Identify_Customer_Segments-Copy1

October 1, 2023

1 Project: Identify Customer Segments

In this project, I will apply unsupervised learning techniques to identify segments of the population that form the core customer base for a mail-order sales company in Germany. These segments can then be used to direct marketing campaigns towards audiences that will have the highest expected rate of returns. The data that I will use has been provided by Bertelsmann Arvato Analytics, and represents a real-life data science task.

```
In [1]: # import libraries here; add more as necessary
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        # additional libraries
        import re
        import warnings
        warnings.filterwarnings('ignore')
        from sklearn.preprocessing import Imputer
        from sklearn.preprocessing import StandardScaler
        from sklearn.decomposition import PCA
        from sklearn.cluster import KMeans
        # magic word for producing visualizations in notebook
        %matplotlib inline
        Import note: The classroom currently uses sklearn version 0.19.
        If you need to use an imputer, it is available in sklearn.preprocessing.Imputer,
        instead of sklearn.impute as in newer versions of sklearn.
```

Out[1]: '\nImport note: The classroom currently uses sklearn version 0.19.\nIf you need to use a

1.0.1 Step 0: Load the Data

There are four files associated with this project (not including this one):

- Udacity_AZDIAS_Subset.csv: Demographics data for the general population of Germany; 891211 persons (rows) x 85 features (columns).
- Udacity_CUSTOMERS_Subset.csv: Demographics data for customers of a mail-order company; 191652 persons (rows) x 85 features (columns).
- Data_Dictionary.md: Detailed information file about the features in the provided datasets.
- AZDIAS_Feature_Summary.csv: Summary of feature attributes for demographics data; 85 features (rows) x 4 columns

Each row of the demographics files represents a single person, but also includes information outside of individuals, including information about their household, building, and neighborhood. You will use this information to cluster the general population into groups with similar demographic properties. Then, you will see how the people in the customers dataset fit into those created clusters. The hope here is that certain clusters are over-represented in the customers data, as compared to the general population; those over-represented clusters will be assumed to be part of the core userbase. This information can then be used for further applications, such as targeting for a marketing campaign.

To start off with, load in the demographics data for the general population into a pandas DataFrame, and do the same for the feature attributes summary. Note for all of the .csv data files in this project: they're semicolon (;) delimited, so you'll need an additional argument in your read_csv() call to read in the data properly. Also, considering the size of the main dataset, it may take some time for it to load completely.

Once the dataset is loaded, it's recommended that you take a little bit of time just browsing the general structure of the dataset and feature summary file. You'll be getting deep into the innards of the cleaning in the first major step of the project, so gaining some general familiarity can help you get your bearings.

```
In [2]: # Load in the general demographics data.
        azdias = pd.read_csv('Udacity_AZDIAS_Subset.csv', delimiter = ';')
        # Load in the feature summary file.
        feat_info = pd.read_csv('AZDIAS_Feature_Summary.csv', delimiter = ';')
In [3]: # Check the structure of the data after it's loaded (e.g. print the number of
        # rows and columns, print the first few rows).
        display(azdias.head())
        print("AZDIAS Shape: ", azdias.shape)
   AGER TYP
             ALTERSKATEGORIE GROB
                                   ANREDE KZ CJT GESAMTTYP
0
         -1
                                 2
                                            1
                                                          2.0
                                            2
         -1
                                 1
                                                          5.0
1
2
         -1
                                 3
                                            2
                                                          3.0
3
          2
                                 4
                                            2
                                                          2.0
4
                                 3
                                                          5.0
         -1
   FINANZ_MINIMALIST FINANZ_SPARER FINANZ_VORSORGER FINANZ_ANLEGER
0
                   3
                                   4
                                                     3
                                                                      5
1
                   1
                                   5
                                                     2
                                                                      5
2
                   1
                                   4
                                                     1
                                                                      2
```

5

2

2

3

4

```
3
                                                        4
4
                                                                          1
   FINANZ_UNAUFFAELLIGER FINANZ_HAUSBAUER
                                                          PLZ8_ANTG1
                                                                      PLZ8_ANTG2 \
                                                  . . .
0
                         5
                                                                  NaN
                                                                               {\tt NaN}
                         4
                                                                  2.0
                                                                               3.0
1
                                            5
                                                  . . .
2
                                                                               3.0
                         3
                                            5
                                                                  3.0
                                                  . . .
                                            2
                                                                  2.0
                                                                               2.0
3
                         1
                                                  . . .
                         3
                                            2
                                                                  2.0
                                                                               4.0
4
   PLZ8_ANTG3 PLZ8_ANTG4
                            PLZ8_BAUMAX PLZ8_HHZ
                                                     PLZ8_GBZ
                                                                ARBEIT \
0
          NaN
                        {\tt NaN}
                                      NaN
                                                NaN
                                                           NaN
                                                                    {\tt NaN}
1
           2.0
                        1.0
                                      1.0
                                                 5.0
                                                           4.0
                                                                    3.0
2
           1.0
                                      1.0
                                                4.0
                                                           4.0
                                                                    3.0
                        0.0
3
           2.0
                        0.0
                                      1.0
                                                 3.0
                                                           4.0
                                                                    2.0
4
           2.0
                        1.0
                                      2.0
                                                 3.0
                                                           3.0
                                                                    4.0
   ORTSGR_KLS9
                 RELAT_AB
0
            NaN
                      {\tt NaN}
1
            5.0
                       4.0
2
            5.0
                       2.0
3
            3.0
                       3.0
4
            6.0
                       5.0
[5 rows x 85 columns]
AZDIAS Shape: (891221, 85)
In [4]: display(feat_info.head())
        display(feat_info.tail())
        print("Features Information Shape", feat_info.shape)
               attribute information_level
                                                      type missing_or_unknown
                AGER TYP
                                                                         [-1,0]
0
                                      person categorical
                                                                       [-1,0,9]
1
   ALTERSKATEGORIE_GROB
                                      person
                                                   ordinal
2
               ANREDE KZ
                                      person categorical
                                                                         [-1,0]
3
          CJT_GESAMTTYP
                                      person categorical
                                                                            [0]
4
      FINANZ_MINIMALIST
                                                   ordinal
                                                                           [-1]
                                      person
      attribute information_level
                                         type missing_or_unknown
80
       PLZ8_HHZ
                    macrocell_plz8 ordinal
                                                              [-1]
                                                              [-1]
81
       PLZ8_GBZ
                    macrocell_plz8
                                     ordinal
                          community ordinal
82
                                                            [-1,9]
         ARBEIT
83
    ORTSGR_KLS9
                          community ordinal
                                                            [-1,0]
                          community ordinal
84
       RELAT_AB
                                                           [-1,9]
```

1.1 Step 1: Preprocessing

1.1.1 Step 1.1: Assess Missing Data

The feature summary file contains a summary of properties for each demographics data column. You will use this file to help you make cleaning decisions during this stage of the project. First of all, you should assess the demographics data in terms of missing data. Pay attention to the following points as you perform your analysis, and take notes on what you observe. Make sure that you fill in the **Discussion** cell with your findings and decisions at the end of each step that has one!

Step 1.1.1: Convert Missing Value Codes to NaNs The fourth column of the feature attributes summary (loaded in above as feat_info) documents the codes from the data dictionary that indicate missing or unknown data. While the file encodes this as a list (e.g. [-1,0]), this will get read in as a string object. You'll need to do a little bit of parsing to make use of it to identify and clean the data. Convert data that matches a 'missing' or 'unknown' value code into a numpy NaN value. You might want to see how much data takes on a 'missing' or 'unknown' code, and how much data is naturally missing, as a point of interest.

In [5]: # Identify missing or unknown data values and convert them to NaNs.

```
num_missing = azdias.isnull().sum()
display(num_missing.head(15))
print("The total number of missing or unkown values is", num_missing.sum())
```

AGER_TYP	0
ALTERSKATEGORIE_GROB	0
ANREDE_KZ	0
CJT_GESAMTTYP	4854
FINANZ_MINIMALIST	0
FINANZ_SPARER	0
FINANZ_VORSORGER	0
FINANZ_ANLEGER	0
FINANZ_UNAUFFAELLIGER	0
FINANZ_HAUSBAUER	0
FINANZTYP	0
GEBURTSJAHR	0
GFK_URLAUBERTYP	4854
GREEN_AVANTGARDE	0
HEALTH_TYP	0
dtype: int64	

The total number of missing or unkown values is 4896838

```
In [6]: display(feat_info['missing_or_unknown'].head(15))
0
        [-1,0]
      [-1,0,9]
1
        [-1,0]
2
3
           [0]
4
          [-1]
5
          [-1]
          「−1 ]
6
7
          [-1]
          [-1]
8
9
          [-1]
10
          [-1]
11
           [0]
12
            13
             14
        [-1,0]
Name: missing_or_unknown, dtype: object
In [7]: import re
        import numpy as np
        for i in range(len(feat_info)):
             # using regex to extract the digits
            missing_data = re.sub('[\[|\]]', '',feat_info.iloc[i]['missing_or_unknown']).split('
             # return the digit values for integer strings only
            if missing_data != ['']:
                 missing_data = [np.int64(data) if (data!='X' and data!='XX') else data for data
                 azdias = azdias.replace({feat_info.iloc[i]['attribute']: missing_data}, np.nan)
In [8]: display(azdias.head())
   AGER_TYP ALTERSKATEGORIE_GROB ANREDE_KZ CJT_GESAMTTYP \
0
        NaN
                                2.0
                                             1
                                                           2.0
1
        NaN
                                1.0
                                             2
                                                           5.0
                                             2
        {\tt NaN}
                                3.0
                                                           3.0
                                             2
3
        2.0
                                4.0
                                                           2.0
4
        NaN
                                                           5.0
                                3.0
                                             1
   FINANZ_MINIMALIST
                     FINANZ_SPARER FINANZ_VORSORGER FINANZ_ANLEGER \
0
                    3
                                                       3
                                    5
                                                       2
                                                                        5
                    1
1
2
                    1
                                    4
                                                       1
                                                                        2
                                    2
                                                                        2
3
                    4
4
                                                                        1
   FINANZ_UNAUFFAELLIGER FINANZ_HAUSBAUER
                                                         PLZ8_ANTG1 PLZ8_ANTG2 \
                                                 . . .
0
                                                                {\tt NaN}
                                                                             {\tt NaN}
                        5
                                           3
```

```
4
                                              5
                                                                     2.0
                                                                                   3.0
1
2
                          3
                                              5
                                                                     3.0
                                                                                   3.0
3
                                                                                   2.0
                          1
                                               2
                                                                     2.0
4
                          3
                                               2
                                                                      2.0
                                                                                   4.0
   PLZ8_ANTG3 PLZ8_ANTG4
                             PLZ8_BAUMAX PLZ8_HHZ
                                                         PLZ8_GBZ
                                                                    ARBEIT
0
           {\tt NaN}
                         NaN
                                                   NaN
                                                               NaN
                                                                        NaN
1
           2.0
                         1.0
                                        1.0
                                                   5.0
                                                               4.0
                                                                        3.0
2
           1.0
                         0.0
                                        1.0
                                                   4.0
                                                               4.0
                                                                        3.0
3
           2.0
                         0.0
                                        1.0
                                                   3.0
                                                               4.0
                                                                        2.0
4
           2.0
                         1.0
                                        2.0
                                                   3.0
                                                                        4.0
                                                               3.0
   ORTSGR_KLS9
                  RELAT_AB
                        {\tt NaN}
0
            NaN
            5.0
                        4.0
1
2
            5.0
                        2.0
3
            3.0
                        3.0
            6.0
                        5.0
```

[5 rows x 85 columns]

AGER_TYP	685843
ALTERSKATEGORIE_GROB	2881
ANREDE_KZ	0
CJT_GESAMTTYP	4854
FINANZ_MINIMALIST	0
FINANZ_SPARER	0
FINANZ_VORSORGER	0
FINANZ_ANLEGER	0
FINANZ_UNAUFFAELLIGER	0
FINANZ_HAUSBAUER	0
FINANZTYP	0
GEBURTSJAHR	392318
GFK_URLAUBERTYP	4854
GREEN_AVANTGARDE	0
HEALTH_TYP	111196

dtype: int64

The total number of missing or unkown values after converting is 8373929

Step 1.1.2: Assess Missing Data in Each Column How much missing data is present in each column? There are a few columns that are outliers in terms of the proportion of values that are

missing. You will want to use matplotlib's hist() function to visualize the distribution of missing value counts to find these columns. Identify and document these columns. While some of these columns might have justifications for keeping or re-encoding the data, for this project you should just remove them from the dataframe. (Feel free to make remarks about these outlier columns in the discussion, however!)

