MANOJ KUMAR - 2048015

P9: KNN Classifier

Implement KNN classier and experiment with the following concepts

Check the performance of KNN with different distance measures

Check the performance of KNN with binary, categorical & numerical data

Importing basic libraries

```
In [1]: import pandas as pd
    import numpy as np
    import time
    import seaborn as sns
    import matplotlib.pyplot as plt
    import matplotlib as mpl
```

Reading the dataset

Rename the columns to have meaningful names

```
In [4]: col_dict={"bp":"blood_pressure",
                   "sg": "specific_gravity",
                   "al": "albumin",
                   "su": "sugar",
                   "rbc": "red_blood_cells",
                   "pc": "pus_cell",
                   "pcc": "pus_cell_clumps",
                   "ba":"bacteria",
                   "bgr": "blood_glucose_random",
                   "bu": "blood_urea",
                   "sc": "serum_creatinine",
                   "sod": "sodium",
                   "pot": "potassium",
                   "hemo": "hemoglobin",
                   "pcv": "packed_cell_volume",
                   "wc": "white_blood_cell_count",
                   "rc": "red_blood_cell_count",
                   "htn": "hypertension",
                   "dm": "diabetes_mellitus",
                   "cad": "coronary artery disease",
                    'appet":"appetite",
                   "pe": "pedal_edema",
                   "ane":"anemia"}
        ckd_df.rename(columns=col_dict, inplace=True)
        #Check the column names again
        ckd df.columns
Out[4]: Index(['id', 'age', 'blood_pressure', 'specific_gravity', 'albumin', 'sugar',
                'red_blood_cells', 'pus_cell', 'pus_cell_clumps', 'bacteria',
```

In [5]: ckd_df.head(11).T

Out[5]:

	0	1	2	3	4	5	6	7	8	9	1(
id	0	1	2	3	4	5	6	7	8	9	10
age	48	7	62	48	51	60	68	24	52	53	50
blood_pressure	80	50	80	70	80	90	70	NaN	100	90	60
specific_gravity	1.02	1.02	1.01	1.005	1.01	1.015	1.01	1.015	1.015	1.02	1.01
albumin	1	4	2	4	2	3	0	2	3	2	2
sugar	0	0	3	0	0	0	0	4	0	0	۷
red_blood_cells	NaN	NaN	normal	normal	normal	NaN	NaN	normal	normal	abnormal	NaN
pus_cell	normal	normal	normal	abnormal	normal	NaN	normal	abnormal	abnormal	abnormal	abnorma
pus_cell_clumps	notpresent	notpresent	notpresent	present	notpresent	notpresent	notpresent	notpresent	present	present	presen ⁻
bacteria	notpresent	notpresen ⁻									
blood_glucose_random	121	NaN	423	117	106	74	100	410	138	70	490
blood_urea	36	18	53	56	26	25	54	31	60	107	55
serum_creatinine	1.2	0.8	1.8	3.8	1.4	1.1	24	1.1	1.9	7.2	۷
sodium	NaN	NaN	NaN	111	NaN	142	104	NaN	NaN	114	NaN
potassium	NaN	NaN	NaN	2.5	NaN	3.2	4	NaN	NaN	3.7	NaN
hemoglobin	15.4	11.3	9.6	11.2	11.6	12.2	12.4	12.4	10.8	9.5	9.∠
packed_cell_volume	44	38	31	32	35	39	36	44	33	29	28
white_blood_cell_count	7800	6000	7500	6700	7300	7800	NaN	6900	9600	12100	NaN
red_blood_cell_count	5.2	NaN	NaN	3.9	4.6	4.4	NaN	5	4.0	3.7	NaN
hypertension	yes	no	no	yes	no	yes	no	no	yes	yes	yes
diabetes_mellitus	yes	no	yes	no	no	yes	no	yes	yes	yes	yes
coronary_artery_disease	no	nc									
appetite	good	good	poor	poor	good	good	good	good	good	poor	gooc
pedal_edema	no	no	no	yes	no	yes	no	yes	no	no	nc
anemia	no	no	yes	yes	no	no	no	no	yes	yes	yes
classification	ckd	ckc									

Data DeepDive

unique values in "blood_pressure":
 [80. 50. 70. 90. nan 100. 60. 110. 140. 180. 120.]
unique values in "specific_gravity":

[1.02 1.01 1.005 1.015 nan 1.025]

unique values in "albumin":
 [1. 4. 2. 3. 0. nan 5.]

unique values in "sugar":

20. 29. 28. 22. 79.]

[0. 3. 4. 1. nan 2. 5.]

unique values in "red_blood_cells":

[nan 'normal' 'abnormal']

unique values in "pus_cell":

['normal' 'abnormal' nan]

