Ax-Sen-Tate

Je suis la preuve de Colmez avec quelques détails en plus. Le but c'est de montrer que pour K un corps local de caractéristique 0 (y'a une version en char $p \ge 1$) on a

$$\mathbb{C}_K^{G_K} = K$$

et plus généralement pour $\mathbb{Q}_p \subset L \subset \mathbb{C}_p$ avec L complet :

$$\widehat{\overline{L}}^{G_L} = \widehat{\overline{L}^{G_L}}$$

Intuitivement, si $L \subset M \subset \bar{L}$ et qu'on peut montrer qu'on peut borner continûment la distance entre M et un élément $\alpha \in \bar{L}$ par un truc qui dépend de $G_M.\alpha$ et $[M(\alpha):M]$.

1 Preuve

En notant

$$\Delta_L(\alpha) := \sup_{g \in G_L} |g\alpha - \alpha|$$

pour $\alpha \in \mathbb{C}_L$. Maintenant si $\alpha_n \to \alpha$ dans \bar{L} on a $\Delta_L(\alpha) \leq \Delta_L(\alpha_n)$ pour n grand.

Le truc cool maintenant c'est que pour $x \in \bar{L}$ on peut trouver $a \in L$ tel que

$$|a - x| \le c_p \Delta_L(x)$$

pour une constante c_p qui dépend que de p d'où si α_n est fixe par \mathscr{G}_L alors α aussi puis α est dans l'adhérence (la complétion) de $L[\alpha_n]$ dans $\mathbb{C}_L!$

2 Lemme principal

On montre que pour $\alpha \in \bar{L}$ il existe $a \in M$ tel que $|a - \alpha| \le c_p \Delta_M(\alpha)$.

2.1 Borne 0

Un truc connu pour $P(X) \in \mathcal{O}_{\bar{\mathbb{Q}}_p}[X]$ et $P(X) = X^n + a_{n-1}X^{n-1} + \ldots + a_0$ c'est la borne :

$$|a_i| \le |Rac(P)|^{n-i}$$

2.2 Borne I : Calculs

2.2.1 Cas général

On a
$$P^{(q)}(X) = a_n \frac{n!}{(n-q)!} X^{n-q} + \ldots + q! a_q$$
 et $a_n = 1$ d'où $b = \frac{a_q}{\binom{n}{q}}$ est le

produit des racines de $P^{(q)}$ au signe près. En plus pour le coeff constant un analogue de la borne 0 dit que il existe une racine $\beta \in Rac(P^{(q)})$ telle que

$$|\beta| \le |b|^{n-q}$$

reste plus qu'à calculer $|\binom{n}{q}|^{1/(n-q)}$.

2.2.2 Ce qu'on veut

On peut prendre $q=p^{v_p(n)}=p^{k+1}$ si n est pas une puissance de p et q=n/p sinon. Alors dans ces cas là on calcule bien :

$$\left| {n \choose q} \right|^{1/(n-q)} = \begin{cases} 1, \cos 1 \\ \frac{1}{p^{\frac{1}{p^{k+1}} - \frac{1}{p^k}}}, \text{ autre cas} \end{cases}$$

parce que

$$\binom{n}{q} = \frac{n}{q} \prod_{i=1}^{q-1} \frac{n-i}{i}$$

maintenant via les hypothèses |n-i|=|i| pour $1 \le i \le q-1$ via $p^ka-i=p^l.u$ dit que $i=p^l(p^{k-l}a-u)$.

Remarque 1. Autrement, entre n et $n-p^k$ y'a "qu'une seule copie de p^k " d'où les mêmes "p-éléments" qu'entre 1 et p^k .

2.3 Preuve du Lemme

On peut étant donné P(X) prendre $Q(X) := P(X + \alpha)$ alors $\beta \in Rac(P)$ est de la forme $g.\alpha - \alpha$ d'où $|Rac(Q)| \leq \Delta_M(\alpha)$. Ensuite on a $\gamma \in Rac(Q^{(q)})$

telle que on ait $|\gamma| \leq c_p \Delta_M(\alpha)$. Maintenant le trick bizarre mais naturel en fait : $d(X + \alpha)/dX = 1$ d'où il existe $\beta \in Rac(P^{(q)})$ telle que

$$|\gamma| = |\beta - \alpha| \le c_p \Delta_M(\alpha)$$

sauf que $[M(\beta):M] \leq [M(\alpha):M]-1$! D'où par récurrence sachant que $\Delta_M(\beta) \leq \Delta_M(\alpha)$ on peut conclure.

2.4 Procédé récursif

Si on note $\alpha =: \alpha_0$ et $\beta =: \alpha_1$, $n_i = [M(\alpha_i):M]$, $q_i = p^{v_p(n_i)}$ ou $q_i = p^{v_p(n_i)-1}$ et k_i cette puissance puis $P_0(X) = P(X)$, $P_1(X) = Irr(\alpha_1)|P_0^{(q)}(X)/a_{n-q}^{(1)}$ avec $a_i^{(j)}$ le *i*-ème coefficient de $P_{j-1}^{(q_{j-1})}$ on obtient à chaque étape une racine α_i de P_i telle que $\Delta_M(\alpha_i) \leq \Delta_M(\alpha)$ et $|\alpha_i - \alpha_{i-1}| \leq c_p \Delta_M(\alpha_{i-1})$ puis éventuellement $\alpha_m \in M$ et

$$|\alpha_m - \alpha| \le c_p \Delta_M(\alpha)$$

2.5 Pourquoi $q = p^k$?

Ça a l'air d'être pour étendre la preuve à la caractéristique $p \geq 1$ pour pouvoir obtenir $\Delta_M(\alpha_i)$ vu que quand y'a des extensions inséparables c'est embêtant.

2.6 Via la trace

En caractéristique 0 si on pose q = n - 1 on calcule

$$|\beta| \le |a_{n-1}|/|n| \le \delta/p^{v_p(n)}$$

de sorte que si $n \wedge p = 1$ alors directement $|\beta - \alpha| \leq \Delta_M(\alpha)$ et $\beta \in M$.

EN FAIT NON : peut-être qu'il y'a un problème avec la ramification sauvage et la surjectivité de la trace?

3 Avec $K \subset K_{\infty} \subset \mathbb{C}_K$

En fait l'idée d'approcher α par sa trace dans M peut être systématisée. On peut poser K_{∞}/K une \mathbb{Z}_p -extension de sorte qu'elle est pas de conducteur finie.

Avec Coates-Greenberg on a la condition équivalente sur la trace qui la rend surjective pour toutes les extensions finies de K_{∞} .

Si on peut prouver que