Package 'daewr'

August 8, 2012

Type Package

Version 0.5-1

Title Design and Analysis of Experiments with R

Date 2012-06-01						
Author John Lawson						
Maintainer John Lawson <lawson@byu.edu></lawson@byu.edu>						
Description This package contains data frames and functions used in the book "Design and Analysis of Experiments with R"						
License GPL-2						
Dependencies FrF2,BsMD						
LazyLoad yes						
R topics documented:						
antifungal Apo apple arso augm Bdish Bff bha	1 2 2 3					

chem	16
chipman	17
COdata	18
cont	18
pipe	19
culture	20
lairy	20
lrug	21
eptaxr	22
eptaxs2	22
eptaxyb	23
Fcrit	24
Fpower	25
fullnormal	25
gagerr	27
gapstat	28
t e	29
Gaptest	
gear	33
nardwood	34
nject	34
LGB	35
mod	37
MPV	38
Naph	39
pastry	39
pest	40
pesticide	40
olasma	41
polvdat	42
polymer	42
prodstd	43
ışar	44
cb	44
esidue	45
ubber	46
sausage	46
Smotor	47
Soup	48
1	48
Soupmx	49
splitPdes	
SPMPV	50
strung	50
strungtile	51
sugarbeet	52
aste	52
each	53
Γet	53
ile	54
Treb	55
Tukey1df	55
<i>r</i> ci	57
virus	58

antifungal																	3																	
	volt web																																	
Index																																		60
daewr	pack	age					ata ith		an	ıes	s a	nd	fu	nc	tio	ns	fo	r i	De	sig	gп	ar	ıd	Ar	ıai	lys	is	of	f E.	хр	eri	ime	ent	s

Description

This package contains the data sets and functions from the book Design and Analysis of Experiments with R published by CRC in 2013.

Details

Package: daewr Type: Package Version: 1.0 Date: 2012-05-10 License: GPL-2 LazyLoad: yes

Author(s)

John Lawson

Maintainer: John Lawson lawson@byu.edu

References

J. Lawson, Design and Analysis of Experiments with R, CRC 2013.

Examples

```
Fcrit(.05,2,15)
Fpower(0.05,2,15,6.428)
BIBsize(6,3)
```

antifungal

Two-period crossover study of antifungal agent

Description

Data from the Two-period crossover study of an antifungal agent in chapter 9 of Design and Analysis of Experiments with R

4 Apo

Usage

```
data(antifungal)
```

Format

A data frame with 34 observations on the following 5 variables.

```
Group a factor with levels 1 2
Subject a factor with levels 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18
Period a factor with levels 1 2
Treat a factor with levels A B
pl a numeric vector
```

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(antifungal)
```

Apo

apolipoprotein survey varaince component study

Description

Data from the apolipoprotein survey variance component study of Chapter 5 in Design and Analysis of Experiments with R

Usage

```
data(Apo)
```

Format

A data frame with 30 observations on the following 2 variables.

```
lab a factor with levels A B C D conc a numeric vector
```

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

```
data(Apo)
```

apple 5

apple

Confounded apple slice browning experiment

Description

Data from the confounded apple slice browning experiment in chapter 7 of Design and Analysis of Experiments with R

Usage

```
data(apple)
```

Format

A data frame with 24 observations on the following 4 variables.

Block a factor with levels 1 2 3 4

A a factor with levels 0 1 2 3

B a factor with levels 0 1 2

rating a numeric vector containing the response

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(apple)
```

arso

 $2^{(7-3)}$ arsenic removal experiment

Description

Data from the $2^{(7-3)}$ arsenic removal experiment in chapter 6 of Design and Analysis of Experiments with R

Usage

```
data(arso)
```

6 augm

Format

```
A data frame with 8 observations on the following 8 variables.
```

```
A a factor with levels -1 1
```

B a factor with levels -1 1

C a factor with levels -1 1

D a factor with levels -1 1

E a factor with levels -1 1

F a factor with levels -1 1

G a factor with levels -1 1

y1 a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(arso)
```

augm

 $2^{(7-3)}$ arsenic removal experiment augmented with mirror image

Description

Data from the $2^{(7-3)}$ arsenic removal experiment augmented with mirror image in chapter 6 of Design and Analysis of Experiments with R

Usage

```
data(augm)
```

Format

A data frame with 8 observations on the following 8 variables.

```
A a factor with levels -1 1
```

B a factor with levels -1 1

C a factor with levels -1 1

fold a factor with levels original mirror

D a factor with levels -1 1

E a factor with levels -1 1

F a factor with levels -1 1

G a factor with levels -1 1

y a numeric vector

Bdish 7

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(augm)
```

Bdish

Confounded Block Dishwashing Experiment

Description

Data from the Confounded Block Dishwashing Experiment in chapter 7 of Design and Analysis of Experiments with R

Usage

```
data(Bdish)
```

Format

A data frame with 16 observations on the following 5 variables.

Blocks a factor with levels 1 2 3 4

A a factor with levels -1 1

B a factor with levels -1 1

C a factor with levels -1 1

D a factor with levels -1 1

y a numeric vector containing the response

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

```
data(Bdish)
```

8 bha

Bff

Confounded block fractional mouse growth experiment

Description

Data from the Confounded block fractional factorial mouse growth experiment in chapter 7 of Design and Analysis of Experiments with R

Usage

```
data(Bff)
```

Format

A data frame with 16 observations on the following 5 variables.

```
Blocks a factor with levels 1 2 3 4 5 6 7 8
```

- A a factor with levels -1 1
- B a factor with levels -1 1
- C a factor with levels -1 1
- D a factor with levels -1 1
- E a factor with levels -1 1
- F a factor with levels -1 1
- G a factor with levels -1 1
- H a factor with levels -1 1

weight a numeric vector containing the response

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(Bff)
```

bha

mouse liver enzyme experiment

Description

Data from the mouse liver enzyme experiment in chapter 4 of Design and Analysis of Experiments with R

Usage

```
data(bha)
```

BIBsize 9

Format

A data frame with 16 observations on the following 4 variables.

```
block a factor with levels 1 2
strain a factor with levels A/J 12901a NIH BALB/c
treat a factor with levels treated control
y a numeric vector
```

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(bha)

BIBsize

Balanced incomplete blocksize

Description

This function computes the number of blocks, treatment frequency and lambda for a potential BIB design

Usage

```
BIBsize(t,k)
```

Arguments

t input - number of levels of the treatment factor

k input - blocksize or number of experimental units per block

Value

a list containing the b=number of blocks, r=number of treatment replicates and lambda for a potential BIB design with t levels of treatment factor and blocksize k.

Author(s)

John Lawson

10 bioequiv

Examples

```
BIBsize(6,3)
## The function is currently defined as
BIBsize<-function(t,k)
{
 b<-t
  r<-0
  lambda<-0
  check<-0
  while (check==0) {
  while (r==0) {
     #cat("r=",r)
     testr<-(b*k)/t
     #cat("testr=",testr,"b=",b)
     if (testr==floor(testr)) {
       r<-testr
       } else {
       b<-b+1
       }
      #cat("b=",b, "r=",r)
      testl < -(r*(k-1))/(t-1)
      #cat("testl=",testl,"b=",b)
      if (testl==floor(testl)) {
       lambda<-testl
       check=1
       } else {
       r<-0
       b<-b+1
      #cat("b=",b, "r=",r)
        }
}
```

bioequiv

Extra-period crossover bioequivalence study

Description

Data from the extra-period crossover bioequivalence study in chapter 9 of Design and Analysis of Experiments with R

Usage

```
data(bioequiv)
```

Format

A data frame with 108 observations on the following 5 variables.

