Introduction
Applications
One transient change
Multiple transient changes
References

Detection of Multiple Transient Changes

Michael Baron¹ & Sergey V. Malov²

¹ American University, Washington DC, USA, baron@american.edu supported by NSF grant 1737960 and DARPA grant HR0011-18-C-0051

² St. Petersburg State University, St. Petersburg, Russia supported by RSF grant 20-14-00072

The International Chinese Statistical Association ICSA 2021 Applied Statistics Symposium September 12-15, 2021

Introduction: Transient changes

The distribution eventually returns to the initial form,

$$\begin{cases} X_1, \dots, X_a & \sim F \\ X_{a+1}, \dots, X_b & \sim G \\ X_{b+1}, \dots, X_n & \sim F \end{cases}$$

Goals: Detect the change; estimate a and b.

Tartakovsky (1987), Repin (1991), Guépié et al (2012), Noonan and Zhigljavsky (2020), Tartakovsky et al (2021) Transient changes may reappear at unknown moments,

$$\begin{cases} \boldsymbol{X}_{0:a_{1}} = X_{1}, \dots, X_{a_{1}} \sim F \\ \boldsymbol{X}_{a_{1}:b_{1}} = X_{a_{1}+1}, \dots, X_{b_{1}} \sim G \\ \boldsymbol{X}_{b_{1}:a_{2}} = X_{b_{1}+1}, \dots, X_{a_{2}} \sim F \\ \boldsymbol{X}_{a_{2}:b_{2}} = X_{a_{2}+1}, \dots, X_{b_{2}} \sim G \\ \dots & \dots & \dots \\ \boldsymbol{X}_{b_{K}:n} = X_{b_{K}+1}, \dots, X_{n} \sim F \end{cases}$$

Goals:

- Detect all changes
- estimate all a_k and b_k
- control familywise false
 alarm rates

Applications: Deregulated Energy Markets

Goals:

- (a) Working stochastic model \Rightarrow Monte Carlo simulation study \Rightarrow valuation of energy derivatives.
- (b) Forecast; predictive distribution of electricity prices for any given day.

 Baron et al (2001)

Applications: Genome coverage process

Reads attach to a chromosome at random locations.

Shifts occur in the coverage depth.

Other Applications

- Industrial process control
- Signal processing
- Image processing
- ► Target tracking

One transient change: maximum likelihood estimation

For $\theta = (a, b)$, the log-likelihood is

$$L(X; \theta) = \sum_{i=1}^{a} \log f(X_i) + \sum_{i=a+1}^{b} \log g(X_i) + \sum_{i=b+1}^{n} \log f(X_i)$$

$$\cong \sum_{i=a+1}^{b} \log \frac{g(X_i)}{f(X_i)}$$

Hence, the MLE of θ is $\widehat{\theta} = (\widehat{a}, \widehat{b}) = \arg\max_{a \leq b} (S_b - S_a)$, where $S_t = \sum_{i=1}^t \log \frac{g}{f}(X_i)$

In terms of the CUSUM process $W_t = S_t - \min_{i \le t} S_i$ with $\operatorname{Ker}(W) = \{t : W_t = 0\}$,

$$\widehat{b} = \arg \max W_t, \quad \widehat{a} = \max \left\{ \mathsf{Ker}(W) \cap [0, \widehat{b}) \right\}$$

LLR random walk and MLE

LLR random walk, CUSUM process, and MLE

Control of the false alarm rate

Decide between K=0 (no change) and K=1 (one change)?

Testing

$$H_0: rac{K=0}{ ext{all }m{X}_{0:n}\sim F}$$
 vs $H_1: rac{K=1}{m{X}_{a:b}\sim G}$ for some a,b where $m{X}_{k:m}:=(X_{k+1},\ldots,X_m)$.

► The log-likelihood ratio test statistic is

$$\Lambda = \log \frac{\max_{a < b} f(\boldsymbol{X}_{0:a}) g(\boldsymbol{X}_{a,b}) f(\boldsymbol{X}_{b:n})}{f(\boldsymbol{X}_{0:n})} = A(\hat{a}, \hat{b})$$

▶ Reject H_0 in favor of H_1 if $\Lambda \ge h$ for some threshold h, which controls the balance between the sensitivity and the rate of false alarms.

