

## SUBJECT INDEX

Aberdeen, Scotland, U.K. 129, 331  
 Acidification 133, 139, 299, 371  
 Acid mine drainage 203, 229, 541  
     electrochemical amelioration of 425  
     precipitates from 229, 425, 845  
     simulation 425, 845  
 Actinides sorption of 555  
 Ag  
     in Kupferschiefer mineralisation 567  
     in overbank sediment 271  
 Al  
     in andosols 145  
     in groundwater 677  
     in lake sediment 409, 605  
     in lake water 409  
     in precipitation 149  
     in river/stream water 447, 621  
     in ochre 229  
     in soil 35, 129  
     in soil solution 81  
     interlayering in clays 87  
     mobilisation in acidified soils 139  
 Aijala Cu-Pb mine, SW. Finland 277  
 Am transport in groundwater 387  
<sup>241</sup>Am sorption of 555  
 Ambers, physical and chemical properties 812  
 Ar in gas from thermal water 471  
 Archaeological glass 511  
 As  
     accumulation in ferruginous bacterial accretions 541  
     in acid mine drainage 541  
     in black shale 69  
     in fish 409  
     in humus 277  
     in Kupferschiefer mineralisation 567  
     in lake sediment 409  
     in lake water 409  
     in moss 25, 277  
     in overbank sediment 25, 271  
     in plants 77  
     in river/stream water 25, 447  
     in snow 25  
     in soil 11, 17, 25, 69, 77, 633  
     in stream sediment 277  
     in the environment 355  
     in U mine drainage 237  
     leachable in mine waste 277  
 B, in thermal waters 471  
 Ba  
     in groundwater 757  
     in lake sediment 409  
     in lake water 409  
     in soil 129  
     in stream sediment impacted by landfill 803  
     in U mine drainage 237  
     release in water-rock interaction 461  
 Baia Mare, Romania 105  
 Be  
     in lake sediment 409  
     in lake water 409  
 Big Lost River, Idaho, U.S.A. 523  
 Bioavailability  
     of As to fish 409  
     of Cr to fish 409  
     of heavy metals to plants 163  
     of metals to macrophytes 169  
     of Pb to fish 409  
 Black Sea 711, 775  
 Book Review  
     Arsenic Exposure and Health 493  
     Contamination of Groundwaters 491  
     The Role of Nonliving Organic Matter in the Earth's Carbon Cycle 495  
     Handbook of Exploration Geochemistry, Volume 6. Drainage Geochemistry 489  
     The Geochemistry of Reservoirs 617  
     Solute Modelling in Catchment Systems 619  
 Br  
     in groundwater 433, 757  
     in thermal water 471  
 Brazil 355  
 Brines, metal rich 667  
 Bukowno, E. Silesia, Poland 11  
<sup>13</sup>C, in groundwater 433, 523  
<sup>14</sup>C, in groundwater 433, 523  
 Ca  
     in groundwater 433, 677, 757  
     in lake sediment 409, 605  
     in lake water 409  
     in plants 375  
     in pore waters, tailings 293  
     in precipitation 149  
     in river sediment 217  
     in river/stream water 447, 621  
     in soil 129  
     in soil solution 81  
     in thermal water 471  
     in U mine drainage 237  
     influence on dissolved organic C in soils 109  
     release in water-rock interaction 461

