

#### BIOST 546: Machine Learning for Biomedical Big Data

Ali Shojaie

Lecture 5: Classification for Biomedical Big Data - Part II Spring 2017

#### Recap

- Classification using linear regression
- Fundamentals of classification, Bayes classifier and Bayes error rate
- Logistic regression, and regularization
- Batch effects and pitfalls of classification

### Today's Class

- LDA & QDA
- SVM
- KNN

 Recall that the Bayes classifier suggests assigning observation i to class h for which

$$p_h(x) = P(Y = h \mid X = x)$$

is the largest.

 Recall that the Bayes classifier suggests assigning observation i to class h for which

$$p_h(x) = P(Y = h \mid X = x)$$

is the largest.

• However, as we discussed, calculating  $p_h(x)$  is in general difficult!

 Recall that the Bayes classifier suggests assigning observation i to class h for which

$$p_h(x) = P(Y = h \mid X = x)$$

is the largest.

- However, as we discussed, calculating  $p_h(x)$  is in general difficult!
- One approach for making this problem easier is to use the Bayes theorem to write

$$p_h(x) = P(Y = h \mid X = x) = \frac{\pi_h f_h(x)}{\sum_{l=1}^{H} \pi_l f_l(x)}$$

 Recall that the Bayes classifier suggests assigning observation i to class h for which

$$p_h(x) = P(Y = h \mid X = x)$$

is the largest.

- However, as we discussed, calculating  $p_h(x)$  is in general difficult!
- One approach for making this problem easier is to use the Bayes theorem to write

$$p_h(x) = P(Y = h \mid X = x) = \frac{\pi_h f_h(x)}{\sum_{l=1}^{H} \pi_l f_l(x)}$$

#### Here

- $\pi_h = P(Y = h)$  is the prior probability
- ►  $f_h(x) = P(X = x \mid Y = h)$  is the density function of X for an observation coming from class h
- $p_h(x)$  is the posterior density of y given the data x



To use the Bayes theorem

$$p_h(x) = P(Y = h \mid X = x) = \frac{\pi_h f_h(x)}{\sum_{l=1}^{H} \pi_l f_l(x)}$$

we need to estimate  $\pi_h$  and  $f_h$ :

To use the Bayes theorem

$$p_h(x) = P(Y = h \mid X = x) = \frac{\pi_h f_h(x)}{\sum_{l=1}^{H} \pi_l f_l(x)}$$

we need to estimate  $\pi_h$  and  $f_h$ :

- $\pi_h$  is often easy to estimate: if we have a random sample,  $\hat{\pi}_h = 1/n \sum_i I(Y_i = h)$
- However, estimating f<sub>h</sub> can be very challenging, especially in high dimensions
- One solution is to assume a parametric form for fh

• In LDA, we assume  $f_h(x)$  is the Gaussian density,  $N(\mu_h, \Sigma_h)$ 

• In LDA, we assume  $f_h(x)$  is the Gaussian density,  $N(\mu_h, \Sigma_h)$ 



• In LDA, we assume  $f_h(x)$  is the Gaussian density,  $N(\mu_h, \Sigma_h)$ 



 This is equivalent to assuming that our data is generated from a mixture of H Gaussian distributions

$$X \sim \sum_{h=1}^{H} \pi_h \, \phi(\mu_h, \Sigma_h)$$

• In LDA, we assume  $f_h(x)$  is the Gaussian density,  $N(\mu_h, \Sigma_h)$ 



 This is equivalent to assuming that our data is generated from a mixture of H Gaussian distributions

$$X \sim \sum_{h=1}^{H} \pi_h \, \phi(\mu_h, \Sigma_h)$$

 LDA was developed by R. A. Fisher, and has some interesting connections to analysis of variance



• LDA further assumes that  $\Sigma_h = \Sigma \ \forall h$ : all classes share a common variance

- LDA further assumes that  $\Sigma_h = \Sigma \ \forall h$ : all classes share a common variance
- With this assumption, the decision boundary only depends on means  $\mu_h$  and is always linear (hence the name)

- LDA further assumes that  $\Sigma_h = \Sigma \ \forall h$ : all classes share a common variance
- With this assumption, the decision boundary only depends on means  $\mu_h$  and is always linear (hence the name)
- In most cases, it is also assumed that Σ is diagonal: i.e. no correlation among covariates!!

