Introduction to Hamiltonian Monte Carlo Method

Mingwei Tang

Department of Statistics University of Washington

mingwt@uw.edu

November 14, 2017

Hamiltonian System

- ▶ Notation: $q \in \mathbb{R}^d$: position vector, $p \in \mathbb{R}^d$: momentum vector
- ▶ Hamiltonian H(p,q): $\mathbb{R}^{2d} \to \mathbb{R}^1$
- ▶ Evolution equation for Hamilton system

$$\begin{cases}
\frac{\mathrm{d}q}{\mathrm{d}t} = \frac{\partial H}{\partial p} \\
\frac{\mathrm{d}p}{\mathrm{d}t} = -\frac{\partial H}{\partial q}
\end{cases}$$
(1)

Potential and Kinetic

Decompose the Hamiltonian

$$H(p,q)=U(q)+K(p).$$

- ightharpoonup U(q): potential energy depend on position
- \blacktriangleright K(p): Kinetic energy depend on momentum
- ▶ Motivating example: Free fall

$$U(q) = mgq$$

$$K(p) = \frac{1}{2}mv^2 = \frac{p^2}{2m}$$

$$H(p,q)=mgq+rac{p^2}{2m}$$
 is the total energy

► Velocity:
$$v = \frac{\mathrm{d}q}{\mathrm{d}t} = \frac{\partial H}{\partial \partial p} = p/m$$

Force $F = \frac{\mathrm{d}p}{\mathrm{d}t} = -\frac{\partial H}{\partial \partial q} = -mg$

Properties of Hamiltonian system

- 1. Reversibility:
 - ▶ The mapping T_s : $(q(t), p(t)) \rightarrow (q(t+s), p(t+s))$ is one-to-one
 - ▶ Has inverse T_{-s} : negate p, apply T_s . negate p again
- 2. Conserved (Hamiltonian invariant)

$$\frac{\mathrm{d}H}{\mathrm{d}t} = \frac{\mathrm{d}q}{\mathrm{d}t}\frac{\partial H}{\partial q} + \frac{\mathrm{d}p}{\mathrm{d}t}\frac{\partial H}{\partial p} = \frac{\partial H}{\partial p}\frac{\partial H}{\partial q} - \frac{\partial H}{\partial q}\frac{\partial H}{\partial p} = 0$$

H(p,q) is constant over time t.

- 3. Volume preservation:
 - ightharpoonup The map T_s preserves the volume
 - lacktriangle For small δ , Jacobian $\Big|\det\left(rac{\partial \mathcal{T}_{\delta}}{\partial(p,q)}
 ight)\Big|\simeq 1$

Idea of HMC

- **D** : Observed data, q : parameters (latent variables), $\pi(q)$ prior distribution
- ▶ Likelihood function $L(\mathbf{D}|q)$
- Posterior distribution

$$\Pr(q|D) \propto L(\mathbf{D}|q)\pi(q)$$

▶ Position — parameters, potential U(q) — log-posterior

$$U(q) = -\log\left[L(\mathbf{D}|q)\pi(q)\right]$$

▶ Introduce ancillary variable *p* for Kinetic energy

$$\mathcal{K}(p) = \sum_{i=1}^d rac{p_i^2}{2m_i} \propto \log\left(\mathcal{N}(\mathbf{0}, \mathbf{M})
ight)$$

p, q are independent

▶ Hamiltonian: H(p,q) = U(q) + K(p)

Idea of HMC: Cont

- Now we defined U(q) and K(p). Relate that to a distribution
- Canonical distribution

$$\Pr(p,q) = \frac{1}{Z} \exp(-H(p,q)/T) = \frac{1}{Z} \exp(-U(q)/T) \exp(-K(p)/T) \quad (2)$$

where T: temperature, Z normalizing constant

▶ Ususally set T = 1,

$$\Pr(q,p) \propto \text{Posterior distribution} \times \text{Mulitivaranit Guassian}$$

► Goal: sample (p, q) jointly from canonical distribution

Ideal HMC

- Specify variance matrix M, time s > 0
- ▶ For i = 1, ..., N
 - 1. Sample $p^{(i)}$ from $\mathcal{N}(0, \mathbf{M})$
 - 2. Starting with current $(p^{(i)}, q^{(i-1)})$, integral on Hamiltonian system for s period:

$$(p^*,q^*) \leftarrow \mathcal{T}_s((p^{(i)},q^{(i-1)}))$$
 (leaves $H(\cdot,\cdot)$ invariant)

- 3. $q^{(i)} \leftarrow q^*, p^{(i)} \leftarrow -p^*$
- Output $q^{(1)}, \ldots, q^{(N)}$ as posterior samples
- Problem: The Hamiltonian system may not have a closed-form solution
 Need numerical method to for ODE system

Numerical ODE integrator

Targeting problem:

$$\begin{cases} \frac{\mathrm{d}q}{\mathrm{d}t} = \frac{\partial H}{\partial p} = M^{-1}p \\ \frac{\mathrm{d}p}{\mathrm{d}t} = -\frac{\partial H}{\partial q} = \nabla \log \left(L(\mathbf{D}|q)\pi(q) \right) \end{cases}$$

▶ Leap-frog method, for small time $\epsilon > 0$

$$p(t+\epsilon/2) = p(t) - (\epsilon/2) \frac{\partial U}{\partial q}(q(t))$$

$$q(t+\epsilon) = q(t) + \epsilon M^{-1} p(t+\epsilon/2)$$

$$p(t+\epsilon) = p(t+\epsilon/2) - (\epsilon/2) \frac{\partial U}{\partial q}(q(t+\epsilon/2))$$

Numerical stability for Hamiltonian system

Property of Leap frog

- ► Time reversibility: Integrate *n* steps forward and then *n* steps backward, arrive at same starting position.
- ► Symplectic property: Converse the (slightly modified) energy

