PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-349701

(43)Date of publication of application: 22.12.1994

(51)Int.Cl.

H01L 21/027 G03B 27/32 GO3F 7/20

(21)Application number: 05-141016 11 06 1993 (22)Date of filing:

(71)Applicant: NIKON CORP (72)Inventor: NAKAJIMA TOSHIJI HAMAYA MASATO

(54) FXPOSURE DEVICE

(57)Abstract:

PURPOSE: To reduce illuminance irregularity due to speckle pattern when using light with a high spatial coherence as exposure light by the slit scan exposure system.

CONSTITUTION: A reticle R is scanned in a scanning direction SR for a lighting region 15. a wafer W is scanned in a scanning direction SW for an exposure region 16 which is conjugate to the lighting region 15, and then the pattern of the reticle R is exposed on the wafer W successively. The spatial coherence of laser beam LB0 discharged from an excimer laser light source 1 is high in horizontal direction (H direction), its horizontal direction is made to be conjugate to the scanning direction SR of the lighting region 15 and the direction where the spatial coherence higher becomes the scanning direction SR.

LEGAL STATUS

[Date of request for examination]

31.05.2000

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3265503 11 01 2002

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

BEST AVAILABLE COPY

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
 - 2.**** shows the word which can not be translated.
 - 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] The light source which generates the illumination light which has predetermined spatial coherence, and the illumination-light study system which illuminates the lighting field of a predetermined configuration by said illumination light, In the aligner which has a relative scan means to synchronize and to scan the mask and the photosensitive substrate with which the pattern for an imprint was relatively formed to said lighting field, and exposes the pattern of said mask on said substrate serially The aligner characterized by making the high direction of the spatial coherence of said illumination light the same as that of the relative scanning direction of the lighting field of said predetermined configuration, and said

[Claim 2] The source of pulsed light which generates the pulsed light which has predetermined spatial coherence, It has a relative scan means to synchronize and to scan the illumination-light study system which illuminates the lighting field of a predetermined configuration, the mask with which the pattern for an imprint was relatively formed to said lighting field, and a photosensitive substrate by said pulsed light. In the aligner which exposes the pattern of said mask on said substrate serially It responds to the relative scan speed of the lighting field of said predetermined configuration, and said mask, and the pitch of said relative scanning direction of the speckle pattern of said pulsed light in said lighting field. The aligner characterized by establishing a phase adjustable means to change the phase of the speckle pattern of said pulsed light in said lighting field for said every pulsed light.

[Claim 3] The aligner according to claim 2 characterized by establishing a spatial coherence detection means to detect the spatial coherence of said pulsed light, and the control means which controls actuation of said phase adjustable means according to the spatial coherence of said this detected pulsed light.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Industrial Application] By illuminating a rectangle or the lighting field of circular ** for example, with exposure light, and scanning a mask and a sensitization substrate synchronously to the lighting field, about the so-called aligner of the slit scan exposure method which exposes the pattern on a mask on a sensitization substrate serially, this invention is applied, when using a high light of especially spatial coherence as an exposure light, and it is suitable.

100021

[Description of the Prior Art] Conventionally, in case a semiconductor device, a liquid crystal display component, or the thin film magnetic head is manufactured using a photolithography technique, the projection aligner exposed on the substrates (a wafer or glass plate) with which the photo mask or the pattern of a reticle (it is hereafter named a "reticle" generically) was applied to the photoresist etc. through projection optics is used. In this projection aligner, in order to short-wavelength-ize exposure light and to raise resolution, excimer laser light like KrF excimer laser or ArF excimer laser or the laser beam of an ultraviolet area like the higher harmonic of argon laser is coming to be used as an exposure light. [0003] However, spatial coherence (coherency) of a laser beam is high, and while passing an illuminationlight study system, the interference fringe called a speckle pattern arises, and it has the problem that this becomes the illuminance unevenness on a reticle and a substrate. Then, in using a laser beam as an exposure light, in order to decrease the illuminance unevenness by the speckle pattern with the projection aligner of an one-shot exposure method like the conventional usual stepper, the oscillating mirror was arranged before the fly eye lens in an illumination-light study system (optical integrator). And he exposes changing the phase of the speckle pattern (interference fringe) produced on a reticle and a substrate, and was trying for the light exposure in the whole surface in each shot field on a substrate to become homogeneity among one exposure by scanning the laser beam which carries out incidence to the optical integrator by the oscillating mirror. In this case, the contrast of distribution of the light exposure on a substrate becomes min by shaking an oscillating mirror among one exposure, so that the phase of an interference fringe may do 2pi change of. [0004]

[Problem(s) to be Solved by the Invention] The chip size of one piece of a semiconductor device tends to be enlarged recently, and large area-ization which exposes the pattern of a bigger area than that on a reticle on a substrate is called for in the projection aligner. In order to respond to large-area-izing of this transferred pattern, and a limit of the exposure field of projection optics, the rectangle and the projection aligner of the so-called slit scan exposure method which exposes the pattern on a reticle on a substrate serially circular or by scanning a reticle and a photosensitive substrate synchronously to lighting fields (this being called "slitlike lighting field"), such as six square shapes, are developed. To use a high light of spatial coherence like a laser beam as an exposure light also with the projection aligner of such a slit scan exposure method, it is necessary to reduce the illuminance unevenness by the speckle pattern.

[0005] However, by the slit scan exposure method, since the reticle and the substrate are scanned, the phase in which a SUPPEKURU pattern appears carries out time amount change. Therefore, the scanning direction of a reticle and a substrate poses a problem first. Next, when using together the oscillating mirror used at the time of an one-shot exposure method, it becomes a problem how an oscillating mirror is controlled according to the scan speed of a reticle and a substrate in the scanning direction list.

[0006] For example, pattern space PA of Reticle R is gradually scanned by the lighting field 51 relatively, drawing 7 (a) - (d) showing the condition of scanning Reticle R in the direction of X (scanning direction SR) to the slit-like lighting field 51, and applying it to the condition of drawing 7 (d) from the condition of

drawing 7 (a). Therefore, to the direction (non-scanning direction) perpendicular to the direction of X of Y. although the scan is substantially performed to the direction of X in pattern space PA of Reticle R, since it is a quiescent state, the effects of a speckle pattern differ in the scanning direction and the non-scanning

[0007] This invention aims at making the illuminance unevenness by the speckle pattern as small as possible, when using a high light of spatial coherence as an exposure light with the aligner of a slit scan exposure method in view of this point.

180001

[Means for Solving the Problem] As the 1st aligner by this invention is shown in drawing 1 and drawing 2 The light source which generates the illumination light (LB0) which has predetermined spatial coherence (1), The illumination-light study system which illuminates the lighting field (15) of a predetermined configuration by the illumination light (2-14), It has a relative scan means (32, 34, 35, RST, WST) to synchronize and to scan the mask (R) and the photosensitive substrate (W) with which the pattern for an imprint was relatively formed to the lighting field (15). In the aligner which exposes the pattern of a mask (R) on a substrate (W) serially, the high direction (direction H) of the spatial coherence of the illumination light (LB0) is made the same as that of the lighting field (15) of a predetermined configuration, and a relative scanning direction (direction SR) with a mask (R).

[0009] Moreover, as the 2nd aligner by this invention is shown in drawing 1 and drawing 2 The source of pulsed light which generates the pulsed light (LB0) which has predetermined spatial coherence (1), The illumination-light study system which illuminates the lighting field (15) of a predetermined configuration by the pulsed light (2-14), It has a relative scan means (32, 34, 35, RST, WST) to synchronize and to scan the mask (R) and the photosensitive substrate (W) with which the pattern for an imprint was relatively formed to the lighting field (15). In the aligner which exposes the pattern of a mask (R) on a substrate (W) serially The lighting field (15) of a predetermined configuration, and a relative scan speed with a mask (R), According to the pitch of the relative scanning direction (direction SR) of the speckle pattern of the pulsed light in a lighting field (15), a phase adjustable means (89) to change the phase of the speckle pattern of the pulsed light in a lighting field (15) for every pulsed light of the is established.

[0010] In this case, it is desirable to establish a spatial coherence detection means (17 18) to detect the spatial coherence of that pulsed light, and the control means (32) which controls actuation of a phase adjustable means (89) according to the spatial coherence of that pulsed light detected in this way.

[Function] According to the 1st aligner of this this invention, the high direction of spatial coherence (coherent extent) was beforehand measured in the field perpendicular to the flux of light of the illumination light (LB0), and the high direction of the spatial coherence is doubled in the direction (the direction of SR) of a relative scan with a mask (R) in the lighting field (15) of a predetermined configuration. As it follows, for example, is shown in drawing 4, the illuminance distribution of the scanning direction (the direction of SR) of the speckle pattern by the illumination light formed on a lighting field (15) is changed with the comparatively large amplitude in a predetermined pitch like a distribution curve 40. Moreover, the illumination distribution of the non-scanning direction (the direction of Y) of the speckle pattern on the lighting field (15) is comparatively flat like a distribution curve 41. In this case, in a scanning direction, since the illumination distribution of each point on a mask (R) becomes being the same as that of the case where changed like a distribution curve 40, respectively and it scans by the oscillating mirror substantially, there is little illuminance unevenness. Moreover, in a non-scanning direction, from the first, since there is little illuminance unevenness, its illuminance unevenness decreases all over a mask (R) and a substrate (W). [0012] Moreover, according to the 2nd aligner of this invention, pulsed light is used as illumination light. Since it is not easy to erase the chromatic aberration in optical system when pulsed light is the excimer laser light (wavelength is 248nm) of for example, a far-ultraviolet region, in the source of pulsed light (1), the pulsed light which narrow-band-ized spectral line width is generated by using a diffraction grating, a slit, etc. Therefore, in drawing 1, although, as for the pulsed light (LB0) injected from the light source (1), beam width has become [spatial coherence] high narrowly horizontally (the direction of H), perpendicularly (the direction of V), beam width has become [spatial coherence] low widely. Therefore, in this invention, the horizontal direction of the pulsed light (LB0) injected from the light source (1) is set as the scanning direction of the lighting field (15) of the shape of a slit on a mask (R).

[0013] In this case, generally, since it is smaller than the ratio of the width of face of the scanning direction of the lighting field (15) of the shape of a usual slit, and the width of face of a non-scanning direction, the ratio of width of face and vertical width of face with that horizontal pulsed light (LB0) needs to expand the horizontal width of face of that pulsed light (LBO) using the cylindrical lenses 38 and 39 of two sheets as shown in drawing 3. the flare angle of the pulsed light (LB0) which carries out incidence at this time -- the focal distance of the cylindrical lens 38 of theta 1 and the preceding paragraph -- the focal distance of the cylindrical lens 39 of f1 and the latter part -- f2 ** -- flare angle theta 2 of the pulsed light (LB) which will be injected from a cylindrical lens 39 if it carries out It is as follows.

