Structuri de date și algoritmi - examen scris -

<u>Notă</u>

- 1. Subjectele se notează astfel: of 1p; A 2p; B 1.5p; C1 1p; C2 1p; D 3.5p.
- 2. Pentru cerința A, justificarea unei complexități presupune deducția acesteia.
- 3. Pentru cerințele B și C (C1, C2) se cer justificări, care vor fi punctate.
- 4. Problema de la D se va rezolva în Pseudocod. Se cer și se vor puncta: (1) descrierea ideii de rezolvare și comentarii despre soluția propusă; (2) scrierea reprezentării indicate în enunț; (3) (specificare și) implementare subalgoritm(i); (4) complexitate.

Nu se acceptă cod C++. Nu se acceptă pseudocod fără comentarii despre soluția propusă.

A. Deduceți timpii mediu si defavorabil pentru următorul subalgoritm. Justificați rezultatul.

```
Functia \mathbf{f}(n, i) este \{: \text{Intreg}\}\ | \{\underline{pre}: n, i: \text{Intreg}\}\ | daca n>1 atunci | m \leftarrow [n/2]; S \leftarrow \mathbf{f}(m, i-1); j \leftarrow 1; \text{ gata} \leftarrow \text{adevărat} | cattimp j \leq n și gata executa | dacă i mod 2=1 atunci gata \leftarrow fals | altfel j \leftarrow j+1 | sfdacă | sfcattimp | \mathbf{f} \leftarrow S + \mathbf{f}(m, i+1) | altfel \mathbf{f} \leftarrow 0 | sfdaca
```

e o tabelă de dispersie inițial vidă, cu 5 locații și funcția de dispersie $d(c) = c \mod 5$, în care coliziunile sunt rezolvate prin înlănțuire, folosind arbori AVL pentru memorarea coliziunilor. Arătați ce se întâmplă la inserarea cheilor 35, 2, 18, 6, 3, 10, 8, 5. Justificati

C. Algoritmii pe arbori binari de căutare rulează, în generl, în O(d). Cine poate fi d? Justificati a) adâncimea arborelui b) numărul de noduri din arbore c) înălțimea arborelui d) lo

d) log₂(numărul de noduri din arbore)

C. Presupunem că se ada	augă <i>m</i> valori îr	ntr-o TD cu s locaț	ii. Care este formu	la corectă pentru factorul de în	carcare al tabelei? Justificati
a) $s + m$	b) s - m	c) m - s	d) m * s	e) m / s	

D. Descrieți operația de dublă rotație spre stânga pentru reechilibrare într-un Arbore Binar de Căutare. Arborele se reprezintă secvențial, pe vector, folosind ca schemă de memorare ansamblul. Indicați grafic situația de rotație, reprezentarea arborelui și descrieț.
in Pseudocod subalgoritmul. Precizați complexitatea operației. Folosiți comentarii pentru a ușura înțelegerea soluției.