Approved For Release STAT 2009/08/19 :

CIA-RDP88-00904R000100120

Approved For Release 2009/08/19 :

CIA-RDP88-00904R000100120

Вторая Международная конференция Организации Объединенных Наций по применению атомной энергии в мирных целях

A/CONF.15/P/2199 USSR ORIGINAL: RUSSIAN

Не подлежит оглашению до официального сообщения на Конференции

ПРИМЕНЕНИЕ МИКРОАВТОРАДИОГРАФИИ И РАДИОМЕТРИИ К ИССЛЕДОВАНИЮ ВОПРОСОВ ТЕОРИИ ФЛОТАЦИИ

И.Н. Плаксин

Предыдущими работами, проведенными микроавторадиографическим методом, качественно установлено неравномерное распределение флотационных реагентов на поверхности частиц сульфидных минералов флотационной крупности (1-6).

В данной работе дается количественная оценка неоднородности покрытия реагентами частиц (той же крупности) галенита, сфалерита, пирита, халькопирита и флюорита.

Кроме этого, излагаются результати радиографических и радиометрических исследований действия хроматов (с $C \tau^{51}$) на депрессию сульфидов и действие некоторых пенообразователей на адсорбцию и распределение собирателя на поверхности труднофлотируемых сульфидо

Методика микроавторадиографии существенно зависит от особенностей состава и размера частиц минерала.

- 1. Для частиц размером 500-200 мк с хорошо выраженной спайностью лучшие результаты получаются четодом контрастной авторадиографии с применением пластинок типа МК (НИКФИ), с толщиной эмульсионного слоя 7-10 мк (3),
- 2. Для частиц той же крупности, но не обладающих хорошей спайностью, а также для более мелкого минерала (200 мк) применяется нанесение эмульсионного слоя непосредственно на поверхность исследуемых частиц. Для частиц, размер которых не превышает 75 мк (рис.1), применяется методика мокрой авторадиографии (4).
- 3. Полная характеристика распределения реагента на минерале может быть получена применением вышеуказанных методик совместно со следовой микроавторадиографией. Последняя позволяет установить как

25 YEAR RE-REVIEW

распределение реагента по периметру отдельных частиц, так и адсороцию реагентов отдельными частицами флотационной пульпы (5).

Количественная оценка слоев реагентов на частицах размером 200-500 мк производится на основании микрофотометрирования почернений участков микроавторадиограмм, полученных контрастной микроавтора диографией (3). Для определения зависимости плотности почернения радиографических отпечатков от активности частиц применяются эталоны с определенным количеством реагента, которые экспонируются одновременно с изучаемыми частицами при температуре 10-120 в сухом воздухе для уменьшения регрессии скрытого изображения. Одновременно экспонируется контрольный образец того же состава. В случае малых активностей образцов и необходимости длительных экспозиций контролируется величина оптической плотности вуали фотографического слоя, для чего при соблюдении тех же условий обрабатывается необлученная пластинка. Ввиду целесообразности работать на линейном участке сенситометрической кривой определяются экспозиции, дающие нормальные потемнения фотоэмульсии. По результатам фотометрирования микроавторадиограммы, имеющей область нормальных потемнений (не превышающих 2,0), строится кривая распределения.

Абсолютная плотность покрытия отдельных участков поверхности частиц определяется по плотности потемнения микроавторадиографии сопоставлением ее с плотностью потемнения эталона.

Применяются следующие способы приготовления эталонных источников.

На шлифы минерала наносится некоторое количество меченого реагента в виде раствора различной концентрации. Образцы после высушивания на воздухе радиометрируются с соблюдением точных геометрических условий. Одинаковые размеры участков, подвергающихся радиометрированию, создаются коллиматором из пленки нитроцеллюлозы. По результатам радиометрических измерений абсолютным методом определяется активность образца (7). Образцы экспонируются одновременно на одной пластинке в течение различного времены и отпечатки их подвергаются фотометрированию. По результатам радиометрических и фотометрических измерений строятся характеристические кривне, дающие возможность судить об изменениях степени потемнения в зависимости от активности образцов при различной продолжительности экспонирования.

Лучшими радиоактивными источниками для количественной радио-

графии являются радиоактивные монослои (8). Ранее нами установлены (9,10) условия, при которых на поверхности пластинки химически чистого золота образуется адсорбционный мономолекулярный слой ксантогената. Фотометрический анализ авторадиографического отпечатка показал полную однородность указанного эталона. Для абсолютной оценки интенсивности изображения на авторадиограммах учитываются коэффициенты обратного рассеяния материала, на котором адсорбировался реагент.

