الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة : تقني رياضي/البكالوريا دورة: 2017

العلامة		عناصر الإجابة
المجموع	مجزأة	

<u>.</u>			
	الموضوع الأول		
		التمرين الأوّل: (04 نقاط)	
0.50	0.50	x + 3y + z - 8 = 0: (P) معادلة المستوي (1	
01	01	. $x+2y-z=0$: هي (P') هي (2	
	0.25	و (P') و نتقاطعان وفق مستقیم (Δ) لأن الشعاعین الناظمین لکل من (P) و ر (P') غیر (P)	
		مرتبطین خطیا	
0.75		x = 5t - 16	
	0.50	$\left\{ egin{aligned} y = -2t + 8 & /t \in \mathbb{R}: (\Delta) \end{aligned} ight.$ التمثيل الوسيطي للمستقيم	
		z = t	
	0.50	$G\!\left(1;rac{6}{5};rac{17}{5} ight):G$ ا إحداثيات (4	
	0.25	(1) كأنها مرجح للنقط الثلاث $C;B;A$ لأنها مرجح للنقط الثلاث $G\in (ABC)$	
	0.25	$G\in (\Delta)$ لأن إحداثيات G تحقق جملة التمثيل الوسيطي لـ $G\in (\Delta)$	
1.75		$\{G\} = (\mathrm{ABC}) \cap (\Delta)$ من (1) و (2) نجد	
	0.50	مجموعة النقط:	
	0.30	$MG = OA$ تكافئ $\left\ \overrightarrow{MA} + \overrightarrow{MB} - 12 \overrightarrow{MC} \right\ = 10 \left\ \overrightarrow{OA} \right\ $	
	0.23	OA سطح کرة مرکزها G ونصف قطرها (E)	
		التمرين الثاني: (04 نقاط)	
	0.50	رسم الشكل المقابل وتمثيل الحدود u_0 ، u_1 ، u_2 ، u_3 و u_3 مُبرزاً خطوط التمثيل u_3 . u_4 ، u_5 . u_5 . u_5 . u_5 . u_6 . u_7 . u_8 . u_9 .	
	6		
0.75			
		u_0 u_1 u_2u_3	
		u_0 u_1 u_2u_3	
	0.25	التخمين : المتتالية (u_n) متزايدة تماما ومتقارية	
1			

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة : تقني رياضي/البكالوريا دورة: 2017

ة.	العلام	عناصر الإجابة
لمجموع	مجزأة ا	
0.75	0.75	. $u_n < 1$ ، n عدد طبیعي عدد طبیعي (2 البرهان بالتراجع أنّ: من أجل كل عدد طبیعي
0.75	0.50	. اتجاه التغير : نجد $u_n = \frac{(1-u_n)^2}{2-u_n}$ و منه المتتالية u_n متزايدة تماما (3
	0.25	. تقارب (u_n) :المتتالية (u_n) متزايدة تماما ومحدودة فهي متقاربة
1.75	0.50	$v_{n+1} - v_n = 2 : 2$ أ المتتالية (v_n) حسابية أساسها (4
	0.50	$v_n = 2n + 1$: عبارة الحد العام
	0.50	$u_n=1-rac{2}{2n+1}:n$ ب) عبارة u_n بدلالة
	0.25	$\lim_{n \to +\infty} u_n = 1$ النهاية
		التمرين الثالث :(05 نقاط)
01	0.50	$rac{z_A-z_C}{z_B-z_C}=rac{1}{2}e^{irac{\pi}{2}}:$ الشكل الاسي (1
	0.50	$\left(\overrightarrow{CB};\overrightarrow{CA} ight)=rac{\pi}{2}$ لان C قائم في ABC قائم في المثلث ABC طبيعة المثلث
01	01	$z'=rac{1}{2}i\;z-rac{1}{2}-i\;:\;S$ العبارة المركبة للتشابه المباشر (2
1.50	0.50	$z_D = -2 - 3i : D$ الاحقة (1) الاحقة
	0.25	$z_E = 1 - 2i$ التحقق أن:
	0.75	ب) الرباعي $ADEB$ معين .
	0.25	$rgigg(rac{z_C-z_A}{z_C-z_B}igg)=rac{\pi}{2}:(\Gamma)$ التحقق أنّ النقطة C تنتمي الى (4
		طبيعة المجموعة (Γ) :
01.50	0.25	$(\overrightarrow{MB}; \overrightarrow{MA}) = \frac{\pi}{2} + 2\pi k / k \in \mathbb{Z}$ معناه $\arg\left(\frac{z - z_A}{z - z_B}\right) = \frac{\pi}{2}$
	0.50	C هي نصف الدائرة المفتوحة التي حداها النقطتين A و B وتشمل النقطة . C
		انشاء (Γ) .
	0.50	B 0 0 1 2
		C

