Assignment 2: CS215

Satyam Sinoliya, 23B0958 Vaibhav Singh, 23B1068 Shaik Awez Mehtab, 23B1080 Assignment 2 1 CS215

Solution 1

Task A

When $X \sim \text{Ber}(p)$, PGF of X is

$$G_{\text{Ber}}(z) = \mathbb{E}(z^X) \tag{1}$$

$$=\sum_{n=0}^{\infty}P[X=n]z^n\tag{2}$$

Since P[X = 0] = (1 - p), P[X = 1] = p, P[X = n] = 0 when n > 1,

$$G_{\text{Ber}}(z) = P[X = 0]z^0 + P[X = 1]z^1$$
(3)

$$= (1-p) + pz \tag{4}$$

Task B

When $X \sim \text{Bin}(n, p)$, PMF of X is

$$P[X=k] = \binom{n}{k} p^k (1-p)^{n-k} \text{ for } k \le n.$$
 (5)

and P[X = k] = 0 for k > n.

$$G_{\text{Bin}}(z) = \sum_{k=0}^{\infty} P[X=k] z^k \tag{6}$$

$$= \sum_{k=0}^{n} \binom{n}{k} p^{k} (1-p)^{n-k} z^{k}$$
 (7)

$$= \sum_{k=0}^{n} \binom{n}{k} (pz)^k (1-p)^{n-k}$$
 (8)

$$= (1 - p + pz)^n. (9)$$

By equation 4, $G_{Bin}(z) = (1 - p + pz)^n = (G_{Ber}(z))^n$. Hence proved.

Task C

By the definition of PGF,

$$G(z) = \sum_{n=0}^{\infty} P[X_1 = n] z^n$$
 (10)

Let $(G(z))^k = \sum_{n=0}^{\infty} a_n z^n$. Now, $G_{\Sigma}(z)$ is

$$G_{\Sigma}(z) = \sum_{n=0}^{\infty} P[X=n]z^n$$
(11)

$$= \sum_{n=0}^{\infty} P[X_1 + \dots + X_k = n] z^n$$
 (12)

$$= \sum_{n=0}^{\infty} \sum P[X_1 = i_1, \dots, X_k = i_k] z^n$$
 (13)

where $i_1 + \cdots + i_k = n$.

$$=\sum_{n=0}^{\infty}\sum P(i_1)\dots P(i_n)z^n \tag{14}$$

Now, $G(z) = \sum_{n=0}^{\infty} P(n)z^n$. And since a_n is coefficient of z^n in $(G(z))^k = (\sum_{n=0}^{\infty} P(n)z^n)^k$.

$$a_n = \sum_{i} P(i_1)P(i_2)\dots P(i_k)$$
 where $i_1 + \dots + i_k = n$ (15)

By equation 14

$$G_{\Sigma}(z) = \sum_{n=0}^{\infty} a_n z^n = (G(z))^k$$
 (16)

Hence Proved.

Task D

When $X \sim \text{Geo}(p)$, PMF of X,

$$P[X = k] = (1 - p)^{k - 1}p (17)$$

for k > 0. P[X = 0] = 0. Now, PGF of X,

$$G_{\text{Geo}}(z) = \sum_{k=0}^{\infty} P[X=k] z^k$$
(18)

$$=\sum_{k=1}^{\infty}P[X=k]z^k\tag{19}$$

$$= \sum_{k=1}^{\infty} p(1-p)^{k-1} z^k \tag{20}$$

$$= \sum_{k=1}^{\infty} pz(z - zp)^{k-1}$$
 (21)

$$=pz\sum_{k=0}^{\infty}(z-zp)^k\tag{22}$$

$$=\frac{pz}{1-z+pz}\tag{23}$$

Task E

By equation 9,

$$G_{\text{Bin}}(z) = (1 - p + pz)^n = G_X^{(n,p)}(z).$$
 (24)

For $Y \sim \text{NegBin}(n, p)$, Y represents the number of independent coin throws required to get n heads of a coin. Let X_i represents the number of throws of coin required after getting $(i-1)^{\text{th}}$ head to get the i^{th} head. Since all of the coin throws are independent, the outcome of a given throw doesn't depend on the previous coins' output. Thus, X_i is just the number of throws to get a head when a coin in thrown, where each $X_i \sim \text{Geo}(p)$ since each coin is same with probability of getting head as p.

