NASA TECHNICAL MEMORANDUM

N73-16677 NASA TM X-2692

CASEFILE

MAGNETIC-FIELD MEASUREMENTS FOR THE LEWIS RESEARCH CENTER CYCLOTRON

by Theodore E. Fessler Lewis Research Center Cleveland, Ohio 44135

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. . FEBRUARY 1973

MAGNETIC-FIELD MEASUREMENTS FOR THE LEWIS RESEARCH CENTER CYCLOTRON

by Theodore E. Fessler

Lewis Research Center

SUMMARY

The magnetic field of the Lewis Research Center cyclotron has been mapped using a Hall-effect, magnetic-field transducer. Main-field Fourier coefficients were determined on a polar mesh of 40 radii for each of seven levels of main-field coil current. Incremental fields for eight sets of trim coils and two sets of harmonic coils were also determined at four of these main-field levels. A stored-program, digital computer was used to perform the measurements. The process was entirely automatic: all data-taking and data-reduction activities were specified by the computer programs.

A new method for temperature compensation of a Hall element was used. This method required no temperature control of the element. Measurements of the Hall voltage and Hall-element resistance were sufficient to correct for temperature effects.

INTRODUCTION

The magnet of the modified Lewis Research Center cyclotron has a three-sector, azimuthally varying field like that of the Michigan State University (MSU) cyclotron described in reference 1. The only differences between the magnets of the two cyclotrons are differences in the winding of the main-field coils and in the thickness of the yoke pieces. At equal levels of excitation, the fields produced by the two cyclotrons are much the same. The purpose of the measurements described herein is to determine the fields produced by the Lewis Research Center cyclotron with sufficient precision for use in calculations of particle orbits and operating parameters.

Figure 1 is a contour plot of the cyclotron main field at a coil current of 380 amperes. The large azimuthal (theta) variations in the field are due to the "hill pieces," large pieces of magnet iron used to produce a strong third harmonic

(azimuthally) in the field. Provisions have been included to allow adjustments of this main field. Eight pairs of trim coils are used to adjust the radial variation of the average field by a few percent either way from that due to the main-field coils alone. These trim coils are located in the face of the magnet poles. They are wound concentric with the field center, each coil spanning about 7.5 centimeters (3 in.) in radius. Two sets of harmonic coils are located in the valleys between the hill pieces. These are used to make very minor adjustments in the first harmonic of the field. (The first harmonic is nominally zero.)

In reference 2, it is shown that cyclotron-magnet currents can be precalculated with sufficient precision to provide good particle beams without the need for "knob-twiddling" of prior art. In the procedure described there, a set of ideal fields is determined by orbit calculations for each of the measured main-field levels and for each of the desired particles (as specified by a charge/mass ratio). Then a least-squares fitting is used to calculate coil currents that will most nearly produce these ideal fields. For intermediate field levels, at which measurements have not been made, coil currents can be obtained by a double, three-point Lagrangian interpolation of the measured-field values. The data presented herein are arranged much like those of the MSU cyclotron as given in reference 1 so that these calculational methods can be used with the Lewis cyclotron.

Field measurements were made at seven levels of main-field excitation, with trim coils and harmonic coils turned off. A polar-coordinate grid was used. Then, at four of these same levels of excitation, the incremental fields of each of the eight pairs of trim coils and two sets of harmonic coils were measured by exciting these auxiliary fields, one at a time.

The measurement procedures used in this work were entirely automatic: all data taking and data reduction were specified by computer programs. Included in these procedures were regular checks on power-supply currents and field stability, probe positioning, and Hall-probe behavior. The raw and reduced data were stored on magnetic tape; and the reduced data were also printed out, on line, as they became available.

APPARATUS

A stored-program digital computer was used to control all data-taking operations and to make all data-reduction calculations. Field measurements were made with

a Hall-effect transducer (Hall probe) mounted on the end of a long boom that could be inserted into the magnetic field of the cyclotron. This boom was part of a large X-Y positioning apparatus capable of scanning over the entire region of interest. Voltages from the Hall probe were measured with an integrating, digital voltmeter. A separately determined calibration of the Hall probe (discussed in the following section) was used to convert these voltages into the corresponding magnetic-field strength at each field point. This calibration included a correction to compensate for variations in the probe temperature. Current-regulated power supplies were used to drive all the cyclotron magnet coils. Computer control of the X-Y positioning apparatus, the digital voltmeter, and the magnet-current power supplies was through a CAMAC modular interface system.

Computer

A PDP-15/30 computer, manufactured by Digital Equipment Corporation (DEC), was used throughout this work. The main features of this machine are:

- (1) 800-Nanosecond cycle time
- (2) 16 384-Word memory (18-bit words)
- (3) Three "DEC-tape" magnetic tape units
- (4) Two teleprinters, capable of 10 characters per second
- (5) Automatic, priority-interrupt facility
- (6) Extended arithmetic element

DEC also supplies with the PDP-15 a comprehensive software package that includes a text editor, a macro assembler, a FORTRAN-IV compiler, and an extensive library of input-output and mathematical subroutines. A number of additional subroutines for the library have been developed at this laboratory. Some of these were written in assembler language and some in FORTRAN, but all are FORTRAN-callable. This extensive software support system makes it relatively easy to write FORTRAN-language programs for jobs such as the field measurements described herein.

The most important addition to our computer is a CAMAC instrumentation system (cf. ref. 3). CAMAC provides a means of interfacing a variety of devices (modules) to the input-output bus of a computer through a single controller. (A full description of the CAMAC controller designed at this laboratory is given in ref. 4.) The CAMAC system features bins that will accept up to 24 modules each. A data bus at the rear of each bin provides for control and data transfers between each module

and the computer via the controller. CAMAC specifications provide for a single non-prietary design with both mechanical and electrical standards. As a result, a variety of module types are offered by suppliers on a competitive basis.

X-Y Positioning

The positioning "table" used in this work was obtained on loan from the U.S. Naval Research Laboratory (NRL). It is described in reference 5. This mechanism consists of two movable carriages, one mounted on the other, capable of performing independent and simultaneous motions in the "X" and "Y" directions. The range of travel of each carriage is 206 centimeters (81 in.). Lead screws are used to convert the rotary motion of drive motors to linear motion of the carriages. Digital shaft encoders, connected through gears to the lead screws, provide an absolute readout of the carriage positions.

Originally, two motors were provided to drive each carriage. A torque motor was used for the major travel, and a stepping motor provided for final positioning; one step corresponding to a linear carriage motion of 0.00254 centimeter (0.001 in.). In the present work, however, only the stepping motors were used. Ultimately, the Lewis cyclotron facility will have a number of stepping motors to drive potentiometers that supply control voltages to power supplies. The stepping-motor system and computer programs supporting it were already available for the magnet measurements.

The stepping-motor controller designed and built at this laboratory operates through a pair of 16-bit, CAMAC driver modules. These 16 bits specify motor direction, motor bank, and which motors in a bank of eight are to be driven one step. The system has a capacity of 16 banks for a total of 128 stepping motors. A computer program for this system provides for running any combination of motors and motor directions, all simultaneously. It uses a countdown table so that each motor can be stopped when it has run its required number of steps. With this system, it is possible to run all motors at once and yet leave time to perform other calculations.

Since a computer was being used to control the X-Y table, the only parts of NRL's automatic data-logging system needed were the encoder readouts. Digital position signals from these were fed to the computer through a 24-bit, CAMAC inputgate module. The procedure followed for moving the X-Y table to a new position was

(1) read the current position from the encoders, (2) calculate the number of motor steps to the new position, (3) run motors the required number of steps, and (4) read the encoders again to make sure the new position is the desired one. This prodecure was repeated if necessary. It was possible to run the stepping motors at a rate of 150 steps per second without appreciable "slipping." This corresponds to a carriage speed of approximately 2.5 centimeters (1 in.) in 7 seconds.

Tests revealed a small amount of backlash in the X-Y table - enough that the true table position for a point approached from below was about 0.01 centimeter (0.004 in.) short of the same point approached from above. But it was found that this backlash could be eliminated by making all position changes in two steps - the first one to a position short of the desired coordinate by 0.1 centimeter (0.025 in.). That way, the final approach to all field points was from the same direction no matter where the previous point had been. An estimate of the reproducibility actually achieved was obtained from an analysis of some of the field data. In repeated scans at the same radius and field, fluctuations in position show up as fluctuations in the measured field. In those regions between the field hills and valleys, the field gradients are of the order of 4 teslas per meter (1 kG/in.) so that fluctuations in position are greatly amplified. Analysis of data in these regions showed that the rms error in azimuth was only about 0.0025 centimeter (0.001 in.).

The X-Y table was carefully aligned so that its plane of motion was horizontal. No other alignments were needed. The plan was to measure the field center coordinates (see the following section) and the angle between the X-axis and a reference surface on the cyclotron vacuum box. These data would then be included in the conversion from the radius and angle field-point coordinates to corresponding X-Y table coordinates. In the course of measuring the X-axis angle, it was discovered that the X and Y motions were slightly nonorthogonal: the angle between the two axes was measured to be 2 minutes of arc different than 90°. This small error was corrected by adding a tiny fraction of the Y-coordinate to the X-coordinate calculated for each field point.

Digital Voltmeter

A Vidar Corporation, model 521B, integrating digital voltmeter was used to make all voltage measurements. The main features of this voltmeter are

- (1) ± 10 mV to ± 1000 V full scale, selectable in six decades
- (2) 0.1, 0.01, or 0.001-percent selectable resolution
- (3) Count-to-count variation, <0.004 percent (on 100-mV scale)
- (4) 300-Percent overranging (except on 1000-V scale)
- (5) Five measurements per second at 0.001-percent resolution
- (6) High-impedance, floating input
- (7) 60-Hertz noise immunity (except at 0.1-percent resolution)
- (8) Digital output using BCD code
- (9) Externally programmable

Signal multiplexing is provided by a Vidar Corporation, model 610-01, Master Scanner. This scanner uses reed switches to connect the digital voltmeter to any of 200 three-wire signal channels (the third wire can be used for guarding purposes). It requires only 4 milliseconds to switch from one channel to another.

A controller was designed and built at this laboratory to implement external programming of the Vidar system by the PDP-15 computer. This controller is accessed by the computer as a CAMAC module. When a voltage reading is to be made, the computer writes to the module a control word that specifies the channel number and the range and resolution to be used. When the reading has been completed, the module signals the computer by raising an interrupt flag. The computer can then input the reading from the module and convert it to a floating point number. The use of the computer's interrupt feature allows other calculations to proceed while the voltage measurement is underway.

During tests of the Vidar system, it was found that digitizing errors occurred with a frequency of perhaps one error per thousand measurements. The bad readings were typically low by a large amount and were easy to notice if a large number of nearly equal readings were being made. They were apparently caused by a marginal integrated circuit in the digitizing section of the voltmeter. For the field measurements, errors of this kind were rejected by making each voltage measurement at least twice; if the values were in close agreement, their average was used - if not, they were thrown out and the measurements were made again. This technique cost little in additional time (because of the good sampling rate of the digital voltmeter) and was successful in eliminating data errors. Furthermore, some reduction in the count-to-count variations was achieved as a result of the averaging. Tests showed that random fluctuations in voltage measurements were approximately $2x10^{-6}$

volts; this translates into field-strength fluctuations of 2×10^{-5} tesla (0.2 G).

