PGMO Lecture: Vision, Learning and Optimization

6. Non-convex optimization

Thomas Pock

Institute of Computer Graphics and Vision, TU Graz

February 19, 2020

Overview

Non-convex optimization

Non-convex proximal gradient method

Non-convex accelerated proximal gradient method

Applications

Proximal alternating linearization method

Convex versus non-convex

"The great watershed in optimization is not between linearity and non-linearity, but convexity and non-convexity." R. Rockafellar, 1993

Convex versus non-convex

"The great watershed in optimization is not between linearity and non-linearity, but convexity and non-convexity." R. Rockafellar, 1993

- Convex problems
 - ► Any local minimizer is a global minimizer
 - ▶ Result is independent of the initialization
 - Convex models often inferior

Convex versus non-convex

"The great watershed in optimization is not between linearity and non-linearity, but convexity and non-convexity." R. Rockafellar, 1993

- Convex problems
 - ► Any local minimizer is a global minimizer
 - ▶ Result is independent of the initialization
 - Convex models often inferior
- Non-convex problems
 - In general no chance to find the global minimizer
 - Result strongly depends on the initialization
 - Often gives more accurate models (prior modeling)

Non-convex optimization problems

- Smooth non-convex problems can be solved via generic nonlinear numerical optimization algorithms (SD, CG, BFGS, Newton, ...)
- ▶ Hard to generalize to constraints, or non-differentiable functions
- ▶ Line-search procedure can be time intensive

Non-convex optimization problems

- ➤ Smooth non-convex problems can be solved via generic nonlinear numerical optimization algorithms (SD, CG, BFGS, Newton, ...)
- ▶ Hard to generalize to constraints, or non-differentiable functions
- ▶ Line-search procedure can be time intensive
- A reasonable idea is to develop algorithms for special classes of structured non-convex problems
- A promising class of problems that has a moderate degree of non-convexity is given by the sum of a smooth non-convex function and a non-smooth convex function [Sra '12], [Chouzenoux, Pesquet, Repetti '13]

Problem definition

▶ We consider the problem of minimizing a function $F: \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$

$$\min_{x \in \mathcal{X}} F(x) := f(x) + g(x),$$

where \mathcal{X} is a finite dimensional real vector space.

▶ We assume that F is coercive, i.e. $\|x\|_2 \to +\infty$ \Rightarrow $F(x) \to +\infty$ and bounded from below by some value $\underline{F} > -\infty$

Problem definition

▶ We consider the problem of minimizing a function $F: \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$

$$\min_{x \in \mathcal{X}} F(x) := f(x) + g(x),$$

where \mathcal{X} is a finite dimensional real vector space.

- ▶ We assume that F is coercive, i.e. $\|x\|_2 \to +\infty$ \Rightarrow $F(x) \to +\infty$ and bounded from below by some value $\underline{F} > -\infty$
- \triangleright The function f is possibly non-convex but has a Lipschitz continuous gradient, i.e.

$$\left\|\nabla f(x) - \nabla f(y)\right\|_{2} \le L \left\|x - y\right\|_{2}$$

Problem definition

▶ We consider the problem of minimizing a function $F: \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$

$$\min_{x\in\mathcal{X}} F(x) := f(x) + g(x),$$

where \mathcal{X} is a finite dimensional real vector space.

- ▶ We assume that F is coercive, i.e. $\|x\|_2 \to +\infty$ \Rightarrow $F(x) \to +\infty$ and bounded from below by some value $\underline{F} > -\infty$
- \triangleright The function f is possibly non-convex but has a Lipschitz continuous gradient, i.e.

$$\left\|\nabla f(x) - \nabla f(y)\right\|_{2} \le L \left\|x - y\right\|_{2}$$

► The function g is a proper lower semi-continuous convex function with an efficient to compute proximal map

$$\operatorname{prox}_{\tau g}(\bar{x}) := \arg\min_{x \in \mathcal{X}} \frac{\|x - \bar{x}\|_2^2}{2} + \tau g(x),$$

where $\tau > 0$.

Overview

Non-convex optimization

Non-convex proximal gradient method

Non-convex accelerated proximal gradient method

Applications

Proximal alternating linearization method

Proximal gradient method

We aim at seeking a critical point x^* , i.e. a point satisfying $0 \in \partial F(x^*)$ which in our case becomes

$$-\nabla f(x^*) \in \partial g(x^*).$$

▶ A critical point can also be characterized via the *proximal residual*

$$r(x) := x - \operatorname{prox}_{\tau g}(x - \tau \nabla f(x)),$$

where / is the identity map.

