Complexity

Cost

Final Code for search

```
int search(int x, int[] A, int n)
//@requires n == \length(A);
/*@ensures (\result == -1 && !is_in(x, A, 0, n))
            || (0 \le \text{result \&\& result < n \&\& A[result] == x)};
@*/
 for (int i = 0; i < n; i++)
 //@loop_invariant 0 <= i && i <= n;
 //@loop_invariant !is_in(x, A, 0, i);
  if (A[i] == x) return i;
return -1;
```

- How long does it take to run?
 - with contract-checking off

- First idea: wall-clock time
 - Time the code takes to run on a benchmark

- Wall-clock time
 - Gives different results depending on
 - > what else is running on computer
 - > what specific computer it is running on
 - O Is this a useful notion of "how long"?

- Wall-clock time
 - Is this a useful notion of "how long"?
 - Time is about double when we double the length of the array
 - not exactly double though

```
Linux Terminal
 # cc0 search.c0 search-time.c0
 # time ./a.out -r 200 -r 1000000
 real 0.83
user 0.82
 sys 0.00
 # time ./a.out -r 200 -r 2000000
 real 1.62
 user 1.61
 sys 0.00
 # time ./a.out -r 200 -r 4000000
 real 3.17
 user 3.15
 sys 0.01
```

Can we do better than wall-clock time?

What are we looking for? A measure that is

general

- applicable to a large class of programs (and algorithms)
- o independent of particular hardware
- applicable to many types of resources➤ time, space, energy, ...

mathematically rigorous

useful

- help us select among various algorithms for the same problem
 - > e.g., POW vs. mystery function for exponentiation

- Second idea: count the number of execution steps
 - O How many operations do we do to search an n-element array?

```
int search(int x, int[] A, int n) {
         for (int i = 0; i < n; i++) {
           if (A[i] == x) return i;
                                                        Omitting
         return -1;
                                                       contracts
\bigcirc i = 0
                    1 step
                   n times
O loop
  > i < n
                          1 step
                                                 3n + 2 steps
  \rightarrow if (A[i] == x)
                       1 step
  ≯ i++
                          1 step
o return -1 1 step
```

Step count

- 3n + 2 steps to search an n-element array
- Always?only if element is not found
- This is a worst-case analysis
 - Gives an upper bound on the number of steps

```
int search(int x, int[] A, int n) {
  for (int i = 0; i < n; i++) {
    if (A[i] == x) return i;
  }
  return -1;
}</pre>
```

Step count

- 3n + 2 steps to search an n-element array
- Depends only on n
 - value of x doesn't matter
 - contents of A doesn't matter
 - > other than its length

```
int search(int x, int[] A, int n) {
  for (int i = 0; i < n; i++) {
    if (A[i] == x) return i;
  }
  return -1;
}</pre>
```

- n is a measure of the input of the function
- Let's call the (upper bound on the) number of steps T(n)

$$T(n) = 3n + 2$$

Step count

- What is a step?
 - o is i++ one step? 2 steps? 3 steps?
 - \circ what about if (A[i] == x)?
 - ... this gets complicated

```
int search(int x, int[] A, int n) {
  for (int i = 0; i < n; i++) {
    if (A[i] == x) return i;
  }
  return -1;
}</pre>
```

• i = 0

• i < n

• i < n

• if (A[i] == x)

return -1

- Each instruction takes a constant number of steps
 - o exact number is tricky to tell, but it's constant
- In the worst case, search makes
 - o a constant b number of steps outside the loop
 - o a constant a number of steps in each iteration of the loop

So,

```
T(n) = an + b
Note that a and b
make it hard to
plot exactly
```

OOPS!!! loop guard runs n+1 times!

- Step count tells us "how long" a function takes to run
 - o about "how long"
 - > we can't easily learn the constants a, b, ...
 - o at most "how long"
 - > in the worst case
- We need to develop math that deals with
 - o "about"
 - o "at most"

to reason about "how long" a function takes to run That's big-O

- Step count tells us "how long" a function takes to run
 - Time (here, number of steps) is a type of resource
- Other resources of interest
 - O Space: how much memory does the function use?
 - Energy: how much energy does running it consume?
 - Connectivity: how many network connection does it make?
 - 0 ...

