2022 北京清华附中初三一模

一、选择题(本大题共8小题,共16分)

1. 如图,在 Rt△ABC 中,∠ACB=90°,如果 AC=3,AB=5,那么 sinB 等于()

2. 实数 a, b, c 在数轴上 对应点的位置如图所示,则正确的结论是().

- A, a > b
- B. a = b > 0
- C. ac > 0
- **D.** |a| > |c|

3. 广阔无垠的太空中有无数颗恒星, 其中离太阳系最近的一颗恒星称为"比邻星", 它距离太阳系约 4.2 光 年. 光年是天文学中一种计量天体时空距离的长度单位, 1 光年约为 9500000000000 千米. 则"比邻星"距离太 阳系约为(

- A. 4×10¹³千米
- B. 4×10¹² 千米
- C. 9. 5×10¹³ 千米 D. 9. 5×10¹² 千米

4. 点 $A(1, y_1)$, $B(3, y_2)$ 是反比例函数 $y = -\frac{6}{x}$ 图象上的两点,那么 y_1 , y_2 的大小关系是().

- A. $y_1 > y_2$
- B. $y_1 = y_2$
- C. $y_1 < y_2$
- D. 不能确定

5. 如果 $a^2 + 3a + 1 = 0$, 那么代数式 $\left(\frac{a^2 + 9}{a} + 6\right) \cdot \frac{2a^2}{a + 3}$ 的值为 ()

6. 如图,已知点 $P \in \Delta ABC$ 的边 $AC \perp$,下列条件中,不能判断 $\Delta ABP \hookrightarrow \Delta ACB$ 的是(

- A. $\angle ABP = \angle C$
- B. $\angle APB = \angle ABC$ C. $AB^2 = AP \bullet AC$ D. $\frac{AB}{BB} = \frac{AC}{CB}$

7. 三名快递员某天的工作情况如图所示,其中点 A_1 , A_2 , A_3 的横、纵坐标分别表示甲、乙、丙三名快递员 上午派送快递所用的时间和件数;点 B_1 , B_2 , B_3 ,的横、纵坐标分别表示甲、乙、丙三名快递员下午派送 快递所用的时间和件数.有如下三个结论: ①上午派送快递所用时间最短的是甲; ②下午派送快递件数最多的 是丙;③在这一天中派送快递总件数最多的是乙.上述结论中,所有正确结论的序号是()

A. 12

B. ①③

C. ②

D. 23

8.《西游记》的故事家喻户晓,特别是书中的孙悟空嫉恶如仇斩妖除魔大快人心。在一次降妖过程中,孙悟空念动咒语将一片树叶放大后射向妖魔。假如这个过程可以看成是在平面直角坐标系中的一次无旋转的变换,设变化前树叶尖部点 A 坐标为(a,b),在咒语中变化后得到对应点 A' 为(300a+200,300b-100)。则变化后树叶的面积变为原来的(

A. 300 倍

B. 3000倍

C. 9000倍

D. 90000倍

二、填空题(本大题共8小题,共16分)

9. 若 $\sqrt{x-3}$ 在实数范围内有意义,则 x 的取值范围是_____.

10. 分解因式: $ax^2 - 25a =$.

11. 如图,在 $\triangle ABC$ 中,D,E两点分别在AB,AC边上,DE//BC. 如果 $\frac{AD}{DB} = \frac{3}{2}$,AC=10,那么

EC= .

12. 如图,在平面直角坐标系 xOy 中,第一象限内的点 P(x, y) 与点 A(2, 2) 在同一个反比例函数的图象上, $PC \perp y$ 轴于点 C, $PD \perp x$ 轴于点 D,那么矩形 ODPC 的面积等于_____.

13. 如图,AB 是 $\odot O$ 直径,C,D 为 $\odot O$ 上的点,若 $\angle CAB = 20^{\circ}$,则 $\angle D =$ _____.

14. 某学习小组做抛掷一枚纪念币 实验,整理同学们获得的实验数据,如下表.

抛掷次 数	50	100	200	500	1000	2000	3000	4000	5000
"正面向 上"的次 数	19	38	68	168	349	707	1069	1400	1747
"正面向 上"的频 率	0.3800	0.3800	0.3400	0.3360	0.3490	0.3535	0 3563	0.3500	0.3494

下面有三个推断:

- ①在用频率估计概率时,用实验 5000 次时的频率 0.3494 一定比用实验 4000 次时的频率 0.3500 更准确;
- ②如果再次做此实验,仍按上表抛掷的次数统计数据,那么在数据表中,"正面向上"的频率有更大的可能仍会在 0.35 附近摆动;
- ③通过上述实验的结果,可以推断这枚纪念币有很大的可能性不是质地均匀的.

其中正确的是 .

15. 2017 年 9 月热播的专题片《辉煌中国 - - 圆梦工程》展示的中国桥、中国路等超级工程展现了中国现代化进程中的伟大成就,大家纷纷点赞"厉害了,我的国!"片中提到我国已成为拥有斜拉桥最多的国家,世界前十座斜拉桥中,中国占七座,其中苏通长江大桥(如图 1 所示)主桥的主跨长度在世界斜拉桥中排在前列.在图 2 的主桥示意图中,两座索塔及索塔两侧的斜拉索对称分布,大桥主跨 BD 的中点为 E,最长的斜拉索 CE 长 577m,记 CE 与大桥主梁所夹的锐角 $\angle CED$ 为 α ,那么用 CE 的长和 α 的三角函数表示主跨 BD 长的表达式应为 BD= (m).

16. 如图,⊙0 的半径为 3,A,P 两点在⊙0 上,点 B 在⊙0 内, $tan \angle APB = \frac{4}{3}$,AB \bot AP. 如果 OB \bot OP,那么

OB 的长为 .

三、解答题(本大题共12小题,共88分)

- 17. 计算: $|-5| + \sqrt{12} 2\sin 60^{\circ} (2019 \pi)^{0}$
- 18. 已知 x = 1 是关于 x 的方程 $x^2 mx 2m^2 = 0$ 的一个根, 求 m(2m+1) 的值.

- 19. 如图, AB || CD, AC 与 BD 的交点为 E, ∠ABE=∠ACB.
- (1) 求证: △*ABE*∽△*ACB*;
- (2) 如果 AB=6, AE=4, 求 AC, CD 的长.

20. 下面是小明设计的"过直线外一点作已知直线的平行线"的尺规作图过程.

已知:直线l及直线l外一点P.

P.

求作:直线PQ,使PQ//l.

作法:如图,

- ①在直线l上取一点O,以点O为圆心,OP长为半径画半圆,交直线l于A,B两点;
- ②连接PA,以B为圆心,AP长为半径画弧,交半圆于点Q;
- ③作直线 PQ

所以直线 PQ 就是所求作的直线.

