Continuous functions

2016-02-15 9:00 -0500

• If the topology of Y is given by a basis \mathcal{B} , then $f: X \to Y$ is continuous if and only if $f^{-1}(V)$ is open in X for every $V \in \mathcal{B}$.

- If the topology of Y is given by a basis \mathcal{B} , then $f: X \to Y$ is continuous if and only if $f^{-1}(V)$ is open in X for every $V \in \mathcal{B}$.
- If the topology of Y is given by a subbasis S, then $f: X \to Y$ is continuous if and only if $f^{-1}(V)$ is open in X for every $V \in S$.

- If the topology of Y is given by a basis \mathcal{B} , then $f: X \to Y$ is continuous if and only if $f^{-1}(V)$ is open in X for every $V \in \mathcal{B}$.
- If the topology of Y is given by a subbasis S, then $f: X \to Y$ is continuous if and only if $f^{-1}(V)$ is open in X for every $V \in S$.
- A function $f: \mathbb{R} \to \mathbb{R}$ is continuous if and only if for every $x_0 \in \mathbb{R}$ and $\epsilon > 0$, there is a $\delta > 0$ such that $|x x_0| < \delta$ implies $|f(x) f(x_0)| < \epsilon$.

- If the topology of Y is given by a basis \mathcal{B} , then $f: X \to Y$ is continuous if and only if $f^{-1}(V)$ is open in X for every $V \in \mathcal{B}$.
- If the topology of Y is given by a subbasis S, then $f: X \to Y$ is continuous if and only if $f^{-1}(V)$ is open in X for every $V \in S$.
- A function $f: \mathbb{R} \to \mathbb{R}$ is continuous if and only if for every $x_0 \in \mathbb{R}$ and $\epsilon > 0$, there is a $\delta > 0$ such that $|x x_0| < \delta$ implies $|f(x) f(x_0)| < \epsilon$.

- If the topology of Y is given by a basis \mathcal{B} , then $f: X \to Y$ is continuous if and only if $f^{-1}(V)$ is open in X for every $V \in \mathcal{B}$.
- If the topology of Y is given by a subbasis S, then $f: X \to Y$ is continuous if and only if $f^{-1}(V)$ is open in X for every $V \in S$.
- A function $f: \mathbb{R} \to \mathbb{R}$ is continuous if and only if for every $x_0 \in \mathbb{R}$ and $\epsilon > 0$, there is a $\delta > 0$ such that $|x x_0| < \delta$ implies $|f(x) f(x_0)| < \epsilon$.
- Let $f: \mathbb{R} \to \mathbb{R}$ be continuous, $x_0 \in \mathbb{R}$ and $\epsilon > 0$.

- If the topology of Y is given by a basis \mathcal{B} , then $f: X \to Y$ is continuous if and only if $f^{-1}(V)$ is open in X for every $V \in \mathcal{B}$.
- If the topology of Y is given by a subbasis S, then $f: X \to Y$ is continuous if and only if $f^{-1}(V)$ is open in X for every $V \in S$.
- A function $f: \mathbb{R} \to \mathbb{R}$ is continuous if and only if for every $x_0 \in \mathbb{R}$ and $\epsilon > 0$, there is a $\delta > 0$ such that $|x x_0| < \delta$ implies $|f(x) f(x_0)| < \epsilon$.
- Let $f: \mathbb{R} \to \mathbb{R}$ be continuous, $x_0 \in \mathbb{R}$ and $\epsilon > 0$.
- We have that $f^{-1}((f(x_0) \epsilon, f(x_0) + \epsilon))$ is open in \mathbb{R} and contains x_0 . Hence there is $\delta > 0$ such that $(x_0 \delta, x_0 + \delta) \subset f^{-1}(f(x_0) \epsilon, f(x_0) + \epsilon)$.

Example (Continuous functions)

Example (Continuous functions)

• Any continuous function $f: \mathbb{R} \to \mathbb{R}$ from calculus courses is continuous in this sense.

Example (Continuous functions)

- Any continuous function $f: \mathbb{R} \to \mathbb{R}$ from calculus courses is continuous in this sense.
- Let \mathbb{R}_l be the set of real numbers with the Sorgenfrey topology. Then the identity function $1_{\mathbb{R}} : \mathbb{R} \to \mathbb{R}_l$ is not continuous.

Example (Continuous functions)

- Any continuous function $f: \mathbb{R} \to \mathbb{R}$ from calculus courses is continuous in this sense.
- Let \mathbb{R}_l be the set of real numbers with the Sorgenfrey topology. Then the identity function $1_{\mathbb{R}} : \mathbb{R} \to \mathbb{R}_l$ is not continuous.
- On the other hand, the identity $1_{\mathbb{R}} : \mathbb{R}_{\ell} \to \mathbb{R}$ is continuous.

Theorem

Theorem

Let X, Y be topological spaces and $f: X \to Y$. Then the following are equivalent:

• f is continuous.

Theorem

- f is continuous.
- For every $A \subseteq X$, one has $f(\overline{A}) \subseteq \overline{f(A)}$.

Theorem

- f is continuous.
- For every $A \subseteq X$, one has $f(\overline{A}) \subseteq \overline{f(A)}$.
- For every closed set C in Y, one has $f^{-1}(C)$ is closed in X.

Theorem

- f is continuous.
- For every $A \subseteq X$, one has $f(\overline{A}) \subseteq \overline{f(A)}$.
- For every closed set C in Y, one has $f^{-1}(C)$ is closed in X.
- For each $x \in X$ and each neighborhood V of f(x), there is a neighborhood U of x such that $f(U) \subseteq V$.

Theorem

Let X, Y be topological spaces and $f: X \to Y$. Then the following are equivalent:

- f is continuous.
- For every $A \subseteq X$, one has $f(\overline{A}) \subseteq \overline{f(A)}$.
- For every closed set C in Y, one has $f^{-1}(C)$ is closed in X.
- For each $x \in X$ and each neighborhood V of f(x), there is a neighborhood U of x such that $f(U) \subseteq V$.

When the last condition is satisfied at $x_0 \in X$, we say that f is continuous at x_0 .

Exercises

1. Let $f: X \to Y$ continuous. If $A \subseteq X$ and x is a limit point of A, is f(x) a limit point of f(A)?

Exercises

- 1. Let $f: X \to Y$ continuous. If $A \subseteq X$ and x is a limit point of A, is f(x) a limit point of f(A)?
- 2. If the singleton $\{x_0\}$ is open in X, prove that every function $f: X \to Y$ is continuous at x_0 . Is the converse true?

Exercises

- 1. Let $f: X \to Y$ continuous. If $A \subseteq X$ and x is a limit point of A, is f(x) a limit point of f(A)?
- 2. If the singleton $\{x_0\}$ is open in X, prove that every function $f: X \to Y$ is continuous at x_0 . Is the converse true?
- 3. Prove that $f: X \to Y$ is continuous if and only if for every $A \subseteq X$ we have that $f^{-1}(A^{\circ}) \subseteq (f^{-1}(A))^{\circ}$.