

Algorithm and Programming for Massive Data: Counting Triangles and Closeness Centrality for Graph

Matteo Ghera

Matteo Marulli

Outline

- Come abbiamo costruito i grafi P ed R
 - Quali sono gli strumenti che abbiamo usato per il progetto
 - R-tree
 - Il grafo delle province italiane
- Conteggio di triangoli
 - Quale problema vogliamo studiare?
 - A che cosa serve contare i triangoli di un grafo?
 - Algoritmi per il conteggio di triangoli

Enumerazione delle triple di vertici

Enumerazione di coppie di vicini

Delega del calcolo ai vertici con grado minore

- Prestazioni
- Risultato sul grafico delle province P
- Closeness centrality
 - Definizione
 - Algoritmi per il calcolo della closeness centrality Algoritmo banale

Algoritmo RAND

- Prestazioni
- Uiversità degli Studi di Firenze 25.6.2020
 Risultato sul grafico delle province P

UNIVERSITÀ DEGLI STUDI FIRENZE

Quali sono gli strumenti che abbiamo usato per il progetto I

Figure: In case of Coronavirus break this

Come abbiamo costruito i grafi P ed R

Rtree I

Per costruire in modo efficiente il grafo delle province italiane abbiamo usato la struttura dati R-Tree (Guttman, 1984)

- Un R-tree è un albero totalmente bilanciato in altezza simile ad un B+-Tree
- I nodi foglia di un R-Tree contengono i record di indice ciascuno dei quali e costituito da una coppia del tipo (mbr, tupleId)
- Per ogni città, la range query (lat-d, long-d, lat+d, long+d) costa $\mathcal{O}(\log n)$
- Consentono di eseguire efficientemente le operazioni su database spaziali e vengono usati anche nella computer vision
- Guttman A. R-trees: A Dynamic Index Structure for Spatial Searching Proceedings of the ACM SIGMOD International Conference on Management of Data, 1984

Come abbiamo costruito i grafi P ed R

Il grafo delle province italiane I

Il grafo delle province italiane così ottenuto è composto da:

• numero nodi: 107

• numero archi: 298

densità: 0.0525

Quale problema vogliamo studiare? I

Dato un grafo G = (V, E) indiretto e non pesato.

Definizione (Triangolo di un grafo)

Un triangolo in un grafo G è un insieme di tre vertici che sono mutualmente adiacenti in G

Quale problema vogliamo studiare? II

Il primo articolo da noi scelto descrive alcuni algoritmi che possono essere utilizzati per rispondere alle seguenti domande:

- \bigcirc Quanti triangoli ci sono in G?
- **2** Per ogni vertice $v \in V$, quanti triangoli di G includono il vertice v?

A che cosa serve contare i triangoli del grafo? I

Dato un grafo G=(V,E) indiretto e non pesato, si definisce il *coefficiente di clustering* di un vertice v come la frazione di vicini fra i quali esiste un arco che li collega:

$$C(v) = \frac{|\{u, w \in N(v) | (u, w) \in E\}|}{\binom{\deg(v)}{2}}$$

dove $\deg(v)$ denota il grado del vertice v e N(v) il suo vicinato.

A che cosa serve contare i triangoli del grafo? II

Figure: Il coefficiente di clustering per il nodo "Teramo" è 2/3.

Algoritmi per il conteggio di triangoli I

Per calcolare il coefficiente di clustering di un grafo C(v) dobbiamo determinare il numero di triangoli presenti in G.

L'articolo scelto propone tre algoritmi:

- l'algoritmo che enumera le triple di vertici
- l'algoritmo che enumera le coppie di vicini
- l'algoritmo che delega il conteggio ai vertici di grado basso

Algorithm 1: Enumerating over vertex Triples

```
Result: T:Number of triangles for each v \in V
T = \{\}
for v \in V do
    for u \in V \setminus \{v\} do
        for w \in V \setminus \{u, v\} do
          if (u, v), (v, w), (u, w) \in E then
            |T[v] \leftarrow T[v] + 1
            end
        end
    end
end
```

Enumerazione delle triple di vertici II

Analisi dei costi:

- - Assumendo che la verifica dell'esistenza di un arco di estremi (v_1,v_2) costi O(1)
 - Il costo finale è $\Theta(n^3)$ per qualunque grafo
- In quali casi si può fare di meglio?

