

FCC ID: 2ACHL-RCM3G IC Cert. No.: 9103A-RCM3G

SAR_Appendix C_misc

Page 1 of 49

Tissue Parameters

Recipe for liquids below 1 GHz:

Water 35-58% Sugar 40-60% Salt 0-6% Hydroxyethyl-cellulose <0.3% Preventol-D7 0.1-0.7%

Recipe for liquids above 1-3 GHz:

Water 52-75% DGBE 25-48% Salt <1.0%

SAR measurements were made within 24 hours of the measurement of liquid parameters. Relative permittivity and conductivity are within $\pm 5\%$ of the target.

CETECOM

SAR_Appendix C_misc

FCC ID: 2ACHL-RCM3G IC Cert. No.: 9103A-RCM3G

850 MHz B	ody Liq	<u>wid</u>			
	Temp	Freq.	Relative	Conductivity	Conductivity 1.05 Target
Date	(°C)	(MHz)	Permativity	(S/m)	Liquid Value
		824	55.4268	0.9901	∑ 1 → 5% Liquid Tolerance
		829	55.3827	0.9953	0.95 -5% Liquid Tolerance
		834	55.3224	0.9988	1 1 1 1 1 1 1 1 1 1
2015/12/02	20.2	839	55.2724	1.0039	2013/12/02
		844	55.2062	1.0081	820 840
		849	55.1568	1.0126	Frequency (MHz)
					Permittivity
					59 Target Liquid Value
					Elquid Value 5% Liquid
					Tolerance Soft Liquid
					-5% Liquid Tolerance
					53 10lerance 2015/12/02
					57 55 55 55 55 55 57 58 59 50 50 50 50 50 50 50 50 50
					Frequency (MHz)

SAR_Appendix C_misc

FCC ID: 2ACHL-RCM3G

 IC Cert. No.: 9103A-RCM3G
 SAR_Appendix C_misc
 Page 5 of 49

Test Equipment

SAR1 Lab

Instrument description	Supplier / Manufacturer	Model	Serial No.	Calibration (date)	Calibration Due (date)
Robot	Staubli	TX90	F10/5D3NA1/ A/01	N/A	N/A
SAM Twin Phantom	SPEAG	SM 000 T01 DA	1592	N/A	N/A
Elliptical Phantom	SPEAG	QD OVA 001 BB	1092	N/A	N/A
Software	SPEAG	Dasy52.6.2.482	N/A	N/A	N/A
Device Holder	SPEAG	SD 000H01	N/A	N/A	N/A
Data Acquisition Electronics	SPEAG	DAE4	1233	2014/03/17	2016/03/17
SAR Probe	SPEAG	ES3DV3	3260	2014/03/19	2016/03/19

FCC ID: 2ACHL-RCM3G IC Cert. No.: 9103A-RCM3G

SAR_Appendix C_misc

Shared Equipment

Tissue Simulant

Instrument description	Supplier / Manufacturer	Model	Serial No.	Calibration (date)	Calibration Due (date)
1900 MHz Dipole	SPEAG	D1900V2	5d135	2014/04/07	2016/04/07
Network Analyzer	Agilent	E5071B	MY42404685	2015/04/11	2016/04/11
835 MHz Dipole	SPEAG	D835V2	4d113	2014/07/04	2016/07/04
1750 MHz Dipole	SPEAG	D1750V2	1045	2014/03/17	2016/03/17
Directional coupler	Werlatone	C6529	11249	N/A	N/A
RF Amplifier	Vectawave	VTL5400	N/A	N/A	N/A
Dielectric Measurement Kit	SPEAG	DAK-3.5	1023	2014/04/08	2016/04/08
Synthesized CW Generator	Agilent	8371213	US37101255	N/A	N/A
Signal Generator	R&S	SMA 100	100438	2015/07/10	2016/07/10
Power Sensor	Agilent	E9300A	MY41400484	2015/10/17	2016/10/17
Power Sensor	Agilent	E9300A	MY41400492	2015/10/17	2016/10/17
20 dB Attenuator	Huber & Suhner	N/A	N/A	N/A	N/A
3 dB Attenuator	Huber & Suhner	N/A	N/A	N/A	N/A
3 dB Attenuator	Huber & Suhner	N/A	N/A	N/A	N/A
Power Meter	Agilent	E4419B	MY45101996	2015/09/22	2017/09/22
Network Analyzer	Agilent	FieldFox N9923A	MY51491621	2015/10/05	2016/10/05
Radio Communications Tester	Rohde & Schwarz	CMU 200	110759	2015/07	2017/07
900 MHz Body Tissue Simulant	SPEAG	MSL 900	100818-1	2015/12/02 – 2015/12/12	N/A
1750 MHz Body Tissue Simulant	SPEAG	MSL 1750	100824-2	2015/12/02 – 2015/12/12	N/A
1900 MHz Body Tissue Simulant	SPEAG	MSL 1900	110615-4	2015/12/06 – 2015/12/12	N/A

