

UE 2: Apprentissage, Intelligence Artificielle et Optimisation

kaggle

Prédiction de la structure secondaire des ARNm

AGSOUS Salim, FAUCHOIS Antoine, HOLO Donovan et YOUJIL ABADI Souad

Master 2 Biologie-Informatique

Vendredi 27 octobre 2023

Sommaire

1. Introduction

- Vaccin contre la COVID-19, une approche innovante qui ouvre la voie vers une nouvelle génération de thérapie
- Biochimie structurale des ARN, quelques rappels
- Détermination expérimentale des structures secondaires des ARN

2. Matériels et méthodes

- Présentation des données
- Méthodologie d'analyses exploratoires
- Les séquences d'ARN sont-elles suffisamment informatives
- Méthodologie du features engineering
- Structure des réseaux élaborés

4. Résultats et discussions

- Résultats des analyses exploratoires
- Performances des modèles sur un sous échantillon
- Apprentissage partiel sur le jeu complet

5. Conclusion

Vaccin contre la COVID-19, une approche innovante qui ouvre la voie vers une nouvelle génération de thérapie

- Concept pensé par Katalin Karikó (prix Nobel de la médecine 2023)
- Injection d'un ARNm codant pour la synthèse d'un antigène spécifique d'un agent pathogène
- Induit ensuite une réponse immunitaire adaptative
- Vaccin COVID-19 (Pfizer/BioNtech et Moderna): 96 millions de doses injectées en France (source: covidtracker.fr)
- De nouveaux projets de vaccins à ARNm: Zika, Cancer ou encore le VIH!

Une technologie innovante, avec des inconvénients:

- > Encapsulation lipidique nécessaire
- Stabilité des ARN

Biochimie structurale des ARN, quelques rappels

Composition des ARI

Différents types d'ARN

- Transcription des ADN codants
- Traduits en protéine

ARNr

 Eléments structurants des ribosomes

ARNt

Comportent un anti-codon avec un acide aminés spécifiques

Éléments de structure secondaire

 Essentiellement dirigée par des motifs répétés et inversés

Détermination expérimentale des structures secondaires des ARN

SHAPE seq

Une méthode chronophage et coûteuse

phage et coûteuse

OH

OH

OH

NH2

2A3

DMS

$$^{2'}HO - (RNA)_{constrained} \leftrightarrow ^{2'}HO - (RNA)_{flexible} \rightarrow 2A3/DMS-O-(RNA)$$

Kaggle Stanford Ribonanza RNA Folding

Train_data.csv (2,37 Gb)

- Sequence_id: ID des séquences d'ARN
- Sequence: séquence d'ARN
- Experiment_type: réactif de sondage utilisé (DMS ou 2A3)
- Dataset name: nom de la base de données
- Reads: nombre de reads ségeuncés
- Signal_to_noise: rapport signal sur bruit de fond
- SN_filter: booléen sur la qualité du séquençage (reads et rapport signal sur bruit de fond)
- Reactivity_0001 à reactivity_0206: réactivités pour les positions n°1 à n°206 (longueur maximale)
- Reactivity_error_0001 à reactivity_error_0206: erreurs des réactivités pour les positions n°1 à n°206

Méthodologie d'analyses exploratoires des données

Analyses statistiques

- paramètres de tendances centrales et de dispersion sur les réactivités, signal bruit de fond et nombre de reads
- tableau de contingence des variables SN filter et experiment type
- Comptages des séquences par base de données

Recherche des valeurs manquantes

- Visualisation des séquences
- tSNE appliqué sur les distances entre les séquences réencodés (analyse par base de données)

Les séquences d'ARN sont-elles suffisamment informatives?

L'outil AlphaFold repose entre autres sur l'utilisation d'une carte de contact

Probabilités d'appariement des bases estimées avec Eternafold utilisable via la librairie Arnie

Méthodologie du features engineering

Analyse par database

1) Jointure complète pour conserver les séquences avec des réactivités en DMS et 2A3

2) Trimming des séquences en fonction des réactivités

3) Sequence encoding and padding

{N:0, A:1, U:2, G:3, C:4}

4) Calcule des cartes de contact ou matrice des probabilités d'appariement (Eternafold)

5) Flat des cartes de contacts

6) Assemblage du dataset final

Structure des réseaux élaborés

- a) Vue d'ensemble des structures de réseaux envisagées
- > Il existe un lien de dépendance des réactivités entre les bases
- L'utilisation d'un Recurrent Neural Network (RNN) est privilégiée

Réseaux se basant sur les séquences d'ARN

- RNN à LSTM
- RNN à GRU

Réseaux se basant sur les séquences et les cartes de contact l

- RNN à LSTMs combiné à un CNN
- RNN à GRUs combiné à un CNN

Réseaux inspirés du concours OpenVaccine

- RNN à LSTM combiné à un CNN avec un multihead attention
- RNN à GRU combiné à un CNN avec un multihead attention

CNN: <u>Convolutional</u> <u>Meural</u> <u>Metwork</u> LSTM: <u>Long</u> <u>Short</u> <u>Term</u> <u>Memory</u> GRU: <u>Gated</u> <u>Recurrent</u> <u>Unit</u>