In this course, we will be mainly interested in execution time

• The amount of resources a function uses is called its cost

 \circ T(n) = an + b is a **cost function**

Argument is a **measure** of the input

Computes the **cost** of executing it on an input of size n

We will often keep the constants implicit:

- 3n+2 when we really mean
- an+b

Our new math will need to deal with this

Comparing Cost

Comparing Cost

- Given two C0 functions that solve the same problem
 - \circ F has cost f(n)
 - \circ G has cost g(n)

we want to answer the question "is F better than G?"

- We will do so by answering the question
 "is f better than g?"
 - O How do we define this?
- f and g are functions that
 - take a natural number as input
 - o return a natural number as output

a non-negative integer

Attempt #1:

"f is better than g" if for all n, $f(n) \le g(n)$

It's Ok if f(n) = g(n) for some (or all) n

- Attempt #1:
 - "f is better than g" if for all n, $f(n) \le g(n)$
- But is this useful?
 - This f is initially worse than g
 - but f is better beyond a certain point
 - For small inputs, both costs are low
 - > 0.12 ms vs. 0.23 ms doesn't matter for most applications
 - For large inputs, we want lower cost
 - > 1.35 ms vs. 200 years matters for all applications

Asymptotic notion of cost

Attempt #2:

"f is better than g" if there exists a natural number n_0 such that for all $n \ge n_0$, $f(n) \le g(n)$

Attempt #2:

"f is better than g" if there exists a natural number n_0 s.t. for all $n \ge n_0$, $f(n) \le g(n)$

- But is this useful?
 - These f and g are both linear functions

$$> f(n) = a_1 n \text{ and } g(n) = a_2 n$$

- \circ a_1 and a_2 summarize unknown instruction-level step constants
 - \triangleright we can't easily know if $a_1 > a_2$ or $a_1 < a_2$ or even $a_1 = a_2$

• Solution: scale *g*

Final attempt:

"f is better than g" if there exists a natural number n_0 and a real c > 0 s.t. for all $n \ge n_0$, $f(n) \le c g(n)$

Big O

Rather than "f is better than g", we say f ∈ O(g)
o "f is in big-O of g"


```
f \in O(g) if
there exists a natural number n_0 and a real c > 0 s.t.
for all n \ge n_0, f(n) \le c g(n)
```

• *O*(*g*) is a **set**:

```
O(g) = \{ f \text{ s.t. there exists a natural number } n_0 

and \ a \ real \ c > 0 \text{ s.t.}

for all n \ge n_0, f(n) \le c \ g(n) \}
```


- Given two concrete functions f and g, how to tell if $f \in O(g)$?
 - o do the math
 - \triangleright find n_0 and c and show that the definition holds
 - \triangleright or show that the definition cannot hold for any n_0 or c
 - o recall what you learned in your calculus classes
 - > enough for most of this course

• Is
$$3n + 2 \in O(n)$$
?
$$f(n) = 3n+2 \qquad g(n) = n$$

- Every linear cost function is in O(n)
- Every linear cost function is also in O(3n + 2)
- As sets, O(n) = O(3n + 2)
 - \circ O(n) is simpler however
 - $\circ g(n) = n$ is the **simplest** linear function
- We describe a cost function that is linear by saying that it is in O(n)

- Similarly, every quadratic cost function is in O(n²)
 - $\circ g(n) = n^2$ is the **simplest** quadratic function
- We describe a cost function that is quadratic by saying that it is in $O(n^2)$
- In general, every polynomial cost function of degree p
 is in O(np)
 - g(n) = n^p is the **simplest** polynomial of degree p
 ➤ We can ignore the terms with a smaller exponent
- We describe a cost function that is polynomial of degree p by saying that it is in O(n^p)

• Is
$$3n + 2 \in O(n^2)$$
?
$$f(n) = 3n + 2$$

$$g(n) = n^2$$

- $3n + 2 \in O(n)$ and $3n + 2 \in O(n^2)$ • O(n) is **tighter** however
- Every linear function is in $O(n^2)$ • $O(n) \subseteq O(n^2)$
- In general, if $p \le q$ ○ $O(n^p) \subseteq O(n^q)$

• Is $n^2 \in O(3n + 2)$?

