ECE 153B – Winter 2023 Sensor and Peripheral Interface Design

Lab 3 – PWM and Ultrasonic Sensor

Deadline: Feb 7, 2023, 7:00 PM

Objectives

- 1. Understand the concept of Pulse Width Modulation (PWM)
 - Learn how to configure and start timers
 - Use PWM to control LED brightness
- 2. Understand the basic concept of the timer input capture function
 - Handle different events in the interrupt service routine
 - Handle timer counter overflow and underflow
 - Use a timer to measure the timestamp of a signal edge external to the microprocessor

Grading

Part	Weight
Part A	40 %
Part B	40 %
Questions	20 %

You must submit your code and answers to the questions to the submission link on Gradescope by the specified deadline. In the week following the submission on Gradescope, you will demo your lab to the TA.

Please note that we take the Honor Code very seriously, do not copy the code from others.

Necessary Supplies

- STM32L4 Nucleo Board
- Type A Male to Mini B USB Cable
- HC-SR04 Ultrasonic Distance Sensor
- Breadboard
- Jumper Wires

1 Lab Overview

- A. Configure the timer to generate PWM outputs. Create a periodic dimming light by modifying the duty cycle of the generated PWM output.
- B. Understand how to use timers for input capture. Interface with the HC-SR04 Ultrasonic Distance Sensor and use input capture to get measurements from the sensor.

2 Part A – Pulse Width Modulation

In this part of the lab, you will control the brightness of the green LED using PWM. To do this, you will use the general purpose timers on the STM32 Nucleo board. For this part of the lab, we will just use the default 4 MHz system clock.

2.1 Introduction

From the previous lab, we know that **PA5** (GPIO Port A Pin 5) is connected to the green LED. However, each GPIO pin can also be configured to perform an alternative function by configuring the GPIO to be used as an alternative function and specifying the desired alternative function number. For **PA5**, the available alternative functions are TIM2_CH1, TIM2_ETR, TIM8_CH1N, SPI1_SCK, LPTIM2_ETR and EVENTOUT. The alternative function that we are interested in is TIM2_CH1 (the timer). Figure 1 shows a diagram of the control circuit for channel 1 of timer x and Table 1 shows how the control bits affect the output of the timer control circuit.

Figure 1: Timer x Control for Channel 1

We can change the brightness of an LED by rapidly switching the LED on/off with pulses of varying widths. Depending on the pulse width (i.e. the amount of time in which the signal is high during one clock cycle) of the signal, this will create the effect of the LED being "dimmer" (lower duty cycle) or "brighter" (higher duty cycle). The timers on the STM32L4 Nucleo board can be configured to produce PWM outputs so we can modify the brightness of the LED.

2.2 Lab Exercise

Use the following steps to help you determine the masks and values for the registers that need to be set for configuring PWM using the alternative function of **PA5**. Note that even when using the alternative function of the GPIO pin, we will be getting an output from the alternative function, allowing the green LED to update based on the output of the alternative function.

1. Enable the Clock of GPIO Port A in RCC

Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	∞	7	9	5	4	3	2	1	0
AHB2ENR														RNGEN		AESEN			ADCEN	OTGFSEN					GPIOPHEN	GPIOPGEN	GPIOPFEN	GPIOPEEN	GPIOPDEN	GPIOPCEN	GPIOPBEN	GPIOPAEN
Mask																																
Value																																

AHB2ENR $Mask = 0x$	
AHB2ENR Value = 0x	

2. Enable the Clock of Timer 2 in RCC

Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	∞	7	9	2	4	3	2	1	0
APB1ENR1	LPTIM1EN	OPAMPEN	DAC1EN	PWREN			CAN1EN		I2C3EN	IZCZEN	I2C1EN	UARTSEN	UART4EN	USART3EN	USARTZEN		SPI3EN	SPIZEN			WWDGEN		LCDEN				TIM7EN	TIMGEN	TIMSEN	TIM4EN	TIMSEN	TIMZEN
Mask																																
Value																																

APB1ENR1	$Mask = 0x_{}$	
APR1ENR1	Value = 0x	

3. Configure PA5 to Alternative Function Mode

GPIO Mode: Input (00), Output (01), Alternative Function (10), Analog (11 – default)

