PP-DSE MATH CP PAPER 2

HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY
HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION

PRACTICE PAPER MATHEMATICS Compulsory Part PAPER 2

(11/4 hours)

INSTRUCTIONS

- Read carefully the instructions on the Answer Sheet. After the announcement of the start of the examination, you should first stick a barcode label and insert the information required in the spaces provided. No extra time will be given for sticking on the barcode label after the "Time is up" announcement.
- When told to open this book, you should check that all the questions are there. Look for the words 'END OF PAPER' after the last question.
- 3. All questions carry equal marks.
- 4. ANSWER ALL QUESTIONS. You are advised to use an HB pencil to mark all the answers on the Answer Sheet, so that wrong marks can be completely erased with a clean rubber. You must mark the answers clearly; otherwise you will lose marks if the answers cannot be captured.
- You should mark only ONE answer for each question. If you mark more than one answer, you will receive NO MARKS for that question.

1

6. No marks will be deducted for wrong answers.

◎香港考試及評核局 保留版權 Hong Kong Examinations and Assessment Authority All Rights Reserved 2012 Not to be taken away before the end of the examination session

There are 30 questions in Section A and 15 questions in Section B. The diagrams in this paper are not necessarily drawn to scale.

Choose the best answer for each question.

Section A

- 1. $x^3(2x+x) =$
 - A. 3x4.
 - B. $2x^5$.
 - C. $3x^5$.
 - D. $2x^6$.
- 2. If 3a+1=3(b-2), then b=
 - A. a+1.
 - B. a+3.
 - C. $a + \frac{7}{3}$.
 - D. $a \frac{5}{3}$.
- 3. $p^2 q^2 p q =$
 - A. (p+q)(p-q-1).
 - B. (p+q)(p+q-1).
 - C. (p-q)(p-q+1).
 - D. (p-q)(p+q-1).

- 4. Let m and n be constants. If $m(x-3)^2 + n(x+1)^2 \equiv x^2 38x + 41$, then m =
 - A. -4 .
 - B. -1.
 - C. 3.
 - D. 5.
- 5. Let $f(x) = x^4 x^3 + x^2 x + 1$. When f(x) is divided by x + 2, the remainder is
 - A. -2 .
 - B. 0.
 - C. 11.
 - D. 31.
- 6. Let k be a constant. If the quadratic equation $3x^2 + 2kx k = 0$ has equal roots, then k =
 - A. -3.
 - В. 3.
 - C. -3 or 0.
 - D. 0 or 3.
- In the figure, the x-intercepts of the straight lines L₁ and L₂ are 5 while the y-intercepts of the straight lines L₂ and L₃ are 3. Which of the following are true?
 - I. The equation of L_1 is x = 5.
 - II. The slope of L_2 is $\frac{3}{5}$.
 - III. The point (2,3) lies on L_3 .
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

- 8. The figure shows the graph of $y = ax^2 2x + b$, where a and b are constants. Which of the following is/are true?
 - I. a > 0
 - II. b < 0
 - III. ab < 1
 - A. I only
 - B. II only
 - C. I and III only
 - D. II and III only

- 9. The solution of 4x > x-3 or 3-x < x+7 is
 - A. x > -2.

 - B. x < -2.
 - C. x > -1.
 - D. x < -2 or x > -1.
- 10. John buys a vase for \$1600. He then sells the vase to Susan at a profit of 20%. At what price should Susan sell the vase in order to have a profit of 20%?
 - A. \$ 2.240
 - B. \$2304
 - C. \$2400
 - D. \$ 2500
- 11. If the circumference of a circle is increased by 40%, then the area of the circle is increased by
 - A. 18%.
 - B. 20%.
 - C. 40%.
 - D. 96%.

- 12. Let α and β be non-zero constants. If $(\alpha + \beta): (3\alpha \beta) = 7:3$, then $\alpha: \beta =$
 - A. 5:9.
 - B. 9:5.
 - C. 19:29.
 - D. 29:19.
- 13. If z varies directly as x and inversely as y^2 , which of the following must be constant?
 - A. $\frac{x}{v^2z}$
 - B. $\frac{z}{rv^2}$
 - C. $\frac{yz}{r^2}$
 - D. $\frac{xz}{v^2}$
- 14. 0.009049999 =
 - A. 0.00905 (correct to 3 decimal places).
 - B. 0.00905 (correct to 3 significant figures).
 - C. 0.00905 (correct to 6 decimal places).
 - D. 0.00905 (correct to 6 significant figures).
- 15. In the figure, O is the centre of the sector OABC. If the area of ΔOAC is $12~{\rm cm}^2$, find the area of the segment ABC.
 - A. $3(\pi 2) \text{ cm}^2$
 - B. $3(\pi 1) \text{ cm}^2$
 - C. $6(\pi 2) \text{ cm}^2$
 - D. $6(\pi 1) \text{ cm}^2$

