60/087,170

60/129,023

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

		ED (UNDER THE PATENT COOPERATION TREATY (PCT)			
(51) International Patent Classificatio C12O 1/00]	A2	(11) International Publication Number: WO 99/61			
		A4	(43) International Publication Date: 2 December 1999 (02.12.99)			
(21) International Application Number	er: PCT/US99	9/119	The second secon			
(22) International Filing Date:	28 May 1999 (28	8.05.9	BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK,			
(30) Priority Data:			MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, VII, ZA, ZW			

US

US

(71) Applicant: WISCONSIN ALUMNI RESEARCH FOUNDA-TION [US/US]; 614 North Walnut Street, P.O. Box 7365, Madison, WI 53707-7365 (US).

29 May 1998 (29.05.98)

13 April 1999 (13.04.99)

- (72) Inventors: KIMBLE, Judith, E.; 2804 Columbia Road, Madison, WI 53705 (US). BLELLOCH, Robert, H.; 2130 Rusk Street, Madison, WI 53704 (US).
- (74) Agent: BERSON, Bennett, J.; Quarles & Brady LLP, P.O. Box 2113, Madison, WI 53701-2113 (US).

SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

- (54) Title: AGENT AND METHOD FOR MODULATION OF CELL MIGRATION
- (57) Abstract

A GON-1 migration protein in C. elegans and a gon-1 gene encoding same are disclosed. The protein, termed GON-1, shows structural similarity to a protein produced by an up-regulated RNA in an advanced tumor cell. Although the tumor cell protein has not previously been identified as having any role in cell migration, it is disclosed herein that the related GON-1 protein is required for cell migration and is involved in shaping tissues or organs. It is deduced that the protein is also a target for modulators of cell migration and tissue shaping.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
вв	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HŲ	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	[srae]	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	TI	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

AGENT AND METHOD FOR MODULATION OF CELL MIGRATION

5

10

BACKGROUND OF THE INVENTION

Cell migration, particularly migration of cancerous cells and nerve cells, is not well understood, nor are the factors that affect cell migration and tissue shaping in vivo. There is a need in the art to identify and exploit such factors, including but not limited to those involved in normal or abnormal organogenesis. The art also lacks efficient systems for evaluating therapeutic modulators of such functions in vivo and lacks diagnostic methods for assessing the ability of a cell or cell mass to migrate in vivo.

Organogenesis processes in vertebrates proceed in a manner similar to those observed in the common laboratory nematode C. elegans. As such, the generation of C. elegans gonadal structures can serve as a simple system for investigating developmental morphogenetic processes shared by higher and lower organisms.

In one common morphogenetic process, a tissue bud extends to form an elongate tube with a proximal to distal axis. An emerging theme in bud extension is the presence of specialized regulatory cells at the bud tip that govern elongation. In vertebrate development, this process is

ď

seen in extension of the limb (Johnson and Tabin, 1997;
Martin, 1998), ureter (Vainio and Muller, 1997), and lung
branches (Hogan, 1998). In the C. elegans gonad, long
"arms" develop by elongation of buds originating from a
5 gonadal primordium. Each gonadal arm possesses a single
"leader cell" that serves this regulatory role (Kimble and
White, 1981). The biology of distal tip cell migration
during gonadogenesis is known to one skilled in the art of
C. elegans developmental biology. Indeed, the C. elegans
10 gonadal leader cells are among the best defined cells that
regulate bud elongation, and therefore serve as a paradigm
for investigating this common morphogenetic process.

A second common morphogenetic process of organogenesis is the formation of a complex, differentiated epithelial 15 tube. Formation of a complex epithelial tube can involve an initial condensation of mesenchymal cells, followed by epithelialization, lumen formation, and differentiation into modular units. Vertebrate examples include the kidney tubules (Vainio and Muller, 1997) and heart tube (Fishman 20 and Olson, 1997). Similarly, during C. elegans gonadogenesis, cells coalesce to form a compact larval structure called the somatic gonadal primordium (SGP). Following formation of this primordium, cell division and differentiation are accompanied by epithelialization and 25 lumen formation to form a complex tube composed of distinct modular units: the uterus, spermathecae and sheaths in hermaphrodites, and the seminal vesicle and vas deferens in males (Kimble and Hirsh, 1979).

Previous studies have identified several genes in C.

30 elegans that influence gonadal morphogenesis. One group of such genes includes unc-5, unc-6, and unc-40, which control the direction of leader cell migration (Hedgecock et al, 1990). Normally, leader cells migrate in one direction, then move dorsally, and finally move in the

35 opposite direction to generate a reflexed gonadal arm. In the absence of unc-5, unc-6, or unc-40, the leader cells fail to turn dorsally. Another gene, ced-5, causes the

leader cell to makes extra turns or stop prematurely (Wu and Horvitz, 1998). Therefore, in these mutants, the leader cells migrate, but do not navigate correctly, which results in a failure of the gonadal arms to acquire their normal U-shape. In addition to these genes, others are required for specification of cell fates and also influence morphogenesis (lin-12: Greenwald et al., 1983, Newman et al., 1995; lin-17: Sternberg and Horvitz, 1988; lag-2: Lambie and Kimble, 1991; ceh-18: Greenstein et al., 1994, 10 Rose et al., 1997; lin-26: den Boer et al., 1998).

A known C. elegans genetic locus, gon-1, defined by one or more mutants, is essential for extension of gonadal germline arms, but is not responsible for signaling the germline to proliferate. In C. elegans hermaphrodites,

15 GON-1 is required for migration of two distal tip cells to produce two elongated tubes, whereas in males, gon-1 activity is required for migration of a single linker cell to produce a single elongated tube. In gon-1 mutant hermaphrodites, the leader cells are born normally in the somatic gonadal cell lineage and function normally to promote germline proliferation, but they fail to migrate and do not support arm extension. Similarly in males, the leader cell does not move and no arm extension occurs. The gon-1 locus has not heretofore been mapped with

25 particularity to a nucleic acid coding sequence.

Clarification of the genetic basis for *C. elegans gon-1* activity would permit one to apply molecular tools to the study of cell migration in a convenient system. It would be particularly advantageous to find that the *gon-1* locus encodes a protein having structural relationship to proteins of species that are not readily studied in the laboratory, since one would be able to evaluate those proteins in the convenient *C. elegans* system. Such a system would also provide a means for evaluating agents that can modulate the activity of such genes and proteins and would both facilitate understanding the factors involved in cell migration.

BRIEF SUMMARY OF THE INVENTION

In one aspect, the invention can be an isolated polynucleotide coding sequence that encodes a protein the includes both a metalloprotease domain and at least one 5 thrombospodin type 1 domain, where the protein can direct either cell migration or tissue shaping in an analytical system in a target organism as disclosed herein. In another aspect, the invention can also be a variant of the isolated polynucleotide coding sequence that encodes a protein that 10 shares at least 20%, more preferably 50%, still more preferably 70% and most preferably 80% amino acid sequence identity (using GCG Pileup program) with any of the foregoing in the metalloprotease and thrombospondin type 1 domains while also comprising the amino acids of those 15 domains known to those skilled in the art to be required for protein activity. A suitable variant polynucleotide can hybridize under stringent hybridization conditions known to those skilled in the art to a polynucleotide sequence that encodes a protein that can direct cell 20 migration or tissue shaping in the target organism. embodiment, a variant polynucleotide can hybridize under stringent hybridization conditions to a C. elegans gon-1 coding sequence. The variant polynucleotide sequence can be a polynucleotide obtained from an organism or can be a mutated version of any polynucleotide sequence noted above. The variant polynucleotide can encode a protein that is identical or altered relative to the wild-type C. elegans GON-1 protein. The encoded protein can have enhanced or reduced activity in vivo relative to GON-1.

In a related aspect, a polynucleotide coding sequence that encodes a protein having structural and functional similarity with a wild-type or altered migration or shaping protein can also be substituted, in whole or in part, with structurally related or unrelated sequences to encode a heterologous protein or a chimeric protein in the disclosed system, as detailed below.

Applicants herein disclose that the Caenorhabditis elegans gon-1 activity is encoded by a polynucleotide coding sequence (gon-1; SEQ ID NO:1) that encodes an essential protein (GON-1; SEQ ID NO:2) that directs migration of a growing gonadal tube through surrounding basement membranes during gonadogenesis in the nematode and also controls gonadal shape and organ localization.

The migration directing ability and tissue shaping ability are separable and depend upon whether the gon-1 coding sequence is expressed in distal tip cells or in muscle cells, respectively. In wild-type C. elegans, a gonad of normal shape is produced when gon-1 is expressed in both cell types. Accordingly, one aspect of the invention can also a method for shaping a tissue by selectively expressing a protein associated with both tissue elongation and tissue expansion. GON-1 shares significant amino acid identity with proteins that have been noted in other species.

In a related aspect, the invention can be an isolated and substantially purified preparation of a GON-1 protein, an altered GON-1 protein, a heterologous protein, a chimeric protein, or a variant thereof (referred to herein as "an MPT protein", for reasons discussed below), which can be a target for in vivo screening of putative

25 therapeutic modulators, or can be assayed in a diagnostic method for assessing the ability of a cell or cell mass to migrate in vivo, or can be exploited as a therapeutic agent to modulate (increase or decrease) in vivo cell migration.

One skilled in the art will appreciate that the

nucleotide coding sequences and encoded amino acid
sequences that fall within the scope of the invention are
also subject to natural variation or intentional
manipulation (e.g., changes in the nucleotide or amino acid
sequence) in ways that do not affect the ability to

function as described herein. One skilled in that art also
understands that the applicants cannot provide a complete
list of nucleotide coding sequences and amino acid

sequences that can function in the methods of the invention. However, in view of the high level of understanding in the art about the amino acids required for activity of proteins that comprise a metalloprotease domain and proteins that comprise a thrombospondin domain, applicants maintain that a skilled artisan can readily determine whether a protein contains both domains. Stöcker, W. et al., "The metzincins - Topological and sequential relations between the atacins, adamalysins, 10 serralysins, and matrixings (collagenases) define a superfamily of zinc-peptidases," Protein Science 4:823-840 (1995), Rawlings, N.D. and A.J. Barrett, "Evolutionary families of metallopeptidases, Methods in Enzymology 248:183-228 (1995), and Adams, J.C. et al., The 15 Thrombospondin Gene Family, R.G. Landes Company, Austin, TX (1995), all incorporated herein by reference in their entirety, provide sufficient guidance to permit those in the art to establish whether a protein comprises both a metalloprotease and a thrombospondin domain.

The invention is further summarized in that an antibody can be produced against characteristic epitopes of any of the foregoing proteins using standard methods. The antibody can be used both diagnostically to ascertain the presence of an MPT protein, or therapeutically to interfere with activity of the MPT protein.

The present invention is also summarized in that an animal that contains a gon-1 allele (or homolog or variant thereof) is a convenient screening tool for finding modulators of cell migration. The present invention is thus further summarized in that a method for identifying modulators of the disclosed MPT proteins includes the steps of treating a target organism having a cell that can migrate or be shaped when under control of an MPT protein with at least one potential modulator of migration or shaping and observing in the treated target organism a change in migration or shaping of the cell or tissue attributable to the presence of a modulator. In a

preferred embodiment, the cell is a developing gonadal cell in *C. elegans*, although other cells or organs may be similarly regulated by MPT proteins in other organisms.

The ability of the MPT protein to direct a cell or

5 tissue under its influence to migrate or be shaped can be
modulated (increased or decreased) in a variety of ways,
such as by altering the migration protein's primary,
secondary, or tertiary structure, by altering the location
or amount of the protein in an organism, by altering the
10 transcriptional or translational regulation of the gene
that encodes the protein, or by providing the organism with
an agonist or antagonist molecule in an amount sufficient
to interact with the MPT protein so as to increase or
decrease the ability of the protein to direct migration or
15 shaping.

In a related method, one can also identify nucleic acid sequences required or desired for migration or shaping of such a cell, by treating a target organism with an agent that affects the polynucleotide sequences of the target organism that encode the MPT protein or that participate in regulating expression of the MPT protein, and then identifying sequences affected by the treatment. The sequences identified in the method can be either complete or partial coding sequences or can be regulatory sequences.

It is an object of the present invention to identify a protein and nucleotide sequence encoding same that directs migration or shaping of a cell or tissue.

25

30

It is another object of the present invention to provide a method for modulating cell migration or shaping.

It is yet another object of the present invention to provide a system and method for screening putative modulators of migration or shaping of cells or tissues.

It is an advantage of the present invention that agents having a putative effect upon migration or shaping can be screened in a convenient model system rather than in a vertebrate organism.

Other objects, features and advantages of present

invention will become apparent upon consideration of the following detailed description taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

Fig. 1A depicts a schematic map of the gon-1 locus in

C. elegans from which the gene was cloned and shows the

exon-intron structure of gon-1.

Fig. 1B shows a schematic map of *C. elegans* GON-1, the location of five protein-truncating stop mutants in GON-1 and a comparison to the protein structures of the murine ADAMTS-1 protein, and the bovine procollagen-I N-proteinase (PN1P) protein. From left to right, GON-1 includes a prodomain, a metalloprotease domain, a first cysteine rich region, a thrombospondin type I motif, a second cysteine rich region, and a plurality of thrombospondin type I-like motifs. The five mutants are identified as q518 (aa591 TGG->TGA), e2551 (aa1069 TGG->TAG), e2547 (aa1229 TGG->TGA), q18 (aa1234 TGG->TAG) W->stop, and e1254 (aa1345 CGA->TGA) R->stop).

