

AD-A113 142

AIR FORCE GEOPHYSICS LAB HANSCOM AFB MA
A GROUND TRUTH ANALYSIS OF DMSP WATER VAPOR RADIANCES.(U)

F/6 4/1

NOV 81 F R VALOVCI

UNCLASSIFIED AFGL-TR-81-0323

NL

END
DATE
FILED
4-8-2
DTIC

AD A113142

12
12
12

12

This report has been reviewed by the ASD/Intelligence
and is releasable to the National Technical Information Service.

This technical report has been reviewed and
is approved for publication.

John J. Starnes Jr.
DR. JOHN J. STARNES, JR.
CIA/CIO Director

Approved for Release under the
Freedom of Information Act
by [redacted]

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER AFGL-TR-81-0323	2. GOVT ACCESSION NO. AD-A113 142	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) A GROUND TRUTH ANALYSIS OF DMSP WATER VAPOR RADIANCES	5. TYPE OF REPORT & PERIOD COVERED Scientific - Final	
7. AUTHOR(s) Francis R. Valovcin	6. PERFORMING ORG. REPORT NUMBER ERP No. 758	
9. PERFORMING ORGANIZATION NAME AND ADDRESS Air Force Geophysics Laboratory (LYS) Hanscom AFB Massachusetts 01731	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 62101F 66701307	
11. CONTROLLING OFFICE NAME AND ADDRESS Air Force Geophysics Laboratory (LYS) Hanscom AFB Massachusetts 01731	12. REPORT DATE 3 November 1981	
14. MONITORING AGENCY NAME & ADDRESS/(if different from Controlling Office)	13. NUMBER OF PAGES 47	
15. SECURITY CLASS. (of this report) Unclassified		
16. DECLASSIFICATION/DOWNGRADING SCHEDULE		
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES <i>Review</i>		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Atmospheric absorption Remote sensing Atmospheric transmission Satellite sounding Clouds Spectral radiance Moisture sounding Water vapor radiance		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) <i>SSH H₂O data from the Defense Meteorological Program (DMSP) were received for analysis and evaluation. Approximately 70 measurements of upwelling radiation in the 8-sounder channels of the 18 to 30 μm rotational water vapor band have been compared with calculations for both clear and cloud contaminated conditions. The calculated radiances generally exceed the measured radiances in the clear column comparison. In the mean, the radiance comparison indicates a discrepancy less than 5 percent in the water vapor continuum band. This systematic discrepancy, by approximately a</i>		

DD FORM 1 JAN 73 1473

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Cidea

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. (Cont)

-4:1 ratio, is found in all the DMSP SSH H₂O channels. These results are in agreement with McClatchey's 1976 results in his analysis of the DMSP 15 μ m CO₂ sounder channels.

The data sets comparison were divided into three latitude belts, that is, Tropical, Mid-latitude and Arctic. In turn, the discrepancies between calculated and measured radiances appear to be latitudinally dependent. Smaller discrepancies are found in the Tropics and the larger discrepancies are found in the Arctic latitude belt. Also, it appears that the DMSP SSH H₂O channels cannot discriminate between low cloud contamination and clear column conditions.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

Preface

The author wishes to acknowledge the following organizations and individuals: the Air Force Global Weather Center for supplying the DMSP HPKG data; the USAF Environmental Technical Applications Center for supplying the ground truth data; Dr. Robert McClatchey for use of his computer programs; Dr. Jean I. F. King for reviewing the manuscript; Ed Lefebvre for his programming skills and Celeste Gannon for her typing the manuscript.

Predecision For	
DTIG CR&I	<input checked="" type="checkbox"/>
DTIG TAB	<input type="checkbox"/>
Enhanced	<input type="checkbox"/>
Justification	<input type="checkbox"/>
By _____	
Distribution/	
Availability Codes	
Initial Release	
_____ A	

Contents

1. INTRODUCTION	9
2. DMSP WATER VAPOR RADIANCE DATA	11
3. GROUND TRUTH DATA	11
4. ATMOSPHERIC WATER VAPOR TRANSMITTANCE	13
5. DMSP WATER VAPOR FILTER FUNCTIONS	15
6. COMPARISONS BETWEEN DMSP WATER VAPOR MEASUREMENTS AND CALCULATED RADIANCES	15
6.1 Clear Column Water Vapor Radiance Comparison	16
6.2 Cloud Contaminated Water Vapor Radiance Comparison	24
7. CONCLUSIONS	33
REFERENCES	35
APPENDIX A: DMSP SSH H ₂ O Filter Transmission Curves and Digitized Filter Functions	37

Illustrations

1. Weighting Functions for the DMSP SSH H ₂ O Channels—Tropical Atmosphere	17
2. Weighting Functions for the DMSP SSH H ₂ O Channels—Standard Atmosphere	18

Illustrations

3. Weighting Functions for the DMSP SSH H ₂ O Channels—Arctic Atmosphere	19
4. Measured and Calculated Clear Column Radiances for DMSP SSH H ₂ O Channels—Tropical	22
5. Measured and Calculated Clear Column Radiances for DMSP SSH H ₂ O Channels—Mid-latitude	23
6. Measured and Calculated Clear Column Radiances for DMSP SSH H ₂ O Channels—Arctic	23
7. Measured and Calculated Clear Column—Cloud Contaminated Radiances for DMSP SSH H ₂ O Channels—Tropical	28
8. Measured and Calculated Clear Column—Cloud Contaminated Low Cloud Radiances for DMSP SSH H ₂ O Channels—Mid-latitude	29
9. Measured and Calculated Clear Column—Cloud Contaminated High Overcast Radiances for DMSP SSH H ₂ O Channels—Mid-latitude	29
10. Measured and Calculated Clear Column—Cloud Contaminated Radiances for DMSP SSH H ₂ O Channels—Arctic	30
11. Measured and Calculated High Overcast Radiances for DMSP SSH H ₂ O Channels—Tropical	30
12. Measured and Calculated Low Overcast Radiances for DMSP SSH H ₂ O Channels—Mid-latitude	32
13. Measured and Calculated High Overcast Radiances for DMSP SSH H ₂ O Channels—Mid-latitude	32
14. Measured and Calculated High Overcast Radiances for DMSP SSH H ₂ O Channels—Arctic	33

Tables

1. DMSP Water Vapor SSH Channel Characteristics	10
2. Atmospheric Profile and Composition Derived From Radiosonde Data—West Palm Beach, Florida, 72203-790493	12
3. Temperature Coefficient for Empirical Water Vapor Continuum	14
4. Location of the Maximum Value of the Weighting Function for the DMSP Water Vapor Channels	20
5. Comparison of Measured With Calculated Radiances—Tropical (26S-26N)—Clear	20
6. Comparison of Measured With Calculated Radiances—Mid-latitude (26-62N) and (26-62S)—Clear	21
7. Comparison of Measured With Calculated Radiances—Arctic (62-90N)—Clear	22

Tables

8. Comparison of Measured With Calculated Radiances—Tropical (0-26N)—Calculated Clear and Clouds	25
9. Comparison of Measured With Calculated Radiances—Mid-latitude (26-62N) Calculated Clear and Effective Cloud Layer Less Than 4 km	26
10. Comparison of Measured With Calculated Radiances—Mid-latitude (26-62N) Calculated Clear and High Overcast	27
11. Comparison of Measured With Calculated Radiances—Arctic (62-90N) Calculated Clear and Cloud	28

A Ground Truth Analysis of DMSP Water Vapor Radiances

1. INTRODUCTION

The Defense Meteorological Satellite Program (DMSP) Block 5D Satellite carries a Special Meteorological Sensor H (SSH) package. An excellent review of the optical subsystems and the spectral characteristics of this SSH package is provided by Nichols.¹ Infrared energy is measured in 16 spectral bands by the SSH package: six spectral channels are located in the 15 μm carbon dioxide bands, eight in the 18 to 30 μm rotational water vapor band, one in the 9.6 μm ozone band, and one in the atmospheric window near 12 μm . In this study, the emphasis is placed on the eight DMSP water vapor SSH channels. The various channel characteristics are listed in Table 1.

Originally, the purpose of this study was: (1) to evaluate the DMSP multi-channel water vapor radiances for informational content, and (2) to recommend some operational techniques whereby moisture parameters may be derived directly from DMSP water vapor radiance measurements. A preliminary evaluation of the DMSP water vapor radiances was made in a previous report² concerning the

(Received for publication 2 November 1981)

1. Nichols, D. A. (1975) DMSP Block 5D special meteorological sensor H, optical subsystem, *Opt. Eng.* 14:284-288.
2. Valovcin, F. R. (1980) DMSP Water Vapor Radiances—A Preliminary Evaluation, AFGL-TR-80-0312, AD A099305.

informational content. Before a reliable operational technique on deriving moisture parameters could be recommended, the Forward Problem had to be investigated. By definition, the Forward Problem is the matching of satellite observed or measured and the classically-calculated radiances based on coincident in time and space radiosonde data. McClatchey³ in studying the Forward Problem reported a systematic discrepancy, that is, calculations, in general, exceed the measured or observed radiances in the DMSP 15 μm carbon dioxide bands. As this study progressed, it became quite apparent that the purpose would change from recommending some operational techniques on deriving moisture parameters to conducting a Ground Truth Analysis of the DMSP water vapor radiances similar to McClatchey's study of the DMSP 15 μm carbon dioxide band. Thus in this report, a comparison program was carried out for approximately 70 sets of DMSP SSH water vapor measurements with calculated water vapor radiances. Both clear and cloud contaminated columns as a function of three latitude belts, that is, Tropical, Mid-latitude and Arctic were used in this study. The DMSP water vapor radiance sets analyzed were from Flight II SSH aboard spacecraft WX 13536 and on a few occasions from Flight III SSH aboard spacecraft WX 14537. Flight II SSH and Flight III SSH were launched in July 1977 and April 1978 respectively.