На рис.2. представлени кривые распределения потемнений микроавторадиограмми частици галенита — 1-и радиографического отпечатка золотой пластинки с монослойным покрытием этиловым ксантогенатом с 5^{35} - 2 — при дозировке реагента 100 г/т.

Кривая потемнения вследствие близких значений кожфициентов обратного рассеяния галенита и золота позволяет определить число молекулярных слоев на участках микроавторадиограммы и характеризовать неравномерность распределения этилового ксантогената на поверхности галенита. Бариационный кожфициент неравномерности покрытия галенита этиловым ксантогенатом составляет 168%. При этом отношение максимального покрытия к минимальному находится в пределах 3-8 и в некоторых случаях достигает 15. Плотность потемнения отдельных участков микроавторадиограммы разна плотности потемнения вуали, что указывает на отсутствие реагента на данных участках. Повышение дозировки этилового ксантогената в 3 раза не приводит к появлению сплошного покрытия частиц реагентом, а способствует лишь возрастанию кожфициента неравномерности до 395% и отношения плотностей покрытия до 10-17.

Как показывает микроавторадиографическое исследование, бутиловый и изоамиловый ксантогенаты также распределяются неравномерно на поверхности частиц галенита. Коэффициенты неравномерности равны в этом случае 262 и 289% соответственно.

Уменьшение неравномерности наблюдается в случае сочетания двух различных ксантогенатов. На рис. 3 представлена кривая потемнения микроавторадиограммы частиц галенита, обработанных смесью (1:1) этилового и бутилового ксантогенатов при суммарной дозировке 100 г/т. Приведенная кривая характеризует более равномерное потемнение микроавторадиограмым и, следовательно, более равномерное распределение ксантогената на поверхности. Коэффициент неравномерности снижается в этом случае до 73%, при одновременном снижении отноше-

ния илотностей максимального и минимального покрытия до 2-3, что происходит за счет уменьшения площади участков, не занятых ревгентом. Это явление объясняет, до некоторой степени, повышение флотационного извлечения в случае совместного действия двух сульфгидральных собирателей.

Радиографирование слоев реагентов на частицах размером-74 мк производится согласно методике мокрой микроавторадиографии (4) на основании определения количества меченого реагента, необходимого для восстановления одного зерна серебра. Для этого на предметное стекло наносится тонкий слой - подложка, -служащий для уменьшения растекания капли раствора меченого реагента. На подложку наносится капля (0,1 мл) реагента, содержащего \$35. После испарения води на площадь, занятую реагентом, наносится тонкий защитный слой, не выходящий за границы капли. Приготовленный таким образом эталон радиографируется и просматривается в отраженном свете на металлографическом микроскопе (11). Фотографические снимки делаются с 3-4 участков просматриваемой поверхности эталона. С помощью накладываемой на негатив масштабной сетки подсчитывается среднеарифметическое количество зерен серебра и определяется количество меченого реагента, необходимое для образования одного зерна серебра. Зерна серебра вуали, размер которых значительно меньше, во внимание не прини-Mantca.

Результаты опытов показывают, что при различных концентрациях реагента на восстановление одного зерна серебра требуется одно и то же количество меченого реагента, при этом количество β -частиц, необходимое для образования одного зерна серебра, равно 3-4, что говорит о воспроизведении чувствительности эмульсии Гомберга (11).

С применением данной методики исследовано взаимодействие этилового, бутилового и изоамилового ксантогенатов с халькопиритом, галенитом и сфалеритом, а также тридецилата с флюоритом. Неравномерность распределения этилового ксантогената изучена как на поверхности частиц халькопирита при различном значении водородного показателя (рН), которое создавалось концентрацией гидроокиси кальция (табл.1), так и на поверхности сфалерита в нейтральной среде (табл.2). Радиографически исследовались зерна, перешедшие в пену при флотации (пенный продукт) и несфлотированные (непенный продукт). Данные табл.1 показывают влияние на результаты флотации не только

количества закрепленного реагента, но и распределения его на поверхности частицы. X

