#### **Articulations**

#### Definition:

 A node v of a connected graph G is an articulation node (also called a cut vertex) if the removal of v and all its incident edges causes G to become disconnected.

#### Motivation for articulations:

- Articulations are important in communication networks.
- In traffic flows they identify places that will stop traffic between two areas of a city if they become blocked.

# Finding Articulations (1)

- Problem:
  - Given any graph G = (V, E), find all the articulation points.
  - Possible strategy:
    - For all vertices v in V:

Remove v and its incident edges. Test connectivity using a DFS.

- Execution time:  $\Theta(n(n+m))$ .
  - Can we do better?

## Finding Articulations (2)

- A DFS tree can be used to discover articulation points in  $\Theta(n + m)$  time.
  - We start with a program that computes a DFS tree labeling the vertices with their discovery times.
  - We also compute a function called low[v] that can be used to characterize each vertex as an articulation or non-articulation point.
    - The root of the DFS tree (the root has a d[] value of 1) will be treated as a special case:

#### Finding Articulations (3)

- The root of the DFS tree is an articulation point if and only if it has two children.
  - Suppose the root has two or more children.
    - Recall that the back edges never link the vertices in two different subtrees.
    - So, the subtrees are only linked through the root vertex and if it is removed we will get two or more connected components (i.e. the root is an articulation point).
  - Suppose the root is an articulation point.
    - This means that its removal would produce two or more connected components each previously connected to this root vertex.
    - So, the root has two or more children.

## Finding Articulations (4)

- Computation of low[v].
  - We need another function defined on vertices:
  - This quantity will be used in our articulation finding algorithm:

 $low[v] = min\{d[v], d[z] \text{ such that } (u, z) \text{ is a back edge for some descendent } u \text{ of } v\}$ 

 So, low[v] is the discovery time of the vertex closest to the root and reachable from v by following zero or more edges downward, and then at most one back edge.

#### Finding Articulations (5)

- For non-root vertices we have a different test.
  - Suppose v is a non-root vertex of the DFS tree T. Then v is an articulation point of G if and only if there is a child w of v in T with  $d[v] \le low[w]$ .
  - Sufficiency: Assume such a child w exists.
    - There is no descendent vertex of v that has a back edge going "above" vertex v.
    - Also, there is no cross link from a descendent of v to any other subtree.
    - So, when v is removed the subtree with w as its root will be disconnected from the rest of the graph.

      Possible links

## Finding Articulations (6)

- Necessity: Assume no such child w exists.
  - In this case all children of v have a descendent with a back edge going to an ancestor of v.
  - When v is removed each of the children of v will still be connected to some vertex on the path going from the root to the vertex v.
  - The graph stays connected and so v would not be an articulation point in this case.

#### Finding Articulation Points Pseudocode

```
function dfs-visit(v)
  status[v] := gray; time := time+1; d[v] := time;
  low[v] := d[v];
  for each w in out(v)
    if status[w] == white
      // In this case (v,w) is a TREE edge
                        // NOTE: low[w] is now computed!
      dfs-visit(w);
      if d[v] \le low[w] then
                                                        Definition of low[]
           record that vertex v is an articulation
      low[v] := min(low[v], low[w]) // Note how low[] can propagate up to a parent.
    else if w is not the parent of v then
      // In this case (v,w) is a BACK edge
      low[v] := min(low[v], d[w])
  status[v] := black;
```

## Minimum Spanning Trees

- Problem:
  - Given a connected undirected weighted graph G = (V, E), find a minimum spanning tree T for G.
- Assumptions
  - Weights are nonnegative.
  - The cost of a spanning tree is the sum of all the weights of all the edges in T.
  - The Minimum Spanning Tree (MST) is the spanning tree with the smallest possible cost.
- Typical application: Connect nodes in a computer network using as little wire as possible (MST links).

## Kruskal's Algorithm

```
// Sort edges in order of increasing weight
// so that w[f[1]] <= w[f[2]] <= ... <= w[f[m]]

T := empty set;
for i:=1 to m do
    let u,v be the endpoints of edge f[i]
    if there is no path between u and v in T then
        add f[i] to T
return T</pre>
```

# Correctness of Kruskal's Algorithm

- Kruskal's algorithm produces a MST:
  - Kruskal's greedy algorithm produces a tree  $T_G$ . Let edges be  $e_1, e_2, ..., e_{n-1}$  sorted by weight.
  - Then for any  $0 \le k \le n 1$  there exists a minimum spanning tree that contains edges  $e_1, e_2, ..., e_k$ .
- Proof by induction:
  - Base case:
    - For k = 0 the lemma holds trivially.
  - Induction step:

