Расчет абсорбера

Техническое задание:

- 1) Рассчитать насадочный абсорбер (определить высоту и диаметр) для очистки от СО₂ рабочего газа, абсорбент вода.
- 2) Насадка: керамические кольца Рашига внавал
 - a) 25 mm;
 - б) 50 мм.
- 3) Сравнить высоту слоя насыпки из колец Рашига с высотой при использовании насадки другого типа.

Исходные данные:

Список компонентов и их концентрация в рабочем газе до очистки:

Инициализация библиотеки свойств:

Число компонентов в очищаемом газе: i := rows(components) = 4

hfld := hfld init(components)

 $hfld = "C:\Rfp8\fluids\HYDROGEN.FLD|C:\Rfp8\fluids\NITROGEN.FLD|C:\Rfp8\fluids\CO2.FLD|C:\Rfp8\fluids\WATER.FLD|"$

Рисунок 1. Схема потоков в абсорбере

Рис. VI.1. Принципиальная схема абсорбционной установки:

1 — вентилятор (газодувка);
 2 — абсорбер;
 3 — брызгоотбойник;
 4.
 6 — оросители;
 5 — холодильник;
 7 — десогбер;
 8 — куб десорбера;
 9.
 13 — емкости для абсорбента;
 10.
 12 — насосы;
 11 — теплообменник-рекуператор.

Рисунок 2. Схема потоков в абсорберционной установке

Начальная объемная (мольная) доля абсорбтива в очищаемом газе:

Конечная объемная (мольная) доля абсорбтива в газе:

Начальная объемная (мольная) относительная доля абсорбата в абсорбенте:

Давление в системе:

Рабочая температура абсорбента:

Расход очищаемого газа:

Коэффициент минимального удельного расхода (1.2...1.5):

Коэффициент скорости захлебывания (0.8...0.85):

Расчет

Постоянная Авагадро:

Мольный расход очищаемого газа:

Плотности компонентов смеси по условиям процесса (УП),
$$\frac{\kappa\Gamma}{M^3}$$
:
$$\rho_{У\Pi} := \text{getFCell}(T,p,\text{"rho"}) = \begin{pmatrix} \text{"H2"} & 1.58 \\ \text{"N2"} & 22.29 \\ \text{"CO2"} & 38.86 \end{pmatrix}$$

$$Y_1 := 0.2$$

$$Y_2 := 0.02$$

$$x_1 := 0$$

$$T := 303K$$

$$G_0 := 16000 \frac{M^3}{4} = 4444.4 \cdot \frac{\pi}{c}$$

$$k_1 := 1.3$$

$$k_{w0} := 0.8$$

$$k := 22.4 \cdot \frac{\pi}{\text{моль}}$$

$$k := 22.4 \cdot \frac{\pi}{\text{моль}}$$
 $G := \frac{G_0}{k} = 198.413 \cdot \frac{\text{моль}}{c}$

Плотность абсорбента по условиям процесса (УП):

$$\rho_1 := \rho_{Tpz}(T, p, Xsorb) = 996.54 \cdot \frac{\kappa \Gamma}{M^3}$$

Молярные массы компонентов очищаемого газа, —:

$$M_{\text{Y}\Pi} := \text{getFCell}(T, p, \text{"moleMass"}) = \begin{pmatrix} \text{"H2"} & 2.02 \times 10^{-3} \\ \text{"N2"} & 28.01 \times 10^{-3} \\ \text{"CO2"} & 44.01 \times 10^{-3} \end{pmatrix}$$

Молярная масса абсорбента, $\frac{\mathrm{K}\Gamma}{\mathrm{MOЛЬ}}$: $\mathrm{M}_1 := \mu_{\mathrm{X}}(\mathrm{Xsorb}) = 0.018 \cdot \frac{\mathrm{K}\Gamma}{\mathrm{MOЛЬ}}$

$$M_1 := \mu_X(Xsorb) = 0.018 \cdot \frac{\kappa \Gamma}{\text{моль}}$$

Расчет ведется в относительных молярных или массовых молях, т.е.:

$$y = \frac{Y}{1 - Y}$$

Тогда начальная (1) и конечная (2) относительная мольная концентрация СО2 в абсорбенте соответсвенно, моль/моль:

$$y_1 := \frac{Y_1}{1 - Y_1} = 0.25$$

$$y_2 := \frac{Y_2}{1 - Y_2} = 0.02$$

Параметры газовой смеси, $\frac{K\Gamma}{.3}$:

$$\begin{array}{c|c} \rho_g \coloneqq & \text{result} \leftarrow 0 & = 13.18 \\ & \text{for } i \in 1 .. \, \text{rows}(\text{components}) - 1 \\ & \text{result} \leftarrow \text{result} + x_{tst_i} \cdot \rho_{y\Pi_{i,2}} \\ & \text{result} \end{array}$$