LLR random walk, CUSUM process, and MLE

Control of the false alarm rate

By the Doob's maximal inequality,

$$\mathbb{P}_{H_0}\{\max_{0 \le t \le n} W_t \ge h\} = \mathbb{P}_F\{\max_{0 \le t \le n} e^{W_t} \ge e^h\} \le e^{-h} \mathbb{E}_F(e^{W_n})$$

▶ Hence, the threshold $h = -\log \frac{\alpha}{\mathbb{E}_F(e^{W_n})}$ for the increment

$$A(\widehat{a}, \widehat{b}) = S_{\widehat{b}} - S_{\widehat{a}} = \max_{0 \le t \le n} W_t$$

controls the false alarm rate at level α ,

$$\mathbb{P}\{\text{false alarm}\} = \mathbb{P}\{\text{Type I error}\} = \mathbb{P}_F\{A(\widehat{a},\widehat{b}) \geq h\} \leq \alpha.$$

lacksquare Report a change-point if $A(\widehat{a},\widehat{b})\geq h$.

Known number of changes: maximum likelihood estimation

For $\theta = \{(a_k, b_k), k = 1, \dots, K\}$, K known, the log-likelihood is

$$L(X; \boldsymbol{\theta}) = \sum_{k=1}^{K} \sum_{i=a_k+1}^{b_k} \log \frac{g(X_i)}{f(X_i)}$$

Hence, the MLE of θ is

$$\widehat{\boldsymbol{\theta}} = \left\{ \widehat{\theta}_k \right\}_{k=1}^{k=K} = \left\{ (\widehat{a}_k, \widehat{b}_k) \right\}_{k=1}^{k=K} = \underset{a_1 < b_1 < \dots < a_k < b_K}{\arg \max} \sum_{k=1}^{K} (S_{b_k} - S_{a_k}),$$

which are K intervals of the biggest growth of S_t .

Some detected change-points may be false alarms. Or false adjustments.

Controlling the rate of false alarms

- Some detected change-points may be false alarms.
- $lacksquare [\widehat{a}_k,\widehat{b}_k]$ is a false alarm if $[\widehat{a}_k,\widehat{b}_k]\cap (\cup [a_j,b_j])=\varnothing$
- ► Goal: control the *familywise* rate of false alarms,

$$\mathsf{FAR} = \mathbb{P}\left\{ \cup_k \left([\widehat{a}_k, \widehat{b}_k] \ \cap \ (\cup_j [a_j, b_j]) \ = \ \varnothing \right) \right\} \ \leq \ \alpha$$

- ▶ A false adjustment occurs when $[\widehat{b}_k, \widehat{a}_{k+1}] \cap (\cup [b_j, a_{j+1}]) = \emptyset$
- ► Control $\mathbb{P}\left\{ \cup_k \left([\widehat{b}_k, \widehat{a}_{k+1}] \cap (\cup_j [b_j, a_{j+1}]) = \varnothing \right) \right\} \leq \beta$

Detection scheme with an unknown number of changes

Simultaneous detection of disorders and adjustments

- $\begin{array}{ll} \blacktriangleright & W_{\tau,t} = \text{CUSUM based on } S_{\tau+t} \text{, renewed at } \tau \\ & \widetilde{W}_{\tau,t} = \text{CUSUM based on } (-S_{\tau+t}) \text{, renewed at } \tau \end{array}$
- Detection times...

$$\begin{split} \tau_0 &= 0 \ , \\ \tau_k &= \inf\{t > \tau_{k-1} : W_{\tau_{k-1},t-\tau_{k-1}} \geq h_\alpha\} \wedge n \ , \text{ for odd } k, \\ h_\alpha &= -\log(\alpha \mathbb{E}_F^{-1}(e^{W_n})); \\ \tau_k &= \inf\{t > \tau_{k-1} : \widetilde{W}_{\tau_{k-1},t-\tau_{k-1}} \geq \widetilde{h}_\beta\} \wedge n \ , \text{ for even } k, \\ \widetilde{h}_\beta &= -\log(\beta \mathbb{E}_G^{-1}(e^{\widetilde{W}_n})). \end{split}$$

▶ Restarted and grounded CUSUM process $W_0^{(h)} = 0$,

$$W_t^{(h)} = \begin{cases} W_{\tau_{k-1}, t - \tau_{k-1}} & \text{if } k \leq 2K \text{ is odd,} \\ \widetilde{W}_{\tau_{k-1}, t - \tau_{k-1}} & \text{if } k \leq 2K \text{ is even} \end{cases} \quad \text{for } t \in (\tau_{k-1}, \tau_k]$$

For the last stopping time τ^* before n,

$$W_t^{(h)} = \begin{cases} W_{\tau^*,t-\tau^*} \text{ if } \tau^* \text{ is even,} \\ \widetilde{W}_{\tau^*,t-\tau^*} \text{ if } \tau^* \text{ is odd} \end{cases} \qquad \text{for } t \in (\tau^*,n]$$

- $ullet \
 u_k = \sup\left(\operatorname{Ker}(W_t^{(h)}) \cap [0, au_k) \right) = \operatorname{last} \operatorname{zero} \operatorname{of} W_t^{(h)} \operatorname{before} au_k$
- lacksquare $\theta_k = (a_k, b_k)$ is estimated by (ν_{2k-1}, ν_{2k}) for $k = 1, \dots, 2K$.

