

PATENT ABSTRACTS OF JAPAN

(1.1) Publication number 09147349 A

(43) Date of publication of application: 06.06.97

G11B-5/66

C23C 14/14

C23C 14/34

C23C 14/56

G11B 5/84

G11B 5/85

H01F 10/16

H01F 41/18

(21) Application number: 07309607

(22) Date of filing: 28.11.95

(71) Applicant:

HOYA CORP

(72) Inventor:

KOBAYASHI MASATO MOROISHI KEIJI HORIKAWA JUNICHI NUL AWASON

(54) MAGNETIC RECORDING MEDIUM AND ITS PRODUCTION

(67) Abstract

PROBLEM TO BE SOLVED: To reduce medium noise, to increase coercive force and to improve overwriting characteristics by specifying value given by subtracting the interplanar spacing of a prescribed face of a nonmagnetic middle layer from that of a prescribed face of a magnetic film.

SOLUTION: An underlayer 2 on a glass substrate 1 consists of a thin Al film 2a, a thin Cr film 2b and a lhin CrV film 2c from the substrate 1 side. A nonmagnetic middle layer 4 between magnetic layers 3, 5 of a CoPtCr alloy is made of a CrV alloy. Value [d_[002]-d_[110]] given by subtracting the interplanar spacing of the bcc (110) face of the middle layer 4 from that of the ncp (002) face of the magnetic layer 5 is 0.002-0.032&angst:

COPYRIGHT: (C)1997,JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-147349

(43)公開日 平成9年(1997)6月6日

雙例記号 庁内整理番号 FI	技術表示簡別
G11B 5/66	
C23C 14/14	F
	G
14/34	
14/56	
審査請求 未請求 請求項の数	
特顯平7-309607 (71)出題人 000	113263
l l	- *
The state of the s	不都新宿区中落合2丁目7番5号
· · · · · · · · · · · · · · · · · · ·	羊 正人
東東	都新宿区中落合2丁目7番5号 ホー
	式会社内
(72) 発明者 時石	5 生二
東 文	都新宿区中落合2丁目7番5号 木一
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	式会社内
(72) 発明者 堀川	「 順一 、
***	都新宿区中路合2丁目7番5号 亦一
ヤ棋	式会社内
(74)代理人 弁理	土 填澤 寿夫 (外1名)
	最終頁に続く

(54) 【発明の名称】 磁気記録媒体及びその製造方法

(57)【要約】 (修正有)

【課題】 非磁性中間層で分割された2層以上のCoPt系合金磁性層及び/又はCr合金下地層を有するを有し、媒体/イズが低く、かつ保磁力及び重ね書き特性に優れた磁気記錄媒体及びその製造方法。

【解決手段】 基板上に非磁性下地層及びCoPt系磁性層群をこの順に有する磁気記錄媒体であって、前記CoPt系磁性層群は、2層以上の磁性層からなり、各磁性層の間にCrとVを主成分とする材料からなる非磁性中間層を有し、前記磁性層のhcp(002)面の結晶格子面間隔から、該磁性層の直下の非磁性中間層のbcc(110)面の結晶格子面間隔を引いた差(d₍₀₀₂₎ -d₍₁₁₀₎) が、0.002 ~0.032

オングストロームの範囲であるか、または前記CoPt系磁性層群は、2層以上の磁性層からなり、前記非磁性下地層は1層又は2層以上の層からなり、前記CoPt系磁性層群の最下層の磁性層の直下の非磁性下地層がCrとVを主成分とする材料からなる磁気記録媒体。

No. 6517 P. 50

【特許請求の範囲】

【請求項1】 基板上に非磁性下地層及びCoPt系磁性層群をこの順に有する磁気記録媒体であって、 前記CoPt系磁性層群は、2層以上の磁性層からなり、各磁性層の間にCrとVを主成分とする材料からなる非磁性中間層を有し、

前記磁性層のh c p (002) 面の結晶格子面間隔から、該磁性層の直下のC r と V を主成分とする材料からなる非磁性中間層の b c c (110) 面の結晶格子面間隔を引いた差(d (ooz) - d (110))が、0.002~0.032オングストロームの範囲であることを特徴とする磁気記録媒体。

【請求項2】 2層以上の非磁性中間層を有し、各非磁性中間層について独立に、磁性層のhcp(002)面の結晶格子面間隔から、該磁性層の直下のCェとVを主成分とする材料からなる非磁性中間層のbcc(110)面の結晶格子面間隔を引いた差(d_(∞2) - d₍₁₁₀₎)が0002~00032オングストロームの

【請求項3】 磁性層のhcp(002)面の結晶格子面間隔から、該磁性層の直下のCrとVを主成分とする材料からなる非磁性中間層のbcc(110)面の結晶格子面間隔を引いた差(dωω)ーd(ιω)か、0.014~0.030オングストロームの範囲である請求項1記載の磁気記録媒体。

範囲である請求項1 記載の磁気記録媒体。

【請求項4】 2層以上の非磁性中間層を有し、各非磁性中間層について独立に、磁性層のhcp(002)面の結晶格子面間隔から、該磁性層の選下のCrとVを主成分とする材料からなる非磁性中間層のbcc(110)面の結晶格子面間隔を引いた差(d₍₀₀₂₎ ー d₍₁₁₀₎)が、0.014~0.030オングストロームの範囲である請求項1記載の磁気記録媒体。

【請求項5】 基板上に非磁性下地層及びCoPt系磁性層群をこの順に有する磁気記録媒体であって、前記CoPt系磁性層群は、2層以上の磁性層からなり、各磁性層の間にCrとVを主成分とする材料からなる非磁性中間層を有し、

前記磁性層のhcp(002)面の結晶格子面間隔から、該磁性層の頂下のCrとVを主成分とする材料からなる非磁性中間層のbcc(110)面の結晶格子面間隔を引いた差(d₀₀₂)ーd₍₁₁₀₎)が、0.002~0.032オングストロームの範囲であり、前記非磁性下地層は1層又は2層以上の層からかり、前

前記非磁性下地層は1層又は2層以上の層からなり、前記CoPτ系磁性層群の最下層の磁性層の直下の非磁性 下地層がCτとVを主成分とする材料からなり、

前記磁性層群の最下層の磁性層の h c p (002) 面の結晶格子面間隔から、前記 C r と V を主成分とする材料からなる非磁性下地層の b c c (110) 面の結晶格子面間隔を引いた差 (d (ooz) ー d (110))が、0.00 2~0.032オングストロームの範囲であることを特

徴とする磁気記録媒体。

【請求項6】 2層以上の非磁性中間層を有し、各非磁性中間層について独立に、磁性層のhcp(002)面の結晶格子面間隔から、該磁性層の直下のCrとVを主成分とする材料からなる非磁性中間層のbcc(110)面の結晶格子面間隔を引いた差(d₍₀₀₂₎ - d₍₁₁₀₎)が0.002~0.032オングストロームの範囲である請求項5記載の磁気記録媒体。

【請求項7】 磁性層の h c p (002) 面の結晶格子面間隔から、該磁性層の直下の C r と V を主成分とする材料からなる非磁性中間層の b c c (110) 面の結晶格子面間隔を引いた差 (d (002) - d (110) が、0.014~0.030オングストロームの範囲である請求項5記載の磁気記録媒体。

【請求項8】 2層以上の非磁性中間層を有し、各非磁性中間層について独立に、磁性層のhcp(002)面の結晶格子面間隔から、該磁性層の直下のCrとVを主成分とする材料からなる非磁性中間層のbcc(110)面の結晶格子面間隔を引いた差(d₍₀₀₂₎ ー d₍₁₁₀₎)が、0.014~0.030オングストロームの範囲である請求項5記載の磁気記録媒体。

【請求項9】 磁性層のhcp(002) 面の結晶格子面関隔からCrとVを主成分とする材料からなる非磁性下地層のbcc(110) 面の結晶格子面関隔を引いた逆結晶格子面関隔の菱(d₍₀₀₂₎ -d₍₁₁₀₎)が、0.014~0.030オングストロームの範囲である請求項5~8のいずれか1項に記載の磁気記録媒体。

