媒質 1、媒質 2の電場をそれぞれ E_1 , E_2 とする。境界条件から, $E_{1\parallel}=E_{2\parallel}$, $\varepsilon_1 E_{1\perp} \varepsilon_2 E_{2\perp}$

 E_1 の大きさを E_1 、 E_2 の大きさを E_2 とすると、

$$E_{1\parallel} = E_1 sin\theta_1$$
, $E_{2\parallel} = E_2 sin\theta_2$, $E_{1\perp} = E_1 cos\theta_1$, $E_{2\perp} = E_2 cos\theta_2$

境界条件に当てはめて、 $E_1sin\theta_1=E_2sin\theta_2$ (1), $\varepsilon_1E_1cos\theta_1=\varepsilon_2E_2cos\theta_2$ (2)

(1) 式より、 $E_2=E_1\frac{sin\theta_1}{sin\theta_2}$ これを(2)式に代入して、 $\varepsilon_1E_1cos\theta_1=\varepsilon_2(E_1\frac{sin\theta_1}{sin\theta_2})cos\theta_2$

これを E_1 消去して整理すると、 $\frac{\cos\theta_1}{\cos\theta_2} = \frac{\varepsilon_2 \sin\theta_1}{\varepsilon_1 \sin\theta_2}$ これを変形すると、

$$\frac{tan\theta_1}{\varepsilon_1} = \frac{tan\theta_2}{\varepsilon_2}$$