

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO Facultad de Estudios Superiores Aragón Plan de Estudios

Ingeniería en Computación Dispositivos Electrónicos (L)

Clave	Semestre	Créditos	Área		
	4	10.0	Arquitectura de Computadoras		
Modalidad	Curso-Laboratorio		Time.	Tafaira Dafatira	
Carácter	Obligatorio		Tipo	Teórico-Práctico	
Horas					
Semana				Semestre	
Teóricas	4.0		Teóricas	64.0	
Prácticas	2.0		Prácticas	32.0	
Total 6.0		Total	96.0		

Seriación indicativa		
Asignatura antecedente	Electricidad y Magnetismo (L)	
Asignatura subsecuente	Diseño Lógico (L)	

Objetivo general: Conocer los dispositivos electrónicos básicos (diodos y transistores) bipolares y unipolares; analizar sus aplicaciones básicas con transistores y diseñar sistemas analógicos básicos con amplificadores operacionales.

	Índice temático				
Na	No. Tema		Horas Semestre		
NO.			Prácticas		
1	INTRODUCCIÓN	6.0	4.0		
2	2 CONCEPTOS DE FÍSICA DE SEMICONDUCTORES		4.0		
3	3 EL DIODO SEMICONDUCTOR Y MODELOS DE ESTUDIO		4.0		
4	EL TRANSISTOR DE EFECTO DE CAMPO (FET)	14.0	4.0		
5	EL TRANSISTOR BIPOLAR DE JUNTURA (TBJ)	7.0	4.0		
6	EL AMPLIFICADOR OPERACIONAL (AO)	5.0	4.0		
7	REGULADORES DE TENSIÓN	5.0	4.0		
8	OTROS DISPOSITIVOS	5.0	4.0		
	Total	64.0	32.0		
	Suma total de horas	9	6.0		

Contenido Temático

1. INTRODUCCIÓN

Objetivo: Analizar y comprender los conceptos fundamentales relacionados con el estudio y aplicación de los dispositivos electrónicos.

- 1.1 Bosquejo histórico.
- 1.2 Aplicaciones.
- 1.3 Conceptos básicos:
- 1.3.1 Señal.
- 1.3.2 Transducción.
- 1.3.3 Señales analógica y digital.
- 1.3.4 Acoplamiento.
- 1.3.5 Amplificación y procesamiento.
- 1.3.6 Ejemplos de sistema analógico, digital e híbrido.

2. CONCEPTOS DE FÍSICA DE SEMICONDUCTORES

Objetivo: Identificar y examinar los conceptos intrínsecos al estudio de los semiconductores.

- 2.1 Modelo de bandas.
- 2.2 Semiconductores intrínsecos y extrínsecos.
- 2.3 Conducción eléctrica en semiconductores.
- 2.4 Unión PN y características asociadas: densidad de carga, campo eléctrico, potencial electrostático, capacitancia y relación I V.

3. EL DIODO SEMICONDUCTOR Y MODELOS DE ESTUDIO

Objetivo: Conocer el concepto y la estructura básica del diodo semiconductor y distinguir los distintos modelos establecidos para su estudio.

- 3.1 Modelo Exponencial.
- 3.2 Modelo de señal grande.
- 3.3 Modelo de señal pequeña.
- 3.4 Modelo ideal.

4. EL TRANSISTOR DE EFECTO DE CAMPO (FET)

Objetivo: Identificar y analizar la estructura, propiedades y aplicaciones de los transistores FET.

- 4.1 Estructura, funcionamiento y curvas características.
- 4.2 Modelos y polarización.
- 4.3 El MOSFET como elemento de conmutación.
- 4.4 El amplificador básico.
- 4.5 Especificaciones del fabricante.

5. EL TRANSISTOR BIPOLAR DE JUNTURA (TBJ)

Objetivo: Identificar y analizar la estructura, propiedades y aplicaciones de los transistores TBJ.

- 5.1 Estructura, funcionamiento y curvas características.
- 5.2 Modelos y polarización.
- 5.3 El inversor. Compuertas lógicas.
- 5.4 El amplificador básico.
- 5.5 Especificaciones del fabricante.

