Rn: Natl. metric. But consider: Close in R3, not in S intrinsic geometry a priori not captured by cumbient Fuclidean metric well.
Motivating questions: what properties are intrinsic vs extrinsic? R" nath metric. But consider: close in R3, not in S intrinsic geometry a priori not captured by ambient Euclidean metric well.
Rn: Natl. metric. But consider: Close in R3, not in S intrinsic geometry a priori not captured by cumbient Fuclidean metric well.
close in R3, not in S intrinsic geometry a priori not captured by cambient Fuclidean metric well. ToS
mointrinsic geometry a priori not captured by ambient Euclidean metric well.
mointrinsic geometry a priori not captured by ambient Euclidean metric well.
When product.
Inner product: presents a solution. P Eucl. IP § restricts IP on each TpS, peS (infinitesimal length measurement).
This allows us to measure len of C1-paths C: I - S by measure he velocity.
Consider the set of all possible paths, consider the
Measure dist, L, volume, etc. Questr: 3? shortest paths? ~ Ds ~ volume of balls?
Key observation: (Rie, GB) local geometry is to a
large extent determined by a privise defined

Section of TL, ie. a (smooth) map X: M→TM s.t. Tlo X = idm.
Det: A (Ck-) Riemannian metric g on M is a trainily $g = igp j_{pem}$ of inner products (pos. det. symmetric bilinear)
gp: TpM * TpM → K
s.t. for any smooth vector fields X, Y on M, the fct
f: M→R, p→ gp(Xp, Yp)
is smooth (Ck-differentiable). The pair (M,g) := (Ck-) Riem. mt.
Bemarks: a) Given a Co-atlas of M, then a furnity
of inner products $g = \{g_p\}_{p \in M}$ is a (C^k) Rie Met itt for any chart (U, x) in this atlas the fct
$U \to \mathbb{R}$, $p \mapsto g_p\left(\frac{\partial}{\partial x_i} _{p_i}, \frac{\partial}{\partial x_k} _{p_i}\right)$
is smooth. ~> exercise class.
b) An open subset U inside a (C-) Riem mt (M, g) then (U, glu) is also a (C-) Riem mt, where
glu:= lgp]peu.
A: atlus of M
$A \mid_{u} = \{(U \cap V, X \mid_{u}) \mid (V, X) \in A\}$
is an atlas of U.
c) We sometimes write (;) instead of g
(resp (·,·), instead of g.).
d) Sometimes, also indetinite families of inner products are
considered so-called semi-Riem metrics/mts. Pa in the
theory of relativity where you have Lorentzian metrs.
considera, so-called semi-Riem metrics/mts, eg in the theory of relativity where you have Lorentzian metrs, i.e. semi-Riem. metrics of signature (1, n) like the Lorentzian metrics of signature (1, n) like the
Lorentzian metric n
Lorentzian metric n x ₀ y ₀ - ∑ x ₁ y ₁ on R ⁿ⁺¹ .
C:1

Any open subset U of a Eucl. VS (V, <., ·) is a RMF with Rm gp = <., ·>p, p ∈ U.
Prop: Let M a smooth mf, (N,h) a Riem mt, 4:M→N a smooth (Ch-1-)immersion. Then (N,h) induces a Riem metric g on M via
g, (v,w) = hup) (dupo, dupo); pEM; v,w ETPM
This Riemannian metric is called the pullback of h Via 4, denoted 4th. The immersion $\psi: (M,g) \longrightarrow (N,h)$ is called a Riemannian immersion
Proof: Since dep: TpM -> TypN is linear : injective, YpEM, gp is bilinear and pos. det. (as hyp) is).
Symmetry of hy(p) => symm. of gp ~> gp an IP.
Smoothness. Let's first assume that 4 is a (local) difter. Then a smooth vector field X on M induces a smooth vfield on N, namely
$(\varphi^*\chi): q \mapsto d\varphi_{\varphi^{-1}(q)} \chi_{\varphi^{-1}(q)}$
and we have that
$P \mapsto \mathcal{Q}_{P}(X_{P}, Y_{P}) : h_{P}((Y^{*}X)_{\varphi(P)}, (Q^{*}Y)_{\varphi(P)})$
$= ((h. ((\psi^*X)., (\varphi^*Y).) \circ \varphi)(p) $
For the general case, one can (now) apply the local structure for immersions and assume that
M=U=R" open, N=V=R"+" open,

