

COMPLEMENTARY ALLOY-JUNCTION GERMANIUM TRANSISTOR

High-Frequency Transistors for Computer and Switching Applications

Close parameter control and the JEDEC TO-5 welded package ensure device reliability and stable characteristics

ACTUAL SIZE

qualification testing

To ensure maximum reliability, stability, and long life, all units are aged at 100°C for 100 hours minimum prior to electrical characterization. All transistors are thoroughly tested for complete adherence to specified design characteristics. In addition, continuous qualification tests are made comprising temperature-humidity cycling, shock, and vacuum leak testing under rigid in-process control procedures.

mechanical data

Metal case with glass-to-metal hermetic seal between case and leads. Unit weight is approximately 1 gram. These units meet JEDEC outline TO-5 and E3-44 base dimensions.

THE BASE IS CONNECTED INTERNALLY TO THE CASE.

maximum ratings at 25°C Case Temperature (unless otherwise noted)

POLARITIES SHOWN ARE FOR P-N-P TYPES

	2N1302, 3	2N1304, 5	2N1306, 7	2N1308, 9	Units					
Collector-Base Voltage*	(25) —30	(25) —30	(25) — 30	(25) — 30	٧					
Emitter-Base Voltage	-25	-25	-25	- 25	٧					
Collector-Emitter Voltage	-25	-20	<u> </u>	- 15	· ·					
Collector Current	-300	-300	-300	—300	ma					
Total Device Dissipationt	300	300	300	300	mw					
Storage Temperature Range		-65 to +100								
					1					

^{*} Values in parentheses apply to N-P-N devices only.

t Derate 5.0 mw/°C increase in case temperature over 25°C. The power rating in free air at 25°C is 150 mw.

N-P-N

			2N1302			2N1304			2N1306			2N1308		
PARAMETER AND TEST CONDITIONS		Min.	Design Center	Max.	Min.	Design Center	Max.	Min.	Design Center	Max.		Design Center	Max.	Unit
V _{PT}	Punch-Through Voltage*	+25			+20			+15			+15			V
ICBO	Collector Reverse Current V _{CB} = +25v; I _E = 0		+3	+6		+3	-+6		+3	+6		+3	+6	μа
I _{EBO}	Emitter Reverse Current V _{EB} = +25v; I _C = 0		+2	+6		+2	-+-6		+2	6		+2	+6	μa
I _{BX}	Total Base Reverse Current $V_{CB} = +20v$; $V_{EB} = +10v$		+3	+8		+3	+8		+3	+8		+3	+8	μа
h _{FE}	dc Forward Current Transfer Ratio $I_C = 10ma$; $V_{CE} = 1v$	20	50		40	70	200	60	100	300	80	150		
h _{FE}	dc Forward Current Transfer Ratio I _C = 200ma; V _{CE} = 0.35v	10			15			20			20			
V _{BE}	Base-Emitter Voltage I _C =10ma; I _B =0.5ma	+0.25	+0.35	+0.40	+0.20	+0.30	+0.35	+0.20	+0.26	+0.32	+0.20	+0.24	+0.30	v
V _{CE(sat)}			+0.10	+0.20		+0.10	0.20		+0.10	+0.20		+0.10	+0.15	V V V
Cob	Output Capacitance $V_{CB} = +5v$; $I_E = 0$; $f = 1mc$			20			20			20			20	μμf
Cib	Off Input Capacitance V _{EB} =5v; I _C =0; f=1mc		10			10			10			10		μμf
f∝ b	$\begin{array}{c} \text{Alpha-Cutoff Frequency} \\ \text{V}_{\text{CB}} = + 5 \text{v}; \text{I}_{\text{E}} = 1 \text{ma}. \end{array}$	3	4.5		5	8		10	12		15	20		mc
Switching	Speeds (measured in Switching Speed a	and Store	ed Base	Charge	test circ	uits sho	wn)							
t _d	Delay Time		.12			.10			.08			.08		μsec
t _r	Rise Time		.70			.45			.22			.22		μSec
ts	Storage Time		.50			.50			.50			.50		μsec
t _f	Fall Time		.80			.60			.50			.40		μSec
t _t	Total Switching Time		2.0			1.6			1.3			1.1		μsec
Qs	Stored Base Charge		1000			720			660			600	-	μμCOU

* V_{PT} is determined by measuring the emitter floating potential V_{EBF} . The collector voltage, V_{CB} , is increased until V_{EBF} =+1 volt; this value V_{CB} = V_{PT} .

