MATH 317, Homework 2

Colin Roberts June 24, 2016

Solutions

Problem 1. Let *A* and *B* be sets. Suppose that *A* is a finite set and that there exists a bijection $f: A \to B$. Prove that the set *B* is finite.

Proof. Suppose that *B* is infinite. Since $f: A \to B$ is surjective, $\forall b \in B, \exists a \in A$ such that f(a) = b. Since *A* is finite, we can say for some $n \in \mathbb{N}$ that the members of *A* are $a_1, a_2, ..., a_n$. Since *f* is also injective we have $f(a_i) = b_i$ where each $b_i \in B$. But this is a contradiction! The list $b_1, b_2, ..., b_n$ is the same length as $a_1, a_2, ..., a_n$ which we stated was finite. Thus *B* must also be finite. □

Problem 2. Find the supremum and infimum of the set $S = \left\{1 + \frac{(-1)^n}{n} \mid n \in \mathbb{N}\right\}$. Prove your claims.

Here we can see that the contribution from $\frac{(-1)^n}{n}$ gets smaller and smaller in magnitude as n gets larger. So we expect that the infimum and supremum occur with small n and can check some values.

$$n=1 \implies 1+\frac{-1}{1}=0$$

$$n = 2 \implies 1 + \frac{(-1)^2}{2} = \frac{3}{2}$$

$$n = 3 \implies 1 + \frac{(-1)^3}{3} = \frac{2}{3}$$

If we go on, the no greater or lesser values are achieved. $\sup S = \frac{3}{2}$ and $\inf S = 0$.

Proof (Infimum). Suppose $\exists n_0 \in \mathbb{N}$ such that $1 + \frac{(-1)^{n_0}}{n_0} < 0$ Then,

$$(-1)^{n_0} < -n_0$$

Since $n_0 \in \mathbb{N}$, we have $-n_0 \le -1$.

$$(-1)^{n_0} \le -n_0 < -1$$

This is not possible. The left hand side can only equal ± 1 and will never be less than -1. This is a contradiction and so inf S=0.

Proof (Supremum). Suppose $\exists n_0 \in \mathbb{N}$ such that,

$$1 + \frac{(-1)^{n_0}}{n_0} > \frac{3}{2}$$

$$\implies (-1)^{n_0} > \frac{1}{2}n_0$$

This is untrue $\forall n \in \mathbb{N}$ as if $n_0 = 1$ we have $-1 > \frac{1}{2}$. If $n_0 = 2$ we have 1 > 1 which is also untrue. Past this, as n_0 were to increase, the right hand side grows monotonically and is unbounded, and the left oscillates between ± 1 and thus the left hand side will never be greater than the left. This is a contradiction and thus $\sup S = \frac{3}{2}$.

Problem 3. Find the supremum and infimum of the set $S = \{\frac{1}{n} - (-1)^n \mid n \in \mathbb{N}\}$. Prove your claims.

$$n = 1 \Longrightarrow 1 - (-1) = 2$$

$$n = 2 \Longrightarrow \frac{1}{2} - (-1)^2 = \frac{-1}{2}$$

$$n = 3 \Longrightarrow \frac{1}{3} - (-1)^3 = \frac{4}{3}$$

$$n = 4 \Longrightarrow \frac{1}{4} - (-1)^4 = \frac{-3}{4}$$

Since the fraction $\frac{1}{n}$ is decreasing, it is largest when n=1 and $\sup S=2$. As n gets larger, $\frac{1}{n}$ will decrease to 0 while the contribution from $(-1)^n$ will oscillate between ± 1 giving us $\inf S=-1$.

Proof (Infimum). Suppose that $\inf S < -1$, then $\exists n_0 \in \mathbb{N}$ such that,

$$\frac{1}{n_0} - (-1)^{n_0} < -1$$

$$\frac{1}{n_0} < -1 + (-1)^{n_0}$$

Here on the right hand side we have a number that oscillates only between the values -2,0. On the left we have $\frac{1}{n_0}$ which is positive and nonzero $\forall n \in \mathbb{N}$. Thus this is a contradiction and $\inf S = -1$. \square

Proof (Supremum). Suppose that $\sup S > 2$ for some $n_0 \in \mathbb{N}$. Then,

$$\frac{1}{n_0} - (-1)^{n_0} > 2$$

$$\frac{1}{n_0} > 2 + (-1)^{n_0}$$

Here the right hand side oscillates between 1 and 3. The left hand side decreases from 1 to arbitrarily close to 0 as n increases from 1 to n. Because of this, the right hand side will never be less than the left which contradicts our statement about n_0 . Thus $\sup S = 2$.

