# Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и кибербезопасности Высшая школа компьютерных технологий и информационных систем

# Отчёт по практической работе

Дисциплина: Теория вероятностей и математическая статистика

| Выполнил студент гр. 5130901/20004 |           | Самохвалова П. А. |
|------------------------------------|-----------|-------------------|
|                                    | (подпись) |                   |
| Преподаватель                      |           | Никитин К. В.     |
|                                    | (подпись) |                   |
|                                    |           |                   |
|                                    | 66 99     | 2024 5            |

Санкт-Петербург 2024 Список задач для аналитического решения: **10.3**, **11.28**, **12.3**, **13.19**, **14.11**, **15.14** 

#### **№** 10.3

• Производятся последовательные независимые испытания пяти приборов на надежность. Каждый следующий прибор испытывается только в том случае, если предыдущий оказался надежным. Построить ряд распределения случайного числа испытанных приборов, если вероятность выдержать испытания для каждого из них равна 0,9.

Решение: так как от успешности испытания прибора зависит, будет ли испытываться следующий прибор, то вероятность, что испытания закончатся на первом приборе равна P(1) = 1 - 0.9 = 0.1. Для следующего числа n приборов успешно должно пройти n-1 испытаний, а испытание самого  $x_n$  прибора должно быть неудачным. Так как приборов всего 5, то для пятого прибора вероятность будет высчитываться только по успешному испытанию прошлых, успех или провал самого пятого прибора не имеет значения.

| X | 1   | 2    | 3     | 4      | 5      |
|---|-----|------|-------|--------|--------|
| P | 0,1 | 0,09 | 0,081 | 0,0729 | 0,6561 |

#### **№11.28**

• Из сосуда, содержащего m белых и n черных шаров, извлекаются шары до тех пор, пока не появится белый шар. Найти математическое ожидание и дисперсию числа вынутых черных шаров, если каждый шар после извлечения возвращался.

Решение: вероятность достать шар —  $p=\frac{m}{m+n}$  для белых шаров и  $q=\frac{n}{m+n}$  для черных. Так как опыты заканчиваются, когда попадается белый шар, то за n+1 опытов будет вынуто n черных шаров, вероятность происхождения этого  $P(n)=\left(\frac{n}{m+n}\right)^n\frac{m}{m+n}=q^np,\, n\geq 0$  — геометрическое распределение. Для того, чтобы вычислить математическое ожидание и дисперсию, определим производящую функцию  $G(u)=\sum_{k=0}^{\infty}p_ku^k=\frac{p}{1-qu}$ . Математическое ожидание СВ и ее производящая функция связаны зависимостью  $M[X]=\frac{dG(u)}{du}\Big|_{u=1}$ , дисперсия  $D[X]=M[X^2]-M[X]^2$ , где  $M[X^2]=G_1+G_2$ . Первый момент  $G_1=\left(\frac{p}{1-qu}\right)'\Big|_{u=1}=p\left(\frac{1}{1-qu}\right)'\Big|_{u=1}=\frac{pq}{(1-qu)^2}\Big|_{u=1}=\frac{pq}{(1-qu)^2}=\frac{pq}{p^2}=\frac{q}{p},$  второй момент  $G_2=\left(\frac{pq}{(1-qu)^2}\right)'\Big|_{u=1}=pq\left(\frac{1}{(1-qu)^2}\right)'\Big|_{u=1}=pq\left(-\frac{1}{(1-qu)^4}\right)*$ 

$$2(1-qu)*(-q)\Big|_{u=1}=\frac{2pq^2}{(1-qu)^3}\Big|_{u=1}=\frac{2pq^2}{(1-q)^3}=\frac{2pq^2}{p^3}=\frac{2q^2}{p^2}.$$
 Тогда  $M[X]=G_1=\frac{q}{p}=\frac{n}{m},\ M[X^2]=G_1+G_2=\frac{n}{m}+\frac{2q^2}{p^2}=\frac{n}{m}+\frac{2n^2}{m^2},\ D[X]=M[X^2]-M[X]^2=\frac{n}{m}+\frac{2n^2}{m^2}-\frac{n^2}{m^2}=\frac{n}{m}+\frac{n^2}{m^2}=\frac{n(m+n)}{m^2}.$ 

