## In [1]:

```
import pandas as pd
from matplotlib import pyplot as plt
%matplotlib inline
```

## In [2]:

```
df=pd.read_csv(r"C:\Users\smb06\Downloads\Income.csv")
df
```

## Out[2]:

|     | Gender | Age | Income(\$) |
|-----|--------|-----|------------|
| 0   | Male   | 19  | 15         |
| 1   | Male   | 21  | 15         |
| 2   | Female | 20  | 16         |
| 3   | Female | 23  | 16         |
| 4   | Female | 31  | 17         |
|     |        |     |            |
| 195 | Female | 35  | 120        |
| 196 | Female | 45  | 126        |
| 197 | Male   | 32  | 126        |
| 198 | Male   | 32  | 137        |
| 199 | Male   | 30  | 137        |

200 rows × 3 columns

## In [3]:

df.head()

## Out[3]:

|   | Gender | Age | Income(\$) |
|---|--------|-----|------------|
| 0 | Male   | 19  | 15         |
| 1 | Male   | 21  | 15         |
| 2 | Female | 20  | 16         |
| 3 | Female | 23  | 16         |
| 4 | Female | 31  | 17         |

## In [4]:

```
df.tail()
```

## Out[4]:

|     | Gender | Age | Income(\$) |
|-----|--------|-----|------------|
| 195 | Female | 35  | 120        |
| 196 | Female | 45  | 126        |
| 197 | Male   | 32  | 126        |
| 198 | Male   | 32  | 137        |
| 199 | Male   | 30  | 137        |

## In [5]:

```
df.shape
```

## Out[5]:

(200, 3)

## In [6]:

```
plt.scatter(df["Age"],df["Income($)"])
plt.xlabel("Age")
plt.ylabel("Income($)")
```

## Out[6]:

Text(0, 0.5, 'Income(\$)')



#### In [7]:

```
from sklearn.cluster import KMeans
```

#### In [8]:

```
kM=KMeans()
kM
```

#### Out[8]:

```
▼ KMeans
KMeans()
```

#### In [9]:

```
y_predicted = kM.fit_predict(df[["Age","Income($)"]])
y_predicted
```

C:\Users\smb06\AppData\Local\Programs\Python\Python311\Lib\site-packages\s
klearn\cluster\\_kmeans.py:870: FutureWarning: The default value of `n\_init`
will change from 10 to 'auto' in 1.4. Set the value of `n\_init` explicit
ly to suppress the warning
warnings.warn(

#### Out[9]:

```
array([2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1,
```

#### In [10]:

```
df["cluster"]=y_predicted
df.head()
```

#### Out[10]:

|   | Gender | Age | Income(\$) | cluster |
|---|--------|-----|------------|---------|
| 0 | Male   | 19  | 15         | 2       |
| 1 | Male   | 21  | 15         | 2       |
| 2 | Female | 20  | 16         | 2       |
| 3 | Female | 23  | 16         | 2       |
| 4 | Female | 31  | 17         | 2       |

#### In [12]:

```
df1 = df[df.cluster == 0]
df2 = df[df.cluster == 2]
df3 = df[df.cluster == 3]
plt.scatter(df1["Age"],df1["Income($)"],color="pink")
plt.scatter(df2["Age"],df2["Income($)"],color="blue")
plt.scatter(df3["Age"],df3["Income($)"],color="red")
plt.xlabel("Age")
plt.ylabel("Income($)")
```

## Out[12]:

Text(0, 0.5, 'Income(\$)')



#### In [13]:

```
from sklearn.preprocessing import MinMaxScaler
scaler=MinMaxScaler()
scaler.fit(df[["Income($)"]])
df["Income($)"]=scaler.transform(df[["Income($)"]])
df.head()
```

## Out[13]:

|   | Gender | Age | Income(\$) | cluster |
|---|--------|-----|------------|---------|
| 0 | Male   | 19  | 0.000000   | 2       |
| 1 | Male   | 21  | 0.000000   | 2       |
| 2 | Female | 20  | 0.008197   | 2       |
| 3 | Female | 23  | 0.008197   | 2       |
| 4 | Female | 31  | 0.016393   | 2       |

