שיעור 12 אינטגרציה של פונקציות רציונליות

12.1 הגדרה: (פונקציה רציונלית)

פונקציה רציונלית (שבר אלגברי) זאת פונקציה מהצורה

$$y = \frac{P(x)}{Q(x)} ,$$

. פולינומים Q(x) ,P(x) כאשר

דוגמא. (פונקציה רציונלית)

$$Q(x) = x - 2$$
 $P(x) = x^4 - 5x + 9$ פונקציה רציונלית: $f(x) = \frac{x^4 - 5x + 9}{x - 2}$

12.2 הגדרה: (פונקציה רציונלית אמיתי)

שבר אלגברי

$$\frac{P(x)}{Q(x)}$$

נקרא אמיתי אם

$$\deg(P) < \deg(Q) \ .$$

אם שבר אלגברי לא אמיתי, יש לעשות חילוק פולינומים.

דוגמא. (חילוק פולינומים)

חשבו את האינטגרל

$$\int \frac{x^4 - 5x + 9}{x - 2} \ .$$

פיתרון.

שלב ראשון בחישוב אינטגרל של שבר אלגברי לא אמיתי, להגיע לשבר אלגברי אמיתי ע"י חילוק פולינומים. ע"י חילוק ארוך:

שלב 1:

$$(x-2) x^4 - 5x + 9$$

$$\begin{array}{r}
 x^{3} \\
 x - 2 \overline{\smash)x^{4} - 5x + 9} \\
 \underline{x^{4} - 2x^{3}} \\
 2x^{3} - 5x + 9
\end{array}$$

שלב 3:

$$\begin{array}{r} x^3 + 2x^2 \\
x - 2 \overline{\smash)x^4} & -5x + 9 \\
\underline{x^4 - 2x^3} \\
2x^3 & -5x + 9
\end{array}$$

שלב 4:

$$\begin{array}{r} x^{3} + 2x^{2} \\
x - 2 \overline{\smash)x^{4}} - 5x + 9 \\
\underline{x^{4} - 2x^{3}} \\
2x^{3} - 5x + 9 \\
\underline{2x^{3} - 4x^{2}} \\
4x^{2} - 5x + 9
\end{array}$$

שלב 5:

$$\begin{array}{r}
x^{3} + 2x^{2} + 4x \\
x - 2 \overline{\smash)x^{4}} - 5x + 9 \\
\underline{x^{4} - 2x^{3}} \\
2x^{3} - 5x + 9 \\
\underline{2x^{3} - 10x^{2}} \\
4x^{2} - 5x + 9 \\
\underline{4x^{2} - 8x} \\
3x + 9
\end{array}$$

שלב 6:

$$\begin{array}{r} x^3 + 2x^2 + 4x + 3 \\
x - 2) x^4 - 5x + 9 \\
\underline{x^4 - 2x^3} \\
2x^3 - 5x + 9 \\
\underline{2x^3 - 10x^2} \\
4x^2 - 5x + 9 \\
\underline{4x^2 - 8x} \\
3x + 9 \\
\underline{3x - 6} \\
15
\end{array}$$

תשובה סופית:

$$\frac{x^4 - 5x + 9}{x - 2} = x^3 + 2x^2 + 4x + 3 + \frac{15}{x - 2}$$

לכן

$$\int \frac{x^4 - 5x + 9}{x - 2} = \int \left(x^3 + 2x^2 + 4x + 3 + \frac{15}{x - 2} \right) = \frac{x^4}{4} + \frac{2}{3}x^3 + 2x^2 + 3x + 15 \ln|x - 2| + C \ .$$

י"א שלב ראשון בחישוב אינטגרל של שבר אלגברי:

ע"י חילוק ארוך פולינומים להגיע לשבר אלגברי אמיתי. כל שבר אלגברי אמיתי ניתן להציג כסכום של שברים פשוטים. ■

יש 4 סוגים של שברים אלגבריים פשוטים:

שבר פשוט				שבר אלגברי
			$\frac{m}{x-a}$:1 סוג
			$\frac{m}{(x-a)^2}$:2 סוג
	$n \in \mathbb{N}$,	$n \ge 2$	$\frac{m}{(x-a)^n}$	
. כאשר ל- x^2+px+q אין שורשים			$\frac{mx+n}{x^2+px+q}$	טוג 3:
. כאשר ל- x^2+px+q אין שורשים			$\frac{mx+b}{(x^2+px+q)^2}$:4 סוג
. כאשר ל- x^2+px+q אין שורשים	$n \in \mathbb{N}$,	$n \ge 2$	$\frac{mx+b}{(x^2+px+q)^n}$	

דוגמא. (אינטגרל של פונקציה רציונלית)

$$\int \frac{2x+1}{x^2-3x+1} \ \mathrm{nm}$$
חשבו את

פיתרון.

$$\frac{2x+1}{x^2-3x+1} = \frac{2x+1}{(x-1)(x-2)} = \frac{A}{x-1} + \frac{B}{x-2}$$
$$A(x-2) + B(x-1) = 2x+1$$

$$x = 2 \Rightarrow B = 5$$

 $x = 1 \Rightarrow A = -3$

$$\int \frac{2x+1}{x^2-3x+1} \, dx = \int \left(\frac{-3}{x-1} + \frac{5}{x-2}\right) dx = -3\ln|x-1| + 5\ln|x-2| + C \ .$$

דוגמא. (אינטגרל של פונקציה רציונלית)

$$\int \frac{x^2 + 4}{(x - 2)(x - 3)^2}$$
 חשבו את

פיתרון.

