Finals Cheatsheet

m. zaidan

(for sem1 ay24/25)

Multiplication Principle

If r different experiments are to be performed sequentially with n outcomes, there are $n_1n_2\dots n_r$ number of possible outcomes.

Addition Principles

If an experiment can be done in k different procedures that ${\bf do}$ not overlap, there are k_1+k_2,\ldots

Permutation

The selection and arrangement of r objects out of n. Order is taken into consideration $P_r^n=\frac{n!}{(n-r)!}=n(n-1)(n-2)\dots(n-(r-1))$

Combination

The selection of r objects out of n where order is not taken into consideration $\binom{n}{r} = \frac{P_r^n}{r} = \frac{n!}{r!(n-r)!}$

♦ Inclusion Exclusion Principle

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Conditional probability of B given A: $P(B|A) = \frac{P(A\cap B)}{P(A)}$ Independence: $A \perp B \Leftrightarrow (P(A\cap B) = P(A)P(B))$ Law of Total Probability: $P(B) = \sum_{i=1}^n P(B\cap A_i) = \sum_{i=1}^n P(A_i)P(BA_i)$ Bayes Theorem: $P(A_k|B) = \frac{P(A_k)P(BA_k)}{\sum_{i=1}^n P(A_i)P(BA_i)}$

Discrete Random Variables

Properties:

- 1. $f(x_i) \geq 0$ for all $x_i \in R_X$
- 2. f(x) = 0 for all $x \notin R_X$
- 3. $\sum_{i=1}^{\infty} f(x_i) = 1$ or $\sum_{x_i \in R_X} f(x_i) = 1$

Continuous Random Variables

Properties:

- 1. Non-negativity $f(x) \geq 0$ for all $x \in R_X$, f(x) = 0 for $x
 otin R_X$
- 2. Sum of all probabilities add up to $1\int_{R_X}f(x)dx=1$. This particular condition can be represented as $\int_{-\infty}^\infty f(x)dx=1$
- 3. For any a, b where $a \leq b$, $P(a \leq X \leq b) = \int_a^b f(x) dx$

Cumulative Distribution Function (cdf)

Properties:

- 1. Non-decreasing: $x_1 < x_2 \implies F(x_1) \le F(x_2)$
- 2. Right-continuous: $F(a) = \lim_{x \to a^+} F(x)$
- 3. Convergence to 0 and 1 in limits: $\lim_{x \to -\infty} F(x) = 0$, $\lim_{x \to \infty} F(x) = 1$

Discrete random variables: $\sum_{t \in R_X; t \leq X} P(X = t)$ Continuous random variables: $F(x) = \int_{-\infty}^{x} f(t) dt$

Expectation

$$\mu_X = E(X) = \int_{-\infty}^{\infty} x f(x) dx = \int_{x \in R^X} x f(x) dx$$

Properties

- 1. E(aX + b) = aE(X) + b
- 2. E(X + Y) = E(X) + E(Y)
- 3. $E[g(X)] = \sum_{x \in R_X} g(x) f(x)$ if X is discrete, $E[g(X)] = \int_{R_X} g(x) f(x)$ if X continuous

Variance

$$\sigma_x^2 = V(X) = E(X - \mu_X)^2$$

$$V(X) = E(X^2) - [E(X)]^2$$

E(X²) = V(X) + E(X)²

With f(x),

- $V(X) = \int_{-\infty}^{\infty} (x \mu_X)^2 f(x) dx$ (continuous)
- $V(X) = \sum_{x \in R_X} (x \mu_X)^2 f(x)$ (discrete)

Distributions

Negative Binomial: Used to find probability of the k^{th} success after n attempts

Geometric: 1st attempt

Exponential, Geometric: Memoryless P(X>x|X>y)=P(X>x-y)

Approximation

Poisson Approximation to Binomial

 $X\sim Bin(n,p)$. Suppose that $n\to\infty, p\to 0$ such that $\lambda=np$ remains a constant. Approximately, $X\sim Poisson(np)$.

O Good approximation:

 $n \geq 20, p \leq 0.05$ or $n \geq 100, np \leq 10$

$$\lim_{p\to 0; n\to \infty} P(X=x) = \frac{e^{-np}(np)^x}{x!}$$

& Rule of thumb

$$np>5, n(1-p)>5$$

Continuity correction (Binomial to normal)

The continuity correction factor accounts for the fact that a normal distribution is continuous, and a binomial is not.

Generally, it just subtracts or adds 0.5 to the x value.

$$\begin{split} &P(x=k)\approx P\left(k-\frac{1}{2} < X < k+\frac{1}{2}\right) \\ &P(a \le X \le b)\approx P\left(a-\frac{1}{2} < X < b+\frac{1}{2}\right) \\ &P(a < X \le b)\approx P\left(a+\frac{1}{2} < X < b+\frac{1}{2}\right) \\ &P(a \le X < b)\approx P\left(a-\frac{1}{2} < X < b-\frac{1}{2}\right) \\ &P(a \le X < b)\approx P\left(a+\frac{1}{2} < X < b-\frac{1}{2}\right) \\ &P(a < X < b)\approx P\left(a+\frac{1}{2} < X < b-\frac{1}{2}\right) \\ &\text{generally,} \\ &P(x \le c)\approx P(0 \le X \le c)\approx P\left(\frac{-1}{2} < X < c+\frac{1}{2}\right) \\ &P(x > c)\approx P(c \le X \le n)\approx P\left(c+\frac{1}{2} < X < n+\frac{1}{2}\right) \end{split}$$

Sampling Distributions

子 Theorem 6

Related to the center and spread of sampling distribution.

For random samples of size n taken from an infinite population with mean μ_X and variance σ_X^2 , the sampling distribution of the sample mean \bar{X} has mean μ_X and variance $\frac{\sigma_X^2}{n}$.

$$\mu_{\bar{X}} = E(\bar{X}) = \mu_X \text{ and } \sigma_{\bar{X}}^2 = V(\bar{X}) = \frac{\sigma_X^2}{r}$$

F Law of Large Numbers (LLN)

If X_1,\dots,X_n are independent random variables with the same mean μ and variance σ^2 , then for any $\epsilon\in\mathbb{R},$

$$P(|ar{X}-\mu|>\epsilon) o 0 ext{ as } n o \infty$$

F Central Limit Theorem (CLT

If \bar{X} is the mean of a random sample of size n taken from a population having mean μ and finite variance σ^2 , then as $n \to \infty$:

$$rac{ar{X} - \mu}{rac{\sigma}{\sqrt{n}}}
ightarrow Z \sim N(0,1)$$

Equivalently, this means:

$$ar{X}
ightarrow N(\mu, rac{\sigma^2}{n})$$

The CLT states that, under rather general condiitions, for large n, sums and means of random samples drawn from a population follows the normal distribution closely. (If the random sample comes from a normal population, \bar{X} is normally distributed, reaardless.)

Rule of thumb

The mean of a large number of independent samples will have an approximately normal distribution.

- If population is symmetric with no outliers, good approximation to normality appears after as few as 15-20 samples.
- If population is moderately skewed, such as exponential or χ^2 , then it can take between 30-50 samples before getting a good approximation
- If population is extremely skewed, CLT may not be appropriate even with a lot of samples.

Distributions

\square χ^2 Distribution

Let Z be a standard normal random variable. A random variable with the same distribution as Z^2 is called a χ^2 random variable with one degree of freedom.

Let Z_1,\dots,Z_n be n independent and identically distributed standard normal random variables. A random variable with the same distribution as $Z_1^2+\dots+Z_n^2$ is called a x^2 random variable with n degrees of freedom.

We denote a χ^2 random variable with n degrees of freedom as $\chi^2(n)$.

Properties of the χ^2 distribution:

- 1. If $Y \sim \chi^2(n)$, then E(Y) = n, and V(Y) = 2n
- 2. For large n, $\chi^2(n)$ is approximately N(n,2n)
- 3. If Y_1,Y_2 are independent χ^2 random variables with m,n degrees of freedom respectively, then Y_1+Y_2 is a χ^2 random variable with m+n degrees of freedom.
- 4. The χ^2 distribution is a family of curves, each determined by degrees of freedom n. All density functions have a long right tail.

f Theorem

If S^2 is the variance of a random sample of size n taken from a normal population having the variance σ^2 , then the random variable:

$$\frac{(n-1)S^2}{\sigma^2} = \sum_{i=1}^n \frac{(X_i - \bar{X})^2}{\sigma^2}$$

has a χ^2 distribution with n-1 degrees of freedom.

