Xử lý ảnh - warping ảnh và xoay ảnh

Đỗ Thanh Hà

Bộ môn Tin học Khoa Toán - Cơ - Tin học Trường Đại học Khoa học Tự nhiên

Ánh xạ hình học

Ánh xạ hình học

- 1. Giả sử có ảnh input I
- 2. Tính kích thước $R_{out} \times C_{out} \times B$ và khởi tạo ảnh đầu ra ${f J}$
- 3. Tạo ánh xạ (hàm warping Φ) như sau
 - ullet Khởi tạo một mảng Φ có kích thước $R_{out} imes C_{out} imes 2$
 - Với mỗi vị trí pixel (r, c) trong J tìm vị trí pixel giá trị thực (r_f, c_f) trong I
 - Đặt $\Phi(r,c,1) = r_f$ và $\Phi(r,c,2) = c_f$
- 4. Tạo một hàm nội suy Θ , hàm này sẽ sinh ra giá trị pixel từ các giá trị của \mathbf{I} trong miền hàng xóm $\mathfrak{N}(r_f, c_f)$
- 5. Sau đó đặt $\mathbf{J} = \Theta\{\mathbf{I}; \mathfrak{N}(r_f, c_f)\}$

Warping tuyến tính của ảnh

Lựa chọn các điểm để correction

Warping tuyến tính của ảnh

Các điểm correction mục tiêu

Warping tuyến tính của ảnh

Kết quả

Warping tuyến tính của ảnh - Thực hiện như thế nào

Cho tập ${\bf X}$ các điểm trong ảnh ${\bf I}$ và tập ${\bf Y}$ các điểm mục tiêu; cần tìm ${\bf H}$ sao cho ${\bf Y}={\bf H}{\bf X}$

Trong đó

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \dots & \mathbf{x}_p \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & \dots & x_p \\ y_1 & y_2 & \dots & y_p \end{bmatrix}$$

$$\mathbf{Y} = \begin{bmatrix} \mathbf{y}_1 & \mathbf{y}_2 & \dots & \mathbf{y}_p \end{bmatrix} = \begin{bmatrix} u_1 & u_2 & \dots & u_p \\ v_1 & v_2 & \dots & v_p \end{bmatrix} \text{ và } \mathbf{H} = \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix}$$

$$\mathbf{H}^{-1} \begin{bmatrix} c_{\mathbf{J}} \\ r_{\mathbf{J}} \end{bmatrix} = \begin{bmatrix} c_{\mathbf{I}} \\ r_{\mathbf{I}} \end{bmatrix}$$
 khi đó $\mathbf{J}(r_{\mathbf{J}}, c_{\mathbf{J}}) = \mathbf{I} \left(\mathbf{H}^{-1} \begin{bmatrix} c_{\mathbf{J}} \\ r_{\mathbf{J}} \end{bmatrix} \right)$ là ảnh wraped

Warping tuyến tính của ảnh - Thực hiện như thế nào

Tuy nhiên, công thức ở slide trước làm việc chưa thực tốt vì nó là phép biến đổi 2D. Chúng ta cần một phép biến đổi 3D affine, chiều thứ 3 cho phép chúng ta mô hình các phép chiếu tổng quát hơn. Do đó người ta thường sử dụng toạ độ đồng nhất

Warping tuyến tính của ảnh - Toạ độ đồng nhất

Gán giá trị 1 cho chiều thứ 3 của mỗi vị trí pixel input

$$\mathbf{x}_i = \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}$$

- **H** là ma trận kích thước 3×3
- Vị trí pixel được ánh xạ cũng là 3D. Gọi thành phần thứ 3 là
 k_i và viết 2 thành phần khác như là tỉ lệ của k_i

$$\mathbf{y}_i = \begin{bmatrix} k_i u_i \\ k_i v_i \\ k_i \end{bmatrix}$$

Warping tuyến tính của ảnh - Toa đô đồng nhất

• Vị trí pixel trong dạng đồng nhất được viết dưới dạng:

$$\mathbf{X} = \begin{bmatrix} x_1 & x_2 & \dots & x_p \\ y_1 & y_2 & \dots & y_p \\ 1 & 1 & \dots & 1 \end{bmatrix}$$

- **H** là ma trân kích thước 3×3 : **Y** = **HX**
- Vị trí pixel được ánh xạ trong toạ độ đồng nhất có dang như sau, trong đó mỗi k; thường là khác nhau

$$\mathbf{Y} = \begin{bmatrix} k_1 u_1 & k_2 u_2 & \dots & k_p u_p \\ k_1 v_1 & k_2 v_2 & \dots & k_p v_p \\ k_1 & k_2 & \dots & k_p \end{bmatrix}$$

• Mỗi vector \mathbf{x}_i và \mathbf{y}_i là các thành phần của phép biến đổi

$$\begin{bmatrix} k_i u_i \\ k_i v_i \\ k_i \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}$$

Với mỗi vị trí pixel, có 3 phương trình 3 ẩn

$$k_i u_i = h_{11} x_i + h_{12} y_i + h_{13}$$

 $k_i v_i = h_{21} v_i + h_{22} v_i + h_{23}$
 $k_i = h_{31} x_i + h_{32} y_i + h_{33}$

Chia phương trình thứ nhất và thứ hai cho phương trình thứ 3

$$u_i = \frac{h_{11}x_i + h_{12}y_i + h_{13}}{h_{31}x_i + h_{32}y_i + h_{33}}$$
$$v_i = \frac{h_{21}v_i + h_{22}v_i + h_{23}}{h_{31}x_i + h_{32}y_i + h_{33}}$$

• Chia cả tử số và mẫu số cho h_{33} . So đó gán nhãn lại các hệ số

$$u_i = \frac{h_{11}x_i + h_{12}y_i + h_{13}}{h_{31}x_i + h_{32}y_i + 1}$$
$$v_i = \frac{h_{21}v_i + h_{22}v_i + h_{23}}{h_{31}x_i + h_{32}y_i + 1}$$

Nhân cả hai với mẫu số bên phải

$$(h_{31}x_i + h_{32}y_i + 1)u_i = h_{11}x_i + h_{12}y_i + h_{13}$$

$$(h_{31}x_i + h_{32}y_i + 1)v_i = h_{21}x_i + h_{22}y_i + h_{23}$$

Trừ cả hai vế cho vế phải

$$-h_{11}x_i - h_{12}y_i - h_{13} + h_{31}x_iu_i + h_{32}y_iu_i + u_i = 0$$

$$-h_{21}x_i - h_{22}y_i - h_{23} + h_{31}x_iv_i + h_{32}y_iv_i + v_i = 0$$

Viết dưới dang phương trình ma trân

$$\begin{bmatrix} -x_i & -y_i & -1 & 0 & 0 & 0 & x_i u_i & y_i u_i & u_i \\ 0 & 0 & 0 & -x_i & -y_i & -1 & x_i v_i & y_i v_i & v_i \end{bmatrix} \mathbf{h} = 0$$

với ma trận H được viết dưới dạng vector h

$$\mathbf{h} = \begin{bmatrix} h_{11} & h_{12} & h_{13} & h_{21} & h_{22} & h_{23} & h_{31} & h_{32} & 1 \end{bmatrix}^T$$

• Tập hợp $p \ge 4$ các vị trí pixel, ánh xạ chúng như mong muốn và tạo ra ma trận ${\bf A}$

$$\mathbf{A} = \begin{bmatrix} -x_1 & -y_1 & -1 & 0 & 0 & 0 & x_1u_1 & y_1u_1 & u_1 \\ 0 & 0 & 0 & -x_1 & -y_1 & -1 & x_1v_1 & y_1v_1 & v_1 \\ -x_2 & -y_2 & -1 & 0 & 0 & 0 & x_2u_2 & y_2u_2 & u_2 \\ 0 & 0 & 0 & -x_2 & -y_2 & -1 & x_2v_2 & y_2v_2 & v_2 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ -x_p & -y_p & -1 & 0 & 0 & 0 & x_pu_p & y_pu_p & u_p \\ 0 & 0 & 0 & -x_p & -y_p & -1 & x_pv_p & y_pv_p & v_p \end{bmatrix}$$

Giải tìm h sao cho

$$\mathbf{h} = \begin{bmatrix} h_{11} & h_{12} & h_{13} & h_{21} & h_{22} & h_{23} & h_{31} & h_{32} & 1 \end{bmatrix}^T$$

 $\mathbf{A}\mathbf{h} = 0$

 Nếu định nghĩa A ở slide trước, giải thu được H mà kết quả sai, ta sử dụng dạng khác của ma trận A như sau

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 0 & -x_1 & -y_1 & -1 & x_1v_1 & y_1v_1 & v_1 \\ x_1 & y_1 & 1 & 0 & 0 & 0 & -x_1u_1 & -y_1u_1 & -u_1 \\ 0 & 0 & 0 & -x_2 & -y_2 & -1 & x_2v_2 & y_2v_2 & v_2 \\ x_2 & y_2 & 1 & 0 & 0 & 0 & -x_2u_2 & -y_2u_2 & u_2 \\ \dots & & & & & & & \\ 0 & 0 & 0 & -x_p & -y_p & -1 & x_pv_p & y_pv_p & v_p \\ x_p & y_p & 1 & 0 & 0 & 0 & -x_pu_p & -y_pu_p & -u_p \end{bmatrix}$$

Giải tìm h sao cho

$$\mathbf{h} = \begin{bmatrix} h_{11} & h_{12} & h_{13} & h_{21} & h_{22} & h_{23} & h_{31} & h_{32} & 1 \end{bmatrix}^T$$

 $\mathbf{A}\mathbf{h} = 0$

• Để tìm **h** tính sigular value decomposition (SVD) của **A**

$$svd(\mathbf{A}) = \mathbf{USV}^T$$

S là ma trận đường chéo

$$\mathbf{S} = \begin{bmatrix} \sigma_1 & 0 & \dots & 0 \\ 0 & \sigma_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \sigma_p \end{bmatrix}$$

• Viết ma trận **V** dưới dạng các cột của nó

$$\mathbf{V} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & & \mathbf{v}_p \end{bmatrix}$$

- Tim σ_k : $k = arg \min \{\sigma_1, \sigma_2, ..., \sigma_p\}$
- Khi đó vector h được cho bởi vectro cột thứ k, v_k

$$\mathbf{h} = \mathbf{v}_k$$

• Nếu \mathbf{v}_k là vector của \mathbf{V} mà tương ứng với giá trị singular nhỏ nhất thì \mathbf{H} có dạng

$$\mathbf{H} = \begin{bmatrix} v_{1k} & v_{2k} & v_{3k} \\ v_{4k} & v_{5k} & v_{6k} \\ v_{7k} & v_{8k} & v_{9k} \end{bmatrix}$$

• Ánh xạ (r_I, c_I) thành (r_J, c_J) thông qua H sao cho

$$\mathbf{J}(r_{\mathbf{J}},c_{\mathbf{J}})=\mathbf{I}(r_{\mathbf{I}},c_{\mathbf{I}})$$

Nhưng ta muốn quét ảnh output J và tại mỗi vị trí pixel
 (r_J, c_J) lấy giá trị từ I tại vị trí (η, c_I), do đó ta thực hiện

$$\mathbf{J}(r_{\mathbf{J}},c_{\mathbf{J}}) = \mathbf{I}\left(N\left\{\mathbf{H}^{-1}egin{bmatrix}c_{\mathbf{J}}\\r_{\mathbf{J}}\\1\end{bmatrix}
ight\}
ight)$$

Warping tuyến tính của ảnh - Remapping

• Ánh xạ ngược của $(r_{J}, c_{J}, 1)$ qua \mathbf{H}^{-1} là (kr_{J}, kc_{J}, k)

$$\mathbf{H}^{-1} \begin{bmatrix} c_{\mathbf{J}} \\ r_{\mathbf{J}} \\ 1 \end{bmatrix} = \begin{bmatrix} k_{(r,c)}c_{\mathbf{J}} \\ k_{(r,c)}r_{\mathbf{J}} \\ k_{(r,c)} \end{bmatrix}$$

• và cần được chuẩn hoá như sau

$$N\left\{ \begin{bmatrix} k_{(r,c)}c_{\mathbf{J}} \\ k_{(r,c)}r_{\mathbf{J}} \\ k_{(r,c)} \end{bmatrix} \right\} = \frac{1}{k_{(r,c)}} \begin{bmatrix} k_{(r,c)}c_{\mathbf{I}} \\ k_{(r,c)}\eta \end{bmatrix} = \begin{bmatrix} c_{\mathbf{I}} \\ \eta \end{bmatrix}$$

• Do đó mỗi pixel tại vị trí $(r_{\mathbf{J}}, c_{\mathbf{J}})$ trong ảnh wraped

$$\mathbf{J}(r_{\mathbf{J}},c_{\mathbf{J}}) = \mathbf{I}\left(N\left\{\mathbf{H}^{-1}\begin{bmatrix}c_{\mathbf{J}}\\r_{\mathbf{J}}\\1\end{bmatrix}\right\}\right)$$

Cong tuyến tính của ảnh - Các bước

- 1. Chọn ít nhất 4 pixels trong I
- Chọn các vị trí đích bằng cách thay thế các giá trị của vị trí được lựa chọn
- Xây dựng từ cặp các vị trí, ma trận A như mô tả trong slide
 13
- 4. Tính SVD của $\mathbf{A} = \mathbf{USV}^T$
- 5. Lựa chọn vector \mathbf{v}_k mà tương ứng với giá trị singular nhỏ nhất
- 6. Xây dựng \mathbf{H} từ \mathbf{v}_k
- 7. Tính \mathbf{H}^{-1}
- 8. Tạo ra ảnh output J
- 9. Với mỗi vị trí (r_J, c_J) trong J, chọn (r_I, c_I) trong I sử dụng phương trình ở slide trước
- 10. Do $(\eta, c_{\mathbf{l}})$ là các phân số, nội suy trên hàng xóm của $(\eta, c_{\mathbf{l}})$ trong \mathbf{l} để tính $\mathbf{J}(r_{\mathbf{J}}, c_{\mathbf{J}})$

Kích thước ảnh

$$[R_{in}, C_{in}, B] = size(I)$$

Góc quay

$$\theta_A = \tan^{-1} \left[\frac{R_{in}}{C_{in}} \right]$$

• Chiều dài đường chéo

$$D = \sqrt{R_{in}^2 + C_{in}^2}$$

- góc quay θ
- ma trân quay

$$\mathbf{P}(\theta) = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

• biến đổi ảnh ảnh đầu vào thành ảnh đầu ra

$$\begin{bmatrix} r \\ c \end{bmatrix} = \mathbf{P}(\theta) \begin{bmatrix} r_{in} - R_{in0} \\ c_{in} - C_{in0} \end{bmatrix} + \begin{bmatrix} R_{out0} \\ C_{out0} \end{bmatrix}$$

trong đó

trong đó
$$(R_{in0}, C_{in0}) = (\frac{1}{2}R_{in} + 1, \frac{1}{2}C_{in} + 1); (R_{out0}, C_{out0}) \text{ là tâm của ảnh ouput}$$