[0014] theta2 =(f1 / f2) theta1 (1)

Therefore, it is f1 <f2 in order to extend horizontal beam width. Flare angle theta 2 of the pulsed light (LB) which will be been as follows and injected if it carries out It becomes small.

thetal > theta 2 (2) Therefore, if beam width is extended horizontally, as shown in drawing 4, the spatial coherence in the scanning direction (the direction of SR) of a lighting field (15) will become still higher. Therefore, the high speckle pattern of contrast is formed in a scanning direction. On the other hand, since the contrast of the speckle pattern of a non-scanning direction is low, there is little illuminance unevenness in a non-scanning

[0015] The illumination distribution of the scanning direction of the lighting field (15) becomes like the distribution curve 40 of drawing 5 (a). If the scanning direction of a mask and a substrate is chosen in this direction, since it will become **** of the wave of various phases like drawing 5 (b) by the phase shift by scan, it counts upon mitigation of a speckle according to a superimpose effect. When not performing a certain control, however, depending on a scan speed The timing of pulse luminescence and the phase of a speckle pattern become a form mostly in agreement. At a certain irradiating point on a mask (R) For example, exposure is performed in order of the locations 40C and 40F of drawing 5 (a), and --, at another irradiating point, exposure is performed in order of locations 40B and 40E and --, a superimpose effect cannot be expected, and illuminance unevenness may not be mitigated. In order to avoid this, when it is the scan speed to which pulse luminescence is performed, an oscillating mirror is made to scan, and when emitting light by location 40F and emitting light by deltaA and location 40I, scan control to which the strike slip only of the deltaB is carried out is carried out in the locations 40C, 40F, and 40I of drawing 5 (a). [0016] Thereby, since each irradiating point on a mask (R) is exposed with an illuminance with a SUPPEKURU pattern of a phase which is equally divided according to a pulse number and is different called the distribution curves 40, 42, and 43 of drawing 5 (b), addition light exposure is equalized and the illuminance unevenness in the scanning direction on a mask (R) is reduced. Namely, n and m are made into an integer in the irradiating point of the arbitration on a mask (R). So that the phase of the scanning direction on a distribution curve 40 may become 0, 2mpi+ (2 pi/n), 4mpi+ (4 pi/n), 6mpi+ (6 pi/n), ..., 2(n-1) mpi+2 (n-1) pi/n, and ... for every pulse luminescence The illuminance unevenness of a scanning direction is reduced by controlling actuation of a phase adjustable means (8 9).

[0017] Moreover, a spatial coherence detection means to detect the spatial coherence of the pulsed light (17 18), thus, when the control means (32) which controls actuation of a phase adjustable means (89) according to the spatial coherence of the detected pulsed light is established Actuation of a phase adjustable means (8 9) is controlled so that the illuminance unevenness resulting from the speckle pattern on a mask (R) and a substrate (W) becomes min according to the detected spatial coherence.

F00181 [Example] Hereafter, with reference to a drawing, it explains per example of the aligner by this invention. This example applies this invention to the projection aligner of the slit scan exposure method which used the laser light source of a pulse oscillation mold as the light source of exposure light. Drawing 1 is the laser beam LB0 of a far-ultraviolet region (wavelength is 248nm) which showed the optical system of the projection aligner of this example, and was injected from the excimer laser 1 in this drawing 1. Incidence is carried out to the beam plastic surgery optical system 2 which contains a cylindrical lens through the reflective mirrors M1, M2, M3, and M4 for ultraviolet. Laser beam LB0 injected from the excimer laser 1 Horizontal (the direction of H) width of face is a long and slender rectangle quite narrower than vertical (the direction of V) width of face, and a cross-section configuration is a laser beam LB0 at the beam plastic surgery optical system 2. Horizontal width of face is expanded and the laser beam LB of the cross-section configuration of the almost same aspect ratio as the aspect ratio of the lighting field 15 of the shape of a below-mentioned slit is injected.

[0019] Drawing 3 is the laser beam LB0 which carries out incidence as the configuration of the beam plastic surgery optical system 2 is shown and it is shown in this drawing 3. Focal distance f1 It passes through a cylindrical lens 38 and the cylindrical lens 39 of a focal distance f2 (f2 > f1), and the horizontal width of face of a cross-section configuration is f2/f1. It is expanded twice. Laser beam LB0 which carries out

incidence It is a flare angle theta 1 Flare angle theta 2 of the laser beam LB which will be injected if it carries out Flare angle theta 1 It is decreasing to f1/f2. The spatial coherence of the horizontal direction (the direction of H) of the laser beam LB injected since the spatial coherence of the flux of light is generally so high that a flare angle is small is the laser beam LBO which carries out incidence. It is raised. [0020] The laser beam LB injected by drawing 1 from return and the beam plastic surgery optical system 2 is bent by the reflective mirror M5 for ultraviolet, and carries out incidence to a beam expander (or zoom lens) 3, and a cross-section configuration is expanded even to a predetermined cross-section dimension. Incidence of the parallel laser beam LB injected from the beam expander 3 is carried out to the Xtal prism 4 as a polarization means, and it is divided into two polarization components which intersect perpendicularly. Thus, incidence of the two separated polarization components is carried out to the quartz-glass prism 5 for optical-path amendment, and the travelling direction of a beam is amended. Then, the laser beam of two polarization components is bent by the oscillating mirror 8 through the 1st step of the fly eye lens 6 and a relay lens 7. With a driving gear 9, the oscillating mirror 8 scans a laser beam by the suitable control approach by include-angle within the limits predetermined [on a horizontal plane]. [0021] The laser beam scanned by the oscillating mirror 8 carries out incidence to the 2nd step of fly eye lens 11 through a relay lens 10, image formation of much 3rd light sources (spot light) is carried out to the focal plane by the side of the injection, and it is further condensed with a condenser lens 12, and the laser beam from the 3rd light source of these large number bends by the mirror 13, and carries out incidence to ****** and the Maine condenser lens 14. The width of face of the direction of a shorter side on Reticle R carries out weight of the laser beam from much 3rd light sources to the lighting field 15 of the rectangle of

R carries out weight of the laser beam from much 3rd light sources to the lighting field 15 of the rectangle of D, and it is irradiated by the Maine condenser lens 14. Image formation projection of the pattern image in the lighting field 15 is carried out into the exposure field 16 of the rectangle on Wafer W through projection optics PL.

[0022] In this case, the Z-axis is taken in parallel with the optical axis of projection optics PL, and the X-axis within XY flat surface perpendicular to that optical axis is taken in the direction of a shorter side of the rectangular lighting field 15. And it synchronizes with scanning Reticle R at a rate V in the direction of X (letting this be "a scanning direction SR") to the lighting field 15 in this example, using the projection scale factor of projection optics PL as beta. By scanning Wafer W by rate beta-V in the direction of -X (letting factor of projection scanning direction SW"), projection exposure of the circuit pattern image in pattern space PA of Reticle R is serially carried out to the shot field of Wafer W.

[0023] In drawing 1, in order to investigate the spatial coherence of excimer laser light, install a condenser lens L1 behind the reflective mirror M5 for ultraviolet, a backside [a condenser lens L1] focal location is made to condense the leakage light in the reflective mirror M5 for ultraviolet, and the leakage light distributed two-dimensional with the two-dimensional image sensor 17 which consists of CCD installed in the focal location is received. And the angle of divergence of a laser beam was measured by processing the image pick-up signal from the two-dimensional image sensor 17 by the image-processing system 18. Since the angle of divergence of a laser beam has the relation of an inverse proportion to spatial coherence, it can compute the spatial coherence of the scanning direction SR on the lighting field 15, and a non-scanning direction by the measured angle of divergence.

[0024] Drawing 2 shows the control system of the projection aligner of drawing 1, and sets it to this drawing 2. In an excimer laser 1 The electrode the gas used as the medium of laser oscillation, and for oscillation triggers The prism 24 for the enclosed laser tube 21, the front mirror 23 of the resonator, the reflection factor (less than 100%) which constitutes a resonator, the rear mirror 23 of the resonator, the opening plate 29 for wavelength selections, wavelength selection, and the formation of a wavelength narrow band, and reflective mold diffraction-grating 25 grade It is prepared as an optical element. Furthermore, in order [of the oscillation control section 26 for making it oscillate by impressing the high voltage to the electrode in the laser tube 21, and the laser beam oscillated] to always make wavelength regularity absolutely, the mechanical-component 28 grade for adjusting the inclination of the wavelength adjustment mechanical component 27 which adjusts the tilt angle of a diffraction grating 25, and the rear mirror 23 is prepared in the excimer laser 1.

[0025] Moreover, a part of laser beam injected from the front mirror 22 is led to the wavelength detectors (spectroscope etc.) 3 through a beam splitter 30, and the wavelength which detected and detected the wavelength of a laser beam with the wavelength detector 31 is transmitted to the wavelength adjustment mechanical component 27. The wavelength adjustment mechanical component 27 changes the tilt angle of a diffraction grating 25 so that a difference with the absolute wavelength defined beforehand may come in specification according to the wavelength detected with the wavelength detector 31. Moreover, the signal

(signal according to the magnitude of the beam spot specifically made on the two-dimensional image sensor 17) according to the beam angle of divergence which processes the image pick-up signal from the two-dimensional image sensor 17 by the image-processing system 18, and is detected is sent also to the main control unit 32 which controls actuation of the whole equipment while it is fed back to the mechanical component 28 of the rear mirror 23 of an excimer laser 1. A mechanical component 28 changes the tilt angle of the rear mirror 23, when the value of the angle of divergence of the beam surveyed to the value defined beforehand has separated more than tolerance.

[0026] Moreover, positioning and a scan of the reticle R of drawing 1 are performed by the reticle stage RST of drawing 2, and positioning and a scan of Wafer W are performed by the wafer stage WST of drawing 2. A reticle stage RST scans Reticle R, in order to change the exposure range of Reticle R on which the pattern of one chip was drawn one by one. the wafer stage WST has the function to move Wafer W by the step-and-repeat method, and the function which scans Wafer W synchronizing with the scan of Reticle R according to the exposure range of Reticle R in the direction of X, and the direction of Y so that two or more shot fields on Wafer W may be alike, respectively, it may receive and the pattern image of Reticle R may be exposed.

