2024 Symposium on Numerical Methods for Spectral Problems: Theory and Application, Guiyang, China

Construction of fractional pseudospectral differentiation matrices with applications

Tinggang Zhao jointed with Wenbin Li and Hongjun Ma

> ¹School of Mathematics and Statistics Shandong University of Technology

> > Aug 2024

- 1. Motiviation
- 2 2. Preliminaries
- 3 3. Fraction Pseudospectral Differentiation/Integration Matrix
- 4. Applications
- 5. Summary

Motiviation

- Fractional Calculus shows potential applications such as anomalous diffusion
- Numerical solutions are challenging caused by singularity and nonlocality
- ♦ Fast, higher-order numerical method is needed
- Spectral collocation method is popular

Related works

- Spectral method: Li and Xu (2009,SIAM Numer Anal; 2010, Commun Comput Phys); Chen, Shen and Wang (2016, Math Comput); Mao and Shen (2016, J Comput Phys); Mao, Chen and Shen (2016, Appl Numer Math); Mao and Karniadakis (2018, SIAM Numer Anal)
- Spectral collocation method: Li, Zeng and Liu(2012, FCAA); Doha, Bhrawy and Ezz-Eldien(2012, Appl Math Modelling); Tian, Deng and Wu(2014, Numer Method PDEs); Zayernouri and Karniadakis (2014, SIAM J Sci Comput; 2015, J Comput Phys); Zayernouri, Ainsworth and Karniadakis(2015, Comput Meth Appl Mech Engng); Zeng and Karniadakis (2015,2017, SIAM J Sci Comput); Jiao, Wang and Huang (2016, J Comput Phys)
- Spectral element method(Multi-domian spectral method): Xu and Hesthaven(2014, J Comput Phys); Chen,Xu and Hesthaven(2015, J Comput Phys); Mao and Shen (2018, Adv Comput Math); Zhao, Mao and Karniadakis(2019, Comput Meth Appl Mech Engng)

our work

- ★ The main contribution of this work is to represent some fractional differentiation matrices as a product of several special matrices
- ★ This representation gives not only a direct, fast and stable algorithm of fractional differentiation matrices
- ★ but also more information which can be used for inverse or preconditioning

2.1 Definitions of Fractional Calculus

Definition (left- and right-sided Riemann-Liouville integrals)

For a function f(x) on $(a,b)\subseteq\mathbb{R}$, the μ th order left- and right-sided Riemann–Liouville integrals are defined, respectively, as

$$_{RL}D_{a,x}^{-\mu}f(x) = \frac{1}{\Gamma(\mu)} \int_{a}^{x} (x-\eta)^{\mu-1} f(\eta) d\eta, \quad \mu > 0,$$
 (1)

and

$$_{RL}D_{x,b}^{-\mu}f(x) = \frac{1}{\Gamma(\mu)} \int_{x}^{b} (\eta - x)^{\mu - 1} f(\eta) d\eta, \quad \mu > 0.$$
 (2)

Definitions of Fractional Calculus

Definition (left- and right-sided Riemann-Liouville derivatives)

For a function f(x) on $(a,b) \subseteq \mathbb{R}$, the μ th order left- and right-sided Riemann–Liouville derivatives are defined as

$$_{RL}D_{a,x}^{\mu}f(x) = \frac{1}{\Gamma(m-\mu)} \left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^{m} \int_{a}^{x} (x-\eta)^{m-\mu-1} f(\eta) \mathrm{d}\eta, \tag{3}$$

and

$$_{RL}\mathrm{D}_{x,b}^{\mu}f(x) = \frac{1}{\Gamma(m-\mu)} \left(-\frac{\mathrm{d}}{\mathrm{d}x}\right)^{m} \int_{x}^{b} (\eta - x)^{m-\mu-1} f(\eta) \mathrm{d}\eta, \tag{4}$$

respectively. Here and in the subsequent sections, m is a positive integer satisfying $m-1<\mu< m, m\in\mathbb{N}.$

SHANDONG UNIVERSITY OF TECHNOLOGY

Definitions of Fractional Calculus

Definition (left- and right-sided Caputo derivative)

For a function f(x) defined on $(a,b) \subseteq \mathbb{R}$, the μ th order left- and right-sided Caputo derivative is defined, respectively, as

$$_{C}\mathrm{D}_{a,x}^{\mu}f(x)=\frac{1}{\Gamma(m-\mu)}\int_{a}^{x}(x-\eta)^{m-\mu-1}f^{(m)}(\eta)\mathrm{d}\eta,$$
 (5)

and

$${}_{C}\mathrm{D}_{x,b}^{\mu}f(x) = \frac{(-1)^{m}}{\Gamma(m-\mu)} \int_{x}^{b} (\eta - x)^{m-\mu-1} f^{(m)}(\eta) \mathrm{d}\eta, \tag{6}$$

Definition (Riesz derivative)

Let $0 < \mu < 2, \mu \neq 1$. The Riesz derivative is defined as

$$_{RZ}D_{x}^{\mu}f(x) = -\frac{1}{2\cos\left(\frac{\pi\mu}{2}\right)}\left[_{RL}D_{a,x}^{\mu}f(x) + _{RL}D_{x,b}^{\mu}f(x)\right].$$
 (7)

2.2 Jacobi Polynomials

Jacobi polynomials $P_n^{lpha,eta}(s),s\in I$ with parameters $lpha,eta\in\mathbb{R}$ are defined as

$$P_{n}^{\alpha,\beta}(s) = \frac{(\alpha+1)_{n}}{n!} + \sum_{j=1}^{n-1} \frac{(n+\alpha+\beta+1)_{j}(\alpha+j+1)_{n-j}}{j!(n-j)!} \left(\frac{s-1}{2}\right)^{j} + \frac{(n+\alpha+\beta+1)_{n}}{n!} \left(\frac{s-1}{2}\right)^{n}, \quad n \ge 1,$$
(8)

and $P_0^{\alpha,\beta}(s)=1$.

