GEOMETRY HOMEWORK 6

B96201044 黃上恩, B98901182 時丕勳, K0020100x 劉士瑋

October 22, 2011

Problem 1 (Ex P1512). Show that if a surface is tangent to a plane along a curve, then the points of this curve are either parabolic or planar.

Proof.

Problem 3 (Ex P151 3).

(a) Let $C \subset S$ be a regular curve on a surface S with Gaussian curvature K > 0. Show that the curvature κ of C at p satisfies

$$\kappa \geq \min(|\kappa_1|, |\kappa_2|),$$

where κ_1, κ_2 are the principal curvatures of S at p.

(b) 為什麼上一小題需要 K > 0 的條件, $K \ge 0$ 不可以嗎?

Problem 7.

- (a) T_{λ} 是縮放 λ 倍的映射, $\lambda>0$ 。 $\mathbb{X}:\Omega\to\mathbb{R}^3$ regular surface。討論 $T_{\lambda}\circ\mathbb{X}:\Omega\to\mathbb{R}^3$ 上對應點 κ_n,H,K 的變化。
- (b) \mathbb{X} : $\frac{\Omega}{(u,v)} \to \mathbb{R}^3$,若定義 $\overline{\mathbb{X}}(u,v) = \mathbb{X}(v,u)$ (因此 N 轉向)。討論 $\overline{\mathbb{X}}(\Omega)$ 上相對應點的 K_n,H,K 變化。

Problem 9 (旋轉面). $\mathbb{X}(u,v) = (f(u)\cos v, f(u)\sin v, g(u)), f > 0$

- (a) 計算其 e, f, g, H, K
- (b) 討論其 principal direction 與 principal curvature K_1, K_2 。

Problem 10 (管面). $\mathbb{X}(s,\theta) = \gamma(s) + \cos\theta \vec{n}(s) + \sin\theta \vec{b}(s)$, $0 < \kappa < 1$

- (a) 計算其 e, f, g, H, K
- (b) 討論曲面上 K 的分佈。