STAT 601 Homework 4

Yifan Zhu

February 23, 2018

1. Let O denote the observed data, M denote the missing data. In this case, let the observed pairs be $\mathbf{z}_i = \begin{bmatrix} x_i & y_i \end{bmatrix}^T$, $i = 1, \ldots, m$, the pairs when x is missing be $\mathbf{u}_j = \begin{bmatrix} x_j^m & y_j \end{bmatrix}^T$, $j = 1, \ldots, m_x$, the pairs when y is missing be $\mathbf{v}_k = \begin{bmatrix} x_k & y_k^m \end{bmatrix}^T$, $k = 1, \ldots, m_y$. And then the full log likelihood with parameter $\boldsymbol{\theta}$ is

$$\ell(\boldsymbol{O}, \boldsymbol{M}; \boldsymbol{\theta}) = \log f(\boldsymbol{O}, \boldsymbol{M}; \boldsymbol{\theta}) = \sum_{i=1}^{m} \log f(\boldsymbol{z}_i; \boldsymbol{\theta}) + \sum_{j=1}^{m_x} \log f(\boldsymbol{u}_j; \boldsymbol{\theta}) + \sum_{k=1}^{m_y} \log f(\boldsymbol{v}_k; \boldsymbol{\theta})$$

And we also know for z from bivariate normal with parameter $\theta = (\mu, \Sigma)$, i.e. $z \sim N_2(\mu, \Sigma)$, we have

$$\begin{split} \ell(\boldsymbol{z}; \boldsymbol{\theta}) &= \log f(\boldsymbol{z}; \boldsymbol{\theta}) = \log \left(\frac{1}{2\pi |\boldsymbol{\Sigma}|^{1/2}} \exp \left[-\frac{1}{2} (\boldsymbol{z} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{z} - \boldsymbol{\mu}) \right] \right) \\ &= -\log 2\pi - \frac{1}{2} \log |\boldsymbol{\Sigma}| - \frac{1}{2} (\boldsymbol{z} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{z} - \boldsymbol{\mu}) \end{split}$$

Hence we have

$$\ell(\boldsymbol{O}, \boldsymbol{M}; \boldsymbol{\theta}) = -n \log 2\pi - \frac{n}{2} \log |\boldsymbol{\Sigma}|$$

$$- \frac{1}{2} \sum_{i=1}^{m} (\boldsymbol{z}_i - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{z}_i - \boldsymbol{\mu})$$

$$- \frac{1}{2} \sum_{j=1}^{m_x} (\boldsymbol{u}_j - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{u}_j - \boldsymbol{\mu})$$

$$- \frac{1}{2} \sum_{k=1}^{m_y} (\boldsymbol{v}_k - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{v}_k - \boldsymbol{\mu})$$

And because of independence, we have

$$\begin{split} & \operatorname{E}\left((\boldsymbol{z}_i - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{z}_i - \boldsymbol{\mu}) \middle| \boldsymbol{O}, \boldsymbol{\theta}_p\right) = (\boldsymbol{z}_i - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{z}_i - \boldsymbol{\mu}) \\ & \operatorname{E}\left((\boldsymbol{u}_j - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{u}_j - \boldsymbol{\mu}) \middle| \boldsymbol{O}, \boldsymbol{\theta}_p\right) = \operatorname{E}\left((\boldsymbol{u}_j - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{u}_j - \boldsymbol{\mu}) \middle| \boldsymbol{y}_j; \boldsymbol{\theta}_p\right) \\ & \operatorname{E}\left((\boldsymbol{v}_k - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{v}_k - \boldsymbol{\mu}) \middle| \boldsymbol{O}, \boldsymbol{\theta}_p\right) = \operatorname{E}\left((\boldsymbol{v}_k - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{v}_k - \boldsymbol{\mu}) \middle| \boldsymbol{x}_k; \boldsymbol{\theta}_p\right) \end{split}$$

Thus

$$Q(\boldsymbol{\theta}; \boldsymbol{\theta}_p) = \mathbb{E}\left(\ell(\boldsymbol{O}, \boldsymbol{M}; \boldsymbol{\theta}) \middle| \boldsymbol{O}, \boldsymbol{\theta}_p\right)$$

$$= -n \log 2\pi - \frac{n}{2} \log |\boldsymbol{\Sigma}|$$

$$- \frac{1}{2} \sum_{i=1}^{m} (\boldsymbol{z}_i - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{z}_i - \boldsymbol{\mu})$$

$$- \frac{1}{2} \sum_{j=1}^{m_x} \mathbb{E}\left((\boldsymbol{u}_j - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{u}_j - \boldsymbol{\mu}) \middle| y_j; \boldsymbol{\theta}_p\right)$$

$$- \frac{1}{2} \sum_{k=1}^{m_y} \mathbb{E}\left((\boldsymbol{v}_k - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{v}_k - \boldsymbol{\mu}) \middle| x_k; \boldsymbol{\theta}_p\right)$$

Furthermore,

$$E\left((\boldsymbol{u}_{j}-\boldsymbol{\mu})^{T}\boldsymbol{\Sigma}^{-1}(\boldsymbol{u}_{j}-\boldsymbol{\mu})\big|y_{j};\boldsymbol{\theta}_{p}\right)$$

$$=\operatorname{trace}\left(\boldsymbol{\Sigma}^{-1}\operatorname{Var}(\boldsymbol{u}_{j}-\boldsymbol{\mu}|y_{j};\boldsymbol{\theta}_{p})\right)+\operatorname{E}(\boldsymbol{u}_{j}-\boldsymbol{\mu}|y_{j};\boldsymbol{\theta}_{p})^{T}\boldsymbol{\Sigma}^{-1}\operatorname{E}(\boldsymbol{u}_{j}-\boldsymbol{\mu}|y_{j};\boldsymbol{\theta}_{p})$$

$$=\operatorname{trace}\left(\boldsymbol{\Sigma}^{-1}\operatorname{Var}(\boldsymbol{u}_{j}|y_{j};\boldsymbol{\theta}_{p})\right)+\left(\operatorname{E}(\boldsymbol{u}_{j}|y_{j};\boldsymbol{\theta}_{p})-\boldsymbol{\mu}\right)^{T}\boldsymbol{\Sigma}^{-1}\left(\operatorname{E}(\boldsymbol{u}_{j}|y_{j};\boldsymbol{\theta}_{p})-\boldsymbol{\mu}\right), \quad j=1,\ldots,m_{x}$$

