dip

February 10, 2025

```
[33]: import pandas as pd
      import numpy as np
      import matplotlib.pyplot as plt
      from sklearn.metrics import adjusted_rand_score
      from sklearn.cluster import KMeans
      from sklearn.decomposition import PCA
      # Load dataset
      #file_path = "/mnt/data/mcdonalds.csv"
      mcdonalds = pd.read csv("mcdonalds.csv")
      # Inspect dataset
      print("Column Names:", mcdonalds.columns.tolist())
      print("Dataset Shape:", mcdonalds.shape)
      print("First Three Rows:\n", mcdonalds.head(3))
      # Convert segmentation variables from Yes/No to binary numeric
      MD_x = mcdonalds.iloc[:, :11].applymap(lambda x: 1 if x == "Yes" else 0)
      print("\nAverage values of transformed variables:\n", MD_x.mean().round(2))
      # Perform Principal Component Analysis (PCA)
      pca = PCA()
      MD_pca = pca.fit_transform(MD_x)
      # Display explained variance
      explained_variance = np.round(pca.explained_variance_ratio_, 4)
      cumulative_variance = np.cumsum(explained_variance)
      print("\nExplained Variance by Principal Components:\n", explained_variance)
      print("Cumulative Variance:\n", cumulative_variance)
      # Display principal component loadings
      loadings = pd.DataFrame(pca.components_.T, index=MD_x.columns,__

columns=[f'PC{i+1}' for i in range(MD_x.shape[1])])
      print("\nPCA Loadings:\n", loadings.round(2))
```

```
# Plot Perceptual Map (First Two Principal Components)
plt.figure(figsize=(8, 6))
plt.scatter(MD pca[:, 0], MD pca[:, 1], color='grey', alpha=0.5)
for i, txt in enumerate(MD_x.columns):
    plt.arrow(0, 0, loadings.iloc[i, 0]*2, loadings.iloc[i, 1]*2, color='red', u
  ⇔head_width=0.05)
    plt.text(loadings.iloc[i, 0]*2.2, loadings.iloc[i, 1]*2.2, txt,
 ⇔color='black')
plt.axhline(0, color='black', linewidth=0.5)
plt.axvline(0, color='black', linewidth=0.5)
plt.xlabel("Principal Component 1")
plt.ylabel("Principal Component 2")
plt.title("Perceptual Map of McDonald's Attributes")
plt.grid()
plt.show()
Column Names: ['yummy', 'convenient', 'spicy', 'fattening', 'greasy', 'fast',
'cheap', 'tasty', 'expensive', 'healthy', 'disgusting', 'Like', 'Age',
'VisitFrequency', 'Gender']
Dataset Shape: (1453, 15)
First Three Rows:
  yummy convenient spicy fattening greasy fast cheap tasty expensive healthy \
0
    No
               Yes
                      No
                               Yes
                                       No Yes
                                                 Yes
                                                        No
                                                                  Yes
                                                                           No
               Yes
                                           Yes
                                                  Yes
                                                                  Yes
1
    Yes
                      No
                               Yes
                                      Yes
                                                        Yes
                                                                           No
     No
               Yes
                     Yes
                               Yes
                                      Yes Yes
                                                  No
                                                        Yes
                                                                  Yes
                                                                          Yes
  disgusting Like Age
                            VisitFrequency
                                            Gender
0
          No
               -3
                    61
                       Every three months
                                            Female
1
          No
               +2
                        Every three months Female
                    51
2
          No
               +1
                    62
                        Every three months Female
Average values of transformed variables:
               0.55
yummy
              0.91
convenient
              0.09
spicy
fattening
              0.87
              0.53
greasy
              0.90
fast
cheap
              0.60
tasty
              0.64
expensive
              0.36
healthy
              0.20
disgusting
              0.24
dtype: float64
Explained Variance by Principal Components:
 [0.2994 0.1928 0.133 0.0831 0.0595 0.0503 0.0438 0.0395 0.0368 0.0324
```

0.0293]

Cumulative Variance:

[0.2994 0.4922 0.6252 0.7083 0.7678 0.8181 0.8619 0.9014 0.9382 0.9706 0.9999]

PCA Loadings:

	PC	1 PC	2 PC	3 PC ²	4 PC5	5 PC6	5 PC	7 PC8	B PC9	PC10	PC11
yummy	-0.48	0.36	-0.30	0.06	-0.31	0.17	-0.28	0.01	0.57	-0.11	0.05
convenient	-0.16	0.02	-0.06	-0.14	0.28	-0.35	-0.06	-0.11	-0.02	-0.67	-0.54
spicy	-0.01	0.02	-0.04	0.20	0.07	-0.36	0.71	0.38	0.40	-0.08	0.14
fattening	0.12	-0.03	-0.32	-0.35	-0.07	-0.41	-0.39	0.59	-0.16	-0.01	0.25
greasy	0.30	-0.06	-0.80	0.25	0.36	0.21	0.04	-0.14	-0.00	0.01	0.00
fast	-0.11	-0.09	-0.06	-0.10	0.11	-0.59	-0.09	-0.63	0.17	0.24	0.34
cheap	-0.34	-0.61	-0.15	0.12	-0.13	-0.10	-0.04	0.14	0.08	0.43	-0.49
tasty	-0.47	0.31	-0.29	-0.00	-0.21	-0.08	0.36	-0.07	-0.64	0.08	0.02
expensive	0.33	0.60	0.02	0.07	-0.00	-0.26	-0.07	0.03	0.07	0.45	-0.49
healthy	-0.21	0.08	0.19	0.76	0.29	-0.18	-0.35	0.18	-0.19	-0.04	0.16
disgusting	0.37	-0.14	-0.09	0.37	-0.73	-0.21	-0.03	-0.17	-0.07	-0.29	-0.04

/var/folders/ns/_gksq54x6hq35t894m1570280000gn/T/ipykernel_5408/2757169144.py:20 : FutureWarning: DataFrame.applymap has been deprecated. Use DataFrame.map instead.

 $MD_x = mcdonalds.iloc[:, :11].applymap(lambda x: 1 if x == "Yes" else 0)$


```
[26]: # Stability analysis using K-Means clustering
      num_segments = range(2, 9)
      n boot = 100
      stability_scores = []
      for k in num_segments:
          rand_indices = []
          for _ in range(n_boot):
              sample_idx = np.random.choice(len(MD_x), len(MD_x), replace=True)
              sample_data = MD_x.iloc[sample_idx]
              kmeans = KMeans(n_clusters=k, n_init=10, random_state=None).
       →fit(sample_data)
              ref_kmeans = KMeans(n_clusters=k, n_init=10, random_state=None).
       \hookrightarrowfit(MD_x)
              rand_indices.append(adjusted_rand_score(ref_kmeans.labels_, kmeans.
       →labels_))
          stability_scores.append(rand_indices)
      # Boxplot of stability scores
      plt.figure(figsize=(8, 6))
      plt.boxplot(stability_scores, labels=num_segments)
      plt.xlabel("Number of Segments")
      plt.ylabel("Adjusted Rand Index")
      plt.title("Global Stability of Segmentation")
      plt.grid()
      plt.show()
```



```
[37]: # Selecting the best segmentation solution
      best k = 4
      final_kmeans = KMeans(n_clusters=best_k, n_init=10, random_state=42).fit(MD_x)
      mcdonalds["Segment"] = final_kmeans.labels_
      # Segment Level Stability Within Solutions (SLSW)
      segment_stability = []
      for segment in range(best_k):
          segment_indices = (final_kmeans.labels_ == segment)
          intra_stability = np.mean([adjusted_rand_score(final_kmeans.
       ⇔labels_[segment_indices], KMeans(n_clusters=best_k, n_init=10, __
       orandom_state=None).fit(MD_x.iloc[segment_indices]).labels_) for _ in__
       →range(n_boot)])
          segment_stability.append(intra_stability)
      # Plot segment stability
      plt.figure(figsize=(8, 6))
      plt.bar(range(1, best_k+1), segment_stability)
      plt.xlabel("Segment Number")
      plt.ylabel("Segment Stability")
```

```
plt.title("Segment Level Stability Within Solutions")
plt.ylim(0, 1)
plt.grid()
plt.show()
```



```
[41]: # Convert segmentation variables from Yes/No to binary numeric
MD_x = mcdonalds.iloc[:, :11].applymap(lambda x: 1 if x == "Yes" else 0)

# Fit Gaussian Mixture Model (GMM) for 2 to 8 segments
num_segments = range(2, 9)
gmm_models = {}
log_likelihoods = []
aic_values = []
bic_values = []

for k in num_segments:
    gmm = GaussianMixture(n_components=k, n_init=10, random_state=1234)
    gmm.fit(MD_x)
    gmm_models[k] = gmm
```

```
log_likelihoods.append(gmm.lower_bound_ * MD_x.shape[0])
   aic_values.append(gmm.aic(MD_x))
   bic_values.append(gmm.bic(MD_x))
# Plot Information Criteria
plt.figure(figsize=(8, 6))
plt.plot(num_segments, aic_values, label='AIC', marker='o')
plt.plot(num_segments, bic_values, label='BIC', marker='s')
plt.xlabel("Number of Segments")
plt.ylabel("Information Criteria (AIC, BIC)")
plt.title("Model Selection using Information Criteria")
plt.legend()
plt.grid()
plt.show()
# Select best number of segments (based on elbow method, e.g., 4)
best_k = 4
best_gmm = gmm_models[best_k]
mcdonalds["GMM_Segment"] = best_gmm.predict(MD_x)
# Compare with K-Means clustering
kmeans = KMeans(n_clusters=best_k, n_init=10, random_state=42).fit(MD_x)
mcdonalds["KMeans_Segment"] = kmeans.labels_
# Cross-tabulation of segments
cross tab = pd.crosstab(mcdonalds["KMeans Segment"], mcdonalds["GMM Segment"])
print("\nCross-tabulation of K-Means and GMM Segments:\n", cross_tab)
# Initializing GMM using K-Means clusters
gmm_kmeans init = GaussianMixture(n_components=best_k, n_init=10,__
 →random_state=1234, init_params='kmeans')
gmm kmeans init.fit(MD x)
mcdonalds["GMM_KMeansInit_Segment"] = gmm_kmeans_init.predict(MD_x)
# Compare log-likelihood values
print("\nLog-Likelihood Values:")
print("Random Initialization:", best_gmm.lower_bound_ * MD_x.shape[0])
print("K-Means Initialization:", gmm_kmeans_init.lower_bound_ * MD_x.shape[0])
```

