

Histogram Matching (Specification)

Speaker: Shih-Shinh Huang

Version: v011

Date: February 27, 2021

Outline

- Introduction
- Histogram Equalization
- Matching Algorithm

- About Histogram
 - Definition: a discrete function p(r) with r = 0,1, ... L 1 for L-level digital image.

$$p(r=k)=\frac{n_k}{n}$$

- n_k : number of points with gray level r = k
- n: total number of points

- About Histogram Matching
 - give an image with histogram $p_r(r)$ and a target histogram $p_z(z)$
 - generate a processed image that has a histogram approaching to $p_z(z)$

- About Histogram Matching
 - The problem is how to find a transformation from $p_r(r)$ to $p_z(z)$

- Idea of Histogram Matching
 - transform $p_r(r)$ to $p_z(z)$ via uniform distribution.

- Description
 - give a histogram distribution p(r)
 - design a transformation u = T(r) to equalize p(r)

• Transformation Design cumulative distribution

$$T(r = k) = \underbrace{(L-1)}_{\text{maximal}} \times \underbrace{\sum_{j=0}^{k} p(r = j)}_{\text{j}=0} \text{ function}$$

$$T(r = 0) = (L-1) \times p(r = 0)$$

$$T(r = 1) = (L-1) \times \{p(r = 0) + p(r = 1)\}$$

• Example: $T(.): p(r) \rightarrow \text{uniform}$

$$T(r = k) = (L - 1) \times \sum_{j=0}^{k} p(r = j)$$

$$T(r = 0) = 7 \times (0.19) = 1.33 \rightarrow 1$$

$$T(r = 1) = 7 \times (0.19 + 0.25)$$

$$= 3.08 \rightarrow 3$$

$$T(r = 7) = 7 \times (0.19 + \cdots + 0.02)$$

$$= 7$$

• Example: $T(.): p(r) \rightarrow \text{uniform}$

- Problem Formulation
 - Given: source histogram $p_r(r)$ and target histogram $p_z(z)$
 - Goal: find a transformation from $p_r(r)$ to $p_z(z)$

- Algorithm Steps
 - Step 1: apply equalization algorithm to find T(.) that transforms $p_r(r)$ to uniform distribution
 - Step 2: apply equalization algorithm to find G(.) that transforms $p_z(z)$ to uniform distribution

- Algorithm Overview
 - Step 3: compute inverse function $z = G^{-1}(u)$
 - Step 4: form the function $z = G^{-1}(T(r))$ and uses it for intensity transformation

• Step 1: find $T(.): p_r(r) \rightarrow u$ (uniform)

• Step 2: find $G(.): p_z(z) \rightarrow u$ (uniform)

$$p_{z}(z)$$

0.30

0.25

0.20

0.15

0.15

0.00

0.00

0.00

0.00

0.00

0.15

0.15

0.15

0.15

$$G(z = k) = (L - 1) \times \sum_{j=0}^{\infty} p_z(z = j)$$

$$G(z = 0) = 7 \times (0.00) = 0$$

$$G(z = 1) = 7 \times (0.00 + 0.00) = 0$$

$$G(z = 7) = 7 \times (0.00 + \dots + 0.15)$$

= 7

• Step 2: find $G(.): p_z(z) \rightarrow u$ (uniform)

Z	u = G(z)
0	0
1	0
2	0
3	1
4	2
5	5
6	6
7	7

- Step 3: compute $z = G^{-1}(u)$
 - compute $z = G^{-1}(u)$ by exchanging input and output of u = G(z)

- Step 3: compute $z = G^{-1}(u)$
 - Case 1: mapping is not unique: choose the smallest one z for output by convention
 - Case 2: no mapping exists: use the output of the *u* value that is the closet to current one.

• Step 3: compute $z = G^{-1}(u)$

u	$\mathbf{z} = \mathbf{G}^{-1}(\mathbf{u})$
0	0
1	3
2	4
3	4
4	5
5	5
6	6
7	7

• Step 4: form $z = G^{-1}(T(r))$ and do mapping

r	$\mathbf{z} = \mathbf{G}^{-1}(T(r))$
0	3
1	4
2	5
3	6
4	6
5	7
6	7
7	7

• Step 4: use $G^{-1}(T(.))$ for intensity mapping

input image

r	$\mathbf{z} = \mathbf{G}^{-1}(T(r))$
0 -	3
1 -	4
2	5
3	6
4	6
5	7
6	7
7	7

output image