Table 1. DMSP Water Vapor SSH Channel Characteristics*

Band	μm	Center cm^{-1}	Width cm^{-1}	NESR**
F1	28.2	355.0	15.0	0.25
F2	25.2	397.5	10.0	0.16
F3	23.8	420.0	20.0	0.12
F4	22.7	441.5	18.0	0.09
F5	18.7	535.0	16.0	0.15
F6	24.5	408.5	12.0	0.14
F7	26.7	374.0	12.0	0.18
F8	28.3	353.5	12.0	0.33

*After Nichols¹

**NESR: Noise Equivalent Spectral Radiance in
 $\text{mW}/\text{m}^2 \text{sr cm}^{-1}$

3. McClatchey, R.A. (1976) Satellite Temperature Sounding of the Atmosphere:
Ground Truth Analysis, AFGL-TR-76-0279, AD A038236.

2. DMSP WATER VAPOR RADIANCE DATA

The Air Force Global Weather Central (AFGWC) forwarded to the Air Force Geophysics Laboratory (AFGL) printouts of world-wide SSH spectral radiance data for the period 00Z 30 January 1979 to 12Z 18 October 1979. The printouts contained information on date-time, latitude and longitude of the scan spot, Zenith angle, 3D NEPH⁴ and data base parameters along with the spectral radiance measurements for the 16 DMSP spectral channels. The scan spot is the first cloud-free radiance set available within a $3^\circ \times 3^\circ$ area as selected by AFGWC's HPKG software (based on the 3D NEPH files). Only the eight water vapor channels and the one located in the atmospheric window near $12 \mu\text{m}$ were used in this study.

The DMSP SSH sounder scan pattern is accomplished in 25 4-degree incremental steps from -48° to $+48^\circ$ of nadir across the orbit track. The range of zenith angles for the 25 scan spots are $+57^\circ$ to -57° . Zenith angles are designated positive on the left and negative on the right of the scan swath. At nadir the scan spot on the earth's surface is approximately 21 nmi (39 km) and increase to approximately 35 by 25 nmi (65×46 km) at a zenith angle of $+/-32^\circ$. The analysis was limited to zenith angles of $+/-32^\circ$ or approximately $+/-245$ nmi (454 km) from nadir.

3. GROUND TRUTH DATA

The USAF Environmental Technical Application Center (ETAC) provided the ground truth data for the various stations world-wide. A "ground truth" site is defined as a radiosonde observation being within $+/-3$ hrs and 100 nmi (185 km) of a DMSP satellite scan spot. Atmospheric conditions such as clear or cloud contaminated were determined through surface observations, AFGWC three-dimensional nephanalysis (3D NEPH) and the radiosonde observations. Imagery was not generally used because of the period involved (January-October 1979) and the final selection of the "ground truth" site world-wide. The radiosonde data were received in a LOWTRAN format with the following parameters: Height (km), Pressure (mb), Temperature ($^{\circ}\text{C}$), Dewpoint Temperature ($^{\circ}\text{C}$), Relative Humidity (%), and Absolute Humidity (g/m^3). The values of absolute or relative humidity above 300 mb are climatologically modeled by ETAC since the radiosonde usually does not report humidity above this level. An example of the detailed atmospheric profile of temperature, water vapor, and ozone as a function of height and pressure that is used in the transmittance calculations is shown in Table 2. The concentration

4. Coburn, A. R. (1970) Three Dimensional Analysis, AFGWC, Offut AFB, NE, AFGWC TM-70-9.

of water vapor was calculated as described by Selby and McClatchey.⁵ The ozone data were introduced from climatological models of ozone distributions. The units of water vapor and ozone are in molecules/cm² and are integrated values from the top of the atmosphere to the surface.

Table 2. Atmospheric Profile and Composition Derived From
Radiosonde Data—West Palm Beach, Florida, 72203-790403

HT (km)	Pressure (mb)	Temp (K)	Water Vapor (Molecules/cm ²)	Ozone (Molecules/cm ²)
31.3	10.0	237.9	1.067E+19	3.451E+16
29.2	13.5	232.5	1.155E+20	6.160E+17
28.7	14.5	235.3	1.372E+20	8.015E+17
26.6	20.0	228.1	2.106E+20	1.815E+18
25.6	23.0	223.1	2.230E+20	2.259E+18
23.9	30.0	221.7	2.377E+20	3.117E+18
20.7	50.0	211.9	2.496E+20	4.764E+18
19.4	62.0	200.3	2.517E+20	5.439E+18
18.7	70.0	200.9	2.529E+20	5.819E+18
17.8	81.0	200.3	2.544E+20	6.287E+18
17.7	82.0	198.1	2.545E+20	6.327E+18
16.9	95.0	203.9	2.561E+20	6.788E+18
16.6	100.0	201.9	2.569E+20	6.947E+18
16.4	102.0	201.3	2.571E+20	7.008E+18
14.6	138.0	202.3	2.661E+20	7.859E+18
14.1	150.0	203.9	2.625E+20	8.099E+18
13.6	165.0	205.9	2.646E+20	8.329E+18
12.4	200.0	215.7	2.764E+20	8.957E+18
10.9	250.0	227.9	3.396E+20	9.639E+18
10.2	278.0	236.3	4.905E+20	9.968E+18
9.7	300.0	237.9	6.983E+20	1.020E+19
7.6	400.0	254.7	1.266E+21	1.110E+19
5.9	500.0	266.3	1.949E+21	1.282E+19
4.7	581.0	275.6	3.294E+21	1.231E+19
3.2	760.0	284.0	6.999E+21	1.291E+19
2.2	791.0	289.6	1.125E+22	1.330E+19
1.9	811.0	289.6	1.233E+22	1.338E+19
1.9	819.0	283.0	1.336E+22	1.341E+19
1.5	850.0	285.8	2.164E+22	1.352E+19
1.3	876.0	287.0	2.877E+22	1.360E+19
0.7	944.0	290.4	5.222E+22	1.379E+19
0.2	1000.0	295.2	7.703E+22	1.393E+19
0.0	1018.0	295.4	8.475E+22	1.396E+19

These are integrated values

5. Selby, J.E.A., and McClatchey, R.A. (1975) Atmospheric Transmittance From 0.25 to 28.5 μm : Computer Code LOWTRAN 3, AFCRL-TR-75-0255, AD A017734.

4. ATMOSPHERIC WATER VAPOR TRANSMITTANCE

Atmospheric transmittance calculations for the DMSP SSH water vapor channels for the approximately 70 selected cases were computed using the McClatchey transmittance program developed at AFGL. In this program, line by line calculations are performed using the following equations from McClatchey.³

$$I_{\Delta\nu} = \left[\int_{\Delta\nu} f(\nu) \int_{\tau_g}^{\infty} B(\nu, T) d\tau d\nu + \int_{\Delta\nu} f(\nu) B(\nu, T_s) d\nu \right] / \int_{\Delta\nu} f(\nu) d\nu \quad (1)$$

which is the solution of the radiative transfer equation, where

- $I_{\Delta\nu}$ is the radiant intensity in $\text{mW/m}^2 \text{ sr cm}^{-1}$,
- $B(\nu, T)$ is the Planck blackbody function,
- T is the atmospheric temperature and T_s is the surface temperature,
- τ is the transmittance of the atmosphere from the altitude associated with the pressure level, p , to the top of the atmosphere,
- ν is the frequency (given here in cm^{-1}), and
- $f(\nu)$ is the DMSP SSH instrument filter function.

McClatchey assumes that $B(\nu, T)$ is relatively constant over the width of a filter function (10 or 20 cm^{-1} wide), and he writes $d\eta(p)$ as an independent variable instead of τ , and obtains Eq. (2), where the quantity, $d\bar{\tau}/d\eta(p)$, now becomes a weighting function that can be interpreted as defining the atmospheric layer primarily responsible for the upwelling emission in the spectral interval, $\Delta\nu$.

$$I_{\Delta\nu} \approx \int_{\tau_g}^0 B(\bar{\nu}, \tau) \frac{d\bar{\tau}}{d(\eta(p))} d\eta(p) + B(\bar{\nu}, T_s), \quad (2)$$

$$\bar{\tau}_{\Delta} = \frac{f(\nu) \tau(\nu) d\nu}{f(\nu) d\nu}. \quad (3)$$

Monochromatic transmittances were computed over the various eight DMSP water vapor filter functions for the appropriate radiosonde observation taking temperature, water vapor and ozone distributions as a function of pressure and height as shown in Table 2. These monochromatic transmittances were then weighted by the appropriate filter function as indicated in Eq. (3) in order to generate the appropriate averaged transmittance. The AFCRL Atmospheric Absorption Line Parameters Compilation⁶ was used for all water vapor absorption lines between

6. McClatchey, R. A., Benedict, W. S., Clough, S. A., Burch, D. E., Calfee, R. F., Fox, K., Rothman, L. S., and Garing, J. S. (1973) AFCRL Atmospheric Absorption Line Parameters Compilation, AFCRL-TR-73-0096, AD A762904.

