Lecture Notes of Multivariate Statistics Lecture 01

Weizhong Zhang School of Data Science, Fudan University

April 4, 2023

1 Review of Linear Algebra

Theorem 1.1 (QR Factorization). Prove the following results for Gram-Schmidt orthogonalization

- 1. $r_{jj} \neq 0 \text{ for all } i = 1, ..., n$
- 2. $\|\mathbf{q}_i\|_2 = 1$ for all i = 1, ..., n
- 3. $\mathbf{q}_i^{\mathsf{T}} \mathbf{q}_j = 0$ for all $i = 1, \ldots, n$ and j < i.

Proof. Part 1: Since each \mathbf{q}_i is a linear combination of $\{\mathbf{a}_1, \dots, \mathbf{a}_i\}$, the entry r_{jj} is zero means

$$r_{jj} = \left\| \mathbf{a}_j - \sum_{i=1}^{j-1} r_{ij} \mathbf{q}_i \right\|_2 = 0,$$

then \mathbf{a}_j must be a linear combination of $\{\mathbf{a}_1, \cdots, \mathbf{a}_{j-1}\}$, which validates the full rank assumption on \mathbf{A} .

Part 2: Just use the expression of r_{ij} .

Part 3: Recall that $r_{ij} = \mathbf{q}_i^{\top} \mathbf{a}_j$ for any $i \neq j$. We can verify

$$\mathbf{q}_{1}^{\top}\mathbf{q}_{2} = \frac{\mathbf{q}_{1}^{\top}(\mathbf{a}_{2} - r_{12}\mathbf{q}_{1})}{r_{22}} = \frac{\mathbf{q}_{1}^{\top}(\mathbf{a}_{2} - (\mathbf{q}_{1}^{\top}\mathbf{a}_{2})\mathbf{q}_{1})}{r_{22}} = \frac{\mathbf{q}_{1}^{\top}\mathbf{a}_{2} - (\mathbf{q}_{1}^{\top}\mathbf{a}_{2})\mathbf{q}_{1}^{\top}\mathbf{q}_{1}}{r_{22}} = 0$$

Suppose for $\mathbf{q}_i^{\top} \mathbf{q}_j = 0$ for all $\mathbf{q}_i^{\top} \mathbf{q}_j = 0$ for all $i = 1, \dots, n' - 1$ and j < i. Then for all $k = 1, 2, \dots, n' - 1$, we have

$$\mathbf{q}_{k}^{\top}\mathbf{q}_{n'} = \frac{\mathbf{q}_{k}^{\top}\mathbf{a}_{n'} - \sum_{i=1}^{n'-1} r_{in'}\mathbf{q}_{k}^{\top}\mathbf{q}_{i}}{r_{n'n'}} = \frac{\mathbf{q}_{k}^{\top}\mathbf{a}_{n'} - r_{kn'}\mathbf{q}_{k}^{\top}\mathbf{q}_{k}}{r_{n'n'}} = \frac{\mathbf{q}_{k}^{\top}\mathbf{a}_{n'} - r_{kn'}}{r_{n'n'}} = 0$$

Then we prove the result by induction.

Theorem 1.2. *Prove* $\|\mathbf{A}\|_{2} = \sigma_{1}$.

Proof. Let $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$ be full SVD of \mathbf{A} . Then

$$\left\|\mathbf{A}\right\|_2 = \sup_{\left\|\mathbf{x}\right\|_2 = 1} \left\|\mathbf{A}\mathbf{x}\right\|_2 = \sup_{\left\|\mathbf{x}\right\|_2 = 1} \left\|\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\top}\mathbf{x}\right\|_2 = \sup_{\left\|\mathbf{x}\right\|_2 = 1} \left\|\boldsymbol{\Sigma}\mathbf{V}^{\top}\mathbf{x}\right\|_2$$

Then let $\mathbf{y} = \mathbf{V}^{\top}\mathbf{x}$. Since \mathbf{V} is orthogonal matrix, we have $\|\mathbf{y}\|_2 = \|\mathbf{V}^{\top}\mathbf{x}\|_2 = \|\mathbf{x}\|_2 = 1$. Hence,

$$\sup_{\|\mathbf{x}\|_2=1} \|\mathbf{\Sigma} \mathbf{V}^{\top} \mathbf{x}\|_2 = \sup_{\|\mathbf{y}\|_2=1} \|\mathbf{\Sigma} \mathbf{y}\|_2 = \sup_{\|\mathbf{y}\|_2=1} \sqrt{\sum_{i=1}^r (\sigma_i y_i)^2} \leq \sigma_1.$$

We attain the maximum by taking $\mathbf{y} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$ and the corresponding \mathbf{x} is $\mathbf{V} \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$

Theorem 1.3 (Cholesky Factorization). The symmetric positive-definite matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ has the decomposition of the form

$$\mathbf{A} = \mathbf{L} \mathbf{L}^{\top}$$

where $\mathbf{L} \in \mathbb{R}^{\times n}$ is a lower triangular matrix with real and positive diagonal entries.

Proof. For n=1, it is trivial. Suppose it holds for n-1, then any $\widetilde{\mathbf{A}} \in \mathbb{R}^{(n-1)\times (n-1)}$ can be written as

$$\widetilde{\mathbf{A}} = \widetilde{\mathbf{L}}\widetilde{\mathbf{L}}^{\top}$$

where $\widetilde{\mathbf{L}} \in \mathbb{R}^{(n-1)\times (n-1)}$ is a lower triangular matrix with real and positive diagonal entries. Consider the case of n such that

$$\mathbf{A} = \begin{bmatrix} \widetilde{\mathbf{A}} & \mathbf{a} \\ \mathbf{a}^\top & \alpha \end{bmatrix} = \begin{bmatrix} \widetilde{\mathbf{L}} \widetilde{\mathbf{L}}^\top & \mathbf{a} \\ \mathbf{a}^\top & \alpha \end{bmatrix} \in \mathbb{R}^{n \times n}, \quad \text{where } \mathbf{a} \in \mathbb{R}^{n-1}, \quad \alpha \in \mathbb{R}.$$

Let

$$\mathbf{L}_1 = \begin{bmatrix} \widetilde{\mathbf{L}}^{-1} & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix} \in \mathbb{R}^{n \times n}.$$

We have

$$\mathbf{L}_1^{-1}\mathbf{A}\mathbf{L}_1^{-\top} = \begin{bmatrix} \widetilde{\mathbf{L}}^{-1} & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} \widetilde{\mathbf{L}}\widetilde{\mathbf{L}}^{\top} & \mathbf{a} \\ \mathbf{a}^{\top} & \alpha \end{bmatrix} \begin{bmatrix} \widetilde{\mathbf{L}}^{-\top} & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{I} & \mathbf{b} \\ \mathbf{b}^{\top} & \alpha \end{bmatrix} \triangleq \mathbf{B} \in \mathbb{R}^{n \times n} \quad \text{where } \mathbf{b} \in \widetilde{\mathbf{L}}^{-1}\mathbf{a} \in \mathbb{R}^{n-1}.$$

Let

$$\mathbf{L}_2 = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ -\mathbf{b}^{\top} & 1 \end{bmatrix} \in \mathbb{R}^{n \times n}.$$

Then

$$\mathbf{L}_2^{-1}\mathbf{B}\mathbf{L}_2^{-\top} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ -\mathbf{b}^{\top} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{b} \\ \mathbf{b}^{\top} & \alpha \end{bmatrix} \begin{bmatrix} \mathbf{I} & -\mathbf{b} \\ \mathbf{0} & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \alpha - \mathbf{b}^{\top}\mathbf{b} \end{bmatrix}.$$

Since **A** is positive-definite, we have

$$\alpha - \mathbf{b}^{\top} \mathbf{b} = \alpha - \mathbf{a}^{\top} \widetilde{\mathbf{L}}^{-\top} \widetilde{\mathbf{L}}^{-1} \mathbf{a} = \alpha - \mathbf{a}^{\top} \widetilde{\mathbf{L}}^{-\top} \widetilde{\mathbf{L}}^{-1} \mathbf{a} = \alpha - \mathbf{a}^{\top} \widetilde{\mathbf{A}}^{-1} \mathbf{a} > 0.$$

Let $\alpha - \mathbf{b}^{\top} \mathbf{b} = \lambda^2$, where $\lambda > 0$. Hence, we have

$$\begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \alpha - \mathbf{b}^{\top} \mathbf{b} \end{bmatrix} = \mathbf{L}_3 \mathbf{L}_3^{\top}, \quad \text{where } \mathbf{L}_3 = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \lambda \end{bmatrix}$$

which means $\mathbf{A} = \mathbf{L}\mathbf{L}^{\top} \in \mathbb{R}^{n \times n}$ where $\mathbf{L} = \mathbf{L}_1\mathbf{L}_2\mathbf{L}_3 \in \mathbb{R}^{n \times n}$ is a lower triangular matrix with real and positive diagonal entries.

Theorem 1.4. Suppose $\nabla^2 f(\mathbf{x})$ is continuous in an open neighborhood of \mathbf{x}^* and that $\nabla f(\mathbf{x}^*) = \mathbf{0}$ and $\nabla^2 f(\mathbf{x}^*) \succ \mathbf{0}$. Then \mathbf{x}^* is a strict local minimizer of f.

Proof. Because the Hessian is continuous and positive definite at x^* , we can choose a radius r > 0 so that $\nabla^2 f(\mathbf{x})$ remains positive definite for all \mathbf{x} in the open ball $\mathcal{D} = \{\mathbf{z} : \|\mathbf{z} - \mathbf{x}^*\|_2 < r\}$. Taking any nonzero vector \mathbf{p} with $\|\mathbf{p}\|_2 < r$, we have $\mathbf{x}^* + \mathbf{p} \in \mathcal{D}$ and so

$$f(\mathbf{x}^* + \mathbf{p}) = f(\mathbf{x}^*) + \mathbf{p}^\top \nabla f(\mathbf{x}^*) + \frac{1}{2} \mathbf{p}^\top \nabla^2 f(\mathbf{z}) \mathbf{p} = f(\mathbf{x}^*) + \frac{1}{2} \mathbf{p}^\top \nabla^2 f(\mathbf{z}) \mathbf{p},$$

where $\mathbf{z} = \mathbf{x}^* + t\mathbf{p}$ for some $t \in (0, 1)$. Since $\mathbf{z} \in \mathcal{D}$, we have $\mathbf{p}^{\top} \nabla^2 f(\mathbf{z}) \mathbf{p} > 0$, and therefore $f(\mathbf{x}^* + \mathbf{p}) > f(\mathbf{x}^*)$, giving the result.

Theorem 1.5. Suppose \mathbf{x}^* is a local minimizer of twice differentiable $f(\mathbf{x})$ and $\nabla^2 f(\mathbf{x})$ is continuous in an open neighborhood of \mathbf{x}^* , then $\nabla^2 f(\mathbf{x}^*) = \mathbf{0}$ and $\nabla^2 f(\mathbf{x}^*) \succeq \mathbf{0}$.

Proof. Suppose for contradiction that $\nabla f(\mathbf{x}^*) \neq \mathbf{0}$. Define the vector $p = -\nabla f(\mathbf{x}^*)$, which leads to that $\mathbf{p}^{\top} \nabla f(\mathbf{x}^*) < 0$. Because ∇f is continuous near \mathbf{x}^* , there is a scalar T > 0 such that

$$\mathbf{p}^{\top} \nabla f(\mathbf{x}^* + t\mathbf{p}) < 0,$$

for all for any $t \in [0,T]$. We have by Taylors theorem that

$$f(\mathbf{x}^* + \bar{t}\mathbf{p}) = f(\mathbf{x}^*) + \bar{t}\mathbf{p}^{\top}\nabla f(x^* + t\mathbf{p}),$$

for some $t \in (0, \bar{t})$. Therefore, $f(x^* + \bar{t}\mathbf{p}) < f(x^*)$ for all $\bar{t} \in (0, T]$. We have found a direction leading away from x^* along which f decreases, so x^* is not a local minimizer, and we have $\nabla^2 f(\mathbf{x}) = \mathbf{0}$.

For contradiction, assume that $\nabla^2 f(\mathbf{x}^*)$ is not positive semidefinite. Then we can choose a vector \mathbf{p} such that $\mathbf{p}^\top \nabla^2 f(\mathbf{x}^*) \mathbf{p} < 0$. Because $\nabla^2 f(\mathbf{x})$ is continuous near \mathbf{x}^* , there is a scalar T > 0 such that

$$\mathbf{p}^{\top} \nabla^2 f(\mathbf{x}^* + t\mathbf{p}) \mathbf{p} < 0$$

for all $t \in [0, T]$. By doing a Taylor series expansion around x^* , we have for all $\bar{t} \in (0, T]$ and some $t \in (0, \bar{t})$ that

$$f(\mathbf{x}^* + \bar{t}\mathbf{p}) = f(\mathbf{x}^*) + \bar{t}\mathbf{p}^\top \nabla f(\mathbf{x}^*) + \frac{1}{2}\bar{t}^2\mathbf{p}^\top \nabla^2(\mathbf{x}^* + t\mathbf{p})\bar{t}^2\mathbf{p} < f(\mathbf{x}^*).$$

We have found a direction from \mathbf{x}^* along which f is decreasing, and so again, \mathbf{x}^* is not a local minimizer. \square

Theorem 1.6. Given $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$, the solution of minimization problem

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) \triangleq \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2.$$

is $\hat{\mathbf{x}} = \mathbf{A}^{\dagger} \mathbf{b} + (\mathbf{I} - \mathbf{A}^{\dagger} \mathbf{A}) \mathbf{v}$, where $\mathbf{v} \in \mathbb{R}^n$

Proof. The Hessian of $f(\mathbf{x})$ is $\mathbf{A}^{\top} \mathbf{A} \succeq \mathbf{0}$, which means $f(\mathbf{x})$ is convex. Let $\mathbf{A} = \mathbf{U}_r \mathbf{\Sigma}_r \mathbf{V}_r^{\top}$ be the condense SVD, where r is the rank of \mathbf{A} . Since $\nabla f(\mathbf{x}) = \mathbf{A}^{\top} \mathbf{A} \mathbf{x} - \mathbf{A}^{\top} \mathbf{b}$, we only needs to solve the linear system

$$\mathbf{A}^{\top} \mathbf{A} \mathbf{x} - \mathbf{A}^{\top} \mathbf{b} = \mathbf{0}.$$

We denote the solution of $\mathbf{A}^{\top} \mathbf{A} \mathbf{x} - \mathbf{A}^{\top} \mathbf{b} = \mathbf{0}$ be

$$\mathcal{X} = \left\{ \mathbf{x} : \mathbf{A}^{\top} \mathbf{A} \mathbf{x} - \mathbf{A}^{\top} \mathbf{b} = \mathbf{0} \right\}.$$

We can verify that $\hat{\mathbf{x}} = \mathbf{A}^{\dagger}\mathbf{b} + (\mathbf{I} - \mathbf{A}^{\dagger}\mathbf{A})\mathbf{y}$ is the solution of the linear system because

$$\begin{split} &\mathbf{A}^{\top}\mathbf{A}\hat{\mathbf{x}} - \mathbf{A}^{\top}\mathbf{b} \\ &= &\mathbf{A}^{\top}\mathbf{A}\left(\mathbf{A}^{\dagger}\mathbf{b} + (\mathbf{I} - \mathbf{A}^{\dagger}\mathbf{A})\mathbf{y}\right) - \mathbf{A}^{\top}\mathbf{b} \\ &= &\mathbf{A}^{\top}(\mathbf{A}\mathbf{A}^{\dagger} - \mathbf{I})\mathbf{b} + \mathbf{A}^{\top}\mathbf{A}\left(\mathbf{I} - \mathbf{A}^{\dagger}\mathbf{A}\right)\mathbf{y} \\ &= &\mathbf{V}_{r}\boldsymbol{\Sigma}_{r}\mathbf{U}_{r}^{\top}(\mathbf{U}_{r}\boldsymbol{\Sigma}_{r}\mathbf{V}_{r}^{\top}\mathbf{V}_{r}\boldsymbol{\Sigma}_{r}^{-1}\mathbf{U}_{r}^{\top} - \mathbf{I})\mathbf{b} + \mathbf{V}_{r}\boldsymbol{\Sigma}_{r}\mathbf{U}_{r}^{\top}\mathbf{U}_{r}\boldsymbol{\Sigma}_{r}\mathbf{V}_{r}^{\top}\left(\mathbf{I} - \mathbf{V}_{r}\boldsymbol{\Sigma}_{r}^{-1}\mathbf{U}_{r}^{\top}\mathbf{U}_{r}\boldsymbol{\Sigma}_{r}\mathbf{V}_{r}^{\top}\right)\mathbf{y} \end{split}$$

$$\begin{split} &= & \mathbf{V}_r \mathbf{\Sigma}_r \mathbf{U}_r^\top (\mathbf{U}_r \mathbf{U}_r^\top - \mathbf{I}) \mathbf{b} + \mathbf{V}_r \mathbf{\Sigma}_r^2 \mathbf{V}_r^\top \left(\mathbf{I} - \mathbf{V}_r \mathbf{V}_r^\top \right) \mathbf{y} \\ &= & \mathbf{V}_r \mathbf{\Sigma}_r (\mathbf{U}_r^\top - \mathbf{U}_r^\top) \mathbf{b} + \mathbf{V}_r \mathbf{\Sigma}_r^2 \left(\mathbf{V}_r^\top - \mathbf{V}_r^\top \right) \mathbf{y} \\ &= & \mathbf{0}. \end{split}$$

Hence, we have $\mathcal{X}_1 \subseteq \mathcal{X}$, where $\mathcal{X}_1 = \{\mathbf{x} : \mathbf{x} = \mathbf{A}^{\dagger} \mathbf{b} + (\mathbf{I} - \mathbf{A}^{\dagger} \mathbf{A}) \mathbf{y}, \ \mathbf{y} \in \mathbb{R}^n \}$. We also have

$$\begin{split} \mathbf{A}^{\top}\mathbf{A}\mathbf{x} - \mathbf{A}^{\top}\mathbf{b} &= \mathbf{0} \\ \iff & \mathbf{V}_r \mathbf{\Sigma}_r^2 \mathbf{V}_r^{\top}\mathbf{x} - \mathbf{V}_r \mathbf{\Sigma}_r \mathbf{U}_r^{\top}\mathbf{b} = \mathbf{0} \\ \iff & \mathbf{\Sigma}_r^2 \mathbf{V}_r^{\top}\mathbf{x} - \mathbf{\Sigma}_r \mathbf{U}_r^{\top}\mathbf{b} = \mathbf{0} \\ \iff & \mathbf{V}_r^{\top}\mathbf{x} = \mathbf{\Sigma}_r^{-1} \mathbf{U}_r^{\top}\mathbf{b} \\ \iff & \mathbf{V}_r \mathbf{V}_r^{\top}\mathbf{x} = \mathbf{V}_r \mathbf{\Sigma}_r^{-1} \mathbf{U}_r^{\top}\mathbf{b} \\ \iff & \mathbf{x} - (\mathbf{I} - \mathbf{V}_r \mathbf{V}_r^{\top})\mathbf{x} = \mathbf{A}^{\dagger}\mathbf{b} \\ \iff & \mathbf{x} = \mathbf{A}^{\dagger}\mathbf{b} + (\mathbf{I} - \mathbf{V}_r \mathbf{V}_r^{\top})\mathbf{x} \end{split}$$

Hence, we have $\mathcal{X} = \left\{ \mathbf{x} : \mathbf{x} = \mathbf{A}^{\dagger} \mathbf{b} + (\mathbf{I} - \mathbf{V}_r \mathbf{V}_r^{\top}) \mathbf{x} \right\} \subseteq \mathcal{X}_1$. In conclusion, we have $\mathcal{X} = \mathcal{X}_1$.

