MISCELLANEOUS PAPER EL-91-7

US Army Corps of Engineers

INFORMATION SUMMARY, AREA OF CONCERN: SAGINAW RIVER AND SAGINAW BAY

D. L. Brandon, C. R. Lee, J. W. Simmers H. E. Tatem, J. G. Skogerboe

Environmental Laboratory

DEPARTMENT OF THE ARMY

Waterways Experiment Station, Corps of Engineers 3909 Halls Ferry Road, Vicksburg, Mississippi 39180-6199

March 1991 Final Report

Approved For Public Release; Distribution Unlimited

Prepared for US Environmental Protection Agency Great Lakes National Program Office 230 South Dearborn Street Chicago, Illinois 60604

Unclassified SECURITY CLASSIFICATION CO.

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188					Form Approved OMB No. 0704-0188	
1a REPORT SECURITY CLASSIFICATION Unclassified		to RESTRICTIVE	MARKINGS			
2a. SECURITY CLASSIFICATION AUTHORITY			AVAILABILITY C			
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE		unlimited.	•	celease;	distribution	
4 PERFORMING ORGANIZATION REPORT NUMBER(S)		5 MONITORING ORGANIZATION REPORT NUMBER(S)				
Miscellaneous Paper EL-91-7						
6a NAME OF PERFORMING ORGANIZATION USAEWES, Environmental Laboratory	6b. OFFICE SYMBOL (If applicable)	7a. NAME OF M	ONITORING ORGA	ANIZATION		
6c. ADDRESS (City, State, and ZIP Code)		7b. ADDRESS (City, State, and ZIP Code)				
3909 Halls Ferry Road Vicksburg, MS 39180-6199		<u> </u> 				
8a. NAME OF FUNDING/SPONSORING ORGANIZATION USEPA, Great Lakes	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMEN	T INSTRUMENT (DENTIFICAT	ION NUMBER	
8c. ADDRESS (City, State, and ZIP Code)	National Program Office (ARCS) Ac ADDRESS (City State and ZIR Code)		10 SOURCE OF FUNDING NUMBERS			
230 South Dearborn Street Chicago, IL 60604		PROGRAM ELEMENT NO	PROJECT NO.	TASK NO.	WORK UNIT ACCESSION NO	
			<u> </u>	<u> </u>		
11. TITLE (Include Security Classification) Information Summary, Area of Co	ncern: Saginaw	River and S	aginaw Bay			
12. PERSONAL AUTHOR(S)						
Brandon, D. L.; Lee, C. R.; Simu 13a. TYPE OF REPORT 13b. TIME CO		tem, H. E.;			PAGE COUNT	
	<u>88</u> т о <u>Dec</u> <u>8</u> 8	March 1		,55,,	356	
16. SUPPLEMENTARY NOTATION Available from National Technic	al Information	Service, 528	5 Port Roya	ıl Road,		
Springfield, VA 22161 17. COSATI CODES	18 SUBJECT TERMS (Continue on revers	e if necessary an	d identify	hy block number)	
FIELD GROUP SUB-GROUP	See revers		e ii liecessary ali	o ideiiiniy i	by block fidingery	
	See levels	e.				
19. ABSTRACT (Continue on reverse if necessary a	and identify by block no	umber)				
The Water Quality Act of 1987, Section 118, authorizes the Great Lakes National Program						
Office (GLNPO) to carry out a 5-year study and demonstration project, Assessment and Remedia-						
tion of Contaminated Sediments (ARCS), with emphasis on the removal of toxic pollutants from						
bottom sediments. Information from the ARCS program is to be used to guide the development						
of Remedial Action Plans (RAPs) for 42 identified Great Lakes Areas of Concern (AOC) as well as Lake-wide Management Plans. The AOCs are areas where serious impairment of beneficial						
uses of water or biota (drinking, swimming, fishing, navigation, etc.) is known to exist, or						
where environmental quality criteria are exceeded to the point that such impairment is						
likely. Priority consideration was given to the following AOCs: Saginaw Bay, MI; Sheboygan						
Harbor, WI; Grand Calumet River, IN; Ashtabula River, OH; and Buffalo River, NY.						
The Environmental Laboratory (EL) of the US Army Engineer Waterways Experiment Station (WES) was asked to review existing data and information for each of the five priority AOCs.						
	-			Continu		
20 DISTRIBUTION/AVAILABILITY OF ABSTRACT		21 ABSTRACT SE		_		
MUNCLASSIFIED/UNLIMITED ☐ SAME AS RE 22a. NAME OF RESPONSIBLE INDIVIDUAL	OTIC USERS	226 TELEPHONE (classif		
DD Form 1473, JUN 86	Previous editions are o	obsolete.	SECURITY	CLASSIFICA	ATION OF THIS PAGE	

SECURITY CLASSIFICATION OF THIS PAGE

18. Subject Terms (continued).

Atmospheric deposition
Endangered species
Fish tissue concentrations
Land use
Metal contamination
Pesticides and PCBs

Phosphorus loadings Plant bioassay Point and non-point source discharges Spills Water quality

19. Abstract (continued).

The approach used by WES was to bring together WES scientists who have been conducting research on the various aspects of contaminant mobility in the aquatic environment and develop a list of information required to evaluate the potential for contaminant mobility. A team of WES scientists then visited the RAP coordinator and associated staff for each AOC. Corps Districts responsible for the navigation projects in each AOC were also visited. This report summarizes the information obtained for the Saginaw River and Saginaw Bay AOC. The report attempts to retrieve information by subject in a quick and easy manner (GLNPO Subject-Reference Matrix). Data and information from numerous reports have been included as figures and tables. Wherever possible, references are given for the included data and information.

Unclassified

EXECUTIVE SUMMARY

The Water Quality Act of 1987, Section 118, authorizes the Great Lakes National Program Office (GLNPO) to carry out a 5-year study and demonstration project, Assessment and Remediation of Contaminated Sediments (ARCS), with emphasis on the removal of toxic pollutants from bottom sediments.

Information from the ARCS program is to be used to guide the development of Remedial Action Plans (RAPs) for 42 identified Great Lakes Areas of Concern (AOC) as well as Lake-wide Management Plans. The AOCs are areas where serious impairment of beneficial uses of water or biota (drinking, swimming, fishing, navigation, etc.) is known to exist, or where environmental quality criteria are exceeded to the point that such impairment is likely. Priority consideration was given to the following five AOCs: Saginaw Bay, MI; Sheboygan Harbor, WI; Crand Calumet River, IN; Ashtabula River, OH; and Buffalo River, NY.

The ARCS Program is to be completed during the period 1988-1992. The overall objectives of the ARCS program are:

- a. To assess the nature and extent of bottom sediment contamination at selected Great Lakes AOC.
- b. To evaluate and demonstrate remedial options, including removal, immobilization, and advanced treatment technologies, as well as "No-Action" alternatives.
- c. To provide guidance on assessment and remedial action to the various levels of government in the US and Canada in the implementation of Remedial Action Plans (RAPs) for the areas of concern, as well as direction for future evaluations in other areas.

The Environmental Laboratory (EL) of the US Army Engineer Waterways
Experiment Station (WES) was asked to review existing data and information for
each of the five priority AOCs. The approach used by WES was to bring
together WES scientists who have been conducting research on the various
aspects of contaminant mobility in the aquatic environment and develop a list
of information (Table 1) required to evaluate the potential for contaminant
mobility. All contaminant migration parhways were considered and are shown in
Figure 1. A team of WES scientists then visited the RAP coordinator and

associated staff for each AOC. Corps Districts responsible for the navigation projects in each AOC were also visited. During these meetings discussions centered around what information was available for each item on the list of information developed by WES. Sources of additional information were obtained from the discussions.

This report summarizes the information obtained for the Saginaw River and Saginaw Bay AOC. The report attempts to retrieve information by subject in a quick and easy manner (GLNPO Subject-Reference Matrix). Data and information from numerous reports have been included as figures and tables. Wherever possible, references are given for the included data and information. The entire reference section from the Michigan Department of Natural Resources Remedial Action Plan for Saginaw River and Saginaw Bay Area of Concern 1988 is included herein (Appendix 3).

PREFACE

This report presents a summary of existing data and information related to the Saginaw River and Saginaw Bay Area of Concern. The study was conducted by the US Army Engineer Waterways Experiment Station (WES) during the period August 1988 through 15 December 1988 and August 1989 through September 1989 by Dr. C.R. Lee, Soil Scientist; Dr. J.W. Simmers, Research Biologist; Dr. H.E. Tatem, Aquatic Biologist, Mr. D.L. Brandon, Statistician, and Mr. J.G. Skogerboe, Physical Scientist, of the Contaminant Mobility and Regulatory Criteria Group (CMRCG) under the supervision of Dr. L.H. Saunders, Chief, CMRCG; Mr. D.L. Robey, Chief, Ecosystem Research and Simulation Division (ERSD); and Dr. J. Harrison, Chief, Environmental Laboratory. The study was initially conducted under the general supervision of Mr. D. Cowgill, NCD, and Mr. T. Kizlauskas, USEPA Great Lakes National Program Office (GLNPO), and later under the supervision of Mr. J. Miller, NCD, and Mr. D. Cowgill, USEPA GLNPO.

Generous cooperation and assistance in locating existing data and information were given by Mr. D. Cowgill, USEPA GLNPO; Mr. J. Miller, US Army Engineer District, Chicago; Ms. P. Bedore, Operations Division; Mr. D. Bowman, Planning Division; and Mr. F. Snitz, Planning Division; US Army Engineer District, Detroit; Messrs. B. Day, G. Goudy, and R. Lundgren, MDNR; and Ms. D. Klemans. MDNR.

Directors of WES during the preparation of this report were COL Dwayne G. Lee, EN, and COL Larry B. Fulton, EN. Technical Director was Dr. Robert W. Whalin.

This report should be cited as follows:

Brandon, D. L., Lee, C.R., Simmers, J.W., Tatem, H.E., and Skogerboe, J.G. 1991. "Information Summary, Area of Concern: Saginaw River and Saginaw Bay," Miscellaneous Paper EL-91-7, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

TABLE OF CONTENTS

	<u>Page</u>
EXECUTIVE SUMMARY	1
PREFACE	3
LIST OF TABLES	6
LIST OF FIGURES	13
	13
CONVERSION FACTORS, NON-SI TO SI (METRIC) UNITS OF MEASUREMENT	19
INTRODUCTION	20
Background	20
Purpose	21
Scope	21
SUMMARY OF INFORMATION	22
AOC Boundary	22
Contaminants of Concern	22
Level of Contaminants	23
Volume of Contaminated Sediments	23
Sediment Data	23
Water Quality Data Waterway Hydraulics Data	25 25
Point Source Discharges	26
Non-Point Source Discharges	26
Spills	27
Air Quality	27
Landfill, Hazardous Waste, and Superfund Sites	28
Land Use Within the AOC	28
Bioassay Data	28
Biological Data Fish	28 28
Benthic	29
Plankton	29
Birds	29
Plants	30
Mammals	30
Endangered Species	30
Wildlife Habitat	30
Risk Assessment	30
Water	30
Ecosystem	31
Remedial Actions	31
GLNPO SUBJECT-REFERENCE MATRIX	33
REFERENCES	37
POINTS OF CONTACT	39
TARIFS 1 - 68	

FIGURES 1 - 62

Appendix 1: Recent and Projected Populations for
Townships, Villages, and Cities Within the
Saginaw Bay Drainage Basin

Appendix 2: Distribution of Establishments by
Major Industrial Group and Employment Range
for Counties in the Saginaw Bay Drainage Basin

Appendix 3: Literature Cited (from Michigan
Department of Natural Resources Remedial
Action Plan for Saginaw River and Saginaw Bay
Area of Concern, 1988).

LIST OF TABLES

- Table 1. Information Required to Evaluate the Potential for Contaminant Mobility
- Table 2a. Ambient Water Criteria (ug/l) for Selected Toxic Organic Substances
- Table 2b. Summary of Michigan Surface Water Quality Standards (from Part 4 of P.A. 245 of 1929, as Amended in 1986)
- Table 2c. Water Hardness Values and Associated Michigan Rule 57(2) Metal Guideline Levels for Selected Saginaw Bay Tributaries
- Table 2d. Trophic Condition Classification Criteria for Total Phosphorus (LTI 1983)
- Table 3. Maximum Contaminant Levels for Drinking Water Supplies in Michigan (from P.A. 399, 1976)
- Table 4. Contaminant Trigger Levels (mg/kg) Currently used in Establishment of Public Health Fish Consumption Advisories (Kreis and Rice 1985; Humphrey Hesse 1986)
- Table 5a. USEPA Pollution Criteria (mg/kg dry wt) for Great Lakes Harbor Sediments (Modified from Rossmann et al. 1983)
- Table 5b. Basin Specific Background Levels of Pollutants in Sediments of the Great Lakes (mg/kg). Additional Work is Necessary to Quantify Background Levels of Pollutants in the Basins Where No Data Currently Exists (Report to the Great Lakes Water Quality Board, 1987)
- Table 6a. Sediment Monitoring Activities in Saginaw Bay and Saginaw River, Michigan (Cowgill 1989)
- Table 6b. Average Concentration (mg/kg) of Metals in Surface Sediments of Inner Saginaw Bay and Southern Lake Huron, 1980 (Robbins 1986)
- Table 6c. Summary of Contaminants (ug/g) in 42 Areas of Concern Within the Great Lakes Basin (as provided to the IJC Regional Office as of October 1987; Report of the Sediment Subcommittee and its Assessment Work Group to the Water Quality Board, 1988)
- Table 7a. Organic Contaminant Concentrations (mg/kg dry weight) Found in Sediments of the South Branch Shiawassee River Below Howell, 1974 (MDNR, 1977)
- Table 7b. Metal and Nutrient Concentrations (mg/kg dry weight) Found in Sediments from Marion and Genoa Drain and South Branch Shiawassee River, 1974 (MDNR, 1979a)

- Table 8. Organic Contaminant Concentrations (mg/kg dry weight) Found in Sediments of the South Branch Shiawassee River Below Howell, August 1977 (MDNR, 1979)
- Table 9. PCB Concentrations (dry weight) in Sediments of the South Branch Shiawassee River from Howell to Corunna, October 1977 (MDNR, 1977)
- Table 10. Metal Concentrations (mg/kg) Found in Shiawassee River Sediments, Owosso, 1980 (MDNR, 1980)
- Table 11. Metal Concentrations (mg/kg) in Shiawassee River Sediments Collected near Owosso, 1972 (MDNR, 1979a)
- Table 12. Metal and Phosphorus Concentrations (mg/kg) in Tittabawassee River Sediments, 1981 (Rossmann et al., 1983; see Figures 12, 13a and 13b)
- Table 13. Organic Concentrations (ug/kg) in Tittabawassee River Sediments and Flood Plain Samples (see Figures 12, 13a and 13b)
- Table 14. Conventional Metal and Organic Parameter Concentrations (mg/kg dry weight) in Flint River Sediments, 1974 (MDNR, 1977; see Figure 14)
- Table 15. PBB Concentrations (ug/kg dry weight) in Pine River Sediments, 1974, 1976, and 1977 (Rice et al., 1980; see Figure 15)
- Table 16a. PBB, DDT and Chlordane Residue Concentrations in Pine River Sediment Grab Samples, 1980-1981, (Rice et al., 1982; see Figure 16)
- Table 16b. PBB, DDT and Chlordane Residue Concentrations in Pine River Sediment Core Samples, 1980-1981, (Rice et al., 1982; see Figure 16)
- Table 17a. PCB, Dibenzofuran and Dibenzodioxin Concentrations in Saginaw River Sediments, 1978, 1980 and 1983 (USFWS 1983)
- Table 17b. Saginaw River Navigation Channel Sediment Concentrations (mg/kg) of Selected Metal Parameters, 1983 (USACE, 1983; see Figures 17a and 17b)
- Table 17c. Saginaw River Navigation Channel Sediment Concentrations (mg/kg) of Selected Conventional and Organic Parameters, 1983 (USACE 1983; see Figures 17a and 17b)
- Table 18a. Saginaw River Project On-Site Data and Sample Descriptions May 2-3, 1988 (USACE, Detroit 1988)
- Table 18b. Chemical Analysis of Sediment Samples (USACE, Detroit 1988)
- Table 18c. Pesticide & PCB Analysis of Sediments (USACE, Detroit 1988)

- Table 19a. Secchi Depth (m) by Season for Inner Saginaw Bay, 1974-1980 (Bierman ec al. 1983)
- Table 19b. Mean Secchi Disc Depth (m) by Segment in Saginaw Bay, 1974 and 1975 (Smith et al., 1977; see Figure 49)
- Table 19c. Average Total Phosphorus Concentrations (ug/1) in Water for Inner Saginaw Bay, During Spring and Fall, 1974-1980 (Bierman et al. 1984)
- Table 19d. Mean Concentrations (ng/l) and Percent Residues of Several Organic Contaminants Found in Saginaw Bay Water Samples, 1967-1979 (Kreis and Rice 1985)
- Table 19e. Mean Concentrations of PCB (ug/l) and Suspended Solids (mg/l) in Saginaw Bay, 1979 (Richardson et al. 1983; see Figure 49)
- Table 19f. Concentrations (ug/l) of Metals on Suspended Particulate Size Fractions, Saginaw Bay, 1978 (Rygwelski et al. 1984)
- Table 19g. Water Sampling Sites on Saginaw Bay Basin Tributaries
- Table 19h. Fecal Coliform and Fecal Streptococci Values in Surface Waters of the Saginaw Bay Watershed Measured by USGS in 1983, 1984, and 1985 (USGS 1983, 1984 and 1985)
- Table 20. Morphometric Data for Saginaw Bay
- Table 21. Water Discharge Records for Rivers in the Saginaw Bay Drainage Basin
- Table 22. Average Total Flow of Treated Wastewater, Phosphorus and Suspended Solids Loads to the Saginaw River and Its Tributaries from Major Municipal Dischargers, 1986
- Table 23. Phosphorus Loads from Municipal Wastewater Treatment Plants to Surface Waters in the Saginaw Bay Watershed, 1974, 1979-1981 \ JC 1983), and 1983-1986
- Table 24. Estimated Total 1987 Loads (kg) of Phosphorus and Total Suspended Solids (TSS) to the Saginaw River from Selected Point Source Dischargers
- Table 25. Estimated 1987 Loads (kg) of Selected Organics to Surface Waters in the Saginaw Bay Watershed from Major Point Source Dischargers with NPDES Permit Requirements for Those Farameters
- Table 26. Estimated 1987 Loads (kg) of Selected Metals to Surface Waters in the Saginaw Bay Watershed from Major Point Source Dischargers with NPDES Permit Requirements for Those Parameters (Data from MDNR DMR Summaries)

- Table 27. Summary of Municipalities Suspected of Generating Intermittent Point Sources (The Chester Engineers 1976)
- Table 28. Average Erosion Rates (metric tons/acre) and Estimated Annual Sheet, Rill and Wind Erosion (metric tons/year) on Cropland for Selected Counties in the Saginaw Bay Drainage Basin in 1982 (USDA-SCS et al. 1987)
- Table 29. Median Phosphorus Soil Test Levels (pounds per acre) for Counties in the Saginaw Bay Drainage Basin, 1972-1986 (MDNR 1985; Warncke 1987)
- Table 30. Amount of Animal Waste Predicted to be Delivered to the Saginaw Bay Watershed (MDNR 1985)
- Table 31a. Preliminary List of NPS and Integrated Watershed Models Selected for Review (Report to the Great Lakes Water Quality Board, 1987)
- Table 31b. Characteristics and Capabilities of Selected NPS Runoff Procedures and Models (Report to the Great Lakes Water Quality Board, 1987)
- Table 31c. Characteristics and Capabilities of Integrated Watershed Models (Report to the Great Lakes Water Quality Board, 1987)
- Table 32. Total Deposition of Airborne Trace Organics to Lake Huron in Metric Tons per Year (Eisenreich et al. 1981)
- Table 33a. Wet Precipitation, Dry Deposition and Bulk Atmospheric Loading of PCBs (gm/km²/yr), Measured at Selected Sample Sites Along the Saginaw Bay Shoreline (Murphy et al. 1981; Murphy et al. 1982)
- Table 33b. Atmospheric Deposition Rates (kg/km²/yr) of Nutrients and Chlorides at Bay City, Port Austin and Tawas Point Sample Stations, 1982-1984 (Data from GLAD Sampling Network Database)
- Table 34. Atmospheric Deposition Rates (kg/km²/yr) of Heavy Metals at Bay City, Port Austin and Tawas Point Sample Stations, 1982-1984 (data from GLAD Sampling Network Database)
- Table 35. Mean and Range of pH Values in Precipitation Samples at Bay City, Port Austin and Tawas Point, 1981-1985 (DeGuire 1986a)
- Table 36. Average Monthly and Annual Precipitation Amounts (Inches) at Reporting Stations Within the Saginaw Bay Drainage Basin
- Table 37. Act 307 Sites Affecting Surface Water in the Saginaw Bay Watershed (MDNR 1988)
- Table 38. Act 307 Sites Affecting Groundwater in the Saginaw Bay Watershed (MDNR 1988)

- Table 39a. Act 307 Sites Affecting Resources Other Than Surface Water or Groundwater in the Saginaw Bay Watershed (MDNR 1988)
- Table 39b. Act 307 Priority List, Two Sites in the Saginaw Bay Watershed (MDNR 1988)
- Table 40. Environmental Protection Agency Superfund Sites in the Saginaw Bay Watershed
- Table 41. Crop Acreage Totals for Counties in the Saginaw Bay Drainage Basin
- Table 42. Livestock Populations and Acreage Totals for Hay and Pasture Within the Saginaw Bay Drainage Basin (Bureau of the Census 1984)
- Table 43. Fish Consumption Advisories for 1988 in the Saginaw Bay Watershed (MDNR 1988; MDPH 1988)
- Table 44. Contaminant Concentrations (mg/kg) in Fish Samples from the Shiawassee River, 1985 (MDNR, unpublished data)
- Table 45. Contaminant Concentrations (mg/kg) in Fish Samples from the Cass River, 1984-1985 (MDNR, unpublished data)
- Table 46. Contaminant Concentrations in Fish Samples from the Tittabawassee River, at Smith's Crossing, 1984-1985 (MDNR, unpublished data; see Figure 13b)
- Table 47. Contaminant Concentrations (mg/kg) in Fish Samples from the Chippewa River, 1984-1985 (MDNR, unpublished data)
- Table 48. Contaminant Concentrations (mg/kg) in Fish Samples from the Pine River, 1984-1985 (MDNR, unpublished data)
- Table 49. Contaminant Concentrations in Fish Samples from the Saginaw River, 1986 (MDNR, unpublished data)
- Table 50. Concentrations (ng/kg) of 2,3,7,8-Tetrachlorodibenzo-p-dioxin in Fish Samples from the Saginaw Bay Watershed (DeVault 1984)
- Table 51. Concentrations (ng/kg) of TCDD in Commercial Fish Samples from Saginaw Bay, 1979-1982 (Firestone and Nieman 1986)
- Table 52. Contaminant Concentrations (mg/kg) in Carp, Catfish and Walleye Samples from Saginaw Bay, 1982-1986 (MDA and FDA, unpublished data)
- Table 53. Coho Salmon Collection Data 1984 (DeVault et al., 1988)
- Table 54. Contaminant Concentrations (ug/g) in Great Lakes Fall Run Coho Salmon Fillets 1984 (DeVault et al., 1988)
- Table 55. PCBs and DDT in Saginaw Bay White Suckers (Kononen 1989)

- Table 56. Results of Tier 7 Fish Great Lakes Region (Kuehl 1989)
- Table 57. Benthic Macroinvertebrate Taxa Collected from the Saginaw Bay
 Navigation Approach Channel to the Saginaw River, July 1983 (USACE 1984)
- Table 58. Benthic Macroinvertebrates Collected in the Saginaw Bay
 Navigational Approach Channel and Their Pollution Tolerance
 Classification (USACE 1984; see Figure 6)
- Table 59. Benthic Macroinvertebrate Taxa Collected from Saginaw Bay in 1956 (Brinkhurst 1967) and 1978 (White et al. unpublished)
- Table 60. Benthic Macroinvertebrate Taxa Collected from the Saginaw River, July 1983 (USACE 1984)
- Table 61. Benthic Macroinvertebrates Collected in the Saginaw River and Their Pollution Tolerance Classification (USACE 1984; see Figures 17a and 17b)
- Table 62a. Seasonal Phytoplankton Concentrations (mg/l dry weight) in Saginaw Bay Segment 2, and Number of Annual Odor Days and Maximum Odor Value, 1974-1976 and 1980 (Dolan et al. 1986)
- Table 62b. Abundance (Mean Number of Individuals/Liter) of Selected Rotifers and Mean Surface Values of Selected Physiochemical Variables in Groups of Stations Identified by Cluster Analysis, 1974 (Gannon 1981)
- Table 63. Abundance (percent composition) of Selected Crustacean Plankters and Mean Surface Values of Selected Limnological Variables in Groups of Saginaw Bay Stations Identified by Cluster Analysis, October 6-8, 1974 (Gannon 1981)
- Table 64a. Organochlorine Residue Levels (mg/kg) in Herring Gull Eggs, Channel/Shelter Island, 1980-1982, and Little Charity Island, 1980, Saginaw Bay (Struger et al. 1985)
- Table 64b. Lipid and Contaminant Levels in Herring Gull Eggs From Annual Monitor Colonies on the Great Lakes, 1980, 1985-1988 (Great Lakes Water Quality Board Report to the International Joint Commission, 1989)
- Table 65. Geometric Means, Ranges and Numbers of Eggs with Quantifiable Residues of Organic and Inorganic Contaminants (mg/kg) in Common Tern Eggs Collected From Three Subcolonies Nesting in Saginaw Bay, 1984 (USFWS, unpublished)
- Table 66. Total PCB and DDE Concentrations (mg/kg) in Mallard Carcasses After 0, 10, 25, 44, 84 and 86 Days of Exposure on the Channel/Shelter Island Confined Disposal Facility, Saginaw Bay (USFWS, unpublished)

- Table 67. Chemicals Found in the Great Lakes Which May Have Adverse Impacts on Human Health in the Event of High Local Contamination (IJC 1983)
- Table 68. Municipal Wastewater Treatment Construction Grants by River Basin in the Saginaw Bay Watershed, 1972-1988

LIST OF FIGURES

- Figure 1. Contaminant migration pathways for evaluation of in-place contaminated sediments
- Figure 2. Location of the Saginaw River and Saginaw Bay AOC
- Figure 3. Boundary of the Saginaw River and Saginaw Bay AOC
- Figure 4. Major tributaries to Saginaw Bay
- Figure 5a. Spatial distribution of PCB concentrations in surface sediments (1-2 cm) of inner Saginaw Bay, 1978 and 1980 (USEPA unpublished)
- Figure 5b. Spatial distribution of cadmium concentrations in surface sediments (1-2 cm) of inner Saginaw Bay, 1978 (Robbins 1986)
- Figure 5c. Spatial distribution of chromium concentrations in surface sediments (1-2 cm) of inner Saginaw Bay, 1978 (Robbins 1986)
- Figure 5d. Spatial distribution of copper concentrations in surface sediments (1-2 cm) of inner Saginaw Bay, 1978 (Robbins 1986)
- Figure 5e. Spatial distribution of nickel concentrations in surface sediments (1-2 cm) of inner Saginaw Bay, 1978 (Robbins 1986)
- Figure 5f. Spatial distribution of lead concentrations in surface sediments (1-2 cm) of inner Saginaw Bay, 1978 (Robbins 1986)
- Figure 5g. Spatial distribution of zinc concentrations in surface sediments (1-2 cm) of inner Saginaw Bay, 1978 (Robbins 1986)
- Figure 6. PCB concentrations in sediments of inner Saginaw Bay collected from the navigation channel at the mouth of the Saginaw River, 1978, 1980, and 1983 (USACE, unpublished)
- Figure 7. South Branch, Shiawassee River, 1974 sampling station locations and wastewater discharges (MDNR 1979a)
- Figure 8. South Branch, Shiawassee River, sediment survey sampling locations, August 1977 (MDNR 1977)
- Figure 9. 1974 and 1977 sampling locations for sediments, South Branch, Shiawassee River, Howell to Corunna (MDNR 1977)
- Figure 10. Shiawassee River sediment sampling stations near Owosso, 1980 (MDNR 1980)
- Figure 11. Sediment sampling stations on the Shiawassee River, Owosso, 1972 (MDNR 1972)

- Figure 12. Tittabawassee River sediment sampling sites for 1981 (Rossmann et al. 1983; see Tables 12 and 13)
- Figure 13a. Tittabawassee River sediment sampli: ites, 1981 (Rossmann et al. 1983; see Tables 12 and 13)
- Figure 13b. Tittabawassee River and Saginaw River sediment sampling stations, 1978-1984 (USEPA 1986; see Tables 12 and 13)
- Figure 14. Flint River sampling stations and municipal waste discharges, 1974 (see Table 14)
- Figure 15. Sediment sampling stations in the Pine River, 1974-1977 (ECMPDR 1983; see Tables 15, 16a and 16b)
- Figure 16. St. Louis Reservoir sediment sampling locations, 1980-1981 (ECMPDR 1983; see Tables 16a and 16b)
- Figure 17a. Saginaw River sediment sampling stations, near the city of Saginaw, 1983 (USACE, 1983; see Table 17a)
- Figure 17b. Saginaw River sediment sampling stations, near Bay City, 1983 (USACE 1983; see Tables 17b and 17c)
- Figure 18a. Saginaw River sediment sampling stations, near the city of Saginaw, 1988 (USACE, Detroit 1988; see Tables 18b and 18c)
- Figure 18b. Saginaw River sediment sampling stations, near Bay City, 1988 (USACE, Detroit 1988; see Tables 18b and 18c)
- Figure 19a. Apparent sedimentation rates in inner Saginaw Bay (Robbins 1986)
- Figure 19b. Saginaw Bay sediments: elemental composition and accumulation rates (GLIS)
- Figure 20. Taste and odor in water from the Saginaw-Midland water intake, 1974-1980 (Dolan et al. 1986)
- Figure 21. Monthly water temperatures in the Saginaw River, 1974-1987
- Figure 22a. Annual average biochemical oxygen demand in the Saginaw River, 1974-1986
- Figure 22b. Annual average biochemical oxygen demand in Saginaw River tributaries, 1972-1986
- Figure 22c. Annual average biochemical oxygen demand in west coastal basin tributaries, 1963-1989
- Figure 22d. Annual average biochemical oxygen demand in east coastal basin tributaries, 1963-1985

- Figure 23a. Monthly dissolved oxygen concentrations in the Saginaw River at the Midland Street Bridge, 1977-1987
- Figure 23b. Monthly dissolved oxygen concentrations in the Saginaw River (at the Center Street Bridge, 1977-1987)
- Figure 24a. Annual average suspended solids concentrations in Saginaw River water samples, 1974-1986
- Figure 24b. Annual average suspended solids concentrations in Saginaw River tributaries, 1972-1986
- Figure 24c. Annual average suspended solids concentrations in Saginaw Bay west coastal basin tributaries, 1963-1985
- Figure 24d. Annual average suspended solids concentrations in Saginaw Bay east coastal basin tributaries, 1963-1985
- Figure 25a. Annual average total solids concentrations in Saginaw River water samples, 1974-1986
- Figure 25b. Annual average total solids concentrations in Saginaw River tributaries, 1972-1986
- Figure 25c. Annual average total solids concentrations in Saginaw Bay west coastal basin tributaries, 1967-1985
- Figure 25d. Annual average total solids concentrations in Saginaw Bay east coastal basin tributaries, 1967-1985
- Figure 26. Average of total PCB concentrations by particulate and dissolved fractions, Saginaw River and five segments of Saginaw Bay, 1979 (Richardson et al., 1983)
- Figure 27a. Nitrogen/phosphorus ratios in Saginaw Bay, 1974 and 1980 (Dolan et al. 1986)
- Figure 27b. Nitrate-nitrite concentrations (mg/l) in Saginaw Bay, 1974 and 1980 (Dolan et al. 1986)
- Figure 27c. Dissolved silica concentrations (mg/l) in Saginaw Bay, 1974 and 1980 (Dolan et al. 1986)
- Figure 28a. Annual average total phosphorus concentrations in Saginaw River water samples, 1974-1986
- Figure 28b. Annual average total phosphorus concentrations in Saginaw River tributaries, 1972-1986
- Figure 28c. Annual average total phosphorus concentrations in Saginaw Bay west coastal basin tributaries, 1968-1985

- Figure 28d. Annual average total phosphorus concentrations in Saginaw Bay east coastal basin tributaries, 1968-1985
- Figure 29a. Annual average orthophosphorus concentrations in Saginaw River water samples, 1974-1986
- Figure 29b. Annual average orthophosphorus concentrations in Saginaw River tributaries, 1972-1986
- Figure 29c. Annual average orthophosphorus concentrations in Saginaw Bay west coastal basin tributaries, 1963-1985
- Figure 29d. Annual average orthophosphorus concentrations in Saginaw Bay east coastal basin tributaries, 1968-1985
- Figure 30a. Annual average nitrate-nitrite concentrations in Saginaw River water samples, 1974-1986
- Figure 30b. Annual average nitrate-nitrite concentrations in Saginaw River tributaries, 1973-1986
- Figure 30c. Annual average nitrate-nitrite concentrations in Saginaw Bay west coastal basin tributaries, 1973-1985
- Figure 30d. Annual average nitrate-nitrite concentrations in Saginaw Bay east coastal basin tributaries, 1973-1985
- Figure 31a. Annual average chloride concentrations in Saginaw River water samples, 1963-1986
- Figure 31b. Annual average chloride concentrations in Saginaw River tributaries, 1963-1986
- Figure 31c. Annual average chloride concentrations in Saginaw Bay west coastal basin tributaries, 1963-1986
- Figure 31d. Annual average chloride concentrations in Saginaw Bay east coastal basin tributaries, 1963-1986
- Figure 32a. Circulation pattern in Saginaw Bay for a southwest wind
- Figure 32b. Circulation pattern in Saginaw Bay for a northeast wind
- Figure 33. Saginaw Bay bathymetry (GLIS)
- Figure 34. Combined sewer overflow storage and retention basins in the city of Saginaw (EDP 1981)
- Figure 35. Water quality intake and discharge sites and sampling stations (GLIS)

- Figure 36. Distribution of annual suspended solid loads (1000 metric tons) to inner Saginaw Bay in 1980 (LTI 1983)
- Figure 37. Source distribution of annual total phosphorus loads (metric tons) to inner Saginaw Bay in 1980 (LTI 1983)
- Figure 38. High risk erosion areas and recession rates (GLIS)
- Figure 39. Annual wind vectors for the Saginaw Bay area (Consumers Power Company 1972)
- Figure 40. An advection and dispersion model for Saginaw Bay (Limno-Tech 1977)
- Figure 41. Sites of environmental contamination as of May 1986, PA 307 of 1982 (GLIS)
- Figure 42. Landfills in the Saginaw Bay Basin
- Figure 43. Public land in the Saginaw Bay drainage basin
- Figure 44. Extractive land uses in the Saginaw Bay drainage basin (MDNR 1978; 1982)
- Figure 45. Agricultural land in the Saginaw Bay drainage basin (ECMPDR 1987)
- Figure 46. Land cover, Bay County, Michigan (GLIS)
- Figure 47. Yearly mean DDT-R concentrations for yellow perch from Saginaw Bay, 1967-1979 (Kreis and Rice 1985)
- Figure 48a. Saginaw Bay spawning areas (GLIS)
- Figure 48b. Total commercial fisheries catch in Saginaw Bay, 1916-1986 (MDNR unpublished)
- Figure 48c. Fish species composition of the commercial catch in Saginaw Bay, 1955-1986 (MDNR unpublished)
- Figure 49. Plankton station locations in Saginaw Bay, 1980 (Stoermer and Theriot 1983)
- Figure 50. Seasonal variation of mean total phytoplankton cell abundance in Saginaw Bay, April-November, 1980 (Stoermer and Theriot 1983)
- Figure 51. Seasonal variation of abundance of the three dominant algal divisions in Saginaw Bay, April-November, 1980 (Stoermer and Theriot 1983)
- Figure 52. Grouping of 78 stations determined by cluster analysis of rotifer data for Saginaw Bay and Southern Lake Huron during July 1974 (Stemberger and Gannon 1977)

- Figure 53. Numbers of rotifers found in segments 3 and 5 in 1974 contrasted to 1980 (McNaught et al. 1983; see Figure 49)
- Figure 54. Grouping of 38 stations determined by cluster analysis of rotifer data for Saginaw Bay during October, 1974 (Gannon 1981)
- Figure 55. Grouping of 38 stations determined by cluster analysis of crustacean plankton data for Saginaw Bay during October, 1974 (Gannon 1981)
- Figure 56. Numbers of crustacean zooplankton found in Segments 3 and 5 during 1974, 1975, and 1980 (McNaught et al. 1983; see Figure 49)
- Figure 57a. Average PBB concentrations (mg/kg dry weight) in Pine River plankton, periphyton, and benthic invertebrates (LTI 1983)
- Figure 57b. Average PBB concentrations (mg/kg dry weight) in plankton, periphyton, and benthic invertebrates collected in the Pine River from the St. Louis Reservoir, below the dam, and downstream from the dam (LTI 1983)
- Figure 58a. Average PBB concentrations (mg/kg dry weight) in Saginaw River plankton, periphyton, and benthic invertebrates (figure from LTI 1983)
- Figure 58b. Average PBB concentrations (mg/kg dry weight) in plankton, periphyton, and benthic invertebrates collected from the Upper, Middle, and Lower Saginaw River
- Figure 59. Locations of two herring gull colonies in Saginaw Bay monitored for organochlorine and other toxic organic contamination
- Figure 60. Locations of confined disposal facilities, US Great Lakes
- Figure 61. Cities and villages located in the Saginaw Bay drainage basin
- Figure 62. Flood-prone areas, Bay County, Michigan (GLIS)

CONVERSION FACTORS, NON-SI TO SI (METRIC) UNITS OF MEASUREMENT

Non-SI units of measurement used in this report can be converted to SI (metric) units as follows:

Multiply	By	To Obtain
avoirdupois pounds (mass)	0.4536	kilograms
acres	0.4047	hectares
cubic yards	0.7646	cubic meters
gallons (US liquid)	3.7854	liters
inches	2.5400	centimeters
miles (US statute)	1.6093	kilometers
short tons (US weight)	0.9072	metric tons
square miles	2.5900	square kilometers

INFORMATION SUMMARY, AREA OF CONCERN: SAGINAW RIVER AND SAGINAW BAY

INTRODUCTION

Background

The Water Quality Act of 1987, Section 118, authorizes the Great Lakes National Program Office (GLNPO) to arry out a 5-year study and demonstration project, Assessment and Remediation of Contaminated Sediments (ARCS), with emphasis on the removal of toxic pollutants from bottom sediments. Information from the ARCS program is to be used to guide the development of Remedial Action Plans (RAPs) for 42 identified Great Lakes Areas of Concern (AOC) as well as Lake-wide Management Plans (Figure 2).

The AOCs are areas where serious impairment of beneficial uses of water or biota (drinking, swimming, fishing, navigation, etc.) is known to exist, or where environmental quality criteria are exceeded to the point that such impairment is likely. Priority consideration was given to the following five AOCs: Saginaw Bay, MI; Sheboygan Harbor, WI; Grand Calumet River, IN; Ashtabula River, OH; and Buffalo River, NY.

Each state has established RAP coordinators to develop a RAP for each AOC. Most RAP coordinators state that there is a need to develop guidance to interpret the information in a manner that will allow decisions to be made about each AOC. The following summarizes the status of the RAP reports for the five priority AOCs:

Area of Concern	<u>Status</u>
Saginaw Bay, MI	Final RAP - September 1988
Grand Calumet River, IN	Draft RAP - January 1988
Sheboygan Harbor, WI	Draft RAP - December 1988
Buffalo River, NY	Final RAP - November 1989
Ashtabula River, OH	Draft RAP - September 1989

<u>Pulpose</u>

The purpose of this report is to summarize the information collected during meetings with RAP Coordinators and Corps Districts to find out what information was available on contaminant migration at each of the five priority AOCs.

Scope

Information collected during visits to RAP Coordinators and Corps
Districts is summarized. Sources of additional information have been
referenced so that these sources could be contacted at a later date.

Documents that were mentioned during meetings with RAP coordinators, but were
not available at that time, are referenced so that these documents can be
obtained, if desired. Retrieval of information by subject in a quick and easy
manner was a goal of this report.

SUMMARY OF INFORMATION

AOC Boundary

The boundary of the Saginaw River and Saginaw Bay AOC is shown in Figure 3. Saginaw Bay is 52 miles¹ long with a width which varies between 13 and 26 miles. The surface area is 1,143 square miles. The Saginaw Bay watershed includes portions of 22 counties. This 8,709 square mile watershed is 15% of Michigan's total land area. The 1980 census indicated that 1,458,339 people live in counties totally or partially within the Saginaw Bay watershed. Twenty-eight rivers, creeks or drains flow directly into Saginaw Bay from three drainage basins - the East Coastal basin, West Coastal basin, and Saginaw River basin (Figure 4). These basins make up 10%, 18%, and 72% respectively of the Saginaw Bay watershed. However, 75% of the hydraulic flow to Saginaw Bay comes from the Saginaw River (Michigan Department of Natural Resources, 1988).

Contaminants of Concern

The primary sediment contaminants of concern are: PCBs, polybrominated biphenyls (PBB), DDT, Tris (triisopropyl phosphate ester), and heavy metals. The primary fishery contaminants of concern are: PBB, DDT and its metabolites, hexachlorobenzene, polychlorinated dibenzofurans, dibenzo-p-dioxins, diphenyl ethers, styrenes, and terphenyls. Excessive phosphorus inputs to Saginaw Bay have impacted biota by creating eutrophic conditions (Great Lakes Water Quality Board Report to the International Joint Commission 1987). Landfill, hazardous waste and superfund sites are affecting surface water, groundwater, wetlands, and other resources in the Saginaw Bay basin. The contaminants of concern are: PCBs, TCDD, TCPF, PAHs, Xylene, Toluene, Dioxins, Chloroethane, Dichlorobenzene, and heavy metals (Michigan Department of Natural Resources, 1988).

A Table of factors for converting non-SI units of measurement to SI (metric) units is presented on page 19.

Level of Contaminants

Michigan has established ambient water, surface water quality, drinking water and public health fish consumption advisory criteria. Tables 2a through 4 list these criteria. Table 5a lists the USEPA pollution criteria for Great Lakes Harbor sediments (Michigan Department of Natural Resources, 1988). Michigan is currently developing sediment assessment procedures. Bulk sediment chemistry has been used as the main indicator of "contaminated" sediment. Chemistry results may be compared to a variety of yardsticks: USEPA criteria for dredged material disposal, and past or present background concentrations in Great Lakes sediments (Report of the Sediment Subcommittee and its Assessment Work Group to the Water Quality Board, 1988). The Report to the Great Lakes Water Quality 1987 provides background sediment concentrations for Saginaw Bay (Table 5b).

Volume of Contaminated Sediments

No estimate of the total amount of contaminated sediment in the Saginaw River/Bay system has been found. Approximately 3.7 metric tons of PCB remain in the active sediment in inner Saginaw Bay (Michigan Department of Natural Resources, 1988). The US Army Corps of Engineers Maintenance Dredging Program removes (on average) more than 500,000 cubic yards of contaminated sediment each year from the Saginaw River and Bay (Cowgill, 1989). Figures 5b through 5g could be used to estimate the volume of inner Saginaw Bay sediment contaminated by heavy metals.

Sediment Data

Sediment data have been collected by a number of federal, state and local agencies as well as researchers. Most of the recent Saginaw River/Bay sediment sampling activities are summarized in Table 6a (Cowgill, 1989). Figures 5a through 5g, 6 and Table 6b show PCB and/or heavy metal data from Saginaw Bay (Michigan Department of Natural Resources, 1988). Concentrations at many sampling locations exceed the USEPA heavily polluted criteria for PCBs and metals. The Report of the Sediment Subcommittee and its Assessment Work

Group to the Water Quality Board (1988) provides additional sediment concentrations from Saginaw River and Saginaw Bay (Table 6c). At least one site exceeded the USEPA heavily polluted criteria for Ba and Fe. Additional sampling has been conducted on many of the tributaries which empty into Saginaw Bay. These sampling locations are shown in Figures 7 through 17b. The sediment concentrations appear in Tables 7 through 17c. Concentrations from several locations exceed the USEPA heavily polluted criteria for PCB, As, Zn, Cr, Cu, CN, Cd, Ni, Fe, Pb, TKN, or volatile solids (%) (Michigan Department of Natural Resources, 1988). Additional sediment locations from the Saginaw River are presented in Figures 18a and 18b. These locations are similar to those shown in Figures 17a and 17b. Table 18a provides a verbal description of the sample locations and physical characteristics. Tables 18b and 18c list the heavy metals and PCB results, respectively. Concentrations from several locations exceeded the USEPA heavily polluted criteria for As, Zn, Cr, Cu, P, Pb, O&G, COD, TKN, or volatile solids (%) (US Army Corps of Engineers, Detroit, 1988). No sediment data were found from any river in the West Coastal Basin or the East Coastal Basin nor the Chippewa, Bad, and Cass rivers in the Saginaw River Basin. These data have to be viewed in light of the fact that a 500-year storm event occurred in 1986. This storm event could have caused considerable movement of contaminated sediments within the Saginaw River/Bay system.

Additional data can be retrieved from many sources. Data from some of the activities listed in Table 6a are not currently available. Dow Chemical Company has conducted extensive research on the environmental impacts of dioxin. USGS has collected sediment data at a gaging station along the Saginaw River. The Great Lakes Information System contains additional heavy metal data from Saginaw Bay. Both the US Army Corps of Engineers and MDNR have sediment data from the 1970s which are not presented herein. The US Army Corps of Engineers conducted sediment sampling during 1989. The USACE Detroit District has additional bulk chemistry data in its files, but not in report format. USEPA Great Lakes National Program Office 1990 describes sediment sampling efforts planned for Saginaw River/Bay in summer 1990. Figures 19a and 19b depict the sedimentation rate in inner Saginaw Bay (Robbins, 1986; GLIS). Also, publications like Bremer 1979 have additional information.

Water Quality Data

Both physical and chemical water quality data were collected at several stations in the Saginaw River/Bay system (Figures 4 and 19a). The physical parameters measured were taste, odor, temperature, BOD, DO, turbidity, suspended solids, and total solids. The chemical parameters were P, N, Cu, Pb, Zn, and chloride. These results are summarized in Figures 20 through 31d and Tables 19a through 19f. Cd, Cr, Cu, Fe, Pb, Ni, and Zn concentrations from tributary locations did not exceed the Rule 57(2) guideline levels (Tables 2a and 2c; Table 19g). Table 19h shows bacteriological data from several areas within the AOC (Michigan Department of Natural Resources, 1988). Additional information may be available through the National Water Data Exchange (NAWDEX) program office, Branch of Water Information Transfer, USGS.

Waterway Hydraulics Data

Figures 32a, 32b, and 33 depict common flow patterns and bathymetry within Saginaw Bay. Morphometric data for Saginaw Bay is presented in Table Saginaw Bay receives an average total tributary input of 153.7 cubic meters per second (Smith et al., 1977). Approximately 75% or 114.5 cms is contributed by the total adjusted average discharge of the four major tributaries at their confluence to form the Saginaw River. Water discharge records for many of the Saginaw Bay tributaries are listed in Table 21 (Michigan Department of Natural Resources, 1988). The University of Michigan and USEPA Large Lakes Research Station have modeled the phosphorus loadconcentration relationship in Saginaw Bay. This information will assist in the development of a target load reduction for the basin. The USEPA Large Lakes Research Station produced a PCB mass balance budget and a mathematical model of the PCB load-concentration relationship in Saginaw Bay. A consulting firm under contract to ECMPDR performed similar studies on the Saginaw River. The study indicated that 350 kg/a of PCBs was being delivered by the Saginaw River to Saginaw Bay (Great Lakes Water Quality Board Report to the International Joint Commission, 1987).

Point Source Discharges

Permits regulating direct discharges to Michigan surface waters are issued under the National Pollutant Discharge Elimination System (NPDES). This information is maintained on the USEPA Permit Compliance System (PCS). There are 127 wastewater treatment facilities and 87 industries that discharge directly into the Saginaw River/Bay system. Eighteen major municipal WWTPs discharged an average of 155.5 million gallons per day of treated effluent in 1986. These data are presented in Table 22. Tables 23 through 26 provide additional point source discharge data. Intermittent point sources have historically contributed a substantial percentage of pollutants to the Saginaw River/Bay system (Table 27). No data were available on the amount of pollutants entering the Saginaw River/Bay system through intermittent point The majority of these sources are within highly urbanized source discharges. areas, but sources occur throughout the watershed. Figure 34 describes the Combined Sewer Overflow and retention basins in the City of Saginaw. Additional information on dischargers in the Saginaw River/Bay system is available from the USEPA Industrial File Index System (Michigan Department of Natural Resources, 1988). Additional information is available from the Great Lakes Information System (GLIS) (Figure 35). The MDNR manages this system.

Non-Point Source Discharges

Urban and agricultural runoff account for a large portion of non-point discharges into the Saginaw River/Bay system. No data on contaminant loads from runoff specific to the Saginaw River/Bay watershed are available. Suspended solids, and phosphorus loads to Saginaw Bay are presented in Figures 36 and 37. Limno-Tech Inc., under contract to East Central Michigan Planning and Development Region (ECMPDR), calibrated a mathematical model which quantifies the amount of phosphorus delivered by runoff from agricultural lands to Saginaw Bay (Great Lakes Water Quality Board Report to the International Joint Commission, 1987). Tables 28 through 30 provide volumes of non-point discharges from soil erosion, soil phosphorus, and animal waste. Additional information on soil erosion and recession rates is available through the GLIS (Figure 38). All proposed discharges to groundwater are

reviewed by MDNR. Several companies have used injection wells to dispose of waste. Based on estimates from the geology department of Western Michigan University, there exists a relatively high potential for groundwater contamination from some of these wells (Western Michigan University, 1981). Current groundwater rules are being revised (Michigan Department of Natural Resources, 1988). Additional groundwater information can be obtained through Badalamenti et al., 1988 and the Regional Aquifer-System Analysis (RASA) Program, Office of Ground Water, USGS. Bierman et al. (1984) provides additional phosphorus loading information. Tables 31a through 31c describe models which may be useful in predicting loadings in areas where no data currently exist.

Spills

MDNR maintains a Pollution Emergency Alerting System (PEAS) to receive reports of accidental discharges and related problems. PEAS records from January 1984 to October 1986 show that 101 discharge incidents occurred in the Flint River drainage basin. The discharged material included oil, industrial and sewage waste. There were 23 discharge incidents to Saginaw Bay during the same period (Michigan Department of Natural Resources, 1988).

Air Quality

Atmospheric deposition may be sizable and perhaps the major source of organic and inorganic pollutants to the Great Lakes (Eisenreich et al., 1981). Data on atmospheric deposition were collected as part of the Great Lakes Atmospheric Deposition (GLAD) sampling network. Tables 32 through 34 provide deposition rates for pollutants in the Saginaw River/Bay system. Figures 39 and 40 provide information on air movement within Saginaw Bay. Tables 35 and 36 provide precipitation pH and average quantity at several locations in the watershed (Michigan Department of Natural Resources, 1988). Saginaw Bay receives large amounts of acid rain and area precipitation has low pH values (USEPA, 1980). Additional information may be available from the Office of Atmospheric Deposition Analysis, USGS.

Landfill, Hazardous Waste, and Superfund Sites

Over 100 hazardous waste sites and 13 Environmental Protection Agency Superfund sites exist in the Saginaw Bay watershed (Tables 37 through 40; Figure 41). These tables list the pollutant(s) and resource(s) affected by each hazardous waste site in the AOC. Figure 42 shows landfills within the Saginaw River/Bay system. However, no comprehensive list of landfills exists (Michigan Department of Natural Resources, 1988). The Great Lakes Information System may provide additional information.

Land Use Within the AOC

The diverse land usages in this AOC include urban, agricultural, industrial, and recreational. Figures 43 through 45 show the areas within the AOC devoted to recreational, mining, and agricultural usage, respectively. Tables 41 and 42 provide the acreage for various crops and livestock (Michigan Department of Natural Resources, 1988). Additional information is available through the GLIS (Figure 46).

<u>Bioassay Data</u>

The results from <u>Pontoporeia</u> and <u>Hexagenia</u> bioassays mentioned in Table 6a have not been obtained by the authors. No other bioassay data have been located at this time. USEPA GLNPO 1990 mentions bioassays planned by the Toxicity/Chemistry Work Group of the ARCS program.

Biological Data

Fish

Populations of lake trout and walleye are maintained through stocking hatchery-reared fish and artificial propagation. MDNR issued fish consumption advisories for six locations within the AOC in 1988 (Table 43). There are no consumption advisories for walleye or yellow perch, the principal sport fish in Saginaw Bay. Tables 44 through 52, and Figure 47 show fish tissue levels of PCBs, pesticides, and heavy metals from various locations within the AOC (Michigan Department of Natural Resources, 1988). Tissue concentrations from some of these locations exceed the fish consumption advisory trigger.

DeVault et al., 1988 (Tables 53 and 54), Kononen, 1989 (Table 55), and Kuehl et al., 1989 (Table 56), contain additional fish tissue data from Saginaw Bay.

Many of these concentrations also exceed the fish consumption advisory trigger. Figure 48a shows the Saginaw Bay fish spawning areas (GLIS). Figures 48b and 48c show changes in commercial fish catches in Saginaw Bay.

Benthic

Benthic macroinvertebrates have been collected in the Saginaw Bay
Navigation Approach Channel. These sampling locations are shown in Figure 6.
Saginaw Bay benthic results are summarized in Tables 57 and 58. Several other researchers collected macroinvertebrates in Saginaw Bay. Table 59 shows a comparison between studies conducted in 1956 and 1978. Benthic macroinvertebrate taxa were also collected in the Saginaw River. The sampling locations are shown in Figures 17a and 17b. Saginaw River benthic results are summarized in Tables 60 and 61. Two 3-year benthic macroinvertebrate surveys are being conducted in Saginaw Bay to assess the present benthic community structure. Michigan's Fisheries Division began a survey in 1986. The National Oceanic and Atmospheric Administration (NOAA) began field collections in 1987. These studies are coordinated (Great Lakes Water Quality Board Report to the International Joint Commission, 1987).

Plankton

Phytoplankton results are summarized in Figures 49 through 51 and Table 62a. Rotifer results are presented in Figures 52 through 54, and Table 62b. Crustacean plankton results are in Figures 55, 56, and Table 63. Figures 57a, 57b, 58a, and 58b provide a comparison of plankton and benthic invertebrates from segments of the Pine and Saginaw Rivers. Michigan Department of Natural Resources (1988) provides additional references and an in-depth discussion of benthic invertebrates, phytoplanktons, and zooplanktons.

Birds

Herring gulls, double-crested cormorants, caspian terns, and black-crowned night heron inhabit Channel/Shelter Island and/or Little Charity
Island (Figure 59). A more detailed description of the Channel/Shelter Island (confined disposal facility) is given in inset map 'B,' Figure 18b. Tables 64a, 64b, 65, and 66 list contaminant concentrations found in herring gull eggs, common terns, and mallard carcasses from Channel/Shelter Island and/or

Little Charity Island. Michigan Department of Natural Resources (1988) suggests the use of caution in interpreting these data. Simmers (1982) discusses avian botulism and a botulism management plan for Channel/Shelter Island. Twenty species of waterfowl use Saginaw Bay habitats during the breeding and migratory season. Currently, there are no standards for the consumption of waterfowl. This AOC has several thousand acres of wetland habitat managed for waterfowl (Figure 43; Michigan Department of Natural Resources, 1988).

Plants

Phytoplankton and algae data are presented in a previous section. No additional plant data have been found.

Mammals

A reduction of the range of some mammals has occurred in the Saginaw River/Bay watershed. The loss of habitat due to urbanization may account for some of this. However, contaminants may have contributed to some of the declines. Michigan Department of Natural Resources 1988 provides further discussion.

Endangered Species

Cormorants are listed as a threatened species in the state of Michigan (Michigan Department of Natural Resources, 1988).

Wildlife Habitat

In addition to the Federal and state refuges shown in Figure 43, the Channel/Shelter Island and Sebewaing confined disposal facilities (CDF) will ultimately be used as wildlife habitat (Figure 60). Both CDFs contain waterfowl nesting habitat.

