DSC 1408 Representation Learning

Lecture 04 | Part 1

The Spectral Theorem

Eigenvectors

Let A be an $n \times n$ matrix. An eigenvector of A with eigenvalue λ is a nonzero vector \vec{v} such that $A\vec{v} = \lambda \vec{v}$.

Eigenvectors (of Linear Transformations)

Let \vec{f} be a linear transformation. An eigenvector of \vec{f} with eigenvalue λ is a nonzero vector \vec{v} such that $f(\vec{v}) = \lambda \vec{v}$.

Importance

We will see why eigenvectors are important in the next part.

For now: what are they?

Geometric Interpretation

- Mhen \vec{f} is applied to one of its eigenvectors, \vec{f} simply scales it.
 - Possibly by a negative amount.

Exercise

Draw as many (linearly independent) eigenvectors as you can:

$$A = \begin{pmatrix} 5 & 0 \\ 0 & 2 \end{pmatrix}$$

Finding Eigenvectors

- We typically compute the eigenvectors of a matrix with a computer.
- But it can help our understanding to find them "graphically".

Procedure

Given a matrix A (or transformation \vec{f}), to find an eigenvector "graphically".

- 1. Think about (or draw) the output of \vec{f} for a handful of unit vector inputs.
 - Linear transformations are continuous so you can "interpolate".
- 2. Find place(s) where the input vector and the output vector are parallel.

Exercise

Draw as many (linearly independent) eigenvectors as you can:

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 3 \end{pmatrix}$$

Exercise

Consider the linear transformation which mirrors its input over the line of 45°. Give two orthogonal eigenvectors of the transformation.

Alternate Procedure: Guess and Check

- 1. Guess a vector \vec{x} .
- 2. Check that $\vec{f}(\vec{x}) = \lambda \vec{x}$.

Exercise

Draw as many (linearly independent) eigenvectors as you can:

$$A = \begin{pmatrix} 5 & 5 \\ -10 & 12 \end{pmatrix}$$

Caution!

- Not all matrices have even one eigenvector!¹
- When does a matrix have multiple (linearly independent) eigenvectors?

¹That is, with a *real-valued* eigenvalue.

Symmetric Matrices

► Recall: a matrix A is **symmetric** if $A^T = A$.

The Spectral Theorem²

► **Theorem**: Let A be an n × n symmetric matrix. Then there exist n eigenvectors of A which are all mutually orthogonal.

²for symmetric matrices

What?

- What does the spectral theorem mean?
- What is an eigenvector, really?
- Why are they useful?

Example Linear Transformation

$$A = \begin{pmatrix} 5 & 5 \\ -10 & 12 \end{pmatrix}$$

Example Linear Transformation

$$A = \begin{pmatrix} -2 & -1 \\ -5 & 3 \end{pmatrix}$$

Example Symmetric Linear Transformation

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 3 \end{pmatrix}$$

Symmetric linear transformations have axes of symmetry.

The axes of symmetry are **orthogonal** to one another.

The action of \vec{f} along an axis of symmetry is simply to scale its input.

The size of this scaling can be different for each axis.

Main Idea

The **eigenvectors** of a symmetric linear transformation (matrix) are its axes of symmetry. The **eigenvalues** describe how much each axis of symmetry is scaled.

Diagonal Matrices

► If A is diagonal, its eigenvectors are simply the standard basis vectors.

$$A = \begin{pmatrix} 2 & 0 \\ 0 & 5 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & -0.1 \\ -0.1 & 5 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & -0.2 \\ -0.2 & 5 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & -0.3 \\ -0.3 & 5 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & -0.4 \\ -0.4 & 5 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & -0.5 \\ -0.5 & 5 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & -0.6 \\ -0.6 & 5 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & -0.7 \\ -0.7 & 5 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & -0.8 \\ -0.8 & 5 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & -0.9 \\ -0.9 & 5 \end{pmatrix}$$

Non-Diagonal Symmetric Matrices

- When a symmetric matrix is not diagonal, its eigenvectors are not the standard basis vectors.
- But they can be used to form an orthonormal basis!

