High Fidelity Qubit Mapping for IBM Q

2nd International Workshop on Quantum Compilation

Keio University Quantum Computing Center

Shin Nishio, Yulu Pan, Takahiko Satoh, Rodney Van Meter

Quantum Computer Architecture

Quantum Computer Architecture

Function of Compilation

- Optimize Quantum Circuit
 - gate disassembly & assembly ex) Solovay-Kitaev
 [Dawson 2005, arXiv]
 - decrease T-Depth
- Quantum Error Correction (post NISQ?)
- Quantum Distributed Computation (post NISQ?)
- Convert logical quantum circuit into physical quantum circuit.
 - Qubit Mapping

Existing Architecture (IBMQ Qiskit)

Definition of NISQ

Noisy

- ibmq20_tokyo [IBMQ 2018]
 - Gate error (10^{-3}) : 1.83
 - Bi-Qubit Gate error (10^{-2}) : 8.06 (IBMQ16)
 - Readout error (10^{-2}) : 8.58
- Error rate of each qubit is unequal

Intermediate-Scale

• # of Qubits in a processor: about $10\sim10^3$

Definition of problem

Compare analytic simple error model with the reality of the machine.

Enable error aware compilation.

The Story

- 1. Characterize the machine
- 2. Create an estimation of circuit success probability
- 3. Compare to the reality of the machine
- 4. (incorporate into compilation process; Pan et al., later this morning)

Randomized Benchmarking (RB)

Get $\overline{F^{ave}}$ (Average Gate Set Fidelity) [Knill 2007, PRA]

Can be used as a cost function

Clifford gate:
$$C_n = \{U: UP_nU^{\dagger} = P_m\}$$

$$C_{m+1} = \left(\prod_{i=1}^{m} C_i\right)^{\dagger}$$

$$|\psi\rangle$$
 — C_1 — C_2 — C_3 — C_4 — \cdots — C_m — C_{m+1} — \sim

RB on IBMQ

Randomized Benchmarking (0th Qubit of IBMQ20 Tokyo)

of single clifford gates

Error model

- 1. G(single qubit gate error)
- 2. B(bi-qubit gate error)
- 3. SPAM(state preparation and measurement)

Error model

- 1. G(single qubit gate error)
- 2. B(bi-qubit gate error)
- 3. SPAM(state preparation and measurement)

Error model

- 1. G(single qubit gate error)
- 2. B(bi-qubit gate error)
- 3. SPAM(state preparation and measurement)

For IBMQ20 G<<B<SPAM

Success Probability

Problem 1: Path Selection

an example of grid architecture

IBMQ20 TOKYO

Scale of the Problem

one of the longest "shortest path" in IBMQ20 TOKYO

Eccentricity

Max distance to another qubit

- 10₄ 11₃ 12₃ 13₃ 14₄
- 15₄ 16₃ 17₄ 18₄ 19₄

Eccentricity

Max distance to another qubit

- $(0)_{4}$ $(1)_{3}$ $(2)_{4}$ $(3)_{4}$ (4)Goal (near term) (9)
 4 Hops path selection
 (10)
 (11)
 (12)
 (13)
 (14)
 (14)
 (15)
 - 15₄ 16₃ 17₄ 18₄ 19₄

2 Hops Path Selection

Logical Circuit (written by programmers)

Implementation

2 Hops Path Selection

Logical Circuit (written by programmers)

Succeeded in 70.0% of All 3-hops paths in IBMQ20 Tokyo

3 Hops Circuit

Circuit for the Benchmarking 3-hops path

3 Hops Circuit

CNOT path selection in grid architecture

3 Hops Path Selection

Succeeded in 66.6% of All 3-hops paths in IBMQ20 Tokyo

4 Hops Circuit

Circuit for the Benchmarking 4-hops path

4 Hops Path Selection

CNOT path selection in grid architecture

4 hops path

CNOT path selection in grid architecture

Correlation Between S_{est} and S_{act}

Correlation Between S_{est} and S_{act}

Need to find more correlated value

Problem2: Three body Problem

Equivalent Circuits for Circuit A

Equivalent Circuits for Circuit A

Circuit B

Circuit C

Circuit D

Error of each circuits

Circuit B

Circuit C

$$Q0|\alpha\rangle$$
 $Q1|\beta\rangle$
 $Q2|\gamma\rangle$
 $Q2|\gamma\rangle$
 $Q3|\alpha\rangle$

Circuit D

$$(G_0)^2(G_2)^2(B_{01})(B_{12})^4$$

Three body problem

Conclusion

- S_{est} is useful for 2-4 hops path selection.
- Using single parameter (e.g. output of RB) is not good enough to estimate long CNOT path S_{est} of quantum circuit.
- We need more sophisticated error model.

Future work

near 50 qubit device?

Future work

Use Other Error Model

- more physical
 - T1, T2 & time for execute gate
 - leakage
 - crosstalk
 - Divide
 - Decoherence
 - Dephasing
 - Unitary

References(1)

[shor 1995, SISC]

Peter W. Shor, Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer, SIAM J.Sci.Statist.Comput. 26 (1997) 1484

[Strauch 2003, PRL]

Frederick W. Strauch, Philip R. Johnson, Alex J. Dragt, C.J. Lobb, J.R. Anderson, F.C. Wellstood, Quantum logic gates for coupled superconducting phase qubits, Phys. Rev. Lett. 91, 167005 (2003) [Horsman 2011, NJP]

Clare Horsman, Austin G. Fowler, Simon Devitt, Rodney Van Meter, **Surface code quantum** computing by lattice surgery, 2012 New J. Phys. 14 123011

[McKay 2018, arXiv]

David C. McKay, Thomas Alexander, Luciano Bello, Michael J. Biercuk, Lev Bishop, Jiayin Chen, Jerry M. Chow, Antonio D. Córcoles, Daniel Egger, Stefan Filipp, Juan Gomez, Michael Hush, Ali Javadi-Abhari, Diego Moreda, Paul Nation, Brent Paulovicks, Erick Winston, Christopher J. Wood, James Wootton, Jay M. Gambetta, Qiskit Backend Specifications for OpenQASM and OpenPulse Experiments, arXiv:1809.03452[quant-ph]

References(2)

[Houck 2008, PRL]

A. A. Houck, J. A. Schreier, B. R. Johnson, J. M. Chow, Jens Koch, J. M. Gambetta, D. I. Schuster, L. Frunzio, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, **Controlling the Spontaneous Emission of a Superconducting Transmon Qubit**, Phys. Rev. Lett. 101, 080502

[Dawson 2005, arXiv]

Christopher M. Dawson, Michael A. Nielsen, **The Solovay-Kitaev algorithm**, arXiv:0505030 [quant-ph]

[IBMQ 2018]

IBM, Quantum devices and simulators, accessed 2018/11/4 https://www.research.ibm.com/ibm-q/technology/devices/[Knill 2007, PRA]

E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, D. J. Wineland, Randomized Benchmarking of Quantum Gates, Phys. Rev. A 77, 012307

Thanks for Listening!