		chemical composition/%				
Grade	silicon	aluminum	phosphorus	sulfur	carbor	
			€			
FeSi75A10.5-A	75.0-80.0	0.5	0.04	0.02	0.1	
FeSi75A10.5-B	72.0-80.0	0.5	0.04	0.02	0.1	
FeSi75A11.5-A	75.0-80.0	1.5	0.04	0.02	0.2	
FeSi75A11.5-B	72.0-80.0	1.5	0.04	0.02	0.2	
FeSi75A12.0-A	75.0-80.0	2.0	0.04	0.02	0.2	
FeSi75A12.0-B	72.0-80.0	2.0	0.04	0.02	0.2	
FeSi75-A	75.0-80.0	2.0	0.04	0.02	0.2	
FeSi75-B	72.0-80.0	2.0	0.04	0.02	0.2	
FeSi65	65.0-72.0	2.0	0.04	0.02		
FeSi45	40.0-47.0	2.0	0.04	0.02		

N	Si	Fe	0	Bulk density (g.cm-3)
			≤	≥
28-31	47-52	12-17	2.0	3.6

Remarks:1.The products are applicable to stainless steel smelting, special alloy smelting, special refractory materials, defense industry, electronic industry, casting industry, etc.

2. Adjust ingredients and granularity according to user's requirements.

	Chemical Composition %				
Туре	Si	Ва	Ca	Al	Fe
	2		8	≤	
Si-Fe Inoculant	70			2.0	Balance
Si-Ba Inoculant	70	1-3	1-2	2.0	Balance
Si-Ba-Ca Inoculant	60	1-6	1-3	2.0	Balance

	Chemical C	omposition%
Туре	SiC	F.C
	≥	≤
SiC98.5	98.5	0.2
SiC98	98	0.3
SiC97	97	0.3
SiC95	95	0.4
SiC90	90	0.6
SiC70	70	3
SiC65	65	5
SiC60	60	10
SiC55	55	10
SiC45	45	12

Ferro Silicon, Inoculant, Silicon Carbide, Ferro Silicon Nitride

Ferrochrome Nitride

	Chemical Compositions (%)					
Grade	Cr	N	Si	С	S	Р
	≥ (Min) ≤ (Max		Max)			
FeCrN4		4.0				
FeCrN5		5.0				
FeCrN6	60	6.0	1 50	0 0. 10 0. 04 0	0.04	0.04
FeCrN7	60	7.0	1.50	0.10	0.04	0.04
FeCrN8		8.0				
FeCrN9		9.0				

In total, I need about 20 tons, how are these priced? How long will it take to get these to Cuba? What certifications do you have to validate the quality?