

AD-A080 076

HUGHES AIRCRAFT CO TORRANCE CA ELECTRON DYNAMICS DIV
3.2 MILLIMETER WAVE TRANSMITTER TUBE.(U)

F/G 9/1

JAN 80 K ARNOLD

DAAB07-78-C-3015

UNCLASSIFIED

DELET-TR-78-3015-1

NL

| OF |
ADA
080076

END
DATE
FILMED
2-80
DDC

(12)
SC

LEVEL

Research and Development Technical Report
DELET-TR-78-3015-1

3.2 MILLIMETER WAVE TRANSMITTER TUBE

ADA080076

Ken Arnold

HUGHES AIRCRAFT COMPANY
Electron Dynamics Division
3100 West Lomita Boulevard
Torrance, California 90509

JANUARY 1980

First Interim Report for Period 1 October 1978 – 30 January 1979

DISTRIBUTION STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

DDC FILE COPY

Prepared for:

ELECTRONICS TECHNOLOGY & DEVICES LABORATORY

ERADCOM

US ARMY ELECTRONICS RESEARCH AND DEVELOPMENT COMMAND
FORT MONMOUTH, NEW JERSEY 07703

880 1128583
43

NOTICES

Disclaimers

The citation of trade names and names of manufacturers in this report is not to be construed as official Government endorsement or approval of commercial products or services referenced herein.

Disposition

Destroy this report when it is no longer needed. Do not return it to the originator.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

19

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

RECIPIENT'S CATALOG NUMBER

1. REPORT NUMBER

18 DELET TR-78-3015-1

2. GOVT ACCESSION NO.

9

3. TITLE (and Subtitle)

3.2 Millimeter Wave Transmitter Tube

7. AUTHOR(s)

10 Ken Arnold

9. PERFORMING ORGANIZATION NAME AND ADDRESS

HUGHES AIRCRAFT COMPANY
Electron Dynamics Division
3100 West Lomita Blvd., Torrance, CA 90509

11. CONTROLLING OFFICE NAME AND ADDRESS

ET&D Laboratory (ERADCOM)
ATTN: DELET-BM
Fort Monmouth, NJ 07703

14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)

12 30

8. CONTRACT OR GRANT NUMBER(S)

15 DAAB07-78-C-3015

10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS

62705A
1L1 62705 AH 94 01 M21

12. REPORT DATE

11 JANUARY 1980

13. NUMBER OF PAGES

23

15. SECURITY CLASS. (of this report)

UNCLASSIFIED

15a. DECLASSIFICATION/DOWNGRADING SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release:
Distribution Unlimited.

16 1L162705AH94

17 01

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Millimeter Wave
Pulse Amplifier
Coupled Cavity Traveling Wave Tube

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

Design trade-offs have been performed for 95 GHz coupled-cavity traveling wave tubes for two pulse power levels, 100 watts and 1000 watts, respectively. Results indicate that average power levels of 50 watts are feasible in the 100 watt peak power case and that 10 watt average power levels are feasible in the 1000 watt peak power case.

TABLE OF CONTENTS

<u>Section</u>		<u>Page</u>
1.	INTRODUCTION	1
2.	TECHNICAL DISCUSSION	3
	a. Parameter Selection	3
	b. 93.75 GHz Designs	8
3.	SUMMARY	22

Accession For	
NTIS GRA&I	
DDC TAB	
Unannounced	
Justification _____	
By _____	
Distribution/ _____	
Availability Codes _____	
Dis. A	Avail and/or special

LIST OF ILLUSTRATIONS

<u>Figure</u>		<u>Page</u>
1	Variation of C and η_0 with J_c for a 100 W TWT with different beam voltages.	10
2	Variation of γ_a and 2_a with J_c for a 100 W TWT with different beam voltages.	11
3	Variation of C and η_0 with J_c for a 200 W TWT with different beam voltages.	14
4	Variation of γ_a and 2_a with J_c for a 200 W TWT with different beam voltages.	15
5	Variation of C and η_0 with V_o for a 500 W TWT with different cathode loadings.	18
6	Variation of γ_a and 2_a with V_o for a 500 W TWT with different cathode loadings.	19
7	Variation of C and η_0 with V_o for a 1000 W TWT with different cathode loadings.	21
8	Variation of γ_a and 2_a with V_o for a 1000 W TWT with different cathode loadings.	21

