University of Trieste Architecture and Engineering Department

Master Degree in Computer Science

Generative Adversarial Network

Stefano Chen IN2000246

Agenda

- ☐ GAN: The Core Idea
- ☐ How They Work
- ☐ Pros & Cons
- ☐ The GAN Family
- Experiment: DCGAN

The Core Idea - An Adversarial Game

Two Neural Networks in a Creative Battle:

- ☐ Generator (G)
 - The "Forger"
 - Its job is to create synthetic data (e.g. images) that looks real
- □ Discriminator (D)
 - The "Art Critic"
 - Its job is to look at an image and decide if it's authentic or a forgery

A Zero-Sum Game:

The Generator wants to fool the Discriminator.

The Discriminator wants to correctly identify fakes.

This constant competition forces both to become improve

GAN (Generative adversarial network)

ASHIMA MALIK

How GANs Work

The Training Process: A Two-Player Minimax Game

- ☐ Generator (G)
 - Input: Random noise vector z
 - Output: Fake sample G(z)
- ☐ Discriminator (D)
 - Input: Real sample x (from dataset) OR Fake sample G(z)
 - Output: D(x) or D(G(z)) probability input is real
- Loss Function

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

Generative Adversarial Network (GAN)

Advantages

High-Quality Output

 using the right architecture you can generate high-quality and high-resolution data

Data Augmentation

 In cases with limited labeled data, GANs can be used to produce synthetic examples.

Versatility in Applications

 GANs can be used across various data types (e.g. Images, Audio, Video)

Disadvantages

Training Instability

- Model Collapse (G produces limited variety of outputs)
- Non-Convergence (G and D don't reach equilibrium)
- Vanishing Gradient (D gets too strong)

Sensitivity

 GANs are sensitive to architecture, loss functions, and hyperparameters

Data-Hungry

requires large amount of training data

Uncontrolled Generation

There's no way to generate a desired data

The GAN Family

To address some of the disadvantages, different GAN architectures have been designed over the years:

- DCGAN (Deep Convolutional GAN)
 - Used Convolutional Layers instead of Fully Connected ones
 - More Stable training and better image quality
- CGAN (Conditional GAN)
 - Adds a condition to both G and D
 - Allows for controlled generation
- CycleGAN
 - Performs unpaired image-to-image translation
- StyleGAN
 - High resolution Images
 - Introduce style-based control

Our Experiment

Experiment Goal

Following the DCGAN original paper, we want to successfully train a DCGAN to generate novel and plausible animal faces

The DCGAN paper provide some Key Architectural Guidelines w.r.t original GAN architecture:

- No pooling layers: strided convolution for D and transposed convolution for G
- Batch Normalization: in both G and D except G's output and D's input
- Activation Function: ReLU in Generator, LeakyReLU in Discriminator

Experiment Setup

Dataset

- 16 130 images (512x512)
- resized to 64x64 pixels
- normalized pixel values to [-1, +1]

Training Details

Framework: Pytorch

Optimizer: Adam [lr = 0.002, beta1=0.5]

Batch size: 128

Number of Epochs: 100

Training Images

Training Loss

Generated Images

Fake Images

Thank You for your attention