BLG 311E – FORMAL LANGUAGES AND AUTOMATA SPRING 2017 HOMEWORK 6

- **1.** For the language $L = \{a^i b^{i+j} a^j \mid i > 0, j \ge 0 \}$,
 - a) Write the grammar production rules.
 - **b)** Design a PDA for this language.
 - c) Show how the strings aabbba and aaabbb are accepted by the PDA you designed.
- 2. Design a pushdown automaton (PDA) that recognizes the following language.

$$L(G) = \{a^k b^m c^n \mid k, m, n > 0 \text{ and } k = 2m + n\}$$

IMPORTANT: You must do this homework by hand and submit it using the box in the department secretariat.

SOLUTIONS:

1.

a)
$$L = \{a^i b^{i+j} a^j \mid i > 0, j \ge 0 \} \Rightarrow L = \{a^i b^i b^j a^j \mid i > 0, j \ge 0 \}$$

 $~~::=~~$
 $::= ab \mid ab$
 $::= ba \mid A$ Chomsky Type 2.

b)
$$M = (S, \Sigma, \Gamma, \delta, s_0, F)$$

 $S = \{q_0, q_1, q_2, q_3, f\}, \Sigma = \{a, b\}, \Gamma = \{a, b, c\}, s_0 = q_0, F = f\}$

$$\delta = \{ \underbrace{[(q_0, a, \Lambda), (q_1, ac)]}_{a}, \rightarrow \text{push } c \text{ to be able to check if the stack is empty}$$

$$\underbrace{[(q_1, a, \Lambda), (q_1, a)]}_{a^{i-1}}, \underbrace{[(q_1, b, a), (q_2, \Lambda)]}_{b}, \underbrace{[(q_2, b, a), (q_2, \Lambda)]}_{b^{i-1}}, \underbrace{[(q_2, \Lambda, c), (f, \Lambda)]}_{accept \ a^i b^i}, \underbrace{[(q_2, b, b), (q_2, bb)]}_{b^{i-1}}, \underbrace{[(q_2, a, b), (q_3, \Lambda)]}_{a}, \underbrace{[(q_3, a, b), (q_3, \Lambda)]}_{a^{j-1}}, \underbrace{[(q_3, \Lambda, c), (f, \Lambda)]}_{accept \ a^i b^{i+j} a^j} \}$$

c)

<i></i>							
State	Tape	Stack	Transition Rule	State	Tape	Stack	Transition Rule
q_0	aabbba	Λ	$[(q_0, a, \Lambda), (q_1, ac)]$	q_0	aaabbb	Λ	$[(q_0, a, \Lambda), (q_1, ac)]$
q_1	abbba	ас	$[(q_1, a, \Lambda), (q_1, a)]$	q_1	aabbb	ас	$[(q_1, a, \Lambda), (q_1, a)]$
q_1	bbba	aac	$[(q_1,b,a),(q_2,\Lambda)]$	q_1	abbb	aac	$[(q_1, a, \Lambda), (q_1, a)]$
q_2	bba	ас	$[(q_2,b,a),(q_2,\Lambda)]$	q_1	bbb	aaac	$[(q_1,b,a),(q_2,\Lambda)]$
q_2	ba	С	$[(q_2, b, c), (q_2, bc)]$	q_2	bb	aac	$[(q_2,b,a),(q_2,\Lambda)]$
q_2	а	bc	$[(q_2,a,b),(q_3,\Lambda)]$	q_2	b	ас	$[(q_2,b,a),(q_2,\Lambda)]$
q_3	Λ	С	$[(q_3, \Lambda, c), (f, \Lambda)]$	q_2	Λ	С	$[(q_2,\Lambda,c),(f,\Lambda)]$
f	Λ	Λ		f	Λ	Λ	

2.
$$M = (S, \Sigma, \Gamma, \delta, s_0, F)$$

 $S = \{q_0, q_1, q_2, q_3, q_4, q_5\}, \Sigma = \{a, b, c\}, \Gamma = \{x, y\}, s_0 = q_0, F = q_5$
 $\delta = \{\underbrace{[(q_0, a, \Lambda), (q_1, xy)]}_{a}, \rightarrow \text{push } y \text{ to be able to check if the stack is empty}$
 $\underbrace{[(q_1, a, \Lambda), (q_1, x)]}_{a^{k-1}}, \underbrace{[(q_1, b, x), (q_2, \Lambda)]}_{b},$
 $\underbrace{[(q_2, \Lambda, x), (q_3, \Lambda)]}_{b^{m-1}}, \underbrace{[(q_3, c, x), (q_4, \Lambda)]}_{c},$
 $\underbrace{[(q_3, b, x), (q_2, \Lambda)]}_{b^{m-1}}, \underbrace{[(q_4, \Lambda, y), (q_5, \Lambda)]}_{accept the word}\}$