California, U.S.A. 497, 797  
 Cape Cod, Massachusetts, U.S.A. 317  
 Canada  
     Alberta basin 789  
     Manitoba 387, 555, 721  
     Ontario 425, 721  
     Williston Basin 789  
 Carnoules Pb-Zn mine, Gard, France 541  
 Cd  
     in black shale 69  
     in lake sediment 211, 409, 605  
     in lake water 409  
     in humus 277  
     in macrophytes 169  
     in moss 25, 277  
     in overbank sediment 25  
     in plants 53, 77, 175  
     in precipitation 149  
     in river/stream sediment 169, 197,  
         217, 223, 277  
     in river/stream water 25, 169, 447  
     in the environment 355  
     in sewage sludge 331  
     in snow 25  
     in soil 3, 11, 17, 25, 53, 69, 77, 105,  
         175, 285, 305, 331, 363  
     in vegetables 105  
     leachable, in mine waste 277  
     solubility due to acidification 299  
 China, Hunai Province 217  
 CH<sub>4</sub>  
     in fluid inclusions 745  
     in gas from thermal water 471  
 C<sub>2</sub>H<sub>6</sub>  
     in fluid inclusions 745  
     in gas from thermal water 471  
 C<sub>3</sub>H<sub>8</sub>  
     in fluid inclusions 745  
 Charterhouse mine, Mendip Hills, SW  
     England 335  
 Chernobyl fallout 311  
 Chisel Lake, Manitoba, Canada 721  
 Cl  
     in groundwater 433, 677, 757  
     in hydrothermally altered sediment  
         645  
     in precipitation 149  
     in soil solution 81  
     in thermal water 471  
     in U mine drainage 237  
     pollution by 3  
 Chlorophenols, complexation of metals in  
     aqueous systems 735  
 Co  
     in glacial till 721  
     in Kupferschiefer mineralisation 567  
     in lake sediment 211, 409, 605  
     in lake water 409  
     in marine sediment 775  
     in moss 25, 155  
     in overbank sediment 25  
 in plants 77, 375  
 in precipitation 149  
 in snow 25  
 in soil 25, 77, 129, 305  
 in stream sediment impacted by land-  
     fill 803  
 in stream water 25  
 release in water-rock interaction 461  
 CO<sub>2</sub>  
     in fluid inclusions 745  
     in gas from thermal water 471  
     in soil gas 497  
 CO<sub>3</sub>  
     in lake sediments 605  
 Colloids in groundwater 677, 697  
 Contamination  
     by As, treatment of 633  
     due to acid deposition 133  
     due to coal combustion 77  
     due to industrial activity 409  
     due to mining 3, 11, 17, 53, 61, 175,  
         187, 197, 203, 217, 229, 237, 277,  
         331, 355, 375  
     due to smelting 3, 11, 17, 25, 35, 43,  
         105, 355  
     of agricultural soils with polycyclic  
         aromatic hydrocarbons 121  
     urban 129, 363  
 Copsa Mica, Romania 105  
 Cornwall, SW. England 61  
 Cr  
     in fish 409  
     in lake sediment 409, 605  
     in lake water 409  
     in marine sediment 775  
     in moss 25, 155  
     in overbank sediment 25, 271  
     in plants 77, 375  
     in precipitation 149  
     in river sediment 197  
     in river/stream water 25, 447  
     in sewage sludge 331  
     in snow 25  
     in soil 25, 35, 77, 129, 331  
 Cs, release in water-rock interaction 461  
<sup>137</sup>Cs, sorption of 311, 555, 589, 595, 601  
 Cu  
     in black shale 69  
     in estuarine mud 203  
     in glacial till 721  
     in groundwater 229  
     in humus 277  
     in Kupferschiefer mineralisation 567  
     in lake sediment 211, 409, 605  
     in lake water 409  
     in marine sediment 775  
     in moss 25, 155, 277  
     in ochre 203, 229  
     in overbank sediment 25, 271  
     in plants 53, 175, 375  
     in pore waters, tailings 293

