The Progress of CEPC HCAL

Yu Boxiang

On behalf of CEPC Calorimeter working Group

Outline

- —Preliminary design of CEPC-Detector;
- —The options of CEPC-HCAL;
- —The progress of three option of HCAL
 - DHCAL based on GEM;
 - SDHCAL based on RPC;
 - AHCAL based on scintillator;
- —Summary

Requirements of CEPC Calorimeter

- Jet energy resolution (ECAL combined with HCAL and tracker): $\sigma_E/E \approx (3\% 4\%)$
- Detailed information of showers
- High granularity, Compact showers(small radiation length X₀, and small Moliere radius R_M),
 Minimum dead materials

The options of CEPC-HCAL;

LC PFlow Calorimetry options

★ Various options for high granularity sampling calorimeters...

CEPC high granularly calorimeter study

- —Hardware
 - CEPC-ECAL (See Mingyi's talk)
 - ➤ 3 Institutions: USTC+IHEP+LLR
 - CEPC-HCAL
 - ➤ 4 Institutions: USTC+IHEP+SJTU+UCAS
- —Software (See Manqi's and Hang's talk)
 - PFA
 - ➤ 3 Institutions: IHEP+LLR+IPNL
 - Geometry optimization
 - ➤ 2 Institutions: IHEP+SJTU

DHCAL based on GEM

Typical parameters

Cu: $t = 5\mu m$

Kapton: $T = 50\mu m$

Diameter: d = 60μm

 $D = 80\mu m$

pitch: 140µm

- > Advantages:
- 1. assembling process is easy and fast
- 2. no dead area inside the active area
- 3. uniform gas flow
- 4. detachable

Self-stretching technique (from CERN)

Readout Scheme

Schematic of the System

- \blacksquare Readout Board: GEM detector Readout composed by 900 1 cm^2 pads.
- MICROROC Test Board: Mounted 4 Microroc ASICs, controlled by daisy chain.
- □ DIF Board: Microroc control, test and data acquisition

Readout ASIC

Readout ASIC	Channels	Dynamic Range	Threshold	Consumption
GASTONE	64	200fC	Single	2.4mW/ch
VFAT2	128	18.5fC	Single	1.5mW/ch
DIRAC	64	200fC for MPGD	Multiple	1mW/ch, 10μW/ch(ILC)
DCAL	64	20fC~200fC	Single	
HARDROC2	64	10fC~10pC	Multiple	1.42 mW/ch, 10 μ W/ch(ILC)
MICROROC	64	1fC~500fC	Multiple	335μW/ch, 10μW/ch (ILC)

Considered the multi-thresholds readout, dynamic range and power consumption, MICROROC is an appropriate readout ASIC

MICROROC Parameters

- ☐ Thickness: 1.4mm
- □ 64 Channels
- 3 threshold per channel
- □ 128 hit storage depth
- Minimum distinguishable charge:2fC

Test of MICROROC

Calibration curve

Uniform
 between 64
 channels

Minimum distinguishable charge: 2fC

Noise Test

Diagram of noise test

Structure of GEM Detector

Test system

Uniformity results

Pad Size: 1cmx1cm

Crosstalk Test result

Utilizing Cosmic-Ray as Test Source

the ratio of nearby pad response is
1.54%

Preliminary research on THGEM-DHCAL

- three structure can be selected;
 - Double THGEM;
 - Single-THGEM;
 - WELL-THGEM;
- WELL-THGEM is the-best selection.
 - thinner, high gain, lower discharge

The thickness of WELL-THGEM<6mm

Gain result of 20cmX20cm THGEM

GEM DHCAL Next Step

- Integrate ASIC to the back-end of Detector
- Design and assemble 50cm × 100cm GEM detector with 3mm drift gap. 1mm transfer gap and 1mm induction gap.
- Test performances of the 50cm × 100cm GEM detector

SDHCAL Based on RPC (IPNL+SJTU within CALICE)

