FCC SAR Test Report

APPLICANT: Nyle Oswind Parry Limited Liability Company

EQUIPMENT : Tablet PC MODEL NAME : GRT67VY

FCC ID : 2ABO6-0610

STANDARD : FCC 47 CFR Part 2 (2.1093)

ANSI/IEEE C95.1-1992

IEEE 1528-2003

We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and had been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by: Eric Huang / Deputy Manager

Cole huans

Approved by: Jones Tsai / Manager

lac-MRA

SPORTON INTERNATIONAL INC.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

Report Number : FA432436-10 Report Version : Rev. 02 Page Number : 1 of 73

Table of Contents

1. Statement of Compliance	
2. Administration Data	
3. Guidance Standard	
4. Equipment Under Test (EUT)	
4.1 General Information	
4.2 Maximum Tune-up Limit	
4.3 General LTE SAR Test and Reporting Considerations	
5. Proximity Sensor Triggering Test	
6. RF Exposure Limits	
6.1 Uncontrolled Environment	
6.2 Controlled Environment	
7. Specific Absorption Rate (SAR)	
7.1 Introduction	17
7.2 SAR Definition	
8. System Description and Setup	
9. Measurement Procedures	
9.1 Spatial Peak SAR Evaluation	19
9.2 Power Reference Measurement	20
9.3 Area Scan	20
9.4 Zoom Scan	21
9.5 Volume Scan Procedures	21
9.6 Power Drift Monitoring	21
10. Test Equipment List	22
11. System Verification	23
11.1 Tissue Verification	
11.2 System Performance Check Results	
12. RF Exposure Positions	26
12.1 SAR Testing for Tablet	26
13. Conducted RF Output Power (Unit: dBm)	
14. Bluetooth Exclusions Applied	
15. Exposure Position Conditions	
16. SAR Test Results	51
16.1 Body SAR	
16.2 Repeated SAR Measurement	
17. Simultaneous Transmission Analysis	
17.1 Body Exposure Conditions	
17.2 SPLSR Evaluation and Analysis	
18. Uncertainty Assessment	
19. References	73
Appendix A. Plots of System Performance Check	
Appendix B. Plots of High SAR Measurement	
Appendix C. DASY Calibration Certificate Appendix D. Test Setup Photos	

Revision History

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FA432436-10	Rev. 01	Initial issue of report	Aug. 08, 2014
17452450 10	1100.01	Initial issue of report	Aug. 00, 2014
FA432436-10	Rev. 02	In section5, added the verification of the proximity sensor power reduction.	Aug. 25, 2014

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 3 of 73

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for **Nyle Oswind Parry Limited Liability Company, Tablet PC, GRT67VY**, are as follows.

Equipment	Frequency	Highest SA	R Summary
Class	Band	Body 1g SAR (W/kg)	Simultaneous Transmission 1g SAR (W/kg)
	GSM850	1.19	
	GSM1900	1.17	
PCB	WCDMA Band V	1.15	1.29
ГОВ	WCDMA Band II	1.19	1.29
	LTE Band 13	1.10	
	LTE Band 4	1.17	
DTS	WLAN 2.4GHz Band	1.05	1.19
	WLAN 5.2GHz Band	1.27	
NII	WLAN 5.3GHz Band	1.17	1.29
IVII	WLAN 5.5GHz Band	1.29	1.29
	WLAN 5.8GHz Band	1.14	
Date of Testing:		05/07/2014	~ 07/21/2014

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2003.

2. Administration Data

Testing Laboratory				
Test Site	SPORTON INTERNATIONAL INC.			
Test Site Location	No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. TEL: +886-3-327-3456 FAX: +886-3-328-4978			

Applicant				
Company Name	Nyle Oswind Parry Limited Liability Company			
Address	7027 Old Madison Pike, Suite 108, Huntsville, Alabama 35806			

Report Number : FA432436-10 Report Version : Rev. 02 Page Number : 4 of 73

3. Guidance Standard

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- FCC 47 CFR Part 2 (2.1093)
- ANSI/IEEE C95.1-1992
- IEEE 1528-2003
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r03
- FCC KDB 865664 D02 SAR Reporting v01r01
- FCC KDB 447498 D01 General RF Exposure Guidance v05r02
- FCC KDB 248227 D01 SAR meas for 802 11abg v01r02
- FCC KDB 644545 D01 Guidance for IEEE 802 11ac v01r02
- FCC KDB 616217 D04 SAR for laptop and tablets v01r01
- FCC KDB 941225 D01 SAR test for 3G devices v02
- FCC KDB 941225 D02 HSPA and 1x Advanced v02r02
- FCC KDB 941225 D03 SAR Test Reduction GSM GPRS EDGE v01
- FCC KDB 941225 D05 SAR for LTE Devices v02r03

4. Equipment Under Test (EUT)

4.1 General Information

	Product Feature & Specification
Equipment Name	Tablet PC
Model Name	GRT67VY
FCC ID	2ABO6-0610
IMEI Code	8952530076180044961
S/N	B08604044225000B
Wireless Technology and Frequency Range	GSM850: 824.2 MHz ~ 848.8 MHz GSM1900: 1850.2 MHz ~ 1909.8 MHz WCDMA Band V: 826.4 MHz ~ 846.6 MHz WCDMA Band II: 1852.4 MHz ~ 1907.6 MHz LTE Band 13: 779.5 MHz ~ 784.5 MHz LTE Band 4: 1710.7 MHz ~ 1754.3 MHz WLAN 2.4GHz Band: 2412 MHz ~ 2462 MHz WLAN 5.2GHz Band: 5180 MHz ~ 5240 MHz WLAN 5.3GHz Band: 5500 MHz ~ 5320 MHz WLAN 5.5GHz Band: 5745 MHz ~ 5700 MHz WLAN 5.8GHz Band: 5745 MHz ~ 5825 MHz Bluetooth: 2402 MHz ~ 2480 MHz
Mode	GPRS/EGPRS RMC 12.2Kbps HSDPA HSUPA HSPA+ (16QAM uplink) LTE: QPSK, 16QAM 802.11a/b/g/n/ac HT20/HT40/VHT20/VHT40/VHT80 Bluetooth v3.0+EDR Bluetooth v4.0-LE
EUT Stage	Identical Prototype
Remark:	
1. 5GHz WLAN operation	in 5600 MHz ~ 5650 MHz is notched.

Report Number : FA432436-10 Report Version : Rev. 02 Page Number : 5 of 73

4.2 Maximum Tune-up Limit

Band	Burst average power (dBm)				
Dariu	GSN	GSM 850		1900	
Output Power Status	Full Power Mode	Reduced Power Mode	Full Power Mode	Reduced Power Mode	
GPRS/EDGE (GMSK, 1 Tx slot)	33.5	26.0	30.5	28.0	
GPRS/EDGE (GMSK, 2 Tx slots)	32.0	23.5	29.5	25.5	
EDGE (8PSK, 1 Tx slot)	27.5	26.0	26.5	26.5	
EDGE (8PSK, 2 Tx slots)	27.5	23.0	26.5	25.0	

Band	average power (dBm)				
Dallu	WCE	DMA V	WCD	DMA II	
Output Power Status	Full Power Mode	Reduced Power Mode	Full Power Mode	Reduced Power Mode	
RMC 12.2Kbps	23.5	17.5	23.5	19.5	
HSDPA Subset 1	22.5	16.5	22.5	18.5	
HSUPA Subset 5	22.5	16.5	22.5	18.5	

	LTE Band 13					
		í	average power(dBm)		
Modulation BW (MHz) RB size Full power Full power Reduced power Reduced mode MPR mode mode MPR power mode						
QPSK	10	≤ 12	0	23.5	0	17.5
QPSK	10	> 12	1	22.5	0	17.5
16QAM	10	≤ 12	1	22.5	0	17.5
16QAM	10	> 12	2	21.5	0	17.5
QPSK	5	≤ 8	0	23.5	0	17.5
QPSK	5	> 8	1	22.5	0	17.5
16QAM	5	≤ 8	1	22.5	0	17.5
16QAM	5	> 8	2	21.5	0	17.5

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 6 of 73

LTE Band 4							
average power(dBm)							
Modulation	BW (MHz)	RB size	Full power mode MPR	Full power mode	Reduced power mode MPR	Reduced power mode	
QPSK	20	≤ 18	0	24.5	0	17.0	
QPSK	20	> 18	1	23.5	0	17.0	
16QAM	20	≤ 18	1	23.5	0	17.0	
16QAM	20	> 18	2	22.5	0	17.0	
QPSK	15	≤ 16	0	24.5	0	17.0	
QPSK	15	> 16	1	23.5	0	17.0	
16QAM	15	≤ 16	1	23.5	0	17.0	
16QAM	15	> 16	2	22.5	0	17.0	
QPSK	10	≤ 12	0	24.5	0	17.0	
QPSK	10	> 12	1	23.5	0	17.0	
16QAM	10	≤ 12	1	23.5	0	17.0	
16QAM	10	> 12	2	22.5	0	17.0	
QPSK	5	≤ 8	0	24.5	0	17.0	
QPSK	5	> 8	1	23.5	0	17.0	
16QAM	5	≤ 8	1	23.5	0	17.0	
16QAM	5	> 8	2	22.5	0	17.0	
QPSK	3	≤ 4	0	24.5	0	17.0	
QPSK	3	> 4	1	23.5	0	17.0	
16QAM	3	≤ 4	1	23.5	0	17.0	
16QAM	3	> 4	2	22.5	0	17.0	
QPSK	1.4	≤ 5	0	24.5	0	17.0	
QPSK	1.4	> 5	1	23.5	0	17.0	
16QAM	1.4	≤ 5	1	23.5	0	17.0	
16QAM	1.4	> 5	2	22.5	0	17.0	

	Average power(dBm)			
Band / Mode	v3.0+EDR			v4.0-LE
	1Mbps	2Mbps	3Mbps	V4.U-L⊏
2.4 GHz Bluetooth	9.5	6	6	6

Band / Mode	IEEE 802.11 average power(dBm)				
baria / iviode	Antenna 1	Antenna 2	Antenna 1+2		
2.4GHz Band	15.5	15.5	18.5		
5.2GHz Band	12.5	12.5	15.5		
5.3GHz Band	13.0	11.5	15.3		
5.5GHz Band	13.0	11.5	15.3		
5.8GHz Band	13.0	13.0	16.0		

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 7 of 73

4.3 General LTE SAR Test and Reporting Considerations

	Summarized necessary items addressed in KDB 941225 D05 v02r03											
FC	CC ID			2A	BO6-0610							
Ec	quipment Na	ame		Ta	blet PC							
					E Band 13: E Band 04:	1710.7 MH	lz ~ 1754.3					
Ċ	nannel Ban	dwidth			E Band 13: E Band 04:1			10MHz, 1	5MHz, 20N	ЛНz		
up	link modula	ations used		QI	PSK, and 16	QAM						
LT	E Voice / D	ata requirer	nents	Da	ata only							
					Та	ble 6.2.3-1:	Maximum F	ower Red	uction (MPI	R) for Powe	er Class 3	
					Modulatio	n (Channel band	dwidth / Tra	nsmission b	andwidth (R	B)	MPR (dB)
LT	E MPR per	rmanently b	uilt-in by de	esign		1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
					QPSK	>5	>4	>8	> 12	> 16	> 18	≤ 1
					16 QAM		≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1
					16 QAM	>5	>4	>8	> 12	> 16	> 18	≤ 2
	E A-MPR Dectrum plo	ts for RB co	nfiguration	(M A me	laximum TTI properly c easurement;	onfigured therefore,	base stati	on simula	ator was	used for	the SAF	all TTI frames R and power infiguration are
Sp	pectrum plo	ts for RB co		(M A me	laximum TTI properly c	onfigured therefore, the SAR r	base stati	on simula	ator was	used for	the SAF	R and power
Sp	pectrum plo		d to satis	(M A mo no fy SAR Ye	laximum TTI properly c easurement; t included in	onfigured therefore, the SAR r	base stati spectrum p eport.	on simula lots for ea	ator was ch RB allo	used for ecation and	the SAF	R and power
Sp	pectrum plo		d to satis	(M A mo no fy SAR Ye	laximum TTI properly c easurement; t included in es, proximity	onfigured therefore, the SAR r	base stati spectrum p eport.	on simula lots for ea	ator was ch RB allo	used for ecation and	the SAF	R and power
Sp	pectrum plo		d to satis	(M A mo no fy SAR Ye	laximum TTI properly c easurement; t included in es, proximity	onfigured therefore, the SAR r sensor.	base stati spectrum p eport.	on simula lots for ea	ator was ch RB allo	used for ecation and	the SAF	R and power
Sp	pectrum plo		d to satis	fy SAR Ye ission (H,	laximum TTI properly c easurement; t included in es, proximity	onfigured therefore, the SAR r sensor.	base stati spectrum p eport.	on simula lots for ea	ator was ich RB allo n each LTE Bandwic	used for cation and	the SAF	R and power nfiguration are
Sp	pectrum plo	ction applie	d to satis	fy SAR Ye ission (H,	laximum TTI properly c easurement; t included in es, proximity M, L) chann	onfigured therefore, the SAR r sensor.	base stati spectrum p eport.	on simula lots for ea	ator was ich RB allo n each LTE Bandwic	used for cation and	the SAF	R and power nfiguration are
Sp	pectrum plo	ction applie	d to satis	fy SAR Ye ission (H,	properly control of the control of t	onfigured therefore, the SAR r sensor.	base stati spectrum p eport.	on simula lots for ea	ator was ich RB allo n each LTE Bandwic	used for cation and	the SAF	R and power nfiguration are
Sp Pc co	pectrum plo pwer reduc mpliance	Channel #	d to satis	fy SAR Ye ission (H,	properly ceasurement; tincluded in es, proximity M, L) channer Freq.(MHz)	onfigured therefore, the SAR r sensor.	base stati spectrum p eport.	on simula plots for ea uencies in Channel #	ator was ich RB allo n each LTE Bandwic	used for cation and	the SAF offset co	R and power nfiguration are
Spp Pcc co	pectrum plo pwer reduc mpliance	Channel # 23205 23230	d to satis	fy SAR Ye ission (H,	properly ceasurement; tincluded in es, proximity m, L) channers freq.(MHz) 779.5	onfigured therefore, the SAR r sensor.	base stati spectrum peport.	on simula plots for ea uencies in Channel #	ator was ich RB allo n each LTE Bandwic	used for cation and	the SAF offset co	R and power nfiguration are
Spp Pcc co	pectrum plo	Channel # 23205 23230	d to satis Transm Bandwid	fy SAR Ye ission (H,	properly ceasurement; tincluded in es, proximity m, L) channers freq.(MHz) 779.5	onfigured therefore, the SAR r sensor. Itel number LTE Bar	base stati spectrum peport.	on simula lots for eau uencies in Channel #	ator was ich RB allo n each LTE Bandwic	used for cation and	the SAF offset co	R and power nfiguration are
Spp Pcc co	pectrum plo	Channel # 23205 23230 23255	d to satis Transm Bandwid	fy SAR Ye ission (H,	properly content of the content of t	onfigured therefore, the SAR r sensor. Itel number LTE Bar	base statis spectrum peport. rs and frequent 13	on simula lots for eau uencies in Channel #	ator was ich RB allo n each LTE Bandwic	used for position and	the SAF offset co	R and power nfiguration are
Spp Pcc co	pectrum plo power reduc impliance	Channel # 23205 23230 23255 h 1.4 MHz Freq.	d to satis Transm Bandwid	fy SAR Ye ission (H, th 5 MHz th 3 MHz Freq.	properly ceasurement; tincluded in es, proximity M, L) channer Freq.(MHz) 779.5 782 784.5	onfigured therefore, the SAR r sensor. tel number LTE Bar LTE Bar h 5 MHz Freq.	base stati spectrum peport. rs and freq and 13 nd 4 Bandwidtl	uencies in Channel # 23230 1 10 MHz Freq.	ator was ich RB allo	used for position and state of the state of	the SAF offset co	Hz) vidth 20 MHz (MHz)
Spr Pcco	Dectrum plo Dower reduce Impliance Bandwidth	Channel # 23205 23230 23255 h 1.4 MHz Freq. (MHz)	Transm Bandwid Bandwid Ch. #	fy SAR Ye ission (H, th 5 MHz th 3 MHz Freq. (MHz)	properly content of the content of t	LTE Bah 5 MHz Freq. (MHz)	base statis spectrum peport. rs and frequent 13 nd 4 Bandwidtt Ch. #	uencies in Channel # 23230 1 10 MHz Freq. (MHz)	Bandwic Ch. #	used for position and the state of the state	the SAF offset coordinates of the SA	Hz) vidth 20 MHz Freq. (MHz) 1720

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 8 of 73

5. Proximity Sensor Triggering Test

<Proximity Sensor Triggering Distance (KDB 616217 D04 section 6.2)>:

Proximity sensor triggering distance testing was performed according to the procedures outlined in KDB 616217 D04 section 6.2, and EUT moving further away from the flat phantom and EUT moving toward the flat phantom were both assessed. The details are illustrated in the exhibit "P-Sensor operational description", and the shortest triggering distances were reported and used for SAR assessment.

In the preliminary triggering distance testing, the tissue-equivalent medium for different frequency bands were used for verification; no other frequency bands tissue-equivalent medium was found to result in shortest triggering distance than that for 1900MHz, and the tissue-equivalent medium for 1900MHz was used for formal proximity sensor triggering testing.

Proximity Sensor Trigger Distance (mm)							
Position	Bottom Slant of Edge2 Edge 2						
Minimum	13	14					

<Proximity Sensor Triggering Coverage (KDB 616217 D04 section 6.3)>:

If a sensor is spatially offset from the antenna(s), it is necessary to verify sensor triggering for conditions where the antenna is next to the user but the sensor is laterally further away to ensure sensor coverage is sufficient for reducing the power to maintain compliance. For p-sensor coverage testing, the device is moved and "along the direction of maximum antenna and sensor offset".

Report Number : FA432436-10 Report Version : Rev. 02 Page Number : 9 of 73

The influence of table tilt angles to proximity sensor triggering was determined by positioning each tablet edge that contains a transmitting antenna, perpendicular to the flat phantom, at 14 mm separation. Rotating the tablet around the edge next to the phantom in $\leq 10^{\circ}$ increments until the tablet is $\pm 45^{\circ}$ from the vertical

position at 0, and the maximum output power remains in the reduced mode.

The Sensor Trigger Distance (mm)				
Position	Edge 2			
Minimum	14			

: FA432436-10 Report Number Report Version : Rev. 02 : 10 of 73 Page Number

Proximity sensor power reduction

Exposure Position / wireless mode	Bottom Slant of Edge 2 ⁽¹⁾	Bottom Face ⁽¹⁾	Edge 2 ⁽¹⁾	Edge 1	Edge 3	Edge 4
GSM850 (GMSK 1 Tx slot)	7.5dB	7.5dB	7.5dB			
GSM850 (GMSK 2 Tx slots)	8.5dB	8.5dB	8.5dB			
GSM850 (8PSK 1 Tx slot)	1.5dB	1.5dB	1.5dB			
GSM850 (8PSK 2 Tx slots)	4.5dB	4.5dB	4.5dB			
GSM1900 (GMSK 1 Tx slot)	2.5dB	2.5dB	2.5dB			
GSM1900 (GMSK 2 Tx slots)	4.0dB	4.0dB	4.0dB	0 dD	0 dD	0 dD
GSM1900 (8PSK 1 Tx slot)	0.0dB	0.0dB	0.0dB	0 dB	0 dB	0 dB
GSM1900 (8PSK 2 Tx slots)	1.5dB	1.5dB	1.5dB			
WCDMA Band II	4.0dB	4.0dB	4.0dB			
WCDMA Band V	6.0dB	6.0dB	6.0dB			
LTE Band 4	7.5dB	7.5dB	7.5dB			
LTE Band 13	6.0dB	6.0dB	6.0dB			

- (1): Reduced maximum limit applied by activation of proximity sensor.
 Power reduction is not applicable for WLAN and Bluetooth

Power Measurement during Sensor Trigger distance testing

Band/Mode	СН	Measured power	Reduction Levels	
Dai lu/ivioue	СП	w/o power back-off	w/ power back-off	(dB)
GSM850 GPRS (GMSK 1 Tx slot)	251	32.2	24.9	7.3
GSM850 GPRS (GMSK 2 Tx slots)	251	31.6	21.7	9.9
GSM850 GPRS (8PSK 1 Tx slot)	251	26.1	24.9	1.2
GSM850 GPRS (8PSK 2 Tx slots)	251	26.1	22.8	3.3
GSM1900 GPRS (GMSK 1 Tx slos)	810	29.5	27.6	1.9
GSM1900 GPRS (GMSK 2 Tx slots)	810	29.3	25.5	3.8
GSM1900 GPRS (8PSK 1 Tx slot)	810	25.3	25.3	0.0
GSM1900 GPRS (8PSK 2 Tx slots)	810	25.3	23.2	2.1
WCDMA Band II (RMC 12.2Kbps)	9262	23.2	18.0	5.2
WCDMA Band V (RMC 12.2Kbps)	4132	23.2	16.6	6.6
LTE Band 4	20050	23.8	15.8	8.0
LTE Band 13	23780	22.9	16.8	6.1

Report Number : FA432436-10 Report Version : Rev. 02 Page Number : 11 of 73

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 12 of 73

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 13 of 73

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 14 of 73

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 15 of 73

6. RF Exposure Limits

6.1 <u>Uncontrolled Environment</u>

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

6.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles		
0.08	1.6	4.0		

1. Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

Report Number : FA432436-10 Report Version : Rev. 02 Page Number : 16 of 73

7. Specific Absorption Rate (SAR)

7.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

7.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (p). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 17 of 73

8. System Description and Setup

The DASY system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 18 of 73

9. Measurement Procedures

The measurement procedures are as follows:

<Conducted power measurement>

- (a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.
- (b) Read the WWAN RF power level from the base station simulator.
- (c) For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band
- (d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power

<SAR measurement>

- (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel.
- (b) Place the EUT in the positions as Appendix D demonstrates.
- (c) Set scan area, grid size and other setting on the DASY software.
- (d) Measure SAR results for the highest power channel on each testing position.
- (e) Find out the largest SAR result on these testing positions of each band
- (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

9.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

Report Number : FA432436-10 Report Version : Rev. 02 Page Number : 19 of 73

9.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

9.3 Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01v01r03 SAR measurement 100 MHz to 6 GHz.

