

Universidade Federal de Minas Gerais Departamento de Matemática - ICEX Análise no II - 2021 Lista 4

- 1. Seja $\varphi: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^4$ a aplicação bilinear definida por $\varphi(x_1, x_2, y_1, y_2) = (x_1y_1, x_1y_2, x_2y_1, x_2y_2)$. Mostre que a imagem de φ não é um subespaço vetorial.
- 2. Sejam $f_1, \ldots, f_n \in \mathcal{L}^1(V)$, onde V é um espaço vetorial. Mostre que, para que estes vetores sejam linearmente independentes, é necessário e suficiente que $f_1 \wedge \ldots \wedge f_n = 0$.
- 3. Se $T:V\to W$ for uma transformação linear e se f e g forem tensores alternados em W, mostre que $T^*(f\wedge g)=T^*f\wedge T^*g$.
- 4. Suponha que sejam dados dois subconjuntos $\{w_1, \ldots, w_k\}$ e $\{\alpha_1, \ldots, \alpha_k\}$ de $\mathcal{L}^1(V)$ onde V é um espaço vetorial. Suponha ainda que os elementos deste conjunto estejam relacionados por

$$w_i = \sum_{j=1}^k a_{ij}\alpha_j, \quad i = 1, \dots, k.$$

Mostre que se $A = (a_{ij})_{k \times k}$, então $w_1 \wedge \ldots \wedge w_k = (\det(A))\alpha_1 \wedge \ldots \wedge \alpha_k$.

- 5. Fixados $k, m \in \mathbb{N}, \ k \geq r$, seja ω uma r-forma em \mathbb{R}^n , tal que $f^*(\omega) = 0$ para toda transformação afim $f: \mathbb{R}^k \to \mathbb{R}^m$. Prove que $\omega = 0$.
- 6. Sejam α , β 1-formas num aberto $U \subset \mathbb{R}^3$ tais que $\alpha \wedge \beta \neq 0$ em todos os pontos de U. Se uma 2-forma ω em U é tal que $\omega \wedge \alpha = \omega \wedge \beta = 0$, prove que existe uma função $f: U \to \mathbb{R}$ tal que $\omega = f \cdot \alpha \wedge \beta$. Se $\alpha, \beta, \omega \in C^1(U)$ então $f \in C^1(U)$.
- 7. Seja ω a 2-forma em \mathbb{R}^{2n} dada por

$$\omega = dx_1 \wedge dx_2 + dx_3 \wedge dx_4 + \ldots + dx_{2n-1} \wedge dx_{2n}.$$

Calcule o produto exterior de n cópias de ω .

- 8. Seja ω_{vol} a n-forma em \mathbb{R}^n dada por $\omega_{vol}(e_1,\ldots,e_n)=1$, onde $\{e_1,\ldots,e_n\}$ é a base canônica de \mathbb{R}^n .
 - Mostre que se $v_i = \sum_{j=1}^n a_{ij} e_j$ então $\omega_{vol}(v_1, \dots, v_n) = \det(a_{ij})$. Observe que, no caso n = 3, $\omega_{vol}(v_1, v_2, v_3)$ é justamente o produto misto destes três vetores, ou seja, $\omega_{vol}(v_1, v_2, v_3) = vol(v_1, v_2, v_3)$. Por este fato, ω_{vol} é chamada de elemento de volume em \mathbb{R}^n .
 - Mostre que $\omega_{vol} = dx_1 \wedge \ldots \wedge dx_n$.
- 9. Considere a forma diferencial $\omega = adx + bdy + cdz$, onde as funções $a, b, c : \mathbb{R}^3 \to \mathbb{R}$ são homogêneas de grau k. Mais ainda suponha que $d\omega = 0$. Mostre que $\omega = df$, onde

$$f = \frac{xa + yb + zc}{k+1}.$$

Sugestão: note que se $d\omega=0$, então $\frac{\partial b}{\partial x}=\frac{\partial a}{\partial y}, \frac{\partial c}{\partial x}=\frac{\partial a}{\partial z}, \frac{\partial b}{\partial z}=\frac{\partial c}{\partial y}$. Depois aplique a Fórmula de Euler (relação entre as derivadas e a função homogênea).

10. (Lema de Cartan) Suponha que $\omega_1, \ldots, \omega_k \in \Omega^1(U)$ sejam linearmente independentes, onde $U \subset \mathbb{R}^n$ é aberto. Se $\alpha_1, \ldots, \alpha_k \in \Omega^1(U)$ são tais que

$$\sum_{i=1}^{k} \alpha_i \wedge \omega_i = 0,$$

demonstre que cada α_i , $i=1,\ldots,k$ pode ser escrito como combinação linear (com coeficientes suaves) de ω_1,\ldots,ω_k .

Prof. Arturo Fernández Pérez Livro de referência, Elon Lages Lima e Michael Spivak