01 Linear Algebra

May 26, 2021

Information: A brief review of Linear Algebra needed in Machine Learning.

Written by: Zihao Xu

Last update date: 05.26.2021

1 Basic Concepts

1.1 Scalars, Vectors, Matrices and Tensors

1.1.1 Scalars

• Single number

• Denoted as italic lowercase letter such as a, b, c

1.1.2 Vectors

• Array of numbers

• Usually consider vectors to be "column vectors"

• Denoted as lowercase letter (often bolded)
$$> \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix}$$

• Dimension is often denoted by d, D, or $p > \mathbf{x} \in \mathbb{R}^{\bar{d}}$

• Access elements via subscript $> x_i$ is the *i*-th element

1.1.3 Matrices

• 2D array of numbers

• Denoted as uppercase letter (often bolded)
$$> \mathbf{A} = \begin{bmatrix} A_{1,1} & \cdots & A_{1,n} \\ \vdots & \ddots & \vdots \\ A_{m,1} & \cdots & A_{m,n} \end{bmatrix}$$

• Dimension is often denoted by $m \times n > \mathbf{A} \in \mathbb{R}^{m \times n}$

• Access elements by double subscript $> X_{i,j}$ or $x_{i,j}$ is the i,j-th entry of the matrix

• Access rows or columns via subscript or numpy notation $> X_{i,:}$ is the *i*-th row, $X_{:,j}$ is the *j*-th column

1

1.1.4 Tensors

• n-D array, array with more than two axes $> \mathbf{A} \in \mathbb{R}^{c \times w \times h}$

• Other notations are similar with Matrices

1.1.5 Addition of matrices, scalar multiplication and addition

- When $\mathbf{A} = [A_{i,j}]$ and $\mathbf{B} = [B_{i,j}]$ have the same shape, the sum of them is written as $\mathbf{C} = \mathbf{A} + \mathbf{B}$ where $C_{i,j} = A_{i,j} + B_{i,j}$.
 - In general, matrices of different sizes cannot be added.
 - However, in the context of Deep Learning, notations like $\mathbf{C} = \mathbf{A} + \mathbf{b}$ is allowed where $C_{i,j} = A_{i,j} + b_j$, which means the vector \mathbf{b} is added to each row of the matrix. This is to avoid the need to define a matrix with \mathbf{b} copied into each row before doing the addition, This implicit copying is called **broadcasting**.
- The product of any $m \times n$ matrix $\mathbf{A} = [A_{i,j}]$ and any scalar c is written as $\mathbf{C} = c\mathbf{A}$ where $C_{i,j} = c \cdot A_{i,j}$.
- Similarly, the addition of any $m \times n$ matrix $\mathbf{A} = [A_{i,j}]$ and any scalar b is written as $\mathbf{C} = \mathbf{A} + b$ where $C_{i,j} = A_{i,j} + b$.
- Common calculation rules

$$-\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$$

$$- (\mathbf{A} + \mathbf{B}) + \mathbf{C} = \mathbf{A} + (\mathbf{B} + \mathbf{C})$$

$$-c(\mathbf{A} + \mathbf{B}) = c\mathbf{A} + c\mathbf{B}$$

$$-(c+k)\mathbf{A} = c\mathbf{A} + k\mathbf{A}$$

$$-c(k\mathbf{A}) = ck\mathbf{A}$$

1.1.6 Multiplication (Standard Product)

• The product C = AB of an $m \times n_1$ matrix $A = [A_{i,j}]$ times an $n_2 \times p$ matrix $B = [B_{i,j}]$ is defined if and only if $n_1 = n_2$ and then C will be an $m \times p$ matrix C with entries

$$C_{i,j} = \sum_{k}^{n} A_{i,k} Bk, j$$

- Called standard product or matrix product.
- Common calculation rules

$$-(k\mathbf{A})\mathbf{B} = k(\mathbf{A}\mathbf{B}) = \mathbf{A}(k\mathbf{B})$$

$$- \mathbf{A}(\mathbf{BC}) = (\mathbf{AB})\mathbf{C}$$

$$-(\mathbf{A} + \mathbf{B})\mathbf{C} = \mathbf{A}\mathbf{C} + \mathbf{B}\mathbf{C}$$

$$- \mathbf{C}(\mathbf{A} + \mathbf{B}) = \mathbf{C}\mathbf{A} + \mathbf{C}\mathbf{B}$$

1.1.7 Element-wise product

- A matrix containing the product of the individual elements from two matrix have the same size.
- Denoted by $\mathbf{C} = \mathbf{A} \odot \mathbf{B}$ where $C_{i,j} = A_{i,j} \cdot B_{i,j}$
- Also called Hadamard product

1.1.8 Transposition of Matrices and Vectors

- Denoted as \mathbf{A}^T
- The transpose of an $m \times n$ matrix $\mathbf{A} = [A_{i,j}]$ is the $n \times m$ matrix \mathbf{A}^T that has the first row of \mathbf{A} as its first column, the second row as its second column, and so on. $> \mathbf{A}^T = [A_{j,i}] = \mathbf{A}^T$

$$\begin{bmatrix} A_{1,1} & \cdots & A_{m,1} \\ \vdots & \ddots & \vdots \\ A_{1,n} & \cdots & A_{m,n} \end{bmatrix}$$

• For vector \mathbf{v} , the transpose changes it from a column vector to a row vector. $> \mathbf{x} = \begin{bmatrix} x_2 \\ \vdots \end{bmatrix}$,

$$\mathbf{x}^T = \begin{bmatrix} x_1 & x_2 & \cdots & x_d \end{bmatrix}$$

• Rules for transposition

$$- (\mathbf{A}^T)^T = \mathbf{A}$$

$$- (\mathbf{A} + \mathbf{B})^T = \mathbf{A}^T + \mathbf{B}^T$$

$$- (c\mathbf{A})^T = c\mathbf{A}^T$$

$$- (A\mathbf{B})^T = \mathbf{B}^T \mathbf{A}^T$$

1.1.9 Special Matrices

- Symmetric matrix: $\mathbf{A}^T = \mathbf{A}, A_{i,j} = A_{j,i}$ Skew-symmetric matrix: $\mathbf{A}^T = -\mathbf{A}$
- Triangular matrix:
 - Upper triangular matrix can have non-zero entries only **on and above** the diagonal
 - Lower triangular matrix can have non-zero entries only **on and below** the diagonal
- Identity matrix:
 - Identity matrix of size n is the $n \times n$ square matrix with ones on the main diagonal and zeros elsewhere. It is denoted by \mathbf{I}_n or simply by \mathbf{I} if the size is immaterial or can be trivially determined by the context.
 - Some times called unit matrix (depends on the context).
- Scalar matrix:
 - Any multiple of an Identity matrix.
- Diagonal matrix:
 - A square matrix in which the entries outside the diagonal are all zero.