1. INTRODUCTION

The objective of this program is the development of 3.2 millimeter wave tubes having the smallest possible volume, lowest possible weight, and the lowest potential production cost without compromise of performance. The tube objectives are:

Peak RF power output	1 kW (maximum) 100 W (minimum)
Average RF power	50 W (liquid cooled) Concurrent with 100 W peak 10 W (air cooled) Concurrent with 1 kW peak
Center frequency	93.75 GHz
Instantaneous bandwidth	4%
Small signal gain	60 dB
Large signal gain	50 dB
Pulse length	25 μ s max, 1-10 ns objective
Pulse rise time	< 1 μ s
PRF	20 KHz max
Length	approx 61 cm
Width	< 10 cm
Height	< 10 cm
Weight	< 7 kg

The program consists of two parallel phases, the first being concerned with the 100 W TWT and the second with the 1 kW TWT.

It is important to view this development program against the background of other millimeter wave TWTs. Hughes has already developed coupled cavity TWTs at 94 GHz. The 1 kW peak model, designated the 980H, has a liquid cooled collector and RF output stack, whereas the 200 W peak model,

the 981H, has only a liquid-cooled collector. The beam voltages are 40 kV and 15.5 kV respectively; however, both tubes utilize solenoid focusing, resulting in a total tube weight in each case of about 100 lbs. For a small volume, low weight device, the use of periodic permanent magnets for beam focusing is necessary. Thus the ability to focus the electron beam becomes a primary constraint.

The magnetic field increases slightly with beam voltage and with the current density at the cathode. Increasing the beam voltage and the current density results in a lower value of γ_a , the propagation constant. This in turn means a greater bandwidth. Thus a smaller, more reliable device (i.e., one which would have in general a lower beam voltage and a lower cathode current density) is more likely to have a narrower bandwidth.

In this report the interdependence of parameters for 93.75 GHz TWTs from 100 W - 1000 W are presented, together with the technical assumptions which have been made.

2. TECHNICAL DISCUSSION

2.a PARAMETER SELECTION

In the present TWT designs at mm wavelengths a primary constraint is beam focusing, to be accomplished by periodic permanent magnets. After defining acceptable focusing criteria, the initial task is to establish the operating voltage for highest interaction strength.

Interaction Strength Versus Focusing Constraint

A quantitative measure of the effective interaction strength is Pierce's growth parameter C given by

$$C = \left(\frac{KI_o}{4V_o} \right)^{1/3} \quad (1)$$

where

K = Pierce's interaction impedance

I_o = beam current

V_o = beam voltage

In PPM focusing both the magnitude of the magnetic field and its period determine the dynamics of the focused beam. The magnetic field, B, required to focus an electron beam from a gun, with thermal velocity effects included, is

$$B^2 = B_b^2 + \frac{8kT_c}{mn^2} \left(\frac{r_c^2}{r_o^4} \right) + \left(\frac{B_c r_c^2}{r_o^2} \right)^2 \quad (2)$$

where

$$B_b^2 = \frac{2I_0}{\pi\epsilon_0\eta u_0} \frac{1}{r_0^2}$$

$$\eta = \frac{e}{m}$$

Here e and m are the electronic charge and mass respectively, ϵ_0 is the permittivity of free space; and k is the Boltzmann constant. The electron beam is described by the total current I_0 , the electron velocity u_0 , and a certain statistical rms beam radius r_0 . The beam starting conditions are specified by the cathode temperature T_c (in degrees Kelvin), the cathode (disk) radius r_c , and the axial field at the cathode, B_c . For a PPM system the field magnitude B in eq. (2) is to be identified with the root-mean-square value.

Comparing the expression for the interaction strength parameter C with the "Brillouin" part, B_b , of the magnetic field, it is evident that the conditions that provide a large C (high current, low voltage) require a strong focusing field. A high interaction impedance K can be obtained with a small beam hole and this again necessitates a strong focusing field. Thus the interaction strength is limited by the magnetic field that can be achieved. It is also seen that the required focusing field goes up with increased cathode size, increased cathode flux, and higher cathode temperature.