 $f(n) = n^2$

g(n) = 3n + 2

- n² eventually dominates
 c(3n+2) no matter the
 scaling factor c
- $n^2 \notin O(3n + 2)$

- Quadratic functions are **not** in O(n)
 - \circ $O(n^2) \not\subset O(n)$
 - \circ O(n) \subset O(n²)

- We learned that $O(n) \subset O(n^2)$
 - \circ O(n) \subseteq O(n²)
 - \circ but $O(n^2) \not\subset O(n)$
- O(n) and $O(n^2)$ are called **complexity classes**
 - Simplest and tightest expressions for sets of cost functions

We always write complexity class in simplest and tightest form

Main complexity classes we will use in this course

	Complexity class	Common name
We do not write the base of the logarithm!	O(1)	Constant
	O(log n)	Logarithmic
	O(n)	Linear
	O(n log n)	(just "n log n")
	$O(n^2)$	Quadratic
	O(2 ⁿ)	Exponential

$$O(1) \subset O(\log n) \subset O(n) \subset O(n \log n) \subset O(n^2) \subset O(2^n)$$

There are many more, though

Complexity of Linear Search

```
• T(n) = an + b
```

```
○ So T(n) \in O(n)
Simplest and tightest class
```

```
int search(int x, int[] A, int n) {
  for (int i = 0; i < n; i++) {
    if (A[i] == x) return i;
  }
  return -1;
}</pre>
```

- Linear search has worst case complexity O(n)
 - It has linear complexity in the size n of its input
 - That's why it is caller *linear* search

What do we mean by "How long"?

- We can often determine the big-O class of a function without writing down its cost function
 - For each operation, note
 - > its cost
 - how many times it is executed

```
Add up
                                                                 Tally
                                                 Cost
int search(int x, int[] A, int n) {
 // int i = 0 happens before the loop
                                                O(1)
                                                                O(1)
 for (int i = 0; i < n; i++) { // at most
                                                n times
  // i < n happens before each iteration
                                                  O(1)
                                                                O(n)
  if (A[i] == x)
                                                  O(1)
                                                                O(n)
    return i;
                                                  O(1)
                                                                O(n)
  // i++ happens last in the body
                                                  O(1)
                                                                O(n)
return -1;
                                                O(1)
                                                                O(n)
                                                                              Complexity of
                                                                              search(x, A, n)
```

Big-O

- There is nothing special about "n"
 - \circ If we call the size of the input k,
 - \circ then this function has cost O(k)
 - > still linear

```
int search(int x, int[] A, int k)
for (int i = 0; i < k; )++) {
  if (A[i] == x) return i;
  }
return -1;
}</pre>
```

Big-O

An input may have multiple size parameters

- For example, an image has a width w and a height h
- Brightening an image: O(wh)
 We change every one of its w x h pixels

- Putting a border: O(w+h)
 - \circ we touch about 2(w + h) pixels

Big-O

Here's the definition of big-O with 2 variables

```
f(x,y) \in O(g(x,y)) if
there exist natural numbers x_0, y_0 and a real c > 0 s.t.
for all x \ge x_0 and y \ge y_0, f(x,y) \le c g(x,y)
```

- There are other definitions, but this is the one we will use
- It is asymptotic in both x and y
 - > no need for special cases for small values of x or y
 - \Box e.g., if x=0 and y grows very big
- This generalizes to any number of variables

Towards a Better Search

Algorithms vs. Problems

- Linear search has cost O(n)
- But this is only one of the many algorithms to search an array

```
int search(int x, int[] A, int n) {
  for (int i = 0; i < n; i++) {
    if (A[i] == x) return i;
  }
  return -1;
}</pre>
```

- Can a different algorithm find an element faster?
- No: the problem of searching a generic n-element array has complexity O(n)
 - > some algorithms have worse complexity
 - > but no algorithm has better complexity
 - unless we radically change what we mean by "step"
- Can we do better for arrays with common characteristics?
 - Say, the array is sorted

