

PERFORMANCE ANALYSIS

CS212: Data Structure

Outline

- Performance analysis
 The copletty
 - By experiment
 - By analysis
- Growth rate of a function
- Big O notation

Introduction

- We saw two implementations of the ADT List, a linked implementation and an array implementation.
 - The question that we want to answer now: which implementation gives a better performance?
- In general, when having different algorithms that solve the same problem, how to compare their performances?
 Which one is better?
- we need to define what we mean by best.
 - time complexity—the time it takes to execute
 - space complexity—the memory it needs to execute.

Introduction

Performance analysis:

- The process of measuring the complexity of algorithms
 - We will concentrate on the time complexity of algorithms,
- There are two ways to compare algorithms:
 - **Experimental analysis**: compare the running time for different input sizes.
 - Theoretical analysis: analyze the algorithms independently of the implementation (hardware/software).

Experimental analysis

- Most algorithms transform input objects into output objects.
- The running time of an algorithm typically grows with the input size.
- Average case time is often difficult to determine.
- We focus on the worst case running time.
 - Easier to analyze
 - Crucial to applications such as games, finance and robotics

Experimental analysis

Write a program implementing the algorithm.

Run the program with inputs of varying 7000 size and composition.

 Use a method like System.currentTimeMillis()
 to get an accurate measure of the actual running time.

Plot the results

Experimental analysis

Limitations:

- It is necessary to implement the algorithm, which may be difficult.
- Results may not be indicative of the running time on other inputs not included in the experiment.
- In order to compare two algorithms, the same hardware and software environments must be used (depends on them).

- Uses a high-level description of the algorithm instead of an implementation.
- Characterizes running time as a function of the input size, *n*.
- Takes into account all possible inputs.
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment.

Pseudocode:

- High-level description of an algorithm.
- More structured than English prose.
- Less detailed than a program.
- Preferred notation for describing algorithms.
- Hides program design issues.

Example: find max element of an array

Algorithm arrayMax(A, n)
Input array A of n integers
Output maximum element of A

 $currentMax \leftarrow A[0]$ for $i \leftarrow 1$ to n - 1 do
 if A[i] > currentMax then
 $currentMax \leftarrow A[i]$ return currentMax

Pseudocode Details:

- Control flow
 - if ... then ... [else ...]
 - while ... do ...
 - repeat ... until ...
 - for ... do ...
 - Indentation replaces braces
- Method declaration

```
Algorithm method (arg [, arg...])
Input ...
Output ...
```

- Method call var.method (arg [, arg...])
- Return value return expression
- Expressions
 - ← Assignment (like = in Java)
 - = Equality testing (like == in Java)
 - n² Superscripts and other mathematical formatting allowed

- Primitive operation corresponds to a low-level instruction with a constant execution time.
 - Examples: Evaluating an expression, Assigning a value to a variable, Indexing into an array, Calling a method, Returning from a method
- Instead of determine the specific execution time of each primitive operation, simply *count* how many primitive operation are executed.
- ► This operation count will correlate to an actual running time in a specific computer.
- By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size.

	Statements	Step/ Exec utio	Freq	Total
1	Algorithm Sum1(a[],n)	0	1	ı
2	{	0	_	-
3	S = 0.0;	L	2	Z
4	for $i=1$ to h do s = s+a[i];	Z	N+2	n + 2
5	$s = s + \tilde{a}[i];$	1	и	4
6	return s;	1	1	1
7	}	0	_	_

	Statements	S/E	Freq.	Total
1	Algorithm Sum1(a[],n)	0	-	0
2	{	0	-	0
3	S = 0.0;	1	1	1
4	for i=1 to "+10	1	n+1	n+1
5	s = s+a[i];	1	n	n
6	return s;	1	1	1
7	}	0	_	0

	Statements	S/E	Freq.	Total
1	Algorithm Sum2(a[],n,m)	0		
2	{	6		
3	for i=1 to n do; ····	Z	N+1	ntz
4	for $j=1$ to m do $m(m+2)$	Z	u(w+1)	u(m+1)
5	s = s+a[i][j];	1	nm	um
6	return s;	1	1	1
7	}	0		

