Day 8: The Strong Markov Property of Brownian Motions

Dain Kim

December 30th

Today's Reading

[L] Chapter 2.4

Review: Stopping Time

A *stopping time* with respect to a filtration $\{\mathcal{F}_t, t \in [0, \infty)\}$ is a mapping $T: \Omega \to [0, \infty]$ such that $\{T \leq t\} \in \mathcal{F}_t$ for every $t \in [0, \infty)$.

The σ -algebras of stopping times

Let $(B_t)_{t\geq 0}$ be a Brownian motion. We use the notation

$$\mathcal{F}_t = \sigma\{B_s : s \leq t\}, \quad \mathcal{F}_\infty = \sigma\{B_s : s \geq 0\}.$$

Let T be a stopping time. The σ -algebra of the past before T is

$$\mathcal{F}_{\mathcal{T}} = \{ A \in \mathcal{F}_{\infty} : \forall t \geq 0, A \cap \{ T \leq t \} \in \mathcal{F}_{t} \}.$$

Define the real random variable $\mathbb{1}_{\{T<\infty\}}B_T(\omega)$ by

$$\mathbb{1}_{\{T<\infty\}}B_T(\omega) = \begin{cases} B_{T(\omega)}(\omega), & T(\omega) < \infty \\ 0, & T(\omega) = \infty \end{cases}.$$

The σ -algebras of stopping times

The random variable $\mathbb{1}_{\{T<\infty\}}B_T(\omega)$ is \mathcal{F}_T -measurable:

$$\mathbb{1}_{\{T<\infty\}}B_T = \lim_{n\to\infty} \sum_{i=0}^{\infty} \mathbb{1}_{\{i2^{-n} \le T \le (i+1)2^{-n}\}} B_{i2^{-n}}$$

$$= \lim_{n\to\infty} \sum_{i=0}^{\infty} \mathbb{1}_{\{T \le (i+1)2^{-n}\}} \mathbb{1}_{\{i2^{-n} \le T\}} B_{i2^{-n}}$$

and

$$\{B_{s}\mathbb{1}_{\{s \leq T\}} \in A\} \cap \{T \leq t\} = \begin{cases} \emptyset, & t < s \\ \{B_{s} \in A\} \cap \{s \leq T \leq t\}, & t \geq s. \end{cases}$$

Strong Markov Property

Theorem (Strong Markov Property)

Let T be a stopping time such that $\mathbf{P}(T < \infty) > 0$. Set, for $t \ge 0$,

$$B_t^{(T)} = \mathbb{1}_{\{T < \infty\}} (B_{T+t} - B_T).$$

Then under the probability measure $\mathbf{P}(\cdot|T<\infty)$, the process $(B_t^{(T)})$, $t\geq 0$, is a Brownian motion independent of \mathcal{F}_T .

Proof. We prove for the case $T<\infty$, a.s. Fix $A\in\mathcal{F}_T$ and $0\leq t_1\leq\cdots\leq t_p$. Let $F\colon\mathbb{R}^p\to\mathbb{R}^+$ be a bounded continuous function. We show that

$$\mathbf{E}[\mathbb{1}_{A}F(B_{t_{1}}^{(T)},\ldots,B_{t_{p}}^{(T)})]=P(A)\mathbf{E}[F(B_{t_{1}},\ldots,B_{t_{p}})].$$

Strong Markov Property

Denote by $[t]_n$ the smallest real of the form $k2^{-n}$ at least t. By convention, we let $[\infty]_n = \infty$. By the continuity of F,

$$F(B_{t_1}^{(T)}, \dots B_{t_p}^{(T)}) = \lim_{n \to \infty} F(B_{t_1}^{([T]_n)}, \dots, B_{t_p}^{([T]_n)}),$$

so by Lebesgue Dominated Convergence Theorem and simple Markov property,

$$\begin{aligned} \mathbf{E}[\mathbb{1}_{A}F(B_{t_{1}}^{(T)},\ldots,B_{t_{p}}^{(T)})] &= \lim_{n \to \infty} \mathbf{E}[\mathbb{1}_{A}F(B_{t_{1}}^{([T]_{n})},\ldots,B_{t_{p}}^{([T]_{n})})] \\ &= \lim_{n \to \infty} \sum_{k=0}^{\infty} \mathbf{E}[\mathbb{1}_{A}\mathbb{1}_{\{(k-1)2^{-n} \le T \le k2^{-n}\}} \\ &\qquad \qquad \cdot F(B_{k2^{-n}+t_{1}} - B_{k2^{-n}},\ldots,B_{k2^{-n}+t_{p}} - B_{k2^{-n}})] \\ &= \lim_{n \to \infty} \sum_{k=0}^{\infty} \mathbf{P}(A \cap \{(k-1)2^{-n} < T \le k2^{-n}\}) \mathbf{E}[F(B_{t_{1}},\ldots,B_{t_{p}})] \\ &= \mathbf{P}(A)\mathbf{E}[F(B_{t_{1}},\ldots,B_{t_{p}})]. \end{aligned}$$

