

Aprendizado de Máquina (machine learning) parte II

por: Rafael Stoffalette João

Data: 14/03/2020

UNIversidade Paulista (UNIP) - Araçatuba

Materiais em: encurtador.com.br/bePY9

Na nossa última aula

O que é um padrão; O que é ML; Pré-processamento dos dados; Ferramenta Weka;

- Construção de base de dados para o weka.

Aprendizado Supervisionado - Tarefa de classificação;

- Algoritmo probabilístico (Naive Bayes);
- Árvores de decisão.

Na nossa última aula

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$$

Likelihood of evidence B if A is true

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

Posterior probability of A given the evidence B

Prior probability that evidence B is true

$$P(SIM \mid sol) = P(sol \mid SIM) * P(SIM) / P(sol)$$

Na nossa última aula

Entropia:

$$\mathrm{H}(S) = \sum_{x \in X} -p(x) \log_2 p(x)$$

Ganho de informação:

$$IG(S,A) = \mathrm{H}(S) - \sum_{t \in T} p(t) \mathrm{H}(t)$$

Agenda da aula

- Aprendizado não supervisionado
- Tipos de tarefas
- Agrupamento de dados
 - Hierárquico
 - Plano

Hierarquia

Aprendizado supervisionado

- TODOS os exemplos do TREINAMENTO são rotulados

Aprendizado não supervisionado

- O conhecimento é oriundo da similaridade

Hierarquia

Aprendizado supervisionado

- TODOS os exemplos do TREINAMENTO são rotulados

Aprendizado não supervisionado

- O conhecimento é oriundo da similaridade

Identificar a organização dos **padrões** existentes nos dados através do agrupamentos dos dados – também chamado *clustering*.

- Como organizar os desenhos ao lado?

Identificar a organização dos **padrões** existentes nos dados através do agrupamentos dos dados – também chamado *clustering*.

- Descobrir similaridades e diferenças entre os padrões implícitos.

- Como organizar os desenhos ao lado?

Identificar a organização dos **padrões** existentes nos dados através do agrupamentos dos dados – também chamado *clustering*.

- Descobrir similaridades e diferenças entre os padrões

implícitos.

- Como organizar os desenhos ao lado?

Entretanto, a similaridade não é fácil de ser identificada na maioria das bases de dados.

Qual atributo utilizar? Qual critério?

SEM USAR NENHUM ALGORITMO DE ML

Como Separar os indivíduos em 2 grupos diferentes?

nome	altura	peso	idade	profissão	interesse
Fulano	1,75	85	18	estudante	M
Ciclano	1,54	90	58	pedreiro	M
Fulana	1,45	65	45	programadora	Н
Beltrano	1,98	78	17	estudante	Н
Anônima	1,65	51	18	estudante	М

TEMPOOOOO...

SEM USAR NENHUM ALGORITMO DE ML

Como Separar os indivíduos em 2 grupos diferentes?

nome	altura	peso	idade	profissão	interesse
Fulano	1,75	85	18	estudante	M
Ciclano	1,54	90	58	pedreiro	M
Fulana	1,45	65	45	programadora	Н
Beltrano	1,98	78	17	estudante	Н
Anônima	1,65	51	18	estudante	M

Qual a melhor organização? Se separar por interesse alguém pode ser colocado em grupo errado?

Algoritmos de agrupamento podem ser classificados em diversos tipos.

Os mais famosos são:

- □ HIERÁRQUICOS
- º NÃO HIERÁRQUCIOS

(também chamados PARTICIONAIS/SEQUENCIAIS/PLANOS);

Algoritmos de agrupamento podem ser classificados em diversos tipos.

Os mais famosos são:

- º HIERÁRQUICOS
- º NÃO HIERÁRQUCIOS

(também chamados PARTICIONAIS/SEQUENCIAIS/PLANOS);

Regras para o agrupamento:

Diz-se k-agrupamento, a divisão do conjunto de dados em k grupos.

