Lecture Note: Week 10

MATH 461: Probability Theory, Spring 2021 Daesung Kim

Lecture 24. Sums of Independent Random Variables (Sec 6.3)

In this section, we consider the sum of two independent random variables X and Y. If X and Y are jointly continuous and independent, then the joint density is $f(x,y) = f_X(x)f_Y(y)$ where f_X and f_Y are the densities for X and Y respectively. Then, the cdf of X + Y is

$$F_{X+Y}(t) = \mathbb{P}(X+Y \le t) = \iint_{x+y \le t} f_X(x) f_Y(y) \, dx dy = \int_{\mathbb{R}} F_X(t-y) f_Y(y) \, dy.$$

The cdf of X + Y is called the convolution of F_X and F_Y . Taking derivative with respect to t, we get

$$f_{X+Y}(t) = \int_{\mathbb{R}} f_X(t-y) f_Y(y) \, dy.$$

Example 1. If X and Y are independent uniform random variables on (0,1), find the density of X+Y.

Sum of independent random variables

Suppose X and Y are independent. Let Z = X + Y.

- (i) If $X \sim N(\mu_1, \sigma_1^2)$ and $Y \sim N(\mu_2, \sigma_2^2)$, then $Z \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$.
- (ii) If $X \sim \Gamma(s, \lambda)$ and $Y \sim \Gamma(t, \lambda)$, then $Z \sim \Gamma(s + t, \lambda)$.
- (iii) If $X \sim \text{Bin}(n, p)$ and $Y \sim \text{Bin}(m, p)$, then $Z \sim \text{Bin}(n + m, p)$.
- (iv) If $X \sim \text{Poisson}(\lambda_1)$ and $Y \sim \text{Poisson}(\lambda_2)$, then $Z \sim \text{Poisson}(\lambda_1 + \lambda_2)$.
- (v) If $X \sim \text{NegBin}(r, p)$ and $Y \sim \text{NegBin}(s, p)$, then $Z \sim \text{NegBin}(r + s, p)$.

Example 2. If $X \sim N(0, \frac{1}{2})$ and $Y \sim N(0, \frac{1}{2})$ are independent, then what is $f_{X+Y}(t)$?

Example 3. If $X \sim \text{Poisson}(\lambda_1)$ and $Y \sim \text{Poisson}(\lambda_2)$, then what is $\mathbb{P}(X + Y = n)$?

Further examples

Example 4. The gross weekly sales at a certain restaurant is a normal random variable with mean \$2200 and standard deviation \$230. What is the probability that the total gross sales over the next 2 weeks exceeds \$5000?

Example 5. Let $X \sim U(0,1)$ and $Y \sim \text{Exp}(1)$ be independent. Find the distribution of Z = X + Y.

Lecture 25. Conditional Distribution (Sec 6.4-6)

Suppose X and Y are discrete with the joint pmf p(x,y), that is $\mathbb{P}(X=x,Y=y)=p(x,y)$. Let y satisfy $p_Y(y)=\sum_x p(x,y)>0$. The conditional pmf of X given Y=y is defined by

$$p_{X|Y}(x|y) = \mathbb{P}(X = x|Y = y) = \frac{\mathbb{P}(X = x, Y = y)}{\mathbb{P}(Y = y)} = \frac{p(x, y)}{p_Y(y)}.$$

Note that if X and Y are independent, then $p_{X|Y}(x|y) = p_X(x)$. The conditional cdf of X given Y = y is

$$F_{X|Y}(t|y) = \mathbb{P}(X \le t|Y = y) = \sum_{x \le t} p_{X|Y}(x|y).$$

Example 6. If X and Y are independent Poisson random variables with respective parameters λ_1 and λ_2 , calculate the conditional distribution of X given that X + Y = n.

Suppose X and Y are jointly continuous with joint density f(x, y). For y with $f_Y(y) > 0$, the conditional density of X given Y = y is defined by

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}.$$

If X and Y are independent, then $f_{X|Y}(x|y) = f_X(x)$. Then, the conditional probability and the conditional cdf of X given Y = y can be written as

$$\mathbb{P}(X \in A|Y = y) = \int_A f_{X|Y}(x|y) dx$$
$$F_{X|Y}(t|y) = \mathbb{P}(X \le t|Y = y) = \int_{-\infty}^t f_{X|Y}(x|y) dx.$$

Example 7. Suppose that the joint density of X and Y is given by

$$f(x,y) = \begin{cases} \frac{e^{-\frac{x}{y}}e^{-y}}{y}, & 0 < x, y < \infty, \\ 0, & \text{otherwise.} \end{cases}$$

Find $f_{X|Y}(x|y)$ and $\mathbb{P}(X > 1|Y = y)$.

