<u>Yorlesung</u> 6 Netzwerk-Analyse cont'd

• In der letzten VL haben wir die Laplace Matrix L(G) für einen Graphen G=(ViE) definiert.

Diese induziert eine Lineare Abb.

$$L_1$$
 $\mathcal{F}(V) \longrightarrow \mathcal{F}(V)$,

woke:
$$\mathcal{F}(V) = \mathcal{I} \{: V \rightarrow iR \}$$
. Für $f \in \mathcal{F}(V)$ gill:

$$Lf(u) = \int \frac{1}{deg(u)} \sum_{v \in V: \ \mathcal{I}u, v \in E} \frac{f(u)}{\int deg(u)} - \frac{f(v)}{\sqrt{deg(v)}} . \quad (x)$$

· Wir haben augherdem das inner Produkt

< f. g? = \(\sum_{u \in V} \) f(u) g(u)

auf F(V) definiert.

Theorem 6.1

Für fe
$$J(V)$$
 gilt:
$$\frac{f_1 Lf_2}{\langle f_1 f_2 \rangle} = \frac{1}{Z_1 f(u)^2} \sum_{\{u,v\} \in E} \left(\frac{f(u)}{\int dug(u)} - \frac{f(v)}{\int dug(v)} \right)^Z$$

Beweis

Es ist zu zeigen, dass
$$\langle f, Lf \rangle = \frac{\sum_{\text{luv} \in E} \left(\frac{f(u)}{\sqrt{\text{olig}(u)}} - \frac{f(v)}{\sqrt{\text{olig}(v)}} \right)^2}{\sqrt{\text{olig}(v)}}$$

Wir setzen:
$$g:=T^{-1/2}f$$
, wolei $T=\operatorname{diag}(\operatorname{deg}(u))$ $u\in V$.

$$= \frac{1}{2} \left(\sum_{u \in V} \sum_{v \in V: \{uv\} \in E} g(u) \left(g(u) - g(v) \right) \right)$$

$$- \frac{1}{2} \left(\sum_{v \in V} \sum_{u \in V} \{u,v\} \in E: g(v) \left(g(u) - g(v) \right) \right)$$

$$= \int_{\{u,v\} \in E} \left(g(u) - g(v) \right)^{2}$$

Wir erseken jeht g derch. fi
$$\langle f, Lf \rangle = \sum_{\{u,v\} \in E} \left(\frac{f(u)}{\sqrt{dig(u)}} - \frac{f(v)}{\sqrt{dig(u)}} \right)^2$$

Korollar 6.2

Das Spelltrum von G (= die Eigenverk von L(G)) sind nicht hegativ

Beuris

Sei $l \in EW$ von l mit EV $f \in F(V)$. Dann gilt. $O \leq \frac{f_1 l f}{\langle f_1 f \rangle} = 1$

Korollar 6.3

Der Weinsk Eigenwert von L(a) ist 20=0 mit Egenveklor: T1/2 e,

e=(1,-11) ERIVI (bzw. e(u) = 1 für alle ueV).

Bewels:

Es gilt für
$$f = T^{1/2}e : \langle f, Lf \rangle =$$

$$\sum_{\{u,v\} \in E} (\Lambda - \Lambda)^2 = 0.$$

=> Lf=0. (da L positiv-seut-definit).

Das Spehtrum eines Grophen

Ab jeht sixiern wir einen Graphen G=(V,E), n:=1V1.

Wir setzen

und

$$0=\lambda_0 \leq \lambda_1 \leq \ldots \leq \lambda_{n-1}$$
, $\lambda_{G}:=\lambda_1$.

seien die EW von L (= das Spehtrum von h).