根据小明设计的尺规作图过程:

- (1) 使用直尺和圆规,补全图形; (保留作图痕迹)
- (2) 完成下面的证明

证明: 连接 PB, QB,

- $\therefore PA = QB$,
- $\therefore PA = \underline{\hspace{1cm}}$
- ∴ $\angle PBA = \angle QPB$ () (填推理的依据).
- ∴ PQ//l (_____) (填推理的依据).
- 21. 关于 x 的一元二次方程 x^2 (2k-1) $x+k^2$ 1=0,其中 k<0.
- (1) 求证: 方程有两个不相等的实数根;
- (2) 当 k = -1 时,求该方程的根.

- **22.** 在 \triangle ABC 中,AB=AC=2, \angle BAC=45°. 将 \triangle ABC 绕点 A 逆时针旋转 α 度(0< α <180)得到 \triangle ADE,B,C 两点的对应点分别为点 D,E,BD,CE 所在直线交于点 F.
- (1) 当 \triangle ABC 旋转到图 1 位置时, \angle CAD=_____(用 α 的代数式表示), \angle BFC 的度数为_____。;
- (2) 当 α =45时,在图2中画出 \triangle ADE,并求此时点A到直线BE的距离.

- 23. 在平面直角坐标系 xOy 中,直线 l: y=x+b 与 x 轴交于点 A (-2,0) ,与 y 轴交于点 B . 双曲线 $y=\frac{k}{x}$ 与 直线 l 交于 P , Q 两点,其中点 P 的纵坐标大于点 Q 的纵坐标
 - (1) 求点 B 的坐标;
 - (2) 当点 P 的横坐标为 2 时,求 k 的值;
 - (3) 连接 PO,记 $\triangle POB$ 的面积为 S. 若 $\frac{1}{2} < S < 1$,结合函数图象,直接写出 k 的取值范围.
- **24.** 如图,线段 *BC* 长为 13,以 *C* 为顶点,*CB* 为一边的 $\angle \alpha$ 满足 $\cos \alpha = \frac{5}{13}$. 锐角 $\triangle ABC$ 的顶点 *A* 落在 $\angle \alpha$ 的 另一边上,且满足 $\sin A = \frac{4}{5}$. 求 $\triangle ABC$ 的高 *BD* 及 *AB* 边的长,并结合你的计算过程画出高 *BD* 及 *AB* 边. (图中提供的单位长度供补全图形使用)

- **25.** 如图,AB 是半圆的直径,过圆心 O 作 AB 的垂线,与弦 AC 的延长线交于点 D,点 E 在 OD 上 $\angle DCE = \angle B$.
- (1) 求证: CE 是半圆的切线:
- (2) 若 *CD*=10, $\tan B = \frac{2}{3}$, 求半圆的半径.

- **26.** 在平面直角坐标系 xOy 中,已知抛物线 $y=x^2 mx+n$.
- (1) 当m=2时,
- ①求抛物线的对称轴,并用含n的式子表示顶点的纵坐标;
- ②若点A (-2, y_1), B (x_2 , y_2)都在抛物线上,且 $y_2>y_1$,则 x_2 的取值范围是;
- (2) 已知点 P(-1, 2) ,将点 P 向右平移 4 个单位长度,得到点 Q. 当 n=3 时,若抛物线与线段 PQ 恰有一个公共点,结合函数图象,求 m 的取值范围.
- **27.** 如图 1,在△ABC中,∠ABC=90°,BA=BC.将线段 AB 绕点 A 逆时针旋转 90°得到线段 AD,E 是边 BC上的一动点,连结 DE 交 AC 于点 F,连结 BF.

- (1) 求证: FB=FD;
- (2) 如图 2, 连结 CD, 点 H 在线段 BE 上 (不含端点), 且 BH=CE, 连结 AH 交 BF 于点 N.
- ①判断 AH与 BF的位置关系,并证明你的结论;
- ②连接 CN. 若 AB=2,请直接写出线段 CN 长度的最小值.
- **28.** 在平面直角坐标系 xOy 中,对于两个点 P,Q 和图形 W,如果在图形 W上存在点 M,N(M,N可以重合)使得 PM = QN,那么称点 P与点 Q 是图形 W的一对平衡点.

(1) 如图 1, 已知点 A(0,3), B(2,3);

①设点 O 与线段 AB 上一点的距离为 d,则 d 的最小值是______,最大值是______;

②在 $P_1\left(\frac{3}{2},0\right)$, $P_2\left(1,4\right)$, $P_3\left(-3,0\right)$ 这三个点中,与点 O 是线段 AB 的一对平衡点的是_____.

(2) 如图 2, 已知 $\odot O$ 的半径为 1, 点 D 的坐标为(5, 0). 若点E(x,2) 在第一象限,且点 D 与点 E 是 $\odot O$ 的一对平衡点,求x 的取值范围;

(3)如图 3,已知点H(-3,0),以点O为圆心,OH长为半径画弧交x的正半轴于点K.点C(a,b)(其中 $b \ge 0$)是坐标平面内一个动点,且OC = 5, $\odot C$ 是以点C为圆心,半径为2的圆,若HK上的任意两个点都是 $\odot C$ 的一对平衡点,直接写出b的取值范围.

参考答案

一、选择题(本大题共8小题,共16分)

1. 如图,在 Rt△ABC 中,∠ACB=90°,如果 AC=3,AB=5,那么 sinB 等于(

C. $\frac{3}{4}$

D. $\frac{4}{3}$

【答案】A

【解析】

【分析】直接利用锐角三角函数关系得出 sinB 的值.

【详解】∵在 Rt△ABC 中,∠ACB=90°,AC=3,AB=5,

$$\therefore \sin B = \frac{AC}{AB} = \frac{3}{5}.$$

故选 A.

【点睛】此题主要考查了锐角三角函数关系,正确把握定义是解题关键.

2. 实数 a, b, c 在数轴上的对应点的位置如图所示,则正确的结论是().

- A. a > b B. a = b > 0
- C. ac > 0
- D. |a| > |c|

【答案】D

【解析】

【分析】根据数轴上点的位置, 先确定 $a \times b \times c$ 对应点的数, 再逐个判断得结论.

【详解】解: A.由数轴知: a < b, 选项 A 错误, 故不符合题意;

- B. 由数轴知, a < b < 0, 选项 B 错误, 故不符合题意;
- C. 因为 a < 0, c > 0, 所以 $a \cdot c < 0$, 选项 C 错误, 故不符合题意;
- D. 因为-4< a <-3, 2< b <3, 所以|a| > |c|, 选项 D 正确, 故符合题意.

故选: D.

【点睛】本题考查了数轴、绝对值. 认真分析数轴,理解绝对值的含义是解决本题的关键.

3. 广阔无垠的太空中有无数颗恒星,其中离太阳系最近的一颗恒星称为"比邻星",它距离太阳系约4.2 光 年. 光年是天文学中一种计量天体时空距离的长度单位, 1 光年约为 9500000000000 千米. 则"比邻星"距离太 阳系约为(

A. 4×10¹³千米

- B. 4×10¹² 千米 C. 9.5×10¹³ 千米 D. 9.5×10¹² 千米

【答案】A

【解析】

【分析】科学记数法的表示形式为 $a \times 10^n$ 的形式,其中 $1 \le |a| < 10$, n 为整数.确定 n 的值时,要看把原数变成 a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同. 当原数绝对值>10时,n是正数: 当原数 的绝对值<1时, n是负数.

