ECON 441

Introduction to Mathematical Economics

Div Bhagia

Lecture 1: Preliminaries

Today's Topics & References

- Numbers and sets (sections 2.2 and 2.3)
- Relations and functions (sections 2.4-2.6, page 163)
- Summation notation (handout)
- Necessary and sufficient conditions (beginning of 5.1)

Numbers and Sets

• Integers:

$$\dots, -3, -2, -1, 0, 1, 2, 3, \dots$$

• Integers:

$$\dots, -3, -2, -1, 0, 1, 2, 3, \dots$$

• Fractions:

$$\frac{1}{2}, \frac{3}{5}, -\frac{2}{3}$$

• Integers:

$$\dots, -3, -2, -1, 0, 1, 2, 3, \dots$$

• Fractions:

$$\frac{1}{2}, \frac{3}{5}, -\frac{2}{3}$$

• Rational numbers: ratio of integers

• Integers:

$$\dots, -3, -2, -1, 0, 1, 2, 3, \dots$$

• Fractions:

$$\frac{1}{2}, \frac{3}{5}, -\frac{2}{3}$$

Rational numbers: ratio of integers
 Are fractions rational numbers? What about integers?

 Rational numbers: ratio of integers "terminating or repeating decimal"

Example.
$$\frac{1}{3} = 0.333, \frac{1}{4} = 0.25$$

 Rational numbers: ratio of integers "terminating or repeating decimal"

Example.
$$\frac{1}{3} = 0.333, \frac{1}{4} = 0.25$$

Irrational numbers: cannot be expressed as a ratio of two integers

"nonterminating or nonrepeating decimal"

Example.
$$\sqrt{2} = 1.4142, \pi = 3.1415$$

 Rational numbers: ratio of integers "terminating or repeating decimal"

Example.
$$\frac{1}{3} = 0.333, \frac{1}{4} = 0.25$$

• Irrational numbers: cannot be expressed as a ratio of two integers

"nonterminating or nonrepeating decimal"

Example.
$$\sqrt{2} = 1.4142, \pi = 3.1415$$

• Real numbers (\mathbb{R}): rational and irrational

Sets

• A set is a collection of distinct objects.

$$A = \{brownies, icecream, pizza, ramen\}$$

• $pizza \in A$, \in stands for 'is in'

Sets

• A set is a collection of distinct objects.

$$A = \{brownies, icecream, pizza, ramen\}$$

- $pizza \in A$, \in stands for 'is in'
- What about sets *B* and *C*?

$$B = \{x | x \text{ is a positive integer}\}$$

$$C = \{x | 1 < x < 5\}$$

1. Equivalence (=)

```
A = \{brownies, icecream, pizza, ramen\}

B = \{pizza, ramen, icecream, brownies\}

A = B
```

1. Equivalence (=)

$$A = \{brownies, icecream, pizza, ramen\}$$

 $B = \{pizza, ramen, icecream, brownies\}$
 $A = B$

2. Subset (⊂)

$$C = \{pizza, ramen\}$$

 $C \neq A$ but $C \subset A$.

Note: $A \supset C$ is equivalent.

1. Equivalence (=)

$$A = \{brownies, icecream, pizza, ramen\}$$

 $B = \{pizza, ramen, icecream, brownies\}$
 $A = B$

2. Subset (⊂)

$$C = \{pizza, ramen\}$$

 $C \neq A$ but $C \subset A$.

Note: $A \supset C$ is equivalent.

Is $A \subset B$?

1. Equivalence (=)

$$A = \{brownies, icecream, pizza, ramen\}$$

 $B = \{pizza, ramen, icecream, brownies\}$
 $A = B$

2. Subset (*⊂*)

$$C = \{pizza, ramen\}$$

 $C \neq A$ but $C \subset A$.

Note: $A \supset C$ is equivalent.

Is $A \subset B$? Yes, but C is a proper subset of A.

