第-	-章	分立模块实验	6
	实验-	- LCD 上的字符显示	6
		【实验目的】	t
		【实验设备】	t
		【实验原理】	
		【实验步骤】	
		【硬件连接图】	
		【程序流程图】	8
		【程序及其特殊函数说明】	
	实验=	二 LCD 上的汉字显示	g
		【实验目的】	9
		【实验设备】	9
		【实验原理】	9
		【实验步骤】	9
		【硬件连接图】	9
		【程序流程图】	
		【程序及其特殊函数说明】	
	实验=	三 LCD 上的图片显示	11
		【实验目的】	11
		【实验设备】	11
		【实验原理】	11
		【实验步骤】	11
		【硬件连接图】	11
		【程序流程图】	
		【程序及其特殊函数说明】	
	实验四	四 LCD 上的动态图片显示	13
		【实验目的】	
		【实验设备】	
		【实验原理】	
		【实验步骤】	
		【硬件连接图】	
		【程序流程图】	
		【程序及其特殊函数说明】	
	实验王	五 LCD 上的几何图形显示	15
		实验目的】	
		【实验设备】	
		【实验原理】	
		【实验步骤】	
		【硬件连接图】	
		【程序流程图】	
		【程序及其特殊函数说明】	
	实验さ	六 USB 通讯实验	
		【实验目的】	
		【实验设备】	

【实验原理】	
【实验步骤】	
【硬件连接图】	
【程序流程图】	
【程序及其特殊函数说明】	
实验七 SPR4096 中的 FLASH 的擦除及其读写	25
【实验目的】	
【实验设备】	
【实验原理】	
【实验步骤】	
【硬件连接图】	
【程序流程图】	
【程序及其特殊函数说明】	
实验八 SPR4096 中的 SRAM 的读写	28
【实验目的】	
【实验设备】	
【字验原理】	
【字验步骤】	
【硬件连接图】	
【程序流程图】	
【程序及其特殊函数说明】	
第二章 综合实验	22
实验一 6 位 7 段 LED 数码管显示实验	
【实验要求】	
【实验目的】	
【实验设备】	
【实验原理】	
【硬件连接图】	
【实验步骤】	
【主程序流程图】	
【程序范例】	
实验二 4*4 键盘输入在 LED 数码管上的显示	40
【实验要求】	
【实验目的】	
【实验设备】	40
【实验原理】	40
【硬件连接图】	40
【实验步骤】	40
【主程序流程图】	41
实验三 时钟实验	42
【实验要求】	
【实验目的】	42
The state of the s	
【实验设备】	

【实验步骤】	
【硬件连接图】	
【主程序流程图】	42
实验四 LED 点阵模块	43
【实验目的】	
【实验设备】	
【实验原理】	
【硬件原理图】	
【实验步骤】	44
【主程序流程图】	44
【程序范例】:	44
【程序练习】	46
实验五 4*4 键盘在 LED 点阵上的应用	47
【实验要求】	47
【实验目的】	47
【实验设备】	47
【实验原理】	47
【硬件连接图】	47
【实验步骤】	47
【主程序流程图】	
实验六 4*4 键盘播放语音	49
【实验目的】	
【实验设备】	
【实验原理】	49
【硬件连接图】	
【实验步骤】	
【主程序流程图】	50
【程序范例】	
实验七 并口扩展 ROM (M27 C4001)	51
【实验目的】	51
【实验设备】	51
【实验原理】	51
【硬件连接图】	51
【实验步骤】	51
【主程序流程图】	
【程序范例】	
实验八 并口扩展 SRAM (HM628128DLP5)	53
【实验目的】	53
【实验设备】	53
【实验原理】	53
【实验步骤】	57
【程序流程图】	
【程序范例】	
实验力 按键 DVR	64

	【实验目的】	64
	【实验设备】	64
	【实验原理】	64
	【实验步骤】	64
	【硬件连接图】	65
	【程序流程图】	66
	【程序及其特殊函数说明】	66
实验	十 带有背景音乐的动态图片	77
	【实验目的】	
	【实验设备】	
	【实验原理】	
	【硬件连接图】	
	【程序流程图】	
	【程序及其特殊函数说明】	
实验	十一 UART 控制液晶显示	79
	【实验目的】	
	【实验设备】	
	【实验原理】	
	【实验步骤】	
	【硬件连接图】	
	【程序流程图】	80
	【程序及其特殊函数说明】	
实验	十二 03V 电压测量表	80
	【实验目的】	
	【实验设备】	
	【实验原理】	
	【实验步骤】	
	【硬件连接图】	
	【程序流程图】	
	【程序及其特殊函数说明】	82
实验	十三 录音笔	82
	【实验目的】	82
	【实验设备】	82
	【实验原理】	82
	【实验步骤】	83
	【硬件连接图】	83
	【程序流程图】	84
	【程序及其特殊函数说明】	84
实验	十四 USB 实现语音录放及其上传下载	84
	【实验目的】	
	【实验设备】	
	【实验原理】	
	【实验步骤】	
	【硬件连接图】	88

【程序流程图】	89
【程序及其特殊函数说明】	91
实验十五 原始语音资源的存储和播放	95
【实验目的】	95
【实验设备】	95
【实验原理】	95
【实验步骤】	95
【硬件连接图】	95
【程序流程图】	9t
【程序及其特殊函数说明】	97

第一章 分立模块实验

实验一 LCD 上的字符显示

【实验目的】

- 1、了解 SPLC501 的使用方法及相关函数
- 2、学习利用 SPLC501 显示字符

【实验设备】

1)装有 μ'nSPTM IDE 仿真环境的 PC 机一台。 2)μ'nSPTM十六位单片机实验箱一个。

【实验原理】

利用 SPLC501 显示字符,详细资料见 SPLC501 数据手册

【实验步骤】

- 1)根据硬件连接图连接好硬件。(实验箱默认的 LCD 连接方式)
- 2)将μ'nSP™ IDE 打开后,建立一个新工程。
- 3)在该项目的源文件夹(SOURCE FILES)下建立一个新的 C 语言文件。
- 4)编写程序代码。
- 5)编译程序,软件调试。
- 6)注意观察 LCD 的现象

【硬件连接图】

【程序流程图】

【程序及其特殊函数说明】

FG ClearScreen

调用方式: FG_ClearScreen (); 功能说明: 清除或填充全屏。

参数: DG_CLS_ERASE(default), DG_CLS_FILL

示 例

FG ClearScreen (DG_CLS_FILL)

Function Name: FG_PutStr

参数: StrPtr, Font, StartX, StartY

功能说明:输出字符串从 (StartX, StartY).

Mode:

DG_CHAR_COVER(default)

DG_CHAR_INVERSE

DG_CHAR_XOR

Memory Modified: None

用 法:FG_PutStr(char *StrPtr, short Font, short StartX, short StartY)

示 例:

FG_PutStr(StringPointer, Tiny, 5, 6)

FG_PutStr("Hello", Large)

实验二 LCD 上的汉字显示

【实验目的】

- 1、了解 SPLC501 的使用方法及相关函数
- 2、学习利用 SPLC501 显示汉字

【实验设备】

1)装有 μ'nSP™ IDE 仿真环境的 PC 机一台。

2)μ'nSPTM十六位单片机实验箱一个。

【实验原理】

利用 SPLC501 显示汉字

【实验步骤】

- 1)根据硬件连接图连接好硬件。(实验箱默认的 LCD 连接方式)
- 2)将μ'nSPTM IDE 打开后,建立一个新工程。
- 3)在该项目的源文件夹(SOURCE FILES)下建立一个新的 C 语言文件。
- 4)编写程序代码。
- 5)编译程序,软件调试。
- 6)注意观察 LCD 的现象

【硬件连接图】

同实验一硬件连接。

<u>实验指导书</u> 10

【程序流程图】

【程序及其特殊函数说明】

```
FG_ClearScreen
```

调用方式: FG_ClearScreen ();

功能说明:清除或填充全屏。

参数: DG_CLS_ERASE(default), DG_CLS_FILL

示 例

FG ClearScreen (DG_CLS_FILL)

FG_PutBitmap

调用方式: FG_PutBitmap ();

功能说明:画 bmp 图。

参数: BmpX, BmpY, BmpNum, Mode

功能说明: 画位图从 (BmpX, BmpY) 点, 用指定模式

Mode:

DG_BMP_COVER(default)

DG BMP INVERSE

DG BMP XOR

Memory Modified: None

用 法: FG_PutBitmap(short BmpNum, short BmpX, short BmpY, short Mode)

示 例:

FG_PutBitmap(0,10,20,DG_BMP_COVER)
FG_PutBitmap(1,10,20)
FG PutBitmap(2,DG BMP XOR)

实验三 LCD 上的图片显示

【实验目的】

- 1、了解 SPLC501 的使用方法及相关函数
- 2、学习利用 SPLC501 显示图片

【实验设备】

1)装有 μ 'nSPTM IDE 仿真环境的 PC 机一台。

2)μ'nSPTM十六位单片机实验箱一个。

【实验原理】

利用 SPLC501 显示图片,图片的性质为位图。采用位图转换工具,将位图图片生成二进制码。

【实验步骤】

- 1)根据硬件连接图连接好硬件。(实验箱默认的 LCD 连接方式)
- 2)将μ'nSP™ IDE 打开后,建立一个新工程。
- 3)在该项目的源文件夹(SOURCE FILES)下建立一个新的 C 语言文件。
- 4)编写程序代码。
- 5)编译程序,软件调试。
- 6)注意观察 LCD 的现象

【硬件连接图】

同实验一硬件连接。

实验指导书 8- 12

【程序流程图】

【程序及其特殊函数说明】

FG ClearScreen

调用方式: FG_ClearScreen ();

功能说明:清除或填充全屏。

参数: DG_CLS_ERASE(default), DG_CLS_FILL

示 例

FG_ClearScreen (DG_CLS_FILL)

FG_PutBitmap

调用方式: FG_PutBitmap ();

功能说明:画bmp图。

参数: BmpX,BmpY,BmpNum,Mode

功能说明: 画位图从 (BmpX, BmpY) 点, 用指定模式

Mode:

DG BMP COVER(default)

DG_BMP_INVERSE

DG_BMP_XOR

Memory Modified: None

用 法: FG_PutBitmap(short BmpNum, short BmpX, short BmpY, short Mode)

<u>实验指导书</u> <u>13</u>

示 例:

FG_PutBitmap(0,10,20,DG_BMP_COVER)
FG_PutBitmap(1,10,20)
FG_PutBitmap(2,DG_BMP_XOR)
FG_PutBitmap(3)

实验四 LCD 上的动态图片显示

【实验目的】

- 1、解 SPLC501 的使用方法及相关函数
- 2、学习利用 SPLC501 显示动态图片

【实验设备】

- 1)装有 μ'nSP™ IDE 仿真环境的 PC 机一台。
- 2)μ'nSPTM十六位单片机实验箱一个。

【实验原理】

利用 SPLC501 显示动态图片,原理与显示图片相同,动态图片需要多帧图片。

【实验步骤】

- 1)根据硬件连接图连接好硬件。(实验箱默认的 LCD 连接方式)
- 2)将μ'nSP™ IDE 打开后,建立一个新工程。
- 3)在该项目的源文件夹(SOURCE FILES)下建立一个新的 C 语言文件。
- 4)编写程序代码。
- 5)编译程序,软件调试。
- 6)注意观察 LCD 的现象

【硬件连接图】

同实验一硬件连接。

【程序流程图】

【程序及其特殊函数说明】

FG ClearScreen

调用方式: FG_ClearScreen (); 功能说明:清除或填充全屏。

参数: DG_CLS_ERASE(default), DG_CLS_FILL

示 例

FG_ClearScreen (DG_CLS_FILL)

FG_PutBitmap

调用方式: FG_PutBitmap();

功能说明:画 bmp 图。

参数: BmpX, BmpY, BmpNum, Mode

功能说明: 画位图从 (BmpX, BmpY) 点, 用指定模式

Mode:

DG_BMP_COVER(default)

实验指导书 & 15

```
DG_BMP_INVERSE
DG_BMP_XOR

Memory Modified: None

用 法: FG_PutBitmap(short BmpNum, short BmpX, short BmpY, short Mode)
示 例:
FG_PutBitmap(0,10,20,DG_BMP_COVER)
FG_PutBitmap(1,10,20)
FG_PutBitmap(2,DG_BMP_XOR)
FG_PutBitmap(3)
```

实验五 LCD 上的几何图形显示

实验目的】

- 1、了解 SPLC501 的使用方法及相关函数
- 2、学习利用 SPLC501 显示几何图形

【实验设备】

1)装有 μ'nSPTM IDE 仿真环境的 PC 机一台。

2)μ'nSPTM十六位单片机实验箱一个。

【实验原理】

利用 SPLC501 显示椭圆,正方形。

【实验步骤】

- 1)根据硬件连接图连接好硬件。(实验箱默认的 LCD 连接方式)
- 2)将μ'nSP™ IDE 打开后,建立一个新工程。
- 3)在该项目的源文件夹(SOURCE FILES)下建立一个新的 C 语言文件。
- 4)编写程序代码。
- 5)编译程序,软件调试。
- 6)注意观察 LCD 的现象