الصفحة 2 من 8

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة : تقني رياضي/البكالوريا دورة: 2017

ä	العلام	عناصر الإجابة
امجموع	مجزأة ا	
		التمرين الرابع :(07 نقاط)
	2×0.25	$\lim_{x \to 2} f(x) = +\infty \lim_{x \to 1} f(x) = -\infty (1)$
1.25	0.25	$x\!=\!1\;;\;x\!=\!2\;:$ وجود مستقیمین مقاربین معادلتیهما
	2×0.25	$ \cdot \lim_{x \to +\infty} f(x) = -\infty $
	0.50	، $f'(x) = -2 - \frac{2}{(x-1)(x-2)}$ ، D_f من $f'(x) = -2 - \frac{2}{(x-1)(x-2)}$ ، $f'(x) = -2 - \frac{2}{(x-1)(x-2)}$. $f'(x) = -2 - \frac{2}{(x-1)(x-2)}$
01	0.50	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	0.25	$(3-x)\in D_{_{f}}$ ، $D_{_{f}}$ من أجل كل عدد حقيقي x من X من أجل كل عدد عقيقي X
01	0.50	$f(3-x)+f(x)=0$ ، D_f من أجل كل عدد حقيقي x من x من أجل كل
	0.25	$A(rac{3}{2};0)$ يقبل مركز تناظر إحداثياته: $A(rac{3}{2};0)$
	0.50	$[0,45;0,46]$ على المجال $f(x)=0$ تقبل حلا وحيدا α على المجال (4
01		f(lpha)=0 استنتج أنها تقبل حلا أخر eta :ادينا $f(lpha)=0$ الدينا عقبل حلا أخر
	0.25 0.25	eta $=$ 3 $ lpha$ 2,54 \leq eta \leq 2,55 $:$ eta حصر
	0.50	ہزر (C_f) مقارب مائل لے (Δ) (5
		$\lim_{x \to +\infty} [f(x) - (-2x + 3)] = 0; \lim_{x \to -\infty} [f(x) - (-2x + 3)] = 0$
01		وضعیة $\left(C_f ight)$ بالنسبة لـ $\left(C_f ight)$
	0.50	(Δ) يقع تحت $x < 1$ لما
		لما $x>2$ يقع فوق (Δ) ارسم (Δ) و (C_f) و (Δ)
0.75	0.25	(C_f) (C_f) (C_f)
0.75	0.50	

الصفحة 3 من 8

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة : تقني رياضي/البكالوريا دورة: 2017

العلامة		الإجابة المودجية هوصوع الحبار مادة . الرياطيات السعبة . تقني رياطي البخاتوريا دورة. 17 كالمودجية هوصوع الإجابة
المجموع	مجزأة	
01	0.50	اثبات أنّ الدالة: $(x-1)\ln(x-1)-(x-2)\ln(x-2)$ أصلية للدالة (7) اثبات أنّ الدالة: $(x-1)\ln(x-1)$
	0.50	\cdot]2;+ ∞ [على $x\mapsto lnigg(rac{x-1}{x-2}igg)$ $S=\int\limits_{eta}^3 2\ln(rac{x-1}{x-2})dx=2h(3)-2h(eta)$: حساب بدلالة eta المساحة

