117366 - Lógica Computacional 1 (Turma D)

Prof. Flávio L. C. de Moura*

Prova 1 (Lógica Proposicional) Gabarito

As regras de dedução natural para a lógica proposicional **minimal** são dadas a seguir:

regras de introdução	regras de eliminação
$rac{arphi}{arphi\wedge\psi}\left(\wedge_{i} ight)$	$rac{arphi \wedge \psi}{arphi} \; (\wedge_e) rac{arphi \wedge \psi}{\psi} \; (\wedge_e)$
	$[arphi]^u \qquad [\psi]^v$
$ \frac{\varphi}{\varphi \vee \psi} \ (\vee_i) \frac{\psi}{\varphi \vee \psi} \ (\vee_i) $	$\frac{\varphi \vee \psi \qquad \stackrel{\vdots}{\dot{\chi}} \qquad \stackrel{\vdots}{\dot{\chi}}}{\chi} \qquad (\vee_e) \ u, v$
$[\varphi]^u$	
$\frac{\vdots}{\psi} (\to_i) u$	$\frac{\varphi \varphi \to \psi}{\psi} \ (\to_e)$
	$[arphi]^u$
$\frac{arphi}{\perp} (\lnot_e)$	$\stackrel{dots}{\stackrel{\perp}{\lnot}}_{\varphi} (\lnot_i) \ u$

Considerando que a negação corresponde a implicação ao absurdo, ou seja, $\neg \varphi$ é equivalente a $\varphi \to \bot$, para qualquer fórmula φ , definimos a função ng que transforma fórmulas da lógica proposicional como a seguir:

- $ng(\bot) = \bot$
- $ng(p) = \neg \neg p$, onde p é uma variável.
- $ng(\varphi \wedge \psi) = ng(\varphi) \wedge ng(\psi)$
- $ng(\varphi \lor \psi) = \neg \neg (ng(\varphi) \lor ng(\psi))$

^{*}flaviomoura@unb.br

•
$$ng(\varphi \to \psi) = ng(\varphi) \to ng(\psi)$$

Podemos estender o domínio da função ng para conjuntos de fórmulas de forma natural: se $\Gamma = \{\gamma_1, \gamma_2, \dots, \gamma_n\}$ então $ng(\Gamma) = \{ng(\gamma_1), ng(\gamma_2), \dots, ng(\gamma_n)\}$. A transformação ng é conhecida como translação negativa de Gödel.

Utilize indução na estrutura da fórmula φ para provar que

$$\neg\neg ng(\varphi) \vdash_m ng(\varphi)$$

Dicas:

- 1. Observe que a negação não precisa ser tratada explicitamente, de forma que apenas 5 casos precisam ser analisados. Veja os casos da definição de ng
- 2. Utilize, se necessário, o seguinte fato: $\neg\neg(\gamma \to \theta) \vdash_m (\neg\neg\gamma) \to (\neg\neg\theta)$, quaisquer que sejam as fórmulas γ e θ .

Solução:

Temos 5 casos a considerar:

1. $\varphi = \bot$: Precisamos provar que $\neg \neg ng(\bot) \vdash_m ng(\bot)$, ou seja, $\neg \neg \bot \vdash_m \bot$

$$\begin{array}{c}
 \begin{bmatrix} \bot \end{bmatrix}^x \\
 \hline
 & (\rightarrow_i)\emptyset \\
 \hline
 & \bot & (\neg_e) \\
 \hline
 & \neg\bot & (\neg_i) x \\
 \hline
 & & \bot & (\neg_e)
\end{array}$$

2. $\varphi = p$ (variável proposicional): Precisamos provar que $\neg \neg ng(p) \vdash_m ng(p)$, ou seja, $\neg \neg \neg p \vdash_m \neg \neg p$