Таблица 1

	Пенный проду	KT	Пепенный продукт			
рН	Среднее количе- ство адсорбиро- ванного на по- верхности части- цы ксантогената 10-12 мг/мк ²	Ко эффи- циент неравно- мерности в Ж	Среднее количе- ство адсорбиро- ванного на по- верхности части- цы ксантогената 10-12 мг/мк ²	Коэффици- ент нерав- номерно- сти в %		
7,0	8,6	142	1,7	248		
8,0	4,9	133	2,7	237		
9,5	4,9	164	3,4	281		
11,0	3,4	1 64	1,0	256		
12,5	3,4	166	1,0	139		

При достаточном количестве ксантогената, закрепившегося на поверхности, что в данных опытах составляло величину в пределах $4,9-8,6.10^{-12}$ мг/мк 2 , переход частицы в пенный продукт зависит главным образом от степени равномерности покрытия реагентом.

В случае малого поглощения реагента, что, например, гроисходит при высоком значении рН, вероятность попадания зерен в пенный продукт флотации определяется преимущественно не характером распределения реагента на поверхности, а количеством закрепившегося на ней реагента. Такая не зависимость результатов флотации от количества адсорбированного реагента и его распределения на поверхности частицы наблюдается при флотации флюорита тридецилатом натрия.

При одном и том же количестве реагента, закрепившемся на минерале, его флотация зависит от равномерности распределения реагента (см. табл, 1. pH=9,5).

Отмеченное влияние неравномерности распределения флотационных коллекторов на минералах при достаточно високих концентрациях реагентов может быть также причиной отсутствия однозначной зависимости

х Покрытие отнесено к площади горизонтальной проекции частицы. Значение коэффициента рельефа и шерохозатости поверхности принято постоянным.

--6-

флотируености минерала от адсороции реагента, что оыло установлено радиометрически (42). С увеличением концентрации в растворе количество адсороированного коллектора возрастает, но одновременно повышается и неравномерность его закрепления с образованием полуслойных скоплений реагента. Поэтому повышение концентрации ксантогената свыше определенного значения хотя и вызывает увеличение количества закрепившегося ксантогената, но не улучшает флотируемости.

Изучение распределения ксантогенатов различных спиртов на сульфидных минералах в зависимости от концентрации кислорода в растворе проводилось в специальном аппарате (43), позволяющем обеспечить точный состав атмосферы с соответствующим дозированием кислорода и других компонентов газовой фазы. Концентрация кислорода в воде составляла 0,45, 40 и 36 мг/л. В табл. 2 показано влияние длины радикала и концентрации кислорода на неравномерность закрепления ксантогената на частицах сфалерита (рН=7).

Таблица 2

Кон- центра- ция кис- лорода в мг/л	Let Roumne-	ксанто- кат Коэффи- циент неравно- мерности в %	•	циент неравно- мерности в %	Изоамил ксантог Количе- ство а д- сорбиро- ванного ксантоге- ната в мг/г	енат Коэффи- циент неравно- мерности
0,16 10,00	0,0040	100	0,0080	120	0,0100	89
36,00	0,0099 0,0111	110 107	0,0160 0,004		0,0188 0,1100	10 7 568

В случае применения этилового ксантогената повышение концентрации кислорода незначительно влияет на неравномерность распределения коллектора на поверхности сфалерита. Ксантогенаты бутилового и изоамилового спиртов (в отличие от этилового) значительно энергичнее взаимодействуют с участками поверхности сульфида, подвергшимися начальной степени окисления. Этому соответствует резкое увеличение неравномерности закрепления коллектора.

При изучении действия извести на распределение ксантогенатов различных спиртов на калькопирите и сфалерите выяснилось, что при общем для всех исследуемых ксантогенатов снижении поглощения с увеличением дозировки извести неравномерность закрепления их различна. Ко эффициент неравномерности этилового ксантогената при увеличении рН изменяется очень мало (рис.4 и 5). Для бутивового и изоамилового

-7-

ксантогенатов характерны резкие изменения величины коэффициента неравномерности при переходе от одного к другому значению рН (рис.5) в присутствии извести.

Таким образом, при анализе данных адсорбции и неравномерности закрепления различных ксантогенатов на сульфидных минералах выяснилось, что этиловый ксантогенат во всех исследованных случаях (при различной концентрации кислорода в пульпе и при различном значении рн среды) закрепляется на поверхности минерала более равномерно, чем бутиловый и изоамиловый ксантогенаты. С этим свойством, очевидно, связано более эффективное действие а эрации при флотации этиловым ксантогенатом.