Counting Primitive Operations

	Statements	S/E	Freq.	Total
1	Algorithm Sum2(a[],n,m)	0	-	0
2	{	0	-	0
3	for i=1 too	1	n+1	n+1
4	for j=1 to m+1 o	1	n(m+1)	n(m+1)
5	$\begin{bmatrix} n \\ m \end{bmatrix}$ $S = S + a[i][j];$	1	nm	nm
6	s = s+a[i][j]; return s;	1	1	1
7	}	0	-	0

2nm+2n+2

Estimating Running Time

- Algorithm *Sum1* executes 2*n* + 3 primitive operations in the worst case.
- Define:
 - *a* = Time taken by the fastest primitive operation
 - **b** = Time taken by the slowest primitive operation
- Let T(n) be worst-case time of Sum1. Then $a(2n + 3) \le T(n) \le b(2n + 3)$
- Hence, the running time T(n) is bounded by two linear functions.

Growth Rate of Running Time

- Changing the hardware/ software environment
 - Affects T(n) by a constant factor, but
 - Does not alter the growth rate of T(n)
- The linear growth rate of the running time T(n) is an intrinsic property of algorithm Sum1.

Why Growth Rate Matters

if runtime is	time for n + 1	time for 2 n	time for 4 n
c log n	c log (n + 1)	c (log n + 1)	c(log n + 2)
c n	c (n + 1)	2c n	4c n
c n log n	~ c n log n		4c n log n + 4cn
c n ²	~ c n ² + 2c n	4c n ²	16c n ²
c n ³	$\sim c n^3 + 3c$ n^2	8c n³	64c n ³
c 2 ⁿ	c 2 ⁿ⁺¹	c 2 ²ⁿ	c 2 ⁴ⁿ

runtime quadruples → when problem size doubles

Comparing Growth Rate in Tabular form

Comparing Growth Rate in Tabular form

Comparison of Two Algorithms (an example)


```
insertion sort is
     n^2 / 4
 merge sort is
     2 n log n
sort a million items using a basic PC?
   insertion sort takes
   roughly 70 hours
while
   merge sort takes
   roughly 40 seconds
```

Constant Factors

- The growth rate is not affected by
 - constant factors or
 - lower-order terms
- Examples
 - $^{\circ}$ 10²*n* + 10⁵ is a linear function
 - $^{\circ}$ 10⁵ n^2 + 10⁸n is a quadratic function

Big-Oh Notation

Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there are positive constants c and n_0 such that

$$f(n) \leq cg(n)$$
 for $n \geq n_0$

- Example: 2n + 10 is O(n)
 - $^{\circ}$ 2*n* + 10 ≤ *cn*
 - \circ 10 \leq cn 2n
 - $^{\circ}$ 10 ≤ (**c** 2) **n**
 - $^{\circ}$ 10/(**c** 2) ≤ **n**
 - Pick $\boldsymbol{c} = 3$ and $\boldsymbol{n_0} = 10$

Big-Oh Notation

Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there are positive constants c and n_0 such that

$$f(n) \leq cg(n)$$
 for $n \geq n_0$

- Example: 2n + 10 is O(n)
 - $^{\circ}$ 2*n* + 10 ≤ *cn*
 - \circ 10 \leq cn 2n
 - $^{\circ}$ 10 ≤ (**c** 2) **n**
 - $^{\circ}$ 10/(c 2) $\leq n$
 - Pick c = 3 and $n_0 = 10$

$$2n + 10 \le 2n + 10n = 12n$$

 $n_0 = 1$
 $c = 12$

Big-Oh Example

- Example: the function n^2 is not O(n)
 - $^{\circ}$ $n^2 \leq cn$
 - ∘ *n* ≤ *c*
 - The above inequality cannot be satisfied since c must be a constant

