Claims

What is claimed is:

1	1. Apparatus, comprising:		
2	a die		
3	a heat spreader; and		
4	a thermal intermediate material comprised of a plurality of carbon nanotubes		
5	blended with solder, the thermal intermediate material interposed in a gap		
6	between the die and the heat spreader.		
1	2. The apparatus of claim 1, wherein some of the carbon nanotubes of		
2	the plurality of carbon nanotubes are chemically bonded to the solder.		
1	3. The apparatus of claim 2, wherein the some of carbon nanotubes of		
2	the plurality of carbon nanotubes are pre-coated with a metal prior to blending		
3	with the solder.		
1	4. The apparatus of claim 2, wherein some of the carbon nanotubes are		
2	decorated with metal.		
1	5. The apparatus of claim 3, wherein the metal is platinum.		
1	6. The apparatus of claim 3 wherein some of the carbon nanotubes are		
2	pre-coated with a metal to wet the solder to bond it to the carbon nanotubes.		
1	7. The apparatus of claim 3, wherein the metal is selected from the		
2	group consisting of gold, platinum, silver and palladium and alloys comprising		
3	one or more of gold, platinum, silver and palladium.		

1	8.	The apparatus of claim 1, wherein some of the carbon nanotubes are			
2	aligned in the thermal intermediate material along the heat flow path between				
3	the die ar	nd the heat spreader.			
1	9.	The apparatus of claim 1 wherein the nanotubes are randomly			
2		in the thermal intermediate material and have average lengths less than			
3	about 10	percent of the gap between the die and the heat spreader.			
1	10.	The apparatus of claim 1 wherein the solder is indium.			
1	11.	A composition, comprising:			
2		a matrix, wherein the matrix exhibits a phase change between about			
3	100° C and about 230° C.				
4		a distribution of carbon nanotubes in the matrix having a length			
5	range from	m about 0.5 micron to about 10 micron, and wherein the interstitial			
6	carbon nanotube heat transfer structures occupy from less than about 5 to about				
7	30 volume percent of the composition.				
1	12.	The composition of claim 11, wherein the matrix is a metal selected			
2	from the	group consisting of indium or an indium alloy.			
1	13.	The composition of claim 12, wherein the carbon nanotubes are			
2	decorated	l with metal.			
1	14.	The composition of claim 13 wherein the metal is selected from the			
2		nsisting of platinum, gold, silver and palladium and their alloys.			
	8F				
1	15.	A method, comprising:			

2

3

forming a billet of solder incorporating a plurality of carbon nanotubes

thereon which are chemically bonded to the solder;

4	aligning a substantial percentage of the carbon nanotubes with an axis of the			
5	billet; and			
6	slicing the billet perpendicular to the axis into thermal intermediate blanks			
7	having a thickness substantially less than their length or width.			
1	16. The method of claim 15, wherein aligning the nanotubes comprises:			
2	working the billet by a process selected from the group consisting of			
3	rolling, extruding or pultruding.			
1	17. The method of claim 15 wherein the thermal intermediate blank is			
2	interposed in a gap between a die and a heat sink.			
1	18. The method of claim 15, wherein the gap between the die and the			
2	heat sink is from less than or equal to about 5 microns to about 250 microns.			
1	19. A method comprising			
2	forming thermal intermediate structure comprised of a plurality of metal			
3	decorated carbon nanotubes blended with solder with at least some of the			
4	plurality of carbon nanotubes substantially aligned with a thermal axis of the			
5	billet;			
6	coupling a first surface of the thermal intermediate structure to a surface of a			
7	heat sink with the thermal axis of the thermal intermediate material oriented			
8	substantially perpendicular to the surface of the heat sink; and			
9	coupling a second surface of the thermal intermediate structure to a surface			
10	of a heat source.			
1	20. The method of claim 19, wherein coupling a surface of the heat			
2	source to the second surface of the thermal intermediate structure comprises			
3	forming a solder bond between the surface of the heat source and the second			
4	surface of the thermal intermediate structure.			

1	21. The method of claim 19, wherein coupling a surface of the heat sink
2	to the billet comprises forming a solder bond between the surface of the heat
3	sink and the first surface of the thermal intermediate structure.

- 22. The method of claim 21, wherein forming a solder bond also comprises applying a solder wetting coating to the surface of the heat source and melting the second surface of the thermal intermediate structure to form a bond with the solder wetting coating.
- 1 23. The method of claim 21, wherein forming a solder bond comprises 2 applying a solder wetting coating to the surface of the heat sink and melting the 3 first surface of the billet to form a bond with the solder wetting coating.
 - 24. A computing system, comprising:
- 2 at least one dynamic random access memory device;
- a die including a die surface and a circuit to electrically couple to the memory device;
- 5 a heat sink; and

1

2

3

4

1

- a thermal intermediate structure interposed between the die surface and the heat sink and comprising a plurality of carbon nanotubes, some of which are decorated with metal and blended with solder.
- 1 25. The system of claim 24, wherein the circuit comprises a processor that acts upon data signals, and may include, for example, a microprocessor.
- 1 26. The system of claim 24, wherein the metal is one or more metals 2 selected from the group consisting of platinum, gold and silver and alloys of one 3 or more of platinum gold and silver.

1 27. The system of claim 24 wherein the solder is indium.