Закремление и распределение реагента в зависимости от концентрации кислорода в растворе изучалось также при флотации флюорита тридецилатом.

Флотационные опыты велись на несколько видоизмененной установке, применявшейся в предыдущих исследованиях (13). Концентрация
кислорода регулировалась парциальным давлением очищенного кислорода,
удаление последнего из раствора достигалось продувкой очищенным
азотом. При повышении концентрации кислорода в растворе от 0,47 до
39 мг/л время флотации можно сократить с 10 до 4 мин. и в то же
время извлечение флюрита в пенный продукт возрастает с 37,0 до
89,0% при увеличении поглощения тридецилата пенным продуктом с 26,0
до 60% (по отношению к исходной концентрации). Микрора днографическое
исследование показало распределение коллектора на поверхности частиц флюорита из флотационных продуктов.

При флотации в обескислороженной пульпе или в пульпе с относительно низкой концентрацией кислорода (0,17 и 8,3 мг/л) отмечается большая неравномерность распределения реагента по поверхности частиц флюорита из пенного продукта (рис.6,7). В этом случае коэффициент неравномерности соответственно равен 224 и 140%. На частицах пенного продукта, полученных при флотации с высоким содержанием кислорода 39 мг/л, коэффициент неравномерности составляет всего лишь 74% (рис.8). Для частиц непенного продукта коэффициент неравномерности выражается соответственно геличинами 187,160 и 200%.

Применение микроавторадиографии дало возножность таким образом доказать влияние концентрации кислорода на фиксацию флотационного коллектора на поверхности флюорита. В случае применения высших мрных кислот этот фактор сказывается, кроме того, при флотации барита, титановых минералов, циркона, фосфатов и др. (14,15).

Нами также исследовалось совместное действие кознтогенатов низших спиртов и повышенных дозировок пенообразователей на флотацию сфалерита, пирротина и галенита.

Эксперименти проводились в нейтральной и щелочной средах без активации пирротина и сфалерита солями тяжелых металлов.

Положительные результаты совместного действия коллектора и пенообразователя отмечены и довольно широком диапазоне водородного показателя среды (6, 16, 17, 18). Увеличение дозировки ксантогената или применение ксантогената с большей длиной углеводородной цепи, при обычной дозировке вспенивателя, мало сказывается на повышении извлечения минерала в пенный продукт (рис.9), котя адсороция коллектора увеличивается при этом весьма заметно (рис.10). Введение серы-35 в состав ксантогенатов различных спиртов позволило установить изменение адсородии ксантогената минералами при флотации сульфидов повышенными дозировками пенообразователя. Повышенные дозировки вспенивателя оказывают различное действие на изменение адсорбции ксантогената разными сульфидными минералами. В опытах с галенитом поглощение ксантогената сначала повышается, затем начинает снижаться. В отличие от сфалерита (практически почти неизменная адсорбция) у пирротина и пирита отмечается значительно большее изменение адсорбции, причем с увеличением длины углеводородной цепи коллектора и концентрации его для снижения адсорбции ксантогената требуется большая концентрация вспенивателя в пульпе (рис.10). Улучшение флотационных результатов, в случае увеличения дозировки пенообразователя, отмечено для всех 4 испытанных сульфидов. Наибольшее повышение извлечения наблюдается при флотации сфалерита - с 52 до 85% и пирротине с 12-20% до 83-96% (рис.11). Полученные результаты находятся в согласии с результатами работ Лея и Шульмана (19).

Проведенное микроавторадиографическое исследование показало, что повышение дозировки вспенивателя в ряде случаев оказывает влияние не только на адсорбцию, но и на распределение реагента коллектора по периметру и на поверхности зерен минерала. Так, например, если при дозировке ДС, равной 200 и 460 г/т, встречаются лишь отдельные зерна пирротина с неравномерным распределением ксантогената (рис.12), то при дозировке, равной 1800 г/т, на большей части зерен пирротина собиратель распределен весьма неравномерно (рис.13).