A is sorted

- the segment A[0,n)is sorted
 - (useful for later)


```
int search(int x, int[] A, int n)
//@ requires n == \text{Vength}(A):
//@requires is_sorted(A, 0, n);
/*@ensures (\result == -1 && !is_in(x, A, 0, n))
            || (0 \le \text{result \&\& result < n \&\& A[result] == x)};
@*/
 for (int i = 0; i < n; i++)
 //@loop_invariant 0 <= i && i <= n;
 //@loop_invariant!is_in(x, A, 0, i);
  if (A[i] == x) return i;
return -1;
```

• Idea:

- If we find an element larger than x, we can stop searching
 - > All elements after it will also be larger than x
 - That's because A is sorted

```
int search(int x, int[] A, int n)
//@ requires n == \length(A);
//@requires is_sorted(A, 0, n);
/* @ensures (\result == -1 && !is_in(x, A, 0, n))
            || (0 \le \text{result \&\& result < n \&\& A[result] == x)};
@*/
 for (int i = 0; i < n; i++)
 //@loop_invariant 0 <= i && i <= n;
 //@loop_invariant !is_in(x, A, 0, i);
   if(A[i] == x) return i;
   if (x < A[i]) return -1;
                                         If A[i] is not equal to x
  //@assert A[i] < x;_
                                          and not larger than x
                                     then it must be smaller than x
return -1;
```

- What is the cost of this search?
- Still O(n)
 - worst case is when searching an element bigger than anything in A

- But that's just one algorithm for searching in a sorted array
 - Ocan we do better?
 - ... next lecture ...

- Is this code safe?
 - Yes, no new array accesses

- Is it correct?
 - Original argument still holds
 - but we have a new place where the function returns
 - ➤ Is it correct there?
 - no good argument
 - > we need new insight

```
int search(int x, int[] A, int n)
//@ requires n == \length(A);
//@requires is_sorted(A, 0, n);
/* @ensures (\result == -1 && !is_in(x, A, 0, n))
            || (0 \le \text{result \&\& result < n \&\& A[result] == x)};
@*/
 for (int i = 0; i < n; i++)
 //@loop_invariant 0 <= i && i <= n;
 //@loop_invariant !is_in(x, A, 0, i);
  if (A[i] == x) return i;
  if (x < A[i]) return -1;
  //@assert A[i] < x;
return -1;
```

- What do we know at iteration i?
 - O Let's draw pictures!


```
int search(int x, int[] A, int n)
//@requires n == \length(A);
//@requires is_sorted(A, 0, n);
/* @ ensures (\result == -1 && !is_in(x, A, 0, n))
             || (0 <= \result && \result < n &&
               A[\operatorname{lesult}] == x);
 for (int i = 0; i < n; i++)
 //@loop_invariant 0 \le i \&\& i \le n;
 //@loop_invariant !is_in(x, A, 0, i);
   if (A[i] == x) return i;
   if (x < A[i]) return -1;
  //@assert A[i] < x;
return -1;
```

- \circ A[0, i) < x: every element in segment A[0,i) is less than x
 - □ because we would have returned otherwise
- \bigcirc A[0, i) \leq A[i, n): everything in A[0,i) is \leq everything in A[i, n)
 - □ because A is sorted

Reasoning about Array Segments

- A[0, i) < x, etc are useful to reason about array segments
- Implement them into specification functions: arrayutil

```
> A[lo, hi) is sorted
\triangleright x \in A[lo, hi]
> x < A[lo, hi]
> x \le A[lo, hi)
> x > A[lo, hi)
> x \ge A[lo, hi)
> A[lo_1, hi_1) < B[lo_2, hi_2)
\triangleright A[lo<sub>1</sub>, hi<sub>1</sub>) \leq B[lo<sub>2</sub>, hi<sub>2</sub>)
> A[lo_1, hi_1) > B[lo_2, hi_2)
\triangleright A[lo<sub>1</sub>, hi<sub>1</sub>) \ge B[lo<sub>2</sub>, hi<sub>2</sub>)
                  math
```

```
is_sorted(A, lo, hi)
is_in(x, A, lo, hi)
It_seg(x, A, lo, hi)
le_seg(x, A, lo, hi)
gt_seg(x, A, lo, hi)
ge_seg(x, A, lo, hi)
It_segs(A, lo1, hi1, B, lo2, hi2)
le_segs(A, lo1, hi1, B, lo2, hi2)
gt_segs(A, lo1, hi1, B, lo2, hi2)
ge_segs(A, lo1, hi1, B, lo2, hi2)
                                     Includes
           code
                                    contracts
```