【详解】9 500 000 000 000×4.2=399000000000000≈4000000000000=4×10¹³.

故选 A.

【点睛】此题主要考查了科学记数法的表示方法. 科学记数法的表示形式为 a×10ⁿ的形式, 其中 1≤|a|<10, n 为整数,表示时关键要正确确定 a 的值以及 n 的值.

4. 点 $A(1, y_1)$, $B(3, y_2)$ 是反比例函数 $y = -\frac{6}{x}$ 图象上的两点,那么 y_1 , y_2 的大小关系是() .

A. $y_1 > y_2$

- B. $y_1 = y_2$ C. $y_1 < y_2$ D. 不能确定

【答案】C

【解析】

【分析】根据反比例函数图象上点 坐标特征,把 A 点和 B 点坐标代入反比例函数解析式可计算出 y1, y2, 从而可判断它们的大小.

【详解】解: $: : A(1, y_1)$, B(3, y_2) 是反比例函数 $y = -\frac{6}{x}$ 图象上的两点,

$$\therefore y_1 = -\frac{6}{1} = -6, \quad y_2 = -\frac{6}{3} = -2,$$

 $\therefore y_1 < y_2$.

故选: C.

【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数 $y = \frac{k}{x}$ (k 为常数, $k \neq 0$)的图象是双曲 线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k;双曲线是关于原点对称的,两个分支上的点也 是关于原点对称.

5. 如果
$$a^2 + 3a + 1 = 0$$
, 那么代数式 $\left(\frac{a^2 + 9}{a} + 6\right) \cdot \frac{2a^2}{a + 3}$ 的值为 ()

A. 1

D. -2

【答案】D

【解析】

【分析】根据分式的加法和乘法可以化简题目中的式子,然后根据 a²+3a+1=0,即可求得所求式子的值.

详解】
$$\left(\frac{a^2+9}{a}+6\right)\cdot\frac{2a^2}{a+3},$$

$$=\frac{a^2+9+6a}{a} \cdot \frac{2a^2}{a+3}$$

$$=\frac{\left(a+3\right)^2}{a}\bullet\frac{2a^2}{a+3}$$

$$=2a (a+3)$$

$$=2(a^2+3a)$$
,

$$a^2+3a+1=0$$
,

$$\therefore a^2 + 3a = -1$$
,

故选 D.

【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.

6. 如图,已知点 $P \propto \Delta ABC$ 的边 AC 上,下列条件中,不能判断 $\Delta ABP \hookrightarrow \Delta ACB$ 的是(

A.
$$\angle ABP = \angle C$$

B.
$$\angle APB = \angle ABC$$

$$C. \quad AB^2 = AP \bullet AC$$

A.
$$\angle ABP = \angle C$$
 B. $\angle APB = \angle ABC$ C. $AB^2 = AP \bullet AC$ D. $\frac{AB}{BP} = \frac{AC}{CB}$

【答案】D

【解析】

【分析】根据相似三角形的判定定理(①有两角分别相等的两三角形相似,②有两边的比相等,并且它们的夹 角也相等的两三角形相似)逐个进行判断即可.

【详解】A、∵∠A=∠A, ∠ABP=∠C,

∴△ABP∽△ACB, 故本选项错误;

 $B, :: \angle A = \angle A, \angle APB = \angle ABC,$

∴△ABP∽△ACB, 故本选项错误;

∴ △ABP \backsim △ACB,故本选项错误:

D、根据 $\frac{AB}{RB} = \frac{AC}{CB}$ 和 $\angle A = \angle A$ 不能判断 $\triangle ABP \hookrightarrow \triangle ACB$,故本选项正确;

故选: D.

【点睛】此题考查了相似三角形的性质,此题比较简单,解题的关键是掌握有两角对应相等的三角形相似与两 边对应成比例且夹角相等的三角形相似定理的应用.

7. 三名快递员某天的工作情况如图所示,其中点 A_1 , A_2 , A_3 的横、纵坐标分别表示甲、乙、丙三名快递员 上午派送快递所用的时间和件数;点 B_1 , B_2 , B_3 ,的横、纵坐标分别表示甲、乙、丙三名快递员下午派送 快递所用的时间和件数.有如下三个结论: ①上午派送快递所用时间最短的是甲; ②下午派送快递件数最多的 是丙;③在这一天中派送快递总件数最多的是乙.上述结论中,所有正确结论的序号是()

A. 12

B. (1)(3)

C. (2)

D. (2)(3)

【答案】B

【解析】

【分析】根据所给的点的信息进行辨析即可得解.

【详解】①上午派送快递所用时间最短的是 A1, 即甲, 不足 2 小时; 故①正确;

- ②下午派送快递件数最多的是 B2 即乙, 超过 40 件, 其余的不超过 40 件, 故②错误:
- ③在这一天中派送快递总件数为: 甲: 40+25=65(件), 乙: 45+30=75; 丙: 30+20=50, 所以这一天中派送 快递总件数最多的是乙,故③正确.

故选 B.

【点睛】本题考查的知识点是函数的图象,分析出图象中点的几何意义,是解答的关键.

8. 《西游记》的故事家喻户晓,特别是书中的孙悟空嫉恶如仇斩妖除魔大快人心. 在一次降妖过程中,孙悟 空念动咒语将一片树叶放大后射向妖魔. 假如这个过程可以看成是在平面直角坐标系中的一次无旋转的变换, 设变化前树叶尖部点 A 坐标为(a,b), 在咒语中变化后得到对应点 A' 为(300a + 200,300b - 100). 则变化后树 叶的面积变为原来的()

A. 300 倍

B. 3000 倍

C. 9000倍

D. 90000倍

【答案】D

【解析】

【分析】根据题意树叶尖部点的变换是扩大 300 倍,然后向上平移 200 个单位,向下平移 100 个单位,根据位似变换的性质,以及平移的性质,根据位似比等于相似比,面积比等于相似比的平方求解即可.

【详解】解: :: 设变化前树叶尖部点 A 坐标为 (a,b), 在咒语中变化后得到对应点 A' 为 (300a + 200,300b - 100).

∴树叶变换是扩大 300 倍,然后向上平移 200 个单位,向下平移 100 个单位,根据位似比等于相似比,面积比等于相似比的平方, 可得变化后树叶的面积变为原来的 90000 倍 故选 D

【点睛】本题考查了位似变换,平移的性质,相似图形的性质,根据题意理解变换是位似变换加平移变换是解题的关键。

二、填空题(本大题共8小题,共16分)

9. 若 $\sqrt{x-3}$ 在实数范围内有意义,则 x 的取值范围是_____.

