Begriff	Math. Def.	Text Def.	-
Graph	G = (V, E)	Menge von Knoten V und Kanten E	ŀ
ungerichtet	$e = \{u, v\} \in E$	Kanten verbinden Knoten ohne Richtung	1
gerichtet	$e = (u, v) \in E$	Kanten verbinden Knoten mit Richtung	1
zusammen-	G ist zusammenhängend	Es gibt einen Pfad zwischen allen	1
hängend	o ist zusammennangend	Knoten im Graphen G	
- Included and		Zwei Graphen sind isomorph, wenn es	1
isomorph	$G_1 \cong G_2$	eine bijektive Abbildung zwischen	ı
isomorpii	01 - 02	ihren Knoten gibt.	ı
Brücke	$e \in E$ ist eine Brücke	Entfernen von e trennt den Graphen	ı
Wanderung	$W = (v_1, v_2, \dots, v_n)$	Folge von Knoten,	1
,, and and	(01, 02,, 01)	die durch Kanten verbunden sind	
Weg	$P = (v_1, v_2, \dots, v_n)$	Wanderung ohne Kantenwiederholung	1
Pfad	$P = (v_1, v_2, \dots, v_n)$	Weg ohne Knotenwiederholung	1
Kreis	$C = (v_1, v_2, \dots, v_n)$	Weg, der am Startknoten endet	1
111010	$\mathcal{C} = (c_1, c_2, \dots, c_n)$	Weg, der din Startingten endet	
Hamiltonpfad	$P = (v_1, v_2, \dots, v_n)$	Pfad, der alle Knoten genau einmal	1
Hammonpiaa	$\Gamma = (v_1, v_2, \dots, v_n)$	besucht	
Eulerweg	$P = (v_1, v_2, \dots, v_n)$	Weg, der alle Kanten genau einmal	ŀ
Euler weg	$\Gamma = (v_1, v_2, \dots, v_n)$	besucht	ŀ
Eulerkreis	$C = (v_1, v_2, \dots, v_n)$	Kreis, der alle Kanten genau einmal	t
Zurorin on	(01, 02,, 0n)	besucht	ľ
Handshaking	$\sum_{v \in V} \deg(v) = 2 E $	Summe der Grade aller Knoten ist	1
Lemma	2000 408(0) - -	gleich der doppelten Anzahl der Kanten	
	$V = V_1 \cup V_2$	Knotenmenge in zwei disjunkte Mengen	1
bipartit	$E \subseteq V_1 \times V_2$	Kanten verbinden nur Knoten aus	l
		verschiedenen Mengen	l
Wald	G = (V, E)	Graph ohne Zyklen	1
Baum	G = (V, E)	Zusammenhängender, azyklischer Graph.	1
	E = V - 1		
MST	T = (V, E')	Minimaler Spannbaum eines Graphen G	1
		beinhaltet alle Knoten von G	
Fluss-		Netzwerk N mit Graph G	1
netzwerk	N = (G, w, s, t)	Kapazitätsfunktion w, Startknoten	ı
		s und Zielknoten t	
Algorithm 2 Be	ellman-Moore-Ford , Dijkst	ra , A*	
	G = (V, E), ein Startknoter		ŀ
		gend und hat keine negativen Zyklen	ŀ
	nötigt eine Heuristik für die		ŀ
	uristik muss monoton und o	optimistisch sein. $(h(v) \le dist(v,t))$	
$dist(s) \leftarrow 0$		▷ Abstand vom Startknoten	
$W(s) \leftarrow \{s\}$		\triangleright Weg vom Startknoten	1
$F \leftarrow \emptyset$		⊳ Nur in Dijkstra und A*	
$\overline{\mathbf{for\ all\ }}v\in V\setminus$			1
$dist(v) \leftarrow \infty$	0		
$W(v) \leftarrow \emptyset$			1
end for			
push(stack, s)		▷ Stack für Bellman-Moore-Ford	1-

```
{\,\vartriangleright\,} Stack für Bellman-Moore-Ford
while stack \neq \emptyset do
                                                ⊳ In Dijkstra und A* ist die Bedingung
           pop(stack)
                                                                     ▷ Nur in Bellman-Moore-Ford
                                                                                           ⊳ In Diikstra
          - \arg \min_{v \in V} dist(v)
     v^* \leftarrow \arg\min_{v \in V} (dist(v) + h(v))
                                                                             \rhd In A* mit Heuristik h
                                                                           ⊳ Nur in Dijkstra und A*
    for all v \in N(v^*) do
                                                               \triangleright Gehe alle Nachbarn von v^* durch
        if dist(v^*) + l(v^*, v) < dist(v) then
             dist(v) \leftarrow dist(v^*) + l(v^*, v)
             W(v) \leftarrow W(v^*) \cup \{v\}
             push(stack, v)
                                                                     \,\vartriangleright\, Nur in Bellman-Moore-Ford
        end if
    end for
```