#### № 12.3

• В книге Г. Крамера дана функция распределения годовых доходов лиц, облагаемых налогом:

$$F(x) = \begin{cases} 1 - \left(\frac{x_0}{x}\right)^a, & \text{при } x \ge x_0; \\ 0, & \text{при } x < x_0, \end{cases} (a > 0).$$

Определить размер годового дохода, который для случайно выбранного налогоплательщика может быть превзойден с вероятностью 0,5.

Решение: требуется найти значение x такое, что  $P(X > x^*) = 0.5$ . Если вероятность для СВ X быть больше  $x^*$  равна 0.5, тогда вероятность быть меньше также равна  $0.5 - P(X > x^*) = P(X < x^*) => F(x^*) = 0.5$ . При  $x \ge x_0$ :  $F(x^*) = 1 - \left(\frac{x_0}{x^*}\right)^a = 0.5$ ,  $\left(\frac{x_0}{x^*}\right)^a = 0.5$ 

#### **№** 13.19

• Найти для распределения Стьюдента, задаваемого плотностью вероятности

$$f_n(x) = \frac{1}{\sqrt{n\pi}} \frac{\Gamma\left(\frac{n+1}{n}\right)}{\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\frac{n+1}{2}},$$

начальные моменты  $m_k$  при k < n.

Pешение: начальный момент k-го порядка  $m_k$  вычисляется по формуле

$$m_{k} = \int_{-\infty}^{\infty} x^{k} f(x) dx = \int_{-\infty}^{\infty} x^{k} \frac{1}{\sqrt{n\pi}} \frac{\Gamma\left(\frac{n+1}{n}\right)}{\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^{2}}{n}\right)^{-\frac{n+1}{2}} dx$$
$$= \frac{1}{\sqrt{n\pi}} \frac{\Gamma\left(\frac{n+1}{n}\right)}{\Gamma\left(\frac{n}{2}\right)} \int_{-\infty}^{\infty} x^{k} \left(1 + \frac{x^{2}}{n}\right)^{-\frac{n+1}{2}} dx$$

Известно, что моменты распределения Стьюдента нечетного порядка равны нулю. Произведем замену k = 2v + 1 и рассмотрим отдельно интеграл:

$$\int_{-\infty}^{\infty} x^{2\nu+1} \left(1 + \frac{x^2}{n}\right)^{-\frac{n+1}{2}} dx$$

Функция  $x^{2v+1}$  — нечетная, функция  $\left(1+\frac{x^2}{n}\right)^{-\frac{n+1}{2}}$  — четная. Произведение четной и нечетной функций дает нечетную функцию, а интеграл от нечетной функции в симметричных пределах равен нулю:

$$\int_{-\infty}^{\infty} x^{2\nu+1} \left( 1 + \frac{x^2}{n} \right)^{-\frac{n+1}{2}} dx = 0$$

Поэтому моменты нечетного порядка равны нулю.

Произведем замену k = 2v и рассмотрим интеграл:

$$\int_{-\infty}^{\infty} x^{2v} \left( 1 + \frac{x^2}{n} \right)^{-\frac{n+1}{2}} dx$$

Функция  $x^{2v}$  — четная, функция  $\left(1+\frac{x^2}{n}\right)^{-\frac{n+1}{2}}$  — четная. Произведение четных функций дает четную функцию, а интеграл от четной функции в симметричных пределах равен удвоенному интегралу по половинному промежутку:

$$\int_{-\infty}^{\infty} x^{2\nu} \left( 1 + \frac{x^2}{n} \right)^{-\frac{n+1}{2}} dx = 2 \int_{0}^{\infty} x^{2\nu} \left( 1 + \frac{x^2}{n} \right)^{-\frac{n+1}{2}} dx$$

