

DEPARTAMENTO DE CIENCIAS EXACTAS

Carrera de Tecnologías de la Información

Asignatura: Cálculo Diferencial

Periodo Académico: 202050

EXAMEN FINAL

Forma 1

Instrucciones para desarrollar el examen:

Señores estudiantes previo al desarrollo del examen lea detenidamente las siguientes instrucciones:

- a. El examen consta de tres partes: Preguntas de selección múltiple, preguntas de comprensión y desarrollo y Estudio de caso.
- b. El examen puede ser realizado a lápiz (2B) o con esfero de azul o negro. Lo importante es que sea legible y se pueda observar correctamente la resolución del mismo.
- c. Para la parte de preguntas de selección múltiple NO SE ACEPTAN TACHONES O BORRONES.
- d. Puede hacer uso de una calculadora científica NO PROGRAMABLE.
- e. En caso de que se detecte la copia de algún documento, automáticamente su calificación será de Cero.
- f. Realice una lectura comprensiva de los pedidos formulados y criterios de evaluación de cada ítem.
- g. Responda o desarrolle el requerimiento únicamente de lo solicitado.
- h. Una vez desarrollado el presente examen, deberá escanearlo y en formato pdf subirlo a la plataforma en la misma sección de donde fue obtenido. Tiene un tiempo de 15 minutos para este proceso.
- i. El archivo de su examen debe tener el siguiente nombre: EF_Apellido_Nombre.

CUESTIONARIO

Parte uno: Preguntas de selección múltiple

- 1. Si f y g son funciones derivables. ¿Cuál es la derivada de $\frac{f}{g}$?
 - (A) f'g g'f'
 - (B) $\frac{f'g fg'}{g^2}$
 - (C) Se usa la regla de la cadena.
 - (D) $\frac{f'}{g'}$
- 2. La definición de derivada para una función f es:

- (A) $f'(x) = \lim_{h \to 0} \frac{f(x+h) + f(x)}{h}$
- (B) $f'(x) = \frac{f(x) + f(h)}{x}$
- (C) $f'(x) = \lim_{h \to 0} \frac{f(x+h) f(x)}{h}$
- (D) $f'(x) = \lim_{x \to 0} \frac{f(x+h) f(x)}{x}$
- 3. Dada una función f que no está definida en c, pero si en los alrededores del punto c. Entonces el $\lim_{x\to c} f(x)$ cumple que:
 - (A) El límite $\lim_{x\to a} f(x)$ puede existir porque depende de los valores alrededor de c.
 - (B) f(c) = 0
 - (C) No existe el límite $\lim_{x\to c} f(x)$.
 - (D) Siempre existe $\lim_{x\to c} f(x)$.
- 4. Dada $\int \frac{x-1}{x^2(x+1)^2} dx$ usando fracciones parciales con A, B, C, D y E constantes, la integral resultante es
 - (A) Se utiliza la regla del cociente

(B)
$$\int \frac{Ax+B}{x^2} dx + \int \frac{C}{x+1} dx + \int \frac{Dx+E}{(x+1)^2} dx$$

(C)
$$\int \frac{A}{x} dx + \int \frac{B}{x^2} dx + \int \frac{C}{x+1} dx + \int \frac{D}{(x+1)^2} dx$$

(D)
$$\int \frac{A}{x} dx + \int \frac{B}{x+1} dx$$

5. ¿Cuál de las siguientes afirmaciones es falsa?

(A)
$$\int \frac{f(x)}{g(x)} dx = \frac{\int f(x) dx}{\int g(x) dx}$$

(B)
$$\int [2f(x) - 5g(x)] dx = 2 \int f(x) dx - \int 5g(x) dx$$

(C)
$$\int af(x) = a \int f(x) dx$$
, $a \in \mathbb{R}$

(D)
$$\int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx$$

6. Si f y g son integrables en [a,b], ¿cuál de los siguientes enunciados es falso?

(A)
$$\int_a^b (fg)(x) dx = \int_a^b f(x) dx \cdot \int_a^b g(x) dx$$

(B)
$$\int_{a}^{b} (f-g)(x) dx = \int_{a}^{b} f(x) dx - \int_{a}^{b} g(x) dx$$

(C)
$$\int_{a}^{b} (f+g)(x) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

(D)
$$\int_{a}^{b} g(x) dx = -\int_{b}^{a} g(x) dx$$

- 7. Para calcular una integral sobre $]-\infty,+\infty[$ se debe
 - (A) Ninguna de las anteriores.

