总复习

2017年6月25日 10:58

- ◇ 量子力学的研究对象
 - ◇ 量子态&波函数
 - ◇ 力学量&算符
- ◆ 量子力学的基本方程
 - ◇ 一维定态问题
 - ◇ 中心力场
 - ◇ 矩阵形式下的(能量)本征方程求解
 - ◇ 非简并态微扰论
- ◇ 量子力学的矩阵形式和表象变换

量子力学五大基本假设

- ✓ 物理系统中某一时刻的状态可由Hilbert空间中的一个归一化矢量来描述,并且量子态之间满足态量加原理。
- ▼ 每个可观测量都可以通过Hilbert空间中的一个Hermite 算符来表示。位置算符和动量算符之间满满足正则对易关系: $[\hat{q},\hat{p}]=i\hbar$,由算符的对易式可导出<mark>不确定性原理</mark>:两个可观测量 \hat{A} 和 \hat{B} 之间的不确定性为 $\Delta A \Delta B \geq \frac{1}{2} |\langle [\hat{A},\hat{B}] \rangle|$ 。
- ✓ 量子态的动力学演化满足Schrödinger方程。
- ✓ 可观测量的观测值为其本征值,概率由其本征函数确定。
- □ 对一个全同粒子体系,在Hilbert 空间中的态矢量对于任何一对粒子的交换是对称的 (交换前后完全不变)或反对称(交换前后相差一个负号)。服从前者的粒子称为玻色子(boson),服从后者的粒子称为费米子(fermion)。

一、量子力学的研究对象

■量子态&波函数

波函数 $\psi(\mathbf{r},t)$ 是概率波, $|\psi(\mathbf{r},t)|^2$ 对应该时刻电子处于 r 附近的概率。 (波动力学概念)

- 归一化 Normalization $\int |\psi(r)|^2 d^3x = 1 \quad (d^3x = dxdydz)$
- 常数 (相)因子不定性 $C\psi(r)$ 和 $\psi(r)$ 描述的概率波是完全一样的,
- 单值性,连续性,有限性
- 波函数的标积 (scalar product)

$$(\psi,\varphi)\equiv \int\!\mathrm{d} au\psi^*\,\varphi$$

$$(\psi, \psi) \geqslant 0$$

$$(\psi, \varphi)^* = (\varphi, \psi)$$

$$(\psi, c_1 \varphi_1 + c_2 \varphi_2) = c_1(\psi, \varphi_1) + c_2(\psi, \varphi_2)$$

$$(c_1 \psi_1 + c_2 \psi_2, \varphi) = c_1^* (\psi_1, \varphi) + c_2^* (\psi_2, \varphi)$$

量子态: $|\psi\rangle$ 不依赖于具体表象, $\psi(r)=\langle r|\psi\rangle$ 波函数是量子态在坐标表象(或者动量表象)中的投影.

● 不含时 (time-independent) Schrödinger 方程的定态解

$$i\hbar\frac{\partial}{\partial t}\psi(\boldsymbol{r},t) = \left[-\frac{\hbar^2}{2m}\nabla^2 + V(\boldsymbol{r})\right]\psi(\boldsymbol{r},t)$$

求解:分离变量 $\psi(\mathbf{r},t) = \psi(\mathbf{r})f(t)$

$$\Rightarrow \begin{cases} \frac{i\hbar}{f(t)} \frac{df(t)}{dt} & \Rightarrow f(t) \sim e^{-iEt/\hbar} \\ \left[-\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{r}) \right] \psi(\mathbf{r}) = E\psi(r) \end{cases}$$

 $\psi(\mathbf{r},t) = \psi(\mathbf{r})e^{-iEt/\hbar}$ —— 定态波函数

定态 (stationary state) —— 能量本征态 (或者叫<mark>束缚定态</mark>)

初态处于定态 $\psi(\mathbf{r},0) = \psi_E(\mathbf{r})$, t时刻 $\psi(\mathbf{r},t) = \psi_E(\mathbf{r})e^{-iEt/\hbar}$

- □ 概率密度, 概率流密度不随时间变化(要会证明)
- □ 力学量的平均值不随时间变化 (要会证明)
- □ 取可能测得值的概率也不随时间改变(要会证明) 定态Schrödinger方程

态叠加原理

在 A 表象中,任何量子态总可以表示成 \hat{A} 算符本征态构成的正交完备基矢 $\{|n\rangle\}$ 的线性叠加

$$|\psi
angle = \sum_n c_n |n
angle$$
 ,

其中几率幅 (或者叫概率幅) $c_n = \langle n | \psi \rangle$

假如Â的能量本征方程为

$$\hat{A}|n\rangle = A_n|n\rangle$$

则力学量A的可测值为 A_n ,相应几率为 $|c_n|^2$,在态 $|\psi\rangle$ 下的平均值为 $\sum_n |c_n|^2 A_n$.

