ALGORITHMS

Algorithm: definition

 An algorithm is a finite sequence of precise instructions for performing a computation or for solving a problem

ALGORITHM 1 Finding the Maximum Element in a Finite Sequence.

```
procedure max(a_1, a_2, ..., a_n): integers)

max := a_1

for i := 2 to n

if max < a_i then max := a_i

return max\{max \text{ is the largest element}\}
```

Algorithm: properties

- Input. An algorithm has input values from a specified set.
- Output. From each set of input values an algorithm produces output values from a specified set. The output values are the solution to the problem.
- Definiteness. The steps of an algorithm must be defined precisely.
- Correctness. An algorithm should produce the correct output values for each set of input values.
- Finiteness. An algorithm should produce the desired output after a finite (but perhaps large) number of steps for any input in the set.
- Effectiveness. It must be possible to perform each step of an algorithm exactly and in a finite amount of time.
- Generality. The procedure should be applicable for all problems of the desired form, not just for a particular set of input values.

Linear search algorithm

ALGORITHM 2 The Linear Search Algorithm.

```
procedure linear search(x: integer, a_1, a_2, \ldots, a_n: distinct integers)
i := 1
while (i \le n \text{ and } x \ne a_i)
i := i + 1
if i \le n then location := i
else location := 0
return location\{location \text{ is the subscript of the term that equals } x, \text{ or is } 0 \text{ if } x \text{ is not found}\}
```

Binary search algorithm

ALGORITHM 3 The Binary Search Algorithm.

```
procedure binary search (x: integer, a_1, a_2, \ldots, a_n: increasing integers)
i := 1\{i \text{ is left endpoint of search interval}\}
j := n \{j \text{ is right endpoint of search interval}\}
while i < j
m := \lfloor (i+j)/2 \rfloor
if x > a_m then i := m+1
else j := m
if x = a_i then location := i
else location := 0
return location\{location \text{ is the subscript } i \text{ of the term } a_i \text{ equal to } x, \text{ or } 0 \text{ if } x \text{ is not found}\}
```

The bubble sort algorithm

ALGORITHM 4 The Bubble Sort.

```
procedure bubblesort(a_1, ..., a_n : real numbers with <math>n \ge 2)

for i := 1 to n - 1

for j := 1 to n - i

if a_j > a_{j+1} then interchange a_j and a_{j+1}

\{a_1, ..., a_n \text{ is in increasing order}\}
```

```
Third pass 2 1 2 2 3 3 4 5
```

Fourth pass (1 2 3 4 5

(: an interchange

(: pair in correct order numbers in color guaranteed to be in correct order

FIGURE 1 The Steps of a Bubble Sort.

The insertion sort algorithm

ALGORITHM 5 The Insertion Sort.

```
procedure insertion sort(a_1, a_2, ..., a_n): real numbers with n \ge 2)

for j := 2 to n

i := 1

while a_j > a_i

i := i + 1

m := a_j

for k := 0 to j - i - 1

a_{j-k} := a_{j-k-1}

a_i := m

\{a_1, ..., a_n \text{ is in increasing order}\}
```

- Greedy algorithms
 - ✓ Optimization problems
 - ✓ Selects the **best choice at each step**, instead of considering all sequences of steps that may lead to an optimal solution

- The problem of making n cents change
 - √ quarters, dimes, nickels, and pennies
 - √ using the least total number of coins

ALGORITHM 6 Greedy Change-Making Algorithm.

```
procedure change(c_1, c_2, \ldots, c_r): values of denominations of coins, where c_1 > c_2 > \cdots > c_r; n: a positive integer)

for i := 1 to r
d_i := 0 \; \{d_i \; \text{counts the coins of denomination } c_i \; \text{used} \}
while n \geq c_i
d_i := d_i + 1 \; \{\text{add a coin of denomination } c_i \}
n := n - c_i
\{d_i \; \text{is the number of coins of denomination } c_i \; \text{in the change for } i = 1, 2, \ldots, r \}
```

On-class discussion

✓ LEMMA 1 - p.199

THE GROWTH OF FUNCTIONS

Let f and g be functions from the set of integers or the set of real numbers to the set of real numbers. We say that f(x) is O(g(x)) if there are constants C and k such that

$$|f(x)| \le C|g(x)|$$

whenever x > k. [This is read as "f(x) is big-oh of g(x)."]

