$Solutions\ MP/MP^*$ Équations différentielles linéaires

Solution 1. L'équation différentielle est linéaire homogène sous forme résolue du second ordre. D'après le théorème de Cauchy-Lipschitz, l'ensemble solution est un \mathbb{R} -espace vectoriel de dimension 2.

Soit φ de classe $\mathcal{C}^1(\mathbb{R},\mathbb{R})$ et

$$u: \mathcal{C}^{1}(\mathbb{R}, \mathbb{R}) \to \mathcal{C}^{0}(\mathbb{R}, \mathbb{R})$$

$$y \mapsto y' + \varphi y$$
(1)

On définit ensuite

$$u \circ u: \mathcal{C}^{2}(\mathbb{R}, \mathbb{R}) \to \mathcal{C}^{0}(\mathbb{R}, \mathbb{R})$$

$$y \mapsto (y' + \varphi y)' + \varphi (y' + \varphi y) = y'' + y'(2\varphi) + (\varphi' + \varphi^{2})y$$
(2)

On pose $\varphi(x)=x$. Alors l'équation différentielle équivaut à $u\circ u(y)=0$. On a u(z)=0 si et seulement si z'+xz=0 si et seulement s'il existe $c\in\mathbb{R}$ tel que pour tout $x\in\mathbb{R},\,z(x)=C\mathrm{e}^{-\frac{x^2}{2}}$.

On cherche la solution générale sous la forme $y(x) = d(x)e^{-\frac{x^2}{2}}$. En reportant, cela équivaut à $d'(x)e^{-\frac{x^2}{2}} = ce^{-\frac{x^2}{2}}$, et cela équivaut au fait qu'il existe $d \in \mathbb{R}$ tel que d(x) = cx + d. Donc l'ensemble solution est

$$\left\{ x \mapsto (cx+d)e^{-\frac{x^2}{2}} \middle| (c,d) \in \mathbb{R}^2 \right\}. \tag{3}$$

Solution 2. C'est une équation homogène linéaire. Soit

$$A = \begin{pmatrix} 1 & -3 & 3 \\ -2 & -6 & 13 \\ -1 & -4 & 8 \end{pmatrix}. \tag{4}$$

Le système équivaut à $tY^\prime=aY$ où

$$Y: I = \mathbb{R}_{+}^{*} \text{ ou } \mathbb{R}_{-}^{*} \to \mathbb{R}^{3}$$

$$t \mapsto \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix}$$

$$(5)$$

Sur I, le système équivaut à $Y'=\frac{1}{t}AY$, équation homogène à valeurs dans \mathbb{R}^3 . D'après le théorème de Cauchy-Lipschitz, l'ensemble solution est un R-espace vectoriel de dimension 3. On a

$$\chi_{A} = \begin{vmatrix}
X - 1 & 3 & -3 \\
2 & X + 6 & -13 \\
1 & 4 & X - 8
\end{vmatrix},$$

$$= \begin{vmatrix}
X - 1 & 3 & 0 \\
2 & X + 6 & X - 7 \\
1 & 4 & X - 4
\end{vmatrix},$$
(6)

$$= \begin{vmatrix} X - 1 & 3 & 0 \\ 2 & X + 6 & X - 7 \\ 1 & 4 & X - 4 \end{vmatrix}, \tag{7}$$

$$= \begin{vmatrix} X - 1 & -4X + 7 & 0 \\ 2 & X - 2 & X - 7 \\ 1 & 0 & X - 4 \end{vmatrix}, \tag{8}$$

$$= (-4X+7)(X-7) + (X-4)((X-1)(X-2) - 2(-4X+7)),$$
(9)

$$=X^3 - 3X^2 + 3X - 1, (10)$$

$$= (X - 1)^3. (11)$$

A est trigonalisable mais non diagonalisable car non semblable à I_3 . On a

On prend pour vecteur propre $f_1=\begin{pmatrix} 3\\1\\1 \end{pmatrix}$. On a $(A-I_3)^3=0$ d'après le théorème de Cayley-Hamilton,

et $\dim(\ker(A - I_3)) = 1$. On a

$$(A - I_3)^2 = \begin{pmatrix} 0 & -3 & 3 \\ -2 & -7 & 13 \\ -1 & -4 & 7 \end{pmatrix} \begin{pmatrix} 0 & -3 & 3 \\ -2 & -7 & 13 \\ -1 & -4 & 7 \end{pmatrix} = \begin{pmatrix} 3 & 9 & -18 \\ 1 & 3 & -6 \\ 1 & 3 & -6 \end{pmatrix}.$$
 (13)

On choisit
$$f_3$$
 tel que $(A - I_3)^2 f_3 \neq \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$, par exemple $f_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$. On pose $f_2 = (A - I_3)f_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$

$$\begin{pmatrix} 0 \\ -2 \\ -1 \end{pmatrix}, \text{ et on a } f_1 = (A - I_3)^2 f_3 = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}.$$

Soit

$$P = \begin{pmatrix} 3 & 0 & 1 \\ 1 & -2 & 0 \\ 1 & -1 & 0 \end{pmatrix} \in GL_3(\mathbb{R}). \tag{14}$$

Alors

$$A_1 = P^{-1}AP = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}. \tag{15}$$

On pose
$$Y_1 = P^{-1}Y = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}$$
. Alors le système équivaut à

$$\begin{cases}
tx'_1 &= x_1 + y_1, \\
ty'_1 &= y_1 + z_1, \\
tz'_1 &= z_1.
\end{cases}$$
(16)

On trouve $z_1(t) = \alpha e^{\ln|t|} = Ct$ pour tout $t \in I$ (avec $C = \pm \alpha$). En reportant, on a $y_1' = \frac{1}{t}y_1 + C$, donc si $y_1(t) = D(t) \times t$, on a $D'(t) \times t = C$ d'où $D(t) = C \ln|t| + D$. Enfin, on a $x_1' = \frac{1}{t}x_1 + C \ln|t| + D$.

Donc si $x_1(t) = E(t) \times t$, on a $E'(t) \times t = C \ln |t| + D$. Si $I = \mathbb{R}_+^*$, on a

$$E(t) = C \int_{1}^{t} \frac{\ln(u)}{u} du + D \ln(t) + E,$$
 (17)

avec $\int_1^t \frac{\ln(u)}{u} du = \frac{1}{2} \ln^2(t)$. Ainsi, on a $E(t) = \frac{C}{2} \ln^2(t) + D \ln(t) + E$, d'où

$$x_1(t) = \frac{C}{2}t \ln^2|t| + Dt \ln|t| + E \times t.$$
 (18)

Puis $Y = PY_1$, prolongeable (avec une classe \mathcal{C}^1) en 0 si et seulement si C = D = 0 si et

seulement si
$$Y_1(t) = \begin{pmatrix} tE \\ 0 \\ 0 \end{pmatrix}$$
.

Remarque 1. Sur $I = \mathbb{R}_+^*$ ou \mathbb{R}_-^* , on a

$$tY_1' = A_1Y_1 \iff Y_1' - \frac{1}{t}A_1Y_1 = 0,$$
 (19)

$$\iff \exp(-\ln(t)A_1)(Y_1' - \frac{1}{t}A_1Y_1) = (Y_1(t)\exp(-\ln(t)A_1))' = 0, \tag{20}$$

$$\iff \exists Y_0 \in \mathbb{R}^3, \forall t \in I, \exp(-\ln|t|A_1)Y_1(t) = Y_0, \tag{21}$$

$$\iff \exists Y_0 \in \mathbb{R}^3, \forall t \in I, Y_1(t) = \exp(\ln|t|A_1)Y_0. \tag{22}$$

On
$$a A_1 = I_3 + \underbrace{\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}}_{N} avec N^2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} et N^3 = 0. Ainsi,$$

$$\exp(\ln|t| A_1) = \underbrace{e^{\ln|t|}}_{+t} \times \left(I_3 + \ln|t| N + \frac{\ln^2|t|}{2} N^2 \right). \tag{23}$$

Solution 3.

1. On a $V(x) = e^{xA}u$ sur \mathbb{R} . Pour tout $x \in \mathbb{R}$, on a $xA \in \mathcal{A}_n(\mathbb{R})$ et

$$\exp(xA)^{\mathsf{T}} = \exp((xA)^{\mathsf{T}}),\tag{24}$$

$$=\exp(-xA),\tag{25}$$

$$=\exp(xA)^{-1},\tag{26}$$

donc $\exp(xA) \in SO_n(\mathbb{R})$ et $||V(x)||_2 = ||u||_2$.

2. D'après le théorème de Cauchy-Lipschitz, pour tout $x_0 \in \mathbb{R}$,

$$\Theta_{x_0}: S_{\mathbb{R}} \to \mathbb{R}^n
V \mapsto V(x_0)$$
(27)

est un isomorphisme (où $S_{\mathbb{R}}$ est l'ensemble solution).

Ainsi,

- ou bien (V_1, \ldots, V_n) est liée et pour tout $x \in \mathbb{R}$, W(x) = 0,
- ou bien (V_1, \ldots, V_n) est libre et pour tout $x \in \mathbb{R}$, $B(x) = (V_1(x), \ldots, V_n(x))$ est une base

de \mathbb{R}^n et $W(x) \neq 0$. Alors

$$W'(x) = \sum_{i=1}^{n} \det_{B}(V_{1}(x), \dots, V'_{i}(x), \dots, V_{n}(x)),$$
(28)

$$= \sum_{i=1}^{n} \det_{B(x)}(V_1(x), \dots, AV_i(x), \dots, V_n(x))W(x),$$

$$= \sum_{i=1}^{n} \det_{B(x)}(V_1(x), \dots, AV_i(x), \dots, V_n(x))W(x),$$
(29)

$$= \sum_{i=1}^{n} a_{i,i} W(x), \tag{30}$$

$$= W(x) \times \text{Tr}(A), \tag{31}$$

$$=0. (32)$$

Donc W(x) = c.

3. On suppose $u \neq 0$. Comme pour tout $x \in \mathbb{R}$, $\exp(xA) \in O_n(\mathbb{R})$. $(u, \exp(xA)u)$ est liée si et seulement s'il existe $\varepsilon(x) \in \{-1,1\}$ telle que $\varepsilon(x) \in \{-1,1\}$, $\exp(xA)u = \varepsilon(x)u$. On a $(\exp(xA)u|u) = \varepsilon(x) ||u||_2^2 \text{ donc } x \mapsto \varepsilon(x) \text{ est continue à valeurs dans } \{-1,1\} \text{ donc constante.}$ **Lemme 1.** On a $\operatorname{Sp}_{\mathbb{R}} A \subset \{0\}$, et il existe $P \in O_n(\mathbb{R})$ et $(\alpha_1, \dots, \alpha_p) \in (\mathbb{R}^*)^p$ tel que

$$P^{-1}AP = P^{\mathsf{T}}AP = \begin{pmatrix} 0 & -\alpha_1 & & & & \\ \alpha_1 & 0 & & & & \\ & & \ddots & & & \\ & & & 0 & -\alpha_p & & \\ & & & \alpha_p & 0 & \\ & & & & \ddots & \\ & & & & 0 \end{pmatrix} = A_1. \tag{33}$$

Preuve du lemme 1. Si $Ax = \lambda X$, alors

$$(AX|X) = X^{\mathsf{T}}AX = \lambda \|X\|_{2}^{2} = (X^{\mathsf{T}}AX)^{\mathsf{T}} = X^{\mathsf{T}}(-A)X = -\lambda \|X\|_{2}^{2}. \tag{34}$$

Donc $\lambda = 0$.

