09.10.2019

CIAGI LICZBOWE

Ważne: $\forall_{x,y\in\mathbb{R}}|x+y| \leq |x|+|y| \text{ oraz } ||x|-|y|| \leq |x-y|$

- 1. Def. Ciągiem $\{a_n\}_{n=1}^{\infty}$ lub $\{a_n\}_{n\geq 1}$ lub $\{a_n\}$ nazywamy funkcję $\mathbb{N}\to\mathbb{R}$. Ponadto a_n nazywamy n-tym wyrazem ciągu
 - (a) Przykłady:
 - i. $a_n = \sqrt[n]{n}$

ciąg zdefiniowany przez podanie wzoru na n-ty wyraz tego ciągu

A.
$$1, \sqrt{2}, \sqrt[3]{3}$$
 itp

- ii. $b_1 = 1$
 - $b_2 = 1$

$$b_{n+1} = b_n + b_{n-1}, n \ge 2$$

- ^ ciąg zdefiniowany rekurencyjnie
- A. Pierwsze wyrazy ciągu 1, 1, 2, 3, 5, 8, 13, 21, ... Fibonacci
- 2. Def. Ciąg $\{a_n\}$ jest ograniczony z dołu $\iff \exists_{m \in \mathbb{R}} \forall_{n \in \mathbb{N}} a_n \geq m$
- 3. Def. Ciąg $\{a_n\}$ jest ograniczony z góry $\iff \exists_{M \in \mathbb{R}} \forall_{n \in \mathbb{N}} a_n \leq M$
- 4. Def. Ciąg $\{a_n\}$ jest ograniczony $\iff (\exists_{m\in\mathbb{R}}\forall_{n\in\mathbb{N}}a_n\geq m) \wedge (\exists_{M\in\mathbb{R}}\forall_{n\in\mathbb{N}}a_n\leq M)$ czyli $\exists_{K\in\mathbb{R}}\forall_{n\in\mathbb{N}}|a_n|\leq K$
 - (a) Przykład:
 - i. Ciąg $a_n = \frac{1}{n}$ jest ograniczony z dołu, bo $\exists_{m \in \mathbb{R}} \forall_{n \in \mathbb{N}} a_n \geq m \ (m = 0)$
 - ii. Ciąg $a_n=\frac{1}{n}$ jest ograniczony z dołu, bo $\exists_{M\in\mathbb{R}}\forall_{n\in\mathbb{N}}a_n\leq M\ (m=1)$
 - iii. Skoro ciąg jest ograniczony z góry i z dołu to możemy powiedzieć że ciąg ten jest ograniczony
- 5. Def. Ciąg $\{a_n\}$ jest rosnący $\iff \forall_{n\in\mathbb{N}}a_{n+1} > a_n \overset{\forall_{n\in\mathbb{N}}a_n>0}{\iff} \forall_{n\in\mathbb{N}}\frac{a_{n+1}}{a_n} > 1$
- 6. Def. Ciąg $\{a_n\}$ jest niemalejący $\iff \forall_{n \in \mathbb{N}} a_{n+1} \ge a_n \overset{\forall_{n \in \mathbb{N}} a_n > 0}{\iff} \forall_{n \in \mathbb{N}} \frac{a_{n+1}}{a_n} \ge 1$
- 7. Def. Ciąg $\{a_n\}$ jest malejący $\iff \forall_{n \in \mathbb{N}} a_{n+1} < a_n \overset{\forall_{n \in \mathbb{N}} a_n > 0}{\iff} \forall_{n \in \mathbb{N}} \frac{a_{n+1}}{a_n} < 1$
- 8. Def. Ciąg $\{a_n\}$ jest nierosnący $\iff \forall_{n\in\mathbb{N}}a_{n+1} \leq a_n \xrightarrow{\forall_{n\in\mathbb{N}}a_n>0} \forall_{n\in\mathbb{N}}\frac{a_{n+1}}{a_n} \leq 1$
 - (a) Ciągi rosnące, niemalejące, malejące i nierosnące nazywamy monotonicznymi
 - i. np $a_n = \frac{(-1)^n}{n} \to a_1 1 < a_2 = \frac{1}{2} > a_3 = -\frac{1}{3}$ ii. $b_n = \frac{n}{n+1} = \frac{n+1-1}{n+1} = 1 \frac{1}{n+1}$
 - - A. Ze wzrostem n, n+1 rośnie, więc $\frac{1}{n+1}$ maleje, więc $1-\frac{1}{n+1}$ rośnie
 - B. Zatem ciag b_n jest rosnący
- 9. Def. Mówimy, że ciąg $\{a_n\}$ jest zbieżny do granicy $g \in \mathbb{R} \iff \forall_{\epsilon > 0} \exists_{n_0 \in \mathbb{N}} \forall_{n > n_0} |a_n g| < \epsilon$
 - (a) Dla dowolnie małego $\epsilon > 0$ dla wyrazów ciągu o dostatecznie dużych wartościach, odległość pomiędzy dowolnym wyrazem ciągu spełniającym warunki a g jest mniejsza od ϵ
 - (b) Wtedy gnazywamy granicą i zapisujemy $\lim_{n\to\infty}a_n=g$ lub $a_n\to g$
 - i. Przykład: $\lim_{n\to\infty}\frac{1}{n}=0$ bo $\forall_{\epsilon>0}\exists_{n_0\in\mathbb{N}}\forall_{n\geq n_0}|\frac{1}{n}-0|<\epsilon$ $\frac{\frac{1}{n} < \epsilon}{\frac{1}{\epsilon} < n} \longrightarrow n_0 = \lceil \frac{1}{\epsilon} \rceil$
- 10. Def. Jeśli ciąg $\{a_n\}$ nie jest zbieżny to nazywamy go rozbieżnym;
- 11. Twierdzenie 2.1: Każdy ciąg stały jest zbieżny: $\forall_{n \in \mathbb{N}} a_n = a \implies \lim_{n \to \infty} a_n = a$
 - (a) Dowód: $\forall_{\epsilon>0} \exists_{n_0 \in \mathbb{N}} \forall_{n \geq n_0} |a_n a| < \epsilon$. Ponieważ $\forall_{n_0 \in \mathbb{N}} a_n a = 0$, to zawsze $0 < \epsilon$
- 12. Twierdzenie 2.2: Ciąg zbieżny ma tylko jedną granicę
 - (a) Dowód: Zakładamy, że $\lim_{n\to\infty} a_n = a$ oraz $\lim_{n\to\infty} b$ i $a\neq b$
 - (b) Niech $\epsilon = \frac{1}{2}|a-b|$. Wtedy $\epsilon > 0$ bo $a \neq b$
 - (c) Z założenia $\lim_{n\to\infty} a_n = a \implies \forall_{\epsilon>0} \exists_{n_1\in\mathbb{N}} \forall_{n\geq n_1} |a_n-a| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} \forall_{n\geq n_2} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} \forall_{n\geq n_2} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} \forall_{n\geq n_2} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} \forall_{n\geq n_2} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} \forall_{n\geq n_2} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} \forall_{n\geq n_2} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} \forall_{n\geq n_2} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} \forall_{n\geq n_2} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} \forall_{n\geq n_2} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} \forall_{n\geq n_2} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} \forall_{n\geq n_2} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} \forall_{n\geq n_2} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} \forall_{n\geq n_2} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} \forall_{n\geq n_2} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} |a_n-b| < \epsilon \text{ oraz } \lim_{n\to\infty} a_n = b \implies \forall_{\epsilon>0} |a_n-b| < \epsilon \text{ oraz } \|a_n-b| < \epsilon \text{$