能量表象

如果考虑是能量表象(算符是哈密顿量 \hat{H} ,相应本征值为 E_n)下的时间演化问题,在t时刻

$$|\psi\rangle = \sum_n c_n e^{-iE_n t/\hbar} |n\rangle$$

任一力学量F平均值 $\langle \psi | \hat{F} | \psi \rangle = \sum_m c_m^* e^{iE_m t/\hbar} \langle m | \hat{F} \sum_n c_n e^{-iE_n t/\hbar} | n \rangle = \sum_{mn} c_m^* c_n e^{i(E_m - E_n) t/\hbar} \langle m | \hat{F} | n \rangle$ 基矢的完备性: $\sum |n\rangle \langle n| = I$, $\int dp |p\rangle \langle p| = I$, $\int dx |x\rangle \langle x| = I$

	坐标表象	Dirac符号
算符作用	$\widehat{F}\psi(x,t) = \phi(x,t)$	$\hat{F} \psi\rangle = \phi\rangle$
薛定谔方程	$i\hbar \frac{\partial}{\partial t} \psi(x,t) = \widehat{H} \psi(x,t)$	$i\hbar \frac{\partial}{\partial t} \psi\rangle = \widehat{H} \psi\rangle$
能量本征方程	$\widehat{H}u_n(x,t)=E_nu_n(x,t)$	$\widehat{H} n\rangle = E_n n\rangle$

正交归一性	$\int u_m^*(x)u_n(x)=\delta_{mn}$	$\langle m n\rangle=\delta_{mn}$
态叠加原理	$\psi(x) = \sum_{n} c_n u_n(x)$	$ \psi\rangle = \sum_n c_n n\rangle$
几率幅	$c_n = \int u_n^*(x)\psi(x)dx$	$c_n = \langle n \psi \rangle$
平均值	$\bar{F} = \int \psi^*(x) \hat{F} \psi(x) dx$	$\bar{F} = \langle \psi \hat{F} \psi \rangle$
归一化	$\int \psi^*(x)\psi(x)dx = 1$	$\langle \psi \psi \rangle = 1$

■ 力学量&算符

力学量:在量子力学中,力学量没有确定值,但他们都有概率分布,因而有确定的平均值 (average value) 或者被称为期望值 (expectation value)

算符的引入:既然由于不确定性原理的存在,力学量在坐标空间内不一定有确定的观测值,但他们都有确定的平均值。然而平均值的计算只能在自身表象中(比如坐标,势能在坐标表象;动量动能在动量表象)。要想在坐标空间里求力学量平均值,只能把力学量转变成相应地对坐标的操作。同样要想在其他表象中求力学量平均值,也需要把力学量转变成相应地操作。这就是算符引入的目的。

□ 动量算符 $\hat{p} = -i\hbar \nabla$ □ 动能算符 $\hat{T} = \frac{\hat{p}^2}{2m} = -\frac{\hbar^2}{2m} \nabla^2$ □ 角动量算符 $\hat{l} = r \times \hat{p}$ \square Hamilton算符 $\widehat{H} = \widehat{T} + V(r) = -\frac{\hbar^2}{2m} \nabla^2 + V(r)$ 力学量的平均值在任一表象下都相等,即平均值及其演化不依赖具体表象 □ 算符乘积: $(\hat{A}\hat{B})\psi = \hat{A}(\hat{B}\psi)$ ✓ 对易式 (commutator, 对易关系) $[\hat{A}, \hat{B}] = \hat{A}\hat{B} - \hat{B}\hat{A}$

常用算符和算符关系

$$\square (\widehat{\hat{A}}\widehat{\hat{B}}) = \widehat{\hat{B}}\widehat{\hat{A}}$$