and similarly

$$\begin{split} & \operatorname{E}\left((\boldsymbol{v}_{k}-\boldsymbol{\mu})^{T}\boldsymbol{\Sigma}^{-1}(\boldsymbol{v}_{k}-\boldsymbol{\mu})\big|\boldsymbol{x}_{k};\boldsymbol{\theta}_{p}\right) \\ =& \operatorname{trace}\left(\boldsymbol{\Sigma}^{-1}\operatorname{Var}(\boldsymbol{v}_{k}-\boldsymbol{\mu}|\boldsymbol{x}_{k};\boldsymbol{\theta}_{p})\right) + \operatorname{E}(\boldsymbol{v}_{k}-\boldsymbol{\mu}|\boldsymbol{x}_{k};\boldsymbol{\theta}_{p})^{T}\boldsymbol{\Sigma}^{-1}\operatorname{E}(\boldsymbol{v}_{k}-\boldsymbol{\mu}|\boldsymbol{x}_{k};\boldsymbol{\theta}_{p}) \\ =& \operatorname{trace}\left(\boldsymbol{\Sigma}^{-1}\operatorname{Var}(\boldsymbol{v}_{k}|\boldsymbol{x}_{k};\boldsymbol{\theta}_{p})\right) + \left(\operatorname{E}(\boldsymbol{v}_{k}|\boldsymbol{x}_{k};\boldsymbol{\theta}_{p})-\boldsymbol{\mu}\right)^{T}\boldsymbol{\Sigma}^{-1}\left(\operatorname{E}(\boldsymbol{v}_{k}|\boldsymbol{x}_{k};\boldsymbol{\theta}_{p})-\boldsymbol{\mu}\right), \quad k=1,\ldots,m_{y} \end{split}$$

In order to maximize $Q(\theta; \theta_p)$, we take the matrix derivative wrt μ and Σ . We have

$$\frac{\partial}{\partial \boldsymbol{\mu}} \operatorname{E} \left((\boldsymbol{u}_{j} - \boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1} (\boldsymbol{u}_{j} - \boldsymbol{\mu}) \middle| y_{j}; \boldsymbol{\theta}_{p} \right)
= \frac{\partial}{\partial \boldsymbol{\mu}} \operatorname{trace} \left(\boldsymbol{\Sigma}^{-1} \operatorname{Var}(\boldsymbol{u}_{j} \middle| y_{j}; \boldsymbol{\theta}_{p}) \right) + \frac{\partial}{\partial \boldsymbol{\mu}} \left(\operatorname{E}(\boldsymbol{u}_{j} \middle| y_{j}; \boldsymbol{\theta}_{p}) - \boldsymbol{\mu} \right)^{T} \boldsymbol{\Sigma}^{-1} \left(\operatorname{E}(\boldsymbol{u}_{j} \middle| y_{j}; \boldsymbol{\theta}_{p}) - \boldsymbol{\mu} \right)
= 0 + \boldsymbol{\Sigma}^{-1} \left(\boldsymbol{\mu} - \operatorname{E}(\boldsymbol{u}_{j} \middle| y_{j}; \boldsymbol{\theta}_{p}) \right) + \boldsymbol{\Sigma}^{-T} \left(\boldsymbol{\mu} - \operatorname{E}(\boldsymbol{u}_{j} \middle| y_{j}; \boldsymbol{\theta}_{p}) \right)
= 2 \boldsymbol{\Sigma}^{-1} \left(\boldsymbol{\mu} - \operatorname{E}(\boldsymbol{u}_{j} \middle| y_{j}; \boldsymbol{\theta}_{p}) \right)$$

$$\frac{\partial}{\partial \Sigma} \operatorname{E} \left((\boldsymbol{v}_k - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{v}_k - \boldsymbol{\mu}) \big| \boldsymbol{x}_k; \boldsymbol{\theta}_p \right) \\
= \frac{\partial}{\partial \Sigma} \operatorname{trace} \left(\boldsymbol{\Sigma}^{-1} \operatorname{Var} (\boldsymbol{v}_k | \boldsymbol{x}_k; \boldsymbol{\theta}_p) \right) + \frac{\partial}{\partial \Sigma} \left(\operatorname{E} (\boldsymbol{u}_j | y_j; \boldsymbol{\theta}_p) - \boldsymbol{\mu} \right)^T \boldsymbol{\Sigma}^{-1} \left(\operatorname{E} (\boldsymbol{u}_j | y_j; \boldsymbol{\theta}_p) - \boldsymbol{\mu} \right) \\
= - \left(\boldsymbol{\Sigma}^{-1} \operatorname{Var} (\boldsymbol{u}_j | y_j; \boldsymbol{\theta}_p) \boldsymbol{\Sigma}^{-1} \right)^T - \boldsymbol{\Sigma}^{-T} \left(\operatorname{E} (\boldsymbol{u}_j | y_j; \boldsymbol{\theta}_p) - \boldsymbol{\mu} \right) \left(\operatorname{E} (\boldsymbol{u}_j | y_j; \boldsymbol{\theta}_p) - \boldsymbol{\mu} \right)^T \boldsymbol{\Sigma}^{-T} \\
= - \boldsymbol{\Sigma}^{-T} \left[\operatorname{Var} (\boldsymbol{u}_j | y_j; \boldsymbol{\theta}_p) + \left(\operatorname{E} (\boldsymbol{u}_j | y_j; \boldsymbol{\theta}_p) - \boldsymbol{\mu} \right) \left(\operatorname{E} (\boldsymbol{u}_j | y_j; \boldsymbol{\theta}_p) - \boldsymbol{\mu} \right)^T \boldsymbol{\Sigma}^{-T} \right]$$