- 16. The figure shows a right circular cone of height 8 cm and slant height 17 cm. Find the volume of the circular cone.
 - A. $255\pi \text{ cm}^3$
 - B. $345\pi \text{ cm}^3$
 - C. 480π cm³
 - D. $600\pi \text{ cm}^3$

- 17. In the figure, ABCD is a rectangle. E is the mid-point of BC. F is a point lying on CD such that DF = 2CF. If the area of ΔCEF is 1 cm^2 , then the area of ΔAEF is
 - A. 2 cm².
 - B. 3 cm^2 .
 - C. 4 cm².
 - D. 6 cm^2 .

- 18. In the figure, AB = 4 cm, BC = CD = DE = 8 cm and FG = 9 cm. Find the perimeter of $\triangle AEH$.
 - A. 60 cm
 - B. 74 cm
 - C. 150 cm
 - D. 164 cm

- 19. In the figure, AB = BC and D is a point lying on BC such that CD = DE. If AB // CE, find $\angle CDE$.
 - A. 52°
 - B. 58°
 - C. 64°
 - D. 76°

- 20. In the figure, O is the centre of the semi-circle ABCD. AC and BD intersect at E. If AD//OC, then $\angle AED =$
 - A. 48°.
 - B. 55°.
 - C. 57°.
 - D. 66°.

- 21. In the figure, O is the centre of the circle ABCD. If $\widehat{AB} = \widehat{BC} = 2\widehat{CD}$, then $\angle BCD =$
 - A. 64°.
 - B. 87°.
 - C. 93°.
 - D. 116°.

22. In the figure, ABCD is a square. F is a point lying on AD such that CF//BE. If AB = AE, find ∠ABF correct to the nearest degree.

- B. 18°
- C. 22°
- D. 26°

23. For $0^{\circ} \le \theta \le 90^{\circ}$, the least value of $\frac{30}{3\sin^2 \theta + 2\sin^2(90^{\circ} - \theta)}$

- В. 6.
- 10.
- D. 15.

Which of the following parallelograms have rotational symmetry and reflectional symmetry?

II. 6

III.

- A. I and II only
- B. I and III only
- C. II and III only
- I, II and III D.

- 25. If the point (-2,-1) is reflected with respect to the straight line y=-5, then the coordinates of its image are
 - A. (-8,-1).
 - B. (-2, -9).
 - C. (-2,11).
 - D. (12,-1).

- 26. The coordinates of the points A and B are (1, -3) and (-5, 7) respectively. If P is a point lying on the straight line y = x + 2 such that AP = PB, then the coordinates of P are
 - A. (-2,0).
 - B. (-2, 2).
 - C. (0,2).
 - D. (3,5).

- 27. The equation of a circle is $2x^2 + 2y^2 + 8x 12y + 3 = 0$. Which of the following are true?
 - I. The coordinates of the centre of the circle are (-2,3).
 - II. The radius of the circle is 7.
 - III. The point (2,3) lies outside the circle.
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I. II and III

- 28. Two numbers are randomly drawn at the same time from four cards numbered 2, 3, 5 and 7 respectively. Find the probability that the sum of the numbers drawn is a multiple of 4.
 - A. $\frac{1}{3}$
 - B. $\frac{1}{4}$
 - C. $\frac{1}{6}$
 - D. $\frac{5}{16}$
- 29. The box-and-whisker diagram below shows the distribution of the heights (in cm) of some students. Which of the following is/are true?

- I. The height of the tallest student is 180 cm.
- II. The inter-quartile range of the distribution is 15 cm.
- III. Less than half of the students are taller than 170 cm.
 - A. I only
 - B. II only
 - C. I and III only
 - D. II and III only
- 30. The figure below shows the cumulative frequency polygons of the test score distributions X and Y. Let m₁, r₁ and s₁ be the median, the range and the standard deviation of X respectively while m₂, r₂ and s₂ be the median, the range and the standard deviation of Y respectively. Which of the following are true?
 - ${\rm I.} \qquad m_1 > m_2$
 - II. $r_1 > r_2$
 - III. $s_1 > s_2$
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I , II and III

Section B

31.