For the remaining features, are there any patterns in which columns have, or share, missing data?

```
In [10]: # Perform an assessment of how much missing data there is in each column of the
         # dataset.
         num_missing_columns = azdias.isnull().sum()
         display(num_missing_columns.head())
         print(num_missing_columns.describe())
         print("The total number of misssing data", num_missing_columns.sum())
AGER_TYP
                        685843
                          2881
ALTERSKATEGORIE_GROB
ANREDE_KZ
                             0
CJT_GESAMTTYP
                          4854
FINANZ_MINIMALIST
                             0
dtype: int64
             85.000000
count
mean
          98516.811765
std
         146604.203317
              0.000000
min
25%
              0.000000
50%
          93148.000000
75%
         116515.000000
max
         889061.000000
dtype: float64
The total number of misssing data 8373929
In [11]: percent_missing_columns = num_missing_columns/len(azdias)*100
         display(percent_missing_columns.head())
         print(percent_missing_columns.describe())
AGER_TYP
                        76.955435
ALTERSKATEGORIE_GROB
                         0.323264
ANREDE_KZ
                         0.000000
CJT_GESAMTTYP
                         0.544646
FINANZ MINIMALIST
                         0.000000
dtype: float64
         85.000000
count
         11.054139
mean
```

```
    std
    16.449815

    min
    0.000000

    25%
    0.000000

    50%
    10.451729

    75%
    13.073637

    max
    99.757636

    dtype:
    float64
```



```
In [14]: columns = percent_missing_columns[percent_missing_columns > 20]
         columns_names = columns.keys().tolist()
         print(columns, columns_names)
         # display the dataset before removing outliers
         display(azdias.head())
AGER_TYP
                76.955435
GEBURTSJAHR
                44.020282
{\tt TITEL\_KZ}
                99.757636
ALTER_HH
                34.813699
KK_KUNDENTYP
                65.596749
KBAO5_BAUMAX
                53.468668
dtype: float64 ['AGER_TYP', 'GEBURTSJAHR', 'TITEL_KZ', 'ALTER_HH', 'KK_KUNDENTYP', 'KBAO5_BAUMAX
```

```
ALTERSKATEGORIE_GROB ANREDE_KZ CJT_GESAMTTYP \
   AGER TYP
0
        NaN
                                 2.0
                                               1
                                                             2.0
                                               2
1
        NaN
                                 1.0
                                                             5.0
2
        NaN
                                 3.0
                                               2
                                                             3.0
3
        2.0
                                 4.0
                                               2
                                                             2.0
4
        NaN
                                 3.0
                                                             5.0
   FINANZ_MINIMALIST FINANZ_SPARER FINANZ_VORSORGER FINANZ_ANLEGER
0
                     3
                                     4
                                                         3
                                                                          5
                     1
                                     5
                                                         2
                                                                          5
1
2
                                     4
                                                                          2
                     1
                                                         1
                     4
3
                                     2
                                                         5
                                                                          2
4
                     4
                                     3
                                                         4
                                                                          1
   FINANZ_UNAUFFAELLIGER FINANZ_HAUSBAUER
                                                           PLZ8_ANTG1 PLZ8_ANTG2 \
                                                  . . .
                                                                                NaN
0
                                                                  {\tt NaN}
                                                  . . .
1
                         4
                                            5
                                                  . . .
                                                                   2.0
                                                                                3.0
2
                         3
                                             5
                                                                   3.0
                                                                                3.0
3
                         1
                                             2
                                                                   2.0
                                                                                2.0
4
                         3
                                             2
                                                                   2.0
                                                                                4.0
   PLZ8_ANTG3 PLZ8_ANTG4 PLZ8_BAUMAX PLZ8_HHZ PLZ8_GBZ
                                                                 ARBEIT
          {\tt NaN}
                        NaN
                                                 NaN
                                                            NaN
                                                                     NaN
0
                                      NaN
           2.0
                        1.0
                                      1.0
                                                 5.0
                                                            4.0
                                                                     3.0
1
2
           1.0
                        0.0
                                      1.0
                                                 4.0
                                                            4.0
                                                                     3.0
3
           2.0
                        0.0
                                      1.0
                                                 3.0
                                                            4.0
                                                                     2.0
4
           2.0
                        1.0
                                      2.0
                                                 3.0
                                                            3.0
                                                                     4.0
   ORTSGR KLS9
                 RELAT AB
0
            {\tt NaN}
                       NaN
            5.0
                       4.0
1
2
            5.0
                       2.0
3
            3.0
                       3.0
4
            6.0
                       5.0
[5 rows x 85 columns]
In [15]: azdias = azdias.drop(columns_names, axis=1)
          display(azdias.head())
   ALTERSKATEGORIE_GROB
                           ANREDE_KZ CJT_GESAMTTYP
                                                       FINANZ_MINIMALIST
0
                      2.0
                                    1
                                                  2.0
                                                                         3
                                    2
1
                      1.0
                                                  5.0
                                                                         1
2
                                    2
                      3.0
                                                  3.0
                                                                         1
                                    2
3
                      4.0
                                                  2.0
                                                                         4
4
                      3.0
                                                  5.0
                                                                         4
```

	FINANZ_SPARE	R FINANZ	${\tt Z}_{ t VORSORGE}$	R F	INANZ_ANLE	GER F	NANZ_UNAUFF	AELLIGE	ER \	
0		4		3		5			5	
1		5		2		5			4	
2		4		1		2			3	
3		2		5		2			1	
4		3		4		1			3	
	FINANZ_HAUSE	AUER FIN	IANZTYP		PLZ8_	ANTG1	PLZ8_ANTG2	PLZ8_	NTG3	\
0		3	4			NaN	NaN		${\tt NaN}$	
1		5	1			2.0	3.0		2.0	
2		5	1			3.0	3.0		1.0	
3		2	6			2.0	2.0		2.0	
4		2	5			2.0	4.0		2.0	
	PLZ8_ANTG4	PLZ8_BAUN	IAX PLZ8_	HHZ	PLZ8_GBZ	ARBEIT	r ortsgr_kl	S9 REI	.AT_AB	
0	NaN	N	JaN	NaN	NaN	NaN	J N	aN	NaN	
1	1.0	1	0	5.0	4.0	3.0) 5	.0	4.0	
2	0.0	1	0	4.0	4.0	3.0) 5	.0	2.0	
3	0.0	1	0	3.0	4.0	2.0) 3	.0	3.0	
4	1.0	2	2.0	3.0	3.0	4.0) 6	.0	5.0	

[5 rows x 79 columns]

Discussion 1.1.2: Assess Missing Data in Each Column Upon generating a boxplot, it became evident that the outlier columns exhibited a prevalence of over 20% missing values. Specifically, there were six columns characterized by missing values exceeding 40%. This circumstance has the potential to introduce bias and inaccuracies into the model's predictions.

Step 1.1.3: Assess Missing Data in Each Row Now, you'll perform a similar assessment for the rows of the dataset. How much data is missing in each row? As with the columns, you should see some groups of points that have a very different numbers of missing values. Divide the data into two subsets: one for data points that are above some threshold for missing values, and a second subset for points below that threshold.

In order to know what to do with the outlier rows, we should see if the distribution of data values on columns that are not missing data (or are missing very little data) are similar or different between the two groups. Select at least five of these columns and compare the distribution of values. - You can use seaborn's countplot() function to create a bar chart of code frequencies and matplotlib's subplot() function to put bar charts for the two subplots side by side. - To reduce repeated code, you might want to write a function that can perform this comparison, taking as one of its arguments a column to be compared.

Depending on what you observe in your comparison, this will have implications on how you approach your conclusions later in the analysis. If the distributions of non-missing features look similar between the data with many missing values and the data with few or no missing values, then we could argue that simply dropping those points from the analysis won't present a major issue. On the other hand, if the data with many missing values looks very different from the data with few or no missing values, then we should make a note on those data as special. We'll revisit

these data later on. Either way, you should continue your analysis for now using just the subset of the data with few or no missing values.

```
In [16]: # How much data is missing in each row of the dataset?
         num_missing_rows = azdias.isnull().sum(axis = 1)
         display(num_missing_rows.head())
         print("The total number of missing values", num_missing_rows.sum())
0
     43
1
      0
2
      0
3
      7
      0
dtype: int64
The total number of missing values 5035304
In [17]: percent_missing_rows = num_missing_rows/azdias.shape[1]*100
         print(percent_missing_rows.describe())
count
         891221.000000
              7.151764
mean
             16.752768
std
min
              0.000000
25%
              0.000000
50%
              0.000000
75%
              3.797468
             62.025316
max
dtype: float64
In [18]: plt.hist(percent_missing_rows, bins=50, color = 'red')
         plt.ylabel('No. Rows')
         plt.xlabel('Missing Values')
         plt.show()
```


In [19]: # Write code to divide the data into two subsets based on the number of missing # values in each row.

```
low_missing_values_data = azdias[azdias.isnull().sum(axis=1) < 30]
high_missing_values_data = azdias[azdias.isnull().sum(axis=1) >= 30]
```

display(low_missing_values_data.head())
display(high_missing_values_data.head())

	ALTERSKATEGORIE_GROB	ANREDE_KZ	CJT_GESAMTTYP	FINANZ_MINIMALIST	\
1	1.0	2	5.0	1	
2	3.0	2	3.0	1	
3	4.0	2	2.0	4	
4	3.0	1	5.0	4	
5	1.0	2	2.0	3	

	FINANZ_SPARER	FINANZ_VORSORGER	FINANZ_ANLEGER	FINANZ_UNAUFFAELLIGER	
1	5	2	5	4	
2	4	1	2	3	
3	2	5	2	1	
4	3	4	1	3	
5	1	5	2	2	

	FINANZ_HAUSBAUER	FINANZTYP	 PLZ8_ANTG1	PLZ8_ANTG2	PLZ8_ANTG3	\
1	5	1	 2.0	3.0	2.0	

2		5	1		3.0	3.0	1.0
3		2	6		2.0	2.0	2.0
4		2	5		2.0	4.0	2.0
5		5	2		2.0	3.0	1.0
	PLZ8_ANTG4	PLZ8_BAUMAX	PLZ8_HHZ	PLZ8_GBZ	ARBEIT	ORTSGR_KLS9	RELAT_AB
1	1.0	1.0	5.0	4.0	3.0	5.0	4.0
2	0.0	1.0	4.0	4.0	3.0	5.0	2.0
3	0.0	1.0	3.0	4.0	2.0	3.0	3.0
4	1.0	2.0	3.0	3.0	4.0	6.0	5.0
5	1.0	1.0	5.0	5.0	2.0	3.0	3.0

[5 rows x 79 columns]

	ALTERSKATEGO	RIE_GROB	ANREDE_KZ	CJT_GESAMTTYP	FINANZ_MINIMALIS	T \
0		2.0	1	2.0		3
11		2.0	1	6.0		3
14		3.0	1	6.0		3
17		2.0	1	6.0		3
24		3.0	2	6.0		3
	FINANZ_SPARE	R FINANZ	_VORSORGER	FINANZ_ANLEGEF	R FINANZ_UNAUFFAE	LLIGER \
0		4	3	5	·)	5
11		4	3	5	·)	5
14		4	3	5		5
17		4	3	5)	5
24		4	3	5	, ,	5
	FINANZ HAUSB	AUER FIN	JANZTYP .	PLZ8 ANT	G1 PLZ8 ANTG2 P	LZ8 ANTG3 \
0	FINANZ_HAUSB		4	_	G1 PLZ8_ANTG2 P IaN NaN	LZ8_ANTG3 \ NaN
0 11	FINANZ_HAUSB	AUER FIN 3 3	4 .	N		
	FINANZ_HAUSB	3	4 .	N	IaN NaN	NaN
11	FINANZ_HAUSB	3 3	4 . 4 .	N N	JaN NaN JaN NaN	NaN NaN
11 14	FINANZ_HAUSB	3 3 3	4 4 4 4	N N N	IaN NaN IaN NaN IaN NaN	NaN NaN NaN
11 14 17		3 3 3 3	4 4 4 4	N	IaN NaN IaN NaN IaN NaN IaN NaN	NaN NaN NaN NaN NaN
11 14 17		3 3 3 3 3 PLZ8_BAUM	4 4 4 4	N N N N N N	IaN NaN IaN NaN IaN NaN IaN NaN	NaN NaN NaN NaN NaN
11 14 17 24	PLZ8_ANTG4	3 3 3 3 3 PLZ8_BAUM	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	N N N N N N N N	IaN NaN IaN NaN IaN NaN IaN NaN IaN NaN IaN NaN	NaN NaN NaN NaN NaN RELAT_AB NaN
11 14 17 24	PLZ8_ANTG4 NaN	3 3 3 3 3 PLZ8_BAUM N	4	N N N N N N IZ PLZ8_GBZ AF LN NaN	IaN NaN IaN NaN IaN NaN IaN NaN IaN NaN IaN NaN RBEIT ORTSGR_KLS9 NaN NaN	NaN NaN NaN NaN NaN RELAT_AB NaN
11 14 17 24 0 11	PLZ8_ANTG4 NaN NaN	3 3 3 3 3 PLZ8_BAUM N	4 4 4 4 4 4 4 4 4 4 4 4 1 1 1 1 1 1 1 1	N .	IaN NaN IaN NaN IaN NaN IaN NaN IaN NaN IaN NaN IBEIT ORTSGR_KLS9 NaN NaN	NaN NaN NaN NaN NaN RELAT_AB NaN NaN

[5 rows x 79 columns]

```
complete_cols = percent_missing_columns[percent_missing_columns == 0]
         complete_cols = complete_cols[:8]
         complete_cols_names = complete_cols.keys().tolist()
         print(complete_cols, complete_cols_names)
ANREDE_KZ
                           0.0
FINANZ_MINIMALIST
                           0.0
FINANZ_SPARER
                           0.0
FINANZ_VORSORGER
                           0.0
FINANZ_ANLEGER
                           0.0
FINANZ_UNAUFFAELLIGER
                           0.0
FINANZ_HAUSBAUER
                           0.0
FINANZTYP
                           0.0
dtype: float64 ['ANREDE_KZ', 'FINANZ_MINIMALIST', 'FINANZ_SPARER', 'FINANZ_VORSORGER', 'FINANZ_A
In [21]: #function
         def compare_dist(col_name):
              fig = plt.figure(figsize=(14,4))
              ax1 = fig.add_subplot(121)
              ax1.title.set_text('High amount of missing values')
              sns.countplot(high_missing_values_data[col_name], palette = 'Set3')
              ax2 = fig.add_subplot(122)
              ax2.title.set_text('Low amount of missing values')
              sns.countplot(low_missing_values_data[col_name], palette = 'Set2')
              fig.tight_layout()
              plt.show()
         for col in complete_cols_names:
              compare_dist(col)
                   High amount of missing values
                                                            Low amount of missing values
      50000
                                               400000
                                               350000
      40000
                                               300000
      30000
                                               250000
                                             200000
                                              150000
                                               100000
      10000
```

ANREDE_KZ

ANREDE_KZ

Discussion 1.1.3: Assess Missing Data in Each Row Typically, datasets with a substantial proportion of missing values differ significantly from those without such gaps. This underscores the importance of favoring data containing minimal or no missing values, as utilizing the former can lead to erroneous predictions.

