Oblast strojově snímaných informací. Své učo a číslo listu vyplňte zleva dle vzoru číslic. Jinak do této oblasti nezasahujte.

20123456789

Odevzdání: 19.3.2019

2. [20 bodů] Uvažujme modifikaci algoritmu pro inkrementaci binárního počítadla uloženého v poli $B[0...\infty]$.

- $i \leftarrow 0$;
- 2 while B[i] = 1 do
- $\mathbf{3} \mid B[i] \leftarrow 0;$
- $i \leftarrow i + 1$
- 5 $B[i] \leftarrow 1$;
- 6 ComputeSomething(i)

Ve srovnání s variantou analyzovanou na přednášce se v uvažované variantě na konci volá funkce ComputeSomething s parametrem i. Předpokládejme, že časová složitost funkce závisí pouze a jenom na hodnotě parametru i, označme ji T(i). Na přednášce jsme dokazovali, že když složitost T(i) je konstantní, tak amortizovaná složitost operace inkrementace počítadla je konstantní.

- (a) Určete, jaká je amortizovaná složitost operace inkrementace počítadla, jestliže T(i) = i.
- (b) Určete, jaká je amortizovaná složitost operace inkrementace počítadla, jestliže $T(i) = 2^i$.

K analýze použijte metodu účtů nebo metodu potenciálové funkce!

Část (a)

Ak je na začiatku binárne počítadlo prázdne, sekvencia n Increment operácií obráti O(n) bitov.

Uvažujme potenciálovú funkciu $\Phi(D)=2x$, kde x je počet 1 v počítadle. Platí $\Phi(D_0)=0$ a zároveň $\Phi(D_i)\geq\Phi(D_0)$. Ak i-ta operácia obráti t_i bitov z hodnoty 1 na 0. Potom reálna cena $c_i=2t_i+1$. Kde t_i je cena cyklu WHILE, operácia $B[i]\leftarrow 1$ stojí 1 a ComputeSomething stojí t_i , pretože i sa inkrementuje len pri zmene z 0 na 1.

Rozdiel potenciálov medzi $\Phi(D_i) - \Phi(D_{i-1})$ je $2-2t_i$, kde pripočítame 2 za preklopenie poslednej 0 na 1 a odpočítame $2t_i$ za všetky preklopené 1 do 0.

Potom amortizovaná cena:

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})
\hat{c}_i = 2t_i + 1 + \Phi(D_i) - \Phi(D_{i-1})$$

$$\hat{c}_i = 2t_i + 1 + 2 - 2t_i$$

$$\hat{c}_i = 3$$

Amortizovaná cena Increment je teda $\mathcal{O}(1)$.

Cást (b)

Ak je na začiatku binárne počítadlo prázdne, sekvencia n INCREMENT operácií obráti O(n) bitov.

Uvažujme potenciálovú funkciu $\Phi(D) = 2^{t_i} + x_i$, kde x_i je počet 1 v počítadle a t_i je počet 1 po prvú 0 sprava. Platí $\Phi(D_0) = 1$ a zároveň $\Phi(D_i) \ge \Phi(D_0)$. Ak i-ta operácia obráti t_i bitov z hodnoty 1 na 0. Potom reálna cena $c_i = t_i + 1 + 2^{t_i}$. Kde t_i je cena cyklu WHILE, operácia $B[i] \leftarrow 1$ stojí 1 a ComputeSomething stojí 2^{t_i} , pretože i sa inkrementuje len pri zmene z 0 na 1.

Oblast strojově snímaných informací. Své učo a číslo listu vyplňte zleva dle vzoru číslic. Jinak do této oblasti nezasahujte.

list

80923456389

Počet 1 v počítadle po vykonaní operácie Increment: $x_i = x_{i-1} - t_i + 1$

Potom amortizovaná cena:

$$\begin{split} \hat{c}_i &= c_i + \Phi(D_i) - \Phi(D_{i-1}) \\ \hat{c}_i &= t_i + 1 + 2^{t_i} + \Phi(D_i) - \Phi(D_{i-1}) \\ \hat{c}_i &= t_i + 1 + 2^{t_i} + (2^{t_i} + x_i) - (2^{t_{i-1}} + x_{i-1}) \\ \hat{c}_i &= t_i + 1 + 2^{t_i} + (2^{t_i} + x_{i-1} - t_i + 1) - (2^{t_{i-1}} + x_{i-1}) \\ \hat{c}_i &= t_i + 1 + 2^{t_i} + 2^{t_i} + x_{i-1} - t_i + 1 - 2^{t_{i-1}} - x_{i-1} \\ \hat{c}_i &= 2 + 2^{t_i} \end{split}$$

Amortizovaná cena Increment je teda $\mathcal{O}(2+2^{t_i})$.

Priemerný počet 1 po prvú 0 sprava je možné určiť následovnou sumou:

$$t_i = \sum_{n=0}^{\infty} \frac{n}{2^{n+1}} = 1$$