The well-known three-term recurrence relationship of Jacobi polynomials $P_n^{\alpha,\beta}(s)$ with parameters $\alpha,\beta\in\mathbb{R}$ is fulfilled for $-(\alpha+\beta+1)\notin\mathbb{N}^+$:

$$P_{n+1}^{\alpha,\beta}(s) = \left(A_n^{\alpha,\beta}s - B_n^{\alpha,\beta}\right)P_n^{\alpha,\beta}(s) - C_n^{\alpha,\beta}P_{n-1}^{\alpha,\beta}(s), n \ge 1$$

$$P_0^{\alpha,\beta}(s) = 1, \quad P_1^{\alpha,\beta}(s) = \frac{\alpha+\beta+2}{2}s + \frac{\alpha-\beta}{2}$$
(9)

where

$$\left\{ \begin{array}{l} A_{n}^{\alpha,\beta} = \frac{(2n+\alpha+\beta+1)(2n+\alpha+\beta+2)}{2(n+1)(n+\alpha+\beta+1)} \\ B_{n}^{\alpha,\beta} = \frac{(\beta^{2}-\alpha^{2})(2n+\alpha+\beta+1)}{2(n+1)(n+\alpha+\beta+1)(2n+\alpha+\beta)} \\ C_{n}^{\alpha,\beta} = \frac{(n+\alpha)(n+\beta)(2n+\alpha+\beta+1)}{(n+1)(n+\alpha+\beta+1)(2n+\alpha+\beta)} \end{array} \right.$$

Jacobi-Jacobi transformation

In [7], Shen, Wang and Xia (2019, Math Comput) proposed an algorithm of Fast structured Jacobi-Jacobi transforms.

Theorem

Let $\alpha_1, \beta_1 > -1$. If

$$\sum_{k=0}^{n} a_k P_k^{\alpha_1,\beta_1}(s) = \sum_{k=0}^{n} b_k P_k^{\alpha_2,\beta_2}(s),$$

then there exists a unique transform matrix $\mathbf{T}_n^{J_2 \to J_1}$ with $J_1 = (\alpha_1, \beta_1)$ and $J_2 = (\alpha_2, \beta_2)$ such that

$$\mathbf{a} = \mathbf{T}_n^{J_2 \to J_1} \mathbf{b},$$

where $\mathbf{a} = [a_0, \dots, a_n]^T$, $\mathbf{b} = [b_0, \dots, b_n]^T$ and the (i, j)-th entry, denoted as $t_i^{J_1, J_2}$, of $\mathbf{T}_n^{J_2 \to J_1}$ can be generated by

Jacobi-Jacobi transformation(continuous)

Theorem

$$\begin{split} & t_{i,j}^{J_1,J_2} = 0, \quad j < i, \\ & t_{i,j}^{J_1,J_2} = \widetilde{a}_{i,j}^{J_1,J_2} \ t_{i+1,j-1}^{J_1,J_2} + \widetilde{b}_{i,j}^{J_1,J_2} \ t_{i,j-1}^{J_1,J_2} + \widetilde{c}_{i,j}^{J_1,J_2} \ t_{i-1,j-1}^{J_1,J_2} - C_{j-1}^{J_2} \ t_{i,j-2}^{J_1,J_2}, \quad j \geq i \geq 1, \\ & t_{0,j}^{J_1,J_2} = \widetilde{a}_{0,j}^{J_1,J_2} \ t_{1,j-1}^{J_1,J_2} + \widetilde{b}_{0,j}^{J_1,J_2} \ t_{0,j-1}^{J_1,J_2} - C_{j-1}^{J_2} \ t_{0,j-2}^{J_1,J_2}, \quad j \geq 1, \\ & t_{0,1}^{J_1,J_2} = \widetilde{b}_{0,1}^{J_1,J_2} \ t_{0,0}^{J_1,J_2}, \quad t_{0,0}^{J_1,J_2} = 1 \end{split}$$

with

$$\begin{split} \widetilde{a}_{i,j}^{J_{1},J_{2}} &= A_{j-1}^{J_{2}} \frac{1}{A_{i}^{J_{1}}} \frac{\gamma_{i+1}^{J_{1}}}{\gamma_{i}^{J_{1}}} = \frac{2(i+\alpha_{1}+1)(i+\beta_{1}+1)}{(2i+\alpha_{1}+\beta_{1}+2)(2i+\alpha_{1}+\beta_{1}+3)} A_{j-1}^{J_{2}}, \\ \widetilde{b}_{i,j}^{J_{1},J_{2}} &= A_{j-1}^{J_{2}} \frac{B_{i}^{J_{1}}}{A_{i}^{J_{1}}} - B_{j-1}^{J_{2}} = \frac{\beta_{1}^{2} - \alpha_{1}^{2}}{(2i+\alpha_{1}+\beta_{1})(2i+\alpha_{1}+\beta_{1}+2)} A_{j-1}^{J_{2}} - B_{j-1}^{J_{2}}, \\ \widetilde{c}_{i,j}^{J_{1},J_{2}} &= A_{j-1}^{J_{2}} \frac{C_{i}^{J_{1}}}{A_{i}^{J_{1}}} \frac{\gamma_{i-1}^{J_{1}}}{\gamma_{i}^{J_{1}}} = \frac{2i(i+\alpha_{1}+\beta_{1})}{(2i+\alpha_{1}+\beta_{1}-1)(2i+\alpha_{1}+\beta_{1})} A_{j-1}^{J_{2}}. \end{split}$$

Bateman's formula

Lemma (Spectral relationships)

Let $\mu > 0, \alpha \in \mathbb{R}, \beta > -1$. Then, the following relations are true

$${}_{RL}D_{-1,s}^{-\mu}\{(1+s)^{\beta}P_{n}^{\alpha,\beta}(s)\} = \frac{\Gamma(n+\beta+1)}{\Gamma(n+\beta+\mu+1)}(1+s)^{\beta+\mu}P_{n}^{\alpha-\mu,\beta+\mu}(s),$$

$${}_{RL}D_{-1,s}^{\mu}\{(1+s)^{\beta+\mu}P_{n}^{\alpha-\mu,\beta+\mu}(s)\} = \frac{\Gamma(n+\beta+\mu+1)}{\Gamma(n+\beta+1)}(1+s)^{\beta}P_{n}^{\alpha,\beta}(s),$$
(10)

and the following relations are true for $\alpha > -1, \beta \in \mathbb{R}$

$${}_{RL}D_{s,1}^{-\mu}\{(1-s)^{\alpha}P_{n}^{\alpha,\beta}(s)\} = \frac{\Gamma(n+\alpha+1)}{\Gamma(n+\alpha+\mu+1)}(1-s)^{\alpha+\mu}P_{n}^{\alpha+\mu,\beta-\mu}(s),$$

$${}_{RL}D_{s,1}^{\mu}\{(1-s)^{\alpha+\mu}P_{n}^{\alpha+\mu,\beta-\mu}(s)\} = \frac{\Gamma(n+\alpha+\mu+1)}{\Gamma(n+\alpha+1)}(1-s)^{\alpha}P_{n}^{\alpha,\beta}(s).$$
(11)