Theorem 6.4

- 1) 20+ 2n+ --+ 2n+ = N
- 2) lo = n-i = ln-1
- 3) Falls G nicht houplett ist, gilt: $2g \le 1$. Falls G homplett ist, gilt: $2g = \frac{n}{n-1}$
- 4) li=0 und li+170 genau dann, wenn G genau i+1 Zusamen hangskomponenku hat.
- 5) l_{n-1} ≤2. Außerdem: l_{n-1} = 2 genau dann, evenn eine der Zusauwern hangshowp. von G bipartit.
- 6) Das Spehtrum von G ist die Verelnigung der Spehtra seiner Zusammerhangshowponenben.

<u>|Seispiel</u>: G= Q-

Das Spuhtrum von a ist O, 1,2.

Benei

1) Es gilte $20+2n+\dots+2n-1=\text{Trace}(L)=\sum_{i=1}^{n}L_{i,i}=1+1+\dots+1=n$

2) Nach Korollar 6.3 gilts 20 = 0.

->
$$n = \lambda_{G} + \lambda_{z} + - + \lambda_{n-1} \ge (n-1)\lambda_{G} = \lambda_{G} \le \frac{n}{n-1}$$

and
$$n = \lambda_{G} + \lambda_{Z} + - + \lambda_{n-1} \leq (n-1) \lambda_{n-1} = \lambda_{n-1} \geq \frac{n}{n-1}$$

3) Falls a homplett ist, $\lambda_G = \frac{n}{u-1} \sim siele Liberg.$ Falls a nicht homplett existieren $u_i v \in V$ mit $\{u_i v\} \notin E$. Wir definieren $\{e\} (V)$ mit

$$f(i) = \begin{cases} \sqrt{\deg(u)}, & i = v \\ -\sqrt{\deg(v)}, & i = u \end{cases}$$

$$O_1 \quad \text{Sown}$$

Erimmony: T1/2 e @ her L. Daher gilt.

$$2G = min$$
 $g \in \mathcal{J}(v) \setminus \{b\}: \langle g, T'/z_e \rangle = 0$
 $\frac{\langle g, Lg \rangle}{\langle g, g \rangle}$

Es gilt:
$$\langle f, T'' e \rangle = f(\omega) \cdot (T'' e)(u) + f(v) \cdot (T'' e)(v)$$

$$= - \sqrt{de_0(v)} \sqrt{de_0(u)} + \sqrt{de_0(u)} \sqrt{de_0(v)} = 0$$

Daher.
$$2G \leq \frac{\langle f, Lf \rangle}{\langle f, f \rangle} = \frac{1}{\sum_{u \in V} f(u)^2} \int_{u \in V} \frac{f(u)}{f(u)^2} \left(\frac{f(u)}{\int_{u \in V} f(u)} - \frac{f(u)}{\int_{u \in V} f(u)} \right)^2$$

= deg(u)+deg(v)
$$\frac{2}{\text{ieV}}$$
: $\frac{1}{\text{deg(u)}} - \frac{f(i)}{\text{deg(u)}} = \frac{2}{\text{deg(u)}}$

$$+ \frac{2}{\text{jeV}} \cdot \frac{1}{\text{deg(u)}} - \frac{f(i)}{\text{deg(u)}} = \frac{2}{\text{deg(u)}}$$

$$O = \frac{\langle f_1 L f_2 \rangle}{\langle f_1 f_2 \rangle} = \frac{1}{\sum_{u \in V} f(u)^2} \frac{\sum_{u_1 v_2 \in E} \left(\frac{f(u)}{\deg(u)} - \frac{f(v)}{\deg(v)} \right)^2}{\sqrt{\deg(v)}}$$

Sei
$$g = T^{-1/2}f$$
, dans vuis felten:
 $g(u) = g(v)$ for all $u, v \in E$.

Scien nun ijev und P ein Pfad von i nach j.

Dann uness g auf P konstant sein, $d \cdot h$. $g = \alpha \cdot e p$ $\alpha \in \mathbb{R}$, e(u) = 1, $u \in V$.

=> g was ant jeder Zusammenhangshomponente leonstant sein.
Instrumenhangshomp. gibt, ist
her L ein-dimensional. => Folls G 28hg., gilt: 2G>0.
Für mehrer Zusammenhangshomp. folgt die Aussage aus 6).