$320\text{-}600\text{ cm}^{-1}$. The calculation was based on the April 1979 data tape. The Lorentz line shape was used throughout with a line-wing modification of the water continuum proposed by Burch and Gryvnak.⁷ The simple Lorentz line shape is used for $|\nu - \nu_0| \leq 20\text{ cm}^{-1}$ and varies linearly from unity at $|\nu - \nu_0| = 20\text{ cm}^{-1}$ to zero at $|\nu - \nu_0| = 30\text{ cm}^{-1}$. Also from this same report by Burch and Gryvnak,⁷ the appropriate values of the temperature coefficient for the water vapor continuum were used and are listed in Table 3.

Table 3. Temperature Coefficient for Empirical Water Vapor Continuum*

ν (cm $^{-1}$)	b (K)	ν (cm $^{-1}$)	b (K)
320.	1197		
330.	1206		
340.	1214		
350.	1223	600.	1442
360.	1231	610.	1454
370.	1240	620.	1467
380.	1248	630.	1481
390.	1257	640.	1495
400.	1265	650.	1510
410.	1273	660.	1525
420.	1282	670.	1542
430.	1290	680.	1560
440.	1299	690.	1579
450.	1307	700.	1597
460.	1316	710.	1615
470.	1324	720.	1633
480.	1333	730.	1652
490.	1341	740.	1670
500.	1349	750.	1688
510.	1358	760.	1706
520.	1366	770.	1725
530.	1375	780.	1743
540.	1383	790.	1761
550.	1392	800.	1779
560.	1400	810.	1798
570.	1409	820.	1816
580.	1419		
590.	1430		

$$a_{C_s^o}(\theta) = a_{C_s^o}(296\text{ K}) \exp\left(\frac{b}{\theta} - \frac{b}{296}\right)$$

* After Burch and Gryvnak

7. Burch, D. E., and Gryvnak, D. A. (1979) Method of Calculating H₂O Transmittance Between 333 and 633 cm $^{-1}$, Final Report AFGL-TR-79-0054, Aeronutronic Report U6503, AD A072850.

5. DMSP WATER VAPOR FILTER FUNCTIONS

In Appendix A, filter transmission curves and the digitized filter functions for the eight DMSP water vapor channels are provided. These curves and filter functions are valid for the Flight II SSH package aboard spacecraft WX 13536 launched in July 1977. The listed frequencies for each channel are normally the central frequency for each filter. The frequency steps for each channel were 0.5 cm^{-1} . These curves were used to calculate the water vapor transmittances and the resulting weighting functions according to Eqs. (2) and (3).

6. COMPARISONS BETWEEN DMSP WATER VAPOR MEASUREMENTS AND CALCULATED RADIANCES

The DMSP water vapor measurements were provided by AFGWC from their HPKG*RADISAVE HPKG files for the period February to October 1979. The radiances set of DMSP SSH data is the first cloud-free set available within a $3^\circ \times 3^\circ$ area as selected by AFGWC's HPKG software (based on 3D NEPH files). As described in an earlier report,² this file also contained cloud contaminated scan spots. The radiosonde observation which was used as the "ground truth" site was obtained from ETAC in a LOWTRAN format. The transmittance calculations were based on the temperature and humidity profiles as a function of pressure from these radiosonde observations. The major criteria used in the colocated DMSP water vapor data and the "ground truth" site were as follows: (1) radiosonde station located within 100 nmi (185 km) of a DMSP scan spot, (2) radiosonde observations taken within $+/- 3$ hr, and (3) zenith angle of the scan spot restricted to $+/- 32^\circ$.

The comparison between the DMSP water vapor measurements and the calculated radiances were divided into three latitude belts; that is, Tropical (26°S - 26°N), Mid-latitude (26° - 62°N) and Arctic (62° - 90°N). In addition, the ground truth analysis considered both the clear and cloud contaminated scan spots. For illustration purposes, Figures 1, 2, and 3 depict the theoretical weighting function curves for the eight DMSP water vapor channels for a Tropical, Standard and Sub-arctic atmosphere respectively. The pressure, temperature and water vapor concentration for these three models are those used by McClatchey et al.⁸ On the left side of these figures, the most opaque water vapor channels (F8-353,

8. McClatchey, R. A., Fenn, R. W., Selby, J. E. A., Voltz, F. E., and Garing, J. S. (1972) Optical Properties of the Atmosphere (Third Edition), AFCRL-72-0497, AD A753075.

$F1-355$, $F7-374$ and $F2-397\text{ cm}^{-1}$) are shown. The less opaque or more transparent water vapor channels ($F3-420$, $F4-441$, $F6-408$, and $F5-535\text{ cm}^{-1}$) are shown on the right. The most opaque DMSP water vapor channel is $F8-353\text{ cm}^{-1}$ and the most transparent is $F5-535\text{ cm}^{-1}$. The maximum value of the weighting function for each channel represents the approximate location in the atmosphere from which the major portion of the energy is received at the satellite sensor. Table 4 lists the location in mb of the maximum value of the weighting function for the three model atmospheres.

6.1 Clear Column Water Vapor Radiance Comparison

The colocated cases selected for comparison purposes designated clear are listed in Tables 5, 6, and 7 for Tropical, Mid-latitude, and Arctic latitude belts respectively. The 40 clear cases—Tropical (10), Mid-latitude (21), and Arctic (9) were selected based on surface reports, 3D NEPH and the radiosonde humidity profile. The tables list the stations, location, date, zenith angle, distance between the satellite scan spot and the radiosonde or "ground truth" station along with the satellite measured and the calculated water vapor radiances in $\text{mW/m}^2 \text{ sr cm}^{-1}$ for the eight DMSP water vapor channels. The calculated radiances were computed from Eqs. (2) and (3) using the radiosonde of temperature and humidity observations coincident in space and time as "ground truth".

Figures 4, 5, and 6 show the results of the comparison in graphical form. As can be seen from both the tables and the figures, the calculated water vapor radiances are greater than those measured by the satellite in the majority of cases. The percentage deviations in the mean are listed in the tables and are defined as $(\text{measured} - \text{calculated}) / \text{measured radiance}$ in percent. A positive (negative) deviation indicates that the measured is greater (less) than the calculated radiance. In the mean, the smallest percentage deviations are found in the Tropics and the largest in the Arctic latitude belt. The range of mean percentage deviations for the eight DMSP channels are +0.2 percent to -4.5 percent for the three latitude belts in the clear column comparisons. The ratio of negative to positive percentage deviations for the various latitude belts are: Tropic 52:28, Mid-latitude 132:36, and Arctic 70:2 for a total of 253 negative vs 67 positive percentage deviations. Thus, the calculated as indicated by the negative deviation exceed the satellite measured water vapor radiances by almost a 4:1 ratio. In addition, the calculated exceed the measured water vapor radiances in excess of $\pm 2.0\text{ mW/m}^2 \text{ sr cm}^{-1}$ by almost a 3:1 ratio. The correlation between measured and calculated water vapor radiances are higher for the most transparent channels, that is, $F5-535$ and $F6-408\text{ cm}^{-1}$ and lower for the most opaque water vapor channels, that is, $F8-353$ and $F1-355\text{ cm}^{-1}$. The lower correlations for the most opaque channels may be due to the use of the climatological humidity values above 300 mb. Also, it should be noted the maximum percentage deviations for all three latitude belts are found in the DMSP water vapor channel $F3-420\text{ cm}^{-1}$.

Figure 1. Weighting Functions for the DMSP SSH H₂O Channels-Tropical Atmosphere

Figure 2. Weighting Functions for the DMSP SSH H₂O Channels—Standard Atmosphere

Figure 3. Weighting Functions for the DMSP SSH H₂O Channels—Arctic Atmosphere

Table 4. Location of the Maximum Value of the Weighting Function for the DMSP Water Vapor Channels

DMSP Channel	Tropical (mb)	Standard (mb)	Arctic (mb)
F1-355 cm ⁻¹	355	385	480
F2-397	405	580	555
F3-420	525	580	635
F4-441	525	660	730
F5-535	760	845	835
F6-408	595	660	835
F7-374	460	505	635
F8-535	355	385	480

Table 5. Comparison of Measured With Calculated Radiances—Tropical (26S-26N)—Clear

