ESC201T : Introduction to Electronics

L11: Transient Analysis of RLC Circuits

B. Mazhari Dept. of EE, IIT Kanpur

Two important concepts

Voltage across a capacitor cannot change instantaneously

$$i_c = C \frac{dv_c}{dt}$$

$$i_c = C \frac{dv_c}{dt} \qquad v_C = \frac{1}{C} \int i_C(t) dt$$

Instantaneous change implies infinite current!

Current through an inductor cannot change instantaneously

$$v_L = L rac{di_L}{dt}$$

$$i_L = \frac{1}{L} \int v_L(t) \, dt$$

Instant change in voltage implies infinite voltage!

$$t=0$$
 R
 $t=0$
 V_S
 C
 v_C

$$\frac{dx}{dt} = -a_1 x + a_2$$

$$x(t) = x(\infty) + \{x(0) - x(\infty)\} e^{-a_1 t}$$

$$v_C(t) = V_S(1 - e^{-\frac{t}{RC}})$$

Time	τ	2τ	3τ	4τ	5τ
$V_{c}(t)/V_{i}$	0.632	0.865	.95	0.982	0.993

R-L Circuits For High Voltage Generation

$$I_L(t) = \frac{V_S}{R_1} \times \exp(-\frac{t}{\tau})$$

$$i(t) = \frac{V_S}{R} \times (1 - e^{-\frac{t}{\tau}})$$

Second Order System

$$V_S = i_1 R_1 + v_{C1}$$
 (1)

$$v_{C1} = i_2 R_2 + v_{c2} (2)$$

$$i_1 - i_2 = C_1 \frac{dv_1}{dt} (3)$$

$$i_2 = C_2 \frac{dv_2}{dt}(4)$$

$$R_1 R_2 C_1 C_2 \frac{d^2 v_{c2}}{dt^2} + (R_1 C_1 + R_1 C_2 + R_2 C_2) \frac{d v_{c2}}{dt} + v_{c2} = V_S$$

$$v_{c2}(t) = K_0 + K_1 e^{s_1 t} + K_2 e^{s_2 t}$$

Series RLC Circuit

$$V_S = I \times R + L \frac{dI}{dt} + V_C \qquad I = C \frac{dV_C}{dt}$$

$$V_S = C \frac{dV_C}{dt} \times R + LC \frac{d^2V_C}{dt} + V_C$$

$$\frac{d^2V_C}{dt^2} + \frac{R}{L} \times \frac{dV_C}{dt} + \frac{V_C}{LC} = \frac{V_S}{LC} \qquad V_C(t) = A \times e^{st} \qquad As^2 e^{st} + \frac{R}{L} As e^{st} + \frac{A}{LC} e^{st} = 0$$

$$s^2 + \frac{R}{L} s + \frac{1}{LC} = 0 \qquad s = -\frac{R}{2L} \pm \sqrt{\frac{R^2}{4L^2} - \frac{1}{LC}}$$

$$\omega_O = \frac{1}{\sqrt{L \times C}} \qquad Q = \frac{\omega_O L}{R} \qquad \frac{s}{\omega_O} = -\frac{1}{2Q} \pm \sqrt{\frac{1}{4Q^2} - 1}$$

$$\frac{d^2V_C}{dt^2} + \frac{R}{L} \times \frac{dV_C}{dt} + \frac{V_C}{LC} = \frac{V_S}{LC}$$

$$V_C(t) = V_S + A \times e^{s_1 t} + B \times e^{s_2 t}$$

$$\omega_O = \frac{1}{\sqrt{L \times C}} \qquad Q = \frac{\omega_O L}{R} \qquad \frac{s}{\omega_O} = -\frac{1}{2Q} \pm \sqrt{\frac{1}{4Q^2} - 1}$$

Case-1 $Q < 0.5 \Rightarrow s_{1,2}$ are real and negative

$$V_C(t) = V_S + A \times e^{S_1 t} + B \times e^{S_2 t}$$

$$\omega_O = \frac{1}{\sqrt{L \times C}}$$
 $Q = \frac{\omega_O L}{R}$ $\frac{s}{\omega_O} = -\frac{1}{2Q} \pm \sqrt{\frac{1}{4Q^2} - 1}$

$$V_C(0) = V_S + A + B = 0 (1)$$

$$I_C(t) = C \frac{dV_C(t)}{dt} = C\{V_S + As_1 \times e^{s_1 t} + Bs_2 \times e^{s_2 t}\}$$

$$I_C(0) = 0 = C\{V_S + As_1 + Bs_2\}$$
 (2)

$$V_C(t) = 10 + 0.59 \times e^{-1.9 \times 10^4 t} - 10.59 \times e^{-10^3 t}$$

Q< 0.5 Overdamped Case

Case-2: Q= 0.5 critically damped Case

Case-3 underdamped case : Q > 0.5

$$\frac{s}{\omega_O} = -\frac{1}{2Q} \pm \sqrt{\frac{1}{4Q^2} - 1} \qquad \omega_O = \frac{1}{\sqrt{L \times C}} \qquad Q = \frac{\omega_O L}{R}$$
$$s = -\frac{\omega_O}{2Q} \pm j\omega_O \sqrt{1 - \frac{1}{4Q^2}}$$