	厄米算符: $\hat{O}^{\dagger} = \hat{O}$
	幺正算符: $\hat{A}^{-1} = \hat{A}^{\dagger} \Longrightarrow \hat{A}\hat{A}^{\dagger} = \hat{A}^{\dagger}\hat{A} = 1$
	幺正算符乘积还是幺正算符
	若 \hat{O} 为厄米算符,则 $\hat{A}=e^{i\hat{O}}$ 为幺正算符
	时间演化算符 $\hat{U}(t) = e^{-i\hat{H}t/\hbar}$ 是幺正算符
	在任何量子态下,厄米算符的平均值必为实数。
	在体系的任何量子态下平均值均为实数的算符,必为厄米算符。
	可观测量 (Observable) 平均值为实数。
	可观测量的算符必然为厄米算符
*	常用对易关系和算符公式
	$[x,\hat{p}] = i\hbar$
	$[x_{\alpha},\hat{p}_{\beta}] = i\hbar\delta_{\alpha\beta}$
	$[\hat{p}, f(x)] = -i\hbar \frac{\partial f}{\partial x}$
	$\left(\varepsilon_{123} = \varepsilon_{231} = \varepsilon_{312} = 1$ 正序 \righta
	$\begin{split} &[x_{\alpha},\hat{p}_{\beta}] = i\hbar \delta_{\alpha\beta} \\ &[\hat{p},f(x)] = -i\hbar \frac{\partial f}{\partial x} \\ &[\hat{l}_{\alpha},x_{\beta}] = \varepsilon_{\alpha\beta\gamma}i\hbar x_{\gamma} \left(\text{Levi - Civita 符号 } \varepsilon_{\alpha\beta\gamma} : \begin{cases} \varepsilon_{123} = \varepsilon_{231} = \varepsilon_{312} = 1 \text{ 正序} \\ \varepsilon_{132} = \varepsilon_{321} = \varepsilon_{213} = -1 \text{ 逆序} \\ \text{other cases} = 0 \end{cases} \right) \end{split}$
	$[\alpha, \beta] = \alpha \beta \gamma m \beta \gamma$
	$\left[\hat{l}_{lpha},\hat{l}_{eta} ight]=arepsilon_{lphaeta\gamma}i\hbar\hat{l}_{\gamma}$
	$\hat{\boldsymbol{l}} \times \hat{\boldsymbol{l}} = \boldsymbol{i}\hbar\hat{\boldsymbol{l}}$ $[\hat{l}_{+}, \hat{l}_{-}] = 2\hbar\hat{l}_{z} (\hat{l}_{+} = \hat{l}_{x} \pm i\hat{l}_{y})$
	$\begin{bmatrix} \hat{l}_z, \hat{l}_{\pm} \end{bmatrix} = \pm \hbar \hat{l}_{\pm}$
	$\left[\hat{\boldsymbol{l}},V(\boldsymbol{r})\right]=0$
	在 \hat{L}_z 表象下, $\hat{l}_{\pm} lm \rangle = \sqrt{(l \pm m + 1)(l \mp m)} lm \pm 1 \rangle$
	特殊角动量——自旋
	$\hat{\mathbf{s}} = \frac{\hbar}{2} \hat{\boldsymbol{\sigma}}$
	$\hat{\boldsymbol{\sigma}} \times \hat{\boldsymbol{\sigma}} = 2i\hat{\boldsymbol{\sigma}}$ $\sigma_x^2 = \sigma_y^2 = \sigma_z^2 = 1$
	$\sigma_x = \sigma_y = \sigma_z = 1$ 对易关系 $\left[\sigma_i, \sigma_i\right] = 2i\varepsilon_{ijk}\sigma_k$
	反对易 $\{\sigma_i, \sigma_j\} = 0$
	$\sigma_i \sigma_j = i \varepsilon_{ijk} \sigma_k$
	$\sigma_x = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \sigma_y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \sigma_z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
	以上是Pauli矩阵在σ _z 表象下的矩阵形式
	$\hat{\sigma}_x \uparrow\rangle = \downarrow\rangle, \qquad \hat{\sigma}_x \downarrow\rangle = \uparrow\rangle, \qquad \hat{\sigma}_y \uparrow\rangle = i \downarrow\rangle, \qquad \hat{\sigma}_y \downarrow\rangle = -i \uparrow\rangle$
	二电子体系的自旋态
	自由度 $2:$ 可以有两种守恒量完全集取法,第一种 $(\hat{S}_{1z},\hat{S}_{2z})$,第二种 (\hat{S}^2,\hat{S}_z)
	第一种(又称作非耦合表象):四个正交完备基矢可以表示为
	$\{ \uparrow\uparrow\rangle, \downarrow\uparrow\rangle, \uparrow\downarrow\rangle, \downarrow\downarrow\rangle\}$
	第二种(又称作耦合表象):四个正交完备基矢可以表示为 { 11}, 10}, 1 - 1), 00}}
	$\{ 11\rangle, 10\rangle, 1-1\rangle, 00\rangle\}$ $\hat{S} = \hat{s}_1 + \hat{s}_2$

