Osnove matematične analize

Tretji sklop izročkov

Fakulteta za računalništvo in informatiko Univerza v Ljubljani

21. oktober 2020

Rešitve algebraičnih enačb

Spomnimo se pojma algebraična enačba:

$$a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 = 0,$$

kjer je $n \in \mathbb{N}$, $a_i \in \mathbb{C}$ in $a_n \neq 0$.

Izrek

Vsaka algebraična enačba stopnje n>0 ima vsaj eno kompleksno rešitev $x\in\mathbb{C}$.

Posledica

- Vsaka algebraična enačba stopnje n > 0 ima natanko n kompleksnih rešitev (ne nujno različnih).
- Če so vsi koeficienti a_i realni, potem kompleksne ničle nastopajo v konjugiranih parih, tj. če je $\alpha+i\beta$, $\alpha,\beta\in\mathbb{R}$, je rešitev, potem je tudi $\alpha-i\beta$ rešitev.
- Poljuben polinom $P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ ima razcep $P(x) = a_n (x x_1) \ldots (x x_n)$, kjer so x_1, \ldots, x_n rešitve enačbe P(x) = 0.

Naloga (Izpit 2, 2019/20)

- 1. Razložite pojem polarni zapis kompleksnega števila in v polarnem zapisu napišite formulo za potenciranje kompleksnega števila.
- 2. Naj bo dana kompleksna enačba $a_nz^n + a_{n-1}z^{n-1} + \ldots + a_1z + a_0 = 0$, kjer so $a_n, \ldots, a_0 \in \mathbb{R}$ realna števila, $w \in \mathbb{C} \setminus \mathbb{R}$ pa ena izmed njenih rešitev. Poiščite še eno rešitev te enačbe in dokažite, da gre res za rešitev.
 - ▶ Dana je enačba $z^6 \frac{z^4}{18} \frac{8z^3}{9} + \frac{17z^2}{16} \frac{8z}{9} + \frac{305}{144} = 0$. Na spodnji sliki so narisane nekatere njene rešitve. Narišite še ostale. (Namig: Enačbe vam ni potrebno reševati.)

Koreni kompleksnega števila

n-ti koreni števila $\mathbf{a} \in \mathbb{C}$ so rešitve enačbe

$$z^n = a$$
.

► Enačbo zapišemo v polarni obliki:

$$|\mathbf{z}|^{\mathbf{n}}\mathbf{e}^{\mathbf{i}\mathbf{n}\varphi} = |\mathbf{a}|\mathbf{e}^{\mathbf{i}\mathrm{Arg}(\mathbf{a})}$$

▶ Dobimo *n* različnih rešitev:

$$\mathbf{z_k} = \sqrt[n]{|a|} \, \mathbf{e}^{\mathbf{i} \frac{\operatorname{Arg}(\mathbf{a}) + 2\mathbf{k}\pi}{\mathbf{n}}}, \quad \mathbf{k} = \mathbf{0}, \dots \mathbf{n} - \mathbf{1}$$

Rešitve ležijo na ogliščih pravilnega n-kotnika v kompleksni ravnini.

Zgledi

- Poiščimo in narišimo vse $z \in \mathbb{C}$, za katere velja $z^6 = 1$.
- Poiščimo in narišimo vse $z \in \mathbb{C}$, za katere velja $(z^3-2)(z^4+i)=0$.
- Poiščimo z^{2021} za $z = \frac{1-i}{i}$.

NAUK: polarno obliko uporabljamo pri potenciranju, korenjenju ter (v veliki meri) pri množenju.

Naloga (Izpit 1, 2019/20)

- ▶ Razložite pojem n-ti koren kompleksnega števila $a \in \mathbb{C}$. Navedite tudi eksplicitne formule za izračun vseh n-tih korenov števila $a \in \mathbb{C}$.
- Naj bo $n_1 = 2$ in $n_2 = 6$. Na levi sliki je eden od n_1 -tih, na desni pa eden od n_2 -tih korenov nekega kompleksnega števila. Na skicah čim bolj natančno označite ostale korene, tj. n_1 -te na levi in n_2 -te na desni. Pri tem mora biti jasno razvidno, kako ste jih določili. Upoštevajte, da sta središči krožnic v točki (0,0).

mmmm

Zaporedja

Zaporedje je preslikava

$$\mathbb{N} \rightarrow \mathbb{R}$$
$$n \mapsto a_n$$

Pišemo tudi:

$$(a_n)_n = (a_0, a_1, a_2, a_3, \ldots)$$

n ...indeks

 $a_n \dots n$ -ti člen zaporedja

Zaporedja

Zaporedje lahko opišemo

eksplicitno: $\mathbf{a_n} = \mathbf{f(n)}$, kjer je $f : \mathbb{N} \to \mathbb{R}$ neka preslikava.

