

EE2029: Introduction to Electrical Energy System Modelling Line Conductors

Lecturer: Dr. Sangit Sasidhar (elesang)

Department of Electrical and Computer Engineering

© Copyright National University of Singapore. All Rights Reserved.

Learning Outcome

 Model key components of power systems including transformer, induction motor load, static load, transmission line, cable, and rectifier load

Types of Transmission Lines

Overhead Transmission Line

Underground Cables

Fig. 5. Typical colony of termites found around the cables.

Magnetic Flux Density

- Magnetic fields are usually measured in terms of flux density (B) $B = \mu H$
 - μ is the permeability, i.e. $\mu = \mu_0 \mu_r$
 - μ_0 is the permeability of free space (constant) = $4\pi \times 10 7 \, H/m$
 - μ_r is the relative permeability of the material to free space, e.g. 1 for air.
- Magnetic flux (φ) is a measurement of total magnetic field passing through a given area.
 - A useful tool for helping to describe effects of magnetic force on something occupying a given area.
 - Total flux (ϕ) passing through a surface A is: $\phi = \oint B da$
 - da = vector with direction normal to surface.

Ampere's Circuital Law

 "Current passing through a conductor creates magnetic field around it"

$$\oint Hdl = I_{enclosed}$$

- $B = \mu H$
- B = Magnetic flux density (Weber/m² or Tesla)
- H = Magnetic field intensity (A/m)
- μ = Magnetic core permeability (H/m)
- dl = vector differential path length

Faraday's Law of Induction

 Induced electromotive force (e) in any closed circuit is equal to the negative of time rate of change of magnetic flux enclosed by the circuit

$$e = \frac{d\lambda}{dt} = \frac{d(N\phi)}{dt}$$

- Flux linkages (λ) is the amount of flux linking an N turn coil
 - For simplicity, we assume the flux links to all turns and there are no leakages
- Flux linkages can be related to inductance for RLC circuit analysis
 - For a linear magnetic system, i.e. $B = \mu H$, inductance (L) can be defined as the constant relating the current to the flux linkage
 - $L = \lambda / I$

Flux Linkages of a Single Conductor

- To develop models of transmission lines, we first need to determine the inductance of a single, infinitely long wire
- To do this we need to determine the wire's total flux linkage, including
 - Flux linkages outside of the wire
 - Flux linkages within the wire

Flux Linkages of a Single Conductor

- Flux Linkages Inside of a Conductor
 - Assume that the current density within the wire is uniform and that the wire has a radius of r
 - $\oint H_x dl = I_x \Rightarrow 2\pi x H_x = I_x$
 - Now, $I_{\chi} = \frac{\pi x^2}{\pi r^2} I$
 - $H_{\chi} = \frac{\chi}{2\pi r^2} I \implies B_{\chi} = \mu H_{\chi} = \frac{\mu \chi I}{2\pi r^2}$

• $\lambda_{inside} = \frac{\mu}{8\pi}I$

- Flux Linkages Outside of Conductor
 - Suppose a wire is a single loop that is closed at infinity $\Rightarrow \lambda = \phi$ as N = 1
 - Flux linking the wire out to 'R' from the center of the wire is:
 - $\phi = \oint B d\mathbf{a} = l \cdot \int_r^R \mu_0 \frac{I}{2\pi y} dy$
 - $\lambda = \phi \Rightarrow \lambda = l \cdot \int_r^R \mu_0 \frac{l}{2\pi v} dy$
 - Since length is infinity, we can represent the expression as per unit length

• $\frac{\lambda}{l} = \int_{r}^{R} \mu_0 \frac{I}{2\pi y} dy$

• $\lambda_{outside} = \frac{\mu_0}{2\pi} I \ln \frac{R}{r}$

Single Conductor -Total Flux and Inductance

Total Flux Linkages

•
$$\lambda_{total} = \lambda_{inside} + \lambda_{outside}$$

•
$$\lambda_{total} = \frac{\mu_0 \mu_r}{8\pi} I + \frac{\mu_0}{2\pi} I \ln \frac{R}{r}$$

•
$$\lambda_{total} = \frac{\mu_0}{2\pi} I \left(\frac{\mu_r}{4} + \ln \frac{R}{r} \right)$$