- Nenhum grupo pode ser vazio ao final da execução;
- Todos os elementos devem participar de pelo menos um grupo;

Regras para o agrupamento:

Diz-se k-agrupamento, a divisão do conjunto de dados em k grupos.

- Nenhum grupo pode ser vazio ao final da execução;

- Todos os elementos devem participar de pelo menos um

grupo;

No exemplo anterior: 4-agrupamento

Mas o que configura a semelhança entre os registros da base de dados?

A semelhança/similaridade de valores em uma base de dados é estabelecida por um cálculo chamado de **distância**.

É o método mais famoso e simples de todos;

Particiona o conjunto de dados em k grupos mutuamente exclusivos (hard)

k é definido previamente.

O algoritmo tenta selecionar os registros mais semelhantes e mais distantes dos registros em outros grupos.

É indicado para bases de dados grandes

A quantidade K de clusters deve ser previamente informada

Passos:

- 1. Seleciona-se k elementos da base de dados, onde cada um é um centróide núcleo do grupo;
- 2. Para cada registro da base de dados, determina o cluster mais próximo;
- 3. Recalcula a média de cada cluster.
- 4. Retoma o processo a partir do passo 2.
- 5.Resultado: as médias das k partições são os clusters.

A cada iteração o algoritmo recalcula o centro de massa do cluster.

Definição:

Dataset: (x,y)

3 grupos

(clusters)

Definição:

Dataset: (x,y)

3 grupos

(clusters)

Definição:

Dataset: (x,y)

Seja:

C1: (2,6)

C2: (5,3)

C3: (8,4)

O primeiro registro selecionado da base de dados \acute{e} o x_i = (1,5)

Definição:

Dataset: (x,y)

3 grupos

(clusters)

Definição:

Dataset: (x,y)

3 grupos

(clusters)

Definição:

Dataset: (x,y)

3 grupos

(clusters)

Definição:

Dataset: (x,y)

3 grupos

(clusters)

Definição:

Dataset: (x,y)

3 grupos

(clusters)

Definição:

Dataset: (x,y)

3 grupos

(clusters)

Iteração: n

Distância euclidiana:

$$\sqrt{\sum_{i=1}^n (p_i-q_i)^2}.$$

A distância euclidiana de um ponto à um cluster é a soma das distâncias de cada um dos valores do ponto para os valores do cluster

Definição:

Dataset: (x,y)

Seja:

C1: (2,6)

C2: (5,3)

C3: (8,4)

$$Dx_iC_1 = (1-2)^2 + (5-6)^2$$

$$Dx_iC_2 = (1-5)^2 + (5-3)^2$$

$$Dx_iC_3 = (1-8)^2 + (5-4)^2$$

Definição:

Dataset: (x,y)

Seja:

C1: (2,6)

C2: (5,3)

C3: (8,4)

$$Dx_iC_1 = (1-2)^2 + (5-6)^2 = -1^2 + -1^2 = 2$$

$$Dx_iC_2 = (1-5)^2 + (5-3)^2 =$$

$$Dx_iC_3 = (1-8)^2 + (5-4)^2 =$$

Definição:

Dataset: (x,y)

Seja:

C1: (2,6)

C2: (5,3)

C3: (8,4)

$$Dx_iC_1 = (1-2)^2 + (5-6)^2 = -1^2 + -1^2 = 2$$

$$Dx_iC_2 = (1-5)^2 + (5-3)^2 = -4^2 + -2^2 = 16 + 4 = 20$$

$$Dx_iC_3 = (1-8)^2 + (5-4)^2 =$$

Definição:

Dataset: (x,y)

Seja:

C1: (2,6)

C2: (5,3)

C3: (8,4)

$$Dx_iC_1 = (1-2)^2 + (5-6)^2 = -1^2 + -1^2 = 2$$

$$Dx_iC_2 = (1-5)^2 + (5-3)^2 = -4^2 + -2^2 = 16 + 4 = 20$$

$$Dx_iC_3 = (1-8)^2 + (5-4)^2 = -7^2 + 1^2 = 49 + 1 = 50$$

$$\sqrt{\sum_{i=1}^n (p_i-q_i)^2}.$$

Dado a base de dados de países emergentes, abaixo:

#	exp_vida	%_estudantes	cresc_PIB	cotacao_dolar
Α	45	0.4	0.6	2.34
В	75	0.7	1.3	1.5
С	77	0.5	-0.2	4.87
D	68	0.9	3.2	4.1

Qual a distância euclidiana do ponto

X₄: 72, 0.80, 1.25 4.5

???

$$\sqrt{\sum_{i=1}^n (p_i-q_i)^2}.$$

Dado a base de dados de países emergentes, abaixo:

#	exp_vida	%_estudantes	cresc_PIB	cotacao_dolar
Α	45	0.4	0.6	2.34
В	75	0.7	1.3	1.5
С	77	0.5	-0.2	4.87
D	68	0.9	3.2	4.1

Qual a distância euclidiana do ponto

X₄: 72, 0.80, 1.25 4.5

???

Dist Eucl. = calcular a média de cada atributo e calcular a raiz quadrada da soma quadrada das diferenças do registro para as médias

```
C = [45, 0.4, 0.6, 12.34]
reg = [72,0.8,1.25,4.5]
distanciaEuclidiana = sum((attReg - attC)*(attReg - attC) for attReg, attC in
zip( reg, C))
print(distanciaEuclidiana)
E se precisássemos calcular a distância euclidiana de cada cluster?
Fazer média dos valores de cada atribudo de cada cluster;
Calcular a distância do reg para o centróide;
Verificar qual é a menor distância.
```

C1	exp_vida	%_estudantes	cresc_PIB	cotacao_dolar
K	45	0.4	0.6	12.34
Т	55	0.3	0.3	81.5
1	57	0.5	-0.2	4.81
D	58	0.9	-3.2	4.41

$$\sqrt{\sum_{i=1}^n (p_i-q_i)^2}.$$

C2	exp_vida	%_estudantes	cresc_PIB	cotacao_dolar
Α	75	0.74	1.6	2.34
В	75	0.7	1.3	1.5
E	87	0.85	2.2	1.87
G	78	0.9	3.2	2.1

X5: 72, 0.80, 1.25 4.5

(23	exp_vida	%_estudantes	cresc_PIB	cotacao_dolar
ŀ	4	65	0.14	0.6	24.8
J]	71	0.47	-1.1	51.3
(2	68	0.45	-1.2	14.83
F		68	0.19	-5.2	141

```
Clusters = [
        [45,0.4,0.6,12.34],
        [55,0.3,0.3,81.5],
        [57,0.5,-0.2,4.81],
        [58, 0.9, -3.2, 4.41]
    ],
        [75,0.74,1.6,2.34],
        [75,0.7,1.3,1.5],
        [87,0.85,2.2,1.87],
        [78,0.9,3.2,2.1]
    ],
        [65,0.14,0.6,24.8],
        [71,0.47,-1.1,51.3],
        [68, 0.45, -1.2, 14.83],
        [68, 0.19, -5.2, 141]
#C1 = Clusters[0]
#C2 = Clusters[1]
#C3 = Clusters[2]
```

A partir do momento que um registro é inserido (ou dito pertencer) a um Cluster C_i a os valores do centróide são atualizados

Ci	exp_vida	%_estudantes	cresc_PIB	cotacao_dolar
Média				

Quais os novos valores do Cluster C_i após a identificação que o registro X₅ faz parte dele?

X₅: 72, 0.80, 1.25 4.5

A partir do momento que um registro é inserido (ou dito pertencer) a um Cluster C_i a os valores do centróide são atualizados

Ci	exp_vida	%_estudantes	cresc_PIB	cotacao_dolar
X ₅	72	0.80	1.25	4.5
Média				

Quais os novos valores do Cluster C_i após a identificação que o registro X₅ faz parte dele?

 X_5 : 72, 0.80, 1.25 4.5

Vamos ver uma implementação do algoritmo K-means...