The beam stability in a PPM focusing field involves the relation between the oscillation wavelength of the radial motion in the beam and the period of the magnetic field. With a highly thermal low perveance beam, an appropriate oscillation wavelength is that associated with the small-amplitude ripple in r_0 given by the angular frequency

$$\omega_R = \omega_c \sqrt{1 - \frac{1}{2} \left(\frac{B_b}{B}\right)^2} \quad (3)$$

where

$$\omega_c = \eta B = \text{the cyclotron frequency.}$$

The scallop wavelength is therefore

$$\lambda_s = \frac{u_0}{(\omega_R/2\pi)} = \frac{2\pi u_0}{\omega_c \sqrt{1 - \frac{1}{2} \left(\frac{B_b}{B}\right)^2}} \quad (4)$$

If λ_s is large relative to the magnetic field period, L, the beam will effectively experience an average constant focusing field of magnitude B. As λ_s becomes more comparable to L, the electron motion is more affected by the local changes in the field.

When λ_s equals L an unstable beam generally results. To provide good focusing it is therefore necessary to ensure some minimum value of the ratio λ_s/L . Based on prior experience with low perveance thermal electron beams this ratio was chosen as 1.2. Since λ_s is approximately inversely proportional to B, a large C (which requires a large B) will give a small λ_s . The condition $\lambda_s/L \geq 1.2$ thus provides a further constraint on the interaction strength that can be obtained.

General Assumptions

The following general assumptions are made:

1. The PPM structure is external to the vacuum envelope. The magnetic and electrical periods are therefore independent.

2. Samarium Cobalt magnet material is used for maximum field capability.
3. The maximum pole piece field allowed is 1.3 tesla to avoid possible saturation effects.
4. The cathode material was to be impregnated tungsten, with an approximate operating temperature of 1400° K.
5. The focusing design assumed no magnetic cathode flux, $B_c = 0$, since the available magnetic field was a constraint.
6. The ratio of scallop wavelength to magnetic period, λ_s/L , was taken to be 1.2 minimum, as discussed in the preceding section.
7. The beam hole size, $2a$, was chosen to transmit (typically) 99.5 percent of the theoretical DC beam. Thus

$$a = r_{99.5, \text{ max}}$$

where $r_{99.5, \text{ max}}$ is the maximum value of the radius that encloses 99.5 percent of the current in the focused thermal DC beam. With no cathode flux, the rms radius r_0 is 0.42 of $r_{99.5, \text{ max}}^2$. Although the concept of a quantitative beam filling factor, b/a , is generally unsatisfactory for a thermal beam, a value of $b/a = 0.42$ was used in the RF calculations.

Outline of Design Procedure

The general design procedure is outlined as follows:

1. An initial basic tube efficiency is assumed, and the smallest practical ferrule hole size in the PPM stack is estimated.
2. The obtainable magnetic field as a function of magnetic period is evaluated. Using this function and the known DC beam power, relevant properties of the focused thermal beam ($r_{99.5}$, λ_s , and λ_s/L) can be calculated versus the rms focusing field for different beam voltages. The data can be displayed as beam hole radius versus beam voltage at a given λ_s/L . Equivalently, the beam hole size can be expressed in terms of the radial propagation parameter γ_a , once an appropriate ratio between the beam velocity and the circuit phase velocity at the design center frequency has been chosen.
3. The cavity dimensions and interaction impedance can now be computed for any beam voltage by making some additional assumptions regarding the cold passband characteristics and the cavity geometry. These assumptions concern the cold bandwidth, phase shift per cavity at center frequency, the detailed shape of the frequency vs phase curve, the gap to period ratio, the tunnel wall and web thicknesses, and the coupling hole size. The resulting cavity diameter is checked for compatibility with the assumed magnetic ferrule hole size in Step 1.
4. Knowing the value of Pierce's interaction impedance (averaged over the beam area, assuming $b/a = 0.42$), the variation of Pierce's C parameter with voltage is derived. The operating voltage is chosen to maximize C for highest interaction

strength. At this point all the information necessary to start the detailed electron gun design has also been generated in the process.

5. The small signal gain bandwidth is calculated and the cold passband adjusted if necessary (Step 3). Such an adjustment will generally change the magnitude of the C parameter, but, apart from a constant factor, the variation with voltage will very nearly remain the same.
6. Large signal analysis is performed with various velocity taper configurations in the RF circuit to achieve a high interaction efficiency over the frequency band. If the minimum efficiency differs appreciably from the one assumed in Step 1, another iteration of the design procedure should be made.