- LDA further assumes that  $\Sigma_h = \Sigma \ \forall h$ : all classes share a common variance
- With this assumption, the decision boundary only depends on means  $\mu_h$  and is always linear (hence the name)
- In most cases, it is also assumed that  $\Sigma$  is diagonal: i.e. no correlation among covariates!!
- This latter assumption can be relaxed. However, in high dimensional settings, estimation of  $\Sigma$  is difficult  $\binom{p}{2}$  parameters to estimate!), and there is often not much improvements from this in HD.

• To start, suppose that p = 1

- To start, suppose that p = 1
- Following the main assumption of LDA, suppose  $\sigma_h = \sigma$

- To start, suppose that p = 1
- Following the main assumption of LDA, suppose  $\sigma_h = \sigma$
- We can then show that an observation with covariate x is classified to the class h with the largest value of

$$x\frac{\mu_h}{\sigma^2} - \frac{\mu_h^2}{2\sigma^2} + \log(\pi_h)$$

- To start, suppose that p = 1
- Following the main assumption of LDA, suppose  $\sigma_h = \sigma$
- We can then show that an observation with covariate x is classified to the class h with the largest value of

$$x\frac{\mu_h}{\sigma^2} - \frac{\mu_h^2}{2\sigma^2} + \log(\pi_h)$$

• If we further assume that H = 2 and  $\pi_1 = \pi_2 = 0.5$ , then the Bayes decision boundary is

$$\frac{\mu_1 + \mu_2}{2}$$

which is clearly linear!











• To make this work, we need to estimate the parameters. The ML estimates are given by  $\hat{\pi}_h = n_h/n$  and

$$\hat{\mu}_h = \frac{1}{n_h} \sum_{i:y_i = h} x_i$$
 $\hat{\sigma}^2_h = \frac{1}{n - H} \sum_{h=1}^H \sum_{i:y_i = h} (x_i - \hat{\mu}_h)^2$ 







• To make this work, we need to estimate the parameters. The ML estimates are given by  $\hat{\pi}_h = n_h/n$  and

$$\hat{\mu}_h = \frac{1}{n_h} \sum_{i:y_i = h} x_i$$
 $\hat{\sigma}^2_h = \frac{1}{n - H} \sum_{h=1}^H \sum_{i:y_i = h} (x_i - \hat{\mu}_h)^2$ 

• The picture is very similar if H > 2...or if p > 1











When would LDA fail?

#### When would LDA fail?

Of course, like any other model-based approach, LDA only works if its underlying assumptions are (almost) valid

#### When would LDA fail?

Of course, like any other model-based approach, LDA only works if its underlying assumptions are (almost) valid



• As we discussed, one of the main limitations of LDA is the assumption that  $\Sigma_h = \Sigma \ \forall h$ , which results in linear decision boundaries

- As we discussed, one of the main limitations of LDA is the assumption that  $\Sigma_h = \Sigma \ \forall h$ , which results in linear decision boundaries
- This assumption is relaxed in QDA, allowing for non-linear (quadratic) decision boundaries. In this case, an observation with covariates x is classified to group c with the largest value of

$$-0.5x^{\mathsf{T}}\Sigma_{h}^{-1}x + x^{\mathsf{T}}\Sigma_{h}^{-1}\mu_{h} - 0.5\mu_{h}^{\mathsf{T}}\Sigma_{h}^{-1}\mu_{h} + \log \pi_{h}$$

- As we discussed, one of the main limitations of LDA is the assumption that  $\Sigma_h = \Sigma \ \forall h$ , which results in linear decision boundaries
- This assumption is relaxed in QDA, allowing for non-linear (quadratic) decision boundaries. In this case, an observation with covariates x is classified to group c with the largest value of

$$-0.5x^{\mathsf{T}}\Sigma_{h}^{-1}x + x^{\mathsf{T}}\Sigma_{h}^{-1}\mu_{h} - 0.5\mu_{h}^{\mathsf{T}}\Sigma_{h}^{-1}\mu_{h} + \log \pi_{h}$$

- Note that we are still assuming that observations are from a mixture of Gaussian distributions
- QDA is much more flexible than LDA, but we need to estimate Hp(p+1) parameters, which is a lot in high dimensions
- To make this a bit simpler, again we often assume that  $\Sigma_h$  is diagonal

• LDA is rather restrictive; on the other hand, QDA is quite flexible

- LDA is rather restrictive; on the other hand, QDA is quite flexible
- However, this flexibility comes at the price of more complex models (as always!), which brings up the bias-variance tradeoff again...

