

3	Multiple Choice - Single Answer						
(i) (ii (ii (iv	Among the given four forces in Cartesian and Spherical polar coordinate system, $ \vec{F}_1 = K \exp\left(\frac{-r^2}{R^2}\right) \hat{r} $ $ \vec{F}_2 = K \left(x^3 \hat{y} - y^3 \hat{z}\right) $ $ \vec{F}_3 = K \left(x^3 \hat{x} + y^3 \hat{y}\right) $ $ \vec{F}_4 = K \left(\frac{\hat{\phi}}{r}\right) $ where K is a constant, identify the correct option						
	(i) and (ii) are conservative but (iii) and (iv) are not						
	(i) and (iii) are conservative but (ii) and (iv) are not						
	(iii) and (iv) are conservative but (i) and (ii)are not						
	(ii) and (iii) are conservative but (i) and (iv) are not						
4	Multiple Choice - Single Answer						
A	Across the interface of the two dielectric materials, which one of the following statements is correct? $+Q = -Q$						
	$ec{E}$ is continuous and $ec{D}$ is discontinuous						
	$ec{E}$ and $ec{D}$ are discontinuous						
	$ec{E}$ and $ec{D}$ are continuous						
	$ec{E}$ is discontinuous and $ec{D}$ is continuous						
5	Multiple Choice - Single Answer						
M	What is $ abla \cdot \vec{E}$ for $s>0$, where \vec{E} is the electric field due to an infinite line charge of uniform charge density λ ?						
	$rac{1}{4\pi\epsilon_0}rac{\lambda}{s^2}$						
	$\frac{\lambda}{\epsilon_0 s^2}$						
	$\frac{\lambda}{s^2}$						

	0						
6	Multiple Choice - Single Answer						
	If a vector $\vec{A}=y\hat{x}+x\hat{y}+rac{x^2}{\sqrt{x^2+y^2}}\hat{z}$ is transformed from Cartesian (x,y,z) to Cylindrical (s,ϕ,z) coordinates, it becomes						
	$egin{aligned} ec{A} = 2s\sin\phi\cos\phi\hat{s} + s(\cos^2\phi + \sin^2\phi)\hat{\phi} + s\cos^2\phi\hat{z} \end{aligned}$						
	$ec{A} = s \cos^2 \phi \hat{s} - s \sin^2 \phi \hat{\phi} + s \cos^2 \phi \hat{z}$						
	$ec{A} = s\cos^2\phi \hat{s} + s\sin^2\phi \hat{\phi} + s\cos^2\phi \hat{z}$						
	$\vec{A} = 2s\sin\phi\cos\phi\hat{s} + s(\cos^2\phi - \sin^2\phi)\hat{\phi} + s\cos^2\phi\hat{z}$						
	$ec{A} = s \sin \phi \cos \phi \hat{s} + s (\cos^2 \phi - \sin^2 \phi) \hat{\phi} + s \cos^2 \phi \hat{z}$ $ec{A} = 2s \cos^2 \phi \hat{s} - s \sin^2 \phi \hat{\phi} + s \cos^2 \phi \hat{z}$						
	$\Theta = 2s \cos^2 \varphi s - s \sin^2 \varphi \varphi + s \cos^2 \varphi z$						
7	Multiple Choice - Single Answer						
	An infinite conducting slab, carrying a uniform charge density σ , is kept in a horizontal plane. Another infinite slab of thickness t , made of a linear dielectric material of dielectric constant k , is kept above the conducting slab. The bound charge density on the upper surface of the dielectric slab is 0 $\frac{\sigma}{2k}$						
	\odot $\frac{\sigma(k-1)}{k}$						
	$\bigcirc rac{\sigma(k-2)}{k}$						
	\bigcirc $-\sigma$						
8	Multiple Choice - Single Answer						
	What is the value of the integral $\oint_{\text{all space}} (r^2 + \vec{r} \cdot \vec{a} + a^2) \delta(\vec{r} - \vec{a}) d\tau$, where \vec{a} is a constant vector of magnitude a ?						
	○ 0 ○ 4=						
	\bigcirc 4π \bigcirc a^2						
	\odot $3a^2$						
9	Multiple ✓ 2.0 - Hide Answer						
	Multiple - Line Hide Answer Choice - Line Hide Answer						

Sinal

The unit vector, which points from a point z=h on the z axis toward a point $(s,\phi,0)$ in cylindrical coordinates, is

- $\frac{(\hat{s}-\hat{z})}{\sqrt{2}}$
- $\bigcirc \qquad \frac{(\hat{s}+\hat{z})}{\sqrt{2}}$
- $\frac{s\hat{s}+h\hat{s}}{\sqrt{s^2-h}}$

10

Multiple Choice -

Single Answer 2.0

Hide Answer

A point charge q is kept at a distance d on z-axis outside a spherical surface of radius R (see figure). The average potential over the surface of the sphere is

 $\bigcirc V_{
m avg} = rac{1}{4\pi\epsilon_0}rac{q}{R}$

- \bigcirc $V_{
 m avg} = rac{1}{4\pi\epsilon_0} rac{q}{d}$
- $igcup V_{
 m avg} = rac{V_{
 m centre}}{2}$
- $igcup V_{
 m avg} = -V_{
 m centre}$

11

Multiple Choice -

Single Answer ~

2.0

Hide Answer

For a cylinder of radius 2 m and height 5 m, what is the area of the shaded curved surface between, $\phi=\frac{\pi}{6}$ and $\phi=\frac{2\pi}{3}$ (see figure)?