Risk Assessment

Water

In addition to the three water intakes identified in Figure 19a, East Tawas and Port Austin have intakes within Saginaw Bay. The Saginaw-Midland water intake accounts for 85% of the water drawn from Saginaw Bay for human

use. In 1985, USEPA conducted a study of public drinking water in the Saginaw River/Bay system. Plans are underway to close the Pinconning intake and establish an intake for the Village of Caseville. Three cities have water intakes along tributaries of Saginaw Bay. The City of Alma maintains a water intake on the Pine River. The City of Saginaw has an emergency intake in the Saginaw River. The Genesee County Water Supply has an emergency intake in the Flint River at Flint. Coliforms are monitored along public beaches in several counties which border Saginaw Bay. No public beaches were closed along Saginaw Bay during water years 1984-1987. Water is also withdrawn from waterways within the AOC for agricultural and industrial uses. Estimates of water withdrawal for these uses are not readily available (Michigan Department of Natural Resources, 1988).

Ecosystem

Many of the elements needed to perform a risk assessment have been presented previously. These include the potential exposure to contaminants through drinking water, industrial discharges, fish consumption, waterfowl consumption, and bacterial contamination. Table 67 lists chemicals found in the Great Lakes which may have adverse impacts on human health in the event of high local contamination. Many of these contaminants are present in the Saginaw River/Bay system. Some of the contaminants of primary concern are PCB, DDT, Mirex, Lindane, Dioxin, and Toxaphene. Appendices 1 and 2 provide the populations of each township within the AOC and the industrial group and employment range for each county. Figure 61 shows the location of cities and villages within the AOC (Michigan Department of Natural Resources, 1988). Figure 62 shows the 100-year and 500-year flood zones for Bay County, Michigan (GLIS). No overall risk assessments have been found for the entire Saginaw River/Bay system. USEPA GLNPO 1990 mentions assessments planned by the Risk Assessment/Modeling Work Group of the ARCS program.

Remedial Actions

Several remedial actions have occurred in this AOC. Remedial dredging has been conducted in three Saginaw Bay tributaries. In 1972, 70,000 cubic yards were removed from the St. Louis Reservoir on the Pine River. Between 1976 and 1981, USACE removed PCB-contaminated sediment from the Saginaw

navigation channel. In 1982, PCB-contaminated sediment was dredged from the South Branch of the Shiawassee River near Howell. Also, several companies which owned contaminated property performed remedial cleanups. Programs have been developed to improve agricultural land and animal waste management. Many municipalities have received construction grants to improve WWTPs within the AOC (Table 68). The state banned the use of phosphate detergents in 1977 (Michigan Department of Natural Resources, 1988). These actions will improve the water quality within the Saginaw River/Bay system.

GLNPO SUBJECT-REFERENCE MATRIX

AREA OF CONCERN Saginaw River and Saginaw Bay
SUBJECT REFERENCE R1, R2 (1, 2*) / POINT OF CONTACT P1, P2
SEDIMENT R7, R19 (51, 52, 53, 54, 75, 76, 101, 135, 154, 197, 199, 202, 258, 259, 266, 267, 291, 320, 321, 324, 329, 348, 350, 355, 372) / P15,
P6, P12
METALS R11, R12, R17 (44, 275, 276)
PCBs R3, R11, R12, R17 (40, 198, 260, 261, 262, 263, 264)/P14
PAHs R11
PESTICIDES R11, R17
TOC
others (specify) COD, OG, PERCENT SOLIDS, VOLATILE SOLIDS_R12 : CN R11
CONFINED DISPOSAL FACILITY (CDF) R4 (142, 321, 322, 323) / P9, P13
PARTICLE SIZE R11, R17 / P11
ENGINEERING PROPERTIES R17 / P11
DEPOSITION DATA R11 (268, 269)
TRANSPORT DATA (264)
DEPTH DATA R11, R17
HORIZONTAL DISTRIBUTION R11
VOLUME TO BE CONSIDERED R11
WATER QUALITY R7 (7, 16, 26, 41, 68, 77, 78, 83, 92, 98, 100,
102, 103, 104, 118, 133, 136, 137, 138, 139, 140, 141, 143, 154, 163, 164,
165, 166, 167, 168, 169, 172, 188, 195, 207, 212, 216, 217, 218, 220, 224, 225, 226, 227, 228, 239, 243, 272, 295, 300, 314, 315, 330, 331, 332, 333,
337, 339, 341, 342, 343, 344, 345, 346, 347, 357, 363) / P15, P6, P5
* Number Refers To Literature Cited In Appendix 3.

PHYSICAL DATA R11 (3)		
TEMPERATURE R11 (3)	-	
DO R11	-	
CONDUCTIVITY	-	
HARDNESS R11	-	
TOTAL SOLIDS R11	-	
CHEMICAL DATA R1 R2	-	
РН	•	
TOC	_	
METALS R11	-	
PCBs, PBB R11 (198)	-	
PAHs	_	
PESTICIDES R11		
BOD R11	-	
OTHERS (specify) Groundwater R1, R20 (9)	-	
Phosphorus R11 (106) Silica (32)	-	
LIMNOLOGY R11 (10, 13, 14, 24, 43, 45, 46, 47, 79, 80, 97, 153, 154, 159, 160, 162, 186, 187, 231, 252, 257, 279, 281, 282, 307, 308, 309, 310, 311, 312, 359, 365, 370)	107 294,	
BACTERIA R11 / P12		
DRINKING WATER (11)	_	
WATERWAY HYDRAULICS R2 (81) / P1, P10, P11 FLOW DATA R11, R16 (1, 34, 42, 280)		
WATER DEPTH R11		
FLOOD DATA / P5	-	
POINT DISCHARGES R11 (27, 28, 29, 66, 112, 203, 211, 219, 277, 349, 350) / P5	<u> 278.</u>	348.
CONCENTRATION DATA / P7		

VOLUME DATA R11	
WASTE LOAD DATA R11 / P7 RADIOACTIVE WASTE (8, 58)	
NON-POINT DISCHARGES R11, R20 (57, 112, 223, 292, 319, 374)	
CONCENTRATION DATA	
VOLUME DATA R11	
WASTE LOAD DATA R11 (299)	
SPILLS R11	
WATERSHED HYDROLOGY R11 (9, 157, 205, 297, 298, 325, 326, 327, 364)	340, 356,
RAINFALL DATA R11 (191, 242, 358)	
ACID RAIN R11 (334)	
RUNOFF DATA R11 (95, 170, 171, 173, 175, 256)	
VOLUME	
SOLIDS R11	
CHEMICAL DATA (161)	
(SPECIFY)	
SNOWFALL (15, 240)	
AIR	
AIR QUALITY DATA R11, R18 (154, 213, 233)	
ATMOSPHERIC DEPOSITION R11, R6 (36, 37, 59, 233, 234, 235)	
SUPERFUND SITES R11 / P6 HAZARDOUS WASTE SITES R11 (93, 204, 209, 210, 222)	
ADJACENT LAND USE R11 / P5 (30)	
CONTAMINANT SOURCES R11 (206)	
RISK ASSESSMENT R11, R13, R7 (134, 304)	
BIOASSAY DATA R4 / P7, P2	
ACUTE	

CHRONIC (178, 183, 184, 189)
BIOACCUMULATION (179, 185, 189) / P3
BIOLOGICAL DATA R11, R19 (2, 193, 194, 199, 202, 315, 328) / P6 FISH (63, 70, 74, 96, 99, 113, 115, 119, 122, 144, 146, 148, 154, 178, 179, 182, 183, 184, 197, 208, 215, 244, 247, 283, 284, 285, 286, 288, 314, 318, 348, 350, 351, 367) / P9, P4 BODY WEIGHT/SIZE/AGE R5, R9
DIVERSITY R11
QUANTITY
TISSUE CONTENT R5, R9, R10, E11 (39, 73, 91, 113, 114, 126, 179, 182, 208, 244, 247, 283, 284, 285, 289, 291, 301, 302, 303, 316) / P3, P12 ADVISORY R11 (131)
BENTHIC R4 (17, 18, 25, 31, 65, 123, 128, 155, 156, 158, 174, 190, 232, 237, 238 287, 290, 366)
DIVERSITY R11 (366)
ABUNDANCE R11 (366)
CONTENT R11
BIRDS R8, R14 (61, 86, 87, 88, 89, 94, 109, 111, 120, 154, 177, 229, 230, 245, 265, 296, 301, 313, 352, 353, 354, 361, 362) / P8, P15, P16
DIVERSITY
QUANTITY
CONTENTS R11 (62, 87, 88, 90, 111, 245, 296, 301, 313, 354)
PLANTS (64, 67, 159, 174, 360)
DIVERSITY
ABUNDANCE
CONTENTS (360)
MAMMALS R11 (4, 23)
TOXICOLOGY (4, 5, 6, 69, 109, 116, 145, 176, 180, 248, 250)
ENDANGERED SPECIES Rll (Cormorants are included in Michigan's threatened species list) / Pl6, P6
OTHER POPULATION DATA R11 (20, 21, 22, 130)

REFERENCES

- R1. Badalamenti, D. T., D. T. Long, and G. T. Danemiller. 1988.

 "Geochemistry of Highly Saline, Near Surface Groundwater, Saginaw
 Valley, Michigan Basin," Geological Society of America, 20(5): 332-333.
- R2. Bierman, V. J., Jr., D. M. Dolan, R. Kasprzyk, and J. L. Clark. 1984. "Retrospective Analysis of the Response of Saginaw Bay, Lake Huron, to Reductions in Phosphorus Loadings," ES&T, 18: 23-30.
- R3. Bremer, K. E. 1979. "PCB Contamination of the Sheboygan River, Indiana Harbor and Saginaw River and Bay," EPA-600/3-79-102: 261-267.
- R4. Cowgill, D. 1989. DRAFT "Status of Contaminated Sediment Activities in Saginaw Bay, Michigan," GLNPO, Chicago, IL.
- R5. DeVault, D. S., J. M. Clark, G. Lahvis, and J. Weishaar. 1988.
 "Contaminants and Trends in Fall Pun Coho Salmon," J. Great Lakes Res., 14(1): 23-33.
- R6. Eisenreich, S. J., B. B. Looney, and J. D. Thorton. 1981. "Airborne Organic Contaminants in the Great Lakes Ecosystem," Environmental Science & Technology, 15(1):30-38.
- R7. Great Lakes Water Quality Board Report to the International Joint Commission. 1987. "1987 Report on Great Lakes Water Quality Appendix A; Progress in Developing Remedial Action Plans for Areas of Concern in the Great Lakes Basin," Toledo, OH.
- R8. Great Lakes Water Quality Board Report to the International Joint Commission. 1989. "1989 Report on Great Lakes Water Quality," Hamilton, Ontario.
- R9. Kononen, D. W. 1989. "PCBs and DDT in Saginaw Bay White Suckers," Chemosphere, 18(9): 2065-2068.
- R10. Kuehl, D. W., B. C. Butterworth, A. McBride, S. Kroner, and D. Bahnick. 1989. "Contamination of Fish by 2,3,7,8-Tetrachlorodibenzo-p-dioxin," Chemosphere 18(9/10): 1997-2014.
- Rll. Michigan Department of Natural Resources. 1988. "Remedial Action Plan for Saginaw River and Saginaw Bay Area of Concern," Lansing, MI.
- R12. Report of the Sediment Subcommittee and its Assessment Work Group to the Water Quality Board. 1988. DRAFT "Procedures for the Assessment of Contaminated Sediment Problems in the Great Lakes."
- R13. Report to the Great Lakes Water Quality Board. 1987. "Guidance on Characterization of Toxic Substances Problems in Areas of Concern in the Great Lakes Basin," Windsor, Ontario.

- R14. Simmers, J. W. 1982. "Trip to Detroit District in Response to DOTS Request Avian Botulism," MFR Vicksburg, MS.
- R15. Robbins, J. A. 1986. "Sediments of Saginaw Bay, Lake Huron: Elemental Composition and Accumulation Rates," Special Report No. 102, Great Lakes Natural Resource Division, University of Michigan, Ann Arbor, Michigan.
- R16. Smith, V. H., K. W, Lee, J. C. Filkins, K. W. Hartwell, K. R. Rygwelski and J. M. Townsend. 1977. "Survey of Chemical Factors in Saginaw Bay (Lake Huron)," U.S. Environmental Protection Agency, Environmental Research Laboratory, Duluth, Minnesota.
- R17. US Army Corps of Engineers, Detroit. 1988. "Saginaw River," Letter Report.
- R18. US Environmental Protection Agency. 1980. "Acid Rain," Office of Research and Development, EPA-600/9-79-036, Washington, D.C.
- R19. USEPA Great Lakes National Program Office. 1990. REVIEW DRAFT
 "Assessment and Remediation of Contaminated Sediments (ARCS) Work Plan,"
 USEPA Great Lakes National Program Office, Chicago, IL.
- R20. Western Michigan University. 1981. "Hydrogeological Atlas of Michigan," Kalamazoo, MI.

POINTS OF CONTACT

	Person	Area of Expertise	Location/Telephone
P1	Blummer, Steve	Water Quality	USGS Lansing, MI 517-377-1608
P2	Giesy, John	Aquatic Bioassay	Michigan State Univ. East Lansing, MI 517-353-2000
Р3	Goudy, Greg	Fish	MDNR Lansing, MI 517-335-3310
P4	Haas, Bob	Fish	MDNR Mt. Clemens, MI 313-465-4771
P5	Horvath, Frank	GLIS	MDNR Lansing, MI 517-335-3457
P6	Klemans, Diana	Rap Coordinator	MDNR Lansing, MI 517-373-2758
P 7	Kreis, Russell	Fish, Birds	USEPA Grosse Ile, MI 313-675-7706
P8	Kubiak, Timothy	Wildlife	USFWS East Lansing, MI 517-337-6650
P9	Mac, Michael J.	Fish	USFWS Ann Arbor, MI 313-994-3331
P10	Martin, James	Hydrology	USEPA Athens, GA 404-546-3160
P11	Richardson, Bill	Sediment	USEPA Grosse Ile, MI 313-675-2245
P12	Roher, Tom	Water Quality	MDNR Lansing, MI 517-335-3300
P13	Schroeder, Paul	CDF	USACE Vicksburg, MS 601-634-3709
P14	Smith, V. Elliott	PCB	USEPA Grosse Ile, MI 313-675-9413
P15	Snitz, Frank	Water Quality Sediment	USACE Detroit, MI 313-226-6748
P16	Weise, Tom	Endangered Species	MDNR Lansing, MI 517-373-1263

Table 1.

Information Required to Evaluate the Potential for Contaminant Mobility

```
1. SEDIMENT DATA
      Water Content
                                           OG
                                           EC
      Hydrous oxides (Manganese, ferrous)
      Total PAHs
                                           Redox
      Total PCBs (Aroclors and Congeners)
                                           Sulfides
      TOC
                                           SOD
                                           Volatile Solids
      Total Solids
                                           Salinity
      OM
      EP Test
                                           NH3
      CEC (plus calcium, magnesium phosphorus, potassium
           concentration in extractant)
      Atterberg Limits
      Specific Gravity Determination
      Dispersion Coefficients
      Sediment Particle Density
      Bulk Density
      Permeability
      Particle Size Distribution (hydrometer method); (include
      sand, fine sand, silt and clay)
     Wet Sediment PH (1:2 sediment to distilled water
     Dry Sediment PH (1:2 sediment to distilled water
      solution)
      % Base Saturation
      % Free Calcium Carbonate
      Potential pH or Lime Requirement Using Titration or
      Similar Method
      Total Carbon Content
      Total Soluble Heavy Metal Content
      Total Heavy Metal Content
      Surface Runoff Suspended Solids
     Wet Sediment Extractable Heavy Metal Content (DTPA
      preferred)
     Dry Sediment Extractable Heavy Metal Content (DTPA
      preferred)
      Depth (thickness ) of Mixed Top Sediment Layer
      Depth (thickness) of Contaminated sediment layers
      Sedimentation Rate (possibly through core dating)
      Sediment Deposition History
      Suspended Solids Settling Rates (possibly through
      sediment traps)
      Consolidation Characteristics
     Sediment Porosity (mixed layer and deeper layers)
     Pesticides
     Priority Pollutants (40 CFR Part 136)
     Dioxin
     Reference Site
```

Table 1. Continued.

- 2. POINT DISCHARGES INTO WATERWAY
 Contaminant Loads Based on Concentration and Volumetric
 Flow Rates
 Surface Runoff During Storm Events
 Combined Sewer Overflow
- 3. NON-POINT DISCHARGES INTO WATERWAY
 Groundwater: Information on Geohydrology and Groundwater
 Characteristics
 Atmospheric Deposition
- 4. LAND USE OF ADJACENT PROPERTIES
- 5. CONTAMINATED SITES Hazardous Waste Superfund Spill
- WATERSHED HYDROLOGY Wetlands
- 7. WATERWAY HYDRAULICS & FLOW
 Hydrology or Flows Through the System
 Area of Bottom Contamination
 Water Depth at Area of Contamination
 Contaminant Waste Loads to System
 Floods
- 8. WATER QUALITY DATA

DOC TOC
DO Hardness
BOD pH

Metals Conductivity
PAHs Temperature
PCBs Total Solids

Total Suspended Solids (distributed in time and space)
Best Estimates of Partition Coefficients for Low (water column) and High (bottom sediments) Sediment Concentrations
Sediment-Water Contaminant Distribution Coefficients

Bacteriological Quality
Priority Pollutants
Interestitial Water Contaminant C

Interstitial Water Contaminant Concentration

9. BIOASSAY TEST DATA

Rapid:

microtox

<u>Daphnia</u>

<u>Ceriodaphnia</u>

<u>Pontoporeia</u>

Ames Test

Table 1. Continued.

Chronic:

C. tentans
Daphnia
fathead minnows
macroinvertebrate

Plant bioassay data:

Total PCB Content (aroclor content) Specific PCB Congeners PAHs Heavy Metal Uptake

10. BIOLOGICAL DATA

Fisheries surveys, including:
body weight/size
diet/stomach contents
feeding type
lipid content
phytoplankton
zooplankton

Benthic Community overall benthic "health" benthic indicators/low diversity

- 11. Miscellaneous Information Climatological Data Air Quality
- 12. RISK ASSESSMENT Human Health Ecological
- 13. WILDLIFE USAGE Birds Mammals
- 14. ENDANGERED SPECIES Federal State

Table 2a

Ambient Water Criteria (ug/l) for Selected

Toxic Organic Substances

		Rule Guide Leve (198	1s 8)			USEPA Ambient Water Quality	IJC WQA of 1978
Parameter	200	Hard 250	ness (mg	350	400	Criteria (1985)	Objectives (1978)
							
INORGANICS Arsenic			150.0ª			190.0	50.0
Cadmium	0.64	0.77	0.90	1.02	1.14	190.0	0.2
Chromium	92.6	111.5	129.7	147.4	164.7		50.0
VI	72.0	111.5	6.0ª	17/17	104.7	11.0 ^b	
III						230.43 ^b	
Copper	39.7	48.9	58.1	67.1	76.1	13.2 ^b	5.0
Cyanide			5.0 ^a			5.2	
Iron						,	300.0
Lead	8.9	12.5	16.6	21.0	25.7	3.76 ^b	20.0°
Mercury			0.000	6 ^a		0.012	0.2
Nickel	147.6	181.2	214.3	247.0	279.3	105.6 ^d	25.0
Selenium			13.0 ^a			35.0	10
Silver			0.15 ^a			5.08 ^d	
Zinc	176.5	213.4	249.2	284.1	318.2	118.4	30.0
ORGANICS							
Aldrin/Die	ldrin						0.001
Chlordane				_			0.06
DDT			0.000	13 ^a			
+ metaboli	tes			•			0.003
PCB			0.000 230,0	002			0.1
Pheno1			230 ₇ 0 ^a	f			1.0
2,3,7,8-TC	DD	1.0 x	: 10 ug	;/1 ^f	"no	safe lev	eī"

^aValue is the same at all hardness levels.

Four day average concentration not to be exceeded more than once every three years on the average; calculated at hardness equal to 114 mg/l CaCO3 based on 1986 Saginaw River water sample, Midland St. (MDNR, unpublished data).

CLake Huron.

dusepa, 1980 criteria; 24 hour average not to be exceeded at any time; calculated at hardness of 114 mg/l CaCO3 based on 1986 Saginaw River water sample, Midland St. (MDNR, unpublished data).

^eUSEPA, 1980 criteria; 4 day average not to be exceeded at any time.

f MDNR, 1987.

Table 2b

Summary of Michigan Surface Water Quality Standards

(from Part 4 of P.A. 245 of 1929, as amended in 1986)

Parameter	Limit
Turbidity Color Oil films Solids (floating, suspended or settleable) Foams	Waters of the state shall not have any of these unnatural physical properties in quantities which are or may become injurious to any designated use.
Deposits	
Total dissolved solids (TDS)	The addition of any dissolved solids shall not exceed concentrations which are or may become injurious to any designated use. In no instance shall they exceed 500 mg/l monthly average or 750 mg/l maximum for any waters of the state.
Chlorides	A maximum of 125 mg/1 monthly average is allowed for waters of the state designated as public water supply sources, except for the Great Lakes and their connecting waters where chlorides shall not exceed a 50 mg/l monthly average.
Hydrogen Ion Concentration (pH)	6.5-9.0 in all waters of the state. Any artificially induced variation in natural pH shall remain within this range and shall not exceed 0.5 units of pH.
Taste and Odor	Waters of the state shall contain no taste-producing or odor-producing substances in concentrations which impair or may impair their use for a public, industrial or agricultural water supply source or which impair the palatability of fish.
Toxic Substances	Substance specific as determined by Rule 57 guidelines (see Table III-2).
Radioactive Substances	Standards prescribed by the U.S. Nuclear Regulatory Commission and the U.S. Environmental Protection Agency.
Phosphorus	1.0 mg/1 as a maximum monthly average for effluent discharges.

(Continued)

Table 2b. (Concluded)

Parameter	Limit
Nutrients	In addition to the maximum phosphorus discharge levels allowed, nutrients shall be limited to the extent necessary to prevent stimulation of growths of aquatic rooted, attached, suspended and floating plants, fungi or bacteria, which are or may become injurious to the designated uses of the waters of the state.
Fecal Coliform	All waters of the state shall contain not more than 200 fecal coliform per 100 milliliters. This concentration may be exceeded if such concentration is due to uncontrollable nonpoint sources. The WRC may suspend this limit from November 1 through April 30 upon determining that designated uses will be protected.
Dissolved Oxygen (DO)	7 mg/l in all Great Lakes and connecting waterways and designated coldwater lakes and streams. In all other waters a minimum of 5 mg/l shall be maintained.
Temperature	No heat load which would warm receiving waters at the edge of the mixing zone more than 3 degrees Fahrenheit above existing natural water temperature for the Great Lakes and their connecting waters; 2 degrees Fahrenheit for coldwater streams; and 5 degrees Fahrenheit for warmwater streams.

Table 2c

Water Hardness Values and Associated Michigan Rule 57(2)

Metal Guideline Levels for Selected Saginaw Bay Tributaries

				Metals				
Tributary	Hardness	Cadmium	Chromium	Copper	Lead	Nickel	Zinc	
Saginaw River	249	0.77	111.1	48.7	12.4	180.6	212.7	
Cass River	312	0.93	134.0	60.2	17.6	222.2	257.6	
Flint River	200	0.64	92.6	39.7	8.9	181.2	176.5	
Shiawassee River	278	0.84	121.8	54.1	14.7	199.8	233.6	
Tittabawassee Rive	r 250	0.77	111.5	48.9	12.5	147.6	213.4	
Tawas River	152	0.51	73.8	30.6	5.9	114.7	139.8	
Au Gres River	402	1.15	165.3	76.5	25.9	280.5	319.6	
Rifle River	214	0.68	98.0	42.3	9.9	157.1	187.0	
Pine River	258	0.79	114.4	50.4	13.1	186.6	219.2	
Pinconning River	341	1.00	144.2	65.9	20.1	241.1	277.9	
Kawkawlin River	234	0.73	105.5	46.0	11.3	170.5	201.7	
Sebewaing River	325	0.96	138.6	62.6	18.7	230.7	266.7	
Pigeon River	339	1.00	143.5	65.1	20.0	239.8	276.5	
Pinnebog River	371	1.07	154.7	70.9	22.9	260 6	298.5	
Taft Drive	352	1.03	148.1	67.5	21.1	248.3	285.5	

Table 2d

Trophic Condition Classification Criteria

for Total Phosphorus (LTI 1983)

	Total Phosphorus C	oncentration (ug/l)
Trophic Condition	Carlson (1977)	USEPA (1981)
Eutrophic	>24	>20
Mesotrophic	12 - 24	10 - 20
Oligotrophic	<12	<10

Table 3

Maximum Contaminant Levels for Drinking Water Supplies
in Michigan (from P.A. 399, 1976)

Parameter Maximu	m Contaminant Level (mg/1)
INORGANICS	
Arsenic	0.050
Barium	1.0
Cadmium	0.010
Chromium	0.050
Fluoride	2.4
Lead	0.050
lercury	0.002
Selenium	0.010
Silver	0.050
DRGANICS	
Endrin	0.0002
Lindane	0.004
Methoxychlor	0.1
Toxaphene	0.0005
2,4-Dichlorophenoxyacetic Acid (2,4- 2,4,5-Trichlorophenoxy	D) 0.1
-proprionic Acid (2,4,5-TP)	0.01
Trihalomethanes	0.1

Table 4

Contaminant Trigger Levels (mg/kg) Currently Used
in Establishment of Public Health Fish Consumption Advisories

(Kreis and Rice 1985; Humprey Hesse 1986)

Chemical	FDA	MDPH	IJC
Chlordane	0.3	0.3	
DDT	5.0	5.0	0.1
DDT metabolites (DDE, DDD)	5.0	5.0	
Dieldrin	0.3	0.3	0.1
Dioxin	No formal	0.00001	
(2,3,7,8-TCDD)	tolerance		
Endrin	0.3	0.3	
Heptachlor	0.3	0.3	
Mercury	1.0	1.5	0.1
Mirex	0.3	0.3	
PCB	2.0	2.0	0.1
Toxaphene	5.0	5.0	

Table 5a

USEPA Pollution Criteria (mg/kg dry wt) for Great Lakes

Harbor Sediments (modified from Rossmann et al. 1983)

	Classification				
^p arameter	Non-Polluted	Moderacely Polluted	Reavily Polluted		
Volatile Solids (%)	<5	5-8	> 8		
COD	<40,000	40,000-80,900	>80,000		
TKN	<1,000	1,000-2,000	>2,000		
Oil & Grease (Hexane solubles	<1,000	1000-2000	>2,000		
Ammonia	<75	75-200	>200		
CN	<0.10	0.10-0.25	>0.25		
Ръ	<40	40–60	>60		
Zn	<90	90 -200	>200		
P	<420	420-650	>650		
Fe	<17,000	17,000-25,000	>25,000		
N1	<20	20-50	>50		
Mn.	<300	300-500	>500		
As	<3	3-8	>8		
C d	-	-	>6		
Cr	<25	25-75	>75		
Ba	<20	20-60	>60		
Cu	<25	25-50	>50		
Hg	-	-	≥1		
PCBs (Total)	-	1 ≤ 10 (determined on case-by-case)	≥50 HW		

Table 5b

Basin Specific Background Levels of Pollutants in Sediments of the Great Lakes (mg/kg). Additional Work is Necessary to Quantify Background Levels of Pollutants in the Basins Where No Data Currently Exists

(Report to the Great Lakes Water Quality Board 1987)

		LAKE	LAKE SUPERIOR	10R		LAKE	LAKE HURON		LAKE	HICHIGAN	GAN		LAKE	ERIE	LAKE	ONTARIO	210	Recommended Oredging
Total P	800	700 N/A	1858 N/A	1200.	1000	TODO	Sal	F.B.	#\XX	W38 -	SoB I	K/N	WeB 700	TIBB	1000 1000	HiB 100	1 Rob	Guldeline4
Total N	3070	3000	N/N	3070	2670	3600	4270	N/A	A/N	A/A	A/N	N/A	1500	1500	2700	2300	2300	2000
Ammon i a	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	A/A	A/N	A/A	N/A	A/A	A/X	N/A	100
Н	0.08	0.08	N/N	0 08	0.07	0.04	0.08	N/A	N/A	N/A	0.03	4 / X	0.1	0.1	0.08	0.03	0.09	0.3
Pb	88	23.2	N/N	24.6	20.4	16.2	14.4	K/X	A/N	A/A	27.5	A/N	28	28	32	32	9	90
Zn	E	108	K/K	105	18	88	9	K X	A/N	A/N	120	N/A	20	1.0	121	101	108	105
Fe	59400	53700	X / X	26000	28800	21600	32200	K/X	₹\N	A/A	22278	N/N	A/A	¥\¥	52500	46200	46200	45500
رر	50.7	51.8	N/N	49.8	57.1	28.5	30.0	K/X	A/A	N/A	37.1	N/A	N/A	K/N	A/N	A/N	N/A	120
Cu	S	5	∀ /₩	19	69	2	٦	N/N	4 /¥	A/N	~	X X	8	40	26	46	46	45
93	9;	0.5	4 / 2	0.8	0.5	1.0	0.4	∀ \	A/A	A/A	0.6	A/N	2.0	2.0	1.5	0.9	٦.0	1.5
72	63.5	59.7	¥	57.7	64.4	61.1	29.9	K/N	W/N	A/N	32.8	¥/¥	N/A	W/A	4 / X	A/A		06
¥.	0	1000	K/N	1200	96	1100	400	K/N	N/A	W/W	446	4 /2	900	9	2300	2300	1700	1625
As	V/N	¥	4/X	₹ ¥	2	9	3	 ¥	V/X	A/A	-	K/X	K/A	A/A	A/A	K/X	N/A	89
Cyanide	N/N	N/A	N/A	A/A	N/N	N/A	A/N	N/A	N/A	A/N	N/A	N/A	N/N	A/A	N/A	N/A	N/A	0.1
ي ا			;		11									0000		3000	0000	0000
2-009) \$01.105		26300 22900	۲ ا	0 7 7	~ !	7 /800	32500	٧\ <u>٧</u>	4 \X	« \ Z	٧\ <u>٧</u>	٧ \ ٧ ك	0000	0000 50000	5 1	19100	18400	00000
000	∀	۲ ۲	₹	₹	4/N	W/A	∀ / N	∀ /¥	۷ ۷	4/8	∀ \×	4 / N	K/A	N/N	٧/ <u>٧</u>	٧/٧ ا	N/N	20000
PCS	W/W	N/A	¥/¥	V/N	W/W	N/A	4/x	N/A	4/ N	W/A	N/A	N/N	N/A	N/A	W/N	N/A	W/A	0.05
Oil & Grease	K/X	¥,	₹ ¥	K/K	V/N	¥	¥ /	X	K/K	¥\¥	4 / 2	K/X	K/K	Y X	K/A	K/N	A/A	1500
																		Below detection using best available
Other Organic Contaminants	<u> </u>	¥ *	X	<u>\$</u>	××	¥ *	<u> </u>	¥ *	X	¥	∀	4	₹	×.	*	X	K/X	technology. (GLWQA, 1978)
CEB - Central basin DSB - Duluth sub basin FB - Fox basin GMB - Grand Haven basin IRSB - Isle Royale sub basin KeB - Keweenaw basin	b basin b basin en basi le sub basin	n basin		# # # Z Z &	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	faratho fi Iwauk fississ fiagara lottawa	Marathon basin Milwaukee basin Mississauga basin Niagara basin Nottawasaga basin Rochester basin	n tn astn astn tn			% 548 508 188 188 168	- Sagi - Sout - Thun - Wauk - West	Saginaw basin Southern basin Thunder Bay ba Waukegan basin Western basin	Saginaw basin Southern basin Thunder Bay basin Waukegan basin Western basin	<u>_</u>	- 26 4 Z	Kemp and Kemp et Robbins, Thomas and	Kemp and Thomas, 1976 Kemp et al. 1978 Robbins, J (pers. comm.) Thomas and Mudroch, 1979

Table 6a

Sediment Monitoring Activities in Saginaw Bay
and Saginaw River, Michigan (Cowgill 1989)

Dates	Agency	Area Sampled	# Samples	Parameters
1980	U.S. ACCE	River	27	PC8s
1980	Hichigan OHR	River	16	PCBs
1980-81	U. of Hichigan for EPA GLNPO	River	72 grabs 18 cores	PC8s
1983	U.S. ACCE	River	38	PCBs, total PAHs, metals, nutrients
			7	dioxins, dibenzofurans
7/83	U.S. ACOE	River Bay	37 11	benthic community
1984	11.0 5110	•		
1204	U.S. FEWS	River and Bay	composite	tumor incidence in native fish, dioxins and
				dibenzofurans
1987, 1988	NOAA	Bay	30 sites sampled 3 times a year	benthic community structure
Fall 1987	HOAA	Bay	8	Pontoporeia bioassays
Fall 1987	U.S. F&MS	Bay	8	Hexagenia bigassays
1987	U.S. EPA LLRS and U.S. F&HS	Bay COF	3	PCB congeners, caged biomonitors
1987	U.S. ACOE	Bay COF		permeability tests using dye studies
7/88	НОАА	Bay	4	Pontopore1a bloassays
5/88	U.S. Army Corps of Engineers	River	30	PCB Arochlors, metals, nutrients, oil and grease
1988	U.S.EPA LLRS with U.S. FAWS	Say COF	PCB congeners, caged biomonitors	9 sites
11/88	HOAA	Bay	2	Pontoporeia bioassays
6/88-12/88	Michigan Department of Natural Resources	River Bay Tributaries	12 cores, 70 grabs 10 cores, 70 grabs 70 grabs	PCB congeners, pesticides, TOC, grain size,metals

Table 6b

Average Concentrations (mg/kg) of Metals in Surface

Sediments of Inner Saginaw Bay and Southern Lake

Huron, 1980 (Robbins 1986)

	Loca	tion
Metal	Saginaw Bay	Lake Huron
As	16	27
Ва	422	432
Cd	2.4	2.97
Cr	63	66
Cu	25	37
Mn	0.050	0.13
Ni	31.9	50.6
Pb	45.3	73.6
Zn	96.3	116.3

Table 6c

Summary of Contaminants (ug/g) in 42 Areas of Concern Within the Great Lakes Basin (as provided in the IJC Regional Office as of October 1987; Report of the Sediment Subcommittee and its Assessment Work Group to the Water Quality Board, 1988)

	SAGINAN R & B	COLL INGALODO M.	PENATANG- STURGEON B.	SPANISH R.	LAKE HURON ³	ST. MARYS R.	ST. CLAIR B.	DETROIT R.	CLINTON R.	ROUGE R.	RAISIN R.	MUNEE R.	פרעכא ש.	СИХАНОСА В.	ASHTABULA R.	IMEATLEY M.	LAKE ERIE ⁴
Amonia												-	389	>500			
Arsenic	16				3	l .					12	10.1	18.9	>8	>8		
Bartum	422				·					550						1	
Cadmium	2.4	4.5			0.4			•		96	3.0	9	18.32	>6	>4	1	2.0
Copper	25	59		>25	31	i :	>25	•	130	293	14000	>50	167.5	>50	>50	>25	40
Chromium	63	37			30		>25	•	580	420	11000		146.75	>75	>75	>25	
Cyanide				!		0.015						125	2.32	>0.25			
lron		21000			32200	•				40000		>25000	41200	>25000			
Lead	45.3	214			14.4		42	0.55	290	710	310	75	101.6	760	>60		28
Manganese	0.05		Ì	[]	400				620					>500			600
Mercury			,		0.04	<u>'</u>	58	1.16		2.4	0.09	0.6	0.425	•	>1	1	0.1
Mickel	31.9	33.3		>25	29.9	l .		•	200	138	5800	50	96	>50		>25	
Radium													i				
Thorium											ì						
Uranium		1		1			i '		f (i	'					
Zinc	96.3	190			60	654	>100	•	590	978	1000	194	404	>200	>200	>100	110
C09									54900			>63300	131000	>80000			
Phosphorus		2000			700							1660	2400	>650		>1000	1100
Mitrogen		2600			4270				720			3900	3500	>2000		>5000	1500
011/Grease				1		٠			>2000		24000	5200	25900	>5000		>1500	
PCB	27	0.9		>0.05		0.3	5.3	13.9		9.7	17.0	•	0.34	2.2	>50	>0.05	
PAH	}					•				125			915.40	75.7			
Ch lordane									l i		} 1		<0.10			•	
007					1		'	0.4	1				≪0.02	•		•	
Benz1dene	1					ľ			í								
la?]	i			19.2					17.1				
Ether Solubles				}		•			1 1			i	ł				
2,3,7,8 TC00							*										
Dieldrin HCB								0.01		30							
								0.1			ļ		<0.02				
No. of Identified Contaminants	10	10	0	3	12	,	,	12	,	12	10	14	21	19	•	10	•

Note:

- Values exceeding standards/guidelines are reported as (>) greater than the applicable value. Numbers represent the highest concentrations reported.

- A plus (+) indicates that presence only was reported.

 Lake values are from a major depositional zone as neted below and represent concentracions below the "Ambrosia" level (i.e. in sediments deposited prior to 1860).
- I denotes average value reported.

*Keevenew Basin-Superior *Southern Basin-Hichigan *Saginew Basin -Huron

4Central Basin-Erie *Hiagara Basin-Ontario

Table 7a

Organic Contaminant Concentrations (ug/kg dry weight) found in Sediments of the South Branch Shiawassee River Below Howell, 1974 (MDNR 1977)

20110	Starton Location	PCB ^A 1242	PCB*	PCB 1260	Phthalate DEHP	Phthalate DBP	Phthalate BBP	011 (mg/kg)	Diel- drin	Chlor-dane	En- dr 1n
Marton and	Harion and Genom Drain										1
M6G-1 M6G-2 M6G-3 H6G-5	Pisk Road, Control Above Houell WHTP Balow Houell WHTP Mouth	400 4200 NB 1,800	640 1,000 1,600	\$ 20 \$ 2	800 1,700 13,000 33,000	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7100 310 000 000 00	850 6,000 9,900 6,000	7 7 7 7	S 5 5 5	2000
South Bran	South Branch Shiavassee River										
	Sexton Road, Control Above Marion & Cenon Drain Norton Road Grand River Road Boven Road, Below Cast Forge Marr Road Chase Lake Road Oak Grove Road Cohoctah Road	 6 100 6 100 6 100 730,000 97,000 59,000 16,000 2,900 	420 1,200 (11,000 (51,000 (5,000 (400) (400)	\$\$\$\$\$\$\$\$\$\$\$	2,100 20,000 11,000 11,000 7,000 7,200 7,000	000 9 00 00 00 00 00 00 00 00 00 00 00 0	00000000000000000000000000000000000000	1,400 7,300 20,000 4,400 660 660	~	255555	9 00000 0000

ND: Not determined due to interference by other chemicale.

Interfering chemicals resulted in less sensitivity at some stations.

Metal and Nutrient Concentrations (mg/kg dry weight) Found in Sediments from Marion and Genoa Drain and South Branch Shiawassee River, 1974 (MDNR 1979a) Table 7b

Statio	Station Location	As	ຄູ	H8	PO	Total Cr	Zn	N1	Pb	CN M	Volatile Solids	Total Kjeld. N	P04-P
Marion	Marion and Genoa Drain												
M6G-1	Fisk Road Control	43	32	0.3	⊽	11	140	36	21	0,3	0	200	č
M&G-2	Above Howell WWTP	31	150	0.2	5	1,200	1,200	40	009	1:1	12	8,600	8 6
M6G-3	Below Howell WWTP	29	160	0.5	•	1,800	1,300	40	720	2.2	4.2	6,400	170
M6G-5	Mouth	70	230	0.3	80	000,9	1,600	52	720	0.2	15	8,100	340
South	South Branch Shiawassee River												
SRS-1	Sexton Road, Control	125	24	<0.1	~	17	140	53	46	<0.7	12	19,000	170
SRS-2	Above Marton & Genoa Drain	36	30	<0.1	⊽	36	200	34	46	0.5	1.9	12,000	160
SRS-3	Norton Road	20	180	60.1	9	4,200	1,400	48	520	4.6	12	8,600	400
SRS-4	Grand River Road	21	160	0.1	9	3,800	1,200	54	760	3.0	13	9,300	200
SRS-5	Bowen Road	11	87	c 0.1	ო	1,600	099	30	240	1.4	13	5,600	450
SRS-6	Marr Road	18	09	60.1	٣	1,700	740	38	260	1.4	9.5	5,700	220
SRS-7	Chase Lake Road	81	09	0.5	ന	1,300	620	42	170	1.1	17	7,800	280
SRS-8	Oak Grove Road	12	34	0.5	-	420	240	28	100	0.3	7.9	5.800	200
SRS-9	Cohoctah Road	20	14	0.1		130	100	16	54	<0.2	4.5	3,200	89
·													

Table 8

Organic Contaminant Concentrations (mg/kg dry weight) Found

in Sediments of the South Branch Chiawassee River Below

Howell, August 1977 (MDNR 1979)

				Param	eter	
Station*	PCB 1242	PCB 1254	PCB 1260	DEHP	DBP	Total PCB
1A	13.0	5.6	⋖.0	<2.0	<2.0	19.5
5-TR-1-5	27 .0	10.4	⋖.0	<2.0	<2.0	37.4
5-TR-1-2	13.6	5.6	⋖.0	<2.0	<2.0	19.2
5-TR-1-3	45.2	18.3	<5.0	<2.0	<2.0	63.5
5-TR-2-5 (Bowen F	Road) 64.8	20.3	<5.0	<2.0	<2.0	85.1
5-TR-2-2	16.2	15.4	<5.0	<2.0	<2.0	31.6
5-TR-2-3	23.8	9.0	<5.0	<2.0	<2.0	32.8
5-200	5 3.6	12.4	⋖.0	<2.0	<2.0	66.0
5-400	64.0	15.7	⋖.0	<2.0	<2.0	78.7
5 -600	40.0	8 .8	⋖.0	<2.0	<2.0	49.4
5-800	20.3	<5.0	⋖.0	<2.0	<2.0	20.3
5-1000	43.0	8.1	<5.0	<2.0	<2.0	51.1
CF-CON (M-59 Cont Station)	rol 0.5	0.8	<0.5	<2.0	<2.0	0.8
CF-DIS-1	23.0	8.7	<5.0	<2.0	<2.0	31.7
CF-DIS-2	35.3	6.7	<5.0	<2.0	<2.0	42.0
CF-DIS-3	31.0	7.8	<5.0	<2.0	<2.0	38.8

Station 1A corresponds to Willson and Powers 1974 Survey; Station 5-TR-1 & 2 are core samples; 5-TR-200 & 1000 are sludge bed samples.

CF-CON is the control station immediately above M-59.

CF-DIS - 1, 2, 3 samples were taken 50, 100, and 150 yards downstream from Cast Forge old discharge channel.

Table 9

PCB Concentrations (dry weight) in Sediments of the South

Branch Shiawassee River from Howell to Corunna,

October 1977 (MDNR 1977)

			PCB (m	g/kg)	
_			Aroclor		
Station Number	Station Location	1242	1254	1260	Total
1	Marr Road	35.00	8.70	<0.50	43.70
2	Chase Lake Road	17.00	3.20	<0.50	20.20
3	Oak Grove Road	4.10	<0.50	<0.50	4.10
4	Lillie Road	0.96	<0.50	<0.50	0.96
5	Byron Road	2.60	<0.50	<0.50	2.60
6	Durand Road	0.54	<0.50	<0.50	0.54
7	Cole Road	0.50	<0.50	<0.50	0.50
8	Shiatown Res.	0.60	<0.50	<0.50	0.66
9	Corunna Imp.	0.50	<0.50	<0.50	0.50

Metal Concentrations (mg/kg) Found in Shiawassee River Sediments, Owosso, 1980 (MDNR 1980) Table 10

			Me	Metal		
Site	Cadmium	Chromium	Copper	Nickel	Lead	Zinc
Shiawassee River at Lytle Rd., Shiawassee Co., Michigan	<2.0	12.0	0.9	6.0	10.0	50.0
Shiawassee River at Division St., City of Owosso	<2.0	23.0	13.0	10.0	28.0	70.0
Shiawassee River at Alkan St., City of Owosso - particulate matter scraped from inside of County Drain outfall pipe	80.0	170.0	15,000.0	1,500.0	100,000.0	740.0
Shiawassee River at Alkan St., approximately 10.0 m downstream from County Drain outfall	<2.0	<10.0	12.0	8.0	80.0	0.09
Shiawassee River at Alkan St., approximately 20.0 m downstream from County Drain outfall	<2.0	. 10.0	8.0	7.0	30.0	50.0
Shiawasses River at Alkan St., approximately 30.0 m downstream from County Drain outfall	<2.0	<10.0	7.0	7.0	20.0	50.0
Shiawassee River at Harmon - Partridge Park, City of Owosso	<2.0	10.0	8.0	5.0	40.0	60.0

Table 11

Metal Concentrations (mg/kg) in Shiawassee River

Sediments Collected Near Owosso, 1972

(MDNR 1979a)

				Sta	tion			
Metal	2	3	4 North	4 Middle	4 South	5	6	7
Pb	36	27	18	136	378	26	136	40
Zn	25	15	26	18	26	17	44	33
Cu	7.2	4.6	5.4	3.4	4.8	2.6	6.6	6.2
Cr	12	13	7.2	9.0	7.6	7.4	11	10
Cd	2.2	2.8	1.0	1.0	1.0	1.0	2.4	1.8

Table 12

Metal and Phosphorus Concentrations (mg/kg) in Tittabawassee River Sediments, 1981

(Rossmann et al 1983; see Figures 12, 13a, and 13b)

	River				Metal	1				Total
Station	Mile	As	Ç	HB	PO	Cr	2n	N	Pb	4
1	25	0.614	1.59	.106	.0378	6.65	14.6	4.10	3.972	158
2	23.5	0.793	5.82	.186	.0555	13.5	20.3	5.76	10.0	235
m	20.9	1.81	3.26	.0109	.0202	8.59	19.1	3.56	66.4	163
7	18.9	2.41	70.7	.0165	.0210	13.4	21.8	95.9	3.862	292
\$	17	4.15	5.79	.199	.0320	20.5	36.8	11.6	10.8	257
9	14.8	37.4	6.52	.280	. 189	117.0	9.87	15.0	8.04	510
7	13	67.9	18.6	.05162	.147	31.6	43.9	15.2	19.5	191
œ	11.4	3.12	8.79	,0209 ²	.0193	26.4	42.7	6.92	6.71	148
6	9.9	0.672	7.22	.0164 ²	.0212	8.96	21.9	3.58	4.202	106
10	4	1.78	7.48	.0250	.0398	9.91	32.7	5.64	6.892	114
Mean	-	6.5	6.9	.091	.058	26	30	7.8	11	217
Standard Deviation		11.2	9.4	760°	090.	33	12	4.5	11	119

Sylvester (1974).

 2 One or more samples from core below limit of detection.

Table 13

Organic Concentrations (ug/kg) in Tittabawassee River Sediments

and Flood Plain Samples (see Figures 12, 13a, and 13b)

					S	Station						
	TR-1 Above Ash Pond	TR-2 Below Ash Pond	TR-3 Above Lingle Drain	FP-1 Flood Plain @ T. Pond	TR-4 Smith's Crossing Bridge	FP-2 Flood Plain at White and Deboit	TR-5 Up- stream of Brown Mills	TR-6 Free-	TR-7 T1. Road	FP-3 Flood Plain at T. Road	TR-8 TR-9 Cratiot Center Road Road	TR-9 Center Road
Benzene	i	ı	1	1	ı	,	1	ı	ı	5	1	
Methylene chloride*	2400	32	29	85	17		97	91	57	9500	07	66
Toluene	5.2	ı	ı	1	ı	,	t	ı	,	1	ı	ı
Xylenes		ı	•	ı	J	,	1	ı	,	5	,	1
Bis(2-ethylhexyl)phthalate*	870	ı	ŧ	ı	į	,	ı	1	ı	10	ı	01
D1-n-butyl phthalate*	01	1	ı	ı	į	•	1	•	,	ì	ı	ı
D1-n-octyl phthalate*	•	ı	840	450	l	3100	•	1	,	t	,	,
Diethyl phthalate*	•	•	1	1	ı	ı	•	1	10	1		01
4,4'-DDT	14	17	8.3	9.9	ı		1		,	31		1
4,4'-DDE	20	19	19	1	12	88	•	ı	ı	43	ı	,
4,4'-DDD	15	14	•	7.3	J	ı	1	•	,	13	,	1

Not detected
All other organic priority pollutants not detected
*
Presence may be due to laboratory or field contamination

Table 14

Conventional Metal and Organic Parameter Concentrations

(mg/kg dry weight) in Flint River Sediments, 1974

(MDNR 1977; see Figure 14)

			tion	
	F-6	F-8	F-11	F-13
	Elms	Mt. Morris	East Burt	Mich.
	Road	Road	Road	13
Arsenic	5.4	14.0	1.7	4.0
Copper	140.0	110.0	20.0	8.4
Mercury	0.4	0.3	0.2	0.2
Cadmium	6.0	4.0	<1.0	<1.0
Chromium	200.0	88.0	18.0	11.0
Zinc	1500.0	1100.0	130.0	54.0
Nickel	82.0	92.0	18.0	10.0
Lead	780.0	620.0	70.0	20.0
Total Solids (%)	29.0	29.0	76.0	71.0
Volatile Solids (%)	4.2	5.3	0.8	0.6
Total Kjeldahl-Nitrogen	6200.0	7000.0	770.0	830.0
Total Phosphorus	530.0	610.0	120.0	140.0
Dieldrin	< 0.001	<0.001	<0.001	<0.00
Chlordane	< 0.001	<0.001	<0.001	<0.00
DDD	ND	ND	ND	<0.00
DDE	ND	ND	ND	<c.00< td=""></c.00<>
o,p - DDT	ND	ND	ND	<0.00
p,p - DDT	ND	ND	ND	<0.00
Total DDT + Analogs	ND	ND	ND	<0.01
PCB 1242	ND	ND	ND	ND
PCB 1254	0.420	0.420	0.089	<0.00
PCB 1260	<0.003	<0.003	<0.003	<0.00
Total PCB	< 0.423	<0.423	<0.092	<0.00
DEHP	18.000	18.000	0.840	2.40
DBP	<1.000	<1.000	<1.000	<1.00
Oil-Hexane (as %)	1.200	1.200	0.660	1.10
BBP	6.700	6.700	0.340	0.55

ND = Not determined due to presence of interfering chemicals.

Table 15

PBB Concentrations (ug/kg dry weight) in Pine River Sediments,

1974, 1976, and 1977 (Rice et al. 1980; see Figure 15)

		Year	
Station	1974	1976	1977
Downstream from Alma reservoir	<100	<100	-
M-46 l/4 mile upstream from Michigan Chemical Corporation	<100	<100	350
St. Louis reservoir immediately downstream from Velsicol Chemical Corporation	4800	1100	7100
Immediately downstream from St. Louis reservoir	6200	1200	500
Miles below St. Louis Dam - 2	1600	200	400
- 4	480	<100	(trace) 260 180
- 9 - 19	270 <100	<100	
- 19 - 25	100	<100	150

Table 16a

PBB, DDT, and Chlordane Residue Concentrations in Pine River Sediment Grab Samples, 1980-1981 (Rice et al. 1982; see Figure 16)

	5 5 5	Total DDT	ñ.	Percent Composition of DDT Residue	ř.	Total Chlordane
Station	rbs conc. (ug/kg)	kesidue (ug/kg)	Z DDE	Z DDD	Z DDT	(cis+trans) (ug/kg)
1	23	39	26.65	71.69	1.65	3.2
4	248	69	40.50	20.13	39.37	5.6
٧.	173	160	76.7	82.88	12.19	8.6
7	967	179	18.88	78.91	2.22	4.0 >
6	1,350		2.55	19.91	77.54	<0.3
11	8,064	1,530	*0	74.35	25.61	<0.2
12	4,586	8,935	.03	77.72	28.31	4.0 >
15	1,341	3,746	4.43	84.93	10.64	<0. 3
16	1,108	5,451	1.50	93.61	4.89	9.0°
18	41	1,103	1.28	83.43	15.30	% 0.1
19	106	5,193	.63	26.90	72.47	0.0

PBB, DDT, and Chlordane Residue Concentrations in Pine River Sediment Core Samples, 1980-1981 (Rice et al. 1982; see Figure 16) Table 16b

	Core	PBB	Total DDT	P	Percent Composition of DDT Residue	tion	Total Chlordane
Station	(E)	(ug/kg)	(ug/kg)	Z DDE	aga x	Z DDT	(clatifalls) (ug/kg)
3	20.00	353	126	99.9	84.09	9.25	12.6
m	30.00	367	313	29.08	36.66	34.26	11.6
m	47.00	0.0	246	27.75	50.84	21.41	21.2
æ	10.00	126	359	8.72	24.89	66.39	4.0 ◇
œ	21.00	437	337	34.73	41.35	23.92	2.0
œ	39.50	72	396	59.07	25.06	15.87	7.2
œ	56.50	17	845	25.39	10.36	64.25	%
&	59.50	2	310	73.70	12.96	13.34	20.3
œ	70.50	2	861	29.51	6.65	63.84	9.0°
æ	78.00	<0.1	209,316	1.89	73.28	24.84	1,513.2
10	15.00	233	4,608	18.42	39.06	42.52	0.0
10	32.00	277	89,005	8.59	32.70	58.71	2,757.6
10	20.00	30	99,119	5.28	30.50	64.21	1,946.0
10	68.00	58	3,570,109	0.37	0.35	99.28	2,813.0
14	23.50	2,265	969*7	11.57	81.76	6.67	120.3
14	45.50	96	107,343	66	83.96	15.05	<0.2

Table 17a

PCB, Dibenzofuran, and Dibenzodioxin Concentrations in Saginaw
River Sediments, 1978, 1980, and 1983 (USFWS 1983)

	1983 PCB				
	1978 Total	1980 Total	1016, 1232	1221 1242	1983 2,3,
	PCB	PCB		; 1254	7,8-TCDE
tation	(mg/kg)	(mg/kg)	1260;	(mg/kg)	(ng/kg)
R-1	0.9	<0.015	ND ³		<85
R-2	1.2	-	ND		-
R-3	2.2	1.15	2.0	(1248)	_
R-3A	2.2	2.85	ND		-
R-4	22.9	0.11	0.46	(1248)	-
R-5	12.8	0.745	2.1	(1242)	<35
R-6	5.5	_	7.6	(1242)	-
			1.7	(1254)	
R-7	12.3	4.565	6.9	(1248)	-
R-7A	1.8	<0.02	0.35	(1248)	_
?−8	1.5	` _	1.4	(1248)	_
R-9	4.5	0.12	0.12	(1248)	-
R-10	1.0	1.1	1.0	(1248)	-
R-11	1.3	_	0.47	(1248)	_
-12	0.1	1.42	0.63	(1248)	_
1-13	0.2	0.605	0.94	(1248)	_
-14	<0.1	1.2	0.93	(1248)	-
-14A	-	0.46	_	(12.5)	_
l - 15	2.0	0.11	ND		<390
-16	1.3		0.27	(1248)	-
1-16A	-	1.28 ⁵	-	(1240)	_
-17	1.9	1.9	0.22	(1248)	_
1-18	4.8	<0.1	0.62	(1248)	_
-19	7.6	2.75	1.2	(1248)	_
-20	5.7	7.6	2.1	(1248) (1248)	_
R-20	7.9	9.9	2.1	(1248)	_
k-21 k-22	4.0	<i>7 • 7</i>	4.1	(1248)	_
-23	4.0	_	4.0	(1248)	<95
1–23 1–24	4.1	0.42	4.9	(1248) (1248)	
1–24 1–25	3.5	6.3	22		-
1-25 1-26			27	(1248)	_
	11.8	2.0		(1248)	<15
L-27	6.5	0.315	0.84	(1248)	-
l-28	3.2	5.8	12	(1248)	-
l-29	2.5	0.46	1.5	(1248)	-
R-30	2.0	2.0	1.1	(1248)	-
R-31	1.2	~	0.53	(1242)	-
R-32	5.4	~	1.2	(1248)	-
R-33	3.3	-	13	(1248)	<220
1-34	2.1	-	2.5	(1248)	-
-35	1.9	-	0.62	(1242)	

Table 17b

Saginaw River Navigation Channel Sediment Concentrations

(mg/kg) of Selected Metal Parameters, 1983

(USACE 1983; see Figures 17a and 17b)

Station	As	Cd	Cr	Cu	Fe	Hg	Mn	Ni	РЪ	Zn
1	6.7	0.8	23	39	9,900	_	250	12	21	100
2	3.4	0.9	13	12	6,100	-	100	5	10	65
3	18	2.2	90	99	26,000	0.2	520	36	65	250
3 A	9	<0.8	29	10	21,000	-	1,000	23	4	64
4	9.1	1.2	28	30	14,000	0.2	370	18	34	220
5	8.9	0.8	32	35	17,000	0.2	670	17	13	110
6	12	2.2	96	82	26,000	0.3	620	36	55	260
7	20	2.7	110	130	21,000	0.2	520	38	71	340
7 A	8.1	1.2	44	37	16,000	-	420	22	45	310
8	12	1.5	53	61	15,000	0.1	410	27	48	260
9	5.7	1.0	22	16	11,000	0.2	310	14	2 6	340
10	20	1.8	67	71	21,000	0.3	490	32	54	330
11	6.9	1.2	54	22	8,600	-	190	15	20	150
12	12	2.0	56	60	22,000	0.1	550	33	64	520
13	9.1	1.7	56	45	15,000	-	350	25	33	270
14	7.7	-	41	52	13,000	0.1	310	23	29	140
15	9.4	-	16	11	15,000	-	420	18	11	150
16	5.4	-	15	15	8,100	-	180	14	11	110
17	4.4	~	12	8	7,700	-	150	12	12	130
18	5.0	-	18	-	9,300	_	210	14	16	170
19	8.5	-	30	-	14,000	-	350	25	32	280
20	5.0	-	37	-	8,600	0.2	200	18	21	150
21	4.2	-	29	19	9,900	-	200	22	23	180
22	7.5	-	10	9	12,000	-	310	18	8	74
23	8.4	-	35	28	14,000	_	310	26	33	260
24	10	-	54	44	20,000	_	470	35	72	380
25	12	-	110	75	20,000	0.2	460	52	61	310
26	17	3.5	180	150	34,000	0.2	680	87	96	500
27	9.7	~	30	32	16,000	-	380	29	33	230
28	9.6	1.7	75	66	12,000	_	310	40	44	260
29	12	2	76	64	17,000	-	540	45	72	550
30	14	1.2	57	49	20,000	_	500	31	58	490
31	18	1.2	60	56	24,000	-	730	40	63	560
32	20	1.8	67	71	21,000	0.3	490	32	54	330
33	6.9	1.2	54	22	8,600	-	190	15	20	150
34	12	2.0	56	60	22,000	0.1	550	33	64	520
35	9.1	1.7	56	45	15,000	_	350	25	33	270
36	7.7		41	52	13,000	0.1	310	23	29	140

Table 17c

Saginaw River Navigation Channel Sediment Concentrations
(mg/kg) of Selected Conventional and Organic Parameters,

1983 (USACE 1983; see Figures 17a and 17b)

Station	Total P	TKN	Phenols
1	410	1,500	
2	190	1,000	0.32
3	690	1,900	0.21
3 A	330	2,400	_
4	540	980	-
5	710	2,800	-
6	790	970	-
7	1,500	2,600	-
7A	580	1,200	-
8	570	1,100	_
9	360	120	-
10	610	1,800	_
11	460	1,000	_
12	600	5,800	_
13	410	4,100	-
14	590	3,400	l
15	240	4,800	_
16	280	4,400	-
17	220	3,200	_
18	280	3,400	-
19	590	4,500	-
20	380	1,200	-
21	. 350	760	-
22	530	1,600	-
23	530	820	_
24	1,000	2,200	-
25	1,400	3,000	- `
26	760	1,600	-
27	810	3,300	-
28	960	3,700	_
29	940	5,100	-
30	1,200	4,600	-
31	910	4,800	-
32	610	1,800	_
33	460	1,000	_
34	600	5,800	_
35	410	4,100	-
36	590	3,400	1

Table 18a

Saginaw River Project On-Site Data and Sample Descriptions May 2-3, 1988 (USACE, Detroit 1988)

STATION NO. 19 (Southside of Channel)

Date: 05/02/88

Measured Water Depth: 13.4'

Water Depth Minus L.W.D.: 11.2'

Depth of Sample Collected: 2.2'

 $\underline{\textbf{Sample Description}} \ \textbf{-} \ \textbf{A} \ \textbf{50-50 mixture of gray sandy silts with a}$

few pieces of gray, septic odor, no oil observed.