Произведем замену  $x = \sqrt{n \frac{y}{1-y}}$ . Пределы интегрирования изменяются на

$$(0,\,1)$$
 , т.к  $x \to \infty$ ,  $\sqrt{n \frac{y}{1-y}} \to \infty$ , значит  $(1-y) \to 0$ ,  $y \to 1$ .  $dx = \frac{d\left(\sqrt{n \frac{y}{1-y}}\right)}{dy} dy = (1-y)^{-\frac{3}{2}} \frac{\sqrt{n}}{2\sqrt{y}} dy$ :

$$2\int_{0}^{1} \left(n\frac{y}{1-y}\right)^{v} \left(\frac{1}{1-y}\right)^{-\frac{n+1}{2}} (1-y)^{-\frac{3}{2}} \frac{\sqrt{n}}{2\sqrt{y}} dy$$

$$= 2\int_{0}^{1} n^{v} y^{v} (1-y)^{-v} (1-y)^{\frac{n+1}{2}} (1-y)^{-\frac{3}{2}y^{-\frac{1}{2}}} \frac{\sqrt{n}}{2} dy$$

$$= n^{\frac{v}{2}} \int_{0}^{1} y^{\frac{2v-1}{2}} (1-y)^{\frac{n-2v-2}{2}} dy$$

Заменим интеграл на бета-функцию:

$$n^{\frac{v}{2}} \int_{0}^{1} y^{\frac{2v-1}{2}} (1-y)^{\frac{n-2v-2}{2}} dy = n^{\frac{v}{2}} \int_{0}^{1} y^{\frac{2v-1}{2}-1+1} (1-y)^{\frac{n-2v-2}{2}-1+1} dy$$
$$= n^{\frac{v}{2}} \int_{0}^{1} y^{\frac{2v+1}{2}-1} (1-y)^{\frac{n-2v}{2}-1} dy = n^{\frac{v}{2}} B\left(\frac{2v+1}{2}, \frac{n-2v}{2}\right)$$

Бета-функцию можно выразить через гамма-функцию:

$$n^{\frac{v}{2}}B\left(\frac{2v+1}{2},\frac{n-2v}{2}\right) = n^{\frac{v}{2}}\frac{\Gamma\left(\frac{2v+1}{2}\right)\Gamma\left(\frac{n-2v}{2}\right)}{\Gamma\left(\frac{2v+1}{2}+\frac{n-2v}{2}\right)} = n^{\frac{v}{2}}\frac{\Gamma\left(\frac{2v+1}{2}\right)\Gamma\left(\frac{n-2v}{2}\right)}{\Gamma\left(\frac{1+n}{2}\right)}$$

Вернемся к изначальному выражению и подставим результат вычисления интеграла:

$$\begin{split} m_{2v} &= \frac{1}{\sqrt{n\pi}} \frac{\Gamma\left(\frac{n+1}{n}\right)}{\Gamma\left(\frac{n}{2}\right)} \int\limits_{-\infty}^{\infty} x^{2v} \left(1 + \frac{x^2}{n}\right)^{-\frac{n+1}{2}} dx \\ &= \frac{n^v}{\sqrt{\pi}} \frac{\Gamma\left(\frac{n+1}{n}\right)}{\Gamma\left(\frac{n}{2}\right)} \frac{\Gamma\left(\frac{2v+1}{2}\right) \Gamma\left(\frac{n-2v}{2}\right)}{\Gamma\left(\frac{1+n}{2}\right)} = \frac{n^v}{\sqrt{\pi}} \frac{\Gamma\left(\frac{2v+1}{2}\right) \Gamma\left(\frac{n-2v}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \\ &= \frac{n^v}{\sqrt{\pi}} \frac{\Gamma\left(v + \frac{1}{2}\right) \Gamma\left(\frac{n-2v}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} = \frac{n^v}{\sqrt{\pi}} \frac{\sqrt{\pi} \frac{(2v)!}{4^v v!} \Gamma\left(\frac{n-2v}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \\ &= \frac{\frac{(2v)!}{4^v v!} \Gamma\left(\frac{n}{2} - v\right)}{\Gamma\left(\frac{n}{2}\right)} n^v \end{split}$$

n, v — целые неотрицательные числа.

