Members: GAURAV | DHAVAL | KRISH | SIDDHANT Prediction for number of reverse vending machines

import pandas as pd import numpy as np import matplotlib.pyplot as plt from $\,$ sklearn.feature_selection import SelectKBest from sklearn.feature_selection import selectRest from sklearn.feature_selection import chi2 import seaborn as sns from sklearn import model_selection from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split

total_waste=pd.read_csv("final dataset 1.csv")

total_waste

	Sr.no	state	2011	2012	2013	2014	2015	2016	2017	
0	1	Andaman &	2675.00	2555.00	2123.000	2737.00	1583.00	567.0000	983.000	
1	2	Nicobar Andhra Pradesh	28888.00	243820.00	243820.000	128480.00	128480.00	82863.0000	74588.000	
2	3	Arunachal	453.00	673.00	863.000	1273.00	1454.00	3836.0000	6000.000	
3	4	Pradesh Assam	1226.00	1116.00	781.000	1363.00	24010.00	24030.0000	28153.000	
4	5	Bihar	1527.00	1673.00	1723.000	1893.00	2314.00	2280.0000	2280.000	
5	6	Chandigarh	5548.00	4964.00	4818.000	8992.00	13167.00	21516.7500	12775.000	
6	7	Chhattisgarh	4678.00	5840.00	6123.000	6345.00	6897.00	7300.0000	6650.000	
7	8	Daman	1274.00	1347.00	14736.000	1573.00	1637.00	1733.0000	1836.000	
8	9	Delhi	261234.00	251850.00	23456.000	24567.00	128649.00	232732.0000	228771.000	2
9	10	Goa	415.00	1642.50	117.730	104.00	106.00	28273.0000	26242.000	
10	11	Gujarat	23666.00	251796.65	251796.650	265568.20	269294.88	271092.0000	269808.000	3
11	12	Haryana	52883.00	55480.00	50332.690	44536.00	32452.00	23369.0900	46353.000	
12	13	Himachal	202.67	106.72	2326.800	1004.00	1577.00	2525.0000	2677.000	
		Pradesh								
13	14	Jammu &	10273.00	11748.00	7832.000	4164.45	6243.20	4645.0000	27870.000	
14	15	Kashmir Jharkhand	16691.05	81030.00	75817.800	35262.36	35853.52	36772.0000	43644.000	
15	16	Karnataka	67533.00	77247.00	77247.000	103423.00	129600.00	419600.0000	346188.000	2
16	17	Kerala	109500.00	50370.00	27794.000	26423.00	25566.00	21663.0000	15325.000	1
17	18	Lakshadweep	109.00	110.00	120.000	150.00	200.00	170.0000	160.000	
18	19	Madhya Pradesh	16887.00	23400.00	22973.950	27763.60	30884.47	50457.0700	61037.000	
19	20	Maharashtra	1045.24	10950.00	587235.000	537735.00	469098.00	21420.3300	272652.000	4
20	21	Manipur	3041.00	4380.00	5475.000	2562.00	3041.00	2732.0000	2423.000	
21	22	Meghalaya	6773.00	4599.00	4015.000	13.94	13.94	13.2650	15.096	
22	23	Mizoram	32536.00	1682.50	45625.000	45625.00	6396.00	55480.0000	3234.000	
23	24	Nagaland	3846.00	5736.00	6786.000	8977.00	10237.00	12836.0000	14052.500	
24	25	Odisha	600.00	2902.00	896.618	1871.13	27859.17	6890.8050	12092.205	
25	26	Pondicherry	3284.00	4927.50	10374.000	16425.00	10376.00	9252.2500	8842.500	
26	27	Punjab	31000.00	22664.00	377.765	43282.27	48073.22	163423.4000	54066.100	1
27	28	Sikkim	1047.00	1668.05	1245.000	894.00	575.00	102.7000	98.000	
28	29	Tamil Nadu	22746.00	205724.95	17884.000	16784.00	150323.47	79114.7920	50873.000	4
29	30	Telangana	17895.00	19554.00	243820.000	123005.00	120961.00	15231.0000	17562.000	1
30	31	Tripura	182.50	1095.00	1168.000	33.00	31.00	30.0000	28.500	

df1=pd.DataFrame(total_waste)

#state wise average for machines quantity prediction df1['Mean'] = df1.mean(axis=1) df1

<ipython-input-238-610f5af04074>:2: FutureWarning: Dropping of nuisance columns in DataFrame reductions

df1['Mean'] = df1.mean(axis=1)

