Risk Assessment and Management - Code

Python Code for Risk Assessment

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# Define risk data with extended information
risk_data = {
     "Risk": ["AI Misdiagnosis", "IoT Data Failure", "Data Breach", "System Overload",
"Poor Usability"],
    "Likelihood": ["Medium", "Low", "Medium", "High", "Medium"],
    "Impact": ["Severe", "Moderate", "Severe", "Moderate", "Moderate"],
    "Category": ["AI", "IoT", "Security", "Performance", "UX"],
    "Mitigation": [
        "Retrain model with diverse data",
        "Redundant sensors and data backup",
        "Encryption and access control",
        "Auto-scaling and load balancing",
        "User-friendly design and testing"
}
# Convert to DataFrame
df = pd.DataFrame(risk data)
# Mapping scores
likelihood_map = {"Low": 1, "Medium": 2, "High": 3}
impact_map = {"Minor": 1, "Moderate": 2, "Severe": 3}
# Calculate scores
df['Likelihood_Score'] = df['Likelihood'].map(likelihood_map)
df['Impact_Score'] = df['Impact'].map(impact_map)
df['Risk_Score'] = df['Likelihood_Score'] * df['Impact_Score']
# Categorize severity
def severity_label(score):
    if score >= 6:
       return "High"
    elif score >= 3:
       return "Medium"
    else:
        return "Low"
df['Severity'] = df['Risk_Score'].apply(severity_label)
# Sort by severity and score
sorted_df = df.sort_values(by=['Risk_Score', 'Severity'], ascending=False)
```

```
# Display full risk table
print("Extended Risk Assessment Table:")
print(sorted_df[['Risk', 'Category', 'Likelihood', 'Impact', 'Likelihood_Score',
'Impact_Score', 'Risk_Score', 'Severity', 'Mitigation']])

# Basic visualization (Not executable in this script-based output)
# sorted_df.plot(kind='bar', x='Risk', y='Risk_Score', title='Risk Scores by Risk Type')

# Risk matrix example (conceptual, not visual)
matrix = pd.DataFrame(np.zeros((3, 3)), columns=["Minor", "Moderate", "Severe"],
index=["Low", "Medium", "High"])
for idx, row in df.iterrows():
    matrix.loc[row['Likelihood'], row['Impact']] += 1

print("\nRisk Matrix (count of risks by likelihood and impact):")
print(matrix)
```

Sample Output of Extended Code

Extended Risk Assessment Table:

	Risk	Category Li	kelihood	Impact	Likelihood_Score	<pre>Impact_Score</pre>
Ris	sk_Score Severity		Mitigation			
0	AI Misdiagnosis	AI	Medium	Severe	2	3
	6 High	Retrain model w	with diver	se data		
2	Data Breach	Security	Medium	Severe	2	3
	6 High	Encryption a	nd access	control		
3	System Overload	Performance	High	Moderate	3	2
	6 High	Auto-scaling and	d load bal	ancing		
4	Poor Usability	UX	Medium M	oderate	2	2
	4 Medium Us	er-friendly design	n and test	ing		
1	IoT Data Failure	IoT	Low Mo	oderate	1	2
	2 Low	Redundant sensors	s and data	backup		

Risk Matrix (count of risks by likelihood and impact):

	Minor	Moderate	Severe
Low	0.0	1.0	0.0
Medium	0.0	1.0	2.0
High	0.0	1.0	0.0