

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Addiese: COMMISSIONER FOR PATENTS P O Box 1450 Alexandra, Virginia 22313-1450 www.wepto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/577,297	04/27/2006	Uwe Schnitzler	E7900.2009/P2009	5152
24998 7590 10/25/2010 DICKSTEIN SHAPIRO LLP 1825 EYE STREET NW			EXAMINER	
			HUPCZEY, JR, RONALD JAMES	
Washington, I	OC 20006-5403		ART UNIT	PAPER NUMBER
			3739	
			MAIL DATE	DELIVERY MODE
			10/25/2010	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Application No. Applicant(s) 10/577,297 SCHNITZLER ET AL. Office Action Summary Examiner Art Unit RONALD HUPCZEY, JR -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS. WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. - Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication. - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b). Status 1) Responsive to communication(s) filed on 02 September 2010.

Za) This action is That. Zb) This action is non-inial.	
3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is	;
closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.	
Disposition of Claims	
4) Claim(s) 1.3.6-9.12-15.17 and 19-21 is/are pending in the application.	
4a) Of the above claim(s) is/are withdrawn from consideration.	
5) Claim(s) is/are allowed.	
6)⊠ Claim(s) <u>1,3,6-9,12-15,17 and 19-21</u> is/are rejected.	
7) Claim(s) is/are objected to.	
8) Claim(s) are subject to restriction and/or election requirement.	
Application Papers	
9) The specification is objected to by the Examiner.	
10)⊠ The drawing(s) filed on <u>27 April 2006</u> is/are: a)⊠ accepted or b) objected to by the Examiner.	
Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).	
Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(o	i).
11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.	
Priority under 35 U.S.C. § 119	
12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).	
a) ☐ All b) ☐ Some * c) ☐ None of:	
 Certified copies of the priority documents have been received. 	
Certified copies of the priority documents have been received in Application No	
3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).	
* See the attached detailed Office action for a list of the certified copies not received.	
Attachment(s)	

1) Notice of References Cited (PTO-892)

Paper No(s)/Mail Date 06/22/2010.

Notice of Draftsperson's Patent Drawing Review (PTO-948)
 Information Disclosure Statement(s) (PTO/SB/08)

Interview Summary (PTO-413)
 Paper No(s)/Mail Date.

6) Other:

5) Notice of Informal Patent Application

Art Unit: 3739

DETAILED ACTION

Applicant's amendments and remarks, filed September 2nd, 2010, are acknowledged.
 Currently, claims 1, 3, 6-9, 12-15, 17 and 19-21 are pending with claims 1 and 9 amended and claims 2, 4-5, 10-11, 16 and 18 cancelled. The following is a complete response to the September 2nd, 2010 communication.

Claim Rejections - 35 USC § 102

The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless -

- (b) the invention was patented or described in a printed publication in this or a foreign country or in public use or on sale in this country, more than one year prior to the date of application for patent in the United States.
- Claims 1, 3, 6-9, 12-13, 15, 17 and 19-21 are rejected under 35 U.S.C. 102(b) as being anticipated by Ishikawa et al (JP 2002-301088 A).

(**It is noted that the rejections below have been formulated with respect to the machine translation of the Detailed Description of JP 2002-301088 A which has been included with this communication for Applicant's reference. The various reference and paragraph numbers are taken from that document as well.**)

Regarding claim 1, Ishikawa discloses an apparatus for coagulating tissue (see at least figures 1-5) comprising an electrode capable of producing a high-frequency current (knife 13 connected to a source of energy as in paragraph [0012]), a gas-delivering device (probe 3 with insertion portion 9 formed of resin tube 15) having an outlet (through hole 47) and being capable of delivering an inert gas (from tube 6 with an inactive gas as disclosed in at least paragraph [0009]) from said outlet into a space defined between the electrode and said tissue (see figure 7

Art Unit: 3739

displaying the output gas), such that a plasma is produced between the electrode and the tissue when the high-frequency current is applied to the inert gas (see paragraph [0003] discussing ionizing inert gas, paragraph [0051] discussing sprinkling hemostasis and paragraph [0053] discussing forming plasma), wherein a distal end of the electrode projects out of said gasdelivering device (see figure 2 and 3 showing knife 11 extending out of the device). Ishikawa further discloses a guiding device (insulating part 12) comprised of an electrically insulating material (see at least paragraph [0013] discussing the materials of construction of part 12) and disposed at the distal end of the electrode (see figures 2 and 3), the guiding device being capable of directing and guiding the plasma such that the plasma is diverted in a predetermined direction (see figure 7 displaying the direction of the gas/plasma output from the through hole 47) wherein the guiding device is configured such that the plasma flows into said space substantially radially with respect to said outlet of said gas-delivering device (as in figure 7, the plasma extends into the space radially outward with respect to the through hole 47) and wherein the electrode is configured such that it may be retracted and pushed forward with respect to the gas-delivering device (see at least paragraph [0026] discussing the movement of the electrode via movement of cap component 50 and its associated structure).

Regarding claim 3, Ishikawa discloses that the guiding device is comprised of a thermally stable material (see at least paragraph [0013] discussing the materials of construction of part 12).

Regarding claim 6, Ishikawa discloses with respect to the embodiment in figure 15 that the guiding device (insulation part 12) has a concave configuration on a side thereof that faces the outlet (the shape of the transition between projection 40 and the remainder of part 12 having a concave-like configuration facing towards the through hole 47).

Regarding claim 7, Ishikawa discloses that the guiding device has a contour which prevents mechanical damage if said guiding device touches said tissue (see the rounded contour of part 12).

Regarding claim 8, Ishikawa discloses that the electrode is capable of being moved relative to said outlet (see paragraph [0026] disclosing the movement/projection of the knife 11) such that when said electrode is moved into a retracted position said guiding device closes said outlet in a substantially leakproof manner (see the relative diameter of part 12 in relation to through hole 47, with respect to figure 15, paragraph [0047] discloses that the part 40 is greater in diameter than 47 thereby rendering 12 greater in diameter than 47 and with such a relation, when knife 11 and part 12 are retracted, a seal would be formed between 12 and the through hole 47).

Regarding claim 9, Ishikawa discloses an apparatus for argon-plasma coagulating tissue (see at least figures 1-5) comprising a gas-delivering device (probe 3 with insertion portion 9 formed of resin tube 15), an electrode disposed substantially coaxially with the gas-delivering device and configured to generate a high-frequency current (knife 13 connected to a source of energy as in paragraph [0012]), wherein a distal end of the electrode projects outward through an outlet of the gas-delivering device (see figure 2 and 3 showing knife 11 extending out of the device). Ishikawa further discloses a guiding device (insulating part 12) disposed at the distal end of the electrode, wherein the guiding device is configured for guiding an a plasma stream flowing through the gas-delivering device the plasma stream being produced when said high-frequency current is applied to an inert gas delivered by the gas-delivering device (from tube 6 with an inactive gas as disclosed in at least paragraph [0009] and see paragraph [0003]

Art Unit: 3739

discussing ionizing inert gas, paragraph [0051] discussing sprinkling hemostasis and paragraph [0053] discussing forming plasma), wherein the guiding device is comprised of a material that is electrically insulating and thermally stable (see at least paragraph [0013] discussing the materials of construction of part 12), wherein the guiding device is disposed in an axially symmetric manner around the distal end of the electrode (see figures 2 and 3 showing the disposition of 12 about knife 11) and configured such that the plasma stream is guided into a surrounding space substantially radially with respect to the outlet of the gas delivering device (see figures 7 showing the radial expansion of the fluid from through hole 47) and wherein the electrode is configured such that it may be retracted and pushed forward with respect to the gas-delivering device (see at least paragraph [0026] discussing the movement of the electrode via movement of cap component 50 and its associated structure).