2.b 93.75 GHz DESIGNS

The shape of the frequency vs phase ($W-\beta$) curve is needed for the impedance calculation. For the 93.75 GHz design, it is assumed that the $W-\beta$ shape measured for a final circuit at 85 GHz (NASA contract CR EDD W-06553) can be obtained for 93.75 GHz by appropriate cathode loading. A basic efficiency of 5% has also been assumed.

Table I gives the values of particular parameters for a 100 W tube with a beam voltage of 22 kV as a function of the current density at the cathode. Table II gives the same parameters for the same 100 W tube with the beam voltage raised to 25 kV. The values in Tables I and II are displayed in Figures 1 and 2 in terms of the beam voltage, so that the effect of a beam voltage change can be more easily seen.

TABLE I

DESIGN PARAMETERS FOR A 93.75 GHz TWT
 POWER OUT = 100 W BEAM VOLTAGE = 22 kV
 BEAM CURRENT = 90.9 mA PERVEANCE = .0279 μ P

Current Density A/cm^2	J_C	1	2	4	6	8
Cathode radius (in)	r_c	.0669	.0473	.0335	.0273	.0237
Beam hole diameter (in)	$2a$.0232	.0200	.0175	.0163	.0155
γ_a		2.016	1.738	1.520	1.416	1.347
C		.01502	.01730	.01925	.02023	.02090
Peak field (gauss)	B_p	4320	4400	4450	4500	4550
Magnetic period (in)	L	.364	.370	.374	.378	.382

TABLE II

DESIGN PARAMETERS FOR A 93.75 GHz TWT
 POWER OUT = 100 W BEAM VOLTAGE = 25 kV
 BEAM CURRENT = 80 mA PERVEANCE = .0202 μ P

Current Density A/cm^2	J_C	1	2	4	6	8
Cathode radius (in)	r_c	.0628	.0444	.0314	.0256	.0222
Beam hole diameter (in)	$2a$.0219	.0188	.0164	.0151	.0144
γ_a		1.783	1.531	1.335	1.229	1.172
C		.01556	.01767	.01942	.02040	.02094
Peak field (gauss)	B_p	4440	4500	4570	4620	4650
Magnetic period (in)	L	.373	.378	.384	.388	.390

G6340

FIGURE 1 VARIATION OF C AND η_0 WITH J_c FOR A 100 W TWT WITH DIFFERENT BEAM VOLTAGES.

G6341

FIGURE 2 VARIATION OF γ_s AND 2_s WITH J_c FOR A 100 W TWT WITH DIFFERENT BEAM VOLTAGES.

Tables III and IV give the parametric values for a 200 W tube for beam voltages of 25 and 30 kV as a function of current density at the cathode. These values are displayed in Figures 3 and 4 in terms of beam voltage.

Tables V, VI and VII give the parametric values for a 500 W tube with beam voltages of 25, 30 and 35 kV respectively, with these values displayed in Figures 5 and 6 as a function of beam voltage. Tables VIII, IX and X give the parametric values for a 1000 W tube with beam voltages of 35, 40 and 45 kV, with these values displayed in Figures 7 and 8.

TABLE III

DESIGN PARAMETERS FOR A 93.75 GHz TWT
 POWER OUT = 200 W BEAM VOLTAGE = 25 kV
 BEAM CURRENT = 160 mA PERVEANCE = .0405 μ P

Current Density A/cm^2	J_C	1.6	2	4	6	8
Cathode radius (in)	r_c	.0702	.0628	.0444	.03625	.0314
Beam hole diameter (in)	$2a$.0242	.0233	.0203	.0189	.0181
γ_a		1.970	1.897	1.653	1.539	1.474
C		.01780	.01849	.02095	.02217	.02289
Peak field (gauss)	B_p	4530	4530	4650	4730	4770
Magnetic period (in)	L	.384	.384	.390	.397	.400

TABLE IV

DESIGN PARAMETERS FOR A 93.75 GHz TWT
 POWER OUT = 200 W BEAM VOLTAGE = 30 kV
 BEAM CURRENT = 133 mA PERVEANCE = .026 μ P

Current Density (A/cm^2)	J_C	1	2	4	6
Cathode radius (in)	r_c	.0811	.0573	.0405	.0331
Beam hole diameter (in)	$2a$.0246	.0211	.0184	.0171
γ_a		1.825	1.565	1.365	1.269
C		.01698	.01942	.02146	.02249
Peak field (gauss)	B_p	4650	4750	4820	4860
Magnetic period (in)	L	.390	.398	.405	.409

G6342

FIGURE 3 VARIATION OF C AND $\bar{\eta}_0$ WITH J_c FOR A 200 W TWT WITH DIFFERENT BEAM VOLTAGES.

