1 Несобственные интегралы двух типов. Критерий Коши сходимости несобственного интеграла.

1. Пусть функция f определена на промежутке $[a,+\infty)$ и $\forall b \in [a,+\infty] \quad f \in \Re[a,b].$ Предел

$$\lim_{b \to +\infty} \int_{a}^{b} f(x) dx,$$

если он существует и конечен, называют несобственным интегралом первого рода и обозначают символом

$$\int_{a}^{+\infty} f(x)dx$$

Аналогично определяется интеграл

$$\int_{-\infty}^{b} f(x)dx$$

2. Пусть функция f определена на промежутке [a,B), неограничена в окрестности точки B и $\forall b \in [a,B)$ $f \in \Re[a,b]$. Предел

$$\lim_{b \to B-0} \int_a^b f(x) dx,$$

если он существует и конечен, называют несобственным интегралом второго рода и обозначают символом

$$\int_{a}^{B} f(x)dx$$

3. Критерий Коши сходимости несобственного интеграла: Несобственный интеграл $\int_a^w f(x) dx$ сходится \leftrightarrow

$$\forall \epsilon > 0 \quad \exists B \in [a, w) \quad \forall b_1, b_2 \in (B, w) \left| \int_{b_1}^{b_2} f(x) dx \right| < \epsilon$$

Доказательство:

В силу определения несобственного интеграла его сходимость равносильна существованию предела функции $F(b)=\int_a^b f(x)dx$ при $b\to w,\quad b\in [a,w),$ а

$$\int_{b_1}^{b_2} f(x)dx = \int_a^{b_2} f(x)dx - \int_a^{b_1} f(x)dx = F(b_2) - F(b_1).$$

Осталось записать условие критерия Коши существования предела функции F при $b \to w$.

2 Абсолютная сходимость несобственного интеграла. Признаки абсолютной сходимости несобственных интегралов.

- 1. Говорят, что несобственный интеграл $\int_a^w f(x) dx$ абсолютно сходится, если сходится интеграл $\int_a^w |f(x)| dx$.
- 2. $f(x)\geqslant 0 \quad \forall x\in [a,w).$ Тогда интеграл $\int_a^w f(x)dx$ сходится \leftrightarrow функция

$$F(b) = \int_{a}^{b} f(x)dx, \quad b \in [a, w),$$

ограничена.

Доказательство:

Если $f(x) \geqslant 0 \quad \forall x \in [a,w)$, то функция $F(b) = \int_a^b f(x) dx$ неубывает на [a,w) и поэтому она имеет предел при $b \to w, \quad b \in [a,w), \leftrightarrow$ она ограничена.

3. Признак мажорации:

Если $0\leqslant f(x)\leqslant g(x)\quad \forall x\in [a,w)$ и интеграл $\int_a^w g(x)dx$ сходится, то интеграл $\int_a^w f(x)dx$ тоже сходится.

Доказательство:

Если интеграл $\int_a^w g(x)dx$ сходится, то функция

$$G(b) = \int_a^b g(x)dx, \quad b \in [a, w),$$

ограничена. Согласно свойству монотонности несобственного интеграла

$$0 \leqslant F(b) = \int_a^b f(x)dx \leqslant \int_a^b g(x)dx = G(b),$$

и, следовательно, функция F также ограничена. В силу предыдущей теоремы интеграл $\int_a^w f(x) dx$ сходится.

4. Пусть $\forall x \in [a,w) f(x) \geqslant 0, g(x) > 0$ и $\lim_{x \to w} \frac{f(x)}{g(x)} = A, \quad 0 < A < +\infty$. Тогда интегралы $\int_a^w f(x) dx$ и $\int_a^w g(x) dx$ одновременно сходятся или расходятся. Локазательство:

Возьмём $\epsilon = A/2 > 0$. $\exists c \in [a, w)$ такая что $\forall x \in [c, w)$

$$\left| \frac{f(x)}{g(x)} - A \right| < A/2,$$

то есть

$$\frac{A}{2}g(x) < f(x) < \frac{3}{2}Ag(x), \quad x \in [c, w).$$

Остаётся воспользоваться признаком мажорации и свойством с.