2 The Multivariate Normal Distributions

Statistical Independence If F(x,y) = F(x)G(y), we have

$$f(x,y) = \frac{\partial^2 F(x,y)}{\partial x \partial y} = \frac{\partial^2 F(x)G(y)}{\partial x \partial y}$$
$$= \frac{\mathrm{d}F(x)}{\mathrm{d}x} \frac{\mathrm{d}G(y)}{\mathrm{d}y}$$
$$= f(x)g(y).$$

If f(x,y) = f(x)g(y), we have

$$F(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(u,v) du dv = \int_{-\infty}^{y} \int_{-\infty}^{x} f(u)g(v) du dv$$
$$= \int_{-\infty}^{y} \int_{-\infty}^{x} f(u,v) du dv = \int_{-\infty}^{x} f(u) du \int_{-\infty}^{y} g(v) dv$$
$$= F(x)G(y).$$

Uncorrelated does not means independent Let $X \sim U(-1,1)$ and

$$Y = \begin{cases} X, & X > 0 \\ -X, & X \le 0 \end{cases}$$

Show X and Y are uncorrelated but they are NOT independent.

Conditional Distributions Let $y_1 = y$, $y_2 = y + \Delta$. Then for a continuous density, the mean value theorem implies

$$\int_{u}^{y+\Delta y} g(v) \, \mathrm{d}v = g(y^*) \Delta y,$$

where $y \leq y^* \leq y + \Delta y$. We also have

$$\int_{y}^{y+\Delta y} f(u,v) \, \mathrm{d}v = f(u,y^{*}(u)) \Delta y,$$

where $y \leq y^*(u) \leq y + \Delta y$. Connecting above results to

$$\Pr\{x_1 \le X \le x_2 \mid y_1 \le Y \le y_2\} = \frac{\int_{x_1}^{x_2} \int_{y_1}^{y_2} f(u, v) \, dv \, du}{\int_{y_1}^{y_2} g(v) \, dv}$$

with $y_1 = y$ and $y_2 = y + \Delta y$, we have

$$\Pr\{x_{1} \leq X \leq x_{2} \mid y \leq Y \leq y + \Delta y\}
= \frac{\int_{x_{1}}^{x_{2}} \int_{y}^{y + \Delta y} f(u, v) \, dv \, du}{\int_{y}^{y + \Delta y} g(v) \, dv}
= \frac{\int_{x_{1}}^{x_{2}} f(u, y^{*}(u)) \Delta y \, du}{g(y^{*}) \Delta y}
= \int_{x_{1}}^{x_{2}} \frac{f(u, y^{*}(u))}{g(y^{*})} \, du.$$
(1)

For y such that g(y) > 0, we define $\Pr\{x_1 \le X \le x_2 \mid Y = y\}$, the probability that X lies between x_1 and x_2 , given that Y is y, as the limit of (1) as $\Delta y \to 0$. Thus

$$\Pr\{x_1 \le X \le x_2 \mid Y = y\} = \int_{x_1}^{x_2} \frac{f(u, y)}{g(y)} du = \int_{x_1}^{x_2} f(u \mid y) du.$$
 (2)

Transform of Variables Let the density of X_1, \ldots, X_p be $f(x_1, \ldots, x_p)$. Consider the p real-valued functions $\mathbf{u} : \mathbb{R}^p \to \mathbb{R}^p$ such that

$$y_i = u_i(x_1, \dots, x_p), \qquad i = 1, \dots, p.$$

Assume the transformation \mathbf{u} from the x-space to the y-space is one-to-one, then the inverse transformation is \mathbf{u}^{-1} such that

$$x_i = u_i^{-1}(y_1, \dots, y_p), \qquad i = 1, \dots, p.$$

Let the random variables Y_1, \ldots, Y_p be defined by

$$Y_i = u_i(X_1, \dots, X_p), \qquad i = 1, \dots, p,$$

and the density of Y_1, \ldots, Y_p be $g(\mathbf{y})$. Then we have

$$\int_{\mathbf{u}(\Omega)} g(\mathbf{y}) d\mathbf{y} = \int_{\Omega} g(\mathbf{u}(\mathbf{x})) \operatorname{abs}(|\mathbf{J}(\mathbf{x})|) d\mathbf{x}, \tag{3}$$

and

$$f(\mathbf{x}) = g(\mathbf{u}(\mathbf{x})) \operatorname{abs}(|\mathbf{J}(\mathbf{x})|), \tag{4}$$

where the Jacobin matrix is

$$\mathbf{J}(\mathbf{x}) = \begin{bmatrix} \frac{\partial u_1}{\partial x_1} & \frac{\partial u_1}{\partial x_2} & \cdots & \frac{\partial u_1}{\partial x_p} \\ \frac{\partial u_2}{\partial x_1} & \frac{\partial u_2}{\partial x_2} & \cdots & \frac{\partial u_2}{\partial x_p} \\ \vdots & \vdots & & \vdots \\ \frac{\partial u_p}{\partial x_1} & \frac{\partial u_p}{\partial x_2} & \cdots & \frac{\partial u_p}{\partial x_p} \end{bmatrix}.$$

A roughly proof for above results:

- If $\mathbf{A} \in \mathbb{R}^{p \times p}$ and $\mathcal{S} \subset \mathbb{R}^p$ is a measurable set, then $m(\mathbf{A}\mathcal{S}) = |\det(\mathbf{A})|m(\mathcal{S})$. Let $\mathbf{A} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\top}$ where \mathbf{U} and \mathbf{V} are orthogonal and $\mathbf{\Sigma}$ is diagonal with nonnegative entries. Multiplying by \mathbf{V}^{\top} doesn't change the measure of \mathcal{S} . Multiplying by $\mathbf{\Sigma}$ scales along each axis, so the measure gets multiplied by $|\det(\mathbf{\Sigma})| = |\det(\mathbf{A})|$. Multiplying by \mathbf{U} doesn't change the measure.
- We consider the probability of \mathbf{x} in Ω and \mathbf{y} in $\mathbf{u}(\Omega)$; and partition Ω into $\{\Omega_i\}_i$. Then

$$\int_{\mathbf{u}(\Omega)} g(\mathbf{y}) d\mathbf{y}$$

$$= \sum_{i} g(\mathbf{u}(\mathbf{x}_{i})) m(\mathbf{u}(\Omega_{i}))$$

$$\approx \sum_{i} g(\mathbf{u}(\mathbf{x}_{i})) m(\mathbf{u}(\mathbf{x}_{i}) + \mathbf{J}(\mathbf{x}_{i})(\Omega_{i} - \mathbf{x}_{i}))$$

$$= \sum_{i} g(\mathbf{u}(\mathbf{x}_{i})) m(\mathbf{J}(\mathbf{x}_{i})\Omega_{i})$$

$$= \sum_{i} g(\mathbf{u}(\mathbf{x}_{i})) \operatorname{abs}(|\mathbf{J}(\mathbf{x}_{i})|) m(\Omega_{i})$$

$$\approx \int_{\Omega} g(\mathbf{u}(\mathbf{x})) \operatorname{abs}(|\mathbf{J}(\mathbf{x})|) d\mathbf{x}.$$

• Consider notation Ω such that

$$\int_{\Omega} = \int_{x_1}^{x_1'} \dots \int_{x_p}^{x_p'}$$

where $x_1 \leq x_1', x_2 \leq x_2', \dots, x_p \leq x_p'$. Then the notation $\mathbf{u}(\Omega)$ in the integral should consider the order

$$\int_{\mathbf{u}(\Omega)} = \int_{\min\{u_1(x_1), u_1(x_1')\}}^{\max\{u_1(x_1), u_1(x_1')\}} \dots \int_{\min\{u_p(x_p), u_p(x_p')\}}^{\max\{u_p(x_p), u_p(x_p')\}}$$

By using even tinier subsets Ω_i , the approximation would be even better so we see by a limiting argument that we actually obtain (3). On the other hand, we have (f is density functions of **x** on Ω ; g is density function of **y** on $\mathbf{u}(\Omega)$; $\mathbf{y} = \mathbf{u}(\mathbf{x})$ means **x** and $\mathbf{y} = \mathbf{u}(\mathbf{x})$ are one-to-one mapping).

$$\int_{\Omega} f(\mathbf{x}) d\mathbf{x} = \int_{\mathbf{u}(\Omega)} g(\mathbf{y}) d\mathbf{y} = \int_{\Omega} g(\mathbf{u}(\mathbf{x})) \operatorname{abs}(|\mathbf{J}(\mathbf{x})|) d\mathbf{x}.$$

Since it holds for any Ω , then

$$f(\mathbf{x}) = q(\mathbf{u}(\mathbf{x})) \operatorname{abs}(|\mathbf{J}(\mathbf{x})|).$$

Lemma 2.1. If **Z** is an $m \times n$ random matrix, **D** is an $l \times m$ real matrix, **E** is an $n \times q$ real matrix, and **F** is an $l \times q$ real matrix, then

$$\mathbb{E}[\mathbf{D}\mathbf{Z}\mathbf{E} + \mathbf{F}] = \mathbf{D}\mathbb{E}[\mathbf{Z}]\mathbf{E} + \mathbf{F}.$$

Proof. The element in the *i*-th row and *j*-th column of $\mathbb{E}[\mathbf{DZE} + \mathbf{F}]$ is

$$\mathbb{E}\left[\sum_{h,g} d_{ih} z_{hg} e_{gj} + f_{ij}\right] = \sum_{h,g} d_{ih} \mathbb{E}[z_{hg}] e_{gj} + f_{ij}$$

which is the element in the *i*-th row and *j*-th column of $\mathbf{D}\mathbb{E}[\mathbf{Z}]\mathbf{E} + \mathbf{F}$.

Lemma 2.2. If $\mathbf{y} = \mathbf{D}\mathbf{x} + \mathbf{f} \in \mathbb{R}^l$, where \mathbf{D} is an $l \times m$ real matrix, $\mathbf{x} \in \mathbb{R}^m$ is a random vector, then

$$\mathbb{E}[\mathbf{y}] = \mathbf{D}\mathbb{E}[\mathbf{x}] + \mathbf{f}$$
 and $Cov[\mathbf{y}] = \mathbf{D}Cov[\mathbf{x}]\mathbf{D}^{\top}$.

Proof. We have

$$\begin{split} &\operatorname{Cov}(\mathbf{y}) \\ =& \mathbb{E}\left[(\mathbf{y} - \mathbb{E}[\mathbf{y}])(\mathbf{y} - \mathbb{E}[\mathbf{y}])^{\top} \right] \\ =& \mathbb{E}\left[(\mathbf{D}\mathbf{x} + \mathbf{f} - \mathbb{E}[\mathbf{D}\mathbb{E}[\mathbf{x}] + \mathbf{f}])(\mathbf{D}\mathbf{x} + \mathbf{f} - \mathbb{E}[\mathbf{D}\mathbb{E}[\mathbf{x}] + \mathbf{f}])^{\top} \right] \\ =& \mathbb{E}[(\mathbf{D}\mathbf{x} - \mathbf{D}\mathbb{E}[\mathbf{x}])(\mathbf{D}\mathbf{x} - \mathbf{D}\mathbb{E}[\mathbf{x}])^{\top}] \\ =& \mathbb{E}[\mathbf{D}(\mathbf{x} - \mathbb{E}[\mathbf{x}])(\mathbf{x} - \mathbb{E}[\mathbf{x}])^{\top}\mathbf{D}^{\top}] \\ =& \mathbf{D}\mathbb{E}[(\mathbf{x} - \mathbb{E}[\mathbf{x}])(\mathbf{x} - \mathbb{E}[\mathbf{x}])^{\top}]\mathbf{D}^{\top} \\ =& \mathbf{D}\operatorname{Cov}[\mathbf{x}]\mathbf{D}^{\top}. \end{split}$$

The Density Function of Multivariate Normal Distribution Let the spectral decomposition of \mathbf{A} be $\mathbf{A} = \mathbf{U}\boldsymbol{\Lambda}\mathbf{U}^{\top}$, then we take $\mathbf{C} = \mathbf{U}\boldsymbol{\Lambda}^{-1/2}$ and it satisfies $\mathbf{C}^{\top}\mathbf{A}\mathbf{C} = \mathbf{I}$ and \mathbf{C} is non-singular. Define $\mathbf{y} = \mathbf{C}^{-1}(\mathbf{x} - \mathbf{b})$, then

$$K^{-1} = \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{b})^{\top} \mathbf{A}(\mathbf{x} - \mathbf{b})\right) dx_{1} \dots dx_{p}$$

$$= \frac{1}{\det(\mathbf{C}^{-1})} \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} \exp\left(-\frac{1}{2}\mathbf{y}^{\top}\mathbf{y}\right) dy_{1} \dots dy_{p}$$

$$= \det(\mathbf{C}) \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} \exp\left(-\frac{1}{2}\sum_{i=1}^{n} y_{i}^{2}\right) dy_{1} \dots dy_{p}$$

$$= \det(\mathbf{A}^{-\frac{1}{2}}) \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} \exp\left(-\frac{1}{2}y_{p}^{2}\right) \dots \exp\left(-\frac{1}{2}y_{1}^{2}\right) dy_{1} \dots dy_{p}$$

$$= \det(\mathbf{A}^{-\frac{1}{2}})(2\pi)^{\frac{p}{2}}.$$

Directly consider the expectation and variance of \mathbf{x} is not easy, so we first consider the ones of \mathbf{y} . The relation $\mathbf{y} = \mathbf{C}^{-1}(\mathbf{x} - \mathbf{b})$ means $\mathbf{x} = \mathbf{C}\mathbf{y} + \mathbf{b}$ and $\mathbb{E}[\mathbf{x}] = \mathbf{C}\mathbb{E}[\mathbf{y}] + \mathbf{b}$. The transformation implies the density function of \mathbf{y} is

$$g(\mathbf{y}) = \det(\mathbf{C})K \exp\left(-\frac{1}{2}(\mathbf{C}\mathbf{y} + \mathbf{b} - \mathbf{b})^{\top} \mathbf{A}(\mathbf{C}\mathbf{y} + \mathbf{b} - \mathbf{b})\right) dy_{1} \dots dy_{p}$$

$$= \det(\mathbf{C})K \exp\left(-\frac{1}{2}\mathbf{y}^{\top}\mathbf{C}^{\top}\mathbf{A}\mathbf{C}\mathbf{y}\right) dy_{1} \dots dy_{p}$$

$$= K \det(\mathbf{C}) \exp\left(-\frac{1}{2}\mathbf{y}^{\top}\mathbf{y}\right) dy_{1} \dots dy_{p}$$

$$= \frac{\det(\mathbf{C})}{\sqrt{(2\pi)^{p} \det(\mathbf{A})}} \exp\left(-\frac{1}{2}\sum_{i=1}^{p} y_{i}^{2}\right) dy_{1} \dots dy_{p}$$

$$= \frac{1}{(2\pi)^{p/2}} \exp\left(-\frac{1}{2}\sum_{i=1}^{p} y_{i}^{2}\right) dy_{1} \dots dy_{p}.$$

Then for each $i = 1, \ldots, p$, we have

$$\mathbb{E}[y_i] = \frac{1}{(2\pi)^{p/2}} \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} y_i \exp\left(-\frac{1}{2} \sum_{j=1}^p y_j^2\right) dy_1 \dots dy_p$$
$$= \left(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} y_i \exp\left(-\frac{1}{2} y_i^2\right) dy_i\right) \prod_{j=1, i \neq j}^p \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \exp\left(-\frac{1}{2} y_j^2\right) dy_j$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} y_i \exp\left(-\frac{1}{2}y_i^2\right) dy_i = 0.$$

Thus $\mathbb{E}[\mathbf{y}] = \mathbf{0}$ and $\mathbb{E}[\mathbf{x}] = \mathbf{C}\mathbb{E}[\mathbf{y}] + \mathbf{b} = \boldsymbol{\mu}$ implies $\mathbf{b} = \boldsymbol{\mu}$. The relation $\mathbf{x} = \mathbf{C}\mathbf{y} + \mathbf{b}$ means $\text{Cov}[\mathbf{x}] = \mathbf{C}\text{Cov}[\mathbf{y}]\mathbf{C}^{\top} = \mathbf{C}\mathbb{E}[\mathbf{y}\mathbf{y}^{\top}]\mathbf{C}^{\top}$. For each $i \neq j$, we have

$$\begin{split} &= \frac{1}{(2\pi)^{p/2}} \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} y_i y_j \exp\left(-\frac{1}{2} \sum_{h=1}^p y_h^2\right) dy_1 \dots dy_p \\ &= \left(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} y_i \exp\left(-\frac{1}{2} y_i^2\right) dy_i\right) \left(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} y_j \exp\left(-\frac{1}{2} y_j^2\right) dy_j\right) \prod_{j=1, h \neq i, j}^p \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \exp\left(-\frac{1}{2} y_h^2\right) dy_h \\ &= 0 \end{split}$$

We also have

$$\mathbb{E}[y_i^2] = \frac{1}{(2\pi)^{p/2}} \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} y_i^2 \exp\left(-\frac{1}{2} \sum_{h=1}^p y_h^2\right) dy_1 \dots dy_p$$

$$= \left(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} y_i^2 \exp\left(-\frac{1}{2} y_i^2\right) dy_i\right) \prod_{i=1}^p \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \exp\left(-\frac{1}{2} y_h^2\right) dy_h = 1,$$

where the last step is due to

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \exp\left(-\frac{1}{2}y_h^2\right) \, \mathrm{d}y_h$$

corresponds to the pdf of $y_h \sim \mathcal{N}(0,1)$ and

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} y_i^2 \exp\left(-\frac{1}{2}y_i^2\right) \, \mathrm{d}y_i$$

corresponds to the variance of $y_i \sim \mathcal{N}(0,1)$. Hence, it holds that

$$\mathbb{E}[(y_i - \mathbb{E}[y_i])(y_j - \mathbb{E}[y_j])] = \begin{cases} 0, & i \neq j, \\ 1, & i = j. \end{cases}$$

which implies $\Sigma = \text{Cov}[\mathbf{x}] = \mathbf{C}\mathbb{E}[\mathbf{y}\mathbf{y}^{\top}]\mathbf{C}^{\top} = \mathbf{C}\mathbf{C}^{\top}$. Since $\mathbf{C}^{\top}\mathbf{A}\mathbf{C} = \mathbf{I}$, we obtain $\mathbf{A}^{-1} = \mathbf{C}\mathbf{C}^{\top}$ and $\Sigma = \mathbf{A}^{-1} \succ \mathbf{0}.$

Theorem 2.1. Let $\mathbf{x} \sim \mathcal{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, with $\boldsymbol{\Sigma} \in \mathbb{R}^{p \times p}$ and $\boldsymbol{\Sigma} \succ \mathbf{0}$. Then

$$\mathbf{v} = \mathbf{C}\mathbf{x}$$

is distributed according to $\mathcal{N}_p(\mathbf{C}\boldsymbol{\mu},\mathbf{C}\boldsymbol{\Sigma}\mathbf{C}^\top)$ for non-singular $\mathbf{C} \in \mathbb{R}^{p \times p}$.

