REPORT 11

潘硕 PB24020526

2025 年 10 月 23 日

1 Question

模拟 2 维 DLA 以及介电击穿图案并讨论:

- 1. 对 DLA 生长, $\phi(\infty) = \phi_0, \phi(0) = 0, v \propto |\nabla \phi|$
- 2. 对介电击穿, $\phi(\infty) = 0$, $\phi(0) = \phi_0$, 假设 $v \propto |\nabla \phi|^{\eta}$

2 Method

2.1 2 维 DLA 模型

- 1. **初始化**: 取 2 维的方形点阵,网格边长 L = 300,在点阵中央放置一个粒子作为生长的种子
- 2. **生长**: 集团粒子到原点最大距离 r_{max} , 在距离原点 $R = max\{r_{max} + 5, 20\}$ 的圆周上随机选取起始点释放一个粒子, 使其做 Brown 运动. 若粒子粘结到种子上, 停止运动, 生成新的集团; 若粒子走到 $3r_{max}$ 的更远处, 取消该粒子.
- 3. **结束**: 重复步骤 2 直至当集团粒子数目达到预设值 N 时, 结束生长.

2.2 介电击穿模型

与 DLA 生长类似, 击穿图形的生长速率 $v = f(\nabla_n \phi)$, 且电势满足 Laplace 方程, 但 边界条件变为 $\phi(\infty) = 0$, $\phi(0) = \phi_0$, 并假设 $v \propto |\nabla \phi|^{\eta}$. 当 $\eta = 1$ 时, 该模型退化为 DLA 生长模型.

- 1. 初始化: 网格边长取为 200, 同 DLA 模型构建网格并放置初始种子;
- 2. **生长**: 求解平面上的 Laplace 方程 $\phi_{i,j} = (\phi_{i-1,j} + \phi_{i+1,j} + \phi_{i,j-1} + \phi_{i,j+1})/4$ 生长速率及概率为 $v_{i,j} = n|\phi_0 \phi_{i,j}|^{\eta}, p_{i,j} = v_{i,j}/\sum v_{i,j}$. 根据该几率随机选择一个格子进行占据, 更新集团粒子.

3. **结束**: 重复该过程直至集团粒子数目达到预设值 N 时, 结束生长.

迭代法求解 Laplace 方程时, 需要计算全网格的电势分布, 为提高计算效率, 采用超松弛法加速迭代:

$$\phi_{i,j}^{new} = (1 - \omega)\phi_{i,j}^{old} + \omega \frac{\phi_{i-1,j} + \phi_{i+1,j} + \phi_{i,j-1} + \phi_{i,j+1}}{4}$$

其中 $\phi_{i,j}^{old}$, $\phi_{i,j}^{new}$ 分别为迭代前后电势值, $1 < \omega < 2$ 为松弛因子, 本文取 $\omega = 1.9$.

3 Experiment

3.1 2 维 DLA 模拟结果

使用上述方法模拟 2 维 DLA 生长过程, 设置集团粒子数目 N=1000,3000, 结果如下图所示:

图 1: 2 维 DLA 模拟结果 (N = 1000)

由图可见,2 维 DLA 生长呈现枝蔓形状,具有向四周伸展的大小分枝.对此的定型解释是,粒子在随机行走过程中,更容易粘结在突出的分枝上,难以进入沟槽内,从而导致分枝的进一步生长.

3.2 介电击穿模型模拟结果

选取集团粒子数目 N=1000, 分别模拟 $\eta=1,2,3$ 下的介电击穿图案, 结果如下图 所示:

图 2: 介电击穿模型 $(N = 1000, \eta = 1)$

图 3: 介电击穿模型 $(N = 1000, \eta = 2)$

由图可见, 随着 η 的增大, 介电击穿图案分枝减少, 尖端伸长长度增加, 呈现出闪电的形态结构. 这是因为较大的 η 值使得生长速率对电势梯度的依赖更强, 从而促使粒子更倾向于在高电势梯度区域生长, 降低在分枝上生长的速率.

4 Summary

本文介绍了 2 维 DLA 模型及介电击穿模型及其模拟方法, 并通过数值模拟展示了不同参数下的生长图案.

图 4: 介电击穿模型 $(N=1000,\eta=3)$

结果表明,2 维 DLA 生长呈现典型的枝蔓形态, 而介电击穿图案则随着参数 η 的变化表现出不同的分枝特征. 较大的 η (例如 3) 使图案趋向于少分枝且尖端更长的形态.