HW #4 (due at Canvas midnight on Wednesday, September 20, ET)

(There are 6 questions, and please look at both sides.)

The hints to Problems 1, 2, 4, 5(b), and 6(c) can be found on page #3 of this pdf file.)

- 1. (Finding minimax procedures, case I). Suppose that Y is Bernoulli random variable with $\mathbf{P}_{\theta}(Y=1) = \theta$ and $\mathbf{P}_{\theta}(Y=0) = 1 \theta$, and it is desired to guess the value of θ on the basis of X under the squared error loss function $L(\theta,d) = (\theta-d)^2$. Assume that the domain of θ is $\Omega = \{\frac{4}{9} \leq \theta \leq \frac{5}{9}\}$ (since we still want to estimate θ , the decision space D can still be [0,1]). Find the minimax procedure under the squared error loss function when $\Omega = \{\frac{4}{9} \leq \theta \leq \frac{5}{9}\}$.
- 2. (Finding minimax procedures, case II). When finding the minimax procedures, sometimes the desired prior distribution might not necessarily put the point mass at the boundary of Ω . To illustrate this, let us consider the setting of the previous problem with a single Bernoulli random variable Y, but now we assume that the domain of θ is $\Omega = \left[\frac{1}{9}, \frac{8}{9}\right]$. Find the minimax estimator of θ under the squared error loss function $L(\theta, d) = (\theta d)^2$ when $\Omega = \left[\frac{1}{9}, \frac{8}{9}\right]$. For that purpose, let us consider two kinds of Bayesian procedures.
 - (a) Assume that θ has a prior distribution on two endpoints of Ω with probability mass function $\pi_a(\theta = \frac{1}{9}) = \frac{1}{2}$ and $\pi_a(\theta = \frac{8}{9}) = \frac{1}{2}$. For the corresponding Bayes procedure, denoted by δ_a , show that its Bayes risk $r_{\delta_a}(\pi_a) < \sup_{\theta \in \Omega} R_{\delta_a}(\theta)$, and thus this direction does not work.
 - (b) Consider another prior distribution $\pi_b(\theta = \frac{2-\sqrt{2}}{4}) = \frac{1}{2}$ and $\pi_b(\theta = \frac{2+\sqrt{2}}{4}) = \frac{1}{2}$, which is a well-defined prior over $\Omega = \left[\frac{1}{9}, \frac{8}{9}\right]$, since $\frac{1}{9} < \frac{2-\sqrt{2}}{4} < \frac{2+\sqrt{2}}{4} < \frac{8}{9}$. Show that the corresponding Bayes procedure, denoted by δ_b , satisfies $r_{\delta_b}(\pi_b) = \sup_{\theta \in \Omega} R_{\delta_b}(\theta)$, and thus we can conclude that δ_b is minimax on $\Omega = \left[\frac{1}{9}, \frac{8}{9}\right]$.
- 3. (Finding minimax procedures, case III). When finding the minimax procedures, sometimes the desired prior distribution might not necessarily be symmetric! To see this, under the setting of Problem 1 with a single Bernoulli random variable Y, but we now assume that the domain of θ is $\Omega = [0, \frac{1}{2}]$. Find the minimax estimator of θ under the squared error loss function $L(\theta, d) = (\theta d)^2$ when $\Omega = [0, \frac{1}{2}]$. To help you find the minimax estimator/procedure when $\Omega = [0, \frac{1}{2}]$, we can split into the following steps.
 - (a) Assume that θ has a prior distribution on two endpoints of $\Omega = [0, \frac{1}{2}]$ with probability mass function $\pi(\theta = \frac{1}{2}) = \gamma$ and $\pi(\theta = 0) = 1 \gamma$. Find the posterior distribution of θ given Y = y for y = 0 or 1. [Note that your answer for $\pi(\theta|Y = 0)$ should be different from $\pi(\theta|Y = 1)$, and θ only has two values: 0 and $\frac{1}{2}$].
 - (b) Show that the Bayes procedure under the assumption of part (a) is $\delta_B(0) = \frac{\gamma}{4-2\gamma}$ and $\delta_B(1) = \frac{1}{2}$.
 - (c) Computing the risk function of δ_B and solving the equation $R_{\delta_B}(\theta=0) = R_{\delta_B}(\theta=\frac{1}{2})$. Show that $\gamma = 2 - \sqrt{2}$. Thus the Bayes procedure in part (b) becomes

$$\delta^*(Y) = \begin{cases} \frac{\sqrt{2}-1}{2}, & \text{if } Y = 0; \\ \frac{1}{2}, & \text{if } Y = 1. \end{cases}$$

(d) Show that the procedure δ^* in part (c) is minimax on $\Omega = [0, \frac{1}{2}]$.

- 4. (**Finding minimax procedures, case IV**). Sometimes the desired prior distribution for the minimax procedure might not exist, but we can use a sequence of priors to find the minimax procedures.
 - (a) Let $\pi_k, k = 1, 2, ...$, be a sequence of prior distributions on Ω . Let δ_k denote a Bayes procedure with respect to π_k , and define the Bayes risks of the Bayes procedures

$$r_k = \int_{\Omega} R_{\delta_k}(\theta) \pi_k(\theta) d\theta.$$

Show that if the sequence r_k converges to a real-valued number r and if δ_* is a statistical procedure with its risk function $R_{\delta_*}(\theta) \leq r$ for all $\theta \in \Omega$, then δ_* is minimax.

