Energy vs. Meteo Data

Składowanie danych w systemach Big Data - projekt

Kacper Skonieczka, Grzegorz Zakrzewski

Cel i zamysł

Cel:

 stworzenie systemu do gromadzenia, przetwarzania i analizowania danych meteorologicznych oraz informacji o energii wiatrowej

Próba odpowiedzi na pytania:

- · jak prędkość wiatru wpływa na produkcję energii wiatrowej?
- · jak produkcja energii wiatrowej wpływa na ceny energii?

Zamysł:

- · wykorzystanie otwartych źródeł danych ENTSO-E i GEFS
- wykorzystanie technologii Big Data ze stosu Apache: HDFS, Hive, HBase, Spark

1

Dane opisujące:

- · produkcję energii z elektrowni wiatrowych
- ceny energii elektrycznej (rynek dnia następnego)

Charakterystyka źródła:

- API dostępne za darmową rejestracją
- · dane w formacie XML
- · rekordy odpowiadają kolejnym godzinom w ciągu dnia

Źródło danych - GEFS

Dane opisujące:

 prognozy wartości zmiennych meteorologicznych, w tym składowych prędkości wiatru

Charakterystyka źródła:

- · pliki z prognozami umieszczone na Amazon S3 Bucket
- · dane w formacie GRIB2
- · dane dostępne na każdy dzień w podziale na długość prognozy
- · prognozy są przypisane do punktów na siatce współrzędnych

Źródło danych - GEFS

xarray.Dataset							
► Dimensions:	(latitude: 361, longitude: 720)						
▼ Coordinates:							
time	0	datetime64[ns]	2023-11-25				
step	0	timedelta64[ns]	7 days				
heightAboveGro	0	float64	10.0				
latitude	(latitude)	float64	90.0 89.5 89.089.5 -90.0				
longitude	(longitude)	float64	0.0 0.5 1.0 358.5 359.0 359.5				
valid_time	0	datetime64[ns]	2023-12-02				
▼ Data variables:							
u10	(latitude, longitude)	float32	***				
v10	(latitude, longitude)	float32					

Rysunek 1: Plik GRIB2 otwarty za pomocą biblioteki *xarray*

latitude	longitude	time	step	valid_time	u10	v10
90.0	0.0	2023-11-25	7 days	2023-12-02	2.43	0.66
90.0	0.5	2023-11-25	7 days	2023-12-02	2.44	0.64
90.0	1.0	2023-11-25	7 days	2023-12-02	2.44	0.62
90.0	1.5	2023-11-25	7 days	2023-12-02	2.45	0.59
90.0	2.0	2023-11-25	7 days	2023-12-02	2.45	0.57

Tabela 1: Przykładowe dane GEFS w formie tabelarycznej

Źródła danych - podsumowanie

· Źródło ENTSO-E:

- godzinowa częstotliwość danych
- dzienna częstotliwość napływu
- · format XML
- rynek energetyczny w Niemczech
- · ceny energii i produkcja energii wiatrowej

· Źródło GEFS:

- · dzienna częstotliwość danych
- · dzienna częstotliwość napływu
- format GRIB2
- · długości geograficzne [5, 15] i szerokości geograficzne [45, 55]
- · w sumie 441 punktów na terenie Niemiec
- tygodniowe prognozy składowych u i v prędkości wiatru
- · zakres danych: 01.12.2023 r. 08.01.2024 r.

Architektura rozwiązania

Zespół rozwiązań technologicznych z rodziny Apache:

- · Apache NiFi automatyzacja przepływu danych
- · Apache HDFS składowanie danych surowych
- · Apache Hive składowanie danych meteorologicznych
- Apache HBase składowanie szeregów czasowych i zagregowanych danych meteorologicznych
- · Apache Spark wsadowa analiza danych

Architektura rozwiązania

Zarządzanie przepływem danych - źródło ENTSO-E

Zarządzanie przepływem danych - źródło ENTSO-E

Zarządzanie przepływem danych - źródło GEFS

Warstwa analityczna - Apache Spark

Rysunek 2: Minimalna, średnia i maksymalna cena energii w ciągu dnia

Warstwa analityczna - Apache Spark

Rysunek 3: Ustandaryzowana średnia dzienna cena i produkcja energii

Warstwa analityczna - Apache Spark

Rysunek 4: Zależność produkcji energii wiatrowej od prędkości wiatru

	Wind speed	Wind speed - north	Wind speed - south	Mean price	Total quantity
Wind speed				-0.71	0.71
Wind speed - north			0.67	-0.70	0.70
Wind speed - south		0.67		-0.55	0.52
Mean price	-0.71	-0.70	-0.55		
Total quantity	0.71	0.70	0.52	-0.88	1.00

Rysunek 5: Macierz korelacji wszystkich zmiennych

Podsumowanie

Co się udało zrobić?

- · zdobyć różnorodne dane energetyczne
- przygotować zaawansowany system Big Data zgodny z założeniami
- · przygotować ciekawą analizę

Co można poprawić?

- · rozszerzyć system na dane z całej Europy
- przygotować wizualizacje i szukać zależności, które adresują więcej pytań biznesowych