#### In [14]:

```
scaler.fit(df[["Age"]])
df["Age"]=scaler.transform(df[["Age"]])
df.head()
```

## Out[14]:

|   | Gender | Age      | Income(\$) | cluster |
|---|--------|----------|------------|---------|
| 0 | Male   | 0.019231 | 0.000000   | 2       |
| 1 | Male   | 0.057692 | 0.000000   | 2       |
| 2 | Female | 0.038462 | 0.008197   | 2       |
| 3 | Female | 0.096154 | 0.008197   | 2       |
| 4 | Female | 0.250000 | 0.016393   | 2       |

#### In [15]:

```
km=KMeans()
```

#### In [16]:

```
y_predicted=km.fit_predict(df[["Age","Income($)"]])
y_predicted
```

C:\Users\smb06\AppData\Local\Programs\Python\Python311\Lib\site-packages\s
klearn\cluster\\_kmeans.py:870: FutureWarning: The default value of `n\_init
` will change from 10 to 'auto' in 1.4. Set the value of `n\_init` explicit
ly to suppress the warning
 warnings.warn(

#### Out[16]:

#### In [17]:

```
df["New Cluster"] = y_predicted
df.head()
```

#### Out[17]:

|   | Gender | Age      | Income(\$) | cluster | New Cluster |
|---|--------|----------|------------|---------|-------------|
| 0 | Male   | 0.019231 | 0.000000   | 2       | 7           |
| 1 | Male   | 0.057692 | 0.000000   | 2       | 7           |
| 2 | Female | 0.038462 | 0.008197   | 2       | 7           |
| 3 | Female | 0.096154 | 0.008197   | 2       | 7           |
| 4 | Female | 0.250000 | 0.016393   | 2       | 2           |

#### In [18]:

```
df1=df[df["New Cluster"]==0]
df2=df[df["New Cluster"]==1]
df3=df[df["New Cluster"]==2]
plt.scatter(df1["Age"],df1["Income($)"],color="pink")
plt.scatter(df2["Age"],df2["Income($)"],color="green")
plt.scatter(df3["Age"],df3["Income($)"],color="blue")
plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color="orange",marker="+")
plt.xlabel("Age")
plt.ylabel("Income($)")
```

#### Out[18]:

## Text(0, 0.5, 'Income(\$)')



#### In [19]:

```
km.cluster_centers_
```

## Out[19]:

```
In [21]:
```

```
k rng=range(1,10)
sse=[]
for k in k_rng:
   km=KMeans(n clusters=k)
    km.fit(df[["Age","Income($)"]])
    sse.append(km.inertia_)
print(sse)
C:\Users\smb06\AppData\Local\Programs\Python\Python311\Lib\site-packages\s
klearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init
 will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
 warnings.warn(
C:\Users\smb06\AppData\Local\Programs\Python\Python311\Lib\site-packages\s
klearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init
 will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
  warnings.warn(
C:\Users\smb06\AppData\Local\Programs\Python\Python311\Lib\site-packages\s
klearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init
 will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
  warnings.warn(
C:\Users\smb06\AppData\Local\Programs\Python\Python311\Lib\site-packages\s
klearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init
 will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
 warnings.warn(
C:\Users\smb06\AppData\Local\Programs\Python\Python311\Lib\site-packages\s
klearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init
 will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
  warnings.warn(
C:\Users\smb06\AppData\Local\Programs\Python\Python311\Lib\site-packages\s
klearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init
 will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
 warnings.warn(
C:\Users\smb06\AppData\Local\Programs\Python\Python311\Lib\site-packages\s
klearn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init
 will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
  warnings.warn(
C:\Users\smb06\AppData\Local\Programs\Python\Python311\Lib\site-packages\s
klearn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init
 will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
  warnings.warn(
C:\Users\smb06\AppData\Local\Programs\Python\Python311\Lib\site-packages\s
klearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init
 will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicit
ly to suppress the warning
 warnings.warn(
[23.583906150363603, 13.028938428018286, 7.492113413237458, 6.055824667599
623, 4.75432557053689, 3.854458807699178, 3.055986211920202, 2.64252034353
```

6072, 2.335709659878675]

## In [22]:

```
plt.plot(k_rng,sse)
plt.xlabel("K")
plt.ylabel("Sum of squared error")
```

# Out[22]:

Text(0, 0.5, 'Sum of squared error')



## In [ ]: