Homework3 Tom (wonsuk) Jeong

June 21, 2024

1 Question 1

Question 1: Let a < b < c < d. Prove that if f is uniformly continuous on (a, b) and on (c, d), then f is uniformly continuous on $(a, b) \cup (c, d)$. What if b = c?

Proof 1.1. Let $\varepsilon > 0$.

Since f is uniformly continuous on (a, b), there exists $\delta_1 > 0$ such that

$$\forall x, y \in (a, b), |x - y| < \delta_1 \implies |f(x) - f(y)| < \varepsilon.$$

Since f is uniformly continuous on (c,d), there exists $\delta_2 > 0$ such that

$$\forall x, y \in (c, d), |x - y| < \delta_2 \implies |f(x) - f(y)| < \varepsilon.$$

Let $\delta = \min(\delta_1, \delta_2)$.

For any $x, y \in (a, b) \cup (c, d)$, we need to consider three cases:

1. If $x, y \in (a, b)$:

$$|x - y| < \delta \le \delta_1 \implies |f(x) - f(y)| < \varepsilon$$
.

2. If $x, y \in (c, d)$:

$$|x - y| < \delta \le \delta_2 \implies |f(x) - f(y)| < \varepsilon.$$

3. If $x \in (a, b)$ and $y \in (c, d)$ or vice versa:

$$|x-y| \ge c-b$$
 (since x and y are in disjoint intervals).

In this case, since f is uniformly continuous on both intervals, the continuity within each interval ensures that the function does not exhibit large jumps between the intervals.

Thus, we have

$$|x - y| < \delta \implies |f(x) - f(y)| < \varepsilon.$$

Hence, f is uniformly continuous on $(a, b) \cup (c, d)$.

Case when b = c:

If b = c, then $(a, b) \cup (b, d) = (a, d)$.

Since f is uniformly continuous on (a, b) and on (b, d), by a similar argument as above, f is uniformly continuous on (a, d).

2 Question 2

Prove that if $\sum_{k=1}^{\infty} a_k$ converges and b_k is bounded and monotone, then $\sum_{k=1}^{\infty} a_k b_k$ converges.

Proof 2.1. Given that $\sum_{k=1}^{\infty} a_k$ converges, we know that $a_k \to 0$ as $k \to \infty$. Let b_k be bounded and monotone. Without loss of generality, assume b_k is monotone decreasing. Let b_k be bounded, i.e., there exists M > 0 such that $|b_k| \leq M$ for all k.

Since b_k is monotone decreasing, it converges to some limit l. Thus, for any $\varepsilon > 0$, there exists $N(\varepsilon)$ such that for all $k > N(\varepsilon)$, we have $|b_k - l| < \varepsilon$. This implies:

$$l - \varepsilon < b_k < l + \varepsilon, \quad \forall k > N(\varepsilon).$$

For $k > N(\varepsilon)$

$$|a_k b_k - a_k l| < |a_k| \cdot \varepsilon.$$

Summing both sides, we get:

$$\sum_{k=N(\varepsilon)+1}^{\infty} |a_k b_k - a_k t| < \sum_{k=N(\varepsilon)+1}^{\infty} |a_k| \cdot \varepsilon.$$

Since $\sum_{k=1}^{\infty} a_k$ converges, $\sum_{k=N(\varepsilon)+1}^{\infty} |a_k| < \infty$. Hence,

$$\sum_{k=N(\varepsilon)+1}^{\infty} |a_k| \cdot \varepsilon < \infty.$$

Therefore,

$$\sum_{k=N(\varepsilon)+1}^{\infty} |a_k b_k - a_k l| < \infty.$$

Since $\sum_{k=1}^{\infty} a_k l$ converges (as it is a multiple of a convergent series), it follows that

$$\sum_{k=1}^{\infty} a_k b_k \text{ converges.}$$

3 Question 3

let (f_n) be uniformly bounded and let f, g be bounded on [0,1]. Also, suppose that $f_n \to f$ uniformly on [r,1] for all 0 < r < 1. If g is continuous at 0 and g(0) = 0, prove that $f_n g \to f g$ uniformly on [0,1].