## Correctness of Kruskal's Algorithm

- Suppose there is a MST  $T^*$  with edges:  $e_1, e_2, ..., e_{k-1}$ .
- Case 1: e<sub>k</sub> ∈ T\*:
  - Then  $T^*$  contains all the edges  $e_1, e_2, ..., e_k$  and the statement is true.
- Case 2:  $e_k \notin T^*$ :
  - If we remove  $e_k$  from  $T_G$ , then  $T_G$  becomes disconnected and will have two components (call them A and B).
  - Add e<sub>k</sub> to T\*. This creates a cycle in T\*involving vertices in both A and B.
  - So, the cycle must contain an edge  $e^{\,\prime}$  different from  $e_k$  that has one endpoint in A and one in B.
  - Remove edge e', to obtain a new graph T' ==> T' is a spanning tree.

#### Correctness of Kruskal's Algorithm

- Note that  $w(e') \ge w(e_k)$ , otherwise e' would have been chosen by Kruskal's algorithm instead of  $e_k$ .
- The cost of T' can be written as:

$$w(T') = w(T^*) + w(e_k) - w(e')$$
 implying  $w(T') \le w(T^*)$ .

- Since  $T^*$  is a MST,  $w(T') = w(T^*)$  and T' is also a MST.
- Moreover, T' contains each of the edges  $e_1$ ,  $e_2$ , ...,  $e_k$  which is what we wanted to prove.
- Thus, we have proved by induction that for every k
  there exists a MST that contains each of the
  edges e<sub>1</sub>, e<sub>2</sub>, ..., e<sub>k</sub>.

## Analysis of Kruskal's Algorithm

- Running time:
  - Sorting the edges takes  $\Theta(m \log m) = \Theta(m \log n)$  time.
  - Running time for the rest of algorithm depends on implementation of the path detection statement:
     "if there is no path between u and v in T"
  - Use DFS on the edges of T selected so far:
    - There are less than *n* of them, so it will take O(*n*) per check.
    - This implies a final running time that is O(mn).
  - Use a Union/Find data structure (covered in CS466):
    - The check would take  $O(\log n)$  (or better) for each check.
    - This implies a final running time that is  $O(m \log n)$ .

## Prim's Algorithm

- Main idea:
  - Start from an arbitrary single vertex s and gradually "grow" a tree.
    - We maintain a set of connected vertices S.

```
S := {s};
T := empty set;
while S <> V do
    e := (u,v) such that u is in S, v is not
        in S and w(e) is smallest possible;
    add v to S;
    add e to T;
return T;
```

## Correctness of Prim's Algorithm

- Prim's algorithm produces a MST:
  - Let Prim's greedy algorithm produce a tree  $T_G$  containing edges:  $e_1$ ,  $e_2$ , ...,  $e_{n-1}$  (numbered in the order they were added by the algorithm).
  - Then for any  $0 \le k \le n 1$  there exists a minimum spanning tree that contains edges  $e_1, e_2, ..., e_k$ .
- Proof by induction:
  - Base case:
    - For k = 0 the lemma holds trivially.
  - Induction step:

## Correctness of Prim's Algorithm

- Suppose there is a MST  $T^*$  with edges:  $e_1, e_2, ..., e_{k-1}$ .
- Case 1:  $e_k \in T^*$ :
  - Then  $T^*$  contains all the edges  $e_1, e_2, ..., e_k$  and the statement is true.
- Case 2:  $e_k \notin T^*$ :
  - Let S be the set of finished vertices after k − 1 steps of the algorithm.
  - Add  $e_k$  to  $T^*$ . This will create a cycle in  $T^*$ .
  - The cycle must contain an edge e' different from  $e_k$  that has one endpoint in S and one not in S.
  - Remove edge e' and denote the new graph by T'.
  - T' is a spanning tree.

# Correctness of Prim's Algorithm

- Note that  $w(e') \ge w(e_k)$ , otherwise e' would have been chosen by Prim's algorithm instead of  $e_k$ .
- The cost of T' can be written as:

$$w(T') = w(T^*) + w(e_k) - w(e')$$
 implying  $w(T') < w(T^*)$ .

- Since  $T^*$  is a MST,  $w(T') = w(T^*)$  and T' is also a MST.
- Moreover, T' contains each of the edges  $e_1, e_2, ..., e_k$  which is what we wanted to prove.
- Thus, we have proved by induction that for every k
  there exists a MST that contains each of the
  edges e<sub>1</sub>, e<sub>2</sub>, ..., e<sub>k</sub>.