[0027] A main control unit 32 controls the oscillation of an excimer laser 1 through the oscillation control section 26, and controls actuation of the wafer stage WST and a reticle stage RST through the wafer stage control system 34 and the reticle stage control system 35, respectively. And a main control unit 32 controls amplitude, a period, etc. of vibration of the oscillating mirror 8 through a driving gear 9. Moreover, the displays (CRT display, meter, etc.) 33 grade as the keyboard 36, the coordinate input device (the so-called mouse) 37, and output unit as an input device is connected to the main control unit 32. A keyboard 36 and the coordinate input unit 37 are used [by the what pulse it exposes per one-shot field in exposure processing of a certain wafer, and] for [other than specifying beforehand] various sequence setup or a parameter

[0028] Moreover, a main control unit 32 determines the oscillation frequency optimized so that a speckle pattern might be made the smallest without lowering reception and a throughput for the information on the beam angle of divergence of the laser beam from the excimer laser 1 under preliminary oscillation from the image-processing system 18, and the pulse number of the laser beam irradiated by one shot field on Wafer W, and emits a command to the oscillation control section 26. In parallel, while a main control unit 32 determines the period of vibration of the oscillating mirror 8, the amplitude, and a phase and emits a command to a driving gear 9, it determines the optimal scan speed as the reticle stage control system 35 and the wafer stage control system 34, and issues a command.

[0029] Next, it explains per configuration for reducing the illuminance unevenness on Reticle R and Wafer W by this example. First, laser beam LB0 injected from an excimer laser 1 in drawing 1 in this example Spatial coherence is high horizontally (the direction of H). Then, the laser beam LB0 An illumination-light study system is constituted so that the high direction of spatial coherence may turn into the direction SR of a shorter side of the lighting field 15, i.e., a scanning direction. Thereby, the speckle pattern of the laser beam formed on the lighting field 15 on Reticle R has the high contrast of a scanning direction SR, and the contrast of a non-scanning direction (the direction of Y) is low.

[0030] The periodic component corresponding to the array of the lens element of the fly eye lenses 6 and 11 is contained in the speckle pattern generated on the reticle R of drawing 1, and Wafer W, and the contrast of this interference pattern becomes high in the direction of X on Reticle R. In this example, in order to reduce the contrast of a speckle pattern, a laser beam LB is divided into the laser beam of two polarization components which makes a predetermined include angle with the Xtal prism 4 as a polarization means, and Reticle R is illuminated. Illuminance distribution [of the scanning direction (the direction of X) of the lighting field 15 by the laser beam of the 1st polarization component of the two polarization components] I lighting field 15 by the laser beam of the 1st polarization component of the two polarization components] (X) and a (relative value) are changing periodically in the predetermined pitch like the distribution curve 40 (X) and a (relative value) are changing periodically in the predetermined pitch like the distribution of IX by the of drawing 6 (a). On the other hand, as a distribution curve 44 shows illuminance distribution of X to the distribution curve 40. Thereby, whole illumination distribution I (X) becomes the distribution curve 45 of drawing 6 (b), and the amplitude of fluctuation of illumination distribution is reduced. [0031] Drawing 4 shows the illuminance distribution of the lighting field 15 on the reticle R of this example,

and on Reticle R, as shown in <u>drawing 4</u> (a), the lighting field 15 of the width of face D of a scanning direction SR (the direction of X) is formed. And illuminance distribution [of the direction of X of the direction of IX) is formed and illuminance distribution [of the direction of X of the lighting field 15] I (X) changes with the comparatively big amplitude in a predetermined pitch like the distribution curve 40 of <u>drawing 4</u> (b), and its illuminance distribution [of the direction of Y of the lighting

field 15] I (Y) is almost flat like the distribution curve 41 of <u>drawing 4</u> (c). Therefore, the illuminance unevenness in the direction of Y which is a non-scanning direction is small. Moreover, in this example, the illuminance unevenness in the direction of X is canceled by the scan of the reticle R to the lighting field 15, and the scan of the laser beam by the oscillating mirror 8 of <u>drawing 1</u>.

[0032] <u>Drawing 5</u> (a) shows the distribution curve 40 corresponding to illumination distribution [of the scanning direction per 1 pulsed light in the lighting field 15 (the direction of X)] I (X), and X coordinate is [the field to D] the interior of the lighting field 15 of <u>drawing 4</u> (a) from a zero. moreover -- if Reticle R is scanned in the direction of X to the lighting field 15 -- each irradiating point on Reticle R -- <u>drawing 5</u> (a) -- (-- <u>drawing 5</u> (b) -- the same --) -- it shall move along with the X-axis

[0033] When setting to n the need [that pulse luminescence is performed and the pitch of a distribution curve 40 is called for from the energy density and resist sensibility of PX and one pulse in this example] pulse number, by n pulse luminescence A scan speed from which 0, PX/n, 2 PX/n, ..., the distribution curve that has a peak in each location of PX/n (n-1) are acquired (0, PX/n, 2 PX/n, ..., the distribution curve that has a peak in order of PX/n (n-1) do not need to appear.) By n pulse luminescence, all the distribution curves that have a peak in each location should just be acquired. moreover, n—enough —being large — a pitch PX — n/2, n/3, and ... the distribution curve which has a peak in the location divided equally is just acquired When in agreement with the rate (value V=(D/n)) f which broke the exposure field D by need pulse number n, and applied the oscillation frequency f of laser) determined beforehand, it is not necessary to make the oscillating mirror 8 of drawing 1 scan, and the illuminance unevenness on Reticle R and Wafer W is mitigated most efficiently.

[0034] For example, when a need pulse number is 3, Reticle R moves in the direction of X only D/3 for every pulse. Therefore, at a certain irradiating point on Reticle R (X=0), as shown in $\frac{1}{2}$ day, if exposure is performed in order and light exposure distribution of the direction of X; seen, since [of the locations 40A, 40E, and 40I of spacing D / 3, and --] it will become the superposition of the pulse of the distribution curves 40, 42, and 43 of $\frac{1}{2}$ drawing 5 (b), the quantity of light unevenness of addition light exposure becomes very small. The distance which Reticle R moves for every pulse is beforehand set as 1 for an integer of the width of face D of the scanning direction of the lighting field 15.

[0035] However, since the scan speed of Reticle R and Wafer W is determined like the after-mentioned by the proper light exposure on Wafer W etc., the aforementioned conditions may not necessarily be satisfied. In such a case, the oscillating mirror 8 of drawing 1 is scanned and 0, PX/n, 2 PX/n, ..., the distribution curve that has a peak in the location of PX/n (n-1) need to be made to be acquired.

[0036] When a need pulse number is 4 concretely, Reticle R moves in the direction of X only D/4 for every pulse. As shown in drawing 5 (a), therefore, at a certain irradiating point on Reticle R (X=0) spacing -D/4 of the locations 40A, 40D, 40G, and 40K -- exposure being performed in order of ... and at a certain another point and the point which separated only D/6 from the location of X=0 Since exposure is performed in order of locations 40C, 40F, 40I, and 40L, distribution of the addition light exposure of the direction of X serves as superposition of a distribution curve 40, and mitigation of quantity of light unevenness is not carried out at all. Then, the oscillating mirror 8 is made to scan. For example, it becomes the superposition of the wave of four kinds of phases from which it differs like drawing 5 (c) at the time of PX/4 and location 40I at the time of exposure when only 3PX / 4 change a phase by the scan of the oscillating mirror 8 at the time of PX/2 and location 40L by location 40F, and illuminance unevenness becomes evry small. By drawing 5 (c), distribution curves 46, 47, and 48 change a phase only for PX/4, PX/2, and 3PX / 4 by the oscillating mirror 8 from a distribution curve 40, respectively.

[0037] Next, it explains per scan speed of Reticle R and Wafer W. The scan speed of Wafer W is first determined by the proper light exposure (this becomes settled with the sensibility of the resist applied on Wafer W) given to Wafer W, and the amount of energy for every pulse. Since the amounts of energy emitted for every pulse differ in the case of the light source like an excimer laser 1, it dims in an illumination-light study system, and the amount of energy for every pulse is determined by increasing and exposing a pulse number so that dispersion in the light exposure given to Wafer W by the superimpose effect may decrease.

[0038] It is EP in the proper light exposure given to a wafer about E and the amount of energy for every pulse (the amount of average energies). If it carries out An exposure pulse number is E/EP. Since the scan lay length (namely, width of face of the scanning direction of the lighting field 15) of the range which is expressed and is illuminated at once on Reticle R is D, The movement magnitude of the reticle R for every pulse serves as D (EP/E), and when the oscillation frequency of an excimer laser 1 is f [Hz], the scan speed V of Reticle R is set as the value of a degree type.

[0039] V=(EP/E) f-D (3)

In addition, although the scan of the speckle pattern to the non-scanning direction (the direction of Y of drawing 4) of the lighting field 15 was omitted in the above-mentioned example, in order to mitigate the illuminance unevenness of a non-scanning direction more, it is desirable by shaking the oscillating mirror 8 perpendicularly in drawing 1 to scan a speckle pattern also to a non-scanning direction.

[0040] Moreover, in drawing 4, in order to vibrate a speckle pattern to both a scanning direction SR (the direction of X), and a non-scanning direction (the direction of Y), a speckle pattern may be vibrated in the direction which crosses in the direction of X, and the direction of Y.

[0041] In addition, there is also the following technique in the approach a high direction and whose scanning direction spatial coherence makes correspond.

** If the reticle and the wafer are constituted from a body side of an aligner possible [a scan] in X and Y both directions, even if it is after connecting a body and a laser light source, coherence should just make a high direction the scanning direction. At this time, it is necessary to set up the configuration of a lighting field with a reticle blind so that this determined scanning direction may turn into the direction of a short hand of the lighting field on a reticle.

** What is necessary is for two or more mirrors just to adjust the high direction of the coherence of the laser beam in which the high direction of the spatial coherence of the laser beam from a laser light source carries out incidence to the illumination-light study system of an aligner so that it may be in agreement with the scanning direction. However, it may be necessary to adjust a fly eye lens etc. It is desirable to construct equipment in consideration of the high direction of coherence generally.

[0042] In addition, when using the laser beam which this invention is not limited to the above-mentioned example, for example, consists of a higher harmonic of an YAG laser as an exposure light, or when using continuation light like i line of a mercury lamp as an exposure light, of course, configurations various in the range which does not deviate from the summary of this invention can be taken.

[0043]

[Effect of the Invention] According to the 1st aligner of this invention, since the high direction of the contrast of the interference fringe of a SUPPEKURU pattern is mitigated by relative scan with a lighting field and a mask (substrate) in accordance with a scanning direction, the illuminance unevenness of the scanning direction has the advantage to which the illuminance unevenness by the speckle pattern becomes

[0044] Moreover, according to the 2nd aligner, since the phase of the speckle pattern of the pulsed light in a lighting field can be changed for every pulsed light according to the relative scan speed of a lighting field and a mask, and the pitch of the relative scanning direction of the speckle pattern of the pulsed light in the lighting field, there is an advantage which can make the illuminance unevenness by the speckle pattern

[0045] Moreover, especially when a spatial coherence detection means to detect the spatial coherence of pulsed light, and the control means which controls actuation of a phase adjustable means according to the spatial coherence of the pulsed light detected in this way are established, the illuminance unevenness by the speckle pattern can be made small.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DRAWINGS

[Drawing 1]

[Drawing 2]

[Drawing 6]

http://www4.ipdl.ncipi.go.jp/cgi-bin/tran_web_cgi_ejje

[Drawing 5]

(c) 48 47 46 40 D

[Drawing 7]

[Translation done.]

