## **Grade 10 Science**

Chemical Reactions
Class 3

#### **Acids**

- Acids an aqueous solution that:
  - Conducts electricity
  - Tastes sour (don't taste test!)
  - Neutralizes base
- Commonly found in:
  - Preservatives
  - Digestive juices
  - Citrus fruits (lemons, oranges)
  - Soda pop







#### **Reactions with Acids**

 Reaction with Metals – typically produce hydrogen gas

$$2HCl(aq) + Zn(s) \rightarrow H_2(g) + ZnCl_2$$

 Reaction with Nonmetals – typically produce carbon dioxide gas

$$CH_3COOH + NaHCO_3(aq) \rightarrow CO_2(g) + H_2O(I) + NaCH_3COO (aq)$$

Conductivity – breaks apart into ions

$$HCl(aq) \rightarrow H^{+}(aq) + Cl^{-}(aq)$$

#### **Arrhenius Acid**

 An acid is any substance that release a H<sup>+</sup> when they dissolve in water

- Ex: 
$$HCl(aq) + H_2O \rightarrow H_3O^+(aq) + Cl^-(aq)$$



#### Common Binary Acids

| Acid name          | Chemical formula     | Use                        |
|--------------------|----------------------|----------------------------|
| hydrofluoric acid  | HF(aq)               | etching glass              |
| hydrochloric acid  | HCI(aq)              | cleaning concrete          |
| hydrobromic acid   | HBr(aq)              | to make cleaning compounds |
| hydrosulfuric acid | H <sub>2</sub> S(aq) | purifying metals           |

#### Common Oxyacids

| Acid            | Chemical formula                    | Related polyatomic ion                             | Polyatomic ion name |
|-----------------|-------------------------------------|----------------------------------------------------|---------------------|
| acetic acid     | HC2H3O2(aq)                         | C <sub>2</sub> H <sub>3</sub> O <sub>2</sub> -(aq) | acetate             |
| nitric acid     | HNO <sub>3</sub> (aq)               | NO <sub>3</sub> -(aq)                              | nitrate             |
| carbonic acid   | H <sub>2</sub> CO <sub>3</sub> (aq) | CO32-(aq)                                          | carbonate           |
| sulfuric acid   | H <sub>2</sub> SO <sub>4</sub> (aq) | SO <sub>4</sub> 2-(aq)                             | sulfate             |
| phosphoric acid | H <sub>3</sub> PO <sub>4</sub> (aq) | PO <sub>4</sub> 3-(aq)                             | phosphate           |

## **Base**

- Base a substance that:
  - Conducts electricity
  - Tastes bitter (don't taste test!)
  - Feel slippery
  - Neutralizes acids
- Common Uses:
  - Soap
  - Antacids (Tums, Alka-Seltzer, Milk of Magnesia)
  - Baking Soda (HCO<sub>3</sub>-)





#### **Arrhenius Base**

Base is a substance that releases OH⁻
 Ba(OH)₂(aq) → Ba²⁺(aq) + 2OH⁻(aq)

| Base                                       | Chemical formula         | Uses                                           |
|--------------------------------------------|--------------------------|------------------------------------------------|
| sodium hydroxide                           | NaOH(aq)                 | making paper                                   |
| calcium hydroxide                          | Ca(OH) <sub>2</sub> (aq) | decreasing the acidity of lakes and soil       |
| ammonium hydroxide                         | NH <sub>4</sub> OH(aq)   | window cleaners                                |
| magnesium hydroxide                        | Mg(OH) <sub>2</sub> (aq) | antacids                                       |
| aluminum hydroxide                         | AI(OH) <sub>3</sub> (aq) | heartburn medications                          |
| sodium hydrogen<br>carbonate (baking soda) | NaHCO <sub>3</sub> (aq)  | making baked goods rise<br>an abrasive cleaner |



# Checkpoint



Name the following and categorize each as an acid or base:

- a)  $H_3PO_4$  (aq)
- b) HBr (aq)
- c)  $Fe(OH)_3$
- d)  $Ca(HCO_3)_2$

## **Acid-Base Indicators**

 A substance that changes colour depending on whether something is an acid or base

| Indicator        | Colour in acid | Colour in base |
|------------------|----------------|----------------|
| bromothymol blue | yellow         | blue           |
| phenolphthalein  | colourless     | pink           |
| phenol red       | yellow         | red/pink       |
| litmus           | red            | blue           |
| methyl orange    | red            | orange/yellow  |







# Checkpoint



You are looking for the identity of Substance X. If you add bromothymol blue and Substance X turns yellow, is Substance X acidic or basic?

