Package 'Immprobe'

September 11, 2023

Type Package
Title Sparse high-dimensional linear mixed modeling with a partitioned empirical Bayes ECM algorithm (LMM-PROBE).
Version 1.0
Date 2023-09-07
Author Anja Zgodic, Alex McLain
Maintainer Anja Zgodic <azgodic@email.sc.edu></azgodic@email.sc.edu>
Description Linear Mixed Modeling using the PROBE algorithm. This package is in development.
License GPL (>= 2)
Encoding UTF-8
RoxygenNote 7.2.0
Depends R (>= 3.5.0), Rcpp (>= 1.0.8.3), snow (>= 0.4.4), snowfall (>= 1.84.6.1), tidyr (>= 1.2.0), lme4 (>= 1.1.29)
LinkingTo Rcpp, RcppArmadillo
NeedsCompilation yes
R topics documented:
lmmprobe-package1lmmprobe2SLE3
Index 5
1mmprobe-package Sparse high-dimensional linear mixed modeling with a partitioned empirical Bayes ECM algorithm (LMM-PROBE).

Description

Linear Mixed Modeling using the PROBE algorithm. This package is in development.

2 Immprobe

Package Content

Index of help topics:

SLE High-dimensional dataset for sparse linear

mixed modeling.

lmmprobe Sparse high-dimensional linear mixed modeling

with PaRtitiOned empirical Bayes ECM

(LMM-PROBE) algorithm.

with a partitioned empirical Bayes ECM

algorithm (LMM-PROBE).

Maintainer

Anja Zgodic <azgodic@email.sc.edu>

Author(s)

Anja Zgodic, Alex McLain

1mmprobe Sparse high-dimensional linear mixed modeling with PaRtitiOned em-

pirical Bayes ECM (LMM-PROBE) algorithm.

Description

Sparse high-dimensional linear mixed modeling with PaRtitiOned empirical Bayes ECM (LMM-PROBE) algorithm. Currently, the package offers functionality for two scenarios. Scenario 1: only a random intercept; Scenario 2: a random intercept and a random slope. We are actively expanding the package for more flexibility and scenarios.

Arguments

Y A matrix containing the outcome Y.

Z A matrix containing the sparse fixed-effect predictors on which to apply the

Immprobe algorithm.

V A matrix containing non-sparse predictors for the random effects. This matrix

is currently only programmed for two scenarios. Scenario 1: only a random intercept, where V is a matrix with one column containing ID's. Scenario 2: a random intercept and a random slope, where V is a matrix with two columns. The first column is ID and the second column is a continuous variable (e.g. time)

for which a random slope is to be estimated.

alpha Type I error; significance level.

ep Value against which to compare convergence criterion, we recommend 0.05.

B The number of groups to categorize estimated coefficients in to calculate corre-

lation ρ . We recommend five.

adj A factor multiplying Silverman's 'rule of thumb' in determining the bandwidth

for density estimation, same as the 'adjust' argument of R's density function.

Default is three.

SLE 3

maxit	Maximum number of iterations the algorithm will run for. Default is 10000.
cpus	The number of CPUS user would like to use for parallel computations. Default is four.
LR	A learning rate parameter r . Using zero corresponds to the implementation described in Zgodic et al.
С	A learning rate parameter c. Using one corresponds to the implementation described in Zgodic et al.

Value

A list of the output of the Immprobe function, including

beta_hat, beta_hat_var MAP estimates of the posterior expectation (beta_hat) and variance (beta_hat_var) of the prior mean (β) of the regression coefficients assuming $\gamma=1$,

gamma the posterior expectation of the latent $\boldsymbol{\gamma}$ variables,

preds predictions of Y,

PI_lower, PI_upper lower and upper prediction intervals for the predictions,

sigma2_est MAP estimate of the residual variance,

random_var MAP estimate of the random effect(s) variance,

random_intercept estimated random intercept terms,

random_slope estimated random slope terms, if applicable.

References

Zgodic, A. and McLain, A. C. (2023). Sparse high-dimensional linear mixed modeling with a partitioned empirical Bayes ECM algorithm. arXiv preprint arXiv:XXXX.XXXXX.

Examples

```
library(lmmprobe)
data(SLE)
ep <- 0.05
alpha <- 0.05
Y = SLE$Y
Z = SLE$Z
V = SLE$V
full_res <- lmmprobe(Y = Y, Z = Z, V = V, ep = ep, alpha = alpha)</pre>
```

SLE

 $High-dimensional\ dataset\ for\ sparse\ linear\ mixed\ modeling.$

Description

This is the Systemic Lupus Erythematosus (SLE) data used in the data analysis section of the LMM-PROBE reference. The dataset has 309 observations, 103 subjects, and 15387 predictors.

Usage

```
data(SLE)
```

4 SLE

Format

A data frame with 309 observations and the following list elements:

- Y First element of list, corresponding to the outcome to use in the Immprobe function.
- Z Second element of list, corresponding to the high-dimesional matrix of sparse predictors for fixed effects.

V Third element of list, corresponding to the low-dimesional matrix of non-sparse predictors for random effects. This matrix has either only one ID column, or one ID column with an additional column for a continuous variable for which a random slope is to be estimated.

References

Banchereau, R., Hong, S., Cantarel, B., Baldwin, N., Baisch, J., Edens, M., Cepika, A.-M., Acs, P., Turner, J., Anguiano, E., Vinod, P., Khan, S., Obermoser, G., Blankenship, D., Wakeland, E., Nassi, L., Gotte, A., Punaro, M., Liu, Y.-J., Banchereau, J., Rossello-Urgell, J., Wright, T., and Pascual, V. (2016), "Personalized Immunomonitoring Uncovers Molecular Networks that Stratify Lupus Patients," Cell, 165, 551–565.

Zgodic, A. and McLain, A. C. (2023). Sparse high-dimensional linear mixed modeling with a partitioned empirical Bayes ECM algorithm. arXiv preprint arXiv:XXXX.XXXXX.

Examples

data(SLE)

Y = SLE\$Y

Z = SLE\$Z

V = SLE\$V

Index