```
Group a factor with levels 1 2
```

bioeqv 11

```
Subject a factor with levels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 23 24 25 26 27 28 30 31 32 33 code34 35 36 120 122 129

Period a factor with levels 1 2 3

Treat a factor with levels A B
```

Carry a factor with levels none A B

y a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(bioequiv)
```

bioeqv

Latin Square bioequivalence experiment

Description

Data from the Latin Square bioequivalence experiment in chapter 4 of Design and Analysis of Experiments with R

Usage

```
data(bioeqv)
```

Format

A data frame with 9 observations on the following 4 variables.

```
Period a factor with levels 1 2 code3

Subject a factor with levels 1 2 code3

Treat a factor with levels A B C

AUC a numeric vector
```

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

```
data(bioeqv)
```

BoxM

blood

Variance component study of calcium in blood serum

Description

Data from the Variance component study of calcium in blood serum in chapter 5 of Design and Analysis of Experiments with R

Usage

```
data(blood)
```

Format

A data frame with 27 observations on the following 3 variables.

```
sol a factor with levels 1 2 3 4 lab a factor with levels A B C calcium a numeric vector
```

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(blood)

BoxM

Box and Meyer's unreplicated 2⁴ from Chapter 3

Description

Data from Box and Meyer's unreplicated 2^4 in chapter 3 of Design and Analysis of Experiments with ${\bf R}$

Usage

```
data(BoxM)
```

Format

A data frame with 16 observations on the following 4 variables.

- A a numeric vector containing the coded (-1,1) levels of factor A
- B a numeric vector containing the coded (-1,1) levels of factor B
- C a numeric vector containing the coded (-1,1) levels of factor C
- D a numeric vector containing the coded (-1,1) levels of factor D
- y a numeric vector containing the response

BPmonitor 13

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

References

```
Box, G. E. P. "George's Column", Quality Engineering, Vol. 3, pp. 405-410.
```

Examples

```
data(BoxM)
```

BPmonitor

blood pressure monitor experiment

Description

Data from the blood pressure monitor experiment experiment in Chapter 7 of Design and Analysis of Experiments with R

Usage

```
data(BPmonitor)
```

Format

A data frame with 12 observations on the following 3 variables.

```
Block a factor with levels 1 2 3 4 5 6

Treatment a factor with levels "P" "A" "B" "C" pressure a numeric vector
```

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

```
data(BPmonitor)
```

14 cake

bread

Bread rise experiment data from Chapter 2

Description

Data from the bread rise experiment in chapter 2 of Design and Analysis of Experiments with R

Usage

```
data(bread)
```

Format

A data frame with 12 observations on the following 3 variables.

```
loaf a numeric vector
time a numeric vector
height a numeric vector
```

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(bread)
```

cake

Split-Plot response surface for cake baking experiment

Description

Data from the Split-Plot response surface for cake baking experiment in chapter 10 of Design and Analysis of Experiments with R

Usage

```
data(cake)
```

Format

A data frame with 11 observations on the following 4 variables.

```
Ovenrun a factor with levels 1 2 3 4
```

x1 a numeric vector

x2 a numeric vector

y a numeric vector

x1sq a numeric vector

x2sq a numeric vector

castf 15

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(cake)
```

castf

cast fatigue experiment

Description

Data from the cast fatigue experiment in chapter 6 of Design and Analysis of Experiments with R

Usage

```
data(castf)
```

Format

A data frame with 12 observations on the following 12 variables.

```
c8 a factor with levels -1 1
```

c9 a factor with levels -1 1

c10 a factor with levels -1 1

c11 a factor with levels -1 1

G a factor with levels -1 1

F a factor with levels -1 1

E a factor with levels -1 1

D a factor with levels -1 1

C a factor with levels -1 1

B a factor with levels -1 1

A a factor with levels -1 1

y a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

```
data(castf)
```

16 chem

cement

CCD design for cement workability experiment

Description

Data from the CCD design for cement workability experiment in chapter 10 of Design and Analysis of Experiments with R

Usage

```
data(cement)
```

Format

A data frame with 20 observations on the following 4 variables.

Block a factor with levels 1 2

x1 a numeric vector

x2 a numeric vector

x3 a numeric vector

y a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(cement)
```

chem

Chemical process experiment data from Chapter 3

Description

Data from the Chemical process experiment in chapter 3 of Design and Analysis of Experiments with R

Usage

```
data(chem)
```

Format

A data frame with 16 observations on the following 4 variables.

- A a numeric vector containing the coded (-1,1) levels of factor A
- B a numeric vector containing the coded (-1,1) levels of factor B
- C a numeric vector containing the coded (-1,1) levels of factor C
- D a numeric vector containing the coded (-1,1) levels of factor D
- y a numeric vector containing the response

chipman 17

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(chem)
```

chipman

Williams' crossover design for sprinting experiment

Description

Data from the Williams' crossover design for sprinting experiment in chapter 9 of Design and Analysis of Experiments with R

Usage

```
data(chipman)
```

Format

A data frame with 36 observations on the following 5 variables.

Square a factor with levels 1 2

Group a factor with levels 1 2 3

Subject a factor with levels 1 2 code3 4 5 code6 7 8 code9 10 11 code12

Period a factor with levels 1 2 3

Treat a factor with levels 1 2 3

Carry a factor with levels 0 1 2 3

Time a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(chipman)

18 cont

COdata

CO emmisions experiment data from Chapter 3

Description

Data from the CO emissions experiment in chapter 3 of Design and Analysis of Experiments with R

Usage

```
data(COdata)
```

Format

A data frame with 18 observations on the following 3 variables.

```
Eth a factor with levels 0.1 0.2 0.3
Ratio a factor with levels 14 15 16
CO a numeric vector
```

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(COdata)
```

cont

Control factor array and summary statistics for controller circuit design experiment

Description

Data from the control factor array and summary statistics for controller circuit design experiment in chapter 12 of Design and Analysis of Experiments with R

Usage

```
data(cont)
```

Format

A data frame with 18 observations on the following 6 variables.

A a numeric vector

B a numeric vector

C a numeric vector

D a numeric vector

F a numeric vector

1ns2 a numeric vector

cpipe 19

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(cont)
```

cpipe

Split-plot response surface for ceramic pipe experiment

Description

Data from the Split-plot response surface for ceramic pipe experiment in chapter 10 of Design and Analysis of Experiments with R

Usage

```
data(cpipe)
```

Format

A data frame with 48 observations on the following 6 variables.

```
WP a factor with levels 1 2 3 4 5 6 7 8 9 10 11 12
```

A a numeric vector

B a numeric vector

P a numeric vector

Q a numeric vector

y a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

```
data(cpipe)
```

20 dairy

culture

paecilomyces variotii culture experiment

Description

Data from the paecilomyces variotii culture experiment experiment in chapter 6 of Design and Analysis of Experiments with R

Usage

```
data(culture)
```

Format

A data frame with 16 observations on the following 9 variables.

```
A a factor with levels -1 1
```

B a factor with levels -1 1

C a factor with levels -1 1

D a factor with levels -1 1

E a factor with levels -1 1

F a factor with levels -1 1

G a factor with levels -1 1

H a factor with levels -1 1

y1 a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(culture)
```

dairy

Repeated measures study with dairy cow diets

Description

Data from the Repeated measures study with dairy cow diets in chapter 9 of Design and Analysis of Experiments with R (compact format)

Usage

```
data(dairy)
```

drug 21

Format

A data frame with 120 observations on the following 5 variables.

