Database Management System for Railway Company: Passenger and Freight Trains

Cazzolato Kevin

1 Problem description

The goal is to create a database for a railway transport company that manages passenger transport during the time slot 06:00-21:00 and freight transport during the time slot 21:00-06:00. Companies will be able to rent one or more wagons for a route, where they can freely place their goods.

For trains in the second time slot, the intention is to record the train code (uniquely identified by 5 numbers) and the maximum number of wagons that can be transported.

For the wagons, the intention is to record: the rental income and the wagon code (uniquely identified by 5 letters).

For companies renting the wagons, the intention is to record: location, social region, name, and contact phone number. It is also required to record the buyer, seller, and date of each transaction.

For trains in the first time slot, the intention is to record the train code (uniquely identified by 5 numbers), the maximum number of carriages, and the potential number of passengers.

Trains in the second time slot will have a variable number of carriages. The intention is to record for each carriage: the presence of a bathroom, the presence of air conditioning, and the type of carriage, which can be VIP, first class, or second class.

Trains, regardless of the operating time, will have a specific route covering multiple stations to facilitate the loading/unloading of goods and passengers. A route segment (stretch between two adjacent stations) will be covered by at most one train, but a route can be traveled by multiple trains simultaneously.

For the route segment, the intention is to record: the train that traveled it, the actual time, the scheduled time, the date, and the ticket price.

For the station, the intention is to record: the number of tracks, the station master, the phone number, latitude, and longitude.

Each station will carry out maintenance within its facilities (which can be of various kinds) and will be entrusted to technicians.

For maintenance, the intention is to record: the cost, the number of employees employed, the start date, the end date, and a description of the operation.

The client wants to record, for each employee: job role, first name, last name, phone number, hours per week according to contract, hourly wage, and the train in which they work (if they work on a train).

It is necessary to keep track of each train passing through each station. In particular, the intention is to record: date, scheduled arrival time, actual arrival time, departure station, arrival station, and revenue.

2 Glossary of terms

Term	Definition	Synonyms	Link
Companies	organizations that buy	firm	Wagons, route
	and/or sell goods		
Train	Railway convoy with		route, company,
	a variable number of		wagon, carriage,
	carriages/wagons. It		employees
	can be used for freight		
	or passenger transport		
Wagon	Railway convoy for		train, company
	transporting goods		
Rental income	income received by the		companies, wagon
	client for renting the		
	requested wagon		
Route	Path taken by one		Train, stations, Route
	or more trains (e.g.,		Segment
	"Venice-Trieste")		
	composed of multiple		
	route segments		
Route Segment	Path covering two ad-		Route, stations, trains
	jacent stations		
Stations	Place where trains		Trains, employees,
	stop, composed of one		maintenance
	or more tracks		
Carriages	Railway convoy for		Train
	transporting passen-		
	gers		
Maintenance	set of operations nec-		stations, employees
	essary to maintain the		
	station's functionality		
	and efficiency		
Employees	subordinates/workers		trains, maintenance,
			stations

Observation: To avoid excessive verbosity, sentence grouping is omitted here, as differentiation of them has already been highlighted in the problem description by indentation.

3 Entity relationship schema

NOTE: Entities in orange represent the primary key.

4 Data Dictionary

Entity	Description	Attributes	Identifier
Station	transit station for	Station master,	Latitude, Longitude
	trains	Phone, Tracks,	
		Latitude, Longitude	
Maintenance	restructuring/repair	cost, start date, end	maintenance code
	operations	date, description,	
		maintenance code	
Employees	subordinate workers	hours per week, job	name, phone, last
		role, hourly wage,	name
		name, phone, last	
		name	
Carriage	related to passenger	Bathroom, Air	carriage code
	transport	conditioning, type,	
		carriage code	
Passenger transport	train operating in the	Passenger capacity,	Train code
train	time slot 6:00-21:00	Carriage capacity,	
		Train code	
Freight transport	train operating in the	Wagon capacity, Train	Train code
train	time slot 21:00-6:00	code	
Wagon	related to the freight	income, wagon code	wagon code
	transport train that		
	companies can rent		
Actual Train	occurrences of trains	Scheduled time,	date, departure
	and related informa-	actual time, date,	station, arrival
	tion	departure station,	station, train code
		arrival station, train	
		code	
Companies	companies that	social region, phone,	Name, location
	buy/sell goods	Name, location	
Actual Train	occurrence of each	Date, Departure	date, Departure
	train	station, Arrival	station, Arrival
		station, Scheduled	station
		time, Actual time,	
		revenue	