Magnet-Current Power Supplies

All magnet-power supplies for the cyclotron were current regulated. Potentiometers, driven by stepping motors, supplied reference voltages against which the shunt voltages were compared. Potentiometer and shunt voltages could be read by the Vidar system. Computer subprograms were written for each power supply system so that all coil currents could conveniently be controlled from the field-measuring programs.

The main-magnet regulator was of the series-pass transistor type. A water-cooled, temperature-controlled shunt was used to achieve a short-term stability of approximately 1 in 10⁵. The long-term stability was not measured. No means for directly controlling the magnetic field were available at the time these measurements were made. When a change in magnet current was made, the main field also changed but at a slower rate. At the lowest fields, the apparent magnet time-constant was many minutes. Therefore, whenever field level changes were made, data taking had to be suspended until the field had time to reach the new value.

The 10 trim-coil current regulators also used series-pass transistors. Their stability was approximately 1 in 10^3 . (The cyclotron has only eight pairs of trim coils but two of them, numbers 1 and 7, are connected so that the upper and lower coils of each pair can be excited separately.) In addition to the current-control potentiometer, a relay was provided for each regulator so that it could be turned on or off without changing the current setting. These relays were operated by the computer through a CAMAC driver module. Incremental field measurements were made by turning on one trim-coil pair at a time.

The two harmonic-coil supplies each used two rotating dc generators with the field currents controlled by transistor amplifiers. Each set of three pairs of harmonic coils was wired so that two of the pairs were each driven by a generator and the third pair received the sum current. In addition, sine-function potentiometers were used to control the relative currents in the two generators and, hence, the phase angle of the resulting first-harmonic field produced. These supplies were also equipped with relays so that they could be turned on or off from the computer without altering the current or phase settings. Regulation of the harmonic-coil supplies was better than 1 percent.

HALL-PROBE CALIBRATION

The Hall probe was calibrated in a flat-field region of the cyclotron magnet. The probe was alined with the field direction by orienting it for maximum output. The absolute field intensity was measured with a nuclear-magnetic-resonance (NMR) fluxmeter; the resonance frequency being determined with a digital frequency counter, gated by a crystal controlled clock. Proton resonance was used for fields below 0.65 tesla (6.5 kG) and deuterons above that. Both spin samples had natural line widths of $2 \text{x} 10^{-5}$ tesla (0.2 G); no trouble was experienced in getting clear absorption signals.

A FORTRAN-language program was written for the PDP-15 to facilitate the probe calibration. The entire calibration process was carried out under program control except for setting the cyclotron magnet current and entering the NMR absorption frequency via the teletype keyboard. The program caused the Hall-probe measurements to be made in quick succession, and these data were typed out together with the calculated field. If desired, the experimenter could then repeat the process at another magnet current. This procedure was repeated for a total of 26 field levels approximately evenly spaced between 0.18 to 2.08 teslas (1.8 and 20.8 kG).

Method of Temperature Compensation

A major disadvantage to the use of Hall-effect magnetic-field-measuring devices is that they are temperature sensitive. The Hall probe used in this study (type BH-200, manufactured by F. W. Bell, Inc.) had a Hall-voltage temperature coefficient of 0.06 percent per ^OC. Measurements accurate to 1 part in 10⁴ would therefore imply that the temperature of the probe must be kept constant to approximately 0.1^OC - a level difficult to achieve because the Hall element itself is a source of heat that varies with the magnetic field. An alternate scheme is to use a temperature-sensitive compensating circuit. In this method, a thermistor is placed in contact with the Hall element. This thermistor is part of the circuit used to measure the Hall voltage and is connected so that its temperature coefficient just counters that of the Hall element. The difficulty with this method is that it is only effective over a narrow temperature range.

A Hall-probe design using a combination of these two methods is described in reference 6, where it is reported that reproducible results to within 0.01 percent are routinely obtained and that, with care, this can be improved by a factor of two

or three. But several disadvantages exist:

- (1) Hall devices are subject to aging after an initial turnon (heating) and to severe sensitivity drift after thermal cycling, as might occur if the oven is turned off for a period of time.
- (2) A thermal time constant is observed whenever the probe is suddenly moved to a position where the field is greatly different. This time constant may limit the rate at which data can be taken with 0.01 percent accuracy.
- (3) Systems using temperature-control ovens and compensation circuits are expensive to design and build.

Still another approach to the problem of temperature correction has been used in the present work - a method first proposed in reference 7. In this method, two voltages are measured: the Hall voltage and the voltage across the current terminals of the Hall element. These two voltages uniquely determine the magnetic-field intensity.

For constant Hall-element current and magnetic-field direction, there exist functions

$$B = B(V,T)$$
 $R = R(V,T)$

for the magnetic-field strength B and Hall resistance R, where V is the Hall voltage and T is the Hall-element temperature. Suppose a Hall probe has been calibrated in order to obtain the functions

$$B_0(V) = B(V,T_0)$$
 $R_0(V) = R(V,T_0)$

and

$$Q_0(V) = \left(\frac{\partial B}{\partial R}\right)_V \bigg]_{T=T_0}$$

where \mathbf{T}_0 is the Hall-element temperature during the calibration. Then for other temperatures near \mathbf{T}_0 , we can make the linear approximation for B in terms of the measured quantities V and R

$$B = B_0 + \Delta B = B_0(V) + Q_0(V) \cdot \left[R - R_0(V)\right]$$

simply by choosing to evaluate all functions for the same Hall voltage. Temperature does not appear explicitly on the right side of this equation.

In the present work, calibration of the Hall probe was carried out twice: once at ambient temperature and once at a temperature somewhat higher, obtained by a small heater (resistor) in the probe mount. Upon completion of the "cool-probe" data, the probe heater was turned on to increase the Hall-plate temperature about 5° C. After the probe temperature had reached its new equilibrium, the field levels were remeasured for the "warm-probe" data. The ambient-temperature (cool-probe) data were used to construct the functions $B_0(V)$ and $R_0(V)$. The derivative $Q_0(V)$ was obtained from the differences in B and R between the two runs at equal hall voltages.

Construction and Circuit Details

The Hall element itself was a flat plate 2 millimeters wide by 5 millimeters long and about 0.1 millimeter thick. This was glued into a slot milled in a cylinder of brass, as illustrated in figure 2. Inside this cylinder was a resistor used to heat the probe a few degrees above ambient temperature for calibration purposes.

These parts were mounted on the end of the long ceramic-fiberglass boom which was part of the X-Y positioning apparatus. A plastic cover protected the probe from stray air currents. This cover was fitted with an off-center hole immediately above the Hall probe, which served to position the NMR fluxmeter used during calibration.

The electrical circuit used with the Hall probe is shown in figure 3. A constant-current supply maintained a current of 60 milliamperes in the Hall element. This current was monitored by measuring the voltage developed across the 1.5-ohm reference resistor. This resistor consisted of a series-parallel group of precision, 1-watt, wire-wound resistors immersed in transformer oil. It was designed to maintain a very constant, though not necessarily well-known, value.

In practice, the three voltages indicated in figure 1 were measured at each field point by using the integrating digital voltmeter. Their magnitudes were such that they could all be read with good resolution by using the 100-millivolt scale of the voltmeter. A correction factor (generally less than 0.01 percent) was calculated from the ratio of the 1.5-ohm reference-resistor voltage to a normal value established for this voltage. This correction factor was then applied to the Hall-voltage and Hall-resistance readings. Errors due to small changes in the Hall-element current or digital voltmeter calibration were thereby eliminated.

Both the Hall probe and the 1.5-ohm reference resistor were assembled several months before use so that they would have a chance to age, hopefully to minimize any drift during the measurements.

Calibration Results

Figure 4 shows the characteristics of the Hall element used in this work. The Bell BH-200 probe has a bulk-material-type, indium arsenide element. It is expected that these data are representative of this type of probe.

Figure 4(a) shows the Hall voltage and the voltage across the Hall-element current leads versus magnetic-field strength. Nonlinearity of the Hall voltage is so slight that it does not show in a graph of this size. Any nonlinearity, of course, is accounted for in the interpolation calculation. Figure 4(b) shows the field correction derivative

$$\frac{\partial B}{\partial (iR)} = \frac{Q_0(V)}{I}$$

as a function of Hall voltage. The line faired through the points was not actually used; values of the correction factor used in reducing the field data were obtained by an interpolation of the measured points.

No attempt was made to measure the probe temperature directly during the calibration runs. But, by assuming a Hall-voltage temperature coefficient of -0.06 percent per °C, the temperature difference between the warm and cool runs could be calculated. This difference turned out to be approximately 5°C. More importantly, the computed temperature differences varied smoothly with field level, having random fluctuations amounting to less that 0.1°C. All measurements reported herein were made in the winter months when the temperature in the cyclotron vault was nearly constant. Analysis of the entire set of main-field data showed that the probe temperature varied less than 1°C from a mean value over the duration of the measurements. The Hall-probe temperature corrections were therefore always small.

MAIN-FIELD MEASUREMENTS

The goal of the main-field measurements was to determine the coefficients $\ \overline{B}$,

G, and H in an equation for the field strength B:

$$B(\mathbf{r}, \theta) = \overline{B} \left(1 + \sum_{i} G_{i} \sin i\theta + H_{i} \cos i\theta \right)$$

where r is the radius position, θ the azimuthal position, and i = 1, 2, 3, 6, 9, etc. These coefficients are all functions of radius and main-field coil current. (Terms for i = 4, 5, 7, 8, etc. have been deliberately left out of the expression for B. These terms are expected to be very small in amplitude relative to those that are multiples of the third harmonic. Also, the higher harmonics generally have less effect on the particle orbits.)

Measurements were carried out at seven main-field coil currents: 130, 180, 230, 280, 330, 380, and 430 amperes. Values of the coefficients for other field currents can be obtained by interpolation of the measured values, using current as the argument. At each field level, data were measured at 40 radii. Values of coefficients for any arbitrary radius can be obtained by a second interpolation of the coefficients, this time using radius as the argument.

Main-Field Radius and Azimuth Grid

The magnetic field of the Lewis Research Center's cyclotron is very nearly the same as that of the MSU cyclotron. We have used data from the MSU machine (ref. 1) to debug the particle-orbit codes that are used to calculate magnet currents and other machine parameters. This experience helped to determine the most suitable grid for mapping the main field. Because the radius and azimuth schedules were simply numerical tables in a computer code, there was no reason to make them uniform over the whole grid. Instead, other considerations were allowed to govern the number of azimuth points and the radii of the mapping circles.

Several factors determined the number of azimuth points on a scan circle. For circles with a 50.8-centimeter (20-in.) radius and greater, the field was measured at 199 points; a significantly larger number was inconvenient because of the limit imposed by the amount of computer memory available. For the smaller circles, fewer points were needed as the magnitude of the higher harmonics became insignificant. For circles with a 7.6-centimeter (3-in.) radius and smaller, not all of the coefficients in the field equation were determined. Another factor was the phenomenon

of "aliasing." Even though there may appear to be enough data points to solve for the Fourier-series coefficients, wild solutions can occur that have no real meaning. This is because the field equation is incomplete; it does not have terms for i = 4, 5, 7, 8, etc. In our case, where the azimuthal points are evenly spaced, it is best to choose a number of points at least as large as that needed to solve the complete series even though some of the coefficients are not actually calculated.

