

Day 2: Hands on epidemic diffusion

Marco Fernández da Silva

Different simulations

Well Mixed

Networks

Different simulations

Well Mixed

- Solve differential equations.
- Monte Carlo Simulations.
- Gillespie algorithm

Networks

- Monte Carlo Simulations.
- Gillespie algorithm.
- Optimized Gillespie.

Notebook installation

- 1. Scan this QR code.
- 2. Github user: Markfds0 repo shenzhen_school.
- 3. Clone or download the git repository.
- 4. Open the folder and install the packages:
 - a. Use pip install -r requirements.txt.
 - b. If does not work, install via pip install pandas, networkx, random and matplotlib.
- 5. Try to run the first cell in the jupyter notebook.

SCAN ME

Solving ODEs

The differencial equations of the SIR model are:

$$\frac{dS}{dt} = -\beta k S \frac{I}{N}$$

$$\frac{dI}{dt} = \beta k S \frac{I}{N} - \mu I$$

$$\frac{dR}{dt} = \mu I$$

Euler's method

We can discretize the differential equations

EULER

Euler's method

We can discretize the differential equations

EULER

URM position differential equation:

$$\frac{dx}{dt} = v(t)$$

It can be discretized as:

$$x(t+h) = x(t) + v(t) \cdot h$$

Euler's method

Once we know how to apply Euler, we can run our simulations:

- 1. Apply the Euler's method to update the compartments based on the rates.
- 2. **Update** the simulation time.
- 3. **Store the data** for the current time step (Time, Susceptible, Infected, Recovered) in a list.
- 4. Repeat from 1. to 3. until the **stopping condition** is reached.
- 5. Convert the list of data into a **Pandas DataFrame** for easier analysis and visualization.
- 6. Plot the epidemic curves using `plot_well_mixed_ODES`.
- * **NOTE**: The time series simulation data should be stored in a structured format with the columns (Time, Susceptible, Infected, Recovered)

Stochastic simulations

Epidemic diffusion is **not** deterministic.

In order to add stochasticity

Monte Carlo simulations

Stochastic simulations

Epidemic diffusion is **not** deterministic.

In order to add stochasticity

Monte Carlo simulations

We are going to **generate pseudo-random** numbers in python using the library **random** or **numpy**.

Basic idea:

Bernouilli test

Bernouilli test

Basic idea:

Bernouilli test

Bernouilli test

We **loop** through all the corresponding individuals and wwe throw a number, if it is **lower** than the probability, then the transition **happens**.

Basic idea:

Bernouilli test

Bernouilli test

Instead of looping through all the individuals, one can **sample** the number of new individuals in the compartments from a **binomial**:

new individuals = Binomial(possible transitions, probability)

Optional task

As an optional task, we can randomly track the events of infection and recovery (you will need some variables to keep the tracking).

- For every **infection**, randomly sample the **infector** from the set of infected individuals and the infected from the set of susceptible individuals.
- For every **recovery**, randomly sample the **recovered** individual from the set of infected individuals.
- Store the data in a list and convert to a pandas Dataframe.

- 1. Compute infection and recovery probabilities.
- 2. **Sample** the new number of infected and recovered individuals.
- 3. Update the population
- 4. Store the data
- 5. Repeat steps 1 to 4 until the stopping condition is reached.
- 6. Repeat steps 1 to 5 for all the simulations.

Gillespie algorithm

In the last two simulations, time was **discrete**, no matter the possible number of events, the time step is the **same**.

With Gillespie's method, we can make it **continuous** by sampling the waiting time 't' until the next event from:

$$f(t) = \tau_T e^{-\tau_T t}$$

Where the total rate is the sum of the infection and recovery rate.

$$\tau_I = \beta k S \frac{I}{N} \qquad \qquad \tau_R = \mu I$$

Cumulative distribution function

We compute the **cumulative distribution** as:

$$F(t) = \int_{-\infty}^{t} f(t)dt$$

Find the 't' that **satisfies** F(t) = w, with 'w' being a random **uniform** number

Gillespie

Once we know how to apply Gillespie, we can run our simulations:

- 1. Calculate the total rate of events, infections and recoveries.
- 2. Sample the time step using the CDF method.
- 3. **Choose** the event to execute based on the rates (with a uniform random number).
- 4. Update the sets based on the event executed.
- 5. **Store** the time series data (t, S(t), I(t), R(t)) for the Gillespie well-mixed model.
- 6. Repeat steps from 2 to 6 until the stopping condition is reached.
- 7. Repeat all the steps for more than one simulation.

Stochastic simulations in Networks

Real world contact structure is not a well mixed population.

Contact structure

Networks

Stochastic simulations in Networks

Real world contact structure is not a well mixed population.

Contact structure

Networks

Individuals can only interact with the individuals they have a link with.

Stochastic simulations in Networks

Basic idea:

- Loop through all the nodes.
 - If the node is infected:
 - Check if it infects any of its neighbours.
 - Check if it recovers.
- Store the data.
- Repeat until the simulation ends.
- If you finish, repeat the steps with different networks and more than one simulation in each.

Optional task

As an optional task, we can randomly track the events of infection and recovery (you will need some variables to keep the tracking).

- For every **infection**, randomly sample the **infector** from the set of infected individuals and the infected from the set of susceptible individuals.
- For every recovery, randomly sample the recovered individual from the set of infected individuals.
- Store the data in a list and convert to a pandas Dataframe.

Gillespie in Networks

How do we sample the time step?

Same as before

Differences:

- The **infection rate** is $\tau_I = \beta \cdot E(I \longrightarrow S)$, the infectivity rate times the **number of edges** between infected and susceptible individuals.
- We pick the new infected individual with a probability proportional to their number of infected neighbours.

Gillespie in Networks

Once we know how to apply Gillespie, we can run our simulations:

- 1. Compute the total rate of events
- 2. Sample the time step using the CDF method.
- 3. **Choose** the event (infection/recovery) based on the rates (with a uniform random number).
- 4. **Update** the states.
- 5. **Store** the time series data (t, S(t), I(t), R(t)).
- 6. Repeat steps from 2 to 5 until the stopping condition is reached.
- 7. Repeat all steps for each simulation.

* **NOTE**: The time series simulation data should be stored in a structured format with the columns (Simulation, Time, Susceptible, Infected, Recovered)

Optimized Gillespie

As Gillespie algorithm is computationally **expensive**, we can apply an **optimization**.

The infection rate is the **sum of the degrees** of all infected nodes. If an infection event occurs, choose the **infector** with probability proportional to its **degree**. Then select one of that node's neighbours uniformly at random and infect it **only if** it is susceptible.

Optimized Gillespie

Once we know how to apply Gillespie, we can run our simulations:

- 1. Compute the total rate of events
- 2. Sample the time step using the CDF method.
- 3. **Choose** the event (infection/recovery) based on the rates (with a uniform random number).
- 4. **Update** the states.
- 5. Store the time series data (t, S(t), I(t), R(t)).
- 6. Repeat steps from 2 to 5 until the stopping condition is reached.
- 7. Repeat all steps for each simulation.

* **NOTE**: The time series simulation data should be stored in a structured format with the columns (Simulation, Time, Susceptible, Infected, Recovered)

Thank you