Team 1817:Electrical plug, connector, and receptacle temperature sensor (Hubbell)

Jim Lin, Noah Lyke, Kyle Mullins, Robert Townsend Advisor: Necmi Biyikli

Outline

- Background
- Project Statement
- Specifications
- Research
- Design Options
- Testing
- Timeline
- Future Steps

Hubbell

- Founded in 1888 by Harvey Hubbell and incorporated in 1905 in CT
- Patented the pull chain light socket in 1896
- Patented the first US power plug and socket in 1904
- Ranked in the top 25 public Connecticut companies by size
- Still headquartered in Shelton, CT

Fig. 1: Hubbell L1430P Hubbell, Twist Lock Plug, 30 Amp

Project Statement

- The Task:
 - Research existing temperature sensing technologies
 - Accuracy
 - Temperature Range
 - Method
 - Problems
 - Look to utilize existing technology in miniaturization/optimization

Specifications/ Constraints

- Temperature sensing system:
 - Two or more sensors
 - 1 inch x 1 inch component density
 - Temperature range: -20°C to 80°C
 - Minimum Accuracy: ±1°C
 - Onboard Microcontroller for data interpretation
 - Final design cost \$6-8

Setup

Research

- Examine existing temperature sensing technologies
 - Find the mechanism of measurement
 - Infrared, resistance temperature detectors, and semiconductor devices
- Compare
 - Accuracy
 - Effective range
 - Measurement type

Possible Solutions

Based on our research, the two optimal technologies are:

- Resistance temperature detectors (RTDs)
- Infrared devices (IR)

RTD

- Correlates resistance value to temperature value
- Close proximity/contact
- Typical Operating Range of -60°C to over 600°C
- High Accuracy (many are below (+/- 1°C)
- Common composition materials:
 Copper, Nickel, and Platinum
- Two Basic Styles: Wire-wound and Thin Film

RTD

- Three types of RTD configurations: 2-wire, 3-wire, and 4-wire
- Requires minimal supplemental circuits
- Provides repeatability, stability, and are extremely accurate temperature sensors

Figure 3: 2-wire RTD auxiliary circuit

Infrared

- Long wave infrared: 8 micrometers to 15 micrometers
- Non-Contact
- Possible Components: IR Thermopile
 - Seebeck Effect
 - Produces small voltage based off temperature difference
 - Requires: output voltage amplification and ambient temperature

Thermopile

Infrared

- IR Thermopiles
 - Typical Operating Range of -20°C to 100°C
 - Typical accuracy: ±0.5°C to ±1°C
 - Temperature causes a small voltage output
 - Emissivity of surface affects the readings
 - Ambient temperature: RTD
 - Accurate, fast, and non-contact method of measurement

Figure 6: IR thermopile test circuit

Microcontroller

- Requires multiple inputs from sensor array
- Small Size
- Atmega328P
 - 23 General purpose I/O connections
 - Offered on a development board (Testing)
 - Offered as a standalone chip
 - Operates within temperature sensing range
 - Onboard ADC
 - Includes Interrupt functions

Figure 7: Atmel Atmega328p surface mount package

Microcontroller

- Atmel Studio
 - Test program written in C
 - UART interface
 - Displays as much data as possible
 - Raw input
 - Converted temperatures
 - Temperature range exceeded notifications
 - Multiple sensors handled at once

Figure 8: IDE used for producing the test code

Testing

- Build auxiliary circuits on a breadboard
 - Compare components in the IR and RTD ranges
 - Different package sizes and manufacturers
 - Compare IR and RTD circuits at the same time
 - Utilize UART connection for output temperature
- Compare the temperature measurements of different materials
 - Copper, Brass, Aluminum
 - Range of temperatures from -20°C to 80°C and temperatures outside the range
- Look at adjustment to be made for improvement

Testing Circuits

RTD

Timeline

Project Initiation/Research

Next Steps

- Continued testing
- PCB design
- What can be improved?
 - Sensors
 - Auxiliary components
 - Size

Questions?

Works cited

- "Figure 2", http://www.sensortips.com/temperature/designing-with-rtd-temperature-sensors/, Accessed: 22, October 2017
- Karaki, Habib. "Figure 4", 27 February 2014,
 http://www.sensorsmag.com/components/demystifying-thermopile-ir-temp-sensors,
 Accessed: 23 October 2017
- "Figure 5",
 - https://www.digikey.com/product-detail/en/amphenol-advanced-sensors/ZTP-135SR/235-13 30-ND/3974095 Accessed: 23 October 2017
- https://www.google.com/patents/US565541
- https://www.google.com/patents/US774250
- "Figure 7"
 https://www.smart-prototyping.com/image/cache/data/2_components/Chip/101785%20ATM
 EGA328P-AU/1-750x750.jpg
- "Figure 8" http://www.atmel.com/webdoc/atmelstudio/ Accessed: 22 November 2017