Relation	Description	Composition	Attributes
Travels	train travels on a route	Train code, latitude,	Scheduled time,
	segment	longitude	actual time, number
			of passengers, ticket
			cost, date
Carries out	maintenance carried	maintenance code,	
(maintenance-station)	out in stations	latitude, longitude	
Carries out	maintenance per-	name, phone, last	
(maintenance-	formed by employees	name, maintenance	
employees)		code	
Managed by	train managed by em-	name, phone, last	
	ployees	name, train code	
Composition	composition of the	carriage code, train	
(carriage-passenger	passenger train with	code	
train)	carriages		
Composition (freight	composition of the	train code, wagon	
train-wagon)	freight train with	code	
	wagons		
Rental	wagon rental by com-	name, location, wagon	
	panies	code	
Interaction	interaction between	name, location,	buyer, date, seller
	seller and buyer	name, location	
	companies		
Records	data records related to	date, revenue, time	
	a train and its route		
	segment		

5 Constraints

- Freight trains will operate exclusively in the time slot 21:00-06:00.
- Passenger trains will operate exclusively in the time slot 06:00-21:00.
- There cannot be more passengers/carriages/wagons than permitted.

6 General considerations

The primary key for employees was decided to be a combination of name, last name, and phone number, but for convenience and increased security, it will be changed to a unique code in restructuring. The generalization Train with child entities Freight Transport Train and Passenger Transport Train is complete as it covers the main types of trains. It is assumed that maintenance will not interfere with regular train traffic. It was decided to directly include the revenue attribute, which can be calculated from the number of passengers and ticket price, as it is not necessary for the requested operations in (8) to maintain this attribute decomposed. It should be noted that the choice of primary key (Name and Location) for companies is well-placed, as, due to antitrust laws, two companies with the same name and location cannot coexist.

7 Volume Table

It is assumed that the client has 40 stations, 120 trains (70 for freight transport and 50 for passenger transport). Additionally, there are approximately 800 employees. Volumes will represent a one-year time frame; note that these are rough estimates and may not accurately reflect reality.

Concept	Type	Volume
Station	E	40
Maintenance	E	250
Employees	E	800
Carriage	E	400 (=50*8)
Passenger transport train	E	35
Freight transport train	E	45
Wagon	E	840 (=70*12)
Actual Train	E	2073600
Companies	E	420
Travels	R	2073600
Connection	R	120
Carries out 1	R	250
Carries out 2	R	250
Managed by	R	360 (=120*3)
Composition 1	R	400
Composition 2	R	840 (=70*12)
Rental	R	840
Interaction	R	302400 (=840*30*12)
Records	R	2073600

Note: The estimate of actual trains has been <u>increased</u> as follows: assuming each station is connected to a maximum of 3 stations, then there are 40*3 total routes. Assuming also that each route has exactly one train traveling it and that the travel time between two stations is 30 minutes, then:

$$120 * 2 * 15 = 108000$$

is the number of rows for actual passenger trains; similarly, for freight trains, there will be at most 5760 rows.

8 Operations of Interest

Operation	Type	Frequency
Estimate of expenses and	Interactive	2/month
revenues		
Route segment with lowest	Interactive	1/month
revenue		
Insertion of a maintenance	Interactive	1 time every 2 months
operation within a station		

9 Redundancy Analysis

It is observed that, although there is a cycle between Train, station, maintenance, and employee, this is not a redundancy as no concepts are expressed twice. Additionally, there seems to be redundancy in actual trains, as the information within them is all derivable from entities: Train, Route Segment, and Station. Therefore, the decision will be made on whether to maintain or eliminate this redundancy.

