MATEMÁTICA E SUAS TECNOLOGIAS

François Viète (1540-1603), principal responsável pela introdução dos símbolos no mundo da matemática.

MATEMÁTICA

Trigonometria e Álgebra - Módulos

- 33 Inequações trigonométricas
- 34 Inequações trigonométricas
- 35 Adição e subtração de arcos
- 36 Arco duplo
- 37 Lei dos senos
- 38 Lei dos cossenos
- 39 Resolução de triângulos
- 40 Sequências e progressão aritmética
- 41 Termo geral de uma progressão aritmética
- 42 Termo geral de uma progressão aritmética
- 43 Propriedade de três termos consecutivos de uma P.A.
- 44 Termos equidistantes dos extremos

Módulos 33 e 34

Inequações trigonométricas

Palavras-chave:

• Seno • Cosseno • Tangente

Resumo teórico

1. Função seno

a) $f : \mathbb{R} \to \mathbb{R}$ tal que $f(x) = \operatorname{sen} x = \operatorname{ON}$

b) o conjunto imagem é [- 1; 1] e o período é 2π

2. Função cosseno

a) $f : \mathbb{R} \to \mathbb{R}$ tal que $f(x) = \cos x = OM$

b) o conjunto imagem é [- 1; 1] e o período é 2π

3. Função tangente

a) $f: \{x \in \mathbb{R} \mid x \neq \frac{\pi}{2} + n \pi\} \rightarrow \mathbb{R} \text{ tal que } \mathbf{f(x)} = \mathbf{tg} \ \mathbf{x} = \mathbf{AT}$

b) o conjunto imagem é $\mathbb R$ e o período é π

4. Para 30°, 150°, 210° e 330° temos:

sen 30° = sen 150° =
$$\frac{1}{2}$$
;

sen 210° = sen 330° =
$$-\frac{1}{2}$$

$$\cos 30^{\circ} = \cos 330^{\circ} = \frac{\sqrt{3}}{2}$$
;

$$\cos 150^{\circ} = \cos 210^{\circ} = -\frac{\sqrt{3}}{2}$$

$$tg 30^{\circ} = tg 210^{\circ} = \frac{\sqrt{3}}{3}$$
;

tg 150° = tg 330° =
$$-\frac{\sqrt{3}}{3}$$

5. Para 45°, 135°, 225° e 315° temos:

sen 45° = sen 135° =
$$\frac{\sqrt{2}}{2}$$
;

sen 225° = sen 315° =
$$-\frac{\sqrt{2}}{2}$$

$$\cos 45^{\circ} = \cos 315^{\circ} = \frac{\sqrt{2}}{2}$$
;

$$\cos 135^\circ = \cos 225^\circ = -\frac{\sqrt{2}}{2}$$

$$tg 135^{\circ} = tg 315^{\circ} = -1$$

6. Para 60°, 120°, 240° e 300° temos:

sen 60° = sen 120° =
$$\frac{\sqrt{3}}{2}$$
;

sen 240° = sen 300° =
$$-\frac{\sqrt{3}}{2}$$

$$\cos 60^{\circ} = \cos 300^{\circ} = \frac{1}{2}$$
;

$$\cos 120^{\circ} = \cos 240^{\circ} = -\frac{1}{2}$$

tg
$$60^{\circ}$$
 = tg 240° = $\sqrt{3}$;

tg 120° = tg 300° =
$$-\sqrt{3}$$

No Portal Objetivo

Para saber mais sobre o assunto, acesse o **PORTAL OBJETIVO** (<u>www.portal.objetivo.br</u>) e, em "localizar", digite MAT1M301 e MAT1M302

Exercícios Resolvidos - Módulos 33 e 34

1 Resolva a inequação 2 cos x + $\sqrt{3}$ ≤ 0, no intervalo 0 ≤ x ≤ 2π

Resolução

$$2\cos x + \sqrt{3} \le 0 \Leftrightarrow 2\cos x \le -\sqrt{3} \Leftrightarrow \cos x \le -\frac{\sqrt{3}}{2} \Leftrightarrow$$

$$\Leftrightarrow -1 \le \cos x \le -\frac{\sqrt{3}}{2} \Leftrightarrow \frac{5\pi}{6} \le x \le \frac{7\pi}{6}$$

Resposta:
$$V = \left\{ x \in \mathbb{R} \middle| \frac{5\pi}{6} \le x \le \frac{7\pi}{6} \right\}$$

2 Resolver a inequação 2 cos x + $\sqrt{3}$ \leq 0, em \mathbb{R} . De acordo com a resolução anterior, temos – 1 \leq cos x \leq – $\frac{\sqrt{3}}{2}$

Se – 1
$$\leq$$
 cos x \leq – $\frac{\sqrt{3}}{2}$ e x \in \mathbb{R} , então

$$V = \left\{ x \in \mathbb{R} \left| \begin{array}{l} \frac{5\pi}{6} + n \cdot 2\pi \leq x \leq \frac{7\pi}{6} + n \cdot 2\pi, n \in \mathbb{Z} \end{array} \right. \right\}$$

Resolver, em \mathbb{R} , $-1 \le tg \times -1 \le 0$

Resolução

$$-1 \le tg \times -1 \le 0 \Leftrightarrow 0 \le tg \times \le 1$$

Resposta:
$$V = \left\{ x \in \mathbb{R} \middle| 0 + n . \pi \le x \le \frac{\pi}{4} + n . \pi, n \in \mathbb{Z} \right\}$$

4 Resolver a inequação 2 . sen x – $\sqrt{3} \ge 0$, supondo que: a) $x \in [0; 2\pi]$ b) $x \in \mathbb{R}$

Resolução

a) Se
$$x \in [0; 2\pi]$$
 e $\frac{\sqrt{3}}{2} \le \text{sen } x \le 1$ então $\frac{\pi}{3} \le x \le \frac{2\pi}{3}$

b) Se
$$x \in \mathbb{R}$$
 e $\frac{\sqrt{3}}{2} \le \text{sen } x \le 1$ então

$$\frac{\pi}{3}$$
 + n . $2\pi \le x \le \frac{2\pi}{3}$ + n . 2π ; n $\in \mathbb{Z}$

Respostas: a)
$$V = \left\{ x \in \mathbb{R} \mid \frac{\pi}{3} \le x \le \frac{2\pi}{3} \right\}$$

b) V =
$$\left\{ x \in \mathbb{R} \left| \frac{\pi}{3} + n \cdot 2\pi \le x \le \frac{2\pi}{3} + n \cdot 2\pi; n \in \mathbb{Z} \right. \right\}$$

Exercícios Propostos - Módulo 33

Resolver as inequações 1 e 2, supondo $0 \le x \le 2\pi$

1 $2 \cos x \leq 1$

RESOLUÇÃO: $\cos x \leq \frac{1}{2}$

$$V = \left\{ x \in \mathbb{R} \mid \frac{\pi}{3} \leq x \leq \frac{5\pi}{3} \right\}$$

2 tg
$$x \ge 1$$

RESOLUÇÃO:

$$V = \left\{ x \in \mathbb{R} \mid \frac{\pi}{4} \le x < \frac{\pi}{2} \text{ ou } \frac{5\pi}{4} \le x < \frac{3\pi}{2} \right\}$$

Resolver as inequações 3, 4 e 5 supondo $0^{\circ} \le x \le 360^{\circ}$.

3
$$2 \text{ sen } x - 1 \ge 0$$

RESOLUÇÃO:

$$sen x \ge \frac{1}{2}$$

 $V = \{x \in \mathbb{R} \mid 30^{\circ} \le x \le 150^{\circ}\}$

4 3tg x +
$$\sqrt{3}$$
 < 0

RESOLUÇÃO:

$$tg x < -\frac{\sqrt{3}}{3}$$

 $V = \{x \in \mathbb{R} \mid 90^{\circ} < x < 150^{\circ} \text{ ou } 270^{\circ} < x < 330^{\circ}\}$

RESOLUÇÃO:

 $V = \{x \in \mathbb{R} \mid 0^{\circ} \le x \le 60^{\circ} \text{ ou } 300^{\circ} \le x \le 360^{\circ}\}$

Exercícios Propostos - Módulo 34

Resolva, em \mathbb{R} , as inequações de \bigcirc a \bigcirc 5:

1 2 sen
$$x - 1 \ge 0$$

RESOLUÇÃO:

$$sen x \ge \frac{1}{2}$$

$$V = \{x \in \mathbb{R} \ \big|\ 30^\circ + n \ .\ 360^\circ \leqslant x \leqslant 150^\circ + n \ .\ 360^\circ, \, n \in \mathbb{Z}\}$$

RESOLUÇÃO:

$$\cos x \le \frac{\sqrt{2}}{2}$$

 $V = \left\{ x \in \mathbb{R} \;\middle|\; 45^\circ + n \;.\; 360^\circ \leqslant x \leqslant 315^\circ + n \;.\; 360^\circ, \, n \in \mathbb{Z} \right\}$

RESOLUÇÃO:

 $tg x > \sqrt{3}$

 $V = \{ x \in \mathbb{R} \ \big| \ 60^{\circ} + n \ . \ 180^{\circ} < x < 90^{\circ} + n \ . \ 180^{\circ}, \ n \in \mathbb{Z} \}$

4
$$2 \cos x - 1 > 0$$

RESOLUÇÃO:

 $\cos x > \frac{1}{2}$

 $V = \{x \in \mathbb{R} \mid -60^{\circ} + n . 360^{\circ} < x < 60^{\circ} + n . 360^{\circ}, n \in \mathbb{Z}\}$

5
$$2 \text{ sen } (3x) - 1 \ge 0$$

RESOLUÇÃO:

30° + n . 360° ≤ 3x ≤ 150° + n . 360° ⇔

⇔ 10° + n . 120° ≤ x ≤ 50° + n . 120°

V = {x ∈ $\mathbb{R} \mid 10^\circ + n . 120^\circ \le x \le 50^\circ + n . 120^\circ, n ∈ \mathbb{Z}}$

Módulo

35

Adição e subtração de arcos

Palavras-chave:

Arcos notáveis

• Soma de arcos • Diferença de arcos

Demonstra-se que:

 \forall a, b $\in \mathbb{R}$

2.
$$cos(a + b) = cos \ a.cos \ b - sen \ a.sen \ b$$

 $cos(a - b) = cos \ a.cos \ b + sen \ a.sen \ b$

 \forall a, b $\in \mathbb{R}$

3.
$$tg(a+b) = \frac{tg \ a + tg \ b}{1 - tg \ a \cdot tg \ b}$$

$$tg(a-b) = \frac{tg \ a - tg \ b}{1 + tg \ a \cdot tg \ b}$$

(supondo que **a**, **b**, **a** + **b** e **a** - **b** sejam, todos, diferentes de $\frac{\pi}{2}$ + n π , com n $\in \mathbb{Z}$)

Exercícios Resolvidos

1 Calcular sen 15°

Resolução

 $sen 15^{\circ} = sen(45^{\circ} - 30^{\circ}) =$

$$= \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{1}{2} \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{6} - \sqrt{2}}{4}$$

Resposta: $\frac{\sqrt{6}-\sqrt{2}}{4}$

2 Calcular tg 105°

Resolução

 $tg 105^{\circ} = tg (60^{\circ} + 45^{\circ}) =$

$$= \frac{\text{tg } 60^{\circ} + \text{tg } 45^{\circ}}{1 - \text{tg } 60^{\circ} \cdot \text{tg } 45^{\circ}} = \frac{\sqrt{3} + 1}{1 - \sqrt{3} \cdot 1} =$$

$$= \frac{(\sqrt{3} + 1)(1 + \sqrt{3})}{(1 - \sqrt{3})(1 + \sqrt{3})} = \frac{4 + 2\sqrt{3}}{-2} = -2 - \sqrt{3}$$

Resposta: -2 - √3

3 Calcular tg 75°

Resolução

$$tg 75^\circ = tg (45^\circ + 30^\circ) = \frac{tg 45^\circ + tg 30^\circ}{1 - tg 45^\circ \cdot tg 30^\circ} =$$

$$= \frac{1 + \frac{\sqrt{3}}{3}}{1 - 1 \cdot \frac{\sqrt{3}}{3}} = \frac{3 + \sqrt{3}}{3 - \sqrt{3}} =$$

$$=\frac{3+\sqrt{3}}{3-\sqrt{3}}\cdot\frac{3+\sqrt{3}}{3+\sqrt{3}}=$$

$$= \frac{12 + 6\sqrt{3}}{6} = \frac{6 \cdot (2 + \sqrt{3})}{6} = 2 + \sqrt{3}$$

Resposta: $2 + \sqrt{3}$

(MODELO ENEM) – Em uma região plana de um parque estadual, um guarda florestal trabalha no alto de uma torre cilíndrica de madeira de 10 m de altura. Em um dado momento, o guarda, em pé no centro de seu posto de observação, vê um foco de incêndio próximo à torre, no plano do chão, sob um ângulo de 15° em relação à horizontal. Se a altura do guarda é 1,70 m e sabendo que

$$tg (a - b) = \frac{tg a - tg b}{1 + tg a \cdot tg b}$$
, no cálculo da

tg 15° (usar $\sqrt{3}$ = 1,7 antes de racionalizar), calcular aproximadamente a distância do foco ao centro da base da torre, em metros.

Obs: use $\sqrt{3} = 1,7$ antes de racionalizar

31 b) 33 c) 35 d) 37 e)

Resolução

De acordo com o enunciado temos a seguinte figura:

Sendo F o foco do incêndio e d a distância do foco ao centro da base da torre, e admitindo que 1,70 m é a distância dos olhos do guarda aos pés, concluímos que

$$tg 15^\circ = \frac{10 + 1,70}{d} \Leftrightarrow tg(60^\circ - 45^\circ) = \frac{11,70}{d} \Leftrightarrow$$

$$\Leftrightarrow \frac{\text{tg } 60^{\circ} - \text{tg } 45^{\circ}}{1 + \text{tg } 60^{\circ} \cdot \text{tg } 45^{\circ}} = \frac{11,70}{d} \Leftrightarrow$$

$$\Leftrightarrow \frac{\sqrt{3}-1}{\sqrt{3}+1} = \frac{11,70}{d} \Leftrightarrow$$

$$\Leftrightarrow \frac{1,7-1}{1,7+1} = \frac{11,7}{d} \Leftrightarrow$$

$$\Leftrightarrow d = \frac{2.7 \cdot 11.7}{0.7} \cong 43 \text{ m}$$

Resposta: E

Exercícios Propostos

1 sen 75°

RESOLUÇÃO:

sen
$$75^{\circ}$$
 = sen $(45^{\circ} + 30^{\circ})$ = sen 45° cos 30° + sen 30° . cos 45° =

$$= \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{1}{2} \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} = \frac{\sqrt{6} + \sqrt{2}}{4}$$

RESOLUÇÃO:

$$tg 15^{\circ} = tg(60^{\circ} - 45^{\circ}) = \frac{tg 60^{\circ} - tg 45^{\circ}}{1 + tg 60^{\circ} \cdot tg 45^{\circ}} = \frac{\sqrt{3} - 1}{1 + \sqrt{3} \cdot 1} =$$

$$= \frac{\sqrt{3} - 1}{1 + \sqrt{3}} \cdot \frac{1 - \sqrt{3}}{1 - \sqrt{3}} = \frac{\sqrt{3} - 3 - 1 + \sqrt{3}}{1 - 3} = \frac{2\sqrt{3} - 4}{-2} =$$

$$= -\sqrt{3} + 2 = 2 - \sqrt{3}$$

3 Sendo tg $\alpha = \frac{4}{3}$ e tg $\beta = 7$, com α e β agudos, calcular $\alpha + \beta$.

RESOLUÇÃO:

1)
$$tg(\alpha + \beta) = \frac{tg \alpha + tg \beta}{1 - tg \alpha \cdot tg \beta} =$$

$$=\frac{\frac{4}{3}+7}{1-\frac{4}{3}\cdot 7}=\frac{\frac{4+21}{3}}{\frac{3-28}{3}}=\frac{\frac{25}{3}}{-\frac{25}{3}}=-1$$

II) Se α e β são ângulos agudos e tg ($\alpha + \beta$) = -1, então $\alpha + \beta$ = 135°.

4 (UFOP) – A expressão
$$\frac{\cos\left(\frac{\pi}{2} + x\right)}{\sin\left(\frac{\pi}{2} - x\right)}$$
 é equivalente a

- a) tg x

- b) $\cot g \times c$ $tg \times d$ $\cot g \times d$

RESOLUÇÃO:

$$\frac{\cos\left(\frac{\pi}{2} + x\right)}{\sin\left(\frac{\pi}{2} - x\right)} = \frac{\cos\frac{\pi}{2}\cos x - \sin\frac{\pi}{2}\sin x}{\sin\frac{\pi}{2}\cos x - \sin x\cos\frac{\pi}{2}} = \frac{-\sin x}{\cos x} = -\operatorname{tg} x$$

Resposta: C

(MODELO ENEM) - Sabendo-se que o seno de 53° é aproximadamente 0,8 e usando-se a expressão para sen $(\alpha - \beta)$, o valor de sen 23° pode ser aproximado por

- a) $0.2\sqrt{2} 0.1$ b) $0.4\sqrt{3} 0.3$ c) $0.5\sqrt{2} 0.2$ d) $0.6\sqrt{3} 0.3$ e) $0.8\sqrt{2} 0.1$

RESOLUÇÃO:

1)
$$\cos 53^{\circ} = \sqrt{1 - \sin^2 53} = \sqrt{1 - 0.8^2} = \sqrt{1 - 0.64} = \sqrt{0.36} = 0.6$$

2) sen 23° = sen(53° - 30°) = sen 53° . cos 30° - sen 30° . cos 53° = = 0,8 .
$$\frac{\sqrt{3}}{2}$$
 - $\frac{1}{2}$. 0,6 = 0,4 $\sqrt{3}$ - 0,3

Resposta: B

Módulo

Arco duplo

Palavras-chave:

- Dobro de um arco
- Metade de um arco Bissetriz

1. Cálculo de sen (2a)

Substituindo **b** por **a** na fórmula

sen
$$(a + b) = sen a . cos b + sen b . cos a temos:$$

$$sen (a + a) = sen (2a) =$$

=
$$sen a . cos a + sen a . cos a = 2 . sen a . cos a$$

Assim:

 $sen(2a) = 2 \cdot sen \cdot a \cdot cos \cdot a$

2. Cálculo de cos (2a)

Substituindo **b** por **a** na fórmula

$$cos(a + b) = cos a \cdot cos b - sen a \cdot sen b$$
temos:

$$\cos (a + a) = \cos (2a) =$$

=
$$\cos a \cdot \cos a - \sin a \cdot \sin a = \cos^2 a - \sin^2 a$$

Assim:

 $cos(2a) = cos^2a - sen^2a$

3. Cálculo de tg (2a)

Substituindo **b** por **a** na fórmula

$$tg (a + b) = \frac{tg a + tg b}{1 - tg a \cdot tg b} temos:$$

tg (a + a) = tg (2a) =
$$\frac{\text{tg a + tg a}}{1 - \text{tg a . tg a}} = \frac{2 . \text{tg a}}{1 - \text{tg}^2 a}$$

Assim: $tg(2a) = \frac{2 \cdot tg \ a}{1 - tg^2 a}$

No Portal Objetivo

Para saber mais sobre o assunto, acesse o PORTAL OBJETIVO (www.portal.objetivo.br) e, em "localizar", digite MAT1M303

Exercícios Resolvidos

sen (2a) e cos (2a)

Resolução

a) sen (2a) = 2 . sen a . cos a
$$\text{sen (2a)} = 2 . \frac{2}{3} . \frac{\sqrt{5}}{3} = \frac{4\sqrt{5}}{9}$$

b)
$$\cos (2a) = \cos^2 a - \sin^2 a =$$

$$=\left(\frac{\sqrt{5}}{3}\right)^2-\left(\frac{2}{3}\right)^2=\frac{1}{9}$$

Resposta: sen (2a) =
$$\frac{4\sqrt{5}}{9}$$
 e cos (2a) = $\frac{1}{9}$

2 Calcular tg (2x) sabendo que tg x = 3

Resolução

$$tg (2x) = \frac{2 \cdot tg x}{1 - tg^2 x} = \frac{2 \cdot 3}{1 - 9} = -\frac{3}{4}$$

Resposta: tg (2x) = $-\frac{3}{4}$

(F. MED. TRIÂNGULO MINEIRO – MODELO

ENEM) - A figura ilustra recomendações dos especialistas em visão para o posicionamento correto de um indivíduo diante da tela do computador.

Seguindo-se tais recomentações e admitindo-se cos 10° = k, todos os comprimentos possíveis da linha de visada (v), em cm, estão no

a)
$$\frac{60}{k} \le v \le \frac{65}{2k^2 - 1}$$
 b) $\frac{60}{k} \le v \le \frac{65}{2 - k^2}$

b)
$$\frac{60}{k} \le V \le \frac{65}{2 - k^2}$$

c)
$$\frac{65}{2k} \le V \le \frac{60}{k}$$

c)
$$\frac{65}{2k} \le v \le \frac{60}{k}$$
 d) $\frac{60}{k} \le v \le \frac{65}{k^2}$

e)
$$\frac{30}{k} \le v \le \frac{65}{2k}$$

- 1) $\cos 10^{\circ} = k$
- 2) $\cos 20^{\circ} = \cos^2 10^{\circ} \sin^2 10^{\circ} =$ $= 2 \cos^2 10^\circ - 1 = 2k^2 - 1$
- 3) $\cos 10^{\circ} > \cos 20^{\circ}$
- 4) $\cos \alpha = \frac{d}{V} \Leftrightarrow V = \frac{d}{\cos \alpha}$
- O valor de V é máximo para d = 65 e $\cos \alpha = \cos 20^{\circ} = 2k^2 - 1.$

$$Logo: V_{máximo} = \frac{65}{2k^2 - 1}$$

6) O valor de V é mínimo para d = 60 e $\cos \alpha = \cos 10^{\circ} = k$.