unique values in "pus_cell_clumps":

```
In [7]: |#Replace incorrect values
       ckd_df['diabetes_mellitus'] = ckd_df['diabetes_mellitus'].replace(to_replace={'\tno':'no','\tyes':'yes',' yes':'y
       ckd_df['coronary_artery_disease'] = ckd_df['coronary_artery_disease'].replace(to_replace='\tno',value='no')
       ckd_df['white_blood_cell_count'] = ckd_df['white_blood_cell_count'].replace(to_replace='\t8400',value='8400')
        ckd_df["classification"]=ckd_df["classification"].replace("ckd\t", "ckd")
       for i in range(ckd_df.shape[0]):
           if ckd_df.iloc[i,16]=='\t?':
               ckd df.iloc[i,16]=np.nan
           if ckd_df.iloc[i,16]=='\t43':
               ckd_df.iloc[i,16]='43'
           if ckd_df.iloc[i,17]=='\t?':
               ckd_df.iloc[i,17]=np.nan
           if ckd_df.iloc[i,17]=='\t6200':
               ckd_df.iloc[i,17]= '6200'
           if ckd_df.iloc[i,18]=='\t?':
               ckd_df.iloc[i,18]=np.nan
           if ckd_df.iloc[i,25]=='ckd':
               ckd_df.iloc[i,25]='1'
           if ckd_df.iloc[i,25]=='notckd':
               ckd_df.iloc[i,25]='0'
       for i in ckd_df.drop("id",axis=1).columns:
           print('unique values in "{}":\n'.format(i),ckd_df[i].unique())
        unique values in "age":
        [48. 7. 62. 51. 60. 68. 24. 52. 53. 50. 63. 40. 47. 61. 21. 42. 75. 69.
        nan 73. 70. 65. 76. 72. 82. 46. 45. 35. 54. 11. 59. 67. 15. 55. 44. 26.
        64. 56. 5. 74. 38. 58. 71. 34. 17. 12. 43. 41. 57. 8. 39. 66. 81. 14.
        27. 83. 30. 4. 3. 6. 32. 80. 49. 90. 78. 19. 2. 33. 36. 37. 23. 25.
        20. 29. 28. 22. 79.1
        unique values in "blood pressure":
        [ 80. 50. 70. 90. nan 100. 60. 110. 140. 180. 120.]
        unique values in "specific gravity":
        [1.02 1.01 1.005 1.015 nan 1.025]
        unique values in "albumin":
        [ 1. 4. 2. 3. 0. nan 5.]
        unique values in "sugar":
        [ 0. 3. 4. 1. nan 2. 5.]
        unique values in "red_blood_cells":
        [nan 'normal' 'abnormal']
       unique values in "pus_cell":
        ['normal' 'abnormal' nan]
        unique values in "pus_cell_clumps":
        ['notpresent' 'present' nan]
        unique values in "bacteria":
        ['notpresent' 'present' nan]
        unique values in "blood_glucose_random":
        [121. nan 423. 117. 106. 74. 100. 410. 138. 70. 490. 380. 208. 98.
        157. 76. 99. 114. 263. 173. 95. 108. 156. 264. 123. 93. 107. 159.
        140. 171. 270. 92. 137. 204. 79. 207. 124. 144. 91. 162. 246. 253.
        141. 182. 86. 150. 146. 425. 112. 250. 360. 163. 129. 133. 102. 158.
        165. 132. 104. 127. 415. 169. 251. 109. 280. 210. 219. 295. 94. 172.
        101. 298. 153. 88. 226. 143. 115. 89. 297. 233. 294. 323. 125. 90.
        308. 118. 224. 128. 122. 214. 213. 268. 256. 84. 105. 288. 139. 78.
        273. 242. 424. 303. 148. 160. 192. 307. 220. 447. 309. 22. 111. 261.
        215. 234. 131. 352. 80. 239. 110. 130. 184. 252. 113. 230. 341. 255.
        103. 238. 248. 120. 241. 269. 201. 203. 463. 176. 82. 119. 97. 96.
         81. 116. 134. 85. 83. 87. 75.]
        unique values in "blood urea":
        [ 36.
                18.
                     53.
                          56.
                                26.
                                       25.
                                            54.
                                                  31.
                                                        60. 107.
                                                                    55.
                                                                         72.
                                     27. 148. 180. 163.
         86.
               90. 162.
                           46.
                                87.
                                                              nan
                                                                   50.
                                                                         75.
                                39. 153.
                                           29.
         45.
               28. 155.
                          33.
                                                  65.
                                                      103.
                                                             70.
                                                                   80.
                                                                         20.
                          24.
                                17.
                                      32. 114.
        202.
               77.
                    89.
                                                  66.
                                                       38. 164.
                                                                  142.
                                                                         96.
               15. 111.
         391.
                          73.
                                19.
                                      92.
                                          35.
                                                 16. 139.
                                                                   85.
                                                                         98.
                                                             48.
        186.
               37.
                     47.
                          52.
                                82.
                                      51. 106.
                                                 22. 217.
                                                             88.
                                                                 118.
                                                                         50.1
                                      30. 125.
         71.
               34.
                     40.
                          21.
                               219.
                                                       49. 208.
                                                                 176.
                                                166.
         145.
              165.
                    322.
                          23.
                               235.
                                     132.
                                           76.
                                                 42.
                                                       44.
                                                            41.
                                                                  113.
        146. 58. 133. 137. 67. 115. 223.
                                                           94.
                                                 98.6 158.
                                                                  74. 150.
         61. 57. 95. 191. 93. 241.
                                           64.
                                                 79. 215. 309.
                                                                  10. ]
        unique values in "serum_creatinine":
        [ 1.2  0.8  1.8  3.8  1.4
                                     1.1 24.
                                                 1.9 7.2 4.
                                                                   2.7
                                                                        2.1
                                                3.9 76.
         4.6 4.1
                    9.6 2.2 5.2
                                     1.3
                                           1.6
                                                             7.7
                                                                   nan 2.4
         7.3 1.5
                    2.5
                          2.
                                3.4
                                      0.7
                                           1.
                                                10.8
                                                       6.3
                                                             5.9
                                                                  0.9
         3.25 9.7
                                                       6.7 8.5
                          3.2 32.
                                      0.6
                                          6.1
                     6.4
                                                3.3
                                                                   2.8 15.
         2.9 1.7
                                      4.4 10.2 11.5
                                                       0.5 12.2
                    3.6
                          5.6 6.5
                                                                   5.3
                                                                        9.2
        13.8 16.9 6.
                          7.1 18.
                                      2.3 13.
                                                 48.1 14.2 16.4
                                                                  2.6
                          9.3 6.8 13.5 12.8 11.9 12.
                                                           13.4 15.2 13.3
         4.3 18.1 11.8
         0.4]
        unique values in "sodium":
        [ nan 111. 142. 104. 114. 131. 138. 135. 130. 141. 139.
        136. 129. 140. 132. 133. 134. 125. 163. 137. 128. 143. 127.
        146. 126. 122. 147. 124. 115. 145. 113. 120. 150. 144. ]
        unique values in "potassium":
        [ nan 2.5 3.2 4. 3.7 4.2 5.8 3.4 6.4 4.9 4.1 4.3 5.2 3.8
         4.6 3.9 4.7 5.9 4.8 4.4 6.6 39. 5.5 5. 3.5 3.6 7.6 2.9
         4.5 5.7 5.4 5.3 47. 6.3 5.1 5.6 3. 2.8 2.7 6.5 3.3]
       unique values in "hemoglobin":
```

```
[15.4 11.3 9.6 11.2 11.6 12.2 12.4 10.8 9.5 9.4 9.7 9.8 5.6 7.6
12.6 12.1 12.7 10.3 7.7 10.9 nan 11.1 9.9 12.5 12.9 10.1 12. 13.
 7.9 9.3 15. 10. 8.6 13.6 10.2 10.5 6.6 11. 7.5 15.6 15.2 4.8
 9.1 8.1 11.9 13.5 8.3 7.1 16.1 10.4 9.2 6.2 13.9 14.1 6. 11.8
11.7 11.4 14. 8.2 13.2 6.1 8. 12.3 8.4 14.3 9. 8.7 10.6 13.1
10.7 5.5 5.8 6.8 8.8 8.5 13.8 11.5 7.3 13.7 12.8 13.4 6.3 3.1
17. 15.9 14.5 15.5 16.2 14.4 14.2 16.3 14.8 16.5 15.7 13.3 14.6 16.4
16.9 16. 14.7 16.6 14.9 16.7 16.8 15.8 15.1 17.1 17.2 15.3 17.3 17.4
17.7 17.8 17.5 17.6]
unique values in "packed_cell_volume":
 ['44' '38' '31' '32' '35' '39' '36' '33' '29' '28' nan '16' '24' '37' '30'
 '34' '40' '45' '27' '48' '52' '14' '22' '18' '42' '17' '46' '23' '19'
 '25' '41' '26' '15' '21' '43' '20' '47' '9' '49' '50' '53' '51' '54']
unique values in "white blood_cell_count":
['7800' '6000' '7500' '6700' '7300' nan '6900' '9600' '12100' '4500'
 '12200' '11000' '3800' '11400' '5300' '9200' '6200' '8300' '8400' '10300'
 '9800' '9100' '7900' '6400' '8600' '18900' '21600' '4300' '8500' '11300'
 '7200' '7700' '14600' '6300' '7100' '11800' '9400' '5500' '5800' '13200'
 '12500' '5600' '7000' '11900' '10400' '10700' '12700' '6800' '6500'
 '13600' '10200' '9000' '14900' '8200' '15200' '5000' '16300' '12400'
 '10500' '4200' '4700' '10900' '8100' '9500' '2200' '12800' '11200'
 '19100' '12300' '16700' '2600' '26400' '8800' '7400' '4900' '8000'
 '12000' '15700' '4100' '5700' '11500' '5400' '10800' '9900' '5200' '5900'
 '9300' '9700' '5100' '6600']
unique values in "red_blood_cell_count":
['5.2' nan '3.9' '4.6' '4.4' '5' '4.0' '3.7' '3.8' '3.4' '2.6' '2.8' '4.3'
 '3.2' '3.6' '4' '4.1' '4.9' '2.5' '4.2' '4.5' '3.1' '4.7' '3.5' '6.0'
 '5.0' '2.1' '5.6' '2.3' '2.9' '2.7' '8.0' '3.3' '3.0' '3' '2.4' '4.8'
 '5.4' '6.1' '6.2' '6.3' '5.1' '5.8' '5.5' '5.3' '6.4' '5.7' '5.9' '6.5']
unique values in "hypertension":
['yes' 'no' nan]
unique values in "diabetes_mellitus":
['yes' 'no' nan]
unique values in "coronary_artery_disease":
['no' 'yes' nan]
unique values in "appetite":
['good' 'poor' nan]
unique values in "pedal_edema":
['no' 'yes' nan]
unique values in "anemia":
['no' 'yes' nan]
unique values in "classification":
['1' '0']
```

