# Stool examination for bacterial and viral infections

CBU School of Medicine MBS 240

#### Introduction

- Stool: human feaces
  - ➤ Waste residue of indigestible material from the GIT
- Composition:
  - >¾ water and ¼ undigested and unabsorbed material
  - ➤ Intestinal secretions- mucous
  - ➤ Bile salts and pigments
  - ➤ Bacterial and inorganic material
  - > Epithelial cells, leukocytes

#### **Stool Examination**

#### Aim of examination

➤ Detect pathogenic organisms in the stool

## Types of specimen

➤ Stool (fresh random) or rectal swab

## Who will collect the specimen

- ➤ The patient
- ➤ If stool is unobtainable, nursing staff or physician will collect rectal swab.

## Sample collection

- Stool should be collected in a dry, sterile wide mouthed container
  - ➤It should be uncontaminated with urine or any other body fluid
- Rectal swab should only be collected when it is not possible to collect stool
  - Swab should be inserted in the rectum for 10s
  - ➤ Care should be taken to avoid unnecessary contamination of specimen with bacteria from anal skin
- Sample should be properly labelled and fresh sample should be tested



#### Criteria of specimen rejection

- ➤ Specimen contaminated with urine, residual soap, or disinfectants
- > Specimens received in leaking transport containers
- ➤ Dry specimens
- > Specimens submitted in fixative or additives

Quantity of specimen: at least 5g of faeces

#### Time relapse before processing the sample

- ➤ Stool samples should be examined and cultured as soon as possible after collection
- As the stool specimen cools, the drop in pH will inhibit the growth of most *Shigella spp*. and some *Salmonella spp*.

## **Macroscopic Examination**

Macroscopic appearance of the specimen. Report the following:

- ➤ Color of specimen
- > Whether formed, semi formed, unformed or fluid
- ➤ Presence of blood, mucus or pus

| Appearance                                                 | Possible Cause                                     |
|------------------------------------------------------------|----------------------------------------------------|
| Unformed, with pus and mucus, mixed with blood             | Shigella E.Coli dysentery, Campylobacter enteritis |
| Blood diarrhea without pus                                 | E.coli H157                                        |
| Water stools                                               | E.coli                                             |
| Rice water stools with mucus flakes                        | Cholera caused by Vibrio cholerae                  |
| Unformed or watery and sometimes with blood, mucus and pus | Salmonella                                         |

# Characteristics of bloody vs non bloody diarrhoea

| Watery diarrhoea                                                     | Bloody diarrhoea                                                            |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------|
| No red blood cells or white blood cells in stool i.e no inflammation | Typically both red and white blood cells in stool i.e inflammatory response |
| Typically afebrile                                                   | Often febrile                                                               |
| Usually large volume                                                 | Usually small volume diarrhoea                                              |
| Infection typically in small intestine                               | Infection typically in colon                                                |

#### **Definitions**

- Diarrhoea: increase in frequency, fluidity or volume of bowel movement
  - >≥3 motions a day
- Dysentery: Passage of blood and mucous stained stools
  - >Accompanied by abdominal cramps and tenesmus
- Gastroenteritis: inflammation of mucous membranes of the stomach or intestines
  - >Usually results in diarrhoea associated with vomiting

# Common bacterial agents of GIT infections

## Diarrhoea causing

• Staphylococcus aureus, Clostridium perfringes, Clostridium difficile, Bacillus cereus, Vibrio cholerae, Escherichia coli (ETEC, EPEC), Salmonella, Shigella spp, Campylobacter jejuni, Yersinia enterocolitica

## **Dysentery causing**

 Shigella spp, Escherichia coli (EIEC, EHEC), Vibrio parahemolyticus, Campylobacter jejuni, Salmonella spp

