Communication Project Amplitude Modulation

Name	Sec	BN
Norhan Reda Abdelwahed Ahmed	2	32
Hoda Gamal Hamouda Ismail	2	34

Code and steps explanation:

- Read the signal and get its features (length, bandwidth, time range, frequency range, fft)
- Resampling the signals to a new fs (fs = 650,000 Hz) to satisfy the condition (fs >= 2 BW) and we have these bandwidths (BW1=1.5319*10^5, BW2=1.5291*10^5, BW3=1.4537*10^5)
- Modulating the signals by multiplying each signal by corresponding carrier:

```
Carrier1 = cos ( 2*pi*fc1*t1) where fc1 = 160,000 Hz
Carrier2 = cos ( 2*pi*fc2*t2) where fc2 = 320,000 Hz
Carrier3 = sin ( 2*pi*fc2*t3) where fc2 = 320,000 Hz
Choosing the carriers should satisfy Nyquist condition that:
the condition ( fc < fs / 2)
The signals are far enough not to overlap with each other
```

- Make the signals have the same length which is the max length among their lengths.
- Sum the signals to get the required signal s(t).
- Perform synchronous demodulation to s(t) to restore the 3 signals
 Demodulation steps:

For each carrier from the 3 carriers:

Multiply s(t) by the carrier.

Use a low pass filter to cancel undesired frequencies.

Multiply by 2 to get the original amplitude.

- Perform demodulation with phase shift 10, 30, 90 degrees.

```
Carrier1 = \cos (2*pi*fc1*t1 + (phase_shift_angle* pi) / 180) where fc1 = 160,000 Hz Carrier2 = \cos (2*pi*fc2*t2 + (phase_shift_angle* pi) / 180) where fc2 = 320,000 Hz Carrier3 = \sin (2*pi*fc2*t3 + (phase_shift_angle* pi) / 180) where fc2 = 320,000 Hz
```

 Perform demodulation with a local carrier frequency that is different by 2 Hz and 10 Hz from its carrier frequency.

```
Carrier1 = \cos (2*pi*(fc1+2)*t1) where fc1 = 160,000 Hz
Carrier1 = \cos (2*pi*(fc1+10)*t1) where fc1 = 160,000 Hz
```

Results explanation:

In synchronous demodulation:

The 3 signals are almost returned to the original ones.

In demodulation with a phase shift:

With increasing the phase shift, the attenuation is increased, and the interference between signals with same fc and different carriers function cos & sin is also increased.

In phase shift 10:

Signal 1: there is very little attenuation in it (the sound is slightly lower).

Signal 2 & 3: there is very little interference between them, but the signal with the current corresponding carrier is the one with the higher sound.

In phase shift 30:

Signal 1: there is more attenuation in it (the sound is lower than the previous case).

Signal 2 & 3: there is more interference between them, and the signal with the current corresponding carrier is still a little bit with higher sound.

In phase shift 90:

Signal 1: it is completely attenuated (there is no sound).

Signal 2 & 3: there is complete interference between them, the signals are interchanged with each other (when we try to get signal 2, we get signal 3 and vice versa).

DSB-SC Demodulation

- Case 2: If $\underline{\Delta\omega=0}$ and $\underline{\varphi\neq0}$ $e_o(t)=\frac{1}{2}\ m(t)\cos\varphi$
- If $\varphi=$ constant, $e_{\scriptscriptstyle o}(t)$ is proportional to m(t)
- Problems for φ either varying with time or equals to \pm $(\pi/2)$
- The phase error may cause attenuation of the output signal without causing distortion as long as it is constant.

QAM

- QAM demodulation must be totally synchronous
- If there is a phase error of θ :

$$x_1(t) = [m_1(t)\cos\omega_c t + m_2(t)\sin\omega_c t]\cos(\omega_c t + \theta)$$

$$= \frac{1}{2} [m_1(t) \cos \theta - m_2(t) \sin \theta + m_1(t) \cos(2\omega_c t + \theta) + m_2(t) \sin(2\omega_c t + \theta)]$$

$$x_3(t) = \frac{1}{2} [m_1(t) \cos \theta - m_2(t) \sin \theta]$$

- Error in phase of carrier at the demodulator results in:
 - attenuation
 - interference between the two signals (cochannel interference)

9

In demodulation with different local carrier:

Different by 2Hz:

There is little attenuation and distortion in the output signal.