【請求項10】 CrとVを主成分とする材料からなる 非磁性下地層と基板との間に1層又は2層以上の非磁性 下地層を有し、前配CrとVを主成分とする材料からな る非磁性下地層と接する非磁性下地層が体心立方最密充 填結晶構造を有する金属からなる、請求項5~9のいず れか1項に記載の磁気記録媒体。

【請求項11】 体心立方最密充填結晶構造を有する金 風からなる非磁性下地層がCェ層である請求項10配載 の磁気記録媒体。

【請求項12】 CoPt系磁性層がCoPtCr合金 磁性層である請求項1~11のいずれか1項に記載の磁 気記級媒体。

【請求項13】 CoPtCr合金は、Coの含有量が60~90at%、Ptの含有量が4~20at%、Ctの含有量が3~30at%である請求項12記載の磁気記録媒体。

【請求項14】 請求項1~4、12及び13のいずれか1項に記載の磁気記録媒体の製造方法であって、

CoPt系磁性層群及びCrとVを主成分とする材料からなる非磁性中間層を、基板加熱温度範囲を250℃~425℃とし、Arガス圧力範囲を0.5~10mTorrとして、スパッタリンク法により形成することを特徴とする磁気記録媒体の製造方法。

【請求項15】 請求項5~13のいずれか1項に記載の磁気記録媒体の製造方法であって、

少なくともCrとVを主成分とする材料からなる非磁性 下地層、CoPt系磁性層群及びCrとVを主成分とする材料からなる非磁性中間層を、基板加熱温度範囲を2 50℃~425℃とし、Arガス圧力範囲を0.5~1 0mTorrとして、スパッタリング法により形成する ことを特徴とする磁気記録媒体の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、磁気ディスク、磁気テープ等の磁気記録媒体及びその製造方法に関する。 【0002】

【従来の技術】近年、スパッタリングあるいは真空蒸着により製造された金属磁性薄膜を磁性層とする磁気記録媒体が注目されている。金属磁性薄膜が磁気記録媒体として注目されている大きな理由は、周知のごとく、従来の磁性粉を塗布したものに比べて高い記録速度を実現できるためである。この様な金属磁性薄膜の磁性材料として、Co含有合金が良好な保磁力と角形比を示すものとして知られている。特に近年、CoPt系合金薄膜が、高保磁力と高い残留磁束密度を有することから、磁気記録の高密度化に対応できる材料として工業的に大きな注目を集めている。

【0003】さらに、MR(磁気抵抗型)へッド対応用の磁気記録媒体においては、出力の大きさよりも媒体ノイズが小さいことが要求される。このような要求に応えるものとして、延板上にCoPrCrの2層の磁性層を設け、この2層の磁性層の間にCrからなる非磁性中間層を介在させた磁気記録媒体が知られている [特開平2-210614号公報]。この磁気記録媒体は、磁気層を非磁性中間層で2層に分割することにより、個々の磁性層の膜厚はトータル膜厚が等しい単層の磁性層の場合に比べて薄いので、記録信号の再生時のノイズを低減することができる。

[0004]

【発明が解決しようとする映題】しかしながら、上記公報に記載の磁気記録媒体について媒体ノイズ以外の特性について実用上の観点から種々検討した結果、以下のような問題点があることが判明した。

①磁性層 1 層のみの場合に比べると、保磁力の低下が著 しい。

②重ね書き特性(オーバーライト特性)が不十分である。

【0005】そこで本発明の第1の目的は、非磁性中間層で分割された2層以上のCoPt系合金磁性層を有する磁気記録媒体であって、媒体ノイズが低く、かつ保磁力及び重ね書き特性に優れた磁気記録媒体及びその製造方法を提供することにある。

【0006】ところで、CoNiCr合金やCoCrT

a 合金等の磁性層を有する磁気記録媒体においては、下 地層としてCrを用いると高い保磁力が得られることが 知られている(例えば、TEEE TRANSACTION ON MAGNETIC S VOL. MAG-3, NO. 3(1967) p205-207)。

【0007】ところが、CoPt合金磁性層の場合には、Crの単一成分からなる下地層を用いるとC軸配向性が悪くなるという問題があった。CoPt系合金磁性層の格子定数は、Ptの原子半径が大きいため、砂球の原子性が大きいため、砂球の原子を数に比べて大きい。そのため、Crの単一成分が高くなり、そのようなで、Comができるでは、Comができるでは、Comがでは、Comがでは、Comがでは、Comがでは、Comがでは、Comがでは、Comがでは、Comがでは、Comがでは、Comがでは、Comがでは、Comがでは、Comがでは、Comがでは、Comができる(例えばCrV)がより、原面内における磁性層のC軸配向性を改音して保破力及び角形比を向上させることができる(特公平4-16848号公報)。

【0008】しかしながら、本発明者らの検討の結果、 媒体ノイズはCr下地層に異種金属を添加することによ り急徴に大きくなってしまうことが明らかになった。

【0009】そこで本発明の第2の目的は、Cr合金下地層及び非磁性中間層で分割された2層以上のCoPt系合金磁性層を有する磁気記録媒体であって、媒体ノイズが低い磁気記録媒体及びその製造方法を提供することにある。加えて本発明の第3の目的は、Cr合金下地層及びCoPt系合金磁性層を有する磁気記録媒体であって、保磁力及び角形比が高く、かつ媒体ノイズも低いな気記録媒体及びその製造方法を提供することにある。さらに本発明の第4の目的は、Cr合金下地層及び非磁性中間層で分割された2層以上のCoPt系合金磁性層を有する磁気記録媒体であって、媒体ノイズが低く、かつ保強力及び重ね音き特性に優れた磁気記録媒体及びその製造方法を提供することにある。

【0010】本発明者らが種々検討したところ、非磁性中間層で分割された2層以上のCoPt系合金磁性層を有する磁気記録媒体において、保磁力及び重ね審き特性の低下等の原因が磁性層を分割している膜材料の組成及び作製条件にあることが判明した。そして、磁性層としてCoPt系合金を用いた場合、磁性層を分割している 非磁性中間層にCrとVとを主成分とする合金を用い、CoPt系合金磁性層の(002)面の結晶格子面間隔の差を整合させることで、保磁力及び重ね書き特性を低下させることなく更に媒体ノイズを低減できることを見いだした。

【0011】さらに本発明省らの検討の結果、Cr下地層に異種金属(例えば、V等)を添加すると、結晶粒径の不均一性及び結晶性の低下が起こることが、透過型電

子顕微鏡観察により判明した。すなわち、Cr合金下地層の上に積層されるCoPt系合金磁性層(例えばCoPtCr等)は、下地層の粒径及び結晶性に強く影響を受けて成長する。そのため、Cr合金下地層の結晶粒径が不均一で結晶性が悪いと、磁性層の結晶粒径の不均一性を引き起こし、結晶性を著しく低下させることが分かった。そして、これが原因となって媒体ノイズを増加させることが判明した。

【0012】そこで、結晶粒径が均一で結晶性の良い膜(下地層)上にCrに異類金属を添加したCr合金の第2の下地層を積層してみたところ、Cr合金下地層の結晶粒径は均一になり、また結晶性が良くなることが実験的に明らかになった。しかしながら、このように下地層を2層にするだけでは媒体ノイズの低減は不十分であった。

【0013】そこで、さらに検討したところ、CoPt 系合金磁性層の(002)面の結晶格子面間隔と、下地層の最上層であるCr合金(Crに異種金属を添加した)下地層の(110)面の結晶格子面間隔を整合させることで、媒体ノイズが大幅に低減されることがわかった。即ち、CoPt系合金磁性層の(002)面の結晶格子面間隔と、下地層の最上層であるCr合金下地層の(110)面の結晶格子面間隔の差を小さくすることで、保磁力及び角型比を向上させることができると同時に、媒体ノイズを低減することもできる。