- (b) Let Y_1, \ldots, Y_n be iid $N(\theta, \sigma^2)$ with σ known. Consider estimating θ using squared error loss. Show that $\bar{Y} = (Y_1 + \cdots + Y_n)/n$ is a minimax procedure.
- 5. (Finding minimax procedures, case V). Sometimes the minimax properties can be extended from a smaller domain to a larger domain.
 - (a) Let Y_1, \ldots, Y_n be iid with distribution F and finite unknown expectation θ , where F belongs to a set \mathcal{F}_1 of distributions. Suppose we want to estimate θ under a given loss function $L(\theta, d)$. Show that if δ_* is a minimax procedure when F is restricted to some subset \mathcal{F}_0 of \mathcal{F}_1 , and if $\sup_{F \in \mathcal{F}_0} R_{\delta_*}(F) = \sup_{F \in \mathcal{F}_1} R_{\delta_*}(F)$ (i.e., sup risk of δ_* over \mathcal{F}_1 is the same as sup risk over \mathcal{F}_0), then δ_* is also minimax when F is permitted to vary over \mathcal{F}_1 .
 - (b) Suppose that Y_1, \ldots, Y_n are iid with unknown mean θ . We further assume that the Y_i 's can take any values in the interval [0,1], i.e., $0 \le Y_i \le 1$, and that $\Omega = \{\theta : 0 \le \theta \le 1\}$ and $D = \{d : 0 \le d \le 1\}$. Show that

$$\delta_* = \frac{\sqrt{n}}{1 + \sqrt{n}}\bar{Y} + \frac{1}{1 + \sqrt{n}}\frac{1}{2}$$

is minimax for estimating θ under the squared error loss function.

6. (Impact of Loss function on minimax properties). In HW#1, we assume that Y_1, \ldots, Y_n are iid normal $N(\theta, 1)$ with $\theta \in \Omega = (-\infty, \infty)$ and one of the proposed procedures of estimating θ is

$$\delta_{3,n}(Y_1,\ldots,Y_n) = \frac{\sqrt{n}\ \bar{Y}_n}{1+\sqrt{n}}.$$

- (a) Under the loss function $L(\theta, d) = (\theta d)^2/(1 + \theta^2)$, show that k can be chosen in the prior density $\pi_a(\theta) = \text{const.} \times (1 + \theta^2) k^{-1} \phi(\theta/k)$, where ϕ is the standard normal density, in such a way that $\delta_{3,n}$ is Bayes relative to π_a .
- (b) Show that $\delta_{3,n}$ is actually minimax under the loss function $L(\theta,d) = (\theta-d)^2/(1+\theta^2)$.
- (c) Let us still consider the problem of estimating the normal mean θ , but now under the squared error loss function $L(\theta,d)=(\theta-d)^2$. Show that $\delta_{3,n}$ is still Bayes but no longer minimax under the squared error loss function $L(\theta,d)=(\theta-d)^2$.

2

Hints for problems 1 and 2: you can consider a general case of finding the Bayes procedure when the prior distribution is given by $\pi(\theta = r) = \frac{1}{2}$ and $\pi(\theta = 1 - r) = \frac{1}{2}$ for some $0 \le r \le \frac{1}{2}$. The corresponding Bayes procedure is of the form $\delta(0) = u$ and $\delta(1) = 1 - u$, where u depends on r. Next, the risk function of this Bayes procedure is of the form

$$A\theta^2 - A\theta + B$$

where A = 4u - 1 and $B = u^2$. When $r = \frac{4}{9}$, the coefficient A > 0, which allows us to prove the minimax properties in Problem 2. However, when $r = \frac{1}{9}$, the coefficient A < 0, which is the case in Problem 2(a). Meanwhile, problem 2(b) corresponds to the case of u = 1/4 and A = 0.

<u>Hints for problem 4:</u> In (a), it is possible that $r_k < r$ but $\lim_{k\to\infty} r_k = r$. In (b) consider the priors $N(\mu, \tau^2)$ for θ . We have shown in class that the Bayes risk of the corresponding Bayes procedure is $\frac{1}{n/\sigma^2+1/\tau^2}$, denoted by r_τ . What is $r = \lim_{\tau\to\infty} r_\tau$? What is the risk function of $\delta_* = \bar{Y}$? Does the condition in part (a) hold?

Hints for problem 5 (b): Let the subset \mathcal{F}_0 = the set of Bernoulli distributions, and let \mathcal{F}_1 = the class of all distribution functions F with F(0) = 0 and F(1) = 1, i.e., $0 \le Y_i \le 1$. We have shown in class that δ_* is minimax as F varies over \mathcal{F}_0 (i.e., Bayes with constant risk). In order to use part (a), we need to consider the risk function $R_{\delta_*}(F)$ when F varies over \mathcal{F}_1 . Note that if $0 \le Y_i \le 1$, then $Y_i^2 \le Y_i$ and $\mathbf{E}_F(Y_i^2) \le \mathbf{E}_F(Y_i) = \theta$, with equality if $F \in \mathcal{F}_0$. Use this to prove that when F varies over \mathcal{F}_1 , $\operatorname{Var}_F(Y_i) \le \theta - \theta^2$, and thus $R_{\delta_*}(F) \le \frac{1}{4(1+\sqrt{n})^2}$, where the right-hand side is the (constant) risk of δ_* over \mathcal{F}_0 .

Hints for problem 6(c): will it be Bayes relative to the prior density $\pi_b(\theta) = C_1 \pi_a(\theta)/(1+\theta^2) = k^{-1} \overline{\phi(\theta/k)}$ under the squared error loss? What are $\sup_{\theta \in \Omega} R_{\delta_{3,n}}(\theta)$ and $\sup_{\theta \in \Omega} R_{\bar{Y}}(\theta)$ under the squared error loss?]