

자연어 기반 기후기술분류 시 경진대회

한예송, 홍재령

목치

#01 Introduction

#02 Baseline & AutoEDA

#03 Pororo 활용

#04 XLM-Roberta 활용

Introduction

#1 대회 소개

주제: 국가 연구개발과제를 '기후기술분류체계'에 맞추어 라벨링하는 알고리즘 개발

데이터셋

- train.csv (174304, 13) 기후기술분류 label 포함
- test.csv (43576, 12) 기후기술분류 label 미포함
- sample_submission.csv (43576, 2)
- labels_mapping.csv label과 기후기술분류체계를 mapping 한 meta data

평가산식: Macro-F1

과제명 ▼	요약문_연구목표 ▼	요약문_연구내용 ▼	요약문_기대효과 ▼	요약문_한글키워드 ▼	요약문_영문키워드 ▼
유전정보를 활용한 새로운	○ 새로운 해충분류군의 동	(가) 외래 및 돌발해충의 발	○ 새로운 돌발 및 외래해	뉴클레오티드 염기서열, 분	nucleotide sequence, mol
대장암의 TRAIL 내성 표적	최종목표: TRAIL 감수성 표	1차년도 1) Microarray를	1) TRAIL 내성 특이적 표적	대장암,항암제 내성,세포사	TRAIL,Colorectal cancer,TR
비목질계 셀룰로오스 식물	* 식물계자원 정련 및 최적	* 식물계자원 정련 및 최적	* 국내 독자적인 비목질계	기능성 샐룰로오스 파이버,	functional cellulose fiber,n
소화기 암 진단용 분자영상	# 암특이적 바이오마커 발	# 소화기 암 진단용 분자영	# 암 진단기술의 차별성:	분자 진단,형광 조영제,프	Molecular diagnosis,Fluore
위암환자의 항암제반응예	수술이 불가능한 위암환자	-In situ hybridization 검사	-본 연구는 파라핀보관조	BRCA,제자리부합법,조직미	BRCA, Insituhy bridization, ti
국제 핵융합 재료조사시설(○ 기존 가속기 설계 및 운	○ 1차년 (2017년): - IFMIF	○ 현재 한국은 IFMIF 에	국제 핵융합 재료 조사 시	International Fusion Mater
마이크로시스를 적용한 옥	1. 2차년도 개발목표 2차년	2. 2차년도 개발내용 2차년	3. 기술적 및 경제적 기대	마이크로시스,옥내케이블,	Microsheath,Indoor cable,
임상·오믹스 정보 통합 개	본 연구의 최종 목표는 종	1 단계 1) CDM 기반 종적	- 암 정밀의료 관련 시스템	개방형 플랫폼,통합 임상	openplatform,Integratedcli
IoT기반 수출배 선과장 물	IoT기반으로 한 수출배 선	수출배 원물보관 환경에 따	IoT기반 수출배 입출고 관	현장연구,생산단지,수출,현	field,production area,expo
지역 창조경제 생태계 활성	o 바이오산업 분야의 혁신	<공동프로그램 추진 배경>	(1) 바이오 분야 ㅇ 오송생	의료기기,의약,헬스,화장품,	Medical, Medicine, Health, C

#1 기후기술 분류체계란?

국가과학기술자문회의 기후기술협력 중장기 추진계획을 바탕으로, [감축], [적응], [융·복합]의 3개 분야의 45개 기술분류로 구분되어 활용

대분류		중분	류		소분류 범위
				(1)비재생	1. 원자력 발전
					2. 핵융합 발전
				에너지	3. 청정화력 발전·효율화
					4. 수력
					5. 태양광
		에너지	발전		6. 태양열
		생산 & 공급		(2)재생	7. 지열
		00.00	Q LE	에너지	8. 풍력
	온실가스 저감 에너지 제	에너지 저장 & 운송	The O.A.		9. 해양에너지
					10. 바이오에너지
ひよ					11. 폐기물
감축				(3)신에너지	12. 수소제조
					13. 연료전지
				(4)에너지 저장	14. 전력저장
					15. 수소저장
			8 ≪ ਦੁਨ	(5)송배전	16. 송배전 시스템
			& 전력 IT	17. 전기지능화 기기	
					18. 수송효율화
			(6) 에너지 수요		19. 산업효율화
				20. 건축효율화	
		<i>(</i> 7)오신가	스 고정		21. CCUS
	(7)온실가스 고정			22. Non-Co2 저감	

Baseline & AutoEDA

#2-1 [Baseline] Random Forest

2. 데이터 EDA

okt Tokenizer + CounterVectorizer + Randomforest Classifier

test.head(2)

_												
	index	제출 년도	사업명	사업 _부 처명	계속 과제 여부	내역사업 명	과제명	요약문_연구목표	요약문_연구내용	요약문_기대효과	요약문_한글키워 드	요약문_영문키워드
	0 174304	2016	경제협력권 산업육성	산업 통상 자원 부	신규	자동차융합 부품	R-FSSW 기술 적용 경량 차체 부품 개 발 및 품질 평가를 위한 64채널 C-SC	○ 차체 점용접부의 품질 검사를 위한 64 채널 무선 기반 C- Scan 탐촉자 개발₩	○ 1차년도₩n₩n . 개발 탐촉 시스템의 성능 평 가 위한 표준 시편 제작 시	○ 기술적 파급효과 ₩n₩n - 본 연구에서 개 발된 R-FSSW 접합 기술 은 기존	상, 씨 스캔, 용접 품	Friction Stir Spot Welding, Non- destructive ev
	1 174305	2018	개인기초연 구(과기정 통부)(R&D)	과학 기술 정보 통신 부	계속	신진연구 (총연구비5 천이상~1.5 억이하)	다입자계를 묘사하 는 편미분방정식에 대한 연구	자연계에는 입자의 개수가 아주 큰 다양 한 다입자계가 존재 한다. 이런 다입자계 의 효	연구과제1. 무한입자계 의 동역학 / 작용소 (operator) 방정식에 대 한 연구₩n	본 연구는 물리학에서 중요한 대상인 다입자 계를 묘사하는 모델방 정식의 정당성을 보장 하	다체계 방정식,동역 학의 안정성,양자역 학,고전역학,평균장 극한,고전극한,비상 대론적 극한	many particle system,stability of dynamics,qua