And similarly we have

$$\frac{\partial}{\partial \boldsymbol{\mu}} \operatorname{E} \left((\boldsymbol{v}_k - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{v}_k - \boldsymbol{\mu}) \big| \boldsymbol{x}_k; \boldsymbol{\theta}_p \right)
= \frac{\partial}{\partial \boldsymbol{\mu}} \operatorname{trace} \left(\boldsymbol{\Sigma}^{-1} \operatorname{Var}(\boldsymbol{v}_k | \boldsymbol{x}_k; \boldsymbol{\theta}_p) \right) + \frac{\partial}{\partial \boldsymbol{\mu}} \left(\operatorname{E}(\boldsymbol{v}_k | \boldsymbol{x}_k; \boldsymbol{\theta}_p) - \boldsymbol{\mu} \right)^T \boldsymbol{\Sigma}^{-1} \left(\operatorname{E}(\boldsymbol{v}_k | \boldsymbol{x}_k; \boldsymbol{\theta}_p) - \boldsymbol{\mu} \right)
= 0 + \boldsymbol{\Sigma}^{-1} \left(\boldsymbol{\mu} - \operatorname{E}(\boldsymbol{v}_k | \boldsymbol{x}_k; \boldsymbol{\theta}_p) \right) + \boldsymbol{\Sigma}^{-T} \left(\boldsymbol{\mu} - \operatorname{E}(\boldsymbol{v}_k | \boldsymbol{x}_k; \boldsymbol{\theta}_p) \right)
= 2 \boldsymbol{\Sigma}^{-1} \left(\boldsymbol{\mu} - \operatorname{E}(\boldsymbol{v}_k | \boldsymbol{x}_k; \boldsymbol{\theta}_p) \right)$$

$$\frac{\partial}{\partial \mathbf{\Sigma}} \operatorname{E} \left((\mathbf{v}_k - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{v}_k - \boldsymbol{\mu}) \middle| x_k; \boldsymbol{\theta}_p \right)
= \frac{\partial}{\partial \mathbf{\Sigma}} \operatorname{trace} \left(\mathbf{\Sigma}^{-1} \operatorname{Var} (\mathbf{v}_k | x_k; \boldsymbol{\theta}_p) \right) + \frac{\partial}{\partial \mathbf{\Sigma}} \left(\operatorname{E} (\mathbf{v}_k | x_k; \boldsymbol{\theta}_p) - \boldsymbol{\mu} \right)^T \mathbf{\Sigma}^{-1} \left(\operatorname{E} (\mathbf{v}_k | x_k; \boldsymbol{\theta}_p) - \boldsymbol{\mu} \right)
= - \left(\mathbf{\Sigma}^{-1} \operatorname{Var} \left(\mathbf{v}_k | x_k; \boldsymbol{\theta}_p \right) \mathbf{\Sigma}^{-1} \right)^T - \mathbf{\Sigma}^{-T} \left(\operatorname{E} (\mathbf{v}_k | x_k; \boldsymbol{\theta}_p) - \boldsymbol{\mu} \right) \left(\operatorname{E} (\mathbf{v}_k | x_k; \boldsymbol{\theta}_p) - \boldsymbol{\mu} \right)^T \mathbf{\Sigma}^{-T}
= - \mathbf{\Sigma}^{-T} \left[\operatorname{Var} \left(\mathbf{v}_k | x_k; \boldsymbol{\theta}_p \right) + \left(\operatorname{E} (\mathbf{v}_k | x_k; \boldsymbol{\theta}_p) - \boldsymbol{\mu} \right) \left(\operatorname{E} (\mathbf{v}_k | x_k; \boldsymbol{\theta}_p) - \boldsymbol{\mu} \right)^T \right] \mathbf{\Sigma}^{-T}$$

And also

$$\begin{split} &\frac{\partial}{\partial \boldsymbol{\Sigma}} \log |\boldsymbol{\Sigma}| = \boldsymbol{\Sigma}^{-T} \\ &\frac{\partial}{\partial \boldsymbol{\mu}} (\boldsymbol{z}_i - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{z}_i - \boldsymbol{\mu}) = 2 \boldsymbol{\Sigma}^{-1} (\boldsymbol{\mu} - \boldsymbol{z}_i) \\ &\frac{\partial}{\partial \boldsymbol{\Sigma}} (\boldsymbol{z}_i - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{z}_i - \boldsymbol{\mu}) = - \boldsymbol{\Sigma}^{-T} (\boldsymbol{z}_i - \boldsymbol{\mu}) (\boldsymbol{z}_i - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-T} \end{split}$$

Hence

$$\frac{\partial Q(\boldsymbol{\theta}; \boldsymbol{\theta}_p)}{\partial \boldsymbol{\mu}} = 2\boldsymbol{\Sigma}^{-1} \left(n\boldsymbol{\mu} - \sum_{i=1}^m \boldsymbol{z}_i - \sum_{j=1}^{m_x} \mathrm{E}(\boldsymbol{u}_j | y_j; \boldsymbol{\theta}_p) - \sum_{k=1}^{m_y} \mathrm{E}(v_k | x_k; \boldsymbol{\theta}_p) \right)$$

and

$$\begin{split} \frac{\partial Q(\boldsymbol{\theta};\boldsymbol{\theta}_{p})}{\partial \boldsymbol{\Sigma}} &= -\frac{n}{2} \boldsymbol{\Sigma}^{-T} \\ &+ \frac{1}{2} \boldsymbol{\Sigma}^{-T} \bigg\{ \sum_{i=1}^{m} (\boldsymbol{z}_{i} - \boldsymbol{\mu}) (\boldsymbol{z}_{i} - \boldsymbol{\mu})^{T} \\ &+ \sum_{j=1}^{m_{x}} \left[\operatorname{Var}(\boldsymbol{u}_{j} | y_{j}; \boldsymbol{\theta}_{p}) + \left(\operatorname{E}(\boldsymbol{u}_{j} | y_{j}; \boldsymbol{\theta}_{p}) - \boldsymbol{\mu} \right) \left(\operatorname{E}(\boldsymbol{u}_{j} | y_{j}; \boldsymbol{\theta}_{p}) - \boldsymbol{\mu} \right)^{T} \right] \\ &+ \sum_{k=1}^{m_{y}} \left[\operatorname{Var}(\boldsymbol{v}_{k} | \boldsymbol{x}_{k}; \boldsymbol{\theta}_{p}) + \left(\operatorname{E}(\boldsymbol{v}_{k} | \boldsymbol{x}_{k}; \boldsymbol{\theta}_{p}) - \boldsymbol{\mu} \right) \left(\operatorname{E}(\boldsymbol{v}_{k} | \boldsymbol{x}_{k}; \boldsymbol{\theta}_{p}) - \boldsymbol{\mu} \right)^{T} \right] \bigg\} \boldsymbol{\Sigma}^{-T} \end{split}$$

