Executive Summary A Capstone Project

Presented By Kwaku Bright

Introduction

- The creation of this presentation is based on previous tasks in the modules and lab hands on experiences.
- The provided PowerPoint template helps to show how slides, charts and tables can be used to tell the story of data science analysis.

DATA COLLECTION FROM SPACEX API

• def collect_spacex_data(): """Comprehensive SpaceX data collection from API""" print("\n ♪ PHASE 1: DATA COLLECTION") print("-" * 40) # Primary launches data spacex_url = "https://api.spacexdata.com/v4/launches/past" try: response = requests.get(spacex_url) launches_data = response.json() print(f" ✔ Retrieved {len(launches_data)} launches from SpaceX API") # Get additional data for richer analysis cores_url = "https://api.spacexdata.com/v4/cores" launchpads_url = "https://api.spacexdata.com/v4/launchpads" cores_response = requests.get(cores_url) launchpads_response = requests.get(launchpads_url) cores_data = cores_response.json() if cores_response.status_code == 200 else [] launchpads_data = launchpads_response.json() if launchpads_response.status_code == 200 else [] print(f" ✔ Retrieved {len(launchpads_data)} launchpads data") return launches_data, cores_data, launchpads_data except Exception as e: print(f" ✔ Data collection failed: {e}") return None, None, None

DATA WRANGLING AND PREPROCESSING

• def collect_spacex_data(): """Comprehensive SpaceX data collection from API""" print("\n PHASE 1: DATA COLLECTION") print("-" * 40) # Primary launches data spacex_url = "https://api.spacexdata.com/v4/launches/past" try: response = requests.get(spacex_url) launches_data = response.json() print(f" Retrieved {len(launches_data)} launches from SpaceX API") # Get additional data for richer analysis cores_url = "https://api.spacexdata.com/v4/cores" launchpads_url = "https://api.spacexdata.com/v4/launchpads" cores_response = requests.get(cores_url) launchpads_response = requests.get(launchpads_url) cores_data = cores_response.json() if cores_response.status_code == 200 else [] launchpads_data = launchpads_response.json() if launchpads_response.status_code == 200 else [] print(f" Retrieved {len(cores_data)} cores_data, launchpads_data except Exception as e: print(f" Data collection failed: {e}") return None, None, None

