

Session: Foundational Blocks for Smart Grids

BANDWIDTH ADEQUACY, DATA COMPRESSION AND EVOLVING WAMS APPLICATIONS FOR INDIAN GRID

Presented By

DR. AMIT R. KULKARNI, ADDITIONAL EXECUTIVE ENGINEER, MAHATRANSCO

INTRODUCTION

- Challenges of Data Transfer in SMARTGRID
- Case study-1: Tentative Bandwidth Requirement of A Typical 400kV substation in MAHATRANSCO Grid
- Significance of Data Compression and Its Applications in Electrical Power Utilities
- Case study-2: Application of Data Compression Technique to PMU
 Data
- Case Study-3: Synchrophasor System for Disturbance Analysis

Bandwidth Adequacy and Data Transfer Challenges

Screen shot for Visualization with NO VOLTAGE DATA on synchrophasor system from 400kV Lonikand substation.

➤ BIG DATA: The data of 15,000 samples for 7 power system parameters from 8-Phasor Measurement Units (PMUs) in the state of Maharashtra spanning duration of 10 minutes comes out to be 8,40,000 Samples and generation of around 1.5GB of Data per Day.

➤ With Increase in Number of PMUs the data volume would increase, ALONG WITH BANDWIDTH REQUIREMENT TO TRANSFER THE DATA.

Case Study-1: Tentative Bandwidth Requirement

Tentative Bandwidth Requirement of Various Applications at 400kV Dhule Substation in MAHATRANSCO Grid

Bandwidth for RTU data Communication	414.46Kbps
Bandwidth for ERP data Communication	824Kbps
Bandwidth for ABT data Communication	5.33 Kbps
Bandwidth for VOIP data Communication	87.2Kbps
Bandwidth for WAMS data communication	128.0
	1479.53 Kbps
Total Bandwidth Requirement	(1.47Mbps)

$$Compression Ratio (CR) = \frac{Original Data}{Compressed Data}$$

Results for Data Compression with Principal Component Analysis

Data compression Technique Used	Original Data size (MB)	Compressed Data Size (MB)	Compression Ratio (CR in %)	Compression in Data Achieved (%)	
PCA with	8.38	1.449	5.783	82.70	
PRINCIPAL	0.30	1.449	3.763	02.70	

Case Study-3: WAMS for Disturbance Analysis

The Disturbance pertains to bursting of R-phase CT of 3 x 200MVA, 400/220kV ICT-4 at 400kV Padghe substation in MAHATRANSCO Grid.

Sr. No.	Voltages [PhG] in kV observed			
		400 kV Lonikand	400 kV Kolhapur	400 kV Chandrapur
1)	V _A	238	240	239
2)	V _B	243	242	243
3)	V _c	240	240	241

	-					
					_	
V	/oltage	es as	indicated	by Synchro	phasor syste	ms
i	n MAH	ATR	RANSCO du	ıring <mark>NORM</mark>	AL CONDITION	N.

Sr. No.	Voltages [PhG] in kV observed at the Instance of Voltage Dip [Approximately]			
		400 kV Lonikand	400 kV Kolhapur	400 kV Chandrapur
1)	V _A	213	229	239
2)	V _B	234	237	244
3)	V _c	227	234	240

Voltages as indicated by Synchrophasor systems in MAHATRANSCO during **DISTURBANCE CONDITION**.

Case Study-3: WAMS for Disturbance Analysis

A-ph. Voltage during disturbance as indicated by WAMS

B-ph. and C-Ph. Voltages at the dip as indicated by Synchrophasor systems in MAHATRANSCO during Disturbance

A ph., B-ph. and C-Ph. Currents as indicated by synchrophasor systems in MAHATRANSCO during disturbance

KEY TAKEAWAYS

- ☐ Highlights Challenges of BIG DATA generated in SMARTGRID, Importance of Bandwidth Adequacy for Various power system applications with practical data.
- ☐ Demonstrates Significance of Data Compression and Its use in Compressing Data from SMARTGRID device like that, from PMUs.

☐ Utilization of Wide Area Measurement Systems (WAMS)

Synchrophasor System for Grid Monitoring and Disturbance

Analysis.

THANK YOU