Set

$$\begin{cases} \frac{\partial Q(\theta; \theta_p)}{\partial \mu} = 0\\ \frac{\partial Q(\theta; \theta_p)}{\partial \Sigma} = 0 \end{cases}$$

We then have

$$\hat{\boldsymbol{\mu}} = \frac{1}{n} \left\{ \sum_{i=1}^{m} \boldsymbol{z}_i + \sum_{j=1}^{m_x} \mathrm{E}(\boldsymbol{u}_j | y_j; \boldsymbol{\theta}_p) + \sum_{k=1}^{m_y} \mathrm{E}(\boldsymbol{v}_k | x_k; \boldsymbol{\theta}_p) \right\}$$

and

$$\hat{\Sigma} = \frac{1}{n} \left\{ \sum_{i=1}^{m} (\boldsymbol{z}_{i} - \hat{\boldsymbol{\mu}}) (\boldsymbol{z}_{i} - \hat{\boldsymbol{\mu}})^{T} + \sum_{j=1}^{m_{x}} \left[\operatorname{Var}(\boldsymbol{u}_{j}|y_{j};\boldsymbol{\theta}_{p}) + (\operatorname{E}(\boldsymbol{u}_{j}|y_{j};\boldsymbol{\theta}_{p}) - \hat{\boldsymbol{\mu}}) \left(\operatorname{E}(\boldsymbol{u}_{j}|y_{j};\boldsymbol{\theta}_{p}) - \hat{\boldsymbol{\mu}} \right)^{T} \right] + \sum_{k=1}^{m_{y}} \left[\operatorname{Var}(\boldsymbol{v}_{k}|x_{k};\boldsymbol{\theta}_{p}) + (\operatorname{E}(\boldsymbol{v}_{k}|x_{k};\boldsymbol{\theta}_{p}) - \hat{\boldsymbol{\mu}}) \left(\operatorname{E}(\boldsymbol{v}_{k}|x_{k};\boldsymbol{\theta}_{p}) - \hat{\boldsymbol{\mu}} \right)^{T} \right] \right\}$$

Thus in the M-step of EM algorithm

$$\boldsymbol{ heta}_{p+1} = (\hat{oldsymbol{\mu}}, \hat{oldsymbol{\Sigma}})$$

And suppose

$$oldsymbol{ heta}_p = egin{pmatrix} \mu_p = egin{bmatrix} \mu_{x,p} \ \mu_{y,p} \end{bmatrix}, oldsymbol{\Sigma}_p = egin{bmatrix} \sigma_{xx,p} & \sigma_{xy,p} \ \sigma_{yx,p} & \sigma_{yy,p} \end{bmatrix} \end{pmatrix}$$

Then

$$E(\boldsymbol{u}_{j}|y_{j};\boldsymbol{\theta}_{p}) = \begin{bmatrix} E(x_{j}^{m}|y_{j};\boldsymbol{\theta}_{p}) \\ y_{j} \end{bmatrix} = \begin{bmatrix} \mu_{x,p} + \frac{\sigma_{xy,p}}{\sigma_{yy,p}}(y_{j} - \mu_{y,p}) \\ y_{j} \end{bmatrix}$$

and

$$\operatorname{Var}(\boldsymbol{u}_j|y_j;\boldsymbol{\theta}_p) = \begin{bmatrix} \operatorname{Var}(x_j^m|y_j;\boldsymbol{\theta}_p) & 0\\ 0 & 0 \end{bmatrix} = \begin{bmatrix} \sigma_{xx,p} - \frac{\sigma_{xy,p}^2}{\sigma_{yy,p}} & 0\\ 0 & 0 \end{bmatrix}$$

Similarly, we have

$$E(\boldsymbol{v}_k|x_k;\boldsymbol{\theta}_p) = \begin{bmatrix} x_k \\ E(y_k^m|x_k;\boldsymbol{\theta}_p) \end{bmatrix} = \begin{bmatrix} x_k \\ \mu_{y,p} + \frac{\sigma_{yx,p}}{\sigma_{xx,p}}(x_k - \mu_{x,p}) \end{bmatrix}$$

and

$$\operatorname{Var}(\boldsymbol{v}_k|x_k;\boldsymbol{\theta}_p) = \begin{bmatrix} 0 & 0 \\ 0 & \operatorname{Var}(y_k^m|x_k;\boldsymbol{\theta}_p) \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & \sigma_{yy,p} - \frac{\sigma_{yx,p}^2}{\sigma_{xx,p}} \end{bmatrix}$$

R codes and estimates in each iteration (Table 1) is in the appendix. The final result of parameter estimates are

$$\hat{\boldsymbol{\mu}} = \begin{bmatrix} \hat{\mu}_x \\ \hat{\mu}_y \end{bmatrix} = \begin{bmatrix} 19.61405 \\ 29.52332 \end{bmatrix}$$

and

$$\hat{\Sigma} = \begin{bmatrix} \hat{\sigma}_{xx} & \hat{\sigma}_{xy} \\ \hat{\sigma}_{yx} & \hat{\sigma}_{yy} \end{bmatrix} = \begin{bmatrix} 2.810984 & 2.146136 \\ 2.146136 & 3.568150 \end{bmatrix}$$

2. With only the observations where x and y are both observed, i.e. $\{z_i\}_{i=1}^m$, the MLE is

$$\hat{\boldsymbol{\mu}} = \frac{1}{n} \sum_{i=1}^{m} \boldsymbol{z}_i$$

and

$$\hat{\boldsymbol{\Sigma}} = \frac{1}{n} \sum_{i=1}^{m} (\boldsymbol{z}_i - \hat{\boldsymbol{\mu}}) (\boldsymbol{z}_i - \hat{\boldsymbol{\mu}})^T$$

So the estimate of parameters are

 $\hat{\boldsymbol{\mu}} = \begin{bmatrix} \hat{\mu}_x \\ \hat{\mu}_y \end{bmatrix} = \begin{bmatrix} 19.88877 \\ 29.84538 \end{bmatrix}$

and

$$\hat{\Sigma} = \begin{bmatrix} \hat{\sigma}_{xx} & \hat{\sigma}_{xy} \\ \hat{\sigma}_{yx} & \hat{\sigma}_{yy} \end{bmatrix} = \begin{bmatrix} 1.6404591 & 0.4093769 \\ 0.4093769 & 0.8555870 \end{bmatrix}$$

