TOÁN RÒI RẠC 2

CHƯƠNG 6

Giảng viên: Vũ Văn Thỏa

CHƯƠNG 6: BÀI TOÁN LUÔNG CỰC ĐẠI TRONG MẠNG

- Giới thiệu bài toán
- Định lý Ford-Fulkerson
- Thuật toán tìm luồng cực đại trong mạng
- Một số bài toán luồng tổng quát
- Úng dụng

26/04/2022 TOAN RR2 2

6.1 Giới thiệu bài toán

- Mang
- Luồng trong mạng

TOAN RR2 26/04/2022 3/107

- Mạng là đồ thị có hướng G = (V, E) thỏa mãn:
- (1) Có duy nhất đỉnh s không có cung đi vào gọi là điểm phát;
- (2) Có duy nhất đỉnh t không có cung đi ra gọi là điểm thu;
- (3) Mỗi cung $e = (u, v) \in E$ có trọng số không âm c(e) = c(u, v) gọi là khả năng thông qua của cung e.

Ví dụ 1:

Mạng G gồm 6 đỉnh với đỉnh phát s = 1 và đỉnh thu t = 6

Mô hình mạng trong thực tế

- Hệ thống ống dẫn dầu bơm từ tàu chở dầu vào bể chứa dầu là một mạng với đỉnh phát s là tàu chở dầu và đỉnh thu t là bể chứa dầu.
- Hệ thống các tuyến đường giao thông nối sân bay Nội Bài về Hồ Hoàn Kiếm là một mạng với đỉnh phát s là Nội Bài và đỉnh thu t là Hồ Hoàn Kiếm.

26/04/2022 TOAN RR2 6/107

Luồng trong mạng

- Luồng f trong mạng G = (V, E) là ánh xạ f: $E \rightarrow R$ gán mỗi cung $e = (u, v) \in E$ một số thực không âm f(e) = f(u, v) gọi là luồng trên cung e thỏa mãn các điều kiện:
- (1) Luồng trên mỗi cung e ∈ E không vượt quá khả năng thôngqua: 0 ≤ f(e) ≤ c(e);
- (2) Điều kiện cân bằng luồng tại mỗi đỉnh v ∈ V, v ≠ s, t: Tổng luồng trên các cung đi vào v bằng tổng luồng trên các cung đi ra khỏi v.

```
Ký hiệu \Gamma^{-}(v) = \{u \in V : (u, v) \in E\},

\Gamma^{+}(v) = \{w \in V : (v, w) \in E\}.
\sum_{u \in \Gamma^{-}(v)} f(u, v) = \sum_{w \in \Gamma^{+}(v)} f(v, w).
```


- Cho mạng G= (V, E).
- Xét f(u, v) = 0 với mọi $u, v \in G$.
- Rõ ràng f là một luồng trên G.
- Luồng f thường gọi là luồng 0.

Ví dụ 2: Luồng f trên mạng G

$$f(1,2)=5$$
; $f(1,3)=2$; $f(2,4)=5$; $f(2,5)=0$; $f(3,4)=1$; $f(3,5)=1$; $f(4,6)=6$; $f(5,6)=1$.

Giá trị luồng

- Cho luồng f trên mạng G với đỉnh phát s và đỉnh thu t.

Giá trị của luồng f là tổng giá trị luồng trên các cung đi ra từ s hoặc bằng tổng giá trị luồng trên các cung đi vào t:

$$val(f) = \sum_{v \in \Gamma^{+}(s)} f(s, v) = \sum_{u \in \Gamma^{-}(t)} f(u, t).$$

- Luồng $f \equiv 0$ có val(f) = 0.

Ví dụ 3: Giá trị luồng

■ Luồng f có giá trị val(f) = 1 + 3 = 4.

🕇 Bài toán luồng cực đại

Input:

Mạng G = (V, E);

Đỉnh phát s;

Đỉnh thu t;

Output:

Luồng f* có giá trị luồng val(f*) lớn nhất;

Ví dụ 4: Luồng cực đại f*

Luồng cực đại f* trên mạng G với đỉnh phát s = 1 và đỉnh thu t = 6 có val(f*)= 4 + 5 = 6 + 3 = 9.

