

Talaria TWO™

Ultra-Low Power Wi-Fi 802.11 b/g/n
BLE 5.0 Plus Advanced Features & Long-Range

Arm Cortex-M3 MCU

Talaria TWO™ Module and SoC Datasheet

Application Product Numbers:

INP1010, INP1011, INP1012, INP1013, INP1014, INP1015 and INP2045 SoC

InnoPhase, Inc. 6815 Flanders Drive San Diego, CA 92121

innophaseinc.com

Revision History

Version	Date	Comments
1.0	05-15-2020	Internal Draft.
2.0	06-30-2020	Initial Publication.
2.1	07-10-2020	Section 9: Storage Conditions. Storage period changed to 12 months
		from 6 month.
2.2	07-29-2020	Section 18.3: 802.11g Output Power changed to 15.5dBm from
		15.0dBm.
		Section 18.4:802.11n Output Power changed to 12.5dBm from
		13.0dBm.
2.3	08-11-2020	Section 19: Currents updated with 3-lot data.
2.4	09-1-2020	Section 17: Inserted Advanced Security Elements
		Updated Wi-Fi EVM and Rx Sensitivity in Section 16
		Updated INP1010 & INP1011 Ordering Part Numbers in section 6.
3.0	01-15-2021	Updates to add INP1012 and INP1013 mini modules.
		Included SPI Master details.
		Updated Peripheral Signal Mapping table.
3.1	02-20-2021	Added INP1012 Schematic
		Added antenna dimensions on INP1013 dimensions
		GPIO LOW for lowest power Sleep Mode in note – sections 12.2 and
		18.1.
4.0	05-06-2021	Add sections supporting INP2045 Chip. Updated module schematics.
5.0	11-30-2021	Add INP1014 and INP1015 module information
		Added SDIO peripheral information in Section 13
		Updated Section 18.5 with BLE RF Data.
6.0	06-09-2022	Updated to remove channel 14 mentions since Talaria TWO does not
		support operation in this channel. Added TELEC certification.
		Increased max. Input Supply Current to 500mA. Set Sleep Mode
		Current to 19uA.
6.1	06-21-2022	Amended ADC details (Section 14) to state 12-bit (10-bit effective).
		Added clarification that VDDIO is an output (Section 10).
6.2	06-29-2022	Updated center ground pads numbering on Section 11 Module Pin-
		Out diagrams and table. Updated Section 13.1 UART baud-rate max to
		921600.

Contents

1	Fig	ures	. 4
2		oles	
3	Ter	ms & Definitions	. 6
4		erview	
4.1	L	Module Images	.8
4.2	2	Evaluation Board Images	.9
5	Key	/ Features	10
6	Par	t Numbers and Revision History	11
7		odule Dimensions	
7.1	L	INP1010 and INP1011	12
7.2	2	INP1012	13
7.3	3	INP1013	14
7.4	ļ	INP1014	15
7.5	5	INP1015	16
8	Abs	solute Maximum Ratings	17
9		rage Conditions	
10		erating Conditions	
11		odule Pin-outs	
12		IO Specifications & Requirements	
12	.1	Digital I/O Specifications	
12	.2	Peripheral Signal Mapping	20
13	Per	ripheral Interface Specifications & Timing Diagrams	21
13	.1	UART	21
13	.2	Console UART	21
13	.3	SPI Slave	21
13	.4	SPI Master (Software Implementation)	22
13	.5	SDIO	22
13	.6	12C	22
13	.7	12S	
13	.8	PWM	
13	.9	JTAG/SWD	23
14	Ana	alog to Digital Converter (ADC) Specifications	24
15		-Fi Features	
16		Features	
17	Adv	vanced Security Elements	26
17	.1	Hardware Crypto Engines	26
17	.2	Additional Hardware Security Capabilities	26
17	.3	Software Security Features	26

18	DC	& RF Characteristics	27
18	3.1	General DC Characteristics	27
18	3.2	DC & RF Characteristics Wi-Fi 802.11b 2.4GHz	28
18	3.3	DC & RF Characteristics Wi-Fi 802.11g 2.4GHz	29
18	3.4	DC & RF Characteristics Wi-Fi 802.11n 2.4GHz	30
18	3.5	DC & RF Characteristics BLE	31
19	Pov	wer Schemes	33
19	9.1	Power-Up Timing Diagrams	33
19	9.2	Wakeup Timing Detail	34
19	9.3	Reset Timing Diagrams	34
20	Mc	odule Schematics	35
20).1	INP1010 Module Schematics	35
20	0.2	INP1011 Module Schematics	36
20	0.3	INP1012 Module Schematics	37
20).4	INP1013 Module Schematics	38
20).5	INP1014 Module Schematics	39
20	0.6	INP1015 Module Schematics	40
21	Red	commended PCB Landing Pad Pattern	41
21	l.1	INP1010 and INP1011 Landing Pad Pattern	41
21	L.2	INP1012 Landing Pad Pattern	42
21	L.3	INP1013 / INP1014 / INP1015 Landing Pad Pattern	43
22		commended Reflow Profile	
23		HS and REACH Compliance	
24	Pac 1.1	cking Details	
		INP1010 and INP1011 PackingINP1012 Packing	
	1.2	-	
	1.3	INP1013 and INP1014 Packing	
25 26		P2045 SoC Part NumberP2045 SoC Block Diagram	
27		22045 SoC Chip Pin Out and Dimensions	
28		22045 SoC Pin Description	
29	INF	2045 SoC Electrical	
29	9.1	Clocks and Timers	53
29	9.2	INP2045 SoC ESD Ratings	54
30		22045 SoC Chip Reflow Profile	
31		P2045 SoC Packing	
32 22		oport	
33	υIS	claimers	Dδ

