Aula 4

Estrutura de Dados

Prof. Vinicius Pozzobon Borin

Conversa Inicial

2

1

Investigadores uma nova estrutura de dados

- Árvore
- Árvore binária
- Árvore de Adelson-velskii e Landis (AVL)

Árvores Binárias

3 4

Uma busca eficiente

- Como implementar uma busca em um conjunto de dados gigantesco?
 - Array com busca binária?

Uma possível solução para esse tipo de problema é o emprego de uma estrutura não linear, a árvore, como uma árvore binária de busca

A árvore

Uma estrutura de dados é denominada de árvore quando seus elementos criam ramificações na estrutura, gerando subárvores

Organização não linear

8

10

■ Diferente de uma lista encadeada, que é linear

7

Nomenclatura

- Nó raiz (root) nó original da árvore. Todos derivam dele
- Nó pai nó que dá origem (está acima) a pelo menos um outro nó
- Nó filho nó que deriva de um nó pai
- Nó folha/terminal nó que não contém filhos

Árvore binária

Uma árvore é chamada de binária quando cada elemento (nó/nodo) da árvore contém, no máximo, dois (bi) filhos

Profundidade na árvore

É a diferença entre o nível do nó e o nível da raiz

13 14

Altura na árvore

- É a diferença entre dois níveis quaisquer
- A altura é importante para balanceamento de árvore

15 16

Nível	Nós no nível	Total de elemento por profundidade
0	20 = 1	21 - 1 = 1
1	21 = 2	22 - 1 = 3
2	22 = 4	2 ³ - 1 = 7
3	23 = 8	24 - 1 = 15
4	24 = 16	2 ⁵ - 1 = 31
5	25 = 32	2 ⁶ - 1 = 63

 $Total_{n\'{o}s\;por\;profundidade} = 2^{n\'{i}vel + 1} - 1$

Tipos de árvores binárias

- Árvore estritamente binária
 - É aquela em que cada nó contém, sempre, exatamente dois filhos, ou nenhum
- Árvore binária completa
 - É aquela em que todos os nós contendo menos de dois filhos estão colocados somente no último ou no penúltimo nível da árvore

17 18

É assim denominada quando cada nó tem exatamente dois filhos, e os nós folhas estão sempre no mesmo nível. Ou seja, é quando a árvore é estritamente binária e completa ao mesmo tempo

Árvore Binária de Busca

19 20

Também conhecida como

Binary Search Tree (BST)

- Caso o valor a ser inserido seja menor do que o seu nó pai, inserimos o dado na subárvore esquerda
- Caso o valor a ser inserido seja maior do que o seu nó pai, inserimos o dado na subárvore direta

21 22

__

Vejamos a implementação em Python

Percurso em BST

27

28

Podemos percorrer uma árvore de diferentes maneiras

Percurso em largura

- Level order
- Percorremos horizontalmente a árvore
- De cima para baixo, da esquerda para a direta

29

Resultado: 6, 2, 8, 1, 4, 3 Vejamos a implementação em Python

32

Percurso em profundidade

É definido um caminho (galho da árvore), e vamos até o fim dele antes de retornarmos para escolher outro

Percurso em ordem

Esquerda, raiz, direta

33 34

Resultado: 1, 2, 3, 4, 6, 8

Vejamos a implementação em Python

35 36

Percurso em pré-ordem

Raiz, esquerda, direta

37 38

Resultado: 6, 2, 1, 4, 3, 8

Vejamos a implementação em Python

Percurso em pós-ordem

Esquerda, direta, raiz

39 40

Resultado: 1, 3, 4, 2, 8, 6

Vejamos a implementação em Python

Também conhecida como
Árvore AVL
Árvore binária de busca balanceada
O que é uma árvore balanceada?

43 44

45 46

47 48

Características da árvore AVL

- Mesmas características da BST
- Uma propriedade a mais
 - A diferença de altura entre a subárvore da direta e da subárvore da esquerda será sempre 0, 1 ou -1

O balanceamento

- Passo 1: calcula-se a altura relativa daquele elemento para o lado direito da árvore. Nesse caso, pegamos o nível mais alto do lado direito daquele elemento e subtraímos do nível do elemento desejado
- Passo 2: calcula-se a altura relativa daquele elemento para o lado esquerdo da árvore. Nesse caso, pegamos o nível mais alto do lado esquerdo daquele elemento e subtraímos do nível do elemento desejado

49 50

Passo 3: tendo a altura direita e a esquerda calculada, fazemos a diferença entre elas (direta menos esquerda, sempre). Se o cálculo resultar em 2 ou -2, existe um desbalanceamento e uma rotação será necessária na árvore

51 52

Rotações da Árvore AVL

Diferença de altura de um nó	Diferença de altura do nó filho do nó desbalanceado	Tipo de rotação
2	1	Simples à esquerda
2	0	Simples à esquerda
2	-1	Dupla com filho para a direita e pai para a esquerda
-2	1	Dupla com filho para a esquerda e pai para a direita
-2	0	Simples à direita
-2	-1	Simples à direita

55 56

57

59 60

Referências

- ASCENCIO, A. F. G.; ARAÚJO, G. S. Estruturas de dados: algoritmos, análise da complexidade e implementações em JAVA e C/C++. São Paulo: Pearson Prentice, 2010.
- BHARGAVA, A. Y. Entendendo algoritmos. São Paulo: Novatec, 2017.

61 62

- DROZDEK, A. Estrutura de dados e algoritmos em C++. Tradução da 4ª edição norteamericana. São Paulo: Cengage Learning Brasil, 2018.
- FERRARI, R. et al. Estruturas de dados com jogos. Rio de Janeiro: Elsevier, 2014.
- KOFFMAN, E. B.; WOLFGANG, P. A. T. Objetos, abstração, estrutura de dados e projeto usando C++. Barueri: Grupo GEN, 2008.

