



# Complementary Variable Frequency PWM

Video Series: Hands-On with STM32 Timers

Saeed Molaie

#### Objective

- Generate center aligned variable frequency PWM signal in run-time for low noise, low power dissipation, smooth motor control applications
- Signal output on multiple complementary channels (CH1, CH1N, CH2N, CH2N, CH3, CH3N)



#### Link to video series materials

 Link to a zip file with these slides, code, STM32CubeMX project file, and other materials is provided in the description



## Equipment utilized







NUCLEO-H745ZI-Q

Micro USB Cable

Oscilloscope



## Low level setup of runtime frequency switching

- Smooth frequency change requires separate preload registers for TIMx\_ARR & TIMx\_CCR
- Preload register must be enabled by setting the
  - CCR: OCxPE bit in the TIMx\_CCMRx
  - ARR: ARPE bit in the TIMx\_CR1
- Asynchronous update of ARR: Preload register acts as a buffer between the ARR write/read and ARR
- Preload register contents are transferred to shadow registers when:
  - Update event occurs
  - Before counter starts



## Low level setup of runtime frequency switching





- In center aligned mode: if RCR value odd then UEV occurs on either overflow or underflow
- if the RCR was written before launching the counter, the UEV occurs on the underflow
- If the RCR was written after launching the counter, the UEV occurs on the overflow
- Table in RM0399



## Hands-on: Complementary variable frequency PWM



- Output 3 different duty cycles
  - CH1, CH1N 25%
  - CH2, CH2N 50%
  - CH3, CH3N 75%
- Period defined by auto reload register
- The frequency will vary from 4kHz, 8K, to 16K
- Identical frequency across all 3 channels
- Frequency varied during runtime
- Center aligned mode: up/down count
- Repetition counter (RCR) is 3 for this exercise



Table 5. Timer feature comparison

| lable 5. Timer feature comparison |                 |                    |                         |                                                |                              |                                 |                              |                                    |                                |
|-----------------------------------|-----------------|--------------------|-------------------------|------------------------------------------------|------------------------------|---------------------------------|------------------------------|------------------------------------|--------------------------------|
| Timer<br>type                     | Timer           | Counter resolution | Counter<br>type         | Prescaler<br>factor                            | DMA<br>request<br>generation | Capture/<br>compare<br>channels | Comple-<br>mentary<br>output | Max<br>interface<br>clock<br>(MHz) | Max<br>timer<br>clock<br>(MHz) |
| High-<br>resolution<br>timer      | HRTIM1          | 16-bit             | Up                      | /1 /2 /4<br>(x2 x4 x8<br>x16 x32,<br>with DLL) | Yes                          | 10                              | Yes                          | 480                                | 480                            |
| Advanced<br>-control              | TIM1,<br>TIM8   | 16-bit             | Up,<br>Down,<br>Up/down | Any<br>integer<br>between 1<br>and<br>65536    | Yes                          | 4                               | Yes                          | 120                                | 240                            |
| General                           | TIM2,<br>TIM5   | 32-bit             | Up,<br>Down,<br>Up/down | Any<br>integer<br>between 1<br>and<br>65536    | Yes                          | 4                               | No                           | 120                                | 240                            |
|                                   | TIM3,<br>TIM4   | 16-bit             | Up,<br>Down,<br>Up/down | Any<br>integer<br>between 1<br>and<br>65536    | Yes                          | 4                               | No                           | 120                                | 240                            |
|                                   | TIM12           | 16-bit             | Up                      | Any<br>integer<br>between 1<br>and<br>65536    | No                           | 2                               | No                           | 120                                | 240                            |
|                                   | TIM13,<br>TIM14 | 16-bit             | Up                      | Any<br>integer<br>between 1<br>and<br>65536    | No                           | 1                               | No                           | 120                                | 240                            |
|                                   | TIM15           | 16-bit             | Up                      | Any<br>integer<br>between 1<br>and<br>65536    | Yes                          | 2                               | 1                            | 120                                | 240                            |
|                                   | TIM16,<br>TIM17 | 16-bit             | Up                      | Any<br>integer<br>between 1<br>and<br>65536    | Yes                          | 1                               | 1                            | 120                                | 240                            |

 Timer Feature Comparison Table in STM32H745 datasheet (DS12110)



## Configure Clock frequency (480MHz)







- Select Cortex-M7 & configure timer 1
- For this lab we will configure the project for multi-channel complementary PWM signal output





 The PWM frequency is configured for 4 kHz. The Counter Mode is set to Center Aligned mode 1. Counter Period (AutoReload Register) = 30,000. Auto-reload preload is Enable. Repetition counter is set to 3 to complete 2 full PWM time base periods.