Logo:
$$V_{mínimo} = \frac{60}{k}$$

Resposta: A

Exercícios Propostos

1 Sendo $0 < x < \frac{\pi}{2}$ e sen $x = \frac{1}{3}$, calcular sen(2x) **RESOLUÇÃO:**

1)
$$sen^2x + cos^2x = 1$$

 $\frac{1}{9} + cos^2x = 1$

$$\cos^2 x = \frac{8}{9}$$

$$\cos x = \frac{2\sqrt{2}}{3}, \text{ pois } 0 < x < \frac{\pi}{2}$$

2)
$$sen(2x) = 2 \cdot sen \cdot x \cdot cos \cdot x$$

$$sen(2x) = 2 \cdot \frac{1}{3} \cdot 2 \cdot \frac{\sqrt{2}}{3} = \frac{4\sqrt{2}}{9}$$

2 Sabendo-se que sen a + cos a = $\frac{1}{2}$, calcular sen (2a)

RESOLUÇÃO:

$$(\text{sen a} + \cos a)^2 = \left(\frac{1}{2}\right)^2$$

 $\text{sen}^2 + 2 \text{ sen a . } \cos a + \cos^2 a = \frac{1}{2}$

$$\operatorname{sen}^{2}a + 2 \operatorname{sen} a \cdot \cos a + \cos^{2}a = \frac{1}{4}$$

$$sen(2a) = \frac{1}{4} - 1$$

$$sen(2a) = \frac{-3}{4}$$

3 Determinar o conjunto verdade da equação sen (2x) – $\cos x = 0$, para $0^{\circ} \le x \le 360^{\circ}$

RESOLUÇÃO:

 $2 \operatorname{sen} x \cdot \cos x - \cos x = 0$

 $\cos x = 0$

$$sen x = \frac{1}{2}$$

V = {30°, 90°, 150°, 270°}

O valor de 3 . sen 10° . (tg 5° + cotg 5°) é igual a

a)
$$\frac{3}{2}$$
 b) 2 c) 3 d) 5 e) 6

RESOLUÇÃO:

 $3 \text{ sen } 10^{\circ} \cdot (\text{tg } 5^{\circ} + \text{cotg } 5^{\circ}) =$

= 3 . 2 sen 5° . cos 5° .
$$\left(\frac{\text{sen 5}^{\circ}}{\text{cos 5}^{\circ}} + \frac{\text{cos 5}^{\circ}}{\text{sen 5}^{\circ}}\right)$$
 =

= 6 . sen 5° . cos 5° .
$$\frac{\text{sen}^25^\circ + \cos^25^\circ}{\text{sen 5° . cos 5°}}$$
 = 6

Resposta: E

No Portal Objetivo

Para saber mais sobre o assunto, acesse o PORTAL OBJETIVO (www.portal.objetivo.br) e, em "localizar", digite MAT1M304

(MODELO ENEM) – Na figura abaixo, o segmento BC representa uma torre metálica vertical com 10 metros de altura, sobre a qual está fixada uma antena transmissora de sinais de uma estação de rádio FM, também vertical, com x metros de comprimento.

A reta r é uma das retas do plano do chão, que passa pela base B da torre. Sabe-se que o ângulo CÂD, no qual A é um ponto de \mathbf{r} , distante 30 m de B, tem medida α . Qual será o tamanho da antena CD, se o ângulo CÂB também tiver a medida α ?

- a) 20 m.
- b) 18 m.

- d) 14 m.
- e) 12,5 m.

RESOLUÇÃO:

De acordo com o enunciado, temos a seguinte figura:

I) No
$$\triangle$$
 ABC, temos: $tg\alpha = \frac{BC}{AB} = \frac{10}{30} = \frac{1}{3}$.

II) No
$$\triangle$$
 ABD, temos: tg $(2\alpha) = \frac{BD}{AB} = \frac{x + 10}{30}$

Como tg
$$(2\alpha) = \frac{2 \cdot tg\alpha}{1 - ta^2\alpha}$$
, resulta:

$$\frac{x+10}{30} = \frac{2 \cdot \frac{1}{3}}{1 - \left(\frac{1}{2}\right)^2} \Leftrightarrow \frac{x+10}{30} = \frac{3}{4} \Leftrightarrow x+10 = 22,5 \Leftrightarrow x = 12,5 \text{ m}$$

Resposta: E

Lei dos senos

Palavras-chave:

- Triângulo
- Circunferência circunscrita

A razão entre a **medida de um lado** de um triângulo e o **seno do ângulo oposto** é **constante** e igual ao **diâmetro** da circunferência circunscrita ao triângulo.

$$\frac{a}{\operatorname{sen} \hat{A}} = \frac{b}{\operatorname{sen} \hat{B}} = \frac{c}{\operatorname{sen} \hat{C}} = 2R$$

3

Saiba mais

Demonstração

Seja o triângulo ABC, inscrito na circunferência de raio ${\bf R}$.

Figura II

Figura I

Seja BD = 2R (diâmetro da circunferência) e o triânqulo retângulo BCD, com \hat{C} = 90°.

Por definição: sen
$$\alpha = \frac{BC}{BD}$$
 ou sen $\alpha = \frac{a}{2 \cdot R}$.

Se \hat{A} é agudo, tem-se $\hat{A}=\alpha$ (ambos têm por medida a metade do ângulo central correspondente – figura I).

Se \hat{A} é obtuso, tem-se $\hat{A}=180^{\circ}-\alpha$ (todo quadrilátero inscritível tem os ângulos opostos suplementares – figura II).

Nos dois casos, sen $\alpha = \operatorname{sen} \hat{A}$ e, portanto,

$$\operatorname{sen} \hat{A} = \frac{a}{2 \cdot R} \Leftrightarrow 2R = \frac{a}{\operatorname{sen} \hat{A}}$$

Considerando-se os diâmetros que passam por C e por A, de modo análogo, obtém-se

$$\frac{b}{\operatorname{sen} \hat{B}} = 2R \quad e \quad \frac{c}{\operatorname{sen} \hat{C}} = 2R$$

Consequentemente,

$$\frac{a}{\operatorname{sen}\hat{A}} = \frac{b}{\operatorname{sen}\hat{B}} = \frac{c}{\operatorname{sen}\hat{C}} = 2 . R$$

Exercícios Resolvidos

1 Obter o raio da circunferência, circunscrita ao triângulo ABC, dados = 30° e BC = 7 cm. **Resolução**

Pela Lei dos Senos, temos

$$\frac{BC}{sen A} = 2 . R e, portanto,$$

$$\frac{7}{\text{sen } 30^{\circ}} = 2 \cdot R \Leftrightarrow \frac{7}{\frac{1}{2}} = 2R \Leftrightarrow R = 7$$

Resposta: 7 cm

2 (MODELO ENEM) – Num triângulo ABC, são dados: $\hat{A} = 75^{\circ}$; $\hat{B} = 45^{\circ}$ e AB = $\sqrt{6}$.

Calcular a medida do lado AC.

a) 2 b) $\sqrt{6}$ c) 1/2 d) 4 e) 1/4 **Resolução**

Sendo $\hat{A} = 75^{\circ} e \hat{B} = 45^{\circ}$, resulta $\hat{C} = 60^{\circ}$.

Pela lei dos senos, temos

$$\frac{\mathsf{AC}}{\mathsf{sen}\;\mathsf{45^\circ}} = \frac{\mathsf{AB}}{\mathsf{sen}\;\mathsf{60^\circ}} \Leftrightarrow \frac{\mathsf{AC}}{\mathsf{sen}\;\mathsf{45^\circ}} = \frac{\sqrt{\mathsf{6}}}{\mathsf{sen}\;\mathsf{60^\circ}} \Leftrightarrow$$

$$\Leftrightarrow \frac{AC}{\frac{\sqrt{2}}{2}} = \frac{\sqrt{6}}{\frac{\sqrt{3}}{2}} \Leftrightarrow AC = 2$$

Resposta: A

Seja o triângulo ABC da figura. Determinar a medida do lado AB, sabendo que $AC = 15\sqrt{2}$ cm.

Resolução

Pela lei dos senos, temos

$$\frac{AB}{\text{sen } 30^{\circ}} = \frac{AC}{\text{sen } 45^{\circ}} \Leftrightarrow$$

$$\Leftrightarrow \frac{AB}{\frac{1}{2}} = \frac{15\sqrt{2}}{\sqrt{2}} \Leftrightarrow AB = 15$$

Resposta: 15 cm

Exercícios Propostos

1 Determinar a medida do lado AB do triângulo ABC sabendo que BC = $10\sqrt{2}$ cm, $\hat{A} = 30^{\circ}$ e $\hat{C} = 45^{\circ}$.

RESOLUÇÃO:

$$\frac{x}{\text{sen }45^{\circ}} = \frac{10\sqrt{2}}{\text{sen }30^{\circ}} \Leftrightarrow$$

$$\Leftrightarrow \frac{x}{\frac{\sqrt{2}}{2}} = \frac{10\sqrt{2}}{\frac{1}{2}} \Leftrightarrow \frac{1}{2} x = 10 . \sqrt{2} . \frac{\sqrt{2}}{2} \Leftrightarrow x = 20 \text{ cm}$$

2 Calcular o raio da circunferência circunscrita a um triângulo do qual se conhecem um lado a=20 m e o ângulo oposto $\hat{A}=60^{\circ}$.

RESOLUÇÃO:

$$\frac{20}{\text{sen }60^{\circ}} = 2 \text{ R} \Leftrightarrow 2\text{R} \cdot \frac{\sqrt{3}}{2} = 20 \Leftrightarrow$$

$$\Leftrightarrow R = \frac{20}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} \Leftrightarrow R = \frac{20\sqrt{3}}{3} m$$

(UNIFOA – MODELO ENEM) – Um topógrafo pretende calcular o comprimento da ponte OD que passa sobre o rio mostrado na figura abaixo. Para isto, toma como referência os pontos A, O e C, situados em uma das margens do rio. Com ponto de referência em A, calcula o ângulo DÂC = 45°. Caminha 200 m até o ponto O e com ponto de referência no mesmo, calcular o ângulo DÔC = 75°. Com estes dados, qual será o comprimento da ponte calculado pelo topógrafo?

- a) 200 √2 m
- b) 250 $\sqrt{3}$ m
- c) 300 $\sqrt{3}$ m
- d) $100 \sqrt{2} \text{ m}$
- e) 150 √2 m

RESOLUÇÃO:

Resposta: A

4 (FGV – MODELO ENEM) – Uma estrela regular de 4 bicos está inscrita numa circunferência de raio 2 m. Levando-se em conta a medida do ângulo assinalado na figura e os dados a seguir, pode-se afirmar que o perímetro da estrela é de:

Medida ângulo	seno	cosseno
30°	1/2	$\frac{\sqrt{3}}{2}$
45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$
60°	$\frac{\sqrt{3}}{2}$	1/2
90°	1	0

- a) $\frac{2\sqrt{6}}{3}$
- b) $\frac{4\sqrt{6}}{3}$
- c) $\frac{8\sqrt{6}}{3}$

- $d) \quad \frac{16\sqrt{6}}{3}$
- e) $\frac{32\sqrt{6}}{3}$

RESOLUÇÃO:

A partir do enunciado, podemos considerar o triângulo ABO, em que AO = 2, $A\hat{O}B = 45^{\circ}$, $A\hat{B}O = 120^{\circ}$ e, pela lei dos senos, temos

$$\frac{AB}{\text{sen }45^{\circ}} = \frac{AO}{\text{sen }120^{\circ}} \Leftrightarrow \frac{AB}{\frac{\sqrt{2}}{2}} = \frac{2}{\frac{\sqrt{3}}{2}} \Leftrightarrow AB = \frac{2\sqrt{2}}{\sqrt{3}} = \frac{2\sqrt{6}}{3}$$

Portanto, o perímetro da estrela, em metros, é

$$8. \frac{2\sqrt{6}}{3} = \frac{16\sqrt{6}}{3}$$

Resposta: D

Módulo

Lei dos cossenos

Palavra-chave:

• Cosseno

O **quadrado da medida** de um lado de um triângulo, é igual **à soma dos quadrados** das medidas dos outros dois lados, **menos o dobro do produto** dessas medidas pelo **cosseno do ângulo compreendido** entre eles.

$$a^2 = b^2 + c^2 - 2bc \cdot \cos \hat{A}$$

$$b^2 = a^2 + c^2 - 2ac \cdot \cos \hat{B}$$

$$c^2 = a^2 + b^2 - 2ab \cdot \cos \hat{C}$$

1 (MODELO ENEM) – Leia com atenção o problema proposto a Calvin na tira seguinte.

O MELHOR DE CALVIN / Bill Watterson

Jornal O Estado de S. Paulo, 28/04/2007

Supondo que os pontos A, B e C sejam vértices de um triângulo cujo ângulo do vértice A mede 60°, então a resposta correta que Calvin deveria encontrar para o problema é, em

centímetros,

$$\frac{5\sqrt{3}}{3}$$

b)
$$\frac{8\sqrt{3}}{3}$$

a)
$$\frac{5\sqrt{3}}{3}$$
 b) $\frac{8\sqrt{3}}{3}$ c) $\frac{10\sqrt{3}}{3}$

d) $5\sqrt{3}$ e) $10\sqrt{3}$

Resolução

A partir do enunciado, o triângulo ABC tem as dimensões indicadas na figura a seguir:

Pela Lei dos Cossenos, temos

$$5^2 = (2x)^2 + x^2 - 2 \cdot (2x) \cdot x \cdot \cos 60^\circ \Leftrightarrow$$

$$\Leftrightarrow 25 = 4x^2 + x^2 - 4x^2$$
. $\frac{1}{2} \Leftrightarrow$

$$\Leftrightarrow 25 = 3x^2 \Leftrightarrow x^2 = \frac{25}{3} \Leftrightarrow x = \frac{5\sqrt{3}}{3}$$

Portanto, AC = $\frac{10\sqrt{3}}{2}$

Resposta: C

Determinar a medida do lado BC, no triângulo da figura.

Resolução

Pela lei dos cossenos, temos

$$a^2 = b^2 + c^2 - 2 \cdot b \cdot c \cdot \cos \hat{A}$$

Então:
$$BC^2 = 3^2 + 4^2 - 2 \cdot 3 \cdot 4 \cdot \cos 60^\circ \Leftrightarrow$$

$$\Leftrightarrow$$
 BC² = 9 + 16 - 24 . $\frac{1}{2}$ \Leftrightarrow BC² = 13 e, portanto, BC = $\sqrt{13}$

Resposta: √13

Exercícios Propostos

1 Um triângulo tem dois lados com medidas 6 cm e 3 cm, formando um ângulo de 60°. Calcular a medida do lado oposto ao ângulo de 60°.

RESOLUÇÃO:

$$x^2 = 3^2 + 6^2 - 2 \cdot 3 \cdot 6 \cdot \cos 60^{\circ}$$

 $x^2 = 9 + 36 - 36 \cdot \frac{1}{2}$
 $x^2 = 9 + 36 - 18$
 $x^2 = 27$
 $x = 3\sqrt{3}$ cm

(FUVEST) – Um triângulo T tem lados iguais a 4, 5 e 6. O cosseno do maior ângulo de T é

a)
$$\frac{5}{6}$$

b)
$$\frac{4}{5}$$

a)
$$\frac{5}{6}$$
 b) $\frac{4}{5}$ c) $\frac{3}{4}$ d) $\frac{2}{3}$ e) $\frac{1}{8}$

d)
$$\frac{2}{3}$$

e)
$$\frac{1}{8}$$

RESOLUÇÃO:

$$6^2 = 4^2 + 5^2 - 2 \cdot 5 \cdot 4 \cdot \cos x$$

$$36 = 16 + 25 - 40 \cos x$$

$$40 \cos x = 5$$

$$\cos x = \frac{1}{8}$$

Resposta: E

3 Calcular as diagonais de um paralelogramo cujos lados medem 10 cm e 5 cm, e formam um ângulo de 60°.

RESOLUÇÃO:

$$d_1 = 10^2 + 5^2 - 2.10.5.\cos 60^\circ$$
$$d_1 = 100 + 25 - 100.\frac{1}{2}$$

$$d_1 = 75 \Rightarrow d_1 = 5\sqrt{3} \text{ cm}$$

$$d_2 = 10^2 + 5^2 - 2.10.5 \cdot \cos 120^\circ$$
$$d_2 = 100 + 25 + 50 \Rightarrow$$

$$\Rightarrow$$
 d₂ = 5 $\sqrt{7}$ cm

4 (UFC – MODELO ENEM) – Um octógono regular está inscrito em uma circunferência de raio 1. Os vértices A, D e E do octógono são tais que \overline{AE} é um diâmetro de sua circunferência circunscrita e D e E são adjacentes. Determine o comprimento da diagonal \overline{AD} .

RESOLUÇÃO:

Aplicando a Lei dos Cossenos no triângulo ADO, temos:

$$(AD)^2 = (AO)^2 + (OD)^2 - 2 (AO) (OD) \cos 135^\circ$$

$$(AD)^2 = 1 + 1 - 2 \cdot \left(-\frac{\sqrt{2}}{2}\right)$$

$$(AD)^2 = 2 + \sqrt{2}$$

$$AD = \sqrt{2 + \sqrt{2}}$$
, pois $AD > 0$

Resposta: AD =
$$\sqrt{2 + \sqrt{2}}$$

Módulo

39

Resolução de triângulos

Palavra-chave:

- Lei dos senos
- Lei dos cossenos

Resumo

Lei dos senos

$$\frac{a}{\operatorname{sen} \hat{A}} = \frac{b}{\operatorname{sen} \hat{B}} = \frac{c}{\operatorname{sen} \hat{C}} = 2R$$

Lei dos cossenos

$$a^2 = b^2 + c^2 - 2bc \cdot \cos \hat{A}$$

$$b^2 = a^2 + c^2 - 2ac \cdot \cos \hat{B}$$

$$c^2 = a^2 + b^2 - 2ab \cdot \cos \hat{C}$$

Exercícios Propostos

(FUVEST) – No quadrilátero abaixo, AB = CD = 3 cm, BC = 2 cm, ADC = 60° e ABC = 90°. A medida, em cm, do perímetro do quadrilátero é

- a) 11
- b) 12
- c) 13
- d) 14
- e) 15

RESOLUÇÃO:

- I) No ΔABC: $(AC)^2 = 3^2 + 2^2 \Rightarrow AC = \sqrt{13}$ cm
- II) No $\triangle ACD$: $(\sqrt{13})^2 = 3^2 + x^2 2 \cdot 3 \cdot x \cdot \underbrace{\cos 60^\circ}_{\frac{1}{2}} \Leftrightarrow$

$$\Rightarrow x^2 - 3x - 4 = 0$$
 $x_1 = -1$ (não serve) $x_2 = 4$

III) O perímetro é 4 + 3 + 3 + 2 = 12 cm

Resposta: B

2 (VUNESP – MODELO ENEM) – Para calcular a distância entre duas árvores situadas nas margens opostas de um rio, nos pontos A e B, um observador que se encontra junto a A afasta-se 20 m da margem, na direção da reta AB, até o ponto C e depois caminha em linha reta até o ponto D, a 40 m de C, do qual ainda pode ver as árvores.

Tendo verificado que os ângulos DCB e BDC medem, respectivamente, cerca de 15° e 120°, que valor ele encontrou para a distância entre as árvores, se usou a aproximação $\sqrt{6}$ = 2,4?

RESOLUÇÃO:

No triângulo BCD temos \hat{B} = 180° – 15° – 120° = 45°

No mesmo triângulo:
$$\frac{20 + x}{\sin 120^{\circ}} = \frac{40}{\sin 45^{\circ}} \Leftrightarrow$$

$$\Leftrightarrow \frac{20 + x}{\frac{\sqrt{3}}{2}} = \frac{40}{\frac{\sqrt{2}}{2}} \Leftrightarrow 20 + x = 40 . \frac{\sqrt{3}}{\sqrt{2}} = 20\sqrt{6} = 20 . 2,4 = 48$$

Logo: x = 28

(UNICAMP - MODELO ENEM) - Observadores nos pontos A e B localizam um foco de incêndio florestal em F. Conhecendo os ângulos FÂB = 45° e FBA = 105° e a distância AB = 15 km, determinar a distância BF.

RESOLUÇÃO:

$$\frac{x}{\text{sen }45^{\circ}} = \frac{15}{\text{sen }30^{\circ}} \Leftrightarrow x \cdot \text{sen }30^{\circ} = 15 \cdot \text{sen }45^{\circ} \Leftrightarrow$$

$$\Leftrightarrow x \cdot \frac{1}{2} = 15 \cdot \frac{\sqrt{2}}{2} \Leftrightarrow x = 15\sqrt{2}$$

Resposta: 15√2 km

(UFSCar) – Se os lados de um triângulo medem x, x + 1 e x + 2, então, para qualquer x real e maior que 1, o cosseno do maior ângulo interno desse triângulo é igual a

a)
$$\frac{x}{x+1}$$

a)
$$\frac{x}{x+1}$$
 b) $\frac{x}{x+2}$ c) $\frac{x+1}{x+2}$

c)
$$\frac{x+1}{x+2}$$

d)
$$\frac{x-2}{3x}$$
 e) $\frac{x-3}{2x}$

e)
$$\frac{x-3}{2x}$$

Obs.: $x^2 - 2x - 3 = (x + 1) \cdot (x - 3)$

RESOLUÇÃO:

l) x + 2 é o maior lado, então, α é o maior ângulo.

