Контрольное домашнее задание (CW) Алгоритмы и структуры данных 2020

Invisible Join

Авторы задания: команда курса «Алгоритмы и структуры данных 2020». Вопросы по заданию направлять:

Бузулуков Алексей Максимович ambuzulukov@edu.hse.ru
или в канал MS Teams "Контрольное домашнее задание CW"

Отправка решения

Результатом решения должен быть один файл на языке C# (.cs), а также файлы тестов (входные и выходные данные). Именно файл на языке C# (.cs) и тесты будут оцениваться. Решение нужно загрузить в LMS в проект **Контрольное домашнее задание СW** по дисциплине Алгоритмы и структуры данных 2020 уч. год Б 2 курс (код 131940, ОП: М090304ПИНЖ)

При выявлении плагиата будет выставлена оценка 0 баллов

Дедлайн. 22 октября 2020 г. 23:59 МСК

Пожалуйста, загружайте решения заранее, чтобы не возникало технических препятствий в последний момент. Время на сервере LMS и Вашем устройстве может отличаться. Пожалуйста, настройте доступ в ЛМС (даже если Вы проходите курс по ИУП): архивы с решениями не принимаются по электронной почте.

Что нужно сделать?

- 1. Задание разбито на 3 уровня сложности. Выберите только один уровень сложности. Выполнение более сложной задачи не гарантирует автоматически более высокую оценку.
- 2. Решите задание (один файл .cs).
- 3. Напишите 5 своих тестов (пары файлов входных и выходных данных) к задаче, пронумеруйте их соответственно. Разместите файлы с входными данными в директории input, а с выходными в директории output.
- 4. Создайте директорию с решением по шаблону <Фамилия и Имя>_<группа>_<уровень>, например BuzulukovAlexey_161_3. Разместите внутри нее директории input и output с тестами и один файл .cs с решением задачи. Внимание: номер выбранного Вами уровня задания находится в имени директории (в примере BuzulukovAlexey_161_3 это уровень 3).
- 5. Упакуйте корневую директорию (BuzulukovAlexey_161_3) в zip-архив и отправьте в LMS (размер файла должен быть не более 1МБ).

Внимание: не публикуйте свое решение в открытом доступе, например на GitHub либо в других открытых источниках. Это действие будет приравниваться к плагиату и повлечет за собой оценку 0 баллов за домашнее задание (в том числе при обнаружении такового факта уже после выставления оценки).

Мотивация

В эпоху Data Science данные являются ключевым инструментом для работы бизнеса и их объем растет экспоненциально. Данные загружаются в хранилища, причем в специальном виде, т.к. их организация напрямую влияет на эффективность последующей работы. Один из самых популярных способов организации таблиц данных - схема типа "Звезда" (Star Schema). В ней имеется одна главная таблица фактов (Fact Table), хранящая наблюдения и события, и таблицы измерений (Dimension Table), описывающие бизнес-сущности, связанные с главной таблицей фактов через столбец уникальных ключей. Запросы направляются к таблице фактов, применяя различные фильтрации по данным из таблиц измерений или таблицы фактов. Таким образом, таблицы соединяются (Join) в одну, по которой и будут применены указанные фильтры. Но в эпоху больших данных такие соединения таблиц бывают сильно время- и ресурсозатратные, поэтому изобретают все новые алгоритмы реализации соединений таблиц. Один из них - Invisible Join, который применяется во многих современных СУБД.

Вам, как программным инженерам, необходимо реализовать этот алгоритм, чтобы помочь аналитикам быстрее получать ответы на их запросы к хранилищу, основываясь на имеющейся модели данных.

Модель данных задания

Данные основаны на датасете *AdventureWorksWH*, опубликованные Microsoft в своем репозитории по лицензии MIT: https://github.com/microsoft/sql-server-samples.