Fig. 1C compares the C. elegans GON-1 amino acid 20 sequence to sequences of the ADAMTS-1 and PN1P proteins. In the metalloprotease domain, amino acids important for enzymatic activity are marked by an asterisk (*). Three conserved histidines (GON-1, aa 424, 428, 434) bind a 25 catalytically essential Zn+2 ion in well characterized metalloproteases, while a glutamic acid residue (GON-1, aa 425) is thought to be directly involved in cleavage (Stöcker et al, 1995). In addition, two conserved glycines and a downstream methionine seem to be important for 30 structure of the active site. GON-1 bears one of the glycines (aa 427) and the methionine (aa 454), but the second glycine is changed to serine in GON-1 (aa431). In the canonical TSPt1 domain, amino acids conserved in vertebrate TSP type-1rpeats are shown by a plus (+). The 35 mutation, gon-1(q518), is marked by an inverted triangle

(V). For the TSPt1-like repeats, only 2 of the 17 are shown. The consensus sequence for these repeats is:
W-X₄₋₅-W-X₂- CS-X₂-CG-X₄₋₅-X-G-X₃-R-X₃-C-X₄₋₂₇C-X₈₋₁₂-C-X₃₋₄-C.
Because only the first two TSPt1-like motifs are shown, the
other mutations are not indicated in this figure.

Fig. 2A depicts normal morphogenesis of the C. elegans hermaphrodite gonad.

Fig. 2B shows that arm extension does not occur in gon-1 mutants and that the gonad develops as a disorganized mass of somatic and germline tissues. Similarly, in males, the gon-1 mutant gonad is severely disorganized and does not acquire its normal shape.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The existence of a protein in C. elegans required for 15 cell migration or shaping has not heretofore been known, nor has any function been previously ascribed to a protein encoded by the designated sequence. The inventors have determined that a functional GON-1 protein is required for migration of the regulatory cells that lead the developing 20 gonad organ during its migration. GON-1 is also involved in shaping tissues such as gonads. By appreciating the role of GON-1 (and the gon-1 gene) and its relationship to a related gene that is upregulated in a metastatic tumor cell, the inventors have identified a gene and protein believed to be fundamental in the process of normal and abnormal cell migration and tissue shaping. The gene and protein, and related genes and proteins, can be utilized in the methods of the invention as described herein. References herein to influencing cell migration are also 30 intended to encompass shaping of tissues or organs. Likewise, references to a migration protein encompass proteins of the same class that can also be used in methods for shaping tissues or organs.

Generally speaking, the methods of the present
invention permit one to identify agents that modulate cell
migration or tissue shaping in vivo or in vitro. One can

treat target organisms with panels of polynucleotides, proteins, sugars, lipids, organic molecules, other chemicals, synthetic or natural pharmaceutical agents or other agents to determine whether any agent affects 5 activity of an MST protein. This list is necessarily incomplete, since one cannot predict in advance which agents will be effective. However, applicants have enabled a system for screening panels of putative agents, in accord with the common practices of pharmaceutical companies that 10 typically screen thousands of compounds against a test system in an effort to reveal preferred agents. Candidate agents likely to modulate MPT proteins in the disclosed system include tissue inhibitors of metalloproteases and pharmaceutical metalloprotease inhibitors or enhancers such 15 as those from British Biotech. Inhibitors or enhancers of thrombospondin activity are also good candidate agents.

Agents so identified can be used therapeutically to enhance or inhibit cell migration or to influence tissue shape. Agents having an adverse or inhibiting or knock-out 20 effect upon activity of a migration protein can also be used in a method for biocontrol of animals that employ the migration protein in gonadal development, where the method includes the step of exposing a developing animal to an amount of the agent effective to prevent gonadal 25 development such that the animals are rendered sterile.

While this biocontrol method is particularly envisioned for use in nematodes, it may be applicable to other animals as well, since genes related structurally and functionally to gon-1 are known to exist in animals as diverse as nematodes, cattle and humans.

Using the invention one can also identify polynucleotide sequences including coding and regulatory sequences that affect activity of a migration protein. For example, null or so-called reduced activity mutants can be mutagenized and assayed for activity-restoring, activity-inhibiting or activity-enhancing changes. By extension, one can perform comparable screens ad infinitum on

sequences identified in this manner, to obtain still more sequences that have an indirect effect on migration activity. After identifying such sequences in a target organism, one can obtain homologous polynucleotides from other organisms by screening nucleic acid libraries under stringent hybridization conditions in a manner known to those skilled in the art.

A method for evaluating putative modulators of cell migration preferably employs a nematode as a target organism. The methods may be advantageously practiced using a nematode that comprises a migration protein as described herein, or a mutant nematode that either lacks a migration protein or contains a migration protein having reduced activity. The protein can be encoded by wild-type C. elegans gon-1 (disclosed herein), by a mutant that confers upon the nematode an enhanced or reduced sensitivity to modulators, by a transgene from another organism, in whole or in part, or by a variant of any of the foregoing. Nematodes are desirable target organisms, in general, because they are easy to grow and maintain, and easy to assay, particularly because they are transparent.

Nematodes are also particularly desired because the powerful techniques of reverse genetics can be employed. One can also target specific *C. elegans* sequences for 25 mutation or RNA-mediated interference (a technique used to transiently knock genes out by RNA injection) to identify nucleic acid and protein sequences that have a direct inhibitory or enhancing effect on *gon-1* activity.

With the identification of the gon-1 gene and GON-1
30 protein in C. elegans and the discovery of homologous genes
in other species, the functions of migration proteins can
be analyzed in vivo during organogenesis using the full
force of molecular genetics available in that system. Such
functions can include, but may not be limited to cell
35 migration, basement membrane remodeling, and tubular organ
formation.

Although the system is exemplified in C. elegans, a

free-living (i.e., non-parasitic) nematode, those skilled in the art can develop similar systems operating on the same principles without undue experimentation in other convenient organisms, including other nematodes including, without limitation, C. briggsae, or in, for example, Drosophila, or other organisms conveniently studied in the laboratory. To do so, one would only need to identify the homolog of gon-1 in such an organism, using standard molecular biological methods and then screen for related genes, proteins and other factors as described herein. One could also use such systems in other animals to study transgenes in ways comparable to those described herein. Those skilled in the art can produce transgenic animals of many species without undue experimentation.

In the method, a putative modulator is provided to the target organism, for example, by adding it to the growth media, by injecting it into the organism or by gene transformation technology. The effects of said modulator can be assessed either by screening for changes in cell migration or by genetic selection for fertile animals. The assessment methods are known to those skilled in the art. Caenorhabditis elegans: Modern Biological Analysis of an Organism, Methods in Cell Biology, volume 48, Epstein, H. F. and D. C. Shakes, eds., Academic Press (1995), incorporated herein by reference in its entirety, describes suitable methods and conditions for growing and monitoring

C. elegans GON-1 is characterized by a multi-domain structure that includes several known motifs. GON-1 protein is a secreted metalloproteinase that lacks a transmembrane domain and possesses a predicted metalloprotease domain between amino acids 269-456. The metalloprotease enzymatic activity is essential for GON-1 function; proteins that might be cleaved by this metalloproteinase include components of the basement membrane and other proteins that modulate migration. The metalloprotease domain shares sequence similarity with other metalloproteinase enzymes.

C. elegans.

In addition to its metalloprotease domain, GON-1 possesses a series of consecutive motifs that are related to, but variants of, the thrombospondin type 1 (TSPt1) repeats (Fig. 1B,C). The most N-terminal TSPt1 repeat bears the hallmarks of this type of motif in vertebrate thrombospondins (15/16 of the consensus amino acids, + in Fig. 1C) (Adams et al., 1995), whereas the remaining 17 repeats are less similar and define a TSPt1-like variant. Proteins that might interact with this domain include proteins that modulate migration, including but not limited to components of the basement membrane.

gon-1 is similar to members of the reprolysin subfamily (Rawlings, N.D. and A.J. Barrett, "Evolutionary families of metallopeptidases, Methods in Enzymology 248:183-228 (1995), incorporated herein by reference in its entirety). At the N-terminal border of the metalloprotease domain, there is a potential furin cleavage site (Fig. 1C) (Pei and Weiss, 1995; Pei and Weiss, 1996). Gon-1 and the reprolysins share a common zinc binding active site with the larger metzincin superfamily (Stöcker et al., 1995). Amino acid conservation within the active site together with the known crystal structure of several superfamily members reveals those amino acids essential for enzymatic activity (marked by asterisks in Fig. 1c) (ibid). Gon-1 has all amino acids implicated in catalysis and all but one implicated in structure of the active site.

Wild-type C. elegans GON-1 (SEQ ID NO:2) is suitable for use in the methods of the present invention, although a skilled artisan can replace the C. elegans gon-1 coding sequence with a sequence that encodes all or part of a homologous protein, using the standard tools available to a molecular biologist. This mixing and matching can increase or decrease the activity of the encoded chimeric protein. As described elsewhere herein, it can be desirable to provide a system having reduced or enhanced migration activity, or even no migration activity, depending upon whether one is evaluating agents that enhance or inhibit

migration. Increased gene activity is characterized either by increased gonadal arm extension, increased compactness of gonadal tissue, or fertility. Decreased gene activity is assayed either by decreased gonadal arm extension, decreased compactness of gonadal tissue or sterility. Certain specific activity-reducing mutations in gon-1 are described in the Examples.

Sequences with related structures have already been isolated from vertebrate organisms, but no related

10 invertebrate sequence is known to the inventors. Still other related metalloprotease proteins (and polynucleotide sequences encoding same) will be isolated from vertebrate and invertebrate organisms. While the C. elegans gon-1 protein includes 17 thrombospondin domains, the bovine and murine homologs include only 2 such domains. Other known members of the family also have one canonical TSPt1 repeat, can contain at least one TSPt1-like variant repeat, and contain two conserved cysteine rich regions. Based on this conserved architecture, we suggest the name MPT (for MetalloProtease with TSP1 repeats) for the family.

While the *in vivo* functions of these proteins may differ from that of *C. elegans* GON-1, these proteins are expected to function in place of GON-1 in whole or in part in the disclosed methods. All such homologs from other vertebrate and invertebrate organisms (and the polynucleotide sequences that encode such homologs), variants thereof, and chimerics that incorporate portions thereof, whether obtained naturally or induced in the laboratory using the tools available to a molecular biologist, are considered to be useful in the present invention. In particular, functional domains, such as the metalloprotease domain, can be swapped into corresponding domains in *gon-1*.

The amino acid sequences of GON-1, ADAMTS-1 and bovine PN1P are compared in Fig. 1C. The additional thrombospondin domains of GON-1 not found in ADAMTS-1 or PN1P are not shown in Fig. 1C. Those portions of GON-1

that have no obvious relationship to known motifs are conserved among the family of GON-1 homologs. The GON-1 protein shows significant sequence similarity to the bovine procollagen-1 N-proteinase (P1NP), to the murine ADAMTS-1 protein, and to a pair of human aggrecan-degrading metalloprotease-encoding sequences described in International Patent Application Number PCT/US98/15438, published on February 4, 1999 as International Publication No. WO 99/05291, incorporated herein by reference in its entirety. Another human homolog which has significant identity to the bovine P1NP has Genbank accession number d1021662.

Bovine P1NP can proteolyze the N-terminal propeptide from collagen I (Colige et al., 1995, Colige et al., 1997). 15 Metalloprotease activity is required for GON-1 function and suggest that, like PINP, it may cleave components of the extracellular matrix. Murine adamts-1 expression correlates with tumor cell progression (Kuno et al., 1997). The murine ADAMTS-1 protein is found in an advanced 20 cachexogenic murine tumor cell. Human aggrecanase has been associated with arthritis in humans. Given the role of GON-1 in regulating cell migration of the C. elegans leader cell, we suggest that MPT proteins may be involved more generally in cell migrations that must pass through 25 extracellular matrix and that, in cancerous tissues, loss of MPT regulation may promote metastasis. The percent identity of the identified domains of C. elegans GON-1 with the bovine and murine proteins is shown in Fig. 1B.

Changes can be made in any of the foregoing at the
nucleic acid level in a manner known to those skilled in
the art, by, for example, removing a section of the coding
sequence, interrupting the coding sequence with an
additional sequence, rearranging at least one section of
the gene, or by providing in the sequence other changes
that can include but are not limited to point mutations
that either truncate the protein or disable an active site
in the protein encoded by the altered polynucleotide.

Changes can also be made by altering the transcription or translation of the gene that encodes the migration protein by altering in a manner known to the art the upstream and/or downstream regulatory sequences that the surround the gene. Likewise the translation-regulating elements of an mRNA encoding the migration protein can also be altered to affect the stability or location of the mRNA. An antisense RNA can also interfere with translation of the migration protein.

10 At the protein level, one skilled in the art can modulate the activity of the migration protein either by modifying the protein encoded by the gene as noted above or by directing the protein to be modified in vivo, for example, by providing in the protein appropriate signal or 15 signals for cleavage or degradation by other cellular factors. Alternatively, the protein can be targeted with an activity-modulating factor such as a protein, a peptide, or an organic or inorganic co-factor. Any of these factors can, for example, occupy or obstruct an active site of the 20 protein which is required for activity. Likewise, if the activity of the protein is natively regulated by an endogenous co-factor, an effect can be achieved by modulating the availability of the native co-factor.

