

GEOMETRÍA

Capítulo 3

TRIÁNGULOS CONGRUENTES

Geométricamente la palabra congruencia nos hace pensar en la misma forma y mismo tamaño. La palabra congruente también nos da la posibilidad de superposición de figuras en virtud del axioma de libre movilidad.

TRIÁNGULOS CONGRUENTES

Dos triángulos son congruentes si los lados y ángulos de uno de ellos son respectivamente congruentes a los lados y ángulos del otro.

Si:

 $\triangle ABC \cong \triangle RPQ$

EJERCICIO: Del gráfico, los triángulos son congruentes, calcule x + y.

RESOLUCIÓN:

Comparamos sus elementos

- Como a θ se le opone 12 Entonces x = 12
- Como a ω se le opone 6 Entonces y = 6

$$\therefore \mathbf{x} + \mathbf{y} = \mathbf{18}$$

CASOS DE CONGRUENCIA

EJERCICIO:

Del gráfico, halle el valor de θ .

• \triangle QRP \cong \triangle TMR

L-L-L

• En el vértice R:

 $80^{\circ} + 40^{\circ} + \theta = 180^{\circ}$

$$\theta = 60^{\circ}$$

NOTA:

Para establecer la congruencia en los triángulos rectángulos, se necesitan solo dos elementos adecuadamente distribuidos.

1. En un triángulo ABC, se traza la bisectriz interior \overline{BD} . Si AD = 6 y m \neq BDC = 90°, halle DC.

RESOLUCIÓN:

- Piden: DC = x
- ⊿ABD ≅ ⊿CBD

$$x = 6$$

$$DC = 6 u$$

2. En la figura, halle el valor de x.

RESOLUCIÓN:

• \triangle BAE \cong \triangle EDC

∆BCE: isósceles.

$$4x + 4x + 2x = 180^{\circ}$$

 $10x = 180^{\circ}$

$$x = 18^{\circ}$$

3. En la figura, halle el valor de x.

RESOLUCIÓN:

- Piden: x
- ∆EBF ≅ ∆ABD

• En el vértice B:

$$x + x = 180^{\circ}$$

 $2x = 180^{\circ}$

$$x = 90^{\circ}$$

4. En un triángulo equilátero ABC, se prolonga \overline{AC} hasta D y \overline{CB} hasta E, tal que EB = CD y m \neq AEB = 40°. Halle m \neq EBD.

RESOLUCIÓN:

• $\triangle ABE \cong \triangle BCD$ L-A-L

En el ∆BCD: teorema

5. En un triángulo ABC, se traza la mediana BM. Si m₄ABM = 90°, BM = 2 y BC = 5, halle m₄MBC.

RESOLUCIÓN:

- Piden: m₄MBC = x
- ⊿ABM ≅ ⊿CHM

 ⊿BHC: notable de 37° y 53°.

 $m \neq MBC = 37^{\circ}$

6. La fábrica ARTESCO ha elaborado un nuevo modelo de escuadra. En el gráfico se muestra dos ejemplares idénticos de

dicho modelo. Calcule ED.

- Dato: △ABC ≅ △DEC
- **Piden: ED** = **x**
- Lados correspondientes de igual longitud

 $EC \neq BC \rightarrow EC = AC = 3$

- Luego: BC = CD = 4
- En el ⊾ECD:

$$x = 5$$

7. Se tiene un triángulo escaleno ABC donde la m∡ABC= 80°. Luego se lo hace girar manteniendo fijo el vértice A hasta la posición AB'C' y B, B' y C son

colineales. Halle m4CB'C'.

RESOLUCIÓN

- Piden: m₄CB'C' = x
- $\triangle ABC \cong \triangle AB'C'$ L-L-L
- El ∆ABB': isósceles

$$80^{\circ} + 80^{\circ} + x = 180^{\circ}$$

 $160^{\circ} + x = 180^{\circ}$
 $x = 20^{\circ}$

m₄CB'C' = 20°