De viktigaste beteckningarna

 \boldsymbol{n} replikat, anger hur många observationer det är i stickprovet

 $x_1, x_2, ..., x_n$ stickprovets värden

 \bar{x} (stickprovs-)medelvärdet

 s^2 (stickprovs-)variansen

s (stickprovs-)standardavvikelsen

A, B, C betecknar händelser

 \bar{A} komplementhändelsen till händelsen A

P(A) sannolikheten att händelsen A inträffar

P(A|B) sannolikheten att händelsen A inträffar givet att B har inträffat

X,Y,W,Z beteckningar för slumpvariabler

 X_1, X_2 beteckningar för slumpvariabler

f(x) sannolikhetsfunktionen P(X = x) = P(resultatet av försöket är x) för en diskret slumpvariabel

f(x) täthetsfunktionen för en kontinuerlig slumpvariabel

F(x) fördelningsfunktionen $P(X \le x) = P(\text{resultatet av försöket är mindre än eller lika med x}) fungerar både för diskret och kontinuerlig slumpvariabel$

 μ (populations-)medelvärde, betecknas även E(X)

 σ^2 (populations-)varians, betecknas även V(X)

 σ (populations-)standardavvikelse

p sannolikhet att lyckas i ett enskilt försök

 $p_1, p_2, ..., p_k$ sannolikheter att lyckas i ett enskilt försök

X Bin(n, p) binomialfördelning med n försök och sannolikheten p att lyckas

x antal lyckade försök (i Kap 8)

 $X~N(\mu,\sigma^2)$ normalfördelning med medelvärdet μ och variansen σ^2

SE medelfel, definieras lite olika beroende på om variansen är känd eller ej och beroende på om man har ett eller två stickprov

 \hat{p} beteckning för en estimator (en skattning), t.ex. $\hat{\mu} = \bar{x}$

df degrees of freedom, frihetsgrader

 α signifikansivån, vanligen bestämd till 0.05 (fem procent)

 $t_{(1-\alpha/2,df)}$ kvantil från en t-fördelning med df frihetsgrader (Tabell 5)

 H_0 nollhypotesen

 H_1 mothypotesen, alternativhypotesen

 μ_0 det hypotetiska medelvärde som finns i nollhypotesen

 p_0 den hypotetiska sannolikhet för att lyckas som finns i nollhypotesen

z testvärdet när variansen är känd och för binomialfördelning i Kap8

t testvärdet när variansen inte är känd sedan tidigare

p-värdet avgör om nollhypotesen skall förkastas (om p-värdet är mindre än a)

```
\bar{d}, s_d^2, \mu_d beteckningar vid matchning
```

 \bar{x}_1, \bar{x}_2 stickprov
smedelvärdena vid två stickprov

 s_1^2, s_2^2 stickprovsvarianserna vid två stickprov

 μ_1, μ_2 populationsmedelvärdena vid två stickprov

 σ_1^2, σ_2^2 populationsvarianserna vid två stickprov

 O_i, O_{ij} observerade värden (Kap 9)

 E_i, E_{ij} förväntade värden (Kap 9)

 p_{ij} sannolikheter i några av testen i Kap 9

 χ^2 testvärdet för testen i Kap9

 $\chi^2_{(1-\alpha,dt)}$ kvantil från en χ^2 -fördelning med df frihetsgrader (Tabell 6)

r,kantalet stickprov (rader) resp
 kategorier (kolumner) i Kap $9\,$

 y_{ij} observationerna i Kap 10

 \bar{y}_i . medelvärdet av behandling Ai

 α_i behandlingseffekt i Kap10

a antalet behandlingar (Kap 10)

 β_i blockeffekt i Kap 10

b antalet block (Kap 10)

F teststorheten för ANOVA-tabeller (Kap 10 och 11)

 $F_{(1-\alpha,df_1,df_2)}$ kvantil för en F-fördelning med df_1 resp df_2 frihetsgrader (Tabell 8-10)

SS kvadratsummor (Kap 10) med index T, A, Block resp e.

MS medelkvadratsummor (Kap 10) med index T, A, Block resp e.

 (x_i, y_i) observationerna i Kap 11

 β_0 intercept i regression i Kap 11 (det som i gymnasiematematiken var m)

 β_1 lutningskoefficient i regression i Kap 11 (det som i gymnasiet var k)

 R^2 värdet som anger om anpassningen till linjen är bra (Kap 11)

r korrelationskoefficienten beräknad i stickprovet (Kap 11)

 ρ korrelationskoefficienten i populationen (Kap 11)