Algorithm 2: Enumerating over Neighbor Pairs

```
Result: T: Number of triangles for each v \in V
T \leftarrow \{\}
for v \in V do
   for u \in N(v) do
       for w \in N(v) do
           if (u, w) \in E then
            T[v] \leftarrow T[v] + 1
           end
       end
   end
end
```

Enumerazione di coppie di vicini II

Analisi dei costi:

- Si indichi con d(v) il grado di un nodo v allora il costo totale è $\Theta(\sum_{v \in V} d(v)^2)$
- Il caso pessimo si verifica con con grafi densi (n-1) archi per ogni nodo) in questo caso il costo è $\Theta(\sum_{v \in V} d(v)^2) = \Theta(\sum_{v \in V} (n-1)^2) = \Theta(n(n-1)^2) = \Theta(n^3)$
- Il caso ottimo si verifica quando ogni vertice di G ha grado costante e il costo in questo caso è O(n)
- Nei grafi a stella l'algoritmo spende un tempo di $\Theta(n^2)$ solo sul nodo centrale

Delega del calcolo ai vertici con grado minore I

Dati due vertici $u,v\in V$, la relazione d'ordine $u\succ v$ indica che il grado di u è maggiore di v oppure, qualora i due vertici abbiano lo stesso grado, indica che u è maggiore di v rispetto all'ordine lessicografico.

Algorithm 3: Delegating Low-Degree Vertices

```
Result: T: Number of triangles of the network
T \leftarrow 0
for v \in V do
    for u \in N(v) \land u \succ v do
        for w \in N(v) \land w \succ u do
          if (u, w) \in E then
            T \leftarrow T + 1
            end
        end
    end
```

Uiversità degli Studi di Firenze

end

Delega del calcolo ai vertici con grado minore II

Teorema

Assumendo che il tempo necessario ad eseguire un'interrogazione riguardante i collegamenti fra i nodi di un grafo sia costante, l'algoritmo precedente ha un tempo di esecuzione nel caso peggiore dell'ordine di $O(m^{3/2})$, dove m è il numero di archi.

Delega del calcolo ai vertici con grado minore III

Dimostrazione.

Dividiamo i vertici di G in due insiemi:

- $\mathcal{H} = \{ v \in V : \delta(v) \ge \sqrt{m} \}$
- $S = \{v \in V : \delta(v) < \sqrt{m}\}$

Il numero di vertici in \mathcal{H} è al massimo $2\sqrt{m}$ altrimenti la somma dei gradi dei vertici di G sarebbe $\delta(G) = \sum_{v \in V} \delta(v) > 2\sqrt{m} \cdot \sqrt{m} > 2m$ che è impossibile dal momento che $\delta(G) = \sum_{v \in V} \delta(v) = 2m$. Il costo per formare le coppie $(u,w) \in N(v): \delta(u) > \delta(v) \wedge \delta(w) > \delta(v)$ è $\mathcal{O}(\delta(v)^2)$. Quindi il costo totale è dato da:

$$\mathcal{O}\left(\sum_{v\in\mathcal{S}}\delta(v)^2\right) \tag{1}$$

Quanto è grande la (1)?

Delega del calcolo ai vertici con grado minore IV

Dimostrazione (continua).

Supponiamo che $v \in \mathcal{S}$ allora per (1) abbiamo i seguenti vincoli: $\delta(v) \leq \sqrt{m}$ e $\sum_{v \in S} \deg(v) < 2m$. Applicando lo stesso ragionamento fatto per determinare il numero di vertici in \mathcal{H} si ottiene:

$$\mathcal{O}\left(\sum_{v\in\mathcal{S}}\delta(v)^2\right) = \mathcal{O}\left(\sum_{v\in\mathcal{S}}\left(\sqrt{m}\right)^2\right) = \mathcal{O}(2\sqrt{m}\cdot m) = \mathcal{O}(m^{3/2}).$$

Supponiamo adesso che $v \in \mathcal{H}$, ricordando che abbiamo al massimo $2\sqrt{m}$ vertici, si osservi che il lavoro viene svolto dai vertici di \mathcal{H} che hanno grado minore di v. Bisogna quindi cercare tra tutte le possibili triple di nodi di \mathcal{H} con grado minore di v. Il costo di questa operazione è:

$$(2\sqrt{m})^3 = 8m^{3/2} = \mathcal{O}(m^{3/2}).$$

Prestazioni I

Figure: Tempo di esecuzione degli algoritmi introdotti su grafi con 100, 200, 300, 400 nodi e densità 0.35.

Prestazioni II

Figure: Tempo di esecuzione degli algoritmi introdotti su grafi con 100, 200, 300, 400 nodi e densità 0.70.

Conteggio di triangoli

Risultato sul grafico delle province P I

Il grafo delle province italiane così ottenuto è composto da:

• numero nodi: 107

• numero archi: 298

• densità: 0.0525

• numero di triangoli: 352

Risultato sul grafico delle province P II

Provincia	Grado	Numero triangoli	Coefficienti di clustering locale
Milano	13	48	0.6153
Pavia	13	46	0.5897
Monza	13	46	0.5897
Como	12	44	0.6667
Novara	11	36	0.6545
Varese	10	33	0.7333
Lecco	10	32	0.7111
Lodi	10	32	0.7111
Bergamo	10	32	0.7111
Vercelli	10	27	0.6000

Table: Top ten delle province con più triangoli

Closeness centrality I

La closeness centrality di un nodo è un importate indicatore che ci dice quanto un nodo v consente di raggiungere velocemente gli altri nodi del grafo.

