Math 55b Midterm

Lev Kruglyak

February 17, 2022

"I affirm my awareness of the standards of the Harvard College Honor Code. While completing this exam, I have not consulted any external sources other than class notes and the textbook (Munkres). I have not discussed the problems or solutions of this exam with anyone, and will not discuss them until after the due date."

Signed: Lev Kruglyak

Problem 1 (14 points). Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.

- (a) If $A_i \subset X_i$ are closed subsets for all $i \in I$, then $\prod_{i \in I} A_i$ is a closed subset of $\prod_{i \in I} X_i$ with the product topology.
- (b) If $x_1, x_2, \dots \in X$ are limit points of a subset $A \subset X$, and if the sequence x_n converges to a limit $x \in X$, then x is a limit point of A.
- (c) If a subspace A of a topological space X is connected, then its closure $\overline{A} \subset X$ is connected.
- (d) If X is Hausdorff, and $A \subset X$ is compact, then its boundary $\partial A = \overline{A} \operatorname{int}(A)$ is compact.
- (e) $[0,1] \subset \mathbb{R}_{\ell}$ with the lower limit topology (generated by the basis $\{[a,b),\ a < b\}$) is compact.
- (f) The addition map $f: \mathbb{R}_{\ell} \times \mathbb{R}_{\ell} \to \mathbb{R}_{\ell}$ defined by f(x, y) = x + y is continuous (equipping \mathbb{R}_{ℓ} with the lower limit topology and $\mathbb{R}_{\ell} \times \mathbb{R}_{\ell}$ with the product topology).
- (g) The set of all uniformly continuous functions $f: \mathbb{R} \to \mathbb{R}$ (i.e., such that $\forall \epsilon > 0 \ \exists \delta > 0$ s.t. $\forall p,q \in \mathbb{R}, \ |p-q| < \delta \Rightarrow |f(p)-f(q)| < \epsilon$) is a closed subset of the space of all functions from \mathbb{R} to \mathbb{R} equipped with the uniform topology.
- (a) This is true. For brevity, let $X = \prod_{i \in I} X_i$ and for any $x \in X$, let $x_i \in X_i$ be the projection of x to its i-th component. Note that

$$\prod_{i \in I} A_i = \bigcap_{i \in I} \{ x \in X \mid x_i \in A_i \} = \bigcap_{i \in I} \pi_i^{-1}(A_i)$$

where $\pi_i: X \to X_i$ is the projection map onto the *i*-th component. However the product topology is the coarsest topology for which the projection maps are continuous, so $\pi_i^{-1}(A_i)$ is closed in X. Thus $\bigcap_{i \in I} \pi_i^{-1}(A_i)$ is closed in X, since it is an intersection of infinitely many closed sets.

- (b) This is true. Suppose $U \ni x$ is an open neighborhood. Since x is a limit of the sequence x_1, x_2, \ldots, U must contain some x_n . Yet since x_n is a limit point of A, U must intersect A nontrivially. This implies that x is a limit point of A, because U was an arbitrary open neighborhood.
- (c) This is true. To make life easier for us, we'll use an equivalent formulation of connectedness:

Claim. A space X is connected if and only if every continuous function $f: X \to \{0, 1\}$ is constant, where $\{0, 1\}$ has the discrete topology.

Proof. If X is connected then f(X) is connected in $\{0,1\}$ so $f(X)=\{0\}$ or $\{1\}$. Conversely, if every continuous function $f:X\to\{0,1\}$ is constant then X must be connected, because otherwise we could construct a continuous map which maps different connected components of X to 0 and 1.

Now since $A \subset X$ is connected, an easy extension of the above claim implies every continuous map $f: X \to \{0,1\}$ must be constant when restricted to A. Say without loss of generality that f(A) = 0. Then $A \subset f^{-1}(\{0\})$ and thus $f^{-1}(\{0\})$ is a closed set containing A. This means that $\overline{A} \subset f^{-1}(\{0\})$ so $f(\overline{A}) = 0$. Since f was an arbitrary continuous function, it follows that \overline{A} is connected.

- (d) This is true. Since X is Hausdorff and A is a compact subset, A is closed so $\overline{A} = A$. Now suppose \mathcal{U} is an open cover of ∂A . Then $\mathcal{U} \cup \{ \operatorname{int}(A) \}$ is an open cover of A so it must contain a finite subcover \mathcal{V} . Removing $\operatorname{int}(A)$ from \mathcal{V} if needed, we get an open subcover of ∂A .
- (e) This is false. Consider the open cover

$$[0,1] \subset \left[\frac{1}{2},2\right) \cup \bigcup_{0 < x < \frac{1}{2}} [0,x).$$

This cannot have a finite subcover because every element in the cover contains a point which isn't in any of the other elements.