Le deuxième résultat s'obtient par récurrence sur n.

On a donc

$$\exp(xA) = P \exp(xA_1)P^{-1} = P \begin{pmatrix} R_{x\alpha_1} & & & & \\ & \ddots & & & \\ & & R_{x\alpha_p} & & \\ & & & 1 & \\ & & & \ddots & \\ & & & & 1 \end{pmatrix} P^{-1}, \quad (35)$$

avec $\alpha_i \neq 0$, où R_θ indique la matrice de rotation en dimension 2 d'angle θ . Ainsi, pour que $\exp(xA)u = u$ pour tout $x \in \mathbb{R}$, il faut et il suffit que $u \in \ker(A)$ (pour ne pas être affecté par les matrices de rotation).

Remarque 2. Si $(V_1(0), \ldots, V_n(0))$ est une base orthonormée directe, pour tout $x \in \mathbb{R}$, pour tout $i \in \{1, \ldots, n\}$, $\|V_i(x)\|_2 = \|V_i(0)\|_2 = 1$ et en dérivant, on a $(V_i(x)|V_j(x)) = \varphi_{i,j}(x)$.

On a

$$\varphi'_{i,j}(x) = (V'_i(x)|V_j(x)) + (V_i(x)|V'_j(x)), \tag{36}$$

$$= V_j(x)^\mathsf{T} A V_i(x) + V_j^\mathsf{T} \underbrace{A^\mathsf{T}}_{A} V_i(x), \tag{37}$$

$$=0. (38)$$

Donc $\varphi_{i,j} = 0$ donc $\varphi_{i,j}(x) = 0$ pour tout $x \in \mathbb{R}$. Enfin,

$$\det_{B}(V_{1}(x), \dots, V_{n}(x)) = \det_{B}(V_{1}(0), \dots, V_{n}(0)) = 1.$$
(39)

Donc pour tout $x \in \mathbb{R}$, $(V_1(x), \dots, V_n(x))$ est une base orthonormée directe.

Solution 4. On résout sur $I = \mathbb{R}_+^*$ ou \mathbb{R}_-^* . Posons

$$A = \begin{pmatrix} -4 & -2 \\ 6 & 3 \end{pmatrix},\tag{40}$$

$$Y \colon t \mapsto \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}, B \colon t \mapsto \frac{1}{e^t - 1} \begin{pmatrix} 2 & -3 \end{pmatrix}.$$

(x,y) est solution du système différentiel sur I si et seulement si pour tout $t \in I$, Y'(t) = AY(t) + B(t).

On réduit $A: \chi_A = X^2 + X = X(X+1)$ est scindé à racines simples, donc A est diagonalisable. On a

$$A \begin{pmatrix} a \\ b \end{pmatrix} = 0 \iff \begin{cases} -4a - 2b = 0, \\ 6a + 3b = 0, \end{cases}$$

$$(41)$$

si et seulement si 2a = b. On pose $f_0 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$, vecteur propre de A associé à 0. On a

$$(A+I_2)\begin{pmatrix} a \\ b \end{pmatrix} = 0 \Longleftrightarrow \begin{cases} -4a-2b = 0, \\ 6a+3b = 0, \end{cases}$$

$$(42)$$

si et seulement si 3x = -2y. On pose $f_{-1} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$.

Soit
$$P = \begin{pmatrix} 1 & 2 \\ -2 & -3 \end{pmatrix}$$
, on a $P^{-1}AP = A_1 = \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix}$, et on pose $Y_1 = P^{-1}Y = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$. De

plus, on a

$$B(t) = \frac{1}{e^t - 1} \begin{pmatrix} 2 \\ -3 \end{pmatrix} = \frac{1}{e^t - 1} f_{-1}, \tag{43}$$

donc
$$P^{-1}B(t) = \frac{1}{e^{t}-1} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = B_1(t).$$

Ainsi, le système différentiel équivaut sur I à pour tout $t \in I$, $Y_1'(t) = A_1Y_1(t) + B_1(t)$, d'où pour tout $t \in I$,

$$\begin{cases} x_1'(t) = 0, \\ y_1'(t) = -y_1(t) + \frac{1}{e^t - 1}. \end{cases}$$
 (44)

Ainsi, il existe $\alpha \in \mathbb{R}$ tel que pour tout $t \in I$, $x_1(t) = \alpha$. D'autre part, on trouve $y_1(t) = e^t (\ln(|e^t - 1|) + \gamma)$, avec $\gamma \in \mathbb{R}$.

Pour déterminer x et y, on calcule ensuite $Y = PY_1$.

Solution 5.

1. On résout sur $I=\mathbb{R}_+^*$ ou] - 1, 0[. Sur I, l'équation différentielle équivaut à

$$f'(x) + \frac{\lambda}{x}f(x) = \frac{1}{x(x+1)},$$
 (45)

d'équation homogène associée $y' = -\frac{\lambda}{x}y$. Les solutions de l'équation homogène sont $x \mapsto \beta e^{-\lambda \ln|x|} = \frac{\beta}{|x|^{\lambda}}$ où $\beta \in \mathbb{R}$. Pour une solution générale de la forme $y(x) = \frac{\beta(x)}{|x|^{\lambda}}$ avec $x \mapsto \beta(x)$ de classe \mathcal{C}^1 sur I, on a $\frac{\beta'(x)}{|x|^{\lambda}} = \frac{1}{x(x+1)} = \frac{1}{x} - \frac{1}{x+1}$. Commencent les disjonctions de cas où l'on note $f(x) = \frac{\beta(x)}{|x|^{\lambda}}$ une solution.

- Si $I = \mathbb{R}_+^*$, on a $\beta'(x) = x^{\lambda-1} \frac{x^{\lambda}}{x+1}$.
 - Si $\lambda \neq 0$, il existe $\beta \in \mathbb{R}$ tel que $\beta(x) = \frac{x^{\lambda}}{\lambda} \int_{1}^{x} \frac{u^{\lambda}}{u+1} du + \beta$ et $f(x) = \frac{1}{\lambda} \frac{1}{x^{\lambda}} \int_{1}^{x} \frac{u^{\lambda}}{1+u} du + \frac{\beta}{x^{\lambda}} \lim_{x \to 0} \frac{\beta}{x^{\lambda}}$ est finie si et seulement si $\lambda > 0$. Comme $\frac{u^{\lambda}}{u+1} \underset{u \to 0}{\sim} u^{\lambda}$ donc $\int_{1}^{0} \frac{u^{\lambda}}{u+1} du$ converge si et seulement si $\lambda > -1$ (critère de Riemann).
 - $\underline{\text{Si }\lambda \in]-1,0[}, \frac{1}{x^{\lambda}} \xrightarrow[x \to 0]{} 0 \text{ et } \int_{1}^{x} \frac{u^{\lambda}}{1+u} \mathrm{d}u \xrightarrow[x \to 0]{} \int_{1}^{0} \frac{u^{\lambda}}{1+u} \mathrm{d}u \text{ donc } f(x) \xrightarrow[x \to 0]{} \frac{1}{\lambda} \text{ qui est une limite finie (sans condition sur }\beta).$
 - Si $\lambda > 0$, notons que si f a une limite finie en 0, il faut que

$$\frac{1}{x^{\lambda}} \left(\int_{1}^{x} \frac{u^{\lambda}}{1+u} du - \beta \right) \xrightarrow[x \to 0]{} \text{ quelque chose de fini.}$$
 (46)

Or $\frac{1}{x^{\lambda}} \xrightarrow[x \to 0]{} +\infty$, donc il faut

$$\left(\int_{1}^{x} \frac{u^{\lambda}}{1+u} du - \beta\right) \xrightarrow[x \to 0]{} 0, \tag{47}$$

d'où

$$\beta = -\int_0^1 \frac{u^\lambda}{1+u} \mathrm{d}u. \tag{48}$$

Réciproquement, si $\beta = -\int_0^1 \frac{u^{\lambda}}{1+u} du$, on a

$$f(x) = \frac{1}{\lambda} - \frac{1}{x^{\lambda}} \left(\int_{1}^{x} \frac{u^{\lambda}}{1+u} du + \int_{0}^{1} \frac{u^{\lambda}}{1+u} du \right), \tag{49}$$

$$= \frac{1}{\lambda} - \frac{1}{x^{\lambda}} \int_0^x \frac{u^{\lambda}}{1+u} du, \tag{50}$$

$$= \frac{1}{\lambda} - \int_0^x \frac{\left(\frac{u}{x}\right)^{\lambda}}{1+u} du, \tag{51}$$

$$= \frac{1}{\lambda} - \int_0^1 \frac{v^{\lambda}}{1 + vx} x \mathrm{d}v. \tag{52}$$

Or

$$\int_0^1 \frac{v^{\lambda}}{1 + vx} x dv = x \int_0^1 \frac{v^{\lambda}}{1 + vx} dv, \tag{53}$$

et pour tout $(x, v) \in I \times [0, 1], \left| \frac{v^{\lambda}}{1 + vx} \right| \leq v^{\lambda}$, intégrable sur [0, 1]. D'aès le théorème de convergence dominée, on a donc

$$\int_0^1 \frac{v^{\lambda}}{1 + vx} dv \xrightarrow[x \to 0]{} \int_0^1 v^{\lambda} dv = \frac{1}{\lambda + 1}, \tag{54}$$

d'où $x \int_0^1 \frac{v^{\lambda}}{1+v} dv \xrightarrow[x \to 0]{} 0$ et $f(x) \xrightarrow[x \to 0]{} \frac{1}{\lambda}$.

Donc f a une limite finie en 0 si et seulement si $\beta = -\int_0^1 \frac{u^{\lambda}}{1+u} du$.

