

Espace vectoriel K^n

Connaissances

1. Je sais ce qu'est la base canonique de \mathbf{K}^n .

7. Je sais ce qu'est une famille génératrice d'un sev .	-	0	+

l'ai compris que la matrica d'un système de vecteurs s'interprète en ligant les colonnes

 Jai	COIII	pris	que la III	atrice u	uii sys	teme de	vecteu	12 2 111	lerprete	E11 115a	111 168	COIOIII	162
tand	is q	ue la	matrice	d'un sys	stème (d'équatio	ns linéa	aires s	interprèt'	e en 1	isant le	es lign	es.
-	0	+											

12. Je sais alors dans chacun des deux cas précédents à quoi correspond :

Espace vectoriel \mathbf{K}^n

PgK12 29mar-1avr et 18-22avr

II Techniques

 1. Trouver les équations d'un s-ev de Kⁿ défini paramétriquement (c'est-à-dire - 0 + 	comme Vect).
2. Mettre sous forme de Vect un s-ev défini par des équations	- 0 +
3. Trouver une base d'un s-ev de \mathbf{K}^n défini par des équations.	- 0 +
4. Trouver une base d'un s-ev e \mathbf{K}^n défini paramétriquement.	- 0 +
5. Établir le caractère lié ou libre d'une famille de vecteurs de \mathbf{K}^n .	- 0 +
6. Dans le cas où la famille est liée, en trouver une combinaison linéaire non trivia	ale 0 +
7. Calculer les coordonnées d'un vecteur sur une base.	- 0 +
8. Extraire une famille libre d'une famille de vecteurs donnée.	- 0 +
9. Compléter une famille libre d'un s-ev en une base de ce s-ev.	- 0 +
10. Vérifier des inclusions ou égalités entre sous-espaces vectoriels	
a) Avec la connaissance de la dimension.	- 0 +
b) Sans la connaissance de la dimension.	- 0 +
11. Calculer les coordonnées d'un vecteur d'un s-ev <i>E</i> sur une base <i>%</i> de ce s-ev	- 0 +

III Planches attendues

Détermination de bases ou d'équations de sev de leurs intersections, détremination des coordonnées d'un vecteur d'un sev donné sur une base de ce sev.