Уравнение материального баланса (по схеме аппарата, рис. 1):

Обозначения:

L - мольный расход абсорбента, $\frac{\text{моль}}{c}$;

 ${f G}$ - мольный расход очищаемого газа, ${{{\rm MОЛЬ}}\over {\rm c}}$

 ${f M}$ - мольный расход абсорбата через границу раздела фаз, ${{
m MОЛЬ}\over {
m c}}$

Уравнения:

$$G \cdot y_1 - M = G \cdot y_2$$

$$L \cdot x_1 + M = L \cdot x_2$$

Обозначим удельный расход абсорбента:

$$l' = \frac{L}{G}$$

Уравнение прямых равновесия и рабочей:

Согласно **3-ну Генри** при постоянной температуре парциальное давление р' растворенного вещества над его предельно разбавленным раствором пропорционально мольной доле этого вещества x или:

$$p'_{CO2} = E \cdot x_{CO2}$$
 (*)

Здесь:

р'СО2 - парциальное давление паров СО2 над зеркалом жикдкости

XCO2 - мольная доля CO2 в воде

Е - константа Генри (определяется по таблице, см. табл.1)

Таблица XLI Значения коэффициента Генри E для водных растворов некоторых газов (в таблице даны значения $E \cdot 10^{-6}$ в мм рт. ст.)

Пересчет в СИ: 1 мм рт. ст. = 133,3 Па.

PERSON	Температура, °С										
Газ	0	5	10	15	20	25	30	40	60	80	100
Азот	40,2	45,4	50,8	56,1	61,1	65,7	70,2	79,2	90,9	95,9	95,4
Ацетилен	0,55	0,64	0,73	0,82	0,92	1,01	1,11	-			
Бром	0,0162	0,0209	0,0278	0,0354	0,0451	0,056	0,0688	0,101	0,191	0,307	-
Водород	44	46,2	48,3	50,2	51,9	53,7	55,4	57,1	58,1	57,4	56,6
Воздух	32,8	37,1	41,7	46,1	50,4	54,7	58,6	66,1	76,5	81,7	81,6
Двуокись угле- рода	0,553	0,666	0,792	0,93	1,08	1,24	1,41	1,77	2,59		 .
Кислород	19,3	22,1	24,9	27,7	30,4	33,3	36,1	40,7	47,8	52,2	53,3
Метан	17	19,7	22,6	25,6	28,5	31,4	34,1	39,5	47,6	51,8	53,3
Окись углерода	26,7	30	33,6	37,2	40,7	44	47,1	52,9	62,5	64,3	64,3
Сероводород	0,203	0,239	0,278	0,321	0,367	0,414	0,463	0,566	0,782	1,03	1,12
Хлор	0,204	0,25	0,297	0,346	0,402	0,454	0,502	0,6	0,731	0,73	_
Этан	9,55	11,8	14,4	17,2	20	23	26	32,2	42,9	50,2	52,6
Этилен	4,19	4,96	5,84	6,8	7,74	8,67	9,62	-	0.42		220

Таблица 1. Значение константы Генри, Па*моль/моль для различных веществ при различной температуре

$$E_{table} := (0.553 \ 0.666 \ 0.792 \ 0.93 \ 1.08 \ 1.24 \ 1.41 \ 1.77 \ 2.59)^{T}$$
 $T_{table} := (0 \ 5 \ 10 \ 15 \ 20 \ 25 \ 30 \ 40 \ 60)^{T}$

$$E_T' := cspline(T_{table}, E_{table})$$

$$E(T_x) := interp(E_T', T_{table}, E_{table}, \frac{T_x}{K}) \cdot 133.3M\Pi a$$