```
Diet a factor with levels "Barley" "Mixed" "Lupins" pr1 a numeric vector pr2 a numeric vector pr3 a numeric vector pr4 a numeric vector
```

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(dairy)
```

drug

Data from rat behavior experiment in Chapter 4

Description

Data from rat behavior experiment in Chapter 4 of Design and Analysis of Experiments with R

Usage

```
data(drug)
```

Format

A data frame with 50 observations on the following 3 variables.

```
rat a factor with levels 1 2 3 4 5 6 7 8 9 10 dose a factor with levels 0.0 0.5 1.0 1.5 2.0 rate a numeric vector
```

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

```
data(drug)
```

22 eptaxs2

eptaxr

Single array and raw response for silicon layer growth experiment

Description

Data from the single array and raw response for silicon layer growth experiment in chapter 12 of Design and Analysis of Experiments with R

Usage

```
data(eptaxr)
```

Format

A data frame with 64 observations on the following 9 variables.

- A a numeric vector
- B a numeric vector
- C a numeric vector
- D a numeric vector
- E a numeric vector
- F a numeric vector
- G a numeric vector
- H a numeric vector
- y a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(eptaxr)

eptaxs2

Control array and variance of response for silicon layer growth experiment

Description

Data from the control array and variance of response for silicon layer growth experiment in chapter 12 of Design and Analysis of Experiments with R

Usage

```
data(eptaxs2)
```

eptaxyb 23

Format

A data frame with 16 observations on the following 9 variables.

A a numeric vector

B a numeric vector

C a numeric vector

D a numeric vector

E a numeric vector

F a numeric vector

G a numeric vector

H a numeric vector

s2 a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(eptaxs2)

eptaxyb

Control array and mean response for silicon layer growth experiment

Description

Data from the control array and mean response for silicon layer growth experiment in chapter 12 of Design and Analysis of Experiments with R

Usage

data(eptaxyb)

Format

A data frame with 16 observations on the following 9 variables.

A a numeric vector

B a numeric vector

C a numeric vector

D a numeric vector

E a numeric vector

F a numeric vector

G a numeric vector

H a numeric vector

ybar a numeric vector

24 Fcrit

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(eptaxyb)
```

Fcrit

F-Distribution critical values

Description

Gets F-distribution critical values

Usage

```
Fcrit(alpha, nu1, nu2)
```

Arguments

alpha input- right tail area beyond critical value

nu1 input - numerator degrees of freedom for F-distribution

nu2 input - denominator degrees of freedom for F-distribution

Value

returned critical value

Author(s)

John Lawson

```
Fcrit(.05,2,15)
## The function is currently defined as
function(alpha,nu1,nu2) qf(1-alpha,nu1,nu2)
```

Fpower 25

Fpower	F-Distribution Power Calculation	
--------	----------------------------------	--

Description

Calculates the power for the non-central F-distribution

Usage

```
Fpower(alpha, nu1, nu2, nc)
```

Arguments

alpha input - critical value alpha

nu1 input - degrees of freedom for numeratornu2 input - degrees of freedom for denominator

nc input - noncentrality parameter

Value

probability of exceeding fcrit(alpha, nu1,nu2) with the non-central F-distribution with nu1 and nu2 degrees of freedom and noncentrality parameter nc

Author(s)

John Lawson

Examples

```
Fpower(0.05,2,15,6.428)
## The function is currently defined as
function(alpha,nu1,nu2,nc) 1-pf(Fcrit(alpha,nu1,nu2),nu1,nu2,nc)
```

fullnormal

Nornal Plot of Effects

Description

This function makes a full normal plot of effects labeling those significant and by default adds the reference line (refline).

Usage

```
fullnormal<-function(effects,labs,alpha=.05,refline="TRUE")</pre>
```

26 fullnormal

Arguments

effects input - This is the numeric vector of effects or regression coefficients to be plot-

ted; it should not include the intercept.

labs input - This is the character vector of effect labels usually obtained from the lm

function.

alpha input - The significance level of the test. The default is .05 if alpha is not speci-

fied.

refline input - logical, the default value is TRUE which indicates a reference line will

be added to the plot.

Author(s)

John Lawson

```
data(plasma)
sol<-lm(y~A*B*C*D*E,data=plasma)</pre>
# get whole plot effects and split plot effects
effects<-coef(sol)
effects<-effects[c(2:32)]
Wpeffects<-effects[c(1:4, 6:11, 16:19, 26)]</pre>
Speffects<-effects[c(5,12:15,20:25,27:31)]</pre>
#make separate normal plots
fullnormal(Wpeffects, names(Wpeffects), alpha=.10)
fullnormal(Speffects, names(Speffects), alpha=.05)
# make normal plot of all effects
fullnormal(effects, names(effects), alpha=.01, refline=FALSE)
## The function is currently defined as
fullnormal<-function(effects,labs,alpha=.05,refline="TRUE") {</pre>
crit<-LenthPlot(effects,alpha=alpha,plt=FALSE)["ME"]</pre>
names<-names(effects)</pre>
names<-gsub(':','',names)</pre>
names<-gsub('1','',names)</pre>
le<-length(effects)</pre>
 for (i in 1:le) {
     logc<-(abs(effects[i])<=crit)</pre>
     if (logc) {names[i]<-" "}</pre>
qqnorm(effects, ylab="Estimated Effects", xlab="Normal Scores")
x<-qqnorm(effects,plot=FALSE)</pre>
zscr<-(x$x)
# Splits effects into positive and negative for labeling
effp<-effects[zscr>0]
zp<-zscr[zscr>0]
namep<-names[zscr>0]
effn<-effects[zscr<0]
zn<-zscr[zscr<0]</pre>
namen<-names[zscr<0]</pre>
text(zp,effp,namep,pos=1)
text(zn,effn,namen,pos=3)
# calculate pse statistic
```

gagerr 27

```
ahe<-abs(effects)
s0<-1.5*median(ahe)
selhe<-ahe<(2.5*s0)
pse=1.5*median(ahe[selhe])
if (refline) {
# add reference line to plot
abline(0,pse)
}
}</pre>
```

gagerr

Gauge R&R Study

Description

Data from the Gauge R&R Study in chapter 5 of Design and Analysis of Experiments with R

Usage

```
data(gagerr)
```

Format

A data frame with 60 observations on the following 3 variables.

```
part a factor with levels 1 2 3 4 5 6 7 8 9 10 oper a factor with levels 1 2 3 y a numeric vector
```

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

```
data(gagerr)
```

28 gapstat

gapstat

Gap Statistic

Description

This function calculates the gap statistic used in the automated Daniel method of detecting an outlier in an 8, 16 or 32 run 2^{k-p} design.

Usage

```
gapstat<-function(beta,pse)</pre>
```

Arguments

beta input - This is the the vector of effects or regression coefficients calculated from

the design where an outlier is suspected. This vector of coefficients should not include the intercept. This function is called by the function Gaptest at the first

and second pass through the data.

pse input - This Lenth's pse statistic calculated on the vector beta befor the call to

this function.

Value

The result is the gap statistic $gap = ((\beta_s - \beta_l)/pse)/(z_s - z_l)$.

Author(s)

John Lawson

References

Lawson, J. and Gatlin, J. "Finding bad values in factorials - revisited" *Quality Engineering* Vol 18, pages 491-501., 2006.

