

| C | ) ( | Ba | ıck | gzi | uu | d |  |
|---|-----|----|-----|-----|----|---|--|
|   |     |    |     |     |    |   |  |

Cods of models Cot notion of theory Tragment of Logic Laurere/ cat with fin. prod. Fin. Varieties (ケ=て) equational:

Loc. fin. Peer. Lex categories  $(r=c), R(c), \Lambda, \exists$ carterian

sequents of regular funte inject class ( ( - t) , R(t) , A, I Regular /exact cats sequents of funte cone-inj Pretopei coherent: E,V, A, (T), A,V, I sequents of

| ) Backgraund:                              |                                           |                             |
|--------------------------------------------|-------------------------------------------|-----------------------------|
| Tragment of Logic                          | Cods of models                            | Cat notion of<br>theory     |
| equational: (T=T)                          | Fin. Varieties Tp(2, Set)                 | Laureve/cat with fin. prod. |
| carteriau: (T=T), R(T), N, I.              | Loc. fin. Pres.<br>Lex(t, Set)            | Lex categories              |
| regular: (T=T), R(T), A, = sequents of     | funte inject. class  Reg(2, Set)          | Regular/exact cats          |
| coherent: (T=Y), R(T), A, V, I sequents of | funte coue-ing<br>classes.<br>Mod(C, Sel) | Prehopei                    |
|                                            |                                           |                             |

Infinitary care 0) Background: Cods of models Cost notion of theory Tragment of Logic Laureve/cat with fin. prod. (ケ=て) (Fin.) Varieties equational: Loc (fin) Prer Lex categories A-small (r=c), R(c), 1, 3. carterian sequents of regular: (funte) inject. class (r=t), R(t), n, I A-Regular/exact cats sequents of = accentible cats with products co herent: 2-Pretopei (r=7), R(T), 1, V, I (finte) cous-inj sequents of chasses. - accemble cats

| o) Background: | Zw.        | idrment                                     |                            |                  |
|----------------|------------|---------------------------------------------|----------------------------|------------------|
|                | t of Logic | 7- Cats of models                           | V- Cat notion of<br>theory |                  |
| equational:    | ?          | Tin. Varieties                              | V- Cats with Lin           | (Power)          |
| carterian:     | ?          | Loc. Lin. Peer.                             | Lex V-cats                 | (Kolly)          |
| regular:       | ?          | ficite &-Injectivity classes (Lack-Rosnoky) | Regular/<br>exact V-cats   | (Gamer)<br>Lack) |
| co herent:     | 2          | ?                                           | ?                          |                  |
|                |            |                                             |                            |                  |

| Backgrand:  |                        | Enrichment                 |                            |
|-------------|------------------------|----------------------------|----------------------------|
|             | Enriched usut of Logic | V- Cats of models          | V- Cot notion of<br>theory |
| equational: | ( 「 = で )              | Fin. Varieties             | V-Cats with Lin            |
| cartenian:  | ?                      | Loc. fin. Pres.            | Lex V-cats                 |
| regular:    | ?                      | finite &-mjechinty classes | Regular/<br>exact V-cols   |
| coherent:   | 2                      | ?                          | ?                          |
|             |                        |                            |                            |

| o) Background:                               | Enrichment                |                            |
|----------------------------------------------|---------------------------|----------------------------|
| Enriched<br>Tragment of Logic                | V- Cats of models         | V- Cat notion of<br>theory |
| equational: (T=T)                            | Fin. Varieties            | V- Cats with fin           |
| carterian: (T=T), R(T), 1, 3]                | Loc. fin. Pres.           | Lex V-cats                 |
| regular: (T=T), R(T), 1, 7 sequents of       | finite 8-weething classes | Regular/<br>exact V-cols   |
| co herent: (0=7), R(T), A, V, -] requests of | finite cone E- my.        | ?                          |
|                                              |                           |                            |

| o) Background:                              | Swichment                     |                            |
|---------------------------------------------|-------------------------------|----------------------------|
| Enriched<br>Tragment of Logic               | V- Cats of models             | V- Cat notion of<br>theory |
| equational: (T=T)                           | Fin. Varieties                | V- Cats with Lin           |
| carterian: (T=T), R(T), 1, 3]               | Loc. Lin. Peer.               | Lex V-cats                 |
| regular: (U=T), R(T), A, 7 sequents of      | finite &-mjechinhy<br>classes | Regular/<br>exact V-cols   |
| co herent: (0=7), R(7), A, V, = requests of | finte cone E- mj.             | ?                          |
|                                             |                               |                            |