1.1.2 Step 1.2: Select and Re-Encode Features

Checking for missing data isn't the only way in which you can prepare a dataset for analysis. Since the unsupervised learning techniques to be used will only work on data that is encoded numerically, you need to make a few encoding changes or additional assumptions to be able to make

progress. In addition, while almost all of the values in the dataset are encoded using numbers, not all of them represent numeric values. Check the third column of the feature summary (feat_info) for a summary of types of measurement. - For numeric and interval data, these features can be kept without changes. - Most of the variables in the dataset are ordinal in nature. While ordinal values may technically be non-linear in spacing, make the simplifying assumption that the ordinal variables can be treated as being interval in nature (that is, kept without any changes). - Special handling may be necessary for the remaining two variable types: categorical, and 'mixed'.

In the first two parts of this sub-step, you will perform an investigation of the categorical and mixed-type features and make a decision on each of them, whether you will keep, drop, or reencode each. Then, in the last part, you will create a new data frame with only the selected and engineered columns.

Data wrangling is often the trickiest part of the data analysis process, and there's a lot of it to be done here. But stick with it: once you're done with this step, you'll be ready to get to the machine learning parts of the project!

Step 1.2.1: Re-Encode Categorical Features For categorical data, you would ordinarily need to encode the levels as dummy variables. Depending on the number of categories, perform one of the following: - For binary (two-level) categoricals that take numeric values, you can keep them without needing to do anything. - There is one binary variable that takes on non-numeric values. For this one, you need to re-encode the values as numbers or create a dummy variable. - For multi-level categoricals (three or more values), you can choose to encode the values using multiple dummy variables (e.g. via OneHotEncoder), or (to keep things straightforward) just drop them from the analysis. As always, document your choices in the Discussion section.

```
In [23]: # Assess categorical variables: which are binary, which are multi-level, and
         # which one needs to be re-encoded?
         categorical_features = features[features['type'] == 'categorical']['attribute']
         display(features.head())
         display(categorical_features.head())
              attribute information_level
                                                  type missing_or_unknown
  ALTERSKATEGORIE_GROB
                                               ordinal
                                                                  [-1,0,9]
                                   person
                                                                    [-1,0]
2
              ANREDE_KZ
                                   person categorical
         CJT_GESAMTTYP
                                   person categorical
                                                                       [0]
3
```

```
4
     FINANZ_MINIMALIST
                                                ordinal
                                                                      「−1 ]
                                   person
5
          FINANZ_SPARER
                                                ordinal
                                                                      person
             ANREDE_KZ
3
         CJT_GESAMTTYP
10
             FINANZTYP
12
      GFK_URLAUBERTYP
     GREEN_AVANTGARDE
13
Name: attribute, dtype: object
In [24]: # Split the categorical features
         bi_features = []
         multi_features = []
         for feature in categorical_features:
             # check for multi categorical features
             if (low_missing_values_data[feature].nunique() > 2):
                 multi_features.append(feature)
             # check for binary categorical features
             else:
                 bi_features.append(feature)
         display(bi_features)
         display(multi_features)
['ANREDE_KZ', 'GREEN_AVANTGARDE', 'SOHO_KZ', 'VERS_TYP', 'OST_WEST_KZ']
['CJT_GESAMTTYP',
 'FINANZTYP',
 'GFK_URLAUBERTYP',
 'LP_FAMILIE_FEIN',
 'LP_FAMILIE_GROB',
 'LP_STATUS_FEIN',
 'LP_STATUS_GROB',
 'NATIONALITAET_KZ',
 'SHOPPER_TYP',
 'ZABEOTYP',
 'GEBAEUDETYP',
 'CAMEO_DEUG_2015',
 'CAMEO_DEU_2015']
In [25]: low_missing_values_data[bi_features].head()
Out[25]:
            ANREDE_KZ GREEN_AVANTGARDE SOHO_KZ VERS_TYP OST_WEST_KZ
         1
                    2
                                      0
                                             1.0
                                                        2.0
```

```
2
                    2
                                               0.0
                                                         1.0
                                                                        W
                                       1
         3
                    2
                                       0
                                               0.0
                                                         1.0
                                                                        W
         4
                    1
                                       0
                                               0.0
                                                         2.0
                                                                        W
         5
                                               0.0
                                                         2.0
                                                                        W
In [26]: low_missing_values_data['OST_WEST_KZ'] = low_missing_values_data['OST_WEST_KZ'].astype(
         low_missing_values_data.loc[:, 'OST_WEST_KZ'].replace({'W': '0', '0': '1'}, inplace=Tru
In [27]: low_missing_values_data[bi_features].head()
Out [27]:
            ANREDE_KZ GREEN_AVANTGARDE SOHO_KZ VERS_TYP OST_WEST_KZ
                                               1.0
         1
                    2
                                       0
                                                         2.0
         2
                    2
                                                         1.0
                                                                        0
                                       1
                                               0.0
         3
                    2
                                       0
                                               0.0
                                                         1.0
                                                                        0
         4
                    1
                                       0
                                               0.0
                                                         2.0
                                                                        0
         5
                    2
                                       0
                                               0.0
                                                         2.0
                                                                        0
In [28]: low_missing_values_data[multi_features].head()
Out [28]:
            CJT_GESAMTTYP FINANZTYP GFK_URLAUBERTYP LP_FAMILIE_FEIN \
                                                   10.0
         1
                       5.0
                                                                      5.0
                                    1
         2
                                                                      1.0
                       3.0
                                    1
                                                   10.0
         3
                       2.0
                                    6
                                                    1.0
                                                                      NaN
         4
                       5.0
                                    5
                                                    5.0
                                                                     10.0
         5
                       2.0
                                                    1.0
                                                                      1.0
            LP_FAMILIE_GROB LP_STATUS_FEIN LP_STATUS_GROB NATIONALITAET_KZ \
         1
                                          2.0
                                                          1.0
                                                                             1.0
                         3.0
                         1.0
                                          3.0
                                                          2.0
                                                                             1.0
         2
                                          9.0
                                                          4.0
                                                                             1.0
         3
                         NaN
         4
                         5.0
                                          3.0
                                                          2.0
                                                                             1.0
         5
                         1.0
                                          4.0
                                                          2.0
            SHOPPER_TYP ZABEOTYP
                                   GEBAEUDETYP CAMEO_DEUG_2015 CAMEO_DEU_2015
         1
                    3.0
                                 5
                                             8.0
                                                                8
                                                                              88
         2
                    2.0
                                 5
                                             1.0
                                                                4
                                                                              4C
         3
                     1.0
                                 3
                                             1.0
                                                                2
                                                                              2A
         4
                     2.0
                                 4
                                             1.0
                                                                6
                                                                              6B
         5
                    0.0
                                 4
                                                                8
                                                                              8C
                                             1.0
In [29]: # Re-encode categorical variable(s) to be kept in the analysis.
         low_missing_values_data = low_missing_values_data.drop(multi_features, axis = 1)
         display(low_missing_values_data.head())
   ALTERSKATEGORIE_GROB ANREDE_KZ FINANZ_MINIMALIST FINANZ_SPARER \
1
                     1.0
                                  2
                                                                      5
```

1

	3.0	2		1		4	
	4.0	2		4		2	
	3.0	1		4		3	
	1.0	2		3		1	
FINANZ_VORSORO	GER FINANZ	_ANLEGER	FINANZ_UNA	UFFAELLIG	ER FINANZ_	HAUSBAUER	\
	2	5			4	5	
	1	2			3	5	
	5	2			1	2	
	4	1			3	2	
	5	2			2	5	
GREEN_AVANTGAR	RDE HEALTH	_TYP	. PLZ8	_ANTG1 P	LZ8_ANTG2	PLZ8_ANTG3	\
	0	3.0		2.0	3.0	2.0	
	1	3.0		3.0	3.0	1.0	
	0	2.0		2.0	2.0	2.0	
	0	3.0		2.0	4.0	2.0	
	0	3.0		2.0	3.0	1.0	
PLZ8_ANTG4 PI	Z8_BAUMAX	PLZ8_HHZ	PLZ8_GBZ	ARBEIT	ORTSGR_KLS9	RELAT_AB	
1.0	1.0	5.0	4.0	3.0	5.0	4.0	
0.0	1.0	4.0	4.0	3.0	5.0	2.0	
0.0	1.0	3.0	4.0	2.0	3.0	3.0	
1.0	2.0	3.0	3.0	4.0	6.0	5.0	
		0.0		1.0	0.0	0.0	
	GREEN_AVANTGAT PLZ8_ANTG4 P1 1.0 0.0 0.0	4.0 3.0 1.0 FINANZ_VORSORGER FINANZ 2 1 5 4 5 GREEN_AVANTGARDE HEALTH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0	### 4.0	### ### ##############################	4.0 2 4 3.0 1 4 1.0 2 3 FINANZ_VORSORGER FINANZ_ANLEGER FINANZ_UNAUFFAELLIG 2 5 1 2 5 2 4 1 5 2 GREEN_AVANTGARDE HEALTH_TYP PLZ8_ANTG1 F 0 3.0 2.0 1 3.0 2.0 1 3.0 2.0 0 3.0 2.0 0 3.0 2.0 0 3.0 2.0 0 3.0 2.0 0 3.0 2.0 0 3.0 2.0 0 3.0 2.0 0 3.0 2.0 0 3.0 2.0 0 3.0 2.0 0 3.0 2.0 0 3.0 2.0	### 4.0	### A CO

[5 rows x 66 columns]

Discussion 1.2.1: Re-Encode Categorical Features I retained all the numerical, ordinal, and mixed-type variables. However, for the categorical variables, I excluded those with multiple categories and retained only the binary ones. Additionally, I transformed one of the binary categorical features, OST_WEST_KZ, by mapping 'W' to 0 and 'O' to 1.

Step 1.2.2: Engineer Mixed-Type Features There are a handful of features that are marked as "mixed" in the feature summary that require special treatment in order to be included in the analysis. There are two in particular that deserve attention; the handling of the rest are up to your own choices: - "PRAEGENDE_JUGENDJAHRE" combines information on three dimensions: generation by decade, movement (mainstream vs. avantgarde), and nation (east vs. west). While there aren't enough levels to disentangle east from west, you should create two new variables to capture the other two dimensions: an interval-type variable for decade, and a binary variable for movement. - "CAMEO_INTL_2015" combines information on two axes: wealth and life stage. Break up the two-digit codes by their 'tens'-place and 'ones'-place digits into two new ordinal variables (which, for the purposes of this project, is equivalent to just treating them as their raw numeric values). - If you decide to keep or engineer new features around the other mixed-type features, make sure you note your steps in the Discussion section.