【0014】尚、CoPt系合金磁性層の(002)面の結晶格子面間隔とCr合金下地層やCr合金中間層の(110)面の結晶格子面間隔の差は、ゼロにすることが望ましいわけではない。種々の実験結果、若干の差をもたせた方がノイズ低減の観点からは好ましい。すなわち、磁性層のC軸配向をある範囲内に制御してやることによって媒体ノイズは低減することになる。

[0015]

【課題を解決するための手段】そこで本発明は、基板上に非磁性下地層及びCoPt系磁性層群をこの順に有する磁気記録媒体であって、前記CoPt系磁性層群は、2層以上の磁性層からなり、各磁性層の間にCrとVを主成分とする材料からなる非磁性中間層を有し、前記磁性層のhcp(002)面の結晶格子面間隔から、該磁性層の直下のCrとVを主成分とする材料からなる非磁性中間層のbcc(110)面の結晶格子面間隔を引いた差(d(001) - d(110))が、0.002~0.032オングストロームの範囲であることを特徴とする磁気記録媒体(第1の態様の磁気記録媒体)に関する。

【0016】さらに本発明は、基板上に非磁性下地層及びCoPt系磁性層群をこの順に有する磁気記録媒体であって、前記CoPt系磁性層群は、2層以上の磁性層からなり、各磁性層の間にCrとVを主成分とする材料からなる非磁性中間層を有し、前記磁性層のhcp(002)面の結晶格子面間隔から、該磁性層の直下のCr

とVを主成分とする材料からなる非磁性中間層のbcc (110) 面の結晶格子面間隔を引いた差 (d₍₀₀₂₎ ー d₍₁₁₀₎)が、0.002~0.032オングストロームの範囲であり、前記非磁性下地層は1層又は2層以上の層からなり、前記CoPt系磁性層群の最下層の磁性層の直下の非磁性下地層がCrとVを主成分とする材料からなり、前記磁性層群の最下層の磁性層のhcp(002)面の結晶格子面間隔から、前記CrとVを主成分とする材料からなる非磁性下地層のbcc(110)面の結晶格子面間隔を引いた差(d₍₀₀₂₎ ーd₍₁₁₀₎)が、0.002~0.032オングストロームの範囲であることを特徴とする磁気記録媒体(第2の態様の磁気記録媒体)に関する。

【0017】さらに本発明は、上記本発明の第1の態様の磁気記録媒体の製造方法であって、CoPt系磁性層群及びCrとVを主成分とする材料からなる非磁性中間層を、基板加熱温度範囲を250℃~425℃とし、Arガス圧力範囲を0.5~10mTorrとして、スパッタリング法により形成することを特徴とする磁気記録媒体の製造方法に関する。

【0018】加えて本発明は、上記本発明の第2の態様の磁気記録媒体の製造方法であって、少なくともCrとVを主成分とする材料からなる非磁性下地層、CoPt系磁性層群及びCrとVを主成分とする材料からなる非磁性中間層を、基板加熱温度範囲を250℃~425℃とし、Arガス圧力範囲を0.5~10mTorrとして、スパッタリング法により形成することを特徴とする磁気記錄媒体の製造方法に関する。以下本発明について説明する。

【0019】本発明の磁気記錄媒体は、CoPt系磁性層群を有し、該磁性層群は、2層以上の磁性層からなり、各磁性層の間の非磁性中間層を有し、前記非磁性中間層の少なくとも1つがCrとVを主成分とする材料からなる非磁性中間層である。上記の各磁性層はCoPt系合金、即ち、CoとPtを主成分とする合金である。CoとPtを主成分とする合金は充分な保磁力を得るという観点から、CoとPtとの合計が70at%以上の合金であることが適当である。また、CoとPtの比率には特に制限はないが、保磁力、ノイズ及びコストを考慮すると、Pt(at%)/Co(at%)は0.07以上0.2以下の範囲であることが適当である。

【0020】Co及びPt以外の成分には特に制限はないが、例えば、Cr、Ta、Ni、Si、B、O、N、Nb、Mn、Mo、Zn、W、Pb、Re、V、Sm及び2rの1種または2種以上を適宜使用することができる。これらの元素の添加量は磁気特性等を考慮して適宜決定され、通常30at%以下であることが適当である。より具体的な磁性層の材料としては、例えばCoPtCr合金、CoPtCrB合金、CoPtCrTa合金、CoPtCrNi合金等を挙げ

ることができる。

【0021】さらに少なくとも1つの非磁性中間層は、CrとVを主成分とする材料からなる。このCrとVを主成分とする材料からなる非磁性中間層を、以下、CrV系非磁性中間層と呼ぶ。CrV系非磁性中間層は、CrとVのみからなる場合、Cr金属に添加するV量を50原子%以下とすることが、結晶粒系が均一で且つ結晶性が良い膜とすることができるという観点から適当である。

【0022】さらに、Vの一部に代えて、2r、W、B、Mo、Nb、Ta、Fe、Ni、Re、Ce、2n、P、Si、Ga、Hf、Al、Ti等の1程または2種以上を添加することもできる。これらの成分の添加量は、V量と合計で50原子%以下とすることが、結晶粒系が均一で且つ結晶性が良い膜とすることができるという観点から適当である。但し、Crに対するV等の添加量は、磁性層におけるCo、Ptあるいはその他の添加元素の含有量およびその添加元素の種類により適宜調整することができる。

【0023】例えば、CoPtCr合金磁性層においてPt合有量を4~20原子%、Cr含有量を3~30原子%とし、その直下のCrV系非磁性中間層をCrVとした場合には、CrV系非磁性中間層のVの含有量は4~40原子%とすることが、磁性層、CrV系非磁性中間層の結晶粒径が均一で且つ結晶性が良く、さらにCrV系非磁性中間層と磁性層の結晶格子定数の差を適切な範囲内に制御しやすいので好ましい。また、Hcが大きく且つ高いS/N比を有するために特に好ましいと含有量は10~20原子%である。

【0024】CrV系非磁性中間層としてCrVZr合金を用いた場合、高いHc、Mrδ及び、S/N比が得られることが好ましい。CrV合金に2rを添加すると、一層ノイズ低減効果が増長されるため、S/N比が向上するからである。このような効果を引き出すために、Zrの含有量は2~5at%の範囲とすることが好ましい。

【0025】磁性層群を構成する磁性層の数は、再生出力、重ね書き特性を考慮して2層以上の2層、3層、4層、5層等とすることができる。ただし、実用的な観点からは、通常は最大5層程度である。しかし、必要により6層以上の磁性層を設けることも勿論できる。

【0026】本発明の磁気記錄媒体は、2層以上ある磁性層の間の少なくとも1つに非磁性中間層を有し、かつ該非磁性中間層の少なくとも1つはCrV系非磁性中間層である。非磁性中間層は、磁性層と磁性層の間に直接設けられ、必要により、磁性層とその上層の非磁性中間層との間に更に別の層を設けることもできる。また、磁性層が3層以上ある場合、各磁性層間に、それぞれ非磁性中間層を設けることが好ましい。その場合、磁性層の層数をnとするとn-1層の非磁性中間層を設けること

になる。しかし、磁性層が3層以上ある場合、場合によっては、全ての磁性層の間に非磁性中間層を設けず、磁性層の間の少なくとも1つに非磁性中間層を設けることもできる。

【0027】磁性層群の層構成としては、例えば、磁性層一非磁性中間層一磁性層、磁性層一非磁性中間層一磁性層、さらには、磁性層一非磁性中間層一磁性層一非磁性中間層一磁性層一非磁性中間層一磁性層を挙げることができる。さらに磁性層と非磁性中間層の組数を適宜増やすことができる。また、各磁性層を構成する材料及び膜厚は同一でも異なっていても良い。同様に2層以上の非磁性中間層がある場合、各非磁性中間層を構成する材料及び膜厚は同一でも異なっていても良い。同様に2層以上の非磁性中間層がある場合、各非磁性中間層を構成する材料及び膜厚は同一でも異なっていても良い。