$$\frac{\frac{(2v)!}{4^{\nu}v!}\Gamma\left(\frac{n}{2}-v\right)}{\Gamma\left(\frac{n}{2}\right)}n^{\nu} = \frac{(2v)!\Gamma\left(\frac{n}{2}-v\right)}{4^{\nu}v!\Gamma\left(\frac{n}{2}\right)}n^{\nu}$$

Если n — четное:

$$\frac{(2v)!\left(\frac{n}{2}-v-1\right)!}{4^{\nu}v!\left(\frac{n}{2}-1\right)!}n^{\nu} = \frac{2v(2v-1)(2v-2)\dots4\cdot3\cdot2\cdot1\left(\frac{n}{2}-v-1\right)!}{4^{\nu}v!\left(\frac{n}{2}-1\right)!}n^{\nu}$$

$$= \frac{(2v*2(v-1)2(v-2)\dots4*2)\cdot\left((2v-1)(2v-3)\dots3*1\right)\left(\frac{n}{2}-v-1\right)!}{2^{2\nu}v!\left(\frac{n}{2}-1\right)!}n^{\nu}$$

$$=\frac{2^{v}(v(v-1)(v-2)\dots 2*1)\big((2v-1)(2v-3)\dots 3*1\big)\big(\frac{n}{2}-v-1\big)!}{2^{2v}v!\big(\frac{n}{2}-1\big)!}n^{v}$$

$$=\frac{v!\left(2v-1\right)(2v-3)\dots 3*1\big(\frac{n}{2}-v-1\big)!}{2^{v}v!\big(\frac{n}{2}-1\big)\big(\frac{n}{2}-2\big)\dots \big(\frac{n}{2}-v\big)\big(\frac{n}{2}-v-1\big)\dots 3*2*1}n^{v}$$

$$=\frac{(2v-1)(2v-3)\dots 5*3*1}{2^{v}\big(\frac{n}{2}-1\big)\big(\frac{n}{2}-2\big)\dots \big(\frac{n}{2}-v\big)}n^{v}$$

$$=\frac{(2v-1)(2v-3)\dots 5*3*1}{2^{v}(n-2)(n-4)\dots (n-2v)}n^{v}$$

$$m_{2v}=\frac{(2v-1)(2v-3)\dots 5*3*1}{(n-2)(n-4)\dots (n-2v)}n^{v}, n-\text{четное}$$

Если n — нечетное:

$$\frac{(2v)!\left(\frac{n}{2}-v-1\right)!!}{4^{\nu}v!\left(\frac{n}{2}-1\right)!!}n^{\nu}=...$$
аналогичные преобразования..=
$$=\frac{(2v-1)(2v-3)...5*3*1}{2^{\nu}(n-2)(n-4)...(n-2v)}n^{\nu}$$
$$m_{2v}=\frac{(2v-1)(2v-3)...5*3*1}{(n-2)(n-4)...(n-2v)}n^{\nu},n>k$$

#### **№** 14.11

• Производится два независимых измерения прибором, ошибки измерения которого X имеют  $\bar{x}=10$  м и  $\sigma=30$  м. Какова вероятность того, что каждая из ошибок измерения, имея разные знаки, по абсолютной величине превзойдет 10 м? (ошибки измерения – нормально распределенные случайные величины)

Решение: вероятность нормально распределенных СВ  $X_1$  и  $X_2$  превзойти по абсолютной величине 10м находится по формуле —

$$P(|X_1| > 10) = \frac{1}{2} \left( 1 - \Phi\left(\frac{10 - \bar{x}}{\sigma}\right) \right) = \frac{1}{2} \left( 1 - \Phi\left(\frac{10 - 10}{30}\right) \right) = \frac{1}{2} \left( 1 - \Phi(0) \right)$$
$$= 0.5$$

$$P(|X_2| > 10) = \frac{1}{2} \left( 1 - \Phi\left(\frac{10 - \bar{x}}{\sigma}\right) \right) = \frac{1}{2} \left( 1 - \Phi\left(\frac{10 - 10}{30}\right) \right) = \frac{1}{2} \left( 1 - \Phi(0) \right)$$

$$= 0.5$$

Так как в задаче требуется найти вероятность того, что обе ошибки превзойдут 10 м, то искомая вероятность — произведение  $P(|X_1| > 10)$  и  $P(|X_2| > 10)$ :  $P(|X_1| > 10)P(|X_2| > 10) = 0.5 * 0.5 = 0.25$ .