1. Welche Arten von Graphen kennen Sie?

- Ungerichtete Graphen
- $\bullet \ \ Gerichtete \ Graphen$

end while

return dist, W

- Gewichtete Graphen
- Zusammenhängende Graphen
- Azyklische Graphen (Wald)
- $\bullet\,$ Azyklische zusammenhängende Graphen (Bäume)
- · Bipartite Graphen
- Isomorphe Graphen
- Eulergraphen
- Hamiltongraphen

2. Welche verschiedenen Darstellungsformen von Graphen kennen Sie?

Abstand zum Zielknoten t zurückgeben oder nur die Wege, je nach Nutzung.

- Adjazenzmatrix => $A_{ij} = 1$ oder $A_{ij} = Gewicht$ wenn Kante zwischen i und j existiert, sonst 0
- Adjazenzliste => Liste von Knoten, die jeweils ihre Nachbarn enthalten.
- Kantenliste => Liste aller Kanten, z.B. (u,v),(v,w)

```
Algorithm 1 Fleury
Require: Graph G = (V, E)
Ensure: Graph ist zusammenhängend und hat entweder 0 oder 2 Knoten mit ungeradem
  C \leftarrow \emptyset
                                                                                           ▶ Kreis
  v \leftarrow getAnyNodeWithOddDegreeOrAnyNode(G)

⊳ Startknoten

  while E \neq \emptyset do
      e \leftarrow getNeighboringNonBridge(v, E)
      if e = not found then
          e \leftarrow getAnyNeighboringEdge(v, E)
      end if
      if e = not found then
         return C
                                                                  ⊳ Error: Kein Kreis gefunden
      end if
      C \leftarrow C \cup \{e\}
                                                                ⊳ Füge Kante zum Kreis hinzu
      E \leftarrow E \setminus \{e\}
                                                           \trianglerightEntferne Kante aus dem Graphen
      v \leftarrow getOtherNode(e, v)
                                                   ⊳ Wechsel zum anderen Knoten der Kante
  end while
                                                                        ⊳ Gibt den Kreis zurück
  return C
Algorithm 3 Prim
Require: Graph G = (V, E), ein Wurzelknoten r
Ensure: Graph ist zusammenhängend, ungerichtet und gewichtet
  Q \leftarrow V
  for all u \in Q do
      dist(u) \leftarrow \infty
                                                                          ▷ Abstand zur Wurzel
      pred(u) \leftarrow 0

▷ Vorgängerknoten im MST

  end for
  dist(r) \leftarrow 0
  while Q \neq \emptyset do
      u \leftarrow \arg\min_{v \in Q} dist(v)
                                                            ▶ Knoten mit minimalem Abstand
      Q \leftarrow Q \setminus \{u\}
      for all v \in N(u) do
                                                            {\,\vartriangleright\,}Gehe alle Nachbarn von udurch
          if v \in Q \wedge l(u, v) < dist(v) then
             dist(v) \leftarrow l(u, v)
             pred(v) \leftarrow u
          end if
      end for
  end while
Algorithm 4 Kruskal
Require: Graph G = (V, E)
Ensure: Graph ist zusammenhängend, ungerichtet und gewichtet
  E' \leftarrow \emptyset
                                                                                  {} \vartriangleright \mathsf{MST} \mathsf{\ Kanten}
  L \leftarrow sort(E)
                                                               ▷ Sortiere Kanten nach Gewicht
  while L \neq \emptyset do
      e \leftarrow pop(L)
                                                                   ⊳ Nimm die leichteste Kante
      if (V, E' \cup \{e\}) hat keinen Kreis then
          E' \leftarrow E' \cup \{e\}
                                                                 ⊳ Füge Kante zum MST hinzu
      end if
  end while
  \mathbf{return}\ (V,E')
                                                                                           ⊳ MST
Algorithm 5 Ford-Fulkerson
Require: Netzwerk N = (G, w, s, t) mit Graph G, Kapazitätsfunktion w, Startknoten s
  und Zielknoten t
Ensure: N ist ein Flussnetzwerk
  f \leftarrow 0
                                                                                ▷ Aktueller Fluss
  while es gibt einen augmentierenden Pfad p von s nach t in G_f do
     p \leftarrow findAugmentingPath(s, t, G_f)
                                                           ⊳ beliebiger augmentierenden Pfad
```

