Лабораторная работа №7

Модель эффективности рекламы

Валиева Найля Разимовна

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Ответы на вопросы	10
5	Код программы	12
6	Выводы	14

Список таблиц

Список иллюстраций

3.1	Код программы для решения задачи	7
	График распространения рекламы для первого случая	8
	График распространения рекламы для второго случая	8
	График распространения скорости распространения рекламы для	
	второго случая	9
3.5	График распространения рекламы для второго случая	ç
4.1	График решения уравнения модели Мальтуса	11
	График логистической кривой	

1 Цель работы

Ознакомление с моделью Мальтуса и моделью логистической кривой на примере рекламной кампании и их построение с помощью языка программирования Modelica.

2 Задание

- 1. Построить график распространения рекламы, математическая модель которой описывается следующим уравнением: $\frac{dn}{dt}=(0.62+0.000023n(t))(N-n(t))$
- 2. Построить график распространения рекламы, математическая модель которой описывается следующим уравнением: $\frac{dn}{dt} = (0.000024 + 0.4n(t))(N-n(t))$
 - Для этого случая определить, в какой момент времени скорость распространения рекламы будет иметь максимальное значение.
- 3. Построить график распространения рекламы, математическая модель которой описывается следующим уравнением: $\frac{dn}{dt}=(0.5t+0.5tn(t))(N-n(t))$

3 Выполнение лабораторной работы

После запуска рекламных объявлений скорость изменения числа знающих о продукции людей пропорциональна как числу знающих о товаре покупателей, так и числу покупателей о нем не знающих.

Известны начальные данные: N = 1430 - объем аудитории, $n_0 = 11$ - число людей, знакомых с рекламой в начальный момент времени.

Ниже првиеден код для решения задачи (рис @fig:001)

```
model lab07

parameter Real N = 1430;
parameter Real x0 = 11;
Real x(start=x0);

function k
   input Real t;
   output Real result;

algorithm
result := 0.62;
//result := 0.000024;
//result := 0.5*t;
end k;

function p
   input Real result;
algorithm
result := 0.000023;
//result := 0.4;
//result := 0.5*t;
end p;

equation
der(x) = (k(time) + p(time) * x) * (N - x);
end lab07;
```

Рис. 3.1: Код программы для решения задачи

1. Построим график распространения рекламы, математическая модель которой описывается следующим уравнением: $\frac{dn}{dt}=(0.62+0.000023n(t))(N-n(t))$ (рис @fig:002)

Рис. 3.2: График распространения рекламы для первого случая

2. Построим график распространения рекламы, математическая модель которой описывается следующим уравнением: $\frac{dn}{dt}=(0.000024+0.4n(t))(N-n(t))$ (рис @fig:003)

Рис. 3.3: График распространения рекламы для второго случая

Также нам требуется определить, каким будет максимальное значение скорости распространения рекламы в данном случае. Скорость распространения рекламы - производная по графику распространения рекламы. Следовательно, максимальное значение будет там, где значение графика скорости максимально. Из приведенного рисунка (рис @fig:004) мы видим, что значение графика производной максимально в начальный момент времени $t_0 = 0$.

Рис. 3.4: График распространения скорости распространения рекламы для второго случая

3. Построим график распространения рекламы, математическая модель которой описывается следующим уравнением: $\frac{dn}{dt}=(0.5t+0.5tn(t))(N-n(t))$ (рис @fig:005)

Рис. 3.5: График распространения рекламы для второго случая

4 Ответы на вопросы

1. Записать модель Мальтуса (дать пояснение, где используется данная модель)

$$\frac{\partial N}{\partial t} = rN$$

Данная модель используется для расчета изменения популяции особей животных.

2. Записать уравнение логистической кривой (дать пояснение, что описывает данное уравнение)

$$\frac{\partial P}{\partial t} = rP(1 - \frac{P}{K})$$

Исходные предположения для вывода уравнения при рассмотрении популяционной динамики выглядят следующим образом:

- скорость размножения популяции пропорциональна её текущей численности, при прочих равных условиях;
- скорость размножения популяции пропорциональна количеству доступных ресурсов, при прочих равных условиях. Таким образом, второй член уравнения отражает конкуренцию за ресурсы, которая ограничивает рост популяции.
- 3. На что влияет коэффициент $\alpha_1(t)$ и $\alpha_2(t)$ в модели распространения рекламы

 $lpha_1(t)$ — интенсивность рекламной кампании, зависящая от затрат $lpha_2(t)$ — интенсивность рекламной кампании, зависящая от сарафанного радио

4. Как ведет себя рассматриваемая модель при $\alpha_1(t)\gg \alpha_2(t)$

При $\alpha_1(t)\gg \alpha_2(t)$ получается модель типа модели Мальтуса (рис. @fig:006):

Рис. 4.1: График решения уравнения модели Мальтуса

5. Как ведет себя рассматриваемая модель при $\alpha_1(t) \ll \alpha_2(t)$

При $\alpha_1(t) \ll \alpha_2(t)$ получаем уравнение логистической кривой (рис. @fig:007):

Рис. 4.2: График логистической кривой

5 Код программы

```
model lab07
  parameter Real N = 1430;
  parameter Real x0 = 11;
  Real x(start=x0);
  function k
  input Real t;
  output Real result;
  algorithm
  result = 0.62;
  //result := 0.000024;
  //result := 0.5*t;
  end k;
  function p
  input Real t;
  output Real result;
  algorithm
  result := 0.000023;
  //result := 0.4;
  //result := 0.5*t;
  end p;
  equation
  der(x) = (k(time) + p(time) * x) * (N - x);
```

end lab07;

6 Выводы

Я ознакомилась с моделью Мальтуса и моделью логистической кривой на примере эффективности рекламы и построила соответствующие графики.