Métodos Matemáticos I

Prof. Aparecido J. de Souza aparecidosouza@ci.ufpb.br

Isomorfismos Lineares Funcionais Lineares e o Espaço Dual Anuladores e Complemento Ortogonal

Isomorfismos Lineares

Definição. Uma transformação linear **T** de um espaço vetorial \mathbb{V} num espaço vetorial \mathbb{W} é um **isomorfismo linear** entre \mathbb{V} e \mathbb{W} se **T** é **injetiva e sobrejetiva (bijetora, ou inversível)**.

Definição. Dois espaços vetoriais são **linearmente isomorfos** se existir um isomorfismo linear entre eles.

Teorema. Seja $T: \mathbb{V} \to \mathbb{W}$ uma Transformação Linear. T é um isomorfismo linear se, e somente se, transforma base de \mathbb{V} em base de \mathbb{W} .

Consequência. Dois espaços vetoriais linearmente isomorfos tem a mesma dimensão. **Por isto,** todo espaço vetorial V de dimensão finita é linearmente isomorfo à algum \mathbb{R}^n .

Assim, os seguintes espaços são isomorfos:

$$\mathbb{P}_{n-1}(\mathbb{R}) \in \mathbb{R}^n$$
, $\mathbb{M}_{m \times n}$, \mathbb{R}^{mn} , $\mathbb{P}_{m \times n-1}(\mathbb{R})$.

Isomorfismos Lineares

Um isomorfismo linear básico. Sejam $\mathbb V$ e $\mathbb W$ espaços vetoriais de mesma dimensão finita $\mathbf n$. Sejam $\mathbf B_{\mathbb V}=\{v_1,v_2,\ldots,v_{\mathbf n}\}$ e $\mathbf B_{\mathbb W}=\{w_1,w_2,\ldots,w_{\mathbf n}\}$ bases de $\mathbb V$ e de $\mathbb W$, respectivamente. Um isomorfismo linear básico entre $\mathbb V$ e $\mathbb W$ pode ser obtido definindo $\mathbf T(v_i)=w_i,\,i=1,2,\cdots,\mathbf n$.

O Isomorfismo Linear Inverso. Se \mathbb{V} e \mathbb{W} têm a mesma dimensão **finita** e $\mathbf{T}: \mathbb{V} \to \mathbb{W}$ é um isomorfismo linear com matriz \mathbf{A} , então $\mathbf{T}^{-1}: \mathbb{W} \to \mathbb{V}$ é dado por $\mathbf{T}^{-1}(w) = \mathbf{A}^{-1}w$, $\forall w \in \mathbb{W}$, em que \mathbf{A}^{-1} é a matriz inversa de \mathbf{A} .

Obs. Quando $\mathbb{W} = \mathbb{V}$ e $\mathbf{T} : \mathbb{V} \to \mathbb{V}$ é um isomorfismo linear, então $w = \mathbf{T}(v)$ representa apenas uma **mudança de** variáveis de w para v, enquanto $v = \mathbf{T}^{-1}(w)$ representa uma **mudança de** variáveis de w para v.

Exemplo 1 (rotação de $\pi/4$ **). T** : $\mathbb{R}^2 \to \mathbb{R}^2$ dado por $\mathbf{T}(x_1, x_2) = (x_1 - x_2, x_1 + x_2) = (y_1, y_2)$.

Definição. Seja $\mathbb V$ um espaço vetorial. Um **funcional linear** é uma transformação linear cujo domínio é espaço vetorial $\mathbb V$ e o **contradomínio** é o **corpo dos escalares** $\mathbb R$ (ou $\mathbb C$).

Obs. Se \mathbb{V} tem dimensão finita \mathbf{n} , **então** a matriz de um funcional linear é uma matriz linha $\mathbf{A}_{1 \times \mathbf{n}}$.

Exemplo 2 (Funcionais Coordenadas/Projeções):

$$p_i: \mathbb{R}^n \to \mathbb{R}$$
 tal que $p_i(x_1, x_2, \dots, x_n) = x_i$, $i = 1, 2, \dots, n$.

Matriz de p_i : $\mathbf{A}_i = \begin{bmatrix} 0 & \dots & 0 & 1 & 0 & \dots & 0 \end{bmatrix}_{1 \times \mathbf{n}}$ (matriz linha com cuja entrada i é 1 e a demais entradas nulas).

Exemplo 3 (Funcional de Dirac): Seja
$$\mathbb{V} = \mathscr{C}(\mathbb{R})$$
. Definimos: $\delta_0 : \mathscr{C}(\mathbb{R}) \to \mathbb{R}$ tal que $\delta_0(f) = f(0), \forall f \in \mathbb{V}$.

Note que $\mathbb{V} = \mathscr{C}(\mathbb{R})$ tem dimensão infinita.

Exercício. Determine os núcleos dos dois funcionais acima.

Exemplo 4 (Produto escalar por um vetor fixo):

Sejam \mathbb{V} um espaço vetorial de dimensão \mathbf{n} , munido de um PI \langle , \rangle , com uma base $\mathbf{B}_{\mathbb{V}} = \{v_1, v_2, \dots, v_{\mathbf{n}}\}$ e \mathbf{v} um vetor fixo em \mathbb{V} .

Definimos os seguinte funcional linear $L_v : \mathbb{V} \to \mathbb{R}$:

$$\mathsf{L}_{\mathsf{V}}(x) = \langle \mathsf{V}, x \rangle, \quad \forall x \in \mathbb{V}.$$

Note que, se
$$[v]_{B_{\mathbb{V}}} = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$$
 e $[x]_{B_{\mathbb{V}}} = x_1 v_1 + x_2 v_2 + \dots + x_n v_n$, então $L_{\mathbf{V}}(x) = \alpha_1 x_1 + \dots + \alpha_n x_n$.

Lembrando que a base canônica de $\mathbb{W}=\mathbb{R}$ é o número 1, obtenhamos a Matriz A de L_v :

$$\begin{array}{c} \mathbf{L}_{\mathbf{v}}(v_1) = \langle \mathbf{v}, v_1 \rangle \mathbf{1} = \alpha_1, \quad \mathbf{L}_{\mathbf{v}}(v_2) = \langle \mathbf{v}, v_2 \rangle \mathbf{1} = \alpha_2, \cdots, \\ \mathbf{L}_{\mathbf{v}}(v_n) = \langle \mathbf{v}, v_n \rangle \mathbf{1} = \alpha_n. \end{array}$$

Logo,

$$\mathbf{A} = \begin{bmatrix} \langle \mathbf{v}, v_1 \rangle & \langle \mathbf{v}, v_2 \rangle & \cdots & \langle \mathbf{v}, v_n \rangle \end{bmatrix}_{1 \times \mathbf{n}} = \begin{bmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_n \end{bmatrix}.$$

Exemplo 1 do Exemplo 4. Sejam $\mathbb{V} = \mathbb{R}^n$ como PI usual.

- (i) Se $\mathbf{v} = \mathbf{e}_i$ é o i-ésimo vetor da base canônica do $\mathbb{R}^{\mathbf{n}}$, então $\mathbf{L}_{\mathbf{e}_i}(x) = \langle e_i, x \rangle = x_i$. funcional coordenada-i (ou projeção na direção -i).
- (ii) Se n é par e $\mathbf{v} = (1, -1, 1, -1, \dots, 1, -1)$, então $\mathbf{L}_{\mathbf{v}}(x) = x_1 x_2 + x_3 x_4 + \dots + x_{\mathbf{n}-1} x_{\mathbf{n}}$. Se $x = (1, 1, \dots, 1)$, então $\mathbf{L}_{\mathbf{v}}(x) = 0$.

Exemplo 2 do Exemplo 4. Seja

 $\mathbb{V} = \mathscr{C}([0,1]) = \{\text{funções contínuas no intervalo } [0,1]\}.$

Considere o PI $\langle f, g \rangle = \int_0^1 f(x)g(x)dx$.

Seja $\omega(x)$ uma função fixa em $\mathscr{C}([0,1])$. Então

$$\mathbf{L}_{\omega}(f) = \langle \omega, f \rangle = \int_{0}^{1} \omega(x) f(x) dx, \, \forall f \in \mathscr{C}([0, 1]).$$

(i) Se
$$\omega(x) \equiv 1$$
, então $\mathbf{L}_{\omega}(f) = \int_0^1 f(x) dx$.

Se
$$f(x) = 1 + x^2$$
, então $L_{\omega}(f) = \int_0^1 (1 + x^2) dx = \frac{4}{3}$.

Se
$$g(x) = x - 2$$
, então $L_{\omega}(g) = \int_0^1 (x - 2) dx = \frac{-3}{2}$.

(ii) Se
$$\omega(x) = e^{-x^2}$$
, então $L_{\omega}(f) = \int_0^1 e^{-x^2} f(x) dx$.

Se
$$f(x) = x$$
, então $L_{\omega}(f) = \int_0^1 e^{-x^2} x \, dx = \frac{e-1}{2e} \approx 0.31606$.

Se
$$g(x) \equiv 1$$
, então $L_{\omega}(g) = \int_0^1 e^{-x^2} dx \approx 0.746824$.

Exemplo 3 do Exemplo 4: Seja $\mathbb{V}=\mathbb{M}_{\mathbf{n}\times\mathbf{n}}$ com o PI $\langle A,B \rangle = tr(A^tB)$ e **C** uma matriz fixa. Então $\mathbf{L_C}(M) = \langle \mathbf{C},M \rangle = tr(\mathbf{C}^tM), \, \forall M \in \mathbb{M}_{\mathbf{n}\times\mathbf{n}}.$

(i) Se
$$C = Id$$
, então $L_C(M) = tr(M)$.

(ii) Se
$$n = 3$$
, C =
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
 e $M = \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix}$

então
$$\mathbf{C}^t = \mathbf{C}$$
,

$$\mathbf{C}^t M = \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{31} & m_{32} & m_{33} \\ m_{21} & m_{22} & m_{23} \end{bmatrix} \text{ e } \mathbf{L}_{\mathbf{C}}(M) = m_{11} + m_{23} + m_{32}.$$

Exercício. Mostre que no caso (ii), a Matriz de
$$L_C$$
 é $A = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}_{1 \times 9}$.

Teorema. Seja $\mathbb V$ um espaço vetorial. O conjunto dos funcionais lineares $\mathbf F: \mathbb V \to \mathbb R$ também é um espaço vetorial com as operações usuais de soma de funções e multiplicação de função por escalar.

Notação. O espaço vetorial estabelecido no Teorema acima é dito o **espaço dual** do espaço \mathbb{V} e é denotado por \mathbb{V}^* .

A Base Dual

Sejam V um espaço vetorial de dimensão finita n e

$$\mathbf{B}_{\mathbb{V}} = \{v_1, v_2, \cdots v_n\}$$
 uma base (primal) de \mathbb{V} .

Sejam $p_i : \mathbb{V} \to \mathbb{R}$, para $i = 1, 2, \dots n$, os funcionais coordenadas (ou projeções) dados por

$$p_i(v_j) = \delta_{ij} = \begin{cases} 1, \text{ se } i = j \\ 0, \text{ se } i \neq j. \end{cases}$$

Então B_{\mathbb{V}^*} = { p_1, p_2, \dots, p_n } é uma base de \mathbb{V}^* , denominada a base dual da base $\mathbf{B}_{\mathbb{V}}$.

A prova deste Teorema está no Apêndice.

Conclusão: em dimensão finita, os espaços vetoriais V e V^* são isomorfos.

A Base Dual

Exemplo 5. Sejam $\mathbb{V} = \mathbb{R}^2$ e $\mathbf{B}_{\mathbb{V}} = \{(2,1),(3,1)\}$ uma base.

A base dual B_{V*}: $\{p_1, p_2\}$ tais que $p_1(2, 1) = 1$, $p_1(3, 1) = 0$, $p_2(2, 1) = 0$ e $p_2(3, 1) = 1$.

Em relação a base $\mathbf{B}_{\mathbb{V}}$ se $v=a_1(2,1)+a_2(3,1)$, então $p_1(v)=a_1$ e $p_2(v)=a_2$ e assim, dado um funcional $\mathbf{F}:\mathbb{V}\to\mathbb{R}$ devem existir escalares α_1 e α_2 tais que $\mathbf{F}(v)=\alpha_1p_1(v)+\alpha_2p_2(v)=\alpha_1a_1+\alpha_2a_2=\langle(\alpha_1,\alpha_2),(a_1,a_2)\rangle$.

Em relação a base canônica de \mathbb{R}^2 temos que $(x_1, x_2) = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 = a_1(2, 1) + a_2(3, 1) = (2a_1 + 3a_2, a_1 + a_2).$

Logo, temos o sistema nas variáveis a_1 e a_2 :

$$\begin{cases} 2a_1 + 3a_2 = x_1 \\ a_1 + a_2 = x_2 \end{cases} \iff \begin{cases} a_1 = 3x_2 - x_1 \\ a_2 = x_1 - 2x_2 \end{cases}.$$

Assim, na **base canônica** de \mathbb{R}^2 os funcionais que definem a base dual $\mathbf{B}_{\mathbb{V}^*}$ são: $p_1(x_1, x_2) = 3x_2 - x_1$ e $p_2(x_1, x_2) = x_1 - 2x_2$.

O isomorfismo entre o espaço primal e seu dual

Seja $\mathbb V$ um espaço vetorial de **dimensão finita** munido de um PI \langle, \rangle . Baseando-se no **Exemplo 4** definimos a transformação $\Psi: \mathbb V \to \mathbb V^*$ dada por $\Psi(\mathbf v) = \mathbf L_{\mathbf v}, \, \forall \mathbf v \in \mathbb V$.

Teorema. A transformação Ψ é um **isomorfismo linear**.

Prova. A linearidade de Ψ segue da linearidade do PI.

Calculemos o núcleo de Ψ:

$$\Psi(\mathbf{v}) = \mathbf{0} \iff \mathbf{L}_{\mathbf{v}}(x) = 0, \forall x \in \mathbb{V} \iff \langle \mathbf{v}, x \rangle = 0, \forall x \in \mathbb{V}.$$

$$\iff$$
 v é ortogonal à todo vetor x de $\mathbb{V} \iff$ **v** = **0**.

Logo, Ψ é injetiva e como $dim(\mathbb{V}^*) = dim(\mathbb{V})$, então Ψ é sobrejetiva e portanto é um isomorfismo linear entre \mathbb{V} e \mathbb{V}^* .

Portanto, qualquer funcional linear $\mathbf{F}: \mathbb{V} \to \mathbb{R}$ avaliado num vetor $x \in \mathbb{V}$ é identificado como o **produto interno** de um vetor fixo $\mathbf{v} \in \mathbb{V}$ por x, isto é, $\mathbf{F}(x) = \langle \mathbf{v}, x \rangle, \forall x \in \mathbb{V}$.

O Segundo Espaço Dual (em dimensão finita)

Seja $\mathbb V$ um espaço vetorial e $\mathbb V^*$ o seu espaço dual, isto é, $\mathbb V^*=\{\text{funcionais lineares de }\mathbb V\text{ em }\mathbb R\}.$

Como V^* é um espaço vetorial ele também admite um espaço dual, chamado de **bidual** de V, denotado por V^{**} .

```
Portanto \mathbb{V}^{**} = \{ \mathbf{G} : \mathbb{V}^* \to \mathbb{R} \text{ tal que } \mathbf{G} \text{ \'e linear} \} = \{ \text{funcionais lineares de } \mathbb{V}^* \text{ em } \mathbb{R} \}.
```

Teorema. Se $\mathbb V$ tem **dimensão finita**, então $\mathbb V^{**}$ e $\mathbb V$ são isomorfos.

Obs. O isomorfismo $\mathbf{T}: \mathbb{V} \to \mathbb{V}^{**}$, também chamado a aplicação natural de \mathbb{V} em \mathbb{V}^{**} , é assim definido: para $v \in \mathbb{V}$ arbitrário definimos $\mathbf{T}(v) = \mathbf{G}$, em que \mathbf{G} é o funcional linear de \mathbb{V}^* em \mathbb{R} dado por $\mathbf{G}(\mathbf{F}) = \mathbf{F}(v)$, para qualquer $\mathbf{F} \in \mathbb{V}^*$ (assim \mathbf{G} é identificado com v e vice-versa).

Anuladores

Sejam V um espaço vetorial e X um subconjunto de V.

Um funcional linear $\mathbf{F}: \mathbb{V} \to \mathbb{R}$ anula \mathbf{X} se $\mathbf{F}(x) = 0$, $\forall x \in \mathbf{X}$. Sejam \mathbb{V} um espaço vetorial e \mathbf{X} um subconjunto de \mathbb{V} .

Definição. O conjunto $\mathbf{X}^0 \subset \mathbb{V}^*$ de todos os funcionais lineares de \mathbb{V}^* que anulam \mathbf{X} é dito o **anulador** de \mathbf{X} .

Obs. O **anulador** de um conjunto **X** de \mathbb{V} é um subespaço de \mathbb{V}^* (mesmo que **X** não seja subespaço de \mathbb{V} .

Teorema. Seja $\mathbb V$ espaço vetorial de dimensão finita. Se $\mathbb W$ é um subespaço de $\mathbb V$, então

(i)
$$dim(\mathbb{W}) + dim(\mathbb{W}^0) = dim(\mathbb{V}),$$
 (ii) $\mathbb{W}^{00} \equiv \mathbb{W}.$

Anulador × Complemento Ortogonal

Sejam $\mathbb V$ espaço vetorial munido de um PI \langle,\rangle e **X** um subconjunto de $\mathbb V$.

Definição. O **complemento ortogonal** de **X** em relação ao PI dado, denotado por \mathbf{X}^{\perp} , é o conjunto de todos os vetores de \mathbb{V} ortogonais a todos os vetores de **X**, isto é,

$$\mathbf{X}^{\perp} = \{ v \in \mathbb{V} \text{ tais que } \langle v, x \rangle = 0, \, \forall x \in \mathbf{X} \}.$$

Teorema. Seja $\mathbb V$ espaço vetorial de **dimensão finita**. **Se** $\mathbb W$ é um subespaço de $\mathbb V$, **então**

(i)
$$dim(\mathbb{W}) + dim(\mathbb{W}^{\perp}) = dim(\mathbb{V})$$
, (ii) $\mathbb{W}^{\perp \perp} \equiv \mathbb{W}$.

Usando o **isomorfismo** $\Psi: \mathbb{V} \to \mathbb{V}^*$ que a cada vetor $\mathbf{v} \in \mathbb{V}$ associa o funcional $\mathbf{L}_{\mathbf{v}}: \mathbb{V} \to \mathbb{R}$ dado por $\mathbf{L}_{\mathbf{v}}(x) = \langle \mathbf{v}, x \rangle, \, \forall x \in \mathbb{V}$, o anulador de um subespaço \mathbb{W} de \mathbb{V} é identificado com o complemento ortogonal de \mathbb{W} .

Anulador × Complemento Ortogonal

Exemplo 6. Sejam $V = \mathbb{R}^2$ e **X** = $\{(x, y) \in \mathbb{R}^2 : x - 2y = 0\}$.

Então X é o subespaço de \mathbb{R}^2 gerado pelo vetor v = (2,1).

O anulador de X é o subespaço de $(\mathbb{R}^2)^*$ formado por todos os funcionais lineares F tais que F(2,1)=0.

O complemento ortogonal de **X** é o subespaço de \mathbb{R}^2 formado por todos os vetores v = (a,b) tais que $\langle (a,b), (2,1) \rangle = 0 \iff 2a+b=0 \iff b=-2a$.

Logo, o complemento ortogonal de X

$$\mathbf{X}^{\perp} = \{ ext{subespaço do } \mathbb{R}^2 ext{ gerado pelo vetor } (1,-2) \}$$

é identificado com o anulador de X

 $\mathbf{X}^0 = \{ ext{subespaço do } (\mathbb{R}^2)^* ext{ gerado pelo func. } \mathbf{F}(x,y) = x - 2y \}.$

Apêndice. A Base Dual

Seja $\mathbf{B}_{\mathbb{V}} = \{v_1, v_2, \dots v_n\}$ uma base (primal) do esp. vetorial \mathbb{V} .

Sejam $p_i : \mathbb{V} \to \mathbb{R}$, para $i = 1, 2, \dots, n$, os funcionais coordenadas dados por

$$\rho_i(v_j) = \delta_{ij} = \begin{cases} 1, \text{ se } i = j \\ 0, \text{ se } i \neq j. \end{cases}$$

Então B_{\mathbb{V}^*} = { p_1, p_2, \dots, p_n } forma a **base dual** da base **B** $_{\mathbb{V}}$.

De Fato. Se $c_1p_1 + c_2p_2 + \cdots + c_np_n = \mathbf{0}$ (funcional nulo), então para qualquer vetor v_j da base $\mathbf{B}_{\mathbb{V}}$ tem-se que

$$\sum_{i=1}^{\mathbf{n}} c_i p_i(v_j) = c_j = 0$$
. Logo, $p_1, p_2, ..., p_n$ são LI.

Seja $v = x_1v_1 + x_2v_2 + \cdots + x_nv_n$ um vetor arbitrário de \mathbb{V} . Então $v = p_1(v)v_1 + p_2(v)v_2 + \cdots + p_n(v)v_n$.

$$\begin{array}{c} \mathsf{Dai}, \ p(v) = p_1(v)p(v_1) + p_2(v)p(v_2) + \dots + p_{\mathbf{n}}(v)p(v_{\mathbf{n}}) = \\ \alpha_1p_1(v) + \alpha_2p_2(v) + \dots + \alpha_{\mathbf{n}}p_{\mathbf{n}}(v). \end{array}$$