PAC4 - Primavera 2011

Data inici:	20/05/2011
Data fi:	01/06/2011
Data notes:	06/06/2011
Data solució:	02/06/2011

Quarta prova d'avaluació continuada. Per a dubtes i aclariments sobre l'enunciat, adreceu-vos al fòrum de la vostra aula.

Pregunta resposta lliure (30%)

Pregunta

Formalitzeu les frases que es donen a continuació utilitzant, únicament, els següents predicats atòmics:

M(x): x és un manetes E(x): x és una eina

T(x, y) : x té y (y és propietat de x)

D(x): x és un endoll P(x,y): x posa y B(x): x fa bricolatge

Constants m : en Bob

a) No tots els manetes posen endolls.

b) Per poder fer bricolatge cal ser un manetes i tenir totes les eines.

c) En Bob és un manetes i no té totes les eines.

d) No cal tenir totes les eines per ser un manetes que fa bricolatge.

e) No hi ha cap eina que no sigui propietat de cap manetes.

Resposta

- a) No tots els manetes posen endolls.
- $\neg \forall x [M(x) \rightarrow \exists y(D(y) \land P(x,y))]$
- b) Per poder fer bricolatge cal ser un manetes i tenir totes les eines.

 $\forall x [\dot{B}(x) \rightarrow M(x) \land \forall y(E(y) \rightarrow T(x,y))]$

c) En Bob és un manetes i no té totes les eines.

 $M(m) \wedge \exists x (E(x) \wedge \neg T(x,y))$

d) No cal tenir totes les eines per ser un manetes que fa bricolatge.

 $\neg \forall x [M(x) \land B(x) \rightarrow \forall y(E(y) \rightarrow T(x,y))]$

e) No hi ha cap eina que no sigui propietat de cap manetes.

 $\neg \exists x [E(x) \land \neg \exists y (M(y) \land T(y,x))]$

Lògica de Predicats - Resolució: Resolució (40%)

Donat el següent raonament demostra la seva validesa mitjançant el mètode de resolució:

Raonament

1	$\exists x R(x) \land \forall x \forall y \neg (P(y, x) \lor Q(x))$	Premissa
2	$\exists x \forall z (\neg Q(x) \rightarrow P(z, x))$	Premissa
3	$\forall x \ \forall y \ (P(y, x) \longrightarrow \neg Q(y) \land R(y))$	Premissa

FNC

Pro	Premissa 1: $\exists x R(x) \land \forall x \forall y \neg (P(y, x) \lor Q(x))$				
1.	$\exists x R(x) \land \forall x \forall y \neg (P(y, x) \lor Q(x))$				
2.	$\exists x R(x) \land \ \forall x \ \forall y \ (\ \neg P(y,x) \land \ \neg Q(x))$	Llei de Morgan: ¬(A ∨B) = ¬A ∧ ¬B	Correcte		
3.	$R(a) \wedge \forall x \forall y (\neg P(y, x) \wedge \neg Q(x))$	Eskolemització	Correcte		
4.	$\forall x \forall y (R(a) \land \neg P(y, x) \land \neg Q(x))$	Moure quantificadors universals a l'esquerra	Correcte		
5.		FNC	Correcte		

Correcte

Premissa 2: $\exists x \forall z (\neg Q(x) \rightarrow P(z, x))$			
1.	$\exists x \ \forall z \ (\ \neg Q(x) \longrightarrow P(z, x))$		
2.	$\exists x \ \forall z \ (\ \neg \ \neg Q(x) \ \lor P(z, x))$	Elimina implicació: A →B = ¬A ∨B	Correcte
3.	$\exists x \forall z (Q(x) \lor P(z, x))$	Simplifica la doble negació: ¬¬A = A	Correcte
4.	∀ z (Q(b) ∨ P(z, b))	Eskolemització	Correcte
5.		FNC	Correcte

