Basic_descriptive_ap

2025-02-24

```
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(RColorBrewer)
dd <- read.csv("~/Documents/ADEI/Project/adult.csv") # Read data</pre>
#Rename columns
colnames(dd) <- c("age", "workclass", "fnlwgt", "education", "edu_num", "marital", "occupation",</pre>
                   "relationship", "race", "sex", "cap_gain", "cap_loss",
                   "hours_week", "native_country", "income")
#Rename modalities
dd$workclass <- recode(dd$workclass,</pre>
                        "Private" = "Priv",
                        "Self-emp-not-inc" = "SelfN",
                        "Self-emp-inc" = "SelfI",
                        "Federal-gov" = "Fed",
                        "Local-gov" = "Loc",
                        "State-gov" = "State"
                        "Without-pay" = "NoPay",
                        "Never-worked" = "NoPay")
dd$marital <- recode(dd$marital,</pre>
                      "Never-married" = "NevMarr",
                      "Married-civ-spouse" = "Married",
                      "Married-AF-spouse" = "Married",
                      "Married-spouse-absent" = "Sep",
                      "Separated" = "Sep",
                      "Divorced" = "Div",
                      "Widowed" = "Widow")
dd$occupation <- recode(dd$occupation,</pre>
                         "Exec-managerial" = "ExecMan",
                         "Prof-specialty" = "Prof",
                         "Adm-clerical" = "AdminCler",
```

```
"Sales" = "Sales",
                         "Craft-repair" = "CraftRep",
                         "Transport-moving" = "Trans",
                         "Handlers-cleaners" = "HandlCl",
                         "Machine-op-inspct" = "MachOp",
                         "Tech-support" = "Tech",
                         "Protective-serv" = "ProtServ",
                         "Armed-Forces" = "Army",
                         "Farming-fishing" = "FarmFish",
                         "Priv-house-serv" = "House",
                         "Other-service" = "Other")
dd$native_country <- recode(dd$native_country,</pre>
                             "United-States" = "USA",
                             .default = "Other") # Group all other countries as "Other"
#a function to find the mode (most frequent value)
fill_mode <- function(x) {</pre>
 mode_value <- names(sort(table(x), decreasing=TRUE))[1] # Get the most frequent value
 x[is.na(x)| x == "?"] <- mode_value # Replace NA with mode
 return(x)
}
#we apply it to columns with missing values
dd$workclass <- fill_mode(dd$workclass)</pre>
dd$occupation <- fill_mode(dd$occupation)</pre>
dd$native_country <- fill_mode(dd$native_country)</pre>
#we drop education (the same information is found in the column educational.num (in numbers))
dd <- subset(dd, select = -c(education))</pre>
class(dd[,1])
## [1] "integer"
for ( i in 1:14){
  if(is.numeric(dd[,i])){
    hist(dd[,i],main=paste("hist of", names(dd)[i]), col = "steelblue", xlab=names(dd)[i])
    boxplot(dd[,i],main=paste("boxplot of", names(dd)[i]), col = "steelblue")
    cat("Summary of", names(dd)[i], ":\n")
    print(summary(dd[,i]))
  } else{
    par(mar = c(8, 4, 4, 2))
    barplot(table(dd[,i]), main=paste("barplot of", names(dd)[i]), col = "tomato", las = 2, cex.names = "
    pie(table(dd[,i]),main=paste("pie of", names(dd)[i]), col = brewer.pal(min(length(table(dd[, i])),
 }
}
```


boxplot of age


```
## Summary of age :
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 17.00 28.00 37.00 38.64 48.00 90.00
```

barplot of workclass

pie of workclass

hist of fnlwgt

boxplot of fnlwgt


```
## Summary of fnlwgt :

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 12285 117550 178144 189664 237642 1490400
```

hist of edu_num

boxplot of edu_num

barplot of marital

pie of marital

barplot of occupation

pie of occupation

barplot of relationship

pie of relationship

barplot of race

pie of race

barplot of sex

Warning in brewer.pal(min(length(table(dd[, i])), 8), "Set2"): minimal value for n is 3, returning r

pie of sex

hist of cap_gain

boxplot of cap_gain


```
## Summary of cap_gain :
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0 0 0 1079 0 99999
```

hist of cap_loss

boxplot of cap_loss


```
## Summary of cap_loss :
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0 0.0 0.0 87.5 0.0 4356.0
```


boxplot of hours_week


```
## Summary of hours_week :
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.00 40.00 40.00 40.42 45.00 99.00
```

barplot of native_country

Warning in brewer.pal(min(length(table(dd[, i])), 8), "Set2"): minimal value for n is 3, returning r

pie of native_country

barplot of income

Warning in brewer.pal(min(length(table(dd[, i])), 8), "Set2"): minimal value for n is 3, returning r

pie of income

