Projecto de Bases de Dados, Parte4

Professor Gabriel Pestana

Turno: Quinta-feira, 11:00-12:30

Grupo45

Inês Sequeira, nº81719 Pedro Gomes, nº81534 Rafael Belchior, nº80970

Esforço (em horas)

81719-----16horas

81534-----16horas

80970-----16horas

Indíces

Ex a)

Query 1:

Para melhorar o join podemos criar um índice composto sobre os atributos (morada, codigo) sobre a tabela arrenda, e um índice composto sobre os atributos (morada, codigo) sobre a tabela fiscaliza. Ambos os índices são do tipo btree. O SGBD escolhe percorrer uma das tabelas e usa o índice da outra para fazer o join, o que permite que o join seja feito mais eficientemente.

O índice mencionado para a tabela arrenda é um índice primário, pois contém a chave primária. O índice primário é agrupado, por default.

Query 2:

Para melhorar o natural join decidimos criar os seguintes índices:

- Índice primário, composto, sobre os atributos (morada, codigo), sobre a tabela posto e índice composto sobre os atributos (morada, codigo), sobre a tabela aluga;
- Índice sobre o atributo numero, sobre a tabela aluga, e índice sobre o atributo numero, sobre a tabela estado;

O índice (morada, codigo) sobre o posto é primário, pois contém a chave primária.

Os índices acima mencionados são todos do tipo btree. Nos casos mencionados acima, o SGBD escolhe percorrer uma das tabelas e usa o índice da outra para fazer o natural join, o que permite que este seja feito mais eficientemente.

Devido ao *where* com estado, podemos adicionar um índice sobre o atributo estado, sobre a tabela estado. Este índice permite filtrar os registos mais rapidamente. Se for escolhido o índice do tipo hash, pode ser mais eficiente do que o btree em alguns casos. Neste caso, o índice hash é útil se a hash table colocar diferentes valores do atributo ('Aceite', 'Pendente', etc) em diferentes entradas. Quando o estado 'Aceite' está isolado numa entrada da hash table, previsivelmente é mais rápido aceder aos aceites do que usando um índice btree.

Ex b)

Para testar o tempo das queries, populamos a nossa base de dados com cerca de 9 milhões de registos. Usamos o explain do mysql para saber o plano de execução. Os printscreens mostrados abaixo são relativos ao explain.

Desativámos a cache com o intuito de esta não influenciar os tempos da execução das queries.

Query 1:

Não é necessário criar os índices sobre (morada, codigo) nas tabelas arrenda e fiscaliza, pois (morada, codigo) é primary key na tabela arrenda, e é foreign key na tabela fiscaliza. O SGBD cria estes índices automaticamente. Para testar se os índices permitem que a query seja mais rápida, removemos o nome da foreign key e desativámos a sua utilização.

Tempo sem os índices de FK: 9.23804400 s

1 row in set (9.24 sec)

-	++			+			+		+	+	+
	id	select_type	table	type	possible_keys	key	key_len	ref	rows	Extra	Ĺ
-	++			+			+	·	+	 	+
	1 1	SIMPLE SIMPLE	F	index	NULL PRIMARY	PRIMARY	518	NULL ist181534.F.morada.ist181534.F.codigo	1000533	Using index; Using temporary; Using filesort; Distinct	ļ
	1 1	SIMPLE	A	eq_ret	PRIMARY	PRIMARY	514	1st181534.F.morada,1st181534.F.cod1go	1	Distinct	Ţ

2 rows in set (0.00 sec)

Tempo com os índices de FK: 6.68024600 s

1 row in set (6.68 sec)

++		+	+		+	+	++
id select_type	table type	possible_keys	key	key_len	ref	rows	Extra
1 SIMPLE 1 SIMPLE	F index A eq_ref	morcod_idx PRIMARY	morcod_idx PRIMARY	514 514	NULL ist181534.F.morada,ist181534.F.codigo	1000635	Using index; Using temporary; Using filesort; Distinct Distinct

2 rows in set (0.00 sec)

Melhoria de performance: 9.23804400 / 6.68024600 = 1.38288979178 38% de melhoria

Query 2:

Não é necessário criar o índice sobre (morada, codigo) na tabela posto, pois (morada, codigo) é primary key na tabela posto. Não é necessário criar o índice sobre numero na tabela aluga, pois numero é foreign key na tabela aluga.

Para criar o índice sobre estado usamos índice tipo btree, pois a versão do mysql disponibilizada não permite o uso de índices tipo hash.

