Paralel Programlamaya Giriş

- •Eray Özkural
- •TÜBİTAK UEKAE

- eray@pardus.org.tr
- •Bilkent Bilgisayar Mühendisliği
- •Bölümü Paralel Hesaplama Grubu
- erayo@cs.bilkent.edu.tr

Sunum Çerçevesi

- Beowulf nedir, tarihçe, mimarisi
- Pratikte Beowulf
- Paralel hesaplamadaki temel kavramlar
- Türkiye'de YBH (gerçekten!)
- MPI öğrenelim

Beowulf Nedir?

- Amaç: Yüksek Başarımlı Hesaplama
- Network of Workstations (distributed camiasından gelen bir kavram)
- COTS (Commodity Off The Shelf) components
- Referans: T. Sterling, D. Becker, D. Savarese, et al. "BEOWULF: A Parallel Workstation for Scientific Computation, " Proceedings of the 1995 International Conference on Parallel Processing (ICPP), August 1995, Vol. 1, pp. 11-14
- Ayrıca tabii ki: beowulf.org

Beowulf nereden çıktı

- "Beowulf class supercomputer"
- Beowulf vs. Grendel
- Klasik olarak Cray'ın makinaları ve diğer süperbilgisayarlar özel tasarlanmış ve imal edilmiş chipler/devrelerle yapılıyordu
- Bu pahalı canavarlara karşı kahramanca mücadele eden sistemlere Beowulf dendi
- Class I supercomputer: bütün yazılım/donanım commodity
- Class II supercomputer: bazı özel parçalara sahip

Beowulf ilk uygulamalar

- Computational Fluid Dynamics uygulaması
 - tipik bir paralel uygulama
- "Beowulf parallel workstation" 1993/1995
 - 16 Intel DX4 CPU'lu anakart
 - işlemci başına 16 Mbyte DRAM
 - her işlemcide hard disk/controller
 - işlemci başına 2 tane 10 Mbit Ethernet
 - 2 video kartı, 2 monitör, 1 klavye

Beowulf mimarisi (Donanım)

- Bir arayüz düğümü
- n tane hesap düğümü
 - Düğümler ethernet ile (1000Mbit, 100 Mbit)
 switch'e bağlanır
- Bir arabağ ağı
 - Üzerinde aynı anda bağımsız n/2 tam kapasiteli konuşmaya izin verecek kapasitede bir switch
 - Bu durumda congestion sağlamayan ucuz ve yüksek performanslı switch'ler vardır

Beowulf Mimarisi (donanım)

Beowulf Mimarisi (Yazılım)

İşletim sistemi

- Açık kaynak kodlu tercihan UNIX işletim sistemi:
 Linux, BSD.
- Kümeleme için gerekli ağ yazılımları (rsh, NFS, NIS, vs.)

Paralel programlama

- Mesaj geçme yazılımı (MPI, PVM, vs.)
- Paralel uygulama kütüphaneleri
 - Paralel BLAS implementationlari
 - CFD, vs. kütüphaneleri

Pratikte Beowulf (Donanım)

Önce donanım planlaması yapmak gerekirili

- Doğru donanım seçimi uygulamaya dayanır
- Bir takım sorular sorarak başlayabiliriz
 - Paralel girdi / çıktı yapılacak mı?
 - Hesaplama mı ağır basıyor haberleşme mi?
 - Network latency ne kadar önemli?
 - Düğümlerin CPU'su hafızası ne olmalı?
 - Ne kadar para harcayabiliriz?
 - Verdiğimiz paranın karşılığını alabiliyor muyuz?

