

BUAN/OPRE 6398 Prescriptive Analytics

Decision Analysis

Rasoul Ramezani

School of Management
The University of Texas at Dallas

Lecture Outline

- Decision Rules
 - Non-probabilistic
 - Maximax
 - Maximin
 - Minimax Regret
 - Probabilistic
 - Expected Monetary Value (EMV)
 - Expected Opportunity Loss (EOL)
- Decision Trees
- Risk Analysis Techniques
 - Sensitivity Analysis
 - Tornado Charts
 - Strategy Tables
 - Strategy Charts

Introduction

- Models help managers gain insight and understanding but can't make decisions.
- Decision-making often remains a challenging task due to the:
 - 1. Uncertainty regarding the future.
 - 2. Conflicting values or objectives.
- **Example:** You got an offer for a Data Analysis position from two companies: A and B
- Company A
 - In a new industry that could boom or bust.
 - Low starting salary but could increase rapidly.
 - Located near friends, family, and favorite sports team.
- Company B
 - An established firm with financial strength and commitment to employees.
 - Higher starting salary but slower advancement opportunity.
 - Distant location, offering few cultural or sporting activities.
- Good Decisions vs. Good Outcomes
 - A structured approach to decision-making can help us make good decisions, but it cannot guarantee good outcomes.
 - Good decisions sometimes result in bad outcomes.

Characteristics of Decision Problems

- Alternatives/ Options: Courses of action taken to make a decision. E.g.,
 - Working for Company A
 - Working for Company B
 - Rejecting both offers and keep searching
- Criteria: Factors that are important to the decision maker and are influenced by the alternatives.
 - Starting Salary
 - Career Potential
 - Location
- States of Nature: Future events that are not under the decision maker's control.
 - Company A grows
 - Company A bankrupts

An Example: Magnolia Inns

- Hartsfield International Airport in Atlanta, Georgia, has expanded many times to handle increasing air traffic.
- Commercial development around the airport prevents it from building more runways.
- Plans are being made to build another airport outside the city limits.
- Two possible locations for the new airport have been identified:
 - Location A
 - Location B
- A final decision will not be made for a year.
- The Magnolia Inns hotel chain intends to build a new facility near the new airport.

Payoff Matrix					
Land	Land Airport Location				
purchased at:	Α	В			
Α	\$13	(\$12)			
В	(\$8)	\$11			
A&B	`\$5 [°]	(\$1)			
None	\$0	\$0			
For raw data, refer to the next slide.					

Magnolia Inns, Raw Data

	اء ما ما	N I	1 1:
Parcel of	Land	ivear	Location

	Α	В
Current purchase price	\$18	\$12
Present value of future cash flows if hotel and airport are built at the same location	\$31	\$23
Present value of future cash flows if hotel and airport are built at different location	\$6	\$4
(Note: All values are in millions of dollars.)		

Decision Analysis Prof. Rasoul Ramezani BUAN/OPRE 6398

Magnolia Inn Problem's Characteristics

Decision Alternatives:

- 1. Buying the land at location A
- 2. Buying the land at location B
- 3. Buying at both locations
- 4. Buying at none of the locations

Criteria:

Net Present Value (payoff)

Possible States of Nature

- 1. The new airport will be built at location A.
- 2. The new airport will be built at location B.

Decision Rules

Non-probabilistic Decision Rules:

- Those that do not assign any probability of occurrence to states of nature.
 - Maximax
 - Maximin
 - Minimax Regret

Probabilistic Decision Rules:

- Those that assign probabilities of occurrence to states of nature.
 - Expected Monetary Value (EMV)
 - Expected Opportunity Loss (EOL)
- Note: No decision rule is always the best, and each has its own weaknesses.

Decision Rules: Maximax and Maximin

Maximax:

- Identify the maximum payoff for each alternative.
- Choose the alternative with the largest maximum payoff.

Land	Airport I	Location		
purchased at:	Α	В	MAX	
Α	\$13	(\$12)	\$13	< max
В	(\$8)	\$11	\$11	
A&B	\$5	(\$1)	\$ 5	
None	\$0	\$0	\$0	

Maximin

- Identify the *minimum* payoff for each alternative.
- Choose the alternative with the largest minimum payoff.

