Classification

Régression Logistique

Définition du problème

- Iris: Setosa/Virginica/Versicolor,
- Tumeur : Bénigne/Maligne,
- Email: Normal/Spam.

$$y = \{0, 1, 2\}$$

$$y = \{0, 1\}$$

« Classe négative »

« Classe positive»

Si:

- h(X)≥0,5 alors Y=1
- h(X) < 0.5 alors Y = 0

• Classification: $y = \{0, 1\}$

• h(X)>1 ou h(X)<0?

• Régression logistique : o≤h(X)≤1

Régression Logistique

Hypothèse

Objectif

• $o \le h(X) \le 1$

$$h_{\theta}(X) = \theta^T X$$

$$h_{\theta}(X) = g(\theta^T X)$$

$$h_{\theta}(X) = g(z)$$

$$z = \theta^T X$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

Fonction sigmoïde

Interprétation de l'hypothèse

- h(X): probabilité que y=1 étant donné x,
- Exemple :

$$x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ \text{taille de la tumeur} \end{bmatrix}$$

$$h_{\theta}(X) = 0,7$$

• Il y a 70 % de chance que la tumeur soit maligne

Interprétation de l'hypothèse

- $h(X) = p(Y=1|X;\theta)$
- Probabilité que Y=1, sachant X, paramétrisé par θ.
- $p(Y=1|X;\theta)+p(Y=o|X;\theta)=1$
- $p(Y=o|X;\theta)=1-p(Y=1|X;\theta)$

Régression Logistique

Frontière de Décision

$$h_{\theta}(X) = \theta^T X$$

$$h_{\theta}(X) = \theta^{T} X$$

$$g(z) = \frac{1}{1 + e^{-z}} \qquad z = \theta^{T} X$$

$$z = \theta^T X$$

- $Y=1 \text{ si } h(X) \ge 0.5$
- $Y = 0 \sin h(X) < 0.5$

- Y=1 si z≥0
- Y=0 si z<0

Exemple

$$h_{\theta}(X) = g(\theta^{T} X)$$

$$h_{\theta}(X) = g(\theta_{0} x_{0} + \theta_{1} x_{1} + \theta_{2} x_{2})$$

$$\theta = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Exemple

- Y=1 si $1+x_1+x_2 \ge 0$
- Y=0 si $1+x_1+x_2<0$
- h(X)=0.5 si $1+x_1+x_2=0$

Régression Logistique

Fonction de Coût

Contexte

• Base d'entraînement

$$(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})$$

$$x = [x_0 \ x_1 \ \dots \ x_n]^T \in \mathbb{R}^{n+1}$$

Hypothèse

$$h_{\theta}(X) = \frac{1}{1 + e^{-\theta^T X}}$$

Fonction de coût

• Régression :

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(X) - Y)^{2}$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} cost(h_{\theta}(X), Y)$$

Fonction de coût

• Régression logistique:

$$cost(h_{\theta}(X), Y) = \begin{cases} -log(h_{\theta}(x)) & si \ Y = 1\\ -log(1 - h_{\theta}(x)) & si \ Y = 0 \end{cases}$$

Fonction de coût

Régression Logistique

Descente de Gradient

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} cost(h_{\theta}(X), Y)$$

$$cost(h_{\theta}(X), Y) = \begin{cases} -log(h_{\theta}(x)) & si \ Y = 1\\ -log(1 - h_{\theta}(x)) & si \ Y = 0 \end{cases}$$

$$cost(h_{\theta}(X), Y) = -Y \times \log(h_{\theta}(X)) - (1 - Y) \times \log(1 - h_{\theta}(X))$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} -y \log(h_{\theta}(x)) - (1-y) \log(1 - h_{\theta}(x))$$

$$min J(\theta)$$

Tant que convergence {

$$\theta_i = \theta_i - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$$

Régression Logistique

Problème Multi-Classes

Classification binaire

Classification multi-classes

Classification multi-classes

Classification multi-classes

Classification

Évaluation d'Algorithmes

Apprentissage

Apprentissage

Apprentissage

Matrice de Confusion

		Classe estimée	
		1	О
Classe réelle	1		
	0		

		Classe estimée		
		1	2	3
Classe réelle	1			
	2			
	3			

Matrice de Confusion

Matrice de Confusion

		Classe estimée	
		1	0
Classe réelle	1	Vrais positifs	Faux négatifs
	0	Faux positifs	Vrais négatifs

Indicateurs

		Classe estimée	
		1	О
Classe réelle	1	a	b
Teene	0	c	d

• Sensibilité ou rappel: probabilité que le classe positive soit prédite alors qu'il s'agit en réalité de la classe positive.

$$\frac{a}{a+b}$$

• Spécificité : probabilité que la classe négative soit prédite alors qu'il s'agit en réalité de la classe négative

$$\frac{d}{c+d}$$

Indicateurs

		Classe estimée	
		1	О
Classe réelle	1	a	b
reene	0	c	d

• Précision : probabilité que, lorsque la classe positive est prédite, il s'agisse en réalité de la classe positive.

$$\frac{a}{a+c}$$

 Taux de faux positifs : probabilité qu'une classe prédite comme positive soit en réalité négative.

$$\frac{c}{c+d}$$

Indicateurs

		Classe estimée	
		1	О
Classe réelle	1	a	b
recite	0	c	d

• Taux de bonne classification :

$$\frac{a+d}{a+b+c+d}$$

Quiz #1

		Classe estimée	
		1	О
Classe réelle	1	50	10
recire	0	20	30

En utilisant la matrice de confusion ci-dessus, calculez :

- 1.Le taux de bonne classification
- 2.Le rappel
- 3.La précision

Merci de votre Attention

Questions