1.2 Linear System of equations

1.2.1 Represent linear set of equations in matrix equations

- Linear set of equations can be compactly represented as matrix equation
- In general:

$$a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n = b_1$$

$$a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n = b_2$$

$$\vdots$$

$$a_{m,1}x_1 + a_{m,2}x_2 + \dots + a_{m,n}x_n = b_m$$

is **equivalent** to:

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{x} \in \mathbb{R}^n, \mathbf{b} \in \mathbb{R}^m$

• Augmented matrix

$$\tilde{\mathbf{A}} = [\mathbf{A}, \mathbf{b}]$$

1.2.2 Gaussian Elimination

- Goal: Bring system to a triangular form
- Step:
 - Elementary operations on equations \longleftrightarrow Operation on matrices
 - Interchange of two equations \longleftrightarrow Interchange two rows in a matrix
 - Addition of a constant \longleftrightarrow Addition of a constant
- Row equivalent
 - We call a linear system S_1 row-equivalent to a linear system S_2 if S_1 can be obtained by finitely many row operations from S_2 .
- Theorem
 - Row-equivalent linear systems have the same set of solutions.
- Solution by Gaussian Elimination
 - System:
 - * $\mathbf{A}\mathbf{x} = \mathbf{b}$ with augmented matrix $\tilde{\mathbf{A}} = [\mathbf{A}, \mathbf{b}]$
 - * $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{x} \in \mathbb{R}^n, \mathbf{b} \in \mathbb{R}^m$
 - Step 1:
 - * Pivot row: First row of $\tilde{\mathbf{A}}$
 - * Pivot: Coefficient of the x_1 term in pivot row
 - * Use pivot row to eliminate x_1 term in all other rows below
 - Step 2:
 - * First equation remains as it is
 - * Pivot row: Second row of $\tilde{\mathbf{A}}$
 - * Pivot: Coefficient of the x_2 term in pivot row
 - * Use pivot row to eliminate x_2 term in all other rows below
 - Step 3:
 - * Repeat the procedure which moves the pivot row from s to s+1 and set pivot to be the coefficient of x_{s+1} term in pivot row in each step, until **A** is in upper triangular form
 - Step 4:
 - * Back-substitution to get $x_n, x_{n-1}, ..., x_2, x_1$ sequentially

1.2.3 Classification of solutions of Linear Systems

- At the end of Gaussian elimination, A is in upper triangular form (row echelon form)
 - $-r = \text{number of non-zero rows in } \tilde{\mathbf{A}} = \text{rank of } \tilde{\mathbf{A}}, r \leq m$
- In general, three possible cases
 - Consistent if r = m or r < m but $\tilde{b}_{r+1}, ..., \tilde{b}_m$ are all zero
 - * One unique solution if consistent and r = n
 - * Infinite many solution if consistent and r < n. In this case, choose $x_{r+1}, ..., x_n$ arbitrarily.
 - Inconsistent if r < m and at least one of $\tilde{b}_{r+1}, ..., \tilde{b}_m$ is non-zero
 - * No solution

1.3 Linear Independence, Rank of Matrix, Vector Space

1.3.1 Linear Independence

• Given: Set of vectors $\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \cdots, \mathbf{v}^{(n)}\}$

• With c_1, c_2, \cdots, c_n are scalars, a linear combination of these vectors is of the form:

$$c_1 \mathbf{v}^{(1)} + c_2 \mathbf{v}^{(2)} + \dots + c_n \mathbf{v}^{(n)}$$

- Consider $c_1 \mathbf{v}^{(1)} + c_2 \mathbf{v}^{(2)} + \dots + c_n \mathbf{v}^{(n)} = 0$ true for $c_1 = c_2 = \dots = c_n = 0$
 - If this is the only solution: This set of vectors form a linear independent set
 - Otherwise: Linear Dependent

1.3.2 Rank of a matrix

- The rank of a matrix **A** is the number of linearly independent row vectors of **A**,
- Denoted by rank A
- Determine the rank of a matrix
 - Observation: Number of linearly independent row vectors does not change by elementary row operations
 - Theorem 1:
 - * Row equivalent matrices have the same rank
 - Strategy: Reduce the matrix to row-echelon form (upper triangular form) and read off the rank directly
 - Theorem 2:
 - * p vectors with n components each are independent if the matrix with these vectors as row vectors has rank p, but linearly dependent if that rank is less than p
 - Theorem 3:
 - * The rank of a matrix \mathbf{A} equals the maximum number of linearly independent column vectors of \mathbf{A} . Hence \mathbf{A} and its transpose \mathbf{A}^T have the same rank
 - Theorem 4:
 - * p vectors with n < p components are always linearly dependent.

