Tugas Kecil 2 IF2211 Strategi Algoritma "Mencari Pasangan Titik Terdekat 3D dengan Algoritma Divide and Conquer"

Disusun Oleh:

Bagas Aryo Seto 13521081 Farhan Nabil Suryono 13521114

PROGRAM STUDI TEKNIK INFORMATIKA SEKOLAH TEKNIK ELEKTRO DAN INFORMATIKA INSTITUT TEKNOLOGI BANDUNG

1. Spesifikasi Tugas

Mencari sepasang titik terdekat dengan Algoritma Divide and Conquer sudah dijelaskan di dalam kuliah. Persoalan tersebut dirumuskan untuk titik pada bidang datar (2D). Pada Tucil 2 kali ini Anda diminta mengembangkan algoritma mencari sepasang titik terdekat pada bidang 3D. Misalkan terdapat n buah titik pada ruang 3D. Setiap titik P di dalam ruang dinyatakan dengan koordinat P = (x, y, z). Carilah sepasang titik yang mempunyai jarak terdekat satu sama lain. Jarak dua buah titik $P_1 = (x_1, y_1, z_1)$ dan $P_2 = (x_2, y_2, z_2)$ dihitung dengan rumus Euclidean berikut:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Buatlah program dalam dalam Bahasa C/C++/Java/Python/Golang/Ruby/Perl (pilih salah satu) untuk mencari sepasang titik yang jaraknya terdekat datu sama lain dengan menerapkan algoritma Divide and Conquer untuk penyelesaiannya, dan perbandingannya dengan Algoritma Brute Force.

2. Penjelasan Program

Divide and Conquer adalah salah satu strategi dalam membuat algoritma pemecahan masalah. Divide and Conquer pada intinya adalah dimulai dari proses *divide* yaitu memecah masalah menjadi masalah-masalah yang lebih kecil. Setelah itu, proses *conquer* dilakukan yaitu menyelesaikan masalah-masalah yang telah dipecah. Terakhir, proses *combine* adalah proses dimana masalah-masalah kecil yang telah dipecahkan digabung lagi sehingga didapat solusi dari masalah utama.

Implementasi program yang dibuat penulis berjalan dengan langkah-langkah sebagai berikut:

- 1. Program meminta masukan *user* berupa jumlah titik yang ingin dihasilkan dan jumlah dimensi dari titik tersebut
- 2. Program akan menghasilkan titik-titik unik sesuai permintaan *user* secara acak.
- 3. Program akan menghitung hasil secara *brute force* untuk selanjutnya akan digunakan untuk memeriksa hasil yang didapat melalui *divide and conquer*.
- 4. Setelah brute force, program akan menghitung hasil dengan divide and conquer.
- 5. *Divide and conquer* dimulai dengan melakukan pengurutan berdasarkan absis untuk memudahkan proses *divide*.
- 6. Selanjutnya, program akan memeriksa jumlah titik, bila jumlah titik sudah kurang dari sama dengan 3 maka program akan mengerjakan secara *brute force* sebagai *Base Case*.

- 7. Program akan membagi titik-titik menjadi 2 sisi berdasarkan absis dan memanggil diri secara rekursif dengan titik-titik yang telah terbagi.
- 8. Pada setiap rekursif, program akan menyelesaikan setiap sub-persoalan dan mencari jarak terkecil dari kedua sisi. Hasil jarak terkecil ini lalu dibandingkan dengan 2 titik dari sisi berbeda yang mungkin lebih pendek. Proses ini ditingkatkan efisiensinya dengan mengabaikan kombinasi dimana jarak pada suatu dimensi lebih dari sama dengan jarak terkecil yang sudah didapat.
- 9. Program akan terus menerus melakukan proses *combine* dan akan mengembalikan sepasang titik dan jaraknya.
- 10. Terakhir, program akan meng-output jarak 2 titik terdekat beserta titik-titiknya yang didapat melalui *brute force* dan *divide and conquer*. Selain itu, program juga memiliki opsi untuk melakukan visualisasi bila dimensi yang dipilih adalah 3 dimensi. Program juga akan meng-output durasi perhitungan dan berapa kali fungsi *euclidean distance* dipanggil.

