Lecture 6

Students evaluation for the "Manifolds" course: http://evaluation.tu-darmstadt.de/evasys/online.php?pswd=Y5DJH

Chapter 5 Smooth maps

- 5.1 Recap
- 5.2 Rank of a smooth map
- 5.3 Local diffeomorphisms
- 5.4 Immersions and embeddings
- 5.5 Submersions
- 5.6 Critical points and Sard's theorem

5.1 Recap

5.1 Recap

What do we know about maps between smooth manifolds so far?

- What it means for a map $f: M \to N$ to be smooth, or a diffeomorphism.
- ullet The differential $\mathrm{d}f$ of a smooth map.
- ullet How to consider f and compute $\mathrm{d}f$ in charts / local coordinates.

Recall that given charts $(U\ni p,\varphi)$ and $(V\ni f(p),\psi)$, we can look at the map $\hat{f}=\psi\circ f\circ \varphi^{-1}$ ("f in charts", or "coordinate representation of f").

 \hat{f} is a smooth map $\mathbb{R}^m \to \mathbb{R}^n$ (well-defined on $\varphi(U)$ provided U is small enough).

5.1 Recap

5.1 Recap

Let us review some important facts about smooth maps $\mathbb{R}^m \to \mathbb{R}^n$.

Theorem (Inverse function theorem)

Let $f: U \subseteq \mathbb{R}^m \to \mathbb{R}^m$ be a smooth map. Let $x_0 \in U$ s.t. If $\mathrm{d} f_{|_{x_0}}$ is invertible. Then $\exists V \ni x_0$ s.t. $f_V: V \to f(V)$ is a smooth diffeomorphism.

Remark.

- Proof: Banach fixed point theorem for contracting maps between Banach spaces.
- Theorem holds in most other regularity classes *C*.

Theorem (Implicit function theorem)

Let $f: U \subseteq \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}^m$ be a smooth map.

Let $(x_0, y_0) \in U$ s.t. the partial differential $d_1 f_{|(x_0, y_0)} : \mathbb{R}^m \to \mathbb{R}^m$ is invertible.

Then $\exists V \ni (x_0, y_0)$ and a smooth map $\varphi \colon V \cap \mathbb{R}^m \to \mathbb{R}^n$ s.t., for all $(x, y) \in V$:

$$f(x, y) = 0 \Leftrightarrow y = \varphi(x)$$

Rank of a smooth map and the constant rank theorem:

Let $f: U \subseteq \mathbb{R}^m \to \mathbb{R}^n$ be a smooth map.

By definition, the *rank of* f at $x_0 \in U$ is the rank of the linear map $\mathrm{d} f|_{x_0} \colon \mathbb{R}^m \to \mathbb{R}^n$.

Theorem (Constant rank theorem)

Assume f has constant rank near $x_0 \in U$.

There exists diffeos $\varphi \colon U_1 \ni x_0 \to \varphi(U_1) \subseteq \mathbb{R}^m$ and $\psi \colon V \ni f(x_0) \to \psi(V) \subseteq \mathbb{R}^n$ s.t.

$$\psi \circ f \circ \varphi^{-1} = \mathrm{d} f_{|_{x_0}} .$$

Second version:

$$\psi \circ f \circ \varphi^{-1} = (x_1, \dots, x_m) \mapsto (x_1, \dots, x_r, 0, \dots, 0)$$

where r is the rank of f near p.

Proof. Consequence of Inverse function theorem.

See Lee, Thm 4.12 or Lafontaine, Chap. 1 Exercise 10.

5.2 Rank of a smooth map

Let $f: M \to N$ be a smooth map.

Definition

The *rank of* f *at* $p \in M$ is the rank of the linear map $df_{|_p}: T_pM \to T_{f(p)}N$.

Exercise. The rank of f is equal to the rank of the Jacobian matrix of f in any charts.

Proposition. (Upper bound on the rank.) Let $m := \dim M$ and $n := \dim N$.

- By definition, $\operatorname{rk}_p(f) = \dim \operatorname{Im}(\operatorname{d}\!f|_p) \leqslant \dim \operatorname{T}_{f(p)} N = n.$
- By the rank theorem for linear maps, $\dim \ker(\mathrm{d} f|_p) + \mathrm{rk}_p(f) = m$, so $\mathrm{rk}_p(f) \leqslant m$.