Location	Date	θ	Distance	F1 355	F2 397	F3 420	F4 441	F5 535	F6 408	F7 374	F8 353
Measured Calculated	Jiddah, SA 21.5N 39.2E	790406 18.16	99 nmi 66 nmi	79.0 81.5	92.9 94.5	100.0 104.9	107.5 110.6	130.1 129.2	105.6 106.0	86.6 80.5	74.8 77.9
Measured Calculated	Jiddah, SA 21.5N 39.2E	790406 18.16	99 nmi 90 nmi	79.0 75.7	92.4 87.4	100.0 98.6	107.6 102.0	129.4 119.7	105.6 100.5	86.5 83.1	74.5 72.7
Measured Calculated	Chiang Mai, TH 18.78N 98.98E	790409 18.16	90 nmi	75.1 75.7	88.3 87.4	94.6 98.6	101.8 102.0	120.1 119.7	100.6 100.5	82.3 83.1	71.4 72.7
Measured Calculated	Ascension Island 7.97S 14.4W	790329 8.05	99 nmi	82.7 77.4	94.3 89.8	102.0 99.6	108.4 105.0	124.4 123.1	105.5 103.5	89.1 85.4	78.6 74.2
Measured Calculated	Ascension Island 7.97S 14.4W	790507 22.8	77 nmi	82.1 80.9	94.6 92.8	100.9 101.7	107.7 106.8	122.1 121.9	105.0 104.3	89.1 88.8	82.8 77.8
Measured Calculated	Coolidge Field, AT 17.12N 61.78W	790202 -9.05	52 nmi	84.7 81.2	95.4 93.0	103.8 101.1	110.9 107.0	126.7 126.1	107.6 105.8	92.2 88.1	79.6 77.2
Measured Calculated	TRUK KA 7.47N 151.8E	790603 -18.04	31 nmi	76.0 76.7	88.5 89.1	94.5 98.6	101.3 104.1	119.1 125.0	99.3 103.2	82.9 84.1	73.5 73.7
Measured Calculated	MT ISA MO AU 20.67S 139.48E	790328 -22.86	92 nmi	75.0 78.5	89.5 90.5	96.2 100.1	104.2 105.3	127.4 124.2	103.0 103.4	82.4 86.5	70.3 75.4
Measured Calculated	MT ISA MO AU 20.67S 139.48E	790330 32.2	32 nmi	76.3 76.9	88.5 88.6	94.6 97.7	101.2 102.8	119.2 120.1	99.5 101.2	82.8 84.4	72.0 74.0
Measured Calculated	Giles MO AU 25.03S 129.98E	790401 4.52	91 nmi	73.0 75.8	84.3 86.8	90.0 95.4	96.3 100.3	113.6 119.1	94.8 98.9	78.7 82.8	69.2 73.2
Measured Mean STD DEV				78.3 3.9	90.9 3.6	97.7 4.3	104.7 4.5	123.2 5.3	102.7 4.0	85.3 4.1	74.7 4.4
Calculated Mean STD DEV				78.6 2.5	90.7 2.9	100.1 3.2	105.5 3.4	123.8 3.7	103.7 3.0	86.4 2.9	75.4 2.1
(Meas-Calc) % Correlation				-0.4 0.662	+0.2 0.780	-2.5 0.724	-0.7 0.784	-0.6 0.850	-1.0 0.833	-1.4 0.657	-1.0 -0.594

Table 6. Comparison of Measured With Calculated Radiances—Mid-latitude
(26°-62°N) and (26°-62°S)—Clear

	Location	Date	δ	Distance	F1 355	F2 397	F3 420	F4 441	F5 535	F6 408	F7 374	F8 353
Measured	Lajes, Azores	790711	8.99°	63 nmi	78.5	88.4	95.6	102.5	120.0	99.7	84.8	73.2
Calculated	38.73N 27.08W				83.4	95.8	105.2	110.4	125.7	107.8	91.6	80.3
Measured	Griegswald, Denmark	791001	9.05°	18 nmi	72.2	81.7	89.1	95.8	111.9	93.8	78.7	67.6
Calculated	54.10N 13.38E				71.7	82.4	90.3	95.0	108.8	94.2	78.2	66.2
Measured	OMSK, USSR	790314	0°	59 nmi	68.3	77.9	82.3	87.1	92.4	88.5	73.2	65.8
Calculated	54.93N 73.40E				70.7	80.0	86.5	90.3	97.0	89.1	78.6	68.5
Measured	OMSK, USSR	790505	27.27°	45 nmi	75.1	85.4	90.6	95.9	108.2	94.2	80.6	71.8
Calculated	54.93N 73.40E				72.7	82.5	89.7	93.9	105.5	92.5	79.0	70.3
Measured	Churchill, Man., CN	790816	13.52°	80 nmi	73.1	84.2	88.5	95.5	110.7	94.4	78.6	70.0
Calculated	58.75N 94.07W				76.6	87.6	96.0	100.7	115.6	98.7	83.9	73.9
Measured	W. Palm Beach, FL	790322	-13.63°	63 nmi	78.8	88.4	94.1	100.1	116.1	98.4	83.0	73.3
Calculated	26.68N 80.10W				81.0	92.2	100.6	105.4	120.6	103.3	88.2	78.3
Measured	W. Palm Beach, FL	790408	-18.10°	33 nmi	74.0	86.3	92.0	98.9	118.3	98.1	80.1	70.8
Calculated	26.68N 80.10W				77.1	89.2	98.8	104.2	123.2	102.9	84.7	74.1
Measured	Boothville, LA	790618	-32.08°	92 nmi	81.9	96.3	104.0	111.6	129.4	109.3	90.2	77.6
Calculated	29.33N 89.40W				83.9	95.8	105.7	111.1	130.6	108.9	91.3	80.0
Measured	Wallops, VA	790502	-13.58°	79 nmi	76.7	88.1	95.4	101.7	117.0	100.0	83.4	72.8
Calculated	37.85N 75.48W				76.7	89.7	100.0	105.9	124.9	104.5	85.0	73.3
Measured	Wallops, VA	790518	-4.52°	92 nmi	79.7	91.3	98.0	104.0	118.5	102.1	86.2	75.1
Calculated	37.85N 75.48W				75.0	86.9	98.2	101.5	117.0	99.8	82.8	71.9
Measured	Sterling, VA	790518	-13.63°	99 nmi	74.1	86.3	92.4	98.8	115.3	98.0	80.0	69.9
Calculated	38.98N 77.47W				74.9	86.7	96.0	101.4	116.7	99.7	82.6	71.7
Measured	Wallops, VA	790916	31.91°	23 nmi	74.9	87.2	93.3	100.0	115.6	98.4	81.1	70.9
Calculated	37.85N 75.48W				78.5	90.9	100.8	106.2	121.0	104.0	87.1	75.1
Measured	Wallops, VA	790920	-32.14°	26 nmi	77.2	89.6	96.2	102.9	120.1	101.1	84.3	74.1
Calculated	37.85N 75.48W				82.9	94.7	103.5	108.7	126.8	107.0	88.6	80.5
Measured	Salem, IL	790516	-31.91°	97 nmi	75.2	87.6	93.1	98.8	118.0	98.4	81.4	73.1
Calculated	38.85N 88.97W				78.3	88.9	96.6	101.2	116.4	99.6	84.7	76.0
Measured	Chatham, MA	790503	-22.74°	87 nmi	71.3	81.5	86.2	91.7	107.5	90.8	76.6	67.8
Calculated	41.67N 69.97W				73.6	85.3	94.3	99.5	115.0	98.1	81.2	70.6
Measured	Chatham, MA	790917	8.05°	92 nmi	76.6	90.7	96.6	103.5	119.0	104.3	85.7	74.4
Calculated	41.67N 69.98W				81.8	93.6	102.6	107.6	121.5	105.0	88.8	78.8
Measured	Cape Canaveral, FL	790130	-4.52°	47 nmi	79.3	88.8	94.8	100.0	112.8	98.0	85.2	77.7
Calculated	28.47N 80.55W				74.6	84.6	92.3	96.7	110.4	95.1	81.1	72.1
Measured	Porto Allegro, BZ	790320	4.52°	49 nmi	77.7	91.7	98.1	104.9	121.3	102.9	84.8	75.0
Calculated	30.0S 51.18W				81.5	93.8	103.3	108.5	125.7	106.2	89.7	76.3
Measured	Porto Allegro, BZ	790505	27.33°	71 nmi	75.0	89.1	96.6	103.3	120.5	102.0	83.3	70.2
Calculated	30.0S 51.18W				78.5	90.8	100.3	105.6	120.6	103.7	86.7	75.3
Measured	Ship Charlie	790507	-8.99°	48 nmi	70.3	81.1	85.9	91.7	105.1	90.9	76.0	67.0
Calculated	52.7N 35.5W				73.2	83.3	90.8	95.3	109.3	94.0	79.5	70.8
Measured	Ship Charlie	790628	8.05°	93 nmi	72.8	84.4	89.6	95.6	109.3	94.8	78.5	69.6
Calculated	52.7N 35.5W				72.7	82.8	90.3	94.8	108.6	93.8	78.7	70.3
Measured Mean					75.3	87.0	93.0	99.3	114.6	97.9	81.7	71.8
STD DEV					3.3	4.3	4.9	5.4	7.6	5.2	4.0	3.3
Calculated Mean					77.1	88.5	97.1	102.1	117.3	100.4	84.4	74.3
STD DEV					4.1	4.8	5.6	6.0	8.1	5.6	4.6	3.9
(Meas-Calc) %					-2.4	-1.6	-4.4	-2.8	-2.3	-2.5	-3.3	-3.4
Meas												
STD DEV					3.7	3.4	3.5	3.3	3.1	3.1	3.6	3.9
Correlation:					0.697	0.779	0.807	0.834	0.902	0.835	0.758	0.653

