Álgebra Lineal I

Usando Beamer (nunca ppt)

William Carlos Echegaray Castillo

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

14 de diciembre de 2020

Transformaciones Lineales

Proposición

Sean V, W espacios vectoriales, entonces la aplicación $\varphi : \mathcal{L}(V,W) \longrightarrow \mathbb{K}(m,n)$, definida por

$$\varphi(T)=A_T,$$

establece un isomorfismo entre \mathbb{K} -espacios vectoriales.

Prueba:

Verifique que

- 1. φ es una transformación lineal.
- 2. $dim(\mathcal{L}(V,W)) = dim(\mathbb{K}(m,n)) = mn$

Veamos que φ es inyectiva

- Sea $T \in \mathbb{N}(\varphi)$, entonces $\varphi(T) = A_T = [ai_{ij}] = 0$. Luego $T(v^j) = 0$ para $j = 1, 2, \dots, n$, entonces T se anula en una base, por tanto $(\forall v \in V)(T(v) = 0)$, entonces T = 0. Por tanto $\mathbb{N}(\varphi) = \{0\}$, entonces φ es inyectiva.
- ullet Ejercicio φ es sobreyectiva.

Proposición

Sean U, V, W espacios vectoriales, $T_1: U \longrightarrow V, T_2: V \longrightarrow W$ transformaciones lineales, entonces $T = T_2 \circ T_1: U \longrightarrow W$ es una tansformación que a través de φ (definida en la proposición anterior) satisface la siguiente propiedad

$$\varphi(T_2 \circ T_1) = \varphi(T_1)\varphi(T_2)$$

Prueba:

Sean $u^1, \dots, u^p, v^1, \dots, v^n$ y w^1, \dots, w^m bases de U, V y W respectivamente, entonces tenemos:

$$\mathcal{T}_1(u^k)=\sum_{j=1}^n b_{jk}v^j, \; \mathsf{para}\; k=1,\cdots,p$$
 $\mathcal{T}_2(v^j)=\sum_{j=1}^m a_{ij}w^j, \; \mathsf{para}\; j=1,\cdots,n.$

$$T_{2} \circ \left(T_{1}(u^{k})\right) = T_{2}\left(T_{1}(u^{k})\right) = T_{2}\left(\sum_{j=1}^{n} b_{jk}v^{j}\right) = \sum_{j=1}^{n} b_{jk}T_{2}(v^{j})$$

$$= \sum_{j=1}^{n} b_{jk}\left(\sum_{i=1}^{m} a_{ij}w^{i}\right)$$

$$= \sum_{i=1}^{m}\left(\sum_{j=1}^{n} a_{ij}b_{jk}\right)w^{i}, \quad k = 1, \dots, p.$$

También tenemos,

$$T_2 \circ (T_1(u^k)) = T_2(T_1(u^k)) = \sum_{i=1}^m c_{ik} w^i, \quad k = 1, \dots, p.$$

Dado que $\{w^1, \cdots, w^m\}$ es una base de W, entonces tenemos

$$c_{ik} = \sum_{i=1}^{n} a_{ij} b_{jk} = (A_{T_2} A_{T_1})_{ik}$$

Por tanto $A_{T_2 \circ T_1} = [c_{ik}] = A_{T_2} A_{T_1} \Longrightarrow \varphi(T_2 \circ T_1) = \varphi(T_1) \varphi(T_2)$.

Nota

Si V=W, entonces la matriz asociada a una transformación lineal $T:V\longrightarrow V$ la calculamos de la siguiente forma

$$T(v^j) = \sum_{i=1}^n a_{ij}v^i, \quad j=1,2,\cdots,n,$$

donde $\{v^1, v^2, \cdots, v^n\}$.

En este caso, el isomorfismo

$$\varphi: \mathscr{L}(V,V) \longrightarrow \mathbb{K}(n,n).$$

satisface la proposición anterior.

Proposición

Sean V un espacio vectorial, con dim(V) = n, $T \in \mathcal{L}(V, V)$, $y A_T$ la matriz asociada a T en alguna base. Entonces T es un isomorfismo ai, y solo si A_T es inversible.

Prueba

Supongamos que T es isomorfismo, entonces existe $L \in \mathscr{L}(V,V)$ tal que

$$L \circ T = I = T \circ L$$
.

Aplicando φ , entonces tenemos

$$A_L A_T = I = A_T A_L, \quad (A_I = I).$$

por tanto A_T es invertible.