See arrayutil.c0 file

Reasoning about Sorted Arrays

• If an array (segment) is sorted, what do we know?

for every element A[i]

A[lo, hi) can't be empty

- lo ≤ i < hi</p>
- \circ A[lo, i) \leq A[i] \leq A[i+1, hi)
- A[lo, i) and A[i+1, hi) are sorted

- What do we know at iteration i?
 - O Let's draw pictures!

```
A: A[0, i) < x A[0, i) \le A[i, n)
```

```
int search(int x, int[] A, int n)
//@requires n == \length(A);
//@requires is_sorted(A, 0, n);
/* @ ensures (\result == -1 && !is_in(x, A, 0, n))
            || (0 <= \result && \result < n &&
               A[\operatorname{lesult}] == x);
 for (int i = 0; i < n; i++)
 //@loop_invariant 0 <= i && i <= n;
 //@loop_invariant gt_seg(x, A, 0, i);
 //@loop_invariant le_segs(A,0, i, A, i, n)
  if (A[i] == x) return i;
  if (x < A[i]) return -1;
  //@assert A[i] < x;
return -1;
```

- Candidate loop invariants
 - ogt_seg(x, A, 0, i): that's A[0, i) < x
 ➤ This implies !is_in(x, A, 0, i), that's x ∉ A[0, i)
 o le_segs(A, 0, i, A, i, n): that's A[0, i) ≤ A[i, n)

Is this code correct?

```
➤ To show: !is_in(x, A, 0, n)

(assuming invariants are valid)
```

```
A. A[0, i) < x by line 10 (LI 2)
B. x \notin A[0, i) by math on A
```

C. x < A[i] by line 14 (conditional)

D. x < A[i, n] by math on C and line 3 (precondition)

E. $x \notin A[0, n)$ by math on B, D

```
int search(int x, int[] A, int n)
//@requires n == \length(A);
3. //@requires is_sorted(A, 0, n);
4. /*@ensures (\result == -1 && !is_in(x, A, 0, n))
               || (0 <= \result && \result < n &&
                  A[\operatorname{lesult}] == x);
    for (int i = 0; i < n; i++)
    //@loop_invariant 0 <= i && i <= n;
   //@loop_invariant gt_seg(x, A, 0, i);
   //@loop_invariant le_segs(A,0, i, A, i, n);
12.
     if (A[i] == x) return i;
13.
     if (x < A[i]) return -1;
     //@assert A[i] < x;
16.
17. return -1;
18.
```

x > A[0, i) is a **valid** loop invariant

INIT

```
➤ To show: x > A[0, i) initially
A. i = 0 by line 7
B. x > A[0, 0) by definition of gt_seg
○ A[0,0) is the empty array segment
```

PRES

Nothing is in it

```
➤ To show: if x > A[0, i), then x > A[0, i')

A. i' = i+1 by line 8

B. x > A[0, i) by assumption

C. x > A[i] by line 15 (math on lines 13 and 14)

D. x > A[0, i+1) by math on B and C

E. x > A[0, i') by math on A and D
```

```
int search(int x, int[] A, int n)
//@requires n == \length(A);
3. //@requires is_sorted(A, 0, n);
4. /*@ensures (\result == -1 && !is_in(x, A, 0, n))
               || (0 <= \result && \result < n &&
                  A[\operatorname{lesult}] == x);
    for (int i = 0; i < n; i++)
    //@loop_invariant 0 <= i && i <= n;
   //@loop_invariant gt_seg(x, A, 0, i);
   //@loop_invariant le_segs(A,0, i, A, i, n);
12.
     if (A[i] == x) return i;
     if (x < A[i]) return -1;
     //@assert A[i] < x;
16.
17. return -1;
18.
```