Structure des réseaux élaborés

Le nombre de paramètres explosent assez vite

LSTM: **L**ong **S**hort **T**erm **M**emory GRU: **G**ated **Recurrent U**nit

towardsdatascience.com

Utilisation d'un système de portes

Éviter le sur-apprentissage

Early stopping

- Interruption de l'apprentissage dès le début du sur-apprentissage
- Contrôle glissant sur 5 epochs

- Fixation aléatoire de paramètres aux valeurs nulles
- > Fixé à 20%

Batch normalization

Normalisation batchs

Structures détaillées des réseaux c) Réseaux se basant uniquement sur les séquences

Structures des réseaux élaborés

d) Réseaux se basant sur les séquences et les cartes de contact

Choix de l'optimisateur et des hyperparamètres

- Optimisateur: Adam
- Batch size: 100
- Learning rate: 0,001
- Loss function utilisée:

$$loss = \sum_{i=1}^{n} \sum_{j=1}^{p} (reactivity_{i,j} - N_w(sequence)_{i,j})^2$$

L2

> Autre métrique utilisée:

mean absolute error =
$$\sum_{i=1}^{n} \sum_{j=1}^{p} |reactivity_{i,j} - N_w(sequence)_{i,j}|$$

L1

2.00

Métrique d'évaluation de Kaggle

Résultats des analyses exploratoires des données

Répartition des séquences par base de données et par expérimentation

Valeurs de réactivités manquantes

177 - 95.42% (1568354)

170 - 1.83% (30000)

115 - 1.66% (27290)

155 - 0.79% (13038)

206 - 0.30% (4998)

Longueurs des séguences

tSNE sur une base de données

764 117 séquences après nettoyage du train

Performances des modèles a) Modèles se basant uniquement sur les séquences

Performances sur un sous échantillon

- Pas de sur/sous apprentissage
- Pas de différence flagrante de performances
- Modèle GRU plus « léger »
- En revanche, jeu de validation peut-être pas suffisamment représentatif

Modèle	Nombre de paramètres		
Modèle n°1: LSTM	2 818 290		
Modèle n°2: GRU	2 814 258		

Performances des modèles b) Modèles se basant sur les séquences et les cartes de contacts

- Surapprentissage (early stopping à 6 epoch)
- Une nouvelle fois, problème de représentativité de l'échantillon de validation

Modèle	Nombre de paramètres
Modèle n°3: LSTM + CNN	142 760 328
Modèle n°4: GRU +CNN	142 759 336

Performances des modèles c) Modèles inspirés du concours OpenVaccine

- Même remarques que pour les modèles n°1 et n°2
- Modèles plus légers que les n°3 et n°5
- ➤ Meilleure apprentissage que les autres modèles (MAE = 1,20 à l'epoch 10 sur le le NR2)

Modèle	Nombre de paramètres		
Modèle n°3: NR 1	27 292 708		
Modèle n°4: NR2	27 162 148		

Apprentissage partiel sur le jeu complet

Modèles	Epoch	Batch	Loss	Mean absolute error
Modèle n°1 LSTM	1	2902	5516,54	29,59
Modèle n°2 GRU	1	3114	5314,89	24,12
Modèle n°3 LSTM + CNN	1	17	364153,84	424,64
Modèle n°4 GRU + CNN	1	110	76344,67	128,43
Modèle n°5 NR1	1	2904	1268,62	4,20
Modèle n°6 NR2	1	1262	3211,80	8,34

Snapshot des apprentissages des différents modèles

Un apprentissage chronophage sur l'ensemble des données

CONCLUSIONS

- > Apprentissage sur un sous échantillon
- Manque de représentativité du jeu de validation
- Modèles GRU/LSTM simple manquent de performances
- Modèles GRU/LSTM combinés à un CNN comporte beaucoup de paramètres => sur-apprentissage
- Modèles NR1/NR2 possèdent à priori les meilleures performances et sont plus légers que les modèles GRU/LSTM combinés à un CNN
- Apprentissage sur le jeu complet
- Manque de ressources computationnelles
- Pour aller plus loin:
- Apprentissage sur jeu de données complet
- Utilisation d'une validation croisée

CONCLUSIONS

Compétences acquises:

- Prise en main de Tensorflow et Keras
- Connaissances plus approfondies sur le Machine Learning
- Utilisation d'un cluster de calcul
- Manipulation de fichiers volumineux avec les générateurs

Difficultés rencontrées:

- Entraînement des modèles chronophages
- Manipulation des générateurs pour alimenter les modèles

Bibliographie

- 1. Thérapies à ARN · Inserm, La science pour la santé. (s. d.). Inserm. https://www.inserm.fr/dossier/therapies-a-arn/
- 2. Contributeurs aux projets Wikimedia. (2023, 8 janvier). *Structure de l'ARN*. https://fr.wikipedia.org/wiki/Structure_de_1%27ARN#:~:text=La%20structure%20secondaire%20d'un,r%C3%A9gions%20non%20appari%C3%A9es%20(boucles)