Proof. Let f(x) be the density of **x** such that

$$f(\mathbf{x}) = n(\mu \mid \mathbf{\Sigma}) = \frac{1}{\sqrt{(2\pi)^p \det(\mathbf{\Sigma})}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^\top \mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

and $g(\mathbf{y})$ be the density function of \mathbf{y} . The relation $\mathbf{x} = \mathbf{C}^{-1}\mathbf{y}$ implies $g(\mathbf{y}) = f(\mathbf{u}^{-1}(\mathbf{y}))|\det(\mathbf{J}^{-1}(\mathbf{y}))|$ with $\mathbf{u}(\mathbf{x}) = \mathbf{C}\mathbf{x}$, $\mathbf{u}^{-1}(\mathbf{y}) = \mathbf{C}^{-1}\mathbf{y}$ and $\mathbf{J}^{-1}(\mathbf{y}) = \mathbf{C}^{-1}$. Hence, we have

 $g(\mathbf{y})$

$$\begin{aligned} &= f(\mathbf{C}^{-1}\mathbf{y})|\det(\mathbf{C}^{-1})| \\ &= \frac{1}{\sqrt{(2\pi)^p \det(\boldsymbol{\Sigma})}} \exp\left(-\frac{1}{2}(\mathbf{C}^{-1}\mathbf{y} - \boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1}(\mathbf{C}^{-1}\mathbf{y} - \boldsymbol{\mu})\right) |\det(\mathbf{C}^{-1})| \\ &= \frac{|\det(\mathbf{C}^{-1})|}{\sqrt{(2\pi)^p \det(\boldsymbol{\Sigma})}} \exp\left(-\frac{1}{2}(\mathbf{y} - \mathbf{C}\boldsymbol{\mu})^\top \mathbf{C}^{-\top} \boldsymbol{\Sigma}^{-1} \mathbf{C}^{-1}(\mathbf{y} - \mathbf{C}\boldsymbol{\mu})\right) \\ &= \frac{1}{\sqrt{(2\pi)^p \det(\mathbf{C}\boldsymbol{\Sigma}^{-1}\mathbf{C}^\top)}} \exp\left(-\frac{1}{2}(\mathbf{y} - \mathbf{C}\boldsymbol{\mu})^\top \left(\mathbf{C}\boldsymbol{\Sigma}^{-1}\mathbf{C}^\top\right)^{-1}(\mathbf{y} - \mathbf{C}\boldsymbol{\mu})\right) \\ &= n(\mathbf{C}\boldsymbol{\mu} \mid \mathbf{C}\boldsymbol{\Sigma}^{-1}\mathbf{C}^\top), \end{aligned}$$

where we use the fact

$$\frac{|\det(\mathbf{C}^{-1})|}{\sqrt{\det(\boldsymbol{\Sigma})}} = \frac{1}{\sqrt{|\det(\mathbf{C})|^2\det(\boldsymbol{\Sigma})}} = \frac{1}{\sqrt{|\det(\mathbf{C})|\det(\boldsymbol{\Sigma})|\det(\mathbf{C}^\top)|}} = \frac{1}{\sqrt{|\det(\mathbf{C}\boldsymbol{\Sigma}\mathbf{C}^\top)|}}.$$

Theorem 2.2. If $\mathbf{x} = [x_1, \dots, x_p]^{\top}$ have a joint normal distribution. Let

1.
$$\mathbf{x}^{(1)} = [x_1, \dots, x_q]^\top$$

$$2. \ \mathbf{x}^{(2)} = [x_{q+1}, \dots, x_p]^{\top}.$$

for q < p. A necessary and sufficient condition for $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ to be independent is that each covariance of a variable from $\mathbf{x}^{(1)}$ and a variable from $\mathbf{x}^{(2)}$ is 0.

Proof. Let

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \end{bmatrix} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \quad \text{where } \boldsymbol{\mu} = \begin{bmatrix} \boldsymbol{\mu}^{(1)} \\ \boldsymbol{\mu}^{(2)} \end{bmatrix} \text{ and } \boldsymbol{\Sigma} = \begin{bmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{bmatrix}$$

such that

- $\boldsymbol{\mu}^{(1)} = \mathbb{E}\left[\mathbf{x}^{(1)}\right]$,
- $\bullet \ \boldsymbol{\mu}^{(2)} = \mathbb{E}\left[\mathbf{x}^{(2)}\right],$
- $\Sigma_{11} = \mathbb{E}\left[\left(\mathbf{x}^{(1)} \boldsymbol{\mu}^{(1)}\right)\left(\mathbf{x}^{(1)} \boldsymbol{\mu}^{(1)}\right)^{\top}\right]$
- $\bullet \ \boldsymbol{\Sigma}_{22} = \mathbb{E}\left[\left(\mathbf{x}^{(2)} \boldsymbol{\mu}^{(2)}\right)\left(\mathbf{x}^{(2)} \boldsymbol{\mu}^{(2)}\right)^{\top}\right]$
- $\bullet \ \boldsymbol{\Sigma}_{12} = \boldsymbol{\Sigma}_{21}^\top = \mathbb{E}\left[\left(\mathbf{x}^{(1)} \boldsymbol{\mu}^{(1)}\right)\left(\mathbf{x}^{(2)} \boldsymbol{\mu}^{(2)}\right)^\top\right].$

Sufficiency (uncorrelated \Longrightarrow independent): The random vectors $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ are uncorrelated means

$$oldsymbol{\Sigma} = egin{bmatrix} oldsymbol{\Sigma}_{11} & oldsymbol{0} \ oldsymbol{0} & oldsymbol{\Sigma}_{22} \end{bmatrix} \quad ext{and} \quad oldsymbol{\Sigma}^{-1} = egin{bmatrix} oldsymbol{\Sigma}_{11}^{-1} & oldsymbol{0} \ oldsymbol{0} & oldsymbol{\Sigma}_{22}^{-1} \end{bmatrix}.$$

The quadratic form of $n(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})$ is

$$\begin{split} & (\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \\ &= \left[(\mathbf{x}^{(1)} - \boldsymbol{\mu}^{(1)})^{\top} \quad (\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)})^{\top} \right] \begin{bmatrix} \boldsymbol{\Sigma}_{11}^{-1} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\Sigma}_{22}^{-1} \end{bmatrix} \begin{bmatrix} \mathbf{x}^{(1)} - \boldsymbol{\mu}^{(1)} \\ \mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)} \end{bmatrix} \\ &= & (\mathbf{x}^{(1)} - \boldsymbol{\mu}^{(1)})^{\top} \boldsymbol{\Sigma}_{11}^{-1} (\mathbf{x}^{(1)} - \boldsymbol{\mu}^{(1)}) + (\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)})^{\top} \boldsymbol{\Sigma}_{22}^{-1} (\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)}) \end{split}$$

and we have $\det(\Sigma) = \det(\Sigma_{11}) \det(\Sigma_{22})$. Then

$$n(\boldsymbol{\mu} \mid \boldsymbol{\Sigma})$$

$$= \frac{1}{\sqrt{(2\pi)^p \det(\boldsymbol{\Sigma})}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

$$= \frac{1}{\sqrt{(2\pi)^q \det(\boldsymbol{\Sigma}_{11})}} \exp\left(-\frac{1}{2}(\mathbf{x}^{(1)} - \boldsymbol{\mu}^{(1)})^\top \boldsymbol{\Sigma}^{-1}(\mathbf{x}^{(1)} - \boldsymbol{\mu}^{(1)})\right)$$

$$\cdot \frac{1}{\sqrt{(2\pi)^{p-q} \det(\boldsymbol{\Sigma}_{22})}} \exp\left(-\frac{1}{2}(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)})^\top \boldsymbol{\Sigma}_{22}^{-1}(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)})\right)$$

$$= n(\boldsymbol{\mu}^{(1)} \mid \boldsymbol{\Sigma}^{(1)}) n(\boldsymbol{\mu}^{(2)} \mid \boldsymbol{\Sigma}^{(2)}).$$

Thus the marginal distribution of $\mathbf{x}^{(1)}$ is $\mathcal{N}(\boldsymbol{\mu}^{(1)}, \boldsymbol{\Sigma}_{11})$ and the marginal distribution of $\mathbf{x}^{(2)}$ is $\mathcal{N}(\boldsymbol{\mu}^{(2)}, \boldsymbol{\Sigma}_{22})$. We have prove two variables are independent.

Necessity (independent \Longrightarrow uncorrelated): Let $1 \le i \le q$ and $q+1 \le j \le p$. The Independence means

$$\sigma_{ij} = \mathbb{E}\left[(x_i - \mu_i)(x_j - \mu_j) \right]$$

$$= \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} (x_i - \mu_i)(x_j - \mu_j) f(x_1, \dots, x_p) \, dx_1 \dots \, dx_p$$

$$= \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} (x_i - \mu_i)(x_j - \mu_j) f(x_1, \dots, x_q) f(x_{q+1}, \dots, x_p) \, dx_1 \dots \, dx_p$$

$$= \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} (x_i - \mu_i) f(x_1, \dots, x_q) \, dx_1 \dots \, dx_q \cdot \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} (x_j - \mu_j) f(x_{q+1}, \dots, x_p) \, dx_{q+1} \dots \, dx_p$$

$$= 0.$$

Theorem 2.3. If $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with $\boldsymbol{\Sigma} \succ \mathbf{0}$, the marginal distribution of any set of components of \mathbf{x} is multivariate normal with means, variances, and covariances obtained by taking the corresponding components of $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$, respectively.

Proof. We shall make a non-singular linear transformation ${\bf B}$ to subvectors

$$\mathbf{y}^{(1)} = \mathbf{x}^{(1)} + \mathbf{B}\mathbf{x}^{(2)}$$
$$\mathbf{y}^{(2)} = \mathbf{x}^{(2)}$$

leading to the components of $\mathbf{y}^{(1)}$ are uncorrelated with the ones of $\mathbf{y}^{(2)}$. The matrix **B** should satisfy

$$\begin{aligned} \mathbf{0} &= & \mathbb{E}\left[\left(\mathbf{y}^{(1)} - \mathbb{E}\left[\mathbf{y}^{(1)}\right]\right)\left(\mathbf{y}^{(2)} - \mathbb{E}\left[\mathbf{y}^{(2)}\right]\right)^{\top}\right] \\ &= & \mathbb{E}\left[\left(\mathbf{x}^{(1)} + \mathbf{B}\mathbf{x}^{(2)} - \mathbb{E}\left[\mathbf{x}^{(1)} + \mathbf{B}\mathbf{x}^{(2)}\right]\right)\left(\mathbf{x}^{(2)} - \mathbb{E}\left[\mathbf{x}^{(2)}\right]\right)^{\top}\right] \\ &= & \mathbb{E}\left[\left(\mathbf{x}^{(1)} - \mathbb{E}\left[\mathbf{x}^{(1)}\right] + \mathbf{B}\left(\mathbf{x}^{(2)} - \mathbb{E}\left[\mathbf{x}^{(2)}\right]\right)\right)\left(\mathbf{x}^{(2)} - \mathbb{E}\left[\mathbf{x}^{(2)}\right]\right)^{\top}\right] \\ &= & \mathbb{E}\left[\left(\mathbf{x}^{(1)} - \mathbb{E}\left[\mathbf{x}^{(1)}\right]\right)\left(\mathbf{x}^{(2)} - \mathbb{E}\left[\mathbf{x}^{(2)}\right]\right)^{\top}\right] + \mathbf{B} \cdot \mathbb{E}\left[\left(\mathbf{x}^{(2)} - \mathbb{E}\left[\mathbf{x}^{(2)}\right]\right)\right)\left(\mathbf{x}^{(2)} - \mathbb{E}\left[\mathbf{x}^{(2)}\right]\right)^{\top}\right] \\ &= & \mathbf{\Sigma}_{12} + \mathbf{B}\mathbf{\Sigma}_{22}. \end{aligned}$$

Thus $\mathbf{B} = -\Sigma_{12}\Sigma_{22}^{-1}$ and $\mathbf{y}^{(1)} = \mathbf{x}^{(1)} - \Sigma_{12}\Sigma_{22}^{-1}\mathbf{x}^{(2)}$. The vector

$$\mathbf{y} = \begin{bmatrix} \mathbf{y}^{(1)} \\ \mathbf{y}^{(2)} \end{bmatrix} = \begin{bmatrix} \mathbf{I} & -\boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1} \\ \mathbf{0} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \end{bmatrix} = \begin{bmatrix} \mathbf{I} & -\boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1} \\ \mathbf{0} & \mathbf{I} \end{bmatrix} \mathbf{x}$$

is a non-singular transform of \mathbf{x} , and therefore has a normal distribution with

$$\mathbb{E}\begin{bmatrix}\mathbf{y}^{(1)}\\\mathbf{y}^{(2)}\end{bmatrix} = \begin{bmatrix}\mathbf{I} & -\boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}\\\mathbf{0} & \mathbf{I}\end{bmatrix}\mathbb{E}[\mathbf{x}] = \begin{bmatrix}\mathbf{I} & -\boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}\\\mathbf{0} & \mathbf{I}\end{bmatrix}\begin{bmatrix}\boldsymbol{\mu}^{(1)}\\\boldsymbol{\mu}^{(2)}\end{bmatrix} = \begin{bmatrix}\boldsymbol{\mu}^{(1)} - \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}\boldsymbol{\mu}^{(2)}\\\boldsymbol{\mu}^{(2)}\end{bmatrix} = \begin{bmatrix}\boldsymbol{\nu}^{(1)}\\\boldsymbol{\nu}^{(2)}\end{bmatrix}$$

Since the transform is non-singular, we have

$$\begin{split} \operatorname{Cov}\begin{bmatrix}\mathbf{y}^{(1)}\\\mathbf{y}^{(2)}\end{bmatrix} &= \begin{bmatrix}\mathbf{I} & -\boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}\\\mathbf{0} & \mathbf{I}\end{bmatrix}\begin{bmatrix}\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12}\\\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}\end{bmatrix}\begin{bmatrix}\mathbf{I} & \mathbf{0}\\-\boldsymbol{\Sigma}_{22}^{-1}\boldsymbol{\Sigma}_{21} & \mathbf{I}\end{bmatrix}\\ &= \begin{bmatrix}\boldsymbol{\Sigma}_{11} - \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}\boldsymbol{\Sigma}_{21} & \mathbf{0}\\\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}\end{bmatrix}\begin{bmatrix}\mathbf{I} & \mathbf{0}\\-\boldsymbol{\Sigma}_{22}^{-1}\boldsymbol{\Sigma}_{21} & \mathbf{I}\end{bmatrix}\\ &= \begin{bmatrix}\boldsymbol{\Sigma}_{11} - \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}\boldsymbol{\Sigma}_{21} & \mathbf{0}\\\mathbf{0} & \boldsymbol{\Sigma}_{22}\end{bmatrix} \end{split}$$

Thus $\mathbf{y}^{(1)}$ and $\mathbf{y}^{(2)}$ are independent, which implies the marginal distribution of $\mathbf{x}^{(2)}$ is $\mathcal{N}(\boldsymbol{\mu}^{(2)}, \boldsymbol{\Sigma}_{22})$. Because the numbering of the components of \mathbf{x} is arbitrary, we have proved this theorem.

Singular Normal Distribution The mass is concentrated on a linear set \mathcal{S} . For any $x \notin \mathcal{S}$, there exists $\mathcal{B}(x,r)$ such that r > 0 and $\mathcal{B} \cap \mathcal{S} = \emptyset$. If the distribution of x has density function f, then f(x) = 0 holds for any $x \notin \mathcal{S}$. Since the measure of \mathcal{S} is zero, we have f(x) = 0 almost everywhere, which means the integration of f(x) on the whole space is 0.

Conditional Distribution by Schur Complement Recall that

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} I & BD^{-1} \\ 0 & I \end{bmatrix} \begin{bmatrix} A - BD^{-1}C & 0 \\ 0 & D \end{bmatrix} \begin{bmatrix} I & 0 \\ D^{-1}C & I \end{bmatrix},$$

which directly means the inverse of covariance of Normal distribution.

Theorem 2.4. Let $\mathbf{x} \sim \mathcal{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Then

$$z = Dx$$

is distributed according to $\mathcal{N}_q(\mathbf{D}\boldsymbol{\mu},\mathbf{D}\boldsymbol{\Sigma}\mathbf{D}^\top)$ for any $\mathbf{D} \in \mathbb{R}^{q \times p}$.

Proof. It is easy to verify $\mathbb{E}[\mathbf{z}] = \mathbf{D}\boldsymbol{\mu}$ and $\text{Cov}[\mathbf{z}] = \mathbf{D}\boldsymbol{\Sigma}\mathbf{D}^{\top}$. Hence, we only need to show \mathbf{z} follows normal distribution.

Since $\mathbf{x} \sim \mathcal{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, it can be presented as

$$x = Av + \lambda$$

where $\mathbf{A} \in \mathbb{R}^{p \times r}$, r is the rank of Σ and $\mathbf{y} \sim \mathcal{N}_r(\nu, \mathbf{T})$ with non-singular $\mathbf{T} \succ \mathbf{0}$. We can write

$$z = DAy + D\lambda,$$

where $\mathbf{D}\mathbf{A} \in \mathbb{R}^{q \times r}$. If the rank of $\mathbf{D}\mathbf{A}$ is r, the formal definition of a normal distribution that includes the singular distribution implies \mathbf{z} follows normal distribution.

If the rank of **DA** is less than r, say s, then

$$\mathbf{E} = \mathrm{Cov}[\mathbf{z}] = \mathbf{D}\mathbf{A}\mathrm{Cov}[\mathbf{y}]\mathbf{A}^{\top}\mathbf{D}^{\top} = \mathbf{D}\mathbf{A}\mathbf{T}\mathbf{A}^{\top}\mathbf{D}^{\top} \in \mathbb{R}^{q \times q}$$

is rank of s. There is a non-singular matrix

$$\mathbf{F} = egin{bmatrix} \mathbf{F}_1 \ \mathbf{F}_2 \end{bmatrix} \in \mathbb{R}^{q imes q}$$

with $\mathbf{F}_1 \in \mathbb{R}^{s \times q}$ and $\mathbf{F}_2 \in \mathbb{R}^{(q-s) \times r}$ such that

$$\mathbf{F}\mathbf{E}\mathbf{F}^\top = \begin{bmatrix} \mathbf{F}_1\mathbf{E}\mathbf{F}_1^\top & \mathbf{F}_1\mathbf{E}\mathbf{F}_2^\top \\ \mathbf{F}_2\mathbf{E}\mathbf{F}_1^\top & \mathbf{F}_2\mathbf{E}\mathbf{F}_2^\top \end{bmatrix} \begin{bmatrix} (\mathbf{F}_1\mathbf{D}\mathbf{A})\mathbf{T}(\mathbf{F}_1\mathbf{D}\mathbf{A})^\top & (\mathbf{F}_1\mathbf{D}\mathbf{A})\mathbf{T}(\mathbf{F}_2\mathbf{D}\mathbf{A})^\top \\ (\mathbf{F}_2\mathbf{D}\mathbf{A})\mathbf{T}(\mathbf{F}_1\mathbf{D}\mathbf{A})^\top & (\mathbf{F}_2\mathbf{D}\mathbf{A})\mathbf{T}(\mathbf{F}_2\mathbf{D}\mathbf{A})^\top \end{bmatrix} = \begin{bmatrix} \mathbf{I}_s & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}.$$

Thus $(\mathbf{F}_1\mathbf{D}\mathbf{A})\mathbf{T}(\mathbf{F}_1\mathbf{D}\mathbf{A})^{\top} = \mathbf{I}_s$ means $\mathbf{F}_1\mathbf{D}\mathbf{A}$ is of rank s and the non-singularity of \mathbf{T} means $\mathbf{F}_2\mathbf{D}\mathbf{A} = \mathbf{0}$. Hence, we have

$$\mathbf{F}\mathbf{z}' = \mathbf{F}(\mathbf{D}\mathbf{A}\mathbf{y} + \mathbf{D}\boldsymbol{\lambda}) = egin{bmatrix} \mathbf{F}_1 \\ \mathbf{F}_2 \end{bmatrix} \mathbf{D}\mathbf{A}\mathbf{y} + \mathbf{F}\mathbf{D}\boldsymbol{\lambda} = egin{bmatrix} \mathbf{F}_1\mathbf{D}\mathbf{A}\mathbf{y} \\ \mathbf{F}_2\mathbf{D}\mathbf{A}\mathbf{y} \end{bmatrix} + \mathbf{F}\mathbf{D}\boldsymbol{\lambda} = egin{bmatrix} \mathbf{F}_1\mathbf{D}\mathbf{A}\mathbf{y} \\ \mathbf{0} \end{bmatrix} + \mathbf{F}\mathbf{D}\boldsymbol{\lambda}.$$

Let $\mathbf{u}_1 = \mathbf{F}_1 \mathbf{D} \mathbf{A} \mathbf{y} \in \mathbb{R}^s$. Since $\mathbf{F}_1 \mathbf{D} \mathbf{A} \in \mathbb{R}^{s \times r}$ is of rank $s \leq r$, we conclude \mathbf{u}_1 has a non-singular normal distribution. Let $\mathbf{F}^{-1} = [\mathbf{G}_1, \mathbf{G}_2]$, where $\mathbf{G}_1 \in \mathbb{R}^{q \times s}$ and $\mathbf{G}_2 \in \mathbb{R}^{q \times (q-s)}$. Then

$$\mathbf{z} = \mathbf{F}^{-1} \left(egin{bmatrix} \mathbf{u}_1 \ \mathbf{0} \end{bmatrix} + \mathbf{F} \mathbf{D} oldsymbol{\lambda}
ight) = \left[\mathbf{G}_1, \mathbf{G}_2
ight] egin{bmatrix} \mathbf{u}_1 \ \mathbf{0} \end{bmatrix} + \mathbf{D} oldsymbol{\lambda} = \mathbf{G}_1 \mathbf{u}_1 + \mathbf{D} oldsymbol{\lambda}$$

which is of the form of the formal definition of normal distribution.