Other considerations for determining the radii of the field-mapping circles were as follows:

- (1) The time required to complete a scan is determined largely by the diameter of the scan circle.
- (2) Orbit calculations are most sensitive to the field at large radii (near extraction) because the particles spend a greater proportion of time there.
- (3) The field-equation coefficients vary rapidly with radius near 73.6 centimeters (29 in.). Therefore, accurate interpolation requires a finer grid there. A compromise was reached: the radial spacing of the survey circles varied from a maximum of 3.81 centimeters (1.5 in.) to a minimum of 0.76 centimeter (0.3 in.), with the finest spacing near the extraction radius.

Main-Field Data Reduction

All raw data were recorded on magnetic tape while the main-field measurements were underway. When a survey circle was completed, reduction of those data was begun while measurements on the next circle were being made. Reduced data points and calculated field-equation coefficients were recorded on magnetic tape and were printed out for examination. The factor that limited the rate at which measurements could be made was the slow speed of the X-Y positioning apparatus. Ample computer time was available between grid points to keep the data-reduction and printout operations from falling behind.

At the start and end of each data survey circle, a reference field measurement was made with the Hall probe at the same X-Y position used for its calibration. The average of these before-and-after field values was used to calculate a normalizing factor for all the data taken during the intervening data circle. This normalization minimized effects of magnet hysteresis and long-term drift due to temperature changes or component aging.

showing the largest gradients at the radius of the coil conductors. Therefore, data points for a given trim coil were taken at each interval near the coil radius and at less frequent intervals elsewhere.

Ten radial scans were made at each main-field coil current, spaced uniformly around a full circle. This provided a thorough sampling in azimuth of the incremental fields. All raw data were recorded on magnetic tape while the measurements were underway. In addition, reduced incremental fields were printed out for monitoring purposes.

Trim-Coil Data Reduction

For each of the four main-field levels, at each radius, and for each trim coil measured at that radius, an incremental field was calculated by arithmetically averaging the 10 azimuth measurements. These measured points were then interpolated to get incremental fields at radial stations that were skipped. Incremental fields divided by \overline{B} , the average field coefficient, were used as the function for this interpolation. The azimuthal variations of the trim-coil fields were found to be nearly proportional to the main field, and this was the basis for using the field ratio in the interpolation.

Preliminary examination of the data revealed that the 1.5-minute time allowed for the outer (eight) trim-coil field to reach equilibrium had not been long enough at the 130- and 230-ampere main-field levels. As a result, the measured field increments for trim-coil 8 were too small by 1.2 percent at 130 amperes and by 0.7 percent at 230 amperes. Also, at some radii, the trim-coils-off reference fields were too high because of the residual field remaining from trim-coil 8 having been turned on for the previous radius point. Fortunately, the variety of different coil combinations used at different radii made it possible to calculate corrections for both the reference fields and the trim-coil-8 incremental fields at these two main-field levels. At the 330- and 430-ampere field levels, the 1.5-minute time was more than adequate and no residual-field corrections were necessary. The incremental trim-coil fields for the four main-field levels are given in table II.

HARMONIC-COIL MEASUREMENTS

Two sets (three pairs of coils in each set) of harmonic coils provide the means for adjusting the first harmonic coefficients of the magnetic field. The inner har-

monic coil set has a maximum effect at a radius of 13 centimeters (5 in.), and the outer set has a maximum effect at a radius of 66 centimeters (26 in.). Currents to these coils are supplied from regulated power supplies so arranged that the arithmetic sum of the currents in the three coils of each set is always zero. This way, the harmonic coils have no effect on the average field coefficient \overline{B} . These power supplies are also arranged so that the phase angle can be changed without changing the harmonic amplitude, or conversely.

Measurements of the incremental first-harmonic fields from the two sets of harmonic coils were made at the four main-field currents used to measure trim-coil fields: 130, 230, 330, and 430 amperes. It was found that the harmonic-coil fields were nearly independent of main-field level. It is assumed that the harmonic-coil fields are proportional to coil currents; measured values are for an excitation of 100 amperes (e.g., a current of 100 A in the coil pair near 0° azimuth and 50 A in the other coils of the set). Each harmonic-coil set was measured at a number of radii sufficient to determine its radial profile.

Measurement Procedure

The incremental fields of the harmonic coils were measured by the same methods used to measure the trim-coil fields. For the inner harmonic-coil set, measurements were made on 20 radial scans, equally spaced in azimuth around a full circle. This procedure was tried for the outer harmonic coils too, but it was found that the angular size of the outer coils is so small that 20 points do not give a fine enough sampling of these coils in azimuth. Instead, 10 radial scans were used to sample the outer harmonic coils near 0° . These scans were spaced 6° apart in azimuth, and so covered only one-sixth of the full circle. But they did give a good sampling of the one coil pair. The contributions of the other coils in the set were then assumed to be in proportion to the measured coil as the ratio of their coil currents.

Harmonic-Coil Data

Incremental, first-harmonic field coefficients were calculated at each radius for which measurements were made. A least-squares analysis was used, with all data points given equal weight. In addition to the first harmonic, the harmonic coils also produce higher harmonics (second, fourth, etc.), but these were ignored.

These higher harmonics have negligible effect on the particle orbits.

The amplitudes of the first harmonic produced by the inner harmonic-coil set are given in table III and for the outer set in table IV. In these tables, harmonic amplitudes are given at 2.54-centimeter (1-in.) intervals over the radius range influenced by the coil set even though not all radii were actually measured. Values for the radii not measured were obtained by interpolation of the measured values. The effective angular location of the coil pairs near 0° (coil 1) are also given in the tables.

The harmonic amplitudes are also shown graphically in figure 5. From these graphs, it is apparent that the amplitudes are practically independent of the mainfield level.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, September 27, 1972,
503-10.

REFERENCES

- 1. Berg, R. E.; Blosser, H. G.; and Johnson, W. P.: Magnetic Field Measurements for the MSU Cyclotron. Rep. MSUCP-22, Michigan State University, Aug. 1966.
- 2. Berg, R. E.: Precise Methods for Pre-Calculation of Cyclotron Control Settings. Rep. MSUCP-24, Michigan State University, Sept. 1966.
- 3. Anon.: CAMAC: A Modular Instrumentation System for Data Handling. Rep. EUR-4100.e, European Atomic Energy Community, Mar. 1969.
- 4. Arnold, Jeffrey M.; Bercaw, Robert W.; and Fessler, Theodore E.: A Programmable Computer Interface for CAMAC. NASA TN D-7148, 1973.
- 5. Toth, John L.; Allas, R. G.; Bond, C. D.; Pieper, A. G.; and Theus, R. B.: Automated Logging and Processing of the NRL Cyclotron Magnetic Field Data. Proceedings of the International Symposium on Magnet Technology. Stanford Univ. (AEC Rep. CONF-650922), 1965, pp. 415-420.
- 6. Mulady, James R.: Precision Magnetic Field Measurements with Hall-Effect Probes. Proceedings of the International Symposium on Magnet Technology. Stanford Univ. (AEC Rep. CONF-650922), 1965, pp. 447-455.
- 7. Smith, Martin V.: A Method for the Temperature Compensation of Hall Plates. Tech. Rep. UCLA-P56, Department of Physics, Univ. of Calif. (USAEC Contract AT(11-1)-34 Project No. 93.)

TABLE I. - MAIN-FIELD COEFFICIENTS

(a) 130-Ampere current

RADIUS	B (GAUSS)	<u>61</u>	H1	<u>62</u>	H2
		9.00000 .000002 000004 .000004 .000003 000004 .000004 .000005 000014 000015 000015 00015 00018 00018 00017 00018 00017 00011 00015	0.00003 00004 00018 00019 00039 00039 00039 00022 00014 00003 00004 00005 00004 00008 0008 0008 0008 0008 0008 0008 0008 0008 0008 0008 0008 0008 0008 0008 0008 0008 0008 0008 0008 0008 	92 	H2 0.0000 .00001 .00001 .000014 .00014 .00014 .00025 .00025 .00027 .00037 .00037 .00027 .00027 .00027 .00027 .00027 .00020 .00020 .00013 .00020 .000150000500005
32.0 33.0 34.5 36.0 37.5 39.0	6270.2 5619.3 4605.7 3728.3 3033.1 2490.3	.00040 .00056 .00074 .00123 .00126	.00014 .00022 .00033 .00038 .00061 .00098	00016 00031 00051 00045 00057	00005 00011 00035 00078 00058 00062 00094

TABLE I. - Continued. MAIN-FIELD COEFFICIENTS

(a) Continued. 130-Ampere current

RADIUS	G3	H3	G6	Н6	G9	H9
RADIUS 0.0 1.0 2.0 3.0 4.0 5.0 6.5 8.0 9.5 11.0 12.5 14.0 15.5 17.0 18.5 20.0 21.5 23.0 24.5 25.3 27.0 27.5	G3 		0.00000 .00001 .00000 .00002 .00012 .00056 .00099 .00094 00099 00227 00613 01137 01806 02586 03426 04293 05170 06090 09217 09217 10080 10917 11547	0.00000 .00000 .00000 .00007 .00044 .00184 .00726 .00726 .00574 00072 01122 02454 03921 05283 06462 07426 08123 08507 08507 07224 07224 06370 05425	0.00000 .00000 .00000 .00000 .00001 00000 .00051 .00182 .00397 .00728 .01710 .02219 .02649 .02991 .03219 .03309 .03222 .02871 .02424 .01914 .01346 .00878	
28.0 28.4 28.7 29.0 29.3	16324 16593 16776 16928 17049	28508 27040 25913 24781 23648	12189 12689 13052 13383 13688		.00362 00079 00416 00744 01074	.05004 .05241 .05427 .05617
29.6 30.0 30.5 31.0 31.5 32.0 33.0 34.5 36.0	17123 17145 17026 16713 16202 15510 13717 10628 07828	22527 21064 19307 17643 16090 14643 12052 08784 06237	13944 14202 14361 14301 14026 13536 12070 09308 06681	00836 00146 .00616 .01249 .01725 .02051 .02313 .02086 .01626	01384 01760 02157 02456 02632 02707 02590 02025 01421	.05993 .06218 .06447 .06595 .06634 .06555 .06755
37.5 39.0	05626 04037	04390 03123	04662 03239	.01186	00956 00620	.02300 .01520

TABLE I. - Continued. MAIN-FIELD COEFFICIENTS

(a) Concluded. 130-Ampere current

RADIUS	G12	H12	G15	H15	G18	H18
RADIUS 0.0 .5 1.0 2.0 3.0 4.0 5.0 6.5 8.0 9.5 11.0 12.5 14.0 15.5 17.0 18.5 20.0 21.5 23.0 24.5 25.5 26.3 27.0 28.4 28.7 29.0	G12 0.00000 .00000 .00000 .00000 00000 00015 00044 00081 00073 .000198 .00526 .00967 .01493 .02597 .03104 .03478 .03608 .03542 .03436 .03280 .03122 .02988 .02845	H12 0.00000 .00000 .00000 .00000 .00000000030002000101001850022500145 .00370 .00665 .00370 .00665 .01328 .01432 .01432 .01514 .01519 .01524 .01532 .01580 .01606 .01638	G15 0.00000 .00000 .00000 .00000 .000001 .00003 .00003 00058 00170 00336 00527 00850 00850 00761 00850 00761 00335 00317 00317 00316 00323	0.00000 .00000 .00000 .00000 .00000 .00000 .00000 .00005 .00005 .00063 00160 00265 00335 00362 00342 00342 00192 00192 00151 00152 00165 00178 00193 00206 00217	0.00000 .00000 .00000 .00000 .00000 00001 .00001 .00011 .00024 .00044 .00036 00022 00142 00322 00538 00764 00982 0171 01256 01310 01307 01302 01292 01283	0.00000 .00000 .00000 .00000 .00000 .00000 .00000 .00001 00002 .00010 .00049 .00049 .00049 .00013 00004 00008 .00173 .00173 .00179 .00529 .00529 .00777 .00829 .00867
				00220 00231 00232 00223	01271 01262 01246 01219	.00898 .00929 .00948 .00964
30.5 31.0 31.5 32.0 33.0 34.5 36.0 37.5	.02085 .01875 .01700 .01553 .01318 .01018 .00731 .00476 .00300	.01882 .01976 .02053 .02093 .02039 .01676 .01208 .00795	00376 00363 00361 00261 00098 .00091 .00125 .00102	00208 00183 00145 00104 00045 00012 00031 00030	01184 01130 01057 00967 00750 00417 00214 00116 00057	.00973 .00961 .00917 .00854 .00685 .00424 .00235 .00129