Definizione (Closeness centrality)

In un grafo connesso, la closeness centrality di un nodo v è definita come

$$c(v) = \frac{n-1}{\sum_{u \in V} d(v, u)}$$

Algoritmi per il calcolo della closeness centrality I

Abbiamo deciso di implementare:

- l'algoritmo che calcola le distanze usando le BFS eseguite partendo da ogni nodo del grafo;
- l'algoritmo RAND di Eppstein e Wang spiegato a lezione.

Algoritmo banale I

Algorithm 4: BFS algorithm

```
Result: C: Closeness centrality for each v \in V
```

$$C \leftarrow \{\}$$

for $v \in V$ do

$$bfsTree \leftarrow BFS(v,G)$$

$$f_v \leftarrow \text{sum}(bfsTree.getDistance())$$

$$C[v] \leftarrow \frac{n-1}{f_v}$$

end

Analisi dei costi:

- Per ogni nodo $v \in V$ eseguiamo una BFS, quindi il costo totale è $\mathcal{O}(nm)$;
- Questo algoritmo non va bene per grafi di grandi dimensioni.

Algorithm 5: Algorihtm RAND

```
Result: C: Closeness centrality for each v \in V
C \leftarrow \{\}
k \leftarrow \Theta(\frac{\log_{10}(n)}{2})
for i = 1, \ldots, k do
     v_i \leftarrow \text{pick a vertex uniformaly random from } V
     Solve SSSP problem with BFS(v_i, G)
end
f_v \leftarrow 0
for v \in V do
     for i = 1, \ldots, k do
     f_v \leftarrow f_v + d(v, v_i) \cdot \frac{n}{k(n-1)}
     end
    C[v] \leftarrow \frac{1}{f_v}
```

end

Algoritmo RAND di Eppstein e Wang II

Analisi dei costi:

- Per ogni v_i eseguiamo una BFS, i nodi sono k quindi il costo è $\mathcal{O}(km)$
- Il costo dei due cicli for successivi è di $\mathcal{O}(kn)$. Tuttavia il costo del primo ciclo for è maggiore del costo del secondo.

Correttezza dei risultati:

- sia Δ il diametro del grafo e sia n il numero di nodi del grafo;
- l'errore $|\hat{c}(v) c(v)| < \epsilon \Delta, \forall v \in V$ con probabilità $1 \frac{1}{n}$.

Prestazioni I

Figure: Andamento dell'errore nei risultati dell'algoritmo RAND al variare di ϵ

Risultato sul grafico delle province P I

Provincia	BFS	EW
Ferrara	0.236 413	0.239 567
Modena	0.231 383	0.234760
Prato	0.227 154	0.231661
Rovigo	0.229551	0.231 661
Arezzo	0.224 227	0.230 142
Forlì-Cesena	0.224 227	0.229 389
Verona	0.227749	0.229 389
Bologna	0.224 227	0.227 162
Ravenna	0.223 650	0.226 430
Firenze	0.218 045	0.222 130

Table: Top ten delle provincie con la closeness centrality maggiore ottenuta attraverso l'algoritmo EW

Risultato sul grafico delle province P II

Provincia	BFS	EW
Ferrara	0.236 413	0.239 567
Modena	0.231 383	0.234 760
Rovigo	0.229551	0.231 661
Verona	0.227749	0.229 389
Prato	0.227 154	0.231 661
Arezzo	0.224 227	0.230 142
Forlì-Cesena	0.224 227	0.229 389
Bologna	0.224 227	0.227 162
Ravenna	0.223 650	0.226 430
Parma	0.218 045	0.220 041

Table: Top ten delle provincie con la closeness centrality maggiore ottenuta attraverso l'algoritmo BFS

Conclusioni I

- L'algoritmo di delegation low-degree vertices è il doppio più veloce dell'algoritmo di enumerating over neighbor pairs sia per grafi densi che per grafi poco densi
- Per grafi di taglia piccola la differenza di velocità non è cosi grande
- Non spreca tempo su grafi a stella
- In caso di grafi completi l'algoritmo impiega un tempo di $\mathcal{O}(n^3)$
- L'algoritmo EW si è dimostrato molto veloce nel calcolo approssimato della closeness centrality dei nodi di un grafo
- Per grafi molto grandi dove è possibile scegliere un valore di ϵ molto piccolo abbiamo osservato che non solo l'errore medio è basso ma anche la standard deviation. Pertanto più il grafo è grande meglio funziona l'algoritmo nell'approssimazione dei valori di closenness centrality

Bibliografia - Grazie per l'ascolto!!

Tim Roughgarden, CS167: Regading in Algorithms Counting Triangles, 2014

D. Eppstein and J. Wang, Fast Approximation of Centrality. Journal of Graph Algorithms and Applications, 2004