Suppose $Z \sim N(0,1)$ and $U \sim \chi^2(n)$. If Z and U are independent, then

$$T = \frac{Z}{\sqrt{\frac{U}{n}}}$$

follows the t-distribution with n degrees of freedom.

Properties:

- t-distribution with n degrees of freedom is denoted t(n)
- * t- distribution approaches N(0,1) as parameter $\to \infty$. When $n \ge 30$, we can replace it by N(0,1) .
- If $T \sim t(n)$, then E(T) = 0 and $V(T) = \frac{n}{n-2}$ for n > 2.
- * Graph of t-distribution is symmetric about the vertical axis and resembles the graph of the standard normal distribution.

f Theorem 1

If X_1,\dots,X_n are independent and identically distributed normal random variables with mean μ and variance σ^2 then

$$\frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}}$$

follows a t-distribution with n-1 degrees of freedom.

☐ F−Distribution

Suppose $U \sim \chi^2(m)$ and $V \sim \chi^2(n)$ are independent. Then the distribution of the random variable

$$F = \frac{\frac{U}{m}}{\frac{V}{n}}$$

is called a F-distribution with (m,n) degrees of freedom.

Properties:

- ${}^{\bullet}$ The F- distribution with (m,n) degrees of freedom is denoted by F(m,n)
- If $X \sim F(m,n)$, then

$$E(X) = \frac{n}{n-2} \text{ for } n>2$$

$$and$$

$$V(X) = \frac{2n^2(m+n-2)}{m(n-2)^2(n-4)} \text{ for } n>4$$

- * If $F \sim F(n,m)$, then $\frac{1}{F} \sim F(m,n)$. This follows immediately from the definition of the F-distribution.
- * Values of F—distribution can be found in the statistical tables or software. The values of interests are $F(m,n;\alpha)$ such that

$$P(F > F(m, n; \alpha)) = \alpha, F \sim F(m, n)$$

It can be shown

$$F(m, n; 1 - \alpha) = \frac{1}{F(n, m; \alpha)}$$

Estimator

Unbiased estimator

Let $\hat{\Theta}$ be an estimator of θ .

Then, $\hat{\Theta}$ is a random variable based on the sample.

If $E(\hat{\Theta}) = \theta$, $\hat{\Theta}$ is an unbiased estimator of θ .

■ Maximum error of estimate

$$E=z_{rac{lpha}{2}} imesrac{\sigma}{\sqrt{n}}$$

Confidence Intervals

When $ar{X}\pm E$ has probability (1-lpha) of containing μ ,

- everytime we take samples and construct the interval estimator, a different confidence interval is computed.
- * some confidence intervals contains $\mu\text{,}$ and some don't.

Since μ is not known,

- $\,{}^{\circ}\,$ there is no way to determine if a confidence interval contains μ or not.
- if the procedure is repeated many times, about $(1-\alpha)$ of the many confidence intervals gotten will contain the true parameter.
 - if we repeat the procedure to get 0.95 confidence intervals, 0.95 of the confidence intervals computed will contain the true parameter.

Errors

Type I error

The rejection of H_0 when H_0 is true.

The probability of a type I error is known as the significance of the test.

 $\alpha = P(\text{type 1 error}) = P(\text{reject } H_0 | H_0 \text{ is true})$

Type II error

The non-rejection of H_0 when H_0 is false.

The probability of a type II error is referred to as β .

F Power of test

 $\beta = P(\text{type 2 error}) = P(\text{do not reject } H_0|H_0 \text{ is false})$

Power of the test

The power of the test is the given probability that H_0 is rejected, given that it is false.

F Power of te

$$1 - \beta = 1 - P(\text{type 2 error}) = 1 - P(\text{do not reject } H_0|H_0 \text{ is false})$$

H_0	True	False
Reject	Type I error	CORRECT
Do Not Reject	CORRECT	Type II error

At the same sample size, reducing the type I error results in a higher type II error,

To reduce both errors, increase the sample size.

Rejection Regions

$$\begin{split} \mu &\neq \mu_0 \text{: } 2P(T < -|t|) \\ \mu &< \mu_0 \text{: } P(T < -|t|) \\ \mu &> \mu_0 \text{: } P(T > t) = P(T < -|t|) \end{split}$$