	≤ 3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°	
	\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	$3 - 4 \text{ GHz:} \le 12 \text{ mm}$ $4 - 6 \text{ GHz:} \le 10 \text{ mm}$	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.		

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 20 of 73

9.4 Zoom Scan

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Zoom scan parameters extracted from FCC KDB 865664 D01v01r03 SAR measurement 100 MHz to 6 GHz.

			≤3 GHz	> 3 GHz
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}			\leq 2 GHz: \leq 8 mm 2 – 3 GHz: \leq 5 mm [*]	$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$
uniform grid: Δ		grid: Δz _{Zoom} (n)	id: $\Delta z_{Zoom}(n)$ $\leq 5 \text{ mm}$	
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
	$\begin{array}{c} \text{grid} \\ \Delta z_{\text{Zoom}}(n \geq 1): \\ \text{between subsequent} \\ \text{points} \end{array}$		≤ 1.5·∆z	Zoom(n-1)
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

9.5 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

9.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 21 of 73

When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

10. Test Equipment List

			0	Calib	ration
Manufacturer	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date
SPEAG	750MHz System Validation Kit	D750V3	1004	Jan. 28, 2014	Jan. 27, 2015
SPEAG	835MHz System Validation Kit	D835V2	499	Mar. 24, 2014	Mar. 23, 2015
SPEAG	1750MHz System Validation Kit	D1750V2	1068	Nov. 27, 2013	Nov. 26, 2014
SPEAG	1900MHz System Validation Kit	D1900V2	5d041	Mar. 21, 2014	Mar. 20, 2015
SPEAG	2450MHz System Validation Kit	D2450V2	924	Nov. 13, 2013	Nov. 12, 2014
SPEAG	5GHz System Validation Kit	D5GHzV2	1128	Jul. 24, 2013	Jul. 23, 2014
SPEAG	5GHz System Validation Kit	D5GHzV2	1040	Jun. 20, 2014	Jun. 19, 2015
SPEAG	Data Acquisition Electronics	DAE4	778	Aug. 21, 2013	Aug. 20, 2014
SPEAG	Data Acquisition Electronics	DAE4	1338	Nov. 05, 2013	Nov. 04, 2014
SPEAG	Data Acquisition Electronics	DAE4	1425	Mar. 03, 2014	Mar. 02, 2015
SPEAG	Data Acquisition Electronics	DAE4	1279	Jan. 30, 2014	Jan. 29, 2015
SPEAG	Data Acquisition Electronics	DAE3	495	May. 19, 2014	May. 18, 2015
SPEAG	Data Acquisition Electronics	DAE4	1399	Nov. 07, 2013	Nov. 06, 2014
SPEAG	Dosimetric E-Field Probe	ES3DV3	3270	Sep. 24, 2013	Sep. 23, 2014
SPEAG	Dosimetric E-Field Probe	EX3DV4	3935	Nov. 04, 2013	Nov. 03, 2014
SPEAG	Dosimetric E-Field Probe	EX3DV4	3954	Nov. 04, 2013	Nov. 03, 2014
SPEAG	Dosimetric E-Field Probe	EX3DV4	3925	May. 22, 2014	May. 21, 2015
SPEAG	Dosimetric E-Field Probe	EX3DV4	3955	Nov. 12, 2013	Nov. 11, 2014
Wisewind	Thermometer	ETP-101	TM560	Oct. 22, 2013	Oct. 21, 2014
Wisewind	Thermometer	ETP-101	TM685	Oct. 22, 2013	Oct. 21, 2014
Wisewind	Thermometer	HTC-1	TM642	Oct. 22, 2013	Oct. 21, 2014
Wisewind	Thermometer	HTC-1	TM281	Oct. 22, 2013	Oct. 21, 2014
H.M.IRIS	Thermometer	TH-08	TM658	Oct. 22, 2013	Oct. 21, 2014
Anritsu	Radio Communication Analyzer	MT8820C	6201074414	Feb. 11, 2014	Feb. 10, 2015
Agilent	Wireless Communication Test Set	E5515C	MY48360820	Jan. 10, 2014	Jan. 09, 2014
R&S	Radio communication Tester	CMW500	113998	Oct. 04, 2013	Oct. 03, 2014
SPEAG	Device Holder	N/A	N/A	NCR	NCR
Agilent	Signal Generator	E4438C	MY49070755	Oct. 08, 2013	Oct. 07, 2014
SPEAG	Dielectric Probe Kit	DAKS-3.5	0004	Mar. 04, 2014	Mar. 03, 2015
Agilent	ENA Network Analyzer	E5071C	MY46316648	Feb. 07, 2014	Feb. 06, 2015
Anritsu	Power Meter	ML2495A	1349001	Dec. 04, 2013	Dec. 03, 2014
Anritsu	Power Sensor	MA2411B	1306099	Dec. 03, 2013	Dec. 02, 2014
R&S	Spectrum Analyzer	FSP30	101067	Nov. 20, 2013	Nov. 19, 2014
Agilent	Dual Directional Coupler	778D	50422	No	te 1
Woken	Attenuator	WK0602-XX	N/A	No	te 1
PE	Attenuator	PE7005-10	N/A	No	te 1
PE	Attenuator	PE7005- 3	N/A	No	te 1
AR	Power Amplifier	5S1G4M2	0328767	No	te 1
Mini-Circuits	Power Amplifier	ZVE-3W	162601250	No	te 1
Mini-Circuits	Power Amplifier	ZHL-42W+	13440021344	No	te 1

General Note:

1. Prior to system verification and validation, the path loss from the signal generator to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check source.

Report Number : FA432436-10 Report Version : Rev. 02 Page Number : 22 of 73

11. System Verification

11.1 Tissue Verification

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target

tissue parameters required for routine SAR evaluation.

Frequency (MHz)	Water (%)	Sugar (%)	Cellulose (%)	Salt (%)	Preventol (%)	DGBE (%)	Conductivity (σ)	Permittivity (εr)
	For Head							
750	41.1	57.0	0.2	1.4	0.2	0	0.89	41.9
835	40.3	57.9	0.2	1.4	0.2	0	0.90	41.5
900	40.3	57.9	0.2	1.4	0.2	0	0.97	41.5
1800, 1900, 2000	55.2	0	0	0.3	0	44.5	1.40	40.0
2450	55.0	0	0	0	0	45.0	1.80	39.2
2600	54.8	0	0	0.1	0	45.1	1.96	39.0
				For Body				
750	51.7	47.2	0	0.9	0.1	0	0.96	55.5
835	50.8	48.2	0	0.9	0.1	0	0.97	55.2
900	50.8	48.2	0	0.9	0.1	0	1.05	55.0
1800, 1900, 2000	70.2	0	0	0.4	0	29.4	1.52	53.3
2450	68.6	0	0	0	0	31.4	1.95	52.7
2600	68.1	0	0	0.1	0	31.8	2.16	52.5

Simulating Liquid for 5GHz, Manufactured by SPEAG

Ingredients	(% by weight)
Water	64~78%
Mineral oil	11~18%
Emulsifiers	9~15%
Additives and Salt	2~3%

Report Number : FA432436-10 Report Version : Rev. 02 Page Number : 23 of 73

<Tissue Dielectric Parameter Check Results>

Frequency (MHz)	Tissue Type	Liquid Temp. (°C)	Conductivity (σ)	Permittivity (ε _r)	Conductivity Target (σ)	Permittivity Target (ε _r)	Delta (σ) (%)	Delta (ε _r) (%)	Limit (%)	Date
750	Body	22.5	0.967	53.993	0.96	55.50	0.73	-2.72	±5	2014/7/5
835	Body	22.5	0.946	56.664	0.97	55.20	-2.47	2.65	±5	2014/7/2
835	Body	22.6	0.996	54.843	0.97	55.20	2.68	-0.65	±5	2014/7/4
1750	Body	22.3	1.525	52.092	1.49	53.40	2.35	-2.45	±5	2014/7/14
1900	Body	22.5	1.526	52.813	1.52	53.30	0.39	-0.91	±5	2014/7/2
1900	Body	22.5	1.548	51.871	1.52	53.30	1.84	-2.68	±5	2014/7/3
2450	Body	22.2	1.922	53.185	1.95	52.70	-1.44	0.92	±5	2014/5/7
2450	Body	22.3	2.021	53.832	1.95	52.70	3.64	2.15	±5	2014/5/9
5200	Body	22.5	5.244	47.499	5.30	49.00	-1.06	-3.06	±5	2014/5/8
5200	Body	22.3	5.456	48.496	5.30	49.00	2.94	-1.03	±5	2014/5/9
5200	Body	22.4	5.138	47.493	5.30	49.00	-3.06	-3.08	±5	2014/7/21
5300	Body	22.5	5.380	47.244	5.42	48.88	-0.74	-3.35	±5	2014/5/8
5300	Body	22.3	5.615	48.275	5.42	48.88	3.60	-1.24	±5	2014/5/9
5300	Body	22.4	5.270	47.255	5.42	48.88	-2.77	-3.32	±5	2014/7/21
5600	Body	22.5	5.773	46.756	5.77	48.47	0.05	-3.54	±5	2014/5/8
5600	Body	22.3	6.005	47.866	5.77	48.47	4.07	-1.25	±5	2014/5/9
5600	Body	22.4	5.653	46.801	5.77	48.47	-2.03	-3.44	±5	2014/7/21
5800	Body	22.5	6.127	46.464	6.00	48.20	2.12	-3.60	±5	2014/5/8
5800	Body	22.3	6.281	47.475	6.00	48.20	4.68	-1.50	±5	2014/5/9
5800	Body	22.4	5.991	46.521	6.00	48.20	-0.15	-3.48	±5	2014/7/21

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 24 of 73

11.2 System Performance Check Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

Date	Frequency (MHz)	Tissue Type	Input Power (mW)	Dipole S/N	Probe S/N	DAE S/N	Measured SAR (W/kg)	Targeted SAR (W/kg)	Normalized SAR (W/kg)	Deviation (%)
2014/7/5	750	Body	250	D750V3-1004	3955	1399	2.29	8.65	9.16	5.90
2014/7/2	835	Body	250	D835V2-499	3955	1399	2.37	9.46	9.48	0.21
2014/7/4	835	Body	250	D835V2-499	3955	1399	2.39	9.46	9.56	1.06
2014/7/14	1750	Body	250	D1750V2-1068	3925	495	8.95	37.50	35.80	-4.53
2014/7/2	1900	Body	250	D1900V2-5d041	3270	778	10.10	41.00	40.40	-1.46
2014/7/3	1900	Body	250	D1900V2-5d041	3270	778	11.00	41.00	44.00	7.32
2014/5/7	2450	Body	250	D2450V2-924	3935	1338	12.40	50.20	49.60	-1.20
2014/5/9	2450	Body	250	D2450V2-924	3955	1399	13.30	50.20	53.20	5.98
2014/5/8	5200	Body	100	D5GHzV2-1128	3955	1399	7.33	73.40	73.30	-0.14
2014/5/9	5200	Body	100	D5GHzV2-1128	3954	1279	7.72	73.40	77.20	5.18
2014/7/21	5200	Body	100	D5GHzV2-1040	3954	1425	8.19	77.80	81.90	5.27
2014/5/8	5300	Body	100	D5GHzV2-1128	3955	1399	7.83	74.30	78.30	5.38
2014/5/9	5300	Body	100	D5GHzV2-1128	3954	1279	7.63	74.30	76.30	2.69
2014/7/21	5300	Body	100	D5GHzV2-1040	3954	1425	7.72	79.10	77.20	-2.40
2014/5/8	5600	Body	100	D5GHzV2-1128	3955	1399	7.39	77.80	73.90	-5.01
2014/5/9	5600	Body	100	D5GHzV2-1128	3954	1279	8.02	77.80	80.20	3.08
2014/7/21	5600	Body	100	D5GHzV2-1040	3954	1425	7.93	82.70	79.30	-4.11
2014/5/8	5800	Body	100	D5GHzV2-1128	3955	1399	7.33	72.20	73.30	1.52
2014/5/9	5800	Body	100	D5GHzV2-1128	3954	1279	7.56	72.20	75.60	4.71
2014/7/21	5800	Body	100	D5GHzV2-1040	3954	1425	7.73	77.30	77.30	0.00

Fig 8.3.1 System Performance Check Setup

Fig 8.3.2 Setup Photo

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 25 of 73

12. RF Exposure Positions

12.1 SAR Testing for Tablet

This device can be used also in full sized tablet exposure conditions, due to its size. Per FCC KDB 616217, the back surface and edges of the tablet should be tested for SAR compliance with the tablet touching the phantom. The SAR exclusion threshold in KDB 447498 D01v05r02 can be applied to determine SAR test exclusion for adjacent edge configurations. The closest distance from the antenna to an adjacent tablet edge is used to determine if SAR testing is required for the adjacent edges, with the adjacent edge positioned against the phantom and the edge containing the antenna positioned perpendicular to the phantom.

13. Conducted RF Output Power (Unit: dBm)

<GSM Conducted Power>

General Note:

- Per KDB 447498 D01v05r02, the maximum output power channel is used for SAR testing and for further SAR test reduction.
- For Body SAR testing was following KDB 941225 D03v01, the GPRS 2Tx slots modes was selected when EUT operating without power back-off, the GPRS 2Tx slots modes was selected when EUT operating with power back-off, according to the highest source-based time-averaged output power.

Full Power Mode (Proximity Sensor Inactive)

Tan Forest mode (Freeting)		••						
Band GSM850	Burst A	verage Powe	er (dBm)	Tune-up	Tune-up Frame-Average Power			Tune-up
TX Channel	128	189	251	Limit	128	189	251	Limit
Frequency (MHz)	824.2	836.4	848.8	(dBm)	824.2	836.4	848.8	(dBm)
GPRS (GMSK, 1 Tx slot)	32.0	32.1	32.2	33.5	23.0	23.1	23.2	24.5
GPRS (GMSK, 2 Tx slots)	31.9	31.8	31.6	32.0	25.9	25.8	25.6	26.0
EDGE (8PSK, 1 Tx slot)	26.1	26.1	26.1	27.5	17.1	17.1	17.1	18.5
EDGE (8PSK, 2 Tx slots)	26.1	26.1	26.1	27.5	20.1	20.1	20.1	21.5

Band GSM1900	Burst Av	erage Pow	er (dBm)	Tune-up	Frame-A	Tune-up		
TX Channel	512	661	810	Limit	512	661	810	Limit
Frequency (MHz)	1850.2	1880	1909.8	(dBm)	1850.2	1880	1909.8	(dBm)
GPRS (GMSK, 1 Tx slot)	29.5	29.4	29.3	30.5	20.5	20.4	20.3	21.5
GPRS (GMSK, 2 Tx slots)	29.3	29.2	29.1	29.5	23.3	23.2	23.1	23.5
EDGE (8PSK, 1 Tx slot)	25.3	25.2	25.2	26.5	16.3	16.2	16.2	17.5
EDGE (8PSK, 2 Tx slots)	25.3	25.2	25.2	26.5	19.3	19.2	19.2	20.5

Reduced Power Mode (Proximity Sensor active)

Band GSM850	Burst A	Burst Average Power (dBm)			Frame-A	Tune-up		
TX Channel	128	189	251	Limit	128	189	251	Limit
Frequency (MHz)	824.2	836.4	848.8	(dBm)	824.2	836.4	848.8	(dBm)
GPRS (GMSK, 1 Tx slot)	25.4	25.2	24.9	26.0	16.4	16.2	15.9	17.0
GPRS (GMSK, 2 Tx slots)	22.1	21.8	21.7	23.5	16.1	15.8	15.7	17.5
EDGE (8PSK, 1 Tx slot)	25.0	24.9	24.9	26.0	16.0	15.9	15.9	17.0
EDGE (8PSK, 2 Tx slots)	23.0	22.9	22.8	23.0	17.0	16.9	16.8	17.0

Band GSM1900	Burst Av	Burst Average Power (dBm)			Frame-A	Tune-up		
TX Channel	512	661	810	Limit	512	661	810	Limit
Frequency (MHz)	1850.2	1880	1909.8	(dBm)	1850.2	1880	1909.8	(dBm)
GPRS (GMSK, 1 Tx slot)	27.6	27.5	27.6	28.0	18.6	18.5	18.6	19.0
GPRS (GMSK, 2 Tx slots)	25.5	25.4	25.4	25.5	19.5	19.4	19.4	19.5
EDGE (8PSK, 1 Tx slot)	25.3	25.2	25.2	26.5	16.3	16.2	16.2	17.5
EDGE (8PSK, 2 Tx slots)	23.2	23.1	23.2	25.0	17.2	17.1	17.2	19.0

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 26 of 73

<WCDMA Conducted Power>

- 1. The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification.
- 2. The procedures in KDB 941225 D01 are applied for 3GPP Rel. 6 HSPA to configure the device in the required sub-test mode(s) to determine SAR test exclusion.

A summary of these settings are illustrated below:

HSDPA Setup Configuration:

- a. The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- b. The RF path losses were compensated into the measurements.
- c. A call was established between EUT and Base Station with following setting:
 - i. Set Gain Factors (β_c and β_d) and parameters were set according to each
 - i. Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121
 - iii. Set RMC 12.2Kbps + HSDPA mode.
 - iv. Set Cell Power = -86 dBm
 - v. Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK)
 - vi. Select HSDPA Uplink Parameters
 - vii. Set Delta ACK, Delta NACK and Delta CQI = 8
 - viii. Set Ack-Nack Repetition Factor to 3
 - ix. Set CQI Feedback Cycle (k) to 4 ms
 - x. Set CQI Repetition Factor to 2
 - xi. Power Ctrl Mode = All Up bits
- d. The transmitted maximum output power was recorded.

Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH

Sub-test	βο	βd	βd (SF)	βс/βа	βнs (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15 (Note 4)	15/15 (Note 4)	64	12/15 (Note 4)	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

- Note 1: \triangle_{ACK} , \triangle_{NACK} and $\triangle_{CQI} = 30/15$ with $\beta_{hs} = 30/15 * \beta_c$.
- Note 2: For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA, \triangle ACK and \triangle NACK = 30/15 with β_{hs} = 30/15 * β_c , and \triangle CQI = 24/15 with β_{hs} = 24/15 * β_c .
- Note 3: CM = 1 for β_o/β_d =12/15, β_{hs}/β_c=24/15. For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.
- Note 4: For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 11/15 and β_d = 15/15.

Setup Configuration

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 27 of 73

HSUPA Setup Configuration:

- a. The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- b. The RF path losses were compensated into the measurements.
- c. A call was established between EUT and Base Station with following setting *:
 - i. Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK
 - ii. Set the Gain Factors (β_c and β_d) and parameters (AG Index) were set according to each specific sub-test in the following table, C11.1.3, quoted from the TS 34.121
 - iii. Set Cell Power = -86 dBm
 - iv. Set Channel Type = 12.2k + HSPA
 - v. Set UE Target Power
 - vi. Power Ctrl Mode= Alternating bits
 - vii. Set and observe the E-TFCI
 - viii. Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest's E-TFCI
- d. The transmitted maximum output power was recorded.

Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH

Sub- test	βс	βa	β _d (SF)	βc/βd	βнs (Note1)	βес	β _{ed} (Note 5) (Note 6)	β _{ed} (SF)	β _{ed} (Codes)	CM (dB) (Note 2)	MPR (dB) (Note 2)	AG Index (Note 6)	E- TFCI
1	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/2 25	1309/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed} 1: 47/15 β _{ed} 2: 47/15	4 4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 (Note 4)	15/15 (Note 4)	64	15/15 (Note 4)	30/15	24/15	134/15	4	1	1.0	0.0	21	81

- Note 1: Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 30/15 with β_{hs} = 30/15 * β_c .
- Note 2: CM = 1 for $\beta_0/\beta_d = 12/15$, $\beta_{1s}/\beta_c = 24/15$. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.
- Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 10/15 and β_d = 15/15.
- Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 14/15 and β_d = 15/15.
- Note 5: In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to TS25.306 Table 5.1g.
- Note 6: β_{ed} can not be set directly, it is set by Absolute Grant Value.

Setup Configuration

Report Number : FA432436-10 Report Version : Rev. 02 Page Number : 28 of 73

< WCDMA Conducted Power>

General Note:

Per KDB 941225 D02v02r02, RMC 12.2kbps setting is used to evaluate SAR. If HSDPA/HSUPA output power is < 0.25dB higher than RMC, or reported SAR with RMC 12.2kbps setting is ≤ 1.2W/kg, HSDPA/HSUPA SAR evaluation can be excluded.

Full Power Mode (Proximity Sensor Inactive)

	Band	Í	WCDMA V			WCDMA II	
TX	(Channel	4132	4182	4233	9262	9400	9538
Frequ	uency (MHz)	826.4	836.4	846.6	1852.4	1880	1907.6
MPR(dB)	RMC 12.2Kbps	23.2	23.1	23.0	23.1	23.2	23.0
0	HSDPA Subtest-1	21.6	21.6	21.4	21.8	21.7	21.6
0	HSDPA Subtest-2	21.6	21.6	21.4	21.7	21.7	21.6
0.5	HSDPA Subtest-3	21.7	21.6	21.4	21.8	21.7	21.6
0.5	HSDPA Subtest-4	21.7	21.6	21.4	21.8	21.7	21.6
0	HSUPA Subtest-1	21.9	21.5	21.4	21.9	21.9	21.9
2	HSUPA Subtest-2	21.0	21.1	20.8	21.2	21.2	21.0
1	HSUPA Subtest-3	20.5	20.9	20.5	21.1	21.1	21.0
2	HSUPA Subtest-4	21.0	21.1	21.1	21.5	21.5	21.3
0	HSUPA Subtest-5	22.1	22.2	22.0	22.3	22.2	22.2

Reduced Power Mode (Proximity Sensor active)

	Band		WCDMA V			WCDMA II		
TX	Channel	4132	4182	4233	9262	9400	9538	
Frequ	ency (MHz)	826.4	836.4	846.6	1852.4	1880 1907.6		
MPR(dB)	MPR(dB) RMC 12.2Kbps		16.5	16.5	17.9	18.0	17.8	
0	HSDPA Subtest-1	15.8	15.5	15.7	17.1	17.2	16.9	
0	HSDPA Subtest-2	15.8	15.5	15.7	17.1	17.2	17.0	
0.5	HSDPA Subtest-3	15.3	15.0	15.2	16.5	16.6	16.4	
0.5	HSDPA Subtest-4	15.3	15.1	15.2	16.6	16.7	16.4	
0	HSUPA Subtest-1	15.5	15.2	15.4	17.0	17.1	16.8	
2	HSUPA Subtest-2	14.2	13.9	14.1	15.5	15.6	15.5	
1	HSUPA Subtest-3	15.0	14.7	14.9	16.2	16.4	16.3	
2	HSUPA Subtest-4	14.1	13.8	14.0	15.6	15.7	15.5	
0	HSUPA Subtest-5	15.8	15.5	15.7	17.2	17.3	17.0	

Report Number : FA432436-10 Report Version : Rev. 02 Page Number : 29 of 73

<LTE Conducted Power>

General Note:

- Anritsu MT8820C base station simulator was used to setup the connection with EUT; the frequency band, channel bandwidth, RB allocation configuration, modulation type are set in the base station simulator to configure EUT transmitting at maximum power and at different configurations which are requested to be reported to FCC, for conducted power measurement and SAR testing.
- 2. Per KDB 941225 D05v02r03, when a properly configured base station simulator is used for the SAR and power measurements, spectrum plots for each RB allocation and offset configuration is not required.
- 3. Per KDB 941225 D05v02r03, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel.
- 4. Per KDB 941225 D05v02r03, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure.
- 5. Per KDB 941225 D05v02r03, For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.
- 6. Per KDB 941225 D05v02r03, 16QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05v02r03, 16QAM SAR testing is not required.
- 7. Per KDB 941225 D05v02r03, Smaller bandwidth output power for each RB allocation configuration is > not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05v02r03, smaller bandwidth SAR testing is not required.

Report Number : FA432436-10 Report Version : Rev. 02 Page Number : 30 of 73

Maximum Average RF Power (Proximity Sensor Inactive)

<LTE Band 13>

BW [MHz]	Modulation	RB Size	RB Offset	Power Low Ch. / Freq.	Power Middle Ch. / Freq.	Power High Ch. / Freq.	Tune up Limit	MPR
	Cha				23230		(dBm)	(dB)
	Frequen	cy (MHz)			782			
10	QPSK	1	0		22.9			
10	QPSK	1	24		22.6		23.5	0
10	QPSK	1	49		22.8			
10	QPSK	25	0		21.5			
10	QPSK	25	12		21.5		22.5	1
10	QPSK	25	24		21.7			•
10	QPSK	50	0		21.4			
10	16QAM	1	0		21.8			
10	16QAM	1	24		21.6		22.5	1
10	16QAM	1	49		21.9			
10	16QAM	25	0		20.4			
10	16QAM	25	12		20.5		21.5	2
10	16QAM	25	24		20.6		21.5	2
10	16QAM	50	0		20.4			
	Cha	nnel		23205	23230	23255	Tune up Limit	MPR
	Frequenc	cy (MHz)		779.5	782	784.5	(dBm)	(dB)
5	QPSK	1	0	22.7	22.5	22.9		
5	QPSK	1	12	22.6	22.5	22.8	23.5	0
5	QPSK	1	24	22.5	22.8	22.9		
5	QPSK	12	0	21.6	21.7	21.7		
5	QPSK	12	6	21.6	21.6	21.7	20.5	4
5	QPSK	12	11	21.5	21.7	21.9	22.5	1
5	QPSK	25	0	21.5	21.5	21.6		
5	16QAM	1	0	21.7	21.6	21.6		
5	16QAM	1	12	21.6	21.5	21.8	22.5	1
5	16QAM	1	24	21.6	21.8	21.9		
5	16QAM	12	0	20.7	20.7	20.7		
5	16QAM	12	6	20.7	20.6	20.8	04.5	•
5	16QAM	12	11	20.6	20.7	20.9	21.5	2
5	16QAM	25	0	20.4	20.5	20.6		

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 31 of 73

<LTE Band 4>

CLIE Ball		DD	DD	Power	Power	Power		
BW [MHz]	Modulation	RB Size	RB Offset	Low	Middle	High	True a con Linais	MDD
[,,,,,,_]	01-		Giloot	Ch. / Freq.	Ch. / Freq.	Ch. / Freq.	Tune up Limit (dBm)	MPR (dB)
	Cha			20050	20175	20300	(35111)	(45)
00	Frequenc			1720	1732.5	1745		
20	QPSK	1	0	23.8	23.5	23.5		•
20	QPSK	1	49	23.7	23.4	23.5	24.5	0
20	QPSK	1	99	23.5	23.4	23.5		
20	QPSK	50	0	22.5	22.2	22.3	-	
20	QPSK	50	24	22.4	22.1	22.3	23.5	1
20	QPSK	50	49	22.3	22.0	22.3	-	
20	QPSK	100	0	22.3	22.2	22.2		
20	16QAM	1	0 49	22.6 22.5	22.6 22.5	22.6 22.6	22.5	4
20	16QAM	1					23.5	1
20	16QAM		99	22.4	22.5	22.5		
20	16QAM	50 50	0 24	21.2 21.2	21.2	21.2	-	
20	16QAM	50 50	49	21.2	21.1	21.3	22.5	2
20 20	16QAM 16QAM	100	0	21.2	21.1 21.2	21.3 21.3	-	
20	Cha		0	20025	20175	20325	Toron or Line	MDD
	Frequenc			1717.5	1732.5	1747.5	Tune up Limit (dBm)	MPR (dB)
15	QPSK	1	0	23.6	23.5	23.6	(dBIII)	(dD)
15	QPSK	1	37	23.6	23.5	23.6	24.5	0
15	QPSK	1	74	23.4	23.4	23.4	24.5	U
15	QPSK	36	0	22.3	22.3	22.3	+	
15	QPSK	36	18	22.3	22.2	22.4	+	
15	QPSK	36	37	22.3	22.1	22.3	23.5	1
15	QPSK	75	0	22.2	22.2	22.3	+	
15	16QAM	1	0	22.6	22.5	22.5		
15	16QAM	1	37	22.6	22.4	22.5	23.5	1
15	16QAM	1	74	22.4	22.4	22.5	- 20.0	•
15	16QAM	36	0	21.3	21.3	21.4		
15	16QAM	36	18	21.3	21.2	21.3	1	
15	16QAM	36	37	21.3	21.2	21.3	22.5	2
15	16QAM	75	0	21.2	21.2	21.3	1	
.0	Cha			20000	20175	20350	Tune up Limit	MPR
	Frequenc			1715	1732.5	1750	(dBm)	(dB)
10	QPSK	1	0	23.5	23.5	23.6		
10	QPSK	1	24	23.5	23.4	23.5	24.5	0
10	QPSK	1	49	23.4	23.3	23.4		
10	QPSK	25	0	22.4	22.3	22.4		
10	QPSK	25	12	22.4	22.2	22.4	T	
10	QPSK	25	24	22.4	22.3	22.4	23.5	1
10	QPSK	50	0	22.2	22.2	22.3		
10	16QAM	1	0	22.5	22.5	22.7		
10	16QAM	1	24	22.5	22.4	22.5	23.5	1
10	16QAM	1	49	22.5	22.4	22.6		
10	16QAM	25	0	21.4	21.3	21.4		
10	16QAM	25	12	21.4	21.3	21.5	7	
10	16QAM	25	24	21.4	21.3	21.4	22.5	2
10	16QAM	50	0	21.2	21.2	21.3		

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 32 of 73

	Cha	nnel		19975	20175	20375	Tune up Limit	MPR
	Frequen	cy (MHz)		1712.5	1732.5	1752.5	(dBm)	(dB)
5	QPSK	1	0	23.6	23.4	23.6		
5	QPSK	1	12	23.6	23.4	23.5	24.5	0
5	QPSK	1	24	23.5	23.3	23.5		
5	QPSK	12	0	22.6	22.5	22.6		
5	QPSK	12	6	22.6	22.4	22.5	00.5	
5	QPSK	12	11	22.6	22.5	22.6	23.5	1
5	QPSK	25	0	22.4	22.3	22.4		
5	16QAM	1	0	22.6	22.5	22.6		
5	16QAM	1	12	22.5	22.5	22.6	23.5	1
5	16QAM	1	24	22.5	22.4	22.5		
5	16QAM	12	0	21.6	21.5	21.7		
5	16QAM	12	6	21.7	21.5	21.6	22.5	2
5	16QAM	12	11	21.7	21.5	21.7	22.5	2
5	16QAM	25	0	21.4	21.3	21.4		
	Cha	nnel		19965	20175	20385	Tune up Limit	MPR
	Frequen	cy (MHz)		1711.5	1732.5	1753.5	(dBm)	(dB)
3	QPSK	1	0	23.7	23.6	23.7		0
3	QPSK	1	7	23.7	23.5	23.6	24.5	
3	QPSK	1	14	23.7	23.5	23.6		
3	QPSK	8	0	22.7	22.7	22.8		1
3	QPSK	8	4	22.7	22.6	22.7	23.5	
3	QPSK	8	7	22.7	22.6	22.7	23.3	'
3	QPSK	15	0	22.7	22.5	22.6		
3	16QAM	1	0	22.7	22.6	22.7		
3	16QAM	1	7	22.7	22.6	22.7	23.5	1
3	16QAM	1	14	22.6	22.5	22.7		
3	16QAM	8	0	21.7	21.6	21.7		
3	16QAM	8	4	21.7	21.6	21.7	22.5	2
3	16QAM	8	7	21.7	21.6	21.7	22.5	2
3	16QAM	15	0	21.7	21.6	21.7		
	Cha	nnel		19957	20175	20393	Tune up Limit	MPR
		cy (MHz)		1710.7	1732.5	1754.3	(dBm)	(dB)
1.4	QPSK	1	0	23.6	23.5	23.7		
1.4	QPSK	1	2	23.6	23.5	23.7		
1.4	QPSK	1	5	23.5	23.4	23.6	24.5	0
1.4	QPSK	3	0	23.5	23.4	23.6		
1.4	QPSK	3	1	23.5	23.5	23.7		
1.4	QPSK	3	2	23.6	23.4	23.7		
1.4	QPSK	6	0	22.6	22.5	22.8	23.5	1
1.4	16QAM	1	0	22.6	22.6	22.8	23.5	
1.4	16QAM	1	2	22.5	22.5	22.7		
1.4	16QAM	1	5	22.5	22.5	22.7		1
1.4	16QAM	3	0	22.6	22.6	22.7		
1.4	16QAM	3	1	22.6	22.6	22.7		
1.4	16QAM	3	2	22.6	22.6	22.6		
1.4	16QAM	6	0	21.7	21.6	21.8	22.5	2

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 33 of 73

Reduced Average RF Power (Proximity Sensor active)

<LTE Band 13>

BW [MHz]	Modulation	RB Size	RB Offset	Power Low Ch. / Freq.	Power Middle Ch. / Freq.	Power High Ch. / Freq.	Tune up Limit	MPR
	Cha				23230		(dBm)	(dB)
	Frequenc	cy (MHz)			782			
10	QPSK	1	0		16.8			
10	QPSK	1	24		16.6		17.5	0
10	QPSK	1	49		16.7			
10	QPSK	25	0		16.5			
10	QPSK	25	12		16.5		17.5	0
10	QPSK	25	24		16.6		17.5	Ū
10	QPSK	50	0		16.4			
10	16QAM	1	0		16.7			
10	16QAM	1	24		16.6		17.5	0
10	16QAM	1	49		16.6			
10	16QAM	25	0		16.5			
10	16QAM	25	12		16.5		17.5	0
10	16QAM	25	24		16.5		17.5	0
10	16QAM	50	0		16.4			
	Cha	nnel		23205	23230	23255	Tune up Limit	MPR
	Frequen	cy (MHz)		779.5	782	784.5	(dBm)	(dB)
5	QPSK	1	0	16.7	16.7	16.7		
5	QPSK	1	12	16.6	16.6	16.6	17.5	0
5	QPSK	1	24	16.6	16.6	16.6		
5	QPSK	12	0	16.6	16.6	16.5		
5	QPSK	12	6	16.6	16.6	16.6	17.5	0
5	QPSK	12	11	16.6	16.5	16.5		0
5	QPSK	25	0	16.5	16.6	16.4		
5	16QAM	1	0	16.6	16.6	16.6	17.5	
5	16QAM	1	12	16.4	16.5	16.5		0
5	16QAM	1	24	16.5	16.4	16.5		
5	16QAM	12	0	16.5	16.6	16.5	17.5	
5	16QAM	12	6	16.6	16.5	16.6		0
5	16QAM	12	11	16.5	16.5	16.4		0
5	16QAM	25	0	16.5	16.5	16.5		

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 34 of 73

<LTE Band 4>

BW	<u> u 4></u>	RB	RB	Power	Power	Power		
[MHz]	Modulation	Size	Offset	Low	Middle	High	Tune up Limit	MPR
[=]	Cha		5551	Ch. / Freq.	Ch. / Freq.	Ch. / Freq.	(dBm)	(dB)
	Cha			20050	20175	20300	(\$2)	(32)
20	Frequenc			1720	1732.5	1745		
20	QPSK	1	0	15.8 15.6	15.6 15.5	15.6	l	0
20	QPSK	<u>1</u> 1	49			15.5	17.0	0
20 20	QPSK QPSK	50	99	15.6	15.5	15.5	+	
			0	15.6	15.5	15.5	- 1	
20 20	QPSK QPSK	50 50	24 49	15.5 15.5	15.5 15.4	15.4 15.4	17.0	0
20	QPSK	100	0	15.5	15.4	15.4	- 1	
20	16QAM	100	0	15.4	15.7	15.7		
20	16QAM	<u> </u> 1	49	15.6	15.7	15.7	17.0	0
20	16QAM	<u>'</u> 1	99	15.6	15.6	15.6	17.0	U
20	16QAM	50	0	15.5	15.5	15.6	+	
20	16QAM	50	24	15.5	15.5	15.5	+ 1	
20	16QAM	50	49	15.4	15.4	15.4	17.0	0
20	16QAM	100	0	15.5	15.4	15.4	+	
20	Cha		U	20025	20175	20325	Tune up Limit	MPR
	Frequence			1717.5	1732.5	1747.5	Tune up Limit (dBm)	(dB)
15	QPSK	1	0	15.4	15.5	15.6	(dBIII)	(45)
15	QPSK	1	37	15.4	15.4	15.0	17.0	0
15	QPSK	1	74	15.4	15.4	15.4	17.0	U
15	QPSK	36	0	15.3	15.4	15.4		
15	QPSK	36	18	15.3	15.4	15.4	-	
15	QPSK	36	37	15.3	15.2	15.4	17.0	0
15	QPSK	75	0	15.3	15.3	15.5	+ 1	
15	16QAM	1	0	15.6	15.7	15.6		
15	16QAM	<u>·</u> 1	37	15.6	15.6	15.6	17.0	0
15	16QAM	<u>·</u> 1	74	15.6	15.4	15.6	1	ŭ
15	16QAM	36	0	15.3	15.4	15.5		
15	16QAM	36	18	15.2	15.3	15.5	1	
15	16QAM	36	37	15.3	15.2	15.3	17.0	0
15	16QAM	75	0	15.3	15.3	15.3	1	
	Cha			20000	20175	20350	Tune up Limit	MPR
	Frequenc	cy (MHz)		1715	1732.5	1750	(dBm)	(dB)
10	QPSK	1	0	15.2	15.4	15.4		
10	QPSK	1	24	15.2	15.3	15.3	17.0	0
10	QPSK	1	49	15.2	15.2	15.4		
10	QPSK	25	0	15.2	15.4	15.4		
10	QPSK	25	12	15.2	15.4	15.4	17.0	_
10	QPSK	25	24	15.1	15.3	15.4		0
10	QPSK	50	0	15.1	15.4	15.4		
10	16QAM	1	0	15.4	15.7	15.7	17.0	
10	16QAM	1	24	15.4	15.6	15.6		0
10	16QAM	1	49	15.3	15.5	15.6		
10	16QAM	25	0	15.1	15.4	15.4	17.0	
10	16QAM	25	12	15.1	15.3	15.4		0
10	16QAM	25	24	15.2	15.3	15.2		0
10	16QAM	50	0	15.2	15.3	15.3		

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 35 of 73

Channel				19975	20175	20375	Tune up Limit	MPR
	Frequen	cy (MHz)		1712.5	1732.5	1752.5	(dBm)	(dB)
5	QPSK	1	0	15.1	15.2	15.3	17.0	
5	QPSK	1	12	15.1	15.3	15.2		0
5	QPSK	1	24	15.0	15.1	15.3		
5	QPSK	12	0	15.0	15.3	15.2		
5	QPSK	12	6	15.0	15.4	15.3	47.0	0
5	QPSK	12	11	15.0	15.2	15.3	17.0	0
5	QPSK	25	0	15.0	15.3	15.2		
5	16QAM	1	0	15.3	15.5	15.5		
5	16QAM	1	12	15.3	15.6	15.5	17.0	0
5	16QAM	1	24	15.2	15.4	15.4		
5	16QAM	12	0	15.0	15.3	15.3		
5	16QAM	12	6	15.0	15.4	15.3	17.0	0
5	16QAM	12	11	15.1	15.2	15.4	7 17.0	0
5	16QAM	25	0	15.0	15.3	15.2		
	Cha	nnel		19965	20175	20385	Tune up Limit	MPR
	Frequen	cy (MHz)		1711.5	1732.5	1753.5	(dBm)	(dB)
3	QPSK	1	0	15.2	15.4	15.4		0
3	QPSK	1	7	15.2	15.3	15.3	17.0	
3	QPSK	1	14	15.2	15.1	15.2		
3	QPSK	8	0	15.2	15.3	15.3		
3	QPSK	8	4	15.2	15.3	15.6	17.0	0
3	QPSK	8	7	15.1	15.2	15.6	17.0	0
3	QPSK	15	0	15.1	15.2	15.6		
3	16QAM	1	0	15.4	15.5	15.7		
3	16QAM	1	7	15.3	15.5	15.7	17.0	0
3	16QAM	1	14	15.3	15.4	15.7		
3	16QAM	8	0	15.3	15.3	15.6		
3	16QAM	8	4	15.2	15.3	15.7	17.0	0
3	16QAM	8	7	15.2	15.3	15.7	17.0	0
3	16QAM	15	0	15.2	15.3	15.7		
	Cha	nnel		19957	20175	20393	Tune up Limit	MPR
	Frequen	cy (MHz)		1710.7	1732.5	1754.3	(dBm)	(dB)
1.4	QPSK	1	0	15.2	15.4	15.6		
1.4	QPSK	1	2	15.2	15.4	15.5		
1.4	QPSK	1	5	15.2	15.2	15.4	17.0	0
1.4	QPSK	3	0	15.2	15.3	15.4		U
1.4	QPSK	3	1	15.2	15.4	15.4		
1.4	QPSK	3	2	15.2	15.3	15.5		
1.4	QPSK	6	0	15.2	15.3	15.5	17.0	0
1.4	16QAM	1	0	15.4	15.6	15.7	17.0	
1.4	16QAM	1	2	15.4	15.6	15.6		
1.4	16QAM	1	5	15.3	15.5	15.6		0
1.4	16QAM	3	0	15.2	15.3	15.5		
1.4	16QAM	3	1	15.2	15.3	15.5		
1.4	16QAM	3	2	15.2	15.3	15.5		
1.4	16QAM	6	0	15.2	15.4	15.6	17.0	0

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 36 of 73

< WLAN Conducted Power>

General Note:

- 1. For SAR testing was performed on single antenna RF power in SISO mode is larger or equal to the single antenna RF power in MIMO mode, and for RF exposure assessment of MIMO mode simultaneous transmission exclusion analysis was performed with SAR test results of each antenna in SISO mode.
- 2. For 2.4GHz WLAN SAR testing, highest average RF output power channel for the lowest data rate for 802.11b were selected for SAR evaluation. 802.11g/n HT20/VHT20 were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of 802.11b mode.
- 3. The measured power of antenna 1 and antenna 2 is summed to a total power.

