ESMA 4016 Mineria de Datos

Association Rules

Dr. Edgar Acuna Departmento de Matematicas

Universidad de Puerto Rico- Mayaguez academic.uprm.edu/eacuna

Datos Transaccionales

Ejemplo de Canasta de Mercado:

Basket1: {bread, cheese, milk}

Basket2: {apple, eggs, salt, yogurt}

. . .

Basketn: {biscuit, eggs, milk}

Definiciones:

- Un item: es un articulo en un basket.
- Una transaction: items comprados en una canasta; puede tener TID (transaction ID)
- Un conjunto de datos transaccionales : Es un conjunto de transacciones

Representacion binaria de datos transactionales

Tid	Items		
1	3 4 5 6 7 9		
2	1 3 4 5 13		
3	1 2 4 5 7 11		
4	1 3 4 8		
5	1 3 4 10		

Itemsets and Association Rules

- Un itemset es un conjuntos de items.
 - E.g., {milk, bread, cereal} es un itemset.
- Un k-itemset es un itemset con k items.
- Dado un conjunto de datos D, un itemset X tiene una frecuencia de ocurrencia (conteo) en D.
- El objetivo es encontrar itemsets que aparecen juntos en muchas transaciones.
- Una regla de asociacion es una relacion entre dos itemsets disjuntos X y Y

$$X \Rightarrow Y$$

Representa el patron que cuando X ocurre entonces Y tambien ocurre.

Uso de Reglas de Associacion

- Association rules no representan cualquier tipo de causalidad o correlacion entre los dos itemsets.
 - $X \Rightarrow Y$ no significa que X causa Y,
 - $X \Rightarrow Y$ puede ser diferente de $Y \Rightarrow X$, distinto a correlacion
- Association rules se puede aplicar en marketing, en publicidad, planificacion de una tienda, control de inventarios, seguridad nacional, comercio electronico, etc.

Support y Confidence

- support de itemset X en D es count(X)/|D|
- Para una regla de asociacion $X \Rightarrow Y$, Podemos calcular
 - support $(X \Rightarrow Y)$ = support $(X \cup Y)$
 - confidence $(X \Rightarrow Y) = \text{support } (X \cup Y)/\text{support } (X)$, la cual representa la fuerza de la implicacion.
- Support (S) y Confidence (C) se relacionan con probabilidad conjunta y probabilidad condicional respectivamente.
- Puede haber una cantidad exponencial de reglas de asociacion.
- Reglas de asociacion son aquellas cuyo S y C son mayors o iguales minSup y minConf (umbrales que son puesto por el investigador)

Ejemplo

Data set D

TID	Itemsets
T100	1 3 4
T200	2 3 5
T300	1235
T400	2 5

Count, Support, Confidence:

$$|D| = 4$$

$$Support(3 \rightarrow 2)=0.5$$

Confidence
$$(3 \rightarrow 2) = 0.67$$

- Pasos en mineria de reglas de asociacion:
 - Generacion de itemsets Frequentes. Se encuentran los itemsets que tienen support S mayor o igual que un umbral minimo predeterminado.
 - Derivacion de las reglas. Usando los itemsets frecuentes obtenidos en el paso anterior se generan las reglas de asociacion que tienen una confianza C, mayor o igual que un umbral predeterminado.

El primer paso es el mas importante.

Frequent itemsets

- Un itemset frecuente es un itemset cuyo support (S) es ≥ minSup. Si hay m items en el conjunto de datos entonces Habra 2^m posibles frequent itemsets.
- Propiedad Apriori: Cualquier subconjunto de un itemset frecuente es tambien un itemset frequente any ABC ABD ACD BCD

Usando esta propiedad se puede podar algunas ramas.

El algoritmo APRIORI (Agrawal et al., 1995). Paso 1.

- 1. Sea L₁: los frequent 1-itemsets
- Para k=2, formar C_k a partir de L_{k-1}
- 3. Hallar frequent set L_k de C_k , conjunto de todos los itemsets candidatos de tamano k. Hacer k = k + 1
- 4. Repetir los pasos 2-3 hasta que C_k (y por lo tanto L_{k+1}) se vuelvan vacios.
- 5. Output: Union of todos los L_K .
- En el paso 2, cllamdo el paso de de generacion de los frequent itemset, D es escaneado y se cuenta cada itemset en C_k, si es mayor que minSup, es frequente y se vuelve un miembro L_k.

