SIGIR2023 | 当搜索遇到推荐: 搜索增强的序列推荐框架

ML RSer AINLP 2023年07月05日 12:10 江苏

我爱自然语言处理

一个有趣有AI的自然语言处理社区

TLDR:本文针对移动互联网业务中用户在app中既使用搜索又使用推荐服务的场景,提出了一种搜索增强的序列推荐框架SESRec。该框架通过将用户的搜索与推荐兴趣相结合,解耦了用户搜索和推荐行为中相似和不相似兴趣之间的联系。另外,由于用户反馈中缺乏兴趣之间相似度的标签,我们利用了对比学习自监督兴趣的解耦。实验验证了所提出框架的有效性。

When Search Meets Recommendation: Learning Disentangled Search Representation for Recommendation

Zihua Si Gaoling School of Artificial Intelligence Renmin University of China Beijing, China zihua si@ruc.edu.cn

Xiaoxue Zang Yang Song Kuaishou Technology Co., Ltd. Beijing, China {zangxiaoxue,yangsong}@kuaishou.com Zhongxiang Sun Gaoling School of Artificial Intelligence Renmin University of China Beijing, China sunzhongxiang@ruc.edu.cn

> Kun Gai Unaffiliated Beijing, China gai.kun@qq.com

Xiao Zhang*
Jun Xu*
Gaoling School of Artificial
Intelligence
Renmin University of China
Beijing, China
{zhangx89,junxu}@ruc.edu.cn

Ji-Rong Wen
Gaoling School of Artificial
Intelligence
Renmin University of China
Beijing, China
jrwen@ruc.edu.cn

论文: arxiv.org/abs/2305.10822

代码: github.com/Ethan00Si/SESREC-SIGIR-2023

研究动机

推荐系统和搜索引擎广泛应用于各大在线平台,帮助用户减轻信息过载。随着互联网数据的增加,单独使用一个系统已不能满足用户需求。因此,流媒体平台,比如:快手和抖音,同时提供搜索和推荐服务。用户在这两种情景中表达了各种兴趣,联合建模两者行为来增强推荐系统是一个潜在的研究方向,关键挑战在于有效利用用户的搜索兴趣建模更加准确的推荐兴趣。

短视频场景中用户搜索和推荐行为的例子

如上图,用户观看了一段关于狗的视频后,选择点评论区推荐的query(被动搜索)以了解更多信息。稍后,用户观看了一段烤肉视频后,又主动键入(自发搜索)了与所观看视频无关的"World Cup 2022"这一个query。对于推荐行为来说,相似的搜索行为反映了用户在使用产品时重叠的强烈兴趣,应予以加强;不相似的搜索行为可能是未被推荐系统发现的兴趣,如:用户的新偏好,也应作为推荐兴趣的补充予以增强。综合来说,推荐系统应该共同考虑用户的搜索和推荐兴趣,并将其解耦成相似和不相似的部分,从而得到更精确的表征。

任务设置

序列推荐只考虑历史交互过的物品序列(S_i^u)建模用户。同传统的序列推荐不同,搜索增强的序列推荐同时考虑了用户的历史搜索行为(提出过的query以及点击过的物品序列, S_c^u 和 S_q^u)和推荐行为(S_i^u)来建模用户兴趣并预测下一次的交互。

所提算法

为了解决上述问题,我们设计了一个用于序列推荐的搜索增强框架,即SESRec,用于学习推荐中解耦开的搜索表示。具体而言,为了解耦两种行为之间的相似和不相似兴趣,我们提出将搜索和推荐序列分别进行建模,并且将每个历史序列分解为两个子序列,分别表示相似和不相似的兴趣,以便我们可以从多个方面提取用户的兴趣。

SESRec的整体框架

自监督兴趣解耦

为了学习两种行为之间的相似性,我们首先通过基于用户的查询-物品交互的InfoNCE损失函数来对齐查询和物品的向量表征。这是后续兴趣解耦的基础。

我们使用用户的搜索数据,将query-item交互pair分别进行了item2query和query2item的对 齐,将两个loss求和作为最终的对齐的loss。

$$\mathcal{L}_{\mathbf{A}_{\text{q2i}}}^{u,t} = -\sum_{j=1}^{T_s} \sum_{k=1}^{|q_j|} \log \frac{\exp(s(\hat{\mathbf{e}}_j^q, \hat{\mathbf{e}}_k^i)/\tau)}{\sum_{h \in I_{\text{neg}}} \exp(s(\hat{\mathbf{e}}_j^q, \hat{\mathbf{e}}_h^i)/\tau)}, \quad \mathcal{L}_{\mathbf{A}_{\text{i2q}}}^{u,t} = -\sum_{j=1}^{T_s} \sum_{k=1}^{|q_j|} \log \frac{\exp(s(\hat{\mathbf{e}}_j^q, \hat{\mathbf{e}}_k^i)/\tau)}{\sum_{f \in Q_{\text{neg}}} \exp(s(\hat{\mathbf{e}}_f^q, \hat{\mathbf{e}}_k^i)/\tau)},$$

$$\mathcal{L}_{\text{ali}}^{u,t} = \frac{1}{2} (\mathcal{L}_{\text{A}_{\text{q2i}}}^{u,t} + \mathcal{L}_{\text{A}_{\text{i2q}}}^{u,t}),$$

Alignment Loss

接下来,我们使用两个独立的编码器来建模搜索和推荐行为,并且将编码后的行为历史进行了兴趣解耦。由于缺乏搜推行为之间相似兴趣的标签,我们使用了自监督来引导模型学习相似和不相似的兴趣。

具体而言,我们利用协同注意机制来学习搜索和推荐表征之间的相关性。基于协同注意得分,对于两个序列表示,我们不仅将它们聚合起来生成锚点,这保持了搜索和推荐之间的共同兴趣,还将它们分割成两个子序列,分别表示搜索和推荐之间的相似和不相似兴趣(分别称为正样本和负样本)。接着,我们定义了一个triplet loss,将锚点与正样本之间的距离拉近,将锚点和负样本之间的距离推远。

$$\mathcal{L}_{\text{con}}^{u,t} = \mathcal{L}_{\text{tri}}(\mathbf{i}_r^A, \mathbf{i}_r^P, \mathbf{i}_r^N) + \mathcal{L}_{\text{tri}}(\mathbf{i}_s^A, \mathbf{i}_s^P, \mathbf{i}_s^N),$$

Interest Contrast Loss

基于原始行为以及包含相似和不相似兴趣的解耦开的行为,我们从聚合的、相似的和不相似的兴趣三个方面提取用户兴趣。给定候选物品v,我们利用注意机制重新分配与候选物品相关的用户兴趣。我们分别对搜索和推荐行为提取了用户兴趣表征。下图展示了抽取推荐兴趣的过程,搜索兴趣的抽取过程相同。

得到用户的搜索、推荐历史兴趣表征向量后,结合用户和物品画像的表征向量,我们使用了MLP进行了最终的交互预测:

$$\hat{y}_{u,v}^{t+1} = \text{MLP}(\mathbf{u}_r || \mathbf{u}_s || \mathbf{e}_v^i || \mathbf{e}_u^u),$$

多任务训练

模型的主任务是推荐任务, 所以使用BCE loss作为主任务的损失函数。

$$\mathcal{L}_{\text{rec}}^{u,t} = -\frac{1}{N} \sum_{v \in O} y_{u,v}^{t+1} \log(\hat{y}_{u,v}^{t+1}) + (1 - y_{u,v}^{t+1}) \log(1 - \hat{y}_{u,v}^{t+1}),$$

并且考虑到还有额外引入的两个自监督任务的loss,我们使用了多任务学习的范式进行模型训练。其中 α , β 是额外任务的权重系数,是两个超参数。

$$\mathcal{L} = \sum_{u=1}^{|\mathcal{U}|} \sum_{t=1}^{T_u} (\mathcal{L}_{\text{rec}}^{u,t} + \alpha \mathcal{L}_{\text{ali}}^{u,t} + \beta \mathcal{L}_{\text{con}}^{u,t}) + \lambda ||\Theta||_2.$$

实验结果

在一个工业数据集Kuaishou和一个开源的模拟数据集Amazon上进行的广泛实验表明,本文所提出的SESRec超过了以往的序列推荐模型和引入搜索数据的模型取得了SOTA的效果。

Table 2: Overall performance comparisons on both datasets. The best and the second-best performance methods are denoted in bold and underlined fonts respectively. * means improvements over the second-best methods are significant (p-value < 0.01).

Dataset		Kuaishou						Amazon (Kindle Store)					
Category	Method	NDCG@5	NDCG@10	HIT@1	HIT@5	HIT@10	MRR	NDCG@5	NDCG@10	HIT@1	HIT@5	HIT@10	MRR
Sequential	STAMP	0.2544	0.2981	0.1413	0.3616	0.4970	0.2569	0.2612	0.3103	0.1336	0.3833	0.5352	0.2608
	DIN	0.2969	0.3418	0.1792	0.4092	0.5484	0.2976	0.2999	0.3495	0.1591	0.4340	0.5871	0.2942
	GRU4Rec	0.3247	0.3688	0.1890	0.4517	0.5881	0.3180	0.3099	0.3662	0.1479	0.4648	0.6388	0.2993
	SASRec	0.3252	0.3693	0.1904	0.4501	0.5864	0.3187	0.3822	0.4312	0.2187	0.5324	0.6838	0.3675
	DIEN	0.3217	0.3704	0.1914	0.4463	0.5969	0.3192	0.3336	0.3803	0.1871	0.4706	0.6150	0.3246
	FMLP-Rec	0.3354	0.3787	0.1953	0.4651	0.5988	0.3270	0.4073	0.4550	0.2349	0.5651	0.7121	0.3883
Search-aware	NRHUB	0.2964	0.3431	0.1665	0.4199	0.5647	0.2933	0.2744	0.3265	0.1329	0.4099	0.5708	0.2704
	JSR	0.3015	0.3513	0.1738	0.4241	0.5783	0.3004	0.3221	0.3722	0.2057	0.4386	0.5937	0.3224
	IV4REC	0.3114	0.3591	0.1877	0.4282	0.5761	0.3116	0.3473	0.3960	0.1853	0.4985	0.6258	0.3331
	Query-SeqRec	0.3117	0.3581	0.1740	0.4412	0.5844	0.3055	0.3692	0.4142	0.2187	0.5083	0.6470	0.3572
	SRJGraph	0.3297	0.3762	0.2046	0.4479	0.5917	0.3277	0.3670	0.4043	0.2760	0.4898	0.6242	0.3708
	SESRec	0.3541*	0.4054*	0.2173*	0.4848^{*}	0.6436*	0.3490°	0.4224*	0.4663*	0.2580	0.5723*	0.7074	0.4046^{\star}

更多技术细节请参考原始论文。

AINLP

一个有趣有AI的自然语言处理公众号:关注AI、NLP、大模型LLM、机器学习、推荐系统... 392篇原创内容

公众号

进技术交流群请添加AINLP小助手微信(id: ainlp2)

请备注具体方向+所用到的相关技术点