1 Figures

Figure 1: INP101x modules	8
Figure 2: INP301x EVB-A Board with INP101x module board installed	9
Figure 3: INP1010/11 module dimensions	. 12
Figure 4: INP1012 module dimensions	. 13
Figure 5: INP1013 module dimensions	. 14
Figure 6: INP1014 module dimensions	. 15
Figure 7: INP1015 module dimensions	. 16
Figure 8: INP101x module pin-outs	. 18
igure 9: Power-up	. 33
Figure 10 - Reset Timing Diagram	. 34
Figure 11: INP1010 Module Schematics	. 35
Figure 12: INP1011 Module Schematics	. 36
Figure 13: INP1012 Module Schematics	. 37
Figure 14: INP1013 Module Schematics	. 38
Figure 15: INP1014 Module Schematics	. 39
Figure 16: INP1015 Module Schematics	. 40
Figure 17: PCB Landing Pad Pattern - INP1010/11	. 41
Figure 18: PCB Landing Pad Pattern - INP1012	. 42
Figure 19: PCB Landing Pad Pattern - INP1013	. 43
Figure 20: Recommended Reflow Profile	. 44
Figure 21: INP1010 and INP1011 Packing	. 45
Figure 22: INP1012 - Packing details	. 47
Figure 23: INP1013/14 - Packing details	. 49
Figure 24: INP2045 SoC Block Diagram	. 50
Figure 25: INP2045 SoC Chip Pin Out and Dimensions	. 51
Figure 26: 40MHz Crystal Connections	. 53
Figure 27: 32kHz Crystal Connections	. 54
Figure 28: INP2045 SoC Chip Reflow Profile	. 55
Figure 29: INP2045 SoC Packing	. 56

2 Tables

Table 1: Part numbers with revision history	11
Table 2: Absolute maximum ratings	17
Table 3: Operating conditions	17
Table 4: INP101x module pin-out details	18
Table 5: Digital I/O specifications	19
Table 6: Peripheral Signal Mapping	20
Table 7: UART specifications	21
Table 8: Console UART specifications	21
Table 9: SPI Slave specifications	21
Table 10: SPI Master Specification	22
Table 11: SDIO Specification	22
Table 12: I2S Specification	23
Table 13: PWM Specification	23
Table 14: Wi-Fi Features	24
Table 15: BLE Features	25
Table 16: Hardware Crypto Engines	26
Table 17: Software Security Features	26
Table 18: General DC Characteristics	27
Table 19: DC & RF Characteristics Wi-Fi 802.11b 2.4GHz – 1Mbps	28
Table 20: DC & RF Characteristics Wi-Fi 802.11g 2.4GHz - 6Mbps	29
Table 21: DC & RF Characteristics Wi-Fi 802.11n 2.4GHz - 6.5Mbps	30
Table 22: DC & RF Characteristics BLE	31
Table 23: Technology with test case details	32
Table 24: Power-up timings diagrams	33
Table 25: Recommended Reflow Condition	44
Table 26: INP1010/11 - Packing details	45
Table 27: INP2045 SoC Part Number	50
Table 28: INP2045 SoC Pin Description	52
Table 29: Clock conditions and details – 40MHz	53
Table 30: Clock conditions and details – 32MHz	54
Table 31: INP2045 SoC ESD Ratings	54

3 Terms & Definitions

ADC Analog to Digital Convertor

BLE Bluetooth Low Energy

DMA Direct Memory Access

EVM Error Vector Magnitude

GAP Generic Access Profile

GATT Generic Attribute Profile

GPIO General-Purpose Input/Output

HAPI Host Application Programming Interface

JTAG Joint Test Action Group

MCU Microcontroller Unit

PHY Physical Layer

RTC Remote Time Clock

SDIO Secure Digital Input Output

SPI Serial Peripheral Interface

SWD Serial Wire Debug

UART Universal Asynchronous Receiver-Transmitter

4 Overview

The INP1010/INP1011/INP1012/INP1013/INP1014/INP1015 Talaria TWO modules are complete solutions with integrated wireless connectivity plus microcontroller for edge-of-network IoT designs. They use InnoPhase's award-winning Talaria TWO™ Multi-Protocol System on Chip (INP2045 SoC) with Wi-Fi and BLE5 for wireless data transfer, an embedded Arm Cortex-M3 for system control and user applications plus advanced security elements for device safeguards.

The Talaria TWO's unique digital polar radio architecture makes the modules the world's lowest power Wi-Fi solutions. It also provides BLE connectivity for Wi-Fi provisioning, diagnostics and other local communication. The integrated solution is ideally suited for battery-based, direct-to-cloud devices such as smart door locks, remote security cameras and connected sensors.

The Talaria TWO modules have either a printed PCB antenna (INP1010/INP1014), a U.FL antenna connector (INP1011/INP1015), an RF pin connector (INP1012), or a ceramic antenna (INP1013). The modules will include Wi-Fi Alliance, Bluetooth SIG, FCC, IC (Canada), CE, and TELEC*. Each module has an associated EVB-A evaluation board (INP3010/INP3011/INP3012/INP3013/INP3014/INP3015 respectively) — see the Talaria TWO EVB-A User Guide available at innophaseinc.com/talaria-two-modules for more information.

^{*} Only for INP1014 and INP1015 modules

4.1 Module Images

INP1010 (w/ PCB Antenna)

INP1011 (w/ U.FL Connector)

INP1012 (w/ RF Pad)

INP1013 (w/ U.FL Connector)

INP1014 (w/ PCB Antenna)

INP1015 (w/ U.FL Connector)

Figure 1: INP101x modules

4.2 Evaluation Board Images

Figure 2: INP301x EVB-A Board with INP101x module board installed

(Includes INP1014 module with PCB

Antenna)

(Includes INP1015 module with SMA

Antenna (External))