TABLE I. - Continued. MAIN-FIELD COEFFICIENTS

(b) 180-Ampere current

RADIUS (IN.)	B (GAUSS)	G1	Н1	G2	H2
(111.)	(GAUSS)				
0.0	9394.7	0.00000	0.00000	0.00000	0.00000
• 5	9385.6	.00002	00000	00002	.00001
1.0	9360.0	00000	00001	00001	.00001
2.0	9279.1	.00010	00009	00007	.00007
3.0	9206.4	.00012	00021	00001	.00011
4.0	9176.6	.90021	00017	00014	.00016
5.0	9176.2	.00022	00022	00009	.00012
6.5	9169.8	.00006	00023	.00012	.00010
8.0	9139.6	00009	00027	.00013	.00024
9.5	9102.6	.00002	00024	.00006	.00030
11.0 12.5	9078.3	.00008	00026	.00005	.00032
14.0	9072.8 9080.4	.00007 .00007	00015 00011	.00006	.00036
15.5	9093.5	.00007	00011	00003 00001	.00040 .00042
17.0	9110.0	.00002	.00007	.00000	.00042
18.5	9131.5	00003	00001	.00007	.00039
20.0	9161.4	.00000	.00002	.00010	.00035
21.5	9206.7	00002	.00001	.00009	.00033
23.0	9275.3	00008	.00001	.00013	.00033
24.5	9376.2	00010	00002	.00015	.00033
25.5	9465.1	00012	00002	.00013	.00031
26.3	9548.1	00011	00005	.00013	.00026
27.0	9624.4	00013	00008	.00016	.00025
27.5	9676.3	00013	00010	.00017	.00021
28.0	9719.8	00014	-100010	.00019	.00021
28.4	9744.5	00020	00009	.00015	.00019
28.7	9751.5	00016	00008	.00018	.00015
29.0	9747.6	00013	00008	.00015	.00015
29.3 29.6	9728.8 9693.1	00016 00012	00002 00003	.00018	.00010
30.0	9612.8	00012	.00003	.00013 .00011	.00010
30.5	9450.1	.00010	.00000	.00003	00002
31.0	9211.8	.00015	.00015	.00004	.00001
31.5	8898.7	.00036	.00022	00003	00006
32.0	8520.3	.00047	.00024	00012	00012
33.0	7636.9	.00069	.00037	00024	00024
34.5	6264.3	.00069	.00047	00044	00056
36.0	5077.5	.00104	.00149	00047	00037
37.5	4134.0	.00118	.00073	00059	00043
39.0	3396.9	.00115	.00086	00075	00052

TABLE I. - Continued. MAIN-FIELD COEFFICIENTS

(b) Continued. 180-Ampere current

RADIUS	G3	H3	G6	Н6	G9	Н9
0.0	0.00000	0.00000	0.00000	0.00000	0.0000	0.00000
.5	00004	00017	00000	0.00000	00000	00000
1.0	00027	00133	00001	.00000	00000	.00000
2.0	00207	01056	.00001	.00006	.00000	.00001
3.0	00633	03387	.00012	.00042	00001	.00001
4.0	01210	07232	.00046	.00174	00003	.00003
5.0	01756	11977	.00092	.00423	.00006	.00008
6.5	02425	19105	.00087	.90714	.00052	.00117
8.0	03063	25158	00009	.00571	.00183	.00458
9.5	03779	29914	00222	00068	.00401	.01032
11.0 12.5	04682 05826	33554 36269	00609 01135	01117	.00729	.01728
14.0	07076	 38242	01133	02450 03907	.01180	.02388
15.5	08302	39641	02579	05275	.02219	.03262
17.0	09403	40591	03416	06453	.02653	.03466
18.5	10392	41153	04284	07418	.03001	.03555
20.0	11270	41312	05156	08125	.03230	.03600
21.5	12099	40967	06075	08532	.03314	.03611
23.0	12937	39973	07088	08563	.03230	.03636
24.5	13817	38114	08257	08074	.02830	.03759
25.5	14463	36258	09179	 07372	.02459	.03935
26.3	15028	34357	10026	06560	.01967	.04144
27.0	15547	32386	10841	05660	.01416	.04390
27.5	15925	30811	11456	04913	.00960	.04601
28.0	16289	29124	12080	04090	.00458	.04847
28.4 28.7	16561 16734	27700 26620	12572 12916	03391 02853	.00030 00294	.05063 .05235
29.0	16887	25528	13245	02333	00621	.05410
29.3	17006	24439	13532	01776	00933	.05587
29.6	17081	23354	13784	01254	01237	.05754
30.0	17101	21937	14031	00592	01607	.05963
30.5	16983	20220	14133	.00150	01995	.06170
31.0	16675	18587	14123	.00762	02288	.06301
31.5	16173	17048	13851	.01227	02466	.06333
32.0	15490	15602	13371	.01556	02545	.06245
33.0	13713	12948	11926	.01836	02445	.05752
34.5	10608		09202	.01676	01937	.04517
36.0		06826	06601	.01305	01351	.03215
37.5	05611		04612	.00936	00912	.02170
39.0	04029	03452	03197	.00655	00606	.01434

TABLE I. - Continued. MAIN-FIELD COEFFICIENTS

(b) Concluded. 180-Ampere current

RADIUS	G12	H12	G15	H15	G18	H18
0.0		0.00000	0.00000	0.00000	0.00000	0.00000
.5 1.0	.00000	.00000	.00000	.00000	.00000	.00000
2.0	.00000	.00000	.00000	.00000	.00000	.00000
3.0	.00000	.00000	.00000	.00000	.00000	.00000
4.0	00001	00000	00003	00000	00001	00001
5.0	00003	00002	.00000	.00002	00000	00001
6.5	00013	00029	.00002	.00004	.00001	00000
8.0	00045	00100	.00003	.00012	.00003	00000
9.5	00081	00186	00006	00004	.00010	.00010
11.0	00075	00224	00059	00063	.00025	.00035
12.5	.00003	00141	00172	00162	.00041	.00049
14.0 15.5	.00196	.00082	00338 00528	00266 00336	.00035 00024	.00042
17.0	.00963	.00571	00528		00144	00007
18.5	.01493	.00933	00813		00323	00007
20.0	.02048	.01162	00870		00538	.00014
21.5	.02595	.01324	00850		00762	.00073
23.0	.03107	.01424	00759	00197	00983	.00176
24.5	.03489	.01478	00625		01170	.00310
25.5	.03624	.01483	00522		01257	.00421
26.3	.03638	.01474	00440		01298	.00522
27.0	.03564	.01467	00375		01310	.00615
27.5	.03460	.01466 .01474	00338 00319	00204 00225	01308 01301	.00687 .00756.
28.0 28.4	.03307	.01486	00313	00246	01291	.00756.
28.7	.03021	.01507	00316	00240	01231	.00838
29.0	.02876	.01528	00326	00273	01271	.00868
29.3	.02728	.01558	00338	00276	01257	.00893
29.6	.02571	.01591	00351	00288	01243	.00912
30.0	.02366	.01644	00372	00285	01216	.00922
30.5	.02123	.01723	00385	00278	01178	.00932
31.0	.01911	.01799	00379		01125	.00910
31.5	.01725	.01865	00348	00224	01059	.00873
32.0	.01572	.01903	00291	00186	00970	.00809
33.0 34.5	.01317	.01855 .01527	00138 .00043	00126 00048	00760 00437	.00650
36.0	.00710	.01098	.90108	00010	00224	.00220
37.5	.00459	.00723	.00079	.00009	00128	.00111
39.0	.00290	.00446	.00053	00004	00063	.00049

TABLE I. - Continued. MAIN-FIELD COEFFICIENTS

(c) 230-Ampere current

RADIUS (IN.)	B (GAUSS)	G1	H1	G2	H2
0.0 .5 1.0 2.0 3.0 4.0 5.0 6.5 8.0 9.5 11.0 12.5 14.0	11494.0 11482.1 11448.4 11341.5 11242.0 11194.3 11190.0 11187.7 11161.1 11123.4 11098.2 11094.5 11104.3	0.00000 .00001 .00001 .00003 .00010 .00018 .00011 .00018 .00016 .00014	0.00000 .00003 .00004 00006 00027 00019 00026 00031 00024 00015 00015	0.00000 00002 00001 .00002 .00001 00005 .00020 .00019 .00007 .00004 00002	0.00000 .00001 .00002 .00005 .00010 .00016 .00011 .00006 .00019 .00027 .00024 .00033
15.5 17.0 18.5 20.0 21.5 23.0 24.5 25.5 26.3 27.0 27.5	11119.5 11138.1 11161.4 11192.6 11240.2 11312.1 11418.6 11512.1 11593.4 11676.5 11727.4	.00015 .00011 .00014 .00012 .00009 .00005 .00003 00000 00001 00001	00012 00008 00007 .00000 .00003 .00002 00004 00004 00004 00004	.00008 .00011 .00012 .00011 .00007 .00011 .00016 .00017 .00020 .00020	.00038 .00035 .00035 .00032 .00028 .00026 .00027
28.0 28.4 28.7 29.0 29.3 29.6 30.5 31.5 31.5 32.0 34.5 36.0 37.5	11767.3 11785.1 11786.3 11773.9 11744.2 11694.0 11588.9 11385.4 11094.7 10717.2 10263.8 9210.6 7577.6 6164.3 5036.0 4150.0	00001 00002 00001 .00000 .00003 .00006 .00014 .00026 .00043 .00054 .00077 .00099 .00132 .00135 .00147	00005000060000700008000080001100007 .00006 .00009 .00013 .00025 .00032 .00059 .00084	.00024 .00021 .00021 .00019 .00016 .00013 .00009 .00003 00003 00027 00050 00057 00086	.00027 .00026 .00022 .00020 .00016 .00012 .00006 .00007 .00003 00017 00017 00038 00027 00012

