Space Charge vs. Dispersion as Contributions to Transverse Emittance Blow-up

at PS Injection Plateau

Simon Albright, Adrian Oeftiger

LIU PS Beam Dynamics WG meeting #12 8 March 2018

Motivation

Goal

Find optimal longitudinal emittance ϵ_z to minimise transverse emittances $\epsilon_{x,y}$ at end of PS injection plateau for high-brightness beams.

Opponents

- **1** small ϵ_z : space charge during injection plateau
- ② large ϵ_z : dispersion mismatch in PSB-PS transfer line (due to large momentum deviation δ_{rms})

MD Set-up

Based on last operational LHC25 cycle set-ups (Nov. 2017):

- PSB longitudinal blow-up achieves $\epsilon_z > 1.3 \, \text{eV} \, \text{s}$ via phase noise
- fix bunch length at largest possible value $B_L \approx 210 \, \text{ns}$
 - \longrightarrow adjust RF voltages in both PSB and PS
 - \rightarrow PSB: require h=2 in BSM¹ to fit recombination kicker time window
- \implies momentum spreads $\delta_{\rm rms}$ increase with longitudinal emittance ϵ_z

¹bunch shortening mode

MD Set-up

Based on last operational LHC25 cycle set-ups (Nov. 2017):

- PSB longitudinal blow-up achieves $\epsilon_z > 1.3 \, \text{eV} \, \text{s}$ via phase noise
- fix bunch length at largest possible value $B_L \approx 210 \, \text{ns}$
 - → adjust RF voltages in both PSB and PS
 - \rightarrow PSB: require h = 2 in BSM¹ to fit recombination kicker time window
- \implies momentum spreads δ_{rms} increase with longitudinal emittance ϵ_{z}
 - PS transverse tunes $Q_x \approx 6.19$ and $Q_y \approx 6.24$
 - single bunches produced from PSB ring 3
 - 2 variants tested with intensities $N = 1.6 \times 10^{12} \, \text{ppb}$ and $2 \times 10^{12} \, \text{ppb}$

¹bunch shortening mode

Measurements

Conclusive measurements on 24.11.2017 / and 28.11.2017 /:

- tomography at PSB extraction (C795) and PS injection (C185)
- transverse wire scans in PSB and PS (65_H_ROT and 85_V_ROT) at
 - → PSB extraction (C795)
 - → PS "in": injection plateau at C185
 - → PS "out": injection plateau at C1335²
- ⇒ calibration "out" vs. "in" wire scan:

"out" systematically too small by factor 1.1 for $\epsilon_{ exttt{x}}$ and 1.05 for $\epsilon_{ exttt{y}}$

²C1270 for 85_V_ROT on 28.11.2017 data because of profile problems

Calibration Factor: PS "Out" Wire Scan

Compare "in" and "out" wire scans in PS: PS MD logbook 15.09.2017 /

- PS 65_H_ROT wire scanner:
 - \longrightarrow "in" at C1750: $\epsilon_X = 2.502 \pm 0.04$ mm mrad
 - \longrightarrow "out" at C1750 with "in" at C185: $\epsilon_X = 2.26 \pm 0.03 \,\mathrm{mm}\,\mathrm{mrad}$
 - \Rightarrow 10% smaller "out" scan \Rightarrow calibration factor 1.1 for PS "out" $\epsilon_{\rm X}$
- PS 85_V_ROT wire scanner:
 - \rightarrow "in" at C1750: $\epsilon_x = 2.034 \pm 0.029 \,\mathrm{mm}\,\mathrm{mrad}$
 - \rightarrow "out" at C1750 with "in" at C185: $\epsilon_x = 2.134 \pm 0.018$ mm mrad
 - \Rightarrow 5% smaller "out" scan \Rightarrow calibration factor 1.05 for PS "out" ϵ_{y}
- scattering influence? Checked with PS 65_H_ROT:
 - \longrightarrow "out" at C1385 with "in" at C100: $\epsilon_x = 2.130 \pm 0.068 \,\mathrm{mm}\,\mathrm{mrad}$
 - \longrightarrow "out" at C1385 with "in" at C185: $\epsilon_x = 2.155 \pm 0.059 \,\mathrm{mm}\,\mathrm{mrad}$
 - \implies emittance growth due to scattering negligible, $\Delta\epsilon \lesssim 1\%$