3. Source Code Program

```
main.py
from point import Point
import randomGenerator
import bruteforce
import dnc
import visualization
import sort
import time
import fileReader
def main():
   print()
   print("========"")
   print("
                              Closest Pair Finder
   print("========"")
   # # Input and validation
   # # (BONUS 2) Function Generalization for Multiple Dimensions
   inp = input("\nInput using file? (Y/N): ")
   if inp.lower().find("y") != -1:
       fname = input("Enter complete file path: ")
       try: listOfPoints = fileReader.readFile(fname)
          print("invalid file name or invalid file content!\n")
          return
   else:
       dim = int(input("Enter Point Dimension : "))
       while dim < 2:
          print("Invalid Input! Dimension must be higher than 1.\n")
          dim = int(input("Enter Point Dimension : "))
       num = int(input("Enter Number of Points : "))
       while num < 2:</pre>
          print("Invalid input! There must be more than 1 point.\n")
          num = int(input("Enter Number of Points : "))
       # Generate N random points
       listOfPoints = randomGenerator.generateRandomPoints(num, dim)
```

```
# Sort by x values
    sort.quickSort(listOfPoints, 0, len(listOfPoints) - 1, key=lambda p:
p.getCoordinateValue(0))
    # Reset calculation counter
    bruteforce.euclidCntBF = 0
    dnc.euclidCntDnC = 0
    dnc.euclidCntDnCInBf = 0
    # Get the result using Brute Force Algorithm
   t = time.time()
    bfPairs, bfDist = bruteforce.closestPairBruteForce(listOfPoints)
    bfTime = time.time() - t
    # Get the result using Divide and Conquer Algorithm
   t = time.time()
    dncPairs, dncDist = dnc.closestPair(listOfPoints)
    dncTime = time.time() - t
   # Output result
    # totlen = max(27, max(len(str(dncPairs[0])), len(str(dncPairs[1])))) + 1
    pairPoints = list(set([points for pair in dncPairs for points in pair]))
    maxlen = max([len(str(ppoint)) for ppoint in pairPoints] + [27]) + 1
    pad = min(maxlen, 70)
    print("\n")
                            | {: <{}}| Divide and Conquer".format("Brute Force",</pre>
    print("
pad))
    print("----** pad, "-" * pad, "-" * pad))
   n = len(dncPairs)
    for i in range(n):
       totlen = max(27, max(len(str(dncPairs[i][0])), len(str(dncPairs[i][1])))) +
1
        if totlen == pad:
            print("Pairs {: <{}} | {: <{}}| {}".format(i+1 if n>1 else " ", 12,
str(bfPairs[i][0]), pad, str(dncPairs[i][0])))
                                    {: <{}}| {}".format(str(bfPairs[i][1]),
            print("
pad, str(dncPairs[i][1])))
        else:
            bf1, bf2 = str(bfPairs[i][0]), str(bfPairs[i][1])
            dc1, dc2 = str(dncPairs[i][0]), str(dncPairs[i][1])
```

```
start1, start2, end1, end2 = 0, 0, 0, 0
           while end1 < len(bf1) or end2 < len(dc1):</pre>
               start1, start2 = end1, end2
               end1 = bf1.rfind(',',start1,start1+pad)+1 if len(bf1)-start1 > pad
else len(bf1)
               end2 = dc1.rfind(',',start2,start2+pad)+1 if len(dc1)-start2 > pad
else len(dc1)
               if start1 == 0 and start2 == 0:
                   print("Pairs {: <{}} | {: <{}}| {}".format(i+1 if n>1 else " ",
12, bf1[start1:end1], pad, dc1[start2:end2]))
               else:
                                             | {: <{}}|
                   print("
{}".format(bf1[start1:end1], pad, dc1[start2:end2]))
           start1, start2, end1, end2 = 0, 0, 0, 0
           while end1 < len(bf2) or end2 < len(dc2):</pre>
               start1, start2 = end1, end2
               end1 = bf2.rfind(',',start1,start1+pad)+1 if len(bf2)-start1 > pad
else len(bf2)
               end2 = dc2.rfind(',',start2,start2+pad)+1 if len(dc2)-start2 > pad
else len(dc2)
               print("
                                         {: <{}}| {}".format(bf2[start1:end1],
pad, dc2[start2:end2]))
        print("----** pad, "-" * pad, "-" * pad))
   print("Distance
                            {: <{}}| {}".format(str(bfDist)[:pad - 1], pad,
str(dncDist)[:pad - 1]))
    print("----** * pad, "-" * pad, "-" * pad))
    print("Calculation Amount | {: <{}}| {}".format(str(int(bruteforce.euclidCntBF</pre>
- dnc.euclidCntDnCInBf))[:pad - 1],
                                                  pad, str(int(dnc.euclidCntDnC +
dnc.euclidCntDnCInBf))[:pad - 1]))
    print("----** pad, "-" * pad, "-" * pad))
    print("Time Taken (s) | {: <{}}| {}".format(str(bfTime)[:pad - 1], pad,</pre>
str(dncTime)[:pad - 1]))
   # (BONUS 1) Visualize for 3 Dimensional Input
    if listOfPoints[0].getDimension() == 3:
       vis = input("\nVisualize 3 Dimensional Plane? (Y/N) : ")
        if vis.lower().find("y") != -1:
           visualization.visualize3D(listOfPoints, dncPairs)
   if listOfPoints[0].getDimension() == 2:
       vis = input("\nVisualize 2 Dimensional Plane? (Y/N) : ")
        if vis.lower().find("y") != -1:
           visualization.visualize2D(listOfPoints, dncPairs)
```

```
# Program Utama
if __name__ == "__main__":
    # main()
while True:
    main()
    ex = input("Exit program? (Y/N) : ")
    if ex.lower().find("y") != -1:
        print("\nbye~ (^.^)/")
        break
```