* NOTICES *

```
JPO and NCIPI are not responsible for any
damages caused by the use of this translation.
```

- 1. This document has been translated by computer. So the translation may not reflect the original precisely. 2.*** shows the word which can not be translated.
- 3. In the drawings, any words are not translated.

CORRECTION OR AMENDMENT

[Kind of official gazette] Printing of amendment by the convention of 2 of Article 17 of Patent Law [Section partition] The 2nd partition of the 7th section [Publication date] March 23, Heisei 13 (2001. 3.23)

[Publication No.] JP,6-349701,A [Date of Publication] December 22, Heisei 6 (1994. 12.22) [Annual volume number] Open patent official report 6-3498 [Application number] Japanese Patent Application No. 5-141016 [The 7th edition of International Patent Classification]

```
G03B 27/32
G03F 7/20
             521
[FI]
            311 L
H01L 21/30
G03B 27/32
             521
G03F 7/20
```

H01L 21/027

H01L 21/30 [Procedure revision]

[Filing Date] May 31, Heisei 12 (2000. 5.31)

311 S

[Procedure amendment 1]

[Document to be Amended] Specification

[Item(s) to be Amended] The name of invention

[Method of Amendment] Modification

[Proposed Amendment]

[Title of the Invention] The exposure approach and equipment

[Procedure amendment 2]

[Document to be Amended] Specification

[Item(s) to be Amended] Claim

[Method of Amendment] Modification

[Proposed Amendment]

[Claim(s)]

[Claim 1] In the aligner which has the light source which generates the illumination light which has spatial coherence, the illumination-light study system which illuminates the lighting field of a predetermined configuration by said illumination light, and a relative scan means to synchronize and to scan the mask and substrate with which the predetermined pattern was relatively formed to said lighting field, and carries out scan exposure of said substrate,

The aligner characterized by making the high direction of the spatial coherence of said illumination light the same as that of the relative scanning direction of the lighting field of said predetermined configuration, and said mask.

[Claim 2] The high direction of the spatial coherence of said illumination light is an aligner according to claim 1 characterized by the contrast of the speckle pattern formed in said lighting field being a high

direction.

[Claim 3] The aligner according to claim 1 or 2 characterized by having further the displacement means to which the variation rate of the speckle pattern of said illumination light formed in said lighting field is carried out in said lighting field.

[Claim 4] Said displacement means is an aligner according to claim 3 characterized by making the variation rate of said speckle pattern carry out towards said relative scan.

[Claim 5] Said displacement means is an aligner according to claim 3 or 4 characterized by making the variation rate of said speckle pattern carry out in the direction of said relative scan, and the crossing direction.

[Claim 6] The direction of said relative scan and the crossing direction are an aligner according to claim 5 characterized by the contrast of said speckle pattern being a low direction.

[Claim 7] Said light source is a source of pulsed light which carries out pulse luminescence of said illumination light,

Said displacement means is the aligner of claim 3-6 characterized by carrying out the variation rate of said speckle pattern synchronizing with said pulse oscillation given in any 1 term.

[Claim 8] In the aligner which has the source of pulsed light which generates the pulsed light which has spatial coherence, the illumination-light study system which illuminates the lighting field of a predetermined configuration by said pulsed light, and a relative scan means to synchronize and to scan the mask and substrate with which the predetermined pattern was relatively formed to said lighting field, and carries out scan exposure of said substrate,

The aligner characterized by establishing a phase adjustable means to change the phase of the speckle pattern of said pulsed light in said lighting field for said every pulsed light, according to the relative scan speed of the lighting field of said predetermined configuration, and said mask, and the pitch of said relative scanning direction of the speckle pattern of said pulsed light in said lighting field.

[Claim 9] The aligner according to claim 8 characterized by establishing a spatial coherence detection means to detect the spatial coherence of said pulsed light, and the control means which controls actuation of said phase adjustable means according to the spatial coherence of said this detected pulsed light.

[Claim 10] In the aligner which has the light source which generates the illumination light which has spatial coherence, the illumination-light study system which illuminates the lighting field of a predetermined configuration by said illumination light, and a relative scan means to synchronize and to scan the mask and substrate with which the predetermined pattern was relatively formed to said lighting field, and carries out scan exposure of said substrate,

The displacement means to which the variation rate of the speckle pattern of said illumination light formed in said lighting field is carried out in said lighting field,

The control means which controls said displacement means so that the effect of the speckle pattern formed in said lighting field is reduced, while said mask and said substrate are moving to said lighting field during said scan exposure,

The aligner characterized by preparation ******.

[Claim 11] Said control means is an aligner according to claim 10 characterized by controlling said displacement means so that said speckle pattern displaces to said relative scanning direction.

[Claim 12] Said control means is an aligner according to claim 11 characterized by controlling said displacement means according to the relative scan speed of said lighting field and said mask.

[Claim 13] Said control means is an aligner according to claim 11 or 12 characterized by controlling said displacement means according to the illumination distribution of said speckle pattern.

[Claim 14] Said control means is the aligner of claim 10-13 characterized by controlling said displacement means so that said speckle pattern displaces in the direction of said relative scan, and the crossing direction given in any 1 term.

[Claim 15] Said light source is a source of pulsed light which carries out pulse luminescence of said illumination light,

Said displacement means is the aligner of claim 10-14 characterized by carrying out the variation rate of said speckle pattern synchronizing with said pulse oscillation given in any 1 term.

[Claim 16] It has further a detection means to detect the spatial coherence of said illumination light, Said control means is the aligner of claim 10-15 characterized by controlling said displacement means according to the spatial coherence detected with said detection means given in any 1 term. [Claim 17] In the aligner which has the light source which generates the illumination light which has spatial

[Claim 17] In the aligner which has the light source which generates the illumination light which has spatial coherence, the illumination-light study system which illuminates the lighting field of a predetermined

configuration by said illumination light, and a relative scan means to synchronize and to scan the mask and substrate with which the predetermined pattern was relatively formed to said lighting field, and carries out scan exposure of said substrate,

A measurement means to measure the information on the angle of divergence of said illumination light, The control means which controls the exposure conditions of said substrate based on the information on the measured this angle of divergence,

The aligner characterized by preparation ******.

[Claim 18] In the aligner which has the light source which generates the illumination light which has spatial coherence, the illumination-light study system which illuminates the lighting field of a predetermined configuration by the illumination light, and a relative scan means to synchronize and to scan the mask and substrate with which the predetermined pattern was relatively formed to said lighting field, and carries out scan exposure of said substrate,

Said illumination-light study system has a polarization means to divide the illumination light from said light source into the 1st illumination light of the 1st polarization component, and the 2nd illumination light of the 2nd polarization component,

Said 1st illumination light and said 2nd illumination light are an aligner characterized by shifting the illumination distribution on said mask to said relative scanning direction mutually.

[Claim 19] In the exposure approach which carries out scan exposure of said substrate by scanning synchronously the mask and substrate with which the predetermined pattern was relatively formed to said lighting field while illuminating the lighting field of a predetermined configuration by the illumination light which has spatial coherence,

The exposure approach characterized by making the same as that of the relative scanning direction of the lighting field of said predetermined configuration, and said mask the high direction of the contrast of the speckle pattern formed in said lighting field.

[Claim 20] In the exposure approach which carries out scan exposure of said substrate by scanning synchronously the mask and substrate with which the predetermined pattern was relatively formed to said lighting field while illuminating a lighting field by the illumination light which has spatial coherence, Said illumination light is discharged from the light source with the cross-section configuration which has a longitudinal direction and the direction of a short hand,

The exposure approach that the direction of a short hand of the cross-section configuration of said illumination light is characterized by making it in agreement with the relative scanning direction of said lighting field and said mask.

[Claim 21] In the exposure approach which carries out scan exposure of said substrate by scanning synchronously the mask and substrate with which the predetermined pattern was relatively formed to said lighting field while illuminating the lighting field of a predetermined configuration by the illumination light which has spatial coherence,

The exposure approach characterized by carrying out the variation rate of said speckle pattern in said lighting field so that the effect of the speckle pattern formed in said lighting field may become small, while said mask and said substrate are moving to said lighting field during said scan exposure.

[Procedure amendment 3]

[Document to be Amended] Specification

[Item(s) to be Amended] 0001

[Method of Amendment] Modification

[Proposed Amendment]

เกกกา

[Industrial Application] By illuminating a rectangle or the lighting field of circular ** for example, with exposure light, and scanning a mask and a sensitization substrate synchronously to the lighting field, about the so-called exposure approach of a slit scan exposure method and aligner which expose the pattern on a mask on a sensitization substrate serially, this invention is applied, when using a high light of especially spatial coherence as an exposure light, and it is suitable.

[Procedure amendment 4]

[Document to be Amended] Specification

[Item(s) to be Amended] 0007

[Method of Amendment] Modification

[Proposed Amendment]

[0007] This invention aims at making the illuminance unevenness by the speckle pattern as small as

possible, when using a high light of spatial coherence as an exposure light with the exposure approach of a slit scan exposure method, and an aligner in view of this point.

[Procedure amendment 5]

[Document to be Amended] Specification

[Item(s) to be Amended] 0008

[Method of Amendment] Modification

[Proposed Amendment]

180001

[Means for Solving the Problem] As the 1st aligner by this invention is shown in drawing 1 and drawing 2 The light source which generates the illumination light (LB0) which has spatial coherence (1), The illumination-light study system which illuminates the lighting field (15) of a predetermined configuration by the illumination light (2-14), It has a relative scan means (32, 34, 35, RST, WST) to synchronize and to scan the mask (R) and substrate (W) with which the predetermined pattern was relatively formed to the lighting field (15). In the aligner which carries out scan exposure of the substrate (W), the high direction (direction H) of the spatial coherence of the illumination light (LB0) is made the same as that of the lighting field (15) of a predetermined configuration, and a relative scanning direction (direction SR) with a mask (R).

[Procedure amendment 6]

[Document to be Amended] Specification

[Item(s) to be Amended] 0009

[Method of Amendment] Modification

[Proposed Amendment]

[0009] Moreover, as the 2nd aligner by this invention is shown in drawing 1 and drawing 2 The source of pulsed light which generates the pulsed light (LB0) which has spatial coherence (1), The illumination-light study system which illuminates the lighting field (15) of a predetermined configuration by the pulsed light (2-14), It has a relative scan means (32, 34, 35, RST, WST) to synchronize and to scan the mask (R) and substrate (W) with which the predetermined pattern was relatively formed to the lighting field (15). In the aligner which carries out scan exposure of the substrate (W) The lighting field (15) of a predetermined configuration, and a relative scan speed with a mask (R), According to the pitch of the relative scanning direction (direction SR) of the speckle pattern of the pulsed light in a lighting field (15), a phase adjustable means (89) to change the phase of the speckle pattern of the pulsed light in a lighting field (15) for every pulsed light of the is established.