# pH Scale (Power of Hydrogen)

- pH a measure of acidity and basicity
- pH scale a numerical scale ranging from 0 to 14 that is used to compare the acidity of solutions





# The pH scale is a logarithmic scale

- pH change from 7to 8 represents a10X change
- pH change from 7to 9 represents a100X change

- pH measures the concentration of H<sup>+</sup> in solution
  - pH < 7 is acidic
  - -pH = 7 is neutral
  - -pH > 7 is basic
- Ex: HCl → H<sup>+</sup> + Cl<sup>-</sup> (acidic because HCl dissociates into a large number of H<sup>+</sup>)
- Ex: NaOH → Na<sup>+</sup> + OH<sup>-</sup> (basic because more hydroxide ions than hydrogen ions)
- Ex: H<sub>2</sub>O → H<sup>+</sup> + OH<sup>-</sup> (neutral because hydrogen and hydroxide balance out)



# Checkpoint



List the following from most acidic to most basic

Table 1 The pH of Four Liquids

|     | Liquid      | рH |
|-----|-------------|----|
| (a) | milk        | 6  |
| (d) | lemon juice | 2  |
| (c) | vinegar     | 3  |
| (d) | ammonia     | 11 |



# Checkpoint



Substance A has a pH of 13. Substance B has a pH of 8.

- a) How many times did the concentration change from Substance A to Substance B?
- b) Which substance is more acidic?
- c) Which substance is more basic?

#### **Neutralization Reactions**

 A chemical reaction in which an acid and base react to form an ionic compound and water

• This is also a double displacement reaction

## **Predicting Neutralization Products**

• Predict the products of the following:

$$HBr(aq) + LiOH(aq) \rightarrow ?$$

1. Identify the acid and the base.

2. Break the compounds into their respective ions and polyatomic ions.

$$H^+Br^- + Li^+(OH)^- \rightarrow$$

3. Apply the AB + CD  $\rightarrow$  AD + CB pattern.

AB + CD 
$$\rightarrow$$
 AD + CB  
H<sup>+</sup>Br<sup>-</sup> + Li<sup>+</sup>(OH)<sup>-</sup>  $\rightarrow$  H<sup>+</sup>(OH)<sup>-</sup> + Li<sup>+</sup>Br<sup>-</sup>

4. Rewrite the reaction without the ionic charges. Turn HOH into H<sub>2</sub>O.

$$HBr(aq) + LiOH \rightarrow H_2O + LiBr$$



## Checkpoint



Predict the products of the following neutralization reactions. Remember to balance the equation!

- a) Hydrobromic acid + Sodium hydroxide
- b)  $HI(aq) + NH_4OH(aq)$
- c) Phosphoric acid + Potassium hydroxide

## pH in Agriculture

- pH of soil can affect how well crops grow
  - Legumes grow well in slightly basic soil (pH 7-10)
  - Corn thrives in mildly acidic soil (pH 5-6)
  - Potatoes grow best in acidic conditions (pH<5)</li>
- Acid Leaching process of adding an acid solution to soil that is contaminated with heavy metals (basic) from batteries
  - Very expensive and disruptive to ecosystem

- Phytoremediation the use of certain plants to absorb the metal toxins; plants are then harvested and burned
  - Ex: Sunflowers can extract heavy metals
  - Ex: Aspen trees can remove lead from water





## **pH in Consumer Products**

- Cleaning products are very basic with high concentrations of OH-
- Look for Hazardous Household Products Symbols



- pH of swimming pools should be 7.2-7.8
  - If pH is less than 7, pool water will irritate eyes
  - If pH is greater than 8, pool water becomes cloudy and chlorine compounds used to disinfect the pool loses its effectiveness
- Pool pH test kits are used to monitor pH
  - Add HCl(aq) (aka muriatic acid) to reduce pool pH
  - Add Na<sub>2</sub>CO<sub>3</sub> (aq) to increase pool pH



## **Acid Precipitation**

- Acid precipitation when pollutants combine with water and fall to the Earth as rain, snow or fog
  - Most common pollutants are:

NO<sub>X</sub>(g) reacts with water to form HNO<sub>3</sub>(aq)

SO<sub>2</sub>(g) reacts with water to form H<sub>2</sub>SO<sub>4</sub>(aq)

- Normal rainwater pH = 5.6
- Acid precipitation pH = 4.3 (20X more acidic)

# Sulfur Dioxide (SO<sub>2</sub>)

 SO<sub>2</sub> is clear, colourless gas with a strong, choking odour

Main source = Industry



Figure 2 Sources of sulfur dioxide emissions in Canada



Figure 3 Most of the acid-causing pollutants falling on Ontario come from the United States

# Nitrogen Oxides (NO<sub>x</sub>)

- Includes NO and NO<sub>2</sub>
- Main Source = Industry and Automobiles
- Produces smog



Canadian Emissions of Nitrogen Oxides

Figure 4 Sources of nitrogen oxide emissions in Canada

Non-industrial 3 %

Generating electricity

## **Effects of Acid Precipitation**

- Reduction in aquatic life
- Acid rain dissolves minerals in the soil
- Weakens forest
- Damages buildings





