## **Supporting Information**

# Is Your Henderson-Hasselbalch Calculation of Buffer pH Correct?

### Charles A. Lucy\*

Department of Chemistry, University of Alberta, Gunning/Lemieux Chemistry Centre, Edmonton, AB Canada T6G 2G2 and Department of Chemistry, University of Victoria, Victoria, BC Canada V8P 5C2

\*Corresponding Author Email: charles.lucy@ualberta.ca

#### **Contents**

| <b>Figure S1</b> . Error in pH calculated for acidic (p $K_a \le 7$ ) for 0.1, 0.01 and 0.001 M           |    |
|-----------------------------------------------------------------------------------------------------------|----|
| buffers                                                                                                   | .2 |
| <b>Figure S2</b> . Error in pH calculated for acidic (p $K_a \le 7$ ) buffers by p $K_a$                  | .3 |
| <b>Figure S3</b> . Error in pH calculated for alkaline (p $K_a \le 7$ ) buffers for 0.1, 0.01 and 0.001 M |    |
| buffers                                                                                                   | 4  |
| <b>Figure S4</b> . Error in pH calculated for acidic (p $K_a \le 7$ ) buffers by p $K_a$                  | 5  |
| <b>Figure S5</b> . Heat map of error in pH calculated for acidic (p $K_a \le 7$ ) buffers across the      |    |
| buffering range if the Henderson-Hasselbalch approximation (Equation 8) is used                           | 5  |
| <b>Figure S6</b> . Heat map of error in pH calculated for alkaline ( $pK_a \ge 7$ ) buffers across the    |    |
| buffering range if the Henderson-Hasselbalch approximation (Equation 8) is used7                          |    |
| <b>Table S1.</b> Validation of Equations 11 and 13.    8                                                  | ;  |
| Python script for pH calculation9                                                                         |    |



**Supplementary Figure S1**. Error in pH calculated for acidic (p $K_a \le 7$ ) across the buffering range using the Henderson-Hasselbalch approximation (Equation 8) versus the correctly calculated pH (Equation 11) for 0.1, 0.01 and 0.001 M solutions. The 0.01 M buffer figure (Figure 1) is reproduced here for comparison.



**Supplementary Figure S2**. Error in pH calculated for acidic (p $K_a \le 7$ ) buffers across the buffering range using the Henderson-Hasselbalch approximation (Equation 8) versus the correctly calculated pH (Equation 11) for 0.1, 0.01 and 0.001 M solutions.



**Supplementary Figure S3**. Error in pH calculated for alkaline (p $K_a \le 7$ ) buffers across the buffering range using the Henderson-Hasselbalch approximation (Equation 8) versus the correctly calculated pH (Equation 13) for 0.1, 0.01 and 0.001 M solutions. The 0.01 M buffer figure (Figure 2) is reproduced here for comparison.



**Supplementary Figure S4**. Error in pH calculated for alkaline (p $K_a > \le$ ) buffers across the buffering range using the Henderson-Hasselbalch approximation (Equation 8) versus the correctly calculated pH (Equation 13) for 0.1, 0.01 and 0.001 M solutions.



**Supplementary Figure S5**. Heat map of error in pH calculated for acidic (p $K_a \le 7$ ) buffers across the buffering range if the Henderson-Hasselbalch approximation (Equation 8) is used. Color scale: | error | > 0.20 is red; > 0.05 is yellow; and < 0.05 is blue. The 0.01 M heat map is the same as Figure 3.



**Supplementary Figure S6**. Heat map of error in pH calculated for alkaline (p $K_a \ge 7$ ) buffers across the buffering range if the Henderson-Hasselbalch approximation (Equation 8) is used. Color scale: | error | > 0.20 is red; > 0.05 is yellow; and < 0.05 is blue.