G6344

FIGURE 4 VARIATION OF γ_s AND Z_s WITH J_c FOR A 200 W TWT WITH DIFFERENT BEAM VOLTAGES.

TABLE V

DESIGN PARAMETERS FOR A 93.75 GHz TWT
 POWER OUT = 500 W BEAM VOLTAGE = 25 kV
 BEAM CURRENT = 400 mA PERVEANCE = .1012 μ P

Current Density (A/cm^2)	J_C	4	6	8	
Cathode radius (in)	r_c	.0702	.0573	.0496	
Beam hole diameter (in)	$2a$.0278	.0263	.0255	
γ_a		2.263	2.141	2.076	
c		.02040	.02175	.02251	
Peak field (gauss)	B_p	4770	4830	4870	
Magnetic period (in)	L	.400	.406	.409	

TABLE VI

DESIGN PARAMETERS FOR A 93.75 GHz TWT
 POWER OUT = 500 W BEAM VOLTAGE = 30 kV
 BEAM CURRENT = 333 mA PERVEANCE = .0642 μ P

Current Density (A/cm^2)	J_C	4	6	8	
Cathode radius (in)	r_c	.0641	.0523	.0453	
Beam hole diameter (in)	$2a$.0248	.0234	.0224	
γ_a		1.840	1.736	1.662	
c		.02252	.02377	.02469	
Peak field (gauss)	B_p	4930	4980	5030	
Magnetic period (in)	L	.415	.420	.425	

TABLE VII

DESIGN PARAMETERS FOR A 93.75 GHz TWT
 POWER OUT = 500 W BEAM VOLTAGE = 35 kV
 BEAM CURRENT = 280 mA PERVEANCE = .0436 μ P

Current Density (A/cm^2)	J_C	4	6	8	
Cathode radius (in)	r_c	.0593	.0484	.0420	
Beam hole diameter (in)	$2a$.0227	.0213	.0203	
γa		1.556	1.460	1.392	
C		.02352	.02470	.02557	
Peak field (gauss)	B_p	5050	5100	5150	
Magnetic period (in)	L	.427	.433	.439	

TABLE VIII

DESIGN PARAMETERS FOR A 93.75 GHz TWT
 POWER OUT = 1000 W BEAM VOLTAGE = 35 kV
 BEAM CURRENT = 571 mA PERVEANCE = .0873 μ P

Current Density (A/cm^2)	J_C	6	8		
Cathode radius (in)	r_c	.0685	.0593		
Beam hole diameter (in)	$2a$.0272	.0263		
γa		1.865	1.803		
C		.02483	.02565		
Peak field (gauss)	B_p	5200	5240		
Magnetic period (in)	L	.444	.444		

G6343

FIGURE 5 VARIATION OF C AND η_0 WITH V_0 FOR A 500 W TWT WITH DIFFERENT CATHODE LOADINGS.

G6345

FIGURE 6 VARIATION OF γ_s AND Z_s WITH V_o FOR A 500 W TWT WITH DIFFERENT CATHODE LOADINGS.

TABLE IX

DESIGN PARAMETERS FOR A 93.75 GHz TWT
 POWER OUT = 1000 W BEAM VOLTAGE = 40 kV
 BEAM CURRENT = 500 mA PERVEANCE = .0625 μ P

Current Density (A/cm^2)	J_C	6	8		
Cathode radius (in)	r_c	.0641	.0555		
Beam hole diameter (in)	$2a$.0250	.0241		
γ_a		1.601	1.543		
C		.02603	.02683		
Peak field (gauss)	B_p	5300	5330		
Magnetic period (in)	L	.457	.460		

TABLE X

DESIGN PARAMETERS FOR A 93.75 GHz TWT
 POWER OUT = 1000 W BEAM VOLTAGE = 45 kV
 BEAM CURRENT = 444 mA PERVEANCE = .0466 μ P

Current Density (A/cm^2)	J_C	6	8		
Cathode radius (in)	r_c	.0604	.0523		
Beam hole diameter (in)	$2a$.0233	.0224		
γ_a		1.404	1.350		
C		.02657	.02732		
Peak field (gauss)	B_p	5390	5420		
Magnetic period (in)	L	.468	.472		

FIGURE 7 VARIATION OF C AND η_0 WITH V_0 FOR A 1000 W TWT WITH DIFFERENT CATHODE LOADINGS.