<Total Power of Antenna 1+2>

	WL	AN 2.4GHz 802.11b A	verage Power (dBm)			
	Power vs. Channel					
Channel	Frequency	Data Rate	OMbra	E EMbas	11Mbpo	
Channel	Channel (MHz)		2Mbps	5.5Mbps	11Mbps	
CH 1	2412	18.2				
CH 6	2437	18.3	15.4	15.4	15.3	
CH 11	2462	18.2				

	WLAN 2.4GHz 802.11g Average Power (dBm)									
Pov	wer vs. Channe	el								
Channel	Frequency	Data Rate	OMbra	12Mbpa	18Mbps	24Mbpa	36Mbps	40Mbpa	54Mbps	
Channel	(MHz)	6Mbps	9Mbps	12Mbps	roiviphs	24Mbps	Solvibps	48Mbps	54MDPS	
CH 1	2412	17.2								
CH 6	2437	18.3	17.7	17.8	17.7	17.6	17.6	17.8	17.7	
CH 11	2462	17.1								

	WLAN 2.4GHz 802.11n-HT20 Average Power (dBm)									
Pov	wer vs. Channe	el								
Channel	Frequency	MCS Index	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	
Channel	(MHz)	MCS0	IVICOT	MCSZ	IVICOS	101034	IVICOO	IVICO	IVICOT	
CH 1	2412	16.2								
CH 6	2437	18.2	17.6	17.5	17.4	17.4	17.4	17.4	17.4	
CH 11	2462	17.2								

			WLAN 2.40	GHz 802.11a	ac-VHT20 Av	erage Powe	er (dBm)			
Pov	ver vs. Chanr	nel								
Channel	Frequency	MCS Index	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8
Chamer	(MHz)	MCS0	IVICST	IVICOZ	IVICOS	IVIC34	IVICOS	IVICSO	IVICST	IVICSO
CH 1	2412	16.3								
CH 6	2437	18.2	17.8	17.8	17.7	17.6	17.7	17.6	17.6	17.7
CH 11	2462	17.3								

Report Number : FA432436-10 Report Version : Rev. 02 Page Number : 37 of 73

< Antenna 0>

	WLAN 2.4GHz 802.11b Average Power (dBm)									
	Power vs. Channel		Power vs. Data Rate							
Channal	Frequency	Data Rate	OMboo	E EMbas	11Mbpo					
Channel	(MHz)	1Mbps	2Mbps	5.5Mbps	11Mbps					
CH 1	2412	15.3								
CH 6	2437	15.5	15.3	15.3	15.2					
CH 11	2462	15.2								

	WLAN 2.4GHz 802.11g Average Power (dBm)									
Pov	wer vs. Chann	el								
Channel	Frequency	Data Rate	OMbpo	12Mbps	18Mbps	24Mbps	36Mbps	48Mbps	54Mbps	
Channel	(MHz)	6Mbps	9Mbps	12Mbh2	Tolvibps	241010005	Solvibbs	401010ps	э ч мира	
CH 1	2412	14.2								
CH 6	2437	15.2	14.8	14.8	14.8	14.7	14.7	14.8	14.7	
CH 11	2462	14.1								

		V	/LAN 2.4GHz	: 802.11n-HT2	20 Average Po	ower (dBm)				
Power vs. Channel				Power vs. MCS Index						
Channel	Frequency	MCS Index	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	
Chamilei	(MHz)	MCS0	MCS1	IVICOZ			IVICOS	IVICOU	IVICOT	
CH 1	2412	13.2								
CH 6	2437	15.2	14.7	14.6	14.5	14.6	14.5	14.5	14.5	
CH 11	2462	14.1								

	WLAN 2.4GHz 802.11ac-VHT20 Average Power (dBm)										
Power vs. Channel			Power vs. MCS Index								
Channel	Frequency	MCS Index	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	
Channel	(MHz)	MCS0	MCST	IVIC 32	IVICSS	101004	MCGG	IVICOU	IVICST	IVICOO	
CH 1	2412	13.5									
CH 6	2437	15.2	14.7	14.7	14.6	14.5	14.6	14.5	14.5	14.7	
CH 11	2462	14.3									

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 38 of 73

<Antenna 1>

	WL	AN 2.4GHz 802.11b A	verage Power (dBm)			
	Power vs. Channel		Power vs. Data Rate			
Channal	Channel Frequency		2Mbps	5.5Mbps	44111	
Chamilei	(MHz)	1Mbps	Ζίνιυμο	3.3MUPS	11Mbps	
CH 1	2412	15.0				
CH 6	2437	15.0	15.1	15.0	15.1	
CH 11	2462	15.2				

	WLAN 2.4GHz 802.11g Average Power (dBm)									
Pov	wer vs. Channe	el								
Channel	Frequency	Data Rate	9Mbps	12Mbps	18Mbps	24Mbps	36Mbps	48Mbps	54Mbps	
Channel	(MHz)	6Mbps	alvibha	12IVIDPS	Tolvibps	24111000	Solvibps	401410h2	34MDPS	
CH 1	2412	14.2								
CH 6	2437	15.3	14.5	14.7	14.5	14.4	14.4	14.7	14.7	
CH 11	2462	14.1								

	WLAN 2.4GHz 802.11n-HT20 Average Power (dBm)									
Pov	wer vs. Channe	el	Power vs. MCS Index							
Channel	Frequency	MCS Index	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	
Channel	(MHz)	MCS0	IVICOT			101034	IVICOO	IVICOU	IVICOT	
CH 1	2412	13.1				14.2			14.2	
CH 6	2437	15.1	14.4	14.4	14.3		14.3	14.2		
CH 11	2462	14.2								

	WLAN 2.4GHz 802.11ac-VHT20 Average Power (dBm)											
Pov	Power vs. Channel			Power vs. MCS Index								
Channel	Frequency	MCS Index	MCS1	14000	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8		
Channel	(MHz)	MCS0	MCST	MCS2	IVICSS		MCSS	IVICSO	IVICS/	IVICSO		
CH 1	2412	13.1										
CH 6	2437	15.1	14.8	14.9	14.8	14.7	14.8	14.7	14.7	14.6		
CH 11	2462	14.3										

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 39 of 73

<5GHz WLAN Conducted Power>

General Note:

- For SAR testing was performed on single antenna RF power in SISO mode is larger or equal to the single antenna RF power in MIMO mode, and for RF exposure assessment of MIMO mode simultaneous transmission exclusion analysis was performed with SAR test results of each antenna in SISO mode.
- 2. For 5GHz WLAN SAR testing, highest average RF output power channel for the lowest data rate for 802.11a were selected for SAR evaluation. 802.11n HT20/VHT20/VHT40 were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of 802.11a mode.
- 3. Per April 2013 TCB Workshop notes, full SAR tests for SISO IEEE 802.11ac configurations were not required because the average output power was not more than 0.25 dB higher than IEEE 802.11a mode. IEEE 802.11ac was evaluated for the highest IEEE 802.11a position in each 5 GHz band and exposure condition.
- 4. The measured power of antenna 1 and antenna 2 is summed to a total power.

<Total Power of Antenna 1+2>

			WLAN 5G	Hz 802.11a A	verage Powe	r (dBm)			
Ро	wer vs. Channe	el				(*)			
Channal	Frequency	Data Rate	OMbaa	12Mbpa	10Mbpa	241/hpg	26Mbpa	40Mbpa	E 4N/lbpo
Channel	(MHz)	6Mbps	9Mbps	12Mbps	18Mbps	24Mbps	36Mbps	48Mbps	54Mbps
CH 36	5180	15.4							
CH 40	5200	15.4	15.3	15.4	15.3	15.2	15.3	15.3	15.3
CH 44	5220	15.3	15.5	15.4	15.5	15.2	15.5	15.5	15.5
CH 48	5240	15.5							
CH 52	5260	15.1							
CH 56	5280	15.2	45.0	15.2	15.1	15.0	15.1	15.0	15.1
CH 60	5300	15.3	15.2	15.2	15.1	15.0	15.1	15.0	15.1
CH 64	5320	15.3							
CH 100	5500	15.3							
CH 104	5520	15.1							
CH 108	5540	15.2							
CH 112	5560	15.2							
CH 116	5580	15.2	15.1	15.1	15.1	15.0	15.1	15.1	15.0
CH 132	5660	15.3							
CH 136	5680	15.3							
CH 140	5700	15.2							
CH 144	5720	15.0							
CH 149	5745	16.0							
CH 153	5765	15.9							
CH 157	5785	15.9	15.8	15.9	15.8	15.7	15.8	15.7	15.7
CH 161	5805	16.0							
CH 165	5825	16.0							

Report Number : FA432436-10 Report Version : Rev. 02 Page Number : 40 of 73

			WLAN 5G	Hz 802.11a A	verage Powe	r (dBm)			
Po	wer vs. Channe	el							
Channel	Frequency	Data Rate	9Mbps	12Mbps	18Mbps	24Mbps	36Mbps	48Mbps	54Mbps
Chamilei	(MHz)	6Mbps	alvinha	12Mbps	Tolvibbs	241VIDPS	Solvibbs	40MDP3	54IVIDPS
CH 36	5180	15.4							
CH 40	5200	15.4	15.3	15.4	15.3	15.3	15.3	15.2	15.3
CH 44	5220	15.3	15.5	15.4	15.5	15.5	15.5	15.2	15.5
CH 48	5240	15.5							
CH 52	5260	15.2							
CH 56	5280	15.2	15.1	15.2	15.1	15.0	15.1	15.1	15.0
CH 60	5300	15.3	15.1	15.2	15.1	15.0	15.1	15.1	15.0
CH 64	5320	15.2							
CH 100	5500	15.3							
CH 104	5520	15.1							
CH 108	5540	15.1							
CH 112	5560	15.1							
CH 116	5580	15.1	15.2	15.1	15.1	15.1	15.1	15.1	15.0
CH 132	5660	15.1							
CH 136	5680	15.1							
CH 140	5700	15.2							
CH 144	5720	15.1							
CH 149	5745	15.9							
CH 153	5765	15.9							
CH 157	5785	15.8	15.7	15.8	15.7	15.7	15.7	15.6	15.7
CH 161	5805	15.9							
CH 165	5825	15.9							

		,	WLAN 5GHz	802.11n-HT4	0 Average Po	wer (dBm)			
Po	wer vs. Chann	el							
Channel	Frequency	MCS Index	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
Channel	(MHz)	MCS0	IVICST	IVICOZ	IVICOS	IVIC34	IVICSS	IVICSO	IVICST
CH 38	5190	15.2	15.2	15.2	15.2	15.1	15.2	15.1	15.1
CH 46	5230	15.3	13.2	13.2	13.2	15.1	13.2	15.1	15.1
CH 54	5270	14.9	14.7	14.7	14.7	14.6	14.7	14.6	14.6
CH 62	5310	14.8	14.7	14.7	14.7	14.0	14.7	14.0	14.0
CH 102	5510	14.6							
CH 110	5550	15.0	15.2	15.1	15.1	15.0	15.1	15.0	15.1
CH 134	5670	14.9	13.2	13.1	13.1	13.0	13.1	13.0	15.1
CH 142	5710	15.1							
CH 151	5755	15.1	15.5	45.5	45.5	15.4	15.5	15.4	15.4
CH 159	5795	15.7	15.5	15.5	15.5	13.4	13.5	15.4	15.4

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 41 of 73

			WLAN 5G	Hz 802.11a	c-VHT20 Ave	erage Power	· (dBm)			
Pov	wer vs. Chanr	nel								
Channel	Frequency	MCS Index	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8
Chamer	(MHz)	MCS0	MCST	IVICOZ	IVICOS	101004	IVICOS	IVICOU	IVICO	IVICOO
CH 36	5180	15.3								
CH 40	5200	15.3	15.3	15.4	15.4	15.2	15.3	15.2	15.2	15.1
CH 44	5220	15.3	13.3	15.4	13.4	13.2	13.3	13.2	13.2	13.1
CH 48	5240	15.5								
CH 52	5260	15.2								
CH 56	5280	15.2	15.2	15.2	15.1	15.0	15.1	15.0	15.1	15.0
CH 60	5300	15.3	13.2	15.2	15.1	15.0	15.1	15.0	13.1	15.0
CH 64	5320	15.2								
CH 100	5500	15.3								
CH 104	5520	14.9								
CH 108	5540	15.0								
CH 112	5560	15.0								
CH 116	5580	15.1	15.1	15.2	15.1	15.0	15.1	15.1	15.1	14.9
CH 132	5660	15.1								
CH 136	5680	15.1								
CH 140	5700	15.2								
CH 144	5720	15.1								
CH 149	5745	15.9								
CH 153	5765	15.9								
CH 157	5785	15.9	15.7	15.7	15.7	15.6	15.7	15.6	15.7	15.7
CH 161	5805	15.9								
CH 165	5825	15.9								

			MLAW	N 5GHz 802	2.11ac-VHT	40 Average	Power (dE	Bm)			
Pov	ver vs. Chanr	nel									
Channel	Frequency	MCS Index	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	MCS9
	(MHz)	MCS0									
CH 38	5190	15.2	15.2	15.2	15.2	15.1	15.1	15.1	15.2	15.1	15.1
CH 46	5230	15.3	15.2	15.2	15.2	13.1	15.1	15.1	15.2	15.1	15.1
CH 54	5270	14.9	14.7	14.7	14.7	14.6	14.7	14.5	14.6	14.5	14.5
CH 62	5310	14.6	14.7	14.7	14.7	14.0	14.7	14.5	14.0	14.5	14.5
CH 102	5510	14.1									
CH 110	5550	15.0	15.2	15.2	15.1	15.0	15.1	15.0	15.1	14.9	15.0
CH 134	5670	15.2	15.2	15.2	15.1	15.0	15.1	15.0	15.1	14.9	15.0
CH 142	5710	15.1									
CH 151	5755	15.2	15.5	15.5	15.5	15.4	15.5	15.4	15.4	15.3	15.4
CH 159	5795	15.7	13.3	13.3	13.3	13.4	13.3	13.4	13.4	13.3	13.4

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 42 of 73

			MLAW	N 5GHz 802	2.11ac-VHT	80 Average	Power (dE	Bm)			
Pov	ver vs. Chanr	nel									
Channel	Frequency	MCS Index	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	MCS9
	(MHz)	MCS0									
CH 42	5210	15.4	15.2	15.2	15.2	15.1	15.2	15.1	15.2	15.1	15.1
CH 58	5290	15.3	15.1	15.2	15.1	15.0	15.1	15.0	15.0	15.0	15.0
CH 106	5530	15.2	15.1	15.2	15.1	15.0	15.1	15.0	15.0	14.9	15.0
CH 138	5690	15.2	15.1	15.2	15.1	15.0	15.1	15.0	15.0	14.9	15.0
CH 155	5775	16.0	15.8	15.9	15.8	15.7	15.8	15.8	15.7	15.7	15.7

< Antenna 0>

			WLAN 5G	Hz 802.11a A	verage Powe	r (dBm)			
Po	wer vs. Channe	el			Pov	ver vs. Data F	Rate		
Channel	Frequency (MHz)	Data Rate 6Mbps	9Mbps	12Mbps	18Mbps	24Mbps	36Mbps	48Mbps	54Mbps
CH 36	5180	12.5							
CH 40	5200	12.5	12.3	12.4	12.3	12.2	12.3	12.2	12.3
CH 44	5220	12.5	12.3	12.4	12.3	12.2	12.3	12.2	12.3
CH 48	5240	12.5							
CH 52	5260	12.6							
CH 56	5280	12.7	40.0	40.0	40.0	12.7	40.0	40.7	10.7
CH 60	5300	13.0	12.8	12.8	12.8	12.7	12.8	12.7	12.7
CH 64	5320	13.0							
CH 100	5500	13.0							
CH 104	5520	12.8							
CH 108	5540	12.8							
CH 112	5560	12.8					12.8		
CH 116	5580	12.9	12.8	12.8	12.8	12.7		12.7	12.7
CH 132	5660	13.0							
CH 136	5680	13.0							
CH 140	5700	12.8							
CH 144	5720	12.5							
CH 149	5745	13.0							
CH 153	5765	13.0							
CH 157	5785	13.0	12.8	12.9	12.8	12.7	12.8	12.7	12.7
CH 161	5805	13.0							
CH 165	5825	13.0							

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 43 of 73

		\	WLAN 5GHz	802.11n-HT2	0 Average Po	wer (dBm)			
Po	wer vs. Chann	el			Pow	ver vs. MCS Ir	ndex		
Channel	Frequency	MCS Index	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
Onamici	(MHz)	MCS0	WOOT	WOOZ	WOOO	WOOT	WICOS	WOOO	WOOT
CH 36	5180	12.5							
CH 40	5200	12.5	12.3	12.3	12.3	12.3	12.3	12.2	12.2
CH 44	5220	12.5	12.3	12.3	12.3	12.3	12.3	12.2	12.2
CH 48	5240	12.5							
CH 52	5260	12.9							
CH 56	5280	12.7	12.8	12.9	12.8	12.7	12.8	12.8	12.7
CH 60	5300	13.0	12.0	12.9	12.0	12.7	12.0	12.0	12.7
CH 64	5320	12.9							
CH 100	5500	13.0							
CH 104	5520	12.6							
CH 108	5540	12.7							
CH 112	5560	12.8							
CH 116	5580	12.8	12.9	12.8	12.7	12.8	12.8	12.7	12.6
CH 132	5660	12.8							
CH 136	5680	12.8							
CH 140	5700	12.7							
CH 144	5720	12.6							
CH 149	5745	13.0							
CH 153	5765	12.9							
CH 157	5785	12.9	12.8	12.8	12.8	12.8	12.8	12.7	12.8
CH 161	5805	13.0							
CH 165	5825	13.0							

		١	WLAN 5GHz 802.11n-HT40 Average Power (dBm)							
Po	wer vs. Chann	el			Pow	er vs. MCS Ir	ndex			
Channel	Frequency	MCS Index	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	
Chamie	(MHz)	MCS0	IVICOT	IVICSZ	IVICOS	IVIC34	IVICSS	IVICSO	IVICST	
CH 38	5190	12.4	12.3	12.2	12.2	12.1	12.2	12.1	12.2	
CH 46	5230	12.3	12.3	12.2	12.2	12.1	12.2	12.1	12.2	
CH 54	5270	12.5	12.3	12.3	12.3	12.2	12.3	12.2	12.2	
CH 62	5310	12.5	12.3	12.3	12.3	12.2	12.3	12.2	12.2	
CH 102	5510	12.3			40.0	10.7				
CH 110	5550	12.5	12.9	12.8			12.8	12.7	12.8	
CH 134	5670	12.5	12.9	12.0	12.8	12.7	12.0	12.7	12.0	
CH 142	5710	13.0								
CH 151	5755	11.8	12.6	40.0	12.6	10.5	12.5 12.6	12.5	12.5	
CH 159	5795	12.8	12.0	12.6	12.0	12.5	12.0	12.5	12.5	

