CSER 2006 – Conference on Systems Engineering Research

Systems Engineering (SE) Patterns and Pattern Language

Joseph J. Simpson Mary J. Simpson April 8, 2006

Overview

- Pattern Form
- General Systems Pattern
- Representative Patterns
 - Problem vs. Solution
 - Three System Minimum
 - o FRAT
- Behavior Outcomes Matrix
- Exploring Relationships
 - Laws of Language
 - System Language Design Capability
 - Sequential Frameworks
 - O Abstraction Stacks
 - Relationship Types
- Summary

Pattern Form

General Systems Pattern

General Systems (GS)

Problem: Entropy and chaos exist for multiple facets of society as a result of increasingly complex activities

Forces: Different values in global community create tensions regarding inputs, outputs, boundaries, applicable transforms

Context: Complex sociotechnical, social, and industrial activities require shared approach to reduce entropy and chaos

Related Patterns: The general systems pattern will relate to all the patterns that are presented in this paper

Solution: Apply a systems approach to reduce entropy, complexity, and start to resolve core issues

Problem vs. Solution Pattern

Problem vs. Solution

Problem: Lack of shared understanding of problem leads to preconceived notions that fail to resolve issues

Forces: Differing experiences dictate wide gaps in expectations, assumptions, and needed solutions

Context: System users/owners must agree on the problem and consent to a common solution

Related Patterns: General Systems Pattern, Three System Minimum Pattern

Solution: Address multiple aspects of the problem with participants prior to articulating potential design solutions

Three System Minimum Pattern

Three System Minimum

Problem: Failure to clearly define 3 systems creates needless complexity, cohesion and binding between problem & solution

Forces: Differing points of view & interactions encountered with system user/owners

Context: The three system minimum pattern is used in contiguous form throughout system design

Related Patterns: General Systems Pattern, Problem vs. Solution Pattern

Solution: Define explicit systems to consider the final product, the process used to produce the product, & the environment

FRAT Pattern

FRAT

Problem: Failure to adequately identify problems and define terms used in solutions at each successive level

Forces: Environment provides differing perspectives and values for possible system solutions

Context: The FRAT pattern is applied within the constraints of the 3 System Minimum pattern

Related Patterns: Problem vs. Solution, General Systems, 3 System Minimum, CCFRAT

Solution: Explicitly define problem to be solved and terms used in the solution process

Warfield – Behavior Outcomes Matrix

		Outcomes			
		Problem System		Solution System	
		Description	Diagnosis	Prescription (Design)	Implemen- tation
Behavior	Process	LimitsTriadic Necessity& SufficiencyUniversal Priors	Success & Failure Universal Priors		Gradation Validation
	Individual	Limits Triadic Compatibility Small Displays		Requisite Parsimony Requisite Saliency	
	Group	 Limits Uncorrelated Extremes 	Inherent Conflict Structural Underconceptual- ization Diverse Beliefs	Requisite Variety Induced Groupthink	
	Organiza- tional	 Limits Organizational Linguistics Vertical Incoherence 	 Forced Substitution Precluded Resolution Vertical Incoherence 		

First and Second Laws of Language

 All communication takes place in shared contextual space, subject to a fairly complex process of disambiguation, depending on the conditions inherent in the other five Laws. (Six laws total)

2. The Law of Variable Context

If two people share sufficient context, almost any words, including sheer nonsense--or no words at all--will suffice for them to communicate with each other. If two people do not share sufficient context, then not all the words in the world may be enough for them to grasp each other's meaning. Where intermediate degrees of partial, fragmented, or otherwise limited or "noise-distorted" context are shared, communication will be proportionately difficult and/or unsuccessful.

Alexander Gross http://language.home.sprynet.com/

Systems Language Design Capability

Initial Inter-Relationships Defined: "Pattern of Infrastructure"

In Terms of an Abstraction Stack

Natural Language (The Metalanguage)

Formal Logic (Intermediate Language)

Formal Language of Choice

Object Language Drawing on Formal Language of Choice

Sequential Frameworks

Abstraction Stacks

A House Consists of:

Use of Abstraction 'Stacks'

Relationship Types

Hierarchal Relationship Type: "..content can be almost completely disassociated from a hierarchy, but there does not seem to be any way to disassociate structure from it and still portray it." Warfield 2003.

Summary

Well established and understood systems engineering patterns provide the foundation for the communication of complex systems concepts. A core set of systems engineering patterns has been presented to stimulate the development and discussion of systems engineering patterns. The 'related patterns' component is a necessary component of the pattern template and provides the basis for the construction of pattern languages using these related patterns.

Systems engineering patterns are one of the first steps in the representation of shared systems engineering context. The greater the span and depth of the shared systems engineering context, the greater the potential for precise systems engineering communication.