	Land	Airport	Location		
	purchased at:	Α	В	MIN	
	Α	\$13	(\$12)	(\$12)	
	В	(\$8)	`\$11 [°]	(\$8)	
	A&B	\$ 5	(\$1)	(\$1)	
_	None	\$0	\$0	\$0	<

<-- max

Decision Rules: Minimax Regret

- Identify the *maximum* regret (opportunity cost) for each alternative.
- Choose the alternative with the *smallest* maximum regret.
- The **regret value (opportunity cost)** of alternative *i* under the *j*th state od nature is:

$$g_{ij} = Max(r_j) - r_{ij}$$

- r_{ij} = Payoff of alternative i under the jth state of nature
 Max(r_i) = The maximum payoff under the jth state of nature

_		Regret	Matrix		
	Land	Airport	Location	_	
	purchased at:	Α	В	MAX	
	Α	\$0	\$23	\$23	
	В	\$21	\$0	\$21	
	A&B	\$8	\$12	\$12	<min< th=""></min<>
	None	\$13	\$11	\$13	

Probabilistic Decision Rules

- Probabilistic decision rules can be used
 - if states of nature can be assigned probabilities representing their likelihood of occurrence.
- For decision problems that occur more than once, we can often estimate these probabilities from historical data.
- Many decision problems (such as the Magnolia Inns problem) represent one-time decisions where historical data for estimating probabilities do not exist.
 - In these cases, subjective probabilities are often assigned based on interviews with one or more domain experts.
- We will focus on techniques that can be used once appropriate probability estimates have been obtained.

Expected Monetary Value Rule

 This rule chooses the alternative with the largest expected monetary value (EMV):

$$EMV_i = \sum_j p_j r_{ij}$$

- $p_i = The probability of the jth state of nature$
- \circ r_{ij} = Payoff for alternative i under the jth state of nature
- Suppose with a 40% chance the airport is built at location A and with a 60% chance it is built at location B.

	EMV	Matrix		
Land	Airport L	_ocation:		
purchased at:	Α	В	EMV	
Α	\$13	(\$12)	(\$2.0)	
В	(\$8)	\$11	\$3.4	<max< th=""></max<>
A&B	\$5	(\$1)	\$1.4	
None	\$0	\$0	\$0.0	

Expected Opportunity Loss

 This rule selects the alternative with the smallest expected regret or opportunity loss (EOL):

$$EOL_i = \sum_i p_i g_{ij}$$

- o p_j = The probability of the jth state of nature
- o g_{ij} = Opportunity cost of alternative i under the jth state of nature

	EOL I	Matrix		
Land	Airport l	_ocation	_	
purchased at	Α	В	EOL	_
Α	\$0	\$23	\$13.8	
В	\$21	\$0	\$8.4	<min< th=""></min<>
A&B	\$8	\$12	\$10.4	
None	\$13	\$11	\$11.8	

 NOTE: The Maximum EMV and Minimum EOL rules always result in the selection of the same decision alternative.

Sensitivity Analysis

- Both EMV and EOL decision rules suggest purchasing a parcel of land at location B.
 - But this is under the assumption that $p_A = 40\%$. What if $p_A = 50\%$, $P_A = 55\%$, $P_A = 60\%$, etc?
- The sensitivity analysis helps to determine the best alternative under different values of P_A (and so of P_B).

	EMV A	EMV B	EMV A&B	EMV None
P_A	(\$2.0)	\$3.4	\$1.4	\$0.0
0.0	(12.0)	11.0	(1.0)	0.0
0.1	(9.5)	9.1	(0.4)	0.0
0.2	(7.0)	7.2	0.2	0.0
0.3	(4.5)	5.3	0.8	0.0
0.4	(2.0)	3.4	1.4	0.0
0.5	0.5	1.5	2.0	0.0
0.6	3.0	(0.4)	2.6	0.0
0.7	5.5	(2.3)	3.2	0.0
8.0	8.0	(4.2)	3.8	0.0
0.9	10.5	(6.1)	4.4	0.0
1.0	13.0	(8.0)	5.0	0.0

See file <u>Fig14-1.xlsm</u> (EMV Sensitivity Analysis)

EV of Perfect Information (PI) in Repeating Decision Problem

EV with PI = $\sum P_i max(r_i)$ EV of PI = EV with PI - maximum EMV

- Suppose the above decision problem was repeatable, and we could hire a consultant who could predict the future with 100% accuracy. I.e., > 40% of the time, he would indicate that the airport will be built at A. > 60% of the time, he would indicate that the airport will be built at B.
- All else being equal, 40% of the time, Magnolia Inns buys the land at location A and 60% of the time at location B. Hence,

EV with PI =
$$0.4(\$13) + 0.6(\$11) = \$11.8$$
 (millions)

Without perfect information, maximum EMV = \$3.4 (millions). Thus,

EV of PI =
$$$11.8 - $3.4 = $8.4$$
 (millions)

Note:

EV of PI = minimum **EOL**

Decision Tree for Magnolia Inns Hotel

 Based on EMV rule, buying land at location B (alternative 2) is the best alternative.

Max EMV = \$3.4 (millions)

See file Fig14-19.xlsm

Multi-Stage Decision Example: COM-TECH

- The Occupational Safety and Health Administrator (OSHA) has decided to award an \$85,000 research grant for using wireless communication technology to enhance safety in the coal industry.
- Steve Hinton, the owner of COM-TECH, is considering whether to apply for the grant.
- Steve would spend approximately \$5,000 preparing the grant proposal and estimates a 50-50 chance of receiving the grant.
- If awarded, he would need to decide whether to use microwave, cellular, or infrared communication technology.