Regarding claim 12, Ishikawa discloses that the guiding device is shaped such that damage to the tissue is prevented if the guiding device touches the tissue (see the rounded shape of part 12 in at least figures 2 and 3).

Regarding claim 13, Ishikawa discloses that the guiding device is spherical (see figures 2 and 3 showing the shape of part 12).

Regarding claim 15, Ishikawa discloses with respect to the embodiment in figure 15 that the guiding device (insulation part 12) has a concave configuration on a side thereof that faces the outlet (the shape of the transition between projection 40 and the remainder of part 12 having a concave-like configuration facing towards the through hole 47) and a substantially hemispherical surface at a surface facing away from the outlet of the gas-delivering device (see shape of the remainder of the part 12 facing away from hole 47 in figure 15).

Art Unit: 3739

Regarding claim 17, Ishikawa discloses that the electrode is capable of being moved relative to said outlet (see paragraph [0026] disclosing the movement/projection of the knife 11) such that when said electrode is moved into a retracted position said guiding device closes said outlet in a substantially leakproof manner (see the relative diameter of part 12 in relation to through hole 47, with respect to figure 15, paragraph [0047] discloses that the part 40 is greater in diameter than 47 thereby rendering 12 greater in diameter than 47 and with such a relation, when knife 11 and part 12 are retracted, a seal would be formed between 12 and the through hole 47). In light of this above relationship, Ishikawa shows that when the electrode is in a fully retracted state, the guiding device is seated on the outlet of the gas-delivering device (placement of part 12 against hole 47).

Regarding claim 19, Ishikawa discloses that the guiding device is comprised of a ceramic (see paragraph [0023]).

Regarding claim 20, Ishikawa discloses an argon plasma coagulating probe assembly (see at least figures 1-5) comprising a tube (probe 3 with insertion portion 9 formed of resin tube 15), an electrode disposed substantially coaxially with the tube and configured to generate a high-frequency current (knife 13 connected to a source of energy as in paragraph [0012]), wherein a distal end of the electrode projects outward through an outlet of the tube (see figure 2 and 3 showing knife 11 extending out of the device). Ishikawa further discloses a guiding device disposed at the distal end of the electrode (insulating part 12), wherein the guiding device is configured for guiding an inert gas stream flowing through the tube (from tube 6 with an inactive gas as disclosed in at least paragraph [0009] and see paragraph [0003] discussing ionizing inert gas, paragraph [0051] discussing sprinkling hemostasis and paragraph [0053] discussing forming

plasma), wherein the guiding device is comprised of an electrically insulating and thermally stable material (see at least paragraph [0023]) and is configured to have a concave configuration on a side thereof that faces the outlet (with respect to the embodiment in figure 15 that the guiding device (insulation part 12) has a concave configuration on a side thereof that faces the outlet due to the shape of the transition between projection 40 and the remainder of part 12 having a concave-like configuration facing towards the through hole 47) and is further configured to prevent mechanical damage if the guiding device touches the tissue (see the rounded shape of part 12 in at least figures 2 and 3), and wherein said electrode is movable relative to said outlet (see paragraph [0026] disclosing the movement/projection of the knife 11) such that when said electrode is moved into a retracted position said guiding device closes said outlet in a substantially leakproof manner (see the relative diameter of part 12 in relation to through hole 47, with respect to figure 15, paragraph [0047] discloses that the part 40 is greater in diameter than 47 thereby rendering 12 greater in diameter than 47 and with such a relation, when knife 11 and part 12 are retracted, a seal would be formed between 12 and the through hole 47).

Regarding claim 21, Ishikawa discloses that the guiding device has a rounded contour (see figures 2 and 3 showing the shape of part 12).

