

Programming for Simulation and MC Methods

Simulation

What is Stochastic Simulation?

Stochastic Simulation

Most stochastic simulations have the same basic structure:

- 1. Identify a random variable of interest X and write a program to simulate it. Step 1 is *model building*
- 2. Generate an iid sample X_1, \ldots, X_n with the same distribution as X.
- 3. Estimate $\mathbb{E}X$ (using \overline{X}) and assess the accuracy of the estimate (using a confidence interval).

Inversion Method: Uniform

Inversion method for U(1, 3)

Figure 18.3 Illustration of the inversion method. A 'uniform rain' of points on the vertical interval (0,1) becomes a uniform rain on the horizontal interval (1,3).

Inversion Method: Exponential

Inversion method for exp(1)

Figure 18.4 Illustration of the inversion method. A 'uniform rain' of points on the vertical interval (0,1) becomes an 'exponentially distributed rain' on the horizontal

Rejection method (uniform envelope) Suppose that f_X is non-zero only on [a, b], and $f_X \leq k$.

- 1. Generate $X \sim U(a,b)$ and $Y \sim U(0,k)$ independent of X (so P = (X,Y) is uniformly distributed over the rectangle $[a,b] \times [0,k]$).
- 2. If $Y < f_X(X)$ then return X, otherwise go back to step 1.

Figure 18.5 Points uniformly distributed under a pdf.

Empirical pdf of Triangular Distribution: Rejection Method

Figure 18.6 Empirical pdf of the triangular distribution, simulated using the rejection method.