

MILANO

Adaptive Correspondence Scoring for Unsupervised Medical Image Registration

Xiaoran Zhang, John C. Stendahl, Lawrence Staib, Albert J. Sinusas, Alex Wong, James S. Duncan

Yale University

Project page

Introduction

 Even with the "perfect" displacement, the error between the warped and target is still non-zero.

Existing **Desired:** Loss ↓ Accuracy (Dice) ↑ approach:

Accuracy (Dice) Loss

 It enables accurate tracking of changes, label propagation, improved diagnosis,

Motivation

Methods

Our approach can be plugged-and-played into existing frameworks with no extra cost during inference. **Note: The displacement and scoring estimators are optimized in separate alternating steps (1) and (2)

Displacement estimator loss: $\mathcal{L}_{ ext{de}} = rac{1}{|\Omega|} \sum_{x \in \Omega} \lfloor \hat{S}(x)
floor [I_t(x) - I_s(x + \hat{u}(x))]^2 + \lambda \|\nabla \hat{u}(x)\|^2$

Scoring estimator loss:

 $\mathcal{L}_{ ext{se}} = \mathcal{L}_{ ext{ucs}} + \alpha \mathcal{L}_{ ext{reg}} + \beta \mathcal{L}_{ ext{smooth}}$

 \mathcal{L}_{ucs} :Unsupervised correspondence scoring

 $\mathcal{L}_{ ext{ucs}} = rac{1}{|\Omega|} \sum_{x \in \Omega} \hat{S}(x) [I_t(x) - I_s(x + \lfloor \hat{u}(x)
floor)]$

 Encourage the estimator to assign a lower score to regions with higher error residuals.

 $\mathcal{L}_{\mathrm{reg}}$:Scoring estimator regularization

$$\mathcal{L}_{ ext{reg}} = rac{1}{|\Omega|} \sum_{x \in \Omega} [1 - \hat{S}(x)]^2$$

 Regularize the scoring map to avoid the trivial solution of all zeros.

$\mathcal{L}_{ ext{smooth}}$:Momentum-guided smoothness

Mean residual: $\mu_T = rac{1}{|\Omega|} \sum_{x \in \Omega} [I_t(x) - I_s(x + \lfloor \hat{u}_T(x)
floor)]^2$

Momentum: $b_T = \cos rac{\pi}{2} \mu_T; m_T = \gamma m_{T-1} + (1-\gamma) b_T$

 $\mathcal{L}_{ ext{smooth}} = m_T rac{1}{|\Omega|} \sum_{x \in \Omega} \|
abla \hat{S}(x) \|^2$

 We treat residuals as a proxy for time We use momentum-guided adaptive regularization to encourage exploration during early steps and exploitation during later steps

Results

Scoring map visualization

		ACDC			CAMU	\mathbf{S}
	$\overline{\mathrm{DSC}}$ \uparrow	$\mathrm{HD}\downarrow$	$\overline{\mathrm{ASD}}\downarrow$	$\overline{\mathrm{DSC}}$ \uparrow	$\text{HD}\downarrow$	$\overline{\mathrm{ASD}}\downarrow$
Undeformed	47.98	7.91	2.32	66.77	10.87	2.61
Elastix	77.26	4.95	1.28	80.18	10.02	1.81
Voxelmorph	79.48	4.79	1.27	81.50	8.72	1.74
NLL	76.49	5.46	1.45	75.24	11.05	2.20
$\succeq \beta$ -NLL	78.74	5.07	1.33	79.75	9.39	1.93
$\stackrel{\textstyle >}{\sim} \stackrel{\beta\text{-NLL}}{\operatorname{AdaFrame}}$	66.38	5.80	1.67	77.88	10.54	1.93
AdaReg	78.75	5.13	1.33	79.31	9.78	1.88
AdaCS (Ours)	80.50	4.69	1.23	81.74	8.55	1.72
Transmorph	76.94	5.51	1.30	79.24	10.30	1.79
⁸ NLL	73.12	7.22	$\bf 1.27$	75.08	11.60	1.79
Ε̈́β-NLL	75.74	6.12	1.29	77.39	10.99	1.86
eta NLL eta -NLL AdaFrame AdaReg	67.95	5.72	1.59	78.06	9.86	1.91
$\stackrel{{ m g}}{\it \sqsubseteq} { m AdaReg}$	76.22	5.68	1.29	78.12	10.62	1.84
AdaCS (Ours)	78.39	5.40	1.32	79.64	9.85	1.79

	ACDC			CAMUS		
	DSC ↑	$ J_{\hat{u}} \leq 0$	$\downarrow T_{ m train}$	DSC ↑	$ J_{\hat{u}} \leq 0$	1 2
Voxelmorph AdaCS (Ours)	79.48 ± 9.23 80.50 ± 8.58	$0.29 \\ 0.22$	$0.26 \\ 0.43$	81.50 ± 5.58 81.74 ± 5.36	0.60 0.30	
Transmorph AdaCS (Ours)	76.94 ± 8.93 78.39 ± 9.06	$0.76 \\ 0.57$	0.60 0.87	79.24 ± 6.06 79.64 ± 6.37	$1.41 \\ 0.70$	
Diffusemorph	67.38 ± 15.65	0.05	1.08	75.23 ± 8.71	0.05	

]	Loss	ACDC			CAMUS			
	$\overline{\mathcal{L}_{ ext{reg}}}$	$\mathcal{L}_{ ext{smooth}}$	$\overline{\mathrm{DSC}}$ \uparrow	$\mathrm{HD}\downarrow$	$ASD \downarrow$	$\overline{\mathrm{DSC}}$ \uparrow	$\mathrm{HD}\downarrow$	ASD .	
vxm	✓ ✓	Х ✓	80.24 80.50		1.23 1.23			1.74 1.72	
tsm	✓				1.33 1.32	79.58 79.64		1.81 1.79	
dfm	✓	X	71.62 72.09	5.56 5.35	1.58 1.53	77.32 77.65	9.71 9.82	2.00 1.99	
			Λ.C.	DC		C	Λ Ν ΛΤΙΟ	2	

		DSC ↑	$\mathrm{HD}\downarrow$	$ASD \downarrow$	DSC ↑	$\mathrm{HD}\downarrow$	AS
	NCC	78.55	4.94	1.29	77.01	10.23	1.
	MI	78.04	5.25	1.35	78.18	9.83	1.
	g TBL	79.31	4.64	1.23	81.18	8.91	1.
	ĭ MAE	78.27	5.36	1.43	78.59	10.23	1.
	MSE	79.48	4.79	1.27	81.50	8.72	1.
	AdaCS	80.50	4.69	1.23	81.74	8.55	1.
	NCC	73.77	6.64	1.12	73.03	11.87	1.
	MI	73.57	6.57	1.11	74.83	11.94	1.
	. TDI	70 00	P 11	1 07	70.10	0 75	1

Our proposed approach consistently outperforms baselines in various architectures and datasets and produces reasonably smooth displacement.

Application - cardiac strain analysis

Figure: A) Segmented clinical echo (rest); B) Rest radial strain overlayed with estimated displacement revealing akinetic septal and inferior walls.

We produce regional cardiac strain map that can be used to identify myocardial infarction.

Loss