

512K X 16 BIT LOW POWER CMOS SRAM

REVISION HISTORY

Rev. 1.6

Revision	<u>Description</u>	Issue Date
Rev. 1.0	Initial Issue	Nov.1.2007
Rev. 1.1	Added IsB Spec.	Feb.1.2008
Rev. 1.2	Revised ORDERING INFORMATION	Feb.13.2008
Rev. 1.3	Added SL Spec.	Jul.2.2008
Rev. 1.4	Added I_{SB1}/I_{DR} values when $T_A = 25^{\circ}C$ and $T_A = 40^{\circ}C$	Mar.30.2009
	Revised FEATURES & ORDERING INFORMATION	
	Lead free and green package available to Green package	
	available	
	Added packing type in ORDERING INFORMATION	
	Deleted Tsolder in ABSOLUTE MAXIMUN RATINGS	
Rev. 1.5	Revised ORDERING INFORMATION in page 11	Aug.30.2010
Rev. 1.6	Deleted E grade	Apr.12.2011

512K X 16 BIT LOW POWER CMOS SRAM

Rev. 1.6

FEATURES

■ Fast access time: 55/70ns Low power consumption:

Operating current: 30/20mA (TYP.) Standby current : 5µA (TYP.) LL-version 1.5μA (TYP.) SL-version

■ Single 2.7V ~ 3.6V power supply

■ All inputs and outputs TTL compatible

■ Fully static operation

Tri-state output

Data byte control : LB# (DQ0 ~ DQ7)

UB# (DQ8 ~ DQ15)

■ Data retention voltage : 1.2V (MIN.)

Green package available

Package: 44-pin 400mil TSOP-II

48-ball 6mm x 8mm TFBGA

GENERAL DESCRIPTION

The LY62L51216 is a 8,388,608-bit low power CMOS static random access memory organized as 524,288 words by 16 bits. It is fabricated using very high performance, high reliability CMOS technology. Its standby current is stable within the range of operating temperature.

The LY62L51216 is well designed for low power application, and particularly well suited for battery back-up nonvolatile memory application.

The LY62L51216 operates from a single power supply of 2.7V ~ 3.6V and all inputs and outputs are fully TTL compatible

PRODUCT FAMILY

Product	Operating	Van Banga	Speed	Power Dissipation				
Family	Temperature	Vcc Range	Speed	Standby(IsB1,TYP.)	Operating(Icc,TYP.)			
LY62L51216	0 ~ 70℃	2.7 ~ 3.6V	55/70ns	5μA(LL)/1.5μA(SL)	30/20mA			
LY62L51216(I)	-40 ~ 85℃	2.7 ~ 3.6V	55/70ns	5μA(LL)/1.5μA(SL)	30/20mA			

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTION

SYMBOL	DESCRIPTION
A0 - A18	Address Inputs
DQ0 – DQ15	Data Inputs/Outputs
CE#	Chip Enable Input
WE#	Write Enable Input
OE#	Output Enable Input
LB#	Lower Byte Control
UB#	Upper Byte Control
Vcc	Power Supply
Vss	Ground

Lyontek Inc. reserves the rights to change the specifications and products without notice.

5F, No. 2, Industry E. Rd. IX, Science-Based Industrial Park, Hsinchu 300, Taiwan.

TEL: 886-3-6668838 FAX: 886-3-6668836

512K X 16 BIT LOW POWER CMOS SRAM

Rev. 1.6

PIN CONFIGURATION

		-	1	
A4	1	44	A5	
A3	2	43	A6	
A2	3	42	A7	
A1	4	41	OE#	
A0	5	40	UB#	
CE#	6	39	LB#	
DQ0	7	38	DQ15	
DQ1	8	37	DQ14	
DQ2	9	36	DQ13	
DQ3	9 10 11 12 13 14 15	35	DQ12	
Vcc		34	Vss	
Vss	12	33	Vcc A	LB# OE# A0 A1 A2 NC
DQ4	13	32	DQ11	DQ8 (UB# A3) A4 (CE# DQ0)
DQ5	14	31	DQ10 B	DQ8 UB# A3 A4 CE# DQ0
DQ6	15	30	DQ9 C	(DQ9 DQ10 A5 A6 DQ1 DQ2)
DQ7	16	29	DQ8 D	(Vss DQ11 A17 A7 DQ3 Vcc)
WE#	17	28	A8	Vcc DQ12 NC A16 DQ4 Vss
A18	18	27	A9	DQ14/DQ13/ A14 / A15 / DQ5 / DQ6
A17	19	26	A10	
A16	20	25	A11 G	DQ15 NC A12 A13 WE# DQ7
A15	21	24	A12 н	(A18) A8 (A9) (A10) (A11) NC)
A14	22	23	A13	
			J	1 2 3 4 5 6
	TSOP	II		TFBGA

