Dynamic Programming and Applications

Discrete Time Dynamics and Optimization

Lecture 2

Andreas Schaab

Outline

Part 1: difference equations

- 1. Stochastic processes
- 2. Markov chains
- 3. Difference equations
- 4. Stochastic difference equations

Part 2: stochastic dynamic programming

- 1. Stochastic dynamic programming
- 2. History notation
- 3. The stochastic neoclassical growth model
- 4. Application: optimal stopping problem

Part 1: difference equations

1. Stochastic processes

- Let X_t be a random variable that is time t adapted
- Discrete time: We index time discretely $t = 0, 1, 2, \dots, T \leq \infty$
- Stochastic process in discrete time: a sequence of random variables indexed by t, $\{X_t\}_{t=0}^T$
- Continuous time: We index time continuously $t \in [0, T]$ with $T \leq \infty$
- Stochastic process in continuous time: a sequence of random variables indexed by t, $\{X_t\}_{t\geq 0}$

2. Markov chains

• A stochastic process $\{X_t\}$ has the *Markov property* if for all $k \ge 1$ and all t:

$$\mathbb{P}(X_{t+1} = x \mid X_t, X_{t-1}, \dots, X_{t-k}) = \mathbb{P}(X_{t+1} = x \mid X_t)$$

- State space of the Markov process = set of events or states that it visits
- A Markov chain is a Markov process (stochastic process with Markov property) that visits a finite number of states (discrete state space)
- Simplest example: Individual i is randomly hit by earnings (employment) shocks and switches between $X_t \in \{X^L, X^H\}$

- Markov chains have a *transition matrix* P that describes the probability of transitioning from state i to state j
- Simplest example with state space $\{X^L, X^H\}$

$$P = \begin{pmatrix} 0.8 & 0.2 \\ 0.2 & 0.8 \end{pmatrix}$$

- This says: P of staying in employment state = 0.8, P of switching = 0.2
- P_{ii} is the probability of switching from state i to state j (one period)
- P^2 characterizes transitions over two periods: $(P^2)_{ij}$ is prob of going from i to j in two periods
- The rows of the transition matrix have to sum to 1 (definition of probability measure)

3. Difference equations

- We start with deterministic (non-random) dynamics and then conclude with stochastic (random) dynamics
- The first-order linear difference equation is defined by

$$x_{t+1} = bx_t + cz_t \tag{1}$$

where $\{z_t\}$ is an exogenously given, bounded sequence

- For now, all objects are (real) scalars (easy to extend to vectors and matrices)
- Suppose we have an *initial condition* (i.e., given initial value) x_0
- When c = 0, (1) is a *time-homogeneous* difference equation
- When cz_t is constant for all t, (1) is an *autonomous* difference equation

Autonomous equations

- Consider the autonomous equation with $z_t = 1$
- A particular solution is the constant solution with $x_t = \frac{c}{1-b}$ when $b \neq 1$
- Such a point is called a stationary point or steady state
- General solution of the autonomous equation (for some constant *x*):

$$x_t = (x_0 - x)b^t + x (2)$$

- Important question is long-run behavior (stability / convergence)
- When |b| < 1, (2) converges asymptotically to steady state x for any initial value x_0 (steady state x is globally stable)
- If |b| > 1, (2) explodes and is not stable (except when $x_0 = x$)

Examples in macro

Capital accumulation:

$$K_{t+1} = (1 - \delta)K_t + I_t$$

- δ is depreciation and I_t is investment
- This is a *forward equation* and requires an initial condition K_0
- If $I_t = 0$ and $0 < \delta < 1$, $K_t \rightarrow 0$
- If $I_t=c$ constant, then K_t converges to $\frac{c}{\delta}$: $K_{t+1}=(1-\delta)\frac{c}{\delta}+c=\frac{c}{\delta}$

Wealth dynamics:

$$a_{t+1} = R_t a_t + y_t - c_t$$

- R_t is the gross real interest rate, y_t is income, c_t is consumption
- This is a *forward equation* and requires an initial condition a_0
- We will study this as a *controlled* process because c_t will be chosen optimally
- Work out the following: $R_t = R$ and $y_t = y$ constant, and

$$c_t = \left(1 - \frac{1}{R}\right) \left(a_t + \sum_{s=t}^{\infty} R^{-(s-t)}y\right)$$

What are the dynamics of a_t ?