Table 7. Comparison of Measured With Calculated Radiances—Arctic (62-90N)—Clear

	Location	Date	θ	Distance	F1 355	F2 397	F3 420	F4 441	F5 535	F6 408	F7 374	F8 353
Measured	Thule AB, GL	790205	-9.0	18 nmi	64.8	69.6	72.3	74.4	75.4	73.6	68.2	62.7
Calculated	76.52N 68.83W				68.3	73.5	76.2	77.9	77.7	76.6	71.8	66.8
Measured	Thule AB, GL	790205	-4.5	36 nmi	63.8	68.0	70.4	72.0	71.6	70.8	66.8	62.2
Calculated	76.52N 68.83W				68.3	73.5	76.2	77.9	77.7	76.6	71.8	66.8
Measured	Thule AFB, GL	790205	-13.6	41 nmi	64.9	69.3	71.4	72.6	73.5	72.1	67.8	61.0
Calculated	76.52N 68.83W				68.3	73.5	76.2	77.9	77.7	76.6	71.8	66.8
Measured	Khatanga, USSR	790418	18.0	75 nmi	68.6	76.9	80.6	84.8	88.0	83.5	73.0	65.3
Calculated	71.98N 102.47E				70.9	78.7	83.9	86.6	88.5	85.0	76.2	68.9
Measured	Khatanga, USSR	790419	13.5	67 nmi	68.7	75.7	78.9	82.0	84.3	81.1	72.9	65.9
Calculated	71.98N 102.47E				68.0	78.7	81.8	84.6	86.8	83.2	74.2	67.1
Measured	Alert, NT, CN	790314	-27.4	23 nmi	70.6	76.5	78.6	80.2	86.7	78.2	75.2	68.8
Calculated	82.5N 62.33W				70.4	77.2	81.4	83.2	81.8	81.8	75.8	68.4
Measured	Alert, NT, CN	790321	-22.7	54 nmi	66.2	70.9	73.2	74.6	72.0	73.6	69.7	64.3
Calculated					66.9	72.6	75.9	77.4	76.8	76.0	71.0	65.5
Measured	Alert, NT, CN	790326	-27.3	64 nmi	67.2	74.4	77.7	80.6	80.6	79.5	71.5	65.4
Calculated					68.7	75.7	80.0	82.3	81.5	80.8	73.6	67.0
Measured	Alert, NT, CN	790326	-32.0	98 nmi	67.4	74.7	78.0	80.7	80.6	79.6	71.3	65.8
Calculated					68.7	75.7	80.0	82.3	81.5	80.8	73.6	67.0
Measured Mean:					66.9	72.9	75.7	78.0	78.0	76.8	70.7	64.7
STD DEV					2.2	3.4	3.8	4.6	5.6	4.5	2.8	2.2
Calculated Mean:					68.8	75.2	79.1	81.1	81.1	79.6	73.3	67.1
STD DEV					1.2	2.1	3.0	3.4	4.2	3.3	1.9	1.0
(Meas-Calc) %					-2.8	-3.2	-4.5	-4.0	-4.0	-3.5	-3.7	-3.7
Correlation:					0.696	0.919	0.961	0.969	0.961	0.964	0.881	0.524

Figure 4. Measured and Calculated Clear Column Radiances for DMSP SSH H_2O Channels—Tropical

Figure 5. Measured and Calculated Clear Column Radiances for DMSP SSH H₂O Channels—Mid-latitude

Figure 6. Measured and Calculated Clear Column Radiances for DMSP SSH H₂O Channels—Arctic

6.2 Cloud Contaminated Water Vapor Radiance Comparison

The colocated cloud contaminated cases selected for comparison are listed in Table 8 (Tropical), Table 9 (Mid-latitude-Low Clouds), Table 10 (Mid-latitude-High overcast) and Table 11 (Arctic). The 29 cloud contaminated cases—Tropical (5), Mid-latitude-Low Clouds (11), Mid-latitude-High overcast (7), and Arctic (6) were selected based again on the surface reports and the 3D NEPH data. In a few cases cloud conditions from 3D NEPH data were not available but are listed. In these tables, the row designated calculated-clear means that the transmittance calculations were carried out as if there were no clouds present. In the case where the transmittance calculations were computed and an effective cloud layer was determined in the row designated calculated-cloud at some height, the following assumptions were made: (1) the cloud has an emissivity of 1.00 and is constant over the width of the filter function, (2) the cloud amount is 100 percent and fills the field of view of the instrument, (3) T_s , the surface temperature in Eq. (1) is replaced by T_c , the cloud top temperature, and (4) the radiance percentage deviation is minimized by iterations for DMSP channel $F5-535 \text{ cm}^{-1}$ only, and (5) the effective cloud level found for $F5-535 \text{ cm}^{-1}$ is valid for all the DMSP water vapor channels.

Figures 7, 8, 9, and 10 show the results of the comparison in graphical form for the calculated clear-cloud contaminated for Tropical, Mid-latitude-Low Clouds, Mid-latitude-High overcast and Arctic, respectively. As should be expected, in the majority of cases, the calculated exceeds the satellite measured water vapor radiances. The higher the effective cloud layer, the greater the deviation. This should be expected since the upwelling radiation is coming from a higher level in the atmosphere. However, it is surprising that even with the cloud contamination there are a few comparisons showing a slight positive percentage deviation. For example in Table 8 and Figure 9, the comparison radiance data for Bangkok would indicate a clear column condition but the 3D NEPH data showed a broken cirrus stratus condition 1.5 to 4.0 km thick. No effective cloud layer calculations were performed for Bangkok because the radiance data for $F5-535 \text{ cm}^{-1}$ was already maximized with minimum percentage deviation. Also shown in Table 8, the greatest discrepancy found in this study was Ponape, Caroline Islands. The range of discrepancies range from -61 percent for $F8-353 \text{ cm}^{-1}$, the most opaque channel, to -182 percent for $F5-535 \text{ cm}^{-1}$, the most transparent channel. Although there are only five cases in the Tropics used for comparison, the cloud retrievals are disappointing when the effective cloud layer is compared directly to the cloud conditions reported in the 3D NEPH data. For example, in Table 8 see Bangkok on 790403 and either Truk or Ponape. The effective cloud layer calculations do not even come close to the actual cloud conditions being reported by the 3D NEPH data. However, the relationship between the measured and calculated radiances for an effective cloud layer in the Tropics is greatly improved as shown graphically in Figure 11.

Table 8. Comparison of Measured With Calculated Radiances—Tropical (0-26N)—Calculated Clear and Clouds

	Location	Date	θ	Distance	F1	F2	F3	F4	F5	F6	F7	F8	Cloud Level	Conditions Amount
Measured Calc-Clear	Bangkok, TH 13.73N 100.5E	790329	27.44	68 nmi	73.2	85.0	90.3	96.9	115.5	95.4	79.2	69.9	12.0 km	0.55
Calc-Cloud at N/A					74.2	85.0	93.2	98.0	116.4	96.7	81.0	71.0		
Measured Calc-Clear	Bangkok, TH 13.73N 100.5E	790403	13.52	81 nmi	81.6	94.9	101.9	109.3	125.2	107.0	89.1	76.6	12.0	0.75
Calc-Cloud at N/A					81.0	93.2	102.8	108.1	127.5	106.0	89.0	78.0		
Measured Calc-Clear	Brownsville, T 25.9N 92.43W	790206	-9.05	69 nmi	69.2	72.8	74.0	75.0	76.5	74.4	71.5	68.0	10.7	0.25
Calc-Cloud at 8.6 km					72.0	82.2	90.0	94.5	108.6	93.2	78.5	69.5	4.3	1.00
Measured Calc-Clear	TRUK, KA 7.47N 151.85E	790317	27.50	42 nmi	86.5	73.5	76.2	79.0	82.4	78.5	70.2	64.2	4.3	0.10
Calc-Cloud at 9.5 km					73.5	83.3	90.4	94.6	109.5	93.3	79.4	71.2	1.5	0.90
Measured Calc-Clear	Ponape, KA 6.97N 158.22E	790409	-9.05	31 nmi	46.6	48.2	45.3	44.5	40.3	45.8	46.4	46.3	12.2	0.65
Calc-Cloud at 15.0 km					45.4	46.0	45.8	45.3	40.4	46.0	45.8	45.3	7.9	1.00

Table 9. Comparison of Measured With Calculated Radiances—Mid-latitude (26°-62°N) Calculated Clear and Effective Cloud Layer Less than 4 km

