LP Oscillateur harmonique en mécanique classique et quantique

Niveau: L3

Prérequis:

- Equation de l'oscillateur harmonique
- Résolution et évolution en régime libre
- Mécanique quantique : équations de Schrödinger stationnaire, puits carré infini

Systèmes modélisables par des oscillateurs harmoniques

	Hypothèses	Equation du mouvement linéarisée	Solution
Point fixe X	Faible allongement (domaine élastique)	$\ddot{x} + \omega_0^2 x = 0$	$x(t) = x_0 \cos(\omega t + \phi)$
$ \begin{array}{c c} 0 \\ \overline{g} \\ \end{array} $	Petits angles	$\ddot{\theta} + \omega_0^2 \theta = 0$	$\theta(t) = \theta_0 \cos(\omega t + \phi)$

Dynamique du pendule simple

Théorème du moment cinétique :

$$ml^2\ddot{\theta} = -mglsin\theta$$

Soit:

$$\ddot{\theta} + \omega_0^2 \sin\theta = 0$$

Approximation parabolique pour le pendule simple

Energie potentielle d'une molécule diatomique

Energie potentielle d'une molécule diatomique

Etats propres du puits harmonique

Etats propres du puits infini

Spectre vibrationnel de la molécule de dihydrogène

Spectroscopie infrarouge du dioxyde de carbone

