Quantum Algorithms 2021/2022: Exercices 2

Benoît Vermersch (benoit.vermersch@lpmmc.cnrs.fr) -October 4, 2021

1 Grover's algorithm

The goal is to demonstrate the performance of Grover's algorithm by calculating the wavefunction $|\psi_t\rangle$ representing the circuit after t iterations.

- 1. Represent the circuit of Grover's algorithm. Write down the expression of the oracle U_w and the diffuser U_{ψ} .
- 2. Write down explicitly the expression of $|\psi\rangle$, the state of the circuit before the first application of the oracle.
- 3. Write down the expression of $|\psi_1\rangle = U_\psi U_w |\psi\rangle$, the state of the circuit after the first iteration. Hint: It will be convenient to decompose $|\psi\rangle$ in terms of $|w\rangle$ and $\alpha = 1/\sqrt{N-1} \sum_{i\neq w} |i\rangle$, and introduce θ , such that $\sin(\theta/2) = 1/\sqrt{N}$.
- 4. Generalize to t iterations and express the probabilities associated with the final measurement.
- 5. Show that the required number of iterations to measure the solution w with probability of order 1 scales with the square root of the number of solution N.

2 Implementation of Grover's diffuser operator

Our goal is to design a quantum circuit for $U_{\psi} = 2 |\psi\rangle \langle \psi| - 1$.

- 1. Write down a circuit U_1 that prepares $|\psi\rangle$ from $|0\rangle^{\otimes n}$
- 2. Evaluate U_1^2 .
- 3. We aim at implementing U_{ψ} as $U_{\psi} = U_1 U_2 U_1$. Write down the circuit corresponding to U_2 .
- 4. Prove that U_2 can be written as $U_2 = -X^{\otimes n}U_3X^{\otimes n}$, with U_3 a N-qubit controlled Z gate
- 5. Write U_3 in terms of the Toffoli gate.
- 6. Write down the full circuit for $-U_{\psi}$. Comment on the role of the minus sign.

Quantum Algorithms 2021/2022: Exercices 2

Benoît Vermersch (benoit.vermersch@lpmmc.cnrs.fr) -October 4, 2021

3 Implementation of the quantum Fourier transform

Ref: Nielsen and Chuang. The quantum Fourier transform realizes the transformation

$$U|j\rangle = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{2\pi i jk/N} |k\rangle, \qquad (1)$$

with j, k = 0, ..., N - 1. Our goal is to implement this transformation for $N = 2^n$, using 2 coupled circuits of n qubits.

- 1. Write any integer j in terms of a binary representation $j = j_1 \dots j_n$. In our quantum circuit, j_l will represent the state of qubit l.
- 2. We use the notation $0.j_l \dots j_n = j_l/2 + \dots j_n/2^{n-l+1}$. Show that

$$U|j\rangle = \frac{1}{2^{n/2}}(|0\rangle + e^{2i\pi 0.j_n}|1\rangle)(|0\rangle + e^{2i\pi 0.j_{n-1}j_n}|1\rangle)\dots(|0\rangle + e^{2i\pi 0.j_1\dots j_n}|1\rangle)$$
(2)

3. We show the circuit of the quantum Fourier transform.

The single qubit gate R_k is defined as

$$R_k = \begin{bmatrix} 1 & 0 \\ 0 & e^{2i\pi/2^k} \end{bmatrix}. \tag{3}$$

How is a basis $|j\rangle$ transformed after the first controlled R_2 rotation? After the first R_n rotation?

4. Write down the state at the end of the circuit. Conclusion.

4 Factorizing 21 with Shor's algorithm

We take N = 21.

- 1. Classical part Assume we randomly pick a=2. Show that the function $f(x)=a^x \mod(N)$ is 6 periodic.
- 2. Find two non-trivial divisors of N.
- 3. The quantum subroutine The quantum subroutine of Shor's algorithm consists in finding the period r = 6 of f(x). How many qubits do we need to implement this algorithm?
- 4. Write the state of the system after modular exponentiation.
- 5. Write the state after inverse quantum Fourier transform and the probability P(y) to observe the bitstring y after measuring the first q qubits.
- 6. Plot the function P(y) and extract the three most likely measured bitstrings.
- 7. The continued fraction algorithm is a classical algorithm that gives the closest fraction p/r from the measured y/Q rational, with a maximum r_{max} value for r. In Python, this is implemented as fractions.Fraction(float).limit_denominator(rmax).

Give the attributed value for each most likely bitstring r. Comment.

8. Repeat the same exercice, aiming at factorizing 35.