## Analysis of Prim's Algorithm

- Running time:
  - We can improve the algorithm by keeping for each vertex not in S its least cost neighbour in S.
    - The cost for this neighbour will be stored in cost[v] and the neighbour itself in other[v]. (See next page).
  - We do the same set of operations with the cost as in Dijkstra's algorithm:
    (initialize a structure, decrease values m times, select the minimum n 1 times).
  - Therefore we get  $O(n^2)$  time when we implement cost with an array, and  $O((n + m) \log n)$  when we implement it with a heap.

## Pseudocode for Prim's Algorithm

```
s := {s};
                                        Recall: cost[x] is least
T := empty set;
                                        cost between x and
// Initialize data structure
                                        "nearest" vertex in s.
for each u not in S
   cost[u] := w(s,u);
                                        Note: w(u,v) is defined for all
                                        possible u and v in v.
   other[u] := s;
                                         When there is no edge between
// Main computation
                                        u and v we have w = infinity.
while S<>V do
   v := vertex not in S with the smallest cost[v];
   e := (v, other[v]);
   add v to S;
   add e to T;
   // Update data structure
   for each x not in S and a neighbour of v
       if w(v,x) < cost[x] then
          cost[x] := w(v,x);
          other[x] := v;
return T;
```

## Dijkstra's Algorithm

- Objective of Dijkstra's algorithm:
  - Dijkstra's algorithm finds the least cost paths from a source vertex s to all the other vertices in the graph.

# Dijkstra's Algorithm Setup

- We maintain 2 sets of vertices:
  - The set C of "finished" vertices.
    - We can think of C as the "cloud set".
    - It will start with the source vertex and eventually expand to include all the other vertices.
    - For any vertex in the cloud we will be assured that we know its least cost path to the source.
  - The set Q of vertices that are yet to be processed.
    - They are not in the cloud.

# Dijkstra's Algorithm: Pseudocode

- Path reconstruction:
  - We keep the last but one vertex in the shortest path.

#### An Example of Dijkstra's Algorithm

 Suppose small people must minimize travel costs because they walk around with big hairy feet and no shoes....



# Middle Earth (In the Third Age)



## Middle Earth: Travel Cost



#### Dijkstra Clouds Middle Earth



#### Dijkstra Clouds Middle Earth



#### Dijkstra Clouds Middle Earth



# Running Time of Dijkstra's Algorithm

 Running time will depend on the implementation of the data structure for cost[s].

## The Floyd-Warshall Algorithm

#### • Problem:

- Given a graph G = (V, E), directed or undirected, weighted with edge costs, find the least cost path from u to v for all pairs of vertices (u, v).
- We assume all weights are non-negative numbers.
- The cost of a path will be the sum of the costs of all edges in the path.

## Floyd-Warshall: a Useful Lemma

#### · Lemma:

- Let P be the least cost path from u to v.
- Consider any two vertices x and y on this path.
- The part of the path between vertices x and y will be the least cost path between x and y.

#### Proof:

- If there was a subpath from x to y that was not the least cost path from x to y, then we could replace this subpath with the least cost path from x to y, obtaining a lesser cost for the overall path.
- This contradicts our statement that the path from u
  to v was the shortest path, so the lemma is true.

# Floyd-Warshall: Extending the Cost Function

- The previous lemma suggest the possibility of using a dynamic programming strategy for our problem.
- A useful way to look at the problem:
  - It is convenient to think of the problem as having a cost c(u, v) assigned to each of the pairs for all possible pairs u and v in the graph.
  - c(u, v) = the <u>given</u> edge cost if edge (u, v) exists.
  - c(u, v) = infinity if there is no edge (u, v) in the graph.

# Floyd-Warshall: Extending the Cost Function

- With the extended definition of cost, we can go from u to v using any subset of distinct vertices (apart from u and v) as intermediate nodes in the path.
  - Of course, if the selected path uses a non-existent edge in G, the cost of the path is infinity.
  - The algorithm will discard paths with infinite cost and so we will get solutions made up from the given edges.
  - So, the algorithm will examine all possible paths without the need to check beforehand if edges actually exist in G.

#### Floyd-Warshall: Subproblem Definition

- Subproblem setup:
  - We assume the vertices are labeled (i.e. indexed) using integers ranging from 1 to *n*.
  - An adjacency matrix representation of the graph is convenient.
- Subproblem definition:
  - We let cost[i, j, k] hold the cost of the least cost path between vertex i and vertex j with intermediate nodes chosen from vertices 1, 2,..., k.