In [8]: # Observing the summarized information of data ckd_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 400 entries, 0 to 399
Data columns (total 26 columns):

#	Column	•	-Null Count	Dtype
0	id	400	non-null	 int64
1	age		non-null	float64
2	blood pressure		non-null	float64
3	specific_gravity	353	non-null	float64
4	albumin	354	non-null	float64
5	sugar	351	non-null	float64
6	red blood cells	248	non-null	object
7	pus_cell	335	non-null	object
8	pus_cell_clumps	396	non-null	object
9	bacteria	396	non-null	object
10	blood_glucose_random	356	non-null	float64
11	blood_urea	381	non-null	float64
12	serum_creatinine	383	non-null	float64
13	sodium	313	non-null	float64
14	potassium	312	non-null	float64
15	hemoglobin	348	non-null	float64
16	<pre>packed_cell_volume</pre>	329	non-null	object
17	white_blood_cell_count	294	non-null	object
18	red_blood_cell_count	269	non-null	object
19	hypertension	398	non-null	object
20	diabetes_mellitus	398	non-null	object
21	coronary_artery_disease	398	non-null	object
22	appetite	399	non-null	object
23	pedal_edema	399	non-null	object
24	anemia	399	non-null	object
25	classification	400	non-null	object
dtype	es: float64(11), int64(1)	, ob	ject(14)	

dtypes: float64(11), int64(1), object(14)
memory usage: 81.4+ KB

```
In [9]: | ckd_df.iloc[:,-1]=ckd_df.iloc[:,-1].astype('int64')
        ckd_df.head(11).T
```