Recíprocamente, supongamos que A_T sea no singular, entonces existe una transfomación $L \in \mathcal{L}(V, V)$ tal que

$$\varphi(L) = A_{\tau}^{-1}$$
, es decir, $A_{\tau}^{-1} = A_{L}$.

Luego

$$\varphi(L \circ T) = \varphi(L)\varphi(T) = A_{\tau}^{-1}A_{\tau} = I,$$

y dado que φ es inyectiva, tenemos

$$L \circ T = I$$
.

De manera similar, se tiene que $T \circ L = I$.

Por tanto T es inversible, y de esta manera tenemos que T es un isomorfismo.

Ahora veamos la relación que existe entre las matrices asociadas a una transformación lineal T y a su transformación lineal transpuesta T^{∇} . Consideremos los espacios vectoriales V, W y sus correspondientes base $\{v^1, \cdots, v^n\}$, $\{w^1, \cdots, w^m\}$ y $\{v^1, \cdots, v^n\}$, $\{w^1, \cdots, w^m\}$ sus respectivas bases duales.

Si $T:V\longrightarrow W$ es una transformación lineal y $T^{\nabla}:W^*\longrightarrow V^*$ la transformación lineal transpuesta, entonces

$$T(v^j) = \sum_{i=1}^m a_{ij} w^i, \quad i = 1, \dots, n, \quad A_T = [a_{ij}] \in \mathbb{K}(m, n)$$
 $T^{\nabla}(w_*^i) = \sum_{j=1}^n b_{ji} v_*^j, \quad i = 1, \dots, m, \quad A_{T^{\nabla}} = [b_{ji}] \in \mathbb{K}(n, m).$

Ahora determinemos la relación entre A_T y $A_{T^{\nabla}}$, para ello calculamos como sigue

$$\begin{split} \left[T^{\nabla}(w_*^i) \right] (v^t) &= (w_*^i \circ T)(v^t) = w_*^i \Big(T(v^t) \Big) \\ &= w_*^i \left(\sum_{k=1}^m a_{kt} w^t \right) = \sum_{k=1}^m a_{kt} w_*^i (w^k) = a_{it}. \end{split}$$

También lo podemos calcular

$$\left[T^{\nabla}(w_*^i)\right](v^t) = \left(\sum_{j=1}^n b_{ji}v_*^j\right)(v^t) = \sum_{j=1}^n b_{ji}v_*^j(v^t) = b_{it}.$$

Luego llegamos a la siguiente

Proposición

Con las notaciones anteriores tenemos

$$A_{T^{\nabla}}=A_{T}^{t}$$
.

Proposición

Sean $\{v^1, \dots, v^n\} \subset V$ y $\{w^1, \dots, w^m\} \subset W$ las bases de dichos espacios vectoriales. Además $\{e^1, \dots, e^n\}$ y $\{f^1, \dots, f^m\}$ las bases de $\mathbb{K}(n,1)$ y $\mathbb{K}(m,1)$ respectivamente. Si la transformación $T: V \longrightarrow W$ lineal posee una matriz asociada A_T en las bases dadas, entonces

1. El diagrama de espacios vectoriales y transformaciones lineales

donde
$$\varphi(v^j) = e^j$$
, para, $j = 1, \dots, n$
 $\varphi(w^i) = f^i$, para, $i = 1, \dots, m$
es conmutativo.

2.
$$r_c(A_T) = dim(T(V))$$
.

Prueba:

1. Veamos que φ y φ' son isomorfos:

Sabemos que cualquier elemento $v \in V$ y $w \in W$ pueden ser expresados como una combinación lineal de los elementos de las bases $\{v^1, \cdots, v^n\}$ y $\{w^1, \cdots, w^m\}$ respectivamente, es decir, existen escalares $x_1, \cdots, x_n, y_1, \cdots, y_m$ tales que

$$v = \sum_{j=1}^{n} x_j v^j, \quad w = \sum_{j=1}^{m} y_j w^j,$$

por tanto

$$\varphi\left(\sum_{j=1}^n x_j v^j\right) = \sum_{j=1}^n x_j e^j, \quad \varphi'\left(\sum_{i=1}^n y_i w^i\right) = \sum_{i=1}^n y_i f^i.$$