3. In each iteration, we use the conditional mean to replace the missing data, and update the parameter estimates with the MLE of multivariate normal. Thus with the notation we use in part 1, the updated $\theta_{p+1} = (\hat{\mu}, \hat{\Sigma})$, and

$$\hat{\boldsymbol{\mu}} = \frac{1}{n} \left\{ \sum_{i=1}^{m} \boldsymbol{z}_i + \sum_{j=1}^{m_x} \mathrm{E}(\boldsymbol{u}_j | y_j; \boldsymbol{\theta}_p) + \sum_{k=1}^{m_y} \mathrm{E}(\boldsymbol{v}_k | x_k; \boldsymbol{\theta}_p) \right\}$$

and

$$\hat{\boldsymbol{\Sigma}} = \frac{1}{n} \left\{ \sum_{i=1}^{m} (\boldsymbol{z}_i - \hat{\boldsymbol{\mu}}) (\boldsymbol{z}_i - \hat{\boldsymbol{\mu}})^T + \sum_{j=1}^{m_x} (\mathbf{E}(\boldsymbol{u}_j | y_j; \boldsymbol{\theta}_p) - \hat{\boldsymbol{\mu}}) (\mathbf{E}(\boldsymbol{u}_j | y_j; \boldsymbol{\theta}_p) - \hat{\boldsymbol{\mu}})^T + \sum_{k=1}^{m_y} (\mathbf{E}(\boldsymbol{v}_k | x_k; \boldsymbol{\theta}_p) - \hat{\boldsymbol{\mu}}) (\mathbf{E}(\boldsymbol{v}_k | x_k; \boldsymbol{\theta}_p) - \hat{\boldsymbol{\mu}})^T \right\}$$

R codes and estimates in each iteration (Table 2) is in the appendix. The final result of parameter estimates are

$$\hat{\boldsymbol{\mu}} = \begin{bmatrix} \hat{\mu}_x \\ \hat{\mu}_y \end{bmatrix} = \begin{bmatrix} 19.57659 \\ 29.52319 \end{bmatrix}$$

and

$$\hat{\Sigma} = \begin{bmatrix} \hat{\sigma}_{xx} & \hat{\sigma}_{xy} \\ \hat{\sigma}_{yx} & \hat{\sigma}_{yy} \end{bmatrix} = \begin{bmatrix} 3.243723 & 2.867498 \\ 2.867498 & 3.261116 \end{bmatrix}$$