#### **№** 15.14

• Станок настраивается на середину поля допуска, шириной 2d, с ошибкой X, подчиняющейся нормальному закону с параметрами  $\bar{x}$  и  $\sigma_x$ , которая остается неизменной для всех деталей. Отклонение размера каждой детали от номинального равно  $X+Y_i$ , где  $Y_i$  — независимые нормально распределенные величины с параметрами  $\bar{y}_i=0$  и  $\sigma_{yi}=\sigma_y$  для всех номеров деталей i. Определить плотность вероятности X после изготовления n деталей, среди которых k имеют контролируемый размер в пределах поля допуска.

Peшение: событие A — станок изготовил n деталей, среди которых k имеют контролируемый размер в пределах поля допуска. По формуле Байеса:

$$f(x|A) = \frac{P(A|x)f(x)}{\int_{-\infty}^{+\infty} P(A|x)f(x)dx}$$

f(x) — плотность вероятности СВ X до опыта, которая по условию подчиняется нормальному закону:

$$f(x) = \frac{1}{\sigma_x \sqrt{2\pi}} e^{\left(-\frac{(X-\bar{x})^2}{2\sigma_x^2}\right)}$$

P(A|x) — вероятность того, что k из n деталей имеют контролируемый размер при условии ошибки настройки X. Деталь имеет контролируемый размер, если  $|X + Y_i| \le d$ . Вероятность того, что одна деталь имеет контролируемый размер при заданном X:

$$P(-d-X \le Y_i \le d-X) = \frac{1}{2} \left( \Phi\left(\frac{x+d}{\sigma_y}\right) - \Phi\left(\frac{x-d}{\sigma_y}\right) \right)$$

Вероятность того, что k из n деталей имеют контролируемый размер при заданном X, описывается биномиальным распределением, обозначим  $p(x) = \frac{1}{2} \left( \Phi\left(\frac{x+d}{\sigma_y}\right) - \Phi\left(\frac{x-d}{\sigma_y}\right) \right)$ , и q(x) = 1 - p(x), тогда

$$P(A|x) = p^k(x)q(x)^{n-k}$$

Плотность вероятности X после изготовления n деталей, среди которых k имеют контролируемый размер в пределах поля допуска:

$$f(x|A) = \frac{P(A|x)f(x)}{\int_{-\infty}^{+\infty} P(A|x)f(x)dx} = \frac{p^{k}(x)q(x)^{n-k} \frac{1}{\sigma_{x}\sqrt{2\pi}} e^{\left(-\frac{x^{2}}{2\sigma_{x}^{2}}\right)}}{\int_{-\infty}^{+\infty} p^{k}(x)q(x)^{n-k} \frac{1}{\sigma_{x}\sqrt{2\pi}} e^{\left(-\frac{x^{2}}{2\sigma_{x}^{2}}\right)}dx}$$

Список задач для решения с помощью имитационного моделирования: **10.3**, **11.28**, **12.3**, **13.19**, **14.11**, **15.14** 

#### **№** 10.3

## Моделирование:

В задаче СВ имеет геометрическое распределение, так как проводятся испытания до первого прибора, который не выдержит испытание. Из-за того, что приборов всего 5, для последнего прибора вероятность не включает в себя вероятность того, что он сломается, ведь в любом случае испытания на нем закончатся. В листинге 1 содержится реализация на языке Python, которая строит ряд распределения как гистограмму.