【硬件连接图】

同实验一硬件连接。

【程序流程图】

【程序及其特殊函数说明】

FG_ClearScreen

调用方式: FG_ClearScreen (); 功能说明: 清除或填充全屏。

参数: DG_CLS_ERASE(default), DG_CLS_FILL

示 例

实验指导书 8- 17

FG ClearScreen (DG_CLS_FILL)

·_____

FG InitGraphic

调用方式: FG_InitGraphic ();

功能说明:初始化端口和 splc501c。

参数:

示 例:

FG InitGraphic()

FG_SetLineStyle

参数: Mode

功能说明: 设定现模式

Mode:

DG_LINE_COVER

//(default)

DG_LINE_ERASE

DG LINE HOLLOW

 DG_LINE_DOTTED

DG_LINE_HOLLOW_ERASE

DG_LINE_DOTTED_COVER

DG_LINE_SOLID_XOR

DG_LINE_DOTTED_XOR

Memory Modified: R_GraphicMode

用 法:

FG_SetLineStyle(short Mode)

示 例:

FG_SetLineStyle(DG_LINE_DOTTED_COVER)

Function Name: FG Ellipse

参数: OriginX, OriginY, RadiusX, RadiusY

功能说明: 用设定模式 (R_GraphicMode.) 画椭圆

Memory Modified: None

用 法:

FG_Ellipse(short OriginX,short OriginY,short RadiusX,short RadiusY)

示 例:

FG Ellipse(20,20,5,4)

 $FG_Ellipse(R_Var1,R_Var2,R_Var3,R_Var4)$

Function Name: FG_ClearEllipse

参数: OriginX, OriginY, RadiusX, RadiusY, Mode

功能说明: 填充或清除椭圆区域

Mode: DG_CLEAR_ERASE(default),DG_CLEAR_FILL

Memory Modified: None

用法:

FG ClearEllipse(short OriginX,short OriginY,short RadiusX,short RadiusY,short Mode)

示 例:

FG ClearEllipse(20,20,5,4,DG CLEAR ERASE)

FG ClearEllipse(R Var1,R Var2,R Var1,R Var2,R Var3,R Var4)

Function Name: FG Rectangle

参数: StartX,StartY,EndX,EndY

功能说明: 用设定模式 (R_GraphicMode.) 画矩形

StartX,StartY 是右下脚点 EndX,EndY 是左上脚点

Memory Modified: None

用 法:

FG_Rectangle(short StartX,short StartY,short EndX,short EndY)

示 例:

FG_Rectangle(0,0,20,20)

FG_Rectangle(20,20)

 $FG_Rectangle(R_Var1,R_Var2,R_Var3,R_Var4)$

FG Rectangle(R Var1,R Var2)

实验六 USB 通讯实验

【实验目的】

- 1) 通过实验了解实验箱 USB 模块的硬件连接。
- 2) 掌握简单的 USB 通讯: 实现红灯亮、灭和路灯亮灭。
- 3) 掌握编程中常用函数的使用。

【实验设备】

- 1) 装有 WINDOWS 系统和 μ'nSP™ IDE 仿真环境的 PC 机一台。
- 2) μ'nSPTM 十六位单片机实验箱一个。

【实验原理】

用 USB 模组和 SPCE061A 最小系统实现 USB 简单通讯,并实现两点功能:

- 1. 通过 USB 通讯, PC 端应用程序能够控制 LED 灯的亮灭;
- 2. PC 端应用程序发送小于 65 字节的字符串给 SPCE061A,SPCE061A 接收 PC 发送的小于 65 字节字符串后将接收到的字符串发送给 PC, PC 接收字符并显示在界面。

【实验步骤】

- 1. 接好硬件,包括与 MCU 的接线,电源跳线, USB 线。
- 2. 在 IOA0, IOA1 口接 LED 灯。
- 3. 将提供的 example 1 的 firmware 下载到单片机(SPCE061A)
- 4. 按照提示安装驱动程序(如果未装驱动)
- 5. 等 USB 通讯指示灯亮后,运行 P C 端应用软件,如图 8 所示:

图1 PC 端软件界面图

6. 接着点击"打开 USB 外设"按钮,如果出现如下提示框,执行第 7 步操作,否则点击"确定"然后执行第 3 步操作,重新开始。

7. 点击"连接测试"按钮,如果出现如下提示框,执行第8步操作,否则点击"确定"然后执行第3步操作,重新开始。

- 8. 开始 USB 通讯测试
 - 1) 通过点击"点亮 LED1","熄灭 LED1","点亮 LED2","熄灭 LED"来测试
- 2) 通过发送、接收数据(数据量小于 65byte) 来测试 USB 通讯 测试完毕后点击"关闭 USB 外设"按钮

【硬件连接图】

1、模组原理图

2、和 SPCE061A 连接图

【程序流程图】

固件设计介绍:

1、固件结构和数据流向

程序流程:

【程序及其特殊函数说明】

程序清单:

chap9.c: 协议处理

ExternInt.c: 处理 D12 的中断

D12CI.c: 处理 D12 芯片的控制命令

System.asm: 系统初始化

2、常用函数介绍:

2.1Void F USB Isr (void)

该函数为处理分析 D12 芯片的中断源,主要是设置相应 D12 的中断源标志,用户只要知道有以

下四种中断源标志位即可。

Ep1_ReceiveDataFlag: 该标志位为 1,表示 PC 主机向 MCU 发送数据,即 pc 数据已经发送到端 点 1 的 buffer,等待 MCU 读取。

Ep1_SendDataFlag: 该标志位为 1,表示 PC 主机请求 MCU 发送数据到 D12 端点 1 的 Buffer。 Ep2_ReceiveDataFlag: 该标志位为 1,表示 PC 主机向 MCU 发送数据,即 pc 数据已经发送到端点 2 的 buffer,等待 MCU 读取。

Ep2_SendDataFlag: 该标志位为 1,表示 PC 主机请求 MCU 发送数据到 D12 端点 1 的 Buffer。 2.2 用户对 D12 的操作主要有以下四个函数:

- 1) unsigned int F D12 ReadLastTransactionStatus(unsigned int bEndp);
 - 【参数】端点号,取值范围为0-5
 - 【返回值】参见 PDIUSBD12 用户手册,来源: www.unsp.com.cn
 - 【功 能】清 D12 的端点中断源
- 2) unsigned int F D12 ReadEndpoint(unsigned int endp, unsigned int len, unsigned int * buf);
 - 【参数】1.端点号2.数据长度3.数据缓冲区的地址
 - 【返回值】读取到的数据实际长度。
 - 【功 能】读 D12 中 Buffer 的数据,该函数要与 F_D12_ReadLastTransactionStatus () 函数配合 使用,建议使用 F_D12_ReadEndpointAndClrD12Int () 函数。
- 3) unsigned int F_D12_WriteEndpoint(unsigned int endp, unsigned int len, unsigned int * buf);
 - 【参数】1.端点号 2.数据长度 3. 数据缓冲区的地址
 - 【返回值】写入缓冲区的实际数据长度。
 - 【功 能】写数据到 D12 的 Buffer
- 4) unsigned int F_D12_ReadEndpointAndClrD12Int(unsigned int endp, unsigned int len, unsigned int * buf);
 - 【参数】1.端点号2.数据长度3.数据缓冲区的地址
 - 【返回值】读取到的数据实际长度。
- 【功 能】读 D12 中 Buffer 的数据,该函数比 F_D12_ReadEndpoint()多一个清中断的操作。
- 3、注意事项

当 pc 端程序执行 Readfile () 的时候,MCU 只有使能 D12 的端点 Buffer 的时候,才会产生中断。 当标志位 Ep1_SendDataFlag 或 Ep2_SendDataFlag 为 1 时, EasyUSB11.lib 中已经清中断了,用户不需再清中断。

```
main()
{
    unsigned int uiSendDataFlag=0;
    unsigned int uiReadEp2DataLength=0;
    unsigned int aIdFlag[2];
    F_System_Initial();
    F_Reconnect_USB();
    F_Interrupt_On();
    while(1)
    {
        if (bEPPflags.bits.bus_reset)
        //总线复位处理
    }
```

实验指导书 8- 24

```
bEPPflags.bits.bus_reset = 0;
                                            //清标志
if (bEPPflags.bits.suspend)
                                            //总线挂起处理
    bEPPflags.bits.suspend= 0;
                                            //清标志
if (bEPPflags.bits.setup packet)
                                            //协议处理
    bEPPflags.bits.setup packet = 0;
                                            //清标志
    F_Control_Handler();
if(bEPPflags.bits.Ep1 ReceiveDataFlag==1)
    bEPPflags.bits.Ep1_ReceiveDataFlag=0;
    F D12 ReadEndpointAndClrD12Int(2, 2,aIdFlag);
    if(aIdFlag[0]==ID0)
                                            //连接测试
        F_D12_WriteEndpoint(5,1,aIdFlag);
    else if(aIdFlag[0]==ID1)
             if(aIdFlag[1]==1)
                                            //点亮 LED 灯
                 F_TurnOnFirstLed();
             if(aIdFlag[1]==0)
                                            //熄灭 LED 灯
                 F_TurnOffFirstLed();
             if(aIdFlag[1]==3)
                 F_TurnOnSecondLed();
                                            //点亮 LED 灯
             if(aIdFlag[1]==2)
                 F_TurnOffSecondLed();
                                            //熄灭 LED 灯
    else if(aIdFlag[0]==ID2)
    {
                                            //应答
             if(aIdFlag[1]==1)
                 F_D12_WriteEndpoint(5,1,aIdFlag);
             else if(aIdFlag[1]==2)
                                            //回送数据
                 F\_D12\_WriteEndpoint (5, uiReadEp2DataLength, MainEpBuf);
             }
    }
    if(bEPPflags.bits.Ep1 SendDataFlag==1)
```

```
bEPPflags.bits.Ep1_SendDataFlag=0;
}
if(bEPPflags.bits.Ep2_ReceiveDataFlag==1)
{
    bEPPflags.bits.Ep2_ReceiveDataFlag = 0; //清标志
    uiReadEp2DataLength=F_D12_ReadEndpointAndClrD12Int(4, 64,MainEpBuf);
}
if(bEPPflags.bits.Ep2_SendDataFlag==1)
{
    bEPPflags.bits.Ep2_SendDataFlag=0;
}
F_Clear_WatchDog(); //清除 WatchDog
}
```

实验七 SPR4096 中的 FLASH 的擦除及其读写

【实验目的】

- 1)通过实验了解 SIO 的基本使用方法。
- 2)了解和体验通过 SIO 扩展 FLASH。
- 3)学习使用 SPR4096 的 FLASH 的读写和擦除。

【实验设备】

- 1)装有 WINDOWS 系统和 μ'nSPTM IDE 仿真环境的 PC 机一台。
- 2) μ'nSPTM 十六位单片机实验箱一个。

【实验原理】

SPR4096 是一个高性能的 4M-bit (512K×8-bit) FLASH, 分为 256 个扇区 (Sector) 每个扇区 为 2K-byte。SPR4096 还内置了一个 4K×8-bit 的 SRAM。

SPR4096 串行接口的工作频率可达 5MHz。SPR4096 有两个电源输入端 VDDI 和 VDDQ。VDDI 是给内部 FLASH 和控制逻辑供电的; VDDQ 是专门为 I/O 供电的。供电电压为 VDDQ: 2.25V~3.6V, VDDI: 2.25V~2.75V。

SPR4096 按串行接口模式工作,要把 CF2~CF0 均接高电平。CF7 为低电平时选中 FLASH,高电平时选中 SRAM。本实验中 CF7 与 SPCE061A 的 IOB11 相连,IOB11 输出低电平选择 SPR4096 的 FLASH。

实验现象为,FLASH 擦除后,与 IOA0 连接的 LED 被点亮;写入一个 WORD 后,与 IOA0~IOA3 连接的 LED 被点亮;读出的数据若与写入的数据相等,则点亮与 IOA0~IOA7 连接的 LED,否则熄灭与 IOA0~IOA7 连接的 LED。

【实验步骤】

- 1) 把 JP10 的三个短路线接好,注意 CF7 选择 B11。
- 2) 用排线把 J26 和 J16 接上。
- 3) 下载实验程序,观察现象。

【硬件连接图】

实验箱上发光二极管的原理图如下:

实验箱上 SPR4096 接口原理图如下:

【程序流程图】

【程序及其特殊函数说明】

本程序主要结合实验箱资源来完成一个 SPR4096 的 FLASH 操作,都采用实验箱上分配给各模块的 IO 资源,发光二极管由 IOA 的低八位控制。

本 SPR4096 模块中有 7 个接口函数,如下:

1. void SP_SIOInitial(void)

功能:初始化SIO

参数:无

返回值:无

2. void SP SIOMassErase(void)

功 能:擦除 SPR4096 的所有扇区

参数:无

返回值:无

3. void SP_SIOSectorErase(unsigned int uiSector)

功 能:擦除 SPR4096 的一个扇区

参数: uiSector, 为扇区的编号, $0\sim255$ 可选

返回值:无

4. void SP SIOSendAByte(unsigned long int ulAddr,unsigned int uiData)

功 能: 往 SPR4096 写入一个 Byte 的数据

参数: ulAddr 为写入的地址, uiData 为写入的数据

返回值:无

5. void SP_SIOSendAWord(unsigned long int ulAddr,unsigned int uiData)

功 能: 往 SPR4096 写入一个 Word 的数据

参数: ulAddr 为写入的地址, uiData 为写入的数据

返回值:无

6. unsigned int SP SIOReadAByte(unsigned long int ulAddr)

功 能: 从 SPR4096 读出一个 Byte 的数据

参数: ulAddr 为读出的地址

返回值:读出的数据

7. unsigned int SP_SIOReadAWord(unsigned long int ulAddr)

功 能: 从 SPR4096 读出一个 Byte 的数据

参数: ulAddr 为读出的地址

返回值:读出的数据

实验八 SPR4096 中的 SRAM 的读写

【实验目的】

- 1)通过实验了解 SIO 的基本使用方法。
- 2)了解和体验通过 SIO 扩展 SRAM。
- 3) 学习使用 SPR4096 的 SRAM 的读写。

【实验设备】

1)装有 WINDOWS 系统和 μ'nSP™ IDE 仿真环境的 PC 机一台。

2) μ'nSP™ 十六位单片机实验箱一个。

【实验原理】

SPR4096 是一个高性能的 4M-bit(512K×8-bit)FLASH,分为 256 个扇区(Sector)每个扇区为 2K-byte。 SPR4096 还内置了一个 4K×8-bit 的 SRAM。

SPR4096 串行接口的工作频率可达 5MHz。SPR4096 有两个电源输入端 VDDI 和 VDDQ。VDDI 是给内部 FLASH 和控制逻辑供电的; VDDQ 是专门为 I/O 供电的。供电电压为 VDDQ: 2.25V~3.6V, VDDI: 2.25V~2.75V。

SPR4096 按串行接口模式工作,要把 CF2~CF0 均接高电平。CF7 为低电平时选中 FLASH,高电平时选中 SRAM。本实验中 CF7 与 SPCE061A 的 IOB11 相连,IOB11 输出高电平选择 SPR4096 的 SRAM。

实验现象为,往 SRAM 首地址写入一个 WORD 后,与 $IOA0 \sim IOA3$ 连接的 LED 被点亮;然后

从 SRAM 首地址读出一个 WORD, 若读出的数据与写入的数据相等,则点亮与 IOA0~IOA7 连接的 LED, 否则熄灭与 IOA0~IOA7 连接的 LED。

【实验步骤】

- 1) 把 JP10 的三个短路线接好,注意 CF7 选择 B11。
- 2) 用排线把 J26 和 J16 接上。
- 3)下载实验程序,观察现象。

【硬件连接图】

实验箱上发光二极管的原理图如下:

实验箱上 SPR4096 接口原理图如下:

【程序流程图】

【程序及其特殊函数说明】

本程序主要结合实验箱资源来完成一个 SPR4096 的 SRAM 操作,都采用实验箱上分配给各模块的 IO 资源,发光二极管由 IOA 的低八位控制。

第二章 综合实验

实验一 6位7段 LED 数码管显示实验

【实验要求】

- 1)初始化时, 使 6 位 LED 均显示 8, 显示时间为 1s。
- 2)从第一个 LED 开始,从 0显示到 9,0.5s 刷新一次。直到最后一个 LED。

【实验目的】

- 1)熟悉并进一步掌握定时器中断的使用和时基信号的使用。
- 2)进一步巩固 I/O 口的使用方法。
- 3)了解 6 位 7 段 LED 数码管的使用。

【实验设备】

- 1)装有 u'nsp IDE 仿真环境的 PC 机一台。
- 2)μ'nSPTM十六位单片机实验箱一个。

【实验原理】

通过对 I/O 口的控制,初始化时点亮所有的数码管,即 6 位 LED 数码管均显示 8。1s 后,从第一位数码管开始从 0 显示到 9,刷新时间为 0.5s。直到最后一个数码管。1s 的时间使用定时器 A(FIQ); 0.5s 的时间使用 2HZ 的时基信号(IRQ5)。

【硬件连接图】

A0—A6 接 A---G

A8—A13 接 CS1—CS6

B0—B7 接 KEY

【实验步骤】

- (1)按硬件电路原理图进行连接。
- (2)画程序流程图。
- (3)编写程序。
- (4)调试程序。
- (5)结合硬件调试,实现最终功能。

【主程序流程图】

【程序范例】

```
//**************
//程序名称: main.c
//描述: A0---A6 接 LED a--g
//A8--A14 接 LED CS1--6
//FIQ:定时器 A 为 5s 用于所有 LED 显示 8 的等待时间
//IRQ5: 2Hz 中断 用于每个 LED 显示 0—9 的数字刷新
//****************
#include "hardware.h"
                                    //加头文件
typedef unsigned char uchar
#define
         true 1
#define
         false 0
                                    //定义共6个 LED 数码管
#define
         DIG 6
#define
         Show_Value 10
                                    //共显示十个数字 0~9
uchar Interrupt 2Hz flag
uchar TimeAFlag
int main()
{
                                    //LED 数码管的位数
   uchar dig
                                    //显示的数值
   uchar show_value
   Interrupt_2Hz_flag = false
   TimeAFlag = false
                                    //初始化 A 口
   SP_Init_IOA()
                                    //A 口输出高电平
   SP Export(Port IOA Data,0xffff)
                                   //初始化定时器 A 并打开中断
   SP_INT_TIMEA()
```

```
while(TimeAFlag != 4)
                                          // '8'显示1秒
    SP INT IRQ5()
                                          //初始化中断为 2Hz 定时中断源
    for(dig =0;dig<DIG;dig++)</pre>
                                          //显示 0~9
        for(show value=0;show value<Show Value;show value++)
               while(Interrupt 2Hz flag!= true)
             Interrupt_2Hz_flag = false
             show(dig,show value)
    }
    while(1)
        SP_Export(Port_IOA_Data,0xffff)
                                          //显示 8
//**********************//
//程序名称: system.asm
//描述: 初始化函数和显示函数
//******************//
.include hardware.inc
.external Interrupt 2Hz flag
                                          //1 秒标识符
.ram
.public
        sum
                                          // 进入中断的计数器
.var sum
.data
//'0','1','2','3','4','5','6','7','8','9'的代码
address: .dw 0x00bf,0x0086,0x00db,0x00cf,0x00e6,0x00ed,0x00fc,0x0087,0x00ff,0x00ef
        .dw 0x0100,0x0200,0x0800,0x1000,0x2000,0x4000
Dig:
                                          //选中 LED 管
.code
//****************//
//描述:初始化 A 口
//*****************//
                                          //初始化 A 口为同相高电平输出口
.public SP_Init_IOA
SP Init IOA: .proc
    r1 = 0xffff
    [P IOA Attrib] = r1
    [P\_IOA\_Dir] = r1
    [P\_IOA\_Data] = r1
    retf
.endp
//********************//
//向端口送数据
```

```
//*****************//
                                        //输出的子程序
.public _SP_Export
   _SP_Export: .PROC
                                            //堆栈保护
           PUSH BP,BP TO [SP]
           BP = SP + 1
           PUSH R1,R2 TO [SP]
           R1 = [BP+3]
           R2 = [BP+4]
                                            //读出数值
           [R1] = R2
           POP R1,R2 FROM [SP]
          POP BP,BP FROM [SP]
                                           //出栈
           RETF
           .ENDP
   //***********************//
   //描述: 初始化中断为 2Hz 定时中断源
   //***********************//
                                           //初始化中断为 2Hz 定时中断源
    .public _SP_INT_IRQ5
    SP_INT_IRQ5: .proc
                                            //关中断。
       fiq off
                                           //允许 2Hz 的中断
       r1 = 0x0004
   [P INT Ctrl] = r1
                                       //开中断
   INT IRQ;
   retf
.endp;
//************************//
//描述: 初始化中断为 0.25s 定时中断源
//***********************//
.public _SP_INT_TIMEA;
_SP_INT_TIMEA: .proc
                                        //系统时钟选择 Fosc
   R1 = 0x0000
   [P_SystemClock] = R1
   R1 = 0xFFFF
   R1 = 0x0034
                                        //TimerA 选择 4096Hz
   [P_TimerA_Ctrl]=R1
   R1 = 0x0400
                                        //设置中断时间为 4*256/4096=0.25(s)
   [P TimerA Data]=R1
R1 = C_FIQ_TMA
   [P_INT_Ctrl] = R1;
                                        //TimeA 中断的设置
   INT FIQ;
   retf
.endp
```

```
//************
//描述:数据显示函数
//入口: 1、LED 的位数 (DIG)
      2、LED 的显示值
//无出口数据
//***********************//
.public show;
_show: .proc
                                    //弹出入口参数共两个入口参数
push bp to [sp];
   bp = sp + 1
loop:
                                    //取出第一个入口参数
   r1 = [bp+3]
                                    //取出第二个入口参数
   r3 = [bp+4]
   r2 = r1 + Dig
                                    //取 LED 管的片选地址
   r2 = [r2]
   r4 = r3 + address
                                    //取显示数据的地址
   r4 = [r4]
   r2 = r4
   [P\_IOA\_Data] = r2;
                                    //使选中的数碼管显示数据
   pop bp from [sp]
   retf;
.endp
//程序名称: isr_TimeA_2Hz.asm
//描述: 定时器 A 为 0.25s 中断
//2Hz 为 0.5s 中断
//**********************************
// Function: Fast Interrupt Service routine Area
//
   Service for
             (1)PWM FIQ
//
             (2)Timer A FIQ
//
             (3)Timer B FIQ
//
   User's FIQ must hook on here
//
   _FIQ:
                                   // Fast interrupt entrence
  IRQ5:
                                   // interrupt entrence
.include hardware.inc
                                   // include io information
.DEFINE C IRQ 1024Hz
                            0x0010; //1024Hz IRQ4
   .DEFINE C_IRQ_2048Hz
                               0x0020; //2048 IRQ4
   .DEFINE C_IRQ_4096Hz
                               0x0040; //4096 IRQ4
   .TEXT
   .public _FIQ;
   .public IRQ5;
   .external sum;
   .external Interrupt 2Hz flag;
```

实验指导书 8- 38

```
.external _TimeAFlag;
    .external Clear WatchDog;
    _FIQ:
        push r1,r4 to [sp];
        call _Clear_WatchDog;
        r1 = C_FIQ_TMA;
        test r1,[P INT Ctrl];
       jne L_FIQ_TimerA;
                                            // Timer A FIQ entrence
        r1 = C FIQ TMB;
        test r1,[P_INT_Ctrl];
       jne L FIQ TimerB;
                                            // Timer B FIQ entrence
        L FIQ PWM:
                                            // PWM FIQ entrence
        // hook PWM FIQ subroutine here and define it to be external
        r1 = C FIQ PWM;
        [P_INT_Clear] = r1;
        pop r1,r4 from [sp];
       reti;
 L_FIQ_TimerA:
        call _Clear_WatchDog;
        r1 = C FIQ TMA;
        [P_INT_Clear] = r1;
        r1 = [TimeAFlag];
        r1 += 1
        [_{TimeAFlag}] = r1;
        R1=0xFFff;
        [P_IOA_Data]=R1;
        pop r1,r4 from [sp];
        reti;
L_FIQ_TimerB:
        [P_INT_Clear] = r1;
        pop r1,r4 from [sp];
        reti;
// Function: Interrupt Service routine Area
    Service for
               IRO5
    User's IRQ must hook on here
//定时 0.25 秒的中断程序
_IRQ5:
```

```
push r1,r4 to [sp];
    r1 = 0x0008;
    test r1,[P_INT_Ctrl];
    jnz L_4Hz;
                                               // Timer A FIQ entrence
    r1 = 0x0004;
                                               //清中断
    [P_INT_Clear] = r1;
loop0:
    r1 = 0x0001;
                                               //设置中断标识
    [ Interrupt_2Hz_flag ] = r1;
    r1 = 0
    [sum] = r1
    pop r1,r4 from [sp];
    reti;
L_4Hz:
    r1 = 0x0008;
    [P_INT_Clear] = r1;
                                                //清中断
    pop r1,r4 from [sp];
    reti;
```

实验二 4*4 键盘输入在 LED 数码管上的显示

【实验要求】

1)在实验一基础上添加 4*4 键盘, 使键盘输入的操作通过 LED 给予显示。

2)键盘实现的功能如键盘图。

【实验目的】

1)了解 4*4 键盘的使用方法。

2)进一步了解键唤醒的使用方法。

【实验设备】

1)装有 u'nsp IDE 仿真环境的 PC 机一台。

2)μ'nSPTM十六位单片机实验箱一个。

【实验原理】

通过对键盘的操作在 LED 数码管上给予显示及相应操作。键盘扫描在时基中断中进行键盘界面如下:

D EL	00	F4	E NT
11	22	33	F3
44	55	66	F2
7	8	99	F1

0~9:数字键

DEL: 删除键,删除前一个数字。LED上无数字时无响应。

ENTER: 确认键,当进行时钟和日期设置时,按确认键才可显示输入时钟和日期。

F1、F2 和 F3、F4: 保留键

【硬件连接图】

见综合实验一

【实验步骤】

- 1)画程序流程图(包括各个键的处理)。
- 2)编写程序。
- 3)调试程序。
- 4)结合硬件调试,实现最终功能。

【主程序流程图】

【键盘扫描流程图】

在 128Hz 中断中的 键盘扫描

【程序范例】:程序代码详见光盘。

实验三 时钟实验

【实验要求】

- 1)通过键盘设置时钟并在所设置的时钟基础上继续增加。
- 2)设置时钟的输入显示,通过确认键来完成。

【实验目的】

- 1)加深了解定时中断和时基中断的使用
- 2)对 SPCE061 的熟练使用

【实验设备】

1)装有 u'nsp IDE 仿真环境的 PC 机一台。 2)μ'nSPTM十六位单片机实验箱一个。

【实验原理】

在实验一和实验二基础上,通过按键实现时钟的设置。

【实验步骤】

- 1)画程序流程图(包括各个键的处理)。
- 2)编写程序。
- 3)调试程序。
- 4)结合硬件调试,实现最终功能。

【硬件连接图】

见综合实验一

【主程序流程图】

【程序范例】:程序代码详见光盘。

实验指导书 8- _____43

实验四 LED 点阵模块

【实验目的】

进一步掌握 SPCE061 在 IDE 环境下的 C 及汇编语音编程。

【实验设备】

1)装有 u'nsp IDE 仿真环境的 PC 机一台

2)μ'nSPTM十六位单片机实验箱一个

【实验原理】

用行驱动和列驱动的点亮 LED 点阵模块,当扫描频率大于 50HZ 时,人眼就能看到没有闪烁的字符或图形。

【硬件原理图】

图中 A0—A7 接 RED_Col A8—A15 接 GREEN_Col B0—B7 接 COM_Row;

注: 在综合实验五中

B0—B7 接 KEY

B8—B15 接 COM_Row

实验指导书 8- 44

【实验步骤】

1)如图连接 LED 到仿真板的 PortA, PortB,接通电源。

- 2)打开 u'nSP IDE 开发环境,建立一个新工程。
- 3)在源文件夹(Source File)下建立一个 C 语言源文件。
- 4)编写程序代码。
- 5)编译程序、调试程序。
- 5)运行程序,跟踪运行结果,观察各寄存器的状态、LED 模块的显示。

【主程序流程图】

【程序范例】:

```
#include "hardware.h"
    unsigned char Pattern[15][8]=
                                                //要显示的时钟图形的数据
    {
        \{0x1C,0x22,0x51,0x4F,0x41,0x22,0x1C,0x00\},\
        \{0x1C,0x2a,0x49,0x4F,0x41,0x22,0x1C,0x00\},\
        \{0x1C,0x22,0x45,0x4F,0x41,0x22,0x1C,0x00\},\
        \{0x1C,0x22,0x41,0x4F,0x41,0x22,0x1C,0x00\},\
        \{0x1C,0x22,0x41,0x4F,0x45,0x22,0x1C,0x00\},\
        \{0x1C,0x22,0x41,0x4F,0x49,0x2a,0x1c,0x00\},\
        \{0x1C,0x22,0x41,0x4F,0x51,0x22,0x1c,0x00\},\
        \{0x1C,0x22,0x41,0x7F,0x41,0x22,0x1C,0x00\},\
        \{0x20,0x3C,0x23,0x61,0x23,0x3C,0x20,0x00\},\
        \{0x08,0x1C,0x3E,0x08,0x08,0x3E,0x1C,0x08\},\
        \{0x78,0x48,0x4F,0x49,0x4F,0x48,0x78,0x00\},\
        \{0x78,0x78,0x4F,0x49,0x4B,0x78,0x78,0x00\},\
        \{0x7F,0x47,0x57,0x50,0x57,0x47,0x7F,0x00\},\
        \{0x7E,0x78,0x78,0x78,0x78,0x78,0x7E,0x00\},\
        \{0x3E,0x22,0x3E,0x00,0x2E,0x2A,0x3E,0x00\},\
  };
void InitialPort()
    SP Init IOB(0xffff,0xffff,0xffff)
                                            //B 口为带数据缓存器的高电平输出
    SP Init IOA(0xffff,0xffff,0);
                                            //A 口的设置.
```

```
void delay(char n)
{
                                               //延时
    int i,j;
                                               //i 从 0 记数到 n.
    for(i=0;i< n;i++)
                                               //j 从 0 记数到 50
    for(j = 0; j < 50; j++);
void Clock(void)
                                               //时钟图形
         int i,j,k,SelCol,Reload = 1;
    for(i=0;i<8;i++)
         for(k=0;k<80;k++)
             SelCol=Reload;
              for(j = 0; j < 8; j++)
                      SP_Export(Port_IOA_Data,SelCol);
                  SP_Export(Port_IOB_Data,Pattern[i][j]);
                      delay(1);
                  SelCol = SelCol << 2;
                                               //左移 2 位
             }
         }
    }
                                               //人的走动图形
void WalkMan(void)
{
    char state = 0;//0:左 1:右
    unsigned int i,j,k,l=0, SelCol = 2, Reload = 1;
    unsigned char
                    ManIcon[8]= { 0x20,0x94,0xCA,0x7A,0xCA,0x94,0x20,0x00 };
    for(j=0;j<20;j++)
                                               //j 从 0 记数到 20
    {
         switch(state)
                  case 0:
                  Reload = Reload << 2;
                                               // 状态 0,图形向左移
                  if(Reload == 0)
                      Reload = 0x8000;
                                               //0x8000 shift left
                      state = 1;
                                               //left state
                  }
                  break;
                                               //状态 1,图形向右移
             case 1:
                                               //右移 2 位
                  Reload = Reload \gg 2;
                  if(Reload == 0)
```

```
{
                     Reload = 0x0001;
                     state = 2;
                 break;
                                              //状态 2, 图形向左溢出屏
             case 2:
                 1++;
                 Reload = 1;
                     if(l==8)
                     state = 0;
                     1 = 0;
                 break;
        for(k=0;k<8;k++)
             SelCol = Reload;
             for(i = 1; i < 8; i++)
                SP_Export(Port_IOA_Data,SelCol);
                 //A 口输出
                SP\_Export(Port\_IOB\_Data,ManIcon[i]);
                     //B 口输出
                                             //延时
                 delay(1);
                 SelCol = SelCol << 2;
                                             //左移 2 位
             }
        }
int main(void)
    InitialPort();
                                             //调处始化程序
    while(1)
         {
                                                 //显示为人的图形
             WalkMan();
                                             //显示为时钟的图形
        Clock();
    }
        return 0;
```

【程序练习】

分别用 C 语言和汇编语言实现字符的滚动,翻屏,反相显示。

<u>实验指导书 8-</u> 47

实验五 4*4 键盘在 LED 点阵上的应用

【实验要求】

- 1) 数字键在 LED 点阵上有数字显示
- 2)每个数字键均有图形映射,即每一显示所按数字键后均有一图形相应显示。
- 3) 数字键显示 1s。

【实验目的】

进一步了解 SPCE061 的应用。

【实验设备】

1)装有 u'nsp IDE 仿真环境的 PC 机一台。

2)μ'nSPTM十六位单片机实验箱一个。

【实验原理】

键盘上数字键在 LED 点阵上的显示。即每一显示所按数字键后均有一图形相应显示。

【硬件连接图】

见综合实验四。

【实验步骤】

- (1)画程序流程图(包括各个键的处理)。
- (2)编写程序。
- (3)编译程序、调试程序。
- (4)结合硬件调试,实现最终功能。

【主程序流程图】

【程序范例】程序代码详见光盘。

实验六 4*4 键盘播放语音

【实验目的】

进一步了解 SPCE061 的外部应用及其语音播放功能。

【实验设备】

1)装有 u'nsp IDE 仿真环境的 PC 机一台。

2)μ'nSPTM十六位单片机实验箱一个。

【实验原理】

键盘上数字键在 LED 数码上的显示。同时有语音播放。

【硬件连接图】

如实验一: A0—A6 接 A—G; A8—A13 接 CS1—CS6; B0—B8 接 KEY

【实验步骤】

- (1)画程序流程图(包括各个键的处理)。
- (2)编写程序。
- (3)调试程序。
- (4)结合硬件调试,实现最终功能。

【主程序流程图】

【程序范例】

程序代码详见光盘。

实验七 并口扩展 ROM (M27 C4001)

【实验目的】

1)了解 M27c4001 ROM 芯片的使用方法

2)了解在 SPCE061A 的 I/O 直接外挂 M27C4001 的编程方法。

【实验设备】

1)装有 u'nsp IDE 仿真环境的 PC 机一台。

2)μ'nSPTM十六位单片机实验箱一个。

3) M27C4001 一个。

【实验原理】

在 SPCE061A 的 I/O 直接外挂 M27C4001, 实现对 M27C4001 的数据(读)访问。烧录语音数据到 M27C4001 中, 然后通过 SPCE061A 手动播放模式播放语音。

注意: Rom 中的语音数据应先写到 Rom 中,并清楚它的存放地址。

【硬件连接图】

注意: 在这里为了节约管脚/G 和/E 段可以接地。

【实验步骤】

- 1) 画程序流程图。
- 2) 编写程序。
- 3)编译程序、调试程序。
 - 4) 结合硬件调试,实现最终功能。

【主程序流程图】

主程序流程图

【程序范例】

程序代码详见光盘

实验八 并口扩展 SRAM (HM628128DLP5)

【实验目的】

1)通过实验掌握并行扩展 SRAM 的方法,了解 HM628126 存储器的性能参数、各种指标及使用方法。

- 2)通过实验巩固 I/O 端口的设置。
- 3)通过实验学习掌握通用函数的编写方法。
 - 4)通过实验参考程序了解学习汇编函数与 C 进行参数传递的方法。

【实验设备】

1)装有 u'nsp IDE 仿真环境的 PC 机一台 2)μ'nSPTM十六位单片机实验箱一个

HM628128ALP/ALFP Series

【实验原理】

要对单片机扩展存储器件,需首先仔细了解此存储器件的各样的性能指标。SRAM 静态存储器 HM628128 为 5V 电压供电,其容量为 128k×8bit,具有 17 条地址线 8 条数据线,访问速度为 55/70/85/100ns。其管脚排列及说明如图 1 所示。

Pin Name	Function
A0 – A16	Address
I/O0 – I/O7	Input/output
CS1	Chip select 1
CS2	Chip select 2
WE	Write enable
ŌĒ	Output enable
NC	No connection
V _{cc}	Power supply
V _{ss}	Ground

			1
NC 🔲 1		32	□ V _{CC}
A16 2		31	A15
A14 🗔 3		30	CS2
A12 74		29	WE
A7 🗏 5		28	Ħ _{A13}
A6 🗏 6		27	A8
A5 7		26	A9
A4 🗏 8		25	A11
A3 🗏 9		24	OE
A2 10)	23	A10
A1 11		22	CS1
A0 12		21	FI/07
1/00 13		20	FI/06
"~~ I			
1/01 🔲 14		19	I/O5
I/O2 15	5	18	I/O4
V _{SS} 16	6	17	I/O3
			ı

(Top View)

图 1 HM628128 管脚排列及说明

读写控制管脚的功能表如图 2 所示。

_
_
_
Read cycle
Write cycle (1)
Write cycle (2)
W

Note: X: H or L

图 2 读写控制引脚的功能

要实现对存储器的进行读取功能,那么在功能上可以分为三个功能模块:存储器端口初始化、读数据、写数据。

根据存储器的管脚功能,在存储器端口初始化中需完成一下内容:

单片机连接选端 $\overline{\text{CS}1}$ 、读写控制端 $\overline{\text{WE}}$ 、 $\overline{\text{OE}}$ 的引脚均设置为输出状态并置为高电平,使得存储器数据及地址端口均为高阻状态。

单片机连接存储器的数据线的引脚、地址线的引脚均设置为输出高状态。对于读存储器的时序图如图 3 所示。

图 3 读时序图 (WE=H)

图 3 所示读操作时序图中,相应的时间要求如图 4 所示。

	HM628128A							_			
		-5		-7		-8		-10			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Read cycle time	t _{RC}	55	_	70	_	85	_	100	_	ns	
Address access time	t _{AA}	_	55	_	70	_	85	_	100	ns	
Chip selection to output valid	t _{DD1}	_	55	_	70	_	85	_	100	ns	
	t _{DO2}	_	55	_	70	_	85	_	100	ns	
Output enable to output valid	t _{oe}	_	30	_	35	_	45	_	50	ns	
Chip selection to output in low-Z	t _{LZ1}	5	_	10	_	10	_	10	_	ns	2, 3
	t_{LZ2}	5	_	10	_	10	_	10	_	ns	2, 3
Output enable to output in low-Z	toLZ	5	_	5	_	5	_	5	_	ns	2, 3
Chip deselection to output in high-Z	t _{HZ1}	0	20	0	25	0	30	0	35	ns	1, 2, 3
	t ₊₂₂	0	20	0	25	0	30	0	35	ns	1, 2, 3
Output disable to output in high-Z	toHZ	0	20	0	25	0	30	0	35	ns	1, 2, 3
Output hold from address change	t _{oH}	5	_	10	_	10	_	10	_	ns	

Notes: 1. t_{HZ} and t_{DHZ} are defined as the time at which the outputs achieve the open circuit conditions and are not referred to output voltage levels.

- At any given temperature and voltage condition, t_{HZ} max is less than t_{LZ} min both for a given device and from device to device.
- 3. This parameter is sampled and not 100% tested.

图 4 读时序的时间指标

通过上面的存储器读的时序图以及相应的时间指标,在单片机中编写读取存储器的程序,需按顺序完成下列过程:

把地址线端口设为输出状态,并根据所给的地址设置端口电平。

片选信号、读信号有效。($\overline{CS1} = L$ 、 $\overline{OE} = L$)

等待一个 NOP, 使得数据电平稳定。

读取数据端口数据。

片选信号、读信号无效。($\overline{CS1} = H \setminus \overline{OE} = H$)

地址线设为具有上拉的输入状态。

对于写存储器有两种情形: $\overline{OE} = H$ 、 $\overline{WE} = L$ 和 $\overline{OE} = L$ 、 $\overline{WE} = L$ 。为简单起见,本实验仅讨

论和实现 $\overline{OE} = H$ 、 $\overline{WE} = L$ 的情况下的写操作,其时序图如图 5 所示,相应的时间指标如图 6 所示。

Notes: 1. If the $\overline{\text{CS1}}$ goes low simultaneously with $\overline{\text{WE}}$ going low or after the $\overline{\text{WE}}$ going low, the outputs remain in a high impedance state.

图 5 C)E = I	H 、 \	WE =	Ħ 存储	诸器的写》	、时序图
-------	--------	-------	-------------	------	-------	------

		-5		-7		-8		-10			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Write cycle time	two	55	_	70	_	85	_	100	_	ns	
Chip selection to end of write	t _{□W}	50	_	60	_	75	_	80	_	ns	2
Address setup time	t _{AS}	0	_	0	_	0	_	0	_	ns	3
Address valid to end of write	t _{AW}	50	_	60	_	75	_	80	_	ns	
Write pulse width	t _W ₽	40	_	50	_	55	_	60	_	ns	1, 7
Write recovery time	t _{wr}	0	_	0	_	0	_	0	_	ns	4
Write to output in high-Z	t _{wuz}	0	20	0	25	0	30	0	35	ns	5,6
Data to write time overlap	t _{□W}	25	_	30	_	35	_	40	_	ns	
Data hold from write time	t□H	0	_	0	_	0	_	0	_	ns	
Output active from end of write	t _{ow}	5	_	5	_	5	_	5	_	ns	6
Output disable to output in High-Z	t _{oHZ}	0	20	0	25	0	30	0	35	ns	5

Notes: 1. A write occurs during the overlap of a low $\overline{CS1}$, a high CS2, and a low \overline{WE} . A write begins at the latest transition among $\overline{CS1}$ going low, CS2 going high, and \overline{WE} going low. A write ends at the earliest transition among $\overline{CS1}$ going high, CS2 going low, and \overline{WE} going high. t_{WP} is measured from the beginning of write to the end of write.

- 2. t_{DW} is measured from the later of $\overline{\text{CS1}}$ going low or CS2 going high to the end of write.
- 3. t_{AS} is measured from the address valid to the beginning of write.
- t_{WR} is measured from the earliest of CS1 or WE going high or CS2 going low to the end of write cycle.
- During this period, I/O pins are in the output state; therefore, the input signals of the opposite phase to the outputs must not be applied.
- 6. This parameter is sampled and not 100% tested.
- In the write cycle with OE low fixed, t_{WP} must satisfy the following equation to avoid a problem of data bus contention. t_{WP} ≥ t_{DW} min + t_{WHZ} mix

图 6 存储器的写入时序图中的时间指标

我们在编写存储器写操作的时候需要遵循以下步骤:

把地址线端口设为输出状态,并根据所给的地址设置端口电平。

片选信号、写信号有效。($\overline{CS1} = L$ 、 $\overline{WE} = L$)

把数据端口设为输出状态,并根据说给的数据设置端口电平。

等待一个 NOP, 使得数据线上电平稳定。

片选信号、写信号无效。($\overline{CS1} = H \setminus \overline{WE} = H$)

地址线设为具有上拉输入状态。

根据以上对 HM628128 芯片的介绍,可以设计管脚接线的电路图如图 7 所示。

图 7 存储器扩展 HM628128 管脚接线图

由于 SPCE061 上电初始状态下,各端口处于输入下拉状态,所以按照此硬件接线方式,在单片机上电后,存储器的 0x00000 地址的初始数据一定为 0x00。

【实验步骤】

- 1)设计并画出电路图。
- 2) 画出程序流程图并编写程序代码。
- 3) 按照电路图连接硬件。
- 4) 调试程序。
 - 5)检查程序是否正确,若不正确返回第一步开始检查 bug。

【程序流程图】

主程序流程图:

写SRAM子程序流程图:

读SRAM子程序流程图:

【程序范例】

```
//*********************
//访问 SRAM:HM628128 需要三个函数:
      1、初始化
//
//
      2、读函数
     3、写函数
//
//硬件接线方法:
     IOA0~IOA7 共 8 个端口为数据线
      IOB0~IOB15、IOA15 共 17 个端口为地址线
//
      IOA12 为写控制线/WE, 低电平有效
//
      IOA13 为读控制线/OE, 低电平有效
      IOA14 为片选控制/CS1, 低电平有效
.include hardware.inc
//***********************
//访问 SRAM:HM628128 初始化函数
//1、片选以及读写引脚均设置为输出状态并置为高电平。
//2、数据线的引脚设为下拉输入状态
//3、连接地址线的的引脚设置为输出高状态。
//汇编调用函数名: F_sram628128_Init
//C 语言调用函数名: void F sram628128 Init(void)
//使用寄存器: r1
//返回值:无
//*********************
.public F sram628128 Init;
.public F sram628128 Init
.code
F_sram628128_Init:
F_sram628128_Init:
   //设置 IOA12、13、14 为高电平输出
  //设置 IOA0~IOA7、IOA15 为下拉输入
  //采用"读一修改一写"的方法,不影响其他端口的设置
  r1 = [P\_IOA\_Dir];
                              //设置 IOA12、13、14、15 为输出
   r1 = 0xf000;
                              //设置 IOA0~IOA7 为输入
   r1 \&= 0xff00;
   [P IOA Dir] = r1;
   r1 = [P\_IOA\_Attrib];
```

```
r1 = 0xf0ff;
                                     //设置 IOA12、13、14、15 为同相输出
                                     //设置 IOA0~IOA7 为悬空输入
   [P\_IOA\_Attrib] = r1;
   r1 = [P IOA Data];
                                     //设置 IOA12、13、14、15 为输出高电平
   r1 = 0xf000;
   [P IOA Data] = r1;
   //设置 IOB0~IOB15 为带数据缓存器的高电平输出.
   r1 = 0xffff;
   [P IOB Dir] = r1;
   [P IOB Attrib] = r1;
   [P\_IOB\_Data] = r1;
 retf;
   .endp
//访问 SRAM:HM628128 读取函数
//汇编调用函数名: F_sram628128_Read
//参数参数传递:
   输入:
   r2 存放地址低 16 位
  r3 存放地址高 1 位
//
  输出:
// r1 存放读取的数据
//调用方法:
   r2 = 地址低 16 位
   r3 = 地址高 1 位
  call F_sram628128_Read
   8 位数据 = r1
//使用寄存器: r1,r2,r3
//*********************
.public F_sram628128_Read;
F_sram628128_Read: .proc
   //地址低 16 位端口设定
                                     //IOB 输出低 16 位地址
   [P\_IOB\_Data] = r2;
                                     //地址高第17位设定
   r1 = [P IOA Data];
                                     //取 IOA 端口状态
   r1 = r1 lsl 1;
                                     //左移一位
   r3 = r3 \text{ ror } 4;
                                     //把 r3.0 位移到 SB.0
                                     //SB.0 移到 r1.15
   r1 = r1 \text{ ror } 1;
                                     //实现了位传送: r3.0=>[P_IOA_Data].15
   [P\_IOA\_Data] = r1;
   //设置片选有效、读有效
   r1 = [P\_IOA\_Data];
```

实验指导书 8- 61

```
r1 \&= 0x9fff;
   [P IOA Data] = r1;
                                     //等待数据线稳定
   nop;
   r1 = [P\_IOA\_Data];
   r1 \&= 0x00ff;
                                     //从低 8 位取数据
   //设置片选无效、读无效,IOA15 为高
   r2 = [P IOA Data];
                                     //设置 IOA12、13、14、15 为输出高电平
   r2 = 0xf000;
   [P IOA Data] = r2;
   r2 = 0xffff;
                                     //地址线均为高
   [P\_IOB\_Data] = r2;
   retf;
   .endp
//**********************
//访问 SRAM:HM628128 读取函数
//C 语言调用函数函数原型:
     unsigned int F sram628128 Read(unsigned long int Addr)
//输入参数: 17 位宽度地址
//返回值: 8位数据
//调用方法:
//
       unsigned int Data;
//
       unsigned long int Addr;
       Addr = 0x0001abcd;
       Data = F_sram628128_Read(Addr)
//使用寄存器: r1,r2,r3,r4
//****************************
.public F sram628128 Read;
_F_sram628128_Read: .proc
                                     //保护现场
   push r2,r3 to [sp];
                                     //保护 bp 值
   push bp to [sp];
                                     //调整 bp 指针指向堆栈栈顶数据
   bp = sp + 1;
   //栈顶到栈低数据依次为:
//bp,r2,r3,pc,SR,程序段地址,C 函数 32 位整形参数低 16 位, C 函数 32 位整形参数高 16 位
   r2 = [bp+5];
                                    //取 C 函数 32 位整形参数低 16 位
                                    //取 C 函数 32 位整形参数高 16 位
   r3 = [bp+6];
                                    //调用汇编读函数,读取的数据已经在 r1 中,
   call F_sram628128_Read;
                                    //C 的返回值就是 r1 中的数值
                                    //恢复现场
   pop bp from [sp];
   pop r2,r3 from [sp];
```

实验指导书 8- 62

```
.endp
//**********************
//访问 SRAM:HM628128 写函数
//汇编调用函数名: F_sram628128_Write
//参数参数传递:
    输入:
//
        r2 存放地址低 16 位
//
        r3 存放地址高 1 位
//
        rl 存放要写入的数据
//调用方法:
        r2 = 地址低 16 位
//
        r3 = 地址高 1 位
//
        r1 = 要写入的数据
//
        call F sram628128 Write
//使用寄存器: r1,r2,r3
//***********
.public F_sram628128_Write;
F_sram628128_Write: .proc
   [P\_IOB\_Data] = r2;
   //地址高第 17 位设定
                                          //取 IOA 端口状态
   r2 = [P\_IOA\_Data];
                                          //左移一位
   r2 = r2 lsl 1;
   r3 = r3 \text{ ror } 4;
                                          //把 r3.0 位移到 SB.0
    r2 = r2 \text{ ror } 1;
                                          //SB.0 移到 r1.15
                                          //实现了位传送: r3.0=>[P_IOA_Data].15
    [P IOA Data] = r2;
   //设置片选有效、写有效
   r2 = [P\_IOA\_Data];
    r2 \&= 0xafff;
    [P\_IOA\_Data] = r2;
   //数据线 IOA0~IOA7 设为输出
    r2 = [P\_IOA\_Dir];
    r2 = 0x00ff;
    [P\_IOA\_Dir] = r2;
   r2 = [P\_IOA\_Data];
   r2 = r2 1sr 4;
                                         //r2 低 8 位移出
   r2 = r2 1sr 4;
    r1 = r1 lsl 4;
                                         //r1 高 8 位移出
    r1 = r1 lsl 4;
    r1 = r1 \text{ rol } 4;
```

retf;

```
r2 = r2 \text{ rol } 4;
   r1 = r1 \text{ rol } 4;
   r2 = r2 \text{ rol } 4;
                                       //实现了 r1 低 8 位到 r2 低 8 位的传送
                                       //要写入的数据送到数据线上
   [P\_IOA\_Data] = r2;
   //设置片选无效、读无效,IOA15 为高
   r2 = [P IOA Data];
                                       //设置 IOA12、13、14 为输出高电平
   r2 = 0x7000;
   [P IOA Data] = r2;
   r2 = 0xffff;
                                       //地址线均为高
   [P IOB Data] = r2;
                                       //设置 IOA15 为高
   r2 = [P IOA Data];
   r2 = 0x8000;
   [P IOA Data] = r2;
   //数据线 IOA0~IOA7 设为输入
   r2 = [P IOA Dir];
   r2 \&= 0xff00;
   [P\_IOA\_Dir] = r2;
   retf;
    .endp
//**********************
//访问 SRAM:HM628128 写入函数
//C 语言调用函数函数原型:
//void F_sram628128_Read(unsigned int Data,unsigned long int Addr)
//输入参数: 8 位宽度数据,17 位宽度地址
//返回值: 8位数据
//调用方法:
//
       unsigned int Data;
//
       unsigned long int Addr;
//
       Data = 0xaa;
//
       Addr = 0x0001abcd;
       F_sram628128_Write(Data,Addr)
//使用寄存器: r1,r2,r3
//*********
.public F sram628128 Write;
F sram628128 Write: .proc
                                       /保护现场
   push r1,r3 to [sp];
                                       //保护 bp 值
   push bp to [sp];
   bp = sp + 1;
                                       //调整 bp 指针指向堆栈栈顶数据
   //栈顶到栈低数据依次为:
//bp,r1,r2,r3,pc,程序段地址,C 函数第二参数 32 位整形参数低 16 位
//C 函数第二参数 32 位整形参数高 16 位,C 函数第一 16 位参数
```

实验指导书 8- 64

```
r1 = [bp+6];
                                       //取 C 函数第一个 16 位参数
                                       //取 C 函数第二个 32 位整形参数低 16 位
   r2 = [bp+7];
                                       //取 C 函数第二个 32 位整形参数高 16 位
   r3 = [bp+8];
                                       //调用汇编写函数
   call F_sram628128_Write;
                                       //恢复现场
   pop bp from [sp];
   pop r1,r3 from [sp];
   retf;
   .endp
下面是用 C 语言编写的一个测试程序,不断的往 sram 中写数据,然后再读出来,这样来验证读写得
是否正确。程序如下:
文件名: main.c
int main(void){
   unsigned int i;
                                       //定义变量
   unsigned long int j;
   i = 0x00ff;
                                       //给初值.
   j = 0;
   F_sram628128_Init();
                                       //调用初始化程序
   while(1){
       F_sram628128_Write(i,j);
       i = 0;
       i = F \text{ sram} 628128 \text{ Read}(j);
       //此处设断点,观察变量 i,j 的变化,以验证读写程序
       i--;
       j++;
   }
   return 0;
```

实验九 按键 DVR

【实验目的】

- 1)通过实验了解实验箱资源的基本使用方法。
- 2)了解凌阳音频、LCD 函数的调用以及 SIO 的使用方法。

【实验设备】

- 1)装有 WINDOWS 系统和 μ'nSP™ IDE 仿真环境的 PC 机一台。
- 2) μ'nSPTM 十六位单片机实验箱一个。

【实验原理】

通过按4乘4键盘的0、1、2键控制录音,停止,播放,同时LCD会有相关提示。

【实验步骤】

- 1)把 SIO,LCD, 4 乘 4 键盘以及数码管前四位的短结子连接好。
- 2)下载程序。
- 3)按键 0 进入录音状态,按键 1 停止,按键 2 开始播放。

【硬件连接图】

【程序流程图】

【程序及其特殊函数说明】

本程序主要结合实验箱资源来完成一个语音录放的工作,无需连线,都采用实验箱上分配给各模块的 IO 资源。

1、Splc501c 库函数使用方法

FG_InitGraphic FG_ClearScreen

FG GetBMPMode FG SetBMPMode FG PutBitmap

FG GetLineStyle FG LineTo

FG GetRectStyle FG SetRectStyle FG ClearRect FG Rectangle

FG_GetCircleStyle FG_SetCircleStyle FG_ClearCircle FG_Circle FG_GetEllipseStyle FG_SetEllipseStyle FG_ClearEllipse FG_Ellipse

FG MoveTo FG MoveDelta

FG GetX FG GetY

FG_GetCharMode FG_SetCharMode

FG_GetCharWidth FG_GetCharHeight FG_PutChar

FG_PutStr FG_GetStrWidth FG_PutPixel FG_GetPixel

FG Bar

完成以上 34 个函数, 函数功能基本包括 splc501c 初始化、绘图、放置图片、和完

成西文字符输入功能。本函数库,可作为图形、和文字输入部分程序底层程序加快项目进程。

程序 i/o 口的设定:

本程序需要八根数据线和三根控制线。线的连接可以在 splc501c_io.inc 中进行设定。设定限制数据线必须在一个 port 口的高八位或低八位上顺序 d0~d7 连接 port.0~port.7 或 port.8~port.15。控制线只需在一个 port 口次序可随机设定。

```
例如:
//====
//SPLC501C Library Pin Definition
//6800 Control Pin
//User can change any of control pins at any bit, except user select the IO port
//of control pin the same as control bus.
//
                               FEDCBA9876543210
//.define
               C AOP Pin
                                   00100000000000b;
                                                           //IO AOP
//.define
               C EP Pin
                                   01000000000000b;
                                                           //IO EP
//.define
               C RWP Pin
                                   10000000000000b;
                                                           //IO as RWP
//
                               FEDCBA9876543210
           C AOP Pin
.define
                                    0000000100000000b;
                                                               //IO AOP
.define
           C_EP_Pin
                                   0000001000000000b;
                                                               //IO EP
.define
           C RWP Pin
                                   0000010000000000b;
                                                               //IO as RWP
//Define the SPLC Data Bus Pin
//Only Two Type Can Select
//==
//
                           FEDCBA9876543210
.define
                           11111111100000000b;
           C DataBus
                                                       //IO Data Bus
.define
           C BusHighLow 1;
                                       //Set Data High/Low Byte 1:High
           C AddressBus
                                                       //IO Data Bus
//.define
                           0000000011111111b;
                                                       //IO Data Bus
//.define
           C DataBus
                           0000000011111111b;
//.define
           C BusHighLow 0;
                                       //Set Data High/Low Byte 0:Low
//===
//Set Control Pins Port
//Set Control Pins At Port A
.define P IO Control Data
                                   0x7000;
                                               //P IOA Data
                                       0x7001;
.define P IO Control Buffer
                                                   //P IOA Buffer
                                               //P IOA Dir
.define P IO Control Dir
                                   0x7002;
                                               //P IOA Attrib
.define P IO Control Attrib
                                   0x7003;
//Set Control Pins At Port B
```

```
//.define
           P IO Control Data
                                    0x7005;
                                                //P IOB Data
//.define
                                        0x7006;
                                                    //P IOB Buffer
           P IO Control Buffer
//.define
           P IO Control Dir
                                    0x7007;
                                                //P IOB Dir
           P_IO_Control Attrib
//.define
                                    0x7008;
                                                //P IOB Attrib
//===
//Set Control Bus Port
//Set Control Bus At Port A
//.define
           P IO Data Data
                                                    //P IOA Data
                                        0x7000;
//.define
           P IO Data Buffer
                                        0x7001;
                                                    //P IOA Buffer
//.define
           P IO Data Dir
                                        0x7002;
                                                    //P IOA Dir
//.define
           P IO Data Attrib
                                        0x7003;
                                                    //P IOA Attrib
//Set Control Bus At Port B
.define P IO Data Data
                                0x7005;
                                            //P IOB Data
.define P IO Data Buffer
                                0x7006;
                                            //P IOB Buffer
.define P IO Data Dir
                                0x7007;
                                            //P IOB Dir
.define P IO Data Attrib
                                0x7008;
                                            //P IOB Attrib
```

以上设定数据口在 portb 口的高八位,控制线在 porta 口 AOP—porta.8、EP—porta.9、R/WP—porta.a。当然控制线和数据线可以在一个 port 口。

程序中参数的说明:

- 1. 位置参数是在一个字节范围内正整数,LCD 显示范围 x ∈ [0,127] , y ∈ [1,64]。
- 2. 关于 FG-Rectange、FG-Bar 函数参数是先输入右下角点,再是做上角点。如果次序错误,可能进入死循环。
- 3. 函数模式一般通过模式设定函数进行设置。有的函数有模式参数,此时模式的设定只在本函数范围内。如果函数运行完成,下一个需要模式的函数,如果未进行模式设定,那么这个函数的模式,由程序模式寄存器 R_GraphicMode 中的标志决定,和上一个函数中模式的设定无关。

例如:FG PutBitmap(short BmpNum,short BmpX,short BmpY,short Mode)

- 1.FG_PutBitmap(short BmpNum,short BmpX,short BmpY,short Mode)
- 4. 如果模式参数错误,将无法正确设定模式。
- 5. 如果位置参数错误或超出范围,将无法预料结果。
- 6. 字体的宽度以在 lcd 上实际显示宽度为准。
- 7. 在有字的函数中字的范围可参照 tiny.bmp 中的字符。如果想输入字母无法字符输入可输入字母在 tiny.bmp 中的序号加 31。输入数字范围[32,227]。如果错误,可能进入死循环。

FG InitGraphic

调用方式: FG_InitGraphic (); 功能说明: 初始化端口和 splc501c。 参数:

```
示
     例:
FG InitGraphic()
FG ClearScreen
调用方式: FG ClearScreen ();
功能说明:清除或填充全屏。
参数: DG CLS ERASE(default), DG CLS FILL
     例
示
FG ClearScreen (DG CLS FILL)
FG GetBMPMode
调用方式: FG_GetBMPMode ();
功能说明: 得到 bmp 图形绘制模式。
参数:
示
     例:
FG GetBMPMode (index,x,y,mode)
FG SetBMPMode
调用方式: FG_SetBMPMode ();
功能说明:设定 bmp 图形绘制模式。
参数: Mode。
Mode: DG_BMP_COVER(default)
     DG_BMP_INVERSE
     DG_BMP_XOR
Memory Modified: R_GraphicMode
用 法:
   FG_SetBMPMode(short Mode)
     例:
示
   FG SetBMPMode (DG BMP INVERSE)
FG_PutBitmap
调用方式: FG_PutBitmap ();
功能说明:画bmp图。
参数: BmpX, BmpY, BmpNum, Mode
功能说明: 画位图从 (BmpX, BmpY) 点, 用指定模式
Mode:
   DG_BMP_COVER(default)
   DG BMP INVERSE
   DG_BMP_XOR
Memory Modified: None
用 法: FG PutBitmap(short BmpNum,short BmpX,short BmpY,short Mode)
示
    例:
   FG_PutBitmap(0,10,20,DG_BMP_COVER)
   FG PutBitmap (1, 10, 20)
```

```
FG_PutBitmap(2,DG_BMP_XOR)
FG_PutBitmap(3)
```

Function Name: FG_SetLineStyle

参数: Mode

功能说明: 设定现模式

Mode:

DG LINE COVER //(default)

DG_LINE_ERASE

DG LINE HOLLOW

DG_LINE_DOTTED

DG_LINE_HOLLOW_ERASE

DG_LINE_DOTTED_COVER

DG_LINE_SOLID_XOR

DG LINE DOTTED XOR

Memory Modified: R_GraphicMode

用 法:

FG_SetLineStyle(short Mode)

示 例:

FG_SetLineStyle(DG_LINE_DOTTED_COVER)

Function Name: FG_LineTo

参数: StartX,StartY,EndX,EndY

功能说明: 用指定模式 (R_GraphicMode.) 画线

Mode:

DG_LINE_COVER //(default)

DG_LINE_ERASE

DG_LINE_HOLLOW

DG_LINE_DOTTED

DG_LINE_HOLLOW_ERASE

DG_LINE_DOTTED_COVER

DG_LINE_SOLID_XOR

DG_LINE_DOTTED_XOR

Memory Modified: None

用 法:

 $FG_LineTo(short\ StartX,short\ StartY,short\ EndX,short\ EndY)$

示 例

FG_LineTo(0,0,20,20)

FG_LineTo(R_Var1,R_Var2)

Function Name: FG_SetRectStyle

参数: Mode

功能说明: 设置矩形模式

Mode:

DG_RECT_COVER(default)

DG_RECT_ERASE

DG_RECT_HOLLOW

DG_RECT_DOTTED

DG_RECT_HOLLOW_ERASE

DG RECT DOTTED COVER

DG_RECT_SOLID_XOR

DG RECT DOTTED XOR

Memory Modified: R_GraphicMode

用 法:

FG_SetRectStyle(short Mode)

示 例:

FG_SetRectStyle(DG_RECT_DOTTED_COVER)

Function Name: FG_ClearRect

参数: StartX,StartY,EndX,EndY,Mode

功能说明:清除或填充矩形区域

Mode: DG_CLEAR_ERASE(default),DG_CLEAR_FILL

Memory Modified: None

用 法: FG_ClearRect(short StartX,short StartY,short EndX,short EndY,short Mode)

示 例:

FG_ClearRect(0,0,20,20,DG_CLEAR_FILL)

FG_ClearRect(0,0,R_Var1,R_Var2)

FG_ClearRect(20,20,DG_CLEAR_ERASE)

FG_ClearRect(R_Var1,R_Var2)

Function Name: FG_Rectangle

参数: StartX,StartY,EndX,EndY

功能说明: 用设定模式 (R GraphicMode.) 画矩形

StartX,StartY 是右下脚点 EndX,EndY 是左上脚点

Memory Modified: None

用 法:

FG_Rectangle(short StartX,short StartY,short EndX,short EndY)

示 例:

FG_Rectangle(0,0,20,20)

FG_Rectangle(20,20)

FG_Rectangle(R_Var1,R_Var2,R_Var3,R_Var4)

FG_Rectangle(R_Var1,R_Var2)

Function Name: FG_SetCircleStyle

参数: Mode

功能说明: 设定圆模式

Mode:

DG CIRCLE COVER(default)

DG_CIRCLE_ERASE

DG CIRCLE HOLLOW

DG_CIRCLE_DOTTED

DG_CIRCLE_HOLLOW_ERASE

DG_CIRCLE_DOTTED_COVER

DG_CIRCLE_SOLID_XOR

DG CIRCLE DOTTED XOR

Memory Modified: R_GraphicMode

用 法:

FG_SetCircleStyle(short Mode)

示 例:

FG_SetCircleStyle(DG_CIRCLE_DOTTED_COVER)

Function Name: FG_ClearCircle

参数: OriginX, OriginY, Radius,Mode 功能说明:清除或填充圆的区域

Mode: DG_CLEAR_ERASE(default),DG_CLEAR_FILL

Memory Modified: None

用 法:

FG_ClearCircle(short OriginX,short OriginY,short Radius,short Mode)

示 例

FG_ClearCircle(20,20,DG_CLEAR_ERASE)

FG_ClearCircle(R_Var1,R_Var2)

Function Name: FG_Circle 参数: OriginX, OriginY, Radius

功能说明: 用设定模式(R_GraphicMode.)画圆

Memory Modified: None

用法:

FG_Circle(short OriginX,short OriginY,short Radius)

Mode:

DG_CIRCLE_COVER(default)

DG_CIRCLE_ERASE

DG_CIRCLE_HOLLOW

DG_CIRCLE_DOTTED

DG_CIRCLE_HOLLOW_ERASE

DG_CIRCLE_DOTTED_COVER

DG_CIRCLE_SOLID_XOR

DG CIRCLE DOTTED XOR

示 例:

FG_Circle(20,20,5)

FG_Circle(R_Var1,R_Var2,R_Var3)

Function Name: FG_SetEllipseStyle

参数: Mode

功能说明: 设定椭圆模式

Mode:

DG_ELLIPSE_COVER(default)

DG_ELLIPSE_ERASE

DG_ELLIPSE_HOLLOW

DG_ELLIPSE_DOTTED

DG_ELLIPSE_HOLLOW_ERASE

DG_ELLIPSE_DOTTED_COVER

DG_ELLIPSE_SOLID_XOR

 $DG_ELLIPSE_DOTTED_XOR$

Memory Modified: R GraphicMode

用 法:

FG_SetEllipseStyle(short Mode)

示 例

FG_SetEllipseStyle(DG_ELLIPSE_DOTTED_COVER)

Function Name: FG_ClearEllipse

参数: OriginX, OriginY, RadiusX, RadiusY, Mode

功能说明: 填充或清除椭圆区域

Mode: DG_CLEAR_ERASE(default),DG_CLEAR_FILL

Memory Modified: None

用法:

FG_ClearEllipse(short OriginX,short OriginY,short RadiusX,short RadiusY,short Mode)

示 例: FG ClearEllipse(20,20,5,4,DG CLEAR ERASE) $FG_ClearEllipse(R_Var1,R_Var2,R_Var1,R_Var2,R_Var3,R_Var4)$ Function Name: FG_Ellipse 参数: OriginX, OriginY, RadiusX, RadiusY 功能说明: 用设定模式 (R GraphicMode.) 画椭圆 Memory Modified: None 用 法: FG_Ellipse(short OriginX,short OriginY,short RadiusX,short RadiusY) FG Ellipse(20,20,5,4) FG Ellipse(R Var1,R Var2,R Var3,R Var4) Function Name: FG MoveTo 参数: NewX,NewY 功能说明: Move (X0,Y0) to a new location. Memory Modified: X0->NewX, Y0->NewY 用 法: FG_MoveTo(short NewX,short NewY) 示 例: FG_MoveTo(20,30) FG_MoveTo(R_Var1,R_Var2) Function Name: FG_MoveDelta 参数: DeltaX,DeltaY 功能说明: Mover (X0,Y0) to a new location. New X0=X0+DeltaX. Memory Modified: X0->X0+DeltaX, Y0->Y0+DeltaY 用法: FG MoveDelta(short DeltaX,short DeltaY) 示 例:FG_MoveDelta(10,10) Function Name: FG GetX,FG GetY

参数:

功能说明:得到当前点值存入 r1

74

Memory Modified: None 用 法: FG_GetX() FG_GetY() Function Name: FG_SetCharMode 参数: Mode 功能说明:设置字模式 Mode: DG CHAR COVER(default) DG_CHAR_INVERSE DG_CHAR_XOR Memory Modified: R_GraphicMode 法: 用 FG SetCharStyle(short Mode) 例:FG_SetCharStyle(DG_CHAR_XOR) 示 Function Name: FG_GetCharWidth 参数: Char, Font 功能说明: 得到字符宽度存入 rl Memory Modified: None 法: FG_GetCharWidth(char Char,short Font) 例: FG_GetCharWidth('A',Tiny) Function Name: FG GetCharHeight 参数: Char,Font 功能说明: 得到字符高度存入 r1 Memory Modified: None 法: FG_GetCharHeight(char Char, short Font) 例: FG_GetCharHeight('a',Large)

Function Name: FG_PutChar 参数: Char,Font,StartX,StartY 功能说明: 输出字符在 (StartX,StartY). Mode: DG_CHAR_COVER(default) DG_CHAR_INVERSE

DG_CHAR_XOR

DG PIXEL ERASE

Memory Modified: None 用 法: FG_PutChar(char Char,short Font,short StartX,short StartY) 示 例: FG_PutChar(R_CharCode,Small,10,10) FG_PutChar('A',Large,R_Var1,R_Var2) FG_PutChar(14,Tiny) Function Name: FG_PutStr 参数: StrPtr,Font,StartX,StartY 功能说明:输出字符串从 (StartX,StartY). Mode: DG CHAR COVER(default) DG_CHAR_INVERSE DG_CHAR_XOR Memory Modified: None 用 法: FG PutStr(char *StrPtr,short Font,short StartX,short StartY) 示 例: FG_PutStr(StringPointer,Tiny,5,6) FG_PutStr("Hello",Large) Function Name: FG_GetStrWidth 参数: StrPtr,Font 功能说明: 得到字符串宽度存入 rl. Memory Modified: None 用法: FG_GetStrWidth(char *StrPtr,short Font) 示 例: FG_GetStrWidth(StringPointer,Tiny) Function Name: FG PutPixel 功能说明: 画一个像素(R_GraphicMode.) 参数: PlotX,PlotY,Mode Mode: DG_PIXEL_COVER(default)

DG_PIXEL_XOR

Memory Modified: None

用 法: FG_PutPixel(short PlotX,short PlotY,short Mode)

示 例:

FG_PutPixel(10,25)

FG_PutPixel(R_Var1,R_Var2,DG_PIXEL_ERASE)

Function Name: FG GetPixel

参数: PlotX,PlotY

功能说明:得到像素的值存入 R1

Memory Modified: None

用 法: FG GetPixel(short PlotX,short PlotY)

示 例:

FG_GetPixel()

FG_GetPixel(10,20)

Function Name: FG Bar

参数: StartX,StartY,EndX,EndY,Mode

功能说明: 画一个栅条用(R_GraphicMode).

Mode: DG_BAR_FILL(default),DG_BAR_ERASE,DG_BAR_INVERSE

Memory Modified: None

用 法: FG_Bar(short StartX,short StartY,short EndX,short EndY,short Mode)

示 例:

 $FG_Bar(0,0,20,20,DG_BAR_FILL)$

FG_Bar(0,0,R_Var1,R_Var2)

FG_Bar(20,20,DG_BAR_ERASE)

 $FG_Bar(R_Var1,R_Var2)$

2、SPR4096 库函数使用说明

SPR4096 的操作函数在 SP_SerialFlashV1.asm 文件中,主要完成对 flash 的擦除和写,在这个 DVR 程序中所有数据都存入 SPR4096 中

实验十 带有背景音乐的动态图片

【实验目的】

1、巩固 SPLC501 的使用

2、学习图片显示与音乐的结合

【实验设备】

1)装有 u'nsp IDE 仿真环境的 PC 机一台 2)μ'nSPTM十六位单片机实验箱一个

【实验原理】

采用 SPLC501 显示动态图片。

【硬件连接图】

同分立实验中, 实验一。

【程序流程图】

【程序及其特殊函数说明】

FG ClearScreen

调用方式: FG_ClearScreen (); 功能说明:清除或填充全屏。

参数: DG_CLS_ERASE(default), DG_CLS_FILL

示 例

FG_ClearScreen (DG_CLS_FILL)

FG_PutBitmap

调用方式: FG_PutBitmap ();

功能说明:画bmp图。

参数: BmpX, BmpY, BmpNum, Mode

```
功能说明: 画位图从 (BmpX,BmpY) 点,用指定模式

Mode:

DG_BMP_COVER(default)

DG_BMP_INVERSE

DG_BMP_XOR

Memory Modified: None

用 法: FG_PutBitmap(short BmpNum, short BmpX, short BmpY, short Mode)

示 例:

FG_PutBitmap(0,10,20,DG_BMP_COVER)

FG_PutBitmap(1,10,20)

FG_PutBitmap(2,DG_BMP_XOR)
```

实验十一 UART 控制液晶显示

【实验目的】

- 1) 巩固 SIO 的基本使用方法。
- 2) 巩固 UART 的基本使用方法。

FG PutBitmap(3)

3) 巩固 LCD 的基本使用方法。

【实验设备】

- 1)装有 WINDOWS 系统和 μ'nSPTM IDE 仿真环境的 PC 机一台。
- 2) μ'nSPTM 十六位单片机实验箱一个。
- 3)串口线一根
- 4)串口工具,如"串口调试助手 V2.1.exe"

【实验原理】

前面的实验已经分别讲过 SIO、UART 和 LCD 单独使用的情况,本实验是三者一起工作时的情况,读者会发现这跟搭积木一样简单。

【实验步骤】

- 1) 把 JP10 的三个短路线接好,注意 CF7 选择 B11。
- 2) JP6 全部接上,注意 CS1 和 B9 相连。
- 3)下载实验程序,观察现象。
- 4) 当 LCD 显示"UART Ready"时,把串口工具的波特率设置为 9600,无检验位,8 位数据位,1 位结束位。
- 5) 发送一个文件,注意文件只能包含字母、数字和标点符号。
- 6) LCD 显示 "Receiving..."。
- 7) LCD 显示 "Complete"。
- 6) LCD 显示接收到的内容。