1.3.3 Vector Space

- Vector Space:
 - Denoted by V
 - Also called a **linear space**
 - Nonempty set of vectors with the same number of components such that with any two vectors **a** and **b**, all linear combinations $\alpha \mathbf{a} + \beta \mathbf{b}$ (α, β are real numbers) are elements of V and these vectors satisfy the rules for vector addition and scalar multiplication.
- **Dimension** of V:
 - Maximal number of linearly independent vectors
- Basis:
 - Linear independent set of maximally possible vectors
 - Number of vectors in the basis = $\dim V$
- Span:
 - Set of all linear combinations given vectors $\mathbf{a_1}, \mathbf{a_2}, \cdots, \mathbf{a_n}$
- Subspace:
 - Nonempty set of vectors which forms itself a vector space with respect to addition and scalar multiplication
- Theorem 5:
 - The vector space \mathbb{R}^n consisting of all vectors with n components (real) has dimension n
- Theorem 6:

– The row space and the column space of a matrix ${\bf A}$ have the same dimension, equal to rank ${\bf A}$

1.4 Solution of linear systems: Existence, Uniqueness

1.4.1 Submatrix of a matrix A

• Any matrix obtained from **A** by omitting some rows or columns

1.4.2 Theorems for linear systems(homogeneous systems)

• Homogeneous systems

- A linear system of m equations and n unknowns in the form

$$\mathbf{A}\mathbf{x} = 0$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{x} \in \mathbb{R}^n$

- Always has the trivial solution $\mathbf{x} = 0$
- Nontrivial solutions exist if and only if rank $\mathbf{A} = r < n$
- If r < n, the solution, together with $\mathbf{x} = 0$, form a vector space of dimension n r, called the solution space of the system
- In particular, if \mathbf{x}_1 and \mathbf{x}_2 are solution vectors, so is $\mathbf{x} = c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2$
- Solution space of the system is called **Null Space**, $\mathbf{A}\mathbf{x}=0$ for every \mathbf{x} from this solution space N
 - $-\dim N = \mathbf{Nullity}$
 - $-\operatorname{rank} \mathbf{A} + \operatorname{nullity} \mathbf{A} = n$
- A homogeneous system with fewer equations than unknowns always has non-trivial solution rank $\mathbf{A} = r \le m \le n$

1.4.3 Theorems for linear systems (non-homogeneous systems)

• Non-homogeneous systems:

- A linear system of m equations and n unknowns in the form

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{b} \in \mathbb{R}^m$ and $\mathbf{b} \neq 0$

• Existence:

- A non-homogeneous linear system is consistent (i.e. has solutions) if and only if the coefficient matrix \mathbf{A} and the augmented matrix $\tilde{\mathbf{A}}$ have the same rank.

• Uniqueness:

– The system has precisely one solution if and only if the common rank r of \mathbf{A} and $\ddot{\mathbf{A}}$ equals n

• Infinite many solutions

– If this common rank is less than n, the system has infinitely many solutions. All the solutions can be obtained by determining r unknowns in terms of the remaining n-r unknowns.

• Solution

- If a non-homogeneous system is consistent, then all the solutions are obtained as $\mathbf{x} = \mathbf{x}_o + \mathbf{x}_h$
 - * \mathbf{x}_o : Fixed solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$
 - * \mathbf{x}_h : Run through all solutions of $\mathbf{A}\mathbf{x} = 0$

Determinants, Cramer's Rule

1.5.1 Determinant of order n

Only defined for a square matrix

•
$$D = \det \mathbf{A} = \begin{vmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \ddots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{vmatrix}$$

• $n = 1, D = a_1$

- $n=1, D=a_1$
- $n \ge 2$, expand by i th rows $(i = 1, 2, \dots, n)$

$$- D = a_{i,1}C_{i,1} + a_{i,2}C_{i,2} + \dots + a_{i,n}C_{i,n}$$

- $* C_{i,j} = (-1)^{i+j} M_{i,j}$
- * $M_{i,j}$ is the determinant of order n-1, of a submatrix of **A** obtained from **A** by deleting the i-th row and the j-th column as indicated by the entry $a_{i,j}$

$$-D = \sum_{j=1}^{n} a_{i,j} C_{i,j}$$

- Or alternatively expand by j-th column: $D=\sum_{i=1}^{n}a_{i,j}C_{i,j}$ where $j=1,2,\cdots,n$
- **Remark**: Easier for n upper triangular matrix

1.5.2 General properties of determinants

- Behavior of *n*-th order determinant under elementary row operations
 - Interchange of two rows or two columns multiplies the determinant by -1
 - Addition of a multiple of one row/column to another row/column doesn't alter the value of the determinant
 - Multiplication of a row/column by a constant c multiplies the value of the determinant
 - $* \det(c\mathbf{A}) = c^n \det(\mathbf{A})$
 - $* \det(\mathbf{A}^T) = \det(\mathbf{A})$
 - $* \det(\mathbf{AB}) = \det(\mathbf{A})\det(\mathbf{B})$
 - * $\det(\mathbf{A} + \mathbf{B}) \neq \det(\mathbf{A}) + \det(\mathbf{B})$ (In general)
 - Transposition leaves determinant the same
 - A zero row or zero column renders the value of det = 0
 - Proportional rows or columns render the value of det = 0
- For practical purposes, to evaluate a determinant of n-th order:
 - reduce the matrix to upper triangular form, which need to keep track of operations that change the determinant
 - multiply the elements on the diagonal to calculate the determinant
- Relationship between Rank and Determinant
 - An $m \times n$ matrix $\mathbf{A} = [A_{i,j}]$ has rank $r \geq 1$ if and only if it has an $r \times r$ submatrix with non-zero determinant
 - In particular, if **A** is square with size $n \times n$, it has rank = n if and only if det $\neq 0$

Cramer's rule (Solution of linear system by determinants) 1.5.3

• If a linear system of n equations for n unknowns:

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

where $\mathbf{A} \in \mathbb{R}^{n \times n}$, $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{b} \in \mathbb{R}^n$ has non-zero coefficient determinant $(\det(\mathbf{A}) = D \neq 0)$, it has precisely one solution

- The solution is given by $x_1 = \frac{D_1}{D}, x_2 = \frac{D_2}{D}, \dots, x_n = \frac{D_n}{D}$ where D_k is the determinant of a matrix obtained from **A** by replacing the j-th column by a column with entries b_1, b_2, \dots, b_n
- If the system is homogeneous and $D \neq 0$, it has only the trivial solution. If D = 0, the system has non-trivial solutions.