Correcte

Pro	Premissa 3: $\forall x \forall y (P(y, x) \rightarrow \neg Q(y) \land R(y))$			
1.	$\forall x \ \forall y \ (P(y, x) \longrightarrow \neg Q(y) \land R(y))$			
2.	$\forall x \ \forall y \ (\ \neg P(y,x) \ \lor \ (\ \neg Q(y) \ \land R(y)) \)$	Elimina implicació: A →B = ¬A ∨B	Correcte	
3.	$\forall x \forall y ((\neg P(y, x) \lor \neg Q(y)) \land (\neg P(y, x) \lor R(y)))$	Distributiva: A \vee (B \wedge C) = (A \vee B) \wedge (A \vee C)	Correcte	
4.		FNC	Correcte	

Correcte

Negació de la conclusió: $\neg \exists x (\forall y R(y) \land \forall z (T(z) \rightarrow \neg P(z, x)))$			
1.			
2.	$\forall x \neg (\forall y R(y) \land \forall z (T(z) \rightarrow \neg P(z, x))$	Llei de Morgan: $\neg \exists x \ A(x) = \forall x \ \neg A(x)$	Correcte
3.	$\forall x (\neg \forall yR(y) \lor \neg \forall z (T(z) \rightarrow \neg P(z, x)))$	Llei de Morgan: ¬(A ∧B) = ¬A ∨ ¬B	Correcte
4.	$\forall x (\exists y \neg R(y) \lor \neg \forall z (T(z) \rightarrow \neg P(z, x)))$	Llei de Morgan: $\neg \forall x A(x) = \exists x \neg A(x)$	Correcte
5.	$ \forall x (\exists y \neg R(y) \lor \exists z \neg (T(z) \rightarrow \neg P(z, x)))$	Llei de Morgan: $\neg \forall x A(x) = \exists x \neg A(x)$	Correcte
6.	$\forall x (\exists y \neg R(y) \lor \exists z \neg (\neg T(z) \lor \neg P(z, x)))$	Elimina implicació: A →B = ¬A ∨B	Correcte
7	∀ v (∃v ¬R(v) ∨ ∃ v (¬ ¬T(z) ∧ ¬ ¬	I lei de Morgan: ¬(∆ ∨R) − ¬∆ ∧	Correcte

	P(z, x)))	¬B	
8.	$\forall x (\exists y \neg R(y) \lor \exists z (T(z) \land \neg \neg P(z, x)))$	Simplifica la doble negació: ¬¬A = A	Correcte
9.	$\forall x (\exists y \neg R(y) \lor \exists z (T(z) \land P(z, x)))$	Simplifica la doble negació: ¬¬A = A	Correcte
10.	$\forall x (\neg R(f(x)) \vee \exists z (T(z) \wedge P(z, x)))$	Eskolemització	Correcte
11.	$\forall x (\neg R(f(x)) \lor (T(g(x)) \land P(g(x), x)))$	Eskolemització	Correcte
12.	$ \forall x \ (\ (\ \neg R(f(x)) \lor T(g(x))) \land (\ \neg R(f(x)) \lor P(g(x), x)) \) $	Distributiva: A \vee (B \wedge C) = (A \vee B) \wedge (A \vee C)	Correcte
13.		FNC	Correcte

Correcte

Resolució

Arbre de resolució

Conjunt de clàusules de les premisses: { R(a) , ¬P(y, x) , ¬Q(x) , Q(b) ∨P(z, b) , ¬P(y, x) ∨ ¬Q(y) , ¬P(y, x) ∨ R(y) } Conjunt de suport: { ¬R(f(x)) ∨ T(g(x)) , ¬R(f(x)) ∨ P(g(x), x) }

	Clàusules troncals	Clàusules laterals	
1.	$\neg R(f(x)) \lor P(g(x), x)$	¬P(y, x)	
		Llista de substitucions: y substituït per g(x)	
2.	¬R(f(x))	¬P(y, x) ∨ R(y)	Correcte
		Llista de substitucions: y substituït per f(x)	
3.	$\neg P(f(x), x)$	Q(b) ∨ P(z, b)	Correcte
	Llista de substitucions: x substituït per b	Llista de substitucions: z substituït per f(x) x substituït per b	
4.	Q(b)	¬Q(x)	Correcte
		Llista de substitucions: x substituït per b	
5.			Correcte

