Алгебра.

B. A. Петров lektorium.tv

Зарождение — Аль Хорезин, "Китхаб Альджебр валь мукабалт". "Альджебр" значит "перенос из одной части уравнения в другую", а "мукабалт" — "приведение подобных". Литература:

- Ван дер Варден "Алгебра"
- Лэнг "Алгебра"
- Винберг "Курс Алгебры"

Определение 1. Алгебраическая структура — это множество M + заданные на нём операции + аксиомы на операциях.

Определение 2. Абелева группа — набор $(M, + : M^2 \to M, 0 \in M)$ с аксиомами:

- A_1) $\forall a, b, c \in M : (a + b) + c = a + (b + c)$ ассоциативность сложения
- $A_2) \ \forall a \in M : a + 0 = a = 0 + a$ нейтральный по сложению элемент
- A_3) $\forall a,b \in M: a+b=b+a$ коммутативность сложения
- A_4) $\forall a \in M : \exists -a : a + (-a) = 0 = (-a) + a$ существование противоположного

Определение 3. Опишем следующие аксиомы на наборе $(M,+:M^2\to M,\cdot:M^2\to M,0\in M,1\in M)$:

- $D) \ \forall a,b,k \in M: k(a+b)=ka+kb, \ (a+b)k=ak+bk$ дистрибутивность
- M_1) $\forall a, b, c \in M : (a \cdot b) \cdot c = a \cdot (b \cdot c)$ ассоциативность умножения
- M_2) $\forall a \in M : a \cdot 1 = a = 1 \cdot a$ нейтральный по умножению элемент
- $M_3) \ \forall a,b \in M : a \cdot b = b \cdot a$ коммутативность умножения
- M_4) $\forall a \in M : \exists a^{-1} : a \cdot a^{-1} = 1 = a^{-1} \cdot a$ существование обратного

По этим аксиомам определим следующие понятия:

- Кольцо набор $(M, +, \cdot, 0)$, что верны A_1, A_2, A_3, A_4 и D.
- $Account amue ное кольцо кольцо с <math>M_1$.
- Кольцо с единицей кольцо с M_2 .
- Tело кольцо с M_1 , M_2 .
- Поле кольцо с M_1 , M_2 , M_3 , M_4 .

• Полукольцо — кольцо без A_4 .

 $\Pi pumep 1.$ Если взять \mathbb{R}^3 , то векторное произведение в нём неассоциативно и антикоммутативно. Но есть

Лемма (Тождество Якоби). $u \times (v \times w) + v \times (w \times u) + w \times (u \times v) = 0$

Пример 2. Если взять $R^4 = R \times R^3$ и рассмотреть $\cdot : ((a;u);(b;v)) \mapsto (ab-u\cdot v;av+bu+u\times v)$ и $+ : ((a;u);(b;v)) \mapsto (a+b,u+v)$, тогда получим \mathbb{H} — ассоциативное некоммутативное тело кватернионов. Ассоциативность доказал Гамильтон.

 Π емма. $0 \cdot a = 0$

Определение 4. Кольцо без делителей нуля называетсся областью (целостности).

Определение 5. Пусть $m \in \mathbb{N}$. Тогда множество остатков при делении на m или $\mathbb{Z}/m\mathbb{Z}$ — это фактор-множество по отношению эквивалентности $a \sim b \Leftrightarrow (a-b) \mid m$.

Определение 6. Подкольцо — это подмножество кольца, согласованное с его операциями. Как следствие ноль и обратимость соглассуются автоматически.

Утверждение 1. Если R — подкольцо области целостности S, то R — область целостности.

Определение 7. Целые Гауссовы числа или $\mathbb{Z}[i]$ — это $\{a+bi \mid a,b \in \mathbb{Z}\}$.

Определение 8. Некоторое подмножество R кольца S замкнуто относительно сложения (умножения), если $\forall a, b \in R : a + b \in R \ (ab \in R \ \text{соответственно}).$

3амечание 1. Замкнутое относительно сложения **И** умножения подмножество — подкольцо. Пример 3. Пусть d — целое, не квадрат. Тогда $\mathbb{Z}[\sqrt{d}]$ — область целостности.

1 Теория делимости

Пусть R — область целостности.

Определение 9. "a делит b" или же $a \mid b$ значит, что $\exists c \in R : b = ac$.

Утверждение 2. Отношение "|" рефлексивно и транзитивно.

Определение 10. *a* и *b accoulumusны*, если $a \mid b$ и $b \mid a$. Обозначение: $a \sim b$.

Утверждение 3. " \sim " — отношение эквивалентности.

Утверждение 4. $a \sim b \Leftrightarrow \exists o \textit{братимый} \varepsilon : a = \varepsilon b.$

Доказательство. Пусть $a \sim b$. Тогда $\exists c,d:ac=b,bd=a$. Тогда a(1-cd)=a-acd=a-bd=a-a=0, значит либо a=0, либо cd=1. В первом случае b=ac=0c=0, значит можно просто взять $\varepsilon=1$. Во втором случае, cd=1, значит c и d обратимы, тогда можно взять $\varepsilon=d$. следствие в одну сторону доказано.

Пусть $a = \varepsilon b$, где ε обратим. Значит:

- 1. $b \sim a$;
- 2. $\exists \delta : \delta \varepsilon = 1$, значит $\delta a = \delta \varepsilon b = b$, значит $a \sim b$.

Таким образом $a \sim b$.

 $\Pi pumep~4.~{\rm B}~\mathbb{Z}[i]$ есть только следующие обратимые элементы: $1,~-1,~i~{\rm u}~-i.$ Поэтому все ассоциативные элементы получаются друг из друга домножением на один из $1,~-1,~i,~-i~{\rm u}$ вместе образуют квадрат (на комплексной плоскоти) с центром в нуле.

Определение 11. Главным идеалом элемента a называется множество $M := \{ak \mid k \in R\} = \{b \mid a$ делит $b\}$. Обозначение: (a) или aR.

Утверждение 5. $a \mid b \Leftrightarrow b \in aR \Leftrightarrow bR \subseteq aR$.

Утверждение 6. $a \sim b \Leftrightarrow aR = bR$.

Утверждение 7. $\forall a \in R$

- 1. $0 \in aR$
- 2. $x \in aR \Rightarrow -x \in aR$
- 3. $x, y \in aR \Rightarrow x + y \in aR$
- 4. $x \in aR, r \in R \Rightarrow xr \in aR$

Замечание 2. То же верно и в некоммутативном R.

 $\Pi pumep 5. В поле есть только <math>0R$ и 1R.

 Π ример 6. В \mathbb{Z} есть только $m\mathbb{Z}$ для каждого $m \in \mathbb{N} \cup \{0\}$.