Lecture 9: Distance Vector Routing

Kyle Jamieson COS 461: Computer Networks

Outline

- Routing Problem Definition
- · Definitions: Hosts, Routers, Interfaces, Subnets
- Shortest-Path Routing
- Routing Tables
- Distance Vector Algorithm
- Pathologies: Bouncing and Counting to Infinity
- Optimizations: Split Horizon and Poison Reverse
- War Story: Synchronization of Routing Messages

The Routing Problem

- Each router has several interfaces to links
- · Each router has unique node ID
- Packets stamped with destination node ID
- Router must choose next hop for received packet
- Routing protocol: communication to accumulate state for use in forwarding decisions
- Routes change with topology

Routing on Changing Networks

- · Links may be cut
- Routers or their interfaces may fail
- Hazard: traffic loops
 - Amplify traffic; severely congest links
 - TTL will eventually drop packets, but typically only after congestion
- · Hazard: disconnection
 - Any routing algorithm will take time to converge to correct routes after link(s) break

Hosts, Routers, Interfaces, Subnets

- Host: at least one interface, sometimes multiple ones
- Host: runs applications
- Router: typically doesn't run applications
- Router: has multiple interfaces, routes packets among them
- Each interface has unique IP address (true both for hosts and routers)
- Subnet: typically a single Ethernet broadcast domain, shared by hosts and routers

Hosts, Routers, Interfaces, Subnets

Address Aggregation

- Each Internet host (interface) has unique 32-bit IP address
- Must every router in entire Internet know about every other router?
- No; interfaces on same subnet share address prefix
 - e.g., 128.16.64.30, 128.16.64.92 on same subnet
- IP routing destination is subnet's prefix; not single 32-bit IP address

Shortest-Path Routing

- View network as graph
 - Routers are vertices, links are edges
 - Link metrics are edge weights

Shortest paths problem:

- What path between two vertices offers minimal sum of edge weights?
- · Classic algorithms find single-source shortest paths when entire graph known centrally
 - Dijkstra's Algorithm, Bellman-Ford Algorithm
- In Internet, each router only knows its own interfaces addresses; no central knowledge of entire graph

Outline

- Routing Problem Definition
- Definitions: Hosts, Routers, Interfaces, Subnets
- · Shortest-Path Routing
- Routing Tables
- Distance Vector Algorithm
- Pathologies: Bouncing and Counting to Infinity
- Optimizations: Split Horizon and Poison Reverse
- War Story: Synchronization of Routing Messages

Routing Tables

- Destination field: subnet ID (address prefix)
- Interface field: which interface of router on which to forward to reach destination
- Metric field: total cost to reach that destination
- Administrator assigns metrics to interfaces
- Startup: initialize table to contain one entry for each interface's subnet

Destination	Interface	Metric
А	0	0
В	1	0

Routing Tables: Forwarding

- Packet arrives for destination D
- · Search for D in destination field of routing table
 - if found, forward on interface number in table entry
 - if not found, drop packet; no route known

Basic Distance Vector Algorithm (Failures Not Yet Considered)

- Periodically, send all routing table entries (destination and metric fields) to all immediate neighbor routers
- Upon receipt of routing table entry for destination D with metric m on interface i:

```
m += metric for interface i
r = lookup(D) in routing table
if (r = "not found") then
  newr = new routing table entry
  newr.D = D; newr.m = m; newr.i = i
  add newr to table
else if (m < r.m) then
  r.m = m; r.i = i</pre>
```

Distance Vector: Example

- Consider simple network where all nodes are routers, addresses are simply single letters
- Initial routing tables when routers first start:

Distance Vector: Iteration 1

Routers incorporate received announcements:

Dst	I/f	Metric
Α	local	0
В	1	1
D	0	1

Dst	I/f	Metric
В	local	0
Α	0	1
С	2	1
E	1	1

Dst	I/f	Metric
С	local	0
В	0	1
Е	1	1

Dst	I/f	Metric
D	local	0
Α	0	1
Е	1	1

Dst	I/f	Metric
Е	local	0
D	0	1
В	1	1
С	2	1

Distance Vector: Iteration 2

Routers incorporate received announcements:

Dst	I/f	Metric
С	local	0
В	0	1
Е	1	1
Α	0	2
D	1	2

Distance Vector: Iteration 2

Routers incorporate received announcements:

Dst	I/f	Metric
С	local	0
В	0	1
Е	1	1
Α	0	2
D	1	2

Link Failure (I)

Dst	I/f	Metric
С	local	0
В	0	1
Е	1	1
Α	0	2
D	1	2

Link Failure (II)

Dst	I/f	Metric
Α	local	0
В	1	Inf
D	0	1
Е	0	2
С	1	Inf

Dst	Metric
Α	0
В	Inf
D	1
Е	2
С	Inf

Dst	I/f	Metric
D	local	0
Α	0	1
Е	1	1
В	1	2
С	1	2

Dst	I/f	Metric
В	local	0
Α	0	Inf
С	2	1
Е	1	1
D	1	2

0 E 2			
	Dst	I/f	Metric
	Е	local	0
	D	0	1
	В	1	1
	С	2	1
	Δ	1	2

Dst	I/f	Metric
С	local	0
В	0	1
Е	1	1
Α	0	2
D	1	2

DV Algorithm, Revised

 Upon receipt of routing table entry for destination D with metric m on interface i:

```
m += metric for interface i
r = lookup(D) in routing table
if (r = "not found") then
  newr = new routing table entry
  newr.D = D; newr.m = m; newr.i = i
  add newr to table
else if (i == r.i) then
  r.m = m
else if (m < r.m) then
  r.m = m; r.i = i
```

Link Failure (III)

Dst	Metric
Α	1
В	Inf
D	2
Е	3
С	Inf

Dst	I/f	Metric
D	local	0
Α	0	1
Е	1	1
В	1	2
С	1	2

(no change)

Dst	I/f	Metric
D	local	0
Α	0	1
Е	1	1
В	1	2
С	1	2

Link Failure (IV)

Dst	I/f	Metric
Α	local	0
В	1	Inf
D	0	1
Е	0	2
С	1	Inf

Dst	Metric
В	0
Α	Inf
С	1
Е	1
D	2

Dst	I/f	Metric
В	local	0
Α	0	Inf
С	2	1
Е	1	1
D	1	2

Dst	I/f	Metric
C	local	0
В	0	1
Е	1	1
Α	0	2
D	1	2

Dst	I/f	Metric
D	local	0
Α	0	1
Е	1	1
В	1	2
С	1	2

Dst	I/f	Metric
Е	local	0
D	0	1
В	1	1
С	2	1
Α	1	2

Link Failure (V)

Dst	Metric
В	1
Α	Inf
С	2
Е	2
D	3

Dst	I/f	Metric
Е	local	0
D	0	1
В	1	1
С	2	1
Α	1	2

Dst	I/f	Metric
Е	local	0
D	0	1
В	1	1
С	2	1
Α	1	Inf

Link Failure (VI)

Dst	I/f	Metric
Α	local	0
В	1	Inf
D	0	1
E	0	2
С	1	Inf

Dst	I/f	Metric
В	local	0
Α	0	Inf
С	2	1
Е	1	1
D	1	2

Dst	I/f	Metric
С	local	0
В	0	1
Е	1	1
Α	0	Inf
D	1	2

Dst	I/f	Metric
D	local	0
Α	0	1
Е	1	1
В	1	2
С	1	2

Dst	I/f	Metric
Е	local	0
D	0	1
В	1	1
С	2	1
Α	1	Inf

Link Failure (VII)

Dst	I/f	Metric
Α	local	0
В	0	3
D	0	1
Е	0	2
С	0	3

Dst	I/f	Metric
В	local	0
Α	0	Inf
С	2	1
Е	1	1
D	1	2

Dst	I/f	Metric
С	local	0
В	0	1
Е	1	1
Α	0	Inf
D	1	2

Dst	I/f	Metric
D	local	0
Α	0	1
Е	1	1
В	1	2
С	1	2

Dst	I/f	Metric
Е	local	0
D	0	1
В	1	1
С	2	1
Α	0	2

Link Failure (VIII)