과제명 길이 최댓값: 229 과제명 길이 최솟값: 2

과제명 길이 평균값: 35.84252225995961

과제명 길이 중간값: 34.0

요약문_연구목표 길이 최댓값: 3951 요약문_연구목표 길이 최솟값: 1

요약문_연구목표 길이 평균값: 318.1008066366807

요약문_연구목표 길이 중간값: 249.0

요약문_연구내용 길이 최댓값: 3999 요약문_연구내용 길이 최솟값: 1

요약문_연구내용 길이 평균값: 699.2930282724435

요약문_연구내용 길이 중간값: 597.0

#2-1 [Baseline] Random Forest

3. 데이터 전처리

해당 baseline 에서는 과제명 column만 활용

- 1) re.sub 한글 및 공백을 제외한 문자 제거
- 2) okt 객체를 활용해 **형태소 단위**로 나눔
- 3) remove_stopwords로 **불용어 제거**

```
train.head(2)
```

```
def preprocessing(text, okt, remove_stopwords=False, stop_words=[]):
    text=re.sub("[^가-힣ㄱ-ㅎㅏ-|]","", text)
    word_text=okt.morphs(text, stem=True)
    if remove_stopwords:
        word_review=[token for token in word_text if not token in stop_words]
    return word_review
```

```
stop_words=['은','는','이','가', '하','아','것','들','의','있','되','수','보','주','등','한']
okt=Okt()
clean_train_text=[]
clean_test_text=[]
```

```
for text in tqdm.tqdm(train['과제명']):
    try:
        clean_train_text.append(preprocessing(text, okt, remove_stopwords=True, stop_words=stop_words))
    except:
        clean_train_text.append([])
```


#2-1 [Baseline] Random Forest

3. 데이터 전처리

4) tokenizer 인자에는 list를 받아서 그대로 내보내는 함수를 넣어줌 (소문자화를 하지 않도록 설정해야 에러가 나지 않음)

```
from sklearn.feature_extraction.text import CountVectorizer

vectorizer = CountVectorizer(tokenizer = lambda x: x, lowercase=False)

train_features=vectorizer.fit_transform(clean_train_text)

test_features=vectorizer.transform(clean_test_text)
```

4. 모델링

훈련 데이터 셋과 검증 데이터 셋으로 분리 후

```
TEST_SIZE=0.2
RANDOM_SEED=42
train_x, eval_x, train_y, eval_y=train_test_split(train_features, train['label'], test_size=TEST_SIZE, random_state=RANDOM_SEED)
```

랜덤포레스트로 모델링

```
from sklearn.ensemble import RandomForestClassifier forest=RandomForestClassifier(n_estimators=100) forest.fit(train_x, train_y)
```


#2-2 [Baseline] LSTM

okt Tokenizer + keras embedding + LSTM

이전과 동일한 1~2단계 진행

3. 데이터 전처리

해당 baseline 에서는 과제명 column만 활용

- 1) re.sub 한글 및 공백을 제외한 문자 제거
- 2) okt 객체를 활용해 **형태소 단위**로 나눔
- 3) remove_stopwords로 **불용어 제거**

```
      train.head(2)

      과제명
      label

      0
      유전정보를 활용한 새로운 해충 분류군 동정기술 개발
      24

      1
      대장암의 TRAIL 내성 표적 인자 발굴 및 TRAIL 반응 예측 유전자 지도 구축...
      0
```

```
text=re.sub("[^가-힣¬-ㅎ | - | ]","", text)
   word_text=okt.morphs(text, stem=True)
   if remove_stopwords:
      word_review=[token for token in word_text if not token in stop_words]
   return word_review
stop_words=['은','는','이','가', '하','아','것','들','의','있','되','수','보','주','등','한']
okt=Okt()
clean_train_text=[]
clean_test_text=[]
for text in tqdm.tqdm(train['과제명']):
   try:
      clean_train_text.append(preprocessing(text, okt, remove_stopwords=True, stop_words=stop_words))
   except:
      clean_train_text.append([])
```

def preprocessing(text, okt, remove_stopwords=False, stop_words=[]):

#2-2 [Baseline] LSTM

- 3. 데이터 전처리
- 4) 토크나이징 객체를 만든 후 인덱스 벡터로 전환

- 5) 패딩 처리
- 6) 추후 재사용 가능하도록 npy로 전환

```
tokenizer=Tokenizer()
tokenizer.fit_on_texts(clean_train_text)

train_sequences=tokenizer.texts_to_sequences(clean_train_text)
test_sequences=tokenizer.texts_to_sequences(clean_text)
word_vocab=tokenizer.word_index
```

train_inputs=pad_sequences(train_sequences, maxlen=40, padding='post') test_inputs=pad_sequences(test_sequences, maxlen=40, padding='post')

```
DATA_IN_PATH='./data_in/'
TRAIN_INPUT_DATA = 'train_input.npy'

TEST_INPUT_DATA = 'test_input.npy'

import os
if not os.path.exists(DATA_IN_PATH):
    os.makedirs(DATA_IN_PATH)

np.save(open(DATA_IN_PATH+TRAIN_INPUT_DATA, 'wb'), train_inputs)
np.save(open(DATA_IN_PATH+TEST_INPUT_DATA, 'wb'), test_inputs)

data_configs={}
data_configs['vocab']=word_vocab
data_configs['vocab_size'] = len(word_vocab)+1
json.dump(data_configs, open(DATA_IN_PATH+'data_configs,json', 'w'), ensure_ascii=False)
```


#2-2 [Baseline] LSTM

4. 모델링 파라미터 설정

가벼운 NLP모델 생성 및 compile, fit

```
vocab_size =data_configs['vocab_size']
embedding_dim = 32
max_length = 40
oov_tok = "<OOV>"
```

```
model = tf.keras.Sequential([
    tf.keras.layers.Embedding(vocab_size, embedding_dim, input_length=max_length),
    tf.keras.layers.GlobalAveragePooling1D(),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(46, activation='softmax')
])
```


