INT104 Artificial Intelligence

Review

Fang Kang Sichen Liu **Shengchen Li**

Xi'an Jiaotong-Liverpool University

7th May 2024

Naïve Bayes

Play	Yes	Yes	Yes	Yes	Yes	Yes	8 N	Yes	8	8	8	8	Yes	Yes	
Windy	False	True	True	False	False	False	True	False	True	True	False	False	False	True	
Humidity	High	Normal	High	Normal	High	Normal	Norma	Norma	High	High	High	High	Norma	Normal	
Temprature	Hot	Cool	Mild	Hot	Mild	Cool	Cool	Mild	Mild	Hot	Hot	Mild	Cool	Mild	
Outlook	Overcast	Overcast	Overcast	Overcast	Rainy	Rainy	Rainy	Rainy	Rainy	Sunny	Sunny	Sunny	Sunny	Sunny	

Will you play on the day of Mild?

Solution Naïve Bayes

d	0.28	0.43	0.28	
₂	2		-	0.36
Yes	7	4	က	0.64
Temp.	Hot	Mild	C00	d

Ш NIN By this table we have $p(\mathrm{Mild}|\mathrm{Yes}) = \frac{4}{9} = 0.44$ and $p(\mathrm{Mild}|\mathrm{No}) = 0.4$

Posterior
$$p(\text{Yes}|\text{Mild}) = \frac{p(\text{Mild}|\text{Yes})p(\text{Yes})}{p(\text{Mild})} = \frac{0.44 \times 0.64}{0.43} = 0.65$$

Posterior
$$p(\text{No}|\text{Mild}) = \frac{p(\text{Mild}|\text{No})p(\text{No})}{p(\text{Mild})} = \frac{0.4 \times 0.36}{0.43} = 0.33$$

As p(Yes|Mild) > p(No|Mild), it is likely to play.

Exercise

Will the following condition be considered as a proper day for play?

■ Sunny, Windy

■ Overcast, Normal Humidity & Cool

CCP Tables

d	0.28	0.36	0.36	
8	0	Ω	က	0.36
Yes	4	က	Ø	0.64
Outlook	Overcast	Rainy	Sunny	d

d	0.43	0.57		<i>Q</i>
- 8	က	Ŋ	0.36	2
Yes	က	9	0.64	Yes
Wind	True	False	d	Humid

Solution

Sunny, Windy

$$p(\text{Yes}|\text{Sunny, Windy}) = \frac{p(\text{Sunny, Windy}|\text{Yes})p(\text{Yes})}{p(\text{Sunny, Windy})} \propto \\ p(\text{Sunny, Windy}|\text{Yes})p(\text{Yes}) = p(\text{Sunny}|\text{Yes})p(\text{Windy}|\text{Yes})p(\text{Yes}) = 0.22 \times 0.33 \times 0.64 = 0.05$$

$$p(\text{No}|\text{Sunny, Windy}) = \frac{p(\text{Sunny, Windy}|\text{No})p(\text{No})}{p(\text{Sunny, Windy})} \propto p(\text{Sunny, Windy})$$

$$0.6 \times 0.6 \times 0.36 = 0.13$$

As p(Yes|Sunny,Windy) < p(No|Sunny,Windy), so the combination of weather is unlikely to be suitable for playing

Rainy, Normal Humidity & Cool

 $\rho(\text{Yes}|\text{Rainy, Normal, Cool}) = \frac{\rho(\text{Rainy, Normal, Cool}|\text{Yes})\rho(\text{Yes})}{\rho(\text{Rainy, Normal, Cool})} \propto \rho(\text{Rainy, Normal, Cool}) = \rho(\text{Rainy, Normal, Cool}|\text{Yes}) = \rho(\text{Rainy}|\text{Yes})\rho(\text{Normal}|\text{Yes})\rho(\text{Cool}|\text{Yes})\rho(\text{Yes}) = 0.33 \times 0.67 \times 0.33 \times 0.64 = 0.047$

 $\rho(\text{No}|\text{Rainy, Normal, Cool}) = \frac{\rho(\text{Rainy, Normal, Cool}|\text{No})\rho(\text{No})}{\rho(\text{Rainy, Normal, Cool})} \propto \rho(\text{Rainy, Normal, Cool})$ $\rho(\text{Rainy, Normal, Cool}|\text{No}) = \rho(\text{Rainy}|\text{No})\rho(\text{Normal}|\text{No})\rho(\text{Cool}|\text{No})\rho(\text{No}) = 0.4 \times 0.2 \times 0.2 \times 0.36 = 0.0058$

As $\rho({\sf Yes}|{\sf Rainy},{\sf Normal},{\sf Cool})>\rho({\sf No}|{\sf Rainy},{\sf Normal},{\sf Cool}),$ it is likely to play

k-means

Given the following 7 points: A (1.0, 1.0), B (1.5, 2.0), C (3.0, 4.0), D (5.0, 7.0), E (3.5, 5.0), F (4.5, 5.0), G (3.5, 4.5), use *k*-means algorithm to divide all points into two clusters with two initial points A and F.

Shengchen Li XJTLU INT:

Solution

1st iteration

The following table shows the distance between samples and centroids

L	7.5	9	2.5	2.5	-	0	1.5
4	0	1.5	2	10	6.5	5'2	9
	۷	В	ပ	Ω	Ш	ш	

So A, B belong to cluster Z1, whose centroid is (1.25, 1.5). C, D, E, F, G belong to cluster Z2, whose centroid is (3.9, 5.1).

Solution

3rd iteration

The following table shows the distance between samples and centroids

21' 0.75 0.75 0.75 9.25 5.75 6.75	Z2,	7.3	2.8	2.3	2.7	0.8	ŀ	1.3
	, IZ	0.75	0.75	4 25	9.25	5.75	6.75	5.25
		⋖	മ	ပ	△	ш	ш	ഗ

So A, B belong to cluster Z1'. C, D, E, F, G belong to cluster Z2'. There are no points that changes the cluster hence the algorithm is converged.

Examples

Given the following table that shows the distance between samples ("city block distance"), using agglomerative clustering method, draw the final dendrogram obtained.

Single Linkage

Table: 1st round

Table: 2nd round

The resulting dendrograms are:

Single Linkage

| BD ACE | BD 0 | ACE 5 0

Table: 3rd round

The resulting dendrograms are:

X N N

kNN could also be tested though it is very easy