Übungen zu Analysis 3, 2. Übung 21. 10. 2019

Zeigen Sie mit genauer Begründung aller nichtelementaren Rechenschritte:

10.
$$\int_0^\infty e^{-x} \cos \sqrt{x} \, dx = \sum_{n=0}^\infty (-1)^n \frac{n!}{(2n)!}$$

11.
$$\int_0^1 \frac{x^{p-1}}{1+x^q} dx = \sum_{n=0}^{\infty} \frac{(-1)^n}{p+nq}, \quad p,q>0$$
 und zeigen Sie damit $\frac{\pi}{4} = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$

12.
$$\int_0^1 \frac{1-t}{1-at^3} dt = \sum_{n=0}^\infty \frac{a^n}{(3n+1)(3n+2)}$$
 für $|a| < 1$ und zeigen Sie damit $\frac{\pi}{3\sqrt{3}} = \sum_{n=0}^\infty \frac{1}{(3n+1)(3n+2)}$

13. Berechnen Sie

$$\int_0^\infty \frac{\arctan(x)}{(1+x^2)x} \, dx$$

indem Sie für $\lambda > -1$ die Funktion

$$F(\lambda) := \int_0^\infty \frac{\arctan(\lambda x)}{(1+x^2)x} dx$$

differenzieren.

- 14. Sei (M,d) ein metrischer Raum. Dann ist $M \times M$ mit der Maximumsmetrik $d_m((x_1,x_2),(y_1,y_2)) := \max(d(x_1,y_1),d(x_2,y_2))$ ein metrischer Raum und für eine Vervollständigung (\tilde{M},\tilde{d}) von M ist $\tilde{M}\times\tilde{M}$ mit der Maximumsmetrik eine Vervollständigung von $M\times M$.
- 15. Durch sup $|f(x)| + \sup |f'(x)|$ wird auf $C^1[0,1]$ (in [0,1] stetig differenzierbar, mit einseitigen Ableitungen bei [0,1] eine Norm definiert. Ist $C^1[0,1]$ mit dieser Norm vollständig?
- 16. Zeigen Sie, dass für $f, g \in L^1(\mathbb{R}^n)$ supp(f * g) keine Teilmenge von supp(f) + supp(g) sein muss.
- 17. Berechnen Sie die Faltung f * g der Funktionen

$$f(x) = \begin{cases} e^{-\alpha x} & x > 0\\ 0 & \text{sonst} \end{cases}$$

$$g(x) = \begin{cases} e^{-\beta x} & x > 0\\ 0 & \text{sonst} \end{cases}$$

für $\alpha, \beta > 0$.

18. Berechnen Sie die Faltung $f\ast g$ der Funktionen

$$f(x) = \begin{cases} 2x & 0 \le x \le 2\\ 0 & \text{sonst} \end{cases}$$

$$f(x) = \begin{cases} 2x & 0 \le x \le 2\\ 0 & \text{sonst} \end{cases}$$
$$g(x) = \begin{cases} 3 - 3x & 1 < x < 3\\ 0 & \text{sonst} \end{cases}.$$