Paso 2: Generacion del itemset candidato

- For k=1, C_1 = all 1-itemsets.
- For k>1, generate C_k from L_{k-1} as follows:
 - The join step

```
Juntar L_{k-1}=\{a_1,\ldots,a_{k-2},a_{k-1}\} con L_{k-1}=\{b_1,\ldots,b_{k-2},b_{k-1}\} solo si a_i=b_i y a_{k-1}< b_{k-1}. Entonces, anadir \{a_1,\ldots,a_{k-2},a_{k-1},b_{k-1}\} a C_k (Los items deben mantenerse en orden).
```

The prune step

Remover $\{a_1, ..., a_{k-2}, a_{k-1}, a_k\}$ de C_k si contiene un subset non-frecuente de tamano k-1.

Ejemplo – Hallando los itemsets frecuentes

Dataset D

TID	Items
T100	a1 a3 a4
T200	a2 a3 a5
T300	a1 a2 a3 a5
T400	a2 a5

minSup=0.5

- 1. scan D \rightarrow C₁: a1:2, a2:3, a3:3, a4:1, a5:3
 - \rightarrow L₁: a1:2, a2:3, a3:3, a5:3
 - → C₂: a1a2, a1a3, a1a5, a2a3, a2a5, a3a5
- 2. scan D \rightarrow C₂: a1a2:1, a1a3:2, a1a5:1, a2a3:2, a2a5:3, a3a5:2
 - → L₂: a1a3:2, a2a3:2, a2a5:3, a3a5:2
 - → C_3 : a2a3a5
 - → Pruned C_3 : a2a3a5 (all subsets belong to L_2)
- 3. scan D \rightarrow L₃: a2a3a5:2

El orden de los items puede afectar el proceso

Dataset D

TID	Items
T100	134
T200	235
T300	1235
T400	25

1. scan D
$$\rightarrow$$
 C₁: 1:2, 2:3, 3:3, 4:1, 5:3

→
$$L_1$$
: 1:2, 2:3, 3:3, 5:3

$$\rightarrow$$
 C₂: 12, 13, 15, 23, 25, 35

2. scan D
$$\rightarrow$$
 C₂: 12:1, **13:2**, 15:1, **23:2**, **25:3**, **35:2**

Suppose the order of items is: 5,4,3,2,1

$$\rightarrow$$
 C₃: 321, 532

$$\rightarrow$$
 Pruned C₃: 532

3. scan D
$$\rightarrow$$
 L₃: 532:2

arules: R package for association rules

La Libreria arules de R haya las reglas de association de una base de datos transaccionales

```
El primer paso es convertir la base de datos dada una base de datos transaccional Esto puede ser a partir de los datos originales usando una lista data1=list(c("a1","a3","a4"),c("a2","a3","a5"),c("a1","a2","a3","a5"),c("a2","a5")) names(data1)=paste("Tr",c(1:4), sep = "") trans1=as(data1,"transactions")

O a partir de la matriz de datos binários data
    a1 a2 a3 a4 a5
t1 1 0 1 1 0
t2 0 1 1 0 1
t3 1 1 0 0 1
t4 0 1 0 0 1
trans2=as(data,"transactions")
```

arules: [2]

```
Luego se aplica el algoritmo apriori para encontra los itemsets frequent, usando
a=apriori(trans1,parameter=list(sup=0.5,target="frequent itemsets"))
summary(a) #da informacion acerca de los frequent itemsets
Inspect(a) #muestra los frequent itemsets
> inspect(a)
  items
          support count
[1] {a1}
          0.50 2
[2] {a2} 0.75 3
[3] {a5} 0.75 3
[4] {a3} 0.75 3
[5] {a1,a3} 0.50 2
[6] {a2,a5} 0.75
[7] {a2,a3} 0.50
[8] {a3,a5} 0.50
[9] {a2,a3,a5} 0.50
```

