1. Scatterplot of htwt_Chicago for 500 females

According to the scatterplot, 19.5% of the variance in weight can by explained by height.

Correlation of the two variables

CORRELATIONS
/VARIABLES=ht wt
/PRINT=TWOTAIL NOSIG
/MISSING=PAIRWISE.

GGraph Correlations

Correlations

		ht	wt
	Pearson Correlation	1	.441**
ht	Sig. (2-tailed)		.000
	N	500	500
wt	Pearson Correlation	.441**	1

Sig. (2-tailed)	.000	
N	500	500

**. Correlation is significant at the 0.01 level (2-tailed).

Yes, it makes sense to go for a regression line for the data. This is because as per the scatterplot, there looks like a linear dependency among the two variables of height and weight. Also, as per the correlation table, the correlation between the two variables is significant (equivalent to .000). To further accurately estimate the relationship between height and weight, we use regression.

2. Regression Model

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT wt
/METHOD=ENTER ht.

Regression

Variables Entered/Removed^a

Model	Variables	Variables	Method
	Entered	Removed	
1	ht ^b		Enter

- a. Dependent Variable: wt
- b. All requested variables entered.

Model Summary

Model	R	R Square	Adjusted R	Std. Error of
			Square	the Estimate
1	.441 ^a	.195	.193	8.5411

a. Predictors: (Constant), ht

ANOVA^a

			71110 171			
Mod	lel	Sum of	df	Mean Square	F	Sig.
		Squares				
1	Regression	8778.792	1	8778.792	120.340	.000 ^b
1	Residual	36328.974	498	72.950		

Total 45107.767 499

a. Dependent Variable: wtb. Predictors: (Constant), ht

Coefficients^a

Model		Unstandardized Coefficients		Standardized Coefficients	t	Sig.
		В	Std. Error	Beta		
1	(Constant)	-35.106	8.614		-4.075	.000
1	ht	.569	.052	.441	10.970	.000

a. Dependent Variable: wt

DESCRIPTIVES VARIABLES=ht wt /STATISTICS=MEAN STDDEV VARIANCE MIN MAX.

Sensitivity of Height on Weight

So,
$$y = a + bx + e$$

$$y = -35.106 + 0.569 x + e$$

Estimate of Slope: The slope of 0.569 means that for each increase of 1 unit X (Education), we predict the average of Y (Income) to increase by an estimate of 0.569

Estimate of Intercept: Theoretically, If independent variable (height)= 0, then the dependent variable (weight) is equal to -35.106

3. Descriptives

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation	Variance
ht	500	143.7	192.5	165.908	7.3714	54.337
wt	500	28.2	85.2	59.297	9.5077	90.396
Valid N	500					
(listwise)						

Estimate of sigma square or variance =
$$\underbrace{SSE}_{n-2} = \underbrace{36328.974}_{498} = 72.94$$

The **t**-value measures the size of the difference relative to the variation in the sample data

The p value for the t-distribution is 0.000 which is statistically significant. This means that the variation of weight (Dependent variable) can be explained by the variation of height (Independent variable)

4. Regression

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT wt
/METHOD=ENTER ht
/SCATTERPLOT=(*ZRESID ,*ZPRED).

Variables Entered/Removed^a

Model	Variables	Variables	Method
	Entered	Removed	
1	ht ^b		Enter

- a. Dependent Variable: wt
- b. All requested variables entered.

