Özdevinirler Kuramı ve Biçimsel Diller

1. Haftanın Özeti

- ⇒ Sonlu Özdevinir Modelleri
 - Sonlu Durumlu Tanıyıcı
 - Çıkış Üreten Özdevinirler
- ⇒ Deterministik Sonlu Özdevinir Modeli (DFA)
 - Biçimsel Tanım
 - DFA nın Tanıdığı Dizgiler Kümesi
 - Şeritli Makine Modeli
- ⇒ Deterministik Olmayan Sonlu Özdevinir Modeli
 - Biçimsel Tanım
 - Lambda (λ) Geçişleri
 - λ Geçişlerinin Yok Edilmesi
- ⇒ Deterministik ve Deterministik Olmayan Sonlu Özdevinir Modellerinin Denkliği
 - NFA ya Denk DFA nın bulunması

Sonlu Özdevinir (Tanıyıcı) Örnekleri

Örnek 1.

{ 0, 1 } alfabesinde, içinde 00 ya da 11 altdizgisi bulunan dizgiler kümesini tanıyan sonlu özdevinirin (FA) geçiş çizeneğinin oluşturulması.

Tanınacak dizgilerin yapısı:

.....0 0.....

veya11.....

Sonlu Özdevinir (Tanıyıcı) Örnekleri

Örnek 2.

{ a, b, c } alfabesinde aşağıda tanımlanan dizgiler kümesini tanıyan sonlu özdevinirin (FA) geçiş çizeneği oluşturunuz

$$T(M) = \{ a^n b^m c^k \mid n \ge 0, m \ge 1, k \ge 2 \}$$

 $T(M) = \{ bcc, abcc, bbccc, aaabccc, \dots \}$

Bu makinenin (NFA) deterministik eşdeğeri (DFA) bulunurken başlangıç durumlarının (q_0q_1 çiftinin) ardılları bulunur.

Sonlu Özdevinir (Tanıyıcı) Örnekleri

Örnek 2.

Geçiş çizelgesi:

	a	b	c
\rightarrow q ₀	$\mathbf{q_0}$	$\mathbf{q_2}$	-
	-	$\mathbf{q_2}$	-
$\mathbf{q_2}$	-	$\mathbf{q_2}$	$egin{array}{c} \mathbf{q_3} \ \mathbf{q_4} \end{array}$
\mathbf{q}_3	-	-	$\mathbf{q_4}$
$ \mathbf{q}_4 $	-	=	$\mathbf{q_4}$

Başlangıç Durumlarının Ardılları

a	b	c
$\mathbf{q_0}$	\mathbf{q}_2	Φ
$\mathbf{q_0}$	$\mathbf{q_2}$	Φ
Φ	$\mathbf{q_2}$	\mathbf{q}_3
Φ	Φ	Φ
Φ	Φ	$\mathbf{q_4}$
Φ	Φ	$\mathbf{q_4}$
	q ₀ q ₀ Ф Ф	$egin{array}{cccccccccccccccccccccccccccccccccccc$

Sonlu Özdevinir (Tanıyıcı) Örnekleri

Örnek 2.

Başlangıç Durumlarının Ardılları

	a	b	c
$\rightarrow q_0 q_1$	$\mathbf{q_0}$	$\mathbf{q_2}$	Φ
$\mathbf{q_0}$	$\mathbf{q_0}$	$\mathbf{q_2}$	Φ
$\mathbf{q_2}$	Φ	$\mathbf{q_2}$	$\mathbf{q_3}$
Φ	Φ	Φ	Φ
\mathbf{q}_3	Φ	Φ	$\mathbf{q_4}$
$\overline{\mathbf{q}_4}$	Φ	Φ	$\mathbf{q_4}$

Durumların yeniden adlandırılması:

q_0q_1 için	: A
${f q}_0$ için	: B
q ₂ için	: C
Φ için	: D
$\mathbf{q_3}$ için	: E
${f q}_4$ içn	: F

Deterministik Geçiş Çizelgesi

	a	b	c
→A	В	C	D
В	В	C	D
C	D	C	${f E}$
D	D	D	D
E	D	D	\mathbf{F}
(F)	D	D	F

Sonlu Özdevinir (Tanıyıcı) Örnekleri

Örnek 2.

Deterministik Geçiş Çizelgesi

	a	b	c
→A	В	C	D
В	В	C	D
C	D	C	\mathbf{E}
D	D	D	D
E	D	D	F
(F)	D	D	F

Deterministik Geçiş Çizeneği

Sonlu Özdevinir (Tanıyıcı) Örnekleri

Örnek 3.

{ 0, 1 } alfabesindeki { 0010, 000, 00, 0000 } dizgler kümesini tanıyan tanıyan sonlu özdevinirin (FA) geçiş çizeneğinin oluşturulması.

Elde ettiğimiz geçiş çizeneği deterministik değildir. Şimdi de eşdeğer deterministik çizeneği bulalım.

Örnek 3.