ABSOLUTE MAXIMUN RATINGS*

PARAMETER	SYMBOL	RATING	UNIT
Voltage on Vcc relative to Vss	VT1	-0.5 to 4.6	V
Voltage on any other pin relative to Vss	VT2	-0.5 to Vcc+0.5	V
Operating Temperature	т.	0 to 70(C grade)	$^{\circ}\! \mathbb{C}$
Operating Temperature	TA	-40 to 85(I grade)	
Storage Temperature	Тѕтс	-65 to 150	°C
Power Dissipation	PD	1	W
DC Output Current	Іоит	50	mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to the absolute maximum rating conditions for extended period may affect device reliability.

512K X 16 BIT LOW POWER CMOS SRAM Rev. 1.6

TRUTH TABLE

MODE	CE# OE#		WE#	LB#	UB#	I/O OPE	RATION	SUPPLY CURRENT
WODL	OL#	OL#	**L#	LD#	05#	DQ0-DQ7	DQ8-DQ15	JOI I EI CORREIN
Standby	H X	X X	X X	X H	X H	High – Z High – Z	High – Z High – Z	IsB,IsB1
Output Disable	L L	H H	H	L X	X L	High – Z High – Z	High – Z High – Z	lcc,lcc1
Read	L L L	L L L	H	L H L	H L L	D _{OUT} High – Z D _{OUT}	High – Z D _{OUT} D _{OUT}	Icc,Icc1
Write	L L L	X X X	L	L H L	H	D _{IN} High – Z D _{IN}	High – Z D _{IN} D _{IN}	lcc,lcc1

Note: $H = V_{IH}$, $L = V_{IL}$, X = Don't care.

DC ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDIT	ΓΙΟΝ		MIN.	TYP. ^{^4}	MAX.	UNIT
Supply Voltage	Vcc				2.7	3.0	3.6	V
Input High Voltage	V _{IH} ^{*1}			_	2.2	-	Vcc+0.3	V
Input Low Voltage	V _{IL} ²				- 0.2	-	0.6	V
Input Leakage Current	ILI	$V_{CC} \ge V_{IN} \ge V_{SS}$ - 1 - 1				1	μA	
Output Leakage Current	ILO	V cc $\geq V$ ou $ extstyle V$ ss, $ extstyle O$ utput Disabled			- 1	-	1	μΑ
Output High Voltage	Voн	Iон = -1mA			2.2	2.7	-	V
Output Low Voltage	Vol	I _{OL} = 2mA			-	-	0.4	V
	loo	_		- 55	-	30	40	mA
	20	30	mA					
Tower supply current	Icc ₁				-	4	8	mA
	IsB	CE# = V _{IH} . Other pir	ns at Vı∟ o	r V _{IH}	-	0.15	1	mΑ
			LL		•	5	30	μΑ
Chair albur Dannari		05">1/ 0.01/	LLI			5	50	μA
Standby Power Supply Current	I _{SB1}	CE# ≧V _{CC} - 0.2V Others at 0.2V or	SL ^{*5}	25 ℃	-	1.5	5	μA
	ISB1	Vcc - 0.2V	SLI ^{*5}	40 ℃	-	1.5	5	μA
		VCC - U.ZV	SL		-	1.5	15	μA
			SLI		-	1.5	20	μA

- 1. VIH(max) = VCC + 3.0V for pulse width less than 10ns.
- 2. V_{IL}(min) = Vss 3.0V for pulse width less than 10ns.
- 3. Over/Undershoot specifications are characterized, not 100% tested.
- 4. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at Vcc = Vcc(TYP.) and T_A = 25 $^{\circ}$ C
- 5. This parameter is measured at Vcc = 3.0V

Rev. 1.6

512K X 16 BIT LOW POWER CMOS SRAM

CAPACITANCE (TA = 25° , f = 1.0MHz)

PARAMETER	SYMBOL	MIN.	MAX	UNIT
Input Capacitance	Cin	-	6	pF
Input/Output Capacitance	C _{I/O}	-	8	pF

Note: These parameters are guaranteed by device characterization, but not production tested.