point.py

```
class Point:
    def __init__(self, coordinates):
       # Konstruktor
        self.coordinates = coordinates
        self.dimension = len(coordinates)
   def __repr__(self):
        # Representasi Titik
        s = "("
        for i in range(self.dimension):
            if i != 0: s += ", "
            s += str(self.coordinates[i])
        s += ")"
        return s
   def distanceBetween(self, other):
        # Menghitung Euclidean Distance Antara Titik self dan Titik other
        val = 0
        for i in range(self.dimension):
            val += (self.coordinates[i] - other.coordinates[i]) ** 2
        return val ** 0.5
    def getCoordinates(self):
        return self.coordinates
    def getCoordinateValue(self, index):
```

```
return self.coordinates[index]

def getDimension(self):
   return self.dimension
```

dnc.py

```
import bruteforce
import sort
import randomGenerator
from point import Point
euclidCntDnC = 0
euclidCntDnCInBf = 0
def closestPair(listOfPoints):
   # Euclidean counter
    global euclidCntDnC
    global euclidCntDnCInBf
   n = len(listOfPoints)
   # Base Case
   if n <= 3:
        euclidCntDnCInBf += (n * (n - 1)) / 2
        return bruteforce.closestPairBruteForce(listOfPoints)
    # Recursive Case
    # Get The Dimension
    dim = listOfPoints[0].getDimension()
    sqrtdim = dim ** 0.5
    # Get The Middle Points
   midIndex = n // 2
    # Get Divided Points
    leftPoints = listOfPoints[:midIndex]
    rightPoints = listOfPoints[midIndex:]
    # Get Closest Pair in Both Side
    leftPairs, leftDistance = closestPair(leftPoints)
```

```
rightPairs, rightDistance = closestPair(rightPoints)
   # Get Minimum Distance from Both Closest Pair
   if leftDistance < rightDistance:</pre>
        bestPairs = leftPairs
   elif leftDistance > rightDistance:
        bestPairs = rightPairs
    else:
        bestPairs = leftPairs + rightPairs
   minDist = min(leftDistance, rightDistance)
   # Get the Absis Coordinate of the Center
    centerAbsis = (leftPoints[-1].getCoordinateValue(0) +
rightPoints[0].getCoordinateValue(0)) / 2
    # Filter the Points That Distance to Center Smaller than min_dist
    candidatePoints = []
   for p in listOfPoints:
        if abs(p.getCoordinateValue(0) - centerAbsis) <= minDist:</pre>
            candidatePoints += [p]
    # Sort by y value
    sort.quickSort(candidatePoints, 0, len(candidatePoints)-1, key=lambda p:
p.getCoordinateValue(1))
   # Merging Process
   for i in range(len(candidatePoints) - 1):
        for j in range(i + 1, len(candidatePoints)):
            if candidatePoints[j].getCoordinateValue(1) -
candidatePoints[i].getCoordinateValue(1) > minDist:
                break
            pos = True
            mhtDist = 0
            for k in range(dim):
                mhtDist += abs(candidatePoints[j].getCoordinateValue(k) -
candidatePoints[i].getCoordinateValue(k))
                if mhtDist > minDist * sqrtdim:
                    pos = False
                    break
            if not pos:
                continue
            temp = candidatePoints[i].distanceBetween(candidatePoints[j])
```

