Digital Systems

Arithmetics and binary codes

1.	Perform	the	foll	owing	operations:
----	---------	-----	------	-------	-------------

```
(a) 1011_{(2)} + 101_{(2)}
```

(b)
$$101011_{(2)} + 1110_{(2)}$$

(c)
$$940_{(16)} + A3_{(16)}$$

(d)
$$1001_{(2)} * 0101_{(2)}$$

2. Represent the following numbers in 2's complement, with 8 bits:

```
(a) 86_{(10)}
```

(b)
$$-86_{(10)}$$

(c)
$$11010_{(2)}$$

(d)
$$31_{(10)} - 8_{(10)}$$
 (perform the calculations using 2's complement representation)

(e)
$$-101_{(10)} - 99_{(10)}$$
 (perform the calculations using 2's complement representation)

3. What is the number (base 10) that corresponds to:

```
(a) 00001011_{(C2)}
```

(b)
$$101111110_{(C2)}$$

(c)
$$11100010_{(C2)}$$

4. What is the Natural Binary Code (NBC) of minimum length of numbers 31 and 1467.

5. Convert the following number to BCD

- (a) $6023_{(10)}$
- (b) $12.5_{(10)}$
- (c) $9.81_{(10)}$
- (d) 1101001₍₂₎

6. Convert the following numbers to decimal (base 10) and binary:

- (a) $110100010010011_{(BCD)}$
- (b) $10001010101_{(BCD)}$
- 7. Build the 5 bit Gray code.