

GEOMETRIE DANS L'ESPACE

þage

п

п

n п

п

п

п

Les axiomes de l'espace :

L'espace usuel est noté (\mathcal{E}) .

a. Les axiomes de l'espace :

Axiome 1:

Par deux points distincts A et B de l'espace (\mathcal{E}) passe une et une seule droite notée (AB)

Axiome 2

Par trois points non alignés de l'espace (\mathcal{E}) passe un plan et un seul noté (ABC).

Axiome 3:

SI A et B sont deux points distincts d'un plan (P) de l'espace

Axiome 4:

(P) et (P') deux plans distincts de l'espace (\mathcal{E}).

Si un point A est commun aux deux plans alors les deux plans se coupent suivant une droite passant par le point A.

b. Détermination d'un plan :

 $\overline{ extbf{Toutes les}}$ propriétés de la géométrie plane reste valables à chaque plan $(extbf{P})$ de l'espace (\mathscr{E}) .

- Un plan (P) est déterminé soit par :
 - 1. Une droite (D) et un point qui n'appartienne pas à cette droite $(A \notin (D))$.
 - Trois points A et B et C non alignés de l'espace (\mathcal{E}) .
 - Deux droites (D) et (D') sécantes de l'espace (\mathcal{E}).
 - <u>4.</u> Deux droites (D) et (D') strictement parallèles de l'espace (\mathscr{E}) .

Positions relatives de deux droites de l'espace :

a. Activité:

Soient (D) et (D') deux droites de l'espace (8).

 $\mathbf{1}$. Déterminer les positions relatives de (\mathbf{D}) et (\mathbf{D}') .

GEOMETRIE DANS L'ESPACE

(D) et (D') sont sécantes au point I c.à.d. (D') \cap (D) = {I} (D) et (D') sont parallèles
On écrit : (D') //(D)

(D) et (D') sont non coplanaires (D') \cap (D) = \emptyset

 $(D) \cap (D') = \{1\}$

 $(D) \cap (D') = (D) = (D')$

(D) \cap (D') = \emptyset

(D) et (D') Sont deux droites coplanaires (D) et (D') sont
deux droites coplanaires
*1er cas confondues
2ième cas strictement parallèles

(D) et (D') sont deux droites non coplanaires

Positions relatives d'une droite et d'un plan de l'espace :

<u>b.</u> Activité:

Soient (D) une droite et (P) un plan de l'espace (\mathcal{E}) .

1. Déterminer les positions relatives de (D) et (P).

(D) est incluse dans le plan (P) On écrit (D) \subset (P) (D) et (P) sont strictement parallèles On écrit : (D) //(P) (D) coupe le plan (P) au point I

 $(D) \cap (P) = (D)$ $(D) \subset (P)$

(P)

(P) et (P') sont confondus On note (P) = (P')

 $\overline{(D)}\cap (P)=(D)$

(P) et (P') sont strictement parallèles On note : (P) //(P')

 $(D)\cap (P)=\emptyset$

(P) et (P') sont sécants suivant une droite (D)

14

GEOMETRIE DANS L'ESPACE

V. Parallélisme dans l'espace :

A. Deux droites (D) et (D') de l'espace sont parallèles :

a. Définition:

Deux droites (\mathbf{D}) et (\mathbf{D}') de l'espace sont parallèles si et seulement si :

- (D) et (D') sont coplanaires disjointes .
 Ou
- (D) et (D') sont confondues.
 On note (D)//(D').

<u>b.</u> Exemple :

(D) et (D') sont confondues (D) \cap (D') = (D)	(D) et (D') sont strictement parallèles $(D) \cap (D') = \emptyset$
$(D) \cap (D') = (D) = (D')$	(D') $(D) \cap (D') = \emptyset$

<u>c.</u> Propriétés :

 $oxedsymbol{L}$ $oxedsymbol{ ext{D'un point }O}$ de l'espace passe une et une seule droite $ig(\Deltaig)$ parallèle a une droite $ig(oxedsymbol{ ext{D}}ig)$ donnée de l'espace

- 2. Soient (D) et (D') et (Δ) trois droites de l'espace ($\mathscr E$).
 - Si (D) et (D') sont parallèles et une droite (Δ) est parallèle à l'une des deux droites alors (Δ) est parallèle à l'autre droite . ou encore : Si (D)//(D') et (Δ)//(D) alors (Δ)//(D') .
 - Si une droite (Δ) est parallèle à chacune des droites (D) et (D') alors (D) et (D') sont parallèles . ou encore : Si $(\Delta)//(D)$ et $(\Delta)//(D')$ alors (D)//(D') .

GEOMETRIE DANS L'ESPACE

þage 🏑

<u>d.</u> Exemple :

B. Parallélisme d'une droite et un plan :

a. Définition :

Une droite (D) est parallèle à un plan (P) si et seulement si :

- La droite (D) est un incluse dans le plan (P) (c.à.d. (D) \subset (P)). ou
- (D) et (P) sont disjoints (c.à.d. (D) \cap (P) = \varnothing).

1 ^{er} cas	2 ^{ième} cas	
(D)	(D)	
(D) ⊂(P) donc(D) // (P)	(D) n (P) = Ø donc (D) // (P)	

<u>b.</u> Propriété :

Une droite (D) est parallèle à un plan (P) si et seulement si : il existe une droite (D') incluse dans le plan (P) tel que (D) et (D') sont parallèles .

GEOMETRIE DANS L'ESPACE

C. Parallélisme de deux plans :

a. Définition :

Deux plans (P) et (P') sont parallèles si et seulement si :

- (P) et (P') sont confondus (c.à.d. (P) = (P')).
 ou
- (P) et (P') sont disjoints (c.à.d. (P) \cap (P')= \varnothing).

<u>b.</u> Exemple :

1 ^{er} cas	2 ^{ième} cas	
(P) n (D) = (P) donc (P) // (P')		
(P') (P)	(P) (P) n (P') = (P) done (P) // (P')	

<u>c.</u> Propriétés :

- **L** D'un point O de l'espace passe un et un seul plan(P') parallèle a un plan (P) donné de l'espace
- 2. Si deux plans (P) et (P') sont parallèles , tout plan (Q) parallèle à l'un des deux plans alors le plan (Q) est parallèle à l'autre plan . ou encore : ((P)//(P')) et (Q)//(P) alors (Q)//(P') .
- 3. Si un plan (Q) est parallèle à chacun des plans (P) et (P') alors les deux plans (P) et (P') sont parallèles .

ou encore : ((Q)//(P)) et (Q)//(P') alors (P)//(P')

4. deux plans (P) et (P') sont parallèles si et seulement si l'un d'eux contient deux droites sécantes (D) et (D') parallèles au deuxième plan . ou encore :

$$(P)//(P') \text{ \'equivaut \`a } ((D)\cap(D')=\{I\} \text{ et } (D)\subset(P) \text{ et } (D')\subset(P) \text{ et } (D)//(P') \text{ et } (D')//(P')$$

GEOMETRIE DANS L'ESPACE

d. Propriétés :

Deux plans (P) et (P') sont parallèles , toute droite (D) coupe l'un des deux plans alors la droite (D) coupe l'autre plan .

ou encore : ((P)//(P')) et $(D)\cap(P)=\{I\}$ alors $(D)\cap(P')=\{J\}$ *

2. Deux plans (P) et (P') sont parallèles , tout plan (Q) coupe l'un des deux plans suivant une droite (Δ) alors le plan (Q) coupe l'autre plan suivant une droite (Δ ') et les droites sont parallèles . ou encore : ((P)//(P')) et $(Q)\cap(P)=(\Delta)$ alors $(Q)\cap(P')=(\Delta')$ et $(\Delta)//(\Delta')$.

3. Si une droite (D) est strictement parallèle à deux plans sécants (P) et (P') suivant une droite (Δ) alors les deux droites (D) et (Δ) sont parallèles .

Ou encore : si (D)/(P) et (D)/(P') et $(P)\cap(P')=(\Delta)$ alors $(D)/(\Delta)$.

exemple:

Propriété 1	Propriétés 2	Propriétés 3
(P) (P') (P') et (D) coupe (P) en I donc (D) coupe (P') en J	(Δ') (Δ) (P) (Δ)	(P') (D'p') (D) (Dp)

VI. Orthogonalité dans l'espace :

 \triangle Orthogonalité de deux droites (D) et (D') dans l'espace (\mathcal{E}):

a. Définition :

(D) et (Δ) deux droites sont orthogonales si et seulement si Deux droites (D') et (Δ ') sont sécantes à un point A de l'espace tel que :(D')//(D) et (Δ ')//(D') . on note : (Δ) \perp (D).

b. Propriétés :

- Si deux droites (D) et (D') sont orthogonales toute droite (Δ) parallèle à l'une de ces deux droites alors (Δ) est orthogonale à l'autre droite.
- Si deux droites (D) et (D') sont parallèles toute droite (Δ) est orthogonale à l'une des deux droites alors (Δ) est orthogonale à l'autre droite .

GEOMETRIE DANS L'ESPACE

page 🧳

c. Exemple (pour la définition et les propriétés) :

B. Orthogonalité d'une droite (D) et un plan (P) de l'espace (\mathcal{E}):

a. Définition :

Une droite (D) est orthogonale à un plan de l'espace si et seulement si la droite (D) est orthogonale à toute droite (Δ) du plan (P).

On note : $(D) \perp (P)$ on lit (D) est orthogonale au plan (P).

<u>b.</u> Propriétés :

- Une droite (D) est orthogonale à un plan (P) de l'espace si et seulement si la droite (D) est orthogonale à deux droites sécantes du plan (P).
- 2. Si deux droites (D) et (D') sont parallèles, tout plan (P) orthogonal à l'une de ces deux droites alors (P) est orthogonal à l'autre droite.
- 3. Si deux plans (P) et (P') sont parallèles, toute droite (D) orthogonale à l'un des deux plans alors (D) est orthogonale à l'autre plan.

c. Exemple:

d. Remarque:

Par un point de l'espace (\mathscr{E}) passe :

- 1. Un plan et un seul qui est orthogonal à une droite donnée .
- 2. Une droite et une seule orthogonale à un plan donné.

GEOMETRIE DANS L'ESPACE

C. Orthogonalité de deux plans (P) et (P') de l'espace :

a. Définition :

Deux plans (P) et (P') de l'espace (\mathcal{E}) sont orthogonaux si et seulement si l'un des deux plans contient une droite (D) orthogonale à l'autre plan . on note : (P) \perp (P') .

b. Propriétés :

- Si deux plans (P) et (P') de l'espace (\mathcal{E}) sont orthogonaux à une même droite alors les plans sont parallèles .
- 2. Si deux plans (P) et (P') de l'espace (\mathcal{E}) sont parallèles :
 - si un plan (Q) est orthogonal à l'un des deux plans alors (Q) est orthogonal à l'autre.
 - si une droite (D) est orthogonale à l'un des deux plans alors (D) est orthogonale à l'autre .
- 3. tout plan (Q) orthogonal à deux plans sécants (P) et (P') suivant une droite (D) alors (D) \perp (Q)

<u>**c.**</u> Exemple :

Définition	Propriété 1	Propriété 2	Propriété 3
(P) (Δ)	(P) (P')	(P') (Q) (D)	(P) (Q)

VII les surfaces et les volumes de certains solides :

cube ABCDEFGH

Arête de longueur : a L'aire (surface) latérale $S_1 = 4a^2$.

L'aire (surface) totale :

 $S_{\rm T} = 6a^2$

Volume: $V = a^3$

Parallélépipède rectangle ABCDEFGH

Longueur : L Largeur : l Hauteur : h

L'aire (surface) latérale

 $S_L = 2(L+\ell) \times h$. la surface totale :

 $S_T = S_L + 2L \times \ell$

Volume: $V = L \times \ell \times h$

Cylindre droit

La hauteur : h = AB L'aire (surface) :

 $S_L = 2\pi \times R \times h$

Volume:

 $\mathbf{S}_{\mathrm{L}} = \boldsymbol{\pi} \times \mathbf{R}^2 \times \mathbf{h}$

Sphère $S(\Omega,R)$

Rayon: R

Volume: $V = \frac{4}{3}\pi \times R^3$

GEOMETRIE DANS L'ESPACE

PYRAMIDE SABCD

h=ID=HC=GB=FA=JE

Pyramide SABCD

Sommet: S Hauteur: h = SHSurface de la base : S_R

Volume: $V = \frac{1}{3}S_B \times h$

Prisme droit

Hauteur: h

Périmètre de la base : P_R

Surface de la base : S_B

L'aire (surface) latérale : $S_L = P_B \times h$

Volume: $V = P_B \times h$

cône de révolution

Hauteur: h = OSRayon de la base : R

Volume!

$$\mathbf{V} = \frac{1}{3}\pi \times \mathbf{R}^2 \times \mathbf{h}$$

Remarque:

C'est faux de dire : D'un point O de l'espace passe une et une seule droite (Δ) orthogonale à une droite (D) donnée de l'espace.

Exemple: _

