TXC - Taller # 3 Circuits virtuals-MPLS-SDN

Qüestió 1: Xarxes troncals, ATM

Analitzeu el cas d'una transmissió ATM entre dos terminals origen i destinació a través d'un circuit virtual que travessa dos nodes de commutació. Considereu que la velocitat de transmissió en l'accés és 155 Mbps i dins la xarxa (transport) és 622 Mbps, la distància total entre els terminals és de 300 Km, la velocitat de propagació de la fibra és la de la llum (c = 300.000 Km/s) i el temps d'espera a les cues dels commutadors és zero (les cues sempre les trobem buides).

a) Feu un esquema de l'escenari descrit

b) Calculeu el temps de propagació

$$Tp = Dist/Vp = 300.000/300.000.000 = 1 ms$$

c) Calculeu els temps de transmissió

ATM->53 octets

 $53*8/155.000.000 = 2.735 \,\mu s$

53*8/622.000.000 = 681.67 ns

d) Calculeu el retard extrem a extrem total que experimenten les cel·les ATM

$$T_{total} = 1 \text{ ms} + 2.735 \,\mu\text{s} + 681.67 \,\text{ns} + 2.735 \,\mu\text{s} = 1.006 \,\text{ms}$$

e) A al vista dels càlculs anteriors, hi ha alguna cosa que us cridi l'atenció? Què?

El retard total és bàsicament el de propagació.

Qüestió 2: Xarxes troncals, FR

Si un node d'una xarxa FR (amb 2 octets adreça) rep una trama que encapsula un paquet IP com la que indiquem a continuació:

011111101000000010001001paquetlP100010011100110101111

a)	Quina de les	següents	afirmacions	és	correcta.	Marca-la	amb	una 2	Χi	justifica	la
	resposta (quin	bit ho indic	ca?):								

No hi ha cap mena de conges	ш
-----------------------------	---

- X Hi ha congestió en el circuit virtual de transmissió.
- ☐ Hi ha congestió en el circuit virtual de sentit contrari.
- ☐ Hi ha congestió en tots dos sentits.
- b) Si en arribar a un determinat node de la xarxa, la cua (buffer) on s'ha de guardar aquesta trama està plena, què es fa? Marca amb una **X** la resposta correcta i justifica la resposta (quin bit ho indica?):

- □ La trama es perd.
- X Es mirarà de fer lloc a la cua encara que afecti a d'altres circuits virtuals.
- ☐ El node la emmagatzemarà en una cua auxiliar.

c) Si hi ha tres terminals a 64 Kbps connectats una xarxa Frame Relay formant una xarxa amb circuits virtuals permanents amb interconnexió total, fes un esquema indicant amb traç seguit les connexions físiques i amb línies a traços els circuits virtuals.

Qüestió 3: Xarxes troncals: MPLS

En una xarxa MPLS com la indicada a la figura el terminal A es connecta amb el servidor B per accedir a una pàgina web seguint la ruta indicada. Totes les connexions a nivell 2 són Ethernet.

 a) Dibuixeu les torres de protocols entre A i B (considereu pel dibuix LSR3, LSR5 i LSR6 com un sol LSR)

Α	LSR 1	LSR	LSR 7	В
HTTP				HTTP
TCP				TCP
IP				IP
MPLS	MPLS	MPLS	MPLS	MPLS
LINK LINK		LINK	LINK	LINK
PHYSICAL	PHYSICAL	PHYSICAL	PHYSICAL	PHYSICAL

b) Indiqueu el format de la trama que circularà entre LR3 i LR5 indicant tots els protocols

Data link header-MPLS label stack-IP header-Data-Data link trailer

c) Quin tipus de router, segons la terminologia MPLS, són els indicats a baix i quines funcions fan:

Tipus Funcions

LSR1: Ingress edge node Iniciar la transmissió i fer request per a una ruta

LSR5: Core LSR Mirar la seva taula i fer forwarding, manipular etiquetes

LSR7: Egress edge node Emetre el paquet fora de la xarxa MPLS

d) Expliqueu el procés d'assignació d'etiquetes del LSP indicat a la figura. El protocol és LDP

LSR1 fa un request cap a LSR3, aquest fa forwarding a LSR5, aquest a LSR6, i aquest finalment a LSR7. Aleshores LSR7 respon amb una etiqueta, la que haurà de posar LSR6 si vol enviar cap a LSR7. Els altres nodes fan el mateix, portant el retorn del request en sentit contrari fins a LSR1. Aleshores LSR1 farà push al paquet de l'etiqueta que l'hi ha enviat LSR2, i així fins que el paquet arribi a LSR7 i es completi la connexió, fent que el paquet surti de la xarxa MPLS i arribi a la destinació desitjada.

Qüestió 4.

En una xarxa MPLS com la de la figura s'estableix un label stack entre R1 y R4. Es vol establir un LSP entre A i C i un altra entre D i B. Els paquets dibuixats porten l'etiqueta MPLS indicada

Indiqueu la taula d'etiquetes de cada router (input/output). Format lliure però que quedi clar el que s'està fent.

R1

I/F in	Label in	Dest	I/F out	Label out
А	12	@R4	a (entre R1 i R2)	15
D	14	@R4	a (entre R1 i R2)	16

R2

I/F in	Label in	Dest	I/F out	Label out
b (entre R1 i R2)	15	@R4	c (entre R2 i R3)	17
b (entre R1 i R2)	16	@R4	c (entre R2 i R3)	18

R3

I/F in	Label in	Dest	I/F out	Label out
d (entre R2 i R3)	17	@R4	e (entre R3 i R4)	19
d (entre R2 i R3)	18	@R4	e (entre R3 i R4)	20

R4

I/F in	Label in	Dest	I/F out	Label out
f (entre R3 i R4)	19	@C	С	13
f (entre R3 i R4)	20	@B	В	28

Si no haguéssim utilitzat Label Stack, es podria resoldre la situació indicada d'un altre forma? Expliqueu-ho.

Amb explicit routing, on marcaríem la ruta que han de seguir els paquets nosaltres.

Qüestió 5.

a) Dibuixeu un esquema de xarxa per a que un host pugui accedir a Internet fent servir una xarxa d'accés a Internet basada en commutació ethernet a nivell 2 tenint en compte que la xarxa de commutació ethernet està compartida per diferents operadors ISP

b) Quins protocols faríeu servir i perquè.

Faria servir Ethernet QinQ per a poder aniuar una VLAN dins d'una altra i així que els diferents operadors que compartissin la xarxa a nivell físic no ho fessin a nivell lògic.