Pseudospectral Differentiation/Integration Matrix Setup

- ★ Collocation points: Gauss-type quadrature nodes $\{x_j\}_{j=0}^N \subseteq [a,b]$ (e.g., Gauss-Lobatto, Gauss-Radau)
- ★ Interpolate using Lagrange basis functions

$$f(x) \approx f_N(x) = \sum_{j=0}^N f(x_j) L_j(x), \qquad (12)$$

with
$$L_j(x) = \prod_{i=0, i \neq j}^N \left(\frac{x - x_i}{x_j - x_i} \right), \quad j = 0, 1, \cdots, N.$$

★ Apply integral/derivative operator on $L_j(x)$ at nodes $\{x_j\}_{j=0}^N$:

$$(\mathbf{F}^{\mu})_{ij} = [F^{\mu}L_j](x_i), \quad i,j = 0,1,\cdots,N.$$

10/10/12/12/2

Notations

We have 7 fractional Differentiation/Integration matrices as:

- $(RL\mathbf{D}_{i}^{-\mu})_{ij} = [RL\mathbf{D}_{-1}^{-\mu} L_{i}](x_{i})$ -Left Riemann-Liouville integral.
- $(RL\mathbf{D}_r^{-\mu})_{ij} = [RL\mathbf{D}_{x,1}^{-\mu}L_j](x_i)$ -Right Riemann-Liouville integral.
- $(RL\mathbf{D}_{I}^{\mu})_{ij} = [RL\mathbf{D}_{-1,x}^{\mu}L_{i}](x_{i})$ -Left Riemann-Liouville derivative.
- $(RL\mathbf{D}_r^{\mu})_{ij} = [RL\mathbf{D}_{\times,1}^{\mu}L_i](x_i)$ -Right Riemann-Liouville derivative.
- $({}_{C}\mathbf{D}_{I}^{\mu})_{ij} = [{}_{C}\mathrm{D}_{-1,x}^{\mu}L_{j}](x_{i})$ –Left Caputo derivative.
- $({}_{C}\mathbf{D}^{\mu}_{r})_{ij} = [{}_{C}\mathrm{D}^{\mu}_{\mathsf{x},1}L_{j}](x_{i})$ –Right Caputo derivative.
- $(RZ\mathbf{D}^{\mu})_{ij} = [RZ\mathbf{D}_{x}^{\mu}L_{j}](x_{i})$ -Riesz derivative.

Theorem

The first row of $_{RL}\mathbf{D}_{I}^{-\mu}$, $_{C}\mathbf{D}_{I}^{\mu}$ and the last row of $_{RL}\mathbf{D}_{r}^{-\mu}$, $_{C}\mathbf{D}_{r}^{\mu}$ are all zeros, e.g., for $j=0,\cdots,N$

$$(_{RL}\mathbf{D}_{I}^{-\mu})_{0,j} = (_{RL}\mathbf{D}_{r}^{-\mu})_{N,j} = (_{C}\mathbf{D}_{I}^{\mu})_{0,j} = (_{C}\mathbf{D}_{r}^{\mu})_{N,j} = 0,$$

and $(RL\mathbf{D}_{I}^{\mu})_{0,0} = (RL\mathbf{D}_{r}^{\mu})_{N,N} = \infty$. Moreover, if $0 < \mu < 1$, we have

$$(_{RL}\mathbf{D}_{I}^{\mu})_{i,j} = (_{C}\mathbf{D}_{I}^{\mu})_{i,j}, \quad j \neq 0,$$
 (13)

and

$$(RL\mathbf{D}_r^{\mu})_{i,j} = (C\mathbf{D}_r^{\mu})_{i,j}, \quad j \neq N.$$
(14)

10110111111

For $j = 0, 1, \dots, N$, we expand $L_j(x)$ as

$$L_{j}(x) = \sum_{k=0}^{N} h_{kj}(x+1)^{k} = \sum_{k=0}^{N} \overline{h}_{kj}(1-x)^{k}.$$
 (15)

We collect the coefficients two matrices \mathbf{H}_{l} and \mathbf{H}_{r} as

$$(\mathbf{H}_I)_{ij} = h_{ij}, \quad (\mathbf{H}_r)_{ij} = \overline{h}_{ij}. \tag{16}$$

Let us introduce three (N+1)-element vectors as

$$(\mathbf{v}_{l}^{\mu})_{i} = (x_{i}+1)^{\mu}, \quad (\mathbf{v}_{r}^{\mu})_{i} = (1-x_{i})^{\mu}, \quad (\mathbf{c}^{\mu})_{i} = \frac{\Gamma(i+1)}{\Gamma(i+\mu+1)}, \quad (17)$$

and two $(N+1) \times (N+1)$ matrices

$$(\mathbf{B}_{l})_{ij} = (1+x_{i})^{j}, \quad (\mathbf{B}_{r})_{ij} = (1-x_{i})^{j}.$$