$$\hat{S}^2 = (\hat{s}_1 + \hat{s}_2)^2 = \hat{s}_1^2 + \hat{s}_2^2 + 2\hat{s}_1 \cdot \hat{s}_2 = \frac{3}{2}\hbar^2 + \frac{\hbar^2}{2}\hat{\sigma}_1 \cdot \hat{\sigma}_2$$
于是有

$$\begin{aligned} \widehat{\mathbf{S}}^{2}|11\rangle &= 2\hbar^{2}|11\rangle & \hat{S}_{z}|11\rangle &= \hbar^{2}|11\rangle \\ \widehat{\mathbf{S}}^{2}|1-1\rangle &= 2\hbar^{2}|1-1\rangle & \hat{S}_{z}|1-1\rangle &= -\hbar^{2}|1-1\rangle \\ \widehat{\mathbf{S}}^{2}|10\rangle &= 2\hbar^{2}|10\rangle & \hat{S}_{z}|10\rangle &= 0 \\ \widehat{\mathbf{S}}^{2}|00\rangle &= 0 & \hat{S}_{z}|00\rangle &= 0 \end{aligned}$$

$$\begin{cases} |11\rangle = |\uparrow\uparrow\rangle \\ \equiv \equiv \Delta \rightarrow \text{对称态} \begin{cases} |11\rangle = |\uparrow\uparrow\rangle \\ |10\rangle = \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle) \\ |1-1\rangle = |\downarrow\downarrow\rangle \end{cases}$$
 单态 \rightarrow 反对称态 $|00\rangle = \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$

力学量的不确定关系与力学量完全集

此即推广的 Heisenberg 不确定度关系。其中 $\Delta A = \sqrt{A^2 - A^2}$ 为标准差。

- ! 注意这一公式给出的是不确定关系的下限而不是不确定关系本身
- \square 如果两个力学量算符 \hat{A} 和 \hat{B} 对易 ,则它们有共同本征函数
- \square 反之,如果 \hat{A} 和 \hat{B} 具有完整的共同本征函数系,那么二者对易
- □ (对易)力学量完全集(求解几维问题一般就需要几个相互对易的力学量)
- □ 不随时间变化——对易守恒量完全集(力学量完全集中包含哈密顿量即可)
- 力学量平均值随时间的变化

$$\frac{d}{dt}\bar{A}(t) = \frac{\overline{\partial \hat{A}}}{\partial t} + \frac{1}{i\hbar} \overline{[\hat{A}, \hat{H}]}$$

★ 守恒量

$$\frac{d}{dt}\bar{A} = 0 \Rightarrow \left[\hat{A}, \hat{H}\right] = 0$$

如果A不显含t.

位力(virial)定理(不考察)

设粒子处于势场V(r)中, Hamilton量表为

$$\widehat{H} = \frac{\boldsymbol{p}^2}{2m} + V(\boldsymbol{r})$$

对于定态有

$$2\overline{T} = \overline{r \cdot \nabla V}$$

如果V是坐标的n次齐次函数,有

$$2\bar{T} = n\bar{V}$$

Ehrenfest定理(不考察)

$$H = \frac{p^2}{2m} + V(r),$$

按5.1节(3)式,粒子坐标和动量的平均值随时间变化如下:

$$\frac{\mathrm{d}}{\mathrm{d}t}\bar{r} = \frac{1}{\mathrm{i}\,\hbar}\,\overline{[r,H]} = \overline{p}/m\,,$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\bar{p} = \frac{1}{\mathrm{i}\,\hbar}\,\overline{[p,H]} = \overline{-\,\nabla V(r)} = \overline{F(r)}\,,$$