Согласно следствию из закона Дальтона (давление смеси газов, химически не взаимодействующих между собой, равно сумме парциальных давлений каждого из компонентов смеси:)

$$p'_{CO2} = p \cdot Y'_{CO2}$$
 (**)

Здесь:

Y'CO2 - доля CO2 в газе после достижения равновесия

Тогда из (*) и (**):

$$p \cdot Y'_{CO2} = E \cdot x_{CO2}$$

$$Y'_{CO2} = \frac{E}{p} \cdot x_{CO2}$$

Обозначим $d = \frac{E}{p}$ как коэффициент распределения или константа фазового равновесия, тогда:

$$Y'_{CO2} = d \cdot x_{CO2}$$

В данном расчете значения:

$$E := E(T - 273.15K) = 187.3 \cdot M\Pi a$$

$$d := \frac{E}{p} = 93.6$$

Закон Генри в относительных мольных концентрациях:

$$\frac{y'CO2}{1 + y'CO2} = d \cdot \frac{xCO2}{1 + xCO2}$$

ИЛИ

$$y'_{CO2} = d \cdot \frac{x_{CO2}}{1 + x_{CO2} \cdot (1 - d)}$$
 (***)

Здесь:

У'CO2 - относительная мольная концентрация CO2 в **газе** после достижения фазового равновесия

^XCO2 - относительная мольная концентрация CO2 в жидкости после достижения фазового равновесия

Если значение x_{CO2} относительно мало, то знаменатель в уравнении (***) можно представить в виде линейной функции:

$$y'_{CO2}(x_{CO2}) := d \cdot x_{CO2}$$

Уравнение рабочей прямой (x₁ = 0) - в начальный момент времени в абсорбенте нет CO2:

$$y_{CO2}(x_{CO2}) = 1' \cdot x_{CO2} + y_2$$

Равновесная доля CO2 в абсорбенте в конце цикла $(y'_{CO2} = y_1)$

$$x'_{CO2} := \frac{y_1}{d} = 2.67 \times 10^{-3}$$

Минимальный удельный расход абсорбента определяется из условия пересечения равновесной и рабочей прямых в точке x'CO2:

$$l_{\min} := \frac{y_1 - y_2}{x'_{CO2}} = 85.99$$

С учетом коэффициента минимального удельного расхода:

$$l' := k_1 \cdot l_{min} = 111.78$$

Конечная концентрация СО2 в сорбенте (абсорбат) при условии начальной нулевой концентрации:

$$x_2 := \frac{y_1 - y_2}{1!} = 2.05 \times 10^{-3}$$

Концентрация СО2 в газе после достижения фазового равновесия:

$$y'_{CO2}(x_2) = 0.192$$

По уравнению рабочей прямой:

$$y_{CO2}(x_{CO2}) := 1' \cdot x_{CO2} + y_2$$

 $y_{CO2}(x_2) = 0.25$

$$y_{CO2}(x_2) = 0.25$$

$$Q := G \cdot (1 - y_1) = 148.81 \cdot \frac{\text{моль}}{c}$$

$$L' := \frac{(y_1 - y_2) \cdot G}{(x_2 - x_1)} = 2.218 \times 10^4 \cdot \frac{\text{моль}}{c}$$

$$L'_m := L' \cdot M_l = 1.4 \times 10^6 \cdot \frac{\kappa \Gamma}{\Psi}$$

$$L'_{V} := \frac{L'_{m}}{\rho_{l}} = 1.443 \times 10^{6} \cdot \frac{\pi}{q}$$

Движущая сила процесса массопередачи:

$$\Delta y_1 := y_2 = 0.02$$

$$y'_{CO2} := y'_{CO2}(x_2) = 0.192$$

$$\Delta y_2 := y_1 - y'_{CO2} = 0.058$$

Средняя движущая сила:

$$\Delta y_{cp} := \frac{\Delta y_1 - \Delta y_2}{\ln \left(\frac{\Delta y_1}{\Delta y_2}\right)} = 0.036$$

Расчет скорости газа и диаметра абсорбера

Предельная скорость (скорость захлебывания), м/с:

$$\lg \left[\frac{w_0^2 \cdot a}{g \cdot \varepsilon^3} \cdot \frac{\rho_g}{\rho_l} \cdot \left(\frac{\mu_l}{\mu_w} \right)^{0.16} \right] = A - B \cdot \left(\frac{L'}{G} \right)^{0.25} \cdot \left(\frac{\rho_g}{\rho_l} \right)^{0.125}$$