- 3n³ + 20n² + 5 $\frac{4(3+20+5)n^3}{c=28}$ 3n³ + 20n² + 5 is O(n³) need c > 0 and n₀ \geq 1 such that 3n³ + 20n² + 5 \leq cn³ for n \geq n₀ this is true for c = 4 and n₀ = 21
- 3 $\log n + 5 \le 8 \log n$ 3 $\log n + 5$ is O($\log n$)

 need c > 0 and $n_0 \ge 1$ such that 3 $\log n + 5 \le c \log n$ for $n \ge n_0$ this is true for c = 8 and $n_0 = 2$

7n-2 $7n-2 \le 7n$ 7n-2 is O(n) $need \ c > 0 \ and \ n_0 \ge 1 \ such \ that \ 7n-2 \le cn \ for \ n \ge n_0$ c = 7 this is true for c = 7 and $n_0 = 1$

- $3n^3 + 20n^2 + 5$ $3n^3 + 20n^2 + 5 \text{ is O(n^3)}$ $need c > 0 \text{ and } n_0 ≥ 1 \text{ such that } 3n^3 + 20n^2 + 5 ≤ cn^3 \text{ for } n ≥ n_0$ $this is true for c = 4 \text{ and } n_0 = 21$
- 3 log n + 5 3 log n + 5 is O(log n) need c > 0 and $n_0 \ge 1$ such that 3 log n + 5 \le clog n for n $\ge n_0$ this is true for c = 8 and $n_0 = 2$

> 7n-2 7n-2 is O(n) need c > 0 and $n_0 \ge 1$ such that $7n-2 \le cn$ for $n \ge n_0$ this is true for c = 7 and $n_0 = 1$ $3n^3 + 20n^2 + 5$ $3n^3 + 20n^2 + 5 \text{ is O(n^3)}$ c = 28 need c > 0 and $n_0 \ge 1$ such that $3n^3 + 20n^2 + 5 \le cn^3$ for $n \ge n_0$

need c > 0 and $n_0 \ge 1$ such that $3n^3 + 20n^2 + 5 \le cn^3$ for $n \ge n_0$ this is true for c = 4 and $n_0 = 21$

3 log n + 5 3 log n + 5 is O(log n)

need c > 0 and $n_0 \ge 1$ such that $3 \log n + 5 \le c \log n$ for $n \ge n_0$ this is true for c = 8 and $n_0 = 2$

> 7n-2

```
7n-2 is O(n) need \ c>0 \ and \ n_0\geq 1 \ such \ that \ 7n-2\leq cn \ for \ n\geq n_0 this is true for c=7 and n_0=1
```

> $3n^3 + 20n^2 + 5$ $3n^3 + 20n^2 + 5$ is O(n³) need c > 0 and $n_0 \ge 1$ such that $3n^3 + 20n^2 + 5 \le cn^3$ for $n \ge n_0$ this is true for c = 4 and $n_0 = 21$

> 3 log n + 5

```
3 \log n + 5 \text{ is O}(\log n)
need c > 0 and n_0 \ge 1 such that 3 \log n + 5 \le c \log n for n \ge n_0
this is true for c = 8 and n_0 = 2
```

$$3 \log n + 5 \le 3 \log n + 5 \log n = 8 \log n$$

 $n_0 = 2$
 $c = 8$

Big-Oh and Growth Rate

- The big-Oh notation gives an upper bound on the growth rate of a function.
- The statement "f(n) is O(g(n))" means that the growth rate of f(n) is no more than the growth rate of g(n).
- We can use the big-Oh notation to rank functions according to their growth rate.