它们与经典粒子运动满足的正则方程

$$\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} = \frac{\mathbf{p}}{m}, \quad \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} = - \nabla V$$

Feynman-Hellmann 定理 (不考察)

若 λ 是 \hat{H} 中的一个参数,则对其束缚态 ψ_n , E_n 而言,必有

$$\frac{\overline{\partial \widehat{H}}}{\partial \lambda} = \frac{\partial E_n}{\partial \lambda}$$

二、量子力学的基本方程

Schrödinger 方程

$$i\hbar\frac{\partial}{\partial t}\psi(\boldsymbol{r},t) = \left[-\frac{\hbar^2}{2m}\nabla^2 + V(\boldsymbol{r})\right]\psi(\boldsymbol{r},t)$$

定态Schrödinger 方程:能量本征方程

$$\left[-\frac{\hbar^2}{2m} \nabla^2 + V(r) \right] \psi(r) = E \psi(r)$$

$$\hat{H} \psi(r) = E \psi(r)$$

- 一维定态问题
- \Box 设能级 E 不简并 (degenerate),则相应的能量本征函数总可以取为实函数.

简并 (degenerate): 同一能级对应多个能量本征态

□ 设 V(-x) = V(x), 而且对应于能量本征值 E, 定态Schrödinger方程的解不简并,则该能量本征态必 有确定的字称.

一维无限深方势阱

$$V(x) = \begin{cases} 0, & 0 < x < a \\ \infty, & x < 0, x > a \end{cases}$$

$$\psi_n(x) = \begin{cases} \sqrt{\frac{2}{a}} \sin \frac{n\pi x}{a} & 0 < x < a \\ 0 & x < 0, x > a \end{cases}$$

? 能量平移 $V(x) = V\left(-\frac{a}{2} < x < \frac{a}{2}\right)$ 本征值和本征函数?

/ 一维谐振子

$$V(x) = \frac{1}{2}m\omega^2 x^2$$
$$\frac{\partial^2}{\partial x}\psi(x) = \frac{2m}{\hbar^2} \left(\frac{1}{2}m\omega^2 x^2 - E\right)\psi(x)$$

V(-x) = V(x), 确定宇称

束缚态:E < V(x)

连续性条件: ψ 连续. ψ '连续

边界条件 $\psi \xrightarrow{x \to \pm \infty} 0$

能量本征值

$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega, n = 0,1,2,...$$

能量本征函数

$$\psi_n(x) = N_n \exp\left(-\frac{1}{2}\alpha^2 x^2\right) H_n(ax)$$
 $N_n = \left[\alpha/\sqrt{\pi} 2^n n!\right]^{\frac{1}{2}}$ (归一化常数
$$\int_{-\infty}^{\infty} \psi_m(x) \psi_n(x) dx = \delta_{mn}$$
 $\alpha = \sqrt{\nu \omega_0/\hbar}$

★ 重要公式

$$\begin{aligned} x|n\rangle &= \sqrt{\frac{\hbar}{m\omega}} \left[\sqrt{\frac{n}{2}} |n-1\rangle + \sqrt{\frac{n+1}{2}} |n+1\rangle \right] \\ \hat{p}|n\rangle &= -i\sqrt{\hbar m\omega} \left[\sqrt{\frac{n}{2}} |n-1\rangle - \sqrt{\frac{n+1}{2}} |n+1\rangle \right] \\ \psi_n(-x) &= (-1)^n \psi_n(x) \end{aligned}$$

■ 中心力场

$$\begin{split} \widehat{H} &= \frac{\widehat{p}_r^2}{2m} + \frac{\widehat{\boldsymbol{L}}^2}{2mr^2} + V(r) = -\frac{\hbar^2}{2m} \frac{1}{r} \frac{\partial^2}{\partial r^2} r + \frac{\widehat{\boldsymbol{L}}^2}{2mr^2} + V(r) \\ \widehat{p}_r &= -i\hbar \left(\frac{1}{r} + \frac{\partial}{\partial r} \right) \end{split}$$

