

National University of Computer & Emerging Sciences MT-1003 Calculus and Analytical Geometry

Summary of Convergence Tests

NAME	STATEMENT	COMMENTS
Divergence Test (9.4.1)	If $\lim_{k\to+\infty} u_k \neq 0$, then $\sum u_k$ diverges.	If $\lim_{k \to +\infty} u_k = 0$, then $\sum u_k$ may or may not converge.
Integral Test (9.4.4)	Let $\sum u_k$ be a series with positive terms. If f is a function that is decreasing and continuous on an interval $[a, +\infty)$ and such that $u_k = f(k)$ for all $k \ge a$, then $\sum_{k=1}^{\infty} u_k \text{and} \int_a^{+\infty} f(x) dx$ both converge or both diverge.	This test only applies to series that have positive terms. Try this test when $f(x)$ is easy to integrate.
Comparison Test (9.5.1)	Let $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$ be series with nonnegative terms such that $a_1 \leq b_1, \ a_2 \leq b_2, \ldots, a_k \leq b_k, \ldots$ If $\sum b_k$ converges, then $\sum a_k$ converges, and if $\sum a_k$ diverges, then $\sum b_k$ diverges.	This test only applies to series with nonnegative terms. Try this test as a last resort; other tests are often easier to apply.
Limit Comparison Test (9.5.4)	Let $\sum a_k$ and $\sum b_k$ be series with positive terms and let $\rho = \lim_{k \to +\infty} \frac{a_k}{b_k}$ If $0 < \rho < +\infty$, then both series converge or both diverge.	This is easier to apply than the comparison test, but still requires some skill in choosing the series $\sum b_k$ for comparison.
Ratio Test (9.5.5)	Let $\sum u_k$ be a series with positive terms and suppose that $\rho = \lim_{k \to +\infty} \frac{u_{k+1}}{u_k}$ (a) Series converges if $\rho < 1$. (b) Series diverges if $\rho > 1$ or $\rho = +\infty$. (c) The test is inconclusive if $\rho = 1$.	Try this test when u_k involves factorials or k th powers.
Root Test (9.5.6)	Let $\sum u_k$ be a series with positive terms and suppose that $\rho = \lim_{k \to +\infty} \sqrt[k]{u_k}$ (a) The series converges if $\rho < 1$. (b) The series diverges if $\rho > 1$ or $\rho = +\infty$. (c) The test is inconclusive if $\rho = 1$.	Try this test when u_k involves k th powers.