Theorem

The following representations of the pseudospectral integration matrix are valid,

$$RL \mathbf{D}_{I}^{-\mu} = \operatorname{diag}(\mathbf{v}_{I}^{\mu}) \mathbf{B}_{I} \operatorname{diag}(\mathbf{c}^{\mu}) \mathbf{H}_{I},$$

$$RL \mathbf{D}_{r}^{-\mu} = \operatorname{diag}(\mathbf{v}_{I}^{\mu}) \mathbf{B}_{r} \operatorname{diag}(\mathbf{c}^{\mu}) \mathbf{H}_{r},$$
(19)

where $\operatorname{diag}(\cdot)$ is a diagonal matrix with the vector in brackets as its diagonal line. Similarly, by replacing $-\mu$ with μ , the following representations of the pseudospectral differentiation matrix are found to be valid

$$RL \mathbf{D}_{I}^{\mu} = \operatorname{diag}(\mathbf{v}_{I}^{-\mu}) \mathbf{B}_{I} \operatorname{diag}(\mathbf{c}^{-\mu}) \mathbf{L}_{I},$$

$$RL \mathbf{D}_{r}^{\mu} = \operatorname{diag}(\mathbf{v}_{r}^{-\mu}) \mathbf{B}_{I} \operatorname{diag}(\mathbf{c}^{-\mu}) \mathbf{L}_{r}.$$
(20)

Tinggang, Zhao (SDUT) 17 / 48

In fact, since the Lagrange basis function $L_j(x)$ satisfies $L_j(x_i) = \delta_{ij}$, we also have the inverse relation as

$$\mathbf{B}_I \mathbf{H}_I = \mathbf{I}, \quad \mathbf{B}_r \mathbf{H}_r = \mathbf{I}, \tag{21}$$

where **I** is the identity matrix of $(N+1) \times (N+1)$. Noting that $(\operatorname{diag}(\mathbf{v}_I^{\mu}))^{-1} = \operatorname{diag}(\mathbf{v}_I^{-\mu})$, from the above Theorem and the relation (21), the inverse of the pseudospectral integration/differentiation matrix may be formally written as

$$({}_{RL}\mathbf{D}_{I}^{-\mu})^{-1} = \mathbf{B}_{I}(\operatorname{diag}(\mathbf{c}^{\mu}))^{-1}\mathbf{L}_{I}\operatorname{diag}(\mathbf{v}_{I}^{-\mu}),$$

$$({}_{RL}\mathbf{D}_{r}^{-\mu})^{-1} = \mathbf{B}_{r}(\operatorname{diag}(\mathbf{c}^{\mu}))^{-1}\mathbf{L}_{r}\operatorname{diag}(\mathbf{v}_{r}^{-\mu}),$$
(22)

and

$$({}_{RL}\mathbf{D}_{I}^{\mu})^{-1} = \mathbf{B}_{I}(\operatorname{diag}(\mathbf{c}^{-\mu}))^{-1}\mathbf{L}_{I}\operatorname{diag}(\mathbf{v}_{I}^{\mu}),$$

$$({}_{RL}\mathbf{D}_{r}^{\mu})^{-1} = \mathbf{B}_{r}(\operatorname{diag}(\mathbf{c}^{-\mu}))^{-1}\mathbf{L}_{r}\operatorname{diag}(\mathbf{v}_{r}^{\mu}).$$
(23)

Remark

Some remarks are listed as follows:

• It is worth noting that

$$(\operatorname{diag}(\mathbf{c}^{-\mu}))^{-1} \neq (\operatorname{diag}(\mathbf{c}^{\mu})), \quad (\operatorname{diag}(\mathbf{c}^{\mu}))^{-1} \neq (\operatorname{diag}(\mathbf{c}^{-\mu})).$$

- We point out that the two matrices \mathbf{B}_l and \mathbf{B}_r are Vandermonde's type.
- From the above Theorem, the first entry of \mathbf{v}_I^μ and the last entry of \mathbf{v}_r^μ are illogical for $\mu < 0$, which indicates the endpoint singularity of the fractional differential operator. In order to avoid this issue, the nodes $\{x_j\}_{j=0}^N$ are altered to the Jacobi–Gauss type.
- As stated above, the matrices diag(v_I^μ) and diag(v_I^μ) are singular (or some of their entries are not well-defined). Thus, the inverse of the singular matrix in (22) and (23) should be considered as a generalized inverse or a pseudo-inverse.

3.2 Riemann-Liouville Fractional Integral and Derivative

Consider expanding $L_j(x)$ as

$$L_{j}(x) = \sum_{k=0}^{N} I_{kj}^{\alpha,\beta} P_{k}^{\alpha,\beta}(x) = \sum_{k=0}^{N} I_{kj}^{0,0} P_{k}^{0,0}(x).$$
 (24)

where $P_k^{\alpha,\beta}(x)$ is Jacobi orthogonal polynomial of degree k.

Denote

$$(\mathbf{L}^{\alpha,\beta})_{ij} = I_{ij}^{\alpha,\beta}, \quad (\mathbf{L}^{0,0})_{ij} = I_{ij}^{0,0}, \quad (\mathbf{P}^{\alpha,\beta})_{ij} = P_j^{\alpha,\beta}(x_i).$$
 (25)

From the previous Theorem , we have

$$\mathbf{L}^{0,0} = \mathbf{T}_{N}^{(\alpha,\beta)\to(0,0)} \mathbf{L}^{\alpha,\beta}. \tag{26}$$

We also have

$$I_{ij}^{\alpha,\beta} = \frac{P_j^{\alpha,\beta}(x_i)\omega_i}{\gamma_j^{\alpha,\beta}}, \quad j = 0, 1, \cdots, N-1, \quad I_{iN}^{\alpha,\beta} = \frac{P_N^{\alpha,\beta}(x_i)\omega_i}{\left(2 + \frac{\alpha + \beta + 1}{N}\right)\gamma_N^{\alpha,\beta}},$$

Additionally, it is easy to have that

$$[\mathsf{L}^{lpha,eta}]^{-1} = [\mathsf{P}^{lpha,eta}]^{\mathsf{T}}.$$

3.2 Riemann-Liouville Fractional Integral and Derivative

Theorem

The following representations of the pseudospectral integration matrices are valid for $\alpha, \beta > -1$

$$RL \mathbf{D}_{I}^{-\mu} = \operatorname{diag}(\mathbf{v}_{I}^{\mu}) \mathbf{P}^{-\mu,\mu} \operatorname{diag}(\mathbf{c}^{\mu}) \mathbf{T}_{N}^{(\alpha,\beta) \to (0,0)} \mathbf{L}^{\alpha,\beta},$$

$$RL \mathbf{D}_{r}^{-\mu} = \operatorname{diag}(\mathbf{v}_{r}^{\mu}) \mathbf{P}^{\mu,-\mu} \operatorname{diag}(\mathbf{c}^{\mu}) \mathbf{T}_{N}^{(\alpha,\beta) \to (0,0)} \mathbf{L}^{\alpha,\beta}.$$
(28)