Register	31	29	27 26	25	23	21 20	19	17 16	15	13	11 01	ල ∞	6	v 4	8 2	1
MODER	MODE15[1:0]	MODE14[1:0]	MODE13[1:0]	MODE12[1:0]	MODE11[1:0]	MODE10[1:0]	MODE9[1:0]	MODE8[1:0]	MODE7[1:0]	MODE6[1:0]	MODE5[1:0]	MODE4[1:0]	MODE3[1:0]	MODE2[1:0]	MODE1[1:0]	MODEO[1:0]
Mask																
Value																

GPIO	Port	Α	${\tt MODER}$	Mask	$= 0x_{}$		
GPIO	Port	A	MODER	Value	= 0x		

4.	Configure PA5 to Very High Output Speed	
	GPIO Output Speed: Low (00), Medium (01), High (10), Very High (1	1

Register	31	28	27	25	23	20	19	17	15 41	13	11 10	o ∞	9	70 4	2 3	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$
OSPEEDR	OSPEED15[1:0]	OSPEED14[1:0]	OSPEED13[1:0]	OSPEED12[1:0]	OSPEED11[1:0]	OSPEED10[1:0]	OSPEED9[1:0]	OSPEED8[1:0]	OSPEED7 [1:0]	OSPEED6[1:0]	OSPEED5 [1:0]	OSPEED4[1:0]	OSPEED3[1:0]	OSPEED2[1:0]	OSPEED1 [1:0]	OSPEEDO [1:0]
Mask																
Value																

GPIO	Port A	A OSPEEDR	Mask = 0x	
CPIO	Port /	V UGDEEUB	Value = 0x	
GI IO	1 010 7	4 OSPEEDW	varue – Ux	

5. Configure PA5 to No Pull-Up, No Pull-Down GPIO PUPD: No Pull-Up, Pull-Down (00), Pull-Up (01), Pull-Down (10), Reserved (11)

Register	31	29	27 26	25 24	23	21 20	19	17	15	13	11 10	0 ×	6	10 4	ω ₂	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$
PUPDR	PUPD15[1:0]	PUPD14[1:0]	PUPD13[1:0]	PUPD12[1:0]	PUPD11[1:0]	PUPD10[1:0]	PUPD9[1:0]	PUPD8[1:0]	PUPD7[1:0]	PUPD6[1:0]	PUPD5[1:0]	PUPD4[1:0]	PUPD3[1:0]	PUPD2[1:0]	PUPD1[1:0]	PUPD0[1:0]
Mask																
Value																

GPIO Port A I	PUPDR $Mask = 0x$
GPIO Port A I	PUPDR Value = 0x

6. Configure and Select the Alternative Function for PA5

See the STM32L476 Pins + Functions document to find the alternative functions that are available for **PA5**. Then, find the alternative function number for Timer 2 Channel 1 and enter the binary representation of the alternative function into the correct register.

Register	31 29 28 28	27 26 25 24	22 21 20 20	19 18 17 16	15 13 13	11 0 8	r 8 2 4	0 1 2 3
AFR[0]	AFRL7[3:0]	AFRL6[3:0]	AFRL5[3:0]	AFRL4[3:0]	AFRL3[3:0]	AFRL2[3:0]	AFRL1[3:0]	AFRL0[3:0]
Mask								
Value								
AFR[1]	AFRH15[3:0]	AFRH14[3:0]	AFRH13[3:0]	AFRH12[3:0]	AFRH11[3:0]	AFRH10[3:0]	AFRH9[3:0]	AFRH8[3:0]
Mask								
Value								

GPIO Port A AFR[0]	Mask = 0x
GPIO Port A AFR[0]	Value = 0x
GPIO Port A AFR[1]	Mask = 0x
GPIO Port A AFR[1]	Value = 0x

7. Configure the PWM output for Timer 2 Channel 1

Note: The alternative function that we are using is CH1, not CH1N. So, make sure to enable the correct channel in the TIM2_CCER register.

