頂点被覆とマッチングに対する 最適なパラメータ化量子クエリ計算量

寺尾 樹哉¹, 森 立平²

- 1. 京都大学 数理解析研究所 M2
- 2. 名古屋大学 多元数理科学研究科

冬のLAシンポジウム@京都大学 2月20日(火)

発表概要

主結果

大きさ k 以下の頂点被覆を持つかの判定問題の量子クエリ計算量

上界: $O(\sqrt{kn} + k^{3/2}\sqrt{n})$

下界: $\Omega(\sqrt{kn})$ $(k \le (1 - \epsilon)n$ の時)

発表概要

主結果

大きさ k 以下の頂点被覆を持つかの判定問題の量子クエリ計算量

上界: $O(\sqrt{kn} + k^{3/2}\sqrt{n})$

下界: $\Omega(\sqrt{kn})$ $(k \le (1 - \epsilon)n$ の時)

カーネル化(kernelization)という古典アルゴリズムの手法の、 量子クエリver.を考えた!

目次

- ●準備
 - クエリ計算量
 - グラフの問題の量子クエリ計算量
- ●本研究:パラメータ化量子クエリ計算量
 - 頂点被覆
 - マッチング
- アイデア
 - カーネル化 (kernelization)
 - 量子クエリカーネル化
 - 頂点被覆問題のパラメータ化量子クエリアルゴリズム
- 結論

<u>クエリ計算量</u>

関数*f* が陽にではなく、 オラクルで与えられてる!

アルゴリズム

i での値 をクエリ

アルゴリズム

アルゴリズム

問題例) f(1), ..., f(N)に 1になるものはあるか?

アルゴリズム

プオラクルへのクエリ回数を評価

量子クエリ計算量

量子アルゴリズム

プオラクルへのクエリ回数を評価

量子クエリ計算量

プオラクルへのクエリ回数を評価

```
入力:量子オラクルでアクセスする f: {1, ..., N} → {0, 1}
```

出力:f(i) = 1なる $i \in \{1, ..., N\}$ を一つ

入力:**量子オラクルでアクセスする** *f*: {1, ..., *N*} → {0, 1}

出力:f(i) = 1なる $i \in \{1, ..., N\}$ を一つ

古典

⊙(N) クエリは 誤り確率高々1/3には必要

入力:**量子オラクルでアクセスする** *f*: {1, ..., *N*} → {0, 1}

出力:f(i) = 1なる $i \in \{1, ..., N\}$ を一つ

古典

❷(N) クエリは 誤り確率高々1/3には必要

量子

O(√N) クエリで誤り確率高々1/3 [Grover '96]

入力:**量子オラクルでアクセスする** *f*: {1, ..., *N*} → {0, 1}

出力:f(i) = 1なる $i \in \{1, ..., N\}$ を一つ

古典

❷(N) クエリは 誤り確率高々1/3には必要

量子

 $O(\sqrt{N})$ クエリで誤り確率高々1/3 [Grover '96]

Ω(√N) クエリは必要 [Bennett-Bernstein-Brassard-Vazirani '97]

入力:**量子オラクルでアクセスする** *f*: {1, ..., *N*} → {0, 1}

出力:f(i) = 1なる $i \in \{1, ..., N\}$ を一つ

古典

 $\Theta(N)$ クエリは 誤り確率高々1/3には必要

量子

意義①: 量子計算の優位性!

 $O(\sqrt{N})$ クエリで誤り確率高々1/3 [Grover '96]

 $\Omega(\sqrt{N})$ クエリは必要 [Bennett-Bernstein-Brassard-Vazirani '97]

入力:**量子オラクルでアクセスする** *f*: {1, ..., *N*} → {0, 1}

出力:f(i) = 1なる $i \in \{1, ..., N\}$ を一つ

古典

❷(N) クエリは 誤り確率高々1/3には必要

量子

意義①: 量子計算の優位性!

 $O(\sqrt{N})$ クエリで誤り確率高々1/3 [Grover '96]

意義②: 量子計算の限界!

