Geosphere: Consistently Turning MIMO Capacity into Throughput

Konstantinos Nikitopoulos

5G Innovation Centre University of Surrey

Juan Zhou, Ben Congdon, Kyle Jamieson

Department of Computer Science
University College London

Need to Scale Wireless Capacity...

2

MIMO with Spatial Multiplexing

Question: How can we most efficiently demultiplex the mutually interfering information streams?

Motivation

□ Problem 1:

Zero-forcing (e.g., [SAM, Mobicom '09], [Bigstation, Sigcomm '13]) suffers as APs get more antennas.

Motivation: Zero-forcing suffers

Motivation

□ Problem 1:

Zero-forcing (e.g., [SAM, Mobicom '09], [Bigstation, Sigcomm '13]) suffers as APs get more antennas.

Geosphere: Enables optimal detection at a reasonable complexity by employing geometrical reasoning.

□ Problem 2:

Optimal solutions are very computationally complex and, therefore, cannot scale to high transmission rates.

Zero-Forcing Amplifies Noise

The Noiseless Case:
$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} h_{11} \\ h_{21} \end{bmatrix} \begin{bmatrix} h_{12} \\ h_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Leftrightarrow \mathbf{Y} = \mathbf{HX}$$

The Zero-Forcing solution is:
$$\mathbf{X} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \mathbf{H}^{-1}\mathbf{Y}$$

Zero-Forcing Amplifies Noise

With noise Zero-Forcing gives $\hat{\mathbf{X}} = \mathbf{H}^{-1}\mathbf{Y} = \mathbf{H}^{-1}\left(\mathbf{H}\mathbf{X} + \mathbf{N}\right)$ $\hat{\mathbf{X}} = \mathbf{X} + \mathbf{H}^{-1}\mathbf{N}$

Noise amplification

Maximum-Likelihood Detection and Sphere Decoding

$$\hat{\mathbf{x}} = \underset{\text{possible } \mathbf{x}}{\text{min}} \| \mathbf{y} + \mathbf{H} \mathbf{x} \|^2$$

- Minimizes detection errors
- Finding the ML solution by exhaustive search is impractical

Sphere Decoder uses QR decomposition to transform the problem into

$$\hat{\mathbf{x}} = \arg\min_{\text{possible } \mathbf{x}} \|\mathbf{y}' + \mathbf{R}\mathbf{x}\|^2$$

Maximum-Likelihood Detection and Sphere Decoding

Therefore, the ML problem transforms to:

$$\hat{\mathbf{x}} = \min_{x_i \in \{a, b, \dots\}} \left\{ d(x_N) + d(x_N, x_{N-1}) + \dots \right\}$$

Node's Partial Distance (PD)

Maximum-Likelihood Detection and Sphere Decoding

- To avoid exhaustive search, original SDs search just a subset of tree nodes (with $PD < r^2$).
- Such approaches cannot guarantee the ML solution.

Geosphere's (and ETH-SD's⁽¹⁾) tree traversal and pruning

Example: 3x3 system with four element constellation (= 64 tree nodes)

⁽¹⁾ Burg, Andreas, et al. "VLSI implementation of MIMO detection using the sphere decoding algorithm." *IEEE Journal of Solid-State Circuits*, 40.7 (2005): 1566-1577.

We can find the ML solution by visiting only 5 nodes

How can we minimize sorting complexity?

Traditional Sorting and PD calculations

Single Dimensional Constellations

Visiting 3 nodes requires 3 PD calculations

Dense two-dimensional symmetric constellations

- Half distance between symbols
- TransmittedSymbol
- Received
 Signal
- Selected
 Symbol

Geosphere's 2D zig-zag

Visiting 3 nodes requires 4 PD calculations

Half distance between symbols

- TransmittedSymbol
- Received
 Signal
- Selected
 Symbol

Geosphere's Early Pruning

Half distance between symbols

- TransmittedSymbol
- Received Signal

 D_{\min} can be pre-calculated for all constellation symbols (function of QAM geometry)

We can avoid PD calculations by first checking D_{\min} meets the pruning criterion.

Evaluation

- □ Both by using:
 - ➤ WARP-based **testbed** in indoor (office) environment (5GHz band, 20MHz bandwidth, 64-OFDM)
 - Simulations(using Rayleigh and empirically measured channels)
- ☐ We compare Geosphere:
 - With Zero-forcing for throughput
 - With ETH-SD for complexity

Geosphere's Throughput Gains for 4 AP Antennas

ZF is less suboptimal when we sacrifice throughput

Computational Complexity Gains for 4 AP Antennas

For two clients the complexity is ~3 PD calculations across all QAM constellations!

Related Work

The sphere decoding literature is very rich¹.
 However, already proposed approaches
 Cannot efficiently support for very dense symbols constellations &,
 Guarantee optimal performance &,
 Efficiently adjust their complexity according to the MIMO channel utilization.

1"SD Sequence determination" IEEE SARNOFF '09], ["K-Best SD" IEEE JSAC '06/10, IEEE ISCAS '08, IEEE TVLSI '09], ["Fixed Complexity SD", IEEE TCOM '08], "Probabilistic Pruning" IEEE TSP '08]...

Conclusions

- ☐ Low complexity detection become **highly suboptimal** when increasing the number of antennas.
- ☐ ML detection allows scaling capacity in MIMO networks but it very **complex**.
- ☐ Geosphere enables ML detection pragmatic systems with dense constellations
- ☐ Future research will be focused in extending Geosphere to
 - > Shannon capacity achieving soft-receiver processing
 - Large MIMO systems