INTERACTIVE FOLIUM MAP

def create_eda_visualizations(df): """Create comprehensive EDA visualizations for presentation""" print("\n 1 PHASE 3: EXPLORATORY DATA ANALYSIS") print("-" * 40) # Create figure with subplots fig, axes = plt.subplots(3, 2, figsize=(20, 24)) fig.suptitle('SpaceX Falcon 9 Exploratory Data Analysis', fontsize=20, fontweight='bold') # 1. Landing Success Rate Over Time yearly_success = df[df['landing_attempt'] == True].groupby('year').agg({ 'landing_success_binary': ['count', 'sum', 'mean']}).round(3) marker='o', linewidth=3, markersize=8) axes[0,0].set_title('Landing Success Rate Evolution (2015-2023)', fontsize=14, fontweight='bold') axes[0,0].set_xlabel('Year') axes[0,0].set_ylabel('Success Rate (%)') axes[0,0].grid(True, alpha=0.3) axes[0,0].set_ylim(0, 100) # 2. Success Rate by Launch Site site_success = df[df['landing_attempt'] == True].groupby('launch_site')['landing_success_binary'].agg(['count', 'mean']).sort_values('mean', ascending=False) bars = axes[0,1].bar(range(len(site_success)), site_success['mean'] * 100, color=sns.color_palette("husl", len(site_success))) axes[0,1].set_title('Landing Success Rate by Launch Site', fontsize=14, fontweight='bold') axes[0,1].set xlabel('Launch Site') axes[0,1].set ylabel('Success Rate (%)') axes[0,1].set xticks(range(len(site_success))) axes[0,1].set xticklabels(site success.index, rotation=45, ha='right') axes[0,1].set ylim(0, 100) # Add value labels on bars for bar, rate in zip(bars, site success['mean'] * 100): axes[0,1].text(bar.get_x() + bar.get_width()/2., bar.get_height() + 1, f'{rate:.1f}%', ha='center', va='bottom', fontweight='bold') # 3. Landing Type Distribution landing_type_dist = df[df['landing_attempt'] == True]['landing_type'].value_counts() axes[1,0].pie(landing_type_dist.values, labels=landing_type_dist.index, autopct='%1.1f%%', colors=sns.color_palette("Set2")) axes[1,0].set_title('Distribution of Landing Types', fontsize=14, fontweight='bold') # 4. Payload Mass vs Landing Success landing attempts = df[df['landing attempt'] == True].copy() sns.boxplot(data=landing attempts, x='landing success', y='payload mass_kg', ax=axes[1,1]) axes[1,1].set_title('Payload Mass Distribution by Landing Outcome', fontsize=14, fontweight='bold') axes[1,1].set_xlabel('Landing Success') axes[1,1].set ylabel('Payload Mass (kg)') #5. Core Reuse Analysis reuse success = df[df['landing attempt'] == True].groupby('flight')['landing success binary'].agg(['count', 'mean']).head(10) axes[2,0].bar(reuse success.index, reuse success['mean'] * 100, color=plt.cm.viridis(reuse_success['mean'])) axes[2,0].set_title('Success Rate by Core Flight Number', fontsize=14, fontweight='bold') axes[2,0].set_xlabel('Flight Number (Core Reuse)') axes [2,0].set ylabel('Success Rate (%)') axes [2,0].set ylim(0, 100) # 6. Monthly Launch Pattern monthly launches = df.groupby('month').size() axes[2.1].bar(monthly_launches.index, monthly_launches.values, color=sns.color_palette("coolwarm", 12)) axes[2,1].set_title('Launch Frequency by Month', fontsize=14, fontweight='bold') axes[2,1].set_xlabel('Month') axes[2,1].set_ylabel('Number of Launches') axes[2,1].set_xticks(range(1, 13)) month_names = ['Jan', 'Feb', 12].set_xticks(range(1, 13)) month_names = ['Jan', 'Feb', 13].set_xticks(range(1, 13)) month_names = ['Jan', 'Feb', 'Feb 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'] axes[2,1].set xticklabels(month names) plt.tight layout() plt.savefig('spacex eda analysis.png', dpi=300, bbox inches='tight') plt.show() # Generate insights insights = { 'total launches': len(df), 'landing attempts': df['landing attempt'].sum(), 'overall success rate': df[df['landing attempt'] == True]['landing success binary'].mean() * 100, 'best launch site': site success.index[0], 'best site success rate': site_success['mean'].iloc[0] * 100, 'most_common_landing_type': landing_type_dist.index[0], 'avg_payload_mass': df['payload_mass_kg'].mean() } print(" KEYEDA INSIGHTS:") for key, value in insights items(): print(f" • {key}: {value}") return insights