Здесь:

a	- удельная поверхность насадки,	2 / 3
	_ 3	

 ho_g - плотность рабочего газа, кг/ м 3

 ho_1 - плотность абсорбента при условиях сорбции, кг/ м 3

μ_{l}	- вязкость абсорбента при условиях	сорбции,	Па*с
-----------	------------------------------------	----------	------

g - ускорение свободного падения, M^2/c

А , В - коэффициенты , определяются по таблице:

Тип насадки	A	В
Трубчатая	$0.47 + 1.5 \lg (d_9/0.025)$	1,75
Плоскопараллельная хордовая	0,062	1,75 1,55
Пакетная Колына Рашига внавал	-0,002	1,75
Кольца Палля	-0.49	1,04 1,04
Седла размером 25 мм Седла размером 50 мм	-0.33 -0.58	1,04

Область 1. Параметры насадок

Обозначения в наименовании:

Тип:

Р_ - регулярная насадка,

Н_ - неупорядочная насадка,

Материал:

кер. - керамическая,

ст. - стальная,

Форма:

к. - кольца

Коэффициенты:

A :=
$$Data_{Haca_{JK}a+1,7} = -0.073$$
 B := $Data_{Haca_{JK}a+1,8} = 1.75$

$$B := Data_{Haca_{IK}a+1.8} = 1.75$$

Параметры насадки:

Удельная поверхность насадки:

Свободное сечение насадки:

Эквивалентный диаметр:

Плотность насадки:

Эффективная линейная плотность орошения:

Параметр р:

Параметр q:

Параметр b:

$$a := Data_{Hacaдka+1, 2} \cdot \frac{M^2}{M^3} = 90 \cdot \frac{M^2}{M^3}$$

$$\varepsilon := Data_{Haca \exists \kappa a+1, 3} = 0.785$$

$$d_3 := Data_{Haca \pi Ka+1, 4} \cdot M = 0.035 \cdot M$$

$$\rho_{\rm H} := {\rm Data}_{{\rm Haca} \upmu {\rm Ka} + 1}, 5 \cdot \frac{{\rm K} \Gamma}{\frac{3}{{\rm M}^3}} = 530 \cdot \frac{{\rm K} \Gamma}{\frac{3}{{\rm M}^3}}$$

$$q_{eff} := Data_{Hacaдka+1,9} \cdot \frac{\frac{M^2}{c}}{c} = 2.2 \times 10^{-5} \cdot \frac{\frac{M^2}{c}}{c}$$

$$p_{H} := Data_{Haca_{J}Ka+1, 10} \cdot \frac{M^{2}}{c} = 0.024 \cdot \frac{M^{2}}{c}$$

$$q_{H} := Data_{HacaдKa+1,11} \cdot M = 0.012 \cdot M$$

$$b_{H} := Data_{Haca_{JK}a+1, 12} = 169$$

Вязкость абсорбера при 20 гр. Цельсия:

$$T_{20} := (20 + 273.15) \cdot K = 293.15 K$$

$$\rho_{120} := \rho_{Tpz} (T_{20}, 16 \text{ap}, X \text{sorb}) = 998.2 \cdot \frac{\kappa \Gamma}{M^3}$$

? Не выводится верное значение динамической вязкости (REFPROP)

$$\mu_W := 1.002 \cdot 10^{-3} \Pi a \cdot c$$
 $\mu_1 := 0.798 \cdot 10^{-3} \Pi a \cdot c$

Тогда:

$$w_0 := 0.1 \cdot \frac{M}{c}$$

Given

$$\log \left[\frac{w_0^2 \cdot a}{g \cdot \varepsilon^3} \cdot \frac{\rho_g \cdot \frac{\kappa \Gamma}{M}}{\rho_l} \cdot \left(\frac{\mu_l}{\mu_w} \right)^{0.16} \right] = A - B \cdot \left(\frac{L'}{G} \right)^{0.25} \cdot \left(\frac{\rho_g \cdot \frac{\kappa \Gamma}{M}}{\rho_l} \right)^{0.125}$$

$$w_0 := Find(w_0) = 0.041 \cdot \frac{M}{c}$$

С учетом коэффициента скорости захлебывания:

$$\mathbf{w} := \mathbf{k}_{\mathbf{w}0} \cdot \mathbf{w}_0 = 0.033 \cdot \frac{\mathbf{M}}{\mathbf{c}}$$