Detecting disorders with familywise $FAR \leq \alpha$ and detecting adjustments with familywise $FAR \leq \beta$.

No Bonferroni or Holm type correction is needed!

Estimation precision. How accurate are $\widehat{\theta}_k = (\widehat{a}_k, \widehat{b}_k)$?

Local estimators... For any $t \in [a_k, b_k]$, let

$$\tilde{a}_t = t - \operatorname*{arg\,min}_{0 \leq i \leq t} S_{t-i}$$
 and $\tilde{b}_t = t + \operatorname*{arg\,max}_{0 \leq i \leq n-t} \widetilde{S}_{t+i}$

These \tilde{a}_t and \tilde{b}_t are independent, with distributions

$$\mathbb{P}(\widetilde{b}_t = b + r) = \begin{cases} \widetilde{R}_{G,b-t}(0)R_{F,n-b}(0) & \text{for } r = 0 \\ \int_0^\infty \widetilde{R}_{G,b-t}(x)B_{F,r,n-b-r}(x)dx & \text{for } r > 0 \\ \int_0^\infty R_{F,n-b}(x)\widetilde{B}_{G,-r,b-t+r}(x)dx & \text{for } r < 0 \end{cases}$$

$$\mathbb{P}(\widetilde{a}_t = a + l) = \begin{cases} R_{F,a}(0)\widetilde{R}_{G,t-a}(0) & \text{for } l = 0 \\ \int_0^\infty \widetilde{R}_{G,\gamma-a}(x)B_{F,-l,a+l}(x)dx & \text{for } l < 0 \\ \int_0^\infty R_{F,a}(x)\widetilde{B}_{G,l,\gamma-a-l}(x)dx & \text{for } l > 0 \end{cases}$$

where

$$\begin{split} M_k &= \max(0, S_1, \dots, S_k), \\ \widetilde{M}_k &= \max(0, \widetilde{S}_1, \dots, \widetilde{S}_k) \\ R_{F,k}(x) &= \mathbb{P}_F(M_k \leq x), \\ \widetilde{R}_{F,k}(x) &= \mathbb{P}_F(\widetilde{M}_k \leq x) \\ B_{F,k,s}(y) dy &= \mathbb{P}_F(\underset{0 \leq i \leq k+s}{\operatorname{arg max}} S_i = k, S_k \in [y, y + dy)) \\ &= \mathbb{P}_F(W_k = 0, S_k \in [y, y + dy)) \mathbb{P}_F(M_s = 0) \\ \widetilde{B}_{G,k,s}(y) dy &= \mathbb{P}_G(\underset{0 \leq i \leq k+s}{\operatorname{arg max}} \widetilde{S}_i = k, \widetilde{S}_k \in [y, y + dy)) \\ &= \mathbb{P}_G(\widetilde{W}_k = 0, \widetilde{S}_k \in [y, y + dy)) \mathbb{P}_G(\widetilde{M}_s = 0). \end{split}$$

Uniform probability bounds

$$\sup_{t \in [a,b]} \mathbb{P}(\widetilde{b}_t = b + r)$$

$$\geq q_r = \begin{cases} \exp\left(-\sum_{m=1}^{\infty} \frac{1}{m} \left(\mathbb{P}_F\left(\sum_{j=1}^m Y_j \geq 0\right) + \mathbb{P}_G\left(\sum_{j=1}^m Y_j \leq 0\right)\right)\right) \text{ for } r = 0 \\ \int_0^{\infty} R_{F,\infty}(x) \widetilde{B}_{G,-r,\infty}(x) dx \text{ for } r < 0 \\ \int_0^{\infty} \widetilde{R}_{G,\infty}(x) B_{F,r,\infty}(x) dx \text{ for } r > 0 \end{cases}$$

