UMass Boston Physics 182

Voltage Divider Quick Sheet

Print Last Name	Giftakis	Print First Name Benjamin
Section Date	TA_	
Lab Partner		
Measured Voltages for	· Part 1	
	1 41 (1.	
$V_{in} = \underline{ \ 12 \ V }$		
Slope from Excel graph and calculated value of pencil resistance		
$Slope = \underline{0.040084}$	$R_2 \pm S_{R2} = \frac{2}{2}$	24.94734 ohms % error =
Measured Voltages for Part 2.		
Voltage drop across R ₂	and wire. $V_{in} = 12 \text{ V}$	
Voltage drop across wire. $V_{wire} = .042 \text{ V}$		
Calculated $V_2 = 11.95$	$58 \text{ V}_{\text{in}} - \text{V}_{\text{w}}$	ire
Calculate Current I in the circuit using V_2 and R_2 . Use R_2 measured from part (1) above.		
I = 0.01214 amps		
Diameter D and Cross-sectional area A of the wire.		
$D = \underline{0.63 \text{ mm}}$	$A = \frac{3.12*10^{-7} \text{ m}}{}$	^2
Slope from Excel graph and calculated resistivity of the wire		
Slope = 3.39	1. ρ ± S _ρ =	.06+-0.02 microohms*m (This should be a positive number.)
Percent error to the accepted value of $\rho=1.08~\mu\Omega m.$		
% error = 2.26%	_	
Resistance of wire using Ohm's Law $(R_{3, \text{wire, Ohm}} = V_{\text{wire}}/I)$.		
$R_{3,wire,Ohm} = \underline{3.46ohn}$	ns	
		wire, using length $L=1.00$ meter, and the above values of error using the above measured value of $R_{3,\mathrm{wire},\mathrm{Ohm}}$ as the
Calculated $R_{3,wire, \rho} = 3$.39 ohms % e	error = 2.12%