Bivariate normal random variable

Jointly continuous random variables X and Y are bivariate normal if their density is given by

$$f(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}}e^{-\frac{1}{2(1-\rho^2)}\left((\frac{x-\mu_X}{\sigma_X})^2 + (\frac{y-\mu_Y}{\sigma_Y})^2 - 2\rho\frac{(x-\mu_X)(y-\mu_Y)}{\sigma_X\sigma_Y}\right)}$$

where $\sigma_X, \sigma_Y > 0$, $\rho \in (-1,1)$, and $\mu_X, \mu_Y \in \mathbb{R}$. We denote by

$$\begin{pmatrix} X \\ Y \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} \mu_X \\ \mu_Y \end{pmatrix}, \begin{pmatrix} \sigma_X^2 & \rho \sigma_X \sigma_Y \\ \rho \sigma_X \sigma_Y & \sigma_Y^2 \end{pmatrix} \end{pmatrix}.$$

Proposition 8. (i) $X \sim N(\mu_X, \sigma_X^2)$ and $Y \sim N(\mu_Y, \sigma_Y^2)$. In particular, $\mathbb{E}[X] = \mu_X$, $\mathbb{E}[Y] = \mu_Y$, $\text{Var}(X) = \sigma_X^2$, and $\text{Var}(Y) = \sigma_Y^2$.

(ii) The random variable X given Y = y is normal with mean $\mu_X + \rho \frac{\sigma_X}{\sigma_Y} (y - \mu_Y)$ and variance $\sigma_X^2 (1 - \rho^2)$.

Proof. Let $\overline{x} = \frac{x - \mu_X}{\sigma_X}$ and $\overline{y} = \frac{y - \mu_Y}{\sigma_Y}$, then

$$\begin{split} f(x,y) &= \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)}\left(\overline{x}^2 + \overline{y}^2 - 2\rho\overline{x}\overline{y}\right)} \\ &= \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)}\left(\overline{x} - \rho\overline{y}\right)^2} e^{-\frac{1}{2}\overline{y}^2}. \end{split}$$

Since

$$\begin{split} \int_{\mathbb{R}} e^{-\frac{1}{2(1-\rho^2)}(\overline{x}-\rho\overline{y})^2} \, dx &= \int_{\mathbb{R}} e^{-\frac{1}{2\sigma_X^2(1-\rho^2)}\left(x - \left(\mu_X + \rho\frac{\sigma_X}{\sigma_Y}(y - \mu_Y)\right)\right)^2} \, dx \\ &= \int_{\mathbb{R}} e^{-\frac{1}{2\sigma_X^2(1-\rho^2)}x^2} \, dx \\ &= \sqrt{2\pi\sigma_X^2(1-\rho^2)}, \end{split}$$

we have

$$f_Y(y) = \int_{\mathbb{R}} f(x, y) dx = \frac{1}{\sqrt{2\pi\sigma_V^2}} e^{-\frac{1}{2}\overline{y}^2} = \frac{1}{\sqrt{2\pi\sigma_V^2}} e^{-\frac{(y-\mu_Y)^2}{2\sigma_Y^2}}$$

and so $Y \sim N(\mu_Y, \sigma_Y^2)$. The same argument for X yields $X \sim N(\mu_X, \sigma_X^2)$. A direct computation leads to

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)} = \frac{1}{\sqrt{2\pi\sigma_Y^2(1-\rho^2)}} e^{-\frac{1}{2\sigma_X^2(1-\rho^2)} \left(x - \left(\mu_X + \rho\frac{\sigma_X}{\sigma_Y}(y - \mu_Y)\right)\right)^2}$$

as desired. \Box

Remark 9. The parameter ρ represents how X and Y correlated.

Joint distribution of maximum and minimum

Let X_1, X_2, \dots, X_n be independent jointly continuous random variables with the common cdf F(t). Let $U = \max\{X_1, X_2, \dots, X_n\}$ and $V = \min\{X_1, X_2, \dots, X_n\}$.

Proposition 10. The joint density of U and V is

$$f_{U,V}(u,v) = n(n-1)(F(u) - F(v))^{n-2}f(u)f(v).$$

References

[SR] Sheldon Ross, A First Course in Probability, 9th Edition, Pearson

Department of Mathematics, University of Illinois at Urbana-Champaign $E\text{-}mail\ address$: daesungk@illinois.edu