Problem 4.

- (a) Show $|b| \le a$ if and only if $-a \le b \le a$.
- (b) Prove $||a| |b|| \le |a| + |b|$ for all $a, b \in \mathbb{R}$

(a) We want to show that $|b| \le a \iff -a \le b \le a$. Based on these definitions, we know that $a \ge 0$.

Proof (Part (a)). This is a biconditional statement, so I will prove the forward direction first.

Suppose that $|b| \le a$. Using the fact that b = 0, b > 0, or b < 0,

- (1) If b = 0 and $a \ge 0$ then we have that $-a \le 0$. Which is what we wanted to satisfy.
- (2) If b > 0 and $|b| \ge a$, then $a \ge b$ which implies $-a \le -b \le b$. Thus $-a \le -b < b$.
- (3) If b < 0 then $|b| = -b \le a$. This implies $b \ge -a$ and -b > b so $-a \le b \le a$.

Next, suppose that $-a \le b \le a$.

- (1) If b = 0 and $a \ge b$ then $a \ge 0 = |b|$.
- (2) If b > 0 and $b \le a$ then $|b| = b \le a = |a|$.
- (3) If b < 0 and $-a \le b$, then $-b \le a$. Since b < 0, $|b| = -b \le a$.

Proof (Part (b)). We have a few different conditions here to prove:

(1) If a = 0 and b = 0 then we have

$$||0| - |0|| = |0 - 0|$$

= $|0|$
 $\leq |0| + |0|$

(2) If a < 0 and b = 0 then we have

$$||a| - |b|| = ||a| - 0|$$

= $||a||$
= $|(a)|$
= $|a|$
 $\leq |a| + |b|$

(3) If a > 0 and b = 0 then we have

$$||a| - |b|| = ||a| - 0|$$

= $||a||$
= $|(a)|$
 $\leq |a| + |b|$

(4) If a = 0 and b < 0 then we have

$$||a| - |b|| = |0 - |b||$$

= $|-(-b)|$
= $|b|$
 $\leq |a| + |b|$

(5) If a = 0 and b > 0 then we have

$$||a| - |b|| = |0 - |b||$$

= $|-|b||$
= $|-(-b)|$
= $|b|$
 $\le |a| + |b|$

(6) If a < 0 and b < 0 then we have

$$||a| - |b|| = ||a| - (-b)|$$

= $|(a) + b|$
 $\le |a| + |b|$

(7) If a > 0 and b > 0 then we have

$$||a| - |b|| = |(a) - (b)||$$

= $|a - b|$

Since both a > 0 and b > 0

$$<|a+b|$$

 $\le |a|+|b|$

(8) If a < 0 and b > 0 then we have

$$||a| - |b|| = |-a - (b)|$$

Since -a > 0 and b > 0

$$<|a+b| \le |a|+|b|$$

(9) If a > 0 and b < 0 then we have

$$||a| - |b|| = |a - (-b)|$$

= $|a + b|$ $\leq |a| + |b|$

Given all of the possible combinations of conditions are satisfied, we know that $\forall a, b \in \mathbb{R}$, $||a| - |b|| \le |a| + |b|$

Note: I think there is probably a more elegant way to argue this. I thought of the brute force way, and it was fairly easy and algebraic (plus Lagrange Lagrange).

Problem 5.

- (a) Prove $|a+b+c| \le |a|+|b|+|c|$ for all $a,b,c \in \mathbb{R}$.
- (b) Use induction to prove

$$|a_1 + a_2 + ... + a_n| \le |a_1| + |a_2| + ... + |a_n|$$

for *n* numbers $a_1, a_2, ..., a_n$.

Proof (Part (a)).

$$|a+b+c| = |(a+b)+c|$$

 $\leq |(a+b)| + |c|$
 $= |a+b| + |c|$
 $\leq |a| + |b| + |c|$

Thus, $|a+b+c| \le |a| + |b| + |c|$.

