

INSTITUT TEKNOLOGI DEL

MATERI PRAKTIKUM

Keamanan Perangkat Lunak SEMESTER GASAL TAHUN AJAR 2024/2025

Session Date : 23 Oktober 2024

Semester : V

Courses : Software Security / Keamanan Perangkat Lunak

Week/Session : 04/03

Key Topics : Teori bilangan, finite fields dan Advanced Encryption

Standard Algorithm

Activity : Praktikum

Duration : 110 menit

Delivery : Laporan Tugas softcopy

Deadline of delivery

Place of delivery : e-Course

Goal : Mahasiswa memahami konsep dasar dari teori bilangan, finite

fields, dan algoritma AES

PENUGASAN:

Sebelum bekerja, setiap mahasiswa harus membaca instruksi di bawah ini.

Sangat disarankan bagi anda untuk:

- 1. Membaca soal-soal yang diberikan secara.
- 2. Mencari sumber-sumber lain seperti buku, artikel, bahkan video untuk memperkaya wawasan dan meningkatkan pemahaman anda.
- 3. Jika anda merasa ada hal yang belum dipahami, silakan untuk berkonsultasi pada TA.
- 4. Dengan demikian diharapkan anda mampu mengikuti materi kuliah dan praktikum sebaik mungkin.
- 5. Anda diharapkan membaca buku yang diberikan, untuk topik kali ini diambil dari Part One : Symetric Chiper Chapter 4 dan 5.

Selamat Belajar & Good Luck!

Review Questions

- 1. Briefly define a group and give the example.
- 2. Briefly define a ring and give the example.
- 3. Briefly define a field and give the example.
- 4. List three classes of polynomial arithmetic.

Problem

- 1. Determine gcd(1970, 1066) using Euclidean Algorithm.
- 2. Give the addition and multiplication table for $GF(2^2)$ with $m(x) = x^2 + x + 1$.
- 3. Given $f(x) = x^3 + x + 1$ and $g(x) = x^6 + x^4 + x^3 + 1$

Calculate the multiplication of f(x) and g(x) in $GF(2^8)$

- 4. Determine the gcd of the following pairs of polynomials.
 - a. x3 + x + 1 and x2 + x + 1 over GF(2)
 - b. x3 x + 1 and x2 + 1 over GF(3)

Case

The plaintext is a hexadecimal palindrome. The plaintext and key

Plaintext: 0123456789abcdeffedcba9876543210 Key: 0f1571c947d9e8590cb7add6af7f6798

apply 1st round (round 0) of AES encryption.

Figure 1 AES Encryption Process

		у															
		0	1	2	3	4	5	6	7	8	9	Α	В	C	D	E	F
x	0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
	1	CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	AF	9C	A4	72	C 0
	2	B7	FD	93	26	36	3F	F7	CC	34	A5	E5	F1	71	D8	31	15
	3	04	C7	23	C3	18	96	05	9A	07	12	80	E2	EB	27	B2	75
	4	09	83	2C	1A	1B	6E	5A	A 0	52	3B	D6	В3	29	E3	2F	84
	5	53	D1	00	ED	20	FC	B1	5B	6A	CB	BE	39	4A	4C	58	CF
	6	D 0	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A8
	7	51	A3	40	8F	92	9D	38	F5	BC	B6	DA	21	10	FF	F3	D2
	8	CD	0C	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
	9	60	81	4F	DC	22	2A	90	88	46	EE	B8	14	DE	5E	0 B	DB
	Α	E0	32	3A	0 A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
	В	E7	C8	37	6D	8D	D5	4E	A 9	6C	56	F4	EA	65	7A	AE	08
	C	BA	78	25	2E	1C	A6	B4	C6	E8	DD	74	1F	4B	BD	8B	8A
	D	70	3E	B5	66	48	03	F6	0E	61	35	57	B9	86	C1	1D	9E
	E	E1	F8	98	11	69	D9	8E	94	9 B	1E	87	E9	CE	55	28	DF
	F	8C	A1	89	0 D	BF	E6	42	68	41	99	2D	0F	B 0	54	BB	16