【答案】*x*≥3

【解析】

【分析】根据被开方数大于等于0列式进行计算即可求解.

【**详解**】解:根据题意得 *x* - 3≥0,

解得 *x*≥3.

故答案 : x≥3.

【点睛】本题考查了二次根式有意义的条件,熟练掌握二次根式的被开方数是非负数是解题的关键.

10. 分解因式: $ax^2 - 25a =$ _____.

【答案】 a(x+5)(x-5)

【解析】

【分析】先提公因式a,然后根据平方差公式因式分解即可.

【详解】解: 原式= $a(x^2-5^2)=a(x+5)(x-5)$.

故答案为: a(x+5)(x-5).

【点睛】本题考查了提公因式法与公式法因式分解,掌握因式分解的方法是解题的关键.

11. 如图,在 $\triangle ABC$ 中,D,E两点分别在AB,AC边上,DE//BC. 如果 $\frac{AD}{DB} = \frac{3}{2}$,AC=10,那么

【答案】4

【解析】

【分析】由 DE // BC,推出 $\frac{AD}{DB} = \frac{AE}{EC} = \frac{3}{2}$,可得 EC= $\frac{2}{5}AC$,由此即可解决问题.

【详解】解: ∵DE//BC,

$$\therefore \frac{AD}{DB} = \frac{AE}{EC} = \frac{3}{2},$$

∵AC=10,

$$\therefore EC = \frac{2}{5}AC = \frac{2}{5} \times 10 = 4,$$

故答案为4.

【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.

12. 如图,在平面直角坐标系 xOy 中,第一象限内的点 P(x, y) 与点 A(2, 2) 在同一个反比例函数的图象上, $PC \perp y$ 轴于点 C, $PD \perp x$ 轴于点 D,那么矩形 ODPC 的面积等于_____.

【答案】4

【解析】

【分析】根据点 A 的坐标可得出 k 的值,进而得出矩形 ODPC 的面积.

【详解】解:设点A(2, 2)在反比例函数 $y = \frac{k}{x}$ 的图象上,可得: $2 = \frac{k}{2}$,

解得: k=4,

因为第一象限内的点 P(x, y) 与点 A(2, 2) 在同一个反比例函数的图象上, 所以矩形 ODPC 的面积等于 4,

故答案为4

【点睛】此题考查反比例函数系数 k 的几何意义,关键是根据点 A 的坐标可得出 k 的值.

13. 如图,AB 是 $\bigcirc O$ 的直径,C,D 为 $\bigcirc O$ 上的点,若 $\angle CAB = 20^{\circ}$,则 $\angle D = _$.

【答案】110

【解析】

【分析】AB为 $\odot O$ 直径, $\angle ACB = 90^{\circ}$,求出 $\angle B$ 的度数,然后根据圆内接四边形的性质求出 $\angle ADC$ 的度数.

【详解】解: AB 为 OO 直径,

 $\therefore \angle ACB = 90^{\circ},$

 $\therefore \angle CAB = 20^{\circ}$,

 $\therefore \angle B = 90^{\circ} - 20^{\circ} = 70^{\circ},$

在圆内接四边形 ABCD 中,

 $\angle ADC = 180^{\circ} - 70^{\circ} = 110^{\circ}$.

故答案是: 110.

【点睛】本题考查了圆周角定理,圆内接四边形的性质,此题难度不大,注意掌握数形结合思想的应用.

14. 某学习小组做抛掷一枚纪念币的实验,整理同学们获得的实验数据,如下表.

抛掷次 数	50	100	200	500	1000	2000	3000	4000	5000
"正面 向上" 的次数	19	38	68	168	349	707	1069	1400	1747
"正面 向上" 的频率	0.3800	0.3800	0.3400	0.3360	0.3490	0.3535	0.3563	0.3500	0.3494

下面有三个推断:

- ①在用频率估计概率时,用实验 5000 次时的频率 0.3494 一定比用实验 4000 次时的频率 0.3500 更准确;
- ②如果再次做此实验,仍按上表抛掷的次数统计数据,那么在数据表中,"正面向上"的频率有更大的可能仍会在 0.35 附近摆动:
- ③通过上述实验的结果,可以推断这枚纪念币有很大的可能性不是质地均匀的.

其中正确的是 .

【答案】23

【解析】

【分析】随着试验次数的增加,"正面向上"的频率总在 0.35 附近摆动,显示出一定的稳定性,可以估计 "正面向上"的概率是 0.35,据此进行判断即可.

【详解】解:①在用频率估计概率时,用实验 5000 次时的频率 0.3494 一定比用实验 4000 次时的频率 0.3500 更准确,错误;

- ②如果再次做此实验,仍按上表抛掷的次数统计数据,那么在数据表中,"正面向上"的频率有更大的可能仍会在 0.35 附近摆动,正确:
- ③通过上述实验的结果,可以推断这枚纪念币有很大的可能性不是质地均匀的,正确,故答案为②③.

【点睛】本题考查利用频率估计概率,解答本题的关键是明确概率的定义,利用数形结合的思想解答.

15. 2017 年 9 月热播的专题片《辉煌中国 - - 圆梦工程》展示的中国桥、中国路等超级工程展现了中国现代化进程中的伟大成就,大家纷纷点赞"厉害了,我的国!"片中提到我国已成为拥有斜拉桥最多的国家,世界前十座斜拉桥中,中国占七座,其中苏通长江大桥(如图 1 所示)主桥的主跨长度在世界斜拉桥中排在前列.在图 2 的主桥示意图中,两座索塔及索塔两侧的斜拉索对称分布,大桥主跨 BD 的中点为 E,最长的斜拉索 CE 长 577m,记 CE 与大桥主梁所夹的锐角 $\angle CED$ 为 α ,那么用 CE 的长和 α 的三角函数表示主跨 BD 长的表达式应为 BD= (m).

【答案】1154cosa.

【解析】

【分析】根据题意和特殊角的三角函数可以解答本题.

【详解】解:由题意可得,

 $BD = 2CE \cdot \cos\alpha = 2 \times 577 \times \cos\alpha = 1154 \cos\alpha$

故答案为 1154cosα.

【点睛】本题考查解直角三角形的应用,解答本题的关键是明确题意,利用特殊角的三角函数解答.

16. 如图,⊙0 的半径为 3,A,P 两点在⊙0 上,点 B 在⊙0 内,tan∠APB= $\frac{4}{3}$,AB ⊥ AP. 如果 OB ⊥ OP,那么

OB 的长为____.

【答案】1

【解析】

【分析】如图,连接 OA,作 $AM \perp OB$ 交 OB 的延长线于 M,作 $PN \perp MA$ 交 MA 的延长线于 N. 则四边形 POMN 是矩形. 想办法求出 OM、BM 即可解决问题;

【详解】解:如图,连接 OA,作 $AM \perp OB$ 交 OB 的延长线于 M,作 $PN \perp MA$ 交 MA 的延长线于 N.则四边形 POMN 是矩形.