Consumption Euler equation:

$$\frac{1}{C_t} = \beta R_t \frac{1}{C_{t+1}}$$

- $\frac{1}{C_t} = u'(C_t)$ is marginal utility with log preferences
- This is a *backward equation* and requires a terminal condition or transversality condition, i.e., c_T must converge to something
- Suppose there exists time T s.t. for all $t \geq T$, $C_t = C$
- Then solve backwards from: $\frac{1}{C_{T-1}} = \beta R_{T-1} \frac{1}{C_T}$ or expressed as time-homogeneous first-order linear difference equation

$$C_{T-1} = \frac{1}{\beta R_{T-1}} C_T$$

• Difference between *forward* and *backward* equations is critical! This is closely related to the idea of *boundary conditions* (much more to come)

4. Stochastic difference equations

• Consider the process $\{X_t\}$ with

$$X_{t+1} = AX_t + Cw_{t+1} (3)$$

where w_{t+1} is an iid. process with $w_{t+1} \sim \mathcal{N}(0,1)$

- Equation (3) is a first-order, linear stochastic difference equation
- Let \mathbb{E}_t the *conditional expectation* operator (conditional on time t information)
- For example:

$$\mathbb{E}_{t}(X_{t+1}) = \mathbb{E}(X_{t+1} \mid X_{t}) = \mathbb{E}(AX_{t} + Cw_{t+1} \mid X_{t})$$
$$= AX_{t} + C\mathbb{E}(w_{t+1} \mid X_{t}) = AX_{t} + C\mathbb{E}(w_{t+1}) = AX_{t}$$

- Rational expectations: agents' beliefs about stochastic processes are consistent with the true distribution of the process
- Key equation: wealth dynamics with income fluctuations:

$$a_{t+1} = R_t a_t + y_t - c_t,$$

where y_t is a stochastic process

• Consumption Euler equation with uncertainty (e.g., stochastic income):

$$u'(C_t) = \beta R \mathbb{E}_t \Big[u'(C_{t+1}) \Big]$$

Part 2: stochastic dynamic programming

1. Stochastic dynamic programming

- Follow Ljungqvist-Sargent notation, Chapter 3.2
- Under uncertainty, household problem takes the form

$$\max_{\{c_t\}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t u(c_t)$$

subject to $k_{t+1} = g(k_t, c_t, \epsilon_{t+1})$ (first-order stochastic difference equation)

- $\{\epsilon_t\}_{t=0}^{\infty}$ is sequence of iid random variables (*stochastic process*)
- Initial condition x_0 given

- Dynamic programming approach: we again look for recursive representation on state space $k_t \in \mathcal{X}$
- The problem is to look for a *policy function* c(k) that solves

$$V(k) = \max_{c} \left\{ u(c) + \beta \mathbb{E} \left[V \left(g(k, c, \epsilon) \right) \mid k \right] \right\}$$

where $\mathbb{E}[V(\cdot) \mid k] = \int V(\cdot) dF(\epsilon)$

- V(k) is the (lifetime) value that an agent obtains from solving this problem starting from k
- FOC that characterizes the consumption policy function c(k) is

$$0 = u'(c(k)) + \beta \mathbb{E} \left\{ \partial_k V \left(g(k, c(k), \epsilon) \right) \cdot \partial_c g(k, c(k), \epsilon) \mid k \right\} = 0$$

2. History notation

- A very popular approach to deal with uncertainty in macro is to use history notation (Ljungqvist-Sarget, e.g., chapters 8, 12)
- Economy populated by individuals, indexed by $i \in I$
- Time is discrete and indexed by t = 0, 1, ...
- At every t, there is a realization of a stochastic event $s_t \in \mathcal{S}$
- We denote the **history** of such events up to t by $s^t = \{s_0, s_1, \dots, s_t\}$
- The unconditional probability of history s^t is given by $\pi_t(s^t \mid s_0)$
- If Markov, $\pi_tig(s^t\mid s_0ig)=\pi(s_t\mid s_{t-1})\pi(s_{t-1}\mid s_{t-2})\dots\pi(s_0)$
- · Single consumption good (dollars) as numeraire

