南京大学 电子科学与工程学院 全日制统招本科生

《数字信号处理》期末考试试卷 团 卷

任课教师姓名: _李 晨 _ 庄建军

考试日期:2016.6.25			5 =	考试时长:	2小	时	分钟
考生年纪	汲	_考生专业	考	生学号	考生	姓名	
题号	_	=	=	四	五	六	总分
得分							
		7 4 题每空 1 2 cos($\frac{11p}{3}n$				本题得	分
(2) 月	2)用窗函数法设计线性相位 FIR 滤波器,通常由来选择						
	窗 w(n)的形料	犬,由	<u> </u>	庆选择窗的长	长度 N。		
(3) 🗦	判断离散时间	间系统 y(n)=	$=\sum_{m=-\infty}^n x(m) \not\models$	的性质:线性	三(),移 ⁷	不变(,	因果()
_	且该系统的卓	单位抽样响应	$ \overset{\smile}{\boxtimes} : h(n) = \underline{} $				
		序列为 x(n) =					
		圆周卷积 x(n) 圆周卷积 x(n)					}
		$f_s = 100Hz \text{M}$			$(2t) + 2\cos(2t)$	30 <i>pt</i>) 理想另	采样,得到
J	亨列 x(n) = 		; 若 x(n)i	通过截止频率	$ f_c = 50Hz $	的理想低通	抢滤波器,恢
5	夏出的模拟信	言号 y(t) =		· · ·			
(A) i	5. 公长度为 N f	的序列 r(n)的	5.	五士 X (e ^{jw})	完♥一个	新宮제	

$$y(n) =$$

$$\begin{cases} x(n), & n$$
) 偶数
$$0, & n$$
) 奇数
$$y(e^{jw}) = DTFT[y(n)] = 0 \end{cases}$$

- (7) 以 20KHz 的采样频率对最高频率为 10KHz 的模拟信号 x (t)采样得到序列 x(n),然后计算 N =1000 的 X(k)=DFT[x(n)],则 k =150 对应的模拟频率是_____
- (8) 一个长度为 8 的序列 x(n)在 $0 \le n \le 7$ 之外为零, 其 8 点的 DFT 为

$$X(k) = 1 - 4\sin(\frac{2pk}{8}) + 3\sin(\frac{4pk}{8}) + 2\cos(\frac{6pk}{8}),$$

则 $x(n) = \{$ ______

- (9) 数字理想高通滤波器的频率响应是 $H(e^{jw}) = \begin{cases} 0 & 0 \le |w| < 0.4p \\ e^{-j5w} & 0.4p \le |w| < p \end{cases}$ 其单位抽样响应h(n) =
- (10) 一个 *N* 点时域序列的实部和虚部的 DFT 分别是圆周共轭对称和共轭反对称。 该判断正确吗? ()
- (11) 已知 LTI 系统的频率响应为 $H(e^{jw}) = \frac{1 + e^{-j3w}}{1 + 0.5e^{-j6w}}$,输入信号为

$$x(n) = \sin(\frac{pn}{6}), -\infty < n < \infty$$
。则系统的稳态输出信号 $y(n) =$

- (13) 已知 $X(z) = \frac{z^{-1}}{1-z^{-5}}, |z| > 1, 反变换 x(n) =$
- (14) 已知 x(n)是 4 点的纯虚序列,并且已知 X(k) = DFT[x(n)]的前 3 个值为: 6j,-2-2j,6j。则 X(3) =_____
- (16) 已知 N 点有限长序列 x(n), $0 \le n \le N-1$, N 为偶数,且 X(k) = DFT[x(n)]。若 $y(n) = (-1)^n x(n)$,用 X(k)表示 y(n)的 DFT: Y(k) =

二. (10 分) 已知
$$X(k) = \begin{cases} 3 & k = 0 \\ 1 & 1 \le k \le 9 \end{cases}$$
 求其 10 点的 IDFT,并 本题得分

画出 x(n)的波形。

解:

三. (16 分) 已知离散时间系统函数 $H(z) = \frac{z^2}{(4-z)(z-0.5)}$

本题得分

- (1) 写出对应的差分方程,并画出直接Ⅱ型结构(典范型)流图。
- (2) 求所有可能的收敛区以及对应的单位抽样响应,并判断系统的因果性和稳定性。

2

四. (14分)已知两个序列长度分别为 5 和 10: $x_1(n) = R_5(n)$,

本题得分

$$x_2(n) = \begin{cases} 1, & 0 \le n \le 4 \\ 0, & 5 \le n \le 9 \end{cases}, \quad \coprod X_1(e^{jw}) = DTFT[x_1(n)], \quad X_2(e^{jw}) = DTFT[x_2(n)]$$

- (1)请问 $X_1(e^{jw})$ 和 $X_2(e^{jw})$ 相等吗?并画出 $X_2(e^{jw})$ 的幅度频谱和相位频谱的大致波形。
- (2) 计算 DFT: 5点的 $X_1(k) = DFT[x_1(n)]$, 10点的 $X_2(k) = DFT[x_2(n)]$ 。
- (3) 上述 $X_1(k)$ 和 $X_2(k)$ 中有数值相等的吗? 如有,写出那些相等的点和数值。

解:

五. (10 分) 画出按频率抽取 (DIF) 的 4 点基 2 FFT 的信号流图。 并直接利用流图计算出序列 $x(n) = \{2,1,3,4; n=0,1,2,3\}$ 的 X(k) = DFT[x(n)]的数值。

本题得分

解:

六. (10 分) 设有一 FIR 数字滤波器,其单位冲激响应 $h(n) = \{2,1,0,-1,-2; n=0,1,2,3,4\}$ 。求:

本题得分	
------	--

- (1) 该系统的频率响应 $H(e^{jw})$;
- (2)如果记 $H(e^{jw})=H(w)e^{jj(w)}$,其中H(w)为幅度函数(实函数),j(w)为相位函数,试求H(w)与j(w);
- (3)该FIR系统适合做何种类型的线性相位数字滤波器?(低通、高通、带通、带阻), 说明判断依据;
- (4) 画出该 FIR 系统的线性相位型结构流图。

解: 「