Comparing Conditional Random Fields and LSTM Networks for Named Entity Recognition

Josef Gugglberger (student) Clemens Sauerwein (supvervisor) December 23, 2019

LV 703605-6 Masterseminar

1

Motivation

test

Overview

- 1. Background & Related Work
- 2. Implementation Details
- 3. Evaluation and Comparison
- 4. Conclusion

Background & Related Work

Named Entity Recognition

Definition: NER

Named Entity Recognition is the task of locating and classifying named entities in unstructured text. A named entity is classified into a predefined set of categories.

Named Entity Recognition

Definition: NER

Named Entity Recognition is the task of locating and classifying named entities in unstructured text. A named entity is classified into a predefined set of categories.

James visited the Eiffel Tower in 2012.

James [PERSON] visited the Eiffel [LOCATION] Tower [LOCATION] in 2012 [TIME].

Conditional Random Fields

Definition: CRF

A Conditional Random Field is a discriminative probabilistic classifier. It makes its prediction not just based on the input sample, but also based on the context of the input sample.

Conditional Random Fields

Definition: CRF

A Conditional Random Field is a discriminative probabilistic classifier. It makes its prediction not just based on the input sample, but also based on the context of the input sample.

$$p(y|x) = \frac{1}{Z(x)} \prod_{t=1}^{T} exp(\sum_{k=1}^{K} \theta_k f_k(y_t, y_{t-1}, X_t))$$
 (1)

where Z(x) is an normalization function:

$$Z(x) = \sum_{k=1}^{T} \exp(\sum_{k=1}^{K} \theta_{k} f_{k}(y_{t}, y_{t-1}, x_{t}))$$
 (2)

3

Recurrent Neural Networks

Definition: RNN

RNNs are a special type of artificial neural networks that have a feedback loop feeding the hidden layers back into themselves. The loop provides a kind of memory that allow the network to better recognize patterns.

Recurrent Neural Networks

Definition: RNN

RNNs are a special type of artificial neural networks that have a feedback loop feeding the hidden layers back into themselves. The loop provides a kind of memory that allow the network to better recognize patterns.

- · Suited for sequence labeling
- · Problems with long term dependencies
- · Vanishing and exploding gradient

Long-Short-Term-Memory Networks

Definition: LSTM networks

LSTM networks are a special case of RNNs, which where designed to overcome issues with the vanishing gradient on long term relationships.

Long-Short-Term-Memory Networks

Definition: LSTM networks

LSTM networks are a special case of RNNs, which where designed to overcome issues with the vanishing gradient on long term relationships.

Implementation Details

Dataset CoNLL

Conference on Computational NL Learning

CoNLL 2003 was a shared task on language independent named entity recognition.

Four types of Named Entities:

- Person
- Location
- Organization
- Miscellaneous

Dataset W-NUT

Workshop on Noisy User-generated Text

W-NUT 17 was a workshop that focused on NLP on noisy and informal text, such as comments from social media.

Four types of Named Entities:

- Person
- Location
- Corporation
- Consumer good
- Creative work
- · Group

Dataset Syntax

Word	POS	Syntax Chunk	NE
U.N.	NNP	I-NP	I-ORG
official	NN	I-NP	0
Ekeus	NNP	I-NP	I-PER
heads	VBZ	I-VP	0
for	IN	I-PP	0
Baghdad	NNP	I-NP	I-LOC
		0	0

Conditional Random Fields

Libraries:

- pycrfsuite
- nltk
- · gensim

Features should describe characteristics of named entities.

- Word Features
- Sentence & Collection Features
- · Dictionary Features
- · Features from unsupervised ML algorithms

Word Features

- · length of word
- the word starts with an upper-case letter
- the word contains an upper-case letter
- · the word contains a digit
- the word contains a special character (-, /, etc.)
- word shape: 'Word' \rightarrow 'Aa+', 'WORD' \rightarrow 'A+', '2019-12-12' \rightarrow '9999#99#99'

Sentence & Collection Features

- position of word in sentence
- number of occurrences in collection

Dictionary Features

The word is contained in:

- stop-words list
 - is, as, the, are, has, that, etc.
 - Problems: 'The Who', 'Take That'
- · name list
 - · 7579 person names form nltk corpus
- word list
 - dictionary of 235892 words from nltk corpus
- wordnet
 - · dictionary and thesaurus
 - provides hypernyms, synonyms, etc.

Features from unsupervised ML algorithms

The cluster of each word is used as a feature.

- · brown cluster
 - hierarchical clustering algorithm

Features from unsupervised ML algorithms

The cluster of each word is used as a feature.

- brown cluster
 - hierarchical clustering algorithm
- · Latent Dirichlet Allocation (LDA) topic
 - modelling the abstract topics of document
 - example: document A is 20% topic 1, 60% topic 2 and 20% topic 3

Features from unsupervised ML algorithms

The cluster of each word is used as a feature.

- · brown cluster
 - hierarchical clustering algorithm
- Latent Dirichlet Allocation (LDA) topic
 - modelling the abstract topics of document
 - example: document A is 20% topic 1, 60% topic 2 and 20% topic 3
- gensim implementation of w2v cluster
 - maps similar words to similar vectors
 - $w2v(king)-w2v(man)+w2v(woman) = \sim w2v(queen)$

LSTM Network

Libraries:

- · Keras functional API
- · Tensorflow as backend

LSTM Network

Libraries:

- · Keras functional API
- · Tensorflow as backend

Bidirectional LSTM Layer

- · idea is to duplicate LSTM layer
 - · input as-is is feed into first LSTM layer
 - · input reversed is feed into second LSTM layer
- · speech depends on context past and future

Bidirectional LSTM Layer

- · idea is to duplicate LSTM layer
 - input as-is is feed into first LSTM layer
 - · input reversed is feed into second LSTM layer
- · speech depends on context past and future

Example:

The other day we saw Paris.

Bidirectional LSTM Layer

- · idea is to duplicate LSTM layer
 - input as-is is feed into first LSTM layer
 - · input reversed is feed into second LSTM layer
- · speech depends on context past and future

Example:

The other day we saw Paris Hilton.

Time Distributed Dense Layer

· adds the same dense layer to every timestep

Time Distributed Dense Layer

· adds the same dense layer to every timestep

The best of both worlds?

combine the LSTM approach with CRF by adding a CRF layer at bottom:

- use past input features via LSTM layer
- · use sentence level tag information via CRF layer

The best of both worlds?

combine the LSTM approach with CRF by adding a CRF layer at bottom:

- use past input features via LSTM layer
- · use sentence level tag information via CRF layer

Evaluation and Comparison

Evaluation

Evaluation of the implemented NER systems with metrics:

- accuracy
- recall
- F1-score

Evaluation

Evaluation of the implemented NER systems with metrics:

- accuracy
- recall
- F1-score

Evaluation performed based on:

- · token level
- named entity level (CoNLL standard)

Results CoNLL Dataset

token based:

Method	Accuracy	Recall	F1-score
CRF	0.873	0.958	0.914
Bi-LSTM	0.934	0.893	0.913
Bi-LSTM-CRF	0.853	0.963	0.904

named entity based:

Method	Accuracy	Recall	F1-score
CRF	0.867	0.947	0.905
Bi-LSTM	0.851	0.959	0.902
Bi-LSTM-CRF	0.906	0.864	0.884

Results WNUT Dataset

token based:

Method	Accuracy	Recall	F1-score
CRF			
Bi-LSTM			
Bi-LSTM-CRF			

named entity based:

Method	Accuracy	Recall	F1-score
CRF			
Bi-LSTM			
Bi-LSTM-CRF			

Conclusion