Moreover, the differentiation matrices are valid for $\alpha, \beta > -1$

$$RL \mathbf{D}_{l}^{\mu} = \operatorname{diag}(\mathbf{v}_{l}^{-\mu}) \mathbf{P}^{\mu,-\mu} \operatorname{diag}(\mathbf{c}^{-\mu}) \mathbf{T}_{N}^{(\alpha,\beta) \to (0,0)} \mathbf{L}^{\alpha,\beta},$$

$$RL \mathbf{D}_{r}^{\mu} = \operatorname{diag}(\mathbf{v}_{r}^{-\mu}) \mathbf{P}^{-\mu,\mu} \operatorname{diag}(\mathbf{c}^{-\mu}) \mathbf{T}_{N}^{(\alpha,\beta) \to (0,0)} \mathbf{L}^{\alpha,\beta}.$$
(29)

4 m 5 4 m 5 4 m 5 4 m 5 7 m 5

Riemann-Liouville Fractional Integral and Derivative

Theorem

Let $P := P^{\alpha,\beta}$, $L := L^{\alpha,\beta}$ and $\alpha, \beta > -1$. The representations of the inverses of thepseudospectral integration matrices are valid

$$(_{RL}\mathbf{D}_{l}^{-\mu})^{-1} = \mathbf{P}^{T}\mathbf{T}_{N}^{(0,0)\to(\alpha,\beta)}(\operatorname{diag}(\mathbf{c}^{\mu}))^{-1}\mathbf{T}_{N}^{(-\mu,\mu)\to(\alpha,\beta)}\mathbf{L}^{T}\operatorname{diag}(\mathbf{v}_{l}^{-\mu}),$$

$$(_{RL}\mathbf{D}_{r}^{-\mu})^{-1} = \mathbf{P}^{T}\mathbf{T}_{N}^{(0,0)\to(\alpha,\beta)}(\operatorname{diag}(\mathbf{c}^{\mu}))^{-1}\mathbf{T}_{N}^{(\mu,-\mu)\to(\alpha,\beta)}\mathbf{L}^{T}\operatorname{diag}(\mathbf{v}_{r}^{-\mu}).$$
(30)

Moreover, the pseudospectral differentiation matrices are valid

$$(_{RL}\mathbf{D}_{I}^{\mu})^{-1} = \mathbf{P}^{T}\mathbf{T}_{N}^{(0,0)\to(\alpha,\beta)}(\operatorname{diag}(\mathbf{c}^{-\mu}))^{-1}\mathbf{T}_{N}^{(\mu,-\mu)\to(\alpha,\beta)}\mathbf{L}^{T}\operatorname{diag}(\mathbf{v}_{I}^{\mu}),$$

$$(_{RL}\mathbf{D}_{r}^{\mu})^{-1} = \mathbf{P}^{T}\mathbf{T}_{N}^{(0,0)\to(\alpha,\beta)}(\operatorname{diag}(\mathbf{c}^{-\mu}))^{-1}\mathbf{T}_{N}^{(-\mu,\mu)\to(\alpha,\beta)}\mathbf{L}^{T}\operatorname{diag}(\mathbf{v}_{r}^{\mu}).$$
(31)

3.3 Caputo Derivative

Theorem

The following representations of the pseudospectral differentiation matrix are valid for $\alpha, \beta > -1$

$${}_{C}\mathbf{D}_{I}^{\mu} = \operatorname{diag}(\mathbf{v}_{I}^{m-\mu})\overline{\mathbf{P}}^{\mu-m,m-\mu}\operatorname{diag}(\overline{\mathbf{c}}^{m-\mu})\mathbf{T}_{N-m}^{(\alpha+m,\beta+m)\to(0,0)}\overline{\mathbf{D}}^{m}\overline{\mathbf{L}}^{\alpha,\beta},$$

$${}_{C}\mathbf{D}_{I}^{\mu} = \operatorname{diag}(\mathbf{v}_{I}^{m-\mu})\overline{\mathbf{P}}^{m-\mu,\mu-m}\operatorname{diag}(\overline{\mathbf{c}}^{m-\mu})\mathbf{T}_{N-m}^{(\alpha+m,\beta+m)\to(0,0)}\overline{\mathbf{D}}^{m}\overline{\mathbf{L}}^{\alpha,\beta},$$
(32)

where
$$\overline{\mathbf{D}}^m = \mathrm{diag}([d_{m,m}^{\alpha,\beta}, d_{m+1,m}^{\alpha,\beta}, \cdots, d_{N,m}^{\alpha,\beta}])$$
 with $d_{k,m}^{\alpha,\beta} = \frac{\Gamma(k+m+\alpha+\beta+1)}{2^m\Gamma(k+\alpha+\beta+1)}$, $(\overline{\mathbf{P}}^{\alpha,\beta})_{i,j} = P_j^{\alpha,\beta}(x_i)$ and $(\overline{\mathbf{L}}^{\alpha,\beta})_{j,i} = I_{j+m,i}^{\alpha,\beta}$ for $i=0,\cdots,N; j=0,\cdots,N-m$.

Eigenvalue of Fractional Differentiation Matrix

Eigenvalues: Chebyshev vs Legendre($_{C}\mathbf{D}^{\mu}, N = 64$)

Eigenvalue of Fractional Differentiation Matrix

Eigenvalues: Chebyshev vs Legendre($_{C}\mathbf{D}^{0.5}$)

Eigenvalue of Fractional Differentiation Matrix

Eigenvalues: Symmetry vs non-symmetric (RZ \mathbf{D}^{μ} , N = 64)

Application of fractional eigenvalue problems

Example (1)

Let $1 < \mu < 2$. Consider the boundary value problem

$$_{C}D_{0,x}^{\mu}u(x) + \lambda u(x) = 0,$$

 $pu(0) - ru'(0) = 0, \quad qu(1) + su'(1) = 0.$ (33)

where $p, q, r, s \ge 0$ such that $p^2 + r^2 \ne 0$ and $q^2 + s^2 \ne 0$

This problem is also solved in [3, 6, 5, 4].