Dst	I/f	Metric
Α	local	0
В	0	3
D	0	1
E	0	2
С	0	3

Dst	I/f	Metric
В	local	0
Α	1	3
С	2	1
Е	1	1
D	1	2

Dst	I/f	Metric
С	local	0
В	0	1
Е	1	1
Α	1	3
D	1	2

Dst	I/f	Metric
D	local	0
Α	0	1
Е	1	1
В	1	2
С	1	2

Dst	I/f	Metric
Е	local	0
D	0	1
В	1	1
С	2	1
Α	0	2

Outline

- · Routing Problem Definition
- Definitions: Hosts, Routers, Interfaces, Subnets
- · Shortest-Path Routing
- Routing Tables
- · Distance Vector Algorithm
- Pathologies: Bouncing and Counting to Infinity
- Optimizations: Split Horizon and Poison Reverse
- War Story: Synchronization of Routing Messages

Bouncing (I)

 Consider same network, (C, E) has metric 10; all others 1

Bouncing (II)

Suppose A advertises its table first...

Bouncing (III)

- Suppose A advertises its table first...
- · ...and B advertises its table next...

Bouncing (IV)

- Suppose A advertises its table first...
- · ...and B advertises its table next...
- Loop between A and B for destination C!
- If C now advertises its table, E will ignore cost 10 route!

Bouncing (V)

Suppose A and E advertise next...

Bouncing (VI)

- Suppose A and E advertise next...
- ...and B advertises next

Bouncing (VII)

- Suppose A and E advertise next...
- ...and B advertises next...
- · ...and A advertises next...

Bouncing (VIII)

- Long, painful convergence process, details dependent on message ordering
- Transient loops
- · Eventually, converged state:

Outline

- · Routing Problem Definition
- Definitions: Hosts, Routers, Interfaces, Subnets
- Shortest-Path Routing
- Routing Tables
- · Distance Vector Algorithm
- Pathologies: Bouncing and Counting to Infinity
- Optimizations: Split Horizon and Poison Reverse
- War Story: Synchronization of Routing Messages

Counting to Infinity (I)

- · Converged after link (A, B) breaks
- Suppose (D, E) now breaks

Dst	I/f	Metric
Α	local	0
В	0	3
D	0	1
Е	0	2
С	0	3

Dst	I/f	Metric
С	local	0
В	0	1
E	1	1
Α	1	3
D	1	2

Dst	I/f	Metric
D	local	0
Α	0	1
E	1	1
В	1	2
С	1	2

Dst	I/f	Metric
Е	local	0
D	0	1
В	1	1
С	2	1
Α	0	2

Counting to Infinity (II)

Dst	I/f	Metric
Α	local	0
В	0	3
D	0	1
E	0	2
С	0	3

- Network partitioned
- Focus on {A, D} partition
- Suppose sequence of events:
 - D notices link failure
 - A advertises its routing table
- Loop for {B, C, E} between A and D!
- How long will loop persist?

A 1

Dst	Metric
Α	1
В	4
D	2
Е	3
С	4

Dst	I/f	Metric
D	local	0
Α	0	1
Е	1	Inf
В	1	Inf
С	1	Inf

	Dst	I/f	Metric
	D	local	0
	Α	0	1
	Е	0	3
	В	0	4
	С	0	4

Counting to Infinity (III)

Dst	I/f	Metric
Α	local	0
В	0	5
D	0	1
Е	0	4
С	0	5

Dst	I/f	Metric
Α	local	0
В	0	7
D	0	1
Е	0	6
С	0	7

Dst	I/f	Metric
Α	local	0
В	0	Inf
D	0	1
Е	0	Inf
С	0	Inf

Dst	I/f	Metric
D	local	0
Α	0	1
Е	0	3
В	0	4
С	0	4

Dst	I/f	Metric
D	local	0
Α	0	1
Е	0	5
В	0	6
С	0	6

Dst	I/f	Metric
D	local	0
Α	0	1
Е	0	Inf
В	0	Inf
С	0	Inf

- Each advertisement increments metrics for partitioned destinations by one
- · Loop persists until count reaches infinity!

Outline

- · Routing Problem Definition
- Definitions: Hosts, Routers, Interfaces, Subnets
- Shortest-Path Routing
- Routing Tables
- · Distance Vector Algorithm
- · Pathologies: Bouncing and Counting to Infinity
- Optimizations: Split Horizon and Poison Reverse
- War Story: Synchronization of Routing Messages

Split Horizon

- Bouncing and counting to infinity cause slow convergence, create loops
- Consider link (A, B), destination D
- A's next hop toward D is B
- Split Horizon: clearly, B should never choose A as next hop toward D
 - Intuition: A should never announce to B a path with short distance to D!

