Algorithmics and Programming III

FIB

Albert Oliveras Enric Rodríguez

Q1 2019-2020

Version December 10, 2019

- 1 Introduction
 - Computationally difficult problems
 - Metaheuristics
- 2 Single-solution based metaheuristics
 - Basic Local Search
 - Simulated Annealing
 - Tabu Search
 - GRASP
 - Variable Neighborhood Search
 - Guided Local Search
- 3 Population-based metaheuristics
 - Genetic Algorithms

- 1 Introduction
 - Computationally difficult problems
 - Metaheuristics
- 2 Single-solution based metaheuristics
 - Basic Local Search
 - Simulated Annealing
 - Tabu Search
 - GRASE
 - Variable Neighborhood Search
 - Guided Local Search
- 3 Population-based metaheuristics
 - Genetic Algorithms

In this course we have mostly considered computationally intractable problems and ways to tackle them:

- For small inputs we can simply apply brute force
- For some problems, if enough memory is available we can apply dynamic programming
- For some problems, polynomial-time greedy algorithms can be used in certain subproblems
- Now we present metaheuristics: general strategies to search and quickly find (near-)optimal solutions

In this course we have mostly considered computationally intractable problems and ways to tackle them:

- For small inputs we can simply apply brute force
- For some problems, if enough memory is available we can apply dynamic programming
- For some problems, polynomial-time greedy algorithms can be used in certain subproblems
- Now we present metaheuristics: general strategies to search and quickly find (near-)optimal solutions

We are interested in solving Combinatorial Optimization Problems (COP) Formally, given

- a set of variables $X = (x_1, x_2, \dots, x_n)$ with domains D_1, D_2, \dots, D_n ,
- a set of constraints C_1, C_2, \ldots, C_m among variables (each constraint can be seen as a subset $C_i \subseteq D_1 \times D_2 \times \cdots D_n$),
- an objective or cost function $f: D_1 \times D_2 \times \cdots D_n \to \mathbb{R}$,

we define the set of solutions $S := \bigcap_{i=1}^m C_i$, and our goal is to find a (globally) minimal solution $s^* \in \underset{x \in S}{\operatorname{argmin}} f(x)$.

For example:

- Knapsack
- Min Graph Coloring
- Traveling Salesman Problem
- .

We are interested in solving Combinatorial Optimization Problems (COP)

Formally, given

- a set of variables $X = (x_1, x_2, \dots, x_n)$ with domains D_1, D_2, \dots, D_n ,
- a set of constraints C_1, C_2, \ldots, C_m among variables (each constraint can be seen as a subset $C_i \subseteq D_1 \times D_2 \times \cdots D_n$),
- an objective or cost function $f: D_1 \times D_2 \times \cdots D_n \to \mathbb{R}$,

we define the set of solutions $S := \bigcap_{i=1}^{m} C_i$, and

our goal is to find a (globally) minimal solution $s^* \in \underset{x \in S}{\operatorname{argmin}} f(x)$.

For example:

- Knapsack
- Min Graph Coloring
- Traveling Salesman Problem
- ...

- 1 Introduction
 - Computationally difficult problems
 - Metaheuristics
- 2 Single-solution based metaheuristics
 - Basic Local Search
 - Simulated Annealing
 - Tabu Search
 - GRASE
 - Variable Neighborhood Search
 - Guided Local Search
- 3 Population-based metaheuristics
 - Genetic Algorithms

- A metaheuristic is an algorithm for solving approximately a wide range of hard optimization problems without much adaptation to each problem
- Metaheuristics are:
 - efficient
 - approximate
 - non problem-specific
 - usually non-deterministic
- DISCLAIMER: in general,
 no guarantee on the quality of the solutions of metaheuristics is given

- A metaheuristic is an algorithm for solving approximately a wide range of hard optimization problems without much adaptation to each problem
- Metaheuristics are:
 - efficient
 - approximate
 - non problem-specific
 - usually non-deterministic
- DISCLAIMER: in general,
 no guarantee on the quality of the solutions of metaheuristics is given

Algorithmics and Programming III (FIB)

A key aspect of metaheuristics is to provide a balance between:

- Intensification: intensively explore areas of the search space with good solutions
- Diversification: move to unexplored areas of the search space when necessary

The areas of the search space to explore are determined by neighborhoods:

- A neighborhood structure is a function $\mathcal{N}: S \to 2^S$. Given $s \in S$, we call $\mathcal{N}(s)$ the neighborhood of s.
- A local minimum with respect to a neighborhood structure $\mathcal N$ is a solution \hat{s} such that $\forall s \in \mathcal N(\hat{s}) : f(\hat{s}) \leq f(s)$

A key aspect of metaheuristics is to provide a balance between:

- Intensification: intensively explore areas of the search space with good solutions
- Diversification: move to unexplored areas of the search space when necessary

The areas of the search space to explore are determined by neighborhoods:

- A neighborhood structure is a function $\mathcal{N}: S \to 2^S$. Given $s \in S$, we call $\mathcal{N}(s)$ the neighborhood of s.
- A local minimum with respect to a neighborhood structure $\mathcal N$ is a solution \hat{s} such that $\forall s \in \mathcal N(\hat{s}) : f(\hat{s}) \leq f(s)$

Let us consider the Knapsack Problem:

given a set of items, each with a certain value and weight, the goal is to find a subset not exceeding a certain weight ${\it W}$ and with maximum value

Item Id	1	2	3	4	5	6	7
Value	7	2	1	4	3	4	8
Weight	10	7	2	8	4	6	15

$$W = 23$$

Given a solution s, its neighborhood $\mathcal{N}(s)$ can be the set of solutions that can be obtained from s by replacing one item by another one

For example

- $\{7,5\}$ belongs to $\mathcal{N}(\{7,4\})$
- {7,4} is a local optimum
- However, it is not global. A global optimum is {1,3,5,6}.

Let us consider the Knapsack Problem:

given a set of items, each with a certain value and weight, the goal is to find a subset not exceeding a certain weight ${\it W}$ and with maximum value

Item Id	1	2	3	4	5	6	7
Value	7	2	1	4	3	4	8
Weight	10	7	2	8	4	6	15

$$W = 23$$

Given a solution s, its neighborhood $\mathcal{N}(s)$ can be the set of solutions that can be obtained from s by replacing one item by another one

For example

- $\{7,5\}$ belongs to $\mathcal{N}(\{7,4\})$
- \bullet {7,4} is a local optimum
- However, it is not global. A global optimum is {1,3,5,6}.

