

- 2. 计算下列三重积分
- (1) $\iiint_{V} \frac{dxdydz}{(1+\cancel{A}+y+z)^3}$, 其中V 是平面x+y+z=1与三坐标面所围成的区域;
- (2) $\iiint xz dx dy dz$, 其中V是由平面z=0, z=y, y=1以及 $y=x^2$ 柱面所围成的区域;
- (3) $\iiint xy^2z^3\mathrm{d}x\mathrm{d}y\mathrm{d}z$, 其中V 是由曲面 z=xy 与平面 y=x , x=1 和 z=0 所围成区域;
- (4) $\iiint e^x dx dy dz$, 其中V 是由平而x=0, y=1, z=0, y=x 以及x+y-z=0 所围成的区域;
- (5) $\iiint y \cos(x+z) dxdydz$, 其中V 是由柱面 $y=\sqrt{x}$ 及平面 y=0, z=0, $x+z=\frac{\pi}{2}$ 所围成的区

第八章 重积分 第二节 三重积分

- 3. 在柱坐标系中计算下列三重积分.
- (1) $\iiint_v (x^2 + y^2) dV$, 其中V 是由曲面 $x^2 + y^2 = 2z$ 与平面z = 2 所围成的闭区域;
- (2) $\iiint \sqrt{x^2+y^2} \mathrm{d}x \mathrm{d}y \mathrm{d}z, \ \mbox{其中} V \ \mbox{} \mbox{}$
- (3) $\iiint_V z dx dy dz$,其中 V 是由上半球面 $x^2 + y^2 + z^2 = 4 (z \ge 0)$ 与抛物面 $z = \frac{1}{3} (x^2 + y^2)$ 所围成的闭区域;
- (4) $\iiint x^2 dx dy dz$, 其中V 是由曲面 $z = 2\sqrt{x^2 + y^2}$, $x^2 + y^2 = 1$ 与平面z = 0所围成的闭区域;
- (5) $\iiint_V (x+y) dV$, 其中 V 是介于两柱面 $x^2 + y^2 = 1$ 和 $x^2 + y^2 = 4$ 之间的被平面 z = 0 和 z = x + 2 所截下的部分:
- (6) $\iiint z dV$, 其中V是由曲面 $z = x^2 + y^2$ 与平面z = 2y所围成的闭区域;
- (8) $\iiint_{z} y^2 dV$, 其中V 是由曲面 $z = \sqrt{1 \frac{x^2}{a^2} \frac{y^2}{b^2}}$ 与平面 z = 0 所围成的闭区域.

[[(x2+y2)dv: [[pdodp[2]2 @ p2dz.]]]]

[[(x2+y2)dv: [[pdodp[2]2 @ p2dz.]]]

[[(x2+y2)dv: [22 do [2]pdp [2]2 p2dz.]]]

[[(x2+y2)dv: [22 do [2]pdp [2]2 p2dz.]]]

[[(x2+y2)dv: [22 do [2]2 pdp [22]2 p2dz.]]]]

[[(x2+y2)dv: [22 do [2]2 pdp [2]2 p2dz.]]]]]

第八章 重积分 第三节 三重积分

- 4. 在球坐标系中计算下列三重积分.
- (1) $\iiint (x^2 + y^2 + z^2) dV$, 其中V是由球面 $x^2 + y^2 + z^2 = 1$ 所围成的闭区域;
- (2) $\iiint y^2 dV$, 其中 $V: x^2 + y^2 + z^2 \le a^2, x^2 + y^2 + z^2 \le b^2 (0 \le a \le b)$;
- (3) $\iiint (x^2+y^2) dxdydz$, 其中V 是由曲面 $z=\sqrt{x^2+y^2}$ 和 $z=\sqrt{1-x^2-y^2}$ 所围成的闭区域;
- (4) $\iiint z dx dy dz$, 其中V是由 $x^2+y^2+\left(z-a\right)^2 \le a^2$ 和 $x^2+y^2 \le z^2$ 所确定的区域;
- (5) $\iiint_{V} \left(\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} + \frac{z^{2}}{c^{2}} \right) dxdydz, \quad \not\exists + V : \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} + \frac{z^{2}}{c^{2}} \le 1.$ $2 \int_{V} (x, y, z) dx + V : \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} + \frac{z^{2}}{c^{2}} \le 1.$ $2 \int_{V} (x, y, z) dx + V : \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} + \frac{z^{2}}{c^{2}} \le 1.$ $2 \int_{V} (x, y, z) dx + V : \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} + \frac{z^{2}}{c^{2}} \le 1.$ $2 \int_{V} (x, y, z) dx + V : \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} + \frac{z^{2}}{c^{2}} \le 1.$ $2 \int_{V} (x, y, z) dx + V : \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} + \frac{z^{2}}{c^{2}} \le 1.$ $2 \int_{V} (x, y, z) dx + V : \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} + \frac{z^{2}}{c^{2}} \le 1.$ $2 \int_{V} (x, y, z) dx + V : \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} + \frac{y^{2}}{c^{2}} \le 1.$ $2 \int_{V} (x, y, z) dx + V : \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} + \frac{y^{2}}{c^{2}} \le 1.$ $2 \int_{V} (x, y, z) dx + V : \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} + \frac{y^{2}}{c^{2}} \le 1.$ $2 \int_{V} (x, y, z) dx + V : \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} + \frac{y^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} + \frac{y^{2}}{a^{2}} \le 1.$ $2 \int_{V} (x, y, z) dx + V : \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} + \frac{y^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} + \frac{y^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} + \frac{y^{2}}{a^{2}} = \frac{y^{2}}{a^{2}} + \frac{y$

 $|\mathcal{Y}| = |\mathcal{Y}| + |$

第八章 重积分 第**三**节 三重积分