[Procedure amendment 7]

[Document to be Amended] Specification

[Item(s) to be Amended] 0010

[Method of Amendment] Modification

[Proposed Amendment]

[0010] In this case, it is desirable to establish a spatial coherence detection means (17 18) to detect the spatial coherence of that pulsed light, and the control means (32) which controls actuation of a phase adjustable means (89) according to the spatial coherence of that pulsed light detected in this way. Next, the 3rd aligner of this invention has the light source which generates the illumination light which has spatial coherence, the illumination-light study system which illuminates the lighting field of a predetermined configuration by the illumination light, and a relative scan means synchronize and scan the mask and the substrate with which the predetermined pattern was relatively formed to the lighting field, and is characterized by to provide the following in the aligner which carries out scan exposure of the substrate. The displacement means to which the variation rate of the speckle pattern of the illumination light formed in the lighting field is carried out in the lighting field The control means which controls the displacement means so that the effect of the speckle pattern formed in the lighting field is reduced, while the mask and its substrate are moving to the lighting field during the scan exposure Moreover, the 4th aligner of this invention has the light source which generates the illumination light which has spatial coherence, the illumination-light study system which illuminates the lighting field of a predetermined configuration by the illumination light, and a relative scan means synchronize and scan the mask and the substrate with which the predetermined pattern was relatively formed to the lighting field, and is characterized by to provide the following in the aligner which carries out scan exposure of the substrate. A measurement means to measure the information on the angle of divergence of the illumination light The control means which controls the exposure conditions of that substrate based on the information on this measured angle of divergence Moreover, the light source in which the 5th aligner by this invention generates the illumination light which has spatial coherence, In the

aligner which has a relative scan means to synchronize and to scan the illumination-light study system which illuminates the lighting field of a predetermined configuration, and the mask and substrate in which the predetermined pattern was relatively formed to the lighting field by the illumination light, and carries out scan exposure of the substrate The illumination-light study system had a polarization means to divide the illumination light from the light source into the 1st illumination light of the 1st polarization component, and the 2nd illumination light of the 2nd polarization component, and the 1st illumination light and its 2nd illumination light are shifted mutually [the illumination distribution on the mask] in the relative scanning direction. Next, while the 1st exposure approach by this invention illuminates the lighting field of a predetermined configuration by the illumination light which has spatial coherence By scanning synchronously the mask and substrate with which the predetermined pattern was relatively formed to the lighting field In the exposure approach which carries out scan exposure of the substrate, the high direction of the contrast of the speckle pattern formed in the lighting field is made the same as that of the relative scanning direction of the lighting field and mask of the predetermined configuration. Moreover, while the 2nd exposure approach by this invention illuminates a lighting field by the illumination light which has spatial coherence By scanning synchronously the mask and substrate with which the predetermined pattern was relatively formed to the lighting field It is discharged from the light source with the cross-section configuration which has a longitudinal direction and the direction of a short hand, and is made for the direction of a short hand of the illumination light of the cross-section configuration of the illumination light to correspond with the relative scanning direction of the lighting field and its mask in the exposure approach which carries out scan exposure of the substrate. Moreover, while the 3rd exposure approach by this invention illuminates the lighting field of a predetermined configuration by the illumination light which has spatial coherence By scanning synchronously the mask and substrate with which the predetermined pattern was relatively formed to the lighting field In the exposure approach which carries out scan exposure of the substrate, while the mask and its substrate are moving to the lighting field during the scan exposure The variation rate of the speckle pattern is carried out in the lighting field so that the effect of the speckle pattern formed in the lighting field may become small.

[Procedure amendment 8]

[Document to be Amended] Specification

[Item(s) to be Amended] 0016

[Method of Amendment] Modification

[Proposed Amendment]

[0016] Thereby, since each irradiating point on a mask (R) is exposed with an illuminance with a speckle pattern of a phase which is equally divided according to a pulse number and is different called the distribution curves 40, 42, and 43 of drawing 5 (b), addition light exposure is equalized and the illuminance unevenness in the scanning direction on a mask (R) is reduced. Namely, n and m are made into an integer in the irradiating point of the arbitration on a mask (R). So that the phase of the scanning direction on a distribution curve 40 may become 0, 2mpi+ (2 pi/n), 4mpi+ (4 pi/n), 6mpi+ (6 pi/n), ..., 2(n-1) mpi+2 (n-1) pi/n, and ... for every pulse luminescence The illuminance unevenness of a scanning direction is reduced by controlling actuation of a phase adjustable means (8 9).

[Procedure amendment 91

[Document to be Amended] Specification

[Item(s) to be Amended] 0018

[Method of Amendment] Modification

[Proposed Amendment]

[0018]

[Example] Hereafter, with reference to a drawing, it explains per example of this invention. This example applies this invention to the projection aligner of the slit scan exposure method which used the laser light source of a pulse oscillation mold as the light source of exposure light. Drawing 1 is the laser beam LB0 of a far-ultraviolet region (wavelength is 248nm) which showed the optical system of the projection aligner of this example, and was injected from the excimer laser 1 in this drawing 1. Incidence is carried out to the beam plastic surgery optical system 2 which contains a cylindrical lens through the reflective mirrors M1, M2, M3, and M4 for ultraviolet. Laser beam LB0 injected from the excimer laser 1 Horizontal (the direction of H) width of face is a long and slender rectangle quite narrower than vertical (the direction of V) width of face, and a cross-section configuration is a laser beam LB0 at the beam plastic surgery optical system 2. Horizontal width of face is expanded and the laser beam LB of the cross-section configuration of the almost same aspect ratio as the aspect ratio of the lighting field 15 of the shape of a below-mentioned slit is

injected.

[Procedure amendment 10]

[Document to be Amended] Specification

[Item(s) to be Amended] 0019

[Method of Amendment] Modification

[Proposed Amendment]

[0019] Drawing 3 is the laser beam LB0 which carries out incidence as the configuration of the beam plastic surgery optical system 2 is shown and it is shown in this drawing 3. Focal distance f1 It passes through a cylindrical lens 38 and the cylindrical lens 39 of a focal distance f2 (f2 > f1), and the horizontal width of face of a cross-section configuration is f2/f1. It is expanded twice. Laser beam LB0 which carries out incidence It is a flare angle theta 1 Flare angle theta 2 of the laser beam LB which will be injected if it carries out Flare angle theta 1 f1/f2 It is decreasing. The spatial coherence of the horizontal direction (the direction of H) of the laser beam LB injected since the spatial coherence of the flux of light is generally so high that a flare angle is small is the laser beam LB0 which carries out incidence. It is raised.

[Procedure amendment 11]

[Document to be Amended] Specification

[Item(s) to be Amended] 0025

[Method of Amendment] Modification

[Proposed Amendment]

[0025] Moreover, a part of laser beam injected from the front mirror 22 is led to the wavelength detectors (spectroscope etc.) 31 through a beam splitter 30, and the wavelength which detected and detected the wavelength of a laser beam with the wavelength detector 31 is transmitted to the wavelength adjustment mechanical component 27. The wavelength adjustment mechanical component 27 changes the tilt angle of a diffraction grating 25 so that a difference with the absolute wavelength defined beforehand may come in specification according to the wavelength detected with the wavelength detector 31. Moreover, the signal (signal according to the magnitude of the beam spot specifically made on the two-dimensional image sensor 17) according to the beam angle of divergence which processes the image pick-up signal from the twodimensional image sensor 17 by the image-processing system 18, and is detected is sent also to the main control unit 32 which controls actuation of the whole equipment while it is fed back to the mechanical component 28 of the rear mirror 23 of an excimer laser 1. A mechanical component 28 changes the tilt angle of the rear mirror 23, when the value of the angle of divergence of the beam surveyed to the value defined beforehand has separated more than tolerance.

[Procedure amendment 12]

[Document to be Amended] Specification

[Item(s) to be Amended] 0043

[Method of Amendment] Modification

[Proposed Amendment]

[0043]

[Effect of the Invention] According to this invention, since the high direction of the contrast of the interference fringe of a speckle pattern is mitigated by relative scan with a lighting field and a mask (substrate) in accordance with a scanning direction, the illuminance unevenness of the scanning direction has the advantage to which the illuminance unevenness by the speckle pattern becomes small.

[Procedure amendment 13]

[Document to be Amended] Specification

[Item(s) to be Amended] 0044

[Method of Amendment] Modification

[Proposed Amendment]

[0044] Moreover, since he is trying to displace a speckle pattern in a lighting field according to this invention while carrying out the relative scan of a mask and the substrate to the lighting field, the mitigation and the interval by relative scan of a lighting field and a mask (substrate) make very small effect of the illuminance unevenness by the speckle pattern, and can carry out the thing of it.

[Procedure amendment 14]

[Document to be Amended] Specification

[Item(s) to be Amended] 0045

[Method of Amendment] Modification

[Proposed Amendment]

[0045] Especially, according to the relative scan speed of a lighting field and a mask (substrate), and the
pitch of the relative scanning direction of the speckle pattern of the pulsed light in the lighting field, the
illuminance unevenness by the speckle pattern can be made smaller by changing the phase of the speckle
pattern of the pulsed light in a lighting field for every pulsed light.

[Translation done.]