One skilled in art is familiar with the techniques
associated with the aforementioned alterations, including
the production of any construct necessary to effect such
changes. One skilled in the art also understands that
changes in the primary amino acid sequence (including,
e.g., substitutions, deletions, additions, inversions) may
or may not alter the activity of a protein, depending upon
the position and the extent of the change.

For purposes of this application a migration protein is considered active if it causes a cell that comprises the protein, or a cell that is under the influence of the protein, to migrate to any appreciable extent. A cell is "under the influence of the protein" if the cell migrates in the presence of the protein, even if the cell does not

contain the protein. In vivo, the cell from which the protein is secreted and its site of action remain unknown.

Non-native transgene sequences containing non-native sequences homologous to all or part of C. elegans gon-1 can 5 be introduced into C. elegans on an expressible genetic construct that contains a promoter that drives expression in a tissue that allows easy assay so that the effect or effects of those sequences on migration and other functions can be evaluated in the system. Methods for generating and 10 selecting transgenic nematodes are well-known in the art. Transgenic animals can rescue null mutants or can suppress or enhance the activity in the reduced-activity mutants. A preferred example of a transgene sequence is a human gon-1 homolog sequence, although any of homolog can be used. 15 Some constructs may contain all or part of the gon-1 coding sequences. The transgene should be appropriately expressed near the cells to be controlled by the migration protein. In C. elegans, the gon-1 promoter, active in leader cells and in muscle cells, is suitable. Other promoters that can 20 be used in C. elegans include the lag-2 promoter, which

drives expression in the hermaphrodite distal tip cells, and the unc-54 promoter which drives expression in body wall muscle.

One can assay for effects of treatment with a potential modulating agent on cell migration and gonadal tube extension by comparing migration after treatment to

the cell migration in either a wild-type organism or to

that in an untreated, previously characterized mutant.

Before treatment in the methods, if the migration protein

is expressed in leader cells at wild-type levels, directed elongation of gonadal arms along a proximal-distal axis is observed. If the migration protein is expressed in muscle, on the other hand, one observes more dispersed activity, which may be important for expansion as the gonad along the

35 dorsal-ventral and left-right axes. If a migration protein having a level of activity comparable to that of the wild type protein is expressed from a polynucleotide sequence

under control of the native gon-1 promoter, of course, normal gonadal development is observed, as is shown in Fig. 2A. Fig. 2B shows that arm extension does not occur in gon-1 mutants and that the gonad develops as a disorganized mass of somatic and germline tissues. Similarly, in males, the gon-1 mutant gonad is severely disorganized and does not acquire its normal shape. Both wild-type activity and the mutant phenotype can be modified by treatment according to the methods. One can also direct the shape of a tissue or organ by introducing a transgene coding sequence under control of a promoter selected to express the transgene coding sequence in a desired tissue or cell type.

One can also assess whether a cell has the potential for migration by analyzing for example, the level of the 15 migration protein in the cell, or the level at which the RNA encoding the migration protein is present. A diagnostic assay for the presence of active site residues in the protein can also be devised. Likewise, the presence or absence of a DNA sequence encoding an essential aspect 20 of the protein can also be used in a diagnostic manner to assess the likelihood of cell migration.

Our finding that GON-1 is tightly regulated to achieve arm extension during gonadogenesis in C. elegans suggests that similar activities may play similar roles in the 25 morphogenesis of organs throughout the animal kingdom. Previous in vitro experiments support this notion. For example, antibodies recognizing matrix metalloprotease 9 (MM9) can block branching of the ureter bud during kidney development (Lelongt et al., 1997), and inhibitors of MMPs 30 block the invasion of endothelium cells into a fibrin matrix in assays for angiogenesis (Hiraoka et al., 1998). Based on these observations and our analysis of GON-1, we suggest that the MPT metalloproteases are critical modulators of organogenesis.

Whether the target organism contains a wild-type C. elegans gon-1 gene, a mutant gon-1 gene or a transgene substituted in place of gon-1, in whole or in part, the

system is readily used to identify other genes, proteins, drugs, chemicals or other factors that either enhance or antagonize activity.

In a method for increasing the migration of the cell, 5 the native protein or related protein or a genetic construct encoding same can be administered to, or caused to be expressed at a high level in, the target cell. Alternatively, an enhancing factor can be provided inside or outside the target cell, as appropriate. Where it is 10 desired to decrease migration of a targeted cell, as in the case of a tumor cell, an inhibiting factor can be added into, or the vicinity of, the targeted cell. The vicinity of the cell is defined as sufficiently close to the targeted cell so as to effect a desired change in the cell 15 migration. If the migration protein is secreted from the cell in which it is produced, the activity of the protein can further be modulated either by preventing secretion of the protein or by interfering with the protein activity outside the cell. If the protein acts outside the target 20 cell, the protein, an active portion thereof, or a modulating factor can be administered to the vicinity in an amount effective to modulate cell migration.

The reproductive sterility that can result from inhibited migration of developing gonadal cells under the control of an migration protein that is inactive or has reduced activity can be further exploited, for example, in a method for controlling reproduction of an organism that relies upon a migration protein during gonadogenesis. An organism for which such control would be appropriate would include C. elegans and other nematodes or parasites, and could include other invertebrates, as well as vertebrate species including, for example, avian, amphibian, reptilian and mammalian species.

With an appreciation for the migration proteins of the invention, normal and abnormal cell migration attributable to activity of a migration protein can be therapeutically increased or decreased. The mechanisms by which the gene

and protein are regulated can be determined by one skilled in the art and can be advantageously exploited to modulate expression of the migration protein at either the nucleic acid or protein levels.

EXAMPLES

5

To gain molecular insight into gon-1 function, we cloned the gene by a combination of fine genetic mapping, mutant rescue and RNA-mediated interference. Mutations in the gon-1 gene were finely mapped by genetic crosses with 10 respect to markers that had already been placed on the physical map. Cosmids in the region were next tested for mutant rescue of the gon-1 mutations. The genomic C. elegans sequence that includes the coding sequence of the gon-1 gene in a plurality of exons is found on cosmids 15 F25H8 (Accession # 69360) and T13H10 (Accession #69361); T13H10 bears most of gon-1 and rescued the gon-1 phenotype. The predicted open reading frames on this cosmid were tested by RNA-mediated interference to identify the transcript corresponding to gon-1 activity. The 20 identification of this transcript as gon-1 was then confirmed by subcloning and mutant rescue by a smaller region of the cosmid that contained that transcript, by RNA-mediated interference, and by identifying gon-1 mutations in the coding region of this transcript. The 25 positions in the migration protein that correspond to the identified mutations are indicated in Fig. 1B. We confirmed identification of F25H8.3 as gon-1 by identifying molecular lesions for a plurality of gon-1 alleles.

Mutants were obtained as described (Brenner, S. "The 30 Genetics of Caenohrabditis elegans, Genetics 77:71-94 (1974), incorporated herein by reference. Each contained an allele of gon-1 that maps to chromosome IV between unc-24 and dpy-20, all are recessive, and all are fully penetrant for sterility. Five alleles, e1254, e2547, q18, 35 q517, and q518, fail to complement the sixth allele, e2551, and, therefore, the mutations define a single gene. Three-factor mapping places gon-1(e2551) 0.08 map units to

the right of elt-1 and 0.12 map units to the left of unc-43 at position 4.44. Specifically, among Unc-43 non-Elt-1 recombinants isolated from gon-1/elt-1 unc-43 mothers, 8/13 carried the gon-1 mutation.

- To compare allelic strengths, we examined the penetrance of arm extension defects in homozygotes for each allele. In gon-1(q518) homozygotes, no arm extension was observed at 15°, 20° or 25°C. However, in homozygotes for the other gon-1 alleles, some arms extended at least
- 10 partially. By this measure, the gon-1 alleles can be placed in an allelic series: q518 < e2547 ≈ q18 < e1254 ≈ q517 < e2551. Interestingly, the weaker gon-1 alleles have a more severe defect at lower temperature, which may reflect a cold sensitivity of GON-1 function, or of the process of arm extension itself.

The strongest loss-of-function allele is gon-1(q518) which is a nonsense mutation that resides in the canonical TSP1 motif; the other mutations are located in the TSP1t1-like repeats. gon-1(q518), the nonsense mutant

- located closest to the N-terminus, has the most severe effect on cell migration; nonsense mutants located closer to the C-terminus than q518 are partially defective for migration. Because the mutant phenotype for gon-1(q518) homozygotes is identical to that of gon-1(q518) hemizygotes
- and because gon-1(q518) bears a nonsense mutation predicted to remove the bulk of the GON-1 protein, this allele is likely to be a molecular null. Therefore, gon-1(q518) was used for analyzing the roles of gon-1 in gonadal morphogenesis and is referred to as gon-1(0).
- Normally, the gonad is a tubular structure with specialized regions. By contrast, in gon-1 mutants, the adult gonadal tissues exist as a disorganized mass with little or no tubular morphology. Specifically, neither arms nor somatic gonadal structures (e.g. uterus,
- spermatheca) are observed. In all cases, however, the gonads are rendered infertile by these mutations.

In C. elegans, mRNAs containing premature stop codons

are normally degraded by the smg system, but those mRNAs are stabilized in a smg mutant background (Anderson and Kimble, 1997). Therefore, the remaining activity of truncated GON-1 proteins should be evident in smg-1; gon-1 double mutants. We found that gon-1(q518) was not suppressed in a smg background, whereas all four mutations in the TSP1-like repeats were suppressed. Therefore, while the GON-1(q518) mutant protein that possesses the metalloprotease domain but lacks the bona fide TSPt1 motif (as well as the rest of the protein C-terminally), is not capable of mutant rescue, the other truncated proteins are. The conclusion that two TSPt1-like repeats are sufficient for rescuing activity was confirmed by mutant rescue with a mini-transgene.

- The lack of gonadal arms in gon-1 (0) mutants suggested that the leader cells, which normally govern arm extension, may be defective. To assess whether leader cells were generated during development, we first examined the gonadal cell lineages in gon-1(0) mutants during the first two
- larval stages. Normally, the somatic gonadal progenitor cells, Z1 and Z4, give rise to two leader cells, Z1.aa and Z4.pp, in hermaphrodites, and one leader cell, Z1.pa or Z4.aa, in males (Kimble and Hirsh, 1979). In hermaphrodites, these leader cells are called distal tip
- cells (DTC), and in males, they are called linker cells (LC). The hermaphrodite distal tip cell is both a leader cell and a regulator of germline proliferation. Kimble, J.E. and J.G. White, "On the control of germ cell development in Caenorhabditis elegans, Devel. Biol. 81:208-
- 219 (1981), incorporated herein by reference in its entirety, provides guidance for a skilled artisan on the biology of distal tip cell migration. The information disclosed in that paper can be employed in determining whether an agent modulates cell migration or tissue shaping in a method of the invention.

In gon-1(0) hermaphrodites and males, we found that the timing and pattern of cell divisions of Z1 and Z4 and

their descendants were the same as in wild-type during L1 and L2 (data not shown). In particular, Z1.aa and Z1.pp in hermaphrodites and Z1.pa/Z4.aa in males were born at the correct time and place. To ask whether the presumptive 5 hermaphrodite leader cells, Z1.aa and Z4.pp, had adopted the leader fate, we examined expression of a molecular marker for that fate. The unc-5 gene encodes a netrin receptor and is essential for dorsal migration of leader cells (Leung-Hagesteijn et al, 1992). Using a reporter transgene, unc-5::lacZ (J. Culotti, personal communication), we found that unc-5 expression was the same in wild-type and gon-1(0) animals: unc-5 was not expressed during early larval stages, but was activated in late L3 when the DTCs normally turn dorsally during wild-type gonadogenesis.

Since the hermaphrodite leader cells, Z1.aa and Z4.pp, also control germline proliferation, we next asked if they were correctly specified for that regulatory function. To this end, we examined expression of the lag-2 gene, which 20 encodes the DTC signal for germline proliferation (Henderson et al., 1994). Using a reporter transgene, lag-2::GFP, we found that lag-2::GFP expression was similar in wild-type and gon-1 gonads. Furthermore, we ablated Z1.aa and Z4.pp in gon-1(0) mutants and found that germline 25 proliferation was arrested. Therefore, the hermaphrodite DTCs, Z1.aa and Z4.pp, appear to be specified correctly both as leader cells and as regulators of germline proliferation.

Since the leader cells appeared to be specified

30 correctly in gon-1 mutants, we next examined their ability to migrate and lead arm extension. Normally, the hermaphrodite leader cells (distal tip cells) migrate away from the center of the gonad along the anterior-posterior axis, then reflex dorsally, and migrate back. To compare

35 leader cell migration in wild-type and gon-1(0) mutants, we followed their movements throughout gonadal development and at the same time measured gonadal lengths. At the

mid-L1 stage, just prior to division of the leader cell progenitors, Z1 and Z4, the length of the gonad from anterior to posterior end was 19 μ m in both wild-type and gon-1(0) mutants. Following division of Z1 and Z4 in late L1, a small difference in gonadal length was discerned: 25 μ m in wild-type vs. 22 μ m in gon-1 mutants. However, in older larvae with differentiated leader cells, the length differences were dramatic. In gon-1(0) hermaphrodites, the distal tip cells had moved little from their birth position and little to no gonad extension had occurred.