 The PWM Channel 1 duty cycle is configured for 25%. The Mode is set for PWM mode 1. Pulse (16 bits value) = 7500. Output compare preload is enabled.





 The PWM Channel 2 duty cycle is configured for 50%. The Mode is set for PWM mode 1. Pulse (16 bits value) = 15000. Output compare preload is enabled.





 The PWM Channel 3 duty cycle is configured for 75%. The Mode is set for PWM mode 1. Pulse (16 bits value) = 22500. Output compare preload is enabled.



#### **NVIC Settings**



 Enable timer 1 interrupt to generate interrupt after each update event (UEV). When repetition counter reaches 0, we change the frequency in the timer callback function.



## STM32CubeMX final pin configuration

| GPIO Pin | PWM Channel        |
|----------|--------------------|
| PE8      | CH1N (N - negated) |
| PE9      | CH1                |
| PE10     | CH2N               |
| PE11     | CH2                |
| PE12     | CH3N               |
| PE13     | CH3                |



#### **Nucleo Pinout**



CH1(PE9) & CH1N(PE8)

CH2(PE11) & CH2N(PE10)

CH3(PE13) & CH3N(PE12)

 Connect your scope to the Nucleo-H745ZI. The PWM regular and complementary outputs are shown on the marked pins below on the CN9 and CN10 headers.



## Define duty cycle for each frequency

```
19⊕ /* USER CODE END Header */
21 #include "main.h"
23⊕ /* Private includes -----*/
      USER CODE BEGIN Includes */
25
26 /* USER CODE END Includes */
28⊖ /* Private typedef -----
29 /* USER CODE BEGIN PTD */
  #define TIM1 PWM FREQ 4K
                                30000
  #define TIM1 PWM FREQ 8K
                                15000
32 #define TIM1 PWM FREQ 16K
                                7500
33
34 #define TIM1 PWM 4K 25DUTY
                                 ( TIM1 PWM FREQ 4K * 0.25 )
   #define TIM1 PWM 4K 50DUTY
                                 ( TIM1 PWM FREQ 4K * 0.50 )
36 #define TIM1 PWM 4K 75DUTY
                                  ( TIM1 PWM FREQ 4K * 0.75 )
                                  ( TIM1 PWM FREQ 8K * 0.25 )
  #define TIM1 PWM 8K 25DUTY
   #define TIM1 PWM 8K 50DUTY
                                  ( TIM1 PWM FREQ 8K * 0.50 )
   #define TIM1 PWM 8K 75DUTY
                                  ( TIM1 PWM FREQ 8K * 0.75 )
  #define TIM1 PWM 16K 25DUTY
                                   ( TIM1 PWM FREQ 16K * 0.25 )
  #define TIM1 PWM 16K 50DUTY
                                   ( TIM1 PWM FREQ 16K * 0.50 )
                                   ( TIM1 PWM FREQ 16K * 0.75 )
   #define TIM1 PWM 16K 75DUTY
45 /* USER CODE END PTD */
```

- We define these macros for modifying the duty cycle, at run-time for each frequency (used in our timer 1 callback function)
- Frequency is varied across all channels to values: 4KHz, 8KHz, 16KHz
- Duty cycle is unique to each channel:
  - CH1/1N: 25%
  - CH2/2N: 50%
  - CH3/3N: 75%



## Starting timer and complementary channels

```
/* USER CODE END Boot Mode Sequence 2 */
131
      /* USER CODE BEGIN SysInit */
132
133
      /* USER CODE END SysInit */
134
135
      /* Initialize all configured peripherals */
136
      MX GPIO Init();
137
138
      MX TIM1 Init();
      /* USER CODE BEGIN 2 */
139
      HAL TIM Base Start IT( &htim1 );
      HAL TIM PWM Start( &htim1, TIM CHANNEL 1 );
141
142
      HAL TIM PWM Start( &htim1, TIM CHANNEL 2 );
      HAL TIM PWM Start( &htim1, TIM CHANNEL 3 );
143
      HAL_TIMEx_PWMN_Start( &htim1, TIM_CHANNEL_1 );
144
      HAL_TIMEx_PWMN_Start( &htim1, TIM_CHANNEL_2 );
145
      HAL TIMEx PWMN Start( &htim1, TIM CHANNEL 3 );
146
147
148
       /* USER CODE END 2 */
149
      /* Infinite loop */
151
      /* USER CODE BEGIN WHILE */
152
       while (1)
153
         /* USER CODE END WHILE */
154
155
156
         /* USER CODE BEGIN 3 */
157
158
       /* USER CODE END 3 */
159 }
160
```