1.6 Inverse of matrix, Gauss-Jordan eliminations

1.6.1 Inverse of matrix

- Consider only square matrices
- Inverse of an $n \times n$ matrix $\mathbf{A} = [A_{i,j}]$ is \mathbf{A}^{-1} such that:

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}_n$$

- If A has inverse: A is non-singular, otherwise A is singular
 - Singular matrices are similar to zeros (similar to the idea that 0 does not have an inverse)
 - Called "singular" because a random matrix is unlikely to be singular just like choosing a random number is unlikely to be 0
- Motivation:
 - $-\mathbf{A}\mathbf{x} = \mathbf{b} \Rightarrow \mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$ (usually not suitable for numerical calculation)
- **Theorem**: Existence of A^{-1}
 - The inverse \mathbf{A}^{-1} of an $n \times n$ matrix \mathbf{A} exists if and only if the rank $\mathbf{A} = n$, thus if and only if $\det \mathbf{A} \neq 0$
- Formula for Inverse of \mathbf{A} $\mathbf{A}^{-1} = \frac{1}{\det \mathbf{A}} [C_{i,j}]^T$ $C_{i,j} = (-1)^{i+j} M_{i,j}$

 - $-M_{i,j}$ is the determinant of order n-1, of a submatrix of **A** obtained from **A** by deleting the *i*-th row and the *j*-th column as indicated by the entry $a_{i,j}$
 - Usually used on only 2×2 matrix

1.6.2 Gauss-Jordan elimination

- Method to find the inverse
- Build an matrix [A|I] containing A and identity matrix I
- Perform Gaussian elimination on A, but do the same steps on I, until get the result [I|B]. Thus, $\mathbf{B} = \mathbf{A}^{-1}$

1.7 Norms

1.7.1 Definition

- The "size" of a vector or matrix.
- Intuitively, the norm of a vector \mathbf{x} measures the distance from the origin to the point \mathbf{a} .
- Functions mapping vectors or matrices to non-negative values
- Formally, a norm is any function f that satisfies the following properties:
 - $-f(\mathbf{x}) = 0 \Rightarrow \mathbf{x} = 0$
 - $-f(\mathbf{x}+\mathbf{y}) \le f(\mathbf{x}) + f(\mathbf{y})$ (the triangle inequality)
 - $\forall \alpha \in \mathbb{R}, f(\alpha \mathbf{x}) = |\alpha| f(\mathbf{x})$

1.7.2 L^p norm

- $||\mathbf{x}||_p = \left(\sum_i |x_i|^p\right)^{\frac{1}{p}}$
- p = 2: **Euclidean Norm**, used so frequently in machine learning that it is often denoted simply as $||\mathbf{x}||$ with the subscript 2 omitted. It is also common to measure the size of a vector using the squared L^2 norm, which can be calculated simply as $\mathbf{x}^T \mathbf{x}$
 - In most machine learning cases, the squared L^2 norm is more convenient to work with mathematically and computationally than the L^2 norm itself. On example is that each derivative of the squared L^2 norm with respect to each element of \mathbf{x} depends only on the corresponding element of \mathbf{x} .
- p=1: commonly used in machine learning when the difference between zero and nonzero elements is very important. Every time an element of \mathbf{x} moves away from 0 by ϵ , the L^1 norm increases by ϵ
 - Sometimes used to count the number of nonzero entries
- $p = \infty$:Max Norm, simplifies to the absolute value of the element with the largest magnitude in the vector

$$||\mathbf{x}||_{\infty} = \max_{i} |\mathbf{x}_{i}|$$

1.7.3 Frobenius Norm

- Used to measure the size of a matrix
- $||\mathbf{A}||_F = \sqrt{\sum_{i,j} A_{i,j}^2}$
- Analogous to the L^2 norm of a vector

1.8 Inner Product Space, Linear Transformations

1.8.1 Inner Product

- A binary operation associates each pair of vectors in the space with a scalar quantity known as the inner product of the vectors, often denoted using angle brackets (as in $\langle \mathbf{a}, \mathbf{b} \rangle$).
- **Dot product**: One widely used inner product on a finite dimensional Euclidean space. Apply for two vectors with the same length.
 - $-\langle \mathbf{a}, \mathbf{b} \rangle = (\mathbf{a}, \mathbf{b}) = \mathbf{a} \bullet \mathbf{b} = \mathbf{a}^T \mathbf{b} = \sum_{i=1}^n a_i b_i$
 - Two vectors **a**, **b** are called **orthogonal** if $\mathbf{a} \bullet \mathbf{b} = 0$
 - Can be written in terms of norms: $\mathbf{a}^T \mathbf{b} = ||a||_2 ||b||_2 \cos\theta$

1.8.2 Abstract Real Inner Product Space

- Real vector space V is called real inner product space V together with an inner product (\mathbf{a}, \mathbf{b}) satisfying
 - Linearity: $(q_1\mathbf{a} + q_2\mathbf{b}, \mathbf{c}) = q_1(\mathbf{a}, \mathbf{c}) + q_2(\mathbf{b}, \mathbf{c})$ where $\mathbf{a}, \mathbf{b} \in V, q_1, q_2 \in \mathbb{R}$
 - Symmetry: $(\mathbf{a}, \mathbf{b}) = (\mathbf{b}, \mathbf{a})$
 - Positive-definite: $(\mathbf{a}, \mathbf{a}) \geq 0$, $(\mathbf{a}, \mathbf{a}) = 0$ if and only if $\mathbf{a} = 0$

1.8.3 Linear Transformations

• a mapping $X \to Y$ between two vector spaces that preserves the operations of vector addition and scalar multiplication

• If F is the mapping between X and $Y(F: X \to Y, F(\mathbf{x}) = \mathbf{y}$ where $\mathbf{x} \in X$ and $\mathbf{y} \in Y)$, then F is called a linear mapping/transformation if for all $\mathbf{x}, \mathbf{x}_2 \in X$ and scalars c:

$$-F(\mathbf{x}+\mathbf{x}_2)=F(\mathbf{x})+F(\mathbf{x}_2)$$

$$-F(c\mathbf{x}) = cF(\mathbf{x})$$

• If $X = \mathbb{R}^n$ and $Y = \mathbb{R}^m$, any real matrix $\mathbf{A} = [A_{i,j}]$ of size $m \times n$ gives a linear transformation

$$y = Ax$$

$$\mathbf{A}: \mathbb{R}^n \to \mathbb{R}^m$$

$$\mathbf{x} \in \mathbb{R}^n, \mathbf{y} \in \mathbb{R}^m$$

• Conversely, every linear transformation $F: \mathbb{R}^n \to \mathbb{R}^m$ can be written in terms of an $m \times n$ matrix