- ▶ Clearly $r(x^*) = 0$ implies that x^* is a critical point.
- ▶ The norm of the proximal residual can be used as a (bad) measure of optimality

Proximal gradient method

We aim at seeking a critical point x^* , i.e. a point satisfying $0 \in \partial F(x^*)$ which in our case becomes

$$-\nabla f(x^*) \in \partial g(x^*).$$

▶ A critical point can also be characterized via the *proximal residual*

$$r(x) := x - \operatorname{prox}_{\tau g}(x - \tau \nabla f(x)),$$

where / is the identity map.

- ▶ Clearly $r(x^*) = 0$ implies that x^* is a critical point.
- ▶ The norm of the proximal residual can be used as a (bad) measure of optimality
- ▶ The proximal residual already suggests an iterative method of the form

$$x^{k+1} = \mathsf{prox}_{\tau g}(x^k - \tau \nabla f(x^k))$$

► For *f* convex, this algorithm is well studied [Lions, Mercier '79], [Tseng '91], [Daubechie et al. '04], [Combettes, Wajs '05], [Raguet, Fadili, Peyré '13]

Basic descent rule

▶ We can derive a basic descent rule by noting that the proximal gradient step

$$x \mapsto g(x) + f(\bar{x}) + \langle \nabla f(\bar{x}), x - \bar{x} \rangle + \frac{1}{2\tau} \|x - \bar{x}\|^2$$

is 1/ au strongly convex, that is for the unique minimizer \hat{x} of the proximal map one has for all x

$$g(x) + f(\bar{x}) + \langle \nabla f(\bar{x}), x - \bar{x} \rangle + \frac{1}{2\tau} \|x - \bar{x}\|^{2} \ge g(\hat{x}) + \underbrace{f(\bar{x}) + \langle \nabla f(\bar{x}), \hat{x} - \bar{x} \rangle}_{\geq f(\hat{x}) - \frac{L}{2} \|\hat{x} - \bar{x}\|^{2}} + \underbrace{\frac{1}{2\tau} \|\hat{x} - \bar{x}\|^{2} + \frac{1}{2\tau} \|x - \hat{x}\|^{2}}_{\geq f(\hat{x}) - \frac{L}{2} \|\hat{x} - \bar{x}\|^{2}}.$$

▶ Choosing $x = \bar{x} = x^k$ and $\hat{x} = x^{k+1}$, one directly obtains

$$F(x^{k+1}) \le F(x^k) - \left(\frac{1}{\tau} - \frac{L}{2}\right) \|x^k - x^{k+1}\|^2,$$

and hence the proximal gradient method is a descent method as long as $\tau \leq 2/L$.

 \triangleright Observe that in case g is non-convex one merely looses the red term:

$$F(x^{k+1}) \le F(x^k) - \left(\frac{1}{2\tau} - \frac{L}{2}\right) \|x^k - x^{k+1}\|^2$$

which is still a descent method but for smaller $\tau \leq 1/L$.

Convergence

▶ The previous descent rule easily implies that the sequence of objective values $(F(x^k))_{k\in\mathbb{N}}$ is non-increasing and converging and that the proximal residual

$$r(x^k) \to 0$$
 as $k \to \infty$.

Moreover, assuming that the sequence $(x^k)_{k \in \mathbb{N}}$ is bounded, there exists a subsequence $(x^k)_{k \in K \subset \mathbb{N}}$, converging to a critical x^* , i.e. a point satisfying

$$-\nabla f(x^*) \in \partial g(x^*).$$

Under the additional assumption that F(x) satisfies the Kurdyka-Łojasiewicz inequality, one can show finite length of $(x^k)_{k\in\mathbb{N}}$.

The Kurdyka-Łojasiewicz property

Definition

The function $F: \mathcal{X} \to \mathbb{R} \cup \{\infty\}$ has the Kurdyka-Łojasiewicz property at $x^* \in \text{dom } \partial F$, if there exist $\eta \in (0,\infty]$, a neighborhood U of x^* and a continuous concave function $\phi\colon [0,\eta) \to \mathbb{R}_+$ such that $\phi(0) = 0$, $\phi \in C^1((0,\eta))$, for all $s \in (0,\eta)$ it is $\phi'(s) > 0$, and for all $x \in U \cap [F(x^*) < F < F(x^*) + \eta]$ the Kurdyka-Łojasiewicz inequality holds, i.e.,

$$\phi'(F(x) - F(x^*)) \operatorname{dist}(0, \partial F(x)) \ge 1$$
.