II) Pela lei dos cossenos, temos:

$$(x+2)^2 = x^2 + (x+1)^2 - 2 \cdot x \cdot (x+1) \cdot \cos \alpha \Leftrightarrow$$

$$\Leftrightarrow x^2 + 4x + 4 = x^2 + x^2 + 2x + 1 - 2 \cdot x \cdot (x+1) \cdot \cos \alpha \Leftrightarrow$$

$$\Leftrightarrow 2 \cdot x \cdot (x+1) \cdot \cos \alpha = x^2 - 2x - 3 \Leftrightarrow$$

$$\Leftrightarrow 2 \cdot x \cdot (x+1) \cdot \cos \alpha = (x+1) \cdot (x-3) \Leftrightarrow \cos \alpha = \frac{x-3}{2x}$$

Resposta: E

Sequências e progressão aritmética

Palavras-chave:

• Anterior • Razão • Posterior

1. Definição de sequência

Chama-se **sequência de números reais** ou, simplesmente, **sequência real** a qualquer função f de \mathbb{N}^* em \mathbb{R} .

2. Notação

A sequência $f: \mathbb{N}^* \to \mathbb{R}$ tal que $f(n) = a_n$ será indicada por:

$$f = (a_n) = (a_1; a_2; a_3; ...; a_n; ...)$$

Os números a_1 , a_2 , a_3 , ..., a_n , ... são chamados **termos** da sequência.

3. Definição de progressão aritmética

Sejam \mathbf{a} e \mathbf{r} dois números reais. Chama-se **progres-** \mathbf{s} $\mathbf{\tilde{a}}$ \mathbf{o} aritmética (P.A.) à sequência (\mathbf{a}_n) tal que

$$\begin{cases} a_1 = a \\ a_{n+1} = a_n + r; \forall n \in \mathbb{N}^* \end{cases}$$

Observe que, na progressão aritmética, cada termo, a partir do segundo é obtido, adicionando-se ${\bf r}$ ao termo anterior.

O número real **r** é chamado **razão** da P.A. Segue da definição que

$$r=a_{n+1}-a_{n'} \ \forall n\in \mathbb{N}^*$$

Por exemplo, na P.A. (2; 5; 8; 11; 14; ...), temos

$$r = 5 - 2 = 8 - 5 = 11 - 8 = 14 - 11 = \dots = 3$$

Exemplos

- 1. A sequência (3, 5, 7, 9, ...) é uma P.A. estritamente crescente onde $a_1 = 3$ e r = 2.
- 2. A sequência (100, 90, 80, 70, ...) é uma P.A. estritamente decrescente onde $a_1 = 100$ e r = -10.
- 3. A sequência (5, 5, 5, 5, ...) é uma P.A. constante onde $a_1 = 5$ e r = 0.
- 4. A sequência $\left(2, \, \frac{5}{2}, \, 3, \, \frac{7}{2}, \, \ldots\right)$ é uma P.A. estritamente crescente onde o primeiro termo $a_1 = 2$ e a razão é igual a $\frac{5}{2} 2 = 3 \frac{5}{2} = \frac{7}{2} 3 = \frac{1}{2}$.
- 5. Se $(\sqrt{2}, \sqrt{3}, ...)$ é uma P.A. então a razão r é tal que $r = \sqrt{3} \sqrt{2}$.

4. Classificação

Se (a_n) é uma P.A., então:

- a) (a_n) é estritamente crescente $\Leftrightarrow r > 0$.
- b) (a_n) é estritamente decrescente $\Leftrightarrow r < 0$.
- c) (a_n) é **constante** \Leftrightarrow r = 0.

Exercícios Resolvidos

1 Na sequência $f = (a_n)$ tal que $a_n = n^2 + 1$, obtenha os quatro primeiros termos.

Resolução

A lei de formação $a_n = n^2 + 1$ fornece cada termo em função da sua posição. Assim, para

a)
$$n = 1 \text{ temos } a_1 = 1^2 + 1 = 2$$

b)
$$n = 2 \text{ temos } a_2 = 2^2 + 1 = 5$$

c)
$$n = 3 \text{ temos } a_3 = 3^2 + 1 = 10$$

d) n = 4 temos
$$a_4 = 4^2 + 1 = 17$$

Portanto, a sequência em questão é: (2, 5, 10, 17, ...)

2 Na sequência $f = (a_n)$ tal que $a_1 = 5$ e $a_{n+1} = a_n + 3$ para todo $n \in \mathbb{N}^*$, obtenha os quatro primeiros termos.

Resolução

A lei de formação $a_1 = 5$ e $a_{n+1} = a_n + 3$ fornece o 1º termo e ainda fornece cada termo

em função do termo anterior. Tal lei de formação chamaremos de lei de recorrência. Assim, fazendo

a) n = 1 temos
$$a_{1+1} = a_1 + 3 = 5 + 3 \Rightarrow a_2 = 8$$

b) n = 2 temos $a_{2+1} = a_2 + 3 = 8 + 3 \Rightarrow a_3 = 11$
c) n = 3 temos $a_{3+1} = a_3 + 3 = 11 + 3 \Rightarrow a_4 = 14$
Portanto, a sequência em questão é: (5, 8, 11, 14, ...)

3 Achar uma fórmula que forneça o termo geral da sequência

$$\left(\begin{array}{c} 1\\ \hline 2; \hline 3; \hline 4; \hline 5; \dots \end{array}\right)$$

Resolução

Observando-se que

$$a_1 = \frac{1}{2} = \frac{1}{1+1}, a_2 = \frac{2}{3} = \frac{2}{2+1},$$

$$a_3 = \frac{3}{4} = \frac{3}{3+1}$$

conclui-se que
$$a_n = \frac{n}{n+1}$$

Resolução

Resolução

$$a_1 = 1$$

 $a_2 = 2 \cdot 1 + 1 = 2 \cdot a_1 + 1$
 $a_3 = 2 \cdot 3 + 1 = 2 \cdot a_2 + 1$
 $a_4 = 2 \cdot 7 + 1 = 2 \cdot a_3 + 1$
 $a_5 = 2 \cdot 15 + 1 = 2 \cdot a_4 + 1$

Logo:
$$\begin{cases} a_1 = 1 \\ a_{n+1} = 2 \cdot a_n + 1 \end{cases}$$

Escreva os 4 primeiros termos da sequência (a,) tal que

Obs.: A sequência obtida (3; 8; 13; 18; ...) é uma P.A. crescente de

Exercícios Propostos

(UNESP - MODELO ENEM) - Os coelhos se reproduzem mais rapidamente que a maioria dos mamíferos. Considere uma colônia de coelhos que se inicia com um único casal de coelhos adultos e denote por a_n o número de casais adultos desta colônia ao final de n meses. Se $a_1 = 1$, $a_2 = 1$ e, para $n \ge 2$, $a_{n+1} = a_n + a_{n-1}$, o número de casais de coelhos adultos na colônia ao final do quinto mês será

- a) 13
- b) 8
- c) 6
- e) 4

RESOLUÇÃO:

De acordo com o enunciado, temos

- $a_1 = 1$
- $a_2 = 1$
- $a_3 = a_2 + a_1 = 1 + 1 = 2$
- $a_4 = a_3 + a_2 = 2 + 1 = 3$
- $a_5 = a_4 + a_2 = 3 + 2 = 5$

Portanto o número de casais de coelhos adultos na colônia ao final do quinto mês será 5.

2 Obtenha o 1º termo, o 6º termo, o 10º termo e o 20º termo

da sequência (a_n) onde $a_n = n^2 - 3$, $\forall n \in \mathbb{N}^*$.

Resposta: D

Verifique, em cada caso a seguir, se a sequência é uma

P.A. Em caso afirmativo, determine a razão e classifique a P.A.

- a) (3, 7, 11, 14, ...)
- b) (5, 2, -1, -4, ...)
- c) (2, 6, 18, 54, ...) d) (7, 7, 7, 7, ...)

e)
$$\left(3, \frac{7}{2}, 4, \frac{9}{2}, \dots\right)$$

 $a_{n+1} = a_n + 5, ∀n ∈ N*$

 $n = 1 \Rightarrow a_{1+1} = a_1 + 5 \Rightarrow a_2 = 3 + 5 = 8$

 $n = 2 \Rightarrow a_{2+1} = a_2 + 5 \Rightarrow a_3 = 8 + 5 = 13$

 $n = 3 \Rightarrow a_{3+1} = a_3 + 5 \Rightarrow a_4 = 13 + 5 = 18$

RESOLUÇÃO:

razão igual a 5.

 $a_1 = 3$

RESOLUÇÃO:

$$n = 1 \Rightarrow a_1 = 1^2 - 3 = -2$$

$$n = 6 \Rightarrow a_6 = 6^2 - 3 = 33$$

$$n = 10 \Rightarrow a_{10} = 10^2 - 3 = 97$$

$$n = 20 \Rightarrow a_{20}^{10} = 20^2 - 3 = 397$$

RESOLUÇÃO:

- a) Não é uma P.A.
- b) É uma P.A. estritamente decrescente de razão r = 3.
- c) Não é uma P.A.
- d) É uma P.A. constante de razão r = 0.
- e) É uma P.A. estritamente crescente de razão $r = \frac{1}{2}$

Termo geral de uma progressão aritmética

Palavras-chave:

- Termos quaisquer
- Diferença de posições

a) Seja (a_n) uma P.A. com primeiro termo a₁ e razão
 r. Da definição de P.A., temos:

$$a_2 = a_1 + r$$
 $a_3 = a_2 + r = a_1 + r + r = a_1 + 2r$
 $a_4 = a_3 + r = a_1 + 2r + r = a_1 + 3r$
 $a_5 = a_4 + r = a_1 + 3r + r = a_1 + 4r$
 $a_6 = a_5 + r = a_1 + 4r + r = a_1 + 5r$
•
•
•
• assim por diante.

Estas igualdades sugerem que, numa progressão aritmética, o termo de ordem ${\bf n}$ é igual à soma do primeiro termo com o produto de (n-1) pela razão, ou seja,

$$a_n = a_1 + (n-1) \cdot r$$
, $\forall n \in \mathbb{N}^*$

b) Se $\mathbf{a_n}$ e $\mathbf{a_m}$ são dois termos quaisquer de uma P.A., da fórmula do termo geral, temos

$$-\begin{cases} a_n = a_1 + (n-1) \cdot r \\ a_m = a_1 + (m-1) \cdot r \end{cases}$$

$$a_n - a_m = n \cdot r - r - m \cdot r + r \Leftrightarrow$$

$$\Leftrightarrow a_n - a_m = n \cdot r - m \cdot r$$

e, portanto,

$$a_n = a_m + (n - m) \cdot r$$

Saiba mais

Na P.A. (1, 3, 5, 7, ...) podemos calcular a_{10} , por exemplo, de várias maneiras. Veja:

a)
$$a_{10} = a_1 + (10 - 1)$$
 . $r \Rightarrow a_{10} = 1 + 9$. $2 \Rightarrow a_{10} = 19$

b)
$$a_{10} = a_3 + (10 - 3)$$
 . $r \Rightarrow a_{10} = 5 + 7$. $2 \Rightarrow a_{10} = 19$

c)
$$a_{10} = a_4 + (10 - 4)$$
 . $r \Rightarrow a_{10} = 7 + 6$. $2 \Rightarrow a_{10} = 19$

etc.

Exercícios Resolvidos - Módulos 41 e 42

Resolução

Na P.A. (3, 5, 7, ...) temos que $a_1 = 3$ e r = 5 - 3 = 7 - 5 = 2.

Assim, para obter o 31º termo a_{31} , basta substituir **n** por 31 na fórmula $a_n = a_1 + (n - 1)$ r.

Daí,
$$a_{31} = a_1 + (31 - 1) \cdot r \Leftrightarrow a_{31} = 3 + 30 \cdot 2 \Leftrightarrow a_{31} = 63$$

Para o centésimo termo a_{100} , basta substituir $\bf n$ por 100.

$$a_n = a_1 + (n - 1) \cdot r \Rightarrow$$

 $\Rightarrow a_{100} = a_1 + (100 - 1) \cdot r \Leftrightarrow$
 $\Leftrightarrow a_{100} = 3 + 99 \cdot 2 \Leftrightarrow a_{100} = 201.$

2 Calcule o 20º termo da P.A. em que o 5º termo vale 40 e a razão – 3.

Resolução

Observe que temos $a_5 = 40$ e r = -3 e queremos calcular a_{20} .

Assim, na fórmula $a_n = a_m + (n - m) r$, basta

substituir **n** por 20 e **m** por 5, obtendo

$$a_{20} = a_5 + (20 - 5)$$
 . r, ou seja,
 $a_{20} = 40 + 15$. $(-3) \Rightarrow a_{20} = -5$

3 Calcular o vigésimo termo da progressão aritmética (5; 9; 13; ...).

Resolução

Utilizando a fórmula do termo geral,

$$a_n = a_1 + (n-1) \cdot r$$
, temos $a_1 = 5$ $r = 4$ $a_{20} = a_1 + 19 \cdot r$ $\} \Rightarrow$

$$\Rightarrow$$
 $a_{20} = 5 + 19 \cdot 4 \Leftrightarrow a_{20} = 5 + 76 \Leftrightarrow a_{20} = 81$

Resposta: $a_{20} = 81$

4 Em uma progressão aritmética, sabe-se que $a_4 = 12$ e $a_9 = 27$. Calcular a_5 .

Resolução

Utilizando a fórmula $a_n=a_m+(n-m)$. r, que relaciona dois termos quaisquer de uma P.A., temos

$$\left. \begin{array}{l} a_4 = 12 \\ a_9 = 27 \\ a_9 = a_4 + (9-4) \ . \ r \end{array} \right\} \Rightarrow$$

$$\Rightarrow$$
 27 = 12 + 5 . r \Leftrightarrow 5r = 15 \Leftrightarrow r = 3

Assim sendo, já que
$$a_5 = a_4 + r$$
, temos $a_5 = 12 + 3 = 15$

Resposta:
$$a_5 = 15$$

5 Sabendo que, numa P.A., $a_n = 44$, $a_1 = 4$ e r = 5, determinar n.

Resolução

$$a_n = 44; \ a_1 = 4; r = 5$$

 $a_n = a_1 + (n-1) \cdot r$ $\Rightarrow 44 = 4 + (n-1) \cdot 5 \Leftrightarrow$

$$\Leftrightarrow$$
 40 = (n - 1) . 5 \Leftrightarrow n - 1 = 8 \Leftrightarrow n = 9

Resposta: n = 9

6 Calcular os ângulos internos de um triângulo retângulo, sabendo que estão em progressão aritmética.

Resolução

x + r x - r

Representando os ângulos por $\mathbf{x} - \mathbf{r}$, \mathbf{x} , \mathbf{x} + \mathbf{r} , com \mathbf{r} > 0, e lembrando que a soma dos ângulos internos de um triângulo é 180°, temos

$$\begin{cases} (x-r) + x + (x+r) = 180^{\circ} \\ x + r = 90^{\circ} \end{cases} \Leftrightarrow \begin{cases} x = 60^{\circ} \\ x + r = 90^{\circ} \end{cases} \Leftrightarrow \begin{cases} x = 60^{\circ} \\ r = 30^{\circ} \end{cases}$$

Logo, os ângulos são: 30°, 60° e 90°.

Resposta: 30°, 60° e 90°

Exercícios Propostos - Módulo 41

1 Calcular o 8º, o 9º e o 12º termos da P.A. cujo primeiro termo é 4 e a razão é – 2.

RESOLUÇÃO:

Na P.A., $a_1 = 4$ e r = -2, então:

$$a_8 = a_1 + 7 \cdot r = 4 + 7 \cdot (-2) = 4 - 14 = -10$$

$$a_9 = a_8 + r = -10 + (-2) = -10 - 2 = -12$$

$$a_{12} = a_9 + 3r = -12 + 3 \cdot (-2) = -12 - 6 = -18$$

2 Determine o 1º termo e a razão da P.A. em que o 7º termo é 4 e o 11º termo é 16.

RESOLUÇÃO:

Obs.: Sr. Professor, nas questões 2 e 3, insista na fórmula $a_n = a_m + (n-m)$. r que permite relacionar dois termos quaisquer de P.A., sem utilizar o primeiro termo.

Na P.A., $a_7 = 4$ e $a_{11} = 16$, então:

I)
$$a_{11} = a_7 + 4 \cdot r$$

$$10 = 4 + 4$$

 $12 = 4r$

II)
$$a_7 = a_1 + 6 \cdot r$$

$$4 = a_1 + 6.3$$

$$4 = a_1 + 18$$

3 Determine a posição que o número 74 ocupa numa P.A. em que o 3º termo é igual a 2 e a razão é igual a 6.

RESOLUÇÃO:

Na P.A., $a_3 = 2$ e r = 6. Se o número 74 é um dos termos dessa P.A., devemos ter $a_n = 74$ com $n \in \mathbb{N}^*$.

$$a_n = a_3 + (n - 3) \cdot r \Leftrightarrow 74 = 2 + (n - 3) \cdot 6 \Leftrightarrow$$

$$\Leftrightarrow$$
 72 = (n - 3) . 6 \Leftrightarrow 12 = n - 3 \Leftrightarrow n = 15
Assim, a_{15} = 74, isto é, 74 é o 15° termo da P.A.

4 Sabe-se que a sequência (a_n) é dada por (1050, 1048, 1046, 1044, ...) e que a sequência (b_n) é dada por (110, 118, 126, 134, ...). Determine o valor de k para o qual $a_k = b_k$.

RESOLUÇÃO:

I)
$$a_k = 1050 + (k - 1) \cdot (-2) = 1052 - 2k$$

II)
$$b_k = 110 + (k - 1) \cdot 8 \Leftrightarrow 102 + 8k$$

(8,12,16,20, ...,104). O número de termos comuns a essas duas progressões é

RESOLUÇÃO:

A sequência (1; 4; 7; 10; ...; 67) é uma P.A. de razão r = 3.

A sequência (8; 12; 16; 20; ...; 104) é uma P.A. de razão r = 4.

Os termos comuns às duas P.A. formarão uma nova P.A. de razão r = 12 e primeiro termo $a_1 = 16$, isto é: (16; 28; 40; 52; 64).

O número de termos comuns é, portanto, igual a 5.

Resposta: A

Exercícios Propostos - Módulo 42

1 Numa progressão aritmética em que a soma do sétimo com o décimo segundo termo é 52 e a soma do quinto com o vigésimo terceiro termo é 70, o valor do primeiro termo é a) 2. b) 5. c) 7. d) 9. e) 23.

RESOLUÇÃO:

I)
$$\begin{cases} a_7 + a_{12} = 52 \\ a_5 + a_{23} = 70 \end{cases} \Rightarrow \begin{cases} a_1 + 6r + a_1 + 11r = 52 \\ a_1 + 4r + a_1 + 22r = 70 \end{cases} \Rightarrow$$
$$\Rightarrow \begin{cases} 2a_1 + 17r = 52 \cdot (-1) \\ 2a_1 + 26r = 70 \end{cases} \Rightarrow \begin{cases} -2a_1 - 17r = -52 \\ 2a_1 + 26r = 70 \end{cases} \Rightarrow$$

II) Se r = 2, então:

$$2a_1 + 17r = 52 \Rightarrow 2a_1 + 17 \cdot 2 = 52 \Leftrightarrow$$

 $\Leftrightarrow 2a_1 = 52 - 34 \Leftrightarrow 2a_1 = 18 \Leftrightarrow a_1 = 9$

Resposta: D

2 Interpolando-se 7 termos aritméticos entre os números 10 e 98, nesta ordem, obtém-se uma P.A. cujo quinto termo vale a) 45. b) 52. c) 54. d) 55. e) 57.

RESOLUÇÃO:

Resposta: C

(VUNESP – MODELO ENEM) – Num laboratório, foi feito um estudo sobre a evolução de uma população de vírus. Ao final de um minuto do início das observações, existia 1 elemento na população; ao final de dois minutos, existiam 5, e assim por diante. A seguinte sequência de figuras apresenta as populações do vírus (representado por um círculo) ao final de cada um dos quatro primeiros minutos.

Supondo que se manteve constante o ritmo de desenvolvimento da população, o número de vírus no final de 1 hora era de a) 241. b) 238. c) 237. d) 233. e) 232.

RESOLUÇÃO:

Ao final de cada minuto o número de vírus existentes na população é termo da sequência (1;5;9;13;...), que é uma progressão aritmética de razão 4.

Ao final de 1 hora, o número de vírus existentes era de $a_{60}=a_1+(60-1)$. r=1+59 . 4=237 Resposta: C

(VUNESP-adaptado – MODELO ENEM) – Uma pessoa obesa, pesando num certo momento 156 kg, recolhe-se a um spa onde se anunciam perdas de peso de até 2,5 kg por semana. Suponhamos que isso realmente ocorra. Nessas condições, o número mínimo de semanas completas que a pessoa deverá permanecer no spa para sair de lá com menos de 120 kg de peso é

a) 12.

b) 13.

c) 14.

d) 15.

e) 16.

RESOLUÇÃO:

Após 1 semana
$$\Rightarrow$$
 P₁ = 156 - 2,5 . 1
Após 2 semanas \Rightarrow P₂ = 156 - 2,5 . 2
Após 3 semanas \Rightarrow P₃ = 156 - 2,5 . 3
 \vdots
Após n semanas \Rightarrow P_n = 156 - 2,5 . n

 P_n < 120 \Rightarrow 156 – 2,5 n < 120 \Leftrightarrow 2,5 n > 36 \Leftrightarrow n > 14,4 Logo, a pessoa deverá permanecer, no mínimo, 15 semanas completas.