3. Disjoint sets

$$A = \{brownies, icecream, pizza, ramen\}$$

$$D = \{salad, fruits\}$$

3. Disjoint sets

$$A = \{brownies, icecream, pizza, ramen\}$$

$$D = \{salad, fruits\}$$

4. Neither but still related

$$A = \{brownies, icecream, pizza, ramen\}$$

 $E = \{salad, fruits, icecream\}$

• ∅: empty or null set

- ∅: empty or null set
- What are all possible subsets of

$$S = \{a, b, c\}$$

- ∅: empty or null set
- What are all possible subsets of

$$S = \{a, b, c\}$$

$$\emptyset$$
, {a}, {b}, {c}, {a,b}, {b,c}, {a,c}, {a,b,c}

- ∅: empty or null set
- What are all possible subsets of

$$S = \{a, b, c\}$$

$$\emptyset$$
, $\{a\}$, $\{b\}$, $\{c\}$, $\{a,b\}$, $\{b,c\}$, $\{a,c\}$, $\{a,b,c\}$

Always 2^n subsets. Here n = 3, so 8 subsets.

Set Operations

- 1. Union: $A \cup B$, elements in either A or B
- 2. *Intersection*: $A \cap B$, elements in both A and B

Example:

$$A = \{brownies, icecream, pizza, ramen\}$$

 $B = \{salad, fruits, icecream\}$

$$A \cup B =$$

$$A \cap B =$$

Set Operations

- 1. Union: $A \cup B$, elements in either A or B
- 2. Intersection: $A \cap B$, elements in both A and B

What about

$$A = \{brownies, icecream, pizza, ramen\}$$

$$B = \{salad, fruits\}$$

$$A \cup B =$$

$$A \cap B =$$

Set Operations

3. Complement of A: \tilde{A} , 'not A'

Universal set U (context specific) then:

$$\tilde{A} = \{x | x \in U \text{ and } x \notin A\}$$

Example.
$$U = \{1, e, f, 2\}, A = \{1, 2\}, \text{ then } \tilde{A} = \{e, f\}.$$

Set Operations: Venn Diagrams

Laws of Set Operations

Commutative law

$$A \cup B = B \cup A$$
 $A \cap B = B \cap A$

Distributive law

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Distributive law

Α

Distributive law

$$A \cup (B \cap C) = \boxed{(A \cup B) \cap (A \cup C)}$$

 $A \cup B$

Ordered Sets

- We said order does not matter for sets
- But we can have ordered sets where

$$(a,b) \neq (b,a)$$
 unless $a = b$

• Ordered pairs, triples,...

Example. (age, weight), (22, 120) different from (120, 22)

Cartesian Product

$$A = \{1, 2\}$$
 $B = \{3, 4\}$

Cartesian Product: set of all possible ordered pairs

$$A \times B = \{(1,3), (1,4), (2,3), (2,4)\}$$

Cartesian Plane

Relations and Functions

Relations

Relation: subset of the Cartesian product

Functions

Function: a relation where for each x there is a unique y

$$f: X \to Y, \quad y = f(x)$$

Examples.
$$y = x, y = x^2, y = 2x + 3$$

X: domain, Y: codomain, f(X): range

Most functions we will encounter, $f: \mathbb{R}^k \to \mathbb{R}$

Functions

Let's say,

$$f: X \to \mathbb{R}, \quad y = 3x - 5$$

where $X = \{2, 3, 4\}$.

What is the range?

Cost Function

Consider the total cost *C* of producing hats *Q*,

$$C = f(Q)$$

- Should I be able to produce 10 hats and 5 hats at the same cost?
- Possible to produce 5 hats for \$20 and \$25?

By the way

Consider the total cost *C* of producing hats *Q*,

$$C = f(Q) = 2Q + 5$$

What is the cost of producing 1 hat?

What is the cost of producing 2 hats?

How many hats can I produce for \$25?

