Zagazig University, Faculty of Engineering Midterm Exam

Academic Year: 2017/2018

Specialization: Computer & Systems Eng.

Course Name: Digital Control

Course Code: CSE421

Examiner: Dr. Mohammed Nour

No. of Questions: 4 (20 items)

Full Mark: [60]

Date: 11/11/2016

⊳ Mark your **answers** for all questions **in the Answer Sheet** provided.

⊳ In last page, some supplementary identities you may need.

Question 1

[2p] 1.Ballast Coding is used to synchronize the sampling and control process. Which of the following **does not** apply for this method:

- a) completely implemented in software.
- b) software interrupt mechanism is used.
- c) adds dummy code to compensate for required sampling interval.
- d) very sensitive to changes in code and/or CPU clock rate.

[2p] 2. For the two systems A and B represented by the following difference equations:

$$\mathbf{A}: y(k+2) = y(k+1)y(k) + u(k), \quad \mathbf{B}: y(k+5) = y(k+4) + u(k+1) - u(k),$$

- a) **A** is homogeneous and **B** is linear.
- b) **A** is time-variant and **B** is homogeneous.
- c) both systems are linear and time-invariant.
- d) both systems are time-invariant and homogeneous.

[4p] **3.**The z-transform of the sequence: $\{0, 2^{-0.5}, 1, 2^{-0.5}, 0, 0, \cdots\}$ is:

a)
$$\frac{z^2 + z + 1}{\sqrt{2}z}$$

b)
$$\frac{z^4 - 1}{z^3 [z^2 - 2z + 1]}$$

c)
$$\frac{z}{[\sqrt{2}z^2 - 2z + \sqrt{2}]}$$

a)
$$\frac{z^2 + z + 1}{\sqrt{2}z}$$
 b) $\frac{z^4 - 1}{z^3 [z^2 - 2z + 1]}$ c) $\frac{z}{[\sqrt{2}z^2 - 2z + \sqrt{2}]}$ d) $\frac{z^4 - 1}{\sqrt{2}z^3 [z^2 - \sqrt{2}z + 1]}$

[4p] 4. The inverse transform of the function: $F(z) = \frac{z}{z^2 + 0.3 z + 0.02}$ is:

- a) $\{0, 1, -0.3, 0.07, \dots\}$ b) $\{1, -0.3, 0.07, \dots\}$ c) $\{0, 1, 0.3, 0.02, \dots\}$ d) $\{1, 0.3, 0.02, \dots\}$

[3p] 5. The inverse transforms of the function: $F(z) = \frac{z - 0.1}{z^2 + 0.04z + 0.25}$ is:

a) $\sin(1.611k + 0.196)$

- b) $\cos(1.611k + 0.196)$
- c) $-0.4\delta(k) + 2.057(0.5)^k \sin(1.611k + 0.196)$
- d) $-0.4\delta(k) + \cos(1.611k + 0.196)$

[3p] **6.** If the discrete output y_k of a system is related to its input u_k by $y_n = \sum_{k=0}^{\infty} u_k$, the transfer function

Y(z)/U(z) of this system is:

a)
$$\frac{1}{1-z^{-1}}$$

b)
$$\frac{z}{z^2-1}$$

d)
$$z^{-1}$$

[3p] 7. Consider a causal, LTI system with x_n and y_n as input and output, resp., described by the difference equation $y_n = a y_{n-1} + b x_n$. For which values of a and b is the system bounded-input bounded-output stable?

- a) a > 1 & b < 1 b) a < 1 & b > 1. c) |b| < 1 any a. d) |a| < 1, any b

Question 2

For the next questions, consider the next root Locus chart:

[3p] 8. The system represented by this root locus has a transfer function G(z) given by:

a)
$$\frac{K(z^2 - 1.6z + 0.7)}{z - 0.6}$$

b)
$$\frac{K(z-0.6)}{z^2-1.6z+0.7}$$

c)
$$\frac{z - 0.4\pi/T}{(z^2 - 0.1\pi/T z + 0.6)}$$

a)
$$\frac{K(z^2 - 1.6z + 0.7)}{z - 0.6}$$
 b) $\frac{K(z - 0.6)}{z^2 - 1.6z + 0.7}$ c) $\frac{z - 0.4\pi/T}{(z^2 - 0.1\pi/Tz + 0.6)}$ d) $\frac{(z^2 - 0.1\pi/Tz + 0.6)}{z - 0.4\pi/T}$

[3p] 9. Using the given chart, the appropriate poles location that results in $\omega_n > 0.63 \text{ rad/s}$, $\zeta > 0.8$ (assuming T = 1 s) are:

a)
$$0.33 \pm i 0.17$$

b)
$$0.17 \pm j \, 0.33$$

c)
$$0.6 \pm j \, 0.2$$

d)
$$0.2 \pm j \, 0.6$$

Question 2

The following diagrams represent systems with poles (indicated by x's) but no zeros. The unit step response of two systems $y1_k$ and $y2_k$ is shown on the right plots.