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 44 of 73

			WLAN 5G	Hz 802.11a	c-VHT20 Ave	erage Power	(dBm)			
Pov	wer vs. Chanr	nel				Power vs.	MCS Index			
Channel	Frequency	MCS Index	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8
Chamer	(MHz)	MCS0	MCST	IVICOZ	IVICOS	101004	IVICOS	IVICO	IVICST	IVICOO
CH 36	5180	12.5								
CH 40	5200	12.5	12.3	12.3	12.3	12.2	12.2	12.2	12.2	12.1
CH 44	5220	12.5	12.3	12.3	12.3	12.2	12.2	12.2	12.2	12.1
CH 48	5240	12.5								
CH 52	5260	12.8								
CH 56	5280	12.7	12.8	12.9	12.8	12.7	12.8	12.7	12.7	12.7
CH 60	5300	13.0	12.0	12.9	12.0	12.7	12.0	12.7	12.7	12.7
CH 64	5320	12.9								
CH 100	5500	13.0								
CH 104	5520	12.6								
CH 108	5540	12.7								
CH 112	5560	12.8								
CH 116	5580	12.8	12.8	12.8	12.8	12.7	12.8	12.7	12.8	12.6
CH 132	5660	12.7								
CH 136	5680	12.7								
CH 140	5700	12.7								
CH 144	5720	12.6								
CH 149	5745	13.0								
CH 153	5765	13.0								
CH 157	5785	13.0	12.8	12.8	12.8	12.7	12.8	12.7	12.8	12.7
CH 161	5805	13.0								
CH 165	5825	13.0								

			WLAI	N 5GHz 802	2.11ac-VHT	40 Average	e Power (dE	Bm)			
Pov	ver vs. Chanr	nel				Powe	er vs. MCS	Index			
Channel	Frequency	MCS Index	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	MCS9
	(MHz)	MCS0									
CH 38	5190	12.3	12.2	12.1	12.1	12.0	12.1	12.0	12.1	12.0	12.0
CH 46	5230	12.2	12.2	12.1	12.1	12.0	12.1	12.0	12.1	12.0	12.0
CH 54	5270	12.5	12.3	12.3	12.3	12.3	12.3	12.1	12.2	12.1	12.1
CH 62	5310	12.4	12.3	12.3	12.3	12.3	12.3	12.1	12.2	12.1	12.1
CH 102	5510	11.8									
CH 110	5550	12.5	12.9	12.8	12.8	10.7	12.0	12.7	12.8	12.6	12.6
CH 134	5670	13.0	12.9	12.0	12.0	12.7	12.7 12.8	12.7	12.0	12.0	12.0
CH 142	5710	13.0									
CH 151	5755	12.0	12.7	12.6	12.6	12.5	12.6	12.5	12.6	12.4	12.5
CH 159	5795	12.8	12.7	12.0	12.0	12.5	12.0	12.3	12.0	12.4	12.5

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 45 of 73

			WLA1	N 5GHz 802	2.11ac-VHT	80 Average	e Power (dE	Bm)			
Pow	ver vs. Chanr	nel		Power vs. MCS Index							
Channel	Frequency (MHz)	MCS Index MCS0	MCS1	MCS1 MCS2 MCS3 MCS4 MCS5 MCS6 MCS7 MCS8 MCS9							
CH 42	5210	12.5	12.3	12.3	12.3	12.2	12.3	12.2	12.3	12.1	12.1
CH 58	5290	13.0	12.8	12.9	12.8	12.7	12.8	12.7	12.7	12.6	12.7
CH 106	5530	13.0	12.8	12.9	12.8	12.7	12.7	12.7	12.7	12.6	12.7
CH 138	5690	12.8	12.0	12.9	12.0	12.7	12.7	12.7	12.7	12.0	12.7
CH 155	5775	13.0	12.8	12.8 12.9 12.8 12.7 12.8 12.7 12.7 12.7 12.6							12.6

< Antenna 1>

			WLAN 5GI	Hz 802.11a A	verage Powe	r (dBm)			
Po	wer vs. Channe	el			Pov	ver vs. Data F	Rate		
Channel	Frequency	Data Rate	9Mbps	12Mbps	18Mbps	24Mbps	36Mbps	48Mbps	54Mbps
Charine	(MHz)	6Mbps	alvibps	12111049	Tolvibha	241VIDP5	Solvibbs	401VIDP3	34IVIDPS
CH 36	5180	12.3							
CH 40	5200	12.3	12.3	12.3	12.3	12.2	12.2	12.3	12.2
CH 44	5220	12.0	12.3	12.3	12.3	12.2	12.2	12.3	12.2
CH 48	5240	12.5							
CH 52	5260	11.5							
CH 56	5280	11.5	11.4	11.4	11.3	11.2	11.3	11.2	11.3
CH 60	5300	11.5	11.4	11.4	11.3	11.2	11.3	11.2	11.3
CH 64	5320	11.4							
CH 100	5500	11.5							
CH 104	5520	11.3							
CH 108	5540	11.4							
CH 112	5560	11.5							
CH 116	5580	11.4	11.3	11.3	11.3	11.2	11.3	11.3	11.2
CH 132	5660	11.5							
CH 136	5680	11.5							
CH 140	5700	11.5							
CH 144	5720	11.3							
CH 149	5745	12.9							
CH 153	5765	12.8							
CH 157	5785	12.8	12.7	12.8	12.7	12.6	12.7	12.6	12.6
CH 161	5805	12.9		12.0					
CH 165	5825	12.9							

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 46 of 73

		1	WLAN 5GHz	802.11n-HT2	0 Average Po	wer (dBm)			
Po	wer vs. Chann	el			Pow	er vs. MCS Ir	ndex		
Channel	Frequency	MCS Index	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
Charine	(MHz)	MCS0	IVICO	IVICOZ	IVICOS	101034	IVICOO	IVICO	IVICST
CH 36	5180	12.2							
CH 40	5200	12.2	12.3	12.4	12.3	12.2	12.3	12.2	12.3
CH 44	5220	12.1	12.3	12.4	12.3	12.2	12.3	12.2	12.3
CH 48	5240	12.5							
CH 52	5260	11.4							
CH 56	5280	11.5	11.3	11.3	11.3	11.2	11.3	11.3	11.2
CH 60	5300	11.5	11.3	11.3	11.3	11.2	11.3	11.3	11.2
CH 64	5320	11.3							
CH 100	5500	11.5							
CH 104	5520	11.4							
CH 108	5540	11.4							
CH 112	5560	11.3							
CH 116	5580	11.2	11.3	11.3	11.4	11.2	11.3	11.3	11.2
CH 132	5660	11.2							
CH 136	5680	11.2							
CH 140	5700	11.5							
CH 144	5720	11.5							
CH 149	5745	12.8		_	_				
CH 153	5765	12.8	12.6						
CH 157	5785	12.7		12.7	12.6	12.5	12.6	12.5	12.5
CH 161	5805	12.7		, 2					
CH 165	5825	12.7							

		,	WLAN 5GHz 802.11n-HT40 Average Power (dBm)								
Po	wer vs. Chann	el			Pow	er vs. MCS Ir	ndex				
Channel	Frequency	MCS Index	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7		
Chame	(MHz)	MCS0	IVIC 3 I	IVICOZ	IVICOS	WC34	IVICOS	IVICOU	IVICOT		
CH 38	5190	12.0	12.1	12.1	12.1	12.0	12.1	12.1	12.0		
CH 46	5230	12.3	12.1	12.1	12.1	12.0	12.1	12.1	12.0		
CH 54	5270	11.1	10.9	10.9	10.9	10.8	10.9	10.9	10.9		
CH 62	5310	11.0	10.9	10.9	10.9	10.0	10.9	10.9	10.9		
CH 102	5510	10.8									
CH 110	5550	11.5	11.3	11.3	11.3	11.2	11.3	11.2	11.3		
CH 134	5670	11.2	11.3	11.3	11.3	11.2	11.3	11.2	11.3		
CH 142	5710	11.0									
CH 151	5755	12.4	12.3	12.3	12.3	12.2	12.3	12.3	12.2		
CH 159	5795	12.5	12.3	12.3	12.3	12.2	12.3	12.3	12.2		

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 47 of 73

			WLAN 5G	Hz 802.11a	c-VHT20 Av	erage Power	· (dBm)				
Pov	wer vs. Chanr	nel				Power vs.	MCS Index				
Channel	Frequency (MHz)	MCS Index MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	
CH 36	5180	12.1									
CH 40	5200	12.1	40.0	40.4	40.4	40.0	40.0	40.0	40.0	40.4	
CH 44	5220	12.0	12.3	12.4	12.4	12.2	12.3	12.2	12.2	12.1	
CH 48	5240	12.5									
CH 52	5260	11.5									
CH 56	5280	11.5	11.4	11.4	11.3	11.2	11.3	11.2	11.3	11.2	
CH 60	5300	11.5	11.4	11.4	11.3	11.2	11.3	11.2	11.3	11.2	
CH 64	5320	11.3									
CH 100	5500	11.5									
CH 104	5520	11.0									
CH 108	5540	11.1									
CH 112	5560	11.1									
CH 116	5580	11.2	11.3	11.4	11.3	11.2	11.3	11.3	11.3	11.1	
CH 132	5660	11.4									
CH 136	5680	11.4									
CH 140	5700	11.5									
CH 144	5720	11.4									
CH 149	5745	12.8									
CH 153	5765	12.7	12.6								
CH 157	5785	12.7		12.6	12.6	12.5	12.6	12.5	12.5	12.6	
CH 161	5805	12.7									
CH 165	5825	12.8									

			MLAIW	N 5GHz 802	2.11ac-VHT	40 Average	Power (dE	Bm)						
Pov	ver vs. Chanr	nel		Power vs. MCS Index										
Channel	Frequency (MHz)	MCS Index	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	MCS9			
	(IVII IZ)	MCS0												
CH 38	5190	12.0	12.2	12.2	12.2	12.1	12.1	12.1	12.2	12.1	12.2			
CH 46	5230	12.4	12.2	12.2	12.2	12.1	12.1	12.1	12.2	12.1	12.2			
CH 54	5270	11.1	10.0	10.0	10.9	10.8	10.9	10.8	10.9	10.7	10.8			
CH 62	5310	10.6	10.9	10.9	10.9	10.0	10.9	10.0	10.9	10.7	10.6			
CH 102	5510	10.3												
CH 110	5550	11.5	11.3	11.4	11.3	11.2	11.3	11.2	11.3	11.1	11.2			
CH 134	5670	11.2	11.3	11.4	11.3	11.2	11.3	11.2	11.3	11.1	11.2			
CH 142	5710	11.0	12.3											
CH 151	5755	12.3		12.4	12.3	12.2	12.3	12.2	12.2	12.1	12.2			
CH 159	5795	12.5	12.3	12.4	12.3	12.2	12.3	12.2	12.2	12.1	12.2			

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 48 of 73

			MLAN	N 5GHz 802	2.11ac-VHT	80 Average	Power (dE	Bm)				
Pov	ver vs. Chanr	nel	Power vs. MCS Index									
Channel	Frequency (MHz)	MCS Index MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	MCS9	
CH 42	5210	12.3	12.1	12.1	12.1	12.0	12.1	12.0	12.0	12.0	12.0	
CH 58	5290	11.5	11.3	11.3	11.3	11.2	11.3	11.2	11.2	11.2	11.1	
CH 106	5530	11.1	11.3	11.3	11.3	11.2	11.3	11.2	11.2	11.1	11.2	
CH 138	5690	11.5	11.3	11.3	11.3	11.2	11.3	11.2	11.2	11.1	11.2	
CH 155	5775	13.0	12.8	12.9	12.8	12.7	12.8	12.8	12.7	12.6	12.7	

14. Bluetooth Exclusions Applied

Mode Band	Average po	wer(dBm)
Woue Ballu	Bluetooth v3.0+EDR	Bluetooth v4.0+LE
2.4GHz Bluetooth	9.5	6.0

Note:

 Per KDB 447498 D01v05r02, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- · The result is rounded to one decimal place for comparison

Bluetooth Max Power (dBm)	Separation Distance (mm)	Frequency (GHz)	exclusion thresholds
9.5	< 5	2.48	2.83

Note:

Per KDB 447498 D01v05r02, when the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. The test exclusion threshold is 2.83 which is <= 3, SAR testing is not required.

15. Exposure Position Conditions

<Distance from the antenna to the edge> General Note:

- 1. The detail antenna locations please refer to setup photo.
- 2. This device overall diagonal dimension is 272mm, and according to KDB 616217 D04v01r01, if the diagonal is greater than 200mm, SAR evaluation for the front surface of tablet display screens are generally not necessary.

Exposure Position	Bottom Face	Edge1	Edge2	Edge3	Edge4
WLAN Antenna1 to the Edge distance (mm)	< 5 mm	< 5 mm	163 mm	138 mm	49 mm
WLAN Antenna2 to the Edge distance (mm)	< 5 mm	116 mm	216 mm	21 mm	< 5 mm
WWAN Antenna to the Edge distance (mm)	< 5 mm	28 mm	< 5 mm	43 mm	216.4 mm

Report Number : FA432436-10 Report Version : Rev. 02 Page Number : 49 of 73

<SAR test exclusion table>

General Note:

- 1. The below table, when the distance is < 50 mm exclusion threshold is "Ratio", when the distance is > 50 mm exclusion threshold is "mW"
- 2. Maximum power is the source-based time-average power and represents the maximum RF output power among production units
- 3. Per KDB 447498 D01v05r02, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user.
- 4. Per KDB 447498 D01v05r02, standalone SAR test exclusion threshold is applied; If the test separation distance is < 5mm, 5mm is used to determine SAR exclusion threshold.
- 5. Per KDB 447498 D01v05r02, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison
- 6. Per KDB 447498 D01v05r02, at 100 MHz to 6 GHz and for *test separation distances* > 50 mm, the SAR test exclusion threshold is determined according to the following
 - a) [Threshold at 50 mm in step 1) + (test separation distance 50 mm)-(f(MHz)/150)] mW, at 100 MHz to 1500 MHz
 - b) [Threshold at 50 mm in step 1) + (test separation distance 50 mm) 10] mW at > 1500 MHz and ≤ 6 GHz

	Wireless Interface	GPRS 850 Class 10	GPRS 1900 Class 10	WCDMA Band V	WCDMA Band II	LTE Band 13	LTE Band 4	802.11b Ant 1	802.11b Ant 2	802.11a Ant 1	802.11a Ant 2
Exposure Position	Calculated Frequency	848MHz	1909MHz	846MHz	1907MHz	784MHz	1754MHz	2462MHz	2462MHz	5825MHz	5825MHz
, cemen	Maximum power (dBm)	26.0	23.5	23.5	23.5	23.5	24.5	15.5	15.5	13	13
	Maximum rated power(mW)	398	224	224	224	224	282	35	35	20	20
	Separation distance(mm)			< 5	5.0			< 5.0	< 5.0	< 5.0	< 5.0
Bottom Face	exclusion threshold	73	62	41	62	40	75	11	11	10	10
	Testing required?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	Separation distance(mm)			28	3.0			< 5.0	116.0	< 5.0	116.0
Edge 1	exclusion threshold	13	11	7	11	7	13	11	756	10	722
	Testing required?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	No
	Separation distance(mm)			< 5	5.0			163.0	216.0	163.0	216.0
Edge 2	exclusion threshold	73	62	41	62	40	75	1226	1756	1192	1722
	Testing required?	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	No
	Separation distance(mm)			43	3.0			138.0	21.0	138.0	21.0
Edge 3	exclusion threshold	9	7	5	7	5	9	976	3	942	2
	Testing required?	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	No
	Separation distance(mm)			210	6.4			49.0	< 5.0	49.0	< 5.0
Edge 4	exclusion threshold	1104	1773	1102	1773	1039	1777	1	11	1	10
	Testing required?	No	No	No	No	No	No	No	Yes	No	Yes

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 50 of 73

16. SAR Test Results

General Note:

- 1. Per KDB 447498 D01v05r02, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
 - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.
 - b. For WWAN/WLAN: Reported SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor
- 2. Per KDB 447498 D01v05r02, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - · ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
 - · ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
 - · ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
- 3. During the SAR testing, the additional separation between EUT and the phantom surface introduced by the protrusion is <5mm, and the reported SAR with the protrusions in place is < 1.2 W/kg, additional consideration of test setup is not required. Detailed information is included in the test setup photo exhibit.
- 4. Single antenna RF power in SISO mode is larger or equal to the single antenna RF power in MIMO mode, and for RF exposure assessment of MIMO mode simultaneous transmission exclusion analysis was performed with SAR test results of each antenna in SISO mode.
- For the exposure positions that proximity sensor power reduction is applied for SAR compliance, additional SAR testing with EUT transmitting full power in normal mode was performed; 13mm for Bottom - Slant of Edge 2, 14mm for Edge 2

GSM Note:

Justification for reduced test configuration s per KDB 941225 D03v01, the source-based time-averaged output power
was evaluated for all multi-slot operations. The multi-slot configuration with the highest frame averaged output power
was evaluated for SAR Measurement.

UMTS Note:

Per KDB 941225 D02v02r02, RMC 12.2kbps setting is used to evaluate SAR. If HSDPA/HSUPA output power is < 0.25dB higher than RMC12.2Kbps, or reported SAR with RMC 12.2kbps setting is ≤ 1.2W/kg, HSDPA/HSUPA SAR evaluation can be excluded.

LTE Note:

- 1. Per KDB 941225 D05v02r03, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel.
- 2. Per KDB 941225 D05v02r03, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure.
- 3. Per KDB 941225 D05v02r03, For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.
- 4. Per KDB 941225 D05v02r03, 16QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05v02r03, 16QAM SAR testing is not required.
- Per KDB 941225 D05v02r03, Smaller bandwidth output power for each RB allocation configuration is > not ½ dB
 higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest
 supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05v02r03, smaller bandwidth SAR testing is not required.