 $A[0,i) \le A[i,n)$ is a **valid** loop invariant

INIT

```
ightharpoonup To show: A[0, i) \leq A[i,n) initially
```

```
A.i = 0 by line 7
```

B. $A[0, 0) \le A[i,n)$ by definition of le_segs

- A[0,0) is the empty array segment
 - \triangleright All the (**zero**) things in A[0,0) are ≤ everything in A[i,n)

PRES

```
ightharpoonup To show: if A[0, i) \leq A[i, n), then A[0, i') \leq A[i', n)
```

A. i' = i+1 by line 8

B. $A[0, i) \le A[i, n)$ by assumption

C. A[0, n) sorted by line 3 (precondition)

 $D.A[0, i+1) \le A[i+1, n)$ by math on C

 $E. A[0, i') \le A[i', n)$ by math on A and D

```
int search(int x, int[] A, int n)
//@requires n == \length(A);
3. //@requires is_sorted(A, 0, n);
4. /*@ensures (\result == -1 && !is_in(x, A, 0, n))
               || (0 <= \result && \result < n &&
                  A[\operatorname{lesult}] == x);
    for (int i = 0; i < n; i++)
    //@loop_invariant 0 <= i && i <= n;
   //@loop_invariant gt_seg(x, A, 0, i):
   //@loop_invarian(le_segs(A,0, i, A, i, r
     if (A[i] == x) return i;
     if (x < A[i]) return -1;
     //@assert A[i] < x;
16.
17. return -1;
18.
```

We actually don't need this loop invariant to prove correctness

Sorting an Array

- Reorder the elements to put them in increasing order
 - Duplicate elements are allowed

There are many algorithms to sort arrays

- Find element that shall go in A[0]
 Smallest element in A[0, n)
- A: 9 13 18 3 13 5 7 6

Swap it with A[0]

Find element that shall go in A[1]
Smallest element in A[1, n)

Swap it with A[1]

- ... carry on ...
- Stop when A is entirely sorted

			2					7
A:	3	5	6	7	9	13	13	18

We need two operations

find the minimum of an array segment A[lo, hi)

```
o and return its index

A[lo,hi] can't be empty
```

```
int find_min(int[] A, int lo, int hi)

//@requires 0 \le lo \& lo < hi \& hi \le length(A);

/*@ensures lo \le lo \& lo < hi

&& le_seg(A[\result], A, lo, hi); @*/;
```

swap two elements of an array (given their indices)

```
// swaps A[i] and A[j]; all other elements are unchanged void swap(int[] A, int i, int j)
//@requires 0 <= i && i < \length(A);
//@requires 0 <= j && j < \length(A);
//@requires 0 <= j && j < \length(A);

// we can't say this as a postcondition.

// we use a comment instead
```

- Let's capture our intuition about how it works in code
 - Generalization: sort array segment A[lo, hi)

```
sort does
                                                                 A[lo,hi) can be empty
not return
anything
                 void sort(int[] A, int lo, int hi)
 either
                 //@requires 0 <= lo && lo <= hi && hi <= \length(A);
                 //@ensures is_sorted(A, lo, hi);
                                                                                  for every index i
but it modifies
                                                                                    from lo to hi
                  for (int i = lo; i < hi; i++)
the input array
                                                                                  find the minimum
                    int min = find_min(A, i, hi);
                                                                                      of A[i, hi)
                   swap(A, i, min); -
                                                                                  swap it with
                                                                                      A[i]
```

Cost of Selection Sort

- find_min(A, lo, hi)
 - > finds the minimum of an array segment A[lo, hi)
 - > and returns its index
 - o it scans the entire segment once

Cost: **O**(hi – lo)

- o note that it makes hi lo 1 comparisons
 - > the number of comparisons is a convenient proxy for our unit of cost

Cost of Selection Sort

- swap(A, i, j)
 - o simply swaps values at two indices:

Cost: **O(1)**

$$0 + ... + n = \sum_{j=0}^{n} j = n(n+1)/2$$

Cost of Selection Sort

```
void sort(int[] A, int lo, int hi) {
  for (int i = lo; i < hi; i++) {
    int min = find_min(A, i, hi);
    swap(A, i, min);
  }
}</pre>
```

