Отчет по Лабораторной Работе №6

Задача об эпидемии - Вариант 51

Нзита Диатезилуа Катенди

Содержание

Цель работы

Целью данной работы является решение упражнения по эпидемиям на языке программирования julia.

Задание

На одном острове вспыхнула эпидемия. Известно, что из всех проживающих на острове (N=8 124) в момент начала эпидемии (t=0) число заболевших людей (являющихся распространителями инфекции) I(0)=124, А число здоровых людей с иммунитетом к болезни R(0)=30. Таким образом, число людей восприимчивых к болезни, но пока здоровых, в начальный момент времени S(0)=N-I(0)- R(0).

Постройте графики изменения числа особей в каждой из трех групп.

Выполнение лабораторной работы

Рассмотрим простейшую модель эпидемии. Предположим, что некая популяция, состоящая из N особей, (считаем, что популяция изолирована) подразделяется на три группы. Первая группа - это восприимчивые к болезни, но пока здоровые особи, обозначим их через S(t). Вторая группа – это число инфицированных особей, которые также при этом являются распространителями инфекции, обозначим их I(t). А третья группа, обозначающаяся через R(t) – это здоровые особи с иммунитетом к болезни

До того, как число заболевших не превышает критического значения I(t) > I*, считаем, что все больные изолированы и не заражают здоровых. Когда тогда инфицирование способны заражать восприимчивых к болезни особей.

Таким образом, скорость изменения числа S(t) меняется по следующему закону:

$$dS/dt = \{ -aS, ecnu I(t) > I 0, ecnu I(t) <= I^* \}$$

Поскольку каждая восприимчивая к болезни особь, которая, в конце концов, заболевает, сама становится инфекционной, то скорость изменения числа инфекционных особей представляет разность за единицу времени между заразившимися и теми, кто уже болеет и лечится, т.е.:

$$dS/dt = \{ aS - bI если I(t) > I - bI если I(t) <= I^* \}$$

А скорость изменения выздоравливающих особей (при этом приобретающие иммунитет к болезни)

$$dR/dt = b*I$$

Постоянные пропорциональности 🛽 🗓, - это коэффициенты заболеваемости и выздоровления соответственно.

Условие задачи

Придумайте свой пример задачи об эпидемии, задайте начальные условия и коэффициенты пропорциональности. Постройте графики изменения числа особей в каждой из трех групп. Рассмотрите, как будет протекать эпидемия в случае:

Первый случай

I(0) <= I # Второй случай I(0) > I

Код программы (Julia)

using DifferentialEquations using Plots

а = 0.01 # коэффициент заболеваемости b = 0.02 #коэффициент выздоровления N = 8124 # общая численность популяции I0 = 124 # количество инфицированных особей в начальный момент времени R0 = 30 #количество здоровых особей с иммунитетом в начальный момент времени S0 = N - I0 - R0 # количество восприимчивых к болезни особей в начальный момент времени

#Определение функции для дмфференциального уравнения системы SIR

function $sir_model!(du, u, p, t) S, I, R = u a, b = p$

```
du[1] = -a * S * I/N
du[2] = a * S * I/N - b*I
du[3] = b * I
```

end

Временной прамежуток

```
tspan = (0.0, 200.0) t = 0:0.1:200.0
```

Первый случай

```
#Решение системы SIR для случая I(0) <= I* p1 = [a, b] u0 = [S0, I0, R0]
prob1 = ODEProblem(sir_model!, u0, tspan, p1) sol1 = solve(prob1)
#Простроение графиков
plot(sol1, label = ["S(t)" "I(t)" "R(t)"], xlabel = "Time", ylabel = "Population", title = "Epidemic Dinamics: I(0) <= I*")
```

Второй случай

#Решение системы SIR для случая I(0) > I*

I0_hight = 500 S0_hight = N - I0_hight -R0 u0_hight = [S0_hight, I0_hight, R0]

prob2 = ODEProblem(sir_model!, u0_hight, tspan, p1) sol2 = solve(prob2)

plot(sol2, label = ["S(t)" "I(t)" "R(t)"], xlabel = "Time", ylabel = "Population", title = "Epidemic Dinamics: I(0) > I*")

Решение

Первая Случая когда I(0) <= I* (Julia)

Второя Случая когда I(0) > I* (Julia)

Выводы

Можно сделать вывод, что с помощью языка программирования Julia,мы решили задане об опидемиями а также построили график показывающший дикамику изменения численности людей в каждой трех групп в случае $I(0) <= I^*$ и $I(0) > I^*$.

Список литературы

1. Задача об эпидемии