- LDA is rather restrictive; on the other hand, QDA is quite flexible
- However, this flexibility comes at the price of more complex models (as always!), which brings up the bias-variance tradeoff again...





All of the methods discussed so far (logistic regression, LDA and QDA)
 rely on specific parametric assumptions about the distribution of the data

- All of the methods discussed so far (logistic regression, LDA and QDA) rely on specific parametric assumptions about the distribution of the data
- These models work, if their underlying assumptions are (roughly) valid, but may break down miserably otherwise

- All of the methods discussed so far (logistic regression, LDA and QDA)
   rely on specific parametric assumptions about the distribution of the data
- These models work, if their underlying assumptions are (roughly) valid, but may break down miserably otherwise
- The alternative is to avoid making parametric assumptions; and use nonparametric models

- All of the methods discussed so far (logistic regression, LDA and QDA)
   rely on specific parametric assumptions about the distribution of the data
- These models work, if their underlying assumptions are (roughly) valid, but may break down miserably otherwise
- The alternative is to avoid making parametric assumptions; and use nonparametric models
- The simplest nonparametric approach for classification (also works for regression) is the K nearest neighbor classification method (KNN)

 As the name suggests, the simple idea behind KNN is to use the K nearest neighbor of each observation, based on the values of x, to predict its y value

$$p_j(X) = P(Y = j \mid X = x_0) = \frac{1}{K} \sum_{i \in N_0} I(y_i = j)$$

where  $N_0$  is the neighborhood of  $x_0$ 

As the name suggests, the simple idea behind KNN is to use the K
nearest neighbor of each observation, based on the values of x, to
predict its y value

$$p_j(X) = P(Y = j \mid X = x_0) = \frac{1}{K} \sum_{i \in N_0} I(y_i = j)$$

where  $N_0$  is the neighborhood of  $x_0$ 

• We then apply the Bayes rule to classify  $x_0$  to the class with largest probability









 Small K: very flexible (read complex!) classifier ⇒ low bias and high variance





- Small K: very flexible (read complex!) classifier ⇒ low bias and high variance
- Large K: less flexible classifier, and a smoother decision boundary ⇒ high bias and low variance







 We again have to face our beloved bias-variance tradeoff, and need to choose K that gives good test error



Developed in around 1995.

- Developed in around 1995.
- Touted as "overcoming the curse of dimensionality", thought that is not automatic!

- Developed in around 1995.
- Touted as "overcoming the curse of dimensionality", thought that is not automatic!
- Fundamentally and numerically very similar to logistic regression (more later).

- Developed in around 1995.
- Touted as "overcoming the curse of dimensionality", thought that is not automatic!
- Fundamentally and numerically very similar to logistic regression (more later).
- However, has a very different motivation and is a very nice idea.

# Separating Hyperplane



# Classification via Separating Hyperplanes



Blue class if  $\beta_0 + \beta_1 X_1 + \beta_2 X_2 > c$ ; red class otherwise.

### Which hyperplane?

There are potentially many hyperplanes...



# Maximally Separating Hyperplane



# What if There is No Separating Hyperplane?



# Support Vector Classifier: Allow for Violations





• The support vector machine is just like the support vector classifier, but it elegantly allows for non-linear expansions of the variables: "non-linear kernels".

- The support vector machine is just like the support vector classifier, but it elegantly allows for non-linear expansions of the variables: "non-linear kernels".
- However, linear regression, logistic regression, and other classical statistical approaches can also be applied to non-linear functions of the variables.