Tempo sem índice estado: 0.03946300 s

3 rows in set (0.04 sec)

4					L	L	L	+		L
į	id	select_type	table		possible_keys				rows	Extra
	1 2 2 2	PRIMARY DEPENDENT SUBQUERY DEPENDENT SUBQUERY DEPENDENT SUBQUERY	A	ref	NULL PRIMARY,morada PRIMARY,numero PRIMARY		514 514	NULL func, func ist181534.P.morada,ist181534.P.codigo ist181534.A.numero	4	Using where; Using index for group-by Using where; Using index Using index Using where

Tempo com índice estado, mas não usa o índice: 0.03994700 s

3 rows in set (0.04 sec)

+ id	select_type	table	type	possible_keys	key	key_len	ref	rows	Extra
2 2	PRIMARY DEPENDENT SUBQUERY DEPENDENT SUBQUERY DEPENDENT SUBQUERY	A	ref	NULL PRIMARY,morada PRIMARY,numero PRIMARY,est_idx	PRIMARY	514 514	NULL func,func ist181534.P.morada,ist181534.P.codigo ist181534.A.numero	55596	Using where; Using index for group-by Using where; Using index Using index Using where

Neste caso, o SGBD não usa o índice estado pois, na tabela estado, existem cerca de 25% registos com estado='Aceite'. O SGBD apenas usa um índice se o número de registos que ele prevê verificar for cerca de 10%/15%, ou menos (a percentagem muda de acordo com o SGBD). Se o SGBD prever verificar muitos registos, é preferível percorrer toda a tabela, pois não compensa usar o índice, devido ao custo adicional de aceder à tabela de índices.

Mudámos os registos na base de dados de modo a existir menos de 10% de registos com estado='Aceite' na tabela estado. Desta forma, o índice por estado já foi usado. De seguida mostramos o tempo da query e o resultado do explain com poucos registos com estado='Aceite'.

Tempo sem índice estado e restantes não criados automaticamente: 0.01669800 s

3 rows in set (0.02 sec)

+	_+	+	+	+	+				++
id	select_type	table	type	possible_keys	key	key_len	ref	rows	Extra
2	PRIMARY DEPENDENT SUBQUERY DEPENDENT SUBQUERY DEPENDENT SUBQUERY	A	range ref ref ref	NULL PRIMARY, morada PRIMARY, numero PRIMARY		514 514	NULL func,func ist181534.P.morada,ist181534.P.codigo ist181534.A.numero	55592	Using where; Using index for group-by Using where; Using index Using index Using where

Tempo com índice estado e restantes não criados automaticamente: 0.01464200 s

ļ	id	select_type	table	type	possible_keys	key	key_len	ref	rows	Extra	ij
1	2	PRIMARY DEPENDENT SUBQUERY DEPENDENT SUBQUERY DEPENDENT SUBQUERY	E	index ref ref ref	NULL PRIMARY,morada PRIMARY,est_idx PRIMARY,numero,morada_idx	morada PRIMARY est_idx numero	257 257	NULL func const ist181534.E.numero	1 13	Using where; Using index Using where Using where; Using index Using where; Using index	

Melhoria de performance: 0.01669800 / 0.01464200 = 1.14041797569 14% de melhoria

Data Warehouse

1) Esquema de uma estrela com informações sobre reservas e com dimensões Utilizador, Localização, Data, Tempo

estrela schema.sql

DROP TABLE IF EXISTS reserva_facts;
DROP TABLE IF EXISTS date_dimension;
DROP TABLE IF EXISTS time_dimension;
DROP TABLE IF EXISTS location_dimension;
DROP TABLE IF EXISTS user_dimension;

CREATE TABLE user_dimension(
 uid int AUTO_INCREMENT,
 nif varchar(9) NOT NULL UNIQUE,
 nome varchar(80) NOT NULL,
 telefone varchar(26) NOT NULL,
 PRIMARY KEY(uid));

CREATE TABLE location_dimension(
 lid int AUTO_INCREMENT,
 posto varchar(255),
 espaco varchar(255),
 edificio varchar(255) NOT NULL,
 PRIMARY KEY(lid));

CREATE TABLE time_dimension(
tid int AUTO_INCREMENT,
hora int NOT NULL,
minuto int NOT NULL,
PRIMARY KEY(tid));

CREATE TABLE date_dimension(
 did int AUTO_INCREMENT,
 dia int NOT NULL,
 semana int NOT NULL,
 mes int NOT NULL,
 semestre int NOT NULL,
 ano int NOT NULL,
 PRIMARY KEY(did));

CREATE TABLE reserva_facts(
 pago numeric(19,4) NOT NULL,
 duracao int NOT NULL,
 uid int NOT NULL,
 lid int NOT NULL,
 tid int NOT NULL,
 did int NOT NULL,

PRIMARY KEY(uid, tid, did), -- assumindo que um utilizador não paga duas ou mais reservas na mesma hora e minuto do mesmo dia

FOREIGN KEY(uid) REFERENCES user_dimension(uid), FOREIGN KEY(lid) REFERENCES location_dimension(lid), FOREIGN KEY(tid) REFERENCES time_dimension(tid), FOREIGN KEY(did) REFERENCES date_dimension(did));