— <u>Si $\lambda < -1$ </u>, on a $\frac{\beta}{x^{\lambda}} \xrightarrow[x \to 0]{} 0$ et $\frac{u^{\lambda}}{1+u} \underset{u \to 0}{\sim} u^{\lambda}$. Par intégration des relations de comparaisons (applicable car les intégrandes sont positives), on a

$$\int_{x}^{1} \frac{u^{\lambda}}{1+u} du \underset{x \to 0}{\sim} \int_{x}^{1} u^{\lambda} du = \frac{1}{\lambda+1} \left(1 - x^{\lambda+1}\right) \underset{x \to 0}{\sim} \frac{x^{\lambda+1}}{\lambda+1},\tag{55}$$

et

$$-\frac{1}{x^{\lambda}} \int_{x}^{1} \frac{u^{\lambda}}{1+u} du \underset{x \to 0}{\sim} \frac{1}{1+\lambda} \frac{x^{\lambda+1}}{x^{\lambda}} \xrightarrow[x \to 0]{} 0, \tag{56}$$

d'où $f(x) \xrightarrow[x\to 0]{} \frac{1}{\lambda}$.

— Si $\lambda = -1$, on a

$$f(x) = -1 - x \int_{1}^{x} \frac{\mathrm{d}u}{1+u} + \beta x,\tag{57}$$

$$= -1 - x \ln(x+1) + \ln(2) + \beta x, \tag{58}$$

$$\xrightarrow[r \to 0]{} \ln(2) - 1. \tag{59}$$

— Si $\lambda = 0$, on a

$$\beta'(x) = \frac{1}{x} - \frac{1}{x+1} \tag{60}$$

et $\beta(x) = \ln\left(\frac{x}{1+x}\right) + \beta$. On a alors $f(x) = \frac{\beta(x)}{x^0} = \ln\left(\frac{x}{1+x}\right) + \beta \xrightarrow[x \to 0]{} -\infty$, sans condition sur β .

— Si I =]-1,0[, on vérifie que c'est la même chose.

Si $f(x) = \sum_{n \in \mathbb{N}} a_n x^n$ est solution avec un rayon de convergence R > 0, on a $xf'(x) = \sum_{n \in \mathbb{N}} n a_n x^n$. Ainsi, pour tout $x \in]-R, R[$, on a

$$xf'(x) + \lambda f(x) = \sum_{n \in \mathbb{N}} (n+\lambda)a_n x^n = \frac{1}{1+x} = \sum_{n \in \mathbb{N}} (-1)^n x^n.$$
 (61)

Par unicité du développement en série entière, on a pour tout $n \in \mathbb{N}$,

$$a_n = \frac{(-1)^n}{\lambda + n},\tag{62}$$

donc si $\lambda \notin \mathbb{Z}_{-}$, on a une solution développable en série entière autour de 0.

Réciproquement, avec cette définition des (a_n) et de f, on a un rayon de convergence R = 1 (par la règle de d'Alembert) et f est solution de l'équation différentielle sur]-1,1[.

2. On choisit $\lambda = \frac{1}{3} > 0$. Les $(a_n)_{n \in \mathbb{N}}$ sont donc définis. Soit

$$S(x) = \sum_{n \in \mathbb{N}} a_n x^n = \sum_{n \in \mathbb{N}} \frac{(-1)^n x^n}{\frac{1}{3} + n}.$$
 (63)

S est solution de l'équation différentielle sur] -1,1[, et on connaît sa forme d'après l'étude menée à la première question. Comme $\lambda > 0$, S a une limite finie en 0 donc S est entièrement déterminée (car on n'a pas le choix pour la constante β) :

$$S(x) = 3 + \frac{1}{x^{\frac{1}{3}}} \int_0^x \frac{u^{\frac{1}{3}}}{1+u} du.$$
 (64)

On pose $v = u^{\frac{1}{3}}$, d'où

$$\int_0^x \frac{u^{\frac{1}{3}}}{1+u} du = 3 \int_0^{x^3} \frac{3v^3 dv}{v^3 + 1} = 9 \left(\int_0^{x^3} dv - \int_0^{x^3} \frac{dv}{v^3 + 1} \right).$$
 (65)

On décompose ensuite $\frac{1}{X^3+1}$ en éléments simples pour calculer l'intégrale.

Solution 6.

1. Pour le sens indirect, on a $\exp(tA) = \sum_{k \in \mathbb{N}} \frac{t^k A^k}{k!}$. Pour $i \neq j$, $(\exp(tA))_{i,j}$ est une série entière en t et on a

$$(\exp(tA))_{i,j} = 0 + ta_{i,j} + t^2(A^2)_{i,j} + \dots \sim ta_{i,j}.$$
 (66)

Par hypothèse, $(\exp(tA))_{i,j} \ge 0$ donc pour $t \to 0^+$, on a $a_{i,j} \ge 0$.

Réciproquement, on considère $\beta = \max_{1 \leq i \leq n} (-a_{i,i})$. Posons $A' = A + \beta I_n \in \mathcal{M}_n(\mathbb{R}^+)$. Pour tout $t \geq 0$, $tA' \in \mathcal{M}_n(\mathbb{R}^+)$ donc $\exp(tA') \in \mathcal{M}_n(\mathbb{R}_+)$. Comme A et I_n commutent, on a

$$\exp(tA') = \exp(tA + \beta t I_n), \tag{67}$$

$$= \exp(tA) \exp(t\beta I_n), \tag{68}$$

$$= \exp(tA) \times e^{t\beta}, \tag{69}$$

donc
$$\exp(tA) = \underbrace{e^{-tB}}_{\in \mathbb{R}_+} \exp(tA') \in \mathcal{M}_n(\mathbb{R}_+).$$

2. Le théorème de Cauchy-Lipschitz s'applique. Posons $\varphi \colon t \mapsto \exp(-tA)x(t)$, définie et dérivable sur \mathbb{R}_+ . x est solution du problème de Cauchy

$$\iff \begin{cases} x'(t) = Ax(t) + f(t), & \forall t \in \mathbb{R}_+, \\ x(0) = 0, \end{cases}$$
(70)

$$\iff \begin{cases} \exp(-tA)(x'(t) - Ax(t)) = \exp(-tA)f(t), & \forall t \in \mathbb{R}_+, \\ \varphi(0) = 0, \end{cases}$$
(71)

$$\iff \varphi(t) = x_0 + \int_0^t \exp(-uA)f(u)du, \forall t \in \mathbb{R}_+,$$
 (72)

$$\iff x(t) = \exp(tA) \left(x_0 + \int_0^t \exp(-uA) f(u) du \right), \forall t \in \mathbb{R}_+,$$
 (73)

$$\iff x(t) = \exp(tA) + \exp(tA) \int_0^t \exp(-uA) f(u) du, \forall t \in \mathbb{R}_+.$$
 (74)

Or $\exp(tA)x_0 \in (\mathbb{R}_+)^n$ d'après la première question, et

$$\exp(tA) \int_0^t \exp(-uA) f(u) du = \int_0^t \exp((t-u)A) f(u) du.$$
 (75)

Pour tout $u \in [0, t]$, (t - u) > 0 donc $\exp((t - u)A) \in \mathcal{M}_n(\mathbb{R}_+)$ et ainsi, $c(t) \in (\mathbb{R}_+)^n$.

Solution 7. Le sens indirect est normalement du cours, il suffit de considérer l'isomorphisme

$$\Theta_{t_0}: S_{(H),]a,b[} \to \mathbb{R}^n$$

$$f \mapsto (f(x), f'(x), \dots, f^{(n-1)}(x))$$

$$(76)$$

où $S_{(H),a;b[}$ est l'ensemble des solutions de l'équation homogène sur]a,b[avec une condition particulière en t_0 .

Réciproquement, si
$$W$$
 ne s'annule pas, notons $L_i(x) = \begin{pmatrix} f_1^{(i)(x)} \\ f_2^{(i)}(x) \\ \vdots \\ f_n^{(i)}(x) \end{pmatrix}$ (ce sont les lignes de W mises

en colonne). On a

$$W(x) = \det(L_0(x), L_1(x), \dots, L_{n-1}(x)), \tag{77}$$

et comme W ne s'annule pas, pour tout $x \in]a, b[, (L_0(x), \ldots, L_{n-1}(x))$ est une base de \mathbb{R}^n . Ainsi, il existe $a_0(x), \ldots, a_{n-1}(x)) \in \mathbb{R}^n$ telle que

$$\begin{pmatrix} f_1^{(n)}(x) \\ \vdots \\ f_n^{(n)}(x) \end{pmatrix} = \sum_{i=1}^n a_i(x) L_i(x), \tag{78}$$

$$= \left(L_0(x), L_1(x), \dots, L_{n-1}(x)\right) \begin{pmatrix} a_0(x) \\ \vdots \\ a_{n-1}(x) \end{pmatrix}, \tag{79}$$

$$= \underbrace{\begin{pmatrix} f_{1}(x) & f'_{1}(x)_{R(x)} & \dots & f_{1}^{(x-1)}(x) \\ \vdots & \vdots & & \vdots \\ f_{n-1}(x) & f'_{n-1}(x) & \dots & f_{n-1}^{(n-1)}(x) \end{pmatrix}}_{R(x)} \begin{pmatrix} a_{0}(x) \\ \vdots \\ a_{n-1}(x) \end{pmatrix}.$$
(80)

Les f_i étant \mathcal{C}^n , $x \mapsto R(x)$ est continue et $A \mapsto A^{-1}$ est \mathcal{C}^0 sur $\mathcal{M}_n(\mathbb{R})$ donc $x \mapsto R(x)^{-1}$ est continue sur]a,b[donc $x \mapsto R(x)^{-1}$ $\begin{pmatrix} f_1^{(n)}(x) \\ \vdots \\ f_n^{(n)}(x) \end{pmatrix} = \begin{pmatrix} a_0(x) \\ \vdots \\ a_{n-1}(x) \end{pmatrix}$ est continue sur]a,b[. En d'autres termes, les $(a_i)_{i \in \llbracket 0,n-1 \rrbracket}$ sont continues sur]a,b[.

Solution 8. $|\sin|$ est continue sur \mathbb{R} , donc le théorème de Cauchy-Lipschitz sur \mathbb{R} . L'équation homogène a (\cos, \sin) pour base de solutions. On cherche des solutions sous la forme $y(x) = a(x)\cos(x) + b(x)\sin(x)$, avec $a'(x)\cos(x) + b'(x)\sin(x) = 0$.

y est solution sur \mathbb{R} si et seulement si

$$a'(x)\cos(x) + b'(x)\sin(x) = 0, -a'(x)\sin(x) + b'(x)\cos(x) = |\sin(x)|.$$
(81)

$$\cos(x) \times \text{première ligne} - \sin(x) \times \text{deuxième ligne}$$

 $\sin(x) \times \text{première ligne} + \cos(x) \times \text{deuxième ligne}$
(82)

donne

$$a'(x) = -\sin(x)|\sin(x)| = \varepsilon_x \sin^2(x),$$

$$b'(x) = \cos(x)|\sin(x)| = -\varepsilon_x \cos(x)\sin(x),$$
(83)

avec $\varepsilon_x = 1$ si $x \in [k\pi, (k+1)\pi]$ pour k impair, et ε_x si k est pair.

