high temperatures the advantages of linear thermoplastics appear - ease of processing and recyclability.

Typical uses

Food packaging, athletic soles with metal inserts, ski boots, ice skate shells, wrestling mats, thermal pipe insulation, license plate holders, golf ball covers, automotive bumpers, snack food packaging, blister packs, bottles.

Tradenames

Bexloy, Formion, Iotek, Lucalen, Surlyn

Links

Reference

ProcessUniverse

Producers