2016 Sr.no state 2011 2012 2013 2014 2015 2017

Andaman & 2575.00 2123.000 2737.00 1583.00 567.0000 983.000

/30/23, 8:44 PM						ŀ	nackthonF	inal.ipynb -	- Colabora	atory				
1	2	Andhra 28888.00 Pradesh	243820.00	243820.000	0	128480.00	128480.00	82863.0000)	74588.000				
2	3	Arunachal 453.00 Pradesh	673.00	863.000	1273.00	1454.00	3836.0000	6000.000						
3	4	Assam	1226.00	1116.00	781.000	1363.00	24010.00	24030.0000)	28153.000				
4	5	Bihar	1527.00	1673.00	1723.000	1893.00	2314.00	2280.0000	2280.000					
5	6	Chandigarh	ı	5548.00	4964.00	4818.000	8992.00	13167.00	21516.7500	0	12775.000			
6	7	Chhattisgai	rh	4678.00	5840.00	6123.000	6345.00	6897.00	7300.0000	6650.000				
7	8	Daman	1274.00	1347.00	14736.000	1573.00	1637.00	1733.0000	1836.000					
8	9	Delhi	261234.00	251850.00	23456.000	24567.00	128649.00	232732.000	00	228771.000)	2		
9	10	Goa	415.00	1642.50	117.730	104.00	106.00	28273.0000)	26242.000				
10	11	Gujarat	23666.00	251796.65	251796.650	0	265568.20	269294.88	271092.000	00	269808.000) ;	3	
11	12	Haryana	52883.00	55480.00	50332.690	44536.00	32452.00	23369.0900)	46353.000				
12	13	Himachal 202.67 Pradesh	106.72	2326.800	1004.00	1577.00	2525.0000	2677.000						
13	14	Jammu & 10273.00 Kashmir	11748.00	7832.000	4164.45	6243.20	4645.0000	27870.000						
14	15	Jharkhand	16691.05	81030.00	75817.800	35262.36	35853.52	36772.0000)	43644.000				
15	16	Karnataka	67533.00	77247.00	77247.000	103423.00	129600.00	419600.000	00	346188.000)	2		
16	17	Kerala	109500.00	50370.00	27794.000	26423.00	25566.00	21663.0000)	15325.000	1			
17	18	Lakshadwe	ер	109.00	110.00	120.000	150.00	200.00	170.0000	160.000				
18	19	Madhya 16887.00 Pradesh	23400.00	22973.950	27763.60	30884.47	50457.0700)	61037.000					
19	20	Maharashti	ra	1045.24	10950.00	587235.000)	537735.00	469098.00	21420.3300)	272652.000		4
20	21	Manipur	3041.00	4380.00	5475.000	2562.00	3041.00	2732.0000	2423.000					
21	22	Meghalaya	6773.00	4599.00	4015.000	13.94	13.94	13.2650	15.096					
Double-click (o	r enter) to edit ₂₂	23	Mizor	am 3253	36.00 16	882.50 4	5625.000	45625 00	6396.0	00	55480.0000		3234.000
23	24	Nagaland					8977.00	10237.00	12836.0		52.500	00.0000		020000
plt.bar 25 (x=df	figsiz 16Odish f1[26':	e=25 na)) plt.t: state'Pond 27 Mean'])	itle(licherry], e 3 Punjab ³	3284.00	4927.50	in Past de 10374.000 .765 43282.	16425.00	27859.17 10376.00 48073.22 575.00	6890.8 9252.2 163423.4 102.7	2500 884 2000 5406	92.205 92.500 96.100 98.000			
<pre>plt.legend()</pre>	ilts 28 I Nadu	2	29() 1	7895.00		17884.000 243820.000) 16784.00)123005.00		79114.7 15231.0		73.000			
	30 31	Telanga Tripura	na 182.50	1095.00	1168.000	33.00	31.00	30.0000	28.500		1			

31 32 Uttar Pradesh 56214.00 72351.00 86222.000 93597.97 130777.39 150265.0000 22003.000 2 WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label <matplotlib.legend.Legend at 0x7f45c5674190>

([0, 1, 2, 3, 4, 5, 6, 7, 8],

```
x = ['2011','2012','2013','2014','2015','2016','2017','2019']
y = df1['2019']
```

```
plt.style.use('fivethirtyeight')

plt.figure(figsize=(29,26))
y=mean_year fig =
plt.figure()
ax = fig.add_axes([0,0,1,1])
Years = ['2011-2012','2012-2013','2013-2014','2014-2015','2015-2016','2016-2017','2017-2018','2018-2019','2019-2020']
plt.title("Increase in Plastic Waste in Past decade\n") ax.bar(Years,y,width=0.5) plt.xlabel("Year")
plt.ylabel("Tonnes") plt.xticks(rotation=90)
```


