# ESC201: Lecture 8



### Dr. Imon Mondal

ASSISTANT PROFESSOR, ELECTRICAL ENGINEERING, IIT KANPUR

2024-25 SEM-I | ESC201 INTRODUCTION TO ELECTRONICS

### Conversation



## After a few days



## Storage



Every number system is associated with a base or radix

A positional notation is commonly used to express numbers

$$(a_5 a_4 a_3 a_2 a_1 a_0)_r = a_5 r^5 + a_4 r^4 + a_3 r^3 + a_2 r^2 + a_1 r^1 + a_0 r^0$$

The decimal system has a base of 10 and uses symbols (0,1,2,3,4,5,6,7,8,9) to represent numbers

$$(2009)_{10} = 2 \times 10^3 + 0 \times 10^2 + 0 \times 10^1 + 9 \times 10^0$$

$$(123.24)_{10} = 1 \times 10^2 + 2 \times 10^1 + 3 \times 10^0 + 2 \times 10^{-1} + 4 \times 10^{-2}$$

An octal number system has a base 8 and uses symbols (0,1,2,3,4,5,6,7)

$$(2007)_8 = 2 \times 8^3 + 0 \times 8^2 + 0 \times 8^1 + 7 \times 8^0$$

What decimal number does it represent?

$$(2007)_8 = 2 \times 512 + 0 \times 64 + 0 \times 8^1 + 7 \times 8^0 = 1033$$

A hexadecimal system has a base of 16

| Number | Symbol |
|--------|--------|
| 0      | 0      |
| 1      | 1      |
| 2      | 2      |
| 3      | 3      |
| 4      | 4      |
| 5      | 5      |
| 6      | 6      |
| 7      | 7      |
| 8      | 8      |
| 9      | 9      |
| 10     | А      |
| 11     | В      |
| 12     | С      |
| 13     | D      |
| 14     | E      |
| 15     | F      |

$$(2BC9)_{10} = 2 \times 16^3 + B \times 16^2 + C \times 16^1 + 9 \times 16^0$$

How do we convert it into decimal number?

$$(2BC9)_{10} = 2 \times 4096 + 11 \times 256 + 12 \times 16^{1} + 9 \times 16^{0} = 11209$$

A Binary system has a base 2 and uses only two symbols 0, 1 to represent all the numbers

$$(1101)_2 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

Which decimal number does this correspond to?

$$(1101)_2 = 1 \times 8 + 1 \times 4 + 0 \times 2^1 + 1 \times 2^0 = 13$$



| 2 <sup>0</sup>              | 1          |  |
|-----------------------------|------------|--|
| 2 <sup>1</sup>              | 2          |  |
| <b>2</b> <sup>2</sup>       | 4          |  |
| <b>2</b> <sup>3</sup>       | 8          |  |
| 24                          | 16         |  |
| <b>2</b> <sup>5</sup>       | 32         |  |
| <b>2</b> <sup>6</sup>       | 64         |  |
| 27                          | 128        |  |
| <b>2</b> <sup>8</sup>       | 256        |  |
| <b>2</b> <sup>9</sup>       | 512        |  |
| <mark>2<sup>10</sup></mark> | 1024(K)    |  |
| <mark>2<sup>20</sup></mark> | 1048576(M) |  |

| 2-1 | 2-2  | 2-3   | 2-4    | <b>2</b> <sup>-5</sup> | 2 <sup>-6</sup> |
|-----|------|-------|--------|------------------------|-----------------|
| 0.5 | 0.25 | 0.125 | 0.0625 | 0.03125                | 0.015625        |

#### **Developing Fluency with Binary Numbers**

Convert 45 to binary number

$$(45)_{10} = b_n b_{n-1} \dots b_0$$

$$45 = b_n 2^n + b_{n-1} 2^{n-1} \dots b_1 2^1 + b_0$$

Divide both sides by 2

$$\frac{45}{2} = 22.5 = b_n 2^{n-1} + b_{n-1} 2^{n-2} \dots b_1 2^0 + b_0 \times 0.5$$