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平6-349701

(43)公開日 平成6年(1994)12月22日

(51) Int.Cl. ⁵		識別記号		庁内整理番号	FI				4	技術表示	箇所
H01L	21/027										
G 0 3 B	27/32		F	8102-2K							
G03F	7/20	5 2 1		7316-2H							
				7352-4M	H01L	21/30		3 1 1			
				7352-4M				3 1 1	S		
					審査請求	未請求	請求	項の数3	OL	(全 9	頁)
(21)出願番号	ļ	特願平5-14101	16		(71)出願人	0000041	12				
(,	•					株式会	社ニコ	ン			
(22)出願日		平成5年(1993)6月11日				東京都	千代田	区丸の内	3丁目	2番3号	}
					(72)発明者						
								区丸の内	3 丁目	2番3号	林
						式会社	ニコン	内			
					(72)発明者						
								区丸の内	3丁目	2番3号	子 株
						式会社					
					(74)代理人	弁理士	大家	報			

(54) 【発明の名称】 露光装置

(57) 【要約】

【目的】 スリットスキャン解光方式で空間コヒーレン スの高い光を露光光として使用する場合に、スペックル パターンによる照度むらを小さくする。

【構成】 照明領域15に対してレチクルRを走査方向 SRに走査し、照明領域15と共役な露光領域16に対 してウエハWを走査方向SWに走査し、レチクルRのパ ターンを逐次ウエハW上に蘇光する。エキシマレーザ光 源 1 から射出されるレーザピームLB。 の空間コヒーレ ンスは水平方向 (H方向) に高いため、その水平方向と 照明領域15の走査方向SRとを共役にして、空間コヒ ーレンスの高い方を走査方向SRとする。

【特許請求の顧用】

【請求項1】 所定の空間コヒーレンスを有する照明光 を発生する光源と、前配照明光で所定形状の照明領域を 照明する照明光学系と、前記照明領域に対して相対的に 転写用のパターンが形成されたマスク及び感光性の基板 を同期して走査する相対走査手段とを有し、前記マスク のパターンを逐次前記基板上に露光する露光装置におい

1

前記照明光の空間コヒーレンスの高い方向を前記所定形 にしたことを特徴とする露光装置。

【請求項2】 所定の空間コヒーレンスを有するパルス 光を発生するパルス光源と、前記パルス光で所定形状の 照明領域を照明する照明光学系と、前記照明領域に対し て相対的に転写用のパターンが形成されたマスク及び感 光性の基板を同期して走査する相対走査手段とを有し、 前記マスクのパターンを逐次前記基板上に露光する露光 装置において、

前配所定形状の照明領域と前配マスクとの相対的な走査 速度と、前記照明領域での前記パルス光のスペックルパ 20 ターンの前記相対的な走査方向のピッチとに応じて、前 記照明領域での前記パルス光のスペックルパターンの位 相を前記パルス光毎に変化させる位相可変手段を設けた ことを特徴とする露光装置。

【請求項3】 前記パルス光の空間コヒーレンスを検出 する空間コヒーレンス検出手段と、該検出された前記パ ルス光の空間コヒーレンスに応じて前記位相可変手段の 動作を制御する制御手段と、を設けたことを特徴とする 請求項2記載の露光装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、例えば露光光で矩形又 は円弧状等の照明領域を照明し、その照明領域に対して マスクルバ威光基板を同期して走査することにより、マ スク上のパターンを逐次感光基板上に露光する所謂スリ ットスキャン露光方式の露光装置に関し、特に空間コヒ ーレンスの高い光を露光光として用いる場合に適用して 好適なものである。

[0002]

【従来の技術】従来より、半導体素子、液晶表示素子又 40 は薄膜磁気ヘッド等をフォトリソグラフィー技術を用い て製造する際に、フォトマスク又はレチクル(以下、 「レチクル」と総称する)のパターンを投影光学系を介 して、フォトレジスト等が塗布された基板(ウエハ义は ガラスプレート等)上に露光する投影露光装置が使用さ れている。斯かる投影露光装置では、露光光を短波長化 して解像度を向上させるために、KFFエキシマレーザ 若しくはArFエキシマレーザのようなエキシマレーザ 光、又はアルゴンレーザの高調波のような紫外域のレー ザ光が露光光として使用されるようになって来ている。

【0003】ところが、レーザ光は空間コヒーレンス (可干渉性) が高く、照明光学系を通過する間にスペッ クルパターンと呼ばれる干渉縞が生じ、これがレチクル **及び基板上での照度むらになるという問題がある。そこ** で、従来の通常のステッパーのような一括露光方式の投 影解光装置で、レーザ光を解光光として使用する場合に は、スペックルパターンによる照度むらを減少させるた めに、照明光学系中のフライアイレンズ(オプティカル ・インテグレータ)の前に振動ミラーを配置していた。 状の照明領域と前記マスクとの相対的な走査方向と同一 10 そして、1度の露光の間に、そのオプティカル・インテ グレータに入射するレーザ光をその振動ミラーで走査す ることによって、レチクル及び基板上に生じるスペック ルパターン (干渉縞) の位相を変えながら露光を行い、 基板上の各ショット領域内の全面での露光量が均一にな るようにしていた。この場合、一回の露光の間に、干渉 縞の位相が 2 π変化するように振動ミラーを振ることに より、基板上の露光量の分布のコントラストが最小にな

[0004]

【発明が解決しようとする課題】最近は、半導体素子の 1個のチップサイズが大型化する傾向にあり、投影露光 装置においては、レチクル上のより大きな面積のパター ンを基板上に露光する大面積化が求められている。斯か る被転写パターンの大面積化及び投影光学系の露光フィ ールドの制限に応えるために、例えば矩形、円弧状又は 6 角形等の照明領域 (これを「スリット状の照明領域」 という) に対してレチクル及び感光性の基板を同期して 走査することにより、レチクル上のパターンを逐次基板 上に露光する所謂スリットスキャン露光方式の投影露光 30 装置が開発されている。このようなスリットスキャン郎 光方式の投影露光装置でも、露光光としてレーザ光のよ うな空間コヒーレンスの高い光を使用する場合には、ス ベックルパターンによる照度むらを低減させる必要があ

【0005】しかしながら、スリットスキャン露光方式 では、レチクル及び基板が走査されているためスッペク ルパターンの出現する位相が時間変化する。従って先 ず、レチクル及び基板の走査方向が問題となる。次に一 括歐光方式のときに用いた振動ミラーを併用する場合、 その走査方向並びにレチクル及び基板の走査速度に合わ せて振動ミラーをどのように制御するかが問題になる。 【0006】例えば、図7(a)~(d)はスリット状 の照明領域51に対してX方向(走査方向SR)にレチ クルRを走査する状態を示し、図7 (a) の状態から図 7 (d) の状態にかけて、次第にレチクルRのパターン 領域PAが相対的に照明領域51により走査される。従 って、レチクルRのパターン領域PAではX方向に対し ては実質的に走査が行われているが、X方向に垂直なY 方向 (非走査方向) に対しては静止状態であるため、走 50 査方向と非走査方向とでスペックルパターンの影響が異 なっている。

【0007】本発明は斯かる点に鑑み、スリットスキャ ン戯光方式の露光装置で空間コヒーレンスの高い光を露 光光として使用する場合に、スペックルパターンによる 照度むらをできるだけ小さくすることを目的とする。 [8000]

3

【課題を解決するための手段】本発明による第1の露光 装置は、例えば図1及び図2に示すように、所定の空間 コヒーレンスを有する照明光 (LB。)を発生する光源 (1) と、その照明光で所定形状の照明領域(15)を 10 照明する照明光学系 (2~14) と、照明領域 (15) に対して相対的に転写用のパターンが形成されたマスク (R) 及び感光性の基板 (W) を同期して走査する相対 走査手段 (32, 34, 35, RST, WST) とを有 し、マスク (R) のパターンを逐次基板 (W) 上に露光 する観光装置において、照明光 (LBo)の空間コヒーレ ンスの高い方向 (方向H) を所定形状の照明領域 (1 5) とマスク (R) との相対的な走査方向 (方向SR) と同一にしたものである。

【0009】また、本発明による第2の露光装置は、例 20 えば図1及び図2に示すように、所定の空間コヒーレン スを有するパルス光 (LB。)を発生するパルス光源 (1) と、そのパルス光で所定形状の照明領域(15) を照明する照明光学系 (2~14) と、照明領域 (1 5) に対して相対的に転写用のパターンが形成されたマ スク (R) 及び感光性の基板 (W) を同期して走査する 相対走査手段 (32, 34, 35, RST, WST) と を有し、マスク (R) のパターンを逐次基板 (W) 上に 露光する露光装置において、所定形状の照明領域(1 5) とマスク (R) との相対的な走査速度と、照明領域 30 (15) でのそのパルス光のスペックルパターンのその

相対的な走査方向(方向SR)のピッチとに応じて、照 明領域 (15) でのそのパルス光のスペックルパターン の位相をそのパルス光毎に変化させる位相可変手段 (8, 9)を設けたものである。 【0010】この場合、そのパルス光の空間コヒーレン

スを検出する空間コヒーレンス検出手段(17, 18) と、このように検出されたそのパルス光の空間コヒーレ ンスに応じて位相可変手段(8,9)の動作を制御する 制御手段(32)とを設けることが望ましい。 [0 0 1 1]

【作用】斯かる本発明の第1の露光装置によれば、予め 照明光 (LB。)の光束に垂直な面内で空間コヒーレンス (可干渉性の程度) の高い方向を計測しておき、所定形 状の照明領域 (15) においてマスク (R) との相対的 な走査の方向 (SR方向) に、その空間コヒーレンスの 高い方向を合わせている。従って、例えば図4に示すよ うに、照明領域(15)上に形成される照明光によるス ペックルパターンの走査方向(SR方向)の照度分布

幅で変動する。また、その照明領域(15)上のスペッ クルパターンの非走査方向 (Y方向) の照度分布は、分 布曲線41のように比較的平坦である。この場合、走査 方向ではマスク(R)上の各点の照度分布は、それぞれ 分布曲線40のように変化して、実質的に振動ミラーで 走査した場合と同様になるため、照度むらは少ない。ま た、非走査方向ではもともと照度むらは少ないため、マ スク (R) 及び基板 (W) の全面で照度むらが少なくな

【0012】また、本発明の第2の露光装置によれば、 照明光としてパルス光が使用されている。パルス光が例 えば遠紫外域のエキシマレーザ光(波長が例えば248 nm) である場合、光学系での色収差を消すことが容易 ではないため、パルス光源(1)では回折格子及びスリ ット等を使用することによりスペクトル線幅を狭帯化し たパルス光を発生する。そのため、図1において、光源 (1) から射出されるパルス光 (LB。)は、水平方向 (H方向) で空間コヒーレンスが高く且つピーム幅が狭 くなっているが、垂直方向(V方向)では空間コヒーレ ンスが低く且つビーム幅が広くなっている。従って、本 発明では光源 (1) から射出されるパルス光 (LB。)の 水平方向を、マスク(R)上のスリット状の照明領域 (15) の走査方向に設定する。

【0013】この場合、そのパルス光 (LB₀)の水平方 向の幅と垂直方向の幅との比は、一般に通常のスリット 状の照明領域(15)の走査方向の幅と非走査方向の幅 との比よりも小さいため、例えば図3に示すような、2 枚のシリンドリカルレンズ38及び39を用いて、その パルス光 (LB₀)の水平方向の幅を広げる必要がある。

このとき、入射するパルス光 (LBo)の拡がり角を θ_1 、前段のシリンドリカルレンズ38の焦点距離を f 1 、後段のシリンドリカルレンズ39の焦点距離を f 2 とすると、シリンドリカルレンズ39から射出されるパ ルス光 (LB) の拡がり角 θ_2 は、次のようになる。 $[0\ 0\ 1\ 4]$ $\theta_2 = (f_1 / f_2) \theta_1$ (1)

従って、水平方向のピーム幅を拡げるために、f: <f 2 とすると、次のようになり、射出されるパルス光 (L B) の拡がり角 θ 2 は小さくなる。

 $\theta_1 > \theta_2$ (2)