5 Key Features

- 1. Ultra-low power 2.4GHz 802.11 b/g/n Wi-Fi connectivity
- 2. Support for WPA2 (Personal & Enterprise) and WPA3
- 3. DTIM10 at 57uA enables Wi-Fi connected battery-based applications
- 4. Full stack including MQTT, mbedTLS for supporting IoT Direct-to-Cloud for a variety of cloud services (AWS, Azure, Google Cloud, IBM Watson, etc.)
- 5. BLE5.0 w/ Advanced Features LE Coding/FEC (Long-Range), 2M PHY, Extended Advertising
- 6. Supports Wi-Fi Provisioning over BLE and local device management, plus BLE to Wi-Fi bridging
- 7. Bluetooth GATT/GAP Profile support, and HCI interface option for host MCU-based BLE profile stacks
- 8. Advanced security features including Secure Boot, PUF (Physically Unclonable Function) and hardware Crypto Engines
- 9. Embedded 80MHz Arm Cortex-M3 w/ 512KB SRAM and 2MB Flash
- 10. Host Interface over SPI or UART using InnoPhase HIO API (HAPI) C library or AT Commands
- 11. Eleven (11) configurable GPIO plus Tx Console port (on GPIO17)
- 12. Dedicated ADC Input pin
- 13. Integrated clocks and power management only a single 3.3V supply needed
- 14. PCB antenna, U.FL antenna connector, RF Pin, and ceramic antenna options

6 Part Numbers and Revision History

Manufacturer	Revision	Description						
Part Number								
INP1010	A1	Talaria TWO module, PCB Antenna, Production						
INPIOIO	A2	Production, Hibernate Mode Enabled						
INP1011	A2	Talaria TWO module, U.FL Antenna Connector, Production						
INPIOII	A3	Production, Hibernate Mode Enabled						
INP1012	A1	Talaria TWO mini-module, RF Pin Antenna Connector, Production						
INP1013	A1	Talaria TWO mini-module, Ceramic Antenna, Production						
INP1014	A1	Talaria TWO mini-module, PCB Antenna, Production						
INP1015	A1	Talaria TWO mini-module, U.FL Antenna Connector, Production						
		Evaluation Board (EVB-A) w/ INP1010 module, PCB Antenna (see						
INP3010	A2	separate User Guide for Talaria TWO EVB-A Evaluation Board for						
		more information at innophaseinc.com/talaria-two-modules#doc)						
		Evaluation Board (EVB-A) w/ INP1011 module, U.FL Antenna						
INP3011	A2	Connector (see separate User Guide for Talaria TWO EVB-A						
INPOUL	AZ	Evaluation Board for more information at innophaseinc.com/talaria-						
		two-modules#doc)						
		Evaluation Board (EVB-A) w/ INP1012 module, RF Pin Antenna						
INP3012	A1	Connector (see separate User Guide for Talaria TWO EVB-A						
1111 3012	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Evaluation Board for more information at innophaseinc.com/talaria-						
		two-modules#doc)						
		Evaluation Board (EVB-A) w/ INP1013 module, Ceramic Antenna (see						
INP3013	A1	separate User Guide for Talaria TWO EVB-A Evaluation Board for						
		more information at innophaseinc.com/talaria-two-modules#doc)						
		Evaluation Board (EVB-A) w/ INP1014 module, PCB Antenna (see						
INP3014	A1	separate User Guide for Talaria TWO EVB-A Evaluation Board for						
		more information at innophaseinc.com/talaria-two-modules#doc)						
		Evaluation Board (EVB-A) w/ INP1015 module, U.FL Antenna						
INP3015	A1	Connector (see separate User Guide for Talaria TWO EVB-A						
1141 3013	71	Evaluation Board for more information at innophaseinc.com/talaria-						
		two-modules#doc)						

Table 1: Part numbers with revision history

7 Module Dimensions

7.1 INP1010 and INP1011

Units in mm

Figure 3: INP1010/11 module dimensions

7.2 INP1012

Figure 4: INP1012 module dimensions

7.3 INP1013

Figure 5: INP1013 module dimensions

7.4 INP1014

Figure 6: INP1014 module dimensions

7.5 INP1015

Figure 7: INP1015 module dimensions

8 Absolute Maximum Ratings

Para	meter	Min.	Max.	Unit
Storage Temperatur	re .	-40	+125	°C
Supply Voltages	V_3.3V	-0.3	4.0	V
RF Signal Input (INP	1011 Module Only)		+10	dBm

Table 2: Absolute maximum ratings

9 Storage Conditions

Product is applicable to MSL3 based on JEDEC Standard J-STD-020. Product should be used within 12 months after receipt. If used after 12 months, the solderability should be confirmed. After the packing is opened, the product shall be stored at <30deg.C / <60%RH and the product shall be used within 168 hours, after this timeframe the product should be baked at 125°C for 24 hours. The products shall be baked on the heat-resistant tray as the shipment tray is not a heat-resistant, bakeable tray.

10 Operating Conditions

Parameter		Min.	Typical	Max.	Unit
Operating Temperature		-40	25	+85	°C
Input Supply Voltage Range	V_3.3V	2.6		3.6	V
Input Supply Specification Voltage Range ¹	V_3.3V _{op}	3.0		3.6	V
Input Supply Current (Tx Mode)	I _{V_3.3V}		190	500	mA
VDDIO Voltage (Output)	VDDIO	2.5		3.0 ²	V
VDDIO Current (Supply)	VDDIO _{lmax}			20 ³	mA
Chip Enable ⁴	EN_CHIP		3.3		V

Table 3: Operating conditions

Notes:

- 1. Recommended operational voltage range
- 2. Input Supply Voltage (V_3.3V) level must be ≥ 3.15V to achieve maximum 3.0V VDDIO voltage
- 3. $20mA max. (@ V_3.3V = 3.0V to 3.6V)$
- 4. Chip enable must be held high for operating mode, either through external pullup resistor to V_3.3V or through GPIO connection to external device (For example: MCU or RTC)

11 Module Pin-outs

Figure 8: INP101x module pin-outs

Note: Module pin-out images are not to scale.