Tinggang, Zhao (SDUT) 27 / 48

Table: The first 9 eigenvalues of example (1), computed with the Chebyshev collocation method ($\alpha = \beta = -0.5$) with $\mu = 1.8$ and N = 200.

$\overline{\lambda}$	Our method	[6]	[4]	[5]	[3]
λ_1	9.45685689126	9.4568568891	9.4568568892	9.4997	9.4569
λ_2	28.47687912479	28.4768791170	28.4768791186	28.5116	28.4769
λ_3	62.20037779983	62.2003777331	62.2003777529	62.3239	62.2004
λ_4	97.06323747284	97.0632373708	97.0632377552	97.0896	97.0632
λ_5	155.45013805266	155.4501373840	155.4499080962	155.6972	-
λ_6	196.59593024267	196.5959302453	196.5986985127	196.5152	-
λ_7	301.52706976868	-	-	304.19+3.00i	-
λ_8	306.72685026127	-	-	304.19+3.00i	-
λ_9	461.179+43.050i	-	-	461.24+43.29i	-

Table: The first 6 eigenvalues of example (1), computed with the Chebyshev collocation method ($\alpha = \beta = -0.5$) with $\mu = 1.6$ and N = 200.

λ	Our method	[6]	[4]	[3]
λ_1	13.420474051	13.42047399	13.4204739885	13.4205
λ_2	14.645442473	14.64544252	14.6454425351	14.6454
λ_3	47.292859+18.850956i	47.292858+18.850956i	-	-
λ_4	91.705190+43.625498i	91.705189+43.625496i	-	-
λ_5	145.569415+75.805031i	145.569416+75.805025i	-	-
λ_6	207.859129+114.486222i	207.859147+114.486204i	=	-

Table: The first 6 eigenvalues of example (1), computed with the Chebyshev collocation method ($\alpha = \beta = -0.5$) with N = 200.

	λ	$\mu = 1.9$	$\mu = 1.9[6]$	$\mu = 1.999$	$\mu = 1.999[5]$
-	λ_1	9.5141431295	9.5141431288	9.8648626632	9.8648
	λ_2	33.5956714125	33.5956714089	39.4139459491	39.4139
	λ_3	73.0390172335	73.0390172163	88.6441581077	88.6442
	λ_4	124.4185311384	124.4185311250	157.5323069955	157.5325
	λ_5	191.1460514291	191.1460515330	246.0882332022	246.0886
	λ_6	267.9451997398	267.9452006460	354.2916713396	354.2922) レイガンナニ
-					SHANDONG UNIVERSITY OF TECHNOL

Table: The first 6 eigenvalues of example (1), computed with the CCM ($\alpha = \beta = -0.5, N = 200$).

λ	$\mu = 1.1$	$\mu = 1.3$	$\mu = 1.5$
λ_1	1.3531852+7.2497408i	5.4727766+8.2732647i	11.1466676+6.1222836i
λ_2	2.8098353+15.7308531i	13.3926574+21.8112244i	33.3136683+23.1298984i
λ_3	4.3033960+24.6907235i	22.3712536+37.9533918i	61.1959645+46.6510167i
λ_4	5.8291184+33.9686708i	32.1686781+55.9626406i	93.8181576+75.3667762i
λ_5	7.3824934+43.4883769i	42.6472214+75.4712271i	130.5448587+108.4998614i
λ_6	8.9599335+53.2043853i	53.7149929+96.2501648i	170.9467051+145.5427194i

Table: The first 6 eigenvalues of example (1), computed with the CCM ($\alpha = \beta = -0.5, N = 200$).

	λ	$\mu = 1.9999$	$\mu = 1.99999$	$\mu = 1.999999$	$\mu = 2$	error
	λ_1	9.8691292203	9.8695568729	9.8695996482	9.86960440108	1.073e-11
	λ_2	39.4719645919	39.4777722446	39.4783530678	39.47841760434	1.995e-11
	λ_3	88.8081881526	88.8246142309	88.8262570696	88.82643960980	7.148e-12
	λ_4	157.8754859530	157.9098514892	157.9132885198	157.91367041743	8.527e-14
	λ_5	246.6748284659	246.7335809315	246.7394571083	246.74011002723	1.336e412
	λ_6	355.2042026720	355.2956013900	355.3047427196	355.30575843924	2.035e411/2 / /
_					1987 d 17	SHANDONG UNIVERSITY OF TECHNOL

Application of fractional eigenvalue problems

Example (2)

Let $1 < \mu < 2$. Consider the boundary value problem

$$_{RZ}D_{x}^{\mu}u(x) + \lambda u(x) = 0,$$

 $u(-1) = 0, \quad u(1) = 0.$
(34)

The same problem has been studied using the Jacobi-Galerkin spectral method [2].

Tinggang, Zhao (SDUT) 31 / 48

Table: The first 5 eigenvalues of example (2), computed with the Legendre collocation method ($\alpha = \beta = 0, N = 200$).

λ	$\mu = 1.2$		$\mu = 1.4$	
	Our method	[2]	Our method	[2]
λ_1	1.297024021884	1.296995777	1.483262055566	1.4832334320
λ_2	3.486806460504	3.486730536	4.458260013435	4.4581739838
λ_3	5.911808693986	5.911679975	8.150874006594	8.1507167266
λ_4	8.534627231336	8.534441423	12.424593370123	12.424353637
λ_5	11.292675855564	11.29243001	17.162678802344	17.162347657

Table: The first 5 eigenvalues of example (2), computed with the Legendre collocation method ($\alpha = \beta = 0, N = 200$).