También, tenemos que

$$T(v^j) = \sum_{i=1}^m a_{ij}w^i, \quad j = 1, \cdots, n$$

por tanto esta igualdad define la matriz $A_T = [a_{ij}]$. Luego con las notaciones dadas, tenemos

$$\varphi' \circ T(v^j) = \varphi'\left(\sum_{i=1}^m a_{ij}w^i\right) = \sum_{i=1}^m a_{ij}f^i,$$

$$L_{A_T} \circ \varphi(v^j) = A_T(e^j) = \sum_{i=1}^m a_{ij}f^i.$$

Por tanto, $\varphi' \circ T(v^j) = L_{A_T} \circ \varphi(v^j)$, para $j = 1, \dots, n$. Entonces $\varphi' \circ T = L_{A_T} \circ \varphi$, es decir, el diagrama conmuta.

2. De las igualdades

$$\varphi'\Big(T(v^j)\Big)=A_T(e^j), \quad ext{para} \quad j=1,\cdots,n,$$

nos inidcan que $\varphi': T(V) \longrightarrow A_T(\mathbb{K}(n,1))$ es epiyectiva, por tanto un ismorfismo, de donde

$$dim(T(V)) = dim(A_T(\mathbb{K}(n,1))) = r_c(A_T).$$

Definición

Sean $A, B \in \mathbb{K}(n, n)$ matrices, decimos que ellas son

1. equivalentes si existen matrices $P, Q \in \mathbb{K}(n, n)$ no singulares tales que

$$B = QAP$$

2. **semejantes** se existe una matriz $P \in \mathbb{K}(n, n)$ no singular tal que

$$B = P^{-1}AP$$
.

3. congruentes si existe una matriz $P \in \mathbb{K}(n, n)$ no singular tal que

$$B = P^t A P$$
.

El estudio de equivalencia y semejanza de matrices se presentan en los casos de matrices asociadas a una transformación lineal, mientras que la congruencia aparece cuando se estudian las matrices asociadas a aplicaciones bilineales y formas cuadráticas.

Consideremos las bases $\Gamma = \{v^1, \dots, v^n\}$ y $\Omega = \{w^1, \dots, w^n\}$ de un espacio vectorial V, entonces lass relaciones

$$v^{j} = \sum_{i=1}^{n} \alpha_{ij} w^{i}, \quad j = 1, 2, \dots, n,$$
 $w^{k} = \sum_{i=1}^{n} \beta_{ik} w^{i}, \quad k = 1, 2, \dots, n$

determinan las matrices

$$P = [\alpha_{ij}]$$
 y $Q = [\beta_{ik}].$

Donde la matriz P se llama matriz cambio de base de Γ en Ω , y la matriz Q se llama matriz cambio de base de Ω en Γ

Ejemplo

Sea $V=\mathbb{R}^2$, y las bases $\{w^1=(2,1),w^2=(3,2)\}$ y $\{e^1,e^2\}$ canónica de V, la matrices cambio de base para P y Q se obtienen

$$\left\{ \begin{array}{l} e^1 = (1,0) = & 2w^1 & - & w^2 \\ e^2 = (0,1) = -3w^1 & + & 2w^2 \end{array} \right. , \quad \left\{ \begin{array}{l} w^1 = (2,1) = 2e^1 & + & e^2 \\ w^2 = (3,2) = 3e^1 & + & 2e^2 \end{array} \right.$$

donde

$$P = \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}, \qquad Q = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$$

Nota

Consideremos $v = (a, b) \in \mathbb{R}^2$, entonces podemos escribir de dos maneras

$$v = ae^{1} + be^{2}$$

 $v = (2a - 3b)w^{1} + (-a + 2b)w^{2}$,

luego tenemos $x_v = \begin{vmatrix} a \\ b \end{vmatrix}$ es el vector de componentes de v respecto $a \{e^1, e^2\}$, mientras que $y_v = \begin{bmatrix} 2a - 3b \\ -a + 2b \end{bmatrix}$ es el vector de

componentes de v respecto a $\{w^1, w^2\}$.

Observe que $Px_v = y_v$ y $Qy_v = x_v$

En general tenemos, sea $v \in V$ cualquiera, entonces podemos escribir en función de las bases Γ y Ω como sigue

$$v = \sum_{j=1}^{n} x_j v^j$$
, $y \qquad v = \sum_{j=1}^{n} x_j w^j$

que determinan los vectores

$$x_{\nu} = (x_1, \dots, x_n)^t, \quad y \quad y_{\nu} = (y_1, \dots, y_n)^t.$$