Wstęp do logiki i teorii mnogości. Zbiory 2

Definicja (Dopełnienie zbioru)

• Niech X będzie ustalonym zbiorem i niech A będzie jego podzbiorem.

Definicja (Dopełnienie zbioru)

- Niech X będzie ustalonym zbiorem i niech A będzie jego podzbiorem.
- Wtedy zbiór X A nazywamy dopełnieniem zbioru A do zbioru X (lub względem zbioru X).

Definicja (Dopełnienie zbioru)

- Niech X będzie ustalonym zbiorem i niech A będzie jego podzbiorem.
- Wtedy zbiór X A nazywamy dopełnieniem zbioru A do zbioru X (lub względem zbioru X).
- Jeśli z kontekstu jest jasne czym jest zbiór X, to zbiór X-A krótko nazywamy dopełnieniem zbioru A i oznaczamy przez A', \overline{A} lub A^c .

Naszkicować diagram Venna i na nim zacieniować zbiór:

- \bullet $A \cap B'$:
- **2** A' B:

- \bullet $B' \cap (A \cup C)$;
- **⑤** $(A' B) \cap (A \cup C')$;
- **3** $(A \cup B) B$; **6** $((A \cap B) (C A)') \cap C$.

Dane są podzbiory $A=\langle 1;5\rangle$, B=(3;7) i $C=(-\infty;2)$ przestrzeni $\mathbb R$. Wyznaczyć zbiory:

- \bullet $A \cup B$;
- \bigcirc $A \cap B$;
- A − B;

- \bullet A-C;
- \bullet $B \cap C$;

- **②** $A \cap (B C)$;
- **③** $(C A) \cap B$;
- A △ B;
- \bigcirc $A \triangle C$.

Dla dowolnych zbiorów $A,\,B$ i C mamy:

(1)
$$A \cup A = A$$

(idempotentność sumy)

Dla dowolnych zbiorów $A,\ B$ i C mamy:

(1)
$$A \cup A = A$$

(2) $A \cap A = A$

 $(\mathrm{idempotentno\acute{s}\acute{c}\ sumy})$

 $({\rm idempotentno\acute{s}\acute{c}\ iloczynu})$

Dla dowolnych zbiorów $A,\ B$ i C mamy:

- (1) $A \cup A = A$
- (2) $A \cap A = A$
- (3) $A \cup B = B \cup A$

 $({\rm idempotentno\acute{s}\acute{c}\ sumy})$

(idempotentność iloczynu)

 $\left(\text{przemienność sumy}\right)$

Dla dowolnych zbiorów A, B i C mamy:

- (1) $A \cup A = A$
- (2) $A \cap A = A$
- (3) $A \cup B = B \cup A$
- (4) $A \cap B = B \cap A$

(idempotentność sumy)

(idempotentność iloczynu)

(przemienność sumy)

(przemienność iloczynu)

Dla dowolnych zbiorów A, B i C mamy:

- (1) $A \cup A = A$
- (2) $A \cap A = A$
- (3) $A \cup B = B \cup A$
- (4) $A \cap B = B \cap A$
- $(5) \ A \cup (B \cup C) = (A \cup B) \cup C$

(idempotentność sumy)

(idempotentność iloczynu)

(przemienność sumy)

(przemienność iloczynu)

(łączność sumy)

Dla dowolnych zbiorów A, B i C mamy:

- (1) $A \cup A = A$
- (2) $A \cap A = A$
- (3) $A \cup B = B \cup A$
- (4) $A \cap B = B \cap A$
- (5) $A \cup (B \cup C) = (A \cup B) \cup C$
- (6) $A \cap (B \cap C) = (A \cap B) \cap C$

(idempotentność sumy)

(idempotentność iloczynu)

(przemienność sumy)

(przemienność iloczynu)

(łączność sumy)

(łączność iloczynu)

Dla dowolnych zbiorów A, B i C mamy:

$$(1) \ A \cup A = A$$

(2)
$$A \cap A = A$$

$$(3) A \cup B = B \cup A$$

$$(4) A \cap B = B \cap A$$

(5)
$$A \cup (B \cup C) = (A \cup B) \cup C$$

(6) $A \cap (B \cap C) = (A \cap B) \cap C$

(7)
$$A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$$
 (rozdzielność iloczynu względem sumy)

Dla dowolnych zbiorów A, B i C mamy:

(1)
$$A \cup A = A$$

(idempotentność sumy)