Report Number : FA432436-10 Report Version : Rev. 02 Page Number : 51 of 73

16.1 **Body SAR**

<GSM SAR>

Plot No.	Band	Mode	Test Position	Gap (cm)	Ch.	Freq. (MHz)	Power Reduction	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	GSM850	GPRS (2 Tx slots)	Bottom-slant of Edge 2	1.3cm	128	824.2	OFF	31.9	32.0	1.023	-0.07	1.090	1.115
	GSM850	GPRS (2 Tx slots)	Bottom-slant of Edge 2	1.3cm	189	836.4	OFF	31.8	32.0	1.047	-0.05	1.030	1.079
	GSM850	GPRS (2 Tx slots)	Bottom-slant of Edge 2	1.3cm	251	848.8	OFF	31.6	32.0	1.096	0.02	0.895	0.981
	GSM850	GPRS (2 Tx slots)	Edge 1	0cm	128	824.2	OFF	31.9	32.0	1.023	0.09	0.012	0.012
01	GSM850	GPRS (2 Tx slots)	Edge 2	1.4cm	128	824.2	OFF	31.9	32.0	1.023	-0.14	1.160	<mark>1.187</mark>
	GSM850	GPRS (2 Tx slots)	Edge 2	1.4cm	189	836.4	OFF	31.8	32.0	1.047	-0.01	1.130	1.183
	GSM850	GPRS (2 Tx slots)	Edge 2	1.4cm	251	848.8	OFF	31.6	32.0	1.096	-0.07	0.953	1.045
	GSM850	GPRS (2 Tx slots)	Edge 3	0cm	128	824.2	OFF	31.9	32.0	1.023	-0.09	0.318	0.325
	GSM850	GPRS (2 Tx slots)	Bottom-slant of Edge 2	0cm	128	824.2	ON	22.1	23.5	1.380	0.01	0.804	1.110
	GSM850	GPRS (2 Tx slots)	Bottom-slant of Edge 2	0cm	189	836.4	ON	21.8	23.5	1.479	-0.16	0.792	1.171
	GSM850	GPRS (2 Tx slots)	Bottom-slant of Edge 2	0cm	251	848.8	ON	21.7	23.5	1.514	0.04	0.729	1.103
	GSM850	GPRS (2 Tx slots)	Edge 2	0cm	128	824.2	ON	22.1	23.5	1.380	0.1	0.655	0.904
	GSM850	GPRS (2 Tx slots)	Edge 2	0cm	189	836.4	ON	21.8	23.5	1.479	0.07	0.690	1.021
	GSM850	GPRS (2 Tx slots)	Edge 2	0cm	251	848.8	ON	21.7	23.5	1.514	-0.13	0.597	0.904
	GSM850	GPRS (2 Tx slots)	Bottom Face	0cm	128	824.2	ON	22.1	23.5	1.380	0	0.707	0.976
	GSM850	GPRS (2 Tx slots)	Bottom Face	0cm	189	836.4	ON	21.8	23.5	1.479	0.01	0.762	1.127
	GSM850	GPRS (2 Tx slots)	Bottom Face	0cm	251	848.8	ON	21.7	23.5	1.514	0	0.696	1.053
	GSM1900	GPRS (2 Tx slots)	Bottom - Slant of Edge 2	1.3cm	512	1850.2	OFF	29.3	29.5	1.047	-0.04	0.390	0.408
	GSM1900	GPRS (2 Tx slots)	Edge 1	0cm	512	1850.2	OFF	29.3	29.5	1.047	-0.03	0.355	0.372
	GSM1900	GPRS (2 Tx slots)	Edge 2	1.4cm	512	1850.2	OFF	29.3	29.5	1.047	0.11	0.288	0.302
	GSM1900	GPRS (2 Tx slots)	Edge 3	0cm	512	1850.2	OFF	29.3	29.5	1.047	-0.02	0.487	0.510
	GSM1900	GPRS (2 Tx slots)	Bottom - Slant of Edge 2	0cm	512	1850.2	ON	25.5	25.5	1.000	-0.16	1.100	1.100
	GSM1900	GPRS (2 Tx slots)	Bottom - Slant of Edge 2	0cm	661	1880	ON	25.4	25.5	1.023	-0.19	0.942	0.964
02	GSM1900	GPRS (2 Tx slots)	Bottom - Slant of Edge 2	0cm	810	1909.8	ON	25.4	25.5	1.023	0.03	1.140	1.167
	GSM1900	GPRS (2 Tx slots)	Edge 2	0cm	512	1850.2	ON	25.5	25.5	1.000	-0.04	1.050	1.050
	GSM1900	GPRS (2 Tx slots)	Edge 2	0cm	661	1880	ON	25.4	25.5	1.023	-0.06	1.050	1.074
	GSM1900	GPRS (2 Tx slots)	Edge 2	0cm	810	1909.8	ON	25.4	25.5	1.023	-0.06	1.080	1.105
	GSM1900	GPRS (2 Tx slots)	Bottom Face	0cm	512	1850.2	ON	25.5	25.5	1.000	-0.04	1.100	1.100
	GSM1900	GPRS (2 Tx slots)	Bottom Face	0cm	661	1880	ON	25.4	25.5	1.023	-0.11	0.988	1.011
	GSM1900	GPRS (2 Tx slots)	Bottom Face	0cm	810	1909.8	ON	25.4	25.5	1.023	-0.13	0.917	0.938

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 52 of 73

<WCDMA SAR>

Plot No.	Band	Mode	Test Position	Gap (cm)	Ch.	Freq. (MHz)	Power Reduction	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	WCDMA V	RMC 12.2Kbps	Bottom-slant of Edge 2	1.3cm	4132	826.4	OFF	23.2	23.5	1.072	-0.11	0.501	0.537
	WCDMA V	RMC 12.2Kbps	Edge 1	0cm	4132	826.4	OFF	23.2	23.5	1.072	-0.07	0.085	0.091
	WCDMA V	RMC 12.2Kbps	Edge 2	1.4cm	4132	826.4	OFF	23.2	23.5	1.072	-0.04	0.615	0.659
	WCDMA V	RMC 12.2Kbps	Edge 3	0cm	4132	826.4	OFF	23.2	23.5	1.072	-0.08	0.138	0.148
03	WCDMA V	RMC 12.2Kbps	Bottom - Slant of Edge 2	0cm	4132	826.4	ON	16.6	17.5	1.230	0.06	0.934	<mark>1.149</mark>
	WCDMA V	RMC 12.2Kbps	Bottom - Slant of Edge 2	0cm	4182	836.4	ON	16.5	17.5	1.259	0	0.812	1.022
	WCDMA V	RMC 12.2Kbps	Bottom - Slant of Edge 2	0cm	4233	846.6	ON	16.5	17.5	1.259	0.11	0.845	1.064
	WCDMA V	RMC 12.2Kbps	Edge 2	0cm	4132	826.4	ON	16.6	17.5	1.230	-0.15	0.813	1.000
	WCDMA V	RMC 12.2Kbps	Edge 2	0cm	4182	836.4	ON	16.5	17.5	1.259	0.1	0.690	0.869
	WCDMA V	RMC 12.2Kbps	Edge 2	0cm	4233	846.6	ON	16.5	17.5	1.259	0.02	0.711	0.895
	WCDMA V	RMC 12.2Kbps	Bottom Face	0cm	4132	826.4	ON	16.6	17.5	1.230	-0.1	0.786	0.967
	WCDMA V	RMC 12.2Kbps	Bottom Face	0cm	4182	836.4	ON	16.5	17.5	1.259	-0.08	0.672	0.846
	WCDMA V	RMC 12.2Kbps	Bottom Face	0cm	4233	846.6	ON	16.5	17.5	1.259	-0.09	0.715	0.900
	WCDMA II	RMC 12.2Kbps	Bottom-slant of Edge 2	1.3cm	9400	1880	OFF	23.2	23.5	1.072	0.03	0.486	0.521
	WCDMA II	RMC 12.2Kbps	Edge 1	0cm	9400	1880	OFF	23.2	23.5	1.072	-0.08	0.405	0.434
	WCDMA II	RMC 12.2Kbps	Edge 2	1.4cm	9400	1880	OFF	23.2	23.5	1.072	-0.02	0.320	0.343
	WCDMA II	RMC 12.2Kbps	Edge 3	0cm	9400	1880	OFF	23.2	23.5	1.072	0.14	0.609	0.653
	WCDMA II	RMC 12.2Kbps	Bottom-slant of Edge 2	0cm	9400	1880	ON	18	19.5	1.413	0.13	0.839	1.185
	WCDMA II	RMC 12.2Kbps	Bottom-slant of Edge 2	0cm	9262	1852.4	ON	17.9	19.5	1.445	0.12	0.790	1.142
04	WCDMA II	RMC 12.2Kbps	Bottom-slant of Edge 2	0cm	9538	1907.6	ON	17.8	19.5	1.479	0.07	0.805	<mark>1.191</mark>
	WCDMA II	RMC 12.2Kbps	Edge 2	0cm	9400	1880	ON	18	19.5	1.413	-0.12	0.795	1.123
	WCDMA II	RMC 12.2Kbps	Edge 2	0cm	9262	1852.4	ON	17.9	19.5	1.445	-0.17	0.703	1.016
	WCDMA II	RMC 12.2Kbps	Edge 2	0cm	9538	1907.6	ON	17.8	19.5	1.479	-0.16	0.790	1.168
	WCDMA II	RMC 12.2Kbps	Bottom Face	0cm	9400	1880	ON	18	19.5	1.413	0.18	0.766	1.082
	WCDMA II	RMC 12.2Kbps	Bottom Face	0cm	9262	1852.4	ON	17.9	19.5	1.445	0.16	0.747	1.080
	WCDMA II	RMC 12.2Kbps	Bottom Face	0cm	9538	1907.6	ON	17.8	19.5	1.479	0.1	0.708	1.047

<LTE SAR>

Plot No.	Band	BW (MHz)	Modulation	RB Size	RB offset	Test Position	Gap (cm)	Ch.	Freq. (MHz)	Power Reduction	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	LTE Band 13	10M	QPSK	1	0	Bottom - Slant of Edge 2	1.3cm	23230	782	OFF	22.9	23.5	1.148	-0.13	0.510	0.586
	LTE Band 13	10M	QPSK	25	24	Bottom - Slant of Edge 2	1.3cm	23230	782	OFF	21.7	22.5	1.202	-0.05	0.372	0.447
	LTE Band 13	10M	QPSK	1	0	Edge 1	0cm	23230	782	OFF	22.9	23.5	1.148	0.18	0.080	0.092
	LTE Band 13	10M	QPSK	25	24	Edge 1	0cm	23230	782	OFF	21.7	22.5	1.202	0.13	0.056	0.067
	LTE Band 13	10M	QPSK	1	0	Edge 2	1.4cm	23230	782	OFF	22.9	23.5	1.148	0.07	0.452	0.519
	LTE Band 13	10M	QPSK	25	24	Edge 2	1.4cm	23230	782	OFF	21.7	22.5	1.202	-0.14	0.365	0.439
	LTE Band 13	10M	QPSK	1	1	Edge 3	0cm	23230	782	OFF	22.9	23.5	1.148	0.06	0.175	0.201
	LTE Band 13	10M	QPSK	25	24	Edge 3	0cm	23230	782	OFF	21.7	22.5	1.202	-0.11	0.122	0.147
05	LTE Band 13	10M	QPSK	1	0	Bottom - Slant of Edge 2	0cm	23230	782	ON	16.8	17.5	1.175	0	0.937	1.101
	LTE Band 13	10M	QPSK	25	24	Bottom - Slant of Edge 2	0cm	23230	782	ON	16.6	17.5	1.230	-0.12	0.863	1.062
	LTE Band 13	10M	QPSK	50	0	Bottom - Slant of Edge 2	0cm	23230	782	ON	16.4	17.5	1.288	0.13	0.819	1.055
	LTE Band 13	10M	QPSK	1	0	Edge 2	0cm	23230	782	ON	16.8	17.5	1.175	0.15	0.823	0.967
	LTE Band 13	10M	QPSK	25	24	Edge 2	0cm	23230	782	ON	16.6	17.5	1.230	0.13	0.789	0.971
	LTE Band 13	10M	QPSK	50	0	Edge 2	0cm	23230	782	ON	16.4	17.5	1.288	0.02	0.765	0.986
	LTE Band 13	10M	QPSK	1	0	Bottom Face	0cm	23230	782	ON	16.8	17.5	1.175	-0.13	0.782	0.919
	LTE Band 13	10M	QPSK	25	24	Bottom Face	0cm	23230	782	ON	16.6	17.5	1.230	-0.19	0.685	0.843
	LTE Band 13	10M	QPSK	50	0	Bottom Face	0cm	23230	782	ON	16.4	17.5	1.288	-0.14	0.673	0.867

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 53 of 73

Plot No.	Band	BW (MHz)	Modulation	RB Size	RB offset	Test Position	Gap (cm)	Ch.	Freq. (MHz)	Power Reduction	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	LTE Band 4	20M	QPSK	1	0	Bottom - Slant of Edge 2	1.3cm	20050	1720	OFF	23.8	24.5	1.175	0.09	0.493	0.579
	LTE Band 4	20M	QPSK	50	0	Bottom - Slant of Edge 2	1.3cm	20050	1720	OFF	22.5	23.5	1.259	-0.1	0.374	0.471
	LTE Band 4	20M	QPSK	1	0	Edge 1	0cm	20050	1720	OFF	23.8	24.5	1.175	0.14	0.395	0.464
	LTE Band 4	20M	QPSK	50	0	Edge 1	0cm	20050	1720	OFF	22.5	23.5	1.259	0.05	0.295	0.371
	LTE Band 4	20M	QPSK	1	0	Edge 2	1.4cm	20050	1720	OFF	23.8	24.5	1.175	0.06	0.411	0.483
	LTE Band 4	20M	QPSK	50	0	Edge 2	1.4cm	20050	1720	OFF	22.5	23.5	1.259	0.06	0.315	0.397
	LTE Band 4	20M	QPSK	1	0	Edge 3	0cm	20050	1720	OFF	23.8	24.5	1.175	-0.12	0.517	0.607
	LTE Band 4	20M	QPSK	50	0	Edge 3	0cm	20050	1720	OFF	22.5	23.5	1.259	-0.02	0.386	0.486
06	LTE Band 4	20M	QPSK	1	0	Bottom - Slant of Edge 2	0cm	20050	1720	ON	15.8	17.0	1.318	0.17	0.889	1.172
	LTE Band 4	20M	QPSK	1	0	Bottom - Slant of Edge 2	0cm	20175	1732.5	ON	15.6	17.0	1.380	-0.16	0.760	1.049
	LTE Band 4	20M	QPSK	1	0	Bottom - Slant of Edge 2	0cm	20300	1745	ON	15.6	17.0	1.380	-0.15	0.721	0.995
	LTE Band 4	20M	QPSK	50	0	Bottom - Slant of Edge 2	0cm	20050	1720	ON	15.6	17.0	1.380	0.02	0.693	0.957
	LTE Band 4	20M	QPSK	50	0	Bottom - Slant of Edge 2	0cm	20175	1732.5	ON	15.5	17.0	1.413	-0.12	0.698	0.986
	LTE Band 4	20M	QPSK	50	0	Bottom - Slant of Edge 2	0cm	20300	1745	ON	15.5	17.0	1.413	-0.11	0.623	0.880
	LTE Band 4	20M	QPSK	100	0	Bottom - Slant of Edge 2	0cm	20050	1720	ON	15.4	17.0	1.445	-0.16	0.715	1.033
	LTE Band 4	20M	QPSK	1	0	Edge 2	0cm	20050	1720	ON	15.8	17.0	1.318	-0.06	0.449	0.592
	LTE Band 4	20M	QPSK	50	0	Edge 2	0cm	20050	1720	ON	15.6	17.0	1.380	0.19	0.441	0.609
	LTE Band 4	20M	QPSK	1	0	Bottom Face	0cm	20050	1720	ON	15.8	17.0	1.318	-0.14	0.805	1.061
	LTE Band 4	20M	QPSK	1	0	Bottom Face	0cm	20175	1732.5	ON	15.6	17.0	1.380	-0.13	0.638	0.881
	LTE Band 4	20M	QPSK	1	0	Bottom Face	0cm	20300	1745	ON	15.6	17.0	1.380	-0.12	0.695	0.959
	LTE Band 4	20M	QPSK	50	0	Bottom Face	0cm	20050	1720	ON	15.6	17.0	1.380	-0.14	0.762	1.052
	LTE Band 4	20M	QPSK	50	0	Bottom Face	0cm	20175	1732.5	ON	15.5	17.0	1.413	0.12	0.688	0.972
	LTE Band 4	20M	QPSK	50	0	Bottom Face	0cm	20300	1745	ON	15.5	17.0	1.413	0.12	0.552	0.780
	LTE Band 4	20M	QPSK	100	0	Bottom Face	0cm	20050	1720	ON	15.4	17.0	1.445	-0.14	0.513	0.742

<WLAN SAR>

Plot No.	Band	Mode	Test Position	Gap (cm)	Antenna	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	WLAN2.4GHz	802.11b 1Mbps	Bottom Face	0cm	Ant 1	6	2437	15.5	15.5	1.000	-0.11	0.879	0.879
	WLAN2.4GHz	802.11b 1Mbps	Bottom Face	0cm	Ant 1	1	2412	15.3	15.5	1.047	-0.09	0.720	0.754
	WLAN2.4GHz	802.11b 1Mbps	Bottom Face	0cm	Ant 1	11	2462	15.2	15.5	1.072	-0.01	0.671	0.719
07	WLAN2.4GHz	802.11b 1Mbps	Bottom Face - Slant of Edge1	0cm	Ant 1	6	2437	15.5	15.5	1.000	0.01	1.050	1.050
	WLAN2.4GHz	802.11b 1Mbps	Bottom Face - Slant of Edge1	0cm	Ant 1	1	2412	15.3	15.5	1.047	-0.01	0.845	0.885
	WLAN2.4GHz	802.11b 1Mbps	Bottom Face - Slant of Edge1	0cm	Ant 1	11	2462	15.2	15.5	1.072	-0.05	0.768	0.823
	WLAN2.4GHz	802.11b 1Mbps	Edge 1	0cm	Ant 1	6	2437	15.5	15.5	1.000	-0.05	0.709	0.709
	WLAN2.4GHz	802.11b 1Mbps	Bottom Face	0cm	Ant 2	11	2462	15.2	15.5	1.072	-0.06	0.406	0.435
	WLAN2.4GHz	802.11b 1Mbps	Bottom Face - Slant of Edge4	0cm	Ant 2	11	2462	15.2	15.5	1.072	-0.09	0.421	0.451
	WLAN2.4GHz	802.11b 1Mbps	Edge 4	0cm	Ant 2	11	2462	15.2	15.5	1.072	-0.13	0.221	0.237
	WLAN5GHz	802.11a 6Mbps	Bottom Face	0cm	Ant 1	40	5200	12.5	12.5	1.000	-0.18	0.204	0.204
	WLAN5GHz	802.11a 6Mbps	Bottom Face - Slant of Edge1	0cm	Ant 1	40	5200	12.5	12.5	1.000	0	0.316	0.316
	WLAN5GHz	802.11ac-VHT80 MCS0	Bottom Face - Slant of Edge1	0cm	Ant 1	42	5210	12.5	12.5	1.000	-0.18	0.118	0.118
	WLAN5GHz	802.11a 6Mbps	Edge 1	0cm	Ant 1	40	5200	12.5	12.5	1.000	-0.06	0.211	0.211
	WLAN5GHz	802.11a 6Mbps	Bottom Face	0cm	Ant 2	48	5240	12.5	12.5	1.000	-0.05	0.763	0.763
08	WLAN5GHz	802.11a 6Mbps	Bottom Face - Slant of Edge4	0cm	Ant 2	48	5240	12.5	12.5	1.000	-0.06	1.270	1.270
	WLAN5GHz	802.11a 6Mbps	Bottom Face - Slant of Edge4	0cm	Ant 2	40	5200	12.3	12.5	1.047	-0.08	1.130	1.183
	WLAN5GHz	802.11ac-VHT80 MCS0	Bottom Face - Slant of Edge4	0cm	Ant 2	42	5210	12.3	12.5	1.047	-0.06	0.773	0.809
	WLAN5GHz	802.11a 6Mbps	Edge 4	0cm	Ant 2	48	5240	12.5	12.5	1.000	-0.12	1.080	1.080
	WLAN5GHz	802.11a 6Mbps	Edge 4	0cm	Ant 2	40	5200	12.3	12.5	1.047	-0.02	0.964	1.009

