ÉRETTSÉGI VIZSGA • 2011. október 27

FIZIKA

EMELT SZINTŰ ÍRÁSBELI VIZSGA

2011. október 27. 14:00

Az írásbeli vizsga időtartama: 240 perc

Pótlapok száma						
Tisztázati						
Piszkozati						

NEMZETI ERŐFORRÁS MINISZTÉRIUM

Fontos tudnivalók

A feladatlap megoldásához 240 perc áll rendelkezésére.

Olvassa el figyelmesen a feladatok előtti utasításokat, és gondosan ossza be idejét! A feladatokat tetszőleges sorrendben oldhatja meg.

Használható segédeszközök: zsebszámológép, függvénytáblázatok.

Ha valamelyik feladat megoldásához nem elég a rendelkezésre álló hely, kérjen pótlapot! A pótlapon tüntesse fel a feladat sorszámát is!

írásbeli vizsga 0811 2 / 16 2011. október 27.

Azonosító								
jel:								

ELSŐ RÉSZ

Az alábbi kérdésekre adott válaszok közül minden esetben pontosan egy jó. Írja be a helyesnek tartott válasz betűjelét a jobb oldali fehér négyzetbe! Ha szükségesnek tartja, kisebb számításokat, rajzokat készíthet a feladatlapon.

- 1. Egy v_0 sebességgel haladó autó egyenletesen lassulva fékez és eközben s utat tesz meg, mire megáll. Mekkora utat tenne meg az autó a megállásig, ha $2v_0$ kezdősebességről fékezne ugyanakkora lassulással?
 - A) Szintén s utat tenne meg.
 - **B)** 2s utat tenne meg.
 - **C)** 4*s* utat tenne meg.
 - **D)** 8s utat tenne meg.

2 pont

2. Az ábrán látható kapcsolásban mindhárom izzó egyforma. A 2. számú izzó teljesítménye ekkor 10 W. Mekkora ebben az esetben az 1. számú izzó teljesítménye?

(Az izzók ellenállásának hőmérsékletfüggésétől tekintsünk el!)

- **A)** 5 W
- **B)** 10 W
- **C)** 20 W
- **D)** 40 W

- 3. Mit mondhatunk egy égitest felszínének közelében egy kicsiny test gravitációs gyorsulásának tömegfüggéséről?
 - A) A gravitációs gyorsulás csak a test tömegével arányos.
 - B) A gravitációs gyorsulás csak az égitest tömegével arányos.
 - C) A gravitációs gyorsulás arányos mind a test, mind pedig az égitest tömegével.
 - **D)** A gravitációs gyorsulás sem a test tömegével, sem pedig az égitest tömegével nem arányos.

2 pont	

- 4. Az ideális gáz részecskéi milyen átlagos sebességgel pattannak vissza a gáznál melegebb edény faláról az átlagos becsapódási sebességhez képest?
 - **A)** Az átlagos becsapódási sebességnél nagyobb átlagos sebességgel pattannak vissza.
 - **B)** Pont ugyanakkora átlagos sebességgel pattannak vissza, mint az átlagos becsapódási sebesség.
 - C) Az átlagos becsapódási sebességnél kisebb átlagos sebességgel pattannak vissza.

2 pont

5. Egy ember egy szobamérlegen áll. Egyszer csak leguggol, és úgy marad. Melyik ábra mutatja helyesen az erőt, mellyel a folyamat közben a mérleget nyomja?

- A) Az első ábra.
- B) A második ábra.
- C) A harmadik ábra.
- **D)** A negyedik ábra.

2 pont

- 6. Egy nulla kezdősebességű ³⁵₁₇Cl⁻, illetve ³⁷₁₇Cl⁻ ion homogén elektromos térben azonos úton felgyorsul. Melyiküknek lesz nagyobb az út végén a mozgási energiája? (Az ionokra ható gravitációs erő elhanyagolható!)
 - A) A 35 Cl ion mozgási energiája lesz nagyobb.
 - **B)** A ³⁷₁₇Cl⁻ ion mozgási energiája lesz nagyobb.
 - C) Egyenlő lesz a mozgási energiájuk.