Base de dados: genérica

Ferramenta Weka/Orange/Scikit-learn.

http://localhost:8888/notebooks/K-mean.ipynb

Otimização

Antes de agrupar dados:

- Atributos devem ser selecionados para evitar redundância
- Para que todos atributos contribuam de forma equalitária é interessante **NORMALIZAR** os atributos.

Outras medidas podem ser consideradas?

Distância Manhattan:

 $d(xi,xj) = \sum |xi-xj|;$

menor número de substituições necessárias para transformar uma string na outra

elabore" e "melhore" é 4.

Distância de Hamming

Fuzzy K-means

Leva em consideração o grau de pertinência de um registro aos grupos;

Por exemplo, ao calcular a distância euclidiana do registro xi aos clusters A, B e C, o resultado poderia ser:

Xi pertence a A: 80%

Xi pertence a B: 15%

Xi pertence a C: 5%

K-medians

Enquanto o K-means busca a média dos valores de cada atributo, o K-medians assume como valor do centróide do cluster a mediana.

Os valores presentes em um cluster C1 são:

C1: $\{(0.1,10)(5,-2)(0.2,200)\}$

Pelo K-means: {(1.76, 69.3)}

Pelo K-medians: {(0.2, 10)}

O k-medians é mais robusto quanto à presença de outliers.

Escolha do número de clusters

Quantos clusters são necessários? Método elbow (cotovelo)

Basicamente testa a variância dos dados em relação ao número de clusters.

Até o momento que aumentar o número de clusters não representa melhoria significativa.

A medida que a quantidade de clusters aumenta, a soma das distâncias quadráticas tende a zero.

http://localhost:8888/notebooks/elbow.ipynb

Hora de fazer amigos - busca por similaridade

Vamos construir uma base de dados suficientemente grande para agrupar os alunos da sala e descobrir nossos colegas que mais compartilham das nossas características

Atributos que poderíamos considerar:

```
Nome,
idade,
altura,
cor_pref,
linguagem_programacao_pref,
livro_pref,
cidade_ori,
estilo_mus, ... quais mais?
```

http://encurtador.com.br/bJQVY

Hora de fazer amigos - busca por similaridade

Passos para um bom agrupamento:

- Implementar a função elbow (cotovelo) para encontrar a quantidade ideal de grupos;
- Construir os grupos pelo algoritmo K-means;
- Visualizar os grupos gerados;
- Verificar em qual grupo cada um de nós se encaixa...

E agora?

Quais estratégias você usaria nos problemas abaixo:

- Implementar um filtro de spam para um cliente que está cansado de fazer isso *na mão*;
- Encontrar clientes que poderíam se interessar por um novo produto que foi testado por um grupo pequeno de clientes.

Avaliação do modelo

Visualizar o modelo é a melhor estratégia.

O espaçamento entre os clusters está bom?

Forma mais conhecida:

Monte Carlo (roleta)

Um registro qualquer é selecionado e uma classificação quanto ao grupo que deve pertencer é realizada.

Agrupamento/Clusterização

Algoritmos de agrupamento podem ser classificados em diversos tipos.

Os mais famosos são:

- º HIERÁRQUICOS
- º NÃO HIERÁRQUCIOS

(também chamados PARTICIONAIS/SEQUENCIAIS/PLANOS);

Técnicas simples - os dados são particionados a cada iteração;

- Não requer pré estipulação do número de clusters (k)

Constrói a chamada matriz de similaridade

	G1	G2	G3
G1	0	0,1	0,3
G2	0,1	0	0,4
G3	0,3	0,4	0

G1 e G2 são mais similares

G2 e G3 são menos similares

Estratégia aglomerativa

- Inicia com cada registro compondo um grupo (N registros = N clusters).
- Calcula-se a matriz de similaridade para todos os registros;
- Os clusters dos dois registros com maior similaridade são unificados em um só menor valor na matriz de similaridade.
- Repete-se os passos até que todos os registros sejam agrupados em um cluster só.

