

# 第7章 连续变量的统计描述与参数估计

#### 学习目标

- 了解什么是统计描述:用少量数字(即描述指标)和
  图表概括大量原始数据的统计方法
- 掌握统计描述的指标,了解指标的含义和用途
- · 会利用SPSS的相关功能对数据进行统计描述
- 了解什么是参数估计
- 掌握参数估计的指标,了解指标的含义和用途
- · 会利用SPSS的相关功能对数据进行参数估计
- 掌握Bootstrap方法

#### 主要内容

- 7.1 连续变量的统计描述指标体系
- 7.2 连续变量的参数估计指标体系
- 7.3 案例
- 7.4 Bootstrap方法



# 7.1 连续变量的统计描述指标体系

- 针对不同测量尺度的变量,有不同的描述指标和统计图形与之对应:
  - -连续变量(Scale):均值、中位数、标准差、方差、偏度系数、峰度系数、直方图、箱图、P-P图、Q-Q图、线图、散点图等。
  - 分类变量(Norminal或Ordinal): 众数(Mode)、比、率、条图、饼图等。

## 连续变量的统计描述指标体系

- 集中趋势(Central Tendency): 描述数据的平均水平,如均数(Mean)、几何均数(G)、中位数(Median)、众数(Mode)等。
- 离散趋势(Dispersion Tendency): 描述数据与平均水平的偏离,如方差(Variance)、标准差(Std.Deviation)、全距(Range)等。
- · 分布特征(Distribution Tendency): 描述数据的 分布情况,如偏度系数和峰度系数。



# 7.1.1 集中趋势的描述指标

## 算术均数(Arithmetic Mean)

- 简称均数(Mean),有总体均数( $\mu$ )和样本均数( $\overline{X}$ )之分
- 适用于对称分布,特别是正态分布的资料,不适用于偏态分布的资料(为什么呢?)
- 均数的计算方法

#### 中位数 (Median)

- 中位数是一组观察值的位置平均数:将一组数据按从小到大排好,处于中间位置上的数。
  - 注意:观察值必须先排好序。
- 用于描述偏态分布资料的中心趋势,它不受两端 特大、特小值的影响,当分布末端无确切数据时 也可计算。

## 其他集中趋势描述指标

- · 截尾均数(Trimmed Mean)
  - 数据排序后按照一定比例去掉两端的数据再求均数。
  - 适用于两端有极端值的资料。
  - 常用5%截尾均数(左右两端各去掉5%)。

## 其他集中趋势描述指标

- 几何均数 (Geometric Mean, G)
  - 适用于呈倍数关系的等比资料或对数正态分布的资料, 尤其是对数正态分布的计量资料。
  - -应用中应注意观察值不能同时有正有负。
  - 同一资料算得的几何均数小于算术均数。

## 其他集中趋势描述指标

- · 众数 (Mode)
  - 样本数据中出现频次最高的数值
  - 适用于单峰数据, 反映出现频次最高的数据情况

- · 调和均数(Harmonic Mean)
  - -观察值倒数的均数的倒数,较少使用



# 7.1.2 离散趋势的描述指标

## 引例

## • 两组数据:

- A公司6个月的销售额(单位:万元):36,33,39,36,37,35
- -B公司6个月的销售额(单位:万元):23,29,38,35,40,51
- -两个公司的平均销售额相等,均为36万元/月, 但两组数据的离散程度不同。

## 离散趋势指标与集中趋势指标的关系

- 对连续变量的描述,需要将集中趋势和离散趋势 结合起来,才能对其分布有全面的认识。
- 离散趋势指标是用来衡量集中趋势指标代表性好坏的,一般来讲,离散程度越低,集中趋势指标代表数据平均水平的程度越高。

## 全距(Range,R)

- 又称极差,即最大和最小观察值之间的间距,用 全距描述资料的离散程度简单明了。
- 不能反映观察值的整个变异度。
- 用于预备性检查,大体上了解数据的分布范围, 以确定随后的分析方法。

## 四分位间距

- 四分位数:将一组数据按从小到大排好,进行四等分,三个分割点上对应的数据称为四分位数,分别为下四分位数 $Q_{L}$ 、中位数和上四分位数 $Q_{L}$ 。
- 四分位间距  $Q = Q_{\rm u} Q_{\rm L_o}$
- 四分位间距比极差稳定,但仍未考虑每个观察值的变异度。
- 适用于偏态分布的资料,特别是末端无确切数据时。

