Dong He

donghe@cs.washington.edu | dongheuw.github.io | linkedin.com/in/dongheuw | +1 (206) 295-6340

Education

University of Washington

Sep 2019 – Jun 2024 (expected)

PhD in Computer Science, advised by Prof. Magdalena Balazinska

Seattle, WA

• Research Area: Data Management Systems and Machine Learning.

Fudan University

Sep 2015 - Jul 2019

BSc in Computer Science (Honors)

Shanghai

Work Experience

Snowflake

Jun 2023 - Sep 2023

Software Engineer Intern, Machine Learning Platform Team

Bellevue, WA

• Created Snowflake's Distributed Model Trainer: Spearheaded the design and implementation (in Python) of the first distributed PyTorch training solution within Snowflake. My work automates the model training process and crafts a user-friendly interface that hides underlying complexities, empowering users to train models with their data inside Snowflake effortlessly.

<u>Microsoft</u> Jun 2021 – Sep 2021

Research Intern, Microsoft Jim Gray Systems Lab led by Prof. Raghu Ramakrishnan

Remote

- Pioneered Tensor Query Processor (TQP): Led the design and implementation (in Python & C++) of the world's first query processor that compiles SQL queries into PyTorch programs and executes them on various hardware (CPUs, GPUs, TPUs, etc.).
- Full Benchmark Support & Enhanced Performance: Enabled full TPC-H benchmark support with TQP (until 2021 no GPU database was able to support full TPC-H benchmark), improving query execution time by 10x over specialized CPU and GPU systems (DuckDB, HeavyDB, ...) and providing acceleration for a 9x speedup for queries involving ML inference.
- Recognized Excellence: First-authored a VLDB paper on TQP and won the Best Demo Award at VLDB 2022.

Goldman Sachs

Jul 2018 – Sep 2018

Summer Analyst, Engineering Division

Hong Kong

- Global Engineering Challenge Champion: Clinched the Global Winner title in the Intern Engineering Challenge.
- Revamped Critical Financial Process: Redesigned and re-implemented the logic (in Java) for the true-up job reconciling estimated vs. actual profit and loss (PnL). Deployed enhancements led to 50% reduction in memory usage, significantly minimizing the risk of job failure.

Tencent Jan 2018 – Feb 2018

Research Intern, YouTu X-Lab led by Prof. Jiaya Jia and Prof. Yu-Wing Tai

Shenzhen

- Optimized Neural Network Inference Efficiency: Analyzed node liveness and dependencies (in C++) in production-level deep neural networks, achieving up to 30% reduction in memory consumption through memory sharing.
- Enhanced Data Collection and Annotation Process: Created tools (in Python) for gathering and annotating large-scale image data, streamlining the training process for image classification models.

Selected Awards

 Madrona Prize, Madrona Venture & UW CSE [GeekWire] [BusinessWire] 	2022
• Best Demo Award, 48th International Conference on Very Large Databases (VLDB)	2022
Paul G. Allen Fellowship, University of Washington	2019 - 2020
Wangdao Scholar, Undergraduate Research Opportunities Program, Fudan University	2018
Silver Medal, ACM International Collegiate Programming Contest (ACM-ICPC), Asia Regional	2015 - 2016
Silver Medal, National Olympiad in Informatics (NOI), China National Finals	2014
• First Prizes, National Olympiad in Informatics in Provinces (NOIP), Guangdong Division	2009 - 2014

Selected Projects

MaskSearch: Querying Image Masks at Scale

Jul 2022 – present

Project owner & leader

UW

- **Developed MaskSearch**: Led the design and implementation (in Python) of a system that accelerates image retrieval queries based on mask annotations, which is essential for numerous applications such as identifying spurious correlations learned by ML models and detecting maliciously manipulated images.
- Implemented Innovative Techniques: Created a novel indexing technique and an efficient filter-verification query execution framework to streamline queries on mask properties.

• Achieved Outstanding Results: Accelerated individual queries by up to two orders of magnitude, using indexes only 5% the size of the original data, and consistently outperformed existing methods in various multi-query workloads.

Query Processing on Tensor Computation Runtimes

Jun 2021 – Jun 2022

Project owner & leader

Microsoft, UW

- Pioneered Tensor Query Processor (TQP): Led the design and implementation (in Python & C++) of the industry's first query processor operating on PyTorch, transforming SQL queries into tensor programs.
- Full TPC-H Support & Hardware Adaptability: enabled TQP to support the full TPC-H benchmark on various hardware with reduced development effort, demonstrating the tensor abstraction's capability to relational SQL queries.
- **Significant Speedups**: Improved query execution time by 10x over specialized CPU and GPU systems (DuckDB, HeavyDB, ...) and realized query acceleration for a 9x speedup over CPU baselines when ML model inference is used within SQL queries.

Accelerating Queries for Neural Network Interpretation [Website]

Oct 2019 - Apr 2021

UW

Project owner & leader

- Led DeepEverest Development: Designed and implemented a state-of-the-art system (in C++ & Python) for efficiently executing interpretation queries that identify examples based on deep neural network activation patterns, by designing an efficient indexing technique and an instance-optimal query execution algorithm with critical optimizations.
- Optimized Storage and Performance: Accelerated individual queries by up to 63x while reducing storage requirements to less than 20% of full materialization, consistently outperforming competing baselines in various multi-query workloads that simulate DNN interpretation processes.

VisualWorld Video Data Management Project [Website]

Oct 2019 – present

Project contributor

UW

- VOCAL: a set of video data management systems that support efficient data cleaning, exploration, and organization for large-scale video data, as well as processing complex compositional queries, even when no pretrained model exists.
- TASM: a video storage manager which enables spatial random access to encoded videos. TASM speeds up content retrieval queries by up to 94% and improves the throughput of the full scan phase of object detection queries by up to 2x.
- VFS: a system that decouples application design from video data's physical layout and compression optimizations, allowing developers to focus on their relevant functionality, while VFS handles the low-level details associated with video data persistence. VFS also improves read performance by up to 54% and reduces storage costs by up to 45%.