#2-3 AutoEDA

Dataprep AutoEDA

AutoEDA를 통해 알 수 있는 것

- 1. 요약문 데이터들과 과제명을 제외한 데이터들 → Cardianlity 작음 (=중복도 높음)
- 2. train 데이터 전체 안의 중복 데이터는 없지만, 요약문 데이터들과 과제명 데이터의 Cardinality가 train 데이터 174304와 같지 않음
 - → 동일한 과제명, 동일한 요약문을 가진 데이터가 있음
 - → train 데이터의 cardinality 비율 < test 데이터의 cardinality 비율
- 3. 기후기술 분류가 아닌 데이터(label==0)가 80%이상 존재
 - → 불균형 데이터에 대한 적절한 처리 필요
- 4. 각 피처별 평균 길이 / 최소 길이/ Word Frequency

create_report(): 데이터셋에 대한 포괄적인 profile report 생성

create_report(train)

#2-3 AutoEDA — Train Dataset Cardinality

train 데이터의 cardinality 값들만 모아보기

```
# 전체 train 데이터 개수 대비 각 컬럼 당 unique 값 개수
print("*------*")
print(train.drop("label", axis=1).apply(lambda x: x.nunique()))

print("\\n", "*------\", "\\n")
# 전체 train 데이터 개수 대비 각 컬럼 당 unique 값 비율
display(train.drop("label", axis=1).apply(lambda x: x.nunique()).div(train.shape[0]).mul(100))
```

```
제출년도 4
사업명 1414
사업_부처명 28
계속과제여부 2
내역사업명 4324
과제명 106623
요약문_연구목표 133267
요약문_연구내용 146499
요약문_기대효과 136041
요약문_한글키워드 109125
요약문_영문키워드 109125
```

```
0.002295
사업명
              0.811226
사업_부처명
               0.016064
계속과제여부
                0.001147
내역사업명
                2.480723
             61.170713
요약문_연구목표
                 76.456650
                 84.047985
                78.048123
                 62.606136
요약문_영문키워드
                 66.270998
dtype: float64
```

-----비율-----

→ 비율: 작을수록Cardinality 작음

train, test unique 값 종류 확인

제출년도의 train unique 개수:4 제출년도의 test unique 개수:4

test 제출년도에서 train 제출년도 unique 제거 후 개수 :0

test 데이터에만 있는 값의 비율 : 0.0%

test 제출년도에서 train 제출년도 unique 제거 후 나머지 :set()

사업명의 train unique 개수:1414 사업명의 test unique 개수:1158

test 사업명에서 train 사업명 unique 제거 후 개수 :26

test 데이터에만 있는 값의 비율 : 2.25%

test 사업명에서 train 사업명 unique 제거 후 나머지 :['정지궤도복합위성개발기술개발(R&D)', '한국천문연구원연구운영비지원(R&D)(운영경비)', '국립기상과'원자력통제기술원연구운영비지원(R&D)(운영경비)', '한국철도기술연구원연구운영학원연구운영비지원(R&D)(운영경비)']

→ test 데이터에도 train 데이터의 값과 완전히 같은 데이터가 어느 정도 존재

과제명의 train unique 개수:106623 과제명의 test unique 개수:37857

test 과제명에서 train 과제명 unique 제거 후 개수 :13978

test 데이터에만 있는 값의 비율 : 36.92%

test 과제명에서 train 과제명 unique 제거 후 나머지:['다제내성 감염병 치료를 위한 항생제의 집'생화적 요인 구영", '섬유형 트랜지스터 삽입형 전자섬유 기반 인체신호 모니터링 기술 실용화를 위한지 기능부 Water-proof형 친환경 절면 다분기시스템', '온라인 구매 여정 기반 E-Commerce AI 솔루션 정화 및 악취제거', '다차원 대용량 데이터를 위한 다해상도 근사 기법 연구', '황칠나무 잎 추출물의 시스템과 IoT 시스템을 위한 혁신적 통신 기술', '고온 환경에서의 인광 기반 비접촉 온도/속도/압력,

요약문_연구내용의 train unique 개수:146499 요약문_연구내용의 test unique 개수:40254

test 요약문_연구내용에서 train 요약문_연구내용 unique 제거 후 개수 :31785

test 데미터에만 있는 값의 비율 : 78.96%

요약문_기대효과의 train unique 개수:136041 요약문_기대효과의 test unique 개수:39332

test 요약문_기대효과에서 train 요약문_기대효과 unique 제거 후 개수 :27229

test 데이터에만 있는 값의 비율 : 69.23%

1) 제출년도

1. 제출년도 train / test 비율 분석

```
display(train.제출년도.value_counts(normalize=True).mul(100).round(2).to_frame())
print()
display(test.제출년도.value_counts(normalize=True).mul(100).round(2).to_frame())
```

	제출년도		제출년도
2019	28.02	2019	28.18
2018	25.83	2018	25.63
2017	24.54	2017	24.35
2016	21.62	2016	21.84

2. 연도별 label 분포 분석

```
year = '2016'
plt.figure(figsize=(10,5))
sns.countplot(data=train.query(f"label != '0' and 제출년도==@year"), x='label').set_xlabel(f"{year}년도 label 0 제외한 label 분포")
```


2) 사업명

1. 사업명 train / test 비율 top 10 분석

```
display(train.사업명.value_counts(normalize=True).mul(100).round(2).to_frame().head(10)) print() display(test.사업명.value_counts(normalize=True).mul(100).round(2).to_frame().head(10))
```

	사업명
개인기초연구(과기정통부)(R&D)	9.34
개인기초연구(교육부)(R&D)	6.72
개인기초연구(미래부)	3.63
개인기초연구(교육부)	3.24
개인연구지원	2 54

2. 사업명 label 하나인 데이터 중 개수가 많은 순서대로 20개 확인

train.groupby("사업명").agg({'label':['nunique','count',get_mode]}).droplevel(0, axis=1).sort_values(["nunique", "count"], ascending=[True, False]).head(20)

	nunique	count	get_mode
사업명			
질환극복기술개발(R&D)	1	539	0
암연구소및국가암관리사업본부연구운영비지원	1	419	0
지방대학육성사업(0.5)	1	415	0
첨단의료기술개발	1	367	0
한국고등과학원연구운영비지원	1	331	0
첨단의료기술개발(R&D)	1	317	0
니과하위처기숲개박/₽&D\	1	302	0

→ 가장 첫 번째 데이터는 같은 사업명인 데이터 539개가 모두 label 0으로만 분류됨

3) 사업_부처명

1. 사업_부처명 train / test 비율 분석

display(train.사업_부처명.value_counts(normalize=True).mul(100).round(2).to_frame()) print()

display(test.사업_부처명.value_counts(normalize=True).mul(100).round(2).to_frame())