 $\therefore \angle POB = \angle PAB = 90^{\circ},$

 $\therefore P$ 、O、B、A 四点共圆,

 $\therefore \angle AOB = \angle APB$,

在 Rt \triangle *OMA* 中, (4k) ²+ (3k) ²=3²,

解得 $k = \frac{3}{5}$ (负根已经舍弃),

$$\therefore AM = \frac{12}{5}, OM = \frac{9}{5}, AN = MN - AM = \frac{3}{5},$$

 $\therefore \angle MAB + \angle ABM = 90^{\circ}, \ \angle MAB + \angle PAN = 90^{\circ},$

 $\therefore \angle ABM = \angle PAN, \quad \therefore \angle AMB = \angle PNA = 90^{\circ},$

 $\therefore \triangle AMB \hookrightarrow \triangle PNA$,

$$\therefore \frac{AB}{PA} = \frac{BM}{AN},$$

$$\therefore \frac{4}{3} = \frac{BM}{3},$$

$$\therefore BM = \frac{4}{5} ,$$

 $\therefore OB = OM - BM = 1$.

故答案为1

【点睛】本题考查点与圆的位置关系,圆周角定理,相似三角形的判定和性质,矩形的判定和性质,勾股定理,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造相似三角形,特殊四边形解决问题.

三、解答题(本大题共12小题,共88分)

17. 计算:
$$|-5| + \sqrt{12} - 2\sin 60^{\circ} - (2019 - \pi)^{\circ}$$

【答案】 $4+\sqrt{3}$.

【解析】

【分析】原式第一项利用绝对值的代数意义化简,第二项化为最简二次根式,第三项利用利用特殊角的三角函数值计算,第四项利用零指数幂法则计算,最后进行加减运算即可.

【详解】
$$|-5|+\sqrt{12}-2\sin 60^{\circ}-(2019-\pi)^{0}$$
,

$$=5+2\sqrt{3}-2\times\frac{\sqrt{3}}{2}-1$$
,

$$=4+\sqrt{3}$$
.

【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.

18. 已知 x = 1 是关于 x 的方程 $x^2 - mx - 2m^2 = 0$ 的一个根,求 m(2m + 1) 的值.

【答案】1.

【解析】

【分析】把x=1 代入方程 $x^2-mx-2m^2=0$ 中,即可得到关于 m 的方程,变形即可求得所求代数式的值.

【详解】: x=1 是关于 x 的方程 $x^2-mx-2m^2=0$ 的一个根,

$$\therefore 1-m-2m^2=0.$$

$$\therefore 2m^2 + m = 1$$

$$m(2m+1) = 2m^2 + m = 1$$

【点睛】本题主要考查一元二次方程的解, 把方程的解代入得到关于 k 的方程是解题的关键.

- 19. 如图, AB || CD, AC 与 BD 交点为 E, ∠ABE=∠ACB.
- (1) 求证: △ABE ~ △ACB:
- (2) 如果 AB=6, AE=4, 求 AC, CD 的长.

【答案】 (1) 详见解析; (2) AC=9, CD= $\frac{15}{2}$.

【解析】

【分析】(1)根据相似三角形的判定证明即可;

(2) 利用相似三角形的性质解答即可.

【详解】证明: (1) $:: \angle ABE = \angle ACB$, $\angle A = \angle A$,

 $\therefore \triangle ABE \hookrightarrow \triangle ACB$;

(2) $:: \triangle ABE \hookrightarrow \triangle ACB$,

$$\therefore \frac{AB}{AC} = \frac{AE}{AB} ,$$

$$AB^2 = AC \cdot AE$$

$$AB=6$$
, $AE=4$,

$$\therefore AC = \frac{AB^2}{AE} = 9,$$

$$AB//CD$$
,

 $\therefore \triangle CDE \hookrightarrow \triangle ABE$,

$$\therefore \frac{CD}{AB} = \frac{CE}{AE},$$

$$\therefore CD = \frac{AB \cdot CE}{AE} = \frac{AB \cdot (AC - AE)}{AE} = \frac{6 \times 5}{4} = \frac{15}{2}.$$

【点睛】此题考查相似三角形的判定和性质,关键是根据相似三角形的判定证明 $\triangle ABE \hookrightarrow \triangle ACB$.

20. 下面是小明设计的"过直线外一点作已知直线的平行线"的尺规作图过程.

已知:直线l及直线l外一点P.

P.

求作:直线PQ,使PQ//l.

作法:如图,

- ①在直线l上取一点O,以点O为圆心,OP长为半径画半圆,交直线l于A,B两点;
- ②连接PA,以B为圆心,AP长为半径画弧,交半圆于点Q;
- ③作直线 PQ.

所以直线PQ就是所求作的直线.

根据小明设计的尺规作图过程:

- (1) 使用直尺和圆规,补全图形; (保留作图痕迹)
- (2) 完成下面的证明

证明:连接 PB,QB,

- $\therefore PA = QB$,
- ∴ *PA* = _____
- ∴ ∠PBA = ∠QPB (_____) (填推理的依据).
- ∴ PQ//l (_____) (填推理的依据).

【答案】(1) 补全的图形如图所示见解析; (2) QB ,等弧所对的圆周角相等内错角相等,两直线平行.

【解析】

【分析】(1)根据要求作图即可;

(2)根据圆的有关性质和平行线的判定求解可得.

【详解】解: (1) 如图所示:

- (2)证明:连接 PB、QB.
- $\therefore PA = OB$,
- $\therefore PA = QB \cdot$
- ∴ $\angle PBA = \angle QPB$ (等弧所对圆周角相等).
- :: PQ / /l(内错角相等,两直线平行).

故答案为 $\stackrel{ullet}{QB}$,等弧所对圆周角相等,内错角相等,两直线平行.

【点睛】本题主要考查作图-复杂作图,解题的关键是掌握圆的有关性质和平行线的判定.

- 21. 关于 x 的一元二次方程 x^2 (2k-1) $x+k^2$ 1=0,其中 k<0.
- (1) 求证: 方程有两个不相等的实数根;
- (2) 当 k = -1 时,求该方程的根.

【答案】(1)方程有两个不相等的实数根. (2) $x_1 = -3$, $x_2 = 0$

【解析】

【分析】(1)利用一元二次方程根的判别式就可以证明结论;

(2) 把 k = -1 代入原方程即可得到结论.

【详解】解: (1) 依题意可知, $\triangle = (2k-1)^2 - 4(k^2-1) = 5 - 4k$,

: k < 0,

 $\therefore \triangle > 0.$

- ::方程有两个不相等的实数根.
- (2) 当 k = -1 时,方程为 $x^2 + 3x = 0$.

解得 $x_1 = -3$, $x_2 = 0$.