Adventure Works Cycles - вымышленная компания, которая производит и продает велосипеды на коммерческих рынках Северной Америки, Европы и Азии. Компания стремится расширить свою долю на рынке, ориентируя продажи на своих лучших клиентов, расширяя доступность своей продукции через магазины-реселлеры.

В модели данных имеются основная таблица фактов - FactResellerSales и связанные с ней таблицы измерений с префиксом Dim (рисунок 1). <u>Гарантируется, что первое поле (ключ) Dim-таблиц является уникальным значением в столбце таблицы.</u> Имена таблиц с их полями на маппинг типов С# доступен в листинге 1.

В архиве с заданием в директории *data* вы найдете файлы с данными, на основе которых будете выдавать ответы на запросы. Таблица фактов (FactResellerSales) разбита по столбцам в отдельные файлы, формат именования: 'FactResellerSales.<uma cmoлбца>.csv'. Данные таблиц измерений не разбиты и доступны в соответствующем файле таблицы, формат именования: '<uma maблицы измерений>.csv'. Порядок полей (столбцов) в файле соответствует порядку полей из *пистинга* 1 (из этого же листинга можно узнать, какие типы данных представляют собой <u>nvarchar</u> и другие типы, используемые в схеме базы данных). Значения полей в файлах разделены знаком '|', строки разделены символом конца строки '\n'. Конец файла - пустая строка.

Модель данных задания и порядок колонок меняться не будут!

Рисунок 1. Модель данных задания

Листинг 1. Таблица и список полей на маппинг С# типов

FactResellerSales:

ProductKey int,
OrderDateKey int,
ResellerKey int,
EmployeeKey int,
PromotionKey int,
CurrencyKey int,
SalesTerritoryKey int,
SalesOrderNumber string,
SalesOrderLineNumber byte,
OrderQuantity short,
CarrierTrackingNumber string,
CustomerPONumber string

DimProduct:

ProductKey int,
ProductAlternateKey string,
EnglishProductName string,
Color string,
SafetyStockLevel short,
ReorderPoint short,
SizeRange string,
DaysToManufacture int,
StartDate string

DimReseller:

ResellerKey int,
ResellerAlternateKey string,
Phone string,
BusinessType string,
ResellerName string,
NumberEmployees int,
OrderFrequency string,
ProductLine string,
AddressLine1 string,
BankName string,
YearOpened int

DimCurrency:

CurrencyAlternateKey string,
CurrencyName string

DimPromotion:

PromotionKey int,
PromotionAlternateKey int,
EnglishPromotionName string,
EnglishPromotionType string,
EnglishPromotionCategory string,
StartDate string,
EndDate string,
MinQty int

DimSalesTerritory:

SalesTerritoryKey int,
SalesTerritoryAlternateKey int,
SalesTerritoryRegion string,
SalesTerritoryCountry string,
SalesTerritoryGroup string

DimEmployee:

EmployeeKey int,
FirstName string,
LastName string,
Title string,
BirthDate string,
LoginID string,
EmailAddress string,
Phone string,
MaritalStatus string,
Gender string,
PayFrequency byte,
VacationHours short,
SickLeaveHours short,
DepartmentName string,
StartDate string

DimDate:

DateKey int,
FullDateAlternateKey string,
DayNumberOfWeek byte,
EnglishDayNameOfWeek string,
DayNumberOfMonth byte,
DayNumberOfYear short,
WeekNumberOfYear byte,
EnglishMonthName string,
MonthNumberOfYear byte,
CalendarQuarter byte,
CalendarYear short,
CalendarSemester byte,
FiscalQuarter byte,
FiscalYear short,
FiscalSemester byte

Условие задания

1) Необходимо описать абстрактный класс Bitmap, содержащий абстрактные функции:

void And (Bitmap other) - выполняет операцию логического И текущего Bitmap с Bitmap, переданным в качестве аргумента функции. Результат выполнения операции помещается в вызываемый (текущий) объект.

void Set(int i, bool value) - устанавливает бит по индексу і в значение value.

bool Get (int i) - возвращает значение бита по индексу i.

