<u>Print and answer</u> all questions found below. Please bring your completed worksheet to the <u>Seminar Class</u>. ¹

Question 1

(a) Explain how a battery generates an electric current in a closed circuit.
(b) Calculate the current flowing through the circuit if the battery provides a potential of 9 V and the resistance is 18 ohms.
(c) Discuss the effect of increasing the battery voltage on the current.

 $^{^{\}rm 1}$ It is assumed that you have access to the standard physical constants.

Question 2

A simple and common technique for accelerating electrons is shown in Figure below, where there is a uniform electric field between two plates. Electrons are released, usually from a hot filament, near the negative plate, and there is a small hole in the positive plate that allows the electrons to continue moving.

- (a) Calculate the acceleration of the electron if the field strength is $2.50 \times 10^4 N/C$.
- (b) Explain why the electron will not be pulled back to the positive plate once it moves through the hole

HOIC.
Question 3
A small office-building air conditioner operates on 408-V AC and consumes 50.0 kW. (a) What is its effective resistance?
(b) What is the cost of running the air conditioner during a hot summer month when it is on 8.00 h per day for 30 days and electricity costs 0.5 RMB/kW·h?

Question 4

An 1800-W toaster, a 1400-W electric frying pan, and a 75-W lamp are plugged into the same outlet in a 15-A, 120-V circuit. The three devices are in parallel when plugged into the same socket.

• • •
••••
••••
••••
the
••••
••••
••••
••••
••••
••••
••••

Question 6

How much charge does a 12 V battery have to supply to fully charge 2.5 μF capacitor and a 5 μF capacitor when they are:
(a) in parallel
(b) in series
(c) How much energy does the battery have to supply in each case?

Question 7

A parallel-plate vacuum capacitor has 8.38 J of energy stored in it. The separation between the plates is 2.30 mm. If the separation is decreased to 1.15 mm, what is the energy stored

- (a) if the capacitor is disconnected from the potential source so the charge on the plates remains constant, and
- (b) if the capacitor remains connected to the potential source so the potential difference between the plates remains constant?

	A plate area
Question 8	
each plate. The plates are 0.600 mm (a) What is the potential difference between	-
(b) What is the area of each plate?	
(c) What is the electric-field magnitude	•
(d) What is the surface charge density of	on each plate?

Extension Questions

Question 9

What is the capacitance per unit length (F/m) of a coaxial cable whose inner conductor has a 1.0 mm diameter, and the outer cylindrical sheath has a 5.0 mm diameter? Assume the space between is filled with air.

•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
••••••	•••••	•••••	•••••	•••••		•••••	•••••		••••••
•••••	•••••	•••••		•••••		•••••			•••••
•••••	•••••	•••••		•••••		•••••			•••••
•••••	•••••	•••••		•••••		•••••	•••••		••••••
•••••	•••••	•••••		•••••		•••••			•••••
••••••	•••••	•••••	•••••	•••••		•••••	•••••		•••••
		•••••							•••••
		•••••							
•••••	•••••	•••••							
		•••••							
••••••	••••••	•••••	••••••	••••••	••••••••	••••••		•	••••••
••••••							•••••		••••••
••••••	•••••	•••••	•••••	•••••	•••••••	•••••	••••••	•••••	••••••

Question 10

A large metal sheet of thickness l is placed between, and parallel to, the plates of the parallel-plate capacitor as shown in the figure below. It does not touch the plates and extends beyond their edges.

- (a) What is now the net capacitance in terms of A, d, and l?
- (b) If l = 0.40d, by what factor does the capacitance change when the sheet is inserted?

				•••••
•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
		•••••		
				•••••
				•••••
				•••••
				•••••
				•••••
				•••••
				•••••
				•••••
				•••••
				•••••
				•••••
				•••••
				•••••
				•••••
				•••••
				•••••
				•••••
				•••••

Question 11

Three conducting plates, each of area A, are connected as shown in the figure below.

- (a) Are the two capacitors thus formed connected in series or in parallel?
- (b) Determine capacitance, C, as a function of d_1 , d_2 , and A. Assume $d_1 + d_2$ is much less than the dimensions of the plates.
- (c) The middle plate can be moved (changing the values of d_1 and d_2), to vary the capacitance of the system. What are the minimum and maximum values of the net capacitance?

