DEEP LEARNING FOR FACE RECOGNITION IN SURVEILLANCE VIDEOS

by

Paul-Darius Sarmadi

A dissertation submitted in partial fulfillment of the requirements for the degree of Master of Engineering in Computer Science

Examination Committee: Dr. Matthew Dailey (Chairperson)

Dr. Mongkol Ekpanyapong Dr. Manukid Parnichkun

Nationality: French

Previous Degree: Baccalaurat scientifique

Lyce Descartes, Tours, France

Asian Institute of Technology School of Engineering and Technology Thailand May XXXX

Acknowledgments

Abstract

Abstract here..

Table of Contents

Chapter Title Page

List of Figures

Figure Title Page

List of Tables

Table Title Page

Chapter 1

Introduction

Some text.
1.1 Overview
Human monitoring is therefore becoming increasingly expensive and ineffective as the torrent of video data increases. For instance, in a CCTV monitoring room (see Figure ??), security operators are required to monitor 24 hours a day and be ready to take action when an alarm occurs.
1.2 Problem Statement
Some text
1.3 Objectives
Some text
1.4 Limitations and Scope
Some text
1.5 Thesis Outline
I organize the rest of this dissertation as follows.
In Chapter ??, I describe the literature review.

In Chapter ??, I propose my methodology.

In Chapter ??, I present the experimental results.

Figure 1.1: CCTV monitoring room. Reprinted from the Twenty First Security Web site (http://www.twentyfirstsecurity.com.au/).

Finally, in Chapter ??, I conclude my thesis.

Chapter 2

Literature Review

Some intro..

2.1 Section Name in Literature Review

Example text below ..

? (?) apply the background subtraction technique to extract blobs or human from a scene by the following conditions:

if
$$|I_a(x,y) - I_b(x,y)| < T, I_e(x,y) = 0$$

else $I_e(x,y) = I_a(x,y),$

where $I_e(x,y)$ is a human extracted image, $I_a(x,y)$ is an original image, $I_b(x,y)$ is a background image, and T is a threshold. Figure ?? shows something. Some work also uses mesh features (?,?).

f=(a00,a01,...,aij,...amn)

aij=number of black mesh(ij)/MmNm

Figure 2.1: Mesh feature calculation. Reprinted from the work of Yamato et al. (1992).

Chapter 3

Methodology

Some intro..

3.1 System Overview

Some text .. Algorithm ?? is just a pseudocode.

3.2 System Design

3.2.1 Design A

Some text ..

```
Algorithm 1 Lame Algorithm
```

Input: B: set of all current blobs

Input: T: set of all current tracks

Input: M: merged track association matrix

Output: \widetilde{T} : set of all revised tracks

Output: \widetilde{M} : revised merged track association matrix

$$\widetilde{T} \leftarrow \emptyset$$
; $\widetilde{M} \leftarrow \emptyset$; $L \leftarrow \emptyset$

 $A \leftarrow \text{Get-Overlap-Area-Matrix}(B, T)$

for each $t \in T$ do

if t is marked as processed then continue

$$B' \leftarrow \{b' \mid A(b',t) > 0\} \{B' \text{ contains candidate blobs for track } t.\}$$

 $T' \leftarrow \{t\} \cup \{t' \mid M(t,t') = 1\} \{T' \text{ contains all tracks currently merged with } t.\}$

if $|B'| \ge 1$ then

for each $t' \in T'$ do

Let
$$b = \operatorname*{argmax}_{b' \in B'} S(b', t')$$

 $L \leftarrow L \cup \{(t', b)\}$

MARK-TRACK-AS-PROCESSED(t')

end for

end if

end for

for each $(t_i, t_i) \in T \times T$ do

If
$$\exists b \text{ s.t. } (t_i, b) \in L \land (t_j, b) \in L, \widetilde{M}_{ij} \leftarrow 1$$
, otherwise $\widetilde{M}_{ij} \leftarrow 0$

end for

 $T^* \leftarrow \{t^* \mid \neg \exists b \in B \text{ s.t. } (t^*, b) \in L\}$ $\{T^* \text{ contains tracks for which "stale count" will be increased.} \}$

$$\widetilde{T} \leftarrow \text{Update-Or-Delete-Stale-Tracks}(T, T^*)$$

 $B^* \leftarrow \{b^* \mid \neg \exists t \in T \text{ s.t. } (t, b^*) \in L\} \ \{B^* \text{ contains blobs with no tracks assigned.} \}$

$$\widetilde{T} \leftarrow \texttt{Add-New-Tracks-For-Not-Linked-Blobs}(\widetilde{T}, B^*)$$