FIGURE 8 VARIATION OF γ_0 AND Z_0 WITH V_0 FOR A 1000 W TWT WITH DIFFERENT CATHODE LOADINGS.

3. SUMMARY

Comparison of the parametric values for the four tube designs from 100 W to 1000 W at 93.75 GHz give a clear estimate of the magnitude of the design problem, particularly in terms of magnetic focusing and where bandwidth are concerned. For example, the 200 W TWT can expect a bandwidth of 2.35% at 93.75 GHz with a cathode loading of 2 A/cm^2 , which rises to 2.97% at $J_c = 4 \text{ A/cm}^2$. While values of J_c up to 8 A/cm^2 are used, the higher the current density, the higher the operating temperature, and the lower the expected cathode life. Further, as the cathode temperature increases, evaporation of Barium increases, resulting in a greater likelihood of arcing in the electron gun.

For the 100 W design, the probable characteristics are as follows:

Frequency	93.75 GHz (91.875 to 95.625 GHz obj.)
Power	100 W
Gain	50 dB
Duty	50%
Modulation	Aperture grid
Cathode voltage	-22 kV
Cathode current	91 mA
Collector voltage	-14 kV
Collector current	91 mA
Body voltage	Ground
Body current	<10mA
Grid bias voltage	-1100V
Grid pulse voltage	+1100V
Grid current	Negligible
Heater voltage	6V
Heater current	1A

Size	4" dia x 16"
Weight	14 - 15 lbs
Focusing	PPM (SmCo)
Cooling	Liquid

Gun Parameters

Perveance	.028 x 10^{-6}
Convergence ratio	83
Beam size	7.35 mils
Beam voltage	22 kV
Cathode diameter	.067 in
Cathode loading	4 A/cm ²

Magnetic Focusing Parameters

Peak field an axis	4450 gauss
Pole piece id	.170 - .200"
Pole piece od	1.5"
Magnetic period	.374"
λ_s/L	1.2

ELECTRONICS TECHNOLOGY AND DEVICES LABORATORY

DISTRIBUTION LIST

1 February 1979

101	DEFENSE DOCUMENTATION CENTER ATTN: DDC-TCA CAMERON STATION (BLDG 5) 012 ALEXANDRIA, VA 22314	481 HARRY DIAMOND LABORATORIES, DA ATTN: DELHD-RCB (DR. J. NEMARICH) 2800 POWDER MILL ROAD 001 ADELPHI, MD 20783
104	DEFENSE COMMUNICATIONS AGENCY TECHNICAL LIBRARY CENTER CODE 205 (P. A. TOLOVI) 001 WASHINGTON, DC 20305	483 DIRECTOR US ARMY MATERIAL SYSTEMS ANALYSIS ACTV ATTN: DRXSY MP 001 ABERDEEN PROVING GROUND, MD 21005
200	OFFICE OF NAVAL RESEARCH CODE 427 001 ARLINGTON, VA 22217	680 COMMANDER US ARMY ELECTRONICS R&D COMMAND 000 FORT MONMOUTH, NJ 07703
205	DIRECTOR NAVAL RESEARCH LABORATORY ATTN: CODE 2627 001 WASHINGTON, DC 20375	1 DRDEL-SA 1 DELEW-D 3 DELCS-D
301	ROME AIR DEVELOPMENT CENTER ATTN: DOCUMENTS LIBRARY (TILD) 001 GRIFFISS AFB, NY 13441	1 DELET-D 1 DELET-DD 2 DELET-DT 5 DELET- 1 DELSD-D 1 DELSD-AS 1 DELSD-L (TECH LIB) 2 DELSD-L-S (STINFO) 25 DELET-TL-B (FISCHER)
407	DIRECTOR, BALLISTIC MISSILE DEFENSE ADVANCED TECHNOLOGY CENTER ATTN: ATC-R, PO BOX 1500 001 HUNTSVILLE, AL 35807	705 ADVISORY GROUP ON ELECTRON DEVICES 201 VARICK STREET, 9TH FLOOR 002 NEW YORK, NY 10014
437	DEPUTY FOR SCIENCE & TECHNOLOGY OFFICE, ASSIST SEC ARMY (R&D) 001 WASHINGTON, DC 20310	OFFICE OF DEPUTY CHIEF OF STAFF FOR RESEARCH DEVELOPMENT & ACQUISITION ATTN: DAMA-Z-E (DR. CHARLES CHURCH)
475	CDR, HARRY DIAMOND LABORATORIES ATTN: LIBRARY 2800 POWDER MILL ROAD 001 ADELPHI, MD 20783	001 ADVANCED CONCEPTS TEAM WASHINGTON, D. C. 20310
477	DIRECTOR US ARMY BALLISTIC RESEARCH LABS ATTN: DRXBR-LB 001 ABERDEEN PROVING GROUND, MD 21005	

