I/O simulation extension for SimGrid framework

Hoang-Dung Do

April 15, 2020

Abstract

1 Introduction

2 Related Work

2.1 Page cache

- What is page cache? How it works.
- Effects and importance of page cache

2.2 Page cache replacement policies

Some proposed strategies

2.3 Implementation in Linux

Details of the implemented strategies in Linux

2.4 Simulators

Compare pros and cons of some simulators: SimGrid, GridSim.

2.5 Our conclusion

3 Method

3.1 Principle of the simulator

- Objective: Add capability to simulate memory read/write, the impact of page cache on I/O in SimGrid.
- Approach: generalize dirty data, dirty ratio, cache eviction strategy implemented in Linux.

3.2 Implementation

- Which features of memory are implemented.
- Level of granularity, how features are implemented.
- Specific implementation detail in python and SimGrid.

3.3 Experiments

Describe data, workflow, number of tasks, task details, environment of each experiment.

3.3.1 Expriment 1

A single pipeline running one node.

3.3.2 Expriment 2

Multiple pipelines running in parallel on multiple nodes.

3.3.3 Expriment 3

Same as Experiment 2 but nodes write to a shared file system.

3.3.4 Expriment 4

A real pipeline (for example a pipeline with nightes)

4 Results

- Quantized results:
 - Errors of simulation time and memory used compared to real
 - Simulation time compared to baseline SimGrid.
- Ability of the model to generalize trends of memory usage and disk throughput.

5 Discussion