Be sure to check Data_Dictionary.md for the details needed to finish these tasks.

```
In [30]: # Investigate "PRAEGENDE_JUGENDJAHRE" and engineer two new variables.
                      mixed_features = features[features['type'] == 'mixed']['attribute']
                      display(mixed_features.head())
                   LP_LEBENSPHASE_FEIN
15
16
                   LP_LEBENSPHASE_GROB
22
              PRAEGENDE_JUGENDJAHRE
56
                                              WOHNLAGE
                             CAMEO_INTL_2015
59
Name: attribute, dtype: object
In [31]: # Investigate "CAMEO_INTL_2015" and engineer two new variables.
                      mixed_features = features[features['type'] == 'mixed']['attribute']
                      display(mixed_features.head())
                   LP_LEBENSPHASE_FEIN
15
16
                   LP_LEBENSPHASE_GROB
              PRAEGENDE_JUGENDJAHRE
22
56
                                              WOHNLAGE
59
                             CAMEO_INTL_2015
Name: attribute, dtype: object
In [32]: display(low_missing_values_data['PRAEGENDE_JUGENDJAHRE'].head())
            14.0
1
2
            15.0
              8.0
3
4
              8.0
Name: PRAEGENDE_JUGENDJAHRE, dtype: float64
In [33]: decade = {1:1, 2:1, 3:2, 4:2, 5:3, 6:3, 7:3, 8:4, 9:4, 10:5, 11:5, 12:5, 13:5, 14:6, 15
                      movement = \{1:0, 2:1, 3:0, 4:1, 5:0, 6:1, 7:1, 8:0, 9:1, 10:0, 11:1, 12:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 13:1, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 14:0, 1
                      low_missing_values_data['DECADE'] = low_missing_values_data['PRAEGENDE_JUGENDJAHRE']
                      low_missing_values_data['DECADE'].replace(decade, inplace = True)
                      low_missing_values_data['MOVEMENT'] = low_missing_values_data['PRAEGENDE_JUGENDJAHRE']
                      low_missing_values_data['MOVEMENT'].replace(movement, inplace = True)
                      display(low_missing_values_data['DECADE'].head())
                      display(low_missing_values_data['MOVEMENT'].head())
```

```
display(low_missing_values_data['CAMEO_INTL_2015'].head())
     6.0
1
2
     6.0
3
     4.0
4
     4.0
5
     2.0
Name: DECADE, dtype: float64
     0.0
1
2
     1.0
3
     0.0
     0.0
5
     0.0
Name: MOVEMENT, dtype: float64
1
     51
2
     24
3
     12
     43
5
     54
Name: CAMEO_INTL_2015, dtype: object
In [34]: wealth = {
             '11':1, '12':1, '13':1, '14':1, '15':1,
             '21':2, '22':2, '23':2, '24':2, '25':2,
             '31':3, '32':3, '33':3, '34':3, '35':3,
             '41':4, '42':4, '43':4, '44':4, '45':4,
             '51':5, '52':5, '53':5, '54':5, '55':5,
         }
         life_stage ={
             '11':1, '12':2, '13':3, '14':4, '15':5,
             '21':1, '22':2, '23':3, '24':4, '25':5,
             '31':1, '32':2, '33':3, '34':4, '35':5,
             '41':1, '42':2, '43':3, '44':4, '45':5,
             '51':1, '52':2, '53':3, '54':4, '55':5,
         }
         low_missing_values_data['WEALTH'] = low_missing_values_data['CAMEO_INTL_2015']
         low_missing_values_data['WEALTH'].replace(wealth, inplace = True)
         low_missing_values_data['LIFE_STAGE'] = low_missing_values_data['CAMEO_INTL_2015']
         low_missing_values_data['LIFE_STAGE'].replace(life_stage, inplace = True)
```

In [35]: low_missing_values_data = low_missing_values_data.drop(mixed_features, axis = 1) In [36]: display(low_missing_values_data.head()) ALTERSKATEGORIE GROB ANREDE KZ FINANZ MINIMALIST FINANZ SPARER 1 1.0 2 2 2 3.0 1 4 3 4.0 2 4 2 4 3 4 3.0 1 5 1.0 2 3 1 FINANZ_VORSORGER FINANZ_ANLEGER FINANZ_UNAUFFAELLIGER FINANZ_HAUSBAUER 2 5 1 4 5 2 2 3 5 1 2 2 3 5 1 4 4 1 3 2 5 5 5 2 GREEN_AVANTGARDE HEALTH_TYP PLZ8_ANTG4 PLZ8_HHZ PLZ8_GBZ 1.0 5.0 1 0 3.0 4.0 2 1 3.0 0.0 4.0 4.0 3 3.0 0 2.0 0.0 4.0 4 0 3.0 1.0 3.0 3.0 . . . 5 0 3.0 1.0 5.0 5.0 . . . ORTSGR_KLS9 RELAT_AB DECADE MOVEMENT LIFE_STAGE ARBEIT WEALTH 4.0 6.0 1 3.0 5.0 0.0 5.0 1.0 2 3.0 2.0 6.0 1.0 2.0 4.0 5.0 3 2.0 3.0 3.0 4.0 0.0 1.0 2.0 4 4.0 0.0 4.0 6.0 5.0 4.0 3.0 2.0 3.0 3.0 2.0 0.0 5.0 4.0

[5 rows x 64 columns]

Discussion 1.2.2: Engineer Mixed-Type Features I've introduced two additional columns with the necessary encodings for both CAMEO_INTL_2015 and PRAEGENDE_JUGENDJAHRE. Regarding the remaining mixed-type features, I've opted to remove them from the dataset altogether.

Step 1.2.3: Complete Feature Selection In order to finish this step up, you need to make sure that your data frame now only has the columns that you want to keep. To summarize, the dataframe should consist of the following: - All numeric, interval, and ordinal type columns from the original dataset. - Binary categorical features (all numerically-encoded). - Engineered features from other multi-level categorical features and mixed features.

Make sure that for any new columns that you have engineered, that you've excluded the original columns from the final dataset. Otherwise, their values will interfere with the analysis later on the project. For example, you should not keep "PRAEGENDE_JUGENDJAHRE", since its values won't be useful for the algorithm: only the values derived from it in the engineered features you

created should be retained. As a reminder, your data should only be from **the subset with few or no missing values**.

In [37]: # If there are other re-engineering tasks you need to perform, make sure you # take care of them here. (Dealing with missing data will come in step 2.1.)

print(low_missing_values_data.dtypes)

ALTERSKATEGORIE_GROB	float64
ANREDE_KZ	int64
FINANZ_MINIMALIST	int64
FINANZ_SPARER	int64
FINANZ_VORSORGER	int64
FINANZ_ANLEGER	int64
FINANZ_UNAUFFAELLIGER	int64
FINANZ_HAUSBAUER	int64
GREEN_AVANTGARDE	int64
HEALTH_TYP	float64
RETOURTYP_BK_S	float64
SEMIO_SOZ	int64
SEMIO_FAM	int64
SEMIO_REL	int64
SEMIO_MAT	int64
SEMIO_WERT	int64
SEMIO_VERT	int64
SEMIO_ERL	int64
SEMIO_KULT	int64
SEMIO_RAT	int64
SEMIO_KRIT	int64
SEMIO_DOM	int64
SEMIO_KAEM	int64
SEMIO_PFLICHT	int64
SEMIO_FFEIGHT SEMIO_TRADV	int64
SOHO_KZ	float64
VERS_TYP	float64
ANZ_PERSONEN	float64
ANZ_TITEL	float64
HH_EINKOMMEN_SCORE	float64
IIII_EINKOFITEN_SCORE	
KONSUMNAEHE	float64
MIN_GEBAEUDEJAHR	float64
OST_WEST_KZ	object
KBAO5_ANTG1	float64
KBAO5_ANTG2	float64
	float64
KBAO5_ANTG3 KBAO5_ANTG4	float64
KBAO5_GBZ	float64
BALLRAUM	float64
DALLRAUM	110al04

```
GEBAEUDETYP_RASTER
KKK
                         float64
MOBI_REGIO
                         float64
ONLINE_AFFINITAET
                         float64
REGIOTYP
                         float64
KBA13_ANZAHL_PKW
                         float64
PLZ8_ANTG1
                         float64
PLZ8_ANTG2
                         float64
PLZ8_ANTG3
                         float64
PLZ8_ANTG4
                         float64
PLZ8_HHZ
                         float64
PLZ8_GBZ
                         float64
ARBEIT
                         float64
ORTSGR_KLS9
                         float64
RELAT AB
                         float64
DECADE
                         float64
MOVEMENT
                         float64
                         float64
WEALTH
LIFE_STAGE
                         float64
Length: 64, dtype: object
In [38]: # Do whatever you need to in order to ensure that the dataframe only contains
         # the columns that should be passed to the algorithm functions.
         import numpy as np
         import pandas as pd
         # Get the column names
         low_missing_columns = low_missing_values_data.columns.tolist()
         # Function to fill missing values with the most frequent value
         def fill_missing_most_frequent(column):
             most_frequent_value = column.value_counts().idxmax()
             return column.fillna(most_frequent_value)
         # Apply the function to fill missing values in the DataFrame
         low_missing_values_data = low_missing_values_data.apply(fill_missing_most_frequent)
         # Convert the imputed data back to a DataFrame with original column names
         low_missing_values_data = pd.DataFrame(low_missing_values_data, columns=low_missing_col
         # Display the first 20 rows of the imputed DataFrame
         display(low_missing_values_data.head(20))
```

EWDICHTE

INNENSTADT

float64

float64

float64

ALTERSKATEGORIE_GROB ANREDE_KZ FINANZ_MINIMALIST FINANZ_SPARER \

1		1.0 2		1		5	
2		3.0 2		1		4	
3		4.0 2		4		2	
4		3.0 1		4		3	
5		1.0 2		3		1	
6		2.0 2		1		5	
7		1.0 1		3		3	
8		3.0 1		4		4	
9		3.0 2		2		4	
10		3.0 2		2		2	
12		3.0 1		5		3	
13		1.0 2		1		4	
15		4.0 2		4		1	
16		1.0 2		4		3	
18		2.0 2		2		4	
19		3.0 1		5		2	
20		2.0 2		4		3	
21		2.0 1		3		4	
22							
				1		5	
23		3.0 1		5		3	
	EINANG VODGODGED		ETNANG I	INIAIIEEAELLTOI	ED ETNANG	TIATIODATIED	
	FINANZ_VORSORGER			JNAUFFAELLIG			
1	2	5			4	5	
2	1	2			3	5	
3	5	2			1	2	
4	4	1			3	2	
5	5	2			2	5	
6	1	5			4	3	
7	4	1			3	2	
8	2	4			2	2	
9	2	3			5	4	
10	5	3			1	5	
12	4	2			4	1	
13	3	5			5	2	
15	5	1			1	4	
16	1	4			5	1	
18	1	5			4	1	
19	3	1			3	1	
20	1	4			5	1	
21	1	2			5	1	
22	3	5			5	5	
23	3	2			2	1	
		HEALTH_TYP				PLZ8_GBZ	\
1	0	3.0		1.0	5.0	4.0	
2	1	3.0		0.0	4.0	4.0	
3	0	2.0		0.0	3.0	4.0	
4	0	3.0		1.0	3.0	3.0	

5		0	3.0			1.0	5.0	5.0
6		0	2.0			0.0	5.0	5.0
7		0	1.0			0.0	4.0	4.0
8		1	3.0			1.0	3.0	3.0
9		1	2.0			1.0	3.0	3.0
10		0	2.0			0.0	3.0	3.0
12		0	1.0			0.0	5.0	5.0
13		1	3.0			1.0	3.0	3.0
15		0	2.0			0.0	3.0	3.0
16		0	3.0			0.0	3.0	4.0
18		0	2.0			1.0	3.0	3.0
19		1	3.0			1.0	5.0	4.0
20		1	3.0			0.0	3.0	3.0
21		0	2.0			2.0	4.0	3.0
22		0	2.0			1.0	4.0	3.0
23		1	3.0			0.0	3.0	3.0
	ARBEIT	ORTSGR_KLS9	RELAT_AB	DECADE	MOVEMENT	WEALTH	LIFE_STAGE	
1	3.0	5.0	4.0	6.0	0.0	5.0	1.0	
2	3.0	5.0	2.0	6.0	1.0	2.0	4.0	
3	2.0	3.0	3.0	4.0	0.0	1.0	2.0	
4	4.0	6.0	5.0	4.0	0.0	4.0	3.0	
5	2.0	3.0	3.0	2.0	0.0	5.0	4.0	
6	4.0	6.0	3.0	5.0	0.0	2.0	2.0	
7	2.0	5.0	2.0	4.0	0.0	1.0	4.0	
8	2.0	4.0	3.0	5.0	1.0	1.0	3.0	
9	2.0	3.0	1.0	6.0	1.0	1.0	5.0	
10	4.0	6.0	5.0	2.0	0.0	5.0	1.0	
12	3.0	6.0	4.0	4.0	0.0	4.0	3.0	
13	3.0	6.0	4.0	6.0	1.0	3.0	3.0	
15	4.0	8.0	5.0	3.0	0.0	4.0	1.0	
16	1.0	2.0	1.0	6.0	0.0	4.0	1.0	
18	3.0	4.0	3.0	5.0	0.0	2.0	4.0	
19	4.0	6.0	3.0	4.0	1.0	3.0	4.0	
20	3.0	4.0	1.0	5.0	1.0	2.0	4.0	
21	5.0	7.0	5.0	5.0	0.0	5.0	5.0	
22	4.0	5.0	5.0	6.0	0.0	5.0	1.0	
23	3.0	6.0	2.0	4.0	1.0	4.0	3.0	

[20 rows x 64 columns]