Исследования с радиоактивными изотопами показали (20, 21),что ионы не вытесняют ионы ксантогената с поверхности хромсодержащие сульфидных минералов. В настоящей работе впервые примешен меченый хром для изучения депрессирующего действия хроматов. Адсороция хромсодержащих ионов изучалась в зависимости от равновесной концентрации раствора бихромата при постоянной температуре. Результаты экспериментов по адсорбции хромсодержащих ионов пиритом и галенитом в достаточной степени описываются уравнением Фрейндлиха. Следует заметить, что здесь и в дальнейшем расчет ведется по адсороции бихромата, хотя форма нахождения хрома при адсорбции может быть иной. Нерастворимые соли, образующиеся при прибавлении двухромовой соли к раствору соли металла, хромат которого нерастворим, осаждартся в виде хромата, а не бихромата. Это происходит в результате того, что в растворе бихромата всегда имеется небольшое количество ионов водорода и согласно равновесию:

 $C_{\nu_2}O_7^{2-} + H_2O \longrightarrow 2H^+ + 2C_{\nu}O_4^{2-}$,

а растворимость хроматов тяжелых минералов обычно ниже, чем бихрома-

Для регистрации излучений $Cv^{\circ 1}$ применени фотопластинки типа MP. Радиоактивный изотоп $\mathfrak{C}v^{51}$ излучает не только х , но и рентх- излучение дейгеновские лучи. На применявшиеся фотопластинки ствует значительно слабее, чем рентгеновские лучи, и поэтому микроавторадиограмма получается действием рентгеновских лучей. На рис.14 и 15 приведены следовые микроавторадиограммы частиц пирита, обработанных раствором бихромата калия различной концентрации (0,05 и 0,17 г/л). В обоих случаях наблюдается неравномерность распределения хроматов по периметру минералов. На рис.16 приведена экспериментально установленная зависимость адсороции и извлечения в пенный продукт от дозировки бихромата калия. Флотационные опыты проводились со смесями минералов пирита и галенита с кварцем в среде бихромата калия. В качестве собирателя применялся этиловый ксантогенат, в качестве пенообразователя - сосновое масло. Максимальной адсороции хромата для обоих минералов соответствует минимальное значение флотационного извлечения, т.е. состояние депрессии минералов и наоборот, минимальной адсороции хромата соответствует максимальное извлечение минералов в пенный продукт. Прочность закрепления хромата на сульфидах исследовалась опытами десороции с

-IO.

применением промывания минералов различными объемами дистиллированной воды. Наиболее заметное снижение адсорбции происходит при промывке минералов первыми порциями воды (30%), дальнейшая промывка незначительно изменяет величину первоначальной адсорбции, что указывает на достаточно устойчивое закрепление хромсодержащих ионов на исследуемых сульфидах.

Зависимость адсороции хромата от концентрации водородных ионов в области кислых растворов в достаточной степени описывается уравнением фрейндлика, а при переходе в нейтральнур и щелочную области адсороция остается почти постоянной (рис.17). Результаты флотационных опыта в пределах рн от 1,8 до 7 показывают, что удельное количество хромата, адсорочрованного пенным галенитовым продуктом, значительно уменьшается с понижением рн. Во флотационных опытах, в которых адсороция хромата минимальна, пирит и галенит извлекаются в пенный продукт максимально и наоборот. Такая прямая зависимость результатов флотации от адсороции позволяет с делать вывод, что причной депрессии галенита и пирита хроматами можно считать образование весьма малорастворимых средних или основных хроматов на поверхности минералов, которые, несмотря на одновременное присутствие ионов ксантогената, препятствуют прикреплению частицы минерала к пузырьку воздуха.

Выводы

- 1. Разработана методика количественной микроавторадиографии, которая дает возможность изучить распределение флотационных реагентов, содержащих меченые атомы, на поверхности частиц продуктов флотации.
- 2. Применение этой методики позволило количественно оценить степень неравномерности распределения ксантогенатов на поверхности частиц в зависимости от длины углеводородного радикала, водородного показателя раствора, концентрации кислорода и реагентов-регуляторов и показать влияние этого фактора на извлечение минералов во флотационные продукты.
- З. Исследование флотации флюорита с применением для этого тридецилата с \mathbb{C}^{14} позволило количественно оценить значение концентрации кислорода в растворе как фактор, определяющий распределение коллектора на поверхности частиц флотационных продуктов.

-II-

- 4. Применение микроавторадиографии совместно с радиометрией дало возможность изучить совместное действие флотационных коллекторов и пенообразователей и предложить условия для повышения извлечения в пенный продукт труднофлотируемых минералов, как например пирротина.
- 5. Применение микроавторадиографии и радиометрии на основе рент геновского излучения дало возможность количественно установить действие хроматов в зависимости от рН среды на закрепление хромсо-держащих ионов на галените и пирите и на извлечение их в продукты флотации.

