Sharing Features in Multi-class Boosting via Group Sparsity

Sakrapee Paisitkriangkrai Chunhua Shen Anton van den Hengel School of Computer Science, The University of Adelaide, Adelaide, SA 5005, Australia

Introduction

▶ We propose a new formulation, termed MultiBoost group, for multi-class boosting that promotes feature sharing across classes by enforcing group sparsity regularization.

(b) Group sparsity $\ell_{1,2}$

- ▶ Our derivation for designing fully corrective multi-class boosting methods is applicable to general $\ell_{p,q}$ $(p,q \ge 1)$ mixed-norms.
- ▶ We also propose the use of the alternating direction method of multipliers (ADMM) [1] to efficiently solve the involved optimization problems, which is much faster than using standard interior-point solvers.
- ▶ We empirically show that sharing features across classes can further improve classification performance and efficiency.

Multi-class boosting

- Let $F_{y_i}(\cdot)$ be the response of the linear classifier corresponding to y_i (the true class label) when applied to training instance x_i .
- ▶ The multi-class margins for the instance x_i thus can be defined as:

$$F_{y_i}(x_i) - F_r(x_i), \forall r \neq y_i.$$

▶ We want to maximize this term in the framework of large-margin learning. By employing hinge loss with $\ell_{1,2}$ mixed-norm regularization, the optimization problem can be written as,

$$\min_{W,\xi} \sum_{i=1}^{m} \xi_i + \nu ||W||_{1,2} \text{ s.t. } \delta_{r,y_i} + H_{i:} w_{y_i} \ge 1 + H_{i:} w_r - \xi_i, \forall i,r; \ W \ge 0; \xi \ge 0.$$

where ν is the regularization parameter. $\delta_{s,t}$ is an indication operator $(\delta_{s,t} = 1 \text{ if } s = t \text{ and } \delta_{s,t} = 0, \text{ otherwise}).$ The matrix $H \in \mathbb{Z}^{m \times n}$, is made up of the binary outputs of the weak classifiers. w_1, w_2, \cdots, w_k are the coefficients of the linear classifier. We define the matrix $W = [w_1, w_2, \cdots, w_k] \in \mathbb{R}^{n \times k}$ such that each column of W, w_r , contains coefficients of the linear classifier for class r and each row of W, W_i , consists of the coefficients for the weak classifier $h_i(\cdot)$ for all class labels.

▶ The Lagrange dual problem can be written as,

$$\min_{U,Q} \sum_{i,r} U_{ir} \delta_{r,y_i} \tag{1}$$

s.t.
$$\sum_{i} (\delta_{r,y_i} - U_{ir}) H_{i:} \le \nu Q_{:r}, \forall r; \sum_{r} U_{ir} = 1, \forall i; U \ge 0; \quad ||Q_{j:}||_2 \le 1, \forall j.$$

Since there can be infinitely many constraints, we need to use column generation to solve (1) [2, 3].

▶ The subproblem for generating weak classifiers is

$$h^*(\cdot) = \underset{h(\cdot) \in \mathcal{H}, r}{\operatorname{argmax}} \sum_{i=1}^m (\delta_{r, y_i} - U_{ir}) h(x_i).$$

where $h^*(\cdot)$ is the one that most violates the first constraint in the dual.

Logistic loss and faster training of multi-class boosting

▶ We can also design a boosting algorithm for optimizing the logistic loss. The learning problem can be expressed as:

$$\min_{W,V,\rho} \sum_{i,r} \log(1 + \exp(-\rho_{ir})) + \nu ||W||_{1,2} \text{ s.t. } \rho_{ir} = H_{i:} w_{y_i} - H_{i:} w_r, \forall i, \forall r, W \ge 0.$$

▶ The Lagrange dual problem is

$$\max_{U,Q} -\sum_{i,r} \left[U_{ir} \log (U_{ir}) + (1 - U_{ir}) \log (1 - U_{ir}) \right]$$
s.t.
$$\sum_{i} \left[\delta_{r,y_{i}} \left(\sum_{l} U_{il} \right) - U_{ir} \right] H_{i:} \leq \nu Q_{:r}, \forall r; \ \|Q_{j:}\|_{2} \leq 1, \forall j.$$
(2)

- ▶ Since real-world data consists of a large number of samples and classes, we want to speed up the training time. We achieve this by simplify the margin, $\rho_{i,r}$, as $y_{ir}H_{i}$; w_r where $y_{ir} = 1$ if $y_i = r$ and $y_{ir} = -1$, otherwise.
- **Each w**_r can now be solved independently with the use of ADMM.

