Machine Learning

Neural Networks, part 2; and the beginning

Jeff Abrahamson

Cours sur l'année, 2017-2018

Assign small random weights while not converged do

Feed forward to find values at each node

Backpropagate to correct weights:

Algorithm algo()

Compute partial derivatives

Use partial derivatives to compute gradient

Use gradient to update weights (classic gradient descent)

end

Newton's Method

Newton's Method

$$X_{n+1} = X_n - \frac{f(X_n)}{f'(X_n)} = X_n - \frac{f(X_n)}{\frac{df}{dx}(X_n)}$$

Newton's Method

$$X_{n+1} = X_n - \frac{f(X_n)}{f'(X_n)} = X_n - \frac{f(X_n)}{\frac{\mathrm{d}f}{\mathrm{d}x}(X_n)}$$

or

$$y = \frac{\mathrm{d}f}{\mathrm{d}x} \Big(x_n \Big) (x - x_n) + f(x_n)$$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y} \frac{\partial y}{\partial x}$$

Perceptron

Activation function

How the neuron decides when to fire.

Sigmoid

By Qef (talk) - Created from scratch with gnuplot, Public Domain, https://commons.wikimedia.org/w/index.php?curid=4310325

ReLU and Softmax

Rectified Linear Unit

Wikimedia Commons

max pool with 2x2 filters and stride 2

Pooling

max pooling downsampling

Dropout

Multilayer Perceptron (MLP)

- Multiple layers
- 2 First layer is linear
- 3 Later layers use non-linear activation functions (typically sigmoid)
- 4 Feedforward
- **6** Can find non-linear separators

Copyright 2017–2018 Jeff Abrahamson, for private use by course students only

Copyright 2017–2018 Jeff Abrahamson, for private use by course students only

Example: MNIST

Example: simple classification tasks

Example: time series

Recurrent Neural Networks

loops

loops

so also memory

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Tensors

$$\left(\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)$$

Tensors

$$\begin{pmatrix}
\begin{pmatrix} 1 \\ 2 \end{pmatrix} & \begin{pmatrix} 3 \\ 4 \end{pmatrix} & \begin{pmatrix} 5 \\ 6 \end{pmatrix} \\
\begin{pmatrix} 7 \\ 8 \end{pmatrix} & \begin{pmatrix} 9 \\ 10 \end{pmatrix} & \begin{pmatrix} 11 \\ 12 \end{pmatrix}
\end{pmatrix}$$

Tensors

Copyright 2017–2018 Jeff Abrahamson, for private use by course students only

Convolutional Neural Networks

The neurons are convolutions

ML Week

Convolutional Layers

Example: images

Transfer Learning

- Pre-trained models
- · Only retrain the classifier at the end

Example: PlacesVGG (2015)

PlacesVGG (Places2 2015)

https://static.turi.com/models/.../places_vgg_16-1.0.tar.gz

This model is trained with VGG-16 architechture, on the Places2 dataset. The Places2 dataset contains 8 million images of 400 different scene categories. More details about the dataset can be found at http://places2.csail.mit.edu/

https://turi.com/products/create/docs/graphlab.mxnet.pretrained image model.html

The Beginning

Perspectives

- Data science is iterative
- Start simple, get better

Perspectives

- Data science is iterative
- Start simple, get better

Sometimes no business case to do more.

Risks

- Nothing is guaranteed, but competitors are innovating and experimenting
- Examples from past projects can help, but often leads to "this is different"

Success

Think early about how to measure success.

Success

Think early about how to measure success.

The definition of success will evolve.