Sur $I_k = [k\pi, (k+1)\pi]$, on a $a(x) = \varepsilon_k \times \frac{1}{2} \left(x - \frac{\sin(2x)}{2}\right) + a_k$ et $b(x) = \varepsilon_k \times \frac{1}{2} \left(-\frac{\cos(2x)}{2}\right) + b_k$. On a

$$y(x) = \frac{\varepsilon_k}{2} \left(\left(x - \frac{\sin(2x)}{2} \right) \cos(x) - \frac{\cos(2x)}{2} \sin(x) \right) + a_k \cos(x) + b_k \sin(x). \tag{84}$$

Par continuité, $\lim_{x\to k\pi^-} y(x) = \frac{\varepsilon_k}{2} \left(k\pi(-1)^k \right) + a_k(-1)^k$ et $\lim_{x\to k\pi^+} y(x) = -\frac{\varepsilon_k}{2} (k\pi(-1)^k) + a_{k+1}(-1)^k$ (on a $\varepsilon_{k+1} = -\varepsilon_k$). Donc $a_{k+1} = a_k + \varepsilon_k k\pi$. De même pour les b_k , on étudie la continuité de la dérivée.

On détermine ainsi a_k et b_k en fonction de a_0 et b_0 , par exemple pour tout $k \in \mathbb{Z}$, $a_k = a_0 + \sum_{j=0}^{k-1} \varepsilon_j(j\pi)$.

Remarque 3. Autre méthode : $|\sin|$ est C^1 -PM continue 2π -périodique paire. On admet que pour tout $x \in \mathbb{R}$,

$$|\sin(x)| = \sum_{n=0}^{+\infty} \alpha_n \cos(nx), \tag{85}$$

avec

$$\alpha_n = \frac{2}{\pi} \int_0^{\pi} \sin(t) \cos(nt) dt.$$
 (86)

On résout ensuite $y'' + y = \cos(nx)$ pour tout $n \in \mathbb{N}$, et on somme en vérifiant que la solution obtenue est de classe C^2 .

Solution 9. On pose $\varphi(t) = X(t)^\mathsf{T} X(t)$. En dérivant, on a

$$\varphi'(t) = X(t)^{\mathsf{T}} X(t) + X(t)^{\mathsf{T}} X'(t) = -X^{\mathsf{T}} A(t) X(t) + X^{\mathsf{T}} A(t) X(t) = 0.$$
 (87)

Comme $\varphi(0) = I_n$, on a pour tout $t \in \mathbb{R}$, $\varphi(t) = I_n$ donc $X(t) \in O_n(\mathbb{R})$.

Remarque 4. Soit $Y: \mathbb{R} \to \mathcal{M}_{n,1}(\mathbb{R})$ solution de Y'(t) = A(t)Y(t) avec $Y(0) = Y_0$, de même $Y(t)^{\mathsf{T}}Y(t) = \|Y(t)\|^2 = \|Y_0\|^2$ donc Y(t) est tracé sur une sphère.

Remarque 5. Réciproquement, soit $X : \mathbb{R} \to O_n(\mathbb{R})$ de classe \mathcal{C}^1 . En dérivant $X(t)^\mathsf{T} X(t) = I_n$, on $a \ X'(t) X(t)^\mathsf{T} + X(t) X'(t)^\mathsf{T} = 0$ et $X(t)^\mathsf{T} = X(t)^{-1}$, donc

$$X'(t)X(t)^{-1} = -X(t)X'(t)^{\mathsf{T}} = -(X'(t)X(t)^{-1})^{\mathsf{T}},$$
(88)

 $donc \ X'(t) = A(t)X(t) \ avec \ A(t) \ antisym\'etrique.$

Solution 10. Sur $I = \mathbb{R}_+^*$ ou \mathbb{R}_-^* , le théorème de Cauchy-Lipschitz s'applique. Si $y(x) = \sum_{n=0}^{+\infty} a_n x^n$ est solution sur]-R, R[avec R > 0, on a $y'(x) = \sum_{n=0}^{+\infty} (n+1)a_{n+1}x^n$ et $y''(x) = \sum_{n=1}^{+\infty} n(n+1)a_{n+1}x^n$. En reportant, et par unicité du développement en série entière, on a

$$2(n+1)na_{n+1} + (n+1)a_{n+1} - a_n = 0. (89)$$

Donc pour tout $n \in \mathbb{N}$, $a_{n+1} = \frac{a_n}{(n+1)(2n+1)}$ donc

$$a_n = \frac{2^n}{(2n)!} a_0. (90)$$

Réciproquement, définissons ainsi les a_n , avec par exemple $a_0 = 1$. On a $R = +\infty$ (règle de d'Alembert). En remontant les calculs, $y_1(x) = \sum_{n=0}^{+\infty} \frac{2^n x^n}{(2n)!}$ est solution sur I.

Si $I = \mathbb{R}_+^*$, on a $y_1(x) = \cosh(\sqrt{2x})$. On vérifie alors que $y_2(x) = \sinh(\sqrt{2x})$ est solution.

Si $I = \mathbb{R}_{-}^*$, on a $y_1(x) = \cos(\sqrt{-2x})$. On vérifie que $\sin(\sqrt{-2x})$ est solution.

Les solutions maximales sont donc :

- sur \mathbb{R}_+^* , $\lambda \cosh(\sqrt{2x}) + \mu \sinh(\sqrt{2x})$ avec $\mu \neq 0$,
- sur \mathbb{R}_{-}^* , $\alpha \cos(\sqrt{-2x}) + \beta \sin(\sqrt{-2x})$ avec $\beta \neq 0$,
- sur \mathbb{R} , $\lambda \cosh(\sqrt{2x})$ sur \mathbb{R}_+ et $\lambda \cos(\sqrt{-2x})$ sur \mathbb{R}_- d'où $\lambda \sum_{n=0}^{+\infty} \frac{x^n 2^n}{(2n)!}$, de classe \mathcal{C}^{∞} car développable en série entière.

Solution 11. Le théorème de Cauchy-Lipschitz s'applique sur \mathbb{R} . (sinh, cosh) est nue base de l'ensemble solutions de l'équation homogène. Soit $\varphi(x) = \lambda(x) \cosh(x) + \mu(x) \sinh(x)$ avec la condition

 $\lambda' \cosh + \mu' \sinh = 0$. φ est solution si et seulement si

$$\begin{cases} \lambda'(x)\cosh(x) + \mu'(x)\sinh(x) &= 0, \\ \lambda'(x)\sinh(x) + \mu'(x)\cosh(x) &= \frac{1}{\cosh(x)}. \end{cases}$$
(91)

 $\cosh(x) \times \text{première ligne} - \sinh(x) \times \text{deuxième ligne et } \sinh(x) \times \text{première ligne} - \cosh(x) \times \text{deuxième ligne donne}$

$$\begin{cases} \lambda'(x) = -\tanh(x), \\ \mu'(x) = 1. \end{cases}$$
 (92)

Donc $\lambda(x) = -\ln(\cosh(x)) + \lambda$ et $\mu(x) = x + \mu$.

On a

$$\varphi(x) = \cosh(x)(\lambda - \ln(\cosh(x))) + \sinh(x)(x + \mu),$$

$$\varphi'(x) = \sinh(x)(\lambda - \ln(\cosh(x))) + \cosh(x)(x + \mu).$$
(93)

Et $\varphi(0) = 0$ si et seulement si $\lambda = 0$ et $\varphi'(0) = 0$ si et seulement si $\mu = 0$.

Solution 12. D'après la décomposition de Dunford, il existe D diagonalisable et N nilpotente qui commutent telles que A = D + N, avec $\chi_D = \chi_A$. Alors

$$\exp(tA) = \underbrace{\exp(tD)}_{P^{-1}\operatorname{diag}(e^t\lambda_i)_{1\leqslant i\leqslant P}} \underbrace{\exp(tN)}_{(I_n+tN+\dots+\frac{t^{n-1}N^{n-1}}{(n-1)!}}) \xrightarrow{t\to+\infty} 0.$$
(94)

Solution 13. (\sin, \cos) est une base de solution de l'équation homogène sur \mathbb{R} . Soit

$$\varphi(t) = \lambda(t)\sin(\omega t) + \mu(t)\cos(\omega t),\tag{95}$$

avec $\lambda'(t)\sin(\omega t) + \mu'(t)\cos(\omega t) = 0$. φ est solution si et seulement si $\varphi'' + \omega^2 \varphi = f$ et

$$\lambda'(t)\cos(\omega t) - \mu'(t)\sin(\omega t) = \frac{f(t)}{\omega}.$$
(96)

On fait $\sin(\omega t)$ fois la première ligne $+\cos(\omega t)$ fois la deuxième ligne donne

$$\lambda'(t) = \frac{f(t)}{\omega} \cos(\omega t). \tag{97}$$

 $\cos(\omega t)$ fois la première ligne - $\sin(\omega t)$ fois la deuxième ligne donne

$$\mu'(t) = -\frac{f(t)}{\omega}\sin(\omega t). \tag{98}$$

Ainsi,

$$\varphi(t) = \int_0^t \frac{f(u)}{\omega} \sin(\omega(t - u)) du + \lambda \sin(\omega t) + \mu \cos(\omega t).$$
 (99)

 φ est T-périodique si et seulement si pour tout $t \in \mathbb{R}$, $\varphi(t+T) = \varphi_1(t) = \varphi(t)$. Or $\varphi_1(t)$ est solution car f est T-périodique. On a $\varphi_1 = \varphi$ si et seulement si $\varphi_1(0) = \varphi(0)$ et $\varphi_1(T) = \varphi(T)$ d'après le théorème de Cauchy-Lipschitz, si et seulement si $\varphi(T) = \varphi(0)$ et $\varphi'(T) = \varphi'(0)$.

Ainsi, on doit avoir

$$\int_0^T \frac{f(u)}{\omega} \sin(\omega(T-u)) du + \lambda \sin(\omega T) + \mu \cos(\omega T) = \mu.$$
 (100)

Comme $\varphi'(t) = \lambda(t)\omega\cos(\omega t) - \mu(t)\omega\sin(\omega t)$, donc

$$\varphi'(t) = \int_0^t f(u)\cos(\omega(t-u))du + \lambda\omega\cos(\omega T) - \mu\omega\sin(\omega t).$$
 (101)

Donc on doit avoir

$$\int_{0}^{T} f(u)\cos(\omega(T-u))du + \lambda\omega\cos(\omega T) - \mu\omega\sin(\omega T) = \lambda\omega.$$
 (102)

C'est un système de deux équations à deux inconnues et une unique solution T-périodique si et seulement si le déterminant

$$\begin{vmatrix} \sin(\omega T) & \cos(\omega T) - 1 \\ \omega(\cos(\omega T) - 1) & -\omega\sin(\omega t) \end{vmatrix} = \omega \left(-\sin^2(\omega T) - (\cos(\omega T) - 1)^2 \right) = \omega \left(-2 + 2\cos(\omega T) \right), \quad (103)$$

est non nul si et seulement si $\cos(\omega T) \neq 1$.