Technology	Equipment Cost
Microwave	\$4,000
Cellular	\$5,000
Infrared	\$4,000

Multi-Stage Decision Example: COM-TECH (con't)

- Steve knows that he will also need to spend money on R&D, but he is not sure about the extract R&D costs.
- He has estimated the following best-case and worst-case R&D costs and associated probabilities.

	Best Case		Worst C	ase
	Cost	Prob.	Cost	Prob.
Microwave	\$30,000	0.4	\$60,000	0.6
Cellular	\$40,000	8.0	\$70,000	0.2
Infrared	\$40,000	0.9	\$80,000	0.1

 Steve needs to synthesize all the factors in this problem to decide whether to submit a grant proposal to OSHA.

COM-TECH Optimal Decisions

Decision in Stage 2:

If grant received, choose the infrarad Technology

Decision Analysis Prof. Rasoul Ramezani BUAN/OPRE 6398

Risk Profile

- The risk profile summarizes the makeup of EMV.
- The \$13,500 EMV for COM-TECH was created as follows:

Event	Probability	Payoff
Receive grant and Low R&D costs (w/ infrared tech.)	(.5)(.9) = 0.45	\$36,000
Receive grant and High R&D costs (w/ infrared tech.)	(.5)(.1) = 0.05	- \$4,000
Don't receive grant	0.5	- \$5,000
	EMV	\$13,500

Risk profile decision tree

Sensitivity Analysis in a Decision Tree

- How sensitive is the decision in the COM-TECH problem to changes in the probability estimates?
- We can use Solver to determine
 - The smallest "probability of receiving the grant" for which Steve should still be willing to submit the proposal.
- In <u>Fig14-20.xlsm</u>, formulate: H21 = 1 H13. Then, ...

```
Min H13
St: 0 \le H13 \le 1
B31 = 1
```

All else remaining constant, if the probability of receiving the grant is ≥ 13.51%, Steve should submit the proposal. Since in that case, the EMV of submitting the proposal is greater than 0.

Tornado Charts

- How would EMV change if all inputs' value changes between, for example, ±10% of their original values, all else being constant?
- Which input has the largest effect on EMV?
- In <u>Fig14-20.xlsm</u>,
 - Choose the EMV cell
 - ASP => Parameters => Identify
- What if R&D costs change between, for example, $\pm 20\%$ of their initial values (V_0)?
- In <u>Fig14-20.xlsm</u>, formulate associate cells:
 PsiSenParam(-1.2V₀, -.8V₀, -V₀)
 - Choose the FMV cell
 - ASP => Parameters => Identify
 - Show Current Parameters

Strategy Tables

- How would the optimal decisions change if two inputs change simultaneously within some ranges? For example:
- 1. Probability of receiving the grant ranges between 0 and 1, incrementing by 0.10.
- 2. Probability of high R&D cost with the infrared technology ranges between 0 and 0.5, incrementing by 0.10.

		Prob. Of High R&D Costs					
	Infrared	0.0	0.1	0.2	0.3	0.4	0.5
Prob. of Grant	0.0	Don't Submit	Don't Submit	Don't Submit	Don't Submit	Don't Submit	Don't Submit
	0.1	Don't Submit	Don't Submit	Don't Submit	Don't Submit	Don't Submit	Don't Submit
	0.2	Infrared	Infrared	Cellular	Cellular	Cellular	Cellular
	0.3	Infrared	Infrared	Cellular	Cellular	Cellular	Cellular
	0.4	Infrared	Infrared	Cellular	Cellular	Cellular	Cellular
	0.5	Infrared	Infrared	Cellular	Cellular	Cellular	Cellular
	0.6	Infrared	Infrared	Cellular	Cellular	Cellular	Cellular
	0.7	Infrared	Infrared	Cellular	Cellular	Cellular	Cellular
	8.0	Infrared	Infrared	Cellular	Cellular	Cellular	Cellular
	0.9	Infrared	Infrared	Cellular	Cellular	Cellular	Cellular
	1.0	Infrared	Infrared	Cellular	Cellular	Cellular	Cellular

See file <u>Fig14-25.xlsm</u>

Strategy Charts

- A strategy Chart is the graphical representation of changes in optimal alternatives when two inputs change simultaneously.
- In Fig14-20.xlsm, formulate:
 - O H13: =PsiSenParam(0,1)
 - P21: =PsiSenParam(0,.5)
 - O W2: =IF(B31=2,0,J15)
- Then,
 - Select W2 => Analytic Solver
 - Charts => Sensitivity
 - Parameter Analysis
 - Vary Parameters Independently

End of Lecture 12