

工科数学分析

刘青青

§2.4 极限的性质

- ▶ 唯一性
- ▶ 局部有界性
- ▶ 局部保号性
- ▶ 局部保序性
- ▶ 两边夹法则
- ▶ 重要极限 $\lim_{x\to 0} \frac{\sin x}{x}$

定理 (函数极限的唯一性)

若极限 $\lim_{x\to a} f(x)$ 存在, 则极限值唯一.

定理 (数列极限的唯一性)

若极限 $\lim_{n\to\infty} x_n$ 存在,则极限值唯一.

局部有界性

定理 (有极限函数的局部有界性)

若极限 $\lim_{x\to a} f(x)$ 存在, 则 f(x) 在 a 的某个空心邻域上有界.

定理 (有极限数列的有界性)

若极限 $\lim_{n\to\infty} x_n$ 存在, 则数列 $\{x_n\}$ 有界.

局部保号性

定理 (有极限函数的局部保号性)

► 若极限 $\lim_{x\to a} f(x) = A > 0$,

$$f(x) > r > 0.$$

则 $\forall 0 < r < A, \exists \delta > 0$, 使得当 $0 < |x - a| < \delta$ 时, 恒有

▶ 若极限 $\lim_{x\to a} f(x) = A < 0$,

则
$$\forall A < r < 0, \exists \delta > 0$$
, 使得当 $0 < |x - a| < \delta$ 时, 恒有
$$f(x) < r < 0.$$

局部保号性

定理(数列极限的局部保号性)

▶ 若极限 $\lim_{n\to\infty} x_n = A > 0$,
则 $\forall 0 < r < A, \exists N > 0$, 使得当 n > N 时, 恒有 $x_n > r > 0$.

ightharpoonup若极限 $\lim_{n \to \infty} x_n = A < 0$, 则 $\forall A < r < 0$, $\exists N > 0$, 使得当 n > N 时, 恒有 $x_n < r < 0$.

定理 (函数极限的保序性)

设 $\lim_{x\to a} f(x)$ 和 $\lim_{x\to a} g(x)$ 都存在,

且在 a 的某个空心邻域上恒有 $f(x) \leq g(x)$,则

$$\lim_{x \to a} f(x) \leqslant \lim_{x \to a} g(x).$$

▶ 注:定理中的 ≤ 不能改为 <。

定理(数列极限的保序性)

设 $\lim_{n\to\infty} x_n$ 和 $\lim_{n\to\infty} y_n$ 都存在,

且存在 N > 0, 使得当 n > N 时, 恒有 $x_n \leq y_n$, 则

$$\lim_{n\to\infty} x_n \leqslant \lim_{n\to\infty} y_n.$$

▶ 注:定理中的 ≤ 不能改为 <。

定理 (函数极限的两边夹法则)

若在a的某个空心邻域内恒有

$$g(x) \leqslant f(x) \leqslant h(x)$$

且

$$\lim_{x \to a} g(x) = \lim_{x \to a} h(x),$$

则 $\lim_{x\to a} f(x)$ 存在且

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = \lim_{x \to a} h(x).$$

两边夹法则

定理(数列极限的两边夹法则)

设 $\{x_n\}$, $\{y_n\}$ 和 $\{z_n\}$ 是三个数列.

若存在N > 0,使得当n > N时,恒有

$$y_n \leqslant x_n \leqslant z_n$$
,

且

$$\lim_{n\to\infty} y_n = \lim_{n\to\infty} z_n,$$

则 $\lim_{n\to\infty} x_n$ 存在且

$$\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = \lim_{n\to\infty} z_n.$$

例

求下列极限:

$$\begin{split} &\lim_{x\to 0} x \left[\frac{1}{x}\right], \quad [a] \ \& \, \mathrm{示} \, \mathrm{不 } \, \mathrm{超} \, \mathrm{i} a \, \mathrm{o} \, \mathrm{最 } \, \mathrm{大} \, \mathrm{整} \, \mathrm{y}, \\ &\lim_{n\to \infty} \left(\frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \cdots + \frac{1}{\sqrt{n^2+n}}\right), \\ &\lim_{n\to \infty} \frac{1\cdot 3\cdots (2n-1)}{2\cdot 4\cdots (2n)}, \\ &\lim_{n\to \infty} \sqrt[\eta]{a^n+b^n+c^n}, \quad \mathrm{其} \, \mathrm{e} \, a > b > c > 0. \end{split}$$

定理

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

例

求下列极限:

$$\lim_{x \to \infty} \frac{\sin x}{x}, \qquad \lim_{x \to 0} \frac{\sin ax}{x},$$

$$\lim_{x \to \infty} x \sin \frac{1}{x}, \qquad \lim_{x \to 0} \frac{\arcsin x}{x},$$

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2}, \qquad \lim_{x \to a} \frac{\sin x - \sin a}{x - a}.$$

作业:

- ▶ 习题 2.4 (A)
 - 3.
 - 5. (3) (9)
 - 习题 2.4 (B)
 - 4. (4)
 - 5. (1) (2)

