

图像处理与机器学习

Digital Image Processing and Machine Learning

主讲人: 黄琳琳

电子信息工程学院

第五章 贝叶斯决策

- ◆ 基本概念
- ◆ 贝叶斯决策
- ◆ 判别函数
- ◆ 概率密度估计

◆ 最小错误率贝叶斯决策 (Minimum error Bayes Decision)

◆ 最小风险贝叶斯决策 (Minimum Risk Bayes decision)

正常归为异常

医疗诊断

异常归为正常

- ◆ 最小风险贝叶斯决策 (Minimum Risk Bayes decision)
 - ✓ 分类错误代价 (Loss) λ

True class ω_j decide as α_i , then $\lambda_{ij} = \lambda(\alpha_i | \omega_j)$

✓ 条件风险 (Conditional risk)

$$R(\alpha_i|\vec{x}) = \sum_{j=1}^{c} \lambda(\alpha_i|\omega_j) p(\omega_j|\vec{x}) \qquad minimize R(\alpha_i|\vec{x})$$

◆ 最小风险贝叶斯决策 (Minimum Risk Bayes decision)

$$R(\alpha_i | \vec{x}) = \sum_{i=1}^{c} \lambda(\alpha_i | \omega_j) p(\omega_j | \vec{x}) \quad \lambda_{ij} = \lambda(\alpha_i | \omega_j)$$

 \checkmark 两类问题: ω_1 类与 ω_2 类

$$R(\alpha_1|\vec{x}) = \lambda(\alpha_1|\omega_1)p(\omega_1|\vec{x}) + \lambda(\alpha_1|\omega_2)p(\omega_2|\vec{x})$$

$$R(\alpha_2|\vec{x}) = \lambda(\alpha_2|\omega_1)p(\omega_1|\vec{x}) + \lambda(\alpha_2|\omega_2)p(\omega_2|\vec{x})$$

$$R(\alpha_1|\vec{x}) = \lambda_{11}p(\omega_1|\vec{x}) + \lambda_{12}p(\omega_2|\vec{x}) \qquad R(\alpha_2|\vec{x}) = \lambda_{21}p(\omega_1|\vec{x}) + \lambda_{22}p(\omega_2|\vec{x})$$

◆ 最小风险贝叶斯决策 (Minimum Risk Bayes decision)

$$R(\alpha_1|\vec{x}) = \lambda_{11}p(\omega_1|\vec{x}) + \lambda_{12}p(\omega_2|\vec{x})$$

$$R(\alpha_2|\vec{x}) = \lambda_{21}p(\omega_1|\vec{x}) + \lambda_{22}p(\omega_2|\vec{x})$$

 \checkmark 决策规则 (**Decision rule**) $R(\alpha_1|\vec{x}) < R(\alpha_2|\vec{x}), decide \omega_1$

$$\left\{ \left[\lambda_{21} p(\omega_1 | \vec{x}) + \lambda_{22} p(\omega_2 | \vec{x}) \right] - \left[\lambda_{11} p(\omega_1 | \vec{x}) + \lambda_{12} p(\omega_2 | \vec{x}) \right] \right\} > 0$$

$$(\lambda_{21} - \lambda_{11}) p(\omega_1 | \vec{x}) + (\lambda_{22} - \lambda_{12}) p(\omega_2 | \vec{x}) > 0$$

◆ 最小风险 贝叶斯决策

✓ 决策规则 (Decision rule)

$$R(\alpha_1|\vec{x}) < R(\alpha_2|\vec{x}), decide \quad \omega_1$$

$$(\lambda_{21} - \lambda_{11}) p(\omega_1 | \vec{x}) + (\lambda_{22} - \lambda_{12}) p(\omega_2 | \vec{x}) > 0$$

$$(\lambda_{21} - \lambda_{11}) p(\vec{x}|\omega_1) p(\omega_1) > (\lambda_{12} - \lambda_{22}) p(\vec{x}|\omega_2) p(\omega_2)$$

$$\frac{p(\vec{x}|\omega_1)}{p(\vec{x}|\omega_2)} > \frac{(\lambda_{12} - \lambda_{22})p(\omega_2)}{(\lambda_{21} - \lambda_{11})p(\omega_1)} \qquad decide \quad \omega_1$$

 \triangleright 假设在某个局部地区细胞识别中正常 ω_1 和异常 ω_2 ;

