SALARY PREDICTION of data professions

PROBLEM STATEMENT

- Highlight the variability in salaries based on experience, job role, and performance.
- Importance of accurate salary predictions for job seekers and employers.

Step 1: Exploratory Data Analysis (EDA)

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
#to ignore warnings
import warnings
warnings.filterwarnings('ignore')
```

```
file_path = '/content/Salary Prediction of Data Professions.csv'
# Read the CSV file into a pandas DataFrame
df = pd.read_csv(file_path)
```

Import Python Libraries

Read CSV file

Step 1: Exploratory Data Analysis (EDA)

Shape

Summary _ Statistics.

df.shape (2639, 13)

df.info()

<pre><class 'pandas.core.frame.dataframe'=""> RangeIndex: 2639 entries, 0 to 2638</class></pre>					
Data	columns (total 13	,			
#	Column	Non-Null Count	Dtype		
0	FIRST NAME	2639 non-null	object		
1	LAST NAME	2637 non-null	object		
2	SEX	2639 non-null	object		
3	DOJ	2638 non-null	object		
4	CURRENT DATE	2639 non-null	object		
5	DESIGNATION	2639 non-null	object		
6	AGE	2636 non-null	float64		
7	SALARY	2639 non-null	int64		
8	UNIT	2639 non-null	object		
9	LEAVES USED	2636 non-null	float64		
10	LEAVES REMAINING	2637 non-null	float64		
11	RATINGS	2637 non-null	float64		
12	PAST EXP	2639 non-null	int64		

df.describe()

		AGE	SALARY	LEAVES USED	LEAVES REMAINING	RATINGS	PAST EXP
•	count	2636.000000	2639.000000	2636.000000	2637.000000	2637.000000	2639.000000
	mean	24.756449	58136.678287	22.501517	7.503223	3.486159	1.566881
	std	3.908228	36876.956944	4.604469	4.603193	1.114933	2.728416
	min	21.000000	40001.000000	15.000000	0.000000	2.000000	0.000000
	25%	22.000000	43418.000000	19.000000	4.000000	2.000000	0.000000
	50%	24.000000	46781.000000	22.000000	8.000000	3.000000	1.000000
	75%	25.000000	51401.500000	26.000000	11.000000	4.000000	2.000000
	max	45.000000	388112.000000	30.000000	15.000000	5.000000	23.000000

Step 2: Data Visualization

Sex Distribution

BAR CHART SHOWING SEX DISTRIBUTION

```
colors = {'M': 'blue', 'F': 'pink'}
# Create the bar plot
ax = sns.countplot(data=df, x='SEX', palette=colors)
ax.set_title('Sex Distribution')
for bars in ax.containers:
    ax.bar label(bars)
                                 Sex Distribution
    1400
                        1344
                                                        1295
    1200
    1000
     800
 count
     600
     400
     200
                                                          Μ
                                         SEX
```

BAR CHART SHOWING SEX VS SALARY

```
colors = {'M': 'blue', 'F': 'pink'}
salary_gen = df.groupby(['SEX'], as_index=False)['SALARY'].sum().
sort_values(by='SALARY', ascending=False)
sns.barplot(x = 'SEX',y= 'SALARY' ,data = salary_gen, palette = colors).
set_title('Sex vs Salary')
Text(0.5, 1.0, 'Sex vs Salary')
                               Sex vs Salary
      1e7
   8
   7 -
   6
   3
   2
                                     SEX
```


Step 2: Data Visualization

Designation Distribution

DESIGNATION DISTRIBUTION BY SEX

colors = {'M': 'blue', 'F': 'pink'} ax = sns.countplot(data = df, x = 'DESIGNATION', hue = 'SEX',palette = colors) ax.set_title('Designation Distribution') for bars in ax.containers: ax.bar label(bars) **Designation Distribution** 996 1000 SEX 953 800 600 count 400 176 180 200 77 82 35 27 AssociateSenior Analyenior ManagerManager Director DESIGNATION

SALARY VS DESIGNATION

```
# Salary vs Designation
salary_desg = df.groupby(['DESIGNATION'], as_index=False)['SALARY'].sum()
sort_values(by='SALARY', ascending=False)
sns.barplot(x = 'DESIGNATION',y= 'SALARY' ,data = salary_desg)
<Axes: xlabel='DESIGNATION', ylabel='SALARY'>
      1e7
    8
 SALARY
    2
        Analyst Senior AnalystAssociat&enior ManagerManager
                                                               Director
                                 DESIGNATION
```


Step 2: Data Visualization

Unit Distribution

UNIT DISTRIBUTION

RATINGS DISTRIBUTION

Step 3: Data Preprocessing

Missing Values Calculation