	Location	Date	θ	Distance	F1	F2	F3	F4	F5	F6	F7	F8	Cloud Level	Conditions Above
Measured	Oslo, Norway 60.2N 11.1E	790328	4.48°	90 nmi	71.5	80.4	84.8	89.4	96.6	98.0	96.6	98.5	N/A	
Calc-Clear					71.7	81.1	89.1	93.4	105.4	102.1	78.0	69.3		
Calc-Cloud at 2.0 km	Lerwick, UK 60.13N 1.18W	790326	-13.52°	64 nmi	77.7	87.1	91.4	95.1	100.1	92.7	83.5	75.1	1.1	0.60
Measured					74.2	85.0	93.2	97.7	108.0	95.9	81.7	71.2		
Calc-Clear					73.8	83.8	91.0	94.8	101.5	92.8	80.9	71.0		
Calc-Cloud at 2.5 km	Lerwick, UK	790406	4.48°	31 nmi	70.7	80.1	84.6	89.1	98.2	97.9	75.8	67.0	2.1 km	0.20
Measured					71.8	81.4	88.3	92.5	106.0	91.3	77.7	68.6	1.1	0.35
Calc-Clear					71.7	80.7	86.9	90.5	98.2	85.1	77.5	69.6		
Calc-Cloud at 2.2 km														
Measured	W. Palm Beach, FLA 26.68N 80.1W	790403	0°	86 nmi	75.5	89.4	96.7	104.5	117.5	103.2	83.4	70.1	3.0	1.00
Calc-Clear					79.8	92.9	103.3	109.9	125.3	106.9	88.4	76.2		
Calc-Cloud at 4.0 km	Cape Hatteras, NC 35.27N 75.55W	790623	13.52°	92 nmi	72.1	80.9	87.8	93.8	111.5	92.1	87.0	76.0	12.2 km	0.40
Measured					74.2	88.0	95.2	100.5	118.0	98.3	81.5	71.2	1.1	0.15
Calc-Clear					74.1	85.5	94.2	99.2	111.4	97.8	81.4	71.2		
Calc-Cloud at 3.75 km														
Measured	Cape Hatteras, NC	790816	4.48°	84 nmi	73.6	84.6	90.3	96.6	113.4	95.7	79.0	70.7	6.7 km	0.25
Calc-Clear					78.7	95.8	99.8	112.4	127.4	97.9	84.9	76.4		
Calc-Cloud at N/A														
Measured	Wallops, VA 37.85N 75.45W	790205	18.11°	31 nmi	74.5	83.2	89.2	94.3	106.0	92.3	80.1	71.1	N/A	
Calc-Clear					78.3	87.9	98.7	109.8	125.2	98.4	87.7	75.2		
Calc-Cloud at 1.4 km					78.2	87.5	93.4	97.7	105.6	95.5	84.3	75.1		
Measured	Wallops, VA	790205	4.53°	36 nmi	76.2	86.0	90.3	95.0	105.6	93.5	81.0	74.7	N/A	
Calc-Clear					78.0	87.9	95.0	109.8	127.4	98.9	84.5	75.7		
Calc-Cloud at 1.4 km														
Measured	Wallops, VA	790617	0°	74 nmi	74.2	89.9	95.3	101.5	117.6	98.3	84.3	75.2	7.9	0.25
Calc-Clear					82.7	93.8	101.5	106.0	121.9	103.7	89.4	80.3	1.5	0.35
Calc-Cloud at 3.0 km					82.7	93.4	101.0	105.3	117.6	102.9	89.4	80.3	0.3	0.95
Measured	Chatham, MA 41.67N 69.9W	790519	0°	82 nmi	70.5	81.9	97.1	93.3	108.7	92.6	76.1	65.0	12.2 km	0.90
Calc-Clear					75.4	88.1	97.9	103.5	119.7	101.9	83.6	72.0		
Calc-Cloud at 3.5 km					74.9	86.3	94.2	97.9	106.6	95.6	84.4	75.7		
Measured	Chatham, MA	790703	0°	91 nmi	72.8	83.8	88.7	94.3	108.4	93.1	78.7	70.4	9.1 km	0.20
Calc-Clear					78.5	88.6	95.0	100.1	113.6	97.8	85.1	76.1	4.3	0.20
Calc-Cloud at 3.6 km					78.5	88.4	95.6	100.6	109.4	97.3	85.1	76.1	1.1	0.20
Mean - Measured														
-Calc-Clear														
-Calc-Cloud														
(Mean - Calc)	Clear %				-3.7	-3.7	-6.4	-5.1	-5.7	-4.9	-4.9	-4.5		
(Mean - Calc)	Cloudy %				-3.4	-2.8	-5.0	-3.2	-0.3	-2.8	-4.4	-4.4		

Table 10. Comparison of Measured With Calculated Radiances—Mid-latitude (26°-62N) Calculated Clear and High Overcast

Location	Date	θ	Distance	F ₁	F ₂	F ₃	F ₄	F ₅	F ₆	F ₇	F ₈	Cloud Level	Conditions Amount
Measured	Lerwick, UK	790207	9.05°	75 nmi	65.2	70.8	73.3	75.1	78.0	74.4	68.8	63.1	6.6 km 1.00
Calc-Clear	60.13N 1.18W			66.8	76.6	83.8	88.2	101.4	87.4	73.0	64.3		
Calc-Cloud at 5.6 km				64.5	70.6	74.3	76.1	78.7	75.1	68.9	63.0		
Measured	Lerwick, UK	790302	18.16°	68 nmi	65.4	70.6	73.0	74.8	75.5	74.3	68.9	63.1	6.6 km 1.00
Calc-Clear	60.13N 1.18W			67.9	77.3	84.3	88.4	100.5	87.3	74.0	65.5		
Calc-Cloud at 6.5 km				65.0	70.6	73.8	75.4	78.4	74.3	68.9	63.7		
Measured	Stanwell, UK	790302	27.38°	85 nmi	64.4	68.7	70.4	71.6	72.1	71.2	66.9	62.3	7.8 km 1.00
Calc-Clear	56.43N 2.87W			69.0	78.8	86.0	90.3	103.1	98.3	75.2	66.5		
Calc-Cloud at 8.1 km				64.5	69.3	71.8	73.0	72.1	72.1	67.8	63.5		
Measured	Mataasanaq, GL	790306	18.22°	70 nmi	56.8	56.0	54.7	53.4	51.4	57.1	56.1	10.5	0.65
Calc-Clear	61.18N 45.43W			67.1	76.1	82.6	88.5	98.7	85.7	72.7	64.9	7.8	1.00
Calc-Cloud at 8.1 km				54.4	55.8	55.9	55.7	51.5	55.8	55.1	54.3		
Measured	Griegswald, DEN	790316	-27.44°	47 nmi	58.9	62.0	62.7	63.2	62.0	64.7	60.7	58.7	0.65
Calc-Clear	54.1N 13.38E			70.7	80.3	87.4	91.6	103.4	80.2	76.9	68.3	7.8	1.00
Calc-Cloud at 8.5 km				60.1	62.6	63.1	63.8	80.9	63.4	61.4	60.0		
Measured	Huntington, W. VA	790402	-18.16°	172 nmi	57.0	58.7	58.5	58.1	55.7	59.2	58.4	56.8	10.5
Calc-Clear	38.37N 82.55W			71.8	81.1	87.9	92.0	108.0	80.8	77.5	69.6	6.6	0.95
Calc-Cloud at 11.0 km				56.8	56.8	59.3	59.3	55.7	58.2	58.0	56.5	5.4	1.00
Measured	Salem, IL	790401	-13.58°	36 nmi	55.0	55.4	55.0	54.2	50.5	55.6	55.4	54.0	12.0
Calc-Clear	38.65N 88.97W			53.7	55.3	55.5	55.3	51.2	55.5	54.6	53.6		0.85
Mean-Measured				60.4	63.2	63.9	64.3	63.3	64.9	62.3			
-Calc-Clear				69.3	78.8	85.7	89.8	102.3	82.7	75.3	66.9		
-Calc-Clouds				59.9	63.3	64.8	65.5	83.4	65.1	62.1	59.2		
(Mean-Calc) % Error	Clear			-14.7	-24.7	-34.1	-39.7	-61.6	-36.7	-20.9	-13.0		
(Mean-Calc) % Error	Clouds			0.8	-0.2	-1.4	-1.9	-0.2	-0.3	+0.3	0		

Table 11. Comparison of Measured With Calculated Radiances—Arctic (62-90N)
Calculated Clear and Clouds

	Location	Date	θ	Distance	F1 355	F2 397	F3 420	F4 441	F5 535	F6 408	F7 374	F8 353
Measured	Thule AB, GL	790204	0°	5 nmi	61.6	63.4	63.2	62.2	60.6	63.2	62.8	60.6
Calc-Clear	78.52N 68.83W	(13536)			66.8	72.6	75.9	78.2	79.3	77.0	70.5	64.9
Calc-Cloud at 4.5 km					60.7	63.3	64.0	64.2	61.1	63.7	62.1	60.5
Measured	Thule AB, GL	790294	-4.5°	27 nmi	61.9	64.2	64.1	63.5	62.1	64.3	63.6	61.2
Calc-Clear	(13536)				66.8	72.6	75.9	78.2	79.3	77.0	70.6	64.9
Calc-Cloud at 4.0 km					61.6	64.5	65.5	65.9	63.2	65.3	63.3	61.3
Measured	Thule AB, GL	790204	+4.5°	37 nmi	63.0	66.2	66.9	67.6	67.1	67.3	64.7	62.6
Calc-Clear	(13536)				66.8	72.6	75.9	78.2	79.3	77.0	70.6	64.9
Calc-Cloud at 3.0 km					63.3	66.8	68.4	69.2	67.3	68.4	65.5	62.7
Measured	Thule AB, GL	790204	0°	16 nmi	61.8	63.6	63.9	63.0	61.4	63.6	63.5	60.7
Calc-Clear	(14537)				66.4	72.5	76.2	78.2	79.2	77.0	70.5	65.0
Calc-Cloud at 4.25 km					61.0	63.6	64.4	64.7	61.6	64.2	62.5	60.8
Measured	Thule AB, GL	790204	+4.5°	16 nmi	63.2	66.6	67.5	67.6	67.1	67.2	65.4	62.5
Calc-Clear	(14537)				66.4	72.5	76.2	78.2	79.2	77.0	70.5	65.0
Calc-Cloud at 2.5 km					63.5	67.2	68.9	69.6	67.6	68.9	69.8	62.9
Measured	Thule AB, GL	790204	-4.5°	50 nmi	62.0	63.6	64.3	63.7	61.9	64.3	63.1	60.7
Calc-Clear	(14537)				66.4	72.5	76.2	78.2	79.2	77.0	70.5	65.0
Calc-Cloud at 4.25 km					61.0	63.6	64.4	64.7	61.6	64.2	62.5	60.8
Mean-Measured					62.25	64.6	65.0	64.6	63.4	65.0	63.85	61.4
-Calc-Clear					66.6	72.55	76.05	78.2	79.25	77.0	70.55	64.95
-Calc-Clouds					61.85	64.8	65.9	66.4	63.7	65.8	63.6	61.5
(Meas-Calc)	Meas	Clear	%		-7.0	-12.3	-17.0	-21.1	-25.0	-18.5	-10.5	-5.8
(Meas-Calc)	Meas	Clouds	%		+0.6	-0.3	-1.4	-2.8	-0.5	-1.2	+0.4	-0.2