2015/12/12

FCC ID: 2ACHL-RCM3G

IC Cert. No.: 9103A-RCM3G SAR_Appendix C_misc Page 7 of 49

Equipment Calibration/Performance Documents:

Attached: SAR Probe ES3DV3 Calibration Report 835 MHz Dipole Calibration Report 1900 MHz Dipole Calibration Report 1750 MHz Dipole Calibration Report

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Cetecom USA

Certificate No: ES3-3260_Mar14

S

C

S

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3260

Calibration procedure(s)

QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes

Calibration date:

March 19, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	04-Apr-13 (No. 217-01733)	Apr-14
Power sensor E4412A	MY41498087	04-Apr-13 (No. 217-01733)	Apr-14
Reference 3 dB Attenuator	SN: S5054 (3c)	04-Apr-13 (No. 217-01737)	Apr-14
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-13 (No. 217-01735)	Apr-14
Reference 30 dB Attenuator	SN: S5129 (30b)	04-Apr-13 (No. 217-01738)	Apr-14
Reference Probe ES3DV2	SN: 3013	30-Dec-13 (No. ES3-3013, Dec13)	Dec-14
DAE4	SN: 680	13-Dec-13 (No. DAE4-660_Dec13)	Dec-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-13)	In house check: Oct-14

Name Function Calibrated by: Claudio Leubler Laboratory Technician Katja Pokovic Technical Manager Approved by:

Issued: March 20, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: ES3-3260_Mar14

Page 1 of 12

Page 9 of 49

FCC ID: 2ACHL-RCM3G

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid TSL NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF

crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization @ φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement
- Techniques", June 2013
 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f < 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sonaor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ES3-3260 Mar14

ES3DV3 - SN:3260 March 19, 2014

Probe ES3DV3

SN:3260

Manufactured: January 25, 2010 Calibrated: March 19, 2014

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: ES3-3260_Mar14

Page 3 of 12

ES3DV3- SN:3260 March 19, 2014

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3260

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	1.30	1.37	1.18	± 10.1 %
DCP (mV) ^B	104.8	102.1	104.2	

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc [±] (k=2)
0	CW	X	0.0	0.0	1.0	0.00	211.8	±3.3 %
		Y	0.0	0.0	1.0		195.7	
J. C. Williams		Z	0.0	0.0	1.0		208.8	
10011- CAB	UMTS-FDD (WCDMA)	X	3.31	67.4	18.8	2.91	127.8	±0.7 %
		Y	3.40	67.4	18.7		134.6	
		Z	3.34	67.6	18.8	1	145.4	
10021- DAB	GSM-FDD (TDMA, GMSK)	х	30.39	99.4	28.9	9.39	135.6	±1.9 %
		Y	28.56	99.7	28.9		131.2	
1000		Z	29.91	99.6	28.7		119.9	
10024- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1)	X	44.86	99.9	26.3	6.56	123.6	±1.4 %
		Y	44.01	99.9	25.9		126.4	
		Z	42.79	99.7	26.1		147.0	
10027- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	Х	53.01	99.7	24.7	4.80	130.0	±1.7 %
10000		Y	50.58	99.6	24.5		137.2	
	<u> </u>	Z	52.82	99.6	24.4		123.5	377-03
10028- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	X	59.40	99.6	23.5	3.55	137.7	±1.7 %
		Y	59.13	99.9	23.3		140.0	
10001		Z	56.71	99.7	23.4		126.5	
10081- CAB	CDMA2000 (1xRTT, RC3)	Х	4.12	67.1	19.1	3.97	149.5	±0.7 %
		Y	4.00	66.0	18.4		131.8	
		Z	4.09	67.0	19.1		146.9	-
10100- CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	6.60	68.2	20.1	5.67	144.1	±1.2 %
		Y	6.35	67.0	19.4		125.9	
		Z	6.59	68.2	20.1		141.7	
10103- CAB	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	12.38	77.7	26.5	9.29	127.9	±3.0 %
		Y	12.64	78.8	27.1		136.2	
10100	1.TE EDD (DD ED) 4000	Z	12.27	78.1	26.9		122.6	
10108- CAB	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	6.50	67.8	20.0	5.80	142.8	±1.2 %
		Y	6.34	66.9	19.5		128.4	
10151	LTE TOD (OC COMA COV DO CO CO	Z	6.47	67.7	20.0	0.00	140.9	40.000
10151- CAB	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	×	11.69	76.9	26.3	9.28	122.6	#3.3 %
		Y	11.83	77.7	26.7	_	130.6	
10154-	LTE-FDD (SC-FDMA, 50% RB, 10 MHz.	2	13.11	80.6	28.1	8.76	149.4	44.4.90
CAB	QPSK)	×	6.18	67.2	19.7	5.75	139.6	±1.4 %
		Y	6.25	67.2	19.7		146.4	
		Z	6.11	67.0	19.6		138,3	

