combination

library package

Combine all package

```
bart_package <- function(train_x,train_y,test_x,test_y,package,repeat_time,</pre>
                            num_trees,alpha,beta) {
  # define value
  results <- data.frame()
  time_BART <- c()</pre>
  mse_BART <- c()</pre>
  time_dbarts <- c()</pre>
  mse_dbarts <- c()</pre>
  time_BM \leftarrow c()
  mse BM \leftarrow c()
  time_SB <- c()</pre>
  mse_SB <- c()</pre>
  packageName <- ""
  for(i in 1:repeat_time){
    for(package_name in package){
      if (package_name == "BART"){
         t <- system.time({fit <- pbart(x.train = train_x,
                                            y.train = train_y,
                                            x.test = test_x,
                                            ntree = num_trees,
                                            base = alpha,
                                            power = beta)})
         e_time <- as.numeric(t["elapsed"])</pre>
         predictions <- colMeans(fit$yhat.test)</pre>
         mse_score <- mean((test_y - predictions)^2)</pre>
         time_BART[i] <- e_time</pre>
```

```
mse_BART[i] <- mse_score</pre>
}
if(package_name =="dbarts"){
  t <- system.time({bart_model <- bart(</pre>
    x.train = train_x,
    y.train = train_y,
    x.test = test_x,
    ntree = num_trees,
    power = beta,
    base = alpha
    )})
  e_time <- as.numeric(t["elapsed"])</pre>
  predictions <- colMeans(bart_model$yhat.test)</pre>
  mse_score <- mean((test_y - predictions)^2)</pre>
  time_dbarts[i] <- e_time</pre>
  mse_dbarts[i] <- mse_score</pre>
}
if(package_name=="bartMachine"){
  bart_model <- bartMachine(</pre>
    X = train_x,
    y = train_y,
    num_trees = num_trees,
    beta = beta,
    alpha = alpha
  )
  # The value of calculating the time required for modeling
  e_time <- bart_model$time_to_build</pre>
  predictions <- predict(bart_model,test_x,type = "prob")</pre>
  mse_score <- mean((test_y - predictions)^2)</pre>
  time_BM[i] <- e_time</pre>
  mse_BM[i] <- mse_score</pre>
}
if(package_name=="SoftBart"){
  t <- system.time({bart_model <- softbart(X = train_x, Y = train_y, X_test = test_x,
```

```
hypers = Hypers(train_x, train_y, num_tree = num_trees, gamma = a
                             opts = Opts(num_burn = 200, num_save = 1000, update_tau = TRUE))
      #print(t)
      e_time <- as.numeric(t["elapsed"])</pre>
      #print(e_time)
      predictions <- bart_model$y_hat_test_mean</pre>
      mse_score <- mean((test_y - predictions)^2)</pre>
      time_SB[i] <- e_time</pre>
      mse_SB[i] <- mse_score</pre>
      #print(1)
    }
  }
}
for (package_name in package) {
  if (package_name == "BART"){
    time_mu <- mean(time_BART)</pre>
    time_sd <- sd(time_BART)</pre>
    mse_mu <- mean(mse_BART)</pre>
    mse_sd <- sd(mse_BART)</pre>
    new_row <- data.frame(MSE_mean = mse_mu, MSE_se = mse_sd,</pre>
                             running_time_mean = time_mu,running_time_sd = time_sd,
