STA 447/2006S, Winter 2008: In-Class Test (DRAFT) SOLUTIONS

1. [8 points] Let (p_{ij}) be the transition probabilities for random walk on the graph whose vertices are $V = \{1, 2, 3, 4\}$, with a single edge between each of the four pairs (1,2), (2,3), (3,1), and (3,4), and no other edges. Compute (with full explanation) $\lim_{n\to\infty} p_{13}^{(n)}$.

Solution: Since $1 \leftrightarrow 2 \leftrightarrow 3 \leftrightarrow 4$, the graph is connected, so the random walk is irreducible. Also, state 3 is aperiodic since e.g. it is possible to get from 3 to 3 in two steps $(3 \to 4 \to 3)$ or in three steps $(3 \to 1 \to 2 \to 3)$, and $\gcd(2,3) = 1$. So, by irreducibility, all states are aperiodic. Also, from class, the chain has stationary distribution given by $\pi_u = d(u)/\sum_v d(v) = d(u)/2|E|$. In this case, d(1) = d(2) = 2, d(3) = 3, and d(4) = 1, so $\sum_v d(v) = 2 + 2 + 3 + 1 = 8$ (or equivalently, $2|E| = 2 \cdot 4 = 8$). Hence, by the Markov chain convergence theorem, $\lim_{n \to \infty} p_{13}^{(n)} = \pi_3 = d(3)/8 = 3/8$.

- **2.** Consider the Markov chain with state space $S = \{1, 2, 3\}$, and transition probabilities given by $p_{11} = 1/6$, $p_{12} = 1/3$, $p_{13} = 1/2$, $p_{22} = p_{33} = 1$, and $p_{ij} = 0$ otherwise.
- (a) [4 points] Compute (with explanation) f_{12} (i.e., the probability, starting from 1, that the chain will eventually visit 2).

Solution: When the chain leaves the state 1, it goes to either 2 or 3 and then stays there. So, $f_{12} = \mathbf{P}(X_1 = 2 \mid X_0 = 1, X_1 \neq 1) = p_{12}/(1 - p_{11}) = 1/3/(1 - 1/6) = (1/3)/(5/6) = 2/5$.

Alternatively, since $f_{32} = 0$ (because $p_{33} = 1$), we have that $f_{12} = p_{12} + \sum_{j \neq 2} p_{1j} f_{j2} = p_{12} + p_{11} f_{12} + p_{13} f_{32} = (1/3) + (1/6) f_{12} + (1/2)(0)$, so $(5/6) f_{12} = 1/3$, so $f_{12} = 2/5$.

(b) [3 points] Prove that $p_{12}^{(n)} \ge 1/3$, for any positive integer n.

Solution: Since $p_{22} = 1$, it follows that $p_{22}^{(m)} = 1$ for all $m \ge 0$. Then by the Chapman-Kolmogorov equations, $p_{12}^{(n)} \ge p_{12} \, p_{22}^{(n-1)} = (1/3)(1) = 1/3$.

(c) [2 points] Compute $\sum_{n=1}^{\infty} p_{12}^{(n)}$.

Solution: Since $p_{12}^{(n)} \geq 1/3$, we have $\sum_{n=1}^{\infty} p_{12}^{(n)} \geq \sum_{n=1}^{\infty} (1/3) = \infty$, so $\sum_{n=1}^{\infty} p_{12}^{(n)} = \infty$.

(d) [3 points] Relate the answers in parts (a) and (c) to theorems from class about when $f_{ij} = 1$ and when $\sum_{n=1}^{\infty} p_{ij}^{(n)} = \infty$.

Solution: We proved in class that $f_{ij} = 1$ if and only if $\sum_{n=1}^{\infty} p_{ij}^{(n)} = \infty$, provided that either i = j, or the chain is irreducible. In this case, we have $f_{12} < 1$ but $\sum_{n=1}^{\infty} p_{12}^{(n)} = \infty$. However, this is not a contradiction since $1 \neq 2$, and also the chain is <u>not</u> irreducible since e.g. $f_{32} = 0$.