Types of Functions

- Constant: y = f(x) = 5
- Polynomial of degree *n*

```
n = 0, constant

n = 1, linear

n = 2, quadratic

n = 3, cubic
```

• Rational function: ratio of two polynomial functions:

$$y=\frac{2}{x}$$

Function of More than One Variables

Functions can be of two variables:

$$z = g(x, y)$$

Or three, or four,..., or *n*

Monotonic functions

Strictly increasing function:

$$x_1 > x_2 \rightarrow f(x_1) > f(x_2)$$

Strictly decreasing function:

$$x_1 > x_2 \rightarrow f(x_1) < f(x_2)$$

Increasing function:

$$x_1 > x_2 \to f(x_1) \geqslant f(x_2)$$

Decreasing function:

$$x_1 > x_2 \to f(x_1) \leqslant f(x_2)$$

Inverse of a function

Function y = f(X) has an inverse if it is a one-to-one mapping, i.e. each value of y is associated with a unique value of x.

Inverse function

$$x = f^{-1}(y)$$

returns the value corresponding value of x for each y.

One-to-one mapping unique to strictly monotonic functions

Inverse of a function

Example: Find the inverse of y = f(x) = 3x - 2.

By the way

What is $x \times x$?

What is $x^2 \times x$?

What is $x^2 \times x^2$?

More generally, $x^n \times x^m = x^{m+n}$

Summation Notation

Summation Notation

$$\sum_{i=1}^{N} x_i = x_1 + x_2 + \dots + x_N$$

Example:

$$x = \{2, 9, 6, 8, 11, 14\}$$

$$\sum_{i=1}^{4} x_i = x_1 + x_2 + x_3 + x_4 = 2 + 9 + 6 + 8 = 25$$

Summation Notation

Another way of using a summation sign is to write

$$\sum_{x \in A} x$$

which refers to summing up all elements in A.

To sum up x for all possible values x, we can simply write

$$\sum_{x} x$$

Things you CAN do

1. Pull constants out of or into the summation sign.

$$\sum_{i=1}^{N} bx_i = b \sum_{i=1}^{N} x_i$$

Things you CAN do

2. Split apart (or combine) sums (addition) or differences (subtraction)

$$\sum_{i=1}^{N} (bx_i + cy_i) = b \sum_{i=1}^{N} x_i + c \sum_{i=1}^{N} y_i$$

Things you CAN do

3. Multiply through constants by the number of terms in the summation

$$\sum_{i=1}^{N} (a + bx_i) = aN + b\sum_{i=1}^{N} x_i$$

Things you CANNOT do

1. Split apart (or combine) products (multiplication) or quotients (division).

$$\sum_{i=1}^{N} x_i y_i \neq \sum_{i=1}^{N} x_i \times \sum_{i=1}^{N} y_i$$

Things you CANNOT do

2. Move the exponent out of or into the summation.

$$\sum_{i=1}^{N} x_i^a \neq \left(\sum_{i=1}^{N} x_i\right)^a$$

q is a necessary condition for p if:

$$p \Longrightarrow q$$

q is a necessary condition for p if:

$$p \implies q$$

p: I ate tofu for dinner

q: My dinner had protein

q is a sufficient condition for p if:

$$p \iff q$$

q is a sufficient condition for p if:

$$p \iff q$$

p: A number is even

q: A number is divisible by 4

q is both necessary and sufficient for p

$$p \iff q$$

q is both necessary and sufficient for p

$$p \iff q$$

p: A number is even

q: A number is divisible by 2

p: It is a holiday

q: It is Thanksgiving

p: The car is out of gas

q: The car isn't starting

p: A geometric figure has four sides

q: It is a rectangle

Homework Questions

- Exercise 2.3: 1, 2
- Exercise 2.4: 5, 7, 8
- Exercise 2.5: 1 (For each part, find the inverse of the function too.)
- Exercise 4.2: 6, 8
- Exercise 5.1: 1