 $\Omega(\sqrt{N})$ クエリは必要 [Bennett-Bernstein-Brassard-Vazirani '97]

グラフの問題の量子クエリ計算量

隣接行列モデル

量子オラクルで隣接行列 E_M : $\{1,...,n\} \times \{1,...,n\} \rightarrow \{0,1\}$ にアクセス

$$E_M(u,v)=1\Leftrightarrow (u,v)\in E(G)$$

グラフの問題の量子クエリ計算量

隣接行列モデル

量子オラクルで隣接行列 E_M : $\{1,...,n\} \times \{1,...,n\} \rightarrow \{0,1\}$ にアクセス

2頂点<math>u,vの間に辺があるかをクエリ

先行研究:グラフの問題の量子クエリ計算量

古典では $\Theta(n^2)$ の問題でも…

先行研究:グラフの問題の量子クエリ計算量

古典では $\Theta(n^2)$ の問題でも…

- k-j U -j: $\tilde{O}(n^{2-2/k})$ [Magniez-Santha-Szegedy '05]
- 連結性判定: Θ(n³/²) [Dürr-Heiligman-Høyer-Mhalla '06]
- 平面性判定: Θ(n³/2) [Ambainis et al. '08]
- 最大マッチング: $O(n^{7/4})$ [Kimmel-Witter '21], $\Omega(n^{3/2})$ [Zhang '04]
- 最小カット: $\Theta(n^{3/2})$ [Apers-Lee '21]

n =頂点数

k-頂点被覆問題

入力:グラフGと整数k

問題:大きさk以下の**頂点被覆** $S \subseteq V$ がGに存在するか?

Gのどの辺も端点の少なくとも一方はSに属す

k-頂点被覆問題

入力:グラフGと整数k

問題:大きさk以下の**頂点被覆** $S \subseteq V$ がGに存在するか?

Gのどの辺も端点の少なくとも一方はSに属す

k-頂点被覆問題

入力:グラフGと整数k

問題:大きさk以下の**頂点被覆** $S \subseteq V$ がGに存在するか?

Gのどの辺も端点の少なくとも一方はSに属す

定理

大きさ k 以下の頂点被覆を持つかの判定問題の量子クエリ計算量

上界: $O(\sqrt{kn} + k^{3/2}\sqrt{n})$

下界: $\Omega(\sqrt{kn})$ $(k \le (1 - \epsilon)n$ の時)

定理

大きさ k 以下の頂点被覆を持つかの判定問題の量子クエリ計算量

上界: $O(\sqrt{kn} + k^{3/2}\sqrt{n})$

下界: $\Omega(\sqrt{kn})$ $(k \le (1 - \epsilon)n$ の時)

定理

大きさ k 以下の頂点被覆を持つかの判定問題の量子クエリ計算量

上界: $O(\sqrt{k}n + k^{3/2}\sqrt{n})$

下界: $\Omega(\sqrt{k}n)$ $(k \le (1 - \epsilon)n$ の時)

<u>意義</u>

 最小頂点被覆の上界O(n²),
下界Ω(n³/²) [Zhang '04]を パラメータ化により改善

定理

大きさ k 以下の頂点被覆を持つかの判定問題の量子クエリ計算量

上界: $O(\sqrt{k}n + k^{3/2}\sqrt{n})$

下界: $\Omega(\sqrt{kn})$ $(k \le (1 - \epsilon)n$ の時)