Claim Rejections - 35 USC § 103

- The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all
 obviousness rejections set forth in this Office action:
 - (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

Art Unit: 3739

5. The factual inquiries set forth in *Graham v. John Deere Co.*, 383 U.S. 1, 148 USPQ 459 (1966), that are applied for establishing a background for determining obviousness under 35 U.S.C. 103(a) are summarized as follows:

- Determining the scope and contents of the prior art.
- Ascertaining the differences between the prior art and the claims at issue.
- Resolving the level of ordinary skill in the pertinent art.
- Considering objective evidence present in the application indicating obviousness or nonobviousness.
- 6. This application currently names joint inventors. In considering patentability of the claims under 35 U.S.C. 103(a), the examiner presumes that the subject matter of the various claims was commonly owned at the time any inventions covered therein were made absent any evidence to the contrary. Applicant is advised of the obligation under 37 CFR 1.56 to point out the inventor and invention dates of each claim that was not commonly owned at the time a later invention was made in order for the examiner to consider the applicability of 35 U.S.C. 103(c) and potential 35 U.S.C. 102(e), (f) or (g) prior art under 35 U.S.C. 103(a).
- Claims 1, 3, 6-9, 12-13, 15, 17 and 19-21 are rejected under 35 U.S.C. 103(a) as being unpatentable over Cosmescu et al (US Pat. No. 6,149,648) further in view of Ishikawa (JP 2002-301088 A).

Regarding claim 1, Cosmescu discloses an apparatus for coagulating tissue (as best seen in figures 5, 6A-6C and 7A-C) comprising an electrode capable of producing a high-frequency current (electrode 112), a gas-delivering device (tube 152) having an outlet (opening at 154) and being capable of delivering an inert gas from said outlet into a space defined between said electrode and said tissue (see spaces defined in figures 5, 6A-6C and 7A-C), such that a plasma is produced between said electrode and said tissue when said high frequency current is applied to

said inert gas (see at least col. 14; 1-46 discussing the formation of an "argon beam"), wherein a distal end of said electrode projects out of said gas-delivering device (electrodes 112 extending as in figure 5). Cosmescu further discloses that the electrode is configured to be retracted and pushed forward with respect to the gas-delivering device (see col. 13: 27- col. 15: 5). Cosmescu fails to recite the specifics of the claimed guiding device. Ishikawa discloses a similar multipurpose argon plasma device containing an electrode and gas-delivering device as prescribed by claim 1. Ishikawa further discloses a guiding device comprised of an electrically insulating material (insulation part 12, see paragraph [0023]) disposed at said distal end of said electrode (disposed at the end of knife part 11) wherein the guiding device is capable of guiding and directing plasma such that the plasma is diverted in a predetermined direction (see flow of emitting gas and plasma in figure 7), wherein the guiding device is configured such that the plasma flows into the space substantially radially with respect to the outlet of the gas-delivering device (as in figure 7, the plasma extends into the space radially outward with respect to the through hole 47). Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to provide the electrode (knife part 13) containing the guiding device (insulation part 12) of Ishikawa in combination with the device of Cosmescu in order to have a combined device which can effectively cut, coagulate and supply plasma to a target tissue site. Both Cosmescu and Ishikawa are concerned with the direct contact and cutting/coagulation of tissue by the electrode as well as providing an argon plasma enhanced effect to treat a target site. Ishikawa provides an improvement to the device of Cosmescu by supplying the guide element, which as disclosed by Ishikawa, prevents the sticking of the electrode at a target area

Art Unit: 3739

thereby reducing the unintentional bleeding (see paragraph [0007]) and ensures that plasma can still be created at that target site thereby allowing the continued treatment at the target site.

Regarding claim 3, Cosmescu fails to disclose any specifics regarding the guiding device. Ishikawa discloses that the guiding device is comprised of an electrically insulative and thermally stable material (see at least paragraph [0013] discussing the materials of construction of part 12) such that the guiding device can be exposed to the increased temperatures at the treatment site. In light of the combination provided in claim 1 above, it would have been obvious to supply the guiding device of the material specified by Ishikawa to provide for the above mentioned advantages.