In conclusion, $\operatorname{rk}_p(f) \leq \min\{m, n\}$.

Constant rank theorem for maps between smooth manifolds.

Theorem (Constant rank theorem)

Let $f: M \to N$ be a smooth map. Assume f has constant rank $r \in \mathbb{N}$ near $p \in M$.

There exists charts (U, φ) at p and (V, ψ) at f(p) s.t. the map $\hat{f} := \psi \circ f \circ \varphi^{-1}$ is:

$$\mathbb{R}^m \to \mathbb{R}^n$$
$$(x_1, \dots, x_m) \mapsto (x_1, \dots, x_r, 0, \dots, 0)$$

Proof. First choose any charts (U_1, φ_1) at p and (V_1, ψ_1) at f(p). Then apply the constant rank theorem (Euclidean version) to $f_1 := \psi_1 \circ f \circ \varphi_1^{-1}$.

Immersions, submersions, local diffeos, critical points.

Let M and N be a smooth manifolds of dim. m and n respectively. Let $f\colon M\to N$ be a smooth map and let $p\in M$.

Definition

- If $\operatorname{rk}_p(f) = m$, in other words $\operatorname{d} f_{|_p}$ is injective, f is a *immersion at* p.
- If $\mathrm{rk}_p(f) = n$, in other words $\mathrm{d}f_{|_p}$ is surjective, f is a **submersion at** p.
- If $\operatorname{rk}_p(f) = m = n$, in other words $\operatorname{d} f_{|_p}$ is bijective, f is a **local diffeo at** p.
- If $\operatorname{rk}_p(f) = \min\{m, n\}$, p is a regular point of f and f(p) is a regular value. If $\operatorname{rk}_p(f) < \min\{m, n\}$, p is a critical point of f and f(p) is a critical value.

Definition

 $f \colon M \to N$ is a **smooth immersion** [resp. **submersion**, resp. **local diffeo**] if f is smooth and is an immersion [resp. submersion, resp. local diffeo] at p for all $p \in M$.

5.3 Local diffeomorphisms

Let $f: M \to N$ be a smooth map.

Proposition (characterization of a local diffeo)

Let $p \in M$. TFAE (the following are equivalent):

- (i) $(df)_{|_p}$ is invertible.
- (ii) $\exists U \ni x \text{ s.t. } f|_U \colon U \to f(U) \text{ is a diffeomorphism.}$
- (iii) There exists a chart (U, φ) containing p and a chart (V, ψ) containing f(p) such that the map $\hat{f} := \psi \circ f \circ \varphi^{-1}$ is the identity.

Proof. (i) \Leftrightarrow (ii): Follows from inverse function theorem.

- Let $\hat{f} := \psi \circ f \circ \varphi^{-1}$ where (U, φ) is a chart at p and (V, ψ) a chart at f(p).
- $f_{|U}$ is a diffeo $\Leftrightarrow \hat{f} \coloneqq \psi \circ f \circ \varphi^{-1}$ is a diffeo (because ψ and φ are diffeos)
- $(\mathrm{d}f)_{|_p}$ is invertible $\Leftrightarrow (\mathrm{d}\hat{f})_{|_{\mathcal{U}(p)}}$ is invertible (by the chain rule)
- Conclude by inverse function theorem.

(ii) ⇔ (iii): easy.

- If f is a diffeo, take any chart φ at p and put $\psi := \varphi \circ f^{-1}$. (Or: rank theorem.)
- If $\hat{f} := \psi \circ f \circ \varphi^{-1}$ is the identity, then $f = \psi^{-1} \circ \varphi$ is a diffeo.

Definition

A smooth map $f: M \to N$ is a **local diffeo** if f is a local diffeo at p for all $p \in M$.

Proposition

Let $f: M \to N$ be a smooth map. Then f is a diffeomorphism if and only if f is a bijective local diffeomorphism.

Proof: The only thing to show is that if f is a bijective local diffeo, then f^{-1} is smooth. It is enough to show that f^{-1} is locally smooth. Locally, f is a diffeo so f^{-1} is smooth.

Example.