- Assume the array segment A[lo, hi) has length n
- Number of comparisons to sort an n-element array segment

n(n-1)/2

• $n(n-1)/2 \in O(n^2)$

Selection sort has cost in $O(n^2)$

That's O((hi-lo)²) in terms of lo and hi

Is this Code Safe?

```
int find_min(int[] A, int lo, int hi)
//@requires 0 <= lo && lo < hi && hi <= \length(A);
/*@ensures ... @*/;</pre>
```

find_min(A, i, hi)

```
ightharpoonup To show: 0 \le i < hi \le \operatorname{length}(A)
```

A. $hi \leq \operatorname{length}(A)$ by line 2

B. i < hi by line 5

C. 0 ≤ i oops! we need the usual loop invariant

//@loop_invariant lo <= i; then</pre>

a. $0 \le lo$ by line 2

b. lo ≤ i by new LI

c. $0 \le i$ by math


```
1. void sort(int[] A, int lo, int hi)
2. //@requires 0 <= lo && lo <= hi && hi <= \length(A);
3. //@ensures is_sorted(A, lo, hi);
4. {
5. for (int i = lo; i < hi; i++)
6. {
7. int min find_min(A, i, hi);
8. swap(A, i, min);
9. }
10. }</pre>
```

Is this Code Safe?

swap(A, i, min)

```
ightharpoonup To show: 0 \le \min < \operatorname{length}(A)
```

```
A. 0 ≤ i by lines 2 and 6
B. i ≤ min by postconditions of find_min
C. min < hi by postconditions of find_min</li>
D. hi ≤ \length(A) by line 2
```

➤ To show: 0 ≤ i
 && i < \length(A)
(just proved for find_min)</pre>


```
1. void sort(int[] A, int lo, int hi)
2. //@requires 0 <= lo && lo <= hi && hi <= \length(A);
3. //@ensures is_sorted(A, lo, hi);
4. {
5.    for (int i = lo; i < hi; i++)
6.    //@loop_invariant lo <= i;
7.    {
8.        int min = find_min(A, i, hi);
9.        swap(A, i, min);
10.    }
11. }</pre>
```

Is this Code Correct?

- To show: is_sorted(A, lo, hi)
- What do we know at iteration *i*?
 Let's draw pictures!
- void sort(int[] A, int lo, int hi)
 //@requires 0 <= lo && lo <= hi && hi <= \length(A);
 //@ensures is_sorted(A, lo, hi);
 {
 for (int i = lo; i < hi; i++)
 //@loop_invariant lo <= i;
 {
 int min = find_min(A, i, hi);
 swap(A, i, min);
 }
 }</pre>

Candidate loop invariants

```
    lo <= i && i <= hi</li>
    is_sorted(A, lo, i)
    le_segs(A, lo, i, A, i, hi)
```

Resulting code

```
    void sort(int[] A, int lo, int hi)

2. //@requires 0 <= lo && lo <= hi && hi <= \length(A);
3. //@ensures is_sorted(A, lo, hi);
   for (int i = lo; i < hi; i++)
   //@loop_invariant lo <= i && i <= hi;
   //@loop_invariant is_sorted(A, lo, i);
                                                       Added
   //@loop_invariant le_segs(A, lo, i, A, i, hi);
     int min = find_min(A, i, hi);
10.
     swap(A, i, min);
11.
12.
13.
```

We will need to prove that the added invariants are valid

Correctness

➤ To show: is_sorted(A, lo, hi)

(assuming invariants are valid)

```
1. void sort(int[] A, int lo, int hi)
2. //@requires 0 <= lo && lo <= hi && hi <= \length(A);
3. //@ensures is_sorted(A, lo, hi);
4. {
5. for (int i = lo; i < hi; )
6. //@loop_invariant lo <= i && i <= hi;
7. //@loop_invariant is_sorted(A, lo, i);
8. //@loop_invariant le_segs(A, lo, i, A, i, hi);
9. {
10.
11.
12. }
13. }</pre>
```

```
A. i ≥ hi by line 5 (negation of loop guard)
```

B. $i \le hi$ by line 6 (LI 1)

C. i = hi by math on A, B

D. is_sorted(A, Io, hi) by line 8 (LI 2) and C

- This is a standard EXIT argument
 - ➤ But are the loop invariants valid?