AC TEST CONDITIONS

Input Pulse Levels	0.2V to V _{CC} - 0.2V
Input Rise and Fall Times	3ns
Input and Output Timing Reference Levels	1.5V
Output Load	$C_L = 30pF + 1TTL$, $I_{OH}/I_{OL} = -1mA/2mA$

AC ELECTRICAL CHARACTERISTICS

(1) READ CYCLE

PARAMETER	SYM.	LY62L51216-55		LY62L5	1216-70	UNIT
		MIN.	MAX.	MIN.	MAX.	
Read Cycle Time	trc	55	-	70	-	ns
Address Access Time	t AA	-	55	-	70	ns
Chip Enable Access Time	t ACE	-	55	-	70	ns
Output Enable Access Time	toe	-	30	-	35	ns
Chip Enable to Output in Low-Z	tcLz*	10	-	10	-	ns
Output Enable to Output in Low-Z	tolz*	5	-	5	-	ns
Chip Disable to Output in High-Z	tcHz*	-	20	-	25	ns
Output Disable to Output in High-Z	tonz*	-	20	-	25	ns
Output Hold from Address Change	tон	10	-	10	-	ns
LB#, UB# Access Time	t BA	-	55	-	70	ns
LB#, UB# to High-Z Output	t _{BHZ} *	-	25	-	30	ns
LB#, UB# to Low-Z Output	t _{BLZ} *	10	-	10	-	ns

(2) WRITE CYCLE

PARAMETER	SYM.	LY62L51216-55		LY62L5	UNIT	
		MIN.	MAX.	MIN.	MAX.	
Write Cycle Time	twc	55	-	70	-	ns
Address Valid to End of Write	taw	50	-	60	-	ns
Chip Enable to End of Write	tcw	50	-	60	-	ns
Address Set-up Time	tas	0	-	0	-	ns
Write Pulse Width	twp	45	-	55	-	ns
Write Recovery Time	twr	0	-	0	-	ns
Data to Write Time Overlap	tow	25	-	30	-	ns
Data Hold from End of Write Time	tон	0	-	0	-	ns
Output Active from End of Write	tow*	5	-	5	-	ns
Write to Output in High-Z	twnz*	-	20	-	25	ns
LB#, UB# Valid to End of Write	t _{BW}	45	-	60	-	ns

^{*}These parameters are guaranteed by device characterization, but not production tested.

512K X 16 BIT LOW POWER CMOS SRAM

Rev. 1.6

TIMING WAVEFORMS

READ CYCLE 1 (Address Controlled) (1,2)

READ CYCLE 2 (CE# and OE# Controlled) (1,3,4,5)

Notes:

- 1.WE#is high for read cycle.
- 2. Device is continuously selected OE# = low, CE# = low, LB# or UB# = low.
- 3.Address must be valid prior to or coincident with CE# = low, LB# or UB# = low transition; otherwise tAA is the limiting parameter.
- $4. \text{tclz}, \text{ tblz}, \text{ tolz}, \text{ tchz}, \text{ tbhz} \text{ and tohz} \text{ are specified with } \text{CL} = 5 \text{pF}. \text{ Transition is measured } \pm 500 \text{mV} \text{ from steady state}.$
- 5.At any given temperature and voltage condition, tcHz is less than tcLz , tBHz is less than tBLz, tOHz is less than toLz.

5F, No. 2, Industry E. Rd. IX, Science-Based Industrial Park, Hsinchu 300, Taiwan.

