## **CPE301 - SPRING 2018**

# Design Assignment 4

## **DO NOT REMOVE THIS PAGE DURING SUBMISSION:**

The student understands that all required components should be submitted in complete for grading of this assignment.

| NO | SUBMISSION ITEM                                      | COMPLETED<br>(Y/N) | MARKS<br>(/MAX) |
|----|------------------------------------------------------|--------------------|-----------------|
| 1  | COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS |                    |                 |
| 2. | INITIAL CODE OF TASK 1/A                             |                    |                 |
| 3. | INCREMENTAL / DIFFERENTIAL CODE OF TASK 2/B          |                    |                 |
| 3. | INCREMENTAL / DIFFERENTIAL CODE OF TASK 3/C          |                    |                 |
| 3. | INCREMENTAL / DIFFERENTIAL CODE OF TASK 4/D          |                    |                 |
| 3. | INCREMENTAL / DIFFERENTIAL CODE OF TASK 5/E          |                    |                 |
| 4. | SCHEMATICS                                           |                    |                 |
| 5. | SCREENSHOTS OF EACH TASK OUTPUT                      |                    |                 |
| 5. | SCREENSHOT OF EACH DEMO                              |                    |                 |
| 6. | VIDEO LINKS OF EACH DEMO                             |                    |                 |
| 7. | GOOGLECODE LINK OF THE DA                            |                    |                 |
|    |                                                      |                    |                 |
|    |                                                      |                    |                 |

## 1. COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS

```
experiment 1:
ATMega328P
push button
1k resistor
L293D motor driver
DC motor
Potentiometer
experiment 2:
ATMega328P
ULN2003
stepper motor
Potentiometer
experiment 3:
ATMega328P
servo motor
Potentiometer
```

