Comparing Models of Subject-Clustered Single-Cell data

Lee Panter

Audrey Hendricks¹, PhD-Committee Chair and Advisor Stephanie Santorico¹, PhD-Committee Member Rhonda Bacher², PhD-Committee Member

> ¹The University of Colorado-Denver ²The University of Florida

Presentation Overview (1/2)

Analysis Summary

- What problem is being addressed?
 - ► Single-Cell (SC) data increasing prevalence
 - SC data with multiple subjects emerging for analysis
 - Not clear how to analyze subject level relationships
- ▶ What needs to be done?
 - Demonstrate: existing statistical methods can account for subject level relationships (SLRs) (in SC data)
 - ► Compare: how each method differs/resembles the others
- ► What do I do to address the problem?
 - Outline five modeling methods
 - Demonstrate: how (if) the models account for SLRs in SC data
 - Compare: how model frameworks compare in theory
 - Apply modeling methods to a motivating SC data example
 - Demonstrate:

Presentation Overview (2/2)

Presentation Goals

- Demonstrate a need for the analysis conducted
- Describe case study, and why it is relevant to the analysis needed
- Outline methods and how they address established needs, and why they are relevant to case study
- Highlight important results from applying methods to case analysis data
- Show that results are relevant to the demonstrated need

Presentation Outline (1/2)

- Introduction
 - Motivation
 - Demonstrate a need for the analysis conducted
 - Single-Cell Data
 - Descriptions of Applied Data
 - Describe why case study is relevant to needed analysis
- Model Descriptions
 - Overview of selected models, notation
 - Individual model descriptions
 - Model comparisons & parameter interpretations
 - Demonstrate how model comparisons address established analysis needs, and why they are relevant to the case study

Presentation Outline (2/2)

- Case Study Analysis Results
 - Comparing models by directly using estimated parameter values
 - Comparing models using nested model statistics
 - Highlight important results from applying methods to case analysis data
- Discussion
 - Interpretation of important results
 - Justification of importance
 - Show that results are relevant to the demonstrated need

Introduction

Introduction: Motivation

- Bulk Sequencing Methods:
 - Analylize combined expression of thousand/millions of cells
 - Often fail to capture underlying variability within sample profiles
- Since Cell (SC) Sequencing Methods:
 - Analyze expression measurements specific to individual cells
 - Hundred/thousands of SC measurements used to estimate espression variability within samples
- Benefits of SC Methods
 - Suited for detecting expressions differentially expressed across conditions[1]
 - Useful for identifying rare cellular subpopulations [2]
- ► Technological Improvements in Producing SC data
 - Makes SC data easier, and more economical to generate than ever before

Referrences

- 1. Bacher R, Kendziorski C (2016) Design and computational analysis of single-cell rna-sequencing experiments. *Genome biology* 17: 63.
- 2. Ståhlberg A, Andersson D, Aurelius J, et al. (2010) Defining cell populations with single-cell gene expression profiling: Correlations and identification of astrocyte subpopulations. *Nucleic acids research* 39: e24–e24.
- 3. Arazi A, Rao DA, Berthier CC, et al. (2018) The immune cell landscape in kidneys of lupus nephritis patients. *bioRxiv* 363051.