(a) S-box

		у															
		0	1	2	3	4	5	6	7	8	9	Α	В	C	D	Е	F
x	0	52	09	6A	D5	30	36	A5	38	BF	40	A3	9E	81	F3	D7	FB
	1	7C	E3	39	82	9B	2F	FF	87	34	8E	43	44	C4	DE	E9	CB
	2	54	7B	94	32	A 6	C2	23	3D	EE	4C	95	$0\mathbf{B}$	42	FA	C3	4E
	3	08	2E	A 1	66	28	D 9	24	B2	76	5B	A2	49	6D	8B	D1	25
	4	72	F8	F6	64	86	68	98	16	D4	A4	5C	CC	5D	65	B6	92
	5	6C	70	48	50	FD	ED	B 9	DA	5E	15	46	57	A7	8D	9D	84
	6	90	D8	AB	00	8C	BC	D3	0 A	F7	E4	58	05	B8	В3	45	06
	7	D 0	2C	1E	8F	CA	3F	0F	02	C1	AF	BD	03	01	13	8A	6B
	8	3A	91	11	41	4F	67	DC	EA	97	F2	CF	CE	F0	B4	E6	73
	9	96	AC	74	22	E7	AD	35	85	E2	F9	37	E8	1C	75	DF	6E
	Α	47	F1	1 A	71	1D	29	C5	89	6F	B7	62	0E	AA	18	BE	1B
	В	FC	56	3E	4B	C6	D2	79	20	9 A	DB	C0	FE	78	CD	5A	F4
	C	1F	DD	A 8	33	88	07	C7	31	B1	12	10	59	27	80	EC	5F
	D	60	51	7F	A 9	19	В5	4A	0D	2D	E5	7A	9F	93	C9	9C	EF
	E	A 0	E0	3B	4D	AE	2A	F5	B 0	C8	EB	BB	3C	83	53	99	61
	F	17	2B	04	7E	BA	77	D6	26	E1	69	14	63	55	21	0C	7D

(b) Inverse S-box

Figure 2 AES S-box

Computer programming (Java)

Try the codes below in your IDE (e.g. Netbeans), run the program, and analyse the program

1. Program #1

```
package aes;
import javax.crypto.KeyGenerator;
import javax.crypto.SecretKey;
import javax.crypto.Cipher;
import java.security.NoSuchAlgorithmException;
import java.security.InvalidKeyException;
import java.security.InvalidAlgorithmParameterException;
import javax.crypto.NoSuchPaddingException;
import javax.crypto.BadPaddingException;
import javax.crypto.IllegalBlockSizeException;
import sun.misc.BASE64Encoder;
/**
 * @author itdel
public class AES {
public static void main(String[] args) {
String strDataToEncrypt = new String();
String strCipherText = new String();
String strDecryptedText = new String();
try{
/**
 * Step 1. Generate an AES key using KeyGenerator
 * Initialize the keysize to 128
 */
KeyGenerator keyGen = KeyGenerator.getInstance("AES");
keyGen.init(128);
SecretKey secretKey = keyGen.generateKey();
/**
 * Step2. Create a Cipher by specifying the following
parameters
 * a. Algorithm name - here it is AES
Cipher aesCipher = Cipher.getInstance("AES");
/**
 * Step 3. Initialize the Cipher for Encryption
aesCipher.init(Cipher.ENCRYPT MODE, secretKey);
 * Step 4. Encrypt the Data
 * 1. Declare / Initialize the Data. Here the data is of type String
 * 2. Convert the Input Text to Bytes
```

```
* 3. Encrypt the bytes using doFinal method
 */
strDataToEncrypt = "Hello World of Encryption using AES";
byte[] byteDataToEncrypt = strDataToEncrypt.getBytes();
byte[] byteCipherText = aesCipher.doFinal(byteDataToEncrypt);
strCipherText = new BASE64Encoder().encode(byteCipherText);
System.out.println("Cipher Text generated using AES is " +strCipherText);
/**
 * Step 5. Decrypt the Data
* 1. Initialize the Cipher for Decryption
 * 2. Decrypt the cipher bytes using doFinal method
aesCipher.init(Cipher.DECRYPT MODE, secretKey, aesCipher.getParameters());
byte[] byteDecryptedText = aesCipher.doFinal(byteCipherText);
strDecryptedText = new String(byteDecryptedText);
System.out.println(" Decrypted Text message is " +strDecryptedText);
catch (NoSuchAlgorithmException noSuchAlgo)
System.out.println(" No Such Algorithm exists " + noSuchAlgo);
catch (NoSuchPaddingException noSuchPad)
System.out.println(" No Such Padding exists " + noSuchPad);
catch (InvalidKeyException invalidKey)
System.out.println(" Invalid Key " + invalidKey);
catch (BadPaddingException badPadding)
System.out.println(" Bad Padding " + badPadding);
catch (IllegalBlockSizeException illegalBlockSize)
System.out.println(" Illegal Block Size " + illegalBlockSize);
catch (
InvalidAlgorithmParameterException invalidParam)
System.out.println(" Invalid Parameter " + invalidParam);
```

