Module 6 Graded Quiz

Due Apr 10 at 11:59pm Points 10 Questions 10

Available Mar 27 at 12am - Apr 10 at 11:59pm

Time Limit 300 Minutes Allowed Attempts 3

This quiz was locked Apr 10 at 11:59pm.

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	3 minutes	10 out of 10

Score for this attempt: **10** out of 10 Submitted Apr 10 at 12:46pm This attempt took 3 minutes.

Question 1 1 / 1 pts

Consider the following MLN program with two object constants alice and
bob. Compute the unnormalized probability measure (i.e., weight) of the
interpretation I = {smoke(alice), influence(alice, bob), smoke(bob)} under
MLN . (x, y range over both object constants.)
2: smoke(y) ← smoke(x) ∧ influence(x y)

2: $smoke(y) \leftarrow smoke(x) \land influence(x,y)$

1: smoke(alice)

 α : influence(alice, bob)

exp(1	
-------	--

Correct!

$\exp(\alpha + 9)$
$CAP(\mathbf{u} \cdot \mathbf{J})$

exp(3)

 $-\exp(\alpha+3)$

Question 2 1/1 pts

Consider the following **LPMLN** program with two object constants alice and bob. Compute the unnormalized probability measure (i.e., weight) of the interpretation I = {smoke(alice), influence(alice, bob), smoke(bob)} under **LPMLN**. (x, y range over both object constants.)

2: $smoke(y) \leftarrow smoke(x) \land influence(x,y)$

1: smoke(alice)

 α : influence(alice, bob)

0

Correct!

 \bigcirc exp(α +9)

 \bigcirc exp(α +3)

 $= \exp(\alpha+1)$

Question 3 1 / 1 pts

Consider the following LPMLN program. Apply the completion method to convert the LPMLN program into an equivalent Markov Logic Network. Which option is the correct MLN program?

1: p ← ¬q

2: q ←¬p

4: q ← ¬r

1: p ← ¬q

2: q ← ¬p

4: q ← ¬r

 $\alpha\text{: } p \to \neg q$

 $\bigcirc \alpha : \mathsf{q} \to \neg \mathsf{p} \vee \neg \mathsf{r}$

1: p ← ¬q

2: q ← ¬p

4: q ← ¬r

 $\alpha \colon p \to \neg q$

 $\alpha \text{: } \mathsf{q} \to \neg \mathsf{p}$

 $\bigcirc \alpha : \mathsf{q} \to \neg \mathsf{r}$

Correct!

1: p ← ¬q

2: q ← ¬p

4: q ← ¬r

 $\alpha \hbox{:}\ p \to \neg q$

 $\alpha \hbox{:} \ q \to \neg p \, \vee \, \neg r$

 \bigcirc $\alpha: r \rightarrow \bot$

2: q ← ¬p

 $4: q \leftarrow \neg r$

 $\alpha \hbox{:}\ p \to \neg q$

 $\alpha \colon \mathsf{q} \to \neg \mathsf{p}$

 $\alpha\text{: }\mathsf{q}\to \neg \mathsf{r}$

 $\bigcirc \alpha \colon r \to \bot$

Question 4

1 / 1 pts

Which option is the most probable stable model of the following LPMLN program?

- 1: p ← ¬q
- α : q $\leftarrow \neg p$
- -4: p← ¬r
 - (p, q)
 - (p)

Correct!

- {q}
- Ø

Question 5

1 / 1 pts

Which option is the weight of the most probable stable model of the following LPMLN program?

- 2: $p \leftarrow q$
- -2: q ← ¬r
- -5: ⊥ ← p
 - _ -5
 - exp(2)
 - 2

Correct!

exp(0)

Question 6 1 / 1 pts

Consider the following LPMLN program. Translate it into an ASP program containing weak constraints. Which option is the correct translated ASP program?

10: q ← p

1: $r \leftarrow p$

5: p

-20: ⊥ ← ¬r

10: q ← p

1: $r \leftarrow p$

5: p

-20: ⊥ ← ¬r

 α : $p \to \top$

 α : $q \rightarrow p$

 α : $r \rightarrow p$

unsat(1):- p, not q.

:~ unsat(1). [-10]

unsat(2) :- p, not r.

:~ unsat(2). [-1]

unsat(3):- not p.

:~ unsat(3). [-5]

unsat(4):- not r.

:~ unsat(4). [20]

Correct!

```
unsat(1):- p, not q.
q:- p, not unsat(1).
:~ unsat(1). [10]

unsat(2):- p, not r.
r:- p, not unsat(2).
:~ unsat(2). [1]

unsat(3):- not p.
p:- not unsat(3).
:~ unsat(3). [5]

unsat(4):- not r.
:- not r, not unsat(4).

• '~ unsat(4). [-20]
```

```
unsat(1):- p, not q.
q:- p, not unsat(1).
:~ unsat(1). [-10]

unsat(2):- p, not r.
r:- p, not unsat(2).
:~ unsat(2). [-1]

unsat(3):- not p.
p:- not unsat(3).
:~ unsat(3). [-5]

unsat(4):- not r.
:- not r, not unsat(4).

:~ unsat(4). [20]
```

Question 7 1 / 1 pts

Consider the following LPMLN program. Which option is the most probable stable model of the program?

10: q ← p

1: $r \leftarrow p$

5: p

-20: ⊥ ← ¬r

Correct!

(p, q)

(p, q, r)

Correct!

○ {p}			
○ {q}			

Which option about probability is impossible no matter what random variables A and B are? P(A | B) > P(A) P(A, B) < P(A) P(A, B) > P(A)

Question 9 1 / 1 pts

Consider the following full joint distribution for Boolean variables A, B, and C. Which option is closest to the value of $P(A = 0 \mid B = 1)$?

Α	В	С	P(A,B,C)
0	0	0	0.03
0	0	1	0.12
0	1	0	0.17
0	1	1	0.18
1	0	0	0.03
1	0	1	0.12
1	1	0	0.24
1	1	1	0.11

0.71

Correct!

- 0.5
- 0
- 0.35

Question 10 1 / 1 pts

Consider the same full joint distribution for Boolean variables A, B, and C as in question 9. Are A and B independent of each other?

Α	В	С	P(A,B,C)
0	0	0	0.03
0	0	1	0.12
0	1	0	0.17
0	1	1	0.18
1	0	0	0.03
1	0	1	0.12
1	1	0	0.24
1	1	1	0.11

Correct!

True

|--|

Quiz Score: 10 out of 10