Databases

Lecture 5

Functional Dependencies. Normal Forms (II)

Obs. The following simple properties for functional dependencies can be easily demonstrated:

- 1. If K is a key of $R[A_1, A_2, ..., A_n]$, then $K \to \beta$, $\forall \beta$ a subset of $\{A_1, A_2, ..., A_n\}$.
- such a dependency is always true, hence it will not be eliminated through decompositions

2. If $\beta \subseteq \alpha$, then $\alpha \to \beta$ - trivial functional dependency (reflexivity).

$$\Pi_{\alpha}(r_1) = \Pi_{\alpha}(r_2) \Rightarrow \Pi_{\beta}(r_1) = \Pi_{\beta}(r_2) \Rightarrow \alpha \rightarrow \beta$$
 $\beta \subseteq \alpha$

3. If $\alpha \to \beta$, then $\gamma \to \beta$, $\forall \gamma$ with $\alpha \subset \gamma$.

$$\Pi_{\gamma}(r_1) = \Pi_{\gamma}(r_2) \Rightarrow \Pi_{\alpha}(r_1) = \Pi_{\alpha}(r_2) \Rightarrow \Pi_{\beta}(r_1) = \Pi_{\beta}(r_2) \Rightarrow \gamma \rightarrow \beta$$

$$\alpha \subset \gamma, prop. 2 \qquad \alpha \rightarrow \beta$$

Obs. The following simple properties for functional dependencies can be easily demonstrated:

4. If
$$\alpha \to \beta$$
 and $\beta \to \gamma$, then $\alpha \to \gamma$ - transitivity.
$$\Pi_{\alpha}(r_1) = \Pi_{\alpha}(r_2) \underset{\alpha \to \beta}{\Rightarrow} \Pi_{\beta}(r_1) = \Pi_{\beta}(r_2) \underset{\beta \to \gamma}{\Rightarrow} \Pi_{\gamma}(r_1) = \Pi_{\gamma}(r_2) \underset{\alpha \to \beta}{\Rightarrow} \alpha \to \gamma$$

5. If $\alpha \to \beta$ and γ a subset of $\{A_1, \dots, A_n\}$, then $\alpha \gamma \to \beta \gamma$, where $\alpha \gamma = \alpha \cup \gamma$.

$$\Pi_{\alpha\gamma}(r_1) = \Pi_{\alpha\gamma}(r_2) \Rightarrow \begin{vmatrix} \Pi_{\alpha}(r_1) = \Pi_{\alpha}(r_2) \Rightarrow \Pi_{\beta}(r_1) = \Pi_{\beta}(r_2) \\ \Pi_{\gamma}(r_1) = \Pi_{\gamma}(r_2) \end{vmatrix} \Rightarrow \Pi_{\beta\gamma}(r_1) = \Pi_{\beta\gamma}(r_2)$$

Definition. An attribute A (simple or composite) is said to be *prime* if there is a key K and A \subseteq K (K can be a composite key; A can itself be a key). If an attribute isn't included in any key, it is said to be *non-prime*.

Definition. Let $R[A_1, A_2, ..., A_n]$ be a relation, and let α, β be two subsets of attributes of R. Attribute β is fully functionally dependent on α if:

- β is functionally dependent on α (i.e., $\alpha \rightarrow \beta$) and
- β is not functionally dependent on any proper subset of α , i.e., $\forall \gamma \subset \alpha$, $\gamma \to \beta$ is not true.

Definition. A relation is in the second normal form (2NF) if:

- 1. it is in the first normal form and
- 2. every (simple or composite) non-prime attribute is fully functionally dependent on every key of the relation.