- ► Intuitively, we can bound the subgradients from below by a re-parametrization of the function values
- The Kurdyka-Łojasiewicz property holds for real, semi-algebraic functions
- ▶ The Kurdyka-Łojasiewicz property attracted a lot of attention for proving convergence of descent methods [Attouch, Bolte et al. '10-'13], [Chouzenoux, Pesquet, Repetti '13], [Bolte, J., Sabach, S. and Teboulle '13], ...

Overview

Non-convex optimization

Non-convex proximal gradient method

Non-convex accelerated proximal gradient method

Applications

Proximal alternating linearization method

Non-convex FISTA

- ▶ A natural question is whether accelerated proximal gradient methods a'la FISTA can also be applied in the non-convex setting.
- ▶ An important remark is, that the descent lemma provides an upper and lower bound:

$$f(x) + \langle \nabla f(x), y - x \rangle - \frac{L}{2} \|x - y\|^2 \le f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{\overline{L}}{2} \|x - y\|^2$$

where the parameter \overline{L} defines the upper and \underline{L} defines the lower bound.

Consider the steps of the standard FISTA algorithm:

$$\begin{cases} y^k = x^k + \beta(x^k - x^{k-1}) \\ x^{k+1} = \operatorname{prox}_{\tau g}(y^k - \tau \nabla f(y^k)) \end{cases}$$

▶ Choosing $\bar{x} = y^k$, $x = x^k$, $\hat{x} = x^{k+1}$, and both the upper and lower bound, the basic descent rule becomes

$$g(x^{k}) + \underbrace{f(y^{k}) + \left\langle \nabla f(y^{k}), x^{k} - y^{k} \right\rangle}_{\leq f(x^{k}) + \frac{1}{2} \|x^{k} - y^{k}\|^{2}} + \underbrace{\frac{1}{2\tau} \|x^{k} - y^{k}\|^{2}}_{\leq f(x^{k}) + \frac{1}{2} \|x^{k} - y^{k}\|^{2}} + \underbrace{\frac{1}{2\tau} \|x^{k} - y^{k}\|^{2}}_{\geq f(x^{k+1}) - \frac{1}{2} \|x^{k+1} - y^{k}\|^{2}} + \underbrace{\frac{1}{2\tau} \|x^{k} - x^{k+1}\|^{2}}_{\geq f(x^{k+1}) - \frac{1}{2} \|x^{k+1} - y^{k}\|^{2}}.$$

Lyapunov function

▶ The previous descent rule becomes

$$F(x^{k}) + \left(\frac{1}{2\tau} + \frac{L}{2}\right) \|x^{k} - y^{k}\|^{2} \ge$$

$$F(x^{k+1}) + \left(\frac{1}{2\tau} - \frac{\overline{L}}{2}\right) \|x^{k+1} - y^{k}\|^{2} + \frac{1}{2\tau} \|x^{k} - x^{k+1}\|^{2}$$

• Choosing $\tau = 1/\overline{L}$ and $y^k - x^k = \beta(x^k - x^{k-1})$,

$$F(x^{k+1}) + \frac{\overline{L}}{2} \|x^k - x^{k+1}\|^2 \le F(x^k) + \beta^2 \frac{\overline{L} + \underline{L}}{2} \|x^k - x^{k-1}\|^2$$
.

This defines a Lyapunov function, which decreases as long as

$$\beta^2(\overline{L} + \underline{L}) \le \overline{L} \iff \beta \le \sqrt{\frac{\overline{L}}{\overline{L} + \underline{L}}}.$$

- ▶ Observe that if f is convex such that $\underline{L} = 0$ one has $\beta \in [0, 1]$
- Moreover, if $\underline{L} = \overline{L} = L$ then $\beta \leq \frac{1}{\sqrt{2}}$.

Convex-Concave Inertial (CoCaIn) proximal gradient method

In [Mukkamala, Ochs, P. Sabach '19], we proposed a FISTA algorithm for non-convex optimization that makes use of a double convex-concave backtracking procedure to determine L and \overline{L} .

Algorithm 1 CoCaln

Choose $x^0, x^{-1} \in \mathcal{X}$, and for all k, parameters $\overline{L}_0 > 0$:

for all $k \ge 0$ do

Compute

$$y^{k} = x^{k} + \sqrt{\frac{\overline{L}_{k}}{\overline{L}_{k} + \underline{L}_{k}}} (x^{k} - x^{k-1}),$$

where \underline{L}_{k} satisfies

$$f(y^k) + \langle \nabla f(y^k), x^k - y^k \rangle \leq f(x^k) + \frac{\underline{L}_k}{2} \|x^k - y^k\|^2.$$