Литература

- 4. Плаксин И.Н., Зайцева С.П., Старчик Л.П., Третьяков О.В., Тюрникова В.И., Шафеев Р.Ш. Применение микрорадиографии к изучению взаимодействия реагентов с минералами во флотации. Заводская лаборатория, 1957, В 3, 313
- 2. Plaksin I.N. Using microautoradiography for the Study of the interaction reagents with minerals in flotation.
 The Proceedings of the second international congress of surface activity. But terworth scientific publication, London 1957, 61
- 3. Плаксин И.Н., Шафеев Р.Ш., Зайцева С.П. Применение авторадиографического метода исследования к изучению распределения флотационных реагентов на поверхности частиц минералов. Доклады Академии наук СССР, 1956, 108, \$ 5 905.
- 4. Плаксин И.Н., Старчик Л.П., Тюрникова В.И. Методика авторадиографии при исследовании распределения флотационных реагентог на поверхности частиц сульфидных минералов. Известия Академии наук СССР, Отделение технических наук, 1957, № 3.187.
- 5. Плаксин И.Н., Зайцева С.П., Шафеев Р.Ш. Применение авторадиографии для изучения распределения реагентов между частицами минералов во флотационной пульпе. Известия Академии наук СССР, Отделение технических наук, 1957, \$4,164.

- 6. Plaksin I.N., Zaitseva S.P., Myasnikova G.A., Starchik L.P.,
 Turnikova V.I., Khazhinskaja G.N., Schafeev R.S. Microradiographie Study of the Action of Flotation Reagents.
 Transactions of the Institution of Mining and Metallurgy
 part I, 1957-1958, 1.
- 7. Райский С.М., Смирнов В.Ф. Физические основы метода радиоактивных индикаторов, Москва, 1956.
- 8. Beischer D.E. Radioactive Monolayers.J.Phys.Chem.,1953, 57, 134
- 9. Плаксин И.Н., Зайцева С.П. Влияние кислорода, водорода и азота на адсороцию этилового ксантогената золотом, серебром, медью и их сплавами. Доклади Акад мии наук СССР, 1955, 101, # 4,727.
- 10. Плаксин И.Н., Зайцева С.П. Изучение влияния газов на плотность слоя этилового ксантогената кадия на поверхности золота, серебра, меди и их сплавов с применением радиоактивных изотопов. Сб. Металлургия цветных металлов №26, 1957, 21.
- 11. Gomberg H.A new high Resolution System of Autoradiography,
 Nucleonics, 1951, 9, 4,28
- 12. Плаксин И.Н., Хажинская Г.Н., Тюрникова В.И. Исследование некоторых вопросов взаимодействия сульфидных минералов с флотационными реагентами. Известия Академии наук СССР. Отделение технических наук, 1954, 8, 123.
- 13. Бессонов С.В., Плаксин И.Н. Влияние кислорода на флотир, смость галенита и жалькопирита. Известия Академии наук СССР, Отделение технических наук, 1954. 1.114.
- 14. Плаксин И.Н. Результаты и перспективы исследования взаимодействия реагентов с минералами во флотации. Известия Академии наук СССР, Отделение технических наук, 1955, № 1,109.
- 15. Бакакин В.В., Плежсин И.Н., Чаплыгина Е.М. Влияние газов на флотацию флюорита и барита. Известия Академии наук СССР, Отделение технических наук, 1957, № 9, 96.
- 16. Плаксин И.Н., Хажинская Г.Н., Действие повышенных дозировок пенообразователя на флотацию пирротина и сфалерита. Доклады Академии наук СССР, 1957, 114, № 5, 1084
- 17. Плаксин И.Н., Хажинская Г.Н. О коллекторном действии некоторых пенсобразователей при флотации цинковой обманки. Известия

Approved For Release 2009/08/19 : CIA-RDP88-00904R000100120030-5

-I3-

Академии наук СССР, Отделение технических наук, 1956,№ 9, 421.