Theorem 2.5. For $\mathbf{x} \sim \mathcal{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and every vector $\boldsymbol{\alpha} \in \mathbb{R}^{(p-q)}$, we have

$$\operatorname{Var}\left[x_i^{(11.2)}\right] \leq \operatorname{Var}\left[x_i - \boldsymbol{\alpha}^{\top} \mathbf{x}^{(2)}\right],$$

for i = 1, ..., q, where $x_i^{(11.2)}$ and x_i are the i-th entry of $\mathbf{x}^{(11.2)}$ and the i-th entry of \mathbf{x} respectively. Proof. We denote

$$\mathbf{B} = egin{bmatrix} oldsymbol{eta}_{(1)}^{ op} \ dots \ oldsymbol{eta}_{(q)}^{ op} \end{bmatrix}.$$

Since $\mathbf{x}^{(11.2)}$ is uncorrelated with $\mathbf{x}^{(2)}$ and

$$\mathbb{E}[\mathbf{x}^{(11.2)}] = \mathbb{E}[\mathbf{x}^{(1)} - (\boldsymbol{\mu}^{(1)} + \mathbf{B}(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)}))] = \mathbb{E}[\mathbf{x}^{(1)}] - \boldsymbol{\mu}^{(1)} + \mathbf{B}(\mathbb{E}[\mathbf{x}^{(2)}] - \boldsymbol{\mu}^{(2)}) = \mathbf{0},$$

we have

$$\begin{aligned} & \operatorname{Var} \big[x_{i} - \boldsymbol{\alpha}^{\top} \mathbf{x}^{(2)} \big] \\ &= \mathbb{E} \big[x_{i} - \boldsymbol{\alpha}^{\top} \mathbf{x}^{(2)} - \mathbb{E} \big[x_{i} - \boldsymbol{\alpha}^{\top} \mathbf{x}^{(2)} \big] \big]^{2} \\ &= \mathbb{E} \big[x_{i} - \mu_{i} - \boldsymbol{\alpha}^{\top} \big(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)} \big) \big]^{2} \\ &= \mathbb{E} \big[x_{i}^{(11.2)} + \boldsymbol{\beta}_{(i)}^{\top} \big(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)} \big) - \boldsymbol{\alpha}^{\top} \big(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)} \big) \big]^{2} \\ &= \mathbb{E} \big[x_{i}^{(11.2)} - \mathbb{E} \big[x_{i}^{(11.2)} \big] + (\boldsymbol{\beta}_{(i)} - \boldsymbol{\alpha})^{\top} \big(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)} \big) \big]^{2} \\ &= \operatorname{Var} \big[x_{i}^{(11.2)} \big] + \mathbb{E} \big[\big(x_{i}^{(11.2)} - \mathbb{E} \big[x_{i}^{(11.2)} \big] \big) \big(\boldsymbol{\beta}_{(i)} - \boldsymbol{\alpha} \big)^{\top} \big(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)} \big) \big] + \mathbb{E} \big[\big(\boldsymbol{\beta}_{(i)} - \boldsymbol{\alpha} \big)^{\top} \big(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)} \big) \big]^{2} \\ &= \operatorname{Var} \big[x_{i}^{(11.2)} \big] + (\boldsymbol{\beta}_{(i)} - \boldsymbol{\alpha})^{\top} \mathbb{E} \big[\big(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)} \big) \big(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)} \big)^{\top} \big] \big(\boldsymbol{\beta}_{(i)} - \boldsymbol{\alpha} \big) \\ &= \operatorname{Var} \big[x_{i}^{(11.2)} \big] + (\boldsymbol{\beta}_{(i)} - \boldsymbol{\alpha})^{\top} \operatorname{Cov} \big(\mathbf{x}^{(2)} \big) \big(\boldsymbol{\beta}_{(i)} - \boldsymbol{\alpha} \big) \\ &\geq \operatorname{Var} \big[x_{i}^{(11.2)} \big], \end{aligned}$$

where the quadratic form attains its minimum of 0 at $\beta_{(i)} = \alpha$.

Remark 2.1. Observe that

$$\mathbb{E}[x_i] = \mu_i + \boldsymbol{\alpha}^{\top} (\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)})$$

Hence, the second equality in the proof means $\mu_i + \beta_{(i)}^{\top}(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)})$ is the best linear predictor of x_i in the sense that of all functions of $\mathbf{x}^{(2)}$ of the form $\boldsymbol{\alpha}^{\top}\mathbf{x}^{(2)} + c$, the mean squared error of the above is a minimum.

Theorem 2.6. Under the setting of Theorem 2.5, we have

$$\operatorname{Corr}\left(x_{i}, \boldsymbol{\beta}_{(i)}^{\top} \mathbf{x}^{(2)}\right) \geq \operatorname{Corr}\left(x_{i}, \boldsymbol{\alpha}^{\top} \mathbf{x}^{(2)}\right).$$

Proof. Since the correlation between two variables is unchanged when either or both is multiplied by a positive constant, we can assume that

$$\mathbb{E}\left[oldsymbol{lpha}^{ op}\mathbf{x}^{(2)}
ight]^2 = \mathbb{E}\left[oldsymbol{eta}_{(i)}^{ op}\mathbf{x}^{(2)}
ight]^2.$$

Using Theorem 2.5, we have

$$\operatorname{Var}\left[x_{i}^{(11.2)}\right] \leq \operatorname{Var}\left[x_{i} - \boldsymbol{\alpha}^{\top}\mathbf{x}^{(2)}\right]$$

$$\iff \mathbb{E}\left[x_{i} - \mu_{i} - \boldsymbol{\beta}_{(i)}^{\top}(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)})\right]^{2} \leq \mathbb{E}\left[x_{i} - \mu_{i} - \boldsymbol{\alpha}^{\top}(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)})\right]^{2}$$

$$\iff \operatorname{Var}\left[x_{i}\right] - \mathbb{E}\left[\left(x_{i} - \mu_{i}\right)\boldsymbol{\beta}_{(i)}^{\top}(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)})\right] + \operatorname{Var}\left[\boldsymbol{\beta}_{(i)}^{\top}\mathbf{x}^{(2)}\right]$$

$$\leq \operatorname{Var}\left[x_{i}\right] - \mathbb{E}\left[\left(x_{i} - \mu_{i}\right)\boldsymbol{\alpha}^{\top}(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)})\right] + \operatorname{Var}\left[\boldsymbol{\alpha}^{\top}\mathbf{x}^{(2)}\right]$$

$$\iff \frac{\mathbb{E}\left[\left(x_{i} - \mu_{i}\right)\boldsymbol{\alpha}^{\top}(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)})\right]}{\sqrt{\operatorname{Var}\left[x_{i}\right]}\sqrt{\operatorname{Var}\left[\boldsymbol{\alpha}^{\top}\mathbf{x}^{(2)}\right)}} \leq \frac{\mathbb{E}\left[\left(x_{i} - \mu_{i}\right)\boldsymbol{\beta}_{(i)}^{\top}(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)})\right]}{\sqrt{\operatorname{Var}\left[x_{i}\right]}\sqrt{\operatorname{Var}\left[\boldsymbol{\beta}^{\top}\mathbf{x}^{(2)}\right)}}$$

$$\iff \frac{\operatorname{Cov}\left[x_{i}, \boldsymbol{\alpha}^{\top}\mathbf{x}^{(2)}\right]}{\sqrt{\operatorname{Var}\left[x_{i}\right]}\sqrt{\operatorname{Var}\left[\boldsymbol{\beta}^{\top}\mathbf{x}^{(2)}\right)}} \leq \frac{\mathbb{E}\left[x_{i}, \boldsymbol{\beta}_{(i)}^{\top}\mathbf{x}^{(2)}\right]}{\sqrt{\operatorname{Var}\left[x_{i}\right]}\sqrt{\operatorname{Var}\left[\boldsymbol{\beta}^{\top}\mathbf{x}^{(2)}\right)}}$$

Theorem 2.7. Let $\mathbf{x} = \begin{bmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \end{bmatrix}$. If $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ are independent and $g(\mathbf{x}) = g^{(1)}(\mathbf{x}^{(1)})g^{(2)}(\mathbf{x}^{(2)})$, its characteristic function is

$$\mathbb{E}[g(\mathbf{x})] = \mathbb{E}[g^{(1)}(\mathbf{x}^{(1)})]\mathbb{E}[g^{(2)}(\mathbf{x}^{(2)})].$$

Proof. Let $f(\mathbf{x}) = f^{(1)}(\mathbf{x}^{(1)})f^{(2)}(\mathbf{x}^{(2)})$ be the density of \mathbf{x} . If g(x) is real-valued, we have

$$\mathbb{E}[g(\mathbf{x})] = \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} g(\mathbf{x}) f(\mathbf{x}) \, dx_1 \dots \, dx_p
= \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} g^{(1)}(\mathbf{x}^{(1)}) g^{(2)}(\mathbf{x}^{(2)}) f^{(1)}(\mathbf{x}^{(1)}) f^{(2)}(\mathbf{x}^{(2)}) \, dx_1 \dots \, dx_p
= \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} g^{(1)}(\mathbf{x}^{(1)}) f^{(1)}(\mathbf{x}^{(1)}) \, dx_1 \dots \, dx_q \cdot \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} g^{(2)}(\mathbf{x}^{(2)}) f^{(2)}(\mathbf{x}^{(2)}) \, dx_{q+1} \dots \, dx_p
= \mathbb{E}[g^{(1)}(\mathbf{x}^{(1)})] \mathbb{E}[g^{(2)}(\mathbf{x}^{(2)})].$$

If g(x) is complex-valued, then we have

$$\begin{split} &g(\mathbf{x}) \\ &= \left[g_1^{(1)}(\mathbf{x}^{(1)}) + \mathrm{i}\,g_2^{(1)}(\mathbf{x}^{(1)})\right] \left[g_1^{(2)}(\mathbf{x}^{(2)}) + \mathrm{i}\,g_2^{(2)}(\mathbf{x}^{(2)})\right] \\ &= g_1^{(1)}(\mathbf{x}^{(1)})g_1^{(2)}(\mathbf{x}^{(2)}) - g_2^{(1)}(\mathbf{x}^{(1)})g_2^{(2)}(\mathbf{x}^{(2)}) + \mathrm{i}\left[g_1^{(1)}(\mathbf{x}^{(1)})g_2^{(2)}(\mathbf{x}^{(2)}) + g_2^{(1)}(\mathbf{x}^{(1)})g_1^{(2)}(\mathbf{x}^{(2)})\right] \end{split}$$

and

$$\begin{split} & \mathbb{E}\big[g(\mathbf{x})\big] \\ = & \mathbb{E}\big[g_1^{(1)}(\mathbf{x}^{(1)})g_1^{(2)}(\mathbf{x}^{(2)})\big] - \mathbb{E}\big[g_2^{(1)}(\mathbf{x}^{(1)})g_2^{(2)}(\mathbf{x}^{(2)})\big] + \mathrm{i}\,\mathbb{E}\big[g_1^{(1)}(\mathbf{x}^{(1)})g_2^{(2)}(\mathbf{x}^{(2)}) + g_2^{(1)}(\mathbf{x}^{(1)})g_1^{(2)}(\mathbf{x}^{(2)})\big] \end{split}$$

$$\begin{split} &= & \mathbb{E}\big[g_1^{(1)}(\mathbf{x}^{(1)})\big] \mathbb{E}\big[g_1^{(2)}(\mathbf{x}^{(2)})\big] - \mathbb{E}\big[g_2^{(1)}(\mathbf{x}^{(1)})\big] \mathbb{E}\big[g_2^{(2)}(\mathbf{x}^{(2)})\big] \\ &+ \mathrm{i}\, \mathbb{E}\big[g_1^{(1)}(\mathbf{x}^{(1)})\big] \mathbb{E}\big[g_2^{(2)}(\mathbf{x}^{(2)})\big] + \mathrm{i}\, \mathbb{E}\big[g_2^{(1)}(\mathbf{x}^{(1)})\big] \mathbb{E}\big[g_1^{(2)}(\mathbf{x}^{(2)})\big] \\ &= & \Big[\mathbb{E}\big[g_1^{(1)}(\mathbf{x}^{(1)})\big] + \mathrm{i}\, \mathbb{E}\big[g_2^{(1)}(\mathbf{x}^{(1)})\big] \Big] \Big[\mathbb{E}\big[g_1^{(2)}(\mathbf{x}^{(2)})\big] + \mathrm{i}\, \mathbb{E}\big[g_2^{(2)}(\mathbf{x}^{(2)})\big] \Big] \\ &= & \mathbb{E}\big[g^{(1)}(\mathbf{x}^{(1)})\big] \mathbb{E}\big[g^{(2)}(\mathbf{x}^{(2)})\big]. \end{split}$$

Theorem 2.8. The characteristic function of \mathbf{x} distributed according to $\mathcal{N}_p(\mu, \mathbf{\Sigma})$ is

$$\phi(\mathbf{t}) = \exp\left(\mathrm{i}\,\mathbf{t}^{\top}\boldsymbol{\mu} - \frac{1}{2}\mathbf{t}^{\top}\boldsymbol{\Sigma}\mathbf{t}\right).$$

for every $\mathbf{t} \in \mathbb{R}^p$.

Proof. For standard normal distribution $\mathbf{y} \sim \mathcal{N}_p(\mathbf{0}, \mathbf{I})$, we have

$$\phi_{0}(\mathbf{t}) = \mathbb{E}\left[\exp\left(i\,\mathbf{t}^{\top}\mathbf{y}\right)\right]$$

$$= \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} \frac{\exp(i\,\mathbf{t}^{\top}\mathbf{y})}{(2\pi)^{p/2}} \exp\left(-\frac{1}{2}\mathbf{y}^{\top}\mathbf{y}\right) \, \mathrm{d}y_{1} \dots \, \mathrm{d}y_{p}$$

$$= \prod_{j=1}^{p} \left(\int_{-\infty}^{+\infty} \frac{\exp(i\,t_{j}y_{j})}{(2\pi)^{p/2}} \exp\left(-\frac{1}{2}y_{j}^{2}\right) \, \mathrm{d}y_{j}\right)$$

$$= \prod_{j=1}^{p} \left(\int_{-\infty}^{+\infty} \frac{1}{(2\pi)^{p/2}} \exp\left(-\frac{1}{2}(y_{j} - i\,t_{j})^{2} - \frac{1}{2}t_{j}^{2}\right) \, \mathrm{d}y_{j}\right)$$

$$= \prod_{j=1}^{p} \left(\exp\left(-\frac{1}{2}t_{j}^{2}\right) \int_{-\infty}^{+\infty} \frac{1}{(2\pi)^{p/2}} \exp\left(-\frac{1}{2}z_{j}^{2}\right) \, \mathrm{d}z_{j}\right)$$

$$= \prod_{j=1}^{p} \left(\exp\left(-\frac{1}{2}t_{j}^{2}\right)\right) = \exp\left(-\frac{1}{2}\mathbf{t}^{\top}\mathbf{t}\right).$$

For the general case of $\mathbf{x} \sim \mathcal{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, we can write $\mathbf{x} = \mathbf{A}\mathbf{y} + \boldsymbol{\mu}$ such that $\mathbf{y} \sim \mathcal{N}_p(\mathbf{0}, \mathbf{I})$ and $\boldsymbol{\Sigma} = \mathbf{A}\mathbf{A}^{\top}$. Then we have

$$\begin{aligned} \phi(\mathbf{t}) &= \mathbb{E} \left[\exp(i \, \mathbf{t}^{\top} \mathbf{x}) \right] \\ &= \mathbb{E} \left[\exp(i \, \mathbf{t}^{\top} (\mathbf{A} \mathbf{y} + \boldsymbol{\mu})) \right] \\ &= \exp\left(i \, \mathbf{t}^{\top} \boldsymbol{\mu}\right) \, \mathbb{E} \left[\exp(i \, (\mathbf{A}^{\top} \mathbf{t})^{\top} \mathbf{y}) \right] \\ &= \exp\left(i \, \mathbf{t}^{\top} \boldsymbol{\mu}\right) \, \phi_0 \left(\mathbf{A}^{\top} \mathbf{t} \right) \\ &= \exp\left(i \, \mathbf{t}^{\top} \boldsymbol{\mu}\right) \, \exp\left(-\frac{1}{2} \mathbf{t}^{\top} \mathbf{A} \mathbf{A}^{\top} \mathbf{t}\right) \\ &= \exp\left(i \, \mathbf{t}^{\top} \boldsymbol{\mu} - \frac{1}{2} \mathbf{t}^{\top} \mathbf{\Sigma} \mathbf{t}\right). \end{aligned}$$

Remark 2.2. Denote the characteristic function of $\mathbf{x} \in \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ as $\phi_{\mathbf{x}}(\mathbf{t}) = \exp\left(i\mathbf{t}^{\top}\boldsymbol{\mu} - \frac{1}{2}\mathbf{t}^{\top}\boldsymbol{\Sigma}\mathbf{t}\right)$. For $\mathbf{z} = \mathbf{D}\mathbf{x}$, the characteristic function of \mathbf{z} is

$$\phi_{\mathbf{z}}(\mathbf{t}) = \mathbb{E}\left[\exp(\mathrm{i}\,\mathbf{t}^{\top}\mathbf{z})\right] = \mathbb{E}\left[\exp(\mathrm{i}\,\mathbf{t}^{\top}\mathbf{D}\mathbf{x})\right] = \mathbb{E}\left[\exp(\mathrm{i}\,(\mathbf{D}^{\top}\mathbf{t})^{\top}\mathbf{x})\right] = \exp\left(\mathrm{i}\,\mathbf{t}^{\top}(\mathbf{D}\boldsymbol{\mu}) - \frac{1}{2}\mathbf{t}^{\top}(\mathbf{D}^{\top}\boldsymbol{\Sigma}\mathbf{D})\mathbf{t}\right)$$

which implies $\mathbf{z} \sim \mathcal{N}(\mathbf{D}\boldsymbol{\mu}, \mathbf{D}^{\top}\boldsymbol{\Sigma}\mathbf{D})$ and we prove Theorem 2.4.

Theorem 2.9. If every linear combination of the components of a random vector \mathbf{y} is normally distributed, then \mathbf{y} is normally distributed.

