Computer Graphics

- Anti-Aliasing & Super-Sampling -

Hendrik Lensch

Organization

- Registration HISPOS:
 - deadline: December 1st
- Final Exam
 - date change: February 19th
- Rendering Competition
 - final deadline: January 31st
 - pre-deadline: January 24th

Overview

Last time

- Filtering
- Signal processing

Today

- Sampling
- Anti-aliasing & supersampling

Next lecture

The Human Visual System

Discrete Fourier Transform

Equally-spaced function samples

- Function values known only at discrete points
 - Physical measurements
 - Pixel positions in an image!

Fourier Analysis

$$a_k = 1/N \sum_i \sin(2\pi k i / N) f_i$$
, $b_k = 1/N \sum_i \cos(2\pi k i / N) f_i$

- yields amplitude and phase per frequency
- Sum over all measurement points N
- k=0,1,2, …, ? Highest possible frequency ?
- ⇒ Nyquist frequency
 - Sampling rate N_i
 - 2 samples / period ⇔ 0.5 cycles per pixel
 - \Rightarrow k \leq N/2

An Exam Fourier transformed

reconstructed

f(x)

Amplitude

Phase ———

ignoring Phase

using Phase+Amplitude

Spatial vs. Frequency Domain

- Important basis functions
 - Box ←→ sinc

$$\operatorname{sinc}(x) = \frac{\sin(x\pi)}{x\pi}$$

$$sinc(0) = 1$$

$$\int \operatorname{sinc}(x) dx = 1$$

- Wide box → small sinc
- Negative values
- Infinite support
- Triangle ←→ sinc²
- Gauss ←→ Gauss

Spatial vs. Frequency Domain

- Transform behavior
- Example: box function

Fourier transform:sinc

Wide box: narrow sinc

Narrow box: wide sinc

Convolution

$$f(x) \otimes g(x) = \int_{-\infty}^{\infty} f(\tau)g(x - \tau)d\tau$$

- Two functions f, g
- Shift one function against the other by x
- Multiply function values
- Integrate overlapping region
- Numerical convolution: Expensive operation
 - For each *x*: integrate over non-zero domain

Convolution

• Examples

- Box functions
- Gauss functions

Convolution and Filtering

Technical Realization

- In image domain
- Pixel mask with weights
- OpenGL: Convolution extension

Problems (e.g. sinc)

- Large filter support
 - Large mask
 - A lot of computation
- Negative weights
 - Negative light?

Convolution Theorem

- Convolution in image domain: multiplication in Fourier domain
- Convolution in Fourier domain: multiplication in image domain
 - Multiplication much cheaper than convolution!

$$x(t) = \begin{cases} t+1 & \text{für } -1 \leq t < 0 \\ -t+1 & \text{für } 0 \leq t < 1 \end{cases}$$

$$\text{rect}(t) * \text{rect}(t) = x(t)$$

$$\text{si}\left(\frac{\omega}{2}\right) \cdot \text{si}\left(\frac{\omega}{2}\right) = X(j\omega).$$

$$X(j\omega) = \text{si}^{2}\left(\frac{\omega}{2}\right).$$

Filtering

Low-pass filtering

- Convolution with sinc in spatial domain, or
- Multiplication with box in frequency domain
- High-pass filtering
 - Only high frequencies
- Band-pass filtering
 - Only intermediate

Low-pass filtering in frequency domain: multiplication with box

Low-Pass Filtering

• "Blurring"

High-Pass Filtering

- Enhances discontinuities in image
 - Useful for edge detection

 Constant & δ-Function

- flash

Comb/Shah function

Constant & δ-Function

Duality

$$f(x) = K$$
$$F(\omega) = K\delta(\omega)$$

And vice versa

Comb function

- Duality: The dual of a comb function is again a comb function
 - Inverse wave length, amplitude scales with inverse wave length

$$f(x) = \sum_{k = -\infty}^{\infty} \delta(x - k\Delta x)$$

$$F(w) = \frac{1}{\Delta x} \sum_{k = -\infty}^{\infty} \delta(w - k\frac{1}{\Delta x})$$

$$\int_{\Delta x}^{s(x)} \int_{a}^{s(x)} \int_{b}^{s(x)} \int_{b}^{s(x)} \int_{a}^{s(x)} \int_{a$$

Continuous function

Band-limited Fourier transform

Sampled at discrete points

- Multiplication with Comb function in space domain
- Corresponds to convolution in Fourier domain
- Multiple copies of the original spectrum

Frequency bands overlap?