A similar defect is observed in males. Normally, the male leader cell (linker cell) migrates anteriorly, then reflexes and migrates to posterior end of the worm. However in gon-1(0) males, the linker cell failed to migrate, and little to no extension had occurred. We conclude that gon-1 is required for leader cell migration and hence gonadal arm extension.

As we observed leader cells during gonadogenesis, we noticed that they assumed an unusual morphology. 20 explore this further, we examined hermaphrodite DTCs using fluorescence and thin section electron microscopy (EM). Using lag-2::GFP, which is expressed in hermaphrodite DTCs and reveals the extent of their cytoplasm (D. Gao and J. Kimble, unpublished), we found that the wild-type and 25 gon-1(0) DTCs had dramatically different morphologies. In wild-type, the DTC was crescent-shaped with processes extending around the germ line, while in gon-1 mutants, it was round and enlarged. Furthermore, the position of the nucleus within the DTC was variable in gon-1 mutants, 30 whereas in wild-type, it was located at the leading edge of the migrating cell. By EM, we confirmed the difference in morphology between wild-type and gon-1 leader cells and also discovered a difference in subcellular organization. Whereas wild-type leader cells extend processes along the 35 germline, gon-1(0) leader cells do not possess such processes. Furthermore, the plasma membrane is abnormally invaginated in gon-1(0) L3 leader cells, and these

membranes accumulate within the cytoplasm of older gon-1(0) mutants.

The lack of gonadal arms is not the only defect in gon-1 mutants. In addition, no gonadal structures (e.g. 5 uterus in hermaphrodites, vas deferens in males) can be discerned. One problem might have been a failure to differentiate gonadal tissues. However, we were able to identify the major somatic gonadal cell types in late L4 gon-1(0) mutants. To see somatic gonadal sheath cells, we 10 used lim-7::GFP, which expresses Green Fluorescent Protein (GFP) in hermaphrodite sheath cells (O. Hobert, pers. comm.). In wild-type, fluorescence from lim-7::GFP encircled the germ cells, while in gon-1 mutants, only irregularly-shaped patches were observed. Similarly, MH27 15 antibody, which stains spermathecal cells intensely (den Boer et al., 1998), was present in disorganized patches in gon-1 mutants. Finally, cells with a typically uterine morphology were present, but no normal uterine structure was found in gon-1 mutants. Therefore, the gonadal tissues 20 in gon-1(0) mutants appear to differentiate correctly.

One simple explanation for the gross morphogenetic defects of mature gon-1 gonads might have been that all aspects of gonadal morphogenesis are disrupted as a consequence of the defect in leader cell migration.

Indeed, by killing the distal tip cells in wild-type animals, we could reproduce the gon-1 mutant phenotype: arms did not extend and gonadal structures were grossly malformed. However, closer inspection suggests that gon-1 has a role in gonad morphogenesis independent of leader cells.

To examine the generation of gonadal somatic structures, we removed the germ line (-GL) from gon-1(0) to permit formation of an essentially normal somatic gonadal primordium at the early L3 stage and we removed both leader cells (-DTCs) and germline (-GL) from wild-type hermaphrodites as a control. The control animals had no arm extension, but formed a normal somatic gonadal primordium.

A comparison of gonadal structures at the L4 stage, when they are most easily scored, revealed striking differences. While fragments of uterus were present in gon-1(-GL) hermaphrodites, no coherent uterus was observed.

5 Furthermore, the gon-1 (-GL) gonad was small, and most gonadal had extruded from the gonad proper. By contrast, an apparently normal uterus formed in the wild-type animals lacking both DTCs and germ line. Therefore, gon-1 is required not only for arm extension, but also for morphogenesis of the uterus.

Finally, we asked whether gon-1 functions in the development of non-gonadal tissues. We assayed embryonic viability, the overall shape of the animal, coordination of its movements, mating behavior in males, the male tail,

- growth rate, and entry and exit into dauer stage of the life cycle: all were normal in gon-1(0) mutants. The normal movement and shape of gon-1(0) mutants suggests that gon-1 is not required generally for cell migration. For example, failure in migration of the CAN neuron causes the
- tail to wither (Forrester et al., 1998), and defects in axon migration leads to an uncoordinated (Unc) phenotype (Hedgecock et al., 1990). Furthermore, we followed the M sex myoblast and the Q neuroblasts migrations (Antebi et al, 1997) in at least five gon-1(0) mutants, and both were
- normal. We conclude that gon-1 does not affect cell migrations generally and, furthermore, that gon-1 does not affect the development of non-gonadal cells, tissues or organs. Finally, we examined the non-gonadal tissues in gon-1 mutants that had been operated during L1 to remove
- 30 Z1-Z4, the four gonadal progenitor cells. This experiment was done, because the disorganized gonadal tissues in gon-1(0) hermaphrodites often cause the animal to explode during adulthood, preventing examination of their non-gonadal tissues at this stage. Although these
- 35 gonadless gon-1 adults had no gross defects, we observed a reproducible vacuolization in the body wall with differential interference contrast microscopy, which was

not seen in similarly treated wild-type animals. However, it must be emphasized that this defect has no apparent developmental consequences. Given the dramatic effects of gon-1 on gonadogenesis, we suggest that the major role of 5 gon-1 in development is to control the shape of the gonad.

The wild-type *C. elegans gon-1* sequence is shown in SEQ. ID. NO. 1. The protein encoded by SEQ. ID. NO. 1 is shown in full in SEQ. ID. NO. 2 and in part in comparative Fig. 1C.

10

PROPHETIC EXAMPLE

A target organism that contains a migration protein is treated with one or more potential modulators of migration of a developing gonadal cell. The organism is preferably a nematode, and is more preferably C. elegans. The potential modulating agent is administered in an amount typical of any additive to a culture, preferably at a level of several nanograms to several micrograms per milliliter. The organism can contain a native migration protein or a variant form of a native migration protein, or can express a migration protein from a transgene that can be delivered to the organism in a manner known to those skilled in the art. The protein can also be a chimeric protein expressed from a transgenic polynucleotide that comprises sequences from at least one of the foregoing polynucleotides.

Upon examination, it is observed that one can rescue migration in a target that lacks the migration protein by administering an exogenous polynucleotide that encodes a migration protein. In a target that contains a migration protein, one can also identify administered agents that increase or decrease the migration of a developing gonadal cell. One can also treat the genetic material of the target organism using standard methods and treatments and can then identify genetic changes that increase or decrease migration of developing gonadal cells.

CLAIMS

WE CLAIM:

1. A method for identifying a modulator of a protein that comprises a metalloprotease domain and a

treating a target organism having a developing gonadal cell responsive to the protein with at least one potential modulator of cell migration; and

observing in the treated target organism a change in migration or shape of the developing gonadal cell attributable to the presence of the at least one modulator.

- 2. A method as claimed in Claim 1 wherein migration of the developing gonadal cell in the target organism before treatment is absent or reduced relative to a wild type individual.
 - 3. A method as claimed in Claim 1 wherein the treating step restores or enhances migration in the target organism relative to migration before the treating step.
- 4. A method as claimed in Claim 1 wherein migration of the developing gonadal cell in the target organism before treatment is at a level of a wild type individual.
 - 5. A method as claimed in Claim 1 wherein the treating step reduces migration in the target organism relative to migration before the treating step.

A method as claimed in Claim 1 wherein the target organism comprises a protein that comprises a metalloprotease domain and a thrombospondin domain, the protein being selected from the group consisting of a 5 protein encoded by a native polynucleotide coding sequence, a protein encoded by a heterologous polynucleotide coding sequence introduced into the target organism, a protein that shares at least 20% amino acid sequence identity with either of the foregoing and retains an ability to direct 10 cell migration in the target organism, and a chimeric protein encoded at least in part by at least one of the foregoing and introduced into the target organism, the polynucleotide coding sequence being under transcriptional control of a promoter active in a tissue located 15 sufficiently close to the developing gonadal cell so as to signal the cell to migrate.

- 7. A method as claimed in Claim 6, wherein the native polynucleotide coding sequence is C. elegans gon-1.
- 8. A method as claimed in Claim 6, wherein the 20 heterologous polynucleotide coding sequence is a homolog of C. elegans gon-1.
- 9. A method as claimed in Claim 8 wherein the homolog of C. elegans gon-1 encodes a metalloprotease enzyme selected from the group consisting of murine ADAMTS-1 protein, bovine procollagen-1 N-proteinase, and human aggrecan-degrading metalloprotease.
 - 10. A method as claimed in Claim 6 wherein the protein is truncated relative to a protein in a wild type individual.

11. A method as claimed in Claim 1 wherein the target organism is a nematode.

- 12. A method as claimed in Claim 11 wherein the target organism is a nematode selected from the group consisting 5 of C. elegans and C. briggsae.
- 13. A method as claimed in Claim 1 wherein the at least one modulator is selected from the group consisting of a nucleic acid molecule, a protein molecule, a sugar, a lipid, an organic molecule, a synthetic or natural pharmaceutical agent, and a mixture thereof.
 - 14. A method for identifying a nucleic acid sequence that affects migration of a developing gonadal cell, the method comprising the steps of:
- treating a target organism by a method selected from
 the group consisting of RNA interference, reverse genetics,
 and chemical mutagenesis to alter migration or shape of the
 developing gonadal cell in the treated target organism
 relative to migration in the target organism before
 treatment; and
- identifying in the treated target organism a nucleic acid sequence affected by the treating step.
 - 15. A method as claimed in Claim 14 wherein the treating step affects a nucleic acid sequence that encodes a protein.

16. A method as claimed in Claim 14 wherein the treating step affects a nucleic acid sequence that regulates nucleic acid transcription or translation.

- 17. A method as claimed in Claim 14 wherein migration of the developing gonadal cell in the target organism before treatment is absent or reduced relative to a wild type individual.
- 18. A method as claimed in Claim 14 wherein the treating step restores or enhances migration of the developing gonadal cell in the treated target organism relative to migration before the treating step.
 - 19. A method as claimed in Claim 14 wherein migration of the developing gonadal cell in the target organism before treatment is at a level of a wild type individual.
- 15 20. A method as claimed in Claim 14 wherein the treating step reduces migration of the developing gonadal cell in the treated target organism relative to migration before the treating step.

21. A method as claimed in Claim 14, wherein the target organism comprises a protein that directs cell migration, the protein being selected from the group consisting of a protein encoded by a native polynucleotide 5 coding sequence, a protein encoded by a heterologous polynucleotide coding sequence introduced into the target organism, a protein that shares at least 20% amino acid sequence identity with either of the foregoing and retains an ability to direct cell migration in the target organism, and a chimeric protein encoded at least in part by at least one of the foregoing and introduced into the target organism, the polynucleotide coding sequence being under transcriptional control of a promoter active in a tissue located sufficiently close to the developing gonadal cell 5 so as to signal the cell to migrate.

- 22. A method as claimed in Claim 21 wherein the native polynucleotide coding sequence is C. elegans gon-1.
- 23. A method as claimed in Claim 21 wherein the heterologous polynucleotide coding sequence is a homolog of 20 C. elegans gon-1.
- 24. A method as claimed in Claim 23 wherein the homolog of *C. elegans gon-1* encodes a metalloprotease enzyme selected from the group consisting of murine ADAMTS-1 protein, bovine procollagen-1 N-proteinase, and human aggrecan-degrading metalloprotease.
 - 25. A method as claimed in Claim 21 wherein the protein is truncated relative to a protein in the wild type individual.

26. A method as claimed in Claim 14 wherein the target organism is a nematode.

27. A method as claimed in Claim 26 wherein the target organism is a nematode selected from the group consisting 5 of C. elegans and C. briggsae.