```
Beta<-c(.06,.25,-.01,.5,0,-.02,0,.14,.03,-.01,.02,.04,.02,.01,.02)
names(Beta)<-c("A","B","C","D","AB","AC","AD","BC","BD","CD","ABC","ABD","ACD","BCD","ABCD")
gapstat(Beta,.06)
## The function is currently defined as
gapstat<-function(beta,pse) {</pre>
# computes the standardized gap score
p<-length(beta)</pre>
psehe<-pse
# gets positive coefficients
sel<-beta >= 0
betap<-beta[sel]
# sorts positive elements
betap<-sort(betap)</pre>
# gets Beta_s
betas<-betap[1]
#gets negative coefficients
```

```
sel<-beta < 0
betan<-beta[sel]
nn<-length(betan)
# sorts negative coefficients
betan<-sort(betan)
#gets Beta_L
betal<-betan[nn]
# gets Z_L and Z_S
zl<-qnorm((nn-.375)/(p+.25))
zs<-qnorm((nn+1-.375)/(p+.25))
# calculates gap statistic
gap<-((betas-betal)/psehe)/(zs-zl)
return(gap)
}</pre>
```

Gaptest

Automated Daniel Method

Description

This function performs and automated version of Daniels method for detecting an outlier in a $2^{(k-p)}$ design by recognizing a gap in the full normal plot of effects. This function calls the functions gapstat and LGB.

Usage

```
Gaptest<-function(DesY)</pre>
```

Arguments

DesY

input - This is a data frame containing a $2^{(k-p)}$ design augmented with a single column y of responses. This function only works for 8, 16 or 32 run designs.

Author(s)

John Lawson

References

Lawson, J. and Gatlin, J. "Finding bad values in factorials - revisited" *Quality Engineering* Vol 18, pages 491-501., 2006.

```
# Lawson Gatlin Example
library(FrF2)
lawg<-FrF2(16,11,generators=c("ABC","BCD","ACD","ABD","ABCD","AB","AC"),randomize=FALSE)
y<-c(31,48,43,32,54,52,60,34,47,43,30,26,67,49,80,41)
lawg<-cbind(lawg,y)
Gaptest(lawg)
# eight run example
```

```
library(FrF2)
des<-FrF2(8,6,generators=c("AB","AC","BC"),randomize=FALSE)</pre>
y < -c(1.299, 1.601, 1.359, 1.461, 1.338, 1.486, 1.330, 1.470)
Des8<-cbind(des,y)
Gaptest(Des8)
#tes<-lm(y~(.)^3,data=Des8)</pre>
#summary(tes)
#c<-tes$coef
#cn<-names(c)</pre>
#ccn<-gsub("[^A-Z]","",cn)</pre>
## The function is currently defined as
Gaptest<-function(DesY) {</pre>
# function to compute gap statistic
ncheck<-dim(DesY)</pre>
ncheck<-ncheck[1]
 tcnd=TRUE
 if (ncheck==8) {tcnd=FALSE}
 if (ncheck==16) {tcnd=FALSE}
 if (ncheck==32) {tcnd=FALSE}
 if (tcnd) {stop("This function only works for 8, 16, or 32 run designs","\n")
    } else {
if (ncheck==8) ncheck=16
# 50th and 99th percentiles of the gap statistic ##
critg16<-c(1.7884,5.1009)
critg32<-c(1.7297,5.8758)
### First Pass through the data ####
###### Step 1 ######
#fit model to saturated design
modf < -lm(y^{(.)}^4, x=TRUE, data=DesY)
#extract the regression coefficients
nbeta<-dim(DesY)</pre>
nbeta<-nbeta[1]
he<-modf$coef
# This extracts the coefficients that are not NA
selcol<-which(!is.na(he))</pre>
he<-he[selcol]
he<-he[-1]
#number of coefficients
p<-length(he)</pre>
#number of runs
n<-p+1
# This trims unnecessary characters from coefficient names
cn1<-names(he)
ccn1<-gsub("[^A-Z]","",cn1)</pre>
names(he)<-ccn1
##### End of Step 1 #######
```

```
##### Steps 2 and 3 ######
#calculate the pse statistic
ahe<-abs(he)
s0<-1.5*median(ahe)
selhe < -ahe < (2.5*s0)
pse=1.5*median(ahe[selhe])
#library(BsMD)
#pse<-LenthPlot(modf,plt=FALSE)</pre>
#pse<-pse[2]</pre>
#calculate the gap statistic
gap<-gapstat(he,pse)</pre>
# checks to see if gap statistic exceeds 50th percentile
if (ncheck==16) {test=(gap>critg16[1])
} else {test=(gap>critg32[1])}
##### End Step 2 and 3 #####
if (test) {
##### Step 4 #####
#extract the model X matrix
X < -modf x
# This selects columns of the X matrix that correspond to non-missing
# coefficients
X<-X[,selcol]
X < -X[,-1]
#gets signs of regression coefficients
se<-as.matrix(sign(he),nrow=1)</pre>
# find signigicant effects using LGB
sigef<-LGB(he,rpt=FALSE,plt=FALSE)</pre>
# make signs of significant effects zero
 for (i in 1:length(he)) {
     if (sigef[i]=="yes")
                             {se[i]=0 }
                          }
#gets sum of products of signed effects and rows of X matrix
sp<-X
#finds index of largest sum of products as index of potential outlier
asp<-abs(sp)
oo<-max.col(t(asp))</pre>
### End Step 4 ####
##### Step 5 #####
# calculates the bias
 # first get absolute regression coefficients
ae<-abs(he)
 # next sort absolute effects
sae<-sort(ae)</pre>
 #get the number of effects in smallest half
nsmall<-round(length(he)/2)</pre>
# sum the smallest half absolute effects to get bias
bias<-2*sum(sae[1:nsmall])</pre>
##### Step 6 #####
# gets corrected response vector
y<-DesY$y
ycorr<-DesY$y
```

```
ycorr[oo]<-ycorr[oo]+(-1*sign(sp[oo]))*bias</pre>
 # makes vector of indicators for outlier
detect<-c(rep("no",n))</pre>
detect[oo]<-"yes"
cat("Initial Outlier Report","\n")
cat("Standardized-Gap = ",gap, "Significant at 50th percentile","\n")
### End of first pass throught the data ######
### Second Pass throught the data #########
### Step 1 ####
# augment DesY with corrected data
DesYc<-cbind(DesY[,1:(dim(DesY)[2]-1)],ycorr)</pre>
# fit saturated model to corrected data
modf<-lm(ycorr~(.)^4,x=TRUE,data=DesYc)</pre>
#extract the regression coefficients
che<-modf$coef
# This extracts the coefficients that are not NA
che<-che[!is.na(che)]</pre>
che<-che[-1]
#number of coefficients
p<-length(che)
#number of runs
n<-p+1
# This trims unnecessary characters from coefficient names
cn<-names(che)</pre>
ccn<-gsub("[^A-Z]","",cn)</pre>
names(che)<-ccn
### End of Step 1 ####
##### Steps 2 and 3 ######
#calculate the pse statistic
ache<-abs(che)
s0<-1.5*median(ache)
selche < -ache < (2.5*s0)
psec=1.5*median(ache[selche])
#psec<-LenthPlot(modf,plt=FALSE)</pre>
#psec<-psec[2]</pre>
#calculate the gap statistic
gap<-gapstat(he,psec)</pre>
# checks to see if gap statistic exceeds 99th percentile
if (ncheck==16) test2=(gap>critg16[2]) else test2=(gap>critg32[2])
##### End Step 2 and 3 #####
if (test2) {
cat("Final Outlier Report","\n")
cat("Standardized-Gap = ",gap, "Significant at 99th percentile","\n")
cat("
        ","\n")
cat("
        Corrrected Data Report ","\n")
cat("Response Corrected Response Detect Outlier","\n")
cat(paste(format(DesY$y, width=8), format(DesYc$ycorr, width=13),
            ", format(detect, width=10),"\n"),sep="")
# use LGB to test significance of effects calculated from corrected data
tce<-LGB(che)
```

gear 33