The timer is going to be used in an upcounting configuration. The timer will start from 0 and will continue to increment its counter every clock cycle until it sees the ARR, which will reset the count to 0. Then, the ARR determines the frequency of the PWM signal. The CCR determines when the output signal will change polarity. Then, the CCR determines the duty cycle of the PWM signal. Refer to Section 27.2 in STM32L4x6 Reference Manual for a more detailed description of the purpose of these two values and for example timing diagrams.

We need to set the frequency of the clock that the timer is going to use for counting ticks by scaling the system clock. With knowledge of the tick period, we can set values for CCR and ARR that will effectively make the timer count the time in which the output signal is high. In addition, we must ensure that the correct output channel is enabled. The following is a list of things you have to configure. We have provided a register map for TIM2, but you should also refer to Section 27.4 in STM32L4x6 Reference Manual for more detailed information about each register and the bits in each register.

- (a) [TIM2_CR1] Set the direction such that the timer counts up.
- (b) Set the prescaler value.
- (c) Set the auto-reload value.

- (d) [TIM2_CCMR1] Configure the channel to be used in output compare mode. We will use output compare 1.
 - Clear the output compare mode bits.
 - Set the output compare mode bits to PWM mode 1.
 - Enable output preload.
- (e) [TIM2_CCER] Set the output polarity for compare 1 to active high.
- (f) [TIM2_CCER] Enable the channel 1 output.
- (g) [TIM2_CCRx] Set the capture/compare value. For now, set it such that the duty cycle of the PWM output is 50%. You will be modifying this value later to change the brightness of the green LED.
- (h) [TIM2_CR1] Enable the counter.

Offset	Register	30	29	27	26	24	23	21	19	18	17	16	15	14	13	11	10	6	∞	7	9	ಬ	4	3	2	\vdash	0
0x00	CR1						Res	erve	d							UIFREMAP		CKD [1.0]	C::- [-::0]	ARPE	LO. 13 200	OMD [1:0]	DIR	OPM	URS	UDIS	CEN
	Value																										
0x04	CR2							Re	eserv	ed										TI1S		MMS[2:0]		SCDD			
	Value																										
0x08	SCMR				Res	serv	ed					SMS[3]	ETP	ECE	ETPS[1:0]		FT. [0.0]	E11 [3:0]		MSM		TS[2:0]		SOOO		SMS[2:0]	
	Value																										
0x0C	DIER					Res	erve	d						TDE	COMDE CC4DE	CC3DE	CC2DE	CC1DE	UDE		TIE		CC4IE	CC3IE	CCZIE	CC1IE	UIE
	Value																										
0x10	SR					F	Resei	rved							CC40F	CC30F	CC20F	CC10F			TIF		CC4IF	CC3IF	CCZIF	CC1IF	UIF
	Value																										
0x14	EGR]	Rese:	rvec	l										$_{ m LC}$		CC4G	CC3G	CC2G	CC1G	UG
	Value																										
0x18	CCMR1 Output Compare Mode		Rese	rved		OC2M[3]		Res	erve	d		OC1M[3]	OC2CE		OC2M[2:0]	OC2PE	OC2FE	CC2S[1.0]		OC1CE		OC1M[2:0]		OC1PE	OC1FE	[0.13[1.0]	
	Value																										
	CCMR1 Input Capture Mode				R	eser	rved							L0.6] 407T	[0:0] [0:0]	[0.1]	10ZF20[1:0]	[0.1]8[2]	F2: +1 2200		LO. 67 17 12 T	TOIL [3:0]		TC10561111	TOIL SOLI:01	[0.13[1.0]	72.17.00
	Value																										