TABLE I. - Continued. MAIN-FIELD COEFFICIENTS

(c) Continued. 230-Ampere current

RADIUS	G3	H3	G6	H6	G9	H9
0.5 1.0 23.0 56.0 91.0 56.0 91.0 12.0 15.0 12.0 15.0 18.0 15.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18	0.00000 00003 00027 00208 00610 01171 01708 02370 03752 04654 05787 07028 09306 10274 11148 11975 12799 13667 14301 15365 16524 16672 16787 16881 16763	0.0000 00128 01016 010273 01016 03273 01695 18794 29605 18794 29605 3359390 40744 39873 40744 39876 40744 39876 40744 39876 40744 39876 40744 39876 40744 39876 29659 276593 28622 276593 28622 265937 24544 231541	0.00000 -000000 -000000 -000000 -000000 -000001 -000001 -000001 -000001 -000001 -000001 -000001 -000001 -000001 -000001 -000001 -000001 -000001 -000001 -000001 -000001 -000001 -000001 -0000001 -000000 -000000 -000000 -000000 -000000	0.00000 .00001 .00001 .00006 .00038 .00163 .00393 .00684 .00577 0023684 01044 023781 05122 07944 08441 058868 07412 058887 05187 051887 02295 02295 02295 01188 01188 01188	0.00000 00000 00000 000001 .000001 .000054 .00178 .00178 .00179 .01172 .01696 .02205 .02637 .02980 .03217 .03319 .03258 .02947 .02085 .02087 .02086 .01143 .00076 000335 000316 01268 01644	0.00000 .000001 .000002 .000001 .000014 .0010120 .0016559 .016559 .023832 .0355771 .035658 .03789 .03789 .04704 .049148 .04914
30.5 31.0 31.5 32.0 33.0 34.5 36.0 37.5	16463	21541 19947 18427 16959 14213 10566 07599 05395	13623 13560 13296 12829 11432 08781 06274 04342	00495 .00086 .00542 .00857 .01171 .01116 .00870	01644 01924 02109 02195 02132 01705 01206 00799	.05628 .05728 .05736 .05643 .05166 .04020 .02837
39.0	03840	03830	02989	.00423	00523	.01235

TABLE I. - Continued. MAIN-FIELD COEFFICIENTS

(c) Concluded. 230-Ampere current

RADIUS	G12	H12	G15	H15	G18	H18
0.0 .5 1.0 2.0 3.0 4.0 5.0 6.5 8.0 9.5 11.0 12.5 14.0 15.5		H12 0.00000 .00000 .00000 .00000 .0000000001000020002700098001830023300135 .00073 .00354 .00646 .00914		H15 0.00000 .00000 .00000 .00000 .00000 .00001 .00004 .00010000630015700262003310035900341		H18 0.00000 0.00000 0.00000 0.00000 0.00001 0.00001 0.00010 0.00014 0.00047 0.00047 0.00019 0.00008
18.5 20.0 21.5 23.0 24.5	.01461 .02005 .02551 .03053	.00914 .01134 .01286 .01383 .01414	00805 00864 00847 00766 00634	00341 00302 00251 00195 00165	00317 00527 00748 00967 01151	00008 .00013 .00074 .00172
25.5 26.3 27.0 27.5	.03578 .03601 .03538 .03441	.01404 .01374 .01343 .01322	00532 00447 00382 00346	00165 00184 00211 00234	01236 01275 01286 01285	.00410 .00506 .00594 .00660
28.0 28.4 28.7 29.0 29.3	.03300 .03152 .03027 .02888 .02741	.01306 .01301 .01305 .01312 .01321	00323 00318 00319 00327 00340	00306 00324 00338	01274 01263 01251 01239 01223	.00722 .00765 .00792 .00815
29.6 30.0 30.5 31.0 31.5	.02589 .02385 .02148 .01932 .01747	.01341 .01374 .01427 .01484 .01533		00314	01210 01188 01150 01094 01033	.00848 .00859 .00858 .00838
32.0 33.0 34.5 36.0 37.5 39.0	.01575 .01315 .00974 .00685 .00442	.01559 .01520 .01246 .00898 .00584	00324 00137 00010 .00055 .00060 .00045	00288 00221 00129 00060 00035 00034	00942 00731 00435 00244 00126 00062	.00736 .00589 .00362 .00201 .00092

TABLE I. - Continued. MAIN-FIELD COEFFICIENTS

(d) 280-Ampere current

RADIUS	B (GAUSS)	G1	H1	G2	H2
0.0 .5 1.0 2.0 3.0 4.0 5.0 6.5 8.0 9.5 11.0 12.5 14.0	(GAUSS) 12953.6 12935.2 12895.2 12767.6 12644.9 12582.6 12573.1 12576.0 12561.3 12528.8 12507.8 12507.8 12519.8 12536.9 12555.9	0.00000 .00003 .00007 .00012 .00018 .00019 .00024 .00028 .00029 .00035 .00023 .00021	0.00000 .00002 .00003 00003 00014 00026 00038 00032 00040 00023 00010 00010 00017	0.00000 00002 00011 00017 00024 00020 00002 00003 00002 00002 00002	0.00000 .00001 .00002 .00005 .00007 .00008 .00004 .00001 .00011 .00013 .00022 .00025
18.5 20.0 21.5 23.0 24.5 25.5 26.3 27.0 27.5 28.0 28.4 28.7	12578.1 12608.4 12653.0 12720.6 12820.4 12907.2 12986.4 13054.8 13096.9 13126.1 13132.4 13123.3	.00023 .00019 .00012 .00014 .00013 .00008 .00006 .00006 .00006 .00007 .00007	00004 00005 00002 00003 00007 00006 00006 00004 00007 00007	.00004 .00016 .00017 .00016 .00019 .00023 .00021 .00020 .00022 .00025 .00026 .00023	.00033 .00027 .00027 .00030 .00030 .00026 .00027 .00025 .00025 .00023 .00018
29.3 29.6 30.0 30.5 31.0 31.5 32.0 33.0 34.5 36.0 37.5	13059.0 12995.3 12869.0 12635.0 12308.5 11889.9 11391.0 10240.0 8457.0 6909.1 5669.6 4690.2	.00007 .00010 .00017 .00024 .00039 .00049 .00061 .00060 .00084 .00107	00003 00000 .00003 .00017 .00021 .00022 .00030 .00047 .00061 .00086	.00018 .00016 .00011 .00006 .00000 00013 00031 00049 00057 00081 00092	.00013 .00012 .00009 .00007 00000 00017 00037 00055 00030 00045 00026

TABLE I. - Continued. MAIN-FIELD COEFFICIENTS

(d) Continued. 280-Ampere current

RADIUS	G3	Н3	G6	Н6	G 9	Н9
0.0 .5 1.0 2.0 3.0 4.0 5.0 6.5 8.0 9.5 11.0 12.5	0.00000 00004 00025 00196 00583 01120 01643 02302 02955 03698 04619	H3 0.000000001600124009800315606779113361837324415291333272535406		0.00000 .00001 .00001 .00006 .00035 .00145 .00359 .00651 .00581 .00027	G9 0.00000 .00000 00001 .00000 00001 .00050 .00169 .00382 .00716	
14.0 15.5 17.0 18.5 20.0 21.5 23.0 24.5 25.5 26.3 27.0 27.5	069390810909171101251098511792126021345414076146161511215469	373483872939683402544048040272395123801136483348973323931906	016570239203188039980482805688066260770208536092951001810553	03592 04894 06033 06954 07660 08108 08222 07890 07341 06686 05940 05308	.01682 .02187 .02623 .02965 .03208 .03324 .03015 .02657 .02237 .01769 .01382	.02840 .03193 .03404 .03500 .03528 .03516 .03553 .03652 .03778 .03939
28.0 28.4 28.7 29.0 29.3 29.6 30.5 31.0 31.5 32.0 34.5 36.0 37.5 39.0	16372 16482 16550 16571 16453	30450 29231 28290 27331 26361 25388 24098 22504 20947 19432 17957 15138 11291 08110 05731 04041	11094 11510 11804 12032 12328 12538 12736 12847 12775 12513 12067 10734 08199 05823 03989 02708	03997 03528 03057 02582 02120 01525 00862	.00947 .00582 .00300 .00018 00259 00526 01202 01476 01665 01762 01741 01391 00865 00423	.04258 .04413 .044535 .044663 .04790 .04915 .05063 .05287 .05287 .05283 .04716 .03629 .02529 .01654

TABLE I. - Concluded. MAIN-FIELD COEFFICIENTS

(d) Concluded. 280-Ampere current

RADIUS	G12	H12	G15	H15	G18	H18
0.0		0.00000	0.00000	0.00000	0.00000	
.5	.00000	.00000	.00000	.00000	.00000	.00000
1.0 2.0	.00000	.00000	.00000	.00000	.00000	.00000
3.0	.00000	.00000	.00000	.00000	.00000	.00000
4.0	00000	00001	00001	00000	00001	.00000
5.0	00002	00003	00000	.00002	00000	00002
6.5	00011	00025	.00004	.00005	00001	00001
8.0	00045	00099	.00006	.00009	.00001	.00000
9.5	00080	00176	00004	00006	.00008	.00011
11.0	00080	00215	00054	00060	.00022	.00030
12.5	00007	00142	00164	00153	.00041	.00047
14.0	.00180	.00065	00330	00254	.00034	.00043
15.5	.00493	.00335	00514	00325	00021	.00022
17.0	.00919	.00622	00684	00354	00139	00001
18.5	.01408	.00881	00803	00340	00305	00010
20.0	.01949	.01092 .01247	00858 00844	00299 00244	00513 00732	.00015
21.5 23.0	.02487	.01247	00770	00244	00949	.00170
24.5	.023370	.01352	00642	00160	01126	.00170
25.5	.03513	.01326	00548		01208	.00405
26.3	.03541	.01286	00465		01244	.00496
27.0	.03484	.01241	00403	00204	01254	.00576
27.5	.03388	.01210	00373	00226	01248	.00634
28.0	.03244	.01185	00353	00256	01236	.00688
28.4	.03098	.01170	00346	00280	01217	.00723
28.7	.02971	.01163	00349	00297	01202	.00746
29.0	.02830	.01161	00360	00314	01187	.00765
29.3	.02683	.01165	00374	00330	01168	.00780
29.6	.02532	.01177	00388	00343	01150	.00791
30.0	.02333	.01201	00408	00352	01126	.00797
30.5 31.0	.02091	.01237 .01281	00429	00347 00341	01089 01030	.00787
31.5	.01684	.01310	00407		01030	.00774
32.0	.01521	.01330	00359	00289	00890	.00671
33.0	.01270	.01287	00233	00228	00699	.00537
34.5	.00940	.01048	00052	00139	00421	.00346
36.0	.00632	.00751	.00022	00074	00236	.00189
37.5	.00405	.00474	.00037	00054	00122	.00086
39.0	.00266	.00296	.00040	00030	00057	.00047

TABLE I. - Continued. MAIN-FIELD COEFFICIENTS

(e) 330-Ampere current

RADIUS	B (GAUSS)	G1	H1	G2	H2
0.0	13956.2	0.00000	0.00000	0.00000	0.00000
.5	13940.5	.00001	.00003	00002	.00001
1.0	13895.8	00001	.00004	00003	.00001
2.0	13752.0	00000	00004	.00002	.00001
3.0	13610.5	.00011	00025	.00001	.00006
4.0	13531.7	.00022	00014	00008	.00011
5.0	13515.3	.00029	00011	00008	.00004
6.5	13525.2	.00019	00017	.00010	.00000
8.0	13524.3	.00008	00021	.00017	.00013
9.5	13505.2	.00021	00017	.00018	.00023
11.0	13494.8	.00020	00009	.00024	.00019
12.5	13503.7	.00019	00013	.00022	.00027
14.0 15.5	13521.7 13541.8	.00018	00012 00009	.00017 .00009	.00034
17.0	13562.3	.00020	00014	.00011	.00028
18.5	13583.6	.00021	00007	.00015	.00029
20.0	13610.9	.00021	.00003	.00012	.00030
21.5	13650.2	.00017	00001	.00014	.00026
23.0	13709.9	.00014	.00000	.00019	.00024
24.5	13797.9	.00012	.00001	.00019	.00027
25.5	13873.3	.00012	00004	.00017	.00024
26.3	13940.0	.00012	00004	.00017	.00021
27.0	13995.5	.00010	.00000	.00018	.00024
27.5	14026.7	.00011	00001	.00019	.00022
28.0	14041.0	.00006	.00002	.00021	.00024
28.4	14035.9	.00006	00000	.00021	.00021
28.7	14017.4	.00010	00000	.00022	.00017
29.0	13983.6	.00010	00001	.00020	.00014
29.3	13930.4	.00012	.00001	.00019	.00010
29.6 30.0	13854.5 13711.6	.00015	.00003 .00006	.00017 .00014	.00006
30.5	13455.2	.00031	.00011	.00010	.00005
31.0	13104.6	.00048	.00016	.00004	00001
31.5	12660.7	.00050	.00025	00003	00010
32.0	12135.2	.00066	.00028	00014	00016
33.0	10928.8	.00065	.00040	00030	00037
34.5	9062.3	.00108	.00056	00053	00037
36.0	7440.9	.00125	.00077	00071	00033
37.5	6134.8	.00122	.00090	00083	00023
39.0	5098.1	.00115	.00109	00094	00018

