23) Bayesian Structural Time-Series Model

Vitor Kamada

April 2019

Reference

Tables, Graphics, and Figures from:

Brodersen et al. (2015). **Inferring causal impact using Bayesian structural time-series models**. Annals of Applied Statistics: Vol. 9, No. 1, 247–274.

Bayesian Structural Time-Series Model

Observation Eq:
$$y_t = Z_t^T \alpha_t + \epsilon_t$$

State Eq:
$$\alpha_{t+1} = T_t \alpha_t + R_t \eta_t$$

$$rac{\epsilon_t \sim \mathcal{N}(0, \sigma_t^2)}{\eta_t \sim \mathcal{N}(0, Q_t)}$$
 \perp all other unknowns

Structural Parameters: Z_t , T_t , R_t

Vitor Kamada ECO 7100 Econometrics I April 2019 3 / 20

Local Level Model

$$lpha_t = \mu_t, ext{ and } Z_t, T_t, R_t = 1$$

$$y_t = \mu_t + \epsilon_t$$

$$\mu_{t+1} = \mu_t + \eta_t$$

$$\epsilon_t \sim \textit{N}(0, \sigma_t^2) ext{ and } \eta_t \sim \textit{N}(0, au_t^2)$$

	Best Estimator of y_{t+1}	Model
$\sigma_t^2 = 0$	Уt	Random Walk
$ au_t^2 = 0$	$y_1,,y_t$	IID Gaussian Noise

4□ > 4□ > 4 = > 4 = > = 90

Assembling the State-Space Model

$$y_t = \mu_t + \gamma_t + \sum_{j=1}^J x_{j,t} \beta_{j,t} + \epsilon_t$$

Trend:
$$\mu_{t+1} = \mu_t + \delta_t + \eta_{\mu,t}$$

"Slope" of the trend:
$$\delta_{t+1} = \delta_t + \eta_{\delta,t}$$

Seasonality:
$$\gamma_{t+1} = -\sum\limits_{s=0}^{3-2} \gamma_{t-s} + \eta_{\gamma,t}$$

Dynamic Coefficients:
$$eta_{j,t+1} = eta_{j,t} + \eta_{eta,j,t}$$

Static-Regression Variant of the State-Space Model

Bayesian Framework for Synthetic Control

- Time-series behaviour of the Y_t , prior to the intervention
- Behaviour of other time series $(X_1, X_2, ...)$ that were predictive of Y_t prior to the intervention
- Prior knowledge about the model parameters,
 ex: previous studies

Counterfactual Predictions

Cumulative Impact

Toy Example

```
library(CausalImpact)
set.seed(1)
x1 < -100 + arima.sim(model = list(ar = 0.999),
n = 100
y < -1.2 * x1 + rnorm(100)
y[71:100] < y[71:100] + 10
data <- cbind(y, x1)
pre.period <- c(1, 70)
post.period <- c(71, 100)
```

matplot(data, type = "I")

impact<-CausalImpact(data, pre.period, post.period)</pre>

plot(impact)

summary(impact)

Actual Prediction (s.d.) 95% CI	Average 117 107 (0.38) [106, 107]	Cumulative 3511 3196 (11.27) [3174, 3218]
Absolute effect (s.d.)	11 (0.38)	316 (11.27)
95% CI	[9.8, 11]	[293.5, 337]
Relative effect (s.d.)	9.9% (0.35%)	9.9% (0.35%)
95% CI	[9.2%, 11%]	[9.2%, 11%]

Posterior tail-area probability p: 0.001 Posterior prob. of a causal effect: 99.9%

Vaver and Koehler (2011)

Campaign's causal effect on the # of times a user was directed to the advertiser's website from the Google search results page

- Ads went live for 6 consecutive weeks
- Ads were geo-targeted to a randomised set of
 95 out of 190 designated market areas (DMAs)

Causal Effect of Online Advertising on Clicks in Treated Regions using Randomised Controls

Cumulative Impact of the Campaign on Clicks using Randomised Controls

	Experiment	BSTS
ATET	84,700	88,400
Co.I/Cr.I	[19%,22%]	[13%,30%]
Relative Effect	21%	22%

Causal Effect of Online Advertising on Clicks in Treated Regions using Observational Controls

Data from all control regions were discarded Searches for keywords related to the advertiser's industry were used as controls (https://trends.google.com/trends)

Cumulative Impact of the Campaign on Clicks using Observational Controls

	Experiment	BSTS
ATET	84,700	85,900
Co.I/Cr.I	[19%,22%]	[12%,30%]
Relative Effect	21%	21%

Vitor Kamada ECO 7100 Econometrics I April 2019 18 / 20

Causal Effect of Online Advertising on Clicks in Nontreated Regions

Data from all treated regions were discarded Searches for keywords related to the advertiser's industry were used as controls (https://trends.google.com/trends)

Cumulative Impact of the Campaign on Clicks in Nontreated Regions

	Experiment	BSTS
ATET	84,700	-
Co.I/Cr.I	[19%,22%]	[-6%,10%]
Relative Effect	21%	2%