Out[9]:

	0	1	2	3	4	5	6	7	8	9	10
id	0	1	2	3	4	5	6	7	8	9	10
age	48	7	62	48	51	60	68	24	52	53	50
blood_pressure	80	50	80	70	80	90	70	NaN	100	90	60
specific_gravity	1.02	1.02	1.01	1.005	1.01	1.015	1.01	1.015	1.015	1.02	1.01
albumin	1	4	2	4	2	3	0	2	3	2	2
sugar	0	0	3	0	0	0	0	4	0	0	4
red_blood_cells	NaN	NaN	normal	normal	normal	NaN	NaN	normal	normal	abnormal	NaN
pus_cell	normal	normal	normal	abnormal	normal	NaN	normal	abnormal	abnormal	abnormal	abnormal
pus_cell_clumps	notpresent	notpresent	notpresent	present	notpresent	notpresent	notpresent	notpresent	present	present	present
bacteria	notpresent										
blood_glucose_random	121	NaN	423	117	106	74	100	410	138	70	490
blood_urea	36	18	53	56	26	25	54	31	60	107	55
serum_creatinine	1.2	0.8	1.8	3.8	1.4	1.1	24	1.1	1.9	7.2	4
sodium	NaN	NaN	NaN	111	NaN	142	104	NaN	NaN	114	NaN
potassium	NaN	NaN	NaN	2.5	NaN	3.2	4	NaN	NaN	3.7	NaN
hemoglobin	15.4	11.3	9.6	11.2	11.6	12.2	12.4	12.4	10.8	9.5	9.4
packed_cell_volume	44	38	31	32	35	39	36	44	33	29	28
white_blood_cell_count	7800	6000	7500	6700	7300	7800	NaN	6900	9600	12100	NaN
red_blood_cell_count	5.2	NaN	NaN	3.9	4.6	4.4	NaN	5	4.0	3.7	NaN
hypertension	yes	no	no	yes	no	yes	no	no	yes	yes	yes
diabetes_mellitus	yes	no	yes	no	no	yes	no	yes	yes	yes	yes
coronary_artery_disease	no										
appetite	good	good	poor	poor	good	good	good	good	good	poor	good
pedal_edema	no	no	no	yes	no	yes	no	yes	no	no	no
anemia	no	no	yes	yes	no	no	no	no	yes	yes	yes
classification	1	1	1	1	1	1	1	1	1	1	1

```
In [10]: | print(ckd_df['packed_cell_volume'].unique())
          print(ckd_df['white_blood_cell_count'].unique())
          print(ckd_df['red_blood_cell_count'].unique())
          ['44' '38' '31' '32' '35' '39' '36' '33' '29' '28' nan '16' '24' '37' '30'
           '34' '40' '45' '27' '48' '52' '14' '22' '18' '42' '17' '46' '23' '19'
           '25' '41' '26' '15' '21' '43' '20' '47' '9' '49' '50' '53' '51' '54']
          ['7800' '6000' '7500' '6700' '7300' nan '6900' '9600' '12100' '4500'
           '12200' '11000' '3800' '11400' '5300' '9200' '6200' '8300' '8400' '10300'
           '9800' '9100' '7900' '6400' '8600' '18900' '21600' '4300' '8500' '11300'
           '7200' '7700' '14600' '6300' '7100' '11800' '9400' '5500' '5800' '13200'
           '12500' '5600' '7000' '11900' '10400' '10700' '12700' '6800' '6500'
           '13600' '10200' '9000' '14900' '8200' '15200' '5000' '16300' '12400'
           '10500' '4200' '4700' '10900' '8100' '9500' '2200' '12800' '11200'
           '19100' '12300' '16700' '2600' '26400' '8800' '7400' '4900' '8000'
           '12000' '15700' '4100' '5700' '11500' '5400' '10800' '9900' '5200' '5900'
           '9300' '9700' '5100' '6600']
          ['5.2' nan '3.9' '4.6' '4.4' '5' '4.0' '3.7' '3.8' '3.4' '2.6' '2.8' '4.3' '3.2' '3.6' '4' '4.1' '4.9' '2.5' '4.2' '4.5' '3.1' '4.7' '3.5' '6.0'
           '5.0' '2.1' '5.6' '2.3' '2.9' '2.7' '8.0' '3.3' '3.0' '3' '2.4' '4.8'
           '5.4' '6.1' '6.2' '6.3' '5.1' '5.8' '5.5' '5.3' '6.4' '5.7' '5.9' '6.5']
```

```
In [11]: mistyped=['packed_cell_volume','white_blood_cell_count','red_blood_cell_count']
         for col in mistyped:
                 ckd_df[col]=ckd_df[col].astype('float')
         numeric=[]
         for i in ckd_df.columns:
             if ckd_df[i].dtype=='float64':
                 numeric.append(i)
         numeric
Out[11]: ['age',
           'blood_pressure',
          'specific_gravity',
          'albumin',
           'sugar',
           'blood_glucose_random',
           'blood_urea',
           'serum_creatinine',
           'sodium',
           'potassium',
          'hemoglobin',
           'packed_cell_volume',
           'white_blood_cell_count',
           'red_blood_cell_count']
In [12]: ckd_df.drop('id',axis=1,inplace=True)
         categoricals=[]
         for col in ckd_df.columns:
             if not col in numeric:
                 categoricals.append(col)
         categoricals.remove('classification')
         categoricals
Out[12]: ['red_blood_cells',
           'pus_cell',
           'pus_cell_clumps',
           'bacteria',
           'hypertension',
           'diabetes_mellitus',
           'coronary_artery_disease',
           'appetite',
           'pedal_edema',
           'anemia']
In [13]: |import warnings
         warnings.simplefilter('ignore')
         import matplotlib.style as style
         style.use('fivethirtyeight')
```