Split Horizon with Poison Reverse

- Again, consider link (A, B), destination D
- A's next hop toward D is B
- More generally: routers should announce different routing tables to different neighbors
- Split horizon: don't announce route for destination D on interface used as next hop toward D!
- Poison Reverse (optional): A announces to B its distance to D is infinity!

Example: Split Horizon and Poison Reverse

Dst	I/f	Metric
Α	local	0
В	0	3
D	0	1
Е	0	2
С	0	3

- Same example as counting to infinity: {A, D} partitioned
- D detects link break,
 A announces first
- No loop, immediate convergence after one advertisement!

Dst	Metric
Α	1
В	Inf
D	Inf
Е	Inf
С	Inf

	Dst	I/f	Metric
	D	local	0
•	Α	0	1
	Е	1	Inf
	В	1	Inf
	С	1	Inf

Limitations: Split Horizon and Poison Reverse

- Consider same example, but {B, C, E} partition
- · Link (A, B) already failed, routing has converged
- Now link (D, E) fails
- · Consider only destination D

Limitations (II): Split Horizon and Poison Reverse

· E notices failed link, updates local table

Limitations (III): Split Horizon and Poison Reverse

- · E advertises its new table
 - Suppose advertisement reaches B, but not C

Limitations (IV): Split Horizon and Poison Reverse

 C advertises its table, with split horizon and poison reverse

Limitations (V): Split Horizon and Poison Reverse

- B advertises its routing table, with split horizon and poison reverse
- For destination D, loop $\{C \rightarrow E \rightarrow B \rightarrow C\}$!
 - resolved only by counting to infinity

Dst	I/f	Metric													
D	2	3													
0 _B 2	_	-													
1	1	0	<u>~</u> [Dst	I/f	Metric	+	Г	Ost	Metric	<u> </u>		Dst	I/f	Metric
- 1	_	1		D	1	2			D	Inf			D	1	2
	_1						_								-
0 ^E 2															
Dst	I/f	Metric		Dst	Metri			Ī	Dst	t]	:/f	Metric			
D	0	Inf	+	D	4] -		•	D		1	4			

Outline

- · Routing Problem Definition
- Definitions: Hosts, Routers, Interfaces, Subnets
- Shortest-Path Routing
- Routing Tables
- · Distance Vector Algorithm
- · Pathologies: Bouncing and Counting to Infinity
- Optimizations: Split Horizon and Poison Reverse
- War Story: Synchronization of Routing Messages

Symptom: Periodic Severe Packet Loss

- 1992: Every 30 seconds, for several seconds on end, 50 to 85% of packets passing through group of Internet routers dropped!
- RIP, a distance vector routing protocol, sends updates every 30 seconds
- Could distance vector routing be the culprit?

Timers and DV Route Updates

- When a timer expires, router prepares update packets containing current table
- If update packets arrive from neighbor while preparing own update packets, process them before sending own update packets
- Send own update packets
- Reset timer interval [P r, P + r]
 - P: desired update interval
 - r: uniform random jitter component

Emergent Behavior: Synchronization of Route Updates

- Initially, routers all send updates at random times
- "Collision": update from B arrives at A while A is preparing its own update
 - Timer not reset until A finishes sending update
 - Result: longer period between updates by A
 - So higher probability update arrives from some other router C before timer reset
- If triggered update arrives from some other router before timer expires, A immediately prepares and sends update, without waiting for timer to expire
- Result: routers eventually all synchronize to send all updates at same time!

Avoiding Routing Update Synchronization

- Floyd and Jacobson: random jitter should be 50% of update interval to avoid synchronization
 - in [P r, P + r] model, $P = 30 \rightarrow r = 15$
 - update interval random in [15, 45] seconds

Summary: Distance Vector Routing

- DV algorithm: periodically dump routing table contents to neighbors
- · Convergence: after topology change, point when routing tables stop changing

· Pro:

- simple
- finds correct routes after topology changes

· Con:

- bouncing, counting to infinity cause loops
- slow to converge after some topology changes
- split horizon, poison reverse only partial solutions