Travel Plan

时间限制: 2s 内存限制: 512MB

提交地址: https://www.luogu.com.cn/problem/CF1868C

题面翻译

给定一颗 n 个节点的完全二叉树,每个点有权值 $a_i \in [1,m]$,定义从 i 到 j 的路径的权值 $s_{i,j}$ 为路径上的最大点权。

求所有树 $(m^n$ 种点权) 的 $\sum_{i=1}^n \sum_{j=i}^n s_{i,j}$ 的和,模 998244353。

题目描述

During the summer vacation after Zhongkao examination, Tom and Daniel are planning to go traveling.

There are n cities in their country, numbered from 1 to n. And the traffic system in the country is very special. For each city i ($1 \le i \le n$), there is

- a road between city i and 2i , if $2i \le n$;
- ullet a road between city i and 2i+1 , if $2i+1 \leq n$.

Making a travel plan, Daniel chooses some integer value between 1 and m for each city, for the i -th city we denote it by a_i .

Let $s_{i,j}$ be the maximum value of cities in the simple † path between cities i and j. The score of the travel plan is $\sum_{i=1}^n \sum_{j=i}^n s_{i,j}$.

Tom wants to know the sum of scores of all possible travel plans. Daniel asks you to help him find it. You just need to tell him the answer modulo $998\,244\,353$.

 † A simple path between cities x and y is a path between them that passes through each city at most once.

输入格式

The first line of input contains a single integer t ($1 \le t \le 200$) — the number of test cases. The description of test cases follows.

The only line of each test case contains two integers n and m ($1 \le n \le 10^{18}$, $1 \le m \le 10^5$) — the number of the cities and the maximum value of a city.

It is guaranteed that the sum of m over all test cases does not exceed $10^{5}\,$.

输出格式

For each test case output one integer — the sum of scores of all possible travel plans, modulo $998\,244\,353$.

样例 #1

样例输入#1

```
5
3 1
2 2
10 9
43 20
154 147
```

样例输出#1

```
6
19
583217643
68816635
714002110
```

提示

In the first test case, there is only one possible travel plan:


```
Path 1	o 1 : s_{1,1}=a_1=1 . Path 1	o 2 : s_{1,2}=\max(1,1)=1 . Path 1	o 3 : s_{1,3}=\max(1,1)=1 . Path 2	o 2 : s_{2,2}=a_2=1 .
```

Path 2
ightarrow 1
ightarrow 3 : $s_{2,3} = \max(1,1,1) = 1$.

Path 3
ightarrow 3 : $s_{3,3} = a_3 = 1$.

The score is 1+1+1+1+1+1=6 .

In the second test case, there are four possible travel plans:

Plan 1

Plan 2

Plan 3

Plan 4

Score of plan 1:1+1+1=3 .

Score of plan 2:1+2+2=5 .

Score of plan 3:2+2+1=5 .

Score of plan 4:2+2+2=6 .

Therefore, the sum of score is 3+5+5+6=19 .