Experiment No. 6

RESOLVING POWER OF A TELESCOPE

Aim: To determine the resolving power of a telescope and hence to compare it with the theoretical value.

Apparatus: Sodium vapour lamp, Photo film (or plate) on which two lines separated by short distance are drawn, telescope, adjustable slit, travelling microscope, meter scale, etc.

Principle: Resolving power of a telescope is its ability to resolve two very close lines as distinctly separate.

Formula:

$$a/\lambda = D/d$$
 where $a=1 a_1 a_2 1$

Telescope aperture is completely closed. While **opening the aperture** of the telescope:

a1 is the width of opening of the telescope when the light just appears.

a₂ is the width of the opening of the telescope when the light sources are just resolved.

a = aperture of the telescope in (m)

 λ = wavelength of sodium light. (589.3 nm)

d = distance between the lines (object). (0.6 cm)

D = distance between the object and the telescope (cm)

Procedure:

- 1. A pair of lines drawn closely on a photo film or a ground glass plate and is illuminated by sodium light source S. These are the two light sources (S_1 and S_2) for which the resolving power of the telescope has to be determined.
- 2. The telescope is focused to infinity.
- 3. Now the telescope is kept at a large distance (say 1 m) from the sources (S_1 and S_2).
- 4. Closed the aperture of the telescope completely.
- 5. Now, open the slit slowly with the help of screw attached.
- 6. While opening the aperture of the telescope note down a_1 and a_2 .
- 7. Using the above given formula calculate.

Observation Table:

 $TR = MSR + (VSR \times LC), LC=0.5/100=0.005mm$

			a_1			a_2			
Sr. No.	D (cm)	d (cm)	MSR (mm)	VSR	TR (mm)	MSR (mm)	VSR	TR (mm)	$\begin{array}{c} a= a_{1},a_{2} \\ (m) \end{array}$
1	75	0.6	0	54	0.27	0	68	0.34	7*10-6
2	100	0.6	0	58	0.29	0	77	0.385	9.5*10-6
3	125	0.6	0	48	0.24	0	71	0.355	1.15*10-6

Calculation:

Sr. No.	D (cm)	d (cm)	a	α/λ	D/d
1	75	0.6	0.07	118.7mm	125
2	100	0.6	0.095	161.2mm	166 .67
3	125	0.6	0.0115	19.5	208

Result: The theoretical and experimental values for the resolving power of the telescope are compared and approximately same.