SEQUENCE LISTING

```
<110> Kimble, Judith E
              Blelloch, Robert H
        <120> Agent and Method for Modulating Cell Migration
  5
        <130> 960296.95386
        <140>
        <141>
        <150> 60/087170
        <151> 1998-05-29
10
        <150> 60/129023
       <151> 1999-04-13
       <160> 2
       <170> PatentIn Ver. 2.0
       <210> 1
15
       <211> 6659
       <212> DNA
       <213> Caenorhabditis elegans
       <220>
       <221> CDS
20
       <222> (1)..(6453)
       <400> 1
       atg cgc tcc atc ggc ggc tca ttc cat ctg ctg cag ccc gtc gcc
                                                                          48
       Met Arg Ser Ile Gly Gly Ser Phe His Leu Leu Gln Pro Val Val Ala
         1
25
       get etc ata etc etc gte gte tge etc gtt tat geg ttg caa tea ggg
                                                                         96
      Ala Leu Ile Leu Leu Val Val Cys Leu Val Tyr Ala Leu Gln Ser Gly
                    20
      agt ggc acg atc tca gaa ttc tca tca gat gtg ctg ttc tcc agg gcc
                                                                         144
      Ser Gly Thr Ile Ser Glu Phe Ser Ser Asp Val Leu Phe Ser Arg Ala
30
                35
                                    40
```

	aag Lys	tac Tyr 50	Ser	ggt Gly	gto Val	g cca Pro	gto Val 55	. His	cac His	agt Ser	cga Arç	tgg Trp 60	Arg	caa Gln	gac Asp	gcc Ala	192
5	ggt Gly 65	, Ile	cac His	gto Val	ato Ile	gac Asp 70	Ser	cat His	cac His	ato Ile	gto Val	. Arg	aga Arg	gat Asp	tct Ser	tat Tyr 80	240
	gga Gly	cgt Arg	cgt Arg	gga Gly	aaa Lys 85	Arg	gat Asp	gto Val	acg Thr	tca Ser 90	Thr	gat Asp	cgg	cga Arg	cgt Arg 95	cga Arg	288
10	ctc Leu	caa Gln	gga Gly	gtt Val 100	Ala	aga Arg	gac Asp	tgt Cys	gga Gly 105	cat His	gct Ala	tgt Cys	cac	tta Leu 110	Arg	tta Leu	336
15	cga Arg	tca Ser	gat Asp 115	gat Asp	gcc Ala	gtc Val	tac Tyr	atc Ile 120	gtt Val	cat His	ttg Leu	cac His	aga Arg 125	tgg Trp	aat Asn	caa Gln	384
	ata Ile	ccg Pro 130	gac Asp	tca Ser	cat His	aac Asn	aaa Lys 135	agt Ser	gtt Val	ccc Pro	cac His	ttt Phe 140	tcc Ser	aat Asn	tca Ser	aat Asn	432
20	ttc Phe 145	gcg Ala	ccg Pro	atg Met	gtc Val	tta Leu 150	tat Tyr	ttg Leu	gac Asp	tcg Ser	gag Glu 155	gag Glu	gag Glu	gtt Val	aga Arg	ggt Gly 160	480
	gga Gly	atg Met	tct Ser	cga Arg	aca Thr 165	gat Asp	ccc Pro	gat Asp	tgt Cys	atc Ile 170	tac Tyr	cgt Arg	gca Ala	cac His	gtt Val 175	aaa Lys	528
25	ggt Gly	gta Val	cat His	cag Gln 180	cac His	agc Ser	atc Ile	gtc Val	aat Asn 185	tta Leu	tgc Cys	gac Asp	tcg Ser	gaa Glu 190	gac Asp	gga Gly	576
30	ttg Leu	tac Tyr	gga Gly 195	atg Met	ctt Leu	gca Ala	Leu	ccc Pro 200	agc Ser	gga Gly	atc Ile	cat His	acg Thr 205	gtt Val	gag Glu	cca Pro	624
	att Ile	att Ile 210	agt Ser	gga Gly	aac Asn	Gly	aca Thr 215	gag Glu	cac His	gac As p	Gly	gca Ala 220	agt Ser	cgc Arg	cat His	agg Arg	672

	Caa Glr 225	n His	cto Lev	gto Val	cga Arg	Lys 230	Phe	gat Asp	Pro	atg Met	His 235	3 Phe	aaa Lys	tcg Ser	ttt: Phe	gac Asp 240	720
5	cat His	ctt Lev	aac Asn	tcg Ser	Thr 245	Ser	gtc Val	aac Asn	gag Glu	acg Thr 250	Glu	acg Thr	acg Thr	gtt Val	gcc Ala 255	acg	768
	tgg Trp	caa Gln	gat Asp	cag Gln 260	Trp	gaa Glu	gat Asp	gtt Val	att Ile 265	Glu	cgc Arg	aaa Lys	gca Ala	aga Arg 270	Ser	cga Arg	816
10	aga Arg	gct Ala	gcc Ala 275	Asn	tct Ser	tgg Trp	gat Asp	cac His 280	tat Tyr	gtt Val	gaa Glu	gtc Val	ctt Leu 285	gtg Val	gtg Val	gcg Ala	864
15	gat Asp	aca Thr 290	Lys	atg Met	tac Tyr	gaa Glu	tat Tyr 295	cac His	gga Gly	aga Arg	tct Ser	ctt Leu 300	gaa Glu	gac Asp	tac Tyr	gtt Val	912
	ctc Leu 305	Thr	ctc Leu	ttc Phe	tcc Ser	aca Thr 310	gtt Val	gcc Ala	tcc Ser	atc Ile	tat Tyr 315	cgt Arg	cac His	caa Gln	tcc Ser	ctt Leu 320	960
20	cgt Arg	gca Ala	tct Ser	atc Ile	aat Asn 325	gtc Val	gtt Val	gtt Val	gtc Val	aag Lys 330	ttg Leu	atc Ile	gtt Val	ttg Leu	aaa Lys 335	acg Thr	1008
	gaa Glu	aac Asn	gct Ala	gga Gly 340	cca Pro	cga Arg	atc Ile	Thr	cag Gln 345	aac Asn	gct Ala	caa Gln	caa Gln	aca Thr 350	ctt Leu	caa Gln	1056
25	gat Asp	ttc Phe	tgt Cys 355	aga Arg	tgg Trp	cag Gln	Gln	tat Tyr 360	tac Tyr	aat Asn	gat Asp	cca Pro	gat Asp 365	gat Asp	tcg Ser	agt Ser	1104
30	gtc Val	caa Gln 370	cat His	cat His	gac Asp	Val	gca Ala 375	atc Ile	ctt Leu	ttg Leu	Thr	cgt Arg 380	aaa Lys	gat Asp	att Ile	tgt Cys	1152
	cga Arg 385	tca Ser	caa Gln	g ga Gly	Lys	tgc Cys 390	gat Asp'	aca Thr	ctt Leu	Gly :	ctt Leu 395	gct Ala	gaa Glu	ctt Leu	gga Gly	aca Thr 400	1200

	atg Met	tgt Cys	gat Asp	atg Met	Gln 405	Lys	agt Ser	tgt Cys	gca Ala	Ile 410	Ile	gaa Glu	gac Asp	aat Asn	gga Gly 415	ttg Leu	1248
5	agt Ser	gct Ala	gca Ala	ttc Phe 420	Thr	att	gct Ala	cat His	gaa Glu 425	Leu	ggt Gly	cat His	gtg Val	ttt Phe 430	Ser	att Ile	1296
	cct Pro	cat His	gat Asp 435	Asp	gaa Glu	cga Arg	aaa Lys	tgc Cys 440	tct Ser	acc Thr	tac Tyr	atg Met	ccg Pro 445	gtt Val	aat Asn	aag Lys	1344
10	aac Asn	aac Asn 450	ttc Phe	cac His	ata Ile	atg Met	gca Ala 455	Pro	acg Thr	ttg Leu	gaa Glu	tat Tyr 460	aac Asn	act Thr	cat His	cca Pro	1392
15	tgg Trp 465	agt Ser	tgg Trp	tcg Ser	cca Pro	tgt Cys 470	tca Ser	gct Ala	gga Gly	atg Met	ctc Leu 475	gaa Glu	cga Arg	ttc Phe	ctc Leu	gaa Glu 480	1440
	aat Asn	aat Asn	cga Arg	ggt Gly	caa Gln 485	act Thr	caa Gln	tgt Cys	cta Leu	ttc Phe 490	gat Asp	cag Gln	ccg Pro	gtc Val	gaa Glu 495	cgt Arg	1488
20	cgt Arg	tac Tyr	tac Tyr	gag Glu 500	gat Asp	gtc Val	ttt Phe	gta Val	cgt Arg 505	gat Asp	gaa Glu	cca Pro	gga Gly	aag Lys 510	aaa Lys	tac Tyr	1536
			cat His 515														1584
25	tgc Cys	cct Pro 530	tat Tyr	atg Met	ccg Pro	aca Thr	tgc Cys 535	cgc Arg	cgt Arg	ctt Leu	tgg Trp	tgt Cys 540	gca Ala	aca Thr	ttc Phe	tac Tyr	1632
30			cag Gln		Gly											gga Gly 560	1680
	act Thr	cct Pro	tgt Cys	Asp	gaa Glu 565	tca Ser	aga Arg	agc Ser	Met	ttc Phe 570	tgt Cys	cat His	cat His	Gly	gcc Ala 575	tgt Cys	1728

	gt Va.	t cg l Ar	t ct g Le	a gc u Al 58	a Pr	c gaa o Glu	a tco u Se:	c ct	t acu u Th 58	r Ly	a at s Il	t gad e Asj	c gg c Gl	y Gli 59	n Tr	g ggt o Gly	1776
5	vəl	o rri	59:	y se: 5	r Tr	b GTZ	y GI	600	s Sei	r Ar	g Th	r Cys	60:	y Gly	/ Gly	gtt Val	1824
	Caa Glr	a aaa 1 Lys 610	a GT	a tta y Leu	a aga	a gat J Asp	tgt Cys 615	s Asp	c ago Sei	c cca	a aaa b Lys	a cct s Pro 620	Arg	a aat y Asi	ggt Gly	gga Gly	1872
10	aag Lys 625	TAI	tgt Cys	gtt Val	ggt Gly	caa Gln 630	Arg	gaa Glu	a cgt a Arg	tat Tyr	Arg 635	g Ser	tgt Cys	aat Asn	aca Thr	caa Gln 640	1920
15	gaa Glu	tgc Cys	Pro	tgg Trp	gat Asp 645	Thr	caa Gln	cca Pro	tac Tyr	Arg 650	Glu	gtt Val	caa Gln	tgt Cys	tct Ser 655	gaa Glu	1968
	ttc Phe	aac Asn	aat Asn	aaa Lys 660	gat Asp	att Ile	gga Gly	atc Ile	caa Gln 665	ggt Gly	gtc Val	gct Ala	tca Ser	acg Thr 670	Asn	act Thr	2016
20	ćac His	tgg Trp	gtt Val 675	cca Pro	aaa Lys	tat Tyr	gcg Ala	aat Asn 680	gtt Val	gca Ala	cca Pro	aat Asn	gaa Glu 685	cgt Arg	tgc Cys	aag Lys	2064
	neu	690	Cys	Arg	Leu	Ser	695	Ser	Ala	Ala	Phe	tat Tyr 700	Leu	Leu	Arg	Asp	2112
25	705	AGI	AGT	ASP	дтÀ	710	Pro	Cys	Asp	Arg	Asn 715	gga Gly	Asp	Asp	Ile	Cys 720	2160
30	gta Val	gct Ala	gga Gly	gct Ala	tgt Cys 725	atg Met	cca Pro	gca Ala	ggc Gly	tgt Cys 730	gat Asp	cat His	caa Gln	ctt Leu	cat His 735	tca Ser	2208
	act Thr	ctc Leu	cga Arg	aga Arg 740	gac Asp	aaa Lys	tgt Cys	Gly	gtt Val 745	tgc Cys	ggt Gly	ggg Gly	gat Asp	gat Asp 750	tct Ser	tcc Ser	2256

,	tgt Cys	aag Lys	g gtt Val 755	. Val	aaa Lys	gga Gly	a aca 7 Thr	ttt Phe 760	: Asn	gag Glu	caa Glr	a gga n Gly	Thr 765	Phe	ggt Gly	tat Tyr	2304
5	aac Asi	gaa Glu 770	ı Val	atg . Met	aag Lys	att Ile	cca Pro 775	Ala	ggt Gly	tct Ser	gca	aat Asn 780	Ile	gat Asp	ato Ile	cgg Arg	2352
	cag Gln 785	Lys	gga Gly	tat Tyr	aat Asn	aat Asn 790	Met	aaa Lys	gaa Glu	gat Asp	gac Asp 795	Asn	tat Tyr	ctt Leu	tct Ser	Ctc Leu 800	2400
10	cgt Arg	gcc Ala	gcc	aat Asn	ggt Gly 805	gaa Glu	ttc Phe	cta Leu	ctt Leu	aac Asn 810	ggt Gly	cat His	ttc Phe	caa Gln	gta Val 815	tca Ser	2448
15	ctg Leu	gct Ala	cgc Arg	caa Gln 820	caa Gln	att Ile	gca Ala	ttc Phe	caa Gln 825	gac Asp	act Thr	gtt Val	ctc Leu	gaa Glu 830	tat Tyr	tct Ser	2496
	ggt Gly	tct Ser	gat Asp 835	gca Ala	att Ile	att Ile	gaa Glu	cgg Arg 840	ata Ile	aat Asn	gga Gly	act Thr	ggt Gly 845	ccg Pro	att Ile	aga Arg	2544
20	agt Ser	gac Asp 850	att Ile	tat Tyr	gtt Val	cat His	gtt Val 855	ctt Leu	tct Ser	gtt Val	ggt Gly	agt Ser 860	cat His	cca Pro	ccc Pro	gac Asp	2592
	atc Ile 865	tca Ser	tat Tyr	gag Glu	tac Tyr	atg Met 870	act Thr	gcg Ala	gct Ala	gtt Val	cca Pro 875	aat Asn	gct Ala	gta Val	att Ile	cgg Arg 880	2640
25	cca Pro	ata Ile	tcc Ser	Ser	gca Ala 885	ttg Leu	tat Tyr	ttg Leu	tgg Trp	aga Arg 890	gtt Val	acg Thr	gat Asp	act Thr	tgg Trp 895	aca Thr	2688
30	gaa Glu	tgt Cys	gat Asp	aga Arg 900	gcc Ala	tgt Cys	cgt Arg	gga Gly	cag Gln 905	caa Gln	tcg Ser	caa Gln	aaa Lys	tta Leu 910	atg Met	tgt Cys	2736
	ctg Leu	Asp	atg Met 915	tcg Ser	act Thr	cat His	Arg	caa Gln 920	agt Ser	cat His	gat Asp	aga Arg	aat Asn 925	tgt Cys	caa Gln	aat Asn	2784
	gtt	ctc	aaa	cca i	aaa	caa	gca	aca	cga	atg	tgc	aat	ata	gat	tgt	tct	2832