- The map $\mathbb{R} \to S^1$ defined by $t \mapsto e^{it}$ is a local diffeo, but not a global diffeo.
- The induced map $\mathbb{R}/\mathbb{Z} \to S^1$ is a diffeo.

Example.

- Any covering map (fiber bundle with discrete fiber) $\pi: M \to B$ is a local diffeo.
- For example, the complex exponential $\exp \colon \mathbb{C} \to \mathbb{C}^*$ is a local diffeo.
- In particular, if G is a group acting freely and properly discontinuously on a manifold M by diffeos, then the projection map $M \to M/G$ is a local diffeo.

5.4 Immersions and embeddings

Let $f: M \to N$ be a smooth map.

Definition

- f is an immersion at $p \in M$ if $(df)_{|_p}$ is injective.
- f is an immersion if f is an immersion at p for all $p \in M$.

Remark: One must have $m \le n$ (where $m := \dim M$ and $n := \dim N$)

Theorem

f is an immersion at $p \in M$ if and only if there exists a chart (U, φ) at p and a chart (V, ψ) at f(p) such that the map $\hat{f} := \psi \circ f \circ \varphi^{-1}$ is:

$$\mathbb{R}^m \to \mathbb{R}^n$$
$$(x_1, \dots, x_m) \mapsto (x_1, \dots, x_m, 0, \dots, 0).$$

Proof: Particular case of constant rank theorem.

5.4 Immersions and embeddings

Embeddings.

Definition

A map $f \colon M \to N$ is a **smooth embedding** if it is a smooth immersion and a topological manifold.

Recall: topological embedding = homeomorphism to its image.

Question: Is a smooth embedding the same thing as an injective smooth embedding?

Answer: YES if *M* is compact (see Exercise sheet).

NO in general. Example: Let $f: [0, 2\pi) \to \mathbb{R}^2$, $t \mapsto e^{it}$.

Example (Lemniscate). Let $f: (-\pi, \pi) \to \mathbb{R}^2$, $t \mapsto (\sin(2t), \sin t)$.

f is an injective immersion, but not an embedding.

More examples of immersions and embeddings.

Example (dense curve on torus).

- Let $\alpha \in \mathbb{R} \pi \mathbb{O}$ (irrational angle). Let $\gamma: \mathbb{R} \to \mathbb{C}$, $t \mapsto te^{i\alpha}$. This is an embedded straight line in the plane $\mathbb{C} \approx \mathbb{R}^2$.
- Consider the projection $\pi: \mathbb{R}^2 \to T^2 = \mathbb{R}^2/\mathbb{Z}^2$ and the map $\bar{\gamma} = \pi \circ \gamma: \mathbb{R} \to T^2$. $\bar{\gamma}$ is a smooth curve in T^2 , in fact an injective smooth immersion of \mathbb{R} in T^2 .
- However, $\bar{\gamma}$ is not embedding. In fact, the image of $\bar{\gamma}$ is dense in T^2 .

Example (Submanifolds). If $M \subseteq N$ is a submanifold, then the inclusion map $\iota: M \to N$ is a smooth embedding. More on submanifolds in Chapter 6.

Exercise (immersion = local embedding). Show that a smooth map $f: M \subseteq N$ is an immersion iff $\forall x \in M, \exists U \ni x \text{ s.t. } f_{|U} \colon U \to f(U)$ is an embedding.

5.4 Immersions and embeddings

Example (immersed Klein bottle). A representation of the Klein bottle immersed in \mathbb{R}^3 :

Example (immersed projective planes).

The cross-cap and Boy's surface are examples of immersions of $\mathbb{R}P^2$ in \mathbb{R}^3 .

5.5 Submersions

Let $f: M \to N$ be a smooth map.

Definition

- f is an submersion at $p \in M$ if $(df)_{|_{p}}$ is surjective.
- f is an submersion if f is an submersion at p for all $p \in M$.

Remark: One must have $m \ge n$ (where $m := \dim M$ and $n := \dim N$)

Theorem

f is an immersion at $p \in M$ if and only if there exists a chart (U, φ) at p and a chart (V, ψ) at f(p) such that the map $\hat{f} := \psi \circ f \circ \varphi^{-1}$ is:

$$\mathbb{R}^m \to \mathbb{R}^n$$
$$(x_1, \dots, x_m) \mapsto (x_1, \dots, x_n, 0, \dots, 0).$$

Proof: Particular case of constant rank theorem.

