Zadania FEC

Budowanie algorytmów korekcyjnych

Radosław Lis, Kamil Turek, Maciej Białkowski

Politechnika Wrocławska Zakład Systemów Komputerowych i Dyskretnych

NiDUC. Czerwiec 2019

Spis treści

- 1 Co to jest FEC?
- 2 Zaimplementowane kanały dyskretne
 - Binarny Kanał Symetryczny
 - Model Gilberta
- 3 Zaimplementowane kody korekcyjne
 - Potrójna redundancja modularna (TMR)
 - Kod Hamminga
 - Przeplot
- 4 Wyniki
 - BSC
 - Gilbert

Definicja

Definicia

Wikipedia

FEC (ang. Forward Error Connection) - technika dodawania nadmiarowości do transmitowanych cyfrowo informacji.

Schemat systemu transmisyjnego

Rysunek: Model transmisyjny

korekcja błedów powstałych w wyniku zakłóceń

- korekcja błedów powstałych w wyniku zakłóceń
- osiągnięcie wymaganej stopy błędów transmisyjnych

- korekcja błedów powstałych w wyniku zakłóceń
- osiągnięcie wymaganej stopy błędów transmisyjnych
- przesył danych z możliwie największą szybkością

Co to jest FEC?

dane przychodzą z jednakowym opóźnieniem

- dane przychodzą z jednakowym opóźnieniem
- znacznie zmniejsza stopę błędu (ang. bit error rate BER)

- dane przychodzą z jednakowym opóźnieniem
- znacznie zmniejsza stopę błędu (ang. bit error rate BER)
- nie jest potrzebny tylny kanał (ang. back-channel)

Wady

Wady

nadmiarowość danych

000000

- nadmiarowość danych
- nie gwarantuje poprawienia wszystkich danych

Spis treści

- 1 Co to jest FECT
- 2 Zaimplementowane kanały dyskretne
 - Binarny Kanał Symetryczny
 - Model Gilberta
- 3 Zaimplementowane kody korekcyjne
 - Potrójna redundancja modularna (TMR)
 - Kod Hamminga
 - Przeplot
- 4 Wyniki
 - BSC
 - Gilbert

Binarny Kanał Symetryczny

Spis treści

- 1 Co to jest FECT
- Zaimplementowane kanały dyskretne
 - Binarny Kanał Symetryczny
 - Model Gilberta
- 3 Zaimplementowane kody korekcyjne
 - Potrójna redundancja modularna (TMR)
 - Kod Hamminga
 - Przeplot
- 4 Wyniki
 - BSC
 - Gilbert

Charakterystyka BSC

Binarny Kanał Symetryczny (ang. *Binary Symetric Channel*) to kanał komunikacyjny (transmisyjny) spełniający następne warunki:

- Alfabetem wejściowym jest $A = \{0, 1\}$, alfabetem wyjściowym jest również $B = \{0, 1\}$.
- Macierzą reprezentującą kanał jest:

$$\left(\begin{array}{cc} P & P \\ \overline{P} & P \end{array}\right)$$
, gdzie $\overline{P} = 1 - P$

Binarny Kanał Symetryczny

Schemat działania BSC

Rysunek: Model BSC

Spis treści

1 Co to jest FECT

0000

- Zaimplementowane kanały dyskretne
 - Binarny Kanał Symetryczny
 - Model Gilberta
- 3 Zaimplementowane kody korekcyjne
 - Potrójna redundancja modularna (TMR)
 - Kod Hamminga
 - Przeplot
- 4 Wyniki
 - BSC
 - Gilbert

Charakterystyka modelu Gilberta

Model Gilberta (ang. Gilbert Model) jest szeroko stosowany do opisywania wzorców błędów serii (ang. burst errors) w kanałach trasmisyjnych:

- prawdopodobieństwo niepoprawnego przesłania bitów w stanie G (dobry) wynosi 1-k (zazwyczaj k=1)
- prawdopodobieństwo niepoprawnego przesłania bitów w stanie B (zły) wynosi 1-h

Charakterystyka modelu Gilberta cd.