$$22 + 0.5 = b_n 2^{n-1} + b_{n-1} 2^{n-2} \dots + b_1 2^0 + b_0 \times 0.5$$

$$\Rightarrow b_0 = 1$$

$$22 + 0.5 = b_n 2^{n-1} + b_{n-1} 2^{n-2} + \cdots + b_1 2^0 + b_0 \times 0.5$$
  $\Rightarrow b_0 = 1$ 

$$22 = b_n 2^{n-1} + b_{n-1} 2^{n-2} \dots b_2 2^1 + b_1 2^0$$

Divide both sides by 2

$$\frac{22}{2} = 11 = b_n 2^{n-2} + b_{n-1} 2^{n-3} \dots b_2 2^0 + b_1 \times 0.5 \implies b_1 = 0$$

$$11 = b_n 2^{n-2} + b_{n-1} 2^{n-3} \dots + b_3 2^1 + b_2 2^0$$

$$5.5 = b_n 2^{n-3} + b_{n-1} 2^{n-4} + b_3 2^0 + 0.5b_2 \implies b_2 = 1$$

$$5 = b_n 2^{n-3} + b_{n-1} 2^{n-4} \dots b_4 2^1 + b_3 2^0$$

$$5 = b_n 2^{n-3} + b_{n-1} 2^{n-4} \dots b_4 2^1 + b_3 2^0$$

$$2.5 = b_n 2^{n-4} + b_{n-1} 2^{n-5} \dots b_4 2^0 + 0.5b_3 \implies b_3 = 1$$

$$2 = b_n 2^{n-4} + b_{n-1} 2^{n-5} \dots b_5 2^1 + b_4 2^0$$

$$1 = b_n 2^{n-5} + b_{n-1} 2^{n-6} \dots b_5 2^0 + 0.5b_4 \implies b_4 = 0$$

$$\implies b_5 = 1$$

$$(45)_{10} = b_5 b_4 b_3 b_2 b_1 b_0 = 101101$$

Method of successive division by 2

| 45 | remainder |             |
|----|-----------|-------------|
| 22 | 1         |             |
| 11 | 0         |             |
| 5  | 1         |             |
| 2  | 1         | 45 = 101101 |
| 1  | 0         |             |
| 0  | 1         |             |
|    |           |             |

Convert (153)<sub>10</sub> to octal number system

$$(153)_{10} = (b_n b_{n-1} \dots b_0)_8$$

$$(153)_{10} = b_n 8^n + b_{n-1} 8^{n-1} \dots b_1 8^1 + b_0$$

Divide both sides by 8

$$\frac{153}{8} = 19.125 = b_n 8^{n-1} + b_{n-1} 8^{n-2} \dots b_1 8^0 + \frac{b_0}{8} \implies \frac{b_0}{8} = 0.125 \implies b_0 = 1$$

| 153 | remainder |     |   |                    |
|-----|-----------|-----|---|--------------------|
| 19  | 1         | -   |   |                    |
| 2   | 3         |     |   | (004)              |
| 0   | 2         | 153 | = | (231) <sub>8</sub> |
|     |           |     |   |                    |

Convert  $(0.35)_{10}$  to binary number

$$(0.35)_{10} = 0.b_{-1}b_{-2}b_{-3}.....b_{-n}$$

$$0.35 = 0 + b_{-1}2^{-1} + b_{-2}2^{-2} + \dots b_{-n}2^{-n}$$

How do we find the  $b_{-1}$   $b_{-2}$  ... coefficients?

Multiply both sides by 2

$$0.7 = b_{-1} + b_{-2} 2^{-1} + \dots b_{-n} 2^{-n+1} \implies b_{-1} = 0$$

$$0.7 = b_{-2}2^{-1} + b_{-3}2^{-2} + \dots b_{-n}2^{-n+1}$$

$$0.7 = b_{-2}2^{-1} + b_{-3}2^{-2} + \dots b_{-n}2^{-n+1}$$

Multiply both sides by 2

$$1.4 = b_{-2} + b_{-3}2^{-1} + \dots b_{-n}2^{-n+2}$$

Note that ½+1/4+1/8+.....≤1

$$\Rightarrow b_{-2} = 1$$

$$0.4 = b_{-3}2^{-1} + b_{-4}2^{-2} \dots b_{-n}2^{-n+2}$$

$$0.8 = b_{-3} + b_{-4} 2^{-1} \dots b_{-n} 2^{-n+3} \implies b_{-3} = 0$$

|                      | 0.         | 125 |    |
|----------------------|------------|-----|----|
|                      |            |     | x2 |
|                      | <b>0</b> . | 25  |    |
|                      |            |     | x2 |
| _                    | 0.         | 5   |    |
| $0.125 = (.001)_{2}$ |            |     | x2 |
| (.001)               | 1.         | 0   |    |
|                      |            |     |    |



