MANEJO LCD 16X2

ING. YESID SANTAFE PROGRAMACIÓN 3 UNISANGIL

Pantalla LCD

						Tiempo						
Instrucción.	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Descripción	de ejecución
Borrar Pantalla	0	0	0	0	0	0	0	0	0	1	Borra la pantalla y retorna el cursor a la dirección 0 (Home)	1.64 mS.
Cursor Home	0	0	0	0	0	0	0	0	1	*	Retorna el cursor al inicio (Dirección o)	1.64 mS.
Modo de entrada de caracteres	0	0	0	0	0	0	0	1	I/D	S	Donde I/D=0 Decremente la posición del cursor, I/D=1 incrementa la posición del cursor,. S=0 El texto de la pantalla no se desplaza, S=1 El texto de la pantalla se desplaza en el momento que se	40 uS.

carácter

Apagado y encendido de la pantalla.	0	0	0	0	0	0	1	D	С	В	Donde D=0 Pantalla apagada, D=1 Pantalla encendida, C=0 Cursor apagado, C=1 Cursor encendido, B=0 Intermitencia del cursor apagado, B=1 Intermitencia del cursor	40 uS
Desplazamiento cursor y display	0	0	0	0	0	1	S/C	R/L	*	*		40 uS.
Funtion Set	0	0	0	0	1	DL	N	F	*	*		40 uS.
Dirección CG RAM	0	0	0	1 ACG								40 uS.
Dirección DD RAM	0	0	1	ADD								40 uS.
Leer busy flag y dirección	0	1	BF	AC								1 uS.
Escribir dato en CG o DD RAM	1	0	Escribir el Dato									40 uS.
Leer dato en CG or DD RAM	1	1	Leer el Dato									40 uS.

#include<msp430g2231.h> #define RS(X) P10UT = ((P10UT & ~(BIT0)) | (X)) #define EN(X) P10UT = $((P10UT \& \sim (BIT1)) \mid (X << 1))$ #define LCD STROBE do{EN(1);EN(0);}while(0) #define databits P10UT // P1.7 - D7,, P1.4 - D4 #define LINE1 cmd(0x80) #define LINE2 cmd(0xc0) void port_init() P10UT = 0; P1DIR = 0xff;

```
void data(unsigned char c)
    RS(1);
    delay cycles(40); //40 us delay
    databits = (databits & 0x0f) | (c & 0xf0);
    LCD STROBE;
    databits = (databits & 0x0f) | (c << 4);
    LCD STROBE;
void cmd(unsigned char c)
    RS(0);
    delay cycles(40); //40 us delay
    databits = (databits & 0x0f) | (c & 0xf0);
    LCD STROBE;
    databits = (databits & 0x0f) \mid (c << 4) ;
    LCD STROBE;
```

```
void pseudo 8bit cmd(unsigned char c)
ſ
    RS(0);
    delay cycles(15000); //15 ms delay
    databits = (c & 0xf0);
    LCD STROBE;
void clear(void)
    cmd(0x01);
     delay cycles(3000); //3 ms delay
void lcd init()
£
    pseudo 8bit cmd(0x30); //this command is like 8 bit mode command
    pseudo 8bit cmd(0x30); //lcd expect 8bit mode commands at first
    pseudo 8bit cmd(0x30); //for more details, check any 16x2 lcd spec
    pseudo 8bit cmd(0x20);
    cmd(0x28);
                          //4 bit mode command started, set two line
                        // Make cursorinvisible
    cmd(0x0c);
    clear();
                          // Clear screen
    cmd(0x6);
                           // Set entry Mode(auto increment of cursor)
                            ING. YESID SAN IAFE WANEJU LUDIOXZ
```

```
void string(char *p)
    while(*p) data(*p++);
int main()
    port_init();
    lcd init();
    LINE1;
    string("PROGRAMACIÓN 3");
    LINE2;
    string("MSP430 LAUNCHPAD");
    while(1);
```

Regulador lumínico mediante el control de la fase.

CONFIGURAR PIC Y LCD

- #include<16f877a.h>
- #FUSES NOWDT, XT, NOPUT, NOPROTECT, NODEBUG, NOBROWNOUT, NOLVP, NOCPD, NOWRT
- #use delay(clock=4000000)
- #define LCD_ENABLE_PIN PIN_D0
- #define LCD_RS_PIN PIN_D2
- #define LCD_RW_PIN PIN_D3
- #define LCD DATA PORT portd
- #define LCD_TYPE 2
- #define LCD_TRIS_LOCATION trisd
- #include <lcd.c>

DEFINIMOS MODULOS A UTILIZAR DEL PIC E INICIALIZAMOS LCD

```
void main()
  lcd_init();
  setup_adc_ports(NO_ANALOGS);
  setup adc(ADC OFF);
  setup_psp(PSP_DISABLED);
  setup_spi(FALSE);
  setup_timer_0(RTCC_INTERNAL|RTCC DIV 1);
  setup_timer_1(T1_DISABLED);
  setup_timer_2(T2_DISABLED,0,1);
  setup_comparator(NC_NC_NC_NC);
  setup_vref(FALSE);
```

REALIZAMOS CODIGO PARA MOSTRAR MENSAJE

```
• // TODO: USER CODE!!
do{
delay_ms(500);
lcd_putc("unisangil");
delay_ms(500);

    lcd_gotoxy(1,2); //salto a columna 4, fila 2

   Lcd_putc( "tercer semestre");
   delay_ms(500);
    lcd_putc('\f');
   }while(TRUE); //bucle inf
```

SIMULAR Y PROGRAMAR