PIN TABLE	GND	GND (RF)	RFIO (Ant.)	V_3. 3V	EN_CHIP	οιααλ	ADC_IN	GP1014	GPI00	GPI01	GPI02	GPIO3	GPIO4	GPI05	GP1017	GP1018	GPI019	GP1020	GPI021
INP1010	1,4,5,6,7,	N/A	N/A																
INP1011	8,9,24,26	N/A	N/A																
INP1012	1,4,5,6,7,8, 9,24,26, 34,35,36,37	27,28,29, 31,32,33	30	2,3	10	18	25	11	12	13	14	15	16	17	19	20	21	22	23
INP1013	1,4,5,6,7,8,	N/A	N/A																
INP1014	9,24,26,	N/A	N/A																
INP1015	30,31,32,33	N/A	N/A																

Table 4: INP101x module pin-out details

12 GPIO Specifications & Requirements

12.1 Digital I/O Specifications

Parameter	Symbol	Min.	Typical	Max.	Unit
Pull-Up Resistance	R _{PU}		51		kΩ
(All GPIO except GPIO18)					
Pull-Down Resistance	R_{PD}		51		kΩ
(Only GPIO18, for JTAG TCK)					
Pin Capacitance	C _{IN}		1.7		pF
V_3.3V = 3.3V, VDDIO = 2.5V, 25°C					
High Level Input Voltage	V _{IH}	2.0		3.6	V
Low Level Input Voltage	V _{IL}	-0.3		0.8	V
High Level Input Current	l _{IH}	-	2.0		nA
Low Level Input Current	I _{IL}		2.0		nA
High Level Output Voltage	Voh	2.3			V
Low Level Output Voltage	V _{OL}		0.2	0.4	V
High Level Source Current	Іон		8		mA
High Level Source Current, High	I _{OH-HD}		10		mA
Drive					
Low Level Sink Current	I _{OL}		7		mA
Low Level Source Current, High	I _{OL-HD}		9		mA
Drive					

Table 5: Digital I/O specifications

12.2 Peripheral Signal Mapping

Interface	Signal	GP100	GPI01	GP102	GP103	GPIO4	GPIO5	GPIO14	GPI017	GPIO18 ²	GP1019	GPI020	GPI021
	RXD			•									
UART	TXD		•										
UAKI	CTS												
	RTS												
Console	TX								•				
	CLK	•											
SPI Slave	CS						•						
3PI Slave	MOSI		•										
	MISO			•									
	SDIO_CLK												
	SDIO_CMD												
SDIO	SDIO_DATA0												
3010	SDIO_DATA1												
	SDIO_DATA2												
	SDIO_DATA3												
_	CLK												
SPI Master	CS												
(Software)	MOSI												
,	MISO												
GPIO ¹	GPIO												
	PWM_0												
PWM	PWM_1												
PVVIVI	PWM_2												
	PWM_3												
	TCK/ SWCLK									•			
ITAC / CM/D	TMS / SWDIO										•		
JTAG / SWD	TDI											•	
	TDO / SWO												•
I2C	SCL												
120	SDA												
	SCK												
12S	WS												
	SD												

Table 6: Peripheral Signal Mapping

Legend:

- = Default Power-Up GPIO
- = = Function Supported on GPIO
- = Required for factory production firmware loading in-situ. These should be connected to Host MCU or a header/connector to factory test/PC equipment. For UART with flow control also use GPIO0 and GPIO5. For higher speed factory programming the SPI connection is GPIO0, GPIO1, GPIO2, GPIO5

Notes:

- 1. Any GPIO can be used for wakeup (interrupt) and can drive high current loads such as LEDs.
- 2. IMPORTANT: all GPIO must be set to LOW during sleep mode for lowest power consumption.
- 3. Only internal pull-down is available on GPIO18 (an external pull-up can be added, if required)

13 Peripheral Interface Specifications & Timing Diagrams

13.1 UART

The Talaria TWO modules include one (1) UART controller. All signals, RXD, TXD, CTS and RTS, can be individually programmed for use on any GPIO. The power-up default pin for TXD is GPIO1 and RXD is GPIO2.

UART Specification	Details
Maximum Baud Rate	921600
Minimum Baud Rate	300
Recommended Baud Rate	115200

Table 7: UART specifications

13.2 Console UART

Default pin is set to GPIO17, but it can be programmed to any GPIO. Unidirectional Tx only from Talaria TWO for debug purposes.

Console UART Specification	Details
Default Baud Rate	2457600

Table 8: Console UART specifications

13.3 SPI Slave

The Talaria TWO modules include one (1) SPI Slave interface. All signals are fixed to specific pins where CLK is GPIO0, MOSI is GPIO1, MISO is GPIO2 and CS is GPIO5. It is not possible to reassign the signals to different GPIOs.

SPI Slave Specification	Details
Maximum Clock Frequency	25MHz
Clock Polarity and Phase Modes Supported	Mode 0 (CPOL=0, CPHA=0)
	Mode 3 (CPOL=1, CPHA=1)
Data In/Out Sequence	MSB First
Other Features	Dual SPI Mode Capable
	Read Status
	Reset

Table 9: SPI Slave specifications

13.4 SPI Master (Software Implementation)

The Talaria TWO modules supports one (1) SPI Master interface via a software implementation. The four-wire implementation uses CLK, MOSI, MISO, and CS. It is possible to assign the signals to any GPIOs (except for GPIO18).

SPI Master Specification	Details
Maximum Clock Frequency	8MHz
Clock Polarity and Phase Modes Supported	Mode 0 (CPOL=0, CPHA=0)
	-OR-
	Mode 3 (CPOL=1, CPHA=1)
Data In/Out Sequence	MSB or LSB First

Table 10: SPI Master Specification

13.5 SDIO

The Talaria TWO modules support a standard 10MHz SDIO interface on GPIO0 through GPIO5.

SDIO Specification	Details
Maximum Clock Frequency	10MHz
SDIO Interface Specification	2.0

Table 11: SDIO Specification

13.6 I2C

The Talaria TWO modules include one (1) I2C bus interface that can serve as an I2C master or slave. The SCL and SDA lines can be individually programmed for use on any GPIO. Internal pull-up resistors are available for SCL/SDA on all GPIOs except for GPIO18 (GPIO18 only has internal pull-down resistors).