Ponadto generowana jest macierz A, która określa "przechodzenie" między stanami:

Matryca przejścia A:

$$A = \left(\begin{array}{cc} 1-p & p \\ r & 1-r \end{array}\right)$$

gdzie $p = P(q_t = B|q_{t-1} = G)$ oraz $r = P(q_t = G|q_{t-1} = B)$ zaś q_t oznacza stan (G lub B) w czasie t

Schemat działania modelu Gilberta

Rysunek: Model Gilberta

Spis treści

- 1 Co to jest FEC?
- 2 Zaimplementowane kanały dyskretne
 - Binarny Kanał Symetryczny
 - Model Gilberta
- 3 Zaimplementowane kody korekcyjne
 - Potrójna redundancja modularna (TMR)
 - Kod Hamminga
 - Przeplot
- 4 Wyniki
 - BSC
 - Gilbert

Spis treści

- 1 Co to jest FEC?
- 2 Zaimplementowane kanały dyskretne
 - Binarny Kanał Symetryczny
 - Model Gilberta
- 3 Zaimplementowane kody korekcyjne
 - Potrójna redundancja modularna (TMR)
 - Kod Hamminga
 - Przeplot
- 4 Wyniki
 - BSC
 - Gilbert

Charakterystyka TMR

Potrójna redundancja modularna (ang. triple modular redundancy)

algorytm "głosujący", polegający na trzykrotnym zwielokrotnieniu każdego bitu, następnie sprawdzeniu każdej trójki bitów, a na końcu za pomocą głosowania (ang. *voter*) ustalający najbardziej prawdopodobną wartość bitu przed transmisją:

Charakterystyka TMR

Potrójna redundancja modularna (ang. triple modular redundancy)

algorytm "głosujący", polegający na trzykrotnym zwielokrotnieniu każdego bitu, następnie sprawdzeniu każdej trójki bitów, a na końcu za pomocą głosowania (ang. *voter*) ustalający najbardziej prawdopodobną wartość bitu przed transmisją:

 by mieć pewność co do poprawności to w każdym punkcie czasu może zawodzić co najwyżej jeden komponent,

Charakterystyka TMR

Potrójna redundancja modularna (ang. triple modular redundancy)

algorytm "głosujący", polegający na trzykrotnym zwielokrotnieniu każdego bitu, następnie sprawdzeniu każdej trójki bitów, a na końcu za pomocą głosowania (ang. *voter*) ustalający najbardziej prawdopodobną wartość bitu przed transmisją:

- by mieć pewność co do poprawności to w każdym punkcie czasu może zawodzić co najwyżej jeden komponent,
- duża złożoność i wysokie koszta, opłacalny jedynie gdy koszt awarii jest wystarczająco wysoki.

Schemat działania kodu TMR

Rysunek: Model TMR

Spis treści

- 1 Co to jest FECT
- 2 Zaimplementowane kanały dyskretne
 - Binarny Kanał Symetryczny
 - Model Gilberta
- 3 Zaimplementowane kody korekcyjne
 - Potrójna redundancja modularna (TMR)
 - Kod Hamminga
 - Przeplot
- 4 Wyniki
 - BSC
 - Gilbert

Kod Hamminga

Hamming (7,4)

Kod Hamminga

Kod pozwalający naprawić pojedyncze przekłamania bitów w odebranym słowie binarnym oraz wykrywać błędy podwójne. W zapisie (7,4) oznacza to uzupełnienie 4-bitowe słowa binarnego trzema bitami na tzw. pozycjach kontrolnych.¹

¹Opis algorytmu

000

Hamming (7,4)

Kod Hamminga

Kod pozwalający naprawić pojedyncze przekłamania bitów w odebranym słowie binarnym oraz wykrywać błędy podwójne. W zapisie (7,4) oznacza to uzupełnienie 4-bitowe słowa binarnego trzema bitami na tzw. *pozycjach kontrolnych*.¹

 bardzo efektywny w kanałach, gdzie występuje maksymalnie jeden błąd na słowo

¹Opis algorytmu

Schemat działania kodu Hamminga (7,4)