• The **lifetime value** of individual i is then defined as

$$V_i(s_0) = \sum_{t=0}^{T} \left(\beta_i\right)^t \sum_{s^t} \pi_t \left(s^t \mid s_0\right) u_i \left(c_t^i \left(s^t\right), n_t^i \left(s^t\right)\right)$$

- *Generalizations*: heterogeneous beliefs, general preferences (Epstein-Zin), recursive formulation, multiple commodities, intergenerational considerations
- Suppose $c_t^i(\cdot)$ and $l_t^i(\cdot)$ are functions of some primitive (policy) θ

• Consider policy experiment $d\theta$, then *i*'s **private welfare assessment** is

$$\frac{dV_i(s_0)}{d\theta} = \sum_{t=0}^{T} \left(\beta_i\right)^t \sum_{s^t} \pi_t \left(s^t \mid s_0\right) \frac{\partial u_i(s^t)}{\partial c_t^i} \frac{du_{i\mid c}(s^t)}{d\theta}$$

Instantaneous consumption-equivalent effect of policy $d\theta$ at date t, history s^t on individual t:

$$\frac{du_{i|c}(s^t)}{d\theta} \equiv \frac{\frac{du_i(c_t^i(s^t), n_t^i(s^t))}{d\theta}}{\frac{\partial u_i(s^t)}{\partial c_t^i}} = \underbrace{\frac{dc_t^i(s^t)}{d\theta} + \frac{\frac{\partial u_i(s^t)}{\partial n_t^i}}{\frac{\partial u_i(s^t)}{\partial c_t^i}} \frac{dn_t^i(s^t)}{d\theta}}_{\text{in consumption units}}$$

• Example: $d\theta$ gives i marginal dollar at s^t , then

$$\frac{dV_i(s_0)}{d\theta} = (\beta_i)^t \pi_t(s^t \mid s_0) \frac{\partial u_i(s^t)}{\partial c_i^t}$$

Conventional benchmarks:

- Policy $d\theta$ is Pareto improving if $\frac{dV_i(s_0)}{d\theta} \geq 0$ for all i, strictly for some i
- Welfarist planners: SWF given by $\mathcal{W}\left(\left\{V_i\left(s_0\right)\right\}_{i\in I}\right)$ Utilitarian, Isoelastic, Rawlsian, Nash, Dictator, ...
- Policy $d\theta$ is desirable for a welfarist planner if

$$\int \lambda_{i}\left(s_{0}\right) \frac{dV_{i}(s_{0})}{d\theta} di > 0 \,, \qquad \text{ where } \lambda_{i}\left(s_{0}\right) = \frac{\partial \mathcal{W}\left(\left\{V_{i}\left(s_{0}\right)\right\}_{i \in I}\right)}{\partial V_{i}}$$

Remarks:

- All welfarist planners agree when individuals ex-ante (s_0) homogeneous
- How to make welfare assessments with heterogeneous individuals?
- If you're interested, see Dávila-Schaab (2022)

3. Stochastic Growth Model

- Discrete time: $t \in \{0, 1, ..., T\}$, where $T \leq \infty$
- At t, event $s_t \in \mathcal{S}$ is realized; history $s^t = (s_0, \dots, s_t)$ has probability $\pi_t(s^t)$
- Representative household has preferences of paths of consumption $c_t(s^t)$ and labor $l_t(s^t)$

$$\sum_{t=0}^{\infty} \beta^t \sum_{s^t} \pi_t \left(s^t \right) u \left(c_t(s^t), l_t(s^t) \right)$$

- Inada conditions $\lim_{c\to 0} u_c(c,l) = \lim_{l\to 0} u_l(c,l) = \infty$
- At t = 0, household endowed with k_0