#### Floyd-Warshall: Subproblem Definition

- Recall our subproblem definition:
  - We let cost[i, j, k] hold the cost of the least cost path between vertex i and vertex j with intermediate nodes chosen from vertices 1, 2,..., k.
  - As the index k increases we have more options for discovering the shortest path between endpoints i and j.
    - Even if there is an edge from i to j, its cost might exceed that of another path running from i to j.
  - So, the least cost for the path from i to j will be cost[i, j, n], that is, we have the option of selecting from all the other nodes different from i and j.
  - Base case: cost[i, j, 0] = c(i, j). (Given edge costs)
    - *cost*[*i*, *j*, 0] is for the path with **no** intermediate nodes.

#### Floyd-Warshall: The Recurrence

- How do we evaluate cost[i, j, k]?
  - Our strategy will be to evaluate all cost[ ] values starting with k = 1, then k = 2, etc.
    - Recall that the least cost path for cost[i, j, k] can involve any intermediate nodes selected from {1, 2, ..., k}.
  - In particular, the least cost path may involve node k or it may not...
  - Case 1: The least cost path does not go through node k, then cost[i, j, k] = cost[i, j, k-1].
  - Case 2: The least cost path does go through node k, then cost[i, j, k] = cost[i, k, k-1] + cost[k, j, k-1].

## Floyd-Warshall: The Recurrence

 Of course, we want to use the case that gives us the smaller cost:

```
cost[i, j, k] = min\{cost[i, j, k-1], cost[i, k, k-1] + cost[k, j, k-1]\}
```

#### Some improvements:

- The value of cost[i, j, k] is always dependent on the immediately previous cost values corresponding to the third parameter equal to k-1 (i.e. not dependent on k-2, k-3, etc.)
- So, we can do away with the third parameter and keep the costs in a two dimensional array that is updated n times.
- Thus, cost[i, j, k] will remain as cost[i, j, k-1] unless we update it with a smaller cost[i, k, k-1] + cost[k, j, k-1] value.

## Floyd-Warshall: Pseudocode

```
for i := 1 to n do
    for j := 1 to n do
        cost[i, j] := c[i, j];  // Let c[u, u] := 0
for k := 1 to n do
    for i := 1 to n do
    for j := 1 to n do
        sum = cost[i, k] + cost[k, j];
        if(sum < cost[i, j]) then cost[i, j] := sum;</pre>
```

- This code derives the least cost value but there is no recovery of the actual path.
- This is done by remembering the second vertex of the path found so far:

## Floyd-Warshall: Pseudocode

```
for i := 1 to n do
   for j := 1 to n do
      cost[i, j] := c[i, j];
next[i, j] := j;
                               // Note!
for k := 1 to n do
   for i := 1 to n do
      for j := 1 to n do
         sum := cost[i, k] + cost[k, j];
          if(sum < cost[i, j]) then</pre>
             cost[i, j] := sum;
             next[i, j] := next[i, k];  // Note!
// To write out the path from u to v:
w := u;
write w;
while w != v do
   w := next[w, v];
   write w;
                                Note: Running time \in \Theta(n^3).
```

# Formulating Problems as Graph Problems

- As a review we now look at four problems.
  - You should read the problems and as homework try to solve them without looking at the answers in the slides that follow.

# Formulating Problems as Graph Problems: Problem #1

- Reliable network routing:
  - Suppose we have a computer network with many links.
  - Every link has an assigned reliability.
    - The reliability is a probability between 0 and 1 that the link will operate correctly.
  - Given nodes u and v, we want to choose a route between nodes u and v with the highest reliability.
    - The reliability of a route is a product of the reliabilities of all its links.

#### Problem #2

- The Greyhound bus problem:
  - Suppose we are given a bus schedule with information for several buses. A bus is characterized by four attributes:
    - the "from-city", the "to-city", departure time, arrival time.
  - Find buses going from city F to city T taking the fastest trip?
    - Take into account travel and wait times between bus arrivals and depatures..
  - First, we eliminate an idea that leads to an inadequate solution:
    - Use a graph that has nodes representing cities.
    - Label each edge with the travel time between cities.
    - Now go for the least cost path.
      - BUT: there is no accounting for wait times!
      - Also, travel times between two cities may vary during the day.
    - But there is another way to use a graph strategy...

## Sample Bus Schedule

| UW to         | 15:40 |       |       |
|---------------|-------|-------|-------|
| Hamilton      | 17:25 |       |       |
| UW to         | 09:00 | 17:00 |       |
| Toronto       | 11:00 | 19:00 |       |
| Hamilton to   | 17:30 |       |       |
| Niagara Falls | 18:45 |       |       |
| Toronto to    | 12:30 | 20:30 |       |
| Niagara Falls | 14:05 | 22:10 |       |
| Niagara Falls | 14:10 | 18:40 | 22:55 |
| to Buffalo    | 15:25 | 19:40 | 23:59 |

#### Problems #3

- The RootBear Problem:
  - Suppose we have a narrow canyon with perpendicular walls on either side of a forest.
    - We assume a north wall and a south wall.
  - Viewed from above we see the A&W RootBear attempting to get through the canyon.
    - We assume trees are represented by points.
    - We assume the bear is a circle of given diameter *d*.
    - We are given a list of coordinates for the trees.
  - Find an algorithm that determines whether the bear can get through the forest.