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 54 of 73

Plot			Tool	Con			Eva.	Average	Tune-Up	Tune-up	Power	Measured	Reported
No.	Band	Mode	Test Position	Gap (cm)	Antenna	Ch.	Freq. (MHz)	Power (dBm)	Limit (dBm)	Scaling Factor	Drift (dB)	1g SAR (W/kg)	1g SAR (W/kg)
	WLAN5GHz	802.11a 6Mbps	Bottom Face	0cm	Ant 1	64	5320	13.0	13.0	1.000	0.16	0.184	0.184
	WLAN5GHz	802.11a 6Mbps	Bottom Face - Slant of Edge1	0cm	Ant 1	64	5320	13.0	13.0	1.000	0.09	0.331	0.331
	WLAN5GHz	802.11ac-VHT80 MCS0	Bottom Face - Slant of Edge1	0cm	Ant 1	58	5290	13.0	13.0	1.000	-0.1	0.123	0.123
	WLAN5GHz	802.11a 6Mbps	Edge 1	0cm	Ant 1	64	5320	13.0	13.0	1.000	-0.07	0.274	0.274
	WLAN5GHz	802.11a 6Mbps	Bottom Face	0cm	Ant 2	60	5300	11.5	11.5	1.000	-0.06	0.618	0.618
09	WLAN5GHz	802.11a 6Mbps	Bottom Face - Slant of Edge4	0cm	Ant 2	60	5300	11.5	11.5	1.000	-0.12	1.170	1.170
	WLAN5GHz	802.11a 6Mbps	Bottom Face - Slant of Edge4	0cm	Ant 2	56	5280	11.5	11.5	1.000	-0.07	1.140	1.140
	WLAN5GHz	802.11ac-VHT80 MCS0	Bottom Face - Slant of Edge4	0cm	Ant 2	58	5290	11.5	11.5	1.000	-0.16	0.884	0.884
	WLAN5GHz	802.11a 6Mbps	Edge 4	0cm	Ant 2	60	5300	11.5	11.5	1.000	-0.17	1.020	1.020
	WLAN5GHz	802.11a 6Mbps	Edge 4	0cm	Ant 2	56	5280	11.5	11.5	1.000	-0.13	0.974	0.974
	WLAN5GHz	802.11a 6Mbps	Bottom Face	0cm	Ant 1	136	5680	13.0	13.0	1.000	0.01	0.259	0.259
	WLAN5GHz	802.11a 6Mbps	Bottom Face - Slant of Edge1	0cm	Ant 1	136	5680	13.0	13.0	1.000	0.03	0.396	0.396
	WLAN5GHz	802.11ac-VHT80 MCS0	Bottom Face - Slant of Edge1	0cm	Ant 1	106	5530	13.0	13.0	1.000	0.14	0.230	0.230
	WLAN5GHz	802.11a 6Mbps	Edge 1	0cm	Ant 1	136	5680	13.0	13.0	1.000	-0.03	0.151	0.151
	WLAN5GHz	802.11a 6Mbps	Bottom Face	0cm	Ant 2	140	5700	11.5	11.5	1.000	-0.06	0.783	0.783
	WLAN5GHz	802.11a 6Mbps	Bottom Face	0cm	Ant 2	100	5500	11.5	11.5	1.000	-0.1	1.060	1.060
	WLAN5GHz	802.11a 6Mbps	Bottom Face	0cm	Ant 2	112	5560	11.5	11.5	1.000	-0.14	0.884	0.884
	WLAN5GHz	802.11a 6Mbps	Bottom Face - Slant of Edge4	0cm	Ant 2	140	5700	11.5	11.5	1.000	0.03	0.943	0.943
10	WLAN5GHz	802.11a 6Mbps	Bottom Face - Slant of Edge4	0cm	Ant 2	100	5500	11.5	11.5	1.000	-0.06	1.290	1.290
	WLAN5GHz	802.11a 6Mbps	Bottom Face - Slant of Edge4	0cm	Ant 2	112	5560	11.5	11.5	1.000	0	1.220	1.220
	WLAN5GHz	802.11ac-VHT80 MCS0	Bottom Face - Slant of Edge4	0cm	Ant 2	138	5690	11.5	11.5	1.000	-0.14	0.721	0.721
	WLAN5GHz	802.11ac-VHT80 MCS0	Bottom Face - Slant of Edge4	0cm	Ant 2	106	5530	11.1	11.5	1.096	-0.12	0.998	1.094
	WLAN5GHz	802.11a 6Mbps	Edge 4	0cm	Ant 2	140	5700	11.5	11.5	1.000	-0.05	0.644	0.644
	WLAN5GHz	802.11a 6Mbps	Edge 4	0cm	Ant 2	100	5500	11.5	11.5	1.000	-0.17	0.939	0.939
	WLAN5GHz	802.11a 6Mbps	Edge 4	0cm	Ant 2	112	5560	11.5	11.5	1.000	-0.1	0.824	0.824
	WLAN5GHz	802.11a 6Mbps	Bottom Face	0cm	Ant 1	161	5805	13.0	13.0	1.000	-0.01	0.332	0.332
	WLAN5GHz	802.11a 6Mbps	Bottom Face - Slant of Edge1	0cm	Ant 1	161	5805	13.0	13.0	1.000	0.08	0.439	0.439
	WLAN5GHz	802.11ac-VHT80 MCS0	Bottom Face - Slant of Edge1	0cm	Ant 1	155	5775	13.0	13.0	1.000	-0.18	0.246	0.246
	WLAN5GHz	802.11a 6Mbps	Edge 1	0cm	Ant 1	161	5805	13.0	13.0	1.000	-0.15	0.140	0.140
	WLAN5GHz	802.11a 6Mbps	Bottom Face	0cm	Ant 2	149	5745	12.9	13.0	1.023	-0.03	0.873	0.893
	WLAN5GHz	802.11a 6Mbps	Bottom Face	0cm	Ant 2	157	5785	12.8	13.0	1.047	-0.12	0.845	0.885
	WLAN5GHz	802.11a 6Mbps	Bottom Face	0cm	Ant 2	161	5805	12.9	13.0	1.023	-0.1	0.875	0.895
11	WLAN5GHz	802.11a 6Mbps	Bottom Face - Slant of Edge4	0cm	Ant 2	149	5745	12.9	13.0	1.023	-0.1	1.110	1.136
	WLAN5GHz	802.11a 6Mbps	Bottom Face - Slant of Edge4	0cm	Ant 2	157	5785	12.8	13.0	1.047	-0.11	1.080	1.131
	WLAN5GHz	802.11a 6Mbps	Bottom Face - Slant of Edge4	0cm	Ant 2	161	5805	12.9	13.0	1.023	-0.17	1.100	1.126
	WLAN5GHz	802.11ac-VHT80 MCS0	Bottom Face - Slant of Edge4	0cm	Ant 2	155	5775	13.0	13.0	1.000	-0.08	1.010	1.010
	WLAN5GHz	802.11a 6Mbps	Edge 4	0cm	Ant 2	149	5745	12.9	13.0	1.023	-0.07	0.744	0.761
	WLAN5GHz	802.11a 6Mbps	Edge 4	0cm	Ant 2	157	5785	12.8	13.0	1.047	-0.03	0.783	0.820
	WLAN5GHz	802.11a 6Mbps	Edge 4	0cm	Ant 2	161	5805	12.9	13.0	1.023	-0.06	0.819	0.838

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 55 of 73

16.2 Repeated SAR Measurement

No.	Band	Mode	Test Position	Gap (cm)	Ch.	Freq. (MHz)	Power Reduction	Power		Tune-up Scaling Factor	Drift	Measured 1g SAR (W/kg)		Reported 1g SAR (W/kg)
1st	GSM850	GPRS (2 Tx slots)	Edge 2	1.4cm	128	824.2	OFF	31.9	32.0	1.023	-0.14	1.160		1.187
2nd	GSM850	GPRS (2 Tx slots)	Edge 2	1.4cm	128	824.2	OFF	31.9	32.0	1.023	-0.12	1.140	1.02	1.167
1st	GSM1900	GPRS (2 Tx slots)	Bottom - Slant of Edge 2	0cm	810	1909.8	ON	25.4	25.5	1.023	0.03	1.140	-	1.167
2nd	GSM1900	GPRS (2 Tx slots)	Bottom - Slant of Edge 2	0cm	810	1909.8	ON	25.4	25.5	1.023	0.09	1.060	1.08	1.085

No.	Band	BW (MHz)	Modulation	RB Size	RB offset	Test Position	Gap (cm)		Freq. (MHz)	Power Reduction	Power		Tune-up Scaling Factor		Measured 1g SAR (W/kg)		Reported 1g SAR (W/kg)
1st	LTE Band 13	10M	QPSK	1	0	Bottom - Slant of Edge 2	0cm	23230	782	ON	16.8	17.5	1.175	0	0.937		1.101
2nd	LTE Band 13	10M	QPSK	1	0	Bottom - Slant of Edge 2	0cm	23230	782	ON	16.8	17.5	1.175	-0.1	0.905	1.04	1.063
1st	LTE Band 4	20M	QPSK	1	0	Bottom - Slant of Edge 2	0cm	20050	1720	ON	15.8	17.0	1.318	0.17	0.889		1.172
2nd	LTE Band 4	20M	QPSK	1	0	Bottom - Slant of Edge 2	0cm	20050	1720	ON	15.8	17.0	1.318	-0.12	0.833	1.07	1.098

No.	Band	Mode	Test Position	Gap (cm)		Ch.	Freq. (MHz)	Power	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Ratio	Reported 1g SAR (W/kg)
1st	WLAN2.4GHz	802.11b 1Mbps	Bottom - Slant of Edge 1	0cm	Ant 1	6	2437	15.5	15.5	1.000	0.01	1.050	-	1.050
2nd	WLAN2.4GHz	802.11b 1Mbps	Bottom - Slant of Edge 1	0cm	Ant 1	6	2437	15.5	15.5	1.000	-0.07	1.010	1.04	1.010
1st	WLAN5GHz	802.11a 6Mbps	Bottom - Slant of Edge 4	0cm	Ant 2	48	5240	12.5	12.5	1.000	-0.06	1.270	-	1.270
2nd	WLAN5GHz	802.11a 6Mbps	Bottom - Slant of Edge 4	0cm	Ant 2	48	5240	12.5	12.5	1.000	-0.04	1.220	1.04	1.220
1st	WLAN5GHz	802.11a 6Mbps	Bottom - Slant of Edge 4	0cm	Ant 2	60	5300	11.5	11.5	1.000	-0.12	1.170	-	1.170
2nd	WLAN5GHz	802.11a 6Mbps	Bottom - Slant of Edge 4	0cm	Ant 2	60	5300	11.5	11.5	1.000	-0.13	1.080	1.08	1.080
1st	WLAN5GHz	802.11a 6Mbps	Bottom - Slant of Edge 4	0cm	Ant 2	100	5500	11.5	11.5	1.000	-0.06	1.290	-	1.290
2nd	WLAN5GHz	802.11a 6Mbps	Bottom - Slant of Edge 4	0cm	Ant 2	100	5500	11.5	11.5	1.000	-0.08	1.180	1.09	1.180
1st	WLAN5GHz	802.11a 6Mbps	Bottom - Slant of Edge 4	0cm	Ant 2	149	5745	12.9	13.0	1.023	-0.1	1.110	-	1.136
2nd	WLAN5GHz	802.11a 6Mbps	Bottom - Slant of Edge 4	0cm	Ant 2	149	5745	12.9	13.0	1.023	-0.12	1.080	1.03	1.105

General Note:

- 1. Per KDB 865664 D01v01r03, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg
- 2. Per KDB 865664 D01v01r03, if the ratio among the repeated measurement is ≤ 1.2 and the measured SAR <1.45W/kg, only one repeated measurement is required.
- 3. The ratio is the difference in percentage between original and repeated measured SAR.
- 4. All measurement SAR result is scaled-up to account for tune-up tolerance and is compliant.

Report Number : FA432436-10 Report Version : Rev. 02 Page Number : 56 of 73

17. Simultaneous Transmission Analysis

NO.	Simultaneous Transmission Configurations	Supported
1.	WWAN+ Bluetooth	Yes
2.	WWAN + WLAN Antenna 1 + WLAN Antenna 2	Yes
3.	WLAN Antenna 1 + WLAN Antenna 2	Yes

General Note:

- 1. WLAN and Bluetooth share the same antenna 1, and cannot transmit simultaneously.
- 2. This device does not supported SISO mode operation.
- 3. EUT will choose either WLAN 2.4GHz or WLAN 5GHz according to the network signal condition; therefore, 2.4GHz WLAN and 5GHz WLAN will not operate simultaneously at any moment.
- 4. The worst case WLAN reported SAR for each configuration was used for SAR summation, regardless of whether the WLAN channel has WiFi Direct and Hotspot capability. Therefore, the following summations represent the absolute worst cases for simultaneous transmission with WLAN.
- 5. The Scaled SAR summation is calculated based on the same configuration and test position.
- 6. Per KDB 447498 D01v05r02, simultaneous transmission SAR is compliant if,
 - i) Scalar SAR summation < 1.6W/kg.
 - ii) SPLSR = (SAR1 + SAR2)^1.5 / (min. separation distance, mm), and the peak separation distance is determined from the square root of [(x1-x2)2 + (y1-y2)2 + (z1-z2)2], where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan.
 - iii) If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary.
 - iv) Simultaneously transmission SAR measurement, and the reported multi-band SAR < 1.6W/kg.
 - v) The SPLSR calculated results please refer to section 17.2.
- For simultaneous transmission analysis, Bluetooth SAR is estimated per KDB 447498 D01v05r02 based on the formula below.
 - i) (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]: $[\sqrt{f(GHz)/x}]$ W/kg for test separation distances \leq 50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.
 - ii) When the minimum separation distance is < 5mm, the distance is used 5mm to determine SAR test exclusion.
 - iii) 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm.
 - iv) Bluetooth estimated SAR is conservatively determined by 5mm separation, for all applicable exposure positions.

Bluetooth	Exposure Position	All Position
Max Power	Separation Distance	5 mm
9.5 dBm	Estimated SAR (W/kg)	0.378 W/kg

Report Number : FA432436-10 Report Version : Rev. 02 Page Number : 57 of 73

17.1 Body Exposure Conditions

			1	2	3			
1AWW	N Band	Exposure Position	WWAN	2.4GHz WLAN Ant 1	2.4GHz WLAN Ant 2	1+2+3 Summed	SPLSR	Case No
			SAR (W/kg)	SAR (W/kg)	SAR (W/kg)	SAR (W/kg)		
		Bottom-slant of Edge 2 at 1.3 cm	1.115			1.12		
		Edge2 at 1.4 cm	1.187			1.19		
		Bottom Face - Slant of Edge1 at 0 cm		1.050		1.05		
		Bottom Face - Slant of Edge4 at 0 cm			0.451	0.45		
	GSM850	Bottom Face at 0cm	1.127	0.879	0.435	<mark>2.44</mark>	0.01	Case 1
	GSIVI65U	Edge1 at 0cm	0.012	0.709		0.72		
		Edge2 at 0cm	1.021			1.02		
		Edge3 at 0cm	0.325			0.33		
		Edge4 at 0cm			0.237	0.24		
GSM		Bottom-slant of Edge 2 at 0 cm	1.171			1.17		
GSIVI		Bottom-slant of Edge 2 at 1.3 cm	0.408			0.41		
		Edge2 at 1.4 cm	0.302			0.30		
		Bottom Face - Slant of Edge1 at 0 cm		1.050		1.05		
		Bottom Face - Slant of Edge4 at 0 cm			0.451	0.45		
	GSM1900	Bottom Face at 0cm	1.100	0.879	0.435	<mark>2.41</mark>	0.02	Case 2
	GSW1900	Edge1 at 0cm	0.372	0.709		1.08		
		Edge2 at 0cm	1.074			1.07		
		Edge3 at 0cm	0.510			0.51		
		Edge4 at 0cm			0.237	0.24		
		Bottom-slant of Edge 2 at 0 cm	1.167			1.17		
		Bottom-slant of Edge 2 at 1.3 cm	0.537			0.54		
		Edge2 at 1.4 cm	0.659			0.66		
		Bottom Face - Slant of Edge1 at 0 cm		1.050		1.05		
		Bottom Face - Slant of Edge4 at 0 cm			0.451	0.45		
	Band V	Bottom Face at 0cm	0.967	0.879	0.435	<mark>2.28</mark>	0.01	Case 3
	banu v	Edge1 at 0cm	0.091	0.709		0.80		
		Edge2 at 0cm	1.000			1.00		
		Edge3 at 0cm	0.148			0.15		
		Edge4 at 0cm			0.237	0.24		
MCDMA		Bottom-slant of Edge 2 at 0 cm	1.149			1.15		
WCDMA		Bottom-slant of Edge 2 at 1.3 cm	0.521			0.52		
		Edge2 at 1.4 cm	0.343			0.34		
		Bottom Face - Slant of Edge1 at 0 cm		1.050		1.05		
		Bottom Face - Slant of Edge4 at 0 cm			0.451	0.45		
	Band II	Bottom Face at 0cm	1.082	0.879	0.435	<mark>2.40</mark>	0.01	Case 4
	Band II	Edge1 at 0cm	0.434	0.709		1.14		
		Edge2 at 0cm	1.168			1.17		
		Edge3 at 0cm	0.653			0.65		
		Edge4 at 0cm			0.237	0.24		
		Bottom-slant of Edge 2 at 0 cm	1.191			1.19	-	

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 58 of 73

			1	2	3			
WWA	N Band	Exposure Position	WWAN	2.4GHz WLAN Ant 1	2.4GHz WLAN Ant 2	1+2+3 Summed	SPLSR	Case No
			SAR (W/kg)	SAR (W/kg)	SAR (W/kg)	SAR (W/kg)		
		Bottom-slant of Edge 2 at 1.3 cm	0.586			0.59		
		Edge2 at 1.4 cm	0.519			0.52		
		Bottom Face - Slant of Edge1 at 0 cm		1.050		1.05		
		Bottom Face - Slant of Edge4 at 0 cm			0.451	0.45		
	Band 13	Bottom Face at 0cm	0.919	0.879	0.435	<mark>2.23</mark>	0.01	Case 5
	Danu 13	Edge1 at 0cm	0.092	0.709		0.80		
		Edge2 at 0cm	0.986			0.99		
		Edge3 at 0cm	0.201			0.20		
		Edge4 at 0cm			0.237	0.24		
LTE		Bottom-slant of Edge 2 at 0 cm	1.101			1.10		
LIE		Bottom-slant of Edge 2 at 1.3 cm	0.579			0.58		
		Edge2 at 1.4 cm	0.483			0.48		
		Bottom Face - Slant of Edge1 at 0 cm		1.050		1.05		
		Bottom Face - Slant of Edge4 at 0 cm			0.451	0.45		
	Band 4	Bottom Face at 0cm	1.061	0.879	0.435	<mark>2.38</mark>	0.02	Case 6
	Danu 4	Edge1 at 0cm	0.464	0.709		1.17		
		Edge2 at 0cm	0.609			0.61		
		Edge3 at 0cm	0.607			0.61		
		Edge4 at 0cm			0.237	0.24	·	
		Bottom-slant of Edge 2 at 0 cm	1.172			1.17		

			1	4			
WWA	N Band	Exposure Position	WWAN	Bluetooth	1+4 Summed	SPLSR	Case No
			SAR (W/kg)	Estimated SAR (W/kg)	SAR (W/kg)		
		Bottom-slant of Edge 2 at 1.3 cm	1.115	0.378	1.49		
		Edge2 at 1.4 cm	1.187	0.378	1.57		
		Bottom Face - Slant of Edge1 at 0 cm		0.378	0.38		
		Bottom Face - Slant of Edge4 at 0 cm		0.378	0.38		
	GSM850	Bottom Face at 0cm	1.127	0.378	1.51		
	GSIVIOSO	Edge1 at 0cm	0.012	0.378	0.39		
		Edge2 at 0cm	1.021	0.378	1.40		
		Edge3 at 0cm	0.325	0.378	0.70		
		Edge4 at 0cm		0.378	0.38		
GSM		Bottom-slant of Edge 2 at 0 cm	1.171	0.378	1.55		
GSIVI		Bottom-slant of Edge 2 at 1.3 cm	0.408	0.378	0.79		
		Edge2 at 1.4 cm	0.302	0.378	0.68		
		Bottom Face - Slant of Edge1 at 0 cm		0.378	0.38		
		Bottom Face - Slant of Edge4 at 0 cm		0.378	0.38		
	GSM1900	Bottom Face at 0cm	1.100	0.378	1.48		
	G20011900	Edge1 at 0cm	0.372	0.378	0.75		
		Edge2 at 0cm	1.074	0.378	1.45		
		Edge3 at 0cm	0.510	0.378	0.89		
		Edge4 at 0cm		0.378	0.38		
		Bottom-slant of Edge 2 at 0 cm	1.167	0.378	1.55		

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 59 of 73

			1	4			
WWAN	I Rand	Exposure Position	WWAN	2.4GHz	1+4 Summed	SPLSR	Case No
VVVAIN	i Danu	Exposure Position	SAR	Bluetooth Estimated	SAR (W/kg)	OF LOI	Case No
			(W/kg)	SAR (W/kg)			
		Bottom-slant of Edge 2 at 1.3 cm	0.537	0.378	0.92		
		Edge2 at 1.4 cm	0.659	0.378	1.04		
		Bottom Face - Slant of Edge1 at 0 cm		0.378	0.38		
		Bottom Face - Slant of Edge4 at 0 cm		0.378	0.38		
	Band V	Bottom Face at 0cm	0.967	0.378	1.35		
		Edge1 at 0cm	0.091	0.378	0.47		
		Edge2 at 0cm	1.000	0.378	1.38		
		Edge3 at 0cm	0.148	0.378	0.53		
		Edge4 at 0cm		0.378	0.38		
WCDMA		Bottom-slant of Edge 2 at 0 cm	1.149	0.378	1.53		
		Bottom-slant of Edge 2 at 1.3 cm	0.521	0.378	0.90		
		Edge2 at 1.4 cm	0.343	0.378	0.72		
		Bottom Face - Slant of Edge1 at 0 cm		0.378	0.38		
		Bottom Face - Slant of Edge4 at 0 cm		0.378	0.38		
	Band II	Bottom Face at 0cm	1.082	0.378	1.46		
	Bana n	Edge1 at 0cm	0.434	0.378	0.81		
		Edge2 at 0cm	1.168	0.378	1.55		
		Edge3 at 0cm	0.653	0.378	1.03		
		Edge4 at 0cm		0.378	0.38		
		Bottom-slant of Edge 2 at 0 cm	1.191	0.378	1.57		
		Bottom-slant of Edge 2 at 1.3 cm	0.586	0.378	0.96		
		Edge2 at 1.4 cm	0.519	0.378	0.90		
		Bottom Face - Slant of Edge1 at 0 cm		0.378	0.38		
		Bottom Face - Slant of Edge4 at 0 cm		0.378	0.38		
	Dand 10	Bottom Face at 0cm	0.919	0.378	1.30		
	Band 13	Edge1 at 0cm	0.092	0.378	0.47		
		Edge2 at 0cm	0.986	0.378	1.36		
		Edge3 at 0cm	0.201	0.378	0.58		
		Edge4 at 0cm		0.378	0.38		
		Bottom-slant of Edge 2 at 0 cm	1.101	0.378	1.48		
LTE -		Bottom-slant of Edge 2 at 1.3 cm	0.579	0.378	0.96		
		Edge2 at 1.4 cm	0.483	0.378	0.86		
		Bottom Face - Slant of Edge1 at 0 cm		0.378	0.38		
		Bottom Face - Slant of Edge4 at 0 cm		0.378	0.38		
	D	Bottom Face at 0cm	1.061	0.378	1.44		
	Band 4	Edge1 at 0cm	0.464	0.378	0.84		
		Edge2 at 0cm	0.609	0.378	0.99		
		Edge3 at 0cm	0.607	0.378	0.99		
		Edge4 at 0cm		0.378	0.38		
		Bottom-slant of Edge 2 at 0 cm	1.172	0.378	1.55		

