UF Analyse descriptive et prédictive

Contexte:

- L'Intelligence Artificielle
- L'apprentissage

M.-J. Huguet
https://homepages.laas.fr/huguet
2018-2019

Références (1)

- Intelligence Artificielle, S. Russel, P. Norvig, Pearson Education, 2010
 - Intelligence Artificielle, Livre Blanc INRIA, 2016
 - L'IA, mythes ou réalités, Intersectices 2015
 - $o\ \underline{https://interstices.info/jcms/p}\ 84122/l-intelligence-artificielle-mythes-et-realites$
- Apprentissage Artificiel, A. Cornuejols, L. Miclet, Eyrolles, 3ème Ed., 2018
- Cours (accessibles sur le web):
 - Histoire de l'IA, Frédéric Fürst, Univ Picardie, 2015 (?)
 - Apprentissage, Jean-Daniel Zucker, UPMC, 2010-2011
 - Clustering, Gilles Gasso et Ph. Leray, INSA Rouen
 - Apprentissage, Chloe-Agathe Azencott, Centrale SupElec, 2016-2017
 - Apprentissage non supervisé, Nicolas Baskiotis, Paris6, 2016-2017

Références (2)

• Cours du collège de France

- http://www.college-de-france.fr
- Enseignement → Mathématiques et Sciences Numériques
 - Gérard Berry : Algorithmes, machines et langages
- Enseignement → Chaires annuelles → Informatique et Sciences Numériques
 - 2017-2018 : Claire Mathieu Algorithmes
 - 2015-2016 : Yann LeCun : L'apprentissage profond
 - 2011-2012 : Serge Abiteboul : Sciences des données : de la logique du premier ordre à la toile

3

Références (3)

- Jeux de tests :
 - Opendata : https://www.data.gouv.fr/fr/
 - UCI : http://archive.ics.uci.edu/ml/index.php
 - Challenge Kaggle: https://www.kaggle.com/
- Meetup Toulouse Data Science
 - https://www.meetup.com/fr-FR/Tlse-Data-Science/

Références (4)

- Associations scientifiques :
 - Association Française d'IA : http://afia.asso.fr/
 - Groupe de Recherche IA (CNRS): http://www.gdria.fr/
- Site (Informatique):
 - https://interstices.info/

5

Section 1. Contexte: l'Intelligence Artificielle

Le buzz (1)

- L'IA est en vogue dans les médias et la presse scientifique
- Nombreuses réalisations depuis 20 ans avec une forte accélération :
 - 1997 : Deep Blue (IBM) : un système informatique bat le champion du monde d'échecs
 - 2005 : Challenge DARPA : un robot se déplace de façon autonome en env. inconnu
 - 2007 : Challenge DARPA : un robot se déplace de façon autonome en env. urbain
 - 2011: Watson (IM): bat des champions du monde au Jeu Jeopardy!
 - 2012 : Succès de l'apprentissage profond en reconnaissance d'images (Imagenet)
 - o Large Scale Visualization Challenge
 - 2014 : Google : description automatique d'images
 - 2015 : Facebook : reconnaissance faciale
 - 2015/2016 : AlphaGo (Google) : bat le champion du monde de Go
 - 2016: Daddy's Car (composition style Beatles), Sony CSL
- Impact des données massives sur le (re)-nouveau de l'IA
- Apprentissage « artificiel » ou apprentissage « machine »

Le buzz (2)

- Mais aussi: 2017 ... 2018 ... 2019 ...
 - Compagnons
 - Traduction instantanée
 - Recommandation, identification de communautés
 - Véhicules sans chauffeur

7

Le buzz (3)

- De nombreux outils pour l'apprentissage :
 - Boite à outils :
 - Scikitlearn (Python), R, Matlab,
 - Deep Learning / Big Data :
 - TensorFlow, Theano, Caffe, Torch,
 - Langages :
 - Julia, Scala, ...
 - Quelques liens:
 - https://julialang.org/
 - https://scala-lang.org/
 - https://www.coursera.org/learn/scala-spark-big-data

Débats (1)

Débats génériques

- Intelligence ?
 - logico-mathématique
 - musicale-rythmique
 - verbo-linguistique
 - sociale
 - corporelle-kinesthésique
 - spatiale et naturaliste

- Limites humaines et limites des machines
 - **Décidabilité** : Peut-on tout calculer ?
 - NON (Turing, 1936)

• Complexité : temps de réponse d'un algorithme ?