- (d) Ponieważ $\forall_{x,y \in \mathbb{R}} |x+y| \le |x| + |y|$, to $2\epsilon = |a-b| = |a-a_n + a_n b| \le |a-a_n| + |a_n b| = |a_n a| + |a_n b| < n \ge n_1, n \ge n_2 \le n_2 \le n_2$
- (e) Otrzymaliśmy $2\epsilon > 2\epsilon$ oraz $\epsilon > 0 \implies 2 > 2$ sprzeczność
- 13. Twierdzenie 2.3: Jeśli ciąg jest zbieżny, to jest ograniczony.
 - (a) Dowód: Niech $\lim_{n\to\infty} a_n = g$, $\tan \forall_{\epsilon>0} \exists_{n_1\in\mathbb{N}} \forall_{n>n_0} |a_n-g| < \epsilon$
 - (b) W szczególności dla $\epsilon=1$ otrzymujemy $\exists_{n_0\in\mathbb{N}}\forall_{n\geq n_0}|a_n-g|<1$,czyli $-1< a_n-g<1$, czyli $\exists_{n_0\in\mathbb{N}}\forall_{n\geq n_0}g-1< a_n< g+1$
 - (c) Stąd $\forall_{n\in\mathbb{N}} a_n \leq \max\{g+1, a_1, a_2, ..., a_{n_0-1}\} \implies \{a_n\}$ jest ograniczony z góry
 - (d) $\forall_{n\in\mathbb{N}}a_n \geq \min\{g-1, a_1, a_2, ..., a_{n_0-1}\} \implies \{a_n\}$ jest ograniczony z dołu
 - (e) Zatem $\{a_n\}$ jest ograniczony.
 - (f) UWAGA: $\{a_n\}$ jest zbieżny $\implies \{a_n\}$ jest ograniczony
 - i. NIE DZIAŁA W DRUGĄ STRONĘ
 - ii. np $a_n = (-1)^n$ daje nam -1, 1, -1, 1 ciąg jest ograniczony, ale nie jest zbieżny
- 14. Twierdzenie 2.4 (o ciągłości działań arytmetycznych): Jeśli $\lim_{n\to\infty} a_n = a$ oraz $\lim_{n\to\infty} b = b$, to
 - (a) Dowód: Wiemy, że $\forall_{\epsilon>0}\exists_{n_1\in\mathbb{N}}\forall_{n>n_1}|a_n-a|<\frac{\epsilon}{2}$ oraz $\forall_{\epsilon>0}\exists_{n_2\in\mathbb{N}}\forall_{n>n_2}|b_n-b|<\frac{\epsilon}{2}$
 - i. Chcemy pokazać, że $\forall_{\epsilon>0} \exists_{n_0 \in \mathbb{N}} \forall_{n>n_0} |a_n+b_n-(a+b)| < \epsilon$
 - ii. $|a_n + b_n a b| = |a_n a + b_n b| \le |a_n a| + |b_n b| <^{n \ge n_1, n \ge n_2} \frac{\epsilon}{2}$
 - iii. $\forall_{\epsilon>0}\exists_{n_0\in\mathbb{N}}\forall_{n\geq n_0}|a_n+b_n-(a+b)|<\epsilon$ jeśli $n_0=\max(n_1,n_2)$
 - (b) $\lim_{n\to\infty} (a_n b_n) = a b$
 - i. Ciąg pomocniczy $\forall_{n\in\mathbb{N}}c_n=-b_n$,wtedy wystarczy pokazać że $c_n\to -b$, i leci pierwszy dowód
 - (c) $\lim_{n\to\infty} (a_n b_n) = ab$
 - i. Dowód: Skoro z $\{a_n\}$ jest zbieżny, to z twierdzenia 2.3 jest ograniczony, tzn $\exists_{K \in \mathbb{R}} \forall_{n \in \mathbb{N}} |a_n| \leq K$ (dodatkowo, $K \neq 0$)
 - ii. Wiemy to samo co w dowodzie z (a).