従って、ピーム幅を水平方向に拡げると、図4に示すよ うに照明領域 (15) の走査方向 (SR方向) での空間 コヒーレンスは更に高くなる。そのため、走査方向には コントラストの高いスペックルパターンが形成される。 これに対して非走査方向のスペックルパターンのコント ラストは低いため、非走査方向では照度むらは少ない。 【0015】その照明領域(15)の走査方向の照度分 布は例えば図5 (a) の分布曲線40のようになる。マ スク及び基板の走査方向をこの方向に選べば、走査によ る位相ずれによって図5 (b) のように様々な位相の波 は、分布曲線40のように所定ピッチで比較的大きい振 50 の豊重になるので、積算効果によってスペックルの軽減 が見込まれる。但し、何等かの制御を行わない場合、走 査速度によっては、パルス発光のタイミングとスペック ルパターンの位相がほぼ一致する形になり、マスク (R) 上の或る照射点では、例えば図5 (a) の位置4 0 C, 4 0 F, …の順に露光が行われ、別の照射点では 位置40B,40E,…の順に露光が行われて、積算効 果が見込めず、照度むらが軽減されない可能性もある。 これを避けるために、図5 (a) の位置40C. 40 F, 40 Iで、パルス発光が行われるような走査速度の ときは、振動ミラーを走査させて、位置40Fで発光す 10 るときはるA、位置40Iで発光するときはるBだけ横 ずれさせるような走査制御をする。

5

【0016】これによりマスク(R)上の各照射点は、 図5 (b) の分布曲線40,42,43という、パルス 数に応じて等分されて、異なる位相のスッペクルパター ンをもつ照度で露光されるため、積算露光量は平均化さ れ、マスク (R) 上の走査方向での照度むらは低減され る。即ち、マスク (R) 上の任意の照射点において、 n. mを整数として、パルス発光毎に分布曲線40上の $(4\pi/n)$, $6m\pi + (6\pi/n)$, · · · , 2 (n -1) mπ+2 (n-1) π/n, ···となるよう に、位相可変手段(8,9)の動作を制御することによ り、走査方向の照度むらが低減される。

【0017】また、そのパルス光の空間コヒーレンスを 検出する空間コヒーレンス検出手段(17,18)と、 このように検出されたそのパルス光の空間コヒーレンス に応じて位相可変手段(8,9)の動作を制御する制御 手段 (32) とを設けた場合には、検出された空間コヒ スペックルパターンに起因する照度むらが最小になるよ うに、位相可変手段(8,9)の動作を制御する。

[0018]

【宇施例】以下、本発明による露光装置の一実施例につ き図面を参照して説明する。本実施例は、露光光の光源 としてパルス発振型のレーザ光源を使用したスリットス キャン露光方式の投影露光装置に本発明を適用したもの である。図1は本例の投影露光装置の光学系を示し、こ の図1において、エキシマレーザ光源1から射出された 遠紫外域 (波長は例えば248nm) のレーザビームL 40 B。は、紫外用反射ミラーM1、M2、M3及びM4を 介してシリンドリカルレンズを含むピーム整形光学系2 に入射する。エキシマレーザ光源1から射出されたレー ザピームLB。の断面形状は、水平方向(H方向)の幅 が垂直方向 (V方向) の幅よりかなり狭い細長い矩形で あり、ビーム整形光学系2では、レーザビームLBoの 水平方向の幅を拡げ、後述のスリット状の照明領域15 の縦横比とほぼ同じ縦横比の断面形状のレーザビームL Bを射出する。

し、この図3に示すように、入射するレーザビームLB 。 は、焦点距離 f 1 のシリンドリカルレンズ38及び焦 点距離 f2(f2 > f1)のシリンドリカルレンズ39を経 て、断面形状の水平方向の幅が f 2/f: 倍に拡大され る。入射するレーザピームLB0 の拡がり角を θ 1 と すると、射出されるレーザピームLBの拡がり角 θ $_2$ は、拡がり角 θ : の f_1/f_2 に減少している。一般 に、光束の空間コヒーレンスは拡がり角が小さい程高い ため、射出されるレーザピームLBの水平方向(H方 向) の空間コヒーレンスは、入射するレーザピームLB 。よりも高められている。

【0020】図1に戻り、ビーム整形光学系2から射出 されたレーザビーム LBは、紫外用反射ミラーM5で折 り曲げられてピームエクスパンダー(又はズームレン ズ) 3に入射し、所定の断面寸法にまで断面形状が拡大 される。ピームエクスパンダー3から射出された平行な レーザピームLBは、偏光手段としての水晶プリズム4 に入射し、2つの直交する偏光成分に分離される。この ように分離された2つの偏光成分は、光路補正用の石英 走査方向の位相が0, $2m\pi+(2\pi/n)$, $4m\pi+20$ ガラスプリズム5に入射し、ピームの進行方向が補正さ れる。その後、2つの偏光成分のレーザピームは、1段 日のフライアイレンズ6及びリレーレンズ7を経て、振 助ミラー8で折り曲げられる。振動ミラー8は駆動装置 9により、水平面上の所定の角度範囲内でレーザピーム を適切な制御方法で走査する。

【0021】振動ミラー8で走査されるレーザビーム が、リレーレンズ10を経て2段目のフライアイレンズ 11に入射し、その射出側の焦点面に多数の3次光源 (スポット光) が結像され、これら多数の3次光源から ーレンスに応じて、マスク (R) 及び基板 (W) 上での 30 のレーザビームが、更に集光レンズ12によって集光さ れミラー13で曲り折げられて、メインコンデンサーレ ンズ14に入射する。多数の3次光源からのレーザビー ムはメインコンデンサーレンズ14によって、レチクル R上の短辺方向の幅がDの長方形の照明領域15に重量 して照射される。その照明領域15内のパターン像が投 影光学系PLを介してウエハW上の長方形の露光領域 1 6内に結像投影される。

【0022】この場合、投影光学系PLの光軸に平行に 2軸を取り、その光軸に垂直なXY平面内のX軸を長方 形の照明領域15の短辺方向に取る。そして、本例で は、投影光学系PLの投影倍率を Bとして、照明領域 1 5 に対してレチクルRをX方向(これを「走査方向S R L とする) に速度Vで走査するのと同期して、ウエハ Wを-X方向(これを「走査方向SW」とする)に速度 8 · Vで走査することにより、レチクルRのパターン領 域PA内の回路パターン像が逐次ウエハWのショット領 域に投影器光される。

【0023】図1において、エキシマレーザ光の空間コ ヒーレンスを調べるために、集光レンズL1を紫外用反 [0019] 図3は、ピーム整形光学系2の構成を示 50 射ミラーM5の後ろに設置し、紫外用反射ミラーM5で の漏れ光を集光レンズL1の後側焦点位置に集光させ、 その焦点位置に設置したCCDよりなる2次元撮像素子 17で2次元的に分布する漏れ光を受光する。そして、 2次元摄像素子17からの撮像信号を画像処理系18で 処理することで、レーザビームの発散角を測定するよう にした。レーザピームの発散角は空間コヒーレンスに対 して反比例の関係にあるため、その測定した発散角によ り、照明領域15上での走査方向SR及び非走査方向の 空間コヒーレンスを算出することができる。

7

【0024】図2は、図1の投影露光装置の制御系を示 10 し、この図2において、エキシマレーザ光源1内には、 レーザ発振の媒体となるガスや発振トリガ用の電極を封 入したレーザチューブ21、共振器を構成する所定の反 射率 (100%未満)を持ったフロントミラー22、そ の共振器のリアミラー23、波長選択用の開口板29、 波長選択及び波長狭帯化用のプリズム24、及び反射型 回折格子25等が、光学素子として設けられている。 更 に、エキシマレーザ光源1には、レーザチューブ21内 の電極に高電圧を印加して発振を行わせるための発振制 御部26、発振されるレーザピームの絶対波長を常に一 20 定にするために、回折格子25の傾斜角を調整する波長 調整駆動部27、及びリアミラー23の傾きを調整する ための駆動部28等が設けられている。

【0025】また、フロントミラー22から射出された レーザピームの一部を、ピームスプリッター30を介し て波長検出器 (分光器等) 3に導き、波長検出器 31で レーザビームの波長を検出し、検出した波長を波長調整 駆動部27に伝達する。波長調整駆動部27は、波長検 出器31で検出された波長に応じて、予め定められた絶 角を変化させる。また、2次元撮像素子17からの撮像 信号を画像処理系18で処理して検知されるビーム発散 角に応じた信号(具体的には、2次元撮像素子17上に 作られたビームスポットの大きさに応じた信号)は、エ キシマレーザ光源1のリアミラー23の駆動部28ヘフ ィードパックされると共に、装置全体の動作を制御する 主制御装置32へも送られる。駆動部28は予め定めら れた値に対して実測されたビームの発散角の値が、許容 範囲以上に外れているときは、リアミラー23の傾斜角 を変化させる。

【0026】また、図1のレチクルRの位置決め及び走 査は図2のレチクルステージRSTによって行われ、ウ エハWの位置決め及び走査は図2のウエハステージWS Tによって行われる。レチクルステージRSTは、1チ ップのパターンが描かれたレチクルRの照射範囲を順次 変えるために、レチクルRの走査を行う。ウエハステー ジWSTは、ウエハW上の複数のショット領域の夫々に 対してレチクルRのパターン像が露光されるように、X 方向及びY方向にステップ・アンド・リピート方式でウ じてレチクルRの走査に同期してウエハWを走査する機 能とを合わせ持つ。

【0027】主制御装置32は、発振制御部26を介し てエキシマレーザ光源 1 の発振を制御し、ウエハステー ジ制御系34及びレチクルステージ制御系35を介して それぞれウエハステージWST及びレチクルステージR STの動作を制御する。そして、主制御装置32は、駅 職装置9を介して振動ミラー8の振動の振幅及び周期等 を制御する。また、主制御装置32には、入力装置とし てのキーボード36、座標入力装置(所謂マウス)37 や出力装置としての表示部(CRTディスプレイ、メー 夕等) 33等が接続されている。キーボード36及び座 標入力装置37は、或るウエハの露光処理にあたって1 ショット領域当り何パルスで露光するかを予め指定する ことの他に、種々のシーケンス設定やパラメータ設定の ために使われる。

【0028】また、主制御装置32は、予備発振中のエ キシマレーザ光源 1 からのレーザビームのビーム発散角 の情報を画像処理系18から受け取り、スループットを 下げないで、スペックルパターンを最も小さくするよう に最適化された発振周波数、及びウエハW上の1つのシ ョット領域に照射されるレーザビームのパルス数を決定 して、発振制御部26に指令を発する。並行して主制御 装置32は、振動ミラー8の振動周期、振幅、及び位相 を決定して駆動装置9に指令を発すると共に、レチクル ステージ制御系35およびウエハステージ制御系34に は、最適な走査速度を決定して指令を出す。