 Remark: Intuitively, f (x) grows slower that some fixed multiple of g(x) as x grows without bound

√ C and k are called witnesses

Remark: The fact that f(x) is O(g(x)) is sometimes written f(x) = O(g(x)). However, the equals sign in this notation does *not* represent a genuine equality. Rather, this notation tells us that an inequality holds relating the values of the functions f and g for sufficiently large numbers in the domains of these functions. However, it is acceptable to write $f(x) \in O(g(x))$ because O(g(x)) represents the set of functions that are O(g(x)).

When f(x) is O(g(x)), and h(x) is a function that has larger absolute values than g(x) does for sufficiently large values of x, it follows that f(x) is O(h(x)). In other words, the function g(x) in the relationship f(x) is O(g(x)) can be replaced by a function with larger absolute values. To see this, note that if

Big-O Notation: example

Show that $f(x) = x^2 + 2x + 1$ is $O(x^2)$.

Solution: We observe that we can readily estimate the size of f(x) when x > 1 because $x < x^2$ and $1 < x^2$ when x > 1. It follows that

$$0 \le x^2 + 2x + 1 \le x^2 + 2x^2 + x^2 = 4x^2$$

whenever x > 1, as shown in Figure 1. Consequently, we can take C = 4 and k = 1 as witnesses to show that f(x) is $O(x^2)$. That is, $f(x) = x^2 + 2x + 1 < 4x^2$ whenever x > 1. (Note that it is not necessary to use absolute values here because all functions in these equalities are positive when x is positive.)

Alternatively, we can estimate the size of f(x) when x > 2. When x > 2, we have $2x \le x^2$ and $1 \le x^2$. Consequently, if x > 2, we have

$$0 \le x^2 + 2x + 1 \le x^2 + x^2 + x^2 = 3x^2$$
.

It follows that C = 3 and k = 2 are also witnesses to the relation f(x) is $O(x^2)$.

Big-O Notation: example

The part of the graph of $f(x) = x^2 + 2x + 1$ that satisfies $f(x) < 4x^2$ is shown in blue.

FIGURE 1 The Function $x^2 + 2x + 1$ is $O(x^2)$.

Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$, where $a_0, a_1, \dots, a_{n-1}, a_n$ are real numbers. Then f(x) is $O(x^n)$.

Proof: Using the triangle inequality (see Exercise 7 in Section 1.8), if x > 1 we have

$$|f(x)| = |a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0|$$

$$\leq |a_n| x^n + |a_{n-1}| x^{n-1} + \dots + |a_1| x + |a_0|$$

$$= x^n (|a_n| + |a_{n-1}|/x + \dots + |a_1|/x^{n-1} + |a_0|/x^n)$$

$$\leq x^n (|a_n| + |a_{n-1}| + \dots + |a_1| + |a_0|).$$

This shows that

$$|f(x)| \le Cx^n,$$

where $C = |a_n| + |a_{n-1}| + \cdots + |a_0|$ whenever x > 1. Hence, the witnesses $C = |a_n| + |a_{n-1}| + \cdots + |a_0|$ and k = 1 show that f(x) is $O(x^n)$.

Theorem

Suppose that $f_1(x)$ is $O(g_1(x))$ and that $f_2(x)$ is $O(g_2(x))$. Then $(f_1 + f_2)(x)$ is $O(\max(|g_1(x)|, |g_2(x)|))$.

Suppose that $f_1(x)$ and $f_2(x)$ are both O(g(x)). Then $(f_1 + f_2)(x)$ is O(g(x)).

Theorem

Suppose that $f_1(x)$ is $O(g_1(x))$ and $f_2(x)$ is $O(g_2(x))$. Then $(f_1f_2)(x)$ is $O(g_1(x)g_2(x))$.