Potential for climate-induced disrup	tion of pla	nt-fungal sy	mbioses in

the Rocky Mountains Melanie Kazenel 7 April 2016

How will climate change alter plant-symbiont interactions?

Plants and Fungal Symbionts

Symbionts can mediate plant responses to climate change

American Journal of Botany 100(7): 1445-1457. 2013.

SPECIAL INVITED PAPER—GLOBAL BIOLOGICAL CHANGE

FUNGAL SYMBIONTS ALTER PLANT RESPONSES TO GLOBAL CHANGE¹

STEPHANIE N. KIVLIN^{2,5}, SARAH M. EMERY³, AND JENNIFER A. RUDGERS⁴

Symbionts altered plant responses to drought, N deposition, and warming

Climate change may disrupt symbioses as organisms experience range shifts

SCIENCE VOL 336 20 APRIL 2012

Recent Plant Diversity Changes on Europe's Mountain Summits

Harald Pauli, ** Michael Gottfried, **] Stefan Dullinger, **2** Otari Abdaladre, ** Maia Akhalkatsi, **
José Luris Benito Alonso, ** Gheorghe Coldea, ** Jan Dick, ** Brigitta Erschbamer, **
Rosa Fernández Calzado, ** Dany Ghoon, ** Darfe L. Holten, ** Robert Kanka, ** George Kazakis, **
Jozef Kollás, ** Z* Per Larsson, ** Pavel Moiseev, ** Dmitry Moiseev, ** Ulf Molau, **
Joaquín Molero Mesa, ** Lazsfo Mayg, **Al-** Giovanni Pellin, **D, ** Mihai Puyca, **Ja Graziano Rossi, **
Angela Stanisci, ** Anne O. Syverhuset, **1 Jean-Paul Theurillat, **Po.2** Marcello Tomaselli, **2
Peter Unterdowavee** Luis **Villar, **Pascal Villar, **2 Georg Grabberr**

Peter Unterdowavee Luis **Villar, **Pascal Villar, **Secal Villar, **Secal

Continent-wide response of mountain vegetation to climate change

Michael Gottfried', Harald Pauli²⁺, Andreas Futschik², Maia Akhalkatsi⁴, Peter Barančok⁴, José Luis Benito Alonso⁶, Gheorghe Coldea⁷, Jan Dick⁶, Brigitta Erschbamer⁷, Maria Rosa Fernández Calzado⁶, George Kazakis⁵, Jan Krajel⁷, Per Larsson¹⁷, Martin Mallauni³, Ottar Michelsen¹⁷, Dmitry Moiseen¹⁷, Pavel Moiseen¹⁷, Ultima Michelsen¹⁸, Dmitry Moiseen¹⁸, Passe Moiseen¹⁸, Ultima Pielon⁷, Mikhal Discas²³, Laszlo Nagy¹⁷, George Nakhuttsirishi¹⁸, Badf Pederann⁹, Giovann Pielon⁷, Mikhal Discas²³, Graziano Rossi²³, Angela Stanisci²³, Jean-Paul Theurillat^{24,25}, Marcello Tomaselli²⁶, Luis Villar⁶, Pascal Viltar⁵, Lonnis Voristatsici²⁸ and Groor Crabbor⁷

Mechanisms for disruption of plant-symbiont interactions

Plants and symbionts may have different:

Physiological tolerances

Mechanisms for disruption of plant-symbiont interactions

Plants and symbionts may have different:

- Physiological tolerances
- ► Dispersal rates

Mechanisms for disruption of plant-symbiont interactions

Plants and symbionts may have different:

- Physiological tolerances
- Dispersal rates
- Phenological responses

Study System

Mountains

- \sim 25% of land area on Earth
- 50% of the human water supply
- 1/3 of terrestrial plant diversity Grasses
- Cover 1/3 of land area (>10,000

species)

- Provide the majority of food for $% \left\{ 1,2,...,n\right\}$

humans and domesticated animals

- All have mycorrhizal fungi in roots

and fungi in leaves