Table 12.5 Gastrointestinal Tract

| Infection                                                                                              | Most important pathogens                                                                                  | Laboratory diagnosis                                                                                                                               |
|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Gastritis type B Gastric ulceration Duodenal ulceration Gastric adenocarcinoma Gastric lymphoma (MALT) | Helicobacter pylori                                                                                       | Direct fecal antigen<br>detection<br>Biopsy and histopathology<br>Urea breath test<br>Culture from biopsy<br>Serology for screening                |
| Gastroenteritis/enterocoliti                                                                           | S                                                                                                         |                                                                                                                                                    |
| Viruses                                                                                                | Rotaviruses Adenoviruses Rarely: enteroviruses, coronaviruses, astroviruses, caliciviruses, Norwalk virus | Direct virus detection<br>with electron microscopy<br>(reference laboratories)<br>or direct detection with<br>immunological methods<br>(e.g., EIA) |
| Bacteria                                                                                               | Staphylococcus aureus intoxication (enterotoxins A-E)                                                     | Toxin detection (with antibodies) in food and stool                                                                                                |
|                                                                                                        | c1 !·                                                                                                     | ~ I. / \ r                                                                                                                                         |

|    | Bacteria                                              | Staphylococcus aureus intoxication (enterotoxins A-E) | Toxin detection (with antibodies) in food and stool                                                                                             |
|----|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                                       | Clostridium perfringens (foods)                       | Culture (quantitative) from food and stool                                                                                                      |
|    |                                                       | Vibrio parahaemolyticus (food, marine animals)        | Culture from stool                                                                                                                              |
|    |                                                       | E. coli (EPEC, ETEC, EIEC, EHEC, EAggEC)              | No simple tests available; if necessary: culture from stool and identification of pathovars by means of DNA assay; serovar may provide evidence |
|    |                                                       | Campylobacter jejuni                                  | Culture from stool                                                                                                                              |
|    |                                                       | Yersinia enterocolitica                               | Culture from stool                                                                                                                              |
|    |                                                       | Bacillus cereus                                       | Culture from stool                                                                                                                              |
|    | Pseudomembranous colitis (often antibioticassociated) | Clostridium difficile                                 | Toxin detection (cell culture) in stool. DNA assay for toxin possible                                                                           |
| 12 | Shigellosis (dysentery)                               | Shigella spp.                                         | Culture from stool                                                                                                                              |
|    |                                                       |                                                       |                                                                                                                                                 |

Table 12.**5** *Continued: Gastrointestinal Tract* 

| Infection         | Most important pathogens                                                                        | Laboratory diagnosis                                                                  |
|-------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Salmonellosis     |                                                                                                 |                                                                                       |
| Enteric form      | Salmonella enterica (enteric serovars)                                                          | Culture from stool                                                                    |
| Typhoid form      | Salmonella enterica (typhoid serovars) (or possibly enteric salmonellae in predisposed persons) | Culture from blood and stool; serology (Gruber-Widal results of limited significance) |
| Cholera           | Vibrio cholerae                                                                                 | Culture from stool, possibly also from vomit                                          |
| Whipple's disease | Tropheryma whipplei                                                                             | Microscopy and DNA detection from small intestine biopsy. Culture not possible        |

# Shigella species

- Found in food and water contaminated with stool, and from infected-person to person when careful sanitation is not observed
- Dysentery caused by Shigella spp is called shigellosis
- S. dysenteriae, S. flexneri, S. boydii and S. sonnei cause bacillary dysentery
  - >S.sonnei- mild infection
  - ➤ S.flexneri, S.bodyii- more severe disease
  - >S.dysenteriae- most serious

- *S. dysenteriae* type 1 is particularly virulentepidemic and pandemic dysentery
- Highly infectious and resistant to common antibiotics

# Salmonella species

- Acute gastroenteritis- usually self limiting characterized by fever and diarrhoea
- Incubation is 12-36 hours
- Majority of the outbreaks are caused by S. typhimurium and S. enteritidis
- Infection is caused by consumption of animal foods or food products
- Infection leads to *Salmonella* food poisoning or sometimes septicemia

## **Culture (done after macroscopic examination)**

- The stool culture is a test that detects and identifies bacteria that cause infections of the lower digestive tract
- The test distinguishes between the types of bacteria that cause disease (pathogenic) and the types that are normally found in the digestive tract (normal flora)
- The test helps to determine if pathogenic bacteria are the cause of gastrointestinal symptoms (gastroenteritis).

# Routine Stool culture for Salmonella and Shigella

- Selenite-F broth or tetrathionate.
- SSA, XLD and HEA.
- Subculture on Blood agar and MacConkey agar



#### **Culture on XLD**

- Selenite-F Broth is used as an enrichment medium for the isolation of Salmonella from feces, urine, water, foods and other materials
- Xylose lysine Deoxycholate (XLD) is a selective and differential medium for the recovery of *Salmonella* and *Shigella* species.

| Organism   | Color of colony            |
|------------|----------------------------|
| Salmonella | Red colonies, Black centre |
| Shigella   | Red colonies               |
| E.coli     | Yellow                     |



Shigella on XLD.

