Interpretable Attention Model in Transcription Factor Binding Site Prediction with Deep Neural Network

2020-10-08 Ping-Han Hsieh Roza Berhanu Lemma

Introduction

Homeostatic & developmental processes

Methods for profiling TF-DNA interactions

Deep Neural Networks (DNNs) for TFBSs Prediction

- Advantageous over classical computational methods
 - · Learning high-level feature from extremely large sized data
 - Require less domain knowledge
 - Powerful when little to no prior knowledge of potential binding sites
- Combination of two DNN architectures are used in TFBSs prediction currently (e.g. DeepBind, TFImpute, DeepSea)
 - RNNs: better in learning useful information with long-term dependencies
 - CNNs: able to extract both local features (genomic signals) and regions
 - Attention mechanism: interpretable model by assigning 'attention weights' to different positions according to their importance

Problem Definition

Problem:

- Complexity of biological factors may influence binding of TFs to DNA
- Prediction of potential binding site is a difficult task in computational biology

• Aim:

- Introducing the attention mechanism
- Increase prediction accuracy &
- Level of interpretability for existing CNN-RNN architecture models

Methods

- DeepGRN: a tool that combines attention mechanisms with DNNs
- ENCODE-DREAM challenge datasets as input features for model training
 - Ground truth: Binding status of TFs from ChIP-seq data
 - Chromatin accessibility information from DNase-seq data
 - RNA-seq data
- Similar organization of input features used by FactorNet
 - DNase-seq and primary sequence information are transformed into sequential features
 - Gene expression and annotations are transformed into non-sequential features

Transcription Factor Binding Data

- IDR (Irreproducibility discovery rate) threshold of 5%
- Bins overlapping peaks and pass IDR threshold → Bound (Positive sites)
- Bins Overlapping peaks but fail IDR threshold → **Unbound** (negative sites)
- The rest → Ambiguous

DNA Primary Sequence

DNase-seq Data

- Obtained Normalized 1x coverage score from BAM files with bin size =1
 - Represented by 1000 x 1 vector for each bin

Hsu et al. 2018. Epigenetics in Human Disease (Second Edition)

Annotation

• Annotation features for each bin is encoded as binary vector of length 6.

Gene Expression

- PCA on TPM normalized count from RNA-seq data provided by the challenge
 - Took the first eight components of a cell type as expression scores for all bins for a given cell type
- Both annotation and gene expression non-sequential features are fused into the first dense layer in the deep learning model

Training, validation and evaluation

- All datasets (chromosome 1-22 and X)
- Chromosome 1, 8 and 21 of the following cell types are used to train the models. Chromosome 11 are used as validation set.

Transcription	Cell Types						
Factor	Training	Optional Model Tuning	Evaluation				
CTCF	A549, H1-hESC, HeLa-S3, HepG2, IMR90, K562, MCF-7	GM12878	PC-3, induced pluripotent stem cell				
E2F1	GM12878, HeLa-S3		K562				
EGR1	GM12878, H1-hESC, HCT116, MCF-7	K562	liver				
FOXA1	HepG2	MCF-7	liver				
FOXA2	HepG2		liver				
GABPA	GM12878, H1-hESC, HeLa-S3, HepG2, MCF-7	K562	liver				
HNF4A	HepG2		liver				
JUND	HCT116, HeLa-S3, HepG2, K562, MCF-7	H1-hESC	liver				
MAX	A549, GM12878, H1-hESC, HCT116, HeLa-S3, HepG2, K562	MCF-7	liver				
NANOG	H1-hESC		induced pluripotent stem cell				
REST	H1-hESC, HeLa-S3, HepG2, MCF-7, Panc1	K562	liver				
TAF1	GM12878, H1-hESC, HeLa-S3, K562	HepG2	liver				

Review on the data

For each bin (instance)

- 1. The weight of the kernels can be viewed as the unnormalized position weight matrix that is relevant to the prediction.
- 2. Usually, multiple kernels are used in the model.