$$\sup_{t \in [a,b]} \mathbb{P}(\tilde{a}_t = a + l)$$

$$\geq p_l = \begin{cases} \exp\left(-\sum_{m=1}^{\infty} \frac{1}{m} \left(\mathbb{P}_G\left(\sum_{j=1}^m Y_j \geq 0\right) + \mathbb{P}_F\left(\sum_{j=1}^m Y_j \leq 0\right)\right)\right) \text{ for } l = 0 \\ \int_0^\infty \widetilde{R}_{G,\infty}(x) B_{F,-l,\infty}(x) dx \text{ for } l < 0 \\ \int_0^\infty R_{F,\infty}(x) \widetilde{B}_{G,l,\infty}(x) dx \text{ for } l > 0 \end{cases}$$
Hinkley (1970)

Estimation precision

Now consider events

$$A_k = \bigcup_{j=1}^K [a_j, b_j) \cap [\nu_{2k-1}, \nu_{2k}) \neq \varnothing; \quad \text{with} \quad \mathbb{P}(\cap A_k) \geq 1 - \alpha$$

$$B_k = \bigcup_{j=1}^{K-1} [b_j, a_{j+1}) \cap [\nu_{2k}, \nu_{2k+1}) \neq \varnothing \quad \text{with} \quad \mathbb{P}(\cap B_k) \geq 1 - \beta$$

$$D_k = \bigcup_{j=1}^{n} [O_j, \alpha_{j+1}) + [D_{2k}, D_{2k+1}) \neq \emptyset$$
 with $\mathbb{I}(1 + D_k) \geq 1$

On A_k , there exists $t \in [a_j, b_j) \cap [\nu_{2k-1}, \nu_{2k})$ for some j.

On B_k , there exists $t \in [a_j, b_j) \cap [\nu_{2k}, \nu_{2k+1})$ for some j.

Hence, for each $k \in \{1, \dots, K\}$

$$\mathbb{P}(\inf_{j} |\hat{a}_{k} - a_{j}| > u) \le 1 - \sum_{u=u}^{u} p_{i} + \alpha \text{ for } 0 \le u \le \min\{a_{1}, n - a_{K}\}$$

$$\mathbb{P}(\inf_{j} |\hat{b}_{k} - b_{j}| > v) \le 1 - \sum_{v=v}^{v} q_{i} + \beta \text{ for } 0 \le v \le \min\{b_{1}, n - b_{K}\}$$

for all θ . One-sided probabilities are bounded as

$$\mathbb{P}(\inf_{j}(\hat{a}_{k} - a_{j}) > u) \leq 1 - \sum_{-a_{j}}^{u} p_{i} + \alpha, \qquad \mathbb{P}(\inf_{j}(\hat{a}_{k} - a_{j}) < -u) \leq 1 - \sum_{-u}^{n-a_{j}} p_{i} + \alpha,
\mathbb{P}(\inf_{j}(\hat{b}_{k} - b_{j}) > v) \leq 1 - \sum_{-b_{j}}^{v} q_{i} + \beta, \qquad \mathbb{P}(\inf_{j}(\hat{b}_{k} - b_{j}) < -v) \leq 1 - \sum_{-v}^{n-b_{j}} q_{i} + \beta.$$

- Baron, M., M. Rosenberg, and N. Sidorenko (2001). Electricity pricing: modeling and prediction with automatic spike detection. *Energy, Power, and Risk Management October 2001*, 36–39.
- Daley, T. and A. D. Smith (2014). Modeling genome coverage in single-cell sequencing. *Bioinformatics* 30(22), 3159–3165.
- Guépié, B. K., L. Fillatre, and I. V. Nikiforov (2012). Sequential detection of transient changes. *Sequential Analysis* 31(4), 528–547.
- Hinkley, D. V. (1970). Inference about the change-point in a sequence of random variables. *Biometrika* 57, 1–17.
- Noonan, J. and A. Zhigljavsky (2020). Power of the mosum test for online detection of a transient change in mean. *Sequential Analysis* 39(2), 269–293.
- Repin, V. G. (1991). Detection of a signal with unknown moments of appearance and disappearance. *Problemy Peredachi Informatsii* 27(1), 61–72.
- Tartakovskii, A. G. (1987). Optimal detection of random-length signals. *Problemy Peredachi Informatsii* 23(3), 39–47.
- Tartakovsky, A. G., N. R. Berenkov, A. E. Kolessa, and I. V. Nikiforov (2021). Optimal sequential detection of signals with unknown appearance and disappearance points in time. *IEEE Transactions on Signal Processing* 69, 2653–2662.

Thank you!