randomGenerator.py

```
import random
from point import Point

# Konstanta Maksimal Nilai Koordinat

MAXN = 1000

def generateRandomPoints(num, dimension):
    # Menghasilkan Titik Random Sebanyak num Berdimensi dimension

listPoint = []
    for i in range(num):
        coordinates = []
        for j in range(dimension):
            coordinates += [round(random.uniform(-MAXN, MAXN), 2)]
        listPoint += [Point(coordinates)]

return listPoint
```

```
bruteforce.py
```

```
import randomGenerator
euclidCntBF = 0
```

```
def closestPairBruteForce(listOfPoints):
    global euclidCntBF
    # Menentukan Closest Pair dengan Brute Force
    # Digunakan untuk Uji Coba
    closestDistance = -1
    closestPairs = []
    for i in range(len(listOfPoints) - 1):
        for j in range(i + 1, len(listOfPoints)):
            dist = listOfPoints[i].distanceBetween(listOfPoints[j])
            euclidCntBF += 1
            if closestDistance == -1 or dist < closestDistance:</pre>
                closestDistance = dist
                closestPairs = [[listOfPoints[i], listOfPoints[j]]]
            elif dist == closestDistance:
                closestPairs += [[listOfPoints[i], listOfPoints[j]]]
    return closestPairs, closestDistance
```

visualization.py

```
import matplotlib.pyplot as plt
import randomGenerator
import bruteforce, dnc
from point import Point
import fileReader
def visualize3D(points, pairs):
   n = len(points)
   xAxis = []
   yAxis = []
    zAxis = []
    pairPoints = list(set([points for pair in pairs for points in pair]))
    labeled = [False for i in range(len(pairPoints))]
    for i in range(n):
        if points[i] in pairPoints: continue
        xAxis.append(points[i].coordinates[0])
        yAxis.append(points[i].coordinates[1])
```

```
zAxis.append(points[i].coordinates[2])
    fig = plt.figure()
    ax = plt.axes(projection='3d')
    ax.set title("3D VISUALIZATION")
    ax.scatter3D(xAxis, yAxis, zAxis, c="Blue", depthshade=False)
    p = len(pairs)
    for i in range(p):
        pair1 = pairs[i][0].getCoordinates()
        pair2 = pairs[i][1].getCoordinates()
        ax.scatter3D(pair1[0], pair1[1], pair1[2], c="Red")
        ax.scatter3D(pair2[0], pair2[1], pair2[2], c="Red")
        ax.plot((pair1[0], pair2[0]), (pair1[1], pair2[1]), (pair1[2], pair2[2]),
c="Red")
        if pair1[2] < pair2[2]: va1="top"; va2="bottom"</pre>
        else : va1="bottom"; va2="top"
        if not labeled[pairPoints.index(pairs[i][0])]:
            ax.text(pair1[0], pair1[1], pair1[2], "(%.1f,%.1f,%.1f)" % (pair1[0],
pair1[1], pair1[2]), size='small', va=va1, ha='center')
            labeled[pairPoints.index(pairs[i][0])] = True
        if not labeled[pairPoints.index(pairs[i][1])]:
            ax.text(pair2[0], pair2[1], pair2[2], "(%.1f,%.1f,%.1f)" % (pair2[0],
pair2[1], pair2[2]), size='small', va=va2, ha='center')
            labeled[pairPoints.index(pairs[i][1])] = True
    ax.set_xlabel('X-Axis')
    ax.set ylabel('Y-Axis')
    ax.set_zlabel('Z-Axis')
    plt.show()
def visualize2D(points, pairs):
   n = len(points)
   xAxis = []
   yAxis = []
    pairPoints = list(set([points for pair in pairs for points in pair]))
    labeled = [False for i in range(len(pairPoints))]
```

```
for i in range(n):
        if points[i] in pairPoints: continue
        xAxis.append(points[i].coordinates[0])
        yAxis.append(points[i].coordinates[1])
    fig = plt.figure()
    ax = plt.axes()
    ax.set_title("2D VISUALIZATION")
    ax.scatter(xAxis, yAxis, c="Blue")
    p = len(pairs)
    for i in range(p):
        pair1 = pairs[i][0].getCoordinates()
        pair2 = pairs[i][1].getCoordinates()
        ax.scatter(pair1[0], pair1[1], c="Red")
        ax.scatter(pair2[0], pair2[1], c="Red")
        ax.plot((pair1[0], pair2[0]), (pair1[1], pair2[1]), c="Red")
        if pair1[1] > pair2[1]: va1="top"; va2="bottom"
        else : va1="bottom"; va2="top"
        if not labeled[pairPoints.index(pairs[i][0])]:
            ax.text(pair1[0], pair1[1], "(%.1f,%.1f)" % (pair1[0], pair1[1]),
size='small', va=va1, ha='center')
            labeled[pairPoints.index(pairs[i][0])] = True
        if not labeled[pairPoints.index(pairs[i][1])]:
            ax.text(pair2[0], pair2[1], "(%.1f,%.1f)" % (pair2[0], pair2[1]),
size='small', va=va2, ha='center')
            labeled[pairPoints.index(pairs[i][1])] = True
    ax.set xlabel('X-Axis')
    ax.set_ylabel('Y-Axis')
    plt.grid()
    plt.show()
```

```
sort.py
def partition(array, low, high, key):
```

```
# choose the rightmost element as pivot
    pivot = array[high]
    # pointer for greater element
    i = low - 1
    # compare each element with pivot
    for j in range(low, high):
        if key(array[j]) <= key(pivot):</pre>
            i += 1
            array[i], array[j] = array[j], array[i]
    # Swap the pivot element with the greater element specified by i
    array[i + 1], array[high] = array[high], array[i + 1]
    # Return the position from where partition is done
    return i + 1
def quickSort(array, low, high, key=lambda x: x):
    if low < high:
        pi = partition(array, low, high, key)
        quickSort(array, low, pi - 1, key)
        quickSort(array, pi + 1, high, key)
```