Proof. Let \mathbf{y} is a random vector with $\mathbb{E}[\mathbf{y}] = \boldsymbol{\mu}$ and $\operatorname{Cov}[\mathbf{y}] = \boldsymbol{\Sigma}$. Suppose the univariate random variable $\mathbf{u}^{\mathsf{T}}\mathbf{y}$ (linear combination of \mathbf{y}) is normal distributed for any $\mathbf{u} \in \mathbb{R}^p$. The characteristic function of $\mathbf{u}^{\mathsf{T}}\mathbf{y}$ is

$$\begin{split} \phi_{\mathbf{u}^{\top}\mathbf{y}}(t) = & \mathbb{E}\left[\exp(\mathrm{i}\,t\mathbf{u}^{\top}\mathbf{y})\right] \\ = & \exp\left(\mathrm{i}\,t\mathbb{E}[\mathbf{u}^{\top}\mathbf{y}] - \frac{1}{2}t^{2}\mathrm{Cov}(\mathbf{u}^{\top}\mathbf{y})\right) \\ = & \exp\left(\mathrm{i}\,t\mathbf{u}^{\top}\boldsymbol{\mu} - \frac{1}{2}t^{2}\mathbf{u}^{\top}\boldsymbol{\Sigma}\mathbf{u}\right). \end{split}$$

Set t = 1, then we have

$$\mathbb{E}\left[\exp(\mathrm{i}\,\mathbf{u}^{\top}\mathbf{y})\right] = \exp\left(\mathrm{i}\,\mathbf{u}^{\top}\boldsymbol{\mu} - \frac{1}{2}\mathbf{u}^{\top}\boldsymbol{\Sigma}\mathbf{u}\right).$$

which implies the characteristic function of y is

$$\phi_{\mathbf{y}}(\mathbf{u}) = \exp\left(\mathrm{i}\,\mathbf{u}^{\top}\boldsymbol{\mu} - \frac{1}{2}\mathbf{u}^{\top}\boldsymbol{\Sigma}\mathbf{u}\right)$$

that is, $\mathbf{y} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

Theorem 2.10. Let $\mathbf{x} \sim \mathcal{N}_p(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1)$, $\mathbf{y} \sim \mathcal{N}_p(\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2)$ and $\mathbf{z} = \mathbf{x} + \mathbf{y}$. Suppose that \mathbf{x} and \mathbf{y} are independent. Prove $\mathbf{z} \sim \mathcal{N}_p(\boldsymbol{\mu}_1 + \boldsymbol{\mu}_2, \boldsymbol{\Sigma}_1 + \boldsymbol{\Sigma}_2)$.

Proof. Let $\phi_{\mathbf{x}}$, $\phi_{\mathbf{y}}$ and $\phi_{\mathbf{z}}$ be the characteristic functions of \mathbf{x} , \mathbf{y} and \mathbf{z} . Then we have

$$\begin{aligned} & \boldsymbol{\phi}_{\mathbf{z}}(\mathbf{t}) \\ &= \mathbb{E}\left[\exp\left(\mathrm{i}\,\mathbf{t}^{\top}(\mathbf{x} + \mathbf{y})\right)\right] \\ &= \mathbb{E}\left[\exp\left(\mathrm{i}\,\mathbf{t}^{\top}\mathbf{x}\right)\right] \mathbb{E}\left[\exp\left(\mathrm{i}\,\mathbf{t}^{\top}\mathbf{y}\right)\right] \\ &= \exp\left(-\mathrm{i}\,\mathbf{t}^{\top}\boldsymbol{\mu}_{1} + \frac{1}{2}\mathbf{t}^{\top}\boldsymbol{\Sigma}_{1}\mathbf{t}\right) \exp\left(-\mathrm{i}\,\mathbf{t}^{\top}\boldsymbol{\mu}_{2} + \frac{1}{2}\mathbf{t}^{\top}\boldsymbol{\Sigma}_{2}\mathbf{t}\right) \\ &= \exp\left(-\mathrm{i}\,\mathbf{t}^{\top}(\boldsymbol{\mu}_{1} + \boldsymbol{\mu}_{2}) + \frac{1}{2}\mathbf{t}^{\top}(\boldsymbol{\Sigma}_{1} + \boldsymbol{\Sigma}_{2})\mathbf{t}\right), \end{aligned}$$

which is the characteristic function of $\mathcal{N}_p(\boldsymbol{\mu}_1 + \boldsymbol{\mu}_2, \boldsymbol{\Sigma}_1 + \boldsymbol{\Sigma}_2)$.

3 Estimation of the Mean Vector and the Covariance

Theorem 3.1. If $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$ constitute a sample from $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with p < N, the maximum likelihood estimators of $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ are

$$\hat{\boldsymbol{\mu}} = \bar{\mathbf{x}} = \frac{1}{N} \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \quad and \quad \hat{\boldsymbol{\Sigma}} = \frac{1}{N} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top}$$

respectively.

Proof. The logarithm of the likelihood function is

$$\ln L = -\frac{PN}{2} \ln 2\pi - \frac{N}{2} \ln \left(\det(\mathbf{\Sigma}) \right) - \frac{1}{2} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \boldsymbol{\mu})^{\top} \mathbf{\Sigma}^{-1} (\mathbf{x}_{\alpha} - \boldsymbol{\mu}).$$

We have

$$\begin{split} &\sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{\alpha} - \boldsymbol{\mu}) \\ &= \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) + \sum_{\alpha=1}^{N} (\bar{\mathbf{x}} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) \\ &+ \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top} \boldsymbol{\Sigma}^{-1} (\bar{\mathbf{x}} - \boldsymbol{\mu}) + \sum_{\alpha=1}^{N} (\bar{\mathbf{x}} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\bar{\mathbf{x}} - \boldsymbol{\mu}) \\ &= \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) + \sum_{\alpha=1}^{N} (\bar{\mathbf{x}} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\bar{\mathbf{x}} - \boldsymbol{\mu}) \\ &\geq \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}), \end{split}$$

where the equality holds when $\mu = \bar{\mathbf{x}}$. Hence, the estimator of means should be $\hat{\mu} = \bar{\mathbf{x}}$. Now, we only need to study how to maximize

$$-\frac{pN}{2}\ln 2\pi - \frac{N}{2}\ln\left(\det(\mathbf{\Sigma})\right) - \frac{1}{2}\sum_{\alpha=1}^{N}(\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top}\mathbf{\Sigma}^{-1}(\mathbf{x}_{\alpha} - \bar{\mathbf{x}}).$$

We let $\Psi = \Sigma^{-1}$ and

$$\begin{split} l(\boldsymbol{\Psi}) &= -\frac{PN}{2} \ln 2\pi - \frac{N}{2} \ln \left(\det(\boldsymbol{\Psi}^{-1}) \right) - \frac{1}{2} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top} \boldsymbol{\Psi} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) \\ &= -\frac{PN}{2} \ln 2\pi + \frac{N}{2} \ln \left(\det(\boldsymbol{\Psi}) \right) - \frac{1}{2} \sum_{\alpha=1}^{N} \operatorname{tr} \left((\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top} \boldsymbol{\Psi} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) \right) \\ &= -\frac{PN}{2} \ln 2\pi + \frac{N}{2} \ln \left(\det(\boldsymbol{\Psi}) \right) - \frac{1}{2} \sum_{\alpha=1}^{N} \operatorname{tr} \left((\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top} \boldsymbol{\Psi} \right), \end{split}$$

then

$$\frac{\partial l(\boldsymbol{\Psi})}{\partial \boldsymbol{\Psi}} = \frac{\partial}{\partial \boldsymbol{\Psi}} \left(-\frac{PN}{2} \ln 2\pi + \frac{N}{2} \ln \left(\det(\boldsymbol{\Psi}) \right) - \frac{1}{2} \sum_{\alpha=1}^{N} \operatorname{tr} \left((\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top} \boldsymbol{\Psi} \right) \right)$$

$$= \frac{N}{2} \boldsymbol{\Psi}^{-1} - \frac{1}{2} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top}.$$

We can verify $l(\Psi)$ is concave on the domain of symmetric positive definite matrices, which means the maximum is taken by $\frac{\partial f(\Psi)}{\partial \Psi} = \mathbf{0}$, that is,

$$\mathbf{\Sigma} = \mathbf{\Psi}^{-1} = \frac{1}{N} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top}.$$

Lemma 3.1. If $\mathbf{D} \in \mathbb{R}^{p \times p}$ is positive definite, the maximum of

$$f(\mathbf{G}) = -N \ln \det(\mathbf{G}) - \operatorname{tr}(\mathbf{G}^{-1}\mathbf{D})$$

with respect to positive definite matrices **G** exists, occurs at $\mathbf{G} = \frac{1}{N}\mathbf{D}$.

Proof. Let $\mathbf{D} = \mathbf{E}\mathbf{E}^{\top}$ and $\mathbf{E}^{\top}\mathbf{G}^{-1}\mathbf{E} = \mathbf{H}$. Then we have $\mathbf{G} = \mathbf{E}\mathbf{H}^{-1}\mathbf{E}^{\top}$,

$$\det(\mathbf{G}) = \det(\mathbf{E}) \det(\mathbf{H}^{-1}) \det(\mathbf{E}^{\top}) = \det(\mathbf{E}\mathbf{E}^{\top}) \det(\mathbf{H}^{-1}) = \frac{\det(\mathbf{D})}{\det(\mathbf{H})}$$

and

$$\operatorname{tr}(\mathbf{G}^{-1}\mathbf{D}) = \operatorname{tr}(\mathbf{G}^{-1}\mathbf{E}\mathbf{E}^{\top}) = \operatorname{tr}(\mathbf{E}^{\top}\mathbf{G}^{-1}\mathbf{E}) = \operatorname{tr}(\mathbf{H}).$$

Then the function to be maximized (with respect to positive definite \mathbf{H}) is

$$g(\mathbf{H}) = -N \ln \det(\mathbf{D}) + N \ln \det(\mathbf{H}) - \operatorname{tr}(\mathbf{H}).$$

Let $\mathbf{H} = \mathbf{T}\mathbf{T}^{\top}$ here \mathbf{L} is lower triangular. Then the maximum of

$$g(\mathbf{H}) = -N \ln \det(\mathbf{D}) + N \ln \det(\mathbf{H}) - \operatorname{tr}(\mathbf{H})$$

$$= -N \ln \det(\mathbf{D}) + N \ln (\det(\mathbf{T}))^{2} - \operatorname{tr}(\mathbf{T}\mathbf{T}^{\top})$$

$$= -N \ln \det(\mathbf{D}) + N \ln \left(\prod_{i=1}^{p} t_{ii}^{2}\right) - \sum_{i \geq j} t_{ij}^{2}$$

$$= -N \ln \det(\mathbf{D}) + \sum_{i=1}^{p} \left(N \ln(t_{ii}^{2}) - t_{ii}^{2}\right) - \sum_{i \geq j} t_{ij}^{2}$$

occurs at $t_{ii}^2 = N$ and $t_{ij} = 0$ for $i \neq j$; that is $\mathbf{H} = N\mathbf{I}$. Then

$$\mathbf{G} = \frac{1}{N}\mathbf{D}.$$

Theorem 3.2. Let $f(\theta)$ be a real-valued function defined on a set S and let ϕ be a single-valued function, with a single-valued inverse, on S to a set S^* . Let

$$g(\theta^*) = f\left(\phi^{-1}(\theta^*)\right).$$

Then if $f(\theta)$ attains a maximum at $\theta = \theta_0$, then $g(\theta^*)$ attains a maximum at $\theta^* = \theta_0^* = \phi(\theta_0)$. If the maximum of $f(\theta)$ at θ_0 is unique, so is the maximum of $g(\theta^*)$ at θ_0^* .

Proof. By hypothesis $f(\theta_0) \geq f(\theta)$ for all $\theta \in \mathcal{S}$. Then for any $\theta^* \in \mathcal{S}^*$, we have

$$g(\theta^*) = f\left(\phi^{-1}(\theta^*)\right) = f(\theta) \le f(\theta_0) = g(\phi(\theta_0)) = g(\theta_0^*).$$

Thus $g(\theta^*)$ attains a maximum at $\theta_0^* = \phi(\theta_0)$. If the maximum of $f(\theta)$ at θ_0 is unique, there is strict inequality above for $\theta \neq \theta_0$, and the maximum of $g(\theta^*)$ is unique.

Theorem 3.3. If $\phi: \mathcal{S} \to \mathcal{S}^*$ is not one-to-one, we let

$$\phi^{-1}(\boldsymbol{\theta}^*) = \{ \boldsymbol{\theta} : \boldsymbol{\theta}^* = \boldsymbol{\phi}(\boldsymbol{\theta}) \}.$$

and the induced likelihood function

$$g(\boldsymbol{\theta}^*) = \sup\{f(\boldsymbol{\theta}) : \boldsymbol{\theta}^* = \boldsymbol{\phi}(\boldsymbol{\theta})\}.$$

If $\theta = \hat{\theta}$ maximize $f(\theta)$, then $\hat{\theta}^* = \phi(\hat{\theta})$ also maximize $g(\theta^*)$.

Proof. The definition means

$$\sup_{\boldsymbol{\theta}^* \in \mathcal{S}^*} g(\boldsymbol{\theta}^*) = \sup_{\boldsymbol{\theta}^* \in \mathcal{S}^*} \sup_{\boldsymbol{\theta}^* = \boldsymbol{\phi}(\boldsymbol{\theta})} f(\boldsymbol{\theta}) = \sup_{\boldsymbol{\theta} \in \mathcal{S}} f(\boldsymbol{\theta}).$$

The definition of $\hat{\theta}^* = \phi(\hat{\theta})$ means

$$f(\hat{\boldsymbol{\theta}}) = \sup_{\hat{\boldsymbol{\theta}}^* = \boldsymbol{\phi}(\boldsymbol{\theta})} f(\boldsymbol{\theta}) = g(\hat{\boldsymbol{\theta}}^*)$$

Since $\theta = \hat{\theta}$ maximize $f(\theta)$, we have

$$g(\hat{\boldsymbol{\theta}}^*) = f(\hat{\boldsymbol{\theta}}) = \sup_{\boldsymbol{\theta} \in \mathcal{S}} f(\boldsymbol{\theta}) = \sup_{\boldsymbol{\theta}^* \in \mathcal{S}^*} g(\boldsymbol{\theta}^*),$$

which implies $\hat{\boldsymbol{\theta}}^*$ maximize $g(\boldsymbol{\theta}^*)$.

Corollary 3.1. If $\mathbf{x}_1, \dots, \mathbf{x}_N$ constitutes a sample from $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, let $\rho_{ij} = \sigma_{ij}/(\sigma_i \sigma_j)$. Then the maximum likelihood estimator of ρ_{ij} is

$$\hat{\rho}_{ij} = \frac{\sum_{\alpha=1}^{N} (x_{i\alpha} - \bar{x}_i)(x_{j\alpha} - \bar{x}_j)}{\sqrt{\sum_{\alpha=1}^{N} (x_{i\alpha} - \bar{x}_i)^2} \sqrt{\sum_{\alpha=1}^{N} (x_{j\alpha} - \bar{x}_j)^2}}$$

Proof. The set of parameters $\mu_i = \mu_i$, $\sigma_i^2 = \sigma_{ii}$ and $\rho_{ij} = \sigma_{ij}/\sqrt{\sigma_{ii}\sigma_{jj}}$ is a one-to-one transform of the set of parameters μ and Σ . Then the estimator of ρ is

$$\hat{\rho}_{ij} = \frac{\hat{\sigma}_{ij}}{\sqrt{\hat{\sigma}_{ii}\hat{\sigma}_{jj}}} = \frac{\sum_{\alpha=1}^{N} (x_{i\alpha} - \bar{x}_i)(x_{j\alpha} - \bar{x}_j)}{\sqrt{\sum_{\alpha=1}^{N} (x_{i\alpha} - \bar{x}_i)^2} \sqrt{\sum_{\alpha=1}^{N} (x_{j\alpha} - \bar{x}_j)^2}}.$$

Theorem 3.4. Suppose $\mathbf{x}_1, \dots, \mathbf{x}_N$ are independent, where $\mathbf{x}_{\alpha} \sim \mathcal{N}_p(\boldsymbol{\mu}_{\alpha}, \boldsymbol{\Sigma})$. Let $\mathbf{C} \in \mathbb{R}^{N \times N}$ be an orthogonal matrix, then

$$\mathbf{y}_{lpha} = \sum_{eta=1}^{N} c_{lphaeta} \mathbf{x}_{eta} \sim \mathcal{N}_p(oldsymbol{
u}_{lpha}, oldsymbol{\Sigma}),$$

where $\nu_{\alpha} = \sum_{\beta=1}^{N} c_{\alpha\beta} \mu_{\beta}$ for $\alpha = 1, ..., N$ and $\mathbf{y}_{1}, ..., \mathbf{y}_{N}$ are independent.

Proof. The set of vectors $\mathbf{y}_1, \dots, \mathbf{y}_N$ have a joint normal distribution, because the entire set of components is a set of linear combinations of the components of $\mathbf{x}_1, \dots, \mathbf{x}_N$, which have a joint normal distribution. The expected value of \mathbf{y}_{α} is

$$\mathbb{E}[\mathbf{y}_{\alpha}] = \mathbb{E}\left[\sum_{\beta=1}^{N} c_{\alpha\beta} \mathbf{x}_{\beta}\right] = \sum_{\beta=1}^{N} c_{\alpha\beta} \mathbb{E}\left[\mathbf{x}_{\beta}\right] = \sum_{\beta=1}^{N} c_{\alpha\beta} \boldsymbol{\mu}_{\beta}.$$

The covariance matrix between \mathbf{y}_{α} and \mathbf{y}_{γ} is

$$\begin{aligned} &\operatorname{Cov}[\mathbf{y}_{\alpha}, \mathbf{y}_{\gamma}] \\ =& \mathbb{E}[(\mathbf{y}_{\alpha} - \boldsymbol{\nu}_{\alpha})(\mathbf{y}_{\gamma} - \boldsymbol{\nu}_{\gamma})^{\top}] \\ =& \mathbb{E}\left[\left(\sum_{\beta=1}^{N} c_{\alpha\beta}(\mathbf{x}_{\beta} - \boldsymbol{\mu}_{\beta})\right) \left(\sum_{\xi=1}^{N} c_{\gamma\xi}(\mathbf{x}_{\xi} - \boldsymbol{\mu}_{\xi})^{\top}\right)\right] \\ =& \sum_{\beta=1}^{N} \sum_{\xi=1}^{N} c_{\alpha\beta} c_{\gamma\xi} \mathbb{E}\left[(\mathbf{x}_{\beta} - \boldsymbol{\mu}_{\beta})(\mathbf{x}_{\xi} - \boldsymbol{\mu}_{\xi})^{\top}\right] \end{aligned}$$

$$\begin{split} &= \sum_{\beta=1}^{N} \sum_{\xi=1}^{N} c_{\alpha\beta} c_{\gamma\xi} \delta_{\beta\xi} \mathbf{\Sigma} \\ &= \sum_{\beta=1}^{N} c_{\alpha\beta} c_{\gamma\beta} \mathbf{\Sigma}, \end{split}$$

where

$$\delta_{\beta\xi} = \begin{cases} 1, & \text{if } \beta = \xi, \\ 0, & \text{if } \beta \neq \xi. \end{cases}$$

If $\alpha = \gamma$, we have $\sum_{\beta=1}^{N} c_{\alpha\beta} c_{\gamma\beta} = \sum_{\beta=1}^{N} c_{\alpha\beta} c_{\alpha\beta} = 1$; otherwise, we have $\sum_{\beta=1}^{N} c_{\alpha\beta} c_{\gamma\beta} = 0$. Hence, we have

$$Cov[\mathbf{y}_{\alpha}, \mathbf{y}_{\gamma}] = \sum_{\beta=1}^{N} c_{\alpha\beta} c_{\gamma\beta} \mathbf{\Sigma} = \delta_{\alpha\gamma} \mathbf{\Sigma}.$$

The set of vectors $\mathbf{y}_1, \dots, \mathbf{y}_N$ have a joint normal distribution, we have proved $\text{Cov}[\mathbf{y}_{\alpha}] = \mathbf{\Sigma}$ for $\alpha = 1, \dots, N$ and $\mathbf{y}_1, \dots, \mathbf{y}_N$ are independent.

Lemma 3.2. If

$$\mathbf{C} = \begin{bmatrix} c_{11} & c_{12} & \dots & c_{1N} \\ c_{21} & c_{22} & \dots & c_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ c_{N1} & c_{N2} & \dots & c_{NN} \end{bmatrix} = \begin{bmatrix} c_1^\top \\ c_2^\top \\ \vdots \\ c_N^\top \end{bmatrix} \in \mathbb{R}^{N \times N}$$

is orthogonal, then $\sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \mathbf{x}_{\alpha}^{\top} = \sum_{\beta=1}^{N} \mathbf{y}_{\alpha} \mathbf{y}_{\alpha}^{\top}$ where $\mathbf{y}_{\alpha} = \sum_{\beta=1}^{N} c_{\alpha\beta} \mathbf{x}_{\alpha}$ for $\alpha = 1, \dots, N$.