(2)
$$A \cap A = A$$

(idempotentność iloczynu)

$$(3) A \cup B = B \cup A$$

(przemienność sumy)

$$(4) A \cap B = B \cap A$$

(przemienność iloczynu)

$$(5) \ A \cup (B \cup C) = (A \cup B) \cup C$$

(łączność sumy)

(6)
$$A \cap (B \cap C) = (A \cap B) \cap C$$

(łączność iloczynu)

- (7) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (rozdzielność iloczynu względem sumy)
- (8) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ (rozdzielność sumy względem iloczynu)

Dla dowolnych zbiorów A, B i C mamy:

(1)
$$A \cup A = A$$
 (idempotentność sumy)

(2)
$$A \cap A = A$$
 (idempotentność iloczynu)

(3)
$$A \cup B = B \cup A$$
 (przemienność sumy)

(4)
$$A \cap B = B \cap A$$
 (przemienność iloczynu)
(5) $A \cup (B \cup C) = (A \cup B) \cup C$ (łączność sumy)

(6)
$$A \cap (B \cap C) = (A \cap B) \cap C$$
 (łączność iloczynu)

(7)
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
 (rozdzielność iloczynu względem sumy)

- (8) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ (rozdzielność sumy względem iloczynu)
- (9) $A \cup \emptyset = A$, $A \cap \emptyset = \emptyset$.

Dla dowolnych zbiorów $A,\,B,\,C$ i Dmamy następujące zależności:

(1) $A \subseteq A \cup B \text{ i } A \cap B \subseteq A$;

Dla dowolnych zbiorów $A,\ B,\ C$ i D mamy następujące zależności:

- (1) $A \subseteq A \cup B \text{ i } A \cap B \subseteq A$;
- (2) $A \subseteq C \land B \subseteq C \Rightarrow A \cup B \subseteq C$;

Dla dowolnych zbiorów $A,\ B,\ C$ i D mamy następujące zależności:

- (1) $A \subseteq A \cup B \text{ i } A \cap B \subseteq A$;
- (2) $A \subseteq C \land B \subseteq C \Rightarrow A \cup B \subseteq C$;
- (3) $A \subseteq B \land A \subseteq C \Rightarrow A \subseteq B \cap C$;

Dla dowolnych zbiorów $A,\,B,\,C$ i Dmamy następujące zależności:

- (1) $A \subseteq A \cup B \text{ i } A \cap B \subseteq A$;
- (2) $A \subseteq C \land B \subseteq C \Rightarrow A \cup B \subseteq C$;
- (3) $A \subseteq B \land A \subseteq C \Rightarrow A \subseteq B \cap C$;
- (4) $A \subseteq B \land C \subseteq D \Rightarrow A \cup C \subseteq B \cup D$;

Dla dowolnych zbiorów $A,\ B,\ C$ i D mamy następujące zależności:

- (1) $A \subseteq A \cup B \text{ i } A \cap B \subseteq A$;
- (2) $A \subseteq C \land B \subseteq C \Rightarrow A \cup B \subseteq C$;
- (3) $A \subseteq B \land A \subseteq C \Rightarrow A \subseteq B \cap C$;
- (4) $A \subseteq B \land C \subseteq D \Rightarrow A \cup C \subseteq B \cup D$;
- (5) $A \subseteq B \land C \subseteq D \Rightarrow A \cap C \subseteq B \cap D$;

Dla dowolnych zbiorów $A,\ B,\ C$ i D mamy następujące zależności:

- (1) $A \subseteq A \cup B \text{ i } A \cap B \subseteq A$;
- (2) $A \subseteq C \land B \subseteq C \Rightarrow A \cup B \subseteq C$;
- (3) $A \subseteq B \land A \subseteq C \Rightarrow A \subseteq B \cap C$;
- (4) $A \subseteq B \land C \subseteq D \Rightarrow A \cup C \subseteq B \cup D$;
- (5) $A \subseteq B \land C \subseteq D \Rightarrow A \cap C \subseteq B \cap D$;
- (6) $A \subseteq B \land C \subseteq D \Rightarrow A D \subseteq B C$.