fileReader.py

```
from point import Point

def readFile(fileName):
    f = open(fileName.encode('unicode_escape')
        .decode().replace("\"", ""), 'r')
    raw = f.readlines()

for i in range(len(raw)):
    raw[i] = raw[i][:-1]

dim = int(raw[0])
    num = int(raw[1])

listOfPoints = []
    for i in range(num):
        p = [float(c) for c in raw[i + 2].split()]
```

```
listOfPoints += [Point(p)]
f.close()
return listOfPoints
```

4. Screenshot Contoh I/O

Testcase 1

(dimensi: 3, n: 16, tanpa visualisasi)

```
Closest Pair Finder

Input using file? (Y/N): N
Enter Point Dimension : 3
Enter Number of Points : 16

| Brute Force | Divide and Conquer

Pairs | (-378.34, -461.64, -339.87) | (-378.34, -461.64, -339.87) | (-179.96, -260.09, -447.68)

Distance | 302.65495700549826 | 302.65495700549826

Calculation Amount | 120 | 19

Time Taken (s) | 0.0 | 0.0

Visualize 3 Dimensional Plane? (Y/N) : N
```

• Testcase 2

(dimensi: 3, n: 64, tanpa visualisasi)

```
Closest Pair Finder
Input using file? (Y/N): N
Enter Point Dimension : 3
Enter Number of Points : 64
                | Brute Force
                                          | Divide and Conquer
                  (478.13, -273.67, -51.15)
                                          (478.13, -273.67, -51.15)
Pairs
                                          (480.22, -384.07, 30.94)
                  (480.22, -384.07, 30.94)
                137.59104694710334
                                          137.59104694710334
Calculation Amount | 2016
Time Taken (s)
                0.002542734146118164
                                          0.0010406970977783203
Visualize 3 Dimensional Plane? (Y/N) : N
```

• Testcase 3

(dimensi: 3, n: 128, tanpa visualisasi)

```
Closest Pair Finder
Input using file? (Y/N): N
Enter Point Dimension : 3
Enter Number of Points : 128
                  | Brute Force
                                                Divide and Conquer
Pairs
                    (-6.45, -533.99, 728.4)
                                                (-6.45, -533.99, 728.4)
                  (75.87, -464.14, 748.31)
                                                | (75.87, -464.14, 748.31)
            109.78166058135577
                                                109.78166058135577
Calculation Amount | 8128
                                                173
Time Taken (s) | 0.010082483291625977
                                              0.0019991397857666016
Visualize 3 Dimensional Plane? (Y/N) : N
```

• Testcase 4 (dimensi: 3, n: 1000, tanpa visualisasi)

