Множества. Релации и Изображения. Числови Полета

Марин Ц. Геновски ФМИ

26 октомври 2017 г.

Множества

Предстои ни да се занимаваме с множества и техните елементи, или още точки. Понятията съответно за множество, съвкупност, фамилия, клас и прочее ще считаме за синоними, макар че това не е съвсем коректно от гледна точка на математическата логика и теорията на множествата. Множествата ще бележим с главни латински или гръцки букви, а техните елементи съответно с малки букви. Ако един елемент α принадлежи на множеството A ще пишем $\alpha \in A$, а пък в противен случай ще пишем $\alpha \notin A$.

Ако A, B са двойка множества, то казваме, че A е подмножество на B тогава и само тогава, когато всеки елемент x на A е същевременно и елемент на множеството B. B този случай също казваме, че B е надмножество на A и съответно пишем $A \subseteq B$.

Две множества A, B са по определение тъждествено равни тогава и само тогава, когато притежават едни и същи елементи, значи точно когато всеки елемент на A е същевременно елемент на B и всеки елемент на A е същевременно A \subseteq B и B \subseteq A. Това обстоятелство записваме с означението A = B.

Множество, което не притежава нито един елемент, наричаме празно множество. То е единствено, значи еднозначно определено, съгласно казаното по-горе. Наистина, ако допуснем, че Ω_1,Ω_2 са две празни множества, то всеки елемент (каквито не съществуват) на Ω_1 е елемент на Ω_2 и обратно, значи $\Omega_1=\Omega_2$.

Ако $\mathcal A$ а някое множество и на всеки елемент $\alpha \in \mathcal A$ еднозначно сме съпоставили по едно множество M_α , то казваме, че ни е зададена една фамилия от множества, която бележим с $\{M_\alpha:\alpha\in\mathcal A\}$. Множеството $\mathcal A$ наричаме множество от индекси или индексно множество, а неговите елементи наричаме индекси. Под обединение на една фамилия $\{M_\alpha:\alpha\in\mathcal A\}$ от множества разбираме множеството, което се изчерпва от всевъзможните елементи x такива, че $x\in\mathcal M_\alpha$ за някое $\alpha\in\mathcal A$. Това множество бележим $\bigcup_{\alpha\in\mathcal A} M_\alpha$ или $\bigcup_{\alpha\in\mathcal A} M_\alpha$ с $\alpha\in\mathcal A$. Съвършено аналогично

определяме и сечението на произволна фамилия $\{M_\alpha:\alpha\in\mathcal{A}\}$ множества, което се състои от всевъзможните точки x такива, че $x\in M_\alpha$ за всяко $\alpha\in\mathcal{A}$, и което бележим $\bigcap_{\alpha\in\mathcal{A}}M_\alpha$ или

$$\bigcap \{ M_{\alpha} : \alpha \in \mathcal{A} \}.$$

Разлика на две множества A, B, или още относително допълнение на множеството В спрямо A наричаме съвкупността на всевъзможните елементи на A, които не се съдържат в B. За това множество използваме означението $A \setminus B$.

Декартово произведение на две множества A, B наричаме множеството, чиито елементи са всичките наредени двойки от вида (x,y), където $x\in A$, $y\in B$. Декартовото произведение на A, B означаваме с $A\times B$. По-общо, декартовото произведение на елементите на произволна крайна или

безкрайна фамилия множества $\{M_\alpha:\alpha\in\mathcal{A}\}$ бележим $\prod\{M_\alpha:\alpha\in\mathcal{A}\}$ или $\prod_{\alpha\in\mathcal{A}}M_\alpha$, под което имаме предвид съвкупността на всевъзможните функции x на индексното множество \mathcal{A} такива, че $x(\alpha)\in M_\alpha$ за всяко $\alpha\in\mathcal{A}$. Предимно ни вълнува случаят на декартово произведение на краен брой множества, който можем да определим по-интуитивно, а именно $\prod_{\nu=1}^n M_\nu$ се явява множеството от всевъзможните наредено n-орки от вида (x_1,x_2,\ldots,x_n) , където $x_\nu\in M_\nu$, $\nu=1,\ldots,n$. В частност, декартовото произведение на n екземпляра от едно и също множество M бележим M^n .

Релации и Изображения

Нека M е дадено множество. Релация в M наричаме всяко подмножество на M^2 . Ако R е релация в множеството M и $(x,y) \in R$, още записваме xRy. Релацията в множеството M, съставена от всевъзможните наредени двойки (x,x), $x \in M$ наричаме равенство, или още идентитет, диагонал в M. Друг пример за релация в M е цялото множество M^2 .

Ако $R \subseteq M^2$, то дефиниционна област на тази релация наричаме множеството

$$\{x \in M : \exists y \in M, xRy\}.$$

Аналогично, област от стойностите на R наричаме множеството

$$\{y \in M : \exists x \in M, xRy\}.$$

Една релация R наричаме $pe\phi$ лексивна, ако за всяко x от нейната дефиниционна област е изпълнено xRx. R наричаме cumempuна, ако за всяка наредена двойка $(x,y) \in R$ имаме $(y,x) \in R$, значи ако xRy тогава и само тогава, когато yRx. Релацията R наричаме mpaнзитивна, ако от xRy, yRz следва xRz. Една релация, която е същевременно рефлексивна, симетрична и транзитивна, наричаме peлация на eквивалентносm.