I2C Specification	Details
Data Rates	100Kbps, 400Kbps, 1Mbps
Address Modes	7-bit, 10-bit
	Send STOP at End
Other Features	NOSTART Before Msg
	IGNORE NAK From Slave

Table 12: I2C Specification

13.7 I2S

The Talaria TWO modules include one (1) I2S interface that can serve as an I2S master or slave. It is only capable of transmitting data – it cannot receive I2S data. The SCK, WS and SD lines can be individually programmed for use on any GPIO.

I2S Specification	Details
Audio Formats Support	Up to HD Audio, Dual Channel Stereo
	(2x 16-bit @ 48kHz)

Table 12: I2S Specification

13.8 PWM

The Talaria TWO modules include four (4) PWM timers that can be programmed on any GPIO.

PWM Specification	Details
Base Frequency	40MHz
Duty Rate Range	0% to 100%
Pulse Alignment	Left Aligned
Other	Audio Capable

Table 13: PWM Specification

13.9 JTAG/SWD

Compliant with ARM JTAG/SWD standards for debug purposes.

14 Analog to Digital Converter (ADC) Specifications

The Talaria TWO modules have a 12-bit (10-bit effective) SAR ADC for measuring the internal supply voltage and temperature levels in addition to measuring an external voltage level through a specified ADC port. The ADC has configuration settings for sampling rate and results averaging.

ADC Specification	Details	Unit
ADC Input Channels	VBAT, TEMP, EXT	
Sampling Rates	5, 10, 20, 40	Msps
Results Averaging	2, 4, 8, 16	# of Samples
External Voltage Input Range	0 to 1.0	V
Additional Delay for ADC Ready after Wakeup	5	μs

Table 14: ADC Specification

15 Wi-Fi Features

Wi-Fi Features	Details
Wi-Fi Standards Supported	802.11 b/g/n (2.4GHz Single-Band, 20MHz)
Wi-Fi Modes	Station Mode
Operating Channels	1-13
Number of TCP/UDP Sockets	4-16 ¹
Number of Concurrent SSL Connections	2-4 ¹
Wi-Fi Security	WPA2, WPA3, WPA2 Enterprise (EAP-PSK, EAP-TLS)
Application Security	TLS1.2

Table 14: Wi-Fi Features

Note: Dependent on memory allocations/configurations.

16 BLE Features

BLE Features	Details
BLE Standard Supported	BLE5.0
BLE Modes	Central, Peripheral
BLE Advanced Features Supported	LE Coding (S2,S8)/FEC (Long-Range)
	2Mbps PHY
	Extended Advertising
PHY Rates Supported	2Mbps, 1Mbps, 512kbps, 125kbps
Connection Roles	GAP Peripheral or Central
Generic Attribute Profile Roles	GATT Client or Server
Number of Concurrent Sessions	4/81
Command Interface	HCI over SPI/UART
Security	AES-128CCM

Table 15: BLE Features

Note: Dependent on memory allocations/configurations.

17 Advanced Security Elements

17.1 Hardware Crypto Engines

Category	Details
Block Modes	Counter, GF, OFB, ECB, CBC-MAC, CBC-ENC, CBC-DEC, XEX
Block Cores (encryption)	AES (128/256), DES, TDES, SMS4, GF
Stream Cores (Hashing)	RC4, Michael, CRC32, SHA-1/256

Table 16: Hardware Crypto Engines

17.2 Additional Hardware Security Capabilities

Additional hardware security capabilities include:

- 1. DMA: Linear, Circular and Descriptor based transfer options
- 2. E-Fuse Disable JTAG
- 3. PUF/Secure Vault Key/certificate, pass phrase, and application data storage, based on SoC Fingerprint

17.3 Software Security Features

Category	Details
	Supports ECDH and ECDSA
uECC APIs	2. Key generation, sign and verify functions
	3. Secure Boot and FOTA signed ELF
Cipher APIs	1. Wrapper to Cipher Hardware
	2. Tight integration with DMA for effortless encryption/decryption
DMA APIs	Automatic encryption/decryption of data without CPU
	involvement
	2. Comprehensive modes to support various application needs

Table 17: Software Security Features

18 DC & RF Characteristics

18.1 General DC Characteristics

Specification		Details	Unit
Wi-Fi Idle Connected	DTIM = 1	414	μΑ
PS-Polling	DTIM = 3	151	μΑ
(3.3V, 802.11b, 1Mbps,	DTIM = 5	97	μΑ
Clean RF Environment)	DTIM = 10	57	μΑ
Sleep Current ¹		19	μΑ
Hibernate Mode (EN_CHIP Low) ³		< 1	μΑ
EN_CHIP/RST Reset Voltage ⁴		0.6	V

Table 18: General DC Characteristics

Note:

- 1. RTC operating, memory retained, 3.3V supply, GPIO must be set to LOW
- 2. SRAM memory is not retained, RTC is off.
- 3. EN CHIP/RST must be held below 0.6V to reset device

18.2 DC & RF Characteristics Wi-Fi 802.11b 2.4GHz

Specification	IEEE802.11b						
Mode	DSSS / CCK						
Channel Frequency	2412 - 2472MHz						
Data Rates	1, 2, 5.5, 11	Mbps					
Conditions:							
25C, V_3.3V = 3.3V, VDDIO = 2.5V							
1Mbps unless stated otherwise							
DC Characteristics	Min.	Typical	Max.	Unit			
Tx Current (@ 17.5dBm)		178		mA			
Rx Current		31		mA			
Tx Characteristics	Min.	Typical	Max.	Unit			
Output Power		17.5		dBm			
Spectral Mask Margin							
First Side Lobe	0	2		dB			
Second Side Lobe	0	2		dB			
Error Vector Magnitude (EVM)		-22.4		dB			
Out-of-Band Spurious							
Emissions							
30MHz – 1.00GHz			-41	dBm/MHz			
(RBW = 100kHz)							
1.0GHz – 12.75GHz			-41	dBm/MHz			
(RBW = 1MHz)							
Rx Characteristics	Min.	Typical	Max.	Unit			
Rx Input Level Sensitivity							
DSSS, 1Mbps		-96		dBm			
Adjacent Channel Rejection							
DSSS, 1Mbps	35			dB			