Geçiş çizeneği:

Başlangıç Durumunun Ardılları

	0	1
$\rightarrow q_0$	$\mathbf{q_1}$	Φ
	$\mathbf{q_2}$	Φ
q ₁ Ф	$egin{array}{c} \mathbf{q}_2 \ \mathbf{\Phi} \end{array}$	Φ
\mathbf{q}_2	q_3q_5	${f q_4}$
q_3q_5	$\mathbf{q_3}$	Φ
$\mathbf{q_4}$	$\mathbf{q_3}$	Φ
$\overline{\mathbf{q}_3}$	$egin{array}{c} \mathbf{q}_3 \ \mathbf{\Phi} \end{array}$	Φ

Durumların yeniden adlandırılması:

q ₀ için : A
q ₁ için : B
Φiçin : C
q ₂ için : D
q ₃ q ₅ için : E
q ₄ için : F
q ₃ içn : G

Geçiş çizelgesi:

	0	1
\rightarrow q ₀	$\mathbf{q_1}$	-
\mathbf{q}_0 \mathbf{q}_1	$egin{array}{c} \mathbf{q_2} \ \mathbf{q_3} \mathbf{q_5} \end{array}$	-
$ \mathbf{q}_2 $	q_3q_5	$\mathbf{q_4}$
$ \mathbf{q}_3 $	-	
$\left \begin{array}{c} \mathbf{q}_4 \\ \mathbf{q}_5 \end{array} \right $	$egin{array}{c} \mathbf{q_3} \\ \mathbf{q_3} \end{array}$	-
\mathbf{q}_{5}	\mathbf{q}_3	-

Deterministik Geçiş Çizelgesi

	0	1
→A	В	C
В	D	C
C	C	C
(D)	E	\mathbf{F}
E	G	C
F	G	C
G	C	C

Örnek 3.

Deterministik Geçiş Çizelgesi

	0	1
→ A	В	C
B C	D	C C C
C	C	\mathbf{C}
(E) F	D C E G C	\mathbf{F}
E	G	C C C
\mathbf{F}	G	C
©	C	C

Deterministik Geçiş Çizeneği

1.1.5. İki Yönlü Sonlu Özdevinir Modeli

> DFA ve 2DFA arasındaki tek fark geçiş işlevininin tanımındadır.

2DFA modelinde geçiş işlevi:

 $(Q \ x \ \Sigma)$ 'dan $\ Q \ x \ \{ \ R, \ L \ \}$ 'ye bir eşleme olarak tanımlanır.

100101010 +

Bu tanımda R (right) ve L (left), okuma kafasının bir sağa mı yoksa bir sola mı geçeceğini gösterir.

Örnek İki Yönlü Sonlu Özdevinir (2DFA)

	0	1	
$\rightarrow (q_0)$	$(\mathbf{q}_0, \mathbf{R})$	(q ₁ , R)	100101010
$\overline{q_1}$	(q ₁ , R)	(q_2, L)	
$\overline{\mathbf{q}_2}$	$(\mathbf{q_0}, \mathbf{R})$	(q_2, L)	

Örnek makine, { 0, 1 } alfabesinde içinde 11 altdizgisi bulunmayan dizgileri tanıyan bir 2DFA'dır.

> Anlık Tanım (ID : Instantenaous Description)

$$\mathbf{ID} = (\alpha, \mathbf{q}_i, \beta)$$

Örnek:

$$\begin{array}{c|c} \alpha & \beta \\ \hline 100101010 \\ \hline \\ q_1 \end{array}$$

$$ID = (1001, q_1, 01010)$$

$$ID_1 \stackrel{|*}{\models} ID_2$$

> 2DFA'nın Tanıdığı Dizgiler Kümesi

$$T(M) = \{ w \mid (q_0, w) | * (w, q_i), q_i \in F \}$$

> Tek ve İki Yönlü Sonlu Özdevinirlerin Denkliği

1.2. Çıkış Üreten Özdevinirler

- Sonlu özdevinirlerin iki ana türü, "tanıyıcılar" ve "dönüştürücüler" olarak nitelenebilir. Çıkış üreten özdevinirler giriş dizgilerini çıkış dizgilerine dönüştüren modellerdir.
- > Çıkış üreten özdevinirlerin Moore ve Mealy makinesi olarak adlandırılan iki türü vardır.
- Moore Makinesi

 $M = \langle Q, \Sigma, \Delta, \delta, \lambda, q_0 \rangle$

Q: Durumlar kümesi

 Σ : Giriş alfabesi

 Δ : Çıkış alfabesi

 q_0 : Başlangıç durumu: $q_0 \in Q$

 δ : Durum geçiş işlevi : (Q x Σ)'dan Q'ya bir eşleme

 λ : Çıkış işlevi: Q'dan Δ 'ya bir eşleme

Moore makinesi, DFA modelinin genellemesi olarak görülebilir.