Resposta: D

(MODELO ENEM) – Um restaurante, inaugurado em 1º de março, serviu 20 refeições no primeiro dia de funcionamento. Seu proprietário notou que a cada dia servia três refeições a mais que no dia anterior. Sabendo-se que o restaurante abriu todos os dias, em que dia foram servidas 152 refeições?

RESOLUÇÃO:

O número de refeições servidas a cada dia são termos da P.A.(20, 23, 26, ..., 152), então:

152 = 20 + (n − 1) . 3 \Leftrightarrow 132 = (n − 1) . 3 \Leftrightarrow 44 = n − 1 \Leftrightarrow \Leftrightarrow n = 45 \Rightarrow a₄₅ = 152

Como o mês de março tem 31 dias e observando que 45 = 31 + 14, conclui-se que foram servidas 152 refeições no dia 14 de abril.

Propriedade de três termos consecutivos de uma P.A.

Palavras-chave:

- Média aritmética
 - · Termo central

Numa progressão aritmética (a_1 , a_2 , a_3 , ..., a_{p-1} , a_p , a_{n + 1}, ...), **cada termo**, a partir do segundo, é a **média** aritmética entre o termo anterior e o posterior.

Simbolicamente:

$$a_p = \frac{a_{p-1} + a_{p+1}}{2}$$

Demonstração:

$$a_p - a_{p-1} = a_{p+1} - a_p \Leftrightarrow$$

$$\Leftrightarrow$$
 $2a_p = a_{p-1} + a_{p+1} \Leftrightarrow$

$$\Leftrightarrow a_p = \frac{a_{p-1} + a_{p+1}}{2}$$

Exercícios Resolvidos

Calcule x para que a sequência (...; x – 2; 5; 2x+1; ...) seja uma P.A.

Resolução

$$\Leftrightarrow 5 = \frac{x - 2 + 2x + 1}{2} \Leftrightarrow 3x = 11 \Leftrightarrow x = \frac{11}{3}$$

Resposta:
$$x = \frac{11}{3}$$

2 Determinar x tal que 2x - 3; 2x + 1; 3x + 1 sejam três números em P.A. nesta ordem.

Resolução

Como os três números em P.A. são termos consecutivos, o termo do meio é média aritmética dos outros dois. Assim:

$$2x + 1 = \frac{(2x - 3) + (3x + 1)}{2} \Leftrightarrow 4x + 2 = 5x - 2 \Leftrightarrow x = 4$$

Resposta: x = 4

Exercícios Propostos

1 Calcule o décimo termo da progressão aritmética (4; x; 10; ...).

RESOLUÇÃO:

I)
$$x = \frac{4 + 10}{2}$$

$$x = 7 \Rightarrow r = 3$$

II)
$$a_{10} = a_1 + 9r$$

$$a_{10} = 4 + 9.3$$

$$a_{10} = 31$$

III) $a_4 = \frac{a_3 + a_5}{2} \Rightarrow \frac{7}{3} = \frac{\frac{5}{3} + a_5}{2} \Leftrightarrow a_5 = \frac{14}{2} - \frac{5}{2} \Leftrightarrow a_5 = 3$

Sabendo que a sequência (x + 2; 4x - 2; 4x; ...) é uma progressão aritmética, calcular o quinto termo da P.A. (2x - 3;

A progressão é $\left(\frac{1}{3}; 1; \frac{5}{3}; \frac{7}{3}; 3; \dots\right)$ e, portanto,

$$a_2 + a_5 = 1 + 3 = 4$$
.

Resposta: E

2 A sequência $\left(a_1; 1; a_3; \frac{7}{3}; a_5; \ldots\right)$ é uma progressão

aritmética, tal que

a)
$$a_1 + a_3 = 3$$
.

RESOLUÇÃO:

b)
$$a_5 - a_1 = 3$$

a)
$$a_1 + a_3 = 3$$
. b) $a_5 - a_1 = 3$. c) $a_1 + a_5 = \frac{11}{3}$. d) $a_1 + a_4 = 8$. e) $a_2 + a_5 = 4$.

d)
$$a_1 + a_4 = 8$$
.

e)
$$a_2 + a_5 = 4$$

RESOLUÇÃO:

x + 7; ...

$$4x - 2 = \frac{x + 2 + 4x}{2}$$

$$8x - 4 = 5x + 2$$

$$3x = 6 \Rightarrow x = 2$$

II) Na P.A.
$$(2x - 3; x + 7; ...) = (1; 9; ...)$$
, temos:

$$a_5 = a_1 + 4r$$

$$a_5 = 1 + 4.8$$

$$a_5 = 33$$

$$a_2 = \frac{a_1 + a_3}{2} \Rightarrow 1 = \frac{a_1 + \frac{5}{3}}{2}$$

II)
$$a_2 = \frac{a_1 + a_3}{2} \Rightarrow 1 = \frac{a_1 + \frac{5}{3}}{2} \Leftrightarrow a_1 = 2 - \frac{5}{3} \Rightarrow a_1 = \frac{1}{3}$$

1) $a_3 = \frac{a_2 + a_4}{2} = \frac{1 + \frac{7}{3}}{2} = \frac{10}{6} \Rightarrow a_3 = \frac{5}{3}$

4 Calcule os lados de um triângulo retângulo, sabendo que estão em P.A. de razão 3.

RESOLUÇÃO:

Teorema de Pitágoras

$$(x-3)^2 + x^2 = (x+3)^2$$

$$x^2 - 6x + 9 + x^2 = x^2 + 6x + 9$$

$$x^2 - 12x = 0$$

$$x(x - 12) = 0$$
 $x = 0$ (não convém)
 $x = 12$

Os lados do triângulo são 9, 12 e 15.

(MODELO ENEM) – Os irmãos Antônio, Bene e Carlos possuem, respectivamente, 15, 4 e 17 mil reais cada um. Bene, querendo comprar um carro, resolveu pedir emprestado a cada um dos irmãos uma mesma quantia. Ao fazer isso, notou que as quantias com que os três ficaram formavam, na ordem Antônio, Bene e Carlos, uma progressão aritmética. Para, daqui a um ano, devolver a quantia emprestada, com 20% de juros, Bene deverá desembolsar

- a) R\$ 3600,00
- b) R\$ 4800,00
- c) R\$ 6000,00

- d) R\$ 8400,00
- e) R\$ 9600,00

RESOLUÇÃO:

- Se x for o valor que cada um emprestou a Bene então as novas quantias de Antônio, Bene e Carlos, nessa ordem são 15 - x; 4 + 2x; 17 - x
- II) Já que, nessa ordem, elas formam uma P.A. temos

$$4 + 2x = \frac{(15 - x) + (17 - x)}{2} \Leftrightarrow x = 4$$

- III) Bene deve 2 . R\$ 4 000,00 = R\$ 8 000,00
- IV) Ao pagar, daqui a um ano, esta dívida com 20% de juros, Bene deverá desembolsar 1,2 . R\$ 8 000,00 = R\$ 9 600,00 Resposta: E

Termos equidistantes dos extremos

Palavras-chave:

- Primeiro termo
- Último termo

1. Definição

Dois termos são chamados equidistantes dos extremos se o número de termos que procede um deles é igual ao número de termos que sucede o outro.

Na progressão aritmética
$$(a_1, a_2, ..., a_p, ..., a_k, \underbrace{..., a_n}_{(p-1) \text{ termos}}, a_k, \underbrace{..., a_n}_{(n-k) \text{ termos}}$$

os termos $\mathbf{a_p}$ e $\mathbf{a_k}$ equidistam de $\mathbf{a_1}$ e $\mathbf{a_n}$ se, e somente se

$$p-1=n-k \Leftrightarrow p+k=n+1$$

2. Propriedade

Na progressão aritmética

 $(a_1,\,a_2,\,...,\,a_p,\,...,\,a_k,\,...,\,a_n,\,...)$, se ${\bf a_p}$ e ${\bf a_k}$ equidistam de ${\bf a_1}$ e ${\bf a_n}$ então

$$a_p + a_k = a_1 + a_n$$

ou seja, a soma de dois termos equidistantes dos extremos é igual à soma dos extremos.

Saiba mais

$$\begin{cases} a_{\mathbf{n}} = a_{\mathbf{k}} + (\mathbf{n} - \mathbf{k}) \cdot \mathbf{r} \\ a_{\mathbf{p}} = a_{\mathbf{1}} + (\mathbf{p} - \mathbf{1}) \cdot \mathbf{r} \end{cases} \Rightarrow \begin{cases} a_{\mathbf{n}} - a_{\mathbf{k}} = (\mathbf{n} - \mathbf{k}) \cdot \mathbf{r} \\ a_{\mathbf{p}} - a_{\mathbf{1}} = (\mathbf{p} - \mathbf{1}) \cdot \mathbf{r} \end{cases} \Rightarrow$$

$$\Rightarrow$$
 $a_n - a_k = a_p - a_1$ pois $n - k = p - 1$.

Assim:
$$a_n + a_1 = a_p + a_k$$

Exercícios Resolvidos

temos a) a_4 e a_6 equidistam de a_1 e a_9 pois

b) a_2 e a_8 equidistam de a_1 e a_9 pois

c) a₃ e a₁₅ equidistam de a₁ e a₁₇ pois

2 Sabendo-se que a soma do terceiro e do décimo nono termo de uma P.A. é igual a 100, determinar o décimo primeiro termo.

Resolução

Do enunciado, temos $a_3 + a_{19} = 100$. Por outro lado, da propriedade dos termos equidistantes dos extremos de uma P.A., vem: $a_1 + a_{21} = a_2 + a_{20} = a_3 + a_{19} = \dots = a_{11} + a_{11}$ Logo, $a_{11} + a_{11} = 100 \Leftrightarrow 2a_{11} = 100 \Leftrightarrow a_{11} = 50$

Exercícios Propostos

1 Na progressão aritmética $(a_1, a_2, a_3, ...)$ em que $a_3 = 1$ e $a_9 = 21$, calcular: a) $a_1 + a_{11}$ b) a_6

RESOLUÇÃO:

$$a_0 = 21$$

a)
$$a_1 + a_{11} = a_3 + a_9 = 1 + 21 = 22$$

b)
$$a_6 + a_6 = a_1 + a_{11}$$

$$2a_6 = a_1 + a_{11}$$

$$a_6 = 11$$

2 Calcular o primeiro termo e a razão da progressão aritmética em que $a_1 - a_7 = 19$ e $a_3 + a_5 = 20$.

RESOLUÇÃO:

I)
$$\begin{cases} a_1 - a_7 = 19 \\ a_3 + a_5 = 20 \end{cases} \Rightarrow \begin{cases} a_1 - a_7 = 19 \\ a_1 + a_7 = 20 \\ \hline 2a_1 = 39 \\ a_1 = \frac{39}{2} \end{cases}$$

II)
$$a_1 - a_7 = 19$$

$$a_1 - a_1 - 6r = 19$$

$$r = -\frac{19}{6}$$

3 Calcular a razão de uma progressão aritmética crescente em que $a_1 + a_9 = 8$ e a_3 . $a_7 = 7$.

RESOLUÇÃO:

$$1) \quad a_1 + a_9 = a_3 + a_7 = 8$$

II)
$$\begin{cases} a_1 + a_9 = 8 \\ a_3 \cdot a_7 = 7 \end{cases} \Leftrightarrow \begin{cases} a_3 + a_7 = 8 \\ a_3 \cdot a_7 = 7 \end{cases} \Leftrightarrow (a_2 = 1 \ e \ a_7 = 7) \ ou \ (a_3 = 7 \ e \ a_7 = 1)$$

III) Como a P.A. é crescente temos
$$a_3 = 1$$
 e $a_7 = 7$.

IV)
$$a_7 = a_3 + (7 - 3) \cdot r \Rightarrow 7 = 1 + 4 \cdot r \Leftrightarrow 4r = 6 \Leftrightarrow r = 1,5$$

4 Calcular a soma dos 9 primeiros termos da progressão aritmética (a₁, a₂, a₃, a₄, 7, a₆, ...).

RESOLUÇÃO:

$$a_1 + a_9 = a_5 + a_5 = 7 + 7 = 14$$

$$a_2 + a_8 = a_5 + a_5 = 14$$

$$a_3 + a_7 = a_5 + a_5 = 14$$

$$a_4 + a_6 = a_5 + a_5 = 14$$

Logo:
$$a_1 + a_2 + a_3 + a_4 + a_5 + \dots + a_9 =$$

$$= (a_1 + a_9) + (a_2 + a_8) + (a_3 + a_7) + (a_4 + a_6) + a_5 =$$

(MODELO ENEM) – Os filhos de Francisca têm idades que formam uma progressão aritmética. Se a soma das idades dos cinco filhos é 100 anos e a diferença de idade entre o mais velho e o mais novo é de 12 anos, a idade do segundo filho, em anos, é

- a) 19.
- b) 23.
- c) 24.
- d) 26.
- e) 28.

RESOLUÇÃO:

- Se a for a idade do filho do meio e r for a razão, podemos representar essas idades por
 - a 2r; a r; a; a + r; a + 2r

$$\left\{ \begin{array}{l} (a-2r) + (a-r) + a + (a+r) + (a+2r) = 100 \\ (a+2r) - (a-2r) = 12 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} a = 20 \\ r = 3 \end{array} \right.$$

- III) As idades são: 14; 17; 20; 23; 26.
- IV) A idade do 2º filho é 23.

Resposta: B

MATEMÁTICA E SUAS TECNOLOGIAS

John Napier (1550 - 1617) Introduziu o conceito de logaritmo.

MATEMÁTICA

Algebra - Módulos

- 33 Função exponencial
- 34 Equações e inequações exponenciais
- 35 Logaritmos
- 36 Propriedades dos logaritmos
- 37 Mudança de base
- 38 Função logarítmica
- 39 Equações logarítmicas
- 40 Inequações logarítmicas
- 41 Logaritmos decimais
- **42** Logaritmos e exponenciais (complemento)
- 43 Logaritmos e exponenciais (complemento)
- 44 Logaritmos e exponenciais (complemento)

Módulo

Função exponencial

Palayras-chave:

• Base • Expoente • Potência

1. Definição

Chama-se função exponencial de base a, com a > 0 e

 $a \neq 1$, a função **f** de \mathbb{R} em \mathbb{R}^*_+ definida por $f(x) = a^x$

$$f(x) = a^x$$

2. Como obter o gráfico

Exemplo 1

Construir o gráfico da função exponencial f: $\mathbb{R} \to \mathbb{R}^*_{\perp}$ definida por $f(x) = 2^x$.

Resolução

Construímos uma tabela atribuindo alguns valores a x e calculando as imagens correspondentes.

x	y = 2 ^x	(x;y)
- 3	$y = 2^{-3} = \frac{1}{8}$	$\left(-3;\frac{1}{8}\right)$
- 2	$y = 2^{-2} = \frac{1}{4}$	$\left(-2;\frac{1}{4}\right)$
- 1	$y = 2^{-1} = \frac{1}{2}$	$\left(-1;\frac{1}{2}\right)$
0	$y = 2^0 = 1$	(0; 1)
1	y = 2 ¹ = 2	(1; 2)
2	$y = 2^2 = 4$	(2; 4)
3	$y = 2^3 = 8$	(3; 8)

No Portal Objetivo

Para saber mais sobre o assunto, acesse o PORTAL OBJETIVO (www.portal.objetivo.br) e, em "localizar", digite MAT1M305

Em seguida, localizamos os pontos obtidos num sistema de coordenadas cartesianas.

Exemplo 2

Construir o gráfico da função exponencial f: $\mathbb{R} \to \mathbb{R}_+^*$ definida por $\mathbf{f(x)} = \left(\frac{1}{2}\right)^{\mathbf{x}}$.

Resolução

Construímos uma tabela atribuindo alguns valores a ${\bf x}$ e calculando as imagens correspondentes.

x	$y = \left(\frac{1}{2}\right)^x$	(x; y)
- 3	$y = \left(\frac{1}{2}\right)^{-3} = 8$	(- 3; 8)
- 2	$y = \left(\frac{1}{2}\right)^{-2} = 4$	(- 2; 4)
-1	$y = \left(\frac{1}{2}\right)^{-1} = 2$	(- 1; 2)
0	$y = \left(\frac{1}{2}\right)^0 = 1$	(0; 1)
1	$y = \left(\frac{1}{2}\right)^1 = \frac{1}{2}$	$\left(1;\frac{1}{2}\right)$
2	$y = \left(\frac{1}{2}\right)^2 = \frac{1}{4}$	$\left(2;\frac{1}{4}\right)$
3	$y = \left(\frac{1}{2}\right)^3 = \frac{1}{8}$	$\left(3;\frac{1}{8}\right)$

Saiba mais

1. Observando o gráfico da função exponencial, nota-se que

Valores diferentes de x têm imagens diferentes.

Esta constatação sugere a seguinte propriedade: A função exponencial $f \colon \mathbb{R} \to \mathbb{R}_+^*$, definida por $f(x) = a^x$, com $\mathbf{1} \neq a > \mathbf{0}$, é **injetora** e, portanto,

$$a^{x_1} = a^{x_2} \Leftrightarrow \mathbf{x_1} = \mathbf{x_2}.$$

2. Observando o gráfico da função exponencial f, definida por $f(x) = 2^x$, nota-se que

Aumentando a abscissa x, a ordenada y também aumenta

Esta observação sugere a seguinte propriedade: A função exponencial f: $\mathbb{R} \to \mathbb{R}_+^*$, definida por $f(x) = a^x$, com a > 1, é estritamente **crescente**, e portanto, $a^{x_1} > a^{x_2} \Leftrightarrow x_1 > x_2$.

3. Observando o gráfico da função exponencial f, definida por $f(x) = \left(\frac{1}{2}\right)^x$, nota-se que

Aumentando a abscissa x, a ordenada y diminui

Este fato sugere a seguinte propriedade:

A função exponencial f: $\mathbb{R} \to \mathbb{R}_+^*$, definida por $f(x) = a^x$, com $\mathbf{0} < \mathbf{a} < \mathbf{1}$, é estritamente **decrescente** e, portanto, $a^{x_1} > a^{x_2} \Leftrightarrow \mathbf{x_1} < \mathbf{x_2}$.

Em seguida, localizamos os pontos obtidos num sistema de coordenadas cartesianas.

Demonstra-se que:

- a) O gráfico da função **exponencial** de base **a**, com a > 0 e $a \ne 1$, está sempre **"acima do eixo \overrightarrow{O}x"**, pois $a^x > 0$, $\forall x \in \mathbb{R}$.
- b) O gráfico da função exponencial sempre intercepta o eixo Oy no ponto (0; 1), pois $a^0 = 1$, $\forall a \in \mathbb{R}_+^* \{1\}$.
- c) Se **a > 1**, a função exponencial é **estritamente crescente** e seu gráfico é do tipo do exemplo 1.
- d) Se **0 < a < 1**, a função exponencial é **estritamente decrescente** e seu gráfico é do tipo do exemplo 2.
- e) A função exponencial é **sobrejetora**, pois o contradomínio e o conjunto imagem são, ambos, iguais a \mathbb{R}_+^* .
- f) A função exponencial é **injetora**, pois qualquer reta horizontal intercepta seu gráfico no máximo uma vez.
 - g) A função exponencial é, pois, bijetora.

Exercícios Resolvidos

1 Esboçar o gráfico da função f de $\mathbb{R} \to \mathbb{R}$, definida por f(x) = 2^{x+2} .

Resolução

х	f(x)
	1
- 4	4
	1
- 3	2
- 2	1
- 1	2
0	4

3 (UNICAMP – MODELO ENEM) – O decaimento radioativo do estrôncio 90 é descrito pela função $P(t) = P_0 \cdot 2^{-bt}$, na qual t é um instante de tempo, medido em anos, b é uma constante real e P_0 é a concentração inicial de estrôncio 90, ou seja, a concentração no instante t = 0. Se a concentração de estrôncio 90 cai pela metade em 29 anos, isto é, se a meia-vida do estrôncio 90 é de 29 anos, determine o valor da constante b.

Resolução

Se a meia vida do estrôncio 90 é 29 anos, de acordo com a função dada, resulta

$$P_0 \cdot 2^{-b \cdot 29} = \frac{1}{2} P_0 \Leftrightarrow$$

$$\Leftrightarrow 2^{-29b} = 2^{-1} \Leftrightarrow b = \frac{1}{29}$$

Respostas: $b = \frac{1}{29}$

2 Esboçar o gráfico da função g de $\mathbb{R} \to \mathbb{R}$, definida por g(x) = $2^{x+2} - 4$.

Resolução

Observando a questão anterior, temos g(x) = f(x) - 4Logo,

(UNICAMP – MODELO ENEM) – O sistema de ar-condicionado de um ônibus quebrou durante uma viagem. A função que descreve a temperatura (em graus Celsius) no interior do ônibus em função de t, o tempo transcorrido, em horas, desde a quebra do ar-condicionado, é $T(t) = (T_0 - T_{\rm ext}).10^{-t/4} + T_{\rm ext}, {\rm onde}\ T_0 \ {\rm \'e}\ {\rm a}\ {\rm temperatura}$ externa (que supomos constante durante toda a viagem).

Sabendo que $T_0 = 21$ °C e $T_{ext} = 30$ °C, calcule a temperatura no interior do ônibus transcorridas

4 horas desde a quebra do sistema de arcondicionado. Em seguida, esboçe abaixo o gráfico de T(t).