TEL: 886-3-6668838 FAX: 886-3-6668836

Rev. 1.6

512K X 16 BIT LOW POWER CMOS SRAM

WRITE CYCLE 1 (WE# Controlled) (1,2,3,5,6)

WRITE CYCLE 2 (CE# Controlled) (1,2,5,6)

512K X 16 BIT LOW POWER CMOS SRAM

Rev. 1.6

WRITE CYCLE 3 (LB#,UB# Controlled) (1,2,5,6)

Notes:

- 1.WE#,CE#, LB#, UB# must be high during all address transitions.
- 2.A write occurs during the overlap of a low CE#, low WE#, LB# or UB# = low.
- 3.During a WE# controlled write cycle with OE# low, twp must be greater than twHz + tpw to allow the drivers to turn off and data to be placed on the bus.
- 4. During this period, I/O pins are in the output state, and input signals must not be applied.
- 5.If the CE#, LB#, UB# low transition occurs simultaneously with or after WE# low transition, the outputs remain in a high impedance state
- 6.tow and twHz are specified with CL = 5pF. Transition is measured $\pm 500mV$ from steady state.

TEL: 886-3-6668838 FAX: 886-3-6668836

Rev. 1.6

512K X 16 BIT LOW POWER CMOS SRAM

DATA RETENTION CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITION			MIN.	TYP.	MAX.	UNIT
Vcc for Data Retention	V_{DR}	$CE\# \ge V_{CC} - 0.2V$			1.2	ı	3.6	V
			LL		-	2	25	μΑ
Data Retention Current		14 014	LLI		-	2	40	μΑ
	I _{DR}	Other pins at 0.2V or Vcc-0.2V	SL	25 ℃	-	1	3	μΑ
			SLI	40 ℃	-	1	3	μA
			SL		-	1	15	μΑ
			SLI		-	1	20	μΑ
Chip Disable to Data Retention Time	tcdr	See Data Retention Waveforms (below)			0	-	-	ns
Recovery Time	t _R				tRC∗	-	-	ns

t_{RC*} = Read Cycle Time

DATA RETENTION WAVEFORM

Low Vcc Data Retention Waveform (1) (CE# controlled)

Low Vcc Data Retention Waveform (2) (LB#, UB# controlled)

Rev. 1.6

512K X 16 BIT LOW POWER CMOS SRAM

PACKAGE OUTLINE DIMENSION

44-pin 400mil TSOP-Ⅱ Package Outline Dimension

SYMBOLS	DIMENSIONS IN MILLMETERS			DIMENSIONS IN MILS		
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
Α	-	ı	1.20	-	-	47.2
A1	0.05	0.10	0.15	2.0	3.9	5.9
A2	0.95	1.00	1.05	37.4	39.4	41.3
b	0.30	-	0.45	11.8	-	17.7
С	0.12	-	0.21	4.7	-	8.3
D	18.212	18.415	18.618	717	725	733
E	11.506	11.760	12.014	453	463	473
E1	9.957	10.160	10.363	392	400	408
е	-	0.800	ı	-	31.5	-
L	0.40	0.50	0.60	15.7	19.7	23.6
ZD	-	0.805	-	-	31.7	-
У	-	ı	0.076	-	-	3
Θ	0°	3°	6°	0°	3°	6°

Rev. 1.6

512K X 16 BIT LOW POWER CMOS SRAM

48-ball 6mm × 8mm TFBGA Package Outline Dimension

SIDE VIEW

DETAIL A

DETAIL B

SYM.	DIMENSION (mm)			DIMENSION (inch)		
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
Α	_	_	1.40		_	0.055
A1	0.20	0.25	0.30	0.008	0.010	0.012
A2	_	_	1.05		_	0.041
Ь	0.30	0.35	0.40	0.012	0.014	0.016
D	7.95	8.00	8.05	0.313	0.315	0.317
D1	5.25 BSC			0.207 BSC		
Ε	5.95	6.00	6.05	0.234	0.236	0.238
E1	3.75 BSC			0.148 BSC		
SE	0.375 TYP			0.015 TYP		
SD	0	.375 TY	P	0.015 TYP		
e	0.75 BSC			0.030 BSC		

NOTE:

1. CONTROLLING DIMENSION: MILLIMETER.

2. REFERENCE DOCUMENT : JEDEC MO-207.

Lyontek Inc. reserves the rights to change the specifications and products without notice. 5F, No. 2, Industry E. Rd. IX, Science-Based Industrial Park, Hsinchu 300, Taiwan. TEL: 886-3-6668838

512K X 16 BIT LOW POWER CMOS SRAM

Rev. 1.6

ORDERING INFORMATION

512K X 16 BIT LOW POWER CMOS SRAM

Rev. 1.6

THIS PAGE IS LEFT BLANK INTENTIONALLY.