• Testcase 5 (dimensi: 3, n: 16, dengan visualisasi)

Closest Pair Finder					
Input using file? (Y/N): N Enter Point Dimension : 3 Enter Number of Points : 16					
	Brute Force	Divide and Conquer			
Pairs	(-898.28, -644.93, -537.05) (-608.51, -686.29, -480.34)				
Distance	298.14983917486853	298.14983917486853			
Calculation Amount	120	22			
Time Taken (s)	0.0	0.0			
Visualize 3 Dimensional Plane? (Y/N) : Y					

3D VISUALIZATION

• Testcase 6 (dimensi: 3, n: 1000, dengan visualisasi)

Closest Pair Finder					
Input using file? (Y/N): N Enter Point Dimension : 3 Enter Number of Points : 1000					
	Brute Force	Divide and Conquer			
Pairs	(-497.87, -882.17, -737.74) (-493.27, -875.51, -747.07)	,			
Distance	12.351700287814651	12.351700287814651			
Calculation Amount	499500	1435			
Time Taken (s)	0.6227293014526367	0.021184921264648438			
Visualize 3 Dimensional Plane? (Y/N) : Y					

3D VISUALIZATION

• Testcase 8

(dimensi: 100, *n*: 100)

=======================================	Closest Pair Finder	
Input using file? (\ Enter Point Dimension Enter Number of Poir	on : 100	Divide and Conquer
Pairs	(-89.36, -309.41, -24.35, -36.64, -818.2, 437.98, -437.95, -535.01, -386.62, 707.9, -966.77, 84.29, -717.76, 496.77, 104.33, -595.59, 521.84, 166.92, -739.34, -571.14, 506.1, -378.4, 803.85, -483.3, 596.03, -855.01, 55.47, -423.6, -757.32, -837.9, -51.48, -155.45, 934.32, 496.6, 6.57, -732.59, -581.35, -806.97, -229.11, -576.76, -939.58, -208.0, 505.49, 24.37, 340.35, -540.58, -330.29, -828.48, 705.77, 699.92, 635.8, -19.01, -846.19, -206.93, -516.33, 871.27, 190.03, 332.9, -454.67, -244.69, -288.99, 796.16, 23.76, 897.0, 768.32, -710.3, 174.67, -257.08, 295.98, -913.27, -635.95, 460.16, -779.08, 486.42, 674.22, 302.49, -671.22, -771.88, 445.42, 784.05, -897.72, 747.07, -980.14, -901.95, -780.67, 303.81, 212.47, 280.2, -838.66, -256.04, -905.05, 369.2, 797.84, -595.04, 214.87, -237.63, -124.77, -26.8, -455.01, 802.99) (-68.43, -480.1, 170.53, 311.1, -524.15, -697.22, -389.59, 194.43, -909.4, 282.93, 187.51, 217.4, -287.92, -147.44, -461.73, 34.9, 277.26, 904.44, -233.3, -391.31, 11.59, 700.13, -314.15, 26.27, 799.69, -926.39, -515.35, -224.65, -73.0, -587.67, -887.54, 102.67, 729.67, -761.86, 680.55, -943.48, -809.0, 628.29, -458.5, -323.23, -958.59, -476.27, 511.21, 304.57, -790.46, 771.66, 523.51, 524.79, 191.42, 726.36, 554.66, 394.01, -350.92, 28.34, -835.88, 31.73, -444.33, 716.47, -734.78, 556.37, -346.77, -557.06, 122.39, 971.67, 925.63, 557.27, 443.85, 96.42, 85.95, -648.23, -36.13, 991.26, -207.99, 104.67, -394.35, 489.73, 470.17, -677.96, 525.31, 524.79, -207.99, 104.67, -394.35, 489.73, 470.17, -677.95, -664.25, -281.9, 267.95, 482.7, -299.84, -866.23, -750.16, 546.78, 499.33, 517.85, -498.21, 56.46, 407.19)	(-68.43, -480.1, 170.53, 311.1, -524.15, -697.22, -389.59, 194.43, -909.4, 282.93, 187.51, 217.4, -287.92, -147.44, -461.73, 34.9, 277.26, 904.44, -233.3, -391.31, 11.59, 700.13, -314.15, 26.27, 579.86, -926.39, -515.35, -224.65, -73.0, -587.67, -887.54, 102.67, 729.67, -761.86, 680.55, -943.48, -809.0, 628.29, -458.5, -323.23, -958.59, -476.27, 511.21, 304.57, -790.46, 771.66, 523.51, 524.79, 191.42, 726.36, 554.86, 394.01, -350.92, 28.34, -835.88, 31.73, -444.33, 716.47, -734.78, 556.37, -346.77, -557.06, 122.39, 971.67, 925.63, 597.27, 443.85, 96.42, 85.95, -648.23, -361.3, 991.26, -267.99, 104.67, -394.35, 489.73, 470.17, -617.05, -604.25, -281.9, 267.95, 482.7, -299.84, -866.23, -750.16, 546.78, 499.33, 517.85, -428.87, 378.91, -440.79, -235.65, 107.57, -656.18, -100.52, 485.97, -900.91, -452.31, 56.46, 407.19) (-89.36, -309.41, -24.35, -36.4, -618.2, 437.98, -437.95, -535.01, -386.62, 707.9, -966.77, 84.29, -717.76, 496.77, 104.33, -595.59, 521.84, 166.92, -739.34, -571.14, 506.1, -378.4, 803.85, -483.3, 690.83, -855.01, 55.47, -423.6, -757.32, -387.9, -71.48, -33.3, -438.3, -439.32, -439.92, -535.81, -19.92, 635.81, -19.18, -19.86, -19.92, 635.81, -19.11, -866.19, -206.93, -516.33, 871.27, 190.83, 32.9, -454.67, -244.69, -288.99, -96.16, 23.76, 897.0, -838.66, -256.04, -980.41, -94.67, -278.89, -99.92, 635.81, -19.11, -846.19, -206.93, -516.33, 871.27, 190.83, 32.9, -454.67, -244.69, -288.99, -96.16, 23.76, 897.0, -838.66, -256.04, -906.95, -780.67, 303.81, 212.47, 784.65, -838.66, -256.04, -906.95, -780.67, 303.81, 212.47, 280.2, -838.66, -256.04, -906.95, -780.67, 303.81, 212.47, 280.2, -838.66, -256.04, -906.95, -90.80, -90.80, -90.90, -90.
Distance	6236.466438625321	6236.466438625321
Calculation Amount	4950	2916
Time Taken (s)	0.10713577270507812	0.3458402156829834