Offset	Register	31	30 30	27	26	24	23	21	07 61	18	17	16	15	14 5	12	11	10	ာ «		. 9	ಬ	4	ကြ	0 1 10
0x1C	CCMR2 Output Compare Mode Value			erved		0C4M[3]		Rese				0C3M[3]	OC2CE	DC4M[2:0]	1	OC4PE	OC4FE		DC3CE		OC3M[2:0]		OC3PE	
	CCMR2 Input Capture Mode				R	lesei	rved							IC4F[3:0]		TC4PSC[1.0]		CC4S[1:0]					IC3PSC[1:0]	CC3S [1:0]
0x20	Value				R	lesei	rved						CC4NP	CC4P	CC4E	CC3NP		CC3F	CCONP		CC2P	CC2E	CC1NP	CC1P CC1E
	Value		TT				Т	Π	T											Г	Н			
0x24	CNT	UIFCPY			С	NT [30:1	6]							<u>'</u>		(CNT	[15	:0]				
	Value						Ц,																	
0x28	PSC Value				R	lesei	rved	T							_		I	PSC	15	:0 <u>J</u>	_			
	ARR				ΔR	В [З·	 1:16	1										ARR	<u> </u> [15	. 01				
0x2C	Value				1110		1.10	<u> </u>									1	11010		. 0]				
024	CCR1				CCF	1 [3	1:16	3]									C	CR1	[15	: 0]			
0x34	Value																							
0x38	CCR2				CCF	2 [3	1:16	3]			-				_		С	CR2	[15	:0]			
	Value				COL	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4 4 4											an a	[45		<u> </u>			
0x3C	CCR3 Value				CCF	เป็	1:16	 										CR3	115): U.	J			
	CCR4				CCF	Ⅱ १4 ГЗ	1:16	1 31									C	CR4	Π Γ15	:0	1			
0x40	Value							ĪT												T				
0x48	DCR					F	Reser	ved									DBL[4:0]						[0.1]	
	Value				D		1	Ш	_	Ш								MAD	[45		<u> </u>			
0x4C	DMAR Value				K	lesei	rved								Τ		ע	MAB	115): U_]			
0x50	OR1								R	lese	rve	d											TI1_RMP	ETR13_RMP ITR1_RMP
	Value																I							
0x60	OR2				Re	serv	ed											Ι	Res	erve	ed			
	Value																							

2.3 Questions

Now that everything is set up, you will now be able to play around with different PWM outputs. As an exercise, choose an ARR value and compute the pulse width and duty cycle for the following cases. Make sure to turn this in along with the questions at the end.

Case	CCR Value	Pulse Width	Pulse Period	Duty Cycle
1	$CCR = \frac{1}{6} \times ARR = $			
2	$CCR = \frac{1}{3} \times ARR = $			
3	$CCR = \frac{1}{2} \times ARR = $			

Next, write code that will make the green LED change its brightness periodically. Demonstrate the periodic dimming to get checked off for this part of the lab.

3 Part B – Timer Input Capture and Ultrasonic Sensor

3.1 Introduction

The free-run counter (CNT) of timers used in this lab are limited to 16 bits. There are two special events that can occur while counting:

- While up-counting, CNT restarts from 0 after reaching 0xFFFF. This event is called *counter* overflow.
- While down-counting, CNT restarts from <code>OxFFFF</code> after reaching <code>O</code>. This event is called <code>counter underflow</code>.

When an overflow or underflow occurs, the timer can generate a time interrupt if the **Update Interrupt Enable** (UIE) bit is set in the timer **DMA/Interrupt Enable Register** (TIM_DIER).

In the interrupt service routine of the corresponding timer, you can check the timer **Status Register** (TIM_SR) to find out what events have generated the timer interrupt.

- If a counter overflow or underflow occurs, the **Update Interrupt Flag** (UIF) is set in TIM_SR. This flag is set by the hardware.
- If a channel is configured to input mode, a valid transition of an external signal can trigger the timer interrupt. Take channel 1 as an example. Say channel 1 is configured as input (capture) and the **Channel 1 Interrupt Flag** (CC1IF) in TIM_SR is set. Then, when the capture of channel 1 has been triggered, the counter value is copied to the CCR1 register. CCxIF is set by the hardware.

The timer interrupt service routine must clear these flags in TIM_SR to prevent it from being immediately called again by the processor. CCxIF is automatically cleared when the TIM_CCRx register is read from. However, UIF must be explicitly cleared.

3.2 Lab Exercise

In this part of the lab, you will interface with the ultrasonic distance sensor and store your measurements in the Stack or monitor them in the watch window. The following are the main points that you need to know when interfacing with the ultrasonic distance sensor (see the *HCSR04 Ultrasonic Sensor* datasheet for the full documentation). Figure 2 shows the connections between the STM32L4 Nucleo board and the sensor.