Solution 14. Soit $I = \mathbb{R}_+^*$ ou \mathbb{R}_-^* . Le théorème de Cauchy-Lipschitz s'applique sur I et la dimension de l'espace des solutions de l'équation homogène est 2. Notons que si une solution est polynomiale de degré n, alors le coefficient en x^{n+1} de $x^2y''(x) - 2x(1+x)y'(x) + 2(1+x)y(x)$ est $0 = -2na_n + 2a_n$. Nécessairement n = 1 et y_1 est affine. On vérifie que $y_1(x) = x$ est solution. On cherche ensuite une solution de la forme $y_2(x) = C(x)y_1(x) = C(x)x$ avec C non constante. En reportant, on trouve

$$C''(x) + \left(2\left(1 + \frac{2}{x}\right)\right)C'(x) = 0.$$
 (104)

On trouve par exemple $C(x) = \int_{\varepsilon}^{x} \frac{e^{-2u}}{u^{4}} du$. On choisit $\varepsilon = 1$ si $I = \mathbb{R}_{+}^{*}$ et $\varepsilon = -1$ si $I = \mathbb{R}_{-}^{*}$.

$$\int_{\varepsilon}^{x} \frac{e^{-2u}}{u^4} du \underset{x \to 0}{\sim} \int_{\varepsilon}^{x} \frac{du}{u^4} \underset{x \to 0}{\sim} \frac{-1}{3x^3}.$$
 (105)

Donc y_2 n'a pas de limite en 0. λy_1 sont les seules solutions maximales sur \mathbb{R} .

Solution 15. On pose g(t) = f'(t) + f(t). L'équation homogène a pour solution $y(t) = \lambda \exp(-t)$ d'où $f(t) = \lambda(t) \exp(-t)$ avec

$$(f'+f)(t) = g(t) = \lambda'(t) \exp(-t).$$
 (106)

On a $\lambda(t) = \int_0^t \exp(t)g(u)du + \lambda$. Si $F(t) = \int_0^t g(u)\exp(u)du$, soit $\varepsilon > 0$. Il existe A > 0 tel que pour tout t > A, $|g(t)| \le \varepsilon$. Alors

$$F(t) = \underbrace{e^{-t} \int_0^A g(u)e^u du}_{t \to +\infty} + \int_A^t g(u)e^{u-t} du, \qquad (107)$$

et le second terme est majoré en valeur absolue par $\frac{\varepsilon}{2} \int_{A-t}^0 \mathrm{e}^u \mathrm{d}u = \frac{\varepsilon}{2} \left(1 - \mathrm{e}^{A-t}\right) \leqslant \frac{\varepsilon}{2}$. D'où le résultat.

Contre exemple pour la deuxième question : e^t .

Solution 16. Soit

$$\varphi: \mathcal{M}_n(\mathbb{K}) \to \mathcal{M}_n(\mathbb{K})$$

$$M \mapsto MB - BM$$
(108)

On a $A'(t) = \varphi(A(t))$, c'est une équation différentielle homogène linéaire. φ est à coefficients constants, on sait alors que

$$A(t) = \exp(t\varphi)(A(0)). \tag{109}$$

On a $\exp(t\varphi) = \sum_{k=0}^{+\infty} \frac{t^k}{k!} \varphi^k$. Soit

$$\varphi_1: \mathcal{M}_n(\mathbb{K}) \to \mathcal{M}_n(\mathbb{K})$$

$$M \mapsto MB$$
(110)

et

$$\varphi_2: \mathcal{M}_n(\mathbb{K}) \to \mathcal{M}_n(\mathbb{K})$$

$$M \mapsto -BM$$
(111)

On a $\varphi = \varphi_1 + \varphi_2$, et

$$(\varphi_1 \circ \varphi_2)(M) = -BMB = (\varphi_2 \circ \varphi_1)(M). \tag{112}$$

Ainsi, $\exp(t\varphi) = \exp(\varphi_1) \exp(t\varphi_2)$. On a

$$\varphi_1^k : \mathcal{M}_n(\mathbb{K}) \to \mathcal{M}_n(\mathbb{K})$$

$$M \mapsto MB^k$$
(113)

et

$$\varphi_1^k : \mathcal{M}_n(\mathbb{K}) \to \mathcal{M}_n(\mathbb{K})$$

$$M \mapsto (-1)^k B^k M$$
(114)

On Si $A(0) = A_0$, on a

$$\exp(t\varphi_1)\left(\exp(t\varphi_2)(A(0))\right) = \exp(t\varphi_1)\exp(-tB)(A_0). \tag{115}$$

On a

$$\exp(t\varphi_1)(M) = M \exp(tB). \tag{116}$$

Ainsi,

$$A(t) = \exp(-tB)A_0 \exp(tB), \tag{117}$$

donc A(t) est semblable à A_0 .

Remarque 6. Si A_0 et B commutent alors $A(t) = A_0$ donc pour tout $t \in \mathbb{R}$, A(t) et B commutent.

Remarque 7. On eut aussi résoudre en écrivant

$$\underbrace{e^{tB}(A'(t) + BA(t))}_{C'(t)} = \underbrace{e^{tB}A(t)}_{C(t)}B. \tag{118}$$

 $Donc\ C'(t) = C(t)B\ puis\ C'(t)\exp(-tB) - C(t)B\exp(-tB) = 0 = D'(t)\ avec\ D(t) = \exp(-tB).$ Ainsi, D(t) = D(0), d'où $C(t) = C(0)\exp(tB)$ puis

$$A(t) = \exp(-tB)A(0)\exp(tB). \tag{119}$$

Remarque 8. Si on a maintenant A'(t) = A(t)B(t) - B(t)A(t), soit pour $k \in \mathbb{N}$, $\varphi_k(t) = \text{Tr}(A^k(t))$. Alors

$$\varphi_k'(t) = \text{Tr}(-\sum_{i=0}^{k-1} A^i(t)A'(t)A^{k-1-i}(t)), \tag{120}$$

$$= \sum_{i=0}^{k-1} \operatorname{Tr}(A'(t)A^{k-1}(t)), \tag{121}$$

$$= k \operatorname{Tr}(A'(t)A^{k-1}(t)), \tag{122}$$

$$= k \left(\operatorname{Tr}(A(t)B(t)A^{k-1}(t)) - \operatorname{Tr}(B(t)A^{k}(t)) \right). \tag{123}$$

Donc $\varphi'_k(t) = 0$, donc $t \mapsto \text{Tr}(A^k(t))$ est constant.

Or les coefficients de χ_A sont des polynômes en $(\operatorname{Tr}(A^k)_{1\leqslant k\leqslant n-1})$, donc $\chi_{A(t)}$ est constant.

Si $\chi_{A_0} = \prod_{k=1}^n (X - \lambda_k)$ est scindé à racines simples, alors pour tout $t \in \mathbb{R}$, A(t) est semblable à diag(λ_i) donc à A_0 .

Solution 17.

1. On a

$$X_3'(t) = -\exp(-t(A+B))(A+B)\exp(tB)\exp(tA) + \exp(-t(A+B))(B\exp(tB)\exp(tA) + \exp(tB)A\exp(tA)),$$

$$= \exp(-t(A+B))(-(A+B) + B + \exp(tB)A\exp(-tB))\exp(tB)\exp(tA).$$
(125)

Donc $\varphi(t) = -A + \exp(tB)A \exp(-tB)$ est de classe \mathcal{C}^1 . De plus, on a

$$\varphi'(t) = \exp(tB)BA\exp(-tB) - \exp(tB)AB\exp(-tB), \tag{126}$$

$$= \exp(tB)[B, A] \exp(-tB). \tag{127}$$

(125)

2. [B, [A, B]] = 0 donc B commute avec [B, A]. Ainsi, $\varphi'(t) = [B, A]$ et

$$\varphi(t) = t(BA - AB) + \varphi(0) = t(AB - BA). \tag{128}$$

Puis on a (A et B commutent avec [A, B])

$$\chi_3'(t) = t \exp(-t(A+B))[B, A] \exp(tB) \exp(tA), \tag{129}$$

$$=t[B,A]\chi_3(t). \tag{130}$$

Ainsi,

$$\exp\left(-\frac{t^2}{2}[B,A]\right)(X_3'(t) - t[B,A]\chi_3(t)) = C'(t) = 0,$$
(131)

avec $C(t) = \exp\left(-\frac{t^2}{2}[B, A]\right) \chi_3(t)$, donc

$$\chi_3(t) = \exp\left(\frac{t^2}{2}[B, A]\right) \chi_3(0) = \exp\left(\frac{t^2}{2}[B, A]\right).$$
(132)

Ainsi,

$$\exp(t(A+B)) = \exp(tB)\exp(tA)\exp\left(-\frac{t^2}{2}[B,A]\right),\tag{133}$$

et pour t = 1,

$$\exp(A+B) = \exp(B)\exp(A)\exp\left(-\frac{1}{2}[B,A]\right). \tag{134}$$

Solution 18.

- 1. Si $X = \emptyset$, c'est bon. Sinon, soit $x_0 \in X$. Si $y'(x_0) = 0$, y est solution de l'équation différentielle avec $y(x_0) = y'(x_0) = 0$ et 0 est aussi solution. Par unicité venant du théorème de Cauchy-Lipschitz, on a y = 0 ce qui n'est pas. Donc $y'(x_0) \neq 0$ et par continuité de y' y' > 0 au voisinage de x_0 donc y est localement injective.
- 2. Supposons $|X| = +\infty$. Soit $(x_n)_{n \in \mathbb{N}} \in X^{\mathbb{N}}$ injective. Comme $X_n \subset I$, $x_n \in I$ pour tout $n \in \mathbb{N}$, donc il existe $\sigma \colon \mathbb{N} \to \mathbb{N}$ strictement croissante telle que $(x_{\sigma(n)})_{n \in \mathbb{N}}$ converge vers $x \in I$. Or $y(x_{\sigma(n)}) = 0$ pour tout $n \in \mathbb{N}$ donc par continuité de y, on a y(x) = 0. Ainsi, pour tout a > 0, il existe $x_n \in X$ tel que $x_n \in]x a, x + a[$, impossible d'après la première question.
- 3. Stratégie : on va montrer que X est dénombrable, qu'il existe $x_0 \in X$ tel que pour tout $x \in X$, $x_0 \leq x$, et ainsi de suite par récurrence sur $X \setminus \{x_0\}$.