#### 百分位数 (Percentile)

- 百分位数是一个位置指标,用 $P_x$ 表示。
- $P_{50}$ 实际上就是中位数, $P_{25}$ 实际上就是下四分位数  $Q_{\rm L}$ , $P_{75}$ 实际上就是上四分位数 $Q_{\rm u}$ 。
- $P_{97.5}$ - $P_{2.5}$ 也可以用来反映一组数据的离散程度。

## 方差(Variance) 标准差(Standard Deviation)

- · 离均差平方和(sum of squares of deviations from mean, SS)可用来描述数据的变异度。
- SS的均数(即方差)不受观察值个数的影响,用
  来描述数据的离散程度更好。

• 总体方差: 
$$\sigma^2 = \frac{\sum (x_i - \mu)^2}{N}$$

• 样本方差: 
$$s^2 = \frac{\sum (x_i - \overline{X})^2}{n-1}$$

## 方差(Variance) 标准差(Standard Deviation)

- 因方差的单位是原单位的平方,所以使用不方便。方差的算术平方根,即标准差,是一个更好的指标。
- 标准差也有总体标准差和样本标准差之分

• 总体标准差: 
$$\sigma = \sqrt{\frac{\sum (x_i - \overline{X})^2}{N}}$$

• 样本标准差: 
$$s = \sqrt{\frac{\sum (x_i - \overline{X})^2}{n-1}}$$

方差(Variance) 标准差(Standard Deviation)

- 适用范围:
  - -方差和标准差适合于对称分布,特别是 正态分布及近似正态分布资料。

## 变异系数 (Coefficient of Variation, CV)

- 当比较多组资料的变异度时,如果出现下列情况,可利用变异系数进行变异度的比较:
  - -均数相差悬殊
  - 数据资料的单位不同

• 变异系数实际上是标准差占均数的百分比:

$$CV = S / \overline{X}$$



# 7.1.3 分布特征的描述指标

## 偏度

· 偏度(Skewness):用来描述变量取值分布形态的统计量, 指分布不对称的方向和程度。

左偏(负偏)

右偏(正偏)



## 偏度系数

• 偏度系数:  $g_1 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^3 / s^3$ 

 $g_1$ 的取值范围:  $-3 < g_1 < 3$ :

 $g_1 < 0$ : 左偏(负偏);  $g_1 > 0$ : 右偏(正偏)

 $g_1$ 越接近0,分布的偏斜度越小

 $g_1$ 越接近±3,分布的偏斜度越大

## 峰度

- · 峰度(Kurtosis): 用来描述变量取值分布形态陡缓程度的统计量,是指分布图形的尖峭程度或峰凸程度。
- 峰度有三种:
  - 尖顶峰
  - 正态峰
  - 平顶峰



## 峰度系数

• 峰度系数:  $g_2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^4 / s^4 - 3$ 

 $g_2 > 0$ : 尖顶峰

 $g_2 = 0$ :正态峰

 $g_2 < 0$ : 平顶峰



# 7.1.4 SPSS中的相应功能

# Analyze (分析) → Descriptive Statistics (描述统计)

- Frequencies过程(频率):产生原始数据的频数表,计算多种描述指标,绘制相关统计图。
- Descriptives过程(描述):适合连续变量,计算 多种描述指标,不能绘图。
- Explore 过程(探索): 对连续数据资料分布状况不清楚时进行探索分析,计算多种描述指标,绘制多种统计图等。

## Frequencies过程(频率)

- 产生频数表,对连续变量和分类变量资料都适用。
- 计算常用的统计 指标、按要求给 出某百分位点的 数值。
- 常用的条图,饼 图等统计图。



## Frequencies过程(频率)



## Descriptive 过程(描述)

- 进行一般性的统计描述,适用于正态分布资料
- 与Frequencies的区别:
  - 不能绘制统计图
  - 计算的统计量较少
  - 用于连续变量



## Descriptive 过程(描述)



## Explore 过程(探索)

- 若对资料的性质、分布特点等完全不清楚, 和用该过程对数据进行初步了解
  - 主对话框: 可加入分组变量
  - 计算多个统计量
  - 给出多种统计图
  - 进行简单的参数估计



# Explore 过程(探索)





## 7.2 连续变量的参数估计指标体系

### 总体均值的点估计

 总体均值的点估计:选定一个适当的样本统计量 值作为总体均值的估计值,如将样本均值作为总 体均值的点估计值。

## 总体均值的区间估计

 总体均值的区间估计:给出一个具有较大可信度
 95%(或99%)的包含总体均值的区间,该区间称 为总体均值的置信度为95%(或99%)的置信区 间。

#### SPSS中的相应功能

- Explore (探索) 过程中
  - 可以直接给出总体均值95%的置信区间(区间估计)
  - 提供总体均值的M-估计量(点估计)