Ý tưởng tìm luồng cực đại

- Khởi tao: f≡ 0; val(f)= 0;
- Quá trình lặp:
 - (1) Tìm luồng f' sao cho val(f')= val(f) + δ , với δ > 0;
 - (2) Nếu tìm được f' thì tiếp tục quá trình lặp với f= f';
 - (3) Nếu không tìm được f' thì dừng quá trình lặp;
- Xuất f và val(f);

6.2 Định lý Ford-Fulkerson

Lát cắt:

Cho G= (V, E) là một mạng, đỉnh phát s và đỉnh thu t.

- Cho X là tập các đỉnh và X* = V\X với s ∈ X và t ∈ X*
 ⇒ (X, X*) gọi là một lát cắt.
- Khả năng thông qua của lát cắt:

$$c(X, X^*) = \sum_{u \in X, v \in X^*} c(u, v).$$

Lát cắt có khả năng thông qua nhỏ nhất gọi là lát cắt hẹp nhất.

Ví dụ 5: Lát cắt

Cho mạng G gồm 6 đỉnh với đỉnh phát s = 1 và đỉnh thu t = 6. Xét tập $X = \{1, 3\}$ và $X^* = V \setminus X = \{2, 4, 5, 6\}$. Có (X, X^*) là một lát cắt với khả năng thông qua là $c(X, X^*) = 5 + 3 + 1 = 9$. (X, X^*) cũng là lát cắt hẹp nhất.

Bổ đề

Giá trị của mọi luồng f không vượt quá khả năng thông qua của lát cắt bất kỳ:

$$val(f) \le c(X, X^*).$$

Giá trị luồng cực đại không vượt quá khả năng thông qua của lát cắt hẹp nhất.

Đồ thị tăng luồng

- Cho luồng f trong mạng G = (V, E). Xét đồ thị có trọng số G_f với tập đỉnh V như sau:
- (1) Nếu $e = (u, v) \in E$ với $f(u, v) = 0 \Rightarrow e = (u, v) \in E_f$ với trọng số c(u, v);
- (2) Nếu e = (u, v) \in E với f(u, v) = c(u, v) \Rightarrow e = (v, u) \in E_f với trọng số f(u, v);
- (3) Nếu $e = (u, v) \in E \text{ với } 0 < f(u, v) < c(u, v)$
- \Rightarrow e = (u, v) \in E_f với trọng số c(u, v) f(u, v); e = (v, u) \in E_f với trọng số f(u, v).
- G_f gọi là đồ thị tăng luồng tương ứng luồng f.

Cung thuận và cung nghịch

Xét G_f là đồ thị tăng luồng của f trên G.

Các cung của G_f cũng là cung của G gọi là cung thuận.

Các cung của G_f không là cung của G gọi là cung nghịch.

Đường tăng luồng

- Gọi $P = (s = v_0, v_1, ..., v_k = t)$ là một đường đi từ s đến t trên G_f và δ là giá trị nhỏ nhất của các trọng số trên các cung thuộc P. Đường đi P gọi là đường tăng luồng
- Thủ tục tăng luồng dọc theo P để xây dựng luồng f':
- (1) Nếu (u, v) \in P là cung thuận thì f'(u, v) = f(u, v) + δ ;
- (2) Nếu (u, v) \in P là cung nghịch thì f'(v, u) = f(v, u) δ ;
- (3) Nếu (u, v) \notin P thì f'(u, v) = f(u, v).
- Có val(f') = val(f) + δ

- Mọi đường đi từ s đến t trên G_f là đường tăng luồng f.
- Trong thực tế cài đặt, thường sử dụng thuật toán tìm kiếm theo chiều rộng Bfs(s) để tìm đường đi ít cạnh nhất từ s đến t trên G_f.

Định lý Ford-Fullkerson

- Các mệnh đề sau là tương đương:
- (1) f là luồng cực đại trong mạng G;
- (2) Không tìm được đường tăng luồng trên G_f;
- (3) Giá trị luồng f bằng khả năng thông qua của một lát cắt nào đó: $val(f) = c(X, X^*)$.