TABLE I. - Continued. MAIN-FIELD COEFFICIENTS

(e) Continued. 330-Ampere current

RADIUS	G3	H3	G6	H6	G9	Н9
0.0	0.00000	0.00000 00015	0.00000	0.00000	0.00000	0.00000
1.0	00024	00118	00001	.00001	00001	.00001
2.0	00188	00936	.00000	.00006	00002	.00003
3.0	00555	03020	.00008	.00032	.00000	.00002
4.0	01083	06523	.00036	.00137	.00002	.00003
5.0 6.5	01600 02274	10937	.00071	.00343	.00008	.00017
8.0	02948	17807 23793	.00082	.00633	.00054	.00119
9.5	03674	28467	00137	.00106	.00382	.00428
11.0	04550	32002	00475	00804	.00693	.01612
12.5	05625	34629	00952	02022	.01130	.02261
14.0	06808	36531	01548	03346	.01648	.02788
15.5	07949	 37879	02241	04596	.02154	.03144
17.0	08981	38810	03003	05692	.02588	.03346
18.5	09908	39397	03778	06597	.02942	.03447
20.0	10745	39641	04570	07286	.03192	.03483
21.5 23.0	11542 12339	39484	05395		.03330	.03470
24.5	 13177	38813 37457	06287 07307		.03314	.03444
25.5	13787	 36062	08091	07088	.02757	.03546
26.3	14322	34598	08803		.02372	.03650
27.0	14814	33046	09479		.01937	.03784
27.5	 15161	31789	09982	05161	.01566	.03911
28.0	15495	30415	10475	04484	.01164	.04060
28.4	15739	29251	10866	03907	.00813	.04197
28.7	15900	28346	11141	03456	.00544	.04307
29.0	16035	27421	11399	03002	.00272	.04421
29.3 29.6	16140 16203	26484		02545	.00005	.04536
30.0	16217	25540 24276	11821	02101 01529	00254 00581	.04646 .04779
30.5	16086	22708		00889	00925	.04775
31.0	15777	21165		00354	01195	.04971
31.5	15275			.00067	01386	.04955
32.0	14603	18174	11344	.00360	01485	.04847
33.0	12813	15329	10057	.00651	01489	.04392
34.5	09745	11406	07626	.00640	01202	.03343
36.0	06925	08171	05358	.00455	00835	.02294
37.5	04750	05717	03625	.00278	00543	.01490
39.0	03212	03974	02418	.00150	00357	.00940

TABLE I. - Continued. MAIN-FIELD COEFFICIENTS

(e) Concluded. 330-Ampere current

RADIUS	G12	H12	G15	H15	G18	H18
0.0 1.0 2.0 3.0 4.0 5.5 8.0 9.5 11.0 15.5 17.0 18.5 20.0 21.5 23.0 24.5 25.3 27.0	0.00000 .00000 .00000 .00000 .00000 .00000 00014 00043 00084 00080 00063 .00458 .00458 .00870 .01352 .01873 .02403 .02888 .03267 .03406 .03426	0.00000 .00000 .00000 .00000 .00000 00004 00026 00089 00168 00211 00140 .00059 .00324 .00590 .00843 .01051 .01196 .01272 .01287 .01258 .01258	0.00000 .00000 .00000 .00000 .00001 .00001 .00003 00002 00049 00157 00320 00505 00667 00791 00853 00853 00659 00570 00497 00440	0.00000 .00000 .00000 .00000 .00000 .00000 .00005 .00005 .00005 00149 00250 00318 00345 00345 00328 00292 00292 00149 00149 00167 00187	0.00000 .00000 .00000 .00000 .00000 .00000 .00002 .00010 .00021 .00034 00019 00129 00129 00294 00494 00710 00916 01092 01173 01202 01206	0.00000 .00000 .00000 .00000 .00001 .00001 00002 .00000 .00038 .00046 .00038 .00016 00002 00007 .00014 .00074 .00172 .00296 .00390 .00476 .00556
27.0 27.5 28.0 28.4 28.7	.03362 .03265 .03117 .02968 .02839	.01155 .01120 .01084 .01066 .01056	00440 00406 00390 00385 00387	00187 00209 00236 00258 00275	01206 01198 01181 01163 01147	.00556 .00607 .00657 .00689
29.0 29.3 29.6 30.0 30.5 31.0	.02700 .02552 .02399 .02200 .01963 .01748	.01053 .01053 .01059 .01074 .01107	00393 00406 00417 00437 00455 00459	00292 00305 00318 00327 00329 00319	01131 01113 01095 01068 01030 00980	.00724 .00737 .00744 .00748 .90742
31.5 32.0 33.0 34.5 36.0 37.5 39.0	.01566 .01405 .01158 .00850 .00577 .00373	.01174 .01190 .01147 .00928 .00649 .00415	00438 00398 00269 00088 00003 .00023	00298 00274 00222 00137 00076 00047 00025	00918 00837 00655 00392 00225 00112 00058	.00688 .00634 .00507 .00321 .00169 .00077

TABLE I. - Continued. MAIN-FIELD COEFFICIENTS

(f) 380-Ampere current

RADIUS (IN.)	B (GAUSS)	G1	H1	G2	H2
0.0	14706.7	0.00000	0.00000	0.00000	0.00000
.5	14689.6	.00004	.00003	00003	.00001
1.0	14640.7	.00009	.00004	00006	.00002
2.0	14482.7	.00012	.00000	00012	.00004
3.0	14323.8	.00015	00011	00015	.00004
4.0	14231.5	.00019	00021	00010	.00004
5.0	14205.0	.00019	00027	00004	00001
6.5 8.0	14211.9	.00020	00022	00006	00001
9.5	14217.9	.00018	00027 00008	00001 00003	.00003
11.0	14210.5 14212.5	.00014	00027	00009	.00012
12.5	14212.5	.00018	00027	00003	.00021
14.0	14251.8	.00018	00004	00001	.00020
15.5	14275.9	.00021	00004	.00015	.00018
17.0	14273.3	.00013	00011	.00013	.00019
18.5	14317.5	.00017	.00004	.00005	.00019
20.0	14341.0	.00021	.00003	.00005	.00022
21.5	14374.7	.00021	.00012	.00009	.00023
23.0	14425.0	.00012	.00012	.00013	.00023
24.5	14499.9	.00012	.00002	.00013	.00027
25.5	14563.4	.00012	.00001	.00012	.00025
26.3	14618.3	.00005	00003	.00012	.00027
27.0	14661.4	.00009	00003	.00025	.00019
27.5	14682.0	.00005	.00003	.00014	.00021
28.0	14685.3	.00005	.00002	.00025	.00021
28.4	14669.6	.00006	00000	.00019	.00015
28.7	14643.3	.00007	.00002	.00018	.00013
29.0	14600.9	.00007	.00005	.00017	.00013
29.3	14539.0	.00008	.00007	.00015	.00011
29.6	14454.0	.00011	.00009	.00011	.00010
30.0	14298.6	.00020	.00010	.00009	.00011
30.5	14027.1	.00029	.00014	.00004	.00006
31.0	13660.7	.00036	.00020	00002	.00002
31.5	13201.1	.00049	.00022	00013	00004
32.0	12660.1	.00052	.00026	00016	00011
33.0	11423.0	.00075	.00038	00036	00038
34.5	9511.3	.00082	.00049	 00055	00048
36.0	7845.3	.00105	.00062	00059	00025
37.5	6499.5	.00100	.00072	00075	00035
39.0	5425.4	.00099	.00094	00104	00047

TABLE I. - Continued. MAIN-FIELD COEFFICIENTS

(f) Continued. 380-Ampere current

RADIUS	G3	Н3	G6	Н6	G 9	Н9
0.0 1.0 2.0 3.0 4.0 5.5 8.0 9.5 11.0 12.5 14.0 15.5 17.0 18.5 20.5 21.5 23.0 24.5 25.3 27.5 28.0 28.4	0.00000 00003 00023 00182 00538 01549 02205 02852 03598 04463 05506 06644 07773 08764 07773 08764 07773 1253 12030 12849 13453 14453 14453 14798 15351	0.00000 00015 00114 00899 02900 06254 10518 17205 23042 27637 31114 33701 35562 37777 38473 38473 38473 38473 36617 35309 32447 31233 32447 31233 29865 28752	0.00000 00000 00000 00000 00006 .00028 .00063 .00085 .00041 00111 00403 00403 00401 02070 02787 03524 04273 05060 05907 06874 07626 08307 08958 09924 09924 10308	0.00000 .00000 .00001 .00005 .00033 .00130 .00324 .00618 .00632 .00199 00653 01787 03035 04236 05290 06166 06835 07277 07432 07189 06727 06152 05483 04264 03712	0.00000 .00000 .00000 .00000 00000 .00008 .00050 .00161 .00369 .00684 .01112 .01619 .02130 .02567 .02922 .03181 .033330 .03339 .03130 .02828 .02462 .02042 .01686 .01274 .00940	0.00000 .00000 .00000 .00002 .00002 .00004 .00119 .00407 .00903 .01541 .02191 .02717 .03068 .03291 .03434 .03419 .03439 .03535 .03653 .03763 .03889 .04021
28.4 28.7 29.0 29.3 29.6 30.0 31.5 31.5 32.0 33.0 34.5 36.0	15503 15631 15727 15783 15788 15652 15335	28752 27864 26955 26029 25095 23842 22288 20757 19252 17779 14928 11013 07768 05331	10580 10833 11060 11251 11436 11539	03285 02850 02414 01987 01444 00830 00313	.00940 .00672 .00404 .00139 00116 00437 01053 01243 01354 01369 01077 00757	.04021 .04121 .04226 .04332 .04433 .04555 .04672 .04728 .04704 .04594 .04146 .03131 .02135
39.0	02833	03619	02178	.00135	00300	.00854