【0028】各磁性層の厚みは20~230A、好ましくは40~150Aとすることが適当である。20Aを下回ると充分な保磁力が得られず、230Aを超えると重ね書き特性の劣化及び媒体ノイズが増加する傾向がある。また各非磁性中間層の厚みは10~100A、好ましくは30~80Aとすることが適当である。10Aを下回ると充分な保磁力が得られず、100Aを超えると出力の低下と重ね書き特性の劣化及び媒体ノイズが増加する傾向がある。

【0029】本発明の磁気記録媒体においては、前記磁性層のhcp(002)面の結晶格子面間隔から、眩磁性層の直下のCrV系非磁性中間層のbcc(110)面の結晶格子面間隔を引いた芝(d(m2) - d(110))を、0.002~0.032オングストロームの範囲とすることが適当である。上記(d(m2) - d(110))

が、0.002オングストローム未満及び0.032オングストロームを超えるとHcが低下し、かつS/N比も低下してしまう。尚、2層以上のCrV系非磁性中間層を有する場合、上記(d (on2), 一 d (110))は、各非磁性中間層について独立に、0.002~0.032オングストロームとすることができる。

【0030】さらに高いS/N比を得るという観点からは、磁性層のhcp(002)面の結晶格子面間隔からCrV系非磁性中間層のbcc(110)面の結晶格子面間隔を引いた差($d_{(002)}-d_{(110)}$)は、0.014~0.030オングストロームの範囲であることが好ましい。2層以上のCrV系非磁性中間層を有する場合、上記($d_{(002)}-d_{(110)}$)は、各非磁性中間層について独立に 0.014~0.030オングストロームの範囲であることが好ましい。

【0031】さらに本発明の確気記録媒体は、1層又は 2層以上の非磁性下地層を有し、前記CoPr系磁性層 群の最下層と接する非磁性下地層がCrとVを主成分と する材料からなる。この非磁性下地層を、以下、CrV 系非磁性下地層と呼ぶ。CrV系非磁性下地層は、Cr とVのみからなる場合、Cr金属に添加するV量を50 原子%以下とすることが、結晶粒系が均一で且つ結晶性 が良い皎とすることができるという観点から適当であ る。

【0032】さらに、Vの一部に代えて、Zr、W、B、Mo、Nb、Ta、Fe、Ni、Re、Ce、Zn、P、Si、Ga、Hf、Al、Ti等の1種または2種以上を添加することもできる。これらの成分の添加量は、V量と合計で50原子%以下とすることが、結晶粒系が均一で且つ結晶性が良い膜とすることができるという観点から適当である。但し、Crに対するV等の添加量は、CrV系非磁性下地層と接する磁性層におけるCo、Ptあるいはその他の添加元素の含有量およびその添加元素の種類により適宜調整することができる。

【0033】例えば、CoPtCr合金磁性層においてPt含有量を4~20原子%、Cr含有量を3~30原子%とし、その直下のCrV系非磁性下地層をCrVとした場合には、CrV系非磁性下地層のVの含有量は4~40原子%とすることが、磁性層、CrV系非磁性下地層の結晶粒径が均一で且つ結晶性が良く、さらにCrV系非磁性下地層と磁性層の結晶格子定数の差を適切な範囲内に制御しやすいので好ましい。また、Hoが大きく且つ高いS/N比を有するために特に好ましいと含有量は10~20原子%である。

【0034】CrV系非磁性下地層の膜厚は、10~150Åとすることが適当である。CrV系非磁性下地層の膜厚の上限と下限は、結晶粒径が均一で且つ結晶性が良い膜になると共に、磁性層と適合した結晶格子面間隔になるように定められる。このような観点から、CrV系非磁性下地層の好ましい膜厚は、20~100Åである。

【0036】本発明の磁気記録媒体においては、前記磁性層のhcp(002)面の結晶格子面間隔から前記CrV系非磁性下地層のbcc(110)面の結晶格子面間隔を引いた差(d(002)ーd(110))は、0.002~0.032オングストロームの範囲である。(d(002)ーd(110)が、0.002オングストローム未満及び0.032オングストロームを超えるとHcが低下し、かつS/N比も低下してしまう。また、さらに高

い S / N 比を得るためには、 (d (ooz) - d (uo)) を 0.014 オングストローム~ 0.030 オングストロームの範囲とすることが好ましい。

【0037】本発明の磁気記録媒体においては、前記CrV系非磁性下地層と基板との間にさらに1層又は2層以上の非磁性下地層を有することができる。そして、前記CrV系非磁性下地層と被する非磁性下地層は体心立方最密充填結晶構造を有する金属からなることが好ましい。体心立方最密充填結晶構造を有する金属からなる非磁性下地層としては、Cr下地層を挙げることができる。前記CrV系非磁性下地層と接する非磁性下地層は、結晶粒径が均一で且つ結晶性が良い金属膜であることが好ましく、実験的にCr膜が最も好ましいことが確認された。また、体心立方最密充填結晶構造を有する金属としてCr以外にTi、Ta、2rを例示することができる。

【0038】体心立方最密充填結晶構造を有する金属からなる非磁性下地層の膜厚は、100~1000Aの範囲とすることが適当である。この非磁性下地層の上限になるように決定され、特にHcが大きく且つ高いS/N比を有するためには、上記非磁性下地層の膜厚は100~800Aの範囲とすることが適当である。さらに、(CrV系非磁性下地層の膜厚)/(体心立方最密充填結晶構造を有する金属からなる非磁性下地層の際厚)の比は、0.05~0.50間であることが、Hcが大きく、か

つ高いS/N比を有するという観点から好ましい。
【0039】本発明の磁気記録媒体においては、前配体心立方最密充填結晶構造を有する金属からなる非磁性下地層と非磁性基板の間に、さらに別段の非磁性下地層ととができる。そのような非磁性下地層として、Al、Ti、Zr膜等を挙げることができる。この非磁性下地層の膜厚は、例えば、10~100人とすることができる。この非磁性下地層の膜厚の上限と下限は、上に積層される体心立方最密充填結晶構造を有する金属からなる膜の結晶粒径が均一で且つ結晶性の良い膜になる範囲として定められる。そして、さらにHcが大きく且つ高いS/N比を有するためには、膜厚は30~80人であることが好ましい。

【0040】本発明の磁気記録媒体は、前記CoPt系磁性層の上に保護層及び潤滑層を設けることができる。保護層には、磁性層を湿気等の化学的攻撃から保護するもの保護層と、ヘッドの扱触摺動による破壊から防護する目的で磁性層の上(非磁性基板と反対側の面)に設けられる耐摩耗性を付与する保護層とがある。保護層は、異なる材質の1層または2層以上から構成されることができる。本発明の磁気記録媒体においては、保護の材質や構造等には特に制限はない。材質としては、例えば、化学的保護層としてはCr等の金属膜を挙げることができ、耐摩耗性を付与する保護層としては、酸化珪

No. 6517 P. 55

素膜、皮素膜、ジルコニア膜、水素化カーボン膜、窒素 珪素膜、SiC膜等を挙げることができる。

【0041】上記酸化珪素膜等は表面に凹凸を有し、ヘッドが磁気記録媒体の表面に吸着するのを防止する役割も有する。磁気記録媒体の表面を凹凸にする技術(テクスチャー化技術)としては、以下のものも利用できる。まず、下地層として表面が凹凸状のアルミニウムや変化アルミニウム(AIN)層を基板上に、スパッタリング法により設ける。この表面が凹凸状の下地層の上に、低性層の非磁性下地層及び磁性層を順次設け、さらに、及びであることにより、保護層を設ける。この保護層は、例えば、スパッタリング法により形成した炭素膜であることができる。このような標成とすることにより、保護層の表面は、下地層の凹凸状の表面を反映した形状となる。尚、上記表面が凹凸状の表面を反映した形状となる。尚、上記表面が凹凸状の下地層と基板との間に上記下地層の結晶成長を促進するためにチタンやクロム等の第2の下地層を設けることもできる。

【0042】 潤滑層は、ヘッドとの接触摺動により抵抗 する目的で設けられる膜であり、材質等には特に制限は ない。例えば、パーフルオロポリエーテル等を挙げるこ とができる。