Resolução

De acordo com o enunciado, temos, para a temperatura T em °C:

$$T(t) = (T_0 - T_{ext}) \cdot 10^{-\frac{\tau}{4}} + T_{ext} \Leftrightarrow$$

$$\Leftrightarrow T(t) = (21 - 30) \cdot 10^{-\frac{1}{4}} + 30 \Leftrightarrow$$

$$\Leftrightarrow T(t) = 30 - 9 \cdot 10^{-\frac{t}{4}}$$

Assim, para t = 4, tem-se:

$$\Leftrightarrow T(4) = 30 - 9 \cdot 10^{-\frac{1}{4}} \Leftrightarrow T(4) = 30 - 9 \cdot 10^{-1} \Leftrightarrow$$

$$\Leftrightarrow T(4) = 30 - 0.9 \Leftrightarrow T(4) = 29.1$$

O gráfico de T em função de t é o seguinte:

Resposta: 29,1°C

Exercícios Propostos

1 Construir o gráfico da função exponencial $f:\mathbb{R}\to\mathbb{R}_+^*$, definida por $f(x)=2^x$, completando a tabela abaixo e, em seguida, localizando os pontos obtidos num sistema de coordenadas cartesianas.

x	$y = f(x) = 2^x$	(x; y)
- 3	$y = 2^{-3} = \frac{1}{8}$	$\left(-3;\frac{1}{8}\right)$
- 2	$y = 2^{-2} = \frac{1}{4}$	$\left(-2;\frac{1}{4}\right)$
– 1	$y = 2^{-1} = \frac{1}{2}$	$\left(-1;\frac{1}{2}\right)$
0	$y = f(0) = 2^0 = 1$	(0; 1)
1	y = 2 ¹ = 2	(1; 2)
2	$y = 2^2 = 4$	(2; 4)
3	y = 2 ³ = 8	(3; 8)

2 Construir o gráfico da função exponencial $f: \mathbb{R} \to \mathbb{R}_+^*$, definida por $f(x) = \left(\frac{1}{2}\right)^x$, completando a tabela abaixo e, em seguida, localizando os pontos obtidos num sistema de coordenadas cartesianas.

asaaa				
x	$y = f(x) = \left(\frac{1}{2}\right)^{x}$	(x; y)		
- 3	$y = \left(\frac{1}{2}\right)^{-3} = 8$	(- 3; 8)		
- 2	$y = f(-2) = \left(\frac{1}{2}\right)^{-2} = 2^2 = 4$	(- 2; 4)		
– 1	$y = \left(\frac{1}{2}\right)^{-1} = 2$	(- 1; 2)		
0	$y = \left(\frac{1}{2}\right)^0 = 1$	(0; 1)		
1	$y = \left(\frac{1}{2}\right)^1 = \frac{1}{2}$	$\left(1;\frac{1}{2}\right)$		
2	$y = \left(\frac{1}{2}\right)^2 = \frac{1}{4}$	$\left(2;\frac{1}{4}\right)$		
3	$y = \left(\frac{1}{2}\right)^3 = \frac{1}{8}$	$\left(3;\frac{1}{8}\right)$		

(UNIFOA – MODELO ENEM) – Quando uma população inicia a colonização de um ambiente propício ao seu desenvolvimento, verifica-se que o crescimento inicial é lento, pois há pequeno número de indivíduos e, consequentemente, a taxa de reprodução é pequena. À medida que aumenta o número de organismos, a taxa de reprodução também aumenta. Considerando que inexistem fatores de resistência do meio, o crescimento de certa população será de acordo com a fórmula $f(x) = (\sqrt{2})^x$. O gráfico que melhor representa essa função é

RESOLUÇÃO:

- 1) $\sqrt{2} = 1,414... > 1$
- 2) $f(x) = (\sqrt{2})^x$ é uma exponencial de base maior que 1 e, portanto, o gráfico é o da alternativa E.

daqui a x anos, será y = A . $\left(\frac{\sqrt{2}}{2}\right)^x$, em que A é uma constante positiva. Se hoje o computador vale R\$ 5 000,00, seu valor daqui a 6 anos será:

- a) R\$ 625,00
- b) R\$ 550,00
- c) R\$ 575,00

- d) R\$ 600.00
- e) R\$ 650,00

RESOLUÇÃO:

I) Para x = 0, tem-se y = 5 000, então:

$$5\,000 = A \cdot \left(\frac{\sqrt{2}}{2}\right)^0 \Leftrightarrow A = 5\,000$$

II) Na função y = 5000 . $\left(\frac{\sqrt{2}}{2}\right)^x$, para x = 6 tem-se:

$$y = 5000 \cdot \left(\frac{\sqrt{2}}{2}\right)^6 = 5000 \cdot \frac{2^3}{2^6} = 5000 \cdot \frac{1}{2^3} = \frac{5000}{8} = 625$$

Resposta: A

Equações e inequações exponenciais

Palavras-chave:

- Função estritamente crescente
- Função estritamente decrescente

1. Definição de função exponencial

Chama-se função **exponencial de base a**, com a $\in \mathbb{R}_+^*$ – {1}, a função **f** de \mathbb{R} em \mathbb{R}_+^* definida por

$$f(x) = a^x$$

2. Gráfico da função exponencial

3. Propriedades da função exponencial

a) A função exponencial é **injetora**, pois qualquer reta horizontal intercepta seu gráfico no máximo uma vez.

Logo:
$$\mathbf{a}^{\mathbf{x_1}} = \mathbf{a}^{\mathbf{x_2}} \Leftrightarrow \mathbf{x_1} = \mathbf{x_2}$$

b) Se a > 1 então $a^{x_1} > a^{x_2} \Leftrightarrow x_1 > x_2$, pois a

função exponencial é estritamente crescente.

c) Se 0 < a < 1 então $a^{x_1} > a^{x_2} \Leftrightarrow x_1 < x_2$, pois a

função exponencial é estritamente decrescente.

Para saber mais sobre o assunto, acesse o **PORTAL OBJETIVO** (<u>www.portal.objetivo.br</u>) e, em "localizar", digite **MAT1M306**

Exercícios Resolvidos

Resolver em R a equação 4^x = 32

Resolução

$$4^{x} = 32 \Leftrightarrow (2^{2})^{x} = 2^{5} \Leftrightarrow 2^{2x} = 2^{5} \Leftrightarrow$$

$$\Leftrightarrow 2x = 5 \Leftrightarrow x = \frac{5}{2}$$

Resposta:
$$V = \left\{ \frac{5}{2} \right\}$$

2 Resolver, em
$$\mathbb{R}$$
, a equação $\left(\frac{1}{3}\right)^x = 27$.

$$\left(\frac{1}{3}\right)^{x} = 27 \Leftrightarrow (3^{-1})^{x} = 3^{3} \Leftrightarrow$$

$$\Leftrightarrow 3^{-x} = 3^3 \Leftrightarrow -x = 3 \Leftrightarrow x = -3$$

Resposta: V = {-3}

Resolver em \mathbb{R} a equação $\left(2\sqrt[3]{4}\right)^x = \sqrt[4]{8}$

Resolução

Como
$$\sqrt[3]{4} = \sqrt[3]{2^2} = 2^{\frac{2}{3}} e^{4/8} = \sqrt[4]{2^3} = 2^{\frac{3}{4}}$$
,

$$\left(2\sqrt[3]{4}\right)^{x} = \sqrt[4]{8} \Leftrightarrow \left(2\cdot2^{\frac{2}{3}}\right)^{x} = 2^{\frac{3}{4}} \Leftrightarrow$$

$$\Leftrightarrow \left(2^{\frac{5}{3}}\right)^{x} = 2^{\frac{3}{4}} \Leftrightarrow 2^{\frac{5x}{3}} = 2^{\frac{3}{4}} \Leftrightarrow$$

$$\Leftrightarrow \frac{5x}{3} = \frac{3}{4} \Leftrightarrow x = \frac{9}{20}$$

Resposta: $V = \left\{ \frac{9}{20} \right\}$

4 Resolver, em \mathbb{R} , a inequação $3^{\times} > 81$.

 $3^{x} > 81 \Leftrightarrow 3^{x} > 3^{4} \Leftrightarrow x > 4$, pois a base é maior

Resposta: $V = \{x \in \mathbb{R} \mid x > 4\}$

6 Resolver, em ℝ, a inequação

$$\left(\frac{1}{4}\right)^{x} > \frac{1}{256}$$

$$\left(\frac{1}{4}\right)^{x} > \frac{1}{256} \Leftrightarrow \left(\frac{1}{4}\right)^{x} > \left(\frac{1}{4}\right)^{4} \Leftrightarrow x < 4,$$

pois a base está entre zero e 1.

Resposta: $V = \{x \in \mathbb{R} \mid x < 4\}$

Exercícios Propostos

RESOLUÇÃO:

$$3^{x} - \frac{1}{27} = 0 \Leftrightarrow 3^{x} = \frac{1}{27} \Leftrightarrow 3^{x} = \left(\frac{1}{3}\right)^{3} \Leftrightarrow$$

$$\Leftrightarrow 3^{x} = 3^{-3} \Leftrightarrow x = -3$$

$$V = \{-3\}$$

(MACKENZIE - MODELO ENEM) - Dadas as funções $f(x) = 2^{x^2 - 4}$ e g(x) = $4^{x^2 - 2x}$, se x satisfaz f(x) = g(x), então 2^x é

a)
$$\frac{1}{4}$$
. b) 1. c) 8. d) 4. e) $\frac{1}{2}$.

e)
$$\frac{1}{2}$$

2 (MAUÁ) – Resolver o sistema:
$$\begin{cases} 5^{2x+3y} = 5\\ 3^{x+y} = 1 \end{cases}$$

RESOLUÇÃO:

$$\begin{cases} 5^{2x+3y} = 5 \\ 3^{x+y} = 1 \end{cases} \Leftrightarrow \begin{cases} 5^{2x+3y} = 5^1 \\ 3^{x+y} = 3^0 \end{cases} \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} 2x + 3y = 1 \\ x + y = 0 \end{cases} \Leftrightarrow \begin{cases} 2x + 3y = 1 \\ -2x - 2y = 0 \end{cases} \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} x = -1 \\ y = 1 \end{cases} \Leftrightarrow V = \{(-1; 1)\}$$

RESOLUÇÃO:

1)
$$f(x) = g(x) \Rightarrow 2^{x^2 - 4} = 4^{x^2 - 2x} \Leftrightarrow 2^{x^2 - 4} = 2^{2x^2 - 4x} \Leftrightarrow x^2 - 4 = 2x^2 - 4x \Leftrightarrow x^2 - 4x + 4 = 0 \Leftrightarrow x = 2$$

II) Para
$$x = 2$$
, tem-se $2^x = 2^2 = 4$

Resposta: D

 $4 2^{x} > 4$.

RESOLUÇÃO:

$$2^{x} > 2^{2}$$
 (base > 1)

$$V = \{x \in \mathbb{R} \mid x > 2\}$$

$$\left(\frac{1}{5}\right)^{2x-6} - \frac{1}{625} \le 0.$$

RESOLUÇÃO:

$$\left(\frac{1}{5}\right)^{2x-6}-\frac{1}{625}\leqslant 0$$

$$\left(\frac{1}{5}\right)^{2x-6} \leqslant \frac{1}{625}$$

$$\left(\frac{1}{5}\right)^{2x-6} \leqslant \left(\frac{1}{5}\right)^4 \ (0 < base < 1)$$

$$2x - 6 \ge 4$$

$$V = \{x \in \mathbb{R} \mid x \ge 5\}$$

Módulo

Logaritmos

Palavra-chave:

• Expoente

 $a \neq 1$

1. Definição de logaritmo

Chama-se logaritmo de um número N > 0 numa **base a**, com a > 0 e a \neq 1, o expoente α a que se deve elevar a base para que a potência obtida seja igual a N. Simbolicamente:

$$\log_{\mathbf{a}} \mathsf{N} = \alpha \Leftrightarrow \mathbf{a}^{\alpha} = \mathsf{N}$$

O número N é chamado logaritmando ou antilogaritmo (N = antilog_a α = a^{α}), **a** é a base e α é o logaritmo.

2. Condições de existência

De acordo com a definição, o logaritmo a existe se, e somente se

a > 0

Se N > 0, a > 0, a \neq 1 e $\alpha \in \mathbb{R}$, então:

a)
$$\log_a 1 = 0$$
, pois $a^0 = 1$

b)
$$\log_a a = 1$$
, pois $a^1 = a$

N > 0

c)
$$\log_a(a^{\alpha}) = \alpha$$
, pois $a^{\alpha} = a^{\alpha}$

d)
$$\mathbf{a}^{\mathbf{log_aN}} = \mathbf{N}$$
, pois $\mathbf{log_aN} = \mathbf{log_aN} \Leftrightarrow \mathbf{a}^{\mathbf{log_aN}} = \mathbf{N}$

Exemplos

1)
$$\log_2 8 = 3$$
, pois $2^3 = 8$

2)
$$\log_{10} 100 = 2$$
, pois $10^2 = 100$

3)
$$\log_2 64 = 6$$
, pois $2^6 = 64$

4)
$$\log_3 81 = 4$$
, pois $3^4 = 81$

5) Calcular o log₈4

Resolução:

Se $\log_8 4 = \alpha$ então $8^\alpha = 4 \Leftrightarrow (2^3)^\alpha = 2^2 \Leftrightarrow 2^{3\alpha} = 2^2 \Leftrightarrow$ $\Leftrightarrow 3\alpha = 2 \Leftrightarrow \alpha = \frac{2}{2}$

Resposta: $\log_8 4 = \frac{2}{3}$

Saiba mais

Cologaritmo

Embora desnecessário, e por isso pouco usado, define-se, ainda, o cologaritmo de N na base a como sendo o oposto do logaritmo de N na base a.

Simbolicamente:
$$colog_aN = -log_aN$$

•
$$colog_381 = -log_381 = -4$$

•
$$colog_2 8 = -log_2 8 = -3$$

Exercícios Resolvidos

Calcule log₄32.

Resolução

$$\log_4 32 = \alpha \Leftrightarrow 4^{\alpha} = 32 \Leftrightarrow (2^2)^{\alpha} = 2^5 \Leftrightarrow$$
$$\Leftrightarrow 2^{2\alpha} = 2^5 \Leftrightarrow 2\alpha = 5 \Leftrightarrow \alpha = 5/2$$

Resposta: $log_432 = 5/2$

 $oldsymbol{2}$ Determinar o logaritmo de $\sqrt{32}$ na base $2\sqrt[3]{2}$

Resolução

$$\log_{2.\sqrt{2}} \sqrt{32} = \alpha \Leftrightarrow (2\sqrt[3]{2})^{\alpha} = \sqrt{32} \Leftrightarrow$$

$$\Leftrightarrow (2 \cdot 2^{1/3})^{\alpha} = \sqrt{2^5} \iff (2^{4/3})^{\alpha} = (2^5)^{1/2} \Leftrightarrow$$

$$\Leftrightarrow 2^{\frac{4\alpha}{3}} = 2^{\frac{5}{2}} \Leftrightarrow \frac{4\alpha}{3} = \frac{5}{2} \Leftrightarrow \alpha = \frac{15}{8}$$

Resposta:
$$\log_{2.\sqrt[3]{2}} \sqrt{32} = \frac{15}{8}$$

3 Determinar a base do sistema em que o logaritmo de 0,0016 é - 4.

Resolução

e) 15

$$\log_a 0.0016 = -4 \Leftrightarrow a^{-4} = 0.0016 \Leftrightarrow$$

$$\Leftrightarrow a^{-4} = \frac{16}{10000} \Leftrightarrow a^{-4} = \left(\frac{2}{10}\right)^4 \Leftrightarrow$$

$$\Leftrightarrow a^{-4} = \left(\frac{10}{2}\right)^{-4} \Leftrightarrow a = \frac{10}{2} \Leftrightarrow a = 5$$

Resposta: A base do sistema é 5, ou seja $\log_5 0.0016 = -4.$

4 Calcular
$$2^3 + \log_2^7$$

Resolução

$$2^{3 + \log_2 7} = 2^3 \cdot 2^{\log_2 7} = 8 \cdot 7 = 56$$

Resposta: $2^{3 + \log_2 7} = 56$

Exercícios Propostos

Nos exercícios 1 a 5, complete:

- 1 $\log_5 25 = 2$, pois $5^2 = 25$
- **2** $\log_2 16 = 4$, pois $2^4 = 16$
- 3 $\log_3 243 = 5$, pois $3^5 = 243$
- $4 \log_2 1 =$ 0, pois $2^0 = 1$, observe que para a > 0 e $a \ne 1$, $log_a 1 = 0$
- $\log_2 2 = 1$, pois $2^1 = 2$, observe que para a > 0 e $a \neq 1$, $\log_a a = 1$
- 6 O valor da expressão

$$\log_2 8 + \log_2 32 + \log_{10} 1000 + \log_5 125 \text{ é}$$

a) 11 b) 12 c) 13 d) 14

RESOLUÇÃO:

 $\log_2 8 + \log_2 32 + \log_{10} 1000 + \log_5 125 = 3 + 5 + 3 + 3 = 14$

Resposta: D

7 Calcular o logaritmo de $\frac{1}{\alpha}$ na base 27.

RESOLUÇÃO:

$$\log_{27}\left(\frac{1}{9}\right) = x$$

$$27^{x} = \frac{1}{9}$$

$$\left(3^3\right)^{x} = \left(\frac{1}{3}\right)^2$$

$$3^{3x} = 3^{-2}$$

$$3x = -2$$

$$x = -\frac{2}{3}$$

8 O valor de
$$\log_4\left(8.\sqrt[3]{2}\right)$$
 é

a)
$$\frac{10}{3}$$

b)
$$\frac{5}{2}$$

c)
$$\frac{3}{4}$$

d)
$$\frac{5}{3}$$

a)
$$\frac{10}{3}$$
 b) $\frac{5}{2}$ c) $\frac{3}{4}$ d) $\frac{5}{3}$ e) $-\frac{1}{2}$

RESOLUÇÃO:

$$\log_4(8.\sqrt[3]{2}) = x$$

$$4^{x} = 8 \cdot \sqrt[3]{2}$$

$$(2^2)^x = 2^3 \cdot 2^{\frac{1}{3}}$$

$$2^{2x} = 2^{\frac{10}{3}}$$

$$2x = \frac{10}{3}$$

$$x = \frac{5}{3}$$

Resposta: D

9 Calcular o número cujo logaritmo na base 27 é igual a 🕺

RESOLUÇÃO:

$$\log_{27} x = \frac{1}{3}$$

$$x = (3^3)^{\frac{1}{3}}$$

No Portal Objetivo

Para saber mais sobre o assunto, acesse o PORTAL OBJETIVO (www.portal.objetivo.br) e, em "localizar", digite MAT1M307

Módulo

Propriedades dos logaritmos

Palavras-chave:

• Produto • Quociente • Potência

Sejam M, N e a números reais tais que M > 0, N > 0, a > 0 e a $\neq 1$.

1. Logaritmo do produto

O logaritmo de um produto é igual à soma dos logaritmos de cada fator. Simbolicamente,

$$log_a(M \cdot N) = log_aM + log_aN$$

2. Logaritmo do quociente

O logaritmo de um quociente é igual à diferença entre o logaritmo do numerador e o do denominador. Simbolicamente.

$$\log_a\left(\frac{M}{N}\right) = \log_a M - \log_a N$$

3. Logaritmo da potência

O logaritmo de uma potência é igual ao expoente multiplicado pelo logaritmo da base da potência. Simbolicamente,

$$log_a(N^m) = m \cdot log_aN$$
 $(\forall m \in \mathbb{R})$

4. Logaritmo de uma raiz

O logaritmo de uma raiz é igual ao inverso do índice da raiz multiplicado pelo logaritmo do radicando. Simbolicamente,

$$\log_a(\sqrt[m]{N}) = \frac{1}{m} \cdot \log_a N \quad (\forall m \in \mathbb{N}^*)$$

Saiba mais

DEMONSTRAÇÕES

1. Logaritmo do produto

Se $log_a M = x$, $log_a N = y e log_a (MN) = z$, então,

$$\begin{vmatrix} a^{x} = M \\ a^{y} = N \\ a^{z} = MN \end{vmatrix} \Rightarrow a^{z} = a^{x} \cdot a^{y} \Leftrightarrow a^{z} = a^{x+y} \Leftrightarrow$$

$$\Leftrightarrow$$
 z = x + y e, portanto, $log_a(MN) = log_aM + log_aN$

2. Logaritmo do quociente

Se $\log_a M = x$, $\log_a N = y e \log_a \left(\frac{M}{N}\right) = z$, então,

$$\begin{vmatrix} a^{x} = M \\ a^{y} = N \\ a^{z} = \frac{M}{N} \end{vmatrix} \Rightarrow a^{z} = \frac{a^{x}}{a^{y}} \Leftrightarrow a^{z} = a^{x-y} \Leftrightarrow$$

$$\Leftrightarrow$$
 z = x - y e, portanto, $\log_a \left(\frac{M}{N} \right) = \log_a M - \log_a N$

3. Logaritmo da potência

Se $log_a N = x e log_a(N^m) = y$, então,

$$\left. \begin{array}{l} a^x = N \\ a^y = N^m \end{array} \right\} \implies a^y = (a^x)^m \Leftrightarrow a^y = a^{mx} \Leftrightarrow y = m \ x$$

e, portanto, $log_a(N^m) = m \cdot log_aN$

4. Logaritmo da raiz

Lembrando que $\sqrt[m]{N} = N^{\frac{1}{m}}$, temos:

$$\log_a(\sqrt[m]{N}) = \log_a(N^{\frac{1}{m}}) = \frac{1}{m} \cdot \log_a N$$

Exercícios Resolvidos

Sendo $log_ab = 2$ e $log_ac = 3$, calcule os logaritmos de 🚺 a ᢃ

Resolução

 $\log_a(ab) = \log_a a + \log_a b = 1 + 2 = 3$

$$\log_a\left(\frac{b}{c}\right)$$

Resolução

$$\log_a\left(\frac{b}{c}\right) = \log_a b - \log_a c = 2 - 3 = -1$$

 $\log_a\left(\frac{a^2 \cdot b^4}{c}\right)$

$$\log_a\left(\frac{a^2 \cdot b^4}{c}\right) = \log_a(a^2 \cdot b^4) - \log_a c =$$

$$= \log_a a^2 + \log_a b^4 - \log_a c =$$

$$= 2 \cdot \log_a a + 4 \cdot \log_a b - \log_a c =$$

$$= 2 \cdot 1 + 4 \cdot 2 - 3 = 2 + 8 - 3 = 7$$

Sabe-se que $\log_{10}2 = 0.30$ e $\log_{10}3 = 0.47$, calcule os logaritmos 4 e 5.