1.1.3 Step 1.3: Create a Cleaning Function

Even though you've finished cleaning up the general population demographics data, it's important to look ahead to the future and realize that you'll need to perform the same cleaning steps on the customer demographics data. In this substep, complete the function below to execute the main feature selection, encoding, and re-engineering steps you performed above. Then, when it

comes to looking at the customer data in Step 3, you can just run this function on that DataFrame to get the trimmed dataset in a single step.

```
In [39]: def clean_data(df):
             Perform feature trimming, re-encoding, and engineering for demographics
             INPUT: Demographics DataFrame
             OUTPUT: Trimmed and cleaned demographics DataFrame
             print("Raw Data:")
             display(df.head())
             # Put in code here to execute all main cleaning steps:
             # convert missing value codes into NaNs, ...
             for i in range(len(feat_info)):
                 missing_data = re.sub('[\[|\]]', '', feat_info.iloc[i]['missing_or_unknown']).s
                 if missing_data != ['']:
                     missing_data = [int(data) if (data != 'X' and data != 'XX') else data for d
                     df = df.replace({feat_info.iloc[i]['attribute']: missing_data}, np.nan)
             print("Data After Missing Values Conversions: ")
             display(df.head())
             # remove selected columns and rows, ...
             df = df.drop(columns_names, axis=1)
             df = df[df.isnull().sum(axis=1) < 30]</pre>
             print("Data After Removal of Selected Rows And Columns: ")
             display(df.head())
             # select, re-encode, and engineer column values.
             # 1) convert the binary categorical feature to numerical values
             df.replace({'OST_WEST_KZ':{'W':0, 'O': 1}}, inplace = True)
               # 2) drop the multi categorical features
             df = df.drop(multi_features, axis = 1)
             # 3) re-encode the mixed values of PRAEGENDE_JUGENDJAHRE and CAMEO_INTL_2015
             df['DECADE'] = df['PRAEGENDE_JUGENDJAHRE']
             df['DECADE'].replace(decade, inplace = True)
             df['MOVEMENT'] = df['PRAEGENDE_JUGENDJAHRE']
             df['MOVEMENT'].replace(movement, inplace = True)
             df['WEALTH'] = df['CAMEO_INTL_2015']
```

```
df['WEALTH'].replace(wealth, inplace = True)
   df['LIFE_STAGE'] = df['CAMEO_INTL_2015']
   df['LIFE_STAGE'].replace(life_stage, inplace = True)
    # 4) drop the rest of the mixed features
   df = df.drop(mixed_features, axis = 1)
   print("Data After Re-encoding And Feature Engineering: ")
   display(df.head())
      # replacing the NaNs
#
#
     df\_cols = df.keys().tolist()
      imp_mean = Imputer(missing_values = np.nan, strategy = 'most_frequent')
      df = imp_mean.fit_transform(df)
      df = pd.DataFrame(df, columns=df_cols)
    # Replace NaNs with the most frequent value in each column
   for col in df.columns:
        most_frequent_value = df[col].mode()[0] # Get the most frequent value
        df[col].fillna(most_frequent_value, inplace=True)
   print("Data After Replacing NaN Values: ")
   display(df.head())
    # Return the cleaned dataframe.
   return df
```

1.2 Step 2: Feature Transformation

1.2.1 Step 2.1: Apply Feature Scaling

Before we apply dimensionality reduction techniques to the data, we need to perform feature scaling so that the principal component vectors are not influenced by the natural differences in scale for features. Starting from this part of the project, you'll want to keep an eye on the API reference page for sklearn to help you navigate to all of the classes and functions that you'll need. In this substep, you'll need to check the following:

- sklearn requires that data not have missing values in order for its estimators to work properly. So, before applying the scaler to your data, make sure that you've cleaned the DataFrame of the remaining missing values. This can be as simple as just removing all data points with missing data, or applying an Imputer to replace all missing values. You might also try a more complicated procedure where you temporarily remove missing values in order to compute the scaling parameters before re-introducing those missing values and applying imputation. Think about how much missing data you have and what possible effects each approach might have on your analysis, and justify your decision in the discussion section below.
- For the actual scaling function, a StandardScaler instance is suggested, scaling each feature to mean 0 and standard deviation 1.
- For these classes, you can make use of the .fit_transform() method to both fit a procedure to the data as well as apply the transformation to the data at the same time. Don't

forget to keep the fit sklearn objects handy, since you'll be applying them to the customer demographics data towards the end of the project.

In [40]: # If you've not yet cleaned the dataset of all NaN values, then investigate and

```
# do that now.
          azdias_general = pd.read_csv('Udacity_AZDIAS_Subset.csv', delimiter = ';')
          azdias_general = clean_data(azdias_general)
          azdias_general_columns = azdias_general.keys().tolist()
Raw Data:
   AGER_TYP
              ALTERSKATEGORIE_GROB
                                      ANREDE_KZ CJT_GESAMTTYP
0
          -1
                                               1
                                                              2.0
                                   2
1
          -1
                                   1
                                               2
                                                              5.0
                                               2
2
          -1
                                   3
                                                              3.0
3
           2
                                   4
                                               2
                                                              2.0
4
          -1
                                   3
                                               1
                                                              5.0
                        FINANZ_SPARER
                                        FINANZ_VORSORGER FINANZ_ANLEGER
   FINANZ_MINIMALIST
0
                     3
                                     4
                                                         3
                                                                           5
                                     5
                                                         2
                                                                           5
1
                     1
2
                     1
                                     4
                                                         1
                                                                           2
3
                     4
                                     2
                                                         5
                                                                           2
4
                     4
                                                                           1
                                     3
   FINANZ_UNAUFFAELLIGER FINANZ_HAUSBAUER
                                                           PLZ8_ANTG1 PLZ8_ANTG2
                                                                                 NaN
0
                         5
                                                                   NaN
                                                   . . .
                         4
                                                                   2.0
1
                                             5
                                                                                 3.0
                                                   . . .
2
                         3
                                             5
                                                                   3.0
                                                                                 3.0
3
                         1
                                             2
                                                                   2.0
                                                                                 2.0
4
                         3
                                                                   2.0
                                                                                 4.0
                                             2
                             PLZ8 BAUMAX PLZ8 HHZ
                                                       PLZ8 GBZ
   PLZ8 ANTG3
                PLZ8_ANTG4
                                                                  ARBEIT
0
           NaN
                        NaN
                                      {\tt NaN}
                                                 {\tt NaN}
                                                             NaN
                                                                     NaN
1
           2.0
                        1.0
                                      1.0
                                                  5.0
                                                             4.0
                                                                     3.0
2
           1.0
                        0.0
                                      1.0
                                                 4.0
                                                             4.0
                                                                     3.0
3
           2.0
                        0.0
                                      1.0
                                                 3.0
                                                             4.0
                                                                     2.0
4
           2.0
                        1.0
                                      2.0
                                                 3.0
                                                             3.0
                                                                     4.0
   ORTSGR_KLS9
                 RELAT_AB
0
            NaN
                       NaN
            5.0
                       4.0
1
                       2.0
2
            5.0
3
            3.0
                       3.0
4
            6.0
                       5.0
```

[5 rows x 85 columns]

Data After Missing Values Conversions:

	AGER_TYP A	LTERSKATEGOR	RIE_GROB AN	REDE_KZ	CJT_GESA	MTTYP	\			
0	NaN		2.0	1		2.0				
1	NaN		1.0	2		5.0				
2	NaN		3.0	2		3.0				
3	2.0		4.0	2		2.0				
4	NaN		3.0	1		5.0				
	FINANZ_MINI	MALIST FINA		FINANZ_V		FINAN	Z_ANLE		\	
0		3	4		3			5		
1		1	5		2			5		
2		1	4		1			2		
3		4	2		5			2		
4		4	3		4			1		
	ETNAMO IINAII	FFAELLIGER	ETMAN7 HAIIC	DAIIED		PLZ8_A	NTC 1	DI 70	_ANTG2	\
0	I INANZ_ONAO	rraddigen 5	I INANZ_HAOS	3		FLZO_H	NaN	r LZO	_ANIGZ NaN	`
1		4		5			2.0		3.0	
2		3		5			3.0		3.0	
3		1		2			2.0		2.0	
4		3		2			2.0		4.0	
-		9		_	• • •		2.0		1.0	
	PLZ8_ANTG3	PLZ8_ANTG4	PLZ8_BAUMA	X PLZ8_	HHZ PLZ8	GBZ	ARBEIT	. \		
0	NaN	NaN	Na	N I	NaN	${\tt NaN}$	NaN	Ī		
1	2.0	1.0	1.	0	5.0	4.0	3.0)		
2	1.0	0.0	1.	0 -	4.0	4.0	3.0)		
3	2.0	0.0	1.	0 :	3.0	4.0	2.0)		
4	2.0	1.0	2.	0 :	3.0	3.0	4.0)		
^	ORTSGR_KLS9									
0	NaN									
1	5.0									
2 3	5.0									
	3.0									
4	6.0	5.0								

[5 rows x 85 columns]

Data After Removal of Selected Rows And Columns:

2		3.0	2	3	.0		1	
3		4.0	2	2	.0		4	
4		3.0	1	5	.0		4	
5		1.0	2	2	.0		3	
	FINANZ_SPARER	FINANZ_VO	RSORGER	FINANZ_ANLE	GER FIN	ANZ_UNAUFFAI	ELLIGER	\
1	5		2		5		4	
2	4		1		2		3	
3	2		5		2		1	
4	3		4		1		3	
5	1		5		2		2	
	FINANZ_HAUSBA	UER FINANZ	TYP	. PLZ8_	ANTG1 P	LZ8_ANTG2 I	PLZ8_ANTG	¦3 \
1		5	1		2.0	3.0	2.	0
2		5	1		3.0	3.0	1.	0
3		2	6		2.0	2.0	2.	0
4		2	5		2.0	4.0	2.	0
5		5	2		2.0	3.0	1.	0
		LZ8_BAUMAX				ORTSGR_KLS		
1	1.0	1.0	5.0		3.0	5.0		. 0
2	0.0	1.0	4.0		3.0	5.0		2.0
3	0.0	1.0	3.0			3.0		.0
4	1.0	2.0	3.0			6.0		.0
5	1.0	1.0	5.0	5.0	2.0	3.0) 3	.0

[5 rows x 79 columns]

Data After Re-encoding And Feature Engineering:

	ALTERSKATEGORIE_GR	OB ANREDE_KZ	FINANZ_MINIMALIST	FINANZ_SPARER	١ \
1	1	.0 2	1	5	
2	3	.0 2	1	4	
3	4	.0 2	4	2	
4	3	.0 1	4	3	
5	1	.0 2	3	1	
					· · · · · · · · · · · · · · · · · · ·
	FINANZ_VORSORGER .	FINANZ_ANLEGER	FINANZ_UNAUFFAELL	LGER FINANZ_H	IAUSBAUER \
1	2	5		4	5
2	1	2		3	5
3	5	2		1	2
4	4	1		3	2
5	5	2		2	5
	GREEN_AVANTGARDE	HEALTH_TYP	PLZ8_ANTG	4 PLZ8_HHZ P	LZ8_GBZ \
1	0	3.0	1.0	5.0	4.0

2 3 4 5		1 0 0 0	3.0 2.0 3.0 3.0			0.0 0.0 1.0 1.0	4.0 3.0 3.0 5.0	4.0 4.0 3.0 5.0
	ARBEIT	ORTSGR_KLS9	RELAT_AB	DECADE	MOVEMENT	WEALTH	LIFE_STAGE	
1	3.0	5.0	4.0	6.0	0.0	5.0	1.0	
2	3.0	5.0	2.0	6.0	1.0	2.0	4.0	
3	2.0	3.0	3.0	4.0	0.0	1.0	2.0	
4	4.0	6.0	5.0	4.0	0.0	4.0	3.0	
5	2.0	3.0	3.0	2.0	0.0	5.0	4.0	

[5 rows x 64 columns]

Data After Replacing NaN Values:

	ALTERSK.	ATEGORIE_GROB	ANREDE_KZ	FINAN	Z_MINIMALIS	T FINA	NZ_SPARE	IR \	
1		1.0	2			1		5	
2		3.0	2			1		4	
3		4.0	2			4		2	
4		3.0	1			4		3	
5		1.0				3		1	
	FINANZ_	VORSORGER FI	NANZ_ANLEGER	FINA	NZ_UNAUFFAE	LLIGER	FINANZ_	HAUSBAUER	\
1		2	5			4		5	
2		1	2			3		5	
3		5	2			1		2	
4		4	1			3		2	
5		5	2			2		5	
	ADDENT A								
	GREEN_A	VANTGARDE HE	ALTH_TYP		PLZ8_AN	TG4 PL	Z8_HHZ	PLZ8_GBZ	/
1	GREEN_A	VANTGARDE HE O	3.0			TG4 PL 1.0	Z8_HHZ 5.0	PLZ8_GBZ 4.0	\
1 2	GREEN_A						5.0	4.0	\
	GREEN_A	0	3.0			1.0	5.0 4.0	4.0 4.0	\
2	GREEN_A	0 1	3.0 3.0			1.0 0.0 0.0	5.0 4.0	4.0 4.0 4.0	\
2	GREEN_A	0 1 0	3.0 3.0 2.0			1.0 0.0 0.0	5.0 4.0 3.0	4.0 4.0 4.0	\
2 3 4	GREEN_A	0 1 0 0	3.0 3.0 2.0 3.0	• • • • • • • • • • • • • • • • • • • •		1.0 0.0 0.0 1.0	5.0 4.0 3.0 3.0	4.0 4.0 4.0 3.0	\
2 3 4	GREEN_A	0 1 0 0	3.0 3.0 2.0 3.0 3.0	• • • • • • • • • • • • • • • • • • • •		1.0 0.0 0.0 1.0	5.0 4.0 3.0 3.0 5.0	4.0 4.0 4.0 3.0 5.0	\
2 3 4		0 1 0 0	3.0 3.0 2.0 3.0 3.0			1.0 0.0 0.0 1.0	5.0 4.0 3.0 3.0 5.0	4.0 4.0 4.0 3.0 5.0	\
2 3 4 5	ARBEIT	0 1 0 0 0 0	3.0 3.0 2.0 3.0 3.0 RELAT_AB D:	 	MOVEMENT	1.0 0.0 0.0 1.0 1.0 WEALTH 5.0	5.0 4.0 3.0 3.0 5.0	4.0 4.0 4.0 3.0 5.0	\
2 3 4 5	ARBEIT 3.0	0 1 0 0 0 0 ORTSGR_KLS9 5.0	3.0 3.0 2.0 3.0 3.0 RELAT_AB D: 4.0 2.0	 ECADE 6.0 6.0	MOVEMENT O.O	1.0 0.0 0.0 1.0 1.0 WEALTH 5.0 2.0	5.0 4.0 3.0 3.0 5.0 LIFE_ST	4.0 4.0 4.0 3.0 5.0	
2 3 4 5	ARBEIT 3.0 3.0	0 1 0 0 0 0 ORTSGR_KLS9 5.0 5.0	3.0 3.0 2.0 3.0 3.0 3.0 RELAT_AB D: 4.0 2.0 3.0	ECADE 6.0 6.0 4.0	MOVEMENT 0.0 1.0	1.0 0.0 0.0 1.0 1.0 WEALTH 5.0 2.0 1.0	5.0 4.0 3.0 3.0 5.0	4.0 4.0 3.0 5.0	\

[5 rows x 64 columns]

1.2.2 Discussion 2.1: Apply Feature Scaling

I loaded the azdias dataset and applied essential transformations using the clean_data function. Afterward, I conducted feature scaling on the azdias dataset using the StandardScaler.