# 7.3 案例

- · 教材自带数据: CCSS\_Sample.dav
- 要求:对数据文件中的信心总指数index1、现状指数index1a和预期指数index1b进行统计描述,并计算出95%个体参考值范围。

#### • 步骤:

- 进入"频率"菜单进行统计描述
- 取消左下方"显示频率表格"复选框
- 选择三个变量到"变量"框
- 点击"统计量"按钮设置统计量





|      |      | 統計資料     |          |          |
|------|------|----------|----------|----------|
|      |      | 总指数      | 现状指数     | 预期指数     |
| N    | 有效   | 1147     | 1147     | 1147     |
|      | 遺漏   | 0        | 0        | 0        |
| 平均數  |      | 95.8935  | 99.2227  | 94.0598  |
| 中位數  |      | 93.7280  | 88.0359  | 96.8570  |
| 標準偏差 |      | 20.99710 | 28.43333 | 23.11645 |
| 變異數  |      | 440.878  | 808.454  | 534.370  |
| 最小值  |      | .00      | .00      | .00      |
| 最大值  |      | 156.21   | 176.07   | 145.29   |
| 百分位數 | 2.5  | 46.8640  | 44.0180  | 48.4285  |
|      | 25   | 85.9174  | 88.0359  | 84.7499  |
|      | 50   | 93.7280  | 88.0359  | 96.8570  |
|      | 75   | 109.3494 | 110.0449 | 108.9641 |
|      | 97.5 | 132.7814 | 154.0629 | 133.1784 |

- · 教材自带数据: CCSS\_Sample.dav
- · 要求:对数据文件中的信心总指数index1、现状指数index1a和预期指数index1b进行统计描述。

#### • 步骤:

- 进入"描述"菜单进行统计描述
- 选择三个变量到"变量"框
- 点击"选项"按钮进行设置





| 描述性統計資料          |           |            |               |                |               |  |  |  |  |
|------------------|-----------|------------|---------------|----------------|---------------|--|--|--|--|
| 总指数              | N<br>1147 | 最小值<br>.00 | 最大值<br>156.21 | 平均數<br>95.8935 | 標準偏差 20.99710 |  |  |  |  |
| 现状指数             | 1147      | .00        | 176.07        | 99.2227        | 28.43333      |  |  |  |  |
| 预期指数             | 1147      | .00        | 145.29        | 94.0598        | 23.11645      |  |  |  |  |
| 有效的 N (listwise) | 1147      |            |               |                |               |  |  |  |  |

- · 教材自带数据: CCSS\_Sample.dav
- · 要求: 分月份对总指数index1进行统计描述,以 详细了解其分布情况。

#### • 步骤:

- 进入"探索"菜单进行统计描述
- 设置因变量和因子
- 点击"统计量"按钮设置统计量





描述性統計資料

|     | 月份     |              |    | 統計資料     | 標準錯誤    |
|-----|--------|--------------|----|----------|---------|
| 总指数 | 200704 | 平均數          |    | 98.3363  | 1.09239 |
|     |        | 95% 平均數的信賴區間 | 下限 | 96.1866  |         |
|     |        |              | 上限 | 100.4861 |         |
|     |        | 5% 修整的平均值    |    | 98.9930  |         |
|     |        | 中位數          |    | 101.5387 |         |
|     |        | 變異數          |    | 357.994  |         |
|     |        | 標準偏差         |    | 18.92074 |         |
|     |        | 最小值          |    | 31.24    |         |
|     |        | 最大值          |    | 140.59   |         |
|     |        | 範圍           |    | 109.35   |         |
|     |        | 內四分位距        |    | 23.43    |         |
|     |        | 偏斜度          |    | 535      | .141    |
|     |        | 峰度           |    | .768     | .281    |
|     | 200712 | 平均數          |    | 94.1391  | 1.30292 |
|     |        | 95% 平均數的信賴區間 | 下限 | 91.5752  |         |
|     |        |              | 上限 | 96.7030  |         |
|     |        | 5% 修整的平均值    |    | 95.2468  |         |
|     |        | 中位數          |    | 93.7280  |         |
|     |        | 變異數          |    | 516.071  |         |

M-Estimators

|     | 月份     | Huber's M-<br>Estimator <sup>a</sup> | Tukey's<br>Biweight <sup>b</sup> | Hampel's M-<br>Estimator <sup>c</sup> | Andrews'<br>Wave <sup>d</sup> |  |
|-----|--------|--------------------------------------|----------------------------------|---------------------------------------|-------------------------------|--|
| 总指数 | 200704 | 99.6194                              | 100.3020                         | 99.5448                               | 100.3332                      |  |
|     | 200712 | 95.7921                              | 96.5184                          | 95.7521                               | 96.5143                       |  |
|     | 200812 | 91.0241                              | 91.2941                          | 91.0482                               | 91.2996                       |  |
|     | 200912 | 100.3076                             | 100.0637                         | 100.6882                              | 100.0618                      |  |

- a. The weighting constant is 1.339.
- b. The weighting constant is 4.685.
- c. The weighting constants are 1.700, 3.400, and 8.500
- d. The weighting constant is 1.340\*pi.