2. 사업_부처별 분포 분석

fig, axs = plt.subplots(2,1,figsize=(10,18))
train.사업_부처명.value_counts()[:10].plot.bar(rot=45, ax = axs[0], title = "train 사업_부처별")
test.사업_부처명.value_counts()[:10].plot.bar(rot=45, ax = axs[1], title = "test 사업_부처별")

	사업_부처명
과학기술정보통신부	24.36
교육부	19.70
중소벤처기업부	13.40
산업통상자원부	8.68
농촌진흥청	8.44
미래차조과하브	5 07

	사업_부처명
과학기술정보통신부	24.50
교육부	19.31
중소벤처기업부	13.28
산업통상자원부	8.93
농촌진흥청	8.08
미래차조과하브	6.06

4) 계속과제여부

1. 계속과제여부 train / test 비율 분석

display(train.계속과제여부.value_counts(normalize=True).mul(100).round(2).to_frame()) print()

display(test.계속과제여부.value_counts(normalize=True).mul(100).round(2).to_frame())

	계속과제여부
계속	58.05
신규	41.95

	계속과제여부		
계속	58.32		
신규	41.68		

5) 내역사업명

1. 제출년도 train / test 비율 분석

display(train.내역사업명.value_counts(normalize=True).mul(100).round(2).to_frame().head(10)) print()

display(test.내역사업명.value_counts(normalize=True).mul(100).round(2).to_frame().head(10))

	내역사업명
자유공모	3.40
기본연구(1년~3년)	2.93
기본연구지원사업	2.75
기본연구지원	2.20
기본연구(1년~5년)	2.10
글로벌박사펙로우신사언	1.63

	내역사업명
자유공모	3.39
기본연구(1년~3년)	2.83
기본연구지원사업	2.75
기본연구지원	2.20
기본연구(1년~5년)	1.95
글 <u>로벌</u> 박사펰로우십사업	1.72

6) 과제명, 요약문

_ = show_col_val_counts("과제명", 10)

```
# 컬럼별 중복 데이터 개수 확인 및 라벨 중복 확인 함수
def show_col_val_counts(col, threshold):
  dic_study_name = {}
  col_val_cnt = train[col].value_counts()
  # threshold 이상의 데이터를 가지고 있는 value만 선택
  for study_name in col_val_cnt.loc[col_val_cnt.ge(threshold)].index:
    # 연구내용 등 긴 문장은 50개로 줄이기
    print(f"*-----*")
    study_name_val_cnt = train.loc[train[col] = = study_name].label.value_counts()
     # 해당 col의 value 값이 고유 라벨 하나만을 가지고 있는 경우 저장
    if study_name_val_cnt.shape[0]==1:
       dic_study_name[study_name] = study_name_val_cnt.index[0]
    display(study_name_val_cnt)
     print()
  return dic_study_name
```

```
*-----여성참여활성화과제------*
  10
Name: label, dtype: int64
*-----
Name: label, dtvpe: int64
*-----양식어류 건강성 신속진단을 위한 기술개발------*
   10
Name: label, dtype: int64
```


Name: label, dtype: int64

6) 과제명, 요약문

_ = show_col_val_counts("요약문_연구목표", 10)

_ = show_col_val_counts("요약문_기대효과", 30)

- → 요약문_한글키워드, 요약문_영문키워드 으로도 반복
- → 각 요약문/ 과제명마다 정형화된 형식이 있는 것 확인 가능

```
------대학 및 연구기관이 보유한 연구장비 공동활용율 증가 및 고가의 연구장비를 활용함에 있어 6--------*
0
    1944
19
     43
18
29
25
23
20
14
Name: label, dtype: int64
*------보안과제정보------*
  711
```


Name: label, dtype: int64

6) 과제명, 요약문

_ = show_col_val_counts("요약문_연구목표", 10)

_ = show_col_val_counts("요약문_기대효과", 30)

- → 요약문_한글키워드, 요약문_영문키워드 으로도 반복
- → 각 요약문/ 과제명마다 정형화된 형식이 있는 것 확인 가능

```
------대학 및 연구기관이 보유한 연구장비 공동활용율 증가 및 고가의 연구장비를 활용함에 있어 6--------*
0
    1944
19
     43
18
29
25
23
20
14
Name: label, dtype: int64
*------보안과제정보------*
  711
```


'보안과제정보'?

보안과제정보라는 표현이 한 샘플에서 8개 이상은 나오지 않는 것으로 판단 display(train.loc[train.isin(['보안과제정보']).sum(axis=1).ge(8)])

```
제출년 사업 사업_부처 계속과제여 내역사업 과제 요약문_연구목 요약문_연구내 요약문_기대효 요약문_한글키워 요약문_영문키워
도 명 명 부 명 표 용 과 드 드 label
index
```

```
# 보안과제정보가 7개 써있는 샘플

secu_7_dup = train.loc[train.isin(['보안과제정보']).sum(axis=1).eq(7)]
# 보안과제정보가 0개 써있는 샘플

secu_0_dup = train.loc[train.isin(['보안과제정보']).sum(axis=1).eq(0)]

secu_7_dup
```

- → 7개 컬럼 모두 써 있거나 하나도 안 써있거나로 나눠져 있음 보안과제정보 → 직관적으로 보안상 정보를 나타낼 수 없다는 의미?
- → 일단 이상값으로 판단

ir	ndex	제출년 도	사업명	사업_부처명	계속과제 여부	내역사업 명	과제명	요약문_연구 목표	요약문_연구 내용	요약문_기대 효과	요약문_한글키 워드	요약문_영문키 워드	label
	132	2018	이공학학술연구기반구축 (R&D)	교육부	계속	보안과제 정보	보안과제 정보	보안과제정보	보안과제정보	보안과제정보	보안과제정보	보안과제정보	0
	274	2017	바이오.의료기술개발	과학기술정보통 신부	신규	보안과제 정보	보안과제 정보	보안과제정보	보안과제정보	보안과제정보	보안과제정보	보안과제정보	0
	298	2017	BK21플러스사업(0.5)	교육부	신규	보안과제 정보	보안과제 정보	보안과제정보	보안과제정보	보안과제정보	보안과제정보	보안과제정보	0
						보안과제	보안과제						

#2-3 AutoEDA - 결측치

plot_missing(train)

Stats	Bar Chart	Spectrum	Heat Map	Dendrogram
-------	-----------	----------	----------	------------