6.3 Thuật toán tìm luồng cực đại trong mạng

Input: Mạng G = (V, E) cho bởi ma trận trọng số c[i][j], trong đó c[i][j]= 0 nếu không có cung nối i với j;

Đỉnh phát s;

Đỉnh thu t;

■ Output: Luồng cực đại f;

Giá trị luồng val(f);

Thuật toán

```
Thuật toán Max Flow {
  for u \in V \{
     for v \in V f(u, v) = 0;
 Stop = 0;
 while (!Stop) { <Xác định đồ thị tăng luồng G_f >;
     if (Tìm được đường tăng luồng P bằng Bfs(s)) {
 <Tìm \delta là trọng số nhỏ nhất trên P>; <Tăng luồng f theo P>; }
             else Stop = 1;
    return (f, val(f));
```


Ví dụ 6: Kiểm nghiệm thuật toán

Cho mạng G gồm 6 đỉnh với đỉnh phát s = 1 và đỉnh thu t = 6. Tìm luồng cực đại f trên G.

■ Đồ thị G_f:

- Có Bfs(1)= $\{1(0); 2(1), 3(1); 4(2), 5(2); 6(4)\}$
- Đường tăng luồng $P = 6 \leftarrow 4 \leftarrow 2 \leftarrow 1$

Tăng luồng f lên f'

■ Đường tăng luồng P = $1\rightarrow 2\rightarrow 4\rightarrow 6$; giá trị tăng luồng $\delta = 5$

■ Giá trị luồng mới val(f)= 0 + 5 = 5.

Khởi tạo:

		Μ	[ạng	G					L	uồng	g f		
	1	2	3	<mark>4</mark>	<mark>5</mark>	<mark>6</mark>		1	2	3	<mark>4</mark>	<mark>5</mark>	<mark>6</mark>
1	0	5	5	0	0	0	1	0	0	0	0	0	0
<mark>2</mark>	0	0	0	6	3	0	2	0	0	0	0	0	0
<mark>3</mark>	0	0	0	3	1	0	3	0	0	0	0	0	0
<mark>4</mark>	0	0	0	0	0	6	<mark>4</mark>	0	0	0	0	0	0
<mark>5</mark>	0	0	0	0	0	6	5	0	0	0	0	0	0
<mark>6</mark>	0	0	0	0	0	0	<mark>6</mark>	0	0	0	0	0	0
									Va	al(f) =	= 0		

26/04/2022 TOAN RR2 **28/107**

Bước 1:

		M	[ạng	G					L	uồng	g f					Ð) thị	G_{f}		
	1	2	<mark>3</mark>	4	<mark>5</mark>	<mark>6</mark>		1	2	<mark>3</mark>	<mark>4</mark>	<mark>5</mark>	<mark>6</mark>		1	2	3	4	<mark>5</mark>	<mark>6</mark>
1	0	5	5	0	0	0	1	0	0	0	0	0	0	1	0	5	5	0	0	0
2	0	0	0	6	3	0	2	0	0	0	0	0	0	2	0	0	0	6	3	0
3	0	0	0	3	1	0	3	0	0	0	0	0	0	3	0	0	0	3	1	0
4	0	0	0	0	0	6	4	0	0	0	0	0	0	4	0	0	0	0	0	6
5	0	0	0	0	0	6	5	0	0	0	0	0	0	5	0	0	0	0	0	6
<mark>6</mark>	0	0	0	0	0	0	6	0	0	0	0	0	0	<mark>6</mark>	0	0	0	0	0	0

Tìm đường tăng luồng			Tăn	g luớ	ing f	•	
Bfs(1) = $\{1(0); 2(1), 3(1); 4(2), 5(2); 6(4)\}$		1	2	<mark>3</mark>	<mark>4</mark>	<mark>5</mark>	<mark>6</mark>
Đường tăng luồng:	1	0	5	0	0	0	0
$6 \leftarrow 4 \leftarrow 2 \leftarrow 1$	2	0	0	0	5	0	0
Giá trị tăng luồng:	3	0	0	0	0	0	0
$\delta = 5$	4	0	0	0	0	0	5
	5	0	0	0	0	0	0
	<mark>6</mark>	0	0	0	0	0	0
	Val(<u>f)</u> =	5				