Salmonella on XLD.

Image Source: Faculty of Health and Medical Sciences - University of Copenhagen, Denmark

# Culture on Salmonella Shigella Agar

• Salmonella Shigella Agar (SSA) is moderately selective and differential media for the isolation of pathogenic enteric bacilli, especially those belonging to the genus *Salmonella* and *Shigella*.



#### **Culture on HEA**

 Hektoen Enteric Agar (HEA)is used for the isolation and cultivation of gram-negative enteric microorganisms, especially Salmonella and Shigella

| Organism                | Colony color       |
|-------------------------|--------------------|
| Salmonella and Shigella | Blue to green blue |
| E.coli                  | Yellow to salmon   |





E. Coli on HEA

Salmonella and Shigella

# **Biochemical and Sensitivity tests**

- After culture, growths are subjected to biochemical tests to confirm the actual bacteria isolated between Salmonella and Shigella
  - >Urease test
  - >Indole test
  - ➤ Lysine decarboxylase (LDC)
  - ➤ Kliger iron agar (KIA)
  - **≻**Motility
- Sensitivity tests are also done after culture for antibiotic sensitivity for treatment purposes

#### Widals test and PCR

- Widals test is a serological test used in diagnosing of typhoid fever
- It measures the patient's antibodies against Salmonella typhi "O" (somatic) and "H" (flagella) antigens
- In acute typhoid fever, "O" agglutinins can usually be detected 6-8 days after the onset of fever and "H" agglutinins after 10-12 days
- PCR can also be used to diagnose typhoid fever, but it is expensive

## Escherichia coli

- Most E. coli strains are considered normal flora and do not cause disease
- Strains of *E. coli* which are recognized to cause diarrhoeal disease include enteropathogenic *E. coli* (EPEC) and enterotoxigenic *E. coli* (ETEC)
  - ➤ Mostly implicated in under five children
- ETEC produces heat-labile enterotoxin and heat stable enterotoxin
- EPEC has been implicated in diarrhoea in infants-no toxin or gut invasion

- EIEC and EHEC- invasive organism (causes dysentery)
- Following infection by EHEC, HUS (hemolytic uremic syndrome) is characterized by acute renal failure, anaemia and thrombocytopenia
- *E. coli* O157:H7 is the most commonly recognized serotype
  - ➤ Cause outbreaks and sporadic cases
  - ➤ Found in raw or undercooked hamburger/beef, spinach, or unpasteurized cider

## E.coli O157:H7

#### Media

Sorbitol MacConkey Agar (SMAC)

A loopful of stool is streaked on Sorbitol MacConkey agar

• Incubate at 37°C. Under aerobic conditions. Examine plates for non-sorbitol fermenting colonies(NSF)



- Positive result Agglutination of the Test latex occurs within 1 minute.
- No agglutination of the Control latex. Perform biochemical tests to confirm that the organism is an *E. coli* strain.
- Negative result no agglutination of the Test latex.
- Non-interpretable result clumping of the Control latex.



Positive Negative



#### Vibrio cholerae

- Serogroups- O1 and O139
- Biotypes- Classical and El Tor
- Causes cholera: severe dehydration, vomiting, abdominal pain and acidosis
- Due to exotoxin CT cAMP leading to the outpouring of fluid and electrolyte-diarrhoea
- In severe cases, rice water stools (without feacal matter) are passed

# **Laboratory Diagnosis**

- Microscopy
  - ➤ Gram-negative curved rod
- Culture
  - ➤ Alkaline peptone water for enrichment
  - ➤ Thiosulfate citrate bile salts (TCBS) agar- yellow colonies
  - ➤ MacConkey agar- Non lactose fermenter
- Biochemical tests
  - ➤ Oxidase positive
  - ➤ Citrate positive

- Serology
  - ➤O1/O139 serogroups
  - ➤ Ogawa/Inaba/Hikojima
- Rapid tests
  - ➤ SD BIOLINE Cholera O1/O139



7he End...