

FIG. -1-

INPUT: GAMMA: CHARACTERISTIC OF COMPUTER MONITOR (RANGE 1 TO 3)

WICK: CHARACTERISTIC OF CARPET SUBSTRATE (RANGE 0 TO 3)

DENSITY: CHARACTERISTIC OF CARPET SUBSTRATE (RANGE 0 TO \$\approx 5)

Ci: RELATIVE CONCENTRATION OF DYE i USED IN BLEND

i = 1, 2, ..., N (RANGE 0 TO 1)

RGB SUBSTRATE: RED, GREEN, BLUE OF SUBSTRATE (RANGE 0 TO 255)

RGBi: TABLE OF RED, GREEN, BLUE VALUES FOR DYE i

USED IN BLEND i = 1, 2, ..., N (RANGE 0 TO 1)

N: NUMBER OF DYES IN BLEND

15

COMPUTE TOTAL DYE CONCENTRATION BY SUMMING INDIVIDUAL PERCENTAGES $CONC_{TOTAL} = C_1 + C_2 + C_3 + ... + C_N$

- 20

CALCULATE UNUSED SUBSTRATE DYE CAPACITY FROM TOTAL DYE CONCENTRATION CONC UNUSED =1-CONC TOTAL

- 25

CALCULATE AN "EFFECTIVE" UNUSED SUBSTRATE DYE CAPACITY BY USING SUBSTRATE WICK VALUE $E(C)=C[1-C\cdot(1-C)\text{WICK}]$ $E_{\text{UNUSED}}=E(\text{CONC}_{\text{UNUSED}})$

- 30

CALCULATE THE "EFFECTIVE" CONCENTRATION OF EACH DYE & USED IN THE BLEND BY USING THE SUBSTRATE WICK PROPERTY (NOTE: EACH "EFFECTIVE" DYE CONCENTRATION DEPENDS, IN A LINEAR WAY, UPON THE EFFECTIVE DYE CONCENTRATIONS OF THE DYE PLACED ON THE CARPET PRIOR TO THE CURRENT ONE)

 $E_1 = E(CONC_{UNUSED} + C_1) - E_{UNUSED}$

 $E_2 = E(CONC_{UNUSED} + C_1 + C_2) - E_1$

 $E_3 = E(CONC_{UNUSED} + C_1 + C_2 + C_3) - E_2$

 $E_N = E(CONC_{UNUSED} + C_1 + C_2 + C_3 + ... + C_N) - E_{N-1}$

 $\stackrel{\leftarrow}{A}$ FIG. -3A-

and the state of t

COMPUTE THE K/S VALUE FOR EACH SUBSTRATE COLOR COMPONENT (RGB)

- 1. NORMALIZE VALUE (RANGE 0.0 TO 1.0)= $\frac{RGB_{SUBSTRATE}}{255}$
- 2. APPLY GAMMA CORRECTION FOR MONITOR= $\left(\frac{RGB_{SUBSTRATE}}{255}\right)^{GAMMA}$ = RGB $_{VAL}$ RGB $_{VAL}$ IS THE NORMALIZED, GAMMA—CORRECTED VALUE OF RGB $_{SUBSTRATE}$.

THEN

3. $(K/S)_{SUBSTRATE} = \frac{(1-RGB_{VAL})^2}{2 \cdot RGB_{VAL}}$, WHERE K=ABSORPTION COEFICIENT S=SCATTERING COEFICIENT

- 40

COMPUTE THE K/S VALUE FOR EACH DYE ¿ COLOR COMPONENT (RGB)

- 1. NORMALIZE VALUE (RANGE 0.0 TO 1.0)= $\frac{RGB_{i}}{255}$
- 2. APPLY GAMMA CORRECTION FOR MONITOR= $\left(\frac{RGB_{i}}{255}\right)^{GAMMA} = RGB_{VAL}$

RGB $_{
m VAL}$ IS THE NORMALIZED, GAMMA CORRECTED VALUE OF RGB FOR DYE $\it i$. THEN

3.
$$(K/S)_{i} = \frac{(1-RGB_{VAL})^2}{2 \cdot RGB_{VAL}}$$

FIG. –3<u>B</u>–

FIG. -6-

FIG. -7-

FIG. -8-

FIG. -9-

FIG. -12-

SKU ABC	CODE COLOR	A RED BLUE	FIG15C-	SKU ADE	CODE COLOR	A 50% RED, 50% BLUE C GREEN	FIG16C-
MACHINE CONFIG.	COLOR BAR	RED 1 BLUE 2 GREEN 3 YELLOW 4	FIG15B-	MACHINE CONFIG.	COLOR BAR (RED 1 BLUE 2 GREEN 3 YELLOW 4	FIG16B-
BASE WXYZ	BAR FT	1 2 10 3 20 4	FIG154-	BASE WXYZ	BAR FT	1 2 10 3 20 4	FIG164-

		LUT'S				
		1	2	3	4	
COO	A	10MS	0	0	0	
CODES	В	0	10MS	0	0	

	1	2	3	4
Α	5MS	5MS	0	0
С	0	0	20MS	0

LUT'S

FIG. -15D-

FIG. −16D−

LUT'S

LUT'S						
	1 _	2	3	4		
A	0	0	20MS	0		
В	0	10MS	0	0		
С	5MS	2.5MS	0	3.75MS		

5 1 2 3 4 10MS 0 0 0 10MS 0 0 0 В

FIG. -16E— FIG. -16F—

