Math 395

Homework 8

Due: 11/26/2024

Name: Gianluca Crescenzo

Collaborators: Clarissa Ly, Noah Smith, Carly Venenciano

Exercise 1. Let V be an F-vector space. Recall that a bilinear form is said to be *skew-symmetric* if $\varphi(v, w) = -\varphi(w, v)$ and $\varphi(v, v) = 0$. Show that the second condition is redundant if char(F) $\neq 2$.

Proof. If we assume char(F) \neq 2, then $\varphi(v,v) = -\varphi(v,v)$ is equivalent to $2\varphi(v,v) = 0$. Therefore $\varphi(v,v) = 0$, meaning that the first condition implies the second condition (hence its redundancy). Had it been the case that char(F) = 2, then $2\varphi(v,v) = 0$ does not imply $\varphi(v,v) = 0$, as $2 \equiv 0 \pmod{2}$.

Exercise 2. Let $W \subseteq V$ be a subspace. Show that W^{\perp} is a subspace.

Proof. Note that $W^{\perp} \neq \emptyset$ because $\varphi(w,0) = 0_F$. Let $v_1, v_2 \in W^{\perp}$ and $c \in F$. Then:

$$\varphi(w, v_1 + cv_2) = \varphi(w, v_1) + c\varphi(w, v_2)$$

= 0_E.

П

Hence W^{\perp} is a subspace of V.

Exercise 3. Let $T \in \text{Hom}_F(V, V)$ and let φ be a bilinear form on V. Prove that $\psi(v, w) = \varphi(T(v), w)$ is a bilinear form on V.

Proof. Observe that:

$$\psi(v_1 + cv_2, w) = \varphi(T(v_1 + cv_2), w)$$

$$= \varphi(T(v_1) + cT(v_2), w)$$

$$= \varphi(T(v_1), w) + c\varphi(T(v_2), w)$$

$$= \psi(v_1, w) + c\psi(v_2, w)$$

$$\psi(v, w_1 + cw_2) = \varphi(T(v), w_1 + cw_2)$$

$$= \varphi(T(v), w_1) + c\varphi(T(v), w_2)$$

$$= \psi(v, w_1) + c\psi(v, w_2).$$

Hence ψ is a bilinear form on V.

Exercise 4. Let φ be a bilinear form on V and assume char(F) \neq 2. Prove that φ is skew-symmetric if and only if the diagonal function V \rightarrow F given by $\nu \mapsto \varphi(\nu, \nu)$ is additive.

Proof. Suppose φ is skew-symmetric. Let $v, w \in V$. Then:

$$\varphi(v + w, v + w) = \varphi(v, v + w) + \varphi(w, v + w)
= \varphi(v, v) + \varphi(v, w) + \varphi(w, v) + \varphi(w, w)
= \varphi(v, v) + \varphi(w, w).$$

Hence the diagonal function is additive. Now suppose the diagonal function is additive. Then:

$$\varphi(v + w, v + w) = \varphi(v, v) + \varphi(w, w).$$

Moreover, we have:

$$\varphi(v+w,v+w)=\varphi(v,v)+\varphi(v,w)+\varphi(w,v)+\varphi(w,w).$$

This gives:

$$\varphi(v,v) + \varphi(w,w) = \varphi(v,v) + \varphi(v,w) + \varphi(w,v) + \varphi(w,w).$$

Simplifying yields $\varphi(v, w) = -\varphi(w, v)$. Hence φ is skew-symmetric.