Bước 2:

		Μ	ang	G					L	uồng	g f					Ðâ	thị	G_{f}		
	1	2	3	<mark>4</mark>	5	<mark>6</mark>		1	2	3	4	<u>5</u>	<mark>6</mark>		1	2	3	4	5	<mark>6</mark>
1	0	5	5	0	0	0	1	0	5	0	0	0	0	1	0	0	5	0	0	0
2	0	0	0	6	3	0	2	0	0	0	5	0	0	2	5-	0	0	1	3	0
3	0	0	0	3	1	0	<mark>3</mark>	0	0	0	0	0	0	3	0	0	0	3	1	0
4	0	0	0	0	0	6	4	0	0	0	0	0	5	4	0	5-	0	0	0	1
<mark>5</mark>	0	0	0	0	0	6	<mark>5</mark>	0	0	0	0	0	0	5	0	0	0	0	0	6
<mark>6</mark>	0	0	0	0	0	0	<mark>6</mark>	0	0	0	0	0	0	<mark>6</mark>	0	0	0	5-	0	0

Tìm đường tăng luồng			Tăn	g luć	ing f	Î				
Bfs(1) = $\{1(0); 3(1); 4(3); 5(3); 2(4), 6(4)\}$		1	2	<mark>3</mark>	<mark>4</mark>	<mark>5</mark>	<mark>6</mark>			
Đường tăng luồng:	1	0	5	1	0	0	0			
$6 \leftarrow 4 \leftarrow 3 \leftarrow 1$	2	0	0	0	5	0	0			
Giá trị tăng luồng:	<mark>3</mark>	0	0	0	1	0	0			
$\delta = 1$	<mark>4</mark>	0	0	0	0	0	6			
	<mark>5</mark>	0	0	0	0	0	0			
	<mark>6</mark>	0	0	0	0	0	0			
	Val(f) = 6									

Bước 3:

		Μ	[ạng	G					L	uồng	g f					Ð	thị	G_{f}		
	1	2	3	4	<mark>5</mark>	<mark>6</mark>		1	2	3	4	<mark>5</mark>	<mark>6</mark>		1	2	3	4	<mark>5</mark>	<mark>6</mark>
1	0	5	5	0	0	0	1	0	5	1	0	0	0	1	0	0	4	0	0	0
2	0	0	0	6	3	0	2	0	0	0	5	0	0	2	5-	0	0	1	3	0
<mark>3</mark>	0	0	0	3	1	0	3	0	0	0	1	0	0	3	1-	0	0	2	1	0
<mark>4</mark>	0	0	0	0	0	6	4	0	0	0	0	0	6	4	0	5-	1-	0	0	0
<mark>5</mark>	0	0	0	0	0	6	5	0	0	0	0	0	0	5	0	0	0	0	0	6
<mark>6</mark>	0	0	0	0	0	0	6	0	0	0	0	0	0	<mark>6</mark>	0	0	0	6-	0	0

Tìm đường tăng luồng			Tăn	g luá	ồng f	Ì	
Bfs(1) = $\{1(0); 3(1); 4(3); 5(3); 2(4); 6(5)\}$		1	2	3	<mark>4</mark>	<u>5</u>	<mark>6</mark>
Đường tăng luồng:	1	0	5	2	0	0	0
$6 \leftarrow 5 \leftarrow 3 \leftarrow 1$	2	0	0	0	5	0	0
Giá trị tăng luồng:	3	0	0	0	1	1	0
$\delta = 1$	4	0	0	0	0	0	6
	5	0	0	0	0	0	1
	<mark>6</mark>	0	0	0	0	0	0
	Val((f) =	7				

Bước 4:

			M	ang	G					L	uồng	g f					Ðá	thị	G_{f}		
		1	2	3	4	<mark>5</mark>	<mark>6</mark>		1	2	3	<mark>4</mark>	<mark>5</mark>	<mark>6</mark>		1	2	3	4	<u>5</u>	<mark>6</mark>
1		0	5	5	0	0	0	1	0	5	2	0	0	0	1	0	0	3	0	0	0
2	!	0	0	0	6	3	0	2	0	0	0	5	0	0	2	5-	0	0	1	3	0
3		0	0	0	3	1	0	3	0	0	0	1	1	0	3	2-	0	0	2	0	0
4		0	0	0	0	0	6	4	0	0	0	0	0	6	4	0	5-	1-	0	0	0
5		0	0	0	0	0	6	5	0	0	0	0	0	1	5	0	0	1-	0	0	5
6		0	0	0	0	0	0	6	0	0	0	0	0	0	<mark>6</mark>	0	0	0	6-	1-	0
	_									•							•				

Tìm đường tăng luồng			Tăn	g luć	ing f	Ì	
Bfs(1) = $\{1(0); 3(1); 4(3); 2(4); 5(2); 6(5)\}$		1	<mark>2</mark>	3	<mark>4</mark>	<mark>5</mark>	<mark>6</mark>
Đường tăng luồng:	1	0	5	4	0	0	0
$6 \leftarrow 5 \leftarrow 2 \leftarrow 4 \leftarrow 3 \leftarrow 1$	2	0	0	0	3	2	0
Giá trị tăng luồng:	3	0	0	0	3	1	0
$\delta = 2$	4	0	0	0	0	0	6
	5	0	0	0	0	0	3
	<mark>6</mark>	0	0	0	0	0	0
	Val((f) =	9				

Bước 5:

		M	[ạng	G					L	uồng	g f					Ð	à thị	G_{f}		
	1	2	<mark>3</mark>	4	<u>5</u>	<mark>6</mark>		1	2	<mark>3</mark>	4	<u>5</u>	<mark>6</mark>		1	2	3	4	<u>5</u>	<mark>6</mark>
1	0	5	5	0	0	0	1	0	5	4	0	0	0	1	0	0	1	0	0	0
2	0	0	0	6	3	0	2	0	0	0	3	2	0	2	5-	0	0	3	1	0
3	0	0	0	3	1	0	3	0	0	0	3	1	0	3	4-	0	0	0	0	0
4	0	0	0	0	0	6	4	0	0	0	0	0	6	4	0	3-	3-	0	0	0
5	0	0	0	0	0	6	5	0	0	0	0	0	3	5	0	2-	1-	0	0	3
<mark>6</mark>	0	0	0	0	0	0	6	0	0	0	0	0	0	6	0	0	0	6-	3-	0
_							_							_						

Tìm đường tăng luồng

Bfs(1) = $\{1(0); 3(1)\}$

Không tìm được đường tăng luồng.

Kết luận:

Luồng cực đại f:

	1	2	<mark>3</mark>	<mark>4</mark>	<u>5</u>	<mark>6</mark>
1	0	5	4	0	0	0
2	0	0	0	3	2	0
3	0	0	0	3	1	0
4 5	0	0	0	0	0	6
5	0	0	0	0	0	3
<mark>6</mark>	0	0	0	0	0	0

■ Giá trị luồng cực đại: Val(f) = 9

Minh họa kết quả cuối cùng:

■ Luồng cực đại f có val(f)= 6 + 3 = 9.


```
int Stop = 0; int q[100]; int d[100]; int vs[100]; int e[100]; int fl[100][100];
void FindPath(){ int cq, dq, u, v;
      for (u = 1; u \le n; u++) vs[u] = 0;
   cq = 1; dq = 1; q[cq] = s; vs[s] = 1; e[s] = 0; d[s] = 10000;
  while (dq \le cq)\{ u = q[dq]; dq++;
     for (v = 1; v \le n; v++) if (vs[v]== 0) {
          if (c[u][v] > 0 \&\& fl[u][v] < c[u][v]) {
     e[v] = u; d[v] = (d[u] < c[u][v] - fl[u][v])?d[u]: c[u][v] - fl[u][v];
       cq++; q[cq] = v; vs[v] = 1; if (v == t) return; }
if (c[v][u] > 0 \&\& fl[v][u] > 0) \{ e[v] = -u; d[v] = (d[u] < fl[v][u])?d[u]: fl[v][u];
         cq++; q[cq] = v; vs[v] = 1; if (v == t) return; }
   Stop = 1;
```