Appendix

Table 1: Estimates of paramters in each iteration with EM in part 1 $\,$

1					σ_{yy}
	19.6653238614613	29.6158278987521	2.47591305559001	1.4549260732653	2.9072061131416
2 3	19.6247983107412 19.6203090856511	29.5492852891321 29.5333131326926	2.63346939876761 2.66865423476446	1.78196148746505 1.89941644431462	3.4166663577608 3.5397217450609
1	19.6201846332483	29.527965996642	2.68625921485882	1.96009048829923	3.5714749109568
5	19.6199809770128	29.5255499857348	2.70315390515685	2.00120816495289	3.5802057795633
3	19.6194342940863	29.5243148394793	2.71991823107853	2.03218570447614	3.5820673380407
7	19.6187272019664	29.5236694024572	2.73544094686566	2.0562614156736	3.5815048995227
8	19.6179997034887	29.5233409935733	2.74908865929165	2.07514533488358	3.5800558315142
9	19.6173243360867	29.523185427252	2.76070259080081	2.09000861640648	3.5783599234905
10	19.6167308870376	29.5231230486707	2.77038304068624	2.10172952595671	3.5767028866691
11	19.6162261398478	29.5231094195019	2.77834229539182	2.1109845105604	3.5752064484985
12	19.6158056255238	29.5231198454911 29.5231407882356	2.78482532793017	2.11829952342381	3.5739116449591
13 14	19.6154600751066 19.6151788012436	29.5231407882356	2.79007102293983 2.7942951539743	2.12408553377033 2.12866476346562	3.5728200819561 3.5719153239387
14 15	19.6149513732057	29.5231888303091	2.79768457316405	2.13229050675776	3.5711740259365
16	19.6147683661534	29.5232105183805	2.80039696314812	2.13516227260385	3.5705715924877
17	19.6146216216967	29.5232294288835	2.80256315667669	2.13743744721381	3.5700848922199
18	19.6145042613809	29.5232454756034	2.80429045284818	2.13924033410125	3.5696933994105
19	19.6144105848894	29.5232588479649	2.80566612567061	2.14066919707609	3.5693795138135
20	19.6143359233686	29.5232698523371	2.80676073510366	2.14180176929873	3.5691284709019
21	19.6142764841905	29.5232788267733	2.80763107365279	2.14269957585522	3.5689280670110
22	19.6142292047186	29.5232860975475	2.80832269916719	2.14341133350333	3.5687683193894
23	19.6141916225136	29.5232919591583	2.8088720638857	2.14397562953187	3.5686411229525
24	19.6141617640812 19.614138051612	29.5232966671989 29.5233004379995	2.80930827716414 2.8096545493921	2.14442303558597 2.14477777746206	3.5685399332923
26 26	19.6141192259617	29.5233034515734	2.8090343493921	2.14505905526141	3.5684594879033 3.5683955682736
27	19.6141042837009	29.5233058559322	2.81014743412692	2.14528208779849	3.5683448008300
28	19.6140924260462	29.5233077717261	2.81032044956619	2.14545893928106	3.5683044926523
29	19.6140830176543	29.5233092966746	2.81045770529655	2.14559917391165	3.5682724972001
30	19.614075553508	29.5233105095461	2.81056658313501	2.14571037439039	3.5682471053471
31	19.6140696323858	29.523311473602	2.81065294450492	2.14579855271522	3.5682269574227
32	19.6140649356552	29.5233122395085	2.81072144230499	2.14586847571328	3.5682109724925
33	19.6140612103502	29.5233128477567	2.81077576928557	2.14592392304096	3.5681982916733
34	19.6140582556875	29.5233133306519	2.8108188556781	2.14596789168618	3.5681882328040
35	19.6140559123327	29.5233137139355	2.81085302633352	2.14600275808083	3.5681802542617
36 37	19.6140540538624 19.6140525799787	29.5233140180973 29.5233142594341	2.81088012559526 2.81090161648814	2.14603040661945 2.14605233155159	3.5681739261199 3.5681689071843
38	19.6140514111174	29.5233142594541	2.81091865947824	2.14606971776782	3.5681649267231
39	19.6140504841671	29.5233146027852	2.81093217499429	2.14608350485378	3.5681617699427
40	19.6140497490695	29.5233147232639	2.8109428930476	2.14609443787916	3.5681592664474
41	19.6140491661218	29.5233148188243	2.81095139260617	2.14610310766957	3.5681572810731
12	19.6140487038353	29.5233148946167	2.81095813283422	2.14610998273971	3.5681557066094
13	19.6140483372372	29.5233149547282	2.81096347787518	2.14611543461484	3.5681544580230
14	19.6140480465223	29.5233150024015	2.81096771651074	2.14611975790965	3.5681534678725
15	19.6140478159841	29.5233150402095	2.81097107775445	2.14612318625015	3.5681526826710
16	19.6140476331668	29.5233150701931	2.81097374321981	2.14612590489928	3.5681520599996
17 18	19.6140474881927	29.5233150939713	2.81097585692972	2.14612806076877	3.5681515662179 3.5681511746475
19	19.6140473732283 19.6140472820618	29.5233151128281 29.5233151277819	2.81097753309626 2.81097886229068	2.14612977035827 2.14613112605103	3.5681508641319
50	19.6140472097671	29.5233151396405	2.81097991633654	2.14613220110621	3.5681506041913
51	19.6140471524376	29.5233151490445	2.81097991033034	2.14613305361777	3.56815041226263
52	19.6140471069756	29.523315156502	2.81098141501795	2.14613372965376	3.5681502677802
3	19.6140470709245	29.5233151624158	2.81098194063693	2.14613426574583	3.5681501449878
4	19.6140470423361	29.5233151671055	2.8109823574499	2.14613469086333	3.5681500476139
55	19.6140470196657	29.5233151708243	2.81098268798022	2.14613502797871	3.5681499703969
6	19.6140470016881	29.5233151737734	2.81098295008883	2.14613529530901	3.5681499091641
57	19.6140469874321	29.523315176112	2.8109831579394	2.1461355073002	3.5681498606069
i8	19.6140469761271	29.5233151779666	2.81098332276363	2.14613567540783	3.5681498221013
59 80	19.6140469671623	29.5233151794372	2.81098345346824	2.14613580871609	3.5681497915666
30 31	19.6140469600533 19.6140469544159	29.5233151806034 29.5233151815282	2.81098355711618 2.81098363930835	2.14613591442868 2.14613599825808	3.5681497673527 3.5681497481513
52	19.6140469499454	29.5233151815282	2.81098370448622	2.14613606473425	3.5681497329246
52 53	19.6140469464004	29.5233151828431	2.81098375617186	2.14613600473423	3.5681497329240
54	19.6140469435892	29.5233151823431	2.81098379715824	2.14613615925221	3.5681497112749
35	19.61404694136	29.5233151836699	2.81098382966019	2.14613619240156	3.5681497036819
66	19.6140469395922	29.5233151839599	2.81098385543402	2.14613621868877	3.5681496976607
67	19.6140469381904	29.5233151841899	2.8109838758725	2.14613623953437	3.568149692886
		00 5000151040500	2.81098389208009	2.14613625606479	3.5681496890996
38	19.6140469370787	29.5233151843723			
68 69 70	19.6140469370787 19.6140469361972 19.6140469354981	29.5233151845169 29.5233151846316	2.8109839049326 2.81098391512456	2.1461362691733 2.14613627956827	3.5681496860970 3.5681496837160

Table 2: Estimates of parameters in each iteration with conditional mean method in part 3

