图论作业 (第九周)

PB20000113 孔浩宇

November 1, 2022

Ch5

11.

Proof. 取 $S \subseteq X$,则 $(X - S) \cup N(S)$ 为 G 的一个覆盖. 任意 G 的覆盖 C,记 $C \cap X = C_X$,若 $\exists \ u \in (X - C_X) \cup N(C_X), \ u \notin C \Rightarrow \exists \ e = pu \ (e \in E(G)), \ p, u \notin C \Rightarrow$ 矛盾.

即覆盖 C 可以写成 $(X-S) \cup N(S)$ $(S \subseteq X)$, 又

$$G$$
为二分图 $\xrightarrow{$ 定理 5.2 $\alpha(G)=\beta(G).$

有

$$\begin{split} \alpha(G) &= \beta(G) \\ &= \min |C| \\ &= \min_{S \subseteq X} |(X - S) \cup N(S)| \\ &= \min_{S \subseteq X} (|X - S| + |N(S)|) \\ &= \min_{S \subseteq X} (|X| - |S| + |N(S)|) \\ &= |X| - \max_{S \subseteq X} (|S| - |N(S)|) \,. \end{split}$$

13.

Proof. 对于二分图 G=(X,E,Y),增加边使得 Y 为完全图,记此时的图为 H. 则 G 中存在将 X 都许配的匹配等价于 H 有完备匹配. \forall $S\subseteq X,$ $N_H(S)=N_G(S)$.

(1) 必要性: G 中存在将 X 都许配的匹配.

$$\begin{cases} \forall \ S \subseteq X & \xrightarrow{Tutte$$
 定理
$$o(H - N_H(S)) \le |N_H(S)| \\ \\ \Leftrightarrow |S| \le |N_H(S)| = |N_G(S)|. \end{cases}$$

$$\Rightarrow |S| \le |N_H(S)| = |N_G(S)|.$$

(2) 充分性: $\forall S \subseteq X, |S| \leq |N(S)|$.

$$\forall \ V \subseteq V(H), \ S = V \cap X, \ W = V \cap Y.$$
 \xrightarrow{Y} 为完全图 $\rightarrow H - S$ 至多比 H 多一个奇片. 记 $H - W$ 中 X 中的孤立点集合为 $S' \Rightarrow |N(S')| \leq |W| \Rightarrow |S'| \leq |N(S')| \leq |W|$. 若 $|S'| = |W|, \ \mathbb{M} \ o(H - W) = |S'| = |W|.$

若 $|S'| \le |W| - 1$,则 $o(H - W) \le |S'| + 1 \le |W|$.

若 |S| 为偶数,则 $o(H-V) = o(H-W) \le |W| \le |V|$.

若 |S| 为奇数,则 $o(H-S) = o(H-W) + 1 \le |W| + 1 \le |V|$.

综上, $\forall \ S\subseteq V(H),\ o(H-S)\leq |S|,$ 由 Tutte 定理可得,H 有完备匹配,即 G 中存在将 X 都许配的 匹配.

14.

Proof.

 $\forall W \subseteq V(G)$, 记 G - W 中的奇片为 $G_1, \ldots, G_p, q_i \ (1 \le i \le p) = |E_i|, E_i = \{uv | u \in G_i, q \in W\}.$

$$q_i = \sum_{v \in V(G_i)} \deg(v) - 2|E(G_i)| = k|V(G_i)| - 2|E(G_i)| \xrightarrow{|V(G_i)|}$$
为奇数 q_i 与 k 奇偶性相同.

又 G 是 k-1 边连通的,在删去 G_i 与 W 之间的边后 G 不再连通,有

$$q_i \ge k - 1$$
,又 q_i 与 k 奇偶性相同 $\Rightarrow q_i \ge k$.

于是

$$\sum_{i=1}^{p} q_i \ge kp \ \Rightarrow \ p \le \frac{1}{k} \sum_{i=1}^{p} q_i \le \frac{1}{k} \deg(v) = |W|.$$

若 $W = \phi$,由于 $\nu(G)$ 为偶数,此时 $p = 0 = |W|, p \le |W|$ 仍成立.即

$$\forall S \subseteq V(G), o(G-S) \leq |S| \Rightarrow G$$
有完备匹配.

16.

	=	=	四	五
a	b	c	e	d,f
a	b	$_{\mathrm{c,d}}$	e	f
a	b	d	c	e,f
a	b	d	с,е	f
a	b,d	с	e	f
a	b,c	d	e	f
a,e	b	d	c	f
a,f	b	c	e	d
a,f	b	d	c	e

19.