/var/folders/ns/_gksq54x6hq35t894m1570280000gn/T/ipykernel_5408/1934968170.py:2: FutureWarning: DataFrame.applymap has been deprecated. Use DataFrame.map instead.

```
MD_x = mcdonalds.iloc[:, :11].applymap(lambda x: 1 if x == "Yes" else 0)
```


Cross-tabulation of K-Means and GMM Segments: GMM_Segment KMeans_Segment 0 403

Log-Likelihood Values:

Random Initialization: 17513.53905912311 K-Means Initialization: 17513.53905912311

```
[47]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import statsmodels.api as sm
from sklearn.mixture import GaussianMixture
```

```
# Mapping for 'Like' column to numerical values
like_mapping = {
    "I love it!+5": 5, "+4": 4, "+3": 3, "+2": 2, "+1": 1, "0": 0,
    "-1": -1, "-2": -2, "-3": -3, "-4": -4, "I hate it!-5": -5
}
# Convert categorical 'Like' variable to numerical scale (-5 to +5)
mcdonalds['Like.n'] = mcdonalds['Like'].map(like_mapping)
# Drop rows where Like.n could not be mapped
mcdonalds = mcdonalds.dropna(subset=['Like.n'])
# Define dependent variable (y) and independent variables (X)
X = mcdonalds.iloc[:, :11].applymap(lambda x: 1 if x == "Yes" else 0)
y = mcdonalds['Like.n']
# Fit a mixture of regression models with 2 components
num_components = 2
gmm = GaussianMixture(n_components=num_components, n_init=10, random_state=1234)
clusters = gmm.fit_predict(X)
mcdonalds['GMM_Cluster'] = clusters
# Fit separate regression models for each segment
regression results = {}
for segment in range(num_components):
    segment data = mcdonalds[mcdonalds['GMM Cluster'] == segment]
    X_segment = sm.add_constant(segment_data.iloc[:, :11].applymap(lambda x: 1_u
 \rightarrowif x == "Yes" else 0))
    y_segment = segment_data['Like.n']
    model = sm.OLS(y_segment, X_segment).fit()
    regression_results[segment] = model
    print(f"\nSegment {segment + 1} Regression Results:")
    print(model.summary())
# Extract regression coefficients for plotting
coefficients = pd.DataFrame({f'Segment {i+1}': model.params for i, model in_
 →regression_results.items()})
coefficients = coefficients.drop("const")
# Plot regression coefficients
plt.figure(figsize=(10, 6))
coefficients.plot(kind='bar', figsize=(12, 6), alpha=0.75)
plt.axhline(y=0, color='black', linewidth=0.75, linestyle='--')
plt.xlabel("Independent Variables")
plt.ylabel("Regression Coefficients")
plt.title("Comparison of Regression Coefficients Across Segments")
plt.xticks(rotation=45)
```

```
plt.legend()
plt.grid()
plt.show()
```

/var/folders/ns/_gksq54x6hq35t894m1570280000gn/T/ipykernel_5408/1622017903.py:22 : FutureWarning: DataFrame.applymap has been deprecated. Use DataFrame.map instead.