Ако A, B са две множества и е зададено правило, по което на всеки елемент $x \in A$ еднозначно съпоставяме по един елемент $y \in B$, значи на всеки елемент на множеството A отговаря точно един единствен елемент от B, то казваме, че е дадено изображение, или още функция, оператор, съответствие и прочее $f \colon A \to B$ на множеството A в множеството B. Ако на даден елемент $x \in A$ съгласно функцията f е съпоставен елементът $g \in B$, то тогава пишем g = f(x). Множеството

$$\{x \in A : \exists y \in B, y = f(x)\}$$

наричаме дефиниционна област на функцията, а пък

$$\{y \in B : \exists x \in A, y = f(x)\}$$

наричаме област от нейните стойности. Понякога, например в курса по анализ, дефиниционна област (дефиниционно множество) и област от стойностите на дадена функция $f \colon A \to B$ наричаме по-общо съответно множествата A, B.

 $f\colon A\to B$ наричаме *инективна* функция, ако за всеки две точки $x_1,x_2\in A$ имаме $x_1=x_2$ тогава и само тогава, когато $f(x_1)=f(x_2)$. f е *сюрективна* функция точно когато за всяко $y\in B$ съществува $x\in A$ такова, че f(x)=y. Една функция е *биекция* (*биективна*) тогава и само тогава, когато е едновременно инективна и сюрективна.

Числови Полета

Едно числово множество $F \subseteq \mathbb{C}$ на поне два елемента наричаме числово поле тогава и само тогава, когато за всеки два числа $x,y \in F$ имаме $x \pm y, xy \in F$ и (при $y \neq 0$) $\frac{x}{y} \in F$. В такъв случай още казваме, че F е затворено относно операциите събиране, изваждане, умножение и деление.

Задачи

Задача 1. Нека A,B са множества. Да се докаже, че A=B тогава и само тогава, когато същевременно $A\subseteq B$ и $B\subseteq A$.

Задача 2. Нека Ω е празно множество, значи Ω не притежава нито един елемент, и нека A е някое произволно множество. Да се докаже, че $\Omega \subseteq A$.

Задача 3. Да се докаже, че ако Ω_1, Ω_2 са две празни множества, то тогава $\Omega_1 = \Omega_2$.

 $\it 3abeлежка.$ Единственото съгласно тази задача празно множество обозначаваме с $\it \varnothing.$

Задача 4. Да се намери обединението на множествата

$$\{2k : k \in \mathbb{Z}\}, \{2k+1 : k \in \mathbb{Z}\}\$$

съответно на всички четни и на всички нечетни цели числа.

Задача 5. За произволно цяло число $s\in\mathbb{Z}$ нека $M\left(s\right)$ да обозначава множеството от всевъзможните цели числа, които не са кратни на s. Да се докаже, че ако $s_1,s_2,\ldots,s_n\in\mathbb{Z}$ и $\left\langle s_1,s_2,\ldots,s_n\right\rangle$ е най-малкото общо кратно на тези числа, то тогава е изпълнено равенството

$$\bigcup_{\nu=1}^{n}M\left(s_{\nu}\right)=M\left(\left\langle s_{1},s_{2},\ldots,s_{n}\right\rangle \right).$$

Задача 6. Да се докажат следните равенства.

$$a)\ \left(\bigcup\{\,X_\alpha:\alpha\in\mathcal{A}\,\}\right)\cap\left(\bigcup\{\,Y_\beta:\beta\in\mathcal{B}\,\}\right)=\bigcup\{\,X_\alpha\cap Y_\beta:\alpha\in\mathcal{A},\beta\in\mathcal{B}\,\};$$

$$6) \ \left(\bigcap \{\, X_\alpha : \alpha \in \mathcal{A} \,\}\right) \cup \left(\bigcap \{\, Y_\beta : \beta \in \mathcal{B} \,\}\right) = \bigcap \{\, X_\alpha \cup Y_\beta : \alpha \in \mathcal{A}, \beta \in \mathcal{B} \,\}.$$

Задача 7. Нека $f\colon A\to B$ е изображение на множеството A в множеството B и нека $\{X_\alpha:\alpha\in\mathcal{A}\}$ е фамилия от подмножества на A. Да се докажат следните съотношения.

$$\text{a)} \ \ f\left(\bigcup\{X_\alpha:\alpha\in\mathcal{A}\,\}\right)=\bigcup\{\,f(X_\alpha):\alpha\in\mathcal{A}\,\}; \quad \text{6)} \ \ f\left(\bigcap\{X_\alpha:\alpha\in\mathcal{A}\,\}\right)\subseteq\bigcap\{\,f(X_\alpha):\alpha\in\mathcal{A}\,\}.$$

Забележка. При второто подусловие равенство е налично тогава и само тогава, когато функцията f е инективна.

Задача 8. Кои от следните релации са рефлексивни (симетрични, транзитивни). Кои от тях са релации на еквивалентност?

- а) Релацията равенство в \mathbb{R} ;
- 6) Релацията *строго* неравенство в \mathbb{R} ;
- в) Релацията нестрого неравенство в \mathbb{R} ;
- г) Релацията делимост в \mathbb{Z} , значи релацията, определена по следния начин: за двойка числа $x,y\in\mathbb{Z},y\neq 0$ казваме, че y дели x тогава и само тогава, когато съществува число $z\in\mathbb{Z}$ такова, че x=yz.
- д) Релацията включване в множеството $\mathscr{P}(X)$ на всевъзможните подмножества на дадено множество X.