Testcase 9 : Input dari File yaitu file testInput1.txt pada folder test (dengan visualisasi)

```
Input using file? (Y/N): Y
Enter complete file path: "D:\FARHAN\Kuliah\Semester 4\Stima\Tugas\Tucil2_13521081_13521114\test\testInput1.txt"
                               (1.0, 2.0, 2.0)
(2.0, 2.0, 2.0)
                                                                             (2.0, 2.0, 2.0)
(2.0, 2.0, 1.0)
                               (2.0, 3.0, 2.0)
(2.0, 2.0, 2.0)
                                                                             (2.0, 2.0, 2.0)
(2.0, 1.0, 2.0)
 Pairs 2
                               (2.0, 2.0, 3.0)
(2.0, 2.0, 2.0)
                                                                             (3.0, 2.0, 2.0)
(2.0, 2.0, 2.0)
                               (2.0, 2.0, 2.0)
(2.0, 2.0, 1.0)
                                                                             (2.0, 2.0, 3.0)
(2.0, 2.0, 2.0)
 Pairs 4
                               (2.0, 2.0, 2.0)
(2.0, 1.0, 2.0)
                                                                             (2.0, 2.0, 2.0)
(1.0, 2.0, 2.0)
 Pairs 6
                               (2.0, 2.0, 2.0)
(3.0, 2.0, 2.0)
                                                                             (2.0, 2.0, 2.0)
(2.0, 3.0, 2.0)
Distance
                             1.0
                                                                           0.001003265380859375
Visualize 3 Dimensional Plane? (Y/N) : Y
```

3D VISUALIZATION

5. Lampiran

Link Repository Implementasi Program: https://github.com/Altair1618/Tucil2_13521081_13521114

6. Tabel Checklist

Poin	Ya	Tidak
1. Program berhasil dikompilasi tanpa kesalahan	✓	
2. Program berhasil <i>running</i>	✓	
3. Program dapat menerima masukan dan menuliskan luaran	✓	
4. Luaran program sudah benar (solusi <i>closest pair</i> benar)	✓	
5. Bonus 1 dikerjakan	✓	
6. Bonus 2 dikerjakan	1	