(Можно дополнять этот абстрактный класс по необходимости, однако за странные/ненужные члены класса будет снижена оценка – например, если реализация класса перестает быть bitmap как таковой)

- 2) В зависимости от выбранного уровня сложности задания (см. Уровни оценивания) необходимо реализовать свой класс, наследующий абстрактный класс Bitmap (название выбираете сами).
- <u>В реализации запрещается использовать сторонние библиотеки и готовые битовые структуры данных!</u> (Массив типа bool тоже считается запрещенным)
- 3) Реализовать алгоритм Invisible Join, использующий вашу реализацию через абстрактный класс Bitmap (полиморфизм). Алгоритм принимает на вход текстовый файл с запросом (см. Формат входных данных) и, на основе загружаемых таблиц данных (см. Модель данных задания), записывает строки в выходной текстовый файл (см. Формат выходных данных). В зависимости от выбранного уровня сложности реализуется одна из вариаций алгоритма.

Вариация алгоритма Invisible Join #1

На фазе 1 (этап фильтрации строк таблиц измерений по предикатам/условиям) для хранения отфильтрованных первичных ключей таблиц измерений можно использовать множество (HashSet).

На фазе 2 необходимо использовать Вашу собственную реализацию Bitmap.

Для данной вариации алгоритма существует ограничение входных данных: гарантируется, что список запрашиваемых полей выходной таблицы состоит только из множества полей таблицы фактов.

Следовательно, фазу 3 алгоритма Invisible Join реализовывать не нужно.

Вариация алгоритма Invisible Join #2

На фазе 1 (этап фильтрации строк таблиц измерений по предикатам/условиям) для хранения отфильтрованных первичных ключей таблиц необходимо использовать Вашу собственную реализацию Bitmap (посредством полиморфизма) - Roaring Bitmap.

На фазе 2 необходимо использовать Вашу собственную реализацию Bitmap - Roaring Bitmap.

Для данной вариации алгоритма список запрашиваемых полей выходной таблицы может включать поля из любых таблиц (включая таблицу фактов) модели данных задания.

Следовательно, необходимо реализовать фазу 3 алгоритма Invisible Join.

На фазе 3 необходимо использовать Вашу собственную реализацию Bitmap - Roaring Bitmap.

Уровни оценивания

Уровень 1 (оценка до 6 баллов) - Вариация алгоритма Invisible Join #1 и обычный массив бит. Один элемент массива должен содержать несколько бит (напр., если используется 4-байтовый целочисленный тип данных, то один элемент массива должен содержать 32 бита; необходимо использовать побитовые операции для работы с отдельными битами). Реализованный массив бит должен использоваться на фазе 2 реализации алгоритма Invisible Join.

Уровень 2 (оценка до 8 баллов) - Вариация алгоритма Invisible Join #1 и Roaring Bitmap. Реализованный Roaring Bitmap должен использоваться на фазе 2 реализации алгоритма Invisible Join.

Уровень 3 (оценка до 10 баллов) - Вариация алгоритма Invisible Join #2 и Roaring Bitmap. Реализованный Roaring Bitmap должен использоваться на всех фазах алгоритма Invisible Join.

Формат входных данных

На первой строке входного файла - список полей в выходной таблице (<имя таблицы>. <имя поля>) через запятую без пробела. Гарантируется, что список состоит только из полей таблиц модели данных, т.е. несуществующих полей нет.

На второй строке находится натуральное число N (0 \leq N \leq 1000) - количество условий фильтрации данных (все условия - логическое И).

Далее N строк - условия фильтрации в формате:

<поле таблицы><пробел><оператор><пробел><значение>

```
где <поле таблицы>:
<имя таблицы>.<имя поля>
```

<вначение> строкового типа оборачивается в одинарные кавычки: 'string' Гарантируется, что тип поля таблицы совпадает с типом сравниваемого значения!