【0043】基板は、非磁性基板であれば、その材質や形状等に特に制限はない。例えば、ガラス基板、結晶化ガラス基板、アルミニウム基板、セラミック基板、カーボン基板、シリコン基板等を使用することができる。

【0044】本発明の第1の想様の磁気記録媒体は、スパッタリング法等の公知の薄膜形成法を利用して製造することができる。特に、CrV系非磁性中間層の組成を調整するとともに、CrV系非磁性中間層及びCoPt系磁性層の形成条件を調整することにより、所定の範囲の結晶格子面間隔の差(d₍₀₀₂₎ ーd₍₁₁₀₎)を有する磁気記録媒体を得ることができる。

【0045】さらに本発明の第2の態様の磁気記録媒体は、スパッタリング法等の公知の薄膜形成法を利用して製造することができる。特に、CrV系非磁性下地層及びCrV系非磁性下間層の各組成を調整するとともに、CrV系非磁性下地層、CrV系非磁性中間層及びCoPτ系磁性層の形成条件を調整することにより、所定の範囲の結晶格子面間隔の差(d₍₀₀₁₎ ー d₍₁₁₀₎)を有する磁気記録媒体を得ることができる。

【0046】例えば、少なくともCrV菜非磁性下地層及び/又はCrV菜非磁性中間層及びCoPt菜磁性層を、 系板加熱温度範囲を250 Color + 425 Color + 10 Colo

を有することから、磁気ディスクや磁気テープ等に有用である。さらに、本発明の磁気記録媒体は、構成によっては、低減した媒体ノイズ、高い保磁力と角形比、さらに優れた重ね書き特性を有する。さらに、本発明の磁気記録媒体は、媒体ノイズが小さいことから、MR(磁気抵抗型)ヘッド対応用の磁気記録媒体として有用である。

[0048]

【実施例】以下、実施例と比較例により本発明を詳細に 説明する。

【0049】実施例1

本実施例の磁気記録媒体は図1に示す通り、ガラス基板 1上に下地層2、第1磁性層3、非磁性中間層4、第2 磁性層5、保護層6、潤滑層7を順次積層してなる磁気 ディスクである。

【0050】ガラス基板1はアルミノシリケイトガラスからなり、その表面はRa=50A程度に鏡面研磨されている。下地層2は、ガラス基板1側からAl薄膜2a(膜厚50A)、Cr 凝膜2b(厚膜600A)、Cr V薄膜2c(膜厚50A)からなる。尚、Cr V薄膜2cはCr が96原子%、Vが4原子%の組成比で構成されている。

【0051】第1磁性層3及び第2磁性層5は、同一材料CoPtCr合金(Co:78原子%、Pt:11原子%、Cr:11原子%)からなり、いずれも膜厚は120Aである。第1磁性層3と第2磁性層5の中間に存在する非磁性中間層4は、膜厚50AのCrV合金(Cr:96原子%、V:4原子%)からなる。

【0052】保護層6は、基板側から第1保護層6a及び第2保護層6bからなる。第1保護層6aは、膜厚50 AのCr膜からなり、健性層に対して化学的保護膜になっている。もう一方の第2保護層6bは硬質微粒子を分散させた、膜厚160Aの酸化珪素膜からなり、この第2保護層6bによって耐摩耗性が得られる。潤滑層7は、パーフルオロポリエーテルからなり、この膜によって磁気ヘッドとの接触を緩和している。

【0053】以下に上記磁気ディスクの製造方法について説明する。上記ガラス基板を基板ホルダ(パレット)に装着し、図2に示すインライン型スパッタ装置10の仕込室11にパッレト18を導入した後、仕込室内11を大気状態からスパッタ室(真空チャンパー)12の内で大気状態からスパッタ室(真空チャンパー)12の内に導入する。この第一真空チャンパー12a内に導入する。この第一真空チャンパー12a内では、パレット18に装者したガラス基板をランプヒータ19によって300℃、1分間の加熱条件で加熱した後、パレット18を1.2m/minの搬送速度で移動さり、パレット18を1.2m/minの搬送速度で移動さり、メーガス圧力5mTorrの条件下で放電状態にあり、メーガス圧力5mTorrの条件下で放電状態にあり、メーヴット15bと16bの間を順次通過させる。ターゲット15bと16bの間を順次通過させる。ターゲット15bと16bの間を順次通過させる。ターゲット15bと16bの間を順次通過させる。

-{0-0-5-4-}- 次に、 パレット 1-8をポート 2-1 を介して 第2真空チャンパー12bに移動し、この第2真空チャ ンパー126内に配置されたヒータ20で基板を再び加 熟する。加熱条件は375℃、1分間とする。その後、 CrV9-fv115c216c, CoPtCr9-f ット15dと16d、CrVターゲット15eと16 e. CoPtCr9-fyl15f216f. Cr9-ゲット15gと16gの順に配置され、且つAェガス圧 カ1. 3mTorrの条件下で放電状態にあるターゲッ ト150-16c~15g-16g間を、1.2m/m inの搬送速度でパレット18を順次通過させる。そし てこの配置されたターゲットの順番通りに、CrV下地 層2c、CoPtCr第1磁性層3、CrV非磁性中間 層4、CoPtCr第2磁性層5、Cr第1保護層6a の順で各層が積層される。なお、CェVターゲットの投 入電力は500W、CoPtCェターゲットの投入電力 は300W、Cェターゲットの投入電力は500Wでス パッタを行った。さらに、第1真空チャンバー及び第2 真空チャンパー内の到達圧力(真空度)は5×10⁴T oェェ以下とした。

【0055】上記スパッタによる成膜終了後、第1保護層6aに対して1PA(イソプロピルアルコール)洗浄による親水化処理を施した後、基板をシリカ微粒子(粒径100A)を分散した有機建築化合物溶液(水と1PAとテトラエトキシシランとの混合液)に浸し、焼成することによってSiO2からなる第2の保護層6bを形成した。最後に、この第2保護層6b上にパーフロロボリエーテルからなる潤滑剤をディップ処理して潤滑層7を形成した。

【0056】このようにして得た磁気ディスクの走行テストをヘッド浮上量0.075μm以下で行った。その結果、良好であった。そして、保磁力(Hc)、残留磁化膜厚積(Mrδ)、及びS/N比を評価した。結果を表1に示す。さらに、CrV下地層2cの組成及び膜厚、CrV非磁性中間層4の組成及び膜厚、CrV下地層2cの組成及び膜厚、CrV非磁性中間層4作製時の基板加熱退度及びArガス圧力、CoPtCr磁性層3の(002)面の結晶格子面間隔からそれに接するCrV下地層2cの(110)面の結晶格子間隔を引いた差(d(002)ーd(110))、並びにCoPtCr磁性層5の(002)面の結晶格子面間隔からそれに接するCrV非磁性中間層4の(110)面の結晶格子間隔を引いた差(d(002)ーd(110))を表1に示す。

【0057】尚、CoPtCr磁性層3の (002) 面

の結晶格子面間隔からそれに接するCrV下地層2cの (110) 面の結晶格子間隔を引いた差(d(oog) - d(uo)) と、CoPtCr磁性層5の(002) 面の結晶格子間隔からそれに接するCrV非磁性中間層4の (110) 面の結晶格子間隔を引いた差(d(oog) - d(uo)) とは、下地層2c及び非磁性中間層4の作製条件並びに磁性層3及び磁性層5の作製条件がそれぞれ同一であったことから、同一であったので表1には、両看をまとめて1つの値のみを示した。表2、3も同様である。

【0058】なお、S/Nの評価は次のように行った。 磁気ヘッド浮上量が0.060 μ mの薄膜ヘッドを用いて、この薄膜ヘッドとディスクの相対速度を5.0m/sとし、線記録密度110k { c i における記録再生出力を測定した。また、キャリア周波数13.5MH2で、測定帯域を27MH2としてスペクトルアナライザーによってこの磁気ディスクについて信号記録再生時におけるノイズスペクトラムを測定した。なお、上述の測定で用いたMR(磁気抵抗型)ヘッドは、記録トラック幅4.2 μ m、再生ドラック幅3.5 μ m、記録ギャップ長0.43 μ m、再生ギャップ長0.31 μ mである。

【0059】寒施例2~29

実施例2~25では、CrV系下地層2cの組成及び膜厚、CrV非磁性中間層4の組成及び膜厚、CrV系下地層2c及びCrV非磁性中間層4の作製時の基板加熱 温度及びArガス圧力を、表1及び2に示すように変えた以外は実施例1と同様にして磁気ディスクを作製した。また、実施例26~29では、CrV系下地層2c及びCrV非磁性中間層4を膜厚50AのCrV2r合金とし、表2に示す組成比とした以外は実施例1と同様にして磁ディスクを作製した。

【0060】このようにして得た磁気ディスクの走行テストをヘッド浮上量0.075μm以下で行った。その結果、良好であった。そして、保健力(Hc)、残留を化膜厚積(Mrδ)、及びS/N比を評価した。尚、S/N比の測定は実施例1と同様の方法で行った。結果を表1及び表2に示す。さらに、CrV下地層2cの組成及び膜厚、CrV非磁性中間層4作製時の基板のV下地層2c及びCrV非磁性中間層4作製時の基板加熱温度及びArガス圧力、CoPtCr磁性層3の(002)面の結晶格子面間隔からそれに接するCrVで地層2cの(110)、並びにCoPtCr磁性層5の(002)一位(110))、並びにCoPtCr磁性層5の(002)一位(110))、並びにCoPtCr磁性層5の(002)一位(110))、並びにCoPtCr磁性層5の・1002)面の結晶格子面間隔からそれに接するCrV非磁性中間層4の(110)面の結晶格子間隔を引いた差(d(002)一d(110))を表1及び表2に示す。

【0061】比較例1~6

比較例1は下地層2c及び非磁性中間層4をCrに変えた以外は実施例1と同様にして磁気ディスクを作製し

た。比較例2はCrV系下地層2c及びCrV非磁性中間層4の組成比以外は実施例1と同様にして磁気ディスクを作製した。比較例3、4は、CrV系下地層2c及びCrV非磁性中間層4作製時の基板加熱温度及びArガス圧力を変えた以外は実施例1と同様にして磁気ディスクを作製した。比較例5、6は、CrV系下地層2c及びCrV非磁性中間層4作製時の基板加熱温度及びArガス圧力を変えた以外は実施例23と同様にして磁気ディスクを作製した。

【0062】このようにして得た磁気ディスクの走行テストをヘッド浮上量 0.075μ m以下で行った。その結果、良好であった。そして、保磁力(Hc)、残留磁化
返厚積($Mr\delta$)、及びS/N比を評価した。尚、S

【表1】 磁性層組成 田司祖(ata) 非政性 中国原 (人) を加重して Mr δ (neau/ ca¹) S/NH (dB) d (11) d (11) (A) (atX) 120 A × 2 PF (m(orr) CoraPtiiCrii Cr2.V. Cr. . Y. 5 0 50 3 7 5 1970 1. 3 0.95 **35.** 5 +0,028 • 100 50 3 7 5 2010 0.92 35.7 +0.027 50 300 1860 1. 3 0.93 35.0 +0.032 50 5 0 3 7 5 5. 0 1900 0. 95 35. 1 t0.032 5 CraeVie 5 0 Cr..V., 5 0 975 1. 3 0.99 36.9 10.025 100 5 0 3 7 5 1. 3 2090 0.95 37.1 +0.024 . 20 5 0 375 1. 3 2000 0,94 36.8 +0.026 , 50 20 8 7 5 1. 9 0, 98 36.8 +0,025 5 Q 5 0 300 1. 3 1860 0.94 36.1 +0.028 10 , • 5 0 50 975 5. 0 1950 0.95 36. 2 +0.029 11 Cr..Vz. 5 0 Cr. . Va. 5 0 375 1. 3 2030 1.00 36.5 +0.015 12 100 50 3 7 5 1. 3 0.95 36.9 +0.014 13 20 50 375 1. 3 2010 0.92 96.8 **+0.015** 14 50 . 20 3 7 5 1. 3 2010 0. 99 36,6 +0.015 15 5 0 5 0 300 1, 3 1950 0.98 36.8 810.0t 16 50 50 3 7 5 5. 0 1950 0.85 **+0.020**

[0064]

実施例	磁性層組成 (at%) 120 A×2 層	下地 2 C組成 (atX)	下地層 2c膜厚 (Å)	非 遊 性 原 原 成 (at%)	非政性 中間層 4 験性 (人)	差加温(C)	Arガス 圧力 (MTorr)	Н с (0e)	Mr δ (menu/ cm²)	S/NH (dB)	d (***) -
17	CoraPtiiCrii	Cr.eV.	50	Cr. Vs.	5 0	.3.75	1. 3	1970	0.97	35.3	+0, 006
.18	*		100	•	5 0	375	1. 3	.2000	1.00	35.5	+0_ 007
19			20	-	5 0	3 7 5	1. 3	1970	0.94	85. 4	+0.006
20	,,	<i>y</i>	5 0	CE70V30	2 0	375	1. 3	1970	0. B7	35.4	†0. 006
21		,	5 Q		5 0	300	1. 3	1870	0. 95	35. 0	+0.012
22			5 0		5 0	375	5. 0	1900	0.94	35.0	+0, 010
23		CreeVee	5 0	CrV	5 0	375	1. 3	1930	0. 35	35.1	10.002
24			5 0	•	5 0	800	1. 3	1850	1. 01	35. 0	+0. 005
25			5 0	. •	50	375	5. 0	1900	0. 99	35.1	10,004
26		Cr.,V.Zr,	5 0	CrasVaZra	5 0	875	1. 3	2070	1.01	37.5	+0, 027
27		CraaV1 aZra	5 0	Cra4V12Zr4	5 0	375	1. 3	2130	1.00	38.0	10.024
28	,	CreeVeeZre	5 0	CraduZra	5 0	375	1. 3	2160	1.05	38, 2	+0.022
23	7	CreiVeeZre	50	Cr71 V242r4	5 0	375	1. 3	2090	1.00	37.5	t0.015

[0065]

【表3】

比較例	磁性層組成 (at%) 120A×2層	下地居 2c組成 (at%)	下地層 2c膜厚 (A)	非函性中間層 4 組成 (at%)	非磁性 中間后 4 膜厚 (入)	遊加温 板點度 (℃)	Arガス 圧力 (MTorr)	H c (0e)	Mr o (measu/cm²)	S/N比 (dB)	d (412) - d (111) (A)
1	CorePtiiCrii	Cr	50	Cr	50	375	1. 3	1700	0.86	82.5	+0.035
2	•	Cr. V.	50	CracVse	50	375	1.3	1920	0. 95	32.6	-0.015
8		CraeVe	50	Cr.V.	50	220	1.3	1770	0. 99	32.5	+0. 037
4	"	*	. 50		50	375	18.0	1970	0. 82	32.3	+0. 039
5		CreeVee	50	CrV.	50	430	1.3	1930	0. BO	32.3	-0.006
6	,	7	- 50	~	50	875	0.2	1880	0.99	32.1	-0.008

【0066】 装1~表3から分かるように、実施例1~25に示した下地層2c及び非磁性中間層4をCrV合金とした磁気記録媒体は、比較例1の下地層2c及び非磁性中間層4をCrとした磁気記録媒体に比べて保磁力(Hc)、残留磁化膜厚積(Mrδ)、及びS/N比が大きい。

【0067】さらに、実施例26~29に示した下地層2c及び非磁性中間層4をCrVZr合金とした磁気記録媒体は、比較例1の下地層2c及び非磁性中間層4をCrとした磁気記録媒体に比べて保磁力(Hc)、機留磁化膜厚積(Mrb)、及びS/N比が大きい。特に、CrV合金にZrを添加すると、一層ノイズ低減効果が増長されるため、S/N比が向上する。このような効果を引き出すためには、Zrの含有量を2~5at%の範囲とすることが好ましいことが分かる。

【0068】さらに、第1磁性層3の(002)面の結晶格子面間隔からそれに接する下地層2cの(110)面の結晶格子面間隔を引いた差(d₍₀₀₂₎ーd₍₁₁₀₎)及び第2磁性層5の(002)面の結晶格子面間隔から

それに接する非磁性中間層4の(110)面の結晶格子面間隔を引いた差(d (002) ー d (110))は、下地層2 cの組成、非磁性中間層4の組成、基板加熱温度及びA r ガス圧力により変化することが、実施例1~29及び比較例2~6を比較することにより分かる。例えば、比較例2の磁気記録媒体は、下地層2c及び非磁性中間層4のC r V合金のV含有量をそれぞれ50a t %としたために、各(d (002) ー d (110))が一0.015となり、その結果、実施例1~29の磁気記録媒体に比てり、その結果、実施例1~29の磁気記録媒体に比てり、その結果、実施例1~29の磁気記録媒体に比ていた。この結果は、各(d (002) ー d (110))を本発明の所定の範囲とするためには、下地層2c及び非磁性中間層4のC r V合金のV含有量を4~40a t %とすることが好ましいことを示すものである。

【0069】さらに、比較例3~6の結果から、(d (oog) ー d (no))が基板加熱温度及びArガス圧力によっても大きく変化することが分かる。これは、膜の作製条件によって膜内に格子歪が起こり、基板加熱温度及びArガス圧力の変化によって膜内の格子歪が変化する

ためであると推測される。このことから、($d_{(002)}$ - $d_{(110)}$)は、CrV系下地層2c及び非磁性中間層4のV含有量とともに、基板加熱温度及VArガス圧力を調整することで、各($d_{(002)}$ - $d_{(110)}$)を本発明の範囲にすることができることを示す。

【0070】比較例3、4は、実施例1と下地層2c及び非磁性中間層4の組成比及び膜厚は同一であるが、基板加熱温度、Arガス圧力がそれぞれ異なって作製された磁気ディスクである。比較例3では、基板加熱温度の低下により、(d(ωω) ー d(μω))は0.037となり、その結果、Hc及びS/N比が低下した。比較例4では、Arガス圧力の増加により、(d(ωω) ー d(μω))は0.039となり、その結果、Mrδ及びS/N比が低下した。比較例5、6は、実施例23と下地層2c及び非磁性中間層4の組成比及び胰厚は同一であるが、基板加熱温度、Arガス圧力がそれぞれ異なって作製された磁気ディスクである。比較例5では、基板加熱温度の増加により、(d(ωω) ー d(μω))はいずれも一0.006となり、その結果、Mrδ及びS/N比

が低下した。比較例6では、Arガス圧力の低下により、(d₁₀₀₂₁ ー d₍₁₁₀₁) はいずれも-0、008となり、その結果、Hc及びS/N比が低下した。 【0071】実施例30~46

CrV系下地層2cの組成比とCrV非磁性中間層4の組成比の組み合わせを表4に示すように変えた以外は実施例1-と同様にして磁気ディスクを作製した。一尚、実施例44~46では、Al薄膜(下地層)2aを膜厚50 Aで表面粗さRalOAの凹凸表面を有するAl薄膜(スパッタリング法で形成)とし、かつ保薬属4を磨度130Aの炭薬膜(スパッタリング法で形成)単層とし、かつ保薬膜(スパッタリング法で形成)単層とし、このようにして得た磁気ディスクの走行テストを、このようにして得た磁気ディスクの走行テストを、といきに表1に表4に示す。

[0072]

【表4】

							100 4	-				
实施例	磁性層銀版 (AUX) 120人×2層	下地層 2c組成 低以	では、	非 祖 性 用 在 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	非磁性 中国層 4度厚 (入)	基加温(C)	Arガス 圧力 (atort)	He	Mro (meau/ cm²)	S/NH (dB)	第1回性調 9と下地間 2 c d ((***) 一 d (())**	第2世姓房 5 と字配性 中間離 4 d (193) - d (人)
30	Co+,Pt,,Cr.	Cr V.	50	Cr., V2.	5 0	975	1, 3	1880	0.95	35. 6	+0.028	+0.028
31	•	-	50	CraoVa.	5 0	375	1. 3	2010	0.95	35.5	10.025	+0.015
32	•	•	5 0	CraeVee	5 0	375	1. 3	1920	0.93	35, 0		+0,002
33	•	CrV	Б 0	Cr.,V.	5.0	875	1. 3	1820	0.97	38.0	+0, 025	10,028
34	-	-	5 0	CraeV.	5 0	375	1, 9	2060	0.98	37.0	- 10.02	+0.015
ĸ	•	-	5 0	Cr,.V	6.0	375	1. 8	1860	0. 98	38.4		10.008
36		•	5 0	Cr.,V.,	5 0	375	1. 9	1950	0. 97	36.0		+0.002
37	•	Cr Y	5 0	Crasya	5 0	375	1. 9	1970	0, 89	36.0	+0.016	+0, 028
38	•	•	5 0	CrV,	5 0	375	1. 3	2020	0. 98	36. 9	-	10.025
39		•	5 0	Cr+.V.	5 0	375	l. 3	2000	0.97	36.1		10,006
49	•	-	5 0	CtaoV4.	5 0	375	1. 3	2000	1.00	86.0		+0, 002
41	•	Cr.v.V.	50	CrV.	50	375	1. 3	1920	1.00	35, 0	+0,006	10, 002
42	•	•	5 0	Cr.oV.	5 0	375	1. 3	1970	0.98	35.5		+0.025
43	•	-	5 0	CreeVye	5 0	375	1. 3	1950	0, 97	35.4	-	10.025
44	•	CrV	5 0	CreeVie	5 0	376	1. 3	1910	0. 85	35.3	+0.002	10.025
45		-	5 a	CreeV,	50	375	1. 8	1900	0. 84	85.2	10.002	t0.025
16	•	-	5 a	Cr+.V.	5 0	375	1, 3	1960	0.96	35.0		+0.006

【0073】表4から分かるように、V含有量が4~40 a t %のCrV下地層2cとCrV非磁性中間層4の組合せにおいて、Hc、Mrδ、及びS/N比の大きな値を有していることが分かる。S/N比を大きくする好ましい組成比の組合せとしてはV含有量4~40 a t %のCrV下地層に対してV含有量10~20 a t %のCrV非磁性中間層の組合せ、及びV含有量4~40 a t %のCrV下地層に対してV含有量10~20 a t %のCrV下地層の組合せである。そして、S/N比に更に大きく最も好ましい組合せは、V含有量10~2

0 a t %のC r V下地層に対してV含有量10~20 a t %のC r V非磁性中間層の組合せである。

【0074】実施例47~64

実施例47~56では、磁性層3の組成比、CrV系下地層2cの組成比及びCrV非磁性中間層4の組成比の組み合わせを表5に示すように変えた以外は実施例1と同様にして磁気ディスクを作製した。実施例57~64では、磁性層3の材料及び組成比、CrV下地層2cの組成比及びCrV非磁性中間層4の組成比を表5に示すように変えた以外は実施例1と同様にして磁気ディスク

(12)

特開平9-147349

を作製した。

【0075】このようにして得た磁気ディスクの走行テ ストをヘッド浮上量0.075μm以下で行った。その 結果、艮好であった。そして、保磁力(Hc)、残留磁 化膜厚積 (Mrδ)、及びS/N比を評価した。結果 を、条件とともに表5に示す。尚、表1と同様に、C o PtC: 壁性層3の (002) 面の結晶格子面間隔から それに接するCェV下地層2cの(110)面の結晶格 子間隔を引いた差(down ーdown)と CoP+

Cェ磁性層5の(002)面の結晶格子面間隔からそれ に接するCr V非磁性中間層4の(110)面の結晶格 子間隔を引いた菱 (d₍₀₀₂₎ - d₍₁₁₀₎) とは、下地層 2 c 及び非磁性中間層 4 の作製条件並びに磁性層 3 及び 磁性層 5 の作製条件がそれぞれ同一であったことから、 同一であったので表5には、両者をまとめて1つの値の みを示した。-

[0076]