Prepared Longitudinal Emittances

 $\epsilon_z = 1.6 \,\text{eV} \,\text{s} \, (28.11.)$

 $\epsilon_z = 2.6 \,\text{eV} \,\text{s} \, (28.11.)$

 $\epsilon_z = 1.9 \, \text{eV} \, \text{s} \, (24.11.)$

 $\epsilon_z = 2.3 \,\text{eV} \,\text{s} \, (24.11.)$

 $\epsilon_z = 2.6 \,\text{eV} \,\text{s} \, (24.11.)$

Investigated 2 Intensities

For each longitudinal emittance ϵ_z we tested 2 variants with intensities

- $N = 1.6 \times 10^{12} \text{ ppb } (\approx 2.3 \text{ injected turns}) \text{ and}$
- $N = 2 \times 10^{12} \text{ ppb } (\approx 3.0 \text{ injected turns})$

 \rightarrow intensities well calibrated for scanned ϵ_z !

Losses

Beam loss observations from BCT between C185 and C1335:

 \implies no significant dependency on intensity N

PSB Wire Scans

- prepared beams at PSB extraction have $\epsilon_{x,y} \sim \text{const} \checkmark$ (only $\epsilon_z = 1.9 \text{ eV}$ s case seems to be an outlier in horizontal plane)
 - ightarrow for $arepsilon_{ imes}$ deconv. approach remains const. while Gauss fit grows with $arepsilon_{z}$

Results 24.11.2017

Observations:

- significant horizontal blow-up for received $1.6\,\mathrm{eV}\,\mathrm{s} < \varepsilon_z < 2.3\,\mathrm{eV}\,\mathrm{s}$ between PSB and PS in \longrightarrow dispersive mismatch?
- vertical emittances match between PSB and PS in
- significant vertical blow-up between PS in and out, independent of ϵ_z and N?!

Results 24.11.2017

Observations:

- significant horizontal blow-up for received $1.6\,\mathrm{eV}\,\mathrm{s} < \varepsilon_z < 2.3\,\mathrm{eV}\,\mathrm{s}$ between PSB and PS in \longrightarrow dispersive mismatch?
- vertical emittances match between PSB and PS in
- significant vertical blow-up between PS in and out, independent of ϵ_z and N?!

Results 28.11.2017

Observations:

- vertical emittances match between PSB and PS in ✓
- significant horizontal blow-up between PSB and PS in
 - \longrightarrow why for small ϵ_z ?!

Results 28.11.2017

Observations:

- vertical emittances match between PSB and PS in ✓
- significant horizontal blow-up between PSB and PS in
 - \longrightarrow why for small ϵ_z ?!

Emittance Growth across PS Injection Plateau

Ignoring the "out" calibration factors (1.1 for ϵ_x and 1.05 for ϵ_y):

Observations for PS injection plateau:

- horizontal plane does not seem to be strongly affected
- ullet vertical plane depends on the measurement day but not on ϵ_z ?!
 - 24.11.: factor ≈ 1.1
 - 28.11.: factor ≈ 1.0

Emittance Growth across PS Injection Plateau

Ignoring the "out" calibration factors (1.1 for ϵ_x and 1.05 for ϵ_y):

Observations for PS injection plateau:

- horizontal plane does not seem to be strongly affected
- ullet vertical plane depends on the measurement day but not on ϵ_z ?!
 - 24.11.: factor ≈ 1.1
 - 28.11.: factor ≈ 1.0