Different by 10Hz:

There is more attenuation and distortion in the output signal than the previous case.

DSB-SC Demodulation

• Case 3: If $\Delta\omega \neq 0$, $\varphi = 0$

$$e_o(t) = \frac{1}{2} m(t) \cos \Delta \omega t$$

- The output is multiplied by a low frequency sinusoid, this causes attenuation and distortion of the output signal.
- In a following lecture, we will study methods to synchronize the local carrier with the incoming carrier in the received signal.

Figures

Original signals in time Domain

Original signals in frequency Domain

Signal1

Modulated signals in frequency Domain

signal1

Modulated final signal in time Domain

Modulated final signal in frequency Domain

Demodulated signals in time Domain

Demodulated signals in frequency Domain

Demodulated signal with local carrier frequency that is different by 2 Hz in time Domain

Demodulated signal with local carrier frequency that is different by 2 Hz in frequency Domain

Demodulated signal with local carrier frequency that is different by 10 Hz in time Domain

Demodulated signal with local carrier frequency that is different by 10 Hz in frequency Domain

Demodulated signal with phase shift 10 in time Domain

Demodulated signal with phase shift 10 in frequency Domain

Demodulated signal with phase shift 30 in time Domain

Demodulated signal with phase shift 30 in frequency Domain

Demodulated signal with phase shift 90 in time Domain

Demodulated signal with phase shift 90 in frequency Domain

Code:

```
% Read signal 1 and pre-process it
[s1, fs1] = audioread("signal1.wav");
s1 = s1(:,1) + s1(:,2);
[len1, BW1, t1, f1, ffts1]=preprocessing(s1,fs1);
% Read signal 2 and pre-process it
```

```
[s2, fs2] = audioread("signal2.wav");
s2 = s2(:,1) + s2(:,2);
[len2, BW2, t2, f2, ffts2]=preprocessing(s2,fs2);
% Read signal 3 and pre-process it
[s3, fs3] = audioread("signal3.wav");
s3 = s3(:,1) + s3(:,2);
[len3, BW3, t3, f3, ffts3]=preprocessing(s3,fs3);
% Plot original signals in time domain
plotSignal(t1,s1,'Original signal 1 in time domain', 'Time(s)',
'Amplitude');
plotSignal(t2,s2,'Original signal 2 in time domain', 'Time(s)',
'Amplitude');
plotSignal(t3,s3,'Original signal 3 in time domain', 'Time(s)',
'Amplitude');
% Plot original signals in freq domain
plotSignal(f1,fftshift(ffts1),'Original signal 1 in freq domain',
'Frequency(Hz)', 'Magnitude');
plotSignal (f2, fftshift (ffts2), 'Original signal 2 in freq domain',
'Frequency(Hz)', 'Magnitude');
plotSignal(f3,fftshift(ffts3),'Original signal 3 in freq domain',
'Frequency(Hz)', 'Magnitude');
% Resample original signals
fs new=650000;
[s1 resampled,len res1,t res1]=resampleSignal(s1,fs new,fs1);
[s2 resampled, len res2, t res2]=resampleSignal(s2, fs new, fs2);
[s3 resampled,len res3,t res3]=resampleSignal(s3,fs new,fs3);
% Modulate signals
fc1=160000;
fc2=350000;
carrier1 = cos(2*pi*fc1* t res1);
[s1 modulated,
len ms1,fm1,fftms1]=Modulation(carrier1,s1 resampled,fs new);
carrier2 = cos(2*pi*fc2* t res2);
[s2 modulated,