- No: good
- Yes: bad, *aliasing*

Reconstruction

Only original frequency band desired

Filtering

- In Fourier domain: multiplication with windowing function around origin
- In spatial domain: convolution with Fourier transform of windowing function

Optimal filtering function

- Box function in Fourier domain
- Corresponds to sinc in space domain
 - Unlimited region of support
- Spatial domain only allows approximations (due to finite support)

Reconstruction Filter

Cutting off the support is not a good solution

Sampling and Reconstruction

Original function and its band-limited frequency spectrum

Signal sampling:

Mult./conv. with comb

Comb dense enough (sampling≥2*bandlimit)

Frequency spectrum is replicated

Bands do not overlap

Correct filtering

Fourier: Box (mult.) Image: sinc (conv.)

Only one copy

Sampling and Reconstruction

Reconstruction with ideal sinc

Identical signal

Approximate filtering

Space: tri (conv.) Fourier: sinc² (mult.)

High frequencies are not ignored

→ Aliasing

1 .75 .5 .25 0 0 16 32 48 64

32

48

64

16

Sampling with Too Low Frequency

Original function

Sampling below **Nyquist:**

Comb spaced to far (sampling<2*bandlimit)

Frequency bands overlap

Correct filtering

Image: sinc (conv.)

Fourier: box (mult.)

Band overlap in frequency domain cannot be corrected aliasing

Sampling with Too Low Frequency

Reconstruction with ideal sinc

Reconstruction fails (frequency components wrong due to aliasing!)

Filtering with sinc² function

Reconstruction with tri function (= piecewise linear interpolation)

Even worse reconstruction

Aliasing

Overlap between replicated copies in frequency spectrum

High frequency components from the replicated copies are treated like low frequencies during the reconstruction process

Aliasing

In Fourier space

Aliasing 2D

original image sampled at these location yields this reconstruction.

Sampling Artifacts

Spatial aliasing:

Stair cases, Moiré patterns, etc.

• Solutions:

- Increasing the sampling rate
 - Ok, but infinite frequencies at sharp edges
- Post-filtering (after reconstruction)
 - Does not work only leads to blurred stair cases
- Pre-filtering (Blurring) of sharp geometry features
 - Slowly make geometry transparent at the edges
 - Correct solution in principal
 - Analytic low-pass filtering hard to implement
 - Super-sampling

Sampling Artifacts

Temporal Aliasing

- Cart wheels, ...

Solutions

- Increasing the frame rate
 - OK
- Pre-filtering (Motion Blur)
 - Yes, possible for simple geometry (e.g., Cartoons)
 - Problems with texture, etc.
- Post-filtering (Averaging several frames)
 - Does not work only multiple detail

Important

Distinction between aliasing errors and reconstruction errors

Aliasing

- It all comes from sampling at discrete points
 - Multiplied with comb function, no smoothly weighted filters
 - Comb function: repeats frequency spectrum
- Or, from using non band limited primitives
 - Hard edges ⇒ infinitely high frequencies
- In reality, integration over finite region necessary
 - E.g., finite CCD pixel size
- Computer: Analytic integration often not possible
 - No analytic description of radiance or visible geometry available
- Only way: numerical integration
 - Estimate integral by taking multiple point samples, average
 - Leads to aliasing
 - Computationally expensive
 - Approximate

Sources of High Frequencies

Geometry

- Edges, vertices, sharp boundaries
- Silhouettes (view dependent)
- **—** ...

Texture

E.g., checkerboard pattern, other discontinuities, ...

Illumination

Shadows, lighting effects, projections, ...

→ Analytic filtering almost impossible

Even with the most simple filters

Comparison

Analytic low-pass filtering

- Ideally eliminates aliasing completely
- Hard to implement
 - Weighted or unweighted area sampling
 - Compute distance from pixel to a line
 - Filter values can be stored in look-up tables
 - Possibly taking into account slope
 - Distance correction
 - Non rotationally symmetric filters
 - Does not work at corners

Over-/Super-sampling

- Very easy to implement
- Does not eliminate aliasing completely
 - Sharp edges contain *infinitely* high frequencies

Antialiasing by Pre-Filtering

Filtering before sampling

- Band-limiting signal
- Analog/analytic or
- Reduce Nyquist frequency for chosen sampling-rate

Ideal reconstruction

Convolution with sinc

Practical reconstruction

- Convolution with
 - Box filter, Bartlett (Tent)
- → Reconstruction error

Re-Sampling Pipeline

Assumption

- Energy in high frequencies decreases quickly
- Reduced aliasing by intermediate sampling with higher frequencies