- The support vector machine is just like the support vector classifier, but it elegantly allows for non-linear expansions of the variables: "non-linear kernels".
- However, linear regression, logistic regression, and other classical statistical approaches can also be applied to non-linear functions of the variables.
- For historical reasons, SVMs are more frequently used with non-linear expansions as compared to other statistical approaches.

### Non-Linear Class Structure



This will be hard for a linear classifier!

# Try a Support Vector Classifier



Uh-oh!!



Much Better.

Is A Non-Linear Kernel Better?

### Is A Non-Linear Kernel Better?

 Yes, if the true decision boundary between the classes is non-linear, and you have enough observations (relative to the number of features) to accurately estimate the decision boundary.

### Is A Non-Linear Kernel Better?

- Yes, if the true decision boundary between the classes is non-linear, and you have enough observations (relative to the number of features) to accurately estimate the decision boundary.
- No, if you are in a very high-dimensional setting such that estimating a non-linear decision boundary is hopeless.

### SVM vs Other Classification Methods

 The main difference between SVM and other classification methods (e.g. logistic regression) is the loss function used to assess the "fit":

$$\sum_{i=1}^{n} L(f(x_i), y_i)$$

### SVM vs Other Classification Methods

 The main difference between SVM and other classification methods (e.g. logistic regression) is the loss function used to assess the "fit":

$$\sum_{i=1}^{n} L(f(x_i), y_i)$$

- ➤ Zero-one loss: I(f(x<sub>i</sub>) = y<sub>i</sub>), where I() is the indicator function. Not continuous, so hard to work with!!
- ► Hinge loss:  $\max(0, 1 f(x_i)y_i)$
- ► Logistic loss:  $log(1 + expf(x_i)y_i)$

### SVM vs Other Classification Methods

 The main difference between SVM and other classification methods (e.g. logistic regression) is the loss function used to assess the "fit":

$$\sum_{i=1}^{n} L(f(x_i), y_i)$$

- ➤ Zero-one loss: I(f(x<sub>i</sub>) = y<sub>i</sub>), where I() is the indicator function. Not continuous, so hard to work with!!
- ► Hinge loss:  $\max(0, 1 f(x_i)y_i)$
- ► Logistic loss:  $log(1 + expf(x_i)y_i)$



 Bottom Line: Support vector classifier and logistic regression aren't that different!

- Bottom Line: Support vector classifier and logistic regression aren't that different!
- Neither they nor any other approach can automatically overcome the "curse of dimensionality" – unless carefully tuned.

- Bottom Line: Support vector classifier and logistic regression aren't that different!
- Neither they nor any other approach can automatically overcome the "curse of dimensionality" – unless carefully tuned.
- The "kernel trick" makes things computationally easier, but it does not remove the danger of overfitting.

- Bottom Line: Support vector classifier and logistic regression aren't that different!
- Neither they nor any other approach can automatically overcome the "curse of dimensionality" – unless carefully tuned.
- The "kernel trick" makes things computationally easier, but it does not remove the danger of overfitting.
- SVM uses a non-linear kernel... but could do that with logistic or linear regression too!

- Bottom Line: Support vector classifier and logistic regression aren't that different!
- Neither they nor any other approach can automatically overcome the "curse of dimensionality" – unless carefully tuned.
- The "kernel trick" makes things computationally easier, but it does not remove the danger of overfitting.
- SVM uses a non-linear kernel... but could do that with logistic or linear regression too!
- One of the disadvantages of SVM (compared to some of the other methods) is that it does not provide a measure of uncertainty: cases are "classified" to belong to one of the two classes.

- Bottom Line: Support vector classifier and logistic regression aren't that different!
- Neither they nor any other approach can automatically overcome the "curse of dimensionality" – unless carefully tuned.
- The "kernel trick" makes things computationally easier, but it does not remove the danger of overfitting.
- SVM uses a non-linear kernel... but could do that with logistic or linear regression too!
- One of the disadvantages of SVM (compared to some of the other methods) is that it does not provide a measure of uncertainty: cases are "classified" to belong to one of the two classes.
- Both SVM and logistic regression are not well-suited for problems with H>2 categories; LDA/QDA may be a better choice in that setting.

 In SVMs, a tuning parameter controls the amount of flexibility of the classifier.