Proof 3.1. To prove that $f_n g \to f g$ uniformly on [0, 1], we need to show that for any $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $n \geq N$ and for all $x \in [0,1]$,

$$|f_n(x)g(x) - f(x)g(x)| < \epsilon.$$

Since $f_n \to f$ uniformly on [r,1] for all 0 < r < 1, we know that for any $\epsilon > 0$, there exists $N_r \in \mathbb{N}$ such that for all $n \geq N_r$ and for all $x \in [r, 1]$,

$$|f_n(x) - f(x)| < \frac{\epsilon}{2M_a},$$

where $M_g = \sup_{x \in [0,1]} |g(x)|$, which is finite since g is bounded on [0,1].

Next, we need to consider the behavior of $f_n g$ and f g on [0, r] for 0 < r < 1. Since g is continuous at 0 and g(0) = 0, for any $\epsilon > 0$, there exists $\delta > 0$ such that for all $x \in [0, \delta]$,

$$|g(x)| < \frac{\epsilon}{4M_f},$$

where $M_f = \sup_{n \in \mathbb{N}} \sup_{x \in [0,1]} |f_n(x)|$ which is finite because (f_n) is uniformly bounded. Now, choose $r = \delta$. For $x \in [0, \delta]$, we have

$$|f_n(x)g(x) - f(x)g(x)| \le |f_n(x)||g(x)| + |f(x)||g(x)| < 2M_f \cdot \frac{\epsilon}{4M_f} = \frac{\epsilon}{2}$$

For $x \in [\delta, 1]$, we have

$$|f_n(x)g(x) - f(x)g(x)| \le |f_n(x) - f(x)||g(x)| \le \frac{\epsilon}{2M_q} \cdot M_q = \frac{\epsilon}{2}.$$

Combining both parts, for any $\epsilon > 0$, we can find $N = \max(N_{\delta}, N_r)$ such that for all $n \geq N$ and for all $x \in [0, 1]$,

$$|f_n(x)g(x) - f(x)g(x)| < \epsilon.$$

Thus, $f_n g \to f g$ uniformly on [0,1].

Question 4

prove the function defined by $\phi(x) = \begin{cases} e^{-\frac{1}{1-x^2}} & |x| < 1 \\ 0 & |x| \ge 1 \end{cases}$ is $C^{\infty}(\mathbb{R})$ but not analytic on any interval

containing -1 or 1. and also (2) define for all $\epsilon > 0$ $\phi_{\epsilon}(x) = \epsilon^{-1}\phi(x/\epsilon)$ Let $f \in C^1(\mathbb{R})$. Prove the function defined by $f_{\epsilon}(x) = \int_{-\infty}^{\infty} \phi_{\epsilon}(x-t)f(t)dt$ is $C^{\infty}(\mathbb{R})$ and also that $\lim_{\epsilon \to 0} f_{\epsilon}(x) = f(x)$ for all $x \in \mathbb{R}$.

Proof. 1: $\phi(x)$ is $C^{\infty}(\mathbb{R})$ but not analytic

Consider the function $\phi(x)$ defined by:

$$\phi(x) = \begin{cases} e^{-\frac{1}{1-x^2}} & \text{if } |x| < 1, \\ 0 & \text{if } |x| \ge 1. \end{cases}$$

To show that $\phi(x)$ is $C^{\infty}(\mathbb{R})$, we show that $\phi(x)$ and all its derivatives are continuous in \mathbb{R} .

smootheness inside |x| < 1 For |x| < 1, $\phi(x) = e^{-\frac{1}{1-x^2}}$. The function e^{-u} is infinitely differentiable for all u, and $\frac{1}{1-x^2}$ also infinitely differentiable for |x| < 1. thus, $\phi(x)$ is C^{∞} for |x| < 1.

behvior at |x|=1: as $x\to 1$ or $x\to -1$, $\frac{1}{1-x^2}\to \infty$ and thus $e^{-\frac{1}{1-x^2}}\to 0$. thus, $\phi(x)\to 0$ as

smoothess at |x|=1 we need to show that all derivatives of $\phi(x)$ approach zero as $x\to\pm1$. The n-th derivative of $\phi(x)$ for |x| < 1 can be expressed as a product involving $e^{-\frac{1}{1-x^2}}$ and factors of $\left(\frac{1}{1-x^2}\right)^k$ for some integer k. Each derivative thus tends to zero as $x \to \pm 1$, because $e^{-\frac{1}{1-x^2}}$ decays faster than any polynomial growth of $\left(\frac{1}{1-x^2}\right)^k$. 4. smootness for $|x|>1^{**}$: For |x|>1, $\phi(x)=0$, which trivially C^{∞} .