(f) This is true. Let [b,a) be an open set in \mathbb{R}_{ℓ} . Then we claim that

$$f^{-1}([b,a)) = \bigcup_{t \in \mathbb{R}} \left[t, t + \frac{a-b}{2} \right) \times \left[b - t, b - t + \frac{a-b}{2} \right).$$

The \supset direction follows because for any $t \in \mathbb{R}$ and $(x,y) \in [t,t+\frac{a-b}{2}) \times [b-t,b-t+\frac{a-b}{2})$ and simply by adding inequalities together we get

$$\begin{cases} t \le x < t + \frac{a-b}{2} \\ b - t \le y < b - t + \frac{a-b}{2} \end{cases} \implies b \le x + y < a$$

so $(x,y) \in f^{-1}([b,a)$. Conversely for any $(x,y) \in f^{-1}([b,a))$, let $t = \frac{x-y+b}{2}$. Since $b \le x+y < a$, we have $x \ge b-y$ and x < a-y so $\frac{x-y+b}{2} \le x < \frac{x-y+a}{2}$. This is the same as saying $x \in [t,t+\frac{a-b}{2})$. Similarly, we get $y \in [b-t,b-t+\frac{a-b}{2})$. So $(x,y) \in [t,t+\frac{a-b}{2}) \times [b-t,b-t+\frac{a-b}{2})$. So $f^{-1}([b,a))$ is an arbitrary union of open sets in $\mathbb{R}_{\ell} \times \mathbb{R}_{\ell}$ and hence is open. This means that f is continuous.

(g) This is false. Suppose the set of uniformly continuous functions was closed. This would mean that any convergent sequence of uniformly continuous functions must converge to a function which is also uniformly continuous. This is clearly false, consider the non-uniformly continuous function $f(x) = e^x \sin(1/e^x)$. This is the limit of the sequence of uniformly continuous functions

$$f_n = \begin{cases} f(x) & \text{if } x > -n \\ f(-n) & \text{if } x \le -n \end{cases}.$$

This gives the desired contradiction.

Problem 2 (6 points). Let X, Y be topological spaces. The graph of $f: X \to Y$ is the subset $G_f = \{(x, f(x)) \mid x \in X\}$ of $X \times Y$.

- (a) Show that if Y is Hausdorff and $f: X \to Y$ is continuous then its graph G_f is a closed subset of $X \times Y$ (with the product topology).
- (b) Show that if Y is compact and the graph G_f is closed in $X \times Y$ then f is continuous.
- (c) Give an example showing that the result of (b) need not hold if Y is not compact.
- (a) Let $(x,y) \in X \times Y G_f$, so $y \neq f(x)$. Since Y is Hausdorff, there are open sets in Y such that $U \ni y$, $V \ni f(x)$ and $U \cap V = \emptyset$. Now consider the open set $f^{-1}(V) \times U \ni (x,y)$. We claim that $f^{-1}(V) \times U \cap G_f = \emptyset$. Indeed, if $(t, f(t)) \in f^{-1}(V) \times U$ then $f(t) \in V$ and $f(t) \in U$, which would be a contradiction since V and U are disjoint. So we have found an open neighborhood of (x,y) which does not intersect the graph. Since (x,y) was arbitrary point not on the graph, the graph is closed.
- (b) Let $V \subset Y$ be an open set, and pick an arbitrary $x \in f^{-1}(V)$. Clearly $\{x\} \times (Y V)$ does not intersect G_f so since the graph is closed, for every $(x,y) \in \{x\} \times (Y V)$ there is some open set $U_y \ni (x,y)$ disjoint from G_f . So $\bigcup_{y \in Y V} U_y$ is an open cover of $\{x\} \times (Y V)$ disjoint from G_f . Note that Y V is compact since it is a closed subset of a compact space. Thus we can apply the tube lemma to find a tube of the form $U \times (Y V) \subset \bigcup_{y \in Y V} U_y$, where $U \subset X$ is an open neighborhood of X. Note that $U \times (Y V)$ must be disjoint from G_f . We now claim that $U \subset f^{-1}(V)$. Indeed, for any $t \in U$, f(t) must be in V because otherwise $(t, f(t)) \in U \times (Y V)$ which would contradict the fact that $U \times (Y V)$ is disjoint from G_f . So U is an open neighborhood of $x \in f^{-1}(V)$. Since x was arbitrary, it follows that $f^{-1}(V)$ is open and so f is continuous.
- (c) Let $X, Y = \mathbb{R}$ and define $f : \mathbb{R} \to \mathbb{R}$ as

$$f(x) = \begin{cases} \frac{1}{x} & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}.$$

Clearly, f is not continuous at x = 0, since $\lim_{x \to 0^-} f(x) = -\infty$ and $\lim_{x \to 0^+} f(x) = \infty$ yet f(0) = 0. The graph of f however is closed in \mathbb{R}^2 since it is a union of two curves and the origin point, which are both closed in \mathbb{R}^2 .