Диаметр абсорбера при НУ (20 гр. Цельсия, 1 атм):

$$D' := \sqrt{\frac{4 \cdot G_0 \cdot \left(\frac{T}{293K}\right) \cdot \left(\frac{1a_{TM}}{p}\right)}{\pi \cdot w}} = 2.999 \cdot M$$

Нормальный ряд размеров (нефтеперерабатывающей промышленности):

 $map := (1 \ 1.2 \ 1.4 \ 1.6 \ 1.8 \ 2 \ 2.2 \ 2.4 \ 2.6 \ 2.8 \ 3.0 \ 3.4 \ 3.6 \ 3.8 \ 4.0 \ 4.5 \ 5.0 \ 5.5 \ 6.0 \ 6.4 \ 7.0 \ 9.0)^{\mathrm{T}}$ -м Тогда:

$$D_r := regularL(D', map) = 3 \cdot M$$

Реальная скорость:

$$\mathbf{w_r} := \mathbf{w} \cdot \left(\frac{\mathbf{D_r}}{\mathbf{D'}}\right) = 0.033 \cdot \frac{\mathbf{M}}{\mathbf{c}}$$

Площадь поперечного сечения:

$$F_r := \frac{\pi \cdot D_r^2}{4} = 7.07 \cdot M^2$$

Плотность орошения:

$$U := \frac{L'_m}{\rho_1 \cdot F_r} = 0.057 \cdot \frac{M}{c}$$

Скорость орошения:

$$q_1 := \frac{U}{a} = 6.302 \cdot \frac{cM^2}{c}$$

Эффективная линейная скорость орошения для выбранной насадки:

$$q_{\text{eff}} = 2.2 \times 10^{-5} \cdot \frac{\text{m}^2}{\text{c}}$$

Минимальная плотность орошения для выбранной насадки:

$$U_{\min} := a \cdot q_{\text{eff}} = 1.98 \times 10^{-3} \cdot \frac{M}{c}$$

Проверяем условие смачиваемости:

$$U_{min} < U = 1$$

! В случае недостаточной плотности орошения и неправильной организации подачи жидкости поверхность насадки может быть смочена не полностью, а часть смоченной поверхности практически не участвует в процессе массопередачи, для этого проводится проверка условия, при котором существует некоторая минимальная эффективная плотность орошения Umin, выше которой всю поверхность насадки можно считать смоченной. Поскольку условие

выполняется, то в данном случае коэффициент смачиваемости насадки равен 1.

Активная площадь насадки:

$$\psi_a := \frac{U \cdot 3600}{a \cdot (p_H + q_H \cdot U \cdot 3600)} = 0.917$$

Расчет критериев для ГАЗОВОЙ фазы

? Не выводится верное значение динамической вязкости, теплопроводности (REFPROP)

Динамическая вязкость газовой смеси (получить из REFPROP или другого файла с газовой смесью):

$$\mu_g := 1.281 \cdot 10^{-5} \cdot \Pi a \cdot c$$

$$\rho_g := \rho_g \cdot \frac{\kappa \Gamma}{\frac{3}{M}}$$

Молярная масса газовой смеси:

$$M_g := \mu_X (x_g) = 0.016 \cdot \frac{\kappa \Gamma}{\text{моль}}$$

Мольный объем газовой смеси:

$$v_g := \frac{M_g}{\rho_g} = 1.185 \times 10^{-3} \cdot \frac{M^3}{MOЛЬ}$$

Молярная масса абсорбтива:

$$M_{CO2} := \mu_X(Xpure(components, rows(components) - 1)) = 0.044 \cdot \frac{K\Gamma}{MOJIb}$$

Плотность абсорбтива:

$$\rho_{CO2} := \rho_{Tpz}(T, p, Xpure(components, rows(components) - 1)) = 38.865 \cdot \frac{\kappa \Gamma}{\frac{3}{M}}$$