Table 19: DC & RF Characteristics Wi-Fi 802.11b 2.4GHz – 1Mbps

18.3 DC & RF Characteristics Wi-Fi 802.11g 2.4GHz

Specification	IEEE802.11g
Mode	OFDM
Channel Frequency	2412 - 2472MHz
Data Rates	6, 9, 12, 18, 24, 36, 48, 54Mbps
Conditions:	

Conditions:

25C, V_3.3V = 3.3V, VDDIO = 2.5V

6Mbps unless stated otherwise

DC Characteristics	Min.	Typical	Max.	Unit	
Tx Current (6Mbps @ 15.5dBm)		134		mA	
Tx Current (54Mbps @ 15.5dBm)		100		mA	
Rx Current (6Mbps)		34		mA	
Rx Current (54Mbps)		35		mA	
Tx Characteristics	Min.	Typical	Max.	Unit	
Output Power		15.5		dBm	
Spectral Mask Margin					
±9dBr MHz Offset	0	5		dB	
±11dBr MHz Offset	0	5		dB	
±20dBr MHz Offset	0	5		dB	
±30dBr MHz Offset	0	5		dB	
Error Vector Magnitude (EVM)		-25.7		dB	
Out-of-Band Spurious Emissions		•			
30MHz – 1.00GHz			-41	dBm/MHz	
(RBW = 100kHz)					
1.0GHz – 12.75GHz			-41	dBm/MHz	
(RBW = 1MHz)					
Rx Characteristics	Min.	Typical	Max.	Unit	
Rx Input Level Sensitivity					
OFDM, 6Mbps		-93		dBm	
Adjacent Channel Rejection					
OFDM, 54Mbps	-1			dB	

Table 20: DC & RF Characteristics Wi-Fi 802.11g 2.4GHz - 6Mbps

18.4 DC & RF Characteristics Wi-Fi 802.11n 2.4GHz

Specification	IEEE802.11n
Mode	OFDM
Channel Frequency	2412 - 2472MHz
Data Rates	6.5, 13, 19.5, 26, 39, 52, 58.5, 65Mbps

Conditions:

25C, V_3.3V = 3.3V, VDDIO = 2.5V

6.5Mbps (MCS0) unless stated otherwise

DC Characteristics	Min.	Typical	Max.	Unit
Tx Current (MCS0 @12.5dBm)		108		mA
Tx Current (MCS7 @ 12.5dBm)		81		mA
Rx Current (MCS0)		34		mA
RX Current (MCS7)		37		mA
Tx Characteristics	Min.	Typical	Max.	Unit
Output Power		12.5		dBm
Spectral Mask Margin				
±9dBr MHz Offset	0	8		dB
±11dBr MHz Offset	0	8		dB
±20dBr MHz Offset	0	8		dB
±30dBr MHz Offset	0	8		dB
Error Vector Magnitude (EVM)		-27.1		dB
Out-of-Band Spurious Emissions				
30MHz – 1.00GHz			-41	dBm/MHz
(RBW = 100kHz)				
1.0GHz – 12.75GHz			-41	dBm/MHz
(RBW = 1MHz)				
Rx Characteristics	Min.	Typical	Max.	Unit
Rx Input Level Sensitivity				
OFDM, 6.5Mbps		-92		dBm
OFDM, 65Mbps		-69		dBm
Adjacent Channel Rejection				
OFDM, 54Mbps	TBD			dB

Table 21: DC & RF Characteristics Wi-Fi 802.11n 2.4GHz - 6.5Mbps

18.5 DC & RF Characteristics BLE

Specification (3.3V)	Typical	Unit
BLE Receive Current @ 2Mb/s	30	mA
BLE Receive Current @ 1Mb/s	29	mA
BLE Receive Current @ 500Kb/s	30	mA
BLE Receive Current @ 125Kb/s	31	mA
BLE Transmit Current @ 0dBm 2Mb/s	27	mA
BLE Transmit Current @ 0dBm 1Mb/s	26	mA
BLE Transmit Current @ 0dBm 500Kb/s	39	mA
BLE Transmit Current @ 0dBm 125Kb/s	53	mA
BLE Transmit Current @ 10dBm 2Mb/s	38	mA
BLE Transmit Current @ 10dBm 1Mb/s	36	mA
BLE Transmit Current @ 10dBm 500Kb/s	59	mA
BLE Transmit Current @ 10dBm 125Kb/s	81	mA
BLE Advertising (300ms Interval, 3-Channels)	330	μΑ
BLE Advertising (300ms Interval, 2-Channels)	280	μΑ
BLE Advertising (300ms Interval, 1-Channel)	190	μΑ
Maximum Conducted BLE Power Out (FCC)	9.1	dBm
Maximum Conducted BLE Power Out (ETSI)	6.0	dBm

Table 22: DC & RF Characteristics BLE

Technology	Test Case	Measurement	Data Rate	Set Tx Pout (dbm)	Average	Unit								
			2LE	0	-33.45									
		VCD +3	1LE	0	-47.04	dBm								
		ACP_±2	500KLE	0	-46.67	авті								
			125KLE	0	-46.86									
			2LE	0	-52.81									
	In-Band ACP	ACP_±3	1LE	0	-56.12	dBm								
	Emission	ACP_13	500KLE	0	-55.83	ивп								
			125KLE	0	-55.84									
BLE Tx			2LE	0	-58.49									
DLE IX		ACP_±>3	1LE	0	-52.83	dBm								
			ACP_±>3	ACP_±/3	ACP_±/3	ACP_±/3	ACP_1/3	ACP_1/3	ACP_123	ACP_I/3	500KLE	0	-51.96	иын
			125KLE 0 -5	-52.64										
		Δf1	2LE	0	500.18									
			1LE	0	250.41									
	Modulation	lulation Δf2	2LE	0	436.27	kHz								
	Characterization	ΔΙΖ	1LE	0	226.82	КПZ								
		Δf2/f1	2LE	0	0.87									
		Δ12/11	1LE	0	0.91									
			2LE	N/A	-89.21									
DIEDV	Dy Concitivity	Sons	1LE	N/A	-91.45	dBm								
BLE Rx	Rx Sensitivity	Sens	500KLE	N/A	-97.49	UDIII								
			125KLE	N/A	-100.15									