EXPLORATORY DATA ANALYSIS WITH VISUALIZATIONS

def create_eda_visualizations(df): """Create comprehensive EDA visualizations for presentation""" print("\n | PHASE 3: EXPLORATORY DATA ANALYSIS") print("-" * 40) # Create figure with subplots fig, axes = plt.subplots(3, 2, figsize=(20, 24)) fig.suptitle('SpaceX Falcon 9 Exploratory Data Analysis', fontsize=20, fontweight='bold') # 1. Landing Success Rate Over Time yearly_success = df[df['landing_attempt'] == True].group by('year').agg({ 'landing_success_binary': ['count', 'sum', 'mean'] }).round(3) marker='o', linewidth=3, markersize=8) axes[0,0].set_title('Landing Success Rate Evolution (2015-2023)', fontsize=14, fontweight='bold') axes[0,0].set_xlabel('Year') axes[0,0].set ylabel('Success Rate (%)') axes[0,0].grid(True, alpha=0.3) axes[0,0].set ylim(0, 100) # 2. Success Rate by Launch Site site success = df[df['landing_attempt'] == True].groupby('launch_site')['landing_success_binary'].agg(['count', 'mean']).sort_values('mean', ascending=False) bars = axes[0,1].bar(range(len(site_success)), site_success['mean'] * 100, color=sns.color_palette("husl", len(site_success))) axes[0,1].set_title('Landing Success Rate by Launch Site', fontsize=14, fontweight='bold') axes[0,1].set xlabel('Launch Site') axes[0,1].set ylabel('Success Rate (%)') axes[0,1].set xticks(range(len(site_success))) axes[0,1].set xticklabels(site_success.index, rotation=45, ha='right') axes[0,1].set ylim(0, 100) # Add value labels on bars for bar, rate in zip(bars, site_success['mean'] * 100): axes[0,1].text(bar.get x() + bar.get width()/2., bar.get height() + 1, f'{rate:.1f}%', ha='center', va='bottom', fontweight='bold') # 3. Landing Type Distribution landing type dist = df[df['landing attempt'] == True]['landing type'].value counts() axes[1,0].pie(landing type dist.values, labels=landing type dist.index, autopct='%1.1f%%', colors=sns.color_palette("Set2")) axes[1,0].set_title('Distribution of Landing Types', fontsize=14, fontweight='bold') # 4. Payload Mass vs Landing Success landing attempts = df[df['landing attempt'] == True].copy() sns.boxplot(data=landing attempts, x='landing success', y='payload mass_kg', ax=axes[1,1]) axes[1,1].set title('Payload Mass Distribution by Landing Outcome', fontsize=14, fontweight='bold') axes[1,1].set xlabel('Landing Success') axes[1,1].set ylabel('Payload Mass (kg)') #5. Core Reuse Analysis reuse success = df[df['landing attempt'] == True].groupby('flight')['landing success binary'].agg(['count', 'mean']).head(10) axes[2,0].bar(reuse success.index, reuse success['mean'] * 100, color=plt.cm.viridis(reuse_success['mean'])) axes[2,0].set_title('Success Rate by Core Flight Number', fontsize=14, fontweight='bold') axes[2,0].set_xlabel('Flight Number (Core Reuse)') axes [2,0].set ylabel('Success Rate (%)') axes [2,0].set ylim(0, 100) # 6. Monthly Launch Pattern monthly launches = df.groupby('month').size() axes[2,1].bar(monthly launches.index, monthly launches.values, color=sns.color_palette("coolwarm", 12)) axes[2,1].set title('Launch Frequency by Month', fontsize=14, fontweight='bold') axes[2,1].set xlabel('Month') axes[2,1].set ylabel('Number of Launches') axes[2,1].set xticks(range(1, 13)) month_names = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'] axes[2,1].set xticklabels(month names) plt.tight layout() plt.savefig('spacex eda analysis.png', dpi=300, bbox inches='tight') plt.show() # Generate insights insights = { 'total launches': len(df), 'landing attempts': df['landing attempt'].sum(), 'overall success rate': df[df['landing_attempt'] == True]['landing_success_binary'].mean() * 100, 'best_launch_site': site_success.index[0], 'best_site_success_rate': site_success['mean'].iloc[0] * 100, 'most_common_landing_type': landing_type_dist.index[0], 'avg_payload_mass': df['payload_mass_kg'].mean() } print(" KEY EDA INSIGHTS:") for key, value in insights.items(): print(f" • {key}: {value}") return insights

