SCP

$$Minimize \quad Z = \sum_{i=1}^{n} c_i X_i \tag{1}$$

Subject to
$$\sum_{j=1}^{n} a_{ij} X_j \ge 1$$
 $i = 1, 2, ..., m$ (2)

$$X_i = \{0,1\} \ i = 1, 2, ..., m$$
 (3)

Relax Constraints (2) with given non-negative Lagrangean multipliers λ_i (i=1,2,...,m), resulting in the relaxed problem:

LR-SCP

Minimize
$$Z_D(\lambda) = \sum_{j=1}^n (c_j - \sum_{i=1}^m \lambda_i a_{ij}) X_j + \sum_{i=1}^m \lambda_i$$
 (4)

Subject to
$$X_i = \{0,1\} \ i = 1, 2, ..., m$$
 (5)

Ideally, λ should solve the dual problem $Z_D = minimize Z_D(\lambda) \ \forall \lambda$

Easier to solve

Main ideas:

- An optimal objective of a given LR-SCP $Z_D^*(\lambda)$ gives a lower bound of the optimal objective of SCP Z^* , that is $Z_D^*(\lambda) \leq Z^*$.
- A feasible solution to SCP with objective of Z^f gives an upper bound of Z^* , that is $Z_f \geq Z^*$
- Therefore, $Z_D^*(\lambda) \leq Z^* \leq Z_f$.

1. How to solve LR-SCP (obtaining the lower bound)?

Minimize
$$Z_D(\lambda) = \sum_{j=1}^n (c_j - \sum_{i=1}^m \lambda_i a_{ij}) X_j + \sum_{i=1}^m \lambda_i$$
 (4)

Subject to
$$X_i = \{0,1\} \ i = 1, 2, ..., m$$
 (5)

Define $C_j = (c_j - \sum_{i=1}^m \lambda_i a_{ij})$, if $C_j \leq 0$, $X_j = 1$, otherwise, $X_j = 0$.

2. How to get a feasible solution to SCP (obtaining an upper bound)?

Apply the heuristic of Balas and Ho (1980) using the lagrangean costs C_i .

Denoting by R the set of rows that are not yet covered, by S the set of j's that with $X_j=1$, by p the iteration index

Step 1: Set
$$R = M$$
, $S = \emptyset$, $p = 1$

Step 2: If
$$R = \emptyset$$
, go to Step 3.

Otherwise, let
$$K_j = |R \cap M_j|$$
, choose $i_* \in R$ such that $|N_{i_*}| = \min_{i \in R} |N_i|$ choose $j(p) \notin S$ such that $f(C_{j(p)}, K_{j(p)}) = \min_{i \in N_i} f(C_j, K_j)$

set
$$R \leftarrow R \setminus M_{j(p)}$$
, $S \leftarrow S \cup \{j(p)\}$, $p \leftarrow p + 1$, go to Step 2.

Step 3: Consider the elements $j \in S$ in order, if $S \setminus \{j\}$ can cover all i, set $S = S \setminus \{j\}$. When

all $j \in S$ are checked, a primal feasible is obtained.

Options for
$$f(C_j, K_j)$$
:
 $C_j, C_j/K_j, C_j/log_2(K_j), C_j/K_jlog_2(K_j), C_j/K_jln(K_j)$

$$M = \{1, 2, ..., m\}$$

$$N = \{1, 2, ..., n\}$$

$$M_j = \{i | a_{ij} = 1, j \in N\}$$

$$N_i = \{j | a_{ij} = 1, i \in M\}$$

$$S = \{j \in N | X_j = 1\}$$

3. How to update λ ?

Use subgradient procedures

$$\lambda_{i}^{q+1} = \max\{0, \lambda_{i}^{q} + t^{q} \left(1 - \sum_{j=1}^{n} a_{ij} X_{j}\right)\} \quad i = 1, 2, \dots, m$$

$$t^{q} = \frac{\alpha^{q} (Z_{UB} - Z_{D}^{*}(\lambda^{q}))}{\sum_{i=1}^{m} (1 - \sum_{j=1}^{n} a_{ij} X_{j})^{2}}$$

$$\alpha^{q+1} = \beta \alpha^{q} \quad \beta \in (0, 1]$$

q: *iteration index*

The algorithm:

Step 1: Initialize q=0, λ_i^0 and α^0 .

Step 2: Compute $C_j = (c_j - \sum_{i=1}^m \lambda_i^q a_{ij})$, if $C_j \leq 0$, $X_j = 1$, otherwise, $X_j = 0$.

Step 3: Compute the objective value $Z_D^*(\lambda^q)$ using X_j obtained in Step 2, denoted as

 Z_{LB} .

Step 4: Find a primal feasible solution by Balas and Ho heuristic, compute corresponding the objective value, this is an upper bound. Keep the minimum upper bound, denoted as Z_{UB} .

Step 5: if $Z_{LB}=Z_{UB}$, stop. Otherwise, update $\lambda_i^{q+1}=\max\{0,\lambda_i^q+t^q\big(1-\sum_{j=1}^n a_{ij}X_j\big)\}$, where $t^q=\frac{\alpha^q(Z_{UB}-Z_D^*(\lambda^q))}{\sum_{i=1}^m (1-\sum_{j=1}^m a_{ij}X_j)^2}$ using X_j obtained in Step 3, $\alpha^{q+1}=\beta\alpha^q$ $\beta\in(0,1]$ and go to Step 2 unless some stopping criteria are met, e.g., $Z_{UB}=1$

 $Z_{LB} < \epsilon \text{ or } \alpha^q < \epsilon.$