 Using HAL API, we start regular timer and complementary channels for generating the signal



#### Interrupt handler/callback definition

```
319
320 /* USER CODE BEGIN 4 */
321 void HAL TIM PeriodElapsedCallback(TIM HandleTypeDef *htim)
       if ( timer ar value == TIM1 PWM FREQ 4K )
         timer ar value = TIM1 PWM FREQ 8K;
         __HAL_TIM_SET_AUTORELOAD( &htim1, TIM1_PWM_FREQ_8K );
         __HAL_TIM_SET_COMPARE( &htim1, TIM_CHANNEL_1, TIM1_PWM 8K 25DUTY );
          HAL_TIM_SET_COMPARE( &htim1, TIM_CHANNEL_2, TIM1_PWM_8K_50DUTY );
         __HAL_TIM_SET_COMPARE( &htim1, TIM_CHANNEL_3, TIM1_PWM_8K_75DUTY );
331
       else if ( timer ar value == TIM1 PWM FREQ 8K )
332
333
         timer ar value = TIM1 PWM FREQ 16K;
         HAL TIM SET AUTORELOAD( &htim1, TIM1 PWM FREQ 16K );
         __HAL_TIM_SET_COMPARE( &htim1, TIM_CHANNEL_1, TIM1_PWM_16K_25DUTY );
         __HAL_TIM_SET_COMPARE( &htim1, TIM_CHANNEL_2, TIM1_PWM_16K_50DUTY );
         HAL TIM SET COMPARE( &htim1, TIM CHANNEL 3, TIM1 PWM 16K 75DUTY );
       else if ( timer ar value == TIM1 PWM FREQ 16K )
340
341
         timer ar value = TIM1 PWM FREQ 4K;
          _HAL_TIM_SET_AUTORELOAD( &htim1, TIM1_PWM_FREQ_4K );
         __HAL_TIM_SET_COMPARE( &htim1, TIM_CHANNEL_1, TIM1_PWM_4K_25DUTY );
         __HAL_TIM_SET_COMPARE( &htim1, TIM_CHANNEL_2, TIM1_PWM_4K_50DUTY );
          HAL_TIM_SET_COMPARE( &htim1, TIM_CHANNEL_3, TIM1_PWM_4K_75DUTY );
347
       else
348
         timer_ar_value = TIM1_PWM_FREQ_4K;
          HAL TIM SET AUTORELOAD( &htim1, TIM1 PWM FREQ 4K );
         HAL TIM SET COMPARE( &htim1, TIM CHANNEL 1, TIM1 PWM 4K 25DUTY );
          _HAL_TIM_SET_COMPARE( &htim1, TIM_CHANNEL_2, TIM1_PWM_4K_50DUTY );
          HAL TIM SET COMPARE( &htim1, TIM CHANNEL 3, TIM1 PWM 4K 75DUTY );
354
356 /* USER CODE END 4 */
```

- Change PWM frequency and duty cycle at runtime
- Set the TIM Autoreload Register value at runtime without calling another timer any Init function: \_\_HAL\_TIM\_SET\_AUTORELOAD
- Set the TIM Capture Compare Register value at runtime without calling another timer Config Channel function: \_\_HAL\_TIM\_SET\_COMPARE



#### Result: channel 1 and 1N scope capture

Yellow: CH1 (GPIO Pin PE8) – 25% duty

Cyan: CH1N (GPIO Pin PE9) – 25% duty



Center aligned (PWM Mode 1):

$$Duty\ Cycle = \frac{CCR}{ARR}$$



#### Result: channel 2 and 2N scope capture



Cyan: CH1N (GPIO Pin PE11) – 50% duty





#### Result: channel 3 and 3N scope capture

Yellow: CH1 (GPIO Pin PE12) – 75% duty

Cyan: CH1N (GPIO Pin PE13) – 75% duty





#### Links

AN4013: <a href="https://www.st.com/resource/en/application\_note/dm00042534-stm32-crossseries-timer-overview-stmicroelectronics.pdf">https://www.st.com/resource/en/application\_note/dm00042534-stm32-crossseries-timer-overview-stmicroelectronics.pdf</a>

 STM32H745 reference manual: <a href="https://www.st.com/resource/en/reference\_manual/dm00176879-stm32h745755-">https://www.st.com/resource/en/reference\_manual/dm00176879-stm32h745755-</a> and-stm32h747757-advanced-armbased-32bit-mcus-stmicroelectronics.pdf

• STM32H745 datasheet: https://www.st.com/resource/en/datasheet/stm32h745zg.pdf



## Thank you



ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to <a href="https://www.st.com/trademarks">www.st.com/trademarks</a>.
All other product or service names are the property of their respective owners.