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 60 of 73

			1	2	!	3		1+2+3		
WWAI	N Band	Exposure Position	WWAN	5.2GHz / 5.3G 5.8GHz W	LAN Ant 1	5.2GHz / 5.3G 5.8GHz W	LAN Ant 2	Summed SAR	SPLSR	Case No
			SAR (W/kg)	Band	SAR (W/kg)	Band	SAR (W/kg)	(W/kg)		
		Bottom-slant of Edge 2 at 1.3 cm	1.115		· · · · · ·			1.12		
		Edge2 at 1.4 cm	1.187					1.19		
		Bottom Face - Slant of Edge1 at 0 cm		5.5GHz WLAN	0.439			0.44		
		Bottom Face - Slant of Edge4 at 0 cm				5.5GHz WLAN	1.290	1.29		
	CCMOEO	Bottom Face at 0cm	1.127	5.8GHz WLAN	0.332	5.5GHz WLAN	1.060	<mark>2.52</mark>	0.01	Case 7
	GSM850	Edge1 at 0cm	0.012	5.2GHz WLAN	0.274			0.29		
		Edge2 at 0cm	1.021					1.02		
		Edge3 at 0cm	0.325					0.33		
		Edge4 at 0cm				5.2GHz WLAN	1.080	1.08		
0014		Bottom-slant of Edge 2 at 0 cm	1.171					1.17		
GSM		Bottom-slant of Edge 2 at 1.3 cm	0.408					0.41		
		Edge2 at 1.4 cm	0.302					0.30		
		Bottom Face - Slant of Edge1 at 0 cm		5.5GHz WLAN	0.439			0.44		
		Bottom Face - Slant of Edge4 at 0 cm				5.5GHz WLAN	1.290	1.29		
	00144000	Bottom Face at 0cm	1.100	5.8GHz WLAN	0.332	5.5GHz WLAN	1.060	<mark>2.49</mark>	0.01	Case 8
	GSM1900	Edge1 at 0cm	0.372	5.2GHz WLAN	0.274			0.65		
		Edge2 at 0cm	1.074					1.07		
		Edge3 at 0cm	0.510					0.51		
		Edge4 at 0cm				5.2GHz WLAN	1.080	1.08		
		Bottom-slant of Edge 2 at 0 cm	1.167					1.17		
		Bottom-slant of Edge 2 at 1.3 cm	0.537					0.54		
		Edge2 at 1.4 cm	0.659					0.66		
		Bottom Face - Slant of Edge1 at 0 cm		5.5GHz WLAN	0.439			0.44		
		Bottom Face - Slant of Edge4 at 0 cm				5.5GHz WLAN	1.290	1.29		
	D 11/	Bottom Face at 0cm	0.967	5.8GHz WLAN	0.332	5.5GHz WLAN	1.060	<mark>2.36</mark>	0.01	Case 9
	Band V	Edge1 at 0cm	0.091	5.2GHz WLAN	0.274			0.37		
		Edge2 at 0cm	1.000					1.00		
		Edge3 at 0cm	0.148					0.15		
		Edge4 at 0cm				5.2GHz WLAN	1.080	1.08		
MCDMA		Bottom-slant of Edge 2 at 0 cm	1.149					1.15		
WCDMA		Bottom-slant of Edge 2 at 1.3 cm	0.521					0.52		
		Edge2 at 1.4 cm	0.343					0.34		
		Bottom Face - Slant of Edge1 at 0 cm		5.5GHz WLAN	0.439			0.44		
		Bottom Face - Slant of Edge4 at 0 cm				5.5GHz WLAN	1.290	1.29		
	Dandill	Bottom Face at 0cm	1.082	5.8GHz WLAN	0.332	5.5GHz WLAN	1.060	<mark>2.47</mark>	0.01	Case 10
	Band II	Edge1 at 0cm	0.434	5.2GHz WLAN	0.274			0.71		
		Edge2 at 0cm	1.168					1.17		
		Edge3 at 0cm	0.653					0.65		
		Edge4 at 0cm				5.2GHz WLAN	1.080	1.08		
		Bottom-slant of Edge 2 at 0 cm	1.191					1.19		

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 61 of 73

			1	2	:	3		1+2+3		
WWA	N Band	Exposure Position	WWAN	5.2GHz / 5.3G 5.8GHz WI		5.2GHz / 5.3G 5.8GHz WI		Summed	SPLSR	Case No
			SAR (W/kg)	Band	SAR (W/kg)	Band	SAR (W/kg)	(W/kg)		
		Bottom-slant of Edge 2 at 1.3 cm	0.586					0.59		
		Edge2 at 1.4 cm	0.519					0.52		
		Bottom Face - Slant of Edge1 at 0 cm		5.5GHz WLAN	0.439			0.44		
		Bottom Face - Slant of Edge4 at 0 cm				5.5GHz WLAN	1.290	1.29		
	Band 13	Bottom Face at 0cm	0.919	5.8GHz WLAN	0.332	5.5GHz WLAN	1.060	2.31	0.01	Case 11
	Dallu 13	Edge1 at 0cm	0.092	5.2GHz WLAN	0.274			0.37		
		Edge2 at 0cm	0.986					0.99		
		Edge3 at 0cm	0.201					0.20		
		Edge4 at 0cm				5.2GHz WLAN	1.080	1.08		
LTE		Bottom-slant of Edge 2 at 0 cm	1.101					1.10		
LIE		Bottom-slant of Edge 2 at 1.3 cm	0.579					0.58		
		Edge2 at 1.4 cm	0.483					0.48		
		Bottom Face - Slant of Edge1 at 0 cm		5.5GHz WLAN	0.439			0.44		
		Bottom Face - Slant of Edge4 at 0 cm				5.5GHz WLAN	1.290	1.29		
	Band 4	Bottom Face at 0cm	1.061	5.8GHz WLAN	0.332	5.5GHz WLAN	1.060	<mark>2.45</mark>	0.01	Case 12
	Dallu 4	Edge1 at 0cm	0.464	5.2GHz WLAN	0.274			0.74		
		Edge2 at 0cm	0.609					0.61		
		Edge3 at 0cm	0.607					0.61		
		Edge4 at 0cm				5.2GHz WLAN	1.080	1.08		
		Bottom-slant of Edge 2 at 0 cm	1.172					1.17		_

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 62 of 73

17.2 SPLSR Evaluation and Analysis

General Note:

SPLSR = (SAR₁ + SAR₂)^{1.5} / (min. separation distance, mm). If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary

	Band	Position	SAR	Gap	SAR p	eak locatio	n (m)	3D	Summed SAR	SPLSR	Simultaneous	
	вапо	Position	(W/kg)	(cm)	Х	Y	z	distance (mm)	(W/kg)	Results	SAR	
	GSM850		1.127	0	-0.0269	0.111	-0.176	195.9	2.01	0.01	Not required	
Case 1	2.4GHz WLAN Ant 1		0.879	0	0.0672	-0.0608	-0.179	195.9	2.01	0.01	Not required	
Case	GSM850	Bottom Face	1.127	0	-0.0269	0.111	-0.176	214.0	1.56	0.01	Not required	
	2.4GHz WLAN Ant 2	Dollom race	0.435	0	-0.0298	-0.103	-0.179	214.0	1.50	0.01	Not required	
	2.4GHz WLAN Ant 1		0.879	0	0.0672	-0.0608	-0.179	105.8	1.31	0.01	Not required	
	2.4GHz WLAN Ant 2		0.435	0	-0.0298	-0.103	-0.179	105.6	1.31	0.01	Not required	
	WLAN Ant 2 WWAN											

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 63 of 73

	Band	Position	SAR	Gap	SAR p	eak locatio	n (m)	3D distance	Summed SAR	SPLSR	Simultaneous
	Dang	Position	(W/kg)	(cm)	Х	Y	Z	(mm)	(W/kg)	Results	SAR
	GSM1900		1.1	0	-0.004	0.0995	-0.177	175.4	1.98	0.02	Not required
Case	2.4GHz WLAN Ant 1		0.879	0	0.0672	-0.0608	-0.179	173.4	1.90	0.02	Not required
02	GSM1900	Bottom Face	1.1	0	-0.004	0.0995	-0.177	204.1	1.54	0.01	Not required
	2.4GHz WLAN Ant 2	DOMOITT ACE	0.435	0	-0.0298	-0.103	-0.179	204.1	1.54	0.01	Not required
	2.4GHz WLAN Ant 1		0.879	0	0.0672	-0.0608	-0.179	105.8	1.31	0.01	Not required
	2.4GHz WLAN Ant 2		0.435	0	-0.0298	-0.103	-0.179	105.6	1.31	0.01	Not required
WLAN Ant 2 WLAN Ant 1											

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 64 of 73

	Donal	Besiden	SAR	Gap	SAR p	eak locatio	n (m)	3D	Summed	SPLSR	Simultaneous
	Band	Position	(W/kg)	(cm)	Х	Y	Z	distance (mm)	SAR (W/kg)	Results	SAR
	WCDMA II		1.082	0	-0.0375	0.107	-0.175	107.0	1.96	0.01	Not required
Case	2.4GHz WLAN Ant 1		0.879	0	0.0672	-0.0608	-0.179	197.8	1.96	0.01	Not required
04	WCDMA II	Bottom Face	1.082	0	-0.0375	0.107	-0.175	210.2	1.52	0.01	Not required
	2.4GHz WLAN Ant 2		0.435	0	-0.0298	-0.103	-0.179	210.2	1.52	0.01	Not required
	2.4GHz WLAN Ant 1		0.879	0	0.0672	-0.0608	-0.179	105.8	1.31	0.01	Not required
	2.4GHz WLAN Ant 2		0.435	0	-0.0298	-0.103	-0.179	105.6		0.01	Not required
		_WLAN A	at 2								
					•			WWAN			

WLAN Ant 1

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 65 of 73

	Donal	Decition	SAR	Gap	SAR p	eak locatio	n (m)	3D	Summed	SPLSR	Simultaneous
	Band	Position	(W/kg)	(cm)	Х	Y	Z	distance (mm)	SAR (W/kg)	Results	SAR
	LTE Band 4		1.061	0	0.0005	0.103	-0.176	170.0	1.94	0.02	Not required
Case	2.4GHz WLAN Ant 1		0.879	0	0.0672	-0.0608	-0.179	176.9	1.94	0.02	Not required
06	LTE Band 4	Bottom Face	1.061	0	0.0005	0.103	-0.176	200.2	4.50	0.01	Not required
	2.4GHz WLAN Ant 2		0.435	0	-0.0298	-0.103	-0.179	208.2	1.50	0.01	Not required
	2.4GHz WLAN Ant 1		0.879	0	0.0672	-0.0608	-0.179	105.0	4.24	0.01	Not required
	2.4GHz WLAN Ant 2		0.435	0	-0.0298	-0.103	-0.179	105.8	1.31	0.01	Not required
		WLAN A	nt 2		•		_	ww			

WLAN Ant 1

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 66 of 73

	Danid	Position	SAR	Gap	SAR po	eak locatio	n (m)	3D	Summed	SPLSR	Simultaneous
	Band	Position	(W/kg)	(cm)	Х	Υ	Z	distance (mm)	SAR (W/kg)	Results	SAR
	GSM1900		1.1	0	-0.004	0.0995	-0.177	172.8	1.43	0.01	Not required
Case	5.8GHz WLAN Ant 1		0.332	0	0.067	-0.058	-0.179	172.0	1.43	0.01	Not required
80	GSM1900	Bottom Face	1.1	0	-0.004	0.0995	-0.177	213.1	2.16	0.01	Not required
	5.5GHz WLAN Ant 2	Bottom race	1.06	0	-0.043	-0.11	-0.174	213.1	2.10	0.01	Not required
	5.8GHz WLAN Ant 1		0.332	0	0.067	-0.058	-0.179	121.8	1.39	0.01	Not required
	5.5GHz WLAN Ant 2		1.06	0	-0.043	-0.11	-0.174	121.0	1.59	0.01	Not required
		w	LAN An	ıt 1				VWAN			

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 67 of 73

	Band	Position	SAR	Gap	SAR pe	eak locatio	n (m)	3D	Summed	SPLSR	Simultaneous
	Band	Position	(W/kg)	(cm)	Х	Y	Z	distance (mm)	SAR (W/kg)	Results	SAR
	WCDMA II		1.082	0	-0.0375	0.107	-0.175	195.3	1.41	0.01	Not required
Case	5.8GHz WLAN Ant 1		0.332	0	0.067	-0.058	-0.179	193.3	1.41	0.01	Not required
10	WCDMA II	Bottom Face	1.082	0	-0.0375	0.107	-0.175	217.1	2.14	0.01	Not required
	5.5GHz WLAN Ant 2	Bollom race	1.06	0	-0.043	-0.11	-0.174	217.1	2.14	0.01	Not required
	5.8GHz WLAN Ant 1		0.332	0	0.067	-0.058	-0.179	121.8	1.39	0.01	Not required
	5.5GHz WLAN Ant 2		1.06	0	-0.043	-0.11	-0.174	121.0	1.59	0.01	Not required
		WLAN Ant 2	LAN An	t1				WWAN			

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 68 of 73

Test Engineer: Nick Yu, Tom Jiang, Galen Zhang, Jerry Hu, Aaron Chen, Jack Wu, Vic Yang, Frank Wu, Lawrence Chen, and San Lin

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 69 of 73

18. <u>Uncertainty Assessment</u>

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience, and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in table below.

Uncertainty Distributions	Normal	Rectangular	Triangular	U-Shape
Multi-plying Factor ^(a)	1/k ^(b)	1/√3	1/√6	1/√2

- (a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity
- (b) κ is the coverage factor

Table 18.1. Standard Uncertainty for Assumed Distribution

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in the following tables.

Report Number : FA432436-10 Report Version : Rev. 02 Page Number : 70 of 73

Error Description	Uncertainty Value (±%)	Probability Distribution	Divisor	Ci (1g)	Ci (10g)	Standard Uncertainty (1g)	Standard Uncertainty (10g)
Measurement System							
Probe Calibration	6.0	Normal	1	1	1	± 6.0 %	± 6.0 %
Axial Isotropy	4.7	Rectangular	√3	0.7	0.7	± 1.9 %	± 1.9 %
Hemispherical Isotropy	9.6	Rectangular	√3	0.7	0.7	± 3.9 %	± 3.9 %
Boundary Effects	1.0	Rectangular	√3	1	1	± 0.6 %	± 0.6 %
Linearity	4.7	Rectangular	√3	1	1	± 2.7 %	± 2.7 %
System Detection Limits	1.0	Rectangular	√3	1	1	± 0.6 %	± 0.6 %
Readout Electronics	0.3	Normal	1	1	1	± 0.3 %	± 0.3 %
Response Time	0.8	Rectangular	√3	1	1	± 0.5 %	± 0.5 %
Integration Time	2.6	Rectangular	√3	1	1	± 1.5 %	± 1.5 %
RF Ambient Noise	3.0	Rectangular	√3	1	1	± 1.7 %	± 1.7 %
RF Ambient Reflections	3.0	Rectangular	√3	1	1	± 1.7 %	± 1.7 %
Probe Positioner	0.4	Rectangular	√3	1	1	± 0.2 %	± 0.2 %
Probe Positioning	2.9	Rectangular	√3	1	1	± 1.7 %	± 1.7 %
Max. SAR Eval.	1.0	Rectangular	√3	1	1	± 0.6 %	± 0.6 %
Test Sample Related							
Device Positioning	2.9	Normal	1	1	1	± 2.9 %	± 2.9 %
Device Holder	3.6	Normal	1	1	1	± 3.6 %	± 3.6 %
Power Drift	5.0	Rectangular	√3	1	1	± 2.9 %	± 2.9 %
Phantom and Setup							
Phantom Uncertainty	4.0	Rectangular	√3	1	1	± 2.3 %	± 2.3 %
Liquid Conductivity (Target)	5.0	Rectangular	√3	0.64	0.43	± 1.8 %	± 1.2 %
Liquid Conductivity (Meas.)	2.5	Normal	1	0.64	0.43	± 1.6 %	± 1.1 %
Liquid Permittivity (Target)	5.0	Rectangular	√3	0.6	0.49	± 1.7 %	± 1.4 %
Liquid Permittivity (Meas.)	2.5	Normal	1	0.6	0.49	± 1.5 %	± 1.2 %
Combined Standard Uncertainty						± 11.0 %	± 10.8 %
Coverage Factor for 95 %						K:	=2
Expanded Uncertainty						± 22.0 %	± 21.5 %

Table 18.2. Uncertainty Budget for frequency range 300 MHz to 3 GHz

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 71 of 73

Error Description	Uncertainty Value (±%)	Probability Distribution	Divisor	Ci (1g)	Ci (10g)	Standard Uncertainty (1g)	Standard Uncertainty (10g)
Measurement System	•				•	•	
Probe Calibration	6.55	Normal	1	1	1	± 6.55 %	± 6.55 %
Axial Isotropy	4.7	Rectangular	√3	0.7	0.7	± 1.9 %	± 1.9 %
Hemispherical Isotropy	9.6	Rectangular	√3	0.7	0.7	± 3.9 %	± 3.9 %
Boundary Effects	2.0	Rectangular	√3	1	1	± 1.2 %	± 1.2 %
Linearity	4.7	Rectangular	√3	1	1	± 2.7 %	± 2.7 %
System Detection Limits	1.0	Rectangular	√3	1	1	± 0.6 %	± 0.6 %
Readout Electronics	0.3	Normal	1	1	1	± 0.3 %	± 0.3 %
Response Time	0.8	Rectangular	√3	1	1	± 0.5 %	± 0.5 %
Integration Time	2.6	Rectangular	√3	1	1	± 1.5 %	± 1.5 %
RF Ambient Noise	3.0	Rectangular	√3	1	1	± 1.7 %	± 1.7 %
RF Ambient Reflections	3.0	Rectangular	√3	1	1	± 1.7 %	± 1.7 %
Probe Positioner	0.8	Rectangular	√3	1	1	± 0.5 %	± 0.5 %
Probe Positioning	9.9	Rectangular	√3	1	1	± 5.7 %	± 5.7 %
Max. SAR Eval.	4.0	Rectangular	√3	1	1	± 2.3 %	± 2.3 %
Test Sample Related							
Device Positioning	2.9	Normal	1	1	1	± 2.9 %	± 2.9 %
Device Holder	3.6	Normal	1	1	1	± 3.6 %	± 3.6 %
Power Drift	5.0	Rectangular	√3	1	1	± 2.9 %	± 2.9 %
Phantom and Setup							
Phantom Uncertainty	4.0	Rectangular	√3	1	1	± 2.3 %	± 2.3 %
Liquid Conductivity (Target)	5.0	Rectangular	√3	0.64	0.43	± 1.8 %	± 1.2 %
Liquid Conductivity (Meas.)	2.5	Normal	1	0.64	0.43	± 1.6 %	± 1.1 %
Liquid Permittivity (Target)	5.0	Rectangular	√3	0.6	0.49	± 1.7 %	± 1.4 %
Liquid Permittivity (Meas.)	2.5	Normal	1	0.6	0.49	± 1.5 %	± 1.2 %
Combined Standard Uncertainty	/				•	± 12.8 %	± 12.6 %
Coverage Factor for 95 %						K:	=2
Expanded Uncertainty						± 25.6 %	± 25.2 %

Table 18.3. Uncertainty Budget for frequency range 3 GHz to 6 GHz

Report Number : FA432436-10
Report Version : Rev. 02
Page Number : 72 of 73

19. References

- [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992
- [3] IEEE Std. 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- [4] SPEAG DASY System Handbook
- [5] FCC KDB 248227 D01 v01r02, "SAR Measurement Procedures for 802.11 a/b/g Transmitters", May 2007
- [6] FCC KDB 447498 D01 v05r02, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Feb 2014
- [7] FCC KDB 941225 D01 v02, "SAR Measurement Procedures for 3G Devices CDMA 2000 / Ev-Do / WCDMA / HSDPA / HSPA", October 2007
- [8] FCC KDB 941225 D02 v02r02, "SAR Guidance for HSPA, HSPA+, DC-HSDPA and 1x-Advanced", May 2013.
- [9] FCC KDB 941225 D03 v01, "Recommended SAR Test Reduction Procedures for GSM / GPRS / EDGE", December 2008
- [10] FCC KDB 941225 D05 v02r03, "SAR Evaluation Considerations for LTE Devices", Dec 2013
- [11] FCC KDB 616217 D04 v01r01, "SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers", May 2013
- [12] FCC KDB 644545 D01 v01r02, "Guidance for IEEE 802.11ac and Pre-ac Device Emission Testing", Oct 2013.
- [13] FCC KDB 865664 D01 v01r03, "SAR Measurement Requirements for 100 MHz to 6 GHz", Feb
- [14] FCC KDB 865664 D02 v01r01, "RF Exposure Compliance Reporting and Documentation Considerations" May 2013.

Report Number : FA432436-10 Report Version : Rev. 02 Page Number : 73 of 73