- 1. The weight of the kernels can be viewed as the unnormalized position weight matrix that is relevant to the prediction.
- 2. Usually, multiple kernels are used in the model.

- 1. The weight of the kernels can be viewed as the unnormalized position weight matrix that is relevant to the prediction.
- 2. Usually, multiple kernels are used in the model.

- 1. The weight of the kernels can be viewed as the unnormalized position weight matrix that is relevant to the prediction.
- 2. Usually, multiple kernels are used in the model.

Intuition with pooling

Reduce resolution does not really affect much with the prediction (in terms of the image)

Siamese Network

Recurrent Neural Network

Recurrent Neural Network

Long short-term memory

Long short-term memory cell

Long short-term memory cell

Bi-directional LSTM

concatenate the two output

Input for Recurrent Neural Network

1. Concatenation

- 1. Concatenation
- 2. Train a neural network

- 1. Concatenation
- 2. Train a neural network
- 2. Apply softmax

- 1. Concatenation
- 2. Train a neural network
- 3. Apply softmax

- 1. Concatenation
- 2. Train a neural network
- 3. Apply softmax
- 4. Aggregate

Overall network structure

Results

Benchmarking on Evaluation Data

- DeepGRN attention model better performed on:
 - 69.23% of prediction targets than Anchor
 - 69.23% of prediction targets than FactorNet
 - 72.92% of prediction targets than Catchitt
 - 92.31% of prediction targets than Cheburashka
- Highest auPRC on six targets

Table 1. The results of our attention model and top four algorithms in the DREAM Challenge (Bold denotes the highest auPRC among all methods).

TF Name	Cell Type		Anchor	FactorNet	Cheburashka	Catchitt	DeepGRN
CTCF	induced stem cell	pluripotent	0.755	0.861	0.780	0.816	0.883
CTCF	PC-3		0.608	0.783	0.480	0.753	0.756
E2F1	K562		0.352	0.241	0.353	0.427	0.375
EGR1	liver		0.429	0.317	0.364	0.399	0.395
FOXA1	liver		0.376	0.492	0.310	0.488	0.534
FOXA2	liver		0.461	0.217	0.315	0.387	0.505
GABPA	liver		0.470	0.442	0.444	0.423	0.473
HNF4A	liver		0.586	0.619	0.519	0.596	0.652
JUND	liver		0.599	0.265	0.447	0.422	0.546
MAX	liver		0.535	0.422	0.474	0.448	0.422
NANOG	induced stem cell	pluripotent	0.309	0.354	0.195	0.315	0.344
REST	liver		0.398	0.412	0.324	0.264	0.46
TAF1	liver		0.437	0.428	0.375	0.413	0.426

Results

Performance improvement of attention mechanism with a CNN-RNN model

- DeepGRN attention model achieved better or equal performance on:
 - 7 targets with all scoring metrics
 - 10 targets with 3 metrics
 - Except for recall at FDR 0.1
- Largest auPRC improvement
 - JUND (0.262), FOXA2 (0.204), E2F1 (0.144), and EGR1 (0.118)

Results

Performance improvement of attention mechanism

Interpretation of the Model

Discussions

- The manuscript is short of visual representation specially for simplified explanation of the structure of the model
- They refer to the FactorNet model to describe their input structures
 - It is less convenient for the reader to refer to another paper and try to make the connection with this paper
 - The manuscript would benefit from a comprehensive visual representation (diagram) of structure of input features (as in FactorNet) & their of DNN architecture
- Visual report of the results of their benchmarking instead of table(s)
- Figure 2b caption refers to Pearson and Spearman correlation coefficients but these are missing from the figure
- The discussion section is very thin.
 - They are rephrasing the results part and put it in discussion
- Annotation feature 'CpG islands', may not be optimal
 - ~70% of human promoters contain CpG islands

Thanks