1) Tuterpretation:

Fix a sufficiently good base of enrichment  $\mathcal{V}=(\mathcal{V}_0,\otimes,\mathcal{I},\mathcal{L}_{-,-}\mathcal{I})$ t.w. a factorization system (E, M)

Examples:





(a) Arities:

$$n \in W = FinSet = Set$$
 $(p(x_1, -, x_n), A \in St_2(\Sigma)$ 
 $(p(x_1, -, x_n), A \in St_2(\Sigma))$ 
 $(p(x_1, -, x_n), A \in St_2(\Sigma$ 

(ii) 
$$Tozumlas$$

a)  $(v = \tau)$ 

b)  $R(\tau)$ 

c)  $\varphi \wedge \psi$ 

d)  $\exists y \varphi(x,y)$ 

$$(\nabla = \tau)_{A} \rightarrow A$$

$$R(\tau)_{A} \rightarrow A$$

A ∈ St2 (11)

(ii) Formulas

$$A \in St_{2}(L)$$

$$(\nabla = \nabla)_{A} \rightarrow A \rightarrow A$$

$$R(\nabla)_{A} \rightarrow A \rightarrow A$$

$$R(\nabla)_{A} \rightarrow A \rightarrow A$$

$$R_{A} \rightarrow A \rightarrow A$$

$$(\varphi_{A} + \varphi_{A}) \rightarrow A \rightarrow A$$

$$\varphi(x,y) := \exists p : [0,1] (p(0) = x) \land (p(1) = y)$$

$$\varphi(x,y) := \exists p : [0,1] (p(0) = x) \land (p(1) = y)$$

Examples

I) y = Met

$$\varphi(x,y) := \exists p : [0,1] (p(0) = x) \land (p(1) = y)$$

q holds 
$$\forall x,y \in M$$
  $\epsilon_1$  in  $M$   $\forall \epsilon_2 o$ 

Gxamples

arities C = (C, 1.1), t > 0  $C_t = (C, t.1-1) \in Ban$ 

idea: 
$$\forall x : C_t, \dots$$
  $\forall x, u \times u \leq t, \dots$ 

so we can express: " | x + y | 2 < | x | 4 | y | 2 | by formulas

arities 
$$C = (C, 1.1)$$
,  $t>0$   $C_t = (C, t.1.1) \in Ban$ 

idea: 
$$\forall x : C_t$$
, ... "

so we can expres:  $||x + y||^2 \le ||x||^2 + ||y||^2$  by formulas

 $\forall x: C_{p}, \forall y: C_{q} \exists z: C_{\gamma p^{2}+q^{2}} (z = x+y)$ 

for 
$$p,q \in \mathbb{Q}$$
  $(p^2+q^2 \leq 1)$ 

3) Presentation formulas Given a language 1/2 and the V-category Str (1/2) want to characterize the subcategories of the form Mod (T) (\_> Stz(L), where I is given by a contain Kind of sequents Q+Y 3) Presentation formulas Given a language 1/2 and the V-category Str (1/2) want to characterize the subcategories of the form Mod (T) \_\_\_ > Stz(IL), where I is given by a contain Kind of sequents Q+Y S need Say that  $\varphi(x)$  presents  $A \in St_2(\mathbb{L})$  if for any  $B \in St_2(\mathbb{L})$ A —B

3) Presentation formulas

Given a language 1/2 and the V-category Str (1/2) want to characterize the subcategories of the form Mod (T) \_ > Stz (IL), where I is given by a contain Kind of sequents Q + y \ nead Say that  $\varphi(x)$  presents  $A \in St_2(L)$  if