```
df.isnull().sum()
```

FIRST NAME

LAST NAME

SEX

DOJ

CURRENT DATE

DESIGNATION

AGE

SALARY

UNIT

LEAVES USED

LEAVES REMAINING

RATINGS

PAST EXP

dtype: int64

```
Hndling Missing Values

[ ] df.drop(columns=['LAST NAME'], inplace=True)

[ ] df['DOJ'].fillna(df['DOJ'].mode()[0], inplace=True)

[ ] df['AGE'].fillna(df['AGE'].median(), inplace=True)

[ ] df['LEAVES USED'].fillna(30-df['LEAVES REMAINING'], inplace=True)

[ ] df['LEAVES REMAINING'].fillna(30-df['LEAVES USED'], inplace=True)
```

df['RATINGS'].fillna(df['RATINGS'].median(), inplace=True)

```
# Confirm no missing values remain
print("\nMissing Values After Imputation:")
print(df.isnull().sum())

Missing Values After Imputation:
FIRST NAME 0
SEX 0
DOJ 0
CURRENT DATE 0
DESIGNATION 0
AGE 0
SALARY 0
UNIT 0
LEAVES USED 0
LEAVES REMAINING 0
RATINGS 0
```

Filling Null Values in LAST NAME, DOJ, AGE, LEAVES USED, LEAVES REMAINING, RATINGS

PAST EXP

dtype: int64

Step 3: Data Preprocessing

Step1: Encode Categorical Variables

```
print(df['UNIT'].unique())
print(df['DESIGNATION'].unique())
print(df['SEX'].unique())
# One-Hot Encoding without dropping the first category
df = pd.get dummies(df, columns=['SEX', 'DESIGNATION', 'UNIT'], drop first=False
# Display the resulting DataFrame
print(df.head())
['Finance' 'Web' 'IT' 'Operations' 'Marketing' 'Management']
['Analyst' 'Associate' 'Senior Analyst' 'Senior Manager' 'Manager'
 'Director']
['F' 'M']
  FIRST NAME
                    DOJ CURRENT DATE
                                       AGE SALARY LEAVES USED \
      TOMASA
              5-18-2014
                                             44570
                                                           24.0
                          01-07-2016
       ANNIE 10-19-2013
                          01-07-2016
                                      24.0
                                             89207
                                                           17.0
                                             40955
                                                           23.0
             7-28-2014
                          01-07-2016
      CHERRY 04-03-2013
                          01-07-2016
                                      22.0
                                             45550
                                                           22.0
                                                           27.0
       LEON 11-20-2014
                          01-07-2016 24.0
                                             43161
   LEAVES REMAINING RATINGS PAST EXP SEX F ... DESIGNATION Director
               6.0
              13.0
               7.0
               8.0
                        3.0
               3.0
                       DESIGNATION Senior Analyst \
   DESIGNATION Manager
```

One-Hot Encoding: Convert categorical variables into one-hot encoding to simplify processing.

Step 4: Model Development & Evaluation

Train various regression models: Linear Regression, Decision Trees, Random Forests, Gradient Boosting and Evaluate using Metrics

```
from sklearn.model selection import train test split
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from sklearn.preprocessing import StandardScaler
df.drop(columns=['FIRST NAME','DOJ','CURRENT DATE'], inplace=True)
# Features and target variable
X = df.drop(columns=['SALARY'])
y = df['SALARY']
# Split data into training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

Step 4: Model Development & Evaluation LINEAR REGRESSION

```
# Linear Regression Model
linear_reg = LinearRegression()
linear_reg.fit(X_train, y_train)
y_pred_lr = linear_reg.predict(X_test)

# Model Evaluation
print("Linear Regression:")
print(f"RMSE: {np.sqrt(mean_squared_error(y_test, y_pred_lr))}")
print(f"MAE: {mean_absolute_error(y_test, y_pred_lr)}")
print(f"R-squared: {r2_score(y_test, y_pred_lr)}")
```

Linear Regression:

RMSE: 9787.762726268194

MAE: 4636.401683800093

Step 4: Model Development & Evaluation DECISION TREE

```
# Decision Tree Model
dt_reg = DecisionTreeRegressor()
dt_reg.fit(X_train, y_train)
y_pred_dt = dt_reg.predict(X_test)

# Model Evaluation
print("\nDecision Tree:")
print(f"RMSE: {np.sqrt(mean_squared_error(y_test, y_pred_dt))}")
print(f"MAE: {mean_absolute_error(y_test, y_pred_dt)}")
print(f"R-squared: {r2_score(y_test, y_pred_dt)}")
```

Decision Tree:

RMSE: 12174.388340461179

MAE: 5442.899621212121

Step 4: Model Development & Evaluation RANDOM FOREST

```
# Random Forest Model
rf_reg = RandomForestRegressor()
rf_reg.fit(X_train, y_train)
y_pred_rf = rf_reg.predict(X_test)

# Model Evaluation
print("\nRandom Forest:")
print(f"RMSE: {np.sqrt(mean_squared_error(y_test, y_pred_rf))}")
print(f"MAE: {mean_absolute_error(y_test, y_pred_rf)}")
print(f"R-squared: {r2_score(y_test, y_pred_rf)}")
```

Random Forest:

RMSE: 10545.036499927288

MAE: 4717.079515038781

Step 4: Model Development & Evaluation GRADIENT BOOSTING

```
# Gradient Boosting Model
gb_reg = GradientBoostingRegressor()
gb_reg.fit(X_train, y_train)
y_pred_gb = gb_reg.predict(X_test)

# Model Evaluation
print("\nGradient Boosting:")
print(f"RMSE: {np.sqrt(mean_squared_error(y_te_Loading..._gb))}")
print(f"MAE: {mean_absolute_error(y_test, y_pred_gb)}")
print(f"R-squared: {r2_score(y_test, y_pred_gb)}")
```

Gradient Boosting:

RMSE: 11720.98800070862

MAE: 4792.66656544245

Step 5: Model SELECTION MODEL PERFORMANCE:

MODEL	RMSE	MAE	R-SQUARED
Linear Regression	9787.76	4636.4	0.942
Decision Tree Regressor	12174.38	5442.89	0.91
Random Forest Regressor	10545.03	4717.07	0.933
Gradient Boosting	11720.98	4792.66	0.917

Step 5: Model SELECTION

SELECTED MODEL: LINEAR REGRESSION

REASON:

This model was selected based on its superior performance across the evaluation metrics. Specifically, it achieved the lowest RMSE and MAE, along with the highest R-squared value (0.942), indicating both accuracy and reliability in predictions.

Step 6: Model Saving and Feature Importance

```
import pickle
with open('linear_regression_model.pkl', 'wb') as file:
      pickle.dump(linear reg, file)
# Linear Regression Model
linear_reg = LinearRegression()
linear reg.fit(X train, y train)
# Get coefficients
coefficients = linear_reg.coef_
# Create a DataFrame to display coefficients
coefficients_df = pd.DataFrame(coefficients, index=X.columns, columns=['Coefficient'])
coefficients_df = coefficients_df.sort_values(by='Coefficient', ascending=False)
# Display the coefficients
print("Coefficients:")
print(coefficients df)
# Plot coefficients
plt.figure(figsize=(12, 8))
sns.barplot(x=coefficients_df['Coefficient'], y=coefficients_df.index)
plt.xlabel('Coefficient')
plt.ylabel('Feature')
plt.title('Feature Coefficients')
```

plt.show()

Feature Importance

Step 6: Model Saving and Feature Importance

Coefficients:	
	Coefficient
DESIGNATION_Director	153314.565871
DESIGNATION_Senior Manager	47499.545994
UNIT_Finance	393.751858
UNIT_Marketing	336.450964
AGE	253.401240
UNIT_Operations	162.480550
SEX_F	135.424512
LEAVES REMAINING	12.780092
RATINGS	-6.245792
LEAVES USED	-12.780092
PAST EXP	-106.741197
UNIT_Management	-111.599899
SEX_M	-135.424512
UNIT_Web	-209.747110
UNIT_IT	-571.336362
DESIGNATION_Manager	-4567.305057
DESIGNATION_Associate	-43325.846738
DESIGNATION_Senior Analyst	-69492.365462
DESIGNATION_Analyst	-83428.594608

Step 7: Model Deployment

	Salary Prediction	
Age:		
24		
Leaves Used:		
10		
Leaves Remaining:		
20		
Ratings:		
5		
Past Experience:		
2		
Sex:		
Male		~
Designation:		
Associate		~
Unit:		
Management		~
	Predict Salary	
	Predicted Salary: \$85,320.20	

CONCLUSION

The Linear Regression model emerged as the best performer among the models evaluated, exhibiting the lowest RMSE and MAE, and the highest R-squared value. This indicates its superior accuracy and ability to explain variance in salary data. Features like age, past experience, and job role were found to be significant predictors of salary. Moving forward, continuous monitoring and potential feature engineering could further enhance the model's performance.

THANK YOU

- **SONAL SONARGHARE**
- sonalsonarghare30@gmail.com
- **A.P SHAH INSTITUTE OF TECHNOLOGY**