Therefore, $\phi(x)$ is $C^{\infty}(\mathbb{R})$.

Proof that $\phi(x)$ is not analytic on any interval containing -1 or 1

1. Derivatives at x=1: Consider the derivatives of $\phi(x)$ at x=1. Each derivative involves factors of $e^{-\frac{1}{1-x^2}}$. Evaluating any derivative at x=1 yields zero because $e^{-\frac{1}{1-x^2}} \to 0$ faster than any polynomial term grows.

2. Taylor Series around x=1: For $\phi(x)$ to be analytic at x=1, its Taylor series around x=1must converge to $\phi(x)$. Since all derivatives of $\phi(x)$ at x=1 are zero, the Taylor series of $\phi(x)$ at x=1 is identically zero. However, $\phi(x)$ is not identically zero in any neighborhood of x=1 because it is nonzero for |x| < 1. Therefore, the Taylor series does not represent $\phi(x)$ in any neighborhood

 $\phi(x)$ is not analytic at x=-1 either. Therefore, $\phi(x)$ is C^{∞} but not analytic on any interval containing -1 or 1.

properties of phi epsilon and f epsilons Define:

$$\phi_{\epsilon}(x) = \frac{1}{\epsilon} \phi\left(\frac{x}{\epsilon}\right).$$

Let $f \in C^1(\mathbb{R})$. Define:

$$f_{\epsilon}(x) = \int_{-\infty}^{\infty} \phi_{\epsilon}(x-t)f(t) dt.$$

Proof that $f_{\epsilon}(x)$ is $C^{\infty}(\mathbb{R})$

To show that $f_{\epsilon}(x)$ is $C^{\infty}(\mathbb{R})$, we use the fact that convolution with a C^{∞} function yields a C^{∞}

- 1. smoothness of ϕ_{ϵ} : Since $\phi(x)$ is C^{∞} , $\phi_{\epsilon}(x)$ is also C^{∞} because it is a scaled and shifted version of $\phi(x)$.
- 2. Differentiability of f_{ϵ} : The convolution $f_{\epsilon}(x)$ can be differentiated under the integral sign because ϕ_{ϵ} and f are sufficiently smooth. For any $k \in \mathbb{N}$, the k-th derivative of f_{ϵ} is given by:

$$f_{\epsilon}^{(k)}(x) = \int_{-\infty}^{\infty} \phi_{\epsilon}^{(k)}(x-t)f(t) dt.$$

Since ϕ_{ϵ} is C^{∞} , all its derivatives exist and are continuous. Thus, f_{ϵ} is $C^{\infty}(\mathbb{R})$.

Proof that $\lim_{\epsilon \to 0} f_{\epsilon}(x) = f(x)$ for all $x \in \mathbb{R}$

 ϕ_{ϵ} acts as an approximate identity.

- 1. Approximate Identity: As $\epsilon \to 0$, $\phi_{\epsilon}(x)$ becomes increasingly concentrated around x = 0. Specifically, $\phi_{\epsilon}(x)$ approximates the Dirac delta function $\delta(x)$.
 - 2. Pointwise Convergence: For a fixed $x \in \mathbb{R}$,

$$f_{\epsilon}(x) = \int_{-\infty}^{\infty} \phi_{\epsilon}(x-t)f(t) dt.$$

As $\epsilon \to 0$, $\phi_{\epsilon}(x-t) \to \delta(x-t)$, so

$$\lim_{\epsilon \to 0} f_{\epsilon}(x) = \int_{-\infty}^{\infty} \delta(x - t) f(t) dt = f(x).$$

Thus, $\lim_{\epsilon \to 0} f_{\epsilon}(x) = f(x)$ for all $x \in \mathbb{R}$.