FPGA-Based Edge Computing for Accelerating Mobile Applications

Jul 2017 - Aug 2017

Project contributor

- Peking University
- **Developed FPGA-Based Edge Computing Model**: Engineered a prototype (in C++ & Python) that minimizes response time and energy consumption for interactive mobile applications by offloading computation to an FPGA-based edge.
- **Proven Performance Improvements**: Achieved up to 3x/15x faster response times over CPU-based edge/cloud offloading and enhanced energy efficiency by up to 29.5%.

Publications

MaskSearch: Querying Image Masks at Scale. [Preprint] [Code] D. He, J. Zhang, M. Daum, A. Ratner, M. Balazinska.

VOCALExplore: Pay-as-You-Go Video Data Exploration and Model Building. [Preprint] [Code] M. Daum, E. Zhang, **D.** *He*, S. Mussmann, B. Haynes, R. Krishna, M. Balazinska. VLDB 2024 (to appear).

EQUI-VOCAL: Synthesizing Queries for Compositional Video Events from Limited User Interactions. [Preprint] [Code] E. Zhang, M. Daum, D. He, B. Haynes, R. Krishna, M. Balazinska. VLDB 2023.

EQUI-VOCAL Demonstration: Synthesizing Video Queries from User Interactions. E. Zhang, M. Daum, **D. He**, M. Ganti, B. Haynes, R. Krishna, M. Balazinska. VLDB 2023, Demo Track.

Query Processing on Tensor Computation Runtimes. [Paper] [MarkTechPost] [SyncedReview] [Talk] D. He, S. Nakandala, D. Banda, R. Sen, K. Saur, K. Park, C. Curino, J. Camacho-Rodríguez, K. Karanasos, M. Interlandi. VLDB 2022.

Share the Tensor Tea: How Databases can Leverage the Machine Learning Ecosystem. [Paper] Y. Asada*, V. Fu*, A. Gandhi*, A. Gemawat*, L. Zhang*, D. He, V. Gupta, E. Nosakhare, D. Banda, R. Sen, M. Interlandi. VLDB 2022. Best Demo Award.

DeepEverest: Accelerating Declarative Top-K Queries for Deep Neural Network Interpretation. [Paper] [Extended Tech Report] [Website] [Code] [Talk] D. He, M. Daum, W. Cai, M. Balazinska. VLDB 2022.

VOCAL: Video Organization and Interactive Compositional AnaLytics. [Paper] [Website] [Talk] M. Daum*, E. Zhang*, **D. He**, M. Balazinska, B. Haynes, R. Krishna, A. Craig, A. Wirsing. CIDR 2022.

VSS: A Storage System for Video Analytics. [Paper] [Tech Report] [Code] [Talk] B. Haynes, M. Daum, D. He, A. Mazumdar, M. Balazinska, A. Cheung, L. Ceze. SIGMOD 2021.

TASM: A Tile-Based Storage Manager for Video Analytics. [Paper] [Code] [Talk] M. Daum, B. Haynes, D. He, A. Mazumdar, M. Balazinska. ICDE 2021.

Accelerating Mobile Applications at the Network Edge with Software-Programmable FPGAs. [Paper] S. Jiang, D. He, C. Yang, C. Xu, G. Luo, Y. Chen, Y. Liu, J. Jiang. INFOCOM 2018.

Incorporating Location-Based Social Networks in the Prediction of Real-Time Taxi Demand with Deep Learning. [Poster] D. He, Y. Chen. CoNEXT 2018 Poster Session.

Invited Talks & Presentations

Snowflake, Query Processing on PyTorch	Jul 2023
UW Madison, Data Management for Model Explanation and Exploration	Apr 2023
Huawei Cloud, Query Processing on Tensor Computation Runtimes	Feb 2023
UW CSE Affiliates Day, Data Management for Model Exploration and Debugging	Nov 2022
• VLDB 2022, Accelerating Declarative Top-K Queries for Deep Neural Network Interpretation [Video]	Sep 2022
 VLDB 2022, Query Processing on Tensor Computation Runtimes [Video] 	Sep 2022
VLDB 2022, How Databases can Leverage the Machine Learning Ecosystem	Sep 2022
Relational AI, Query Processing on Tensor Computation Runtimes	Jun 2022
Microsoft Jim Gray Systems Lab, Query Processing on Tensor Computation Runtimes	Sep 2021

Teaching & Service

Teaching Assistant, UW CSEP 590A: Machine Learning for Big Data	Spring 2022
Head Teaching Assistant, UW CSED 516: Scalable Data Systems and Algorithms	Fall 2021
Student Volunteer, VLDB 2020	Sep 2020

Mentoring Experience

- Master / Undergraduate Students: Jason Li (2022-2023), Mona Gandhi (2022-2023), Tim Li (2022).
- Highschool Students: Parie Kumar (2022).

Professional Skills

- **Programming Languages**: C/C++, Python, Java, Pascal, Javascript, Matlab, ...
- Machine Learning: PyTorch, TensorFlow, Keras, Scikit-Learn, ...
- **Technical**: Database Systems (Query Optimization & Execution, Indexing Techniques), Algorithms & Data Structures, Machine Learning Systems (Software & Hardware), Video Analytics, Computer Vision, Natural Language Processing, ...
- Other Tools: MySQL, PostgreSQL, DuckDB, Spark, Hadoop, Hive, Google Cloud, AWS, Snowflake, Databricks, Docker, Selenium, LaTex, Git, SVN, ...