Lecture 4

Op Amp – Part 2

Review – **Op**erational **Amp**lifier

 $v_1 = v_- = \text{voltage of inverting terminal}$

 $v_2 = v_+ = \text{voltage of noninverting terminal}$

 $v_d = v_+ - v_- = v_2 - v_1$ = differential input voltage for VCVS

A =Open loop gain

 R_i = Input resistance

 $R_o =$ Output resistance

Differential amplifier ⇒ amplifies the difference

$$v_o = Av_d = A(v_2 - v_1) = A(v_+ - v_-)$$

Review – Ideal Op Amp

- Infinite open-loop gain, $A = \infty$
- Infinite input resistance, $R_i = \infty = \text{open circuit}$
- Zero output resistance, $R_o = 0$ = short circuit
- As $R_i = \infty$ (open circuit), $i_1 = i_2 = 0$. Therefore, circuit solving become much simpler

Application of Ideal Op Amp - Comparator

- A comparator compares two voltages to determine which is larger.
- The comparator is essentially an op-amp operated in an open-loop configuration
- Two types
 - (1) Non-inverting: outputs a positive voltage ($V_H = V_S^+$) when input is greater than reference
 - (2) Inverting: outputs a negative voltage ($V_L = V_S^-$) when input is greater than reference
- Application smoke detector, turning AC on/off automatically, etc.

Figure 2: (1) Op-Amp Comparator (2) Noninverting Circuit (3) Inverting Circuit

Comparator Application – Automatic AC

Smoke Detector

No smoke, $V_L = \text{small} = 2v$ Smoke, $V_L = \text{high} = 4v$

 $V_L > 3v \longrightarrow Alarm on$ $V_L < 3v \longrightarrow Alarm off$

Introducing Negative Feedback

- The gain (A) of an ideal op amp is infinity, practically extremely large.
- The power supply (+Vs and –Vs) limits the op amp's output.
- We require a method to have a finite gain. That is what negative feedback does.
- Negative feedback: feeding back a portion of <u>output</u> to inverting <u>input</u>
- Idea the output will become stable due to a self-correcting mechanism

For example, her, $v_{-} = \text{one k'th part of ouput} = \frac{1}{k}$

If v_o increases, v_- will increase, hence v_d will decrease, eventtually v_o decreases If v_o decreases, v_- will decrease, hence v_d will increase, eventtually v_o increase

Negative Feedback – Numerical Example

Negative Feedback – Derivation of Gain

Here,
$$v_{-} = \frac{v_{0}}{k}$$

We know, $v_{o} = Av_{d}$
 $\Rightarrow v_{o} = A(v_{+} - v_{-})$
 $= A(v_{i} - \frac{v_{0}}{k})$
 $= Av_{i} - \frac{A}{k}v_{0}$
 $\Rightarrow v_{o}(1 + \frac{A}{k}) = Av_{i}$

So,
$$v_o = \frac{Av_i}{1 + \frac{A}{k}}$$
or, $v_o = \frac{v_i}{\frac{1}{A} + \frac{1}{k}}$

A is extremely large,

so,
$$\frac{1}{A} \approx 0$$

$$v_o = \frac{v_i}{\frac{1}{k}} = k v_i$$

If k = 10 (meaning we feed back one tenth of the output to negative input), we will get $v_o = 10*v_i$. that is 10 fold gain.

How to get 1/k of output to input? Voltage dividers!

$$v_a = \frac{1 k\Omega}{1 k\Omega + 9 k\Omega} \times v_o = \frac{v_o}{10}$$

Non-Inverting Amplifier

Non-Inverting Amplifier

Design
$$y=4x$$

$$|+\frac{R_2}{R_1}=4\pm\frac{R_2}{R_1}=3$$

$$|+\frac{R_2}{R_1}=4\pm\frac{R_2}{R_1}=3$$

$$|+\frac{R_2}{R_1}=4\pm\frac{R_2}{R_1}=3$$

$$|+\frac{R_2}{R_1}=4\pm\frac{R_2}{R_1}=3$$

$$|+\frac{R_2}{R_1}=4\pm\frac{R_2}{R_1}=3$$

$$|+\frac{R_2}{R_1}=4\pm\frac{R_2}{R_1}=3$$

$$|+\frac{R_2}{R_1}=4\pm\frac{R_2}{R_1}=3$$

$$|+\frac{R_2}{R_1}=4\pm\frac{R_2}{R_1}=3$$

Solving Circuit with Ideal Op Amp + NF

- For ideal op-amp
 - Infinite input resistance, $R_i = \infty$ = open circuit
 - Zero output resistance, $R_o = 0$ = short circuit
 - $i_i = 0$ and $i_+ = 0$
- When there is negative feedback, For ideal A as is infinitely high, for a finite output voltage v_o , $\frac{v_o}{A} = v_d = 0 \Rightarrow v_+ = v_-$. This is called virtual short circuit
- Because of these, solving ideal op-amp circuit with negative feedback is very simple

Example – Inverting Amplifier

Solve the ciruit to find v_o

Example – Inverting Amplifier

Since v_+ is connected to ground, $v_+ = 0V$

Since there is negative feedback, from virtual short, $v_- = v_+ = 0V$

From Ohm's law for
$$1 k\Omega \Rightarrow i_1 = \frac{2V - 0V}{1 k\Omega} = 2mA$$

Since ideal op-amp, $i_- = i_+ = 0$

From KCL at
$$v_-$$
, $i_1=i_-+i_2\Rightarrow i_1=i_2=2$ mA

From Ohm's law for
$$2 k\Omega \Rightarrow i_2 = \frac{v_- - v_0}{2 k\Omega} = 2mA \Rightarrow v_o = -i_2 \times 2 = -4V$$
 [ANS]

Gain =
$$-\frac{4V}{2V}$$
 = -2 (hence **inverting**)

General Analysis of Inverting Amplifier

Since v_+ is connected to ground, $v_+ = 0V$

Since there is negative feedback, from virtual short, $v_-=v_+=0V$

From Ohm's law for
$$R_1 \Rightarrow i_1 = \frac{v_i - 0V}{R_1} = v_i / R_1$$

Since ideal op-amp, $i_-=i_+=0$

From KCL at
$$v_-$$
, $i_1=i_-+i_2\Rightarrow i_1=i_2=v_i/R_1$

From Ohm's law for
$$R_2 \Rightarrow i_2 = \frac{v_- - v_0}{R_2} = \frac{v_i}{R_1} \Rightarrow v_o = -i_2 \times R_2 \Rightarrow v_o = -\frac{R_2}{R_1} v_i$$
 [ANS]

$$Gain = -\frac{R_2}{R_1}$$

Example