Листинг 1. Код программы на языке Python

```
import scipy.stats as stats
import matplotlib.pyplot as plt

q = 0.1
k_values = range(1, 6)
probs = []

for k in k_values:
    if k == 5:
        probs.append(stats.geom.pmf(k, q) * 10)
    else:
        probs.append(stats.geom.pmf(k, q))

plt.bar(k_values, probs)
plt.xlabel("Число испытаний до поломки одного из приборов")
plt.ylabel("Вероятность")
plt.title("Ряд распределения числа испытанных приборов")
plt.show()
```



Рисунок 1. Результаты моделирования

На рис. 1 приведена гистограмма для ряда распределения из данной задачи. Ряд распределения соответствует тому, что был получен аналитически.

#### **№** 11.28

Моделирование:

Параметры — n — количество черных шаров, m — количество белых шаров,— генерируются случайно функцией random.randint(). num — количество опытов.

Перед выполнением моделирования для каждого случайного набора начальных данных считается результат по формулам, полученным для аналитического решения. В каждом опыте num проводятся опыты по вытаскиванию шаров из «коробки» – массива balls до тех пор, пока не будет вытащен белый шар (ball = 0). Пока этого не происходит, подсчитывается каждый вытащенный черный шар. После прекращения цепочки опытов количество шаров записывается в массив black\_num, для которого после окончания всех опытов num рассчитывается математическое ожидание и дисперсия. В листинге 2 приведен код программы.

Листинг 2. Код программы на языке Python

```
import random
import statistics

m = random.randint(1, 1000)
n = random.randint(1, 1000)
print("m =", m, "n = ", n)
print("Aналитическое решение: M[X] =", n / m, "D[X] =", n * (m + n) / m **
2)
num = 1000000
black_num = []
box = [0, 1]
for _ in range(num):
    ball = 1
    black = 0
    while ball == 1:
        ball = random.choices(box, weights=[m, n], k=1)[0]
        if ball == 1:
            black += 1
        black_num.append(black)
print("Mоделирование: M[X] =", statistics.mean(black_num), "D[X] =", statistics.variance(black num))
```

```
m = 129 n = 539
Аналитическое решение: M[X] = 4.178294573643411 D[X] = 21.636440117781383
Моделирование: M[X] = 4.17558 D[X] = 21.57530523890524
```

```
m = 421 n = 701
Аналитическое решение: M[X] = 1.665083135391924 D[X] = 4.437584983158525
Моделирование: M[X] = 1.663772 D[X] = 4.431821163837164

m = 794 n = 229
Аналитическое решение: M[X] = 0.2884130982367758 D[X] = 0.3715952134713119
Моделирование: M[X] = 0.28791 D[X] = 0.3705322024322024

m = 865 n = 857
Аналитическое решение: M[X] = 0.9907514450867052 D[X] = 1.9723398710281
Моделирование: M[X] = 0.993287 D[X] = 1.9817019173329173

m = 231 n = 434
Аналитическое решение: M[X] = 1.878787878787879 D[X] = 5.408631772268136
Моделирование: M[X] = 1.879475 D[X] = 5.424168148543148
```

Таблица 1. Результаты моделирования

В табл. 1 приведены результаты моделирования. Они с небольшой погрешностью совпадают с аналитическим решением.

#### **№** 12.3

## Моделирование:

Функция распределения в задаче аналогична функции распределения Парето, поэтому оно используется при моделировании. Параметры распределения — alpha, x0 — коэффициент масштаба, — генерируются случайно функцией random.randint().num — количество опытов.

Перед выполнением моделирования для каждого случайного набора начальных данных считается результат по формулам, полученным для аналитического решения. В каждом опыте num для случайного значения из распределения Парето с заданными параметрами высчитывается значение функции вероятности (т.е. вероятность, что  $CB\ X$  примет значение, меньшее x\_rand). Если округленное до трех знаков после запятой значение вероятности для x\_rand = 0, то точка считается подходящей и записывается в массив good. В конце выводится среднее значение для массива. В листинге 2 приведен код программы.

