



# РОССИЙСКАЯ АКАДЕМИЯ НАРОДНОГО ХОЗЯЙСТВА И ГОСУДАРСТВЕННОЙ СЛУЖБЫ ПРИ ПРЕЗИДЕНТЕ РОССИЙСКОЙ ФЕДЕРАЦИИ

# Методы снижения размерности в данных в макроэкономике

Отчёт по научно-исследовательской работе

2019

Михаил Гареев

90-15-01

mkhlgrv@gmail.com

Научный руководитель: к.э.н. Полбин А.В.

## Актуальность исследования

▶ При оценке моделей из макроэкономики часто можно столкнуться с тем, что параметров относительно много, а наблюдений - мало. Иногда эту проблему решается использованием методов снижения размерности в данных.

## Цели и задачи

## Цель:

 Проверка целесообразности использования методов снижения размерности в данных/

## Задачи:

- Обзор методов снижения размерности (LASSO, Post-LASSO, Ridge, Elastic Net, Random Forest, Spike-and-Slab variable selection).
- 2. Применение этих методов для оценки макроэкономических зависимостей в России (оценка безработицы), анализ результатов, сравнение с традиционными методами оценивания временных рядов.

Разреженная линейная модель с высокой размерностью в данных

#### Модель:

$$\beta_0 + \varepsilon_i, \epsilon_i \sim N(0, \sigma^2), \beta_0 \in \mathbb{R}^p, i = 1, \dots, n,$$

#### где:

- $y_i$  это значения объясняемой переменной,
- $ightharpoonup x_i$  это значения p-размерной объясняющей переменной,
- $\epsilon_i$  значения независимых случайных ошибок в каждом наблюдении i,

при этом возможно, что  $p \geq n$ , но только s < n компонентов вектора $\beta_0$  не равны 0.

Можно ли уменьшить размерность модели?

**Oracle Problem** 

## Задача (Oracle Problem):

$$\min_{\beta \in \mathbb{R}^p} \mathbb{E}_n \left[ (y_i - x_i'\beta)^2 \right] + \sigma^2 \frac{\|\beta\|_0}{n}, \tag{1}$$

где  $\|\beta\|_0$  — это количество ненулевых компонентов в векторе  $\beta$ , обобщение понятия нормы для степени 0.

## Гёльдерова норма для вектора x степени p:

$$||x||_p = \sqrt[p]{\sum_i |x_i|^p},$$

где обычно  $p \ge 1$ .

Решение (1) — это баланс между ошибкой регрессии и количеством ненулевых коэффициентов из вектора  $\beta$ .

Методы снижения размерности оптимизируют эмпирические аналоги задачи (1).

Регуляризация

## AIC/ BIC

$$\hat{\beta} \in \arg\min_{\beta \in \mathbb{R}^p} \sum_{i=1}^n \left[ (y_i - x_i^{'}\beta)^2 \right] + \frac{\lambda}{n} \left\| \beta \right\|_0,$$

где  $\lambda$  — параметр штрафа.

#### LASSO

$$\hat{\beta}^{\mathsf{LASSO}} \in \arg\min_{\beta \in \mathbb{R}^{p}} \sum_{i=1}^{n} \left[ (y_{i} - x_{i}{'}\beta)^{2} \right] + \frac{\lambda}{n} \left\| \beta \right\|_{1},$$

где  $\lambda$  — параметр штрафа.

Регуляризация

## Ridge Regression

$$\hat{\beta}^{\mathsf{Ridge}} \in \arg\min_{\beta \in \mathbb{R}^p} \sum_{i=1}^n \left[ (y_i - x_i^{\ '}\beta)^2 \right] + \frac{\lambda}{n} \left\| \beta \right\|_2,$$

где  $\lambda$  — параметр штрафа.

## **Elastic Net Regression**

$$\hat{\beta}^{\text{EN}} \in \arg\min_{\beta \in \mathbb{R}^p} \sum_{i=1}^n \left[ (y_i - x_i^{'}\beta)^2 \right] + \frac{\lambda}{n} \left( \frac{1-\alpha}{2} \left\| \beta \right\|_1 + \alpha \left\| \beta \right\|_2 \right),$$

где  $\lambda$  — параметр штрафа,  $\alpha$  — параметр регуляризации, равен 1 для Ridge и 2 для LASSO.

Регуляризация

#### Post-LASSO

- 1. Использовать метода LASSO, найти  $\hat{\beta}^{\text{LASSO}}$ .
- 2. Применить МНК-регрессию, оценивая только неисключенные элементы  $\hat{\beta}^{\text{LASSO}}$ :

$$\hat{eta}^{\mathsf{Post\text{-LASSO}}} \in \arg\min_{eta \in \mathbb{R}^p} \sum_{i=1}^n \left[ (y_i - x_i{'}eta)^2 
ight]$$
 , где  $eta_j = 0$ , если  $\hat{eta}_j = 0$ .

Ансамблевые методы

#### Random Forest

Двухэтапное получение оценок:

- 1. На разных подвыборках данных строится множество решающих деревьев,
- 2. в качестве предсказанного значения  $\hat{y}_i$  выбираются усреднённые значения показаний по всем деревьям.

Байесовские методы

## Регрессия пик-плато (Spike-and-slab)

$$\beta_j | \tau_j, r_j^2 \sim N(0, \tau_j \cdot r_j^2)$$

$$\tau_j = \begin{cases} 0 & \text{se } \omega \in A \\ 1 & \text{se } \omega \in A^c \end{cases}$$

 $ightharpoonup r_j^2 \sim \operatorname{Exp}(\lambda)$ 

#### Описание данных

- 1. Прогнозируемая переменная: уровень безработицы в России (ноябрь 2001 декарь 2017),
- 2. Объясняющие переменные: 83 ряда данных, отражающие различные макроэкономические показатели в России, уровень деловой активности и др. (январь 2001 декарь 2016).

Обучение моделей ведется на десятилетнем движущемся окне, проверка качества моделей ведется на однолетнем окне для изменения безработицы в период от 1 до 24 месяцев. Все ряды были очищены от сезонных и календарных эффектов и приведены к стационарному виду.

Описание данных

## Безработица в России



Метод главных компонент

РСА: последовательная минимизация суммы квадратов отклонений старых значений от новых или замена матрицы  $X_{n \times k}$  на матрицу  $n \times k$  ранга p < k, так, чтобы:

$$\min \sum_{j=1}^{k} \sum_{i=1}^{n} (x_{ij} - \hat{x_{ij}})^2$$

Метод главных компонент

## Экономика России в двумерном пространстве



Базовый бенчмарк

## Модель ARMA(p,q)

Для сравнения качества используется модель ARMA(p,q), где p и q выбираются при помощи AIC.

Метрика качества моделей

#### **RMSE**

Для сравнения качества используется метрика RMSE (Root-mean-square error):

$$\mathsf{RMSE} = \sqrt{\frac{\sum_{t=1}^{T} (\hat{y_t} - y_t)}{T}}$$

Результаты

#### Базовый прогноз



Дата

Результаты

## Модели с регуляризацией



Результаты

Модели с регуляризацией и трансформацией данных через главные компоненты



Результаты

#### Остальные модели



Результаты

## Сравнения предсказаний для некоторых моделей (1–9 мес)



Результаты

## Сравнения предсказаний для некоторых моделей (10–18 мес)



| Elastic Net                 | 0.97                 |      | 0.85 |      |         |      |
|-----------------------------|----------------------|------|------|------|---------|------|
| LASSO                       | 0.97                 | 0.85 | 0.85 | 0.86 | 0.84    | 0.83 |
| LASSO with lag              | 0.89                 | 0.84 | 0.83 | 0.92 | 0.94    | 1.02 |
| LASSO with PC               | 0.97                 | 0.82 | 0.80 | 0.83 | 0.86    | 0.96 |
| LASSO with PC and lag       | 0.89                 | 0.93 | 1.05 | 1.10 | 1.16    | 1.30 |
| Post-LASSO                  | 1.03                 | 0.91 | 1.03 | 0.97 | 1.02    | 1.01 |
| Post-LASSO with lag         | 0.95                 | 1.02 | 1.09 | 1.15 | 1.32    | 1.59 |
| Post-LASSO with PC          | 1.01                 | 0.98 | 0.95 | 1.06 | 1.34    | 1.56 |
| Post-LASSO with PC and lag  | 1.11                 | 0.98 | 1.43 | 1.25 | 1.34    | 1.41 |
| Random Forest               | 1.00                 | 0.87 | 0.91 | 0.95 | 0.99    | 1.16 |
| ridge                       | 1.35                 | 1.16 | 1.05 | 1.16 | 1.38    | 1.37 |
| ridge_pc                    | 1.43                 | 1.31 | 1.27 | 1.18 | 1.17    | 1.17 |
| Spike-and-Slab 1.02         | 0.91                 | 1.03 | 1.20 | 1.27 | 1.41    |      |
|                             |                      |      |      |      |         |      |
|                             |                      |      |      |      |         |      |
| Михаил Гареев (РАНХиГС) МСР | МСР в макроэкономике |      |      | 2019 | 23 / 28 |      |

