1)

a.

$$x_{EG}^{F} = 0.20$$

 $x_{W}^{F} = 0.80$
 $x_{EG}^{R} \le 0.05$
 $F = 350 \text{ kg/hr}$
 $S = 100 \text{ kg/hr}$
(pure)

Solve:

Solving for the mixture composition ($[m_i] = kg/hr$),

Comp.	F		S		M	
	m_{i}	X_i	m_{i}	X_i	m_{i}	X_i
EG	70	0.20	0.00	0.00	70	0.156
W	280	0.80	0.00	0.00	280	0.622
f	0	0.00	100	1.00	100	0.222
Tot.	350	1.00	100	1.00	450	1.00

From this, the F, S, and M composition points may be plotted on the Gibbs triangle for the system along with the desired R_N composition. The material balances around the column dictate that E_1 , R_N , and M compositions lie on the same line. Thus, we draw a line through R_NM and find its intersection with the equilibrium curve (E_1 exits in equilibrium). Additionally, consider the material balance around the entire column,

$$F + S = E_1 + R_N.$$

Meaning,

$$\Delta = F - E_1 = R_N - S = R_i - E_{i+1},$$

for any stage, i. Therefore, all passing streams must intersect at Δ . By drawing the lines through FE_1 and R_NS , we may extract Δ . From this, the composition is found by stepping between the tie lines and operating point.

Figure 1: Gibbs triangle for a EG-W-f system

The compositions may be read off the diagram ($[m_i] = \text{kg/hr}$).

Comp.	M		E		R	
	m_{i}	X_i	m_{i}	X_i	m_{i}	X_i
EG	70	0.156	53.7	0.360	9.93	0.033
W	280	0.622	10.4	0.070	268	0.890
f	100	0.222	85.0	0.57	23.5	0.078
Tot.	450	1.00	149	1.00	301	1.00

Since the compositions are known from the Gibbs triangle. We may solve for R_N and E_1 using any component balance. This forms a linear system,

$$M = E_1 + R_N,$$

$$x_i^M M = x_i^E E_1 + x_i^R R_N,$$

whose solution gives a lever rule like expression,

$$\frac{R_N}{M} = \frac{x_i^M - x_i^E}{x_i^R - x_i^E}.$$

Applying this to all of the components gives 3 different values for R_N ,

$$({\rm EG,W,f}) \to R_N = (281,303,318)~{\rm kg/hr},$$

Taking the average gives,

$$R_N = 301 \text{ kg/hr}$$

Since $E_1 = M - R_N$,

$$E_1 = 149 \text{ kg/hr}.$$

b.

From the diagram, there are 2 tie lines, thus, at least N = 2 stages are required.

c.

Reading from the E_2 point on the diagram,

$$(x_{EG}, x_W, x_f)_{E_2} = (0.11, 0.05, 0.85),$$

which sums to 1.01. By distributing the 0.01 error,

$$(x_{EG}, x_W, x_f)_{E_2} = (0.107, 0.047, 0.846)$$