1.9 Trace operator

1.9.1 Definition

• Calculate the sum of all the diagonal entries of a matrix

$$\operatorname{Tr}\left(\mathbf{A}\right) = \sum_{i} A_{i,i}$$

1.9.2 Properties

• Provides an alternative way of writing the Frobenius norm of a matrix:

$$||\mathbf{A}||_F = \sqrt{\mathrm{Tr}(\mathbf{A}\mathbf{A}^T)}$$

• Invariant to the transpose operator:

$$\operatorname{Tr}(\mathbf{A}) = \operatorname{Tr}(\mathbf{A}^T)$$

• Rotational Equivalence: Invariant to the order of factors (if shapes of corresponding matrices allow changing the order):

$$Tr(ABC) = Tr(CAB) = Tr(BCA)$$

- Holds even if the resulting product has a different shape:

$$Tr(\mathbf{AB}) = Tr(\mathbf{BA})$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times m}$, which leads to $\mathbf{AB} \in \mathbb{R}^{m \times m}$ and $\mathbf{BA} \in \mathbb{R}^{n \times n}$

• A scalar is its own trace: a = Tr(a)

Matrix Eigenvalue Problems

Determining Eigenvalues and Eigenvectors

2.1.1 Definition of eigenvalues and eigenvectors:

• Let $\mathbf{A} = [A_{i,j}]$ to be an $n \times n$ matrix, then we say \mathbf{A} has an **eigenvector v** corresponding to an **eigenvalue** λ if:

$$\begin{aligned} \mathbf{A}\mathbf{v} &= \lambda \mathbf{v} \\ (\mathbf{A} - \lambda \mathbf{I})\mathbf{v} &= \mathbf{0} \\ \mathbf{v} &\neq \mathbf{0} \end{aligned}$$

where $\lambda \in \mathbb{R}$

- A non-trivial solution exists if and only if $\det(\mathbf{A} \lambda \mathbf{I}) = 0$, which gives a polynomial $p(\lambda)$ called the **characteristic polynomial**
- Eigenvalues are the roots of the characteristic polynomial
 - * An $n \times n$ matrix has at least one eigenvalue and at most n numerically different eigenvalues

2.1.2 Theorem:

- The eigenvectors of a matrix **A** corresponding to one and the same eigenvalue λ of **A**, together with **0**, form a vector space called the **eigenspace** of **A**
- Eigenvectors are determined only up to a constant \Rightarrow can normalize to get a unit eigenvector

$$- ||\mathbf{x}|| = \sqrt{\sum_{i=1}^{n} x_i^2}$$

$$- \text{Unit eigenvector: } \frac{\mathbf{x}}{||\mathbf{x}||}$$

- If $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k$ are eigenvectors corresponding to different eigenvalues, then $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k$ are linearly independent
- If a matrix **A** has n different eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$, there is a set of eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$ which are linearly independent

2.1.3 Remark

- Only applies for square matrix and v must be non-zero vector
- If **v** is an eigenvector, then so is any scaled vector $s\mathbf{v}$ for $s \in \mathbb{R}, s \neq 0$ while sharing the same eigenvalue λ . For this reason, we usually look only fro unit eigenvectors
- Transpose of a square matrix A has the same eigenvalues as A but not necessarily same
 - $-\det(\mathbf{A} \lambda \mathbf{I}) = 0 \Rightarrow \det(\mathbf{A} \lambda \mathbf{I})^T = 0 \Rightarrow \det(\mathbf{A}^T \lambda \mathbf{I}) = \det(\mathbf{A} \lambda \mathbf{I})^T = 0$, which means the characteristic polynomials are same
- For real matrices with complex eigenvalues, eigenvectors would come in complex conjugate

2.1.4 Compute eigenvectors

- Solve the characteristic polynomial for eigenvalues λ
- Solve the homogeneous system equation $(\mathbf{A} \lambda \mathbf{I})\mathbf{v} = \mathbf{0}$ for each eigenvalue
- Algebraic multiplicity M_{λ} : Order of an eigenvalue λ as a root in characteristic polynomial
 - Sum of all algebraic multiplicity is n

- Geometric multiplicity m_{λ} : Number of linearly independent eigenvectors corresponding to λ
 - $-m_{\lambda} \leq M_{\lambda} \leq n$
- Defect of A: $\Delta_{\lambda} = M_{\lambda} m_{\lambda}$

2.1.5 Complex Matrices and Forms

- Sometime the complex eigenvalues lead to application of complex matrices
- Extend the concept of dot product to n-component vector with complex entries

$$-\mathbf{u},\mathbf{v}\in\mathbb{C}^n,\;(\mathbf{u},\mathbf{v})=ar{\mathbf{u}}^T\mathbf{v}$$

- Norm is still real
 - $-||\mathbf{v}|| = \sqrt{\bar{v}_1 v_1 + \bar{v}_2 v_2 + \dots + \bar{v}_n v_n}$
- Extend symmetries
 - Called **Hermitian** if $\bar{\mathbf{A}}^T = \mathbf{A}$
 - * Real Hermitian matrix is Symmetric matrix
 - Called Skew-Hermitian if $\bar{\mathbf{A}}^T = -\mathbf{A}$
 - $\ast\,$ Real Skew-Hermitian matrix is Skew-Symmetric matrix
 - Called **Unitary** if $\bar{\mathbf{A}}^T = \mathbf{A}^{-1}$
 - * Real Unitary matrix is Orthonormal matrix
 - * Determinant of a unitary matrix has absolute value 1

2.1.6 Positive Definite Matrix

- Positive Definite: A matrix whose eigenvalues are all positive is called positive definite
- Positive Semidefinite: A matrix whose eigenvalues are all positive or zero value is called positive semidefinite
- Negative Definite: A matrix whose eigenvalues are all negative is called negative definite
- Negative Semidefinite: A matrix whose eigenvalues are all negative or zero value is called negative semidefinite
- Motivation:
 - A quadratic form in \mathbb{R}^n is an expression $\mathbf{x}^T \mathbf{A} \mathbf{x} = \sum_{i,j=1}^n A_{i,j} x_i x_j$ where $\mathbf{x} \in \mathbb{R}^n$
 - * This can always be achieved by a symmetric matrix by replacing $A_{i,j}$ and $A_{j,i}$ by their average
 - A positive semidefinite matrix guarantees that $\forall \mathbf{x}, \ \mathbf{x}^T \mathbf{A} \mathbf{x} \geq 0$
 - A positive definite matrix additionally guarantees that $\mathbf{x}^T \mathbf{A} \mathbf{x} = 0 \Rightarrow \mathbf{x} = 0$