- **3.** Let $S = \mathbf{Z}$ (the set of all integers), and let $h: S \to [0,1]$ with $\sum_{i \in S} h(i) = 1$. Consider the transition probabilities on S given by $p_{ij} = (1/4) \min(1, h(j)/h(i))$ if j = i-2, i-1, i+1, or i+2, and $p_{ii} = 1 p_{i,i-2} p_{i,i-1} p_{i,i+1} p_{i,i+2}$, and $p_{ij} = 0$ whenever $|j-i| \ge 3$.
- (a) [10 points] Assuming that h(i) > 0 for all i, prove that $\lim_{n\to\infty} p_{ij}^{(n)} = h(j)$ for all $i, j \in S$. (Carefully justify each step.)
 - **Solution:** (i) The chain is irreducible since $p_{i,i+1} > 0$ and $p_{i,i-1} > 0$ for all i, so if j > i then $p_{ij}^{(j-i)} \ge p_{i,i+1}p_{i+1,i+2}\dots p_{j-1,j} > 0$, while if j < i then $p_{ij}^{(j-i)} \ge p_{i,i-1}p_{i-1,i-2}\dots p_{j+1,j} > 0$. (Also $p_{ii}^{(2)} \ge p_{i,i+1}p_{i+1,i} > 0$.)
 - (ii) The chain is aperiodic since $\sum_{i \in S} h(i) = 1$ implies $\lim_{j \to \infty} h(j) = 0$, which means there must be some $i \in S$ with h(i+1) < h(i), whence $p_{i,i+1} < 1/4$, whence $p_{ii} > 0$, so the period of state i is 1, and then by irreducibility the period of every state is 1.
 - [Or, alternatively, the period of state i is 1 since $p_{ii}^{(2)} \ge p_{i,i+1}p_{i+1,i} > 0$ and $p_{ii}^{(3)} \ge p_{i,i+1}p_{i+1,i+2}p_{i+2,i} > 0$, and gcd(2,3) = 1.]
 - (iii) With $\pi_i = h(i)$, the chain satisfies detailed balance $\pi_i p_{ij} = \pi_j p_{ij}$ for all $i, j \in S$. Indeed, the statement is trivial if i = j, and both sides are 0 if |j i| > 2. For $1 \le |j i| \le 2$, we have that $\pi_i p_{ij} = h(i)(1/4)\min(1, h(j)/h(i)) = (1/4)\min(h(i), h(j))$ which is symmetric in i and j, so $\pi_i p_{ij} = \pi_j p_{ij}$.
 - (iv) Since the chain satisfies detailed balance with $\pi_i = h(i)$, therefore π is a stationary distribution.
 - (v) Hence, by the Markov chain convergence theorem, $\lim_{n\to\infty} p_{ij}^{(n)} = \pi_j = h(j)$ for all $i, j \in S$.
- (b) [5 points] Show by example that part (a) might be false if we do not assume that h(i) > 0 for all i. [For definiteness, we take $\min(1, h(j)/h(i)) \equiv 1$ whenever h(i) = 0.]

Solution: Suppose that, say, h(5) = h(6) = 0, but h(3), h(4), h(7) > 0. Then $p_{35} = p_{45} = p_{46} = 0$. Furthermore we always have $p_{ij} = 0$ for j > i + 2. It follows that $p_{ij} = 0$ whenever $i \le 4$ and $j \ge 5$. Hence, $f_{ij} = 0$ whenever $i \le 4$ and $j \ge 5$. In particular, $p_{47}^{(n)} = 0$ for all n, so $\lim_{n\to\infty} p_{47}^{(n)} = 0 \ne h(7)$ since h(7) > 0.

4. Consider a Markov chain $\{X_n\}$ with state space $S = \{1, 2, 3, 4, 5\}, X_0 = 4$, and

transition probabilities specified by $p_{11} = p_{55} = 1$, $p_{21} = 5/7$, $p_{24} = p_{25} = 1/7$, $p_{31} = p_{32} = p_{33} = p_{34} = p_{35} = 1/5$, and $p_{43} = p_{45} = 1/2$. Let $T = \min\{n \ge 1 : X_n = 1 \text{ or } 5\}$.

(a) [8 points] Determine (with full explanation) whether or not $\{X_n\}$ is a martingale.