len ms2,fm2,fftms2]=Modulation(carrier2,s2 resampled,fs new);
carrier3 = sin(2*pi*fc2* t res3);
[s3 modulated,
len ms3,fm3,fftms3]=Modulation(carrier3,s3 resampled,fs new);
% Plot modulated signals in freq domain
plotSignal(fm1,fftshift(fftms1),'Modulated signal 1 in freq domain',
'Frequency(Hz)', 'Magnitude');
plotSignal(fm2, fftshift(fftms2), 'Modulated signal 2 in freq domain',
'Frequency(Hz)', 'Magnitude');
plotSignal(fm3,fftshift(fftms3),'Modulated signal 3 in freq domain',
'Frequency(Hz)', 'Magnitude');
% Sum modulated signals
\max len = \max(len \max1, \max(len \max2, len \max3));
ss1 = [s1 modulated; zeros (max len-len ms1, 1)];
ss2 = [s2 modulated; zeros (max len-len ms2, 1)];
```

```
ss3 = [s3 modulated;zeros(max len-len ms3, 1)];
modulated signal sum = ss1 + ss2 + ss3;
t sum = (0: max len - 1) * (1 / fs new);
f sum = (-max len/2 : max len/2 - 1) * (fs new / max len);
fft sum = abs(fft(modulated signal sum));
% plot the final signal
plotSignal(t sum, modulated signal sum, 'Modulated final signal in time
domain', 'Time(s)', 'Amplitude');
plotSignal(f sum, fftshift(fft sum), 'Modulated final signal in freq
domain', 'Frequency(Hz)', 'Magnitude');
% Demodulate final signal to restore the 3 signals
sync carrier1 = cos(2*pi*fc1 * t sum);
[fftds1]=Demodulation(modulated signal sum, sync carrier1, len1, fs1,
fs new ,100000, 'Demodulated signal 1',t sum,f1,'1');
sync carrier2 = cos(2*pi*fc2 * t sum);
[fftds2]=Demodulation(modulated signal sum, sync carrier2, len2, fs2,
fs new ,7000, 'Demodulated signal 2',t sum,f2,'2');
sync carrier3 = sin(2*pi*fc2 * t sum);
[fftds3]=Demodulation(modulated signal sum, sync carrier3, len3, fs3,
fs new ,25000, 'Demodulated signal 3',t sum,f3,'3');
% Demodulate the final signal with phase shift 10
phase10 carrier1 = cos(2*pi*fc1*t sum + (10 * pi) / 180);
[fftds1 10]=Demodulation(modulated signal sum, phase10 carrier1, len1,
fs1, fs new ,100000, 'Demodulated 10 signal 1',t sum,f1,'1 (phase shift
10)');
phase10 carrier2 = cos(2*pi*fc2*t sum + (10 * pi) / 180);
[fftds2 10]=Demodulation(modulated signal sum, phase10 carrier2, len2,
fs2, fs new ,7000, 'Demodulated 10 signal 2',t sum,f2,'2 (phase shift
10)');
phase10 carrier3 = sin(2*pi*fc2*t sum + (10 * pi) / 180);
[fftds3 10]=Demodulation(modulated signal sum, phase10 carrier3, len3,
fs3, fs new ,25000, 'Demodulated 10 signal 3',t sum,f3,'3 (phase shift
10)');
% Demodulate the final signal with phase shift 30
phase30 carrier1 = cos(2*pi*fc1*t sum + (30 * pi) / 180);
[fftds1 30]=Demodulation(modulated signal sum, phase30 carrier1, len1,
fs1, fs new ,100000, 'Demodulated 30 signal 1',t sum,f1,'1 (phase shift
30)');
phase30 carrier2 = \cos(2*pi*fc2*t sum + (30 * pi) / 180);
[fftds2 30]=Demodulation(modulated signal sum, phase30_carrier2, len2,
fs2, fs new ,7000, 'Demodulated 30 signal 2',t sum,f2,'2 (phase shift
30)');
phase30 carrier3 = sin(2*pi*fc2*t sum + (30 * pi) / 180);
[fftds3 30]=Demodulation(modulated signal sum, phase30 carrier3, len3,
fs3, fs new ,25000, 'Demodulated 30 signal 3',t sum,f3,'3 (phase shift
30)');
