

Міністерство освіти і науки України Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки Кафедра інформатики та програмної інженерії

Лабораторна робота №2

Прикладні задачі машинного навчання

Тема: Часові ряди і прості лінійна регресія

Виконав Перевірив: студент групи ІП-11: Нестерук А. О Панченко С. В.

3MICT

Мета лабораторної роботи	6
2 Завдання	7
Виконання	8
3.1 Завантажити метеорологічні дані в 1895-2022 роках з CSV-файлу в DataFrame. Після цього дані відформатувати для використання	8
3.2 Зображення лінійної регресії для 1895 по 2018	.9
3.3 Спрогнозувати дані на 2019, 2020, 2021 та 2022 рік	11
3.4 Оцінити за формулою, якими могли б бути показники до 1895 року1	11
3.5 Скористатися функцією regplot бібліотеки Seaborn для виведення всіх точок даних	12
3.6 Виконати масштабування осі у1	12
3.7 Порівняти отриманий прогноз для 2019, 2020, 2021 та за 2022 роки з даними на NOAA «Climate at a Glance»: https://www.ncdc.noaa.gov/cag/ i зробити висновок	13
I Висновок	14

1 МЕТА ЛАБОРАТОРНОЇ РОБОТИ

Мета роботи – дослідити лінійну регресію на прикладі прогнозування січневих температур у Нью-Йорку за рокам з використанням Python.

2 ЗАВДАННЯ

- 1. Завантажити метеорологічні дані в 1895-2022 роках з CSV-файлу в
- 2. Бібліотеку Seaborn використати для графічного представлення даних DataFrame у вигляді регресійної прямої, що представляє графік зміни обраних показників за період 1895-2018 років
- 3. Спрогнозувати дані на 2019, 2020, 2021 та 2022 рік
- 4. Оцінити за формулою, якими могли б бути показники до 1895 року
- 5. Скористатися функцією regplot бібліотеки Seaborn для виведення всіх точок даних
- 6. Виконати масштабування осі у
- 7. Порівняти отриманий прогноз для 2019, 2020, 2021 та за 2022 роки з даними на NOAA «Climate at a Glance»: https://www.ncdc.noaa.gov/cag/ і зробити висновок
- 8. Зробити звіт про роботу

3 ВИКОНАННЯ

3.1 Завантажити метеорологічні дані в 1895-2022 роках з CSV-файлу в DataFrame. Після цього дані відформатувати для використання

Зчитаємо даніз CSV-файлу, уикористовуючи метод read_csv.

```
In [27]: import pandas as pd
         import matplotlib.pyplot as plt
         import numpy as np
         pd.options.display.max_rows = 10
         pd.options.display.max_columns = 10
         nyc = pd.read_csv('data/ave_hi_nyc_jan_1895-2018.csv')
          Date Value Anomaly
Out[27]:
          0 189501 34.2
        1 189601 34.7
                           -2.7
          2 189701 35.5 -1.9
          3 189801 39.6
          4 189901 36.4
         119 201401 35.5
         120 201501 36.1
                           -1.3
         121 201601 40.8
                            3.4
         122 201701 42.8
                           5.4
         123 201801 38.7
                            1.3
        124 rows × 3 columns
```

Рисунок 3.1 - Завантаження датасету

Відформатуємо датафрейм, а саме: переназвемо стовпці та застосуємо цілочисельне ділення, поділивши значення років на 100.

y c		= nyc.Date	.floordi
	Date	Temperature	Anomaly
0	1895	34.2	-3.2
1	1896	34.7	-2.7
2	1897	35.5	-1.9
3	1898	39.6	2.2
4	1899	36.4	-1.0
9	2014	35.5	-1.9
20	2015	36.1	-1.3
21	2016	40.8	3.4
2	2017	42.8	5.4
23	2018	38.7	1.3

Рисунок 3.2 - Форматований датафрейм

Налаштужмо точність виведення чисел.

```
In [29]: pd.options.display.precision = 2
   pd.options.display.precision
```

Рисунок 3.3 - Налаштування точності виведення

Знайдемо основні статистичні показники.

```
In [30]: nyc.Temperature.describe()
                  124.00
Out[30]: count
                  37.60
         mean
         std
                   4.54
                  26.10
         min
                 34.58
37.60
         25%
         50%
         75%
                  40.60
                  47.60
         Name: Temperature, dtype: float64
```

Рисунок 3.4 - Основні статистичні показники

3.2 Зображення лінійної регресії для 1895 по 2018.

Імпортуємо модуль stats з пакету scipy та за допомогою функції linregress знайдемо лінійну регресію, передавши в аргумети дати та температури.

```
In [31]: from scipy import stats
linear_regression = stats.linregress(x=nyc.Date, y=nyc.Temperature)
```

Рисунок 3.5 - Розрахунок лінійної регресії

Розрахувавши регресію, дізнаємося про коефіцієнт нахилу.

```
In [32]: linear_regression.slope
Out[32]: 0.014771361132966163
```

Рисунок 3.6 - Коефіцієнт нахилу

Дізнаємося про точку перетину прямої лінії

```
In [33]: linear_regression.intercept
Out[33]: 8.694993233674289
```

Рисунок 3.7 - Точка перетину прямої лінії

Створимо функцію lin_predict, яка буде видавати спрогнозовані значення для лінійної регресії.

```
In [34]: def lin_predict(lin_regression, argument):
    return np.round(lin_regression.slope * argument + lin_regression.intercept, 2)
```

Рисунок 3.8 - Функція lin_predict

Імпортуємо бібліотеку seaborn та застосуємо функцію regplot для відображення лінійної регресії. Передамо в неї в якості аргумента дату, значення температуру та параметр за замовчуванням scatter=False, щоб відобразити лише пряму.

```
In [43]: import seaborn as sns
         years = np.array(range(1895, 2018))
          predict = lin_predict(linear_regression, years)
         fig, axes = plt.subplots(2)
          sns.lineplot(x=years, y=predict, ax=axes[0])
         sns.regplot(x=nyc.Date, y=nyc.Temperature, ax=axes[1], scatter=False)
Out[43]: <AxesSubplot: xlabel='Date', ylabel='Temperature'>
           38.5
           38.0
           37.5
           37.0
                    1900
                              1920
                                        1940
                                                                     2000
                                                  1960
                                                           1980
                                                                               2020
             40
             39
          Temperature
             38
             37
             36
             35
                    1900
                              1920
                                       1940
                                                 1960
                                                           1980
                                                                     2000
                                                                               2020
                                                Date
```

3.3 Спрогнозувати дані на 2019, 2020, 2021 та 2022 рік

Спрогнозуємо дані для наступних років. Тобто підставимо роки у формулу лінійної регресії.

Рисунок 3.10 - Прогнозовані температури за роками

3.4 Оцінити за формулою, якими могли б бути показники до 1895 року Обчислимо показники до 1895 року.

Рисунок 3.11 - Показники температур з 1885 по 1895 роки включно

Як можна побачити, температура поступово зростає, і з періоду 1885 по 2023 роки спостерігається збільшення на 2 градуси.

3.5 Скористатися функцією regplot бібліотеки Seaborn для виведення всіх точок даних

Встановлюємо стиль відображення, побудуємо графік роки-температури. Побачимо, що дані доволі розкидані.

Рисунок 3.12 - Графік лінійної регресії роки-температури

3.6 Виконати масштабування осі у

За допомогою методу set_ylim вкажемо межі від 10 до 70 градусів.

Рисунок 3.13 - Масштабований графік від 10 до 70 градусів

3.7 Порівняти отриманий прогноз для 2019, 2020, 2021 та за 2022 роки з даними на NOAA «Climate at a Glance»: https://www.ncdc.noaa.gov/cag/ і зробити висновок

Подивимося на сайті дані за період 2019-2022 років. Побачимо, що фактичні дані сильно відрізняються від того, що спрогнозувала лінійна регресія. Можна зробити висновок, що треба давати їй іще якісь дані для кращого прогнозування, наприклад: кількість опадів, кількість СО2 тощо.

im = Image.ope	rt Image en('data/Screenshot from 2023-0	93-15 20-01-39.png')					
New York, New York January-December	New York, New York Average Temperature January-December							
◆ Year	◆ Average Temperature	◆ Rank	Anomaly 1901-2000 Mean: 53.6°F					
2022	56.3°F	*	112	2.7°				
2021	56.9°F		121	3.3°				
2020	57.3°F		125	3.7°				
2019	55.6°F		105	2.0°				
2018	55.9°F		108	2.3°				

Рисунок 3.14 - Справжні зафіксовані дані середніх температур

4 ВИСНОВОК

Під час виконання цієї лабораторної роботи здобув базові навички використання пакету scіру мови Python, досліджуючи середні температури в січня у Нью-Йорку з 1895 до 2022 років, обчисливши лінійну регресію та зробивши прогноз. У результаті спрогнозовані дані не збігалися з фактичними даними. Отже, точність низька та потрібно врахувати додаткові параметри.