【0029】次に、本例でレチクルR及びウエハW上の 照度からを低減させるための構成につき説明する。先 対波長との差が規格内になるように回折格子25の傾斜 30 ず、本例では、図1においてエキシマレーザ光源1から 射出されるレーザピームLB。の空間コヒーレンスは水 平方向 (H方向) に高くなっている。そこで、そのレー ザピームLB。の空間コヒーレンスの高い方向が照明領 城15の短辺方向、即ち走査方向SRになるように、照 明光学系を構成する。これにより、レチクルR上の照明 領域 15上に形成されるレーザビームのスペックルパタ ーンは、走査方向SRのコントラストが高く、非走査方 向 (Y方向) のコントラストが低くなっている。

【0030】図1のレチクルR上及びウエハW上に生成 されるスペックルパターンには、フライアイレンズ6及 び11のレンズエレメントの配列に対応した周期的な成 分が含まれており、この干渉パターンのコントラスト は、レチクルR上のX方向に高くなる。本例では、スペ ックルパターンのコントラストを低減させるために、レ ーザピームLBを、偏光手段としての水晶プリズム4に より所定の角度をなす2つの偏光成分のレーザビームに 分離してレチクルRを照明している。その2つの偏光成 分の内の、第1の偏光成分のレーザピームによる照明領 城15の走査方向 (X方向) の無度分布 I (X) (相対 エハWを移動させる機能と、レチクルRの照射範囲に応 50 値)は、図6(a)の分布曲線40のように、所定ビッ

チで周期的に変化している。これに対して、第2の偏光 成分のレーザビームによる照度分布 I (X) は、分布曲 線44で示すように分布曲線40に対してX方向に半ピ ッチだけずれている。これにより全体の照度分布I (X) は、図6 (b) の分布曲線45となり、照度分布

の変動の振幅は低減される。

【0031】図4は本例のレチクルR上の照明領域15 の照度分布を示し、レチクルR上には図4 (a) に示す ように走査方向SR (X方向)の幅Dの照明領域15が 形成されている。そして、照明領域15のX方向の照度 10 にする必要がある。 分布 I (X) は、図4 (b) の分布曲線40のように所 定ピッチで比較的大きな振幅で変化し、照明領域15の Y方向の照度分布 I (Y) は、図4 (c) の分布曲線4 1のようにほぼ平坦である。従って、非走査方向である Y方向での照度むらは小さくなっている。また、本例で は、X方向での照度むらを、照明領域15に対するレチ クルRの走査及び図1の振動ミラー8によるレーザピー ムの走査により解消する。

【0032】図5 (a) は、その照明領域15での1パ ルス光当りの走査方向 (X方向) の照度分布 I (X) に 20 対応する分布曲線40を示し、原点からX座標がDまで の領域が図4 (a) の照明領域15の内部である。ま た、照明領域15に対してレチクルRがX方向に走査さ れると、レチクルR上の各照射点が図5 (a) (図5 (b) も同様)のX軸に沿って移動していくものとす

[0033] 本例では、パルス発光が行われ、分布曲線 40のピッチをPX, 1パルスのエネルギー密度及びレ ジスト感度から求められる必要パルス数をnとすると き、n回のパルス発光で、0, PX/n, 2PX/n, $\cdot \cdot \cdot$, (n-1) PX/nの各位置にピークを持つ分 布曲線が得られるような走査速度(0, PX/n, 2P X/n. ・・・. (n-1) PX/nの順にピークをも つ分布曲線が出現する必要はない。 n 回のパルス発光 で、各々の位置にピークを持つ分布曲線が全て得られれ ばよい。また、nが充分に大きくて、ピッチPXをn/ 2. n/3, · · · 等分した位置にピークを持つ分布曲 線が得られればよい場合もある。)が、予め決定されて いる速度(照射領域Dを必要パルス数nで割ってレーザ - の発振周波数 f を掛けた値V= (D/n) f) と一致 40 する場合、図1の振動ミラー8を走査させるまでもな く、レチクルR上及びウエハW上での照度むらは最も効 率よく軽減される。

【0034】例えば、必要パルス数が3の場合には、1 パルス毎にレチクルRはX方向にD/3だけ移動する。 従って、図5 (a) に示すように、レチクルR上の或る 照射点 (X=0) では、間隔D/3の位置40A, 40 E. 40 I. …の順に露光が行われ、X方向の露光量分 布を見ると、図5 (b) の分布曲線40, 42, 43の パルスの単ね合わせとなるため、積算露光量の光量むら 50 かったが、非走査方向の無度むらをより軽減するために

は、極めて小さくなる。レチクルRが1パルス毎に移動 する距離は、照明領域15の走査方向の幅Dの整数分の 1に予め設定されている。

【0035】但し、レチクルR及びウエハWの走査速度 は後述のようにウエハW上での適正解光量等により決定 されるため、必ずしも前記の条件が満足されない場合が ある。このような場合には、図1の振動ミラー8を走査 Lt. 0. PX/n, 2PX/n, · · · , (n-1)PX/nの位置にピークをもつ分布曲線が得られるよう

【0036】具体的に必要パルス数が4の場合には、1 パルス毎にレチクルRは、X方向にD/4だけ移動す る。従って、図5 (a) に示すようにレチクルR上の或 る照射点(X=0)では、間隔がD/4の位置40A, 40D, 40G, 40K・・・の順に露光が行われ、別 の或る点、X=0の位置からD/6だけ離れた点では、 位置40C, 40F, 40I, 40Lの順に露光が行わ れるため、X方向の積算露光量の分布は、分布曲線40 の重ね合わせとなり、光量むらの軽減は全くされない。 そこで振動ミラー8を走査させる。例えば、位置40F での露光のときはPX/4,位置40IのときはPX/ 2, 位置40Lのときは3PX/4だけ振動ミラー8の 走査によって位相を変えると、図5 (c) のように異な る4種類の位相の波の重畳となり、照度むらが極めて小 さくなる。図5 (c) で、分布曲線46,47,48 は、分布曲線40から振動ミラー8によってそれぞれ位

ある。 【0037】次に、レチクルR及びウエハWの走査速度 30 につき説明する。先ずウエハWの走査速度は、ウエハW に与える適正露光量(これはウエハW上に塗布されてい るレジストの感度により定まる)と、パルス毎のエネル ギー量とによって決定される。エキシマレーザ光源1の ような光源の場合、パルス毎に放出されるエネルギー量 が異なるので、照明光学系の中で減光して、パルス数を 増やして露光することによって、その積算効果でウエハ Wに与える露光量のばらつきが少なくなるように、パル ス毎のエネルギー量は決定される。

相をPX/4, PX/2, 3PX/4だけ変えたもので

【0038】ウエハに与える適正鄭光量をE、パルス毎 のエネルギー量 (平均エネルギー量) をEr とすると、 露光パルス数はE/E, で表され、レチクルR上で一度 に照明される範囲の走査方向の長さ(即ち照明領域 15 の走査方向の幅) はDであるため、1パルス毎のレチク ルRの移動量は (E, /E) Dとなり、エキシマレーザ 光源1の発振周波数がf[Hz]のとき、レチクルRの 走査速度Vは、次式の値に設定される。

 $[0039] V = (E_r /E) f \cdot D$ (3) なお、上述実施例では照明領域15の非走査方向(図4 のY方向) へのスペックルパターンの走査は行っていな 11

は、例えば図1において振動ミラー8を垂直方向へ振る ことにより、非走査方向へもスペックルパターンの走査 を行うことが望ましい。

[0040] また、図4において、走査方向SR(X方 向) と非走査方向 (Y方向) との両方にスペックルパタ ーンを振動させるためには、X方向とY方向とに交差す る方向にスペックルパターンを振動させても良い。

【0041】なお、空間コヒーレンスが高い方向とスキ ャン方向とを一致させる方法には次のような手法もあ る。

①露光装置本体側でレチクル、ウエハをX、Y両方向に スキャン可能に構成しておけば、本体とレーザ光源とを 接続させた後であっても、コヒーレンスが高い方向をス キャン方向とするだけでよい。このとき、この決定され たスキャン方向がレチクル上の照明領域の短手方向とな るように、例えばレチクルプラインドで照明領域の形状 を設定する必要がある。

②レーザ光源からのレーザ光の空間コヒーレンスの高い 方向が、スキャン方向と一致するように露光装置の照明 向を、例えば複数枚のミラーによって調整すれば良い。 但しフライアイレンズ等の調整を行う必要があることも ある。一般的にはコヒーレンスの高い方向を考慮して装 層を組むことが望ましい。

【0042】なお、本発明は上述実施例に限定されず、 例えば露光光としてYAGレーザーの高調波よりなるレ ーザ光を用いる場合や、露光光として水銀ランプの1線 のような連続光を使用する場合など、本発明の要旨を逸 脱しない範囲で種々の構成を取り得ることは勿論であ る。

[0043]

【発明の効果】本発明の第1の露光装置によれば、スッ ペクルパターンの干渉縞のコントラストの高い方向が走 査方向に一致し、その走査方向の照度むらは照明領域と マスク (基板) との相対的な走査で軽減されるため、ス ペックルパターンによる照度むらが小さくなる利点があ

【0044】また、第2の露光装置によれば、照明領域 とマスクとの相対的な走査速度と、その照明領域でのパ ルス光のスペックルパターンの相対的な走査方向のピッ 40 WST ウエハステージ

12 チとに応じて、照明領域でのパルス光のスペックルパタ ーンの位相をパルス光毎に変化させることができるた め、スペックルパターンによる照度むらを小さくできる 利点がある。

【0045】また、パルス光の空間コヒーレンスを検出 する空間コヒーレンス検出手段と、このように検出され たパルス光の空間コヒーレンスに応じて位相可変手段の 動作を制御する制御手段とを設けた場合には、特にスペ ックルパターンによる照度むらを小さくできる。

10 【図面の簡単な説明】

【図1】 本発明の一実施例の投影露光装置を示す斜視図 である。

【図2】実施例の投影露光装置の制御系を示すプロック 図である。

【図3】図1のビーム整形光学系2の一例を示す構成図 である。

【図4】レチクルR上の照明領域15の照度分布を示す 斜視図である。

【図5】 (a) はレチクルR上の照明領域15の走査方 光学系に入射するレーザビームのコヒーレンスの高い方 20 向の照度分布を示す図、(b)及び(c)はそれぞれス ベックルパターンを振動させる場合の照明領域15の走 査方向の照度分布を示す図である。

> 【図6】 (a) は2方向からのレーザピームで照明領域 15を照明する場合の照明領域15の2つの照度分布を 示す図、(b) は図6(a) の2つの照度分布の和の照 度分布を示す図である。

> 【図7】スリット状の照明領域に対するレチクルの走査 の様子を示す図である。

【符号の説明】 .30 1 エキシマレーザ光源

6. 7 フライアイレンズ

8 振動ミラー

15 照明領域

17 2次元撮像素子

18 画像処理系

R レチクル

P L 投影光学系

W ウエハ

RST レチクルステージ

[図3]

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.