Compute

$$x^{k+1} = \operatorname{prox}_{\frac{1}{\overline{L}_k}g}(y^k - \frac{1}{\overline{L}_k}\nabla f(y^k)),$$

where $\overline{L}_k \geq \overline{L}_{k-1}$ satisfies

$$f(y^k) + \langle \nabla f(y^k), x^{k+1} - y^k \rangle \ge f(x^{k+1}) - \frac{L_k}{2} \|x^{k+1} - y^k\|^2$$

end for

Simple Function: adapt to "local convexity"

Ability to overcome spurious stationary solutions

$$\min_{x \in \mathbb{R}^n} h(x) := f(x) + g(x), \quad f(x) = \frac{1}{2} \sum_{i=1}^n \log(1 + I(x_i - y_i)^2), \quad g(x) = \lambda ||x||_1,$$

Effect of the inertial force

The inertial force helps to overcome spurious stationary solutions

Overview

Non-convex optimization

Non-convex proximal gradient method

Non-convex accelerated proximal gradient method

Applications

Proximal alternating linearization method

Application to image compression based on linear diffusion

- ► A new image compression methodology introduced in [Galic, Weickert, Welk, Bruhn, Belyaev, Seidel '08]
- ► The idea is to select a subset of image pixels such that the reconstruction of the whole image via linear diffusion yields the best reconstruction [Hoeltgen, Setzer, Weickert '13]

original image d

sampling mask c

compressed image u

Application to image compression based on linear diffusion

▶ Is written as the following constrained optimization problem

$$\begin{aligned} \min_{u,c} & & \frac{1}{2} \|u - d\|_2^2 + \lambda \|c\|_1 \\ \text{s.t.} & & C(u - d) - (I - C)Lu = 0 \,, \end{aligned}$$

where $C = \operatorname{diag}(c) \in \mathbb{R}^{N \times N}$ and L is the Laplace or biharmonic operator.

- ▶ The ℓ_1 norm is used to induce sparsity in the selection mask c, $\lambda > 0$ can be used to control the amount of sparsity.
- From the (linear) side constraint we can compute

$$u = A(c)^{-1}Cd$$
, $A(c) = C + (C - I)L$.

Hence, we can transform the original problem into an non-convex LASSO problem of the form

$$\min_{c} \frac{1}{2} \|A(c)^{-1}Cd - d\|_{2}^{2} + \lambda \|c\|_{1}.$$

- Perfectly fits to the framework of iPiano
- ► We choose $f = \frac{1}{2} ||A^{-1}Cd d||_2^2$ and $g = \lambda ||c||_1$
- ► The gradient of *f* is given by

$$\nabla f(c) = \text{diag}(-(I+L)u+d)(A^{\top})^{-1}(u-d), \quad u = A^{-1}Cd$$

- Lipschitz, if at least one entry of *c* is non-zero
- ▶ One evaluation of the gradient requires to solve two linear systems
- Proximal map with respect to g is standard

Results for Trui

Input

Results for Trui

5% of the pixels

Results for Trui

Reconstruction

Results for Walter

Input

Results for Walter

5% of the pixels

Results for Walter

Reconstruction

Phase field models

- Mathematical model for solving interfacial problems
- Approximation of the interface length via the Mordica-Mortola phase field energy [Modica, Mortola, '77]

$$\operatorname{Per}(\mathbf{1}_u) pprox \int_{\Omega} \frac{\varepsilon}{2} |\nabla u|^2 + \frac{1}{\varepsilon} W(u) \, dx,$$

where u is a smooth interfacial image and $W(t) = \frac{1}{2}t^2(1-t)^2$ is a double-well potential.

- ▶ Non-convex, but Lipschitz continuous gradient.
- ▶ Note that the total variation is actually a convex functional to measure the length of the interface.

Mean curvature motion

Computes the mean curvature motion starting from a binary image:

$$\beta = 0$$

Multi-phase-field model

Let us consider a multi-phase-field approximation of the Potts model

$$\min_{\substack{(u_i)_{i=1}^K}} \frac{1}{2} \sum_{i=1}^K \int_{\Omega} \frac{\varepsilon}{2} |\nabla u_i|^2 + \frac{1}{\varepsilon} W(u_i) \, dx + \int_{\Omega} u_i(x) f_i(x) \, dx,$$
s.t. $u_i(x) \ge 0$, $\sum_{i=1}^K u_i(x) = 1$

Curvature

- ▶ Phase-fields are close to distance functions around the interface and hence they allow to reliably estimate the curvature of the interface
- Approximation of the Willmore energy

$$\frac{1}{2}\int_{\Gamma}h^2 d\gamma \approx \frac{1}{2\varepsilon}\int_{\Omega}(\Delta u - \frac{1}{\varepsilon}W'(u))^2 dx$$