 - iii. Chcemy pokazać, że $\forall_{\epsilon>0} \exists_{n_0 \in \mathbb{N}} \forall_{n \geq n_0} |a_n b_n ab| < \epsilon$
 - $\text{iv. } |a_nb_n ab| = |a_nb_n a_nb + a_nb ab| = |a_n(b_n b) + b(a_n a)| \leq |a_n(b_n b)| + |b(a_n a)| = |a_n||b_n b| + |b||a_n a| \leq K|b_n b| + |b||a_n a|$
 - v. $\lim_{n\to\infty} b_n = b \iff \forall_{\epsilon>0} \exists_{n_2\in\mathbb{N}} \forall_{n\geq n_2} |b_n b| < \frac{\epsilon}{2K}$
 - vi. $\lim_{n\to\infty} a_n = a \iff \forall_{\epsilon>0} \exists_{n_1\in\mathbb{N}} \forall_{n\geq n_1} |a_n a| < \frac{\epsilon}{2(|b|+1)}$
 - vii. $K|b_n b| + |b||a_n a| \le K|b_n b| + (|b| + 1)|a_n a|$
 - viii. Stąd $\forall_{\epsilon>0} \exists_{n_0 \in \mathbb{N}} \forall_{n \geq n_0} |a_n b_n ab| < \epsilon n_0 = \max(n_1, n_2)$
 - (d) $\lim_{n\to\infty}(\frac{a_n}{b_n})=\frac{a}{b}$ jeśli $b\neq 0$ i $\forall_{n\in\mathbb{N}}b_n\neq 0$
 - (e) Przykład:
 - i. $\lim_{n\to\infty} \frac{n^2+3}{4n^2-n+5} = \lim_{n\to\infty} \frac{1+\frac{3}{n^2}}{4-\frac{1}{n}+\frac{5}{-2}} = \lim_{n\to\infty} \frac{1+3\cdot\frac{1}{n}\cdot\frac{1}{n}}{4-\frac{1}{n}+5\cdot\frac{1}{n}\cdot\frac{1}{n}} = \frac{1+3\cdot0\cdot0}{4-0+5\cdot0\cdot0} = \frac{1}{4}$
- 15. Twierdzenie 2.5 (o ciągłości wartości bezwzględnej): Jeśli $\lim_{n\to\infty} a_n = a$, to $\lim_{n\to\infty} |a_n| = |a|$
 - (a) Dowód: Wiemy, że $\forall_{\epsilon>0} \exists_{n_1 \in \mathbb{N}} \forall_{n>n_1} |a_n-a| < \epsilon$
 - (b) Chcemy pokazać, że $\forall_{\epsilon>0} \exists_{n_0 \in \mathbb{N}} \forall_{n>n_0} ||a_n| |a|| < \epsilon$
 - (c) Mamy $||a_n| |a|| \le |a_n a|$
 - (d) Stad $\forall_{\epsilon>0} \exists_{n_0 \in \mathbb{N}} \forall_{n \geq n_0} ||a_n| |a|| \leq |a_n a| < \epsilon$
 - (e) Uwaga 2.1: $\lim_{n\to\infty} a_n = 0 \iff \lim_{n\to\infty} |a_n| = 0$
 - i. $\forall_{\epsilon>0} \exists_{n_0 \in \mathbb{N}} \forall_{n>n_0} |a_n-0| < \epsilon$ z lewej strony oraz
 - ii. $\forall_{\epsilon>0}\exists_{n_0\in\mathbb{N}}\forall_{n>n_0}||a_n|-0|<\epsilon$ z prawej strony. |x|=||x||, więc strony są równoważne
- 16. Twierdzenie 2.6 (o przechodzeniu do granicy w nierównościach): Jeśli $\exists_{n_0 \in \mathbb{N}} \forall_{n \geq n_0} a_n \leq b_n$ i $\lim_{n \to \infty} a_n = a$ i $\lim_{n \to \infty} b_n = b$ to $a \leq b$
 - (a) Uwaga 2.2: Twierdzenie 2.6 nie będzie prawdziwe jeśli ≤ zamienimy na <
 - i. np $a_n = \frac{1}{n^2}, b_n = \frac{1}{n}$