Let us consider the Knapsack Problem:

given a set of items, each with a certain value and weight, the goal is to find a subset not exceeding a certain weight ${\it W}$ and with maximum value

Item Id	1	2	3	4	5	6	7
Value	7	2	1	4	3	4	8
Weight	10	7	2	8	4	6	15

$$W = 23$$

Given a solution s, its neighborhood $\mathcal{N}(s)$ can be the set of solutions that can be obtained from s by replacing one item by another one

For example:

- $\{7,5\}$ belongs to $\mathcal{N}(\{7,4\})$
- {7,4} is a local optimum
- However, it is not global. A global optimum is {1,3,5,6}.

Metaheuristics can be classified according to various criteria:

- Population-based vs single point search
- Dynamic vs static objective function
- One vs various neighborhood structures
- Memory usage vs memory-less methods
- Nature-inspired vs non-nature inspired

In the following we will introduce some of the most successful metaheuristics

Metaheuristics can be classified according to various criteria:

- Population-based vs single point search
- Dynamic vs static objective function
- One vs various neighborhood structures
- Memory usage vs memory-less methods
- Nature-inspired vs non-nature inspired

In the following we will introduce some of the most successful metaheuristics

- 1 Introduction
 - Computationally difficult problems
 - Metaheuristics
- 2 Single-solution based metaheuristics
 - Basic Local Search
 - Simulated Annealing
 - Tabu Search
 - GRASP
 - Variable Neighborhood Search
 - Guided Local Search
- 3 Population-based metaheuristics
 - Genetic Algorithms

Basic Local Search, a.k.a Iterative Improvement or Hill Climbing:

- **1** Start with an arbitrary solution $s \in S$.
- ② While possible, replace s by an element of $\mathcal{N}(s)$ with better cost

In pseudo-code:

```
s := generateInitialSolution()
repeat
  s := improve(s, N(s))
until no improvement is possible
```

The algorithm terminates at a local minimum, but may not be a global minimum

This scheme indeed describes a large family of concrete algorithms:

- How do we choose the neighborhood structure \mathcal{N} ?
 - It should be rich enough so that we do not tend to get stuck in bad local optima (see the previous example of knapsack)
 - It should not be too large, since we want to be able to efficiently search the neighborhood for possible local moves
- How do we implement $improve(s, \mathcal{N}(s))$?
 - **First improvement:** choose the first s' we find s.t. f(s') < f(s)
 - Best improvement: choose $s' \in \underset{\hat{s} \in \mathcal{N}(s)}{\operatorname{argmin}} f(\hat{s})$ (i.e. explore the whole $\mathcal{N}(s)$ and pick the best element)

Basic local search disallows to temporarily worsen the objective function, and hence it cannot escape from bad local optima!

This scheme indeed describes a large family of concrete algorithms:

- How do we choose the neighborhood structure \mathcal{N} ?
 - It should be rich enough so that we do not tend to get stuck in bad local optima (see the previous example of knapsack)
 - It should not be too large, since we want to be able to efficiently search the neighborhood for possible local moves
- How do we implement $improve(s, \mathcal{N}(s))$?
 - First improvement: choose the first s' we find s.t. f(s') < f(s)
 - Best improvement: choose $s' \in \underset{\hat{s} \in \mathcal{N}(s)}{\operatorname{argmin}} f(\hat{s})$ (i.e. explore the whole $\mathcal{N}(s)$ and pick the best element)

Basic local search disallows to temporarily worsen the objective function, and hence it cannot escape from bad local optima!

This scheme indeed describes a large family of concrete algorithms:

- How do we choose the neighborhood structure \mathcal{N} ?
 - It should be rich enough so that we do not tend to get stuck in bad local optima (see the previous example of knapsack)
 - It should not be too large, since we want to be able to efficiently search the neighborhood for possible local moves
- How do we implement $improve(s, \mathcal{N}(s))$?
 - **First improvement:** choose the first s' we find s.t. f(s') < f(s)
 - Best improvement: choose $s' \in \underset{\hat{s} \in \mathcal{N}(s)}{\operatorname{argmin}} f(\hat{s})$ (i.e. explore the whole $\mathcal{N}(s)$ and pick the best element)

Basic local search disallows to temporarily worsen the objective function, and hence it cannot escape from bad local optima!

- 1 Introduction
 - Computationally difficult problems
 - Metaheuristics
- 2 Single-solution based metaheuristics
 - Basic Local Search
 - Simulated Annealing
 - Tabu Search
 - GRASP
 - Variable Neighborhood Search
 - Guided Local Search
- 3 Population-based metaheuristics
 - Genetic Algorithms

Simulated Annealing

- Key idea: allow moves resulting in solutions of worse quality than the current solution in order to escape from local optima
- The probability of doing such a move is decreased during the search

```
s := generateInitialSolution()
T := T<sub>0</sub>
while termination conditions not met do
    s' := pickAtRandom(N(s))
    if f(s') < f(s) then s' := s
    else with probability p(T,s',s), s' := s
    endif
    update(T)
endwhile</pre>
```

Simulated Annealing

- How do we define the probability of accepting a worsening move?
 - The probability is usually computed with the Boltzmann distribution

$$p(T, s', s) = exp(-\frac{f(s') - f(s)}{T})$$

- Given a fixed temperature T, the farther f(s') is from f(s), the lower the probability of accepting the move
- Given fixed s, s', since f(s') > f(s), the lower the temperature T the lower the probability of accepting a worsening move
- How do we update the temperature?
 - The temperature at iteration k is defined as a function of the current temperature T_k and the iteration counter k
 - There are functions that guarantee the convergence to a global optimum, but they are too slow to be feasible in practice
 - One of the most useful functions follows a geometric law $T_{k+1} = \alpha \cdot T_k$, with $\alpha \in [0, 1]$