                             package_name = package_name)
    results <- rbind(results, new_row)
  if (package_name == "dbarts"){
    time_mu <- mean(time_dbarts)</pre>
    time_sd <- sd(time_dbarts)</pre>
    mse_mu <- mean(mse_dbarts)</pre>
    mse_sd <- sd(mse_dbarts)</pre>
    new_row <- data.frame(MSE_mean = mse_mu, MSE_se = mse_sd,</pre>
                             running_time_mean = time_mu,running_time_sd = time_sd,
                             package_name = package_name)
    results <- rbind(results, new_row)</pre>
  }
  if (package_name == "bartMachine"){
    time_mu <- mean(time_BM)</pre>
    time_sd <- sd(time_BM)</pre>
    mse_mu <- mean(mse_BM)</pre>
    mse_sd <- sd(mse_BM)</pre>
    new_row <- data.frame(MSE_mean = mse_mu, MSE_se = mse_sd,</pre>
                             running_time_mean = time_mu,running_time_sd = time_sd,
                             package_name = package_name)
```

```
results <- rbind(results, new_row)</pre>
    }
    if (package_name == "SoftBart"){
      time_mu <- mean(time_SB)</pre>
      time sd <- sd(time SB)
      mse_mu <- mean(mse_SB)</pre>
      mse_sd <- sd(mse_SB)</pre>
      new_row <- data.frame(MSE_mean = mse_mu, MSE_se = mse_sd,</pre>
                              running_time_mean = time_mu,running_time_sd = time_sd,
                              package_name = package_name)
      results <- rbind(results, new_row)</pre>
    }
  }
  return(results)
set.seed(316)
cancer <- read.csv("C:/Users/pyk/Desktop/nus/RA/project/imodels-data-master/data_cleaned/bread</pre>
x \leftarrow cancer[,-18]
y <- cancer[,18]
train_indices <- createDataPartition(y, p = 0.8, list = FALSE)</pre>
train_x <- x[train_indices, ]</pre>
test_x <- x[-train_indices, ]</pre>
train_y <- y[train_indices]</pre>
test_y <- y[-train_indices]</pre>
p <- c("BART", "dbarts", "bartMachine", "SoftBart")</pre>
fit <- bart_package(train_x,train_y,test_x,test_y,package = p,repeat_time = 3,</pre>
                      num_trees = 20,alpha = 0.95,beta = 2)
print(fit)
   MSE_mean
                   MSE_se running_time_mean running_time_sd package_name
                                  0.25666667
1 1.3951936 0.0222138705
                                                    0.01154701
                                                                         BART
2 1.3727706 0.0097309230
                                  0.07666667
                                                    0.01527525
                                                                       dbarts
3 0.1851257 0.0001136404
                                  0.33066336
                                                    0.11461329 bartMachine
                                                                    SoftBart
4 0.1931440 0.0011923028
                                  4.41000000
                                                    0.10535654
```