```
} else {
cat("Final Outlier Report","\n")
cat("No significant outlier detected in second pass","\n")
# use LGB to test significance of effects calculated from corrected data
LGB(he)
cat(" ","\n")
}
### End of second pass through the data #####
}
}
# end of function Gaptest
}
```

gear

Unreplicated split-plot fractional-factorial experiment on geometric distortion of drive gears

Description

Data from the unreplicated split-plot fractional-factorial experiment on geometric distortion of drive gears in chapter 8 of Design and Analysis of Experiments with R

Usage

```
data(gear)
```

Format

A data frame with 16 observations on the following 6 variables.

```
A a factor with levels -1 1
```

B a factor with levels -1 1

C a factor with levels -1 1

P a factor with levels -1 1

Q a factor with levels -1 1

y a numeric vector containing the response

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

```
data(gear)
```

inject inject

hardwood

low grade hardwood conjoint study

Description

Data from the low grade hardwood conjoint study in chapter 6 of Design and Analysis of Experiments with R

Usage

```
data(hardwood)
```

Format

A data frame with 12 observations on the following 5 variables.

```
Design a factor with levels "RC" "AC" "OCI" "OCII"

Price a numeric variable

Density a factor with levels "Clear" "Heavy" "Medium"

Guarantee a factor with levels "1y" "Un"

Rating a numeric vector
```

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(hardwood)
```

inject

Single array for injection molding experiment

Description

Data from the single array for injection molding experiment in chapter 12 of Design and Analysis of Experiments with R

Usage

```
data(inject)
```

LGB 35

Format

A data frame with 20 observations on the following 8 variables.

A a numeric vector

B a numeric vector

C a numeric vector

D a numeric vector

E a numeric vector

F a numeric vector

G a numeric vector

shrinkage a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(inject)

Lawson, Grimshaw, Burt Test

Description

LGB

This function uses the LGB method (based on the half normal plot) to test significance of effects in unreplicated orthogonal 2-level designs.

Usage

LGB<-function(Beta,alpha=.05,rpt=TRUE,plt=TRUE,pltl=TRUE)

Arguments

Beta	input - This is the the vector of effects or regression coefficients to be tested; it should not include the intercept. This function only works for vetors of length 7,8,11,15,16,26,31,32,35,63,or 127.
alpha	input - The significance level of the test. The only options available are .1, .05, .025, or .01, and the default is .05 if alpha is not specified.
rpt	input - logical, the default value is TRUE which indicates the report printout is desired.
plt	input - logical, the default value is TRUE which indicates the half-normal plot with reference line and significance limit is desired.
pltl	input - logical, the default value is TRUE which indicates the significance limit will be shown on the half-normal plot. Make pltl=FALSE, if you want to remove the significance limit line from the plot.

36 *LGB*

Value

The result is a vector of indicators "yes" or "no" for the significance of the coefficients in Beta at the alpha significance level.

Author(s)

John Lawson

References

Lawson, J., Grimshaw, S. and Burt, J. "A quantitative method for identifying active contrasts in unreplicated factorial experiments based on the half-normal plot" *Computational Statistics and Data Analysis* Vol 26, pages 425-436., 1998.

```
Beta<-c(.06,.25,-.01,.5,0,-.02,0,.14,.03,-.01,.02,.04,.02,.01,.02)
names(Beta)<-c("A","B","C","D","AB","AC","AD","BD","CD","ABC","ABD","ACD","BCD","BCD","ABCD")
LGB(Beta,alpha=.05)
## The function is currently defined as
LGB<-function(Beta,alpha=.05,rpt=TRUE,plt=TRUE,pltl=TRUE) {
# function to compute the LGB statistic
siglev<-c(.1,.05,.025,.01)
df<-c(7,8,11,15,16, 17, 26, 31, 32, 35, 63, 127)
crittab<-matrix(c(1.265,1.196,1.161,1.122,1.110, 1.106, 1.072, 1.063, 1.060, 1.059, 1.037, 1.023,
1.534, 1.385, 1.291, 1.201, 1.186, 1.178, 1.115, 1.099, 1.093, 1.091, 1.056, 1.034,
1.889, 1.606, 1.449, 1.297, 1.274, 1.260, 1.165, 1.140, 1.130, 1.127, 1.074, 1.043,
2.506, 2.026, 1.74, 1.447, 1.421, 1.377, 1.232, 1.197, 1.185, 1.178, 1.096, 1.058),ncol=4,byrow=FALSE)
# get the critical value
colind<-which(siglev==alpha,arr.ind=TRUE)</pre>
if (length(colind)==0) {stop("this function works only when alpha= .1, .05, .025 or .01") }
rowind<-which(df==length(Beta),arr.ind=TRUE)</pre>
if (length(rowind)==0) {stop("this function works only for coefficent vectors of length
7,8,11,15,16,26,31,32,35,63,or 127")}
critL<-crittab[rowind,colind]</pre>
# calculate Beta1, Beta2 and the Rn statistic
acj<-abs(Beta)</pre>
ranks<-rank(acj,ties.method="first")</pre>
s0<-1.5*median(acj)
p<-(ranks-.5)/length(Beta)</pre>
z<-qnorm((p+1)/2)
moda < -lm(acj \sim -1 + z)
beta1<-moda$coef
sel < -acj < 2.5 *s0
modi<-lm(acj[sel]~-1+z[sel])</pre>
beta2<-modi$coef
Rn<-beta1/beta2
# finds prediction limits for values in sorted absolute Beta
pred<-beta2*z
n<-length(acj[sel])</pre>
df < -n-1
```

mod 37

```
sig<-sqrt(sum(modi$residuals^2)/df)</pre>
se.pred<-sig*(1+1/n+(z^2)/sum(z[sel]^2))^.5
pred.lim<-pred+qt(.975,df)*se.pred</pre>
# gets significance indicators
sigi<-c(rep("no",length(Beta)))</pre>
sel2<-acj>pred.lim
sigi[sel2]<-"yes"
if (plt) {
plot(z,acj,xlab="Half Normal Scores", ylab="Absoulute Effects")
lines(sort(z),sort(pred),lty=1)
 for (i in 1:length(Beta)) {
   if (sigi[i]=="yes") text(z[i],acj[i],names(Beta)[i],pos=1)
 if (pltl) {
lines(sort(z),sort(pred.lim),lty=3)\\
          }
          }
if (rpt) {
cat("Effect Report","\n")
cat(" ","\n")
cat("Label Half Effect Sig(.05)","\n")
cat(paste(format(names(Beta), width=8), format(Beta, width=8),
       ",format(sigi, width=10),"\n"),sep="")
cat(" ","\n")
cat("Lawson, Grimshaw & Burt Rn Statistic = ",Rn,"\n")
cat("95th percentile of Rn = ",critL,"\n")
return(sigi)
                     }
```

mod

Mod function

Description

Gets mod of a to base b

Usage

mod(a,b)