Мольный объем абсорбтива:

$$v_{\text{CO2}} := \frac{M_{\text{CO2}}}{\rho_{\text{CO2}}} = 1.132 \times 10^{-3} \cdot \frac{\text{M}^3}{\text{моль}}$$

Число Рейнольдса по газовой смеси:

$$\operatorname{Re}_{g} := \operatorname{w}_{r} \cdot \operatorname{d}_{3} \cdot \frac{\operatorname{\rho}_{g}}{\varepsilon \cdot \mu_{g}} = 1.512 \times 10^{3}$$

Коэффициент диффузии СО2 в газе:

$$D_{g} := \frac{\frac{4.3 \cdot 10^{-8} \cdot T^{2}}{\sqrt{\frac{\frac{1}{3}}{10^{-4}} \cdot \frac{\frac{1}{3}}{10^{-4}}}} \cdot \sqrt{\frac{\frac{1}{M_{1}} + \frac{1}{M_{g}}}{\frac{1}{M_{1}} + \frac{1}{M_{g}}}} \cdot \frac{\frac{1}{M_{1}} + \frac{1}{M_{g}}}{\sqrt{\frac{\frac{1}{3}}{10^{-4}} \cdot \frac{\frac{1}{3}}{10^{-4}}}} \cdot \frac{\frac{1}{M_{1}} + \frac{1}{M_{g}}}{\sqrt{\frac{\frac{1}{3}}{10^{-4}} \cdot \frac{\frac{1}{3}}{10^{-4}}}} \cdot \frac{\frac{M^{2}}{c}}{\sqrt{\frac{1}{M_{1}} + \frac{1}{M_{g}}}}} \cdot \frac{M^{2}}{c}}{\sqrt{\frac{1}{M_{1}} + \frac{1}{M_{1}}}}} \cdot \frac{M^{2}}{c}}{\sqrt{\frac{1}{M_{1}} + \frac{1}{M_{1}}}}}$$

Диффузионный критерий Прандпля:

$$Pr_dg := \frac{\mu_g}{\rho_g \cdot D_g} = 34.58$$

Диффузионный критерий Нуссельта:

$$Nu_dg := 0.407 \cdot Re_g^{0.665} \cdot Pr_dg^{0.33} = 170.54$$

Тогда коэффициент массоотдачи от газовой смеси:

$$\beta_g := \frac{\text{Nu_dg}}{\text{d_2}} \cdot \text{D}_g = 1.369 \times 10^{-4} \cdot \frac{\text{M}}{\text{c}}$$

Расчет критериев для ЖИДКОЙ фазы

Молярная масса абсорбента:

$$M_1 = 0.018 \cdot \frac{\kappa \Gamma}{\text{моль}}$$

Коэффициент, учитывающий ассоциацию молекул:

$$\beta := 1$$

Коэффициент диффузии:

$$D_{l} := 7.4 \cdot 10^{-15} \cdot \frac{\left(\beta \cdot M_{l}\right)^{0.5} \cdot T}{\mu_{l} \cdot v_{CO2}^{0.6}} \cdot \frac{m^{0.8} \cdot kg^{0.5}}{\left(s \cdot K \cdot mol^{0.1}\right)} \cdot \frac{M^{2}}{c} = 2.208 \times 10^{-8} \cdot \frac{M^{2}}{c}$$

Диффузионный критерий Прандпля:

$$Pr_dl := \frac{\mu_l}{\rho_1 \cdot D_1} = 36.26$$

Число Рейнольдса по абсорбенту:

$$Re_1 := \frac{4 \cdot U \cdot \rho_1}{a \cdot \mu_1} = 3.148 \times 10^3$$

Диффузионный критерий Нуссельта:

$$Nu_dl := 0.0021 \cdot Re_1^{0.75} \cdot Pr_dl^{0.5} = 5.31$$

С учетом:

$$Nu_dl = \frac{\beta_1 \cdot \delta_f}{D_1}$$

где $^{\delta}\mathrm{f}$ - приведенная толщина стекающей по насадке пленки жидкости:

$$\delta_{\mathbf{f}} := \left(\frac{{\mu_{\mathbf{l}}}^2}{{\rho_{\mathbf{l}}}^2 \cdot \mathbf{g}}\right)^{\frac{1}{3}} = 4.029 \times 10^{-5} \cdot \mathbf{M}$$