estrela_populate.sql

```
INSERT INTO user dimension(nif, nome, telefone) SELECT nif, nome, telefone FROM user;
  INSERT INTO location_dimension(posto, espaco, edificio) SELECT codigo, codigo_espaco, morada FROM posto;
  INSERT INTO location dimension(espaco, edificio) SELECT codigo, morada FROM espaco;
  INSERT INTO location_dimension(edificio) SELECT morada FROM edificio;
  INSERT INTO reserva_facts(pago, duracao, uid, lid, tid, did)
        SELECT o.tarifa*DATEDIFF(o.data fim, o.data inicio), DATEDIFF(o.data fim, o.data inicio), ud.uid, Id.lid, td.tid, dd.did
       FROM paga p NATURAL JOIN aluga a NATURAL JOIN oferta o
                JOIN user_dimension ud ON ud.nif = a.nif
                JOIN location_dimension ld ON ld.espaco = a.codigo AND ld.edificio = a.morada
                JOIN time_dimension td ON td.hora = hour(p.data) AND td.minuto = minute(p.data)
                JOIN date_dimension dd ON dd.dia = day(p.data)
                                        AND dd.mes = month(p.data)
                                        AND dd.ano = year(p.data)
                WHERE Id.posto IS NULL;
  INSERT INTO reserva_facts(pago, duracao, uid, lid, tid, did)
        SELECT o.tarifa*DATEDIFF(o.data fim, o.data inicio), DATEDIFF(o.data fim, o.data inicio), ud.uid, ld.lid, td.tid, dd.did
        FROM paga p NATURAL JOIN aluga a NATURAL JOIN oferta o NATURAL JOIN posto po
                JOIN user dimension ud ON ud.nif = a.nif
                JOIN location dimension ld ON ld.posto = a.codigo AND ld.espaco = po.codigo espaco AND ld.edificio = a.morada
                JOIN time_dimension td ON td.hora = hour(p.data) AND td.minuto = minute(p.data)
                JOIN date_dimension dd ON dd.dia = day(p.data)
                                        AND dd.mes = month(p.data)
                                        AND dd.ano = year(p.data);
generate_date.sql
  DELIMITER //
DROP PROCEDURE IF EXISTS generate date //
CREATE PROCEDURE generate date ()
BEGIN
  DECLARE dia int DEFAULT 1;
  DECLARE semana int DEFAULT 0;
  DECLARE mes int DEFAULT 1;
  DECLARE semestre int DEFAULT 1;
  DECLARE ano int DEFAULT 2016;
  DECLARE diaMax int DEFAULT 30;
  DECLARE diaAno int DEFAULT 1;
  WHILE ano <= 2017 DO
    WHILE mes <= 12 DO
       IF (mes IN (1, 3, 5, 7, 8, 10, 12)) THEN
         SET diaMax = 31;
```

```
ELSEIF (mes IN (4, 6, 9, 11)) THEN
        SET diaMax = 30;
      ELSEIF (mes = 2 && ano = 2016) THEN
        SET diaMax = 29;
      ELSEIF (mes = 2 && ano = 2017) THEN
        SET diaMax = 28;
      END IF;
      WHILE dia <= diaMax DO
        IF (diaAno % 7 = 1) THEN
          SET semana = semana + 1;
        END IF;
        IF (mes <= 6) THEN
          SET semestre = 1;
        ELSE
          SET semestre = 2;
        END IF;
        INSERT INTO date dimension(dia, semana, mes, semestre, ano) VALUES(dia, semana, mes, semestre,
ano);
        SET dia = dia + 1;
        SET diaAno = diaAno + 1;
      END WHILE;
      SET dia = 1;
      SET mes = mes + 1;
    END WHILE;
    SET semana = 0;
    SET mes = 1;
    SET ano = ano + 1;
    SET diaAno = 1;
  END WHILE;
END //
DELIMITER;
TRUNCATE date_dimension; -- to remove all registers from table date_dimension
CALL generate_date;
 generate_time.sql
 DELIMITER //
DROP PROCEDURE IF EXISTS generate time //
CREATE PROCEDURE generate_time ()
BEGIN
  DECLARE hour int DEFAULT 0;
  DECLARE minute int DEFAULT 0;
  WHILE hour <= 23 DO
```

```
WHILE minute <= 59 DO
      INSERT INTO time dimension(hora, minuto) VALUES(hour, minute);
      SET minute = minute + 1;
    END WHILE;
    SET minute = 0;
    SET hour = hour + 1;
  END WHILE;
END //
DELIMITER;
TRUNCATE time_dimension; -- to remove all registers from table time_dimension
CALL generate time;
 2) Consulta OLAP
 SELECT espaco, posto, dia, mes, AVG(pago)
 FROM reserva facts
      NATURAL JOIN location_dimension
      NATURAL JOIN date_dimension
 GROUP BY espaco, posto, dia, mes WITH ROLLUP
 UNION
 SELECT espaco, posto, dia, mes, AVG(pago)
 FROM reserva facts
      NATURAL JOIN location_dimension
      NATURAL JOIN date_dimension
 GROUP BY posto, dia, mes, espaco WITH ROLLUP
 UNION
 SELECT espaco, posto, dia, mes, AVG(pago)
 FROM reserva_facts
      NATURAL JOIN location_dimension
      NATURAL JOIN date_dimension
 GROUP BY dia, mes, espaco, posto WITH ROLLUP
 UNION
 SELECT espaco, posto, dia, mes, AVG(pago)
 FROM reserva facts
      NATURAL JOIN location_dimension
      NATURAL JOIN date dimension
 GROUP BY mes, espaco, posto, dia WITH ROLLUP;
```