Total No. of Questions : 8]			SEAT No. :	
P1316	[4070]	1050	[Total No. of Pages : 3	

[4858] - 1050 T.E. (E & TC) ANTENNA & WAVE PROPAGATION (2012 Pattern) (End Sem.)

Time: 3 Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Answers any one Questions out of Q1 & Q2, Q3 & Q4, Q5 & Q6, Q7 & Q8.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Assume Suitable data if necessary.
- Q1) a) What is poynting vector? What is its significance? Derive an expression for poynting vector?[6]
 - b) Derive the fundamental equation for free space propagation and explain its parameter [6]
 - c) A lossless resonant λ/2 dipole antenna with input impedance of 73 Ω is to be connected to a transmission line whose characteristics impedance is 50 Ω. Assuming that the pattern of the antenna is given approximately by U=Bosin³θ. Find the overall maximum gain of this antenna.

OR

- Q2) a) State Maxwell's field equation with their significane and derive the wave equation foe lossless dielectric medium.[6]
 - b) Derive vector potential A for an magnetic current source J. [6]
 - c) Explain the following wireless channel characteristics [8]
 - i) Coherence bandwidth
 - ii) Coherence time

Q 3)	Find	the following terms for half wave Dipole: [18]		
	a)	Specify the current		
	b)	Vector magnetic potential		
	c)	Far field components of Electric & Magnetic fields		
	d)	radiation density, radiation intensity		
	e)	radiated power, radiation resistance		
	f)	Directivity		
	g)	draws the radiation pattern		
		OR		
Q4)	a)	Calculate the radiation resistance of a double turn and an eight turn small circular loop when radius of loop is $\lambda/10$ and the medium is free space.		
		Calculate its efficiency if loss resistance is 25Ω [6]		
	b)	Derive the expression for radiation resistance of Infinitesimaldipole. [6]		
	c)	Derive the expression for input impedance of small dipole. [6]		
Q5)	a)	Write a short notes on [8]		
		i) Pattern Multiplication		
		ii) Binomial Array		
	b)	An Endfire array with element spaced at χ / 2 and with axes of elements at right angles to the line of array is required to have directivity of 36. Determine - the array length and the width of major lobe. [8]		
		OR		
Q6)	a)	Design a broad side Dolph - Tschebhysheff array of five elements with half wavelength spacing between elements and with major to minor lobe ratio to be 19dB. Find the excitation coefficients & array factor. [6]		
	b)	Give the comparison of broadside and End fire antenna array. [5]		
	c)	Explain planar array. State its advantages and applications. [5]		

- **Q7)** a) What is Microstrip patch antenna? Give structure details, radiation pattern, specification and application of such antenna. [5]
 - b) What is meant by Rhombic Antenna? How it is constructed? Explain how unidirectional pattern is obtained in properly terminated Rhombic Antenna. [5]
 - c) Write a short notes on following antennas with respect to structural details, radiation pattern, features and applications [6]
 - i) Hertz antenna
 - ii) Whip antenna

OR

Q8) a) Write a short notes on the following antennas

[12]

- i) Lens Antenna
- ii) Resonant Antenna
- iii) Super turnstile Antenna
- b) A paraboloidal reflector antenna with diameter 20m is designed to operate at frequency of 6 GHz and illumination efficiency of 0.54. Calculate the antenna gain in decibels. [4]