Checking distribution of the numerical features

Checking distribution of the Categorical features

```
In [15]: style.use('fivethirtyeight')
         fig, axes = plt.subplots(nrows=5, ncols=2, figsize=(15,30))
         fig.subplots_adjust(hspace=0.5)
         fig.suptitle('Distributions of Categorical Features')
         n_{rows}, n_{cols} = (5,2)
         for index, column in enumerate(categoricals):
             i,j = index // n_cols, index % n_cols
             miss_perc="%.2f"%(100*(1-(ckd_df[column].dropna().shape[0])/ckd_df.shape[0]))
             collabel=column+"\n({}% is missing)".format(miss_perc)
             fig = sns.countplot(x=column, data=ckd_df,label=collabel,
                                 palette=sns.cubehelix_palette(rot=-.4,light=0.7,hue=1), ax=axes[i,j])
             axes[i,j].set_title(collabel,fontsize=25)
             axes[i,j].set_xlabel(None)
             axes[i,j].set_ylabel("Count",fontsize=20)
             axes[i,j].set_xticklabels(axes[i,j].get_xticklabels(), Fontsize=20)
         plt.show()
```



```
In [16]: import matplotlib.ticker as ticker
         style.use('fivethirtyeight')
         # Some random data
         ncount = 400
         plt.figure(figsize=(15,8))
         ax = sns.countplot(x="classification", data=ckd_df)
         plt.title('Distribution of classification sata')
         plt.xlabel('Type')
         # Make twin axis
         ax2=ax.twinx()
         # Switch so count axis is on right, frequency on left
         ax2.yaxis.tick_left()
         ax.yaxis.tick_right()
         # Also switch the labels over
         ax.yaxis.set_label_position('right')
         ax2.yaxis.set_label_position('left')
         ax2.set_ylabel('Frequency [%]')
         for p in ax.patches:
             x=p.get_bbox().get_points()[:,0]
             y=p.get_bbox().get_points()[1,1]
             ax.annotate('\{:.1f\}%'.format(100.*y/ncount), (x.mean(), y),
                     ha='center', va='bottom') # set the alignment of the text
         # Use a LinearLocator to ensure the correct number of ticks
         ax.yaxis.set_major_locator(ticker.LinearLocator(11))
         # Fix the frequency range to 0-100
         ax2.set_ylim(0,100)
         ax.set_ylim(0,ncount)
         # And use a MultipleLocator to ensure a tick spacing of 10
         ax2.yaxis.set_major_locator(ticker.MultipleLocator(10))
         # Need to turn the grid on ax2 off, otherwise the gridlines end up on top of the bars
         ax2.grid(None)
```



```
In [17]: for i in range(ckd_df.shape[0]):
    if ckd_df.iloc[i,24]=='ckd':
        ckd_df.iloc[i,24]='1'
    if ckd_df.iloc[i,24]=='notckd':
        ckd_df.iloc[i,24]='0'
```


In [19]: ckd_df.head(10).T

Out[19]:

	0	1	2	3	4	5	6	7	8	9
age	48	7	62	48	51	60	68	24	52	53
blood_pressure	80	50	80	70	80	90	70	NaN	100	90
specific_gravity	1.02	1.02	1.01	1.005	1.01	1.015	1.01	1.015	1.015	1.02
albumin	1	4	2	4	2	3	0	2	3	2
sugar	0	0	3	0	0	0	0	4	0	0
red_blood_cells	NaN	NaN	normal	normal	normal	NaN	NaN	normal	normal	abnormal
pus_cell	normal	normal	normal	abnormal	normal	NaN	normal	abnormal	abnormal	abnormal
pus_cell_clumps	notpresent	notpresent	notpresent	present	notpresent	notpresent	notpresent	notpresent	present	present
bacteria	notpresent									
blood_glucose_random	121	NaN	423	117	106	74	100	410	138	70
blood_urea	36	18	53	56	26	25	54	31	60	107
serum_creatinine	1.2	0.8	1.8	3.8	1.4	1.1	24	1.1	1.9	7.2
sodium	NaN	NaN	NaN	111	NaN	142	104	NaN	NaN	114
potassium	NaN	NaN	NaN	2.5	NaN	3.2	4	NaN	NaN	3.7
hemoglobin	15.4	11.3	9.6	11.2	11.6	12.2	12.4	12.4	10.8	9.5
packed_cell_volume	44	38	31	32	35	39	36	44	33	29
white_blood_cell_count	7800	6000	7500	6700	7300	7800	NaN	6900	9600	12100
red_blood_cell_count	5.2	NaN	NaN	3.9	4.6	4.4	NaN	5	4	3.7
hypertension	yes	no	no	yes	no	yes	no	no	yes	yes
diabetes_mellitus	yes	no	yes	no	no	yes	no	yes	yes	yes
coronary_artery_disease	no									
appetite	good	good	poor	poor	good	good	good	good	good	poor
pedal_edema	no	no	no	yes	no	yes	no	yes	no	no
anemia	no	no	yes	yes	no	no	no	no	yes	yes
classification	1	1	1	1	1	1	1	1	1	1

