Ronish Shrestha(19707) Assignment 3

- 1. If a rock is thrown upward on the planet Mars with a velocity of 10 m/s, its height in meters t seconds later is given by y = 10t 1.86t2
- (a) Find the average velocity over the given time intervals:

```
(i) [1, 2]
```

ANSWER:

When t=1, then y1 =
$$10t - 1.86(t)^2$$

= $10(1) - 1.86(1) = 10 - 1.86 = 8.14m$

When t=2, then y2 =
$$10t - 1.86(t)^2$$

= $10 \times 2 - 1.86 \times 4 = 20 - 7.2 = 12.56m$

Average velocity, $\Delta v = \Delta y - \Delta t = (12.56 - 8.14) / (2 - 1) = 4.42 \text{ m/s}$

(ii) [1, 1.5]

ANSWER:

When t=1, then y1 =
$$10t - 1.86(t)^2$$

= $10 \times 1 - 1.86 \times 1 = 10 - 1.86 = 8.14m$

When t=1.5, then y2 =
$$10t - 1.86 \times (t)^2$$

= $10 \times 1.5 - 1.86 \times 2.25 = 10.815$ m

Average velocity, $\Delta v = \Delta y - \Delta t = (10.815 - 8.14) / (1.5-1) = 5.35 \text{ m/s}$

(iii) [1, 1.1]

ANSWER:

When t=1, then y1 =
$$10t - 1.86(t)^2$$

= $10 \times 1 - 1.86 \times 1 = 10 - 1.86 = 8.14m$

When t=1.1, then y2 =
$$10t - 1.86 \times (t)^2$$

= $10 \times 1.1 - 1.86 \times 1.21 = 8.7494$ m

Average velocity, $\Delta v = \Delta y - \Delta t = (8.7494 - 8.14) / (1.1-1) = 6.094$ m/s

(iv) [1, 1.01]

ANSWER:

When t=1, then y1 =
$$10t - 1.86(t)^2$$

= $10 \times 1 - 1.86 \times 1 = 10 - 1.86 = 8.14m$

When t=1.01, then
$$y2 = 10t - 1.86 x (t)^2$$

= 10 x 1.01 - 1.86 x 1.0201 = 8.2026m

Average velocity, $\Delta v = \Delta y - \Delta t = (8.2026 - 8.14) / (1.01-1) = 6.2614$ m/s

(v) [1, 1.001]

ANSWER:

When t=1, then y1 =
$$10t - 1.86(t)^2$$

= $10 \times 1 - 1.86 \times 1 = 10 - 1.86 = 8.14m$

When t=1.001, then
$$y2 = 10t - 1.86 \times (t)^2$$

= 10 x 1.001 - 1.86 x 1.002001 = 8.1462m

Average velocity,
$$\Delta v = \Delta y - \Delta t = (8.1462 - 8.14) / (1.001-1) = 6.278$$
 m/s

(b) Estimate the instantaneous velocity in Excel when t = 1

Γ		Y= 10t - 1.8t^2		Δt	Δν	
	0.9	7.542	0.13448	0.02	6.724	
	0.92	7.67648	0.0667	0.01	6.67	
	0.93	7.74318	-7.34606	-0.89	8.254	
	0.04	0.39712	-0.09874	-0.01	9.874	
	0.03	0.29838	-0.0991	-0.01	9.91	
	0.02	0.19928	-0.19828002	-0.0199	9.96382	
	001	0.000999982	0.008998218	0.0009	9.99802	
	001	0.0099982	0.0898218	0.009	9.9802	
0.01		0.09982	-0.09982	-0.01	9.982	
1	2					
1	0					
	8					
	_	•				
	6					
	4					
;	2					
	o L					
	0	2	4	6	8	10

- 2. The displacement (in centimeters) of a particle moving back and forth along a straight line is given by the equation of motion $s = 2\sin(\pi t) + 3\cos(\pi t)$, where t is measured in seconds. (a) Find the average velocity during each time period:
- (i) [1, 2]

ANSWER:

When t=1, then s1 = $2\sin(\pi t) + 3\cos(\pi t)$

=
$$2\sin (\pi \times 1) + 3\cos (\pi \times 1)$$

=
$$2\sin(\pi) + 3\cos(\pi) = 2 \times 0 + 3 \times (-1) = -3 \text{ cm}$$

When t=2, then s2 = $2\sin(\pi t) + 3\cos(\pi t)$

= $2\sin (\pi \times 2) + 3\cos (\pi \times 2)$

```
= 2\sin(2\pi) + 3\cos(2\pi) = 3 \text{ cm}
Average velocity, \Delta v = \Delta s - \Delta t = (3 - (-3)) / (2-1) = 6 cm/s
(ii) [1, 1.1]
ANSWER:
When t=1, then s1 = 2\sin(\pi t) + 3\cos(\pi t)
= 2\sin (\pi \times 1) + 3\cos (\pi \times 1)
= 2\sin(\pi) + 3\cos(\pi) = 2 \times 0 + 3 \times (-1) = -3 \text{ cm}
When t=1.1, then s2 = 2\sin (\pi t) + 3\cos (\pi t)
= 2\sin (\pi \times 1.1) + 3\cos (\pi \times 1.1)
= 2\sin(1.1\pi) + 3\cos(1.1\pi) = -3.47 cm
Average velocity, \Delta v = \Delta s - \Delta t = (-3.47 - (-3)) / (1.1-1) = -4.7 cm/s
(iii) [1, 1.01]
ANSWER:
When t=1, then s1 = 2\sin(\pi t) + 3\cos(\pi t)
= 2\sin (\pi \times 1) + 3\cos (\pi \times 1)
= 2\sin(\pi) + 3\cos(\pi) = 2 \times 0 + 3 \times (-1) = -3 \text{ cm}
When t=1.01, then s2 = 2\sin (\pi t) + 3\cos (\pi t)
= 2\sin (\pi \times 1.01) + 3\cos (\pi \times 1.01)
= 2\sin(1.01\pi) + 3\cos(1.01\pi) = -3.061 cm
Average velocity, \Delta v = \Delta s - \Delta t = (-3.061 - (-3)) / (1.01-1) = -6.1 \text{cm/s}
(iv) [1, 1.001]
ANSWER:
When t=1, then s1 = 2\sin(\pi t) + 3\cos(\pi t)
= 2\sin (\pi \times 1) + 3\cos (\pi \times 1)
= 2\sin(\pi) + 3\cos(\pi) = 2 \times 0 + 3 \times (-1) = -3 \text{ cm}
When t=1.001, then s2 = 2\sin(\pi t) + 3\cos(\pi t)
= 2\sin (\pi \times 1.001) + 3\cos (\pi \times 1.001)
= 2\sin(1.001\pi) + 3\cos(1.001\pi) = -3.006 cm
Average velocity, \Delta v = \Delta s - \Delta t = (-3.006 - (-3)) / (1.001-1) = -6 \text{ cm/s}
```

(b) Estimate the instantaneous velocity of the particle in Excel when t = 1

t s										
	$s=2\sin(\pi t) +3\cos(\pi t)$	$s=2sin(\pi t)+3cos(\pi t)$								
0.1	3.471203538	4		_						
0.3	3.381389746	3		-						
0.34	3.197874382	2								
0.5	2	1								
0.64	0.53231623	1				A				
0.72	-0.371245484	0	0.3	,		05	0.0			
0.83	-1.56414325	-1	0.2		0.4	0.6	0.8			
0.86	-1.862922574	-2					N. N.			
0.9	-2.23513556	-3					•			

3. (a) Estimate the value of

lim

$$\lim_{x \to 0} \frac{\sin(x)}{\sin(\pi x)}$$

by graphing the function $f(x) = (\sin x) / (\sin \pi x)$ in Excel. State your answer correct to two decimal places.