b dist enthält alle Abstände, W alle Wege. Man kann auch nur den 3. Wie wird das Kantengewicht mathematisch definiert?

• Das Kantengewicht ist eine Funktion $l:E\to\mathbb{R},$ die jedem Kantenpaar (u,v) ein Gewicht zuordnet.

 \triangleright Gibt den maximalen Fluss zurück

In gewichteten Graphen wird das Gewicht oft als Distanz oder Kosten interpretiert.

4. Was ist Nachbarschaft in Graphen?

- Die Nachbarschaft eines Knotens v in einem Graphen G = (V, E) ist die Menge aller Knoten, die direkt mit v durch eine Kante verbunden sind.
- In gerichteten Graphen gibt es auch eingehende und ausgehende Nachbarn:
 - Eingehende Nachbarn: $N_{in}(v) = \{u \in V | (u, v) \in E\}$
 - Ausgehende Nachbarn: $N_{out}(v) = \{u \in V | (v, u) \in E\}$
 - Nachbarn: $N(v) = N_{in}(v) \cup N_{out}(v)$

5. Was ist ein regulärer Graph?

- Ein regulärer Graph ist ein Graph, in dem alle Knoten den gleichen Grad haben.
- Formal: Ein Graph Gist k-regul"ar,wenn $\deg(v)=k$ für alle $v\in V$ gilt.
- · Beispiele:

return f

- Ein 3-regulärer Graph hat für jeden Knoten genau 3 Nachbarn.
- Ein vollständiger Graph K_n ist (n-1)-regulär, da jeder Knoten mit allen anderen Knoten verbunden ist.

6. Wann ist ein Graph eulersch?

- · Ein Graph ist eulersch, wenn er einen Eulerweg enthält, der alle Kanten genau einmal besucht.
- Ein Graph ist eulersch, wenn er entweder:
 - keinen Knoten mit ungeradem Grad hat (Eulerkreis) oder
 - genau zwei Knoten mit ungeradem Grad hat (Eulerweg).

7. Wann ist ein Graph hamiltonisch?

- Ein Graph ist hamiltonisch, wenn er einen Hamiltonpfad enthält, der alle Knoten genau einmal besucht.
- · Ein Graph ist hamiltonisch, wenn er einen Hamiltonkreis enthält, der alle Knoten genau einmal besucht und am Startknoten endet.

8. Gegeben ein beliebiger Graph G, ist es hier möglich einen Eulerkreis zu konstruieren?

- · Nein, nicht immer.
- Ein Eulerkreis benötigt folgende Bedingungen:
 - Der Graph muss zusammenhängend sein.
 - Alle Knoten müssen einen geraden Grad haben.

9. Welche Algorithmen kennen Sie zur Berechnung von Eulerkreisen? Was sind die Unterschiede?

- · Fleury's Algorithmus:
 - Geht Kanten durch und vermeidet Brücken, wenn möglich.
 - Einfach zu implementieren, aber ineffizient für große Graphen.
- · Hierholzer's Algorithmus:
 - Baut den Eulerkreis rekursiv auf.
 - Effizienter und schneller als Fleury's Algorithmus.