Simulated Annealing

- How do we define the probability of accepting a worsening move?
 - The probability is usually computed with the Boltzmann distribution

$$p(T, s', s) = exp(-\frac{f(s') - f(s)}{T})$$

- Given a fixed temperature T, the farther f(s') is from f(s), the lower the probability of accepting the move
- Given fixed s, s', since f(s') > f(s), the lower the temperature T the lower the probability of accepting a worsening move
- How do we update the temperature?
 - The temperature at iteration k is defined as a function of the current temperature T_k and the iteration counter k
 - There are functions that guarantee the convergence to a global optimum, but they are too slow to be feasible in practice
 - One of the most useful functions follows a geometric law $T_{k+1} = \alpha \cdot T_k$, with $\alpha \in [0, 1]$

- 1 Introduction
 - Computationally difficult problems
 - Metaheuristics
- 2 Single-solution based metaheuristics
 - Basic Local Search
 - Simulated Annealing
 - Tabu Search
 - GRASE
 - Variable Neighborhood Search
 - Guided Local Search
- 3 Population-based metaheuristics
 - Genetic Algorithms

- The simplest form of Tabu Search applies a best-improvement local search as basic ingredient and uses a memory (tabu list) to escape from local optima and avoid cycles
- The tabu list keeps track of the most recently visited solutions.
 The solutions in the tabu list are excluded from the neighborhood of the current solution
- At each iteration, the best solution in neighborhood is chosen and added to the tabu list and the oldest of the solutions in the list is removed in a FIFO order.

- How do we store the solutions in the tabu list?
 - Storing complete solutions is impractical, and so only attributes are stored (e.g. components of solutions).
 One tabu list for each attribute is kept.
 - Forbidding an attribute discards probably more than one solution.
 So it is possible that good unvisited solutions are disallowed
 - To overcome this problem, aspiration criteria are defined.
 They allow a solution even if forbidden by the tabu conditions.

 Example: allow solutions that are better than the current best one

- How do we store the solutions in the tabu list?
 - Storing complete solutions is impractical, and so only attributes are stored (e.g. components of solutions).
 One tabu list for each attribute is kept.
 - Forbidding an attribute discards probably more than one solution.
 So it is possible that good unvisited solutions are disallowed
 - To overcome this problem, aspiration criteria are defined.
 They allow a solution even if forbidden by the tabu conditions.

Example: allow solutions that are better than the current best one.

- How do we store the solutions in the tabu list?
 - Storing complete solutions is impractical, and so only attributes are stored (e.g. components of solutions).
 One tabu list for each attribute is kept.
 - Forbidding an attribute discards probably more than one solution.
 So it is possible that good unvisited solutions are disallowed
 - To overcome this problem, aspiration criteria are defined.
 They allow a solution even if forbidden by the tabu conditions.
 - Example: allow solutions that are better than the current best one.

```
\begin{array}{l} s := \texttt{generateInitialSolution()} \\ \texttt{initializeTabuLists}(\texttt{TL}_1, \texttt{TL}_2, \dots, \texttt{TL}_r) \\ k := 0 \\ \textbf{while} \texttt{ termination conditions not met } \textbf{do} \\ \texttt{allowedSet} = \{ \textbf{S}' \in \mathcal{N}(\textbf{S}) \mid \textbf{S}' \texttt{ is not forbidden by tabu or satisfies an aspiration cond.} \} \\ s := \texttt{chooseBestOf}(\texttt{allowedSet}) \\ \texttt{updateTabuListAndAspirationConditions(s)} \\ k := k + 1 \\ \textbf{endwhile} \end{array}
```

- 1 Introduction
 - Computationally difficult problems
 - Metaheuristics
- 2 Single-solution based metaheuristics
 - Basic Local Search
 - Simulated Annealing
 - Tabu Search
 - GRASP
 - Variable Neighborhood Search
 - Guided Local Search
- 3 Population-based metaheuristics
 - Genetic Algorithms

GRASP

- The Greedy Randomized Adaptive Search Procedure (GRASP) is a two-phase iterative procedure:
 - Solution construction
 - Solution improvement
- PHASE 1: Solution construction
 - Assume that a solution s consists of a subset of a set of elements (e.g. in knapsack it is a subset of items).
 The solution is constructed by adding one new element at a time
 - Next element is chosen randomly from a candidate list as follows
 - Each element is assigned a score that estimates the benefit if the element is inserted into the current partial solution
 - The Restricted Candidate List (RCL) is composed of the best α elements according to the scores
 - For $\alpha = 1$ the construction amounts to a greedy heuristic For $\alpha = n$, the construction is completely random.

GRASP

- The Greedy Randomized Adaptive Search Procedure (GRASP) is a two-phase iterative procedure:
 - Solution construction
 - Solution improvement
- PHASE 1: Solution construction
 - Assume that a solution s consists of a subset of a set of elements (e.g. in knapsack it is a subset of items).
 The solution is constructed by adding one new element at a time
 - Next element is chosen randomly from a candidate list as follows
 - Each element is assigned a score that estimates the benefit if the element is inserted into the current partial solution
 - The Restricted Candidate List (RCL) is composed of the best α elements according to the scores
 - For $\alpha = 1$ the construction amounts to a greedy heuristic. For $\alpha = n$, the construction is completely random.

GRASP

PHASE 1 in pseudo-code:

```
s := ∅
α := determineCandidateListLength()
while solution not complete do
   RCL := generatedRestrictedCandidateList()
   x := selectElementAtRandom(RCL)
   s := s ∪ {x}
   updateGreedyFunction(s)
endwhile
```

- PHASE 2: Solution improvement
 It is a local search process
 (Basic Local Search, Simulated Annealing, Tabu Search, ...)
- The two phases are combined as follows

```
while termination conditions not met do
    s := constructGreedyRandomizedSolution()
    s := applyLocalSearch(s)
    memorizeBestFoundSolution()
endwhile
```

GRASP

PHASE 1 in pseudo-code:

```
s := ∅
α := determineCandidateListLength()
while solution not complete do
   RCL := generatedRestrictedCandidateList()
   x := selectElementAtRandom(RCL)
   s := s ∪ {x}
   updateGreedyFunction(s)
endwhile
```

PHASE 2: Solution improvement

```
It is a local search process (Basic Local Search, Simulated Annealing, Tabu Search, ...)
```

The two phases are combined as follows

```
while termination conditions not met do
    s := constructGreedyRandomizedSolution()
    s := applyLocalSearch(s)
    memorizeBestFoundSolution()
endwhile
```

GRASP

PHASE 1 in pseudo-code:

```
s := ∅
α := determineCandidateListLength()
while solution not complete do
   RCL := generatedRestrictedCandidateList()
   x := selectElementAtRandom(RCL)
   s := s ∪ {x}
   updateGreedyFunction(s)
endwhile
```

PHASE 2: Solution improvement

It is a local search process (Basic Local Search, Simulated Annealing, Tabu Search, ...)