		,,,,	•				933					940	•			Ser	
5	aca Thr 945		tgg Tr	g ato D Ile	act Thr	gaa Glu 950	wab	gtç Val	tct Ser	agt Ser	tgt Cys 955	s Ser	gcc	aaa Lys	tgt Cys	gga Gly 960	2880
		013	U1 1.	. Ly3	965	GIII	Arg	val	ser	970	Val	. Lys	Met	Glu	975		2928
10	•••	01,1		980	Ald	Set	GIU	nis	985	Cys	Asp	Arg	Asn	Ser 990	Lys		2976
	tcc Ser	gat Asp	att Ile 995	gcc Ala	agt Ser	tgt Cys	LAL	att Ile .000	gac Asp	tgc Cys	tct Ser	Gly	aga Arg 1005	aaa Lys	tgg Trp	aac Asn	3024
15	- 7 -	gga Gly 1010	gaa Glu	tgg Trp	act Thr	set	tgt Cys 015	tct Ser	gaa Glu	act Thr	Суз	gga Gly 1020	tcg Ser	aat Asn	gga Gly	aaa Lys	3072
20	atg Met 1025	1115	cgg Arg	aag Lys	Ser	tat Tyr 030	Cys	val	gat Asp	Asp	Ser	Asn	cgt Arg	cga Arg	Val	gat Asp .040	3120
	gag Glu	tca Ser	ttg Leu	tgc Cys 1	ggc Gly 045	aga (Ar g (gaa (Slu (cag Gln	гÀ2	gag Glu 050	gcg Ala	aca Thr	gaa Glu	Arg	gaa Glu .055	tgt Cys	3168
25	aac Asn	aga Arg	TTC	cca Pro (060	tgt (Cys)	cca a Pro A	aga t Arg T	rp	gtt Val 065	tat Tyr	ggg Gly	cat His	Trp	tca Ser 070	gag Glu	tgc Cys	3216
	tct (n.y	agt Ser 075	tgt o Cys <i>l</i>	gat (Asp (ggt g Gly G	TA A	tc a /al 1 /80	aaa a Lys M	atg (Met)	cgt Arg	His A	gct Ala (085	caa Gln	tgt Cys	ttg Leu	3264
30	gat q Asp 1	gca (Ala 1 090	gcc (Ala /	gat o Asp A	egg g	jaa a Slu T 10	nr H	at a is]	aca t Thr S	cc a Ser A	Arg (tgt o Cys (ggt o Sly 1	cca Pro	gca (Ala (cag Sln	3312

	aca caa gaa cat tgt aat gaa cat gct tgt act tgg tgg cag ttc gga Thr Gln Glu His Cys Asn Glu His Ala Cys Thr Trp Trp Gln Phe Gly 1105 1110 1115 1120	3360
5	gtc tgg tct gac tgc tca gct aag tgt gga gat ggt gta cag tat cga Val Trp Ser Asp Cys Ser Ala Lys Cys Gly Asp Gly Val Gln Tyr Arg 1125 1130 1135	3408
	gac gct aat tgt acc gat cgt cat aga tca gta cta ccg gaa cat cgt Asp Ala Asn Cys Thr Asp Arg His Arg Ser Val Leu Pro Glu His Arg 1140 1145 1150	3456
10	tgc ctt aaa atg gaa aag ata att aca aaa cca tgt cat aga gaa tca 3 Cys Leu Lys Met Glu Lys Ile Ile Thr Lys Pro Cys His Arg Glu Ser 1155 1160 1165	3504
15	tgt cca aaa tat aaa ctt gga gaa tgg tct cag tgt agt gtt tct tgt 3 Cys Pro Lys Tyr Lys Leu Gly Glu Trp Ser Gln Cys Ser Val Ser Cys 1170 1175 1180	3552
	gag gat gga tgg tcg tca aga aga gtt tca tgt gtt tct gga aat gga 3 Glu Asp Gly Trp Ser Ser Arg Arg Val Ser Cys Val Ser Gly Asn Gly 1185 1190 1195 1200	600
20	act gaa gtc gat atg tca ctt tgt ggt act gca tct gat cgg cct gct 3 Thr Glu Val Asp Met Ser Leu Cys Gly Thr Ala Ser Asp Arg Pro Ala 1205 1210 1215	648
	tct cat cag aca tgt aat tta ggc act tgc cca ttt tgg aga aat act Ser His Gln Thr Cys Asn Leu Gly Thr Cys Pro Phe Trp Arg Asn Thr 1220 1225 1230	696
25	gat tgg agt gct tgt tct gta tct tgt gga atc ggt cat cgg gaa cgt 3 Asp Trp Ser Ala Cys Ser Val Ser Cys Gly Ile Gly His Arg Glu Arg 1235 1240 1245	744
30	aca acc gaa tgc ata tac cgc gaa caa tct gtt gat gct tct ttt tgt Thr Thr Glu Cys Ile Tyr Arg Glu Gln Ser Val Asp Ala Ser Phe Cys 1250 1255 1260	792
	gga gat acc aaa atg cca gaa act agt caa act tgc cat ctt ctg cca 36 Gly Asp Thr Lys Met Pro Glu Thr Ser Gln Thr Cys His Leu Leu Pro 1265 1270 1275 1280	340

	tgt aca tct tgg aaa cca agt cat tgg tcc cct tgc tca gtc act tgt 38 Cys Thr Ser Trp Lys Pro Ser His Trp Ser Pro Cys Ser Val Thr Cys 1285 1290 1295	888
5	gga tca gga att cag act aga agt gtt tcg tgt act cgt gga tct gaa 39 Gly Ser Gly Ile Gln Thr Arg Ser Val Ser Cys Thr Arg Gly Ser Glu 1300 1305 1310	936
	gga act att gtt gat gaa tat ttt tgt gat cga aat act cgt cca cgc 39 Gly Thr Ile Val Asp Glu Tyr Phe Cys Asp Arg Asn Thr Arg Pro Arg 1315 1320 1325	984
10	cta aaa aag act tgt gaa aaa gat act tgt gat ggg ccc aga gta ctt 40 Leu Lys Lys Thr Cys Glu Lys Asp Thr Cys Asp Gly Pro Arg Val Leu 1330 1335 1340	32
15	caa aaa ctt caa gcc gac gta cca cca atc cga tgg gca acc gga cca 40 Gln Lys Leu Gln Ala Asp Val Pro Pro Ile Arg Trp Ala Thr Gly Pro 1345 1350 1355 1360	080
	tgg aca gcc tgt tca gca act tgt ggt aat ggt act caa cgt cgt ctt 41 Trp Thr Ala Cys Ser Ala Thr Cys Gly Asn Gly Thr Gln Arg Arg Leu 1365 1370 1375	28
20	ctc aag tgc cga gat cat gtt cgt gat ctt cct gat gag tat tgc aat 41° Leu Lys Cys Arg Asp His Val Arg Asp Leu Pro Asp Glu Tyr Cys Asn 1380 1385 1390	76
	cat ttg gat aag gaa gta tca aca aga aat tgt cgc ctt cgt gat tgt 42: His Leu Asp Lys Glu Val Ser Thr Arg Asn Cys Arg Leu Arg Asp Cys 1395 1400 1405	24
25	tca tac tgg aaa atg gcg gaa tgg gaa gag tgt cca gct act tgt gga 42° Ser Tyr Trp Lys Met Ala Glu Trp Glu Glu Cys Pro Ala Thr Cys Gly 1410 1415 1420	72
30	act cat gtt caa caa agt aga aat gtt aca tgc gtc agt gcg gaa gac Thr His Val Gln Gln Ser Arg Asn Val Thr Cys Val Ser Ala Glu Asp 1425 1430 1435 1440	20
	ggt ggt cgg acg att ttg aaa gat gtt gat tgt gat gtg caa aag aga 436 Gly Gly Arg Thr Ile Leu Lys Asp Val Asp Cys Asp Val Gln Lys Arg 1445 1450 1455	68

	cca aca agt gca aga aat tgc cga ctt gaa ccc tgt cca aag gga gaa Pro Thr Ser Ala Arg Asn Cys Arg Leu Glu Pro Cys Pro Lys Gly Glu 1460 1465 1470	4416
5	gaa cat att gga tcc tgg att att gga gat tgg tca aaa tgc tct gct Glu His Ile Gly Ser Trp Ile Ile Gly Asp Trp Ser Lys Cys Ser Ala 1475 1480 1485	4464
	tct tgt ggt ggg gga tgg cgt cgt cgc agt gta tct tgc act tcg tct Ser Cys Gly Gly Trp Arg Arg Ser Val Ser Cys Thr Ser Ser 1490 1495 1500	4512
10	tct tgc gat gaa acc aga aaa cca aag atg ttt gat aaa tgc aat gaa Ser Cys Asp Glu Thr Arg Lys Pro Lys Met Phe Asp Lys Cys Asn Glu 1505 1510 1515	4560
15	gaa cta tgt cca cca ctc aca aat aat tct tgg cag ata tct cca tgg Glu Leu Cys Pro Pro Leu Thr Asn Asn Ser Trp Gln Ile Ser Pro Trp 1525 1530 1535	4608
	act cac tgt tct gta tcg tgt ggc ggg gga gtt caa cgc cgc aaa atc Thr His Cys Ser Val Ser Cys Gly Gly Gly Val Gln Arg Arg Lys Ile 1540 1545 1550	4656
20	tgg tgt gaa gac gtg ctt tcc ggt cgt aaa caa gac gat atc gag tgc Trp Cys Glu Asp Val Leu Ser Gly Arg Lys Gln Asp Asp Ile Glu Cys 1555 1560 1565	4704
	tca gag att aag cct cgc gaa caa aga gat tgt gaa atg cct cca tgc Ser Glu Ile Lys Pro Arg Glu Gln Arg Asp Cys Glu Met Pro Pro Cys 1570 1575 1580	4752
25	cga tct cat tat cac aac aaa aca tca tca gca tca atg aca tca tta Arg Ser His Tyr His Asn Lys Thr Ser Ser Ala Ser Met Thr Ser Leu 1585 1590 1595 1600	4800
30	tca tct tcg aat tca aat acg acg tct tcc gct tcc gct tct tcg ctt Ser Ser Ser Asn Ser Asn Thr Thr Ser Ser Ala Ser Ala Ser Ser Leu 1605 1610 1615	4848
	cct atc ctt cca ccc gtc gtc tcc tgg caa acg tct gca tgg agc gcg Pro Ile Leu Pro Pro Val Val Ser Trp Gln Thr Ser Ala Trp Ser Ala 1620 1625 1630	4896

	tgt tct gca aaa tgc ggt cgt gga acg aaa cga aga gtt gtc gaa tgt Cys Ser Ala Lys Cys Gly Arg Gly Thr Lys Arg Arg Val Val Glu Cys 1635 1640 1645	4944
5	gta aat cca tca tta aat gtg aca gtg gca agt aca gaa tgt gat caa Val Asn Pro Ser Leu Asn Val Thr Val Ala Ser Thr Glu Cys Asp Gln 1650 1655 1660	4992
	acg aag aaa cca gtt gaa gaa gtt cgt tgt cgt act aaa cat tgc ccg Thr Lys Lys Pro Val Glu Glu Val Arg Cys Arg Thr Lys His Cys Pro 1665 1670 1675 1680	5040
10	aga tgg aag act act tgg agt tcg tgt tct gtc acc tgt ggc aga Arg Trp Lys Thr Thr Trp Ser Ser Cys Ser Val Thr Cys Gly Arg 1685 1690 1695	5088
15	gga atc aga cgt cgt gaa gtt caa tgt tat cgt ggt cgc aag aat ttg Gly Ile Arg Arg Arg Glu Val Gln Cys Tyr Arg Gly Arg Lys Asn Leu 1700 1705	5136
	gtg tct gat tcg gag tgc aat cca aaa act aag ctc aac tct gtt gcc Val Ser Asp Ser Glu Cys Asn Pro Lys Thr Lys Leu Asn Ser Val Ala 1715 1720 1725	5184
20	aac tgt ttc cca gtg gct tgt cca gct tat aga tgg aat gtt act cca Asn Cys Phe Pro Val Ala Cys Pro Ala Tyr Arg Trp Asn Val Thr Pro 1730 1740	5232
	tgg agc aag tgc aaa gat gag tgt gct cga gga caa aag caa act cgt Trp Ser Lys Cys Lys Asp Glu Cys Ala Arg Gly Gln Lys Gln Thr Arg 1745 1750 1760	5280
25	cgg gtg cac tgt ata agc act tct ggt aaa cga gca gct cca cga atg Arg Val His Cys Ile Ser Thr Ser Gly Lys Arg Ala Ala Pro Arg Met 1765 1770 1775	5328
30	tgt gaa ttg gct cgt gca cca act tcg atc aga gag tgc gat aca tca 5 Cys Glu Leu Ala Arg Ala Pro Thr Ser Ile Arg Glu Cys Asp Thr Ser 1780 1785 1790	376
	aat tgt cca tat gag tgg gtg cca gga gat tgg caa acg tgt tca aag 5 Asn Cys Pro Tyr Glu Trp Val Pro Gly Asp Trp Gln Thr Cys Ser Lys 1795 1800 1805	424