4 log₁₀6

Resolução

 $\log_{10}6 = \log_{10}(2 . 3) = \log_{10}2 + \log_{10}3 =$ = 0.30 + 0.47 = 0.77

5 log₁₀15

Resolução

$$\log_{10}15 = \log_{10}(3.5) = \log_{10}\left(3.\frac{10}{2}\right) =$$

$$= \log_{10}(3.10) - \log_{10}2 =$$

$$= \log_{10}3 + \log_{10}10 - \log_{10}2 =$$

$$= 0.47 + 1 - 0.30 = 1.17$$

Exercícios Propostos

Sendo $log_ab = 2 e log_ac = 3$, calcule os logaritmos de 11 a 3

1 log_a(a . b . c) =

RESOLUÇÃO:

$$\log_a(a.b.c) = \log_a a + \log_a b + \log_a c = 1 + 2 + 3 = 6$$

$$\log_{a} \left(\frac{b}{c} \right) =$$

$$\log_a\left(\frac{b}{c}\right) = \log_a b - \log_a c = 2 - 3 = -1$$

RESOLUÇÃO:

$$\log_a \left(\frac{a^3 \cdot b^2}{c^4} \right) = \log_a a^3 + \log_a b^2 - \log_a c^4 =$$

$$= 3 \log_a a + 2 \log_a b - 4 \log_a c = 3 \cdot 1 + 2 \cdot 2 - 4 \cdot 3 = 3 + 4 - 12 = -5$$

4 Sabendo que $\log_{10}2 = 0.30$, $\log_{10}3 = 0.48$ e $\log_{10}7 = 0.84$, calcular $\log_{10}\left(\frac{8\sqrt{7}}{3}\right)$.

RESOLUÇÃO:

$$\log_{10}\left(\frac{8\sqrt{7}}{3}\right) = \log_{10}(2^3 \cdot \sqrt{7}) - \log_{10}3 =$$

$$= 3 \cdot \log_{10}2 + \frac{1}{2} \cdot \log_{10}7 - \log_{10}3 =$$

$$= 3 \cdot 0.30 + \frac{1}{2} \cdot 0.84 - 0.48 = 0.90 + 0.42 - 0.48 = 0.84$$

(MACKENZIE) – Se

$$\frac{2}{3} \log_b 27 + 2\log_b 2 - \log_b 3 = -1$$
, com 0 < b \neq 1,

o valor de b é

a) 2. b)
$$\frac{1}{12}$$
. c) $\frac{1}{9}$. d) 3. e) $\frac{1}{8}$.

Resolução:

$$\frac{2}{3} \log_b 27 + 2\log_b 2 - \log_b 3 = -1 \Leftrightarrow$$

$$\Leftrightarrow \log_{b}(3^{3})^{\frac{2}{3}} + \log_{b}2^{2} - \log_{b}3 = -1 \Leftrightarrow \log_{b}9 + \log_{b}4 - \log_{b}3 = -1 \Leftrightarrow$$

$$\Leftrightarrow \log_{\mathbf{b}}\left(\frac{9\cdot 4}{3}\right) = -1 \Leftrightarrow \log_{\mathbf{b}}12 = -1 \Leftrightarrow \mathbf{b}^{-1} = 12 \Leftrightarrow \mathbf{b} = \frac{1}{12}$$

Resposta: B

Módulo

37

Mudança de base

Palavra-chave:

• Base do logaritmo

1. Propriedade

O logaritmo de um número $\bf N$ numa base $\bf a$, com N>0, a>0 e a $\neq 1$, é igual ao **quociente** entre o **logaritmo de \bf N** e o **logaritmo de \bf a**, ambos na **base b**, qualquer que seja $\bf b>0$ e $\bf b\neq 1$. Simbolicamente,

$$\log_a N = \frac{\log_b N}{\log_b a}$$

2. Demonstração da propriedade

Se $\log_a N = x$, $\log_b N = y$ e $\log_b a = z$, então:

$$\begin{cases} a^x = N \\ b^y = N \\ b^z = a \end{cases} \Rightarrow \begin{cases} a^x = b^y \\ b^z = a \end{cases} \Rightarrow (b^z)^x = b^y \Leftrightarrow b^{xz} = b^y \Leftrightarrow$$

$$\Leftrightarrow$$
 xz = y \Leftrightarrow x = $\frac{y}{z}$ e, portanto, $\log_a N = \frac{\log_b N}{\log_b a}$

Exemplos

1.
$$\log_4 8 = \frac{\log_2 8}{\log_2 4} = \frac{3}{2}$$

2.
$$\log_{32} 4 = \frac{\log_2 4}{\log_2 32} = \frac{2}{5}$$

Exercícios Resolvidos

 Calcular o log₃2 sabendo que $\log_{10} 2 = 0.301 \text{ e } \log_{10} 3 = 0.477.$

Resolução

$$\log_3 2 = \frac{\log_{10} 2}{\log_{10} 3} = \frac{0,301}{0,477} = 0,631$$

Resposta: $log_3 2 = 0,631$

Calcular o valor da expressão $\log_7 8 \cdot \log_5 7 \cdot \log_2 5$

Resolução

 $\log_7 8 \cdot \log_5 7 \cdot \log_2 5 =$

$$= \frac{\log_2 8}{\log_2 7} \cdot \frac{\log_2 7}{\log_2 5} \cdot \log_2 5 = \log_2 8 = 3$$

Resposta: $\log_7 8 \cdot \log_5 7 \cdot \log_2 5 = 3$

(FGV-SP - MODELO ENEM) - Daqui a t anos, o número de habitantes de uma cidade será N = $40~000~(1,02)^{t}$. O valor de t para que a população dobre em relação à de hoje é

a)
$$\frac{\log 2}{\log 1,02}$$
.

a) $\frac{\log 2}{\log 1.02}$. b) 50. c) $(\log 2)(\log 1.02)$.

d) 2 .
$$\frac{\log 2}{\log 1.02}$$
 e) 2(log 2)(log 1.02).

Resolução

O número de habitantes de uma cidade será $N = 40\ 000\ .\ (1,02)^t$ daqui a t anos.

Assim sendo, o número de habitantes hoje é $40\ 000\ .\ (1,02)^0 = 40\ 000\ .\ 1 = 40\ 000$

Se T for o número de anos necessários para que a população dobre, em relação à de hoje,

40 000 .
$$(1,02)^{T} = 80\ 000 \Leftrightarrow (1,02)^{T} = 2 \Leftrightarrow$$

⇔ T = $\log_{1,02} 2 \Leftrightarrow T = \frac{\log 2}{\log 1,02}$

Resposta: A

Exercícios Propostos

Sabendo-se que log₁₀2 = 0,30, log₁₀3 = 0,48 e $log_{10}7 = 0.84$, calcular

- a) log₃2.
- b) $\log_2 7$. c) $\log_2 10$.

RESOLUÇÃO:

a)
$$\log_3 2 = \frac{\log_{10} 2}{\log_{10} 3} = \frac{0.30}{0.48} = \frac{30}{48} = \frac{5}{8} = 0.625$$

b)
$$\log_2 7 = \frac{\log_{10} 7}{\log_{10} 2} = \frac{0.84}{0.30} = \frac{84}{30} = \frac{14}{5} = 2.8$$

c)
$$\log_2 10 = \frac{\log_{10} 10}{\log_{10} 2} = \frac{1}{0.30} = \frac{10}{3}$$

$= \log_4\left(\frac{24,96}{3,12}\right) = \log_4 8 = \frac{\log_2 8}{\log_2 4} = \frac{3}{2}$

Resposta: B

 $oldsymbol{4}$ O valor de $\log_3 2$. $\log_2 5$. $\log_5 7$. $\log_7 9$ é

- a) 1. b) $\frac{3}{2}$. c) 2. d) $\frac{5}{2}$. e) 3.

RESOLUÇÃO:

 $\log_3 2 \cdot \log_2 5 \cdot \log_5 7 \cdot \log_7 9 =$

=
$$\log_3 2 \cdot \frac{\log_3 5}{\log_2 2} \cdot \frac{\log_3 7}{\log_2 5} \cdot \frac{\log_3 9}{\log_2 7} = \log_3 9 = 2$$

Resposta: C

2 Calcular o valor de $\log_{\frac{1}{2}} b^2$ sabendo que $\log_a b = m$.

RESOLUÇÃO:

$$\log_{\frac{1}{a}} b^2 = \frac{\log_a b^2}{\log_a \frac{1}{a}} = \frac{2 \log_a b}{\log_a a^{-1}} = \frac{2m}{-1} = -2m$$

3 O valor de log₁₆(24,96)² – log₄(3,12) é

- b) $\frac{3}{2}$. c) 2. d) $\frac{5}{2}$. e) 2,8.

RESOLUÇÃO:

 $\log_{16}(24,96)^2 - \log_4(3,12) = 2 \cdot \log_{16}(24,96) - \log_4(3,12) =$

$$= 2 \cdot \frac{\log_4(24,96)}{\log_4(16)} - \log_4(3,12) = \log_4(24,96) - \log_4(3,12) =$$

5 (UNICID) – Se $\log_{10} 2 = m e \log_{10} 3 = n$, podemos afirmar que o log₅6 é:

- a) $\frac{2mn}{1-m}$ b) $\frac{m+n}{1+m}$ c) $\frac{m+n}{mn}$
- d) $\frac{m+n}{1-m}$ e) $\frac{3mn}{1+m}$

RESOLUÇÃO:

$$\log_5 6 = \frac{\log_{10} 6}{\log_{10} 5} = \frac{\log_{10} (2.3)}{\log_{10} \left(\frac{10}{2}\right)} = \frac{\log_{10} 2 + \log_{10} 3}{\log_{10} 10 - \log_{10} 2} = \frac{m+n}{1-m}$$

Resposta: D

• Domínio da função • Expoente

1. Definição

Chama-se **função logarítmica de base a**, com a > 0 e a \neq 1, a função f : $\mathbb{R}^*_{\perp} \to \mathbb{R}$ definida por

$$f(x) = log_a x$$

2. Como obter o gráfico

Exemplo 1

Construir o gráfico da função $f: \mathbb{R}_+^* \to \mathbb{R}$ definida por $f(x) = \log_2 x$.

Resolução

Construímos uma tabela atribuindo alguns valores a **x** e calculando as imagens correspondentes.

х	y = log ₂ x	(x; y)
1 8	$y = \log_2\left(\frac{1}{8}\right) = -3$	$\left(\frac{1}{8}; -3\right)$
1 4	(4)	(0)
	$y = \log_2\left(\frac{1}{4}\right) = -2$	$\left(\frac{1}{4};-2\right)$
1 2	$y = \log_2\left(\frac{1}{2}\right) = -1$	$\left(\frac{1}{2};-1\right)$
1	y = log ₂ 1 = 0	(1; 0)
2	y = log ₂ 2 = 1	(2; 1)
4	y = log ₂ 4 = 2	(4; 2)
8	y = log ₂ 8 = 3	(8; 3)

Em seguida, localizamos os pontos obtidos num sistema de coordenadas cartesianas.

Exemplo 2

Construir o gráfico da função f : $\mathbb{R}_+^* \to \mathbb{R}$ definida por $\mathbf{f}(\mathbf{x}) = \mathbf{log}_{1/2}^{} \mathbf{x}$.

Resolução

Construímos uma tabela atribuindo alguns valores a **x** e calculando as imagens correspondentes.

х	y = log _{1/2} x	(x; y)
1 8	$y = \log_{1/2}\left(\frac{1}{8}\right) = 3$	$\left(\frac{1}{8};3\right)$
1 4	$y = \log_{1/2} \left(\frac{1}{4} \right) = 2$	$\left(\frac{1}{4};2\right)$
1 2	$y = \log_{1/2}\left(\frac{1}{2}\right) = 1$	$\left(\frac{1}{2};1\right)$
1	y = log _{1/2} 1 = 0	(1; 0)
2	y = log _{1/2} 2 = – 1	(2; – 1)
4	y = log _{1/2} 4 = -2	(4; – 2)
8	y = log _{1/2} 8 = -3	(8; – 3)

Em seguida, localizamos os pontos obtidos num sistema de coordenadas cartesianas.

Demonstra-se que:

- a) O gráfico da função logarítmica está sempre "à direita do eixo Oy", pois seu domínio é R *...
- b) O gráfico da função logarítmica sempre intercepta o eixo $\overrightarrow{O}x$ no ponto (1;0), pois $\log_a 1 = 0$; \forall a $\in \mathbb{R}^*_+$ – {1}.
 - c) Se a > 1, a função logarítmica é estritamente

crescente e seu gráfico é do tipo do exemplo 1.

- d) Se 0 < a < 1, a função logarítmica é estritamente decrescente e seu gráfico é do tipo do exemplo 2.
- e) A função logarítmica é sobrejetora, pois o contradomínio e o conjunto-imagem são, ambos, iguais a R.
- f) A função logarítmica é injetora, pois qualquer reta horizontal intercepta seu gráfico no máximo uma vez.

Saiba mais

- a) A função logarítmica é bijetora.
- b) A função **exponencial** de \mathbb{R} em \mathbb{R}_+^* , e a função **logarítmica**, de \mathbb{R}_{+}^{*} em \mathbb{R} , são **inversas** uma da outra, pois $f(x) = a^x \Rightarrow y = a^x \Rightarrow x = a^y \Rightarrow$ \Rightarrow y = log₂x \Rightarrow f⁻¹(x) = log₂x.

Seus gráficos são simétricos em relação à bissetriz dos quadrantes ímpares, que é a reta da equação y = x, conforme as figuras 1 e 2.

Figura 2

Exercícios Resolvidos

(MACKENZIE) – A figura mostra o esboço do gráfico da função y = log_a (x + b). A área do retângulo assinalado é

a) 1 b)
$$\frac{1}{2}$$
 c) $\frac{3}{4}$ d) 2 e) $\frac{4}{3}$

Resolução

I) Na função $y = log_a(x + b)$, para x = 0 tem-se y = 0, assim:

$$0 = \log_a(0 + b) \Leftrightarrow a^0 = b \Leftrightarrow b = 1$$

II) Na função y = $log_a(x + 1)$, para x = $\frac{a}{2}$ tem-se y = 1, assim:

$$1 = \log_a \left(\frac{a}{3} + 1 \right) \Leftrightarrow a^1 = \frac{a}{3} + 1 \Leftrightarrow$$

$$\Leftrightarrow$$
 3a = a + 3 \Leftrightarrow 2a = 3 \Leftrightarrow a = $\frac{3}{2}$

III) O retângulo da figura tem base medindo

$$\frac{a}{3} = \frac{\frac{3}{2}}{3} = \frac{1}{2} \text{ e altura 1, assim, sua}$$

$$\text{área \'e } \frac{1}{2} \cdot 1 = \frac{1}{2}$$

Resposta: B

(MACKENZIE) - Os pontos (1,2) e (5,10) pertencem ao gráfico de $f(x) = a.b^{log_2x}$. O valor de a + b é

a) 3. b) 4. c) 6. d) 8. e) 5.

Resolução

$$\begin{cases} (1; 2) \in f \Rightarrow f(1) = a \cdot b^{\log_2 1} = 2 \\ (5; 10) \in f \Rightarrow f(5) = a \cdot b^{\log_2 5} = 10 \end{cases} \Rightarrow$$

$$\Rightarrow \begin{cases} a \cdot b^0 = 2 \\ a \cdot b^{\log_2 5} = 10 \end{cases} \Leftrightarrow \begin{cases} a = 2 \\ b^{\log_2 5} = 5 \end{cases} \Leftrightarrow \begin{cases} a = 2 \\ b = 2 \end{cases}$$

Resposta: B

3 Determinar o domínio da função definida por $f(x) = \log_{(x-1)}(x^2 - x - 6)$.

Resolução

O domínio de f, é D(f) = $(x \in \mathbb{R} \mid x^2 - x - 6 > 0)$ $e x - 1 > 0 e x - 1 \neq 1$

Assim sendo:

a) $x^2 - x - 6 > 0 \Leftrightarrow x < -2 \text{ ou } x > 3$, pois o gráfico de $g(x) = x^2 - x - 6$ é do tipo

b) $x - 1 > 0 \Leftrightarrow x > 1$

c) $x - 1 \neq 1 \Leftrightarrow x \neq 2$

d) De (a) \cap (b) \cap (c), temos:

Resposta: D(f) = $\{x \in \mathbb{R} \mid x > 3\}$

1 Completar a tabela abaixo e, em seguida, construir o gráfico da função logarítmica g: $\mathbb{R}_+^* \to \mathbb{R}$, definida por $g(x) = \log_2 x$, no mesmo sistema de coordenadas cartesianas onde já está representada a função exponencial f: $\mathbb{R} \to \mathbb{R}_+^*$, definida por $f(x) = 2^x$.

х	$y = g(x) = \log_2 x$	(x; y)
1 8	$y = \log_2\left(\frac{1}{8}\right) = -3$	$\left(\frac{1}{8}; -3\right)$
1 4	$y = \log_2\left(\frac{1}{4}\right) = -2$	$\left(\frac{1}{4};-2\right)$
1 2	$y = \log_2\left(\frac{1}{2}\right) = -1$	$\left(\frac{1}{2};-1\right)$
1	γ = log ₂ 1 = 0	(1; 0)
2	$y = g(2) = \log_2 2 = 1$	(2; 1)
4	y = log ₂ 4 = 2	(4; 2)
8	y = log ₂ 8 = 3	(8; 3)

2 Completar a tabela abaixo e, em seguida, construir o gráfico da função logarítmica g: $\mathbb{R}_+^* \to \mathbb{R}$, definida por g(x) = $\log_1 x$, no mesmo sistema de coordenadas cartesianas onde já está representada a função exponencial f: $\mathbb{R} \to \mathbb{R}_+^*$, definida por f(x) = $\left(\frac{1}{2}\right)^x$.

х	$y = g(x) = \log_{\frac{1}{2}} x$	(x; y)
1 8	$y = \log_{\frac{1}{2}} \left(\frac{1}{8} \right) = 3$	$\left(\frac{1}{8};3\right)$
1 4	$y = \log_{\frac{1}{2}} \left(\frac{1}{4} \right) = 2$	$\left(\frac{1}{4};2\right)$
1 2	$y = \log_{\frac{1}{2}} \left(\frac{1}{2}\right) = 1$	$\left(\frac{1}{2};1\right)$
1	$y = \log_{\frac{1}{2}} 1 = 0$	(1; 0)
2	$y = \log_{\frac{1}{2}} 2 = -1$	(4; – 1)
4	$y = \log_{\frac{1}{2}} 4 = -2$	(4; – 2)
8	$y = \log_{\frac{1}{2}} 8 = -3$	(8; – 3)

- (VUNESP) Considere as funções $f(x) = \frac{x}{2} e g(x) = \log_2 x$, para x > 0.
- a) Represente, num mesmo sistema de coordenadas retangulares, os gráficos das duas funções, colocando os pontos cujas abscissas são x = 1, x = 2, x = 4 e x = 8.
- b) Baseado na representação gráfica, dê o conjunto-solução da $\text{inequação } \frac{x}{2} < \text{log}_2 x \text{, e justifique por que } \frac{\pi}{2} < \text{log}_2 \pi.$

RESOLUÇÃO:

$$f(x) = \frac{x}{2}$$
 e $g(x) = \log_2 x$

a)

х	1	2	4	8
f(x)	1/2	1	2	4
х	1	2	4	8
g(x)	0	1	2	3

b)
$$\frac{x}{2} < \log_2 x \Leftrightarrow 2 < x < 4$$

Sendo
$$2 < \pi < 4 \Rightarrow \frac{\pi}{2} < \log_2 \pi$$

4 (FIC/FACEM) – Se a curva da figura representa o gráfico da função y = log x, com x > 0, então o valor da área hachurada é igual a:

- a) log 12d) log 6
- b) 3 . log 2 e) log 64
- c) log 4

RESOLUÇÃO:

I)
$$A_1 = (4-2) \cdot \log 2 = 2 \cdot \log 2$$

II)
$$A_2 = (6 - 4) \cdot \log 4 = 2 \cdot \log 4$$

III)
$$A_1 + A_2 = 2 \cdot \log 2 + 2 \cdot \log 4 = 2 \cdot (\log 2 + \log 4) =$$

= 2 \cdot \log (2 \cdot 4) = 2 \cdot \log 8 = \log 8^2 = \log 64

Resposta: E

Função logarítmica

a) A **função logarítmica** de **base a**, com $a \in \mathbb{R}^*_+ - \{1\}$, é a função de $\mathbb{R}^*_+ \to \mathbb{R}$ definida por

$$f(x) = log_a x$$

- b) O gráfico da função logarítmica, representado ao lado, está sempre "à direita do eixo \overrightarrow{Oy} ", pois seu domínio é \mathbb{R}_{+}^{*} .
- c) O gráfico da função logarítmica sempre intercepta o eixo \overrightarrow{Ox} no ponto (1; 0), pois $\log_a 1 = 0$; $\forall a \in \mathbb{R}_+^* \{1\}$.
- d) A função logarítmica é **injetora** pois qualquer reta horizontal intercepta seu gráfico no máximo uma vez.