10. Diskutieren Sie die Euler- bzw. Hamiltoneigenschaft für vollständige Graphen K_n mit n > 3!

- Vollständige Graphen K_n sind hamiltonisch und manchmal eulersch für n>3.
- Euler: Jeder Knoten hat einen geraden Grad, falls n ungerade ist(Kanten pro Knoten ist n-1). Wenn n gerade ist, hat jeder Knoten einen ungeraden Grad und es gibt keinen Eulerkreis.
- · Hamilton: Jeder Knoten ist mit jedem anderen Knoten verbunden, was einen Hamiltonkreis ermöglicht.

17. Was unterscheidet eine Arboreszenz von einem gerichteten zyklenfreien Graphen?

- Eine Arboreszenz ist ein gerichteter, zyklenfreier Graph, der von einem Wurzelknoten ausgeht und alle anderen Knoten erreicht.
- Ein gerichteter zyklenfreier Graph (DAG) kann mehrere Wurzelknoten haben und muss nicht notwendigerweise alle Knoten erreichen.

18. Mit welchem Algorithmus findet man minimale Arboreszenzen?

• Der Edmonds-Algorithmus findet minimale Arboreszenzen in gerichteten Graphen.

19. Was ist ein Webgraph?

- Ein Webgraph ist ein gerichteter Graph, der die Struktur des Internets oder eines Netzwerks von Webseiten abbildet.
- Knoten repräsentieren Webseiten, Kanten repräsentieren Hyperlinks zwischen diesen Webseiten.

20. Erklären Sie das Random Surfer Modell, welche Annahmen sind in dem Modell enthalten?

- Das Random-Surfer-Modell beschreibt das Verhalten von Nutzern im Internet die zufällig Links zwischen Webseiten folgen oder zufällig auf eine neue Seite
- · Der PageRank gibt die Wahrscheinlichkeit an, dass der Random Surfer auf einer bestimmten Seite landet.

21. Was bedeutet der Dämpfungsfaktor im Random Surfer Modell?

- Der Dämpfungsfaktor ist ein Wert zwischen 0 und 1, der angibt, mit welcher Wahrscheinlichkeit der Random Surfer einem Link folgt, anstatt zufällig zu springen.
- $\bullet~$ Ein Dämpfungsfaktor von 0,85 bedeutet beispielsweise, dass 85% der Zeit einem Link gefolgt wird und 15% der Zeit eine zufällige Seite besucht wird.
- und sorgt für eine gleichmäßige Verteilung der Seitenbesuche.

22. Welches Verfahren wird für die Berechnung des PageRank verwendet?

- · Der PageRank basiert auf dem Random-Surfer-Modell: Mit Wahrscheinlichkeit α folgt ein Nutzer einem zufällig gewählten Link, mit Wahrscheinlichkeit $1-\alpha$ springt er auf eine beliebige Seite.
- Die Berechnung erfolgt iterativ: Jeder Knoten verteilt seinen aktuellen Page-Rank anteilig auf seine ausgehenden Kanten.
- Die Werte werden iterativ aktualisiert, bis sich der PageRank aller Knoten kaum noch ändert (Konvergenz).
- Der Dämpfungsfaktor (typisch $\alpha = 0.85$) verhindert, dass der Surfer in Sackgassen stecken bleibt.

11. Diskutieren Sie die Lösbarkeit des Eulerkreisproblems mit dem des Hamiltonkreisproblems!

- Das Eulerkreisproblem ist in polynomialer Zeit lösbar, während das Hamiltonkreisproblem NP-vollständig ist.
- Es gibt effiziente Algorithmen für spezielle Fälle des Eulerkreisproblems, während das Hamiltonkreisproblem in der Regel heuristische Ansätze erfordert.