Technology, capital accumulation, and budget / resource constraint:

$$c_t(s^t) + \iota_t(s^t) \le A_t(s^t) F(k_t(s^{t-1}), l_t(s^t))$$
$$k_{t+1}(s^t) = (1 - \delta) k_t(s^{t-1}) + \iota_t(s^t)$$

- $F(\cdot)$ is twice continuously differentiable and constant returns to scale
- Source of uncertainty is stochastic process for TFP $A_t(s^t)$
- Standard regularity conditions on $F(\cdot)$ (see LS)

Lagrangian approach to sequence problem

Form Lagrangian

$$L = \sum_{t=0}^{\infty} \sum_{s^t} \beta^t \pi_t(s^t) \left\{ u(c_t(s^t), l_t(s^t)) + \lambda_t(s^t) \left[A_t(s^t) F(k_t(s^{t-1}), l_t(s^t)) - c_t(s^t) + (1 - \delta) k_t(s^{t-1}) - k_{t+1}(s^t) \right] \right\}$$

• FOCs for $c_t(s^t)$, $l_t(s^t)$ and $k_{t+1}(s^t)$ are given by

$$u_c(s^t) = \lambda_t(s^t)$$

$$u_l(s^t) = u_c(s^t)A_t(s^t)F_n(s^t)$$

$$u_c(s^t)\pi_t(s^t) = \beta \sum_{s^{t+1}|s^t} u_c(s^{t+1})\pi_{t+1}(s^{t+1}) \left[A_{t+1}(s^{t+1})F_k(s^{t+1}) + (1-\delta) \right]$$

• Summation over $(s^{t+1} \mid s^t)$ is like conditional expectation (summing over histories that branch out from s^t)

Recursive representation: dynamic programming

Assume time-homogeneous Markov process:

$$\mathbb{E}_t(A_{t+1}) = \mathbb{E}\left[A(s^{t+1}) \mid s^t\right] = \mathbb{E}\left[A(s_{t+1}) \mid s_t\right] = \sum_{s'} \pi(s' \mid s_t) A(s')$$

- Drop t subscripts: s is current state, s' denotes next period's draw
- Denote by X_t the *endogenous state* of the problem: for now, assume there is such a representation
- Intuitively: s is the exogenous state and X is the endogenous state
- Bellman equation can be written:

$$V(X,s) = \max_{c,l} \left\{ u(c,l) + \beta \sum_{s'} \pi(s' \mid s) V(X',s') \right\}$$

subject to X' = g(X, c, l, s, s')

4. Application: optimal stopping problem

Problem: Every period t, an agent draws an offer x from the unit interval [0,1]. The agent can accept the offer, in which case her payoff is x, and the game ends. Draws are independent. The agent discounts the future at β . The game continues until the agent receives an offer she accepts.

Agent's dynamic optimization problem given recursively by Bellman equation

$$V(x) = \max \left\{ x, \beta \mathbb{E} V(x') \right\}$$

where the expectation (operator) \mathbb{E} is taken over the next draw x'

- There will be a threshold $x^* \in [0,1]$ such that agent accepts for $x \ge x^*$
- This is also called a **free boundary problem** because we have to look for the endogenous boundary of the problem x^*
- Many applications (problems in life) look like this: buying a house, searching for a partner, closing a production plant, exercising an option, adopting a new technology, ...

• The value function will look like:

$$V(x) = \begin{cases} x & \text{if } x \ge x^* \\ x^* & \text{if } x < x^* \end{cases}$$

- Find the value x^* such that this function satisfies the Bellman equation
- At $x = x^*$, indifferent between accepting and stopping:

$$V(x^*) = x^*$$

$$= \beta \mathbb{E} V(x')$$

$$= \beta \int_0^{x^*} x^* f(x) dx + \beta \int_{x^*}^1 x f(x) dx$$

$$= \beta x^* [x]_0^{x^*} + \beta \frac{1}{2} [x^2]_{x^*}^1$$

where $f(x) = \frac{1}{1-0}$ is the uniform density

• Solution: $x^* = \beta(x^*)^2 + \beta \frac{1}{2}[1 - (x^*)^2]$ or $x^* = \frac{1}{\beta}(1 - \sqrt{1 - \beta^2})$