Logo:

$$\log_a x_1 = \log_a x_2 \Leftrightarrow x_1 = x_2 > 0$$

Exercícios Resolvidos

1 Resolva a equação $\log_3(3x - 1) = \log_3 8$.

Resolução

$$\log_3(3x - 1) = \log_3 8 \Leftrightarrow \begin{cases} 3x - 1 = 8 \\ 3x - 1 > 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x = 3 \\ x > \frac{1}{3} \end{cases} \Leftrightarrow V = \{3\}$$

2 Resolver a equação $\log_5(x-1) + \log_5(x-3) = \log_5 3$.

Resolução

 $\log_5(x-1) + \log_5(x-3) = \log_5 3 \Leftrightarrow$

 $\Leftrightarrow \log_5 (x-1) (x-3) = \log_5 3 \Leftrightarrow$ $\Leftrightarrow (x-1) (x-3) = 3 \Leftrightarrow x^2 - 4x + 3 = 3 \Leftrightarrow$ $\Leftrightarrow x(x-4) = 0 \Leftrightarrow x = 0 \text{ ou } x = 4 \Rightarrow x = 4, \text{ pois}$ 0 não verifica as condições de existência dos

Resposta: V = {4}

3 Resolver a equação: $\log_2(x^2 - 6x) = 4$.

Resolução

logaritmos.

$$\log_2(x^2 - 6x) = 4 \Leftrightarrow x^2 - 6x = 2^4 \Leftrightarrow$$
$$\Leftrightarrow x^2 - 6x - 16 = 0 \Leftrightarrow x = +8 \text{ ou } x = -2$$

Como os dois valores satisfazem as condições de existência, então $V = \{-2, 8\}$

Resposta: V = {- 2; 8}

4 Resolver a equação $\log_9 \log_3 \log_5 x = 0$.

Resolução

$$\log_{9}(\log_{3}\log_{5}x = 0 \Leftrightarrow \log_{3}(\log_{5}x) = 9^{0} = 1 \Leftrightarrow$$
$$\Leftrightarrow \log_{8}(x) = 3^{1} = 3 \Leftrightarrow x = 5^{3} \Leftrightarrow x = 125$$

Resposta: V = {125}

Exercícios Propostos

Resolva, em \mathbb{R} , as equações de \bigcirc a \bigcirc 3.

RESOLUÇÃO:

$$\log_2(x^2 + 6x - 6) = \log_2 x \Leftrightarrow \begin{cases} x^2 + 6x - 6 = x \\ x > 0 \end{cases} \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} x^2 + 5x - 6 = 0 \\ x > 0 \end{cases} \Leftrightarrow \begin{cases} x = -6 \text{ ou } x = 1 \\ x > 0 \end{cases} \Leftrightarrow x = 1$$

 $V = \{1\}$

 $2 \log_3(x + 1) + \log_3 x = \log_3 6$

RESOLUÇÃO:

$$\log_3(x+1) + \log_3 x = \log_3 6 \Leftrightarrow \begin{cases} \log_3[(x+1) \cdot x] = \log_3 6 \\ x+1>0 \\ x>0 \end{cases} \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} (x+1) \cdot x = 6 \\ x > 0 \end{cases} \Leftrightarrow \begin{cases} x^2 + x - 6 = 0 \\ x > 0 \end{cases} \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} x = -3 \text{ ou } x = 2 \\ x > 0 \end{cases} \Leftrightarrow x = 2$$

 $V = \{2\}$

$$\log[3-2 \cdot \log_3(1+x)] = 0 \Leftrightarrow \begin{cases} 3-2 \log_3(1+x) = 1 \\ 3-2 \log_3(1+x) > 0 \end{cases} \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} -2\log_3(1+x) = -2 \\ 1+x > 0 \end{cases} \Leftrightarrow \begin{cases} \log_3(1+x) = 1 \\ x > -1 \end{cases}$$

$$\Leftrightarrow \begin{cases} 1+x=3 \\ x>-1 \end{cases} \Leftrightarrow x=2 \Leftrightarrow V=\{2\}$$

4 O conjunto solução, em ℝ, da equação $\log_{0.4}[\log_2(0.5)^{x-5}] = \log_{0.4}(x + 2)$ é:

b) {1} c)
$$\left\{ \frac{3}{2} \right\}$$

e)
$$\left\{ \frac{7}{2} \right\}$$

RESOLUÇÃO:

Para x > -2, tem-se:

$$\log_{0.4}[\log_2(0.5)^{x-5}] = \log_{0.4}(x+2) \Leftrightarrow \log_2(0.5)^{x-5} = x+2 \Leftrightarrow$$

$$\Leftrightarrow 2^{x+2} = (0,5)^{x-5} \Leftrightarrow 2^{x+2} = \left(\frac{1}{2}\right)^{x-5} \Leftrightarrow$$

$$\Leftrightarrow 2^{x+2} = 2^{-x+5} \Leftrightarrow x+2 = -x+5 \Leftrightarrow 2x = 3 \Leftrightarrow x = \frac{3}{2}$$

Resposta: C

No Portal Objetivo

Para saber mais sobre o assunto, acesse o PORTAL OBJETIVO (www.portal.objetivo.br) e, em "localizar", digite MAT1M308

Módulo

Inequações logarítmicas

Palayras-chave:

- Função estritamente crescente
- Função estritamente decrescente

Função logarítmica (Resumo)

- a) A função logarítmica de base a, com a $\in \mathbb{R}_+^*$ {1}, é a função f de $\mathbb{R}_+^* \to \mathbb{R}$ definida por $f(x) = log_a x$
- b) O gráfico da função logarítmica, representado ao lado, está sempre "à direita do eixo Oy" pois seu domínio é \mathbb{R}_{+}^{*} ; sempre intercepta o eixo $\overrightarrow{O}x$ no ponto (1; 0).

c) Se a > 1 a função é estritamente crescente e, portanto,

$$\log_a x_1 > \log_a x_2 \iff x_1 > x_2 > 0$$

d) Se **0 < a < 1** a função é estritamente **decrescente** e, portanto,

$$\log_a x_1 > \log_a x_2 \Leftrightarrow 0 < x_1 < x_2$$

Exercícios Resolvidos

Resolva a inequação log₄(2x - 3) > log₄7.

Resolução

$$\log_4(2x-3) > \log_4 7 \Leftrightarrow \left\{ \begin{array}{l} 2x-3 > 7 \\ 2x-3 > 0 \end{array} \right. \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} x > 5 \\ x > \frac{3}{2} \Leftrightarrow V = \{x \in \mathbb{R} \mid x > 5\} \end{cases}$$

(UNIP) – O conjunto-solução da inequação $\log_a \log_1 (x-3) > 0$, com $a \in \mathbb{R}$ e a > 1, é

a)
$$\{x \in \mathbb{R} \mid a < x < 3\}$$
.

b)
$$\left\{ x \in \mathbb{R} \mid 3 < x < \frac{3a+1}{a} \right\}.$$

c)
$$\{x \in \mathbb{R} \mid 3 < x < 3a + 1\}$$
.

d)
$$\{x \in \mathbb{R} \mid 3 < x < a + 3\}$$

e)
$$\{x \in \mathbb{R} \mid 3 < x < a + 1\}$$
.

Sendo a > 1 temos:
$$\log_a \log_{\frac{1}{2}} (x - 3) > 0 \Leftrightarrow$$

$$\Leftrightarrow \log_{\frac{1}{a}}(x-3) > 1 \Leftrightarrow 0 < x-3 < \frac{1}{a} \Leftrightarrow$$

$$\Leftrightarrow 3 < x < \frac{1}{a} + 3 \Leftrightarrow 3 < x < \frac{3a+1}{a}$$

Resposta: B

Resolver, em R, a inequação

$$\log_{(2^{X-1}-1)} 5 < \log_{(2^{X-1}-1)} 2.$$

Resolução

Como 5 > 2 e
$$\log_{(2^{X-1}-1)} 5 < \log_{(2^{X-1}-1)} 2$$
, então $0 < 2^{X-1} - 1 < 1 \Leftrightarrow 1 < 2^{X-1} < 2 \Leftrightarrow$

$$\Leftrightarrow 0 < x - 1 < 1 \Leftrightarrow 1 < x < 2.$$

Resposta: $V = \{x \in \mathbb{R} \mid 1 < x < 2\}$

A Resolver, em
$$\mathbb{R}$$
, a inequação $\log_{1/3} (x^2 - 4x + 3) < -1$.

$$\log_{1/3}(x^2 - 4x + 3) < -1 \Leftrightarrow x^2 - 4x + 3 > \left(\frac{1}{3}\right)^{-1} \Leftrightarrow x^2 - 4x + 3 > 3 \Leftrightarrow x^2 - 4x > 0 \Leftrightarrow x < 0 \text{ ou } x > 4, \text{ pois o gráfico de}$$

$$f(x) = x^2 - 4x \text{ é do tipo}$$

Resposta: $V = \{x \in \mathbb{R} \mid x < 0 \text{ ou } x > 4\}$

Exercícios Propostos

Resolva, em \mathbb{R} , as inequações de (1) a (5).

$$\log_2(5x - 3) > \log_2 7$$

RESOLUÇÃO:

$$\log_2(5x-3) > \log_2 7 \Leftrightarrow \begin{cases} 5x-3 > 7 \\ 5x-3 > 0 \end{cases} \Leftrightarrow$$

$$\Leftrightarrow 5x - 3 > 7 \Leftrightarrow 5x > 10 \Leftrightarrow x > 2$$

$$V = \{x \in \mathbb{R} \mid x > 2\}$$

$$\int \log_3(x+1) +$$

RESOLUÇÃO:

$$\left\{ \begin{array}{l} log_3(x+1) + log_3x \leq log_36 \\ x+1>0 \ e \ x>0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} log_3[(x+1) \ . \ x] \leq log_36 \\ x>0 \end{array} \right. \Leftrightarrow$$

$$\Leftrightarrow \left\{ \begin{array}{l} (x+1) \cdot x \leq 6 \\ x > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x^2 + x - 6 \leq 0 \\ x > 0 \end{array} \right. \Leftrightarrow 0 < x \leq 2$$

$$V = \{x \in \mathbb{R} \mid 0 < x \le 2\}$$

 $\log_3(2x + 5) \le 2$

4 $\log_3(x + 1) + \log_3 x \le \log_3 6$

$$\log_{0,1}(2x-2) > \log_{0,1}10$$

$$\log_{0,1}(2x-2) > \log_{0,1}10 \Leftrightarrow \begin{cases} 2x-2 < 10 \\ 2x-2 > 0 \end{cases} \Leftrightarrow$$

$$\Leftrightarrow 0 < 2x - 2 < 10 \Leftrightarrow 2 < 2x < 12 \Leftrightarrow 1 < x < 6$$

$$V = \{x \in \mathbb{R} \mid 1 < x < 6\}$$

$$\log_3(2x+5) \le 2 \Leftrightarrow \begin{cases} 2x+5 \le 3^2 \\ 2x+5 > 0 \end{cases} \Leftrightarrow$$

$$\Leftrightarrow 0 < 2x + 5 \le 9 \Leftrightarrow -5 < 2x \le 4 \Leftrightarrow -\frac{5}{2} < x \le 2$$

$$V = \left\{ x \in \mathbb{R} \left| - \frac{5}{2} < x \le 2 \right. \right\}$$

3 $\log_{0.2}(-x^2 + 5x) < \log_{0.2}6$

RESOLUÇÃO:

$$\log_{0,2}(-x^2 + 5x) < \log_{0,2}6 \Leftrightarrow \begin{cases} -x^2 + 5x > 6 \\ -x^2 + 5x > 0 \end{cases} \Leftrightarrow$$

$$\Leftrightarrow x^2 - 5x + 6 < 0 \Leftrightarrow 2 < x < 3$$

$$V = \{x \in \mathbb{R} \mid 2 < x < 3\}$$

1. Base **e** e base 10

Os logaritmos mais usados são os de **base e** e os de **base 10**. O número real irracional **e**, chamado número de Napier, vale 2,7182818284590453... . Portanto,

$$e \approx 2,718$$

Os logaritmos de base **e**, chamados **logaritmos neperianos** e representados por $\log_{\mathbf{e}} \mathbf{N}$ ou $\ell \mathbf{n} \mathbf{N}$, são principalmente usados em fórmulas teóricas como, por exemplo, as de limites e derivadas. Têm as mesmas propriedades de qualquer logaritmo de base a > 1.

Os logaritmos de base 10, chamados logaritmos decimais ou de Briggs e representados por log₁₀N ou simplesmente log N, são especialmente importantes para o cálculo numérico de logaritmos, como veremos a seguir.

Função logarítmica de base **e**

O gráfico da função f: $\mathbb{R}_+^* \to \mathbb{R}$ definida por f(x) = ℓ nx é

Note que: $e \approx 2,718$ $e^2 \approx 7,388$

Função logarítmica de base 10

O gráfico da função f: $\mathbb{R}_+^* \to \mathbb{R}$ definida por f(x) = log x é

2. Logaritmos decimais

Lembrando que $\log_{10} 10^n = n$, $n \in \mathbb{Z}$, podemos construir a seguinte tabela:

N	 10 ⁻⁴	10 ⁻³	10 ⁻²	10 ⁻¹	10 ⁰	10 ¹	10 ²	10 ³	10 ⁴	
Log N	 - 4	- 3	- 2	- 1	0	1	2	3	4	

Assim sendo:

a) Se N for uma potência de 10 com expoente inteiro então log N é inteiro e igual ao próprio expoente. Nos demais casos o log N estará compreendido entre os dois inteiros consecutivos.

b) Sendo N um número real estritamente positivo sempre existe um número inteiro ${\bf c}$ tal que

$$10^{c} \le N < 10^{c+1} \Leftrightarrow \log 10^{c} \le \log N < \log 10^{c+1} \Leftrightarrow c \le \log N < c+1$$

c) Se c
$$\leq$$
 log N $<$ c + 1 então $log N = c + 0,$

d) O número inteiro ${\bf c}$ é chamado ${\bf caracter\'(stica)}$ do log N.

e) O número decimal **0**, ..., que passaremos a representar por **m**, é chamado **mantissa** do log N.

f) Para qualquer número N, real e estritamente positivo, temos então:

$$log N = c + m$$
 com $c \in \mathbb{Z}$ e $0 \le m < 1$

3. Como obter a característica

a) A característica do logaritmo decimal de um número N>1 é igual ao **número de algarismos de sua parte inteira, diminuído de uma unidade**.

Exemplos

N	número de algarismos da parte inteira	característica	log N
3	1	0	log 3 = 0 + 0, = 0 ,
4,9	1	0	log 4,9 = 0 + 0, = 0 ,
13	2	1	log 13 = 1 + 0, = 1,
139	3	2	log 139 = 2 + 0, = 2,
721,4	3	2	log 721,4 = 2 + 0, = 2,
15124	5	4	log 15124 = 4 + 0, = 4;

b) A característica do logaritmo decimal de um número N, com 0 < N < 1, é igual ao **oposto do número** de zeros que precedem o primeiro algarismo significativo de N.

Exemplos

N	números de zeros	característica	log N
0,31	1	- 1	log 0,31 = - 1 + 0, = 1 ,
0,0103	2	- 2	log 0,0103 = -2 + 0, = 2 ,
0,004	3	- 3	$\log 0.004 = -3 + 0 = \frac{7}{3},$
0,00003	5	- 5	$\log 0.00003 = -5 + 0 = \overline{5},$

Observação

 $\overline{5}$,31 por exemplo, é a representação simbólica de -5 + 0,31 e o resultado dessa subtração é -4,69. Logo: $\overline{5}$,31 = -4,69 .

Saiba mais

Para calcular a característica de $\log_a N$, $\forall a$, N > 0 e a $\neq 1$, é suficiente colocar \mathbf{N} entre duas potências inteiras e consecutivas de base \mathbf{a} .

Exemplos

1. Calcular a característica do logaritmo de 73 na base 2.

Resolução

$$\begin{aligned} 64 &< 73 < 128 \Leftrightarrow 2^6 < 73 < 2^7 \Leftrightarrow \\ &\Leftrightarrow \log_2 2^6 < \log_2 73 < \log_2 2^7 \Leftrightarrow \\ &\Leftrightarrow 6 < \log_2 73 < 7 \Leftrightarrow \log_2 73 = 6, \ldots \end{aligned}$$

Resposta: A característica do log₂73 é 6.

2. Calcular a característica do logaritmo de 73 na base 10.

Resolução

$$10 < 73 < 100 \Leftrightarrow 10^{1} < 73 < 10^{2} \Leftrightarrow$$

 $\Leftrightarrow \log 10^{1} < \log 73 < \log 10^{2} \Leftrightarrow$
 $\Leftrightarrow 1 < \log 73 < 2 \Leftrightarrow \log 73 = 1,...$

Resposta: A característica do log 73 é 1.

4. Como obter a mantissa

a) Por não existir nenhum processo simples para ser obtida, ou a mantissa é dada diretamente ou deve ser procurada numa tabela chamada **Tábua de Logaritmos**.

b) Propriedade

Os números N e N . 10^k , com N > 0 e $k \in \mathbb{Z}$, possuem a mesma mantissa, ou seja, números que "diferem" apenas pela posição da vírgula possuem a mesma mantissa.

Saiba mais

Se $\log N = c + m$, onde $c \in a$ característica e $m \in a$ mantissa, então $\log (N \cdot 10^k) = \log N + \log 10^k \Rightarrow \log (N \cdot 10^k) = c + m + k \Leftrightarrow \log (N \cdot 10^k) = (c + k) + m$ Assim sendo:

	característica	mantissa	logaritmo
N	C	m	c + m
N .10 ^k	c + k	m	(c + k) + m

5. Tábua de logaritmos

Na folha seguinte apresentamos uma TABELA que fornece as MANTISSAS dos logaritmos decimais dos números inteiros de 100 a 999, impropriamente denominada TÁBUA DE LOGARITMOS, visto que não fornece os logaritmos, mas tão somente as **mantissas**.

Nessa tabela para determinar, por exemplo, a mantissa do logaritmo decimal do número 496, devemos procurar a intersecção da linha 49 com a coluna 6. Encontramos então 6955, o que significa que a mantissa procurada é 0,6955.

Note que a tabela fornece diretamente as mantissas de todos os números inteiros de 100 a 999, bem como de qualquer número decimal positivo cuja representação difere dos anteriores apenas pela posição da vírgula. Assim, pelo exemplo anterior, podemos dizer que 0,6955 é a mantissa do logaritmo decimal não só do número 496, como também dos números: 4960; 49600; 49,6; 4,96; 0,496; etc...

