Operadores locais

- **1.** A imagem original da figura 1.a foi filtrada usando 3 filtros de suavização: um filtro de média aritmética, um filtro Gaussiano e um filtro de mediana, todos com janela quadrada 9×9.
 - **a.** As imagens resultantes são apresentadas nas figuras 1.b, 1.c e 1.d. Indique, justificando, qual foi o filtro usado para obter cada uma destas imagens.

b. Calcule os resultados dos 3 filtros (dimensão 3x3) nos pixels assinalados no fragmento de imagem a seguir.

121	122	124	123	7	8	9	7
122	121	123	122	9	7	8	7
123	124	124	122	8	8	10	8
124	125	126	123	7	8	11	9
8	8	9	8	6	7	7	6
6	8	8	9	8	8	7	8
8	9	2	9	7	9	130	9
7	8	7	7	8	9	9	7

2. Pretende-se segmentar os objetos circulares visíveis na imagem original da figura A. Porém, como a imagem apresenta uma variação gradual de intensidade, foi necessário efetuar a estimação do respetivo fundo, sendo o resultado desta operação apresentado na figura B. De seguida, determinou-se o valor absoluto da diferença das imagens A e B, tendo sido obtida a imagem representada na figura C.

A imagem da figura B foi obtida por aplicação à imagem da figura A de um filtro de ordem com janela quadrada cuja dimensão foi ajustada ao tamanho dos objetos (escuros) presentes na imagem. Admitindo que o fragmento de imagem a seguir representado pertence à imagem original da figura A, caracterize de forma completa um filtro que permita obter o resultado pretendido, indicando explicitamente a ordem e dimensão do filtro que selecionar. Apresente também no quadro da direita os valores que poderão ser observados nas figuras B e C nos pontos assinalados com sombreado.

SBVI 2019/20 Operadores Locais

198	186	204	186	194	195	195	195	195
190	186	187	175	188	187	179	179	179
190	186	187	175	188	187	179	179	179
169	186	166	175	88	89	179	179	179
169	176	167	85	88	87	80	179	179
176	162	160	90	90	93	82	182	182
184	167	163	91	89	85	87	170	191
187	179	178	90	85	87	174	174	174
191	196	194	191	196	181	205	205	205
198	186	204	186	194	195	195	195	195

intensidade		
original	Fig. B	Fig. C
175		
85		

3. Compare os resultados dos operadores de gradiente (amplitude) e Laplaciano cujas máscaras são a seguir apresentadas nos pontos assinalados na imagem procure avaliar a adequação de cada um dos operadores para as duas situações assinaladas (orla e ruído).

	1	2	1
Ī	0	0	0
	-1	-2	-1

-1	0	1
-2	0	2
-1	0	1

-1	-1
8	-1
-1	-1
	-1 8 -1

	_	_	_	_	_	_			
4	5	3	3	2	4	5	5	4	6
3	4	თ	4	5	6	5	5	5	6
5	6	6	7	16	19	18	17	17	18
5	6	6	10	20	23	24	25	25	23
6	7	6	13	20	23	21	24	26	24
5	6	17	23	21	22	20	23	25	26
3	15	22	23	20	21	3	22	21	25
2	13	20	23	22	24	26	23	22	22
13	19	22	24	22	21	25	23	21	20
14	18	24	23	23	20	22	23	22	24

Matlab

- **4.** A imagem do problema 1 está disponível no ficheiro "blister.tif". Use esta imagem para avaliar e comparar filtros de média (aritmética, Gaussianos) e filtros de ordem (mínimo, máximo, mediana) usando máscaras com forma e dimensão variadas.
 - a. Obtenha os resultados apresentados no problema 1. Observe os histogramas da imagem original e das imagens filtradas e comente as alterações observadas;
 - **b.** Repita a alínea anterior alterando a dimensão das máscaras dos filtros;
 - **c.** Avalie os resultados da aplicação de filtros de mínimo, máximo e mediana usando máscaras com diversas formas (quadrada, retangular, em "cruz" e em "diagonal") e dimensões.
- **5.** A imagem original da figura A do problema 2 está disponível com o nome "smarties". Escreva um programa em MatLab que use esta imagem para obter as imagens das figuras B e C.
- **6.** A imagem "blister" deve ser processada para realçar as orlas presentes na imagem. Uma vez que a aplicação direta de um operador Laplaciano à imagem dá origem a uma imagem com algum ruído, optouse pela aplicação prévia de um filtro Gaussiano.
 - a. Determine o resultado da aplicação direta de um operador Laplaciano à imagem.
 - **b.** Determine a imagem com orlas realçadas que resulta da utilização de um filtro Gaussiano antes do operador Laplaciano. Avalie a influência da operação prévia de remoção de ruído através da variação dos valores da dimensão/desvio padrão do filtro Gaussiano.
 - c. Repita a operação anterior, usando agora o filtro LoG (Laplacian of Gaussian) disponível na IPT.

SBVI 2019/20 Operadores Locais

- 7. Para efeitos de realce de imagem, foi usada uma sequência de duas operações locais para transformar a *Imagem 1* na *Imagem 2* (operação #1) e esta na *Imagem 3* (operação #2).
 - **a.** Procure caracterizar as duas operações da sequência, e sugira dois operadores para as concretizar.
 - **b.** Teste os operadores que sugeriu usando as funções de Matlab (Imagem 1 "Hand_noise")

SBVI 2019/20 Operadores Locais