Arguments

a input- an integerb input - an integer

Value

remainder of a/b or mod(a,b)

Author(s)

John Lawson

38 MPV

Examples

```
mod(5,3)
## The function is currently defined as
mod<-function(a,b)
{a-b*floor(a/b)}</pre>
```

MPV

mixture process variable experiment with mayonnaise

Description

Data from the mixture process variable experiment with mayonnaise in chapter 11 of Design and Analysis of Experiments with R

Usage

data(MPV)

Format

A data frame with 35 observations on the following 4 variables.

x1 a numeric vector

x2 a numeric vector

x3 a numeric vector

z1 a numeric vector

z2 a numeric vector

y a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

```
data(MPV)
```

Naph 39

Naph

Yields of naphthalene black

Description

Data from the Yields of naphthalene black of Chapter 5 in Design and Analysis of Experiments with R

Usage

```
data(Naph)
```

Format

A data frame with 30 observations on the following 2 variables.

```
sample a factor with levels 1 2 3 4 5 6 yield a numeric vector
```

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(Naph)
```

pastry

Blocked response surface design for pastry dough experiment

Description

Data from the Blocked response surface design for pastry dough experiment in chapter 10 of Design and Analysis of Experiments with R

Usage

```
data(pastry)
```

Format

A data frame with 28 observations on the following 5 variables.

```
Block a factor with levels 1 2 3 4 5 6 7
```

x1 a numeric vector

x2 a numeric vector

x3 a numeric vector

y a numeric vector

40 pesticide

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(pastry)
```

pest

Pesticide formulation experiment

Description

Data from the Pesticide formulation experiment in chapter 11 of Design and Analysis of Experiments with R

Usage

```
data(pest)
```

Format

A data frame with 13 observations on the following 4 variables.

x1 a numeric vector

x2 a numeric vector

x3 a numeric vector

y a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(pest)
```

pesticide

pesticide application experiment

Description

Data from the pesticide application experiment in chapter 5 of Design and Analysis of Experiments with R

Usage

```
data(pesticide)
```

plasma 41

Format

A data frame with 16 observations on the following 4 variables.

```
form a factor with levels A B tech a factor with levels 1 2 plot a factor with levels 1 2 residue a numeric vector
```

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(pesticide)
```

plasma

Unreplicated split-plot 2^5 experiment on plasma treatment of paper

Description

Data from the unreplicated split-plot 2^5 experiment on plasma treatment of paper in chapter 8 of Design and Analysis of Experiments with R

Usage

```
data(plasma)
```

Format

A data frame with 32 observations on the following 6 variables.

```
A a factor with levels -1 1
```

B a factor with levels -1 1

C a factor with levels -1 1

D a factor with levels -1 1

E a factor with levels -1 1

y a numeric vector containing the response

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

```
data(plasma)
```

42 polymer

polvdat

Polvoron mixture experiment

Description

Data from the Polvoron mixture experiment in chapter 11 of Design and Analysis of Experiments with R

Usage

```
data(polvdat)
```

Format

A data frame with 12 observations on the following 4 variables.

x1 a numeric vector

x2 a numeric vector

x3 a numeric vector

y a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(polvdat)
```

polymer

polymerization strength variability study

Description

Data from the polymerization strength variability study in chapter 5 of Design and Analysis of Experiments with R

Usage

```
data(polymer)
```

Format

A data frame with 120 observations on the following 5 variables.

```
lot a factor with levels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
```

box a factor with levels 1 2

prep a factor with levels 1 2

test a factor with levels 1 2

strength a numeric vector

prodstd 43

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(polymer)

prodstd

Complete control factor array and noise factor array for connector experiment

Description

Data from the complete control factor array and noise factor array for connector experiment in chapter 12 of Design and Analysis of Experiments with R

Usage

data(prodstd)

Format

A data frame with 16 observations on the following 16 variables.

- A a numeric vector
- B a numeric vector
- C a numeric vector
- D a numeric vector
- E a numeric vector
- F a numeric vector
- G a numeric vector
- Pof a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(prodstd)

rcb

qsar

Library of substituted hydroxyphenylurea compounds

Description

Data from the Library of substituted hydroxyphenylurea compounds in chapter 10 of Design and Analysis of Experiments with R (compact format)

Usage

```
data(qsar)
```

Format

A data frame with 36 observations on the following 4 variables.

Compound a numeric vector

HE a numeric vector

DMz a numeric vector

S0K a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(qsar)
```

rcb

generalized RCB golf driving experiment

Description

Data from the generalized RCB golf driving experiment in chapter 4 of Design and Analysis of Experiments with R

Usage

```
data(rcb)
```

Format

A data frame with 135 observations on the following 3 variables.

```
id a factor with levels 1 2 3 4 5 6 7 8 9
teehgt a factor with levels 1 2 3
cdistance a numeric vector
```

residue 45

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(rcb)
```

residue

Herbicide degradation experiment

Description

Data from the Herbicide degradation experiment in chapter 9 of Design and Analysis of Experiments with R

Usage

```
data(residue)
```

Format

A data frame with 16 observations on the following 3 variables.

```
soil a factor with levels "C" "P"
moisture a factor with levels "L" "H"
temp a factor with levels 10 30
X1 a numeric vector
X2 a numeric vector
X3 a numeric vector
X4 a numeric vector
X5 a numeric vector
```

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

```
data(residue)
```

46 sausage

rubber

Rubber Elasticity data

Description

Data from the Rubber Elasticity Study in chapter 5 of Design and Analysis of Experiments with R

Usage

```
data(rubber)
```

Format

A data frame with 96 observations on the following 4 variables.

```
supplier a factor with levels A B C D
batch a factor with levels I II III IV
sample a factor with levels 1 2
elasticity a numeric vector
```

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(rubber)
```

sausage

Split-plot experiment on sausage casing with RCB in whole plot

Description

Data from the Split-plot experiment on sausage casing with RCB in whole plot in chapter 7 of Design and Analysis of Experiments with R

Usage

```
data(sausage)
```

Format

A data frame with 32 observations on the following 5 variables.

```
Block a factor with levels 1 2
Gbatch a factor with levels 1 2 3 4
A a factor with levels -1 1
B a factor with levels -1 1
C a factor with levels -1 1
```

D a factor with levels -1 1

ys a numeric vector containing the response

Smotor 47

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(sausage)
```

Smotor

Single array for starting motor experiment

Description

Data from the single array for starting motor experiment in chapter 12 of Design and Analysis of Experiments with R

Usage

```
data(Smotor)
```

Format

A data frame with 18 observations on the following 6 variables.

A a factor with levels 1 2

B a factor with levels 1 2 3

C a factor with levels 1 2 3

D a factor with levels 1 2 3

E a factor with levels 1 2

torque a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

```
data(Smotor)
```

48 soupmx

soup

dry mix soup experiment

Description

Data from the dry mix soup experiment in chapter 6 of Design and Analysis of Experiments with R

Usage

```
data(soup)
```

Format

A data frame with 16 observations on the following 6 variables.

```
A a factor with levels -1 1
```

- B a factor with levels -1 1
- C a factor with levels -1 1
- D a factor with levels -1 1
- E a factor with levels -1 1
- y a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(soup)

soupmx

dry soup mix variance component study

Description

Data from the dry soup mix variance component study of Chapter 5 in Design and Analysis of Experiments with R

Usage

```
data(soupmx)
```

Format

A data frame with 12 observations on the following 2 variables.