- in precipitation 149
- in river/stream sediment 197, 219, 223, 277, 447
- in river/stream water 25, 447
- in sewage sludge 331
- in snow 25
- in soil 17, 25, 35, 53, 69, 105, 129, 175, 305, 331, 363
- in vegetables 105
- leachable, in mine waste 277
- sorption by brown coal 343
- sorption by soils, influence of DOC on 109
- Czech Republic
  - Northern Bohemia 77
  - Pribram 17
- Dalarna Sweden 229
- Derbyshire, England, U.K. 43
- Diagenesis, organic matter in marine sediments 711
- Eastern Ore Mountains, Saxonia, Germany 149
- Eastern Snake River Plain aquifer, Idaho, U.S.A. 523
- Egypt, Gulf of Suez 471
- Electrochemical amelioration of acid mine drainage 425
- England, U.K.
  - Cornwall 61
  - Derbyshire 43
  - Jenny Hurn 139
  - High Muffles 139
  - Lake District 211
  - London 139, 363
  - Manchester 139
  - Mendip Hills 335
  - West Midlands 621
- Erzgebirge, Germany 237
- Eskdalemuir, Scotland, U.K. 139
- F
  - in groundwater 433, 677
  - in precipitation 149
  - in stream water 621
  - in thermal water 471
- Fe
  - accumulation in ferruginous bacterial accretions 541
  - in acid mine drainage 541
  - in estuarine mud 203
  - in glacial till 721
  - in groundwater 229, 677
  - in humus 277
  - in lake sediment 211, 409, 605
  - in lake water 409
  - in marine sediment 775
  - in moss 277
  - in ochre 203
- in plants 375
- in pore waters, tailings 293
- in precipitation 149
- in river/stream sediment 217, 223, 277
- in river water 447
- in soil 35, 129
- in soil solution 71
- in stream sediments impacted by landfill 803
- Finland 155, 271, 277
  - Iisalmi 261
  - SW. 277
- Fly ash, chemistry of 351
- Formation waters
  - influence of evaporites on 403, 789
  - O and S isotopes in 403
  - salinity of 789
  - $\text{SO}_4$  in 789
  - water-rock interaction of 403
- Frio formation, S. Texas U.S.A. 403
- France
  - Gard 541
  - North Aquitaine basin 433
- Garpenburg mines, mid-Sweden 293
- Geochemical exploration for massive sulphide deposits 721
- Geochemical mapping
  - for demonstrating mining and smelting contamination 355
  - for environmental planning 261
  - using moss 25
  - using overbank sediments 25, 271
  - using snow 25
  - using soil 25, 363
  - using stream water, 25, 621
- Geochemical modelling
  - of formation water chemistry 789
  - of soil weathering rates 836
- Geochemical monitoring
  - biogeochemical 251
  - in Europe 251
  - using mosses 155, 251
- Germany
  - Black Forest 677, 697, 757
  - Eastern Ore Mountains, Saxonia 149
  - Erzgebirge 237
  - Hessian depression 567
  - Glogow, SW Poland 35
  - Greece 355
  - Greenland, NE 187
  - Groundwater
    - acidic 229
    - $^{13}\text{C}$  in 433, 523
    - $^{14}\text{C}$  in 433, 523
    - chlorophenols in 735
    - colloids in 677, 697
    - from granitic rock, chemistry of 677, 697, 757

geochemical mass balance of 523  
 $^2\text{H}$  in 433, 523, 757  
 $^3\text{H}$  in 523  
 He in 757  
 $^{18}\text{O}$  in 433, 403, 523, 757  
 organics in 387  
 $^{34}\text{S}$  in 403, 523  
 salinity 433  
 sewage contamination of 317  
 Guaymas Basin, Gulf of California 645  
 Gulf of Suez, Egypt 471  
 $^2\text{H}$   
     in cave seepage water 583  
     in groundwater 433, 523, 757  
     in thermal water 471  
 $^3\text{H}$   
     in groundwater 523  
     in thermal water 471  
 Halls Brook Holding Area, Massachusetts, U.S.A. 409  
 $\text{HCO}_3$   
     in groundwater 677, 757  
     in stream water 621  
     in thermal water 471  
     in U mine drainage 237  
 He  
     in groundwater 757  
     in gas from thermal water 471  
 $^3\text{H}$ , in gas from thermal water 471  
 Hg  
     in plants 77  
     in river water 447  
     in soil 69, 77  
     in the environment 355  
 High Muffles, England, U.K. 139  
 Hollister, California, U.S.A. 497  
 Hunai Province, China 217  
 Hydrogeochemical maps 25, 621  
 Hydrogeochemistry  
     filtration in 243  
     of acid mine drainage 203, 229, 541  
     of agricultural drainage 797  
     of cave waters 583  
     of formation water 403, 789  
     of granite groundwater 387, 677, 697, 757  
     of groundwater 433, 523, 735  
     of river draining active crater lake 447  
     of thermal water 471  
     of U mine drainage 237  
 $^{125}\text{I}$ , sorption of 555  
 Idaho, U.S.A. 523  
 Iisami E, Finland 261  
 Isotopes  
     Am 555  
     C 433, 523  
     Cs 311, 555, 589, 595, 601  
     H 433, 471, 523, 583, 757  
     He 471  
 I 555  
 O 403, 433, 471, 523, 583, 757  
 Pb 721  
 Pu 555  
 S 403, 523  
 Sr 471, 555  
 Tc 555  
 U 555  
 Italy, Northern Apennines 375  
 Japan 145  
 Jenny Hurn, England, U.K. 139  
 K  
     in groundwater 433, 677, 757  
     in hydrothermally altered sediment 645  
     in lake sediment 409, 605  
     in lake water 409  
     in overbank sediment 271  
     in plants 375  
     in precipitation 149  
     in soil 129  
     in soil solution 81  
     in thermal water 471  
     in U min drainage 237  
     release in water-rock interaction 461  
 Kangjiaxi River, Hunai Province, China 217  
 Kautokeino greenstone belt, Norway 745  
 Kola peninsula, Russia 25  
 Korea  
     Central 69  
     Sambo Pb/Zn mine 53  
 La, in overbank sediment 271  
 Lac du Bonnet, Manitoba, Canada 555  
 Lake District, England, U.K. 211  
 Lake sediments, pollution of 605  
 Lake Valencia, Venezuela 605  
 Landfill  
     chemical sealing 325  
     impact on stream sediment 803  
 Legnica, SW Poland 35  
 Li  
     in groundwater 757  
     in river water 447  
     in thermal water 471  
 Liquid immiscibility and ore formation in felsic magmas 481  
 London, England, U.K. 139  
 Loppesjon lake, central Sweden 311  
 Lough Navar, Northern Ireland, U.K. 139  
 Manchester, England, U.K. 139  
 Manitoba, Canada 387, 555, 721  
 Manitouwadge, Ontario, Canada 721  
 Massachusetts, U.S.A. 317  
 Metal  
     mobilisation due to acid deposition 133, 139  
     sorption, modelling of, in soil 305

