Ковальков Антон 577гр

Задача 1.

- 1) Построим автомат по такому принципу:
 - а) начальное состояние принимающее так как ε лежит в языке.
 - b) если на стеке только Z_0 кладём букву из слова на стек.
- с) если следующая буква σ противоположна той что лежит на стеке(λ), то убрием λ со стека. Если же $\sigma = \lambda$, то кладём на стек $\sigma \lambda$.
- ${
 m d}$) Если букв a и букв b в слове одинаковое количество, то повтряя пункты ${
 m b}$ и ${
 m c}$ мы обработаем всё слово и на стеке останется только Z_0 . Уберём Z_0 со стека и перейдём в конечное состояние.

$$a, a/aa \ a, b/\varepsilon \ a, Z_0/aZ_0$$

$$a, Z_0/aZ_0 \qquad \qquad \varepsilon, Z_0/\varepsilon$$

$$b, Z_0/bZ_0 \qquad \qquad q_1$$

$$b, b/bb \ b, a/\varepsilon \ b, Z_0/bZ_0$$

Задача 2.

- 1) Построим автомат по такому принципу:
 - а) начальное состояние принимающее так как ε лежит в языке.
 - b) если на стеке только Z_0 кладём букву из слова на стек.
- с) если следующая буква σ закрывающая скобка а на стеке лежит открывающая такого же типа λ , то убрием λ со стека. Если же σ открывающая скобка, то кладём её на стек.
- ${
 m d}$) Если если слово это правильна скобочная последовательность, то повтряя пункты ${
 m b}$ и с мы обработаем всё слово и на стеке останется только Z_0 . Уберём Z_0 со стека и перейдём в конечное состояние.

Задача 3.

- 1. Состояние q_0 принимающее, так как $\varepsilon \in L$;
- 2. Если длина слова 1, то переходим в принимающее состояние q_3 ;
- 3. Если длина слова больше 1, то по первой букве перейдем в состояние q_1 , и пока не достигнем позиции $[\frac{|\omega|}{2}]+1$, будем класть буквы слова в стек.
- 4. Если длина слова делится на 2, то из состояния q_1 переходим в q_2 , убирая со стека букву, если она равна обрабатываемой. Если длина слова нечетна, то переходим, не изменяя стек.
- 5. Если очередная буква в обрабатываемом слове равна той, что лежит на вершине стека, то убираем букву со стека.
- 6. Если после проделанных операций в стеке остался только символ Z_0 , то переходим в принимающее состояние. Если в стеке осталось что-то еще, то слово было не палиндромом и автомат его не примет.

Задача 4.

$$\begin{split} 1. \ L &= \{a^nb^nc^k, \forall n, k \geqslant 0\} \cup \{a^nb^kc^n, \forall n, k \geqslant 0\} \\ S &\to AB \mid C \\ A &\to aAb \mid \varepsilon \\ B &\to cB \mid \varepsilon \\ C &\to aCc \mid D \\ D &\to bD \mid \varepsilon \end{split}$$

Из правила $S \to AB$ получается любое слово вида $a^nb^nc^k$. Для этого нужно n раз применить правило $A \to aAb$, потом правило $A \to \varepsilon$. Затем k раз применить правило $B \to cB$, потом правило $B \to \varepsilon$.

Из правила $S \to C$ получается любое слово вида $a^n b^k c^n$. Для этого нужно n раз применить правило $C \to aCc$, потом правило $C \to D$. Затем k раз применить правило $D \to bD$, потом правило $D \to \varepsilon$.

Задача 5.

Воспользуемся алгоритмом из книги "Введение в теорию автоматов, языков и вычислений". В задаче 1 был построен автомат допускающий по принимающему состоянию.

Добавим в него состояние q_3 в которое будет переход из каждого принимающего состояния по ε , и будем опустащать стек в состоянии q_3 .

