

Лекция 3

Изоморфизм линейных пространств.

Содержание лекции:

В настоящей лекции мы обсудим важную концепцию изоморфизма линейных пространств. Изоморфные пространства как алгебраические структуры неотличимы. Мы покажем, что исследование структуры этих пространств можно без потери общности ограничить только некоторыми представителями, а именно координатными пространствами.

Ключевые слова:

Биекция, линейность, изоморфизм, изоморфные пространства, изоморфизм и линейная зависимость, классы изоморфных пространств.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы:

mathdep.ifmo.ru/geolin

3.1 Определение изоморфизма

Пусть X(K) и Y(K) - линейные пространства над одним и тем же полем K.

Nota bene Напомним что отображение $\varphi: X \to Y$ между *множествами* X и Y называется **биекцией**, если существует отображение $\psi: Y \to X$, такое что

$$\forall x \in X \quad \psi(\varphi(x)) = x, \quad \forall y \in Y \quad \varphi(\psi(y)) = y,$$

то есть

$$\psi \circ \varphi = \mathrm{id}_X, \quad \varphi \circ \psi = \mathrm{id}_Y.$$

Лемма 3.1. Биекция является взаимно-однозначным отображением.

Отображение $\varphi: X \to Y$ линейного пространства X(K) в линейное пространство Y(K) называется **линейным**, если

$$\forall x_1, x_2 \in X \quad \varphi(x_1 + x_2) = \varphi(x_1) + \varphi(x_2),$$

$$\forall x \in X, \quad \forall \alpha \in K \quad \varphi(\alpha x) = \alpha \varphi(x).$$

Лемма 3.2. *Если* $\varphi: X(K) \to Y(K)$ - линейно, тогда

$$\varphi(0_X) = 0_Y$$

Действительно, из свойства линейности и аксиом линейного пространства, имеем:

$$\varphi(0_X) = \varphi(0 \cdot x) = 0 \cdot \varphi(x) = 0_Y.$$

Отображение $\varphi: X \to Y$ линейного пространства X(K) в линейное пространство Y(K) называется **изоморфизмом**, если φ биективно и линейно.

Лемма 3.3. Пусть X(K) - линейное пространство и $\{e_j\}_{j=1}^n$ - базис X(K), тогда отображение

$$\varphi: X(K) \to K^n,$$

сопоставляющее каждому вектору $x \in X(K)$ набор его координат в базисе $\{e_j\}_{j=1}^n$ является изоморфизмом.

Лемма 3.4. Отображение φ^{-1} , обратное изоморфизму φ является изоморфизмом.

По определению, φ^{-1} является биекцией. Таким образом, необходимо доказать только линейность. Пусть $y_1, y_2 \in Y$, тогда

$$\varphi^{-1}(y_1), \varphi^{-1}(y_2) \in X.$$

Из линейности φ следует

$$\varphi(\varphi^{-1}(y_1) + \varphi^{-1}(y_2)) = \varphi(\varphi^{-1}(y_1)) + \varphi(\varphi^{-1}(y_2)) = y_1 + y_2.$$

Применим к обеим частям φ^{-1} и получим

$$\varphi^{-1}(y_1 + y_2) = \varphi^{-1}(y_1) + \varphi^{-1}(y_2).$$

Пусть теперь $y \in Y$, тогда

$$\varphi(\alpha\varphi^{-1}(y)) = \alpha\varphi(\varphi^{-1}(y)) = \alpha y \quad \Rightarrow \quad \varphi^{-1}(\alpha y) = \alpha\varphi^{-1}(y).$$

3.2 Изоморфизм и линейная зависимость

Лемма 3.5. При изоморфизме линейно-зависимый набор векторов отображается в линейно зависимый набор.

Пусть $\{x_i\}_{i=1}^n$ - линейно зависимый набор в X, тогда существует нетривиальный набор коэффициентов $\{\alpha^i\}_{i=1}^n$, такой что

$$\sum_{i=1}^{n} x_i \alpha^i = 0_X.$$

Пусть $\varphi:X o Y$ - изоморфизм, тогда

$$\varphi\left(\sum_{i=1}^n x_i \alpha^i\right) = \sum_{i=1}^n \varphi(x_i) \alpha^i = \sum_{i=1}^n y_i \alpha^i = 0_Y, \quad y_i = \varphi(x_i).$$

Так как набор $\left\{\alpha^i\right\}_{i=1}^n$ нетривиален, то набор $\left\{y_i\right\}_{i=1}^n$ - линейно зависимый.