|                                                                                                                                                                                                                                                                                                                                         |                |                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mg                                                                                                                                                                                                                                                                                                                                      |                | Ni                                                                                                                                                                                                                                                                                                                                                                                                                     |
| in groundwater 433, 677, 757<br>in lake sediment 211, 409, 605<br>in lake water 409<br>in plants 375<br>in precipitation 149<br>in river water 447<br>in soil 129<br>in soil solution 81<br>in thermal water 471<br>in U mine drainage 237<br>release during aqueous corrosion of<br>glass 511<br>release in water-rock interaction 461 |                | in glacial till 721<br>in groundwater 229<br>in lake sediment 409, 605<br>in lake water 409<br>in marine sediment 775<br>in moss 25, 155<br>in ochre 229<br>in overbank sediment 25, 271<br>in plants 77, 375<br>in precipitation 149<br>in river sediment 197<br>in river/stream water 25, 447<br>in sewage sludge 331<br>in snow 25<br>in soil 25, 35, 77, 129, 261, 305, 331<br>solubility due to acidification 299 |
| Mineralisation                                                                                                                                                                                                                                                                                                                          |                | Nikel, Kola peninsula, Russia 25                                                                                                                                                                                                                                                                                                                                                                                       |
| Au/Cu 745<br>massive sulphide 721                                                                                                                                                                                                                                                                                                       |                | NO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                        |
| Mississippi, U.S.A. 667                                                                                                                                                                                                                                                                                                                 |                | in groundwater 433<br>in precipitation 149<br>in soil solution 81<br>in stream water 621                                                                                                                                                                                                                                                                                                                               |
| Missouri, U.S.A. 803                                                                                                                                                                                                                                                                                                                    |                | Normative mineralogy of tills 117                                                                                                                                                                                                                                                                                                                                                                                      |
| Mn                                                                                                                                                                                                                                                                                                                                      |                | North Aquitaine basin, France 433                                                                                                                                                                                                                                                                                                                                                                                      |
| in glacial till 721<br>in groundwater 677<br>in lake sediment 409, 605<br>in lake water 409<br>in marine sediment 775<br>in precipitation 149<br>in river sediment 217, 223, 447<br>in river water 447<br>in soil 35, 129<br>in soil solution 81<br>in stream sediment impacted by<br>landfill 803<br>in U mine drainage 237            |                | Northern Apennines, Italy 375                                                                                                                                                                                                                                                                                                                                                                                          |
| Mo                                                                                                                                                                                                                                                                                                                                      |                | Northern Bohemia, Czech Republic 77                                                                                                                                                                                                                                                                                                                                                                                    |
| in black shale 69<br>in Kupferschiefer mineralisation 567<br>in overbank sediment 271<br>in sewage sludge 331<br>in soil 69, 331                                                                                                                                                                                                        |                | Northern Ireland, U.K., Loch Navar 139                                                                                                                                                                                                                                                                                                                                                                                 |
| Mt. Ruapehu, North Island, New Zealand 447                                                                                                                                                                                                                                                                                              |                | North Sudetic syncline, Poland 567                                                                                                                                                                                                                                                                                                                                                                                     |
| N <sub>2</sub> , in gas from thermal water 471                                                                                                                                                                                                                                                                                          |                | Norway 271                                                                                                                                                                                                                                                                                                                                                                                                             |
| Na                                                                                                                                                                                                                                                                                                                                      |                | Kautokeino greenstone belt 745                                                                                                                                                                                                                                                                                                                                                                                         |
| in groundwater 433, 677, 757<br>in lake sediment 409, 605<br>in lake water 409<br>in overbank sediment 271<br>in precipitation 149<br>in river water 447<br>in soil 129<br>in soil solution 81<br>in thermal water 471<br>release in water-rock interaction 461                                                                         | O <sub>2</sub> | Nuclear waste                                                                                                                                                                                                                                                                                                                                                                                                          |
| Natural waters, filtration of 243                                                                                                                                                                                                                                                                                                       |                | glass, aqueous corrosion of 511                                                                                                                                                                                                                                                                                                                                                                                        |
| Nerja cave, Malaga, Spain 583                                                                                                                                                                                                                                                                                                           |                | repository 757                                                                                                                                                                                                                                                                                                                                                                                                         |
| New Zealand, North Island 447                                                                                                                                                                                                                                                                                                           |                |                                                                                                                                                                                                                                                                                                                                                                                                                        |
| NH <sub>4</sub>                                                                                                                                                                                                                                                                                                                         |                | in gas from thermal water 471                                                                                                                                                                                                                                                                                                                                                                                          |
| in groundwater 433<br>in precipitation 149<br>in soil solution 81                                                                                                                                                                                                                                                                       |                | in lake water 605                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                         |                | in soil gas 497                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                         |                |                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                         |                | <sup>18</sup> O                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                         |                | in cave seepage water 583                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                         |                | in groundwater 433, 523                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                         |                | in SO <sub>4</sub> of formation water 403                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                         |                | in thermal water 471                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                         |                | Oberkatz Schwelle, Germany 567                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                         |                | Ochre chemistry 203                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                         |                | Odra River, Poland 3                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                         |                | Ontario, Canada 425, 721                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                         |                |                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                         |                | P, in soil 129                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                         |                | Parys Mountain mine, Anglesey, Wales 203                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                         |                | Pb                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                         |                | accumulation in ferruginous bacterial<br>accretions 541                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                         |                | in acid mine drainage 541                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                         |                | in black shale 69                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                         |                | in fish 409                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                         |                | in glacial till 271, 721                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                         |                | in humus 271                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                         |                | in Kupferschiefer mineralisation 567                                                                                                                                                                                                                                                                                                                                                                                   |

