UM101: Analysis & Linear Algebra

Naman Mishra

Fall 2022

Contents

Fri 03 Lecture 41 Feb '23 Fri Lecture 42 Feb '23 Fri 03 Lecture 43

Feb '23

Proposition 0.1. Let $T \in \mathcal{L}(V, W)$. Then $N(T) = \{0\}$ iff T is an injective transformation.

Proof. If T is injective, then for any $v \in N(T)$, we have that

$$T(v) = 0_W = T(0_V)$$

$$\Rightarrow v = 0_V$$

$$\Rightarrow N(T) \subseteq \{0_V\}$$

Theorem 0.2 (Rank-Nullity Theorem). Let $T \in \mathcal{L}(V, W)$, where V is a finite-dimensional vector space. Then

$$\dim(N(T)) + \dim(R(T)) = \dim(V).$$

Proof.

Corollary 0.3. If $\dim W < \dim V$, then there is no injective linear transformation from V to W.

Proof.

$$\dim R(T) \le \dim W < \dim V \Rightarrow \dim N(T) > 0.$$

Remarks. Thus a linear transformation from V to W can be bijective iff $\dim W = \dim V$.

Corollary 0.4. Let $T \in \mathcal{L}(V, W)$ where dim $V = \dim W$. Then the following are equivalent:

- (a) T is surjective.
- (b) T is injective.
- (c) T is invertible as a linear transformation. That is, there exists $T^{-1} \in \mathcal{L}(W,V)$ such that $T^{-1}T = I_W$ and $TT^{-1} = I_V$.

Example.

(a) Let $V = \mathcal{S}$. Consider the following maps from \mathcal{S} to \mathcal{S} :

$$T_b: \{x_j\}_{j \in \mathbb{N}} \mapsto \{x_{j+1}\}_{j \in \mathbb{N}}$$

 $T_f: \{x_j\}_{j \in \mathbb{N}} \mapsto \{0, x_0, x_1, \ldots\}$

- (i) T_b is surjective, but not injective. Its null space is $\{\{a,0,0,\ldots\},a\in\mathbb{R}\}.$
- (ii) T_f is injective, but not surjective. Its null space is $\{0\}$.
- (iii) Let $T: P_{\leq 2} \to P_{\leq 2}$ such that $T: f \mapsto f'$. Choosing the basis $\{1, x, x^2\}$, we have that T is given by

$$M_T = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}.$$

We have that $N(T) = \{f : f(x) = c, c \in \mathbb{R}\}$. Thus the nullity is 1 and the rank is 2.

Suppose we choose the basis $\{1, x + x^2, x^2\}$. Then T is given by

$$M_T = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 2 & 2 \\ 0 & -2 & -2 \end{pmatrix}.$$

Generally, for $T \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)$, one uses standard bases to write M_T .