The Spectral Theorem³

Theorem: Let A be an n x n symmetric matrix. Then there exist n eigenvectors of A which are all mutually orthogonal.

³for symmetric matrices

What about total symmetry?

Every vector is an eigenvector.

$$A = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$$

Computing Eigenvectors

DSC 1408 Representation Learning

Lecture 04 | Part 2

Why are eigenvectors useful?

OK, but why are eigenvectors⁴ useful?

- 1. Eigenvectors are nice "building blocks" (basis vectors).
- 2. Eigenvectors are **maximizers** (or minimizers).
- 3. Eigenvectors are equilibria.

⁴of symmetric matrices

Vector Decomposition

- We can always "decompose" a vector \vec{x} in terms of the basis vectors.
- With respect to the standard basis:

$$\vec{x} = a_1 \hat{e}^{(1)} + a_2 \hat{e}^{(2)} + ... + a_d \hat{e}^{(d)}$$

Eigendecomposition

- If A is a symmetric matrix, we can pick d of its eigenvectors $\hat{u}^{(1)}, ..., \hat{u}^{(d)}$ to form an orthonormal basis.
- Any vector \vec{x} can be written in terms of this basis.
- ► This is called its **eigendecomposition**:

$$\vec{x} = b_1 \hat{u}^{(1)} + b_2 \hat{u}^{(2)} + ... + b_d \hat{u}^{(d)}$$

Eigendecomposition

Why?

Compare working in the standard basis decomposition:

$$A\vec{x} = A(a_1\hat{e}^{(1)} + a_2\hat{e}^{(2)} + \dots + a_d\hat{e}^{(d)})$$
$$= a_1 A\hat{e}^{(1)} + a_2 A\hat{e}^{(2)} + \dots + a_d A\hat{e}^{(d)}$$

► To working with the eigendecomposition:

$$A\vec{x} = A(b_1\hat{u}^{(1)} + b_2\hat{u}^{(2)} + \dots + b_d\hat{u}^{(d)})$$

$$= b_1A\hat{u}^{(1)} + b_2A\hat{u}^{(2)} + \dots + b_dA\hat{u}^{(d)})$$

$$= \lambda_1b_1\hat{u}^{(1)} + \lambda_2b_2\hat{u}^{(2)} + \dots + \lambda_db_d\hat{u}^{(d)}$$

Main Idea

If A is a symmetrix matrix, an eigenbasis formed from its eigenvectors is an especially natural basis.

Eigenvectors as Optimizers

Eigenvectors are the solutions to certain common optimization problems involving matrices / linear transformations.

Exercise

Draw a unit vector \vec{x} such that $||A\vec{x}||$ is largest.

Observation #1

- $\vec{f}(\vec{x})$ is longest along the "main" axis of symmetry.
 - In the direction of the eigenvector with largest eigenvalue.

Main Idea

To maximize $||A\vec{x}|| = ||\vec{f}(\vec{x})||$ over unit vectors, pick \vec{x} to be an eigenvector of \vec{f} with the largest eigenvalue (in abs. value).

Main Idea

To **minimize** $\|\vec{f}(\vec{x})\|$ over unit vectors, pick \vec{x} to be an eigenvector of \vec{f} with the smallest eigenvalue (in abs. value).

Proof

Show that the maximizer of $||A\vec{x}||$ s.t., $||\vec{x}|| = 1$ is the top eigenvector of A.

Corollary

To maximize $\vec{x} \cdot A\vec{x}$ over unit vectors, pick \vec{x} to be top eigenvector of A.

Example

Maximize $4x_1^2 + 2x_2^2 + 3x_1x_2$ subject to $x_1^2 + x_2^2 = 1$

Observation #2

- $\vec{f}(\vec{x})$ rotates \vec{x} towards the "top" eigenvector \vec{v} .
- $ightharpoonup \vec{v}$ is an equilibrium.

The Power Method

- Method for computing the top eigenvector/value of A.
- ► Initialize $\vec{x}^{(0)}$ randomly
- Repeat until convergence:
 - Set $\vec{x}^{(i+1)} = A\vec{x}^{(i)} / ||A\vec{x}^{(i)}||$