- in lake sediment 211, 409, 605
- in lake water 409
- in marine sediment 775
- in macrophytes 169
- in moss 155
- in overbank sediments 271
- in plants 53, 77
- in post flotation waste 181
- in precipitation 149
- in river/stream water 169, 447
- in river/stream sediment 61, 169, 187, 197, 217, 223, 447
- in rocks 43
- in sewage sludge 331
- in soil 3, 11, 17, 35, 43, 53, 69, 77, 105, 129, 305, 331, 363
- in the environment 355
- in vegetables 105
- migration in rocks 43
- migration in soils 43
- solubility due to acidification 299
- sorption by brown coal 343
  
- <sup>206</sup>Pb**
- in glacial till 721
- in ores 721
  
- <sup>207</sup>Pb**
- in glacial till 721
- in ores 721
  
- <sup>208</sup>Pb**
- in glacial till 721
- in ores 721
  
- Petroleum, hydrothermally derived 645
  
- PO<sub>4</sub>**
- in groundwater 317, 677
- in precipitation 149
- in soil solution 81
- in U mine drainage 237
- for remediation of heavy metal contamination 335
  
- Poland** 3, 343, 817
  - Bukowno, E. Silesia 11
  - Glogow 35
  - Katowice region 169, 181
  - Krakow area 197
  - Legnica 35
  - SE 81
  - SW 35, 567
  - Upper Silesia 3, 11, 121, 169, 175, 181, 223, 351
  
- Polycyclic aromatic hydrocarbons in agricultural soils** 121
  
- Preface** 1
  
- Pribram**, Czech Republic 17
  
- Przemska river**, Katowice Region, Upper Silesia, Poland 169, 175
  
- <sup>238</sup>Pu**, sorption of 555
  
- Pyhasalmi Cu-Zn-S mine**, Finland 277
  
- Ra**, in U mine drainage 237
  
- Rare earth elements**, behaviour during weathering 93
- Remediation of contaminated land**
  - using brown coal 343
  - using plants
  - using PO<sub>4</sub> 335
- Richmond-upon-Thames, London, England, U.K.** 363
  
