Aprendizado de Máquina e Reconhecimento de Padrões 2021.2

The Bias-Variance Trade-off

Based on videos from StatQuest, the course 'Machine Learning' from Andrew Ng, and the book 'Hands-on machine learning with Scikit-Learn, Keras and TensorFlow' from A. Géron

Prof. Dr. Samuel Martins (Samuka) samuel.martins@ifsp.edu.br

Generalization Error

The Generalization Error for any machine learning algorithm can be broken down into three parts:

- Bias Error
- Variance Error
- Irreducible Error
 - This part is due to the noisiness of the data itself.
 - The only way to reduce this part of the error is to clean up the data
 - Fix the data sources (e.g., broken sensors), or
 - Detect and remove outliers.

Generalization Error

The **Generalization Error** for any machine learning algorithm can be broken down into three parts:

- Bias Error
- Variance Error

Let's see these errors

- Irreducible Error
 - This part is due to the noisiness of the data itself.
 - The only way to reduce this part of the error is to clean up the data
 - Fix the data sources (e.g., broken sensors), or
 - Detect and remove outliers.

The linear model (straight line) cannot capture the true relationship between x_1 and y.

In ML, this inability is called **bias**.

The linear model (straight line) cannot capture the true relationship between $\mathbf{x_1}$ and \mathbf{y} .

In ML, this inability is called **bias**.

Bias

Error associated to wrong assumptions (simplifications) made by a model (e.g., assuming that the data is linear when it is quadratic) to make it easier to learn.

Bias

'Average distance' between **predictions** and the **truth**.

The linear model (straight line) cannot capture the true relationship between $\mathbf{x_1}$ and \mathbf{y} .

In ML, this inability is called bias.

Bias

Error associated to wrong assumptions (simplifications) made by a model (e.g., assuming that the data is linear when it is quadratic) to make it easier to learn.

Bias

'Average distance' between **predictions** and the **truth**.

Straight Line A high-bias model is most likely (relatively) high bias $\mathbf{X_1}$

The linear model (straight line) cannot capture the true relationship between $\mathbf{x_1}$ and \mathbf{y} .

In ML, this inability is called **bias**.

Bias

Error associated to wrong assumptions (simplifications) made by a model (e.g., assuming that the data is linear when it is quadratic) to make it easier to learn.

Bias

'Average distance' between **predictions** and the **truth**.

Squiggly Line

a more complex model \Rightarrow e.g., high-degree polynomial model

Squiggly Line

a more complex model \Rightarrow e.g., high-degree polynomial model

Squiggly Line

(very) low bias

'Average distance' between **predictions** and the **truth** is **close to zero**.

By considering *only* the **training set errors**, we would pick the **squiggly line** below.

In contrast, the considered **straight line** fits the **validation set** (unseen data) **better** than squiggly line \rightarrow **better generalization**

Straight Line

Squiggly Line validation instance $\mathbf{x_1}$

Great job fitting the **training set**

Great job fitting the **training set**

Variance

also

The amount that the **estimate** of the model will **change** if **different training data** was used.

Great job fitting the **training set**

In ML, the difference in fits between

datasets is called variance.

also

Variance

The amount that the **estimate** of the model will **change** if **different training data** was used.

Great job fitting the **training set**

Squiggly Line

low bias high variance truth

• estimate for different sets

low variance

low

high variance

• estimate for different sets

low variance

low

bias

high variance

high bias

• estimate for different sets

- Increasing ↑ a model's complexity will typically:
 - increase ↑ its variance
 - reduce \(\) its **bias**.
- Reducing ↓ a model's complexity will:
 - increase ↑ its bias
 - reduce \(\) its variance.

- Increasing ↑ a model's complexity will typically:
 - increase † its variance
 - reduce ↓ its bias.
- Reducing ↓ a model's complexity will:
 - increase ↑ its bias
 - reduce \(\) its variance.

- Increasing ↑ variance reduces ↓ bias, and vice versa.
- Reducing ↓ variance increases ↑ bias, and vice versa.

- Increasing ↑ a model's complexity will typically:
 - increase † its variance
 - reduce \(\psi \) its bias.
- Reducing ↓ a model's complexity will:
 - increase ↑ its bias
 - reduce \(\) its variance.
- This is why it is called a trade-off.

- Increasing ↑ variance reduces ↓ bias, and vice versa.
- Reducing ↓ variance increases ↑ bias, and vice versa.

or simply

- Increasing ↑ a model's complexity will typically:
 - increase † its variance
 - reduce ↓ its bias.
- Reducing ↓ a model's complexity will:
 - increase ↑ its bias
 - reduce \(\) its variance.
- This is why it is called a trade-off.

- Increasing ↑ variance reduces ↓ bias, and vice versa.
- Reducing \(\psi \) variance increases \(\psi \) bias, and vice versa.

General trend:

- Linear ML algorithms often have a high bias but a low variance.
- Nonlinear ML algorithms often have a low bias but a high variance.

Diagnosing Bias vs Variance

• Suppose your learning algorithm is performing less well than you were hoping.

• If $J_{val}(\theta)$ is **high**, is it a **bias** problem or a **variance** problem?

32

hypothetical data.

- Suppose your learning algorithm is performing less well than you were hoping.
- If $J_{val}(\theta)$ is **high**, is it a **bias** problem or a **variance** problem?

hypothetical data.

more parameters

- Suppose your learning algorithm is performing less well than you were hoping.
- If $J_{val}(\theta)$ is **high**, is it a **bias** problem or a **variance** problem?

e.g., polynomial degree → more parameters

These are hypothetical curves for hypothetical data.

Aprendizado de Máquina e Reconhecimento de Padrões 2021.2

The Bias-Variance Trade-off

Prof. Dr. Samuel Martins (Samuka)
samuel.martins@ifsp.edu.br