STATION NO. 17 (East Edge of Channel)

Date: 05/02/88

Measured Water Depth: 22.6'

Water Depth Minus L.W.D.: 20.4'

Depth of Sample Collected: 1.9'

<u>Sample Description</u> - Sample consisted primarily of gray sand with detrital material on the surface. Very little silts, no oil was observed and the sample had a strong septic odor.

STATION NO. 15 (East Edge of Channel)

Date: 05/02/88

Measured Water Depth: 19.0'
Water Depth Minus L.W.D.: 16.8'

Depth of Sample: 1.9'

<u>Sample Description</u> - Approximately 90% gray sand with 10% silts. The sample has a light septic odor with no oil.

STATION NO. 13 (Northwest Edge of Channel)

Date: 05/02/88

Measured Water Depth: 19.0'
Water Depth Minus L.W.D.: 16.8'
Depth of Sample Collected: 1.4'

<u>Sample Description</u> - The entire sample consisted of medium coarse gray sand, light septic odor, no oil observed.

STATION NO. 11 (West Edge of Channel)

Date: 05/02/88

Measured Water Depth: 20.7'
Water Depth Minum L.W.D.: 18.5'
Depth of Sample Collected: 2.0'

<u>Sample</u> <u>Description</u> - Gray sand with detrital material intermixed, <5% silts. Sample had a light hydrocarbon odor, no oil observed.

STATION NO. 9 (North Edge of Channel)

Date: 05/02/88

Measured Water Depth: 20.7'

Water Depth Minus L.W.D. : 18.5'
Depth of Sample Collected: 2.0'

Sample Description - Primarily gray smooth silts with approximately 10% fine sand. Approximately 4" of brown clay on the bottom of the clam shell. Sample had a light hydrocarbon odor, no oil.

STATION NO. 7 (West Edge of Channel)

Date: 05/02/88

Measured Water Depth: 19.0'

Water Depth Minus L.W.D.: 16.8'

Depth of Sample Collected: 3.0'

<u>Sample Description</u> - Primarily dark gray silts with approximately 20% very fine sand. Moderate amount of oil was observed and the sample had a strong hydrocarbon odor. Texture was smooth to light gritty.

STATION NO. 5 (West Edge of Channel)

Date: 05/02/88

Measured Water Depth: 19.68'

Water Depth Minus L.W.D.: 17.48'

Depth of Sample Collected: 1.20'

Sample Description - Primarily gray fine coarse sand with <5% silts. A light amount of oil was observed and the sample had a faint hydrocarbon odor.

STATION NO. 3 (West Edge of Channel)

Date: 05/02/88

Measured Water Depth: 19.7'

Water Depth Minus L.W.D.: 17.5'

Depth of Sample Collected: 1.30'

<u>Sample Description</u> - Primarily gray-brown medium coarse sand with very little silts (<5%) intermixed. No oil was observed and the sample had a faint septic odor.

STATION NO. 1 (North Edge of Channel)

Date: 05/02/88

Measured Water Depth: 19.7'
Water Depth Minus L.W.D.: 17.5
Depth of Sample Collected: 1.90'

<u>Sample Description</u> - Blackish gray sand with approximately 10% loose gray silts intermixed. Gritty texture, no oil and the sample had a light septic odor.

STATION NO. 2

Date: 05/02/88

Measured Water Depth: 17.7'

Water Depth Minus L.W.D.: 15.5'

Depth of Sample Collected: 2.20'

Sample Description - Sample was identical to Station 1.

STATION NO. 4 (West Edge of Channel)

Date: 05/02/88

Measured Water Depth: 20.6'

Water Depth Minus L.W.D.: 18.5'

Depth of Sample Collected: 2.0'

<u>Sample Description</u> - Approximately 3" of gray loose silts over medium coarse brown sand. No oil was observed and the odor was light septic.

STATION NO. 16 (West Edge of Channel)

Date: 05/02/88

Measured Water Depth: 20.6'

Water Depth Minus L.W.D.: 18.2'

Depth of Sample Collected: 2.9'

<u>Sample Description</u> - The sample consisted primarily of gray stiff silts with a very small percentage of fine sand. The texture was smooth to lightly gritty, mild hydrocarbon odor and no oil was observed.

STATION NO. 6 (West Edge of Channel)

Date: 05/02/88

Measured Water Depth: 21.0'

Water Depth Minus L.W.D.: 18.8'

Depth of Sample Collected: 2.7'

<u>Sample Description</u> - Gray to dark black stiff silts with some fine sand intermixed, the texture is primarily smooth. The sample had a strong hydrocarbon odor with a moderate amount of oil observed.

STATION NO. 8 (East Edge of Channel)

Date: 05/02/88

Measured Water Depth: 21.0'

Water Depth Minus L.W.D.: 18.8'

Depth of Sample Collected: 1.4'

<u>Sample Description</u> - Approximately 2" of brown loose silts over 5" of dense black oily silts over gray/brown oily sand. Oil was visible throughout the sample and there was a strong hydrocarbon odor.

STATION NO. 10 (Mid-Channel)

Date: 05/02/88

Measured Water Depth: 21.6'

Water Depth Minus L.W.D.: 19.4'

Depth of Sample Collected: 1.2'

<u>Sample Description</u> - Entire sample consisted of brown to dark gray fine to medium coarse sand with some wood chips intermixed. No oil was observed and the sample had a light septic odor.

Table 18a. (Continued)

STATION NO. 12 (Northwest Edge of Channel)

Date: 05/02/88

Measured Water Depth: 21.6'
Water Depth Minus L.W.D.: 19.4'
Depth of Sample Collected: 1.3'

<u>Sample Description</u> - 3" of brown loose silts over medium coarse brown sand with wood chips throughout. Earthy odor with no oil.

STATION NO. 14 (East Edge of Channel)

Date: 05/02/88

Measured Water Depth: 20.3'
Water Depth Minus L.W.D.: 18.1'
Depth of Sample Collected: 1.2'

<u>Sample Description</u> - Primarily fine to medium coarse gray/brown sand with a very small amount of gray silts on the surface. The odor was earthy and no oil was observed.

STATION NO. 18 (East Edge of Channel)

Date: 05/02/88

Measured Water Depth: 20.0'
Water Depth Minus L.W.D.: 17.8'
Depth of Sample Collected: 1.5'

<u>Sample Description</u> - 4" of gray loose silts over medium to fine coarse gray sand, very light oil observed, earthy odor.

STATION NO. 20 (West Edge of Channel)

Date: 05/03/88

Measured Water Depth: 19.7'
Water Depth Minus L.W.D.: 17.5'
Depth of Sample Collected: 2.5'

<u>Sample Description</u> - The entire sample consists of gray to dark brown gelatinous silts with a very small percent of fine sand. No oil was observed and the odor is earthy.

STATION NO. 21 (Mid-Channel)

Date: 05/03/88

Measured Water Depth: 20.5'
Water Depth Minus L.W.D.: 18.3'
Depth of Sample Collected: 1.3'

<u>Sample Description</u> - Fine to medium coarse gray sand with detrital material and crushed shells. Earthy odor, no oil.

STATION NO. 22 (South Edge of Channel)

Date: 05/03/88

Measured Water Depth: 23.2
Water Depth Minus L.W.D.: 21.0
Depth of Sample Collected: 2.4

Sample Description - 1.0 foot of gray gelatinous silts over brown medium coarse sand. No oil was observed and the odor is earthy.

STATION NO. 23 (South Edge of Channel)

Date: 05/03/88

Measured Water Depth: 22.6'
Water Depth Minus L.W.D.: 20.4
Depth of Sample Collected: 2.0'

<u>Sample Description</u> - Brown fine sand (6") over medium coarse brown sand. No silts, no oil and a earthy odor.

STATION NO. 24 (Northwest Edge of Channel)

Date: 05/03/88

Measured Water Depth: 23.3'
Water Depth Minus L.W.D.: 21.1'
Depth of Sample Collected: 2.6'

<u>Sample Description</u> - 1.5 feet of loose gray silts over medium brown coarse sand with some detrital material intermixed. Odor is earthy with no oil observed.

STATION NO. 25 (West Edge of Channel)

Date: 05/03/88

Measured Water Depth: 23.2'

Water Depth Minus L.W.D.: 21.1'

Depth of Sample Collected: 2.6'

<u>Sample Description</u> - The entire sample consists of very consolidated gray to dark gray silts with very little fine sand. Light hydrocarbon odor, no oil observed.

STATION NO. 26 (West Edge of Channel)

Date: 05/03/88

Measured Water Depth: 22.6'

Water Depth Minus L.W.D.: 20.4'

Depth of Sample Collected: 2.7'

Sample Description - Grayish green very thick silts over 6" of coarse brown sand. Strong septic odor, no oil observed.

STATION NO. 27 (West Edge of Channel)

Date: 05/03/88

Measured Water Depth: 21.3'

Water Depth Minus L.W.D.: 19.1'

Depth of Sample Collected: 1.8'

<u>Sample Description</u> - 10" of grayish green gelatinous silts over medium coarse gray/brown sand. Strong septic odor, no oil.

STATION NO. 28 (West Edge of Channel)

Date: 05/03/88

Measured Water Depth: 21.9'

Water Depth Minus L.W.D.: 19.7'

Depth of Sample Collected: 2.6'

<u>Sample Description</u> - 1.0' of gray loose silts over blackish gray silty sand (50-50). No oil was observed, odor light septic.

STATION NO. 29 (West Edge of Channel)

Date: 05/03/88

Measured Water Depth: 22.3'

Water Depth Minus L.W.D.: 20.1'

Depth of Sample Collected: 2.5'

<u>Sample Description</u> - 1.0 foot of gray consolidated silts over gray medium coarse sand with detrital material throughout. Odor light septic, no oil observed.

STATION NO. 30 (West Edge of Channel)

Date: 05/03/88

Measured Water Depth: 23.3'

Water Depth Minus L.W.D.: 21.1'

Depth of Sample Collected: 2.6'

Sample Description - 1.5 feet of gray consolidated silts over brown coarse sand. The sample had an earthy odor with no oil.

Project: A8563

Report Date: 06/27/88

Results by Sample	Approved: M. Jewill M. Refer Questions to: LINDA DUMLAP Residual Bamples Will Be Held For Two Weeks	98-4 03-03-88 05-03-88 05-03-89 05-03-89 05-03-89 05-03-89 05-03-89 05-03-89 05-03-89 05-03-89 05-03-89 05-03-89 05-03-89 05-03-89 05-03-89
		88
	Client P. O.: DACH35-88-D-0007 Report #: 363 Samples Rec'd: 03-04-88 Såginaw River DELIVERY ORDER #0001	98-3 09-03-88 05/187939 50L10
	Client P.O.: DACW35-88-f Report 0: 363 Samples Rec'd: 03-04-88 Saginaw River DELIVERY ORDER 00001	SR-2 05-03-88 05/18/954 . SOLID
	epared for: U.S. ARMY ENDINEER DIBTRICTDETROIT, BOX 1027 DETROIT, MI 48231 Attention FRANK SNITZ	5R-1 03-03-88 05-187953 50L10
	Prepared for: U.S. ARMY ENDINEER DIS' BOX 1027 DETROIT, HI 48231 Attention FRANK SNITZ	Collected TAM Sample Number Math is Perimited

	ARSI-NIC mg/kg CADMIUM mg/kg CADMIUM mg/kg CADMIUM mg/kg CADMIC mg/kg CADMIUM mg/kg CA
	220 2 2 3 3 4 4 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5
8R-4 03-03-88 05/187936 SOLID	14 000 11 000 000 000 000 000 000 000 00
SR-5 03-03-88 05/187937 50LID	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
98-6 09-03-88 05/187938 50L.10	10004 130006 16000 1 1000 1 10

See last page for explanation of symbols Page 1

Report Date: 27 JUN 1988

Project: A8563

	2 9460-14 9 1 1 3 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9
	230000 230000 2300000 2300000 23000000 23000000 2300000000
9R-10 05-03-88 05/187962 50LID	41.000.000.000.000.000.000.000.000.000.0
98 -9 05-03-88 05/187961 50L.10	8 8000 1000 1000 1000 1000 1000 1000 100
98-8 09-03-88 05/187460 50L10	4800051 140000 160001 100001 100001 100001 100001 100001 100001 100001 100001 100001 100001
98-7 09-03-88 09/187959 SOL 10	000 04 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0
Clicht ID Collocted Town Sample Number Matril	ARSI-NIC M9/Ng CADDIUM M9/Ng CHECHIUM M9/Ng IND PAINTCE DENSITY GM/CM3 IND M9/Ng NICKII M9/Ng NICKII M9/Ng NICKII M9/Ng NICKII M9/Ng APWINIA M17ROGEN M9/Ng PANTICLE SIZENG, COBE (5 PT) PA

page 2 See last page for explanation of symbols

Project: A8363	Report Date: 27 JJN 1988	88-17 05-03-88 05/187969 05/187970 80L1D 60L1D	The state of the s
		5R-16 09-03-88 09/187968 SQL 1D	49.0 P-M
		6R-19 05-03-68 09/18/76/7 501.10	4 **
		9R-14 03-03-88 03/187966 30-10	<u> </u>
		88-13 05-03-88 05/187965 60L10	er- en-
ontinued)			

88-18 05-03-88 05/187970 50L.10	6. 00 00 00 00 00 00 00 00 00 00 00 00 00
	4-100-10 00 00 00 00 00 00 00 00 00 00 00 00 0
58-16 03-03-08 03-187468 50L 10	2 100 0 1 1 100 0 1 1 100 0 1 1 100 0 1 1 100 0 1
68-19 03-03-88 09/187967 SOL 10	4 8 600 000 000 000 000 000 000 000 000 0
98-14 03-03-88 03/187966 90LID	4 1 8 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
88-13 03-03-88 09/18745 50LID	1
Client ID Collected TRA Vample Number Matri Patrier	ARSENIC SERVE CADDILY SERVE CHRITTION SERVE CIPILER SERVE COPILER SERVE IN PLACE DENSITY SERVE IN PLACE DENSITY SERVE IN PLACE SERVE SERVENI SERVE MICKET SERVE MICKET SERVE MICKET SERVE MICKET SERVE MICKET SERVE MICKET SERVE MICKET SERVE MICKET SERVE MITTOLE SIZE > 0.074 SERVE PARTICLE SIZE > 0.074 SERVE PHOSPICRUS, TOTAL SERVE SOLIDS, PERCENI X SOLIDS, PERCENI X VOLATILE SOLIDS X

Bee lest page for explanation of symbols Page 3

Report Date: 27 JUN 1988

Project: A8563

400000 400000 400000 400000 400000 40000 40000 40000 40000 4000
2
000 00 00 00 00 00 00 00 00 00 00 00 00
00000 6 16 00000 6 000000
260003 600000 60000 60000 60000 60000 60000 60000 60000 60000 600000 60000 60000 60000 60000 60000 60000 60000 60000 600000 60000 60000 60000 60000 60000 60000 60000 60000 600000 60000 60000 60000 60000 60000 60000 60000 60000 600000 60000 60000 60000 60000 60000 60000 60000 60000 600000 600000 60000 60000 60000 60000 60000 60000 60000 60000 600000 60000 60000 60000 60000 60000 60000 60000 60000 600000 60000 60000 60000 60000 60000 60000 60000 60000 600000 60000 60000 60000 60000 60000 60000 60000 60000 60000 60000 60000 60000 60000 60000 60000 60000 60000 60000
24 4 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
ARSENIC ME/KE CADMIUM ME/KE CRECILUM ME/KE COPILER ME/KE COPILER ME/KE COPILER OF CENDENAND INDIRECTED TO SEEN DEMAND INDI

Page 4 See last page for explanation of symbols

Report Date: 27 JUN 1988

Project: A8563

9R-29 03-03-88 03-03-88 03/187977 50L.10	ARSHNIC Mg/kg CADHIUM Mg/kg CADHIUM Mg/kg CADHIUM Mg/kg CHRITHIUM Mg/kg CHRITHIUM Mg/kg CHRITHIUM Mg/kg CHRITHIUM Mg/kg IROON IROON Mg/kg IROON IROON Mg/kg IROON	Comments about sample 03/187933 Comments about sample 03/187933 Comments about sample 03/187933 Comments about sample 03/187934 TOTAL PHOSHHORUS — AVERAGE OF DUPLICATE RUNS TOTAL PHOSHHORUS — AVERAGE OF DUPLICATE RUNS Comments about sample 03/187934 Comments about sample 03/187934 Comments about sample 03/187936 Comments about sample 03/187937 Comments about sample 03/187936 Comments about sample 03/187936
5R-27 03-03-88 05/187979 50L.10	20002 98 20002 98 1 1 2000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	UNS JCATE RUNS JCATE RUNS TE RUNS Page 5
9R-28 055-03-88 057-187980 50L10	280002 327 327 100000 110000 6012 128 128 129 1000 1000 1000 1000 1000 1000 1000	See last page
88-29 05-03-88 05/187981 50L10	8 8 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Gee last page for explanation of
8R-30 03-03-88 05/187982 SOL 10	01000000000000000000000000000000000000	s togen

(Continued)

JUN 1988

27

Report Date:

(Sheet 6 of 7)

Project: A8563

Report Date: 27 JUN 1988

Comments about sample 03/187982
CHEMICAL DXYGEN DEMAND - AVERAGE OF DUPLICATE RUNS
TOTAL MUELDAHL NITROGEN - AVERAGE OF DUPLICATE RUNS

SR # See attached report for result

A POSITIVE TESULE but at unquantifiable

Concentration below inicated level

" I Test not requested for this sample

Page 7 LAST PAGE

Note Results indicated by '#' are in mg/L instead of mg/Kg TR Spe field report for result
TN = Not applicable to test requested
TD = 'ondetered' detection limit in ()

(Sheet 7 of 7)

(Continued)

1988)
Detroit
(USACE,
Sediments
οf
Analysis
PCB Ar
and
Pesticide
18c.
Table

-
_
7
9
Ď
<
٠.
•
u
Ĕ
_
٥
4
₾.

Report Date: 06/23/88

	### FROM HER DISTRICT -DETROIT, CLIENT P. O.: DACH33-88-D-0007 Control of Part 1: 361 Contr						Results	ر د دد
Construction of the constr	Control of the contro	Prepared for: U.S. ARMY ENGINEE BOX 1027 DETROIT, HI 482 Attention: FRANK		ient P.O.: port 0: 361 mples Rec'd LIVERY ORDE	ACU33-88-D-0007 03-04-88	> nc }	NLAP **	
CODE		Client ID Collected THA Sample Number Matrix Parents	98-1 03-02-88 09/187983 50LID	68-2 03-02-88 05/187984 90LT0	98-3 03-02-88 03/18/983 50L10	98-4 03-02-89 03/187986 SOLIO	88-5 5/1879 80L ID	98-6 03-02-88 05/187988 50L10
	1 See lest page for explanation of	ALDERN PEST AND ALDERN PEST AN	88 99998999999999999999999999999	000000000000000000000000000000000000000			000000000000000000000000000000000000000	

JUN 1988

23

Report Date:

Project: A8363.1

5R-12 05-02-88 05/187994 50LID

8R-11 05-02-88 05/187993 60LID

9R-8 05-02-88 05/187990 30LID

8R-7 05-02-88 05/187989 50LID

Client ID Collected TMA Sample Number Matria

AND PCB'8 (COE LIST)

9R-10 03-02-88 03/187992	00000000000000000000000000000000000000		
88-9 03-02-88 03/18791 50LID	00000000000000000000000000000000000000	• TO QE >>	

99999999999999999999999999

9999999999999999999999

899999999999999999999999

A FOLL PEST. AND PCB'S (CDE
ALIST SELVE
A-1514C SELVE
A-1514C SELVE
A-1514C SELVE
A-1514C SELVE
A-1514C SELVE
A-1514C SELVE
A-1516C SELVE
A-15

See last page for explanation of œ

Report Date: 23 JUN 1988

Project: A8563.1

Client 10 TMA Sample Number Metrix Patrix	A DOLL PEST. AND PCB'S (COE LIST) A DOLL PEST. AND PCB'S (COE LIST) A DOLL SB/KS A SERVED A TODAKE SB/KS ENDOSULFAN II SB/KS FCB IZSISSISSISSISSISSISSISSISSISSISSISSISSI
88-13 05-02-88 05/187993 60LTD	000000000000000000000000000000000000000
88-14 05-02-88 05/187996 50LTD	000000000000000000000000000000000000000
9R-19 05-02-88 05/187997 90L10	\$2000000000000000000000000000000000000
SR-16 05-02-88 05/187998 SOL 10	000000000000000000000000000000000000000
8R-17 05-02-88 05/187999 80L.10	00000000000000000000000000000000000000
6R-18 03-02-88 05/188000 80L10	000000000000000000000000000000000000000

Page 3 See last page for explanation of symbols

Report Date: 23 JUN 1988

Table 18c. (Continued)

(Sheet 4 of 5)

68-24 03-02-88 05/16806 60LTD	99999999999999999999999999999999999999
68-23 03-18609 60L I D	000000000000000000000000000000000000000
68-22 05-02-88 05/18804 50LID	99999999999999999999999999999999999999
68-21 05-62-88 05-18003 50L10	00000000000000000000000000000000000000
8R-20 05-02-88 05/188002 50L.10	000000000000000000000000000000000000000
88-19 05-68 05-186001 60L10	000000000000000000000000000000000000000
Collent 10 Collected TMA Sample Number Matris Pathis	A DOLL PEST. AND PCS'S (CDE LIST) A DAIN SS/AS D-SHC SS/AS D-SHC SS/AS D-SHC SS/AS CH CROANE SS/AS A 4 - DDE SS/AS ENDOSULFAN SS/AS ENDOSULFAN SS/AS ENDOSULFAN SS/AS ENDOSULFAN SS/AS ENDOSULFAN SS/AS ENDOSULFAN SS/AS ENDS SS/AS FOR

See last page for explanation of symbols Page 4

Report Date 23 JUN 1988

Client ID Callected TRA Sample Number Matrix	# POLL PEST. AND PCB'S (COE LIST # DATIN BS/KS # -BHC BS/KS # -BHC BS/KS # - BHC BS/KS # - DDD BS/KS	Notes of the Control
88-23 05-02-88 05/188007 90LID	00000000000000000000000000000000000000	Trest to mg/L
98-26 03-02-98 05/138008 30L10	22222222222222222222222222222222222222	instead of mg/Kg
68-27 03-02-88 03/186009 50L10	000000000000000000000000000000000000000	SR Bee att
8R-28 03-02-88 03/189010 90L10	000000000000000000000000000000000000000	TT TE T
68-29 03-02-88 05/188011 50LID	99999999999999999999999999999999999999	Document Doc
5R-30 05-02-88 05/188012 50L10	00000000000000000000000000000000000000	

Table 19a

Secchi Depth (m) by Season for Inner Saginaw Bay, 1974-1980

(Bierman et al. 1983)

	Seas	
Year	Spring	Fall
1974	1.09	0.95
1975	1.30	1.12
1976	0.78	0.84
1977	1.39	0.78
1978	0.98	0.93
1979	1.09	0.95
1980	1.16	1.16

Table 19b

Mean Secchi Disc Depth (m) by Segment in Saginaw Bay, 1974 and 1975

(Smith et al. 1977; see Figure 49)

	Yez	ır
Segment	1974	1975
1	0.87	0.9
2	1.3	1.5
3	1.0	1.4
4	3.4	3.6
5	2.7	3.0

Table 19c

Average Total Phosphorus Concentrations (ug/1) in Water for

Inner Saginaw Bay, During Spring and Fall, 1974-1980

(Bierman et al. 1984)

	Season			
Year	Spring	Fall		
1974	30.5	29.3		
1975	35.4	27.3		
1976	41.2	40.9		
1977	-	-		
1978	47.3	34.8		
1979	37.3	27.7		
1980	26.8	24.8		

Table 19d

Mean Concentrations (ng/l) and Percent Residues of Several

Organic Contaminants Found in Saginaw Bay Water Samples,

1967-1979 (Kreis and Rice 1985)

				Year				
Category	1967	1968	1974	1976	1976	1977	1979	
Source	1	1	2	3	4	5	6	
Nearshore or River	R	R	N	N	R	N	N	
No. of samples	1	1		8			118	
PCB Total %1260 %1254 %1242			0-23 44.0 13.0 44.0			25.0	24.4 51.1 48.7	
DDT-R Zp,p'DDD Zp,p'DDE Zp,p'DDT	ND ND ND ND	ND ND ND	<3.0 33.3 33.3 33.3					
Dieldrin	τ	ND	0.6					
Aldrin	ND	ND						
Chlordane	ND	ND						
Lindane	ND	ND						
Alpha BHC	7.0	ND						
"Apparent" Toxaphene	ND	ND						
DEHP			1300	2250	1000			
DBP			1000					

T = Trace

ND = Not Detected

Table 19e

Mean Concentrations of PCB (ug/1) and Suspended Solids (mg/1)

in Saginaw Bay, 1979 (Richardson et al. 1983;

see Figure 19)

	Segment				
Parameter	1	2	3	4	5
Total PCB					
Total	43.1	26.4	25.6	18.1	16.2
Dissolved	27.0	14.8	15.7	14.1	13.7
Particulate	16.2	11.6	9.91	3.98	2.57
A-1242					
Total	23.0	13.4	12.7	7.66	6.87
Dissolved	15.67	8.09	8.13	5.95	5 .83
Particulate	7.45	5.31	4.52	1.71	1.04
A-1260					
Total	20.1	13.0	12.8	10.4	9.36
Dissolved	11.4	6.68	7.45	8.13	7.83
Particulate	8.70	6.34	5.39	2.27	1.53
Suspended Solids	15.2	9.68	12.2	3.03	2,65

Table 19f

Concentrations (ug/l) of Metals on Suspended Particulate Size

Fractions, Saginaw Bay, 1978 (Rygwelski et al. 1984)

	F	Particulate Size (um)				
Metal	10-74	74-210	210-1000			
Copper						
N N	95	101	97			
Mean	410	70	95			
Median	300	22	31			
Minimum	3.7	4.8	3.5			
Maximum	1300	610	430			
Lead						
N	100	101	85			
Mean	240	46	100			
Median	50	32	53			
Minimum	23.0	20.0	4.6			
Maximum	3300	210	540			
Zinc						
N	98	101	102			
Mean	390	170	220			
Median	330	130	160			
Minimum	6.3	95	20			
Maximum	870	430	650			

Table 19g
Water Sampling Sites on Saginaw Bay Basin Tributaries

Tributary	Location	Description		
Saginaw River	Mouth	Downstream of Bay City		
Saginaw River	Midland Street	Approx. RM 5.0 in Bay City		
Saginaw River	Center Street	Approx. RM 20.0 upstream of Saginaw		
Tittabawassee River	Gordonville Rd.	Downstream of Midland		
Shiawassee River	Fergus Road	Near Mouth		
Flint River	Elms Road	Downstream of Flint		
Cass River	Dixie Highway	Near Mouth		
Tawas River	U.S. 23	Near Mouth		
Whitney Drain	U.S. 23	Near Mouth		
Au Gres River	U.S. 23	Near Mouth		
Rifle River	State Road	Near Mouth		
Pine River	State Road	Near Mouth		
Pinconning River	Mouth	Mouth		
Kawkawlin River	Mouth	Mouth		
Sebewaing River	C&O RR Bridge	Near Mouth		
Pigeon River	Kinde Road	Near Mouth		
Pinnebog River	M-25	Near Mouth		
Taft Drain	M-25	Near Mouth		

Table 19h

Fecal Coliform and Fecal Streptococci Values in Surface

Waters of the Saginaw Bay Watershed Measured by USGS

in 1983, 1984, and 1985 (USGS 1983, 1984, and 1985)

		Water Year				
River		1983	1984	1985		
Saginaw ^a						
fecal coliform	min	410 920	110 470	220 760		
fecal streptococci	max mi	220	180	210		
	max	320	570	580		
Pigeon						
fecal coliform	min	200	560 450 0	440*		
fecal streptococci	max win	2200 200	320	4300 *		
	max	9400	2800	-		
Rifle ^C						
fecal coliform	min	410*	_	250		
61	max	-	760*	690		
fecal streptococci	min max	760 9 500	1 90 37 0	11 1600		

^aRM 20.3 (Rust Ave.)

b_{RM} 3.1 (Kinde Rd.)

^cRM 20.0 (01d M-70)

^{*}not all four samples represented

Table 20
Morphometric Data for Saginaw Bay^a

	Saginaw Bay					
Measurement	Inner Bay	Outer Bay	Total			
Surface Area (km²)	1,480 ^b	1,480 ^b	2,960 ^b			
Average Depth (m)	4.6 ^b	14.6 ^c	9.6 ^b			
Maximum Depth (m)	14.0 ^b	40.5 ^b	40.5 ^b			
Volume (km ³)	6.8	21.6	28.4			
Flushing Time	110 ^d		52 ^d			
Surface Area/Volume	218	64	104			
Shoreline Length (km)			240			
Drainage Basin Area (km²)			22,557 ^e			
Mean Tributary Input (m ³)			153.7°			

aChart datum for Lake Huron is 175.8 m (576.8 feet). As of June 1988, Lake Huron water levels were 176.4 m (578.8 feet).

bBeeton, et al, 1967.

^cSmith, et al, 1977.

dDolan, 1975. Flushing time determinations based on assumed volume of 25.3 cubic miles for total bay and 8.05 cubic miles for inner bay. Flushing times for volumes presented above would be 58 days for the whole bay and 93 days for the inner bay.

From Table II-2.

Table 21
Water Discharge Records for Rivers in the
Saginaw Bay Drainage Basin

Drainage Unit and Location	Drainage Area (km)			age/Maximu um Dischar (cms)		USGS Gauging Station #
-Pigeon R. near Owendale	137	1952-82	0.9	72.2	0.0	1585
-State Dr.	161	1940-54	1.0	N.A.	0.0	1575
near Sebewaing -Columbia Dr.	98	1940-54	0.6	N.A.	0.0	1580
near Sebewaing -N. Br. Kawkawlin R near Kawkawlin	. 262	1951-82	1.6	45.6	0.0	1435
-Rifle R. at Selkirk	303	1950-81	4.0	78.2	1.5	1405
-Rifle R.	829	1936-86	8.8	151.2	2.1	1420
near Sterling -AuGres R.	438	1950-81	2.7	77.0	0.2	1385
near National City -E. Br. AuGres R. at McIvor	218	1950-73	1.8	37.1	0.3	1380
-Saginaw R.	15,695	1942-86	114.5	1,925.6	NA	1570
at Saginaw -S. Br. Cass R. at Cass City	616	1948-80	3.5	181.2	0.0	1500
-Cass R. at Cass City	· 930	1947-86	6.1	354.0*	0.0	1505
-Cass R. at Wahjamega	1,671	1968-86	12.6	583.3*	0.6	1508
-Cass R. at Frankenmuth	2,178	1939-86	14.2	640.0*	NA	1515
-S. Br. Flint R. at Columbiaville	572	1980-86	5.4	87.5	0.4	1460
-Flint R. near Otisville	1,373	1952-86	8.9	174.1	0.1	1475
-Kearsley Cr. near Davison	256	1965-86	2.0	42.5	0.1	1481
-Swartz Cr. at Flint	298	1970-83	2.2	89.5	0.0	1483
-Flint R. near Flint	2,476	1932-86	17.0	421.9	0.3	1485
-Flint R. near Fosters	3,077	1939-84	21.0	538.0	0.8	1490
-Shiawassee R. at Linden	210	1967-86	1.7	13.5	0.0	1439
-Shiawassee R. at Byron	953	1947-83	7.1	109.9	0.5	1440

Table 21. (Concluded)

Drainage Unit and Location	Drainage Area (km)	Period of Record		rage/Maximum/ num Discharge (cms)	USGS Gauging Station #
-Shiawassee R. at Owosso	1,393	1931-86	9.5	176.7 0	.0 1445
-Shiawassee R. near Fergus	1,650	1939-74	11.9	212.4 0	.8 1450
-Salt R. near North Bradley	357	1934-67	2.2	232.2 0	.0 1535
-Chippewa R. near Mt. Pleasant	1,077	1932-86	8.8	186.9* 0	.3 1540
-Chippewa R.	1,546	1947-72	12.0	241.0* 0	.0 1545
-Pine R. at Alma	746	1930-86	6.1	147.8* 0	.0 1550
-Pine R. near Midland	1,010	1948-86	8.5	265.0* N.	A. 1555
-Tittabawassee R. at Midland	6,216	1936-86	48.2	1,189.3* 1	.1 1560

Source: Miller, et al. Water Resources Data - Michigan, Water Year 1985 (and others). U.S.G.S., June, 1986.

$$QS = 1.82 QSh + 1.17 QF + 1.05 QC + 1.09 QT$$

where:

QS = Saginaw River upstream flow

QSh = Shiawassee River flow at guage #1450

QF = Flint River flow at guage #1490

QC = Cass River flow at guage #1515

QT = Tittabawassee River flow at guage #1560

(Limno-Tech. Inc., July, 1977)

⁺Average Saginaw River discharge based on the correlation:

^{*}Preliminary September 1986 Flood Data courtesy of John Miller, USGS, Lansing.

Average Total Flow of Treated Wastewater, Phosphorus

and Suspended Solids Loads to the Saginaw River

and Its Tributaries from Major Municipal

Dischargers, 1986

Facility	Total Phosphorus (mt/yr)	Total Suspended Solids (mt/yr)	Average Daily Flow (MGD)	
Alma	2.1	27	2.4	
Bay City	6.6	266	8.7	
Bridgeport	2.7	34	1.7	
Buena Vista	1.8	50	1.7	
Flint	45.0	4 30	42.5	
Flushing	1.0	29	1.7	
Frankenmuth	1.2	48	1.5	
Genesee Co. Ragnone	20.4	884	25.2	
Genesee Co. No. 3	1.9	105	9.41	
Howell	1.0	18	1.3	
Lapeer	2.1	11	1.8	
Midland	2.5	72	7.3	
Mount Pleasant	3.4	36	3.7	
Owosso	1.7	73	4.4	
Saginaw	22.7	261	30.2	
Saginaw Twp.	48.6	410	4.5	
West Bay Co. Reg.	2.6	67	4.0	
Zilwaukee-Carrollton-				
Saginaw Twp.	1.9	87	3.5	
TOTAL	169.2	2.908	155.5	

Table 23

Phosphorus Loads from Municipal Wastewater Treatment Plants

to Surface Waters in the Saginaw Bay Watershed, 1974,

1979-1981 (IJC 1983), and 1983-1986

Year	Load (metric tons/yr)
1974	800
1979	211
1980	220
1981	232
1983	141 ^a
1984	125 ^a
1985	114
1986	169 ^c

^aData not available for Saginaw Twp. WWTP or Mt. Pleasant WWTP.

Includes phosphorus load from Mt. Pleasant WWTP (3 mt); data not available for Saginaw Twp. WWTP.

 $^{^{\}rm C}$ Includes phosphorus loads from Mt. Pleasant WWTP (3 mt) and Saginaw Twp. WWTP (49 mt).

Table 24

Estimated Total 1987 Loads (kg) of Phosphorus and Total

Suspended Solids (TSS) to the Saginaw River from

Selected Point Source Dischargers

		Parameter			
NPDES #	Facility	Phosphorus	TSS (mt/yr)		
INDUSTRIAL			.		
1121	General Motors C-P-C Group	-	56		
1139	General Motors	_	144		
2224	Central Foundry Michigan Sugar-	647 ^a	64		
1091	Carrollton Plant Moniter Sugar- Bay City Plant	334 ^b	25 ^b		
MUNICIPAL					
22284	Bay City WWTP	10141	268		
22918	Essexville WWTP	304	22		
22497	Buena Vista WWTP	1392	32		
25577	City of Saginaw WWTP	20184	178		
42439	West Bay County Regional WWTP	2750	49		
23981	Zilwaukee-Carrollton- Saginaw Twp. WWTP	1762	79		

^aAverage for eight months discharge.

b Total for five months discharge.

Table 25

Estimated Total 1987 Loads (kg) of Selected Organics to

Surface Waters in the Saginaw Bay Watershed from

Major Point Source Dischargers with NPDES

Permit Requirements for Those Parameters

NPDES Number	Facility	CN∗	Total Phenolics	PCBs
INDUSTRIA	L			
1121	General Motors C-P-C Group			2.4
1139	General Motors Central Foundry	842	13693	2.0
27812	Hitachi Magnetics Corp.	**		
1066	Total Petroleum Inc.			
MUNICIPAL				
20265	City of Alma WWTP	**		
22926	City of Flint WWTP	934	***	
25577	City of Saginaw WWTP	600	955	

Amenable

^{**} Monitoring data consistently less than detection.

^{***} Too few data points to estimate loading.

Table 26

Estimated 1987 Loads (kg) of Selected Metals to Surface Waters

in the Saginaw Bay Watershed from Major Point Source

Dischargers with NPDES Permit Requirements for Those

Parameters (Data from MDNR DMR Summaries)

NPDES Permit Number		Metal							
	Facility	Ag	Cd	Cr	Cu	Hg	Ni	РЪ	Zn
INDUST	RIAL		· ·						
868	General Motors Central Foundry				5200 ^b	ı		7 300^b	203000 ^b
25194	General Motors Fisher Guide				1.7 ^e		9.9 ^e		1.2 ^e
27812					6.6	0.3	5.3		14.2
3484	Johnson Controls Inc.							0.4	
MUNICI	PAL								
20265	City of Alma WWTP	19.8	22.5						
22284	Bay City WWTP				932			287	
	City of Flint WWTP	383	141		4584	27.1			
23655	Mt. Pleasant WWTP	7.4 ^c							
25577	City of Saginaw WWTP	_		1273	_		1810		2633
23981	Zilwaukee- Carrollton- Saginaw Twp WWTP	d			d				d
22918	- ,					0.7 ^c			

When loads were estimated, a data point of less than a level of detection was factored into the loading equation as one-half the level of detection.

These loadings are based on only two data points. GM-Central Foundry began sampling for these parameters in November, 1987. These estimates may not be representative of actual annual loadings.

^CThese loadings are based on only six data points.

d Monitoring had not begun until 1988.

These loadings represent discharge from January through June, 1987. Subsequent discharges were routed to the municipal WWTP.

Table 27

Summary of Municipalities Suspected of Generating

Intermittent Point Sources (The Chester

Engineers 1976)

MDNR Facility Number	Municipality	Reason for suspecting the existence of intermittent point sources (I/I: infiltration and inflow)
290014	Alma	Storm sewer and I/I problems
090028	Auburn	Suspected I/I problems
060022	Au Gres	Suspected I/I problems
320048	Bad Axe	Suspected I/I problems
090029	Bay City	Predominantly combined sewers
290046	Breckenridge	Storm sewers
730032	Bridgeport Twp.	Suspected I/I problems; storm sewers
760028	Brown City	Possible I/I problems
730029	Buena Vista Twp.	Suspected I/I problems; storm sewers
790006	Caro	Suspected I/I problems; storm sewers
7 30030	Carrollton Twp.	Combined sewer overflow
790007	Cass City	Suspected I/I problems; storm sewers
730019	Chesaning	Possible I/I problems; storm sewers
180009	Clare	Possible I/I problems; storm sewers
760029	Croswell	Combined system
760074	Deckerville	Storm sewers
350026	East Tawas	Suspected I/I problems; combined system
320069	Elkton	Possible I/I problems; storm sewers
090030	Essexville	Suspected I/I problems; combined system
730020	Frankenmuth	Storm sewers
260007	Gladwin	Possible I/I problems; partially combined
290017	Fulton Twp.	Storm sewers
320049	Harbor Beach	Possible I/I problems
290015	Ithaca	Suspected I/I problems; combined system
790066	Kingston	Storm sewer
760030	Lexington	Possible I/I problems; storm sewers
760031	Marlette	Suspected I/I problems; combined system
790023	Mayville	Combined system
730159	Merrill	Storm sewers
560009	Midland	Possible I/I problems; combined sewers
790022	Millington	Suspected I/I problems; cross connections
370011	Mount Pleasant	Suspected I/I problems; storm sewers
320087	Port Austin	Combined system
720088	Roscommon	Possible I/I problems; combined sewers
370052	_	Possible I/I problems
730026	Rose City	Combined system
	Saginaw	· · · · · · · · · · · · · · · · · · ·
730028	Saginaw Twp.	Partially combined sewers
730043	St. Charles	Suspected I/I problems; storm sewers
290019	St. Louis	Possible I/I problems; partially combine
760033	Sandusky	Possible I/I problems; partially combine
370010	Shepherd	Combined system
060018	Standish	Possible I/I problems; storm sewers
350028	Tawas City	Suspected I/I problems

Table 27. (Continued)

MDNR Facility Number	Municipality	Reason for suspecting the existence of intermittent point sources (I/I: infiltration and inflow)
320134 790010 650003 730031	Ubly Vassar West Branch Zilwaukee	Combined system Possible I/I problems; storm sewers Possible I/I problems; partially combined Possible I/I problems; combined system

Table 28

Average Erosion Rates (metric tons/acre) and Estimated Annual Sheet,

Rill and Wind Erosion (metric tons/year) on Cropland for Selected

Counties in the Saginaw Bay Drainage Basin in 1982

(USDA-SCS et al. 1987)

County	Average Rate of Erosion	Wind Erosion	Sheet & Rill Erosion	Total Erosion
	 			
Arenac	4.3	230,900	68,700	299,600
Bay	3.6	437,300	208,700	646,000
Clare	3.7	46,700	88,800	135,500
Genesee	2.0	108,800	229,500	338,300
Gladwin	3.4	69,300	56,100	125,400
Gratiot	3.1	573,500	236,400	809,900
Huron	3.0	944,900	312,600	1,257,500
Isabella	4.6	537,300	194,200	731,500
Lapeer	3.1	194,600	316,900	511,500
Livingston	2.6	51,600	251,100	302,700
Midland	2.9	179,000	62,400	241,400
Saginaw	4.5	1,003,900	437,100	1,441,000
Sanilac	1.6	415,700	237,300	653,000
Shiawassee	1.8	177,800	291,800	369,600
Tuscola	4.6	522,300	333,900	856,200
Total for Sag	ginaw Bay			
Drainage Easi	_	5,493,600	3,325,500	8,719,100

Table 29

Median Phosphorus Soil Test Levels (pounds per acre) for

Counties in the Saginaw Bay Drainage Basin, 1972-1986

(MDNR 1985; Warncke 1987)

					Year				
County	1962	1967	1972	1976- 1977	1979- 1980	1982- 1983	1984	1985	1986
Arenac	19	21	46	88	130	102	119	108	90
Bay	27	51	74	88	130	147	194	182	222
Clare				41	66	76	66	61	60
Genesee	17	27	33	54	107	98	98	80	62
Gladwin	17	18	17	41	45	61	40	67	67
Gratiot	19	31	52	66	98	107	124	131	100
Huron	28	25	23	17	68	104	95	109	90
Iosco		31	27	38	77	67	85	57	78
Isabella	18	32	48	62	126	106	109	94	92
Lapeer	22	19	35	38	60	62	80	68	72
Livingston	44	32	36	62	98	96	98	114	80
Midland	26	30	45	51	111	128	165	130	99
Ogemaw		83	27	45	66	74	56	49	60
Shiawassee	16	25	36	41	82	97	90	100	63
Tuscola	18	29	38	56	82	93	112	97	117
Average	23	32	38	53	90	95	102	96	90

,

Table 30

Amount of Animal Waste Predicted to be Delivered to the

Saginaw Bay Watershed (MDNR 1985)

Source	Amount of Waste (metric tons)	Delivery Percent to Water Course	Animal Waste Delivered to Water Course (metric tons)
Feeding/Loafing	33,315	40%	13,326
Spreading			
Winter	359,780	35 %	125,924
Summer	239,855	10%	23,985
Manure Storage	33,325	35%	11,630
TOTAL	666,275	26%	174,865

Table 3la

Preliminary List of NPS and Integrated Watershed Models Selected for Review (Report to the Great Lakes Water Quality Board, 1987)

MODELS EFERENCE	NAME	SOURCE	
Loading/Screening Procedure			
Hydroscience	Hydroscience Simplified Model	Hydroqual/EPA	EPA 1976
EPA Screening Procedures	EPA Water Quality Screening Procedures	EPA	McErruy <u>et al</u> 1976; Mills <u>et al</u> 1982
WLFNPS	Watershed Loading Functions for Non-Point Sources	Cornell University	Haith and Tubbs 1981
WRENS	Water Resources Evaluation of Non-Point Silvicultural Sources	U.S. Forest Service 1980	U.S. Forest Service
SWMM - Level I	SWMM - Level I	EPA	Heaney <u>et al</u> . 1976
NPS Runoff Models			
HSPF/PERLND & IMPLN8	Hydrological Simulation Program - FORTRAN (land simulation modules)	EPA	Johanson <u>et al</u> . 1984
ARM	Agricultural Runoff Management Model	EPA	Donigian <u>et al</u> . 1977
NPS	Nonpaint Source Model	EPA	Donigian and Crawford 1977
CREAMS/CREAMS 2	Chemicals, Runoff, and Erosion From Agricultural Management Systems	USDA	USDA 1980
ANSWERS	Areal, Monpoint Source Watershed Environment Response, Simulation Model	Purdue University	Beasley <u>et al</u> . 1980 Beasley and Huggins 1981
ACTMO	An Agricultural Chemical Transport Model	USDA/ARS	Frere <u>et al</u> , 1975
Shann	Stormwater Management Model (land simulation modules)	EPA	Huber <u>et al</u> . 1975
STORM	Storage, Treatment, Overflow Runoff Model	COE	HEC 1977
MUNP	Management of Urban Nonpoint Pollution Model	Univ. of Maryland	Sutherland and McCuen 1978
ILLUDAS/DRAINQUAL	Illinois Urban Orainage Area Simulator	Illinois State Water Survey	Teratriep and Stall 1974
DRJM	Distributed Routing Rainfall-Runoff Model	USGS	Alley and Smith 1982a, 1982b
PRMS	Precipitation-Runoff Modeling System	USGS	Leavesley et al. 1983
Simplified SWMM	Simplified SWMM	EPA/M&E	Lager <u>et al</u> . 1976
Integrated Watershed Models			
HSPF	Hydrological Simulation Program - FORTRAN	EPA	Johanson <u>et al</u> . 1984
SLAMM	Stormwater Management Model	EPA	Huber <u>et al</u> . 1975
PRS	Pesticide Runoff Simulator	EPA/CSC	CSC 1980
UTM-TOX	Unified Transport Model for Toxics	Oak Ridge/EPA	Patterson <u>et al</u> . 1983
SWAM	Small Watershed Model	USDA/ARS	DeCoursey 1982

Characteristics and Capabilities of Selected NPS Runoff Procedures and Models (Report to the Great Lakes Water Quality Board, 1987) Table 31b

•			•	•				•	•		•		1	<u> </u>	•	-	<u> </u>	PRIMS
	1) 	1	1	1	Ī			ĺ	اِ		,					
			- -	_	_			•		0	•		•	<u> </u>	<u> </u>			ркзи .
< -			<u> </u>	•	_		•			•	•					_		ILLUT AS/DRAMIQUAL
3			<u></u>	•	-	Ī	•	•			•		_				•	MUNE
		1		-	1		•	•	•		•		_					STORM
3	1				+	Ì					•		_	_	_			Swall
3	+					•	•	•	•	•		•		_	_		_	АСТИО
	<u> </u>		1		 						•		_		•	•	_	AHSWERS
	+			D)						1	•	•	_	4	•		_	CHEAINS/CREAMS 2
	$\frac{1}{1}$				+	•	•			•		•	익	•	•			HSPF/PERLHO & HAPLHO
	<u> </u>				+		•		•		•			_	•	•		11.03
E/A	<u> </u> -			•	+	•	•		•			•						Ann
2		•	• [•	1		•				•						•	Simplified SWAIM
	_	+															_	RUNOFF MODELS
V		+	+	\dashv	•		•	•		0	•	_	_	_				SWIMM - Level I
M/A		<u> </u>	$\frac{\perp}{\parallel}$	•	1		•	•	•		•		_	_	•	-		WLFNPS
X		<u> </u>	$\frac{\perp}{\parallel}$	$\frac{1}{1}$	•	•	•	•	•		•	_	_	_	•			WRENS
< - - - - - - - - -		+	<u> </u>	•	•	•	•	•	_			_	•	_	•			FPA Screening Procedures
A/N		+	<u> </u>	+	•		•		•	_	•	_	_	_				Hydrescience
		\dashv	\dashv	+	+		\prod											LOADING/SCREENING PROCEDURES
	\dagger	+	+	╁	1		\int	1	1				J				\forall	
Some of the state	1405010	0//0100	7/100-	7 1004	7 10000	100.	nemines.	10 W.	*//02	•-	(199)me43	11013010	,	11000	ופנוכחווי	u.q.jr		
/ Po!!	•11	UOIL	_	~,°;),xo1/:01	•1	•10	_ 40	A • 26	_ ~~&	¥0/100 1100 1100	uo/10		10101011	•"	\		
12 /2	1	1				-	\downarrow	1	-	ጉ	: 1	۱,		١.	•	4		
A NEEDS / SPACE /	DAT	VLE /	TIME SC		OUALITY	ATERO	1	01067	HYDROLO	/ s	OUNCE	S	SE/LOAD	12	LAND			

O- Capability not explicitly included but can be user-defined Hotes: . Capability Included in model

E --Extensive A - Adequate II - Minîmal

Characteristics and Capabilities of Integrated Watershed Models (Report to the Great Lakes Water Quality Board, 1987) Table 31c

WATER OUALITY WATER OUALITY Seating of Sea	211001X 1001110N
3/80/0/8 3/80/0/8 \$\frac{\epsilon_{0}/\epsilon_{0}}{3/30/3/1\epsilon_{0}}	TIME TIME SCAIE SCAIE SOCIE SOCI
	TIME DATA SCALE OF THE DATA SC

O- Capability not explicitly included but can be user defined Holes: • - Capability included in model

Use/Dacumentellon/Support

E --Extensive A - Adequate M - Minimel

Table 32

<u>Total Deposition of Airborne Trace Organics to Lake Huron</u>

<u>in Metric Tons per Year (Eisenreich et al. 1981)</u>

Compound	Mass	
Total PCB	7.2	
Total DDT	0.43	
alpha-BHC	2.4	
gamma-BHC	11.6	
Dieldrin	0.55	
HCB	1.2	
p,p'-Methoxychlor	6.1	
alpha-Endosulfan	5.8	
beta-Endosulfan	5.8	
Total PAH	118.0	
Anthracene	3.5	
Phenanthrene	3.5	
Pyrene	6.1	
Benz (a) anthracene	3.0	
Perylene	3.4	
Benzo (a) pyrene	5,8	
DBP	12.0	
DEHP	12.0	
Total organic carbon	1.5×10^{5}	

Table 33a

Wet Precipitation, Dry Deposition and Bulk Atmospheric Loading of PCBs

(gm/km²/yr), Measured at Selected Sample Sites Along the Saginaw Bay

Shoreline (Murphy et al. 1981; Murphy et al. 1982)

Year/	We Preci	et oitation_	Dry Depo-	Bulk
Station	Avg	Range	sition	Loading
1977-1978				
Whitestone Pt.	11.5 39.0 ^b	0-24		
Pinconning	39.0 ⁶	26-68	27.0 ^b 6.6 <mark>a</mark>	21
Tawas Point	14.5	6-24	16.0 ^b	9
Sebewaing			6.6 ^a 24.0 ^b	11
Saginaw Bay			6.2 ^a	18
1977 ^b Whitestone Pt.			3.24	
Pinconning			3.24	29.64
1978 ^b				
Pinconning			8.16	19.92
Tawas Point			10.2	3.6
Sebewaing			5.76	8.4
1979 ^b				
Pinconning			16.2	30.24
Tawas Point	16.8			10.20
Sebewaing			6.0	12.00
1980 ^b				
Tawas Point	8.4			3.60

aMurphy et al., 1981

bMurphy et al., 1982

Table 33b

Atmospheric Deposition Rates (kg/km²/yr) of Nutrients and Chlorides at

Bay City, Port Austin and Tawas Point Sample Stations, 1982-1984

(Data from GLAD Sampling Network Database)

		P	arameter	
Year/			Total	
Station	Nitrate	TKN	Phosphorus	Chloride
1982				
Bay City	322	302	4.9	327
Port Austin	341	599	13.0	289
Tawas Point	275	454	19.9	262
Saginaw Bay Total	925	1336	37.0	866
(metric tons/yr)*				
1983				
Bay City	289	260	2.8	215
Port Austin	331	335	7.6	188
Tawas Point	351	406	20.6	160
Saginaw Bay Total	958	987	31.0	555
(metric tons/yr)*				
1984				
Bay City	358	356	3.5	284
Port Austin	488	577	13.0	177
Tawas Point	340	473	7.8	169
Saginaw Bay Total	1170	1387	24.0	621
(metric tons/yr)*				

^{*}Station values summed, averaged, and multiplied by bay surface area

Table 34

Atmospheric Deposition Rates (gm/km²/yr) of Heavy Metals at Bay City, Port Austin and Tawas Point Sample Stations, 1982-1984 (Data from GLAD Sampling Network Database)

·				Metal	al			
Year/ Station	He	PO	O,	Pb	N	As	C.r.	u Z
1982 Bay City Port Austin Tawas Point Saginaw Bay Total (metric tons/year)*	69	1422	2982 4262 10.7	31204 34290 1280 65.9	6241 6096 18.3	172 191 251 0.6	5923 5158 9809 20.6	13279 10634 11199 34.63
Bay City Port Austin Tawas Point Saginaw Bay Total (metric tons/year)*	146 242 119 0.4	104 185 142 0.42	1273 2987 6.3	2822 3361 3413 9.5	347 4046 841 5.2	248 224 307 0.8	6096 711 10.1	5932 6926 4991 17.6
1984 Bay City Port Austin Tawas Point Saginaw Bay Total (metric tons/year)*	139 8 71 0.2	122 150 112 0.4	2420 3642 3430 9.4	2859 3286 2339 8.4	831 609 498 1.9	168 219 316 0.7	643 711 2.0	12792 20351 18150 50.6

* Station values summed, averaged and multiplied by bay surface area.