两类的先验概率分别为 正常: $p(\omega_1) = 0.9$ 异常: $p(\omega_2) = 0.1$

现有一待识别的细胞, 其观察值为 x , 从类条件概率密度曲线上查得

$$p(x | \omega_1) = 0.2$$
 $p(x | \omega_2) = 0.4$

已知风险参数如下: $\lambda_{11} = 0; \lambda_{12} = 6; \lambda_{21} = 1; \lambda_{22} = 0;$

试分别以最小错误率和最小风险贝叶斯决策对该细胞分类。

$$p(\omega_1) = 0.9$$
 $p(x | \omega_1) = 0.2$ $p(\omega_2) = 0.1$ $p(x | \omega_2) = 0.4$ $\lambda_{11} = 0; \lambda_{12} = 6; \lambda_{21} = 1; \lambda_{22} = 0;$

最小错误率贝叶斯决策:

$$p(\omega_1|\vec{x}) > p(\omega_2|\vec{x})$$
 decide ω_1

$$p(\vec{x}|\omega_1)p(\omega_1) > p(\vec{x}|\omega_2)p(\omega_2)$$

$$p(\vec{x}|\omega_1)p(\omega_1) = 0.2 \times 0.9 = 0.18$$
 $p(\vec{x}|\omega_2)p(\omega_2) = 0.4 \times 0.1 = 0.04$ $\rightarrow \omega_1$

将其归为 ω_1 ,正常

$$p(\omega_1) = 0.9$$
 $p(x | \omega_1) = 0.2$ $p(\omega_2) = 0.1$ $p(x | \omega_2) = 0.4$

$$\lambda_{11} = 0; \lambda_{12} = 6; \lambda_{21} = 1; \lambda_{22} = 0;$$

最小风险贝叶斯决策:

$$\frac{p(\vec{x}|\omega_1)}{p(\vec{x}|\omega_2)} > \frac{(\lambda_{12} - \lambda_{22})p(\omega_2)}{(\lambda_{21} - \lambda_{11})p(\omega_1)} \quad decide \quad \omega_1$$

$$\frac{p(\vec{x} \mid \omega_1)}{p(\vec{x} \mid \omega_2)} = \frac{0.2}{0.4} = 0.5 \qquad \frac{(\lambda_{12} - \lambda_{22})p(\omega_2)}{(\lambda_{21} - \lambda_{11})p(\omega_1)} = \frac{6 \times 0.1}{1 \times 0.9} = 0.67 \longrightarrow \omega_2$$

将其归为 ω_2 , 异常

最小错误率决策 VS 最小风险决策

- ◆ 分类错误代价 (Loss) $\lambda_{ij} = \lambda(\alpha_i | \omega_j)$
- ◆ 0-1损失函数 (Zero-one loss function)

$$\lambda_{ij} = \lambda(\alpha_i | \omega_j) = \begin{cases} 0, i = j \\ 1, i \neq j \end{cases}$$

◆ 0-1损失函数 (Zero-one loss function)

$$R(\alpha_{i}|x) = \sum_{j=1}^{c} \lambda(\alpha_{i}|\omega_{j})p(\omega_{j}|x) \qquad \lambda_{ij} = \lambda(\alpha_{i}|\omega_{j}) = \begin{cases} 0, i = j \\ 1, i \neq j \end{cases}$$

$$= \sum_{j \neq i} p(\omega_{j}|x)$$

$$= 1 - p(\omega_{i}|x) \qquad p(\omega_{i}|\vec{x})$$
 越大,风险越小

Decise ω_i if $p(\omega_i|x) > p(\omega_j|x)$ for all $j \neq i$

最小错误率决策: 0-1 损失函数下的最小风险决策

◆ 0-1损失函数 (Zero-one loss function)

$$\lambda_{ij} = \lambda(\alpha_i | \omega_j) = \begin{cases} 0, i = j \\ 1, i \neq j \end{cases}$$

最小风险决策:

$$\frac{p(\vec{x}|\omega_1)}{p(\vec{x}|\omega_2)} > \frac{(\lambda_{12} - \lambda_{22})p(\omega_2)}{(\lambda_{21} - \lambda_{11})p(\omega_1)} \qquad decide \quad \omega_1$$

$$\frac{p(\vec{x}|\omega_1)}{p(\vec{x}|\omega_2)} > \frac{p(\omega_2)}{p(\omega_1)} \quad decide \quad \omega_1$$

Likelihood ratio

谢谢

本课程所引用的一些素材为主讲老师多年的教学积累,来源于多种媒体及同事和同行的交流,难以一一注明出处,特此说明并表示感谢!