ANSWER:

$$\lim_{x \to 0} \frac{\sin(x)}{\sin(\pi x)}$$

$$\Rightarrow \lim_{x \to 0} \frac{\sin(x) \cdot \pi x \cdot x}{\sin(\pi x) \cdot \pi x \cdot x}$$

$$\Rightarrow \lim_{x \to 0} \frac{\sin(x)}{x} \cdot \lim_{x \to 0} \frac{\pi x}{\sin(\pi x)} \cdot \lim_{x \to 0} \frac{x}{\pi x}$$

$$\Rightarrow$$
1.1. $\frac{1}{\pi}$

b) Check your answer in part (a) by evaluating f(x) for values of x that approaches 0 in Excel.

4.(a) Estimate the value of the limit

 $\lim_{x\to 0} (1+x)^{\frac{1}{x}}$ to five decimal places. Does this number look

familiar?

Solution:

$$L = \lim_{x \to 0} (1 + x)^{\frac{1}{x}}$$

Taking natural logarithm on both sides,

$$ln(1) = \lim_{x \to 0} ln ((1 + x)^{\frac{1}{x}})$$

$$= \lim_{x \to 0} \frac{1}{x} . ln(1 + x) \quad [; ln(a^{b}) = b.ln(a)]$$

$$= \lim_{x \to 0} \frac{\ln(1+x)}{x}$$

Now, applying L-Hospital's rule, we get,

$$\lim_{x \to 0} \frac{\frac{\frac{d}{dx}ln(1+x)}{\frac{d}{dx}[x]}$$

$$\Rightarrow \lim_{x \to 0} \frac{1}{1+x} = 1$$

We found that ln(L) = 1, therefore, $L = e^1 = e$

$$\lim_{x \to 0} (1 + x)^{\frac{1}{x}} = e \sim 2.71828$$

b)

- 5.
- a)

No, I don't think the graph is an accurate representation of f because from Excel, we can easily observe

that if x =4 then f(x) is undefined number. However, if x is in a domain of $0 \le x \le 5$ means the value so f x

are these 0,1,2,3,4,5 then the range of f(x) = y values should be $0 \le y \le 150$

5b)

This graph represents better than the previous one and here, the domain of x is $3.8 \le x \ge 4.9$ and

suppose, y = f(x) and the domain of y is $43 \le y \ge 135$.

6. Use numerical to find the value of the limit and verify it in Excel

$$\lim_{x \to 1} \frac{x^3 - 1}{\sqrt{x} - 1}$$

Solution:

Let
$$y = f(x) = \lim_{x \to 1} \frac{x^3 - 1}{\sqrt{x} - 1}$$

$$\Rightarrow \lim_{x \to 1} \frac{(x - 1)(x^2 + x + 1)}{\sqrt{x} - 1}$$

$$\Rightarrow \lim_{x \to 1} \frac{((\sqrt{x})^2 - 1)(x^2 + x + 1)}{\sqrt{x} - 1}$$

$$\Rightarrow \lim_{x \to 1} \frac{(\sqrt{x} + 1)(\sqrt{x} - 1)(x^2 + x + 1)}{\sqrt{x} - 1}$$

$$\Rightarrow \lim_{x \to 1} (\sqrt{x} + 1)(x^2 + x + 1)$$

$$x \rightarrow 1$$

$$\Rightarrow$$
 (1+1) (1+1+1) = 2(3) = 6

Therefore, y = f(x) = 6

(b) How close to 1 does x have to be to ensure that the function in part (a) is within a distance 0.5 of its limit?

$$y = f(x) = \lim_{x \to 1} \frac{x^3 - 1}{\sqrt{x} - 1}$$

$$| f(x) - 6 | < 0.5$$
= -0.5 < f(x) - 6 < 0.5
=6 - 0.5 < f(x) - 6 +6 < 0.5 + 6
= 5.5 < f(x) < 6.5
= 5.5 < \lim_{x \to 1} \frac{x^3 - 1}{\sqrt{x} - 1} < 6.5

So, using the calculator, the function of f(x) within 0.5 of its limit when 0.93 < x < 1.06.