【点睛】本题考查了一元二次方程的解及根的情况与判别式△的关系:

- (1) △>0⇔方程有两个不相等的实数根;
- (2) △=0⇔方程有两个相等的实数根;
- (3) △<0⇔方程没有实数根.
- 22. 在 \triangle ABC 中,AB=AC=2, \angle BAC=45°. 将 \triangle ABC 绕点 A 逆时针旋转 α 度(0< α <180)得到 \triangle ADE,B,C 两点的对应点分别为点 D,E,BD,CE 所在直线交于点 F.
- (1) 当 \triangle ABC 旋转到图 1 位置时, \angle CAD=_____(用 α 的代数式表示), \angle BFC 的度数为_____。
- (2) 当 α =45 时,在图 2 中画出 \triangle ADE,并求此时点 A 到直线 BE 的距离.

【答案】 (1) α - 45°, 45°; (2) 图详见解析,点 A 到直线 BE 的距离为 $\sqrt{2}$.

【解析】

【分析】(1)如图 1,利用旋转的性质得 $\angle BAD = \angle CAE = \alpha$,AB = AD,AE = AC,则 $\angle CAD = \alpha - 45^\circ$;再利用等腰三角形的性质和三角形内角和得到 $\angle ABD = \angle ACE$,所以 $\angle BFC = \angle BAC = 45^\circ$.

(2) 如图 2, $\triangle ADE$ 为所作,BE = AC 相交于 G, 利用旋转的性质得点 D 与点 C 重合,

 $\angle CAE = 45^\circ$,AE = AB = 2,则 $\triangle ABE$ 为等腰直角三角形,所以 $BE = \sqrt{2} AB = 2\sqrt{2}$,再证明 $AG \perp BE$,然后根据等腰直角三角形的性质求出AG的长即可.

【详解】解: (1) $: \triangle ABC$ 绕点 A 逆时针旋转 α 度 (0< α <180) 得到 $\triangle ADE$,如图 1,

 $\therefore \angle BAD = \angle CAE = \alpha$, AB = AD, AE = AC,

 $\overrightarrow{m} \angle BAC = 45^{\circ}$,

 $\therefore \angle CAD = \alpha - 45^{\circ}$:

AB = AD, AE = AC,

$$\angle ABD = \angle ADB = \frac{1}{2} (180^{\circ} - \angle BAD) = \frac{1}{2} (180^{\circ} - \alpha) = 90^{\circ} - \frac{1}{2} \alpha, \ \angle ACE = \angle AEC = \frac{1}{2}$$

$$(180^{\circ} - \alpha) = 90^{\circ} - \frac{1}{2} \alpha,$$

 $\therefore \angle ABD = \angle ACE$,

 $\therefore \angle BFC = \angle BAC = 45^{\circ}.$

故答案为α-45°; 45°;

- (2) 如图 2, $\triangle ADE$ 为所作, BE 与 AC 相交于 G,
- $:: \triangle ABC$ 绕点 A 逆时针旋转 45 度得到 $\triangle ADE$,

- ∴点 *D* 与点 *C* 重合, ∠*CAE*=45°, *AE*=*AB*=2,
- ∴△ABE 为等腰直角三角形,

$$\therefore BE = \sqrt{2} AB = 2\sqrt{2} ,$$

而 AG 平分 $\angle BAE$,

 $\therefore AG \perp BE$,

$$\therefore AG = \frac{1}{2}BE = \sqrt{2} ,$$

即此时点 A 到直线 BE 的距离为 $\sqrt{2}$.

【点睛】本题考查了作图 - 复杂作图: 复杂作图是在五种基本作图的基础上进行作图, 一般是结合了几何图形的性质和基本作图方法. 解决此类题目的关键是熟悉基本几何图形的性质, 结合几何图形的基本性质把复杂作图拆解成基本作图, 逐步操作. 也考查了等腰直角三角形的性质和旋转的性质.

- 23. 在平面直角坐标系 xOy 中,直线 l: y=x+b 与 x 轴交于点 A (2, 0) ,与 y 轴交于点 B. 双曲线 $y=\frac{k}{x}$ 与 直线 l 交于 P ,Q 两点,其中点 P 的纵坐标大于点 Q 的纵坐标
- (1) 求点 B 的坐标;
- (2) 当点 P 的横坐标为 2 时,求 k 的值;
- (3) 连接 PO,记 $\triangle POB$ 的面积为 S. 若 $\frac{1}{2} < S < 1$,结合函数图象,直接写出 k 的取值范围.

【答案】 (1) 点 B 的坐标为 (0, 2); (2) k 的值为 8; (3) $\frac{5}{4} < k < 3$.

【解析】

【分析】(1)有点 A 的坐标,可求出直线的解析式,再由解析式求出 B 点坐标.

- (2) 把点 P的横坐标代入直线解析式即可求得点 P的纵坐标,然后把点 P代入反比例函数解析式即可得 k值.
- (3)根据 \triangle POB 的面积为 S 的取值范围求点 P 的横坐标取值,然后把横坐标代入直线解析式,即可求得点 P 级坐标的取值范围,进而求得 k 的取值范围.

【详解】解: (1) : 直线 l: y=x+b 与 x 轴交于点 A (- 2, 0)

- ∴ 2+b=0
- $\therefore b=2$
- ∴一次函数解析式为: v=x+2
- ∴直线 *l* 与 y 轴交于点 *B* 为 (0, 2)
- ∴点 B 的坐标为 (0, 2);
- (2) :双曲线 $y = \frac{k}{x}$ 与直线 l 交于 P, Q 两点
- ∴点 P 在直线 l 上
- ∴ 当点 P 的横坐标为 2 时, y=2+2=4
- ∴点 P 的坐标为 (2, 4)
- $\therefore k=2\times 4=8$
- ∴k的值为8
- (3) 如图:

$$S_{\triangle BOP} = \frac{1}{2} \times 2 \times x_p = x_p,$$

$$\because \frac{1}{2} < S < 1,$$

$$\therefore \frac{1}{2} < x_p < 1,$$

$$\therefore \frac{5}{2} < y_p < 3,$$

$$\therefore \frac{5}{4} < k < 3$$

【点睛】本题主要涉及一次函数与反比例函数相交的知识点.根据交点既在一次函数上又在反比例函数上,即可解决问题.

24. 如图,线段 BC 长为 13,以 C 为顶点,CB 为一边的 $\angle \alpha$ 满足 $\cos \alpha = \frac{5}{13}$. 锐角 $\triangle ABC$ 的顶点 A 落在 $\angle \alpha$ 的 另一边上,且满足 $\sin A = \frac{4}{5}$. 求 $\triangle ABC$ 的高 BD 及 AB 边的长,并结合你的计算过程画出高 BD 及 AB 边. (图中提供的单位长度供补全图形使用)

【答案】BD=12,AB=15,补图详见解析.

【解析】

【分析】先利用直角作出 BD,再用勾股定理求出 BD,再用锐角三角函数求出 AB,AD,即可得出结论.