<u> 意義</u>

最小頂点被覆の上界O(n²),
下界Ω(n³/²) [Zhang '04]を
パラメータ化により改善

手法

● 量子クエリカーネル化

主結果②:マッチング問題に対する パラメータ化量子クエリ計算量

<u>定理</u>

大きさ k 以上のマッチングを持つかの判定問題の量子クエリ計算量

上界: $O(\sqrt{kn} + k^2)$

下界: $\Omega(\sqrt{k}n)$

主結果②:マッチング問題に対する パラメータ化量子クエリ計算量

<u>定理</u>

大きさ k 以上のマッチングを持つかの判定問題の量子クエリ計算量

上界: $O(\sqrt{kn} + k^2)$

下界: $\Omega(\sqrt{k}n)$

主結果②:マッチング問題に対する パラメータ化量子クエリ計算量

定理

大きさ k 以上のマッチングを持つかの判定問題の量子クエリ計算量

上界: $O(\sqrt{k}n + k^2)$

下界: $\Omega(\sqrt{k}n)$

意義

• 最大マッチングの上界 $O(n^{7/4})$ [Kimmel-Witter '21],

下界 $\Omega(n^{3/2})$ [Zhang '04]を

パラメータ化により改善

主結果②:マッチング問題に対するパラメータ化量子クエリ計算量

定理

大きさ k 以上のマッチングを持つかの判定問題の量子クエリ計算量

上界: $O(\sqrt{k}n + k^2)$

下界: $\Omega(\sqrt{k}n)$

意義

最大マッチングの上界O(n^{7/4})
[Kimmel-Witter '21],

下界 $\Omega(n^{3/2})$ [Zhang '04]を パラメータ化により改善

手法

● 増加路探索 十 量子クエリカーネル化

カーネル化 (kernelization)

入力:インスタンス (G,k)

出力:別の**等価で小さな**インタンス (G',k')

カーネル化 (kernelization)

入力:インスタンス (G,k)

出力:別の**等価で小さな**インタンス (G',k')

• (G,k) $\text{ if } Yes \land \lor \not \Rightarrow (G',k')$ $\text{ if } Yes \land \lor \not \Rightarrow \lor X$

カーネル化 (kernelization)

入力:インスタンス (G,k)

出力:別の**等価で小さな**インタンス (G',k')

- (G,k) \acute{m} Yes (G',k') \acute{m} Yes (G',k')
- G'のサイズ $\leq f(k)$
- $k' \leq g(k)$

Rule 1. 孤立点 v がある時、 $(G,k) \rightarrow (G-v,k)$

Rule 1. 孤立点 v がある時、 $(G,k) \rightarrow (G-v,k)$

Rule 2. 次数 k+1 以上の頂点 v がある時、

Rule 1. 孤立点vがある時、 $(G,k) \rightarrow (G-v,k)$

Rule 2. 次数k+1以上の頂点v がある時、

vを選ばなければ、vと接続する頂点を全て選ばないといけない

Rule 1. 孤立点 v がある時、 $(G,k) \rightarrow (G-v,k)$

Rule 2. 次数 k+1 以上の頂点 v がある時、 $(G,k) \rightarrow (G-v,k-1)$

vを選ばなければ、 vと接続する頂点を全て 選ばないといけない

Rule 1. 孤立点vがある時、 $(G,k) \rightarrow (G-v,k)$

Rule 2. 次数 k+1 以上の頂点 v がある時、 $(G,k) \rightarrow (G-v,k-1)$

vを選ばなければ、vと接続する頂点を全て選ばないといけない

事実: Rule1, 2の適用後 G の辺の本数が k^2 本より多いならNoインスタンス

入力:**量子オラクルでアクセスする**インスタンス (G,k)

入力:**量子オラクルでアクセスする**インスタンス (G,k)

出力: ビット列として</mark>別の**等価な**インタンス <math>(G',k')を得る

入力:**量子オラクルでアクセスする**インスタンス (G,k)

出力: ビット列として別の等価なインタンス (G',k')を得る

• (G,k) \acute{m} Yes (G',k') \acute{m} Yes (G',k')

入力:**量子オラクルでアクセスする**インスタンス (G,k)

出力: ビット列として別の等価なインタンス (G',k')を得る

• (G,k) \acute{m} Yes (G',k') \acute{m} Yes (G',k')

量子クエリカーネル化後は、(G', k')に 古典のアルゴリズムを適用するだけ!