Certificate No: ES3-3260_Mar14

FCC ID: 2ACHL-RCM3G IC Cert. No.: 9103A-RCM3G

SAR_Appendix C_misc Page 12 of 49

March 19, 2014 ES3DV3-SN:3260

10169- CAB	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	Х	5.19	67.1	19.8	5.73	143.7	±1.2 %
		Y	5.26	67.3	19.9		149.8	
		Z	5.20	67.2	19.9		143.3	el Salendar
10172- CAB	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	Х	13.41	86.4	30.9	9.21	138.5	±3.3 %
2000000	A 2-100	Y	10.53	80.4	28.2		121.8	
		Z	12.56	85.1	30.3		139.8	
10175- LTE-FDD (SC-FDMA, 1 RB, 1 CAB QPSK)	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, OPSK)	×	5.20	67.1	19.9	5.72	139.5	±1.2 %
		Y	5.10	66.5	19.5		130.7	
		Z	5.14	66.9	19.8		139.8	L IUSSE
10297- AAA	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	×	6.44	67.5	19.9	5.81	136.9	±1.2 %
		Y	6.34	66.9	19.5		127.4	
		Z	6.44	67.6	19.9		140.9	
10403- AAB	CDMA2000 (1xEV-DO, Rev. 0)	×	4.64	66.9	18.3	3.76	131.9	±0.7 %
		Y	4.81	67.4	18.5		143.6	
		Z	4.68	67.1	18.4		135.2	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ES3-3260_Mar14 Page 5 of 12

<sup>A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 6 and 7).

B Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.</sup>

Page 13 of 49

ES3DV3-SN:3260 March 19, 2014

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3260

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^c	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	6.47	6.47	6.47	0.80	1.12	± 12.0 %
835	41.5	0.90	6.25	6.25	6.25	0.31	1.77	± 12.0 %
900	41.5	0.97	6.19	6.19	6.19	0.57	1.31	± 12.0 %
1750	40.1	1.37	5.49	5.49	5.49	0.41	1.64	± 12.0 %
1900	40.0	1.40	5.47	5.47	5.47	0.80	1.16	± 12.0 %
1950	40.0	1.40	5.28	5.28	5.28	0.65	1.32	± 12.0 %
2300	39.5	1.67	4.88	4.88	4.88	0.80	1.30	± 12.0 %
2450	39.2	1.80	4.56	4.56	4.56	0.80	1.24	± 12.0 %
2550	39.1	1.91	4.41	4.41	4.41	0.71	1.36	± 12.0 %

Certificate No: ES3-3260_Mar14

⁰ Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

*At frequencies below 3 GHz, the validity of tissue parameters (s and o) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and o) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