2.2 Eigenvalues and eigenvectors of special matrices

2.2.1 Symmetric/Hermitian

- For symmetric/hermitian square matrices $\mathbf{A} = \mathbf{A}^T$, the eigenvalues are always real
- Symmetry matrices always have an orthogonal basis of eigenvectors for Rⁿ
- For hermitian matrices, eigenvectors corresponding to different eigenvalues are orthogonal.
- Hermitian matrices always have a set of n linearly independent eigenvectors, even if there're repeated roots

Skew-symmetric/Skew-hermitian

• For skew-symmetric/skew-hermitian square matrices $\mathbf{A} = -\mathbf{A}^T$, the eigenvalues are always purely imaginary or zero.

2.2.3 Orthonormal/Unitary

- Orthogonal: A real square matrix in which the row vectors (and also its column vectors) from an orthogonal system.

 - $-A_i \bullet A_j = A_i^T A_j = 0 \text{ if } i \neq j$ $-\mathbf{A}^T \mathbf{A} \text{ and } \mathbf{A} \mathbf{A}^T \text{ are diagonal matrices}$
- Orthonormal: Orthogonal matrices with all the norms of row vectors and column vectors normalized to 1
 - $-A_i \bullet A_j = A_i^T A_j = 0$ if $i \neq j$ and $A_i \bullet A_j = A_i^T A_j = 1$ if i = j $-\mathbf{A}^T \mathbf{A} = \mathbf{A} \mathbf{A}^T = \mathbf{I}$, which implies $\mathbf{A}^{-1} = \mathbf{A}^T$

 - Determinant of an orthonormal matrix is always +1 or -1
- For orthonormal/unitary matrices, the eigenvalues are either real or in complex conjugate pairs and always have absolute value 1
- Unitary matrices always have a set of n linearly independent eigenvectors, even if there're repeated roots

Eigendecomposition 2.3

2.3.1 Motivation

- To understand a matrix better by breaking it into constituent parts or finding some properties that are universal and not caused by the way to represent the matrix
- Analogous to prime factorization of an integer, which allows us to determine whether things are divisible by other integers
- Analogous to representing a signal in the time versus frequency domain, where both time and frequency domain represent the same object but are useful for different computations and derivations.

2.3.2 Similarity

- If **A** is an $n \times n$ matrix and **P** is an non-singular $n \times n$ matrix. then $\mathbf{P}^{-1}\mathbf{AP}$ is called a similarity transformation of **A** and the resulting matrix $\hat{\mathbf{A}} = \mathbf{P}^{-1}\mathbf{AP}$ is called similar to **A**
- If $\hat{\mathbf{A}}$ is similar to \mathbf{A} , then $\hat{\mathbf{A}}$ and \mathbf{A} have the same eigenvalues

2.3.3 Diagonalization

- If there is a matrix **P** (non-singular) such that $\mathbf{P}^{-1}\mathbf{AP} = \mathbf{D}$ where **D** is diagonal, according to similarity, the resulting matrix \mathbf{D} would have the same eigenvalues as \mathbf{A} . Therefore, \mathbf{D} has the eigenvalues of **A** on diagonal and each λ_i would repeat as many times as its algebraic multiplicity.
 - An $n \times n$ matrix is diagonalizable $\Leftrightarrow \mathbf{A}$ has n linear independent eigenvectors.
- In fact, the columns of P are the eigenvectors of A

- Let the columns of **P** be denoted by $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$:

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{D}$$
$$\mathbf{A}\mathbf{P} = \mathbf{P}\mathbf{D}$$

$$\mathbf{A}\mathbf{P} = \mathbf{P}\mathbf{D}$$

$$\mathbf{A}[\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n] = [\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n] \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

$$\mathbf{A}\mathbf{v}_i = \lambda_i \mathbf{v}_i$$

$$\mathbf{A}\mathbf{v}_i = \lambda_i \mathbf{v}_i$$

where $i = 1, 2, \dots, n$

- General procedures to diagonalize a matrix **A**:
 - 1. Find the roots of the characteristic polynomial $\det(\mathbf{A} \lambda \mathbf{I})$ to get the eigenvalues $\lambda_1, \lambda_2, \cdots, \lambda_n$
 - 2. Find the corresponding eigenvectors $[\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n]$ by solving the homogeneous equation $(\mathbf{A} - \lambda \mathbf{I})\mathbf{v} = \mathbf{0}$ corresponding to each eigenvalue

3. Construct matrix
$$\mathbf{P} = [\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n]$$
 and $\mathbf{D} = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$

- 4. Find the inverse of **P** (sometimes optional for convenience)
- 5. Then the diagonalized form of **A** is $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$

Singular Value Decomposition (SVD)

2.4.1 Motivation

- A more generally applicable way to factorize a matrix into singular vectors and singular values, which reveals the same kind of information as the eigendecomposition does
- Every real matrix (not necessarily to be square) has a singular value decomposition, but the same is not true of the eigenvalue decomposition.