Simplified Form:

$$\lambda_{total} = \frac{\mu_0}{2\pi} I \ln \frac{R}{r'}$$

$$r' = re^{\frac{\mu_0}{4}}$$

• Inductance $L = \lambda / I$ $\Rightarrow L = \frac{\mu_0}{2\pi} \left(\frac{\mu_r}{4} + \ln \frac{R}{r} \right)$

Simplified Form:

•
$$L = \frac{\mu_0}{2\pi} \ln \frac{R}{r'}$$

•
$$L = 2 \cdot 10^{-7} \cdot \ln \frac{R}{r'}$$

•
$$r'=re^{-\frac{\mu r}{4}}$$

•
$$r' \approx 0.78r$$
; *if* $\mu_r = 1$

Two Conductor Line Inductance

- Consider the case of two wires, each carrying the same current (I), but in opposite directions. The wires are separated by distance (R).
 - To determine the inductance of each conductor, apply integration as before. In this • $\lambda_{left} = \frac{\mu_0}{2\pi} I(\ln R' - \ln r' - \ln (R' - R) + \ln R)$ case, there will be some field cancellation due to the opposite flow of current
 - Integrate for the left to an arbitrary distance of R', the total flux linkages are:

•
$$\lambda_{left} = \frac{\mu_0}{2\pi} I \ln \frac{R'}{r'} - \frac{\mu_0}{2\pi} I \ln \left(\frac{R'-R}{R}\right)$$
•
$$r' = re^{-\frac{\mu_r}{4}}$$

•
$$\lambda_{left} = \frac{\mu_0}{2\pi} I \left(\ln \frac{R'}{r'} - \ln \left(\frac{R' - R}{R} \right) \right)$$

•
$$\lambda_{left} = \frac{\mu_0}{2\pi} I(\ln R' - \ln r' - \ln(R' - R) + \ln R)$$

•
$$\lambda_{left} = \frac{\mu_0}{2\pi} I \left(\ln \frac{R}{r'} + \ln \left(\frac{R'}{R'-R} \right) \right)$$

•
$$\lambda_{left} = \frac{\mu_0}{2\pi} I\left(\ln \frac{R}{r'}\right) as R' \to \infty$$
 (Flux Linkage)

•
$$L_{left} = \frac{\mu_0}{2\pi} \left(\ln \frac{R}{r'} \right)$$
 (Line Inductance)

© Copyright National University of Singapore. All Rights Reserved

Multiple Conductors

- Assume there are k conductors, each with current i_k , arranged in an arbitrary geometry. How to find flux linkages of each wire?
 - Each conductor's flux linkage, λ_k , depends upon its own current and the current in all the other conductors
 - To derive λ_1 , the same approach is taken by integrating from conductor 1 along the right along the axis.

•
$$\lambda_1 = \frac{\mu_0}{2\pi} \left[i_1 \ln \frac{R_1}{r_1'} + i_2 \ln \frac{R_2}{d_{12}} + \dots + i_k \ln \frac{R_k}{d_{1k}} \right]$$

- $\lambda_1 = \frac{\mu_0}{2\pi} \left[i_1 \ln \frac{1}{r_1'} + i_2 \ln \frac{1}{d_{12}} + \dots + i_k \ln \frac{1}{d_{1k}} \right] + \frac{\mu_0}{2\pi} \left[i_1 \ln R_1 + i_2 \ln R_2 + \dots + i_k \ln R_k \right]$
- As R_1 goes to infinity, $R_1 = R_2 = ... = R_k$ yielding the following relation:
- $\lambda_1 = \frac{\mu_0}{2\pi} \left[i_1 \ln \frac{1}{r_1'} + i_2 \ln \frac{1}{d_{12}} + \dots + i_k \ln \frac{1}{d_{1k}} \right] + \frac{\mu_0}{2\pi} \left[\sum_{j=1}^k i_j \right] \ln R_1$
- For a balanced System, $\sum_{j=1}^{k} i_j = 0$

•
$$\lambda_1 = \frac{\mu_0}{2\pi} \left[i_1 \ln \frac{1}{r_1'} + i_2 \ln \frac{1}{d_{12}} + \dots + i_k \ln \frac{1}{d_{1k}} \right]$$