One-Hot Encoding

In [20]: onehotdata=pd.get_dummies(ckd_df,drop_first=True,prefix_sep=': ')
onehotdata.head(13).T

Out[20]:

	0	1	2	3	4	5	6	7	8	9	10	11	12
age	48.00	7.00	62.00	48.000	51.00	60.000	68.00	24.000	52.000	53.00	50.00	63.00	68.000
blood_pressure	80.00	50.00	80.00	70.000	80.00	90.000	70.00	NaN	100.000	90.00	60.00	70.00	70.000
specific_gravity	1.02	1.02	1.01	1.005	1.01	1.015	1.01	1.015	1.015	1.02	1.01	1.01	1.015
albumin	1.00	4.00	2.00	4.000	2.00	3.000	0.00	2.000	3.000	2.00	2.00	3.00	3.000
sugar	0.00	0.00	3.00	0.000	0.00	0.000	0.00	4.000	0.000	0.00	4.00	0.00	1.000
blood_glucose_random	121.00	NaN	423.00	117.000	106.00	74.000	100.00	410.000	138.000	70.00	490.00	380.00	208.000
blood_urea	36.00	18.00	53.00	56.000	26.00	25.000	54.00	31.000	60.000	107.00	55.00	60.00	72.000
serum_creatinine	1.20	0.80	1.80	3.800	1.40	1.100	24.00	1.100	1.900	7.20	4.00	2.70	2.100
sodium	NaN	NaN	NaN	111.000	NaN	142.000	104.00	NaN	NaN	114.00	NaN	131.00	138.000
potassium	NaN	NaN	NaN	2.500	NaN	3.200	4.00	NaN	NaN	3.70	NaN	4.20	5.800
hemoglobin	15.40	11.30	9.60	11.200	11.60	12.200	12.40	12.400	10.800	9.50	9.40	10.80	9.700
packed_cell_volume	44.00	38.00	31.00	32.000	35.00	39.000	36.00	44.000	33.000	29.00	28.00	32.00	28.000
white_blood_cell_count	7800.00	6000.00	7500.00	6700.000	7300.00	7800.000	NaN	6900.000	9600.000	12100.00	NaN	4500.00	12200.000
red_blood_cell_count	5.20	NaN	NaN	3.900	4.60	4.400	NaN	5.000	4.000	3.70	NaN	3.80	3.400
classification	1.00	1.00	1.00	1.000	1.00	1.000	1.00	1.000	1.000	1.00	1.00	1.00	1.000
red_blood_cells: normal	0.00	0.00	1.00	1.000	1.00	0.000	0.00	1.000	1.000	0.00	0.00	0.00	0.000
pus_cell: normal	1.00	1.00	1.00	0.000	1.00	0.000	1.00	0.000	0.000	0.00	0.00	0.00	1.000
pus_cell_clumps: present	0.00	0.00	0.00	1.000	0.00	0.000	0.00	0.000	1.000	1.00	1.00	1.00	1.000
bacteria: present	0.00	0.00	0.00	0.000	0.00	0.000	0.00	0.000	0.000	0.00	0.00	0.00	0.000
hypertension: yes	1.00	0.00	0.00	1.000	0.00	1.000	0.00	0.000	1.000	1.00	1.00	1.00	1.000
diabetes_mellitus: yes	1.00	0.00	1.00	0.000	0.00	1.000	0.00	1.000	1.000	1.00	1.00	1.00	1.000
coronary_artery_disease: yes	0.00	0.00	0.00	0.000	0.00	0.000	0.00	0.000	0.000	0.00	0.00	0.00	1.000
appetite: poor	0.00	0.00	1.00	1.000	0.00	0.000	0.00	0.000	0.000	1.00	0.00	1.00	1.000
pedal_edema: yes	0.00	0.00	0.00	1.000	0.00	1.000	0.00	1.000	0.000	0.00	0.00	1.00	1.000
anemia: yes	0.00	0.00	1.00	1.000	0.00	0.000	0.00	0.000	1.000	1.00	1.00	0.00	0.000

```
In [21]: # define imputer
    from sklearn.impute import KNNImputer
    imputer = KNNImputer(n_neighbors=5, weights='uniform', metric='nan_euclidean')
    impute_columns=list(set(onehotdata.columns)-set(["classification"]))
    print(impute_columns)

['blood_urea', 'serum_creatinine', 'appetite: poor', 'anemia: yes', 'potassium', 'sugar', 'bacteria: presen
    t', 'albumin', 'hemoglobin', 'age', 'hypertension: yes', 'blood_pressure', 'red_blood_cell_count', 'specific_
    gravity', 'pedal_edema: yes', 'pus_cell: normal', 'pus_cell_clumps: present', 'packed_cell_volume', 'coronary_
    artery_disease: yes', 'sodium', 'white_blood_cell_count', 'red_blood_cells: normal', 'diabetes_mellitus: ye
    s', 'blood_glucose_random']

In [22]: imputer.fit(onehotdata[impute_columns])

Out[22]: KNNImputer()

In [23]: X_trans=pd.DataFrame(imputer.transform(onehotdata[impute_columns]), columns=impute_columns)
```

In [24]: X_trans.head(13).T

Out[24]:

	0	1	2	3	4	5	6	7	8	9	10	11	12
blood_urea	36.00	18.00	53.00	56.000	26.00	25.000	54.00	31.000	60.000	107.00	55.00	60.00	72.000
serum_creatinine	1.20	0.80	1.80	3.800	1.40	1.100	24.00	1.100	1.900	7.20	4.00	2.70	2.100
appetite: poor	0.00	0.00	1.00	1.000	0.00	0.000	0.00	0.000	0.000	1.00	0.00	1.00	1.000
anemia: yes	0.00	0.00	1.00	1.000	0.00	0.000	0.00	0.000	1.000	1.00	1.00	0.00	0.000
potassium	4.20	3.92	4.20	2.500	3.98	3.200	4.00	4.200	4.960	3.70	4.56	4.20	5.800
sugar	0.00	0.00	3.00	0.000	0.00	0.000	0.00	4.000	0.000	0.00	4.00	0.00	1.000
bacteria: present	0.00	0.00	0.00	0.000	0.00	0.000	0.00	0.000	0.000	0.00	0.00	0.00	0.000
albumin	1.00	4.00	2.00	4.000	2.00	3.000	0.00	2.000	3.000	2.00	2.00	3.00	3.000
hemoglobin	15.40	11.30	9.60	11.200	11.60	12.200	12.40	12.400	10.800	9.50	9.40	10.80	9.700
age	48.00	7.00	62.00	48.000	51.00	60.000	68.00	24.000	52.000	53.00	50.00	63.00	68.000
hypertension: yes	1.00	0.00	0.00	1.000	0.00	1.000	0.00	0.000	1.000	1.00	1.00	1.00	1.000
blood_pressure	80.00	50.00	80.00	70.000	80.00	90.000	70.00	74.000	100.000	90.00	60.00	70.00	70.000
red_blood_cell_count	5.20	4.96	3.80	3.900	4.60	4.400	4.64	5.000	4.000	3.70	4.92	3.80	3.400
specific_gravity	1.02	1.02	1.01	1.005	1.01	1.015	1.01	1.015	1.015	1.02	1.01	1.01	1.015
pedal_edema: yes	0.00	0.00	0.00	1.000	0.00	1.000	0.00	1.000	0.000	0.00	0.00	1.00	1.000
pus_cell: normal	1.00	1.00	1.00	0.000	1.00	0.000	1.00	0.000	0.000	0.00	0.00	0.00	1.000
pus_cell_clumps: present	0.00	0.00	0.00	1.000	0.00	0.000	0.00	0.000	1.000	1.00	1.00	1.00	1.000
packed_cell_volume	44.00	38.00	31.00	32.000	35.00	39.000	36.00	44.000	33.000	29.00	28.00	32.00	28.000
coronary_artery_disease: yes	0.00	0.00	0.00	0.000	0.00	0.000	0.00	0.000	0.000	0.00	0.00	0.00	1.000
sodium	137.60	136.80	133.80	111.000	138.40	142.000	104.00	133.800	134.000	114.00	139.00	131.00	138.000
white_blood_cell_count	7800.00	6000.00	7500.00	6700.000	7300.00	7800.000	10280.00	6900.000	9600.000	12100.00	9260.00	4500.00	12200.000
red_blood_cells: normal	0.00	0.00	1.00	1.000	1.00	0.000	0.00	1.000	1.000	0.00	0.00	0.00	0.000
diabetes_mellitus: yes	1.00	0.00	1.00	0.000	0.00	1.000	0.00	1.000	1.000	1.00	1.00	1.00	1.000
blood_glucose_random	121.00	113.00	423.00	117.000	106.00	74.000	100.00	410.000	138.000	70.00	490.00	380.00	208.000

In [25]: X_trans # final datset

Out[25]:

	blood_urea	serum_creatinine	appetite: poor	anemia: yes	potassium	sugar	bacteria: present	albumin	hemoglobin	age	 pedal_edema: yes	pus_cell: normal	pus_cell_
0	36.0	1.2	0.0	0.0	4.20	0.0	0.0	1.0	15.4	48.0	 0.0	1.0	_
1	18.0	0.8	0.0	0.0	3.92	0.0	0.0	4.0	11.3	7.0	 0.0	1.0	
2	53.0	1.8	1.0	1.0	4.20	3.0	0.0	2.0	9.6	62.0	 0.0	1.0	
3	56.0	3.8	1.0	1.0	2.50	0.0	0.0	4.0	11.2	48.0	 1.0	0.0	
4	26.0	1.4	0.0	0.0	3.98	0.0	0.0	2.0	11.6	51.0	 0.0	1.0	
395	49.0	0.5	0.0	0.0	4.90	0.0	0.0	0.0	15.7	55.0	 0.0	1.0	
396	31.0	1.2	0.0	0.0	3.50	0.0	0.0	0.0	16.5	42.0	 0.0	1.0	
397	26.0	0.6	0.0	0.0	4.40	0.0	0.0	0.0	15.8	12.0	 0.0	1.0	
398	50.0	1.0	0.0	0.0	4.90	0.0	0.0	0.0	14.2	17.0	 0.0	1.0	
399	18.0	1.1	0.0	0.0	3.50	0.0	0.0	0.0	15.8	58.0	 0.0	1.0	