$$\frac{x^2+4}{(x-2)(x-3)^2} = \frac{A}{x-2} + \frac{B}{(x-3)^2} + \frac{C}{x-3}.$$
$$A(x-3)^2 + B(x-2) + C(x-3)(x-2) = x^2 + 4$$

$$x = 3 \Rightarrow B = 13$$

 $x = 2 \Rightarrow A = 8$
 $x = 0 \Rightarrow 9A - 2B + 6C = 4 \Rightarrow C = -7$

$$\int \frac{x^2+4}{(x-2)(x-3)^2} \, dx = \int \left(\frac{8}{x-2} + \frac{13}{(x-3)^2} - \frac{7}{x-3}\right) dx = 8 \ln|x-2| - \frac{13}{x-3} - 7 \ln|x-3| + C \; .$$

דוגמא. (אינטגרל של פונקציה רציונלית)

$$\int \frac{x^3+1}{x^2(x^2+1)}$$
 את

פיתרון.

$$\frac{x^3+1}{x^2(x^2+1)} = \frac{A}{x^2} + \frac{B}{x} + \frac{Cx+D}{x^2+1}.$$

$$A(x^2+1)^2 + Bx(x^2+1) + (Cx+D)x^2 = x^3+1$$

$$x^{3}: B+C=1$$

 $x^{2}: A+D=0$
 $x: B=0$
 $x^{0}: A=1$

לכן

ירמיהו מילר

$$D = -1$$
 , $C = 1$.

$$\int \frac{x^3+1}{x^2(x^2+1)} dx = \int \left(\frac{1}{x^2} + \frac{x-1}{x^2+1}\right) dx = \int \left(\frac{1}{x^2} + \frac{x}{x^2+1} - \frac{1}{x^2+1}\right) dx = -\frac{1}{x} + \frac{1}{2} \ln|x^2+1| - \arctan(x) + C \; .$$

דוגמא. (אינטגרל של פונקציה רציונלית)

$$I = \int \frac{2x^2 - 3x - 3}{(x - 1)(x^2 - 2x + 5)}$$
 חשבו את

פיתרון.

$$\frac{2x^2 - 3x - 3}{(x - 1)(x^2 - 2x + 5)} = \frac{A}{x - 1} + \frac{Bx + C}{x^2 - 2x + 5}.$$
$$A(x^2 - 2x + 5) + (Bx + C)(x - 1) = 2x^2 - 3x - 3$$

 x^{2} : A + B = 2 x: -2A + C - B = -3 x^{0} : 5A - C = -3

A = -1 , B = 3 , C = -2 .

לכן

$$I = \int \frac{2x^2 - 3x - 3}{(x - 1)(x^2 - 2x + 5)} dx = \int \left(-\frac{1}{x - 1} + \frac{3x - 2}{x^2 - 2x + 5} \right) dx = -\ln|x - 1| + \int \left(\frac{3x - 2}{(x - 1)^2 + 4} \right) dx.$$

: u = x - 1 נגדיר

$$\begin{split} I &= \ln|x-1| + \int \frac{3(u+1)-2}{u^2+4} du \\ &= \ln|x-1| + \int \frac{3(u+1)-2}{u^2+4} du \\ &= \ln|x-1| + 3 \int \frac{u}{u^2+4} du - \int \frac{1}{u^2+4} du \\ &= \ln|x-1| + \frac{3}{2} \ln|u^2+4| - \frac{1}{2} \arctan\left(\frac{u}{2}\right) \\ &= \ln|x-1| + \frac{3}{2} \ln|(x-1)^2+4| - \frac{1}{2} \arctan\left(\frac{x-1}{2}\right) \end{split}$$

(שלבים באינטגרציה של שברים אלגבריים) 12.1

 $\deg(P) \geq \deg(Q)$ שלב 1. לחלק במכנה (חילוק פולינומי) שלב 1.

שלב 2. להציב שבר אלגברי אמיתי כסכום של שברים פשוטים.

שלב 3. לבצע אינטגרציה של כל שבר םשוט.

דוגמא. (אינטגרל של פונקציה רציונלית)

$$I = \int rac{x^5 + 2x^3 + 4x + 4}{x^4 + 2x^3 + 2x^2} \, dx$$
 חשבו את

פיתרון.

שלב 1:

$$x^4 + 2x^3 + 2x^2 \sqrt{x^5 + 2x^3 + 4x + 4}$$

שלב 2:

$$\begin{array}{r} x \\ x^4 + 2x^3 + 2x^2 \overline{\smash)x^5} \\ \underline{x^5 + 2x^4 + 2x^3} \\ \underline{-2x^4} \\ + 4x + 4 \end{array}$$

שלב 3:

$$\begin{array}{r}
x-2 \\
x^4 + 2x^3 + 2x^2 \overline{\smash)x^5} + 2x^3 + 4x + 4 \\
\underline{x^5 + 2x^4 + 2x^3} \\
-2x^4 + 4x + 4 \\
\underline{-2x^4 - 4x^3 - 4x^2} \\
4x^3 + 4x^2 + 4x + 4
\end{array}$$

לכן ע"י חילוק ארוך קיבלנו

$$\frac{x^5 + 2x + 4x + 4}{x^4 + x^3 + 2x^2} = x - 2 + \frac{4x^3 + 4x^2 + 4x + 4}{x^4 + 2x^3 + 2x^2} = x - 2 + 4\left(\frac{x^3 + x^2 + x + 1}{x^4 + 2x^3 + 2x^2}\right)$$