Débats (2)

- Débats : intérêt de l'IA?
 - Robots guerriers
 - Transhumanisme
 - Emploi
 - Trading haute fréquence
 - Fouille de données et respect de la vie privée
 - Coût écologique
 - ...
 - Crainte du pouvoir « donné » aux machines :
 - Éthique des recherches et des algorithmes,
 - Transparence, explicabilité
 - Autonomie partagée

11

Le buzz (5)

- Quelques thèmes de l'Intelligence Artificielle
 - Vision, parole
 - Ingénierie des connaissances, web sémantique
 - Robotique, véhicules autonomes
 - Traitement du langage naturel
 - Raisonnement et aide à la décision
 - •
 - Apprentissage : problème central en IA

Bref aperçu de l'IA (1)

- 1956 : Naissance « officielle » de l'IA
 - Conférence de Dartmouth (initiateurs :)

J. McCarthy (Dartmouth College)

M. L. Minsky (Harvard University)

N. Rochester (I.B.M. Corporation)

C.E. Shannon
(Bell Telephone Laboratories)

Rêve de l'IA : Construire des machines pouvant égaler l'Homme

- Comment simuler la pensée et le langage au travers de règles formelles?
- Comment faire penser un réseau de neurones?
- Comment doter une machine de capacité d'apprentissage automatique?
- Comment doter une machine de créativité?

Bref aperçu de l'IA (2)

- Précurseurs (années 1950 ...) :
 - o A. Turing: une machine peut-elle penser? (Test de Turing)
 - o H. Simon & A. Newel: démonstration automatique de théorèmes (Logic Theorist)
 - o W. Mc Culloch & W. Pitts: réseaux de neurones artificiels
 - o W. Weaver: règles linguistiques, traduction automatique
- 1956 1974 : l'Age d'or
 - 1957 : Perceptron (F. Rosenblatt) : réseau de neurones artificiels à 1 seule couche
 - 1957 : **GPS General Problem Solver** (H. Simon & A. Newel)
 - o Problème = Etat Courant, But, Opérateurs
 - o Systèmes de production = ensemble de règles d'inférence
 - o Résolution : appliquer ces règles (ch. arrière / induction)
 - 1958 : LISP (J. Mc Carthy) : LISt Processing, langage de référence de l'IA
 - o Représentation du programme et des données par des listes
 - Année 60 : **Grammaires** de N. Chomsky, Réseaux Sémantiques (R. Quillian)

Bref aperçu de l'IA (3)

- 1956 1974 : l'Age d'or
 - Problèmes de jeux, Démonstration, Heuristiques, Logique, Planification d'actions, Traitement du langage naturel, Vision, ...
 - Deux familles:
 - Logique et informatique
 - Sciences cognitives et sciences humaines
 - Des prédictions (1958) ... dans 10 ans ...
 - o un ordinateur sera champion du monde d'échecs
 - 1997 : Deep Blue
 - o un ordinateur écrira de la musique qui sera considérée comme esthétique
 - 2016 : Daddy's Car (style des Beatles),
 - o un ordinateur découvrira un théorème fondamental des mathématiques
 - o les théories psychologiques auront la forme de programmes

Bref aperçu de l'IA (4)

- 1974 1980 : Premier hiver de l'IA
 - Crise scientifique, morale et financière
 - Limite en puissance de calcul, Limite NP-Complétude
 - Besoin de grandes masses de données pour produire des connaissances
 - Paradoxe :
 - o certains problèmes difficiles pour l'Homme peuvent être résolus (ex : démonstration) mais des problèmes faciles pour l'Homme (reconnaître un visage), pas de résultats probant
 - Est-il pertinent de doter les machines d'intelligence ?
 - L'intelligence peut-elle se ramener à des modèles symboliques ?
 - Développement de nouveaux modèles et méthodes :
 - o Extension des logiques : Multi-valuées, Floues, Modales, Temporelles, ...
 - o Langage Prolog (clauses de Horn),

15

17

Bref aperçu de l'IA (5)