Y can be written as $Y = X_1 + X_2 + \cdots + X_k$. Using equations 16 and 23,

$$G_{\Upsilon}^{(n,p)}(z) = (G_{\text{Geo}}(z))^n$$
 (25)

$$= \left(\frac{pz}{1 - z + pz}\right)^n \tag{26}$$

(27)

Assignment 2 3 CS215

$$G_X^{(n,p^{-1})}(z^{-1}) = \left(1 - \frac{1}{p} + \frac{1}{pz}\right)^n \tag{28}$$

$$= \left(\frac{1 - z + pz}{pz}\right)^n \tag{29}$$

$$\left(G_X^{(n,p^{-1})}(z^{-1})\right)^{-1} = \left(\frac{pz}{1-z+pz}\right)^n \tag{30}$$

$$=G_{\gamma}^{(n,p)}(z)\tag{31}$$

Hence Proved.

Task F

For $Y \sim \text{NegBin}(n, p)$,

$$P[Y = k] = {\binom{k-1}{n-1}} p^n (1-p)^{k-n} \text{ for } k \ge n$$
(32)

Otherwise, P[Y = k] = 0. PGF of Y is

$$G_Y^{(n,p)}(z) = \sum_{k=0}^{\infty} P[Y=k] z^k$$
 (33)

$$= \sum_{k=n}^{\infty} {k-1 \choose n-1} p^n (1-p)^{k-n} z^k$$
 (34)

$$= \sum_{k=0}^{\infty} {k+n-1 \choose n-1} p^n (1-p)^k z^{n+k}$$
 (35)

$$= (pz)^n \sum_{k=0}^{\infty} {k+n-1 \choose n-1} (z-pz)^k$$
 (36)

Using equation 27,

$$\left(\frac{pz}{1-z+pz}\right)^{n} = (pz)^{n} \sum_{k=0}^{\infty} {k+n-1 \choose n-1} (z-pz)^{k}$$
 (37)

$$(1 - (z - pz))^{-n} = \sum_{k=0}^{\infty} {k+n-1 \choose n-1} (z - pz)^k$$
 (38)

Since z, p are arbitrary, let z - pz = x.

$$(1-x)^{-n} = \sum_{r=0}^{\infty} {r+n-1 \choose n-1} x^r = \sum_{r=0}^{\infty} {-n \choose r} x^r$$
 (39)

Hence proved.

Task G

To prove: Given PGF of a random variable X is G(z), expectation of X i.e $\mathbb{E}(x) = G'(1)$ **Proof:**

$$G(z) = \mathbb{E}(z^X) = \sum_{k=0}^{\infty} P[X = k] z^k$$
(40)

$$G'(z) = \sum_{k=0}^{\infty} kP[X = k]z^{k-1}$$
(41)

$$G'(1) = \sum_{k=0}^{\infty} k P[X = k]$$
 (42)

$$= \mathbb{E}[X] \tag{43}$$

Awez Vaibhav Satyam

Hence Proved. Now, Let's derive means of Bernoulli, Binomial, Geometric and Negative Binomial distributions using this:

1. **Bernoulli Distribution:** Let $X \sim Ber(p)$,

$$G_{\text{Ber}}(z) = (1-p) + pz$$
 (44)

$$G'_{Ber}(z) = p \tag{45}$$

$$G'_{\text{Rer}}(1) = p = \mathbb{E}[X] \tag{46}$$

Thus, $\mathbb{E}[X] = p$.

2. **Binomial Distribution:** Let $X \sim Bin(n, p)$,

$$G_{Bin}(z) = (1 - p + pz)^n (47)$$

$$G'_{\text{Bin}}(z) = np(1 - p + pz)^{n-1} \tag{48}$$

$$G'_{Bin}(1) = np = \mathbb{E}[X] \tag{49}$$

Thus, $\mathbb{E}[X] = np$.

3. **Geometric Distribution:** Let $X \sim \text{Geo}(p)$,

$$G_{\text{Geo}}(z) = \frac{pz}{1 - z + pz} \tag{50}$$

$$G'_{Geo}(z) = \frac{p(1-z+pz)-pz(p-1)}{(1-z+pz)^2}$$

$$= \frac{p}{(1-z+pz)^2}$$
(51)

$$= \frac{p}{(1-z+pz)^2} \tag{52}$$

$$G'_{\text{Geo}}(1) = \frac{p}{p^2} = \frac{1}{p} = \mathbb{E}[X]$$
 (53)

Thus, $\mathbb{E}[X] = \frac{1}{n}$.

4. **Negative Binomial Distribution:** Let $X \sim \text{NegBin}(n, p)$,

$$G_{\text{NegBin}}(z) = \left(\frac{pz}{1 - z + pz}\right)^n \tag{54}$$

$$G'_{\text{NegBin}}(z) = n \left(\frac{pz}{1 - z + pz}\right)^{n-1} \left(\frac{p}{(1 - z + pz)^2}\right)$$
(55)

$$G'_{\text{NegBin}}(1) = \frac{n}{p} = \mathbb{E}[X]$$
 (56)

Thus, $\mathbb{E}[X] = \frac{n}{v}$.