Beowulf Yazılımı

• İyi bir linux dağıtımı seçelim

- Arayüz düğümünde geliştirme araçları, masaüstü, user accountları vs. yer alacak
- Hesaplama düğümlerinde temel sistem araçları ve paralel programı çalıştırmak için gerekli kütüphaneler yeterli
- Düğümleri özel bir IP ağına yerleştirelim
- Kümeleme yazılımı
 - Dosya paylaşımı (NFS)
 - Kullanıcı hesaplarının paylaşımı (NIS)
 - Düğümlere erişmek için ssh/rsh yapılandırması

borg.cs.bilkent.edu.tr

İlk kurduğum gerçek beowulf

- 2000/2001 yılları arasında
- Donanim:
 - 32 Pentium II 400 Mhz işlemci
 - node başına 128MB hafıza
 - 100Mbit ethernet network / SuperStack II switch
- Yazılım
 - Debian Linux
 - FAI (Fully Automatic Installation)
 - LAM/MPI, Charm++

skynet.cs.bilkent.edu.tr

2005 yılında TÜBİTAK paralel ağ sürüngeniğ projesi için kurduk

Donanim:

- 48 Pentium IV 3.0Ghz
- Düğüm başına 512MB hafıza 80GB disk
- 1Gbit ethernet ve 100Mbit ethernet network'ü
- Birisi internet'e erişim birisi düğümler arası erişim için

· Yazılım:

- Mandrake mi Mandriva mi ne ondan
- Warewulf (diskless boot)

Paralel Hesaplama (Mimariler)

Kontrol mekanizması

- SIMD (single instruction multiple data stream)
- MIMD (multiple instruction multiple data stream)

Paralel Hesaplama (Mimariler)

Adres Uzayı Organizasyonu

- Mesaj geçme (dağıtık)
- Paylaşılmış Adres Uzayı (UMA, NUMA)

Bağlama Ağları

- Statik (doğrudan)
- Dinamik (routing var)
 - içinde switching elementler olan (2x2 crossbar gibi) switchler var, bunlar açılıp kapanıp gidiyor yerine

İşlemci gözenekleri

- İnce gözenekli (fine-grain) (64K slow 1-bit procs)
- Kaba gözenekli (coarse-grain) (16 fast processors)

Paralel Hesaplama (Teorik Modeller)

 İdeal paralel bilgisayar PRAM adres paylaşımlıdır:

- Exclusive-read, exclusive write (EREW) PRAM
- Concurrent-read, exclusive write (CREW) PRAM
- Exclusive-read, concurrent-write (ERCW) PRAM
- Concurrent-read, concurrent-write (CRCW) PRAM

Arabağlar

Pardus

Dinamik arabağlar:

- switching networks
- bus
- çok aşamalı arabağ ağları (Omega)
 - 2x2 switchleri birleştirmenin akıllı bir yolu
 - p/2 x logp tane SE, Theta(plogp)

Durağan (statik) arabağlar: kac tel var?

- clique: Theta(p^2)
- star: Theta(p)
- zincir ve halka: Theta(p)
- mesh: Theta(p)
- hypercube: Theta(plogp)

Arabağlar (devam)

Durağan ağlar nasıl analiz edilir?

- Çap: iki düğüm arasındaki en büyük uzaklık
- Connectivity: iki adam arasındaki min. yol sayısı
- Bisection Width, Bisection Bandwidth
 - Ağı ikiye ayırdık diyelim (iletişimi kopardık)
 - Bisection width: bunu yapmak kaç tane bağı çıkarmak gerekiyor
 - Bisection bandwidth: Bu linklerden saniyede kaç link geçiyor?

Performans

Başarım olçüleri

- Paralel çalışma zamanı T_p
- □ Hızlanma (speedup) $s = T_s / T_p$
- Etkinlik (efficiency) E = s / p
- □ Bedel (cost, work) $W = T_p \cdot p$
 - \blacksquare cost optimal E = Theta(1) (sabit yani)

Ölçeklenebilirlik (scalability):

Hızlandırmayı işlemci sayısıyla orantılı biçimde arttırma kapasitesinin bir ölçüsüdür

Performans (devam)

Parallel overhead

- paralelleştirmenin bedeli
- Kaynakları
 - İşlemciler arası haberleşme
 - Yük dengesizliği
 - Fazladan hesaplar:
 - Bazı hesaplar farklı işlemcilerde olduğu için birden çok kere yapılabilir (FFT)
 - Bazen en iyi seri çözüm paralel yapılamaz, o zaman daha az iyi bir seri çözüm paralel yapılır

Performans (devam)

Amdahl'in kanunu:

- Eğer W büyüklüğündeki bir problemin W_s lik seri bir kısmı varsa hızlanma en fazla W/W_s olur.
- Bugünlük bu kadar yeter!