Mean and Range of pH Values in Precipitation Samples at Bay City, Port Austin and Tawas Point, 1981-1985 (Deguire 1986a) Table 35

		2000		P	Port Austin		Ta	Tawas Point	ید	, ,	Summary	
Year	Mean	Min	Max	Mean	Min	Max	Mean	Min	Мах	Mean	Min	Мах
1861	4.4	4.0	5.4	4.4	3.9	6.7	4.1	3.7	4.7	4.3	3.7	6.7
1982	4.4	0.4	5.1	4.5	4.0	5.5	4.2	3.7	6.4	4.4	3.7	4.9
1983	4.3	4.0	5.1	4.2	3.7	5.7	4.1	3.7	4.5	4.2	3.7	5.7
1984	4.3	4.0	8.4	4.1	3.1	6.8	7.0	3.5	6.9	4.1	3.1	6.9
1985	4.5	4.1	7.0	4.2	3.8	7.6	3.9	3.5	9.4	4.1	3.5	7.6
Avg	7.7			4.3			4.1			4.2		

Table 36

Average Monthly and Annual Precipitation Amounts (Inches) at Reporting Stations

Within the Saginaw Bay Drainage Basin

Station	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	0ct	Nov	Dec	Annual
Alma 1	1.47	1.20	2.06		2.79			3.66				1.99	_
Bad Axe	1.79	1.56	2.20	•	2.58			3.01	•		•	2.18	
Bay City	1.48	1.22	2.16	2.59	2.66	2.88	2.53	3.00	2.78	2.52	2.28	1.78	27.97
Caro	1.48	1.18	2.10		2.55	•		2.96	•			1.88	
East Tawas	1.61	1.28	2.06		2.85	•		3.05				2.22	_
Flint .	1.59	1.46	2.13	•	2.78			3.38				2.00	_
Gladwin	1.79	1.48	2.10		3.04	•		3.30				2.41	_
Harrison ²	1.64	1.37	1.91	•	2.83			3.24				1.95	_
Lapeer ² .	1.44	1.24	1.84		2.75			3.34	•			1.83	_
Midland	1.64	1.51	2.14		2.64			3.07	•		•	2.21	_
Millington ,	1.40	1.26	2.05	•	2.89	•		3.07	•			1.84	_
Mt. Pleasant	1.37	1.12	1.99	•	2.84			3.57	•			1.86	_
Owoero,	1.68	1.40	2.04	•	2.58			3.21	•		•	5.06	_
Saginaw	1.47	1.22	1.95	•	2.70			3.13	•		•	1.98	_
St. Charles	1.62	1.34	2.13	•	2.49			3.29	•			1.91	_
Sebewaing ²	1.27	1.10	1.72	•	2.47			2.76				1.64	_
Standish ,	1.30	1.15	1.85	•	5.69			2.89			•	1.73	-
West Branch	1.43	1.32	1.88	2.44	2.78	•		3.10	•			1.90	_
Basin Averages	1.53	1.30	2.02	2.71	2.72	3.11	2.89	3.17	2.84	2.39	2.30	1.96	28.93

 $^{
m l}$ Fred Nurnberger, Climatology Division, Michigan Dept. of Agriculture. Averages compiled from data collected over 25-30 year period representing mid 1940's or early 1950's to mid 1970's or early Sources:

²National Climatic Center, NOAA, Climate Normals for the U.S., 1951-80. Gale Research, Detroit, 1983.

Table 37

Act 307 Sites Affecting Surface Water in the Saginaw Bay Watershed (MDNR 1988)

SAS	County Date Scored	Common Site Nume* Location Code Township	Source of Contamination	Puint of Release	Pollutant	Resource Affected	Statush
CROUP	_						
885	Seginav 02/06/87	Saginav River/Bay Saginav to East Tawas Saginav	Multiple Sources	Unknown	PCB, TCDD, TCDF	Surface Water, Sediment, Fauna	IR (F), EP
823	Greciot 07/14/87	Alma Iron Metal Smith Prop 29-12N-02W-30CB Bechany	Scrap Metal Yard	Aboveground Tank Barrel, Surface Discharge	Chromium, Nickel, Lead, PCB, PBB	Surface Water Sediment, Soil, Wetland	₹
110	Livingston 02/01/84	Siterance River 47-03N-04E-22 Hovell	Forging Stamping	Surface Discharge	PCB	Surface Water, Sediment	E (S,F)
723	Bay 09/23/87	CH CPC Plant 09-14M-05E-16DC Bay City, City of	Auto Hfg	Pile Lagoon	PCB	Soil Groundwater Surface Water	IR (P)
718	Mtdlend 10/04/84	Tittabavasses River 56-14N-02E Midland	Chem Product Hfg	Unknovn	Dichlorobenzene, PCBs, DDT, Chlordane, Halogenated Biphen	Surface Water, Sediment, Fauna	ដ
199	Midland 01/22/67	Porter Field 56-13M-01W-7-23 Porter	011 Drilling	Geologic Form	Brine, Crude	Surface Water, Groundwater, Wetland, Flora	3
009	Genesee 09/26/86	Buckeye Pipeline Co. 25-09N-06E-23RC Vlenna	Pipeline	Pipeline	Naphthalene, Xylene, Toluene, Ronzene, Trimethylbenzone	Surface Water Groundwater	ង

Hontcalm Hitzachi Mngmeticm Curp Hetal Fracenning Lagoon Hercury Sediment, Ground- John Saginaw Hall Barel Co Joy 26/86 79-12N-06M-27Nn Heral Reclaiming Lagoon Heavy Mg. Tascola 79-12N-06M-27Nn Hall Barel Co Joy 26/86 79-12N-06W-27Nn Hall Landfill Landfill Common Ground-Grou	SAS	County Date Scored	Common Site Name* Location Code Township	Source of Contamination	Point of Release	Pollutent	Resource Affected	Status**
Saginav Hall Barrel Co Barrel Reclaiming Lagoon Light Industrial Surface Water, Soil Heavy MGs. Claron Media Clay of	997	Montcalm 01/14/87	Hitachi Mngnetica Corp 59-12N-U6M-27NN Nome	Metal Processing	l.aguon	Hercury	Sediment, Ground- water, Surface Water, Residential Well	IR (P)
Tuacola Olivera LF 11/05/84 79-10N-07E-011DA 11/05/84 79-10N-07E-011DA 11/05/84 79-10N-07E-011DA 11/05/84 79-10N-07E-011DA 11/05/84 79-10N-07E-011DA 11/05/84 79-10N-04E-26D1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	417		Hall Barrel Co 73-12N-04E-27AA Kociville	Darrel Reclaiming	Lagoon	Light Industrial, Heavy Míg. Chem Prod Míg	Surface Water, Soil	E (P) FR (P)
Arenac Skidowny Disponal Landfill Landfill Domestic Comm, Surface Water, Clayton Clayton Landfill Landfill Domestic Comm, Surface Water, Clayton Light Industrial Soil Bay C & O Railroad Bay City Bay C & O Railroad Bay C & O Railroad Bay C & O Railroad Bay C & O Railroad Bay C & O Railroad Bay C & O Railroad Bay C & O Railroad Bay C & O Railroad Bay C & O Railroad Bay C & O Railroad Bay C & O Railroad Bay C & O Railroad Bay C & O Railroad Bay C & O Railroad Bay C & O Railroad C & O Railroad Bay C & O Railroad C & Coundwater C & C & Coundwater C & C & Coundwater C & C & C & C & C & C & C & C & C & C	289	Tuecole 11/05/84	Olivers LF 79-10N-07E-031DA	Landfill	Landfill	Ammon is, Urganics, Zinc		\$
Bay Union Oil Bay City Oil Storage Pipeline Benzene, Toluene, Surface Water, O6/11/67 09-14N-05E-11C Xylene, Acetone Groundwater, Ethylbenzene Soil Bay C & O Railroad Bay City Railroad Barrel Light Industrial Surface Water O9/14/86 09-14N-05E-16bC Bangor Bay Prescolite Hotor Vehicle Surface Organica, Heala Groundwater, Soil	211	Arenac 09/27/84	Skiduny Disponil 06-20N-04E-26BII Clayton	Landfill	Landf 111	Domestic Comm, Light Industrial	Surface Water, Soil	5
Bay Union Oil Bay City Oil Storage Pipeline Benzene, Toluene, Groundwater, Soil 08/11/87 09-44M-05E-11C Xylene, Acetone Groundwater, Groundwater, Ethylbenzene Bay C 4 O Railroad Bay City Railroad Barrel Light Industrial Surface Water Day C 4 O Railroad Bay City Railroad Barrel Light Industrial Surface Water Bay C 4 O Railroad Bay City Railroad Barrel Light Industrial Surface Water Bay Prestolite Hotor Vehicle Surface Water O6/11/87 O9-14M-05E-12CB Part F/B Inischarge Hetala Groundwater Bay City, City of Ray City of Face City Coundwater	CROUP 2	~						
Day C & O Railroad Bay City Railroad Barrel Light Industrial Surface Water O9/24/86 09-44N-05E-16DC Bangor Bay Prescolite Bay Prescolite Discharge Hetala Groundwater, Bay City, City of Soli	•	Bay 08/11/67	Union Oil Bay City 09-14N-05E-11C Bangor	Oil Storage	Pipeline	Benzene, Toluene, Xylene, Acetone Ethylbenzene	Surface Water, Groundwater, Soil	a. W
Bay Prestolite Motor Vehicle Surface Organics, Heavy Surface Mater IR 08/11/87 09-14M-05E-32CB Part Pfg. Discharge Metals Groundwater, E Bay City, City of Soil	•	Bay 09/24/86	lailroad Bay -05E-16DC	Railroad	Barrel	Light Industrial	Surface Water	1R (P) EP
	•	8ay 08/11/87	Prestolite 09-14N-05E-32CB Bay City, City of	Hotor Vehicle Part Kfg.	Surface Discharge	Organica, Heavy Metala	Surface Water Groundwater, Soll	IR (P) E (P)

(Continued)

(Sheet 3 of 7)

SAS	County Date Scored	Common Sire Name* Location Code Township	Source of Contamination	Point of Release	Pollutant	Resource Affected	Status**
40	Lapeer 09/26/86	Thumb Rediator Service 44-07N-20E-04 Lapcer	Auto Reputr	Surface	Lead, Ethylene Glycol	Surface Water, Soil, Wetland, Fauna	1R (P) E (P)
®	Lapeer 09/29/87	CMS Boron Lapeer 44-07N-105-UBB Lapeer, Clty of	Cas Station	Underground Tank Gasoline	Gasoline	Surface Water Soil	E (P)
•	1.1vingeton i1/01/84	Brighton Comeron 47-02N-065-30CB Brighton	Metal Conting	Surface Discharge	Zinc, Lend, Chromium	Surface Water,	\$
•	Livingston 08/14/87	Thompson Lake Sediments 47-03N-04E-25D/36A Howell, Oceola	Unknovn	Unknown	PCB	Sediment, Surface Water, Fauna	₹
€	Oakland 38/19/85	Uskland Co Nd Comm bixie 63-04N-08E-03UC Springfield	Salt Stornge	Pile	Sodium, Chloride	Surface Water, Groundwater, Residential Well	IR (P) EP
•	San11ac 08/06/87	Mid Thumb Sanfcary LF 76-13N-13E-21D Argyle	Land(111	Landf111	Ammonia, Phenol, Codmium	Surface Water, Groundwater	E (P)
•	Shiavasses 01/20/85	Gd Trunk Western Railroad 78-06M-04E-16DB Vernon	Reilroad	Surface Discharge	Benzene, Kylene	Surface Water, Sediment, Soil	e e
•	Shiavassee 10/01/84	RJ Marshell 78-06N-04E-15DC Vernon	Chem Prod Mfg	Waste Pile	Boric Acid, Sulfuric Acid	Surface Water, Air, Soil	1R (P) EP

SAS	County Date Scored	Common Site Name* Location Gode Township	Source of Contamination	Point of Release	Pollutant	Resource Affected	Statusin
•	Arenac 10/10/84	Amoco 011 Co 06-18N-04E-05CD Lincoln	O11 Storage	Pipeline	Benzene, Xylene Toluene	Surface Water, Groundwater	g g
~	Bay 08/13/85	Bangor Tup Dump 09-158-05E-30CR Bangor	Landf 111	Landf111	Domestic Comm, Light Industrial, Phenol	Surface Water, Wetland	<u>a</u>
•	Bey 08/11/87	Monitor Sugar U9-14N-05E-31AN Monitor	Food Processing	Lagoon Pile	Light Industrial Lime, HOD	Air, Surface Water, Ground- water	IR (P) E (P)
~	Genesee 10/15/85	McKinley & MS7 Dump Site NE 25-09N-05E-77BH Montrome	Dump	Вимр	Chromium, Lead, Pienol	Surface Water	2
^	Gladwin 10/07/85	Gladwin City of LF Closed 26-18N-02W-12AA Grout	Land(111	Landfill	Domestic Comm, Light Industrial, Arsenic	Surface Water, Groundwater, Soil	IR (P) EP RA
^	Huron 09/18/87	Englehert Oil Schnuaing 32-15N-09E-08DB Sebawaing, City of	Gas Station	Und erg round Tank	Gasoline	Surface Water, Groundwater, Soil	E (P)
•	1sabe11s 10/12/84	Total Petrolcum Inc Roosevelt Petro Refining 37-14N-04W-10AU Union	: Petro Refining	Lagoon	Chem Prod Mfg	Surface Water, Groundwater	IR (P) RA
^	Lapeer 09/29/87	Star Oll Co. Lapeer 44-07N-10E-05HB Lapeer, City of	Gas Station	Underground Jank	Gasoline	Surface Water	e e

Table 37. (Continued)

SAS	County Date Scored	Common Site Name* Location Code Township	Source of Contamination	Point of Release	Pollutant	Resource Affected	Status**
^	Midland 09/25/84	Tridge Area 56-14N-02E-20AA Hidland	Landf111	Landf111	Domestic Comm	Surface Water, Soll	¥
^	Oukland 08/09/86	Holly Area School Bun Garage 63-05N-07E-34AB Holly	Muntespal Tactility	Underground Tank	Petroleum Product	Surface Water, Groundwater, Soil	IR (P) EP RA
~	Shiavasaee 09/27/87	Johnson Control Globe Union 78-07N-01E-2UCC Caledonia	Battery HfB	Lagoon	licavy Hfg.	Surface Water, Sediment	2
•	Shiavasee 9/26/84	Ann Arbor Railroad Yard 78-07N-03E-19BC Caledonia	Railroad	Underground Tank	Benzene, Xylene, Other Constituents of Fuel Oil	Surface Water Soil	4
•	Midland 08/22/86	D & C Leundromet S6-ISN-01W-11AC Jerome	Laundry Dry Cleaner	Lagoon, Under- ground Tank	PCE, Dichloroethane Bromodichlorometha	Surface Water	E (P)
•	Midland 08/21/86	Warren Townelijp Dump 56-16N-02W-22A Warren	Landfill	Landfill	Domestic Comm	Surface Water	FR (S)
٠	Ogeneu 09/27/64	Osceols Refining Co 65-22N-02E-32DC West Branch	Petro Refining	I.agoons	Piconols, Lead, PCB	Surface Water, Soil	IR (P) EP RA
•	Bay 08/23/85	Bay City Middlegrounds 09-14N-05E-32CA Bay City	Landfill	Landfill	Domestic Comm, Light Industrial	Surface Water, Groundwater	IR (P,S) E (S)

(Sheet 5 of 7)

SAS	County Date Scored	Common Site Name* Location Code Township	Source of Contamination	Point of Release	Pollutant	Resource Affected	Status
•	Bay 08/15/87	Coal Mine Disc. to Culver Cr. Coal Mining 09-14N-04E-16CD Monitor	Coal Mining	Geologic Form	Brine, Iron	Sediment, Sur- face Water, Fauna, Flora	e.
~	Seginar 09/18/87	Dykhouse Pickles 73-11N-06E-27 Frankenmuth, City of	Food Processing	Lagoon, Surface Discharge	Brine	Surface Water, Soil, Welland	<u>a</u>
•	Clare 10/02/84	Clare LF Closed City of 18-17N-07W-35CC Great	Land[11]	Landf113	Domestic Comm	Surface Water, Groundwater	\$
•	Huron 09/18/87	Carmet Manufacturera 32-16N-13E-19DC Bad Axe, City of	Notor Vehtcle Parts	Surface Diacharge Phosphorus Suftening A	Phosphorus Suftening Agent	Surface Water Wetland, Fauna Flora	EP
C	Bay 09/22/86	Bayview Food Products No 1 09-15N-04E-02DC Kavkaviin	Food Processing	Lagoon, Container	Brine, Raw Sewage, NOD	Groundwater, Surface Water, Sediment, Soil	E (P)
c .	losco 09/22/86	Sherman Twp Dump 35-21N-065-16CC Sherman	Land(111	Landf111	Domestic Comm	Groundvater, Surface Water	G.
C	Midland 08/31/83	011 Field Arca Anderson Ren 56-14N-01W-18HC Lee	011 Dr1111116	Lagoon	Chlorides	Surface Water, Groundwater	\$
*4	Arenac 10/10/84	Au Gree Tup Dump Cloned 06-19N-06E-15AA Au Gree	Landfill	Land[11]	Domestic Comm	Surface Water, Soil	E.P

SAS	County Date Scored	Common Site Name* Location Coda Township	Source of Contamination	Point of Release	Pollutant	Resource	Statuan
7	Bay 08/01/85	Rayview Food Produsts No 3 09-16N-14E-12CB Kawkawlin	Food Processing	Lagoon Container	brine, Raw Sewage, Groundwater, BOD Surface Water, Sediment, Soil	Groundwater, Surface Water, Sediment, Soil	IR (P) EP
~	Gladwin 09/22/86	Tobacco Twp Refuse Closed 26-17N-01W-13BA Tobacco	Dump	der Q	Domestic Comm	Surface Water	IR (P) EP

The common eite name is for identification only and is not necessarily a party responsible for contamination.
*** IR=Interim Response; E=Evaluation; FR=Final Response; RA=Regulatory Action; EP=Evaluation Pending; P=Privately Funded Actions; F=Federally Funded Actions.

Table 38

Act 307 Sites Affecting Groundwater in the Saginaw Bay Watershed (MDNR 1988)

SAS Score	County Date Scored	Common Site Name Location Code Township	Source of Contamination	Point of Release	Pollutant	Resource Affected	Statuaha
CROUP	1						
933	Genesee 08/21/85	Forest Waste Products 25-09N-08E-U8DB Forest	Landfill	Lagoon, Landfill	Dieldrin, Lead, Cynnide, PCB, Oil	Groundwater	IR (S,F) E (S,F)
921	Lepeer 10/04/84	Metamora Sanitary LF 44-06N-10E-10DB Metamora	Landfill	Barrel, Landfill	Dichlorobenzene, Hexachlorobenzene, Hethyl Chloroform	Groundwater	IR (S,P) E (S,F)
906	Saginav 08/11/87	GM Saginav Malleable lron Plant 73-12N-04E-35 Saginav	Iron, Steel Foundry Barrel, Landfill	Barrel, Landfill	Nickel, Manganese, Zinc, Chromium, PCR, Benzene, Toluene	Groundwater, Soil	IR (P)
612	Oakland 10/4/84	Hilford Rd Highland Areas 63-03N-07E-0228A Highland	Unknown	Unknown	Ethyl Benzene, Trichloröethane, Perchloroethylene	Groundwater, Soil	E (P)
761	Livingeton 01/29/86	Reservation Dump 47-01M-06E-30AA Green Uak	Landf111	Londfill, Barrel	Volatile Organics, Dioxins, PCB, Lead Arsenic, Copper	Groundvater, Soll	IR (S,F) E (S,F)
211	Oakland OB/19/85	Ray Frick Fuel Storage 63-05N-07E-34BC Holly	Oil Storage	Aboveground/ Underground Tanka	Renzene, Toluene, Xylene, Ethyl- benzene	Croundvater, Soll	E (P)
758	08emev 10/05/87	Henderson Lk. Rd. Hills Tup. 65-21N-03E-25AD Hills	Unknown	Unknown	TCE, DCE, PCE, DCA, Groundwater Trichloroethane, Soil, Reald Chlorobenzene Welle	Groundwater Soil, Residential Wells	IR (S) E (P) RA

(Sheet 1 of 17)

Table 38. (Continued)

1000	County Date Scored	Common Site Name* Location Code Township	Source of Contamination	Point of Release	Pollutant	Resource Affected	Status**
170	Genesee 08/26/86	Berlin and Farro 25-06N-05E-23DA Gaines	Haz Waute Facility	Landfill	Tolucue, Ethylebenzene, Bromoform	Groundwater, Soil	IR (P,S,F) E (P,S,F) FR (P,S,F)
131	Livingston 10/05/87	Spiegelburg I.F 47-UIN-UGE-31AB Green Ook	dwnq	Dump Harrels	Liquid Points, Zinc, Armenic Thellium	Groundwater, Soll	IR (S) E (S,F)
101	Clare 01/07/87	Clare Municipal Wells. City of 18-17N-04W-34D Grant	Auto Component Mfg	Lagoon, Surface Discharge	Dichloroethane, Trichloroethene	Groundwater, Municipal Well	E (F)
704	Genesee 09/29/87	Action Auto No 2 25-07N-07E-15BC Burton	Gas Station	Underground Tank	Xylene, Benzene, Naphthalene, Toluene, Hexane, Cychlohexane	Groundwater	ā
683	Midlend 01/20/87	Poseyville LF 56-16N-02E-29AB Greendale	Landfill	l.n.ndf 1.1.1	Pentachlorophenol, Dichlorophenol, Benzene, Toluene	Groundvater	18 (P) E (P) FR (P)
652	Livingston 08/13/87	Livingeton Co. Rd. Comm. Howell Garage 47-03N-04E-36DA Howell	Road Commission	Underground lank Gasoline	Gagoline	Groundwater, Soil	E (P)
650	Livingston 08/25/86	Lucy Rd Gr Riv Contam Area 47-03M-U4E-36DU Howell	Unknown	Unknovn	Tetrahydrofucun	Groundvater, Residential Well	IR (S) EP

(Continued)

(Sheet 3 of 17)

SAS	County Date Scored	Common Site Name* Location Code Township	Source of Contamination	Point of Release	Pollutant	Resource Affected	Status**
240	Livingeton 07/23/87	Total Gas Pinckney 47-01N-04E-22DD Putnam	Gas Station	Underground Jank	Benzene, Toluene, Clilorobenzene Ethylbenzene	Groundwater, Residential Well	1R (P)
533	Livingston 07/23/87	Bergin Rd Old US 23 Area 47-13N-06E-28CD Hartland	Gas Station	Underground Yank	Casoline	Groundwater, Soil, Realdential Well	£ P
222	10800 01/23/87	Oscoda Tup Hunicipal Well 35-23N-U9E-U4BD Uscoda	Илк помп	Unknown	l'erch lorethy lene	Groundwater	1R (P) RA
311	10#c0 10/01/87	Hedblum Industries 35-23N-09E-04DC Au Sable	Forging, Stamping	Surface Ulecharge	Trichioroethylene	Groundwater Residential Well	1R (P,S) E (F)
\$06	Geneses 10/11/84	Sunshine Food Store 25-08N-08E-12BB Richfield	Gas Station	Unknown	Benzene, Xylene, Toluene	Groundwater	≨
967	Midland 10/07/87	Mooney Oll Company 56-16M-02E-1900 Coleman, City of	Gas Cratton	Underground lank	Gasol Inc	Groundwater, Soll	d
430	Livingston 08/13/87	MSI Station Hartland 47-03N-06E-21CC Hartland	Gas Station	Underground Tank	Gasoline	Groundwater, Soll	≨
410	1sabella 07/23/86-	Blanchard Area GW Contam 37-13N-06W-33DA Rolland	Unkn: vn	Unknovan	Methylene Chloride, Groundwater, Ethylene Dibromide Residentish 1,2-Dichloroethane	Groundwater, Residential Wells	1R (S) RA

(Continued)

SAS	County Date Scored	Common Site Nume* Location Code Township	Source of Contamination	Point of Release	Pollutant	Resource	Status**
380	M1d1end 01/14/86	Res Well Nine Hile Rd 56-15N-01W-33DA Jerome	Unknown	Unknown	Toluene, Ethylbenzene Xylene	Groundwater	IR (S)
370	Tuscola 10/04/84	Walbro Corp 790-14N-11E-33AC Elkland	Engine Component Mfg	l.agoon	Toluene, Xylene, Hineral Spirits, Styrene, TCE	Groundwater, Soil	1R (P) E (P)
364	Livingston 07/23/87	Green Oak Fire Station 47-01N-O6E-17DB Frigiton	Gasoline Storage	Underground Tank	Xylene, Toluene, Renzene, Ethyl- benzene	Croundwater, Residential Well	E
327	8ay 09/24/86	Magline Inc 09-17N-04E-27DD Pinconning	Forging, Stamping	Pile	Magnesium, Oxide, Phenol, Lead, Boron	Groundwater, Residential Well, Fauna, Flora	E (P)
324	Seginav 08/15/87	Thomson Products 73-10N-03E-32CB Swan Creek	Forging, Stumping	Surface Discharge	Trichloroethylene, Zinc Chloroethane Hydraulic Oils	Groundwater, Soil, Flora	E (P)
308	1eabella 10/30/84	Res Well Schutt 37-14N-04W-02AD Union	Unknown	Unknown	Xylene, Toluene, Isopentane, Ethylbenzene	Groundwater, Residential Well	a
306	Saginav 09/24/86	Thomas Twp LF 73-12N-03E-07DD Thomas	Lendfill	Landf111	Domestic Comm, Ammonia, Lead, Total Organic Carbon	Groundvater	IR (P)
252	Livingeton 10/01/87	G and G Paint Developers 47-02N-05E-04CC Genon	Paint Products	Pile, Surface Discharge, Container	Benzene, Toluenc Xylene, Ethyl- benzene	Groundwater, Soil, Residential Well	1R (P)

SAS	County Date Scored	Common Site Name* Location Code lownship	Source of Contamination	l'oint of Release	Pollutant	Resource Affected	Statue**
185	Hidlend 09/20/86	Sheperd Rd 56-13N-02W-10DC Jasper	Landf111	Unknown	Ethylbenzene, Xylene	Groundwater, Residential Well	EP ₹
178	Oskland 10/11/84	III MIII Nanufacturing 63-03N-07E-23AB Highland	Valves Pipe Mig	Lagoon	Heuvy Mf8	Groundwater, Soil	1R (P)
CROUP 2	2						
=	Ogenav 08/10/87	Horseshoe Lk kd W. Branch 62-23N-01E-11CA Foster	Vaknova	Unknoen	fthylbenzene, Benzene, loluene, Xylene	Groundwater, Soil	<u>а</u>
01	leabella 08/10/87	Winn Groundwater Contom. 37-13N-05W-10CD Fremont	Unkirown	Unknown	Ofchloroethane, Benzene	Croundwater, Residertial Well	IR (S) EP
01	Nidland 09/18/87	Nostly Hopers S6-14N-02E-18DD Midland, City of	Auto Repair	Surface Dis- charge	Toluche, Methylene Chloride	Groundwater, Soil	e. E
6 0	Bay 09/18/87	Consumers Power Wendock Plant 09-15N-05E-02CD Nampton	Gos/Electric Utility	Underground lank Fuel Ufl	Fuel 011	Groundwater, Soil	E (P)
40	80y 08/11/87	Formera Petroleum Coop. U9-15N-04E-03AC France	Gas Station	Hideryround Trink - Gasottiic	Gasottue	Groundwater, Soil	1R (P) E (P) FR (P)

(Continued)

Table 38. (Continued)

SAS	County Date Scored	Common Site Name* Location Code Townshitp	Source of Contemination	Point of Release	Pollutant	Resource Affected	Status**
•	Clere 07/25/86	Clare Saultary LF City of 18-18N-04W-34AA Natton	Landf111	Landfill	Chloroform, Cis 1,2-frichloro Trichloroethylene	Groundwater, Residential Well	\$
40	Geneses 08/13/87	GM Fisher Guide Fiint 25-07N-06E-13C Flint	Gaeoline Storuge	Underground Tank	Benzene, Toluene, Ethylbenzene, Xylene	Groundwater, Soil	ZZ
40	Genesee US/13/87	Kimes Corp. Plant Site 25-08N-07E-31A Flint	Chem. Prod. Hig.	Unknown	Renzene, Dichloro- Groundwater, Soil ethylene, Chlorobenzene	Groundwater, Soil	Z
•	Genesee 08/13/87	Kimes Corp. Warehouse Site 25-07N-07E-07BA Fiint	Oil Storage	Unknown	Benzene, Toluene, Dichloroethane Naphthalene	Groundwater, Soil	Z
∞	Ceneses 08/01/85	Nevilles Waste Collection 25-06N-08E-04CB Atlas	Landfill	Landfill	Cadmium, Chromium, Iron	Groundwater	%
•	Gladwin 10/08/84	Elliot Gas & Oil Co 26-18N-01W-31CC Buckeye	Oil Storage	Aboveground Tank	Chem Prod Mfg	Groundvater	IR (P)
•	Cladvin 08/19/86	Gladwin Bulk Oil Plant State Street 26-18M-OlW-Obb Buckeye	Gasoline Storage	Underground Tank	Benzene, Toluene, Ethylbenzene, Xyleneø	Groundwater, Soil	IR (P)
•	Gladwin 08/14/87	Gladwin City Public Works Garage 26-18N-01W-088 Buckeye	Hunicipol Facillty	Surface Spill	Gasoline	Soil, Groundwater	IR (P)

(Continued)

343	County	Common Site Name*	Surren	Puller of		Resource	
Score	"	Township	Continuination	Releane	Pullutant	Affected	Statue
€5	Cladwin 08/14/87	Simpson Industries Gladwin 26-1MN-02W-U6B Buckeye	Hisc. Anchinery Hig. Surface Discharge Henzene, Toluene, Xylene, Ethyl- benzene	Su rfa ce Discharge	Henzene, Toluene, Kylene, Ethyl- benzene	Groundwater, Soil	18 (P)
•	Gratiot 10/08/85	Alma Producte 29-12N-03W-35A Fine River	Engine Components Mfg	Lagoon	Trichloroethylene, Cyanide, Dichloro- ethylene	Groundvater	d a
•	Gratiot 08/20/84	Total Petroleum Almii 29-11N-03W-02A Arcada	Petro Refining	Lagoon	Thenols, Chiurides	Groundvæter	\$
•	Livingeton 06/13/85	Clem Trend Inc 47-02N-05E-USBC Genoa	Off, Greake Prod	Surface Discharge	Dichloraethanc, Trichloraethenc	Groundwater, Soil	E (P)
•	Livingston 09/07/84	R 6 B Manufacturing 47-01N-05E-24ABC Hamburg	Rubber, Plastic Production	Surface Ulacharge	Dichloroethene, Trichloroethane, Methylene Chloride	Croundwater	E (P)
•	Midlend 08/15/85	Gordonville Road 56-14N-01W-27CD Lee	Scrap Hetal Yard	Pile, Barrel	PNAS, 011	Soil, Groundwater	Z
•	Midland 08/15/87	Res. Well Bradford Road 56-13N-01W-06AB Porter	Brine Use, Dispusal	Surface Diacharge	Brine	Groundwater, Real- dential Well, Soll	E (P)
•	Onkland 10/02/87	Pontiae Steel 36-04N-0NE-14nD Springfield	Metal Processing	Dry Well	Heavy Hig	Groundvæter	1R (P)

SAS	County Date Scored	Common Site Nume* Location Code Township	Source of Continuination	Point of Releane	Pollutant	Resource Affected	Statusha
45	Saginav 09/18/87	Amoco Gas Cenesec & Holland 73-12N-05E-30BD Saginav, City of	Cas Station	Underground Tank	Casoline	Groundwater, Soil	d:
••	Saginav 09/18/87	Grand Trunk RR Genesee St. 73-12N-04E-24CA Saginaw, City of	Rail Transport	Surface Discharge	Fuel 011	Groundwater, Soll	IR (P) E (P)
4 0	Soginav 08/06/87	Rebel Car Worb 73-12N-04E-11C Saginav, City of	Gas Station	Underground Tank	Gasoline	Groundwater, Soil	IR (P) EP
©	Saginaw 08/22/86	Shielda Manufac. Painta 73-12N-U4E-32AD Saginav, City of	Metal Conting	Surface Discharge	Benzene, Toluene, Oil	Groundvater So11	FR (P)
6 0	Shiawanaee 08/14/85	Drake Gasoline Durand 78-06N-04E-16AA Vernon	Gas Station	Underground Tank	Casoline	Groundwater, Soil	IR (P) EP
,	Bey 09/04/84	Petera Mfg 09-15N-04E-14 Kaukaulin	Metal Hardvare Hfg	Surface Discharge	lleavy Hfg	Groundwater, Flora	*
•	Clare 09/16/85	Clare to Mbot Buik Storage Site 18-17N-04W-34D Grant	Gasolfiie Stornge	Aboveground Tank	Nouzene, Xyleno, Ethylbenzene, Toluene	Groundwater, Soil	E (S,F)
~	Genesse 09/21/84	Boron Gas Station 25-09N-06E-23NB Vienna	Gas Station	Underground Tank	Naphthalene, Xylene, Toluene, Ethylbenzene	Groundwater	o.

(Continued)

Statue**	Z	 ≨		43	da da	IR (P) RA	2	E (P)
Stı	-	_		~	~	145	••	
Resource Affected	Groundwater, Soil	Groundvater	Groundwater, Soil	Groundwater, Soil	Groundvater	Groundwater	Groundwater, Residential Well, Ogemaw	Groundwater, Residential Well
Pollucant	Lead, Ciremium, Nickel, Chloriden, Sulfate	Chlorides, Lend	Benzene, Johnene, Kylene	Phenot	Naphthalene, Xylene, Toluene, Butane, Ethyl- benzene	Benzene, Toluene, Xylene	Ammontum Hitrate, Urea	Salt
Point of Releane	Waste, Pile Lagoon	Landf111	Underground Tank	Lugoon	Underground Tank	Underground Tank	Aboveground Tank	Waste, Pile
Source of Contomination	Plating, Polishing	Landfill	Gua Station	Petro Refluink	Gas Statton	Gae Station	Grain Elevator	Salt Storage
Common Site Name* Location Gode Township	CHC Fisher Guide Coldutr Rd 25-08N-07E-18AB Genesee	KÍSH LF 25-09N-05E-09DA Grant	Union 76 Station Filnt 25-08N-07E-22UA Cenesse	Alma, City of 29-12N-U3W-34DA Arcada	Cratiot Farmers Supply 29-12N-U3M-33AA Pine River	Stanley Oil Co 37-13N-03W-08bb Coe	Wickes Agriculture 37-13N-06W-18BA Rolland	MI Dept. of Transportation 47-02N-06E-32DB Brighton
County Date Scored	Genesce U9/24/84	Genesee 07/30/86	Genesee 08/21/85	Gratiot 09/24/84	Gratiot 09/25/84	Isobella 10/07/84	Isabella 10/07/84	1.1vingeton 10/02/84
SAS	~	~	^	~	,	1	•	•

(Continued)

SAS	County Date Scored	Common Site Name* Location Code Township	Source of Contamination	Point of Release	Pollutant	Resource	Status**
~	L1v1ngston 08/12/85	Wellman Property Disposal 47-02N-04E-25CC Marion	Municipal Facility	Pst	2,4-D, 2,4,5-T	Groundwater, Soll	IR (P)
~	Livingston 01/07/86	Winters Quick Clean 47-01N-05E-26BB Hamburg	Laundry Dry Cleaner Lagoon	Lagoon	Perchloroethylene	Groundwater	¥
^	M1d13nd 08/05/85	Dow Chem Brine Pipeline Spills 09-56-73 Midland	Brine Vee, Disposal	l'ipeline	Brine	Groundwater, Soil, Flora	E (P) FR (P)
,	Midland 09/18/87	Dow Corning 56-14N-D2E-26CC Midland, City of	Plastic Rubber Mfg.	Aboveground Tauk Toluene	Toluene	Groundwater, Soil	1R (P)
~	Midland 07/30/87	Forward Car Wash 56-14N-02E-0986 Midland, City of	Gas Station	Underground Tank Gasoline	Gasoline	Groundwater, Soil	<u>a</u>
^	Saginav 09/27/87	Amoco Gaa Stn Center & State 73-12N-04E-20AA Saginav, City of	Gam Station	Underground Tank Gasoline	Gasoline	Groundwater, Soil	<u> </u>
~	Saginav 09/29/87	Kes Well Lone Road 73-12N-U3E-6AB Thomas	Farains	Surface Discharge	Atrazísie	Groundwater, Residential Well	a
•	Arenac 10/08/84	Res Wells Sterling River O6-19N-O4E-2OC Deep River	Ag Chem Products	Unknown	Nitrates	Groundwater, Residential Wells	Z

Table 38. (Continued)

SAS	County Date Scored	Common Site Name* Location Code Township	Source of Contomination	Point of Release	Pollutant	Resource Affected	Status**
•	Bay 09/18/87	Dore Fletcher Gam Station 09-13N-04E-01DB Frankenlust	Gas Starton	Underground Tank Gagoline	Gasoline	Groundvater, Soll	6 9
•	8ay 09/18/87	Forward Corp. Essexville 09-14N-USE-23CD Essexville, City of	Can Station	Underground Tank Gasoline	Gasoline	Groundwater, Soil	IR (P)
•	Bay 09/23/86	Aerospace America inc 09-14h-05E-09DC Bangor	Misc Hetal Prod	Darrel	Xylene, Toluene, Naphthol, Acetone, Chromic Acid	Groundwater	2
•	Clare 09/25/87	Harrison LF, City of IR-19N-04W-29AC Hayen	Dump	dwng	Domest to Comm	Groundwater	2
•	Clare U9/24/84	Hen Wellm Lake George IN-18N-USW-ONC Lincoln	Unknown	Unknown	Сино Пис	Groundwater	1R (S) EP
•	Clare 09/21/87	Tuecola/Saginav Bay RR Dernii 18-17N-USM-26AA Surrey	Rail Transport	Surface Discharge	fuel off	Groundwater	1R (P) RA
•	Gladwin 10/08/84	Buckeye O11 Field 26-28N-01W-11 Buckeye	Oil Drilling	Ceologic Form	brine	Groundwater, Realdential Well	1R (P)
•	Gladwin 05/20/87	Ruby Dr. Res Leaking Pipe- line 26-20N-02N-17DB Sherman	Private residence	Aboveground Tank Fuel 011	Fuel 011	Groundwater	IR (P)

Table 38. (Continued)

SAS	County Date Scored	Common Site Name* Location Code Township	Source of Contamination	Point of Release	Pollutant	Resource Affected	Stitue
•	Huron 09/18/87	Brighton Metala Caseville 32-18N-10E-35AC Caneville, City of	Metal Coating	Surface Discharge	Chromium, Paint Primers	Groundwater, Soil	E (P) FR (P)
•	10#c0 09/19/85	Straits Aggregate 35-22N-08E-30 Baldwin	Wood Preserving		Arsenic, Selenium, Chromium	Groundwater, Soil	1R (P) 5P 8A
•	1eabella 10/15/84	Michigan Ohio Pipeline Co 37-iSN-04W-33CA Union	Pipelinc	Pipeline	Chem Prod Mfg	Groundwater	IR (P) RA
•	Lapeer 09/18/87	U.S. Post Office, Lapeer 44-07N-10E-05IXC Lapeer, City of	U.S. Postal Svc.	Underground Tank Gasoline	Casoline	Groundwater, Soil	E (F)
٠	Livingston 09/15/86	Livingston Co LF 47-03N-04D-13AD Howell	Landfill	[.endf11]	Domestic Comm, Heavy Hig	Groundwater	5
•	Mecosta 08/10/87	Fargo, Inc. 54-14N-07W-16DD Wheatland	Gas Station	Underground Tank	Benzene, Toluene Xylone, Ethyl- benzene	Groundwater, Soil	1R (A) 8A
•	M1d1end 10/08/84	Central Michigan Petroleum 56-14N-02E-16 Hidland	Gas Station Underground Tank		Renzene, Tolucne, Xylene, Isopentane	Groundvater	ā. N
•	Monscalm 09/24/84	Res Wells Vestaburg 59-12N-05W-27CA Richland	Salt Storage	Waste, Pile	Salt, Hrine	Residential Well, Groundvater	IR (P) RA

(Continued)

Table 38. (Continued)

SAS	County Date Scored	Common Site Name* Location Code Township	Source of Contamination	Point of Release	Pollutant	Resource	Strtus##
•	Ogenav 09/27/86	Res Well Hain St Lupton 65-24N-03E-36BC Rose	Unknown	Unknoen	Ethylene, Dibromide	Groundwater, Soll	4. A
•	Roscommon 08/22/86	Artesia Beach Fuel Oil Spill Private Residence 72-23M-01W-30CA Richfield	Private Rewidence	Aboveground Tank	Benzene, Sytrene, Xylene, Toluene, Ethylbenzene	Groundwater, Flora, Soil	iR (P) E (P)
•	Saginav 08/20/86	Wickes Engineering 73-12M-05E-30CA Buena Vista	Carbon Graphite Production	File, Surface Discharge	Trichloroethene, 1,1,1-Trichloro- ethane, 1,1,1-11- chloroethane	Groundwater, Soil	18 (P) E (P)
•	Shiavassee 08/13/85	Numatics 78-07N-03E-30AA Caledonia	Valves Pipe Hfg	Surface bischarge	Chromium	Groundwater, Soil	IR (P) FR (P)
~	Clare 09/06/84	American Dry Cleanera 18-17N-04W-34DA Grant	Laundry Dryclemers	Xylenc, Carbon, letrachloro- cthene	Soil	Groundwater, Soil	4 3
•	Clare 03/30/87	Res Well Farvell 18-17N-04W-19CC Grant	Unknovn	Unknown	Mitraten	Groundvater	<u>a.</u>
n	Gratiot 09/25/84	Fowler Farm & City Supply 29-11N-03W-34CC Arcada	Gas Station	Underground Jank	Naphthalene, Xylene Groundwater Toluene, Heuzene, Ethylbenzene	Groundwater	a <u>.</u>
•	leabelle 10/07/84	Mt. Plensant City of 37-14N-04W-15 Union	Unknozn	Unknown	llydrocarbons	Groundvater	ũ

SAS Score	Councy Date Scored	Common Site Name* Location Code Township	Source of Contamination	Point of Release	Pollutant	Resource Affected	Status**
•	lenbelle 08/12/67	Ht. Pleaent Tar Plt 37-14N-04W-10DC Union	Coal Casification	Surface Discharge	Chem Prod Mfg. Cyanide, Benzene Phenol, Xylene, PNAs	Groundwater Soil	17.
•	[anbella 10/07/84	kts Well Loomis 37-16N-03W-DD Wise	Unknown	Uuknown	Benzene, Toluene Xylene	Groundwater	e.
~	sabella 03/21/85	Por Vell N Octava Tup 37-15N-05W-3DD N Octava	Private Residence	Underground Tank	Gasoline	Groundvater	¥
~	Montcalm 08/13/85	Ges Well Wynan 59-:2N-76H-74CB Home	Petro Refining	Unknown	Denzene, Ethyl Benzene, Xylene	Groundwater, Residential Well	\$
~	Saginav 08/24/84	Tri City Refuse 73-12N-05E-08 Buena Vieta	Landfill	Landfill	21nc	Groundwater, Soil	ď
•	Seginev 09/18/87	SC4 Saginar Twp LF 73-12N-04E-32DD Saginar	Lendf111	Landfill	Domestic Comm	Groundwater	1R (S) E (S)
•	Shiawasse 08/16/85	Aiken Rd Homes 78-07N-03E-19DD Caledonia	Unknown	Unknown	Iron, 21nc	Groundwater, Residential Well	R
•	Clare 08/13/86	GW Contamination Meredith 18-20N-03W-13DA Franklin	Unknown	Unknown	Tetrachloro- ethylene, Toluene	Groundwater	1R (S) EP

(Continued)

SAS	County Date Scored	Common Site Name* Location Code Township	Source of Contamination	Point of Release	Pollutant	Regource Affected	Status**
•	Clare 10/19/84	Valcast Inc 18-17N-04W-35-34 Grant	Metal Container Hig	Surface Discharge	Salt	Groundwater	<u>2</u>
•	Isabella 10/05/84	MI Wisconsin Pipeline Co 37-16N-06W-28CA Coldvater	Pipeline	Pipeline	llydrocarbons	Groundwater	٤
•	Lapeer 10/19/84	Lapear Co Rd Comm Mayfield 44-08N-10E-12CB North Branch	Road Commission	Salt Pile	Salt	Groundwater	ä
4	Livingston 10/08/84	US 23-196 Interchange Area 47-02N-06E-32AC Brighton	Salt Storage	Surface Dincharge	Salt	Groundwater	<u>a</u> .
•	Mecosta 10/03/84	Farm and Res Well 54-14N-08W-25KC Morton	Farming	Container	Eptam Herbicide	Groundwater	ř.
•	Necosta 10/03/84	Mecosta Co Rd Comm Remus 54-14N-U7W-16DD Wientland	Unknown	Sale Pile	Salt	Groundwater	2
r	Clare 08/13/86	Clare to Rd Comm linning iding Road 18-18N-04W-15AA Hayen	Road Commits: Lon	Cont Stotage	Salt	Groundvater	ž
c	Clare 10/02/84	Dodge Lake Dump 18-19N-03U-30AD Hayes	1.andf 111	1.aud[11]	Domentle Comm	Groundwater	2

Table 38. (Concluded)

SAS	County Date Scored	Common Site Name* Location Code Jounalip	Source of Contamination	Point of Release	Pollutant	Resource Affected	Statue**
•	Clore 10/11/84	Harriaon Lagoon Syntem City of 18-19N-04W-29DC Hayes	Landf1]	Lagoon	Ammonia Nicrate	Groundwater	\$
c .	Isabella 10/12/84	Fusswan Macc Trnck 37-14N-04W-11A Union	Unknovn	Surface Discharge	Brine	Groundwater	₹
î	Mecosts 10/25/84	Hecosta Co I.F 54-15N-U9W-25CD Colfax	Landfill	Landf111	Domestic Comm	Groundwater	2
e .	Tuscole 10/09/84	Bailer & DeShav Stewart 79-10N-07E-32CB Arbela	Oil Drilling	Geologic Form	Chlorides	Groundwater	a a
7	Gladwin 10/08/84	Long Harry Tope No 3 26-17N-02W-36BB Beaverton	Pipeline	Pipeline	Rrine	Groundwater, Flora	er er
~	Ogcmev 01/24/85	Res Well Doran 65-22M-02E-28CC West Branch	Unknown	Unknown	Chloride	Groundwater	IR (P) EP
	Gladwin 10/08/84	Buckeye Twp Dump Closed 26-18N-01W-15CC Buckeye	Dump	Dump	Domestic Comm	Groundwater	IR (P) RA

The common site name is for identification only and is not necessarily a party responsible for contamination.

na Interim Response; E = Evaluation; FR = Final Response; RA = Regulatory Action; EP = Evaluation Pending; P = Privately Funded Actions; P = Federally Funded Actions

Table 39a

Act 307 Sites Affecting Resources Other Than Surface Water or Groundwater in the Saginaw Bay Watershed

(MDNR 1988)

SAS	County Date Scored	Common Site Name Location Code Township	Source of Contamination	Point of Release	Pollutant	Resource Affected Sta	Statue**
GROUP	-						
808	Gratiot 09/22/86	Pine R Downstream St. Louis 29-12N-02W Rethany	Chem Product Mfg	Unknown	Chem Prod Mfg	Sediment	en G
746	Livingston 10/07/87	Rooto Corp 47-03N-04E-28DC Howell	Soap, Cleaners Mfg	Aboveground Tank, Barrel Surface Discharge	lleavy Mfg	Soil Air	≨
734	Saginav 08/12/87	Saginav Paint Saginav Coatings 73-12N-04E-24RA Saginav, City of	Patut Products	Container Barrel	Xylene, MEK, Naptha, Diethyla- nmine, Glycol Ether	Soil	IR (S,F) EP
631	Geneses 08/13/87	Container Specialties 25-07N-06E-10BD Flint	Laundry, Dry Cleaner Underground Tank		Perchloroethylene, Trichloroethylene	5011	IR (P) RA
519	Oakland 10/09/85	Uld Marlowe LF 63-04N-07E-168C Rose	Landfill	Londf111	Heavy Metals, PCBs, Organics	Sediment, Soil	≨
482	Livingston 10/01/87	Grossman Ideal Steel 47-01M-05E-25CB Hamburg	Unknown	Barrel	Heavy Mfg	Sofl	IR (P) RA
**	Bay 09/23/87	Hirchfields Salvage Yard 09-14M-05E-21AB Bangor	Scrap Metal Yard	Pile	PCB, 041	Sofl	E (P)

(Continued)

(Sheet 1 of 12)

Table 39a. (Continued)

SAS	County Date Scored	Common Site Name* Location Code Township	Seurce of Contamination	Point of Relanne	Pollution	Renource Affected	Status**
30\$	Livingston (0/Ul/87	Cotter Electric 47-03N-04E-36HD Hovell	Electronic Component Container, Marrel	Container, Marrel	PCBA	5011	1R (P)
343	Tumcolm 08/13/87	Vassar Fibercoating Metalizing 79-11N-08E-27AB Vassor	Plating, Polishing	Pile, Container, Heavy Metals Barrel	Henvy Metals	Soil	E (P)
340	Livingston 09/26/86	Internat, Paper Disposal 47-02N-USE-06UC Genon	Paper Products	Surface	Phenols, PCB, Chromlum, Copper		₹
302	Shiavassee 10/01/87	Flint Industrial Pluting 78-07N-02E-14DB Owosso	Plating, Polishing	Surface Discharge	Chromium, Cyanide	So11	IR (P) RA
266	Lapeer 01/09/85	Thornville Rd Dump 44-06N-10E-13D Metamora	Landf111	Waste Pile	PCBA	Soil	IR (P) E (P) FR (P)
225	Hidland 11/28/84	Dow Chemical Midland Plant 56-14N-02E Midland	Chem Product Mfg	Unknown	Dioxins	Sof1	E (P)(S) FR (P)
163	Arenac. 09/27/86	Simm Whitney Twp Disposal 06-20N-07E-35CC Whitney	Landfill	Landf 111	Domestic Comm	Fauna	R R

SAS

8

œ

8

8

20

(Sheet 4 of 12)

SAS	County Date Scored	Common Site Name* Location Code Township	Source of Contamination	Point of Release	Pollutant	Affected	Status**
^	Clare 09/24/84	Renosol Plant 18-17N-05W-26AA Surtey	Rubber Plastic Products	Surface Discharge	Ethylhexylphalate	So11	<u>а</u>
^	Genesee 11/02/84	Als Junk 25-07N-075-09NA Burton	Unknown	Surface Discharge	rca	5011	R A
1	Genedea 07/30/86	Richfield Nambicki LF 25-UBN-OBE-OZA Richfield	1,andf111	l.andf111	Domestic Comm, Heavy Mfg		R _A
^	Genesee 11/05/84	Thrall Ull Site Forner 25-07N-07E-17CC Burton	011, Solvent Recycle	Surface Discharge	Chem Prod Mfg	5011	EP
1	Gration 08/10/87	Gratiot Metal Property 29-10N-03M-U18A Nevark	Scrap Hetal Yard	Surface Discharge Heavy Hfg.	Heavy Mfg.		EP
•	Huron 09/18/87	Wiederhold Dump 32-16N-11E-23BB Oliver	Dump	Lagoon, Landfill Surface Discharge	Lagoon, Landfill Paint Cutting Uils Surface Discharge Refuse, Cars	So 1.1	a
1	Lapeer 01/22/87	Albar Industries 44-07N-10E-05Cs Lapeer	Rubber Plastic Products		Kylene, Toluene, MEK	So11	E (P)
~	Livingston 09/26/86	Bulloch Farm 47-03M-06E-15C Hartland	Sanitary Services	Surface Discharge	Dichlorobenzene	1108	Z

Table 39a. (Continued)

SAS	County Date Scored	Common Site Name* Lacation Code Township	Source of Contamination	Point of Rejense	rol)utant	Hesource Affected	Statue
^	Midland 08/11/87	Anderson Service Station 56-14N-02E-15DD Midland, City of	Gas Station	Underground Jank Gasoline	Gasoline	5011	E (P)
•	Seginav 08/22/86	Agriland 73-12N-05E-28BB bucun Vinta	Fertilizer Híg	Surface Discharge PCB, Phosphoric Aboveground Acid Jank Container	PCB, Phosphoric Acid	5011	E (P) FR (P)
~	Saginav 09/24/86	Estech Inc Saginaw 73-12N-05E-29AC Bueun Vista	AG Chem Producto	F1 c	Cadmium, Nickel, Chromium, Lead, Copper, Zinc, pll	5011	a
~	Suginar 09/23/86	Frutchey Benn Co 73-09N-03E-16NA Oakley	Grafin Elevaton	Aboveground Tank	Canaline, tuel, Off	Soft	18 (P) E (P)
^	Saginav 09/23/86	Johnson Carbide 73-12N-115E-29AC Buena Vista	Metal, Hardware	Aboveground/ Underground Tanke, Barrel	Solvents, 1,1,1- Trichlorouthnne, Cutting Oils	Soil, Flora	FR (P)
~	Saginev 09/18/87	Laro Iron Salvage Yard 73-12N-05E-15BB Buena Vista	Auto Junkyard	Surface Diacharge Light Induatrial	Light Industrial	5011	EP
,	Seginav 09/18/87	Sargent Docks & Terminal Co. 73-13N-05E-32CB Kochville	Coal Casification	Surface Discharge Polynuclear Aromatics	Polynuclear Aronatics	5011	4 3
•	Seginav 09/18/87	Stroebel & S. River Rd. Dump Dump 73-12N-04E-31BB Seginav	Dump	dwing	Domestfe Conin Heavy Mf8	5011	E P

Table 39a. (Continued)

SAS	County Date Scored	Common Site Name* Location Gode Township	Source of Contamination	Point of Release	Pollucant	Resource Affected	Statue
٠	Livingston 08/18/86	Old Novell LF Lucy Kd Park 47-U2N-05E-06UC Genoa	Landfill	1.andf 111	Domestic Comm, Light Industrial		₹
9	Saginav 09/18/87	Atina Auto 73-11N-04E-13CC Spaulding	Auto Repair	Pile	Off, Casoline, Antifreeze	Soil	E P
•	Saginav 09/18/87	Boron Stn Tittibavassee & Bay Gas Stntion 73-13N-04E-34DD Kochville	Gas Station	Underground lank Gasoline	Gasol Ine	Soft	E (P)
•	Saginav 08/28/87	Farm Bureau Saginav 73-11N-05E-06CB Saginav, City of	Cas Station	Aboveground Tank Gasoline	Gasoline	Sof1	a.
•	Saginav 09/18/87	Fero Met Salvage Yard 73-12N-OSE-IMUB Saginav, City of	Scrap Netal Yard	Surface Discharge PCB, 011	PCB, 011	Soil	43
•	Saginav 09/18/87	Res Contam Reed Street 73-12N-D4E-14AA Saginaw, City of	Unknovn	Unknown	011	Sofl	EP
•	Shiawaasee 08/20/85	Lee Woodard Sone Inc 78-07N-02E-24BA Owosno	Forging, Stamping	Unknown	Zinc, Sadmium, Copper, Lead	Sofl	e e
•	Shiawanace 08/13/85	Old Laundry Lagoons 78-07N-O3E-20AB Caledonia	Laundry Dry Cleaner Lagoon	Lagoon	Copper, Chesantam, Cadatum, Mickel, Lead, Zinc		IR (P)

(Continued)

SAS	County Date Scored	Common Site Name* Location Code Township	Source of Contamination	Point of Release	Pollutant	Resource	Statuen
•	Tuscole 09/18/87	Ascech Industries 79-11N-08E-20BB Vasser	Iron Steel Foundry	P11e	Foundry Sands	5011	E (P)
9	Tuscola 10/09/84	Eaton Grede Vassar 79-11N-08E-07CD Vassal	lron, Steel Foundry Lagoons, Piles	Lagoons, Piles	Light Industrial		E (P)
9	Tuscola 09/28/87	Fairgrove Gas Stn 79-13N-U8E-16CC Fairgrove	Gas Station	Surface Discharge Gasoline	Gasoline	So11	EP
•	19abella 10/07/84	Dana Corp 37-14N-04W-11BC Union	Misc Nachinery Híg	Und erg round Tank	PCE, TCE, Methylene Chloride		\$
S	lanbella 09/26/86	Shepherd School Gns Spill 37-13N-03W-17AU Coe	Gasoline Stornge	Underground Tank	Gasoline	5011	2
~	Livingeton 09/28/84	Brighton Twp Dump 47-02N-06E-15BA Brighton	Landfill	Landf111	Domestic Comm		93 9
•	Midland 09/18/87	Midland Iron Works 56-14N-01W-24AA Lee	lron Steel Toundry	Pile	Heavy Mfg.	5011	a. u
•	0g.cmav 09/27/84	Carecallens Store Area 65-22N-0JE-09DB Churchill	Gan Station	Under ground Tank	Benzene, Johnem, Xylene	5011	d 3

(Continued)

SAS	County Date Scored	Common Site Name* Location Code Townslitp	Source of Contamination	Point of Release	Pollutant	Resource Affected	Status**
•	Saginav 10/13/84	Agrico Chemical Co. 73-12N-06E-15CB Nlumfield	Fertilizer Miß	barre i	Chem Prod Mfg		IR (P)
~	Saginav 10/09/84	C & O Railrond 73-11N-06E-03AD Frankenmuth	Rail Transport	Underground Tank	Diesel Fuel, Salt		3 3
~	Saginav 08/06/87	Saginaw Products Corp. 73-12N-U4E-34AB Saginaw, City of	Mctal ilardvare Nfg	Surface Discharge PCN	PCIR		33 3
~	Saginav 09/30/87	Staefer Chemical 73-12N-U4E-1200 Garrolton	Chem Product Mfg	Surface Discharge Caustle Soda, De- tergenta, Phos- phoric Acid	Caustle Soda, De- tergenta, Phos- phoric Acid	Soft	a .
•	Shiavasses 08/13/85	Midwest Abrasives 78-08N-02E-22RC Rusi	Abrastves	Surface Discharge	Plieno l		IR (P) EP
•	Tuscole 10/09/84	Dular Producta Inc 79-11N-08E-07CA Vassar	Paint Products	Surface Discharge	Eight Industrial	Soft	E (P)
4	Genesee 08/07/85	Old Plating Plant 25-09N-06E-22AA Vienna	Plating, Polishing	Burrel, Pit, Surface Diacharge	Cyanide, Chromfum	Soll	IR (P) EP
4	Huron 09/18/87	Port Austin Laundromat 32-19N-12E-30AA Port Austin, City of	Laundromat	Surface Discharge Domestic Comm	Domestfc Comm	5011	ä

Table 39a. (Continued)

SAS	County Date Scored	Common Site Name* Location Gode Township	Source of Contamination	Point of Release	Pollutant	Resource Affected	Status**
4	losco 10/08/84	Kaul Glove & Manufacturing 35-23N-09E-03D Wilber	Hork Glove Hig	Waste l'ile	Vinyl Chloride, Polyvinyl Chloride, Dioceyl Phthalate	5011	7R (P) E (P)
4	18abc11a 10/05/84	lanbolla Go Santenry I.F 37-14N-05W-19CA Union	Land(111	Landfill	Domestic Comm, Light Industrial		Z
4	18sbella 10/19/84	Wise Twp LF 37-16N-03W-30BB Wise	Landf 111	Landf111	Domestic Comm		Z
•	Lapeer 09/26/86	Otter Lake Marathon Field 56-09N-09E-18AC Marathon	011 Dr1111ng	Geologic Form	Nydrogen, Sulfide	Air	6 P
4	Seginew 08/22/86	Merril Dump 73-12N-01E-27BC Joneefield	Landf111	Landfill	Domestic Comm		g.
C	10/05/84	Gilmore Tup Sanitary LF 37-16N-05M-28AA Gilmore	Landfill	Landf111	Dumestic Comma		æ
~	Arenec 09/12/86	Magon Turner Tups Duap 06-20N-05E-15AD Mason	Landf111	Landfill	Domestic Comm	So11	d:
7	Arenec 11/05/84	Standish Lincoln Dump Closed Landfill O6-18N-05E-07CD Standish	[]]]	l.andf111	Domestic Comm	Wetland, Soil	a .