- obs. Let R be a 1NF relation that is not 2NF. Then R has a composite key (and a functional dependency $\alpha \to \beta$, where α (simple or composite) is a proper subset of a key and β is a non-prime attribute).
- decomposition
 - relation R[A] (A the set of attributes), K a key
 - β non-prime, β functionally dependent on α , $\alpha \subset K$ (β is functionally dependent on a proper subset of attributes from a key)
 - the $\alpha \to \beta$ dependency can be eliminated if R is decomposed into the following 2 relations:

$$R'[\alpha \cup \beta] = \Pi_{\alpha \cup \beta}(R)$$

$$R''[A - \beta] = \Pi_{A - \beta}(R)$$

• we'll analyze the relation from Example 6

EXAM[StudentName, Course, Grade, FacultyMember]

- key: {StudentName, Course}
- the functional dependency $\{Course\} \rightarrow \{FacultyMember\}$ holds => attribute FacultyMember is not fully functionally dependent on a key, hence the EXAM relation is not in 2NF
- this dependency can be eliminated if EXAM is decomposed into the following 2 relations:

RESULTS[StudentName, Course, Grade]

COURSES[Course, FacultyMember]

Example 7. Consider the following relation, storing students' learning contracts: CONTRACTS[LastName, FirstName, CNP, CourseId, CourseName]

- key: {CNP, Courseld}
- functional dependencies: {CNP} → {LastName, FirstName}, {CourseId} → {CourseName}
- to eliminate these dependencies, the relation is decomposed into the following three relations:

STUDENTS[CNP, LastName, FirstName]

COURSES[CourseId, CourseName]

LEARNING_CONTRACTS[CNP, Courseld]

• the notion of transitive dependency is required for the third normal form

Definition. An attribute Z is transitively dependent on an attribute X if $\exists Y$ such that $X \to Y, Y \to Z, Y \to X$ does not hold (and Z is not in X or Y).

Definition. A relation is in the third normal form (3NF) if it is in the second normal form and no non-prime attribute is transitively dependent on any key in the relation.

Another definition: A relation R is in the third normal form (3NF) if, for every non-trivial functional dependency $X \to A$ that holds over R:

- X is a superkey, or
- *A* is a prime attribute.

Example 8. The BSc examination results are stored in the relation:

BSC_EXAM [StudentName, Grade, Supervisor, Department]

- the relation stores the supervisor and the department in which she works
- since the relation contains data about students (i.e., one row per student), StudentName can be chosen as the key
- the following functional dependency holds: {Supervisor} → {Department} ⇒
 the relation is not in 3NF
- to eliminate this dependency, the relation is decomposed into the following 2 relations:

RESULTS [StudentName, Grade, Supervisor]

SUPERVISORS [Supervisor, Department]

Example 9. The following relation stores addresses for a group of people: ADDRESSES [CNP, LastName, FirstName, ZipCode, City, Street, No]

- key: {CNP}
- identified dependency: $\{ZipCode\} \rightarrow \{City\}$ (can you identify another dependency in this relation?)
- since this dependency holds, relation ADDRESSES is not in 3NF, therefore it must be decomposed:

ADDRESSES'[<u>CNP</u>, LastName, FirstName, ZipCode, Street, No] ZIPCODES[<u>ZipCode</u>, City]

- Example 10. The following relation stores the exam session schedule:
- EX_SCHEDULE[Date, Hour, Faculty_member, Room, Group]
- the following restrictions are expressed via <u>key definitions</u> and <u>functional</u> <u>dependencies</u>:
 - 1. a group of students has at most one exam per day
 - => {Date, Group} is a key
 - 2. on a certain date and time, a faculty member has at most one exam
 - => {Faculty_member, Date, Hour} is a key
 - 3. on a certain date and time, there is at most one exam in a room
 - => {Room, Date, Hour} is a key
 - 4. a faculty member doesn't change the room in a day
 - => the following dependency holds: $\{Faculty_member, Date\} \rightarrow \{Room\}$

- all attributes appear in at least one key, i.e., there are no non-prime attributes
- given the normal forms' definitions specified thus far, the relation is in 3NF
- objective: eliminate the {Faculty_member, Date} → {Room} functional dependency

Definition. A relation is in the Boyce-Codd (BCNF) normal form if every determinant (for a functional dependency) is a key (informal definition - simplifying assumption: determinants are not too big; only non-trivial functional dependencies are considered).