The two phases are combined as follows:

```
while termination conditions not met do
    s := constructGreedyRandomizedSolution()
    s := applyLocalSearch(s)
    memorizeBestFoundSolution()
endwhile
```

GRASP

- GRASP is very effective if two conditions are satisfied:
 - Phase 1 samples the most promising regions of the search space
 - Phase 1 returns solutions belonging to basins of attraction of different local optima
- Thanks to is simplicity, GRASP is generally very fast and produces quite good solutions in a very short amount of time

Chapter 5. Metaheuristics

- 1 Introduction
 - Computationally difficult problems
 - Metaheuristics
- 2 Single-solution based metaheuristics
 - Basic Local Search
 - Simulated Annealing
 - Tabu Search
 - GRASP
 - Variable Neighborhood Search
 - Guided Local Search
- 3 Population-based metaheuristics
 - Genetic Algorithms

- Key idea: dynamically change neighborhood structures
- A local optimum with respect to one neighbourhood structure is not necessarily a local optimum for another one

- We assume a sequence of neighborhood structures $\mathcal{N}_1, \mathcal{N}_2, \dots, \mathcal{N}_{kmax}$
- Although they could be arbitrary, usually $|\mathcal{N}_1| < |\mathcal{N}_2| < \ldots < |\mathcal{N}_{kmax}|$. As we will see, $\mathcal{N}_1 \subset \mathcal{N}_2 \subset \ldots \subset \mathcal{N}_{kmax}$ is not an efficient choice because work would be repeated.
- A solution that is locally optimal wrt. \mathcal{N}_k is probably not locally optimal wrt. \mathcal{N}_{k+1}
- This property is exploited by Variable Neighborhood Descent (VND)

- We assume a sequence of neighborhood structures $\mathcal{N}_1, \mathcal{N}_2, \dots, \mathcal{N}_{kmax}$
- Although they could be arbitrary, usually $|\mathcal{N}_1| < |\mathcal{N}_2| < \ldots < |\mathcal{N}_{kmax}|$. As we will see, $\mathcal{N}_1 \subset \mathcal{N}_2 \subset \ldots \subset \mathcal{N}_{kmax}$ is not an efficient choice because work would be repeated.
- A solution that is locally optimal wrt. \mathcal{N}_k is probably not locally optimal wrt. \mathcal{N}_{k+1}
- This property is exploited by Variable Neighborhood Descent (VND)

Variable Neighborhood Descent:

```
\begin{array}{l} s := \texttt{generateInitialSolution()} \\ k := 1 \\ \textbf{while } k <= \texttt{kmax do} \\ s' := \texttt{chooseBestOf(}\mathcal{N}_k(s)) \\ \textbf{if } f(s') < f(s) \textbf{ then} \\ s := s' \\ k := 1 \\ \textbf{else} \\ k := k + 1 \\ \textbf{endif} \\ \textbf{endwhile} \end{array}
```

- The algorithm terminates when it reaches a solution that is a local minimum with respect to all neighborhoods
- Finding the best of the neighborhood corresponds to intensification
- Changing neighborhood corresponds to diversification

- Variable Neighborhood Search (VNS) generalizes VND
- Starting with an initial solution s, the algorithm repeats 3 steps:
 - **1** Shaking: $s' \in \mathcal{N}_k(s)$ is randomly chosen
 - \bigcirc Local search: obtain s'' from s' using any local search procedure
 - Move:
 - if s'' better than s, replace it and set k := 1
 - otherwise k := k + 1

```
s := generateInitialSolution()
while termination conditions not met do
   k := 1
   while k <= kmax do
      s' := pickAtRandom(\mathcal{N}_k(s))
      s'' := localSearch(s')
      if f(s'') < f(s) then
          s := s''
          k := 1
      else
          k := k + 1
      endif
   endwhile
endwhile
```

- Shaking perturbs *s* to provide a good starting point for local search
 - If s is a local minimum,
 s' should belong to the basin of attraction of another local minimum
 - 2 s' should not be too different from s so as to keep good features of s
- The choice of the neighborhoods is critical for VNS (and also for VND)
 - Neighborhoods should give different abstractions of search space

Chapter 5. Metaheuristics

- 1 Introduction
 - Computationally difficult problems
 - Metaheuristics
- 2 Single-solution based metaheuristics
 - Basic Local Search
 - Simulated Annealing
 - Tabu Search
 - GRASE
 - Variable Neighborhood Search
 - Guided Local Search
- 3 Population-based metaheuristics
 - Genetic Algorithms

- To escape from local optima, Guided Local Search (GLS) dynamically changes the objective function so as to make them less desirable.
- Let us fix a set of m solution features.
 A feature can be any property that discriminates between solutions
- We will use m indicator functions $l_i(x)$ that return value 1 iff the feature i is present in solution x.
- After a solution is found, the new objective function f' is redefined as

$$f'(x) = f(x) + \lambda \sum_{i=1}^{m} p_i \cdot l_i(x)$$

where

- $\lambda > 0$ is called the regularization parameter, and
- $p_i > 0$ are the penalty parameters

- To escape from local optima, Guided Local Search (GLS) dynamically changes the objective function so as to make them less desirable.
- Let us fix a set of m solution features.
 A feature can be any property that discriminates between solutions
- We will use m indicator functions $l_i(x)$ that return value 1 iff the feature i is present in solution x.
- After a solution is found, the new objective function f' is redefined as

$$f'(x) = f(x) + \lambda \sum_{i=1}^{m} p_i \cdot l_i(x)$$

where

- $\lambda > 0$ is called the regularization parameter, and
- $p_i > 0$ are the penalty parameters