- Rn**
  - anomalies on active faults 497
  - in air 497
  - in soil 497
  
- Romania**
  - Baia Mare 105
  - Copsa Mica 105
  
- Russia, Kola peninsula** 25
  
- S**
  - in estuarine mud 203
  - in humus 277
  - in moss 25, 277
  - in ochre 203, 229
  - in overbank sediment 25
  - in snow 25
  - in stream water 25
  - in stream sediment 277
  - in soil 25, 371
  - leachable, in mine waste 277
  
- <sup>34</sup>S**
  - in groundwater 523
  - in SO<sub>4</sub> of formation water 403
  
- Smabo Pb/Zn mine**, Korea 53
  
- San Francisco, California, U.S.A.** 497
  
- San Jaun Batista, California, U.S.A.** 497
  
- San Joaquin Valley, California, U.S.A.** 797
  
- Sb**
  - in Kupferschiefer mineralisation 567
  - in soil 17, 69
  
- Scotland, U.K.** 285, 836
  - Aberdeen 129, 331
  - Eskdalemuir 139
  
- Sc**, release in water-rock interaction 461
  
- Se**
  - in agricultural drainage 797
  - in black shale 69
  - in soil 69
  - removal by nanofiltration 797
  - toxicity to aquatic birds 797
  
- Sequential extraction of soils** 101
  
- Sherman Fe ore mine** Temagami, Ontario, Canada 425
  
- Shuikoushan mine**, Hunai Province, China 217
  
- Si**
  - in groundwater 677
  - in ochre 229
  - in stream water 621
  
- SiO<sub>2</sub>**
  - in groundwater 433, 757
  - in river water 447

in thermal water 471  
 release during aqueous corrosion of glass 511  
 Springfield, Missouri, U.S.A. 803  
 Sr  
     in groundwater 677, 757  
     in soil 129  
     in thermal water 471  
 $\text{SO}_2$ , in air 77  
 $\text{SO}_4$   
     in andosols 145  
     in formation water 403, 789  
     in groundwater 229, 433, 677, 757  
     in pore waters, tailings 293  
     in precipitation 149  
     in soil solution 81  
     in thermal water 471  
 Soil gas  
      $\text{CO}_2$  in 497  
      $\text{O}_2$  in 497  
     Rn in 497  
 Sorption  
     of actinides 555  
     of  $^{137}\text{Cs}$  311, 555, 589, 595, 601  
     of Cu 109  
     of heavy metals 305, 343  
     of  $^{125}\text{I}$  555  
     of  $^{85}\text{Sr}$  555  
     of  $^{99}\text{Tc}$  555  
 Spain, Malaga 583  
 $^{85}\text{Sr}$ , sorption of 555  
 Sweden 251, 271  
     Central 293, 311  
     Dalarna 229  
     Northern 93  
     SW 87  
 Switzerland  
     Grimsel Test Site 677, 697  
     Leuggern, Zurzach 677, 697  
 Tailings, oxidation of 293  
 $^{99}\text{Tc}$ , sorption of 555  
 Texas, U.S.A. 403  
 Th  
     in groundwater 677  
     transport in groundwater 387  
 Thermal water, chemistry of 471  
 Ti  
     in groundwater 129, 677  
     in ochre 229  
 Tl, in soil 69  
 Trzebionka Mine, Katowice region, Poland 181  
 Tunnelelv river, NE Greenland 187  
 Turkey, Black Sea coast 775  
 U  
     in black shale 69  
     in groundwater 677  
     in Kupferschiefer mineralisation 567  
     in overbank sediment 271  
     transport in groundwater 387  
 $^{233}\text{U}$ , sorption of 555  
 United Kingdom 355  
     England 43, 61, 139, 211, 355, 363, 621  
     Northern Ireland 139  
     Scotland 129, 139, 285, 331, 836  
     Wales 203, 335, 621  
 Upper Silesia, Poland 3, 121, 169, 175, 181, 223  
 Urban geochemistry 129, 363  
 U.S.A.  
     Big Lost River 523  
     California 497, 797  
     Eastern Snake River 523  
     Idaho 523  
     Massachusetts 317, 409  
     Mississippi 667  
     Missouri 803  
     Texas 403