6. EL AMPLIFICADOR OPERACIONAL (AO)

Objetivo: Conocer y examinar las propiedades, aplicaciones y modelos de estudio de los amplificadores operacionales.		
6.1	Modelo ideal.	
6.2	Análisis de circuitos lineales.	
6.2.1	Inversor.	
6.2.2	No inversor.	
6.2.3	Sumador.	
6.2.4	Diferencial.	
6.2.5	Integrador.	
6.2.6	Derivador.	
6.2.7	Convertidores de voltaje a corriente y de corriente a voltaje.	
6.3	Análisis de circuitos no lineales.	
6.3.1	El rectificador de precisión.	
6.3.2	Amplificadores logarítmicos.	
6.3.3	Comparadores.	

7. REGULADORES DE TENSIÓN

Objetivo: Conocer el funcionamiento de los reguladores de tensión y las fuentes de poder, así como identificar las series más conocidas de reguladores integrados.

- 7.1 El regulador serie.
- 7.2 Reguladores integrados y especificaciones del fabricante.
- 7.3 Fuente de poder.

8. OTROS DISPOSITIVOS

Objetivo: Identificar y distinguir otros dispositivos electrónicos de conmutación, protección y potencia, y analizar sus aplicaciones en la industria.

- 8.1 Tubos al vacío.
- 8.2 SCR y TRIAC.
- 8.3 Dispositivos opto electrónicos.

Estrategias didácticas		Evaluación del aprendizaje		Recursos	
Exposición	()	Exámenes parciales	(X)	Aula interactiva	()
Trabajo en equipo	()	Examen final	(X)	Computadora	(X)
Lecturas	()	Trabajos y tareas	(X)	Plataforma tecnológica	(X)
Trabajo de investigación	(X)	Presentación de tema	(X)	Proyector o Pantalla LCD	(X)
Prácticas (taller o laboratorio)	(X)	Participación en clase	(X)	Internet	(X)
Prácticas de campo	()	Asistencia	()		
Aprendizaje por proyectos	(X)	Rúbricas	()		
Aprendizaje basado en problemas	()	Portafolios	()		
Casos de enseñanza	()	Listas de cotejo	()		
Otras (especificar)		Otras (especificar)		Otros (especificar)	

Perfil profesiográfico			
Título o grado	 Poseer un título a nivel licenciatura en Ingeniería, Ciencias, Matemáticas Aplicadas a la Computación o carreras cuyo perfil sea afín al área de Arquitectura de Computadoras. 		
Experiencia docente	 Poseer conocimientos y experiencia profesional relacionados con los contenidos de la asignación a impartir. Tener la vocación para la docencia y una actitud permanentemente educativa a fin de formar íntegramente al alumno: Para aplicar recursos didácticos. Para motivar al alumno. Para evaluar el aprendizaje del alumno, con equidad y objetividad. 		
Otra característica	 Poseer conocimientos y experiencia pedagógica referentes al proceso de enseñanza-aprendizaje. Tener disposición para su formación y actualización, tanto en los conocimientos de su área profesional, como en las pedagógicas. Identificarse con los objetivos educativos de la institución y hacerlos propios. Tener disposición para ejercer su función docente con ética profesional: Para observar una conducta ejemplar fuera y dentro del aula. Para asistir con puntualidad y constancia a sus cursos. Para cumplir con los programas vigentes de sus asignaturas. 		

Bibliografía básica	Temas para los que se recomienda	
Horowitz, P. (2015).		
The Art of Electronics.	1,2,3 y 8	
EU: Cambridge University Press.		
Miller, A. (2017).		
Electronic amplifiers and circuit design: art and practice.	6, 7 y 8	
New York: Imtelliz Press.		
Millman, J. (2001).		
Microelectronics.	1,2,3,4,5,6 y 7	
USA: McGraw-Hill.		
Savant, C. (2000).		
Electronic Circuit Design: Circuits and Systems.	1,2,3,6 y 7	
México: Pearson Education.		
Schubert, T. (2014).		
Fundamentals of electronics: book 1: electronic devices and	1,2,3,4 y 5	
circuit applications.	1,2,3,4 y J	
USA: Morgan & Claypool.		

Schubert, T. (2016).	
Fundamentals of electronics: book 2: amplifiers: analysis and	6.7 v 8
design.	0,7 y 0
USA: Morgan & Claypool.	

Bibliografía complementaria	Temas para los que se recomienda
Markus, J. (1987).	
Manual De Circuitos Electrónicos.	1,3,4,5 y 6
México: Marcombo.	
Roldan A. J. (2001).	
Dispositivos electrónicos, problemas resueltos.	1,2 y 3
México: Alfaomega.	