[Text(0, 0, ''), Text(0, 0, ''),

#here 1.91625 tonnes is the calculation for each machine capacity for the year df1['Number of reverse vending machines']=df1["Mean"]//1.91625 df1

	Sr.no	state	201	L1 2	012	2013	2014	2015	2016	5	2017
0	1	Andaman 8 2675.00 Nicoba	2555.00	2123.000	2737.00	1583.00	567.0000	983.000			
1	2	Andhra 28888.00 Pradesh	243820.00	243820.00	0	128480.00	128480.00	82863.000	0	74588.00	00
2	3	Arunacha 453.00 Pradesh	673.00	863.000	1273.00	1454.00	3836.0000	6000.000			
3	4	Assam	1226.00	1116.00	781.000	1363.00	24010.00	24030.000	0	28153.00	00
4	5	Bihar	1527.00	1673.00	1723.000	1893.00	2314.00	2280.0000	2280.000		
5	6	Chandigarh 12775.000		5548.00	4964.00	4818.000	8992.00	13167.00	21516.750	0	
6	7	Chhattisga	rh	4678.00	5840.00	6123.000	6345.00	6897.00	7300.0000	6650.000)
7	8	Daman	1274.00	1347.00	14736.000	1573.00	1637.00	1733.0000	1836.000		
8	9	Delhi 2	261234.00	251850.00	23456.000	24567.00	128649.00	232732.00	00	228771.0	000
9	10	Goa	415.00	1642.50	117.730	104.00	106.00	28273.000	0	26242.00	00
10	11	Gujarat 269808.00	23666.00 0	251796.65 3	251796.65	0	265568.20	269294.88	271092.00	00	
11	12	Haryana	52883.00	55480.00	50332.690	44536.00	32452.00	23369.090	0	46353.00	00
12	13	Himacha 202.67 Pradesh	106.72	2326.800	1004.00	1577.00	2525.0000	2677.000			
13	14	Jammu 8 10273.00 Kashmi	11748.00	7832.000	4164.45	6243.20	4645.0000	27870.000			
14	15	Jharkhand	16691.05	81030.00	75817.800	35262.36	35853.52	36772.000	0	43644.00	00
15	16	Karnataka 2	67533.00	77247.00	77247.000	103423.00	129600.00	419600.000	00	346188.0	000
16	17	Kerala	109500.00	50370.00	27794.000	26423.00	25566.00	21663.000	0	15325.00	00 1
17	18	Lakshadwe	еер	109.00	110.00	120.000	150.00	200.00	170.0000	160.000	
18	19	Madhya 16887.00 Pradesh	23400.00	22973.950	27763.60	30884.47	50457.0700	0	61037.000		

```
from numpy.lib.arraysetops import setdiff1d m1=df1['2011'].mean() m2=df1['2012'].mean() m3=df1['2013'].mean() m4=df1['2014'].mean() m5=df1['2015'].mean() m6=df1['2016'].mean() m7=df1['2017'].mean() m8=df1['2018'].mean() m9=df1['2019'].mean() sum_m=df1['Number of reverse vanding machinos'].sum()
 vending machines'].sum()
 mean_year=[m1,m2,m3,m4,m5,m6,m7,m8,m9] mean_year
sum_m
```

994260.0

x= df1.iloc[:,2:11] y= df1.iloc[:,-2]

Double-click (or enter) to edit

```
plt.style.use('fivethirtyeight')
plt.figure(figsize=(19,16)) plt.title("Machines
Required Per State Initially\n")
plt.bar(x=df1['state'],
        height=df1['Number of reverse vending
plt.xticks(rotation=90)
plt.rcdefaults()
plt legend()
plt.legend()
```

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label <matplotlib.legend.Legend at 0x7f45c56eb9d0>

df2=pd.read_csv("rate.csv")
df2

Year PlasticProductionWaste MachineCapacity Recycle

0	2020	3419480	1755140	-1664340
1	2021	3522046	1807794	-1714252
2	2022	3627726	1898184	-1729542
3	2023	3736558	2031057	-1705501
4	2024	3848654	2213852	-1634802
5	2025	3964114	2634483	-1329631
6	2026	4083037	3424829	-658208
7	2027	4205529	3546902	-658627
8	2028	4331694	3972530	-359164
9	2029	4461645	4319644	-142001
10	2030	4595499	4489528	-105971

