Class#17

Zainab Ashir

2023-06-03

Import vaccination data
data <- "https://marcos-diazg.github.io/BIMM143_SP23/class-material/class17/covid19vaccinesbyzipcode_test.csv"
vax <- read.csv(data)
head(vax)</pre>

as_of_date <chr></chr>	zip_code_tabulation_area <int></int>	local_health_jurisdiction <chr></chr>	county <chr></chr>
1 2021-01-05	94579	Alameda	Alameda
2 2021-01-05	93726	Fresno	Fresno
3 2021-01-05	94305	Santa Clara	Santa Clara
4 2021-01-05	93704	Fresno	Fresno
5 2021-01-05	94403	San Mateo	San Mateo
6 2021-01-05	93668	Fresno	Fresno
6 rows 1-5 of 20 columns			

Q1. What column details the total number of people fully vaccinated?

##It would be the column labeled "persons_fully_vaccinated"

Q2. What column details the Zip code tabulation area?

##It would be the column labeled "zip_code-tabulation_area"

Q3. What is the earliest date in this dataset?

##The earliest date is 2021-01-05

Q4. What is the latest date in this dataset?

##The latest date is 2023-05-23

skimr::skim_without_charts(vax)

Data summary

Name	vax
Number of rows	220500
Number of columns	19

Column type frequency:

character 5

14

numeric

Group variables None

Variable type: character

skim_variable	n_missing	complete_rate	min	max	empty	n_unique	whitespace
as_of_date	0	1	10	10	0	125	0
local_health_jurisdiction	0	1	0	15	625	62	0
county	0	1	0	15	625	59	0
vem_source	0	1	15	26	0	3	0
redacted	0	1	2	69	0	2	0

Variable type: numeric

skim_variable	n_missing	complete_rate	mean	sd	p0	p25	p50	p75	p100
zip_code_tabulation_area	0	1.00	93665.11	1817.38	90001	92257.75	93658.50	95380.50	97635.0
vaccine_equity_metric_quartile	10875	0.95	2.44	1.11	1	1.00	2.00	3.00	4.0
age12_plus_population	0	1.00	18895.04	18993.87	0	1346.95	13685.10	31756.12	88556.7
age5_plus_population	0	1.00	20875.24	21105.97	0	1460.50	15364.00	34877.00	101902.0
tot_population	10750	0.95	23372.77	22628.50	12	2126.00	18714.00	38168.00	111165.0
persons_fully_vaccinated	17711	0.92	14272.72	15264.17	11	954.00	8990.00	23782.00	87724.0
persons_partially_vaccinated	17711	0.92	1711.05	2071.56	11	164.00	1203.00	2550.00	42259.0
percent_of_population_fully_vaccinated	22579	0.90	0.58	0.25	0	0.44	0.62	0.75	1.0
percent_of_population_partially_vaccinated	22579	0.90	0.08	0.09	0	0.05	0.06	0.08	1.0
percent_of_population_with_1_plus_dose	23732	0.89	0.64	0.24	0	0.50	0.68	0.82	1.0
booster_recip_count	74388	0.66	6373.43	7751.70	11	328.00	3097.00	10274.00	60022.0
bivalent_dose_recip_count	159956	0.27	3407.91	4010.38	11	222.00	1832.00	5482.00	29484.0
eligible_recipient_count	0	1.00	13120.40	15126.17	0	534.00	6663.00	22517.25	87437.0
eligible_bivalent_recipient_count	0	1.00	13016.51	15199.08	0	266.00	6562.00	22513.00	87437.0

Q5. How many numeric columns are in this dataset?

##There are 14 numeric colums.

Q6. Note that there are "missing values" in the dataset. How many NA values there in the persons_fully_vaccinated column?

```
NA_num<- sum( is.na(vax$persons_fully_vaccinated) )
NA_num
```

[1] 17711

##Thus, there is 17711 NA values.

```
Q7. What percent of persons fully vaccinated values are missing (to 2 significant figures)?
 sum(is.na(vax$persons_fully_vaccinated)) / nrow(vax) * 100
 ## [1] 8.0322
##Thus, it seems that percent of persons_fully_vaccinated is 8.03%
   Q9. How many days have passed since the last update of the dataset?
 library(lubridate)
 ##
 ## Attaching package: 'lubridate'
 ## The following objects are masked from 'package:base':
 ##
 ##
        date, intersect, setdiff, union
 vax$as_of_date <- ymd(vax$as_of_date)</pre>
 today() - vax$as_of_date[nrow(vax)]
 ## Time difference of 11 days
   Q10. How many unique dates are in the dataset (i.e. how many different dates are detailed)?
 num_unique_dates <- length(unique(vax$as_of_date))</pre>
 num_unique_dates
 ## [1] 125
##Thus, there are 125 unique dates in the dataset.
 library(zipcodeR)
 ## The legacy packages maptools, rgdal, and rgeos, underpinning this package
 ## will retire shortly. Please refer to R-spatial evolution reports on
 ## https://r-spatial.org/r/2023/05/15/evolution4.html for details.
 ## This package is now running under evolution status 0
 library(dplyr)
 ##
 ## Attaching package: 'dplyr'
 ## The following objects are masked from 'package:stats':
 ##
 ##
        filter, lag
```

```
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
```

geocode_zip('92037')

zipcode <chr></chr>	lat <dbl></dbl>	Ing <dbl></dbl>
92037	32.8	-117.2
1 row		

zip_distance('92037','92109')

zipcode_a <chr></chr>	zipcode_b <chr></chr>	distance <dbl></dbl>
92037	92109	2.33
1 row		

Q11. How many distinct zip codes are listed for San Diego County?

```
library(dplyr)
sd <- filter(vax, county == "San Diego")
nrow(sd)</pre>
```

[1] 13375

[1] 19

##It seems that there are 19 unique zip codes listed for san diego.