- In SVMs, a tuning parameter controls the amount of flexibility of the classifier.
- This tuning parameter is like a ridge penalty, both mathematically and conceptually. The SVM decision rule involves all of the variables (the SVM problem can be written as a ridge problem but with the Hinge loss).

- In SVMs, a tuning parameter controls the amount of flexibility of the classifier.
- This tuning parameter is like a ridge penalty, both mathematically and conceptually. The SVM decision rule involves all of the variables (the SVM problem can be written as a ridge problem but with the Hinge loss).
- Can get a sparse SVM using a lasso penalty; this yields a decision rule involving only a subset of the features.

- In SVMs, a tuning parameter controls the amount of flexibility of the classifier.
- This tuning parameter is like a ridge penalty, both mathematically and conceptually. The SVM decision rule involves all of the variables (the SVM problem can be written as a ridge problem but with the Hinge loss).
- Can get a sparse SVM using a lasso penalty; this yields a decision rule involving only a subset of the features.
- Logistic regression and other classical statistical approaches could be used with non-linear expansions of features. But this makes high-dimensionality issues worse.

 A binary classifier can have two types of errors: false positives and false negatives

 A binary classifier can have two types of errors: false positives and false negatives

|       |   | Predicted Class |    |
|-------|---|-----------------|----|
|       |   | _               | +  |
| True  | _ | TN              | FP |
| Class | + | FN              | TP |

 A binary classifier can have two types of errors: false positives and false negatives



The above table is sometimes refried to as the confusion matrix

 A binary classifier can have two types of errors: false positives and false negatives



- The above table is sometimes refried to as the confusion matrix
- The misclassification error, which is what is used in Bayes classifier, is one way to combine FP and FN

 There are a number of alternative (and related) measures to assess the performance of classifiers

 There are a number of alternative (and related) measures to assess the performance of classifiers

| Name | Definition | Other Names                    |
|------|------------|--------------------------------|
| FPR  | FP/N       | Type I error, 1— Specificity   |
| TPR  | TP/P       | 1 - Type II error, Sensetivity |

 There are a number of alternative (and related) measures to assess the performance of classifiers

| Name | Definition | Other Names                    |
|------|------------|--------------------------------|
| FPR  | FP/N       | Type I error, 1— Specificity   |
| TPR  | TP/P       | 1 - Type II error, Sensetivity |

 By default, all classification methods assume that all errors have the same "cost"; in particular, that FP and FN are equally costly

 There are a number of alternative (and related) measures to assess the performance of classifiers

| Name | Definition | Other Names                    |
|------|------------|--------------------------------|
| FPR  | FP/N       | Type I error, 1— Specificity   |
| TPR  | TP/P       | 1 - Type II error, Sensetivity |

- By default, all classification methods assume that all errors have the same "cost"; in particular, that FP and FN are equally costly
- However, in many applications (e.g. in cancer diagnostics) it may be more costly to have FN than FP

 There are a number of alternative (and related) measures to assess the performance of classifiers

| Name | Definition | Other Names                    |
|------|------------|--------------------------------|
| FPR  | FP/N       | Type I error, 1 – Specificity  |
| TPR  | TP/P       | 1 - Type II error, Sensetivity |

- By default, all classification methods assume that all errors have the same "cost"; in particular, that FP and FN are equally costly
- However, in many applications (e.g. in cancer diagnostics) it may be more costly to have FN than FP
- We can obtain different classifiers by changing the "cutoff"...the ROC plot measures the performance of classifiers

 The Receiver Operating Characteristic (ROC) curve summarizes the performance of a binary classifier over a range of decisions

 The Receiver Operating Characteristic (ROC) curve summarizes the performance of a binary classifier over a range of decisions



 The Receiver Operating Characteristic (ROC) curve summarizes the performance of a binary classifier over a range of decisions



 Each point on the ROC curve corresponds to a single decision (i.e. cutoff)

The Receiver Operating Characteristic (ROC) curve summarizes the performance of a binary classifier over a range of decisions



- Each point on the ROC curve corresponds to a single decision (i.e. cutoff)
- The area under the ROC curve (AUC) measures the overall performance of a classifier (over the range of cutoffs)

### **Next Lecture**

Tree-based methods