- (B) No se puede calcular.
- (C) Separar en dos integrales impropias.
- (D) Calcular en una sola integral y evaluar dos límites.
- 8. ¿El método de integración por partes está relacionado con?
 - (A) La derivada del producto.
 - (B) Las derivadas.
 - (C) El cambio de variable en la derivada.
 - (D) La regla de la cadena.
- 9. Si $\lim_{x \to a} g(x) = b$, $\lim_{x \to a} f(x) = d$ y f es una función continua, entonces, $\lim_{x \to a} f(g(x))$ es?
 - (A) f(b)
 - (B) f(a)
 - (C) b
 - (D) d
- 10. ¿Una función par está definida como?
 - (A) Una función que para $x \in \mathbb{R}$, f(x) = f(-x).
 - (B) Una función que para $x \in \mathbb{R}$, f(-x) = -x.
 - (C) Una función que para $x \in \mathbb{R}$, x = f(-x).
 - (D) Una función que para $x \in \mathbb{R}$, f(x) = -f(x).

Criterios de evaluación		Puntos
Identificación de la opción correcta en la pregunta	1	0.5
Identificación de la opción correcta en la pregunta	2	0.5
Identificación de la opción correcta en la pregunta	3	0.5
Identificación de la opción correcta en la pregunta	4	0.5
Identificación de la opción correcta en la pregunta	5	0.5
Identificación de la opción correcta en la pregunta	6	0.5
Identificación de la opción correcta en la pregunta	7	0.5
Identificación de la opción correcta en la pregunta	8	0.5
Identificación de la opción correcta en la pregunta	9	0.5
Identificación de la opción correcta en la pregunta	10	0.5
Tot	al	5

Parte dos: Preguntas de comprensión y desarrollo

1. Para la siguiente función,

$$f(x) = \begin{cases} 1 - 3x, & \text{si } 1 \le x \le 2\\ 2x + 1, & \text{si } 2 < x \le 4 \quad \text{y} \quad x \ne 3\\ 2, & \text{si } x = 3 \end{cases}$$

- (a) Determine si f es continua en el intervalo [1,4]. Fundamente su respuesta usando límites laterales. Sugerencia: grafique la función.
- (b) Redefina la función sobre el intervalo [2,4] para que esta nueva función sea continua.

2. Derive la siguiente expresión

$$\tan(2x+1)\cdot\cos(5x^2-6) + \frac{x}{\cos^2(x+1)} + \sqrt{3x}$$

3. Grafique la siguiente función utilizando la información de la primera y segunda derivada (no utilice tabla de valores).

$$f(x) = 3x^4 - 3x^2$$

4. Integre las siguientes expresiones

(a)
$$\int t^5 \ln t \, dt$$

(b)
$$\int_{1}^{64} \frac{x^{1/3} + 5}{x^{2/3}} \, dx$$

Criterios de evaluación	Puntos
Pregunta 1: Resuelve de manera correcta el ejercicio	3
Pregunta 2: Resuelve de manera correcta el ejercicio	3
Pregunta 3: Resuelve de manera correcta el ejercicio	3
Pregunta 4: Resuelve de manera correcta el ejercicio	3
Total	12

Parte tres: Aplicación

Calcule el volumen de concreto, en metros cúbicos, que un contratista utilizará para construir el bordillo que se especifica en el gráfico. La altura del bordillo es 27 centímetros.

Criterios de evaluación	Puntos
Planteamiento correcto del ejercicio	1
Resolución del ejercicio	2
Total	3

Preguntas y puntaje del examen

Preguntas	Parte 1	Parte 2	Parte 3	Total
Puntaje	5	12	3	20 puntos

Docente autor: Miguel Zambrano email: mazambrano19@espe.edu.ec

Elah ayada yasii	A mush a de manu
Elaborado por:	Aprobado por:
Miguel Zambrano	Ing. José Marcillo, Mgs.
Docente Autor	Coordinador del Área de Análisis de Ciencias Exactas