TABLE I. - Continued. MAIN-FIELD COEFFICIENTS

(f) Concluded. 380-Ampere current

RADIUS	G12	H12	G15	H15	G18	H18
0.0 .5 1.0 2.0 3.0 4.0 5.0 6.5 8.0 9.5 11.0 12.5 14.0 15.5 17.0 18.5 20.0 21.5	0.00000 .00000 .00000 .00000 .00000 00001 00002 00014 00080 00085 00027 .00138 .00424 .00816 .01279 .01779	0.00000 .00000 .00000 .00000 .00000 00001 00004 00024 00158 00158 00199 00144 .00033 .00283 .00548 .00795 .00992	0.00000 .00000 .00000 .00000 .00000 00000 00003 00003 00051 00151 00308 00491 00659 00783 00848	0.00000 .00000 .00000 .00000 .00001 00000 .00004 .00008 00009 00056 00142 00238 00303 00325 00286 00233	0.00000 .00000 .00000 .00000 .00000 00001 00001 .00009 .00020 .00039 .00035 00013 00120 00279 00469 00679	0.00000 .00000 .00000 .00000 .00000 -00000 00001 .00010 .00026 .00043 .00040 .00021 .00001 00007
23.0 24.5 25.5	.02765 .03129 .03265	.01217 .01223 .01187	00791 00679 00592	00176	00884 01048 01123	.00160 .00283 .00376
26.3 27.0 27.5	.03287 .03225 .03127	.01135 .01082 .01041	00592 00521 00469 00435		01155 01163 01150	.00460 .00533 .00585
28.0 28.4 28.7	.02977 .02840 .02715	.01001 .00980 .00970	00412 00412	00262	01133 01116 01100	.00628 .00664 .00682
29.0 29.3 29.6 30.0	.02580 .02438 .02292 .02098	.00965 .00964 .00970 .00985	00428 00438	00279 00295 00307 00319	01084 01067 01048 01024	.00697 .00710 .00717 .00722
30.5 31.0 31.5	.01865 .01657 .01473	.01013 .01043 .01072	00469 00446	00319 00308 00290	00988 00943 00883	.00716 .00694 .00658
32.0 33.0 34.5 36.0 37.5 39.0	.01322 .01084 .00780 .00532 .00329	.01083 .01039 .00842 .00593 .00360	00027	00040	00813 00628 00375 00201 00106 00050	.00608 .00487 .00302 .00170 .00071

TABLE I. - Continued. MAIN-FIELD COEFFICIENTS

(g) 430-Ampere current

RADIUS (IN.)	B (GAUSS)	G1	н1	G2	H2
0.0 .5 1.0 2.0 3.0	15315.0 15296.9 15245.7 15078.7 14907.0	0.00000 .00000 .00001 .00003	0.00000 .00001 .00002 00005 00025	0.00000 00001 00004 00005 00008	0.00000 00000 .00000 00001 00005
4.0 5.0 6.5 8.0 9.5	14801.2 14763.7 14763.2 14769.5 14767.8	.00017 .00012 .00010 .00004	00031 00015 00024 00024 00015	00009 00019 00002 00005 00003	00004 00010 00010 00003
11.0 12.5 14.0 15.5 17.0	14775.2 14799.1 14827.2 14852.3 14874.2	.00013 .00012 .00008 .00014	00009 00009 00006 00003	00002 .00002 .00004 .00003	.00004 .00009 .00012 .00013
18.5 20.0 21.5 23.0 24.5	14892.5 14912.5 14939.7 14980.9 15042.6	.00010 .00011 .00012 .00010	.00004 .00005 .00009 .00005	.00005 .00003 .00002 .00008	.00017 .00018 .00020 .00018
25.5 26.3 27.0 27.5 28.0	15094.7 15138.6 15170.3 15181.5 15175.6	.00008 .00007 .00008 .00008	.00004 .00007 .00005 .00001	.00009 .00009 .00009 .00012	.00021 .00021 .00021 .00021 .00018
28.4 28.7 29.0 29.3	15152.0 15119.0 15069.8 15001.0 14909.3	.00006 .00006 .00005	.00004 .00006 .00007 .00009	.00018 .00016 .00015 .00012	.00018 .00017 .00014 .00010 .00006
29.6 30.0 30.5 31.0 31.5	14744.5 14461.9 14084.8 13614.4 13062.4	.00007 .00017 .00022 .00027 .00048	.00012 .00016 .00025 .00035 .00043	.00009 .00008 .00000 00007 00011	.00005 .00003 .00000 00009
32.0 33.0 34.5 36.0 37.5 39.0	11804.5 9862.2 8168.8 6794.9 5692.6	.00036 .00054 .00079 .00077 .00078	.00050 .00065 .00070 .00095 .00110	00022 00041 00052 00069 00083 00099	00012 00045 00045 00029 00038 00028

TABLE I. - Continued. MAIN-FIELD COEFFICIENTS

(g) Continued. 430-Ampere current

TABLE I. - Concluded. MAIN-FIELD COEFFICIENTS

(g) Concluded. 430-Ampere current

RADIUS	G12	H12	G15	H15	G18	H18
RADIUS 0.0 .5 1.0 2.0 3.0 4.0 5.0 6.5 8.0 9.5 11.0 12.5 14.0 15.5 17.0 18.5 20.0 21.5 23.0 24.5 25.5 26.3 27.0	G12 0.00000 .00000 .00000 .00000 .00000 00012 00040 00078 00090 00029 .00122 .00383 .00756 .01201 .01680 .02172 .02636 .02998 .03135 .03158 .03105	H12 0.00000 .00000 .00000 .00000 -00001000040002400079001500019300145 .0028 .00260 .00508 .00740 .00938 .01078 .01148 .01158 .01122 .01071 .01014	G15 0.00000 .00000 .00000 .00000 .0000000001 .00003 .00004000300047001460029500472006340076300839008470079400693006100054100484		G18 0.00000 .00000 .00000 .00000 .0000000001 .00001 .0000100001 .0003200120010900258004440064501010010850111601123	H18 0.00000 .00000 .00000 .00000 .00000 .00001 .00001 .00001 .00007 .00026 .00041 .00036 .000190000100066 .00159 .00276 .00367 .00451 .00522
27.5 28.0 28.4 28.7 29.0 29.3 29.6 30.0	.03014 .02875 .02738 .02620 .02488 .02350 .02206	.00976 .00937 .00916 .00904 .00896 .00892 .00897	00453 00427 00425 00430 00440 00466	00183 00211 00235 00251 00267 00280 00293 00304	01116 01097 01081 01069 01054 01037 01020 00996	.00571 .00617 .00647 .00666 .00680 .00692 .00699
30.5 31.0 31.5 32.0 33.0 34.5 36.0 37.5	.01792 .01588 .01410 .01260 .01026 .00732 .00485 .00304	.00941 .00971 .01000 .01014 .00969 .00781 .00544 .00339	00481 00484 00464 00422 00298 00109 00033 .00000 .00014	00308 00299	00959 00912 00853 00784 00600 00357 00207 00106 00055	.00698 .00679 .00641 .00597 .00478 .00301 .00159 .00065

TABLE II. - TRIM-COIL FIELDS

[Gauss-per-100-A trim-coil current.]

(a) 130-Ampere main-magnet current

RADIUS			COIL	NO			
(IN.)	1 2	3	4	5	6	7	8
• • • • • •		-	·	-	-	•	
0.0	274.9 266.5	242.5	217.3	193.6	169.5	147.1	123.9
1.0	270.8 265.2	241.6	216.3	192.8	168.8	146.5	123.3
2.0	259.1 262.5	239.6	213.9	190.8	167.2	145.1	122.1
3.0	237.4 260.8	237.8	211.7	189.0	165.6	143.7	120.8
4.0	203.3 259.3	237.1	210.5	188.1	164.8	142.9	120.1
5.0	155.7 257.0	237.7	210.3	187.9	164.4	142.6	119.8
6.0	103.2 251.0	238.6	210.6	187.9		142.3	119.5
7.0	57.0 238.3	238.6	210.9	187.9	163.0	141.8	119.1
8.0	26.1 213.7	236.8	211.0	187.6	161.9	141.1	118.5
9.0	10.3 172.0	233.9	210.8	187.3	161.0	140.6	118.0
10.0	1.4 117.9		210.4	187.1	160.6	140.1	117.7
11.0	-2.1 67.3			186.9	160.7	139.7	117.5
12.0	-3.0 28.3	197.8	209.4	187.0		139.6	117.5
13.0	-3.8 8.1		209.6	186.9		139.5	117.7
14.0	-3.61		206.8	187.2		139.7	117.9
15.0	-3.4 -5.1		196.8	187.4		140.1	118.3
16.0	-3.5 -7.2			186.9		140.9	118.8
17.0	-3.4 -7.9		138.0	186.4		141.8	119.3
18.0	-3.4 -7.1		89.5	182.5		142.8	119.8
19.0	-3.3 -6.4			170.8		143.4	120.2
20.0	-3.2 -6.4			142.9		143.8	120.3
21.0	-3.0 -6.5			103.8		144.0	120.3
22.0		-10.5		58.1		143.5	120.3
23.0	-2.6 -6.7			20.3		143.1	120.6
24.0	-2.6 -6.6			1		140.4	121.6
25.0	-2.6 -6.4					132.7	122.4
26.0	-2.8 -6.2				21.9	116.3	123.0
27.0	-3.0 -6.0			-15.2	.0	87.1	121.1
28.0	-3.1 -6.0				-9.9	49.5	114.2
29.0	-3.3 -6.0				-14.8	18.4	99.1
30.0	-3.4 -6.0				-15.1		69.3
31.0	-3.3 -5.8						38.3
32.0	-3.1 -5.5				-13.1		
33.0	-2.9 -5.1			-10.6		-13.2	-1.5
34.0	-2.6 -4.7		-8.8		-12.0		-5.6 -7.1
35.0	-2.3 -4.3		-7.8 -6.8		-11.6		-7.1 -7.0
36.0	-2.0 -4.0		-6.8 -6.0		-11.3		-7.0 -6.0
37.0 38.0	-1.8 -3.7 -1.6 -3.7		-6.0 -5.7	-7.7 -7.1		-7.9 -7.0	
	-1.6 -3.5		-5.3		-11.1 -11.1	-7.0 -6.7	-4.3 -2.2
39.0	-1.4 -3.3	-2.5	-4.6	- /.l	-11.1	-6.3	-2.2

TABLE II. - Continued. TRIM-COIL FIELDS

[Gauss-per-100-A trim-coil current.]