2 pont

Azonosító								
jel:								

7. Mi a különbség a hő és a belső energia fogalma között?

- A) A hő egy folyamatot jellemez, a belső energia egy állapotot.
- B) A hő belső energiává alakulhat, de a belső energia nem alakulhat hővé.
- C) A hő a belső energia egy meghatározott része.

8. Az ábra egy felhevített gáz vonalas színképét szemlélteti. A két vonal közel azonos színű, de a II. vonal jóval fényesebbnek

látszik, mint az I. vonal. Mi a jelenség magyarázata?

- A) A II. vonal frekvenciáján zajlik több elektronátmenet egy másodperc alatt.
- B) A II. vonal a nagyobb frekvenciájú átmenet.
- C) A II. vonal a nagyobb hullámhosszú átmenet.

- 9. Egy tárgyat vízszintesen hajítunk el a Földön és a Holdon. A hajítás kezdősebessége és kiinduló magassága mindkét helyen azonos. Hányszor messzebbre jut a tárgy a hajítás helyétől vízszintes irányban a Holdon, mint a Földön? (A Holdon a gravitációs gyorsulás a földi érték hatoda.)
 - A) A tárgy ugyanolyan messze esik le.
 - B) A tárgy $\sqrt{6}$ -szor messzebb esik le.
 - C) A tárgy hatszor messzebb esik le.
 - **D)** A tárgy 36-szor messzebb esik le.

- 10. A közeghatárra 30 fokos beesési szögben érkező fénysugár 60 fokos törési szög mellett halad tovább. Mekkora a második közegnek az első közegre vonatkoztatott törésmutatója?
 - **A)** $n_{21} < 0.5$
 - **B)** $n_{21} = 0.5$
 - C) $n_{21} > 0.5$

2 pont

11. Két egyforma R_0 belső ellenállású és U_0 elektromotoros erejű góliátelemet az ábrán látható módon sorba kapcsolunk.

Mekkora az így kapott áramforrás elektromotoros ereje és belső ellenállása?

- A) U_0 és R_0 .
- **B)** U_0 és $2R_0$.
- C) $2U_0$ és R_0 .
- **D)** $2U_0$ és $2R_0$.

12. Súlytalan, könnyen mozgó $A = 10 \text{ cm}^2$ területű dugattyú függőleges hengerben h magasságú gázoszlopot zár be. Egy m = 10 kg tömegű testet óvatosan a dugattyúra helyezve a gázoszlopot

összenyomjuk. (A gáz hőmérséklete nem változik.) Mekkora lesz a bezárt gázoszlop magassága? ($g = 10 \frac{\text{m}}{\text{s}^2}$, $p_0 = 10^5 \text{ Pa}$)

- **A)** x < h/2
- **B**) x = h/2
- C) x > h/2

2 pont

- 13. A radioaktivitást felfedező Becquerel kezdetben azt gondolta, hogy az urán ércei tiszta röntgensugárzást bocsátanak ki. Mit tapasztalhatott abban a kísérletben, amely meggyőzhette arról, hogy az uránérc által kibocsátott sugárzás nem lehet tiszta röntgensugárzás?
 - A) Az uránérc sugárzását nagy áthatoló képességűnek találta.
 - B) Az uránére sugárzását ionizáló hatásúnak találta.
 - C) Az uránérc sugárzását elektromágneses térben eltéríthetőnek találta.

	_	
Fizika —	emelt	szint

Azonosító								
jel:								

14. Egy test egy felfüggesztett rugón lóg, s alatta, egy cérnával hozzá erősítve egy másik test lóg. Amikor elvágjuk a cérnát, akkor melyik test gyorsulása lesz nagyobb?

- A) A felső test gyorsulása lesz nagyobb.
- B) Az alsó test gyorsulása lesz nagyobb.
- C) Annak a testnek a gyorsulása lesz nagyobb, amelyik nagyobb tömegű.
- **D)** Annak a testnek a gyorsulása lesz nagyobb, amelyik kisebb tömegű.