守恒量完全集 $\{\hat{H},\hat{l}^2,\hat{l}_z\}$. 所以 \hat{l}^2 和 \hat{l}_z 的共同本征态 $Y_l^m(\theta,\varphi)$

$$\hat{l}^2 Y_l^m = l(l+1) h^2 Y_l^m$$

$$\hat{l}_z Y_l^m = m h Y_l^m$$

$$l = 0, 1, 2, \cdots$$

 $\mid m \mid \leq l, \text{ if } m = -l, -l+1, \cdots, l-1, l$

关于球谐函数

在 \hat{L}_z 表象下,

$$\hat{l}_{+} |lm\rangle = \sqrt{(l \pm m + 1)(l \mp m)} |lm \pm 1\rangle$$

$$\begin{split} \widehat{H}\psi(r,\theta,\phi) &= E\psi(r,\theta,\phi) \\ \psi(r,\theta,\phi) &= R(r)Y_l^m(\theta,\phi) \\ \left[-\frac{\hbar^2}{2m} \frac{1}{r} \frac{\partial^2}{\partial r^2} r + \frac{\widehat{L}^2}{2mr^2} + V(r) \right] R(r)Y_l^m(\theta,\phi) = ER(r)Y_l^m(\theta,\phi) \\ \Rightarrow \left[-\frac{\hbar^2}{2m} \frac{1}{r} \frac{\partial^2}{\partial r^2} r + \frac{l(l+1)}{2mr^2} + V(r) \right] R(r)Y_l^m(\theta,\phi) = ER(r)Y_l^m(\theta,\phi) \end{split}$$

同除以 $Y_l^m(\theta,\phi)$,可得径向方程

$$\left[-\frac{\hbar^2}{2m}\frac{1}{r}\frac{\partial^2}{\partial r^2}r+\frac{l(l+1)}{2mr^2}+V(r)\right]R_l(r)=ER_l(r)$$

做变量代换 $R_l(r) = \chi(r)/r$, 则径向方程变为

$$\chi_l'' + \left[\frac{2m}{\hbar^2} (E - V) - \frac{l(l+1)}{r^2} \right] \chi_l = 0$$

- □ 对于束缚态能量量子化,将出现径向量子数 n_r , $n_r = 0,1,2,...$,
- □ 轨道角动量量子数 *l* = 0,1,2, ... s, p, d, f, ...
- \square E只依赖 n_r 和l,不依赖磁量子数 m_r 所以中心力场能级一般是2l+1重简并的

/ 无限深球方势阱

$$V(x) = \begin{cases} 0, & r < a \\ \infty, & r > a \end{cases}$$

s态 (l=0)

$$\chi_l'' + \left[\frac{2m}{\hbar^2}(E - V)\right]\chi_l = 0$$

$$\chi_l'' + k^2\chi_l = 0 \ (r \le a)$$

$$k = \frac{\sqrt{2mE}}{\hbar}(E > 0)$$

边界条件+连续性条件:
$$\begin{cases} \chi(0) = 0 \\ \chi(a) = 0 \end{cases}$$

于是有量子化条件

$$ka = (n_r + 1)\pi, n_r = 0,1,2,3,\cdots$$

能量本征值:
$$E_n = \frac{(n_r+1)^2 \pi^2 \hbar^2}{2\mu a^2}$$

本征波函数:
$$\psi_n(x) = \sqrt{\frac{2}{a}} \sin \frac{(n_r+1)\pi x}{a}$$

/ 三维各向同性谐振子

$$V(r) = \frac{1}{2}Kr^2 = \frac{1}{2}\mu\omega^2r^2, \qquad \omega = \sqrt{K/\mu}$$

能量本征值

$$E = 2n_r + l + 3/2$$

$$E = (2n_r + l + 3/2) \hbar \omega$$

$$N=2n_r+l$$

$$E = E_N = (N + 3/2)\hbar\omega$$

 $N = 0,1,2,\cdots$

★ 氡原子

$$V = -\frac{e^2}{4\pi\varepsilon_0 r}$$

径向:

$$\chi_l^{\prime\prime} + \left[\frac{2\mu}{\hbar^2} \left(E + \frac{e^2}{4\pi\varepsilon_0 r}\right) - \frac{l(l+1)}{r^2}\right]\chi_l = 0$$

能量本征值

$$E_n = -\frac{e^2\hbar^2}{2m\alpha^2} \cdot \frac{1}{n^2}$$

其中

$$\begin{split} n &= n_r + l + 1, n_r = 0,1,2, \dots \\ a &= \frac{4\pi\varepsilon_0\hbar^2}{me^2} \end{split}$$