Модель

| LASSO                      | 0.90 | 0.99 | 1.13 | 1.43 | 1.53 | 1.88 |
|----------------------------|------|------|------|------|------|------|
| LASSO with lag             | 1.12 | 1.15 | 1.20 | 1.40 | 1.54 | 1.88 |
| LASSO with PC              | 1.05 | 1.10 | 1.12 | 1.32 | 1.33 | 1.45 |
| LASSO with PC and lag      | 1.50 | 1.58 | 1.55 | 1.78 | 1.85 | 2.04 |
| Post-LASSO                 | 1.47 | 1.54 | 1.56 | 1.70 | 1.82 | 2.11 |
| Post-LASSO with lag        | 1.61 | 1.69 | 1.84 | 2.06 | 2.32 | 3.16 |
| Post-LASSO with PC         | 1.61 | 1.53 | 1.52 | 1.82 | 1.85 | 2.05 |
| Post-LASSO with PC and lag | 1.94 | 1.94 | 1.91 | 2.15 | 2.07 | 2.45 |
| Random Forest              | 1.06 | 1.05 | 1.02 | 1.16 | 1.34 | 1.26 |
| ridge                      | 1.44 | 1.48 | 1.74 | 2.22 | 2.56 | 3.04 |
| ridge_pc                   | 1.33 | 1.24 | 1.36 | 1.64 | 1.97 | 2.30 |
| Spike-and-Slab 1.24        | 1.32 | 1.78 | 2.20 | 2.62 | 3.18 |      |
|                            |      |      |      |      |      |      |
|                            |      |      |      |      |      |      |
|                            |      |      |      |      |      |      |

МСР в макроэкономике

7

8

9

10

11

2019

24 / 28

12

1.88

Модель

**Elastic Net** 

Михаил Гареев (РАНХиГС)

| LASSO with lag             | 1.94 | 2.15 | 2.02 | 1.84 | 1.56 | 1.45 |
|----------------------------|------|------|------|------|------|------|
| LASSO with PC              | 1.53 | 1.59 | 1.50 | 1.44 | 1.47 | 1.61 |
| LASSO with PC and lag      | 2.02 | 2.12 | 1.95 | 1.75 | 1.58 | 1.62 |
| Post-LASSO                 | 2.34 | 2.48 | 2.70 | 2.47 | 2.60 | 2.79 |
| Post-LASSO with lag        | 3.54 | 3.60 | 3.32 | 3.21 | 2.88 | 2.85 |
| Post-LASSO with PC         | 2.41 | 2.48 | 2.32 | 2.22 | 2.09 | 2.25 |
| Post-LASSO with PC and lag | 2.08 | 2.51 | 2.29 | 1.87 | 1.66 | 1.91 |
| Random Forest              | 1.22 | 1.18 | 1.04 | 0.91 | 0.81 | 0.82 |
| ridge                      | 3.27 | 3.50 | 3.37 | 3.10 | 3.00 | 2.94 |
| ridge_pc                   | 2.58 | 2.70 | 2.64 | 2.36 | 2.28 | 2.25 |
| Spike-and-Slab 3.47        | 3.51 | 3.49 | 3.16 | 3.18 | 3.07 |      |
|                            |      |      |      |      |      |      |
|                            |      |      |      |      |      |      |
|                            |      |      |      |      |      |      |

МСР в макроэкономике

13

1.88

14

1.83

15

1.65

16

1.41

17

1.47

2019

25 / 28

18

1.59

Модель

Elastic Net LASSO

Михаил Гареев (РАНХиГС)

## Краткий вывод и планы

- ▶ Методы снижения размерности (LASSO, Post-LASSO, Ridge, Elastic Net, Random Forest) потенциально представляют собой мощный инструмент для нахождения и проверки макроэкономических зависимостей.
- ▶ Из использованных методов лучшие результаты при прогнозировании инфляции в России показывают модели LASSO и Random Forest. На разных горизонтах планирования (кроме диапазона с 9 до 15 месяцев) хотя бы одна из них показывала лучшие результаты, чем модель-бенчмарк (ARMA).

## Спасибо за внимание

# Методы снижения размерности в данных в макроэкономике

Михаил Гареев 90-15-01

mkhlgrv@gmail.com

#### Источники



Belloni, Alexandre, Victor Chernozhukov, and Christian Hansen. Lasso methods for gaussian instrumental variables Модельs 2011

Barro, Robert J. and Lee, Jong-Wha Data Set for a Panel of 138 Countries 1994

Candes, Emmanuel, and Terence Tao.
The Dantzig selector: Statistical estimation when p is much larger than n.
The Annals of Statistics 35.6 (2007): 2313-2351.

Akaike, Hirotugu.
A new look at the statistical Модель identification.
IEEE transactions on automatic control 19.6 (1974): 716-723.

Единый архив экономических и социологических данных, статистические ряды http://sophist.hse.ru/hse/nindex.shtml