Space Charge Tune Spreads

Gaussian tune spreads due to space charge integrate along machine:

$$\Delta Q_{x,y}^{\text{SC}} = -\frac{r_{p}\lambda_{\text{max}}}{2\pi\beta^{2}\gamma^{3}} \oint ds \frac{\beta_{x,y}(s)}{\sigma_{x,y}(s)\left(\sigma_{x}(s) + \sigma_{y}(s)\right)} \quad \text{with} \quad \sigma_{x} = \sqrt{\frac{\beta_{x}\epsilon_{x}}{\beta\gamma} + D_{x}^{2}\delta_{\text{rms}}^{2}}$$

 $\rightarrow \lambda_{\text{max}}$ based on longitudinal peak current (rescaled to BCT value)

cf. appendix to compare with PSB extraction figures for emittances and tomogram data

Space Charge Tune Spreads

Gaussian tune spreads due to space charge integrate along machine:

$$\Delta Q_{x,y}^{\text{SC}} = -\frac{r_{\rho}\lambda_{\text{max}}}{2\pi\beta^{2}\gamma^{3}} \oint ds \frac{\beta_{x,y}(s)}{\sigma_{x,y}(s) \left(\sigma_{x}(s) + \sigma_{y}(s)\right)} \quad \text{with} \quad \sigma_{x} = \sqrt{\frac{\beta_{x}\epsilon_{x}}{\beta\gamma} + D_{x}^{2}\delta_{\text{rms}}^{2}}$$

 $\rightarrow \lambda_{\text{max}}$ based on longitudinal peak current (rescaled to BCT value)

cf. appendix to compare with PSB extraction figures for emittances and tomogram data

Final Emittance after PS Injection Plateau

Using the LHC25 beams, the final transverse emittances at the end of the PS injection plateau look as follows:

Final Emittance after PS Injection Plateau

Using the LHC25 beams, the final transverse emittances at the end of the PS injection plateau look as follows:

Dispersion Mismatch: Optics Measurements (VincenzoF)

Measured dispersive mismatch evaluation

 Emittance growth from dispersion mismatch can be approximated to (~constant at every BPM location):

$$\frac{\Delta \epsilon_{x,y,geom}}{\epsilon_{0,x,y,geom}} = \frac{1}{2} \frac{\Delta D_{x,y}^{2} + (\beta_{x,y} \Delta D_{x,y}' + \alpha_{x,y} \Delta D_{x,y}')^{2}}{\beta_{x,y} \epsilon_{0,x,y,geom}} \left(\frac{\delta p}{p}_{rms}\right)^{2} \approx \frac{1}{2} \max \left(\frac{\Delta D_{x,y}^{2}}{\beta_{x,y}}\right) \frac{1}{\epsilon_{0,x,y,geom}} \left(\frac{\delta p}{p}_{rms}\right)^{2}$$

The term $\frac{1}{2} \max \left(\frac{\Delta D_{x,y}^2}{\beta_{x,y}} \right)$

is a constant and can be directly derived from

dispersion measurements at every BPM in the PS

Dispersion Mismatch Prediction from Emittance Growth

Dispersion mismatch as predicted by the measured emittance growth:

Observations:

- from $\epsilon_z \ge 1.9 \, \text{eV} \, \text{s} \, \left(\delta_{\text{rms}} \ge 1.2 \times 10^{-3} \right)$, prediction for dispersive mismatch seems constant around $\frac{1}{2} \, \text{max} \left| \Delta D_x^2 / \beta_x \right| \approx 0.3$
- ⇒ independent of approach to determine transverse emittance!
 - low ϵ_z (low δ_{rms} figures) feature more emittance growth

Dispersion Mismatch Prediction from Emittance Growth

Dispersion mismatch as predicted by the measured emittance growth:

Observations:

- from $\epsilon_z \ge 1.9 \, \text{eV} \, \text{s} \, \left(\delta_{\text{rms}} \ge 1.2 \times 10^{-3} \right)$, prediction for dispersive mismatch seems constant around $\frac{1}{2} \, \text{max} \left| \Delta D_x^2 / \beta_x \right| \approx 0.3$
- ⇒ independent of approach to determine transverse emittance!
 - low ϵ_z (low δ_{rms} figures) feature more emittance growth

Tune Diagrams: Space Charge Tune Spreads

- 24.11. data systematically shifted to lower values than 28.11. data
- \rightarrow emittance exchange in 24.11. case? (\rightarrow vertical blow-up)
- \Rightarrow large horizontal detuning for low ϵ_z could explain larger $\Delta \epsilon_x$ and correspondingly too large ΔD_x estimates! (C185: 15 ms might be enough for integer resonance blow-up)

Tune Diagrams: Space Charge Tune Spreads

- 24.11. data systematically shifted to lower values than 28.11. data
- \rightarrow emittance exchange in 24.11. case? (\rightarrow vertical blow-up)
- \Rightarrow large horizontal detuning for low ϵ_z could explain larger $\Delta \epsilon_x$ and correspondingly too large ΔD_x estimates! (C185: 15 ms might be enough for integer resonance blow-up)

Emittance Growth for BCMS (AlexH + VincenzoF)

Measured dispersive mismatch evaluation

The term $\frac{1}{2} \max \left(\frac{\Delta D_{x,y}^2}{\beta_{x,y}} \right)$ can be also derived (from the other side) from absolute emittance growth and $\delta p/p$ (rms) measurements, as:

$$\frac{1}{2} \max \left(\frac{\Delta D_{x,y}^{2}}{\beta_{x,y}} \right) = \frac{\Delta \epsilon_{x,y,geom}}{\left(\frac{\delta p}{p} \right)^{2}} = \frac{\Delta \epsilon_{x,y,norm}}{\beta_{rel} \gamma_{rel} \left(\frac{\delta p}{p} \right)^{2}}$$

Example (operational BCMS)

Conclusion & Next Steps

Extracting transverse emittances $\epsilon_{x,y} \approx 2 \, \text{mm mrad from PSB}$:

- ✓ established $\epsilon_{x,y}$ figures at end of injection plateau for LHC25 beams
- ✓ horizontal blow-up between PSB and PS injection depending on ϵ_z (dispersion mismatch) \Longrightarrow present for all ϵ_z though!
- \checkmark no horizontal blow-up dependance on ϵ_z across PS injection plateau
- ✓ vertical emittance match between PSB and PS injection
- \longrightarrow horizontal integer resonance could explain large $\Delta \epsilon_x$ figures!
- → dispersion mismatch estimate from blow-up: $\frac{1}{2}$ max $\left|\Delta D_x^2/\beta_x\right| \approx 0.3$ ⇒ consistent between LHC25 and operational BCMS beams

Next steps for 2018:

- → compare same set-up with BCMS beams (higher brightness!)
- \longrightarrow use ≈ 0 chromaticity, decoupled planes + TFB (avoid V blow-up!)
- \rightarrow dispersion-matched optics (Vincenzo): $\Delta \epsilon_x$? $\Rightarrow \frac{1}{2} \max |\Delta D_x^2/\beta_x|$?
- \implies finally compare between hollow and large ϵ_z parabolic bunches

Thank you for your attention!

Acknowledgements:

Vincenzo Forte, PSB and CPS OP teams

Longitudinal Phase Space

Matched area in PS is systematically lower by $\approx 15\%$ than in PSB (no quadrupolar longitudinal oscillation etc, i.e. longitudinally matched, transverse injection oscillations minimised):

 \implies exact figure depends on the actual ϵ_{7}

Transverse Tunes

Space Charge Tune Spreads (Comparing to PSB)

Space Charge Tune Spreads (Comparing to PSB)

