

novo nordisk fonden

Multimodal Signal Modelling for Intervening and Managing Mental Disorders

Sneha Das

Statistics and Data Analysis, Technical University of Denmark (DTU)

DTU Compute

Department of Applied Mathematics and Computer Science

Outline

- Motivation
- General introduction
- Audio
- Biosignals
- Conclusions

Mental Health and Mental Disorders

Figure: Original image from Vigo et al., 2016

- Mental illness is one of the leading causes of global disease burden (Prince et al., 2007; Vigo et al., 2016).
- In Denmark, 15% of youth will be diagnosed with a psychiatric disorder before their 18th birthday (Dalsgaard et al., 2020).

WristAngel: Intervention and Research for OCD Treatment I

Figure: Obsessions and compulsions behave cyclically. Original image from https://medium.com/amalgam/ocd-is-not-what-you-think-it-is-ee818028e79c

- Mental disorder wherein "People are caught in a cycle of obsession and compulsions".
- Obsessions → intrusive and disruptive urges, thoughts, images, etc.
- Compulsions → behavior to overcome obsessions, distress.
- In 2010, anxiety disorders including obsessive-compulsive disorders -alone cost Europe over €74 billion (Gustavsson et al., 2011).

WristAngel: Intervention and Research for OCD Treatment II

Identify and predict impending OCD events and provide useful interventions \rightarrow progression and severity of disorder.

Aid in delivering cognitive behavioral therapy to patients.

WristAngel

• Sneha Das DTU Compute

• Line H. Clemmensen DTU Compute

• Nicole Nadine Lønfeldt Child and Adolescent Mental Health Center, KU Hospital

• Anne Katrine Pagsberg Faculty of Health, Department of Clinical Medicine, KU

• Nicklas Leander Lund DTU Compute

Data and Signals

AUDIO SIGNALS

Role of Audio (Speech) in OCD Treatment

Speech Emotion Detection I

Figure: Image sources https://medium.com/prathena/the-dummys-guide-to-mfcc-aceab2450fd; https://commons.wikimedia.org/wiki/File:Lindos1.svg; https://commons.wikimedia.org/wiki/File:Spectrogram_-iua-.png

Speech Emotion Detection II

Conventional approaches

• Statistical ML and signal processing | HMM, GMM, SVM

Deep learning (DL)
RNN, CNN, LSTM with deep architectures

Eg., DL +SVM

Persistent challenges

Hybrid

• Generalization | corpora, languages → cultural, phonetic differences

• Low-resource corpora | Small data set and lack of labels

Black-boxes
Small data set and lack of label

Methodology

BIOSIGNALS

Signals, Methods and Goals

Tying Modalities Together