Model Summary^b

Model	R	R Square	Adjusted R	Std. Error of
			Square	the Estimate
1	.441a	.195	.193	8.5411

a. Predictors: (Constant), htb. Dependent Variable: wt

ANOVA^a

Model	Sum of	df	Mean Square	F	Sig.
	Squares				
Regression	8778.792	1	8778.792	120.340	.000 ^b
1 Residual	36328.974	498	72.950		
Total	45107.767	499			

a. Dependent Variable: wtb. Predictors: (Constant), ht

Coefficients^a

Model		Unstandardized Coefficients		Standardized Coefficients	t	Sig.
		В	Std. Error	Beta		
1	(Constant)	-35.106	8.614		-4.075	.000
1	ht	.569	.052	.441	10.970	.000

a. Dependent Variable: wt

<u>F ratio is 120.340</u>. This value is high. This implies that the variation among group means is more than you would expect to see by <u>chance.</u>

p-value for the F test = .000 (<5%) which is statistically significant.

Numerical Relationship between F and t-value: $F = t^2$ (t squared). Yes, the two test have the same p value of 0.000. This is because the relationship between the two variables is highly statistically significant. Hence, the p value is so low for both the test nearly approximating to zero.

5. Residual Plot

Residuals Statistics^a

	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	46.661	74.428	59.297	4.1944	500
Residual	-28.9305	28.3540	.0000	8.5325	500
Std. Predicted Value	-3.013	3.607	.000	1.000	500
Std. Residual	-3.387	3.320	.000	.999	500

a. Dependent Variable: wt

Charts

Scatterplot

Conclusion: When points are randomly dispersed across the horizontal axis, then a linear regression model is appropriate.

QQ Plots

PPLOT
/VARIABLES=ht wt
/NOLOG
/NOSTANDARDIZE
/TYPE=Q-Q
/FRACTION=BLOM
/TIES=MEAN
/DIST=NORMAL.

PPlot

Model Description

	Widuci Descri)(1011
Model Name		MOD_1
Series or Sequence	1	ht
	2	wt
Transformation		None
Non-Seasonal Differencing		0

Seasonal Differen	icing	0		
Length of Seasons	al Period	No periodicity		
Standardization		No periodicity Not applied		
	Type	Normal		
Distribution	Location	estimated		
	Scale	estimated		
Fractional Rank E	Estimation Method	Blom's		
Rank Assigned to Ties		Mean rank of tied values		

Applying the model specifications from MOD_1

Case Processing Summary

		ht	wt
Series or Sequence Leng	th	500	500
Number of Missing	User-Missing	0	0
Values in the Plot	System-Missing	0	0

The cases are unweighted.

Estimated Distribution Parameters

		ht	wt
Normal Distribution	Location	165.908	59.297
	Scale	7.3714	9.5077

The cases are unweighted.

Conclusion: Normal QQ Plot with light tailed distribution. Linearity of points suggest that data is normally distributed.

6. Beta (B) =
$$0.569$$

Beta*
$$(B*) = 0.43$$

$$T (n-2) = \underline{B - B}$$
$$S.D (B^{\wedge})$$

$$= 0.569 - 0.43$$
$$8.54 * 0.509$$

P value for t-distribution 1 tail at 0.05 % = 0.0001 (highly significant).

This implies that the sensitivities are statistically different.

7. Regression Output for the htwt_NY.txt dataset

Model Summary

model Gammary							
			Adjusted R	Std. Error of the			
Model	R	R Square	Square	Estimate			
1	.409ª	.167	.166	8.543			

a. Predictors: (Constant), ht

ANOVA^a

_						
N	/lodel	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	7299.106	1	7299.106	100.014	.000 ^b
	Residual	36344.614	498	72.981		
	Total	43643.720	499			

a. Dependent Variable: wt

b. Predictors: (Constant), ht

Coefficientsa

	Coefficients							
				Standardized				
		Unstandardize	ed Coefficients	Coefficients				
Mode	el	В	Std. Error	Beta	t	Sig.		
1	(Constant)	-24.125	8.409		-2.869	.004		
	ht	.519	.052	.409	10.001	.000		

a. Dependent Variable: wt

$$B = 0.569$$

$$B* = 0.43$$

$$T (n-2) = = B - B*$$

$$S.D (B)$$

$$0.569 - 0.43$$

$$\overline{8.54 (0.569)}$$