Kamil Świerad

Interpolacja MOwNiT 2

Do obliczeń użyłem języka python, na systemie operacyjnym Ubuntu. Procesor komputer to Intel® Core™ i5-6300HQ CPU @ 2.30GHz × 4, a ilość pamięci RAM to 16GB.

Program wykorzystany do przeprowadzenia eksperymentów był napisany przez mnie. Do rysowania wykresów wykorzystałem bibliotekę matplotlib, a dokładniej, pyplot, do liczenia normy z różnicy wektorów wykorzystałem bibliotekę numpy.

Otrzymana przeze mnie funkcja do analizy to:

 $f(x) = sin(x) * sin(\frac{x^2}{\pi})$ w przedziale: $[-\pi, 2\pi]$

Co Autor miał na myśli? Jakich wektorów?

Brak wykresu funkcji

???? Co to oznacza?

Eksperymenty polegały na uruchomieniu skryptu który wykonywał obliczenia dla liczby węzłów ∈ {2,3,4,...,15,20,30,40,50}, najpierw dla węzłów równoodległych, a następnie dla węzłów Czebyszewa. Rysowanie wykresów było na podstawie 1000 równoodległych punktów w podanym przedziale, dla których liczyłem wartość interpolowaną Każde uruchomienie programu zapisywało uzyskany wykres oraz błąd, który był liczony jako norma(z biblioteki numpy) z różnicy wektorów wartości funkcji interpolowanej i interpolującej. Na każdym z wykresów niebieski wykres to wykres funkcji interpolowanej, czerwony to wykres funkcji interpolującej, a żółte punkty to węzły interpolacji.

Jaka norma?

Jakich wektorów?

Po co te dwie częsci? Liczba wezłów się zmieniła?

Metoda Lagrange'a:

Tabela 1. Błędy uzyskane przy użyciu metody Lagrange a, po lewej dla węzłów równoodległych, po

prawej dla węzłów Czebyszewa.	
Liczba węzłów	Błąd
2	15.782847789752143
3	20.05334035102691
4	15.782847789752143
5	14.436834362782527
6	10.776793803647367
7	13.195375799008474
8	15.490330184847226
9	38.404857509316216
10	42.32338686466862
11	15.819792661766762
12	62.70972993527879
13	70.14241900020382
14	27.948614254179063
15	47.22656437862737
20	19.132806120565732
30	0.2652376237934897
40	0.0004801062818248028
50	0.0006637503263303647

Liczba węzłów	Błąd
2	32.95495142969615
3	17.432065008624313
4	15.104684298665816
5	11.082811440718823
6	14.711457039080308
7	10.523007233495601
8	12.639349449777177
9	12.020406471433917
10	11.375332267207368
11	9.069600014730902
12	8.370908109662308
13	6.180716723875764
14	3.5372660920868246
15	3.093600086553764
20	0.1764383214673586
30	7.620781505456403e-05
40	5.017031956195444e-09
50	7.945560699607562e-14

Z tabel dość dobrze widać gdzie pojawił się efekt Rungego, ale można także na to zwrócić uwagę na wykresach:

Wykres 2. Interpolacja Lagrange'e dla 12 równoodległych węzłów.

Dla porównania można spojrzeć na tą samą ilość węzłów dla węzłów czebyszewa:

Wykres 4. Interpolacja Lagrange'a dla 12 węzłów Czebyszewa.

Jak można zauważyć efekt rungego właściwie nie występuje jeżeli używamy węzłów Czebyszewa, natomiast w wypadku węzłów równoodległych jest on bardzo widoczny i znacznie zmieniający dokładność uzyskanych wyników.

Najlepszą dokładność osiągnąłem przy 50 węzłach Czebyszewa:

Metoda Newtona:

Tabela 2. Błędy uzyskane przy użyciu metody Newton'a, po lewej dla węzłów równoodległych, po prawej dla węzłów Czebyszewa.

Liczba węzłów	Błąd
2	15.782847789752143
3	20.05334035102691
4	15.782847789752143
5	14.436834362782527
6	10.776793803647367
7	13.19537579900847
8	15.490330184847293
9	38.40485750931602
10	42.323386864668834
11	15.81979266176671
12	62.70972993527818
13	70.14241900020333
14	27.94861425417593
15	47.22656437862766
20	19.132806120565537
30	0.2652376235138808
40	0.0004798048207795634
50	4.331140253482696e-05

Liczba węzłów	Błąd
2	32.95495142969615
3	17.432065008624317
4	15.104684298665816
5	11.082811440718823
6	14.71145703908032
7	10.523007233495605
8	12.639349449777177
9	12.02040647143392
10	11.375332267207366
11	9.069600014731021
12	8.370908109662327
13	6.180716723875732
14	3.537266092087515
15	3.093600086553618
20	0.17643832133303985
30	7.62745944797179e-05
40	0.00019347581897412243
50	0.0024742435124990303

Tak samo jak przy metodzie Lagrange'a przy metodzie Newton'a także możemy łatwo zauważyć zwiększenie błędu (efekt Rungego), przy ok 15 węzłach (otrzymany wielomian jest 14 stopnia).