Örnek 1.8. Girişine uygulanan ikili sayı X ise, çıkışında z = Mod(X, 5) değerini üreten makine. $M_{1.8} = \langle Q, \Sigma, \Delta, \delta, \lambda, q_0 \rangle$

a) Durum Çizeneği

	SD		
ŞD	$\mathbf{x} = 0$	$\mathbf{x} = 1$	Z
→ A	A	В	0
В	C	D	1
C	E	A	2
D	В	C	3
E	D	E	4

b) Durum Çizelgesi

➤ Mealy Makinesi

$$\mathbf{M} = \langle \mathbf{Q}, \Sigma, \Delta, \delta, \lambda, \mathbf{q}_0 \rangle$$

 δ : Durum geçiş işlevi : $(Q \times \Sigma)$ 'dan Q'ya bir eşleme

 λ : Çıkış işlevi: (Q x Σ)'dan Δ 'ya bir eşleme

ightharpoonup Örnek 1.9. $M_{1.9}$ makinesi giriş alfabesi $\{0,1\}$, çıkış alfabesi ise $\{0,1,2\}$ olan ve ürettiği çıkış ile, son iki giriş simgesinden kaç tanesinin değerinin bir öncekinden farklı olduğunu gösteren Mealy makinesi olarak tanımlanıyor.

Giriş Çıkış dizgileri örneği:

Varsayım: İlk iki çıkış simgesi belirlenirken, başlangıçtan önceki iki giriş değerinin 00 olduğu düşünülecektir. Buna göre ilk çıkış değeri 0 ya da 1 olabilecek; 2 olamayacaktır.

Giriş Dizgisi: 01011101010011......

Çıkş Dizgisi: 0 1 2 2 1 0 1 2 2 2 2 1 1 1

$$M_{1.9} = \langle Q, \Sigma, \Delta, \delta, \lambda, q_0 \rangle$$

▶ Örnek Mealy Makinesi (M_{1,9})

a) Durum Çizeneği

ŞD	SD, z $x = 0 x = 1$	
\rightarrow A	A , 0	B, 1
В	C, 2	D, 1
C	A, 1	B, 2
D	C, 1	D , 0

b) Durum Çizelgesi

Moore ve Mealy Makinelerinin Eşdeğerliği

Moore Makinesine Eşdeğer Mealy Makinesinin Bulunması

$$\lambda'(\mathbf{q}, \mathbf{a}) = \lambda(\delta(\mathbf{q}, \mathbf{a}))$$

▶ M_{1.8} Moore Makinesine Eşdeğer Mealy Makinesi

a) Durum Çizeneği

	SD, z	
ŞD	$\mathbf{x} = 0$	x = 1
→ A	A , 0	B, 1
В	C, 2	D, 3
C	E, 4	A , 0
D	B, 1	C, 2
E	D, 3	E, 4

b) Durum Çizelgesi

> Mealy Makinesine Eşdeğer Moore Makinesinin Bulunması

 $M_2 = \langle Q, \Sigma, \Delta, \delta, \lambda, q_0 \rangle$ bir Mealy makinesi olsun.

$$\begin{split} M_1 = &< Q', \Sigma, \Delta, \delta', \lambda', \, q'_0 > \text{ eşdeğer Moore Makinesi} \\ Q' = & Q \ x \ \Delta \\ q'_0 = & [q_0, z_j] \qquad (z_j = \text{çıkış simgelerinden rasgele seçilmiş biri}) \\ \delta'(& [q_i, z_k], x_j) = & [\delta(q_i, x_j), \lambda(q_i, x_j)] \\ \lambda'(& [q_i, z_k]) = & z_k \end{split}$$

≻Örnek 1.10.

M_{1,10} Mealy makinesi aşağıdaki gibi tanımlanıyor:

$$\begin{aligned} \mathbf{M}_{1.10} &= <\mathbf{Q}, \Sigma, \Delta, \delta, \lambda, \mathbf{q}_0> \\ \mathbf{Q} &= \{\,\mathbf{A}, \mathbf{B}, \mathbf{C}\,\,\} \\ \Sigma &= \{\,0, 1\,\,\} \\ \Delta &= \{\,0, 1\,\,\} \\ \mathbf{q}_0 &= \mathbf{A} \\ \delta(\mathbf{A}, \mathbf{0}) &= \mathbf{B} & \lambda(\mathbf{A}, \mathbf{0}) &= \mathbf{0} \\ \delta(\mathbf{A}, \mathbf{1}) &= \mathbf{A} & \lambda(\mathbf{A}, \mathbf{1}) &= \mathbf{1} \\ \delta(\mathbf{B}, \mathbf{0}) &= \mathbf{B} & \lambda(\mathbf{B}, \mathbf{0}) &= \mathbf{1} \\ \delta(\mathbf{B}, \mathbf{1}) &= \mathbf{C} & \lambda(\mathbf{B}, \mathbf{1}) &= \mathbf{1} \\ \delta(\mathbf{C}, \mathbf{0}) &= \mathbf{A} & \lambda(\mathbf{C}, \mathbf{0}) &= \mathbf{0} \\ \delta(\mathbf{C}, \mathbf{1}) &= \mathbf{C} & \lambda(\mathbf{C}, \mathbf{1}) &= \mathbf{0} \end{aligned}$$

a) M_{1.10} Mealy Makinesi

b) Eşdeğer Moore Makinesi (M'1.10)

c) Eşdeğer Moore Makinesi (M'_{1.10}) Durumlar Yeniden Adlandırıldıktan Sonra