The mean reason causes different in MSE_mean is for bartMachine and SoftBart package, the predict function in it only provides the predicted value i.e. probability instead of posterior mean, one possible method to deal this is to try inverse sigmoid function to trace it back.

use bench package as measurement of time

```
time_new <- function(train_x,train_y,test_x,test_y,package,repeat_time,</pre>
                            num_trees,alpha,beta) {
  # define value
  results <- data.frame()
  time_BART <- c()</pre>
  mse BART <- c()
  time_dbarts <- c()</pre>
  mse_dbarts <- c()</pre>
  time_BM \leftarrow c()
  mse_BM \leftarrow c()
  time_SB <- c()
  mse_SB <- c()</pre>
  packageName <- ""
  for(i in 1:repeat_time){
    for(package_name in package){
      if (package_name == "BART"){
         t <- bench::mark(fit <- pbart(x.train = train_x,
                                            y.train = train_y,
                                            x.test = test_x,
                                            ntree = num_trees,
                                            base = alpha,
                                            power = beta))
         e_time <- mean(t$time[[1]])</pre>
         predictions <- colMeans(fit$yhat.test)</pre>
         mse_score <- mean((test_y - predictions)^2)</pre>
         time_BART[i] <- e_time</pre>
         mse_BART[i] <- mse_score</pre>
      }
      if(package_name =="dbarts"){
         t <- bench::mark({bart_model <- bart(</pre>
           x.train = train_x,
           y.train = train_y,
```

```
x.test = test_x,
    ntree = num_trees,
    power = beta,
    base = alpha
    )})
  e_time <- mean(t$time[[1]])</pre>
  predictions <- colMeans(bart_model$yhat.test)</pre>
  mse_score <- mean((test_y - predictions)^2)</pre>
  time_dbarts[i] <- e_time</pre>
  mse_dbarts[i] <- mse_score</pre>
}
if(package_name=="bartMachine"){
  bart_model <- bartMachine(</pre>
    X = train_x,
    y = train_y,
    num_trees = num_trees,
    beta = beta,
    alpha = alpha
  # The value of calculating the time required for modeling
  e_time <- bart_model$time_to_build</pre>
  predictions <- predict(bart_model,test_x,type = "prob")</pre>
  mse_score <- mean((test_y - predictions)^2)</pre>
  time_BM[i] <- e_time
  mse_BM[i] <- mse_score</pre>
}
if(package_name=="SoftBart"){
  t <- bench::mark({bart_model <- softbart(X = train_x, Y = train_y, X_test = test_x,
                        hypers = Hypers(train_x, train_y, num_tree = num_trees, gamma = a
                        opts = Opts(num_burn = 200, num_save = 1000, update_tau = TRUE))
  #print(t)
  e_time <- mean(t$time[[1]])</pre>
  #print(e_time)
  predictions <- bart_model$y_hat_test_mean</pre>
  mse_score <- mean((test_y - predictions)^2)</pre>
  time_SB[i] <- e_time</pre>
```

```
mse_SB[i] <- mse_score</pre>
      #print(1)
    }
  }
}
for (package_name in package) {
  if (package_name == "BART"){
    time_mu <- mean(time_BART)</pre>
    time_sd <- sd(time_BART)</pre>
    mse_mu <- mean(mse_BART)</pre>
    mse_sd <- sd(mse_BART)</pre>
    new_row <- data.frame(MSE_mean = mse_mu, MSE_se = mse_sd,</pre>
                             running_time_mean = time_mu,running_time_sd = time_sd,
                             package_name = package_name)
    results <- rbind(results, new_row)
  }
  if (package_name == "dbarts"){
    time_mu <- mean(time_dbarts)</pre>
    time_sd <- sd(time_dbarts)</pre>
    mse_mu <- mean(mse_dbarts)</pre>
    mse_sd <- sd(mse_dbarts)</pre>
    new_row <- data.frame(MSE_mean = mse_mu, MSE_se = mse_sd,</pre>
                             running_time_mean = time_mu,running_time_sd = time_sd,
                             package_name = package_name)
    results <- rbind(results, new_row)
  }
  if (package_name == "bartMachine"){
    time_mu <- mean(time_BM)</pre>
    time_sd <- sd(time_BM)</pre>
    mse_mu <- mean(mse_BM)</pre>
    mse_sd <- sd(mse_BM)</pre>
    new_row <- data.frame(MSE_mean = mse_mu, MSE_se = mse_sd,</pre>
                             running_time_mean = time_mu,running_time_sd = time_sd,
                             package_name = package_name)
    results <- rbind(results, new_row)
  }
  if (package_name == "SoftBart"){
    time_mu <- mean(time_SB)</pre>
    time_sd <- sd(time_SB)</pre>
    mse_mu <- mean(mse_SB)</pre>
    mse_sd <- sd(mse_SB)</pre>
    new_row <- data.frame(MSE_mean = mse_mu, MSE_se = mse_sd,</pre>
```

fit1

package_name	running_time_sd	running_time_mean	MSE_se	${ t MSE_mean}$	
BART	0.11060129	0.3940561	0.0192888317	1.4108109	1
dbarts	0.05165320	0.1215439	0.0266395565	1.3767922	2
bartMachine	0.06228119	0.3222630	0.0004197091	0.1855283	3
SoftBart	2.97251074	9.7235473	0.0011931291	0.1908868	4