Листинг 3. Код программы на языке Python

```
import random
import scipy.stats as stats

alpha = random.randint(1, 10)
x0 = random.randint(1, 10)
print(f"Альфа = {alpha}, x0 = {x0}")
print(f"Аналитическое решение: x* = {2 ** (1 / alpha) * x0}")
num = 1000000
good = []
```

```
for _ in range(num):
    x_rand = stats.pareto.rvs(alpha, loc=0, scale=x0, size=1,
random_state=None)[0]
    prob = 1 - (x0 / x_rand) ** alpha
    if round(prob, 3) == 0.500:
        good.append(x_rand)
print(f"Моделирование: x* = {sum(good) / len(good)}")
```

```
Альфа = 1, х0 = 9
Аналитическое решение: х* = 18.0
Моделирование: х* = 18.00034700965758

Альфа = 8, х0 = 1
Аналитическое решение: х* = 1.0905077326652577
Моделирование: х* = 1.0905067611553756

Альфа = 6, х0 = 2
Аналитическое решение: х* = 2.244924096618746
Моделирование: х* = 2.2449178465726694

Альфа = 4, х0 = 6
Аналитическое решение: х* = 7.135242690016327
Моделирование: х* = 7.135272697849351

Альфа = 8, х0 = 4
Аналитическое решение: х* = 4.362030930661031
Моделирование: х* = 4.3620270412379405
```

Таблица 2. Результаты моделирования

В табл. 2 приведены результаты моделирования. Они с небольшой погрешностью совпадают с аналитическим решением.

#### № 13.19

Моделирование:

Параметры – n – степени свободы распределения Стьюдента, k – порядок начального момента (обязательно меньше n), – генерируются случайно функцией random.randint().num – количество опытов.

Перед выполнением моделирования для каждого случайного набора начальных данных считается результат по формулам, полученным для аналитического решения. В каждом опыте num генерируется выборка случайных величин из распределения Стьюдента с заданными степенями свободы. Для каждой выборки считается значение момента. Сумма моментов

после выполнения всех опытов делится на их количество. В листинге 4 приведен код программы.

Листинг 4. Код программы на языке Python

```
import random
from scipy.stats import moment, t

n = random.randint(1, 50)
k = random.randint(1, n % 10 + 1)
if k % 2 == 0:
    v = k // 2
    m_k = 1
    for i in range(1, 2 * v, 2):
        m_k *= i
    for i in range(2, 2 * v + 1, 2):
        m_k /= n - i
        m_k *= n ** v

else:
        m_k = 0
print(f"Степени свободы: {n}, порядок: {k}, аналитическое значение момента: {m_k}")
num = 1000000
moment_k = 0
for i in range(num):
    data = t.rvs(n, size=100)
        moment_k += moment(data, k)
print(f"Моделирование: {moment_k / num}")
```

Таблица 3. Результаты моделирования

В табл. 3 приведены результаты моделирования. Они с небольшой погрешностью совпадают с аналитическим решением.

#### **№** 14.11

Моделирование:

Параметры — mean — среднее значение (мат. ожидание) нормального распределения, sigma — среднеквадратичное отклонение. n — количество опытов.

В каждом опыте генерируются  $CB \times 1$  и  $\times 2$  из нормального распределения по заданным параметрам. Далее, если ошибки имеют разные знаки и по абсолютной величине превосходят 10, исход засчитывается как благоприятствующий. После всех опытов количество благоприятствующих исходов делится на количество опытов. В листинге 5 приведен код программы

Листинг 5. Код программы на языке Python

```
import numpy as np

mean = 10
sigma = 30
n = 1000000
good = 0
for i in range(n):
    x1 = np.random.normal(mean, sigma)
    x2 = np.random.normal(mean, sigma)
    if x1 > 10 and x2 < -10 or x1 < -10 and x2 > 10:
        good += 1

print(good / n)
```

```
C:\Users\HP\teorver\teorver\.venv\Scripts\python.exe C:\Users\HP\teorver\teorver\14.11.py
0.251995

Process finished with exit code 0
```

Рисунок 2. Результаты моделирования

На рис. 2 приведены результаты моделирования. Они с небольшой погрешностью совпадают с аналитическим решением.

#### № 15.14

Моделирование: –