【详解】解:如图,作 $BD \perp l$ 于点D,

在 Rt \triangle CBD 中, \angle CDB=90°,BC=13,

$$\therefore \cos C = \cos \alpha = \frac{5}{13},$$

:.
$$CD = BC \cdot \cos C = 13 \times \frac{5}{13} = 5$$
, $BD = \sqrt{BC^2 - CD^2} = 12$,

在 Rt $\triangle ABD$ 中, BD=12, $\sin A=\frac{4}{5}$,

$$\therefore \tan A = \frac{4}{3} ,$$

$$\therefore AB = \frac{BD}{\sin A} = 15, \ AD = \frac{BD}{\tan A} = 9,$$

作图,以点D为圆心,9为半径作弧与射线l交于点A,连接AB,

【点睛】此题是解直角三角形,主要考查了基本作图,勾股定理,锐角三角函数,解本题的关键是求出 *AB* 和 *AD*.

25. 如图,AB 是半圆的直径,过圆心 O 作 AB 的垂线,与弦 AC 的延长线交于点 D,点 E 在 OD 上 $\angle DCE = \angle B$.

- (1) 求证: CE 是半圆的切线;
- (2) 若 *CD*=10, $\tan B = \frac{2}{3}$, 求半圆的半径.

【答案】(1)见解析;(2) $4\sqrt{13}$

【解析】

【详解】分析: (1) 连接CO,由 $\angle DCE = \angle B$ 且 OC=OB,得 $\angle DCE = \angle OCB$,利用同角的余角相等判断出 $\angle BCO+ \angle BCE=90^\circ$,即可得出结论;

(2) 设 AC=2x, 由根据题目条件用 x 分别表示出 OA、AD、AB,通过证明 $\triangle AOD$ $\triangle ACB$,列出等式即可.

详解: (1) 证明: 如图, 连接 CO.

- ∵AB 是半圆的直径,
- ∴∠*ACB*=90°.
- ∴ ∠*DCB*=180° -∠*ACB*=90°.
- \therefore \angle DCE+ \angle BCE=90°.
- : OC = OB,
- *∴∠OCB*=∠B.
- $\therefore \angle DCE = \angle B$,
- $\therefore \angle OCB = \angle DCE$.
- $\therefore \angle OCE = \angle DCB = 90^{\circ}.$
- $\therefore OC \perp CE$.
- *∵OC* 是半径,
- ∴CE 是半圆的切线.
- (2)解:设*AC*=2x,
- ∵在 Rt △ACB 中, $\tan B = \frac{AC}{BC} = \frac{2}{3}$,
- ∴BC=3x.
- $\therefore AB = \sqrt{(2x)^2 + (3x)^2} = \sqrt{13}x.$
- $: OD \perp AB$,
- $\therefore \angle AOD = \angle ACB = 90^{\circ}$.
- $\therefore \angle A = \angle A$,
- ∴ $\triangle AOD \hookrightarrow \triangle ACB$.
- $\therefore \frac{AC}{AB} = \frac{AO}{AD}.$
- $\therefore OA = \frac{1}{2}AB = \frac{\sqrt{13}}{2}x$, AD = 2x + 10,
- $\therefore \frac{2x}{\sqrt{13}x} = \frac{\frac{1}{2}\sqrt{13}x}{2x+10}.$

解得 x=8.

$$\therefore OA = \frac{\sqrt{13}}{2} \times 8 = 4\sqrt{13}.$$

则半圆的半径为 $4\sqrt{13}$.

点睛: 本题考查了切线的判定与性质, 圆周角定理, 相似三角形.

- **26.** 在平面直角坐标系 xOy 中,已知抛物线 $y=x^2 mx+n$.
- (1) 当m=2时,
- ①求抛物线的对称轴,并用含n的式子表示顶点的纵坐标;
- ②若点A(-2, y_1), B(x_2 , y_2)都在抛物线上,且 $y_2>y_1$,则 x_2 的取值范围是;
- (2) 已知点 P (-1, 2) ,将点 P 向右平移 4个单位长度,得到点 Q. 当 n=3 时,若抛物线与线段 PQ 恰有一个公共点,结合函数图象,求 m 的取值范围.

【答案】 (1) ①
$$n-1$$
; ② $x_2 < -2$ 或 $x_2 > 4$; (2) $m \le -2$ 或 $m=2$ 或 $m > \frac{10}{3}$.

【解析】

【分析】(1)①把 $\mathbf{m}=2$ 代入抛物线解析式,利用 $\mathbf{x}=-\frac{b}{2a}$,求出对称轴,然后把顶点横坐标代入,即可用

含 n 的式子表示出顶点的纵坐标;

- ②利用抛物线的对称性,及开口向上,可知离对称轴越远,函数值越大,从而可解;
- (2) 把 n=3 代入,再分抛物线经过点 Q,抛物线经过点 P (-1, 2) ,抛物线的顶点在线段 PQ 上,三种情况分类讨论,得出相应的 m 值,从而得结论.

【详解】解: (1) ①:m=2,

:. 抛物线为 $y=x^2 - 2x+n$.

$$\therefore x = -\frac{-2}{2} = 1,$$

- : 抛物线的对称轴为直线 x=1.
- ∵当线 x=1 时,y=1-2+n=n-1,
- :. 顶点的纵坐标为: *n* 1.
- ②: 抛物线的对称轴为直线 x=1,开口向上,

x = -2到 x = 1 的距离为 3,

∴点 A (- 2, y_1),B (x_2 , y_2)都在抛物线上,且 $y_2 > y_1$,则 x_2 的取值范围是 $x_2 < - 2$ 或 $x_2 > 4$,故答案为: $x_2 < - 2$ 或 $x_2 > 4$.

- (2) $: \triangle P$ (-1, 2),向右平移 4 个单位长度,得到点 Q.
- ∴点 *Q* 的坐标为 (3, 2),

: n=3

抛物线为 $y=x^2 - mx+3$.

当抛物线经过点 Q (3, 2) 时, 2=3² - 3m+3, 解得 $m = \frac{10}{3}$;

当抛物线经过点 P(-1, 2) 时, $2=(-1)^2+m+3$,解得 m=-2;

当抛物线的顶点在线段 PQ 上时, $\frac{12-m^2}{4}=2$,解得 $m=\pm 2$.

结合图象可知,m的取值范围是 $m \le -2$ 或m = 2或 $m > \frac{10}{3}$.

故答案为: $m \le -2$ 或 m = 2 或 $m > \frac{10}{3}$.

【点睛】本题考查二次函数图象与系数的关系,以及二次函数的对称性和抛物线与线段交点个数的问题,属于中等难度的题目.

27. 如图 1,在△ABC中,∠ABC=90°,BA=BC. 将线段 AB 绕点 A 逆时针旋转 90°得到线段 AD,E 是边 BC上的一动点,连结 DE 交 AC 于点 F,连结 BF.

- (1) 求证: FB=FD;
- (2)如图 2,连结 CD,点 H 在线段 BE 上 (不含端点),且 BH=CE,连结 AH 交 BF 于点 N.
- ①判断 AH与 BF的位置关系,并证明你的结论;
- ②连接 CN. 若 AB=2,请直接写出线段 CN 长度的最小值.