Big-Oh Rules

- If f(n) is a polynomial of degree d, then f(n) is $O(n^d)$, i.e.,
 - 1. Drop lower-order terms
 - 2. Drop constant factors
- Use the smallest possible class of functions Say "2n is O(n)" instead of "2n is $O(n^2)$ ".
- Use the simplest expression of the class Say "3n + 5 is O(n)" instead of "3n + 5 is O(3n)"

Asymptotic Algorithm Analysis

- The asymptotic analysis of an algorithm determines the running time in big-Oh notation.
- To perform the asymptotic analysis
 - We find the worst-case number of primitive operations executed as a function of the input size.
 - We express this function with big-Oh notation.
- Example:
 - We determine that algorithm Sum1 executes at most 2n + 3 primitive operations
 - We say that algorithm Sum1 "runs in O(n) time"
- Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations

Computing Prefix Averages (an

example)

- We further illustrate asymptotic analysis with two algorithms for prefix averages.
- The *i*-th prefix average of an array *X* is average of the first (*i* + 1) elements of *X*:

$$A[i] = (X[0] + X[1] + ... + X[i])/(i+1)$$

 Computing the array A of prefix averages of another array X has applications to financial analysis

Computing Prefix Averages (an example)

 The following algorithm computes prefix averages in quadratic time.

	Statements	S/E	Freq.	Total
1	Algorithm prefixAverages1(X, n) x	0	-	0
2	{	0	-	0
3	$A \leftarrow$ new array of n integers	1	n + stores " elects	n
4	for i ← 0 to n - 1 do	1	n+1	n+1
5	s ← X[0] _ ~ ~ +em	1	n	n
6	for $j \leftarrow 1$ to i do $1+2+3+4+(a) = \frac{a^{(a+5)}}{2}$	1	1+2+3+ (n)	n(n+1)/2
7	$\int_{\frac{w(n-1)}{2}}^{w(n-1)} \{ \text{for } j \leftarrow 1 \text{ to } i \text{ do} \text{$1+2+3+44(a) = \frac{w(n-1)}{2} $} \\ \text{$s \leftarrow s + X[j]} \text{$t: 213+44(u-1) = \frac{w(n-4)}{2} $} $	1	1+2+3+ (n-1)	n(n-1)/2
8	$A[i] \leftarrow s / (i+1)$ antrues	1	n	n
9	return A -1	1	1	1
10	}	0	-	0

Thus, Algorithm *prefixAverages1* is $O(n^2)$.

Computing Prefix Averages (an $\sum_{k=1}^{n} k = \frac{n(n+1)}{2},$ example)

 The following algorithm computes prefix averages in quadratic time.

	Statements	S/E	Freq.	Total
1	Algorithm prefixAverages1(X, n)	0	-	0
2	{	0	-	0
3	$A \leftarrow$ new array of n integers	1	n	n
4	for $i \leftarrow 0$ to $n - 1$ do	1	n+1	n+1
5	s ← X[0]	1	n	n
6	\mathbf{n} $\hat{\mathbf{n}}$ for $j \leftarrow 1$ to i do	1	1+2+3+ (n)	n(n+1)/2
7	$ \begin{array}{c c} & \sum_{k=1}^{n} k \\ & & s \leftarrow s + X[j] \\ & & A[i] \leftarrow s / (i + 1) \end{array} $	1	1+2+3+ (n-1)	n(n-1)/2
8	$ \bigvee_{A[i]} \leftarrow s / (i+1) $	1	n	n
9	return A	1	1	1
10	}	0	-	0
		•	-	

Thus, Algorithm *prefixAverages1* is $O(n^2)$.

n²+4n+2

Computing Prefix Averages (an example)

 The following algorithm computes prefix averages in linear time by keeping a running sum.

	Statements	S/E	Freq.	Total
1	Algorithm <i>prefixAverages2(X, n)</i>	0	-	0
2	{	0	-	0
3	$A \leftarrow$ new array of n integers $\rightarrow \sim$	1	n	n
4	s ← 0 → 1	1	1	1
5	for $i \leftarrow 0$ to $n - 1$ do $\rightarrow n + 4$	1	n+1	n+1
6	s ← s + X[i] → ~	1	n	n
7	$A[i] \leftarrow s \mid (i+1) \rightarrow n$	1	n	n
8	return A _₄	1	1	1
9	}	0	-	0

Thus, Algorithm prefixAverages2 is O(n).

