

DIFERENCIAÇÃO NUMÉRICA

Sabe-se do cálculo que:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Assim, a derivada primeira pode ser interpretada geometricamente como a inclinação da reta tamgente a curva de f no ponto (x,f(x)).

Dado um intervalo [a, b], uma função f(x) derivável neste intervalo e uma abscissa x_k pertence ao intervalo (a, b). Seja um incremento h de valor reduzido e diferente de 0. A aproximação da derivada da função f(x) é dada por:

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

observando que se h > 0, esta fórmula é chamada de diferença superior e, caso h < 0, ela é a fórmula da diferença inferior.

Computacionalmente levamos em consideração o comportamento de f(x) em pontos simétricos a x, isto é, consideramos a derivada primeira sendo a média aritmética da derivada para h>0 e para h<0, o que nos dá a expressão

$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}$$

Graficamente:

O Dilema do Passo h

Sabe-se que é possível melhorar o resultado de f'(x), tornando o h menor, mas deve-se observar que em um computador, quando espera-se um resultado pequeno de uma subtração de 2 números grandes, provavelmente tem-se um resultado "pouco aceitável" (erro de arredondamento).

Assim, dimunindo muito h, tem-se, tem-se o valor de f'(x) provavelmente impreciso.

Para a determinação do erro mínimo, pode-se de forma iterativa, comparar os valores de iterações sucessivas, considerando sempre o último resultado como o valor correto e como condição de término pode-se ter:

Sugestão 1:

$$erro_{i} = \frac{f_{i}^{'}(x) - f_{i-1}^{'}(x)}{max(1, |f_{i}^{'}(x)|)} < \varepsilon$$

sendo ε uma precisão pré-determinada.

Sugestão 2:

$$erro_i > erro_{i-1}$$

Sendo erro_i o erro da iteração i e, erro_{i-1} o erro da iteração anterior (i-1).

Cálculo de f''(x), f'''(x), ...

Sabe-se que

$$f''(x) \approx \frac{f'(x+h) - f'(x-h)}{2h}$$

Então, substituindo $f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}$ tem-se

$$f''(x) = \frac{\frac{f(x+2h) - f(x)}{2h} - \frac{f(x) - f(x-2h)}{2h}}{2h}$$

$$f''(x) = \frac{f(x+2h) - 2f(x) + f(x-2h)}{(2h)^2}$$

Fazendo

$$f_i(\mathbf{x}) = f(\mathbf{x} + \mathbf{i}\mathbf{h})$$

tem-se:

$$f'(x) = \frac{f_1 - f_{-1}}{2h} = \frac{1}{2h} (-f_{-1} + f_1)$$

$$f''(x) = \frac{1}{(2h)^2} (f_{-2} - 2f_0 + f_2)$$

$$f'''(x) = \frac{1}{(2h)^3} \left(-f_{-3} + 3f_{-1} - 3f_1 + f_3 \right)$$

$$f^{iv}(x) = \frac{1}{(2h)^4} (f_{-4} - 4f_{-2} + 6f_0 - 4f_2 + f_4)$$

OBS: Triangulo de Pascal:

1

1 1

121

1331

14641

. . . .

Exemplos:

1) Dado $f(x) = x^5 - 2x^2 + 7x$ e $\varepsilon = 10^{-2}$, calcule a f'(1) e f''(-2).

a) f'(1)

k	h	x+h	f(x+h)	x-h	f(x-h)	f'(x)	erro
1	1	2,0000	38,0000	0,0000	0,0000	19,0000	
2	0,5000	1,5000	13,5938	0,5000	3,0313	10,5625	0,7988
3	0,2500	1,2500	8,6768	0,7500	4,3623	8,6289	0,2241
4	0,1250	1,1250	7,1458	0,8750	5,1067	8,1565	0,0579
5	0,0625	1,0625	6,5338	0,9375	5,5289	8,0391	0,0146
6	0,0313	1,0313	6,2581	0,9688	5,7575	8,0098	0,0037

b) f''(-2)

k	h	x+2h	f(x+2h)	x-2h	f(x-2h)	f ''(x)	erro
1	1	0,0000	0,0000	-4,0000	-1084,0000	-244,0000	
2	0,5000	-1,0000	-10,0000	-3,0000	-282,0000	-184,0000	0,3261
3	0,2500	-1,5000	-22,5938	-2,5000	-127,6563	-169,0000	0,0888
4	0,1250	-1,7500	-34,7881	-2,2500	-83,5400	-165,2500	0,0227
5	0,0625	-1,8750	-43,3305	-2,1250	-67,2368	-164,3125	0,0057
6	0,0313	-1,9375	-48,3732	-2,0625	-60,2677	-164,0781	0,0014

2) Dado $f(x) = x^4 - 3x^3$ e $\varepsilon = 10^{-2}$, calcule a f'(4) e f''(3).

a) f'(4)

	,						
k	h	x+h	f(x+h)	x-h	f(x-h)	f'(x)	erro
1	1	5,0000	250,0000	3,0000	0,0000	125,0000	
2	0,5000	4,5000	136,6875	3,5000	21,4375	115,2500	0,0846
3	0,2500	4,2500	95,9570	3,7500	39,5508	112,8125	0,0216
4	0,1250	4,1250	78,9631	3,8750	50,9124	112,2031	0,0054

b) f''(3).

k	h	x+2h	f(x+2h)	x-2h	f(x-2h)	f ''(x)	erro
1	1	5,0000	250,0000	1,0000	-2,0000	62,0000	
2	0,5000	4,0000	64,0000	2,0000	-8,0000	56,0000	0,1071
3	0,2500	3,5000	21,4375	2,5000	-7,8125	54,5000	0,0275
4	0,1250	3,2500	8,5820	2,7500	-5,1992	54,1250	0,0069