Algorithm

- Super-sampling
 - Sample continuous signal with high frequency f₁
 - Aliasing with energy beyond f₁ (assumed to be small)
- Reconstruction of signal
 - Filtering with g₁(x): e.g. convolution with sinc_f₁
 - Exact representation with sampled values !!
- Analytic low-pass filtering of signal
 - Filtering with filter g₂(x) with f₂ << f₁
 - Signal is now band limited w.r.t. f₂
- Re-sampling with a sampling frequency that is compatible with f₂
 - No additional aliasing
- Filters $g_1(x)$ and $g_2(x)$ can be combined

Super-Sampling in Practice

Regular super-sampling

- Averaging of N samples per pixel on a grid
- N:
 - 4 quite good
 - 16 almost always sufficient
- Samples
 - Rays, z-buffer, reflection, motion, ...
- Filter Weights
 - Box filter
 - Others: B-spline, Pyramid (Bartlett), Hexagonal, ...
- Regular super-sampling
 - Nyquist frequency for aliasing only shifted
 - → Irregular sampling patterns

Super-Sampling Caveats

Popular mistake

- Sampling at the corners of every pixel
- Pixel color by averaging
- Free super-sampling ???

Problem

- Wrong reconstruction filter !!!
- Same sampling frequency,
 but post-filtering with a hat function
- Blurring: Loss of information

Post-Reconstruction Blur

1x1 Sampling, 3x3 Blur

1x1 Sampling, 7x7 Blur

→ "Super-sampling" does not come for free

Adaptive Super-Sampling

Adaptive super-sampling

- Idea: locally adapt sampling density
 - Slowly varying signal: low sampling rate
 - Strong changes: high sampling rate
- Decide sampling density locally
- Decision criterion needed
 - Differences of pixel values
 - Contrast (relative difference)
 - |A-B| / |A| + |B|

Adaptive Super-Sampling

Algorithm

- Sampling at corners and mid points
- Recursive subdivision of each quadrant
- Decision criterion
 - Differences, contrast, object-IDs, ray trees, ...
- Filtering with weighted averaging
 - 1/4 from each quadrant
 - Quadrant: ½ (midpoint + corner)
 - Recursion

$$\frac{1}{1} \left(\frac{A+E}{2} + \frac{D+E}{2} + \frac{1}{4} \left[\frac{F+G}{2} + \frac{B+G}{2} + \frac{H+G}{2} + \frac{1}{4} \left\{ \frac{J+K}{2} + \frac{G+K}{2} + \frac{L+K}{2} + \frac{E+K}{2} \right\} \right] + \frac{1}{4} \left[\frac{E+M}{2} + \frac{H+M}{2} + \frac{N+M}{2} + \frac{1}{4} \left\{ \frac{M+Q}{2} + \frac{P+Q}{2} + \frac{C+Q}{2} + \frac{R+Q}{2} \right\} \right] \right)$$

Extension

Jittering of sample points

Super-Sampling in Practice

Problems with regular super-sampling

Expensive: 4-fold to 16-fold effort

Non-adaptive: Same effort everywhere

Too regular: Apparent reduction of number of levels

Introduce irregular sampling pattern

Better, but noisy

- Or analytic computation of pixel coverage and pixel mask

Stochastic Sampling

Requirements

- Even distribution
- Little correlation between samples
- Incremental generation

Generation of samples

- Poisson-disk sampling
 - Fixes a minimum distance between samples
 - Random generation of samples
 - Rejection, if too close to other samples
- Jittered sampling
 - Random perturbation from regular positions
- Stratified Sampling
 - Subdivision into areas with one random sample each
 - Improves even distribution
- Quasi-random numbers (Quasi-Monte Carlo)
 - E.g. Halton Sequence
 - Advanced feature

Poisson-Disk Sample Distribution

Motivation

Distribution of the optical receptors on the retina

© Andrew Glassner, Intro to Raytracing

(here: ape)

HVS: Poisson Disk Experiment

Human Perception

- Very sensitive to regular structures
- Insensitive against (high frequency) noise

Campbell-Robson contrast sensitivity chart

Stochastic Sampling

Stochastic Sampling

- Transforms energy in high frequency bands into noise
- Low variation in sample domain
 - Closely reconstructs target value
- High variation
 - Reconstructs average value

Examples

Triangle comb:

(Width: 1.01 pix, Heigth: 50 pix):

1 sample, no jittering

1 sample, jittering

16 samples, no jittering

16 samples, jittering

Motion Blur: 1 sample, no jittering 1 sample, jittering 16 samples, no jittering 16 samples, jittering

Comparison

Regular, 1x1

Regular 3x3

Regular, 7x7

Jittered, 3x3

Jittered, 7x7

