

Mamba & Samba

Title: Comparison of Mamba and Samba in Transformer Models

Subtitle: "Efficient Sequence Processing with SSM and Hybrid Models"

By ChatGPT4.0o, 2025-02-13

Artificial Intelligence

Creating the Future

Dong-A University

Division of Computer Engineering & Artificial Intelligence

Introduction

- What are Mamba and Samba?
- Mamba: A State Space Model (SSM)-based architecture that removes self-attention for efficient sequence processing.
- Paper : Linear-Time Sequence Modeling with Selective State Spaces
- Samba: A hybrid model combining Mamba's efficiency with Transformer's self-attention for balanced performance.
- Paper : Simple Hybrid State Space Models for Efficient Unlimited Context Language Modeling

Mamba & Samba – Key Features

What is Mamba?

- A transformer alternative that removes self-attention
- Uses State Space Models (SSM) for efficient long-sequence processing

✓ Advantages:

- O(N) complexity (better than Transformer's O(N²))
- Lower memory usage & faster computation
- Excels in handling long sequences (text, audio, time-series)

X Disadvantages:

- May underperform in some NLP tasks compared to Transformers
- Lacks direct self-attention capabilities

What is Samba?

- A hybrid model that combines Mamba's SSM with Transformer's self-attention
- Uses self-attention for short sequences and SSM for long sequences

✓ Advantages:

- Maintains Transformer's expressive power
- Works well for both short & long sequences
- More balanced performance across tasks

X Disadvantages:

- More complex architecture than Mamba
- Higher computational cost than pure Mamba

Mamba & Samba – Key Features

> Mamba vs. Samba – Comparison Table

Feature	Mamba	Samba
Core Concept	State Space Model (SSM)	Mamba + Self-Attention
Self-Attention	× No	✓ Yes
Computational Complexity	O(N) (Highly Efficient)	$O(N)\sim O(N^2)$ (Hybrid)
Long Sequence Handling	Excellent	✓ Good
Short Sequence Handling	× Weaker	✓ Strong
Best Use Cases	Long text, audio, time-series	General NLP, variable-length sequences

Mamba & Samba – Key Features

✓ Choose Mamba if:

- You need to process very long sequences efficiently
- · Memory and computation efficiency are key concerns

Choose Samba if:

- You need both long and short sequence performance
- You require self-attention for specific NLP tasks

Future Outlook:

 Mamba and Samba continue to evolve, with potential applications in Al research, time-series analysis, and NLP advancements.