V

in moss 25, 155  
 in overbank sediment 25  
 in snow 25  
 in soil 25  
 in stream water 25  
 Van Mine, mid Wales 335  
 Venezuela  
     Maracay 605  
     Lake Valencia 605  
     Valencia 605  
 Vistula River, Poland 3, 197, 223  
 Wales, U.K. 621  
     Anglesey 203  
     mid 335  
 Water-rock interaction 403  
     influence of gamma rays on 461  
 Whangaehu River, North Island New Zealand 447  
 Whiteshell Research Area, Manitoba, Canada 387  
 Wilga River, Krakow area, Poland 197  
 Xiangjiang River, Hunai Province, China, 217  
 Zapoljarnij, Kola peninsula, Russia 25  
 Zn  
     in acid mine drainage 541  
     in black shale 69  
     in estuarine mud 203  
     in glacial till 721  
     in groundwater 229  
     in Kupferschiefer mineralisation 567  
     in humus 277  
     in lake sediment 211, 605  
     in macrophytes 169  
     in mari 409, 605  
     in lake water 409

- in macrophytes 169
- in marine sediment 775
- in moss 277
- in ochre 203, 229
- in plants 53, 77, 175, 375
- in pore waters, tailings 293
- in post flotation waste 181
- in river/stream water 61, 169, 447
- in river/stream sediment 61, 169, 187, 197, 217, 223, 277, 447
- in rocks 43
- in sewage sludge 331
- in soil 3, 11, 17, 35, 43, 53, 69, 77, 105, 129, 175, 305, 331, 363
- in stream sediment impacted by landfill 803
- in vegetables 105
- migration in rocks 43
- migration in soils 43, 139
- release in water-rock interaction 461

**AUTHOR INDEX**  
(Book Review—BR; Corrigendum—C; Erratum—E)

Aatos S. 117  
AboKamar Y. 471  
Achard B. 541  
Ai Y. 481  
Alelxander W. 677  
Ambats G. 797  
Appelo C. A. J. 491 (BR)  
Arehart G. B. 471  
Bachinski D. B. 387  
Balsa M. E. 347  
Banzai K. 145  
Barrick R. 409  
Bell K. 721  
Bell N. 139, 133  
Bertrand-Sarfati J. 541  
Bifano C. 605  
Bigham J. M. 845  
Björkland A. 271  
Bonham-Carter G. F. 243  
Bourg A. C. M. 299  
Bozau E. 149  
Bradley D. 101  
Brantly S. L. 633  
Breward N. 101, 621  
Bril J. 109  
Brown G. H. 619 (BR)  
Bruetsch R. 677  
Brylsa E. 351  
Budek L. 197  
Bulgakov A. A. 589  
Caballero E. 583  
Campbell C. D. 331  
Caphorn S. 335  
Cárstea S. 105  
Carver S. 187  
Castelo Branco M. A. 347  
Charnock J. M. 203  
Chekushin V. 25  
Cheshire M. V. 331  
Chesworth W. 425  
Chiavari G. 711  
Cho C.-H. 69  
Chodak T. 343  
Chojcan J. 811  
Chon H.-T. 69  
Clark L. 129  
Clough S. 409  
Comans R. N. J. 589  
Cook J. M. 621  
Cooper G. I. 511  
Cotter-Howells J. 335  
Cremers A. 589, 595, 601  
Curtis C. D. 203  
Czechowski F. 811  
Davies B. E. 605  
Davis A. 409  
Davis R. A. 797  
Deely J. M. 447  
Degueldre C. 677, 697  
Dinelli E. 375  
Dworkin S. I. 403  
Eden P. 271  
Elsén A. 589, 595, 601  
Ergin M. 711, 775  
Ernst W. H. O. 163  
Ettner D. C. 745  
Evans W. C. 497  
Fabri D. 711  
Farago M. 17  
Farmer J. G. 493 (BR)  
Fein J. B. 735  
Fernandes M. L. 347  
Fey M. V. 325  
Filcheva E. 331  
Flight D. M. A. 621  
Fontes J.-C. 433  
Fumoto T. 145  
Gaines G. C. 711  
Galletti G. C. 711  
Garbarino J. R. 243  
Gautschi A. 757  
Gee C. 43  
Ghelase I. 105  
Gieskes J. M. 645  
Gize A. 495 (BR)  
Goodyear K. L. 61  
Grauer R. 697  
Greger M. 169, 175  
Gujiu Z. 217  
Gusmão J. M. R. 347  
Gutierrez M. 803  
Hall G. E. M. 243, 621, 721  
Helios Rybicka E. 1, 3, 11, 197  
Hennet R. J.-C. 633  
Herbert R. B. Jr. 229  
Hitchon B. 789  
Hodson M. E. 835  
Horowitz A. J. 243  
Ingri J. 93  
Iwama H. 145  
Jêdrzejczyk B. 11  
Jiménez de Cisneros C. 583  
Jung M. C. 53  
Kamioka H. 461  
Karczewska A. 35, 343  
Karlsen d. 745  
Kaszubkiewicz J. 343  
Kauniskangas E. 261  
Kautsky L. 169  
Kedziorek M. A. M. 299  
Kelly J. 363  
Kharaka Y. K. 797  
Kim K.-W. 69  
King B.-S. 497  
King C.-Y. 497  
Kiratli N. 775  
Konoplev A. V. 589  
Kubin E. 155  
Lăcătușu R. 105  
Land L. S. 403  
Land M. 93  
Landberg T. 175  
Lång L.-O. 87  
Langan S. J. 835  
Laube A. 697  
Le Gal La Salle C. 433  
LeBlanc M. 541  
Leif R. N. 645  
Lemieux C. 243  
Lénczowska-Baranek J. 273  
Lewander M. 169  
Licheng Z. 217  
Lin Z. 293  
Linblom S. 745  
Lippo H. 155  
Lister T. R. 621  
Lombini A. 375  
Luck J. M. 541  
Lum K. 243  
Lumsden R. G. 285  
Maliszewska-Kordybach B. 121  
Manning D. A. C. (BR)  
Mannings S. 139  
Mantei E. J. 803  
Marlin C. 433  
Maskall J. 43  
Matschullat J. 149  
McPhail D. B. 331  
Meili M. 311  
Michard G. 757  
Misztal M. 81  
Mogollón J. L. 605  
Moon H.-S. 69  
Murphy E. M. 523  
Nenonen K. 261  
Nikkarinen M. 261  
Niskavaara H. 25  
Oess A. 697  
Öhlander B. 93  
Othman D. B. 541  
Parker A. 211  
Parkman R. H. 203  
Paterson E. 129  
Pearson F. J. Jr. 757  
Personné J. Ch. 541  
Petrokova V. 77  
Petrova E. V. 305  
Pfab G. 845