Computing Prefix Averages (an example)

 The following algorithm computes prefix averages in linear time by keeping a running sum.

	Statements	S/E	Freq.	Total
1	Algorithm prefixAverages2(X, n)	0	-	0
2	{	0	-	0
3	$A \leftarrow$ new array of n integers	1	n	n
4	s ← 0	1	1	1
5	for $i \leftarrow 0$ to $n - 1$ do	1	n+1	n+1
6	$n s \leftarrow s + X[i]$	1	n	n
7		1	n	n
8	return A	1	1	1
9	}	0	-	0

Thus, Algorithm prefixAverages2 is O(n).

4n+3

Big-Oh From Smallest to Largest

O(1)		Constant	
O(log n)		Logarithmic	
O(n)		Linear	
O(n log n)		n log n	
O(nc)	O(n ²), O(n ³), O(n ¹⁶), etc	Polynomial	
O(cn)	O(1.6 ⁿ), O(2 ⁿ), O(3 ⁿ), etc	Exponential	
O(n!)		Factorial	
O(n ⁿ)		n power n	

Big-Oh Examples

O(1)	Push, Pop, Enqueue (if there is a tail reference), Dequeue, Accessing an array element
O(log n)	Binary search → speaks up the process by 2
O(n)	Linear search
O(n log n)	Heap sort, Quick sort (average), Merge sort
O(n ²)	Selection sort, Insertion sort, Bubble sort
O(n ³)	Matrix multiplication
O(2 ⁿ)	Towers of Hanoi
O(n!)	All permutation of N elements
O(n ⁿ)	

- Each countable step is weighted as 1, anything else is weighted 0 (S/E)
- Count the time each step is executed. This can be (1) time, constant time (5, 10, 21,...) or variable time (n, m, n+1, n²,...) (Freq)
- Multiply (S/E) by (Freq) to get (Total)
- Having done all the above for each step, sum (Total) for each step together to get the complexity

- for/while/do-while are examples where there are repetition/frequency.
 - for/while, <, ++ loops
 - Freq = max initial
 - for/while, <=, ++ loops
 - Freq = max initial + 1
 - for/while, >, -- loops
 - Freq = initial max
 - for/while, >=, -- loops
 - Freq = initial max + 1
- IMPORTANT: for/while checking step/line should add +1 (for last check). Internal loop steps use the above formulas.

```
do-while, <, ++ loops</li>
Freq = 1+ max - initial
do-while, <=, ++ loops</li>
Freq = 1 + max - initial + 1
do-while, >, -- loops
Freq = 1+ initial - max
do-while, >=, -- loops
Freq = 1 + initial - max + 1
```

• **IMPORTANT**: both **do-while** checking step/line and internal loop steps use the above formulas.

• In other word:

```
max – initial
initial – max
<=, >=
add (+1)
If, do-while
add (+1), for both checking and internal steps
Else (for/while)
add (+1) for checking step only.
```

• **IMPORTANT:** This only apply for incrementing/decrementing loops with simple checking (<,>,<=,>=). These are generalization (there are **many exceptions**)

One exception example:

```
for (int i = 0; i < n; i++) \sim +4
    for(int j = 0; j < i; j++) \frac{y(u+2)}{2}

System.out.println(j) \frac{y(u+2)}{2}
```

- In this case, the internal loop depends on the external loop (j < i). Therefore, the number of loops is changing each time.
 - The checking line will be executed 1+2+3+...+n
 - The *println* will be executed 0+1+2+...+(n-1)
- This is an example/approximation for

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2},$$

Such cases require careful counting

- Big-Oh for a function f(n)
 - Drop lower-order terms
 - Drop constant factors
 - Use the smallest possible class
 - Use the simplest expression of the class

 Or, Find highest order term, and drop everything else (including constants)