Missing Statistics

Missing Cells	15169
Missing Cells (%)	0.7%
Missing Columns	5
Missing Rows	3166
Avg Missing Cells per Column	1264.08
Avg Missing Cells per Row	0.09

5개의 컬럼에 대략 2%의 비율로 결측값 존재

```
# 다섯 개 모두 결측값인 데이터
nan_5 = train.loc[train.isna().sum(axis=1).eq(5)]

#nan_5
print("nan_5 개수: %d" %nan_5.shape[0])

# 결측값이 없는 데이터
nan_0 = train.loc[train.isna().sum(axis=1).eq(0)]
print("nan_0 개수: %d" %nan_0.shape[0])

# 1~4개의 결측값을 가지고 있는 데이터 개수
print("nan_1,2,3,4 개수: %d"%(train.shape[0]-nan_5.shape[0]-nan_0.shape[0]))
```

nan_5 개수 : 2972

nan_0 개수 : 171138

nan_1,2,3,4 개수 : 194

#2-3 AutoEDA - 결측치

다양한 방식으로 결측치 확인

1) 결측치가 1~5개인 데이터 확인

```
# 데이터 확인
for i in range(1,5):
    display(train.loc[train.isna().sum(axis=1).eq(i)])
    print()
    print('='*100)
    print()
```

2305	2017	농업기술 경영연구	농촌 진흥 청	계속	농업기술경 영연구			업 R&D 사	농업 R&D 시 석 평가체계 타기관 평가	구축₩n₩	n . 사	NaN	사전경제성, 사 후경제성	ex-ante economic analysis, post economic econo	0
4814	2017	농업기술 경영연구	농촌 진흥 청	신규	농업기술경 영연구		및거 경문적및. _{개발} 개발₩n₩n.5	거래매뉴얼	농․ ․외 온 변화 트랜드	라인 직거 E 분석₩n l	래	NaN	전자상거래, 온 라인 쇼핑, 온라 인 구매, 온라인 거래, 농산물 직 거래	Electronic commerce, Online shopping, Online p	0
15773	2018	지역연구 개발혁신 지원 (R&D)	과학기 술정보 통신부		연구개발지 원단 육성지 원	전북연구개발 지원단 지원사 업	o 2018년 전북연구 지원단은 그간 추진 기능별 중점과업의 력을 극대호	개월 기호 해온 괴 파급 중심	과학기술 정책 ┆₩n₩n - 전북 '학기술위원회 ¦의 정책 개발. 님의 및 기획	·조정체제 효율적 F 를 구현	R&D 기획 체 정립 및 R&D 투자 하고 지역 혁신역	NaN		NaN	0
24533	2016	산업전문 인력역량 강화	산 업 통 상 자 원 부	계 속	인적자원생 태계조성	2016 산업별 인적자원개발 협의체 활성화 지원사업	산업계가 주도적으. 업계의 수요를 체계 로 발굴하여 정부 및 양성기관 등	도 산 대등 적으 정 : 인력 예	법 변화에 신속 ₹₩n₩n * 미지 주요 산업분야 SC 지정₩n₩n *	를 반영 [:] 성 . 공· 업종별	인력 수요 한 인력양 급을 위해 인력수급 및 교육훈 련	NaN		NaN	0
3681	2017	개인기초연 구(미래부)	과학 기술 정보 통신 부	신규	저랴고	금융 위기 극복을 인공지능 및 오피 마이닝을 이용한 의사결정지원시	니언 금융 ।	NaN	NaN	NaN	위기 예방,시고 지,인공지능,오 마이닝,준지도 습,정보 필터턴	피니언 기계학 ^{Cri}	sis prevention,Signa	al detection,Artificial 	0
11921	2017	개인기초연 구(미래부)	과학 기술 정보 통신 부	신규	_. 전략공 : 모	형광형 나노자성 와 결합된 항체를 한 경락연결망 가 기술	이용 시화	NaN	NaN	NaN	단클론 항체,7 환시스템,프리드 시스템,프리드 망,형광 나노	고 순환 고 연결 Mo	ono clone antibody,I	Kyungrak circulatory syste	0
17696	2017	개인기초연 구(미래부)	과학 기술 정보 통신 부	신규		미토콘드리아 안 의 펩타이드 자기 에 의한 선택적 노 포 제거를 통한 생	조립 화세	NaN	NaN	NaN	재생의약,항노화 자기조립,노화/ E	· rov	generative medicine	e,ati-aging drug,self- asse	0

#2-3 AutoEDA - 결측치

다양한 방식으로 결측치 확인 2) 결측값 label 확인

nan_5.label.value_counts().to_frame()

	label
0	2912
45	9
23	8
14	5
25	4
19	4
16	4
5	3
34	3

3) 결측 값이 세 개인 데이터 중 다섯 개 추출

```
dup_list=train.loc[train.isna().sum(axis=1).eq(3)].index[:5]

#

for idx in dup_list:
    check_data = train.loc[idx][['사업명','내역사업명','과제명']].values
    display(train.query("사업명==@check_data[0] and 내역사업명 ==@check_data[1] and 과제명==@check_data[2]"))
    print("="*100, "₩n")
```

index	제출 년도	사업명	사업_부 처명	계속 과제 여부	내역 사업 명	과제명	요약문_ 연구목 표	연구내	기대회	요약문_한글키워드	요약문_영문키워드	label
3681	2017	개인기초 연구(미래 부)	과학기술 정보통신 부	신규	전략공 모	금융 위기 극복을 위한 인공지능 및 오피니언 마이닝을 이용한금융의사 결정지원시스템 개발	NaN	NaN	l Naf	위기 예방,시그널 감지,인공지능 N 오피니언 마이닝,준지도 기계혁 습,정보 필터링,워드 .	Crisis prevention, Signal	0
index	제출 년도	사업명	사업_부 처명	계속 과제 여부	내역 사업 명	과제명	요약문_ 연구목 표	요약문_ 연구내 용	요약문_ 기대효 과	요약문_한글키워드	요약문_영문키워드	label
11921	2017	개인기초 연구(미래 부)	과학기술 정보통신 부	신규	전략공 모	형광형 나노자성비드와 결합된 항체를 이용한 경락연결망 가시 화 기술 개발	NaN	NaN		단클론 항체,경락 순환시스템,프리 모 순환시스템,프리모 연결망,형광 나노자성비드,	Mono clone antibody,Kyungrak circulatory syste	0