Proof. Let

$$\mathbf{X} = egin{bmatrix} \mathbf{x}_1^{ op} \ \mathbf{x}_2^{ op} \ dots \ \mathbf{x}_N^{ op} \end{bmatrix} \in \mathbb{R}^{N imes p}.$$

We have

$$\sum_{\alpha=1}^{N} \mathbf{y}_{\alpha} \mathbf{y}_{\alpha}^{\top} = \sum_{\beta=1}^{N} \mathbf{X}^{\top} \mathbf{c}_{\alpha} \mathbf{c}_{\alpha}^{\top} \mathbf{X} = \mathbf{X}^{\top} \left(\sum_{\beta=1}^{N} \mathbf{c}_{\alpha} \mathbf{c}_{\alpha}^{\top} \right) \mathbf{X} = \mathbf{X}^{\top} \left(\mathbf{C}^{\top} \mathbf{C} \right) \mathbf{X} = \mathbf{X}^{\top} \mathbf{X} = \sum_{\beta=1}^{N} \mathbf{x}_{\alpha} \mathbf{x}_{\alpha}^{\top}.$$

Remark 3.1. We can also write $\mathbf{y}_{\alpha} = \mathbf{X}^{\top} \mathbf{c}_{\alpha}$ and $\mathbf{Y} = \mathbf{C}\mathbf{X}$ by defining \mathbf{Y} like \mathbf{X} .

Theorem 3.5. Let $\mathbf{x}_1, \ldots, \mathbf{x}_N$ be independent, each distributed according to $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Then the mean of the sample

$$\hat{\boldsymbol{\mu}} = \bar{\mathbf{x}} = \frac{1}{N} \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha}$$

is distributed according to $\mathcal{N}(\boldsymbol{\mu}, \frac{1}{N}\boldsymbol{\Sigma})$ and independent of

$$\hat{\mathbf{\Sigma}} = \frac{1}{N} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top}.$$

Additionally, we have $N\hat{\Sigma} = \sum_{\alpha=1}^{N-1} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}$, where $\mathbf{z}_{\alpha} \sim \mathcal{N}(\mathbf{0}, \Sigma)$ for $\alpha = 1, ..., N$, and $\mathbf{z}_{1}, ..., \mathbf{z}_{N-1}$ are independent.

Proof. There exists an orthogonal matrix $\mathbf{B} \in \mathbb{R}^{p \times p}$ such that

$$\mathbf{B} = \begin{bmatrix} \times & \times & \dots & \times \\ \times & \times & \dots & \times \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{\sqrt{N}} & \frac{1}{\sqrt{N}} & \dots & \frac{1}{\sqrt{N}} \end{bmatrix}$$

Let $\mathbf{A} = N\hat{\mathbf{\Sigma}}$ and let $\mathbf{z}_{\alpha} = \sum_{\beta=1}^{N} b_{\alpha\beta}\mathbf{x}_{\beta}$, then

$$\mathbf{z}_N = \sum_{\beta=1}^N b_{N\beta} \mathbf{x}_\beta = \sum_{\beta=1}^N \frac{\mathbf{x}_\beta}{\sqrt{N}} = \sqrt{N}\bar{\mathbf{x}}$$

By Lemma 3.2, we have

$$\mathbf{A} = \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})(\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top}$$

$$= \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \mathbf{x}_{\alpha}^{\top} - \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \bar{\mathbf{x}}^{\top} - \sum_{\alpha=1}^{N} \bar{\mathbf{x}} \mathbf{x}_{\alpha}^{\top} + \sum_{\alpha=1}^{N} \bar{\mathbf{x}} \bar{\mathbf{x}}^{\top}$$

$$= \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \mathbf{x}_{\alpha}^{\top} - N \bar{\mathbf{x}} \bar{\mathbf{x}}^{\top} - N \bar{\mathbf{x}} \bar{\mathbf{x}}^{\top} + N \bar{\mathbf{x}} \bar{\mathbf{x}}^{\top}$$

$$= \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \mathbf{x}_{\alpha}^{\top} - N \bar{\mathbf{x}} \bar{\mathbf{x}}^{\top}$$

$$= \sum_{\alpha=1}^{N} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top} - \mathbf{z}_{N} \mathbf{z}_{N}^{\top}$$

$$= \sum_{\alpha=1}^{N-1} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}$$

Lemma 3.2 also states \mathbf{z}_N is independent of $\mathbf{z}_1, \dots, \mathbf{z}_{N-1}$, then the mean vector $\bar{\mathbf{x}} = \frac{1}{\sqrt{N}} \mathbf{z}_N$ is independent of \mathbf{A} and $\hat{\mathbf{\Sigma}} = \frac{1}{N} \mathbf{A}$. Since $\bar{\mathbf{x}} = \frac{1}{\sqrt{N}} \mathbf{z}_n = \frac{1}{\sqrt{N}} \sum_{\beta=1}^{N} b_{N\beta} \mathbf{x}_{\beta}$, Theorem 3.4 implies

$$\mathbb{E}[\bar{\mathbf{x}}] = \mathbb{E}\left[\frac{1}{\sqrt{N}} \sum_{\beta=1}^{N} b_{N\beta} \mathbf{x}_{\beta}\right] = \frac{1}{\sqrt{N}} \sum_{\beta=1}^{N} \frac{1}{\sqrt{N}} \boldsymbol{\mu} = \boldsymbol{\mu}, \quad \text{and} \quad \operatorname{Cov}[\bar{\mathbf{x}}] = \frac{1}{N} \operatorname{Cov}\left[\sum_{\beta=1}^{N} b_{N\beta} \mathbf{x}_{\beta}\right] = \frac{1}{N} \boldsymbol{\Sigma}.$$

Hence, we have $\bar{\mathbf{x}} \sim \mathcal{N}\left(\boldsymbol{\mu}, \frac{1}{N}\boldsymbol{\Sigma}\right)$. For $\alpha = 1, \dots, N-1$, we also have

$$\mathbb{E}[\mathbf{z}_{\alpha}] = \mathbb{E}\left[\sum_{\beta=1}^{N} b_{\alpha\beta} \mathbf{x}_{\beta}\right] = \sum_{\beta=1}^{N} b_{\alpha\beta} \mathbb{E}\left[\mathbf{x}_{\beta}\right] = \sum_{\beta=1}^{N} b_{\alpha\beta} \boldsymbol{\mu} = \sum_{\beta=1}^{N} b_{\alpha\beta} b_{N\beta} \sqrt{N} \boldsymbol{\mu} = \mathbf{0}.$$

and Theorem 3.4 implies $\mathbf{z}_{\alpha} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$.

Theorem 3.6. Let $\mathbf{x}_1, \dots, \mathbf{x}_N$ be p-dimensional random vector and they are independent. Denote

$$\bar{\mathbf{x}} = \frac{1}{N} \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \quad and \quad \hat{\mathbf{\Sigma}} = \frac{1}{N} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top}.$$

If $\mathbb{E}[\mathbf{x}_1] = \cdots = \mathbb{E}[\mathbf{x}_N] = \boldsymbol{\mu}$ and $Cov[\mathbf{x}_1] = \cdots = Cov[\mathbf{x}_N] = \boldsymbol{\Sigma}$, then we have

$$\mathbb{E}\big[\hat{\mathbf{\Sigma}}\big] = \frac{N-1}{N}\mathbf{\Sigma}.$$

Proof. We have

$$\boldsymbol{\Sigma} = \operatorname{Cov}[\mathbf{x}_{\alpha}] = \mathbb{E}\left[(\mathbf{x}_{\alpha} - \boldsymbol{\mu})(\mathbf{x}_{\alpha} - \boldsymbol{\mu})^{\top}\right] = \mathbb{E}\left[\mathbf{x}_{\alpha}\mathbf{x}_{\alpha}^{\top} - \mathbf{x}_{\alpha}\boldsymbol{\mu}^{\top} - \boldsymbol{\mu}\mathbf{x}_{\alpha}^{\top} + \boldsymbol{\mu}\boldsymbol{\mu}^{\top}\right] = \mathbb{E}\left[\mathbf{x}_{\alpha}\mathbf{x}_{\alpha}^{\top}\right] - \boldsymbol{\mu}\boldsymbol{\mu}^{\top}$$

and

$$\frac{1}{n}\Sigma = \operatorname{Cov}[\bar{\mathbf{x}}] = \mathbb{E}[(\bar{\mathbf{x}} - \mathbb{E}[\bar{\mathbf{x}}])(\bar{\mathbf{x}} - \mathbb{E}[\bar{\mathbf{x}}])^{\top}] = \mathbb{E}[\bar{\mathbf{x}}\bar{\mathbf{x}}^{\top}] - \mu\mu^{\top}.$$

Hence, we obtain

$$\mathbb{E}[\hat{\boldsymbol{\Sigma}}] = \mathbb{E}\left[\frac{1}{N} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})(\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top}\right]$$

$$= \mathbb{E}\left[\frac{1}{N} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} \mathbf{x}_{\alpha}^{\top} - \bar{\mathbf{x}} \mathbf{x}_{\alpha}^{\top} - \mathbf{x}_{\alpha} \bar{\mathbf{x}}^{\top} + \bar{\mathbf{x}} \bar{\mathbf{x}}^{\top})\right]$$

$$= \mathbb{E}\left[\frac{1}{N} \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \mathbf{x}_{\alpha}^{\top} - \bar{\mathbf{x}} \bar{\mathbf{x}}^{\top}\right]$$

$$= \mathbb{E}\left[\mathbf{x}_{\alpha} \mathbf{x}_{\alpha}^{\top}\right] - \mathbb{E}\left[\bar{\mathbf{x}} \bar{\mathbf{x}}^{\top}\right]$$

$$= \mathbf{\Sigma} + \mu \mu^{\top} - \left(\frac{1}{n} \mathbf{\Sigma} + \mu \mu^{\top}\right)$$

$$= \frac{n-1}{n} \mathbf{\Sigma}.$$

Theorem 3.7. Using the notation of Theorem 3.1, if N > p, the probability is 1 of drawing a sample so that

$$\hat{\Sigma} = \frac{1}{N} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top}$$

is positive definite.

Proof. The proof of Theorem 3.1 shows that $\mathbf{A} = \widetilde{\mathbf{Z}}^{\top} \widetilde{\mathbf{Z}}$ where

$$\widetilde{\mathbf{Z}} = egin{bmatrix} \mathbf{z}_1^{ op} \ dots \ \mathbf{z}_{N-1}^{ op} \end{bmatrix} \in \mathbb{R}^{(N-1) imes p},$$

which means $\operatorname{rank}(\hat{\Sigma}) = \operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{Z})$. Then the probability is 1 of $\hat{\Sigma} \succ \mathbf{0}$ is equivalent to

$$\Pr\left(\operatorname{rank}(\widetilde{\mathbf{Z}}) = p\right) = 1.$$

Since appending rows at the end of $\widetilde{\mathbf{Z}}$ will not increase its rank, we only needs to consider the case of N = p + 1 $(N - 1 = p \text{ and } \widetilde{\mathbf{Z}} \in \mathbb{R}^{p \times p})$. We have

$$\begin{aligned} & \Pr(\mathbf{z}_1, \dots, \mathbf{z}_p \text{ are linearly dependent}) \\ & \leq \sum_{i=1}^p \Pr\left(\mathbf{z}_i \in \operatorname{span}\{\mathbf{z}_1, \dots, \mathbf{z}_{i-1}, \mathbf{z}_i, \dots, \mathbf{z}_p\}\right) \\ & = p \Pr\left(\mathbf{z}_1 \in \operatorname{span}\{\mathbf{z}_2, \dots, \mathbf{z}_p\}\right) \\ & = p \mathbb{E}\left[\Pr\left(\mathbf{z}_1 \in \operatorname{span}\{\mathbf{z}_2, \mathbf{z}_3, \dots, \mathbf{z}_p\} \mid \mathbf{z}_2 = \boldsymbol{\alpha}_2, \dots, \mathbf{z}_p = \boldsymbol{\alpha}_p\right)\right] \\ & = p \mathbb{E}[0] = 0 \end{aligned}$$

The second equality is obtained as follows

$$\Pr\left(\mathbf{z}_{1} \in \operatorname{span}\{\mathbf{z}_{2}, \dots, \mathbf{z}_{p}\}\right)$$

$$= \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} \Pr\left(\mathbf{z}_{1} \in \operatorname{span}\{\mathbf{z}_{2}, \dots, \mathbf{z}_{p}\}, \mathbf{z}_{2} = \boldsymbol{\alpha}_{2}, \dots, \mathbf{z}_{p} = \boldsymbol{\alpha}_{p}\right) d\boldsymbol{\alpha}_{2} \dots d\boldsymbol{\alpha}_{p}$$

$$= \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} \Pr\left(\mathbf{z}_{1} \in \operatorname{span}\{\mathbf{z}_{2}, \dots, \mathbf{z}_{p}\} \mid \mathbf{z}_{2} = \boldsymbol{\alpha}_{2}, \dots, \mathbf{z}_{p} = \boldsymbol{\alpha}_{p}\right) \Pr\left(\mathbf{z}_{2} = \boldsymbol{\alpha}_{2}, \dots, \mathbf{z}_{p} = \boldsymbol{\alpha}_{p}\right) d\boldsymbol{\alpha}_{2} \dots d\boldsymbol{\alpha}_{p}$$

$$= \mathbb{E}\left[\Pr\left(\mathbf{z}_{1} \in \operatorname{span}\{\mathbf{z}_{2}, \dots, \mathbf{z}_{p}\} \mid \mathbf{z}_{2} = \boldsymbol{\alpha}_{2}, \dots, \mathbf{z}_{p} = \boldsymbol{\alpha}_{p}\right)\right]$$

$$= 0$$

The last equality holds since $\Pr(\mathbf{z}_1 \in \text{span}\{\mathbf{z}_2, \dots, \mathbf{z}_p\} \mid \mathbf{z}_2 = \boldsymbol{\alpha}_2, \dots, \mathbf{z}_p = \boldsymbol{\alpha}_p)$ is the probability of the event that \mathbf{z}_1 lies in a subspace with the dimension no higher than p-1.

Theorem 3.8. If $\mathbf{x}_1, \dots, \mathbf{x}_N$ are independent observations from $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then

- 1. $\bar{\mathbf{x}}$ and \mathbf{S} are sufficient for $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$;
- 2. if $\boldsymbol{\mu}$ is given, $\sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} \boldsymbol{\mu}) (\mathbf{x}_{\alpha} \boldsymbol{\mu})^{\top}$ is sufficient for $\boldsymbol{\Sigma}$;
- 3. if Σ is given, $\bar{\mathbf{x}}$ is sufficient for μ ;

where

$$\bar{\mathbf{x}} = \frac{1}{N} \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \quad and \quad \mathbf{S} = \frac{1}{N-1} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top}.$$

Proof. The density of $\mathbf{x}_1, \dots, \mathbf{x}_N$ is

$$\prod_{\alpha=1}^{N} n(\mathbf{x}_{\alpha} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})
= (2\pi)^{-\frac{pN}{2}} \left(\det(\boldsymbol{\Sigma}) \right)^{-\frac{N}{2}} \exp\left(-\frac{1}{2} \operatorname{tr} \left(\sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{\alpha} - \boldsymbol{\mu}) \right) \right)
= (2\pi)^{-\frac{pN}{2}} \left(\det(\boldsymbol{\Sigma}) \right)^{-\frac{N}{2}} \exp\left(-\frac{1}{2} \operatorname{tr} \left(\boldsymbol{\Sigma}^{-1} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \boldsymbol{\mu})^{\top} (\mathbf{x}_{\alpha} - \boldsymbol{\mu}) \right) \right)
= (2\pi)^{-\frac{pN}{2}} \left(\det(\boldsymbol{\Sigma}) \right)^{-\frac{N}{2}} \exp\left(-\frac{1}{2} \left(N(\bar{\mathbf{x}} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\bar{\mathbf{x}} - \boldsymbol{\mu}) + (N - 1) \operatorname{tr} \left(\boldsymbol{\Sigma}^{-1} \mathbf{S} \right) \right) \right)$$

where the last step is due to

$$\sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{\alpha} - \boldsymbol{\mu})$$

$$\begin{split} &= \sum_{\alpha=1}^{N} (\bar{\mathbf{x}} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\bar{\mathbf{x}} - \boldsymbol{\mu}) + \sum_{\alpha=1}^{N} (\bar{\mathbf{x}} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) \\ &+ \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top} \boldsymbol{\Sigma}^{-1} (\bar{\mathbf{x}} - \boldsymbol{\mu}) + \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) \\ &= N(\bar{\mathbf{x}} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\bar{\mathbf{x}} - \boldsymbol{\mu}) + (N - 1) \mathrm{tr} \left(\boldsymbol{\Sigma}^{-1} \mathbf{S} \right). \end{split}$$

Hence, the density is a function of $\mathbf{t}(\mathbf{x}_1, \dots, \mathbf{x}_N) = \{\bar{\mathbf{x}}, \mathbf{S}\}$ and $\boldsymbol{\theta} = \{\boldsymbol{\mu}, \boldsymbol{\Sigma}\}$. If $\boldsymbol{\mu}$ is given, it is a function of $\mathbf{t}(\mathbf{x}_1, \dots, \mathbf{x}_N) = \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \boldsymbol{\mu}) (\mathbf{x}_{\alpha} - \boldsymbol{\mu})^{\top}$ and $\boldsymbol{\theta} = \boldsymbol{\Sigma}$. If $\boldsymbol{\Sigma}$ is given, it is a function of $\mathbf{t}(\mathbf{x}_1, \dots, \mathbf{x}_N) = \bar{\mathbf{x}}$ (since \mathbf{S} can be viewed a function of \mathbf{t} for given)and $\boldsymbol{\theta} = \boldsymbol{\mu}$.

