实验二: 按键音识别

概述

按键手机按下每个键, 会发出相应的声音

按键声音实则由高频正弦信号+低频正弦信号叠加而成

叠加方式如下表:

	1209 Hz	1336 Hz	1477 Hz
697 Hz	1	2	3
770 Hz	4	5	6
852 Hz	7	8	9
941 Hz	*	0	#

任务

输入

- o 十秒的音频,采样率为48000Hz
- 。 每段声音由数个叠加高斯噪声的按键音组成
- 。 按键音的时长是不固定的
- 。 测试样例:
 - 在测试样例test.wav中,按键1持续了1秒,静默2秒,按键5持续3秒,静默3秒,按键 #持续0.5秒,静默0.5秒

- 输出:
 - 以1/64秒为一帧,输出每帧对应的按键,如该帧静默,则输出-1
 - o 示例格式:111...1(重复64次)-1-1-1(重复128次)5...5(重复192次)...
 - 每帧输出之间加一个空格
 - o 具体样例输出见test.txt
- 将通过5个测试点进行测试

运行环境

- Python 3.6
- Numpy >= 1.19
- Librosa==0.9.2
- 我们将提供音频读取部分的代码,其余部分需要各位同学实现
- 运行方式 python main.py --audio_file test.wav
- Numpy有fft, rfft等实现好的快速傅里叶变换方法

方法介绍

- 第一步: 判断当前音频是否静默
 - 。 计算一帧的平均能量(root-mean-square)
- 第二步: 判断非静默帧的按键
 - o 计算当前帧的短时傅里叶变换(STFT)
 - 什么是STFT?将长时间信号分成数个较短的等长信号,然后再分别计算每个较短片段的傅里叶变换,可同时描绘频域与时域的变化
 - 根据短时傅里叶变换, 判断当前帧的按键