2.4.2 Definition

• For a matrix **A** to be decomposed, write it as a product of three matrices:

$$\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^T$$

where **A** is an $m \times n$ matrix, **U** is defined to be an $m \times m$ matrix, **D** to be an $m \times n$ matrix, and **V** to be an $n \times n$ matrix

- U and V are both defined to be orthonormal matrices
- **D** is defined to be a diagonal matrix and is not necessarily square
- Elements along the diagonal of **D** are known as the **singular values** of the matrix **A**
- Columns of U are known as the left-singular vectors
- Columns of V are known as the right-singular vectors

2.4.3 Calculation

• Left-singular vectors (columns of \mathbf{U}) are the eigenvectors of $\mathbf{A}\mathbf{A}^T$

- Right-singular vectors (columns of \mathbf{V}) are the eigenvectors of $\mathbf{A}^T \mathbf{A}$
- Nonzero singular values (diagonal elements of **D**) are the square roots of the eigenvalues of $\mathbf{A}^T \mathbf{A}$, which is the same as that of $\mathbf{A} \mathbf{A}^T$

Moore-Penrose Pseudoinverse

2.5.1 Motivation

- Matrix inversion is not defined for matrices that are not square
- Find a way to handle the situation where the system matrix is not square

2.5.2 Definition

- Formal Definition: $\mathbf{A}^+ = \lim_{\alpha \searrow 0} (\mathbf{A}^T \mathbf{A} + \alpha \mathbf{I})^{-1} \mathbf{A}^T$ Practical computation: $\mathbf{A}^+ = \mathbf{V} \mathbf{D}^+ \mathbf{U}^T$
- - U, D, V are the singular value decomposition of A
 - The pseudoinverse \mathbf{D}^+ is obtained by taking the reciprocal of its nonzero elements then taking the transpose of the resulting matrix

2.5.3 Application

- In the non-homogeneous system Ax = y, use this pseudoinverse to get the result $x = A^+y$
 - If **A** has more columns than rows, the result provides one of the many possible solutions. Specially, it provides the solution $\mathbf{x} = \mathbf{A}^{+}\mathbf{y}$ with minimal Euclidean norm $||\mathbf{x}||$ among all possible solutions
 - If **A** has more row than column, which means it is possible for there to be no solution, the result gives us the x for which Ax is as close as possible to y in terms of Euclidean norm $||\mathbf{A}\mathbf{x} - \mathbf{y}||$

3 Derivatives with vectors and matrices

3.1 Notation

- Matrix Notation and Tensor Index Notation are two competing notational conventions
 which split the field of matrix calculus into two separate groups.
 - The two groups can be distinguished by whether they write the derivative of a scalar with respect to a vector as a column vector or a row vector.
 - Matrix Notation writes the derivative of a scalar with respect to a vector as a row vector, which is used throughout this notebook.

• In Matrix Notation:

- A scalar is denoted with lowercase italic typeface
- A vector is denoted with a boldface lowercase letter
- A matrix is denoted with bold capital letters

- ...

3.2 Derivatives with vectors

3.2.1 Vector-by-scalar

• The derivative of a vector $\mathbf{y} = \begin{bmatrix} y_1 & y_2 & \cdots & y_m \end{bmatrix}^T$, by a scalar x is written as:

$$\frac{\partial \mathbf{y}}{\partial x} = \begin{bmatrix} \frac{\partial y_1}{\partial x} \\ \frac{\partial y_1}{\partial x} \\ \vdots \\ \frac{\partial y_n}{\partial x} \end{bmatrix}$$

• Notice: Lay out according to y, which is called numerator layout

3.2.2 Scalar-by-vector

• The derivative of a scalar y by a vector $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}^T$, is written as:

$$\frac{\partial y}{\partial \mathbf{v}} = \begin{bmatrix} \frac{\partial y}{\partial x_1} & \frac{\partial y}{\partial x_2} & \cdots & \frac{\partial y}{\partial x_n} \end{bmatrix}$$

• Notice: Lay out according to \mathbf{x}^T , which is called numerator layout

3.2.3 Vector-by-vector

• The derivative of a vector function $\mathbf{y} = \begin{bmatrix} y_1 & y_2 & \cdots & y_m \end{bmatrix}^T$, with respect to an input vector, $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}^T$, is written as:

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \cdots & \frac{\partial y_1}{\partial x_n} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \cdots & \frac{\partial y_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_m}{\partial x_1} & \frac{\partial y_m}{\partial x_2} & \cdots & \frac{\partial y_m}{\partial x_n} \end{bmatrix}$$

• Notice: Lay out according to y and x^T , which is sometimes known as the **Jacobian formulation** and is called numerator layout

3.3 Derivatives with matrices

3.3.1 Matrix-by-scalar

• The derivative of a matrix function \mathbf{Y} by a scalar x is known as the **tangent matrix** and is given by:

$$\frac{\partial \mathbf{Y}}{\partial x} = \begin{bmatrix} \frac{\partial y_{1,1}}{\partial x} & \frac{\partial y_{1,2}}{\partial x} & \cdots & \frac{\partial y_{1,n}}{\partial x} \\ \frac{\partial y_{2,1}}{\partial x} & \frac{\partial y_{2,2}}{\partial x} & \cdots & \frac{\partial y_{2,n}}{\partial x} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_{m,1}}{\partial x} & \frac{\partial y_{m,2}}{\partial x} & \cdots & \frac{\partial y_{m,n}}{\partial x} \end{bmatrix}$$

• Notice: Lay out according to Y, which is called numerator layout

3.3.2 Scalar-by-matrix

• The derivative of a scalar y function of a $p \times q$ matrix \mathbf{X} of independent variables, with respect to the matrix \mathbf{X} , is given by:

$$\frac{\partial y}{\partial \mathbf{X}} = \begin{bmatrix} \frac{\partial y}{\partial x_{1,1}} & \frac{\partial y}{\partial x_{2,1}} & \cdots & \frac{\partial y}{\partial x_{p,1}} \\ \frac{\partial y}{\partial x_{1,2}} & \frac{\partial y}{\partial x_{2,2}} & \cdots & \frac{\partial y}{\partial x_{p,2}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y}{\partial x_{1,q}} & \frac{\partial y}{\partial x_{2,q}} & \cdots & \frac{\partial y}{\partial x_{p,q}} \end{bmatrix}$$

• Notice: Lay out according to \mathbf{X}^T , which is called numerator layout

3.3.3 Other matrix derivatives

• Vectors by matrices, matrices by vectors, and matrices by matrices are not widely considered and a notation is not widely agreed upon.