- 48. Плаксин И.Н., Хажинская Г.Н. Флотация пирротина, Известия Академии наук СССР, Отделение технических наук, $1957, \frac{1}{2}, 91$.
- 19. Leja I., Schulman I.N., Flotation Theory: Molecular Interactions
 Between Frothers and Collectors of Solid-Liquid-Air
 Interfaces. Transactions of the American Institute of
 Mining and Metallurgical Engineers, 1954, 199 & 22 IN.Y.
- 20. Плаксин И.Н., Мясникова Г.А. Применение радиоактивного изотопа для изучения депрессии галенита и пирита при селективной флотации. Доклады Академии наук СССР, 1957, 117 % 5, 824.
- 21. Bogdanow O.S. Theoretische Untersuchungen des Flotationsproceses. Freiberger Forschungshefte. A. 59. Aufbereitung, Berlin, 1957

Рис. 1. Схема нанесения эмульсионного слоя при мокрой микроавторадиографии: 1-фотоэмульсия (1 мк); 2- зерно минерала; 3-защитный слой; 4-клей; 5-предметное стекло

Рис.2. Распределение этилового ксантогената на поверхности частиц галенита (1). Дозирозка реагента 100 г/т:

Рис.3. Распределение смеси этилового и бутилового ксантогенатов на поверхности частиц галенита (1). Суммарная дозировка реагента 100 г/т: Д-плотность почернения; С — длина, мк

Рис. 4. Влияние извести на неравномерность закрепления этилового ксантогената на поверхности сфалерита: 1 — при содержании кислорода в пульпе 10 мг/л; 2 — при содержании кислорода в пульпе 36 мг/л; К — коэффициент неравномерности в %; р — позировка извести в кг/т

Рис.5.Влияние извести на неравномерность закрепления ксантогенатов на поверхности халькопирита: 1-этиловый ксантогенат; 2-бутиловый ксантогенат; 3-изоамиловый ксантогенат; к -ко-эффициент неравномерности в %; р -дозировка извести в кг/т

Рис.6.Микроавторадиограмма частицы флюорита, извлеченной в пенный продукт при флотации в обескислороженной среде (O2 - 0,17 мг/л), х 500

Рис.7. Микроавторадиограмма частицы флюорита, извлеченной в пенный продукт при флотации на воздухе (02-8,26 мг/л), х 500

Рис.8. Микроавторадиограмма частицы флюорита, извлеченной в пенный продукт при флотации насыщенной кислородом пульпы (02 - 38,82 мг/л), х 500

Рис. 9. Влияние дозировки соснового масла на флотацию пирротина: 1 — этиловый ксантогенат 150 г/т; 2 — бутиловый ксантогенат 450 г/т; 3 — бутиловый ксантогенат 400 г/т; 4 — извлечение в %: Q' — дозировка соснового масла в г/т

Рис. 10. Влияние дозировки соснового масла на адсороцию ксантогената пирротином: 1 — этиловый ксантогенат 150 г/т; 2 — бутиловый ксантогенат 450 г/т; 3 — бутиловый ксантогенат 400 г/т; А —адсороция мг/г; Q'—дозировка соснового масла в г/т

Рис. 11. Влияние дозировки ДС на флотацию пирротина: 1-флотация с сутиловым ксанто-генатом (150 г/т) при естественном рН пульпы; Е-извлечение в %, Q-дозировка ДС в г/т; 2-флотация с сутиловым ксантогенатом (150 г/т) в содовой среде (рН - 3 кг/т)

Рис.12. Микрорадиограмма частицы пирротина из пенного продукта. Флотация проводилась с бутиловым ксантогенатом (150 г/т) и ДС (200 г/т), х 500

Рис.13. Микрора диограмма частицы пирротина из пенного продукта. Флотация проводилась с бутиловым ксантогенатом (150 г/т) и ДС (1800 г/т), х 500

Рис. 14. Микроавторадиограмма частицы пирита, обрасованной раствором бихромата калия концентрации 0,05 г/л, х 500

Рис. 15. Микроавторадиограмма частицы пирита, обработанной раствором бихромата калия концентрации 0,17 г/л, х 500

Рис. 16. Зависимость адсороции хромата и извлечения пенных фракций галенита и пирита от дозировок бихромата калия: А — адсороция в мг/л; Q — дозировка этилового ксантогената в г/т; Е —извлечение в %; І — адсороция галенитом; 2 — адсороция пиритом; 3 — выход пиритного пенного продукта в %; І — выход галенитового пенного продукта в %

Рис. 17. Адсорбция хромата галенитом в зависимости от значений рн: **А** -адсорбция