Lecture 4

1. Botch normalization

$$Z = axtb$$

$$= [a b] [x]$$

$$W$$

Botch Size M

$$u = \frac{1}{m} \sum_{j=1}^{m} Z_{j}^{2}$$
 $d = \frac{1}{m} \sum_{j=1}^{m} Z_{j}^{2}$
 $d = \frac{1}{m} \sum_{j=1}^{m} Z_{j}^{2}$

2. Optimization

aradient descent

m - full dataset

Sag m - bootch size

Momentum

ao: WHI=Wt-Dgt

momentum: $U_{t+1} = YU_t - \lambda g_t$ $W_{t+1} = W_t + U_{t+1}$

momentum example: Y=3.9, $M_0=0$ $M_1=0.9.0-\lambda f_0=-\lambda f_0$ $W_1=W_0-\lambda f_0$ $M_2=0.9-M_1-\lambda f_1$

$$=-0.9125-19, =-\lambda(0.995+9,)$$

$$W_2 = W_1 - \lambda(0.995+9,)$$

$$V change from o.r to 0.9$$
over iterations.

Adam

input (NM) output Loss

3. convotational MN

~ ~ ~ ~ lution

$$(X \times W)(t) = \sum_{\alpha = -\infty}^{\infty} x[\alpha]w[t-\alpha]$$

$$Two-D$$
 $conV$
 $(I*K)(i.j)=\sum_{m=n}^{\infty} I(m,n)K[i-m,j-n]$
 $=\sum_{m=n}^{\infty} I(i-m,j-n)K(m,n)$

cross - correlation

$$(I \times K)(i,i) = \sum_{m=1}^{\infty} [(i+m, i+n) \times [m,n]$$

$$I = \begin{bmatrix} 1 & 2 & 3 & 2 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$$

$$I * K = \begin{bmatrix} -2 & 0 & 2 \end{bmatrix}$$

$$I = \begin{bmatrix} 1 & 2 & 1 & 1 & 3 & 0 \\ 2 & 0 & 1 & 1 & 1 & 2 \\ 3 & 1 & 2 & 1 & 1 & 0 & 1 \\ 3 & 1 & 2 & 1 & 1 & 0 & 1 \end{bmatrix}$$

$$K = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 2 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1$$

$$\frac{72}{72} \left(\begin{array}{c} 1 & 3 & 2 \\ 1 & 1 & 2 \\ 1 & 0 & 1 \end{array} \right) \left(\begin{array}{c} 1 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 0 & 1 \end{array} \right) = 2$$

$$\frac{72}{5} \left(\begin{array}{c} 1 & 3 & 2 \\ 1 & 1 & 2 \\ 1 & 0 & 1 \end{array} \right) \left(\begin{array}{c} 1 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 0 & 1 \end{array} \right) = 2$$

$$\frac{72}{5} \left(\begin{array}{c} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{array} \right) \left(\begin{array}{c} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{array} \right) = 2$$

$$\frac{72}{5} \left(\begin{array}{c} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{array} \right) \left(\begin{array}{c} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{array} \right) = 2$$

$$\frac{72}{5} \left(\begin{array}{c} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{array} \right) \left(\begin{array}{c} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{array} \right) = 2$$

$$\frac{72}{5} \left(\begin{array}{c} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{array} \right) \left(\begin{array}{c} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{array} \right) = 2$$

$$\frac{72}{5} \left(\begin{array}{c} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{array} \right) \left(\begin{array}{c} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{array} \right) = 2$$

output Size
$$M \times N$$

$$M = (W - F + 2P) + 1$$

$$N = (h - F + 2P) + 1$$

$$S$$