#### Solution to Problem #1

- Reliable network routing:
  - Suppose we have a computer network with many links.
  - Every link has an assigned reliability.
    - The reliability is a probability between 0 and 1 that the link will operate correctly.
  - Given nodes u and v, we want to choose a route between nodes u and v with the highest reliability.
    - The reliability of a route is a product of the reliabilities of all its links.

- The route will correspond to a path in the graph.
- Can we make this look like a shortest path problem?
- Yes:
  - Since reliability is computed as a product, we will want to change the weights so that an edge is assigned the logarithm of the probability.
    - Then we sum logs to work with products of probabilities.
  - To get the best reliability path we want the highest probability of operation which we can derive by finding the least weight path if the assigned weights are *negative* logarithms of the probability values.
    - Then we are able to use Dijkstra's algorithm.

#### Solution to Problem #2

- The Greyhound bus problem:
  - Suppose we are given a bus schedule with information for several buses. A bus is characterized by four attributes:
    - the "from-city", the "to-city", departure time, arrival time.
  - Find buses going from city *F* to city *T* with the fastest trip?
    - Take into account travel and wait times between arrival and departure times..
  - First, let's eliminate an idea leading to an inadequate solution:
    - Use a graph that has nodes representing cities.
    - Label each edge with the travel time between cities.
    - Now go for the least cost path.
      - BUT: there is no accounting for wait times!
      - Also, travel times between two cities may vary during the day.
    - But there is another way to use a graph strategy...

# Sample Bus Schedule

| UW to         | 15:40 |       |       |
|---------------|-------|-------|-------|
| Hamilton      | 17:25 |       |       |
| UW to         | 09:00 | 17:00 |       |
| Toronto       | 11:00 | 19:00 |       |
| Hamilton to   | 17:30 |       |       |
| Niagara Falls | 18:45 |       |       |
| Toronto to    | 12:30 | 20:30 |       |
| Niagara Falls | 14:05 | 22:10 |       |
| Niagara Falls | 14:10 | 18:40 | 22:55 |
| to            | 15:25 | 19:40 | 23:59 |
| Buffalo       |       |       |       |

- Another approach:
  - Use a graph in which each vertex is a bus.
  - There will be an edge between busses x and y if and only if:

```
x.to\_city = y.from\_city and y.departure\_time \ge x.arrival\_time.
```

• Our time cost for an edge will be:

- We need two special vertices for the origin and destination cities.
- There is an edge from origin to bus x if and only if x.from\_city = origin.
- Time cost of this edge is *x.arrival\_time x.departure\_time*.
- There is an edge from bus y to the destination if and only if y.to\_city = destination.
- The time cost of this edge is 0.
- We now have a shortest path problem:



Note: the shortest trip is via Toronto with time 6:25 hours.

#### Solution to Problem #3

- The RootBear Problem:
  - Suppose we have a canyon with perpendicular walls on either side of a forest.
    - We assume a north wall and a south wall.
  - Viewed from above we see the A&W RootBear attempting to get through the canyon.
    - We assume trees are represented by points.
    - We assume the bear is a circle of given diameter *d*.
    - We are given a list of coordinates for the trees.
  - Find an algorithm that determines whether the bear can get through the forest.



- The graph formulation for this problem:
  - Create a vertex for each tree, and a vertex for each canyon wall.
  - - That is if their separation is less than *d*.
    - Do the same for a tree and its perpendicular distance to a canyon wall.
    - Now determine if canyon walls are in the same connected component of the graph.
    - If they are then the bear cannot pass through the canyon.
    - Otherwise the boundary of the connected component containing the northern canyon wall defines a viable path for the bear.

#### Conclusion

- Graphs are a very important formalism in computer science.
- Efficient algorithms are available for many important problems:
  - exploration, shortest paths, minimum spanning trees, cut links, colouring, etc.
- If we formulate a problem as a graph problem, chances are that an efficient non-trivial algorithm for solving the problem is already known.
- Some problems have a natural graph formulation.
  - For others we need to choose a less intuitive graph formulation.
- Some problems that do not seem to be graph problems at all can be formulated as such.