 \odot $5\pi \text{ m}^2$

	$rac{\pi}{2} \mathrm{m}^2$							
	${\pi\over 2} \ { m m}^2$							
	$\pi \ \mathrm{m}^2$							
.2	Multiple Choice - Single Answer							
	For a scalar function $arphi$ satisfying the Laplace equation, $ec{ abla}arphi$ has							
	on-zero curl and zero divergence							
	on-zero curl and non-zero divergence							
0	ero curl and non-zero divergence							
	ero curl and zero divergence							
3	Multiple Choice - Single 2.0 - Hide Answer							
	Answer							
The	radient of the scalar function $\phi = \ln ec{r} $							
4	Multiple Choice - Single Answer							
The	xis of an infinitely long thin cylindrical shell coincides with the z -axis. It carries a surface charge density $\sigma_0\cos\phi$, where σ_0 is a constant. The							
	tude of the electric field inside the cylinder is							
	ro €0							
	<u>το</u> εο							
	τ <u>ο</u> ε ₀							
<u> </u>	Multiple ✓ 2.0 - Hide Answer							
	Multiple Choice - Multiple Answers Hide Answer							
	y the correct statement(s):							
van	er Waals interaction							

	is a universal interaction, which acts between every two objects										
	is weak compared to Coulomb force										
	is always repulsive										
	acts between a charge and a dipole										
	is always attractive										
	13 divay3 diractive										
_	ection - 2				Marks per question : 2 Marks Scored : 8.0						
QN	o. Q. Type	Status	Marks	Comment							
1	Fill in the Blanks	✓	2.0	-	Hide Answer						
	A point charge is placed between two semi-infinite grounded conducting plates which are inclined at an angle of 30° with respect to each other. The number of image charges is 11										
2	Fill in the Blanks	~	2.0	-	Hide Answer						
				2							
	(rounded off to three decima	al places) at a poin		$q=10^{-6}$ Coulomb, and	d $d=10^{-3}~\mathrm{m}$, the electric dipole potential in volts						
	[Use: $rac{1}{4\pi\epsilon_0}=9 imes10^9~rac{ m Nm^2}{ m C^2}$]]									
					q (r, θ)						
					$d \theta$						
				-	$-\frac{q}{2}$						
					$d \xrightarrow{\times} d$						
3	Fill in the	~	2.0	-	Hide Answer						
	Blanks										
					ial at a point $P(r, heta)$ for $r > a$, is given by						
	$V(r, heta)={ m constant}-E_0 r$ axis.The charge density on	•			be sphere and θ is the angle OP makes with the z - three decimal places) is 2.598						
4	Fill in the	×	0.0	-	Hide Answer						
	Blanks										
Charge density in a one dimensional space is given by $ ho = Q \left[\delta \left(x - x_0 \right) - \delta \left(x + x_0 \right) \right]$. The electric field due to this charge distribution at point											
	$(2x_0,0,0)$ is given as $\vec{E(x)} = n \frac{Q}{\pi \epsilon_0 x_0^2} \hat{x}$. The value of n (rounded off to three decimal places) is										
5	Fill in the	~	2.0	-	Hide Answer						
	Blanks										

[Use: $rac{1}{4\pi\epsilon_0}=10^{10}~rac{\mathrm{Nm}^2}{\mathrm{C}^2}$

- (a) Consider two concentric rings of inner radius a with linear charge density $-\lambda$ and outer radius b with linear charge density $+\lambda$ in x-y plane with their centre coinciding with the origin as shown in the adjoining figure.
- i) Write down the exact potential of the charge configuration at a point P which is at a distance R on the z-axis
- ii) Use the <u>above result</u> to write down the potential for the point P (considering R to be large as compared to the dimensions of the charge configuration) in terms of contributions from monopole, dipole and quadrupole terms.
- iii) Calculate <u>explicitly</u> the dipole moment of the charge configuration.
- iv) For a point Q whose spherical polar co-ordinates are $(R, \frac{\pi}{6}, \frac{\pi}{2})$, find for which terms there is a change in the potential expansion as compared to that of point P, and by <u>what factor</u> considering R to be large.

Marks: 1, 3, 1, 1

(b) The two halves of a long circular **cylindrical shell** (inner radius a, and outer radius b) is made of two different materials of dielectric constant k_1 and k_2 (relative permittivity) as shown in the figure of its cross-section. At the center of the cylinder a

line charge $+\lambda$ runs all along the axis.

Find \vec{D} , \vec{E} , \vec{P} and all bound charges for $0 < s \le b$, where s is the radial distance from the axis in cylindrical coordinates.

Marks: 14

IMPORTANT: Each of your answers must be <u>put inside a box</u>, clearly <u>specifying the region</u> for which it is valid.

Uploaded File Details

 $\tt d4c47be6-e717-7f68-0e1d-2b1b4cde0793.pdf$

← Page: 1 / 6 →

2 File Upload • 20.0 - Hide Answer

(a) Consider the function $\varphi(\mathbf{r})=x^2+y^2+z^2$. Given $\mathbf{r}_2=(10,10,10)$ and $\mathbf{r}_1=(11,11,10)$. Find $\Delta\varphi=\varphi(\mathbf{r}_2)-\varphi(\mathbf{r}_1)$ in two ways:

(i) exactly by direct calculation.

(ii) approximately by using the gradient $\nabla \varphi$.

Marks: 5, 5

(b) Evaluate $\oint (xdy - ydx)$ over the unit circle centered at the origin in the xy-plane in two ways:

(i) by direct integration.

(ii) using Stokes' theorem.

Marks: 5, 5

Uploaded File Details

d1da50c8-aabb-e6db-88b8-2e79492ccc25.pdf

← Page: 1/3 →

2f5faa8b-7f22-3606-6e44-00c5e1cc8b4d.pdf

← Page: 1/3 →

© 2022 Copyright CodeTantra.com