

Advance Technical Information

GigaMOS™ HiperFET™ **Power MOSFET**

IXFN140N25T

250V 120A D₂₅ $17m\Omega$ $\boldsymbol{R}_{\text{DS(on)}}$ ≤ 200ns

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode

Symbol	Test Conditions	Conditions		Maximum Ratings		
V _{DSS}	$T_J = 25^{\circ}C \text{ to } 150^{\circ}C$		250	V		
V _{DGR}	$T_J = 25^{\circ}C$ to $150^{\circ}C$, $R_{GS} =$	$1M\Omega$	250	V		
$V_{\rm GSS}$	Continuous		±20	V		
V _{GSM}	Transient		±30	V		
I _{D25}	$T_{\rm C} = 25^{\circ} C$		120	Α		
I _{DM}	$T_{\rm C}$ = 25°C, Pulse Width Lir	nited by $T_{_{JM}}$	400	Α		
I _A	$T_{c} = 25^{\circ}C$		40	Α		
E _{AS}	$T_{c} = 25^{\circ}C$		3	J		
$\mathbf{P}_{\scriptscriptstyle \mathrm{D}}$	$T_{c} = 25^{\circ}C$		690	W		
dv/dt	$I_{S} \leq I_{DM}, V_{DD} \leq V_{DSS}, T_{J} \leq 18$	50°C	20	V/ns		
T _J			-55 +150	°C		
T _{JM}			150	°C		
T _{stg}			-55 +150	°C		
V _{ISOL}	50/60 Hz, RMS t = 1 r	ninute	2500	٧~		
	$I_{ISOL} \le 1 \text{mA}$ $t = 1 \text{ s}$	econd	3000	V~		
T,	1.6mm (0.062 in.) from Case for 10s		300	°C		
T _{SOLD}	Plastic Body for 10s		260	°C		
M _d	Mounting Torque		1.5/13	Nm/lb.in.		
	Terminal Connection Torqu	ie	1.3/11.5	Nm/lb.in.		
Weight			30	g		

Symbol Test Conditions $(T_J = 25^{\circ}C, Unless Otherwise Specified)$		Charac Min.	cteristic Values Typ. Max.			
BV _{DSS}	$V_{GS} = 0V, I_D = 3mA$		250			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 4mA$		2.5		5.0	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$				±200	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$	T _J = 125°C				μA mA
R _{DS(on)}	$V_{GS} = 10V$, $I_D = 60A$, Note	1			17	mΩ

G = GateD = DrainS = Source

Either Source Terminal S can be used as the Source Terminal or the Kelvin Source (Gate Return) Terminal.

Features

- International Standard Package
- miniBLOC, with Aluminium Nitride Isolation
- High Current Handling Capability
- Fast Intrinsic Diode
- Low R_{DS(ON)}Avalanche Rated

Advantages

- Easy to Mount
- Space Savings
- High Power Density

Applications

- DC-DC Converters
- Battery Chargers
- Switch-Mode and Resonant-Mode **Power Supplies**
- DC Choppers
- AC Motor Drives
- Uninterruptible Power Supplies
- High Speed Power Switching Applications

Symbol	Symbol Test Conditions Char			acteristic Values		
$(T_J = 25^{\circ}C,$	Unless Otherwise Specified)	Min.	Тур.	Max.		
\mathbf{g}_{fs}	$V_{DS} = 10V$, $I_{D} = 60A$, Note 1	80	135	S		
C _{iss}			19	nF		
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		1500	pF		
C _{rss}			185	pF		
t _{d(on)}			33	ns		
t _r	Resistive Switching Times		29	ns		
t _{d(off)}	$V_{GS} = 15V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_D = 70A$		92	ns		
t _f	$R_{_{G}} = 1\Omega$ (External)		22	ns		
Q _{g(on)}			255	nC		
Q _{gs}	$V_{gs} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 70A$		90	nC		
Q_{gd}	J		62	nC		
R _{thJC}				0.18 °C/W		
R _{thCS}			0.05	°C/W		

SOT-227B (IXFN) Outline □ U (M4 screws (4x) supplied) MILLIMETERS MIN 31.50 7.80 4.09 MAX 1.255 MAX 31.88 8.20 4.29 .161 4.09 4.2 .161 .587 .481 11.68 .084 26.90 4.42 4.85 25.07

-.002

.004

-0.05

0.1

Source-Drain Diode

SymbolTest ConditionsChara $(T_J = 25^{\circ}C, Unless Otherwise Specified)$ Min.		cteristic Values Typ. Max.			
Is	$V_{GS} = 0V$			140	Α
I _{SM}	Repetitive, Pulse Width Limited by $\mathrm{T}_{_{\mathrm{JM}}}$			560	Α
$\mathbf{V}_{\mathtt{SD}}$	$I_{\rm F} = 60A, V_{\rm GS} = 0V, \text{ Note 1}$			1.3	V
$\left. egin{array}{ll} \mathbf{t}_{rr} & \\ \mathbf{I}_{RM} & \\ \mathbf{Q}_{RM} & \end{array} ight. ight.$	$I_F = 70A$, $V_{GS} = 0V$ -di/dt = 100A/ μ s $V_R = 75V$		9.3 600	200	ns A nC

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

 $\ensuremath{\mathsf{IXYS}}$ Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Maximum Transient Thermal Impedance

