华中科技大学数字电路实验报告

专业 人工智能 班级 2202

日期

2024. 4. 1

成绩

实验组别

第 10

次实验 五

指导教师

潘晓明

学生姓名 秦明远

实验名称

篮球24s定时器设计

第一部分:实验预习报告(包括实验目的、意义,实验基本原理与方法,主要仪器设备,实 验方案与技术路线等)

- 一、实验目的
- 1. 熟悉各种常用 MSI 时序逻辑电路功能和使用方法。
- 2. 掌握多片 MSI 时序逻辑电路级联和功能扩展技术。
- 3. 学会 MSI 数字电路分析方法、设计方法、组装和测试方法。
- 二、实验原理与电路分析
- 1. 相关芯片介绍
- 1) BCD 七段显示译码器 CD4511 其中, \overline{LT} 为灯测试信号 (显示 8), \overline{BI} 为消隐信号 (不显示), \overline{LE} 为锁存信号

2) 集成计数器 74LS161

计数器功能表:

СР	CR	\overline{LD}	CP_T	CT_T	操作状态	
1	1	0	X	X	预置	
1	1	1	0	X	保持	
1	1	1	X	0	保持	
1	1	1	1	1	计数	
X	0	Х	Х	Х	清零	

3) 十进制可逆计数器 CC40192

图 5.22.2 同步加/减计数器引脚图

真值表:

CP_U	CP_D	TD CR		操作			
X	X	0	0	异步置数			
1	1	1	0	加计数			
1	1	1	0	减计数			
X	X	X	1	异步清零			

2. 设计思路和框图

3. 各部分电路设计

● 脉冲发生器

● 控制电路

● 进制递减计数器

● 整体电路

三、实验器材

一、大型邮件											
74HC 00	CC40 192	74HC 161	510Ω 电阻	LED 灯	NE55 5	CD45 11	5.1 kΩ电 阻	0.1 μF 电容	10 μF 电容	红色 LED	七段 数码 管
2片	2片	1片	5只	4只	1片	2片	2只	1只	1只	1只	2只

第二部分:实验过程记录(可加页)(包括实验原始数据记录,实验现象记录,实验过程发现的问题等)

一、完整电路图及其工作原理

最上面的两片CD4011完成译码并在数码管显示数字的功能,两片74HC192完成由时钟

信号传递来的递减计数功能。右边的74HC192完成10分频,将输入信号10HZ分频为1HZ,此外,电路中还有防抖以及计数到零的LED报警功能。

二、十位74x192的CP、Q0、Q1 几个波形的波形图

示波器操作:

- 1. 调整触发电平为2.5v
- 2. 调为边缘触发-上升沿触发

第三部分 结果与讨论(可加页)

思考题:

1. 对于 CD40192 芯片,当 \overline{LD} ,CR=0时,执行并行置数操作,它与 74HC161 的同步并行置数有何区别?

区别有二:一是 192 芯片此时为异步置数,而 161 则为同步置数;二是 192 是十进制计数器,而 161 则为十六进制计数器,也就是说,192 的置数端应为一个 0~9 之间的数,否则是没有意义的,而 161 则无此限制。