Десятое домашнее задание: dfsь! СПБ, Академический Университет, 10 ноября 2014

Содержание

2
2
3
4
5
6
7
8
9
10
11
12
13
13
14
15

В некоторых задачах большой ввод и вывод. Имеет смысл пользоваться супер быстрым вводом-выводом: http://acm.math.spbu.ru/~sk1/algo/input-output/

Задачи

Задача А. Матрица инцидентности [0.5 sec, 256 mb]

Вершина графа u называется uнuиdенmнoй ребру e, если u является одним из концов ребра e.

Аналогично, ребро e называется u + u + u + d = u, если один из концов e - это вершина u.

Mampuueŭ инцидентности графа G = (V, E) называется прямоугольная таблица из |V| строк и |E| столбцов, в которой на пересечении i-ой строки и j-го столбца записана единица, если вершина i инцидентна ребру j, и ноль в противном случае.

Дан неориентированный граф. Выведите его матрицу инцидентности.

Формат входных данных

В первой строке входного файла заданы числа N и M через пробел — количество вершин и рёбер в графе, соответственно ($1 \le N \le 100, \ 0 \le M \le 10000$). Следующие M строк содержат по два числа u_i и v_i через пробел ($1 \le u_i, \ v_i \le N$); каждая такая строка означает, что в графе существует ребро между вершинами u_i и v_i . Рёбра нумеруются в том порядке, в котором они даны во входном файле, начиная с единицы.

Формат выходных данных

Выведите в выходной файл N строк, по M чисел в каждой. j-ый элемент i-ой строки должен быть равен единице, если вершина i инцидентна ребру j, и нулю в противном случае. Разделяйте соседние элементы строки одним пробелом.

incident.in	incident.out
3 2	1 0
1 2	1 1
2 3	0 1
2 2	1 1
1 1	0 1
1 2	

Задача В. От матрицы смежности к списку ребер [0.5 sec, 256 mb]

Простой неориентированный граф задан матрицей смежности, выведите его представление в виде списка ребер.

Формат входных данных

Входной файл содержит число N ($1 \le N \le 100$) — число вершин в графе, и затем N строк по N чисел, каждое из которых равно 0 или 1 — его матрицу смежности.

Формат выходных данных

Выведите в выходной файл список ребер заданного графа. Ребра можно выводить в произвольном порядке.

m2e.in	m2e.out
3	1 2
0 1 1	2 3
1 0 1	1 3
1 1 0	

Десятое домашнее задание: dfsъ! СПБ, Академический Университет, 10 ноября 2014

Задача С. Дерево [0.5 sec, 256 mb]

Дан неориентированный граф. Проверьте, является ли он деревом.

Формат входных данных

В первой строке входного файла заданы через пробел два целых числа n и m — количество вершин и рёбер в графе, соответственно ($1 \le n \le 100$). В следующих m строках заданы рёбра; i-я из этих строк содержит два целых числа u_i и v_i через пробел — номера концов i-го ребра ($1 \le u_i, v_i \le n$). Граф не содержит петель и кратных рёбер.

Формат выходных данных

В первой строке выходного файла выведите "YES", если граф является деревом, и "NO" в противном случае.

tree.in	tree.out
3 2	YES
1 2	
1 3	
3 3	NO
1 2	
2 3	
3 1	

Десятое домашнее задание: dfsъ! СПБ, Академический Университет, 10 ноября 2014

Задача D. Связанность графа [0.5 sec, 256 mb]

Дан граф, содержащий N вершин и M ребёр ($1 \le N \le 1000, 1 \le M \le 7000$). Требуется найти наименьшее число рёбер и эти рёбра, которые нужно добавить, чтобы граф стал связным.

Формат входных данных

Во входном файле записаны сначала числа N и M, затем идёт описание рёбер графа — M пар чисел, где каждая пара описывает начало и конец ребра.

Формат выходных данных

В первую строку вывести единственное число K — минимальное количество рёбер, которое нужно добавить. В следующих K строках выведите по 2 числа — начало и конец нового ребра.

edges.in	edges.out
3 1	1
2 1	1 3

Десятое домашнее задание: dfsъ! СПБ, Академический Университет, 10 ноября 2014

Задача Е. Компоненты связности [0.5 sec, 256 mb]

Вам задан неориентированный граф с N вершинами и M ребрами (1 $\leqslant N \leqslant 20\,000$, $1 \leqslant M \leqslant 200\,000$). В графе отсутствуют петли и кратные ребра.

Определите компоненты связности заданного графа.

Формат входных данных

Граф задан во входном файле следующим образом: первая строка содержит числа N и M. Каждая из следующих M строк содержит описание ребра — два целых числа из диапазона от 1 до N — номера концов ребра.

Формат выходных данных

На первой строке выходного файла выведите число L — количество компонент связности заданного графа. На следующей строке выведите N чисел из диапазона от 1 до L — номера компонент связности, которым принадлежат соответствующие вершины. Компоненты связности следует занумеровать от 1 до L произвольным образом.

connect.in	connect.out
4 2	2
1 2	1 1 2 2
3 4	

Задача F. Поиск пути на гриде [0.8 sec, 256 mb]

Дано прямоугольное поле $W \times H$. Некоторые клетки проходимы, через некоторые ходить нельзя. Из клетки можно ходить в соседние по ребру (слева, справа, сверху, снизу).

