Aufgabe 4.1

Sign	Charakteristik	Mantisse (23)	Dezimal
1	01111111	00000000	<mark>-1</mark>
-1	$2^0 = 1$	1	
0	10000010	11010000	14,5
1	$2^3 = 8$	1,8125	
1	00000000	00000100	-9,183549*10 ⁻⁴¹
-1	2 ⁻¹²⁷	0,015625	
0	11111111	00000000	∞
1	2 ¹²⁸	0	_

Rechnung:

 $Sign_{10}$ * Charakteristik₁₀ * Mantinsse₁₀ = Ergebnis₁₀ Exponent = 127 - Charakteristik

Aufgabe 4.2

a)

Sign: 0, da positive Zahlen gesucht werden Der kleinste Exponent ist: -126 (für Ch = 1)

Kleinste Zahl: 2⁻²³ Zweitkleinste Zahl: 2⁻¹²⁶

Differenz: $2^{-149} = 1,401 * 10^{-45}$

b)
$$2^{-23} * 2^{-126} = 2^{-149} = 1,401 * 10^{-45}$$

```
Aufgabe 4.3
```

a)

a'\n'

b'\n'

b)

Windows verwendet gemäß der alten Schreibmaschinentechnik CR (0D) und LF (0A), da damals CR den Zeiger auf die Linke Seite schob und LF das Blatt eine Zeile verschob, jedoch bei der gleichen Vertikalen Position verblieb. Für einen vollständigen Zeilenumbruch brauchte man also CR LF. Dies ist technisch nicht (mehr) notwendig, weshalb, um Spericherplatz zu sparen Unix nur noch LF als Standart Zeilenumbruch nutzt. MacOS nutzte im übrigen auch nur ein Zeichen für den Umbruch, hier ist es allerdings CR, bei OSX ist dies nicht mehr der Fall.

\rightarrow	Basic Latin (ASCII)	U+0040
\rightarrow	Basic Latin (ASCII)	U+0078
\rightarrow	Latin-1 Supplement	U+00D6
\rightarrow	Mathematical Operators	U+221E
\rightarrow	Emoticons	U+263A
\rightarrow	Musical Symbols	U+1D15E
	→ → → →	 → Basic Latin (ASCII) → Latin-1 Supplement → Mathematical Operators → Emoticons

d)

@: U+00 <mark>40</mark>	\rightarrow	(4 <mark>0</mark> ₁₆)
x: U+00 <mark>78</mark>	\rightarrow	(78_{16})
Ö: U+00D6	\rightarrow	$(C3_{16}, 96_{16})$
∞: U+221E	\rightarrow	$(E2_{16}, 88_{16}, 9E_{16})$
⊚: U+263A	\rightarrow	$(F0_{16}, 9F_{16}, 98_{16}, 8A_{16})$
Note: U+1D15E	\rightarrow	$(F0_{16}, 9D_{16}, 85_{16}, 9E_{16})$

Aufgabe 4.4

"Informatik in gesellschaftlicher Verantwortung"

Aufgabe 4.6

a)

- b) Die Fano-Bedingung ist erfüllt, da jedes Codewort das Ende seines Astes darstellt.
- c) 00101101111010010100000010111110110 d f b b e e a c d g b f
- d) $m = |\{a, b, c, d, e, f, g\}| = 7$ binärer Blockcode: $n = \lceil \log_2(m) \rceil = \lceil 2,807 \rceil = 3$ => Der Blockcode benötigt 3 Bitstellen.