MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 3 - DECEMBER 2011 SOLUTION KEY

Round 6

A) Since the interior and exterior angles are supplementary, $44k + 1k = 180 \Rightarrow k = 4$. An exterior angle of $4^{\circ} \Rightarrow$ there must be 360/4 = 90 sides.

In an *n*-sided polygon the number of diagonals from each vertex is $(n-3) \Rightarrow \underline{87}$ diagonals.

Recall: In the formula for the number of diagonals in a polygon with n sides, namely $d = \frac{n(n-3)}{2}$, n denoted the number of vertices from which a diagonal

could start, n-3 denoted the number of vertices to which a diagonal could be drawn and division by 2 was necessary to avoid counting each diagonal twice.

C) $CL = CE = CB \Rightarrow \text{both } \Delta CLE \text{ and } \Delta CEB \text{ are isosceles.}$

$$BE = EL \Rightarrow \Delta CLE \cong \Delta CEB$$
 (SSS)

Let $m\angle ECL = m\angle ECB = x$.

Let $m\angle CLE = m\angle CEL = m\angle CLB = m\angle LCB = y$.

Then:
$$4v + 2x = 360 \Rightarrow x + 2v = 180$$

In
$$\triangle ACE$$
, $m \angle ACE = 180 - (60 + x) = 120 - x$

$$\Rightarrow$$
 (120-x) + y = 180 or y = 60 + x.

Substituting, $x + 2(60 + x) = 180 \Rightarrow 3x = 60 \Rightarrow x = 20$, y = 80, $m \angle BEL = \underline{160}$.

Alternative Solution (Norm Swanson)

Draw \overline{BL} . BELC is a kite. Let $m\angle CLB = m\angle CBL = x^{\circ}$ and $m\angle ELB = m\angle EBL = y^{\circ}$. Since ΔCLE is isosceles, $m\angle CEL = (x+y)^{\circ}$. As an exterior angle of ΔALE , $m\angle BEL = 60 + (180 - (x+y))$. Thus, $2(x+y) = 240 - (x+y) \Rightarrow x+y = 80 \Rightarrow m\angle BEL = 160^{\circ}$.