Pregunta resposta lliure (15%)

Pregunta

Demostreu que la interpretació <{1,2}, P(1) = cert, P(2) = fals, S(1) = S(2) = cert, R(1,1) = cert, R(1,2) = R(2,1) = R(2,2) = fals, T(1) = fals, T(2) = cert> és un contraexemple de: $\forall x \ [P(x) \rightarrow \exists y (S(y) \land R(x,y))]$

```
\exists x (P(x) \land \neg T(x))

\because \forall x (T(x) \rightarrow \exists y R(x,y))
```

Resposta

Interpretació i valoració de las premisses i la conclusió:

```
Primera premissa:
   \forall x [ P(x) \rightarrow \exists y(S(y) \land R(x,y)) ]
   \forall x [ P(x) \rightarrow (S(1) \land R(x,1)) \lor (S(2) \land R(x,2))
[P(1) \rightarrow (S(1) \land R(1,1)) \lor (S(2) \land R(1,2))] \land [P(2) \rightarrow (S(1) \land R(2,1)) \lor (S(2) \land R(2,2))]
 [V \rightarrow (V \land V) \lor (V \land F)] \land [F \rightarrow (V \land F) \lor (V \land F)]
[V \rightarrow V] \wedge [F \rightarrow F]
 Segona premissa:
  \exists x(P(x) \land \neg T(x))
 (P(1) \land \neg T(1)) \lor (P(2) \land \neg T(2))
(V \( \Lambda \) \( \nabla \) \
 V vF=V
Conclusió:
   \forall x(T(x) \rightarrow \exists yR(x,y))
   \forall x(T(x) \rightarrow R(x,1) \lor R(x,2))
[T(1) \rightarrow R(1,1) \lor R(1,2)] \land [T(2) \rightarrow R(2,1) \lor R(2,2)]
[F \rightarrow V \lor F] \land [V \rightarrow F \lor F]
[F \rightarrow V] \land [V \rightarrow F]
V \wedge F = F
```

Per tant és un contraexemple, ja que fa les premisses certes i falsa la conclusió.

Pregunta resposta lliure (15%)

Pregunta

a) Donats els conjunts $A = \{2,3,4,5\}$ i $B = \{0,1,2,3,4\}$ i l'univers $U = \{0,1,2,3,4,5,6,7,8,9\}$ digues si són certes les afirmacions següents i justifica la resposta: $A-B = A \cap (U-B)$

A-B = A ∩ (U-E A ∪ (U-B) = U A ∩B = A B ∪ (U-B) = U

b) Digues si aquesta relació té les propietats simètrica, reflexiva, transitiva o antisimètrica i justifica les respostes.

```
R = \{(1,1),(1,2),(2,2),(2,3),(1,3),(2,1)\} a \{1,2,3\} \times \{1,2,3\}
```

Resposta

```
a)

A-B = A \bigcap (U-B) Cert, ho és sempre per a qualssevol conjunts A i B

A \bigcup (U-B) = U Fals, 0 i 1 no pertanyen a la unió

A \bigcap B = A Fals, hi ha un element de A, el 5 que no pertany als dos conjunts

B \bigcup (U-B) = U Cert, ho és sempre per a qualsevol conjunt B

b)

R no es simètrica perquè (1,3) \subseteq R però (3,1) no \subseteq R

R oe s reflexiva perquè (3,3) no \subseteq R

R es transitiva perquè: (1,2) \subseteq R i (2,3) \subseteq R i (1,3) \subseteq R, (2,1) \subseteq R i (1,2) \subseteq R i (2,2) \subseteq R no es antisimètrica perquè (1,2) \subseteq R i (2,1) \subseteq R.
```