Unit 3(Lossless Join Decomposition)

Original Content:
Ramez Elmasri and Shamkant B. Navathe

Dr. Poonam Ghuli Associate Professor, Department of CSE RV College of Engineering, Bengaluru - 59

Relational Decompositions

- Universal Relation Schema:
 - A relation schema R = {A1, A2, ..., An} that includes all the attributes of the database.
- Universal relation assumption:
 - Every attribute name is unique
- Normal forms are insufficient on their own as a criteria for a good relational database schema design.
- The relations in a database must collectively satisfy two other properties dependency preservation property and lossless (or non-additive) join property - to qualify as a good design.

Decomposition

- Decomposition:
 - The process of decomposing the universal relation schema R into a set of relation schemas D = {R1,R2, ..., Rm} that will become the relational database schema by using the functional dependencies.
- Goals of Decomposition
- Eliminate redundancy by decomposing a relation into several relations in a higher normal form.
- It is important to check that a decomposition does not lead to bad design

Problems with Decomposition

- There are three potential problems to consider:
 - Lossiness: impossible to reconstruct the original relation!
 Given instances of the decomposed relations, we may not be able to reconstruct the corresponding instance of the original relation information loss
 - 2) Dependency checking may require joins. To Preserve dependency.
 - 3) Some queries become more expensive.

Tradeoff: Must consider these issues vs. redundancy.

- Examine an individual relation Ri to test whether it is in a higher normal form does not guarantee a good design (decomposition); rather, a set of relations that together form the relation database schema must possess certain additional properties to ensure a good design.
- Attribute preservation property:
 - Each attribute in R will appear in at least one relation schema Ri in the decomposition so that no attributes are "lost".
 - R1 U R2 U ... U Rn=R
- Dependency preservation property:
- Lossless (non-additive) join property:

Spurious Tuples Generated

A	В	C
1	2	3
4	5	6
7	2	8

A	В
1	2
4	5
7	2

В	C
2	3
5	6
2	8

$$A \rightarrow B$$
; $C \rightarrow B$

A	В
1	2
4	5
7	2
/	

В	\mathbf{C}
2	3
5	6
2	8

A	В	C
1		3
4	5	6
7	2	8
1	2	3 6 8 8
7	2	3

• Decomposition of R into X and Y is <u>lossless-join</u> w.r.t. a set of FDs F if, for every instance r that satisfies F:

$$\pi_X(r) \mid \cdot \mid \pi_Y(r) = r$$

• It is always true that $r \subset \pi_X(r) \mid I \mid \pi_Y(r)$

- Definition extended to decomposition into 3 or more relations in a straightforward way.
- It is essential that all decompositions used to deal with redundancy be lossless!

- Lossless (Non-additive) Join Property of a Decomposition:
 - Definition: Lossless join property: a decomposition D = {R1, R2, ..., Rm} of R has the **lossless (nonadditive) join property** with respect to the set of dependencies F on R if, for *every* relation state r of R that satisfies F, the following holds, where * is the natural join of all the relations in D:

*
$$(\pi_{R1}(r), ..., \pi_{Rm}(r)) = r$$

- Note: The word loss in lossless refers to loss of information, not to loss of tuples. In fact, for "loss of information" a better term is "addition of spurious information"
- The decomposition of R into X and Y is lossless with respect to F if and only if F+ contains:

$$X \cap Y \rightarrow X$$
, or $X \cap Y \rightarrow Y$

.: decomposing ABC into AB and BC is lossy, because intersection (i.e., "B") is not a key of either resulting relation.

A	В	C
1	2	3
4	5	6
7	2	8

A	C
1	3
4	6
7	8

В	C
2	3
5	6
2	8

$$A \rightarrow B$$
; $C \rightarrow B$

A	C
1	3
4	6
7	8

В	C
2	3
5	6
2	8

But, now we can't check $A \rightarrow B$ without doing a join!

- Dependency Preservation Property:
 - A decomposition D = {R1, R2, ..., Rm} of R is **dependency-preserving** with respect to F if the union of the projections of F on each Ri in D is equivalent to F; that is

$$((\pi_{R1}(F)) \cup \dots \cup (\pi_{Rm}(F)))^+ = F^+$$

• <u>Projection of set of FDs F</u>: If R is decomposed into X and Y the projection of F on X (denoted F_X) is the set of FDs $U \to V$ in F^+ (closure of F, not just F) such that all of the attributes U, V are in X. (same holds for Y of course)

- Decomposition of R into X and Y is <u>dependency preserving</u> if $(F_X \cup F_Y)^+ = F^+$
 - i.e., if we consider only dependencies in the closure F ⁺ that can be checked in X without considering Y, and in Y without considering X, these imply all dependencies in F ⁺.
- Important to consider F⁺ in this definition:
 - ABC, $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow A$, decomposed into AB and BC.
 - Is this dependency preserving? Is $C \rightarrow A$ preserved?????
 - note: F^+ contains $F \cup \{A \rightarrow C, B \rightarrow A, C \rightarrow B\}$, so...
- FAB contains A \rightarrow B and B \rightarrow A; FBC contains B \rightarrow C and C \rightarrow B
- So, $(FAB \cup FBC)^+$ contains $C \rightarrow A$

Testing for Lossless Join Property

- Lossless (Non-additive) Join Property of a Decomposition (cont.):
- Algorithm: Testing for Lossless Join Property
 - **Input**: A universal relation R, a decomposition D = {R1, R2, ..., Rm} of R, and a set F of functional dependencies.
- 1. Create an initial matrix S with one row i for each relation Ri in D, and one column j for each attribute Aj in R.
- 2. Set S(i,j):=bij for all matrix entries. (* each bij is a distinct symbol associated with indices (i,j) *).
- 3. For each row i representing relation schema Ri

Testing for Lossless Join Property

- Lossless (Non-additive) Join Property of a Decomposition (cont.):
- **4.** Repeat the following loop until a complete loop execution results in no changes to S {for each functional dependency $X \rightarrow Y$ in F

{for all rows in S which have the same symbols in the columns corresponding to attributes in X {make the symbols in each column that correspond to an attribute in Y be the same in all these rows as follows:

If any of the rows has an "a" symbol for the column Y, set the other rows to that same "a" symbol in the column Y of other rows.

If no "a" symbol exists for the attribute Y in any of the rows, choose one of the "b" symbols that appear in one of the rows for the attribute Y and set the other rows to that same "b" symbol in the column Y;};

```
};
};
```

5. If a row is made up entirely of "a" symbols, then the decomposition has the lossless join property; otherwise it does not.

Thank YOU