```
batch a factor with levels 1 2 3 4 weight a numeric vector
```

splitPdes 49

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(soupmx)
```

splitPdes

Split-plot cookie baking experiment

Description

Data from the Split-plot cookie baking experiment in chapter 8 of Design and Analysis of Experiments with R

Usage

```
data(splitPdes)
```

Format

A data frame with 24 observations on the following 5 variables.

```
short a factor with levels 100 80
trayT a factor with levels RoomT Hot
bakeT a factor with levels low mid high
batch a factor with levels 1 2
y a numeric vector
```

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

```
data(splitPdes)
```

50 strung

SPMPV

Split-plot mixture process variable experiment with vinyl

Description

Data from the Split-plot mixture process variable experiment with vinyl in chapter 10 of Design and Analysis of Experiments with R

Usage

```
data(SPMPV)
```

Format

A data frame with 28 observations on the following 7 variables.

```
wp a factor with levels 1 2 3 4 5 6 7
```

- z1 a numeric vector
- z2 a numeric vector
- x1 a numeric vector
- x2 a numeric vector
- x3 a numeric vector
- y a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(SPMPV)

strung

Repeated measures study with dairy cow diets

Description

Data from the Repeated measures study with dairy cow diets in chapter 9 of Design and Analysis of Experiments with R (strung out format)

Usage

```
data(strung)
```

strungtile 51

Format

```
A data frame with 120 observations on the following 5 variables.
```

```
Diet a factor with levels "Barley" "Mixed" "Lupins"
Cow a factor with levels 1 2 3 4 5 6 7 8 9 10
week a factor with levels 1 2 3 4
protein a numeric vector
```

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(strung)
```

strungtile	Strung out control factor array and raw response data for Ina tile ex-
	periment

Description

Data from the strung out control factor array and raw response data for Ina tile experiment in chapter 12 of Design and Analysis of Experiments with R

Usage

```
data(strungtile)
```

Format

A data frame with 16 observations on the following 16 variables.

- A a numeric vector
- B a numeric vector
- C a numeric vector
- D a numeric vector
- E a numeric vector
- F a numeric vector
- G a numeric vector
- H a numeric vector
- AH a numeric vector
- BH a numeric vector
- CH a numeric vector
- DH a numeric vector
- EH a numeric vector
- FH a numeric vector
- GH a numeric vector
- y a numeric vector

52 taste

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(strungtile)
```

sugarbeet

Sugarbeet data from Chapter 2

Description

Sugarbeet data from chapter 2 of Design and Analysis of Experiments with R

Usage

```
data(sugarbeet)
```

Format

```
A data frame with 18 observations on the following 2 variables.
```

```
treat a factor with levels A B C D yield a numeric vector
```

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(sugarbeet)
```

taste

taste test panel experiment

Description

Data from the taste test panel experiment in Chapter 7 of Design and Analysis of Experiments with R

Usage

```
data(taste)
```

Format

```
A data frame with 24 observations on the following 3 variables.
```

```
panelist a factor with levels 1 2 3 4 5 6 7 8 9 10 11 12 recipe a factor with levels "A" "B" "C" "D" score a numeric vector
```

teach 53

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(taste)
```

teach

Teaching experiment data from Chapter 2

Description

Data from the teaching experiment in chapter 2 of Design and Analysis of Experiments with R

Usage

```
data(teach)
```

Format

A data frame with 30 observations on the following 4 variables.

```
class a numeric vector
method a factor with levels 1 2 3
score a factor with levels 1 2 3 4 5
count a numeric vector
```

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(teach)
```

Tet

Tetracycline concentration in plasma

Description

Data from the Tetracycline concentration in plasma study in chapter 10 of Design and Analysis of Experiments with R (compact format)

Usage

```
data(Tet)
```

54 tile

Format

A data frame with 9 observations on the following 2 variables.

```
Time a numeric vector

Conc a numeric vector
```

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(Tet)
```

tile

Control factor array and summary statistics for Ina tile experiment

Description

Data from the control factor array and summary statistics for Ina tile experiment in chapter 12 of Design and Analysis of Experiments with R

Usage

```
data(tile)
```

Format

A data frame with 8 observations on the following 11 variables.

A a numeric vector

B a numeric vector

C a numeric vector

D a numeric vector

E a numeric vector

F a numeric vector

G a numeric vector

y1 a numeric vector

y2 a numeric vector

ybar a numeric vector

1ns2 a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

```
data(tile)
```

Treb 55

Treb Box-Behnken design for trebuchet experiment

Description

Data from the Box-Behnken design for trebuchet experiment in chapter 10 of Design and Analysis of Experiments with R

Usage

```
data(Treb)
```

Format

A data frame with 15 observations on the following 4 variables.

x1 a numeric vector

x2 a numeric vector

x3 a numeric vector

y a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(Treb)

Tukey1df

Tukey's single degree of freedom test for additivity

Description

This function performs Tukey's single degree of freedom test for additivity in an unreplicated two-factor factorial.

Usage

```
Tukey1df<-function(data)</pre>
```

Arguments

data

input - This is a data frame containing an unreplicated two-factor factorial. The first column should be an numeric response, the second and third columns should be factors. At least one of the factors should have more than 2 levels.

Author(s)

John Lawson

56 Tukey1df

References

Tukey, J. "One degree of freedom test for non-additivity" Biometrics Vol 5, pages 232-242., 1949.

```
Dilution<-rep(c(3,4,5),6)
 Sample < -rep(c(1,2,3,4,5,6), each=3)
       y < -c(1.87506, 1.38021, 0.60206, 1.74036, 1.36173, 0.90309, 1.79934, 1.25527, 0.95424, 2.02119, 1.39794, 1.000, 1.79936, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.36173, 1.361
       virus<-data.frame(y=y, Sample=factor(Sample),Dilution=factor(Dilution))</pre>
Tukey1df(virus)
 ## The function is currently defined as
 Tukey1df<-function(data) {</pre>
 y<-data[,1]
 Afactor<-data[,2]
Bfactor<-data[,3]
 tst1<-is.factor(Afactor)</pre>
 tst2<-is.factor(Bfactor)</pre>
 tst3<-is.numeric(y)</pre>
 if (tst1&tst2&tst3) {
a<-nlevels(Afactor)
b<-nlevels(Bfactor)
                } else {stop("The first column of the data frame is the numeric response, the 2nd and 3rd columns should
 tst4 < -max(a,b) > 2
 tst5 < -length(y) = = a * b
  if (tst4&tst5) {
 ybb<-with(data, tapply(y, Bfactor, mean))</pre>
 yba<-with(data, tapply(y, Afactor, mean))</pre>
 sbb<-with(data, tapply(y, Bfactor, sum))</pre>
 sba<-with(data, tapply(y, Afactor, sum))</pre>
 ybardd<-mean(y)</pre>
 CT < -(sum(y)^2)/(a*b)
 ssA<-sum(sba^2/b)-CT
 ssB<-sum(sbb^2/a)-CT
 ssE<-sum(y^2)-CT-ssA-ssB
 ybdj<-rep(ybb,6)</pre>
 prody<-y*ybdj
 sumprod<-tapply(prody,Afactor,sum)</pre>
 leftsum<-sum(sumprod*yba)</pre>
 ssAB < -(a*b*(leftsum-(ssA+ssB+a*b*ybardd^2)*ybardd)^2/(ssA*ssB))
 ssR<-ssE-ssAB
F < -ssAB/(ssR/((a-1)*(b-1)-1))
Pval < -1-pf(1,((a-1)*(b-1)-1),F)
                                                                                                                                                                                                                                                                                                                                                                                                                                      Pr>F","\n")
 cat("Source
                                                                                                                                                                   df
                                                                                                                                                                                                                                                                                                                                                                                        F
                                                                                                                                           ", paste(format(a-1, width=6),"", format(round(ssA,4), justify="right")," \\ ", format(suA,4), justify="right")," \\ ", format
 cat("A
                                                                                                                                           ",paste(format(b-1, width=6)," ", format(round(ssB,4),justify="right")," ",format(round
 cat("B
                                                                                                                                           ", paste(format((b-1)*(a-1), width=6),"", format(round(ssE,4), justify="right")," \\ ", format(round(ssE,4), justify="right")," \\ ", format(ssE,4), justify="right")," \\ ", f
cat("Error
cat("NonAdditivity",paste(format(1, width=6)," ", format(round(ssAB,4),justify="right")," ",format(round(ssAB,4),justify="right")," ",format(suAB,4),justify="right")," ",format(suAB,4),justify=
                                                                                                                                           ",paste(format((b-1)*(a-1)-1, width=6)," ", format(round(ssR,4),justify="right")," ",format(round(ssR,4),justify="right")," ",format(ssR,4),justify="right")," ",format(ssR,4),justify="right"
 cat("Residual
                        } else {stop("This function only works for unreplicated 2-factor factorials with >2 levels for one of the stop of the factorials with >2 levels for one of the f
```