Тогда коэффициент массоотдачи к абсорбенту:

$$\beta_1 := \frac{\text{Nu_dl}}{\delta_f} \cdot D_l = 2.913 \times 10^{-3} \cdot \frac{\text{M}}{\text{c}}$$

С учетом плотности:

$$\beta_{l'} := \beta_1 \cdot \rho_l = 2.903 \cdot \frac{\kappa \Gamma}{c \cdot m^2}$$

$$\beta_{g'} := \beta_g \cdot \rho_g = 1.805 \times 10^{-3} \cdot \frac{\kappa \Gamma}{c \cdot M^2}$$

Тогда, массовый коэффициент массопередачи:

$$K_g := \frac{1}{\frac{1}{\beta_{g'}} + \frac{1}{\beta_{l'}}} = 1.804 \times 10^{-3} \cdot \frac{\kappa\Gamma}{c \cdot M^2}$$

Мольный коэффициент массопередачи:

$$K_{g_mole} := \frac{K_g}{M_g} = 0.116 \cdot \frac{\text{моль}}{\text{c} \cdot \text{m}^2}$$

Площадь массопередачи:

$$F_{m} := \frac{G \cdot (y_{1} - y_{2})}{K_{g \text{ mole}} \cdot \Delta y_{cp}} = 10991.5 \cdot M^{2}$$

Расчетная высота насадки:

$$H_{H} := \frac{F_{m}}{0.785 \cdot a \cdot D_{r}^{2} \cdot \psi_{a}} = 18.9 \cdot M$$

При большой высоте насадке, особенно при использовании насадки внавал, рекомендуется устанавливать перераспределители жидкости не реже, чем через 6м, тогда:

$$N_{\text{pac}\Pi p} := \text{Round}\left(\frac{H_{H}}{6M}, 1\right) = 3$$

Высота перераспределителя:

$$h_{\Pi} := 0.4M$$

Высота насадочной части колонны:

$$Z := 6M \cdot \frac{H_H}{6M - h_{\Pi}} = 20.2 \cdot M$$

Расстояние до крышки абсорбера:

$$H_B := 0.8 \cdot D_r = 2.4 \cdot M$$

Расстояние от дна до насадки:

$$H_{H} := 1.2 \cdot D_{r} = 3.6 \cdot M$$

Полная высота абсорбера:

$$H_{a\delta c} := H_B + Z + H_H = 26.2 \cdot M$$

Оценка гидравлического сопротивления насадки:

- сопротивление сухого абсорбера:

$$\Delta P_{\text{cyx}} = \lambda \cdot \left(\frac{H}{d_3}\right) \cdot \left(\frac{w_r^2 \cdot \rho_g}{2}\right)$$

Здесь: λ - коэффициент сопротивления, учитывающий суммарные потери давления на трение и местные сопротивления насадки.

$$\lambda := \begin{vmatrix} \frac{140}{\text{Re}_g} & \text{if } \text{Re}_g < 40 \\ \frac{16}{\text{Re}_g} & \text{otherwise} \end{vmatrix}$$

$$\Delta P_{\text{cyx}} := \lambda \cdot \left(\frac{Z}{d_9}\right) \cdot \left(\frac{w_r^2 \cdot \rho_g}{2}\right) = 15.3 \cdot \Pi a$$

- сопротивление орошаемого абсорбера (ориентировочно - требуется уточнение зависимости параметра b от Uop):

Плотность орошения (?):

$$\Delta P_{op} := 10^{b_H \cdot \frac{U \cdot \frac{c}{M}}{10}} \cdot \Delta P_{cyx} = 0.14 \cdot \kappa \Pi a$$

Форм-фактор:

$$F_{fact} := w_r \cdot \sqrt{\rho_g} = 0.12 \frac{kg^{0.5}}{m^{0.5} \cdot s}$$

$$\frac{F_{fact}}{\sqrt{\Pi a}} = 0.12$$

$$n := \frac{y_1 - y_2}{\Delta y_{cp}} = 6.399$$

$$H := 0.3 \cdot M \cdot n = 1.92 \cdot M$$

Список источников

1. Основные процессы и аппараты химической технологии: Пособие по проектированию/Под ред. Ю.И. Дытнерского. -М.: Химия, 1983 - 272 с., ил.