% Demodulate the final signal with phase shift 90
phase 90 carrier 1 = \cos(2 \cdot \text{pi} \cdot \text{fcl} \cdot \text{t sum} + (90 \cdot \text{pi}) / 180);
```

```
[fftds1 90]=Demodulation(modulated signal sum, phase90 carrier1, len1,
fs1, fs new ,100000, 'Demodulated 90 signal 1',t sum,f1,'1 (phase shift
90)');
phase 90 carrier 2 = cos(2*pi*fc2*t sum + (90 * pi) / 180);
[fftds2 90]=Demodulation (modulated signal sum, phase 90 carrier2, len2,
fs2, fs new ,7000, 'Demodulated 90 signal 2',t sum,f2,'2 (phase shift
90)');
phase 90 carrier 3 = \sin(2 \cdot pi \cdot fc2 \cdot t \cdot sum + (90 \cdot ri) / 180);
[fftds3 90]=Demodulation(modulated signal sum, phase90 carrier3, len3,
fs3, fs new ,25000, 'Demodulated 90 signal 3',t sum,f3,'3 (phase shift
90)');
% Demodulate the final signal with fc+difference
Local2 carrier1 = cos(2*pi*(fc1+2)*t sum);
[fftds1 diff2] = Demodulation (modulated signal sum, Local2 carrier1, len1,
fs1, fs new , 100000, 'Demodulated +2 signal 1',t sum,f1,'1 (+2HZ)');
Local10 carrier1 = cos(2*pi*(fc1+10)*t sum);
[fftds1 diff10] = Demodulation (modulated signal sum, Local10 carrier1,
len1, fs1, fs new , 100000, 'Demodulated +10 signal 1', t sum, f1, '1
(+10HZ)');
function [len, BW, t, f,ffts] = preprocessing (s,fs)
   % get the signal length
   len = length(s);
   % get its bandwidth
  BW=bandwidth(s)./(2.*pi);
   % get its time range
   t = (0:len - 1)*20/len;
   % get its freq range
   f=(-fs/2:fs/len:fs/2-fs/len);
   % get its fft
   ffts = abs(fft(s));
end
function plotSignal (range, signal, label, x, y)
fig=figure();
plot(range, signal)
title(strcat(label, ""))
xlabel(strcat(x, ""))
ylabel(strcat(y, ""))
saveas(fig,label,'png')
end
function [re s,len,t] = resampleSignal (signal,fs all,fs signal)
% resample the signal
[x, y] = rat(fs all/fs signal);
re s = resample(signal, x, y);
% get its new length
len = length(re s);
% get its time range
t = (0:len - 1) * (1/fs all);
function [mod s, len ms, fms, fftms] = Modulation (c, s, fs)
```

```
% multiply the signal by the carrier
mod s = s .* c';
% get its length
len ms = length (mod s);
% get its freq range
fms = (fs/len ms) * (-len ms/2: len ms/2 - 1);
% get its fft
fftms = abs(fft(mod s));
end
function [fftds] = Demodulation(s, c, old len, fs old, fs new,
f pass, filename, t, f, index)
   % multiply the signal by the carrier
   s1 = s .* c';
   % use a low pass filter
   s2 = lowpass(s1, f pass, fs new);
   % raise it to its original magnitude
   s2=s2*2;
   \mbox{\ensuremath{\$}} plot it in time domain
   plotSignal(t,s2,strcat('Demodulated signal',index,' in time domain'),
'Time(s)', 'Amplitude');
   % get its fft
   fftds = abs(fft(s2));
   % resampling
  [x, y] = rat(fs old/fs new);
   s3 = resample(s2, x, y);
   % return it to original length
   s3 = s3(1: old len);
   %plot it in freq domain
   plotSignal(f,fftshift(abs(fft(s3))),strcat('Demodulated
signal',index,' in freq domain'), 'Frequency(Hz)', 'Magnitude');
   % write the sound in a file
   audiowrite(strcat(filename, '.wav'), s3,fs old)
end
```