Lecture 14: Support Vector Machine (SVM)

Instructor: Prof. Shuai Huang

Industrial and Systems Engineering

University of Washington

What ambiguity the SVM ties to solve

• Which model should we use?

The model with maximum margin

SVM is essentially a preference over models that have maximum margin

Can this idea lead to mathematic tractability?

- The goal is to identify a model, $\mathbf{w}^T \mathbf{x} + b$, using which we can make binary classification: If $\mathbf{w}^T \mathbf{x} + b > 0$, then y = 1; Otherwise, y = -1.
- The final SVM formulation is:

$$\min_{\pmb{w}} \frac{1}{2} \| \pmb{w} \|,$$
 Subject to: $y_n \big(\pmb{w}^T \pmb{x}_n + b \big) \geq 1$ for $n = 1, 2, \dots, N$.

Solve for SVM

• To solve this problem, first, we can use the method of Lagrange multiplier:

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} ||\mathbf{w}|| - \sum_{n=1}^{N} \alpha_n [y_n(\mathbf{w}^T \mathbf{x}_n + b) - 1].$$

This could be rewritten as

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w}^T \mathbf{w} - \sum_{n=1}^{N} \alpha_n y_n \mathbf{w}^T x_n - b \sum_{n=1}^{N} \alpha_n y_n + \sum_{n=1}^{N} \alpha_n x_n$$

• Differentiating $L(w, b, \alpha)$ with respect to w and b, and setting to zero yields:

$$\mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n x_n, \ \sum_{n=1}^{N} \alpha_n y_n = 0.$$

• Then, we can rewrite $L(w, b, \alpha)$ as

$$L(\mathbf{w}, b, \alpha) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n \alpha_m y_n y_m \mathbf{x}_n^T \mathbf{x}_m.$$

• This is because that:

$$\frac{1}{2} \mathbf{w}^{T} \mathbf{w} = \frac{1}{2} \mathbf{w}^{T} \sum_{n=1}^{N} \alpha_{n} y_{n} \mathbf{x}_{n} = \frac{1}{2} \sum_{n=1}^{N} \alpha_{n} y_{n} \mathbf{w}^{T} \mathbf{x}_{n} = \frac{1}{2} \sum_{n=1}^{N} \alpha_{n} y_{n} \left(\sum_{n=1}^{N} \alpha_{n} y_{n} \mathbf{x}_{n} \right)^{T} \mathbf{x}_{n} = \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_{n} \alpha_{m} y_{n} \mathbf{y}_{m} \mathbf{x}_{n}^{T} \mathbf{x}_{m}.$$

The dual form of SVM

 Finally, we can derive the model of SVM by solving its dual form problem:

$$\max_{\alpha} \sum_{n=1}^{N} \alpha_{n} - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_{n} \alpha_{m} y_{n} y_{m} x_{n}^{T} x_{m},$$

Subject to: $\alpha_n \ge 0$ for n = 1, 2, ..., N and $\sum_{n=1}^N \alpha_n y_n = 0$.

• This is a quadratic programming problem that can be solved using many existing packages.

The support points

 The learned model parameters could be represented as:

$$\hat{\pmb{w}} = \sum_{n=1}^N \alpha_n y_n \pmb{x}_n$$
 and $\hat{b} = 1 - \hat{\pmb{w}}^T \pmb{x}_n$ for any \pmb{x}_n whose $\alpha_n > 0$.

 And we know that, based on the KKT condition:

$$\alpha_n[y_n(\mathbf{w}^T\mathbf{x}_n+b)-1]=0 \text{ for } n=1,2,...,N.$$

 Thus, for any data point, e.g., the nth data point, it is either

$$\alpha_n = 0 \text{ or } y_n(\mathbf{w}^T \mathbf{x}_n + b) - 1 = 0.$$

Extension to non-separable cases

Introduce the slack variables:

$$y_n(\mathbf{w}^T \mathbf{x}_n + b) \ge 1 - \xi_n \text{ for } n = 1, 2, ..., N.$$

- The data points that are within the margins will have the corresponding slack variables as $0 \le \xi_n \le 1$
- The data points that are on the wrong side of the decision line have the corresponding slack variables as $\xi_n > 1$.

The revised SVM formulation

• The corresponding formulation of the SVM model becomes:

$$\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\| + C \sum_{n=1}^{N} \xi_n,$$

Subject to: $y_n(\mathbf{w}^T\mathbf{x}_n + b) \ge 1 - \xi_n$ and $\xi_n \ge 0$, for n = 1, 2, ..., N.

Extension to nonlinear cases

- Main idea: transformation from x to z
- An example: $z_1 = x_1^2$, $z_2 = \sqrt{2}x_1x_2$, $z_3 = x_2^2$.
- But not in all times the transformations can be made explicit

Assume the transformation exists

The dual formulation of SVM on the transformed variables is:

$$\max_{\alpha} \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n \alpha_m y_n y_m \mathbf{z}_n^T \mathbf{z}_m,$$

Subject to: $0 \le \alpha_n \le C$ for n = 1, 2, ..., N and $\sum_{n=1}^N \alpha_n y_n = 0$.

- What matters here is really the inner product of the transformed vectors
- Thus, we can write it up as $\mathbf{z}_n^T \mathbf{z}_m = K(\mathbf{x}_n, \mathbf{x}_m)$. This is called the "**kernel function**". A kernel function is a function that theoretically entails a transformation $\mathbf{z} = \phi(\mathbf{x})$ such that $K(\mathbf{x}_n, \mathbf{x}_m)$ implies that it can be written as an inner product $K(\mathbf{x}_n, \mathbf{x}_m) = \phi(\mathbf{x})^T \phi(\mathbf{x})$.

The revised SVM formulation

 With a given kernel function, SVM learns the model by solving the following optimization problem:

$$\max_{\alpha} \sum_{n=1}^N \alpha_n - \frac{1}{2} \sum_{n=1}^N \sum_{m=1}^N \alpha_n \alpha_m y_n y_m K(\boldsymbol{x}_n, \boldsymbol{x}_m),$$
 Subject to: $0 \leq \alpha_n \leq C$ for $n=1,2,\ldots,N$ and $\sum_{n=1}^N \alpha_n y_n = 0.$

- However, in the kernel space, it will no longer to possible to write up the parameter **w** the same way as in linear models.
- For any new data point, denoted as x_st , the learned SVM model predict on it as

If
$$\sum_{n=1}^{N} \alpha_n y_n K(\mathbf{x}_n, \mathbf{x}_*) + b > 0$$
, then $y = 1$; Otherwise, $y = -1$.

Is SVM a more complex model?

- In statistical learning theory, a more complex model has larger VCdimension. In intuitive language, that means, a more complex model has more mathematical capacity to encode a richer signal. Thus, it could be very flexible and sensitive to data distributions
- However, for SVM ...

SVM is a neural network model

R lab

- Download the markdown code from course website
- Conduct the experiments
- Interpret the results
- Repeat the analysis on other datasets