珠海科技学院

毕业设计

基于 FPGA 的 JPEG 图像编解码系统设计

学 院: 电子信息工程学院

专 业 名 称: 微电子科学与工程

学 生 姓 名: 黄智为

学 号: 03210828

指导老师姓名、职称: 孙永坚 讲师

完成日期: 2025年2月15日

摘 要

随着近几十年来多媒体技术、图像扫描技术、移动终端、通信技术的不断发展,数字图像和视频数据的广泛使用,图像数据的数量呈指数机增加。于此对图像数据的存储以及传输的需求日益严峻。一味地添加设备的存储容量和信道的带宽是不现实的,对此使用图像压缩技术来减少图像数据的数据量。而作为静态图像压缩国际标准格式的 JPEG(Joint Photographic Experts Group),因具有压缩率高、失真率小等特点。在国际上取得广泛的应用。

目前大多数的 JPGE 格式图像数据编解码系统都是基于软件编程从而运行在通用计算机上。这种方式存在计算效率低、实时性低、运行功耗高等诸多缺点。于此同时具有对硬件可编程、运行功耗低的 FPGA (Field Programmable Gate Array) 芯片的规模不断增加,在 FPGA 芯片内实现复杂的数字信号处理系统已成为现实。因此本设计将 JPEG 压缩技术和 FPGA 相结合提升系统的性能,并从实际工程出发,设计出一套 JPEG 编解码系统。完成 JPEG 编解码在 FPGA 上的实现。

本论文的结构首先阐述了 JPEG 格式的编解码 FPGA 实现的研究背景与意义国内外研究现状,并以此提出了一种新型的基于脉动阵列实现 DCT 算法的流水线结构。接着描述了 JPEG 格式编码和解码算法的实现步骤。然后采用 SOC 的设计思想,给出整个硬件系统的内部结构、层次划分,对每个运算步骤进行了详细的描述。最后完成整体的验证。

本设计基于 Xilinx 的 Zynq 系列的 FPGA 的硬件平台,对 CMOS 图像传感器 OV5640 采集的图像数据进行采集和压缩,再通过使用低速串行通信协议传输压缩数据。在 EDA 工具 vivado2019.1 中完成综合仿真、布局布线以及码流生成。

关键词: FPGA; 图像压缩; JPEG

ABSTRACT

this is adstract

keywords: FPGA,JPEG

目 录

1	绪论	. 1
	1.1 研究背景及研究意义	. 1
	1.1.1 选题背景	. 1
	1.1.2 研究意义	. 1
	1.2 国内外研究现状	. 1
	1.3 使用芯片简介	. 2
	1.4 开发环境	. 2
	1.4.1 Vivado 简介	. 2
2	2 JPEG 图像压缩相关理论	. 3
	2.1 彩色空间变换及逆变换	. 3
	2.2 离散余弦变换及逆变换	. 4
	2.3 量化及反量化	. 5
	2.4 ZigZag 扫描及反扫描	. 7
	2.5 熵编码及熵解码	. 7
	2.5.1 DC 系数差分脉冲编码	. 7
	2.5.2 AC 系数游程编码	. 8
	2.5.3 霍夫曼编码	. 8
	2.6 JPEG 文件格式	. 11
	2.7 本章总结	. 13
3	3 JPEG 编码系统硬件结构设计	. 14
	3.1 设计思想	. 14
	3.1.1 流水线	. 14
	3.1.2 脉动阵列	. 14
	3.1.3 乒乓操作	. 14
	3.2 编码模块划分	
	3.3 DCT 模块	. 14
	3.4 DA 算法	. 14
	3.5 DA 算法的硬件实现	
	3.6 数据预处理模块	
	3.7 熵编码模块	
	3.8 JPEG 文件格式生成模块	

4	JPEG 编解码系统 FPGA 实现以及验证	15	í
	4.1 验证系统模块划分	15	,

1 绪 论

1.1 研究背景及研究意义

1.1.1 选题背景

图像数据作为信息的重要载体,在如今这个信息化的社会扮演着不可欠缺的角色相对与文本,图像具有强大的表达能力,通过像素、色彩及形状结构等元素传递出大量的信息。随着高清图像和视频的普及,图像数据的数量呈指数级增长。对高存储空间传输带宽的需求日益严峻。一味地添加设备的存储容量和信道的带宽是不现实的,因此图像压缩技术孕育而生。

目前图像压缩格式应用最广的是 JPGE 压缩格式。它运用图像数据在空间上的冗余性以及人眼对图像的辨别度有限等特性来减少图像的数据量。目前 JPEG 图像大多数使用软件进行编解码。但对于医疗器械、自动驾驶、视频监控等对视频画面逐帧处理要求高的场景,这种方式有着效率低、运行功耗高等诸多缺点。

1.1.2 研究意义

本设计采用 FPGA 高并行计算能力和低功耗的特性设计出一套高效运行的 JPGE 格式编解码系统。该系统能保证图像数据高实时传输地同时保持较低的功耗,适合运它运用在嵌入式系统或边缘计算设备。通过对算法进行硬件级优化,FPGA 能够对 JPGE 压缩的各个环节进行流水线和并行处理。相对于传统的软件开发方式极大地提升了系统的吞吐量和响应速度,同时保持较低的运行功耗。此外这种编解码系统作为软核结合 FPGA 使用使用具有较强的可扩展性,可与大多数视频图像处理系统相结合,助力更多地创新应用开发。

1.2 国内外研究现状

随着近几十年来信息技术地不断发展,图像和视频数据被广泛运用。因此如何降低数据的存储大小和传输系统的负担一直是研究的问题。现如今图像数据压缩编码主要分为两种,一种是针对静止图像在空间在空间的纬度上进行压缩编码的压缩方式,如 JPEG、JPEG-2000、JPEG-LS。另一种是针对多个数据帧在时间纬度上进行压缩的方式如 H.264、H.256等。其中JPEG(Joint Photographic Exprts Group,联合专家组)标准有 ISO 在 1991 年提出,之后有相继提出了 JPEG-L、JPEG-MOTION、JPEG2000 三个图像标准,JPEG-LS 是一种接近无损压缩的压缩格式,其工作简单高效,但是输出的编码率随原图像的改变存在较大的波动。PEG-MONTION 是基于 JPEG 发展起来的,可用于动态图像的压缩,但是压缩率比较低。JPEG2000是用小波变换代替 JPEG 的离散余弦变换(DCT),在低比特率下,有更良好的图像压缩性能,但是算法的复杂度高,因此在一下追求低负责度的实时应用中,JPEG2000 无法替代 JPEG,在大多数的场合之下,使用 JPEG 就能满足需要了。

国内在 JPEG 的研究和应用方向上主要都是通过软件编程运行在 CPU 实现的。在应用方面,为了解决胶囊内窥镜有效空间和电池容量以及传输实时性要求高的场景,上海交通大学的赵恒阳、刘华使用 fpga 芯片对图像进行 JPEG 格式的编码,以 2Mbps 的数据速率进行传输,可以达到 30fps 的视频刷新率。在算法改进方面杜英杰针对传统 JPEG 使用固定量表,在压缩图像的视觉质量和压缩率的制衡不能灵活调节的问题。提出了一种基于感知量化和统计量化

的自适应量化算法,可以根据在不同频率信息中应用不同量化步长的方法,实现更高的压缩 比和更优的图像压缩效果,并使用 FPGA 进行硬件实现。

国外在 JPEN 格式编解码 FPGA 实现的研究现状有: 里斯本高级工程学院的学者利用 FPGA 独有的硬件结构可编程的特点,使用了 FPGA 动态局部可重构技术,根据编码的流程对 FPGA 硬件逻辑资源进行分时复用,实现硬件资源利用最大化。采用该方案相对使用传统的静态解决方案在资源占用上节省了 60%,但代价是是运行速度上慢了 9 倍。Shan 等人通过行列分解的方式实现 2D-DCT(二维离散余弦变换),并在设计中引入乒乓缓存器。在运行在 100MHZ 的时钟信号下,针对 1920*1080 的图像,最快解码率可达到 30fps 的视频刷新率。Teja 等人针对 2D-IDCT(二维离散余弦逆变换)设计了一种全流水的硬件结构,同时不使用乘法器,降低了 2D-IDCT 模块的资源利用。

1.3 使用芯片简介

本设计使用的芯片型号是 Xilinx 公司 Zynq-7000 系列的 XC7Z020-CLG484。Zynq-7000 系列是 Xilinx 公司推出的全可编程片上系统(All Programmable SOC), 其中包含了 PS (Processing System,处理器系统)和 PL (Programmable Logic,可编程逻辑)两部分。

Zynq SoC 整合了 ARM 双核 cortex-A9 处理器和 FPGA 架构,实际上是一个片上系统 (System on Chip, SoC),因此使得它不仅具有 FPGA 在能耗、性能、硬件可编程的优点,同时具有处理器软件可编程的优点,以提供强大的系统性能、灵活性与可扩展性。该芯片的可编程逻辑部分基于 Xilinx 28nm 工艺的 7 系列 FPGA。

1.4 开发环境

本设计使用的开发环境是 EDA 工具 Vivado2019.2。

1.4.1 Vivado **简介**

Vivado 是 Xilinx 公司开发的集成开发环境,用于数字设计、验证和实现 FPGA 和 SoC 解决方案。Vivado 提供了一个全面的工具集,帮助设计者从硬件设计到软件开发的整个流程,包括:设计与综合、FPGA 的布局布线、仿真和验证、码流生成、ILA(Integrated Logic Anglzer)在线调试、PS 端的软件开发、IP 核集成。Vivado 旨在提示 FPGA 设计的效率,特别是在复杂的系统级集成和高性能应用中。它广泛运用在通信、自动化、医疗、汽车、芯片设计等领域。

2 JPEG 图像压缩相关理论

要对一张静态图像数据进行 JPEG 编解码从而做到压缩和解压,需要经历多个过程。如图 2-1 所示。

图 2-1 JPEG 的编码和解码流程

JPEG 格式的图像压缩流程为: 首先将图像每个像素点的 R、G、B 颜色分量通过色彩空间变换转换成色度分量 Cr、Cb 以及亮度分量 Y。之后将图片划分为若干个 8*8 的数据单元每个单元包含 64 个像素点,再对每个数据单元进行二维离散余弦变换(DCT),将二维的空间域数据变成二维的频域数据。再根据量化表对对应的频域分量进行量化处理。再通过 Zig-Zag 扫描将二维的频域数据转换成一维的序列。最后,依次通过游程编码和霍夫曼编码去除掉冗余的数据从而压缩 JPEG 图像数据。

解压缩流程的流程与压缩的各个流程相反,除了量化和彩色空间变换这一过程会丢失一定的信息之外,其他的步骤都可以无损还原原数据,因此 JPEG 是一种有损压缩技术。

下面依次对各个步骤做详细的描述。

2.1 彩色空间变换及逆变换

绝大多数的颜色都可以使用 R、G、B 三种颜色分量的线性组合进行合成。因此大多图像数据每个像素点都是以 RGB 分量表示。特别是再计算机视频技术中,不管使用哪种形式的彩色空间表示,最后一定要转换为 RGB 彩色空间显示。

相关研究表明,人类的视觉系统有分别对红绿蓝三种颜色敏感层度的三种锥体细胞以及对明暗程度敏感的锥体细胞。其中对明暗程度的锥体细胞的数量大于对颜色敏感层度锥体细胞的数量。因此人类对是对色度辨识度大概是对明暗变换的辨识度的四分之一,因此可以利用对颜色感知强度的不同,将 RGB 彩色空间变换到 YCrCb 彩色空间再根据感知能力做对应

的处理。

ITU-R601 建议规定的 RGB 彩色空间到 YCbCr 彩色空间变换关系如式 (2.1):

$$\begin{bmatrix} Y \\ Cr \\ Cb \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.144 \\ 0.500 & -0.419 & -0.081 \\ -0.169 & -0.331 & 0.500 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix} + \begin{bmatrix} 0 \\ 128 \\ 128 \end{bmatrix}$$
(2.1)

在 JPEG 编码中, RGB 颜色分量的取值范围通常是 0 到 255, 因此 JPEG 数据使用的是 8 位无符号整数。而在 YCrCb 颜色空间中, 色度的颜色分量 Cr、Cb 的范围为-128 到 127。为了将其范围转换为 0 到 255。故添加偏移量 128,以确保范围在 0 到 255 内。这有助于在 JPEG 编码和解码中正确处理色度信息。这个偏移量是 JPEG 编码标准的一部分,确保了色度信息在 JPEG 图像中正确显示。

彩色空间的逆变换如下式所示:

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 1 & 1.402 & 0. \\ 1 & -0.344 & -0.714 \\ 1 & 0 & 0.500 \end{bmatrix} \begin{bmatrix} Y \\ Cb \\ Cr \end{bmatrix} + \begin{bmatrix} 128 \\ 128 \\ 128 \end{bmatrix}$$
 (2.2)

由于人类的视觉系统对色度变化的感知低于亮度,因此在对色度分量进行采样的时候可以有选择性地进行降采样,进而降低数据量,这也是最朴素的图像压缩技术之一。根据对色度分量的采样率不同分为一下几种采样格式:

YCbCr444:每个分量的采样率都为1。这意味着对于每一个像素点都进行完整的采样,携带完整的原图片信息,没有信息丢失。因此 YCbCr44 也是最高质量的采样格式。

YCbCr422: 在每两个水平相邻的像素中,只用一个 Cr 分量和一个 Cb 分量来表示该这两个像素点的色度分量,而每一个像素点都与之对应的 Y 分量。这种降采样的方式减少了颜色信息的存储和传输需求,在一定程度上牺牲了色度分辨率,但保留了较高的图像质量。

YCbCr420: 在每两个水平相邻以及垂直相邻的像素中,只用一个 Cr 分量和一个 Cb 分量表示这 4 个像素点的色度分量,而每一个像素点都有一个与之对应的 Y 分量。这种降采样的方式减少了存储和传输的需求,同时牺牲了色度的分辨率,是广泛应用与图片和视频压缩的以及传输的一种采样格式。本设计采用该采样格式。

再经过采样后需要将采样得到的 Y、Cb、Cr 三种格式分别根据在空间上的分布整合成若干个 8 乘 8 的数据单元。该数据单元是之后 JPEG 编解码各个流程之中的处理单位,称为 MCU(Minimun Coded Unit,最小编码单元)。当使用 YCbCr422 采样格式时单个 MCU 有 2 个 8 乘 8 的 Y 分量单元以及 Cr 和 Cb 分量 8 乘 8 单元各一个。同理,当使用 YCbCr 采样格式时单个 MUC 有 4 个 8 乘 8 的 Y 分量单元以及 Cr 和 Cb 分量 8 乘 8 单元各一个。

2.2 离散余弦变换及逆变换

由于人类的视觉系统在对,图像上亮度以及色度在空间上变化频率高的细节部分的注意力并不高,因此可以将图像上的高频率的信息适当的过滤掉,进而对数据进行近一步的压缩。DCT (Discrete Cosine Transform 离散余弦变换)的作用是将图像从空间域转换到频域。在 JPEG中,通过对每个 MCU 进行 2D-DCT 从而得到在空间上各个频率代表的正交基分量。2D-DCT

的变换公式如下:

$$F(u,v) = \alpha(u)\alpha(v) \sum_{x=0}^{N-1} \sum_{y=0}^{M-1} f(x,y) \cos\left[\frac{\pi}{N}\left(x+\frac{1}{2}\right)u\right] \cos\left[\frac{\pi}{M}\left(y+\frac{1}{2}\right)v\right]$$

$$u = 0, 1, 2, \dots, N-1$$

$$v = 0, 1, 2, \dots, M-1$$

$$(2.3)$$

其中

$$\alpha(u) = \begin{cases} \sqrt{\frac{2}{N}} &, u > 0 \\ \frac{1}{\sqrt{N}} &, u = 0 \end{cases} \quad \alpha(v) = \begin{cases} \sqrt{\frac{2}{M}} &, v > 0 \\ \frac{1}{\sqrt{M}} &, v = 0 \end{cases}$$
 (2.4)

在 JPEG 中对 8×8 的像素块进行 2D-DCT 变换, 所以有 N=8, M=8。带入 (2.3) 有:

$$F(u,v) = \frac{1}{4}\alpha(u)\alpha(v)\sum_{x=0}^{7}\sum_{y=0}^{7}f(x,y)\cos\frac{(2x+1)u\pi}{16}\cos\frac{(2y+1)u\pi}{16}$$

$$\alpha(v),\alpha(u) = \begin{cases} 1 & ,u,v>0\\ \frac{1}{\sqrt{2}} & ,u,v=0 \end{cases}$$
(2.5)

在公式中,f(x,y) 表示在位置 (x,y) 的像素值。其中 F(0,0) 实际上就是对 64 个像素点做加权平均,相当于 8×8 单元的平均亮度,成为 DC(Direct coefficient,直流)系数。其余的 63 个频率值的点称为 AC(Alternation coefficient,交流)系数。在交流系数中距离直流系数点越大代表该点的频率越高。

将频域转换成空间域的变换称为 IDCT (Inverse Discrete Cosine Transform, 离散余弦逆变换), 2D-IDCT 的表达式如下:

$$f(x,y) = \frac{1}{4}\alpha(u)\alpha(v) \sum_{u=0}^{7} \sum_{v=0}^{7} F(u,v) \cos\frac{(2x+1)u\pi}{16} \cos\frac{(2y+1)v\pi}{16}$$

$$\alpha(v), \alpha(u) = \begin{cases} 1 & , u, v > 0\\ \frac{1}{\sqrt{2}} & , u, v = 0 \end{cases}$$
(2.6)

2.3 量化及反量化

量化是对 DCT 系数进行压缩的最关键一步,它按照给定的量化系数对每个 DCT 进行除法,再通过四舍五人取整数的方式得到量化后的系数,这个过程是一个一对多的映射过程。也就代表量化后的数据将无法完整地还原回来,因此存在数据丢失。这也是导致 JPEG 有损压缩的原因之一,量化的公式如下:

$$C(u,v) = round\left[\frac{F(u,v)}{Q(u,v)}\right]$$
(2.7)

其中 F(u,v) 是 2D-DCT 系数,Q(u,v) 是步长值,C(u,v) 是量化后的值。而反量化自然就是将量化后的值乘回步长值,反量化的公式如下

$$F(u,v) = C(u,v)Q(u,v)$$
(2.8)

量化是为了将大部分的高频分量都转换为 0,进而减少高频分量的信息,同时也是为了下一步编码作出准备。通过不同的量化表从而控制图像的压缩程度。JPEG 针对色度以及亮度有不同的量化表,如表 2-1和表 2-2所示

表 2-1 亮度量化表

	亮度量化表						
16	11	10	16	24	40	51	61
12	12	14	19	26	58	60	55
14	13	16	24	40	57	69	56
18	22	37	56	68	109	103	77
24	35	55	64	81	104	113	92
49	64	78	87	103	121	120	101
72	92	95	98	112	100	103	99

表 2-2 色度量化表

色度量化表							
17	18	24	47	99	99	99	99
18	21	26	66	99	99	99	99
24	26	56	99	99	99	99	99
47	66	99	99	99	99	99	99
99	99	99	99	99	99	99	99
99	99	99	99	99	99	99	99
99	99	99	99	99	99	99	99
99	99	99	99	99	99	99	99

对比两个表可以明显地看出,对于亮度步长的划分会更细一点,同时高频分量的值是普遍大于低频部分的。这是由于人眼对色度和高频部分图像信息的辨识能力低于亮度和高频部分。可以把量化当成一个在空间上的二维低通滤波器。

2.4 ZigZag 扫描及反扫描

图 2-2 ZigZag 扫描

ZigZag 扫描的过程如图 2-2所示,它对 8×8 单元进行一维上的重排序。这一步骤也可以在量化前执行。对于大部分的 8×8 单元而言,在经过量化后,右下角的高频分量存在大量的零值。为了最大限度地将这些零值相邻为后面压缩做准备,通过 Z 字形扫描对 8×8 单元进行重排序。同理,反扫描即为将 1 维序列排回 8×8 单元。

2.5 熵编码及熵解码

图像数据的信息冗余量主要体现来两个层面:一是图像数据中各个相邻数据之间存在着一定的关联性。在一点体现在空间域上就是相邻的像素点之间的差距一般并不是很大,体现在频域上则是在经过量化和 ZigZag 扫描之后的数据中存在大量连续的零值;二是图像中不同的像素值的概率分布通常是不均匀的,某些像素值的出现的概率较高。如果对出现概率较高的数据采用跟少的位数进行编码,则能在一定程度减少一定的数据量。熵编码的主要目的为通过信息熵理论来减少这些冗余的信息,从而降低图像数据在传输和存储中所占用的时间和空间。同时熵编码是可逆的属于无失真压缩。

在量化后。对于 DC 系数和 AC 系数两者在统计性质有很大的不同,因此采用两种不同的编码方式,对于 DC 系数采用差分脉冲编码(differential Pluse Code Modulaiton,DPCM),对于 AC 系数则使用游程编码(Run-Length Encodeing,RLE)。这两种编码方式通过在空间和频率上各个相邻数据的相似性的特点进行编码。在霍夫曼编码之前,能有效地减少图像数据的冗余性,以实现更高效的图像压缩。

2.5.1 DC 系数差分脉冲编码

DC 系数的值通常会比 AC 的值要大,而 DC 系数可以认为是每个 8×8 单元的平均值。而在空间上相邻的 8×8 单元平均值的差异通常不大。为了充分利用这一特点,JPEG 采用了差分脉冲编码,通过对当前的 8×8 单元的 DC 系数与前一个 8×8 单元的 DC 系数的差值进行编码。设 DC_{diff} 当前的 8×8 单元的 DC 系数 DC_{i} 减去前一个 DC 系数 DC_{i-1} , DC_{0} 表示第一个 8×8

单元的 DC 值。公式如下:

$$DC_{diff} = \begin{cases} DC_i - DC_{i-1} &, i > 0\\ DC_0 &, i = 0 \end{cases}$$
 (2.9)

 DC_{diff} 的编码格式为 (Size, Amplitude)。其中 Size 为 Amplitude 的位宽值,而 Amplitude 为 DC_{diff} 的幅值,当幅值为正是为原码。反正则为补码。因此 Amplitude 没有符号位。根据 Size 和 Amplitude 的第一位来判断 DC_{diff} 的正负。

2.5.2 AC 系数游程编码

在经过 ZigZag 扫描之后,AC 系数通常会出现大量连续的零值。也就可以通过连续 0 的个数来进行编码,这种方式称为游程编码。游程编码可以有效地表示续出现的相同的值,用该数值本事加上该数值的重复次数来替代。进而减少数据量来做到数据压缩。游程编码的编码格式为(Run, Size, Amplifier)。其中 Run(游程)表示非零值前面零值的个数,Size 表示非零值的尺寸,Amplifier 表示非零值的幅值。同理,也可以根据这三个值还原回原码,从而做到解码。

有两种特殊的情况需要注意: 当出现从某个非零值直到最后第 64 个值都为零时的情况,使用 0/0 (EOB) 进行编码。当连续零值的数量超过 16 个时,使用 F0 (ZRL) 进行编码。

2.5.3 霍夫曼编码

霍夫曼编码是一种可变长度编码,这种编码方法由霍夫曼 (Huffman) 在 1952 年提出。它根据字符的出现的概率来构建编码映射。以实现码字的平均长度最短。该编码方式的压缩率接近香农所定义的极限压缩率,因此这种方法也称为最佳编码。通过查找 AC 和 DC 系数对应颜色分量的 Huffman 表进行编码。Huffman 码表是由 JP EG 标准通过大量的图像数据统计进而规定的,详细内容如下表所示。

表 2-3 亮度 DC_{diff} Huffman 表

尺寸	Huffman 码长度	Huffman 码字
0	2	00
1	3	010
2	3	011
3	3	100
4	3	101
5	3	110
6	4	1110
7	5	11110
8	6	111110
9	7	1111110
A	8	11111110
В	9	111111110

表 2-4 色度 DC_{diff} Huffman 表

尺寸	Huffman 码长度	Huffman 码字
0	2	00
1	3	010
2	3	011
3	3	100
4	3	101
5	3	110
6	4	1110
7	5	11110
8	6	111110
9	7	1111110
A	8	11111110
В	9	111111110

表 2-5 亮度 AC 系数 Huffman 表

游程/尺寸	Huffman 码长度	Huffman 码字
0/0(EOB)	4	1010
0/1	2	00
0/2	2	01
0/3	3	100
0/4	4	1011
0/5	5	11010
0/6	7	1111000
0/7	8	11111000
0/8	10	1111110110
0/9	16	11111111110000010
0/A	16	11111111110000011
1/1	4	1100
F/A	16	11111111111111110

表 2-6 色度 AC 系数 Huffman 表

游程/尺寸	Huffman 码长度	Huffman 码字
0/0(EOB)	2	00
0/1	2	01
0/2	3	100
0/3	4	1010
0/4	5	11000
0/5	5	11001
0/6	6	111000
0/7	7	1111000
0/8	9	111110100
0/9	10	1111110110
0/A	12	111111110100
1/1	4	1011
F/A	16	11111111111111111

在解码时,当多个 Huffman 串行码流排列输出在一起时,可以使用二叉树解索引从而获取对应原码从而做到解码得到尺寸,再通过尺寸得到幅值所占的的位宽得到幅值。通过这种方式从而区分出码流中的各个像素点的数据。

图 2-3 通过二叉树解码

2.6 JPEG 文件格式

通过上述过程得到了压缩之后的图像数据,除此之外,要对数据进行解码。还需要知道图像的相关属性等信息。JPEG 委员会在指定 JPEG 标准时,定义了许多用来区分图像数据及其相关信息的文件格式。目前,使用比较广泛的是 1992 年 9 月由 E ric Hamilton 提出的 JPEG文件交换格式 JFIF (JPEG File Interchange Format) 1.02 版本。大多数的设备都支持 JFIF 文件交换格式。JPEG 编码的最后一个步骤就是把各种标记代码和编码后的图像数据组成一帧一帧的位码流,这样就方便传输、存储和解码器译码。

JFIF 文件格式可以分为两个部分:标识和压缩数据。每个标识的前一个字节是固定值 0xFF。每个标记之前还可以添加数量不限的 0xFF。下表列举几种常见的标记码以及它们各自的数据结构。

表 2-7 几种常见的标记

标记种类	含义
SOI	图像的开始
APP0	JFIF 引用的数据块
SOF0	帧开始
DHT	Huffman 表
SOS	扫描线开始
EOI	图像结束

表 2-8 APPO 标识

标识结构	字节数	含义
0xFF	1	A DDO 논리
0xE0	1	APP0 标识

表 2-9 OF0 标识

标识结构	字节数	含义
0xFF	1	A DDO 4= 2H
0xC0	1	APPO 标识
L_f	2	长度字段,表示图像帧信息长度
P	1	指每个像素点的颜色信息的宽度,通常是8位或12位
Y	2	图像的高度
X	2	图像的宽度
N_f	1	图像颜色通道的数量。通常为1或3,分别表示灰度图和RGB彩色图
N_{NT}	1	颜色通道,0 表示 Y 通道,1 表示 Cb 通道,2 表示 Cr 通道
$H_{TN}Y_{TN}$	1	水平方向和垂直方向的采样率
T_{QNT}	1	表示使用的 Huffman 编码表的编号

表 2-10 DHT 标识

标识结构	字节数	含义	
0xFF	1	A DDO 标记□	
0xC4	1	APPO 标识	
L_b	2	长度字段,表示 Huffman 码字段的长度	
T_c	0.5	当为1时,表示使用该表处理 AC 系数,为0时,表示该表处理 DC 系数	
T_b	0.5	表示 Huffman 表的编号	
L_{i}	1	Huffman 表的长度统计,用于表示不同码字长度的符号数目,i 从 1 到 16	
V_{ij}	1	代表每一个 Huffman 码表所代表的值	

表 2-11 SOS 标识

标识结构	字节数	含义	
0xFF	1	APP0 标识	
0xDA	1		
L_s	2	长度字段,表示数据内容的长度	
N_s	1	表示扫描所涉及到颜色通道的数量	
C_sN_s	0.5	表示 Scan 中成分的编号	
T_dN_s, T_aN_s	1	T_aN_s 表示数据的高 4 位 T_aN_s 表示数据的低 4 位	
S_s	1	一般为 0	
S_s	1	一般为 63	
A_b,A_l	1	一般为 0	

表 2-12 EOI 标识

标识结构	字节数	含义
0xFF	1	EOI 标识
0xD9	1	

2.7 本章总结

本章阐述了JPEG 图像数据编解码的原理和相关理论,以及各个执行的步骤。

3 JPEG 编码系统硬件结构设计

上一章节讲解了JPEG编码的步骤和过程。这一章讲解本设计如何使用硬件实现JPEG的编码以及解码。内容包含数字电路设计中的一些设计思想,编码系统的结构划分,以及各个模块的结构和运行原理。

3.1 设计思想

在数字系统设计中,一个经常围绕的问题就是速度和面积的权衡。使用多个处理单元对数据进行处理是一种朴素的提高系统计算速度和吞吐量的方式。与之带来的副作用就是电路面积的增大。面积增大所带来的副作用不仅仅是成本增加的问题,它也伴随着系统功耗和发热量的增加,这些负面影响都会降低系统的稳定性。而有些运算过程数据依赖性高、并行操作无法有效地提高性能。甚至可能因为额外的开销导致性能的下降。因此,一个好的数字系统设计往往能够权衡速度和面积。

通过前人的大量经验实践总结出了大量的设计思想。如果能在合适的情况下使用这些设计思想,就能得到一个好的设计。下面描述变设计所使用的几种设计思想。

- 3.1.1 流水线
- 3.1.2 脉动阵列
- 3.1.3 乒乓操作
- 3.2 编码模块划分
- 3.3 DCT 模块
- 3.4 DA 算法
- 3.5 DA 算法的硬件实现
- 3.6 数据预处理模块
- 3.7 熵编码模块
- 3.8 JPEG 文件格式生成模块

4 JPEG 编解码系统 FPGA 实现以及验证

4.1 验证系统模块划分