Solution: Yes, $\{X_n\}$ is a martingale. Since $\{X_n\}$ is a Markov chain, and clearly $\mathbf{E}|X_n| \leq 5 < \infty$, it suffices to show that $\sum_{j \in S} j \, p_{ij} = i$ for all $i \in S$.

$$i = 1$$
: $\sum_{j \in S} j p_{ij} = 1 p_{11} = 1(1) = 1 = i$.

$$i = 2$$
: $\sum_{j \in S} j p_{ij} = 1 p_{21} + 4 p_{24} + 5 p_{25} = 1(5/7) + 4(1/7) + 5(1/7) = 14/7 = 2 = i$.

$$i = 3$$
: $\sum_{j \in S} j p_{ij} = 1 p_{31} + 2 p_{32} + 3 p_{33} + 4 p_{34} + 5 p_{35} = 1(1/5) + 2(1/5) + 3(1/5) + 4(1/5) + 5(1/5) = 15/5 = 3 = i$.

$$i = 4$$
: $\sum_{j \in S} j p_{ij} = 3 p_{43} + 5 p_{45} = 3(1/2) + 5(1/2) = 8/2 = 4 = i$.

$$i = 5$$
: $\sum_{j \in S} j p_{ij} = 5 p_{55} = 5(1) = 5 = i$.

So, $\sum_{i \in S} j p_{ij} = i$ for all $i \in S$, so $\{X_n\}$ is a martingale.

(b) [4 points] Compute $P(X_T = 5)$. [Hint: part (a) might help.]

Solution: Let $q = \mathbf{P}(X_T = 5)$. Then $\mathbf{P}(X_T = 1) = 1 - q$. Hence, $\mathbf{E}(X_T) = 5q + 1(1 - q)$. But $\{X_n\}$ is a bounded martingale, and T is a stopping time (since $\{T = n\}$ depends only on X_0, \ldots, X_n), and $\mathbf{P}(T < \infty) = 1$ (since e.g. $\mathbf{P}(T = n + 1 \mid T > n, \ X_n = i) \ge 1/7$ for i = 2, 3, 4, so $\mathbf{P}(T \ge n) \le (1 - 1/7)^n$, so $\mathbf{P}(T = \infty) = 0$). Hence, we must have $\mathbf{E}(X_T) = \mathbf{E}(X_0) = 4$, so 5q + 1(1 - q) = 4, i.e. 4q + 1 = 4, so 4q = 3, so q = 3/4.

- **5.** Consider a Markov chain $\{X_n\}$ on the state space $S = \{0, 1, 2, 3, \ldots\}$, with $X_0 = 100$, and $p_{ij} = 1/(2i+1)$ if $0 \le j \le 2i$, otherwise $p_{ij} = 0$.
- (a) [5 points] Prove that $\{X_n\}$ is a martingale. (You may assume without proof that $\mathbf{E}|X_n| < \infty$ for all n.)

Solution: We compute that $\sum_{j} j p_{ij} = \sum_{j=0}^{2i} j/(2i+1) = (2i)(2i+1)/2/(2i+1) = i$ for any $i \in S$, so $\{X_n\}$ is a martingale.

(b) [5 points] Prove that $\mathbf{P}(\exists n \geq 1 : X_n = 1000) < 1/6$. [Hint: the martingale maximal inequality might help.]

Solution: Since $\{X_n\}$ is a non-negative martingale, we have by the martingale maximal inequality that $\mathbf{P}(\exists n \geq 1 : X_n = 1000) \leq \mathbf{P}(\max_n X_n \geq 1000) \leq$

$$\mathbf{E}(X_0)/1000 = 100/1000 = 1/10 < 1/6.$$

- **6.** Let $\{N(t)\}_{t\geq 0}$ be a Poisson process with rate $\lambda>0$.
- (a) [6 points] Compute the conditional probability $q_{\lambda} \equiv \mathbf{P}(N(4) = 1 \mid N(5) = 3)$.

Solution:
$$q_{\lambda} = \mathbf{P}(N(4) = 1 \mid N(5) = 3) = \frac{\mathbf{P}(N(4)=1, N(5)=3)}{\mathbf{P}(N(5)=3)} = \frac{\mathbf{P}(N(4)=1, N(5)=3)}{\mathbf{P}(N(5)=3)} = \frac{\frac{\mathbf{P}(N(4)=1, N(5)=N(4)=2)}{\mathbf{P}(N(5)=3)}}{e^{-5\lambda}(5\lambda)^3/3!} = \frac{\frac{(4)^1/1!)(1/2!)}{(5)^3/3!} = \frac{4/2}{125/6} = \frac{24/250 = 12/125.}$$

- (b) [2 points] Compute $q_{2\lambda}/q_{\lambda}$. (That is, determine the fraction by which the probability in part (a) changes if we replace λ by 2λ .)
 - **Solution:** By part (a), $\frac{q_{2\lambda}}{q_{\lambda}} = \frac{12/125}{12/125} = 1$, i.e. the probability does not change if we replace λ by 2λ (or by any other value).