(1) $x_i \in S, y_i \in T$.

$$\widehat{l}(x_i) + \widehat{l}(y_i) = l(x_i) - \alpha_l + l(y_i) + \alpha_l$$
$$= l(x_i) + l(y_i)$$
$$\geq w(x_i y_i).$$

(2) $x_i \in S, y_i \notin T$.

$$\widehat{l}(x_i) + \widehat{l}(y_i) = l(x_i) - \alpha_l + l(y_i)$$

$$= l(x_i) + l(y_i) - \min_{x \in X, y \notin Y} \{l(x) + l(y) - w(xy)\}$$

$$\geq l(x_i) + l(y_i) - [l(x_i) + l(y_i) - w(x_i y_i)]$$

$$= w(x_i y_i).$$

(3) $x_i \notin S, y_i \in T$.

$$\widehat{l}(x_i) + \widehat{l}(y_i) = l(x_i) + l(y_i) + \alpha_l$$

$$\geq l(x_i) + l(y_i)$$

$$\geq w(x_i y_i).$$

(4) $x_i \notin S, y_i \notin T$.

$$\widehat{l}(x_i) + \widehat{l}(y_i) = l(x_i) + l(y_i)$$

$$\geq w(x_i y_i).$$

20.

(1) $x_i \in S, y_i \in T$.

$$\widehat{l}(x_i) + \widehat{l}(y_i) = l(x_i) - \alpha_l + l(y_i) + \alpha_l$$
$$= l(x_i) + l(y_i)$$

修改前后顶点子集不变.

(2) $x_i \in S, y_i \notin T$.

$$\begin{split} \widehat{l}(x_i) + \widehat{l}(y_i) &= l(x_i) - \alpha_l + l(y_i) \\ &= l(x_i) + l(y_i) - \min_{x \in X, y \notin Y} \{l(x) + l(y) - w(xy)\} \\ &\geq l(x_i) + l(y_i) - [l(x_i) + l(y_i) - w(x_i y_i)] \\ &= w(x_i y_i). \end{split}$$

且至少存在一对 (x_i,y_i) 使等号成立 (当 x_i,y_i 使得 l(x)+l(y)-w(xy) 最小时),故把 Y-T 中至少 1个顶点移入 T 中.

(3) $x_i \notin S, y_i \in T$.

$$\widehat{l}(x_i) + \widehat{l}(y_i) = l(x_i) + l(y_i) + \alpha_l$$

$$\geq l(x_i) + l(y_i)$$

$$\geq w(x_i y_i).$$

修改前后顶点子集不变.

(4) $x_i \notin S, y_i \notin T$.

$$\widehat{l}(x_i) + \widehat{l}(y_i) = l(x_i) + l(y_i)$$

修改前后顶点子集不变.

综上,算法第三步修改顶标后,顶点子集元素至少增加一个.

Ch6

3.

Proof. 对 k 进行归纳。

(1) k=1 时,连通图 G 有 2 个奇度顶点,则由推论 6.1 可知 G 存在 Euler 迹 C,显然有

$$E(G) = E(C)$$
.

即 k=1 时结论成立。

(2) 设 k=n 时结论成立. 则 k=n+1 时,记 G 中奇度顶点集合为 S,取 $u,v \in S$,令

$$G' = G \cup uv$$
 (uv 为新增的边,重边也无所谓)

对于图 G', 奇度顶点集 S' = S - u, v, |S'| = |S| - 2 = 2n, 由于 k = n 时结论成立,即

$$G$$
中存在 k 条不重的行迹 P_1, P_2, \ldots, P_n , 使得 $E(G) = \bigcup_{i=1}^n E(P_i)$.

不妨设 P_m 中含新增的边 uv,若 P_m-uv 为 G 中两条不重的行迹, 则记为 P_{n+1},P_{n+2} ,若 P_m-uv 为一条行迹,则分成两条不重的行迹 P_{n+1},P_{n+2} ,此时有

$$E(G) = P_1 \cup \cdots \cup P_{m-1} \cup P_{m+1} \cup \cdots P_n \cup P_{n+1} \cup P_{n+2}.$$

又 P_i $(1 \le i \le m-1, m+1 \le i \le n+2)$ 不重,即证 k=n+1 时结论也成立. 综上,即证。

5.

定义顶点

$$V(G) = 所有由\alpha, \beta, \gamma$$
组成的不重复的三位符号

定义边

$$E(G) = \{\overrightarrow{uv} | u, v \in V(G), u$$
可以通过左移之后加上一个字母得到 $v\}$

以 V(G), E(G) 构建有向图 G. 则 $\forall v \in V(G), \deg^+(v) = \deg^-(v) = 3$,由定理 6.2 可得 G 为 Euler 图,可根据 Euler 回路构造队列. 如下为其中一条

$$\rightarrow \alpha \beta \alpha \alpha \alpha \gamma \alpha \beta \gamma \beta \beta \beta \alpha \beta \beta \gamma \gamma \gamma \alpha \gamma \beta \gamma \alpha \rightarrow$$