3. $\varphi = \varphi_1 \wedge \varphi_2$: Precisamos provar que $\neg \neg ng(\varphi_1 \wedge \varphi_2) \vdash_m ng(\varphi_1 \wedge \varphi_2)$, ou seja, $\neg \neg (ng(\varphi_1) \wedge ng(\varphi_2)) \vdash_m ng(\varphi_1) \wedge ng(\varphi_2)$. Por hipótese de indução (h.i.), temos que $\neg \neg ng(\varphi_1) \vdash_m ng(\varphi_1)$ e $\neg \neg ng(\varphi_1) \vdash_m ng(\varphi_1)$. Mostraremos inicialmente que $\neg \neg (ng(\varphi_1) \wedge ng(\varphi_2)) \vdash_m \neg \neg (ng(\varphi_1)) \wedge \neg \neg (ng(\varphi_2))$

$$-\frac{\left[\neg (ng(\varphi_{2}))\right]^{u} \qquad \frac{\left[ng(\varphi_{1}) \wedge ng(\varphi_{2})\right]^{v}}{ng(\varphi_{2})} \left(\wedge_{e} \right)}{\frac{\bot}{\neg (ng(\varphi_{1}) \wedge ng(\varphi_{2}))} \qquad \left(\neg_{e} \right)} \\ -\frac{\bot}{\neg \neg (ng(\varphi_{1}) \wedge ng(\varphi_{2}))} \qquad \left(\neg_{e} \right)} \\ -\frac{\bot}{\neg \neg (ng(\varphi_{2}))} \qquad \left(\neg_{e} \right) u$$

Chame a prova acima de (\square) .

$$-\frac{\left[\neg (ng(\varphi_1))\right]^u \quad \frac{\left[ng(\varphi_1) \wedge ng(\varphi_2)\right]^v}{ng(\varphi_1)} \left(\wedge_e \right)}{\frac{\bot}{\neg (ng(\varphi_1)) \wedge ng(\varphi_2))} \quad \left(\neg_e \right)}$$

$$-\frac{\bot}{\neg \neg (ng(\varphi_1) \wedge ng(\varphi_2))} \quad \left(\neg_e \right)$$

$$-\frac{\bot}{\neg \neg (ng(\varphi_1))} \quad \left(\neg_e \right)$$

Chamando a prova acima de (\star) , concluímos como a seguir:

$$\frac{\nabla (ng(\varphi_1) \wedge ng(\varphi_2))}{\nabla_{(\star)}} \quad \nabla (ng(\varphi_1) \wedge ng(\varphi_2))} \\ \frac{\nabla}{\nabla_{(\Box)}} \\ \frac{\nabla (ng(\varphi_1))}{\nabla_{(h.i.)}} \quad \nabla_{(h.i.)} \\ \frac{ng(\varphi_1)}{ng(\varphi_1) \wedge ng(\varphi_2)} \quad (\land_i)$$

4. $\varphi = \varphi_1 \vee \varphi_2$: Precisamos provar que $\neg \neg ng(\varphi_1 \vee \varphi_2) \vdash_m ng(\varphi_1 \vee \varphi_2)$, ou seja, $\neg \neg \neg \neg (ng(\varphi_1) \vee ng(\varphi_2)) \vdash_m \neg \neg (ng(\varphi_1) \vee ng(\varphi_2))$.

$$\frac{\frac{\left[\neg(ng(\varphi_1)\vee ng(\varphi_2))\right]^x \quad \left[\neg\neg(ng(\varphi_1)\vee ng(\varphi_2))\right]^y}{\bot}}{\neg\neg\neg(ng(\varphi_1)\vee ng(\varphi_2))}\frac{(\neg_e)}{\neg\neg\neg(ng(\varphi_1)\vee ng(\varphi_2))}\frac{\bot}{\neg\neg(ng(\varphi_1)\vee ng(\varphi_2))}\frac{(\neg_e)}{\bot}$$

5. $\varphi = \varphi_1 \to \varphi_2$: Precisamos provar que $\neg \neg ng(\varphi_1 \to \varphi_2) \vdash_m ng(\varphi_1 \to \varphi_2)$, ou seja, $\neg \neg (ng(\varphi_1) \to ng(\varphi_2)) \vdash_m ng(\varphi_1) \to ng(\varphi_2)$.

$$\frac{\displaystyle \sum_{\substack{\neg\neg (ng(\varphi_1) \to ng(\varphi_2))\\ \neg\neg (ng(\varphi_1)) \to \neg\neg (ng(\varphi_2))}} \underbrace{\frac{[ng(\varphi_1)]^u \qquad [\neg (ng(\varphi_1))]^w}{\bot}}_{\substack{\neg\neg ng(\varphi_1)}} \frac{(\neg e)}{(\neg i)} w}{(\rightarrow e)}$$

$$\frac{\displaystyle \sum_{\substack{\neg\neg ng(\varphi_2)\\ ng(\varphi_2)\\ ng(\varphi_1) \to ng(\varphi_2)}} (\rightarrow_i) u$$