

Research Center

**Power & On-Board
Propulsion Technology
Division**

Wide-Temperature Electronics for Thermal Control of Nanosats

John Ellis Dickman
NASA Glenn Research Center
(216) 433-6150

Scott Gerber
Dynacs Engineering Company, Inc.
(216) 433-8059

NanoSpace 2000
League City, Texas
January 23-28, 2000

Research Center

Carrier Concentration Versus Temperature

Power & On-Board Propulsion Technology Division

Electron Density versus Temperature for p-doped Silicon.
Source: S.M.Sze, "Semiconductor Devices: Physics and Technology"

Johnson Research Center

Power & On-Board
Propulsion Technology
Division

Radioisotope Heating Units (RHU's)

Cost per RHU: \$30K

Weight per RHU: 40g

Recent Missions Using RHU's

Mission	RHUs used	RHU Cost (\$M)	RHU Weight (Kg)
Mars Pathfinder	120	3.6	4.8
Galileo	157	4.7	6.3

Benefits of Wide/Low-Temperature Electronics

- Eliminate/reduce requirement for RHUs
- Reduce system weight and launch cost
- Simplify spacecraft design by eliminating containment/support structures for RHU's

n Research Center

**Power & On-Board
Propulsion Technology
Division**

Glenn Research Center Wide/Low Temperature Power Electronics Program

- Support the development of power systems capable of reliable, efficient operation over the temperature ranges of:

- near room temperature (+200 C to -100C)
- wide temperatures (+100 C to -175 C)
- cryogenic temperatures (70 K to 20 K).

N Research Center

IRF541 n-Channel HEXFET MOSFET

Power & On-Board
Propulsion Technology
Division

Drain Family at Room Temperature

IRFD024 n-Channel HEXFET MOSFET: S/D Breakdown

Power & On-Board
Propulsion
Technology
Division

RT Breakdown = 69V

LN2 Breakdown = 57V

Research Center

Power & On-Board
Propulsion Technology
Division

IRF541 HEXFET Success

Drain Family at RT after 10 LN2 Cycles

N Research Center

Power & On-Board
Propulsion Technology
Division

IRF541 HEXFET Success

RT Sub-Threshold Current after 10 LN2

n Research Center

NE76118 n-Channel GaAs MESFET: Drain Family

Power & On-Board
Propulsion Technology
Division

Room Temperature

Liquid Nitrogen

N Research Center

NE76118 n-Channel GaAs MESFET: Thermal Cycle Failure

Power & On-Board
Propulsion Technology
Division

**Drain Family at Room
Temperature**

Post 3rd LN2 Cycle

n Research Center

Power & On-Board
Propulsion Technology
Division

Lithium Carbon Monofluoride Primary Battery as a Function of Temperature

I-V characteristics of lithium carbon monofluoride primary battery
at various loads as a function of temperature.

n Research Center

Power & On-Board
Propulsion Technology
Division

COTS DC-DC Converter

inverter characteristic waveforms with 36V input and 2.5A load condition

n Research Center

**Power & On-Board
Propulsion Technology
Division**

Conclusions

Preliminary results of wide/low-temperature testing of COTS and custom parts and power circuits indicate that through careful selection of components and technologies, it is possible to design and build power circuits which operate from room temperature to near 100K.

But ...

n Research Center

**Power & On-Board
Propulsion Technology
Division**

Challenges

Thermal Cycling

Radiation

Energy Storage

Batteries