2 pont	
--------	--

- 15. Két, radioaktív izotópot tartalmazó mintánk van. Az egyikben 1 óra felezési idejű atommagok vannak, a másikban pedig 5 óra felezési idejűek. Kezdetben a két minta aktivitása megegyezik. Mit mondhatunk a két minta aktivitásáról néhány órával később?
 - A) A két minta aktivitása azonos maradt.
 - B) A kisebb felezési idejű izotópot tartalmazó minta aktivitása a nagyobb.
 - C) A nagyobb felezési idejű izotópot tartalmazó minta aktivitása a nagyobb.

írásbeli vizsga 0811 7 / 16 2011. október 27.

Azonosító								
jel:								

MÁSODIK RÉSZ

Az alábbi három téma közül válasszon ki egyet és fejtse ki másfél-két oldal terjedelemben, összefüggő ismertetés formájában! Ügyeljen a szabatos, világos fogalmazásra, a logikus gondolatmenetre, a helyesírásra, mivel az értékelésbe ez is beleszámít! Mondanivalóját nem kell feltétlenül a megadott szempontok sorrendjében kifejtenie. A megoldást a következő oldalra írhatja.

1. Sztatikus elektromos tér

Akármint töltessék is meg, a "nagy menyköves palack", a legkevesebb jelét sem mutatja a melegségnek. Ha csak meg nem gyullad, nem világít, tehát a menykőszert sem csupa tűznek, sem világítónak okosan nem mondhatjuk.

Varga Márton: A gyönyörű természet tudománya (1808)

Ismertesse az elektromos térerősség fogalmát! Hogyan írható le az elektromos tér erővonalak segítségével, hogyan jellemzik az erővonalak a térerősség nagyságát és irányát? Mutassa be a homogén elektromos tér és egy abba helyezett szigeteletlen, tömör fémgömb együttes erővonalrendszerét! Jellemezze az elektromos térerősség nagyságát a gömbön belül és irányát a gömb felszínén! Ismertesse az ekvipotenciális felület fogalmát, s mutassa meg a fenti példán az erővonalrendszer és az ekvipotenciális felületek viszonyát!

2. Mechanikai rezgések

Minden időszakilag visszakerülő és megújuló mozgásokat, melyeknél a testek egyes részecskéi helyükből bizonyos irányba szabályosan ki és visszatérnek, s amelyek a testeknek vagy a felszínén, vagy a belsejükben mutatkoznak, lengő, rezgő, hintázó, hullámzó, vagy lebegő mozgásoknak nevezzük.

Schirkhuber Móricz: Az elméleti és tapasztalati természettan alaprajza (1851)

Kísérleti tapasztalatra hivatkozva mutassa meg, mi a kapcsolat az egyenletes körmozgás és a harmonikus rezgőmozgás között! Ezek alapján határozza meg a rezgőmozgást leíró mennyiségeket! Ismertesse a rezgő rendszer energetikai viszonyait ideális körülmények között, s mutassa meg az energiaviszonyok alakulását a gyakorlatban, valós körülmények között egy konkrét példán!

Azonosító								
jel:								

3. Fényelektromos jelenség

Albert Einstein az 1905-ös évben három kiemelkedő jelentőségű cikket publikált: a speciális relativitáselméletről, a Brown-mozgásról s a Lénárd Fülöp által felfedezett fényelektromos jelenség értelmezéséről. Az 1922-es év fizikai Nobel-díját Einstein ez utóbbi munkájáért kapta.

Ismertesse a fényelektromos jelenség lényegét! Értelmezze a kilépési munka és a határfrekvencia fogalmát! Mutassa be az energia kvantáltságának hipotézisét, nevezze meg megalkotóját, fejtse ki, hogy a fényelektromos jelenség hogyan támasztja alá érvényességét! Mutassa meg, hogy a jelenség az energia elnyelésére vonatkozó klasszikus elv alapján nem értelmezhető! Mutasson be két példát a fényelektromos jelenség gyakorlati felhasználására!

Tartalom	Kifejtés	Összesen
18 pont	5 pont	23 pont

	<u></u>							
Fizika — emelt szint	Azonosító jel:							

írásbeli vizsga 0811 10/16 2011. október 27.

HARMADIK RÉSZ

Oldja meg a következő feladatokat! Megállapításait – a feladattól függően – szövegesen, rajzzal vagy számítással indokolja is! Ügyeljen arra is, hogy a használt jelölések egyértelműek legyenek!