Нужно из клетки (x_1, y_1) найти любой (не обязательно кратчайший, даже не обязательно простой) путь в клетку (x_2, y_2) .

Формат входных данных

На первой строке W, H, x_1, y_1, x_2, y_2 ($1 \le x_1, x_2 \le W \le 1000, 1 \le y_1, y_2 \le H \le 1000$). Далее H строк, в каждой из которых по W символов. Символ "." означает, что клетка проходима, а символ "*" означает, что по ней ходить нельзя.

Клетки (x_1, y_1) и (x_2, y_2) не совпадают и обе проходимы.

Формат выходных данных

Если пути не существует, выведите NO.

Иначе выведите YES и последовательность клеток (x_i, y_i) , в которой первая совпадает с клеткой (x_1, y_1) , а последняя с клеткой (x_2, y_2) .

dfsongrid.in	dfsongrid.out
4 2 1 1 4 2	YES
	11 21 31 41 31 32
	4 2
4 2 1 1 4 2	NO
*.	
.*	
4 2 1 1 4 2	YES
*.	1 1 2 1 2 2 3 2 4 2
*	

Задача G. Поиск цикла [0.5 sec, 256 mb]

Дан ориентированный невзвешенный граф. Необходимо определить есть ли в нём циклы, и если есть, то вывести любой из них.

Формат входных данных

В первой строке входного файла находятся два натуральных числа N и M ($1 \le N \le 100\,000$, $M \le 100\,000$) — количество вершин и рёбер в графе соответственно. Далее в M строках перечислены рёбра графа. Каждое ребро задаётся парой чисел — номерами начальной и конечной вершин соответственно.

Формат выходных данных

Если в графе нет цикла, то вывести «NO», иначе — «YES» и затем перечислить все вершины в порядке обхода цикла.

cycle.in	cycle.out
2 2	YES
1 2	1 2
2 1	
2 2	NO
1 2	
1 2	

Задача Н. Мосты и компоненты [0.5 sec, 256 mb]

Дан неориентированный граф (не обязательно связный). Граф может содержать петли и кратные ребра.

Выведите все компоненты реберной двусвязности графа (максимальные подмножества вершин, такие что подграф на них не теряет связность при удалении любого ребра).

Формат входных данных

Первая строка содержит числа n и m $(1 \le n \le 100\,000,\ 0 \le m \le 100\,000)$ — количество вершин и ребер в графе.

Следующие m строк задают ребра графа.

Формат выходных данных

В первой строке выведите количество компонент, в следующих за ней строках выведите сами компоненты, по одной на строку.

Вершины в каждой компоненте должны идти в возрастающем порядке, компоненты нужно вывести в лексикографическом порядке.

bridges.in	bridges.out
3 2	3
1 2	1
2 3	2
	3
3 3	1
1 2	1 2 3
2 3	
3 1	
2 2	1
1 2	1 2
1 2	
7 8	3
1 5	1 5 6
5 6	2 3 4
1 6	7
5 4	
4 3	
4 2	
3 2	
7 2	

Десятое домашнее задание: dfsь! СПБ, Академический Университет, 10 ноября 2014

Задача І. Condense 2. Конденсация графа [0.5 sec, 256 mb]

Требуется найти количество ребер в конденсации ориентированного графа. Примечание: конденсация графа не содержит кратных ребер.

Формат входных данных

Первая строка входного файла содержит два натуральных числа n и m — количество вершин и ребер графа соответственно ($n \le 10\,000$, $m \le 100\,000$). Следующие m строк содержат описание ребер, по одному на строке. Ребро номер i описывается двумя натуральными числами b_i, e_i — началом и концом ребра соответственно ($1 \le b_i, e_i \le n$). В графе могут присутствовать кратные ребра и петли.

Формат выходных данных

Первая строка выходного файла должна содержать одно число — количество ребер в конденсации графа.

condense2.in	condense2.out
4 4	2
2 1	
3 2	
2 3	
4 3	

Задача J. Points. Точки сочленения [0.5 sec, 256 mb]

Дан неориентированный граф. Требуется найти все точки сочленения в нем.

Формат входных данных

Первая строка входного файла содержит два натуральных числа n и m — количество вершин и ребер графа соответственно ($n \le 20\,000$, $m \le 200\,000$).

Следующие m строк содержат описание ребер по одному на строке. Ребро номер i описывается двумя натуральными числами b_i , e_i — номерами концов ребра $(1 \le b_i, e_i \le n)$.

Формат выходных данных

Первая строка выходного файла должна содержать одно натуральное число b — количество точек сочленения в заданном графе. На следующей строке выведите b целых чисел — номера вершин, которые являются точками сочленения, в возрастающем порядке.

points.in	points.out
9 12	3
1 2	1
2 3	2
4 5	3
2 6	
2 7	
8 9	
1 3	
1 4	
1 5	
6 7	
3 8	
3 9	

Задача К. Компоненты вершинной двусвязности [0.5 sec, 256 mb]

Компонентой вершинной двусвязности графа $\langle V, E \rangle$ называется максимальный по включению подграф (состоящий из вершин и ребер), такой что любые два ребра из него лежат на вершинно простом цикле.