Solution 2

Task A

Let X be a continuous real-valued random variable with CDF: $\mathbb{R} \to [0,1]$. Assume that F_X is invertible. Then the random variable $Y := F_X(X) \in [0,1]$ is uniformly distributed in [0,1]

 F_X by definition can also be written as

$$F_X(x) = P(X \le x)$$

Define a new random variable Y,

$$Y = F_X(X)$$

Y is the result of applying CDF F_X to the random variable X. To prove the theorem, assume $y \in [0,1]$. So, the probability that $Y \le y$ is:

$$P(Y \le y) = P(F_X(X) \le y)$$

It is assumed that $F_X(x)$ is invertible, so,

$$P(Y \le y) = P(X \le F_{\mathbf{y}}^{-1}(y))$$

which is basically, probablity that X is less that or equal to $F_X^{-1}(y)$. This can be written in the CDF form, which is $F_X(F_X^{-1}(y))$. So,

$$P(Y \le y) = P(X \le F_X^{-1}(y)) = F_X(F_X^{-1}(y)) = y$$

So,

$$P(Y < y) = y$$

where $y \in [0,1]$, which is the CDF of uniform distributon in [0,1]. So, Y is a uniform distributon in [0,1] regardless of X.

Task B

According to the theorem proved above, CDF of any random variable X mapped with itself gives a uniform random variable Y in [0,1]. So, let $Y \sim \text{Uniform}(0,1)$. Then for any random variable X,

$$F_X(X) = Y (57)$$

$$X = F_{\mathbf{Y}}^{-1}(\mathbf{Y}) \tag{58}$$

Algorithm A:

- 1. Input: A sample y from the uniform distribution on [0,1].
- 2. Transformation:
 - Apply the inverse CDF to *y* to compute a sample *u*.
 - Define $A(u) = u = F_X^{-1}(y)$
- 3. Output: The random variable $U = F_X^{-1}(Y)$

This gives us the correct required random variables as, CDF of U is $F_U(u)$,

$$P(U \le u) = P(F_X(Y) \le u) \tag{59}$$

$$F_{U}(u) = P(F_{X}(F_{X}^{-1}(X) \le u))$$
(60)

$$F_{IJ}(u) = P(X \le u) \tag{61}$$

$$F_{U}(u) = F_{X}(u) \tag{62}$$

(63)

U and *X* have the same CDF, which was initially required.

Assignment 2 6 CS215

Solution 3

Task D

Given, PDF of Gamma-distribution Gamma (k,θ) is $f(x;k,\theta) = \frac{1}{\theta^k \Gamma(k)} x^{k-1} e^{-\frac{x}{\theta}}$. First moment of it is

$$\mu_1^{\text{Gamma}} = \mathbb{E}[X] \tag{64}$$

$$= \int_{-\infty}^{\infty} x \frac{1}{\theta^k \Gamma(k)} x^{k-1} e^{-\frac{x}{\theta}} dx \tag{65}$$

$$= \frac{1}{\theta^k \Gamma(k)} \int_{-\infty}^{\infty} x^k e^{-\frac{x}{\theta}} dx \tag{66}$$

Let $u = \frac{x}{\theta}$, then $\theta du = dx$

$$= \frac{\theta}{\Gamma(k)} \int_{-\infty}^{\infty} u^k e^{-u} du \tag{67}$$

$$=\frac{\theta\Gamma(k+1)}{\Gamma(k)}\tag{68}$$

Since $\Gamma(k+1) = k\Gamma(k)$

$$=k\theta \tag{69}$$

Second moment of it is

$$\mu_2^{\text{Gamma}} = \mathbb{E}[X^2] \tag{70}$$

$$= \int_{-\infty}^{\infty} x^2 \frac{1}{\theta^k \Gamma(k)} x^{k-1} e^{-\frac{x}{\theta}} dx \tag{71}$$

$$= \frac{1}{\theta^k \Gamma(k)} \int_{-\infty}^{\infty} x^{k+1} e^{-\frac{x}{\theta}} dx \tag{72}$$

Let $u = \frac{x}{\theta}$, then $\theta du = dx$

$$=\frac{\theta^2}{\Gamma(k)}\int_{-\infty}^{\infty}u^{k+1}e^{-u}du\tag{73}$$

$$=\frac{\theta^2\Gamma(k+2)}{\Gamma(k)}\tag{74}$$

$$= (k+1)k\theta^2 \tag{75}$$

Thus, $\mu_1^{\text{Gamma}} = k\theta$, $\mu_2^{\text{Gamma}} = (k+1)k\theta^2$.