- $\lambda_1 = i_1 L_{11} + i_2 L_{12} + \dots + i_k L_{1k}$
- Flux linkages of each conductor will consist of self and mutual inductances (=0)

Example: Line Inductance

• Calculate the per-phase reactance for a balanced three-phase, 50 Hz transmission line with a conductor geometry of an equilateral triangle with D = 5m, r = 1.24 cm (Rook conductor) and a length of 5 km. Assume the system is balanced, i.e., $i_1 + i_2 + i_3 = 0$. Note that D = R for this problem

Bundled Conductors

- To increase the capacity of high voltage transmission lines it is very common to use several conductors per phase
 - This is known as conductor bundling
 - Typical values are two conductors for 345 kV lines, three for 500 kV, and four for 765 kV

Bundled Conductor Flux Linkages

• Define d_{ij} as the distance between conductors i and j. λ for each conductor can be defined as:

$$\lambda_{1} = \frac{\mu_{0}}{2\pi} \begin{bmatrix} \frac{i_{a}}{4} \left(\ln \frac{1}{d_{11}} + \ln \frac{1}{d_{12}} + \ln \frac{1}{d_{13}} + \ln \frac{1}{d_{14}} \right) + \\ \frac{i_{b}}{4} \left(\ln \frac{1}{d_{15}} + \ln \frac{1}{d_{16}} + \ln \frac{1}{d_{17}} + \ln \frac{1}{d_{18}} \right) + \\ \frac{i_{c}}{4} \left(\ln \frac{1}{d_{19}} + \ln \frac{1}{d_{110}} + \ln \frac{1}{d_{111}} + \ln \frac{1}{d_{112}} \right) \end{bmatrix}$$

$$\lambda_{1} = \frac{\mu_{0}}{2\pi} \begin{bmatrix} i_{a} \ln \frac{1}{\left(d_{11} d_{12} d_{13} d_{14} \right)^{1/4}} + \frac{GMR}{\left(Geometrical Mean Radius \right)} \\ \vdots \\ i_{c} \ln \frac{1}{\left(d_{15} d_{16} d_{17} d_{18} \right)^{1/4}} + \frac{GMD}{\left(Geometrical Mean Distance \right)}$$

- For a balanced system, $D_{AB} = DBC = DCA = D$
- Also, $i_a + ib + ic = 0 \Rightarrow i_a = -i_b i_c$
- $\lambda_1 = \frac{\mu_0}{2\pi} \left[i_a \ln \left(\frac{1}{R_n} \right) i_a \ln \left(\frac{1}{D} \right) \right]$
 - $R_n = (d_{11}d_{12}d_{13}d_{14})^{1/4} = GMR$
 - $D = (d_{15}d_{16}d_{17}d_{18})^{1/4} = GMD = D_{AB} = DBC = DCA$
- $\lambda_1 = \frac{\mu_0}{2\pi} \left[i_a \ln \left(\frac{D}{R_n} \right) \right] = \frac{\mu_0}{2\pi} 4I_1 \left[\ln \left(\frac{D}{R_n} \right) \right]$
- Conductor 1 has an inductance of
 - $L_1 = \frac{\mu_0}{2\pi} 4 \left[\ln \left(\frac{D}{R_n} \right) \right]$
- If each bundle has n conductors ->

•
$$L_a = \frac{L_1}{n} = \frac{\mu_0}{2\pi} \left[\ln \left(\frac{D}{R_n} \right) \right]$$
, here $n = 4$

© Copyright National University of Singapore. All Rights Reserved.

Example - Bundled Inductance

• Consider the previous example of the three-phase lines that are symmetrically spaced 5 meters apart using conductors with a radius of r = 1.24 cm. However, now assume each phase has 4 conductors arranged in a square bundle and spaced by 0.25 meters apart. What is the new inductance per meter?

Line Transposition

 To keep system balanced, the conductors are rotated over the length of a transmission line

Each phase occupies each position on tower for an equal

distance

This is known as Line Transposition

Questions

© Copyright National University of Singapore. All Rights Reserved.