	Α	В	С	D	Е	F
Α	0	-	-	-	-	-
В	14	0	-	-	-	-
С	20	74	0	-	-	-
D	33	45	41	0	-	-
Е	48	51	56	25	0	-
F	33	85	34	95	31	0

	Α	В	С	D	Е	F
Α	0	-	_	-	-	-
В	14	0	-	-	-	-
С	20	74	0	-	-	-
D	33	45	41	0	-	_
Е	48	51	56	25	0	-
F	33	85	34	95	31	0

	Α	В	С	D	Е	F
Α	0	-	-	-	-	-
В	14	0	-	-	-	-
С	20	74	0	-	-	-
D	33	45	41	0	-	-
Е	48	51	56	25	0	-
F	33	85	34	95	31	0

	Α	В	С	D	Е	F
Α	0	-	-	-	-	-
В	14	0	-	-	-	-
С	20	74	0	-	-	-
D	33	45	41	0	-	-
Е	48	51	56	25	0	-
F	33	85	34	95	31	0

	Α	В	С	D	Е	F
Α	0	-	-	-	-	-
В	14	0	-	-	-	-
С	20	74	0	-	-	-
D	33	45	41	0	-	-
E	48	51	56	25	0	-
F	33	85	34	95	31	0

	Α	В	С	D	Е	F
Α	0	-	-	-	-	-
В	14	0	-	-	-	-
С	20	74	0	-	-	-
D	33	45	41	0	-	-
Е	48	51	56	25	0	-
F	33	85	34	95	31	0

Métodos hierárquicos - dendograma

Métodos hierárquicos - dendograma

Divisivo

Ligação de Clusters

Distância entre dois clusters:

- **Single Link**: A distância entre dois clusters é dada pela distância entre os seus pontos mais próximos;
- Average Link: Distância entre seus centróides média do grupo.
- **Complete Link**: A distância entre clusters é a distância entre seus pontos mais distantes.

Tipos de agrupamento

Métodos Hierárquicos

- Algoritmos Aglomerativos
- Algoritmos Divisivos

Métodos Particionais

- Algoritmos Exclusivos
- Algoritmos Não-exclusivos

Métodos hierárquicos - dendograma

Para dados de difícil interpretação é a melhor estratégia - análise exploratória de dados;

Menos eficiente em tempo de execução e consumo de memória do que o método plano (K-means)

Atividade Hamming

```
Levando em conta a função de distância Hamming, abaixo:

def hamming_distance(str1, str2):
    if len(str1) == len(str2):
        return sum(char1 != char2 for char1, char2 in zip(str1, str2))

Implemente um agrupador de Pessoas da sala (ignora todos atributos numéricos)
```

O que é machine learning

O agrupamento pode ser uma eficiente forma de seleção de características.

Fonte: Elaborada pelo autor

Combinação de modelos

Um agrupamento pode colaborar com a tarefa de classificação? COMO?

E o contrário, é possível?

Como?

Atividade dengue

Base de dados dengue:

Selecionar TODOS classificados como Dengue Selecionar TODOS classificados como não dengue

Realizar agrupamento hierárquico para cada caso. Por que hierárquico?

→ os atributos dos agrupamentos podem ser utilizados para classificar novos pacientes com dengue.

Sumarizando

- Aprendizado não supervisionado

- Tipos de tarefas

- Agrupamento de dados

Hierárquico

Plano

Agrupar é:

Maior entendimento dos dados;

Evidenciar correlações entre os atributos;

Pré-processar dados para outros algoritmos.

Hierarquia

Aprendizado supervisionado

- TODOS os exemplos do TREINAMENTO são rotulados

Aprendizado não supervisionado

- O conhecimento é oriundo da similaridade

Sumarização de dados

Busca realizar uma descrição simples e compacta dos dados.

- Nuvens de tags;
- Métricas estatísticas (média, mediana, desvio padrão,...);;
- valores mais frequentes para cada atributo;
- ... mais detalhes no módulo de processamento de linguagem natural