Theorem 3.9 (Theorem 3.4.2, Page 84). The sufficient set of statistics $\bar{\mathbf{x}}$, \mathbf{S} is complete for $\boldsymbol{\mu}$, $\boldsymbol{\Sigma}$ when the sample is drawn from $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

Proof. We introduce $\mathbf{z}_1, \dots, \mathbf{z}_N$ by following the proof of Theorem 3.5. For any function $g(\bar{\mathbf{x}}, n\mathbf{S})$, we have $0 \equiv \mathbb{E}[g(\bar{\mathbf{x}}, n\mathbf{S})]$

$$= \int \cdots \int K(\det(\mathbf{\Sigma}))^{-\frac{N}{2}} g\left(\bar{\mathbf{x}}, \sum_{\alpha=1}^{N-1} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}\right) \exp\left(-\frac{1}{2} \left(\sum_{\alpha=1}^{N-1} \mathbf{z}_{\alpha}^{\top} \mathbf{\Sigma}^{-1} \mathbf{z}_{\alpha} + N(\bar{\mathbf{x}} - \boldsymbol{\mu})^{\top} \mathbf{\Sigma}^{-1} (\bar{\mathbf{x}} - \boldsymbol{\mu})\right)\right) d\mathbf{z}_{1} \dots d\mathbf{z}_{N-1} d\bar{\mathbf{x}}.$$

for any μ and Σ , where $K = \sqrt{N}(2\pi)^{-\frac{1}{2}pN}$. Let $\Sigma^{-1} = \mathbf{I} - 2\Omega$ such that symmetric Ω and $\mathbf{I} - 2\Omega \succ 0$. Let $\mu = (\mathbf{I} - 2\Omega)^{-1}\mathbf{t} = \Sigma \mathbf{t}$. Then, we have

$$\begin{split} & 0 \\ & \equiv \int \cdots \int K \left(\det(\mathbf{\Sigma}) \right)^{-\frac{N}{2}} g \left(\bar{\mathbf{x}}, \sum_{\alpha=1}^{N-1} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top} \right) \\ & \exp \left(-\frac{1}{2} \left(\sum_{\alpha=1}^{N-1} \mathbf{z}_{\alpha}^{\top} \mathbf{\Sigma}^{-1} \mathbf{z}_{\alpha} + N \bar{\mathbf{x}}^{\top} \mathbf{\Sigma}^{-1} \bar{\mathbf{x}} - 2N \boldsymbol{\mu}^{\top} \mathbf{\Sigma}^{-1} \bar{\mathbf{x}} + N \boldsymbol{\mu}^{\top} \mathbf{\Sigma}^{-1} \boldsymbol{\mu} \right) \right) \, \mathrm{d}\mathbf{z}_{1} \dots \mathrm{d}\mathbf{z}_{N-1} \, \mathrm{d}\bar{\mathbf{x}} \\ & = \int \cdots \int K \left(\det(\mathbf{\Sigma}) \right)^{-\frac{N}{2}} g \left(\bar{\mathbf{x}}, \sum_{\alpha=1}^{N-1} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top} \right) \\ & \exp \left(-\frac{1}{2} \left(\sum_{\alpha=1}^{N-1} \mathrm{tr} \left(\mathbf{\Sigma}^{-1} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top} \right) + N \mathrm{tr} \left(\mathbf{\Sigma}^{-1} \bar{\mathbf{x}} \bar{\mathbf{x}}^{\top} \right) - 2N \bar{\mathbf{t}}^{\top} \bar{\mathbf{x}} + N \mathbf{t}^{\top} \mathbf{\Sigma} \mathbf{t} \right) \right) \, \mathrm{d}\mathbf{z}_{1} \dots \mathrm{d}\mathbf{z}_{N-1} \, \mathrm{d}\bar{\mathbf{x}} \\ & = \int \cdots \int K \left(\det(\mathbf{I} - 2\Omega) \right)^{\frac{N}{2}} g \left(\bar{\mathbf{x}}, \sum_{\alpha=1}^{N-1} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top} \right) \\ & \exp \left(-\frac{1}{2} \left(\mathrm{tr} \left((\mathbf{I} - 2\Omega) \left(\sum_{\alpha=1}^{N-1} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top} + N \bar{\mathbf{x}} \bar{\mathbf{x}}^{\top} \right) \right) - 2N \bar{\mathbf{t}}^{\top} \bar{\mathbf{x}} + N \mathbf{t}^{\top} (\mathbf{I} - 2\Omega)^{-1} \mathbf{t} \right) \right) \, \mathrm{d}\mathbf{z}_{1} \dots \mathrm{d}\mathbf{z}_{N-1} \, \mathrm{d}\bar{\mathbf{x}} \\ & = \left(\det(\mathbf{I} - 2\Omega) \right)^{\frac{N}{2}} \exp \left(-\frac{1}{2} N \mathbf{t}^{\top} (\mathbf{I} - 2\Omega)^{-1} \mathbf{t} \right) \\ & \int \cdots \int g \left(\bar{\mathbf{x}}, \mathbf{B} - N \bar{\mathbf{x}} \bar{\mathbf{x}}^{\top} \right) \exp \left(\mathrm{tr} (\Omega \mathbf{B}) + \mathbf{t}^{\top} (N \bar{\mathbf{x}}) \right) n \left(\bar{\mathbf{x}} \mid \mathbf{0}, \frac{1}{N} \mathbf{I} \right) \prod_{\alpha=1}^{N-1} n (\mathbf{z}_{\alpha} \mid \mathbf{0}, \mathbf{I}) \, \mathrm{d}\mathbf{z}_{1} \dots \mathrm{d}\mathbf{z}_{N-1} \, \mathrm{d}\bar{\mathbf{x}} \\ & = \left(\det(\mathbf{I} - 2\Omega) \right)^{\frac{N}{2}} \exp \left(-\frac{1}{2} N \mathbf{t}^{\top} (\mathbf{I} - 2\Omega)^{-1} \mathbf{t} \right) \\ & \int g \left(\bar{\mathbf{x}}, \mathbf{B} - N \bar{\mathbf{x}} \bar{\mathbf{x}}^{\top} \right) \exp \left(\mathrm{tr} (\Omega \mathbf{B}) + \mathbf{t}^{\top} (N \bar{\mathbf{x}}) \right) n \left(\bar{\mathbf{x}} \mid \mathbf{0}, \frac{1}{N} \mathbf{I} \right) \, \mathrm{d}\bar{\mathbf{x}} \\ & = \left(\det(\mathbf{I} - 2\Omega) \right)^{\frac{N}{2}} \exp \left(-\frac{1}{2} N \mathbf{t}^{\top} (\mathbf{I} - 2\Omega)^{-1} \mathbf{t} \right) \\ & \mathbb{E} \left[g \left(\bar{\mathbf{x}}, \mathbf{B} - N \bar{\mathbf{x}} \bar{\mathbf{x}}^{\top} \right) \exp \left(\mathrm{tr} (\Omega \mathbf{B}) + \mathbf{t}^{\top} (N \bar{\mathbf{x}}) \right) \right]. \end{split}$$

where
$$\mathbf{B} = \sum_{\alpha=1}^{N-1} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top} + N \bar{\mathbf{x}} \bar{\mathbf{x}}^{\top}$$
. Thus
$$0 \equiv \mathbb{E} \left[g \left(\bar{\mathbf{x}}, \mathbf{B} - N \bar{\mathbf{x}} \bar{\mathbf{x}}^{\top} \right) \exp \left(\operatorname{tr}(\mathbf{\Omega} \mathbf{B}) + \mathbf{t}^{\top}(N \bar{\mathbf{x}}) \right) \right]$$

$$= \iint g \left(\bar{\mathbf{x}}, \mathbf{B} - N \bar{\mathbf{x}} \bar{\mathbf{x}}^{\top} \right) \exp \left(\operatorname{tr}(\mathbf{\Omega} \mathbf{B}) + \mathbf{t}^{\top}(N \bar{\mathbf{x}}) \right) h(\bar{\mathbf{x}}, \mathbf{B}) d\bar{\mathbf{x}} d\mathbf{B}$$

where $h(\bar{\mathbf{x}}, \mathbf{B})$ is the joint density of $\bar{\mathbf{x}}$ and \mathbf{B} . Consider that

$$\iint g\left(\bar{\mathbf{x}}, \mathbf{B} - N\bar{\mathbf{x}}\bar{\mathbf{x}}^{\top}\right) \exp\left(\operatorname{tr}(\mathbf{\Omega}\mathbf{B}) + \mathbf{t}^{\top}(N\bar{\mathbf{x}})\right) h(\bar{\mathbf{x}}, \mathbf{B}) d\bar{\mathbf{x}} d\mathbf{B}$$

is the Laplace transform of $g(\bar{\mathbf{x}}, \mathbf{B} - N\bar{\mathbf{x}}\bar{\mathbf{x}}^{\top}) h(\bar{\mathbf{x}}, \mathbf{B})$. Then we have $g(\bar{\mathbf{x}}, n\mathbf{S})h(\bar{\mathbf{x}}, \mathbf{B}) = 0$ almost everywhere. Hence, we have

$$0 = \iint |g(\bar{\mathbf{x}}, n\mathbf{S})h(\bar{\mathbf{x}}, \mathbf{B})| \, d\bar{\mathbf{x}} \, d\mathbf{B}$$
$$= \iint |g(\bar{\mathbf{x}}, n\mathbf{S})|h(\bar{\mathbf{x}}, \mathbf{B})| \, d\bar{\mathbf{x}} \, d\mathbf{B}$$
$$= \iint |g(\bar{\mathbf{x}}, n\mathbf{S})| \, dm(\bar{\mathbf{x}}, \mathbf{B}).$$

Hence, we have $g(\bar{\mathbf{x}}, n\mathbf{S}) = 0$ almost everywhere.

Cramer-Rao Inequality We first give some lemmas. We denote the density of observation with parameter θ by $f(\mathbf{x}, \theta)$ and

$$\mathbf{s} = \frac{\partial \ln g(\mathbf{X}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}.$$

where g is the density on N samples and $\mathbf{X} = {\mathbf{x}_1, \dots, \mathbf{x}_N}.$

Lemma 3.3. We have $\mathbb{E}[\mathbf{s}] = \mathbf{0}$.

Proof. We have

$$\mathbb{E}[s_j] = \int g(\mathbf{X}, \boldsymbol{\theta}) \frac{\partial \ln g(\mathbf{X}, \boldsymbol{\theta})}{\partial \theta_j} d\mathbf{X}$$

$$= \int g(\mathbf{X}, \boldsymbol{\theta}) \frac{1}{g(\mathbf{X}, \boldsymbol{\theta})} \frac{\partial g(\mathbf{X}, \boldsymbol{\theta})}{\partial \theta_j} d\mathbf{X}$$

$$= \int \frac{\partial g(\mathbf{X}, \boldsymbol{\theta})}{\partial \theta_j} d\mathbf{X}$$

$$= \frac{\partial}{\partial \theta_j} \int g(\mathbf{X}, \boldsymbol{\theta}) d\mathbf{X}$$

$$= \frac{\partial}{\partial \theta_j} 1 = 0.$$

Remark 3.2. Similarly, we also have

$$\mathbb{E}\left[\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right] = \mathbf{0}.$$

Lemma 3.4. For unbiased estimator \mathbf{t} of $\boldsymbol{\theta}$, we have $\mathscr{C}[\mathbf{t}, \mathbf{s}] = \mathbf{I}$.

24

Proof. We have

$$\begin{split} &\mathscr{C}[t_j, s_k] \\ &= \int (t_j - \theta_j) \frac{\partial \ln g(\mathbf{X}, \boldsymbol{\theta})}{\partial \theta_k} g(\mathbf{X}, \boldsymbol{\theta}) \, \mathrm{d}\mathbf{X} \\ &= \int (t_j - \theta_j) \frac{\partial g(\mathbf{X}, \boldsymbol{\theta})}{\partial \theta_k} \, \mathrm{d}\mathbf{X} \\ &= -\int g(\mathbf{X}, \boldsymbol{\theta}) \frac{\partial (t_j - \theta_j)}{\partial \theta_k} \, \mathrm{d}\mathbf{X} = \begin{cases} 1, & j = k, \\ 0, & j \neq k, \end{cases} \end{split}$$

where the last line holds since

$$\int (t_j - \theta_j) g(\mathbf{X}, \boldsymbol{\theta}) \, d\mathbf{X}$$

$$= \int t_j g(\mathbf{X}, \boldsymbol{\theta}) \, d\mathbf{X} - \theta_j \int g(\mathbf{X}, \boldsymbol{\theta}) \, d\mathbf{X}$$

$$= \mathbb{E}t_j - \theta_j$$

$$= 0$$

and therefore

$$0 = \frac{\partial}{\partial \theta_k} \int (t_j - \theta_j) g(\mathbf{X}, \boldsymbol{\theta}) d\mathbf{X}$$
$$= \int \frac{\partial (t_j - \theta_j)}{\partial \theta_k} g(\mathbf{X}, \boldsymbol{\theta}) d\mathbf{X} + \int (t_j - \theta_j) \frac{\partial g(\mathbf{X}, \boldsymbol{\theta})}{\partial \theta_k}.$$

Theorem 3.10. Under the regularity condition (everything is well-defined, integration and differentiation can be swapped), we have

$$N\mathbb{E}\left[(\mathbf{t} - oldsymbol{ heta})(\mathbf{t} - oldsymbol{ heta})^{ op}
ight] \succeq \left(\mathbb{E}\left[rac{\partial \ln f(\mathbf{x}, oldsymbol{ heta})}{\partial oldsymbol{ heta}} \left(rac{\partial \ln f(\mathbf{x}, oldsymbol{ heta})}{\partial oldsymbol{ heta}}
ight)^{ op}
ight]
ight)^{-1},$$

where $\mathbb{E}[\mathbf{t}] = \boldsymbol{\theta}$ and $f(\mathbf{x}, \boldsymbol{\theta})$ is the density of the distribution with respect to the components of $\boldsymbol{\theta}$.

Proof. For any nonzero $\mathbf{a}, \mathbf{b} \in \mathbb{R}^p$, consider the correlation of $\mathbf{a}^\top \mathbf{t}$ and $\mathbf{b}^\top \mathbf{s}$, we have

$$1 \ge \frac{\mathscr{C}[\mathbf{a}^{\top}\mathbf{t}, \mathbf{b}^{\top}\mathbf{s}]}{\sqrt{\mathrm{Var}[\mathbf{a}^{\top}\mathbf{t}]\mathrm{Var}[\mathbf{b}^{\top}\mathbf{s}]}} = \frac{\mathbf{a}^{\top}\mathscr{C}[\mathbf{t}, \mathbf{s}]\mathbf{b}}{\sqrt{\mathbf{a}^{\top}\mathscr{C}[\mathbf{t}]\mathbf{a}}\sqrt{\mathbf{b}^{\top}\mathscr{C}[\mathbf{s}]\mathbf{b}}} = \frac{\mathbf{a}^{\top}\mathbf{b}}{\sqrt{\mathbf{a}^{\top}\mathscr{C}[\mathbf{t}]\mathbf{a}}\sqrt{\mathbf{b}^{\top}\mathscr{C}[\mathbf{s}]\mathbf{b}}}$$

Let $\mathbf{b} = (\mathscr{C}[\mathbf{s}])^{-1}\mathbf{a}$, we have

$$1 \geq \frac{\mathbf{a}^{\top}(\mathscr{C}[\mathbf{s}])^{-1}\mathbf{a}}{\sqrt{\mathbf{a}^{\top}\mathscr{C}[\mathbf{t}]\mathbf{a}}\sqrt{\mathbf{a}^{\top}(\mathscr{C}[\mathbf{s}])^{-1}\mathbf{a}}}$$

which means

$$\mathbf{a}^{\top}\mathscr{C}[\mathbf{t}]\mathbf{a} \geq \mathbf{a}^{\top} \left(\mathscr{C}[\mathbf{s}]\right)^{-1} \mathbf{a}$$

for any nonzero a. Hence, we have

$$\begin{split} & \mathbb{E}\left[(\mathbf{t} - \boldsymbol{\theta})(\mathbf{t} - \boldsymbol{\theta})^{\top} \right] = \mathscr{C}[\mathbf{t}] \succeq (\mathscr{C}[\mathbf{s}])^{-1} \\ & = \left(\mathscr{C}\left[\frac{\partial \ln g(\mathbf{X}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \right] \right)^{-1} = \left(N\mathscr{C}\left[\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \right] \right)^{-1} = \frac{1}{N} \left(\mathscr{C}\left[\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \right] \right)^{-1} \\ & = \frac{1}{N} \left(\mathbb{E}\left[\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \left(\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \right)^{\top} \right] \right)^{-1}. \end{split}$$

Theorem 3.11. Let p-component vectors $\mathbf{y}_1, \mathbf{y}_2, \ldots$ be i.i.d with means $\mathbb{E}[\mathbf{y}_{\alpha}] = \boldsymbol{\nu}$ and covariance matrices $\mathbb{E}[(\mathbf{y}_{\alpha} - \boldsymbol{\nu})(\mathbf{y}_{\alpha} - \boldsymbol{\nu})^{\top}] = \mathbf{T}$. Then the limiting distribution of

$$\frac{1}{\sqrt{n}} \sum_{\alpha=1}^{n} (\mathbf{y}_{\alpha} - \boldsymbol{\nu})$$

as $n \to +\infty$ is $\mathcal{N}(\mathbf{0}, \mathbf{T})$.

Proof. Let

$$\phi_n(\mathbf{t}, u) = \mathbb{E}\left[\exp\left(\mathrm{i}\,u\mathbf{t}^\top \frac{1}{\sqrt{n}} \sum_{\alpha=1}^n (\mathbf{y}_\alpha - \boldsymbol{\nu})\right)\right],$$

where $u \in \mathbb{R}$ and $\mathbf{t} \in \mathbb{R}^p$. For fixed \mathbf{t} , the function $\phi_n(\mathbf{t}, u)$ can be viewed as the characteristic function of

$$\frac{1}{\sqrt{n}} \sum_{\alpha=1}^{n} (\mathbf{t}^{\top} \mathbf{y}_{\alpha} - \mathbf{t}^{\top} \mathbb{E}[\mathbf{y}_{\alpha}]).$$

By the univariate central limit theorem, the limiting distribution is $\mathcal{N}(0, \mathbf{t}^{\top} \mathbf{T} \mathbf{t})$. Therefore, we have

$$\lim_{n \to \infty} \phi_n(\mathbf{t}, u) = \exp\left(-\frac{1}{2}u^2 \mathbf{t}^\top \mathbf{T} \mathbf{t}\right),$$

for any $u \in \mathbb{R}$ and $\mathbf{t} \in \mathbb{R}^p$. Let u = 1, we obtain

$$\phi_n(\mathbf{t}, 1) = \mathbb{E}\left[\exp\left(\mathrm{i}\,\mathbf{t}^\top \frac{1}{\sqrt{n}} \sum_{\alpha=1}^n (\mathbf{y}_\alpha - \boldsymbol{\nu})\right)\right] \to \exp\left(-\frac{1}{2}\mathbf{t}^\top \mathbf{T} \mathbf{t}\right)$$

for any $\mathbf{t} \in \mathbb{R}^p$. Since $\exp\left(-\frac{1}{2}\mathbf{t}^{\top}\mathbf{T}\mathbf{t}\right)$ is continuous at $\mathbf{t} = \mathbf{0}$, the convergence is uniform in some neighborhood of $\mathbf{t} = \mathbf{0}$. The theorem follows.