Fundamental example. The projection $pr_1: M \times N \rightarrow N$ is a submersion.

More generally:

Theorem

Any smooth fiber bundle $\pi:M\to B$ is a submersion.

Proof. Being a submersion is a local propery.

Locally, $\pi \approx \text{projection of the first factor } pr_1 \colon U \times B \to B$.

Remark. Conversely, is any submersion a smooth fiber bundle?

Answer: NO. Take any fiber bundle, and remove a point from the total space.

Theorem (Ehresmann.) Any proper submersion is a fiber bundle.

Remark. Given a submersion $\pi: M \to B$, what is the relation between smooth maps $N \to Y$ and smooth maps $M \to Y$ that are constant in the fibers of π ? See [Lee, *Smooth manifolds*].

More examples of submersions.

See Chapter 3 and 4 for examples of fiber bundles:

- Projections $M \times N \to N$
- Cylinder and Möbius strip (over S¹)
- Covering maps: $\mathbb{R} \to S^1$, $\mathbb{R}^2 \to T^2$, $S^n \to \mathbb{R}P^n$, ...
- Hopf fibration $S^3 \to S^2$
- Vector bundles, in part. tangent bundles $TM \rightarrow M$

Remark: If $\pi \colon M \to B$ is a smooth fiber bundle and $U \subseteq M$ is open, then $\pi_{|U}$ is still a smooth submersion (but not necessarily a fiber bundle).

5.6 Critical points and Sard's theorem

Let M and N be a smooth manifolds of dim. m and n respectively. Let $f: M \to N$ be a smooth map and let $p \in M$.

Definition

```
If \mathrm{rk}_p(f) = \min\{m,n\}, p is a regular point of f and f(p) is a regular value. If \mathrm{rk}_p(f) < \min\{m,n\}, p is a critical point of f and f(p) is a critical value.
```

Warning.

It is very common to define critical points by $\mathrm{rk}_p(f) < n$ instead of $\mathrm{rk}_p(f) < \min\{m,n\}$. (That makes the statement of Sard's theorem slightly nicer.)

Remark. A smooth map can have many critical points.

For instance, take a constant map: all points of the domain are critical.

However, it has only one critical value.

More generally, Sard's theorem says that critical values are always rare.

Negligible sets in \mathbb{R}^m .

Recall:

- A rectangle in \mathbb{R}^m is a product of intervals $R = [a_1, b_1] \times \cdots \times [a_m, b_m]$.
- The *volume* or *measure* of *R* is $\lambda(R) = |b_1 a_1| \times \cdots \times |b_m a_m|$.
- A set $A \subseteq \mathbb{R}^m$ has (Lebesgue) measure zero or is negligible if: $\forall \varepsilon > 0, \exists \text{ rectangles } (R_n)_{n \in \mathbb{N}} \text{ s.t. } A \subseteq \bigcup_{n \in \mathbb{N}} R_n \text{ and } \sum_{n=0}^{+\infty} \lambda(R_n) \leqslant \varepsilon.$

Definition

Let M be a smooth manifold. A subset $A \subseteq M$ is **negligible** if, for any smooth chart (U, φ) , the set $\varphi(A \cap U)$ is negligible in \mathbb{R}^m .

Remark. It is enough to check for the charts of a smooth atlas. Lemma: If $A \subseteq \mathbb{R}^m$ is negligible and $F \colon U \supset A \to \mathbb{R}^m$ is smooth, then F(A) is negligible.

Exercise. The complement of a negligible set is dense.

Theorem (Sard's theorem)

Let $f: M \to N$ be a smooth map.

- If m < n, then f(M) is negligible in N.
- In any case, the set of critical values of f is negligible in N.

Proof. We admit the proof. It is not very difficult but a bit technical.

- The first point is the easiest.
- For the second point when m = n, see Lafontaine for a short proof.
- For the second point when m > n, see Lee or Hirsch.

Corollary

If $M \subseteq N$ is a (embeddded or immersed) submanifold with m < n, then M is negligible.

Remark: These results fail in the topological category!

- There exists continuous surjective curves $\gamma: [0,1] \to [0,1]^2$ (e.g. Peano).
- There exists embeddings of S^1 in \mathbb{R}^2 of positive measure (Osgood curves).

