

Title

fan_park — Sharp bounds on the distribution (and quantile function) of treatment
 effects for a binary treatment, with optional covariate tightening and
 pointwise inference.

Syntax

fan_park depvar treatvar [indepvars] [if] [in] [, delta_partition(#)
 delta_values(numlist) cov_partition(#) level(#) nograph seed(#) qbounds
 num quantiles(#)]

Description

fan_park implements the sharp, nonparametric bounds on the distribution of treatment effects for a binary treatment developed by Fan and Park (2010, *Econometric Theory*). Let $\delta = Y1 - Y0$. Given the marginal distributions F1 and F0, the command estimates pointwise sharp bounds $F_L(\delta) <= F_D(\delta) <= F_U(\delta)$ over a grid of δ values (the distribution-function branch).

With option **qbounds**, the command instead computes bounds on the quantile function $F^{\{-1\}}_{\delta}(q)$: $F^{\{-1,U\}}_{\delta}(q) <= F^{\{-1\}}_{\delta}(q) <= F^{\{-1,L\}}_{\delta}(q)$ (the quantile-function branch). No standard errors are reported in this branch.

When *indepvars* are provided, the covariate space is partitioned by **cluster kmedians**. Conditional bounds are computed within each cell using cell-specific supports and then averaged with empirical cell weights. The reported bounds intersect the unconditional and the averaged-conditional bounds, which can tighten the region under heterogeneity and overlapping-support restrictions.

Options

Options	Description
delta_partition(#)	Number of grid points for the support of $\delta = Y1 - Y0$ when computing distribution-function bounds; default 100 .
<pre>delta_values(numlist)</pre>	Explicit grid of δ values at which to compute bounds. Values outside the feasible range $[a-d, b-c]$ are ignored. Supersedes delta partition() .
<pre>cov_partition(#)</pre>	If indepvars are supplied, number of k-medians clusters used to partition covariate space (tightening the bounds); default 6.
level(#)	Confidence level for pointwise confidence intervals on distribution-function bounds; default 95. The graph shows 95% and 90% bands by default.
nograph	Suppress the graph.
seed (#)	Initialization passed to cluster
	<pre>start(krandom(#)). With the default seed(1), a random integer is drawn internally; set a fixed integer for replication.</pre>
qbounds	Compute bounds for the quantile function of δ instead of the CDF (no SEs/CIs reported).
<pre>num_quantiles(#)</pre>	Number of equally spaced quantiles in [0,1] for qbounds ; default 100 .

Examples

Baseline usage

use limits_commitment.dta, clear
fan_park_apr_treat

With covariates (potential tightening)

fan park apr treat age educ, cov partition(6)

Specify the δ grid explicitly

fan_park apr treat, delta_values(-10(0.5)10)

Quantile-function bounds

fan park apr treat, qbounds num quantiles (200)

Simulation

do simulation fan park.do

Stored results

fan park stores the following in r().

r (bounds)	Distribution-function branch: $n \times 2$ matrix with columns LB and UB, evaluated at $r(delta_val)$. Quantile-function branch: $n \times 2$ matrix with quantile-function bounds UB and LB, evaluated at $r(q \ val)$.
r(sigma 2)	Distribution-function branch only. $n \times 2$ matrix of
- -	large-sample variances for the active lower and upper bound
	at each δ (columns $ extsf{Var_L}$, $ extsf{Var_U}$).
r(M_delta)	Distribution-function branch only. $n \times 2$ matrix; column 1 stores $M(\delta) = \sup over y \text{ of } [F1(y) - F0(y - \delta)]$, column 2 stores $m(\delta) = \inf over y \text{ of } [F1(y) - F0(y - \delta)]$.
r(M_active)	Distribution-function branch only. $n \times 2$ matrix with the sup/inf values corresponding to the bound that is actually active at each δ after intersecting unconditional and conditional bounds (columns M L active , M U active).
r(delta_val)	Distribution-function branch on $\overline{\text{ly.}}$ n x 1 grid of δ values used for r(bounds) .
(1)	· ·
r(q_val)	Quantile-function branch only. $n \times 1$ grid of quantiles in [0,1] used for \mathbf{r} (bounds).

Remarks

Computation. The command builds empirical CDFs of Y1 and Y0 + δ via **cumul**, interpolates with **ipolate**, and searches the intersection support Y_ δ = [a,b] intersect [c + δ , d + δ]. With covariates, the same is done cell-by-cell using cell-specific supports {[a_c, b_c]} and {[c_c, d_c]}, and then averaged across cells using empirical shares.

Interpretation. ${\bf r}$ (bounds) contains the final (possibly tightened) bounds after intersecting unconditional and conditional averages. ${\bf r}$ (M_delta) reports the raw sup/inf from the unconditional step; ${\bf r}$ (M_active) reports the sup/inf corresponding to whichever bound is active at each δ (used for the one-sidedness adjustment in CIs).

Positivity and empty cells. A cluster with no treated or no controls is skipped; weights are renormalized over remaining cells and a note is displayed. If all cells are dropped at a given δ (rare), the conditional piece is missing and the unconditional bound is reported.

Inference. CIs are pointwise (not uniform) and based on large-sample normal approximations. The graph displays 95% and 90% bands by default. For **qbounds**, CIs are not reported; if needed, consider bootstrap inference away from boundary cases.

References

Fan, Yanqin, and Sang Soo Park (2010). "Sharp bounds on the distribution of treatment effects and their statistical inference." *Econometric Theory* 26(3): 931-951. DOI: 10.1017/S0266466609990168

<u>Authors</u>

Isaac Meza López, Department of Economics, Harvard University.