【硬件连接图】

见前面的 SIO 实验、UART 实验、LCD 实验。

【程序流程图】

【程序及其特殊函数说明】

无。

实验十二 0---3V 电压测量表

【实验目的】

1)通过实验了解实验箱资源的基本使用方法。

2)了解凌阳音频、LCD 函数的调用以及 SPCE061A 内部 AD 的使用方法。

【实验设备】

- 1)装有 WINDOWS 系统和 μ'nSPTM IDE 仿真环境的 PC 机一台。
- 2) μ'nSPTM 十六位单片机实验箱一个。

【实验原理】

通过 SPCE061A 内部 ADC 采集数据,把电压在 LCD 上显示出来,并通过 DAC 通道来提示当前电压。

【实验步骤】

- 1) 把 LCD 的短结子连接好,注意片选的短结子接 B9 端。
- 2) J17接IOA1
- 3) 下载程序。
- 4) 调节电位器观察状态。

【硬件连接图】

【程序流程图】

【程序及其特殊函数说明】

本程序主要结合实验箱资源来完成一个语音电压表,无需连线,都采用实验箱上分配给各模块的 IO 资源。

实验十三 录音笔

【实验目的】

- 1) 巩固 SIO 的基本使用方法。
- 2) 巩固 LCD 的基本使用方法。

【实验设备】

- 1)装有 WINDOWS 系统和 μ'nSPTM IDE 仿真环境的 PC 机一台。
- 2) μ'nSP™ 十六位单片机实验箱一个。

【实验原理】

本实验实现了这样一个录音笔,其功能是用键盘控制语音的录放、存储和擦除。

- 1、录音键按下,开始录音
- 2、放音键按下,开始放音
- 3、停止键按下,停止录音或放音
- 4、下一段键按下,开始播放下一段
- 5、擦除键按下, 开全部擦除

<u>实验指导书</u> 8 <u>83</u>

6、整个操作过程用 lcd 显示状态

【实验步骤】

- 1) 把 JP10 的三个短路线接好,注意 CF7 选择 B11。
- 2) JP6 全部接上,注意 CS1 和 B9 相连。
- 3) 下载实验程序,观察现象。

【硬件连接图】

见前面的 SIO 实验、LCD 实验。

【程序流程图】

【程序及其特殊函数说明】

无。

实验十四 USB 实现语音录放及其上传下载

【实验目的】

1、通过实验了解实验箱 USB 模块的硬件连接。

实验指导书 8- ______85_

- 2、简单的 USB 通讯:实现文件的上传和下载,结合语音录放(DVR实验)功能实现压缩后的语音通过 PC 机解码播放。
- 3、掌握编程中常用函数的使用。

【实验设备】

- 1)装有 WINDOWS 系统和 μ'nSP™ IDE 仿真环境的 PC 机一台。
- 2) μ'nSPTM 十六位单片机实验箱一个。

【实验原理】

- 1、用 USB 模组和 SPCE061A 最小系统实现 USB 简单通讯,并实现两点功能:
- 2、通过 USB 通讯,将 PC 端的二进制文件下载到外扩 flash 中,同时也可以实现文件的上传。
- 3、结合 DVR 将压缩后的文件通过 PC 端解码播放。

【实验步骤】

- 1. 接好硬件,包括三个按键(IOA0,IOA1,IOA2)、SPR4096 FLASH、USB 模组等
- 2. 将程序 example2 下载到 SPCE061A 中,如果未装驱动,按照提示安装驱动。
- 3. 等 USB 通讯指示灯亮后,运行 P C 端应用软件路径在: USB-EXAMPLE2—PC—PC—Release—Testfirm.exe,如下图所示:

图2 PC 端应用软件的界面

4. 接着点击 "Open Device" 按钮,如果出现如下提示框,执行第 5 步操作,否则点击"确定" 然后执行第 2 步操作,重新开始。

- 5. 点击"连接测试"按钮,如果出现如下提示框,执行第 6 步操作,否则点击"确定"然后执行第 2 步操作,重新开始。
- 6. 录、放音处理
 - 1) 按下 "Record" 键(IOA0), 进行录音
 - 2) 按下 "Stop" 键(IOA1), 停止录音
 - 3) 按下 "Play" 键(IOA2), 播放语音
- 7. 录音完音后,将语音数据上传到 PC 机
 - 1) 点击组合框"选择语音压缩文件路径"里的"Directory"按钮
 - 2) 点击组合框"数据传输"里的"Upload"按钮,开始从FLASH 传输语音数据到 PC 机。当传输完毕,出现下图对话框。在数据传输的过程中,USB 模组上的 LED 灯会不停地闪烁。

图3 上载数据

3) 点击确定,出现如图 12 中所示提示框。

图4 数据上载保存

- 4) 点击确定,保存数据成功。
- 8. 将语音压缩后的文件解码转成 wave 格式的文件、播放试听
 - 1) 选择语音压缩文件路径、选择 wave 文件的路径
 - 2) 点击 "A2000->WAVE"的按钮,出现如图 13 中所示的提示框。

图5 A2000 转 Wave 文件

- 3) 点击"确定"按钮,再点击"Play"按钮,试听。
- 4) 可随时点击"Stop"按钮,取消播放。
- 9. 下载语音数据到 FLASH

- 1) 选择语音压缩文件路径
- 2) 点击"Download"按钮,出现如图 14 中所示的提示框,表明读取文件成功。

图6 读取文件

3) 点击"确定"按钮,开始下载数据,LED灯不停闪烁,下载完毕后,出现如图 15 中所示的提示框,表明文件下载成功。

图7 下载语音文件

点击"确定"按钮, 然后再按"Play"键进行单片机 SPCE061A 上播放语音

【硬件连接图】

3、模组原理图(参见分立实验中, USB 通讯)

4、USB、SPR4096 和 SPCE061A 连接图

【程序流程图】

固件设计介绍:

1、固件结构和数据流向

2、主程序流程:

3、中断流程

【程序及其特殊函数说明】

1、源文件程序清单:

chap9.c: 处理 USB 协议的相关代码,用于 PC 机枚举 USB 外设时用

D12.asm: 处理 D12 芯片的读、写操作

ExternInt.c: 处理 D12 的中断

D12CI.c: 处理 PDIUSBD12 芯片的控制命令

SIODVR.C 主要处理 DVR 程序,包括录、放音程序、以及语音数据的上传、下载程序。

SP_SerialFlashV1.asm: Flash 读写等操作接口

SystemInitial.asm: 系统初始化

2、常用函数介绍:

2.1Void F_USB_Isr (void)

该函数为处理分析 D12 芯片的中断源,主要是设置相应 D12 的中断源标志,用户只要知道有以下四种中断源标志位即可。

Ep1_ReceiveDataFlag: 该标志位为 1,表示 PC 主机向 MCU 发送数据,即 pc 数据已经发送到端点 1 的 buffer,等待 MCU 读取。

Ep1_SendDataFlag: 该标志位为 1,表示 PC 主机请求 MCU 发送数据到 D12 端点 1 的 Buffer。 Ep2_ReceiveDataFlag: 该标志位为 1,表示 PC 主机向 MCU 发送数据,即 pc 数据已经发送到端点 2 的 buffer,等待 MCU 读取。

Ep2_SendDataFlag: 该标志位为 1,表示 PC 主机请求 MCU 发送数据到 D12 端点 1 的 Buffer。 2.2 用户对 D12 的操作主要有以下四个函数:

- 1) unsigned int F D12 ReadLastTransactionStatus(unsigned int bEndp);
 - 【参数】端点号,取值范围为0-5
 - 【返回值】参见 PDIUSBD12 用户手册,来源: www.unsp.com.cn
 - 【功 能】清 D12 的端点中断源
- 2) unsigned int F D12 ReadEndpoint(unsigned int endp, unsigned int len, unsigned int * buf);
 - 【参数】1.端点号2.数据长度3.数据缓冲区的地址
 - 【返回值】读取到的数据实际长度。
 - 【功 能】读 D12 中 Buffer 的数据,该函数要与 F_D12_ReadLastTransactionStatus () 函数配合 使用,建议使用 F D12 ReadEndpointAndClrD12Int () 函数。
- 3) unsigned int F D12 WriteEndpoint(unsigned int endp, unsigned int len, unsigned int * buf);
 - 【参数】1.端点号2.数据长度3.数据缓冲区的地址
 - 【返回值】写入缓冲区的实际数据长度。
 - 【功 能】写数据到 D12 的 Buffer
- 4) unsigned int F D12 ReadEndpointAndClrD12Int(unsigned int endp, unsigned int len, unsigned int * buf);
 - 【参数】1.端点号2.数据长度3.数据缓冲区的地址
 - 【返回值】读取到的数据实际长度。
 - 【功 能】读 D12 中 Buffer 的数据,该函数比 F D12 ReadEndpoint()多一个清中断的操作。
- 3、注意事项

当 pc 端程序执行 Readfile () 的时候,MCU 只有使能 D12 的端点 Buffer 的时候,才会产生中断。 当标志位 Ep1_SendDataFlag 或 Ep2_SendDataFlag 为 1 时, EasyUSB11.lib 中已经清中断了,用户不 需再清中断。

```
主程序:
```

```
main() {
```

int i=0;

```
unsigned int Ret=0;
System Initial0();
for(i=0;i<64;i++)
                                        // 数组清 0
  MainEpBuf[i]=0;
};
                                        // 断开一延时一连接
reconnect_USB();
                                        // D12 写初始化
SP_InitWriteD12();
                                        // 开中断
Interrupt_On();
while(TRUE)
{
  if (bEPPflags.bits.bus_reset)
                                        //总线复位处理
  {
      bEPPflags.bits.bus reset = 0;
                                        //清标志
  if (bEPPflags.bits.suspend)
                                        //总线挂起处理
      bEPPflags.bits.suspend= 0;
                                        //清标志
  if (bEPPflags.bits.setup_packet)
                                        //协议处理
      bEPPflags.bits.setup_packet = 0;
                                        //清标志
      control_handler();
  }
  Key = SP\_GetCh();
  if(Key==1||Key==2||Key==4||KeyStatus!=Stop)
      Ret=0;
      IsoDvrHandle();
      Ret=0;
  if(bEPPflags.bits.ep2_rxdone==1)
  bEPPflags.bits.ep2 rxdone = 0;
    Ret= D12 ReadEndpoint(4,64,MainEpBuf);
    //FileLen_Block 为缓冲区中有效数据的长度
  if(MainEpBuf[0]==ID0)
                                        //ID0=1 for test
  {
      D12 WriteEndpoint(5,1,MainEpBuf); //将 ID0 送到 PC
```

```
}
                                               //ID4=5
                                                          UPLOAD
        if(MainEpBuf[0]==ID4)
             if(MainEpBuf[1]==1)
             {
                 Interrupt Off True();
                 FileLength[0]=5;//APPLY ID
                 FileLength[1]=(unsigned int)(0x000000FF&SpeechFileLength);
                 FileLength[2]=(unsigned int)((0x0000FF00&SpeechFileLength)>>8);
                 FileLength[3]=(unsigned int)((0x00FF0000&SpeechFileLength)>>16);
                 FileLength[4]=(unsigned int)((0xFF000000&SpeechFileLength)>>24);
                 Addr UpLoad=0;
                 Up Flash Addr Up=0x0000;
                 FlashAdd_Up=0;
                 D12_WriteEndpoint(5,5,FileLength); //将 FileLength 送到 PC
                 G_UpLoad_Flag=1;
                 Interrupt_On_True();
             }
        if(MainEpBuf[0]==ID5)
                                                    //ID5=6 DOWNLOAD
            if(MainEpBuf[1]==1)
                                                    // 开中断
                 Interrupt_Off_True();
                 SP SIOMassErase();
                 SpeechFileLength=256*MainEpBuf[5]+MainEpBuf[4];
                 SpeechFileLength=256*(SpeechFileLength)+MainEpBuf[3];
                 SpeechFileLength=256*(SpeechFileLength)+MainEpBuf[2];
                 DownLoadFileLen_Up=0x0000;
                 Down_Flash_Addr_Up=0x0000;
                 FlashAdd Up=0;
                 D12 WriteEndpoint(5,1,MainEpBuf);
                 m CtrlRecFileData=1;
                 Interrupt_On_True();
                                                   // 关中断
            //end if download
            //end if ep2 rxdone==1
    } // Main Loop
}
```

if(MainEpBuf[0]==ID3)//ID3=4 for dvr

实验十五 原始语音资源的存储和播放

【实验目的】

- 1、熟悉原始语音的录放方法
- 2、体会凌阳语音的压缩及播放效果

【实验设备】

1)装有 WINDOWS 系统和 μ'nSPTM IDE 仿真环境的 PC 机一台。

2) μ'nSPTM 十六位单片机实验箱一个。

【实验原理】

利用 SPR4096 存储 MIC 采样来的数据,播放时,直接从 SPR4096 中读出,送语音输出通道播放。主要采用两个按键实现语音的播放和录制。

【实验步骤】

- 1、根据硬件连接图连接
- 2、SPR4096 为实验箱默认连接
- 3、开始软件涉及
- 4、联机调试
- 5、按一键录音,
- 6、按二键播放录入声音
- 7、仔细听播放的声音效果

【硬件连接图】

【程序流程图】

中断程序流程图

【程序及其特殊函数说明】

SPR4096 库函数使用说明

SPR4096 的操作函数在 SP_SerialFlashV1.asm 文件中,主要完成对 flash 的擦除和写,在这个 DVR 程序中所有数据都存入 SPR4096 中