- ii. $\forall_{n>2} a_n < b_n$ ale $\lim_{n\to\infty} a_n = 0 = \lim_{n\to\infty} b_n$
- 17. Twierdzenie 2.7 (o trzech ciągach): Jeśli $\exists_{n_0 \in \mathbb{N}} \forall_{n \geq n_0} a_n \leq b_n \leq c_n$ oraz $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = g$, to $\lim_{n \to \infty} b_n = g$
 - (a) Dowód: Chcemy pokazać, że $\forall_{\epsilon>0}\exists_{n_3\in\mathbb{N}}\forall_{n\geq n_3}|b_n-g|<\epsilon\iff\forall_{\epsilon>0}\exists_{n_3\in\mathbb{N}}\forall_{n\geq n_3}-\epsilon< b_n-g<\epsilon$
 - (b) Wiemy, że $\forall_{\epsilon>0}\exists_{n_1\in\mathbb{N}}\forall_{n\geq n_1}|a_n-g|<\epsilon\iff\forall_{\epsilon>0}\exists_{n_1\in\mathbb{N}}\forall_{n\geq n_1}\epsilon< a_n-g<\epsilon$ oraz $\forall_{\epsilon>0}\exists_{n_2\in\mathbb{N}}\forall_{n\geq n_2}\epsilon< c_n-g<\epsilon$
 - (c) $(n \ge n_2 \land n \ge n_0) \implies b_n g \le c_n g < \epsilon$
 - (d) $(n \ge n_1 \land n \ge n_0) \implies b_n g \ge a_n g > -\epsilon$
 - (e) Zatem pokazaliśmy, że $\forall_{\epsilon>0} \exists_{n_0 \in \mathbb{N}} \forall_{n \geq n_0} \epsilon < b_n g < \epsilon \ (n_3 = max(n_0, n_1, n_2))$
 - (f) Wniosek z twierdzenia o trzech ciągach: Jeśli ciąg $\{a_n\}$ jest ograniczony i $\lim_{n\to\infty}b_n=0$, to $\lim_{n\to\infty}a_nb_n=0$
 - i. Na mocy uwagi 2.1 wystarczy pokazać, że $\lim_{n\to\infty}|a_nb_n|=0$
 - ii. Z założenia $\exists_{K \in \mathbb{R}} \forall_{n \in \mathbb{N}} |a_n| \leq K$
 - iii. $\forall_{n\in\mathbb{N}}0\leq |a_nb_n|=|a_n|\cdot |b_n|\leq K\cdot |b_n|,\ K\cdot |b_n|\to 0,$ więc z twierdzenia o trzech ciągach otrzymujemy $\lim_{n\to\infty}|a_nb_n|=0$