Лемма 3.6. При изоморфизме линейнонезависимый набор векторов отображается в линейнонезависимый набор.

От противного. Пусть $\{x_i\}_{i=1}^n$ - линейнонезависимы набор, а $\{\varphi(x_i)\}_{i=1}^n$ - линейнозависимый. Но тогда

$$\left\{\varphi^{-1}\left(\varphi(x_i)\right)\right\}_{i=1}^n$$

- линейнозависимый набор. Противоречие.

Лемма 3.7. При изоморфизме $\varphi: X \to Y$ базис пространства X отображается в базис пространства Y.

▶

Для доказательства нам достаточно показать, что из полноты набора $\{e_j\}_{j=1}^n$ следует полнота набора $\{\varphi(e_j)\}_{j=1}^n$. Действительно для любого $y \in Y$ имеет место

$$\exists \left\{ \alpha^i \right\}_{i=1}^n : \quad \varphi^{-1}(y) = \sum_{i=1}^n e_i \alpha^i \quad \Rightarrow \quad y = \sum_{i=1}^n \varphi(e_i) \alpha^i,$$

что и требовалось доказать.

4

3.3 Изоморфные пространства

Линейные пространства X(K) и Y(K) называются **изоморфными**, если существует изоморфизм $\varphi: X \to Y$.

 $\pmb{Nota\ bene}$ — Тот факт, что пространство X(K) изоморфно пространству Y(K) будем обозначать $X \simeq Y$.

Лемма 3.8. Изоморфность линейных пространств - отношение эквивалентности.

▶

Докажем необходимые свойства:

- 1. рефлексивность $(X \simeq X)$: тождественное отображение $\mathrm{id}_X: X \to X$ является изоморфизмом;
- 2. симметричность $(X \simeq Y \Rightarrow Y \simeq X)$ было доказано, что обратное отображение также изоморфизм;
- 3. транзитивность $(X\simeq Y,\quad Y\simeq Z\quad\Rightarrow\quad X\simeq Z)$ пусть $\varphi:X\to Y$ и $\psi:Y\to Z$ соответствующие изоморфизмы, тогда $\psi\circ\varphi$ изморфизм и $X\simeq Z$.

4

Nota bene Полученное отношение эквивалентности порождает классы эквивалентности изоморфных пространств.

Лемма 3.9. Чтобы пространства X(K) и Y(K) были изоморфны необходимо и достаточно чтобы их размерности совпадали:

$$X(K) \simeq Y(K) \Leftrightarrow \dim_K X = \dim_K Y.$$

>

 \Rightarrow Пусть $X(K) \simeq Y(K)$, тогда образом базиса пространства X будет некоторый базис пространства Y. В силу биективности изоморфизма, количества векторов в

соответствующих наборах будут совпадать.

 \Leftarrow Если $\dim_K X = \dim_K Y$, тогда $X \simeq K^n$ и $Y \simeq K^n$. В силу симметричности и транзитивности мы получим $X \simeq Y$.

4

Nota bene Таким образом, каждый класс эквивалентности изоморфных пространств содержит линейные пространства одинаковой размерности. Типичными представителями данных классов являются "арифметические" пространства столбцов:

$$[n=1] \leftrightarrow K^1, \quad [n=2] \leftrightarrow K^2, \quad \dots, \quad [n=m] \leftrightarrow K^m$$

 $Nota\ bene$ Выберем базис в каждом из пространств X и Y:

$$\{e_j\}_{j=1}^n \in X, \quad \{f_j\}_{j=1}^n \in Y, \quad e_j \leftrightarrow f_j \quad \forall j.$$

Изоморфизм между X и Y устанавливается следующим соответствием:

$$x = \sum_{i=1}^{n} e_i \alpha^i \quad \leftrightarrow \quad y = \sum_{i=1}^{n} f_i \alpha^i.$$