X = mcdonalds.iloc[:, :11].applymap(lambda x: 1 if x == "Yes" else 0)
/var/folders/ns/_gksq54x6hq35t894m1570280000gn/T/ipykernel_5408/1622017903.py:35
: FutureWarning: DataFrame.applymap has been deprecated. Use DataFrame.map
instead.

X_segment = sm.add_constant(segment_data.iloc[:, :11].applymap(lambda x: 1 if
x == "Yes" else 0))

/opt/anaconda3/lib/python3.12/site-

packages/statsmodels/regression/linear_model.py:1967: RuntimeWarning: divide by zero encountered in scalar divide

return np.sqrt(eigvals[0]/eigvals[-1])

/var/folders/ns/_gksq54x6hq35t894m1570280000gn/T/ipykernel_5408/1622017903.py:35 : FutureWarning: DataFrame.applymap has been deprecated. Use DataFrame.map instead.

X_segment = sm.add_constant(segment_data.iloc[:, :11].applymap(lambda x: 1 if
x == "Yes" else 0))

Segment 1 Regression Results:

OLS Regression Results

Dep. Variable: Like.n R-squared: 0.405 Model: OLS Adj. R-squared: 0.400 Method: Least Squares F-statistic: 83.00 Mon, 10 Feb 2025 Prob (F-statistic): 1.34e-104 Date: Time: 21:04:37 Log-Likelihood: -1982.1No. Observations: 985 AIC: 3982. Df Residuals: BIC: 976 4026.

Df Model: 8
Covariance Type: nonrobust

=========	========	========				=======
	coef	std err	t	P> t	[0.025	0.975]
yummy	1.9765	0.160	12.375	0.000	1.663	2.290
convenient	-0.0480	0.125	-0.385	0.701	-0.293	0.197
spicy	-0.5211	0.203	-2.565	0.010	-0.920	-0.122
fattening	-0.5446	0.182	-3.000	0.003	-0.901	-0.188
greasy	-0.3425	0.123	-2.777	0.006	-0.584	-0.100
fast	-0.0480	0.125	-0.385	0.701	-0.293	0.197
cheap	0.0886	0.181	0.489	0.625	-0.267	0.444
tasty	1.4321	0.177	8.077	0.000	1.084	1.780
expensive	0.0891	0.191	0.466	0.641	-0.286	0.464

${\tt healthy}$	0.4674	0.150	3.116	0.002	0.173	0.762
disgusting	0	0	nan	nan	0	0
=======================================						
Omnibus:		59.066	Durbi	.n-Watson:		2.020
Prob(Omnibus):	:	0.000	Jarqu	ue-Bera (JB):		69.016
Skew:		-0.603	Prob((JB):		1.03e-15
Kurtosis:		3.475	Cond.	No.		inf
==========		.=========	======	:========	========	=======

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 0. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

Segment 2 Regression Results:

OLS Regression Results

OLS regression results							
Dep. Variable Model: Method: Date: Time: No. Observat Df Residuals Df Model: Covariance T	Mo ions: :	Least Squa on, 10 Feb 20 21:04	DLS Adj. res F-sta 025 Prob :37 Log-I 468 AIC: 456 BIC:	ared: R-squared: tistic: (F-statistic ikelihood:	:) :	0.588 0.578 59.23 1.03e-80 -1001.6 2027. 2077.	
	coef	std err	t	P> t	[0.025	0.975]	
const yummy convenient spicy fattening greasy fast cheap tasty expensive healthy disgusting	-2.4721 3.2251 0.9483 -0.0656 0.0229 -0.0312 0.4303 -0.0294 1.3174 -0.1235 0.3981 -1.9007	0.402 0.303 0.226 0.343 0.369 0.244 0.257 0.282 0.280 0.271 0.346 0.305	-6.143 10.638 4.195 -0.191 0.062 -0.128 1.673 -0.104 4.711 -0.455 1.151 -6.233	0.000 0.000 0.000 0.849 0.951 0.898 0.095 0.917 0.000 0.649 0.250 0.000	-3.263 2.629 0.504 -0.740 -0.702 -0.511 -0.075 -0.583 0.768 -0.657 -0.282 -2.500	-1.681 3.821 1.392 0.609 0.748 0.449 0.936 0.525 1.867 0.410 1.078 -1.301	
Omnibus: Prob(Omnibus Skew: Kurtosis:): 	0.:			:=======	1.909 2.738 0.254 11.3	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

<Figure size 1000x600 with 0 Axes>