Plastic Waste Generation is Increasing by 2% to 7% For rst decade. Machine Numbers Increasing by 1%-2% per Year and Machine Recycling Capacity Increasing by 3%-4% per Year respectively.


```
plt.style.use('fivethirtyeight')
plt.title(" Plastic Bottle Waste Generation vs Our Machine Capacity
First 10 yrs results\n")
plt.scatter(df2['Year'],df2['MachineCapacity'],label='Machine
Production')
plt.scatter(df2['Year'],df2['PlasticProductionWaste'],label='Plastic
Waste') plt.xlabel("Year") plt.ylabel("million Tonnes") plt.rcdefaults()
plt.legend()
```

<matplotlib.legend.Legend at 0x7f45c595ac40>


```
x = df2['Year'] y
= df2['Recycle']
plt.style.use('fivethirtyeight')

plt.plot(x, y,color='red') plt.title("Our machine
Recycle rate first 10 Years\n") plt.xlabel("Years")
plt.ylabel("Recycle")

plt.rcdefaults()
plt.legend()
plt.sticks(rotation=45)
plt.show()
```

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label

Recycling Rate is negative initally since machine capacity is less then total Plastic Bottle waste generation. Recycling Rate will increase down the decades.

df3=pd.read_csv("rate1.csv")
df3

 ${\tt Year\ PlasticProductionWaste\ MachineCapacity\ Recycle}$

0 2020	3419480	1755140	-1664340
1 2021	3522046	1807794	-1714252
2 2022	3627726	1898184	-1729542
3 2023	3736558	2031057	-1705501
4 2024	3848654	2213852	-1634802
5 2025	3964114	2634483	-1329631
6 2026	4083037	3424829	-658208
7 2027	4205529	3546902	-658627
8 2028	4331694	3972530	-359164
9 2029	4461645	4319644	-142001

Double-click (or enter) to edit

```
x = df3['Year'] y =
df3['PlasticProductionWaste']
plt.style.use('fivethirtyeight')

plt.plot(x, y,label="Plastic Waste",color='red') plt.title(" Plastic Bottle Waste
Generation vs Our Machine Capacity 20 yrs results\n")
plt.plot(x,df3['MachineCapacity'],label="machine capacity",color='blue')
plt.xlabel("Years") plt.ylabel("million Tonnes")

plt.rcdefaults()
plt.rcdefaults()
plt.tlegend()
plt.xticks(rotation=45)
plt.show()
```


 $\label{thm:condition} \textit{Here Machine Recycling Capacity has Surpassed Plastic Bottle Waste Generation}.$

```
plt.style.use('fivethirtyeight')

plt.scatter(df3['Year'],df3['MachineCapacity'],label='Machine Production') plt.title("
Plastic Bottle Waste Generation vs Our Machine Capacity 20 yrs results\n")
plt.scatter(df3['Year'],df3['PlasticProductionWaste'],label='Plastic Waste')
plt.xlabel("Year") plt.ylabel("million Tonnes")

plt.rcdefaults()
plt.xticks(rotation=45)
plt.legend()
```



```
x = df3['Year'] y
= df3['Recycle']
plt.style.use('fivethirtyeight')

plt.plot(x, y,color='red') plt.title("Our machine
Recycle rate after 20 Years\n") plt.xlabel("Years")
plt.ylabel("Recycle")

plt.rcdefaults()
plt.legend()
plt.xticks(rotation=45)
plt.show()
```