Rysunek: Model kodu Hamminga (7,4)

Bit pos	sition:	Y = 1011001									
	11	10	9	8	7	6	5	4	3	2	1
	1	0	1	h4	1	0	0	h3	1	h2	h1

- > Select position of logic bit 1 for finding hamming code.
- > Here logic bits 1 number of position as 3, 7, 9 and 11
- > Now convert this data to binary code and addition this data using XOR operation.
- Avoid carry when applying addition.

```
3 = 0 0 1 1
7 = 0 1 1 1
9 = 1 0 0 1
11 = 1 0 1 1
0 1 1 0
h4 h3 h2 h1
```


•00

Spis treści

- - Binarny Kanał Symetryczny
 - Model Gilberta
- 3 Zaimplementowane kody korekcyjne
 - Potrójna redundancja modularna (TMR)
 - Kod Hamminga
 - Przeplot

Zadania FEC

- BSC
- Gilbert

Charakterystyka przeplotu

Przeplot (ang. interleaving)

Metoda ochrony przez błędami seryjnymi, działająca za pomocą prostego algorytmu - w nadajniku dane są wpisywane rzędami, a przesyłane do modulatorami kolumnami, zaś w odbiorniku dane są przesyłane kolumnami, a odczytywane rzędami. Dzięki tym operacjom następuje rozproszenie serii błędu.'

Schemat działania przeplotu

Rysunek: Model przeplotu

000

$\mathbf{b_1}$	b_2	b ₃	$\mathbf{b_4}$	b ₅	b ₆	b ₇	b ₈	b ₉	b_{10}
\mathbf{b}_{11}	b_{12}	b ₁₃	b ₁₄	b ₁₅	b ₁₆	b ₁₇	b ₁₈	b ₁₉	\mathbf{b}_{20}
\mathbf{b}_{21}	b_{22}								b_{30}
\mathbf{b}_{31}	b_{32}								b_{40}
b_{41}	b_{42}								b_{50}
b ₅₁	b ₅₂								b ₆₀

Transmisja: $\mathbf{b}_1 \mathbf{b}_{11} \mathbf{b}_{21} \mathbf{b}_{31} \mathbf{b}_{41} \mathbf{b}_{51} b_2 b_{12} b_{22} b_{32} b_{42} \mathbf{b}_{52} \mathbf{b}_3 \dots \mathbf{b}_{60}$

Spis treści

- 1 Co to jest FECT
- 2 Zaimplementowane kanały dyskretne
 - Binarny Kanał Symetryczny
 - Model Gilberta
- 3 Zaimplementowane kody korekcyjne
 - Potrójna redundancja modularna (TMR)
 - Kod Hamminga
 - Przeplot
- 4 Wyniki

Zadania FEC

- BSC
- Gilbert

Spis treści

- 1 Co to jest FEC
- Zaimplementowane kanały dyskretne
 - Binarny Kanał Symetryczny
 - Model Gilberta
- 3 Zaimplementowane kody korekcyjne
 - Potrójna redundancja modularna (TMR)
 - Kod Hamminga
 - Przeplot
- 4 Wyniki
 - BSC
 - Gilbert

Bez przeplotu

Rysunek: BSC bez przeplotu

Z przeplotem

Rysunek: BSC + przeplot

Gilbert

Spis treści

- - Binarny Kanał Symetryczny
 - Model Gilberta
- - Potrójna redundancja modularna (TMR)
 - Kod Hamminga
 - Przeplot
- 4 Wyniki
 - BSC
 - Gilbert

000

Gilbert

Bez przeplotu

Rysunek: Gilbert bez przeplotu

Z przeplotem

Rysunek: Gilbert + przeplot

nowane kody korekcyjne

0

Literatura

References I