Represented spaces of represented spaces

Johanna Franklin, Eike Neumann, Arno Pauly, Cécilia Pradic and Manlio Valenti

CiE25 – Computable Analysis and Topology special session Room 6.1.36 16/07/2025

Motivation

Let $X \in \{\text{Polish, coPolish, quasi-Polish, compact Polish, }...\}.$

We want spaces of X spaces to ask, for some X space S:

- when is **S** uniformly computably categorical?
- when is **S** generic?
- and many other questions...

Motivation

Let $X \in \{\text{Polish, coPolish, quasi-Polish, compact Polish, } \ldots \}$.

We want spaces of X spaces to ask, for some X space S:

- when is **S uniformly** computably categorical?
- when is **S** generic?
- and many other questions...

Theorem

(for X =compact Polish)

Cantor space is uniformly categorical and Π_2^0 -generic.

Motivation

Let $X \in \{\text{Polish, coPolish, quasi-Polish, compact Polish, } \dots \}$.

We want spaces of X spaces to ask, for some X space S:

- when is **S uniformly** computably categorical?
- when is **S** generic?
- and many other questions...

Theorem

(for X =compact Polish)

Cantor space is uniformly categorical and Π_2^0 -generic.

Theorem

(for X =compact Polish)

The Weihrauch degree of uniform categoricity of S_1 is lim.

What is a represented space of represented spaces?

(fighting with definitions)

The category of represented spaces ReprSp

Definition

A represented space **X** is a partial surjection $\delta_{\mathbf{X}} \subseteq : \mathbb{N}^{\mathbb{N}} \twoheadrightarrow S$

Idea: $c \in \text{dom}(\delta_{\mathbf{X}})$ is a name for $\delta_{\mathbf{X}}(c) \in S$

Computable maps $f: \mathbf{X} \to \mathbf{Y}$

Type 2 computable maps $\lceil f \rceil : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ such that

$$\begin{array}{ccc} \mathbb{N}^{\mathbb{N}} & \stackrel{\ulcorner f \urcorner}{\longrightarrow} \mathbb{N}^{\mathbb{N}} \\ \delta_{\mathbf{X}} \downarrow & & \downarrow \delta_{\mathbf{Y}} \\ X & \stackrel{}{\longrightarrow} & Y \end{array}$$

- Standard coding of \mathbb{R} , \mathbb{S} , subspaces, function spaces...
- Includes (quasi-/co) Polish spaces

The category of represented spaces ReprSp

Definition

A represented space **X** is a partial surjection $\delta_{\mathbf{X}} \subseteq \mathbb{N}^{\mathbb{N}} \twoheadrightarrow S$

Idea: $c \in \text{dom}(\delta_{\mathbf{X}})$ is a name for $\delta_{\mathbf{X}}(c) \in S$

Computable maps $f: \mathbf{X} \to \mathbf{Y}$

Type 2 computable maps $\lceil f \rceil : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ such that

$$\begin{array}{ccc} \mathbb{N}^{\mathbb{N}} & \stackrel{\ulcorner f \urcorner}{\longrightarrow} \mathbb{N}^{\mathbb{N}} \\ \delta_{\mathbf{X}} \!\!\! \downarrow & & \!\!\!\! \downarrow \!\!\! \delta_{\mathbf{Y}} \\ X & \stackrel{f}{\longrightarrow} Y \end{array}$$

- Standard coding of \mathbb{R} , \mathbb{S} , subspaces, function spaces...
- Includes (quasi-/co) Polish spaces
- Nice (lcc) category: pullbacks, enough regular projectives

Simpler motivating example (†)

Simpler motivating example (†)

- 1. A represented space A of codes
 - ▲ Meaning of codes/names compared to the previous slide

Simpler motivating example (†)

- 1. A represented space A of codes
 - ▲ Meaning of codes/names compared to the previous slide
 - (†) build a computable $e: \mathbf{A}^2 \to \mathbf{A}$ such that...

Simpler motivating example (\dagger)

- 1. A represented space A of codes
 - ⚠ Meaning of codes/names compared to the previous slide
 - (†) build a computable $e: \mathbf{A}^2 \to \mathbf{A}$ such that...
- 2. For each point $a \in \mathbf{A}$, an interpretation $[a] \in \mathsf{ReprSp}_0$
 - (†) ...s.t. $\forall c \ d$ points of \mathbf{A} , $[\![e(c,d)]\!] \cong [\![c]\!] \times [\![d]\!]$ in ReprSp

Simpler motivating example (\dagger)

- 1. A represented space A of codes
 - ⚠ Meaning of codes/names compared to the previous slide
 - (†) build a computable $e: \mathbf{A}^2 \to \mathbf{A}$ such that...
- 2. For each point $a \in \mathbf{A}$, an interpretation $[a] \in \mathsf{ReprSp}_0$
 - (†) ...s.t. $\forall c \ d$ points of \mathbf{A} , $[\![e(c,d)]\!] \cong [\![c]\!] \times [\![d]\!]$ in ReprSp
- 3. Additional coherence data for **uniformity**??
 - (†) compute the iso computably in c and d

Dealing with the additional coherence data (1/2)

Taking a leaf from category theorists/type theorists:

- Spaces of spaces are uniform families ($[\![c]\!]$) $_{c \in \mathbf{A}}$
- internal families to a category \mathcal{C} are simply morphisms
 - I-indexed \cong with codomain I

External/internal families in Set $(I\text{-indexed}) \text{ families} & \longleftrightarrow & \text{functions (to } I) \\ \\ (A_i)_{i \in I} & \longmapsto & \sum\limits_{i \in I} A_i \xrightarrow{\text{projection}} I \\ \\ (f^{-1}(i))_{i \in I} & \longleftrightarrow & f: X \to I$

Dealing with the additional coherence data (2/2)

Official definition

A repr. space of repr. spaces is a morphism in ReprSp

Conventions for spaces $\mathrm{El}_{\mathbf{A}}: \mathbf{A}_{\bullet} \to \mathbf{A}$

- Call El_A a bundle
- Write $[a]_A$ for $El^{-1}(a)$
- A is the base of the bundle
- \bullet **A** $_{\bullet}$ is the total space

Application (†) continued (uniform cartesian products)

Simpler motivating example (†)

In Polish spaces, $(X,Y) \mapsto X \times Y$ is uniformly computable.

Assuming a space of Polish spaces $\mathrm{El}_{\mathbf{P}}: \mathbf{P}_{\bullet} \to \mathbf{P}$, we want

• a morphism $e: \mathbf{P}^2 \to \mathbf{P}$ and a uniform family

$$\prod_{c,d \in \mathbf{P}} \operatorname{El}_{\mathbf{P}}^{-1}(c) \times \operatorname{El}_{\mathbf{P}}^{-1}(d) \cong \operatorname{El}_{\mathbf{P}}^{-1}(e(c,d))$$

- makes sense b/c ReprSp is locally cartesian closed
- intuition: that's a subspace of $\mathbf{P}^2 \to (\mathbf{P}_{\bullet} \rightharpoonup \mathbf{P}_{\bullet})^2$

Application (†) continued (uniform cartesian products)

Simpler motivating example (†)

In Polish spaces, $(X,Y) \mapsto X \times Y$ is uniformly computable.

Assuming a space of Polish spaces $\mathrm{El}_{\mathbf{P}}: \mathbf{P}_{\bullet} \to \mathbf{P}$, we want

• a morphism $e: \mathbf{P}^2 \to \mathbf{P}$ and a uniform family

$$\prod_{c,d \in \mathbf{P}} \operatorname{El}_{\mathbf{P}}^{-1}(c) \times \operatorname{El}_{\mathbf{P}}^{-1}(d) \cong \operatorname{El}_{\mathbf{P}}^{-1}(e(c,d))$$

- makes sense b/c ReprSp is locally cartesian closed
- intuition: that's a subspace of $\mathbf{P}^2 \to (\mathbf{P}_{\bullet} \rightharpoonup \mathbf{P}_{\bullet})^2$
- low-level version: $\exists e_{\bullet}: \mathbf{P}^2_{\bullet} \to \mathbf{P}_{\bullet}$ s.t. we have a pullback

A represented space of represented Polish spaces

Polish spaces = completely metrisable + dense sequence

The bundle $PM_{\bullet} \rightarrow PM$

• $PM \subseteq \mathbb{R}^{\mathbb{N}^2}$ consists of the pseudometrics over \mathbb{N}

$$d(x,x) = 0 \qquad d(x,y) = d(y,x) \qquad d(x,y) \le (x,y) + d(y,z)$$

- $\mathsf{PM}_{\bullet} \subseteq \mathbb{R}^{\mathbb{N}^2} \times \mathbb{N}^{\mathbb{N}}$ consists of pairs (d,s) where s is a fast converging Cauchy sequence for d
- the map is the first projection

Bundles from hyperspaces

Hyperspaces \mathcal{H} over $\mathbf{X} \in \mathsf{ReprSp}_0$

A map
$$\partial_{\mathcal{H}}: R \to \mathcal{P}(\mathbf{X})$$
 for some $\mathbf{R} = (R, \delta_{\mathbf{R}}) \in \mathsf{ReprSp}_0$

Given such an hyperspace, build the bundle

- \bullet whose base is \mathbf{R}
- whose total space \mathcal{H}_{\bullet} is the subspace of $\mathbf{R} \times \mathbf{X}$ with

$$(r, x) \in \mathcal{H}_{\bullet}$$
 iff $x \in \partial_{\mathcal{H}}(r)$

• which projects onto the R component

Examples of hyperspaces

Hyperspaces \mathcal{H} over $\mathbf{X} \in \mathsf{ReprSp}_0$

A map
$$\partial_{\mathcal{H}}: R \to \mathcal{P}(\mathbf{X})$$
 for some $\mathbf{R} = (R, \delta_{\mathbf{R}}) \in \mathsf{ReprSp}_0$

Examples:

• the hyperspace $\mathcal{O}(\mathbf{X})$ of closed subsets of \mathbf{X}

$$\partial_{\mathcal{A}(\mathbf{X})}: p: \mathbf{X} \to \mathbb{S} \longmapsto p^{-1}(\bot)$$

- similarly: opens, Π_2^0 -subsets, ...
- the hyperspace $\mathcal{V}(\mathbf{X})$ of overt subsets of \mathbf{X} (interprets maps $\exists_{\mathbf{X}}: \mathbf{X}^{\mathbb{S}} \to \mathbb{S}$)
- combined hyperspace $\mathcal{H}_1 \wedge \mathcal{H}_2$

$$\partial_{\mathcal{H}_1 \wedge \mathcal{H}_2}(r_1, r_2) = A \quad \text{iff} \quad \partial_{\mathcal{H}_i}(r_i) = A \quad \text{for } i \in \{1, 2\}$$

Polish spaces as hyperspaces

Convention: \mathcal{H}_+ = restrict to non-empty subspaces

Characterizations and matching hyperspaces

Polish spaces are

- G_{δ} subsets of the Hilbert cube \rightsquigarrow $\left(\mathbf{\Pi}_{2}^{0} \wedge \mathcal{V}\right) \left([0,1]^{\mathbb{N}}\right)_{+}$
- closed subsets of $\mathbb{R}^{\mathbb{N}} \longrightarrow (\mathcal{A} \wedge \mathcal{V}) (\mathbb{R}^{\mathbb{N}})_{+}$

Polish spaces as hyperspaces

Convention: \mathcal{H}_+ = restrict to non-empty subspaces

Characterizations and matching hyperspaces

Polish spaces are

- G_{δ} subsets of the Hilbert cube \rightsquigarrow $\left(\Pi_{2}^{0} \wedge \mathcal{V}\right) \left([0,1]^{\mathbb{N}}\right)_{+}$
- closed subsets of $\mathbb{R}^{\mathbb{N}} \longrightarrow (\mathcal{A} \wedge \mathcal{V}) (\mathbb{R}^{\mathbb{N}})_{+}$

Recall that $\mathsf{PM}_{ullet} \to \mathsf{PM}$ is another Polish bundle

Three different definitions

Are they **equivalent**? In which sense?

Embedding and equivalence of spaces of spaces

An embedding of $\mathbf{A}_{\bullet} \xrightarrow{\mathrm{El}_{\mathbf{A}}} \mathbf{A}$ into $\mathbf{B}_{\bullet} \xrightarrow{\mathrm{El}_{\mathbf{B}}} \mathbf{B}$ is a pair

e: $\mathbf{A} \to \mathbf{B}$ translates A-codes into B-codes...

 $E: \prod_{a \in \mathbf{A}} \mathrm{El}_{\mathbf{A}}^{-1}(a) \cong \mathrm{El}_{\mathbf{B}}^{-1}(b)$... w/o modifying the spaces

Embedding and equivalence of spaces of spaces

An embedding of $\mathbf{A}_{\bullet} \xrightarrow{\mathrm{El}_{\mathbf{A}}} \mathbf{A}$ into $\mathbf{B}_{\bullet} \xrightarrow{\mathrm{El}_{\mathbf{B}}} \mathbf{B}$ is a pair

 $e: \mathbf{A} \to \mathbf{B}$ translates **A**-codes into **B**-codes... $E: \prod \mathrm{El}_{\mathbf{A}}^{-1}(a) \cong \mathrm{El}_{\mathbf{B}}^{-1}(b)$... w/o modifying the spaces

Elementary characterization: ∃ a pullback

$$\begin{array}{ccc} \mathbf{A}_{\bullet} & \longrightarrow & \mathbf{B}_{\bullet} \\ & & \downarrow & \downarrow & \\ \mathbf{A} & & & e & \mathbf{B} \end{array}$$

Embedding and equivalence of spaces of spaces

An embedding of $\mathbf{A}_{\bullet} \xrightarrow{\mathrm{El}_{\mathbf{A}}} \mathbf{A}$ into $\mathbf{B}_{\bullet} \xrightarrow{\mathrm{El}_{\mathbf{B}}} \mathbf{B}$ is a pair

 $e: \mathbf{A} \to \mathbf{B}$ translates **A**-codes into **B**-codes...

 $E: \prod_{a \in \Lambda} \mathrm{El}_{\mathbf{A}}^{-1}(a) \cong \mathrm{El}_{\mathbf{B}}^{-1}(b) \qquad \ldots \text{w/o modifying the spaces}$

Elementary characterization: \exists a pullback

$$\begin{array}{ccc} \mathbf{A}_{\bullet} & & & & \mathbf{B}_{\bullet} \\ & & & \downarrow & & \downarrow & \\ \mathbf{A} & & & e & & \mathbf{B} \end{array}$$

Equivalence

When there are embedding both ways

Turn $d \in \mathsf{PM}$ with $d \leq 1$ (wlog) into

$$X_d = \left\{ x \in [0,1]^{\mathbb{N}} \mid \forall k \; \exists m_k \; \forall i \leq k \; |x_i - d(i,m)| < 2^{-k} \right\}$$

Obvious Π_2^0 , easy to see it is overt \leadsto code $\lceil X_d \rceil$

Turn $d \in \mathsf{PM}$ with $d \leq 1$ (wlog) into

$$X_d = \left\{ x \in [0, 1]^{\mathbb{N}} \mid \forall k \; \exists m_k \; \forall i \le k \; |x_i - d(i, m)| < 2^{-k} \right\}$$

Obvious Π_2^0 , easy to see it is overt \leadsto code $\lceil X_d \rceil$

Map between total spaces

$$\mathbb{R}^{\mathbb{N}^{2}} \times \mathbb{N}^{\mathbb{N}} \qquad \left(\mathbb{S}_{\mathbf{\Pi}_{2}^{0}}^{[0,1]^{\mathbb{N}}} \times \mathbb{S}^{\mathbb{S}^{[0,1]^{\mathbb{N}}}}\right) \times [0,1]^{\mathbb{N}}$$

$$\cup \cup \qquad \qquad \cup \cup$$

$$\mathsf{PM}_{\bullet} \qquad \longrightarrow \qquad \left(\mathbf{\Pi}_{2}^{0} \wedge \mathcal{V}\right) \left([0,1]^{\mathbb{N}}\right)_{+,\bullet}$$

$$(d,s) \qquad \longmapsto \qquad \left(\lceil X_{d} \rceil, \left(k \longmapsto \lim_{n \to +\infty} d(k,s_{n})\right)\right)$$

For the other way around, $(\Pi_2^0 \wedge \mathcal{V}) ([0,1]^{\mathbb{N}})_+ \to \mathsf{PM}$

• By overt choice, pick a dense sequence in $\mathbf{X} \in \mathcal{V}\left([0,1]^{\mathbb{N}}\right)_{+}$

For the other way around, $(\Pi_2^0 \wedge \mathcal{V})([0,1]^{\mathbb{N}})_+ \to \mathsf{PM}$

- By overt choice, pick a dense sequence in $\mathbf{X} \in \mathcal{V}\left([0,1]^{\mathbb{N}}\right)_{+}$
- **Problem**: this only gives us a multivalued map $(\Pi_2^0 \wedge \mathcal{V}) ([0,1]^{\mathbb{N}})_+ \rightrightarrows \mathsf{PM}$
- Multivaluedness does not play well at all with other defs

For the other way around, $(\Pi_2^0 \wedge \mathcal{V})([0,1]^{\mathbb{N}})_+ \to \mathsf{PM}$

- By overt choice, pick a dense sequence in $\mathbf{X} \in \mathcal{V}\left([0,1]^{\mathbb{N}}\right)_{+}$
- **Problem**: this only gives us a multivalued map $\left(\mathbf{\Pi}_2^0 \wedge \mathcal{V}\right) \left([0,1]^{\mathbb{N}}\right)_+ \rightrightarrows \mathsf{PM}$
- Multivaluedness does not play well at all with other defs

Solution

Considering bundles $\mathbf{A}_{\bullet} \to \mathbf{A}$ up to reindexing along

$$\left(\mathbb{N}^{\mathbb{N}}\supseteq\right) \quad \operatorname{dom}(\delta_{\mathbf{A}}) \quad \longrightarrow \quad \mathbf{A}$$

Intensional equivalence: equivalence up to that reindexing

For the other way around, $(\mathbf{\Pi}_2^0 \wedge \mathcal{V}) ([0,1]^{\mathbb{N}})_+ \to \mathsf{PM}$

- By overt choice, pick a dense sequence in $\mathbf{X} \in \mathcal{V}\left([0,1]^{\mathbb{N}}\right)_{+}$
- **Problem**: this only gives us a multivalued map $(\Pi_2^0 \wedge \mathcal{V}) ([0,1]^{\mathbb{N}})_+ \rightrightarrows \mathsf{PM}$
- Multivaluedness does not play well at all with other defs

Solution

Considering bundles $\mathbf{A}_{\bullet} \to \mathbf{A}$ up to reindexing along

$$\left(\mathbb{N}^{\mathbb{N}}\supseteq\right) \quad \operatorname{dom}(\delta_{\mathbf{A}}) \quad \longrightarrow \quad \mathbf{A}$$

Intensional equivalence: equivalence up to that reindexing

(abstract nonsense: reindexing along regular projective covers)

TL;DR natural options are intensionally equivalent

Bundles for Polish spaces

 $\mathsf{PM}_{ullet} \to \mathsf{PM}$ is intensionally equivalent to bundles given by

$$\left(\mathbf{\Pi}_{2}^{0} \wedge \mathcal{V}\right) \left(\left[0,1\right]^{\mathbb{N}}\right)_{+} \qquad \left(\mathcal{A} \wedge \mathcal{V}\right) \left(\mathbb{R}^{\mathbb{N}}\right)_{+} \quad \text{and} \quad \mathcal{V}\left(\mathbb{R}^{\mathbb{N}}\right)_{+}$$

TL;DR natural options are intensionally equivalent

Bundles for Polish spaces

 $\mathsf{PM}_{ullet} \to \mathsf{PM}$ is intensionally equivalent to bundles given by

$$\left(\mathbf{\Pi}_{2}^{0} \wedge \mathcal{V}\right) \left([0,1]^{\mathbb{N}}\right)_{+} \qquad \left(\mathcal{A} \wedge \mathcal{V}\right) \left(\mathbb{R}^{\mathbb{N}}\right)_{+} \quad \text{and} \quad \mathcal{V}\left(\mathbb{R}^{\mathbb{N}}\right)_{+}$$

Call $\mathsf{TBPM}_{\bullet} \to \mathsf{TBPM}$ for the variant of $\mathsf{PM}_{\bullet} \to \mathsf{PM}$ where we add a witness of total boundedness $\in \mathbb{N}^{\mathbb{N}}$.

Bundles for compact Polish spaces

 $\mathsf{TBPM}_{\bullet} \to \mathsf{TBPM}$ is intensionally equivalent to the bundles given by $(\mathcal{K} \wedge \mathcal{V}) \left([0,1]^{\mathbb{N}} \right)_+$

Uniform computable categoricity (fun!)

The degree of (uniform) computable categoricity

Let $El : A_{\bullet} \to A$ be a space of spaces.

Computable categoricity of $S \in \mathsf{ReprSp}_0$ as a problem

- Input: $a, b \in \mathbf{A}$ such that $\mathrm{El}^{-1}(a) \cong \mathrm{El}^{-1}(b) \cong S$ (non-necessarily computably so)
- Output: an homeomorphism $El^{-1}(a) \cong El^{-1}(b)$

We talk about the **degree** of computable categoricity $\operatorname{CCat}(S)$ S is computably categorical when $\operatorname{CCat}(S,\operatorname{El}) \leq \operatorname{id}$

The degree of (uniform) computable categoricity

Let $El : A_{\bullet} \to A$ be a space of spaces.

Computable categoricity of $S \in \mathsf{ReprSp}_0$ as a problem

- Input: $a, b \in \mathbf{A}$ such that $\mathrm{El}^{-1}(a) \cong \mathrm{El}^{-1}(b) \cong S$ (non-necessarily computably so)
- Output: an homeomorphism $El^{-1}(a) \cong El^{-1}(b)$

We talk about the **degree** of computable categoricity CCat(S)S is computably categorical when $CCat(S, El) \leq id$

Sanity check: notion stable under intensional equivalence \checkmark

Cantor space among compact Polish spaces

Theorem

 $2^{\mathbb{N}}$ is uniformly computably categorical in $(\mathcal{K} \wedge \mathcal{V})$ ([0,1] $^{\mathbb{N}}$).

Idea: given a code for $\mathbf{X} \in (\mathcal{K} \wedge \mathcal{V}) ([0,1]^{\mathbb{N}})$:

- look for a cover of X by two opens U_0, U_1 (compactness)
- such that both are non-empty (overtness)
- and $\overline{U_0} \cap \overline{U_1} = \emptyset$ (compactness)

Cantor space among compact Polish spaces

Theorem

 $2^{\mathbb{N}}$ is uniformly computably categorical in $(\mathcal{K} \wedge \mathcal{V})$ ([0,1] $^{\mathbb{N}}$).

Idea: given a code for $\mathbf{X} \in (\mathcal{K} \wedge \mathcal{V}) ([0,1]^{\mathbb{N}})$:

- look for a cover of X by two opens U_0, U_1 (compactness)
- such that both are non-empty (overtness)
- and $\overline{U_0} \cap \overline{U_1} = \emptyset$ (compactness)

For the iso $h: \mathbf{X} \to 2^{\mathbb{N}}$, then set

$$h(x)_0 = i \iff x \in U_i$$

Cantor space among compact Polish spaces

Theorem

 $2^{\mathbb{N}}$ is uniformly computably categorical in $(\mathcal{K} \wedge \mathcal{V})$ ([0,1] $^{\mathbb{N}}$).

Idea: given a code for $\mathbf{X} \in (\mathcal{K} \wedge \mathcal{V}) ([0,1]^{\mathbb{N}})$:

- look for a cover of **X** by two opens U_0, U_1 (compactness)
- such that both are non-empty (overtness)
- and $\overline{U_0} \cap \overline{U_1} = \emptyset$ (compactness)

For the iso $h: \mathbf{X} \to 2^{\mathbb{N}}$, then set

$$h(x)_0 = i \iff x \in U_i$$

Iterate for the other bits

(find a cover $U_{00} \cup U_{01} \supseteq U_0$ such that...)

The circle (still among compact Polish spaces)

Theorem

The Weihrauch degree of uniform categoricity of S_1 is lim.

lim computes an iso $X \to \mathcal{S}_1$ (assuming $X \cong \mathcal{S}_1$ non-effectively):

• We attempt to cover **X** by finer and finer circular chains

• Use lim to pick refinements without backtrackings

The circle (lim-hardness)

For the converse, first note $\lim \equiv_{W} U_{PPERBOUND}$.

- For each input $p \in \mathbb{N}^{\mathbb{N}}$ to UPPERBOUND, fix two balls and a tube approximating our would-be circle locally
- When asked for a better precision 2^{-k-1} , shrink the tube and add $\max(0, p_{k+1} \max_{i \le k} p_i)$ backtracks

By the iso $S_1 \to \mathbf{X} \subseteq [0,1]^{\mathbb{N}}$, bound the # of backtracks

Genericity

The big question

Let $El : A_{\bullet} \to A$ be a space of spaces.

We need some definitions

What does it mean for a space to be generic?

Here: adapt notions from computability/topology

The big question

Let $El : A_{\bullet} \to A$ be a space of spaces.

We need some definitions

What does it mean for a space to be generic?

Here: adapt notions from computability/topology

- Concern #1: stability under bundle equivalence
- Concern #2: homeomorphism invariance
- Concern #3: the right notion of pointclass

Concerns #1 and #2

Let $El : A_{\bullet} \to A$ be a space of spaces.

Equivalence and density: one issue

If $a \in \mathbf{A}$ is computable, the following is equivalent to El:

$$!_X + \mathrm{El} : \mathrm{El}^{-1}(a) + \mathbf{A}_{\bullet} \longrightarrow 1 + \mathbf{A}$$

But now every dense set in $1 + \mathbf{A}$ contains a copy of $\mathrm{El}^{-1}(a)!!$

Solution:

- Consider the quotient $\pi_{\cong} : \mathbf{A} \to \mathbf{A}_{\cong}$ that identify codes for isomorphic spaces
- $\pi_{\cong} \circ \text{El}$ is intensionally equivalent to El

Concern #3: pointclasses

- Recall we have $El: A_{\bullet} \to A$ and $\pi_{\cong}: A \to A_{\cong}$ around
- Let $\widetilde{\mathbf{A}} \subseteq \mathbb{N}^{\mathbb{N}}$ the space of names of \mathbf{A} and $\delta_{\mathbf{A}} : \widetilde{\mathbf{A}} \to \mathbf{A}$

Standard convention for non-Polish spaces for point classes [Pauly & de Brecht 15, Callard & Hoyrup 20, Hoyrup 20]

Essential caveat

A Π_0^2 subset of \mathbf{A}_{\cong} is given

- by a morphism $\mathbf{A}_{\cong} \to \mathbb{S}_{\mathbf{\Pi}_2^0}$
 - $\mathbb{S}_{\Pi_2^0} = 2^{\mathbb{N}}$ /"both finite or not"
 - equivalently: a Π_0^2 set of $\widetilde{\mathbf{A}}$ that respects $\pi_{\cong} \circ \delta_{\mathbf{A}}$
- not necessarily by $\bigcap_{n\in\mathbb{N}} U_n$ with $U_n \in \mathcal{O}(\mathbf{A}_{\cong})!$
 - The U_n s do not need to respect the quotients

The definition

Recall we have $El : \mathbf{A}_{\bullet} \to \mathbf{A}$ and $\pi_{\cong} : \mathbf{A} \twoheadrightarrow \mathbf{A}_{\cong}$ around Let \mathcal{C} be a pointclass

C-genericity

S is C-generic in El if for every dense set $D \in \mathcal{C}(\mathbf{A}_{\cong})$

$$\exists a \in D. \ \mathrm{El}^{-1}(a) \cong S$$

• Note: $\mathrm{El}^{-1}(a) \cong \mathrm{El}^{-1}(a')$ and $a \in D$ imply $a' \in D$

The definition

Recall we have $El : \mathbf{A}_{\bullet} \to \mathbf{A}$ and $\pi_{\cong} : \mathbf{A} \twoheadrightarrow \mathbf{A}_{\cong}$ around Let \mathcal{C} be a pointclass

C-genericity

S is C-generic in El if for every dense set $D \in \mathcal{C}(\mathbf{A}_{\cong})$

$$\exists a \in D. \ \mathrm{El}^{-1}(a) \cong S$$

• Note: $\mathrm{El}^{-1}(a) \cong \mathrm{El}^{-1}(a')$ and $a \in D$ imply $a' \in D$

Sanity check

Intensionally equivalent bundles \Rightarrow same C-generic spaces

Genericity in compact Polish spaces

Proposition

All infinite compact Polish spaces are Σ_1^0 -generic.

Theorem

 $2^{\mathbb{N}}$ is the only Π_2^0 -generic compact Polish space.

Genericity in compact Polish spaces

Proposition

All infinite compact Polish spaces are Σ_1^0 -generic.

Theorem

 $2^{\mathbb{N}}$ is the only Π_2^0 -generic compact Polish space.

Proof idea: being isomorphic to $2^{\mathbb{N}}$ is a Π_2^0 property

$$\forall n \in \mathbb{N}. \forall r \in \mathbb{Q}_{>0}. \exists m \in \mathbb{N}. \exists s \in \mathbb{Q}_{>0}. \exists m' \in \mathbb{N}. \exists s \in \mathbb{Q}_{>0}.$$

$$B(x_n, r) \cap X \neq \emptyset \implies \overline{B}(x_n, r) \cap X \subseteq B(x_m, s) \cup B(x_{m'}, s')$$

$$\land B(x_m, s) \cap X \neq \emptyset$$

$$\land B(x_{m'}, s') \cap X \neq \emptyset$$

$$\land \overline{B}(x_m, s) \cap \overline{B}(x_{m'}, s') \cap X = \emptyset$$

Conclusion

What happened

- The notion of spaces of spaces as bundles
 - As type-theoretic universes
 - (but typically we like them somewhere in the middle between discrete and indiscrete)
- Equivalent presentations for (compact) Polish spaces
 - \leadsto effectivizes equivalent characterizations
- Notions of uniform computable categoricity and genericity
- Some results for compact Polish spaces

What could happen: coPolish and quasiPolish spaces

Some groundwork for quasiPolish spaces in [dB21]

- A space of spaces based on ideal presentations
- Effective closure under countable products & more...

Further things to determine

Different equivalent bundles for different characterization?

Same thing for coPolish spaces?

Effectivize Y coPolish $\land X$ quasiPolish $\Longrightarrow X^Y$ quasiPolish?

What could happen: categoricity

Obvious questions

What is the degree of categoricity of $[0,1[? \mathbb{N}^{\mathbb{N}}? \mathbb{R}? \dots]$

Beyond that:

- What happens if we restrict isomorphisms to be
 - uniformly continuous
 - isometries
 - ...
- Links with other notions of computable categoricity
 - in computable structure theory
 - for Banach spaces
 - ...

What could happen: genericity

Obvious question

What are Π_2^0 -generic Polish spaces?

Beyond that, what link with genericity in other settings?

What could happen: genericity

Obvious question

What are Π_2^0 -generic Polish spaces?

Beyond that, what link with genericity in other settings?

Thanks for listening! Questions?