• to eliminate the functional dependency, the original relation must be decomposed into:

EX_SCHEDULE'[Date, Hour, Faculty_member, Group],

ROOM_ALLOCATION[Faculty_member, Date, Room]

- these relations don't contain other functional dependencies, i.e., they are in BCNF
- however, the key associated with the 3rd constraint, {Room, Date, Hour}, does not exist anymore
- if this constraint is to be kept, it needs to be checked in a different manner (e.g., through the program)

- R[A] a relation
- F a set of functional dependencies
- α a subset of attributes

- problems
- I. compute the closure of F: F⁺
- II. compute the closure of a set of attributes under a set of functional dependencies, e.g., the closure of α under F: α^+

- R[A] a relation
- F a set of functional dependencies
- problems
- I. compute the closure of F: F⁺
- the set F⁺ contains all the functional dependencies implied by F
- F implies a functional dependency f if f holds on every relation that satisfies F
- the following 3 rules can be repeatedly applied to compute F⁺ (Armstrong's Axioms):
 - α , β , γ subsets of attributes of A
 - 1. reflexivity: if $\beta \subseteq \alpha$, then $\alpha \to \beta$
 - 2. augmentation: if $\alpha \to \beta$, then $\alpha \gamma \to \beta \gamma$
 - 3. transitivity: if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- these rules are complete (they compute the closure) and sound (no erroneous functional dependencies can be derived)

- R[A] a relation
- F a set of functional dependencies
- problems
- I. compute the closure of F: F⁺
- the following rules can be derived from Armstrong's Axioms:
- 4. union: if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$

$$\alpha \to \beta => \alpha\alpha \to \alpha\beta$$
augmentation
$$\Rightarrow \gamma => \alpha\beta \to \beta\gamma$$

$$\alpha \to \gamma => \alpha\beta \to \beta\gamma$$
augmentation
$$\Rightarrow \gamma => \alpha\beta \to \beta\gamma$$

5. decomposition: if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$

$$\alpha \rightarrow \beta \gamma$$

 $\beta \gamma \rightarrow \beta$ (reflexivity)

 $\alpha \to \beta \gamma$ => $\alpha \to \beta$ ($\alpha \to \gamma$ can similarly be shown to hold)

- R[A] a relation
- F a set of functional dependencies
- problems
- I. compute the closure of F: F⁺
- the following rules can be derived from Armstrong's Axioms:

6. pseudotransitivity: if $\alpha \to \beta$ and $\beta \gamma \to \delta$, then $\alpha \gamma \to \delta$ $\alpha \to \beta \Rightarrow \alpha \gamma \to \beta \gamma$ $\Rightarrow \alpha \gamma \to \delta$ transitivity

• α , β , γ , δ - subsets of attributes of A

- R[A] a relation
- F a set of functional dependencies
- α a subset of attributes
- problems
- II. compute the closure of a set of attributes under a set of functional dependencies
- determine the closure of α under F, denoted as α^+
- α^+ the set of attributes that are functionally dependent on attributes in α (under F)

- R[A] a relation
- F a set of functional dependencies
- α a subset of attributes
- problems
- II. compute the closure of a set of attributes under a set of functional dependencies
- algorithm

```
closure := \alpha;
repeat until there is no change:
for every functional dependency \beta \to \gamma in F
if \beta \subseteq closure
then closure := closure \bigcup \gamma;
```

- see lecture problems
 - ullet R a relation, F a set of functional dependencies, f a functional dependency
 - show that f is in F⁺
 - R a relation, F a set of functional dependencies, α a subset of the set of attributes of R
 - compute α^+

References

- [Ta13] ȚÂMBULEA, L., Curs Baze de date, Facultatea de Matematică și Informatică, UBB, 2013-2014
- [Ra00] RAMAKRISHNAN, R., GEHRKE, J., Database Management Systems (2nd Edition), McGraw-Hill, 2000
- [Da03] DATE, C.J., An Introduction to Database Systems (8th Edition), Addison-Wesley, 2003
- [Ga08] GARCIA-MOLINA, H., ULLMAN, J., WIDOM, J., Database Systems: The Complete Book, Prentice Hall Press, 2008
- [Ha96] HANSEN, G., HANSEN, J., Database Management And Design (2nd Edition), Prentice Hall, 1996
- [Ra07] RAMAKRISHNAN, R., GEHRKE, J., Database Management Systems, McGraw-Hill, 2007, http://pages.cs.wisc.edu/~dbbook/openAccess/thirdEdition/slides/slides3ed.html
- [UI11] ULLMAN, J., WIDOM, J., A First Course in Database Systems, http://infolab.stanford.edu/~ullman/fcdb.html