[3p] 10. The system with the response given by $y1_k$ has the poles:

- a) f_1, f_2
- b) g_1, g_2
- c) h_1, h_2
- d) m_1, m_2

[3p] 11. The system with the response given by $y2_k$ has the poles:

- a) f_1, f_2
- b) g_1, g_2
- c) h_1, h_2
- d) m_1, m_2

[3p] 12.In the following sampled system, D(s), G(s), and H(s) represent the system continuous subsystems. R(s) and Y(s) are input and output respectively:

The discrete response Y(z) of this sampled system is:

a) $Y(z) = \frac{G(z) \, DR(z)}{1 + D(z) HG(z)}$

b) $Y(z) = \frac{G(z) D(z) R(z)}{1 + D(z) H(z) G(z)}$

c) $Y(z) = \frac{G(z) D(z) R(z)}{1 + DHG(z)}$

d) $Y(z) = \frac{G(z) DR(z)}{1 + DHG(z)}$

[3p] 13. The final value for the function $F(z) = \frac{z}{z^2 + 0.3 z + 2}$ is:

a) 0

b) 3.3

- c) 1/3.3
- d) undefined

[3p] 14. The steady state DC gain of the system with transfer Function $H(z) = \frac{z}{z^2 - 0.7z + 0.1}$ is:

a) 0

b) 0.4

c) 2.5

d) undefined

[3p] 15. For a system with the following characteristic equation:

$$F(z) = z^5 - 0.25z^4 + 0.1z^3 + 0.4z^2 + 0.3z - 0.1$$

The Jury Table constructed to determine this system stability will have:

- a) 5 rows
- b) 6 rows
- c) 7 rows
- d) 8 rows

0.466

[3p] 16. The filth row of that Jury Table will be:

- a) -0.986 0.528 0.713 -0.528
- b) 0.905 0.331 0.100

c) $0.812 - 0.2752 \ 0.2288$

d) 0.466 0.100 0.331 0.905

Question 3

In a unity feedback discrete system, its open loop transfer function is given as:

$$G(z) = \frac{k \left(0.084z^2 + 0.17z + 0.019\right)}{z^3 - 1.5z^2 + 0.553z - 0.05}$$

[3p] 17. The system characteristic equation is:

a)
$$G(z) = 0$$

b)
$$G(z) H(z) = 0$$

c)
$$1 + G(z) = 0$$

d)
$$z^3 - 1.5z^2 + 0.553z - 0.05 = 0$$

[3p] 18. The bilinear transformation used to transform the interior of the z-plane unit circle into the left-hand s-plane is:

a)
$$\frac{1-w}{1+w}$$

b)
$$\frac{1+w}{1-w}$$

c)
$$z = e^{sT}$$

d)
$$z = e^{-sT}$$

[3p] 19. The third row of the Routh-Hurwitz array will be:

a)
$$\frac{0.01 \, k^2 - 1.55 \, k + 4.17}{1.1 - 0.11 \, k}$$

b)
$$1.1 - 0.11 k$$
 $3.1 + 0.07 k$

c)
$$3.1 + 0.07 k$$

d)
$$0.003 + 0.27 k$$
 $3.8 - 0.27 k$

[3p] **20.**Based on Routh-Hurwitz Criterion, this system is stable for k selected as:

a)
$$k > -44.3$$

b)
$$k > -0.011$$

c)
$$-0.011 < k < 2.74$$

d)
$$-44.3 < k < 10$$

Supplementary Material

Note: you may need some or none of these identities:

$$e^{jx} = \cos x + j \sin x,$$

$$\cos x = \frac{e^{jx} + e^{-jx}}{2}, \quad \sin x = \frac{e^{jx} - e^{-jx}}{2j}$$

$$x + j y = \sqrt{x^2 + y^2} e^{j \tan^{-1}(y/x)}$$

$$G(s) = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}, \quad \omega_d = \omega_n \sqrt{1 - \xi^2}$$

$$T_r = \frac{\pi - \beta}{\omega_d}, \quad \beta = \tan^{-1} \frac{\omega_d}{\xi\omega_n}, \quad T_p = \frac{\pi}{\omega_d},$$

$$T_s = \frac{3}{\xi\omega_n} \Big|_{5\%} = \frac{4}{\xi\omega_n} \Big|_{2\%}, \quad M_p = e^{-\xi\pi/\sqrt{1 - \xi^2}}$$

$$k_0 = K_p \left(1 + \frac{T}{T_i} + \frac{T_d}{T}\right), k_1 = -K_p \left(1 + 2\frac{T_d}{T}\right),$$

$$k_2 = K_p \left(\frac{T_d}{T}\right)$$

$$\Phi = e^{Ah} = \mathcal{L}^{-1} \Big\{ (sI - A)^{-1} \Big\}, \Gamma = \int_{t=0}^h e^{At} B dt$$