2. Program #2

```
package aes;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.security.InvalidAlgorithmParameterException;
import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;
import java.security.spec.AlgorithmParameterSpec;
import javax.crypto.Cipher;
import javax.crypto.CipherInputStream;
import javax.crypto.CipherOutputStream;
import javax.crypto.KeyGenerator;
import javax.crypto.NoSuchPaddingException;
import javax.crypto.SecretKey;
import javax.crypto.spec.IvParameterSpec;
 * @author itdel
 */
public class AES Message inFILE {
private static Cipher encrypt;
private static Cipher decrypt;
private static final byte[] initialization vector = { 03, 43, 27, 17,
20, 4, 001, 23,
 67, 23, 11, 34,
27, 19, 73, 47 };
String strChiperText=new String();
public static void main(String[] args) {
 //choose the right path
String messageFile = "D....../message.txt";
 String encryptedFile = "D....../encryptedMessage.txt";
String decryptedFile = "D:/@.... /decryptedMessage.txt";
try {
SecretKey secret key =
KeyGenerator.getInstance("AES").generateKey();
System.out.println(secret key);
AlgorithmParameterSpec alogrithm specs = new
IvParameterSpec(initialization vector);
// set encryption mode ...
encrypt = Cipher.getInstance("AES/CBC/PKCS5Padding");
encrypt.init(Cipher.ENCRYPT MODE, secret key, alogrithm specs);
// set decryption mode
decrypt = Cipher.getInstance("AES/CBC/PKCS5Padding");
decrypt.init(Cipher.DECRYPT MODE, secret key, alogrithm specs);
// encrypt file
encrypt(new FileInputStream(messageFile), new
FileOutputStream(encryptedFile));
 // decrypt file
 decrypt(new FileInputStream(encryptedFile), new FileOutputStream(
decryptedFile));
System.out.println("End of Encryption/Decryption procedure!");
```

```
} catch (NoSuchAlgorithmException nsae) {
 nsae.printStackTrace();
}catch (NoSuchPaddingException nspe) {
nspe.printStackTrace();
}catch(InvalidKeyException ike) {
 ike.printStackTrace();
 }catch (InvalidAlgorithmParameterException iape) {
 iape.printStackTrace();
 }catch (IOException ioe) {
 ioe.printStackTrace();
private static void encrypt(InputStream input, OutputStream output)throws
IOException {
output = new CipherOutputStream(output, encrypt);
writeBytes(input, output);
private static void decrypt (InputStream input, OutputStream output) throws
IOException {
input = new CipherInputStream(input, decrypt);
writeBytes(input, output);
private static void writeBytes(InputStream input, OutputStream output)throws
IOException {
byte[] writeBuffer = new byte[512];
int readBytes = 0;
 while ((readBytes = input.read(writeBuffer)) >= 0) {
 output.write(writeBuffer, 0, readBytes);
output.close();
 input.close();
```

Deliverables

Answer to **review question**, **problem** and **case** on handwritten paper.