Mathematical logic notes

Jasper Ty

What is this?

These are notes based on my reading of Mileti's "Modern Mathematical Logic", accompanied by sitting in Henry Towsner's MATH 5700 class at Penn.

I mix in some other notation along with those in the book. For example, I take \mathbb{P} to be the set of positive integers, and I prefer to notate sequences as symbols with subscripts rather than as functions.

The biggest differences are that I use $_$ as a wildcard variable, and I like to use the \mapsto notation to specify functions.

I have an intense dislike for mathcal, and actively try to replace uses of it whenver I can.

Contents

2	Induction and recursion			
	2.I	Induction and recursion on \mathbb{N}	. 2	
	2.2	Generation	. 3	
	2.3	Step induction	. 6	
	2.4	Freeness and step recursion	. 6	

2 Induction and recursion

We put the notions of induction and recursion in a more general framework.

Induction and recursion on N 2.T

First, we recall well-known avatars of induction and recursion.

Definition 2.1.1. We define the *successor function* S to be

$$S: \mathbb{N} \to \mathbb{N}$$
$$n \mapsto n+1.$$

Theorem 2.1.2 (Induction on \mathbb{N} – steps). Let $X \subseteq N$ such that $0 \in X$ and $S(n) \in X$ whenever $n \in X$. Then it must be that $X = \mathbb{N}$.

Theorem 2.1.3 (Recursion on \mathbb{N} – steps). Let X be a set. If $y \in X$, and g: $\mathbb{N} \times X \to X$, there exists a unique function $f: \mathbb{N} \to X$ such that

(i)
$$f(0) = \gamma$$
, and

(i)
$$f(0) = y$$
, and
(ii) $f(S(n)) = g(n, f(n))$ for all $n \in \mathbb{N}$

Theorem 2.1.4 (Induction theorem – order). Let $X \subseteq N$ such that $0 \in X$ and for all $n \in X$, $m \in X$ whenever m < n. Then $X = \mathbb{N}$.

The utility in the previous formalization of the recursion theorem is apparent in its order form.

Theorem 2.1.5 (Recursion theorem – order). Let X be a set. If $g: X^* \to X$, then there is a unique function f such that

$$f(n) = g(f \upharpoonright [n]).$$

Example 2.1.6 (Fibonacci numbers). Let $X = \mathbb{N}$, and define

$$g: \mathbb{N}^* \to \mathbb{N}$$

$$\{a_i\}_{1 \le i \le n} \mapsto \begin{cases} 0 & n = 0\\ 1 & n = 1\\ a_{n-2} + a_{n-1} & n \ge 2 \end{cases}$$

Then by Theorem 2.1.5, there is a unique function f such that $f(n) = g(f \upharpoonright [n])$. We call this function the *Fibonacci sequence*.

2.2 Generation

Definition 2.2.1. Let A be a set, and fix an *arity* $k \in \mathbb{P}$. We define k-ary functions on A to be those functions of the form

$$f: A^k \to A$$
.

Common shorthands are *unary*, *binary*, and *ternary* functions for 1-ary, 2-ary, and 3-ary functions respectively.

Definition 2.2.2. Let A be a set, $B \subseteq A$, and let \mathcal{H} be a collection such that each $b \in \mathcal{H}$ is a _-ary function on A.

We call (A, B, \mathcal{H}) a simple generating system.

To be able to pick out all the functions $h \in \mathcal{H}$ of a *specific arity* $k \in \mathbb{P}$, we denote the set of all such functions \mathcal{H}_k .

The interpretation is that A is our background set, and B is the set which we wish to generate some larger set using all the operations of \mathcal{H} .

Example 2.2.3 (Subgroups generated by a subset). Let A be a group, and let $B \subset A$ be a subset that contain's the identity of A.

We are interested in the *subgroup generated by A generated by B*. In this case, $\mathcal{H} = \{h_1, h_2\}$, where

$$b_1: A^2 \to A$$

 $(x, y) \mapsto x \cdot y$

and

$$h_2: A \to A$$

 $x \mapsto x^{-1}$.

Example 2.2.4 (Vector subspaces generated by a subset). Now if V is a vector space over an infinite field \mathbb{F} , and $B \subseteq V$ is a subset that contains the zero vector, the correct \mathcal{H} that identifies the *subspace generated by B* is now an *infinite family*.

It contains vector addition, namely the map

$$b_+: V^2 \to V$$

 $(u, v) \mapsto u + v$

and the scaling maps

$$b_{\alpha}: V \to V$$
$$v \mapsto \alpha v$$

for all $\alpha \in \mathbb{F}$.

Definition 2.2.5. Fix $k \in \mathbb{P}$. A *set-valued k-ary function* is a *k-*ary function of the form

$$h: A^k \to \mathscr{P}(\underline{\ })$$
.