vci 57

vci	confidence limits for method of moments estimators of variance components

Description

function for getting confidence intervals on variance components estimated by the method of moments

Usage

```
vci(confl,c1,ms1,nu1,c2,ms2,nu2)
```

Arguments

confl	input- confidence level
c1	input - linear combination coefficient of ms1 in the estimated variance component
ms1	input - Anova mean square 1
nu1	input - Anova degrees of freedom for mean square 1
c2	input - linear combination coefficient of ms2 in the estimated variance component
ms2	input - Anova mean square 2
nu2	input - Anova degrees of freedom for mean square 2

Value

returned delta, Lower and Upper limits

Author(s)

John Lawson

```
vci(.90,.05,.014852,2,.05,.026885,18)
## The function is currently defined as
vci<-function(confl,c1,ms1,nu1,c2,ms2,nu2){</pre>
  delta<-c1*ms1-c2*ms2
  alpha<-1-confl
  Falpha1<-qf(confl,nu1,10000000)
  Falpha12<-qf(confl,nu1,nu2)
  Fconf2<-qf(alpha,nu2,10000000)
  Fconf12<-qf(alpha,nu1,nu2)
  Falpha2<-qf(confl,nu2,10000000)
  Fconf1<-qf(alpha,nu1,10000000)
  Fconf12<-qf(alpha,nu1,nu2)
  G1<-1-(1/Falpha1)
  H2<-(1/Fconf2)-1
  G12<-((Falpha12-1)**2-G1**2*Falpha12**2-H2**2)/Falpha12
  VL<-G1**2*c1**2*ms1**2+H2**2*c2**2*ms2**2+G12*c1*c2*ms1*ms2
```

58 volt

```
H1<-(1/Fconf1)-1
G2<-1-(1/Falpha2)
H12<-((1-Fconf12)**2-H1**2*Fconf12**2-G2**2)/Fconf12
VU<-H1**2*c1**2*ms1**2+G2**2*c2**2*ms2**2
L<-delta-sqrt(VL)
U<-delta+sqrt(VU)
cat("delta=",delta," Lower Limit=",L," Upper Limit=",U,"\n")
}
```

virus

Assay of Viral Contamination experiment data from Chapter 3

Description

Data from the Assay of Viral Contamination experiment in chapter 3 of Design and Analysis of Experiments with R

Usage

```
data(virus)
```

Format

A data frame with 18 observations on the following 3 variables.

```
y a numeric vector

Sample a factor with levels 1 2 3 4 5 6

Dilution a factor with levels 3 4 5
```

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(virus)
```

volt

Volt meter experiment data from Chapter 3

Description

Data from the Volt meter experiment in chapter 3 of Design and Analysis of Experiments with R

Usage

```
data(volt)
```

web 59

Format

A data frame with 16 observations on the following 3 variables.

y a numeric vector

XA a numeric vector containing the coded levels (-1,1) of factor A

XB a numeric vector containing the coded levels (-1,1) of factor B

XC a numeric vector containing the coded levels (-1,1) of factor C

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```
data(volt)
```

web

Web page design experiment data from Chapter 3

Description

Data from the web page design experiment in chapter 3 of Design and Analysis of Experiments with R

Usage

```
data(web)
```

Format

A data frame with 36 observations on the following 6 variables.

A a factor with levels 1 2

B a factor with levels 1 2

C a factor with levels 1 2

D a factor with levels 1 2

visitors a numeric vector

signup a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

```
data(web)
```

Index

*Topic datasets	rcb, 44
antifungal, 3	residue, 45
Apo, 4	rubber, 46
apple, 5	sausage, 46
arso, 5	Smotor, 47
augm, 6	soup, 48
Bdish, 7	soupmx, 48
Bff, 8	splitPdes, 49
bha, 8	SPMPV, 50
bioequiv, 10	strung, 50
bioeqv, 11	strungtile, 51
blood, 12	sugarbeet, 52
BoxM, 12	taste, 52
BPmonitor, 13	teach, 53
bread, 14	Tet, 5 3
cake, 14	tile, 54
castf, 15	Treb, <u>55</u>
cement, 16	virus, 58
chem, 16	volt, 58
chipman, 17	web, 59
COdata, 18	*Topic package
cont, 18	daewr-package, 3
cpipe, 19	antifungal 2
culture, 20	antifungal, 3
dairy, 20	Apo, 4 apple, 5
drug, 21	arso, 5
eptaxr, 22	augm, 6
eptaxs2, 22	augiii, 0
eptaxyb, 23	Bdish,7
gagerr, 27	Bff, 8
gear, 33	bha, 8
hardwood, 34	BIBsize, 9
inject, 34	bioequiv, 10
MPV, 38	bioeqv, 11
Naph, 39	blood, 12
pastry, 39	BoxM, 12
pest, 40	BPmonitor, 13
pesticide, 40	bread, 14
plasma, 41	
polvdat, 42	cake, 14
polymer, 42	castf, 15
prodstd, 43	cement, 16
qsar, 44	chem, 16

INDEX 61

chipman, 17 COdata, 18 cont, 18	strung, 50 strungtile, 51 sugarbeet, 52
cpipe, 19 culture, 20 daewr (daewr-package), 3	taste, 52 teach, 53 Tet, 53
daewr-package, 3 dairy, 20	tile, 54 Treb, 55
drug, 21	Tukey1df, 55
eptaxr, 22 eptaxs2, 22 eptaxyb, 23	vci, 57 virus, 58 volt, 58
Fcrit, 24 Fpower, 25 fullnormal, 25	web, 59
gagerr, 27 gapstat, 28 Gaptest, 29 gear, 33	
hardwood, 34	
inject, 34	
LGB, 35	
mod, 37 MPV, 38	
Naph, 39	
pastry, 39 pest, 40 pesticide, 40 plasma, 41 polvdat, 42 polymer, 42 prodstd, 43	
qsar, 44	
rcb, 44 residue, 45 rubber, 46	
sausage, 46 Smotor, 47 soup, 48 soupmx, 48 splitPdes, 49 SPMPV, 50	