Chapter 6 Submanifolds

- 6.1 Definition
- 6.2 Characterizations
- 6.3 Tangent bundle to a submanifold
- 6.4 Whitney's theorems

6.1 Definition

Question: what's a good definition of a submanifold?

Definition

Let N be a smooth n-manifold and let $M\subseteq N$ be a subset. M is a **smooth submanifold** of N if $\forall x\in M$, there exists a smooth chart $(U\ni x,\varphi)$ on N s.t. $\varphi(U\cap M)=\varphi(U)\cap \mathbb{R}^m$.

(Roughly speaking, $M \subseteq N$ locally looks like $\mathbb{R}^m \subseteq \mathbb{R}^n$.)

Fact. If M is a smooth submanifold of N, then M is a topo. submanifold of N, and the restriction of the charts (U, φ) as in the definition defines a smooth structure on M.

Proposition (characterization of smooth submanifolds)

Let N be a smooth manifold and let $M \subseteq N$ be a subset. TFAE:

- (i) M is a smooth submanifold of N.
- (ii) M is a smooth manifold, and the inclusion $\iota \colon M \to N$ is a smooth embedding.

Proof.

- (i) \Rightarrow (ii): easy by def. of the smooth structure of M.
- (ii) \Rightarrow (i): Follows from the constant rank theorem.

Definition (embedded and immersed submanifolds)

Let N be a smooth manifold.

- An embedded submanifold is a smooth manifold M equipped with a smooth embedding ι: M → N.
- An immersed submanifold is a smooth manifold M equipped with a smooth immersion ι: M

 N.

Example. Show that the boundary of the unit square $[0,1] \times [0,1]$ is an embedded submanifold of \mathbb{R}^2 , but not a smooth submanifold.

Example. Show that the figure "8" in the plane is not an embedded submanifold, but it can be realized as an immersed submanifold.

Examples. See **Chapter 3** for examples of submanifolds, **Chapter 5** for examples of immersed and embedded submanifolds.

Exercise. Show that an embedded submanifold $M \hookrightarrow N$ is properly embedded iff it is a closed subset of N.

Let us take $N = \mathbb{R}^n$ first.

Theorem

Let $M \subseteq \mathbb{R}^n$ be a subset. The following are equivalent:

- (i) M is a smooth submanifold of dim m.
- (ii) M is locally an embedding of \mathbb{R}^m : $\forall x \in M \ \exists U \ni x \subseteq \mathbb{R}^n$ and a smooth embed. $f \colon V \subseteq \mathbb{R}^m \to \mathbb{R}^n$ s.t. $f(V) = U \cap M$. f is called a **local parametrization** of M.
- (iii) M is locally a fiber (level set) of a submersion: $\forall x \in M \ \exists U \ni x \subseteq \mathbb{R}^n \ \text{and} \ h \colon U \to \mathbb{R}^{n-m} \ \text{s.t.} \ U \cap M = F^{-1}(0).$
- (iv) M is locally the graph of a smooth function: $\forall x \in M \ \exists U \ni x \subseteq \mathbb{R}^n$ and a smooth function $g \colon V \subseteq \mathbb{R}^m \to \mathbb{R}^{n-m}$ such that $M \cap U$ is the graph of g, possibly after permuting coordinates.

Theorem

Let $M \subseteq \mathbb{R}^n$ be a subset. The following are equivalent:

- (i) M is a smooth submanifold of dim m.
- (ii) M is locally an embedding of $\mathbb{R}^m \to \mathbb{R}^n$.
- (iii) M is locally a fiber (level set) of a submersion $\mathbb{R}^n \to \mathbb{R}^{n-m}$.
- (iv) M is locally the graph of a smooth function $\mathbb{R}^m \to \mathbb{R}^{n-m}$.

Proof. Essentially, it all follows from the constant rank theorem.

- (i) \Rightarrow (ii): Let φ be a chart as in the def. of a submanifold. Take $(\varphi_{|_{M}})^{-1}$.
- (i) \Rightarrow (iii): Write $\varphi = (\varphi^1, \dots, \varphi^n)$. Take $h \coloneqq (\varphi^{m+1}, \dots, \varphi^n)$.
- (iii) \Rightarrow (ii), (ii) \Rightarrow (iii), and (ii) \Rightarrow (i): Constant rank theorem.
- (iv) \Rightarrow (iii): Easy (take "h(x, y) = y g(x)")
- (iii) ⇒ (iv): Implicit function theorem.