为玻尔半径。如果定义 n = 1,2,3 ... 为主量子数,那么轨道角动量量子数 l = 0,1,...,n-1

能量本征函数

 $\psi_{nlm}(r,\theta,\phi) = R_{nl}(r)Y_l^m(\theta,\phi)$

在 $\{\hat{H}, \hat{l}^2, \hat{l}_z\}$ 表象下,能量本征态为 $|nlm\rangle$

 $n=1,2,3...,\ l=0,1,...,n-1,\ m=-l,-l+1,...l-1,l$

■ 矩阵形式下的(能量)本征方程求解

 $\hat{L}\psi = L'\psi$

已知 \hat{L} 在某一表象(比如A表象,正交完备基矢为 $\{|n\}$)下的矩阵形式 L_{ik} 求解其本征值和本征态

1. 利用久期方程(特征方程),写出行列式减本征值为零的表达式

$$\det \left| L_{jk} - L' \delta_{jk} \right| = 0$$

即

$$\begin{vmatrix} L_{11} - L' & L_{12} & L_{13} & \cdots \\ L_{21} & L_{22} - L' & L_{23} & \cdots \\ L_{31} & L_{32} & L_{33} - L' & \cdots \\ \cdots & \cdots & \cdots & \cdots \end{vmatrix} = 0$$

- 2. 将行列式展开,写成关于本征值L'的一元n次方程(n是矩阵维度)
- 3. 求解方程得到方程的n各根,即为 \hat{L} 的n个本征值 L_k' 如果 \hat{L} 是厄米算符,那么 (L_{ik}) 是厄米矩阵,可以得出N个实根,对应N个本征值
- 4. 将每个本征值分别代入矩阵形式的本征方程

$$\hat{L}_k|\psi_k\rangle = L'_k|\psi_k\rangle$$

即

$$\begin{pmatrix} L_{11} - L'_k & L_{12} & L_{13} & \dots \\ L_{21} & L_{22} - L'_k & L_{23} & \dots \\ L_{31} & L_{32} & L_{33} - L'_k & \dots \\ \dots & \dots & \dots & \dots \end{pmatrix} \begin{pmatrix} a_1^k \\ a_2^k \\ a_3^k \\ \vdots \end{pmatrix} = 0$$

- 5. 将矩阵乘以列矢量得到n个关于 $a_1^k, a_2^k, \dots a_n^k$ 的方程,按说n个未知数n个方程正好对应,但是由于这其中有一个方程不独立,无法完全求解。所以可以将其余所有 a_m^k 都表示为 a_1^k 的函数。
- 6. 由于量子态的相位不定性我们可以把 a_1^k 取为正实数,然后把所有 a_m^k 代入归一化条件可得 $\left|a_1^k\right|^2 + \left|a_2^k\right|^2 + \dots + \left|a_n^k\right|^2 = f(a_1^k) = 1$
- 7. 求解出 a_1^k , 以及其他几率幅
- 8. 对应于本征值 L'_{k} , 本征态矩阵形式为

$$\begin{pmatrix} a_1^k \\ a_2^k \\ a_3^k \\ \vdots \end{pmatrix}$$
即 $|\psi_k\rangle = \sum_m a_m^k |m\rangle$

■ 非简并态微扰论

如果体系 Hamiltonian为 \hat{H} , 其能量本征方程

$$\widehat{H}|\psi\rangle = E|\psi\rangle$$

很难求解。但是如果 Ĥ可以分为两部分

$$\widehat{H} = \widehat{H}_0 + \widehat{H}'$$

其中 \hat{H}_0 的本征方程

$$\widehat{H}_0 \left| \psi_n^{(0)} \right\rangle = E_n^{(0)} \left| \psi_n^{(0)} \right\rangle$$

已经解出,其本征值为 $E_n^{(0)}$,其本征态为 $|\psi_{nv}^{(0)}\rangle$,无简并, \hat{H}' 相对 \hat{H}_0 是个小量。

则波函数修正到一级为

$$\mid \psi_{k} \rangle = \mid \psi_{k}^{(0)} \rangle + \mid \psi_{k}^{(1)} \rangle = \mid \psi_{k}^{(0)} \rangle + \sum_{n} ' \frac{H'_{nk}}{E_{k}^{(0)} - E_{n}^{(0)}} \mid \psi_{n}^{(0)} \rangle$$

