Un lematizador desambiguado con R

Carlos J. Gil Bellosta cgb@datanalytics.com

Mayo 2013

Contenidos

- 1 Motivación: un discurso de Rajoy
- 2 Lematización: tres procedimientos
 - Lematización basada en reglas
 - Lematización basada en diccionarios
 - Lematización probabilística
- Resumen

Una nube de palabras: un primer ensayo

Quitamos las palabras irrelevantes (stopwords)

El siguiente problema: variedad morfológica

- Queremos que las variantes morfológicas voten agregadamente
- P.e., que la nube agrupe "español", "española", "españoles" y "españolas"
- Necesitamos rescatar la raíz que transmite significado, el lema, de cada término

Lematización

Es el proceso que transforma

- "comiéramos" en "comer"
- "zanjas" en "zanja", etc.

eliminando las marcas morfológicas.

Lematización

Los algoritmos de lematización pueden categorizarse según se basen en

- reglas,
- diccionarios, o
- probabilidades

El que presentaré más adelante es una mezcla de los dos últimos.

Lematización basada en reglas

- El más famoso es *snowball* (de M. Porter)
- Pensado originalmente para el inglés
- Extendido a otros idiomas (incluido el español)

Una regla de snowball para el español

Busca el más largo de entre los sufijos

me se sela selo selas selos la le lo las les los nos

y bórralo si sigue a

- iéndo ándo ár ér ír
- ando iendo ar er ir
- yendo (si va detrás de u)

Resultado del algoritmo de Porter

pretend compromet declar president desdalaun algui insinu result total tambien hech lament dudningun qued tare disposicion

El código, por referencia

```
library(tm)
library(Snowball)
rajoy <- readLines("discurso_rajoy.txt")</pre>
rajoy <- paste(rajoy, collapse = " ")</pre>
rajoy <- Corpus(
            DataframeSource(data.frame(docs = rajoy)),
            readerControl = list(language = "es") )
rajoy <- tm_map(rajoy, removePunctuation)</pre>
rajoy <- tm_map(rajoy, tolower)</pre>
rajoy <- tm_map(rajoy, stemDocument) # snowball!</pre>
```

El código, por referencia (cont.)

```
tdm <- TermDocumentMatrix(rajoy,
             control = list(removePunctuation = T,
             stopwords = T,
             wordLengths = c(2, Inf))
m <- as.matrix(tdm)</pre>
v <- sort(rowSums(m),decreasing=TRUE)</pre>
d <- data.frame(word = names(v),freq=v)</pre>
wordcloud( d$word, d$freq, min.freq = 3,
            scale=c(4..5).
            colors=brewer.pal(6, "Dark2"),
            random.order=FALSE)
```

Snowball puede ser útil

DIRAE

Tipo de búsqueda

Lematizada

Exacta

Buscar en

Lemas y definiciones

Lemas

Ordenar

Por relevancia

Alfabéticamente

Alfabético inverso

Por frecuencia

Por longitud ▼

Por longitud \blacktriangle

<u>sabana</u>

/sa.'ba.na/ - Año 1739 - Frec. 3.18

 \dots sabana. (De or. caribe). 1. f. Llanura, en especial si es muy dilatada, sin vegetac Ven. Estar sobrado de recursos, ser feliz. \square V. cocuyo de sabana \dots

<u>sábano</u>

/'sa.ba.no/ - Año 1925 - Frec. 0.09

... sábano. (Del lat. sabănum). 1. m. León. Sábana de estopa. ...

Tener un diccionario con todas las parejas (término, lema)

- Basado en diccionarios de parejas (término, lema).
- Lematizar consiste en buscar el término y devolver el lema correspondiente.

La ambigüedad, el gran problema:

- (casas, casar) (contraer matrimonio)
- (casas, casa) (edificio)

Y como este, muchos más casos (más de los que uno piensa).

Uno de los lematizadores de Molino de Ideas

Resultado aplicando un lematizador basado en diccionarios

```
máxima hacendar
                     comportamiento
             tarea sombrarverdad
 motivaralguno gobernar popular
afectar
          disposición dudar España
            recibirtemertransparencia
```

Un modelo probabilístico para palabras y etiquetas

- Vamos a ver cómo asociar a cada término w una etiqueta t
- Las etiquetas pueden ser:
 - La raíz (potencial) de dicho término
 - Su categoría morfológica (verbo, sustantivo,...)
 - Si son palabras comunes o nombres de personas, calles, empresas,...
- Dada una frase w_1, \ldots, w_n , buscamos la secuencia de etiquetas t_1, \ldots, t_n más probable
- Es decir, queremos maximizar $P(t_1, \ldots, t_n | w_1, \ldots, w_n)$