_	(d (002)		_	JoPt	_	【表	5 }				
实施例	田性属组成(ath) 120人×2階	下地區 2c氯底 (at2)	下恤贖 24票度 (人)	非 間 性 個 成 (&(S))	芽田性 中間原 イ菓序 (人)	基加强(T)	Arガス 圧力 (Morr)	WS.	Mr &	S/NE (dB)	d
47		CrV,	5 0	Cr.,Y,,	5 0	375	1. 3	1880	1.07	35, 3	+0.010
48	 	CreeVse	5 0	CreeV2.	50	375	1. 3	1850	1.08	85.1	+0.003
49	Con,Pt.,Cris	Cr.eV.	5 a	Cr.,V.	5 0	375	1. 3	2200	0.85	35.5	+0.032
50		Cr.V.	5 0	Crast.	50	375	1. 3	2270	0.86	36.4	+0.022
51	CosePtisCre	CrV,	5 0	CrV.	5 0	375	1. 3	1910	1.07	35.7	+0.030
52		Cr. V.	50	Cro.V.	5 0	875	1. 3	1950	1.08	36.1	+0.020
53	ConsPtiCri	CraaV.	50	CrV	5 0	375	1. 3	2170	0. 94	36.4	+0, 019
54		Cr. V.	5 0	Cr., V2.	2 0	375	1. 3	2180	0. 82	35.5	+0.009
55	CoraPtiiCrai	Cr., V1.	5 0	Cr.,V.,	5.0	975	1. 3	2280	0.80	\$5.7	+0.012
56	•	Cr. Ve.	5 0	Cr V	5 0	375	1. 3	2850	0.80	35.0	+0.003
57	CossPt. Taz	CraeVas	S O	CrY.	5 0	375	1, 3	1800	1.09	34.1	10.026
58		CreeVee	5 0	CrY,.	50	376	1. 3	1930	1.10	34.8	+0, 018
59	ConsPtiths	Cr,, V,,	5 0	CresVis	5 0	375	1. 3	1950	1.00	34.0	+0, 082
60		Cra.Va.	5 0	CrVz.	2 0	375	1. 5	1850	1,08	34.8	+0.024
61	CoriPtiiCriiT84	Cr.,V.,	5 0	Cr. V.	5 0	375	1. 3	2070	D. 89	96.8	+0,027
62	•	CrssV	5 0	CraeVae	50	375	1. 3	2030	0.90	36,7	10,017
83	Cor,Pt,Cr,Ta,	Cr., V.,	5 0	CrV	5 0	375	1. 3	2130	0.79	35. 4	+0.030
64	,	CreeV.	5 0	CrV.	-50	375	1. 3	2100	0.75	35. 8	10.020

【0077】表5からわかるように、下地層2c及び非 磁性中間層4のV含有量が10~20at%のCェV合 金を用い、かつ磁性層をCoPtCr合金とする場合 (実施例47~56参照)、Co含有量を60~90s t%、P t含有量を4~20a t%、C r含有量を3~ 30at%とすることで、高Hc、高S/N比を得るこ とができる。さらに、高Hc、高S/N比を得るために は、CoPtCr合金磁性層のCo含有量は64~84 a t %とし、P t 含有量は5~18 a t %とし、C z 含 **有量は5~25a t%とすることが適当である。**

【0078】磁性層がCoPtTa合金の場合(実施例 57~60参照) には、Co含有量を80~90at %、Pt含有量を5~15 a t%、Ta含有量を1~7 at%とすることで高Hc、高S/N比を得ることがで きる。磁性層がCoPtCェTa合金の場合(実施例6 1~64参照)、Co含有量70~80st%、Pt含 有量5~15at%、Cr含有量5~25at%、Ta 含有量1~7at%とすることで高Hc、高S/N比を 得ることができる。

【0079】試験例 (重ね書き評価試験)磁気ディス

クの重ね書き特性(OW(dB))の評価を行った。評 価方法は以下に示す通りである。

(重ね書き評価方法)

①3.4MHをで書き込み。出力をV₁とする。

②13.5MHzで重ね書き。

③重ね書き後、①3. 4MH2で書き込んだ信号の出力 V』を求める。

OW(dB)を以下の式にて求めた。

OW (dB) = 20 log (V_2/V_1)

なお、磁気ヘッド浮上量及び使用したMR(磁気抵抗 型)ヘッドは実施例1で用いたものと同じである。

【0080】実施例の5、11、65~70及び比較例 の1、7~12では、磁性層の膜厚、下地層及び非磁性 中間層の組成比及び膜厚を変えた以外は実施例1と間様 にして磁気ディスクを作製した。得られた各磁気ディス クについて重ね書き特性 (OW) を評価した。尚、一般 的に重ね書き特性(OW)は、書き込み電流の増加によ ってその絶対値が増加し飽和する傾向を示すため、今回 のOW値は飽和値とした。この結果を、磁性層の組成及 び膜厚、下地層の組成及び膜煇、非磁性中間層の組成及

(13)

特開平9-147349

び膜厚と共に表6に示す。 【0081】

【表 6】

実施例	磁性度 1、 5 超成 (atx)	政性層 3、 5 期降 (人)	下地層2c 組成 (atx)	下地間 2c膜厚 (A)	非磁性 中間層 4組成 (a1X)	非磁性中間層 4 思想	重ね書き 特性 (OW) (dB)
5	CorePtiiCrii	120	CreeV2.	5 0	Cr V. v	5 0	-42.3
_ & _		2.8_0	-	5_0_	•	50	-38.5
66	_	120	-	150		5 0	-89.0
67		120	*	Б 0	•	100	-38.0
11	-	120	CraeVae	50	CrV.,	5 0	-41.3
68	•	230	~	5 0	-	5 0	-38. 5
659		120	-	150	-	50	-38. B
70	-	120	"	5 0	-	100	-38.0
比較例							
1	CorePtCr,	120	Cr	5 0	Cr	6 a	-38. 3
7	بد	27.0	CraeVia	5 0	CrieVie	5 0	-98.5
8	•	120	-	200	-	5 0	-36.8
8		120	•	5 0	-	150	-32_1
10		270	CrV	5 0	Cr.,Y,c	5 0	-36.0
13	-	120		200	•	50	-86.5
12	_	120	•	5 0	•	150	-32.0

【0082】表6から分かるように、実施例5、11及び65~70に示した下地層及び非磁性中間層にCrV合金を用いたものは比較例1のCrを用いたものに比べて重ね書き特性が非常に優れていることが分かる。また、磁性層、下地層及び非磁性中間層の膜厚によっても重ね書き特性は大きく変化することが分かる。-38(dB)以上の重ね書き特性を有するためには、磁性層の膜厚は230A以下、下地層の膜厚は150A以下、非磁性中間層の膜厚は100A以下とすることが好ましい。更に好ましくは磁性層の膜厚は150A以下、下地層の膜厚は100A以下、非磁性中間層の膜厚は80A以下とすることが適当である。

[0083]

【発明の効果】本発明によれば、従来のCr下地膜、Cr非磁性中間層とCoPt系合金磁性膜との組合せで構成された磁気ディスクに比べ、優れた静磁気特性(保磁力、残留磁化膜厚積)及び記録再生特性(S/N比、OW)を有しており600Mb/in²以上の面記録癌度での記録再生においても大きな出力、小さな媒体ノイズ及び優れた重ね書き特性を有する磁気ディスクを提供することができる。

【図面の簡単な説明】

【図1】 本発明の磁気ディスクの断面説明図。

【図2】 本実施例に用いたインライン型スパッタ装置の概略図。

(**Ø**1)

(14)

特朗平9-147349

【図2】

フロントページの続き

(51) Int. Cl. 6		識別記号	庁内坚理番号	ΡI			技術表示箇所
G11B	5/84	•	7303~5D	G11B	5/84	7.	这 附
•	5/85		7303-5D		5/85	C	
H01F 10	0/16			HOlF	10/16	7	
41	1/18				41/18		

(72)発明者 野澤 順

東京都新宿区中落合2丁目7番5号 ホーヤ株式会社内