

Theory of Computation CSC 339 - Spring 2021

Chapter-1: part2Regular Languages

King Saud University

Department of Computer Science

Dr. Azzam Alsudais

Outline

- **PRecap**
- **Introduction**
- Nondeterministic Finite Automata (NFA)

Recap

- Deterministic Finite Automata (DFA)
 - For Given a word $\underline{\mathbf{w}}$, the automaton will always end up in state $\underline{\mathbf{q}}$
 - $^{>}$ DFA always transition to the same state given the (q, a) ordered pair where q \in Q and a \in Σ .

Recap

```
    L = {ab}+
    Example strings: {ab, abab, ababab, ...}
    L = {ab}*
    Example strings: {ε, ab, abab, ...}
```

Nondeterministic finite automate (NFA): several choices may exist for the next state at any point.

- Nondeterministic finite automate (NFA): several choices may exist for the next state at any point.
- >It is a generalization of deterministic finite automata (DFA)

- Nondeterministic finite automate (NFA): several choices may exist for the next state at any point.
- It is a generalization of deterministic finite automata (DFA)
- Coming up with solutions using DFA may sometimes be extremely difficult.. So, we use NFA which is comparatively easier than DFA.

- Nondeterministic finite automate (NFA): several choices may exist for the next state at any point.
- It is a generalization of deterministic finite automata (DFA)
- Coming up with solutions using DFA may sometimes be extremely difficult.. So, we use NFA which is comparatively easier than DFA.
- >Then, we can convert NFA to DFA
 - >An NFA is much easier to construct than DFA.. why?

- How do we compute using NFA?
 - >Think of it like a tree, where you create a new branch for each possibility
 - If one of those branches ends up in an accept state, then we say that this NFA is accepting the input string

Nondeterministic finite automaton (NFA) N₁

Input string: 010110

- How is NFA different from DFA?
 - >In DFA, every state has exactly one exiting arrow for each symbol of the alphabet. In NFA, this is not necessarily the case.
 - >In DFA, labels on transition arrows are symbols from the alphabet. In NFA, we may have an arrow for ϵ .

DFA	NFA
Cannot use empty string transition	Can use empty string transition
Rejects the string if it terminates in a non-accept state	Rejects the string only if all branches end up in non-accept states

Example NFA

w = aa

This branch accepts w

This branch rejects w

Will this NFA accept w?

What is the language that this NFA recognizes?

- NFA rejects a string if:
 - >All input is consumed and the automaton ends up in a non-accept state
 - The input cannot be fully consumed

How can we process an empty alphabet symbol?

w = aa

input head does not move

a a

What language does this NFA recognize?

What language does this NFA recognize?

What language does this NFA recognize?

Formal definition

- >Q: set of states (finite set)
- $\triangleright \Sigma$: input alphabet (finite set)
- $\triangleright \delta : \mathbf{Q} \times \mathbf{\Sigma}_{\varepsilon} \rightarrow \mathbf{P}(\mathbf{Q})$ transition function
- $>q_0 \in Q$ start state
- F ⊆ Q: accept states

>Transition function

$$\delta(q,x) = \{q_1, q_2, ..., q_k\}$$

>Transition function

$$\delta(q,x) = \{q_1, q_2, ..., q_k\}$$

$$\delta$$
 (q₁, 0) = {q₀,q₂}

>Transition function

$$\delta(q,x) = \{q_1, q_2, ..., q_k\}$$

Extended transition function

Applied on strings:

$$\delta^*(q,w) = \{q_1, q_2, ..., q_k\}$$

>Transition function

$$\delta(q,x) = \{q_1, q_2, ..., q_k\}$$

Extended transition function

Applied on strings:

$$\delta^*(q,w) = \{q_1, q_2, ..., q_k\}$$

Why do we need NFA?

Why do we need NFA?

Let A be the language consisting of all strings over {0,1} containing a 1 in the third position from the end (e.g., 000100 is in A but 0011 is not).

Let A be the language consisting of all strings over {0,1} containing a 1 in the third position from the end (e.g., 000100 is in A but 0011 is not).

NFA that recognizes A

Let A be the language consisting of all strings over {0,1} containing a 1 in the third position from the end (e.g., 000100 is in A but 0011 is not).

DFA that recognizes A

→ A language is recognized by NFA N:

$$>L(N) = \{w_1, w_2, w_3, ..., w_n\}$$

→ A language is recognized by NFA N:

```
>L(N) = \{w_1, w_2, w_3, ..., w_n\}
```

$$> \delta * (q_0, w_m) = \{q_i, ..., q_k, ..., q_j\}$$

A language is recognized by NFA N:

- \triangleright And there is some $q_k \in F$

> **Equivalence of machines**

→ Machine M₁ is equivalent to machine M₂ if:

$$^{\triangleright}L(M_1) = L(M_2)$$

> Equivalence of machines

$$L(M_1) = \{10\} *$$

$$L(M_2) = \{10\} *$$

Converting NFA to DFA

- ►NFA has states: q₀, q₁, ..., qn
- >DFA has states from the power set

```
\emptyset, {q<sub>0</sub>}, {q<sub>1</sub>}, {q<sub>0</sub>,q<sub>1</sub>}, {q<sub>0</sub>,q<sub>1</sub>,q<sub>3</sub>}, ...
```

*Converting NFA to DFA (read p. 57)

*Step-1

*Initial state of NFA: q_0 *Initial state of DFA: $\{q_0\}$

Converting NFA to DFA

≻Step-2

Construct the DFA with states such that there is a state for each subset of NFA's states (power set)

Possible states for DFA

 $\{\emptyset, \{q0\}, \{q1\}, \{q2\}, \{q0, q1\}, \{q0, q2\}, \{q1, q2\}, \{q0, q1, q2\}\}\$

Converting NFA to DFA

- >Step-3
 - Determine start and accept states of the DFA
 - >Start is $E(\{q_0\})$, the set of states that are reachable from q_0 traveling along ϵ arrows.

 \boldsymbol{a}

3

>Accept states are those subsets that contain NFA's accept states

- Converting NFA to DFA
 - ≻Step-4
 - Determine DFA's transition function. Each of DFA's states goes to one place for each input symbol

- Converting NFA to DFA
 - >Step-5 (optional)
 - Simplify the DFA by removing unnecessary states
 - >If no arrows point to some state (not the start state), we can remove them without affecting the performance of the DFA.

- Converting NFA to DFA
 - >Step-5 (optional)
 - Simplify the DFA by removing unnecessary states
 - >If no arrows point to some state (not the start state), we can remove them without affecting the performance of the DFA.

Read example 1.41 in the textbook

Homework

- **Exercises**
 - **≻1.7**
- **Reading**
 - >Example 1.41
 - **≻Section 1.3**