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label

df4=pd.read_csv("pollution.csv")
df4

	Year	xx		уу		zz	Rec	ycled	To	otalPlasticPollution	WW
0	2020	3419480	1755	5140	-166	64340	17	55140		3419480.000	10%
1	2021	3522046	1807	7794	-171	14252	18	07794		3761428.000	NaN
2	2022	3627726	1898	3184	-172	29542	18	98184		4137570.800	NaN
3	2023	3736558	2031	1057	-170	05501	20	31057		4551327.880	NaN
4	2024	38486	54	22138	352	-16348	302	221385	52	5006460.668	NaN
5	2025	39641	14	26344	83	-1329	631	263448	83	5507106.735	NaN
6	2026	40830	37	34248	329	-65820	38	342482	29	6057817.408	NaN
7	2027	42055	29	35469	02	-65862	27	354690	02	6663599.149	NaN
8	2028	43316	94	39725	30	-3591	64	397253	30	6663599.149	NaN
9	2029	44616	45	43196	644	-1420	01	431964	44	7329959.064	NaN
10	2030	45954	99	45954	99	0		459549	99	7329959.064	NaN
11	2031	43663	65	44895	29	12316	4	424320	01	6596963.158	NaN
12	2032	41666	35	44895	30	32289	5	384374	40	6596963.158	NaN
13	2033	39074	36	43895	31	48209	5	342534	41	5937266.842	NaN
14	2034	38336	35	42895	32	45589	7	337773	38	5937266.842	NaN
15	2035	36336	66	41895	33	55586	7	307779	99	5343540.158	NaN
16	2036	33567	66	40895	34	73276	8	262399	98	5343540.158	NaN
17	2037	32998	98	40895	35	78963	7	251026	61	4809186.142	NaN
18	2038	32555	54	40895	36	83398	2	242157	72	4809186.142	NaN
19	2039	32114	41	40895	37	87809	6	233334	45	4328267.528	NaN
20	2040	31999	88	40895	38	88955	0	231043	38	4328267.528	NaN

```
x = df4['Year'] y =
df4['TotalPlasticPollution']
plt.style.use('fivethirtyeight')

plt.plot(x, y,label="TotalPlasticPollution",color='red') plt.title("
Impact of our Machines on Total Plastic Pollution in India\n")
plt.plot(x,df4['Recycled'],label="Recycled",color='blue')
plt.xlabel("Years") plt.ylabel("million Tonnes")

plt.rcdefaults()
plt.legend()
plt.xticks(rotation=45)
plt.show()
```

Impact of our Machines on Total Plastic Pollution in India TotalPlasticPollution 7 Recycled million Tonnes 6 5 4 3 2 2020.0 2025.0 2030.0 2032.5 2035.0 2022.5 2027.5 Years

As the recycling rate increases the total plastic pollution also decreases gradually.

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
import seaborn as sn

```
X = df4[['xx', 'yy']]
y = df4['Recycled']
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.25,random_state=0)
logistic_regression= LogisticRegression() logistic_regression.fit(X_train,y_train)
y_pred=logistic_regression.predict(X_test) print (X_test)
```

```
xx yy
8 4331694 3972530
13 3907436 4389531
20 3199988 4089538
1 3522046 1807794
11 4366365 4489529
10 4595499 4595499 /usr/local/lib/python3.9/dist-packages/sklearn/linear_model/_logistic.py:458: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
```

Increase the number of iterations (max_iter) or scale the data as shown in:
 https://scikit-learn.org/stable/modules/preprocessing.html Please
also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(

print (y_pred)

[4319644 3377738 2333345 1755140 3843740 3843740]

 $confusion_matrix = pd.crosstab(y_test, y_pred, rownames=['Actual'], colnames=['Predicted']) \\ sn.heatmap(confusion_matrix, annot=True)$

<Axes: xlabel='Predicted', ylabel='Actual'>

import statsmodels.api as sm
x=sm.add_constant(X)
model=sm.OLS(y,X)
fitted_model=model.fit()
print(fitted_model.summary())

OLS Regression Results

```
-
Dep. Variable:
                      Recycled
                               R-squared (uncentered):
                                                                  0.977
Model:
                          OLS
                                Adj. R-squared (uncentered):
                                                                  0.975
Method:
                   Least Squares
                                F-statistic:
                                                                  409.2
                                Prob (F-statistic):
                Wed, 29 Mar 2023
                                                                2.40e-16
Date:
                      07:28:49
                                Log-Likelihood:
                                                                 -303.89
Time:
No. Observations:
Df Residuals:
                            21
                                AIC:
                                                                  611.8
                            19
                                BIC:
                                                                  613.9
Df Model:
Covariance Type:
                      nonrobust
_____
coef
      std err
                    t
                         P>|t|
                                 [0.025
                                            0.975] -----
```

					XX			
0.4120	0.106	3.886	0.001	0.190	0.634 yy	0.	4088	
0.110 3.703			0.00	12	0.178	6	0.640	
=======		=======					====	
Omnibus:			3.121	Durbin-Wat	son:	0	.144	
Prob(Omni	ibus):		0.210	Jarque-Ber	1.705			
Skew:			0.418	Prob(JB):		6	.426	
Kurtosis	:				1.883	Cond.	No.	

7.48

- Notes: [1] R² is computed without centering (uncentered) since the model does not contain a constant. [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

• ×