Strong Markov Property

If $P(T = \infty) > 0$, we may substitute A by $A \cap \{T < \infty\}$ and the desired result follows.

Once we have

$$\mathbf{E}[\mathbb{1}_{A}F(B_{t_{1}}^{(T)},\ldots,B_{t_{p}}^{(T)})]=P(A)\mathbf{E}[F(B_{t_{1}},\ldots,B_{t_{p}})],$$

for $A = \Omega$, since $B^{(T)}$ has the same finite-dimensional marginal distributions as B, it is also a Brownian motion. Then the above equation shows that $B^{(T)}$ is independent of \mathcal{F}_T .

Reflection Principle

Theorem

For every t>0, let $S_t=\sup_{s\leq t}B_s$. Then if $a\geq 0$ and $b\in (-\infty,a]$, we have

$$\mathbf{P}(S_t \geq a, B_t \leq b) = \mathbf{P}(B_t \geq 2a - b).$$

In particular, S_t has the same distribution as $|B_t|$.

Proof. Define a stopping time

$$T_a = \inf\{t \geq 0 : B_t = a\}.$$

Note that $T_a < \infty$. We have

$$\mathbf{P}(S_t \geq a, B_t \leq b) = \mathbf{P}(T_a \leq t, B_t \leq b) = \mathbf{P}(T_a \leq t, B_{t-T_a}^{(T_a)} \leq b - a).$$

Reflection Principle

Write $B'=B^{(T_a)}$ and note that B' is a Brownian motion independent of \mathcal{F}_{T_a} . Note also that -B' is a Brownian motion as well, and that (T_a,B') and $(T_a,-B')$ have the same distribution. Define

$$H = \{(s, w) \in \mathbb{R}^+ \times C(\mathbb{R}^+, \mathbb{R}) : s \leq t, w(t - s) \leq b - a\}.$$

Then

$$\mathbf{P}((T_a, B') \in H) = \mathbf{P}((T_a, -B') \in H)$$

$$= \mathbf{P}(T_a \le t, -B_{t-T_a}^{(T_a)} \le b - a)$$

$$= \mathbf{P}(T_a \le t, B_t \ge 2a - b)$$

$$= \mathbf{P}(B_t \ge 2a - b).$$

Finally,

$$\mathbf{P}(S_t \ge a) = \mathbf{P}(S_t \ge a, B_t \ge a) + \mathbf{P}(S_t \ge a, B_t \le a)$$
$$= 2\mathbf{P}(B_t \ge a) = \mathbf{P}(|B_t| \ge a).$$

So S_t has the same distribution as $|B_t|$.

Distribution of T_a

Corollary

For every a > 0, T_a has the same distribution as a^2/B_1^2 and has density

$$f(t) = \frac{a}{\sqrt{2\pi t^3}} \exp\left(-\frac{a^2}{2t}\right) \mathbb{1}_{\{t>0\}}.$$

Proof. For every $t \geq 0$,

$$\begin{aligned} \mathbf{P}(T_a \leq t) &= \mathbf{P}(S_t \geq a) \\ &= \mathbf{P}(|B_t| \geq a) \\ &= \mathbf{P}(B_t^2 \geq a^2) \\ &= \mathbf{P}(tB_1^2 \geq a^2) \\ &= \mathbf{P}\left(\frac{a^2}{B_1^2} \leq t\right). \end{aligned}$$

Brownian Motions

If Z is a real random variable, a stochastic process (X_t) is a real Brownian motion if

$$X_t = Z + B_t$$

where B is a real Brownian motion started from 0 and independent of Z.

A stochastic process $B_t = (B_t^1, \dots, B_t^d)$ with values in \mathbb{R}^d is a d-dimensional Brownian motion started from 0 if its components B^1, \ldots, B^d are independent real Brownian motions started from 0.