Tablová metóda pre VL - korektnosť a úplnosť Úvod do výpočtovej logiky

Jozef Šiška

2014/2015

Korektnosť

Úplnosť

Definícia

Vetva t tabla \mathcal{T} je *uzavretá* vtt, keď obsahuje označené formuly FX a TX pre nejakú formulu X, ináč je t otvorená.

Tablo $\mathcal T$ je uzavreté vtt, keď každá jeho vetva je uzavretá. Naopak, $\mathcal T$ je otvorené, keď aspoň jedna jeho vetva je otvorená.

Vetva t je pravivá pri nejakom ohodnotení v vtt, keď všetky označené formuly na t sú pravdivé pri v.

Tablo \mathcal{T} (ako celok) je pravdivé pri nejakom ohodnotení v vtt, keď aspoň jedna jeho vetva je pravdivá pri v.

Tvrdenie (Korektnosť tablovej metódy) Nech \mathcal{T} je uzavreté tablo pre FX, potom je X tautológia.

Tvrdenie (Korektnosť tablovej metódy)

Nech $\mathcal T$ je uzavreté tablo pre FX, potom je X tautológia.

Pozorovanie

Formula X je tautológia vtt FX je nesplniteľná.

Tvrdenie

Nech $\mathcal T$ je uzavreté tablo pre označenú formulu X, potom X je nesplniteľná.

Pozorovanie

- 1. Ak označená formula tvaru α je pravdivá, tak potom obidve α_1 a α_2 sú pravdivé.
- 2. Ak formula tvaru β je pravdivá, tak potom aspoň jedna z β_1 alebo β_2 je pravdivá.

Lemma (1)

Nech v je boolovské ohodnotenie, nech \mathcal{T}_1 je priamym rozšírením \mathcal{T}_2 . Ak je \mathcal{T}_1 pravdivé pri v, potom aj \mathcal{T}_2 je pravdivé pri v.

Lemma (1)

Nech v je boolovské ohodnotenie, nech \mathcal{T}_1 je priamym rozšírením \mathcal{T}_2 . Ak je \mathcal{T}_1 pravdivé pri v, potom aj \mathcal{T}_2 je pravdivé pri v.

Dôkaz.

Ak \mathcal{T}_1 je pravdivé pri v, tak musí obsahovať nejakú pravdivú vetvu t. Tablo \mathcal{T}_2 vzniklo pridaním jedného alebo dvoch synov pod list nejakej vetvy t_1 .

- ▶ Ak t je rôzna od t_1 tak \mathcal{T}_2 stále obsahuje pravdivú vetvu (t).
- ▶ Ak t je totožná s t₁, potom:
 - 1. \mathcal{T}_2 vzniklo pridaním formuly α_1 alebo α_2 k t_1 (t), pričom t_1 obsahuje α . Kedže t je pravdivá vetva, tak α musela byť tiež pravdivá a teda α_1 aj α_2 musia byť pravdivé. (t_1, α_1) resp. (t_1, α_2) je teda tiež pravdivá vetva \mathcal{T}_2 .
 - 2. \mathcal{T}_2 vzniklo pridaním oboch formúl β_1 a β_2 k t_1 (t), pričom t_1 obsahuje obsahuje β . Kedže t je pravdivá vetva, tak β musela byť tiež pravdivá a teda aspoň jedna z β_1 a β_2 musí byť pravdivá. To znamená že aspoň jedna z vetiev (t_1, β_1) alebo (t_1, β_2) v \mathcal{T}_2 je tiež pravdivá.

Lemma (2)

Nech \mathcal{T} je tablo pre označenú formulu X. Ak X je pravdivá pri nejakej interpretácii v, potom aj \mathcal{T} je pravivá pri v.

Dôkaz.

Indukciou podľa veľkosti tabla a z lemy 1.

Pozorovanie

Uzavreté tablo nemôže byť pravdivé pri žiadnom boolovskom ohodnotení.

Lemma (2)

Nech \mathcal{T} je tablo pre označenú formulu X. Ak X je pravdivá pri nejakej interpretácii v, potom aj \mathcal{T} je pravivá pri v.