Npr.,
$$a_n = \frac{1}{n}$$
 za $n \ge 1$.

Kaj je splošni člen zaporedja:

$$0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots$$
?

- ► rekurzivno:
 - ▶ $\mathbf{a_0}$, $\mathbf{a_{n+1}} = \mathbf{f}(\mathbf{a_n})$, kjer je $f : \mathbb{R} \to \mathbb{R}$ neka preslikava, $n \ge 0$ (enočlena rekurzija)
 Npr..

$$a_{n+1}=3a_n+5, \quad a_0=1.$$

▶ $\mathbf{a_0}, \mathbf{a_1}, \dots, \mathbf{a_{k-1}}, \ \mathbf{a_{n+k}} = \mathbf{f}(\mathbf{a_n}, \dots, \mathbf{a_{n+k-1}}), \ \text{kjer je } f : \mathbb{R}^k \to \mathbb{R}$ neka preslikava, $n \ge 0$ (k-člena rekurzija) Npr..

$$a_{n+1}=2a_n+3a_{n-1}+3a_{n-2},\quad a_0=1,\ a_1=3,\ a_2=4.$$

Primer - rekurzivno zaporedje

V hranilniku imaš en kovanec. Vsak dan naredimo naslednje: v primeru, ko imaš v hranilniku manj kot 10 kovancev, število kovancev v hranilniku podvojimo, v nasprotnem primeru pa moraš ven vzeti 5 kovancev. Zapiši splošni člen zaporedja.

Naj bo b_n število kovancev n-ti dan, pri čemer je začetno stanje 0-ti dan.

Potem je

$$b_n = \left\{ egin{array}{ll} 2b_{n-1}, & ext{ če je } b_{n-1} < 10, \ b_{n-1} - 5, & ext{ če je } b_{n-1} \geq 10. \end{array}
ight.$$

Nekaj členov:

$$1, 2, 4, 8, 16, 11, 6, 12, 7, 14, \dots$$

Vprašanje: Koliko kovancev je največ lahko v hranilniku na nek dan?

Primer - rekurzivno zaporedje

Število 13 slovi kot nesrečno število. Vsako število, ki v svojem zapisu vsebuje 13, je tudi tako (113, 1345, 9813045,...). Naj bo t_n število **največ** n-mestnih števil, ki so nesrečna. Zapiši rekurzivno zvezo za t_n .

Geometrijski prikaz

- kot točke na številski premici,
- ▶ kot točke (n, a_n) , $n \in \mathbb{N}$, v ravnini.

Primeri zaporedij

1. $a_n = (-1)^n, n \in \mathbb{N}$

Primeri zaporedij

$$2. \ a_n = \frac{n-1}{n+1}, \ n \in \mathbb{N}$$

3. aritmetično zaporedje

- ▶ eksplicitni opis: $a_n = a + nd$, $a, d \in \mathbb{R}$, $n \in \mathbb{N}$.
- rekurzivni opis: $a_0 = a \in \mathbb{R}$, $a_{n+1} = a_n + d$, $d \in \mathbb{R}$, $n \in \mathbb{N}$.

4. geometrijsko zaporedje

- ▶ eksplicitni opis: $a_n = aq^n$, $a, q \in \mathbb{R}$, $n \in \mathbb{N}$.
- rekurzivni opis: $a_0 = a \in \mathbb{R}$, $a_{n+1} = a_n q$, $q \in \mathbb{R}$, $n \in \mathbb{N}$.

5. Fibonaccijevo zaporedje

$$a_0 = 1, a_1 = 1, \quad a_{n+2} = a_n + a_{n+1}$$

 $1, 1, 2, 3, 5, 8, 13, 21, 34, \dots$

6.
$$a_0 = 3$$
, $a_n = \frac{1}{2} \left(a_{n-1} + \frac{2}{a_{n-1}} \right)$

Grafični prikaz rekurzije

$$a_0 = a$$
, $a_{n+1} = f(a_n)$

- ightharpoonup narišemo grafa y = f(x) in y = x,
- $ightharpoonup a_0$ nanesemo na x-os,
- $ightharpoonup (a_0, f(a_0)) = (a_0, a_1)$ je točka na grafu (x, f(x)) pri $x = a_0$
- za vsak n,
 - $ightharpoonup (a_{n-1},a_n)$ je točka na grafu (x,f(x)),
 - $ightharpoonup (a_n,a_n)$ je točka na isti vodoravno premici na grafu y=x,
 - $ightharpoonup (a_n, a_{n+1})$ je točka na isti navpični premici na grafu y = f(x).

