Wahrscheinlichkeitstheorie für Inf. & Lehramt Prof. Dr. Max von Renesse Wintersemester 2024/2025 Dr. S. Kliem, M. Hehl, A. Weiß

Hausaufgabenblatt 6

Abgabe bis 27.01.2025 in Moodle

Aufgabe 1. Sei X eine normalverteilte Zufallsvariable mit Erwartungswert $\mathbb{E}(X) = \mu \in \mathbb{R}$ und Varianz $\text{Var}(Y) = \sigma^2 > 0$. Das heißt, X is verteilt mit der Wahrscheinlichkeitsdichte

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}.$$

und es gilt

$$\mathbb{P}(X \in [a, b]) = \int_{a}^{b} f_X(x) dx$$

für $a, b \in \mathbb{R}$ mit a < b. Wir definieren nun die Zufallsvariable

$$Y = \frac{X - \mu}{\sigma}.$$

Wir wissen bereits, dass Y normalverteilt mit Erwartungswert $\mathbb{E}(Y) = 0$ und Varianz Var(Y) = 1 ist. Wir bezeichnen mit Φ die Verteilungsfunktion von Y, d.h.

$$\Phi(t) = \int_{-\infty}^{t} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx.$$

Numerische/gerundete Werte von $\Phi(t)$ finden Sie weiter unten in der angehangenen Tabelle. In einer weiteren Tabelle finden sie numerische Werte wichtiger Quantile der Standardnormalverteilung. Eine reelle Zahl t heißt p-Quantil der (reellwertigen) Zufallsvariablen Z, falls

$$\mathbb{P}(Z \le t) \ge p$$
 und $\mathbb{P}(t \le Z) \ge 1 - p$.

- (a) Zeigen Sie, dass $\Phi(t) = 1 \Phi(-t)$ für alle $t \in \mathbb{R}$ gilt. Daher reicht es $\Phi(t)$ für nichtnegative t zu tabellieren.
- (b) Begründen Sie, dass für $a, b \in \mathbb{R}$ mit a < b gilt

$$\mathbb{P}(a \le X \le b) = \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right).$$

Sei nun $\mu=100$ und $\sigma^2=16$, d.h. X ist normalverteilt mit Erwartungswert $\mu=100$ und Varianz $\sigma^2=16$.

- (c) Berechnen Sie (näherungsweise) die Wahrscheinlichkeiten $\mathbb{P}(X \leq 95)$ und $\mathbb{P}(95 \leq X \leq 110)$ mit Hilfe der Verteilungstabellen.
- (d) Berechnen das 0,9-Quantil von X mit Hilfe der Quantiltabelle.

Aufgabe 2. In einer Klinik wird eine Studie zum Gesundheitszustand von Frühgeburten durchgeführt. Das Geburtsgewicht eines in der 28ten Schwangerschaftswoche geborenen Kindes wird als normalverteilte Zufallsgröße mit Erwartungswert 1000 g und Standardabweichung 50 g angenommen.

- (a) Wie groß ist die Wahrscheinlichkeit, dass ein in der 28ten Schwangerschaftswoche geborenes Kind ein Gewicht zwischen 982 g und 1050 g hat?
- (b) Berechnen Sie das 10 %-Quantil des Geburtsgewichts. Was sagt es aus?
- (c) Geben Sie ein um den Erwartungswert symmetrisches Intervall an, in dem mit einer Wahrscheinlichkeit von 95 % das Geburtsgewicht liegt.

Aufgabe 3. Wir werfen eine faire Münze n = 10 mal bzw. n = 20 mal.

- (a) Berechne die Wahrscheinlichkeit, dass höchstens $0, 6 \cdot n$ mal Kopf fällt, exakt.
- (b) Berechne die Wahrscheinlichkeit, dass höchstens $0, 6 \cdot n$ mal Kopf fällt, approximativ mit Hilfe des Zentralen Grenzwertsatzes.

Aufgabe 4. Auf einer Zuchtperlenfarm werden Muscheln gezüchtet, dabei bringt jede Muschel mit einer Wahrscheinlichkeit von 2% eine Perle hervor (und dies unabhängig vom Geschehen in allen anderen Muscheln). Beantworten Sie die folgende Frage jeweils durch exakte Rechnung und durch Anwenden der Poissonapproximation:

Wie viele Muscheln muss man mindestens öffnen, um mit einer Wahrscheinlichkeit von über 50% mindestens eine Perle zu finden?

Verteilungsfunktion der Standardnormalverteilung

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.00	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.10	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.20	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.30	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.40	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.50	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.60	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.70	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.80	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.90	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.00	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.10	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.20	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.30	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.40	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.50	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.60	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.70	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.80	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.90	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.00	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.10	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.20	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.30	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.40	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.50	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.60	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.70	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.80	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.90	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.00	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.10	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.20	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.30	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.40	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

Tabelle 1: Verteilungsfunktion der Standardnormalverteilung

Interpretation Die Werte in Tabelle 1 geben die Wahrscheinlichkeit dafür an, dass eine standardnormalverteilte Zufallsgröße X kleiner oder gleich z ist, d.h.

$$\Phi(z) = \int_{-\infty}^{z} \phi(x) dx = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-x^{2}/2} dx.$$

Transformations regel $\Phi(-z) = 1 - \Phi(z)$

Beispiel
$$\mathcal{N}_{0,1}((-\infty, 1.83)) = \Phi(1.83) \approx 0.9664$$

Quantile der Standardnormalverteilung

γ	z_{γ}
0.8	0.84162
0.9	1.28155
0.95	1.64485
0.975	1.95996
0.98	2.05375
0.99	2.32635
0.995	2.57583
0.9975	2.80703
0.998	2.87816
0.999	3.09023
0.9995	3.29053

Tabelle 2: Quantile der Standardnormalverteilung

Interpretation Die Werte in Tabelle 2 geben das γ -Quantil z_{γ} der Standardnormalverteilung $\mathcal{N}_{0,1}$ an, das heißt

$$\mathcal{N}_{0,1}\left(\left(-\infty,z_{\gamma}\right]\right)=\gamma.$$

$$\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

$$\int_{-\infty}^{z_{\gamma}} \phi(x) \mathrm{d}x = \gamma$$

Abbildung 1: Quantile der Standardnormalverteilung

Beispiel Das 95%-Quantil der Standardnormalverteilung $\mathcal{N}_{0,1}$ ist rund 1.64485. Das heißt, es gilt

$$\mathcal{N}_{0,1}((-\infty, 1.64485]) \approx 0.95.$$