Wykres 6. Interpolacja Newton'a dla 15 równoodległych węzłów.

Na powyższych wykresach dobrze widać że duże błędy widoczne w tabelach są spowodowane efektem Runge'go, dla porównania można zobaczyć te same wykresy dla węzłów Czebyszewa:

Wykres 7. Interpolacja Newton'a dla 12 węzłów Czebyszewa.

Wykres 8. Interpolacja Newton'a dla 15 węzłów Czebyszewa.

Widać że tutaj także że węzły Czebyszewa zapobiegają wystąpieniu efektu Runge'go, porównując także wykresu z metody Newton'a z metodą Lagrange'a, można zauważyć że otrzymane wykresy są bardzo podobne.

Najlepszym dopasowaniem przy metodzie Newton'a było 30 węzłów Czebyszewa.

A jakie jest wytłumaczenie, że dla tego wzoru jest to 30 węzłów, a nie 50 jak poprzednio? Z prezentowanych tabel to nie wynika

Metoda Hermit'a:

Tabela 3. Błędy uzyskane przy użyciu metody Hermit'a, po lewej dla węzłów równoodległych, po prawej dla węzłów Czebyszewa.

I Ozebyszewa.	
Liczba węzłów	Błąd
2	15.78284778975213
3	22.26653792163805
4	15.782847789752143
5	25.042915362052014
6	53.56706899035361
7	16.320233111567678
8	34.230574891653006
9	14.97790359893791
10	8.5092328809909
11	5.272060399598316
12	1.093965232175222
13	0.9430077207758911
14	0.16450018573786857
15	0.09736112307963443
20	0.0001495929610116586
30	0.0005337774041794493
40	247.90512397235904
50	1159807008034.6484

Liczba węzłów	Błąd
2	26.109876961631162
3	19.4632149094123
4	24.04277236598535
5	21.359874684334528
6	14.536297175420103
7	6.084458105394351
8	3.751554589937589
9	1.1434969025854034
10	0.3052860191955041
11	0.12395181414482168
12	0.014669692896413058
13	0.00591676882367371
14	0.0009705835852152481
15	0.0001324078525080273
20	0.00018534950040875197
30	0.06424503364359699
40	265124.9706738706
50	2263422710197948.0

Przy tej metodzie efekt Runge'go nie jest tak łatwo zauważalny, jednak takżę występuje, lecz w nieco lżejszej formie, na co warto zwrócić uwagę to niebotycznie wielkie błędy przy większej ilości węzłów, co wynika z bardzo wysokiego stopnia wielomianu interpolującego, dla 40 węzłów, jest to wielomian 78 stopnia, a dla 50 węzłów, jest to wielomian 98 stopnia.

Wykres 9. Interpolacja Hermit'a dla 8 równoodległych węzłów.

Wykres 10. Interpolacja Hermit'a dla 9 równoodległych węzłów.

Na zaprezentowanych wykresach można zauważyć odgięcia na krańcach przedziału zwiększające błąd, lecz nie są one tak znaczące jak w poprzednich dwóch przypadkach.

Wykres 11. Interpolacja Hermit'a dla 8 węzłów Czebyszewa.

Wykres 12. Interpolacja Hermit'a dla 9 węzłów Czebyszewa.

Można zauważyć że zastosowanie węzłów Czebyszewa także w metodzie Hermit'a zapobiega występowaniu efektu Runge'go, ulepszając dopasowanie funkcji interpolującej do funkcji interpolowanej.

Najlepszym dopasowaniem przy metodzie Hermit'a było dla 15 węzłów Czebyszewa.

Biorąc pod uwagę wszystkie 3 sposoby, najlepiej dopasowaną funkcję (gdzie kryterium była norma z różnicy wektorów wartości funkcji interpolowanej i interpolującej) dawała metoda Lagrange'a dla 50 węzłów Czebyszewa.

A jakiś wykres?

To całośc wniosków porównujących metody i wzory?