P02: Exercises about DFAs [SELECTED]

Solutions for the selected exercises: 1, 2, 3a), 5, 4

1.

a)

	A	В	C	0	1	2
q0	q0	q1	q2 q2 q2	q0	q1	q2
q1	q0	q1	q2	q0	q1	q2
q2	q0	q1	q2	q0	q1	q2

b) Each state represents the level where the elevator is in.

2.

	09	-
→ q0	q1	Ø
q1	q2	q5
q2	q3	q5
q3	q4	q5
q4	Ø	q5
q 5	q6	Ø
q6	q7	q8
q7	Ø	q8
q8	q9	Ø
* q9	q10	Ø
* q10	Ø	Ø
Ø	Ø	Ø

(The previous DFA does not verifies if the input date in the specified format is a valid date or not.)

3a)

$$\begin{array}{c|cccc} & 0 & 1 \\ \rightarrow & q0 & q1 & q0 \\ & q1 & q2 & q0 \\ & * & q2 & q2 & q0 \end{array}$$

5.

a)

- 5 states: one for each possible remain value (q0 identifies the rest: 0; q1 rest 1, q2, rest 2; q3, rest 3, and q4, rest 4):

7-,,	7-,, 7-,, -	
	0	1
→ * q0	q0	q1
q1	q2	q3
q2	q4	q0
q3	q1	q2
q4	q3	q4

(in the previous DFA we are considering that the chain with length 0, ε , represents a multiple of 5, but would be easy to avoid the acceptance of ε !)

- Force a start with 1: add an initial state that links itself to the "dead" state case the chain start with 0, and links to q1 case starts by 1:

	0	1
\rightarrow s	d	q1
* q0	q0	q1
q1	q2	q3
q2	q4	q0
q3	q1	q2
q4	q3	q4
d	d	d

b)

Observations:

- We can just invert all the transitions!
- The previous start state becomes the only accept state (as before).
- The previous accept state becomes possible start states (since the only accept state was already the start state, this configuration if kept).

	0	1
→ * q0	q0	q2
q1	q3	q0
q2	q1	q3
q3	q4	q1
q4	q2	q4

4)

Hypothesis: $\delta^{\wedge}(q, xy) = \delta^{\wedge}(\delta^{\wedge}(q, x), y)$

Case base: $y = \varepsilon$

$$\delta^{\wedge}(q, x) = \delta^{\wedge}(\delta^{\wedge}(q, x), \varepsilon)$$

From the definition bases δ :

We can say that $\delta(q, x) = p$, and we know that $\delta(p, \varepsilon) = p$

Inductive step: since |y| = n, consider strings of length n+1 generated from the concatenation of a letter (identified as 'a') with y: |ya| = n+1

$$\delta^{\wedge}(q, xya) = \delta^{\wedge}(\delta^{\wedge}(q, x), ya)$$

Demonstration steps:

onstration steps.	
Expressions	Reason
$\delta^{\wedge}(\delta^{\wedge}(q, x), ya)$	Departure
$\delta^{\wedge}(\delta^{\wedge}(g, x), y), a)$	By the definition of δ , considering δ (q , x) as a state
$\delta^{\wedge}(\delta^{\wedge}(q, xy), a)$	For hypothesis
δ ^(q, xya)	By the definition of δ^{\wedge}

On this way, we obtain δ ^(q, xya) qed