#2-3 AutoEDA - 데이터 구조와 불용어

'요약문_연구목표'의 구조

- o 조선해양산업 인적자원 관련 정책수립을 위한 기초자료 생성\n\n
- ㅇ 조선해양산업 선순환적 인력수급 체제 구축 및 안정화\n\n ㅇ 지속가능한 주력산업으로서의 대외 인식 제고\n\n ㅇ 조선해양산업 HRD기구로서의 대표성 확보 및 위상 강화\n\n ㅇ 조선해양산업 인적자원개발 분야 정보 교류 네트워크 구축 및 강화'
- → 조선해양산업 인적자원 관련 정책수립을 위한 기초자료 생성
 - ㅇ 조선해양산업 선순환적 인력수급 체제 구축 및 안정화
 - ㅇ 지속가능한 주력산업으로서의 대외 인식 제고
 - o 조선해양산업 HRD기구로서의 대표성 확보 및 위상 강화
 - ㅇ 조선해양산업 인적자원개발 분야 정보 교류 네트워크 구축 및 강화
- ① 특수문자(○, -, ?,② ..etc) ○와 같은 자음도 특수문자 형식(?)처럼 들어가 있음
- ② 영문이 괄호 안에 들어가 있기도 아니기도
- ③ **줄 바꿈(\n)** 표현이 다수 들어가 있는 데이터도 있고 아닌 데이터도 있음 \n이 없는 데이터는 한 문장으로 표현된 데이터? → \n이 없어도 마침표(.)로 문장이 나눠져 있음

'요약문_연구내용' 의 구조도 비슷

- 제조공정 연구
 - 생물학적 활성과 수율 등을 고려한 최적의 개똥쑥 추출물 제조공정 확립
 - 액상 및 분말원료 대량생산
- 품질관리 연구
 - 개똥쑥 추출물의 영양성분 분석 및 유해물질 기준 규격 설정
 - 개똥쑥 추출물의 지표성분 함량시험 및 밸리데이션
- 기능성 연구
 - 간 손상 동물모델 실험을 통한 개똥쑥 추출물의 간 손상 억제 효과 확인
 - 지방간 동물모델 실험을 통한 개똥쑥 추출물의 지방간 억제 효과 확인
 - 외부전문기관 시험을 통한 경쟁원료 대비 객관적 효능 평가

#2-3 AutoEDA - 데이터 구조와 불용어

요약문_연구내용 추가 분석

특수문자 개수 구하는 함수와
\n 기준으로 문장or 문단 수 확인하는 함수를 ***
활용하여 분석 함수 생성 및 시각화

newline_exist : \n 존재 여부

• fullstop_exist : 마침표(.) 존재 여부

• char_count : 문자 수

word_count : 단어 수 (띄어쓰기 기준)

sentence_count : 문장 수

• special_count : 특수문자 개수 확인

Pororo 활용

#03-1 Pororo

#1 카카오 브레인에서 다양한 한글 자연어 처리 작업을 위해 개발한 파이썬 라이브러리

#2 BERT, Transformer등 파이토치로 구현된 최신 NLP 모델을 사용해 30여 가지의 자연어 처리 작업을 수행 가능

SEQUENCE TAGGING Seq2Seq Contextualized Embedding · Constituency Parsing Dependency Parsing · Grammatical Error Correction Fill-in-the-blank · Grapheme-to-Phoneme · Phoneme-to-Grapheme Machine Reading Comprehension Machine Translation Named Entity Recognition · Paraphrase Generation Part-of-Speech Tagging Question Generation Semantic Role Labeling · Text Summarization · Word Sense Disambiguation **Constituency Parsing** Misc. Grammatical Error Correction • Automatic Speech Recognition Image Captioning Phoneme-to-Grapheme Collocation Machine Translation Lemmatization Paraphrase Generation · Morphological Inflection Optical Character Recognition **Ouestion Generation** Speech Synthesis **Text Summarization** Tokenization Word Sense Disambiguation Word Translation Word Embedding Automatic Speech Recognition Indices and tables Image Captioning Collocation Index Module Index Lemmatization · Search Page Morphological Inflection Optical Character Recognition Next 🖸 Speech Synthesis Tokenization **Word Translation** © Copyright 2021, Kakao Brain Corp. Word Embedding Built with Sphinx using a theme provided by Read the Docs.

#03-2 Pororo를 활용한 문장 유사도를 활용한 분류 시도

#1 Pororo 라이브러리의 Sentence Embedding를 사용하여 문장 유사도를 활용

```
sembed = Pororo(task="sentence_embedding", lang="ko")
```

```
def predict_corpus(self, courpus):
 "'Text Data들을 Embedding"
 corpus_embeddings = self._model.encode(courpus, convert_to_tensor=True)
 return corpus_embeddings
def embeddings_to_embeddings(self, embedding, embeddings, cands):
 "'Embedding 한 corpus를 비교하여 유사도 추출하는 함수 "
 total_result_list = []
 for embed in embedding:
   cos_scores = util.pytorch_cos_sim(embed, embeddings)[0]
   cos_scores = cos_scores.cpu()
   k = min(len(cos_scores), 10)
   top_results = np.argpartition(-cos_scores, range(k))[0:k]
   top_results = top_results.tolist()
   result = list()
   for idx in top_results:
    result.append(
    (idx, cands[idx].strip(), round(cos_scores[idx].item(), 2)))
   total_result_list.append(result)
 return total_result_list
```