Theorem 3.12. If $\mathbf{x}_1, \dots, \mathbf{x}_N$ are independently distributed, each x_α according to $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, and if $\boldsymbol{\mu}$ has an a prior distribution $\mathcal{N}(\boldsymbol{\nu}, \boldsymbol{\Phi})$, then the a posterior distribution of $\boldsymbol{\mu}$ given $\mathbf{x}_1, \dots, \mathbf{x}_N$ is normal with mean

$$oldsymbol{\Phi} \left(oldsymbol{\Phi} + rac{1}{N} oldsymbol{\Sigma}
ight)^{-1} ar{\mathbf{x}} + rac{1}{N} oldsymbol{\Sigma} \left(oldsymbol{\Phi} + rac{1}{N} oldsymbol{\Sigma}
ight)^{-1} oldsymbol{
u}$$

and covariance matrix

$$\mathbf{\Phi} - \mathbf{\Phi} \left(\mathbf{\Phi} + \frac{1}{N} \mathbf{\Sigma} \right)^{-1} \mathbf{\Phi}.$$

Proof. Since $\bar{\mathbf{x}}$ is sufficient for μ , we need only consider $\bar{\mathbf{x}}$, which has the distribution of $\mu + \mathbf{v}$, where

$$\mathbf{v} \sim \mathcal{N}\left(\mathbf{0}, \frac{1}{N}\mathbf{\Sigma}\right)$$

and is independent of μ . Then we have

$$ar{\mathbf{x}} = egin{bmatrix} \mathbf{I} & \mathbf{I} \end{bmatrix} egin{bmatrix} m{\mu} \\ \mathbf{v} \end{bmatrix} \quad ext{and} \quad egin{bmatrix} m{\mu} \\ \mathbf{v} \end{bmatrix} \sim \mathcal{N} \left(egin{bmatrix} m{
u} \\ \mathbf{0} \end{bmatrix}, egin{bmatrix} m{\Phi} & \mathbf{0} \\ \mathbf{0} & rac{1}{N} m{\Sigma} \end{bmatrix}
ight)$$

which implies $\bar{\mathbf{x}} \sim \mathcal{N}\left(\boldsymbol{\nu}, \boldsymbol{\Phi} + \frac{1}{N}\boldsymbol{\Sigma}\right)$. Since we have

$$egin{bmatrix} m{\mu} \ ar{\mathbf{x}} \end{bmatrix} = egin{bmatrix} \mathbf{I} & \mathbf{0} \ \mathbf{I} & \mathbf{I} \end{bmatrix} egin{bmatrix} m{\mu} \ \mathbf{v} \end{bmatrix},$$

then

$$\begin{bmatrix} \boldsymbol{\mu} \\ \bar{\mathbf{x}} \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} \boldsymbol{\nu} \\ \boldsymbol{\nu} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Phi} & \boldsymbol{\Phi} \\ \boldsymbol{\Phi} & \boldsymbol{\Phi} + \frac{1}{N}\boldsymbol{\Sigma} \end{bmatrix} \right).$$

Consider the conditional distribution of μ given $\bar{\mathbf{x}}$, we obtain the mean and covariance given $\bar{\mathbf{x}}$ is

$$\nu + \Phi \left(\Phi + \frac{1}{N} \Sigma \right)^{-1} (\bar{\mathbf{x}} - \nu)$$

$$= \Phi \left(\Phi + \frac{1}{N} \Sigma \right)^{-1} \bar{\mathbf{x}} + \left(\mathbf{I} - \Phi \left(\Phi + \frac{1}{N} \Sigma \right)^{-1} \right) \nu$$

$$= \Phi \left(\Phi + \frac{1}{N} \Sigma \right)^{-1} \bar{\mathbf{x}} + \frac{1}{N} \Sigma \left(\Phi + \frac{1}{N} \Sigma \right)^{-1} \nu.$$

Remark 3.3. Let

$$\mathbf{x} = egin{bmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \end{bmatrix} \sim \mathcal{N} \left(egin{bmatrix} oldsymbol{\mu}^{(1)} \\ oldsymbol{\mu}^{(2)} \end{bmatrix}, egin{bmatrix} oldsymbol{\Sigma}_{11} & oldsymbol{\Sigma}_{12} \\ oldsymbol{\Sigma}_{21} & oldsymbol{\Sigma}_{22} \end{bmatrix}
ight).$$

The conditional density of $\mathbf{x}^{(1)}$ given that $\mathbf{x}^{(2)}$ is

$$\mathbf{x}^{(1)} \mid \mathbf{x}^{(2)} \sim \mathcal{N}\left(oldsymbol{\mu}^{(1)} + oldsymbol{\Sigma}_{12}oldsymbol{\Sigma}_{22}^{-1}(\mathbf{x}^{(2)} - oldsymbol{\mu}^{(2)}), oldsymbol{\Sigma}_{11} - oldsymbol{\Sigma}_{12}oldsymbol{\Sigma}_{22}^{-1}oldsymbol{\Sigma}_{22}
ight)$$

Lemma 3.5. If f(x) is a function such that

$$f(b) - f(a) = \int_a^b f'(x) \, \mathrm{d}x$$

for all a < b and if

$$\int_{-\infty}^{+\infty} |f'(x)| \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(x-\theta)^2\right) dx < +\infty,$$

then

$$\int_{-\infty}^{+\infty} f(x)(x-\theta) \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(x-\theta)^2\right) dx = \int_{-\infty}^{+\infty} f'(x) \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(x-\theta)^2\right) dx. \tag{5}$$

Proof. Since $(x-\theta)\frac{1}{\sqrt{2\pi}}\exp\left(-\frac{1}{2}(x-\theta)^2\right)$ is odd function, the LHS of (5) can be written as

$$\int_{-\infty}^{+\infty} (f(x) - f(\theta))(x - \theta) \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(x - \theta)^2\right) dx$$

$$= \int_{\theta}^{+\infty} (f(x) - f(\theta))(x - \theta) \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(x - \theta)^2\right) dx$$

$$+ \int_{-\infty}^{\theta} (f(x) - f(\theta))(x - \theta) \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(x - \theta)^2\right) dx$$

$$= \int_{\theta}^{+\infty} \int_{\theta}^{x} f'(y)(x - \theta) \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(x - \theta)^2\right) dy dx$$

$$- \int_{-\infty}^{\theta} \int_{x}^{\theta} f'(y)(x - \theta) \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(x - \theta)^2\right) dy dx$$

$$= \int_{\theta}^{+\infty} \int_{y}^{+\infty} f'(y)(x - \theta) \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(x - \theta)^2\right) dx dy$$

$$-\int_{-\infty}^{\theta} \int_{-\infty}^{y} f'(y)(x-\theta) \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(x-\theta)^{2}\right) dx dy$$

$$=\int_{\theta}^{+\infty} f'(y) \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(x-\theta)^{2}\right) dy - \int_{-\infty}^{\theta} f'(y) \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(x-\theta)^{2}\right) dy$$

$$=\int_{-\infty}^{+\infty} f'(x) \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(x-\theta)^{2}\right) dx$$

where we use

$$\int (x - \theta) \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(x - \theta)^2\right) dx$$

$$= \frac{1}{\sqrt{2\pi}} \int \exp\left(-\frac{1}{2}(x - \theta)^2\right) d\left(\frac{1}{2}(x - \theta)^2\right)$$

$$= \frac{-1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(x - \theta)^2\right)$$

and

$$\lim_{x \to +\infty} \frac{-1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(x-\theta)^2\right) = \lim_{x \to -\infty} \frac{-1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(x-\theta)^2\right) = 0.$$

Lemma 3.6. Let $\mathbf{x}_1, \dots, \mathbf{x}_N$ are independently distributed to $\mathcal{N}_p(\boldsymbol{\mu}, N\mathbf{I})$, we have

$$\mathbb{E}\left[\left\|\bar{\mathbf{x}} - \boldsymbol{\mu}\right\|_{2}^{2}\right] = \sum_{\alpha=1}^{p} \operatorname{Var}(\bar{x}_{\alpha}) = p.$$

Proof. We have

$$\mathbb{E}\left[\left\|\bar{\mathbf{x}} - \boldsymbol{\mu}\right\|_{2}^{2}\right]$$

$$= \mathbb{E}\left[\operatorname{tr}\left(\left(\bar{\mathbf{x}} - \boldsymbol{\mu}\right)^{\top}\left(\bar{\mathbf{x}} - \boldsymbol{\mu}\right)\right)\right]$$

$$= \mathbb{E}\left[\operatorname{tr}\left(\left(\bar{\mathbf{x}} - \boldsymbol{\mu}\right)\left(\bar{\mathbf{x}} - \boldsymbol{\mu}\right)^{\top}\right)\right]$$

$$= \operatorname{tr}\left(\mathbb{E}\left[\left(\bar{\mathbf{x}} - \boldsymbol{\mu}\right)\left(\bar{\mathbf{x}} - \boldsymbol{\mu}\right)^{\top}\right]\right)$$

$$= \operatorname{tr}(\mathbf{I}) = p.$$

Theorem 3.13. Under the setting of Lemma 3.6, we let

$$\mathbf{m}(\bar{\mathbf{x}}) = \left(1 - \frac{p - 2}{\|\bar{\mathbf{x}} - \boldsymbol{\nu}\|_2^2}\right)(\bar{\mathbf{x}} - \boldsymbol{\nu}) + \boldsymbol{\nu}$$

and p > 3. Then $\mathbb{E}\left[\|\mathbf{m}(\bar{\mathbf{x}}) - \boldsymbol{\mu}\|_2^2\right] < \mathbb{E}\left[\|\bar{\mathbf{x}} - \boldsymbol{\mu}\|_2^2\right]$

Proof. We have

$$\Delta R(\boldsymbol{\mu}) = \mathbb{E}\left[\left\|\bar{\mathbf{x}} - \boldsymbol{\mu}\right\|_{2}^{2} - \left\|\mathbf{m}(\bar{\mathbf{x}}) - \boldsymbol{\mu}\right\|_{2}^{2}\right]$$

$$= \mathbb{E}\left[\left\|\bar{\mathbf{x}} - \boldsymbol{\mu}\right\|_{2}^{2} - \left\|\left(1 - \frac{p-2}{\left\|\bar{\mathbf{x}} - \boldsymbol{\nu}\right\|_{2}^{2}}\right)(\bar{\mathbf{x}} - \boldsymbol{\nu}) + \boldsymbol{\nu} - \boldsymbol{\mu}\right\|_{2}^{2}\right]$$

$$\begin{split} &= \mathbb{E}\left[\sum_{i=1}^{p} (\bar{x}_{i} - \mu_{i})^{2} - \sum_{i=1}^{p} \left(\left(1 - \frac{p-2}{\|\bar{\mathbf{x}} - \boldsymbol{\nu}\|_{2}^{2}}\right) (\bar{x}_{i} - \nu_{i}) + \nu_{i} - \mu_{i}\right)^{2}\right] \\ &= \mathbb{E}\left[\sum_{i=1}^{p} (\bar{x}_{i} - \mu_{i})^{2} - \sum_{i=1}^{p} \left(\bar{x}_{i} - \mu_{i} - \frac{p-2}{\|\bar{\mathbf{x}} - \boldsymbol{\nu}\|_{2}^{2}} (\bar{x}_{i} - \nu_{i})\right)^{2}\right] \\ &= \mathbb{E}\left[\frac{2(p-2)}{\|\bar{\mathbf{x}} - \boldsymbol{\nu}\|_{2}^{2}} \sum_{i=1}^{p} (\bar{x}_{i} - \nu_{i}) (\bar{x}_{i} - \mu_{i}) - \sum_{i=1}^{p} \frac{(p-2)^{2} (\bar{x}_{i} - \nu_{i})^{2}}{\|\bar{\mathbf{x}} - \boldsymbol{\nu}\|_{2}^{4}}\right] \\ &= \mathbb{E}\left[2(p-2) \sum_{i=1}^{p} \frac{\bar{x}_{i} - \nu_{i}}{\|\bar{\mathbf{x}} - \boldsymbol{\nu}\|_{2}^{2}} \cdot (\bar{x}_{i} - \mu_{i}) - \frac{(p-2)^{2}}{\|\bar{\mathbf{x}} - \boldsymbol{\nu}\|_{2}^{2}}\right]. \end{split}$$

Using Lemma 3.5 with $\theta = \mu_i$,

$$f(\bar{x}_i) = \frac{\bar{x}_i - \nu_i}{\|\bar{\mathbf{x}} - \boldsymbol{\nu}\|_2^2} \quad \text{and} \quad f'(\bar{x}_i) = \frac{1}{\|\bar{\mathbf{x}} - \boldsymbol{\nu}\|_2^2} - \frac{2(\bar{x}_i - \nu_i)^2}{\|\bar{\mathbf{x}} - \boldsymbol{\nu}\|_2^4}.$$

Hence, we obtain

$$\Delta R(\boldsymbol{\mu}) = \mathbb{E} \left[2(p-2) \sum_{i=1}^{p} \left(\frac{1}{\|\bar{\mathbf{x}} - \boldsymbol{\nu}\|_{2}^{2}} - \frac{2(\bar{x}_{i} - \nu_{i})^{2}}{\|\bar{\mathbf{x}} - \boldsymbol{\nu}\|_{2}^{4}} \right) - \frac{(p-2)^{2}}{\|\bar{\mathbf{x}} - \boldsymbol{\nu}\|_{2}^{2}} \right]$$

$$= \mathbb{E} \left[2(p-2) \sum_{i=1}^{p} \left(\frac{1}{\|\bar{\mathbf{x}} - \boldsymbol{\nu}\|_{2}^{2}} - \frac{2(\bar{x}_{i} - \nu_{i})^{2}}{\|\bar{\mathbf{x}} - \boldsymbol{\nu}\|_{2}^{4}} \right) - \frac{(p-2)^{2}}{\|\bar{\mathbf{x}} - \boldsymbol{\nu}\|_{2}^{2}} \right]$$

$$= \mathbb{E} \left[\frac{2p(p-2)}{\|\bar{\mathbf{x}} - \boldsymbol{\nu}\|_{2}^{2}} - \frac{4(p-2)}{\|\bar{\mathbf{x}} - \boldsymbol{\nu}\|_{2}^{2}} - \frac{(p-2)^{2}}{\|\bar{\mathbf{x}} - \boldsymbol{\nu}\|_{2}^{2}} \right]$$

$$= \mathbb{E} \left[\frac{(p-2)^{2}}{\|\bar{\mathbf{x}} - \boldsymbol{\nu}\|_{2}^{2}} \right] > 0$$

Remark 3.4. We consider the bias and variance decomposition

$$\begin{split} & \mathbb{E} \left\| \mathbf{m}(\bar{\mathbf{x}}) - \boldsymbol{\mu} \right\|_{2}^{2} \\ = & \mathbb{E} \left\| \mathbf{m}(\bar{\mathbf{x}}) - \mathbb{E}[\mathbf{m}(\bar{\mathbf{x}})] + \mathbb{E}[\mathbf{m}(\bar{\mathbf{x}})] - \boldsymbol{\mu} \right\|_{2}^{2} \\ = & \mathbb{E} \left\| \mathbf{m}(\bar{\mathbf{x}}) - \mathbb{E}[\mathbf{m}(\bar{\mathbf{x}})] \right\|_{2}^{2} + 2\mathbb{E}[(\mathbf{m}(\bar{\mathbf{x}}) - \mathbb{E}[\mathbf{m}(\bar{\mathbf{x}})])^{\top} (\mathbb{E}[\mathbf{m}(\bar{\mathbf{x}})] - \boldsymbol{\mu})] + \mathbb{E} \left\| \mathbb{E}[\mathbf{m}(\bar{\mathbf{x}})] - \boldsymbol{\mu} \right\|_{2}^{2} \\ = & \mathbb{E} \left\| \mathbf{m}(\bar{\mathbf{x}}) - \mathbb{E}[\mathbf{m}(\bar{\mathbf{x}})] \right\|_{2}^{2} + \left\| \mathbb{E}[\mathbf{m}(\bar{\mathbf{x}})] - \boldsymbol{\mu} \right\|_{2}^{2}. \end{split}$$

Unbiased estimator may leads to larger variance.

Lemma 3.7. Suppose that $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \mathbf{I})$, then

$$\mathbb{E} \left\| g^{+} (\|\mathbf{x}\|_{2}) \mathbf{x} - \boldsymbol{\mu} \right\|_{2}^{2} \leq \mathbb{E} \left\| g(\|\mathbf{x}\|_{2}) \mathbf{x} - \boldsymbol{\mu} \right\|_{2}^{2},$$

where

$$g^{+}(u) = \begin{cases} g(u), & \text{if } g(u) \ge 0\\ 0, & \text{otherwise} \end{cases}$$

for any function g(u).

Proof. We have

$$\mathbb{E} \|g(\|\mathbf{x}\|_{2})\mathbf{x} - \boldsymbol{\mu}\|_{2}^{2} - \mathbb{E} \|g^{+}(\|\mathbf{x}\|_{2})\mathbf{x} - \boldsymbol{\mu}\|_{2}^{2}$$

$$= \mathbb{E} \left[\left(g(\|\mathbf{x}\|_{2}) \right)^{2} \|\mathbf{x}\|_{2}^{2} \right] - \mathbb{E} \left[\left(g^{+}(\|\mathbf{x}\|_{2}) \right)^{2} \|\mathbf{x}\|^{2} \right] + 2\mathbb{E} \left[\boldsymbol{\mu}^{\top} \mathbf{x} \left(g^{+}(\|\mathbf{x}\|_{2}) - g(\|\mathbf{x}\|_{2}) \right) \right]$$

$$\geq 2\mathbb{E} \left[\boldsymbol{\mu}^{\top} \mathbf{x} \left(g^{+}(\|\mathbf{x}\|_{2}) - g(\|\mathbf{x}\|_{2}) \right) \right].$$

Let **P** be the orthogonal matrix such that $\mathbf{PP}^{\top} = \mathbf{I}$ and

$$\mathbf{P} = \left[\frac{\boldsymbol{\mu}}{\|\boldsymbol{\mu}\|_2}, \times, \dots, \times \right],$$

which means

$$\mathbf{P}^{\top}\boldsymbol{\mu} = [\|\boldsymbol{\mu}\|_2, 0, \dots, 0]^{\top}.$$

Let $\mathbf{y} = \mathbf{P}^{\top}\mathbf{x}$, then we have $\boldsymbol{\mu}^{\top}\mathbf{x} = \boldsymbol{\mu}^{\top}\mathbf{P}\mathbf{y} = (\mathbf{P}^{\top}\boldsymbol{\mu})^{\top}\mathbf{y} = \|\boldsymbol{\mu}\|_2 y_1$ and

$$\mathbb{E}\left[\boldsymbol{\mu}^{\top}\mathbf{x}\left(g^{+}(\|\mathbf{x}\|_{2}) - g(\|\mathbf{x}\|_{2})\right)\right] \\
= \mathbb{E}\left[\|\boldsymbol{\mu}\|_{2} y_{1}\left(g^{+}(\|\mathbf{y}\|_{2}) - g(\|\mathbf{y}\|_{2})\right)\right] \\
= \|\boldsymbol{\mu}\|_{2} \int_{-\infty}^{+\infty} y_{1}\left(g^{+}(\|\mathbf{y}\|_{2}) - g(\|\mathbf{y}\|_{2})\right) \frac{1}{(2\pi)^{\frac{p}{2}}} \exp\left(-\frac{1}{2}\left(\sum_{i=1}^{p} y_{i}^{2} - 2y_{1} \|\boldsymbol{\mu}\|_{2} + \|\boldsymbol{\mu}\|_{2}^{2}\right)\right) d\mathbf{y} \\
= \frac{\|\boldsymbol{\mu}\|_{2} \exp\left(-\frac{1}{2} \|\boldsymbol{\mu}\|_{2}^{2}\right)}{(2\pi)^{\frac{p}{2}}} \int_{-\infty}^{+\infty} y_{1}\left(g^{+}(\|\mathbf{y}\|_{2}) - g(\|\mathbf{y}\|_{2})\right) \exp\left(-\frac{1}{2}\sum_{i=1}^{p} y_{i}^{2}\right) \exp(y_{1} \|\boldsymbol{\mu}\|_{2}) d\mathbf{y} \\
= \frac{\|\boldsymbol{\mu}\|_{2} \exp\left(-\frac{1}{2} \|\boldsymbol{\mu}\|_{2}^{2}\right)}{(2\pi)^{\frac{p}{2}}} \\
\cdot \int_{-\infty}^{+\infty} \dots \int_{0}^{+\infty} y_{1}\left(g^{+}(\|\mathbf{y}\|_{2}) - g(\|\mathbf{y}\|_{2})\right) \exp\left(-\frac{1}{2}\sum_{i=1}^{p} y_{i}^{2}\right) (\exp(y_{1} \|\boldsymbol{\mu}\|_{2}) - \exp(-y_{1} \|\boldsymbol{\mu}\|_{2})) dy_{1} \dots dy_{p},$$

where the last step use $\exp(z) - \exp(-z) \ge 0$ for all $z \ge 0$.

Theorem 3.14. Let

$$\mathbf{m}(\bar{\mathbf{x}}) = \left(1 - \frac{p-2}{\|\bar{\mathbf{x}} - \boldsymbol{\nu}\|_2^2}\right)(\bar{\mathbf{x}} - \boldsymbol{\nu}) + \boldsymbol{\nu} \quad and \quad \tilde{\mathbf{m}}(\bar{\mathbf{x}}) = \left(1 - \frac{p-2}{\|\bar{\mathbf{x}} - \boldsymbol{\nu}\|_2^2}\right)^+(\bar{\mathbf{x}} - \boldsymbol{\nu}) + \boldsymbol{\nu},$$

where $\bar{\mathbf{x}} \sim \mathcal{N}(\boldsymbol{\mu}, \mathbf{I})$. Then we have $\mathbb{E} \|\tilde{\mathbf{m}}(\bar{\mathbf{x}}) - \boldsymbol{\mu}\|_2^2 \leq \mathbb{E} \|\mathbf{m}(\bar{\mathbf{x}}) - \boldsymbol{\mu}\|_2^2$.

Proof. Use Lemma 3.7 with g(u) = 1 - (p-2)/u, $\mathbf{x} = \bar{\mathbf{x}} - \boldsymbol{\nu}$ and replace $\boldsymbol{\mu}$ by $\boldsymbol{\mu} - \boldsymbol{\nu}$.