Proof (Part (b)). Depending on your point of view, the base case is given by the original triangle inequality $|a_1 + a_2| \le |a_1| + |a_2|$. Or we can assume the case in (a). Either way, it has been shown. Let's assume $|a_1 + a_2 + ... + a_n| \le |a_1| + |a_2| + ... + |a_n|$, and prove for (n + 1).

$$\begin{aligned} |a_1 + a_2 + \dots + a_n + a_{n+1}| &= |(a_1 + a_2 + \dots + a_n) + a_{n+1}| \\ &\leq |(a_1 + a_2 + \dots + a_n)| + |a_{n+1}| \\ &= |a_1| + |a_2| + \dots + |a_n| + |a_{n+1}| \end{aligned}$$

Thus, $|a_1 + a_2 + ... + a_n + a_{n+1}| \le |a_1| + |a_2| + ... + |a_n| + |a_{n+1}|$. Since it also holds true for (n+1) we have shown $\forall n \in \mathbb{N}$.

Problem 6. Let $f: X \to Y$ be a function, and let $A, B \subseteq Y$. Prove the following:

(i) $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$ (ii) $f^{-1}(A \setminus B) = f^{-1}(A) \setminus f^{-1}(B)$

Proof. Let $x \in f^{-1}(A \cup B) = \{x \in X \mid f(x) \in A \cup B\}$. Suppose, for a contradiction, that $x \notin f^{-1}(A) \cup f^{-1}(B)$. This is equivalent to saying $x \in \{x \in X \mid f(x) \notin A \text{ and } f(x) \notin B\}$. Since $f(x) \notin A$ and $f(x) \notin B$, we contradict the original statement $f(x) \in A \cup B$. Thus, $f^{-1}(A \cup B) \subseteq f^{-1}(A) \cup f^{-1}(B)$.

Next, let $x \in f^{-1}(A) \cup f^{-1}(B) = \{x \in X \mid f(x) \in A \text{ or } f(x) \in B\}$. Suppose, for a contradiction, $x \notin f^{-1}(A \cup B)$. This is equivalent to saying $x \in \{x \in X \mid f(x) \notin A \cup B\}$. Since $f(x) \notin A$ and $f(x) \notin B$ we contradict the original statement $f(x) \in A$ or $x \in B$. Thus $f^{-1}(A) \cup f^{-1}(B) \subseteq f^{-1}(A \cup B)$ Since $f^{-1}(A \cup B) \subseteq f^{-1}(A) \cup f^{-1}(B)$ and $f^{-1}(A) \cup f^{-1}(B) \subseteq f^{-1}(A \cup B)$, $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$

Problem 7. Let $A, B \subseteq \mathbb{R}$ be bounded (compact?) sets. Define $A + B := \{a + b \mid a \in A \text{ and } b \in B\}$. Prove or disprove the following statement:

$$\sup(A+B) = \sup A + \sup B$$

Proof. Suppose that $\sup(A+B) > \sup A + \sup B$. This means $\exists a_0 \in A$ and $\exists b_0 \in B$ such that $a_0 + b_0 > \sup A + \sup B$. Thus,

$$a_0 + b_0 > \sup A + \sup B$$

 $0 > (\sup A - a_0) + (\sup B - b_0)$

Since $a_0 \le \sup A$ and $b_0 \le \sup B$ we have a contradiction. It is not possible for the side on the right to be less than zero since that would require at least one of a_0 or b_0 to be greater than one of the supremums which contradicts the fact that they are the least upper bound of the sets. Thus we have that $\sup(A+B) \le \sup A + \sup B$.

Next, suppose that $\sup(A+B) < \sup A + \sup B$. Then $\forall a_0 \in A$ and $\forall b_0 \in B$, $a_0 + b_0 < \sup A + \sup B$. We can write this in a similar way,

$$a_0 + b_0 < \sup A + \sup B$$

 $0 < (\sup A - a_0) + (\sup B - b_0)$

Since a_0 is at most $\sup A$ and b_0 is at most $\sup B$ by definition since those are the least upper bounds of the set. However, if $a_0 = \sup A$ and $b_0 = \sup B$ we have 0 < 0 which is false. Thus it must be that $\sup(A+B) \ge \sup A + \sup B$.

Since we have shown that $\sup(A+B) \le \sup A + \sup B$ and $\sup(A+B) \ge \sup A + \sup B$, we know $\sup(A+B) = \sup A + \sup B$.