iteration	μ_x	μ_y	σ_{xx}	σ_{xy}	σ_{yy}
- 2	19.6653238614613	29.6158278987521	1.99438555582682	1.4549260732653	2.7314065030517
	19.6209059162327	29.5383782757245	2.1267798849798	1.96088528170276	3.0756902494573
	19.6098854037994	29.515064952074	2.40609073493248	2.34485586878782	3.3142411918355
	19.6050614376452	29.5086358286186	2.61925962697159	2.54295927291646	3.3893080470402
5	19.6013286233277	29.5084638378349	2.76077552037522 2.86200587265019	2.63743698942437 2.69196531483534	3.3842359603941
3 7	19.5976572536855 19.5941382054047	29.5102322221899 29.5123635073115	2.86200587265019	2.72986476338103	3.3617369685711 3.3405202475442
3	19.59097738578	29.5143508512481	3.00055757298729	2.75851490783122	3.3234976155698
9	19.5882680818543	29.5160556926393	3.04910425473098	2.78083333074826	3.3102346894989
10	19.5860115173055	29.51746564317	3.08786364629005	2.79842213072747	3.2999141237629
11	19.5841638168771	29.5186105590927	3.11886372862242	2.81236111821885	3.2918487558321
12	19.5826660492764	29.5195313829889	3.14368082951538	2.82344373007246	3.2855163692210
13	19.5814590849636	29.520268299553	3.16355830734672	2.83227406077027	3.2805246454391
14	19.5804897697376	29.5208566201528	3.17948382974084	2.83932014777311	3.2765768822871
15	19.5797127934829	29.5213258553694	3.19224499554977	2.84494835436602	3.2734465589136
16	19.5790906180631	29.5217000469449	3.20247127124072	2.8494473763937	3.2709592115035
17	19.5785926388693	29.5219985205878	3.21066639993872	2.85304574505642	3.2689794653179
18	19.5781941317431	29.5222367043481	3.21723381603393	2.85592494218921	3.2674016285780
19	19.5778752266906	29.5224268747324	3.22249675434288	2.85822941365161	3.2661427686209
20	19.5776200005298	29.5225787888165	3.22671424930474	2.86007431581876	3.2651375452984
21 22	19.5774157118167 19.5772521719042	29.5227002008397 29.5227972766253	3.23009390683921 3.23280212012317	2.86155156472562 2.86273459150553	3.2643343090907 3.2636921237825
23	19.5771212351508	29.5228749229196	3.23497225017313	2.86368209887824	3.2631784746793
24	19.5770163889416	29.5229370479932	3.23671118079068	2.86444103894907	3.2627674915448
25	19.5769324253783	29.5229867675559	3.23810457258364	2.86504897981017	3.2624385622450
26	19.5768651789339	29.5230265674914	3.23922107482549	2.86553598997757	3.2621752457525
27	19.5768113170115	29.5230584325958	3.2401157019864	2.86592614103768	3.2619644163489
28	19.5767681727756	29.5230839485645	3.24083254054855	2.86623870714409	3.2617955875797
29	19.5767336117049	29.523104382908	3.24140691883745	2.86648912330849	3.2616603767412
30	19.5767059250257	29.5231207492436	3.24186714629725	2.86668975147132	3.2615520797408
31	19.5766837445792	29.5231338584478	3.24223590756282	2.86685049320716	3.2614653329764
32	19.5766659747809	29.5231443594019	3.24253137978137	2.86697927995367	3.2613958440303
33	19.57665173822	29.5231527714821	3.24276812808008	2.86708246536248	3.2613401769225
34 35	19.576640332149	29.5231595104898	3.2429578232	2.86716513938735	3.2612955807067
36 36	19.5766311936718 19.5766238718856	29.5231649093601 29.5231692347116	3.24310981659186 3.24323160127116	2.86723137976671 2.86728445340869	3.2612598525580 3.2612312283451
37	19.5766180055804	29.5231727000785	3.24332918111659	2.86732697767701	3.2612082951250
38	19.5766133053862	29.5231754764942	3.24340736679487	2.86736104957398	3.2611899211429
39	19.5766095394775	29.5231777009602	3.2434700128863	2.86738834921788	3.2611751998161
10	19.576606522125	29.5231794832235	3.24352020789138	2.86741022273471	3.2611634048970
11	19.5766041045266	29.5231809112023	3.24356042647992	2.86742774866256	3.2611539545782
12	19.5766021674637	29.5231820553308	3.24359265148446	2.86744179114995	3.2611463827504
13	19.5766006154182	29.5231829720373	3.2436184716499	2.86745304257577	3.2611403159844
14	19.5765993718598	29.5231837065306	3.24363915995683	2.86746205769503	3.2611354550972
15	19.5765983754715	29.5231842950312	3.24365573637897	2.86746928099597	3.2611315603858
16	19.5765975771246	29.5231847665589	3.24366901816806	2.86747506861848	3.2611284397998
17	19.5765969374557	29.5231851443647	3.24367966014484	2.86747970591524	3.2611259394662
18	19.5765964249259	29.5231854470775	3.24368818698247	2.86748342152199	3.2611239360993
19 50	$19.5765960142649 \\ 19.5765956852255$	29.5231856896233 29.523185883961	3.24369501907349 3.24370049325594	2.86748639863094 2.86748878402328	3.2611223309197 3.2611210447826
50 51	19.5765954215847	29.5231860396726	3.24370487941997	2.86749069530627	3.2611210447826
52	19.5765952103441	29.5231861644354	3.24370487941997	2.86749222671189	3.2611191885879
53	19.5765950410887	29.5231862644007	3.24371120970622	2.86749345374289	3.2611185270114
54	19.5765949054737	29.5231863444973	3.24371346592694	2.86749443689535	3.2611179969273
55	19.576594796813	29.5231864086743	3.24371527371341	2.86749522464142	3.2611175722005
66	19.5765947097491	29.5231864600957	3.24371672219399	2.86749585581913	3.2611172318906
57	19.5765946399896	29.5231865012968	3.24371788278236	2.86749636154721	3.2611169592191
8	19.5765945840952	29.5231865343089	3.24371881269841	2.86749676675941	3.2611167407424
59	19.57659453931	29.5231865607598	3.24371955778933	2.86749709143375	3.2611165656892
30	19.5765945034261	29.5231865819534	3.24372015478998	2.86749735157753	3.2611164254286
31	19.5765944746744	29.5231865989346	3.24372063313397	2.86749756001649	3.2611163130456
32	19.5765944516371	29.5231866125408	3.24372101640486	2.86749772702723	3.2611162229992
33	19.5765944331786	29.5231866234426	3.24372132349889	2.8674978608438	3.2611161508500
34	19.5765944183889	29.5231866321777	3.24372156955654	2.8674979680637	3.2611160930408
35 36	19.5765944065387 19.5765943970437	29.5231866391766	3.24372176670909	2.86749805397314	3.2611160467214
36 37		29.5231866447845 29.5231866492778	3.24372192467666	2.86749812280767	3.2611160096082
67 68	19.5765943894359 19.5765943833403		3.24372205124743	2.86749817796102 2.86749822215238	3.2611159798718 3.2611159560451
	19.5765943784561	29.523186652878 29.5231866557626	3.24372215266167 3.24372223391936	2.8674982575605	3.2611159369543
69					

```
71
          19.5765943714071
                             29.5231866599259
                                                 3.24372235119366
                                                                    2.8674983086629
                                                                                       3.26111590940169
72
          19.5765943688947
                                                 3.24372239299219
                             29.5231866614097
                                                                    2.86749832687665
                                                                                       3.26111589958148
73
          19.5765943668817
                             29.5231866625986
                                                 3.24372242648307
                                                                    2.86749834147034
                                                                                       3.26111589171308
74
          19.5765943652688
                             29.5231866635513
                                                 3.24372245331748
                                                                    2.86749835316346
                                                                                       3.26111588540856
          19.5765943639764
                             29.5231866643145
                                                 3.24372247481842
                                                                    2.86749836253252
                                                                                       3.26111588035709
75
76
          19.5765943629409
                             29.5231866649261
                                                 3.24372249204595
                                                                    2.86749837003943
                                                                                       3.26111587630963
          19.5765943621112
                             29.5231866654162
                                                 3.24372250584943
                                                                    2.86749837605431
                                                                                       3.26111587306662
77
78
          19.5765943614465
                             29.5231866658088
                                                 3.2437225169094
                                                                    2.86749838087371
                                                                                       3.26111587046817
          19.5765943609138
                             29.5231866661234
                                                 3.24372252577115
                                                                    2.86749838473522
                                                                                       3.26111586838618
79
```