#03-2 Pororo를 활용한 문장 유사도를 활용한 분류 시도

#1 test data와 train data의 과제명, 요약문_연구목표, .. 내용에 대한 sentence의 유사도를 비교하여 출력

```
sbjt_embeddings = predict_courpus(sembed, list(train_data['과제명'].astype(str)))
objt_embeddings = predict_courpus(sembed, list(train_data['요약문_연구목표'].astype(str)))
cont_embeddings = predict_courpus(sembed, list(train_data['요약문_연구내용'].astype(str)))
efft_embeddings = predict_courpus(sembed, list(train_data['요약문_기대효과'].astype(str)))
hankey_embeddings = predict_courpus(sembed, list(train_data['변형_한글키워드'].astype(str)))
```

	sbjt_res_list	objt_res_list	cont_res_list	efft_res_list	hankey_res_list	enkey_res_list	mean_res_list
0	[(82984, 소면적작물 농약 직권등록 작물잔류성 시 험 (한경대), 0.86), ([(66582, 소면적 및 수출 유망작물의 작물잔류성 시험 (2016년 경북대), 1	[(15101, 절화작약 촉성재 배 병해충 방제기술 개발, 0.84), (99625,	[(135809, 농약직권등록시 험(작물잔류성) 및 안전사 용․잔류허용기준 설	[(28729, 소면적작물 농약직 권등록 작물잔류성 시험 (호 서대학교), 1.0),	권등록 작물잔류성 시험 (호	[(136259, 소면적작물 농약 직권등록 작물잔류성 시험 (안전성평가연구소), 0
1	[(133104, 분자소재 사업 단, 1.0), (164, 분자과학기 술사업단, 0.9	[(114358, 친환경 복합기 능 해안항만 구조시스템 창의인재양성 사업팀, 0.79	[(1870, 멀티 오믹스 융합 기술 기반 혁신 신약 연구 전문인력 양성 사업팀,	[(133104, 분자소재 사업 단, 1.0), (20543, 분자과학 기반창의인재양성		[(133104, 분자소재 사업단, 0.98), (104984, 창의소재 인 력양성	
2	[(36207, 식물유래 폴리페 놀/탄닌 유도체 기반 다기 능 접착소재 발굴 및 소재 활	[(8333, 새로운 이온저장 및 kinetic이 발현된 수퍼 하이브리드 제조를 위 한	[(69247, 고접착성 속경화 형 방식 코팅제 기술 개발, 0.82), (14460	[(125740, Bio based polyurethane적용 내구성 이 항상된 나노	[(37420, 지속가능한 기능성 코팅 원료로써 폐 PET병의 재활용 기술 및 적용	패널(PIR) System 기술 개	[(27295, 건축용 패널 및 스 프레이용 친환경 수발포 폴 리우레탄폼 제조기술 개발
3	[(19517, 포도 비가림시설 의 현황 분석 및 내재해형 표준설계서 개발, 0.97	[(18812, 풍력에너지 전력 망 적응 기술 연구센터, 0.85), (119488,	[(18812, 풍력에너지 전력 망 적응 기술 연구센터, 0.84), (29092,	[(42011, 모종의 수분스트 레스 모니터링 시스템 고 도화, 0.86), (6813	[(19517, 포도 비가림시설의 현황 분석 및 내재해형 표준 설계서 개발, 1.0)	[(19517, 포도 비가림시설의 현황 분석 및 내재해형 표 준설계서 개발, 1.0)	[(19517, 포도 비가림시설의 현황 분석 및 내재해형 표 준설계서 개발, 0.97
4	[(89910, 환경친화 용액법 기반 RGO 복합소재의 고 기능 응용 연구, 1.0)	[(5554, 환경친화 용액법 기반 RGO 복합소재의 고 기능 응용 연구, 1.0),	[(5554, 환경친화 용액법 기반 RGO 복합소재의 고 기능 응용 연구, 1.0),	[(5554, 환경친화 용액법 기반 RGO 복합소재의 고 기능 응용 연구, 0.86)	[(5554, 환경친화 용액법 기 반 RGO 복합소재의 고기능 응용 연구, 0.99)	[(5554, 환경친화 용액법 기 반 RGO 복합소재의 고기능 응용 연구, 1.0),	[(5554, 환경친화 용액법 기 반 RGO 복합소재의 고기능 응용 연구, 0.97)
17426	[(65739, 섬유아세포를 이 용한 세포치료제 개발, 1.0), (139591, 섬	[(329, 신물질 개발 및 적 용을 통한 기능성 화장품 의 개발, 1.0), (349	[(329, 신물질 개발 및 적 용을 통한 기능성 화장품 의 개발, 1.0), (349	[(329, 신물질 개발 및 적 용을 통한 기능성 화장품 의 개발, 1.0), (349		[(139591, 섬유아세포를 이 용한 세포치료제 개발, 0.9), (130141,	
17427	[(67622, 모터 권선의 인덕 턴스와 멀티레벨 회로구 조를 이용한 전기자동차 용 일체	[(329, 신물질 개발 및 적 용을 통한 기능성 화장품 의 개발, 1.0), (349	[(329, 신물질 개발 및 적 용을 통한 기능성 화장품 의 개발, 1.0), (349	[(329, 신물질 개발 및 적 용을 통한 기능성 화장품 의 개발, 1.0), (349	[(136942, 동급대비 30% 이 상 냉방에너지소비효율(EER) 이 항상된 변속도		[(22155, 전기자동차용 인월 모터 및 후륜샤시플랫폼 부 품 개발, 0.92), (
17428	[(96114, 신체적 노쇠수준 이 치매위험에 미치는 영 향 연구, 0.84), (10	[(20842, 농약 노출과 만 성퇴행성 질환의 연관성 규명(I), 0.79), (1	[(17027, 신경병리 PET 뇌 영상기반 알츠하이머성 치매 조기진단 및 예측 기 술	[(123989, 노년기 건강에 대한 사회경제적 요인의 영향-복합만성질환을 중 심으로		[(60642, 알츠하이머병 뇌에 서 해마 연결성의 지도화를 통한 광유전학적 치료,	[(153534, 노쇠의 정책수립 을 위한 과학적 근거 확보, 0.86), (9611
17429	[(54848, 바이러스성출혈 성패혈증바이러스(VHSV) 의 넙치 어체내 침입 연구, 	[(110356, 차세대 시퀀싱 을 이용한 넙치의 VHSV 감염과 관련된 coding	[(148230, 해양의 포식기 생성 원생생물의 탐색 및 진단기법 개발 연구, 0.8	[(111804, 제브라피쉬를 이용한 수산어류질병 감 염모델 구축, 0.82), (8	[(139003, VHSV 감염시 생체 방어기전에 작용하는 nlxr1 의 기능 연구,	[(54848, 바이러스성출혈성 패혈증바이러스(VHSV)의 넙치 어체내 침입 연구,	[(54848, 바이러스성출혈성 패혈증바이러스(VHSV)의 넙지 어제내 침입 연구,
17430	[(38447, 산학연협력 기술 개발 사업, 0.85), (1495, 산학연협력 기술	[(61761, 산·학 협력 연구 단(석유·가스 생산증진), 1.0), (39021,	[(61761, 산·학 협력 연구 단(석유·가스 생산증진), 1.0), (13076,	[(61761, 산·학 협력 연구 단(석유·가스 생산증진), 1.0), (39021,	[(39021, 산·학 협력 연구단 (석유·가스 생산증진), 1.0), (61761,	[(39021, 산·확 협력 연구단 (석유-가스 생산증진), 1.0), (61761,	[(61761, 산·학 협력 연구단 (석유·가스 생산증진), 0.96), (39021

