Spis treści

1	Alg	orytmy i struktury danych	5
	1.1	Paradygmat i przykłady programowania generycznego (rodzajowego).	6
	1.2	Algorytmy sortowania	6
	1.3	Strategia "dziel i zwyciężaj" budowania algorytmów	6
	1.4	Algorytmy typu zachłannego.	6
	1.5	Algorytmy z nawrotami	6
	1.6	Grafy, drzewa, kopce – charakterystyka i przykłady zastosowania.	6
	1.7	Definicja i klasy złożoności obliczeniowej – czasowej i pamięciowej	6
2	Baz	zy danych	7
	2.1	Normalizacja baz danych – pierwsza, druga i trzecia postać normalna.	7
	2.2	Modele baz danych (logiczny, relacyjny, fizyczny)	7
	2.3	Rodzaje zapytań w języku SQL	7
	2.4	Funkcje w języku SQL	7
	2.5	Transakcje w bazach danych.	7
3	BSI	X	8
	3.1	Funkcje skrótu (mieszające) i ich zastosowania.	8
	3.2	Atrybuty bezpieczeństwa informacji.	8
	3.3	Modele dystrybucji kluczy kryptograficznych	8
	3.4	Rodzaje zagrożeń oraz ochrona aplikacji sieciowych	8
	3.5	Charakterystyka kryptografii symetrycznej oraz asymetrycznej	8
4	IO	MMMM OAOAO	9
	4.1	Standardowe metodyki procesu wytwórczego oprogramowania	9

	4.2	Metodyki zwinne – SCRUM	Ć		
	4.3	Testowanie oprogramowania	Ć		
	4.4	Diagramy UML	Ć		
5	Math 10				
	5.1	Wektory i macierze – definicje i podstawowe operacje	10		
	5.2	Definicja funkcji obliczalnej (częściowo rekurencyjnej)	10		
	5.3	Maszyna Turinga jako model procesów obliczalnych.	10		
	5.4	Zagadnienia nierostrzygalne w kontekście obliczalności	10		
6	OOP 1:				
	6.1	Obiekt i klasa w wybranym języku programowania zorientowanym obiektowo	11		
	6.2	Hermetyzacja, dziedziczenie i polimorfizm w programowaniu obiekto-			
		wym			
	6.3	Interfejsy i klasy abstrakcyjne w programowaniu obiektowym	11		
7	Paradygmaty programowania 1				
	7.1	Główne paradygmaty programowania – charakterystyka i przykłady	13		
	7.2	Gramatyki bezkontekstowe – definicje, charakterystyki i przykłady. .	13		
	7.3	Analiza leksykalna, syntaktyczna i semantyczna kodu.	13		
	7.4	Rodzaje błędów w kontekście analizy leksykalnej, syntaktycznej i se-			
		mantycznej kodu	13		
	7.5	Deklaratywne programowanie funkcyjne: rachunek lambda, monady $\ .$	13		
	7.6	Deklaratywne programowanie w logice: klauzule Horne'a, nawracanie.	13		
8	PAS 14				
	8.1	Mechanizm sesji w zarządzaniu stanem aplikacji sieciowej	14		
	8.2	Mechanizm gniazd – pojęcie, sposób realizacji i zastosowanie	14		
	8.3	Metody obsługi wielu klientów równolegle w aplikacjach sieciowych	14		
	8.4	Pocztowe protokoły warstwy aplikacji	14		
	8 5	Porównanie HTTP i WebSecket	1/		

9	Pod	stawy informatyki	15
	9.1	Problemy rekurencyjne i ich rozwiązywanie	15
	9.2	Pozycyjne systemy liczbowe i konwersje pomiędzy nimi	15
	9.3	Typ, zmienna, obiekt i zarządzanie pamięcią	15
	9.4	Instrukcje sterujące przepływem programu.	15
	9.5	Kodowanie liczb ze znakiem w systemie U2, generowanie liczby ze	
		znakiem przeciwnym, dodawanie i odejmowanie	15
10	Siec	i	16
	10.1	Protokoły TCP i UDP – porównanie i zastosowanie	16
	10.2	Adresowanie w warstwie Internetu modelu TCP/IP	16
	10.3	Porównanie zadań przełącznika (switcha) i routera	16
	10.4	Porównanie modelu OSI i TCP/IP	16
	10.5	Mechanizm enkapsulacji w modelu OSI	16
11	Stat	ystyka	17
	11.1	Podstawowe charakterystyki statystyki opisowej i matematycznej	17
12	Syst	zemy operacyjne	18
	12.1	Wielowarstwowa organizacja systemów komputerowych	18
	12.2	System operacyjny – charakterystyka, zadania, klasyfikacja	18
	12.3	Procesy i wątki – charakterystyka i problemy	18
	12.4	Zarządzanie pamięcią operacyjną w systemie operacyjnym	18
	12.5	Organizacja systemu plików i pamięci zewnętrznej	18
13	Syst	zemy wbudowane	19
	13.1	Różnice pomiędzy obsługą zdarzeń w przerwaniach sprzętowych a	
		obsługą zdarzeń w pętli programowej.	20
	13.2	Powody i przykłady stosowania mikrokontrolerów zamiast typowych	
		komputerów	20
	13.3	Podstawowe układy systemu mikroprocesorowego i sposób wymiany	
		informacji pomiędzy nimi	20

	13.4	Dekoder, multiplekser i demultiplekser: budowa, zasada, działania,	
		przeznaczenie, zastosowanie	20
	13.5	Budowa i zasada działania generatora obrazu w systemie mikropro-	
		cesorowym	20
	37.57		~ -
14	XZ	CZTO ETO	21
	14.1	Modele reprezentacji wiedzy	21
	14.2	Mechanizmy wnioskowań	21

Algorytmy i struktury danych

- 1.1 Paradygmat i przykłady programowania generycznego (rodzajowego).
- 1.2 Algorytmy sortowania.
- 1.3 Strategia "dziel i zwyciężaj" budowania algorytmów.
- 1.4 Algorytmy typu zachłannego.
- 1.5 Algorytmy z nawrotami.
- 1.6 Grafy, drzewa, kopce charakterystyka i przykłady zastosowania.
- 1.7 Definicja i klasy złożoności obliczeniowej czasowej i pamięciowej.