Primer

$$a_0 = 5$$
, $a_{n+1} = \frac{a_n}{3} + 1$

Lastnosti zaporedij - omejenost

Definicija

Zaporedje $(a_n)_n$ je **navzgor omejeno**, če ima <u>zgornjo mejo</u>, to je tako število $\mathbf{M} \in \mathbb{R}$, da je $\mathbf{a_n} \leq \mathbf{M}$ za vsak $\mathbf{n} \in \mathbb{N}$.

Če je zaporedje $(a_n)_n$ navzgor omejeno, potem **najmanjšo** izmed zgornjih mej imenujemo **supremum** zaporedja $(a_n)_n$ in označimo z $\sup_n a_n$.

Zaporedje $(a_n)_n$ je **navzdol omejeno**, če ima <u>spodnjo mejo</u>, to je tako število $\mathbf{m} \in \mathbb{R}$, da je $\mathbf{a_n} \geq \mathbf{m}$ za vsak $\mathbf{n} \in \mathbb{N}$.

Če je zaporedje $(a_n)_n$ navzdol omejeno, potem **največjo** izmed spodnjih mej imenujemo **infimum** zaporedja $(a_n)_n$ in označimo z $\inf_n a_n$.

Omejeno zaporedje je navzgor in navzdol omejeno.

Lastnosti zaporedij - monotonost

Zaporedje je naraščajoče, če je $\mathbf{a_n} \leq \mathbf{a_{n+1}}$ za vsak $n \in \mathbb{N}$, in je padajoče, če je $\mathbf{a_n} \geq \mathbf{a_{n+1}}$ za vsak $n \in \mathbb{N}$.

Primer

Analiziraj omejenost in monotonost zaporedj:

1.
$$b_n = \frac{n^2 - 1}{n}$$
 za $n \ge 1$.

2.
$$c_n = \frac{c_{n-1}}{2}$$
 za $n \ge 1$ in začetnim členom $c_0 = 1$.

Limita zaporedja

Število $a \in \mathbb{R}$ je **limita** zaporedja $(a_n)_n$, kar označimo z

$$\mathbf{a} = \lim_{\mathbf{n} \to \infty} \mathbf{a_n},$$

če za vsak $\varepsilon>0$ obstaja tak indeks $\mathbb{N}\in\mathbb{N}$, da za vsak $\mathbb{n}\geq\mathbb{N}$ velja $|\mathbf{a}-\mathbf{a}_{\mathbf{n}}|<\varepsilon$.

Neformalno: vsi členi od nekje dalje so poljubno blizu limite a.

Število N je odvisno od ε . Pri manjšem ε mora biti N večji.

Limita zaporedja

Limita zaporedja

Zaporedje $(a_n)_n$ je **konvergentno**, če ima limito. Sicer je **divergentno**.

Trditev

Če je zaporedje konvergentno, potem je omejeno.

Kaj to pomeni (s stališča računanja)?

- ► ε računska natančnost
- ▶ N od tu dalje so <u>vsi</u> členi pri tej natančnosti enaki *a*

Limita zaporedja - primeri

Primer

Razišči, ali imajo spodnja zaporedja limito:

- 1. $a_n = (-1)^n$
- 2. $b_n = 0.\underbrace{333...3}_{n}$
- 3. $c_n = \frac{1}{n^2}$. Od katerega člena naprej so členi oddaljeni manj kot 0.01 od limite?
- 4. Prejšnjo točko se da posplošiti iz 2 na poljuben k > 0.
- 5. $d_n = e^{-n}$
- 6. $f_n = e^n$

Naraščanje ter padanje preko vseh meja

Zaporedje $(a_n)_n$ narašča prek vsake meje, če za vsak $M \in \mathbb{R}$ obstaja indeks $N \in \mathbb{N}$, da za vsak $n \geq N$ velja $n \geq M$.

Oznaka: $\lim_{n\to\infty} a_n = \infty$.

Opomba

Tako zaporedje ni konvergentno, saj nima limite!

Zaporedje $(a_n)_n$ pada prek vsake meje, če za vsak $M \in \mathbb{R}$ obstaja indeks $N \in \mathbb{N}$, da za vsak $n \geq N$ velja $n \leq -M$.

Oznaka:
$$\lim_{n\to\infty} \mathbf{a_n} = -\infty$$
.

Opomba

Tako zaporedje ni konvergentno, saj nima limite!