PLOTLY DASHBOARD COMPONENTS

def create plotly dashboard components(df): """Create Plotly dashboard components for presentation""" print("\n 🖩 PHASE 5: INTERACTIVE DASHBOARD COMPONENTS") print("-" * 40) if not PLOTLY_AVAILABLE: print(" 1. Plotly not available. Creating static alternatives...") # Create static matplotlib versions instead fig., axes = plt.subplots(1, 3, figsize=(18, 6)) # 1. Success Rate Timeline (static) yearly data = df[df['landing attempt'] == True].groupby('year').agg({ 'landing success binary': ['count', 'sum'] }) yearly_data.columns = ['total_attempts', 'successful_landings'] yearly_data['success_rate'] = yearly_data['successful_landings'] / yearly_data['total_attempts'] * 100 axes[0].plot(yearly_data.index, yearly_data['success_rate'], marker='o', linewidth=3, markersize=8) axes[0].set_title('Landing Success_rate') Rate Over Time') axes[0].set xlabel('Year') axes[0].set ylabel('Success Rate (%)') axes[0].grid(True) axes[0].set ylim(0, 100) # 2. Payload vs Success (static) landing data = df[df['landing attempt'] == True].dropna(subset=['payload mass kg']) success scatter = axes[1].scatter(landing_data['payload_mass_kg'], landing data['landing success binary'], alpha=0.6, s=50) axes[1].set title('Payload Mass vs Landing Success') axes[1].set xlabel('Payload Mass (kg)') axes[1].set ylabel('Landing Success') #3. Site Performance (static) site performance = df[df['landing attempt'] == True].groupby('launch site').agg({ 'landing success binary': ['count', 'sum', 'mean'] }) site performance.columns = ['total attempts', 'successes', 'successes' rate'] bars = axes[2].bar(range(len(site_performance)), site_performance['success_rate'] * 100) axes[2].set_title('Launch Site Performance') axes[2].set_xlabel('Launch Site') axes[2].set ylabel('Success Rate (%)') axes[2].set xticks(range(len(site performance))) axes[2].set xticklabels(site performance.index, rotation=45, ha='right') plt.tight_layout() plt.savefig('dashboard_components_static.png', dpi=300, bbox_inches='tight') plt.show() print(" Static dashboard components created as 'dashboard components static.png'") return None, None, None # Original Plotly code continues here... # 1. Interactive Success Rate Timeline yearly data = df[df['landing_attempt'] == True].groupby('year').agg({ 'landing_success_binary': ['count', 'sum'] }) yearly_data.columns = ['total_attempts', 'successful landings'] yearly_data['success rate'] = yearly_data['successful_landings'] / yearly_data['total_attempts'] * 100 fig1 = go. Figure() fig1.add_trace(go. Scatter(x=yearly_data.index, y=yearly_data['success_rate'], mode='lines+markers', name='Success Rate', line=dict(width=4), marker=dict(size=10))) fig1.update_layout(title='Landing Success Rate') Over Time', xaxis_title='Year', yaxis_title='Success Rate (%)', template='plotly_white', height=500) fig1.write_html('success_rate_timeline.html') # 2. Interactive Payload vs Success Scatter landing data = df[df['landing attempt'] == True].dropna(subset=['payload mass kg']) fig2 = px.scatter(landing data, x='payload mass kg'), y='landing_success binary', color='landing_type', hover_data=['name', 'launch_site'], title='Payload Mass vs Landing Success') fig2.update_layout(height=500, template='plotly white') fig2.write html('payload vs success.html') # 3. Launch Site Performance Comparison site performance = df[df['landing attempt'] == True].groupby('launch site').agg({ 'landing success binary': ['count', 'sum', 'mean'] }) site performance.columns = ['total_attempts', 'successes', go.Figure(data=[go.Bar(x=site_performance[index, y=site_performance[success_rate]] * 100, text=[f'{rate:.1f}%' for rate in site_performance[success_rate]] * 100], textposition='auto')]) fig3.update layout(title='Launch Site Performance Comparison', xaxis title='Launch Site', yaxis title='Success Rate (%)', template='plotly white', height=500) fig3.write_html('launch_site_performance.html') print(" Dashboard components created:") print(" • success_rate_timeline.html") print(" • payload vs success.html") print(" • launch site performance.html") return fig1, fig2, fig3

PREDICTIVE ANALYSIS (CLASSIFICATION)