XLM-Roberta 활용

#04-1 XLM-Roberta

#1 기존의 다국어 자연어 처리 모델: mBERT, XML

#2 어휘 희석 -> 사전학습 모델 성능 저하

어휘 희석 - 데이터가 적은 언어와 데이터가 많은 언어들이 섞여 학습되어 각각의 언어 모델에 비해 성능이 저하되는 현상

#04-1 XLM-Roberta

XLM-100

공통점

- language model 기반의 transformer
- Masked Language Model objective 사용
- 100개의 언어의 문자에 대해 처리 가능

향상된 점

- Wiki-100 → 2.5TB의 정제된 CommonCrawl 데이터로 학습
 - → 양이 적었던 언어의 충분한 양의 데이터 획득
 - → 양이 적은 언어에 대해서도 좋은 성능

#04-1 XLM-Roberta

#1 모델의 학습 루틴이 Roberta 모델과 동일

Model	D	#M	#lg	en	fr	es	de	el	bg	ru	tr	ar	vi	th	zh	hi	sw	ur	Avg
Fine-tune multilingual model o	n English tro	aining .	set (Cr	oss-ling	gual Tr	ansfer)													
Lample and Conneau (2019)	Wiki+MT	N	15	85.0	78.7	78.9	77.8	76.6	77.4	75.3	72.5	73.1	76.1	73.2	76.5	69.6	68.4	67.3	75.1
Huang et al. (2019)	Wiki+MT	N	15	85.1	79.0	79.4	77.8	77.2	77.2	76.3	72.8	73.5	76.4	73.6	76.2	69.4	69.7	66.7	75.4
Devlin et al. (2018)	Wiki	N	102	82.1	73.8	74.3	71.1	66.4	68.9	69.0	61.6	64.9	69.5	55.8	69.3	60.0	50.4	58.0	66.3
Lample and Conneau (2019)	Wiki	N	100	83.7	76.2	76.6	73.7	72.4	73.0	72.1	68.1	68.4	72.0	68.2	71.5	64.5	58.0	62.4	71.3
Lample and Conneau (2019)	Wiki	1	100	83.2	76.7	77.7	74.0	72.7	74.1	72.7	68.7	68.6	72.9	68.9	72.5	65.6	58.2	62.4	70.7
XLM-R _{Base}	CC	1	100	85.8	79.7	80.7	78.7	77.5	79.6	78.1	74.2	73.8	76.5	74.6	76.7	72.4	66.5	68.3	76.2
XLM-R	CC	1	100	89.1	84.1	85.1	83.9	82.9	84.0	81.2	79.6	79.8	80.8	78.1	80.2	76.9	73.9	73.8	80.9
Translate everything to English	n and use Eng	glish-o	nly mo	del (TR	RANSLA	ATE-TE	EST)												
BERT-en	Wiki	1	1	88.8	81.4	82.3	80.1	80.3	80.9	76.2	76.0	75.4	72.0	71.9	75.6	70.0	65.8	65.8	76.2
RoBERTa	Wiki+CC	1	1	<u>91.3</u>	82.9	84.3	81.2	81.7	83.1	78.3	76.8	76.6	74.2	74.1	77.5	70.9	66.7	66.8	77.8
Fine-tune multilingual model of	n each traini	ing set	(TRAN	VSLATE	E-TRAI	V)													
Lample and Conneau (2019)	Wiki	N	100	82.9	77.6	77.9	77.9	77.1	75.7	75.5	72.6	71.2	75.8	73.1	76.2	70.4	66.5	62.4	74.2
Fine-tune multilingual model o	n all training	g sets (TRAN	SLATE-	TRAIN	-ALL)													
Lample and Conneau (2019) [†]	Wiki+MT	1	15	85.0	80.8	81.3	80.3	79.1	80.9	78.3	75.6	77.6	78.5	76.0	79.5	72.9	72.8	68.5	77.8
Huang et al. (2019)	Wiki+MT	1	15	85.6	81.1	82.3	80.9	79.5	81.4	79.7	76.8	78.2	77.9	77.1	80.5	73.4	73.8	69.6	78.5
Lample and Conneau (2019)	Wiki	1	100	84.5	80.1	81.3	79.3	78.6	79.4	77.5	75.2	75.6	78.3	75.7	78.3	72.1	69.2	67.7	76.9
XLM-R _{Base}	CC	1	100	85.4	81.4	82.2	80.3	80.4	81.3	79.7	78.6	77.3	79.7	77.9	80.2	76.1	73.1	73.0	79.1
XLM-R	CC	1	100	89.1	<u>85.1</u>	<u>86.6</u>	<u>85.7</u>	<u>85.3</u>	<u>85.9</u>	<u>83.5</u>	<u>83.2</u>	<u>83.1</u>	<u>83.7</u>	<u>81.5</u>	<u>83.7</u>	<u>81.6</u>	<u>78.0</u>	<u>78.1</u>	<u>83.6</u>

#04-2 7위 코드

[private 7위] BERT, XLM-RoBERTa, Logistic, LGBM

3. 사용 모델

- 1, 2 과정을 적용 후 다음과 같은 모델을 만든 후 앙상블 했을 때 제일 좋은 점수를 얻었습니다.
 - 1. xlm-roberta(5fold cv, 모델 수 3(input) * 5(fold) = 15)
 - 2. bert-base-multilingual-cased(5fold cv, 모델 수 3(input) * 5(fold) = 15)
 - 3. Logistic(10fold cv, 모델 수 1(input) * 10(fold) = 10)
 - 4. LightGBM(단일 모델, 모델 수 1)

bert

from transformers import BertForSequenceClassification, BertConfig, BertTokenizer from transformers import XLMRobertaConfig, XLMRobertaTokenizer, XLMRobertaTokenizerFast, XLMRobertaModel, XLMRobertaForSequenceClassification from transformers import AdamW, get_linear_schedule_with_warmup, get_cosine_schedule_with_warmup

THANK YOU

