DAVID MARTÍNEZ DÍAZ RAFAEL CÓRDOBA MARTINEZ

Matemáticas Empresariales. Grado en I.I.-A.D.E y Grado en Edif.-A.D.E Curso 2019/20.

Tema2. Indicar las afirmaciones que son correctas en las siguientes preguntas.

- 1. Consideramos la función $F(r,p) = 25r^{2.08}p^{-1.5}$ consumo de leche donde la renta familiar r está expresada en miles de euros y el precio relativo de la leche se representa por p, entonces:
 - a) $D_1F(r,p) > 0$, $D_2F(r,p) < 0$ para cualquier r, p > 0.
 - b) $D_1F(1,1) = 41.6$
 - c) Para esta función el valor F(2,1) F(1,1) es aproximadamente igual a $D_1F(1,1)$.
 - d) $D_{1,1}F(1,1) = 56.6$
- 2. Sea la función de producción $Q(x,y)=50x^{0.5}y^{0.4}$ definida para x,y>0 Entonces:
 - a) $D_1Q(100, 100) = 15.77$
 - b) Q(101, 100) Q(100, 100) es aproximadamente $D_1Q(100, 100)$
 - c) Q(x,y) es homogénea de grado 1.
 - d) Q(10,10) = 10 Q(1,1)
- 3. Sea la función de producción $Q(K,L)=30K^{\frac{1}{5}}y^{\frac{4}{5}}$ definida para K,L>0 Entonces:
 - a) $D_1Q(K,L) = 6K^{4/5}L^{4/5}$.
 - b) Q(10K, 10L) = 10 Q(K, L)
 - c) La matriz HessQ(K,L) tiene el menor principal de orden uno negativo.
 - d) La matriz HessQ(K, L) tiene determinante nulo.
- 4. Sea $f(x,y) = \sqrt{x^2 + y^2 + 1}$ entonces:
 - a) Las curvas de nivel positivo son circunferencias centradas en (0,0).
 - b) La curva de nivel $\sqrt{2}$ es la circunferencia de centro (0,0) y radio 1.
 - c) $\nabla f(1,0) = (2,0)$.
 - d) El vector $\nabla f(1,0)$ es ortogonal a la curva de nivel $k=\sqrt{2}$
- 5. Sea $f(x,y) = \frac{1}{\sqrt{x^2 + y^2}}$ entonces:
 - a) Las curvas de nivel positivo son circunferencias centradas en (0,0).
 - b) $\nabla f(0,1) = (0,1).$
 - c) $\nabla f(1,0) = (1,0)$.
 - d) El vector $\nabla f(2,0)$ es ortogonal a la curva de nivel $k=\frac{1}{2}$

6. Sea f(x,y) = xCos(y) + ySen(x) entonces:

a)
$$\nabla f(0,0) = (1,0).$$

b) La matriz
$$Hessf(0,0) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

- c) El polinomio de Taylor de orden dos en (0,0) es $P_2(x,y)=x+2xy$
- d) El polinomio de Taylor de orden dos en (0,0) es $P_2(x,y) = x + xy$

7. Sea f(x,y) = 4Ln(x+y) entonces:

a)
$$\nabla f(1,1) = (1,1)$$
.

b) La matriz
$$Hessf(1,1) = \begin{pmatrix} -1 & -1 \\ -1 & -1 \end{pmatrix}$$

- c) La matriz hessiana Hessf(x,y) tiene determinante distinto de cero.
- d) La matriz hessiana Hess f(x, y) es semidefinida negativa.

8. Dado el programa

$$\begin{array}{ll} \text{Maximizar} & 2x+y \\ \text{s. a} & x^2+y^2 \leq 9 \\ & 2x+3y \geq 6 \end{array}$$

- a) El máximo se alcanza en un punto de tangencia.
- b) La condición de tangencia es x = 2y.
- c) La condición de tangencia es y = 2x.
- d) El valor máximo se alcanza en $(\frac{6}{\sqrt{5}}, \frac{3}{\sqrt{5}})$