Podać warunki konieczne i dostateczne na to, aby dla podzbiorów A i B przestrzeni X zachodziła każda z następujących zależności z osobna:

- **3** $A \cup B' = A$;

2 $A \cup B = A$;

- **o** *A* ∩ *B'* = *A*;

- $\bullet A' \cap B' = \emptyset;$

Definicja

Iloczynem kartezjańskim zbiorów A i B (produktem kartezjańskim lub po prostu produktem zbiorów A i B) nazywamy zbiór

$$A \times B = \{(a, b): a \in A \land b \in B\}.$$

Analogicznie definiuje się iloczyn kartezjański $A_1 \times A_2 \times \ldots \times A_n$ zbiorów A_1, A_2, \ldots, A_n , gdy n jest liczbą naturalną i $n \ge 2$:

$$A_1 \times A_2 \times \ldots \times A_n = \{(a_1, a_2, \ldots, a_n): a_1 \in A_1, a_2 \in A_2, \ldots, a_n \in A_n\}.$$

Dane są zbiory $A = \{1, 2, 3\}$, $B = \{a, b\}$ i $C = \{x, y\}$. Wyznaczyć iloczyny kartezjańskie:

- **1** $A \times B$; **2** $C \times B$; **3** $A \times B \times C$; **4** $A \times A \times C$.

Wyznaczyć iloczyny kartezjańskie:

- **1** $\{0,\{1\}\} \times \emptyset;$
- $\{0,1\}^3$;

W płaszczyźnie \mathbb{R}^2 zaznaczyć zbiory $A \times B$, $B \times A$ i $A \times A$, gdy:

- **1** $A = \{x \in \mathbb{R} : 1 \le x \le 2\}, B = \{x \in \mathbb{R} : 1 < x < 3\};$
- **2** $A = \{x \in \mathbb{R} : x \ge 2\}, B = \{x \in \mathbb{R} : 1 \le x \le 3\};$
- **3** $A = \{x \in \mathbb{R}: 1 \le x \le 2 \text{ lub } 3 < x < 4\},$ $B = \{x \in \mathbb{R}: 2 \le x \le 3 \text{ lub } 4 < x < 5\}.$

Zbiory A, B i C są podzbiorami przestrzeni X. Zapisać w możliwie najprostszej postaci następujące zbiory:

- $((A' \cup B) \cap (A \cap B'))';$

Wykazać, że dla dowolnych zbiorów A, B, C i D prawdziwe są stwierdzenia:

- **3** $(A B) \cap (B A) = \emptyset$;

- **②** $(A \cup B) C = (A C) \cup (B C);$
- **3** $A (B C) = (A B) \cup (A \cap C);$

Wykazać, że dla dowolnych zbiorów *A*, *B*, *C* i *D* prawdziwe są stwierdzenia:

- **1** $A \cap (B C) = (A \cap B) (A \cap C);$
- ② $A (B \cap C) = (A B) \cup (A C);$

- **o** $(A \cap C) (B \cup D) = (A B) \cap (C D);$

Sprawdzić, czy dla dowolnych podzbiorów A, B i C przestrzeni X prawdziwa jest każda z następujących równości:

- **1** $A B = A \cap B'$;
- $(A \cap \emptyset) \cup B = B;$

- $\bullet A \cap B = A' \cup B';$
- $\bullet A \cap (\emptyset \cup B) = A;$
- $(A \cap B) C = (A C) \cap (B C);$

Za pomocą przykładów wykazać, iż nie jest prawdą, że dla dowolnych zbiorów A, B i C mamy:

- (A B)' = (B A)';
- **4** $(A \cup B \cup C) (B \cup C) = A;$
- **5** $(A \cap B) \cup (B A) = A$;
- **③** $(A \cup B) C = (A C) \cup B$
- $A \cap (B C) = (A C) (B C);$
- **3** $(A B) C = (A B) \cup (A \cap C);$
- $9 A (B \cup C) = (A B) \cup C;$

Wskazać (z uzasadnieniem) rodzaj zależności pomiędzy zbiorami A, B i C, dla których z osobna mamy:

- $(A \cup B) \cap (C \cup B) = B;$
- **3** $(A C) \cup B = A \cup B$;
- **③** $(A \cup B) C = (A C) \cup B$.

Zbadać, która z następujących dziesięciu równości jest twierdzeniem algebry zbiorów:

- \bullet $A (A \cap B) = A B;$
- **2** $(A \cup B) B = A$;
- **3** $(A \cup B) B = A B$;

- **1** A B = B A:
- **3** $A \cap (B C) = (A \cap B) (A \cap C);$

Dany jest zbiór $A=\{1,2,3,4\}$. Określić liczbę elementów zbioru:

- \triangle $A \times \mathcal{P}(A)$; $\mathcal{P}(A \times \mathcal{P}(A)) A$;

Sprawdzić prawdziwość następujących równości dla dowolnych zbiorów A i B: