MECH 7610 – ADVANCED DYNAMICS

SPRING 2020

Instructor: George T. Flowers (Hargis 202C)

Phone: (334) 844-4375

Office Hours: TBA or by appointment.

Email: flowegt@auburn.edu

Textbook: Ginsberg, Jerry H., "Engineering Dynamics,"

Second Edition, Cambridge University Press, 2008

Goals: The objective of this course is to extend the concepts of fundamental dynamics and to develop the ability of students to apply these principles to solve a variety of engineering problems. The material covered in this course will include a discussion of Lagrange's equations, Hamilton's Principle, the Gibbs-Appell equations, Newtonian kinetics in three dimensions, and gyroscopic motion.

Pre-Requisites:

MECH 3140

Grading Policy:

1.	3 semester exams (3 X 165 points)	495
2.	Homework	200
3.	Final Exam (Comprehensive)	305
	Total	1000

Scale:

900-1000 - A

800-899 - B

700-799 - C

600-699 - D

Below 600 - F

Tentative Schedule for Exams:

Exam #1 - February 11, 2020

Exam #2 - March 5, 2020

Exam #3 - April 7, 2020

Final Exam - April 28, 2020

Topic Outline

Class Days	Topic
1	Chapter 1: Basic Considerations
1	Introduction to Chapter 6: Newtonian Kinetics of a Rigid Body and Chapter 7: Introduction to Analytical Mechanics
3	Chapter 2: Particle Kinematics
	(path variables, rectangular Cartesian coordinates, orthogonal curvilinear coordinates)
3	Chapter 3: Relative Motion
	(rotation transformations, finite rotations, angular velocity and derivatives of rotating vectors, angular acceleration, derivatives of an arbitrary vector, velocity and acceleration using a moving reference frame)
4	Chapter 4: Kinematics of Constrained Rigid Bodies
	(general equations, Eulerian angles, interconnections, rolling)
3	Chapter 5: Inertial Effects of a Rigid Body
	(linear and angular momentum, inertia properties, rate of change of angular momentum)
5	Chapter 6: Newtonian Kinetics of a Rigid Body
	(fundamental equations, planar motion, Newton-Euler equations, momentum and energy principles)
5	Chapter 7: Introduction to Analytical Mechanics
	(virtual work, generalized coordinates, virtual displacements, generalized forces, Lagrange's equations)
4	Chapter 8: Constrained Generalized coordinates
	(Lagrange's equations – constrained case, computational methods)
4	Chapter 9: Alternative Formulations
	(Hamilton's principle, generalized momentum principles, formulation with quasi-coordinates)
2	Chapter 10: Gyroscopic Effects
	(free motion, spinning top, gyroscopes for inertial guidance)
1	Review