AIFB

How to reason with OWL in a logic programming system

Markus Krötzsch AIFB Karlsruhe

Denny Vrandecic AIFB Karlsruhe

Pascal Hitzler

Michael Sintek AIFB Karlsruhe DFKI Kaiserslautern

RuleML2006, Athens, GA November 2006

Smortlieb

Semantic Web Languages: Seperate worlds

- OWL DL
 - open world
 - monotonic
 - description logics
 - first-order logic
 - decidable

- Logic Programming
 - closed world
 - non-monotonic
 - rules
 - procedural flavour
 - undecidable
- both approaches are needed for applications
- study of interoperability is imperative
- here: sound and complete reasoning for OWL with Prolog

Smortuleb

Approach

- We utilize results by Motik et al. on the KAON2 transformation algorithms and system.
- KAON2 OWL reasoner: http://kaon2.semanticweb.org
- KAON2 algorithms comprehensive details:
 Boris Motik, Reasoning in Description Logics using Resolution and Deductive Databases. Dissertation, AIFB Universität Karlsruhe, 2006.

KAON2 Reasoner core architecture

Theorem (Hustadt, Motik, Sattler 2004)

Transformation of OWL knowledge base KB into Disjunctive Datalog DD(KB)

Then, the following hold:

- 1. KB is unsatisfiable if and only if DD(KB) is unsatisfiable.
- 2. KB $\models \alpha$ if and only if DD(KB) $\models \alpha$, where α is of the form A(a) or R(a, b), and A is an atomic concept.
- 3. KB \models C(a) for a nonatomic concept C if and only if, for Q a new atomic concept, DD(KB \cup {C \sqsubseteq Q}) \models Q(a).

Simple example transformation (ALC)

KB

Person

☐ ∃ parent.Person

∃ parent.(∃ parent.Person) ⊑ Grandchild

Person(a)

DD(KB)

 $Q_1(x)$, Person(y) \leftarrow parent(x,y)

 \leftarrow parent(x,y), Q₁(y), Grandchild(x)

 $\leftarrow Q_1(x)$, Person(x)

 $Grandchild(x) \leftarrow Person(x)$

Person(a)

AIFB 🗖

KAON2 Reasoner core architecture: Horn-SHIQ

Horn-SHIQ

- Fragment of OWL DL
 - Polynomial data complexity (ABox)
 - ExpTime combined complexity (ABox+TBox)[OWLED06]

$$\begin{array}{l} \mathbf{C}_{0}^{+} \to \top \mid \bot \mid \neg \mathbf{C}_{0}^{-} \mid \mathbf{C}_{0}^{+} \sqcap \mathbf{C}_{0}^{+} \mid \mathbf{C}_{0}^{+} \sqcup \mathbf{C}_{0}^{+} \mid \forall \mathbf{R}.\mathbf{C}_{0}^{+} \\ \mathbf{C}_{0}^{-} \to \top \mid \bot \mid \neg \mathbf{C}_{0}^{+} \mid \mathbf{C}_{0}^{-} \sqcap \mathbf{C}_{0}^{-} \mid \mathbf{C}_{0}^{-} \sqcup \mathbf{C}_{0}^{-} \mid \exists \mathbf{R}.\mathbf{C}_{0}^{-} \mid \mathbf{A} \\ \mathbf{C}_{1}^{+} \to \top \mid \bot \mid \neg \mathbf{C}_{1}^{-} \mid \mathbf{C}_{1}^{+} \sqcap \mathbf{C}_{1}^{+} \mid \mathbf{C}_{0}^{+} \sqcup \mathbf{C}_{1}^{+} \mid \exists \mathbf{R}.\mathbf{C}_{1}^{+} \mid \forall \mathbf{R}.\mathbf{C}_{1}^{+} \mid \ge n \ \mathbf{R}.\mathbf{C}_{1}^{+} \mid \le 1 \ \mathbf{R}.\mathbf{C}_{0}^{-} \mid \mathbf{A} \\ \mathbf{C}_{1}^{-} \to \top \mid \bot \mid \neg \mathbf{C}_{1}^{+} \mid \mathbf{C}_{0}^{-} \sqcap \mathbf{C}_{1}^{-} \mid \mathbf{C}_{1}^{-} \sqcup \mathbf{C}_{1}^{-} \mid \exists \mathbf{R}.\mathbf{C}_{1}^{-} \mid \forall \mathbf{R}.\mathbf{C}_{1}^{-} \mid \ge 2 \ \mathbf{R}.\mathbf{C}_{0}^{-} \mid \le n \ \mathbf{R}.\mathbf{C}_{1}^{+} \mid \mathbf{A} \end{array}$$

KAON2 Reasoner core architecture: HeingSPHQog

ReaSem SmortWeb

Difficulty: Integrity constraints

 Some OWL statements become integrity constraints which are not usually supported under Prolog.