Table S1. Validation of Equations 11 and 13<sup>a</sup>

| Buffer                  | F <sub>HA</sub> or F <sub>BH</sub> <sup>+</sup> (M) | F <sub>A</sub> - or<br>F <sub>B</sub> (M) | pK <sub>a</sub> | pH (Eq. 11<br>or <i>13</i> ) <sup>b</sup> | pH by<br>GoalSeek <sup>c</sup> | "pH" by<br>CurTiPot <sup>a</sup> | pH by CurTiPot <sup>a</sup> (with activity) |
|-------------------------|-----------------------------------------------------|-------------------------------------------|-----------------|-------------------------------------------|--------------------------------|----------------------------------|---------------------------------------------|
| Phosphate (p $K_{a1}$ ) | 0.050 0                                             | 0.0500                                    | 2.148           | 2.247                                     | 2.247                          | 2.247                            | 2.193                                       |
|                         |                                                     |                                           | $(pK_{a1})$     |                                           |                                |                                  |                                             |
| Chloroacetate           | 0.030 0                                             | 0.0100                                    | 2.865           | 2.541                                     | 2.541                          | 2.541                            | 2.504                                       |
| Citrate (p $K_{a1}$ )   | 0.017 5                                             | 0.002 5                                   | 3.128           | 2.632                                     | 2.632                          | 2.627                            | 2.610                                       |
|                         |                                                     |                                           | $(pK_{a1})$     |                                           |                                |                                  |                                             |
| Acetate                 | 0.004 0                                             | 0.001 0                                   | 4.757           | 4.189 (11)                                | 4.189                          | 4.189                            | 4.125                                       |
|                         |                                                     |                                           |                 | 4.155 (13)                                |                                |                                  |                                             |
| Phosphate (p $K_{a2}$ ) | 0.000 1                                             | 0.000 9                                   | 7.199           | 8.147 (13)                                | 8.147                          | 8.146                            | 7.916                                       |
|                         |                                                     |                                           |                 | 8.153 (11)                                |                                |                                  |                                             |
| Ammonia                 | 0.000 3                                             | 0.002 7                                   | 9.244           | 10.044 (13)                               | 10.044                         | 10.043                           | 10.080                                      |
|                         |                                                     |                                           |                 | 10.198 (11)                               |                                |                                  |                                             |
| CAPS                    | 0.002 0                                             | 0.008 0                                   | 10.50           | 10.908                                    | 10.908                         | 10.907                           | 10.828                                      |

- a.  $pK_a$  and right most columns from CurTiPot\_xlsm (). Value reported is "pH" (cell B25) which is uncorrected for the activity coefficient. Cell B23 provides the pH including activity effects.
- b. Normal font indicates Equation 11 was used; italic font indicates Equation 13 was used.
- c. D. C. Harris and C. A. Lucy, *Quantitative Chemical Analysis*, 10<sup>th</sup> edition, 2020, W. H. Freeman and Company. Page 212 shows use of Excel's GoalSeek function.

#### **Python Script for pH Calculation**

(Provided by Dr. Shuai Sun, Department of Chemistry, Kansas University, Nov. 23, 2023.)

Copy the script in pH\_calculation.py using any regular text editor and paste the script to an online Python compiler, such as <a href="https://www.programiz.com/python-programming/online-compiler/">https://www.programiz.com/python-programming/online-compiler/</a> or <a href="https://www.online-python.com/">https://www.online-python.com/</a> (tested Nov. 25, 2022).

Once you run the script, it will ask you to input the  $pK_a$  and formal concentrations, and then provide the pH based on Equation 11 for acidic buffers or Equation 13 for alkaline buffers, the pH calculated by the Henderson-Hasselbalch approximation, and the magnitude of  $[H^+]$  or versus HA and A<sup>-</sup> or  $[OH^-]$  versus  $[BH^+]$  and [B].

#### **Script**

```
# Online Python compiler (interpreter) to run Python online.
# Write Python 3 code in this online editor and run it.
import math
pKa = float(input("What is the value of pKa?"))
Ka = 10**(-pKa)
Kw = 10**(-14)
if pKa < 7:
HA = float(input("What is the formal concentration of HA?"))
A = float(input("What is the formal concentration of A-?"))
T = HA + A
pH = -math.log10((-A-Ka+math.sqrt((A+Ka)**2+4*(HA*Ka)))/2)
pHHH = pKa + math.log10(A/HA)
HHH = 10**(-pHHH)
print ("True pH =", round(pH, 2))
print ("Henderson-Hasselbalch approximation pH =", round(pHHH, 2))
print ("[H+] HH/F HA =", round(HHH*100/HA, 1), "%")
print ("[H+] HH/F A-=", round(HHH*100/A, 1), "%")
else:
BH = float(input("What is the formal concentration of BH+?"))
B = float(input("What is the formal concentration of B?"))
T = BH + B
pH = -math.log 10((BH*Ka+Kw+math.sqrt((BH*Ka+Kw)**2+4*(B*Ka*Kw)))/(2*B))
pHHH = pKa + math.log10(B/BH)
HHH = 10**(pHHH-14.0)
print ("True pH =", round(pH, 2))
print ("Henderson-Hasselbalch approximation pH =", round(pHHH, 2))
print ("[H+] HH/F HA =", round(HHH*100/BH, 1), "%")
print ("[H+] HH/F A-=", round(HHH*100/B, 1), "%")
```

## Example input and output for 0.0175/0.0025 M citrate buffer:

What is the value of pKa?3.128 What is the formal concentration of HA?0.0175 What is the formal concentration of A-?0.0025 True pH = 2.63 Henderson-Hasselbalch approximation pH = 2.28 [H+]\_HH/F\_HA = 29.8 % [H+]\_HH/F\_A- = 208.5 %