Table 39a. (Concluded)

SAS	County Date Scored	Common Site Name* Location Code Township	Source of Contemination	Point of Releane	Pollutant	Resource	Status**
~	Clare 10/02/84	Arthur Twp Dump 18-18N-03W-15AD Arthur	Land[11]	Land : 11	Domestle Comm		\$
~	Shiavassee 10/14/85	G & G Disposal 78-05N-04E-198A Burns	Landfill	Lan (* 111	Iron	5011	2 3
-	Gladwin 11/05/84	U & B Disposal Closed 26-18N-OiW-O6CA Buckeye	Dump	den	Domestic Comm		IR (P) EP
	Gladwin 02/01/85	Gladwin Co Rd Comm 26-18N-01W-06CA Buckeye	Unknown	Waste Pile	Salt		2
-	Gladwin 10/08/84	Sage Twp Dump Closed 26-19N-02W-22CC Sage	Dump	Dump	Domestic Comm		E.P

ARINITATION RESPONSE; E-Evaluation; FR-Final Response; RA-Regulatory Actions; FP-Fvaluation Fending; P-Privately Funded Actions; F-Federally Funded Actions The common site name is for identification only and is not necessarily a party responsible for contamination.

Table 39b

Act 307 Priority List, Two Sites in the Saginaw Bay Watershed (MDNR 1988)

SAS	County Date Scored	Common Site Name Location Code Township	Source of Contamination	Point of Release	Pollutant	Resource Affected	Statusha
0757	Lapest 01/20/87	Oregon Tup Dump 44-08N-09E-24AD Oregon	Landf111	Borrel Laudf111	Toluenc Xylene TCE Zinc Benzene PCHs Carbon Disulfide	Surface Water Groundwater Soil Wetland	E (S)
0751	0751 Oakland 02/09/87	Springfield Twp Dump Site 63-04N-06E-32CB Springfield	Dump	Barrel	PCB Benzene Toluene Xylene	Groundwater Soil	IR (S.F) E (S,F)
0725	Bay 01/17/86	Hartley and Hartley 09-15N-04E-25AD Kavkavlin	Landf111	Lagoon Barrel Landfill	PCB Xylene Dichloroethane Diethyl Phthalate	Groundwater Wetland	E (S)
0725	0725 Oakland 02/09/87	Rose Twp Dump Site 63-04M-07E-28AC Rose	Dump	Pit . Barrel	Lead Cadmium Phenol PCB Dichloroethyelen	Surface Water Groundwater Soil	IR (S,F) E (S,F)
9690	0696 Oakland 02-10-87	Rose Twp Cenctary Site 63-04M-07E-27AA Rose	dwng	Barrel	Phenol PCB Argenic Lead Nickel Chromium		IR (S,F) E (S,F)

The common site name is for identification only and is not necessarily a party responsible for contamination.

AP-Interim Response (alternate vater, surface removal, alte security, and other partial remedies; E-Evaluation (atudies); FR-Final Response (final cleanups); RA-Regulatory Action (agency actions to initiate site work, e.g., negotiations, preliminary investigation); EP-Evaluation Pending (sites currently with insufficient priority for publicly-funded response); P-Privately Funded Actions; S-State-funded actions; F-Federally Funded Actions

Table 40

Environmental Protection Agency Superfund Sites in the Saginaw Bay Watershed

Act 307 List Group	County Date Scored	Common Site Name Location Code Township	Source of Contamination	Point of Release	Pollutent	Resource Affected Sta	Status
7.	1,1 Clare	Clare Municipal Wells City of 18-17M-04W-34D Grant	City of Auto Component Mfg	Lugoon Discharge Trichloroethane Surface Discharge Trichloroethene	Dichloroethane Trichloroethene	Groundwater Sediment Municipal vell Surface Water	IR (P) E (P,S,F)
:	1,1 Genesee	Porest Waste Products 25-09M-08E-08DB Forest	Landfill	l.agoon Landf111	Dieldrin Lead Cyanide PCB Oil	Groundvater	IR (S,F) E (S,F)
:	1,1 Geneses	Berlin and Parro 25-06M-05E-23DA Gaines	Has waste facility	Lendf111	Toluene Ethylbenzene Bromoform	Groundwater Soil	IR (P,8,7) E (P,8,7) FR (P,8,7)
Unlisted Gratiot	Gratiot	Gratiot Co. Landfill	Landf 111	Landfill	Leachate, PBB		
Unlisted Gratiot	Gratiot	Velsicol	Plant eite	Discharge	988	Surface Water Sediments	
3	1,1 10800	Redblum Industries 35-23M-09E-04DC Au Sable	Porging stamping	Surface discharge	Surface discharge Trichloroethylene	Groundvater	IR (P,S) E (F)
3	1,1 Lapor	Metamora Saultary LF 44-06M-10E-10DB Metamora	Landfill	Barrel Landfill	Dichlorobenzene Hexachlorobenzene Methyl Chloroform	Groundvater	IR (S,F) E (S,P)
1,1	1,1 Livingston	Rasmussens Dump 47-01M-06E-30AA Green Oak	Dump	Du mp Barrel	Volatile Organica Dioxina PCB Lead Arsenic Copper	Groundwater Soil	IR (S,P) E (S,P)

(Continued)

Table 40. (Concluded)

Act 307 Lint Group	Act 307 County Lint Date Group Scored	Commun Site Name Location Cole Township	Source of Contamination	Puint of Release	Pollutant	Renource Affected	Statue
-:	1. i Livingston	Shinwanaca Rivar 47-03M-04E-22 Movell	Forging acomping	Surface discharge PCR	PCT PCT	Surface Water Sediment	E (S,F)
Ξ.	i,i Livingston	Spieselburg I.P 47-DIM-UGE-3UAB Green Ook	deng	Diemp Harrel	Liquid Painte Zinc Arecuic Thallium	Groundwater Sofl	1A (8) E (5,P)
7,	2, Dekland	Springfield Twp Dump Site 63-04M-ORE-32CB Springfield	Dump	Barrel	PCB Benzene Tolucne Xylene	Groundvater Soil	18 (5, P) E (5,P)
2,	Oakland	Rose Twp Dump Site 63-04M-07E-28AC Rose	Dump	Pit Barrel	Lead Cadmium Phenol PCB Dichloroethylene	Surface Water Groundwater Soil	IR (S,F) E (S,F)
2,	2, Oskland	Rose Twp Cemetary Site 63-04N-07E-27AA Rose	deng	Barrel	Phenol PCB Arsenic Lead Mickel Chromium		IR (S,F)

The common site name is for identification only and is not necessarily a party responsible for contamination.

** IR-Interim Response (alternate vater, surface removel, site accurity, and other partial remedies; E-Evaluation (atudies); FR-Interim Response (final cleanups); RA-Regulecory Action (agency actions to initiate alte work, e.g., negotiations, preliminary investigation); EP-Evaluation Pending (altes currently with insufficient priority for publicly-funded response); P-Privately Funded Actions; B-State-funded actions; F-Federally Funded Actions

Crop Acreage Totals for Counties in the Saginaw Bay Drainage Basin Table 41

County	Total Gropland	2 CT Impl. 1	Seed & Corn	Wheat	Oats	Soybeans	Dry Edible Beans	Sugar S Beets	Vegets. C Sweet Corn Melons	Z of County 1 in Basin
Arenac	68,355	24	13,424	4,041	3,305	6,918	12,825	2,193	1,693	100
Вау	161,143	19	45,976	6,757	2,060	18,879	48,969	16,134	3,478	100
Clare	50,215	28	6,826	2,286	3,453	356	1	ı	43	54
Genesee	134,134	26	45,652	4,648	10,370	31,532	1,216	ı	618	100
Gladvin	52,844	15	10,461	3,419	3,576	1,650	2,902	324	143	100
Gratiot	248,451	31	70,343	14,972	8,165	65,918	48,128	4,985	2,650	63
Huron	384,598	26	111,847	23,145	24,420	4,901	105,66	21,449	16	63
Iosco	35,022	16	6,971	1,244	2,370	434	896	1	31	99
Isabella	159,774	29	41,941	10,568	8,786	13,255	17,094	1	352	100
Lapeer	178,853	27	58,614	7,065	11,221	9,168	7,413	•	3,427	7.1
Livingston	103,952	34	38,519	6,784	4,758	4,351	299	1	ı	43
Mecosta	93,022	35	17,943	695.4	3,352	180	2,928	ı	724	24
Midland	72,404	7	22,886	3,259	1,676	17,164	14,130	2,254	375	100
Montcalm	183,585	41	55,428	20,374	8,511	6,340	20,415	ı	1,142	13
Oskland	50,530	33	15,793	2,762	1,971	987	i	1	657	18

(Sheet 1 of 2)

¹CT Impl. is the percentage of total row crop, small grain, and forage crop acreage planted using conservation tillage methods in 1986.

Table 42

Saginaw Bay Drainage Basin (Bureau of the Census 1984)

Livestock Populations and Acreage Totals for Hay and Pasture Within the

County	Cattle	Milk	Новя	Sheep	Horses	Chickens	Hay Acreage	Pasture Acreage	Z County
Arenac	9,109	3,146	3,769	154	210	6,347	10,094	3,791	100
Вау	4,736	1,501	3,231	55	292	4,634	3,776	69	100
Clare.	14,215	3,012	6,282	1,796	205	29	15,995	12,151	54
Genessee	18,478	4,464	12,139	1,513	1,336	12,821	15,918	4,981	100
Gladwin	10,568	1,805	3,543	1,410	378	3,774	13,876	9,244	100
Gratiot	28,096	8,774	17,880	1,046	643	162,570	14,036	4,887	63
Huron	212,77	19,514	34,078	292	280	1,406,243	38,144	10,912	63
losco	11,167	1,535	2,151	518	296	902	10,990	5,778	99
Isabella	35,429	11,077	15,125	438	809	•	32,720	10,034	100
Lapeer	36,040	10,795	13,132	3,344	2,104	11,608	38,264	12,713	7.1
Livingston	23,961	7,229	6,315	3,279	1,896	8,197	24,601	8,189	43
Mecosts	451	6,160	4,336	1,170	620	3,734	33,114	12,041	24
M1d1and	170	059	5,304	225	497	1,982	3,939	1,503	100
Montcalm	557	10,361	10,769	1,230	160	10,279	31,321	7,768	13
Oakland	6,371	1,111	2,246	1,147	2,408	3,130	12,981	8,056	18
				(Continued)	led)			(Sheet 1	of 2)

Table 42. (Concluded)

County	Cattle	M11k Cows	Hogs	Sheep	Horses	Chickens	Hay Acreage	Pasture Acreage	Z County
Овещам	14,498	4,246	1,026	456	222	1,311	18,926	9,608	62.
0sceola	22,518	8,094	2,936	1,390	561	1	36,500	16,798	2
Roscommon	321	E	20	1	185	887	1,043	ı	11
Saginav	15,543	4,629	8,192	1,181	856	38,419	10,725	3,239	100
Sanilac	75,180	30,891	11,014	1,042	886	29,942	71,643	17,499	32
Shiavassee	24,463	8,325	13,039	1,841	1,019	35,861	23,317	7,806	57
Tuscola	23,838	7,455	18,487	1,166	823	477,759	21,753	8,743	100

Table 43

Fish Consumption Advisories for 1988 in the Saginaw Bay Watershed

(MDNR 1988; MDPH 1988)

	Advis	ory	
Location	Restrict*	Do Not Eat	Contaminant of Concern
Saginaw Bay	Lake Trout Rainbow Trout Brown Trout	Carp or Catfish	PCB
Pine River Downstream of St. Louis		All species	PBB, DDT
Shiawassee River M-59 to Byron Rd. Byron Rd to Owoss	0	All species Carp	PCB
Tittabawassee Rive Downstream of Mid	~	Carp or Catfish	Dioxin
Saginaw River		Carp or Catfish	PCB
Cass River Downstream of Bridgeport	Carp	Catfish	РСВ

^{*}The MDPH advises restricting consumption to no more than one meal per week.

Contaminant Concentrations (mg/kg) in Fish Samples from the Shiawassee River, 1985 (MDNR, unpublished data) Table 44

							Parameter	ı						
Species	A-1254	PCB A-1248	A-1260	Ulel- drin	Toxs- phene	000,00 E 00T	H.B.	٧e	u2	Pb	ž.	ď	ני	PS
BYRUM ROAD Carp n value	s.9.			\$ <0.001	\$ <0.050	\$ 0.23\$								
Rock Rese B velue		0.18		- 0.001	 <0.050	1 0.006								
Smellmouth Benn n velue	=	6.27		100.0>	<0.05	4, 0.009	0.2	2 <0.5	2 8.3	2 <1.0	2 <1.0	0.6	2 <1.0	2 <0.4
Sucker n velue	4 0.54	6 0.14		10 0.001	10 0.050	0.054	9 0.2	9 <0.5	9.11	6/1.0	\$ <1.0	9.0 3.	9 <1.0	% 4.0>
LOTHROF ROAD Carp m		2.32		4 0.004	<0.050	4 0.179	4 0.2	4	4 · 9	0.1>	, :	. . .	* < 1.0	* 0.
Crappie a value		0.213		1 < 0.001	1 <0.050	1 0.020								
Rock Bass n value		9.012	ı	0.001	0.050	6 0.011								

Contaminant Concentrations (mg/kg) in Fish Samples from the Cass River, 1984-1985 (MDNR, unpublished data) Table 45

Species Year A-1254 A-1260 Diagration Carp in value 1984 9 1.25<			Parameter	er		
1984 9 11.25 th Bass 1984 17 0.75 atfish 1985	A-1254		Dieldrin	Toxaphene	DDD, DDE DDT	H.
th Bass 1984 17 0.75 0.75 4 6.06 atfish 1985			90.008		9	
1984 4 0.06 1985	-		17 0.001		17 0.023	
1985	1984	4 0.06	4 0.001	4 0.050	0.019	2.0.4
n 4 value 0.72			4 0.010	0.050		4 0.2

Table 46

Contaminant Concentrations in Fish Samples from the Tittabawassee River, at Smith's Crossing, 1984-1985

(MDNR, unpublished data; see Figure 13b)

Species	Year	2,3,7,8- TCDD (ng/kg) (Dow)	2,3,7,8- TCDD (ng/kg) (FDA)	PCB A-1254 (mg/kg)	Dieldrin (mg/kg)	Total Chlordane (mg/kg)	Toxaphene (mg/kg)	DDD, DDE DDT (mg/kg)
Carp .n value	1984			9 2.66	8 0.01		9	9 2.66
Walleye n value	1984			9 0.37	9		9	9.077
Crappie n value	1985	3. 9.	1.5.4	3 ⁸ 0.13	3* 0.002	1.8 0.019	3ª 0.023	3# 0.088
Northern Pike n value	1985	3ª 9.5	1 ⁸ 16.5	3 ⁸ 0.382	3 ^a 0.003	1 ⁸ 0.055	3 ⁸ 0.068	3 ^a 0.386
Smallmouth Bass n value	1985	3.00	1 8.00	3 0.045	3	1 0.010	3 0.042	3 0.048
Walleye n value	1985	14 4.0	2.7	14 0.683	14 0.002	4 0.041	14 0.101	14 0.163
White Bass n value	1985	4 ^b 8.2	1 ^a 15.9	4 ^b 1.330	4 ^b 0.014	1 ^a 0.074	4 ^b 0.089	4 ^b 0.324

 $^{^{\}rm a_{\rm i}}n^{\rm i}$ is the number of composit samples of three fish each. $^{\rm b}$ Three composites of three fish each and one composite of four fish.

Table 47

Contaminant Concentrations (mg/kg) in Fish Samples from the Chippewa River, 1984-1985

(MDNR, unpublished data)

						Parameter	eter						-
Species	PC A-1254	,B A-1260	PCB Toxa- DDD, DDE A-1254 A-1260 Dieldrin phene DDT	Toxa- phene	DDD, DDE DDT	89 #	As	u2	Pb	Ŧ	n O	Cr	3
Crappie 1984 n value	5 0.064		5 0.001		5 0.296								
Sucker 1984 n value	8 0.090		8 0.002		8 0.534								
Carp 1985 n value		8 0.126	0.002	8 0.050	8 0.240	9.0	8 0.5	8 14.4	1.1	1.8	13.2	1.0	8 0.4

Contaminant Concentrations (mg/kg) in Fish Samples from the Pine River, 1984-1985 (MDNR, unpublished data) Table 48

				Parameter	er					
Species Year	Dieldrin	'DDD, DDE DDT	H8	As	u2	Pb	N	ng	Cr	PO
Smallmouth Bass 1984 n value	2 0.002	2 4.391								
Sucker 1984 n value	4 0.001	4 2.229								
Carp 1985 n value	10	10	10 0.2	10 <0.5	10	10	10	10 10 10 10 1.0 1.8 <0.1 <0.4	10 <0.1	10 < 0.4

Contaminant Concentrations (mg/kg) in Fish Samples from the Saginaw River, 1986 (MDNR, unpublished data) Table 49

Species A-1254 Dieldrin phene DDT Hg Pb NI Cu Cr Carp n value 2 15.2 12.74b 2 0.028 2 1.77 2 1.57 2 2 1.55 2 2 1.55 2 1.55 2 1.55 2 2 2 2 2 2 3 <th></th> <th></th> <th></th> <th></th> <th></th> <th>Parameter</th> <th>iter</th> <th></th> <th></th> <th></th> <th></th>						Parameter	iter				
ue 15.2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2	Species	PCB A-1254	Dieldrin	Toxa- phene	DDE, DDD DDT	# 80	Pb	ŊĮ	ηე	Cr	PO
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Carp n value	2 15.2	2 0.04	2.1.4	2 1.5	2 ND*	1 0.11*	2 ND*	2 1.5*	2 ND*	2 0.03
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	n value	5 12.74 ^b	5 0.10	5,177	5 1.5	5.04	5 ND**	5 ND**	5 0.36**	5 ND**	5 0.002
$\frac{3}{0.48^{b}}$ $\frac{3}{0.004}$ $\frac{3}{0.12}$ $\frac{3}{0.077}$ $\frac{3}{0.2}$ $\frac{3}{ND}^{b}$ $\frac{3}{ND}^{b}$ $\frac{3}{0.017^{b}}$	Walleye n value	2 4.05	2 0.028	2 0.053	2 0.605	2 ND ⁸	2 ND ^a	2 ND ³	2 ND ^a	2 0.6 ^a	2 ND ^a
	n value	3 0.48 ^b	3	3 0.12	3 0.077	9	3 ND ^b	3 ND ^b	3 0.017 ^b	3 0.17 ^b	S ND P

composited whole samples of five fish skin off fillet

a composited whole samples of three fish

b skin on fillet

Concentrations (ng/kg) of 2,3,7,8-Tetrachlorodibenzo-p-dioxin in Fish Samples from the Saginaw Bay Watershed (Devault 1984) Table 50

Saginav With Carp (Arthor Perch E 1/2) E 1/1 62 NA NA USERA 1978	Location	Species	Sample Type	# Samples/ # Fish per Sample	2,3,7,8- TCDD	Total TCDD	Total PCDD	Source	•
Carp Carb	Saginaw River		Ĺ	Ę	010	4	4		979
Yellow Perch E 1/1 1/2	Saginav Wkir	Carp	36	1/1	62	Y N	E 2		978
Carp Carb	WICKES FAIR	Carp Yellow Perch	d tri	1/2	25 ~11	N A	Y X		978
Channel Catfish E 1/1 105 NA NA USERA Channel Catfish E 1/1 52 NA NA USERA Channel Catfish E 1/1 58 NA NA USERA Channel Catfish E 1/1 30 NA NA USERA Carp Carp E 1/1 129 NA NA USERA Carp Carp E 1/0 301 NA NA MSU Carp Carp E 1/0 129 NA NA MSU Carp Carp E 1/0 126 NA NA MSU Carp Carp E 1/0 126 NA NA MSU Carp E 1/0 126 NA NA MSU Carp E 1/0 135 NA NA MSU MSU Carp E 1/0 126 NA NA MSU MSU Carp E 1/0 126 NA NA MSU	Wickes Park	Caro	ı tı	1/0	35	NA	AN		616
Channel Catfish E 1/1 52 NA NA USEPA Carp Channel Catfish E 1/1 30 NA NA USEPA Carp Carp Carp Carp Carp Carp Carp Carp	Blocks Marina	(a)	មេ	1/1	105	NA	NA		876
Carp Channel Cafish E 1/1 28 NA NA USEPA Carp Ver Carp Carp E 1/1 153 NA NA USEPA Verlow Perch E 1/1 153 NA NA USEPA Verlow Perch E 1/1 18 NA NA USEPA Carp E 1/0 288 NA NA MSU White Sucker E 1/0 129 NA NA MSU Carp E 1/0 135 NA NA MSU Msi Carp E 1/0 135 NA NA MSU Msi Carp E 1/0 135 NA NA MSU Msi Carp E 1/0 40 NA NA MSU Carp E 1/0 40 NA NA MSU Carp E 1/0 40 NA		Channel Catfish	ы	1/1	52	NA A	NA		876
Carp Carp Carp Carp Carp Carp Carp E 1/1 30 NA NA USEPA Vallow Perch Carp Carp Carp E 1/1 153 NA NA USEPA West Carp Carp Carp Carp E 1/1 28B NA NA MSU White Sucker E 1/0 129 NA NA MSU Carp Carp Carp Carp E 1/0 126 NA NA MSU White Sucker E 1/0 136 NA NA MSU Carp Carp E 1/0 322 NA NA MSU Redhorse Sucker E 1/0 <40 NA NA MSU Carp NA NA NA		Carp	ш	1/1	28	NA	NA N		876
Carp (Carp Carp (Carp Carp Carp Carp Carp (Carp Carp Carp Carp Carp Carp Carp Carp	Mouth	Channel Catfish	Ħ	1/1	30	NA	Ϋ́		876
Veliow Perch E 1/2 11 NA NA MA USEPA Carp Carp E 1/U 288 NA NA MSU MSU <th></th> <td>Carp</td> <td>E</td> <td>1/1</td> <td>153</td> <td>NA A</td> <td>V</td> <td></td> <td>876</td>		Carp	E	1/1	153	NA A	V		876
Carp E 1/U 288 NA NA MSU Carp E 1/U 301 NA NA MSU White Sucker E 1/U 129 NA NA MSU Carp Carp E 1/U 126 NA NA MSU Kream Carp E 1/U 135 NA NA MSU List Carp E 1/U 322 NA NA MSU Redhorse Sucker E 1/U Carp Redhorse Sucker E 1/U Redho		Yellow Perch	Œ	1/2	11	NA	Ν		876
wer Carp Carp Carp E 1/U 301 NA NA MSU Khite Sucker E 1/U 129 NA NA MSU Carp Carp E 1/U 126 NA NA MSU Kream Carp E 1/U 135 NA NA MSU Lream Carp E 1/U 322 NA NA MSU Milte Sucker E 1/U 322 NA NA MSU Carp E 1/U <40 NA NA MSU Redhorse Sucker E 1/U <40 NA NA MSU Carp E 1/U <40 NA NA MSU Redhorse Sucker E 1/U <40 NA NA MSU Redhorse Sucker E 1/U <40 NA NA MSU	Mouth	Carp	ш	1/0	288	Y.	N		616
Carp E 1/V 129 NA NA MSU Carp E 1/U 64 NA NA MSU Carp E 1/U 126 NA NA MSU Carp E 1/U 135 NA NA MSU MSU Carp E 1/U 322 NA NA MSU White Sucker E 1/U 85 NA NA MSU Carp E 1/U <410 NA NA MSU Redhorse Sucker E 1/U <40 NA NA MSU Carp E 1/U <40 NA NA MSU	Consumers Power	Carp	ш	1/0	301	NA A	NA		616
Larp White Sucker E 1/U 64 NA NA MSU Carp E 1/U 126 NA NA MSU tream Carp E 1/U 135 NA NA MSU tream Carp E 1/U 322 NA NA MSU uis Carp E 1/U 322 NA NA MSU white Sucker E 1/U 40 NA NA NA Redhorse Sucker E 1/U 40 NA NA MSU Carp E 1/U 40 NA NA MSU	Pant	Carp	Ē	1/6	129	NA	ΥN		676
Carp Carp E 1/U 126 NA NA MSU tream Carp E 1/U 135 NA NA MSU Muls Carp E 1/U 322 NA NA MSU Carp E 1/U 85 NA NA MSU Redhorse Sucker E 1/U <40 NA NA MSU Redhorse Sucker E 1/U <40 NA NA MSU Carp E 1/U <40 NA NA MSU Redhorse Sucker E 1/U <40 NA NA MSU			Ŀ	1/n	99	NA	¥2		676
Carp E 1/U 135 NA NA MSU Life Sucker E 1/U 322 NA NA MSU White Sucker E 1/U 322 NA NA MSU Carp E 1/U 450 NA NA NA MSU Redhorse Sucker E 1/U 40 NA NA NA MSU Redhorse Sucker E 1/U 40 NA NA MSU Carp E 1/U 40 NA NA MSU			ш	1/0	126	NA	N A		616
tream Carp E 1/U 322 NA NA MSU u1s Carp E 1/U 322 NA NA MSU White Sucker E 1/U 85 NA NA MSU Carp E 1/U <1/O		Carp	Œ	1/0	135	NA	V 2		616
tream Carp E 1/U 136 NA NA MSU uis Carp E 1/U 322 NA NA MSU White Sucker E 1/U 85 NA NA MSU Carp E 1/U <1/U <1/U <1/U NA NA MSU Redhorse Sucker E 1/U <40 NA NA MSU Carp E 1/U <40 NA NA MSU	3								
. Louis Carp . Louis Ana Man MSU . Louis Carp . Louis Ana Man MSU . Louis Carp . Louis Ana Man MSU . Louis Carp . Louis Ana MSU . Louis Ana MSU . Louis Ana MSU . Louis Carp . Louis Ana MSU . Louis	cnippewa Kiver 10 miles upstream	Carp	æ	1/0	136	V.	V.	MSU	616
Louis Carp White Sucker E 1/U 322 NA NA MSU Carp E 1/U 610 NA NA NSU uth Redhorse Sucker E 1/U <40 NA NA MSU carp E 1/U <40 NA NA MSU WSU Carp E 1/U <9 NA NA MSU	of Dow								
Louis Carp E 1/U 322 NA NA MSU White Sucker E 1/U 85 NA NA MSU Carp E 1/U <10 <40 NA NA MSU uth Redhorse Sucker E 1/U <40 NA NA MSU carp E 1/U <9 NA NA MSU	Pine River								
White Sucker E 1/U 85 NA NA MSU Carp E 1/U <10 NA NA USFDA uth Redhorse Sucker E 1/U <40 NA NA MSU Carp E 1/U <9 NA NA MSU	Below St. Louis	Carp	ш	1/0	322	NA	Y.		979
Carp E 1/U <10 NA NSFDA uth Redhorse Sucker E 1/U <40			ធា	1/0	85	٧٧	NA		676
uth Redhorse Sucker F. 1/U <40 NA MSU Carp E 1/U <9 NA NA MSU	Alma	Carp	ធា	1/0	<10	۷ ۷	¥ Z		983
uth Redhorse Sucker F. 1/U <40 NA NA MSU Carp E 1/U <9 NA NA MSU	Cass River								
E 1/U <9 NA NA MSU	Frankenmuth	Redhorse Sucker	Œ	1/0	07>	NA	NA A		979
		Carp	Œ	1/1	6 >	۷Ą	NA		676

(Sheet 1 of 4)

Location	Species	Sample Type	# Samples/ # Fish per Sample	2,3,7,8- TCDD	Total TCDD	Total PCDD	Source
Flint River		(z	1/1	V 100	¥ Z	W	MSU 1979
Below Films		j tr	8/1	01>	AN	NA	USFDA 1983
Holloway Reservoir	White Sucker) FI	1/0	< 24	V N	NA	MSU 1979
Shiawassee River Cheasaning	Carp	េ	1/8	<10	NA V	NA	USFDA 1983
Tittabawasse River	· ·	ប	11/11	287	¥ Z	ĄX	MSU 1979
5 Miles Upstream	White Sucker	ī (z	2/1	20	N.	NA.	MSU 1979
of Dow	CAIP	1 tr	1/0	<63	Y.	NA	MSU 1979
	••	1 L	1/1	52	NA	NA	USEPA 1978
iltabawassee nu.	valles Derch) (z	1/1	20	V N	NA	USEPA 1978
	Corp.) (r.	1/1	93	NA	NA	USEPA 1978
Description Da) E	1/1	32	NA	NA NA	
rectand no.	Vellow Perch	1	1/1	10	NA AN	ΥN	
		l (e)	1/0	99	NA	NA	MSU 1979
Part Control Da	Calp Channel Carfish	j kr	1/1	273	NA	NA V	USEPA 1978
Selfi s crossing va	Corp.	i pri	17	695	AN	NA	USEPA 1978
) (±	1/1	67	٧Z	NA	USEPA 1978
	בו כפר	j te	1/1	64	NA	NA	USEPA 1978
	7. 1. S.	בל (1/1	∞	Y.V	NA	USEPA 1978
	Sicher) (±	1/1	21	Y.	NA	USEPA 1978
	SUCKEL K.11 Beach) (c	1/2	20	NA	ΥN	USEPA 1978
state street	3	3 6		93	Y.	¥Z	USEPA 1978
4	Carp Channel Carfelsh	1 12	::	42	¥.	AN	USEPA 1978
Above Dow Dam	בר הפר בר הפר) (s	1/1	; >	AN A	N.	USEPA 1978
	carp	3 6	1/1) (Y Z	NA.	USEPA 1978
	Carp	ı Lı	1/1) & &	Y.	NA N	
	Channel Catitsh	ı) (±		70	¥ Z	٧X	USEPA 1978
	INTEL MOTTEL	1					
			(Continued)			s)	(Sheet 2 of 4)

Location		Sample	# Fish Per	2,3,7,8-	Total	Total	
	Species	Type	Sample	TCDD	TCDD	PCDD	Source
Dublin Rd	Carn	i in	1/1	\$	ΑN	NA	USEPA 1978
Reloca Dou	7 L	3	1/3-2	, AN	81	233	USFWS 1979
	7 m	_E	1/0	17	ΥN	NA	MSU 1979
	Caro	inj	1/1	39	NA A	NA	
	Carp	isi	1/0	83	NA	NA	MSII 1979
	Carp	ш	1/0	*2	NA VA	NA	
Saetnaw Bay							
Sebewatno	Yellow Perch	ы	1/1	<16	NA	NA	MSU 1979
An Gres	_	ш	1/1	<15	NA	N.	MSU 1979
Sand Point		Œ	1/0	~1	NA	N.	
	Carp	ш	1/8	<10	NA	NA	WFDA 1983
Near Saginaw River	Carp	ţzi	1/0	43	NA	V V	MSII 1979
Saginav	Carp	Ħ	1/1	173	NA.	V.	
Saginav	Carp	E	1/0	28	NA	V.	MSU 1979
Saginaw	Carp	ш	1/0	< 50	Y.	NA	
itry	Carp	3	1/1	NA NA	76	385	
Gr1d 1509*	Yellow Perch	ш	1/24	~10	٧	V V	
Grid 1507	_	ш	1/24	<10	ΥN	NA	
	Bowf in	ш	1/1	< 10	NA	NA	
	Walleye	ш	1/1	<1 0	NA	NA	USFDA 1984
Gr1d 1509		Ħ	1/24	01 >	NA	NA	
	Yellow Perch	ш	1/5	V 10	NA	NA	
	Whitefish	យ	1/1	< 10	NA	NA	
	Buffalo	Œ	1/1	V 10	NA	NA	
Grid 1506	Sucker	Œ	1/12	01 >	NA	Ν	
	Sucker	Ħ	1/13	01>	٧N	Y X	
	Catfish	E	1/1	<10	NA	NA	USFDA 1978
_	Catfish	Œ	1/14	14/15	ΝA	NA	
-	Carp	ய	1/2	~ 1 0	Ϋ́	NA	USFDA 1980
Gr1d 1506	Carp	ப	1/2	<10	ΥN	NA	
_	Sucker	ш	1/10	<10	ΝΑ	NA	USFDA 1978
	Carp	ய	1/7	< 10	NA	Ϋ́	USFDA 1978

(Sheet 3 of 4)

1979 1979 1979 1979 1979 1978 1978 1979 1979 1979 1979 1979 1979 1979 1980 1980

Edible Portion Not Analyzed Not Dected Whole Fish Unknown Z Z D W 3

Table 51

Concentrations (ng/kg) of TCDD in Commercial Fish Samples
from Saginaw Bay, 1979-1982 (Firestone and Nieman 1986)

Year	Species	Number of Samples	2,3,7,8- TCDD
1979	Sucker	9	ND
	Perch	8	ND
	Bullhead	2	ND
	Whitefish	1	ND
	Carp	6	ND
	Carp	1	21
	Carp	1	57
	Catfish	21	ND.
	Catfish	1	60
	Catfish	1	19
	Catfish	1	52
	Catfish	1	43
	Catfish	l	34
1980	Carp	1	ND
	Carp	1	35
	Catfish	1	18
	Catfish	1	18
1981	Perch	1	ND
	Carp	1	ND
	Carp	1	28
	Carp	1	37
	Catfish	1	28
	Catfish	1	44
	Catfish	1	50
	Catfish	1	57
1982	Sucker	1	ND
	Walleye	1	ND
	Whitefish	1	14
	Whitefish	1	20
	Carp	3	ND
	Carp	1	15
	Carp	1	16
	Carp	1	18
	Carp	1	20
	Carp	1	30
	Catfish	4	ND
•	Catfish	1	7
	Catfish	1	13

ND = Not quantified or confirmed; if 2,3,7,8-TCDD is present, it is present at a level below 10 ng/kg.

Values are corrected for reagent blank (ca 3 ng/kg and recovery).

Table 52

Contaminant Concentrations (mg/kg) in Carp, Catfish and Walleye Samples from Saginaw Bay, 1982-1986 (MDA and FDA, unpublished data)

			arameter	meter		
Species	Year	Locationa	PCB	DDT	Dieldrin	Chlordane
Carp	1984	Unknown	_			2.4
		n value	24 2.52	24 0.76	24 0.03	24 0.17
		1506				
		n val ue	1 1.25			
		1507				
		n value	1 1.18			
		1509				
		n value	1 ND			
		1607				
		n v alue	1 6.78			
		1608				
		n value	2 4.03			
	1985	1509			•	0
		n value	9 1.92		9 0.01	9 0.01
		1607	9 ^b	•		
		n value	1.28	9 0.26		
		Bayport	4 ^c			
		n value	1.56			
Carp	1986	1506			,	,
		n value	4 0.22	4 0.10	4 ND	4 0.04

(Continued)

(Sheet 1 of 3)

Table 52. (Continued)

				P	arameter	
Species	Year	Locationa	PCB	DDT	Dieldrin	Chlordane
		Unknown				
		n	3			
		value	2.97			
Catfish	1982	Bayport				
		n	2			
		vaiue	1.84			
	1984	1507				
		n	6		4	
		value	3.42		0.02	
		1509				
		n	4		1	
		value	3.00		0.04	
		1608				
		n	1			
		value	2.09			
		Unknown				
		n	6	6	6	6
		value	1.55	0.36	0.05	0.08
	1985	1506				
		n	4			
		value	0.32			
		1509	h			
		n	9 ^b			
		value	1.92			
Catfish	1985	1607				
		n	9	9	9	
		value	1.70	0.28	0.03	
		Unknown				
		n	6			
		value	2.76			
		Bayport				
		n . 1	9			
		value	1.92			

Table 52. (Concluded)

		Parameter				
Year	Locationa	PCB	DDT	Dieldrin	Chlordane	
1986	1506					
	n	4	4	4	4	
	value	0.32	0.16	0.01	0.09	
	1609					
	π	1	1	1		
	value	7.30	0.99	0.03		
	Unknowa					
	n	6				
	value	2.76				
	Caseville					
	n	10	10	10	10	
	value	1.61	0.28	0.02	0.03	
1986	Caseville					
	n	10	10	10	10	
	value	0.67	0.11	0.01	0.02	
	Year 1986	1986 1506 n value 1609 n value Unknown n value Caseville n value 1986 Caseville n	1986 1506 n 4 value 0.32 1609 n 1 value 7.30 Unknown n 6 value 2.76 Caseville n 10 value 1.61 1986 Caseville n 10	Year Location PCB DDT 1986	Year Location PCB DDT Dieldrin 1986	

^aGrid location

 $^{^{\}mathrm{b}}\mathrm{Composited}$ skin-off fillets

^CComposited samples of 6,6,5 and 2 fish ND = Not detected

Table 53

Coho Salmon Collection Data - 1984 (DeVault et al. 1988)

Each sample represents a five-fish (skin on fillet) composite.

			Each sample represents	a five-fish iskin on fille	t) composite.
Collection Site and Date	Sample #	Age	Mean Weight (Range) kg	Mean Length (Range) mm	% Lipid
Lake Superior					
Sioux River	1	3	1.13 (0.54-1.65)	508 (381-566)	4.7
	2	3	1.83 (1.75-1.97)	583 - (577 - 594)	4.4
	3	3	2.15 (1.89-2.98)	622 (607-666)	3.4
Lake Huron					
Tawas River	1	3	2.50 (2.20-2.90)	635 (612-658)	3.0
	2	3	3.15 (2.96-3.42)	663 (658-668)	3.4
	3	3	3.51 (2.20-2.90)	680 (671-711)	2.8
Lake Michigan	_				
Kellogg Creek	1	2-3	1.46 (0.70-1.10)	430 (420-455)	2.2
	2	2-3	1.71 (0.95-2.30)	548 (460-620)	1.6
	3	3	2.38 (2.20-2.60)	657 (630–685)	1.3
St. Joseph River	1	3	2.35 (0.52-3.34)	580 (368-683)	2.5
Thompson Creek	1	3	1.88 (1.50-2.08)	582 (569-589)	1.5
Thompson Citek	2	3	2.23 (1.82-2.46)	625 (605-640)	1.5
	3	3	2.60 (2.34-2.78)	653 (640-678)	1.7
Platte River	1	3	2.46 (2.12-2.86)	620 (597-633)	1.6
	2	3	2.46 (2.26-2.58)	642 (640-678)	2.1
	3	3	2.82 (2.17-3.16)	660 (643-691)	2.2
Manistique River	1	3	5.54 (1.58-9.50)	711 (533-997)	0.8
Grand River	1	3	2.26 (2.10-2.46)	592 (572-610)	1.5
	2	3	2.26 (2.40-2.97)	632 (622-635)	1.8
	3	3	2.94 (2.58-3.42)	665 (648-699)	1.9
Trail Creek	1	3	2.19 (1.85-2.64)	595 (564-645)	1.2
	2	3	2.28 (2.04-3.01)	622 (615-660)	1.6
	3	3	2.65 (2.13-2.90)	655 (589-683)	1.2
Sheboygan River	1	3	2.43 (2.05-2.90)	620 (584-660)	1.5
	2	3	2.28 (2.09-2.48)	589 (559-610)	1.2
	3	3	2.78 (2.40-3.11)	625 (610-635)	1.9
Lake Erie					
Trout run	1	3	1.86 (1.59-2.04)	584 (580-610)	1.6
	2	3	2.23 (2.07-2.44)	611 (590-645)	0.8
	3	3	2.63 (2.30–3.00)	645 (620–670)	0.8
Chagrin River	1	3	1.42 (0.88-1.71)	512 (452-546)	3.0
	2	3	1.80 (1.38-2.25)	563 (550-552)	1.7
	3	3	2.55 (1.92-2.87)	623 (609-635)	2.9
Huron River	1	3	1.98 (1.6 -2.6)	590 (541-612)	0.6
	2 3	3 3	2.90 (2.6 -3.8) 3.30 (3.0 -4.2)	638 (612-658) 685 (666-730)	1.4 2.0
	J	,	J.JU (J.U -4.2)	(061-000) 600	2.0
Lake Ontario Salmon River	1	•	2 00 /2 40 4 41	716 (710 777)	1.5
Samon WACI	1 2	3 3	3.98 (3.40-4.61) 4.18 (3.86-5.02)	715 (710-722) 737 (725-748)	1.5
	3	3	4.18 (3.86-3.02)	764 (740-775)	1.7

Table 54

Contaminant Concentrations (ug/g) in Great Lakes Fall Run Coho

Salmon Fillets - 1984 (DeVault et al. 1988)

	La	ke Superi	or		Lake Huro	n	Lake Michigan						
		ioux Rive			Tawas Rive		Ke	ilogg Creek		Si Joseph River		Thompson Creek	
Contaminant		··· ·								i			
Aroclor 1242	ND	ND	ND	ND	ND	ND	ND	ND	ND	. ND	ND	ND	ND
Aroclor 1248	ND	ND	ND	< .1	< .i	< .1	< .1	< .1 <	< 1	< 1	< 1	<	< !
Aroclor 1254	< .1	< .1	< .1	.22	.27	.23	.13	.18	.45	34	1 .1	34	40
Aroclor 1260	< .1	< .1	< .1	< .1	< .1	< .1	< .1	< .1 <	< .1	< .1	< i	< 1	<
Total	.1	.i	.1	.32	.37	.33	.23	.28	.60	.44	.15	.44	.50
p.p' DDE	.02	.02	.03	.11	.13	.10	.03	.10	.28	.19	.05	.20	.28
p.p' DDD	< .005	< .005	< .005		< .005		.005		< .005	< .005	< 005	< .005	< 005
p,p' DDT	< .005	< .005	< .005		.02	.02	.01	< .005	.02	.01	< .005	.01	.02
Total p.p' DDT	.025	.025	.025	.1325	.1525	.1225	.0425	.105	.3025	.2025	.055	.2125	.3025
Toxaphene	< .25	< .25	< .25	< .25	< .25	< .25	< .25	< .25	< .25	< .25	< .25	< .25	< .25
Hexachlorobenzene	 ≢< .05	< .05	< .05	< .05	< .05	< .05	< .05	< .05	< 05	< .05	< .05	< 05	< .05
Dacthal	< .05	< .05	< .05	ND	ND	ND	< .05	< .05 <	< .05	< .05	< .05	< 05	< .05
Dieldrin	.01	.01	.01	.02	.02	.01	.01	.01	.01	.02	.01	.01	01
Endrin	< .005	< .005	< .005	< .005	< .005	< .005	< .005	< .005 <	< .005	< .005	< .005	< .005	< 005
A-BHC	< .05	< .05	< .05	< .05	< .05	< .05	< .05	< .05	< .05	< .05	ND	ND	ND
G-BHC (Lindane)	ND	ND	ND	< .05	< .05	< .05	< .05	< .05	< .05	ND	ND	ND	ND
Pentachlorophenyl	< .05	< .05	< .05	< .05	< .05	< .05	< .05	< .05	< .05	< .05	ND	ND	ND
methylether				ŀ							İ		
Trans nonachlor	.01	.01	.01	.02	.02	.01	.01	.01	.03	.03	< .005	.02	.02
Trans chlordane	< .005	< .005	< .005	< .005	< .005	< .005	< .005	< .005	.01	< .005	< 005	< 00°	01
Cis chlordane	< .005	< .005	< .005	.01	.01	.01	.01	.01	.01	.01	< .005	< .005	.01
Cis nonachlor	< .005	< .005	< .005	.01	.01	.01	< .005	< .005	.02	.01	< .005	< .005	.01
Octachlor epoxide	< .005	.01	.01	< .005	< .005	< .005	< .005	< .005	.01	< .005	< .005	.01	.01
Total chiordane	0.02	0.03	0.03	0.045	0.05	0.035	0.03	0.03	0.08	0.055	0.0125	0.04	0.06
Heptachlor- epoxide	< .005	< .005	< .005	< .005	< .005	< .005	< .005	< .005	< .005	< .005	< .005	< .005	< .005
Mirex	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ιΝΑ	NA	NA
8-Monohydro Total mirex	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table 55

PCBs and DDT in Saginaw Bay White Suckers (Kononen 1989)

Sampling					
Period	Sex	Length (cm)	Weight (g)	PCBs (ppm)	(mqq) TOO2
FALL	I	27.5	200	0.03	<0.001
	I	32.3	550	0.08	0.001
	M	32.0	400	0.08	0.010
	M	36.3	535	0.01	0.003
	M	40.5	740	0.03	0.010
	M	41.5	660	0.02	0.017
	F	45.8	1145	0.18	0.010
	F F F	47.9	1220	0.04	0.043
	F	49.7	1150	0.05	0.007
	F	50.5	1115	0.05	0.020
SPRING	ī	38.6	580	0.01	0.005
	I I	39.6	590	0.06	0.002
	M	31.5	355	0.03	0.016
	M	33.4	350	0.03	0.004
	M	36.8	560	0.04	0.003
	M	40.9	755	0.03	0.033
	M	41.7	830	0.05	0.015
	M	45.2	985	0.03	0.044
	M	45.8	960	0.02	0.007
	M	46.5	940	0.03	0.040
	F	41.9	625	0.01	0.014
	F	44.0	925	0.05	0.012
		44.1	1075	0.05	0.007
	F F	45.7	1100	0.17	0.030
	F	49.6	1225	0.01	0.010

Table 56
Results of Tier 7 Fish Great Lakes Region (Kuehl 1989)

EPA Peş on	State	Watershed	Location	Type of Fish	Cut of	Value (mat)
					Scmole	23/3
0	<u> </u>					
	HY	Lake Ontario	Olcott	Predatar	Who i e	18 0 (1 4)
				Predator	Fillet	13 0 (1 0)
	NY	Lake Ontario	Rochester Embayment	Predator	Whole	13 0 (0 6)
	NY	Lake Ontaria	Wilson	Predator	Fillet	9 0 (0 9)
	ОН	Late Erie	Black River	Bottom feeder	Whole	2.4 (1 0)
	¥1	Laka Erie	Detroit River	Battom feeder	Whole	14 0 (0.8)
	MI	Lake Huron	Rackport	Predator	Fillet	50(11)
	WI	Lake Huran	Saginaw Bay	Battom feeder	Whole	18 0 (0 5)
				Battam feeder	fillet	13 2 (0 4)
				Predator	Whole	6 8 (0.1)
				Predator	Fillet	0 7 (0 2)
	Wi	Lake Wichigan	Sangatuck	Predatar	Filtet	4 0 (1 4)
	MI	lake Ontaria	Oswego	Predator	Fillet	41 0 (1 1)
	¥1	Lake St. Clair	Wichigan	Predator	Fillet	5 8 (0 9
	¥1	Lake Michigan	Menomines River	Bottom feeder	Whale	73(07
				Predator	Whole	1 4 (0 1
	¥1	Lake Michigan	Ocomto River	Bottom feeder	Who I e	3 6 (0 5
				Predator	Whole	MD (1 5
				Predator	fillet	MD (0 2
	WI	Lake Michigan	Pestigo River	Bottom feeder	Whole	8 5 (0 6
				Predator	Who I e	1 5 (0 3
				Predator	Fillet	HO (0 2
	WI	Lake Superior	Ashland	Battom feeder	Whole	4 8 (0 4
	WI	Menominee River Harbor	Marinette	Bottom feeder	Fillet	8 0 (3 1
	wt	Superior Horbor	Superior	Bottom feeder	Filler	5 2 (0 2
				Predator	Whole	5 2 (0
				Predator	Fillet	HD (1
Non-Contomic	nated Sites (not detected)				
	NY	take Ontario	Cape Vincent	Battam feeder	Whole	NO (1
	PA	Lake Erie	[rie	Settom feeder	Whole	MD {1
	WI	Lake Superior	Apostle Island	Predator	Fillet	MO {3
	WI	Lake Michigan	Manistique River	B: Stom feeder	Whole	#0 (0
	OH	Lete Erie	Bass Island	Predator	Whole	NO (1
	Он	Lake Erie	Maumes River	Bottom feeder	Whale	#D (.

Table 57

Benthic Macroinvertebrate Taxa Collected from the Saginaw Bay Navigation

Approach Channel to the Saginaw River, July 1983 (USACE, 1984)

Taxon	Family	Species		
Nematoda				
Oligochaeta	Tubificidae	Ilyodrilus templentoni Isochaetides freyi Limnodrilus cervix Limnodrilus hoffmeisteri Limnodrilus maumeensis		
Diptera	Chironomidae	Chironomus sp. Cryptochironomus sp. Paracladopelma sp. Procladius sp. Psectrotanypus sp. Tanytarsus sp.		
	Ceratopogonidae			
Cladocera	Leptodoridae	Leptodora kindti		
Coleoptera	Elmidae	Dubiraphia sp.		
Pelecypoda	Sphaeriidae	Pisidium sp.		

Table 58

Benthic Macroinvertebrates Collected in the Saginaw Bay Navigational Approach

Channel and Their Pollution Tolerance Classification

(USACE 1984; see Figure 6)

Station	Taxa	Common Name	Count	Pollution Tolerance
SB-1	Tanytarsus sp.	midge	1	tolerant
	Procladius sp.	midge	6	tolerant
	Chironomus sp.	midge	3	tolerant
	Ceratopogonidae	biting midge	1	tolerant
	Limnodrilus hoffmeisteri	worm	13	tolerant
	Limnodrilus cervix	worm	2 0	tolerant
	Limnodrilus maumeensis	worm	7	tolerant
	Ilyodrilus templetoni	WOTE	5	tolerant
	Immat. Tubificidae w/o cap. chaetae	worm	34	tolerant
SB-2	Chironomus sp.	midge	9	tolerant
	Limnodrilus hoffmeisteri	worm	4	tolerant
	Limnodrilus cervix	WOITE	3	tolerant
	Immat. Tubificidae w/o cap. chaetae	worm	14	tolerant
	Immat. Tubificidae w/ cap. chaetae	WOTT	4	tolerant
SB-3	Procladius sp.	midge	8	tolerant
	Chironomus sp.	midge	12	tolerant
	Limnodrilus hoffmeisteri	worm	7	tolerant
	Limnodrilus cervix	WOLE	2	tolerant
	Limnodrilus maumeensis	worm	1	tolerant
	Immat. Tubificidae w/o cap. chaetae	WOLE	11	tolerant
SB-4	Leptodora kindti	water flea	1	tolerant
	Chironomus sp.	midge	26	tolerant
	Procladius sp.	midge	10	tolerant
	Limnodrilus udekemianus	WOLE	1	tolerant
	Limnodrilus hoffmeisteri	WOTM	10	tolerant
	Limnodrilus cervix	worm	2	tolerant
	Limnodrilus maumeensis	WOITE	2	tolerant
	Immat. Tubificidae w/o cap. chaetae	WOLD	9	tolerant
SB-5	Nematoda	roundworm	1	tolerant
	Dubiraphia	riffle beetle		tolerant
	Chironomus sp.	midge	79	tolerant
	Procledius sp.	midge	2	tolerant
	Limnodrilus hoffmeisteri	WOTE	2	tolerant
	Limnodrilus cervix	WOLE	7	tolerant
	Limnodrilus maumeensis	WOITE	1	tolerant
	Immat. Tubificidae w/o cap. chaetae	MOLE	4	tolerant

Table 58. (Continued)

Station	Taxa	Common Name	Count	Pollution Tolerance
SB-6	Nematoda	roundworm	2	tolerant
	Leptodora kindti	water flea	2	tolerant
	Paracladopelma sp.	midge	2	tolerant
	Cryptochironomus sp.	midge	1	tolerant
	Chironomus sp.	midge	24	tolerant
	Procladius sp.	midge	1	tolerant
	Tanytarsus sp.	midge	1	tolerant
	Limnodrilus hoffmeisteri	WOLM	4	tolerant
	Isochaetides freyi	worm	3	tolerant
	Limnodrilus cervix	WOLE	7	tolerant
	Limnodrilus udekemianus	WOLE	1	tolerant
	Ilyodrilus templetoni	WOLM	1	tolerant
	Immat. Tubificidae w/o cap. chaetae	worm	22	tolerant
SB-7	Chironomus sp.	midge	53	tolerant
	Limnodrilus hoffmeisteri	WOIM	4	tolerant
	Limnodrilus maumeensis	AOLD	15	tolerant
	Limnodrilus cervix	WOIM	13	tolerant
	Immat. Tubificidae w/o cap. chaetae	AOLD	66	tolerant
	Immat. Tubificidae w/ cap. chaetae	Worm	1	tolerant
SB-8	Chironomus sp.	midge	55	tolerant
	Procladius sp.	midge	1	tolerant
	Limnodrilus hoffmeisteri	WOLE	3	tolerant
	Limnodrilus maumeensis	worm	5	tolerant
	Limnodrilus cervix	WOITE	6	tolerant
	Immat. Tubificidae w/o cap. chaetae	WOTE	65	tolerant
	Immat. Tubificidae w/ cap. chaetae	worm	1	tolerant
SB-9	Nematoda	roundworm	2	tolerant
	Leptodora kindti	water flea	1	tolerant
	Chironomus sp.	midge	63	tolerant
	Limnodrilus hoffmeisteri	WOTE	7	tolerant
	Limnodrilus cervix	worm	7	tolerant
	Limnodrilus maumeensis	WOTH	7	tolerant
	Ilyodrilus templetoni	WOITE	2	tolerant
	Immat. Tubificidae w/o cap. chaetae	WOTT	98	tolerant
	Immat. Tubificidae w/ cap. chaetae	WOTE	10	tolerant
SB-10	Nematoda	roundworm	3	tolerant
	Pisidium sp.	pill clam	2	tolerant
	Chironomus sp.	midge	108	tolerant
	Limnodrilus hoffmeisteri	WOTE-	4	tolerant
	Limnodrilus cervix	WOTA	10	tolerant
	Limnodrilus maumeensis	WOIR	5	tolerant
	Immat. Tubificidae w/o cap. chaetae	WOTE	161	tolerant
	Immat. Tubificidae w/ cap. chaetae	WOLE	30	tolerant

Table 58. (Concluded)

Station	Taxa	Common Name	Count	Pollution Tolerance
SB-11	Nematoda	roundworm	3	tolerant
	Leptodora kindti	water flea	ì	tolerant
	Chironomus sp.	midge	69	tolerant
	Limnodrilus hoffmeisteri	worm	3	tolerant
	Limnodrilus cervix	WOTTE	14	tolerant
	Limnodrilus maumeensis	WOTTE	7	tolerant
	Ilyodrilus templetoni	worm	1	tolerant
	Immat. Tubificidae w/o cap. chaetae	WOTT	58	tolerant
	Immat. Tubificidae w/ cap. chaetae	WOITE	9	tolerant

Table 59

Benthic Macroinvertebrate Taxa Collected from Saginaw Bay in 1956

(Brinkhurst 1967) and 1978 (White et al. unpublished)

Order	Ye	ar
Family Species	1956	197
Oligochaeta		
Tubificidae	v	
Aulodrilus americanus	X	
Aulodrilus limnobius	X	v
Aulodrilus piqueti	X	X
Aulodrilus pluriseta	X	X X
Ilyodrilus templentoni	X	
Isochaetides freyi	X	
Limnodrilus angustipenis	X	
Limnodrilus cervix	X	X
Limnodrilus claparedeianus	X	X
Limnodrilus hoffmeisteri	X	X
Limnodrilus maumeensis	X	X
Limnodrilus udekemianus	X	
Potamothrix bedot1		X
Potamothrix moldaviensis	X	X
Potamothrix vejdovski	X	X
Quistadrilus multisetosus longidentus	X	X
Quistadrilus multisetosus multisetosus	X	X
Spirosperma ferox	X	
Rhyacodrilus montana	X	
Tubifex tubifex	X	X
Naididae		
Amphichaeta leydigi		X
Arcteonais lomondi	X	х
Cheatogaster diaphanus		X
Cheatogaster setosus		X
Dero digitata	X	X
Nais communis		Х
Nais elinquis	X	
Nais simplex		х
Ophidonais serpentins	X	X
Paranais litoralis	X	
Piguetiella mighiganensis		X
Specaria josinae		x
Stylaria lacustris	X	
Uncinais uncinata	X	х
Vejdovskyella intermedia		х
Diptera		
Chironomidae	•	
Chironomus anthracinus		X
Chironomus plumosus semireductus		X
Cryptochironomus fulvus		X
		X
Procladius sp.		X
Psectrotanypus sp.		Х

Table 60

Benthic Macroinvertebrate Taxa Collected from the Saginaw River,

July 1983 (USACE 1984)

Taxon	Family	Species
Nematoda		
Oligochaeta	Tubificidae	Aulodrilus piqueti Ilyodrilus templentoni Limnodrilus cervix Limnodrilus hoffmeisteri Limnodrilus maumeensis Limnodrilus udekemianus Ouistadrilus multisetosus Spirosperma ferox
	Naidiae	Arcteonais lomondi Dero digitata
Diptera	Chironomidae	Chironomus sp. Cricotopus sp. Cryptochironomus sp. Glyptotendipes sp. Procladius sp.
	Chaoboridae	Chaoborus sp.
	Ceratopogonidae	
Cladocera	Leptodoridae	Leptodor kindti
Coleoptera	Elmidae	Dubiraphia sp.
Isopoda	Asellidae	Asellus sp.
Pelecypoda	Sphæeriidae	Sphaeridum sp.

Table 61

Benthic Macroinvertebrates Collected in the Saginaw River and Their

Pollution Tolerance Classification (USACE 1984; see

Figures 17a and 17b)

Station	Taxa	Common Name	Count	Pollution Tolerance
SR-1	Procladius sp.	midge	2	tolerant
	Dero digitata	WOLI	2	tolerant
	Limnodrilus hoffmeisteri	worm	8	tolerant
	Limnodrilus cervix	worm	6	tolerant
	Limnodrilus maumeensis	WOIM	6	tolerant
	Limrodrilus udekemianus	worm	1	tolerant
	Immat. Tubificidae w/o cap. chaetae	worm	30	tolerant
	Immat. Tubificidae w cap. chaetae	worm	3	tolerant
SR-2	Procladius sp.	midge	1	tolerant
	Dero digitata	WOITE	2	tolerant
	Quistadrilus multisetosus	worm	1	tolerant
	Limnodrilus maumeensis	WOTE	8	tolerant
	Limnodrilus hoffmeisteri	WOTT	6	tolerant
	Limnodrilus cervix	WOLE	16	tolerant
	Ilyodrilus templetoni	WOITE	4	tolerant
	Immat. Tubificidae w/o cap. chaetae	worm	17	tolerant
	Immat. Tubificidae w cap. chaetae	worm	1	tolerant
SR-3A	Limnodrilus hoffmeisteri	worm	3	tolerant
	Limncdrilus cervix	worm	6	tolerant
SR-3	Procladius sp.	midge	i	tolerant
	Cricotopus sp.	midge	1	tolerant
	Chaoborus sp.	phantom midge	1	tolerant
	Limnodrilus hoffmeisteri	WOID	12	tolerant
	Limnodrilus maumeensis	worm	9	tolerant
	Immat. Tubificidae w/o cap. chaetae	worm	7	tolerant
SR-4	Limnodrilus hoffmeisteri	worm	?	tolerant
	Limnodrilus cervix	worm	5	tolerant
	Limnodrilus maumeensis	MOLI	10	tolerant
	Immat. Tubificidae w/o cap. chaetae	WOLD	24	tolerant
	Immat. Tubificidae w cap. chaetae	WOLE	1	tolerant
SR-5	Cricotopus sp.	midge	1	tolerant
	Limnodrilus hoffmeisteri	worm	9	tolerant
	Limnodrilus cervix	WOLD	6	tolerant
	Limnodrilus maumeensis	WOTT	5	tolerant
	Ilyodrilus templetoni	worm	3	tolerant
	Immat. Tubificidae w/o cap. chaetae	WOLE	21	tolerant

Table 61. (Continued)

Station	Taxa	Common Name	Count	Pollution Tolerance
SR-6	Glyptotendipes sp.	midge	1	tolerant
	Limnodrilus hoffmeisteri	WOLD	2	tolerant
	Limnodrilus cervix	WOITE	5	tolerant
	Limnodrilus maumeensis	WOTE	1	tolerant
	Immat. Tubificidae w/o cap. chaetae	worm	8	tolerant
	Immat. Tubificidae w cap. chaetae	MOLE	1	tolerant
SR-7A	Limnodrilus hoffmeisteri	WOLE	3	tolerant
	Limnodrilus cervix	WOTE	7	tolerant
	Limnodrilus maumeensis	WOITE	13	tolerant
	Ilyodrilus templetoni	WOITE	2	tolerant
	Immat. Tubificidae w/o cap. chaetae	WOTE	37	tolerant
SR-7	Chaoborus sp.	phantom midge	2	tolerant
	Procladius sp.	midge	1	tolerant
	Quistadrilus multisetosus	WOITE	1	tolerant
	Limnodrilus hoffmeisteri	WOLM	4	tolerant
	Limnodrilus cervix	WOTT	3	tolerant
	Limnodrilus maumeensis	WOTE	2	tolerant
	Ilyodrilus templetoni	WOTE	1	tolerant
	Immat. Tubificidae w/o cap. chaetae	WOLE	15	tolerant
SR-8	Dero digitata	MOLE	1	tolerant
	Limnodrilus hoffmeisteri	WOITE	5	tolerant
	Limnodrilus cervix	WOLD	1	tolerant
	Limnodrilus maumeensis	WOITE	3	tolerant
	Immat. Tubificidae w/o cap. chaetae	WOTE	6	tolerant
SR-9	Limnodrilus hoffmeisteri	worm	1	tolerant
	Aulodrilus pigueti	WOLE	1	tolerant
	Immat. Tubificidae w/o cap. chaetae	WOITE	6	tolerant
SR-10	Procladius sp.	midge	1	tolerant
	Limnodrilus hoffmeisteri	WOID	2	tolerant
	Limnodrilus cervix	WOITE	3	tolerant
	Limnodrilus maumeensis	WOITE	2	tolerant
	Ilyodrilus templetoni	WOLE	1	tolerant
	Immat. Tubificidae w/o cap. chaetae	WOTM	11	tolerant
Sk-11	Procladius sp.	midge	4	tolerant
	Chironomus sp.	midge	1	tolerant
	Limnodrilus hoffmeisteri	WOTE	1	tolerant
	Limnodrilus cervix	WOTE	2	tolerant
	Limnodrilus maumeensis	WOLE	3	tolerant
	Immat. Tubificidae w/o cap. chaetae	worm	14	tolerant

Table 61. (Continued)

Station	Taxa	Common Name	Count	Pollution Tolerance
SR-12	Procladius sp.	midge	1	tolerant
· · · · ·	Limnodrilus hoffmeisteri	worm	4	tolerant
	Limnodrilus cervix	WOTE	3	tolerant
	Limnodrilus maumeensis	WOTT	8	tolerant
	Ilyodrilus templetoni	WOTE	1	tolerant
	Immat. Tubificidae w/p cap. chaetae	worm	15	tolerant
SR-13	Leptodora kindti	water flea	1	tolerant
	Ceratopogonidae	biting midge	3	tolerant
	Procladius sp.	midge	2	tolerant
	Limnodrilus hoffmeisteri	WOTT	3	tolerant
	Limnodrilus cervix	WOIM	4	toleraut
	Immat. ubificidae w/o cap. chaetae	worm	20	tolerant
SR-14	Procladius sp.	midge	4	tolerant
	Limnodrilus hoffmeisteri	WOIM	9	tolerant
	Limnodrilus cervix	worm	2	tolerant
	Limnodrilus maumeensis	worm	1	tolerant
	Ilyodrilus templetoni	worm	1	tolerant
	Immat. Tubificidae w/o cap. chaetse	WOTM	22	tolerant
SR-15	Sphaerium sp.	pill clam	1	tolerant
	<u>Leptodora</u> <u>kindti</u>	water flea	1	tolerant
	Ceratopogonidae	biting midge	1	tolerant
	Procladius sp.	midge	1	tolerant
	Limnodrilus hoffmeisteri	WOTT	11	tolerant
	Limnodrilus cervix	WOLD	17	tolerant
	Ilyodrilus templetoni	worm	1	tolerant
	Immat. Tubificidae w/p cap. chaetae	worm	35	tolerant
SR-16	Leptodora kindti	water flea	1	tolerant
	Procladius sp.	midge	1	tolerant
	Limnodrilus hoffmeisteri	WOITE	2	tolerant
	Limnodrilus cervix	MOLIM	9	tolerant
	Limnodrilus maumeensis Immat. Tubificidae w/o cap. chaetae	WOITE	2 42	tolerant tolerant
		#O1#	72	COIGIANC
SR-17	Asellus sp.	sow bug	1 6	tolerant tolerant
	<u>Procladius</u> sp. Dero digitata	midge	7	tolerant
	Limnodrilus hoffmeisteri	WOTE	2	tolerant
	Limnodrilus cervix	WOLE	3	tolerant
	Limmodrilus maumeensis	WOITE	4	tolerant
	Ilvodrilus templetoni	WOTE	3	tolerant
	Immat. Tubificidae w/o cap. chaetae	WOTE	29	tolerant
	Tumat. Tubificidae w cap. chaetae	WOID	2	tolerant

Table 61. (Continued)

Station	Taxa	Common Name	Count	Pollution Tolerance
SR-18	Ceratopogonidae	biting midge	1	tolerant
	Procladius sp.	midge	1	tolerant
	Cricotopusi sp.	midge	1	tolerant
	Limnodrilus hoffmeisteri	WOLTH	1	tolerant
	Limnodrilus cervix	worm	11	tolerant
	Limnodrilus maumeensis	WOITE	6	tolerant
	Limnodrilus udekemianus	WOITE	1	tolerant
	Ilyodrilus templetoni	worm	1	tolerant
	Immat. Tubificidae w/o cap. chaetae	worm	64	tolerant
	Immat. Tubificidae w/ cap. chaetae	worm	1	tolerant
SR-19	Asellus sp.	sow bug	2	tolerant
	Procladius sp.	midge	1	tolerant
	Limnodrilus hoffmeisteri	WOTTE	2	tolerant
	Limnodrilus cervix	WOTE	18	tolerant
	Limnodrilus maumeensis	WOTE	7	tolerant
	Limnodrilus udekemianus	worm	1	tolerant
	Ilyodrilus templetoni	WOITE	2	tolerant
	Immat. Tubificidae w/o cap. chaetae	WOLE	63	tolerant
	Immat. Tubificidae w/ cap. chaetae	WOTE	1	tolerant
SR-20	Procladius sp.	midge	4	tolerant
	Dero digitata	WOITE	2	tolerant
	Limnodrilus hoffmeisteri	WOLE	5	tolerant
	Limnodrilus cervix	WOLE	6	tolerant
	Immat. Tubificidae w/o cap. chaetae	WOTE	65	tolerant
	Immat. Tubificidae w/ cap. chaetae	WOTE	1	toleraut
SR-21	Limnodrilus cervix	worm	5	tolerant
	Immat. Tubificidae w/o cap. chaetae	WOIM	10	tolerant
	Immat. Tubificidae w/ cap. chaetae	worm	1	tolerant
SR-22	Leptodora kindti	water flea	1	tolerant
	Procladius sp.	midge	1	tolerant
	Limnodrilus hoffmeisteri	WOTE	4	tolerant
	Limnodrilus cervix	MOLT	13	tolerant
	Limnodrilus maumeensis	WOTE	1	tolerant
	Immat. Tubificidae w/o cap. chaetae	WOITE	21	tolerant
	Immat. Tubificidae w/ cap. chaetae	WOTE	1	tolerant
SR-23	Nematoda	roundworm	1	tolerant
	Procladius sp.	midge	3	tolerant
	Limnodrilus hoffmeisteri	WOLD	8	tolerant
	Limnodrilus cervix	WOITE	13	tolerant

Table 61. (Continued)

Station	Taxa	C <i>omm</i> on Nam e	Count	Pollution Tolerance
SR-23	Limnodrilus maumeensis	worm	15	tolerant
Cont.	Ilyodrilus templetoni	worm	1	tolerant
	Immat. Tubificidae w/o cap. chaetae	worm	48	tolerant
	Immat. Tubificidae w/ cap. chaetae	WOTE	4	tolerant
SR-24	Dero digitata	worm	1	tolerant
	Limnodrilus hoffmeisteri	worm	3	tolerant
	Limnodrilus cervix	WOTT	16	tolerant
	Limnodrilus maumeensis	worm	5	tolerant
	Ilyodrilus templetoni	worm	2	tolerant
	Immat. Tubificidae w/o cap. chaetae	WOLE	10	tolerant
	Immat. Tubificidae w/ cap. chaetae	worm	1	tolerant
SR-25	Ceratopogonidae	biting midge	1	tolerant
	Procladius sp.	midge	4	tolerant
	Dero digitata	worm	3	tolerant
	Quistadrilus multisetosus	WOLE	1	tolerant
	Limnodrilus hoffmeisteri	worm	9	tolerant
	Limnodrilus cervix	WORM	8	tolerant
	Limnodrilus maumeensis	WOTM	7	tolerant
	Ilyodrilus templetoni	WOIM	5	tolerant
	Immat. Tubificidae w/o cap. chaetae	WOID	33	tolerant
	Immat. Tubificidae w/ cap. chaetae	worm	1	tolerant
SR-26	Nematoda	roundworm	1	tolerant
	Procladius sp.	midge	l	tolerant
	Limnodrilus hoffmeisteri	WOID	8	tolerant
	Limnodrilus cervix	WOITE	7	tolerant
	Limnodrilus maumeensis	WOIM	5	tolerant
	Immat. Tubificidae w/o cap. chaetae	worm	21	tolerant
	Immat. Tubificidae w/ cap. chaetae	WOITE	1	tolerant
SR-27	Procladius sp.	midge	7	tolerant
	Limnodrilus hoffmeisteri	MOLE	11	tolerant
	Limnodrilus cervix	WOLD	12	tolerant
	Ilyodrilus templetoni	worm	1	tolerant
	Immat. Tubificidae w/o cap. chaetae	worm	30	tolerant
	Immat Tubificidae w/cap. chaetae	WOTT	4	tolerant
SR-28	Asellus sp.	sow bug	1	tolerant
	Dero digitata	worm	1	tolerant
	Limnodrilus hoffmeisteri	WOTE	10	tolerant
	Limnodrilus cervix	worm	45	tolerant
	Limnodrilus maumeensis	Worm	4	tolerant
	Ilyodrilus templetoni	WOITM	3	tolerant
	Immat. Tubificidae w/o cap. chaetae	WOLD	29	tolerant
	Immat. Tubificidae w/ cap. chaetae	WOITE	2	tolerant

Table 61. (Continued)

Station	Taxa	Common Name	Count	Pollution Tolerance
SR-29	Asellus sp.	sowbug	1	tolerant
	Procladius sp.	midge	2	toleranc
	Dero digitata	worm	1	tolerant
	Limnodrilus hoffmeisteri	WOLE	6	tolerant
	Limnodrilus cervix	WOITE	13	tolerant
	Limnodrilus maumeensis	worm	4	tolerant
	Immat. Tubificidae w/o cap. chaetae	wrom	68	tolerant
SR-30	Dubiraphia sp.	riffle beetle	2	tolerant
	Procladius sp.	midge	3	tolerant
	Dero digitata	WOLD	1	tolerant
	Limnodrilus hoffmeisteri	worm	12	tolerant
	Limnodrilus cervix	WOTE	21	tolerant
	Limnodrilus maumeensis	WOITE	3	tolerant
	Ilyodrilus templetoni	WOITE	9	tolerant
	Immat. Tubificidae w/o cap. chaetae	WOTE	32	tolerant
SR-31	Cryptochironomus sp.	midge	1	tolerant
	Procladius sp.	midge	1	tolerant
	Limnodrilus hoffmeisteri	worm	1	tolerant
	Limnodrilus cervix	Worm	8	tolerant
	Limnodrilus maumeensis	WOLE	6	tolerant
	Immat. Tubificidae w/o cap. chaetae	WOTE	16	tolerant
SR-32	Ceratopogonidae	biting midge	2	tolerant
	Procladius sp.	midge	2	tolerant
	Dero digitata	WOTE	4	tolerant
	Limnodrilus claparadianus	Worm	1	tolerant
	Limnodrilus cervix	WOLE	3	tolerant
	Limnodrilus maumeensis	WOLM	2	tolerant
	Limnodrilus hoffmeisteri	WOIM	4	tolerant
	Ilyodrilus templetoni	WOTM	2	tolerant
	Immat. Tubificidae w/o cap. chaetae Immat. Tubificidae w cap. chaetae	WOLE WOLE	5 1	tolerant tolerant
cn 22		!	,	1
SR-33	Hyalella azteca	scud	1	tolerant
	Procladius sp. Quistadrilus multisetosus	midge	3 2	tolerant
	Limnodrilus hoffmeisteri	worm	6	tolerant tolerant
	Limnodrilus dorimeisteri Limnodrilus cervix	worm	15	tolerant
	Limnodrilus maumeensis	WOTT	4	tolerant
	Ilyodrilus templetoni	WOTT	4	tolerant
	Immat. Tubificidae w/o cap. chaetae	WOLD	31	tolerant
	LIMITE I LUVILICIAE W/U Cap. Clidecae	WOITE	J.	COTETUISE

Table 61. (Concluded)

Station	Taxa	Common Name	Count	Pollution Tolerance
				
SR-34	Leptodora kindti	water flea	1	tolerant
	Ceratopogonidae	biting midge	2	tolerant
	Procladius sp.	midge	2	tolerant
	Chironomus sp.	midge	1	tolerant
	Spirosperma ferox	WOITE	1	tolerant
	Limnodrilus hoffmeisteri	WOIM	9	tolerant
	Limnodrilus cervix	WOLL	8	tolerant
	Limnodrilus maumeensis	WOITE	2	tolerant
	Ilyodrilus templetoni	worm	1	tolerant
	Immat. Tubificidae w/o cap. chaetae	WOID	27	tolerant
SR-35	Leptodora kindti	water flea	5	tolerant
	Procladius sp.	midge	8	tolerant
	Arcteonais lomondi	worm	1	tolerant
	Dero digitata	WOTE	1	tolerant
	Limnodrilus hoffmeisteri	worm	11	tolerant
	Limnodrilus cervix	worm	17	tolerant
	Linnodrilus udekemianus	WOTE	2	tolerant
	Ilvodrilus templetoni	WOTE	1	tolerant
	Immat. Tubificidae w/o ca, chaetae	WOITE	98	tolerant
	Immat. Tubificidae w/ cap. chaetae	worm	2	tolerant

Table 62a

Seasonal Phytoplankton Concentrations (mg/l dry weight) in Saginaw Bay

Segment 2, and Number of Annual Odor Days and Maximum Odor Value,

1974-1976 and 1980 (Dolan et al. 1986)

			·	Y	ear	·		
	197	4	197	5	19	76	198	0
Parameter	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall
Peak Total Algal	8.0	2.47	9.87	4.42	19.6	3.32	0.630	1.39
Peak Diatom	7.62	0.921	9.64	3.66	19.1	1.97	0.541	1.30
Peak Total Bluegreen	0.217	1.29	0.387	0.863	0.066	0.59	0.043	0.02
Percent Bluegreen During Bluegreen Peak	15.0	63.4	25.4	27.9	0.49	19.2	8.04	5.46
Ratio of Bluegreen Peak to Total Algal Peak (%)	2.71	52.2	3.93	19.5	0.34	17.7	6.82	1.94
Number of Annual Ode Days (Odor >3)	or 56		22		,	9		0

Table 62b

Abundance (Mean Number of Individuals/Liter) of Selected Rotifers and Mean

Surface Values of Selected Physiochemical Variables in Groups of

Stations Identified by Cluster Analysis, 1974 (Gannon 1981)

		Gro	ups	
Topic	I	II	III	10
Species				
Brachionus spp.*	140	20	<1	<1
Keratella cochlearis f. tecta*	170	13	1	<1
Conochiloides dossuarius	150	4	0	0
Filinia longiseta*	34	273	70	12
Pompholyx sulcata*	11	126	14	7
Polyartra vulgaris	294	528	132	51
Keratella cochlearis	193	154	102	51
Conochilus unicornis	<1	19	17	27
Kellicottia longispina	0	2	11	25
Notholca spp.**	0	0	<1	2
Total rotifers	1,144	1,972	626	312
Physicochemical Variables				
Secchi disc (m)	0.4	1.2	4.1	8.3
Temperature (°C)	23.5	23.3	20.7	19.0
Chlorophyll a (ug/1)	57.1	18.8	2.4	0.6
Specific conductance (umhos/cm)	636.0	277.0	228.0	210.0
Dissolved phosphorus (ug/1)	58.5	6.2	5.7	5.2
Ammonia-nitrogen (ug/1)	121.0	53.0	41.0	10.0
Chloride (ug/1)	119.0	24.4	11.9	6.3
Nc. Stations/Group	4	17	30	27

^{*} Eutrophic indicator species

^{**} Cold water stenothermic species

Table 63

Abundance (percent composition) of Selected Crustacean Plankters and Mean

Surface Values of Selected Limnological Variables in Groups of Saginaw

Bay Stations Identified by Cluster Analysis, October 6-8, 1974

(Gannon 1981)

Topic	I	II	III	IV	v
Taxon	<u>,</u>				
Acanthocyclops vernalis Diacyclops bicuspidatus thomasi Bosmina longirostris Eubosmina coregoni Daphnia retrocurva Eurytemora affinis Diaptomid copepodids	4.7 0.4 6.2 32.5 2 0.5 1.2	0.7 0.2 2.2 53.1 2.7 1.6 0.5	63.1 9.1	4.1 44.7 2.4	2.4 4.1 30.2
Limnological Variables					
Chlorophyll <u>a</u> (ug/1) Spec. cond. (umhos/cm) Total phosphorus (ug/1)	34.1 846 235	31.3 270 40	33.0 273 34	26.2 225 30	6.8 206 13
No. Stations/Group	2	9	4	5	6

Table 64a

Organochlorine Residue Levels (mg/kg) in Herring Gull Eggs, Channel/Shelter

Island, 1980-1982, and Little Charity Island, 1980, Saginaw Bay

(Struger et al. 1985)

	Ch.	annel/Shelter Island		Little CharityIsland
Compound	1980	1981	1982	1980
2,3,7,8-TCDD* egg	86.0° 86.0° 80.0°	141 ^b		43 ^c
PCB	70 69.6 ^c	65 64.1 ^{a,c}	72	41.9 ^c
DDE	8.9 8.9 ^c	7.3 7.18 ^d	8.1	6.4 ^c
ססס		0.22	0.08	
DDT		0.05	0.04	
Dieldrin		0.18 0.17 ^d	0.32	
Mirex	0.20 0.19 ^c	0.06 0.08 ^d	0.23	0.08 ^c
Photomirex		0.03 ^d		
Chlordane		0.14 ^d		
Oxychlordane		0.12 0.12d	0.24	
Alpha-Chlordane		0.16	0.02	
Gamma-Chlordane		0.05	0.04	

^{*(}ng/kg)

^aNorstrom et al., 1982.

^bStalling et al., 1985.

CKreis and Rice, 1985.

dEllenton et al., 1985.

Table 64b

Lipid and Contaminant Levels in Herring Gull Eggs From Annual Monitor

Colonies on the Great Lakes, 1980, 1985-1988 (Great Lakes Water

Quality Board Report to the International Joint Commission, 1989)

ÆAR	N	% L	IPID	D	DE	DIELLO	RIN	MOR	EX	ж	.33	PC	. Ba	2,3,7, \$ TCDD
. SNA	KE ISLA	ND. LA	; KE ONT	ARIO	\				1					
	1		1				(0.00)		(0.550	0.15	(0.00)	62	(24)	185 •
980	10	7.9	(0.61)	7.1	(4.1)	0. 20 0.18	(0.09)	1.6 1.7	(0.77) (0.63)	0.15 0.07	(0.08)	53 35	(24) (15)	67
985	10	9.2	(0.66)	7.2 4.7	(3.0)	0.18	(0.11)	1.7	(0.42)	0.07	(0.02)	29	(9.2)	65
986	10	7.5 8.9	(0.84)	2.9	(2.2)	0.15	(0.117	0.86	(0.42)	0.05	(0.02)	17	()-2/	80
987 988	1	8.9	1	5.2		0.18		0.94		0.09		27		47
. MU	GG'S ISI	AND, L	, AKE ON	TARIO	o									
~~	,	7.6	(0.8)	8.2	(5.8)	0.10	(0.10)	1.72	(1.10)	0.20	(0.10)	60	(29)	_
980	10	7.6 9.1	(0.7)	4.9	(1.3)	0.10	(0.03	1.30	(0.56)	0.06	(0.03)	37	(9)	39
985	10	9.1 8.1	(1.2)	4.0	(1.0)	0.13	(0.04)	0.98	(0.29)	0.07	(0.02)	25	(5.5)	49
1986 1987	1	9.0	(12)	2.3	(1.0)	0.11	(0.01)	0.50	(0.2)	0.03	(0,000)	16	,,,,,	45
988	i	8.6	}	33	· ·	0.12		0.69		0.05		20		40
. NIA	 GARA F	IVER					:							
979	10	8.7	(0.51)	4.0	(1.3)	0.29	(0.08)	0.49	(0.24)	0.17	(0.05)	50	(23)	87 •
985	10	9.2	(0.79)	4.1	(1.1)	0.20	(0.05)	0.59	(0.31)	0.05	(0.01)	29	(11)	41
1986	10	8.4	(0.50)	2.7	(1.0)	0.17	(0.07)	0.36	(0.14)	0.06	(0.02)	23	(11)	40
987	1	8.9	(0)	1.5	(1.0)	0.14		0.24	•	0.03		13		23
988	1	7.8		1.7		0.17		0.21		0.04		12		12
. POI	RTCOLE	ORNE,	LAKE ER	JE	l									
980	9	7.6	(0.47)	3.4	(1.5)	0.27	(0.13)	0.28	(0.18)	0.08	(0.02)	38	(16)	
1985	10	9.2	(0.61)	3.6	(1.1)	0.16	(0.06)	0.24	(0.08)	0.05	(0.01)	30	(13)	17
1986	1	7.6		3.2		0.20		0.25	_	0.05		24		32
1987	10	9.6	(1.3)	1.7	(0.95)	0.14	(0.06)	0.21	(0.17)	0.03	(0.01)	16	(5.6)	15
1988	1	8.5		1.9		0.18		0.18		0.03		18		17
5. MII	DLE IS	LAND, I	LAKE ER	IE										
1980	10	7.1	(1.0)	2.6	(0.66)	0.16	(0.06)	0.07	(0.07)	0.09	(0.02)	54	(12)	25 '
1985	10	9.0	(0.87)	2.0	(0.57)	0.22	(0.06)	0.05	(0.02)	0.07	(0.01)	47	(10)	15
1986	1	7.7		2.3		0.26		0.03		0.06		43	44.53	16
1987	10	8.7	(1.2)	1.7	(0.47)	0.14	(0.11)	0.01	(0.01)	0.04	(0.01)	28	(6.3)	12
1988	1	7.3		2.2		0.17		0.03		0.00		, ,,		
6. FIC	HTING	ISLANT), DETRO	NT RI	VER									
1980	10	9.0	(0.76)	6.8	(1.9)	0.16	(80.0)	0.12	(0.06)	0.37	(0.09)	133	(44)	49
1985	10	8.6	(1.38)	3.5	(2.2)	0.15	(0.09)	0.37	(0.05)	0.10	(0.03)	48	(17)	23
1986	1	6.7		2.4		0.09		0.11		0.06		41	(O.O.)	16
1987	10	8.0	(0.95)	2.2	(0.84)	0.09	(0.03)	0.04	(0.04)	0.06	(0.02)	34	(9.0)	14
1988	1	7.6		3.2		0.15		0.04		0.09		61		20
7. CH	ANTRY	ISLANT), LAKE	HURO	N									
1980	10	9.4	(0.71)	2.8	(1.4)	0.23	(0.07)	0.16	(0.16)	0.08	(0.03)		(15)	45
1985	10	9.0	(0.75)	25	(1.3)	0.29	(0.08)	0.14	(0.13)	0.05	(0.01)		(10)	24
1986	1	8.0		2.0		0.24		0.13		0.05		12		22
1987	1	9.0		1.0		0.10		0.11		0.02		7.7	/445	14
1988	13	8.7	(0.36)	1.1	(0. 69)	0.21	(0.05)	0.07	(0.07)	0.04	(0.02)	8.0	(11)	14

(Continued)

(Sheet 1 of 2)

Table 64b. (Concluded)

YEAR	N	% [_PID	D	DE	DIELI	DRIN	MIE	REX	Н	СВ	PC	CBs	2,3,7,8- TCDD
8. DO	UBLE IS	LAND, I	LAKE HU	JRON										
1980	10	9.1	(1.5)	2.6	(1.3)	0.23	(0.18)	0.06	(0.05)	0.06	(0.02)	17	(7. <i>7</i>)	-
1985	10	9.5	(0.58)	3.1	(1.4)	0.32	(0.19)	0.29	(0.38)	0.07	(0.02)	20	(5.8)	37
1986	1	8.3		2.1		0.17		U.11		0.04		12		31
1987	1	8.6		1.6	1	0.33		0.06		0.02		9.0		27
1988	13	8.4	(0.58)	1.7	(0.76)	0.24	(0.11)	0.07	(0.08)	0.04	(0.01)	9.3	(2.3)	19
9. CH/	ANNEL	SHELTE	R ISLAN	D, LA	KE HUR	ON					!			
1980	10	8.9	(0.74)	8.9	(3.8)	6.18	(0.08)	0.20	(0.28)	0.19	(0.06)	70	(23)	155
1985	10	8.8	(0.53)	4.8	(1.4)	0.21	(0.08)	0.08	(0.12)	0.09	(0.02)	48	(15)	-
1986	1	7.9	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	6.0	,,,,,	0.18	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.13	,,	0.07	(0.02)	46	(10)	88
1987	ı	9.6		4.0	j	0.19		0.05		0.07		31		137
1988	16	9.1	(1.1)	4.5		0.19	(0.08)	0.09	(0.12)	0.08	(0.02)	38	(13)	86
10. BIC	i G SISTE	i R ISLAN	ND, LAK	I E MICI	HIGAN									
1980	10	8.3	(0.98)	111	(2.6)	0.65	(0.22)	0.07	(0.04)	0.08	(0.02)	57	(12)	24
1985	10	9.9	(0.34)	7.9	(7.4)	0.54	(0.15)	0.18	(0.47)	0.05	(0.03)	37	(37)	14
1986	1	10	(0.01)	7.1	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.28	(0.15)	0.05	(0.47)	2.17	(0.00)	27	(377	17
1987	i	10		12	i	0.85		0.10		0.07		45		1/
1988	1	9.3		-	Ì	-		-		-		-		10
11. GU	I JLL ISLA	I ND, LA	KE MIC	I HIGAN	ı İ									
198C	10	8.5	(0.93)	13	(6.5)	0.75	(0.34)	0.14	(0.13)	0.10	(0.33)	59	(23)	58 '
1985	9	9.6	(0.81)	5.9	(1.6)	0.40	(0.14)	0.04	(0.03)	0.05	(0.01)	27	(7)	12
1986	í	7.9	(0.01)	7.9	(1.0)	0.49	(0.14)	0.09	(0.05)	0.08	(0.01)	28	(//	12
1987	ì	9.2		4.0		0.33		0.06		0.04		17		17
1988	1	9.3		6.1	j	0.55		0.04		0.06		22		14
12. AG	! SAWA R	I OCK, L	AKE SUP	I ERIOR	.]									
1980	10	8.3	(0.71)	3.7	(3.5)	0.35	(0.21)	0.17	(0.11)	0.00	(0 m)	24	(13)	~ .
1985	10	9.7	(0.71)		(0.7)		(0.21)	0.17	(0.11)	0.08	(0.02)	24	(12)	79 '
	1	7.8	(0./8)	3.0	(0./)	0.36	(0.12)	0.12	(0.13)	0.05	(0.01)	12	(3)	16
1986 1987	1	9.2		3.1		0.32		0.12		0.05		14		28
1987 1988	1	9.2		2.2		0.13 0.37		0.16 0.09		0.04		11 11		. 37
_	1	ļ -) I APE		IOB	0.27		0.07		0.00		``		1,9
	l	i), LAKE S	1		_				}				
1980	10	6.9	(1.1)	3.6	(0.99)	0.33	(0.11)	0.09	(0.11)	0.08	(0.03)	27	(9.3)	-
1985	10	9.4	(0.5)	3.3	(1.84)	0.28	(0.10)	0.09	(0.04)	0.06	(0.02)	20	(8.7)	19
19 86	1	7.4		3.3		0.37		0.09		0.05		14		-
1987	1	8.9		2.9		0.26		0.03		0.04		13		-
1988	1 1	9.0		3.2		0.31		0.03		0.05		16		16

^{*1981.}

Figures followed by numbers in () are means and (standard deviations), N = 8-11.

Numbers not followed by () are results of single analyses of colony egg pools (N = 8-11). N may differ for 2.3,7.8-TCDD. All contaminant values (except 2,3,7.8-TCDD) are in mg/kg (wet weight). 2,3,7.8-TCDD is in ng/kg. 2,3,7.8-TCDD data are from Reference (57).

Table 65

Geometric Means, Ranges and Numbers of Eggs with Quantifiable Residues of Organic and Inorganic Contaminants (mg/kg) in Common Tern Eggs Collected From Three Subcolonies Nesting in Saginaw Bay, 1984 (USFWS, unpublished)

		SB-1 (N = 12)			$SB-2 (N = 15)^{a}$	a		SB-3 (N = 12)	
Compound	ı×	range	E	ı×	range	E	ı×	range	E
p,p'-DDE	2.1	1.4 - 3.3	12	1.7	0.6 - 3.4	15	1.7	1.1 - 3.8	12
do.p'-DDD	bu	ng - 0.14	_	ьu	nq - 0.17	7	bu	ng - 0.23	-
p,p'-bor	n d	bu	0	ba G	bu	0	- bu	Ъu	0
Dieldrin	0.15	0.10-0.29	12	0.10		10	0.08	nq - 0.19	9
Heptachlor epoxide	bu	bu	0	bα		_	bu	bu	0
Oxychlordane	n pu	ng - 0.11	т	פֿ	nq - 0.17	9	n D	nq - 0.15	7
c1s-Chlordane	6u	bu	0	e e		7	nq	nq - 0.15	က
trans-Nonachlor	рu	ng - 0.11		e c		2	n pu	nq - 0.35	2
cis-Nonachlor	bu	bu	0	bu		7	bu	ng - 0.11	7
Endrin	bu	bu	0	pu	bu	0	bu	bu	0
Toxaphene (estimated)	0.08	ng - 0.24	9	0.08	ng - 0.25	7	bu	. 55°0 - bu	7
PCBs (estimated/1260)	9.8	5.0 -14.2	12	10.9	5.4 -23.9	15	9.5	5.8 -23.3	12
Mercury	0.40	0.25- 0.66	12	0.30	0.14 - 0.47	14	0.33	0.12- 1.87	12
Selenium	0.72	0.46 - 0.85	12	0.65	0.37- 1.87	15	0.71	0.40- 0.93	12
		i	i						

Total of 14 samples analyzed for mercury

nq - not quantifiable

Table 66

Total PCB and DDE Concentrations (mg/kg) in Mallard Carcasses After 0, 10,

25, 44, 84 and 86 Days of Exposure on the Channel/Shelter Island

Confined Disposal Facility, Saginaw Bay

(USFWS, unpublished)

	Days of Exposure					
Parameter	Control	10	25	44	84	86
n	4	4	3	4	3	4
PCB	ND ND ND ND	0.17 0.35 0.38 0.44	1.4 1.1 0.75	2.6 4.2 2.5 3.9	2.0 1.76 0.62	1.7 6.11 1.9 3.31
mean	-	0.34	1.08	3.3	1.44	3.25
DDE	0.01 0.02 0.01 0.01	0.02 0.03 0.01 0.03	0.06 0.10 0.08	0.11 0.19 0.13 0.16	0.15 0.14 0.05	0.27 0.60 ^a 0.18 0.34
mean	0.01	0.02	0.08	0.15	0.11	0.35

^aConfirmed by GC/Mass Spectrometry

ND = None Detected

Table 67

Chemicals Found in the Great Lakes Which May Have Adverse Impacts on

Human Health in the Event of High Local Contamination* (IJC 1983)

```
Extremely toxic chemicals (LD_{50} 50 mg/kg)
  Aldrin
  Carbofuran
  Dieldrin
  2,3,7,8-Tetrachlorodibenzodioxin (2,3,7,8-TCDD)
  Endosulfan
  Endrin
  Ethion
  Methyl mercury (chloride)
  Oxychlordane
  Toxaphene
  1,1,2-Trichloro- 1,2,2-trifloroethane
Very toxic chemicals (LD_{50} 50-500 mg oral/kg)
  aniline
  Bromochloroethane
  Carbon disulphide
  Chlordane
  2-Chloroaniline
  4-Chloroaniline
  0-Cresol
  DDT
  Diazinon
  1,2-Dibromoethane
  1,2-Dichlorobutadiene
  2,4-Dichlorophenoxyacetic acid (2,4-d)
  1,3-Dichloropropene
  2,3-Dichloroprpoene
  Diphenylamine
  N-Ethylaniline
  Furfural
  a-Hexachlorocyclohexzne
  y-Hexachlorocyclocyclohexane (Lindane)
  Hexchlorobutadiene
  Mirex
  Pentachlorophenol
  Pheno1
  Photomirex
  Tetrachloroethane
  1,1,2,3-Tetrachloropropene
  2,4,5-Trichlorophenoxyacetic acid (2,4,5-T)
  Vinyl Bromide
  Vinyl Chloride
```

Table 67. (Concluded)

```
Elements which form toxic compounds (LD<sub>50</sub> 500 mg oral/kg)

Arsenic (trioxide')

Cadmium (chloride)

Cobalt (cobaltous<sup>2+</sup>)

Lead (alkyl<sup>4+</sup>)

Mercury (elemental<sup>0</sup>)

Nickel (acetate<sub>3+</sub>)

Silver (nitrate<sub>3</sub>)

Vanadium (trioxide')
```

^{*} Based on acute oral exposure in rats. Principal data base: NIOSH Registry of Toxic Effects of Chemical Substances, 1979, USHHS.

^{**}Unspecified isomer(s)

Table 68

Municipal Wastewater Treatment Facility Construction Grants by River

Basin in the Saginaw Bay Watershed, 1972-1988

Basin/Municipality	County
Pigeon	
Port Austin	Huron
Gagetown	Tuscola
Owendale	Huron
Wiscoggin	
Akron/Fairgrove	Tuscola
Hampton Township	Bay
Unionville	Tuscola
Saginaw	
Alma	Gratiot
Alma, Arcada & Pine River Townships	Gratiot
Argentine Township	Genesee
Bay City	Bay
Bay County Westside Area	Bay
Birch Run	Saginaw
Bridgeport Township	Saginaw
Caro	Tuscola
Cass City	Tuscola
Chesaning	Saginaw
Durand	Shiawassee
Elba Township	Lapeer
Essexville	Bay
Fenton	Genesee
Flint	Genesee
Flushing	Genesee
Frankenmuth	Saginaw
Gaines	Genesee
Genesee County	Genesee
Genesee County-Ragnone WWTP	Genesee
Gladwin	Gladwin
Holly	Oakland
Howell	Livingston
Lapeer	Lapeer
Lapeer Township	Lapeer
Lennon	Genesee
Mayfield Township	Lapeer
Marlette	Sanilac
Merrill	Saginaw
Mt. Pleasant	Isabella
Otisville	Genesee
Owosso	Shiewessee
Owosso and Caledonia Township	Shiawassee
Richland Township	Saginav

(Continued)

(Sheet 1 of 2)

Table 68. (Concluded)

Basin/Municipality	County	
Saginaw (continued)		
Saginaw	Saginaw	
Saginaw Township, Saginaw Metro	Saginaw	
St. Louis	Gratiot	
Tittabawassee Township	Saginaw	
Union Township	Isabella	
Vassar	Tuscola	
Kawkawlin		
None		
Rifle		
Standish	Arenac	
West Branch	Ogemaw	
Au Gres		
Tawas City	Iosco	

Figure 1. Contaminant migration pathways for evaluation of in-place contaminated sediments

Figure 2. Location of the Saginaw River and Saginaw Bay AOC

Figure 3. Boundary of the Saginaw River and Saginaw Bay AOC

Figure 4. Major tributaries to Saginaw Bay

Figure 5a. Spatial distribution of PCB concentrations in surface sediments (1-2 cm) of inner Saginaw Bay, 1978 and 1980 (USEPA unpublished)

Figure 5b. Spatial distribution of cadmium concentrations in surface sediments (1-2 cm) of inner Saginaw Bay, 1978 (Robbins 1986)

Figure 5c. Spatial distribution of chromium concentrations in surface sediments (1-2 cm) of inner Saginaw Bay, 1978 (Robbins 1986)

Figure 5d. Spatial distribution of copper concentrations in surface sediments (1-2 cm) of inner Saginaw Bay, 1978 (Robbins 1986)

Figure 5e. Spatial distribution of nickel concentrations in surface sediments ($l-2\ cm$) of inner Saginaw Bay, 1978 (Robbins 1986)

Figure 5f. Spatial distribution of lead concentrations in surface sediments (1-2 cm) of inner Saginaw Bay, 1978 (Robbins 1986)

Figure 5g. Spatial distribution of zinc concentrations in surface sediments (1-2 cm) of inner Saginaw Bay, 1978 (Robbins 1986)

Figure 6. PCB concentrations in sediments of inner Saginaw Bay collected from the navigation channel at the mouth of the Saginaw River, 1978, 1980, and 1983 (USACE unpublished)

Figure 7. South Branch, Shiawassee River, 1974 sampling station locations and Wastewater discharges (MDNR 1979a)

South Branch, Shiawassee River, sediment survey sampling locations, August 1977 (MDNR 1977) Figure 8.

Figure 9. 1974 and 1977 sampling locations for sediments, South Branch, Shiawassee River, Howell to Corunna (MDNR 1977)

Shiawassee River sediment sampling stations near Owosso, 1980 (MDNR 1980) Figure 10.

Figure 11. Sediment sampling stations on the Shiawassee River, Owosso, 1972 (MDNR 1972)

Figure 12. Tittabawassee River sediment sampling sites for 1981 (Rossmann et al. 1983; see Tables 12 and 13)

Figure 13a. Tittabawassee River sediment sampling sites, 1981 (Rossmann et al. 1983; see Tables 12 and 13)

Figure 13b. Tittabawassee River and Saginaw River sediment sampling stations, 1978-1984 (USEPA 1986; see Tables 12 and 13)

RIVER SAMPLING STATION LOCATIONS

Figure 14. Flint River sampling stations and municipal waste discharges, 1974 (see Table 14)

Sediment sampling stations in the Pine River, 1974-1977 (ECMPDR 1983; see Tables 15, 16a and 16b) Figure 15.

Figure 16. St. Louis Reservoir sediment sampling locations, 1980-1981 (ECMPDR 1983; see Tables 16a and 16b)

Figure 17a. Saginaw River sediment sampling stations, near the city of Saginaw, 1983 (USACE 1983; see Table 17a)

Saginaw River sediment sampling stations, near Bay City, 1983 (USACE 1983; see Tables 17b and 17c) Figure 17b.

Figure 18a. Saginaw Kiver sediment sampling stations, near the city of Saginaw, 1988 (USACE, Detroit 1988; see Tables 18b and 18c)

Figure 18b. Saginaw River sediment sampling stations, near Bay City, 1988 (USACE, Detroit 1988; see Tables 18b and 18c)

Figure 19a. Apparent sedimentation rates in inner Saginaw Bay (Robbins 1986)

Figure 19b. Saginaw Bay sediments: elemental composition and accumulation rates (GLIS)

Figure 20. Taste and odor in water from the Saginaw-Midland water intake, 1974-1980 (Dolan et al. 1986)

Figure 21. Monthly water temperatures in the Saginaw River, 1974-1987

Figure 22a. Annual average biochemical oxygen demand in the Saginaw River, 1974-1986

Annual average biochemical oxygen demand in Saginaw River tributaries, 1972-1986 Figure 22b.

Figure 22c. Annual average biochemical oxygen demand in west coastal basin tributaries, 1963-1989

YEAR

Figure 22d. Annual average biochemical oxygen demand in east coastal basin tributaries, 1963-1985

D.O. CONCENTRATION (MG/L)

Monthly dissolved oxygen concentrations in the Saginaw River at the Midland Street Bridge, 1977-1987 Figure 23a.

Monthly dissolved oxygen concentrations in the Saginaw River (at the Center Street Bridge, 1977-1987) Figure 23b.

Annual average suspended solids concentrations in Saginaw River water samples, 1974-1986 Figure 24a.

Figure 24b. Annual average suspended solids concentrations in Saginaw River tributaries, 1972-1986

YEAR

9/

Figure 24c. Annual average suspended solids concentrations in Saginaw Bay west coastal basin tributaries, 1963-1985

Figure 24d. Annual average suspended solids concentrations in Saginaw Bay east coastal basin tributaries, 1963-1985

Figure 25a. Annual average total solids concentrations in Saginaw River water samples, 1974-1986

Figure 25b. Annual average total solids concentrations in Saginaw River tributaries, 1972-1986

YEAR

Figure 25c. Annual average total solids concentrations in Saginaw Bay west coastal basin tributaries, 1967-1985

Annual average total solids concentrations in Saginaw Bay east coastal basin tributaries, 1967-1985 Figure 25d.

Figure 26. Average of total PCB concentrations by particulate and dissolved fractions, Saginaw River and five segments of Saginaw Bay, 1979 (Richardson et al. 1983)

Figure 27a. Nitrogen/phosphorus ratios in Saginaw Bay, 1974 and 1980 (Dolan et al. 1986)

Figure 27b. Nitrate-nitrite concentrations (mg/l) in Saginaw Bay, 1974 and 1980 (Dolan et al. 1986)

Figure 27c. Dissolved silica concentrations (mg/l) in Saginaw Bay, 1974 and 1980 (Dolan et al. 1986)

Figure 28a. Annual average total phosphorus concentrations in Saginaw River water samples, 1974-1986

Figure 28b. Annual average total phosphorus concentrations in Saginaw River tributaries, 1972-1986

YEAR

TOTAL PHOSPHORUS CONCENTRATION

Figure 28c. Annual average total phosphorus concentrations in Saginaw Bay west coastal basin tributaries, 1968-1985

Figure 29a. Annual average orthophosphorus concentrations in Saginaw River water samples, 1974-1986

Figure 29b. Annual average orthophosphorus concentrations in Saginaw River tributaries, 1972-1986

Figure 29c. Annual average orthophosphorus concentrations in Saginaw Bay west coastal basin tributaries, 1963-1985

Annual average orthophosphorus concentrations in Saginaw Bay

Figure 29d.

east coastal basin tributaries, 1968-1985

Figure 30a. Annual average nitrate-nitrite concentrations in Saginaw River water samples, 1974-1986

Annual average nitrate-nitrite concentrations in Saginaw River tributaries, 1973-1986 Figure 30b.

Figure 30c. Annual average nitrate-nitrite concentrations in Saginaw Bay west coastal basin tributaries, 1973-1985

Figure 30d. Annual average nitrate-nitrite concentrations in Saginaw Bay east coastal basin tributaries, 1973-1985

CHLORIDE CONCENTRATION

Annual average chloride concentrations in Saginaw River water samples, 1963-1986 Figure 31a.

CHLORIDE CONCENTIRATION

CONCENTRATION (UG/L)

Figure 31b. Annual average chloride concentrations in Saginaw River tributarics, 1963-1986

YEAR

CHLORIDE CONCENTIRATION

Annual average chloride concentrations in Saginaw Bay west coastal basin tributaries, 1963-1986 Figure 31c.

Figure 31d. Annual average chloride concentrations in Saginaw Bay east coastal basin tributaries, 1963-1986

Figure 32a. Circulation pattern in Saginaw Bay for a southwest wind

Figure 32b. Circulation pattern in Saginaw Bay for a northeast wind

Figure 33. Saginaw Bay bathymetry (GLIS)

Figure 34. Combined sewer overflow storage and retention basins in the city of Saginaw (EDP 1981)

BANGGR TOWNSHIP BAY COUNTY, MICHIGAN WATER QUALITY INTAKE AND DISCHARGE SITES AND SAMPLING STATIONS

Figure 35. Water quality intake and discharge sites and sampling stations (GLIS)

Distribution of annual suspended solid loads (1,000 metric tons) to inner Saginaw Bay in 1980 (LTI 1983) Figure 36.

Figure 37. Source distribution of annual total phosphorus loads (metric tons) to inner Saginaw Bay in 1980 (LTI 1983)

Figure 38. High risk erosion areas and recession rates (GLIS)

AVERAGE ANNUAL WIND SPEED: 10.6 M.P.H.

LEGEND

8.3 AVERAGE SPEED FOR SECTOR IN M.P.H.

VECTOR LENGTH INDICATES FREQUENCY
OF OCCURRENCE IN SECTOR (PERCENT)

Figure 39. Annual wind vectors for the Saginaw Bay area (Consumers Power Company 1972)

LONG-TERM MODEL ADVECTION AND DISPERSION TRANSPORT

Figure 40. An advection and dispersion model for Saginaw Bay (Limno-Tech 1977)

Figure 41. Sites of environmental contamination as of May 1986, $\,$ PA 307 of 1982 (GLIS)

Figure 42. Landfills in the Saginaw Bay Basin

Figure 43. Public land in the Saginaw Bay drainage basin

Figure 44. Extractive land uses in the Saginaw Bay drainage basin (MDNR 1978; 1982)

Figure 45. Agricultural land in the Saginaw Bay drainage basin (ECMPDR 1987)

Figure 46. Land cover, Bay County, Michigan (GLIS)

Figure 47. Yearly mean DDT-R concentrations for yellow perch from Saginaw Bay, 1967-1979 (Kreis and Rice 1985)

Figure 48a. Saginaw Bay spawning areas (GLIS)

Figure 48b. Total commercial fisheries catch in Saginaw Bay, 1916-1986 (MDNR unpublished)

Figure 48c. Fish species composition of the commercial catch in Saginaw Bay, 1955-1986 (MDNR unpublished)

Figure 49. Plankton station locations in Saginaw Bay, 1980 (Stoermer and Theriot 1983)

Figure 50. Seasonal variation of mean total phytoplankton cell abundance in Saginaw Bay, April-November, 1980 (Stoermer and Theriot 1983)

Figure 51. Seasonal variation of abundance of the three dominant algal divisions in Saginaw Bay, April-November, 1980 (Stoermer and Theriot 1983)

Figure 52. Grouping of 78 stations determined by cluster analysis of rotifer data for Saginaw Bay and Southern Lake Huron during

July 1974 (Stemberger and Gannon 1977)

Figure 53. Numbers of rotifers (#1) found in segments 3 and 5 in 1974 () contrasted to 1980 (0) (McNaught et al. 1983; see Figure 49)

Figure 54. Grouping of 38 stations determined by cluster analysis of rotifer data for Saginaw Bay during October, 1974
(Gannon 1981)

Figure 55. Grouping of 38 stations determined by cluster analysis of crustacean plankton data for Saginaw Bay during October, 1974 (Gannon 1981)

Figure 56. Numbers of crustacean zooplankton (#/1) found in Segments 3 and 5 during 1974, 1975, and 1980 (McNaught et al. 1983; see Figure 49)

Figure 57a. Average PBB concentrations (mg/kg dry weight) in Pine River plankton, periphyton, and benthic invertebrates (LTI 1983)

Figure 57b. Average PBB concentrations (mg/kg dry weight) in plankton, periphyton, and benthic invertebrates collected in the Pine River from the St. Louis Reservoir, below the dam, and downstream from the dam (LTI 1983)

Figure 58a. Average PBB concentrations (mg/kg dry weight) in Saginaw River plankton, periphyton, and benthic invertebrates (figure from LTI 1983)

Figure 58b. Average PBB concentrations (mg/kg dry weight) in plankton, periphyton, and benthic invertebrates collected from the Upper,
Middle, and Lower Saginaw River

Figure 59. Locations of two herring gull colonies in Saginaw Bay monitored for organochlorine and other toxic organic contamination

Locations of confined disposal facilities, US Great Lakes Figure 60.

Figure 61. Cities and villages located in the Saginaw Bay drainage basin

Figure 62. Flood-prone areas, Bay County, Michigan (GLIS)

APPENDIX 1: RECENT AND PROJECTED POPULATIONS FOR TOWNSHIPS, VILLAGES AND CITIES WITHIN THE SAGINAW BAY DRAINAGE BASIN

	Population Population	
Location	1980	2000
Arenac Co.		
Townships		
Adams	457	582
Arenac	892	1,198
Au Gres	907	1,301
Clayton	967	1,237
Deep River	1,874	2,479
Lincoln	1,090	1,497
Mason	852	1,074
Moffatt	657	906
Sims	695	1,011
Standish	2,011	2,802
Turner	791	933
Whitney	1,078	1,526
Villages		
Sterling	457	608
Turner	187	215
Twining	196	234
Cities		
Au Gres	768	1,085
Omer	403	495
Standish	1,264	1,675
Bay Co.		
Townships		
Banor	17,494	18,293
Beaver	3,027	3,129
Frankenlust	2,525	2,595
Fraser	3,954	4,135
Garfield	1,810	1,846
Gibson	1,068	951
Hampton	10,418	10,894
Kawkawlin	5,077	5,309
Merritt	1,676	1,521
Monitor	10,143	10,606
Mt. Forest	1,444	1,462

Bay Co. cont.		
Pinconning	2,984	3,093
Portsmouth	4,291	4,385
Williams	4,414	4,465
	.,	4,403
Cities		
Auburn	1,921	1,919
Bay City	41,593	34,843
Essexville	4,378	4,146
Pinconning	1,430	1,411
Clare Co.		
Townships		
Arthur	562	755
Franklin	631	987
Freeman	437	582
Frost	852	1,252
Garfield	1,416	2,283
Grant	2,227	3,252
Hamilton	1,595	2,343
Hatton	638	937
Hayes	3,609	5,819
Lincoln	974	1,431
Sheridan	1,033	1,408
Surrey	3,101	4,845
Villages		
Farwell	804	1,144
Cities		
Clare	3,300	4,738
Harrison	1,700	2,538
Genesee Co.		
Townships		
Argentine	4,180	4,534
Atlas	4,891	5,401
Clayton	7,269	8,074
Davison	13,708	15,301
Fenton	11,744	12,774
Flint	35,405	34,369
Flushing	9,246	10,273
Forest	4,255	4,718
Gaines	5,209	5,839

Genesee	25,065	24,3
Grand Blanc	24,413	26,6
Montrose	6,164	6,7
Mt. Morris	27,928	27,1
Mundy	10,786	11,7
Richfield	6,895	7,6
Thetford	8,499	9,5
Vienna	12,914	14,0
Cities		
Burton	29,976	28,9
Clio	2,669	2,8
Davison	6,087	6,7
Fenton	8,098	8,7
Flint	159,611	145,5
Flushing	8,624	9,3
Grand Blanc	6,848	8,1
Montrose	I,706	1,8
Mt. Morris	3,246	3,4
Swartz Creek	5,013	5,8
Villages		
Gaines	440	4
Goodrich	795	7
Lennon	114	1
Linden	2,174	2,1
Otisville	682	6
Otter Lake	14	

Gladwin Co.

ladwin Co.		
Townships		
Beaverton	1,612	2,727
Bentley	771	1,164
Billings	2,076	3,412
Bourret	315	517
Buckeye	970	1,522
Butman	834	1,192
Clement	781	1,371
Gladwin	743	907
Grim	115	151
Grout	1,542	2,424
Нау	1,056	1,834
Sage	2,049	3,325
Secord	850	1,353
Sherman	773	1,212
Tobacco	1,966	3,152

Gladwin Co. cont.		
Cities		
Beaverton	1,025	1,392
Gladwin	2,479	3,444
Gratiot Co.		
Townships		
Arcadia	1,784	1,797
Bethany	1,526	1,432
Elba	1,537	1,400
Emerson	1,092	958
Hamilton	530	435
Lafayette	776	627
Newark	1,097	1,009
New Haven	1,021	913
North Star	1,171	993
Pine River	1,939	1,866
Seville	2,091	2,150
Sumner	1,897	1,982
Wheller	3,219	3,276
Villages		
Breckenridge	1,495	1,584
Cities		
Alma	9,652	9,548
Ithaca	2,950	2,868
St. Louis	4,107	4,115
Huron Co.		
Townships		
Bingham	1,679	1,768
Brookfield	998	896
Caseville	2,067	2,381
Chandler	555	460
Colfax	1,907	2,284
Dwight	1,145	1,111
Fairhaven	1,292	1,325
Grant	819	806
Hume	753	701
Lake	822	920
Lincoln	1,042	1,053
McKinley	555	540
Meade	789	766
Oliver	1,756	1,743
Paris	732	613
Pte Aux Rarause		013

6

6

Pte Aux Barques

Huron Co. cont.		
Port Austin	1,570	1,734
Sebewaing	3,259	3,417
Sheridan	812	763
Verona	1,122	1,284
Winsor	2,140	2,164
Villages		
Caseville	851	924
Elkton	953	1,010
Kinde	600	635
Owendale	308	311
Pigeon	1,247	1,372
Port Austin	839	883
Sebewaing	2,046	2,201
Ub1y	862	966
Cities		
Bad Axe	3,184	3,427
Iosco Co.		
Townships		
Alabaster	371	406
Au Sable	2,198	2,699
Baldwin	1,393	1,697
Burleigh	761	789
Grant	1,043	1,281
Oscoda	11,386	13,155
Plainfield	3,160	3,862
Reno	566	581
Sherman Tawas	465	481
Wilber	1,463	1,678
WIIDEL	554	635
Cities		
East Tawas	2,584	2,964
Tawas City	1,967	2,222
Whittemore	438	451
Isabella Co.		
Townships		
Broomfield	1,246	1,625
Chippewa	3,784	5,160
Coe	3,141	4,162
Coldwater	714	882
Deerfield	2,160	2,930
Denver	1,059	1,321

Fremont 1,215 1,579 Gilmore 966 1,202 Isabella 1,916 2,375 Lincoln 1,698 2,262 Nottawa 2,042 2,706 Rolland 1,105 1,326 Sherman 1,405 1,709 Union 5,306 7,633 Vernon 1,389 1,654 Wise 1,218 1,540 Villages Shepherd 1,534 2,158 Rosebush 336 N.A. City C.M.U.a 16,912 13,500 Bal. of City 6,834 8,833 Mt. Pleasant 23,746 22,333 Lapeer Co. Townships Arcadia 2,347 3,109 Attica 3,642 4,987 Burlington 1,562 1,774 Burnside 1,772 2,192 Deerfield 4,672 6,346 Dryden 2,977 4,056 Elba 4,604 5,007 Goodland 1,534 1,799 Hadley 3,331 4,843 Lapeer 4,261 5,948 Marathon 4,336 5,335 Mayfield 7,098 9,787 Metamora 3,220 4,459 North Branch 2,721 3,518 Oregon 5,652 7,862 Rich 1,249 1,422 City Lapeer 6,198 6,363 Villages Clifford 406 543 Columbiaville 953 982 Metamora 552 564 North Branch 396 1,143 Otter Lake 442 499	Isabella Co. cont.		
Gilmore 966 1,202 Isabella 1,916 2,375 Lincoln 1,698 2,262 Nottawa 2,042 2,706 Rolland 1,105 1,326 Sherman 1,405 1,709 Union 5,306 7,633 Vernon 1,389 1,654 Wise 1,218 1,540 Villages Shepherd 1,534 2,158 Rosebush 336 N.A. City C.M.U. a 16,912 13,500 Bal. of City 6,834 8,833 Mt. Pleasant 23,746 22,333 Lapeer Co. Townships Arcadia 2,347 3,109 Attica 3,642 4,987 Burlington 1,562 1,774 Burnside 1,772 2,192 Deerfield 4,672 6,346 Dryden 2,977 4,056 Elba 4,604 5,007 Goodland 1,534 1,799 Hadley 3,331 4,843 Lapeer 4,261 5,948 Marathon 4,336 5,335 Mayfield 7,098 9,787 Metamora 3,220 4,459 North Branch 2,721 3,518 Oregon 5,652 7,866 Rich 1,249 1,422 City Lapeer 6,198 6,363 Villages Clifford 406 543 Columbiaville 953 982 Metamora 552 564 North Branch 896 1,143	Fremont	1.215	1.579
Isabella	Gilmore		
Lincoln Nottawa Nottawa Nottawa 2,042 2,706 Rolland 1,105 1,326 Sherman 1,405 Union 5,306 7,633 Vernon 1,389 1,654 Wise 1,218 1,540 Villages Shepherd Rosebush 336 N.A. City C.M.U. ^a Bal. of City Bal. of City Attica 3,642 Burlington Attica 3,642 Burlington 1,562 Burlington 1,772 Burnside 1,772 Buerfield 4,672 Buerfield 4,672 Burnside 1,772 Buerfield 4,672 Burnside 1,772 Buerfield 4,672 Burnside 1,772 Buerfield 4,672 Burnside 1,772 Buerfield 4,672 Boodland 1,534 Dryden 2,977 4,056 Elba 4,604 5,007 Goodland 1,534 1,799 Hadley 3,331 Lapeer 4,261 Morth Branch 2,721 3,518 Mayfield 7,098 9,787 Metamora 3,220 4,459 North Branch 2,721 3,518 Oregon 5,652 7,862 Rich 1,249 1,422 City Lapeer 6,198 6,363 Villages Clifford 406 Columbiaville 953 982 Metamora 552 564 North Branch 896 1,143	Isabella	1,916	
Nottawa 2,042 2,706 Rolland 1,105 1,326 Sherman 1,405 1,709 Union 5,306 7,633 Vernon 1,389 1,654 Wise 1,218 1,540 Villages Shepherd 1,534 2,158 Rosebush 336 N.A. City C.M.U. ^a 16,912 13,500 Bal. of City 6,834 8,833 Mt. Pleasant 23,746 22,333 Lapeer Co. Townships Arcadia 2,347 3,109 Attica 3,642 4,987 Burlington 1,562 1,774 Burnside 1,772 2,192 Deerfield 4,672 6,346 Dryden 2,977 4,056 Elba 4,604 5,007 Goodland 1,534 1,799 Hadley 3,331 4,843 Lapeer 4,261 5,948 Marathon 4,336 5,335 Mayfield 7,098 9,787 Metamora 3,220 4,559 North Branch 2,721 3,518 Oregon 5,652 7,862 Rich 1,249 1,422 City Lapeer 6,198 6,363 Villages Clifford 406 543 Columbiaville 953 982 Metamora 552 566 North Branch 896 1,143	Lincoln	1,698	
Rolland 1,105 1,326 Sherman 1,405 1,709 Union 5,306 7,633 Vernon 1,389 1,654 Wise 1,218 1,540 Villages Shepherd 1,534 2,158 Rosebush 336 N.A. City C.M.U. ^a 16,912 13,500 Bal. of City 6,834 8,833 Mt. Pleasant 23,746 22,333 Lapeer Co. Townships Arcadia 2,347 3,109 Attica 3,642 4,987 Burlington 1,562 1,774 Burnside 1,772 2,192 Deerfield 4,672 6,346 Dryden 2,977 4,056 Elba 4,604 5,007 Goodland 1,534 1,799 Hadley 3,331 4,843 Lapeer 4,261 5,948 Marathon 4,336 5,335 Mayfield 7,098 9,787 Metamora 3,220 4,459 North Branch 2,721 3,518 Oregon 5,652 7,862 Rich 1,249 1,422 City Lapeer 6,198 6,363 Villages Clifford 406 543 Columbiaville 953 982 Willages Clifford 406 543 Columbiaville 953 982 Metamora 552 564 North Branch 552 5664 North Branch 552 5664 North Branch 555 5664 North Branch 555 5664 North Branch 555 5664 North Branch 555 5664 North Branch 555 5664 North Branch 555 5664 North Branch 555 5664 North Branch 555 5664 North Branch 555 5664 North Branch 555 5664 North Branch 896 1,143	Nottawa		
Union 5,306 7,633 Vernon 1,389 1,654 Wise 1,218 1,540 Villages Shepherd 1,534 2,158 Rosebush 336 N.A. City C.M.U. ^a 16,912 13,500 Bal. of City 6,834 8,833 Mt. Pleasant 23,746 22,333 Lapeer Co. Townships Arcadia 2,347 3,109 Attica 3,642 4,987 Burlington 1,562 1,774 Burnside 1,772 2,192 Deerfield 4,672 6,346 Dryden 2,977 4,056 Elba 4,604 5,007 Goodland 1,534 1,799 Hadley 3,331 4,843 Lapeer 4,261 5,948 Marathon 4,336 5,335 Mayfield 7,098 9,787 Metamora 3,220 4,459 North Branch 2,721 3,518 Oregon 5,652 7,862 Rich 1,249 1,422 City Lapeer 6,198 6,363 Villages Clifford 406 543 Columbiaville 953 982 Metamora 552 566 North Branch 552 566 North Branch 552 566 North Branch 896 1,143	Rolland	1,105	
Vernon 1,389 1,654 Wise 1,218 1,540 Villages Shepherd 1,534 2,158 Rosebush 336 N.A. City 0,834 8,833 Mt. Pleasant 23,746 22,333 Lapeer Co. Townships Arcadia 2,347 3,109 Attica 3,642 4,987 Burlington 1,562 1,774 Burnside 1,772 2,192 Deerfield 4,672 6,346 Dryden 2,977 4,056 Elba 4,604 5,007 Goodland 1,534 1,799 Hadley 3,331 4,843 Lapeer 4,261 5,948 Marathon 4,336 5,335 Metamora 3,220 4,459 North Branch 2,721 3,518 Oregon 5,652 7,862 Rich 1,249 1,422 City Lapeer 6,198 6,363<	Sherman	1,405	1,709
Wise 1,540 Villages Shepherd 1,534 2,158 Rosebush 336 N.A. City C.M.U. ^a 16,912 13,500 Bal. of City 6,834 8,833 Mt. Pleasant 23,746 22,333 Lapeer Co. Townships Arcadia 2,347 3,109 Attica 3,642 4,987 Burlington 1,562 1,774 Burnside 1,772 2,192 Deerfield 4,672 6,346 Dryden 2,977 4,056 Elba 4,604 5,007 Goodland 1,534 1,799 Hadley 3,331 4,843 Lapeer 4,261 5,948 Marathon 4,336 5,335 Myfield 7,098 9,787 Metamora 3,220 4,459 North Branch 2,721 3,518 Oregon 5,652 7,862 Rich	Union	5,306	7,633
Villages Shepherd 1,534 2,158 Rosebush 336 N.A. City C.M.U.a 16,912 13,500 Bal. of City 6,834 8,833 Mt. Pleasant 23,746 22,333 Lapeer Co. Townships Arcadia 2,347 3,109 Attica 3,642 4,987 Burlington 1,562 1,774 Burnside 1,772 2,192 Deerfield 4,672 6,346 Dryden 2,977 4,056 Elba 4,604 5,007 Goodland 1,534 1,799 Hadley 3,331 4,843 Lapeer 4,261 5,948 Marathon 4,336 5,335 Metamora 3,220 4,459 North Branch 2,721 3,518 Oregon 5,652 7,862 Rich 1,249 1,422 City Lapeer 6,198 6,363<	Vernon	1,389	1,654
Shepherd 1,534 2,158 Rosebush 336 N.A. City C.M.U. ^a 16,912 13,500 Bal. of City 6,834 8,833 Mt. Pleasant 23,746 22,333 Lapeer Co. Townships Arcadia 2,347 3,109 Attica 3,642 4,987 Burlington 1,562 1,774 Burnside 1,772 2,192 Deerfield 4,672 6,346 Dryden 2,977 4,056 Elba 4,604 5,007 Goodland 1,534 1,799 Hadley 3,331 4,843 Lapeer 4,261 5,948 Marathon 4,336 5,335 Mayfield 7,098 9,787 Metamora 3,220 4,459 North Branch 2,721 3,518 Oregon 5,652 7,862 Rich 1,249 1,422 City Lapeer	Wise	1,218	1,540
Shepherd 1,534 2,158 Rosebush 336 N.A. City C.M.U. ^a 16,912 13,500 Bal. of City 6,834 8,833 Mt. Pleasant 23,746 22,333 Lapeer Co. Townships Arcadia 2,347 3,109 Attica 3,642 4,987 Burlington 1,562 1,774 Burnside 1,772 2,192 Deerfield 4,672 6,346 Dryden 2,977 4,056 Elba 4,604 5,007 Goodland 1,534 1,799 Hadley 3,331 4,843 Lapeer 4,261 5,948 Marathon 4,336 5,335 Mayfield 7,098 9,787 Metamora 3,220 4,459 North Branch 2,721 3,518 Oregon 5,652 7,862 Rich 1,249 1,422 City Lapeer	Villages		
Rosebush 336 N.A. City 16,912 13,500 Bal. of City 6,834 8,833 Mt. Pleasant 23,746 22,333 Lapeer Co. Townships Arcadia 2,347 3,109 Attica 3,642 4,987 Burlington 1,562 1,774 Burnside 1,772 2,192 Deerfield 4,672 6,346 Dryden 2,977 4,056 Elba 4,604 5,007 Goodland 1,534 1,799 Hadley 3,331 4,843 Lapeer 4,261 5,948 Marathon 4,336 5,335 Mayfield 7,098 9,787 Metamora 3,220 4,459 North Branch 2,721 3,518 Oregon 5,652 7,862 Rich 1,249 1,422 City Lapeer 6,198 6,363 Villages Clifford		1,534	2,158
C.M.U. a 16,912 13,500 Bal. of City 6,834 8,833 Mt. Pleasant 23,746 22,333 Lapeer Co. Townships Arcadia 2,347 3,109 Attica 3,642 4,987 Burlington 1,562 1,774 Burnside 1,772 2,192 Deerfield 4,672 6,346 Dryden 2,977 4,056 Elba 4,604 5,007 Goodland 1,534 1,799 Hadley 3,331 4,843 Lapeer 4,261 5,948 Marathon 4,336 5,335 Mayfield 7,098 9,787 Metamora 3,220 4,459 North Branch 2,721 3,518 Oregon 5,652 7,862 Rich 1,249 1,422 City Lapeer 6,198 6,363 Villages Clifford 406 543 Columbiaville 953 982 Metamora 552 564 North Branch 552 564 North Branch 896 1,143	-		
C.M.U. a 16,912 13,500 Bal. of City 6,834 8,833 Mt. Pleasant 23,746 22,333 Lapeer Co. Townships Arcadia 2,347 3,109 Attica 3,642 4,987 Burlington 1,562 1,774 Burnside 1,772 2,192 Deerfield 4,672 6,346 Dryden 2,977 4,056 Elba 4,604 5,007 Goodland 1,534 1,799 Hadley 3,331 4,843 Lapeer 4,261 5,948 Marathon 4,336 5,335 Mayfield 7,098 9,787 Metamora 3,220 4,459 North Branch 2,721 3,518 Oregon 5,652 7,862 Rich 1,249 1,422 City Lapeer 6,198 6,363 Villages Clifford 406 543 Columbiaville 953 982 Metamora 552 564 North Branch 552 564 North Branch 896 1,143	City		
Bal. of City Mt. Pleasant 6,834 23,746 8,833 Lapeer Co. Townships Arcadia 2,347 3,109 Attica 3,642 4,987 Burlington 1,562 1,774 Burnside 1,772 2,192 Deerfield 4,672 6,346 Dryden 2,977 4,056 Elba 4,604 5,007 Goodland 1,534 1,799 Hadley 3,331 4,843 Lapeer 4,261 5,948 Marathon 4,336 5,335 Mayfield 7,098 9,787 Metamora 3,220 4,459 North Branch 2,721 3,518 Oregon 5,652 7,862 Rich 1,249 1,422 City Lapeer 6,198 6,363 Villages Clifford 406 543 Columbiaville 953 982 Metamora 552 564 North Branch 896 1,143	C.M.U.a	16.912	13 500
Mt. Pleasant 23,746 22,333 Lapeer Co. Townships Arcadia 2,347 3,109 Attica 3,642 4,987 Burlington 1,562 1,774 Burnside 1,772 2,192 Deerfield 4,672 6,346 Dryden 2,977 4,056 Elba 4,604 5,007 Goodland 1,534 1,799 Hadley 3,331 4,843 Lapeer 4,261 5,948 Marathon 4,336 5,335 Mayfield 7,098 9,787 Metamora 3,220 4,459 North Branch 2,721 3,518 Oregon 5,652 7,862 Rich 1,249 1,422 City Lapeer 6,198 6,363 Villages Clifford 406 543 Columbiaville 953 982 Metamora 552 564 North Branch 596 1,143			-
Townships Arcadia			
Arcadia 2,347 3,109 Attica 3,642 4,987 Burlington 1,562 1,774 Burnside 1,772 2,192 Deerfield 4,672 6,346 Dryden 2,977 4,056 Elba 4,604 5,007 Goodland 1,534 1,799 Hadley 3,331 4,843 Lapeer 4,261 5,948 Marathon 4,336 5,335 Mayfield 7,098 9,787 Metamora 3,220 4,459 North Branch 2,721 3,518 Oregon 5,652 7,862 Rich 1,249 1,422 City Lapeer 6,198 6,363 Villages Clifford 406 543 Columbiaville 953 982 Metamora 552 564 North Branch 896 1,143	Lapeer Co.		
Attica 3,642 4,987 Burlington 1,562 1,774 Burnside 1,772 2,192 Deerfield 4,672 6,346 Dryden 2,977 4,056 Elba 4,604 5,007 Goodland 1,534 1,799 Hadley 3,331 4,843 Lapeer 4,261 5,948 Marathon 4,336 5,335 Mayfield 7,098 9,787 Metamora 3,220 4,459 North Branch 2,721 3,518 Oregon 5,652 7,862 Rich 1,249 1,422 City Lapeer 6,198 6,363 Villages Clifford 406 543 Columbiaville 953 982 Metamora 552 564 North Branch 896 1,143	Townships		
Attica 3,642 4,987 Burlington 1,562 1,774 Burnside 1,772 2,192 Deerfield 4,672 6,346 Dryden 2,977 4,056 Elba 4,604 5,007 Goodland 1,534 1,799 Hadley 3,331 4,843 Lapeer 4,261 5,948 Marathon 4,336 5,335 Mayfield 7,098 9,787 Metamora 3,220 4,459 North Branch 2,721 3,518 Oregon 5,652 7,862 Rich 1,249 1,422 City Lapeer 6,198 6,363 Villages Clifford 406 543 Columbiaville 953 982 Metamora 552 564 North Branch 896 1,143	Arcadia	2,347	3,109
Burlington 1,562 1,774 Burnside 1,772 2,192 Deerfield 4,672 6,346 Dryden 2,977 4,056 Elba 4,604 5,007 Goodland 1,534 1,799 Hadley 3,331 4,843 Lapeer 4,261 5,948 Marathon 4,336 5,335 Mayfield 7,098 9,787 Metamora 3,220 4,459 North Branch 2,721 3,518 Oregon 5,652 7,862 Rich 1,249 1,422 City Lapeer 6,198 6,363 Villages Clifford 406 543 Columbiaville 953 982 Metamora 552 564 North Branch 896 1,143	Attica		
Deerfield 4,672 6,346 Dryden 2,977 4,056 Elba 4,604 5,007 Goodland 1,534 1,799 Hadley 3,331 4,843 Lapeer 4,261 5,948 Marathon 4,336 5,335 Mayfield 7,098 9,787 Metamora 3,220 4,459 North Branch 2,721 3,518 Oregon 5,652 7,862 Rich 1,249 1,422 City Lapeer 6,198 6,363 Villages Clifford 406 543 Columbiaville 953 982 Metamora 552 564 North Branch 896 1,143	Burlington	1,562	1,774
Dryden 2,977 4,056 Elba 4,604 5,007 Goodland 1,534 1,799 Hadley 3,331 4,843 Lapeer 4,261 5,948 Marathon 4,336 5,335 Mayfield 7,098 9,787 Metamora 3,220 4,459 North Branch 2,721 3,518 Oregon 5,652 7,862 Rich 1,249 1,422 City 406 543 Columbiaville 953 982 Metamora 552 564 North Branch 896 1,143	Burnside	1,772	2,192
Elba 4,604 5,007 Goodland 1,534 1,799 Hadley 3,331 4,843 Lapeer 4,261 5,948 Marathon 4,336 5,335 Mayfield 7,098 9,787 Metamora 3,220 4,459 North Branch 2,721 3,518 Oregon 5,652 7,862 Rich 1,249 1,422 City Lapeer 6,198 6,363 Villages Clifford 406 543 Columbiaville 953 982 Metamora 552 564 North Branch 896 1,143	Deerfield	4,672	6,346
Goodland 1,534 1,799 Hadley 3,331 4,843 Lapeer 4,261 5,948 Marathon 4,336 5,335 Mayfield 7,098 9,787 Metamora 3,220 4,459 North Branch 2,721 3,518 Oregon 5,652 7,862 Rich 1,249 1,422 City Lapeer 6,198 6,363 Villages Clifford 406 543 Columbiaville 953 982 Metamora 552 564 North Branch 896 1,143	Dryden	2,977	4,056
Hadley 3,331 4,843 Lapeer 4,261 5,948 Marathon 4,336 5,335 Mayfield 7,098 9,787 Metamora 3,220 4,459 North Branch 2,721 3,518 Oregon 5,652 7,862 Rich 1,249 1,422 City Lapeer 6,198 6,363 Villages Clifford 406 543 Columbiaville 953 982 Metamora 552 564 North Branch 896 1,143	Elba	4,604	5,007
Lapeer 4,261 5,948 Marathon 4,336 5,335 Mayfield 7,098 9,787 Metamora 3,220 4,459 North Branch 2,721 3,518 Oregon 5,652 7,862 Rich 1,249 1,422 City Lapeer 6,198 6,363 Villages Clifford 406 543 Columbiaville 953 982 Metamora 552 564 North Branch 896 1,143	Goodland	1,534	1,799
Marathon 4,336 5,335 Mayfield 7,098 9,787 Metamora 3,220 4,459 North Branch 2,721 3,518 Oregon 5,652 7,862 Rich 1,249 1,422 City 1,249 6,363 Villages 6,198 6,363 Villages 406 543 Columbiaville 953 982 Metamora 552 564 North Branch 896 1,143	Hadley		4,843
Mayfield 7,098 9,787 Metamora 3,220 4,459 North Branch 2,721 3,518 Oregon 5,652 7,862 Rich 1,249 1,422 City 406 543 Columbiaville 953 982 Metamora 552 564 North Branch 896 1,143	•		5,948
Metamora 3,220 4,459 North Branch 2,721 3,518 Oregon 5,652 7,862 Rich 1,249 1,422 City Lapeer 6,198 6,363 Villages Clifford 406 543 Columbiaville 953 982 Metamora 552 564 North Branch 896 1,143			
North Branch 2,721 3,518 Oregon 5,652 7,862 Rich 1,249 1,422 City 1,249 1,422 Lapeer 6,198 6,363 Villages Clifford 406 543 Columbiaville 953 982 Metamora 552 564 North Branch 896 1,143	_		
Oregon 5,652 7,862 Rich 1,249 1,422 City Lapeer 6,198 6,363 Villages Clifford 406 543 Columbiaville 953 982 Metamora 552 564 North Branch 896 1,143			
Rich 1,249 1,422 City Lapeer 6,198 6,363 Villages Clifford 406 543 Columbiaville 953 982 Metamora 552 564 North Branch 896 1,143			
City Lapeer 6,198 6,363 Villages Clifford 406 543 Columbiaville 953 982 Metamora 552 564 North Branch 896 1,143		· ·	
Lapeer 6,198 6,363 Villages Clifford 406 543 Columbiaville 953 982 Metamora 552 564 North Branch 896 1,143	Rich	1,249	1,422
Villages 406 543 Clifford 406 543 Columbiaville 953 982 Metamora 552 564 North Branch 896 1,143	City		
Clifford 406 543 Columbiaville 953 982 Metamora 552 564 North Branch 896 1,143	Lapeer	6,198	6,363
Clifford 406 543 Columbiaville 953 982 Metamora 552 564 North Branch 896 1,143	Villages		
Columbiaville 953 982 Metamora 552 564 North Branch 896 1,143		406	543
Metamora 552 564 North Branch 896 1,143			
North Branch 896 1,143			
· ·			
		442	

Livingston Co.		
Townships		
Cohoctah	2,436	4,365 ^b
Conway	1,722	2,488 ^b
Deerfield	2,611	3,645,b
Genoa	9,261	17,388, ^b
Hartland	6,034	14,558 ^b
Howell	3,999	8,288 ^b
Marion	4,754	9,723 ^b
Oceola	4,175	8,935 ^b
Tyrone	6,077	12,231
City		
Howell	6,976	9,269 ^b
Mecosta Co.		
Townships		
Chippewa	1,009	1,400
Fork	1,348	1,900
Martiny	1,210	1,800
Millbrook	947	1,280
Sheridan	1,007	1,200
Wheatland	1,424	1,870
Village		
Barryton	422	N.A.
Midland Co.		
Townships		
Edenville	2,029	2,180
Geneva	1,157	1,205
Greendale	1,244	1,315
Homer	4,477	5,195
Hope	1,249	1,320
Ingersol1	3,011	3,375
Jasper	1,129	1,152
Jerome	4,171	4,840
Larkin	3,303	3,832
Lee	3,325	3,858
Lincoln	1,643	1,906
Midland	2,389	2,346
Mills	1,461	1,695
Mount Haley Porter	1,586	1,840
Varren	1,113	1,089
METTER	1,846	2,131

Mid	land	Co.	cont.

		
Villages Sanford	864	N.A.
Cities		
Coleman	1,429	1,602
Midland	37,250	42,418
Montcalm Co.		
Townships		2 700
Crystal	2,224	2,700
Ferris	1,133	1,400
Home	2,614	2,850 3,300
Richland	2,421	3,300
Oakland Co.		
Townships		a .a.b
Addison	4,184	8,636b
Brandon	8,336	16,720 b
Groveland	4,114	8,595°
Highland	16,958	29,918 _b
Holly	3,612	5,027 15,236b
Oxford	7,823	15,236 ⁻ 9,290 ^b
Rose	4,465	· n
Springfield	8,295	16,097
Village		5
Ortonville	1,190	1,316 ^b
City		6,263 ^b
Holly	4,874	6,263
Ogemaw Co.		
Townships		1 507
Churchill	1,058	1,507 921
Cumming	675	1,470
Edwards	1,036	476
Goodar	374	1,745
H111	1,301	1,745
Horton	729	504
Klacking	386	718
Logan	567 2.624	4,042
Mills	2,624 814	1,189
Ogemaw	814	1,107

Ogemaw Co. cont.		
Richland	803	966
Rose	1,085	1,630
West Branch	2,075	3,054
	•	-,
Village	0.00	
Prescott	322	367
Cities		
Rose City	661	938
West Branch	1,785	2,092
west state.	1,703	2,092
Osceola Co.		
Townships		
Evart	1,029	1,300
Orient	635	900
Sylvan	657	700
by I van	037	700
Roscommon Co.		
Townships		
Backus	213	302
Nester	245	331
Richfield	2,926	4,786
Saginaw Co.		
Townships		
Albee	2,642	2,814
Birch Run	5,488	5,838
Blumfield	2,047	2,137
Brady	2,498	2,536
Brant	1,849	1,800
Bridgeport	13,978	14,781
Buena Vista	12,768	12,587
Carrollton	7,482	7,262
Chapin	1,054	1,020
Cheasaning	5,317	5,354
Frankenmuth	2,389	2,497
Fremont	2,087	2,066
James	2,168	2,293
Jonesfield	1,920	1,854
Kochville	2,828	3,012
Lakefield	960	949
Maple Grove	2,994	3,189

Saginaw Co. cont.		
Marion	913	878
Richland	4,402	4,689
Saginaw	38,668	41,190
St. Charles	3,689	3,580
Spaulding	3,164	3,109
Swan Creek	2,530	2,745
Taymouth	4,581	4,770
Thomas	11,184	11,875
Tittabawassee	4,908	5,228
Zilwaukee	89	N.A.
Villages		
Birch Run	1,196	1,266
Cheasining	2,656	2,531
Merrill	851	786
Oakley	412	407
St. Charles	2,276	2,364
Cities		
Frankenmuth	3,753	3,994
Saginaw	77,508	67,969
Zilwaukee	2,201	N.A.
Sanilac Co.		
Townships		
Argyle	912	905
Austin	802	807
Custer	1,122	1,202
Elmer	829	826
Evergreen	1,042	1,046
Flynn	963	1,058
Greenleaf	746	772
Lamotte	1,065	1,145
Marlette	2,029	2,476
Minden	710	700
Moore	1,318	1,393
Wheatland	582	583

1,761

2,034

City Marlette

Shiawassee Co.

Townships		
Antrim	1,752	2,421
Burns	3,273	4,098
Caledonia	4,785	5,404
Fairfield	904	984
Hazelton	2,411	2,762
New Haven	1,425	1,522
Owosso	4,530	5,188
Rush	1,500	1,585
Shiawassee	2,709	3,161
Venice	3,063	3,416
Vernon	5,003	5,678
Cities		
Corunna	3,206	3,668
Durand	4,241	4,099
0wosso	16,455	17,531
Villages		
Bancroft	618	614
Byron	689	656
Lennon	486	482
New Lothrop	646	716
Vernon	1,008	977
Tuscola Co.		
Townships		
Akron	1,811	1,855
Almer	2,720	3,179
Arbela	3,192	3,856
Columbia	1,428	1,390
Dayton	1,728	2,027
Denmark	3,615	4,313
Elkland	3,449	4,044
Ellington	1,214	1,351
Elmwood	1,337	1,427
Fairgrove	1,946	2,125
Fremont	2,871	3,349
Gilford	915	857
Indianfields	7,037	8,059
Juniata	1,619	2,018
Kingston	1,539	1,667
Koylton	1,339	1,581
Millington	4,429	5,434
Novesta	1,482	1,632
Tuscola	2,255	2,719

Tuscola Co. cont.

Saginaw Bay Drainage Drainage Basin Total	1,458,339	1,648,036
Vassar	2,727	3,075
City		
Unionville	578	625
Reese	1,645	2,057
Millington	1,237	1,442
Mayville	958	1,082
Kingston	417	457
Gagetown	482	481
Fairgrove	691	823
Cass City	2,258	2,716
Caro	4,317	5,079
Akron	538	617
Villages	500	(17
Wisner	916	1,043
Wells	1,501	1,695
Watertown	2,122	2,575
Vassar	<u>•</u>	4,631
	3,709	

Sources: - Bureau of the Census. 1983

- ECMPDR Region 7 - GLS Region 5

- SEMCOG Region I

⁻ WMRPC Region 8

^aCentral Michigan University figures supplied by Mt. Pleasant Department of Community Affairs.

 $^{^{\}mathrm{b}}\mathrm{Projected}$ to the year 2005 by SEMCOG.

DISTRIBUTION OF ESTABLISHMENTS BY MAJOR INDUSTRIAL GROUP AND EMPLOYMENT RANGE FOR COUNTIES IN THE SAGINAW BAY DRAINAGE BASIN APPENDIX 2:

Major group descriptions are: 20-food and kindred products; 22-textile mill products; 23-apparel and other textile products; 24-lumber and wood products; 25-fu atture and fixtures; 26-paper and allied products; 29-petroleum and coal products; 30-rubber and also, plastics products; 31-leather and leather products; 32-stone, clay, and glass products; 33-primary metal industries; 34-fabricated metal products; 35-machinery, except electrical; 36-electric and electronic equipment; 37-transportation equipment; 36-instruments and related products; 39-miscellaneous manufacturing industries (Rureau of the Census, 1985).

	20	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	Auxil- inries
Arenac 1 to 19 employees 20 to 99 employees				yo .			7			ti			-	s -	nn		-	-	-	
Bay 1 to 19 employees 20 to 99 employees 100 to 249 employees 250 employees or more	4 W	-	-	vo	e	~	2 2 2	~ ~	-	90-		13	6 5 4	5 1	21 6 0 1	7 - 2 -	2 2 1		~ ~	-0-5
Clare 1 to 19 employees 20 to 99 employees	7 7			s =			c			7		4	-	5 3	د 2					
Cenessee 1 to 19 employees 20 to 99 employees 100 to 249 employees 250 employees or more	80 K W		6	^	4	4	42 8 0	~ 0 0 -		= ∞	-	7 7	e	28 10 2	46 12 3	9	v w o v	₩	ev 54	5 3
Cladwin 1 to 19 employees 20 to 99 employees 100 to 249 employees				î			-	~		0				4	8 6.4		7 -			

	20	22	23	24	52	26	23	58	29	90	31	32	33	34	35	36	37	38	39	Auxil- iaries
Gration 1 to 19 employees 20 to 99 employees 100 to 249 employees 250 employees or more	~			~ -		-	4~	0-	00-	07-	000-	-	0 -	- 70 - 1		_	050-		_	~
Huron 1 to 19 employees 20 to 99 employees 100 to 249 employees 250 employees or more	% C -		~	~			o	~ -		6 2		9 7	- 2 -	v c 0 -	80 -7					
losco i to 19 employees 20 to 99 employees 100 to 249 employees	-		-	9								c 0 -		- 7 7	v e				~ ~	
isabella 1 to 19 employees 20 to 99 employees 100 to 249 employees	~ -		-	∢	-	~	~ 6					E.		00-	227			•	-	
l to 19 employees 20 to 99 employees 100 to 249 employees	-0-		-	~ -			∽ -			2 3		6	7 7	0 7 -	2.4	-	~ ~	0 -	m	0
Livingston 1 to 19 employees 20 to 99 employees 100 to 249 employees 250 employees	~ -	-		~-	·		0	vo	- 0 3	6 6		e -	7 7	15 6 1	25 10 2	0 M	- • -	0 -	~	0 -

	20	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	Auxil- farfes
Hecosta 1 to 19 employees 20 to 99 employees 100 to 249 employees 250 employees or more	£			90			4 -	-			-0	~		2 2 0	6.4		0-			
Hidiand 1 to 19 employees 20 to 99 employees 100 to 249 employees 250 employees or more	-			e -			2 - 2	000		2		E -	e	0 -	s -	-		-	m 	00
Honccalm 1 to 19 employees 20 to 99 employees 100 to 249 employees 250 employees of norc			~	•		0 7	8 7 -	~	0 -	4 4	-	~		90	7 8	00	-00-		~	0 -
Oskland 1 to 19 employees 20 to 99 employees 100 to 249 employees 250 employees	70	~ ~	9 3	2 2 1	2 2 1	= 2 -	240 19 3	45 14 1	12	84 35 8	7	09	14.0	232	617 225 23 9	63 36 13	36 4 8	28 18 1	62 10 2	52 58 17 13
Ogeman 1 to 19 employees 20 to 99 employees 130 to 249 employees				23	0 -		-			_		4	2 -	E 2 4	44	2			-	
Osceola i to 19 employees 20 to 99 employees 100 to 249 employees 250 employees or more	5 0 0			^			e e			-00-	00-	-	-	7-0	e	0	o -		-	

	20	52	23	24	25	56	27	28	29	30	31	32	33	34	35	36	37	38 3	Au) 39 tar	Auxil- iaries
Roscomeon 1 to 19 employees 20 to 99 employees				-4			7					4		~ ~		,		-	_	
Saginav 1 to 19 employees 20 to 99 employees 100 to 249 employees 250 employees or more	V 4 20 =	•	~ ~	12	40-	9.6	26 3 0	40		m m		13	2 2	14	322	-00-	3 0 1 2	S = 2	-	~ ~
Sanilac 1 to 19 employees 20 to 99 employees 100 to 249 employees 250 employees or more	n o		~	2 -	-		5 0	-		en		4 %	0~	10 6 3	6 6	7 0	- 2 2	-		
Shiawasses 1 to 19 employees 20 to 99 employees 100 to 249 employees 250 employees	c		-	m	- 2	0	~			5 E		7 7 -	0 -	به ش	22-	00 m n	0		-	0 7 0 -
Tuecole 1 to 19 employees 20 to 99 employees 100 to 249 employees 250 employees or more	- ~ -			4			9 7	-		0 7		٧,	0 - 0 - 0 - 0 - 0	5 3	9 7 0 1		 €	~		-

Only a portion of county is within the Snginny Bny drainage hasin.

APPENDIX 3: SECTION VIII - LITERATURE CITED

- 1. Allender, J.H. 1975. Numerical Simulation of circulation and Advection -Diffusion Processes in Saginaw Bay, Michigan. PhD. Thesis, U. of Michigan, Ann Arbor.
- 2. Arnold, D.E. 1971. Ingestion, assimilation, survival and reproduction by <u>Daphnia pulex</u> fed seven species of glue-green algae. Limnol. Oceanogr. 16:906-920.
- Assel, R.A., F.H. Quinn, G.A. Leshkevich and S.J. Bolsenga. 1983. Great Lakes Ice Atlas. Great Lakes Environment Research Laboratory, Ann Arbor.
- 4. Aulerich, R.J., R.K. Ringer, H.L. Seagram and W.G. Youatt. 1971.

 Effects of feeding coho salmon and other Great Lakes fish on mink reproduction. Can J. Zool. 49:611-616.
- 5. Aulerich, R.J. and R.K. Ringer. 1977. Current status of PCB toxicity to mink, and effect on their reproduction. Arch. Environ. Contam. Toxicol. 6:279.
- 6. Aulerich, R.J., S.J. Bursian, W.J. Breslin, B.A. Olson and R.K. Ringer.1985. Toxicological manifestations of 2,4,5-, 2',4',5'-, 2,3,6,2',3',6'-, and 3,4,5,2',4',5'-hexachlorobiphenyl and aroclor 1254 in mink. J. Toxicol. Environ. Health. 15:63-79.
- 7. Baker, D.B. 1985. Regional water quality impacts of intensive row-crop agriculture: a Lake Erie Basin Case Study. J. of Soil and Water Cons. 40(1):125-132.
- 8. Barry, P.J. 1973. Estimating dose commitments to populations from radioactive waste disposals into large lakes. IN Environmental behavior of radionuclides released in the nuclear industry, p. 99-505. IAEA. Vienna, Austria.
- 9. Bartholic, J.F. 1985. Groundwater and agriculture plant nutrient use and the environment. Proceedings, Kansas City, Missouri. October 21-23, 1985. 343-359 p.
- of Saginaw Bay, Lake Huron. Great Lakes Fishery Commission Technical Report #12, Ann Arbor.
- 11. Bendall, Douglas J. 1982. Municipal Water Withdrawals in Michigan.
 Michigan Department of Natural Resources, Water Management
 Division. 43 p.
- 12. Bendes-Bruce. 1987. Personal communication. Environmental Health Specialist, Huron County Health Department.

- 13. Bierman, V.J. Jr., W.L. Richardson and D.M. Dolan. 1975. Responses of hytoplankton biomass in Saginaw Bay to changes in nutrient loadings. Report prep. for the Inter. Ref. Group on Upper Lakes Pollution, IJC. Windsor, Ont.
- Bierman, V.J., D. Dolan and R. Kasprzyk. 1984. Retrospective analysis of the response of Saginaw Bay, Lake Huron, to reductions in phosphorus loadings. Env. Sci. & Tech. 18:23-31.
- Bolsenga, S.J. 1967. Great Lakes Snow Depth Probability Charts and Tables. U.S. Lake Survey.
- 16. Bratzel, M.P., M.E. Thompson and R.J. Bowden, (Eds.). 1977. The waters of Lake Huron and Lake Superior. Vol. II (Part A). Lake Huron, Georgian Bay, and the North Channel. Report to the International Joint Commission by the Upper Lakes Reference Group. Windsor, Ontario.
- 17. Brinkhurst, R.O. 1967. The distribution of aquatic oligochaetes in Saginaw Bay, Lake Huron. Limnol. Oceanogr. 12:137-143.
- 18. Brinkhurst, R.O., K.E. Chua and E. Batoosingh. 1969. Modifications in sampling procedures as applied to studies on the bacteria and tubificid oligochaetes inhabiting aquatic sediments. J. Fish. Res. Bd. Can. 26:2581-2593.
- 19. Brouillet, Allan. 1987. Personal communication. Michigan Department of Natural Resources, Surface Water Quality Division, Saginaw District. 8 March 1987.
- 20. Bureau of the Census. 1983. 1983 County and City Data Book. U.S. Department of Commerce.
- 21. Bureau of the Census. 1984. 1982 Census of Agriculture Michigan. U.S.Department of Commerce.
- 22. Bureau of the Census. 1985. 1982 Census of Manufacturers Michigan. U.S. Department of Commerce.
- 23. Burt, W.H. 1957. Mammals of the Great Lakes Region. Ann Arbor, MI: The University of Michigan Press. 246 p.
- 24. Carlson, R.E. 1977. A tropic state index for lakes. Limnol. Oceanogr. 22(2):351-369.
- 25. Carr, J.F. and J.K. Hiltunen. 1965. Changes in the bottom fauna of western Lake Erie from 1930-1961. Limnol. Oceanogr. p. 551-569.
- 26. The Chester Engineers. 1976. Assessment of current water quality conditions and factors responsible for those conditions: Summary. Prepared for East Central Michigan Planning and Development Region, Region VII Areawide Waste Management Study. 128 p.

- 27. Chester Engineers. 1977. Areawide Waste Treatment Management Plan.
 Prepared for the East Central Michigan Planning and Development
 Region.
- 28. The Chester Engineers. 1977. Wastewater Facilities Inventory, Summary Preliminary Draft. Prepared for East Central Michigan Planning and Development Region, Region VII Areawide Waste Treatment Management Study. 81 p.
- 29. City of Midland, Michigan. Undated. Water quality model for combined sewer overflow control alternatives. 51 p.
- 30. City of Bay City. 1986. Recreation Plan. Bay City Planning Commission.
- 31. Cole, R.A. and D.L. Weigmann. 1983. Relationships among zoobenthos, sediments, and organic matter in littoral zones of western Lake Erie and Saginaw Bay. J. Great Lakes Res. 9:568-581.
- 32. Conley, D.J. 1987. Mechanisms controlling silica flux from sediments and implications for the biogeochemical cycling of silica in Lake Michigan. Ph.D. dissertation, Univ. of Mich., Ann Arbor, Mich. 104 p.
- 33. Copeland, Claudia. 1986. Clean Water Act Amendment: What the President's Veto Means. Report #86-989 ENR. Congressional Research Service, Washington, D.C. 15 p.
- 34. Danek, L.J. and J.H. Saylor. 1975. Saginaw Bay Water Circulation. N.O.A.A. Technical Report ERL 359-GLERL 6, U.S. Department of Commerce.
- 35. Dean, Lillian. 1985. Government Programs for Water Management in Michigan. Volume Eight: Water Management in Michigan. Michigan Department of Natural Resources. 86 p.
- 36. DeGuire, L.J. 1986a. The Great Lakes atmospheric deposition program in Michigan. The Department of Natural Resources. 14 p.
- 37. DeGuire, L.J. 1986b. Understanding acid rain. Michigan Department Natural Resources. 23-27 p.
- 38. De Kam, John. 1987. Personal communication. Supervisor, Bay-Metro Water Plant.
- 39. Devault, D. 1984. Polychlorinated dioxins and polychlorinated furans in fish from the Great Lakes and Midwest. For U.S. Environmental Protection Agency, Great Lakes National Program Office. EPA-905/3-84-006.

- 40. DiToro, D.M., L.M. Horzempa, M.M. Losey and W.L. Richardson. 1982.
 Reversible and resistant components of PCB absorptiondesorption: adsorbent concentration effects. J. Great Lakes
 Res. 8(2):336-349.
- 41. Dobson, H.F.H., M. Gilbertson and P.G. Sly. 1974. Summary and comparison of nutrients and related water quality in lakes Erie, Ontario, Huron and Superior. J. Fish. Res. Ed. Canada. 31:731-738.
- 42. Dolan, D.M. 1975. Saginaw Bay Residence Times. Internal Working Paper, U.S. Environmental Protection Agency.
- Oplan, D.M., V.J. Bierman, M.H. Dipert and R.D. Geist. 1981.
 Statistical analysis of the spatial and temporal variability of the ratio chlorophyll a to phytoplankton cell volume in Saginaw Bay, Lake Huron. J. Great Lakes Res. 4(1):75-83.
- Dolan, D.M. and V.J. Bierman, Jr. 1982. Mass balance modeling of heavy metals in Saginaw Bay, Lake Huron. J. Great Lakes Res. 8(4):676-694.
- 45. Dolan, D.M., D.A. Griesmer and D.C. McNaught. 1984. Nutrient,
 Phytoplankton, and Zooplankton Interrelationships in Saginaw
 Bay. U.S.E.P.A. Large Lakes Research Station, Grosse Ile,
 Michigan.
- 46. Dolan, D.M., N.D. Warry and R. Rossman (editors). 1985. Lake Huron 1980 Intensive Survey Summary Report. International Joint Commission, Windsor, Ontario.
- 47. Dolan, D.M., N.D. Warry, R. Rossmann and T.B. Reynoldson, (Eds).
 1986. Lake Huron 1980 Intensive Survey. Summary Report.
 Report to the Surveillance Work Group. Windsor, Ontario. 133
- 48. Dougherty, R.C., M.J. Whitaker, S. Tang. R. Bottcher, M. Keller and D.W. Kuehl. 1980. Sperm density and toxic substances: a potential key to environmental health hazards. Ann Arbor, MI: Environmental Health Chemistry, Ann Arbor Science Publishers.
- 49. Dow Chemical, U.S.A. 1987. Section 24 Demonstration Under Dioxin Order of Abatement. Attachments.
- 50. Duling, L. 1984, Oct. 4. New Release. Environmental Services Division. State of Michigan. Lansing, Michigan.
- 51. East Central Michigan Planning and Development Region. 1980.
 Saginaw and Pine River In-place Pollutants Mitigation Feasibility Study Phase A and B. U.S. Environmental Protection Agency.

- 52. East Central Michigan Planning and Development Region. 1983.
 Saginaw and Pine Rivers In-Place Pollutants Study. Final Report. For U.S. EPA. contract No. R807022010. 159 p.
- 53. East Central Michigan Planning and Development Region. 1983. Saginaw and Pine Rivers in-place pollutants study. 161 p.
- 54. East Central Michigan Planning and Development Region. 1983.
 Saginaw and Pine Rivers In-place Pollutants Mitigation Feasibility Study--Final Report. U.S. Environmental Protection Agency. Saginaw, Michigan.
- 55. East Central Michigan Planning and Development Region. 1986. Quarterly Newsletter.
- 56. East Central Michigan Planning and Development. 1986. Arenac, Roscommon, Iosco, Gladwin and Ogemaw County Solid Waste Management Plan.
- 57. East Central Michigan Planning and Development Region. 1987. Rural Nonpoint Pollution in Michigan. Michigan Department of Natural Resources.
- 58. Edgington, D.N. and J.A. Robbins. 1975. The behavior of plutonium and other long-lived radionuclides in Lake Michigan.. II. Patterns of deposition in sediments. IN Impact of nuclear releases into the aquatic environment. p. 245-260. IAEA. Vienna, Austria.
- 59. Eisenreich, S.J., B.B. Looney and J.D. Thorton. 1981. Airborne organic contaminants in the Great Lakes Ecosystem. Env. Sci. & Tech. 15(1):30-38.
- 60. Elder, D.L.a nd S.W. Fowler. 1977. Polychlorianted biphenyls: penetration into the deep ocean by zooplankton fecal pellet transport. Science. 197:459-464.
- 61. Ellenton, J.A. and M.F. McPherson. 1983. Mutagenicity studies on herring gulls from different locations on the Great Lakes.

 I. Sister chromatid exchange rates in herring gulls embryos.

 J. Toxicol. Environ. Health. 12:317-324.
- 62. Ellenton, J.A., L.J. Brownlee and B.R. Hollebone. 1985. Aryl hydrocarbon hydroxylase levels in Herring Gull embryos from different locations on the Great Lakes. Environ. Tox. Chem. 4:615-622.
- 63. EMTA. 1984. Fishing Guide to Lake Huron and Saginaw Bay. East Michigan Tourist Association. Bay City.

- 64. Enslin, B. and D. McIntosh. 1982. Changes in aquatic vegetation in Quanicassee, Nayanguing Point, and Wildfowl Bay. Center for Remote Sensing, Michigan State University, East Lansing, Michigan. Prepared for East Central Michigan Planning and Development Region, Saginaw, Michigan.
- 65. Environmental Research Group, Inc. 1980. Baseline aquatic community monitoring and analysis for the Huron and Tuscola counties A.C.P. special projects area. Final report prepared for East Central Michigan Planning and Development Region, Saginaw, Michigan.
- 66. Environmental Design and Planning, Inc. (EDP). 1981. Facility plan for the control and treatment of combined sewer overflows to the Saginaw River. 286 p.
- 67. Environmental Research Group, Inc. 1980. Survey of the aquatic macrophyte flora of designated Saginaw Bay tributary stations. An appendum to: Final report on biological baseline survey, July 7, 1980. Prepared for East Central Planning and Development Region, Saginaw, Michigan.
- 68. Ewing, B.B., E.S. Chian, J.C. Cook, C.A. Evans and P.K. Hopke.
 1972. Monitoring to detect previously unrecognized pollutants in
 surface waters. U.S. Environmental Protection Agency. EPA560/6-77-015.
- 69. Eyster, J.T., H.E.B. Humphrey and R.D. Kimbrough. 1983.
 Partitioning of Polybrominated biphenyls in serum, adipose tissue, breast milk, placenta, cord blood, biliary fluid and feces. Arch. Env. Hlth. 38(1):47-53.
- 70. Fabcher, D.E. 1967. The ecological consequences of pesticide resistance in fishes. Trans. N. Am. Wildl. Nat. Res. Conf. 32:103-107.
- 71. Fehringer, N.V., S.M. Walters, R.J. Kozara and L.F. Schneider. 1985. J. Agric. Food Chem. 33:626-630.
- 72. Fein, G.G., J.1. jacobson, S.W. Jacobson, P.M. Schwartz and J.K. Dowler. In Press (Journal of Pediatrics).
- 73. Firestone, D., R.A. Niemann, L.F. Schneider, J.R. Gridley and D.E. Brown. 1986. Dioxin residues in fish and other foods. For publication as chapter in chlorianted dioxins and dibenzofurans in the total environment III, 1986.
- 74. Fitchko, J. 1985. A literature review of the effects of persistent toxic substances on Great Lakes biota. Unpublished paper presented at Symposium/Workshop on Persistent Toxic Substances and the Health of Aquatic Community. Minneapolis, MN.

- 75. Forney, J. 1982. Great Lakes environmental contaminants survey.

 Summary report. 1972-1980. Michigan Dept. Nat. Res. Publ. No. 3730-0038. Lansing, Michigan.
- 76. Forney, J.C. 1983. Summary of dioxin contamination in Michigan.
 Environmental Services Divison, Michigan Department of Natural
 Resources. 24 p.
- 77. Freedman, P. C. 1974. Saginaw Bay: An Evaluation of existing and historical conditions. For U.S. EPA. (EPA-905/9-74-003). 137 p.
- 78. Freedman, P.L. 1974. Saginaw Bay: An Evaluation of Existing and Historical Conditions. U.S. Environmental Protection Agency (Region V), Chicago, Illinois. EPA-905/9-74-003. 137 p.
- 79. Gannon, J.E. 1975. Crustacean zooplankton in Saginaw Bay, Lake Huron. A report to the International Reference Group on Lakes Pollution, IJC. Windsor, Ontario.
- 80. Gannon, J.E. 1981. Zooplankton of the North American Great Lakes. Verh. Internat. Verein. Limnol. 21:1725-1733.
- 81. Garcia, Andrew W. and Robert E. Jensen. 1983. Wave Data Acquisition and Hindcast for Saginaw Bay, Michigan. Hydraulics Lab Technical Report HL-83-14, U.S. Army Corps of Engineers.
- 82. Garvey, Jan. 1988. Dow Chemical Company. Personal conversation. August 24 and 25, 1988.
- 83. Genesee, Lapeer, Shiawassee Region V Planning and Development Commission. 1978. 208 Areawide Water Quality Plan. U.S. Environmental Protection Agency.
- 84. Gershin, Brickner and Bratton, Inc. 1986. Phase II Feasibility Study: Waste to Energy in the East Central Region of Michigan. East Central Michigan Planning and Development Region.
- 85. Gies, Fred. 1987. Personal communication. Supervisor, City of Pinconning Water Treatment Plant.
- 86. Gilbertson, M. In Press. Epidemics in Great Lakes birds and the health of aquatic communities.
- 87. Gilbertson, M., R.D. Morris and R.A. Hunter. 1974. Pollutants in breeding Herring Gulls in the Lower Great Lakes. The Canadian Field-Naturalist. 88:273-280.
- 88. Gilbertson, M., R.D. Morris and R.A. Hunter. 1976. Abnormal chicks and PCB residue levels in eggs of colonial birds on the Lower Great Lakes (1971-1973). The Auk. 93:434-442.