Observação

$$log(0,021) = \bar{2},322 = -2 + 0,322 = -1,678$$

No Portal Objetivo

Para saber mais sobre o assunto, acesse o **PORTAL OBJETIVO** (<u>www.portal.objetivo.br</u>) e, em "localizar", digite **MAT1M309**

TÁBUA DE LOGARITMOS

					LLU		1,100			
N	0	1	2	3	4	5	6	7	8	9
10	0000	0043	0086	0128	0170	0212	0253	0294	0334	0374
11	0414	0453	0492	0531	0569	0607	0645	0682	0719	0755
12	0792	0828	0864	0899	0934	0969	1004	1038	1072	1106
13	1139	1173	1206	1239	1271	1303	1335	1367	1399	1430
14	1461	1492	1523	1553	1584	1614	1644	1673	1703	1732
15	1761	1790	1818	1847	1875	1903	1931	1959	1987	2014
16	2041	2068	2095	2122	2148	2175	2201	2227	2253	2279
17	2304	2330	2355	2380	2405	2430	2455	2480	2504	2529
18	2553	2577	2601	2625	2648	2672	2695	2718	2742	2765
19	2788	2810	2833	2856	2878	2900	2923	2945	2967	2989
20	3010	3032	3054	3075	3096	3118	3139	3160	3181	3201
21	3222	3243	3263	3284	3304	3324	3345	3365	3385	3404
22	3424	3444	3464	3483	3502	3522	3541	3560	3579	3598
23	3617	3636	3655	3674	3692	3711	3729	3747	3766	3784
24	3802	3820	3838	3856	3874	3892	3909	3927	3945	3962
25	3979	3997	4014	4031	4048	4065	4082	4099	4116	4133
26	4150	4166	4183	4200	4216	4232	4249	4265	4281	4298
27	4314	4330	4346	4362	4378	4393	4409	4425	4440	4456
28	4472	4487	4502	4518	4533	4548	4564	4579	4594	4609
29	4624	4639	4654	4669	4683	4698	4713	4728	4742	4757
30	4771	4786	4800	4814	4829	4843	4857	4871	4886	4900
31	4914	4928	4942	4955	4969	4983	4997	5011	5024	5038
32	5051	5065	5079	5092	5105	5119	5132	5145	5159	5172
33	5185	5198	5211	5224	5237	5250	5263	5276	5289	5302
34	5315	5328	5340	5353	5366	5378	5391	5403	5416	5428
35	5441	5453	5465	5478	5490	5502	5514	5527	5539	5551
36	5563	5575	5587	5599	5611	5623	5635	5647	5658	5670
37	5682	5694	5705	5717	5729	5740	5752	5763	5775	5786
38	5798	5809	5821	5832	5843	5855	5866	5877	5888	5899
39	5911	5922	5933	5944	5955	5966	5977	5988	5999	6010
40	6021	6031	6042	6053	6064	6075	6085	6096	6107	6117
41	6128	6138	6149	6160	6170	6180	6191	6201	6212	6222
42 43	6232 6335	6243	6253	6263	6274	6284	6294	6304	6314	6325
45	6435	6345	6355 6454	6365	6375	6385	6395	6405	6415	6425
45	6532	6444	6551	6464 6561	6474 6571	6484	6493 6590	6503 6599	6513	6522
45	6628	6542	6646	6656	6665	6580 6675	6684	6693	6609 6702	6618 6712
47	6721	6637 6730	6739	6749	6758	6767	6776	6785	6794	6803
48	6812	6821	6830	6839	6848	6857	6866	6875	6884	6893
49	6902	6911	6920	6928	6937	6946	6955	6964	6972	6981
50	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067
51	7076	7084	7093	7101	7110	7118	7126	7135	7143	7152
52	7160	7168	7177	7185	7110	7202	7210	7218	7226	7235
53	7243	7251	7259	7267	7275	7284	7292	7300	7308	7316
54	7324	7332	7340	7348	7356	7364	7372	7380	7388	7396
N	0	1	2	3	4	5	6	7	8	9

N	0	1	2	3	4	5	6	7	8	9
55	7404	7412	7419	7427	7435	7443	7451	7459	7466	7474
56	7482	7490	7497	7505	7513	7520	7528	7536	7543	7551
57	7559	7566	7574	7582	7589	7597	7604	7612	7619	7627
58	7634	7642	7649	7657	7664	7672	7679	7686	7694	7701
59	7709	7716	7723	7731	7738	7745	7752	7760	7767	7774
60	7782	7789	7796	7803	7810	7818	7825	7832	7839	7846
61	7853	7860	7868	7875	7882	7889	7896	7903	7910	7917
62	7924	7931	7938	7945	7952	7959	7966	7973	7980	7987
63	7993	8000	8007	8014	8021	8028	8035	8041	8048	8055
64	8062	8069	8075	8082	8089	8096	8102	8109	8116	8122
65	8129	8136	8142	8149	8156	8162	8169	8176	8182	8189
66	8195	8202	8209	8215	8222	8228	8235	8241	8248	8254
67	8261	8267	8274	8280	8287	8293	8299	8306	8312	8319
68	8325	8331	8338	8344	8351	8357	8363	8370	8376	8382
69	8388	8395	8401	8407	8414	8420	8426	8432	8439	8445
70	8451	8457	8463	8470	8476	8482	8488	8494	8500	8506
71	8513	8519	8525	8531	8537	8543	8549	8555	8561	8567
72	8573	8579	8585	8591	8597	8603	8609	8615	8621	8627
73	8633	8639	8645	8651	8657	8663	8669	8675	8681	8686
74	8692	8698	8704	8710	8716	8722	8727	8733	8739	8745
75	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802
76	8808	8814	8820	8825	8831	8837	8842	8848	8854	8859
77	8865	8871	8876	8882	8887	8893	8899	8904	8910	8915
78	8921	8927	8932	8938	8943	8949	8954	8960	8965	8971
79	8976	8982	8987	8993	8998	9004	9009	9015	9020	9025
80	9031	9036	9042	9047	9053	9058	9063	9069	9074	9079
81	9085	9090	9096	9101	9106	9112	9117	9122	9128	9133
82	9138	9143	9149	9154	9159	9165	9170	9175	9180	9186
83	9191	9196	9201	9206	9212	9217	9222	9227	9232	9238
84	9243	9248	9253	9258	9263	9269	9274	9279	9284	9289
85 86	9294	9299	9304	9309	9315	9320	9325	9330	9335	9340
87	9345	9350	9355	9360	9365	9370	9375	9380	9385	9390
88	9395 9445	9400	9405 9455	9410 9460	9415	9420	9425 9474	9430	9435	9440
89	9443	9450 9499	9433	9400	9465 9513	9469 9518	9474	9479 9528	9484 9533	9489
90	9494		9552	9509 9557	9513 9562	9518 9566	9525 9571	9528 9576	9555 9581	9538 9586
91	9542	9547 9595	9600	9605	9609	9614	9619	9624	9628	9633
92	9638		9647	9652	9657		9666			
93	9685	9643 9689	9694	9699	9037	9661 9708	9713	9671 9717	9675 9722	9680 9727
94	9731	9089	9094	9745	9703	9708	9759	9717	9722	9727
95	9777	9730	9786	9743	9750	9800	9805	9809	9814	9818
96	9823	9827	9832	9836	9841	9845	9850	9854	9859	9863
97	9868	9872	9877	9881	9886	9890	9894	9899	9903	9908
98	9912	9917	9921	9926	9930	9934	9939	9943	9948	9952
99	9956	9961	9965	9969	9974	9978	9983	9987	9991	9996
N	0	1	2	3	4	5	6	7	8	9

Exercícios Resolvidos

Sendo $\log 2 = 0.301$ e $\log 3 = 0.477$, calcule os $\log \operatorname{aritmos} de 1 a 3$.

Resolução

$$\log 200 = \log (2 \cdot 100) = \log 2 + \log 100 =$$

= 0,301 + 2 = 2,301

Observação

Outra forma de calcular o log 200 é:

- a característica é **2** pois 200 tem 3 algarismos
- a mantissa do logaritmo de 200 é a mesma mantissa do logaritmo de 2

Resposta: log 200 = 2,301

Resolução

$$\log (0,002) = \log \left(\frac{2}{1000}\right) =$$

$$= \log 2 - \log 1000 = 0.301 - 3 = -2.699$$

Observação

Outra forma de calcular o log (0,002) é

• a característica é **- 3** pois 0,002 tem 3 zeros

• a mantissa é 0,301

• $\log (0,002) = \overline{3},301 = -3 + 0,301 = -2,699$

Resposta: log(0,002) = -2,699

3 log₂ 81

Resolução

$$\log_2 81 = \frac{\log 81}{\log 2} = \frac{4 \cdot \log 3}{\log 2} =$$
$$= \frac{4 \cdot 0,477}{0,301} \approx 6,339$$

Resposta: $\log_2 81 = 6,339$

A função P = 60.(1,04)^t representa a estimativa do Produto Interno Bruto em bilhões de dólares (PIB) de um país no ano **t** adotando-se a seguinte convenção:

t = 0 representa o ano de 1996

t = 1 representa o ano de 1997

t = 2 representa o ano de 1998 e assim por diante.

a) Qual a estimativa do aumento percentual do PIB de 1999 em relação ao de 1998?

b) Em que ano o PIB será aproximadamente o dobro do que era em 1996?

Use aproximação por valores superiores e adote os seguintes dados:

Log 2 = 0.3010Log 13 = 1.1139

Resolução

a)
$$\frac{P_{1999}}{P_{1998}} = \frac{60 \cdot (1,04)^3}{60 \cdot (1,04)^2} = 1,04 = 104\% \Leftrightarrow$$

$$\Leftrightarrow \mathsf{P}_{1999} = 104\% \ . \ \mathsf{P}_{1998} \Leftrightarrow$$

$$\Leftrightarrow P_{1999} = P_{1998} + 4\% \cdot P_{1998}$$

b)
$$\frac{P_n}{P_{1996}} = \frac{60 \cdot (1,04)^{n-1996}}{60 \cdot (1,04)^0} =$$

= $(1,04)^{n-1996} = 2 \Rightarrow n-1996 = \log_{1.04}2 \Leftrightarrow$

$$\Leftrightarrow n - 1996 = \frac{\log 2}{\log 104 - \log 100} \Leftrightarrow$$

$$\Leftrightarrow n - 1996 = \frac{\log 2}{\log 8 + \log 13 - \log 100} \Leftrightarrow$$

$$\Leftrightarrow$$
 n - 1996 = $\frac{0,3010}{0.9030 + 1.1139 - 2}$ \Leftrightarrow

$$\Leftrightarrow$$
 n - 1996 = 17,81 \Rightarrow n - 1996 \cong 18 \Leftrightarrow

⇔ n = 2014

Respostas: a) 4%

b) 2014

Exercícios Propostos

a)
$$\log 347 =$$

c)
$$\log 0.0347 =$$

d)
$$\log 0.0004 =$$

e)
$$\log 4000 =$$

RESOLUÇÃO:

a)
$$\log 347 = 2 + 0.5403 = 2.5403$$

c)
$$\log 0.0347 = -2 + 0.5403 = -1.4597 = \overline{2}.5403$$

d)
$$\log 0.0004 = -4 + 0.6021 = -3.3979 = 4.6021$$

e)
$$\log 4000 = 3 + 0,6021 = 3,6021$$

2 Utilizando a Tábua de Logaritmos, determine o logaritmando N, nos casos:

a)
$$\log N = 3,5340$$

b)
$$\log N = 1,5340$$

c)
$$\log N = \overline{2},5340$$

d)
$$\log N = \overline{3},7316$$

RESOLUÇÃO:

b)
$$m = 0.5340$$
 (mantissa do 342) $c = 1$ (2 algarismos na parte inteira) $\Rightarrow N = 34.2$

c)
$$m = 0.5340$$
 (mantissa do 342) $c = -2$ (2 zeros antes do 342) $\Rightarrow N = 0.0342$

$$\left. \begin{array}{l} m = 0.7316 \; (mantissa \; do \; 539) \\ d) \; c = -3 \; (3 \; zeros \; antes \; do \; 539) \end{array} \right\} \Rightarrow N = 0.00539$$

(UNESP) – O altímetro dos aviões é um instrumento que mede a pressão atmosférica e transforma esse resultado em altitude. Suponha que a altitude **h** acima do nível do mar, em quilômetros, detectada pelo altímetro de um avião seja dada, em função da pressão atmosférica **p**, em atm, por

$$h(p) = 20 \cdot \log_{10} \left(\frac{1}{p} \right).$$

Num determinado instante, a pressão atmosférica medida pelo altímetro era 0,4 atm. Considerando a aproximação $\log_{10} 2 = 0,3$, a altitude **h** do avião nesse instante, em quilômetros, era de

b) 8.

c) 9.

d) 11.

e) 12.

RESOLUÇÃO:

Para p = 0,4 atm e sendo h(p) = 20 .
$$log_{10} \left(\frac{1}{p} \right)$$

a altitude do avião, acima do nível do mar, em quilômetros em função da pressão atmosférica p, temos:

$$h(0,4) = 20 \cdot \log_{10} \left(\frac{1}{0,4} \right) = 20 \cdot \log_{10} \left(\frac{1}{\frac{4}{10}} \right) =$$

= 20 .
$$\log_{10} \left(\frac{10}{4} \right)$$
 = 20[$\log_{10} 10 - 2 \log_{10} 2$] = 20(1 - 2 . 0,3) = 8

Resposta: B

Módulos 42 a 44

Logaritmos e exponenciais (complemento)

Palavras-chave:

• Base • Expoente • Potência

Função logarítmica e função exponencial (resumo)

- a) A função exponencial de $\mathbb{R} \to \mathbb{R}_+^*$ e a função logarítmica de $\mathbb{R}_+^* \to \mathbb{R}$ são **inversas** uma da outra.
- b) Seus gráficos, representados ao lado, são **simétricos** em relação à bissetriz dos quadrantes ímpares que é a reta de equação y = x.

c) A função exponencial e a função logarítmica são injetoras pois qualquer reta horizontal intercepta o gráfico no máximo uma vez. Logo:

$$a^{X_1} = a^{X_2} \Leftrightarrow X_1 = X_2$$

$$log_a x_1 = log_a x_2 \Leftrightarrow x_1 = x_2 > 0$$

d) Se **a > 1** a função é estritamente **crescente** e, portanto,

$$log_a x_1 > log_a x_2 \Leftrightarrow x_1 > x_2 > 0$$

$$a^{x_1} > a^{x_2} \Leftrightarrow x_1 > x_2$$

e) Se **0 < a < 1** a função é estritamente **decrescente** e, portanto,

$$\log_a x_1 > \log_a x_2 \Leftrightarrow 0 < x_1 < x_2$$

$$a^{x_1} > a^{x_2} \Leftrightarrow x_1 < x_2$$

No Portal Objetivo

Para saber mais sobre o assunto, acesse o PORTAL OBJETIVO (www.portal.objetivo.br) e, em "localizar", digite MAT1M310

Exercícios Propostos - Módulo 42

a)
$$10 \le x \le 100$$

c) x > -2.

d)
$$9 \le x \le 99$$

RESOLUÇÃO:

Para x > 1, tem-se:

$$1 \le \log_{10}(x - 1) \le 2 \Leftrightarrow 10^1 \le x - 1 \le 10^2 \Leftrightarrow$$

 $\Leftrightarrow 10 \le x - 1 \le 100 \Leftrightarrow 11 \le x \le 101$

Resposta: C

2 As soluções reais da inequação $\left(\frac{1}{2}\right)^{\log_5(x+3)} > 1$ são

todos os números reais, tais que

a)
$$-3 < x < -2$$
. b) $x > -3$.

b)
$$x > -3$$
.

d)
$$x < -2$$
.

e)
$$2 < x < 3$$
.

RESOLUÇÃO:

$$\left(\begin{array}{c} \frac{1}{2} \right)^{\log_5(x+3)} > 1 \Leftrightarrow \left\{ \begin{array}{c} \left(\frac{1}{2}\right)^{\log_5(x+3)} > \left(\frac{1}{2}\right)^0 & \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0 \\ x+3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \log_5(x+3) < 0$$

$$\Leftrightarrow \left\{ \begin{array}{l} x+3<1 \\ x+3>0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x<-2 \\ x>-3 \end{array} \right. \Leftrightarrow \left. -3< x<-2 \right.$$

Resposta: A

3 Resolver, em \mathbb{R} , a equação $(\log_2 x)^2 - \log_2 x^3 + 2 = 0$.

RESOLUÇÃO:

$$\left\{ \begin{array}{l} (log_2x)^2 - log_2x^3 + 2 = 0 \\ x > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} (log_2x)^2 - 3 \cdot log_2x + 2 = 0 \\ x > 0 \end{array} \right. \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} \log_2 x = 1 \\ \text{ou} & \Leftrightarrow x = 2 \text{ ou } x = 4 \\ \log_2 x = 2 \end{cases}$$

$$V = \{2; 4\}$$

4 Resolver, em \mathbb{R} , a equação $4^x - 2^{x+2} + 3 = 0$, sabendo que $\log_2 3 = 0.6$.

RESOLUÇÃO:

$$4^{x} - 2^{x+2} + 3 = 0$$

$$(2^x)^2 - 2^x \cdot 2^2 + 3 = 0$$

$$(2^{x})^{2} - 4 \cdot 2^{x} + 3 = 0$$

$$2^{x} = 1 \text{ ou } 2^{x} = 3 \Leftrightarrow 2^{x} = 2^{0} \text{ ou } x = \log_{2} 3 \Leftrightarrow x = 0 \text{ ou } x = 0.6$$

 $V = \{0; 0,6\}$

Exercícios Propostos - Módulo 43

- a) 7.90.
- b) 8.21. c) 9.34.
- d) 10.01. e) 10.24.

RESOLUÇÃO:

- I) Seja $x = (2,01)^{3,2}$ e calculemos o log x $\log x = \log(2.01)^{3.2} = 3.2 \cdot \log 2.01 = 3.2 \cdot 0.3032 =$ $= 0.97024 \cong 0.9703$
- II) Se $\log x = 0.9703$ então x tem 1 algarismo na sua parte inteira pois a característica é 0. Além disso, pela tabela de logaritmos, 0,9703 é a mantissa de um número cujos algarismos são 934.
- III) $\log x = 0.9703 \Rightarrow x = 9.34$
- IV) $(2,01)^{3,2} \approx 9,34$

Resposta: C

(MODELO ENEM) – Um automóvel vale hoje R\$ 20 000,00. Estima-se que seu valor (y) daqui a x anos seja dado pela função exponencial y = a. b^x . Sabendo-se que o valor estimado para daqui a 3 anos é R\$ 15 000,00, o valor estimado para daqui a 6 anos é

- a) R\$ 14 000,00.
- b) R\$ 12 800,00.
- c) R\$ 12 120,00.
- d) R\$ 11 250,00.
- e) R\$ 10 950,00.

RESOLUÇÃO:

O valor do automóvel hoje corresponde a x = 0 e daqui a 3 anos corresponde a x = 3.

Assim:

$$\left. \begin{array}{l} a \; . \; b^0 = 20000 \\ a \; . \; b^3 = 15000 \end{array} \right\} \; \Leftrightarrow \; \left\{ \begin{array}{l} a = 20000 \\ a \; . \; b^3 = 15000 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} a = 20000 \\ b^3 = \frac{3}{4} \end{array} \right.$$

Daqui a 6 anos, o valor (y) do automóvel em reais será de:

$$y = a \cdot b^6 = a \cdot (b^3)^2 = 20000 \cdot \left(\frac{3}{4}\right)^2 = 11250$$

Resposta: D

- (UFG-MODELO ENEM) Suponha que o total de sapatos produzidos por uma pequena indústria é dado pela função $S(t) = 1000 \cdot \log_2(1 + t)$, onde **t** é o número de anos e **S** é o número de sapatos produzidos, contados a partir do início de atividade da indústria. Calcule:
- a) O número de sapatos produzidos no primeiro ano de atividade da indústria.
- b) O tempo necessário, e suficiente, para que a produção total seja o triplo da produção do primeiro ano.

RESOLUÇÃO:

a) O número de sapatos S produzidos no primeiro ano corresponde a t = 1.

Assim:
$$S(t) = 1000 \cdot \log_2(1 + t)$$

$$S(1) = 1000 \cdot \log_2(1+1) = 1000 \cdot \log_2 2 = 1000$$

b) A produção do primeiro ano é de 1000 sapatos. Daqui a t anosa produção total deverá ser 3000.

Assim:
$$S(t) = 3000 \Leftrightarrow 1000 \cdot \log_2(1 + t) = 3000 \Leftrightarrow$$

$$\Leftrightarrow \log_2(1+t) = 3 \Leftrightarrow 1+t=8 \Leftrightarrow t=7$$

Respostas: a) 1000 sapatos

b) 7 anos

Exercícios Propostos - Módulo 44

- a) $-\frac{2}{3}$ b) $-\frac{3}{2}$ c) $\frac{3}{2}$ d) $\frac{2}{3}$ e) $\frac{1}{2}$

RESOLUÇÃO:

$$(5^{x} - 5\sqrt{3})(5^{x} + 5\sqrt{3}) = 50 \Leftrightarrow (5^{x})^{2} - (5\sqrt{3})^{2} = 50 \Leftrightarrow$$

$$\Leftrightarrow 5^{2x} - 25 \cdot 3 = 50 \Leftrightarrow 5^{2x} - 75 = 50 \Leftrightarrow 5^{2x} = 125 \Leftrightarrow$$

$$\Leftrightarrow 5^{2x} = 5^3 \Leftrightarrow 2x = 3 \Leftrightarrow x = \frac{3}{2}$$

Resposta: C

(U. E. PONTA GROSSA) – Sendo $\log 5 = a + \log 7 = b$, então log₅₀175 vale:

a)
$$\frac{2ab}{a+1}$$

b)
$$\frac{2a + b}{a + 1}$$
 c) $\frac{a + b}{ab}$

c)
$$\frac{a+b}{ab}$$

d)
$$\frac{2a+b}{ab}$$
 e) $\frac{ab}{a-1}$

e)
$$\frac{ab}{a-1}$$

RESOLUÇÃO:

Sendo log 5 = a e log 7 = b, tem-se:

$$\log_{50} 175 = \frac{\log 175}{\log 50} = \frac{\log (5^2 \cdot 7)}{\log (5 \cdot 10)} = \frac{\log 5^2 + \log 7}{\log 5 + \log 10} =$$

$$= \frac{2 \cdot \log 5 + \log 7}{\log 5 + \log 10} = \frac{2a + b}{a + 1}$$

Resposta: B

3 Se $6^{3y} = (2x)^y$ e x > 0, qual é o valor de log x?

(Use: $\log 2 = 0.30 \text{ e } \log 3 = 0.48$)

- b) 2,08 a) 2,04
- d) 2,26 e) 2.28

RESOLUÇÃO:

Para x > 0, tem-se:

1)
$$6^{3y} = (2x)^y \Leftrightarrow (6^3)^y = (2x)^y \Leftrightarrow 6^3 = 2x \Leftrightarrow x = 108$$

II)
$$\log x = \log 108 = \log (2^2 \cdot 3^3) =$$

$$= \log 2^2 + \log 3^3 = 2 \cdot \log 2 + 3 \cdot \log 3 =$$

$$= 2.0,30 + 3.0,48 = 0,60 + 1,44 = 2,04$$

Resposta: A

4 (MACKENZIE) – A soma das raízes da equação

$$2^{2x+1} - 2^{x+4} = 2^{x+2} - 32$$
 é

c) 2,12

e) 7

RESOLUÇÃO:

$$2^{2x+1} - 2^{x+4} = 2^{x+2} - 32 \Leftrightarrow$$

$$\Leftrightarrow 2^{2x} \cdot 2^1 - 2^x \cdot 2^4 = 2^x \cdot 2^2 - 32 \Leftrightarrow$$

$$\Leftrightarrow 2 \cdot (2^{x})^{2} - 16 \cdot 2^{x} = 4 \cdot 2^{x} - 32$$

Fazendo $2^x = y$, temos:

$$2y^2 - 16y = 4y - 32 \Leftrightarrow 2y^2 - 20y + 32 = 0 \Leftrightarrow$$

$$\Leftrightarrow$$
 y² - 10y + 16 = 0 \Leftrightarrow y = 2 ou y = 8

Para
$$y = 2 \Rightarrow 2^x = 2 \Leftrightarrow x = 1$$

Para
$$y = 8 \Rightarrow 2^x = 8 \Leftrightarrow x = 3$$

Assim, a soma das raízes da equação é 1 + 3 = 4

Resposta: C