	tca tgt gga gaa gga gta cag aca cga gaa gtc aga tgt cgt aga aag 547; Ser Cys Gly Glu Gly Val Gln Thr Arg Glu Val Arg Cys Arg Arg Lys 1810 1815 1820	2
5	att aat ttt aac tca acc att cca att ata ttt atg ctc gaa gat gaa 5520 Ile Asn Phe Asn Ser Thr Ile Pro Ile Ile Phe Met Leu Glu Asp Glu 1825 1830 1835 1840	O
	cca gct gta cca aaa gag aaa tgt gaa ctt ttc cca aaa cca aat gaa 5568 Pro Ala Val Pro Lys Glu Lys Cys Glu Leu Phe Pro Lys Pro Asn Glu 1845 1850 1855	3
10	tct caa acg tgc gaa ctt aac cca tgc gat tcg gaa ttc aaa tgg agt 5616 Ser Gln Thr Cys Glu Leu Asn Pro Cys Asp Ser Glu Phe Lys Trp Ser 1860 1865 1870	5
15	ttc gga cca tgg ggt gaa tgc tcg aaa aat tgc ggt caa ggt att cga 5664 Phe Gly Pro Trp Gly Glu Cys Ser Lys Asn Cys Gly Gln Gly Ile Arg 1875 1880 1885	1
	cgt cga cgt gtc aag tgt gtg gcc aat gat ggt cgt cga gtt gaa cga 5712 Arg Arg Arg Val Lys Cys Val Ala Asn Asp Gly Arg Arg Val Glu Arg 1890 1895 1900	?
20	gtc aag tgt acc aca aag aaa cca cgt cga act caa tat tgt ttt gaa 5760 Val Lys Cys Thr Thr Lys Lys Pro Arg Arg Thr Gln Tyr Cys Phe Glu 1905 1910 1915 1920	}
	aga aat tgc ctt ccg tca act tgt cag gag ctt aaa tct cag aat gtt 5808 Arg Asn Cys Leu Pro Ser Thr Cys Gln Glu Leu Lys Ser Gln Asn Val 1925 1930 1935	ł
25	aag gct aaa gat gga aat tac act att ctt ctt gac gga ttc act att 5856 Lys Ala Lys Asp Gly Asn Tyr Thr Ile Leu Leu Asp Gly Phe Thr Ile 1940 1945 1950	i I
30	gaa att tat tgt cat cga atg aat tca acc att cct aaa gct tat ttg 5904 Glu Ile Tyr Cys His Arg Met Asn Ser Thr Ile Pro Lys Ala Tyr Leu 1955 1960 1965	
	aac gtt aat cca aga acc aat ttt gca gag gtt tat gga aaa aaa tta 5952 Asn Val Asn Pro Arg Thr Asn Phe Ala Glu Val Tyr Gly Lys Lys Leu 1970 1975 1980	

	ata t Ile T 1985	ac cci yr Pro	t cat o His	Thr	tgc Cys 1990	Pro	ttt Phe	aat Asn	Gly	gat Asp 1995	Arg	aat Asn	gat Asp	Ser	tgc Cys 2000	6000
5	cat to His C	gt tca ys Sei	r Glu	gac Asp 2005	ggc Gly	gat Asp	gca Ala	Ser	gct Ala 2010	Gly	ttg Leu	acg Thr	Arg	ttc Phe 2015	aat Asn	6048
	aaa gi Lys Va	tt cga al Arg	a ata g Ile 2020	gat Asp	ttg Leu	ttg Leu	Asn	aga Arg 2025	aag Lys	ttc Phe	cat His	Leu	gcg Ala 2030	gat Asp	tat Tyr	6096
10	aca tt Thr Ph	t gca ne Ala 2035	Lys	cga Arg	gaa Glu	Tyr	ggt Gly 2040	gtt Val	cat His	gtg Val	Pro	tat Tyr 2045	ggt Gly	act Thr	gcc Ala	6144
15	ggt ga Gly As 205	p Cys	tac Tyr	agt S e r	Met	aaa Lys 055	gat Asp	tgt Cys	cca Pro	Gln	gga Gly 2060	ata Ile	ttc Phe	tca Ser	att Ile	6192
	gat tt Asp Le 2065	a aaa u Lys	tct Ser	Ala	ggt Gly: 0 70	ctg Leu	aaa Lys	tta Leu	Val	gac Asp 2075	gat Asp	ctg Leu	aat Asn	Trp	gag Glu 1080	6240
20	gat ca Asp Gl	a ggt n Gly	His	cga (Arg (aca ' Thr :	tcc Ser	tct Ser	Arg	atc Ile 090	gat Asp	cgt Arg	ttt Phe	Tyr	aac Asn 095	aat Asn	6288
	gca aa Ala Ly	s val	att d Ile d 2100	ggt d Gly H	cac t His (tgt Cys	Gly	ggt Gly 105	ttt Phe	tgt Cys	gga Gly	Lys	tgc Cys 110	tct Ser	cct Pro	6336
25	gag cgg Glu Arg	g tac g Tyr 2115	aaa q Lys (gga c Sly I	cta a Leu I	le	ttt (Phe (120	gaa Glu	gtt Val	aat Asn	Thr	aaa Lys 125	tta Leu	tta Leu .	aat Asn	6384
30	Cat gto His Val 2130	гтуз	aat o Asn G	gt g Sly G	Hy H	ac a lis 1	att ([le]	gat d Asp 1	gat (Asp (Glu :	ttg (Leu 1 140	gat Asp	gat Asp	gat (Asp (ggt Gly	6432
	ttc tct Phe Ser 2145	ggt Gly	gac a Asp M	et A	at t sp 50	aa t	tttt	tcga	at a	ccta	aaagt	gt	caaa	atct		6483

agttttaat agcattactt cgaatttatt gtcattccct caatcaccta acactaggtt 6603 ttctacatag tatgttcctt gaaaatgttt catgatcaaa ggttacggta cttttg 6659

<210> 2
5 <211> 2150
 <212> PRT
 <213> Caenorhabditis elegans

<400> 2

- Met Arg Ser Ile Gly Gly Ser Phe His Leu Leu Gln Pro Val Val Ala 10

 Ala Leu Ile Leu Leu Val Val Cys Leu Val Tyr Ala Leu Gln Ser Gly 25

 Ser Gly Thr Ile Ser Glu Phe Ser Ser Asp Val Leu Phe Ser Arg Ala 45
- Lys Tyr Ser Gly Val Pro Val His His Ser Arg Trp Arg Gln Asp Ala 50 55 60

 Gly Ile His Val Ile Asp Ser His His Ile Val Arg Arg Asp Ser Tyr
- 65 70 75 80

 Gly Arg Arg Gly Lys Arg Asp Val Thr Ser Thr Asp Arg Arg Arg Arg 20 85 90 95
 - Leu Gln Gly Val Ala Arg Asp Cys Gly His Ala Cys His Leu Arg Leu 100 105 110
 - Arg Ser Asp Asp Ala Val Tyr Ile Val His Leu His Arg Trp Asn Gln 115 120 125
- 25 Ile Pro Asp Ser His Asn Lys Ser Val Pro His Phe Ser Asn Ser Asn 130 135 140
 - Phe Ala Pro Met Val Leu Tyr Leu Asp Ser Glu Glu Glu Val Arg Gly 145 150 155 160
- Gly Met Ser Arg Thr Asp Pro Asp Cys Ile Tyr Arg Ala His Val Lys
 165 170 175

													•			
	Gly	v Val	l His	180	His	Ser	Ile	val	. Asr 185		Cys	Asp	Ser	Glu 190	_	Gly
٠	Leu	Туг	Gly 195		Leu	Ala	Leu	Pro 200		Gly	Ile	His	Thr 205		Glu	Pro
5	Ile	210	e Ser	Gly	' Asn	Gly	Thr 215		His	Asp	Gly	Ala 220		Arg	His	Arg
	Gln 225	His	Leu	Val	Arg	Lys 230		Asp	Pro	Met	His 235		Lys	Ser	Phe	Asp 240
10	His	Leu	Asn	Ser	Thr 245		Val	Asn	Glu	Thr 250		Thr	Thr	Val	Ala 255	
	Trp	Gln	Asp	Gln 260	Trp	Glu	Asp	Val	11e 265		Arg	Lys	Ala	Arg 270	Ser	Arg
	Arg	Ala	Ala 275	Asn	Ser	Trp	Asp	His 280	Tyr	Val	Glu	Val	Leu 285		Val	Ala
15	Asp	Thr 290	Lys	Met	Tyr	Glu	Tyr 295	His	Gly	Arg	Ser	Leu 300	Glu	Asp	Tyr	Val
	Leu 305	Thr	Leu	Phe	Ser	Thr 310	Val	Ala	Ser	Ile	Tyr 315	Arg	His	Gln	Ser	Leu 320
20	Arg	Ala	Ser	Ile	Asn 325	Val	Val	Val	Val	Lys 330	Leu	Ile	Val	Leu	Lys 335	Thr
	Glu	Asn	Ala	Gly 340	Pro	Arg	Ile	Thr	Gln 345	Asn	Ala	Gln	Gln	Thr 350	Leu	Gln
	Asp	Phe	Cys 355	Arg	Trp	Gln	Gln	Tyr 360	Tyr	Asn	Asp	Pro	Asp 365	Asp	Ser	Ser
25	Val	Gln 370	His	His	Asp		Ala 375	Ile	Leu	Leu	Thr	Arg 380	Lys	qeA	Ile	Cys
	Arg 385	Ser	Gln	Gly		Cys 390	Asp	Thr	Leu	_	Leu 395	Ala	Glu	Leu	Gly	Thr 400
30	Met	Cys	Asp	Met	Gln 405	Lys	Ser	Cys		Ile 410	Ile	Glu	Asp		Gly 415	Leu

	Ser	Ala	Ala	Phe 420	Thi	: Ile	e Ala	a His	425		Gly	/ His	val	Phe 430	e Ser	Ile
	Pro	His	Asp 435		Glu	Arg	, Lys	440		Thr	Tyr	Met	Pro 445		. Asn	Lys
5	Asn	Asn 450	Phe	His	Ile	Met	Ala 455		Thr	Leu	Glu	Tyr 460		Thr	His	Pro
	Trp 465		Trp	Ser	Pro	Cys 470		Ala	Gly	Met	Leu 475		Arg	Phe	Leu	Glu 480
10	Asn	Asn	Arg	Gly	Gln 485		Gln	Cys	Leu	Phe 490		Gln	Pro	Val	Glu 495	-
	Arg	Tyr	Tyr	Glu 500		Val	Phe	Val	Arg 505		Glu	Pro	Gly	Lys 510	Lys	Tyr
	Asp	Ala	His 515	Gln	Gln	Суз	Lys	Phe 520	Val	Phe	Gly	Pro	Ala 525		Glu	Leu
15	Cys	Pro 530	Tyr	Met	Pro	Thr	Cys 535	Arg	Arg	Leu	Trp	Cys 540		Thr	Phe	Tyr
	Gly 545	Ser	Gln	Met	Gly	Cys 550	Arg	Thr	Gln	His	Met 555	Pro	Trp	Ala	Asp	Gly 560
20	Thr	Pro	Суз	Asp	Glu 565	Ser	Arg	Ser	Met	Phe 570	Cys	His	His	Gly	Ala 575	Cys
	Val	Arg	Leu	Ala 580	Pro	Glu	Ser	Leu	Thr 585	Lys	Ile	Asp	Gly	Gln 590	Trp	Gly
	Asp	Trp	Arg 595	Ser	Trp	Gly	Glu	Cys 600	Ser	Arg	Thr	Cys	Gly 605	Gly	Gly	Val
25	Gln	Lys 610	Gly	Leu	Arg	Asp	Cys 615	Asp	Ser	Pro	Lys	Pro 620	Arg	Asn	Gly	Gly
	Lys 625	Tyr	Cys	Val	Gly	Gln 630	Arg	Glu	Arg	Tyr	Arg 635	Ser	Cys	Asn	Thr	Gln 640
30	Glu	Cys	Pro	Trp	Asp 645	Thr	Gln	Pro	Tyr	Arg 650	Glu	Val	Gln	Cys	Ser 655	Glu