R codes:

```
data <- read.table("./bivnormdat.txt", head = T)</pre>
z <- data[!(is.na(data["x"])|is.na(data["y"])),]</pre>
u <- data[is.na(data["x"]),]</pre>
v <- data[is.na(data["y"]),]</pre>
z <- t(z)
yj <- u[, "y"]
xk <- v[, "x"]
#2 MLE with only zi
mu_2 \leftarrow apply(z, MARGIN = 1, mean)
quardra <- function(x) {
  return (x%*%t(x))
quadra_sum <- function(X) {</pre>
  s <- apply(apply(X, MARGIN = 2, quardra), MARGIN = 1, sum)
  return(matrix(s, nrow = 2))
}
zminusmu <- z - matrix(rep(mu_2, ncol(z)), nrow = 2)</pre>
Sigma_2 <- quadra_sum(zminusmu)/ncol(zminusmu)</pre>
## the estimate with this method is
theta_2 <- list (mu = mu_2, Sigma = Sigma_2)
theta_2
#1 Using EM Algorithm
Eu <- function(y_j, mu_p, Sigma_p){</pre>
  Exjm \leftarrow mu_p[1] + (Sigma_p[1,2]/Sigma_p[2,2])*(y_j - mu_p[2])
  return(c(Exjm, y_j))
}
Ev <- function(x_k, mu_p, Sigma_p){</pre>
  Eykm \leftarrow mu_p[2] + (Sigma_p[2,1]/Sigma_p[1,1]) * (x_k - mu_p[1])
  return(c(x_k, Eykm))
Vu <- function(mu_p, Sigma_p) {</pre>
```

```
return(matrix(c(Sigma_p[1,1] - Sigma_p[1,2]^2/Sigma_p[2,2], 0, 0,
  \leftrightarrow 0), nrow = 2))
Vv <- function(mu_p, Sigma_p){</pre>
 return (matrix (c (0, 0, 0, Sigma_p[2,2] -
   \rightarrow Sigma_p[2,1]^2/Sigma_p[1,1]), nrow = 2))
theta_update <- function(z, yj, xk, mu_p, Sigma_p) {
 n <- nrow(data)
 zsum <- apply(z, MARGIN = 1, sum)</pre>
 Eus <- sapply(yj, Eu, mu_p = mu_p, Sigma_p = Sigma_p)</pre>
 Eusum <- apply(Eus, MARGIN = 1, sum)</pre>
 Evs <- sapply(xk, Ev, mu_p = mu_p, Sigma_p = Sigma_p)
 Evsum <- apply(Evs, MARGIN = 1, sum)</pre>
 mu_new <- (zsum + Eusum + Evsum)/n
  zminusmu <- z - matrix(rep(mu_new, ncol(z)), nrow = 2)</pre>
  Euminusmu <- Eus - matrix(rep(mu_new, ncol(Eus)), nrow = 2)</pre>
  Evminusmu <- Evs - matrix(rep(mu_new, ncol(Evs)), nrow = 2)</pre>
  Sigma_new <- (1/n) * (quadra_sum (zminusmu) + quadra_sum (Euminusmu) +
  → quadra_sum(Evminusmu) + Vu(mu_p, Sigma_p)*length(yj) + Vv(mu_p,

    Sigma_p)*length(xk))

 return(list(mu = mu_new, Sigma = Sigma_new))
# initialize with result from question 2
theta_old <- list(mu = mu_2, Sigma = Sigma_2)
iter <- 0
print (noquote (paste (c ("iteration", "mu_x", "mu_y", "sigma_xx",
repeat {
    iter <- iter + 1
    theta_new <- theta_update(z, yj, xk, theta_old$mu,

    → theta_old$Sigma)

    print (noquote (paste (c(iter, c(theta_new$mu, theta_new$Sigma)[-4]),

    collapse='&')))
    diff <- (c(theta_new$mu, theta_new$Sigma) - c(theta_old$mu,

→ theta_old$Sigma))[-4]

    diffnorm <- sqrt(sum(diff^2))</pre>
    if(diffnorm < 1e-8)</pre>
      break
    theta_old <- theta_new
}
theta_new
```

```
# 3 using conditional mean to replace missing data
theta_update_3 <- function(z, yj, xk, mu_p, Sigma_p){</pre>
 n <- nrow(data)
  zsum <- apply(z, MARGIN = 1, sum)</pre>
 Eus <- sapply(yj, Eu, mu_p = mu_p, Sigma_p = Sigma_p)</pre>
 Eusum <- apply(Eus, MARGIN = 1, sum)</pre>
  Evs <- sapply(xk, Ev, mu_p = mu_p, Sigma_p = Sigma_p)</pre>
 Evsum <- apply(Evs, MARGIN = 1, sum)</pre>
 mu_new <- (zsum + Eusum + Evsum)/n</pre>
  zminusmu <- z - matrix(rep(mu new, ncol(z)), nrow = 2)</pre>
  Euminusmu <- Eus - matrix(rep(mu_new, ncol(Eus)), nrow = 2)</pre>
  Evminusmu <- Evs - matrix(rep(mu_new, ncol(Evs)), nrow = 2)</pre>
  Sigma_new <- (1/n) * (quadra_sum (zminusmu) + quadra_sum (Euminusmu) +

    quadra_sum(Evminusmu))

 return(list(mu = mu_new, Sigma = Sigma_new))
theta_old <- list (mu = mu_2, Sigma = Sigma_2)
iter <- 0
print (noquote (paste (c ("iteration", "mu_x", "mu_y", "sigma_xx",
repeat {
 iter <- iter + 1
 theta_new <- theta_update_3(z, yj, xk, theta_old$mu,

    → theta old$Sigma)

 print (noquote (paste (c(iter, c(theta_new$mu, theta_new$Sigma) [-4]),

    collapse='&')))
 diff <- (c(theta_new$mu, theta_new$Sigma) - c(theta_old$mu,

→ theta_old$Sigma))[-4]

  diffnorm <- sqrt(sum(diff^2))</pre>
  if(diffnorm < 1e-8)</pre>
   break
 theta_old <- theta_new
}
theta_new
```