- To escape from local optima, Guided Local Search (GLS) dynamically changes the objective function so as to make them less desirable.
- Let us fix a set of m solution features.
 A feature can be any property that discriminates between solutions
- We will use m indicator functions l_i(x) that return value 1 iff the feature i is present in solution x.
- After a solution is found, the new objective function f' is redefined as

$$f'(x) = f(x) + \lambda \sum_{i=1}^{m} \rho_i \cdot I_i(x)$$

where

- $\lambda > 0$ is called the regularization parameter, and
- $p_i > 0$ are the penalty parameters

In pseudo-code:

```
s := generateInitialSolution()
s* := s
(p<sub>1</sub>, p<sub>2</sub>, ..., p<sub>m</sub>) := (0,0,...,0)
while termination conditions not met do
  (s, s<sub>f</sub>) := localSearch(s, f', f)
  if f(s<sub>f</sub>) < f(s*) then
      s* := s<sub>f</sub>
  update(s, p<sub>1</sub>, p<sub>2</sub>, ..., p<sub>m</sub>)
endwhile
```

- We explicitly keep two solutions
 - s, the current solution
 - s*, the best solution found so far with respect to f
- The local search procedure provides two solutions:
 - \bigcirc a solution s aimed at optimizing f'
 - 2 the best solution s_f with respect to f found in the local search

- The penalty parameters are updated as follows
- Each solution feature has a fixed cost ci
- Every time local search produces a new solution,
 GLS tries to penalize the features of this solution with highest cos
- Given a new solution s, the utility of penalizing a feature i is

$$Util(s,i) = I_i(s) \cdot \frac{c_i}{1 + p_i}$$

- When updating, for all features i such that Util(s, i) is maximum, we set p_i := p_i + 1.
- This scheme penalizes features with high cost c_i , but dividing by $1 + p_i$ prevents a feature from being repeatedly penalized.

- The penalty parameters are updated as follows
- Each solution feature has a fixed cost ci
- Every time local search produces a new solution,
 GLS tries to penalize the features of this solution with highest cost
- Given a new solution s, the utility of penalizing a feature i is

$$Util(s,i) = I_i(s) \cdot \frac{c_i}{1 + p_i}$$

- When updating, for all features i such that Util(s, i) is maximum, we set $p_i := p_i + 1$.
- This scheme penalizes features with high cost c_i , but dividing by $1 + p_i$ prevents a feature from being repeatedly penalized.

- The penalty parameters are updated as follows
- Each solution feature has a fixed cost c_i
- Every time local search produces a new solution,
 GLS tries to penalize the features of this solution with highest cost
- Given a new solution s, the utility of penalizing a feature i is

$$Util(s,i) = I_i(s) \cdot \frac{c_i}{1+p_i}$$

- When updating, for all features i such that Util(s, i) is maximum, we set $p_i := p_i + 1$.
- This scheme penalizes features with high cost c_i , but dividing by $1 + p_i$ prevents a feature from being repeatedly penalized.

Chapter 5. Metaheuristics

- 1 Introduction
 - Computationally difficult problems
 - Metaheuristics
- 2 Single-solution based metaheuristics
 - Basic Local Search
 - Simulated Annealing
 - Tabu Search
 - GRASE
 - Variable Neighborhood Search
 - Guided Local Search
- 3 Population-based metaheuristics
 - Genetic Algorithms

- At every iteration of the algorithm we deal with a set of solutions, which we refer to as individuals.
- This population of individuals evolves at each step by the following rules
 - New individuals are created by applying recombination, which crosses over two or more individuals (parents) to produce one or more new individuals (children or offspring).
 - Mutation allows that new traits appear in the offspring
 - Selection determines which individuals will be maintained into the next generation by evaluating their fitness, i.e. how good they are.
- This process can be iterated for a predefined number of generations
- On termination we return the best individual ever found

- At every iteration of the algorithm we deal with a set of solutions, which we refer to as individuals.
- This population of individuals evolves at each step by the following rules:
 - New individuals are created by applying recombination, which crosses over two or more individuals (parents) to produce one or more new individuals (children or offspring).
 - Mutation allows that new traits appear in the offspring
 - Selection determines which individuals will be maintained into the next generation by evaluating their fitness, i.e. how good they are.
- This process can be iterated for a predefined number of generations
- On termination we return the best individual ever found

- At every iteration of the algorithm we deal with a set of solutions, which we refer to as individuals.
- This population of individuals evolves at each step by the following rules:
 - New individuals are created by applying recombination, which crosses over two or more individuals (parents) to produce one or more new individuals (children or offspring).
 - Mutation allows that new traits appear in the offspring
 - Selection determines which individuals will be maintained into the next generation by evaluating their fitness, i.e. how good they are.
- This process can be iterated for a predefined number of generations
- On termination we return the best individual ever found

In pseudo-code:

```
P := generateInitialPopulation()
while termination conditions not met do
  Par := selectParents(P)
  P' := recombine(Par)
  P" := mutate(P')
  P := selectIndividuals(P" U P)
endwhile
```

- Genetic algorithms vary depending on:
 - the representation of the individuals
 - the selection strategy for parents
 - 3 the recombination (a.k.a. crossover) procedure
 - 4 the mutation operators
 - the selection strategy of individuals for the next generation

Representation of individuals

- Individuals are often represented using bit strings of fixed length
- They are also sometimes viewed as permutations of integer numbers

Selection strategy for parents

- Let us assume that for each individual s_i we have evaluated its fitness f_i
- The fitness is usually the value of the objective function, i.e., $f_i = f(s_i)$
- Roulette-wheel selection:

```
The probability to choose individual s_i is f_i / \sum_{j=1}^n f_j
```

Ranking selection

```
Sort all n individuals in increasing order of fitness.
The i-th individual in the sorted list gets rank i, for i=1,2,\ldots
The probability to select an individual x is 2 \cdot rank(x)/(n \cdot (n+1))
```

Tournament selection:

```
Choose k (the tournament size) individuals at random Choose the best individual from the tournament with probability p Choose the second best individual with probability p(1-p) Choose the third best individual with probability p((1-p)^2)
```

Selection strategy for parents

- Let us assume that for each individual s_i we have evaluated its fitness f_i
- The fitness is usually the value of the objective function, i.e., $f_i = f(s_i)$
- Roulette-wheel selection:

The probability to choose individual s_i is $f_i / \sum_{j=1}^n f_j$

Ranking selection:

Sort all n individuals in increasing order of fitness. The i-th individual in the sorted list gets rank i, for $i=1,2,\ldots$ The probability to select an individual x is $2 \cdot rank(x)/(n \cdot (n+1))$

Tournament selection:

Choose k (the tournament size) individuals at random Choose the best individual from the tournament with probability p Choose the second best individual with probability p(1-p) Choose the third best individual with probability $p((1-p)^2)$

Selection strategy for parents

- Let us assume that for each individual s_i we have evaluated its fitness f_i
- The fitness is usually the value of the objective function, i.e., $f_i = f(s_i)$
- Roulette-wheel selection:

The probability to choose individual s_i is $f_i / \sum_{j=1}^n f_j$

Ranking selection:

Sort all n individuals in increasing order of fitness. The i-th individual in the sorted list gets rank i, for $i=1,2,\ldots$ The probability to select an individual x is $2 \cdot rank(x)/(n \cdot (n+1))$.

Tournament selection:

Choose k (the tournament size) individuals at random Choose the best individual from the tournament with probability p. Choose the second best individual with probability p(1-p). Choose the third best individual with probability $p((1-p)^2)$.

Selection strategy for parents

- Let us assume that for each individual s_i we have evaluated its fitness f_i
- The fitness is usually the value of the objective function, i.e., $f_i = f(s_i)$
- Roulette-wheel selection:

The probability to choose individual s_i is $f_i / \sum_{j=1}^n f_j$

Ranking selection:

Sort all *n* individuals in increasing order of fitness.

The *i*-th individual in the sorted list gets rank *i*, for i = 1, 2, ...

The probability to select an individual x is $2 \cdot rank(x)/(n \cdot (n+1))$.

Tournament selection:

Choose k (the tournament size) individuals at random

Choose the best individual from the tournament with probability p

Choose the second best individual with probability p(1-p)

Choose the third best individual with probability $p((1-p)^2)$

...

Crossover

When individuals are encoded as bit strings:

- When individuals are encoded as permutations of integers:
- Order crossover:

- When individuals are encoded as permutations of integers:
- Order crossover:

To generate O_1 , take P_2 and from 1, 2, 3, 4, 5, 6, 7, 8, 9 remove $\{1, 8, 7, 6\}$. We obtain 2, 3, 4, 5, 9, which we use to fill O_1 .

- When individuals are encoded as permutations of integers:
- Order crossover:

$$P_1 = (4\ 5\ 2\ |\ 1\ 8\ 7\ 6\ |\ 9\ 3)$$
 Select two random cut points $P_2 = (1\ 2\ 3\ |\ 4\ 5\ 6\ 7\ |\ 8\ 9)$ $O_1 = (2\ 3\ 4\ |\ 1\ 8\ 7\ 6\ |\ 5\ 9\)$ $O_2 = (\ |\ 4\ 5\ 6\ 7\ |\)$

To generate O_1 , take P_2 and from 1, 2, 3, 4, 5, 6, 7, 8, 9 remove $\{1, 8, 7, 6\}$. We obtain 2, 3, 4, 5, 9, which we use to fill O_1 .

- When individuals are encoded as permutations of integers:
- Order crossover:

$$P_1 = (4\ 5\ 2\ |\ 1\ 8\ 7\ 6\ |\ 9\ 3)$$
 Select two random cut points $P_2 = (1\ 2\ 3\ |\ 4\ 5\ 6\ 7\ |\ 8\ 9)$ $O_1 = (2\ 3\ 4\ |\ 1\ 8\ 7\ 6\ |\ 5\ 9\)$ $O_2 = (\ |\ 4\ 5\ 6\ 7\ |\)$

To generate O_1 , take P_2 and from 1, 2, 3, 4, 5, 6, 7, 8, 9 remove $\{1, 8, 7, 6\}$. We obtain 2, 3, 4, 5, 9, which we use to fill O_1 .

To generate O_2 , take P_1 and from 4, 5, 2, 1, 8, 7, 6, 9, 3 remove $\{4, 5, 6, 7\}$. We obtain 2, 1, 8, 9, 3, which we use to fill O_2 .

- When individuals are encoded as permutations of integers:
- Order crossover:

$$P_1 = (452 | 1876 | 93)$$
 Select two random cut points $P_2 = (123 | 4567 | 89)$

$$O_1 = (2\ 3\ 4\ |\ 1\ 8\ 7\ 6\ |\ 5\ 9)$$

 $O_2 = (2\ 1\ 8\ |\ 4\ 5\ 6\ 7\ |\ 9\ 3)$

To generate O_1 , take P_2 and from 1, 2, 3, 4, 5, 6, 7, 8, 9 remove $\{1, 8, 7, 6\}$. We obtain 2, 3, 4, 5, 9, which we use to fill O_1 .

To generate O_2 , take P_1 and from 4, 5, 2, 1, 8, 7, 6, 9, 3 remove $\{4, 5, 6, 7\}$. We obtain 2, 1, 8, 9, 3, which we use to fill O_2 .

Partially-mapped crossover:

Partially-mapped crossover:

This induces mappings

$$\sigma(1) = 4, \quad \tau(4) = 1$$
 $\sigma(8) = 5, \quad \tau(5) = 8$
 $\sigma(7) = 6, \quad \tau(6) = 7$
 $\sigma(6) = 7, \quad \tau(7) = 6$

We can try to fill the leftmost and the rightmost parts of O_1 as P_1 . If i is already in the permutation, then put $\sigma(i)$ instead.

Similarly with O_2 using mapping τ .

Partially-mapped crossover:

$$P_1 = (1\ 2\ 3\ |\ 4\ 5\ 6\ 7\ |\ 8\ 9)$$
 Select two random cut points

$$P_2 = (452 \mid 1876 \mid 93)$$

$$O_1 = (423 | 1876 | 59)$$

$$O_2 = (182 | 4567 | 93)$$

This induces mappings

$$\sigma(1) = 4, \quad \tau(4) = 1$$

$$\sigma(8) = 5, \quad \tau(5) = 8$$

$$\sigma(7) = 6$$
, $\tau(6) = 7$

$$\sigma(6) = 7, \quad \tau(7) = 6$$

We can try to fill the leftmost and the rightmost parts of O_1 as P_1 . If i is already in the permutation, then put $\sigma(i)$ instead.