Aplicamos el cálculo de probabilidades (pura álgebra)

$$P(t_{1},...,t_{n}|w_{1},...,w_{n}) = P_{w}(t_{1},...,t_{n}) = P_{w}(t_{n}|t_{1},...,t_{n-1})P_{w}(t_{1},...,t_{n-1}) = \prod_{i} P_{w}(t_{i}|t_{i-1},...,t_{1}) = \prod_{i} P(t_{i}|t_{i-1},...,t_{1},w_{1},...,w_{n})$$

i Sólo necesitamos calcular $P(t_i|t_{i-1},\ldots,t_1,w_1,\ldots,w_n)!$

Algunas simplificaciones

- En general, $P(t_i|t_{i-1},\ldots,t_1,w_1,\ldots,w_n)$ es incognoscible
- Buscamos simplificaciones que
 - No sean excesivas
 - Que tengan sentido lingüístico
 - Que den lugar a expresiones calculables

Típicamente, se supone que t_i es independiente de t_{i-3}, t_{i-4}, \ldots , con lo que

$$P(t_i|t_{i-1},\ldots,t_1,w_1,\ldots,w_n)\approx P(t_i|t_{i-1},t_{i-2},w_1,\ldots,w_n)$$

Modelos lineales generalizados (GLM)

- Son modelos en los que $P(t_i|t_{i-1},t_{i-2},w_1,\ldots,w_n)$ se aproxima por $\exp(\sum \lambda_i f_i(t,t_1,t_2,w_1,\ldots,w_n))$
- Las funciones f_i responden preguntas del tipo: ¿la etiqueta anterior es un artículo femenino y la palabra termina con "a"?
- Los pesos λ_i se ajustan maximizando la verosimilitud de un conjunto de entrenamiento.

Nótese cómo maximizar el producto

$$\prod_{i} P(t_i|t_{i-1},\ldots,t_1,w_1,\ldots,w_n)$$

equivale a maximizar

$$\sum_{i,j} \lambda_i f_i(t_j, t_{j1}, t_{j2}, w_1, \dots, w_n)$$

Modelos ocultos de Markov (HMM)

Son modelos en los que se realiza la siguiente aproximación:

$$P(t_i|t_{i-1}, t_{i-2}, w_1, \dots, w_n) \approx \ P(t_i|t_{i-1}, t_{i-2}, w_i) \approx \ P(t_i|t_{i-1}, t_{i-2})P(t_i|w_i)$$

- $P(t_i|t_{i-1},t_{i-2})$: transiciones de un modelo de Markov (de segundo orden); p.e., P(adj.|sust.,art.)
- $P(t_i|w_i)$: indica lo probable que es la etiqueta t_i cuando se observa la palabra w_i ; p.e., P(verbo|ascensor)

Algoritmo de Viterbi para HMM

El modelo anterior se califica de oculto porque

- los estados de la cadena de Markov no son observables.
- lo observable son etiquetas emitidas probabilísticamente por dichos estados

El **algoritmo de Viterbi** permite calcular la secuencia de estados de la cadena que maximiza la probabilidad de las etiquetas observadas.

Los elementos para implementar el algoritmo de Viterbi

Si hay n etiquetas y m términos, se necesitan:

- Un array $n \times n \times n$ de transición entre etiquetas.
- Un diccionario $m \times n$ que indique la probabilidad de que un término tenga una etiqueta dada
- Una lista de matrices $n \times n$ que almacenen las combinaciones más probables en los pasos i-1 e i-2 de la cadena.

La lista de matrices se construye paso a paso recorriendo la cadena de inicio a fin.

Luego hay que recorrerla de fin a inicio para recuperar las etiquetas que han dado lugar a la traza de máxima probabilidad.

Modelo híbrido diccionarios / HMM

• Es el que he implementado para Molino de Ideas

Algoritmo de lematizacíon desambiguada

- Usar diccionarios para sugerir raíces de términos
- Usar HMM para etiquetar morfológicamente
- Usar la etiqueta sugerida por el HMM para desambiguar las opciones del diccionario
- Ventajas: decenas de etiquetas morfológicas pero miles de posibles lemas
- Limitaciones: fue: ¿ir o ser? ¡ambos son verbos!

Motor del algoritmo (en R)

```
pila <- function(i, pk){</pre>
  tmp <- log.wuv +
             outer(pk, p.ter.etq[[i]],"+")
  probs <- apply(tmp, 2:3, max)</pre>
  res <- if(i == length(frase)) # fin cadena
           { devolver que maximizan probs }
         else
                                   # iteramos
           pila(i + 1, probs)
    return(c(arg.max(probs, res), res))
}
pila(1, prob.ini)
```

Lematización en español

- El español no es un idioma como el inglés
- En español hacen falta herramientas específicas
- Creo que hay que pasar por lematizadores basados en diccionarios
- Los cálculos son complejos y las necesidades de memoria, elevadas
- Una solución basada en APIs, ¿adecuada?