Modeling Communication Latency in High-Speed Interconnection Networks

Archit Patke¹, Saurabh Jha¹, James Brandt², Ann Gentile², Zbigniew Kalbarczyk¹, Ravishankar lyer¹

1 University of Illinois at Urbana-Champaign, ²Sandia National Laboratories

Sandia National Lab contract #1951381

NSF CNS 15- 13051

1 Motivation

Problem Statement

Contention for network resources leads to application performance degradation in modern data centers.

Modeling and estimating communication primitive (e.g., send and receive) latency from congestion measurements are required to:

- Pinpoint sources of congestion
- Identify impact of congestion on applications
- Mitigate congestion impact

Research Challenges

Estimating communication latency is difficult due to :

- Noisy measurements
- Adaptive routing and congestion control mechanisms
- Spatial and temporal congestion variation

2 Actionable Feedback from Monitoring

Latency Model

Network Architecture

Flow Control: Lossless credit-based mechanism

Topology: Modified dragonfly

Flits: 48 bit data units

Stalls: The time links wait to send data

Model Overview

Input: Stalls (s) and Flits (f) counters over a measurement

interval, Shortest network paths (P)

Output: Communication latency estimate (L)

Assumptions:

- Communication is iterative (repeats with interval ~s)
- Message sizes are small (~1kB)

Queuing Model

Arrival (λ) and Service (μ) rates for link buffers

Experiments: 100 latency tests run along with congestors

Network counters can be used to estimate

communication latency.

Objective: Relating latency estimates and app runtime

Experiments: 60 runs of a latency-sensitive application (MILC)

Latency estimates correlate with application runtime.

Example Case

Network paths (P) consists of paths P₁ and P₂.
P1 consists of queues q₁ and q₂

P2 consists of queues q₃ and q₄

Latency Estimation

Expected waiting time Wa

$$E[W_q] = \frac{\lambda}{\mu(\mu - \lambda)}$$

Estimating latency using individual queuing delays

$$L = c_1 \sum_{q \in P} W_q + c_2$$