Table 23: Technology with test case details

19 Power Schemes

19.1 Power-Up Timing Diagrams

Specification	Symbol	Min.	Тур.	Max.	Unit
V_3.3V Supply Rise Time from 10% to 90%	Tr	40	-	80	μs
Power ON to EN_CHIP Release	T _{EN}	100	-		μs
Power ON to VDDIO Ready	T _{IO}				μs
Power ON to CPU Ready	T _{pu}			630	μs

Table 24: Power-up timings diagrams

Figure 9: Power-up

Note:

- 1. All GPIOs must be low or undriven on Power-Up
- 2. EN_CHIP must be held low until after TEN
- 3. VDDIO must be low or undriven on Power-Up

19.2 Wakeup Timing Detail

Wakeup from Sleep on Internal Timer

Wakeup to CPU Ready - 550us

Wakeup to Transmit/Receive (Tx/Rx) - 1ms

Wakeup from Sleep using GPIO Wakeup Pin / UART Rx

Wakeup to CPU Ready – 550us

19.3 Reset Timing Diagrams

Specification	Symbol	Min.	Тур.	Max.	Unit	
Reset Duration	T _{EN}		165		ms	

Figure 10 - Reset Timing Diagram

20 Module Schematics

20.1 INP1010 Module Schematics

Figure 11: INP1010 Module Schematics

20.2 INP1011 Module Schematics

Figure 12: INP1011 Module Schematics

20.3 INP1012 Module Schematics

Figure 13: INP1012 Module Schematics

20.4 INP1013 Module Schematics

Figure 14: INP1013 Module Schematics

20.5 INP1014 Module Schematics

Figure 15: INP1014 Module Schematics

20.6 INP1015 Module Schematics

Figure 16: INP1015 Module Schematics

21 Recommended PCB Landing Pad Pattern

21.1 INP1010 and INP1011 Landing Pad Pattern

Figure 17: PCB Landing Pad Pattern - INP1010/11

21.2 INP1012 Landing Pad Pattern

Figure 18: PCB Landing Pad Pattern - INP1012

21.3 INP1013 / INP1014 / INP1015 Landing Pad Pattern

Figure 19: PCB Landing Pad Pattern - INP1013

22 Recommended Reflow Profile

Recommend Reflow Profile based on IPC/JEDEC J-STD 020:

Figure 20: Recommended Reflow Profile

Reflow Condition	IPC/JEDEC J-STD 020	Pb-Free Assembly	
Pre-Heat / Soak	Temperature Min (T _{S(min)})	150°C	
	Temperature Max (T _{S(max)})	200°C	
	Time (t _S) from $T_{S(min)}$ to $T_{S(max)}$)	60 to 120 seconds	
Ramp-up Rate from T _L to	3°C/second max.		
Reflow	Liquidous Temperature (T _L)	217°C	
	Time (t _L) to maintain above T _L	60 to 150 seconds	
Peak package body temperature (T _P)		245°C	
Ramp-down rate (T _P to T _L)		6°C/second max.	

Table 25: Recommended Reflow Condition

23 RoHS and REACH Compliance

This module meets the requirements set forth by the RoHS and REACH directives.

Further details are available with InnoPhase Sales. Contact: sales@innophaseinc.com.

24 Packing Details

24.1 INP1010 and INP1011 Packing

ESD foam tray used for shipping (units in mm):

Figure 21: INP1010 and INP1011 Packing

Packing Details:		
1 Tray = 50 Units		
1 Inner Box = 10 Trays + 1 Empty Tray		
1 Outer Box = 4 Inner Boxes		

Table 26: INP1010/11 - Packing details

24.2 INP1012 Packing

Figure 22: INP1012 - Packing details

Note:

1. Material: PS White Anti Coating

2. Thickness: 0.5mm

3. Tray are packed in plastic bag to prevent dirt and contamination

4. Thermal forming process with no mold release agent

5. Total 50 pocket/tray

24.3 INP1013 and INP1014 Packing

Figure 23: INP1013/14 - Packing details

Note:

1. Material: PS White Anti Coating

2. Thickness: 0.5mm

3. Tray are packed in plastic bag to prevent dirt and contamination

4. Thermal forming process with no mold release agent

5. Total 50 pocket/tray

25 INP2045 SoC Part Number

Manufacturer	Ordering Part	Package	Size	Shipment Method
Part Number	Number	Type		
INP2045	INP2045-H1-IRP	QFN-42	5 x 6 x 0.85mm	Tape & Reel
			0.4 mm pitch	4Ku/Reel