Figure 7. Measured and Calculated Clear Column-Cloud Contaminated Radiances for DMSP SSH H_2O Channels—Tropical

Figure 8. Measured and Calculated Clear Column-Cloud Contaminated Low Cloud Radiances for DMSP SSH H_2O Channels—Mid-latitude

Figure 9. Measured and Calculated Clear Column-Cloud Contaminated High Overcast Radiances for DMSP SSH H_2O Channels—Mid-latitude

Figure 10. Measured and Calculated Clear Column-Cloud Contaminated Radiances for DMSP SSH H₂O Channels-Arctic

Figure 11. Measured and Calculated High Overcast Radiances for DMSP SSH H₂O Channels-Tropical

The comparison of measured with calculated radiances in the cloud contaminated cases for the Mid-latitude belt was sub-divided into a low and high cloud atmospheric condition. The low cloud category was arbitrarily chosen based on the calculation of an effective cloud layer at or below 4 km or approximately the 600 mb level in the atmosphere. The actual cloud conditions both in amounts and levels as obtained from the 3D NEPH data are quite variable as can be seen in Table 9. The Mid-latitude-High overcast category shows a more uniform type of cloud conditions, as seen in Table 10.

The Mid-latitude-Low-effective cloud layer comparison is listed in Table 9 and shown graphically in Figure 8. The mean percentage deviations are negative for all DMSP channels. The range is -3.7 percent to -5.7 percent for the cloud contaminated cases which is very similar to the range of -1.6 percent to -4.4 percent for the clear column comparison shown in Table 6. Also, it would be very difficult to see any significant differences between Figure 5-Mid-latitude Clear and Figure 8-Mid-latitude Calculated Clear-Cloud contaminated. The cloud retrievals only show a slight improvement as shown in Table 9 and Figure 12. The maximum improvement is shown in DMSP channel F5-535 cm^{-1} , a reduction from -5.7 to -0.3 percent, and this improvement is due to the design of the cloud retrieval calculation. There is very little improvement in the more opaque water vapor channels, that is, F8-353 cm^{-1} and F1-355 cm^{-1} . It appears from this analysis that the DMSP water vapor channels cannot distinguish between clear and low cloud contamination. Low cloud contamination being an overcast below 3 or 4 km or lower than the 600 to 700 mb atmospheric level.

On the other hand, the Mid-latitude-High overcast comparison listed in Table 10 and shown graphically in Figure 9 shows a definite negative discrepancy between the measured and calculated water vapor radiances. The range of negative deviations is -13.0 percent for F8-353 cm^{-1} to -61.6 percent for F5-535 cm^{-1} . As should be expected, there is a definite negative discrepancy as shown both in Tables 10 and Figure 9. The cloud retrievals show an improvement in the comparison of effective cloud layer to the cloud conditions reported in the 3D NEPH data for the Mid-latitude-High overcast category. The cloud retrievals calculations in the measured and calculated radiance comparison show a large improvement as shown in Table 10 and Figure 13. The negative deviation for channel F5-535 cm^{-1} is reduced from -61.6 percent to -0.2 percent and for channel F8-353 cm^{-1} from -13.0 percent to 0 percent.

Figure 12. Measured and Calculated Low Overcast Radiances for DMSP SSH H_2O Channels—Mid-latitude

Figure 13. Measured and Calculated High Overcast Radiances for DMSP SSH H_2O Channels—Mid-latitude

Finally, in Table 11 and Figure 10, the comparison of measured with calculated radiances for the Arctic latitude belt is shown. There was no cloud information available so no actual comparisons could be made between the calculated effective and the actual cloud layer. This is also the only time when the comparison used both DMSP satellites, that is, 13536 and 14537. Figure 10 shows quite graphically the cloud contamination because of the large negative deviations of calculated being greater than the measured water vapor radiances. The range of negative deviations are -5.8 percent for F8-353 cm^{-1} and -25.0 percent for F5-535 cm^{-1} . The Arctic cloud retrievals are shown in Table 11 and Figure 14.

Figure 14. Measured and Calculated Overcast Radiances for DMSP SSH H_2O Channels—Arctic

7. CONCLUSIONS

Comparisons have been made between DMSP SSH H_2O measurements and classically-calculated water vapor radiances based on colocated in space and time radiosonde observations. Approximately 70 sets of radiance data were compared both in clear and cloud contaminated atmospheric conditions. In addition, the sets were divided into three latitude belts, that is, Tropical (26S-26N), Mid-latitude

(26-62N) and Arctic (62-90N). Systematic discrepancies, by approximately a 4:1 ratio, are shown for all of the DMSP SSH H₂O channels in comparison to the calculated water vapor radiances. The calculated radiances generally exceed the measured radiances with DMSP SSH F3-420 cm⁻¹ channel showing the largest discrepancy. In the mean, the radiance comparison indicates a systematic discrepancy less than 5 percent for the clear column conditions. Results of this analysis, that is, calculated exceeds measured radiances, is in agreement with McClatchey's³ results in his analysis of the 15 μ m carbon dioxide channels.

In the clear column comparisons, the discrepancies appear to be latitudinally dependent. Smaller discrepancies are found in the Tropics and the larger discrepancies are found in the Arctic latitude belt. This may be due to the moisture and temperature profiles representing the latitude belts, that is, Tropics—more moisture—higher atmospheric temperature and Arctic—less moisture and colder atmospheric temperature. As would be expected, the discrepancies are larger in the cloud contaminated cases because the upwelling radiation is coming from the cloud top level. However, in the low cloud contamination (less than 600 mb) the discrepancies are very similar to the clear column comparisons. Thus it appears that the DMSP SSH H₂O channels cannot discriminate between low cloud contamination and clear column conditions. A cloud retrieval procedure was used to improve the relationship between the measured and calculated cloud contaminated water vapor radiances. However, when the calculated effective cloud level is compared to the 3D NEPH cloud conditions, the results are disappointing. In general, the effective cloud level is much higher than that given in the 3D NEPH data.

In view of these results, it appears that additional research should be done on the Forward Problem, that is, matching measurements with calculations. The single point or scan spot station comparison from Polar orbiting satellites has been disappointing. There is a definite need to delineate the Forward Problem discrepancy. Hopefully a study of spatial and temporal variations of the satellite radiance data and carefully selected "ground truth" sites will answer some of these discrepancies. It appears that a carefully designed research program using a geo-stationary satellite sounder such as the VISSR Atmospheric Sounder could provide some of the answers to the Forward Problem discrepancy.

References

1. Nichols, D. A. (1975) DMSP Block 5D special meteorological sensor H, optical subsystem, Opt. Eng. 14:284-288.
2. Valovcin, F. R. (1980) DMSP Water Vapor Radiances—A Preliminary Evaluation, AFGL-TR-80-0313, AD A099305.
3. McClatchey, R. A. (1976) Satellite Temperature Sounding of the Atmosphere: Ground Truth Analysis, AFGL-TR-76-0279, AD A038236.
4. Coburn, A. R. (1970) Three Dimensional Analysis, AFGWC, Offut AFB, NE, AFGWC TM-70-9.
5. Selby, J. E. A., and McClatchey, R. A. (1975) Atmospheric Transmittance From 0.25 to 28.5 μ m: Computer Code LOWTRAN 3, AFCRL-TR-75-0255, AD A017734.
6. McClatchey, R. A., Benedict, W. S., Clough, S. A., Burch, D. E., Calfee, R. F., Fox, K., Rothman, L. S., and Garing, J. S. (1973) AFCRL Atmospheric Absorption Line Parameters Compilation, AFCRL-TR-73-0096, AD A762904.
7. Burch, D. E., and Gryvnak, D. A. (1979) Method of Calculating H₂O Transmittance Between 333 and 633 cm⁻¹, Final Report AFGL-TR-79-0054, Aeronutronic Report U6503, AD A072850.
8. McClatchey, R. A., Fenn, R. W., Selby, J. E. A., Voltz, F. E., and Garing, J. S. (1972) Optical Properties of the Atmosphere (Third Edition), AFCRL-72-0497, AD A753075.
9. Barnes Engineering Co. (1976) Flight II—Supplementary Sensor H (SSH) Radiometric Performance, Report 2413-TA-012.