 \Rightarrow $s_{1,2}$ have real and imaginary components

$$s1 = -1 \times 10^{3} - 4.359i \times 10^{3}$$
 $s2 = -1 \times 10^{3} + 4.359i \times 10^{3}$

$$V_C(t) = 10 - e^{-10^3 t} \times (10 \times Cos(\omega_1 t) + 2.3 \times Sin(\omega_1 t))$$

$$\omega_1 = 4.36 \times 10^3 s^{-1}$$

-22.50m

$$V_S = V_R + V_L + V_C$$

$$V_L = L \frac{dI}{dt}$$
 $I = C \frac{dV}{dt}$ -15.00m
-22.50m

$$V_S = V_R + V_L + V_C$$

-15.00m

-22.50m

$$V_L = L \frac{dI}{dt} \qquad I = C \frac{dV}{dt}$$

$$V_S = V_R + V_L + V_C$$

$$V_L = L \frac{dI}{dt} \qquad I = C \frac{dV}{dt}$$

$$V_S = V_R + V_L + V_C$$

-15.00m

-22.50m

$$V_L = L \frac{dI}{dt} \qquad I = C \frac{dV}{dt}$$

$$V_S = V_R + V_L + V_C$$

0.00m

$$V_L = L \frac{dI}{dt}$$
 $I = C \frac{dV}{dt}$ -15.00m
-22.50m

$$V_S = V_R + V_L + V_C$$

--

$$V_L = L \frac{dI}{dt}$$
 $I = C \frac{dV}{dt}$ -15.00m
-22.50m

$$V_S = V_R + V_L + V_C$$

$$V_L = L \frac{dI}{dt}$$
 $I = C \frac{dV}{dt}$ -15.00m
-22.50m

$$V_S = V_R + V_L + V_C$$

$$V_C(t) = 10 - e^{-10^3 t} \times (10 \times Cos(\omega_1 t) + 2.3 \times Sin(\omega_1 t))$$

$$s = -\frac{\omega_o}{2Q} \pm j\omega_o \sqrt{1 - \frac{1}{4Q^2}} \qquad Q = \frac{\omega_o L}{R} \qquad \sim e^{-\frac{R}{2L}t}$$

Q = 8.92

RLC Discharge

Over-damped Case

Under-damped Case

Parallel RLC circuit

$$\frac{d^2I_L}{dt^2} + \frac{1}{RC} \times \frac{dI_L}{dt} + \frac{I_L}{LC} = \frac{V_S}{RLC}$$

$$V_S = I \times R + V_L \qquad I = C \frac{dV_C}{dt} + I_L \qquad V_L = L \frac{dI_L}{dt}$$

$$\frac{V_S}{R} = LC \frac{d^2 I_L}{dt^2} + \frac{L}{R} \times \frac{dV_L}{dt} + I_L$$

$$I_L(t) = A \times e^{st}$$

$$As^2 e^{st} + \frac{1}{RC} Ase^{st} + \frac{A}{LC} e^{st} = 0$$

$$s^{2} + \frac{1}{RC}s + \frac{1}{LC} = 0$$
 $s = -\frac{1}{2RC} \pm \sqrt{\frac{1}{4R^{2}C^{2}} - \frac{1}{LC}}$

$$\omega_O = \frac{1}{\sqrt{L \times C}}$$
 $Q = \frac{R}{\omega_O \times L}$ $\frac{s}{\omega_O} = -\frac{1}{2Q} \pm \sqrt{\frac{1}{4Q^2} - 1}$

$$\frac{d^2I_L}{dt^2} + \frac{1}{RC} \times \frac{dI_L}{dt} + \frac{I_L}{LC} = \frac{V_S}{RLC}$$

$$I_L(t) = \frac{V_S}{R} + A \times e^{s_1 t} + B \times e^{s_2 t}$$

$$\omega_O = \frac{1}{\sqrt{L \times C}}$$
 $Q = \frac{R}{\omega_O \times L}$ $\frac{s}{\omega_O} = -\frac{1}{2Q} \pm \sqrt{\frac{1}{4Q^2} - 1}$

Case-1: Overdamped: Q< 0.5

LC Oscillators exploit this feature