

V molekularnem svetu ... kraljujejo interakcije na osnovi elektrostatskih sil! (disperzija detergenta)

e⁻: nosilci elektrostatskih interakcij

• Elektroni imajo negativen naboj.

• So zelo lahki delci, zato so porazdeljeni okoli mnogo težjih jeder s pozitivnim nabojem. Elektroni tvorijo *elektronske oblake/orbitale*.

 V molekuli dveh različnih atomov prevzame eno jedro v povprečju več elektronov kot drugo. Razmakneta se težišči negativnega in pozitivnega naboja. Nastane fiksen električni dipol.

• Težišča nabojev se razmaknejo tudi pod vplivom zunanjih električnih polj. Tako nastanejo *inducirani električni dipoli*, njihova jakost je odvisna od polarizabilnosti molekule (α).

Kako daleč sežejo interakcije?

Električna (Coulombova) interakcija

$$W \propto e_1 e_2 \frac{1}{r}$$

$$W \propto e_1 u_2 \frac{\cos(\varphi)}{r^2}$$
$$u_2 = ed$$

Van der Waalsove interakcije

- Dipolne interakcije na osnovi polariziranih elektronskih oblakov
 - Dva dipola

$$W \propto \frac{1}{r^6 kT}$$

• Dipol + induciran dipol

$$W \propto \frac{\alpha}{r^6}$$

Dva inducirana dipola

$$W \propto \frac{\alpha^2}{r^6}$$

• Ne pozabimo vedno prisotnega odboja pri majhnih razdaljah (*izključitveno načelo*: dva elektrona ne moreta biti na istem mestu ob istem času, zato elektronski oblak ne more v drugega)

Kvantno mehanske interakcije

 Interakcije na osnovi elektronskih parov, v katerem se dva elektrona nahajata z različnimi lastnostmi (spinom).

Kovalentna in koordinativna vez

(co-valence; atoma si delita elektronski par)

Vodikova vez

(H deli vezni par z dvema atomoma kisika, ker je dovolj lahek, tvori vez med dvema paroma elektronov)

 pogoj za to je velika elektronegativnost akceptorja protona

Temperatura

• V molekularnem svetu primerjamo energije interakcij s termično energijo:

pri
$$T = 310 \text{ K } (37^{\circ}\text{C}) \text{ je } kT = 0.0267 \text{ eV}$$

interakcija	energija		razmerje proti kT
	kJ/mol	eV	kT
kovalentna	200 - 900	2 - 9	80 - 350
ionska	400 - 800	4 - 8	150 - 300
van der Waalsova	2 - velika	0.02 - velika	1 - veliko
vodikova	5 - 25	0.05 - 0.25	2 - 10

Agregacija proteinov v fibrile

Coarse grained MD patofizioloških problemov povezanih z agregacijo Množica

Vdor ogljikove nanocevke v membrano

Full atom MD (+ABF): POPC + 5 nm SWCNT, 150 ns

Kraszewski et al. PLOS ONE **7(7)** (2012)

"Raztapljanje" polimernega nanodelca v membrani

Coarse grained MD: POPC + $11 \times PS100$ verig, premer delca7 nm, $1 - 10 \mu s$

Hidrofobna "interakcija" <u>sestavi</u>

Van der Waalsove interakcije <u>agregirajo</u>

Ioni v raztopini <u>senčijo</u> interakcije dolgega dosega

Ionske in dipolne interakcije <u>prestrukturirajo</u>

Fluktuacijske sile <u>razmikajo</u>

Slepi s paličico vidi - Mikroskopija na atomsko silo (AFM)

Razvijmo protein, poglejmo rast membranske domene

Fig. 5. Sequential series of APM images presented in deflection mode demonstrating DSPC domain growth upon quenching to (A) held at 1 °C below liquidus temperature at t = 1, 16, 60 min in a DOPC/DSPC supported lipid bilayer, note the rounded growth. (B) held at 4 °C below liquidus temperature at t = 1, 10, 30 min in a DOPC/DSPC supported lipid bilayer, note the more leafy growth. Scale bar 5 µm.

Slap nas ne pusti iz stržena - Optična pinceta

Kako vlečejo molekularni motorji?