We didn't need LI 3 $A[lo, i) \le A[i, hi)$

Are the loop invariants valid?

INIT

➤ To show: lo ≤ lo
by math [13.]

➤ To show: lo ≤ hi by line 2 (preconditions)

void sort(int[] A, int lo, int hi)

for (int i = lo: i < hi; i++)

swap(A, i, min);

12.

//@ensures is_sorted(A, lo, hi);

int min = find_min(A, i, hi);

#@loop_invariant lo <= i && i <= hi;

//@loop_invariant is_sorted(A, lo, i);

#@loop_invariant le_segs(A, lo, i, A, i, hi);

//@ requires $0 \le lo \& lo \le hi \& hi \le length(A);$

> To show: A[lo, lo) sorted by math (empty interval)

> To show: A[lo, lo) ≤ A[lo, hi) by math (empty interval)

PRES

 \triangleright To show: if $lo \le i \le hi$, then $lo \le i' \le hi$

Proof left as exercise

Are the loop invariants valid?

PRES

To show: if A[lo, i) is sorted, then A[lo, i') is sorted

```
1. void sort(int[] A, int lo, int hi)
2. //@requires 0 <= lo && lo <= hi && hi <= \length(A);
3. //@ensures is_sorted(A, lo, hi);
4. {
5. for (int i = lo; i < hi; i++)
6. //@loop_invariant lo <= i && i <= hi;
7. //@loop_invariant is_sorted(A, lo, i);
8. //@loop_invariant le_segs(A, lo, I, A, i, hi);
9. {
10. int min = find_min(A, i, hi);
11. swap(A, i, min);
12. }
13. }</pre>
```

```
A. i' = i+1 by line 5 (step)

This is where we need LI 3!

C. A[lo, i) \leq A[i, hi) by line 8 (LI 3)

D. A[lo, i) \leq A[i] by math on C and line 5 (loop guard)

E. A[lo, i') is sorted by math on A and D
```


Are the loop invariants valid?

PRES

```
\triangleright To show: if A[lo, i) \leq A[i, hi),
              then A[lo, i') \leq A[i', hi)
```

A[lo, i)

```
int min = find_min(A, i, hi);
10.
      swap(A, i, min);
11.
12.
13.
                                                    after
                                                    swap
                          hi
                                        Vength(A)
  A[i, hi)
```

void sort(int[] A, int lo, int hi)

for (int i = lo; i < hi; i++)

//@ensures is sorted(A, lo, hi);

//@loop_invariant lo <= i && i <= hi;

//@loop_invariant is_sorted(A, lo, i);

//@loop_invariantle_segs(A, lo, i, A, i, hi);

//@ requires $0 \le lo \& lo \le hi \& hi \le length(A);$

```
A. i' = i+1
                                by line 5
B. A[lo, i) \leq A[i, hi)
                                assumption
C. A[min] \leq A[i, hi)
                                by postcondition of find_min
D. A[i] \leq A[i, hi)
                                after swap by definition (in comment)
E. A[i] \leq A[i+1, hi)
                                by math
F. A[lo, i) \leq A[i]
                                by math on B and definition of swap
G. A[lo, i') \leq A[i', hi)
                                by math on A, F and E
    0
             lo
A:
               A[lo, i) is sorted
```

```
    void sort(int[] A, int lo, int hi)

2. //@requires 0 <= lo && lo <= hi && hi <= \length(A);
3. //@ensures is_sorted(A, lo, hi);
4.
   for (int i = lo; i < hi; i++)
   //@loop_invariant lo <= i && i <= hi;
   //@loop_invariant is_sorted(A, lo, i);
   //@loop_invariant le_segs(A, lo, i, A, i, hi);
     int min = find_min(A, i, hi);
10.
     swap(A, i, min);
11.
12.
13.
```

We have proved it correct