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة : تقني رياضي/البكالوريا دورة: 2017

العلامة		عناصر الإجابة
المجموع	مجزأة	

		الموضـــوع الثاني
		التمرين الأوّل: (04 نقاط)
0.75	0.75	اثبات أن النقط $B \cdot A$ و C تعين مستو (1
	0.50	$\int \overrightarrow{CD}.\overrightarrow{AB} = 0 \qquad (CD) \perp (AB) \qquad (CD) \perp (AB)$
1.75		$\left\{ egin{aligned} \overrightarrow{CD}.\overrightarrow{AB} = 0 \ \overrightarrow{CD}.\overrightarrow{AC} = 0 \end{aligned} ight.$ يكفي اثبات $\left\{ egin{aligned} (CD) oldsymbol{\perp} (AB) \ (CD) oldsymbol{\perp} (AC) \end{aligned} ight.$ (1)
	0.75	2x + y - z - 3 = 0: (ABC) ب
	0.50	$d\left(D;\left(ABC\right)\right)=2\sqrt{6}$ حساب المسافة
1.50	0.50	$\overrightarrow{AB}\cdot\overrightarrow{AC}=0$ أ) المثلث \overrightarrow{ABC} قائم في النقطة \overrightarrow{A} لأن (3
	01	. $V_{ABCD}=14u.v$: $ABCD$ ب $=14u.v$ الوجوه
	T	التمرين الثاني: (04 نقاط)
01	01	$4^{5k}\equiv 1$ اثبات ان: من أجل كل عدد طبيعي k ، 1
01	01	(2) الاستنتاج (2
		$4^{5k} \equiv 1[11] \; ; \; 4^{5k+1} \equiv 4[11] \; ; \; 4^{5k+2} \equiv 5[11]4^{5k+3} \equiv 9[11] \; ; \; 4^{5k+4} \equiv 3[11]$
01	01	$(2 \times 2017^{5n+3} + 3 \times 1438^{10n} + 1) \equiv 0[11]$ ، n عدد طبیعي (3) اثبات أنّ: من أجل كل عدد طبیعي
01	01	$n = 11k + 6 / k \in \mathbb{N}$ معناه $(2 \times 2017^{5n+2} + n - 3) \equiv 0[11]$ (4
	ı	التمرين الثالث: (05 نقاط)
	2×0.25	$z_{C}=rac{\sqrt{2}}{2}e^{-irac{\pi}{4}}$ و $z_{A}=\sqrt{2}e^{irac{\pi}{4}}$ بکتب (أ (1
1.50	2×0.25	$z_D=\overline{z}_C=rac{\sqrt{2}}{2}e^{irac{\pi}{4}}$ و $z_B=\overline{z}_A=\sqrt{2}e^{-irac{\pi}{4}}$ استنتاج الشکل الأسي
		$(z_A)^n=\left(z_B^n ight)^n$ التي تحقق: n التي تحقق: n التي تحقق:
	0.50	$n=4k$ $/$ $k\in\mathbb{N}$ معناه $(z_A)^n=(z_B)^n$
	0.50	(2) أ) مركز التحاكي (1) هو (2) ونسبته (2)
1.50	0.25	$\left \frac{z_C - z_B}{z_D - z_A}\right = 1 \ (\mathbf{y})$
	0.75	$egin{cases} \overrightarrow{AB}{=}2\overrightarrow{DC} \ N$ الرباعي $ADCB$ شبه منحرف متساوي الساقين لأن $ADCB$ الرباعي
0.50	0.50	$z_G = \frac{3}{2} (3$