Idea HMC review

- ▶ Specify variance M, time s > 0
- ightharpoonup For $i = 1, \dots, N$
 - 1. Sample $p^{(i)}$ from $\mathcal{N}(0, M)$
 - 2. Starting with current $(p^{(i)}, q^{(i-1)})$, integral on Hamiltonian system for s period:

$$(p^*,q^*) \leftarrow T_s((p^{(i)},q^{(i-1)}))$$

- 3. $q^{(i)} \leftarrow q^*, p^{(i)} \leftarrow -p^*$
- Output $q^{(1)}, \ldots, q^{(N)}$ as posterior samples

Numerical method does not leave H(p,q) unchanged during integration

$$H((p^*, q^*)) \neq H((p^{(i)}, q^{(i-1)}))$$

Need to adjust that

HMC in practice

- Specify variance matrix \mathbf{M} , step size $\epsilon > 0$, L: number of the leap frog steps
- ightharpoonup For $i = 1, \dots, N$
 - 1. Sample $p^{(i)}$ from $\mathcal{N}(0, M)$
 - 2. Starting with current $(p^{(i)}, q^{(i-1)})$,

$$(p^*, q^*) \leftarrow \mathsf{Leapfrog}(p^{(i)}, q^{(i-1)}, \epsilon, L)$$

$$p^* \leftarrow -p^*$$

3. Metropolis-Hastings with probability

$$\alpha = \min\left\{1, \frac{\Pr(p^*, q^*)}{\Pr(p^{(i)}, q^{(i-1)})}\right\}$$

set $q^{(i)} \leftarrow q^*$, $p^{(i)} \leftarrow p^*$ (leaves canonical distribution invariant)

• Output $q^{(1)}, \ldots, q^{(N)}$ as posterior samples

Comparison with random walk Metropolis-Hastings

- ▶ HMC: proposal based on Hamiltonian dynamics, not random walk
- Random walk Metropolis-Hastings (RWMH) need more steps to get a independent sample
- Optimum acceptance: HMC (65%), RWMH (23%)
- ► Computation *d*:
 - Number of iterations to get a independent sample: HMC: $\mathcal{O}(d^{1/4})$ vs RWMH: $\mathcal{O}(d)$
 - ▶ Total number of computations $\mathcal{O}(d^{5/4})$ vs RWMH: $\mathcal{O}(d^2)$ See (Roberts et al. 2001) and (Neal 2011) for more details

Tuning parameters

- ▶ Stepsize ϵ :
 - ▶ Large ϵ : Low acceptance rate
 - ▶ Small ϵ : Waste computation, random walk behavior (ϵL) too small
 - ightharpoonup might need different ϵ for different region, eg. choose ϵ by random
- ▶ Number of leap-frog steps *L*:
 - ► Trajectory length is crucial for exploring state space systematically
 - More constrained in some directions, but much less constrained in other directions
 - ▶ U-turns in long-trajectory

NUTS

- ▶ Solution: No-U-Turn Sampler (NUTS) (Hoffman et al. 2014)
 - ▶ Adaptive way to select number of leap-frog step *L*
 - \blacktriangleright Adaptive way to select step size ϵ
- ► The exact algorithm behind Stan!

NUTS: Select L

Criterion for "U-turns"

$$\frac{d}{dt}\frac{||q_t - q_0||^2}{2} = (q_t - q_0)^T \cdot p_t < 0$$
 (3)

- ▶ Start from $(p^{(i)}, q^{(i-1)})$
 - 1. Run leap-frog steps until (3) happens. Have candidate set \mathcal{B} of (p,q) pairs
 - 2. Select subset $\mathcal{C} \subseteq \mathcal{B}$ satisfies detail balanced equation
 - 3. Random select $q^{(i)}$ from C

Selecting stepsize ϵ

- ▶ Warm-up phase M_{adapt}
- \blacktriangleright H_t be the acceptance probability at t-th iterations e.g.

$$H_t = \min\left\{1, rac{\mathsf{Pr}(p^*, q^*)}{\mathsf{Pr}(p^{(t)}, q^{(t-1)})}
ight\}$$

- $h_t(\epsilon) = \mathbb{E}_t[H_t|\epsilon]$
- one step Dual averaging in each iteration for solving

$$h_t(\epsilon) = \delta$$

where δ is the optimum acceptance rate, for HMC $\delta=0.65$

▶ Find ϵ after M_{adapt} iterations

Summary

- ▶ HMC: A MCMC algorithm make use of Hamiltonian dynamics
 - Parameters as position, posterior likelihood as potential energy
 - Propose new state based on Hamiltonian dynamics
 - ▶ Leap-frog for numerical simulation, sensitive for tuning
- ▶ NUTS: A HMC with adaptive tuning on (L, ϵ) for more efficient proposal
 - L: Avoid U-turns
 - \blacktriangleright $\epsilon :$ Dual-averaging optimization to make the acceptance rate close to optimum

Implement your Own HMC

Review the Hamiltonian dynamics

$$\begin{cases} \frac{\mathrm{d}q}{\mathrm{d}t} = \frac{\partial H}{\partial p} = M^{-1}p \\ \frac{\mathrm{d}p}{\mathrm{d}t} = -\frac{\partial H}{\partial q} = \nabla \log \left(L(\mathbf{D}|q)\pi(q) \right) \end{cases}$$

Need gradient

$$abla \log \left(\mathit{L}(\mathsf{D}|q)\pi(q) \right) =
abla \log \left(\mathit{L}(\mathsf{D}|q) \right) +
abla \log(\pi(q))$$

- Stan: automatic gradient calculation
- Gradient: Stan can do gradient-based optimization (quasi-Newton method L-BFGS)