#### 2. DEVELOPED CODE OF TASK 1

```
#define F CPU 1000000UL
#include <avr/io.h>
#include <util/delay.h>
#include <avr/interrupt.h>
void adc int(void);
volatile unsigned int speed;
volatile unsigned int stop = 0;
ISR(INT0 vect){
                 // toggles stop on interrupt
  stop \stackrel{}{\sim} 1;
int main()
  DDRD = 0xFB;
                      // set motor outputs to PD0, PD1. leave PD2 as input for push button.
  EIMSK = 0x01;
                     // enable INT0
  EIFR = 0x01;
                   // enable interrupt flag 0
  EICRA = 0X03; // set interrupt on rising edge
  sei();
  adc int();
  TCCR0B=3;
                     // set prescaler to 1024
  TCCR0A=0x83;
                       // set fast PWM and clear OCR0A on match
  while (1)
    while((ADCSRA&(1 \le ADIF)) == 0);
    speed = ADC*95/400;
                               // speed equals the conversion for ADC to PWM = adc/4 *.95
    \overrightarrow{OCR0A} = \text{speed};
    if(stop == 0){
       PORTD = 0x01; // make motor rotate clockwise
```

```
else
       PORTD = 0X00;
void adc int(void){
  ADMUX = (0 \le REFS1) \parallel // Reference Selection Bits
  (1<<REFS0)|// AVcc-external cap at AREF
  (0<<ADLAR)|// ADC Left Adjust Result
  (0<<MUX3)|
  (0<<MUX2)|// ANalogChannel Selection Bits
  (0<<MUX1)|// ADC0 (PC0)
  (0<<MUX0);
  ADCSRA = (1 << ADEN) | / ADC ENable
  (1<<ADSC)|// ADC Start Conversion
  (1<<ADATE)|// ADC Auto Trigger Enable
  (0<<ADIF)|// ADC Interrupt Flag
  (0<<ADIE)|// ADC Interrupt Enable
  (1<<ADPS2)|// ADC PrescalerSelect Bits
  (1<<ADPS1)
  (1<<ADPS0);
         DEVELOPED CODE OF TASK 2
3.
#define F CPU 1000000UL
#include <avr/io.h>
#include <util/delay.h>
#include <avr/interrupt.h>
void adc_int(void);
void timer init(void);
volatile unsigned int speed; // variable used to control delay
volatile int stop = 0; // if set to 1, the motor is turned off
int main(void)
  DDRD = 0xFF;
                       //Enable output on all of the B pins
  PORTD = 0x00;
                         // Set them all to 0v
  adc int();
  TCCR1B = 0x0D;
  while(1){
// Convert the ADC value to a speed to control the motor, motor stops if ADC value is greater then 1015
                         \{\text{stop} = 0; \text{speed} = 1;\}
    if (ADC \le 4)
    else if (ADC \le 85) {stop = 0; speed = 2;}
    else if (ADC \le 170) \{ stop = 0; speed = 3; \}
    else if (ADC \le 255) \{ stop = 0; speed = 4; \}
    else if (ADC \le 340) \{ stop = 0; speed = 5; \}
    else if (ADC \le 425) \{ stop = 0; speed = 6; \}
    else if (ADC \le 510) \{ stop = 0; speed = 7; \}
    else if (ADC \le 595) \{ stop = 0; speed = 8; \}
    else if (ADC \le 680) \{ stop = 0; speed = 9; \}
    else if (ADC \le 765) \{ stop = 0; speed = 10; \}
    else if (ADC \le 850) \{ stop = 0; speed = 11; \}
    else if (ADC \le 935) \{ stop = 0; speed = 12; \}
    else if (ADC \le 1015) \{ stop = 0; speed = 13; \}
    else
                   \{\text{stop} = 1;\}
    OCR1A = speed;
                        // set OCR1A to the determined speed
    TCNT1 = 0x00;
                        // reset the clock
```

```
if(stop == 0){
      // if the motor is not to be halted, run a step with the designated lenght delay
      while((TIFR1 & 0x2) != 0x2);
        PORTD = 0x06;
        TIFR1 = (1 << OCF1A);
      while((TIFR1 & 0x2) != 0x2);
        PORTD = 0x0C;
        TIFR1 = (1 << OCF1A);
      while((TIFR1 & 0x2) != 0x2);
        PORTD = 0X09;
        TIFR1 = (1 << OCF1A);
      while((TIFR1 & 0x2) != 0x2);
        PORTD = 0X03;
        TIFR1 = (1 << OCF1A);
void adc int(void){
  ADMUX = (0 \le REFS1) | / Reference Selection Bits
  (1<<REFS0)|// AVcc-external cap at AREF
  (0<<ADLAR)|// ADC Left Adjust Result
  (0<<MUX3)
  (0<<MUX2)|// ANalogChannel Selection Bits
  (0<<MUX1)|// ADC0 (PC0)
  (0 \le MUX0);
  ADCSRA = (1 << ADEN) | / ADC ENable
  (1<<ADSC)|// ADC Start Conversion
  (1<<ADATE)|// ADC Auto Trigger Enable
  (0<<ADIF)|// ADC Interrupt Flag
(1<<ADIE)|// ADC Interrupt Enable
  (1<<ADPS2)|// ADC PrescalerSelect Bits
  (1<<ADPS1)
  (1 \leq ADPS0);
4.
        DEVELOPED CODE OF TASK 3
#define F CPU 1000000UL
#include <avr/io.h>
#include <util/delay.h>
void adc int(void);
volatile unsigned int rotate;
int main(void)
  DDRD = 0xFF;
  TCCR0B=3;
  TCCR0A=0x83;
  adc int();
  while (1)
    while((ADCSRA&(1<<ADIF))==0):
// for the Servo Motor used (3001HB) I found 0 degree mapped to 0,(I mapped it to 1 however due to it sometimes trying to move
// and 180 degree was approxamatly 32. To make the conversion, divide ADC by 33 and add 1
    OCR0A = (ADC / 33 + 1);
void adc int(void){
```

```
ADMUX = (0<<REFS1)|// Reference Selection Bits (1<<REFS0)|/ AVcc-external cap at AREF (0<<ADLAR)|// ADC Left Adjust Result (0<<MUX3)|
(0<<MUX2)|/ ANalogChannel Selection Bits (0<MUX1)|/ ADC0 (PC0)
(0<<MUX0);

ADCSRA = (1<<ADEN)|// ADC ENable (1<<ADSC)|// ADC Start Conversion (1<<ADATE)|// ADC Interrupt Flag (1<<ADIE)|// ADC Interrupt Enable (1<<ADPS2)|// ADC PrescalerSelect Bits (1<<ADPS1)|/ (1<<ADPS1)|/ (1<<ADPS0);
```

## 5. SCHEMATICS





6. SCREENSHOT OF EACH DEMO (BOARD SETUP)







## 7. GITHUB LINK OF THIS DA

https://github.com/Pogoptomus/CPE301/tree/master/DA4

## **Student Academic Misconduct Policy**

http://studentconduct.unlv.edu/misconduct/policy.html

"This assignment submission is my own, original work".

Phillip SortommeT