*Aphs/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Page 14 of 49

March 19, 2014 ES3DV3-SN:3260

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3260

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ⁶	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	6.22	6.22	6.22	0.34	1.88	± 12.0 %
835	55.2	0.97	6.14	6.14	6.14	0.37	1.79	± 12.0 %
900	55.0	1.05	6.02	6.02	6.02	0.56	1.38	± 12.0 %
1750	53.4	1.49	4.90	4.90	4.90	0.56	1.48	± 12.0 %
1900	53.3	1.52	4.69	4.69	4.69	0.60	1.45	± 12.0 %
1950	53.3	1.52	4.81	4.81	4.81	0.54	1.58	± 12.0 %
2300	52.9	1.81	4.42	4.42	4.42	0.80	1.22	± 12.0 %
2450	52.7	1.95	4.26	4.26	4.26	0.68	1.12	± 12.0 %
2550	52.6	2.09	4.15	4.15	4.15	0.80	1.01	± 12.0 %

Certificate No: ES3-3260_Mar14 Page 7 of 12

EFrequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

At frequencies below 3 GHz, the validity of tissue parameters (s and e) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and e) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

AphaDepth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

March 19, 2014 ES3DV3-SN:3260

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

f=1800 MHz,R22

e Z

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

ES3DV3- SN:3260 March 19, 2014

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ES3-3260_Mar14

Page 10 of 12

Page 19 of 49

ES3DV3- SN:3260 March 19, 2014

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3260

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-79.1
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Certificate No: ES3-3260_Mar14 Page 12 of 12

Accreditation No.: SCS 108

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Cetecom USA Certificate No: D835V2-4d113_Apr14

CALIBRATION CERTIFICATE Object D835V2 - SN: 4d113 QA CAL-05.v9 Calibration procedure(s) Calibration procedure for dipole validation kits above 700 MHz Calibration date: April 07, 2014 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB57480704 09-Oct-13 (No. 217-01827) Oct-14 Power sensor HP 8481A US37292783 09-Oct-13 (No. 217-01827) Oct-14 Power sensor HP 8481A MY41092317 09-Oct-13 (No. 217-01828) Oct-14 Reference 20 dB Attenuator SN: 5058 (20k) 03-Apr-14 (No. 217-01918) Apr-15 Type-N mismatch combination SN: 5047.2 / 06327 03-Apr-14 (No. 217-01921) Apr-15 Reference Probe ES3DV3 30-Dec-13 (No. ES3-3205_Dec13) SN: 3205 Dec-14 DAE4 SN:601 25-Apr-13 (No. DAE4-601_Apr13) Apr-14 Secondary Standards ID# Check Date (in house) Scheduled Check RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-13) In house check: Oct-16 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-13) In house check: Oct-14 Name Function Calibrated by: Leif Klysner Laboratory Technician Katja Pokovic Technical Manager Approved by: Issued: April 9, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-4d113_Apr14 Page 1 of 8

Page 21 of 49

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Fead from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the Iquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAF as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the stancard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-4d113_Apr14

Page 22 of 49

Measurement Conditions

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.6 ± 6 %	0.94 mha/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.35 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.10 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.51 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.89 W/kg ± 16.5 % (k=2)

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mha/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.6 ± 6 %	1.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.43 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.30 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.58 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.11 W/kg ± 16.5 % (k=2)

SAR_Appendix C_misc

IC Cert. No.: 9103A-RCM3G

FCC ID: 2ACHL-RCM3G

Page 23 of 49

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.9 Ω - 4.0 jΩ	
Return Loss	- 27.8 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.1 Ω - 7.1 jΩ	
Return Loss	- 21.5 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1,394 ns
The state of the s	NOTA STATE OF THE

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	May 26, 2010

Certificate No: D835V2-4d113_Apr14

DASY5 Validation Report for Head TSL

Date: 07.04.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d113

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.94$ S/m; $\epsilon_r = 41.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.22, 6.22, 6.22); Calibrated: 30.12.2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.792 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.54 W/kg

SAR(1 g) = 2.35 W/kg; SAR(10 g) = 1.51 W/kgMaximum value of SAR (measured) = 2.76 W/kg

0 dB = 2.76 W/kg = 4.41 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 07.04.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d113

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 1.02$ S/m; $\varepsilon_r = 53.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.09, 6.09, 6.09); Calibrated: 30.12.2013;
- · Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.505 V/m, Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.63 W/kg

