

K. J. Somaiya Institute of Engineering & Information Technology, Mumbai Department of Electronics and Telecommunication Engineering

IoT Based Smart Surveillance and Automation

RAMPURE MILIND RAMESH RATHOD KEVIN PRAMOD

Under the Guidance of PROF. PRADNYA KAMBLE

Introduction

- The growing number of thefts and robberies has made people rely on cost effective systems for their safety.
- Simply, the establishment of traditional surveillance cameras don't help in forestalling burglaries.
- Existing systems that are commonly in use to monitor areas, leaving their footage to be reviewed at a later stage.
- Security surveillance camera recording methods consume a huge storage, and they need a dramatic time to search in the recorded files.
- Since the corona outbreak, it has become very difficult to identify those who are affected by the virus or not and using a temperature handgun to check body temperature is a lot of manual work.

Objective

- To sense suspicious activity of intruder and alerts in absence of staff.
- Assists in avoiding public health problems.
- To reduce huge amount of storage and time to search in the recorded files.
- To provide a surveillance system at an affordable price.

Project Model

- We will leverage the power of IoT, we will build a Temperature Monitoring device with Email alerts using Raspberry Pi, MLX90614, and PiCamera.
- An innovative surveillance system which is powered by the Raspberry Pi that provide results with minimal latencies.
- There are 6 steps involved in the working of our model:
 - 1: Body Temperature is Recorded
 - 2: Input Camera Feed
 - 3: Background Subtraction
 - 4: Detection
 - 5: Start Video Recording and Upload to drive
 - 6: Alert using SMTP protocol

Flowchart

Fig1: Body temperature

Fig2: Motion detection flow chart

□ Block Diagram

□ Software and Hardware requirements

Language/Framework:

Python

External Tools:

Raspberry Pi Camera Module
Raspberry Pi 3B
Contactless IR Temperature Sensor MLX 90614
Connecting wires
Breadboard
Power supply

Storage:

Micro SDCard class 10 32GB Google Drive

☐ Circuit Diagram

- Applications
 - Room surveillance.
 - Health Safety.
 - Human Body Temperature Measurement.
 - Staff Safety.
 - Loss Prevention.

Project

Budget	Hardware/Software Components	Component wise Price
1	Raspberry Pi 3	3100
2	Pi Camera	400
3	MLX90614 - IR temperature sensor.	850
4	Power Supply (5V,2A)	350
5	MicroSDcard class 10 32GB with reader	750
	TOTAL	5450

Demonstrati on

Demonstrati

on

Demonstrati

on

Demo Video

References

- 1 "IoT enabled Video Surveillance System using Raspberry Pi", Rahul Muppanagouda Patil, Ram Srinivas, Rohith Y, N R Vinay and Pratiba D
- 2 "Implementation of Human Detection on Raspberry Pi for Smart Surveillance" Jahangir Abbas Mohammed, Member, IEEE, Agniswar Paul, Member, IEEE, Ajay Kumar, Member,

IEEE, Jaideep Cherukuri Member, IEEE

- 3 "Real-Time Smart Home Surveillance System of Based on Raspberry Pi" Yi-Chen Lee, Ching-Min Lee*
- 4 "On using AI-based human identification in improving surveillance system efficiency" Sanyukta Santosh Pawaskar, Ashwini Mandar Chavan

Thank You