Chapter 1

Introduction

Machine Learning

- Acquiring knowledge by extracting patterns from raw data
- Example: To predict a person's wellness t from their MRI scan \boldsymbol{x} by learning patterns from the medical records $\{\boldsymbol{x},t\}$ of some population

- -x: MRI scan
- $-\phi(\boldsymbol{x})$: data representation of MRI scan
- $-y \in (0,1)$: model prediction with parameter w

$$y = f_{\boldsymbol{w}}(\phi(\boldsymbol{x})) \triangleq \sigma(\boldsymbol{w}^T \phi(\boldsymbol{x})), \text{ where } \sigma(s) = \frac{1}{1 + e^{-s}}$$

 $-t \in \{0,1\}$: ground-truth result associated with input \boldsymbol{x}

- Cost: some distance between y and t (e.g. $||y-t||_2^2$), which is to be minimized w.r.t. w over the $\{x,t\}$ pairs
- ullet Essentially, we want to find a function $f_{oldsymbol{w}}(\phi(oldsymbol{x}))$ to approximate $t(oldsymbol{x})$
- In the present example, $f_{\boldsymbol{w}}(\phi(\boldsymbol{x}))$ bears a probabilistic interpretation of $p(t=1|\boldsymbol{x};\boldsymbol{w})$
- ullet The setting here is termed supervised learning as the ground-truth result t is given for each $oldsymbol{x}$

Data Representation, $\phi(x)$

• Data representation can critically determine the prediction performance

raw data domain

feature domain

• In classic machine learning, hand-designed features are usually used; for many tasks, it is however difficult to know what features should be used

Deep Learning

- A machine learning approach whose data representation is based on building up a *hierarchy of concepts*, with each concept defined through its relation to simpler concepts
- Using the previous example, this amounts to learning a function of the following form

$$f_{\boldsymbol{w},\boldsymbol{\theta_n},\boldsymbol{\theta_{n-1}},\cdots,\boldsymbol{\theta_1}}(\boldsymbol{x}) = \sigma(\boldsymbol{w}^T \underbrace{\phi_{\boldsymbol{\theta_n}}(\phi_{\boldsymbol{\theta_{n-1}}}(\phi_{\boldsymbol{\theta_{n-2}}}(\cdots\phi_{\boldsymbol{\theta_1}}(\boldsymbol{x}))))}_{\text{Hierarchy of concepts/features}})$$

where $\boldsymbol{w}, \boldsymbol{\theta_n}, \boldsymbol{\theta_{n-1}}, \cdots, \boldsymbol{\theta_1}$ are model parameters

- $\phi_{\theta}(\cdot)$'s are generally vector-valued functions, e.g. $\phi_{\theta}(x) = \sigma(\theta x)$
- Such a deep model allows to construct a complicated function f(x) from nested composition of simpler functions $\phi(\cdot)$'s

Example: Feedforward Deep Networks

Classic Machine Learning vs. Deep Learning

History of Deep Learning

- Cybernetics (1940s-1960s): Systems inspired by biological brains
 - Perceptron (Rosenblatt, 1958, 1960), Adaptive Linear Element,
 ADALINE (Widrow and Hoff, 1960)
- Connectionism (1980s-1990s): Connected simple computational units
 - Neocognition (Fukushima, 1980); Recurrent Neural Networks
 (Rumelhart et al., 1986); Convolutional Neural Networks (LeCun et al., 1998); Long Short-Term Memory (Hochreiter and Schmidhuber, 1997)
- **Deep Learning** (2006s-): Deeper networks and deep generative models
 - Deep Belief Networks (Hinton et al., 2006); Deep Boltzmann Machine (Salakhutdinov et al., 2009); Variational Autoencoder (Kingma et al., 2014); Generative Adversarial Networks (Goodfellow et al., 2014)