12. Wie lautet die Abbruchbedingung der bidirektionalen Suche?

- Die naïve Abbruchbedingung der bidirektionalen Suche ist erreicht, wenn die Suchfronten von Start- und Zielknoten sich treffen.
- · Das bedeutet, dass ein Pfad zwischen den beiden Knoten gefunden wurde.

In einem MST ist jede Verbindung die kürzeste Verbindung.

- Falsch.
- Ein MST minimiert die Summe der Kantengewichte, aber nicht unbedingt die einzelnen Punkt-zu-Punkt-Verbindungen.

14. Ist der Spannbaum aus dem Dijkstra Algorithmus minimal?

- Falsch.
- Der Dijkstra-Algorithmus findet den kürzesten Pfad von einem Startknoten zu allen anderen Knoten, aber der resultierende Baum ist nicht unbedingt minimal im Sinne des Spannbaums.

15. Welche Algorithmen für die Berechnung von Spannbäumen kennen Sie? Diskutieren Sie die Unterschiede!

- Prim's Algorithmus:
 - Startet bei einem Knoten und fügt iterativ die leichteste Kante hinzu, die einen neuen Knoten verbindet.
 - Effizient f
 ür dichte Graphen.
- Kruskal's Algorithmus:
 - Sortiert die Kanten nach Gewicht und fügt sie zum MST hinzu, solange sie keinen Kreis bilden.
 - Effizient f
 ür sp
 ärliche Graphen.

16. Wann ist ein MST eindeutig?

- Ein MST ist eindeutig, wenn alle Kanten unterschiedliche Gewichte haben.
- Wenn zwei Kanten das gleiche Gewicht haben, kann es mehrere mögliche MSTs

23. Ist eine Matrix irreduzibel und nicht-negativ, so gibt es auch einen positiven Eigenvektor.

- Eine irreduzible Matrix hat einen positiven Eigenvektor, da sie eine starke Verbindung zwischen den Zuständen darstellt.

24. Beschreiben Sie ein weiteres Zentralitätsmaß außer die Eigenvektorzentralität für Graphen!

- · PageRank: Misst die Wichtigkeit eines Knotens basierend auf der Anzahl und Qualität der eingehenden Verbindungen.
- · Zwischenzentralität: Misst, wie oft ein Knoten auf dem kürzesten Pfad zwischen anderen Knoten liegt (Betweenness Centrality).
- Nähezentralität: Misst die durchschnittliche Entfernung eines Knotens zu allen anderen Knoten im Graphen (Closeness Centrality).

25. Was ist ein Netzwerk und was ist ein Fluss?

- Ein Netzwerk ist ein Graph, wobei die Kanten Kapazitäten haben, die den maximalen Fluss zwischen den Knoten begrenzen.
- Ein Fluss nutzt die Kapazität aus, muss aber die Flusserhaltung und die Kapazitätsbeschränkungen der Kanten respektieren.
- Das Flusserhaltungsgesetz besagt, dass die Summe der eingehenden Flüsse gleich der Summe der ausgehenden Flüsse an jedem Knoten ist, außer am Start- und Zielknoten.
- $f(u) = \sum_{v \in N_{in}(u)} f(v) \sum_{v \in N_{out}(u)} f(v)$, wobei f(u) der Fluss am Knoten u ist.

26. Wie lässt sich ein augmentierender Pfad finden?

- Ein augmentierender Pfad ist ein Pfad im Flussnetzwerk, der von einem Startknoten zu einem Zielknoten führt und in dem noch Kapazität für zusätzlichen Fluss vorhanden ist.
- Er kann durch Tiefensuche (DFS) oder Breitensuche (BFS) gefunden werden.

• Dies verhindert, dass der Random Surfer in endlosen Schleifen stecken bleibt 27. Lineare Programmierung ist nur dann effizient lösbar wenn alle Variablen kontinuierlich sind.

- Wahr
- Lineare Programmierung kann auch mit ganzzahligen Variablen gelöst werden, aber die Effizienz leidet darunter
- Ganzzahlige lineare Programmierung ist NP-vollständig, während kontinuierliche lineare Programmierung in polynomialer Zeit gelöst werden kann.