1.2.3 Step 2.2: Perform Dimensionality Reduction

On your scaled data, you are now ready to apply dimensionality reduction techniques.

- Use sklearn's PCA class to apply principal component analysis on the data, thus finding the vectors of maximal variance in the data. To start, you should not set any parameters (so all components are computed) or set a number of components that is at least half the number of features (so there's enough features to see the general trend in variability).
- Check out the ratio of variance explained by each principal component as well as the cumulative variance explained. Try plotting the cumulative or sequential values using matplotlib's plot() function. Based on what you find, select a value for the number of transformed features you'll retain for the clustering part of the project.
- Once you've made a choice for the number of components to keep, make sure you re-fit a PCA instance to perform the decided-on transformation.

Explained Variance Ratios:

```
1.65510980e-01
                                                     5.28523205e-02
                  1.33144261e-01
                                   9.47137708e-02
3.69563856e-02
                                                     2.58211468e-02
                  3.17986073e-02
                                   2.84191333e-02
                                    2.11125706e-02
                                                     1.99924688e-02
2.38201593e-02
                  2.25718558e-02
1.87472878e-02
                  1.77909086e-02
                                    1.67309604e-02
                                                     1.60705755e-02
1.56198862e-02
                  1.46012830e-02
                                    1.32771054e-02
                                                     1.28677578e-02
1.23969879e-02
                  1.21999527e-02
                                   1.15800487e-02
                                                     1.11276251e-02
1.06557113e-02
                  8.97404907e-03
                                   7.88584978e-03
                                                     7.70959885e-03
7.38972486e-03
                  7.08564062e-03
                                    6.72406413e-03
                                                     6.50164710e-03
6.31738200e-03
                  6.27317394e-03
                                   5.93578191e-03
                                                     5.81208819e-03
5.47346217e-03
                  4.97806492e-03
                                   4.84186464e-03
                                                     4.59646141e-03
                                   3.95077724e-03
4.35045000e-03
                  4.08767872e-03
                                                     3.83820339e-03
                  3.63823590e-03
                                   3.55068184e-03
                                                     3.26232650e-03
3.79588860e-03
3.10592814e-03
                  3.08225706e-03
                                   2.92499673e-03
                                                     2.75931648e-03
2.71285627e-03
                  2.47586014e-03
                                    2.26441706e-03
                                                     2.22435164e-03
2.01321738e-03
                  1.93602584e-03
                                   1.79966908e-03
                                                     1.65103823e-03
1.55653509e-03
                  1.29283646e-03
                                   8.47848670e-04
                                                     2.50042854e-29]
```

In [45]: # Re-apply PCA to the data while selecting for number of components to retain.

```
plt.plot(range(pca_test.explained_variance_ratio_.shape[0]), np.cumsum(pca_test.explain
plt.xlabel("Number of Components")
plt.ylabel("Ratio of variance explained")
plt.show()
```


1.2.4 Discussion 2.2: Perform Dimensionality Reduction

I chose to retain 30 principal components since they account for over 88% of the variance while reducing the feature count by more than 50%.

1.2.5 Step 2.3: Interpret Principal Components

Now that we have our transformed principal components, it's a nice idea to check out the weight of each variable on the first few components to see if they can be interpreted in some fashion.

As a reminder, each principal component is a unit vector that points in the direction of highest variance (after accounting for the variance captured by earlier principal components). The further a weight is from zero, the more the principal component is in the direction of the corresponding feature. If two features have large weights of the same sign (both positive or both negative), then increases in one tend expect to be associated with increases in the other. To contrast, features with different signs can be expected to show a negative correlation: increases in one variable should result in a decrease in the other.

- To investigate the features, you should map each weight to their corresponding feature name, then sort the features according to weight. The most interesting features for each principal component, then, will be those at the beginning and end of the sorted list. Use the data dictionary document to help you understand these most prominent features, their relationships, and what a positive or negative value on the principal component might indicate.
- You should investigate and interpret feature associations from the first three principal components in this substep. To help facilitate this, you should write a function that you can call at any time to print the sorted list of feature weights, for the *i*-th principal component. This might come in handy in the next step of the project, when you interpret the tendencies of the discovered clusters.

Out[48]:	PLZ8_ANTG3	0.225345
	PLZ8_ANTG4	0.216873
	WEALTH	0.204628
	HH_EINKOMMEN_SCORE	0.202187
	ORTSGR_KLS9	0.196765
	EWDICHTE	0.194654
	FINANZ_HAUSBAUER	0.159510
	KBAO5_ANTG4	0.153988
	PLZ8_ANTG2	0.153685
	FINANZ_SPARER	0.153109
	ARBEIT	0.142565
	KBAO5_ANTG3	0.136723
	ANZ_HAUSHALTE_AKTIV	0.136056
	RELAT_AB	0.134948
	SEMIO_PFLICHT	0.134340
	SEMIO_FFEICHT	0.121171
	DECADE	0.112256
	SEMIO_RAT	0.112230
	SEMIO_TRADV	0.093724
	SEMIO_TRADV	0.093724
	FINANZ_UNAUFFAELLIGER	
	SEMIO_FAM	0.081033
	SEMIO_KULT	0.031012
	FINANZ_ANLEGER	0.075321
	REGIOTYP	0.060337
	OST_WEST_KZ	0.053663
	SEMIO_SOZ	0.033663
	PLZ8_HHZ	0.043293
	HEALTH_TYP	0.042248
	KKK	0.041221
	KKK	
	SEMIO_DOM	0.023777
	KBAO5_ANTG2	0.023777
	ANREDE_KZ	0.013723
	SEMIO_KRIT	0.007328
	SOHO_KZ	-0.003808
	ANZ_TITEL	-0.001989
	RETOURTYP_BK_S	-0.004220
	SEMIO_VERT	-0.021723
	ONLINE_AFFINITAET	-0.041278
	MIN_GEBAEUDEJAHR	-0.041276
	WOHNDAUER_2008	-0.042934
	KBA13_ANZAHL_PKW	-0.001243
	SEMIO_LUST	-0.073929
	ANZ_PERSONEN	-0.078068
	SEMIO_ERL	-0.076006
	MOVEMENT	-0.000173
	GREEN_AVANTGARDE	-0.110213
	GIVEEN AV AN I GAUDE	-0.110213

```
GEBAEUDETYP_RASTER
                    -0.117185
FINANZ_VORSORGER
                      -0.120183
LIFE_STAGE
                     -0.125163
ALTERSKATEGORIE_GROB -0.125613
BALLRAUM
                      -0.127346
INNENSTADT
                      -0.164639
PLZ8_GBZ
                     -0.166380
KONSUMNAEHE
                      -0.167395
KBAO5_ANTG1
                     -0.214438
KBAO5_GBZ
                     -0.216061
FINANZ_MINIMALIST
                     -0.223092
MOBI_REGIO
                     -0.224811
PLZ8_ANTG1
                      -0.225665
Name: 0, Length: 64, dtype: float64
```

In [49]: # Map weights for the second principal component to corresponding feature names # and then print the linked values, sorted by weight.

weight_map(pca , 1)

0	ALTEROVATEGORIE GROR	0 056065
UUT[49]:	ALTERSKATEGORIE_GROB	
	SEMIO_ERL	0.229915
	FINANZ_VORSORGER	0.229239
	SEMIO_LUST	0.180110
	RETOURTYP_BK_S	0.161878
	FINANZ_HAUSBAUER	0.121830
	SEMIO_KRIT	0.117850
	SEMIO_KAEM	0.116437
	W_KEIT_KIND_HH	0.114740
	PLZ8_ANTG3	0.098404
	EWDICHTE	0.097909
	ORTSGR_KLS9	0.096589
	PLZ8_ANTG4	0.096257
	ANREDE_KZ	0.093140
	WEALTH	0.079218
	KBAO5_ANTG4	0.075239
	SEMIO_DOM	0.074492
	ARBEIT	0.071835
	RELAT_AB	0.069307
	PLZ8_ANTG2	0.068172
	ANZ_HAUSHALTE_AKTIV	0.066489
	HH_EINKOMMEN_SCORE	0.061967
	FINANZ_MINIMALIST	0.059375
	WOHNDAUER_2008	0.058466
	KBAO5_ANTG3	0.050577
	VERS_TYP	0.032144
	ANZ_HH_TITEL	0.032079
	OST_WEST_KZ	0.027484

PLZ8_HHZ	0.015914
REGIOTYP	0.011859
SOHO_KZ	-0.001965
GREEN_AVANTGARDE	-0.018376
MOVEMENT	-0.018376
KBA13_ANZAHL_PKW	-0.038001
GEBAEUDETYP_RASTER	-0.047251
MIN_GEBAEUDEJAHR	-0.049020
HEALTH_TYP	-0.056973
ANZ_PERSONEN	-0.064181
BALLRAUM	-0.064699
SEMIO_VERT	-0.072776
KBAO5_ANTG1	-0.074407
KONSUMNAEHE	-0.074798
PLZ8_GBZ	-0.075153
INNENSTADT	-0.079661
MOBI_REGIO	-0.080841
KBAO5_GBZ	-0.092366
PLZ8_ANTG1	-0.096339
SEMIO_SOZ	-0.103209
SEMIO_MAT	-0.161720
ONLINE_AFFINITAET	-0.165413
SEMIO_RAT	-0.166974
SEMIO_FAM	-0.184303
FINANZ_ANLEGER	-0.202721
SEMIO_KULT	-0.219735
SEMIO_PFLICHT	-0.225445
FINANZ_UNAUFFAELLIGER	-0.225492
SEMIO_TRADV	-0.228273
FINANZ_SPARER	-0.231660
DECADE	-0.238553
SEMIO_REL	-0.253635
Name: 1, Length: 64, dt	ype: float64

In [50]: # Map weights for the third principal component to corresponding feature names # and then print the linked values, sorted by weight.

weight_map(pca , 2)

0 . 5507	C-11-0 11-0-	0.044004
Out[50]:	SEMIO_VERT	0.344664
	SEMIO_SOZ	0.261932
	SEMIO_FAM	0.248836
	SEMIO_KULT	0.233936
	FINANZ_MINIMALIST	0.154493
	RETOURTYP_BK_S	0.108975
	FINANZ_VORSORGER	0.101711
	W_KEIT_KIND_HH	0.085079

ALTERSKATEGORIE_GROB	0.079618
SEMIO_REL	0.067673
SEMIO_LUST	0.064452
SEMIO_MAT	0.055671
ORTSGR_KLS9	0.050284
EWDICHTE	0.049493
PLZ8_ANTG4	0.049205
PLZ8_ANTG3	0.048410
GREEN_AVANTGARDE	0.047104
MOVEMENT	0.047104
ARBEIT	0.037364
RELAT_AB	0.034366
PLZ8_ANTG2	0.032674
WOHNDAUER_2008	0.032648
WEALTH	0.030183
KBAO5_ANTG4	0.029997
ANZ_HAUSHALTE_AKTIV	0.026814
OST_WEST_KZ	0.016319
ANZ_HH_TITEL	0.013918
KBAO5_ANTG3	0.011904
ANZ_TITEL	0.009635
PLZ8_HHZ	0.005637
LIFE_STAGE	-0.010033
ANZ_PERSONEN	-0.010726
KKK	-0.015512
HH_EINKOMMEN_SCORE	-0.016394
MIN_GEBAEUDEJAHR	
	-0.018361
KBAO5_ANTG1	-0.022127
KBA13_ANZAHL_PKW	-0.023908
MOBI_REGIO	-0.026795
KBAO5_GBZ	-0.029017
GEBAEUDETYP_RASTER	-0.032111
HEALTH_TYP	-0.034073
BALLRAUM	-0.037239
FINANZ_HAUSBAUER	-0.039724
KONSUMNAEHE	-0.040451
PLZ8_GBZ	-0.040540
INNENSTADT	-0.045748
PLZ8_ANTG1	-0.049401
ONLINE_AFFINITAET	-0.055715
SEMIO_TRADV	-0.079278
SEMIO_PFLICHT	-0.080066
FINANZ_UNAUFFAELLIGER	-0.101115
FINANZ_SPARER	-0.107210
DECADE	-0.111703
SEMIO_ERL	-0.175285
FINANZ_ANLEGER	-0.190987
-	

1.2.6 Discussion 2.3: Interpret Principal Components

Principal Component 1: The variables PLZ8_ANTG3 (Number of 6-10 family houses in the PLZ8 region) and PLZ8_ANTG4 (Number of 10+ family houses in the PLZ8 region) exhibit a strong positive correlation, while SEMIO_VERT (dreamful personality topology) and ANREDE_KZ (Gender) display a negative correlation.

Principal Component 2: ALTERSKATEGORIE_GROB (Estimated age based on given name analysis) and SEMIO_ERL (event-oriented personality topology) demonstrate a significant positive correlation.