(b) 230-Ampere main-magnet current

RADIUS				- COIL	NO			
(IN.)	1	2	3	4	5	6	7	8
0.0	263.8		222.9	194.6	168.3		119.5	96.9
1.0	259.9	249.4	221.8	193.5	167.3	141.7	118.8	96.3
2.0	248.3	246.5	219.2	190.9	165.1	139.8	117.2	95.0
3.0	226.8	243.8	216.9	188.4	162.9		115.6	93.6
4.0	192.9	241.7	216.1	187.1	161.8		114.6	92.8
5.0	146.6	240.0	217.3	187.2	161.8	136.8	114.4	92.6
6.0	96.0	235.5	219.3	188.4	162.7		114.6	92.7
7.0	52.0	225.1	220.7	190.0	163.9	137.3	115.0	92.9
8.0	22.7	202.4	220.5	191.5	165.0	137.7	115.3	93.1
9.0	7.5	162.5	219.4	192.5	165.8	138.1	115.6	93.4
10.0	1	110.2	216.0	193.3	166.4	138.5	115.9	93.6
11.0	-3.1	60.9	208.4	194.0	167.0	139.1	116.2	93.9
12.0	-3.9	23.5	187.2	194.1	167.6	140.0	116.6	94.3
13.0	-4.4	3.8	151.6	194.5	168.2	141.0	117.0	94.7
14.0	-4.2	-4.8	102.3	192.0	169.1	141.8	117.5	95.2
15.0	-4.0	-8.7	52.2	182.9	169.9	142.5	118.1	95.6
16.0	-4.0	-10.0	15.5	161.5	169.7	143.0	118.8	96.0
17.0	-3.9	-10.5	-4.0	125.4	169.5	143.7	119.5	96.4
18.0	-3.8		-12.0	77.5	165.5	144.8	120.2	96.7
19.0	-3.7		-15.5	32.2	153.9	145.4	120.7	97.0
20.0	-3.6		-16.6	1.1	128.0	145.1	121.4	97.3
21.0	-3.5		-16.7	-13.8	88.9	142.1	122.0	97.5
22.0	-3.4	-8.7		-19.5 -21.5	43.6	134.3 115.5	121.9 121.6	97.8 98.1
23.0	-3.3 -3.2			-21.5 -21.5	6.9	82.7	119.1	98.8
24.0	-3.2		-14.1	-21.3	-13.3 -23.0	41.3	112.1	99.2
25.0	-3.2 -3.1		-13.9	-21.2	-25.7	5.9	96.0	99.0
26.0 27.0	-3.1		-13.8	-19.5	-25.7 -26.2	-15.5	66.9	96.5
28.0	-3.1	-7.9	-13. 6	-19.1	-25.8	-24.7	30.3	89.5
29.0	-3.1	-7. 6	- 13.5	-18.7	-25.0	-28.3	4	73.7
30.0	-3.1		- 13.1	-18.2	-23.6		-19.1	46.3
31.0	- 3.0		-12.4	-17.3			-25.0	16.0
32.0	-2.8		-11.4	-16.0	-20.0	-24.5		- 7.0
33.0	-2.6	-5.8	-10.2	-14.4	-18.0		-25.1	-17.7
34.0	-2.4	-5.2	-8.9	-12.7			-22.1	-20.1
35.0	-2.1	-4.6	-7.7	-11.3			-19.5	-19.4
36.0	-2.0	-4.1	-6.7	-10.0	-13.1		-16.9	-17.6
37.0	-1.8	-3.7	-5.9	-8.9				-15.2
38.0	-1.7	-3.3	-5.1		-11.1			
39.0	-1.5	-3.0	-4.5		-10.5			-9.6
		-						

TABLE II. - Continued. TRIM-COIL FIELDS

Gauss-per-100-A trim-coil current.

(c) 330-Ampere main-magnet current

TABLE II. - Concluded. TRIM-COIL FIELDS

Gauss-per-100-A trim-coil current.

(d) 430-Ampere main-magnet current

RADIUS				- COIL	NO			
(IN.)	1	2	3	4	5	6	7	8
0.0		189.9		130.8	106.9	85.6	68.1	53.0
1.0			158.1	130.3	106.5	85.2	67.7	52.8
2.0			157.6	129.3	105.5	84.4	67.0	52.1
3.0	192.0		157.4	128.6	104.8	83.6	66.3	51.4
4.0	163.9		158.0	128.7	104.7	83.3	65.9	51.1
5.0			159.6	129.8	105.3	83.7	66.1	51.1
6.0	77.7		162.0	131.5	106.4	84.4	66.6	51.5
7.0	38.4		164.5	133.5	107.8	85.4	67.3	51.9
8.0	12.4		166.6	135.9	109.4	86.6	68.0	52.5
9.0	2		169.4	138.6	111.3	87.9	68.9	53.1
10.0	-4.9	83.4	170.1	142.1	113.6	89.3	69.9	53.7
11.0	-6.4	40.2	166.1	145.9	116.3	91.0	71.0	54.5
12.0	-6.3	9.0	151.0	148.9	119.1	92.9	72.3	55.4
13.0			120.1	151.6	121.8	94.9	73.7	56.3
14.0	-5.6	-13.5	76.2	151.5	124.8	96.9	75.1	57.3
15.0		-15.2		145.8	127.7	98.8	76.4	58.1
16.0		-14.7 -14.2		128.9	129.4	100.8	77.6 78.9	58.9
17.0 18.0		-14.2 -13.1		96.2 52.6	130.7	102.7	80.1	59.6 60.4
19.0		-12.1		11.9	128.5 119.6	104.8	81.4	61.1
20.0				-14.9		107.9		62.0
21.0				-27.3		106.9	84.6	63.0
22.0		-10.0		-31.1	20.9	101.1	85.7	63.9
23.0	-3.1		-19.4	-31. 3			86.7	64.9
24.0	-2.9		-18.2	-29.8		56.2	85.8	66.0
25.0	-2.7		-17.0	-28.3		18.9		66.8
26.0	-2.6		-16.0	-26.4		-12.8	67.6	67.2
27.0	-2.4		-15.0		-34.9			65.7
28.0	-2.3		-14.1	-23.0				60.4
29.0	-2.2			-21.3				46.8
30.0	-2.1			-19.7		-35.8		23.4
31.0	-1.9			-18.0				-3.6
32.0	-1.8			-16.3				
33.0	-1.6	-4.8	-9.3	-14.7	-20.9	-27.5	-33.1	-31.0
34.0	-1.5	-4.3	-8.3	-13.2	-19.0	-24.8	-29.9	-31.8
35.0	-1.3			-12.1				
36.0				-11.1				
37.0				-10.5				
38.0	-1.1			-10.0				
39.0	-1.0	-2.9	-5.7	-9.6	-14.3	-16.8	-15.1	-15.3

TABLE III. - INNER-HARMONIC-COIL INCREMENTAL FIELDS

[First-harmonic amplitudes, Gauss per 100 A; effective angular location of coil 1, +0.12 radians.]

RADIUS		MAIN-FIELD	AMPERES	
(in.)	130	230	330	430
a0.0	0.0	0.0	0.0	0.0
1.0	5.1	5.2	5.0	4.8
2.0	11.4	11.4	11.1	10.6
3.0	19.0	19.1	18.6	17.8
4.0	26.1	26.0	25.5	24.5
5.0	28.8	28.7	28.6	26.9
6.0	25.3	25.2	25.2	23.3
7.0	17.8	17.7	17.7	16.1
8.0	10.3	10.1	10.2	9.2
9.0	5.2	5.1	5.0	4.7
a10.0	2.5	2.4	2.1	2.0
11.0	1.0	1.0	.9	. 8
a12.0	. 5	. 4	. 4	• 3
a13.0	. 2	. 2	. 2	. 2
$a^{14.0}$. 1	.1	.1	.1
ື15.0	.0	.0	.0	.0

a_{Not a measured value.}

TABLE IV. - INNER-HARMONIC-COIL INCREMENTAL FIELDS

[First-harmonic amplitudes, Gauss per 100 A; effective angular location of coil, +0.27 radians.]

RADIUS		MAIN-FIELD	AMPERES	
(in.)	130	230	330	430
^a 9.0	0.00	0.00	0.00	0.00
10.0	.04	.06	.06	.05
a11.0	.08	.10	.10	.13
12.0	.14	.15	.15	.20
a13.0	.21	.20	.20	23
14.0	.33	.31	.30	.31
a15.0	•53	.50	.49	.50
a16.0	.84	.82	.81	.81
a10.0	1.28	1.30	1.28	1.25
18.0	1.93	1.98	1.96	1.91
^a 19.0	2.90	2.95	2.91	2.93
20.0	4.08	4.11	4.08	4.16
a21.0	5.45	5.48	5.50	5.53
a22.0	6.82	6.86	6.92	6.90
^a 23.0	8.04	8.07	8.10	8.14
24.0	8.98	9.01	8.99	9.09
^a 25.0	9.44	9.51	9.48	9.54
26.0	9.46	9.58	9.56	9.59
27.0	9.04	9.19	9.19	9.29
28.0	8.23	8.47	8.47	8.46
29.0	7.09	7.33	7.32	7.34
30.0	5.76	6.02	5.98	5.93
^a 31.0	4.35	4.65	4.59	4.52
32.0	3.07	3.37	3.31	3.23
^a 33.0	2.13	2.35	2.28	2.21
a34.0	1.43	1.56	1.48	1.41
a35.0	.94	1.01	.93	.86
36.0	.66	.69	.61	.54
^a 37.0	.41	. 44	.38	.33
a38.0	.26	. 28	. 24	. 21
² 39.0	.17	.18	.15	. 14

^aNot a measured value.

Figure 1. - Contour plot of cyclotron main-magnet field at current of 380 amperes. Also shown is polar-coordinate system used to describe field with scale in centimeters (in.) on the $\,\theta$ = 0 axis.

Figure 2. - Construction detail of Hall probe. (No scale.)

Figure 3. - Hall-probe electrical circuit.

(a) Hall element voltages as functions of magnetic field strength.

(b) Variation of field-correction term as function of magnetic-field strength.

Figure 4. - Characteristics of Hall element used.

Figure 5. - Amplitude of first harmonic.

Page Intentionally Left Blank

1.	Report No. NASA TM X-2692	2. Government Acces	sion No.	3. Recipient's Catalog	j No.
4.	Title and Subtitle			5. Report Date	70
	MAGNETIC-FIELD MEASURE	MENTS FOR TH	E	February 197	
	LEWIS RESEARCH CENTER C	YCLOTRON	. 1	6. Performing Organia	zation Code
7.	Author(s)			8. Performing Organiz	ation Report No.
	Theodore E. Fessler			E-6956	·
	1.0000010 2.7 1 035201		-	10. Work Unit No.	
9.	Performing Organization Name and Address			503-10	
	Lewis Research Center National Aeronautics and Space	Administration		11. Contract or Grant	No.
İ		Amministration	(
	Cleveland, Ohio 44135		. <u> </u>	13. Type of Report ar	nd Period Covered
12.	Sponsoring Agency Name and Address			Technical Me	
	National Aeronautics and Space	Administration	<u> </u>	Technical Me	inor andum
	Washington, D. C. 20546	***************************************		Sponsoring Agency	Code
	Washington, D. C. 20040				
15.	Supplementary Notes			•	•
16.	Abstract				
	The magnetic field of the Lewis	Research Cente	er cyclotron has bee	n mapped by usi	ing a Hall-
}	effect magnetic-field transduc	er Main-field	Fourier coefficients	were determin	ed on a nolar
	•				=
	mesh of 40 radii for each of se				
	eight sets of trim coils and two	sets of harmoni	c coils were also de	etermined at fou	r of these
	main-field levels. A stored-pr	rogram, digital o	computer was used t	to perform the n	neasurements.
	The process was entirely auton	natic: all data-ta	king and data-redu	ction activities v	vere specified
	by the computer programs. A				_
	· · · · · · · · · · · · · · · · ·		-		
	used. This method required no	<u>-</u>			1
	Hall voltage and Hall-element	resistance were	sufficient to correc	t for temperatur	e effects.
			•	,	
				,	
					Ì
17.	Key Words (Suggested by Author(s))		18. Distribution Statement		
	Magnet		Unclassified - v	ınlimited	[
	Measurement		,		Ì
	Cyclotron				ł
	0,01011011				ļ
19.	Security Classif. (of this report)	20. Security Classif. (c	f this page)	21. No. of Pages	22. Price*
	Unclassified	Unc	lassified	51	\$3.00
		L			r

OFFICIAL BUSINESS

PENALTY FOR PRIVATE USE \$300 SPECIAL FOURTH-CLASS RATE BOOK

POSTMASTER -

If Undeliverable (Section 158 Postal Manual) Do Not Return

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

-NATIONAL AFRONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS:

Information receiving limited distribution because of preliminary data, security classification, or other reasons. Also includes conference proceedings with either limited or unlimited distribution.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include final reports of major projects, monographs, data compilations. handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION

PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications, Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546