400 rows \times 24 columns

Modelling

```
In [26]: X=X_trans
         y=ckd_df["classification"]
         X_prod=X_trans
         print(X.shape)
         print(y.shape)
         print(X_prod.shape)
         (400, 24)
         (400,)
         (400, 24)
         Predictive Models with hyperparameter tuning Section
In [27]: from sklearn.metrics import classification_report
         from sklearn.metrics import accuracy_score
         from sklearn.metrics import confusion_matrix
         from sklearn.model_selection import GridSearchCV
In [42]: def display_confusion_matrix(y_test,y_pred):
             cm = confusion_matrix(y_test, y_pred)
             group_names = ["True Neg", "False Pos", "False Neg", "True Pos"]
             group_counts = ["{0:0.0f}".format(value) for value in cm.flatten()]
             group_percentages = ["{0:.2%}".format(value) for value in cm.flatten()/np.sum(cm)]
             labels = [f''(v1)\n(v2)\n(v3)'' for v1, v2, v3 in zip(group_names,group_counts,group_percentages)]
             labels = np.asarray(labels).reshape(2,2)
             sns.heatmap(cm, annot=labels, fmt="", cmap="Blues")
             print(classification_report(y_test, y_pred))
In [35]: def plot_roc_curve(fpr, tpr):
             plt.plot(fpr, tpr, label='ROC')
             plt.plot([0, 1], linestyle='--')
             plt.xlabel('False Positive Rate')
             plt.ylabel('True Positive Rate')
             plt.legend()
             plt.show()
In [36]: ##Split train and test
         from sklearn.model_selection import train_test_split
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20, random_state = 4658)
         print(X_train.shape)
         print(X_test.shape)
         print(y_train.shape)
         print(y_test.shape)
         (320, 24)
         (80, 24)
         (320,)
         (80,)
         StandardScaler data with PCA implementation
In [37]: # performing preprocessing part
         from sklearn.preprocessing import StandardScaler
         sc = StandardScaler()
         X_train = sc.fit_transform(X_train)
         X_test = sc.transform(X_test)
In [38]: # Applying PCA function on training and testing set of X component
         from sklearn.decomposition import PCA
         pca = PCA(n_components = 5)
         X_train = pca.fit_transform(X_train)
         X_test = pca.transform(X_test)
         explained_variance = pca.explained_variance_ratio_
         explained_variance
Out[38]: array([0.30943744, 0.07796278, 0.06483376, 0.05539189, 0.0515917])
```

```
In [43]: from sklearn.neighbors import KNeighborsClassifier
         model = KNeighborsClassifier(n_jobs=-1)
         params = {'n_neighbors':[5,6,7,8,9,10],
                    'leaf_size':[1,2,3,5],
                    'weights':['uniform', 'distance'],
                    'algorithm':['auto', 'ball_tree','kd_tree','brute'],
                    'n_jobs':[-1]}
         start_knn = time.time()
         model1 = GridSearchCV(model, param_grid=params, n_jobs=1)
         model1.fit(X_train, y_train)
         end_knn = time.time()
         final_knn = end_knn - start_knn
         final_knn = round(final_knn,3)
         final knn
         # Print the tuned parameters and score
         print("Tuned Logistic Regression Parameters: {}".format(model1.best_params_))
         print("Best score is {}".format(model1.best_score_))
         print("Best estimator is {} \n\n".format(model1.best_estimator_))
         y_pred = model1.predict(X_test)
         display_confusion_matrix(y_test, y_pred)
         accuracy_knn=accuracy_score(y_test, y_pred)
         print("\nAccuracy of k Nearest Neighbors is \t:", accuracy_knn)
         print("Best Accuracy of k Nearest Neighbors is : {}".format(model1.best_score_))
         print("Computation time {} - Sec".format(final_knn))
         Tuned Logistic Regression Parameters: {'algorithm': 'auto', 'leaf_size': 1, 'n_jobs': -1, 'n_neighbors': 6,
         'weights': 'distance'}
         Best score is 0.984375
         Best estimator is KNeighborsClassifier(leaf_size=1, n_jobs=-1, n_neighbors=6, weights='distance')
                                     recall f1-score
                       precision
                                                        support
                                                             25
                    0
                             1.00
                                       1.00
                                                 1.00
                             1.00
                                       1.00
                    1
                                                 1.00
                                                             55
                                                 1.00
                                                             80
             accuracy
                                       1.00
                                                 1.00
                             1.00
                                                             80
            macro avg
                             1.00
                                       1.00
                                                 1.00
         weighted avg
                                                             80
         Accuracy of k Nearest Neighbors is
                                                  : 1.0
```


Best Accuracy of k Nearest Neighbors is: 0.984375

Computation time 12.225 - Sec

```
In [46]: model.get_params().keys()
Out[46]: dict keys(['algorithm', 'leaf_size', 'metric', 'metric params', 'n_jobs', 'n_neighbors', 'p', 'weights'])
```

Advantages of KNN

- 1. No Training Period: KNN is called Lazy Learner (Instance based learning). It does not learn anything in the training period. It does not derive any discriminative function from the training data. In other words, there is no training period for it. It stores the training dataset and learns from it only at the time of making real time predictions. This makes the KNN algorithm much faster than other algorithms that require training e.g. SVM, Linear Regression etc.
- 2. Since the KNN algorithm requires no training before making predictions, new data can be added seamlessly which will not impact the accuracy of the algorithm.
- 3. KNN is very easy to implement. There are only two parameters required to implement KNN i.e. the value of K and the distance function (e.g. Euclidean or Manhattan etc.)

- 1. Does not work well with large dataset: In large datasets, the cost of calculating the distance between the new point and each existing points is huge which degrades the performance of the algorithm.
- 2. Does not work well with high dimensions: The KNN algorithm doesn't work well with high dimensional data because with large number of dimensions, it becomes difficult for the algorithm to calculate the distance in each dimension.
- 3. Need feature scaling: We need to do feature scaling (standardization and normalization) before applying KNN algorithm to any dataset. If we don't do so, KNN may generate wrong predictions.
- 4. Sensitive to noisy data, missing values and outliers: KNN is sensitive to noise in the dataset. We need to manually impute missing values and remove outliers.

In []: