The MOS Based Differential Circuits

DC Analysis

- I. $I_1 = 112\mu A$, $I_2 = 249\mu A$, $I = 364\mu A$.
- II. $I_1 \neq I_2$
 - A. Differences in the biasing voltage applied to the gates of transistors in a differential pair can result in unequal threshold voltages. This discrepancy can lead to uneven drain currents, even if the transistors are theoretically identical.

III.
$$I_1 + I_2 \approx I$$

AC Analysis

I. Waveform

II.
$$A_d = \frac{V_d}{V_i} = 3.225$$

III. Bode Plot

Frequency(kHz)	A_d	A_d(dB)
1	3.225	10.1706
2	3.223	10.1652
5	3.225	10.1706
10	3.221	10.1598
50	3.130	9.9109
100	3.050	9.6860
300	2.562	8.1716
500	2.123	6.5390
800	1.514	3.6025
1000	1.325	2.4443
2000	1.212	1.6701
5000	0.891	-1.0024
8000	0.759	-2.3952

Conclusion:

In this experiment, we encountered issues measuring V_d , as the oscilloscope couldn't simultaneously display both V_1 and V_d . With the assistance of the teaching assistant, we adjusted oscilloscope settings and connections, ultimately resolving the problem. This experience taught us the importance of problem-solving and the value of teamwork.