• Tính chiều của ảnh đầu ra: số các hàng

$$R_{out} = {
m round}(|D\sin(heta+ heta_A)|)$$
nếu $0^0 < heta < 90^0$

 Tính chiều của ảnh đầu ra: số các cột

$$C_{out} = {\sf round}(|D\cos(heta - heta_A)|)$$
 nếu $0^0 < heta \le 90^0$

Chiều của ảnh đầu ra phụ thuộc vảo giá trị của θ như sau

• Nếu $0^0 \le \theta < 90^0$

$$R_{out} = \text{round}(|D\sin(\theta + \theta_A)|)$$

$$C_{out} = \text{round}(|D\cos(\theta - \theta_A)|)$$

• Nếu $90^0 \le \theta < 180^0$

$$R_{out} = \text{round}(|D\cos(\theta - 90 - \theta_A)|)$$

$$C_{out} = \text{round}(|D\sin(\theta - 90 + \theta_A)|)$$

• Nếu $-90^0 \le \theta < 0^0$

$$R_{out} = \text{round}(|D\sin(\theta - \theta_A)|)$$

$$C_{out} = \text{round}(|D\cos(\theta + \theta_A)|)$$

ullet Nếu $-180^0 \le heta < -90^0$

$$R_{out} = \text{round}(|D\cos(\theta + 90 + \theta_A)|)$$

$$C_{out} = \text{round}(|D\sin(\theta + 90 - \theta_A)|)$$

- Khởi tạo ảnh output với chiều (R_{out}, C_{out})
- và tâm của ảnh đầu ra

$$R_{out0} = \left\lfloor \frac{1}{2} R_{out} \right\rfloor + 1$$

$$C_{out0} = \left| \frac{1}{2} C_{out} \right| + 1$$

$$\mathbf{P}^{-1}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
$$= \mathbf{P}(-\theta)$$

Làm ngược lại: với mỗi vị trí đầu ra (r,c) lựa chọn vị trí đầu vào (r_f,c_f) bằng cách quay (r,c) xung quanh tâm của ảnh một góc $-\theta$

$$\Phi(r, c, :) = \begin{bmatrix} r_f \\ c_f \end{bmatrix}$$

$$= \mathbf{P}^{-1}(\theta) \begin{bmatrix} r - R_{out0} \\ c - C_{out0} \end{bmatrix}$$

$$+ \begin{bmatrix} R_{in0} \\ C_{in0} \end{bmatrix}$$

Xoay ảnh input một góc θ tương ứng với xoay ảnh output một góc $-\theta$

$$egin{aligned} \Phi(r,c,:) &= \mathbf{P}^{-1}(heta) egin{bmatrix} r - R_{out0} \ c - C_{out0} \end{bmatrix} \ &+ egin{bmatrix} R_{in0} \ C_{in0} \end{bmatrix} \end{aligned}$$

Sau khi xoay ảnh input một góc $-\theta$, $\mathbf{J}(r,c)$ gần như cùng vị trí với $\mathbf{I}(r_f,c_f)$

$$\begin{aligned} \Phi(r,c,:) &= \begin{bmatrix} r_f \\ c_f \end{bmatrix} \\ &= \mathbf{P}^{-1}(\theta) \begin{bmatrix} r - R_{out0} \\ c - C_{out0} \end{bmatrix} \\ &+ \begin{bmatrix} R_{in0} \\ C_{in0} \end{bmatrix} \end{aligned}$$

Sau khi xoay ảnh input một góc $-\theta$, $\mathbf{J}(r,c)$ gần như cùng vị trí với $\mathbf{I}(r_f,c_f)$

$$\Phi(r, c, :) = \begin{bmatrix} r_f \\ c_f \end{bmatrix} \\
= \mathbf{P}^{-1}(\theta) \begin{bmatrix} r - R_{out0} \\ c - C_{out0} \end{bmatrix} \\
+ \begin{bmatrix} R_{in0} \\ C_{in0} \end{bmatrix}$$

Sau khi xoay ảnh input một góc $-\theta$, $\mathbf{J}(r,c)$ gần như cùng vị trí với $\mathbf{I}(r_f,c_f)$

$$\Phi(r, c, :) = \begin{bmatrix} r_f \\ c_f \end{bmatrix}$$

$$= \mathbf{P}^{-1}(\theta) \begin{bmatrix} r - R_{out0} \\ c - C_{out0} \end{bmatrix}$$

$$+ \begin{bmatrix} R_{in0} \\ C_{in0} \end{bmatrix}$$

 $\mathbf{J}(r,c) = \Theta\{\mathbf{I};\mathfrak{N}(r_r,c_f)\}$ Nội suy: Giá trị pixel output thường là một hàm của các giá trị trong hàng xóm Nội suy bilinear: sử dụng hàng xóm 2×2 ; bicubic sử dụng 4×4 Hàng xóm gần nhất: $\mathbf{J}(r,c) = \mathbf{J}(r_i,c_i)$ với $(r_i,c_i) = \operatorname{round}(r_f,c_f)$

Quay ảnh với nội suy - ví dụ

Ảnh ban đầu Hàng xóm gần nhất **Bicubic** Bilinear

Ánh xạ ảnh vào khối cầu?