Definition 2.2.6. Let A be a set, $B \subseteq A$, and now let \mathcal{H} be a collection of *set-valued* _-ary functions on A.

We call (A, B, \mathcal{H}) a generating system.

Again, \mathcal{H}_k denotes all $h \in \mathcal{H}$ of arity $k \in \mathbb{P}$.

Example 2.2.7 (Subfields generated by a set). Let \mathbb{F} be a field, and let $B \subseteq \mathbb{F}$ such that $0, 1 \in B$.

Let \mathcal{H} be the collection of functions

$$b_1: \mathbb{F}^2 \to \mathcal{P}(\mathbb{F})$$

 $(a,b) \mapsto \{a+b\}$

$$b_2: \mathbb{F}^2 \to \mathscr{P}(\mathbb{F})$$

 $(a,b) \mapsto \{a \cdot b\}$

$$h_3: \mathbb{F} \to \mathcal{P}(\mathbb{F})$$

 $a \mapsto \{-a\}$

$$\begin{aligned} h_4: \mathbb{F} &\to \mathcal{P}\left(\mathbb{F}\right) \\ a &\mapsto \begin{cases} \{a^{-1}\} & a \neq 0 \\ \varnothing & a = 0 \end{cases}. \end{aligned}$$

Then $(\mathbb{F}, B, \mathcal{H})$ identifies the *subfield of* \mathbb{F} *generated by* B.

Example 2.2.8 (Subgraphs generated by reachability). If G = (V, E) is a directed graph, reachability can be characterized by $\mathcal{H} = \{h\}$, where

$$\begin{split} b: V &\to \mathcal{P}\left(V\right) \\ v &\mapsto \{w \in V: (v, w) \in E\}. \end{split}$$

We remark that every simple generating system can be represented as a generating system, by converting each k-ary function h on A to a set-valued k-ary function h' on *A* by putting

$$h': A^k \to \mathcal{P}(A)$$

 $(a_1, \dots, a_k) \mapsto \{h(a_1, \dots, a_k)\}.$

Now we explicitly define what it is exactly that a generating system generates.

From above

Definition 2.2.9. Let (A, B, \mathcal{H}) be a generating system. We call a subset *I* of *A inductive* if

- (i) $B \subseteq J$. (ii) If $k \in \mathbb{P}$, $h \in \mathcal{H}_k$, and $a_1, \ldots, a_k \in J$, then $h(a_1, \ldots, a_k) \subseteq J$.

We do a common set-theoretic trick here— we take intersections to get the smallest set in a family.

Proposition 2.2.10. Let (A, B, \mathcal{H}) be a generating system. Then there exists a unique inductive set I such that $I \subseteq I$ for all inductive sets I.

Proof. We claim that

$$I = \bigcap_{\text{J is an inductive set}} J.$$

Clearly, this satisfies $I \subseteq J$ for all inductive sets J. Next, we prove that it is inductive. Since $B \subseteq J$ for all inductive sets J, we have that $B \subseteq I$.

Fix $k \in \mathbb{P}$, and take some $h \in \mathcal{H}_k$. If $a_1, \ldots, a_k \in I$, then $a_1, \ldots, a_k \in I$ for all inductive sets J. Hence $h(a_1, \ldots, a_k) \subseteq J$ for all inductive sets J. By the same principle from which we concluded $B \subseteq I$, we must conclude that $h(a_1, \ldots, a_k) \subseteq I$.

Finally, uniqueness follows from the fact that if I_1 and I_2 are inductive sets such that $I_1 \subseteq J$ and $I_2 \subseteq J$ for all inductive sets J, it must be that $I_1 \subseteq I_2$ and $I_2 \subseteq I_1$, and therefore $I_1 = I_2$.

From below: levels

This approach is more in the spirit of induction.

Definition 2.2.11. Let (A, B, \mathcal{H}) be a generating system. We define a sequence

$$\{V_n\}_{n=0}^{\infty}$$
 of subsets of A recursively as follows
$$V_0 = B$$

$$V_{n+1} = V_n \cup \{c \in A; c = h(a_1, \dots, a_k) \text{ for some } a_1, \dots, a_k \in V_n, h \in \mathcal{H}_k\}.$$

Namely, the *n*-th subset in the sequence is all the elements that can be obtained by applying functions in \mathcal{H} at most n times.

From below: witnessing sequences

2.3 Step induction

Definition 2.3.1 (Step induction). Let (A, B, \mathcal{H}) be a generating system. If $X \subseteq$

- (i) $B \subseteq X$ (ii) $h(a_1, \dots, a_k) \in X$ whenever $k \in \mathbb{P}, h \in \mathcal{H}_k$, and $a_1, \dots, a_k \in X$,

This implies that if $X \subseteq G$ additionally, it must be that X = G.

2.4 Freeness and step recursion

The problem with attempting "definition by recursion" with something like a generating system is that there might be conflicting witnessing sequences.