التاريخ : / /	اسم الطالب:				
0 1 2 3 4 5 6 7 8 9	ر				
احاد	رقم الجلوس				
عشرات مئات	र्नु				
الاف	3				
0 1 2 3 4 5 6 7 8 9	نموذج الاختبار				
احاد عشرات	٠ <u>٧</u>				
مئات	اک ^ر				
الاف	يَا				
	ختم الكنترول				
2					
3					
4					
5					
6					
7					
8					
9					
11					
12					
13					
14					
15					
16 17 17 17 17 17 17 17 17 17 17 17 17 17					
18					
19					
20					
21					
22					
23					

No.	Continuous Time	Laplace Transform	Discrete Time	z-Transform
1	$\delta(t)$	1	$\delta(k)$	1
2	1(<i>t</i>)	$\frac{1}{s}$	1(<i>k</i>)	$\frac{z}{z-1}$
3	t	$\frac{1}{s^2}$	kT	$\frac{zT}{(z-1)^2}$ sampling t gives kT , $z\{kT\} = T z\{k\}$
4	t^2	$\frac{2!}{s^3}$	$(kT)^2$	$\frac{z(z+1)T^2}{\left(z-1\right)^3}$
5	t^3	$\frac{3!}{s^4}$	$(kT)^3$	$\frac{z(z^2 + 4z + 1)T^3}{(z-1)^4}$
6	$e^{-\alpha t}$	$\frac{1}{s+\alpha}$	a^k	$\frac{z}{z-a}$ by setting $a = e^{-\alpha T}$.
7	$1 - e^{-\alpha t}$	$\frac{\alpha}{s(s+\alpha)}$	$1-a^k$	$\frac{(1-a)z}{(z-1)(z-a)}$
8	$e^{-\alpha t} - e^{-\beta t}$	$\frac{\beta - \alpha}{(s + \alpha)(s + \beta)}$	$a^k - b^k$	$\frac{(a-b)z}{(z-a)(z-b)}$
9	$te^{-\alpha t}$	$\frac{1}{(s+\alpha)^2}$	kTa ^k	$\frac{azT}{(z-a)^2}$
10	$\sin(\omega_n t)$	$\frac{\omega_n}{s^2 + \omega_n^2}$	$\sin(\omega_n kT)$	$\frac{\sin(\omega_n T)z}{z^2 - 2\cos(\omega_n T)z + 1}$
11	$\cos(\omega_n t)$	$\frac{s}{s^2 + \omega_n^2}$	$\cos(\omega_n kT)$	$\frac{z[z-\cos(\omega_n T)]}{z^2 - 2\cos(\omega_n T)z + 1}$
12	$e^{-\zeta\omega_n t}\sin(\omega_d t)$	$\frac{\omega_d}{(s+\zeta\omega_n)^2+\omega_d^2}$	$e^{-\zeta\omega_nkT}\sin(\omega_dkT)$	$\frac{e^{-\zeta \omega_n T} \sin(\omega_d T) z}{z^2 - 2e^{-\zeta \omega_n T} \cos(\omega_d T) z + e^{-2\zeta \omega_n T}}$
13	$e^{-\zeta\omega_n t}\cos(\omega_d t)$	$\frac{s + \zeta \omega_n}{\left(s + \zeta \omega_n\right)^2 + \omega_d^2}$	$e^{-\zeta\omega_nkT}\cos(\omega_dkT)$	$\frac{z[z - e^{-\zeta \omega_n T} \cos(\omega_d T)]}{z^2 - 2e^{-\zeta \omega_n T} \cos(\omega_d T) z + e^{-2\zeta \omega_n T}}$
14	$sinh(\beta t)$	$\frac{\beta}{s^2 - \beta^2}$	$sinh(\beta kT)$	$\frac{\sinh(\beta T)z}{z^2 - 2\cosh(\beta T)z + 1}$
15	$\cosh(\beta t)$	$\frac{s}{s^2 - \beta^2}$	$\cosh(\beta kT)$	$\frac{z[z - \cosh(\beta T)]}{z^2 - 2\cosh(\beta T)z + 1}$