Операторы сравнения условий:

- < строго меньше
- > строго больше
- <= меньше либо равно,
- >= больше либо равно,
- = строгое равенство,
- <> строгое неравенство

Для строк существуют только операторы = и <> (чувствительные к регистру), таким образом строки сравниваются через string1.Equals(string2)

Формат выходных данных

В выходной файл записываются строки после отработки запроса со значениями полей в том же порядке, что и на первой строке входного файла. Значения полей в файле разделены знаком '|', строки разделены символом конца строки ' \n '. Последняя строка в файле должна быть пустой.

Пример для вариации алгоритма Invisible Join #1

Входные данные	Выходные данные
FactResellerSales.SalesOrderLineNumber,FactResellerSales.CarrierTrackingNumber 7 DimPromotion.MinQty <> 0 DimReseller.BankName = 'International Bank' DimProduct.Color <> 'Silver' DimCurrency.CurrencyAlternateKey = 'USD' DimDate.CalendarYear < 2012 DimDate.DayNumberOfWeek >= 3 DimDate.DayNumberOfMonth = 29	3 BA78-4228-89 1 6F2B-45A4-9C 15 29D0-4A7E-9E 10 68A1-47A8-9A

Пример для вариации алгоритма Invisible Join #2

Входные данные	Выходные данные
FactResellerSales.SalesOrderLineNumber,DimReseller.ResellerName 7 DimPromotion.MinQty <> 0 DimReseller.BankName = 'International Bank' DimProduct.Color <> 'Silver' DimCurrency.CurrencyAlternateKey = 'USD' DimDate.CalendarYear < 2012 DimDate.DayNumberOfWeek >= 3 DimDate.DayNumberOfMonth = 29	3 The Gear Store 1 Preferred Bikes 15 Bicycle Outfitters 10 This Area Sporting Goods

Как будет оцениваться работа?

Решения будут проверяться на наборах тестов, каждый тест — это два файла, один для входных данных, другой для выходных. Таким образом, ввод и вывод данных происходит через файлы.

Будут оценены: корректность кода, составленные тесты (граничные условия, сложные случаи и т.п.), декомпозиция, аккуратность кода. Возможны устные собеседования при сомнении в самостоятельности выполнения работы.

В приложенных к условию задачи директориях расположено по 5 тестов к каждой вариации алгоритма, на которых можно проверить работоспособность решения, однако стоит учитывать, что прохождение приложенных тестов не гарантирует полное отсутствие ошибок в решении (решения будут также проверяться и на других, расширенных тестах). Файлы входных данных именуются по принципу 'test-tot

Названия файлов для входных данных и выходных данных должны быть указаны через командную строку. Кроме того, в параметрах командной строки могут указываться не только имена файлов и директорий, но и относительные/абсолютные пути к ним. Например, так будет выглядеть тестирование программы BuzulukovAlexey 161 3.cs:

csc BuzulukovAlexey 161 3.cs

BuzulukovAlexey_161_3 data test1.txt answer1.txt

либо

BuzulukovAlexey 161 3 path/to/data/ path/to/test1.txt path/to/answer1.txt

где

1-ый параметр – путь до директории с данными (csv-файлы),

2-ой параметр – путь к входному файлу, 3-ий параметр – путь к выходному файлу.

Пример использования аргументов командной строки в С#: https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/main-and-commandargs/command-line-arguments

Литература

- Лекция от 06 октября 2020 года по курсу Алгоритмы и структуры данных
- Abadi, D. J. (2008). Query execution in column-oriented database systems (Doctoral dissertation, Massachusetts Institute of Technology). (invisible join)
- Chambi, S., Lemire, D., Kaser, O., & Godin, R. (2016). Better bitmap performance with roaring bitmaps. Software: practice and experience, 46(5), 709-719. (Roaring bitmaps)