百分位數

|            |     |        |         | 百分位數    |         |          |          |          |          |
|------------|-----|--------|---------|---------|---------|----------|----------|----------|----------|
|            |     | 月份     | 5       | 10      | 25      | 50       | 75       | 90       | 95       |
| 加權平均 (定義1) | 总指数 | 200704 | 62.4854 | 78.1067 | 85.9174 | 101.5387 | 109.3494 | 117.1600 | 124.9707 |
|            |     | 200712 | 54.6747 | 62.4854 | 85.9174 | 93.7280  | 109.3494 | 117.1600 | 124.9707 |
|            |     | 200812 | 54.6747 | 62.4854 | 78.1067 | 93.7280  | 101.5387 | 117.1600 | 117.1600 |
|            |     | 200912 | 78.1067 | 78.1067 | 85.9174 | 101.5387 | 109.3494 | 132.7814 | 140.5920 |
| Tukey 的樞紐  | 总指数 | 200704 |         |         | 85.9174 | 101.5387 | 109.3494 |          |          |
|            |     | 200712 |         |         | 85.9174 | 93.7280  | 109.3494 |          |          |
|            |     | 200812 |         |         | 78.1067 | 93.7280  | 101.5387 |          |          |
|            |     | 200912 |         |         | 85.9174 | 101.5387 | 109.3494 |          |          |

極端值

|     | 月份     |    |   | 個案編號 | 數值      |
|-----|--------|----|---|------|---------|
| 总指数 | 200704 | 最高 | 1 | 105  | 140.59  |
|     |        |    | 2 | 158  | 140.59  |
|     |        |    | 3 | 184  | 140.59  |
|     |        |    | 4 | 194  | 140.59  |
|     |        |    | 5 | 288  | 140.59  |
|     |        | 最低 | 1 | 258  | 31.24   |
|     |        |    | 2 | 230  | 31.24   |
|     |        |    | 3 | 248  | 46.86   |
|     |        |    | 4 | 140  | 46.86   |
|     |        |    | 5 | 72   | 46.86   |
|     | 200712 | 最高 | 1 | 407  | 148.40  |
|     |        |    | 2 | 408  | 148.40  |
|     |        |    | 3 | 311  | 132.78  |
|     |        |    | 4 | 372  | 132.78  |
|     |        |    | 5 | 382  | 132.78ª |
|     |        | 最低 | 1 | 397  | .00     |
|     |        |    | 2 | 577  | 15.62   |



# 7.4 Bootstrap方法

#### 功能

- 通过更多的样本来:
  - 判断原参数估计值是否准确(针对参数点估计)
  - 计算出更准确的参数的置信区间(针对参数区间估计)

### 案例

· 对CCSS\_Sample.sav 中总指数的均值、标 准差进行Bootstrap 方法的参数点估计和 区间估计。

#### • 实现过程:

- "分析"-> "描述统计" -> "描述"
- 将"总指数"选入"变量"框
- 点击"统计量"按钮 后选中均值和标准差
- 点击"Bootstrap"接钮后,如右设置



# Bootstrap方法的参数估计结果

#### Descriptive Statistics

|                    |                |           | Bootstrap <sup>a</sup> |            |                         |          |  |  |
|--------------------|----------------|-----------|------------------------|------------|-------------------------|----------|--|--|
|                    |                |           |                        |            | 95% Confidence Interval |          |  |  |
|                    |                | Statistic | Bias                   | Std. Error | Lower Upper             |          |  |  |
| 总指数                | Ν              | 1147      | 0                      | 0          | 1147                    | 1147     |  |  |
|                    | Minimum        | .00       |                        |            |                         |          |  |  |
|                    | Maximum        | 156.21    |                        |            |                         |          |  |  |
|                    | Mean           | 95.8935   | 0132                   | .6197      | 94.6473                 | 97.0983  |  |  |
|                    | Std. Deviation | 20.99710  | 01762                  | .55390     | 19.87022                | 21.96896 |  |  |
| Valid N (listwise) | N              | 1147      | 0                      | 0          | 1147                    | 1147     |  |  |

a. Unless otherwise noted, bootstrap results are based on 1000 bootstrap samples

# THE END