rgpvonline.com

- 8. (a) The failure rate of a certain component is $h(t) = \lambda_0 t$, where $y_0 > 0$ is a given constant. Determine the reliability R(t) of the component. Repeat for $h(t) = \lambda_0 t^{1/2}$.
 - (b) Write short notes on the following:
 - (i) Decision theory
 - (ii) Goal programming.

MEMT/MEDC/MEPE/MEVD-101

M. Tech. (First Semester)

EXAMINATION, July/August, 2008

(Common for MEMT/MEDC/MEPE/MEVD Engg.)

ADVANCED COMPUTATIONAL MATHEMATICS

(MCSE-101)

Time: Three Hours

Maximum Marks: 100

П

Minimum Pass Marks: 40

Note: Attempt any five questions. All questions carry equal marks.

- 1. (a) Find the deflection u(x, t) of the vibrating string of length π and ends fixed corresponding to zero initial velocity and initial deflection f(x) = k (sin $x \sin 2x$), given $c^2 = 1$.
 - (b) Solve Laplace equation in rectangle with u(0, y) = u(a, y) = u(x, b) = 0 and u(x, 0) = f(x), see figure:

- **2.** (a) Solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ subject to initial condition $u = \sin \pi x$ at t = 0 for $0 \le x \le 1$ and $0 \le x \le 1$ and u = 0 at x = 0 and x = 1 for t > 0, by the Gauss-Seidel iterative method.
 - (b) Write the properties of DFT, WFT and Haar transform.

- 3. (a) Out of 800 families with 4 children each, how many families would be expected to have (i) 2 boys and 2 girls (ii) at least one boy (iii) no girl (iv) at most two girls? Assume equal probabilities for boys and girls.
 - (b) A random variable X has the probability function:

x	P(X=x)=P(x)
0	а
1	3a
2	3a 5a
3	7a $9a$
4	9a
5	11a
6	13a
7	15a
8	17a

- (i) Determine the value of a.
- (ii) Find P(X > 2), $P(X \ge 6)$, P(3 < X < 5).
- 4. (a) Explain the meaning and importance of sampling distribution.
 - (b) Define stochastic processes and explain classification of stochastic process.
- 5. (a) Let:

rgpvonline.com

$$S = \begin{matrix} A & B & C \\ A & 0.2 & 0.3 & 0.5 \\ 0.4 & 0.3 & 0.2 \\ 0.4 & 0.6 & 0 \end{matrix}$$

is a transition matrix. Give the transition matrix for three steps and four steps.

- (b) Obtain the steady state difference equations for the queuing model (M/M/1 : N/FCFS) in usual notation and solve them for p_0 and p_1 .
- 6. (a) Obtain the distribution of the number in the system in steady state for M/M/S model by considering it as a birth and death process.
 - (b) What are the roles of α -cuts and strong α -cuts in fuzzy set theory? What is the difference between them?
- 7. (a) Let A, B be two fuzzy numbers whose membership functions are given by:

$$A(x) = \begin{cases} (x+2)/2 & \text{for } -2 < x \le 0 \\ (2-x)/2 & \text{for } 0 < x < 2 \\ 0 & \text{otherwise} \end{cases}$$

$$B(x) = \begin{cases} (x-2)/2 & \text{for } 2 < x \le a \\ (6-x)/2 & \text{for } 0 < x < 6 \\ 0 & \text{otherwise} \end{cases}$$

Calculate the fuzzy numbers $A+B, A-B, B-A, A \cdot B, A/B$, Min. (A, B) and Max. (A, B).

(b) Define the basic functions of MATLAB.