λ	$\mu = 1.6$		$\mu = 1.8$	
	Our method	[2]	Our method	[2]
λ_1	1.728321890005	1.72829595710	2.048752746738	2.04873498313
λ_2	5.756434650807	5.75634828003	7.503181981160	7.50311692608
λ_3	11.312063027525	11.3118933010	15.800031154322	15.7998941633
λ_4	18.177615608424	18.1773428791	26.724474991011	26.7242432849 🔑 🛩 🦼 🕹
λ_5	26.187596954514	26.1872040516	40.114581604547	40.1142338051
				SHANDONG UNIVERSITY OF TECHNO

Application of fractional initial value problems

The basic fractional initial value problem:

$$_{C}D_{a,x}^{\mu}u(x) = f(u,x), \quad m-1 < \mu < m,$$

 $u^{(k)}(a) = u_{k}, \quad k = 0, \cdots, m-1.$ (35)

Example (3)

Let $0 < \mu < 1$. Consider the scalar linear fractional differential equation

$$_{C}\mathrm{D}_{0,t}^{\mu}u(t)=f(t),\quad t\in(0,T],\quad u(0)=u_{0}.$$
 (36)

The term f(t) is chosen so that the exact solution satisfies:

C11.
$$u(t) = \sum_{k=1}^{5} \frac{t^{k\sigma}}{k}, \quad \sigma > 0, \quad t \in (0,2], \quad u_0 = 0.$$

C12.
$$u(t) = t \sin(t), \quad t \in (0, 2\pi], \quad u_0 = 0.$$

C13.
$$u(t) = E_{\mu,1}(-t^{\mu}), \quad t \in (0,3], \quad u_0 = 1.$$

Results of fractional initial value problems

Table: The error E_{∞} and convergence order CO of C11 in example (3), computed with the Chebyshev collocation method ($\alpha = \beta = -0.5, \sigma = 2.5$)

Ν	$\mu = 0.2$		$\mu=$ 0.4		$\mu = 0.6$		$\mu = 0.8$	
	E_{∞}	CO	E_{∞}	CO	E_{∞}	CO	E_{∞}	CO
12	6.434e-06	-	1.329e-05	-	2.627e-05	-	5.384e-05	-
20	2.356e-07	6.47	5.692e-07	6.17	1.109e-06	6.20	1.968e-06	6.48
28	4.373e-08	5.01	1.055e-07	5.01	2.055e-07	5.01	3.648e-07	5.01
36	1.244e-08	5.00	2.998e-08	5.01	5.840e-08	5.01	1.037e-07	5.01
44	4.559e-09	5.00	1.099e-08	5.00	2.140e-08	5.00	3.800e-08	5.00
52	1.977e-09	5.00	4.764e-09	5.00	9.280e-09	5.00	1.648e-08	5.00
60	9.664e-10	5.00	2.328e-09	5.00	4.536e-09	5.00	8.054e-09	5.00
68	5.168e-10	5.00	1.245e-09	5.00	2.426e-09	5.00	4.307e-09	5.00

Tinggang, Zhao (SDUT) 34 / 48

Results of fractional initial value problems

Table: The error E_{∞} and convergence order CO of C11 in example (3), computed with the Chebyshev collocation method ($\alpha = \beta = -0.5, \mu = 0.5$).

Ν	$\sigma = 0.5$		$\sigma = 1.2$		$\sigma = 1.8$		$\sigma = 2.2$	
	E_{∞}	CO	$ extstyle E_{\infty}$	CO	E_{∞}	CO	E_{∞}	CO
8	4.044e-02	-	1.236e-03	-	1.263e-03	-	7.994e-02	-
16	2.036e-02	0.99	2.410e-04	2.36	1.811e-05	6.12	4.055e-06	14.27
24	1.359e-02	1.00	9.146e-05	2.39	4.193e-06	3.61	6.775e-07	4.41
32	1.020e-02	1.00	4.591e-05	2.40	1.487e-06	3.60	1.908e-07	4.41
40	8.158e-03	1.00	2.689e-05	2.40	6.658e-07	3.60	7.143e-08	4.40
48	6.799e-03	1.00	1.737e-05	2.40	3.453e-07	3.60	3.201e-08	4.40
56	5.828e-03	1.00	1.200e-05	2.40	1.982e-07	3.60	1.624e-08	4.40
64	5.100e-03	1.00	8.708e-06	2.40	1.226e-07	3.60	9.024e-09	4.40

Tinggang, Zhao (SDUT) 35 / 48

Results of fractional initial value problems

Table: The error E_{∞} of C12 in example (3), computed with the Chebyshev collocation method ($\alpha = \beta = -0.5$).

N	$\mu = 0.1$	$\mu = 0.3$	$\mu = 0.5$	$\mu = 0.7$	$\mu = 0.9$	$\mu = 0.99$
6	9.557e-03	2.978e-02	5.208e-02	8.299e-02	1.377e-01	1.931e-01
10	7.758e-06	2.475e-05	4.212e-05	6.440e-05	1.072e-04	1.626e-04
14	1.522e-09	4.709e-09	8.159e-09	1.212e-08	2.043e-08	3.113e-08
18	2.749e-13	5.519e-13	5.405e-13	1.002e-12	1.333e-12	2.055e-12
22	2.398e-13	5.959e-13	3.545e-14	1.024e-12	1.420e-13	1.631e-13

Tinggang, Zhao (SDUT) 36 / 48

Results of fractional initial value problems

Table: The error E_{∞} and convergence order CO of C13 in example (3), computed the Chebyshev collocation method ($\alpha = \beta = -0.5$).

N	$\mu = 0.7$		$\mu = 0.8$		$\mu = 0.9$		$\mu = 0.99$	
	E_{∞}	CO	E_{∞}	CO	E_{∞}	CO	E_{∞}	CO
4	9.283e-02	-	7.376e-02	-	4.563e-02	-	1.312e-02	-
8	3.180e-02	1.55	1.939e-02	1.93	8.566e-03	2.41	7.498e-04	4.13
16	1.144e-02	1.47	5.948e-03	1.70	2.268e-03	1.92	1.754e-04	2.10
32	4.247e-03	1.43	1.918e-03	1.63	6.379e-04	1.83	4.370e-05	2.01
64	1.597e-03	1.41	6.280e-04	1.61	1.821e-04	1.81	1.103e-05	1.99
128	6.032e-04	1.40	2.066e-04	1.60	5.221e-05	1.80	2.793e-06	1.98
256	2.283e-04	1.40	6.811e-05	1.60	1.499e-05	1.80	7.077e-07	1.98
512	8.647e-05	1.40	2.246e-05	1.60	4.303e-06	1.80	1.794e-07	1.98