- The sensor is powered with a 5 V source. Connect the Vcc pin on the ultrasonic sensor to the 5V pin on the STM32L4 Nucleo board and connect the GND pins together.
- While the sensor runs at 5 V, it can be triggered with a 3.3 V pulse. The sensor outputs a 5 V signal, but many of the inputs on the STM32L4 Nucleo board are 5 V tolerant and can handle a 5 V input.
- As described in the documentation, to activate the sensor, a high pulse of at least 10 µs must be sent to the Trig input. An ultrasonic 40 kHz burst will be emitted, and the sensor will output (to the Echo pin) a square wave with a pulse width proportional to the distance to the nearest object.
- The resulting square wave can have a pulse width ranging from 150 µs to 25 ms (the pulse width will be 38 ms if there is no object within range). To convert this value to a distance in inches or centimeters, you can use the following formulas.

$$d = \frac{\text{pulse width (µs)}}{58} \text{ cm}$$
 $d = \frac{\text{pulse width (µs)}}{148} \text{ in}$

Figure 2: Connection and Configuration for Sensor Interfacing

For this part of the lab, use **PA9** to create a PWM signal to activate the distance sensor and use **PB6** to capture the resulting square wave.

	Pin	Alternative Function							
Trigger	PA9	TIM1_CH2							
Echo	PB6	TIM4_CH1							

For this part of the lab, the clock frequency is 16 MHz. Set the prescaler value to 15. Then

$$f_{\text{Timer Clock}} = \frac{f_{\text{HSI}}}{1 + \text{PSC}} = \frac{16 \text{ MHz}}{1 + 15} = 1 \text{ MHz}$$

Use the following steps to create a PWM signal that will trigger the ultrasonic sensor. Refer to Sections 8.4 (RCC), 9.4 (GPIO), and 26.4 (Timer 1) in STM32L4x6 Reference Manual for details about registers and their bits.

1. Set up **PA9**.

- (a) Enable the clock for GPIO Port A.
- (b) Configure PA9 to be used as alternative function TIM1_CH2.
- (c) Set **PA9** to no pull-up, no pull-down.
- (d) Set the output type of **PA9** to push-pull.
- (e) Set **PA9** to very high output speed.
- 2. Enable Timer 1 in RCC_APB2ENR.
- 3. Set the prescaler to 15.
- 4. Enable auto reload preload in the control register and set the auto reload value to its maximum value.
- 5. Set the *CCR* value that will trigger the sensor. (*Hint*: What is the timer clock frequency and what kind of signal activates the sensor?)

- 6. In the capture/compare mode register, set the output compare mode such that the timer operates in PWM Mode 1 and enable output compare preload.
- 7. Enable the output in the capture/compare enable register.
- 8. In the break and dead-time register, set the bits (at the same time) for main output enable, off-state selection for run mode, and off-state selection for idle mode.
- 9. Enable update generation in the event generation register.
- 10. Enable update interrupt in the DMA/Interrupt enable register and clear the update interrupt flag in the status register.
- 11. Set the direction of the counter and enable the counter in the control register.

		Control b	its		Output states ⁽¹⁾							
MOE bit OSSI bit OSSR bit CCx			CCxE bit	CCxNE bit	OCx output state	OCxN output state						
			0	0	Output disabled (not driven OCx=0, OCxN=0	by the timer: Hi-Z)						
		0	0	1	Output disabled (not driven by the timer: Hi-Z) OCx=0	OCxREF + Polarity OCxN = OCxREF xor CCxNP						
1	0		0 1 0 OCXREF + Polarity the timer		Output Disabled (not driven by the timer: Hi-Z) OCxN=0							
'	X	х	1	1	OCREF + Polarity + dead- time	Complementary to OCREF (not OCREF) + Polarity + dead-time						
	1		0	1	Off-State (output enabled with inactive state) OCx=CCxP	OCxREF + Polarity OCxN = OCxREF x or CCxNP						
			1	0	OCxREF + Polarity OCx=OCxREF xor CCxP	Off-State (output enabled with inactive state) OCxN=CCxNP						
	0		X	X	Output disabled (not driven							
			0	0	output state is defined by the High, Low or Hi-Z.	e GPIO controller and can be						
			0	1	Off-State (output enabled wi	,						
0			1	0	Asynchronously: OCx=CCxI BRK2 is triggered).	P, OCxN=CCxNP (if BRK or						
Then (the present: assuming and OC: when dr				1	Then (this is valid only if BRK is triggered), if the clock is present: OCx=OISx and OCxN=OISxN after a dead-time, assuming that OISx and OISxN do not correspond to OCX and OCxN both in active state (may cause a short circuit when driving switches in half-bridge configuration). Note: BRK2 can only be used if OSSI = OSSR = 1.							