Bazy danych

- 2.1 Normalizacja baz danych pierwsza, druga i trzecia postać normalna.
- 2.2 Modele baz danych (logiczny, relacyjny, fizyczny).
- 2.3 Rodzaje zapytań w języku SQL.
- 2.4 Funkcje w języku SQL.
- 2.5 Transakcje w bazach danych.

BSK

- 3.1 Funkcje skrótu (mieszające) i ich zastosowania.
- 3.2 Atrybuty bezpieczeństwa informacji.
- 3.3 Modele dystrybucji kluczy kryptograficznych.
- 3.4 Rodzaje zagrożeń oraz ochrona aplikacji sieciowych
- 3.5 Charakterystyka kryptografii symetrycznej oraz asymetrycznej.

IO MMMM OAOAO

- 4.1 Standardowe metodyki procesu wytwórczego oprogramowania.
- 4.2 Metodyki zwinne SCRUM.
- 4.3 Testowanie oprogramowania.
- 4.4 Diagramy UML.

Math

- 5.1 Wektory i macierze definicje i podstawowe operacje.
- 5.2 Definicja funkcji obliczalnej (częściowo rekurencyjnej).
- 5.3 Maszyna Turinga jako model procesów obliczalnych.
- 5.4 Zagadnienia nierostrzygalne w kontekście obliczalności.

OOP

- 6.1 Obiekt i klasa w wybranym języku programowania zorientowanym obiektowo.
- 6.2 Hermetyzacja, dziedziczenie i polimorfizm w programowaniu obiektowym.
- 6.3 Interfejsy i klasy abstrakcyjne w programowaniu obiektowym.

Paradygmaty programowania

- 7.1 Główne paradygmaty programowania charakterystyka i przykłady.
- 7.2 Gramatyki bezkontekstowe definicje, charakterystyki i przykłady.
- 7.3 Analiza leksykalna, syntaktyczna i semantyczna kodu.
- 7.4 Rodzaje błędów w kontekście analizy leksykalnej, syntaktycznej i semantycznej kodu.
- 7.5 Deklaratywne programowanie funkcyjne: rachunek lambda, monady
- 7.6 Deklaratywne programowanie w logice: klauzule Horne'a, nawracanie.

PAS

- 8.1 Mechanizm sesji w zarządzaniu stanem aplikacji sieciowej.
- 8.2 Mechanizm gniazd pojęcie, sposób realizacji i zastosowanie
- 8.3 Metody obsługi wielu klientów równolegle w aplikacjach sieciowych.
- 8.4 Pocztowe protokoły warstwy aplikacji.
- 8.5 Porównanie HTTP i WebSocket.

Podstawy informatyki

- 9.1 Problemy rekurencyjne i ich rozwiązywanie.
- 9.2 Pozycyjne systemy liczbowe i konwersje pomiędzy nimi.
- 9.3 Typ, zmienna, obiekt i zarządzanie pamięcią.
- 9.4 Instrukcje sterujące przepływem programu.
- 9.5 Kodowanie liczb ze znakiem w systemie U2, generowanie liczby ze znakiem przeciwnym, dodawanie i odejmowanie.

Sieci

- 10.1 Protokoły TCP i UDP porównanie i zastosowanie.
- 10.2 Adresowanie w warstwie Internetu modelu TCP/IP.
- 10.3 Porównanie zadań przełącznika (switcha) i routera.
- 10.4 Porównanie modelu OSI i TCP/IP.
- 10.5 Mechanizm enkapsulacji w modelu OSI.

Statystyka

11.1 Podstawowe charakterystyki statystyki opisowej i matematycznej.

Systemy operacyjne

- 12.1 Wielowarstwowa organizacja systemów komputerowych.
- 12.2 System operacyjny charakterystyka, zadania, klasyfikacja.
- 12.3 Procesy i wątki charakterystyka i problemy
- 12.4 Zarządzanie pamięcią operacyjną w systemie operacyjnym.
- 12.5 Organizacja systemu plików i pamięci zewnętrznej.

Systemy wbudowane

- 13.1 Różnice pomiędzy obsługą zdarzeń w przerwaniach sprzętowych a obsługą zdarzeń w pętli programowej.
- 13.2 Powody i przykłady stosowania mikrokontrolerów zamiast typowych komputerów
- 13.3 Podstawowe układy systemu mikroprocesorowego i sposób wymiany informacji pomiędzy nimi.
- 13.4 Dekoder, multiplekser i demultiplekser: budowa, zasada, działania, przeznaczenie, zastosowanie.
- 13.5 Budowa i zasada działania generatora obrazu w systemie mikroprocesorowym.

XZ CZTO ETO

- 14.1 Modele reprezentacji wiedzy
- 14.2 Mechanizmy wnioskowań