MultiBoost with shared weak classifiers via group sparsity

Input:

- 1) A set of examples $\{\boldsymbol{x}_i, y_i\}, i = 1 \cdots m$;
- 2) The maximum number of weak classifiers, T;

Output: A multi-class classifier $F(\boldsymbol{x}) = \operatorname{argmax} \sum_{j=1}^{T} W_{jr} h_{j}(\boldsymbol{x});$

Initilaize:

5

7

1) $t \leftarrow 0$;

2) Initialize sample weights, $U_{ir} = 1/(mk)$;

while t < T do

1) Train a weak learner, $h_t(\cdot) =$

Train a weak learner,
$$h_t(\cdot) = \begin{cases} \underset{h(\cdot),r}{\operatorname{argmax}} \sum_{i=1}^m \left[\delta_{r,y_i} - U_{ir} \right] h(\boldsymbol{x}_i), & \text{hinge loss} \\ \underset{h(\cdot),r}{\operatorname{argmax}} \sum_{i=1}^m \left[\delta_{r,y_i} \left(\sum_l U_{il} \right) - U_{ir} \right] h(\boldsymbol{x}_i), & \text{logistic} \end{cases}$$

 $\forall r, \forall h(\cdot) \in \mathcal{H};$

2) If the stopping criterion has been met, we exit the loop.

if
$$\left\|\sum_{i=1}^{m} \left[\delta_{r,y_i} - U_{ir}\right] h(\boldsymbol{x}_i)\right\|_2 < \nu + \epsilon$$
 then break; (hinge loss)

if
$$\left\|\sum_{i=1}^{m} \left[\delta_{r,y_i}\left(\sum_{l} U_{il}\right) - U_{ir}\right] h(\boldsymbol{x}_i)\right\|_2 < \nu + \epsilon$$
 then break; (logistic loss)

- 3) Add the best weak learner, $h_t(\cdot)$, into the current set;
- 4) Solve the objective problem

Hinge loss:
$$\min_{W,V,\boldsymbol{\xi}} \quad \sum_{i=1}^{m} \xi_i + \nu \|V\|_{1,2}$$
 s.t.
$$\delta_{r,y_i} + H_i \cdot \boldsymbol{w}_{y_i} \geq 1 + H_i \cdot \boldsymbol{w}_r - \xi_i, \forall i, r$$

$$V = W; W \geq 0; \boldsymbol{\xi} \geq 0.$$
 Logistic loss:

s.t.
$$\sum_{i=1}^{m} \sum_{r=1}^{k} \log(1 + \exp(-\rho_{ir})) + \nu ||V||_{1,2}$$
$$\rho_{ir} = H_{i:} \boldsymbol{w}_{y_i} - H_{i:} \boldsymbol{w}_r, \forall i, \forall r$$
$$V = W; W \ge 0.$$

5) Update sample weights (dual variables);

6) $t \leftarrow t + 1$;

Experiments

We compare the performance between MultiBoost group with AdaBoost.MH, AdaBoost.ECC, GradBoost, AdaBoost.SIP and MultiBoost ℓ_1 .

Artificial data

UCI data sets

Distribution of shared weak classifiers on handwritten data sets

ABCDETC	'0 – 15'	'16 - 30'	'31 – 45'	'46 – 62'
MultiBoost (Shen and Hao)	99.8%	0.2%	0%	0%
MultiBoost-Group (ours)	0%	81.3%	18.7%	0%
MultiBoost-FAST	0%	65.7%	33.5%	0.7%

Table: The distribution of shared weak classifiers. For example, '31 – 45' indicates that the weak classifier is being shared among 31 to 45 classes.

Scene recognition

methods	# features used	accuracy (%)
SAMME (Zhu et al.)	1000	70.9 (0.40)
JointBoost (Torralba et al.)	1000	72.2 (0.70)
MultiBoost (Shen and Hao)	1000	76.0 (0.48)
AdaBoost.SIP (Zhang et al.)	1000	75.7 (0.10)
AdaBoost.ECC (Guruswami and Sahai)	1000	76.5 (0.67)
AdaBoost.MH (Schapire and Singer)	1000	77.6 (0.59)
MultiBoost-Group (ours)	1000	77.8 (0.77)
MultiBoost-FAST (ours)	1000	79.2 (0.82)
Linear SVM	6200	76.3 (0.88)
Nonlinear SVM (HIK)	6200	81.4 (0.60)

Table: Recognition rate on Scene15 data sets. All experiments are run 5 times. The average accuracy mean and standard deviation (in percentage) are reported.

References

- [1] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations & Trends in Mach. Learn., 3(1), 2011.
- [2] A. Demiriz, K. P. Bennett, and J. Shawe-Taylor. Linear programming boosting via column generation. Mach. Learn., 46(1-3):225–254, 2002.
- [3] Chunhua Shen and Hanxi Li. On the dual formulation of boosting algorithms. IEEE Trans. Pattern Anal. Mach. Intell., 2010.