Q12. What San Diego County Zip code area has the largest population in this dataset?

which.max(sd.zip\$tot_population)

[1] 87

sd.zip

as_of_date <date></date>	zip_code_tabulation_area loc <int> <c< th=""><th></th><th>county <chr></chr></th></c<></int>		county <chr></chr>
2021-01-05	91977 Sa	n Diego	San Diego
2021-01-05	92110 Sa	n Diego	San Diego
2021-01-05	92101 Sa	ın Diego	San Diego

as_of_date <date></date>	zip_code_tabulation_area <int></int>	local_health_jurisdiction <chr></chr>		county <chr></chr>	•
2021-01-05	92071	San Diego		San Diego	
2021-01-05	92070	San Diego		San Diego	
2021-01-05	92028	San Diego		San Diego	
2021-01-05	92024	San Diego		San Diego	
2021-01-05	92059	San Diego		San Diego	
2021-01-05	92021	San Diego		San Diego	
2021-01-05	92003	San Diego		San Diego	
1-10 of 10,000 rows 1-4 of 19	columns	Previous	1 2 3 4	5 6 1000 N	lext

##Thus, this 87 number of row corrosponds to 92154 zipcode.

Q13. What is the overall average (with 2 decimal numbers) "Percent of Population Fully Vaccinated" value for all San Diego "County" as of "2023-05-23"?

```
SD_data <- vax[vax$county == "San Diego" & vax$as_of_date == "2023-05-23", ]
average_percent_vaccinated <- mean(SD_data$percent_of_population_fully_vaccinated, na.rm = TRUE)
average_percent_vaccinated * 100
```

[1] 74.19654

##Thus, it seems that the answer is 74.20%

Q14. Using either ggplot or base R graphics make a summary figure that shows the distribution of Percent of Population Fully Vaccinated values as of "2023-05-23"?

```
date_data <- vax[vax$as_of_date == "2023-05-23", ]
Percent_data<-date_data$percent_of_population_fully_vaccinated
hist(Percent_data)</pre>
```

Histogram of Percent_data

Q15. Using ggplot make a graph of the vaccination rate time course for the 92037 ZIP code area

```
ucsd <- filter(sd, zip_code_tabulation_area=="92037")
ucsd[1,]$age5_plus_population</pre>
```

```
## [1] 36144
```


Q16. Calculate the mean "Percent of Population Fully Vaccinated" for ZIP code areas with a population as large as 92037 (La Jolla) as_of_date "2023-05-23". Add this as a straight horizontal line to your plot from above with the geom_hline() function?

```
mean_percent <- mean(vax.36$percent_of_population_fully_vaccinated)
mean_percent *100</pre>
```

```
## [1] 72.25892
```

##It is 72.26%

```
#Now add it to the graph
library(ggplot2)
ggplot(ucsd) +
   aes(x=as_of_date,
        y=percent_of_population_fully_vaccinated) +
   geom_point() +
   geom_line(group=1)+ geom_hline(aes(yintercept=mean_percent), color="red", linetype="dashed") +
   ylim(c(0,1)) +
   labs("Date", y="Percent Vaccinated")
```


Q17. What is the 6 number summary (Min, 1st Qu., Median, Mean, 3rd Qu., and Max) of the "Percent of Population Fully Vaccinated" values for ZIP code areas with a population as large as 92037 (La Jolla) as_of_date "2023-05-23"?

```
#when summary comes into play...
summary(vax.36$percent_of_population_fully_vaccinated)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.3816 0.6469 0.7207 0.7226 0.7924 1.0000
```

Q18. Using ggplot generate a histogram of this data

```
ggplot(vax.36, aes(percent_of_population_fully_vaccinated)) + geom_histogram() + xlim(c(0,1))
```

```
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```

Warning: Removed 2 rows containing missing values (`geom_bar()`).

Q19. Is the 92109 and 92040 ZIP code areas above or below the average value you calculated for all these above?

#percent for 92109

library(dplyr)

vax %>% filter(as_of_date == "2022-02-22") %>% filter (zip_code_tabulation_area=="92109") %>% select (percent_of_
population_fully_vaccinated)

percent_of_population_fully_vaccinated

<dbl>

0.675129

1 row

#percent for 92040

library(dplyr)

vax %>% filter(as_of_date == "2022-02-22") %>% filter (zip_code_tabulation_area=="92040") %>% select (percent_of_
population_fully_vaccinated)

 $percent_of_population_fully_vaccinated$

0.533991

1 row

##Based on these two percentages above, both of them are bewlow the average value I calculated previously.

Q20. Finally make a time course plot of vaccination progress for all areas in the full dataset with a age5_plus_population > 36144.

```
vax.36.all <- filter(vax, age5_plus_population> 36144)

ggplot(vax.36.all) +
   aes(as_of_date,
        percent_of_population_fully_vaccinated,
        group=zip_code_tabulation_area) +
   geom_line(alpha=0.2, color="blue") +
   ylim(0,1) +
   labs(x="Date", y="Percent Vaccinated",
        title="Vaccination rate across California",
        subtitle="only areas with a population above 36k are shown") +
   geom_hline(yintercept =mean_percent , linetype="dashed")
```

Warning: Removed 185 rows containing missing values (`geom_line()`).

Vaccination rate across California

only areas with a population above 36k are shown