Similarly with O_2 using mapping τ .

• Cycle crossover:

$$P_1 = (\ 1 \ 6 \ 5 \ 9 \ 4 \ 8 \ 3 \ 7 \ 2 \ 10 \)$$

 $P_2 = (\ 3 \ 2 \ 7 \ 5 \ 6 \ 1 \ 10 \ 9 \ 4 \ 8 \)$

We will first compute $P_2 \circ P_1^{-1}$

To that end, let us view permutations as functions from $\{1, 2, ..., 10\}$ to $\{1, 2, ..., 10\}$ by writing a top ro

$$P_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 6 & 5 & 9 & 4 & 8 & 3 & 7 & 2 & 10 \end{pmatrix}$$

$$P_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 2 & 7 & 5 & 6 & 1 & 10 & 9 & 4 & 8 \end{pmatrix}$$

$$P_{1}^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 9 & 7 & 5 & 3 & 2 & 8 & 6 & 4 & 10 \end{pmatrix}$$

$$P_{2} \circ P_{1}^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 4 & 10 & 6 & 7 & 2 & 9 & 1 & 5 & 8 \end{pmatrix}$$

• Cycle crossover:

$$P_1 = (\ 1 \ 6 \ 5 \ 9 \ 4 \ 8 \ 3 \ 7 \ 2 \ 10 \)$$

 $P_2 = (\ 3 \ 2 \ 7 \ 5 \ 6 \ 1 \ 10 \ 9 \ 4 \ 8 \)$

We will first compute $P_2 \circ P_1^{-1}$

To that end, let us view permutations as functions from $\{1, 2, ..., 10\}$ to $\{1, 2, ..., 10\}$ by writing a top rov

$$P_{1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 6 & 5 & 9 & 4 & 8 & 3 & 7 & 2 & 10 \end{pmatrix}$$

$$P_{2} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 2 & 7 & 5 & 6 & 1 & 10 & 9 & 4 & 8 \end{pmatrix}$$

$$P_{1}^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 9 & 7 & 5 & 3 & 2 & 8 & 6 & 4 & 10 \end{pmatrix}$$

$$P_{2} \circ P_{1}^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 4 & 10 & 6 & 7 & 2 & 9 & 1 & 5 & 8 \end{pmatrix}$$

• Cycle crossover:

$$P_1 = (\ 1 \ 6 \ 5 \ 9 \ 4 \ 8 \ 3 \ 7 \ 2 \ 10 \)$$

 $P_2 = (\ 3 \ 2 \ 7 \ 5 \ 6 \ 1 \ 10 \ 9 \ 4 \ 8 \)$

We will first compute $P_2 \circ P_1^{-1}$

To that end, let us view permutations as functions from $\{1,2,\ldots,10\}$ to $\{1,2,\ldots,10\}$ by writing a top row.

$$P_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 6 & 5 & 9 & 4 & 8 & 3 & 7 & 2 & 10 \end{pmatrix}$$

$$P_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 2 & 7 & 5 & 6 & 1 & 10 & 9 & 4 & 8 \end{pmatrix}$$

$$P_1^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 9 & 7 & 5 & 3 & 2 & 8 & 6 & 4 & 10 \end{pmatrix}$$

$$P_2 \circ P_1^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 4 & 10 & 6 & 7 & 2 & 9 & 1 & 5 & 8 \end{pmatrix}$$

• Cycle crossover:

$$P_1 = (\ 1 \ 6 \ 5 \ 9 \ 4 \ 8 \ 3 \ 7 \ 2 \ 10 \)$$

 $P_2 = (\ 3 \ 2 \ 7 \ 5 \ 6 \ 1 \ 10 \ 9 \ 4 \ 8 \)$

We will first compute $P_2 \circ P_1^{-1}$

To that end, let us view permutations as functions from $\{1, 2, ..., 10\}$ to $\{1, 2, ..., 10\}$ by writing a top row.

$$P_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 6 & 5 & 9 & 4 & 8 & 3 & 7 & 2 & 10 \end{pmatrix}$$

$$P_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 2 & 7 & 5 & 6 & 1 & 10 & 9 & 4 & 8 \end{pmatrix}$$

$$P_1^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 9 & 7 & 5 & 3 & 2 & 8 & 6 & 4 & 10 \end{pmatrix}$$

$$P_2 \circ P_1^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 4 & 10 & 6 & 7 & 2 & 9 & 1 & 5 & 8 \end{pmatrix}$$

• Cycle crossover:

$$P_1 = (\ 1 \ 6 \ 5 \ 9 \ 4 \ 8 \ 3 \ 7 \ 2 \ 10 \)$$

 $P_2 = (\ 3 \ 2 \ 7 \ 5 \ 6 \ 1 \ 10 \ 9 \ 4 \ 8 \)$

We will first compute $P_2 \circ P_1^{-1}$

To that end, let us view permutations as functions from $\{1, 2, ..., 10\}$ to $\{1, 2, ..., 10\}$ by writing a top row.

$$P_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 6 & 5 & 9 & 4 & 8 & 3 & 7 & 2 & 10 \end{pmatrix}$$

$$P_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 2 & 7 & 5 & 6 & 1 & 10 & 9 & 4 & 8 \end{pmatrix}$$

$$P_1^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 9 & 7 & 5 & 3 & 2 & 8 & 6 & 4 & 10 \end{pmatrix}$$

$$P_2 \circ P_1^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 4 & 10 & 6 & 7 & 2 & 9 & 1 & 5 & 8 \end{pmatrix}$$

- Starting from 1 we move to 3, then to 10, then to 8, then back to 1: (1,3,10,8)
- Starting from 6 we move to 2, then to 4, then back to 6: (6,2,4)
- Starting from 5 we move to 7, then to 9, then back to 5: (5,7,9)

- Starting from 1 we move to 3, then to 10, then to 8, then back to 1: (1,3,10,8)
- Starting from 6 we move to 2, then to 4, then back to 6: (6,2,4)
- Starting from 5 we move to 7, then to 9, then back to 5: (5,7,9)