The figure above shows the graph of y = f(x). If 2f(x) = g(x), which of the following may represent the graph of y = g(x)?

A.

B.

D.

- B0000000023₁₆ = 32.
 - $11 \times 16^{10} + 23$. A.
 - В. $11 \times 16^{10} + 35$.
 - $12 \times 16^{11} + 23$. C.
 - $12 \times 16^{11} + 35$. D.

- 33. If the roots of the quadratic equation $x^2 kx + 3 = 0$ are α and β , then $\alpha^3 + \beta^3 =$
 - A. k^3 .
 - B. $k^3 3k$.
 - C. $k^3 9k$.
 - D. $k^3 12k$.
- 34. If x is a real number, then the real part of (x+3i)(3+i) is
 - A. 3x.
 - B. x+3.
 - C. 3x + 3.
 - D. 3x-3.
- 35. The nth term of a sequence is 2n+3. If the sum of the first m terms of the sequence is less than 3000, then the greatest value of m is
 - A. 52.
 - B. 53.
 - C. 56.
 - D. 57.
- 36. Let b > 1. If $a = \log_{12} b$, then $\frac{1}{a} =$
 - A. $\log_b \frac{1}{12}$.
 - B. log_b 12.
 - C. $\log_{12} \frac{1}{b}$.
 - $D. \qquad \frac{1}{\log_b 12} \ .$

37. The graph in the figure shows the linear relation between $\log_3 t$ and $\log_3 x$. If $x = kt^a$, then k =

- B. 81 .
- C. $\frac{-4}{5}$
- D. $\frac{-5}{4}$

38. Let a be a constant and $-90^{\circ} < \theta < 90^{\circ}$. If the figure shows the graph of $y = a \sin(x^{\circ} + \theta)$, then

A.
$$a = -2$$
 and $\theta = -45^{\circ}$.

B.
$$a = -2$$
 and $\theta = 45^{\circ}$.

C.
$$a=2$$
 and $\theta=-45^{\circ}$.

D.
$$a=2$$
 and $\theta=45^{\circ}$.

- 39. The figure shows a right prism ABCDEF with a right-angled triangle as the cross-section. A, B, E and F lie on the horizontal ground. G is a point lying on AB such that AG: GB = 5:3. If ∠DAE = a, ∠CBF = b, ∠CGF = c and ∠DGE = d, which of the following is true?
 - A. a > c > d
 - B. a > d > c
 - C. c > b > d
 - D. c > d > b

- 40. In the figure, A is the common centre of the two circles, BC is a chord of the larger circle and touches the smaller circle at D. AD produced meets the larger circle at E. F is a point lying on the smaller circle such that E, D, A and F are collinear. If BC = 24 cm and DE = 8 cm, then EF =
 - A. 13 cm.
 - B. 16 cm.
 - C. 18 cm.
 - D. 20 cm.

- 41. If the straight line x-y=0 and the circle $x^2+y^2+6x+ky-k=0$ do not intersect with each other, find the range of values of k.
 - A. 2 < k < 18
 - B. -18 < k < -2
 - C. k < 2 or k > 18
 - D. k < -18 or k > -2

- 42. Let O be the origin. If the coordinates of the points A and B are (18, -24) and (18, 24) respectively, then the x-coordinate of the orthocentre of $\triangle OAB$ is
 - A. -14 .
 - B. 10.
 - C. 12.
 - D. 25.

- 43. Mary, Tom and 8 other students participate in a solo singing contest. If each participant performs once only and the order of performance is randomly arranged, find the probability that Mary performs just after Tom.
 - A. $\frac{1}{2}$
 - B. $\frac{1}{10}$
 - C. $\frac{1}{4}$
 - D. $\frac{1}{90}$
- 44. The mean, the variance and the inter-quartile range of a set of numbers are 40, 9 and 18 respectively. If 5 is added to each number of the set and each resulting number is then tripled to form a new set of numbers, find the mean, the variance and the inter-quartile range of the new set of numbers.

	Mean	Variance	Inter-quartile range
A.	120	27	69
B.	120	81	69
C.	135	27	54
D.	135	81	54

- 45. Let A be a group of numbers $\{\alpha,\beta,\gamma,\delta\}$ and B be another group of numbers $\{\alpha+2,\beta+2,\mu+2,\gamma+2,\delta+2\}$, where $\alpha<\beta<\mu<\gamma<\delta$. Which of the following must be true?
 - I. The median of A is smaller than that of B.
 - II. The range of A and the range of B are the same.
 - III. The standard deviation of A is greater than that of B.
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

END OF PAPER