Step1 極大マッチングMをみつける

Step1 極大マッチングMをみつける

if |M| > k: then No4 > 1

Step1 極大マッチングMをみつける if |M| > k: then Noインスタンス

Step2 **Mに属す辺の各端点vのみ**に対して、**Rule 2**を適用

Rule 2 次数 k + 1 以上の頂点 v がある時、 $(G,k) \rightarrow (G - v,k - 1)$

Step1 極大マッチングMをみつける if |M| > k: then Noインスタンス

Step2 **Mに属す辺の各端点vのみ**に対して、**Rule 2**を適用

Rule 2 次数 k + 1 以上の頂点 v がある時、 $(G,k) \rightarrow (G - v,k - 1)$

重要な観察:極大マッチングの構造

重要な観察:極大マッチングの構造

重要な観察:極大マッチングの構造

ですべての辺は、極大マッチングの端点を端点としてもつ!

Step1 極大マッチングMをみつける if |M| > k: then Noインスタンス

<u>Step2</u> Mに属す辺の各端点vのみに対して、Rule 2を適用

Rule 2 次数 k+1 以上の頂点 v がある時、 $(G,k) \rightarrow (G-v,k-1)$

補題:

Step1, 2の後、

Gの辺の本数は $2k^2$ 本以下

クエリしないと、グラフについて 何も分からない…

サイズk+1以上のマッチング

Step1

or

をみつける

サイズ k 以下の極大マッチング

サイズ k+1 以上のマッチング

Step1

Or

をみつける

サイズk以下の極大マッチング

サイズ k+1 以上のマッチング

Step1

Or サイズk以下の極大マッ Noインスタンス

サイズk+1以上のマッチング

Step1

or

をみつける

サイズk以下の極大マッチングM

サイズk+1以上のマッチング

Step1

or

をみつける

サイズk以下の極大マッチングM

Step2 Mに属す辺の各端点vのみに対して、

サイズk+1以上のマッチング

Step1

Or

をみつける

サイズk以下の極大マッチングM

Step2 **Mに属す辺の各端点vのみ**に対して、

if vの次数 > k: then vを削除, $k \leftarrow k-1$

else: vと接続する辺を全てみつける

サイズk+1以上のマッチング

Step1

をみつける

サイズk以下の極大マッチングM

Step2 Mに属す辺の各端点vのみに対して、

if vの次数 > k: then vを削除, $k \leftarrow k-1$

else: vと接続する辺を全てみつける

サイズk+1以上のマッチング

Step1

をみつける

サイズk以下の極大マッチングM

Step2 **Mに属す辺の各端点vのみ**に対して、

if vの次数 > k: then vを削除, $k \leftarrow k-1$

else: vと接続する辺を全てみつける

古典のカーネル化と同じ カーネルを得た!

サイズk+1以上のマッチング

Step1

をみつける

サイズk以下の極大マッチングM

Step2 Mに属す辺の各端点vのみに対して、

if vの次数 > k: then vを削除

else: vと接続する辺を全てみつける

補題:

Step2は $O(k^{3/2}\sqrt{n})$ クエリ でできる

サイズk+1以上のマッチング

Step1

をみつける $\longleftarrow O(\sqrt{kn})$ クエリ

サイズk以下の極大マッチングM

<u>Step2</u> **Mに属す辺の各端点vのみ**に対して、 if vの次数 > k: then vを削除

else: vと接続する辺を全てみつける

結論

■ 頂点被覆問題とマッチング問題に対して、 パラメーターkが小さい時に最適な、量子クエリ計算量を導出

量子クエリカーネル化

愛力ーネル化という古典アルゴリズムの考え方が、 **量子クエリ計算量に役に立つ!**

結論

■ 頂点被覆問題とマッチング問題に対して、 パラメーターkが小さい時に最適な、量子クエリ計算量を導出

量子クエリカーネル化

愛力ーネル化という古典アルゴリズムの考え方が、 **量子クエリ計算量に役に立つ!**

- Q. 本結果はkが大きい時に改善できるか?
- Q. 量子クエリカーネル化は他の問題にも適用できるか?