 $St_2(I)(A, -) \cong \varphi_{(-)} : St_2(I)$ 

$$B \longrightarrow \varphi_{B}$$

4) Not everything works as usual:

$$\exists y (\varphi(x) \times \psi(x,y)) \equiv \varphi(x) \wedge \exists y \psi(x,y)$$

- Frobenius rule holds ordinavily 4) Not everything works as usual:

 $\exists y (\varphi(x) \land \psi(x,y)) \vdash \varphi(x) \land \exists y \psi(x,y)$ 

· I need not hold (runless & as pullback stable)

this affected the notion of regular theory:

· problem when doing substitution and nested exist. quantification

| 4) | Not everyth   | ing works         | as usu   | al:      |            |                  |               |
|----|---------------|-------------------|----------|----------|------------|------------------|---------------|
|    | 7y (q         | P(X) X Y(X        | ((()     | <b>—</b> | p(x) A Zy  | yex,y)           |               |
|    | • Theed       | not hold (        | wess     | E us pul | Clock stab | le )<br>exist qu | antification. |
|    | this affected |                   |          |          |            |                  |               |
| -  | Dof: A        | (∀ <sub>×</sub> ) | (p(x)    | H 3 y    | ( q cx ) ^ | ψc×,y))          | the           |
|    | I with eq     | ou y              | conjunct | ious of  | atomic for | mulas.           |               |

We prove: Theorem: The following are equivalent for A = StaCL): 1) A = Mod(T) for a regular theory T. iii) A = H-14 & is an &-nectivity class

In nicer cases, covering the examples mentioned before, we prove

Theorem: The following are equivalent for  $A \subseteq S-1_2(L)$ :

1) A = Mod(T) for a regular theory T.

1) A = Mod(T), where the sequents in T are of the form

1) A = Mod(T), where the sequents in T are of the form

1) A = Mod(T), where  $A \subseteq S-1_2(L)$ :

2) A = Mod(T), where  $A \subseteq S-1_2(L)$ :

2) A = Mod(T), where  $A \subseteq S-1_2(L)$ :

3) A = Mod(T), where  $A \subseteq S-1_2(L)$ :

4) A = Mod(T), where  $A \subseteq S-1_2(L)$ :

4)  $A \subseteq Mod(T)$ , where  $A \subseteq S-1_2(L)$ :

4)  $A \subseteq Mod(T)$ , where  $A \subseteq S-1_2(L)$ :

4)  $A \subseteq Mod(T)$ , where  $A \subseteq S-1_2(L)$ :

4)  $A \subseteq Mod(T)$ , where  $A \subseteq S-1_2(L)$ :

4)  $A \subseteq Mod(T)$ , where  $A \subseteq S-1_2(L)$ :

4)  $A \subseteq Mod(T)$ , where  $A \subseteq S-1_2(L)$ :

4)  $A \subseteq Mod(T)$ , where  $A \subseteq S-1_2(L)$ :

4)  $A \subseteq Mod(T)$ , where  $A \subseteq Mod(T)$  is  $A \subseteq Mod(T)$ .

iii) A = H-11y & is an &-Injectivity class.

\* IV) A is closed nucley products, powers by & stable dejects.

(λ-) filtered colimits, and (λ-) elementary subobjects.

\* V) A is accessible and closed under the constructions in (IV)

Condunion: Enriched V- Cats of models Tragment of Logic we define fragments of logic that present Fin. Varieties (T=T) V-categories See: Loc. fin. Peer. 1 Towards enzidud muiversal algebra LT=T), R(T), A, ]. On curicled terms and 2-dimensional nuivez sal algebra finite &-mechiny classes  $(\sigma=\tau)$ ,  $R(\tau)$ ,  $\Lambda$ ,  $\exists$ ② requests of 2 Euriched concepts of regular logic (U=T), R (T), A, V, -]
requests of finite cone & my. 3 Euridue al possitive logic