- ▶ De Giorgi conjecture: Γ -convergence as $\varepsilon \to 0$
- ► Length vs. curvature regularization

Length

Shape inpainting

Shape inpainting

Overview

Non-convex optimization

Non-convex proximal gradient method

Non-convex accelerated proximal gradient method

Applications

Proximal alternating linearization method

A more general class of non-convex problems

Let us finally consider the following more general class of non-convex problems

$$\min_{x,y} F(x,y) := f(x,y) + g_1(x) + g_2(y),$$

where f is smooth non-convex, $g_{1,2}$ non-smooth non-convex, simple

- ▶ In [Bolte, Sabach, Teboulle '14] the authors proposed a proximal alternating linearization method (PALM)
- ▶ Convergence of the whole sequence in case the KL property holds

Algorithm 2 PALM

Choose $(x^0, y^0) \in \mathcal{X} \times \mathcal{Y}$.

for all k > 0 do

Choose $\tau_1^k = 1/L_1(y^k)$ and let

$$x^{k+1} = \text{prox}_{\tau_1^k g_1} (x^k - \tau_1^k \nabla_x f(x^k, y^k)).$$

Choose $\tau_2^k = 1/L_2(x^{k+1})$ and let

$$y^{k+1} = \text{prox}_{\tau_2^k g_2}(y^k - \tau_2^k \nabla_y f(x^{k+1}, y^k)).$$

end for

inertial PALM

▶ In [P., Sabach '16], we have developed an inertial variant of the PALM algorithm

Algorithm 3 iPALM

Choose
$$(x^{-1}, y^{-1}) = (x^0, y^0) \in \mathcal{X} \times \mathcal{Y}$$
.

for all $k \ge 0$ do

Choose $\beta_1^k, \tau_1^k > 0$ and let

$$\begin{array}{rcl} \hat{x}^k & = & x^k + \beta_1^k (x^k - x^{k-1}) \\ x^{k+1} & = & \text{prox}_{\tau_1^k g_1} (\hat{x}^k - \tau_1^k \nabla_x f(\hat{x}^k, y^k)). \end{array}$$

Choose $\beta_2^k, \tau_2^k > 0$ and let

$$\begin{array}{rcl} \hat{y}^k & = & y^k + \beta_2^k (y^k - y^{k-1}) \\ y^{k+1} & = & \text{prox}_{\tau_2^k g_2} (\hat{y}^k - \tau_2^k \nabla_y f(x^{k+1}, \hat{y}^k)). \end{array}$$

end for

Convergence

- We again define a suitable Lyapunov function for which we can guaranteed monotone descent
- For a completely non-convex block (f and g)

$$\tau^k \le \frac{1 - 2\beta^k}{L(x^k)(1 + 2\beta^k)}$$

For a block with the non-smooth function g being convex

$$\tau^k \le \frac{2(1-\beta^k)}{L(x^k)(1+2\beta^k)}$$

In case the involved functions satisfy the Kurdyka-Łojasiewicz property, we can show convergence of the whole sequence of iterates

Example: Convolutional Lasso

▶ Let us consider the following convolutional LASSO problem [Zeiler et al.'10]

$$\min_{\substack{(d_j)_{j=1}^p, (v_j)_{j=1}^p \\ j=1}} \sum_{j=1}^p \lambda \|v_j\|_1 + \frac{1}{2} \left\| \sum_{j=1}^p d_j *_{m,n} v_j - f \right\|^2,$$
s.t. $d_1 = g, \ v_1 = f \sum_{a,b=1}^l (d_j)_{a,b} = 0, \ \|d_j\|_2 \le 1, \ j = 2, 3, \dots, p$

 \triangleright Optimizing for the convolution kernels d_j and the coefficients v_j exactly matches the structure of the iPALM algorithm

Performance evaluation

\mid $K=100$ \mid $K=200$ \mid $K=500$ \mid $K=1000$ \parallel time (s)					
$\alpha_{1,2} = \beta_{1,2} = 0.0$	336.13	328.21	322.91	321.12	3274.97
$\alpha_{1,2} = \beta_{1,2} = 0.4$	329.20	324.62	321.51	319.85	3185.04
$\alpha_{1,2} = \beta_{1,2} = 0.8$	325.19	321.38	319.79	319.54	3137.09
$\alpha_{1,2}^k = \beta_{1,2}^k = \frac{k-1}{k+2}$	323.23	319.88	318.64	318.44	3325.37

Table: Values of the objective function for the convolutional LASSO model using different settings of the inertial parameters.

- ▶ The inertial parameter consistently improves the performance
- ▶ The dynamic step size works best, but is not supported by our convergence theory