能量修正到二级为

$$E_k = E_k^{(0)} + H'_{kk} + \sum_n ' \frac{|H'_{nk}|^2}{E_k^{(0)} - E_n^{(0)}}$$

其中求和号上' 表示求和中 $n\neq k$, $H'_{nk}=\left\langle \psi_{n}^{(0)}|\widehat{H}'|\psi_{k}^{(0)}
ight
angle$

三、量子力学的矩阵形式和表象变换

在 A 表象中,任何量子态总可以表示成 \hat{A} 算符本征态构成的正交完备基矢 $\{|n\rangle\}$ 的线性叠加

$$|\psi\rangle = \sum_m C_m |\psi_m\rangle$$

则在 A 表象中,量子态表示为列矢量

由于量子态与表象无关。假设在B表象中, Iψ)表示为

$$|\psi\rangle = \sum_{n} C_n' \ |\varphi_n\rangle$$

$$\begin{pmatrix} C_1' \\ C_2' \\ \cdot \\ \cdot \\ \cdot \\ C_n' \end{pmatrix}$$

从A表象到B表象的表象变换矩阵为

S是幺正矩阵,矩阵元 $S_{mn} = \langle \varphi_m | \psi_n \rangle$

特别地,假如我们知道了B表象的基矢,也就是算符 \hat{B} 的本征态在A表象下的形式即

$$|\varphi_k\rangle = \sum a_n^k |\psi_n\rangle$$

或者是矩阵形式

$$|\varphi_k\rangle = \begin{pmatrix} a_1^k \\ a_2^k \\ a_3^k \\ \vdots \end{pmatrix}$$

那么可由

$$\langle \varphi_k | = \begin{pmatrix} a_1^{k^*} & a_2^{k*} & a_3^{k*} & \dots \end{pmatrix}$$

来构造矩阵S的第k行

算符的矩阵表示

投影算符

$$P_k = |k\rangle\langle k| = I$$

满足

$$\sum_{k} |k\rangle\langle k| = I$$
 (单位算符)

? 如何构造某一表象下算符的矩阵形式

$$\hat{L} = \sum_{j} |j\rangle\langle j| \hat{L} \sum_{k} |k\rangle\langle k| = \sum_{jk} \langle j \left| \hat{L} \left| k \right\rangle |j\rangle\langle k| \right|$$

矩阵元 $L_{jk} = \langle j | \hat{L} | k \rangle$,

$$|j\rangle\langle k| = \begin{pmatrix} \vdots \\ 1 \\ \text{row } j \end{pmatrix} \begin{pmatrix} \cdots & 1 \\ & \text{line } k \end{pmatrix} \cdots = \begin{pmatrix} \ddots & \vdots & \vdots & \vdots & \vdots \\ \cdots & 0 & 0 & 0 & \cdots \\ \cdots & 0 & 1 & 0 & \cdots \\ & & \text{row } j & & \\ & & & \text{line } k & \\ \cdots & 0 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

求和以后正好是算符 Î 的矩阵形式

- ★ 一维谐振子和一维无限深势阱能量表象中的某些力学量的矩阵形式需要掌握
- 矩阵力学中的Schrödinger 方程

ih
$$rac{\partial}{\partial t} | \phi
angle = \hat{H} | \phi
angle$$

if
$$rac{\partial}{\partial t}\langle k | \psi \rangle = \langle k | \hat{H} | \psi \rangle = \sum_{j} \langle k | \hat{H} | j \rangle \langle j | \psi \rangle$$

$$i\hbar\,\frac{\partial}{\partial t}a_k=\sum_i H_{kj}a_j$$

矩阵力学中的力学量平均值

$$\overline{L} = \langle \psi^{\dagger} \hat{L}^{\dagger} \psi \rangle = \sum_{kj} \langle \psi | k \rangle \langle k | \hat{L}^{\dagger} | j \rangle \langle j | \psi \rangle = \sum_{kj} a_k^* L_{kj} a_j$$

□ 利用投影算符来看表象变换 $c_{\alpha} = \langle \alpha | \psi \rangle$, 另一表象 $c_{k}' = \langle k | \psi \rangle$,

$$\langle \alpha | \psi \rangle = \sum_{k} \langle \alpha | k \rangle \langle k_{\parallel} \psi \rangle$$

$$a'_{a} = \sum_{k} S_{ak} a_{k}$$

$$S_{\alpha k} = \langle \alpha | k \rangle$$