SDHCAL Prototype

Total Size:1.0x1.0x1.4m³

Total Layers: 48

Total Channel(pads):440000

 $lack Power consumption: 10 <math>\mu W/channel$

the first technological prototype among a family of prototypes of high-granularity calorimeters

developed by the CALICE collaboration

Structure of per layer

 $(0.12\lambda_I, 1.14X_0)$

Stainless steel Absorber(15mm)

Stainless steel wall(2.5mm)

GRPC(6mm $\approx 0 \lambda_I, X_0$)

Stainless steel wall(2.5mm)

ASIC HARDROC(64 channel) three-threshold (Semi-digital) 110fC,5pC,15pC

Analysis of beam test

selections

Туре	Selections	Detail
Simple cuts	Electron rejection	Shower start >=5 or Nlayer > 30
	Muon rejection	Nhit/Nlayer > 3.2(previous is 2.2)
	Radiative muon rejection	Nlayer(RM5 > 5cm)/Nlayer>20%
	Neutral rejection	Nhit(belong to first 5 layers)> =4

Applying 4
rejections step by
step, Almost
eliminate
backgrounds

Optimization of SDHCAL Layers

 $(0.12\lambda_I, 1.14X_0)$

Stainless steel Absorber(15mm)

Stainless steel wall(2.5mm) $GRPC(6mm \approx 0 \lambda_I, X_0)$ Stainless steel wall(2.5mm)

- → SDHCAL has 48 layers which aims for ILC Detector
- 6mm RPC+20mm absorber
- → Optimization no. of layers for CEPC at 240GeV
- → 40-layer SDHCAL yields decent energy resolution.

The progress of scintillator AHCAL

- Analog hadron calorimeter based on scintillatoretector unit: a scintillator tile (30×30×3 mm³) with a SiPM
 - The absorber: 2cm Stainless steel;
 - Detector cell size: $3cm \times 3cm$ (baseline), $4cm \times 4cm$, $5cm \times 5cm$;
 - Readout chip: ASIC SPIROC2E
 - The sensitive detector : Scintillator(PS or inorganic scintillator);
 - 40 sensitive layers, total readout channel:
 ≈5 Million (3cm × 3cm)

Detector Cells Research

- Via mechanical drilling and polishing, a dome-shaped cavity in the center of plastic scintillator was made
- The sizes of $30\times30\times3\text{mm}^3$, $30\times30\times2\text{mm}^3$, $40\times40\times3\text{mm}^3$ and $50\times50\times3\text{mm}^3$ were made.
- SiPM or MPPC(surface-mounted)
- Scintillator(BC408) were wrapped by ESR foil

Scintillator tile wrapped by ESR foil was glued on the PCB

Readout electronics

- ◆ Electronic readout board is Hamamatsu C12332-01
- ◆ Temperature compensation keep amplitude of the SiPM stable

S12571-025P parameter :

Sensitive area :1 \times 1mm²

Pixel size :25 \times 25 μ m²

Pixel number:1600

Gain: 5.15E+05

S13360-1325PE parameter :

Sensitive area :1.3 \times 1.3mm²

Pixel size :25 \times 25 μ m²

Pixel number: 2668

Gain: 1.1E+06

20

Uniformity measurement

- Uniformity scans (MPPC: S12571-025P and)
- Scintillator tile under study can be moved in a step size of 5×5 mm²
- 30x30x3mm³, 30x30x2mm³ and 50x50x3mm³ were measured.
- The mean response can reach 100%,94% within 10% deviation from the mean value, respectively.

Cosmic-ray measurement

- ➤ 30x30x3mm³, 30x30x2mm³, 40x40x3mm³,50x50x3mm³ plastic scintillator were tested.
- MPPC type: S12571-025p and S13360- 1325PE