Dôkaz.

Indukciou podľa veľkosti tabla a z lemy 1.

Pozorovanie

Uzavreté tablo nemôže byť pravdivé pri žiadnom boolovskom ohodnotení.

Tvrdenie

Nech T je uzavreté tablo pre označenú formulu X, potom X je nesplniteľná.

Dôkaz.

Sporom: nech \mathcal{T} je uzavreté tablo pre formulu X, nech X je splniteľná. Potom existuje boolovské ohodnotenie v pri ktorom je X pravdivá. Podľa lemy 2 musí byť \mathcal{T} pravdivé pri v.

Úplnosť tablovej metódy

Tvrdenie (Úplnosť tablovej metódy) Každá tautológia je dokázateľná tablovou metódou.

Úplnosť tablovej metódy

Tvrdenie (Úplnosť tablovej metódy)

Každá tautológia je dokázateľná tablovou metódou.

Ak X je tautológia, tak potom existuje uzavreté tablo pre FX.

Úplnosť tablovej metódy

Tvrdenie (Úplnosť tablovej metódy)

Každá tautológia je dokázateľná tablovou metódou.

Ak X je tautológia, tak potom existuje uzavreté tablo pre FX.

Definícia

Vetva t tabla \mathcal{T} je *úplná* ak platí:

- ▶ pre každé α , ktoré sa vyskytuje na t sa aj obive α_1 a α_2 vyskytujú na t,
- pre každé β, ktoré sa vyskutuje na t sa sa aspoń jedna z formú β₁ alebo β₂ vyskytuje na t.

Tablo \mathcal{T} je *úplné* ak každá vetva je buď úplná alebo uzavretá.

Tvrdenie (Úplnosť tablovej metódy)

Ak X je tautológia, tak potom existuje uzavreté tablo pre FX.

Tvrdenie

Ak X je tautológia, tak potom každé úplné tablo pre FX je uzavreté.

Tvrdenie (Úplnosť tablovej metódy)

Ak X je tautológia, tak potom existuje uzavreté tablo pre FX.

Tvrdenie

Ak X je tautológia, tak potom každé úplné tablo pre FX je uzavreté.

Tvrdenie

Nech T je úplné otvorené tablo pre X. Potom X je spniteľná.

Tvrdenie

Každá úplná otvorená vetva ľubovoľného tabla je (súčasne) splniteľná.

Definícia

Množina označených formúl S sa nazýva nadol nasýtená vtt platí:

 H_0 V S s nevyskytujú naraz Tp a Fp pre nejakú premennú p;

 H_1 Ak $\alpha \in S$, tak $\alpha_1 \in S$ a $\alpha_2 \in S$;

 H_2 Ak $\beta \in S$, tak $\beta_1 \in S$ alebo $\beta_2 \in S$.

Pozorovanie

Nech t je úplná otvorená vetva nejakého tabla \mathcal{T} . Potom množina všetkých formúl v t je nadol nasýtená.

Tvrdenie (Hintikkova lema)

Každá nadol nasýtená množina S je splniteľná.

Dôkaz.

Chceme vytvoriť interpretáciu v, pri ktorej budú pravdivé všetky formuly z S:

- ▶ ak $Tp \in S$: v(p) = t,
- ▶ ak $Fp \in S$: v(p) = f,
- ▶ ak ani Tp ani Fp nie sú v S, tak v(p) = t.

v je korektne definovaná vďaka H_0 . Indukciou na stupeń formuly dokážeme, že všetky formuly z S sú pravdivé pri v:

- Všetky označené premenné z S sú očividne pravdivé pri v.
- ▶ $X \in S$ je buď α alebo β :
 - ▶ X je α , potom obive $\alpha_1, \alpha_2 \in S$ (H_1), sú nižšieho stupňa a teda z IP sú pravdivé pri v a teda aj α je pravdivé pri v
 - X je β, potom aspoň jedna z β₁, β₂ ∈ S (H₂). Nech je to ktorákoľvek, podľa IP musí byť pravdivá pri v a teda aj β musí byť pravdivá pri v.