Pour tout B < 0, soit \widetilde{I})[a, B]. On a $\left| X \cap \widetilde{I} \right| < \infty$. On a

$$I = \bigcup_{n \in \mathbb{N}} \underbrace{[B_n, B_{n+1}]}_{I_n},\tag{135}$$

avec $B_0 = a$ et (B_n) strictement croissante, $B_n \xrightarrow[n \to +\infty]{} B$. Alors

$$X = \bigcup_{n \in \mathbb{N}} \underbrace{I_n \cap X}_{\text{fini}}.$$
 (136)

Donc X est dénombrable. On a $X_n = I_n \cap X$. Chaque X_n s'ordonne en $x_1^{(n)} < \cdots < x_{r_n}^{(n)}$.

Solution 19.

1. Le Wronskien $W_{y_1,y_2}(t) = (y_1y_2' - y_1'y_2)(t)$ garde un signe constant. On a $W_{y_1,y_2}(a) = -y_1'(a)y_2(a)$ et $W_{y_1,y_2}(0) = -y_1'(b)y_2(b)$. $y_1'(a)$ et $y_1'(b)$ sont différents de 0 par unicité du théorème de Cauchy-Lipschitz (sinon $y_1 = 0$).

Si $y_1 > 0$ sur]a, b[: si $y'_1(a) < 0$, par continuité de y'_1, y'_1 reste négatif à droite de a donc y_1 y est strictement décroissante donc négative : impossible. Donc $y_1(a) > 0$. De même, $y'_1(b) < 0$. Or le Wronskien ne change pas de signe et

$$y_1'(a)y_1'(b)y_2(a)y_2(b) = W_{y_1,y_2}(a) \times W_{y_1,y_2}(b) > 0.$$
(137)

Donc $y_2(a)y_2(b) < 0$. Comme y_2 est continue, le théorème des valeurs intermédiaires s'applique et y_2 s'annule sur a,b.

Si $y_1 < 0$, on applique ce qui précède à $-y_1$.

Si y_2 s'annulait deux fois sur a, b, comme a_1 et a_2 jouent des rôles symétriques, a_1 s'annulerait une fois sur a_1 et a_2 jouent des rôles symétriques, a_1 s'annulerait une fois sur a_2 et a_2 jouent des rôles symétriques, a_1 s'annulerait une fois sur a_2 et a_2 et a_3 et a_4 et a_2 jouent des rôles symétriques, a_1 s'annulerait une fois sur a_2 et a_3 et a_4 et a_4

2. Soit $H = y_1 y_2' - y_2 y_1'$. On a

$$H' = y_1 y_2'' - y_2 y_1'' = (r_1 - r_2) y_1 y_2. (138)$$

Supposons que $y_1 > 0$ sur]a, b[. Su y_2 ne s'annule pas sur]a, b[, supposons par exemple que $y_2 > 0$ sur]a, b[. Alors H' < 0 sur]a, b[, H est strictement décroissante sur [a, b], et $H(0) = -y_2(a)y_1'(a) < 0$, $H(b) = -y_2(b)y_1'(b) > 0$: impossible. Donc y_2 s'annule au moins une fois sur]a, b[.

Application : si pour tout $t \in I$, $r_1(t) < \omega^2$, soit a < b deux zéros consécutifs de y_1 et $y_2(t) = \sin(\omega(t-a))$. Les zéros de y_2 sont les $a + \frac{k\pi}{\omega}$ d'où un écart plus grand que $\frac{\pi}{\omega}$.

Soit a un zéro de y_1 . En échangeant les rôles joués par r_1 et $r_2: y = \sin(\omega'(t-a))$ s'annule en 0 et $a + \frac{\pi}{\omega}$ (deux zéros consécutifs). Donc l'écart entre deux zéros consécutifs de y_1 est plus petit que $\frac{\pi}{\omega}$.

Solution 20.

1. Il est clair que \mathcal{T}_T est linéaire. Pour tout $Y \in S$, pour tout $x \in \mathbb{R}$, on a

$$(\mathcal{T}_T(y))''(x) + p(x)\mathcal{T}_T(y)(x) = y''(x+T) + p(x+T)y(x+T) = 0,$$
(139)

donc $\mathcal{T}_T(y) \in \mathcal{L}(S)$. Via le théorème de Cauchy-Lipschitz, $\dim(S) = 2$. Posons $A = \frac{\text{Tr}(\mathcal{T}_T)}{2}$. D'après le théorème de Cayley-Hamilton,

$$X^2 - 2AX + \det(\mathcal{T}_T) \tag{140}$$

annule \mathcal{T}_T . Soit alors (y_1, y_2) la base de S telle que $y_1(0) = 1$, $y'_1(0) = 0$, $y_2(0) = 0$ et $y'_2(0) = 1$.

Si $y = \alpha y_1 + \beta y_2 \in S$, alors $y(0) = \alpha$ et $y'(0) = \beta$ donc $y = y(0)y_1 + y'(0)y_2$. Ainsi,

$$\mathcal{T}_T(y_1) = y_1(T)y_1 + y_1'(T)y_2 = \mathcal{T}_T(y_1)(0)y_1 + \mathcal{T}_T(y_1)'(0)y_2, \tag{141}$$

d'où

$$\operatorname{mat}_{(y_1, y_2)}(\mathcal{T}_T) = \begin{pmatrix} y_1(T) & y_2(T) \\ y_1'(T) & y_2'(T) \end{pmatrix}. \tag{142}$$

Ainsi, $\det(\mathcal{T}_T)=y_1(T)y_2'(T)-y_1'(T)y_2(T)=W_{y_1,y_2}(T)$ où West le Wronskien. On a

$$W'_{y_1,y_2}(x) = y_1(x)y''_2(x) - y''_1(x)y_2(x), (143)$$

$$= -y_1(x)p(x)y_2(x) + y_1(x)p(x)y_2(x), (144)$$

$$=0. (145)$$

Donc W_{y_1,y_2} est constant et $W_{y_1,y_1}(0)=1$ donc $\det(\mathcal{T}_T)=1$. Ainsi,

$$\chi_{\mathcal{T}_T} = X^2 - 2AX + 1. \tag{146}$$

On a $A = \frac{\text{Tr}(\mathcal{T}_T)}{2} = \frac{1}{2}(y_1(T) + y_2'(T))$ donc pour tout $y \in S$, pour tout $x \in \mathbb{R}$, y(x+2T) - 2Ay(x+T) + y(x) = 0.

2. On a $\chi_{\mathcal{T}_T} = X^2 - 2AX + 1$. On a $\Delta = 4(A^2 - 1) < 0$ si |A| < 1. On a deux racines complexes conjuguées μ et $\overline{\mu}$. De plus, $\mu \overline{\mu} = 1 = \det(\mathcal{T}_T)$ donc $\mu \in \mathbb{U}$. Ainsi, il existe $\theta \in]0, \pi[$ tel que $\mathrm{Sp}_{\mathbb{C}}(\mathcal{T}_T) = \{\mathrm{e}^{\mathrm{i}\theta}, \mathrm{e}^{-\mathrm{i}\theta}\}$. Donc $\mathrm{mat}_{(y_1,y_2)}(\mathcal{T}_T)$ est semblable sur \mathbb{R} à

$$R_{\theta} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \tag{147}$$

Soit (f_1, f_2) la base de S telle que $\operatorname{mat}_{(f_1, f_2)}(\mathcal{T}_T) = R_{\theta}$. Pour tout $n \in \mathbb{Z}$,

$$\operatorname{mat}_{(f_1, f_2)}(\mathcal{T}_T^n) = R_{n\theta}. \tag{148}$$

Si $f = af_1 + bf_2$, on a

$$\mathcal{T}_T^n(f) = (a\cos(n\theta) - b\sin(n\theta))f_1 + (a\sin(\theta) + b\cos(n\theta))f_2 = f(x+nT). \tag{149}$$

Pour tout $x \in [0, T]$, pour tout $n \in \mathbb{Z}$,

$$|f(x+nT)| \le \sqrt{a^2 + b^2} \left(\|f_1\|_{\infty,[0,T]} + \|f_2\|_{\infty,[0,T]} \right),$$
 (150)

donc f est bornée.

3. Si |A| > 1, on a $\delta > 0$ et

$$\operatorname{Sp}(\mathcal{T}_T) = \left\{ \lambda, \frac{1}{\lambda} \right\},\tag{151}$$

avec $|\lambda| \in]0,1[$. Il existe (f_1,f_2) base de S telle que $\mathcal{T}_T(f_1) = \lambda f_1$ et $\mathcal{T}_T(f_2) = \frac{1}{\lambda} f_2$.

Ainsi, si $f = af_1 + bf_2$, pour tout $x \in [0, T]$, pour tout $n \in \mathbb{Z}$, on a

$$|f(x+nT)| = \left| \lambda^n a f_1(x) + \frac{b}{\lambda^n} f_2(x) \right| \xrightarrow[n \to +\infty]{} +\infty, \tag{152}$$

donc toutes les solutions non nulles sont non bornées.

Si A = 1, on a $\chi_{\mathcal{T}_T} = (X - 1)^2$. Ou bien $\mathcal{T}_T = id$ et dans ce cas toutes les solutions sont T-périodiques donc bornées (car continues). Ou bien il existe une base (f_1, f_2) de S telle que

$$\operatorname{mat}_{(f_1, f_2)}(\mathcal{T}_T) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}. \tag{153}$$

On a

$$\operatorname{mat}_{(f_1, f_2)}(\mathcal{T}_T^n) = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}. \tag{154}$$

Ainsi, il existe des solutions non nulles périodiques et des solutions non bornées.

Solution 21.

1. $(x \mapsto e^x, x \mapsto e^{-x})$ est une base de S (espace des solutions de l'équation différentielle). On cherche la solution générale sous la forme

$$y(x) = \lambda(x)e^x + \mu(x)e^{-x}, \tag{155}$$

avec $\lambda'(x)e^x + \mu'(x)e^{-x} = 0$ et $\lambda'(x)e^x - \mu'(x)e^{-x} = f(x)$.

Donc $\lambda'(x) = \frac{1}{2}f(x)e^{-x}$ et $\mu'(x) = -\frac{1}{2}f(x)e^{x}$. Donc il existe $(\lambda, \mu) \in \mathbb{R}^{2}$ tel que pour tout $x \in \mathbb{R}$,

$$y(x) = \frac{1}{2} \left(\left(\int_0^x f(t) e^{-t} dt \right) e^x + \lambda e^x + \left(\int_0^x f(t) e^t dt + \mu \right) e^{-x} \right).$$
 (156)

Soit $\varepsilon > 0$. Il existe $A \geqslant 0$ tel que pour tout $t \geqslant A$, $|f(t)| \leqslant \varepsilon$. Alors pour tout $x \geqslant A$, on a

$$\left| \int_0^x f(t) e^t dt e^{-x} \right| \leqslant \varepsilon \left| 1 - e^{-x} \right| \leqslant \varepsilon, \tag{157}$$

donc $\lim_{x \to +\infty} \int_0^x f(t) e^t dt e^{-x} = 0.$

Si y est bornée, nécessairement $\lim_{x\to+\infty}\int_0^x f(t)\mathrm{e}^{-t}\mathrm{d}t + \lambda = 0$. Donc

$$\lambda = -\int_0^{+\infty} f(t)e^{-t}dt,$$
(158)

définie car f est bornée. De même,

$$\lim_{x \to -\infty} \int_0^x f(t) e^{-t} dt e^x = \lim_{x' \to +\infty} \left(-\int_0^{x'} f(-u) e^u du \right) e^{-x'}, \tag{159}$$

$$=0. (160)$$

Donc $\mu = \int_{-\infty}^{0} f(t)e^{t}dt$ (définie car f est bornée). Alors

$$y(x) = \frac{1}{2} \left(-\int_{x}^{+\infty} f(t)e^{-t}dte^{x} + \int_{-\infty}^{x} f(t)e^{t}dte^{-x} \right).$$
 (161)

Réciproquement, posons

$$y_0(x) = \frac{1}{2} \left(-\int_x^{+\infty} f(t) e^{-t} dt e^x + \int_{-\infty}^x f(t) e^t dt e^{-x} \right).$$
 (162)

On a

$$\int_{x}^{+\infty} f(t)e^{-t}dte^{x} = \int_{x}^{+\infty} f(t)e^{x-t}dt = \int_{0}^{+\infty} f(u+x)e^{-u}du.$$
 (163)

Pour tout $x \in \mathbb{R}$, $|f(u+x)e^{-u}| \leq ||f||_{\infty,\mathbb{R}} e^{-u}$, intégrable. D'après le théorème de convergence dominée, on a

$$\lim_{|x| \to +\infty} \int_{x}^{+\infty} f(t)e^{-t}dte^{x} = 0.$$
 (164)

De même, on a

$$\lim_{|x| \to +\infty} \int_{-\infty}^{x} f(t)e^{t}dte^{-x} = 0.$$

$$(165)$$

Donc $y_0(x) \xrightarrow[|x| \to +\infty]{} 0$. Donc y_0 est bornée et sa limite est 0.

Solution 22.

1. Comme $p: [a, +\infty[\to \mathbb{R}^*_+, l'équation différentielle équivaut à <math>x'' + \frac{p'}{p}x' + \frac{q}{p}x = 0$ et le théorème de Cauchy-Lipschitz s'applique.

La première partie vient de l'unicité du théorème de Cauchy-Lipschitz. La deuxième vient du théorème de relèvement.

2. Il vient

$$(px')' = px'' + p'x' = r'\cos\theta - r\theta'\sin\theta,$$

$$x' = r'\sin\theta + r\theta'\cos\theta = \frac{r\cos\theta}{p}.$$
(166)

x est solution si et seulement si $(xp)'=-qx=-qr\sin\theta$ si et seulement si

$$\begin{cases} r'\cos\theta + r(q - \theta')\sin\theta = 0, \\ r'\sin\theta + r\left(\theta' - \frac{1}{p}\right)\cos\theta = 0, \end{cases}$$
 (167)

si et seulement si

$$\begin{cases} r' = r \sin \theta \cos \theta \left(\frac{1}{p} - q\right), \\ \theta' = q \sin^2 \theta + \frac{1}{p} \cos^2 \theta. \end{cases}$$
 (168)

3. Si p = 1, on a

$$\begin{cases} \theta' = q \sin^2 \theta + \cos^2 \theta, \\ r' = r \sin \theta \cos \theta (1 - q). \end{cases}$$
 (169)

On a $\theta' > 0$ donc θ est strictement croissante et admet une limite $l \in \mathbb{R}$ en $+\infty$. Si $l < +\infty$, on a

$$\int_{a}^{t} \theta'(t) du = \theta(t) - \theta(a) \xrightarrow[t \to +\infty]{} l - \theta(a).$$
 (170)

De plus,

$$\int_{a}^{t} \theta'(u) du = \int_{a}^{t} q(u) \sin^{2}(\theta(u)) du + \int_{a}^{t} \cos^{2}(\theta(u)) du, \tag{171}$$

$$\geqslant \int_{a}^{t} q(u)\sin^{2}(\theta(u))du, \tag{172}$$

$$\underset{u \to +\infty}{\sim} q(u)\sin^2(l). \tag{173}$$

Comme $\int_a^t q(u) du$ diverge, nécessairement, $\int_a^t \theta'(u) du$ étant finie, on a $\sin^2(l) = 0$ donc $\cos^2(l) = 1$ et $\int_a^t \cos^2(\theta(u)) du \xrightarrow[t \to +\infty]{} +\infty$: contradiction.

Nécessairement, $l = +\infty$, puis par le théorème des valeurs intermédiaires, pour tout $k \in \mathbb{N}$ tel que $k\pi \geqslant a$, il existe un unique $t_k \in [a, +\infty[$ tel que $\theta(t_k) = k\pi$ et $x(t_k) = 0$. Donc x s'annule une infinité de fois.

Solution 23. Si (ii), soit $a \in \mathbb{R}$, alors pour tout $f \in E$, $(\mathcal{T}_a(f))' = \mathcal{T}_a(f')$. Alors pour tout $x \in \mathbb{R}$,

$$f^{(n)}(x+a) + a_{n-1}f^{(n-1)}(x+a) + \dots + a_0f(x+a) = 0,$$
(174)

donc $\mathcal{T}_a(f) \in E$, d'où (iii).

Si (i), on note $\chi_{\Delta}(X) = \sum_{i=0}^{n-1} a_i X^i + X^n$ le polynôme caractéristique de $\Delta \colon f \mapsto f' \in \mathcal{L}(E)$. D'après le théorème de Cayley-Hamilton, on a $\chi_{\Delta}(\Delta) = 0_{\mathcal{L}(E)}$. Donc pour tout $f \in E$,

$$\chi_{\Delta}(\Delta)(f) = f^{(n)} + a_{n-1}f^{(n-1)} + \dots + a_0f = O_E,$$
(175)

donc E est inclus dans l'ensemble solution. Puis, d'après le théorème de Cauchy-Lipschitz, la dimension de l'espace des solutions est $n = \dim(E)$ donc on a bien égalité. D'où (ii).

Si (iii), notons que s'il existe $(1, ..., x_n) \in \mathbb{R}^n$ tel que pour tout $f \in E$, $f(x_1) = \cdots = f(x_n) = 0$, alors f = 0. En effet, soit pour tout $x \in \mathbb{R}$,

$$\delta_x: \quad \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{C}) \quad \to \quad \mathbb{C}
f \qquad \mapsto \quad f(x) \tag{176}$$

une forme linéaire sur E. D'après le théorème de caractérisation des formes linéaires, il existe $g_x \in E$ tel que pour tout $f \in E$, $\delta_x(f) = f(x) = (g_x|f)$ (produit scalaire complexe a priori). Soit $f \in E$, si

pour tout $x \in \mathbb{R}$, $(g_x|f) = 0$ alors f = 0. Ainsi, $(\operatorname{Vect}((g_x)_{x \in \mathbb{R}}))^{\perp} = \{0\}$. Donc $\operatorname{Vect}((g_x)_{x \in \mathbb{R}}) = E$. Donc $(g_x)_{x \in \mathbb{R}}$ est une famille génératrice de E, ainsi il existe $(x_1, \ldots, x_n) \in \mathbb{R}^n$ tel que $(g_{x_1}, \ldots, g_{x_n})$ est une base de E, donc $(\delta_{x_1}, \ldots, \delta_{x_n})$ est une base de $\mathcal{L}(E, \mathbb{C})$ (ensemble des formes linéaires sur E de dimension n). En effet, c'est une famille libre car si $\sum_{i=1}^n \lambda_i \delta_{x_i} = 0$ alors pour tout $f \in E$, $(\sum_{i=1}^n \lambda_i g_{x_i}|f) = 0$ donc $\sum_{i=1}^n \lambda_i g_{x_i} = 0$ et $\lambda_1 = \cdots = \lambda_n = 0$. Alors pour tout $x \in \mathbb{R}$, il existe $(\lambda_1, \ldots, \lambda_n) \in \mathbb{C}^n$ tel que $\delta_x = \lambda_1(x)\delta_{x_1} + \cdots + \lambda_n(x)\delta_{x_n}$. Donc si $f(x_1) = \cdots = f(x_n) = 0$, alors pour tout $x \in \mathbb{R}$, $f(x) = \delta_x(f) = \sum_{i=1}^n \lambda_i \delta_{x_i}(f) = 0$ d'où f = 0.

Ensuite, notons qu'il existe (h_1, \ldots, h_n) base de E telle que pour tout $f \in E$, $f = \sum_{i=1}^n f(x_i)h_i$. En admettant ce résultat, on définit

$$g = \sum_{i=1}^{n} f'(x_i)h_i, \tag{177}$$

et pour tout $i \in [1, n]$, $f'(x_i) = g(x_i)$. Pour tout $x \in E$, on a

$$f'(x) = \lim_{p \to +\infty} p\left(\mathcal{T}_{\frac{1}{p}}(f)(x) - f(x)\right). \tag{178}$$

Si $\delta_x = \sum_{i=1}^n \lambda_i \delta_{x_i}$, on a

$$p\left(\mathcal{T}_{\frac{1}{p}}(f)(x) - f(x)\right) = p\left(f\left(x + \frac{1}{p}\right) - f(x)\right),\tag{179}$$

$$= \delta_x \left(\mathcal{T}_{\frac{1}{n}}(f) - f \right), \tag{180}$$

$$= \sum_{i=1}^{n} \lambda_i \delta_{x_i} \left(p \left(\mathcal{T}_{\frac{1}{p}}(f) - f \right) \right), \tag{181}$$

$$= \sum_{i=1}^{n} \lambda_i p \left(f \left(x_i + \frac{1}{p} \right) - f(x_i) \right), \tag{182}$$

$$\xrightarrow[p\to+\infty]{} \sum_{i=1}^{n} \lambda_i f'(x_i), \tag{183}$$

$$=\sum_{i=1}^{n} \lambda_i g(x_i),\tag{184}$$

$$=g(x), (185)$$

$$=f'(x). (186)$$

Remarque 9. En notant le polynôme minimal Δ Π_{Δ} , on a $\deg(\Pi_{\Delta}) = n$. En effet, si $\Pi_{\Delta} = b_0 + b_1 X + \cdots + b_{m-1} X^{m-1} + X^m$ avec $m \leq n$ (d'après le théorème de Cayley-Hamilton), alors E est inclus dans l'ensemble solution de l'équation différentielle $b_0 + b_1 y + \cdots + b_{m-1} y^{(m-1)} + y^{(m)} = 0$ qui est de dimension m. Or $\dim(E) = n$ et $m \leq n$, donc m = n et $\chi_{\Delta} = \pi_{\Delta}$.