#### **Binary numbers**

Most significant bit or MSB

1011000111

| decimal | 2bit | 3bit | 4bit | 5bit  |
|---------|------|------|------|-------|
| 0       | 00   | 000  | 0000 | 00000 |
| 1       | 01   | 001  | 0001 | 00001 |
| 2       | 10   | 010  | 0010 | 00010 |
| 3       | 11   | 011  | 0011 | 00011 |
| 4       |      | 100  | 0100 | 00100 |
| 5       |      | 101  | 0101 | 00101 |
| 6       |      | 110  | 0110 | 00110 |
| 7       |      | 111  | 0111 | 00111 |
| 8       |      |      | 1000 | 01000 |
| 9       |      |      | 1001 | 01001 |
| 10      |      |      | 1010 | 01010 |
| 11      |      |      | 1011 | 01011 |
| 12      |      |      | 1100 | 01100 |
| 13      |      |      | 1101 | 01101 |
| 14      |      |      | 1110 | 01110 |
| 15      |      |      | 1111 | 01111 |

Least significant bit or LSB

This is a 10 bit number

Binary digit = bit



N-bit binary number can represent numbers from 0 to 2<sup>N</sup> -1

#### **Converting Binary to Hex and Hex to Binary**

$$(b_{7}b_{6}b_{5}b_{4}b_{3}b_{2}b_{1}b_{0})_{b} = (h_{1}, h_{0})_{Hex}$$

$$b_{7}2^{7} + b_{6}2^{6} + b_{5}2^{5} + b_{4}2^{4} + b_{3}2^{3} + b_{2}2^{2}b_{1}2^{1} + b_{0} = h_{1}16^{1} + h_{0}$$

$$(b_{7}2^{3} + b_{6}2^{2} + b_{5}2^{1} + b_{4})2^{4} + (b_{3}2^{3} + b_{2}2^{2}b_{1}2^{1} + b_{0}) = h_{1}16^{1} + h_{0}$$

$$h_{1} \qquad h_{0}$$

$$(10110011)_{b} = (1011)(0011) = (B3)_{Hex}$$

$$(110011)_{b} = (11)(0011) = (33)_{Hex}$$

 $(EC)_{Hox} = (1110)(1100) = (11101100)_{h}$ 

|   | Number   | Symbol |
|---|----------|--------|
|   | 0(0000)  | 0      |
|   | 1(0001)  | 1      |
|   | 2(0010)  | 2      |
|   | 3(0011)  | 3      |
|   | 4(0100)  | 4      |
|   | 5(0101)  | 5      |
|   | 6(0110)  | 6      |
| 0 | 7(0111)  | 7      |
|   | 8(1000)  | 8      |
|   | 9(1001)  | 9      |
|   | 10(1010) | А      |
|   | 11(1011) | В      |
|   | 12(1100) | С      |
|   | 13(1101) | D      |
|   | 14(1110) | E      |
|   | 15(1111) | F      |
| _ |          |        |

#### **Binary Addition/Subtraction**

#### **Complement of a number**



9's complement of n-digit number x is 10<sup>n</sup> -1 -x

10's complement of n-digit number x is 10<sup>n</sup> -x

9's complement of 85?

$$10^2 - 1 - 85$$

$$99 - 85 = 14$$

9's complement of 123 = 999 - 123 = 876

10's complement of 123 = 9's complement of 123+1=877

#### **Complement of a binary number**



1's complement of n-bit number x is  $2^n - 1 - x$ 

2's complement of n-bit number x is  $2^n$  -x

$$2^4 - 1 - 1011$$

$$1111 - 1011 = 0100$$

1's complement is simply obtained by flipping a bit (changing 1 to 0 and 0 to 1)

1's complement of 
$$1001101 = ?$$