- 1980-1987: le retour des financements ...
 - Boom des systèmes experts et de l'ingénierie des connaissances (E. Feigenbaum)
 - Application à des domaines spécifiques (demande des entreprises)
 - Pour limiter l'explosion combinatoire des systèmes de production
 - Premiers systèmes experts : DENDRAL (Chimie), MYCIN (Médical)
 - Nouveaux modèles d'acquisition et de représentation des connaissances
 - o Graphes conceptuels, Logique de description
 - Raisonnement et Décision :
 - Programmation par contraintes, Raisonnement à base de cas,
 - Apprentissage symbolique
 - Permettre aux programmes de s'améliorer
 - Liens avec la biologique
 - Algorithmes génétiques, Insectes sociaux, Systèmes Multi-Agents
 - Réseaux de neurones : rétro-propagation du gradient (J. Hopfield)
 - o Applications à la reconnaissance de caractères ou reconnaissance vocale

Bref aperçu de l'IA (6)

- 1987 1993 (1995?): Second hiver de l'IA
 - Spécialisation/Fragmentation de l'IA en nombreux sous-domaines
 - Recentrage vers la robotique
 - Le corps (capacités sensorielles, mouvement) est essentiel pour produire de la connaissance et du raisonnement
 - J. Pearl : liens entre des problèmes d'IA et d'autres domaines (mathématique, économie, recherche opérationnelle) : probabilité, théorie de la décision, optimisation, modèles de Markov, réseaux bayésiens, ...
 - Nombreuses réalisations dans des applications spécifiques :
 - o Robotique industrielle, reconnaissance vocale, diagnostic, reconnaissance des formes, recherche d'information, ...
 - Quand un problème est résolu, ce n'est plus un problème d'IA ...

Bref aperçu de l'IA (7)

- Fin années 1990 : Retour en force de l'IA
 - Années 1990 :
 - développement des ordinateurs personnels et du Web
 - o Rendre les moteurs de recherche plus intelligent
 - Web sémantique : des données aux connaissances / Ontologies
 - Jeux vidéo

- Pionniers (en France)
 - Jacques Pitrat (Doct. 1966) et Jean-Louis Laurière (1976 ALICE) Paris 6
 - Alain Colmerauer (Doct. 1967, Prolog1 1974, Prolog4 1996) Marseille

19

Bref aperçu de l'IA (8)

• Et maintenant :

- Données massives, Apprentissage Automatique
- Convergence de différentes évolutions
 - Apport intelligence computationnelle et puissance de calcul
 - Avancées algorithmiques
 - Améliorations méthodologiques, calcul haute performance
 - Capacité de calcul et de stockage
 - Processeurs, architecture,
 - Explosion des données
 - Des chiffres, des chiffres, ...

Section 2. L'apprentissage automatique

21

Définition générale

- Qu'est-ce que l'apprentissage pour une « machine »?
 - Simon (1983) : changements dans un système lui permettant d'améliorer ses performances sur une tâche déjà vue ou similaire.
 - Tâches? Applications?
 - o Prédiction ? Classification ? Planification et Action ? Résolution de problèmes ?
 - Changements?
 - o Acquérir de nouvelles connaissances / de nouvelles capacités
 - o Réviser ses connaissances / son comportement
 - Résoudre mieux / plus efficacement les problèmes
 - Performances?
 - o Du processus d'apprentissage,
 - o Des capacités du système après apprentissage, ...
 - Apprentissage machine / apprentissage artificiel

Exemple

Apprendre à jouer aux échecs

- But:
 - Apprendre les règles du jeu par observation ? Apprendre à bien jouer ?
 - Prédire les actions de l'adversaire ? Prédire le vainqueur ? ...
- Méthode de résolution pour chercher le prochain coup à jouer
 - algo MinMax basé sur une fonction d'évaluation
- Apprendre une « bonne » fonction d'évaluation
 - Identifier des stratégies par rapport à des positions, Apprendre par cœur certains coups, ...
- Choix des données d'apprentissage :
 - quelles parties d'échecs ? Intérêt de prendre en compte des coups « faibles », des coups illégaux ? Quel séquencement ?
- Comment valider après apprentissage :
 - nombre de parties gagnées (sur quel échantillon ?) avec explication ?

Exemple

• Reconnaître des caractères manuscrits

- Quels caractères : séparation des éléments ?
- Difficulté : impossible d'apprendre par cœur toutes les formes d'écriture
 - Codage des données : matrice binaire
 - Pré-traitement des images et segmentation
 - o Homogénéisation (centrage, échelle,)
 - Reconnaissance (classification)
 - Descripteurs pertinents
 - o Hauteur, largeur, boucle, ...
 - Post-traitement : spécificités linguistique

Reconnaissance des Formes : Théorie du Codage (de l'information),
 Traitement du signal, Traitement d'images, ...