SAR(1 g) = 2.43 W/kg; SAR(10 g) = 1.58 W/kg

Maximum value of SAR (measured) = 2.85 W/kg

0 dB = 2.85 W/kg = 4.55 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client Cetecom USA

Certificate No: D1900V2-5d135 Apr14

Accreditation No.: SCS 108

Object	D1900V2 - SN: 5	d135	
Calibration procedure(s)	QA CAL-05.v9		
	Calibration proce	dure for dipole validation kts abo	ove 700 MHz
Calibration date:	April 09, 2014		
The second secon		글로드라면 하고 하는 아니라 얼마나 하나 하나 없다.	
The measurements and the unce All calibrations have been conduct Calibration Equipment used (M&		ry facility: environment temperature $(22 \pm 3)^{\circ}$	C and humidity < 70%.
All calibrations have been conductable calibration Equipment used (M&			C and humidity < 70%. Scheduled Calibration
all calibrations have been conductable to the condu	TE critica for calibration)	ry facility: environment temperature (22 ± 3)*1 Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827)	
Il calibrations have been conductable allocation Equipment used (M& rimary Standards ower meter EPM-442A	TE critica for calibration)	Cal Date (Certificate No.)	Scheduled Calibration
Il calibrations have been conduc alibration Equipment used (M& rimary Standards ower meter EPM-442A ower sensor HP 8481A	TE critica for calibration) ID # GB3*480704	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827)	Scheduled Calibration Oct-14
Il calibrations have been conduction Equipment used (M& rimary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A	ID # GB3*480704 US37292783	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827)	Scheduled Calibration Oct-14 Oct-14
all calibrations have been conductable calibration Equipment used (M& Primary Standards) Power meter EPM-442A Power sensor HP 8481A Tower sensor HP 8481A	ID # GB3*480704 US3*292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921)	Scheduled Calibration Oct-14 Oct-14 Oct-14
Il calibrations have been conductalibration Equipment used (M& inmary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A eference 20 dB Attenuator ype-N mismatch combination eference Probe ES3DV3	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14
all calibrations have been conducted in the conducted in	ID # GB3*480704 US3*292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15
All calibrations have been conducted. Calibration Equipment used (M& Calibration Equipment used (M& Calibration Equipment used (M& Calibration E) Commercy Standards Commercy Standards Calibration Equipment used (M& Calibration E) Cal	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 601	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14
Calibrations have been conducted in Calibration Equipment used (M&Calibration Equipment used (M&Calibration Equipment used (M&Calibration Equipment Standards Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 JAE4 Recondary Standards IF generator R&S SMT-06	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 04-Aug-99 (in house check Oct-13)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Apr-14 Scheduled Check
All calibrations have been conducted. Calibration Equipment used (M& Calibration Equipment u	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 601	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Apr-14 Scheduled Check In house check: Oct-16
All calibrations have been conducted. Calibration Equipment used (M& Calibration Equipment u	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-13)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Apr-14 Scheduled Check In house check: Oct-14 In house check: Oct-14
all calibrations have been conductable calibration Equipment used (M& Calibration Equipment used (M& Calibration Equipment used (M& Calibration Equipment used (M& Calibration Leference 20 dB Attenuator type-N mismatch combination deference Probe ES3DV3 (M& Calibration Equipment USA) (Secondary Standards (Ma Calibration Equipment USA)	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206 Name	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-13)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Apr-14 Scheduled Check In house check: Oct-16
All calibrations have been conducted. Calibration Equipment used (M& Primary Standards) Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-13)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Apr-14 Scheduled Check In house check: Oct-14 In house check: Oct-14

Certificate No: D1900V2-5d135_Apr14

Page 1 of 8

Page 29 of 49

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

C Service suisse d etatornage Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Page 30 of 49

Measurement Conditions

DASY system configuration, as lar as not given on page 1

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	10.00
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.1 ± 6 %	1.36 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.85 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.14 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.7 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.4 ± 6 %	1.52 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	(a)	-

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition		
SAR measured	250 mW input power	5.34 W/kg	
SAR for nominal Body TSL parameters	normalized to 1W	21.3 W/kg ± 16.5 % (k=2)	

Certificate No: D1900V2-5d135_Apr14

Page 31 of 49

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$51.6 \Omega + 7.1 j\Omega$	
Return Loss	- 22.9 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.6 Ω + 7.4 jΩ
Return Loss	- 22.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1 204 ns
Electrical Delay (one direction)	1.204 115