9.1 Operation 1:

9.1.1 In the absence of redundancies

Concept	Construct	Accesses	Type
Train	E	120	L
Travels	R	58800(=35*2*14*60)	L
Station	E	40	L
Maintenance	E	10	L
Wagon	E	315(=7*45)	L
Composition	R	415800(=45*7*2*11*60)	L

Note: The calculation includes an estimate of revenue from first and second time slot trains and an estimate of maintenance expenses. An average of about 7 wagons per train is estimated, and a travel time of approximately 30 minutes per route segment is also estimated.

9.1.2 With redundancies

Concept	Construct	Accesses	Type
Actual Train	Е	345600	L
Maintenance	R	10	L

Observing the strong evidence against removing redundancies, it is decided to retain them for lower read access in operation 1). No redundancy analysis will be performed on other operations as the access flow would be significantly lower and therefore would not affect the choice of whether or not to retain them.

10 Elimination of Generalizations

It is noted that there is only one generalization: with parent Train and children Passenger Transport Train and Freight Transport Train. Since there is interest in studying the train types separately, it is decided to separate the generalization and treat Passenger Transport Train and Freight Transport Train as two distinct entities.

11 Relationship Partitioning

The relationship Travels is a many-to-many relationship between Train and Station. Therefore, a new entity "travels" is created, associated one-to-many with Train and one-to-many with Station. Additionally, a new entity "Transaction" is created, representing sales transactions between companies, which will be a one-to-many relationship between companies and transactions.

12 Primary Key Selection

- Passenger Transport Train: the primary key is chosen as train code
- Freight Transport Train: the primary key is chosen as train code
- Travels: the chosen identifier is *id* (row identifier)
- Station: the chosen identifier is a station code
- Maintenance: the chosen identifier is maintenance code
- Employee: an identifier employee code is introduced
- Carriage: the chosen identifier is carriage code
- Actual Train: an identifier id (row identifier) is introduced

- Wagon: the chosen identifier is wagon code
- Companies: the chosen identifier is name, location
- Transaction: the identifier *Code* is introduced

13 Restructured ER Diagram

14 Relational Model

- Passenger Transport Train (<u>Code</u>, Carriage Capacity, Passenger Capacity, Type)
- Freight Transport Train (Wagon Capacity, Code)
- Travels ($\underline{\text{Id}}$, scheduled time, actual time, number of passengers, ticket code, date, $\overline{Passengertransporttraincode}$, $\overline{Freighttransporttraincode}$)
- Station (<u>Code</u>, Latitude, Longitude, Station Master, Phone, Tracks, <u>TravelID</u>)
- Maintenance (Code, Cost, Start date, End date, Description, *Stationcode*)
- Employee (<u>Code</u>, last name, first name, phone, hourly wage, job role, hours per week, $\overline{Maintenancecode}$, $\overline{Passengertraincode}$, $\overline{Freighttraincode}$)
- Carriage (<u>Code</u>, Bathroom, Air Conditioning, Type, <u>Traincode</u>)
- Wagon (Code, income, <u>Traincode</u>, <u>CompanyName</u>, <u>CompanyLocation</u>)
- Actual Train (<u>Code</u>, Date, <u>Departure Station</u>, Arrival Station, scheduled time, actual time, Revenue, <u>PassengerTraincode</u>, <u>FreightTraincode</u>)
- Companies (Name, Location, Social Region, Phone, Goods)
- Transaction ($\underline{\text{Code}}$, date, \overline{Buyer} , \overline{Seller})

15 Logical Schema

16 Normalization

The database is in the first normal form, as all columns are atomic.

The second normal form is also respected because it meets the first normal form, and every column in each entity fully depends on the primary key.

The database is not in the third normal form, as the revenue attribute does not fully depend on the primary key. However, it was decided to keep the database in this form for better clarity and usability, as indicated in the redundancy analysis.