【答案】 (1) 见解析; (2) ①AH \perp BF, 见解析; ② $\sqrt{5}-1$.

【解析】

【分析】(1)证明△FAD≌△FAB(SAS)即可解决问题.

- (2) ①首先证明四边形 ABCD 是正方形,再证明 ∠BAH= ∠CBF 即可解决问题.
- ②如图 3 中,取 AB 的中点 O,连接 ON, OC. 理由三角形的三边关系解决问题即可.

【详解】(1)证明:如图1中,

图1

- \therefore BA=BC, \angle ABC=90°,
- \therefore \angle BAC= \angle ACB= 45° ,
- ∵线段 AB 绕点 A 逆时针旋转 90°得到线段 AD,
- ∴∠BAD=90°, BA=AD,
- \therefore \angle FAD= \angle FAB=45°,
- \therefore AF=AF,
- ∴△FAD \cong △FAB (SAS),
- ∴BF=DF.
- (2) ①解: 结论: AH_BF.

理由:如图2中,连接CD.

- \therefore \angle ABC+ \angle BAD=180°,
- ∴AD//BC,
- \therefore AD=AB=BC,
- ∴四边形 ABCD 是平行四边形,
- ∵∠ABC=90°,
- ∴四边形 ABCD 是矩形,
- \therefore AB=BC,
- ∴四边形 ABCD 是正方形,
- ∵BA=CD, ∠ABH=∠DCE, BH=CE,
- ∴ △ABH≌ △DCE (SAS),
- $\therefore \angle BAH = \angle CDE$,
- ∵∠FCD=∠FCB=45°, CF=CF, CD=CB,
- ∴ \triangle CFD \cong \triangle CFB (SAS),
- ∴∠CDF=∠CBF,
- ∴∠BAH=∠CBF,
- \therefore \angle CBF+ \angle ABF=90°,
- \therefore \angle BAH+ \angle ABF=90°,
- ∴∠ANB=90°,
- ∴AH⊥BF.
- ②如图 3 中,取 AB 的中点 O,连接 ON, OC.

- ∵∠ANB=90°, AO=OB,
- $\therefore ON = \frac{1}{2} AB = 1,$

在 Rt \triangle OBC 中, OC= $\sqrt{1^2+2^2}=\sqrt{5}$,

- ∵CN≥OC-ON,
- \therefore CN $\geq \sqrt{5}$ -1,
- ∴CN 的最小值为 $\sqrt{5}$ -1.

【点睛】本题属于几何变换综合题,考查了正方形的判定和性质,全等三角形的判断和性质,三角形的三边关系等知识,解题的关键是正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题.

28. 在平面直角坐标系 xOy 中,对于两个点 P,Q 和图形 W,如果在图形 W上存在点 M,N(M,N可以重合)使得 PM = QN,那么称点 P与点 Q 是图形 W的一对平衡点.

(1) 如图 1, 已知点 A(0,3), B(2,3);

①设点 O 与线段 AB 上一点的距离为 d,则 d 的最小值是_____,最大值是_____;

②在
$$P_1\left(\frac{3}{2},0\right)$$
, $P_2\left(1,4\right)$, $P_3\left(-3,0\right)$ 这三个点中,与点 O 是线段 AB 的一对平衡点的是_____.

- (2)如图 2,已知 $\odot O$ 的半径为 1,点 D的坐标为(5,0). 若点 E(x,2)在第一象限,且点 D与点 E是 $\odot O$ 的一对平衡点,求 x的取值范围;
- (3)如图 3,已知点H(-3,0),以点O为圆心,OH长为半径画弧交x的正半轴于点K. 点C(a,b)(其中 $b \ge 0$)是坐标平面内一个动点,且OC = 5, $\bigcirc C$ 是以点C为圆心,半径为2的圆,若HK上的任意两个点都是 $\bigcirc C$ 的一对平衡点,直接写出b的取值范围.

【答案】 (1) ①3, √13;

② P_1 ;

(2) $\sqrt{5} \le x \le 3\sqrt{5}$;

(3)
$$\frac{4\sqrt{14}}{3} \le b \le 5$$

【解析】

【分析】(1)①观察图像 d 的最小值是 OA,最大值为 OB,由勾股定理即可求解;②根据平衡点的定义即可求解;

- (2) 如图,可得 $OE_1=3$,解得此时的 $x=\sqrt{5}$, $OE_2=7$,解得 $x=3\sqrt{5}$,即可得到范围;
- (3)由点 C在以 O为圆心 5 为半径的上半圆上运动,推出以 C 为圆心 2 为半径的圆刚好与 HK 相切,此时要想 HK 上的任意两点都是圆的平衡点,需要满足 $CK \le 6$, $CH \le 6$,分两种情况求出 b 值即可判断.

【小问1详解】

由题意可知, OA=3, $OB=\sqrt{2^2+3^2}=\sqrt{13}$,

则 d 的最小值为 3,最大值为 $\sqrt{13}$,

根据平衡点的定义,点 P_1 与点O是线段AB的一对平衡点;

【小问2详解】

如图,

由题意点D到 $\odot O$ 的距离是4,最远距离是6,

::点 D 与点 E 是 ⊙ O 的一对平衡点,此时需要满足 E₁到 ⊙ O 的最大距离是 4,

即 $OE_1=3$,可得 $x=\sqrt{3^2-2^2}=\sqrt{5}$,

同理: 当 E_2 到 \odot O 最小距离是 6 时, $OE_2=7$,此时 $x=\sqrt{7^2-2^2}=\sqrt{45}=3\sqrt{5}$,

综上所述,满足条件的x的值为: $\sqrt{5} \le x \le 3\sqrt{5}$;

【小问3详解】

- :点 C在以 O为圆心, 5为半径的圆上运动,
- ∴以 C 为圆心、2 为半径的圆刚好与 HK 相切,此时要想 HK 上任意的两点都是 $\odot C$ 的平衡点需要满足 $CK \leq 6$, $CH \leq 6$,

如下图, 当 CK=6 时, 作 $CM \perp HK$ 于点 M,

根据题意有:

$$\begin{cases} a^2 + b^2 = 5^2 \\ (3-a)^2 + b^2 = 6^2 \end{cases}$$
,解得:
$$\begin{cases} a = -\frac{1}{3} \\ b = \frac{4\sqrt{14}}{3} \end{cases}$$
,(b 为负值的舍去),
$$b = \frac{1}{3} \\ b = \frac{4\sqrt{14}}{3} \end{cases}$$
,每日期间得

在两者中间时,a=0,b=5,

观察图像可知:满足条件的 b 的取值范围: $\frac{4\sqrt{14}}{3} \le b \le 5$.

【点睛】本题属于圆的综合题,考查了点 P 到点 Q 是图形 W 的一对平衡点、两圆的位置关系、点与圆的位置 关系等知识,解题的关键是理解题意,学会取特殊位置解决问题,属于压轴题.