Hallando las reglas a partir de los frequent itemsets

Los Frequent itemsets son distintos de las reglas de asociacion. Se require un paso adicional para obtenerlas

For each frequent itemset *X*,

For each proper nonempty subset A of X,

Let
$$B = X - A$$

 $A \Rightarrow B$ is an association rule if

Confianza $(A \Rightarrow B) \ge minConf$,

donde Confianza(A \Rightarrow B) = support (AB) / support (A)

Example – derivando rules a partir de los frequent itemsets

- El itemset 235 es frequente, con supp=50%
 - Los subconjuntos propios no vacios son: 23, 25, 35, 2, 3, 5, con supp=50%, 75%, 50%, 75%, 75%, 75% respectivamente
 - La siguientes relaciones son candidatos a reglas de asociacion:
 - 23 => 5, confidence=100%
 - 25 => 3, confidence=67%
 - 35 => 2, confidence=100%
 - 2 => 35, confidence=67%
 - 3 => 25, confidence=67%
 - 5=> 23, confidence=67%

Example – derivando rules a partir de los frequent itemsets[2]

```
Usando la function apriori de arules, se tiene que;
ar=apriori(trans1,parameter=list(sup=0.5,conf=0.8,target="rules"))
inspect(ar)
```

```
Ihs rhs support confidence lift count [1] \{a1\} => \{a3\} \ 0.50 \ 1 \ 1.33333332 [2] \{a2\} => \{a5\} \ 0.75 \ 1 \ 1.333333333 [3] \{a5\} => \{a2\} \ 0.75 \ 1 \ 1.333333333 [4] \{a2,a3\} => \{a5\} \ 0.50 \ 1 \ 1.333333332 [5] \{a3,a5\} => \{a2\} \ 0.50 \ 1 \ 1.333333333
```

Interpretation of ar1:100 % of transactiones que compran el item 1 tambien compran el item 3. 50% de las transacciones compran los dos articulos.

Derivando las reglas de asociación

- Este paso no consume tanto tiempo como la generacion de los itemsets frecuentes.
- Se pude reducir la busqueda usando computacion en paralelo (particonando los datos)
- El algoritmo Frequent-Pattern Growth (FP-Tree, Han, 2001) considera que nos es necesario generar los itemset frecuentes para encontrar las reglas de asociación

Otras mejoras que se puedan hacer

- Reducir el numero de transacciones, esd decir hacer una especie de seleccion de instancias.
- Reducir el numero de veces que se pasa sobre todos los datos.
- Reducir el numero de candidatos

Algoritmos para hallar reglas de asociación

Depend on the data Representation

- Horizontal (Apriori)
- Vertical (Eclat, Zaki 2000)
 FP-Growth (Han et al., 2000)
 H-Mine (Pei et al., 2001)

R tiene una libreria **arules** que implementa los algoritmos Apriori y .

Reglas de asociacion versus clasificacion y clustering

- vs. clasificacion
 - El lado derecho puede tener cualquier numero de items.
 - Puede encontrar una clasificacion como regla $X \Rightarrow c$ de una manera distinta: la regla no es acerca de diferenciar clases sino de acerca de que X describe la clase c.
- vs. clustering
 - Reglas de asociacion no require las etiquetas de las clases.
 - Para X ⇒ Y, si Y es considerado como cluster, ertonces se pueden formar diferentes clase que tienen la misma descripcion (X).

Discusion de Support y Confidence

- Support y confidence no son suficientes para medir la importancia de reglas de asociacion.
- Si los thresholds de support y confidence aumentan → solo se consiguen unas pocas reglas de asociacion y ellas problablemente no son importantes.
- Por el contrario se los hresholds de support y confidence son pequenos → entonces se consiguen demasiadas reglas de asociación

Resumen

- Reglas de asociacion son distintos a otros algoritmos de mineria de datos.
- La propiedad Apriori puede reducer el espacio de busqueda.
- Es complicado encontrar las reglas de asociacion que son largas.
- Reglas de asociaion tiene muchas aplicaciones.