• $C \sqcap D \equiv \bot$

translates to

$$\leftarrow C(x) \land D(x)$$

workaround:

inc
$$\leftarrow$$
 C(x) \wedge D(x)

Difficulty: Equality

- Some OWL statements require equality for expressing them in first-order logic.
- For our purposes, the following Horn rules suffice:

$$X \approx X, \quad X \approx Y \leftarrow Y \approx X, \quad X \approx Z \leftarrow X \approx Y \land Y \approx Z$$

 $C(Y) \leftarrow C(X) \land X \approx Y \quad \text{for every concept name } C$
 $R(Y_1, Y_2) \leftarrow R(X_1, X_2) \land X_1 \approx Y_1 \land X_2 \approx Y_2 \text{ for every role name } R$

ReaSem SmortWeb

Example

sekt taste knowledge

```
TBox/RBox
                                                                              ABox
                Parent \equiv \exists hasChild. \top
(1)
                                                                                hasChild(Elaine, Sir Lancelot)
               Person 

☐ ∃ childOf.Person
(2)
                                                                                noSiblings(Lancelot du Lac)
(3)
       ManyChildren \sqsubseteq \ge 2 hasChild.\top
                                                                                childOf(Lancelot du Lac, Elaine)
          NoSiblings \sqsubseteq Person \sqcap \forall childOf.(\leq 1 hasChild.\top)
(4)
               childOf = hasChild^{-1}
(5)
       person(X) := nosiblings(X).
                                                         person(X_{f3}) := person(X), S_{f3}(X, X_{f3}).
       parent(X) := haschild(X, Y).
                                                            parent(X) := manychildren(X).
                                                     haschild(X, X_{f1}) := manychildren(X), S_{f1}(X, X_{f1}).
  haschild(Y, X) := childof(X, Y).
haschild(X, X_{f2}) := parent(X), S_{f2}(X, X_{f2}).
                                                    haschild(X, X_{f0}) :- manychildren(X), S_{f0}(X, X_{f0}).
                                                          childof(Y, X) := haschild(X, Y).
  childof(X, X_{f3}) := person(X), S_{f3}(X, X_{f3}).
          Y_1 \approx Y_2 := \text{nosiblings}(X), \text{childof}(X, Z), \text{haschild}(Z, Y_1), \text{haschild}(Z, Y_2).
                inc :- manychildren(X), nosiblings(X_0), childof(X_0, X).
               inc :- X_{f1} \approx X_{f0}, manychildren(X), S_{f1}(X, X_{f1}), S_{f0}(X, X_{f0}).
     S_f(X, f(X)) := O(X). HU(X):= O(X). HU(f(X)):= O(X). (for f \in \{f_0, f_1, f_2, f_3\})
           X \approx X := HU(X).
            X \approx Y :- Y \approx X, HU(X), HU(Y).
            X \approx Z :- X \approx Y, Y \approx Z, HU(X), HU(Y), HU(Z).
             C(Y) := C(X), X \approx Y, HU(X), HU(Y).
                                                   (for C \in \{\text{person}, \text{parent}, \text{manychildren}, \text{nosiblings}\})
        R(Y_1, Y_2) := R(X_1, X_2), X_1 \approx Y_1, X_2 \approx Y_2, HU(X_1), HU(X_2), HU(Y_1), HU(X_2).
                                                                                 (\text{for } R \in \{\text{childof}, \text{haschild}\})
          O(Elaine). O(Sir Lancelot). O(Lancelot du Lac).
```

Implementation

Transformation available through KAON2 http://kaon2.semanticweb.org

or via owltools command line interface *dlpconvert* http://owltools.ontoware.org see software demo [OWLED06] this evening

- optional serialisations:
 - Prolog
 - F-Logic
 - RuleML0.9
 - SWRL

ReaSem

Acknowledgement

The presented results are corollaries from the work by Boris Motik on KAON2.

Very helpful discussions with Boris are gratefully acknowledged.

ReaSem

Thank you!

- related [OWLED06]-presentations:
 - Today, 1345 hrs:
 M. Krötzsch, S. Rudolph and P. Hitzler. On the Complexity of Horn Description Logics
 - Today, 1700 hrs:
 - D. Vrandecic: OWL Tools demo