17 Triggers

17.1 First Non-Expressible Constraint

Freight trains will travel routes exclusively between 21:00 and 06:00.

```
DELIMITER $$
CREATE TRIGGER Trg_FreightTrainHours
BEFORE INSERT ON Travels
FOR EACH ROW
BEGIN
    DECLARE insert_time TIME;
    DECLARE freight_train_code CHAR(6);
    SET insert_time = NEW.ScheduledTime;
    SET freight_train_code = NEW.FreightTrainCode;
    IF freight_train_code IS NOT NULL AND
        (insert_time < '21:00:00' OR insert_time > '06:00:00')
    THEN
        SIGNAL SQLSTATE '45000'
        SET MESSAGE_TEXT = 'Freight trains can only travel between 21:00 and 06:00.';
    END IF;
END $$
DELIMITER;
```

17.2 Second Non-Expressible Constraint

Passenger trains will travel routes exclusively between 06:00 and 21:00.

```
DELIMITER $$
CREATE TRIGGER Trg_PassengerTrainHours
BEFORE INSERT ON Travels
FOR EACH ROW
BEGIN
    DECLARE insert_time TIME;
    DECLARE passenger_train_code CHAR(6);
    SET insert_time = NEW.ScheduledTime;
    SET passenger_train_code= NEW.PassengerTrainCode;
    IF passenger_train_code IS NOT NULL AND
        (insert_time > '21:00:00' OR insert_time < '06:00:00')
    THEN
        SIGNAL SQLSTATE '45001'
        SET MESSAGE_TEXT =
        'Passenger trains can only travel between 06:00 and 21:00.';
END $$
DELIMITER ;
```

17.3 Third Non-Expressible Constraint

17.3.1

There cannot be more passengers than permitted.

```
DELIMITER $$
CREATE TRIGGER Trg_CheckPassengerCapacity
BEFORE INSERT ON Travels
FOR EACH ROW
BEGIN
    DECLARE passenger_capacity INT;

SELECT PassengerCapacity INTO passenger_capacity
FROM PassengerTransportTrain
WHERE CODE = NEW.PassengerTrainCode;

IF NEW.NumberOfPassengers > passenger_capacity THEN
    SIGNAL SQLSTATE '45002'
    SET MESSAGE_TEXT = 'The number of passengers exceeds the train capacity.';
END IF;
END $$
DELIMITER;
```

NOTE: The remaining triggers are omitted here as they are similar to the one above, with only the variable type changing.

18 Stored Procedures

18.1 Find Trains with Delays over 10 Minutes

```
DELIMITER $$
CREATE PROCEDURE FindDelayedTrains()
BEGIN
    SELECT *
    FROM ActualTrain
    WHERE TIMEDIFF(ActualTime, ScheduledTime) > '00:10:00';
END $$
DELIMITER;
```

18.2 Inserting Trains into Actual Train

```
DELIMITER $$
CREATE TRIGGER Trg_InsertActualTrain
AFTER INSERT ON Travels
FOR EACH ROW
BEGIN
    DECLARE departure_station VARCHAR(100);
    DECLARE arrival_station VARCHAR(100);
    DECLARE revenue INT;
    SELECT DepartureStation INTO departure_station
    FROM Station
    WHERE TravelId = NEW.Id;
    SELECT ArrivalStation INTO arrival_station
    FROM Station
    WHERE TravelId = NEW.Id;
    SET revenue = NEW.NumberOfPassengers * NEW.TicketPrice;
    INSERT INTO ActualTrain (Date, DepartureStation, ArrivalStation,
    ScheduledTime, ActualTime, Revenue, PassengerTrainCode, FreightTrainCode)
    VALUES (NEW.Date, departure_station, arrival_station, NEW.ScheduledTime, NEW.ActualTime, revenue,
END $$
DELIMITER ;
```

19 Queries

19.1 Costs and Revenues of the Last Two Months

```
SELECT (SELECT SUM(Cost) FROM Maintenance) AS Costs,
   SUM(actualtrain.Revenue) AS Revenue,
   SUM(actualtrain.Revenue)-(SELECT SUM(Cost) FROM Maintenance) AS Total
   FROM ActualTrain
   WHERE TIMESTAMPDIFF(month, CURRENT_DATE, actualtrain.Date) <= 2</pre>
```

19.2 Route Segment with the Lowest Revenue

```
SELECT actualtrain.DepartureStation, actualtrain.ArrivalStation FROM actualtrain
WHERE Revenue=(SELECT MIN(Revenue) FROM actualtrain)
```

19.3 Inserting Maintenance within a Station

INSERT INTO Maintenance (Code, Cost, StartDate, EndDate, Description, StationCode) VALUES ('MO11', 5250.00, '2023-07-10', '2023-07-15', 'Scheduled maintenance', 'S005')