DIRECTOR
NIGHT VISION & ELECTRO-OPTICS
LABORATORY
DELNV-LASER
ATTN: WARD TRUSSELL
001 FORT BELVOIR, VA 22060

ENGINEERING EXPERIMENT STATION
GEORGIA INSTITUTE OF TECHNOLOGY
ATLANTA, GA 30332
001 ATTN: ROBERT G. SHACKELFORD

DIRECTOR
BALLISTIC MISSILE DEFENSE
ADVANCED TECHNOLOGY CENTER
ATTN: BMDATC-R (DON SCHENK)
PO BOX 1500
001 HUNTSVILLE, AL 35809

C. KIRKSEY
F 46
NAVAL SURFACE WEAPONS CENTER
001 SILVER SPRINGS, MD 20910

HAROLD COWARD
CODE F-14
NAVAL SURFACE WEAPONS CENTER
001 DAHLGREN, VA 22448

DAVID S. LADD
RADAR AND INSTRUMENTATION
LABORATORY
ENGINEERING EXPERIMENT STATION
GEORGIA INSTITUTE OF TECHNOLOGY
001 ATLANTA, GEORGIA 30332

JOHN P. WATJEN
STANFORD RESEARCH INSTITUTE
333 RAVENSWOOD AVENUE
001 MENLO PARK, CA 94025

DIRECTOR
NVEO LAB
ATTN: DELNV-L (DR. R. SHURTZ)
001 FORT BELVOIR, VA 22060

COMMANDER
ROME AIR DEVELOPMENT CENTER
ATTN: RADC/OCTP
(MR. FRANK WELKER)
001 GRIFFISS AIR FORCE BASE, NY 13441

DIRECTOR
NAVAL RESEARCH LABORATORY
ATTN: R. VAN WAGONER
001 WASHINGTON, DC 20375

COMMANDER
USA MIRADCOM
ATTN: DRD-MI-TEG
(DR. GEORGE EMMONS)
001 REDSTONE ARSENAL, AL 35809

COMMANDER
ARRADCOM
ATTN: DRDAR-SCF-I
(JOSEPH LEHMAN)
001 DOVER, NJ 07801

EDWARD K. REEDY
GEORGIA TECH/EES
225 NORTH AVENUE
001 ATLANTA, GA 30332

COMMANDER, AARADCOM
PICATINNY ARSENAL
ATTN: DRDAR-SCF-IM
(MURRAY ROSENBLUTH)
DOVER, NJ 07801

DR. MAC GREGOR
SHARED APPLICATIONS, INC.
611 CHURCH STREET
001 ANN ARBOR, MI

COMMANDER
AARADCOM
PICATINNY ARSENAL
ATTN: DRDAR-SCF-IM
(MR. O'BRIAN)
001 DOVER, NJ 07801

COMMANDER
AARADCOM
PICATINNY ARSENAL
ATTN: DRDAR-SCF-IM (MR. YAROSH)
001 DOVER, NJ 07801

COMMANDER
AARADCOM
PICATINNY ARSENAL
DRDAR-SCF-IM
ATTN: MR. DONNELLY
001 DOVER, NJ 07801

MR. GERRY KOYERS
UNIVERSAL COMPUTER APPLICATIONS
701 WELCH ROAD
PALO ALTO, CA 94304

COMMANDER
NAVAL OCEAN SYSTEMS COMMAND
ATTN: R. WILLS, CODE 8212
271 CATALINA BLVD.
001 SAN DIEGO, CA 92152

DR. PAUL COLEMAN
UNIVERSITY OF ILLINOIS
001 URBANA, ILLINOIS

DR. RICHARD GROW
UNIVERSITY OF UTAH
ELECTRICAL ENGINEERING DEPT.
001 SALT LAKE CITY, UT