Detector Builder-C2020-Regional-Test score: /16	Team #:	Team Name: Member: Member:
Points are based on the number of steps that must be shown problem is worth 1 point, a two step problem is worth 2 point formulas and tables.		
1 RELATIONSHIPS BETWEEN RESISTANCE, VOLTAGE, AND TEMPERATURE 1.1 The relationship between a thermistor's temperature and its resistance is linear. (A) True (B) False	2.1	HEORY OF LEDS, WORKING PRINCIPLES, AND APPLICATIONS Given an LED with a forward voltage of 2.15V, theoretically, what color is the light released from the LED, based on table 1 in the reference section? 1 point for using the equation that relates the LEDs forward voltage to its wavelength 1 point for writing the correct color
 1.2 The relationship between a thermistor's resistance and its voltage is A linear B logarithmic C exponential D sinusoidal 	2.2	Explain why photons are released from an LED when it is powered. Use keywords such as electrons and holes, or, conduction band and valence band.
 1.3 When current passes through a thermistor, power is dissipated in the form of what? A Light B Sound C Gravity D Heat 		We have an LED that we don't want to blow out. Our LED can safely handle a current of $20 \mathrm{mA}$, I_{LED} , and has a forward voltage of $2 \mathrm{V}$, V_{LED} . The circuit is supplied a voltage of $4 \mathrm{V}$, V_{source} . Find the resistance, R .
1.4 When a temperature difference exists across a thermocouple, a voltage is produced between the two ends of it. What is the name of this effect?	!	R I _{LED} = 20mA

A Hall EffectB Peltier Effect

© Seebeck Effect
D Ettingshausen Effect

3 THE PROCESS OF CALIBRATION

3.1 You are given a Negative Temperature Coefficient (NTC) thermistor. You take two resistance measurements across the thermistor at different temperatures (see table below). Find the material constant, β . (Use the model given in the reference section)

Temperature	Resistance Measurement
$100^{\circ}C$	950Ω
$20^{\circ}C$	12 k Ω

3.2 Using the β value calculated above, estimate the temperature, given a resistance measurement of $R_{test}=10 \mathrm{k}\Omega$. (Answer in units of **Celsius**)

- 3.3 Which mathematical model is the most accurate, of the four choices below, for finding a precise temperature of a thermistor throughout the thermistor's entire working temperature range?
 1
 - A B-Parameter Equation
 - B Steinhart-Hart Equation
 - © Linear Equation
 - (D) Granger-Potter Equation

- 4 OPERATIONAL KNOWLEDGE OF BASIC DEVICE COMPONENTS
- 4.1 What is the purpose of this component? (It is not an axial inductor, though it looks like one)

 - A To store electrical charge.
 - (B) To resist the **change** in current.
 - (C) To limit current passing through it.
 - (D) To amplify a signal.
- 4.2 A thermistor acts similarly to which component?
 - (A) Capacitor
 - (B) Transistor
 - (C) Resistor
 - (D) Inductor
- 4.3 What circuit component does a microcontroller use, internally, to convert an analog input voltage, connected to one of the microcontroller's GPIO pins, to a value that can be stored in memory?

1

- (A) Analog-to-Digital Converter
- (B) Buck Converter
- (C) Boost Converter
- (D) AC-to-DC Converter

5 REFERENCE

Table 1: Approximate Color with Respect to Wavelength

LED Color	Wavelength (nm)
Red	635-700
Orange	590-635
Yellow	560-590
Green	520-560
Cyan	490-520
Blue	450-490
Violet	400-450

Table 2: Constants and Equations

Symbol	Definition	Meaning
c	$3\times 10^8 \mathrm{m/s}$	Speed of Light
h	$4.136\times10^{-15}\mathrm{eVs}$	Planck's Constant
f	c/λ	Frequency of Light
E	$h \cdot f$	Photon Energy

Temperature is in **Kelvin** for the below equations.

$$\beta = \frac{\ln \frac{R_{T1}}{R_{T2}}}{\frac{1}{T_1} - \frac{1}{T_2}} \quad T = \frac{\beta}{\ln \left(\frac{R}{R_0 e^{-\beta/T_0}}\right)}$$