CompSci 116: Lecture 12: Decisions

Jeff Forbes

April 11, 2019

Decisions Under Uncertainty

Interpretation by Physicians of Clinical Laboratory Results (1978)

"We asked 20 house officers, 20 fourth-year medical students and 20 attending physicians, selected in 67 consecutive hallway encounters at four Harvard Medical School teaching hospitals, the following question:

"If a test to detect a disease whose prevalence is 1/1000 has a false positive rate of 5%, what is the chance that a person found to have a positive result actually has the disease, assuming that you know nothing about the person's symptoms or signs?"

Decisions Under Uncertainty

Interpretation by Physicians of Clinical Laboratory Results (1978)

"Eleven of 60 participants, or 18%, gave the correct answer. These participants included four of 20 fourth-year students, three of 20 residents in internal medicine and four of 20 attending physicians. The most common answer, given by 27, was that [the chance that a person found to have a positive result actually has the disease] was 95%.

Probability Review

- P(A): Probability of event A
 - Value in [0,1]
 - How likely is A to happen?
- P(A) + P(not A) = 1
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$ e.g., x = roll of a 6-sided die; $P(x \text{ is even } \cup x > 3)$
 - $= P(x \text{ is even}) + P(x > 3) P(x \text{ is even } \cap x > 3)$
 - = 0.5 + 0.5 1/3 = 2/3

Question #1

http://bit.ly/FoDS-s19-0411-1

- Assume 500 students enrolled in both Calculus and Physics. Of these students,
 - 82 got an A in calculus,
 - 73 got an A in physics, and
 - 42 got an A in both courses.
- Which of the following probabilities is the smallest?

The probability that a randomly chosen student:

- a. Got an A in at least one of the two courses
- b. Got less than an A in at least one of the two courses
- c. Got an A in **both** courses
- d. Got an A in calculus but not in **physics**
- e. Got an A in physics but not calculus

Round One

Scenario:

- Class consists of second years (60%) and third years (40%)
- 50% of the second years have declared their major
- 80% of the third years have declared their major
- I pick one student at random.
- Which is more likely: Second year or third year?
 - Second year, because they are 60% of the class

Round Two

- Slightly different scenario:
 - Class consists of second years (60%) and third years (40%)
 - 50% of the second years have declared their major
 - 80% of the third years have declared their major
 - I pick one student at random...
 That student has declared a major!
- Second Year or Third Year?

(Demo)

Terminology

$P(B \mid A) = P(A \cap B) / P(A)$

Problem 2: Conditional Probability http://bit.ly/FoDS-s19-0411-2

- Hat with three cards,
 - Blue on both sides
 - Red on both sides
 - Red/Blue
- A card is drawn at random from the hat and you see that one side is blue

What is the probability the other side is blue?

a.
$$\frac{1}{3}$$
b. $\frac{1}{2}$
c. $\frac{2}{3}$

Bayes' Rule

Pick a student at random.

Posterior probability:

P(Third Year | Declared)

$$0.4 \times 0.8$$

_ -----

$$(0.6 \times 0.5) + (0.4 \times 0.8)$$

= 0.5161...

Purpose of Bayes' Rule

- Update your prediction based on new information
- In a multi-stage experiment, find the chance of an event at an earlier stage, given the result of a later stage

(Demo)

Example: Doctors & Clinical Tests

Out of 1000 patients:

	Positive test result	Negative test result
Has disease	1	0
Doesn't have disease	49.95	949.05

 So only 1 / 50.95 of patients with positive test results have the disease.