- 1. Álló helyzetből elengedett pontszerű test csúszik le egy 1 m magas, 30 fokos hajlásszögű lejtőn. Ezután egy ismeretlen magasságú, 60 fokos hajlásszögű lejtőn engedjük le a testet. Azt tapasztaljuk, hogy a lecsúszás ideje a két esetben azonos volt. (A súrlódás elhanyagolható.)
 - a) Mekkora a 60 fokos hajlásszögű lejtő hossza?
 - b) Mekkora sebességgel érkezik le a test a lejtők aljára az első és a második esetben?

$$(g=10\frac{m}{s^2})$$

a)	b)	Összesen
7 pont	5 pont	12 pont

2. Hány elektron halad át egy másodperc alatt a 40 Ω ellenállású fémes vezető egy kiszemelt keresztmetszetén, ha a vezető végeire 1,6 V feszültséget kapcsolunk?

Összesen

10 pont

írásbeli vizsga 0811 12 / 16 2011. október 27.

3. Függőleges falú, 10 cm széles üvegedényben 10 cm magasságig víz van. Az edény egyik oldalfalához egy ernyőt illesztünk, másik oldalfalán keresztül pedig egy lézersugárral bevilágítunk a vízbe. A lézersugár a vízfelszín alatt 6 cm-rel éri el az edényt. A lézerfény a rajz síkjában halad. A víz levegőre vonatkoztatott törésmutatója n=1,5. (Az edény falának vastagsága elhanyagolható.)

- a) Milyen magasan éri el a lézerfény az edény mögé helyezett ernyőt, ha a lézerfény beesési szöge 45°?
- b) Elérheti-e a lézerfény az ernyőt a vízfelszín felett, ha másféle beesési szöget választunk és kikötjük, hogy a fény csak kétszer szenvedhet irányváltozást?

A tételkészítő bizottság a feladatot az alábbiak szerint módosította:

Függőleges falú, 10 cm széles üvegedényben 10 cm magasságig olaj van. Az edény egyik oldalfalához egy ernyőt illesztünk, másik oldalfalán keresztül pedig egy lézersugárral bevilágítunk az olajba. A lézersugár az olaj felszíne alatt 6 cm-rel éri el az edényt. A lézerfény a rajz síkjában halad. Az olaj levegőre vonatkoztatott törésmutatója n = 1,5. (Az edény falának vastagsága elhanyagolható.)

- a) Milyen magasan éri el a lézerfény az edény mögé helyezett ernyőt, ha a lézerfény beesési szöge 45°?
- b) Elérheti-e a lézerfény az ernyőt az olaj felszíne felett, ha másféle beesési szöget választunk és kikötjük, hogy a fény csak kétszer szenvedhet irányváltozást?

írásbeli vizsga 0811 13 / 16 2011. október 27.

a)	b)	Összesen
5 pont	9 pont	14 pont

- 4. Egyik végén zárt, másik végén nyitott sípba hélium (He) gázt töltve, majd a sípot megszólaltatva 525,5 Hz frekvenciájú alaphangot kapunk. E sípot egy másik gázzal megtöltve az alaphang frekvenciája 235 Hz lesz. A hang terjedési sebessége a He gázban $c = 610 \, \frac{\text{m}}{\text{s}}$.
 - a) Rajzolja le a sípban kialakuló hullámképet! Számítsa ki a hang terjedési sebességét az ismeretlen gázban! Határozza meg a síp hosszát!
 - b) Rajzolja le az első felharmonikus hullámképét a sípban! Számítsa ki az első felharmonikus frekvenciáját mindkét gáz esetén!

a)	b)	Összesen
6 pont	5pont	11 pont

írásbeli vizsga 0811 15 / 16 2011. október 27.

T	4.	
Fizika —	– emelt	SZ1111

Azonosító								
jel:								

Figyelem! Az értékelő tanár tölti ki!

SZÁMA	,	30 18 5	
SZÁMA		5	
SZÁMA			
SZÁMA		47	
SZÁMA		47	
]	100	
		javító	tanár
pontsz egés szám	ám z ra	beirt eg	gész
11010111			
-			
	elér pontsz egés szám	elért pontszám egész számra kerekítve	pontszám program egész beírt eg számra pontsz