Name: Dat Truong U78042625

LINEAR ALGEBRA

Homework 5

Problem 1

1. If A is a solution to the equation, A must be invertible - A^{-1} exists, because $A^2 = AA = 1$. Hence, by definition, $A^{-1} = A$

2. Two possible solutions are
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 and $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$

3.

$$B^{2} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 0 \cdot 0 + 1 \cdot 1 & 0 \cdot 1 + 1 \cdot 0 \\ 1 \cdot 0 + 0 \cdot 1 & 1 \cdot 1 + 0 \cdot 0 \end{bmatrix} = I_{2}$$

- 4. B is the result of swapping the 2 rows of I_2
- 5. Let $C = SBS^{-1}$

$$C^{2} = SBS^{-1}SBS^{-1}$$

$$= SB(S^{-1}S)BS^{-1}$$

$$= SBI_{2}BS^{-1}$$

$$= S(BI_{2})BS^{-1}$$

$$= SBBS^{-1}$$

$$= S(BB)S^{-1}$$

$$= SI_{2}S^{-1}$$

$$= SS^{-1}$$

$$= I_{2} \square$$

6. Because there are infinite invertible 2×2 matrices, there are also infinite matrices $C = SBS^{-1}$. Thus, the equation has infinite solutions

Problem 2

- 1. If A was a non-square matrix, i.e. A was a $m \times n$ matrix where $m \neq n$, the product $A \cdot \vec{x}$ would produce a $m \times 1$ vector, which has a different number of rows compared to \vec{x} , which makes \vec{x} and $A \cdot \vec{x}$ uncomparable.
- 2. $A \cdot \vec{0} = \vec{0}$ for any A, so $\vec{0}$ is a fixed point for any A
- 3. $A \cdot 2\vec{x} = 2A \cdot \vec{x} = 2(A \cdot \vec{x}) = 2\vec{x}$. Hence $2\vec{x}$ is also a fixed point of A
- 4. First, we show that if $\vec{x} \in \ker(A I_n)$ then \vec{x} is a fixed point in A. If that is the case, \vec{x} is a solution to the equation $(A I_n) \cdot \vec{x} = \vec{0}$

$$(A - I_n) \cdot \vec{x} = \vec{0}$$

$$A \cdot \vec{x} - I_n \cdot \vec{x} = \vec{x} - \vec{x}$$

$$A \cdot \vec{x} = \vec{x} + (-\vec{x} + I_n \cdot \vec{x})$$

$$A \cdot \vec{x} = \vec{x} + \vec{0} = \vec{x}$$

Therefore \vec{x} is a fixed point in A

Now we prove the other direction. Suppose \vec{x} is a fixed point in A, then

$$A \cdot \vec{x} = \vec{x} + \vec{0}$$

$$A \cdot \vec{x} = \vec{x} + (-\vec{x} + I_n \cdot \vec{x})$$

$$A \cdot \vec{x} - I_n \cdot \vec{x} = \vec{x} - \vec{x}$$

$$(A - I_n) \cdot \vec{x} = \vec{0}$$

This implies \vec{x} is a solution to the equation $(A - I_n) \cdot \vec{x} = \vec{0}$, or $\vec{x} \in \ker(A - I_n)$

5. We have showed that \vec{x} is a fixed point in A iff $\vec{x} \in \ker(A - I_n)$. Thus, if a matrix were to have exactly 2 fixed points, there would be exactly 2 elements in $\ker(A - I_n)$, which would imply the equation $(A - I_n) \cdot \vec{x} = \vec{0}$ has exactly 2 solutions $\Rightarrow \Leftarrow$

So a matrix cannot have 2 fixed points

$$6. \begin{bmatrix} 0 & 2 \\ -1 & 3 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 2 \\ -1 & 2 \end{bmatrix}$$

 $\ker\left(\begin{bmatrix} -1 & 2 \\ -1 & 2 \end{bmatrix}\right) = \left\{\begin{bmatrix} 1 \\ 2 \end{bmatrix} x | x \in \mathbb{R}\right\}$. These are also the fixed points of B

7.
$$\det(C - I_n) = \det\begin{pmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{pmatrix} = \det\begin{pmatrix} \begin{bmatrix} 0 & 2 \\ 1 & 1 \end{bmatrix} \end{pmatrix} = -2 \neq 0$$

Thus C does not have non-zero fixed points