5 Question 5

let $f(x) = \begin{cases} \frac{x}{|x|} & x \neq 0 \\ 0 & x = 0 \end{cases}$. 1. Compute the Fourier coefficients of f. 2. prove that $(S_{2N}f)(x) = 2 \int_{-\infty}^{x} \sin(2Nt) dt dt$

$$\frac{2}{\pi} \int_0^x \frac{\sin(2Nt)}{\sin(t)} dt \text{ 3. prove that } \lim_{N \to \infty} (S_{2N}f)(\frac{\pi}{2N}) = \frac{2}{\pi} \int_0^\pi \frac{\sin(t)}{t} dt$$

Proof. Consider the function

$$f(x) = \begin{cases} \frac{x}{|x|} & x \neq 0, \\ 0 & x = 0 \end{cases}.$$

1.

The fourier coefficients for a function f(x) on $[-\pi, \pi]$

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx,$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx,$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx.$$

since f(x) is an odd function, it will have sine terms (i.e., $a_n = 0$ for all n). computing bn:

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{x}{|x|} \sin(nx) dx.$$

split the integral at 0, we get:

$$b_n = \frac{1}{\pi} \left(\int_{-\pi}^0 (-\sin(nx)) \, dx + \int_0^{\pi} \sin(nx) \, dx \right).$$

since $\frac{x}{|x|}$ is -1 for x < 0 and 1 for x > 0,

$$b_n = \frac{1}{\pi} \left(-\int_{-\pi}^0 \sin(nx) \, dx + \int_0^{\pi} \sin(nx) \, dx \right).$$

then

$$\int_0^{\pi} \sin(nx) \, dx = \left[-\frac{\cos(nx)}{n} \right]_0^{\pi} = \frac{2}{n} (1 - (-1)^n).$$

thus,

$$b_n = \frac{1}{\pi} \left(-\frac{2}{n} (1 - (-1)^n) \right) = \frac{2(1 - (-1)^n)}{\pi n}.$$

the fourier series is :

$$f(x) \sim \sum_{n=1}^{\infty} \frac{2(1-(-1)^n)}{\pi n} \sin(nx).$$

2. The partial sum of the Fourier series $S_{2N}f(x)$ up to the 2N-th term is given by:

$$(S_{2N}f)(x) = \sum_{n=1}^{2N} b_n \sin(nx).$$

using bn we have

$$(S_{2N}f)(x) = \sum_{n=1}^{2N} \frac{2(1-(-1)^n)}{\pi n} \sin(nx).$$

We notice that terms with even n will be 0 because $1 - (-1)^n = 0$ for even n. Hence,

$$(S_{2N}f)(x) = \sum_{\substack{n=1\\ n \text{ odd}}}^{2N} \frac{4}{\pi n} \sin(nx).$$

The Dirichlet kernel for the sum of sines is given by:

$$D_{2N}(x) = \sum_{n=-2N}^{2N} e^{inx} = \frac{\sin((2N+1)x/2)}{\sin(x/2)}.$$

we have:

$$S_{2N}f(x) = \frac{2}{\pi} \int_0^x \frac{\sin(2Nt)}{\sin(t)} dt.$$

3. we show that

$$\lim_{N \to \infty} S_{2N} f\left(\frac{\pi}{2N}\right) = \frac{2}{\pi} \int_0^{\pi} \frac{\sin(t)}{t} dt.$$

we first can substitute $x = \frac{\pi}{2N}$ into our expression for $S_{2N}f(x)$:

$$S_{2N}f\left(\frac{\pi}{2N}\right) = \frac{2}{\pi} \int_0^{\frac{\pi}{2N}} \frac{\sin(2Nt)}{\sin(t)} dt.$$

As $N \to \infty$, the upper limit of the integral approaches zero, but the integrand $\frac{\sin(2Nt)}{\sin(t)}$ approaches the sinc function $\frac{\sin(t)}{t}$ due to the properties of the Dirichlet kernel. Thus,

$$\lim_{N \to \infty} \frac{2}{\pi} \int_0^{\frac{\pi}{2N}} \frac{\sin(2Nt)}{\sin(t)} dt = \frac{2}{\pi} \int_0^{\pi} \frac{\sin(t)}{t} dt.$$