Table 27: INP2045 SoC Part Number

26 INP2045 SoC Block Diagram

Figure 24: INP2045 SoC Block Diagram

27 INP2045 SoC Chip Pin Out and Dimensions

Figure 25: INP2045 SoC Chip Pin Out and Dimensions

28 INP2045 SoC Pin Description

PIN#	Туре	Description
1	NC	No Connection
2	NC	No Connection
3	Power/Bypass	Local power bypass. Connect to Pin 24.
4	ADC_IN	ADC Analog Input (voltage range is 0-1 V)
5	NC	No Connection
6	Power/Bypass	Local power bypass. Connect to Pin 24.
7	NC	No Connection
8	RF	50-ohm Antenna RF Interface
9	Ground	Ground
10	Power/Bypass	Local power bypass. Connect to Pin 17.
11	Power/Bypass	Local power bypass. Connect to Pin 24.
12	Power/Bypass	Local power bypass. Connect to Pin 24.
13	Power/Bypass	Local power bypass. Connect to Pin 24.
14	Ground	Ground
15	Power	Connect 2.2µH inductor to Pin 17.
16	Power/Bypass	Main power (VDD) input and bypass. Connect to Pin 23.
17	Power/Bypass	Local power bypass.
18	XTAL	Connect to 32kHz crystal
19	XTAL	Connect to 32kHz crystal
20	Power/Bypass	Local power bypass.
21	Input	EN_CHIP (Chip enable), requires external pullup
22	Power	Connect 2.2µH inductor to Pin 24.
23	Power/Bypass	Main power (VDD) input and bypass. Connect to Pin 16.
24	Power/Bypass	Local power bypass.
25	1/0	GPIO pin, GPIO14
26	1/0	GPIO pin, GPIO0
27	1/0	GPIO pin, GPIO1
28	1/0	GPIO pin, GPIO2
29	1/0	GPIO pin, GPIO3
30	1/0	GPIO pin, GPIO4
31	1/0	GPIO pin, GPIO5
32	Power/Bypass	Local power bypass.
33	1/0	GPIO pin, GPIO17, Tx Console
34	1/0	GPIO pin, GPIO18
35	1/0	GPIO pin, GPIO19
36	1/0	GPIO pin, GPIO20
37	1/0	GPIO pin, GPIO21
38	Power/Bypass	Local power bypass. Connect to Pin 24.
39	XTAL	Connect to 40MHz crystal
40	XTAL	Connect to 40MHz crystal
41	Power/Bypass	Local power bypass. Connect to Pin 24.
42	Power/Bypass	Local power bypass. Connect to Pin 24.
43	Power/Bypass	Ground (Paddle)

Table 28: INP2045 SoC Pin Description

29 INP2045 SoC Electrical

29.1 Clocks and Timers

- 1. 40MHz crystal oscillator (external crystal)
- 2. 32KHz crystal oscillator (external crystal)
- 3. Internal 32KHz RC oscillator with calibration
- 4. 16 hardware timers / 3 time bases
- 5. Watchdog timer

The InnoPhase INP2045 requires two external crystals (40MHz and 32kHz) which with internal circuitry create high precision internal clocks. The 40MHz clock is the reference for the high-speed system clocks including the CPU, co-processor, digital functions and the radio. The 32kHz clock is the timing source for low-frequency subsystems including power management, sleep timekeeping and some low-frequency logic. The INP2045 also provides an internal 32kHz oscillator which, in some applications, can be calibrated for sleep timekeeping needs without the need for the external 32kHz crystal.

The 40MHz crystal must meet ±10 ppm tolerance for best performance.

The 40MHz clock is disabled by the system during normal sleep operations to minimize power consumption. The 32kHz clock is continuously enabled when supporting fast wake-up features. The 32kHz clock and associated circuitry have been designed to operate at very low currents to provide excellent battery life in IoT centric applications.

Figure 26: 40MHz Crystal Connections

Parameter (40MHz)	Condition	Min	Тур.	Max	Units
Frequency			40		MHz
Frequency Accuracy	Initial + Temp + Aging	-10		+10	ppm
Load Capacitance		6			pF
Crystal ESR	C1 = C2 = 10pF ¹			60	W

Table 29: Clock conditions and details – 40MHz

Note 1: Recommendation is to choose crystal that uses 10pF capacitors.

Figure 27: 32kHz Crystal Connections

Parameter (32kHz)	Condition	Min	Тур.	Max	Units
Frequency			32		kHz
Frequency Accuracy	Initial + Temp + Aging	-20		+20	ppm
Load Capacitance			12.5		pF
Crystal ESR	C1 = C2 = 12pF ²			50k	W

Table 30: Clock conditions and details – 32MHz

Note 2: Recommendation is to choose crystal that uses 12pF capacitors.

29.2 INP2045 SoC ESD Ratings

Reliability Test	Standards	Test Conditions	Result
Human Body Model (HBM)	JEDEC EIA/JESD22-A114	+/- 2,000V	PASS ¹

Table 31: INP2045 SoC ESD Ratings

Note: RF Pin HBM = +/- 500V

30 INP2045 SoC Chip Reflow Profile

Figure 28: INP2045 SoC Chip Reflow Profile

31 INP2045 SoC Packing

Figure 29: INP2045 SoC Packing

32 Support

- 1. Sales Support: Contact an InnoPhase sales representative via email sales@innophaseinc.com
- 2. Technical Support:
 - a. Visit: https://innophaseinc.com/contact/
 - b. Also Visit: https://innophaseinc.com/talaria-two-modules
 - c. Contact: support@innophaseinc.com

InnoPhase is working diligently to provide outstanding support to all customers.

33 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, InnoPhase Incorporated does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and assumes no liability associated with the use of such information. InnoPhase Incorporated takes no responsibility for the content in this document if provided by an information source outside of InnoPhase Incorporated.

InnoPhase Incorporated disclaims liability for any indirect, incidental, punitive, special or consequential damages associated with the use of this document, applications and any products associated with information in this document, whether or not such damages are based on tort (including negligence), warranty, including warranty of merchantability, warranty of fitness for a particular purpose, breach of contract or any other legal theory. Further, InnoPhase Incorporated accepts no liability and makes no warranty, express or implied, for any assistance given with respect to any applications described herein or customer product design, or the application or use by any customer's third-party customer(s).

Notwithstanding any damages that a customer might incur for any reason whatsoever, InnoPhase Incorporated' aggregate and cumulative liability for the products described herein shall be limited in accordance with the Terms and Conditions of identified in the commercial sale documentation for such InnoPhase Incorporated products.

Right to make changes — InnoPhase Incorporated reserves the right to make changes to information published in this document, including, without limitation, changes to any specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — InnoPhase Incorporated products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an InnoPhase Incorporated product can reasonably be expected to result in personal injury, death or severe property or environmental damage. InnoPhase Incorporated and its suppliers accept no liability for inclusion and/or use of InnoPhase Incorporated products in such equipment or applications and such inclusion and/or use is at the customer's own risk.

All trademarks, trade names and registered trademarks mentioned in this document are property of their respective owners and are hereby acknowledged.