# Connecting Enterprise Networks to Internet





## Connecting Enterprise Networks to an ISP

 Modern corporate IP networks connect to the global Internet.

- Requirements that must be determined for connecting an enterprise to an ISP include the following:
  - Public IP address space
  - Enterprise-to-ISP connection link type and bandwidth
  - Connection redundancy
  - Routing protocol

## Public IP Address Space

- Public IP addresses are used:
  - By internal enterprise clients to access the Internet using NAT.
  - To make enterprise servers accessible from the Internet using static NAT.

- Public IP addresses are available from ISPs and RIRs.
  - Most enterprises acquire their IP addresses and AS number from ISPs.
  - Large enterprises may want to acquire IP addresses and AS number from a RIR.

## **Connection and Routing Questions**

- Which connection options does the ISP offer?
- Which routing options does the ISP offer?
- Will the enterprise network be connected to multiple ISPs?
- Does the routing need to support one link to an ISP or multiple links, to one or multiple ISPs?
- Is traffic load balancing over multiple links required?
- How much routing information needs to be exchanged with the ISP?
- Does the routing need to respond to the changes in the network topology, such as when a link goes down?

## **Using Static Routes Example**

- Static routes are the simplest way to implement routing with an ISP.
  - Typically a customer has a single connection to an ISP and the customer uses a default route toward the ISP while the ISP deploys static routes toward the customer.

```
R1(config)# router eigrp 110
R1(config-router)# network 10.0.0.0
R1(config-router)# exit
R1(config)# ip default-network 0.0.0.0
R1(config)# ip route 0.0.0.0 0.0.0.0 serial 0/0/0
```



```
PE(config)# ip route 10.0.0.0 255.0.0.0 serial 0/0/1
PE(config)# ip route 172.16.0.0 255.255.0.0 serial 0/0/1
PE(config)# ip route 172.17.0.0 255.255.0.0 serial 0/0/1
```

# **Using BGP**

BGP can be used to dynamically exchange routing information.

 BGP can also be configured to react to topology changes beyond a customer-to-ISP link.



# **Connection Redundancy**



# Connecting to One ISP: Single-Homed

- The connection type depends on the ISP offering (e.g., leased line, xDSL, Ethernet) and link failure results in a no Internet connectivity.
- The figure displays two options:
  - Option 1: Static routes are typically used with a static default route from the customer to the ISP, and static routes from the ISP toward customer networks.
  - **Option 2**: When BGP is used, the customer dynamically advertises its public networks and the ISP propagates a default route to the customer.





## **Connecting to One ISP: Dual-Homed**

- The figure displays two dual-homed options:
  - Option 1: Both links can be connected to one customer router.
  - Option 2: To enhance resiliency, the two links can terminate at separate routers in the customer's network.





## **Connecting to One ISP: Dual-Homed**

- Routing deployment options include:
  - Primary and backup link functionality in case the primary link fails.
  - Load sharing using Cisco Express Forwarding (CEF).
- Regardless, routing can be either static or dynamic (BGP).





## Connecting to Multiple ISPs: Multihomed

- Connections from different ISPs can terminate on the same router, or on different routers to further enhance the resiliency.
- Routing must be capable of reacting to dynamic changes therefore BGP is typically used.



## Connecting to Multiple ISPs: Multihomed

- Multihomed benefits include:
  - Achieving an ISP-independent solution.
  - Scalability of the solution, beyond two ISPs.
  - Resistance to a failure to a single ISP.
  - Load sharing for different destination networks between ISPs.



## Connecting Multiple ISPs: Dual-Multihomed

- Dual multihomed includes all the benefits of multihomed connectivity, with enhanced resiliency.
- The configuration typically has multiple edge routers, one per ISP, and uses BGP.



# **Three Multihoming Connection Options**

- 1. Each ISP passes only a default route to the AS.
  - The default route is passed on to internal routers.
- 2. Each ISP passes only a default route and provider-owned specific routes to the AS.
  - These routes may be propagated to internal routers, or all internal routers in the transit path can run BGP to exchange these routes.
- 3. Each ISP passes all routes to the AS.
  - All internal routers in the transit path run BGP to exchange these routes.

#### **Default Routes from All Providers**



# **Default Routes and Partial Updates**



#### **Full Routes from All Providers**



#### When to Use BGP

- Most appropriate when the effects of BGP are wellunderstood and at least one of the following conditions exists:
  - The AS has multiple connections to other autonomous systems.
  - The AS allows packets to transit through it to reach other autonomous systems (eg, it is a service provider).
  - Routing policy and route selection for traffic entering and leaving the AS must be manipulated.

#### When Not to Use BGP

- Do not use BGP if one or more of the following conditions exist:
  - A single connection to the Internet or another AS.
  - Lack of memory or processor power on edge routers to handle constant BGP updates.
  - You have a limited understanding of route filtering and the BGP pathselection process.
- In these cases, use static or default routes instead.