Solution 4

Solution 5

Task A

Given, PDF of GMM variable X is $f_X = \sum_{i=1}^K p_i P[X_i = x]$. Let it's CDF be F_X . Then $F_X(x)$ is given by

$$F_X(x) = P[X \le x] \tag{76}$$

$$= \int_{-\infty}^{x} f_{X}(t)dt \tag{77}$$

$$= \int_{-\infty}^{x} \sum_{i=1}^{K} p_{i} P[X_{i} = t] dt$$
 (78)

$$= \sum_{i=1}^{K} p_i \int_{-\infty}^{x} P[X_i = t] dt$$
 (79)

$$=\sum_{i=1}^{K}p_{i}P[X_{i}\leq x] \tag{80}$$

$$= \sum_{i=1}^{K} p_i F_{X_i}(x)$$
 (81)

Where $F_{X_i}(x) = P[X_i \le x]$ is CDF of X_i . Now, let CDF of output of the given algorithm be $F_{\mathcal{A}}(x) = P[\mathcal{A} \le x]$. Since the events that we choose A to be from the distribution i (say E_i) are disjoint for i = 1, ..., k.

$$F_{\mathcal{A}}(x) = P[\mathcal{A} \le x] \tag{82}$$

$$= \sum_{i=1}^{K} P[E_i] \cdot P[\mathcal{A} \le x | E_i]$$
(83)

$$= \sum_{i=1}^{K} p_i F_{X_i}(x)$$
 (84)

$$=F_X(x) \tag{85}$$

We know that PDF of a random variable *X* with CDF $F_X(x)$ is $\frac{\partial F_X}{\partial x}$. Thus,

$$f_{\mathcal{A}}(x) = \frac{\partial F_{\mathcal{A}}}{\partial x} \tag{86}$$

$$=\frac{\partial F_X}{\partial x} \tag{87}$$

$$=f_X \tag{88}$$

Since x was arbitrary, for every $u \in \mathbb{R}$, $f_A(u) = f_X(u)$. i.e the algorithm indeed samples from the GMM variable's distribution.

Task B

Since

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} t \cdot P[X = t] dt \tag{89}$$

$$= \int_{-\infty}^{\infty} t \cdot \sum_{i=1}^{K} p_i P[X_i = t] dt \tag{90}$$

$$=\sum_{i=1}^{K}p_{i}\int_{-\infty}^{\infty}P[X_{i}=t]dt \tag{91}$$

$$=\sum_{i=1}^{K}p_{i}\mathbb{E}[X_{i}] \tag{92}$$

$$=\sum_{i=1}^{K}p_{i}\mu_{i} \tag{93}$$

Assignment 2 8 CS215

Let $\mu = \mathbb{E}[X]$.

$$Var[X] = \int_{-\infty}^{\infty} (t - \mu)^2 P[X = t] dt$$
(94)

$$= \int_{-\infty}^{\infty} (t - \mu)^2 \sum_{i=1}^{K} p_i P[X_i = t] dt$$
 (95)

$$= \sum_{i=1}^{K} p_i \int_{-\infty}^{\infty} (t - \mu)^2 P[X_i = t] dt$$
 (96)

$$= \sum_{i=1}^{K} p_i \operatorname{Var}[X_i] \tag{97}$$

$$=\sum_{i=1}^{K}p_{i}\sigma_{i}^{2}\tag{98}$$

Let $\sigma^2 = \text{Var}[X]$.

$$MGF_X(t) = \int_{-\infty}^{\infty} e^{tX} P[X = x] dx$$
(99)

$$= \int_{-\infty}^{\infty} e^{tX} \sum_{i=1}^{K} p_i P[X_i = x] dx$$
 (100)

$$= \sum_{i=1}^{K} p_i \int_{-\infty}^{\infty} e^{tX} P[X_i = x] dx$$
 (101)

$$=\sum_{i=1}^{K} p_i \text{MGF}_{X_i}(t) \tag{102}$$

$$=\sum_{i=1}^{K} p_i e^{t\mu_i + \frac{1}{2}t^2 \sigma_i^2}$$
 (103)

Task C

Given $Z = \sum_{i=1}^{K} p_i X_i$, where $X_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$

$$\mathbb{E}[Z] = \mathbb{E}\left[\sum_{i=1}^{K} p_i X_i\right] \tag{104}$$

$$=\sum_{i=1}^{K} p_i \mathbb{E}[X_i] \tag{105}$$

$$=\sum_{i=1}^{K}p_{i}\mu_{i} \tag{106}$$