	Phe	Asn	Asn	Lys 660		Ile	e Gly	Ile	Gln 665		Val	Ala	a Ser	Thr 670		Thr
•	His	Trp	Val 675		Lys	Туг	Ala	Asn 680		Ala	Pro	Asr	Glu 685	_	Cys	ГЛа
5	Leu	Tyr 690		Arg	Leu	Ser	Gly 695		Ala	Ala	Phe	Tyr 700		Leu	Arg	Asp
	Lys 705	Val	Val	Asp	Gly	Thr 710		Суз	Asp	Arg	Asn 715		Asp	Asp	Ile	Cys 720
10	Val	Ala	Gly	Ala	Cys 725	Met	Pro	Ala	Gly	Cys 730		His	Gln	Leu	His 735	Ser
	Thr	Leu	Arg	Arg 740	Asp	Lys	Cys	Gly	Val 745		Gly	Gly	As p	Asp 750	Ser	Ser
	Суз	Lys	Val 7 5 5	Val	Lys	Gly	Thr	Phe 760	Asn	Glu	Gln	Gly	Thr 765	Phe	Gly	Tyr
15	Asn	Glu 770	Val	Met	Lys	Ile	Pro 775	Ala	Gly	Ser	Ala	Asn 780		Asp	Ile	Arg
	Gln 785	Lys	Gly	Tyr	Asn	Asn 790	Met	Lys	Glu	Asp	Asp 795	Asn	Tyr	Leu	Ser	Leu 800
20	Arg	Ala	Ala	Asn	Gly 805	Glu	Phe	Leu	Leu	Asn 810	Gly	His	Phe	Gln	Val 815	Ser
	Leu	Ala	Arg	Gln 820	Gln	Ile	Ala	Phe	Gln 825	Asp	Thr	Val	Leu	Glu 830	Tyr	Ser
	Gly	Ser	Asp 835	Ala	Ile	Ile	Glu	Arg 840	Ile	Asn	Gly	Thr	Gly 845	Pro	Ile	Arg
25	Ser	Asp 850	Ile	Tyr	Val	His	Val 855	Leu	Ser	Val	Gly	Ser 860	His	Pro	Pro	Asp
	Ile 865	Ser	Tyr	Glu		Met 870	Thr	Ala	Ala	Val	Pro 875	Asn	Ala	Val	Ile	Arg 880
30	Pro	Ile	Ser		Ala 885	Leu	Tyr	Leu	Trp	Arg 890	Val	Thr	Asp	Thr	Trp 895	Thr

	Glu	ı Cys	a Asp	900	Ala	Cys	a Arg	Gly	Gln 905		Ser	Gln	Lys	Leu 910		Cys
•	Lev	a Asp	915	Ser	Thr	His	a Arg	Gln 920		His	Asp	Arg	Asn 925	_	Gln	Asn
5	Val	. Le v	ı Lys	Pro	Lys	Gln	Ala 935		Arg	Met	Суз	Asn 940		Asp	Cys	Ser
	Thr 945	Arg	J Trp	Ile	Thr	Glu 950	Asp	Val	Ser	Ser	Cys 955	Ser	Ala	Lys	Суз	Gly 960
10	Ser	Gly	Gln	Lys	Arg 965		Arg	Val	Ser	Cys 970		Lys	Met	Glu	Gly 975	Asp
	Arg	Gln	Thr	Pro 980	Ala	Ser	Glu	His	Le u 985	Суз	Asp	Arg	Asn	Ser 990	Lys	Pro
	Ser	Asp	Ile 995	Ala	Ser	Cys	Tyr	Ile LOOO	qeA	Cys	Ser		Arg 1005	Lys	Trp	Asn
15	Tyr	Gly 1010	Glu	Trp	Thr		Cys 1015	Ser	Glu	Thr		Gly 1020	Ser	Asn	Gly	Lys
	Met 025	His	Arg	Lys		Tyr L030	Cys	Val	Asp		Ser 1035	Asn	Arg	Arg		Asp L040
20	Glu	Ser	Leu		Gly 1045	Arg	Glu	Gln		Glu L050	Ala	Thr	Glu		Glu 1055	Cys
	Asn	Arg		Pro 1060	Суз	Pro	Arg		Val .065	Tyr	Gly	His		Ser .070	Glu	Cys
	Ser		Ser 1075	Cys	Asp	Gly	Gly 1	Val 080	Lys	Met	Arg		Ala .085	Gln	Суз	Leu
25	Asp	Ala LO90	Ala	Asp	Arg		Thr 1095	His	Thr	Ser		Cys 100	Gly	Pro	Ala	Gln
	Thr 105	Gln	Glu	His		Asn 110	Glu	His	Ala	-	Thr 115	Trp	Trp	Gln		Gly 120
30	Val	Trp	Ser		Cys 125	Ser	Ala	Lys		Gly 130	Asp	Gly	Val		Tyr 135	Arg

	Asp Ala Asn Cys Thr Asp	Arg His Arg Ser Val	Leu Pro Glu His Arg
	1140	1145	1150
	Cys Leu Lys Met Glu Lys	Ile Ile Thr Lys Pro	Cys His Arg Glu Ser
	1155	1160	1165
5	Cys Pro Lys Tyr Lys Leu 1170		Cys Ser Val Ser Cys
	Glu Asp Gly Trp Ser Ser	Arg Arg Val Ser Cys	Val Ser Gly Asn Gly
	185 1190	1195	1200
10	Thr Glu Val Asp Met Ser	Leu Cys Gly Thr Ala	Ser Asp Arg Pro Ala
	1205	1210	1215
	Ser His Gln Thr Cys Asn	Leu Gly Thr Cys Pro	Phe Trp Arg Asn Thr
	1220	1225	1230
	Asp Trp Ser Ala Cys Ser	Val Ser Cys Gly Ile	Gly His Arg Glu Arg
	1235	1240	1245
15	Thr Thr Glu Cys Ile Tyr 1250		Asp Ala Ser Phe Cys .260
	Gly Asp Thr Lys Met Pro	Glu Thr Ser Gln Thr	Cys His Leu Leu Pro
	265 1270	1275	1280
20	Cys Thr Ser Trp Lys Pro	Ser His Trp Ser Pro	Cys Ser Val Thr Cys
	1285	1290	1295
	Gly Ser Gly Ile Gln Thr	Arg Ser Val Ser Cys	Thr Arg Gly Ser Glu
	1300	1305	1310
	Gly Thr Ile Val Asp Glu	Tyr Phe Cys Asp Arg	Asn Thr Arg Pro Arg
	1315	1320	1325
25	Leu Lys Lys Thr Cys Glu 1330		Gly Pro Arg Val Leu .340
	Gln Lys Leu Gln Ala Asp	Val Pro Pro Ile Arg	Trp Ala Thr Gly Pro
	1345 1350	1355	1360
30	Trp Thr Ala Cys Ser Ala	Thr Cys Gly Asn Gly	Thr Gln Arg Arg Leu
	1365	1370	1375

	Leu	Lys	Суз	Arg 1 38 0	Asp	His	Val	_	Asp 1385	Leu	Pro	Asp		Tyr 1390	Суз	Asn
	His		Asp 1395	_	Glu	Val		Thr 1400	Arg	Asn	Cys	_	Leu L405	Arg	Asp	Суз
5		Tyr 1410	Trp	Lys	Met		Glu 1415	Trp	Glu	Glu	-	Pro 1420	Ala	Thr	Cys	Gly
	Thr 425		Val	Gln		Ser 1430	Arg	Asn	Val		Cys 1435	Val	Ser	Ala		Asp L440
10	Gly	Gly	Arg		Ile 1445	Leu	Lys	Asp		Asp 1450	Cys	Asp	Val		Lys 1455	Arg
	Pro	Thr	Ser	Ala 1460	Arg	Asn	Cys	-	Leu 1465	Glu	Pro	Cys		Lys .470	Gly	Glu
	Glu		Ile 1475	Gly	Ser	Trp		Ile 1480	Gly	Asp	Trp		Lys 485	Суз	Ser	Ala
15		Cys 1490	Gly	Gly	Gly	_	Arg 1495	Arg	Arg	Ser		Ser .500	Cys	Thr	Ser	Ser
	Ser 505	Cys	Asp	Glu		Arg L510	Lys	Pro	Lys		Phe 515	Asp	Lys	Cys		Glu 520
20	Glu	Leu	Cys		Pro 525	Leu	Thr	Asn		Ser .530	Trp	Gln	Ile		Pro .535	Trp
	Thr	His	Cys 1	Ser .540	Val	Ser	Cys	_	Gly .545	Gly	Val	Gln	_	Arg .550	Lys	Ile
	Trp	-	Glu 1555	Asp	Val	Leu		Gly .560	Arg	Lys	Gln	_	Asp 565	Ile	Glu	Суз
25		Glu 570	Ile	Lys	Pro	_	Glu .575	Gln	Arg	Asp	_	Glu 580	Met	Pro	Pro	Cys
	Arg 585	Ser	His	Tyr		Asn 590	Lys	Thr	Ser		Ala 595	Ser	Met	Thr		Leu 600
30	Ser	Ser	Ser		Ser 605	Asn	Thr	Thr		Ser 610	Ala	Ser	Ala		Ser 615	Leu

	Pro :	Ile I	Leu Pro 1620	Pro	Val	Val	Ser	Trp 1625	Gln	Thr	Ser		Trp 1630	Ser	Ala
•	Cys S	Ser A	Ala Lys 535	s Cys	Gly	Arg	Gly 1640	Thr	Lys	Arg		Val 1645		Glu	Cys
5	Val <i>1</i>	Asn E 550	Pro Sei	Leu	Asn	Val 1655	Thr	Val	Ala		Thr 1660	Glu	Cys	Asp	Gln
	Thr 1665	Lys I	ys Pro	Val	Glu 1670	Glu	Val	Arg		Arg 1675	Thr	ГЛа	His		Pro 1680
10	Arg T	rp L	ys Thr	Thr 1685	Thr	Trp	Ser		Суз 1690	Ser	Val	Thr	-	Gly 695	Arg
	Gly I	le A	rg Arg 1700	Arg	Glu	Val	Gln	Cys 1705	Tyr	Arg	Gly		Lys 1710	Asn	Leu
	Val S	er A 17	sp Ser 15	Glu	Cys	Asn 1	Pro L720	Lys	Thr	Lys		Asn .725	Ser	Val	Ala
15	Asn C	ys P 30	he Pro	Val	Ala 1	Cys 1735	Pro	Ala	Tyr		Trp 740	Asn	Val	Thr	Pro
	Trp S	er L	ys Cys	Lys 1	Asp 750	Glu	Cys	Ala		Gly 755	Gln	Lys	Gln		Arg 760
20	Arg V	al H:	is Cys	Ile 1765	Ser	Thr	Ser		Lys 770	Arg	Ala	Ala		Arg 775	Met
	Cys G	lu Le	1780	Arg	Ala	Pro		Ser 785	Ile	Arg	Glu		Asp '	Thr :	Ser
	Asn Cy	ys Pr 179	o Tyr 95	Glu	Trp	Val. 1	Pro 800	Gly .	Asp '	Trp		Thr 805	Cys :	Ser 1	Гуз
25	Ser Cy 181	ys Gl lO	y Glu	Gly '	Val	Gln ' 815	Thr .	Arg	Glu '		Arg (Cys .	Arg /	Arg 1	Lys
	Ile As 825	en Ph	e Asn	Ser 1	Thr 3	Ile :	Pro	Ile :		Phe 1 835	Met 1	Leu (Glu <i>P</i>	_	51u 840
30	Pro Al	a Va	l Pro 1	Lys (845	Glu 1	Lys (Cys (Leu 1 850	Phe I	Pro I	Lys 1		lsn G	Slu

	Ser	Gln	Thr	Cys 1860	Glu	Leu	Asn	Pro	Cys 1865		Ser	Glu	Phe	Lys 1870	_	Ser
	Phe	Gly	Pro 1875		Gly	Glu		Ser 1880		Asn	Cys	Gly	Gln 1885	Gly	Ile	Arç
5		Arg 1890		Val	Lys	Cys	Val 1895		Asn	Asp	Gly	Arg 1900	_	Val	Glu	Arg
	Val 905	Lys	Cys	Thr		Lys 1910		Pro	Arg		Thr 1915		Tyr	Суз	Phe	Glu 1920
10	Arg	Asn	Cys		Pro 1925	Ser	Thr	Cys		Glu 1930		Lys	Ser	Gln	Asn 1935	
	Lys	Ala		Asp 1940	Gly	Asn	Tyr		Ile 1945	Leu	Leu	Asp	_	Phe 1950	Thr	Ile
	Glu		Tyr 1955	Cys	His	Arg		Asn 1960	Ser	Thr	Ile		Lys 1965	Ala	Tyr	Leu
15	Asn 1	Val .970	Asn	Pro	Arg		Asn 1975	Phe	Ala	Glu		Tyr 1980	Gly	Lys	Lys	Leu
	Ile 985	Tyr	Pro	His	Thr 1	000			Asn					Asp		Cys 2000
20	His	Cys	Ser		Asp	Gly	Asp	Ala		Ala 2010	Gly	Leu	Thr	Arg	Phe 2015	Asn
	Lys	Val		Ile 2020	Asp	Leu	Leu		Arg 2025	Lys	Phe	His		Ala 2030	Asp	Tyr
	Thr		Ala 2035	Lys	Arg	Glu	_	Gly 040	Val	His	Val	_	Tyr 2045	Gly	Thr	Ala
25	Gly 2	Asp 050	Cys	Tyr	Ser		Lys 2055	Asp	Cys	Pro		Gly 2060	Ile	Phe	Ser	Ile
	Asp : 065	Leu	Lys	Ser		Gly 070	Leu	Lys	Leu		Asp 1075	Asp	Leu	Asn	-	Glu 2080
30	Asp (Gln	Gly		Arg 085	Thr	Ser	Ser		Ile 090	Asp	Arg	Phe	_	Asn 095	Asn

WO[†]99/61656 PCT/US99/11918

Ala Lys Val Ile Gly His Cys Gly Gly Phe Cys Gly Lys Cys Ser Pro 2100 2105 2110

Glu Arg Tyr Lys Gly Leu Ile Phe Glu Val Asn Thr Lys Leu Leu Asn 2115 2120 2125

His Val Lys Asn Gly Gly His Ile Asp Asp Glu Leu Asp Asp Gly 2130 2135 2140

Phe Ser Gly Asp Met Asp 145 2150

10 QBMAD\195102