CIRCUIT APPLICATIONS

COMPLEMENTARY CURRENT MODE SWITCHES (TYPICAL NON-SATURATING SWITCH CASCADE CAPABLE OF OPERATION AT A 3mc RATE)

P-N-P

			2N1303		2N1305				2 N 1307		2N1309			
PARAMETER AND TEST CONDITIONS		Min.	Design Center	Max.	Min.	Design Center	Max.	Min.	Design Center	Max.		Design Center	Max.	Unit
V _{PT}	Punch-Through Voltage*	-25			-20)		-15			-15			V
I _{CBO}	Collector Reverse Current V _{CB} = -25v; I _E = 0		-3	-6		-3	-6		-3	-6		-3	-6	μа
I _{EBO}	Emitter Reverse Current V _{EB} = -25v; I _C = 0		2	6		-2	6		-2	-6		-2	-6	μа
I _{BX}	Total Base Reverse Current V _{CB} = -20v; V _{EB} = -10v		-3	-8		-3	-8		-3	-8		-3	8	μа
h _{FE}	dc Forward Current Transfer Ratio $I_E = -10$ ma; $V_{CE} = -1v$	20	50		40	70	200	60	100	300	80	150		
h _{FE}	dc Forward Current Transfer Ratio $I_C = -200$ ma; $V_{CE} = -0.35$ v	10			15	5		20			20			
V _{BE}	Base-Emitter Voltage I _C = -10ma; I _B = -0.5ma	-0.25	0.35	0.40	0.20	0.30	-0.35	-0.20	0.26	-0.32	0.20	-0.24	-0.30	v
V _{CE(sat)}	$ \begin{array}{l} \text{Collector-Emitter Saturation Voltage} \\ \textbf{I}_{\textbf{C}} = -10\text{ma}; \textbf{I}_{\textbf{B}} = -0.5\text{ma} \\ \textbf{I}_{\textbf{C}} = -10\text{ma}; \textbf{I}_{\textbf{B}} = -0.25\text{ma} \\ \textbf{I}_{\textbf{C}} = -10\text{ma}; \textbf{I}_{\textbf{B}} = -0.17\text{ma} \\ \textbf{I}_{\textbf{C}} = -10\text{ma}; \textbf{I}_{\textbf{B}} = -0.13\text{ma} \\ \end{array} $		-0.10	0.20		-0.10	0.20		-0.10	-0.20		-0.10	-0.15	V V V
Cob	Output Capacitance V _{CB} = -5v; I _E = 0; f = 1mc			20			20			20			20	μμf
Cib	Off Input Capacitance VEB=-5v; IC=0; f=1mc		7			7			7			7		μμf
f∝b	Alpha-Cutoff Frequency V _{CB} = -5v; I _E = 1ma	3	4.5		5	8		10	12		15	20		mc
Switching	Speeds (measured in Switching Speed	and Sto	ored Base	e Charge	e test c	ircuits sh	own)							
t _d	Delay Time		.10			.08			.06			.05		μSec
t _r	Rise Time		.40			.28			.20			.15		μsec
ts	Storage Time		.90			.80			.80			.70		μSec
t _f	Fall Time		.60			.45			.35			.25		μsec
t _t	Total Switching Time		2.0			1.6			1.3			1.1		μsec
Qs	Stored Base Charge		1200			1000			800			700		μμcoul

^{*} V_{PT} is determined by measuring the emitter floating potential V_{EBF} . The collector voltage, V_{CB} , is increased until $V_{EBF} = -1$ volt; this value $V_{CB} = V_{PT}$.

CIRCUIT FOR DETERMINING VALUE OF STORED BASE CHARGE

DESIGN CHARACTERISTICS

(All curves apply to both P-N-P and N-P-N except where otherwise indicated)

DESIGN CHARACTERISTICS

(All curves apply to both P-N-P and N-P-N except where otherwise indicated)

EXAS INSTRUMENTS

IN C O R P O R A T E D

SEMICONDUCTOR COMPONENTS DIVISION
P. O. BOX 312 • 13500 N CENTRAL EXPRESSWAY

DALLAS. TEXAS

TO SUPPLY THE BEST PRODUCTS POSSIBLE, TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME IN ORDER TO IMPROVE DESIGN.