Дан неориентированный граф без петель. Требуется выделить компоненты вершинной двусвязности в нем.

Формат входных данных

Первая строка входного файла содержит два натуральных числа n и m — количества вершин и ребер графа соответственно ($n \le 20\,000$, $m \le 200\,000$).

Следующие m строк содержат описание ребер по одному на строке. Ребро номер i описывается двумя натуральными числами b_i , e_i — номерами концов ребра $(1 \le b_i, e_i \le n)$.

Формат выходных данных

В первой строке выходного файла выведите целое число k — количество компонент вершинной двусвязности графа. Во второй строке выведите m натуральных чисел a_1, a_2, \ldots, a_m , не превосходящих k, где a_i — номер компоненты вершинной двусвязности, которой принадлежит i-е ребро. Ребра нумеруются с единицы в том порядке, в котором они заданы во входном файле.

biconv.in	biconv.out
5 6	2
1 2	1 1 1 2 2 2
2 3	
3 1	
1 4	
4 5	
5 1	

Бонус

Задача L. Unique Topsort [0.25 sec, 256 mb]

Дан ориентированный ацикличный граф G. Проверить, что существует единственный топологический порядок вершин графа.

Формат входных данных

Первая строка входных данных содержит число вершин графа n ($1 \le n \le 100\,000$) и число ребер графа m ($0 \le m \le 100\,000$). Следующие m строк содержат пары чисел от 1 до n, задающие начало и конец соответствующего ребра. Гарантируется, что граф не содержит циклов.

Формат выходных данных

Если топологический порядок единственный, выведите на первой строке YES, а на второй номера вершин в топологическом порядке, иначе выведите NO.

unitopsort.in	unitopsort.out
1 0	YES
	1
2 1	YES
2 1	2 1
4 2	NO
1 2	
4 3	

Задача М. Раскраска в три цвета [0.5 sec, 256 mb]

Петя нарисовал на бумаге n кружков и соединил некоторые пары кружков линиями. После этого он раскрасил каждый кружок в один из трех цветов — красный, синий или зеленый.

Теперь Петя хочет изменить их раскраску. А именно — он хочет перекрасить каждый кружок в некоторый другой цвет так, чтобы никакие два кружка одного цвета не были соединены линией. При этом он хочет обязательно перекрасить каждый кружок, а перекрашивать кружок в тот же цвет, в который он был раскрашен исходно, не разрешается.

Помогите Пете решить, в какие цвета следует перекрасить кружки, чтобы выполнялось указанное условие.

Формат входных данных

Первая строка содержит два целых числа n и m — количество кружков и количество линий, которые нарисовал Петя, соответственно ($1 \le n \le 1000, 0 \le m \le 20000$).

Следующая строка содержит n символов из множества $\{'R', 'G', 'B'\} - i$ -й из этих символов означает цвет, в который раскрашен i-й кружок ('R' -красный, 'G' -зеленый, 'B' -синий).

Следующие m строк содержат по два целых числа — пары кружков, соединенных отрезками.

Формат выходных данных

Выведите в выходной файл одну строку, состоящую из *n* символов из множества {'R', 'G', 'B'} — цвета кружков после перекраски. Если решений несколько, выведите любое. Если решения не существует, выведите в выходной файл слово "Impossible".

color.in	color.out
4 5	BBGR
RRRG	
1 3	
1 4	
3 4	
2 4	
2 3	
4 5	Impossible
RGRR	
1 3	
1 4	
3 4	
2 4	
2 3	

Задача N. Autotourism [1.0 sec, 256 mb]

В Байтландии существуют n городов, соединённых n - 1 дорогами с двусторонним движением таким образом, что из каждого города можно проехать в любой другой по сети дорог. Длина каждой дороги равна 1 километру.

Бензобак автомобиля позволяет проехать без заправки m километров. Требуется выбрать маршрут, позволяющий посетить наибольшее количество различных городов без дозаправки. При этом начинать и заканчивать маршрут можно в произвольных городах.

Формат входных данных

В первой строке входного файла заданы два целых числа n и m ($2 \le n \le 500\,000$, $1 \le m \le 200\,000\,000$) — количество городов в стране и количество километров, которое автомобиль может проехать без дозаправки. В последующих n - 1 строках описаны дороги. Каждая дорога задаётся двумя целыми числами a и b ($1 \le a, b \le n$) — номерами городов, которые она соединяет. Длина каждой дороги равна 1 км.

Формат выходных данных

Выведите одно число — максимальное количество городов, которое можно посетить без дозаправки.

Пример

autotourism.in	autotourism.out
7 6	5
1 2	
2 3	
2 5	
5 6	
5 7	
5 4	

Пояснение к примеру

5 городов можно посетить, например, по схеме $4\to 5\to 7\to 5\to 6\to 5\to 2$ или по схеме $3\to 2\to 1\to 2\to 5\to 6\to 5$.