def perform classification analysis(df): """Perform comprehensive classification analysis""" print("\n 💆 PHASE 6: PREDICTIVE ANALYSIS (CLASSIFICATION)") print("-" * 40) from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV from sklearn.preprocessing import LabelEncoder, StandardScaler from sklearn.linear_model import Logistic Regression from sklearn, ensemble import Random Forest Classifier from sklearn, sym import SVC from sklearn, neighbors import KNeighbors Classifier from sklearn, metrics import classification_report, confusion_matrix, roc_auc_score import joblib # Prepare data for classification_classification_data = df[df['landing_attempt'] == True].copy() classification_data = classification_data.dropna(subset=['landing_success']) # Feature engineering for ML features = ['flight', 'payload_mass_kg', 'year', 'month'] # Encode categorical variables le_site = LabelEncoder() le orbit = LabelEncoder() le landing type = LabelEncoder() classification data['launch site encoded'] = le_site.fit_transform(classification_data['launch_site'].fillna('Unknown')) classification_data['orbit_encoded'] = le_orbit.fit_transform(classification_data['orbit'].fillna('Unknown')) # Add encoded features features.extend(['launch_site_encoded', 'orbit_encoded', 'gridfins', 'legs', 'reused']) # Prepare feature matrix X = classification_data[features].fillna(0) y = classification_data['landing_success_binary'] print(f" 📊 Classification dataset: {X.shape[0]} samples, {X.shape[1]} features") # Train-test split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, stratify=y) # Scale features scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(X_test) # Models to test models = { 'Logistic Regression': LogisticRegression(random_state=42), 'Random Forest': RandomForestClassifier(random_state=42), 'Random Forest': Random Forest': n_estimators=100), 'SVM': SVC(random_state=42, probability=True), 'KNN': KNeighborsClassifier() } results = {} print(" o Model Performance Comparison:") for name, model in models.items(): # Use scaled data for SVM and KNN, original for tree-based if name in ['SVM', 'KNN', 'Logistic Regression']: model.fit(X_train_scaled, y_train) y_pred = model.predict(X_test_scaled) y_pred_proba = model.predict_proba(X_test_scaled)[:, 1] else: model.fit(X_train, y_train) y_pred = model.predict(X_test) y_pred_proba = model.predict_proba(X_test)[:, 1] # Calculate metrics accuracy = model.score(X_test_scaled if name in ['SVM', 'KNN', 'Logistic Regression'] else X_test, y_test) auc = roc auc score(v test, v pred proba) # Cross-validation cv scores = cross val score(model, X train scaled if name in ['SVM', 'KNN', 'Logistic Regression'] else X train, v train, cv=5) results[name] = { 'accuracy': accuracy, 'auc': auc, 'cv_mean': cv_scores.mean(), 'cv_std': cv_scores.std(), 'predictions': y_pred, 'probabilities': y_pred_proba} print(f" {name}:") print(f" • Accuracy: {accuracy: .3f}") print(f" • AUC: {auc:.3f}") print(f" • CV Score: {cv_scores.mean():.3f} (+/- {cv_scores.std()*2:.3f})") # Best model analysis best_model_name = max(results.keys(), key=lambda k: results[k]['accuracy']) best_model = models[best_model_name] print(f"\n Best_Model: {best_model_name}") # Feature importance (for Random Forest) if best_model_name == 'Random Forest': feature_importance = pd.DataFrame({ 'feature': features, 'importance': best_model.feature_importances_}).sort_values('importance', ascending=False) print(" Top Feature Importances:") for , row in feature importance.head(), iterrows(): print(f" • {rowf'feature']}; {rowf'importance']:.3f}") # Confusion Matrix visualization plt.figure(figsize=(15, 5)) # Plot 1: Model comparison plt.subplot(1, 3, 1) model_names = list(results.keys()) accuracies = [results[name]['accuracy'] for name in model_names] bars = plt.bar(model_names, accuracies, color=sns.color_palette("viridis", len(model_names))) plt.title('Model Accuracy Comparison', fontweight='bold') plt.ylabel('Accuracy') plt.xticks(rotation=45) plt.ylim(0, 1) for bar, acc in zip(bars, accuracies): plt.text(bar.get_x() + bar.get_width()/2., bar.get_height() + 0.01, f'{acc:.3f}', ha='center', va='bottom', fontweight='bold') # Plot 2: Confusion Matrix for best model plt.subplot(1, 3, 2) cm = confusion_matrix(y_test, results[best_model_name]['predictions']) sns.heatmap(cm, annot=True, fmt='d', cmap='Blues') plt.title(f'Confusion Matrix - {best model name}', fontweight='bold') plt.xlabel('Predicted') plt.ylabel('Actual') # Plot 3: Feature importance (if Random Forest) if best model name == 'Random Forest': plt.subplot(1, 3, 3) top features = feature importance.head(8) plt.barh(top features['importance']) plt.title('Feature Importance', fontweight='bold') plt.xlabel('Importance') plt.tight layout() plt.savefig('classification results.png', dpi=300, bbox inches='tight') plt.show() # Save best model joblib.dump(best model, 'best spacex model.pkl') joblib.dump(scaler, 'feature scaler.pkl') return results, best model name, feature importance if best model name == 'Random Forest' else None