- Starting from 1 we move to 3, then to 10, then to 8, then back to 1: (1,3,10,8)
- Starting from 6 we move to 2, then to 4, then back to 6: (6,2,4)
- Starting from 5 we move to 7, then to 9, then back to 5
 (5,7,9)

- Starting from 1 we move to 3, then to 10, then to 8, then back to 1: (1,3,10,8)
- Starting from 6 we move to 2, then to 4, then back to 6: (6,2,4)
- Starting from 5 we move to 7, then to 9, then back to 5:
 (5,7,9)

• Let us mark in P_1 and P_2 the numbers of the cycles with different colors: (1,3,10,8), (6,2,4), (5,7,9).

$$P_1 = ($$
 1 6 5 9 4 8 3 7 2 10)
 $P_2 = ($ 3 2 7 5 6 1 10 9 4 8)

• Let us mark in P_1 and P_2 the numbers of the cycles with different colors: (1,3,10,8), (6,2,4), (5,7,9).

```
P_1 = ( 1 6 5 9 4 8 3 7 2 10 )
P_2 = ( 3 2 7 5 6 1 10 9 4 8 )
```

• Let us mark in P_1 and P_2 the numbers of the cycles with different colors: (1,3,10,8), (6,2,4), (5,7,9).

```
P_1 = ( 1 6 5 9 4 8 3 7 2 10 )
P_2 = ( 3 2 7 5 6 1 10 9 4 8 )
```

Now let us populate the offspring permutations O₁ and O₂

```
O_1 = (
O_2 = (
```

• Let us mark in P_1 and P_2 the numbers of the cycles with different colors: (1,3,10,8), (6,2,4), (5,7,9).

```
P_1 = ( 1 6 5 9 4 8 3 7 2 10 )
P_2 = ( 3 2 7 5 6 1 10 9 4 8 )
```

Now let us populate the offspring permutations O₁ and O₂

$$O_1 = ()$$
 $O_2 = ()$

• O_1 will place the elements of (1, 3, 10, 8) as in P_1 . O_2 will place them as in P_2

• Let us mark in P_1 and P_2 the numbers of the cycles with different colors: (1,3,10,8), (6,2,4), (5,7,9).

$$P_1 = (1 6 5 9 4 8 3 7 2 10)$$

 $P_2 = (3 2 7 5 6 1 10 9 4 8)$

Now let us populate the offspring permutations O₁ and O₂

• O_1 will place the elements of (1, 3, 10, 8) as in P_1 . O_2 will place them as in P_2

• Let us mark in P_1 and P_2 the numbers of the cycles with different colors: (1,3,10,8), (6,2,4), (5,7,9).

$$P_1 = ($$
 1 6 5 9 4 8 3 7 2 10)
 $P_2 = ($ 3 2 7 5 6 1 10 9 4 8)

Now let us populate the offspring permutations O₁ and O₂

- O_1 will place the elements of (1, 3, 10, 8) as in P_1 . O_2 will place them as in P_2
- O₁ will place the elements of (6,2,4) as in P₂.
 O₂ will place them as in P₁

• Let us mark in P_1 and P_2 the numbers of the cycles with different colors: (1,3,10,8), (6,2,4), (5,7,9).

$$P_1 = (1 6 5 9 4 8 3 7 2 10)$$

 $P_2 = (3 2 7 5 6 1 10 9 4 8)$

• Now let us populate the offspring permutations O_1 and O_2

$$O_1 = (1 2 6 8 3 4 10)$$

 $O_2 = (3 6 4 1 10 2 8)$

- O_1 will place the elements of (1,3,10,8) as in P_1 . O_2 will place them as in P_2
- O₁ will place the elements of (6,2,4) as in P₂.
 O₂ will place them as in P₁

• Let us mark in P_1 and P_2 the numbers of the cycles with different colors: (1,3,10,8), (6,2,4), (5,7,9).

$$P_1 = (1 6 5 9 4 8 3 7 2 10)$$

 $P_2 = (3 2 7 5 6 1 10 9 4 8)$

Now let us populate the offspring permutations O₁ and O₂

$$O_1 = (1 2 6 8 3 4 10)$$

 $O_2 = (3 6 4 1 10 2 8)$

- O_1 will place the elements of (1, 3, 10, 8) as in P_1 . O_2 will place them as in P_2
- O₁ will place the elements of (6,2,4) as in P₂.
 O₂ will place them as in P₁
- O₁ will place the elements of (5,7,9) as in P₁.
 O₂ will place them as in P₂.

If there were more cycles, we would keep alternating the order.

• Let us mark in P_1 and P_2 the numbers of the cycles with different colors: (1,3,10,8), (6,2,4), (5,7,9).

$$P_1 = (1 6 5 9 4 8 3 7 2 10)$$

 $P_2 = (3 2 7 5 6 1 10 9 4 8)$

Now let us populate the offspring permutations O₁ and O₂

$$O_1 = (1 2 5 9 6 8 3 7 4 10)$$

 $O_2 = (3 6 7 5 4 1 10 9 2 8)$

- O_1 will place the elements of (1, 3, 10, 8) as in P_1 . O_2 will place them as in P_2
- O₁ will place the elements of (6,2,4) as in P₂.
 O₂ will place them as in P₁
- O₁ will place the elements of (5,7,9) as in P₁.
 O₂ will place them as in P₂.

If there were more cycles, we would keep alternating the order.

Mutation operators

- Mutation introduces randomness to escape from local optima
- Typically, mutation is applied with less than 1% probability
- Examples
 - For bit strings: randomly flip the value of one bit
 - For permutations of integers:
 - swap two numbers
 - remove one number and insert it somewhere else
 - the same, but with a sequence of numbers

Mutation operators

- Mutation introduces randomness to escape from local optima
- Typically, mutation is applied with less than 1% probability
- Examples:
 - For bit strings: randomly flip the value of one bit
 - For permutations of integers:
 - swap two numbers
 - remove one number and insert it somewhere else
 - the same, but with a sequence of numbers

Selection of individuals for the next generation

- We use a fitness function to evaluate the quality of individuals (usually, the objective function)
- The best individuals are kept
- We may distinguish whether the individual is new or comes from the previous generation
- The population may have a fixed-size or change along the execution