When both outputs of a channel are not used (control taken over by GPIO), the OISx, OISxN, CCxP and CCxNP bits must be kept cleared.

Table 1: Output Control Bits for Complementary OCx and OCxN Channels with Break Feature

Next, we need to set up input capture. Input capture is used to find the time span between two transitions in a signal (rising, falling, or both). When a transition is detected, the timer hardware generates an interrupt and copies the free run counter value into the capture/compare register. By keeping track of the CCR values from two consecutive interrupts, we can compute the amount of time that has passed between the two transitions. For example, let's say that an interrupt is triggered on both rising and falling edges. Then, taking the difference between the two CCR values will give us the pulse width. See Figure 3 for a visualization of this process.

Figure 3: Computing Pulse Width Using Input Capture

Use the following steps to set up input capture for measuring the pulse width of the ultrasonic sensor's output. Refer to Sections 8.4 (RCC), 9.4 (GPIO), and 27.4 (Timer 4) in STM32L4x6 Reference Manual for details about registers and their bits.

1. Set up **PB6**.

- (a) Enable the clock for GPIO Port B.
- (b) Configure **PB6** to be used as alternative function TIM4_CH1.
- (c) Set **PB6** to no pull-up, no pull-down.
- 2. Enable Timer 4 in RCC_APB1ENRx.
- 3. Set the prescaler to 15.
- 4. Enable auto reload preload in the control register and set the auto reload value to its maximum value.
- 5. In the capture/compare mode register, set the input capture mode bits such that the input capture is mapped to timer input 1.
- 6. In the capture/compare enable register, set bits to capture both rising/falling edges and enable capturing.
- 7. In the DMA/Interrupt enable register, enable both interrupt and DMA requests. In addition, enable the update interrupt.
- 8. Enable update generation in the event generation register.
- 9. Clear the update interrupt flag.
- 10. Set the direction of the counter and enable the counter in the control register.
- 11. Enable the interrupt (TIM4_IRQn) in the NVIC and set its priority to 2.

You will have to implement the interrupt handling function TIM4_IRQHandler(), which should take care of computing the difference between two consecutive CCR values (the first from an interrupt on the rising edge and the second from an interrupt on the falling edge) to compute the

pulse width. (You should not be computing the values between every two consecutive edges.) Remember to clear necessary flags. **Note**: If a counter overflow/underflow occurs, the difference of two consecutive CCR values may not correctly measure the time interval. Why do you think this is the case and how would you fix this issue? (*Hint*: What event occurs when the timer keeps counting, but reaches the maximum value?)

Within the while loop, write code that converts the sensor measurements to a distance measurements in *centimeters*. This value (just the number is fine) should be stored on the Stack (Hint: assign value to local variables) or monitor them in the watch window. If there is no object in range, the value is 0x00.

3.3 Questions

Assume a system clock frequency of 16 MHz, a prescaler value of 25, and the maximum ARR.

- 1. What is the time resolution (i.e. minimum time unit) of the input capture function?
- 2. The pulse width of the ultrasonic sensor's output is in the range 150 µs to 38 ms. What are the differences in CCR values between two consecutive interrupts that correspond to the minimum and maximum pulse widths? Assume that the rising edge is triggered at CCR = 0.
- 3. What is the time (in seconds) between two consecutive timer resets?

4 References

- [1] STM32L4x6 Advanced ARM-based 32-bit MCUs Reference Manual
- [2] Yifeng Zhu, "Embedded Systems with ARM Cortex-M Microcontrollers in Assembly Language and C", ISBN: 0982692633
- [3] HC-SR04 Ultrasonic Sensor User Manual