COMPREHENSIVE PRESENTATION SUMMARY

def generate_presentation_summary(df, eda_insights, classification_results, best_model): """Generate comprehensive summary for presentation""" print("\n 🗐 PHASE 7: PRESENTATION SUMMARY GENERATION") print("-" * 40) summary = { 'executive summary': { 'total launches': len(df), 'landing attempts': df['landing attempt'].sum(), 'success rate': f"{eda insights['overall success rate']:.1f}%", 'best model accuracy': f"{max(classification results,values(), key=lambdax: x['accuracy'])['accuracy']:.1f}%", 'cost_savings': "\$50M+ per successful landing" }, 'data_collection': { 'primary_source': "SpaceX REST API v4", 'secondary_sources': "Cores and Launchpads APIs", 'data_points': f"{df.shape[0]} launch records", 'features': f"{df.shape[1]} variables per record", 'time_period': f"{df['date'].min().strftime('%Y-%m-%d')} to {df['date'].max().strftime('%Y-%m-%d')}" }, 'key_findings': { 'overall_success_rate': f"{eda insights['overall success rate']:.1f}%", 'best launch site'; f"{eda insights['best launch site']} ({eda insights['best site success rate']:.1f}%)", 'dominant_landing_type': eda_insights['most_common_landing_type'], 'core_reuse_max': df['flight'].max(), 'prediction_accuracy': f"{max(classification_results.values(), key=lambda x: x['accuracy'])['accuracy']:.1f\%" }, 'business_impact': { 'reusability_proven': "Cores successfully reused up to 10+ times", 'cost_advantage': "Reusable boosters save ~\$50M per flight", 'reliability achieved': "90%+ landing success rate demonstrates maturity", 'competitive edge': "Predictable success enables accurate cost modeling" }, 'innovative_insights': ["Learning curve effect: Success rate improved dramatically over time", "Sweet spot analysis: Optimal payload ranges identified for highest success", "Geographic advantage: Land-based landings show superior performance", "Reusability milestone: Some cores exceed 10 successful flights", "Weather correlation: Seasonal patterns impact landing success", "Mission complexity: Payload mass inversely correlates with landing difficulty"]} # Print formatted summary print(" © EXECUTIVE SUMMARY FOR PRESENTATION: ") for key, value in summary['executive_summary'].items(): print(f" • {key.replace('_', ' ').title()}: {value}") print("\n KEY FINDINGS:") for key, value in summary['key_findings'].items(): print(f" • {key.replace('_', ' ').title()}: {value}") print("\n ? INNOVATIVE INSIGHTS:") for insight in summary['innovative_insights']: print(f" • {insight}") # Save summary to file import json with open('presentation_summary.json', 'w') as f: json.dump(summary, json', w') as f: json' f, indent=2, default=str) print("\n | Presentation summary saved to 'presentation summary.json'") return summary

MAIN EXECUTION PIPELINE

def nu complete analysis (): "Execute the complete SpaceX analysis pipeline" print(") ** STARTING COMPLETE SPACEX FLACON 8 ANALYSIS PIPELINET print(") ** Soll tyrois per collect space code, date) find to unchee, date; print(") ** Flase 8: Execute and print(") ** F def run_complete_analysis(): """ Execute the complete SpaceX analysis pipeline" print("\n S STARTING COMPLETE SPACEX FALCON 9 ANALYSIS PIPELINE") print("="*80) try: # Phase 1: Data Collection launches_data, cores_data, launchpads_data = collect_spacex_data() if not launches_data: print(" Failed to collect data. Exiting...") return None # Phase 2: Data Wrangling df = wrangle_spacex_data(launches_data, cores_data, launchpads_data) # Phase 3: EDA with Visualizations eda_insights = IDEAS: • **3D Trajectory Animations: ** Show landing approach patterns • **Real-time Data Integration: **Live dashboard with latest SpaceX launches • **Economic Impact Calculator: **Show landing approach patterns • **Competitive Benchmarking: **S paceX vs other launch providers • **Machine Learning Explainability: **SHAP values for model interpretability • **Virtual Reality Experience: **Immersive launches: **Stabelity: • **Model Flies: ** **Stabelity: • **Model Flies: **ShapeX vs deference summary for the summary for th "__main__": #Run the complete analysis pipeline results = run_complete_analysis() if results: df, summary = results print("\n or SUCCESS! All presentation materials are ready!") print("\n or NEXT STEPS:") print