MPPC cross talk spectrum

result of 30×30×3mm3 scintillator²²

Cosmic-rays measurement results

Table 1 Cosmic-ray measurement results of detector cells with different sizes₽

No.₽	Detector Cell₽	MPPC Type₽	Reflective Foil Type	Mean $N_{p,e}$.	Polishing Methods
1₽	$30\times30\times3mm^{3}$	S12571-025 P ₽	ESR₽	31.39±0.65¢	Ultra Precise Polishing
2₽	30×30×3mm ³ ₽	S12571-025 P ₽	ESR₽	22.55±0.7₽	Precise Polishing₄
3₽	$30 \times 30 \times 3 \text{mm}^{3} \varphi$	S12571-025 P ₽	ESR₽	18.92±0.39¢	Rough Polishing₽
4₽	30×30×3mm ³ ₽	S12571-025 P ₽	TYVEK₽	13.63±0.33¢	Precise Polishing₽
5₽	40×40×3mm³₽	S12571-025 P ₽	ESR₽	14.89±0.73₽	Precise Polishing₽
6₽	50×50×3mm³₽	S12571-025P₽	ESR₽	9.87±0.43₽	Precise Polishing
7₽	30×30×2mm³₽	S13360-1325PE₽	ESR₽	33.89±0.49₽	Precise Polishing

- For same size of detector cell, polishing method is very important;
- Different reflective foil: ESR is better than TYVEK;
- Bigger size detector cell, less p.e. detected;

Chinese EQR SiPMs (Developed by Beijing Normal University)

- Chinese Beijing Normal University (BNU) has developed silicon photomultiplier (SiPM) technologies with epitaxial quenching resistors (EQR).
- NDL EQR-SiPM is easy to implement owning to its unique structure featuring intrinsic continuous and uniform cap resistor layer, thus reducing the cost of the fabrication.

Schematic structure of EQR SiPM

Chinese EQR-SiPM performance

	NDL SiPM		
Effective Active	11-3030 B-S	22-1414 B-S	
Area	3.0×3.0 mm ²	1.4×1.4 mm ² (2×2 Array)	
Effective Pitch	10 μm	10 μm	
Micro-cell Number	90000	19600	
Fill Factor	40%	40%	
Breakdown Voltage (V _b)	23.7±0.1V	23.7±0.1V	
Measurement Overvoltage (V)	3.3	3.3	
Peak PDE	27%@420nm	35%@420nm	
Max. Dark Count (kcps)	< 7000	<1500	
Gain	2×10 ⁵	2×10 ⁵	
Temp. Coef. For V _b	17mV/° C	17mV/° C	

 Chinese SiPM already can work with some good performance

Some performance need more improvements

Higher dynamic range Higher fill-factor

High Dark count rate

A little low Gain

CEPC-AHCAL Next

- ASCI chip readout research;
- Test Chinese (GNKD) plastic scintillator;
- Test the Chinese EQR-SiPM;
- Scintillator mega tiles test;

Yong liu's talk

ASIC chip Spiroc2E

Summary and next

- —CEPC-HCAL have got some progress;
- —Now we have three options, GEM-DHCAL, RPC-SDHCAL, Scint-AHCAL;
- —The CEPC-CDR is on way;
- —Apply new funding for HCAL prototype;

Thanks for your attention!

Backup!

NDL EQR-SiPM VS Hamamatsu MPPC

	NDL SiPM		Hamamatsu MPPC	
Effective Active Area	11-3030 B-S	22-1414 B-S	S13360-3025PE	S13360-1325PE
	3.0×3.0 mm ²	1.4×1.4 mm² (2×2 Array)	3.0×3.0 mm ²	1.3×1.3 mm ²
Effective Pitch	10 μm	10 μm	25 μm	25 μm
Micro-cell Number	90000	19600	14400	2668
Fill Factor	40%	40%	47%	47%
Breakdown Voltage (V _b)	23.7±0.1V	23.7±0.1V	53±5V	53±5V
Measurement Overvoltage (V)	3.3	3.3	5	5
Peak PDE	27%@420nm	35%@420nm	25%@450nm	25%@450nm
Max. Dark Count (kcps)	< 7000	<1500	1200	210
Gain	2×10 ⁵	2×10 ⁵	7.0×10 ⁵	7.0×10 ⁵
Temp. Coef. For V _b	17mV/° C	17mV/° C	54mV/° C	54mV/° C