Raisonnement

- Différents mécanismes de raisonnement
 - Raisonnement inductif : de l'expérimentation à la production de connaissances
 - Déterminer des « lois » générales à partir de cas particuliers
 - Partir d'un nombre fini de propositions pour en proposer une conclusion
 - Supervisé (avec professeur) / non supervisé (sans professeur)
 - Ex: classification, partitionnement, identification,
 - Raisonnement déductif : de l'explication à la révision de connaissances
 - Déterminer une conclusion particulière à partir d'affirmations générales
 - La conclusion est une conséquence nécessaire des affirmations par inférence logique
 - Environnement connu / inconnu
 - Ex : Résolution de problèmes, action

25

Types d'apprentissage (1)

- Différents types d'apprentissage
 - Apprentissage supervisé
 - Deux étapes
 - 1. Déterminer un modèle à partir de données étiquettées

Types d'apprentissage (2)

• Différents types d'apprentissage

- Apprentissage supervisé
- Deux étapes
 - 2. Déterminer l'étiquette d'une nouvelle donnée, connaissant le modèle appris

Classification (y : fonction discrète ou classe)

Régression (*y* : fonction continue)

Concept (y : fonction booléenne)

27

Types d'apprentissage (3)

• Différents types d'apprentissage

- Apprentissage non supervisé
 - Le système ne dispose que d'exemples :
 - Données X sans étiquette
 - Nombre et nature des classes inconnu
- Rechercher une structure dans les données
 - Partitionner les exemples en clusters/classes
 - Clustering (segmentation, partitionnement)
 - Partitionner les exemples en clusters/classes

- Homogènes : les éléments d'un même cluster sont similaires
- Séparés : les éléments de différents clusters sont différents

Types d'apprentissage (4)

• Différents types d'apprentissage

- Apprentissage par renforcement
- Apprendre par interaction avec l'environnement, par rapport à des observations
 - Observation d'un état
 - Calcul d'une action (prise de décision)
 - Réalisation de l'action
 - Réception (et mémorisation) d'un résultat suite à cet action
- Découvrir une stratégie via un mécanisme de récompenses (positives ou négatives)

29

Apprentissage Hors-Ligne / En-Ligne

Protocole d'apprentissage

- Caractérisation des interactions entre apprenant et environnement
- Disponibilité/actualisation des données
- Apprentissage hors-ligne (batch)
 - Les données sont disponibles et stables
- Apprentissage en-ligne
 - Traitement « à la volée » et incrémental

Apprentissage descriptif/prédictif/descriptif

Apprentissage descriptif

- Comprendre les données; les décrire; chercher régularité
 - Apprentissage non-supervisé
 - Ex : pourquoi y-a-t-il des bouchons sur la route ?

• Apprentissage prédictif

- Identifier des règles de décision / données futures
 - Apprentissage supervisé
 - Ex : quel sera le trafic dans 2 heures?
 - Ex : diagnostic médical Description des patients Prédiction d'une pathologie

Apprentissage prescriptif

- Quelles actions effectuer?
 - Ex : quel est le meilleur trajet en partant à 8h?

31

Apprentissage Automatique (1)

Science pour la modélisation

- Mettre en évidence des propriétés/régularités sur un ensemble d'observations
- Déterminer un modèle d'un environnement/système permettant la prédiction ou la prise de décision

• Science des systèmes adaptatifs

- Evolution par simulation
- Apprentissage par Renforcement pour l'action

Apprentissage Automatique (2)

• Domaine pluridisciplinaire

33

Plan de l'UF

- Partie Analyse exploratoire G. Trédan M. Roy R. Pasqua
 - Méthodologie pour analyser un ensemble de données
 - Visualisation de données
 - TP en R
- Partie Apprentissage supervisé M-V. Le Lann M. Siala
 - Principes généraux
 - Quelques méthodes : K-plus proches voisins; Réseaux de neurones, Random Forest, Support Vector Machines
 - TP en Python (ScikitLearn)
- Partie Apprentissage non-supervisé MJ. Huguet M. Siala
 - Principes généraux
 - Quelques méthodes : k-means, approches hiérachiques, basées graphes
 - Quelques problèmes : fouille de données, réseaux sociaux
 - TP en Python