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semi-igid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	April 14, 2010

Certificate No: D1900V2-5d135_Apr14

DASY5 Validation Report for Head TSL

Date: 09.04.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d135

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.36 \text{ S/m}$; $\epsilon_r = 39.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.06, 5.06, 5.06); Calibrated: 30.12.2013;

· Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 25.04.2013

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 98.920 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 18.2 W/kg

SAR(1 g) = 9.85 W/kg; SAR(10 g) = 5.14 W/kgMaximum value of SAR (measured) = 12.5 W/kg

0 dB = 12.5 W/kg = 10.97 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 09.04.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d135

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.52 \text{ S/m}$; $\varepsilon_r = 52.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.76, 4.76, 4.76); Calibrated: 30.12.2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.522 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 17.5 W/kg

SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.34 W/kg

Maximum value of SAR (measured) = 12.8 W/kg

0 dB = 12.8 W/kg = 11.07 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client Cetecom USA

Certificate No: D1750V2-1045_Nov12

Accreditation No.: SCS 108

1	CAL	IBI	RATI	ON	CERT	TIFIC	ATE
ľ		-10	10	OI4	VLIII	11 10	/MIL

Object D1750V2 - SN: 1045

Calibration procedure(s) QA CAL-05.v8

Calibration procedure for dipole validation kits above 700 MHz

Calibration date: November 08, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	01-Nov-12 (No. 217-01640)	Oct-13
Power sensor HP 8481A	US37232783	01-Nov-12 (No. 217-01640)	Oct-13
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
Type-N mismatch combination	SN: 5047.2 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
Reference Probe ES3DV3	SN: 3205	30-Dec-11 (No. ES3-3205_Dec11)	Dec-12
DAE4	SN: 601	27-Jun-12 (No. DAE4-601_Jun12)	Jun-13
Secondary Standards	ID#	Check Date (In house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-12)	In house check: Oct-13

Name Function Signature
Calibrated by: Israe E-Neoug Laboratory Technician

Approved by: Katja Pokovic Technical Manager

Issued; November 8, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laberatory.

Certificate No: D1750V2-1045_Nov12

Page 1 of 8

SAR_Appendix C_misc

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Sevice (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

FCC ID: 2ACHL-RCM3G IC Cert. No.: 9103A-RCM3G

> TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x.v.z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the Iquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the stancard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1750V2-1045 Nov12

Page 38 of 49

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.3
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and caculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39,4 ± 6 %	1.34 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		****

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	8.89 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	35.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.76 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.2 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.9 ± 6 %	1.48 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.41 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	37.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.07 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.3 W/kg ± 16.5 % (k=2)

Certificate No: D1750V2-1045_Nov12 Page 3 of 8 SAR_Appendix C_misc

IC Cert. No.: 9103A-RCM3G

FCC ID: 2ACHL-RCM3G

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.0 Ω + 1.9 μΩ	
Return Loss	- 33.4 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.6 Ω + 2.2 jΩ	
Return Loss	- 27.5 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.222 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semrigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG		
Manufactured on	February 19, 2010		

Certificate No: D1750V2-1045_Nov12 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 08.11.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1045

Communication System: CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.34$ mho/m; $\varepsilon_r = 39.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.22, 5.22, 5.22); Calibrated: 30.12.2011;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.3(988); SEMCAD X 14.6.7(6848)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.105 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 15.7 W/kg

SAR(1 g) = 8.89 W/kg; SAR(10 g) = 4.76 W/kg

Maximum value of SAR (measured) = 10.8 W/kg

0 dB = 10.8 W/kg = 10.33 dBW/kg

Impedance Measurement Plot for Head TSL

Certificate No: D1750V2-1045_Nov12 Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 08.11.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1045

Communication System: CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.48$ mho/m; $\varepsilon_r = 51.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.85, 4.85, 4.85); Calibrated 30.12.2011;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 27.06.2012

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.3(988); SEMCAD X 14.6.7(6848)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.105 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 16.1 W/kg

SAR(1 g) = 9.41 W/kg; SAR(10 g) = 5.07 W/kgMaximum value of SAR (measured) = 11.8 W/kg

0 dB = 11.8 W/kg = 10.72 dBW/kg

Impedance Measurement Plot for Body TSL

Schmid & Partner Engineering AG

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

IMPORTANT NOTICE

USAGE OF THE DAE 4

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE4 unit is closed using a screw, over tightening the screw may cause the threads inside the DAE to wear out.

