Recall Differentiation laws

①
$$(f+g)'(a) = f'(a) + g'(a)$$

$$\frac{1}{4} \left(\frac{p}{g}\right)'(a) = \frac{p'(a)g(a) - p(a)g'(a)}{g(a)^2}$$

$$(g \circ f)'(a) = g'(f(a)) \cdot f'(a)$$

Idea: For h = 0,

$$g(f(a+h)) - g(f(a)) = g(f(a+h)) - g(f(a)) \cdot \frac{f(a+h) - f(a)}{h}$$

$$= g(f(a)+k) - g(f(a)) \rightarrow f'(a) \text{ as } h \rightarrow 0$$
with $k(h) = f(a+h) - f(a) \rightarrow 0$ as $h \rightarrow 0$

$$\rightarrow g'(f(a)) \text{ as } h \rightarrow 0$$

 $\frac{\text{Problem}}{\text{h(h)}=0}$ What if k=0? In fact, we could have h(h)=0 infinitely often near h=0! E.g.

• $f(x) = constant \implies k(h) = f(a+h) - f(a) = 0$ $\forall h$ (Well, maybe this isn't really a problem, since the other factor f'(0) is 0...)

•
$$f(x) = x^2 \sin \frac{1}{x}$$
, $a=0 \Rightarrow k(h) = h^2 \sin \frac{1}{h}$

Pf: For h = 0,

$$\frac{g(f(a+h)) - g(f(a))}{h} = \phi(h) \cdot \frac{f(a+h) - f(a)}{h}$$

where

$$\phi(h) = \begin{cases} g(f(a+h)) - g(f(a)) \\ f(a+h) - f(a) \end{cases}$$
if $f(a+h) \neq f(a)$

$$g'(f(a))$$
if $f(a+h) = f(a)$

Note that in both cases, the equation (*) holds:

• If
$$f(a+h) = f(a)$$
: $RHS() = g'(f(a)) \cdot \frac{f(a+h) - f(a)}{h} = 0$

$$LHS() = \frac{g(f(a+h)) - g(f(a))}{h} = 0$$

Claim: $\phi(h)$ is continuous at h=0, i.e. lim $\phi(h) = g'(f(a))$. Fix $\epsilon>0$. Want: 38>0 s.t.

$$|h| < \delta \Rightarrow |\phi(h) - g'(f(a))| < \epsilon$$

$$= \begin{cases} \frac{g(f(a+h)) - g(f(a))}{f(a+h) - f(a)} - g'(f(a)) \\ g'(f(a)) - g'(f(a)) = 0 \end{cases}$$
 already <2!

$$|h| < S$$
, $f(a+h) \neq f(a) => \left| \frac{g(f(a+h)) - g(f(a))}{f(a+h)} - g'(f(a)) \right| < \varepsilon$

We know:

$$\Rightarrow \lim_{k \to 0} \frac{g(f(a) + h) - g(f(a))}{k} = g'(f(a))$$

$$\left|\frac{g(f(a)+k)-g(f(a))}{k}-g'(f(a))\right|<\varepsilon$$

Altogether,

$$\Rightarrow \left| \frac{g(f(a+h)) - g(f(a))}{f(a+h) - f(a)} - g'(f(a)) \right| < \varepsilon$$

as desired. This finishes the claim.

$$g(\frac{f(a+h))-g(f(a))}{h} = \phi(h) \cdot \frac{f(a+h)-f(a)}{h}$$

By the claim,
$$\lim_{h\to 0} \phi(h) = g'(f(a))$$
.

As f is differentiable at a,

$$\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} = f(a).$$

Therefore, by the limit law for products,

$$\lim_{h\to 0} \frac{g(f(a+h)) - g(f(a))}{h} = \lim_{h\to 0} \left[\phi(h) \cdot \frac{f(a+h) - f(a)}{h} \right]$$

$$(g - f)'(a)$$
 $g'(f(a)) \cdot f'(a)$

Ex (a.) Prove that $f:(-1,1) \rightarrow \mathbb{R}$, $f(n) = \sqrt{1-x^2}$ is differentiable, and find its derivative.

Pf: Write

$$f = g \circ h$$
, where $g(y) = \sqrt{y}$, $h(x) = 1 - x^2$
Fix aciR.

- $h: (-1,1) \rightarrow (0,\infty)$ is differentiable at a since h is a polynomial, and h'(a) = -2a
- og: $(0, \infty) \rightarrow 1R$ is differentiable at $y = 1-a^2 > 0$ by Hw8, and $g'(y) = \frac{1}{2\pi y}$

So, by the chain rule,
$$f'(a) = (g \circ h)'(a) = g'(h(a)) \cdot h'(a)$$

$$= \frac{1}{2\sqrt{1-a^2}} \cdot (-2a) = \frac{-a}{\sqrt{1-a^2}} . \quad \Box$$

(b.) Find a formula for the tangent line to the graph of f at $a \in (-1,1)$.

$$L(n) = f(a) + f'(a)(n-a)$$

$$= \sqrt{1-a^2} - \frac{a}{\sqrt{1-a^2}}(n-a)$$

$$= -\frac{a}{\sqrt{1-a^2}}n + \frac{1-a^2+a^2}{\sqrt{1-a^2}} = -\frac{a}{\sqrt{1-a^2}}n + \frac{1}{\sqrt{1-a^2}}$$

(c.) Prove that this tangent line intersects the unif circle $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ exactly once.

Pf: Note that

L(n) intersects (n, L(n)) satisfies
the unit circle
$$n^2 + U(n)^2 = 1$$
.

$$x^{2} + L(x)^{2} = x^{2} + \left(-\frac{\alpha x + 1}{\sqrt{1 - \alpha^{2}}} \right)^{2}$$

$$= x^{2} + \frac{\alpha^{2} x^{2} - L\alpha x + 1}{1 - \alpha^{2}}$$

$$= \frac{(1 - \alpha^{2}) x^{2} + \alpha^{2} x^{2} - 2\alpha x + 1}{1 - \alpha^{2}}$$

So
$$1 = x^2 + L(x)^2 = \frac{x^2 - 2ax + 1}{1 - a^2}$$

 $(=> x^2 - 2ax + 1 = 1 - a^2)$
 $(=> 0 = x^2 - 2ax + a^2 = (x - a)^2$

<=> 1=a.