Практическое занятие 8 РАСЧЕТ АКУСТИЧЕСКОЙ ЭФФЕКТИВНОСТИ ЗВУКОИЗОЛИРУЮЩЕГО ОГРАЖДЕНИЯ

Постановка задачи. Звукоизоляция достигается созданием преграды на пути распространения шума в виде выгородок, стен, кабин, кожухов, экранов и других конструкций, которые могут быть выполнены из различных материалов. При этом изолируется источник шума или помещение от шума, проникающего извне. Эффективность звукоизоляции определяется геометрическими размерами помещения, материалом и конструкцией ограждения. Ограждение не должно иметь отверстий и особенно длинных щелей (например, открытая дверь или окно). Большое значение имеет масса звукоизолирующего ограждения, чтобы обеспечить максимальное отражение звуковых волн.

Звукоизолирующая способность преграды находится по формуле:

$$R_0 = 10 \lg \frac{E}{E_{\Pi}},$$

где E – энергия, падающая на преграду; E_{Π} – энергия, прошедшая через преграду. Выбор и расчет эффективности звукоизолирующего ограждения выполняется для помещения прямоугольной формы заданных размеров, подлежащего изоляции.

Uсходные данные. Геометрические размеры помещения, подлежащего изоляции: A, B, H — длина, ширина и высота помещения соответственно; площадь звукоизолирующего ограждения S_0 ; октавные уровни звукового давления в шумном помещении $L_p(\omega)$; допустимые уровни звукового давления $L_n(\omega)$. Звукоизолирующая способность различных одностенных конструкций в зависимости от толщины $R_0(\omega)$ приведена в табл. 3.1.

Таблица 3.1

Толщина мате-		Среднегеометрическая частота октавной полосы, Гц								
риалов, мм	63	125	250	500	1000	2000	4000	8000		
сталь										
2	16	20	24	28	32	35	39	39		
3	19	23	27	31	35	37	36	39		
5	23	27	31	35	37	32	39	43		
10	27	30	35	37	37	39	43	47		

стекло силикатное										
3	14	14 18 22 26 30 32 30								
4	16	20	24	28	30	32	30	36		
6	21	25	27	30	32	30	36	40		
фанера										
4	6	10	14	18	22	26	28	25		
8	14	18	21	24	27	25	28	32		

Требуется выбрать материал конструкции, который обеспечивает выполнение нормативных требований по шуму, и рассчитать уровень шума в помещении после установки выбранной звукоизолирующей конструкции $L_r(\omega)$, а также исследовать влияние исходных данных и выбранного звукоизолирующего материала на конечный результат.

Алгоритм расчета. Объем помещения: V = ABH. Площадь звукоизолирующего ограждения S_0 может совпадать с площадью одной из стенок помещения. Требуемая звукоизолирующая способность ограждения, которая обеспечивает выполнение нормативных требований по шуму в смежном помещении, определяется выражением:

$$R_t(\omega) = L_p(\omega) - 10 \lg B_p(\omega) + 10 \lg S_0 - L_n(\omega),$$

где $B_p(\omega)$ — постоянная помещения, смежного с шумным, определяется по табл. 2.2 или соответствующему графику. По полученному значению выбирается конструкция ограждения (табл. 3.1), при этом звукоизолирующая способность выбранной конструкции должна превышать требуемую во всем диапазоне частот, т. е. $R_t(\omega) \leq R_0(\omega)$. На отдельных частотах допустимо небольшое отклонение от этого условия.

При выборе конструкции должно выполняться условие $R_0(\omega) - R_t(\omega) \to \min$ для $\omega = 1000$ Гц.

Окончательный уровень шума в изолированном помещении определяется по формуле:

$$L_r(\omega) = L_p(\omega) - R_0(\omega) - 10 \lg B_p(\omega) + 10 \lg S_0.$$

Расчет выполняется для всего диапазона частот, $\omega = (63...8000)$ Гц.

Например, размер изолируемого помещения: A=15 м, B=8 м, H=4 м. Объем помещения : $V=ABH=15\cdot 8\cdot 4=480$ м³.

Предположим, что площадь звукоизолирующего ограждения, смежная с шумным помещением, равна одной из стенок:

$$S_0 = BH = 8 \cdot 4 = 32 \text{ m}^2$$
; $10 \lg S_0 = 15$.

Допустимые уровни звукового давления $L_n(\omega)$ принимаем равными ПС-50. Это предельный спектр (ПС) уровня шума, соответствующий уровню звукового давления 50 дБ на частоте 1000 Γ ц, который по санитарным нормам соответствует предельно допустимому уровню шума на морских судах в жилых помещениях второй категории.

Остальные исходные данные и результаты расчета сведены в табл. 3.2.

Данные для расчета. Значения $L_p(\omega)$ и $L_n(\omega)$, одинаковые для всех вариантов задания, приведены в табл. 3.3. При этом допустимые уровни звукового давления $L_n(\omega) = \Pi \text{C-45}$ (предельный спектр уровня шума, соответствующий уровню звукового давления 45 дБ на частоте 1000 Γ ц). $\Pi \text{C-45}$ соответствует предельно допустимому по санитарным нормам уровню шума на морских судах в жилых помещениях второй категории.

Расчетные данные различных вариантов для объема помещений V и площадей звукоизолирующего ограждения S_0 — в табл. 3.4.

Таблица 3.2

Попомотр	Среднегеометрическая частота октавной полосы, Гц								
Параметр	63	125	250	500	1000	2000	4000	8000	
$L_p(\omega)$, дБ	101	94	90	85	87	83	77	72	
$L_n(\omega)$, дБ	81	70	61	55	50	48	46	44	
$B_p(\omega), \mathbf{M}^2$	15	18	24	28	34	48	51	96	
$10 \lg B_p(\omega)$, дБ	11,8	12,5	13,8	14,5	15,3	16,8	17,1	19,8	
$R_t(\omega)$, дБ	23,2	26,5	30,2	30,5	36,7	33,2	28,9	23,2	
$R_0(\omega)$, дБ	23	27	31	35	37	32	39	43	
$L_r(\omega)$,дБ	81,2	69,5	60,2	50,5	49,7	49,2	35,9	24,2	

Таблииа 3.3

Стахеть т	Среднегеометрическая частота октавной полосы, Гц								
Спектр, дБ	63	125	250	500	1000	2000	4000	8000	
$L_p(\omega)$	76	81	75	71	68	66	60	54	
ПС-45	71	61	54	49	45	42	40	38	

Примечание $L_n(\omega) = \Pi \text{C-45}$

Таблица 3.4

Попомото	Вариант									
Параметр	1	2	3	4	5	6	7	8	9	10
<i>V</i> , м ³	480	496	510	540	450	512	420	520	470	520
S_0, M^2	32	32	34	36	30	32	28	35	34	36

Кроме того, для анализа влияния исходных параметров на результат расчета необходимо использовать значения звукоизолирующей способности различных одностенных конструкций, которые приведены в табл. 3.1.