MySQL Connection Implementation

```
In [1]:
        import mysql.connector
        import pandas as pd
        import matplotlib.pyplot as plt
        from sqlalchemy import create engine
In [2]: connection = mysql.connector.connect(
               host='localhost',
                database='bank database',
               user='root',
                password='pramothguhan12',
                 auth plugin='mysql native password'
In [3]: if connection.is connected():
                db Info = connection.get_server_info()
                print(f"Connected to MySQL Server version {db Info}")
                # Create a cursor object to execute SQL queries
                cursor = connection.cursor()
        Connected to MySQL Server version 8.0.36
        connection
In [4]:
        <mysql.connector.connection cext.CMySQLConnection at 0x1c1d74735e0>
Out[4]:
```

Query Implementation

Out[5]:

```
In [5]: df = pd.read_sql_query("SELECT * FROM employee", connection)
df

C:\Users\pramo\anaconda3\lib\site-packages\pandas\io\sql.py:761: UserWarning: pandas onl
y support SQLAlchemy connectable(engine/connection) ordatabase string URI or sqlite3 DBA
PI2 connectionother DBAPI2 objects are not tested, please consider using SQLAlchemy
warnings.warn(
```

:		EMPLOYEE ID	EMPLOYEE NAME	EMPLOYEE EMAIL	SALARY	BRANCH ID
	0	555	Tonia Schermick	tschermick0@cnbc.com	5358.86	2808
	1	839	Derrick Bettenay	dbettenay1@netvibes.com	7313.88	2946
	2	506	Sharyl Yankov	syankov2@elpais.com	7048.32	2508
	3	714	Marcella Allbones	mallbones3@bizjournals.com	7148.82	3021
9. 9.	4	878	Desdemona MacParlan	dmacparlan4@bigcartel.com	9672.85	4131
	•••					
	95	300	Colas Handrik	chandrik2n@auda.org.au	4514.90	2847
	96	124	Harv Allgood	hallgood2o@mediafire.com	6186.83	4720
	97	406	Claudio Hunting	chunting2p@opensource.org	6566.09	1252
	98	100	Sharyl Meenehan	smeenehan2q@addthis.com	7877.04	4826
	99	701	Rawley Forestel	rforestel2r@foxnews.com	8518.41	4999

In [6]: df = pd.read_sql_query("SELECT * FROM reward;", connection)
df.head(10)

C:\Users\pramo\anaconda3\lib\site-packages\pandas\io\sql.py:761: UserWarning: pandas onl
y support SQLAlchemy connectable(engine/connection) ordatabase string URI or sqlite3 DBA
PI2 connectionother DBAPI2 objects are not tested, please consider using SQLAlchemy
warnings.warn(

Out[6]: REWARD ID REWARD AMOUNT REQUEST DATE REDEMPTION OPTION CUSTOMER ID 0 66067474 \$1172.47 04/21/2022 **COUPON** 57849 15901910 \$2667.44 07/29/2022 **WEBSITE** 42148 2 61884675 \$3612.69 08-11-2023 **APP** 99941 3 48276456 \$4060.61 04/29/2023 **COUPON** 37152 APP 4 58233430 \$2795.17 02-03-2023 40824 5 51236128 \$5175.59 01-06-2024 COUPON 82764 6 62919492 **COUPON** \$603.09 10/31/2022 66412 7 87440465 \$3596.64 10/13/2023 **COUPON** 71486

\$8769.97

\$4456.46

INCOME BRANCH ID

In [7]: df = pd.read_sql_query("SELECT `CUSTOMER ID`, `INCOME`, `BRANCH ID` FROM `CUSTOMER` ORDE
 df.head(10)

05-01-2022

05-11-2022

C:\Users\pramo\anaconda3\lib\site-packages\pandas\io\sql.py:761: UserWarning: pandas onl
y support SQLAlchemy connectable(engine/connection) ordatabase string URI or sqlite3 DBA
PI2 connectionother DBAPI2 objects are not tested, please consider using SQLAlchemy
warnings.warn(

APP

COUPON

19623

63798

0	99808	\$93011.26	4999
1	28273	\$91975.45	2508
2	31971	\$88840.39	2946
3	48478	\$86338.92	4131
4	10271	\$85718.19	4999

8

9

Out[7]:

56243724

78616818

CUSTOMER ID

5	27260	\$7856.16	2847
6	22858	\$76483.65	2508
7	47870	\$69730.82	2946
8	24816	\$67659.02	4826

47555 \$67461.52

In [8]: df = pd.read_sql_query("SELECT `BRANCH ID`, COUNT(`CUSTOMER ID`) AS NUMBER_OF_CUSTOMERS
 df.head(10)

4999

C:\Users\pramo\anaconda3\lib\site-packages\pandas\io\sql.py:761: UserWarning: pandas only support SQLAlchemy connectable (engine/connection) ordatabase string URI or sqlite3 DBA

PI2 connectionother DBAPI2 objects are not tested, please consider using SQLAlchemy warnings.warn(

Out[8]: BRANCH ID NUMBER_OF_CUSTOMERS

	DIVALLETTID	NOMBER_OI_COSTOMERS		
0	2808	10		
1	2946	10		
2	2508	10		
3	3021	10		
4	4131	10		
5	2847	10		
6	4720	10		
7	1252	10		
8	4826	10		
9	4999	10		

```
In [9]: df = pd.read_sql_query("SELECT * FROM TRANSACTION WHERE status = 'success';", connection
    df.head(10)
```

C:\Users\pramo\anaconda3\lib\site-packages\pandas\io\sql.py:761: UserWarning: pandas onl
y support SQLAlchemy connectable(engine/connection) ordatabase string URI or sqlite3 DBA
PI2 connectionother DBAPI2 objects are not tested, please consider using SQLAlchemy
warnings.warn(

\cap		+	Γ	Ω	٦	
U	и	L	L	J	J	۰

	TRANSACTION ID	TRANSACTION AMOUNT	TRANSACTION TIME	STATUS	CUSTOMER ID
C	8341882	\$42001.28	19:15:49	SUCCESS	57849
1	8299034	\$28211.43	21:06:46	SUCCESS	37152
2	9968591	\$38568.93	22:29:00	SUCCESS	82764
3	3247352	\$56198.97	20:43:55	SUCCESS	63798
4	4507010	\$2991.17	14:25:15	SUCCESS	12157
5	1796926	\$35433.24	16:45:02	SUCCESS	64932
6	4426801	\$56370.28	00:11:14	SUCCESS	74289
7	4915518	\$22432.00	20:33:22	SUCCESS	97280
8	6304158	\$79451.55	05:08:00	SUCCESS	66641
9	5219665	\$90261.02	00:36:12	SUCCESS	31971

Data Visualization

```
In [10]: import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

```
In [11]: connection = mysql.connector.connect(
    host='localhost',
    database='bank_database',
    user='root',
    password='pramothguhan12'
)
```

```
cursor = connection.cursor()
# Execute the SQL query to get the number of loans in each branch
query = """
SELECT `BRANCH ID`, COUNT(*) AS NUMBER OF LOANS
FROM `LOAN`
GROUP BY `BRANCH ID`
ORDER BY NUMBER OF LOANS DESC
LIMIT 10;
cursor.execute(query)
# Fetch the data and convert it into a pandas DataFrame
data = cursor.fetchall()
df = pd.DataFrame(data, columns=['BRANCH ID', 'NUMBER OF LOANS'])
cursor.close()
connection.close()
custom colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd',
                 '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf']
plt.figure(figsize=(8, 8))
plt.pie(df['NUMBER OF LOANS'], labels = ['Branch ID = ' + str(branch id) for branch id i
plt.title('Distribution of Loans Among Top 10 Branches')
plt.show()
```

Distribution of Loans Among Top 10 Branches


```
In [12]: connection = mysql.connector.connect(
    host='localhost',
    database='bank_database',
    user='root',
    password='pramothguhan12'
```

```
cursor = connection.cursor()
# Execute the SQL query to get the top 10 customers with the maximum credit score
SELECT `CUSTOMER`.`CUSTOMER NAME`, `CREDITCARD`.`CUSTOMER ID`, MAX(`CREDITCARD`.`SCORE`)
FROM `CREDITCARD`
JOIN `CUSTOMER` ON `CREDITCARD`.`CUSTOMER ID` = `CUSTOMER`.`CUSTOMER ID`
GROUP BY 'CREDITCARD'.'CUSTOMER ID', 'CUSTOMER'.'CUSTOMER NAME'
ORDER BY `MAX CREDIT SCORE` DESC
LIMIT 10;
.....
cursor.execute (query)
# Fetch the data and convert it into a pandas DataFrame
data = cursor.fetchall()
df = pd.DataFrame(data, columns=['CUSTOMER NAME', 'CUSTOMER ID', 'MAX CREDIT SCORE'])
cursor.close()
connection.close()
x labels = [f'{name}\n(Customer ID: {customer id})' for name, customer id in zip(df['CUS
plt.figure(figsize=(12, 6))
bars = plt.bar(range(len(df)), df['MAX CREDIT SCORE'], color='skyblue')
plt.xlabel('Customer Name (Customer ID)')
plt.ylabel('Maximum Credit Score')
plt.title('Top 10 Customers with Maximum Credit Score')
plt.xticks(range(len(df)), x labels, rotation=45, ha='right')
plt.tight layout()
for bar, score in zip(bars, df['MAX CREDIT SCORE']):
    plt.text(bar.get x() + bar.get width() / 2, bar.get height(), f'{score}',
             ha='center', va='bottom', color='black')
plt.show()
```