Principal Component 3: SEMIO_VERT and SEMIO_SOZ (socially-minded personality topology) exhibit a substantial positive correlation.

1.3 Step 3: Clustering

1.3.1 Step 3.1: Apply Clustering to General Population

You've assessed and cleaned the demographics data, then scaled and transformed them. Now, it's time to see how the data clusters in the principal components space. In this substep, you will apply k-means clustering to the dataset and use the average within-cluster distances from each point to their assigned cluster's centroid to decide on a number of clusters to keep.

- Use sklearn's KMeans class to perform k-means clustering on the PCA-transformed data.
- Then, compute the average difference from each point to its assigned cluster's center. **Hint**: The KMeans object's .score() method might be useful here, but note that in sklearn, scores tend to be defined so that larger is better. Try applying it to a small, toy dataset, or use an internet search to help your understanding.
- Perform the above two steps for a number of different cluster counts. You can then see how the average distance decreases with an increasing number of clusters. However, each additional cluster provides a smaller net benefit. Use this fact to select a final number of clusters in which to group the data. **Warning**: because of the large size of the dataset, it can take a long time for the algorithm to resolve. The more clusters to fit, the longer the algorithm will take. You should test for cluster counts through at least 10 clusters to get the full picture, but you shouldn't need to test for a number of clusters above about 30.
- Once you've selected a final number of clusters to use, re-fit a KMeans instance to perform the clustering operation. Make sure that you also obtain the cluster assignments for the general demographics data, since you'll be using them in the final Step 3.3.

```
kmeans = KMeans(n_clusters = cluster)
model = kmeans.fit(azdias_data_pca)
score = np.abs(model.score(azdias_data_pca))
scores.append(score)
```

In [52]: # Investigate the change in within-cluster distance across number of clusters.
HINT: Use matplotlib's plot function to visualize this relationship.

```
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt

clusters = [2, 3, 4, 5, 6, 7, 8, 9, 10]
scores = []

for cluster in clusters:
    kmeans = KMeans(n_clusters=cluster)
    model = kmeans.fit(azdias_data_pca)
    score = np.abs(model.score(azdias_data_pca))
    scores.append(score)

plt.plot(clusters, scores, marker='o', color='green')
plt.xlabel('Number of Clusters')
plt.ylabel('Score')
plt.title('Elbow Method For Optimal k')
plt.show()
```



```
In [53]: from sklearn.cluster import KMeans
         import matplotlib.pyplot as plt
         import numpy as np
         clusters = [2, 3, 4, 5, 6, 7, 8, 9, 10]
         scores = []
         for cluster in clusters:
             kmeans = KMeans(n_clusters=cluster)
             model = kmeans.fit(azdias_data_pca)
             score = np.abs(model.score(azdias_data_pca))
             scores.append(score)
         scores_percent = [(score / scores[0]) * 100 for score in scores] # Convert scores to p
         plt.plot(clusters, scores_percent, marker='o', color='green')
         plt.xlabel('Number of Clusters')
         plt.ylabel('Score (%)')
         plt.title('Elbow Method For Optimal k')
         plt.show()
```


In [54]: # Re-fit the k-means model with the selected number of clusters and obtain # cluster predictions for the general population demographics data.

```
kmeans = KMeans(n_clusters = 15)
model = kmeans.fit(azdias_data_pca)
predections_azdias_data = model.predict(azdias_data_pca)
```

1.3.2 Discussion 3.1: Apply Clustering to General Population

After employing the elbow method and visualizing the relationship between the number of clusters and the corresponding scores, it was determined that the optimal number of clusters should be 15.

1.3.3 Step 3.2: Apply All Steps to the Customer Data

FINANZ_UNAUFFAELLIGER FINANZ_HAUSBAUER

Now that you have clusters and cluster centers for the general population, it's time to see how the customer data maps on to those clusters. Take care to not confuse this for re-fitting all of the models to the customer data. Instead, you're going to use the fits from the general population to clean, transform, and cluster the customer data. In the last step of the project, you will interpret how the general population fits apply to the customer data.

- Don't forget when loading in the customers data, that it is semicolon (;) delimited.
- Apply the same feature wrangling, selection, and engineering steps to the customer demographics using the clean_data() function you created earlier. (You can assume that the customer demographics data has similar meaning behind missing data patterns as the general demographics data.)
- Use the sklearn objects from the general demographics data, and apply their transformations to the customers data. That is, you should not be using a .fit() or .fit_transform() method to re-fit the old objects, nor should you be creating new sklearn objects! Carry the data through the feature scaling, PCA, and clustering steps, obtaining cluster assignments for all of the data in the customer demographics data.

```
In [55]: # Load in the customer demographics data.
         customers = pd.read_csv('Udacity_CUSTOMERS_Subset.csv', delimiter = ';')
         display(customers.head())
   AGER_TYP
             ALTERSKATEGORIE_GROB
                                     ANREDE_KZ CJT_GESAMTTYP
          2
0
                                              1
                                                            5.0
1
         -1
                                  4
                                                            NaN
2
         -1
                                  4
                                              2
                                                            2.0
3
                                  4
                                                            2.0
          1
                                              1
4
         -1
                                  3
                                              1
                                                            6.0
                       FINANZ_SPARER FINANZ_VORSORGER FINANZ_ANLEGER
   FINANZ_MINIMALIST
                    5
0
                                    1
                    5
                                    1
                                                       5
1
                                                                         1
2
                    5
                                    1
                                                                         1
                    5
3
                                                       5
                                                                         2
                                    1
                                    1
                                                                         4
```

... PLZ8_ANTG1 PLZ8_ANTG2 \

```
2
                                                                 3.0
                                                                              3.0
0
                        2
                                                  . . .
                        3
                                            2
                                                                 NaN
                                                                              NaN
1
                                                  . . .
2
                        4
                                            4
                                                                 2.0
                                                                              3.0
3
                        1
                                            2
                                                                 3.0
                                                                              2.0
4
                        5
                                            2
                                                                              4.0
                                                                 2.0
   PLZ8_ANTG3 PLZ8_ANTG4
                            PLZ8_BAUMAX PLZ8_HHZ
                                                     PLZ8_GBZ
                                                                ARBEIT \
           1.0
0
                       0.0
                                     1.0
                                                5.0
                                                           5.0
                                                                    1.0
1
          NaN
                       NaN
                                     NaN
                                                NaN
                                                           NaN
                                                                   NaN
2
          3.0
                       1.0
                                     3.0
                                                3.0
                                                           2.0
                                                                   3.0
3
           1.0
                       0.0
                                     1.0
                                                3.0
                                                           4.0
                                                                   1.0
4
           2.0
                       1.0
                                     2.0
                                                3.0
                                                           3.0
                                                                   3.0
   ORTSGR_KLS9
                 RELAT AB
0
            2.0
                      1.0
                      NaN
1
           NaN
2
           5.0
                      3.0
3
           3.0
                      1.0
4
            5.0
                      1.0
[5 rows x 85 columns]
In [56]: # Apply preprocessing, feature transformation, and clustering from the general
         # demographics onto the customer data, obtaining cluster predictions for the
         # customer demographics data.
         fill_missing = Imputer(strategy='most_frequent')
         azdias_clean_imputed = pd.DataFrame(fill_missing.fit_transform(azdias_general))
         customers = clean_data(customers)
Raw Data:
   AGER_TYP
              ALTERSKATEGORIE_GROB
                                    ANREDE_KZ CJT_GESAMTTYP \
          2
                                                            5.0
0
                                              1
1
         -1
                                  4
                                              1
                                                            NaN
                                              2
2
         -1
                                  4
                                                            2.0
3
          1
                                  4
                                              1
                                                            2.0
4
                                  3
                                              1
                                                            6.0
         -1
   FINANZ_MINIMALIST FINANZ_SPARER FINANZ_VORSORGER FINANZ_ANLEGER
0
                    5
                                    1
                                                        5
                                                                         1
                    5
                                                        5
                                                                         1
1
                                    1
                    5
2
                                    1
                                                        5
                                                                         1
                    5
                                                        5
3
                                    1
                                                                         2
4
                    3
                                    1
                                                                         4
```

PLZ8_ANTG1 PLZ8_ANTG2 \

FINANZ_UNAUFFAELLIGER FINANZ_HAUSBAUER

0 1 2 3 4		2 3 4 1 5		2 2 4 2 2		3.0 NaN 2.0 3.0 2.0		3.0 NaN 3.0 2.0 4.0
	PLZ8_ANTG3	PLZ8_ANTG4	PLZ8_BAUMAX	PLZ8_HHZ	PLZ8_GBZ	ARBEIT	\	
0	1.0	0.0	1.0	5.0	5.0	1.0		
1	NaN	NaN	NaN	${\tt NaN}$	NaN	NaN		
2	3.0	1.0	3.0	3.0	2.0	3.0		
3	1.0	0.0	1.0	3.0	4.0	1.0		
4	2.0	1.0	2.0	3.0	3.0	3.0		
	ORTSGR_KLS9	RELAT_AB						
0	2.0	1.0						
1	NaN	NaN						
2	5.0	3.0						
3	3.0	1.0						
4	5.0	1.0						

[5 rows x 85 columns]

Data After Missing Values Conversions:

	AGER_TYP	ALTERSKATEG	DRIE_GROB A	ANREDE_KZ	CJT_GESA	AMTTYP \		
0	2.0		4.0	1		5.0		
1	NaN		4.0	1		NaN		
2	NaN		4.0	2		2.0		
3	1.0		4.0	1		2.0		
4	NaN		3.0	1		6.0		
	FTNANZ MT	NIMALIST FI	NANZ SPARER	FTNANZ V	ORSORGER	FTNANZ ANI	.EGER. \	
0	1 1111111111111111111111111111111111111	5	1	· · · · · · · · · · · · · · · · ·	5	1 1111111111111111111111111111111111111	1	
1		5	1		5		1	
2		5	1		5		1	
_		_	1		_		1	
3		5	1		5		2	
4		3	1		4		4	
	FINANZ_UN	AUFFAELLIGER	FINANZ_HAU	JSBAUER		PLZ8_ANTG1	PLZ8_ANTG2	\
0		2		2		3.0	3.0	
1		3		2		NaN	NaN	
2		4		4		2.0	3.0	
3		1		2		3.0	2.0	
4		5		2		2.0	4.0	

PLZ8_ANTG3 PLZ8_ANTG4 PLZ8_BAUMAX PLZ8_HHZ PLZ8_GBZ ARBEIT \

0	1.0	0.0	1.0	5.0	5.0	1.0
1	NaN	NaN	NaN	NaN	NaN	NaN
2	3.0	1.0	3.0	3.0	2.0	3.0
3	1.0	0.0	1.0	3.0	4.0	1.0
4	2.0	1.0	2.0	3.0	3.0	3.0
	ORTSGR_KLS9	RELAT_AB				
0	2.0	1.0				
1	NaN	NaN				
2	5.0	3.0				
3	3.0	1.0				
4	5.0	1.0				

[5 rows x 85 columns]

Data After Removal of Selected Rows And Columns:

	ALTERSKATEGO	ORIE_GROB	ANREDE_KZ	CJT_GESAMTTYP	FINANZ_MINIMALI	IST \
0		4.0	1	5.0		5
2		4.0	2	2.0		5
3		4.0	1	2.0		5
4		3.0	1	6.0		3
5		3.0	1	4.0		5
	FINANZ_SPARI	ER FINANZ		FINANZ_ANLEGE	R FINANZ_UNAUFFA	
0		1	5			2
2		1	5			4
3		1	5	2	2	1
4		1	4		1	5
5		1	5	:	l	2
	FTNANZ HAUSI	BAUER FIN	ANZTYP	PI.78 AN	TG1 PLZ8 ANTG2	PI.Z8 ANTG3 \
0	FINANZ_HAUSI				TG1 PLZ8_ANTG2	
0 2	FINANZ_HAUSI	2	2 .	3	3.0 3.0	1.0
0 2 3	FINANZ_HAUSI	2 4	2 . 2 .	3	3.0 2.0 3.0	1.0 3.0
2	FINANZ_HAUSI	2 4 2	2 . 2 . 6 .	3	3.0 3.0 2.0 3.0 3.0 2.0	1.0 3.0 1.0
2 3 4	FINANZ_HAUSI	2 4 2 2	2 . 2 . 6 . 2 .	3	3.0 3.0 2.0 3.0 3.0 2.0 2.0 4.0	1.0 3.0 1.0 2.0
2	FINANZ_HAUSI	2 4 2	2 . 2 . 6 . 2 .	3	3.0 3.0 2.0 3.0 3.0 2.0	1.0 3.0 1.0
2 3 4	_	2 4 2 2 3	2 . 2 . 6 . 2 . 5 .	3	3.0 3.0 2.0 3.0 3.0 2.0 2.0 4.0 2.0 3.0	1.0 3.0 1.0 2.0
2 3 4	_	2 4 2 2 3 PLZ8_BAUM	2 . 2 . 6 . 2 . 5 .	3 3 2 2 IZ PLZ8_GBZ AI	3.0 3.0 2.0 3.0 3.0 2.0 2.0 4.0 2.0 3.0	1.0 3.0 1.0 2.0 2.0
2 3 4 5	PLZ8_ANTG4	2 4 2 2 3 PLZ8_BAUM 1	2 . 2 . 6 . 2 . 5 .	3 3 3 3 2 2 2 2 2 2	3.0 3.0 2.0 3.0 3.0 2.0 2.0 4.0 2.0 3.0 RBEIT ORTSGR_KLS 1.0 2.	1.0 3.0 1.0 2.0 2.0 2.0 89 RELAT_AB 0 1.0
2 3 4 5	PLZ8_ANTG4 0.0	2 4 2 2 3 PLZ8_BAUM 1 3	2 . 2 . 6 . 2 . 5 . AX PLZ8_HF	3 .	3.0 3.0 2.0 3.0 3.0 2.0 2.0 4.0 2.0 3.0 RBEIT ORTSGR_KLS 1.0 2. 3.0 5.	1.0 3.0 1.0 2.0 2.0 2.0 89 RELAT_AB 0 1.0 0 3.0
2 3 4 5	PLZ8_ANTG4 0.0 1.0	2 4 2 2 3 PLZ8_BAUM 1 3	2	3 .	3.0 3.0 2.0 3.0 3.0 2.0 2.0 4.0 2.0 3.0 RBEIT ORTSGR_KLS 1.0 2. 3.0 5. 1.0 3.	1.0 3.0 1.0 2.0 2.0 2.0 3.0 0 1.0