Appendix A

DMSP SSH H₂O Filter Transmission Curves and Digitized Filter Functions

Filter transmission curves and digitized filter functions for the eight (8) DMSP SSH water vapor channels are provided in Appendix A. These curves and the digitized filter functions were obtained from a Barnes Engineering Company's Report⁹ and are valid for Flight II SSH package aboard spacecraft WC 13536 launched in July 1977. These curves were used to calculate the water vapor transmittances and the resulting weighting functions.

9. Barnes Engineering Co. (1976) Flight II-Supplementary Sensor H (SSH)
Radiometric Performance, Report 2413-TA-012.

DNSP FILTER NO. 13536
355 WAVENUMBER CHANNEL

FREQUENCY STEP = .5 WAVE NUMBERS

FREQUENCY TRANSMISSION FILTER

FREQUENCY	TRANSMISSION	FILTER	TRANSMISSION
334.5	.0011	358.5	.3160
335.0	.0012	359.0	.3850
335.5	.0015	359.5	.2970
336.0	.0017	360.0	.2900
336.5	.0020	360.5	.2800
337.0	.0024	361.0	.2700
337.5	.0028	361.5	.2570
338.0	.0033	362.0	.2420
338.5	.0039	362.5	.2240
339.0	.0045	363.0	.2000
339.5	.0053	363.5	.1740
340.0	.0063	364.0	.1480
340.5	.0074	364.5	.1250
341.0	.0087	365.0	.1020
341.5	.0100	365.5	.0830
342.0	.0120	366.0	.0690
342.5	.0150	366.5	.0550
343.0	.0180	367.0	.0450
343.5	.0220	367.5	.0360
344.0	.0270	368.0	.0320
344.5	.0320	368.5	.0270
345.0	.0390	369.0	.0230
345.5	.0490	369.5	.0190
346.0	.0610	370.0	.0160
346.5	.0770	370.5	.0130
347.0	.0950	371.0	.0110
347.5	.1020	371.5	.0095
348.0	.1320	372.0	.0079
348.5	.1580	372.5	.0070
349.0	.1820	373.0	.0063
349.5	.2030	373.5	.0056
350.0	.2260	374.0	.0051
350.5	.2460	374.5	.0045
351.0	.2650	375.0	.0041
351.5	.2820	375.5	.0037
352.0	.2930	376.0	.0033
352.5	.3080	376.5	.0026
353.0	.3060	377.0	.0027
353.5	.3160	377.5	.0024
354.0	.3150	378.0	.0021
354.5	.3160	378.5	.0019
355.0	.3200	379.0	.0017
355.5	.3210	379.5	.0015
356.0	.3200	380.0	.0014
356.5	.3190	380.5	.0012
357.0	.3180	381.0	.0011
357.5	.3160	381.5	.0010
358.0	.3160		

Band F1, 355 Wavenumber Channel

Band F2, 397 Wavenumber Channel

OMSP FILTER NO. 13936
420 WAVENUMBER CHANNEL
FREQUENCY STEPS - 5 WAVENUMBERS

Band F3, 420 Wavenumber Channel

Band F5, 535 Wavenumber Channel

Band F4, 441 Wavenumber Channel

Band F4, 441 Wavenumber Channel

Band F5, 535 Wavenumber Channel

Band F6, 408 Wavenumber Channel

DNP PTL ER No. 13336					
408 WAVENUMBER CHANNEL					
FREQUENCY STEPS = 5 WAVENUMBERS					
FILTER TRANSMISSION	FREQUENCY	FILTER TRANSMISSION	FREQUENCY	FILTER TRANSMISSION	FREQUENCY
.368.0	.0010	.390.0	.0010	.420.0	.0050
.368.5	.0011	.390.5	.0011	.420.5	.0051
.369.0	.0012	.391.0	.0012	.421.0	.0052
.369.5	.0013	.391.5	.0013	.421.5	.0053
.370.0	.0014	.392.0	.0014	.422.0	.0054
.370.5	.0015	.392.5	.0015	.422.5	.0055
.371.0	.0016	.393.0	.0016	.423.0	.0056
.371.5	.0017	.393.5	.0017	.423.5	.0057
.372.0	.0018	.394.0	.0018	.424.0	.0058
.372.5	.0019	.394.5	.0019	.424.5	.0059
.373.0	.0020	.395.0	.0020	.425.0	.0060
.373.5	.0021	.395.5	.0021	.425.5	.0061
.374.0	.0022	.396.0	.0022	.426.0	.0062
.374.5	.0023	.396.5	.0023	.426.5	.0063
.375.0	.0024	.397.0	.0024	.427.0	.0064
.375.5	.0025	.397.5	.0025	.427.5	.0065
.376.0	.0026	.398.0	.0026	.428.0	.0066
.376.5	.0027	.398.5	.0027	.428.5	.0067
.377.0	.0028	.399.0	.0028	.429.0	.0068
.377.5	.0029	.399.5	.0029	.429.5	.0069
.378.0	.0030	.400.0	.0030	.430.0	.0070
.378.5	.0031	.400.5	.0031	.430.5	.0071
.379.0	.0032	.401.0	.0032	.431.0	.0072
.379.5	.0033	.401.5	.0033	.431.5	.0073
.380.0	.0034	.402.0	.0034	.432.0	.0074
.380.5	.0035	.402.5	.0035	.432.5	.0075
.381.0	.0036	.403.0	.0036	.433.0	.0076
.381.5	.0037	.403.5	.0037	.433.5	.0077
.382.0	.0038	.404.0	.0038	.434.0	.0078
.382.5	.0039	.404.5	.0039	.434.5	.0079
.383.0	.0040	.405.0	.0040	.435.0	.0080
.383.5	.0041	.405.5	.0041	.435.5	.0081
.384.0	.0042	.406.0	.0042	.436.0	.0082
.384.5	.0043	.406.5	.0043	.436.5	.0083
.385.0	.0044	.407.0	.0044	.437.0	.0084
.385.5	.0045	.407.5	.0045	.437.5	.0085
.386.0	.0046	.408.0	.0046	.438.0	.0086
.386.5	.0047	.408.5	.0047	.438.5	.0087
.387.0	.0048	.409.0	.0048	.439.0	.0088
.387.5	.0049	.409.5	.0049	.439.5	.0089
.388.0	.0050	.410.0	.0050	.440.0	.0090
.388.5	.0051	.410.5	.0051	.440.5	.0091
.389.0	.0052	.411.0	.0052	.441.0	.0092
.389.5	.0053	.411.5	.0053	.441.5	.0093
.390.0	.0054	.412.0	.0054	.442.0	.0094
.390.5	.0055	.412.5	.0055	.442.5	.0095
.391.0	.0056	.413.0	.0056	.443.0	.0096
.391.5	.0057	.413.5	.0057	.443.5	.0097
.392.0	.0058	.414.0	.0058	.444.0	.0098
.392.5	.0059	.414.5	.0059	.444.5	.0099
.393.0	.0060	.415.0	.0060	.445.0	.0100
.393.5	.0061	.415.5	.0061	.445.5	.0101
.394.0	.0062	.416.0	.0062	.446.0	.0102
.394.5	.0063	.416.5	.0063	.446.5	.0103
.395.0	.0064	.417.0	.0064	.447.0	.0104
.395.5	.0065	.417.5	.0065	.447.5	.0105
.396.0	.0066	.418.0	.0066	.448.0	.0106
.396.5	.0067	.418.5	.0067	.448.5	.0107
.397.0	.0068	.419.0	.0068	.449.0	.0108
.397.5	.0069	.419.5	.0069	.449.5	.0109
.398.0	.0070	.420.0	.0070	.450.0	.0110
.398.5	.0071	.420.5	.0071	.450.5	.0111
.399.0	.0072	.421.0	.0072	.451.0	.0112
.399.5	.0073	.421.5	.0073	.451.5	.0113
.400.0	.0074	.422.0	.0074	.452.0	.0114
.400.5	.0075	.422.5	.0075	.452.5	.0115
.401.0	.0076	.423.0	.0076	.453.0	.0116
.401.5	.0077	.423.5	.0077	.453.5	.0117
.402.0	.0078	.424.0	.0078	.454.0	.0118
.402.5	.0079	.424.5	.0079	.454.5	.0119
.403.0	.0080	.425.0	.0080	.455.0	.0120
.403.5	.0081	.425.5	.0081	.455.5	.0121
.404.0	.0082	.426.0	.0082	.456.0	.0122
.404.5	.0083	.426.5	.0083	.456.5	.0123
.405.0	.0084	.427.0	.0084	.457.0	.0124
.405.5	.0085	.427.5	.0085	.457.5	.0125
.406.0	.0086	.428.0	.0086	.458.0	.0126
.406.5	.0087	.428.5	.0087	.458.5	.0127
.407.0	.0088	.429.0	.0088	.459.0	.0128
.407.5	.0089	.429.5	.0089	.459.5	.0129
.408.0	.0090	.430.0	.0090	.460.0	.0130

Band F6, 408 Wavenumber Channel

OMSP FILTER NO. 13536
 37% WAVENUMBER CHANNEL
 FREQUENCY STEP: .5 Wavenumber

Band F7, 374 Wavenumber Channel

Band F8, 353 Wavenumber Channel

ATE
LME