3.4 Identities often used in machine learning

• For complete identities, refer to Matrix calculus

3.4.1 Vector-by-vector identities

• A is not a function of x:

$$\frac{\partial \mathbf{A}\mathbf{x}}{\partial \mathbf{x}} = \mathbf{A}$$

• **A** is not a function of **x**:

$$\frac{\partial \mathbf{x}^T \mathbf{A}}{\partial \mathbf{x}} = \mathbf{A}^T$$

• $v = v(\mathbf{x}), \mathbf{u} = \mathbf{u}(\mathbf{x})$:

$$\frac{\partial v\mathbf{u}}{\partial \mathbf{x}} = v\frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \mathbf{u}\frac{\partial v}{\partial \mathbf{x}}$$

• **A** is not a function of \mathbf{x} , $\mathbf{u} = \mathbf{u}(\mathbf{x})$:

$$\frac{\partial \mathbf{A}\mathbf{u}}{\partial \mathbf{x}} = \mathbf{A} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$$

• $\mathbf{u} = \mathbf{u}(\mathbf{x})$:

$$\frac{\partial f(g(u))}{\partial x} = \frac{\partial f(g)}{\partial g} \frac{\partial g(u)}{\partial u} \frac{\partial u}{\partial x}$$

3.4.2 Scalar-by-vector identities

•
$$u = u(\mathbf{x}), v = v(\mathbf{x})$$
:

$$\frac{\partial uv}{\partial \mathbf{x}} = u\frac{\partial v}{\partial \mathbf{x}} + v\frac{\partial u}{\partial \mathbf{x}}$$

•
$$u = u(\mathbf{x})$$
:

$$\frac{\partial f(g(u))}{\partial \mathbf{x}} = \frac{\partial f(g)}{\partial g} \frac{\partial g(u)}{\partial u} \frac{\partial u}{\partial \mathbf{x}}$$

•
$$\mathbf{u} = \mathbf{u}(\mathbf{x}), \mathbf{v} = \mathbf{v}(\mathbf{x})$$
:

$$\frac{\partial (\mathbf{u} \bullet \mathbf{v})}{\partial \mathbf{x}} = \frac{\partial \mathbf{u}^T \mathbf{v}}{\partial \mathbf{x}} = \mathbf{u}^T \frac{\partial \mathbf{v}}{\partial \mathbf{x}} + \mathbf{v}^T \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$$

• **a** is not a function of **x**:

$$\frac{\partial (\mathbf{a} \bullet \mathbf{x})}{\partial \mathbf{x}} = \frac{\partial \mathbf{a}^T \mathbf{x}}{\partial \mathbf{x}} = \mathbf{a}^T$$

• A is not a function of x:

$$\frac{\partial \mathbf{x}^T \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = \mathbf{x}^T (\mathbf{A} + \mathbf{A}^T)$$

• **a**, **b** are not functions of **x**:

$$\frac{\partial \mathbf{a}^T \mathbf{x} \mathbf{x}^T \mathbf{b}}{\partial \mathbf{x}} = \mathbf{x}^T (\mathbf{a} \mathbf{b}^T + \mathbf{b} \mathbf{a}^T)$$

• A, b, C, D, e are not functions of x:

$$\frac{\partial (\mathbf{A}\mathbf{x} + \mathbf{b})^T \mathbf{C} (\mathbf{D}\mathbf{x} + \mathbf{e})}{\partial \mathbf{x}} = (\mathbf{D}\mathbf{x} + \mathbf{e})^T \mathbf{C}^T \mathbf{A} + (\mathbf{A}\mathbf{x} + \mathbf{b})^T \mathbf{C} \mathbf{D}$$

• **a** is not a function of **x**:

$$\frac{\partial ||\mathbf{x} - \mathbf{a}||}{\partial \mathbf{x}} = \frac{(\mathbf{x} - \mathbf{a})^T}{||\mathbf{x} - \mathbf{a}||}$$

3.4.3 Vector-by-scalar identities

• **A** is not a function of x, $\mathbf{u} = \mathbf{u}(x)$:

$$\frac{\partial \mathbf{A}\mathbf{u}}{\partial x} = \mathbf{A} \frac{\partial \mathbf{u}}{\partial x}$$

•
$$\mathbf{u} = \mathbf{u}(x), \mathbf{v} = \mathbf{v}(x)$$
:

$$\frac{\partial (\mathbf{u} + \mathbf{v})}{\partial x} = \frac{\partial \mathbf{u}}{\partial x} + \frac{\partial \mathbf{v}}{\partial x}$$

• $\mathbf{u} = \mathbf{u}(x)$:

$$\frac{\partial \mathbf{f}(\mathbf{g}(\mathbf{u}))}{\partial x} = \frac{\partial \mathbf{f}(\mathbf{g})}{\partial \mathbf{g}} \frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial x}$$

3.4.4 Scalar-by-matrix identities

•
$$u = u(X), v = v(X)$$
:

$$\frac{\partial uv}{\partial \mathbf{X}} = u \frac{\partial v}{\partial \mathbf{X}} + v \frac{\partial u}{\partial \mathbf{X}}$$

•
$$u = u(\mathbf{X})$$
:

$$\frac{\partial f(g(u))}{\partial \mathbf{X}} = \frac{\partial f(g)}{\partial g} \frac{\partial g(u)}{\partial u} \frac{\partial u}{\partial \mathbf{X}}$$

• a and b are not function of X:

$$\frac{\partial \mathbf{a}^T \mathbf{X} \mathbf{b}}{\partial \mathbf{X}} = \mathbf{b} \mathbf{a}^T$$

• a and b are not function of X:

$$\frac{\partial \mathbf{a}^T \mathbf{X}^T \mathbf{b}}{\partial \mathbf{X}} = \mathbf{a} \mathbf{b}^T$$

- ${\bf a},\,{\bf b}$ and ${\bf c}$ are not functions of ${\bf X}:$

$$\frac{\partial (\mathbf{X}\mathbf{a} + \mathbf{b})^T \mathbf{C} (\mathbf{X}\mathbf{a} + \mathbf{b})}{\partial \mathbf{X}} = \left(\left(\mathbf{C} + \mathbf{C}^T \right) (\mathbf{X}\mathbf{a} + \mathbf{b}) \, \mathbf{a}^T \right)^T$$

• a, b and c are not functions of X:

$$\frac{\partial (\mathbf{X}\mathbf{a})^T \mathbf{C}(\mathbf{X}\mathbf{b})}{\partial \mathbf{X}} = \left(\mathbf{C}\mathbf{X}\mathbf{b}\mathbf{a}^T + \mathbf{C}^T\mathbf{X}\mathbf{a}\mathbf{b}^T\right)^T$$