Shipping of the DAE Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside.

E-Stop Fallures: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file.

Important Note:

Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.

Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure.

Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

Schmid & Partner Engineering

TN BR040315AD DAE4.doc

11.12.2009

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Cetecom USA

Certificate No: DAE4-1233_Mar14

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object DAE4 - SD 000 D04 BM - SN: 1233

Calibration procedure(s) QA CAL-06.v26

Calibration procedure for the data acquisition electronics (DAE)

Calibration date: March 17, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Call Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	01-Oct-13 (No:13976)	Oct-14
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Auto DAE Calibration Unit	SE UWS 053 AA 1001	07-Jan-14 (in house check)	In house check: Jan-15
Calibrator Box V2.1	SE UMS 006 AA 1002	07-Jan-14 (in house check)	In house check: Jan-15

Calibrated by:

Eric Hainfeld

Function Technician

Approved by:

Fin Bomholt

Deputy Technical Manager

Issued: March 17, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: DAE4-1233_Mar14

Page 1 of 5

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

FCC ID: 2ACHL-RCM3G IC Cert. No.: 9103A-RCM3G

SAR_Appendix C_misc

Page 47 of 49

DC Voltage Measurement A/D - Converter Resolution nominal

High Range: $1LSB = 6.1 \mu V$, full range = -100...+300 mVLow Range: 1LSB = 61 nV, full range = -1.....+3 mVDASY measurement parameters: Auto Zero Time: $3 \sec$; Measuring time: $3 \sec$

Calibration Factors	x	Y	Z
High Range	404.917 ± 0.02% (k=2)	405.640 ± 0.02% (k=2)	406.020 ± 0.02% (k=2)
Low Range	3.98643 ± 1.50% (k=2)	4.00590 ± 1.50% (k=2)	4.02375 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	302.0 ° ± 1 °

Page 3 of 5 Certificate No: DAE4-1233_Mar14

Appendix

High Range	Reading (μV)	Difference (µV)	Error (%)
Channel X + Input	200032.07	-1.42	-0.00
Channel X + Input	20002.94	-0.69	-0.00
Channel X - Input	-20003.18	2,34	-0.01
Channel Y + Input	200032.48	-0.76	-0.00
Channel Y + Input	20001.74	-1.80	-0.01
Channel Y - Input	-20004.41	1.24	-0.01
Channel Z + Input	200032.53	-0.98	-0.00
Channel Z + Input	20002.61	-0.89	-0.00
Channel Z - Input	-20004.60	1.10	-0.01

Low Range	Reading (µV)	Difference (μV)	Error (%)
Channel X + Input	2000.14	-0.13	-0.01
Channel X + Input	201.63	1.56	0.78
Channel X - Input	-198.75	0.96	-0.48
Channel Y + Input	2000.05	0.04	0.00
Channel Y + Input	199.94	-0.05	-0.02
Channel Y - Input	-200.20	-0.40	0.20
Channel Z + Input	1999.65	-0.27	-0.01
Channel Z + Input	199.46	-0.55	-0.27
Channel Z - Input	-200.79	-0.93	0.46

Common mode sensitivity
 DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	11.99	10.42
	- 200	-9.24	-10.45
Channel Y	200	11.18	10.75
	- 200	-11.99	-12.36
Channel Z	200	15.43	14.98
	- 200	-18.39	-18.16

3. Channel separation
DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (μV)
Channel X	200		-0.20	-4.06
Channel Y	200	6.84		0.36
Channel Z	200	9.37	4.74	

Certificate No: DAE4-1233_Mar14

IC Cert. No.: 9103A-RCM3G

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15737	16019
Channel Y	15930	16238
Channel Z	16001	16120

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

nput TOME2	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	-0.41	-2.04	1.61	0.75
Channel Y	0.74	-0.73	2.73	0.62
Channel Z	-0.95	-2.71	0.58	0.59

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Page 5 of 5

Certificate No: DAE4-1233_Mar14