[5 rows x 79 columns]

Data After Re-encoding And Feature Engineering:

	ALTERSK	ATEGORIE_G	ROB ANRE	DE_KZ	FINAN	Z_MINIMALI	ST FIN	ANZ_SPAR	ER \	
0		4	1.0	1			5		1	
2		4	1.0	2			5		1	
3		4	1.0	1			5		1	
4		3	3.0	1			3		1	
5		3	3.0	1			5		1	
	FINANZ	VORSORGER	FINANZ A	NLEGE	R FINA	.NZ UNAUFFA	ELLIGER	FINANZ	HAUSBAUER	R \
0	_	5	_		[_	2		_	
2		5		1	L		4		4	1
3		5		2	2		1		2	2
4		4		4	l		5		2	2
5		5		1	L		2		3	3
	GREEN_A	VANTGARDE	HEALTH_T	'YP		PLZ8_A			PLZ8_GBZ	\
0		1	1	.0			0.0	5.0	5.0	
2		1		2.0			1.0	3.0	2.0	
3		0	2					3.0		
4		0	3	.0			1.0	3.0	3.0	
5		1	3	3.0			1.0	5.0	5.0	
	ARBEIT	ORTSGR_KLS	59 RELAT	'_AB I	DECADE	MOVEMENT	WEALTH	LIFE_S	TAGE	
0	1.0	2.	. 0	1.0	2.0	1.0	1.0		3.0	
2	3.0	5.	.0	3.0	2.0	1.0	3.0		4.0	
3	1.0	3.	. 0	1.0	1.0	0.0	2.0		4.0	
4	3.0	5.	. 0	1.0	4.0	0.0	4.0		1.0	
5	3.0	7.	.0	5.0	2.0	1.0	3.0		4.0	

[5 rows x 64 columns]

Data After Replacing NaN Values:

	ALTERSKATEGORIE_G	ROB ANREDE_KZ	FINANZ_MINIMALIST	FINANZ_SPARER \	
0		4.0 1	5	1	
2		4.0 2	5	1	
3		4.0 1	5	1	
4		3.0 1	3	1	
5	;	3.0 1	5	1	
	FINANZ_VORSORGER	FINANZ_ANLEGER	FINANZ_UNAUFFAELLI	GER FINANZ_HAUSBAUER	\
0	5	1		2 2	
2	5	1		4 4	

```
3
                     5
                                        2
                                                                                        2
                                                                   1
4
                     4
                                        4
                                                                   5
                                                                                        2
5
                     5
                                                                   2
                                                                                        3
                                        1
   GREEN_AVANTGARDE
                        HEALTH_TYP
                                                    PLZ8_ANTG4
                                                                  PLZ8_HHZ
                                                                              PLZ8_GBZ
                                                                         5.0
                                                                                    5.0
0
                     1
                                                             0.0
2
                     1
                                 2.0
                                                             1.0
                                                                         3.0
                                                                                    2.0
3
                     0
                                 2.0
                                                             0.0
                                                                         3.0
                                                                                    4.0
4
                     0
                                3.0
                                                             1.0
                                                                         3.0
                                                                                    3.0
5
                     1
                                3.0
                                                             1.0
                                                                         5.0
                                                                                    5.0
            ORTSGR_KLS9
                                                 MOVEMENT
   ARBEIT
                            RELAT AB
                                       DECADE
                                                             WEALTH
                                                                      LIFE STAGE
                      2.0
0
       1.0
                                  1.0
                                           2.0
                                                       1.0
                                                                1.0
                                                                              3.0
2
                                                       1.0
                                                                              4.0
       3.0
                      5.0
                                  3.0
                                           2.0
                                                                3.0
3
       1.0
                      3.0
                                  1.0
                                           1.0
                                                       0.0
                                                                2.0
                                                                              4.0
4
       3.0
                      5.0
                                           4.0
                                                                              1.0
                                  1.0
                                                       0.0
                                                                4.0
5
       3.0
                      7.0
                                  5.0
                                           2.0
                                                       1.0
                                                                3.0
                                                                               4.0
```

[5 rows x 64 columns]

1.3.4 Step 3.3: Compare Customer Data to Demographics Data

At this point, you have clustered data based on demographics of the general population of Germany, and seen how the customer data for a mail-order sales company maps onto those demographic clusters. In this final substep, you will compare the two cluster distributions to see where the strongest customer base for the company is.

Consider the proportion of persons in each cluster for the general population, and the proportions for the customers. If we think the company's customer base to be universal, then the cluster assignment proportions should be fairly similar between the two. If there are only particular segments of the population that are interested in the company's products, then we should see a mismatch from one to the other. If there is a higher proportion of persons in a cluster for the customer data compared to the general population (e.g. 5% of persons are assigned to a cluster for the general population, but 15% of the customer data is closest to that cluster's centroid) then that suggests the people in that cluster to be a target audience for the company. On the other hand, the proportion of the data in a cluster being larger in the general population than the customer data (e.g. only 2% of customers closest to a population centroid that captures 6% of the data) suggests that group of persons to be outside of the target demographics.

Take a look at the following points in this step:

• Compute the proportion of data points in each cluster for the general population and the customer data. Visualizations will be useful here: both for the individual dataset proportions, but also to visualize the ratios in cluster representation between groups. Seaborn's countplot() or barplot() function could be handy.

- Recall the analysis you performed in step 1.1.3 of the project, where you separated out certain data points from the dataset if they had more than a specified threshold of missing values. If you found that this group was qualitatively different from the main bulk of the data, you should treat this as an additional data cluster in this analysis. Make sure that you account for the number of data points in this subset, for both the general population and customer datasets, when making your computations!
- Which cluster or clusters are overrepresented in the customer dataset compared to the general population? Select at least one such cluster and infer what kind of people might be represented by that cluster. Use the principal component interpretations from step 2.3 or look at additional components to help you make this inference. Alternatively, you can use the .inverse_transform() method of the PCA and StandardScaler objects to transform centroids back to the original data space and interpret the retrieved values directly.
- Perform a similar investigation for the underrepresented clusters. Which cluster or clusters
 are underrepresented in the customer dataset compared to the general population, and what
 kinds of people are typified by these clusters?

In [58]: # Compare the proportion of data in each cluster for the customer data to the # proportion of data in each cluster for the general population.

```
fig = plt.figure(figsize=(14,4))
ax1 = fig.add_subplot(121)
ax1.title.set_text('Customer Data')
sns.countplot(predections_customers, palette = 'Set3')

ax2 = fig.add_subplot(122)
ax2.title.set_text('General Demographic')
sns.countplot(predections_azdias_data, palette = 'Set2')
fig.tight_layout()
plt.show()
```



```
In [68]: from collections import Counter

# generating proportion for the customer clusters.
labels, values = zip(*Counter(predections_customers).items())
v=list(values)
v[:] = [x/len(predections_customers) for x in v]
```

```
indexes = np.arange(len(labels))

# generating proportion for the azdias clusters.
labels1, values1 = zip(*Counter(predections_azdias_data).items())
v1=list(values1)
v1[:] = [x/len(predections_azdias_data) for x in v1]
indexes1 = np.arange(len(labels))

# configuring the graph
width = .5
plt.bar(indexes1, v1, width ,label='General')
plt.bar(indexes+width, v, width, color='r' , label='Customer')
plt.xticks(indexes + width * 0.5, labels)
plt.legend(loc='upper left')
plt.grid()
plt.show()
```


ALTERSKATEGORIE_GROB	1.822216
ANREDE_KZ	0.967103
FINANZ_MINIMALIST	1.858698
FINANZ_SPARER	4.394156
FINANZ_VORSORGER	2.106516
FINANZ_ANLEGER	3.621081
FINANZ_UNAUFFAELLIGER	3.807727
FINANZ_HAUSBAUER	3.644642
GREEN_AVANTGARDE	0.123432
HEALTH_TYP	2.365153
RETOURTYP_BK_S	2.775441
SEMIO_SOZ	6.761393
SEMIO_FAM	6.755196
SEMIO_REL	6.325203
SEMIO_MAT	5.115307
SEMIO_VERT	6.048017
SEMIO_LUST	2.902910
SEMIO_ERL	2.168788
SEMIO_KULT	6.881980
SEMIO_RAT	4.118063
SEMIO_KRIT	2.773405
SEMIO_DOM	2.819522
SEMIO_KAEM	2.439718
SEMIO_PFLICHT	5.684314
SEMIO_TRADV	4.837207
SOHO_KZ	0.008129
VERS_TYP	1.516391
ANZ_PERSONEN	1.427544
ANZ_TITEL	0.000126
HH_EINKOMMEN_SCORE	5.467693
W_KEIT_KIND_HH	4.554938
WOHNDAUER_2008	7.125523
ANZ_HAUSHALTE_AKTIV	13.425446
ANZ_HH_TITEL	0.042148
KONSUMNAEHE	2.097448
MIN_GEBAEUDEJAHR	1992.629212
OST_WEST_KZ	0.297656
KBAO5_ANTG1	0.373552
KBAO5_ANTG2	1.354055
KBAO5_ANTG3	1.227420
KBAO5_ANTG4	0.535710
KBAO5_GBZ	2.241230
BALLRAUM	3.200063
EWDICHTE	5.082708
INNENSTADT dtype: float64	3.406594
utype, iioalo4	

dtype: float64

```
In [60]: # What kinds of people are part of a cluster that is underrepresented in the
         # customer data compared to the general population?
         cluster_8 = model.cluster_centers_[8]
         pca_8 = pca.inverse_transform(cluster_8)
         underrepresented = scaler.inverse_transform(pca_8)
         underrepresented = pd.Series(data = underrepresented, index = azdias_general_columns)
         display(underrepresented.head(45))
ALTERSKATEGORIE_GROB
                            2.983413
ANREDE_KZ
                            1.956229
FINANZ_MINIMALIST
                            2.022787
FINANZ_SPARER
                            3.287121
FINANZ_VORSORGER
                            3.062214
FINANZ_ANLEGER
                            3.427144
FINANZ_UNAUFFAELLIGER
                            2.983369
FINANZ_HAUSBAUER
                            3.710147
GREEN AVANTGARDE
                            0.067832
HEALTH_TYP
                            2.596432
RETOURTYP_BK_S
                            3.769945
SEMIO_SOZ
                            2.926332
SEMIO_FAM
                            2.727596
SEMIO_REL
                            3.073697
SEMIO_MAT
                            3.053143
SEMIO_VERT
                            2.504274
SEMIO_LUST
                            4.484378
SEMIO_ERL
                            5.910096
SEMIO_KULT
                            2.604278
                            4.089178
SEMIO_RAT
SEMIO_KRIT
                            5.916562
SEMIO_DOM
                            6.134913
SEMIO_KAEM
                            6.057826
SEMIO PFLICHT
                            3.992110
SEMIO_TRADV
                            3.099925
SOHO_KZ
                            0.007346
VERS_TYP
                            1.598096
ANZ_PERSONEN
                            1.580709
ANZ_TITEL
                           -0.000494
HH_EINKOMMEN_SCORE
                            5.369289
W_KEIT_KIND_HH
                            3.984993
WOHNDAUER_2008
                            7.685368
ANZ_HAUSHALTE_AKTIV
                            7.511239
ANZ_HH_TITEL
                            0.032015
KONSUMNAEHE
                            2.423156
MIN_GEBAEUDEJAHR
                         1992.490598
OST_WEST_KZ
                            0.173927
```

0.717031

KBAO5_ANTG1

KBAO5_ANTG2	1.918022
KBAO5_ANTG3	1.273509
KBAO5_ANTG4	0.180344
KBAO5_GBZ	2.685343
BALLRAUM	3.680639
EWDICHTE	4.682707
INNENSTADT	3.868344

dtype: float64

1.3.5 Discussion 3.3: Compare Customer Data to Demographics Data

I conducted a comparison between popular and unpopular population clusters, focusing on attributes related to income, housing, age, gender, and movement patterns.

The popular cluster predominantly comprised individuals with high income and affluent households. They resided in areas with a significant number of 1-2 family houses within the microcell. These individuals were typically aged between 46 and 60, evenly distributed between genders, and exhibited low mobility patterns.

Conversely, the unpopular cluster primarily consisted of individuals with lower income and less privileged households. They tended to reside in areas with a lower concentration of 1-2 family houses within the microcell. The age group of this cluster was generally below 45, with a higher proportion of females, and showed a propensity for higher movement patterns.