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة : تقني رياضي/البكالوريا دورة: 2017

العلامة		عناصر الإجابة
مجموع	مجزأة اا	
	0.50	$2(z_B - z_A) - (z_C - z_A) - (z_D - z_A) = 1 - 2i$ لأن $A \in (\Gamma)$ (4
	0.50	$\dfrac{\sqrt{5}}{2}$ المجموعة (Γ) هي مجموعة نقط دائرة مركزها G ونصف قطرها (Γ) انشاء (Γ)
1.50	0.50	0
		التمرين الرابع: (07 نقاط)
0.50	0.25 0.25	$g'(x)=3x^2+6$ دراسة اتجاه التغير : g تقبل الاشتقاق على $\mathbb R$ ولدينا g (I (I g متزايدة تماما على $\mathbb R$ لأن g g
	0.50	$lpha\in\left]-1,48;-1,47 ight[$ تقبل حلا وحيدا $lpha$ حيث $g(x)=0$ اثبات أنّ المعادلة $g(x)=0$
01	0.50	$g(x)$ إشارة $g(x)$ x $-\infty$ α $+\infty$ $g(x)$ $ \alpha$ $+$
	0.50	$\lim_{x \to +\infty} f(x) = +\infty \lim_{x \to -\infty} f(x) = -\infty (i) (1(\Pi))$
1.75	0.50	$f'(x) = \frac{x \ g(x)}{\left(x^2 + 2\right)^2}$ ، x عدد حقیقی x عدد حقیقی x اتجاه تغیر الدالة: $\frac{x}{\left(x^2 + 2\right)^2} - \infty \alpha 0 + \infty$ $f'(x) + 0 - 0 + \infty$ $f'(x) + 0 - 0$ $[0;+\infty[\ g]-\infty;\alpha]$ الدالة f متناقصة تماما علی $[\alpha;0]$ ومتزایدة تماما علی المجالین $[\alpha;0]$
		الدالة المستطعة لماها فقى الراب ما وهريده لماها فقى المجين ومرابح والمرابح والمرابح

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة : تقني رياضي/البكالوريا دورة: 2017

العلامة		عناصر الإجابة
مجزأة المجموع		
	0.50	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	0.50	$\lim_{ x \to +\infty} \left[f(x) - x \right] = \lim_{\substack{x \to +\infty}} \frac{-2(x+3)}{x^2 + 2} = 0 (i) (2)$
01	0.50	(Δ) بالنسبة الى C_f بالنسبة الى (C_f) بالنسبة الى (x $-\infty$ -3 $+\infty$ $f(x)-x$ $+$ 0 $-$
		$x\in]-\infty;-3[$ لما (Δ) فوق (C_f) $x\in]-3;+\infty[$ لما (Δ) تحت (C_f) $(C_f)\cap (\Delta)=\{\mathrm{I}(-3;-3)\}$
01	0.50	$f(lpha)=rac{3}{2}lpha$ بيان أنّ $f(lpha)=rac{3}{2}$ استنتاج حصرا للعدد ($f(lpha)$
	0.25	$-2,22 < f(\alpha) < -2,21$
0.75	0.23	(C_f) (C_f) والمنحنى (C_f) (C_f)
	0.25	$.\frac{3}{2}\alpha^2 \leq S \leq -3\alpha:$ ثم بیان أنّ: من أجل کل $[\alpha;0]$ ، $x \in [\alpha;0]$ ثم بیان أنّ: من أجل کل $[\alpha;0]$
		f من جدول تغیرات الدالة f

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة : تقني رياضي/البكالوريا دورة: 2017

مة	العلا	عناصر الإجابة
المجموع	مجزأة	
01	0.75	$f(0) \le f(x) \le f(\alpha)$ فان $\alpha \le x \le 0$ إذا كان $\alpha \le x \le 0$ فان $\alpha \le x \le 0$ إذا كان $\alpha \le x \le 0$ أن