- 89. Gilbertson, M. and G.A. Fox. 1977. Pollutant-associated embryonic mortality of Great Lakes Herring Gulls. Environ. Pollut. 12:211-216.
- 90. Gilman, A.P., G.A. Fox, D.B. Peakall, S.M. Teeple, T.R. Carrole and G.T. Hymes. 1977. Reproductive parameters and egg contaminant levels of Great Lakes herring gulls. J. Wildl. Manage. 41(3):458-468.
- 91. Glickman, A.H, C.N. Statham, A. Lech and J.J. Wu. 1977. Studies on the uptake, metabolism and disposition of pentachlorophenol and pentachloroanisole in rainbow trout. Toxicol. Appl. Pharmacol. 41:649-658.
- 92. Great Lakes Water Resource Planning Commission. 1987. Water Resources for the Future: Michigan's Draft Action Plan. Great Lakes and Water Resources Planning Commission. Lansing, Michigan. 107 p.
- 93. Goble, S., et al. 1987. Hazardous Waste Treatment and Disposal:
 Existing Capacity in Michigan. Vols. I and II. Legislative
 Service Bureau. 400 p.
- 94. Gochfeld, M. 1974. Development defects in Common Terns of Western Long Island, New York. The Auk. 92:58-65.
- 95. Gold, A.J. and T.L. Loudon. 1986. Runoff water quality from conservation and conventional tillage. Presented at Amer. Soc. of Ag. Engineers 1986 Winter Meeting, Chicago, II. December 16-19, 1986. Paper No. 86-2540. 15 p.
- Goodyear, Carole C., Thomas A. Edsall, Diane M. Ormsby Dempsey, G. David Moss and P.E. Polanski. 1982. Atlas of spawning and nursery areas of the Great Lakes fishes. Volume 5: Lake Huron. U.S. Fish and Wildlife Service, FWS/OBS-82/52.
- 97. Gotham, I.J. and G-Y. Rhee. 1982. Effects of hexachlorobiphenyl and pentachlorobiphenyl on growth and photosynthesis of phytoplankton.J. Great Lakes Res. 8(2):328-335.
- 98. Goudy, G.W., Ed. 1986. Water quality and pollution control in Michigan: 1986 Report. Michigan 305(b) Report: Volume 9. Water Years 1984 & 1985. Michigan Department of Natural Resources, Surface Water Quality Division. 132 p.
- 99. Grant, B.F. and P.M. Mehrle, Jr. 1970. Chronic endrin poisoning in goldfish, Carassius auratus. J. Fish. Res. Board Can. 27:225-232.
- 100. Great Lakes Basin Commission. 1973. Water Quality. Appendix 7, Great Lakes Basin Framework Study. Great Lakes Basin Commission, Ann Arbor, Michigan.

- 101. Great Lakes Basin Commission. 1980. Dredging in the Great Lakes: implications of dredging policies to transportation planning and management in the U.S. Coastal Zone. Summary Proceedings. 120 p.
- 102. Great Lakes Basin Commission. 1975. Great Lakes Basin Framework Study, Appendices 2,7,11,16.
- 103. Great Lakes Water Quality Board. 1985. 1985 Report on Great Lakes Water Quality. Report to the International Joint Commission. Kingston, Ontario.
- 104. Great Lakes Basin Commission. 1975. Problem Effects, 1975 National Water Assessment, Great Lakes Region.
- 105. Great Lakes Fishery Laboratory. 1982. Progress in fishery research. U.S. Department of the Interior, Fish and Wildlife Service, Ann Arbor, Michigan.
- 106. Great Lakes Phosphorus Task Force. 1986. A phosphorus diet for the lower Great Lakes: executive summary of the U.S. Task Force Plans for Phosphorus Load Reductions to Lake Erie, Lake Ontario, and Saginaw Bay. 20 p.
- 107. Harding, L.W. Jr. and J.h. Phillips. 1978. Polychlorinated biphenyl (PCB) uptake by marine phytoplankton. Marine Biology. 49:103-111.
- 108. Harless, R.L., E.O. Oswald, R.G. lewis, D.D. McDaniel and Han Tai. 1982. Chemosphere. 11:193.
- 109. Harris, H.J. In Press. Summary and recommendations of the effects of persistent toxic substances on birds and mammals in the Great Lakes.
- 110. Hasty, Jim. 1987. Personal communication. Environmental Health Director, Iosco County Health Department.
- 111. Hays, H. and R.W. Risebrough. 1972. Pollutant concentrations in abnormal young terns from Long Island Sound. The Auk. 89:19-35.
- Heidtke, T.M., D.J. Scheflow and W.C. Sonzongi. 1980. U.S. heavy metals loadings to the Great Lakes: estimates of point and non-point contributions. Great Lakes Basin Commission, Great Lakes Environmental Planning Study (GLEPS). Contribution No. 12. 34 p.
- Henderson, C., A. Inglis and W.L. Johnson. 1971. Organochlorine insecticide residues in fish, fall 1969. Pestic. Monit. J. 5:1-11.
- Henderson, C. 1972. Mercury residues in fish. Pestic. Monit. J. 6:144-159.

- Hendrix, Glenn A. and William L. Yocum. 1984. Recent Fisheries Trends in Saginaw Bay: 1954-1984. East Central Michigan Planning and Development Region, Saginaw, Michigan. 47 p.
- Henny, C.J., L.J. Blus, S.V. Gregory and C.J. Stafford. 1981. PCBs and organochlorine pesticides in wild mink and river otters from Oregon. Worldwide Furbearers Conference Proceedings, III:1763-1780.
- Hern, Henry. 1987. Personal communication. Superintendent, Buena Vista WWTP. 28 July 1987.
- Hesse, J.L. 1975. Water pollution aspects of polybrominated biphenyl production: Results of surveys in the Pine River in the vicinity of St. Louis, Michigan. Paper presented at the 2nd National Conference on Complete Water Reuse, Chicago, May 3-4, 1975. MDNR, Lansing, MI.
- Hesselberg, R.J. 1983. Hatching success of Great Lakes fish exposed to contaminated dredged material. Progress in Fishery Research, 1983. Great Lakes Fishery Laboratory, Ann Arbor, Michigan.
- Hickey, J.J. and D.W. Anderson. 1968. Chlorinated hydrocarbons and eggshell changes in raptorial and fish-eating birds. Science. 162:271-273.
- 121. Hicks, Tom. 1984 February. Personal communication. MDNR, Surface Water Quality Division, Lansing, Michigan.
- 122. Hile, Ralph and H.J. Buettner. 1959. Fluctuations in the commercial fisheries of Saginaw Bay, 1885-1956. U.S. Fish and Wildlife Service Research Report 51.
- Hiltunen, J.K. 1969. Distribution of oligochaetes in western Lake Erie, 1960. Limnol. Oceanogr. 14:39-50.
- Hohn, M.H. 1969. Qualitative and quantitative analyses of plankton distoms Bass Islands area, Lake Erie, 1938-1965, including synoptic surveys of 1960-1963. Ohio Biol. Surv., N.S. 3(1):211.
- Holland, R.E. and L.W. Claflin. 1975. Horizontal distribution of planktonic diatoms in Green Bay, mid-July 1970. Limnol. Oceanogr. 20:365-378.
- Horn, E. and R. Sloan. 1983. Analysis of 2,3,7,8-p-dioxin in Great Lakes Fish. Chemosphere. 12:325-332.
- Hornshaw, T.C., R.J. Aulerich and H.E. Johnson. 1983. J. Tox. Environ. Health. 11:933-946.

- 128. Howmiller, R.P. and M.A. Scott. 1977. An environmental index based on relative abundance of oligochaete species. J. Water Poll. Cont. Ted. 49:809-815.
- 129. Humphrey, H.E.B. 1976. Evaluation of changes of the level of polychlorianted biphenyls in human tissues. Final Report to the FDA, contract no. 2323-73-2209. 86 p.
- 130. Humphrey, H.E.B. 1983. Population studies in Michigan residents. IN Dioxin: Toxicological and Chemical Aspects, F. Cattabeni, A. Cavallaro and G. Galli (Eds.). New York: SP Medical and Scientific Books. 123-136 p.
- 131. Humphrey, H.E.B. and J.L. Hesse. 1986. State of Michigan, Sport caught fish consumption advisory -- philosophy, procedures and process, draft procedural statement.
- 132. Hustedt, F. 1949. Susswasser-Diatomeen. Institut des Parcs Nationaux du Congo Belge. Exploration du Parc National Albert, Mission H. Damas (1935-1936). Imprimerie M. Hayex, Bruxelles. 199 p.
- 133. International Joint Commission. 1979. Water quality of the upper Great Lakes. An IJC Report to the Governments of Canada and the United States. International Joint Commission, Windsor, Ontario.
- 134. International Joint Commission. 1981. Annual Report. Committee on the Assessment of Human Health Effects on Great Lakes Water Quality. 142 p.
- 135. International Joint Commission. 1982. Guidelines and registerfor evaluation of Great Lakes Dredging projects. Report of the Dredging Subcommittee to the Water Quality Programs Committee of the Great Lakes Water Quality Baord. 365 p.
- 136. International Joint Commission. 1982. Annual Report on Great Lakes water quality. Great Lakes Water Quality Board, IJC, Windsor, Ontario, Canada.
- 137. International Joint Commission. 1983. An inventory of chemical substances identified in the Great Lakes Ecosystem. Report to the Great Lakes Water Quality Board. Vol. 1-6.
- 138. International Joint Commission: 1984. Report on Great Lakes water quality. Great Lakes Water Quality Board. IJC. Windsor, Ontario, Canada.
- 139. International Joint Commission. 1985. Great Lakes Water Quality Agreement of 1978: Agreement, with annexes and terms of reference, between the United States of American and Canada, signed at Ottawa, November 22, 1978 and Phosphorus Load Reduction Supplement signed October 7, 1983.

- 140. International Joint Commission. 1985. Guidance on characterization of toxic substance problems in areas of concern in the Great Lakes Basin; Draft. Based on recommendations from the monitoring in areas of concern workshop held at Canada Center for Inland Waters. October 3-4, 1985.
- 141. International Joint Commission. 1985. 1985 report on Great Lakes water quality. Great Lakes Water Quality Board; Kingston, Ontario. 212 p.
- 142. International Joint Commission. 1986. A forum to review confined disposal facilities for dredged materials in the Great Lakes. Report of the Dredging Subcommittee to the Great Lakes Water Quality Board. 97 p.
- 143. International Joint Commission. 1987. 1987 Report on Great Lakes Water Quality. Appendix A: Progress in developing Remedial Action Plan for Areas of Concern in the Great Lakes Basin. Great Lakes Water Quality Board; Windsor, Ontario. 208 p.
- 144. Jacknow, J. 1986. Monitoring fish and wildlife for environmental contaminants: the National Contamination Biomonitoring Program. Fish and Wildlife Leaflet 4. U.S. Dept. of Interior, Fish and Wildlife Service. 15 p.
- Jacobson, J.L., G.G. Fein, S.W. Jacobson, P.M. Schwartz and J.K. Dowler. 1984. The transfer of polychlorinated biphenyls (PCBs) and polybrominated biphenyls (PBBs) across the human placenta and into maternal milk. Am. J. Public Health. 74:378-379.
- 146. Johnson, W.L. and M.T. Finely. 1980. Handbook of acute toxicity of chemicals to fish and aquatic invertebrates. U.S. Fish and Wildlife Service, Washington, D.C. Resour. Publ. 137. 98 p.
- 147. Kaczmar, S.W. and M. Zabik. 1983. Diss. Abstr. 44(12):37058.
- 148. Keller, Mryl, James Schneider, Leo Mrczinski, Robert Haas, and John Weber. 1987. History, Status, and Management of Fishes in Saginaw Bay, Lake Huron, Michigan. Department of Natural Resources, Fisheries Division. Technical Report 87-2.
- 149. Kimbrough, R.D. 1980. Halogenated biphenyls, terphenyls, naphthalenes, dibenzodioxins and related products. Elsevier, Holland.
- 150. Kimmel, Ed. 1987. Personal communication. Director of Environmental Health, Tuscola County Health Department.
- 151. Korfmacher, W.A, E.B. Hansen, Jr., and K.L. Rowland. 1986. Tissue distribution of 2,3,7,8-TCDD in bullfrogs obtained from a 2,3,7,8-TCDD contaminated area. Chemosphere. 15(2):121-126.

- 152. Kreis, K., C. Roberts and H.E.B. Humphrey. 1982. Serial PBB levels, PCB levels and clinical chemistries in Michigan's PBB cohort. Arch. Env. Health. 37(3):141-146.
- 153. Kreis, R. G., Jr., E. F. Stoermer and T. B. Ladewski. 1985.
 Phytoplankton Species Composition, Abundance and Distribution in Southern Lake Huron, 1980; Including a Comparative Analysis With Conditions in 1974 Prior to Nutrient Loading Reduction. Univ. of Mich., Great Lakes Research Division Special Report 107.
- 154. Kreis, R.G. and C.P. Rice. 1985. Status of organic contaminants in Lake Huron: atmosphere, water, algae, fish, herring gull eggs and sediment. Special Report No. 114, Great Lakes Research Division, University of Michigan, Ann Arbor, Michigan.
- 155. Krezoksi, J.R., S.C. Mozley and J.A. Robbins. 1978. Influence of benthic macroinvertebrates on mixing of profundal sediments in southeastern Lake Huron. Limnol. Oceanogr. 23:1011-1016.
- 156. Krezoski, J.R., J.A. Robbins and D.S. White. 1984. Dual radiotracer measurement of zoobenthos-mediated solute and particle transport in freshwater sediments. J. Geophys. Res. 89(B9):7937-7947.
- 157. Krogulecki, Mat. 1986. Elevation Map of the Saginaw Bay Drainage Basin. Center for Remote Sensing, Michigan State University.
- 158. Lauritsen, D.D., S.C. Mozley and D.S. White. 1985. Distribution of oligochaetes in Lake Michigan and comments on their use as indices of pollution. J. Great Lakes Res. 11:67-76.
- 159. Lederman, T.C. and G-Y. Rhee. 1981a. Bioconcentration of hexachlorobiphenyl in Great Lakes planktonic algae. Can. J. Fish. Aquat. Sci. 39:380-387.
- 160. Lederman, T.C. and G-Y. Rhee. 1981b. The influence of a hexachlorobiphenyl on the growth of Great Lakes phytoplankton. Can. J. Fish. Aquat. Sci. 39:388-394.
- 161. Lichtenberg, J.J., J.W. Eichelberger, R.C. Dressman and J.E. Longbottom. 1970. Pesticides in surface waters of the United States a 5-year summary, 1964-1968. Pestic. Monit J. 4(2):71-86.
- 162. Likens, G.E. 1972. Eutrophication and aquatic ecosystems. IN G.E. Likens (Ed.), Nutrients and eutrophication: the limiting nutrient controversy. p. 3-13. Am. Soc. Limnol. Oceanogr. Special Symp. Vol. 1.

- 163. Limno-Tech, Inc. 1976. <u>Identification of Mathematical Modeling and Field Monitoring Requirements for Saginaw River and Bay.</u>
- 164. Limno-Tech, Inc. 1977. Calibration of Water Quality Models in Saginaw River and Bay. Prepared for the Chester Engineers and East Central Planning and Development Region.
- 165. Limno-Tech, Inc. 1981. Storm Impacts in the Saginaw River and Bay: A Mathematical Modeling Evaluation. Prepared for East Central Planning and Development Region.
- 166. Limno-Tech, Inc. 1982. Progress Report: Analysis of Saginaw and Pine River Toxic Pollution. Prepared for East Central Michigan Planning and Development Region. Saginaw, Michigan. 47 p.
- 167. Limno-Tech, Inc. 1982. Storm impacts in the Saginaw River and Bay: a mathematical modeling evaluation. 54 p.
- Limno-Tech, Inc. 1983. Modeling analysis of the fate and distribution of polychlorianted biphenyls in Saginaw River.

 Prepared for East Central Michigan Planning and Development Region, Saginaw, Michigan.
- Limno-Tech, Inc. 1983. Modeling analysis of the fate and distribution of polychlorianted biphenyls in the Saginaw River and Bay. Prepared for East Central Michigan Planning & d Development Region, Saginaw, Michigan. 60 p.
- 170. Limno-Tech, Inc. 1983. Cost effectiveness of conservation tillage practices for reducing pollutant loads to inner Saginaw Bay.

 Prepared for East Central Michigan Planning and Development Region, Saginaw, Michigan. 72 p.
- 171. Limno-Tech, Inc. 1983. Cost effectiveness of conservation tillage practices for improving Saginaw Bay water quality. Prepared for East Central Michigan Planning and Development Region, Saginaw, Michigan. 41 p.
- Limno-Tech, Inc. 1984. Modeling analysis of the fate and distribution of polybrominated biphenyls in Pine River. Prepared for East Central Michigan Planning and Development Region, Saginaw, Michigan.
- Limno-Tech, Inc. 1986. Modeling framework for evaluating agricultural erosion impacts in Saginaw Bay An Interim Report. Prepared for East Central Michigan Planning and Development Region and USEPA Great Lakes National Program Office. 46 p.

- Livingston, B.A. and C.M. Schamacher. 1980. The abundance, distribution and diversity of aquatic macrophytes and macroinvertebrates in Sebewaing and Wildfowl Bays as related to waterfowl use and water quality. Central Michigan University, Mt. Pleasant, Michigan. (Prepared for Michigan Department of Natural Resources, Division of Land Resources, Michigan Coastal Program.)
- 175. Loudon, T.L, A.J. Gold, S.E. Ferns and W. Yocum. 1986. Tile drainage water quality from shallow tile in heavy soil. Presented at Amer. Soc. of Ag. Engineers 1986 Winter Meeting, Chicago, Illinois, December 16-19, 1986. Paper No. 86-2560. 14 p.
- 176. Ludke, J.L. 1976. Organochlorine pesticide residues associated with mortality: Activity of chlordane and endrin. Bull. Environ. Contam. Toxicol. 16:253-260.
- Ludwig, J.P. and M.P. Ludwig. 1986. Productivity and deformities in chicks of the Michigan Great Lakes Colonies of Double-crested Cormorants (Phalcrocorax auritus) and Caspian Terns (Hydroprogne caspia) in 1986. Ecological Research Services, Inc. Bay City, Michigan. 54 p.
- Mac, M.J. and R.A. Bergstedt. 1981. Temperature selection by young lake trout after chronic exposure to PCB's and DDE IN the reproduction and survival of lake trout (Salvelinus namaycush) in Lake Michigan. U.S. Fish and Wildlife Service Technical Paper No. 105.
- Macek, K.J., C.R. Rogers, D.L. Stalling and S. Korn. 1970. The uptake, distribution and elimination of dietary 14C-DDT and 14C-dieldrin in rainbow trout. Trans. Am. Fish. Soc. 99:689-695.
- 180. Mason, C.F., T.C. Ford and N.I. Last. 1986. Organochlorine residues in British otters. Bull. Environ. Contam. Toxicol. 36:656-661.
- Mathews, Dan. 1987. Personal communication. Director of Administrative Serivces, Bay County Health Department.
- May, T.W. and G.L. McKinney. 1981. Cadmium, mercury, arsenic and selenium concentrations in freshwater fish. 1976-1977:
 National Pesticide Monitoring Program. Pestic. Monit. J. 15:14-38.
- Mayer, F.L., Jr., P.M. Mehrie Jr. and W.P. Dwyer. 1975. Toxaphene effects on reproduction, growth, and mortality of brook trout. USEPA, Duluth, Minnesota. EPA-600/3-75-013. 51 p.

- 184. Mayer, F.L., Jr. 1977a. Toxaphene: chronic toxicity to fathead minnows and channel catfish. U.S. Environmental Protection Agency. Duluth, Minnesota. EPA-600/3-770-069.
- 185. Mayer, F.L., Jr., P.N. Hehrle Jr. and H.O. Sanders. 1977b. Residue dynamics and biological effects of polychlorinated biphenyls in aquatic organisms. Arch. Environ. Contam. Toxicol. 5:501-511.
- 186. McNaught, D.C., M. Buzzard, D. Griesmer and M. Kennedy. 1980.

 Zooplankton grazing and population dynamics relative to water quality in southern Lake Huron. USEPA. Duluth, Minn.

 EPA-600/3-80-069. 128 p.
- McNaught, D.C., D. Griesmer and R. Larson. 1983. Changes in zooplankton community in response to reductions in nutrient loading in Saginaw Bay (Lake Huron). USEPA, Duluth, Minn. EPA-600/3-83-074. 44 p.
- 188. McNaught, D.C., M. Buzzard, D. Griesmer and M. Kennedy. 1984. PCBs in Saginaw Bay: development of functional indices to estimate inhibition of ecosystem fluxes. U.S. EPA, Duluth, Minn. EPA-600/3-84-008. 95 p.
- Mehrle, P.M. Jr. and F.L. Mayer Jr. 1975. Toxaphene effects on growth and bone composition of fathead minnows, piemphales promelas. J. Fish Res. Board Can. 32:593-598.
- 190. Meier, P.A. 1979. Benthic Fauna of Saginaw Bay. Report prepared for East Central Planning and Development Region, Saginaw, Mi.
 Michigan Department of Natural Resources, unpublished data.
- 191. Michigan Department of Agriculture, Michigan Weather Service. 1971. Climate of Michigan.
- 192. Michigan Department of Agriculture. 1987. Summary of restricted use pesticides used in the Saginaw Vallye 1986. (unpublished).
- 193. Michigan Department of Natural Resources. 1972. Biological Survey of the Tittabawassee River 1971-1972. 98 p.
- 194. Michigan Department of Natural Resources. 1972. A biological investigation of the Shiawassee River in the vicinity of Owosso and Corunna, Shiawassee County, Michigan. 12 p.
- 195. Michigan Department of Natural Resources. 1974. STORET Summary of surface water monitoring data for stations within Saginaw Bay Watershed.
- 196. Michigan Department of Natural Resources. 1977. Flint River Study, August 6-7, 1974. 118 p.

- 197. Michigan Department of Natural Resources. 1977. Fish and sediment survey of the South Branch of the Shiawassee River from M-59, South of Howell, Livingston County, Michigan, and the Shiawassee River to State Road at Corunna, Shiawassee County, Michigan. 22 p.
- 198. Michigan Department of Natural Resources. 1978. Results of PCB and PBB sampling in the water and sediments of the Saginaw River in the vicinity of Saginaw and Bay City, Michigan, July 12-13, 1978. 6 p.
- 199. Michigan Department of Natural Resources. 1979a. Biological and sediment chemistry of the South Branch of the Shiawassee River and Marion and Genoa Drain, Vicinity of Howell, Livingston County, Michigan, 1974. 32 p.
- 200. Michigan Department of Natural Resources. 1979b. Investigation of the Shiawassee River in the vicinity of Globe Union, Inc., Owosso, Michigan. 2 p.
- 201. Michigan Department of Natural Resources. 1979. Michigan Mineral Producers, 1978. Geological Survey Division.
- 202. Michigan Department of Natural Resources. 1980. Sediment and biological survey of the Shiawassee River in the vicinity of Globe Union, Inc. 9 p.
- 203. Michigan Department of Natural Resources. 1981. Superlist of Sewage Treatment Facilities. Wastewater Operations Section.
- 204. Michigan Department of Natural Resources. 1981. Study on the underground storage of gasoline. Water Quality Division. 153 p.
- 205. Michigan Department of Natural Resources. 1984. Quatenary Geology of Southern Michigan (map). Geological Survey Division.
- 206. Michigan Department of Natural Resources. 1984. Michigan Oil and Gas Fields, 1982. Geological Survey Division.
- 207. Michigan Department of Natural Resources. 1985. State of Michigan Phosphorus Reduction Strategy for the Michigan Portion of Lake Erie and Saginaw Bay. 13 p.
- 208. Michigan Department of Natural Resources. 1986. Fish Contaminant Monitoring Program -- 1986 Annual Report.
- 209. Michigan Department of Natural Resources. 1986a. Michigan Sites of Environmental Contamination-Proposed Priority Lists-Act 307. Groundwater Quality Division. 211 p.
- 210. Michigan Department of Natural Resources. 1986b. Deep well injection of hazardous waste in Michigan. 72 p.

- Michigan Department of Natural Resources. 1986. Unpublished data. Saginaw Wastewater Treatment Plant Industrial Pretreatment Program Audit. Industrial Pretreatment Program Files, MDNR, SWQD, Saginaw, District.
- Michigan Department of Natural Resources. 1986. Water Quality and Pollution Control in Michigan: 1986 Report. G.W. Goudy, Ed. Surface Water Quality Division. Michigan 305(b) Report: Volume 9. Water Years 1984 and 1985. 132 p.
- 213. Michigan Department of Natural Resources. 1986. 1985 Air Quality Report. Air Quality Division.
- Michigan Department of Natural Resources. 1986. Monthly Operating Reports. Lansing, Michigan.
- 215. Michigan Department of Natural Resources. 1987. Michigan Fishing Guide.
- 216. Michigan Department of Natural Resources. 1987. STCRET Summary of surface water monitoring data for stations within Saginaw Bay Watershed.
- 217. Michigan Department of Natural Resources. 1987. Rule 57(2)
 Guideline Levels, Nondrinking water values. Surface Water
 Quality Division.
- 218. Michigan Department of Natural Resources. 1987. Basin Reports for the Saginaw, Wiscoggin, Pigeon, Kawkawlin, Au Gres, and Rifle Rivers. Surface Water Quality Division.
- Michigan Department of Natural Resources. 1987. Unpublished data. Zilwaukee-Carrollton-Saginaw Township WWTP, Industrial Pretreatment Program File. MDNR, SWQD, Saginaw District.
- 220. Michigan Department of Natural Resources. 1987. State of Michigan Phosphorus. Reduction Strategy for the Michigan Portion of Lake Erie and Saginaw Bay. Program Update. 16 p.
- 221. Michigan Department of Natural Resources. 1987. Letter to
 Dow Chemical USA, 15 July 1987. Surface Water Quality
 Division.
- 222. Michigan Department of Natural Resources. 1988. Michigan Sites of Environmental Contamination Priority Lists Act 307. March 1988 for Fiscal Year 1989. 295 p.
- Michigan Department of Natural Resources. 1988. Michigan's 1988 Nonpoint Pollution Assessment Report. Draft. 90 p.

- Michigan Department of Natural Resources. Michigan Department of Agriculture, USDA-Agricultural Stabilization and Conservation Service, USDA-Soil Conservation Service, Michigan State University-Cooperative extension Service, Michigan State University-Agriculture Experiment Station, and East Central Michigan Planning and Development Regional Commission. 1985. State of Michigan Phosphorus Reduction strategy for the Michigan Portion of Lake Erie and Saginaw Bay. 111 p.
- 225. Michigan Water Resources Commission. 1974. Unpublished data. Lansing, Mich. Ontario Ministry of the Environment. 1978. Monitoring data on Grand and Saugeen Rivers, Analysis Reports. Parliment Buildings, Toronto, Ont.
- 226. Miller, J.B., J.L. Oberg and T Sieger, Jr. 1984. Water resources data Michigan: Water Year 1983. Lansing, Michigan. USGS Water-Data Report MI-83-1.
- 227. Miller, J.B., J.L. Oberg and T. Sieger, Jr. 1985. Water resources data -Michigan: Water Year 1984. Lansing, Michigan. USGS Water-Data Report MI-84-1.
- 228. Miller, J.B, J.L. Oberg and J.C. Failing. 1986. Water resources data Michigan: Water Year 1985. Lansing, Michigan. USGS Water-Data Report MI-85-1.
- Mineau, P., G.A. Fox, R.J. Norstrom, D.V. Wesloh, D.J. Hallett and J.A. Ellenton. 1984. Using the Herring Gull to monitor levels and effects of organochlorine contamination in the Canadian Great Lakes. IN Toxic Contamination in the Great Lakes. J.O. Nraigu and M.S. Simmons (Eds.). New York: J. Wiley and Sons. p. 425-452.
- 230. Moccia, R.D., G.A. Fox and A. Britton. 1986. A quantitative assessment of thyroid histopathology of Herring Gulls (<u>Larus argentatus</u>) from the Great Lakes and a hypothesis on the casual role of environmental contaminants. J. Wildlife Diseases. 22(1):60-70.
- 231. Moll, R.A., C.O. Davis and C.L. Schelske. 1980. Phytoplankton productivity and standing crop in the vicinity of the Lake Huron-Saginaw Bay front. J. Great Lakes Res. 6(3):232-246.
- Mozley, S.C. and R.P. Howmiller. 1977. Environmental status of the Lake Michigan region: zoobenthos of Lake Michigan. Argonne National Lab. Report No. ANL/ES-40, Vol. 6., U.S. Energy Research and Development Administration.

- Murphy, T.J., A. Schinsky, G. Paolucci and C. Rzeszutko. 1981.
 Inputs of polychlorinated biphenyls from the atmosphere to Lakes Huron and Michigan. IN Atmospheric pollutants in natural waters. S.J. Eisenreich (Ed.). Ann Arbor Science Publishers, Inc., Ann Arbor, Michigan. 512 p.
- 234. Murphy, T.J., G. Paolucci, A. Schinsky, M.L. Combs and J. Pokojowczyk. 1982. Inputs of PCBs from the atmosphere to Lakes Huron and Michigan. Report of USEPA Project #/R-805325. Environmental Research Laboratory, Duluth, MN.
- 235. Murphy, T.J. and A.W Schinsky. 1983. Net atmospheric inputs of PCBs to the ice cover on Lake Huron. J. Great Lakes Res. 9(1):92-96.
- 236. N.Y. Times. 1984, Aug. 31. Al, Col. 1.
- Nalepa, T.F. and N.A. Thomas. 1976. Distribution of macrobenthos species in Lake Ontario in relation to source of pollution and sediment parameters. J. Great Lakes Res. 2:150-163.
- 238. Nalepa, T.F. and A. Robertson. 1981. Vertical distribution of the zoobenthos in southeastern Lake Michigan with evidence of seasonal variation. Freshwater Biol. 11:87-96.
- 239. National Academy of Science and National Academy of Engineering (NAS/NAE). 1972. A report to the committee of water quality criteria. Washington, D.C.
- 240. National Oceanic and Atmospheric Administration. 1983. Great Lakes Ice Atlas. Great Lakes Research Lab.
- 241. National Oceanic and Atmospheric Administration. 1984. Lake Huron Chart #14860. U.S. Department of Commerce.
- National Climatic Center. 1983. <u>Climate Normals for the United States</u>, 1951-1980. U.S. Department of Commerce.
- 243. Neilson, M.A., A. Sylvestre and S. Metikosh. 1986. Lake Huron 1980-1985 Review. Submission to Lake Huron Task Force for inclusion in Appendix B. Water Quality Branch, Ontario Region. 36 p.
- 244. Niimi, A.J. and C.Y. Cho. 1983. Laboratory and field analysis of pentachlorophenol (PCP) accumulation by salmonids. Water Res. 17:1791-1795.
- Analysis of Great Lakes Herring Gull eggs for tetrachlorodibenzo- p-dioxins. IN Chlroinated dioxins and related compounds: impact on the environment. O. Hutzinger, et al. New York: Permagon Press. p. 173-181.

- 246. Nurnberger, Fred. 1986. Personal communication. Michigan State Climatologist.
- 247. O'Keefe, P., C. Meyer, D. Hilker, K. Aldous, B. Jelus-Tyror, K. Dillion, R. Donnelly, E. Horn and R. Sloan. 1983. Analysis of 2,3,7,8-tetrachlorodibenzo-p-dioxin in Great Lakes Fish. Chemosphere. 12:325-332.
- O'Shea, T.J., T.E. Kaiser, G.R. Askins and J.A. Chapman. 1981.

 Polychlorianted biphenyls in a wild mink population. Worldwide Furbearer Conference Proceedings, III:1746-1752.
- Peters, Gary. 1987. Personal communication. Manager, Saginaw-Midland Water Supply System.
- Poland, A., W.F. Greenlee and A.S. Kende. 1979. Studies on the mechanism of action of the chlorinated dibenzo-p-dioxins and related compounds. Ann. N.Y. Acad. Sci. 320:214-230.
- Popp, Rick. 1987. Personal communication. Michigan Department of Natural Resources, Water Management Division.
- Porter, K.G. 1973. Selective grazing and differential digestion of algae by zooplankton. Nature. 244:179-180.
- Rappe, C., H.R. Buser and H.P. Bossart. 1979. Dioxins, dibenzofurans and other polyhalogenated aromatics; production, use formation and destruction. Ann. N.Y. Acad. Sci. 320:1-18.
- Rappe, C. and H.R. Buser. 1980. Chemical processes and analytical methods. IN R.D. Kimbrough (Ed.). Halogenated biphenyls, terphenyls, naphthalenes, dibenzodioxins and related products. Elsevier/North Holland. New York. p. 41.
- Rappe, C. 1984. Analysis of polychlorinated dioxins and furans. Environ. Sci. Technol. \$18:78-91.
- Rasmussen, Wayne D. 1982. History of Soil Conservation, Institutions and Incentives. IN <u>Soil Conservation Policies</u>, Institutions, and Incentives. H.G. Halcrow, E.O. Heady and M.L. Cotner, Eds. Soil Conservation Society of America, Ankeny, Iowa. 3-18 p.
- Rice, C.P., and H.C. Sikka. 1973. Uptake metabolism of DDT by six species of marine phytoplankton. J. Ag. and Food Chem. 21:148-152.
- Pollutants Mitigation feasibility Study of PCBs and PBBs (Phase A Background and Phase B Workplan). Prepared for East Central Michigan Planning and Development Region. Saginaw, Michigan. 36 p.

- 259. Rice, C.P., R.P. Canale, J.J. Sygo and P.S. Freedman. 1980.

 Saginaw and Pine River in-place pollutants mitigation feasibility study of PCBs and PBBs. Phase A background and Phase B work plan. 194 p.
- 260. Rice, C.P., R. Rossmann, D.S. White and J.S. Diana. 1982. PCB and PBB contamination in sediments, water, biota and rain in the Saginaw and Pine River of East-Central Michigan Final Report.
- 261. Rice, C.P., D.S. White, M.S. Simmons and R. Rossmann. 1984.

 Assessment of the effectiveness of the cleanup of PCBs from the South Branch of the Shiawassee River. Field Results. 89 p.
- 262. Rice, C.P., D.S. White, M.S. Simmons and R. Rossmann. 1984.

 Assessment of the effectiveness of the cleanup of the PCBs from the Shiawassee River Field Results. Final Report to Michigan Department of Natural Resources Water Quality Division. Great Lakes Research Division, The University of Michigan. 89 p.
- Richardson, W.L., V.E. Smith and J. Filkins. 1980. Distribution of Aroclor 1254 in Saginaw Bay during 1977. Abstr. 23rd Conf. Great Lakes Res., Kingston, Ont.
- Richardson, W.L., V.E. Smith and R. Wethington. 1983. Dynamic mass balance of PCB and suspended solids in Saginaw Bay -- A case study. pp. 329-365. IN Physical behavior of PCBs in the Great Lakes, Donald McKay (Ed.). Ann Arbor Science Publishers, Ann Arbor, Michigan.
- 265. Riley, L. and W. Riley. 1981. Guide to National Widlife Refuges. Garden City, N.Y.: Anchor Books. 653 p.
- 266. Robbins, J.A. 1980. Sediments of Saginaw Bay, Lake Huron: composition, geochronology, and trace elements accumulation rates. U.S.Environmental Protection Agency Report (unpublished), Duluth, MN.
- 267. Robbins, J.A. 1982. Stratigraphic and dynamic effects of sediment reworking by Great Lakes zoobenthos. Hydrobiologia. 92:611-622.
- Robbins, J.A., K. Husby-Coupeland and D.S. White. 1984. Precise radiotracer measurement of the rate of sediment reworking by Stylodrilus heringianus and the effects of variable dissolved oxygen concentrations. J. Great Lakes Research. 10:335-347.
- Robbins, J.A. 1986. Sediments of Saginaw Bay, Lake Huron: elemental composition and accumulation rates. Great Lakes Natural Resource Division, University of Michigan, Ann Arbor, Michigan. Special Report No. 102. 101 p.

- 270. Rogalski, Wally. 1987. Personal communication. Superintendent, Pinconning Water Treat Plant.
- 271. Rossman, R. 1986. Lake Huron intensive surveillance: Management and summary. For U.S. EPA. Special Report No. 118 of the Great Lakes Research Division, Ann Arbor, Michigan. 59 p.
- 272. Rossmann, R., C.P. Rice and M.S. Simmons. 1983. The impact of pollutants on the Tittabawassee River. Great Lakes Research Division. University of Michigan. 161 p.
- 273. Roycraft, P. R. and S. G. Buda. 1979. Flint River Study. May 23-24, 1978, August 1-2, 1978. MDNR. 120 p.
- Roycraft, P. R. and S. G. Buda. 1979. Shiawassee River Study, Linden to Byron. August 15 and 16, 1978. MDNR. 55 p.
- 275. Rygwelski, K.R. 1984. Partitioning of toxic metals between solid and liquid phases in the Great Lakes. IN Toxic contaminants in the Great Lakes. Nriagu, J.O. and M.S. Simmons, (Eds.). p. 321-333.
- 276. Rygwelski, K.R., J.M. Townsend and V.E. Smith. 1984. Partitioning of cadmium, copper, lead and zinc among particulate fractions and water in Saginaw Bay (Lake Huron). Project Summary. USEPA, Duluth, Minnesota. EPA-600/S3-84-069. 3 p.
- 277. Saginaw County Solid Waste Management Plan. 1983.
- 278. Saginaw, City of. 1985. Annual Report. Department of Public Utilities, Water Treatment Division.
- Sakamoto, M. 1966. Primary production by phytoplankton community in some japanese lakes and its dependence on lake depth. Arch. Hydrobiol. 62:1-28.
- 280. Saylor, James H. and Gerald S. Miller. 1976. Winter Currents in Lake Huron. U.S. Environmental Protection Agency Report #905/4-75-004, U.S. Department of Commerce.
- Schelske, C.L. and R.C. Roth. 1973. Limnological survey of Lakes Michigan, Superior, Huron and Erie. Publ. No. 17. Great Lakes Res. Div., Univ. of Mich., Ann Arbor, Mich. p. 1-108.
- Schelske, C.L., L.E. Feldt, M.S. Simmons and E.F. Stoermer. 1974.
 Storm induced relationships among chemical conditions and phytoplankton in Saginaw Bay and western Lake Huron. In Proc. 17th Conf. Great Lakes Res., Inter. Assoc. Great Lakes Res. p. 78-91.
- 283. Schmitt, C.J., J.L. Ludke and D. Walsh. 1981. Organochlorine residues in fish, 1970-1974: National Pesticide Monitoring Program. Pestic. Monit. j. 14:136-206.

- 284. Schmitt, C.J., M.A. Ribick, J.L. Ludke and T.W. May. 1983. Organochlorine residues in freshwater fish, 1976-1979: National Pesticide Monitoring Program. U.S. Fish and Wildlife Service, Washington, D.C. Resour. Publ. 152. 62 p.
- 285. Schmitt, C.J., Zajicek and M.A. Ribick. 1985. National Pesticide Monitoring Program: Residues of organochlorine chemicals in freshwater fish, 1980-81. Arcn. Environ. Contam. Toxicol. 14:225-260.
- 286. Schneider, James C. 1977. History of the walleye fisheries of Saginaw Bay, Lake Huron. Michigan Department of Natural Resources, Fisheries Division Research Report No. 1850. 16p.
- 287. Schneider, J.C., F.F. Hooper and A.M. Beeton. 1969. The distribution and abundance of benthic fauna in Saginaw Bay, Lake Huron. In Proceedings 12th Conf. Great Lakes Res. Internat. Assoc. Great Lakes Res. p. 80-90.
- 288. Schneider, J.C. and J.H. Leach. 1979. Walleye stocks in the Great Lakes, 1800-1975; Fluctuations and possible causes. Great Lakes Fishery Commission Technical Report no. 31.
- 289. Seelye, J.G., R.J. Hesselberg and M.J. Mac. 1982. Accumulation by fish of contaminants released from dredged sediments. Environmental Science Technology. 16:459-464.
- 290. Shrivastava, H.N. 1974. Macrobenthos of Lake Huron. Fish. Res. Bd. Can. Tech. Rept. 449:1-45.
- Skaar, D.R., B.T. Johnson, Jones, Jr., and J.N. Huckins. 1981.
 Fate of kepone and mirex in a model aquatic environment:
 Sediment, fish, and diet. Can. J. Fish. Aquat. Sci. 38:931.
- Skoog, R.O. and J.P. Pitz. 1985. A strategy for the reduction of nonpoint source pollution from transportation-related activities in Michigan. Report to the Governor's Cabinet Council on Environmental Protection. 43 p.
- 293. Sloan, R. and E. Horn. 1980. Unpublished data. New York State Department of Environmental Conservation.
- 294. Smith. V.H. 1983. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science. p. 221.
- Smith, V.E., K.W. Lee, J.C. Filkins, K.W. Hartwell, K.R. Rygwelski and J.M. Townsend. 1977. Survey of chemical factors in Saginaw Bay (Lake Huron). U.S. Environmental Protection Agency, Environmental Research Laboratory. Duluth, Minnesota. 142 p.
- 296. Smith, V.E., J.M. Spurr, J.C. Filkins and J.J. Jones. 1985.
 Organochlorine contamination of wintering ducks foraging on
 Detroit River sediments. J. Great Lakes Res. 11(3):231-246.

- Soil Conservation Service. 1979. Soil Survey of Midland County. U.S. Department of Agriculture.
- 298. Soil Conservation Service. 1981. Soil Association Map of Michigan. Michigan State University Agricultural Experiment Station and Cooperative Extension Service.
- 299. Sonzogni, William, Timothy Monteith, William Bach and V. Gregory Hughes. 1978. United State Great Lakes Tributary Loadings. International Joint Commission.
- 300. Southeast Michigan Council of Governments. 1978. Water Quality Management Plan. U.S. Environmental Protection Agency.
- 301. Stalling, D.L., R.J. Norstrom, L.M. Smith and M. Simon. 1985. Patterns of PCDD, PCDF and PCB contamination in Great Lakes fish and birds and their characterization by principal components analysis. Chemosphere. 14:627-407.
- Stalling, D.L., L.M. Smith, J.D. Petty, J.W. Hogan, J.L. Johnson, C. Rappe and H.R. Buser. 1983. Residues of polychlorinated dibenzo-p-dioxins and dibenzofurans in Laurentian Great Lakes fish. IN Tucker, R.E. and A.L. Young (Eds.), Human and environmental risks of chlorinated dioxins and related compounds. Plenum, New York. 221 p.
- 303. Stalling D.L. and F.L. Mayer, Jr. 1972. Toxicities of PCBs to fish and environmental residues. Environ. Health Persp. 1:159-164.
- Stalling, D.L., L.M. Smith, J.D. Petty, J.W. Hogan, J.L. Johnson, C. Rappe and H.R. Buser. IN Human and environmental risks of chlorinated dioxins related compounds, Tucker, R.E., A.L. Young and A.P. Gray, (Eds.). 1983. Plenum Publ. Co. p. 221-240.
- Stalling, D.L., J.N. Huckins and J.D. Petty. 1980. Presence and potential significance of o-o'-unsubstituted PCB isomers and trace Aroclor 1248 and 1254 impurities. IN Afgham B.K. and D. Mackay, (Eds.), Hydrocarbons and halogenated hydrocarbons in the aquatic environment. Plenum, New York. p.131.
- 306. Stemberger, R.S. and J.E. Gannon. 1977. Multivariate analysis of rotifer distributions in Lake Huron. Arch. Hydrobiol. Beih. Ergebn. Limno. 8:38-42.
- 307. Stemberger, R.E., J.E. Gannon and F.J. Bricker. 1979. Spatial and seasonal sturcture of rotifer communities in Lake Huron. USEPA, Environmental Research Laboratory, Duluth, Minn. EPA-600/3-79-085.
- Stoermer, E.F., M.M. Bowman, J.C. Kingston and A.L. Schaedel. 1974.

 Phytoplankton composition and abundance in Lake Ontario during
 IFYGL. Univ. MI., Great Lakes Res. Div. Spec. Rept. 53. 373p.

- 309. Stoermer, E.F., and R.G. Kreis. 1980. Phytoplankton composition and abundance in southern Lake Huron. U.S. EPA, Duluth, Minn. EPA-600/3-80-061. 383 p.
- 310. Stoermer, E.F. and R.J. Stevenson. 1980. Green Bay phytoplankton composition, abundance, and distribution. U.S. EPA, Great Lakes National Program Office, Chicago, IL. EPA-905/3-79-002. 104 p.
- 311. Stoermer, E.F. and E. Theriot. 1983. Phytoplankton composition and distribution in Saginaw Bay. U.S. EPA Environmental Research Laboratory, Duluth, Minn. EPA-600/3-83-090.
- 312. Stoermer, E.F. and E. Theriot. 1985. Phytoplankton distribution in Saginaw Bay. J. Great Lakes Res. 11(2):132-142.
- Struger, J., D.V. Wesloh, D.J. Hallett and P. Mineau. 1985.

 Organochlorine contaminants in Herring Gull eggs from the Detroit and Niagra Rivers and Saginaw Bay (1978-1982): contamination discrimination. J. Great Lakes Res. 11(3):223-230.
- 314. Sullivan, Rose Ann, Thomas m. Heidtke and John R. Hall. 1981.
 Potential impact of changes in Great Lakes water quality on fisheries. Great Lakes Environmental Planning Study, Great Lakes Basin Commission, Ann Arbor, Michigan. Contribution Number 26.
- 315. Surber, E.W. 1957. Biological criteria for the determination of lake pollution. IN Biological problems in water pollution, C.M. Tarzwell (Ed.). U.S. Public Health Service, Washington, D.C.
- Swain, W.R. 1980. Chlorinated organic residues in fish, water and precipitations from the vicinity of Isle Royal, Lake Superior. J. Great Lakes. 4:398-407.
- Swain. 1983. In PCBs: human and environmental hazards. F.M. Ditiri and M. Kamrin (Eds.). Boston: Butterworth.
- 318. Udd, Edward and Joseph D. Fridgen. 1985. Anglers' perceptions of toxic chemicals in rivers and sport fish. Paper presented at the National Wilderness Research Conference, Fort Collins, CO, July 23-26.
- Jrban Nonpoint Task Force. 1985. Michigan urban nonpoint source pollution control strategy. Prepared for the Cabinet Council on Environmental Protection by the Surface Water Quality Division, Michigan Department of Natural Resources, and the Southeast Council of Governments. 123 p.
- 320. U.S. Army Corps of Engineers. Unpublished sediment data for 1973, 1980 and 1981.

- 321. U.S. Army Corps of Engineers. 1983. Project information on Saginaw River, Michigan, maintenance dredging and confined disposal facility.
- 322. U.S. Army Corps of Engineers. 1983. Upper Saginaw River Diked Disposal Facility at Crow Island State Game Area, Saginaw and Bay Counties, Michigan. Draft Environmental Impact Statement.
- 323. U.S. Army Corps of Engineers. 1984. Upper Saginaw River Diked Disposal Facility at Crow Island State Game Area Saginaw and Bay Counties, Michigan. Letter Report and Draft Environmental Impact Statement. U.S. Army Corps of Engineers, Detroit District. Detroit, Michigan.
- 324. U.S. Army Corps of Engineers. 1987. Data on Saginaw navigation channel maintenance dredging. 1979-1986.
- 325. U.S. Department of Agriculture Soil Conservation Service. Undated. Arenac, Bay, Clare, Genesee Gladwin, Gratiot, Isabella, Lapeer, Huron, Livingston, Midland, Saginaw, Sanilac, Shiawassee, and Tuscola Counties Inventory of soil, water and related resources. (pamphlets).
- 326. U.S. Department of Agriculture Soil Conservation Service, Economic Research Service, and ForestService. 1986. Saginaw Bay Area cooperative river basin study. Bay, Clare, Genesee, Gladwin, Gratiot, Huron, Isabella, Lapeer, Livingston, Midland, Sagianw, Sanilac, Shiawassee and Tuscola Counties Natural Resources and Opportunities for Action (draft).
- 327. U.S. Department of Agriculture. 1988. Michigan Agriculture Conservation Program Short Reference. East Lansing, Michigan.
- 328. U.S. Department of the Interior. 1970. Saginaw Bay, Michigan. In:
 National Estuary Study, Appendix B, Vol. 3, pages 271-326.
 U.S. Fish and Wildlife Service.
- 329. U.S. Environmental Protection Agency. Unpublished 1979 sediment data. Great Lakes Research Station. Gross Ile, Michigan.
- 330. U.S. Environmental Protection Agency. 1980. Ambient water quality criteria for Silver. National Technical Information Service, Springfield, VA. PB85-227478.
- 331. U.S. Environmental Protection Agency. 1980. Ambient Water Quality Criteria for pentachlorophenol, chlorinated phenols and phenol. EPA-440/5-80-065.
- 332. U.S. Environmental Protection Agency. 1980. Ambient water quality criteria for Selenium. National Technical Information Service, Springfield, VA.

- 333. U.S. Environmental Protection Agency. 1980. Ambient water quality criteria for Nickel. National Technical Information Springfield, VA.
- 334. U.S. Environmental Protection Agency. 1980. Acid Rain. Office of Research and Development. Washington, D.C. EPA-600/9-79-036.
- 335. U.S. Environmental Protection Agency. 1981. How to obtain Federal Grants to build municipal wastewater treatment works. 2nd Edition. OPA 142/0. 44 p.
- 336. U.S. Environmental Protection Agency. 1982. Toxaphene: decision document. Office of Pesticide Program, Washington, D.C.
- 337. U.S. Environmental Protection Agency. 1985. Ambient water quality criteria for Zinc 1984. National Technical Information Service, Springfield, VA.
- 338. U.S. Environmental Protection Agency. 1985. Report to Congress on injection of hazardous waste. 570/9-85-003.
- 339. U.S. Environmental Protection Agency. 1985. Ambient water quality criteria for Lead 1984. National Technical Information Service, Springfield, VA. PB85-227437.
- 340. U.S. Environmental Protection Agency. 1985.
 Michigan Dioxin Studies: Screening Survey of Surface Water
 Supplies, Potable Ground Water, and Dow Chemical Brine
 Operations. Region V, Environmental Services Division, Eastern
 District Office, Westlake, Ohio.
- 341. U.S. Environmental Protection Agency. 1985. Ambient water quality criteria for Cyanide 1984. National Technical Information Service, Springfield, VA. PB85-227460.
- 342. U.S. Environmental Protection Agency. 1985. Water Quality Progress Report. Monitoring and Data Support Division, Office of Water. 2 p.
- 343. U.S. Environmental Protection Agency. 1985. Ambient water quality criteria for Copper 1984. National Technical Information Service, Springfield, VA. PB85-2279023.
- 344. U.S. Environmental Protection Agency. 1985. Ambient water quality criteria for Mercury 1984. National Technical Information Service, Springfield, VA. PB85-227452.
- 345. U.S. Environmental Protection Agency. 1985. Ambient
 Water quality criteria for Cadmium 1984. National Technical
 Information Service, Springfield, VA. 7883-227031

- 346. U.S. Environmental Protection Agency. 1985. Ambient water quality criteria for Chromium 1984. National Technical Information Service, Springfield, VA. PB85-227478.
- 347. U.S. Environmental Protection Agency. 1985. Ambient
 Water Quality Criteria for Arsenic 1984. National Technical
 Information Service, Springfield, VA. PB85-227445.
- 348. U.S. Environmental Protection Agency. 1986a. Dow Chemical wastewater characterization study Tittabawassee River sediments and native fish. Region V, Environmental Services Division, Eastern District Office. Westlake, Ohio.
- 349. U.S. Environmental Protection Agency. 1986b. Report to Congress on the discharge of hazardous wastes to publicly owned treatment works: the domestic sewage study. USEPA, Office of Water Regulations and Standards.
- 350. U.S. Environmental Protection Agency. 1986. Dow Chemical wastewater characterization study Tittabawassee River sediments and native fish. Region V, Environmental Services Division, Eastern District Office. Westlake, Ohio.
- 351. U.S. Environmental Protection Agency. Dioxin (2,3,7,8-Tetrachlorodibenzo-p-dioxin) in Great Lakes Fish. Unpublished report. Region V, Chicago, Illinois. 15 p.
- 352. U.S. Fish and Wildlife Service. 1984. Unpublished.
 Report for FY 1984, Reporting Period: October 1, 1983 to
 September 30, 1984, Study Plan 889.01.01, Effects of industrial
 contaminants on common terms in the Great Lakes, Investigators:
 Gregory J. Smith and Gary H. Heinz. U.S. Department of the
 Interior. Patuxent Wildlife Research Center. 13 p.
- 353. U.S. Fish and Wildlife Service. 1985. Unpublished. Report for FY 1985. Reporting Period: OCtober 1, 1984 to September 30, 1985. Study Plan: 889.02.02, Environmental contaminant effects on common tern hatching success and productivity in the Great Lakes. Investigators: Gregory J. Smith. U.S. Department of the Interior, Patuxent Wildlife Research Center. 9 p.
- 354. U.S. Fish and Wildlife Service. 1987. Unpublished. Mallard Carcass analysis for organochlorines. U.S. Department of Interior, Fish and Wildlife Service, Patuxent Analytical Control Facility.
- 355. U.S. Fish and Wildlife Service. Unpublished table of PCBs,
 Dibenzofurans, and dibenzodioxins in sediments of the Saginaw
 River, using USACOE data from 1973, 1980 and 1981.
- 356. U.S. Geological Survey. Undated. Drainage Areas of Streams
 Tributary to Lake Huron Between Saginaw River and Black River.

- 357. U.S. Geological Survey. 1987. Summary of surface water quality data for Saginaw, Pigeon and Rifle Rivers, Water Years 1974-1985 (unpublished data).
- 358. U.S. Weather Bureau. 1961. Rainfall Frequency Atlas of the United States for Durations from 30 Minutes to 24 Hours and Return Periods from 1 to 100 Years. Technical Paper #40. U.S. Department of Commerce.
- 359. Vollenweider, R.A., M. Munawar and P. Stadelmann. 1974. A comparative review of phytoplnakton and primary production in the Laurentian Great Lakes. J. Fish. Res. Bd. Can. 31:739-762.
- 360. Wells, J.R., P.B. Kaufman and J.D. Jones. 1980. Heavy metal contents in some macrophytes from Saginaw Bay (Lake Huron, U.S.A.). Aquatic Botany. 9(2):185-193.
- 361. Wesloh, D.V. and S.M. Teeple. 1983. Double-crested cormorants of the Great Lakes: egg laying parameters, reproductive failure, and contaminant residues in eggs: Lake Huron 1972-1973. Can. J. Zool. 61:427-436.
- 362. Wesloh, D.V., J. Struger and T.J. Kubiak. 1985. The occurrence of congenital anomalies in Double-crested Cormorants and Herring Gulls in the Great Lakes, 1983-1984. Abstract from 29th Conf. Gt. Lakes Res. U-W Milwaukee, June 3-5, 1985.
- 363. West Michigan Regional Planning Commission. 1977. Clean Water Plan. U.S. Environmental Protection Agency.
- 364. Western Michigan University. 1981. Hydrogeological Atlas of Michigan.
- 365. Wetzel, R.G. 1983. Limnology. Second Edition. Saunders College Publishing: New York. 767 p.
- 366. White, D.S., Z. Batac-Catalan and J.A. Robbins. Unpublished.

 Macrozoobenthos in lower Saginaw Bay: trophic status, seasonal abundance, and observations of mixing of surficial muddy deposits. Submitted to J. Great Lakes Res., 1987. 17 p.
- Willford, W.A., R.A. Bergstedt, W.H. Berlin, N.R. Foster, R.J.
 Hesselberg, M.J. Mac, D.R. May Passino, R.E. Reinert and D.V.
 Rottiers. 1981. Introduction and summary in chlorinated
 hydrocarbons as a factor in the reproduction and survival of
 lake trout (Salvelinus namaycush) in Lake Michigan. U.S. Fish
 and Wildlife Service Technical Paper No. 105.

- 368. Willis, D.P. and J.A. Foran. 1986. The Cuyahoga River Study. Ohio Wildlife Federation and National Wildlife Federation. 105 p.
- 369. Wilshaw, Ron. 1987. Personal communications. U.S. Army Corps of Engineers.
- 370. Winnell, M.H. and D.S. White. 1985. Trophic status of southeastern Lake Michigan based on the Chironomidae (Diptera). J. Great Lakes Res. 11:540-548.
- 371. Wold, S. and M. Sjostrom. 1977. IN ACS Symposium Series No. 52, American Chemical Society. p. 243-282.
- 372. Wood, L.E. 1964. Bottom sediments of Saginaw Bay, Michigan. J. Sediment. Petro. 34:175-184.
- 373. Yocum, Deborah. 1987. Personal communication. Administrative Assistant, Central Michigan District Health Department (Arenac County).
- 374. Yocum, W.L., G.A. Hendrix, G. Lemmenes and C.A. Sleight. 1987.
 Rural nonpoint pollution in Michigan: problem area identification and recommendations for evaluation and abatement.
 Prepared for Michigan Department of Natural Resources. East Central Michigan Planning and Development Region, Saginaw, Michigan.
- 375. Young, Steven. 1987 March. Personal communication. Assistant Superintendent, City of Midland WWTP.
- 376. Yusaf, M. 1984 February. Personal communication. MDNR, Surface Water Quality Division, Saginaw District.