Exercise: Write the details. Good exercise of differential calculus! (Reference for proof using only the inverse function theorem: [Lafontaine: Chap. 1].)

Remark. Same theorem "in charts" for $N = \mathbb{R}^n$.

Corollary

If $f: M \to N$ is a smooth submersion, then for any $y \in N$, $f^{-1}(y) \subseteq M$ is a smooth submanifold of M of codim. dim N.

Proof. Using charts at $x \in M$ and $y = f(x) \in N$, reduce to open sets of \mathbb{R}^m and \mathbb{R}^n and apply the previous theorem.

Remark. $f^{-1}(y)$ is called a *fiber* of f. It can be empty, it can be disconnected. (A connected component of) $f^{-1}(y)$ is called a *level set* of f. $f^{-1}(y)$ is called a **regular level set** if f is a submersion at all points of $f^{-1}(y)$. More generally, we have:

Corollary

Let $f:M\to N$ be a smooth map. Any regular level set of f is a smooth (properly embedded) submanifold.

The previous corollary is often applied when $N = \mathbb{R}$:

Corollary

Let $f: M \to \mathbb{R}$ be a smooth function. Any regular level sets of f is a smooth **hypersurface** [(connected) submanifold of codimension 1].

Examples of submanifolds defined by submersions.

Conics. Let P(x, y) be a polynomial function of degree 2 in two variables. The set $C \subseteq \mathbb{R}^2$ defined by P = 0 is called a *conic*. If the gradient of P never vanishes (on C), then C is called a regular conic, and is a smooth curve in \mathbb{R}^2 .

Quadrics. Let P(x,y,z) be a polynomial function of degree 2 in three var. The set $C\subseteq\mathbb{R}^3$ defined by P=0 is called a *quadric*. If the gradient of P never vanishes (on C), then C is called a regular quadric, and is a smooth surface in \mathbb{R}^3 .

Go to en.wikipedia.org/wiki/Quadric to see pictures of quadrics.

Projective hypersurfaces. Let $P(x_1,\ldots,x_{m+1})$ be a homogeneous pol. Assume that the gradient of P does not vanish on $\mathbb{R}^{m+1}-\{0\}$. Exercise: The equation P=0 defines a smooth submanifold of $\mathbb{R}P^m$.

Examples of submanifolds defined by submersions.

Special linear group. $SL(n, \mathbb{R})$ is a smooth hypersurface in $M(n, \mathbb{R})$:

Consider the determinant function det: $M(n, \mathbb{R}) \to \mathbb{R}$.

It follows that $SL(n, \mathbb{R})$ is a smooth submanifold of $GL(n, \mathbb{R})$, so it's a matrix Lie group.

Orthogonal group. $O(n, \mathbb{R})$ is a smooth submanifold of $M(n, \mathbb{R})$:

Consider the map $M(n, \mathbb{R}) \to M(n, \mathbb{R})$, $M \mapsto {}^t\!MM$.

It follows that $O(n, \mathbb{R})$ is a matrix Lie group.

Examples of submanifolds defined by (local) parametrizations.

Smooth immersed curves. Let $\gamma: I \to M$ s.t. γ' does not vanish.

Spherical coordinates. (θ, φ) define local parametrizations on S^2 .

6.3 Tangent bundle to a submanifold

Proposition

If $M \subseteq N$ is a smooth submanifold, then $TM \subseteq TM$ is a smooth subbundle.

Proof. The differential of the inclusion $\iota \colon M \to N$ is a smooth injective bundle homomorphism $TM \to TN$.

Remark. Similar statement for immersed and embedded submanifolds.

Example (Submanifolds of \mathbb{R}^n)

If $M \subseteq \mathbb{R}^n$ is a smooth submanifold, then $\forall x \in M$, $T_x M$ is a vector subspace of \mathbb{R}^n .

The affine space through $x \in M$ with underlying vector space $T_x M$ is called the **affine tangent space** to $M \subseteq \mathbb{R}^n$.