- Proving f(n) is O(g(n))
 - f(n) is O(g(n)) if there are positive constants c and n₀ such that:

$$f(n) \le cg(n)$$
 for $n \ge n_0$

- Or:
 - Drop negative terms
 - Upgrade lower-order terms to the same level of the highest-order term level
 - Work it from there to calculate c and n₀

```
a).
s = 0;
for (i = 1; i < n-1; i++)
 S = S + 1; \rightarrow \sim -2
                           6(W)
b).
s = 0;
                         n-5-4+1
for (i = n-5; i > 4; i--)
 S = S + i; n = 9
```

```
a).
s = 0;
for (i = 1; i < n-1; i++) n-1
 s = s + 1;
                n-2
                Total: 2n-2
                                     O(n)
b).
s = 0;
for (i = n-5; i > 4; i--)
 s = s + i;
```

```
a).
s = 0;
for (i = 1; i < n-1; i++) n-1
 s = s + 1;
               n-2
               Total: 2n-2
                                   O(n)
b).
s = 0;
for (i = n-5; i > 4; i--) n-8
 s = s + i;
               n-9
               Total: 2n-16
                               O(n)
```

```
c).
   s = 0;
for (i = 1; i <= n; i++) n+1

for (j = 1; j <= n; j++) (n+1)^n

S = S + 1; n+n
    d).
   i = 0;
                                    0(1)
    while (i <= 10)
      i = i + 1;
```

```
c).
s = 0;
for (i = 1; i \le n; i++) n+1
 for (j = 1; j \le n; j++) n(n+1)
      s = s + 1; n^2
                   Total: 2n^2+2n+2 O(n^2)
d).
i = 0; \sim 1
while (i \le 10) \sim 10^{-0+1+1=12}
 i = i + 1; \rightarrow 11.4^{\circ} \rightarrow 1
```

```
c).
s = 0;
for (i = 1; i \le n; i++) n+1
 for (j = 1; j \le n; j++) n(n+1)
     s = s + 1;
               Total: 2n^2+2n+2 O(n^2)
d).
i = 0;
while (i <= 10)
                       12
 i = i + 1;
                   11
               Total: 24
                                O(1)
```

```
e).
s = 0; \text{ for } (i = 1; i <= n; i++) \sim n-2+1+4=n+1
\text{ for } (j = 0; j <= n; j++) (n+2)n
\text{ for } (k = 0; k <= n; k++) (n+4)(n)(n+2)
s = s + 1;
```

```
e). s = 0; 1 for (i = 1; i <= n; i++) n+1 for (j = 0; j <= n; j++) n(n+2) for (k = 0; k <= n; k++) n(n+1)(n+2) s = s + 1; n(n+1)(n+1) Total: O(n^3)
```

```
f).
     s = 0;
for (i = 0; i <= n; i++) s + 2

for (j = 0; j < <u>j</u>; j++) s + 2 = s + 1
     g).
     s = 0;
     for (i = 0; i \le n; i++)
       for (j = i+1; j \le n; j++)
       s = s + 1;
```

```
f).
    s = 0; 1
    for (i = 0; i \le n; i++) n+2
      for (j = 0; j < i; j++) 1+2+...+(n+1) \sim n(n+1)/2
      S = S + 1; 1+2+...+n
                              =n(n+1)/2
      Total: O(n^2)
    g).
    s = 0;
for (i = 0; i <= n; i++) n+2

for (j = i+1; j <= n; j++)_{2} \dots n+1 n+2

s = s + 1;
```

```
f).
s = 0; 1
for (i = 0; i \le n; i++) n+2
 for (j = 0; j < i; j++) 1+2+...+(n+1) \sim n(n+1)/2
 S = S + 1; 1+2+...+n
                        =n(n+1)/2
 Total: O(n^2)
g).
s = 0; 1
for (i = 0; i \le n; i++) n+2
 for (j = i+1; j \le n; j++) (n+1)+n+...+2+1 \sim n(n+1)/2
 S = S + 1; n+(n-1)+...+2+1 = n(n+1)/2
 Total: O(n<sup>2</sup>)
```