Molecular dynamics study of ideal polymer chains with variable persistence length

Short progress report

Yahor Paromau, Holger Merlitz

ITP@IPF

23.05.2023

Outline

Introduction

Experiment 1: Fully flexible chain

Experiment 2: Semi-flexible chain, vary persistence length

References

Definitions, notations, units

Mostly: following [Svaneborg and Everaers, 2020]

Units: LJ

Notations and definitions:

- Contour length: L
- ▶ End to End distance (ETE): \vec{R}
- Change of ETE: $[\Delta R(t)]^2 := [\vec{R}(t) \vec{R}(0)]^2$
- ► Friction coefficient of bead, viscosity: ζ [$\frac{\text{mass}}{\text{time}}$], η [$\frac{\text{mass}}{\text{time}*\text{distance}}$]
- subscript "b" to denote bead specific properties to distinguish these from Kuhn units:
 - ► Kuhn lenght, bond length: *I_K*, *I_b*
 - Number of Kuhn segments, number of beads: N_K , N_b
- Friction coefficient of center of mass: $\zeta_{CM} = N_b \zeta$
- ▶ Rouse relaxation time [Svaneborg and Everaers, 2020]:

$$au_R = rac{1}{3\pi^2} rac{\zeta_{CM} \langle R^2
angle}{k_B T} = rac{1}{3\pi^2} rac{\zeta N_b^2 I_b^2}{k_B T}$$

▶ Relaxation time of single bead: $\tau_0 = \frac{\tau_R}{N^2}$

Assumptions

Variation of 0.2% of I_b is neglectible [Svaneborg and Everaers, 2020] $\Rightarrow I_b = const$, $L = (N_b - 1)I_b = const$

...

Rouse model

$$\langle R^2 \rangle = N_b I_b^2 \tag{1}$$

$$g_4(t) := \langle (\Delta R(t))^2 \rangle = 2N_b I_b^2 (1 - \frac{8}{\pi^2} \sum_{p=1,3,...} e^{\frac{-tp^2}{\tau_R}})$$
 (2)

Experiment 1: Fully flexible chain Settings

Same potentials used as in [Svaneborg and Everaers, 2020, Section 2.1], except:

- ▶ Bending potential: $U_{bend}(\theta) = 0$
- Only bonded beads interract

Experiment 1: Fully flexible chain

au_R calculated analytically

System of 120 chains with 127 bonds; l_b =0.97. Compare simulation and Rouse model with τ_R calculated analytically.

Experiment 1: Fully flexible chain

τ_R as free parameter

System of 120 chains with 127 bonds; I_b =0.97. Compare simulation and Rouse model with τ_R estimated from fit of $g_4(t)$ to simulation data.

Experiment 1: Fully flexible chain

 au_R analytcal/free values

Analytical: $au_R = 520.64, \ au_0 = 0.032$ Free parameter: $au_R = 2136.5 \pm 155.2, \ au_0 = 0.130 \pm 0.009$

Experiment 2: Semi-flexible chain, vary persistence length Settings

Same potentials used as in [Svaneborg and Everaers, 2020, Section 2.1], except:

Only bonded beads interract

Experiment 2: Semi-flexible chain, vary persistence length Used equations

Kuhn length [Svaneborg and Everaers, 2020]:

$$I_{K} = I_{b} \frac{2\kappa + e^{-2\kappa} - 1}{1 - e^{-2\kappa}(2\kappa + 1)}$$
 (3)

Number of Kuhn segments:

$$N_K = \frac{L}{I_K} \tag{4}$$

Rouse time with assumption $\zeta_{CM} = \zeta N_K$:

$$\tau_R = \frac{1}{3\pi^2} \frac{\zeta_{CM} \langle R^2 \rangle}{k_B T} = \frac{1}{3\pi^2} \frac{\zeta N_K^2 I_K^2}{k_B T}$$
 (5)

Experiment 2: Semi-flexible chain, vary persistence length

ETE in equilibrium

Experiment 2: Semi-flexible chain, vary persistence length ETE vs Kuhn length

Experiment 2: Semi-flexible chain, vary persistence length $\langle [\Delta R(t)]^2 \rangle$

Experiment 2: Semi-flexible chain, vary persistence length $\langle [\Delta R(t)]^2 \rangle$ vs Rouse with τ_R analytically

Experiment 2: Semi-flexible chain, vary persistence length $\langle [\Delta R(t)]^2 \rangle$ vs Rouse with τ_R as free parameter

Experiment 2: Semi-flexible chain, vary persistence length

Analytical and empirical τ_0 vs Kuhn length

Problems and Questions

- 1. Eq. (5): Is the assumption correct? Intuitively: $\zeta_{CM} = \zeta_K N_K = \zeta \frac{N_b}{N_K} N_K = \zeta N_b$, but then [Svaneborg and Everaers, 2020, Eq. 15] is not proportional to N_K^2 .
- 2. Empirical τ_0 are with factor $\approx 10^3$ larger then theoretical, why?

References

[Svaneborg and Everaers, 2020] Svaneborg, C. and Everaers, R. (2020).

Characteristic time and length scales in melts of kremer–grest bead–spring polymers with wormlike bending stiffness.

Macromolecules, 53(6):1917-1941.