

CMPT-413: Computational Linguistics

HMM6: Deriving HMM updates using Lagrange Multipliers

Anoop Sarkar http://www.cs.sfu.ca/~anoop

February 28, 2013

Hidden Markov Model

$$\text{Model } \theta = \left\{ \begin{array}{ll} \pi_i & \text{probability of starting at state } i \\ a_{i,j} & \text{probability of transition from state } i \text{ to state } j \\ b_i(o) & \text{probability of output } o \text{ at state } i \end{array} \right.$$

Constraints :
$$\sum_i \pi_i = 1, \sum_j a_{i,j} = 1, \sum_o b_i(o) = 1$$

$$L(\theta) = \sum_{\ell=1}^{m} \sum_{i,j} f(i, x_{\ell}, y_{\ell}) \log \pi_{i} + \sum_{i,j} f(i, j, x_{\ell}, y_{\ell}) \log a_{i,j} + \sum_{i,o} f(i, o, x_{\ell}, y_{\ell}) \log b_{i}(o)$$

- \bullet $\theta = (\pi, a, b)$
- ▶ $L(\theta)$ is the log probability of the labeled data $(x_1, y_1), \dots, (x_m, y_m)$
- We want to find a θ that will give us the maximum value of $L(\theta)$
- ▶ Find the θ such that $\frac{dL(\theta)}{d\theta} = 0$

$$L(\theta) = \sum_{\ell=1}^{m} \sum_{i,j} f(i, x_{\ell}, y_{\ell}) \log \pi_{i} + \sum_{i,j} f(i, j, x_{\ell}, y_{\ell}) \log a_{i,j} + \sum_{i,o} f(i, o, x_{\ell}, y_{\ell}) \log b_{i}(o)$$

- ▶ Find the θ such that $\frac{dL(\theta)}{d\theta} = 0$ and $\theta = (\pi, a, b)$
- ▶ Split up $L(\theta)$ into $L(\pi)$, L(a), L(b)
- ▶ Let $\nabla L = \forall i, j, o : \frac{\partial L(\pi)}{\partial \pi_i}, \frac{\partial L(a)}{\partial a_{i,j}}, \frac{\partial L(b)}{\partial b_i(o)}$
- We must also obey constraints: $\sum_k \pi_k = 1, \sum_k a_{i,k} = 1, \sum_o b_i(o) = 1$

$$L(\pi) = \sum_{\ell=1}^{m} \sum_{i} f(i, x_{\ell}, y_{\ell}) \log \pi_{i}$$

- Let us focus on $\nabla L(\pi)$ (the other two: a and b are similar)
- For the constraint $\sum_k \pi_k = 1$ we introduce a new variable into our search for a maximum:

$$L(\pi,\lambda) = L(\pi) + \lambda(1 - \sum_{k} \pi_{k})$$

- $ightharpoonup \lambda$ is called the Lagrange multiplier
- lacktriangleright λ penalizes any solution that does not obey the constraint
- lacktriangle The constraint ensures that π is a probability distribution

$$\frac{\partial L(\pi)}{\partial \pi_{i}} = \frac{\partial}{\partial \pi_{i}} \underbrace{\sum_{\ell=1}^{m} f(i, x_{\ell}, y_{\ell}) \log \pi_{i}}_{\text{the only part with variable } \pi_{i}} + \underbrace{\sum_{\ell=1}^{m} \sum_{j: j \neq i} f(j, x_{\ell}, y_{\ell}) \log \pi_{j}}_{\text{no } \pi_{i} \text{ so derivative is } 0}$$

• We want a value of π_i such that $\frac{\partial L(\pi,\lambda)}{\partial \pi_i}=0$

$$\frac{\partial}{\partial \pi_{i}} \sum_{\ell=1}^{m} \left(f(i, x_{\ell}, y_{\ell}) \log \pi_{i} + \lambda (1 - \sum_{k} \pi_{k}) \right) = 0$$

$$\frac{\partial}{\partial \pi_{i}} \sum_{\ell=1}^{m} \left(\underbrace{\frac{f(i, x_{\ell}, y_{\ell}) \log \pi_{i}}{\partial \pi_{i}} + \lambda - \underbrace{\lambda \pi_{i}}_{\frac{\partial}{\partial \pi_{i}} = \lambda} - \lambda \sum_{j: j \neq i} \pi_{j})}_{\frac{\partial}{\partial \pi_{i}} = \lambda} \right) = 0$$

$$\frac{\partial L(\pi)}{\partial \pi_{i}} = \frac{\partial}{\partial \pi_{i}} \underbrace{\sum_{\ell=1}^{m} f(i, x_{\ell}, y_{\ell}) \log \pi_{i}}_{\text{the only part with variable } \pi_{i}} + \underbrace{\sum_{\ell=1}^{m} \sum_{j:j \neq i} f(j, x_{\ell}, y_{\ell}) \log \pi_{j}}_{\text{no } \pi_{i} \text{ so derivative is } 0}$$

▶ From Eqn (1) we can obtain a value of π_i wrt λ :

$$\frac{\partial L(\pi, \lambda)}{\partial \pi_i} = \underbrace{\sum_{\ell=1}^{m} \frac{f(i, x_{\ell}, y_{\ell})}{\pi_i} - \lambda}_{\text{see previous slide}} = 0 \tag{1}$$

$$\pi_i = \frac{\sum_{\ell=1}^m f(i, x_\ell, y_\ell)}{\lambda} \tag{2}$$

▶ Combine π_i s from Eqn (3) with constraint $\sum_k \pi_k = 1$

$$\lambda = \sum_{k} \sum_{\ell=1}^{m} f(k, x_{\ell}, y_{\ell})$$

$$\frac{\partial L(\pi)}{\partial \pi_{i}} = \frac{\partial}{\partial \pi_{i}} \underbrace{\sum_{\ell=1}^{m} f(i, x_{\ell}, y_{\ell}) \log \pi_{i}}_{\text{the only part with variable } \pi_{i}} + \underbrace{\sum_{\ell=1}^{m} \sum_{j: j \neq i} f(j, x_{\ell}, y_{\ell}) \log \pi_{j}}_{\text{no } \pi_{i} \text{ so derivative is } 0}$$

► The value of π_i for which $\frac{\partial L(\pi,\lambda)}{\partial \pi_i} = 0$ is Eqn (3) which can be combined with the value of λ from Eqn (4).

$$\pi_i = \frac{\sum_{\ell=1}^m f(i, x_\ell, y_\ell)}{\lambda} \tag{3}$$

$$\lambda = \sum_{k} \sum_{\ell=1}^{m} f(k, x_{\ell}, y_{\ell})$$
 (4)

$$\pi_{i} = \frac{\sum_{\ell=1}^{m} f(i, x_{\ell}, y_{\ell})}{\sum_{k} \sum_{\ell=1}^{m} f(k, x_{\ell}, y_{\ell})}$$
(5)

$$L(\theta) = \sum_{\ell=1}^{m} \sum_{i,j} f(i, x_{\ell}, y_{\ell}) \log \pi_{i} + \sum_{i,j} f(i, j, x_{\ell}, y_{\ell}) \log a_{i,j} + \sum_{i,o} f(i, o, x_{\ell}, y_{\ell}) \log b_{i}(o)$$

▶ The values of π_i , $a_{i,i}$, $b_i(o)$ that maximize $L(\theta)$ are:

$$\pi_{i} = \frac{\sum_{\ell} f(i, x_{\ell}, y_{\ell})}{\sum_{\ell} \sum_{k} f(k, x_{\ell}, y_{\ell})}$$

$$a_{i,j} = \frac{\sum_{\ell} f(i, j, x_{\ell}, y_{\ell})}{\sum_{\ell} \sum_{k} f(i, k, x_{\ell}, y_{\ell})}$$

$$b_{i}(o) = \frac{\sum_{\ell} f(i, o, x_{\ell}, y_{\ell})}{\sum_{\ell} \sum_{o' \in V} f(i, o', x_{\ell}, y_{\ell})}$$