

4 Number Theory

- 4.1 Divisibility and Modular Arithmetic
- **4.5** Applications of Congruences
- 4.3 Primes and Greatest Common Divisors

4.2 Integer Representations and Algorithms

Primes

prime factorization

The Sieve of Eratosthenes

An integer p greater than 1 is called *prime* if the only positive factors of p are 1 and p. A positive integer that is greater than 1 and is not prime is called *composite*.

the integer 9 is composite The integer 7 is prime

If n is a composite integer, then n has a prime divisor less than or equal to \sqrt{n} .

Show that 101 is prime.

Show that 101 is prime.

Primes

Primes and Greatest Common Divisors

UNDAMENTAL THEOREM OF ARITHMETIC Every integer greater than 1 can be written uniquely as a prime or as the product of two or more primes where the prime factors are written in order of nondecreasing size.

void factorization (int n)

$$p = 2$$
;

while (n) 1)

if (n) $p = 0$)

 $p = n / p$;

 $p = n / p$;

 $p = n / p$;

 $p = n / p$;

Greatest Common Divisors

Let a and b be integers, not both zero. The largest integer d such that $d \mid a$ and $d \mid b$ is called the *greatest common divisor* of a and b. The greatest common divisor of a and b is denoted by gcd(a, b).

What is the greatest common divisor of 24 and 36?

What is the greatest common divisor of 17 and 22?

The integers a and b are relatively prime if their greatest common divisor is 1.

11/14/2021

Greatest Common Divisors

$$a = p_1^{a_1} p_2^{a_2} \cdots p_n^{a_n}, \ b = p_1^{b_1} p_2^{b_2} \cdots p_n^{b_n},$$

$$\gcd(a,b) = p_1^{\min(a_1, b_1)} p_2^{\min(a_2, b_2)} \cdots p_n^{\min(a_n, b_n)},$$

$$120 = 2^3 \cdot 3 \cdot 5 \qquad 500 = 2^2 \cdot 5^3 \qquad \gcd(120, 500) = 2^{\min(3, 2)} 3^{\min(1, 0)} 5^{\min(1, 3)} = 2^2 3^0 5^1 = 20.$$

least common multiple

The *least common multiple* of the positive integers a and b is the smallest positive integer that is divisible by both a and b. The least common multiple of a and b is denoted by lcm(a, b).

$$a = p_1^{a_1} p_2^{a_2} \cdots p_n^{a_n}, \ b = p_1^{b_1} p_2^{b_2} \cdots p_n^{b_n},$$

$$lcm(a,b) = p_1^{\max(a_1,b_1)} p_2^{\max(a_2,b_2)} \cdots p_n^{\max(a_n,b_n)},$$

$$120 = 2^3 \cdot 3 \cdot 5 \qquad 500 = 2^2 \cdot 5^3$$

What is the least common multiple of $2^33^57^2$ and 2^43^3 ?

$$gcd(120, 500) = 2^{min(3, 2)}3^{min(1, 0)}5^{min(1, 3)} = 2^23^05^1 = 20.$$

Let a and b be positive integers. Then

$$ab = \gcd(a, b) \cdot \operatorname{lcm}(a, b).$$

The Euclidean Algorithm

Let
$$a = bq + r$$
, where a, b, q , and r are integers. Then $gcd(a, b) = gcd(b, r)$.

$$287 = 91 \cdot 3 + 14.$$

 $91 = 14 \cdot 6 + 7.$
 $14 = 7 \cdot 2.$

X	у	r	q
287	91		

The Euclidean Algorithm.

procedure gcd(a, b): positive integers)

$$x := a$$

 $y := b$

while $y \neq 0$

$$r := x \bmod y$$

$$x := y$$

$$y := r$$

return $x\{\gcd(a, b) \text{ is } x\}$

is used to find all primes not exceeding a specified positive integer.

	1	2	3	4	5	6	7	8	9	10					
1	11	12	13	<u>14</u>	15	16	17	18	19	20					
2	21	<u>22</u>	23	24	25	<u>26</u>	27	<u>28</u>	29	<u>30</u>					by 7 o gers i
3	31	32	33	34	35	36	37	38	39	<u>40</u>	1	2	3	4	5
4	11	<u>42</u>	43	<u>44</u>	45	<u>46</u>	47	<u>48</u>	49	<u>50</u>	11	12	13	14	15
5	51	<u>52</u>	53	<u>54</u>	55	<u>56</u>	57	<u>58</u>	59	<u>60</u>	<u>21</u> 31	<u>22</u> <u>32</u>	23 33	<u>24</u>	25 35
ϵ	61	62	63	<u>64</u>	65	66	67	<u>68</u>	69	<u>70</u>	41	42	43	34 44	35 45
7	71	<u>72</u>	73	<u>74</u>	75	<u>76</u>	77	<u>78</u>	79	<u>80</u>	<u>51</u>	52	53	<u>54</u>	55
8	31	82	83	84	85	86	87	88	89	90	61	<u>62</u>	63	<u>64</u>	<u>65</u>
g	91	92	93	94	95	96	97	98	99	100	71 <u>81</u>	<u>72</u> <u>82</u>	73 83	74 84	75 85
				_				_			01	02	05	84	00

other than 7 receive

an underline; integers in color are prime.													
1	2	3	<u>4</u>	5	<u>6</u>	7	8	9	<u>10</u>				
11	12	13	14	15	16	17	18	19	20				
21	22	23	24	25	<u>26</u>	27	28	29	30 40 50				
31	<u>32</u>	33	<u>34</u>	35	36	37	38	<u>39</u>	40				
41	42	43	<u>44</u>	45	46	47	48	<u>49</u>	50				
<u>51</u>	52	53	<u>54</u>	<u>55</u>	56	57	<u>58</u>	59	60				
61	<u>62</u>	<u>63</u>	<u>64</u>	<u>65</u>	<u>66</u>	67	<u>68</u>	<u>69</u>	70				
71	72	73	<u>74</u>	75	76	77	78	79	80				
<u>81</u>	82	83	84	85	86	<u>87</u>	88	89	90				
<u>91</u>	92	<u>93</u>	94	<u>95</u>	96	97	98	<u>99</u>	100				

11/14/2021 Primes GCD LCM | Disc. Math. (FUDN-SP22-MAD101)

4.3

Primes and Greatest Common Divisors

THE INFINITUDE OF PRIMES

There are infinitely many primes.

Proof:

$$p_1, p_2, \ldots, p_n$$

$$Q = p_1 p_2 \cdots p_n + 1.$$

THE FUNDAMENTAL THEOREM OF ARITHMETIC

Q is a composite

if
$$p_j \mid Q$$
, then p_j divides $Q - p_1 p_2 \cdots p_n = 1$.

Q has a prime factor that is not in the set {p1, p2, .., pn}.

THE PRIME NUMBER THEOREM

The number of primes not exceeding x is $x/\ln x$.

Conjectures

and

Open Problems

About Primes

p_i is not a prime.