6.4 Một số bài toán luồng tổng quát

1. Mạng có nhiều điểm phát, nhiều điểm thu

- Xét mạng G có p điểm phát s₁, ..., s_p và q điểm thu t₁, ..., t_q. Một luồng có thể xuất phát từ một đỉnh phát bất kỳ đến một trong các đỉnh thu và được định nghĩa tương tự như trên.
- Bài toán luồng cực đại trên G được đưa về bài toán trên bằng cách bổ sung 1 đỉnh phát giả s và 1 đỉnh thu giả t.

26/04/2022 TOAN RR2 37/107

Mạng có nhiều điểm phát, nhiều điểm thu

- Từ đỉnh phát giả s có cạnh nối đến các đỉnh phát s₁, ..., s_p với khả năng thông qua là vô cùng lớn.
- Từ các đỉnh thu t₁, ..., tզ có cạnh nối đến đỉnh thu giả t với khả năng thông qua là vô cùng lớn.

Thuật toán tìm luồng cực đại:

- Tìm luồng cực đại f* trên mạng G∪{s, t} bằng thuật toán Max_Flow;
- Bổ hai đỉnh giả s và t ⇒ có luồng cực đại f* trên G với val(f*).

26/04/2022 TOAN RR2 39/107

2. Bài toán với khả năng thông qua của đỉnh và cạnh

- Xét mạng G.
- Ngoài khả năng thông qua c[u][v] trên cạnh (u, v) \in E, còn có khả năng thông qua của đỉnh v là số nguyên không âm d[v], $v \in V$.
- Luồng f trên mạng G phải thỏa mãn thêm điều kiện: tổng luồng đi vào đỉnh v không vượt quá d[v].
- Yêu cầu: Tìm luồng cực đại giữa s và t.

Thuật toán

- (1) Xây dựng mạng G'sao cho mỗi v ∈ G tương ứng hai đỉnh v+, v⁻ trong G' với khả năng thông qua:
- $c[u^{-}][v^{+}] = c[u][v]; c[v^{-}][w^{+}] = c[v][w]; c[v^{+}][v^{-}] = d[v];$
- (2) Tìm luồng cực đại f* trên G';
- (3) Xuất f* trên G và val(f*);

3. Mạng có khả năng thông qua bị chặn hai phía

- Xét mạng G.
- Khả năng thông qua trên cạnh $(u, v) \in E$ có cận trên là c[u][v] và cận dưới là d[u][v].
- Luồng f trên mạng G phải thỏa mãn thêm điều kiện:
 - $d[u][v] \le f[u][v] \le c[u][v].$
- Yêu cầu: Tìm luồng cực đại giữa s và t.

Thuật toán:

- (1) Đưa vào hai đỉnh phát giả s_u và thu giả t_u;
- Xây dựng mạng G_u sao cho mỗi cung (u, v) có d[u][v] \neq 0 tương ứng hai cung (s_u, v) và (u, t_u) với khả năng thông qua d[u][v]; khả năng thông qua của (u, v) là c[u][v] d[u][v];
- (2) $d^* = \sum_{(u, v) \in E} d[u][v];$
- (3) Tìm luồng cực đại f* trên G_u;
- (4) N\u00e9u val(f*) = d* ⇒ Xu\u00e9t lu\u00f6ng f turong thich f* tr\u00e9n Gv\u00e0 val(f);

6.5 Ứng dụng

1. Bộ ghép cực đại

Cho đồ thị hai phía có trọng số G với tập đỉnh

$$V = X \cup Y, X \cap Y = \emptyset;$$

Bộ ghép M trên G là các cặp (x, f(x)) với đơn ánh $f: X \rightarrow Y$.

Yêu cầu: Tìm M có số lượng phần tử lớn nhất và tổng trọng số lớn nhất.