Pfeiffer H.-R. 677  
 Presser T. S. 797  
 Puttmann W. 567  
 Quemerais B. 243  
 Qvarfort U. 293  
 Rae J. E. 211  
 Räisänen M. L. 117  
 Ramsey M. H. 11, 61  
 Răuță C. 105  
 Reimann C. 25  
 Reyes E. 583  
 Rieuwerts J. 17  
 Römkens P. F. 109  
 Rosenbaum M. S. 61  
 Sachanbiński M. 11  
 Salminen R. 277  
 Salomons W. 109  
 Sanka M. 129  
 Sano Y. 471  
 Saunders J. A. 667  
 Savoye S. 433  
 Sayed 471  
 Schramke J. A. 523  
 Schwertmann U. 845  
 Sear D. 187  
 Selinus O. 251, 489 (BR)  
 Sellstone C. 409

Sergeev V. I. 305  
 Shelp G. S. 425  
 Sheppard D. S. 447  
 Shimko T. G. 305  
 Silby H. 697  
 Simoneit B. R. T. 645, 811  
 Simonetti A. 721  
 Simpson P. R. 363, 621  
 Sipilä P. 277  
 Smal H. 81  
 Smith B. 621  
 Smith D. C. 325  
 Smith S. 139  
 Spiers G. 425  
 Stollenwerk K. G. 317  
 Sturchio N. C. 471  
 Sturdivant A. E. 645  
 Sturz A. A. 645  
 Sultan M. 471  
 Sun Y. 567  
 Szarek E. 169  
 Tanaka T. 461  
 Tarvainen T. 117  
 Thomas R. C. 667  
 Thornton I. 43, 53, 61, 363, 355  
 Ticknor K. V. 555  
 Trafas M. 181

Ustyak S. 77  
 Vandergraaf T. T. 555  
 Vaughan D. J. 203  
 Veira e Silva J. M. 347  
 Verner J. F. 11  
 Vidal M. 595  
 Vilks P. 387, 555  
 Voight D. E. 633  
 Wardas M. 197  
 Wauters J. 589, 595, 601  
 Wernli B. 677  
 Whitehead K. 43  
 Widerlund A. 93  
 Williams M. 101  
 Wilson M. J. 133, 835  
 Wolksdorfer C. 237  
 Wołowiec S. 811  
 Wood B. D. 523  
 Wörman A. 311  
 Wyszomirski P. 351  
 Yare B. 409  
 Yonezawa C. 461  
 Yücesoy-Eryilmaz F. 711  
 Zeng Y. 481  
 Zhang W. 497  
 Zhou Y.-D. 803  
 Zhu Y. 481