Tinggang, Zhao (SDUT)

Applications of Fractional Boundary Value Problems

Let $1<\mu<2$. As a benchmark fractional boundary value problem, we consider the one-dimensional fractional Helmholtz equation as

$$\lambda^2 u(x) - D_x^{\mu} u(x) = f(x), \quad x \in (a, b), \quad u(a) = u(b) = 0,$$
 (37)

Example (4)

Consider Equation(37) with the Caputo derivative: $D_x^{\mu} = {}_{C}D_{a,x}^{\mu}$. The source term f(x) is chosen so that the exact solution satisfies one of the following cases:

C21.
$$u(x) = x^{\sigma} - x^{2\sigma}, \quad \sigma > 0, \quad a = 0, b = 1.$$

C22.
$$u(x) = \sin(\pi x), \quad a = -1, b = 1.$$

Tinggang, Zhao (SDUT) 38 / 48

Results of Fractional Boundary Value Problems

Convergence order: C21 of Example (4)

Limited convergence order!!!

Tinggang, Zhao (SDUT) 39 / 48

Results of Fractional Boundary Value Problems

Convergence order: C22 of Example (4)

Spectral accuracy!!

Applications of Fractional Boundary Value Problems

Example (5)

Consider Equation (37) with the Riesz derivative $D_x^{\mu} = {}_{RZ}D_x^{\mu}$. The numerical test is performed for the fractional Poisson equation of two cases:

C31.
$$f(x) = 1, \lambda = 0, a = -1, b = 1.$$

C32.
$$f(x) = \sin(\pi x), \lambda = 0, a = -1, b = 1.$$

We solve the fractional Poisson problems with the Riesz derivative by employing the Legendre spectral collocation method ($\alpha = \beta = 0$) with N = 64. The profiles of the numerical solutions are plotted in the next Figure.

Tinggang, Zhao (SDUT) 41 / 48

Results of Fractional Boundary Value Problems

Numerical solution: C31(left) and C32(right) of Example (5)

Tinggang, Zhao (SDUT) 42 / 48

Application of Fractional Initial Boundary Value Problems

The fractional Burgers equations (FBEs):

$$\partial_t u + u \partial_x u = \epsilon D_x^{\mu} u, \quad (x, t) \in (a, b) \times (0, T]$$
 (38)

with the boundary condition u(a, t) = u(b, t) = 0 and the initial profile $u(x, 0) = u_0(x)$.

For the time discretization, we employ a semi-implicit time discretization scheme with step size τ , namely the two-step Crank–Nicolson/leapfrog scheme. Then, the full discretization scheme reads:

$$\left\{ \begin{array}{l} \left(\mathbf{I} - \epsilon \tau \mathbf{D}^{\mu}\right) \mathbf{u}^{n+1} = \left(\mathbf{I} + \epsilon \tau \mathbf{D}^{\mu}\right) \mathbf{u}^{n-1} - 2\tau (\mathsf{diag}(\mathbf{u}^{n})\mathbf{D}) \mathbf{u}^{n}, & n \geq 1, \\ \mathbf{u}^{1} = \left(\mathbf{I} + \epsilon \tau \mathbf{D}^{\mu}\right) \mathbf{u}^{0} - \tau (\mathsf{diag}(\mathbf{u}^{0})\mathbf{D}) \mathbf{u}^{0} \\ \mathbf{u}^{0} = u_{0}(\mathbf{x}), & \end{array} \right.$$

(39)

where **D** is the first-order differentiation matrix. In the following examples, we always take $\alpha=\beta=0, N=360$ and $\tau=10^{-3}$.

Tinggang, Zhao (SDUT) 43 /

Example (6)

Consider Equation (38) with the Caputo derivative: $D_x^{\mu} = {}_C D_x^{\mu}$. The numerical test is performed for two cases of initial profiles:

C41.
$$u_0(x) = \sin(\pi x), a = -1, b = 1.$$

C42.
$$u_0(x) = \exp(-2x^2), a = -7, b = 7.$$

Tinggang, Zhao (SDUT)

Example (7)

Consider equation (38) with the Riesz derivative: $D_x^{\mu} = {}_{RZ}D_x^{\mu}$. The numerical test is performed for two cases of initial profiles:

C51.
$$u_0(x) = \sin(\pi x), a = -1, b = 1.$$

C52.
$$u_0(x) = \exp(-2x^2), a = -7, b = 7.$$

Summary

We present a new algorithm to evaluate the fractional differentiation matrix.

- † Advantages:
 - 1 High-accuracy, Fast
 - 2 Applicable to solve various fractional differential equations
 - 3 Provide more information on fractional differentiation matrix, for, such as, preconditioning
- † Disadvantages:
 - 1 Can not deal with variable-order case
 - 2 Need to explore application of the method to fractional differential equations on high dimensional domains.

The main body of this presentation is from the paper [1].

Tinggang, Zhao (SDUT)

References

- Li WB, Ma HJ, Zhao TG. Construction of fractional pseudospectral differentiation matrices with applications. Axioms, 13: 305 (2024)
- Chen LZ, Mao ZP, Li HY. *Jacobi-Galerkin spectral method for eigenvalue problems of Riesz fractional differential equations*. 10.48550/arXiv.1803.03556
- Duan JS, Wang Z, Liu YL, Qiu X. Eigenvalue problems for fractional ordinary differential equations. Chaos, Solitons and Fractals **46**: 46–53 (2013)
- Reutskiy SY. A novel method for solving second order fractional eigenvalue problems. J Comput Appl Math **306**: 133–153 (2016)
- He Y, Zuo Q. *Jacobi-Davidson method for the second order fractional eigenvalue problems*. Chaos, Solitons and Fractals **143**: 110614 (2021)
- Gupta S, Ranta S. Legendre wavelet based numerical approach for solving a fractional eigenvalue problem. Chaos, Solitons and Fractals 155: 111647 (2022)
- Shen J, Wang YW, Xia JL. Fast structured Jacobi-Jacobi transforms. Math Comput 88(318): 1743–1772. (2019)

47 / 48

Thanks for your attention!