Một số bài toán cụ thể:

1) Bài toán phân việc:

Có n công nhân và n công việc. Biết mỗi công nhân thứ i có thể làm được một số công việc nào đó. Tìm cách phân việc để giải quyết được tất cả n công việc.

2) Bài toán đám cưới vùng quê:

Có n nam và n nữ. Biết mỗi nam thứ i có mức độ tình cảm với nữ thứ j là c[i][j]. Tìm cách mai mối để các cặp nam-nữ kết bạn có tổng mức độ tình cảm là lớn nhất.

Thuật toán giải bài toán phân việc:

- Ký hiệu X là tập gồm n công nhân và Y là tập gồm n công việc. Với $u \in X$ và $v \in Y$ có $c[u][v]= 1 \Leftrightarrow công$ nhân u làm được công việc v.
- (1) Đưa vào hai đỉnh phát giả s_u và thu giả t_u;
- Xây dựng mạng G_u gồm các cung $(u, v) \in E$ và thêm các cung (s_u, u) và (v, t_u) , $u \in X$ và $v \in Y$ với khả năng thông qua 1;
- (2) Tìm luồng cực đại f * trên G_u;
- (3) Xuất các cặp (u, v) nếu f*[u][v] > 0, u ∈X và v ∈ Y và val(f*);

Thuật toán giải bài toán đám cưới:

- Ký hiệu X là tập gồm n nam và Y là tập gồm n nữ. Với $i \in X$ và $j \in Y$ có c[i][j] là mức độ tình cảm giữa i và j.
- (1) Đưa vào hai đỉnh phát giả s_u và thu giả t_u;
- Xây dựng mạng G_u gồm các cung $(u, v) \in E$ và thêm các cung (s_u, u) và (v, t_u) , $u \in X$ và $v \in Y$ với khả năng thông qua vô cùng lớn;
- (2) Tìm luồng cực đại f * trên G_{...};
- (3) Xuất các cặp (u, v) nếu f*[u][v] > 0, u ∈X và v ∈Y và val(f*);

2. Hệ đại diện chung

- Cho $X = \{z_1, z_2, ..., z_m\}$ và hai dãy tập con của $X: \langle A_1, ..., A_n \rangle$ và $\langle B_1, ..., B_n \rangle$;
- Dãy n phần tử khác nhau của X: $(a_1, ..., a_n)$ gọi là hệ đại diện chung của hai dãy trên \Leftrightarrow tồn tại hoán vị của các số $\{1, ..., n\}$ là $(h_1, ..., h_n)$ thỏa mãn $a_i \in A_i \cap B_{hi}$, với i = 1, ..., n.
- Yêu cầu: Tìm hệ đại diện chung (a₁, ..., aₙ).

Thuật toán:

- (1) Xây dựng mạng G = (V, E) với:
- $V = \{s,\,t\} \cup \{x_1,\,...,\,x_n\} \cup \{u_1,\,...,\,u_m\} \cup \{v_1,\,...,\,v_m\} \cup \{y_1,\,...,\,y_n\}; \text{ trong đó } x_i \text{ tương ứng } A_i,\,y_i \text{ tương ứng } B_i,\,u_j,\,v_j \text{ tương ứng } z_i;$
- $E = \{(s, x_i) | i = 1, ..., n\} \cup \{(x_i, u_j | z_j \in A_i\} \cup \{(u_i, v_j)\} \cup \{v_j, y_i\}\} \cup \{(y_i, t)\}; \text{ khả năng thông qua trên các cung là 1:}$
- (2) Tìm luồng cực đại f* trên G;
- (3) Nếu val(f*) = n \Rightarrow Xuất (a₁, ..., a_n), với a_j tương ứng z_i;

Tổng kết chương 6

■ Về lý thuyết:

- Khái niệm mạng và luồng trên mạng; luồng cực đại;
- Định lý Ford- Fulkerson;
- Thuật toán tìm luồng cực đại

Về các dạng bài tập

- Viết chương trình mô tả thuật toán.
- Kiểm nghiệm các thuật toán.

Thảo luận