5) Beobachhy, for all
$$g \in \mathcal{F}(V)$$
 und $u_i v \in V$ gilt:
 $0 \le (g(u) + g(v))^2 = g(u)^2 + 2g(u)g(v) + g(v)^2$
=> $(g(u) - g(v))^2 = g(u)^2 - 2g(u)g(v) + g(v)^2$

=>
$$(g(u) - g(v))^2 = g(u)^2 - 2g(u)g(v) + g(v)^2$$

 $\leq \lambda (g(u)^2 + g(v)^2)$

Sei wieder q=T-1/2 f. Dann gilt:

$$\int_{-1}^{\infty} = \max_{f \in \mathcal{F}(v) \setminus \{0\}} \frac{\langle f, Lf \rangle}{\langle f, F \rangle} = \frac{1}{\sum_{u \in V}^{\infty} deg(u)} \frac{\sum_{u \in V}^{\infty} \langle g(u) - g(v) \rangle^{2}}{\langle g(u) - g(v) \rangle^{2}}$$

$$\leq \frac{2}{\sum_{u \in V} deg(u) g(u)^2} \sum_{\{u,v\} \in E} g(u)^2 + g(v)^2 = Z_f$$

weil deg(u) = $\sum_{v \in V} \{u,v\} c E$ => $\sum_{u \in V} de_y(u) g(u)^2 = \sum_{u \in V_i, v \in V} \{u,v\} e E$ = $\sum_{u \in V} g(u)^2 + g(v)^2$

Noch der obijen Herleitung gilti $I_{n-1}=2$ gdw $(g(u)+g(v))^2=0$ für alle $(u,v)\in E$.

D.h. $I_{n-1}=2 <=> g(u)=-g(v)$ für alle $(u,v)\in E$.

Falls G eine bipartik Komponenk H = (V', E') hat wit $V = V_A \cup V_Z$, so does E' nur ow Kanfin zwischen V_A und V_Z beskht, finder wir: $g(u) = \begin{cases} 1, & \text{falls ueV}_I \\ -1, & \text{falls ueV}_I \end{cases} = 2 \quad \text{In-} i = 2.$ Or sonst

Anderskits, falls $g \in \mathcal{F}(V)$ existient, $m \in \mathcal{F}(V) = -g \cdot CV$ for all $\mathcal{F}(U,V) \in \mathcal{E}$, So if $\mathcal{F}(V',E')$ eine Komponents von G, and $\mathcal{F}(U,V) \in \mathcal{F}(V',E')$ eine Komponents von $\mathcal{F}(U,V) \in \mathcal{F}(U,V) \in \mathcal{F}(U$

Dann besthun nur handen in E' zwischen V_1 und $V_2 \Rightarrow H$ ist bipartit.

6) Scien G., ..., G.k die Zusammenhanzshomponenten von G. Nach neuer Nummerierung der Knohn höhmen wir annehmen, dass G:= (Vi, E:) mit

$$V_{i} = \{ n_{i-1} + | 1 - n_{i} \}_{i} \quad 0 = n_{0} < n_{i} < - < n_{\kappa} = n.$$

In dienn Fall hat Leine Blochmatrix form:

Definition 6.5

Sci G= (VIE) ein Graph. Das Volumen von G ist
$$vol(G) := \sum_{u \in V} deg(u)$$
.

Proposition 6.6

Sci G= (ViE) ein Graph, 2G, In-, wie oben.

Seien $G_{\lambda} = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ Ewei Teilgraphen with $V = V_{\lambda} \cup V_2$, and $V_{\lambda} \cap V_2 = \emptyset_1$ and $E_j = 1$ think E = 1 with E = 1. Si

Dann:

$$\lambda_G \leq \varepsilon \cdot \frac{\text{vol}(G)}{(\text{vol}(G_1)+c)(\text{vol}(G_2)+c)} \leq \lambda_{n-1}.$$