Solution 24.

1. Il existe $(m, M) \in (\mathbb{R}_+^*)^2$ tel que $m \leq \Delta \leq M$. Si $\lambda = 0$, f est affine et f(0) = f(1) = 0 implique f = 0. Si $\lambda > 0$, on a

$$\lambda m f \leqslant f'' = \lambda \Delta f \leqslant \lambda M f. \tag{187}$$

Posons g solution de $g'' = \lambda mg$ et h solution de $f'' = \lambda Mh$, avec g(0) = h(0) = 0, g'(0) = h'(0) = f'(0). On a

$$g(t) = \frac{f'(0)}{\sqrt{\lambda m}} \sinh\left(\sqrt{\lambda m}t\right),$$

$$h(t) = \frac{f'(0)}{\sqrt{\lambda M}} \sinh\left(\sqrt{\lambda M}t\right).$$
(188)

Donc $g(1) \neq 0$ et $h(1) \neq 0$. On a

$$0 \leqslant (f-g)'' - \lambda m(f-g) = f'' - \lambda mf. \tag{189}$$

Si $f_1 = f - g$, on a $f_1'' - \lambda m f_1 = \varepsilon \geqslant 0$ et $f_1(0) = f_1'(0) = 0$. Résolvons $f_1'' - \lambda m f_1 = \varepsilon_1$ avec $f_1'(0) = f_1(0) = 0$. On a

$$f_1(t) = \lambda(t) \sinh\left(\sqrt{\lambda m}t\right) + \mu(t) \cosh\left(\sqrt{\lambda m}t\right),$$
 (190)

avec $\lambda'(t) \sinh\left(\sqrt{\lambda m}t\right) + \mu'(t) \cosh\left(\sqrt{\lambda m}t\right) = 0$. Il vient

$$\sqrt{\lambda m} \left(\lambda'(t) \cosh \left(\sqrt{\lambda m} t \right) \right) + \mu'(t) \sinh \left(\sqrt{\lambda m} t \right) = \varepsilon_1(t). \tag{191}$$

D'où

$$\lambda'(t) = \frac{1}{\sqrt{\lambda m}} \cosh\left(\sqrt{\lambda m}t\right) \varepsilon_1(t),$$

$$\mu'(t) = -\frac{1}{\sqrt{\lambda m}} \sinh\left(\sqrt{\lambda m}t\right) \varepsilon_1(t).$$
(192)

On a $f_1(0) = 0$ donc $\mu(0) = 0$ et $f'_1(0) = 0$ donc $\lambda(0) = 0$. Finalement,

$$f_1(t) = \frac{1}{\sqrt{\lambda m}} \int_0^t \left(\sinh\left(\sqrt{\lambda m}u\right) \cosh\left(\sqrt{\lambda m}u\right) - \cosh\left(\sqrt{\lambda m}u\right) \sinh\left(\sqrt{\lambda m}u\right) \right) \varepsilon_1(u) du = \frac{1}{\sqrt{\lambda m}} \int_0^t \sin\left(\sqrt{\lambda m}u\right) \sin\left(\sqrt{\lambda m}u\right) du = \frac{1}{\sqrt{\lambda m}} \int_0^t \sin\left(\sqrt{\lambda m}u\right) \sin\left(\sqrt{\lambda m}u\right) \sin\left(\sqrt{\lambda m}u\right) du = \frac{1}{\sqrt{\lambda m}} \int_0^t \sin\left(\sqrt{\lambda m}u\right) \sin\left(\sqrt{\lambda m}u\right) \sin\left(\sqrt{\lambda m}u\right) du = \frac{1}{\sqrt{\lambda m}} \int_0^t \sin\left(\sqrt{\lambda m}u\right) \sin\left(\sqrt{\lambda m}u\right) \sin\left(\sqrt{\lambda m}u\right) du = \frac{1}{\sqrt{\lambda m}} \int_0^t \sin\left(\sqrt{\lambda m}u\right) \sin\left(\sqrt{\lambda m}u\right) \sin\left(\sqrt{\lambda m}u\right) du = \frac{1}{\sqrt{\lambda m}} \int_0^t \sin\left(\sqrt{\lambda m}u\right) \sin\left(\sqrt{\lambda m}u\right) \sin\left(\sqrt{\lambda m}u\right) du = \frac{1}{\sqrt{\lambda m}} \int_0^t \sin\left(\sqrt{\lambda m}u\right) \sin\left(\sqrt{\lambda m}u\right) \sin\left(\sqrt{\lambda m}u\right) du = \frac{1}{\sqrt{\lambda m}} \int_0^t \sin\left(\sqrt{\lambda m}u\right) \sin\left(\sqrt{\lambda m}u\right) \sin\left(\sqrt{\lambda m}u\right) du = \frac{1}{\sqrt{\lambda m}} \int_0^t \sin\left(\sqrt{\lambda m}u\right) \sin\left(\sqrt{\lambda m}u\right) \sin\left(\sqrt{\lambda m}u\right) du = \frac{1}{\sqrt{\lambda m}} \int_0^t \sin\left(\sqrt{\lambda m}u\right) \sin\left(\sqrt{\lambda m}u\right) du = \frac{1}{\sqrt{\lambda m}} \int_0^t \sin\left(\sqrt{\lambda m}u\right) \sin\left(\sqrt{\lambda m}u\right) du = \frac{1}{\sqrt{\lambda m}} \int_0^t \sin\left(\sqrt{\lambda m}u\right)$$

Donc $f \ge g$. De même, $f \le h$. Donc quelle que soit la valeur de f'(0), on a f(1) > 0 ou f(1) < 0. Ainsi, $\lambda \le 0$.

On pose $\langle f, g \rangle = \int_0^1 \Delta f g$. C'est un produit scalaire car $\Delta > 0$. Vérifions que v est autoadjoint pour ce produit scalaire :

$$\langle v(f), g \rangle = \int_0^1 f''(t)g(t)dt = \underbrace{[f(t)g(t)]_0^1}_{=0 \text{ car } g \in E} - \int_0^1 f'(t)g'(t)dt,$$
 (194)

expression symétrique en f et g. Donc $\langle v(f), g \rangle = \langle f, v(g) \rangle$. Si $v(f) = \lambda f$ et $v(g) = \lambda g$, on a alors $\lambda \langle f, g \rangle = \mu \langle f, g \rangle$ donc si $\lambda \neq \mu$, on a $\langle f, g \rangle = 0$.

- 2. C'est une conséquence immédiate du théorème de Cauchy-Lipschitz.
- 3. Sur $[2, +\infty[$ on a $f'' = \gamma f$ et $\gamma < 0$ d'après la première question. Donc il existe $(A, \varphi) \int \mathbb{R} \times \mathbb{R}$ tel que pour tout $t \in [2, +\infty[$, $f(t) = A \sin(\sqrt{-\gamma}t + \varphi)$.

Si A=0, f est solution du problème de Cauchy $f''=\gamma\Delta f$ avec f(2)=f'(2)=0 donc f=0 par unicité du théorème de Cauchy-Lipschitz, ce qui est absurde car f'(0)=1. Donc $A\neq 0$ et f s'annule en $\frac{k\pi-\varphi}{\sqrt{-\gamma}}$ avec $k\in\mathbb{N}$ sur $[2,+\infty[$.

Sur [0,2], si f s'annule une infinité de fois, il existe $(a_n)_{n\in\mathbb{N}}$ une suite injective de [0,2] telle que $f(a_n)=0$ pour tout $n\in\mathbb{N}$. On extrait $(a_{\sigma(n)})_{n\in\mathbb{N}}$ qui converge vers $a\in[0,2]$. f étant continue sur [0,2], f(a)=0 et d'après le théorème de Rolle, pour tout $n\in\mathbb{N}$, il existe $b_n\in]a, a_{\sigma(n)}[$ (ou bien $]a_{\sigma(n)}, a[$) tel que $f'(b_n)=\gamma$. Par continuité de f', puisque $b_n\to 0$, on a f'(a)=0. f est alors solution du problème de Cauchy $y''=\gamma\Delta y$ avec y(a)=y'(a)=0. Par unicité du théorème de Cauchy-Lipschitz, f=0 ce qui est absurde car f'(0)=1. Donc f s'annule un nombre fini de fois sur [0,2].

4. Soit A > 0. Sur [0, A], notons $M = \sup_{[0,A]} |\Delta|$. Sur $[0, x_1(\gamma)]$, f_{γ} est positive (car ne change pas de signe et $f'_{\gamma}(0) = 1$). Notons $t_{\gamma} \in [0, x_1(\gamma)]$ tel que $f_{\gamma}(t_{\gamma}) = \max_{t \in [0, x_1(\gamma)]} f_{\gamma}(t)$. Pour tout $t \in]0, x_1(\gamma)[$, on a

$$f_{\gamma}''(t) = \Delta(t)\gamma f_{\gamma}(t) < 0, \tag{195}$$

donc f_{γ} est concave sur $[0, x_1(\gamma)]$. Ainsi, pour tout $t \in [0, x_1(\gamma)]$, $f_{\gamma}(t) \leqslant t$ (en-dessous de la tangente en 0). Donc $f_{\gamma}(t_{\gamma}) \leqslant t_{\gamma} \leqslant x_1(\gamma)$. Alors pour tout $t \in [0, x_1(\gamma)]$, on a

$$0 \leqslant f(t) \leqslant x_1(\gamma)(\gamma) \leqslant A, \tag{196}$$

et $\gamma MA\leqslant f_{\gamma}''(t)\leqslant 0.$ D'après l'inégalité des accroissements finis, on a

$$1 = |f'(t_{\gamma}) - f'(0)| \leqslant |\gamma| MAt_{\gamma}, \tag{197}$$

$$\leq |\gamma| MAx_1(\gamma),$$
 (198)

donc

$$x_1(\gamma) \geqslant \frac{1}{MA|\gamma|} \xrightarrow[\gamma \to 0]{} +\infty.$$
 (199)

Remarque 10. Autre méthode pour la première question : comme f(0) = f(1) = 0 et $f \neq 0$, il existe $x_0 \in]0,1[$, $f(x_0) \neq 0$. Quitte à remplacer f par -f on suppose $f(x_0) > 0$. Alors $\max_{[0,1]} f > 0$ et il existe $x_1 \in]0,1[$ tel que $f(x_1) = \max_{[0,1]} f$. Il vient $f'(x_1) = 0$ et si $\lambda > 0$, on a $f''(x_1) = \lambda \Delta(x_1) f(x_1) > 0$. Un développement limité fournit

$$f(x_1 + h) - f(x_1) \underset{h \to 0}{\sim} \frac{h^2}{2} f'(x_1) > 0,$$
 (200)

ce qui contredit le fait que $f(x_1) = \max_{t \in [0,1]} f(t)$.