Regarding claim 6, Cosmescu fails to disclose any specifics regarding the guiding device. Ishikawa discloses with respect to the embodiment in figure 15 that the guiding device (insulation part 12) has a concave configuration on a side thereof that faces the outlet (the shape of the transition between projection 40 and the remainder of part 12 having a concave-like configuration facing towards the through hole 47). In light of the combination provided in claim 1 above, it would have been obvious that in supplying the guiding device of Ishikawa, that such a configuration would be provided to the device.

Regarding claim 7, Cosmescu fails to disclose any specifics regarding the guiding device. Ishikawa discloses that the guiding device has a contour which prevents mechanical damage if said guiding device touches said tissue (see the rounded contour of part 12). In light of the combination provided in claim 1 above, it would have been obvious that in supplying the guiding device of Ishikawa, that such a configuration would be provided to the device.

Regarding claim 8, Cosmescu fails to disclose any specifics regarding the guiding device. Ishikawa discloses that the electrode is capable of being moved relative to said outlet (see paragraph [0026] disclosing the movement/projection of the knife 11) such that when said electrode is moved into a retracted position said guiding device closes said outlet in a substantially leakproof manner. This relationship is Ishikawa is due to the relative diameter of part 12 in relation to through hole 47 as shown in figure 15. Additionally, paragraph [0047] discloses that the part 40 is greater in diameter than 47 thereby rendering 12 greater in diameter than 47 and with such a relation, when knife 11 and part 12 are retracted, a seal would be formed between 12 and the through hole 47. In light of the combination provided in claim 1 above, it would have been obvious that in supplying the electrode and guiding device of Ishikawa, the combination would allow for a seal to be formed between the outlet and the guiding device when the electrode/guiding device are in a retracted position. It is noted that the limitation of "substantially leakproof" does not require a perfect seal to be formed by rather that a majority, in this instance an amount greater than 50% of the flow, to be stopped from exiting the outlet by the guiding device.

Regarding claim 21, Cosmescu fails to disclose any specifics regarding the guiding device. Ishikawa discloses that the guiding device has a rounded contour (see figures 2 and 3 showing the shape of part 12). In light of the combination provided in claim 1 above, it would have been obvious that in supplying the guiding device of Ishikawa, that such a configuration would be provided to the device.

Regarding claim 9, Cosmescu disclose an apparatus for coagulating tissue (as best seen in figures 5, 6A-6C and 7A-7C) comprising a gas-delivering device (tube 152), an electrode

disposed substantially coaxially with the gas-delivering device and configured to generate a high-frequency current (electrode 112 placed within the tube 152) wherein a distal end of the electrode projects outward through an outlet of the gas-delivering device (see figures 5-6C) and a guiding device disposed at the distal end of the electrode (enlarged portion of each of the electrodes 112 and 406/436) wherein the guiding device is configured for guiding an inert gas stream flowing through the gas-delivering device (enlarged portion of each of the electrodes would effect the direction of the flow of gas over the electrode). Cosmescu further discloses that the electrode is configured such that it may be retracted and pushed forward with respect to the gas-delivering device (see col. 13; 27- col. 15; 5) and that a plasma stream is formed by the device when inert gas is passed over the electrode 112. Cosmescu fails to disclose the specifics of the guiding device. Ishikawa discloses a similar multi-purpose argon plasma device containing an electrode and a gas-delivering device as prescribed in claim 1. Ishikawa further discloses a guiding device disposed at the distal end of the electrode (disposed at the end of knife part 11) and configured to guide a plasma stream flowing from the gas delivery device (out from through hole 47) wherein the plasma stream is produced due to the passing of inert gas over the highfrequency-supplied electrode. Ishikawa further discloses that the guiding device is comprised of a material that is electrically insulating and thermally stable (see at least paragraph [0023] disclosing the materials of part 12), that the guiding device is disposed in an axially symmetric manner around the distal end of the electrode (see figures 2 and 3 showing the disposition of 12 about knife 11) and configured such that the plasma stream is guided into a surrounding space substantially radially with respect to the outlet of the gas delivering device (see figures 7 showing the radial expansion of the fluid from through hole 47) and that the electrode is

Art Unit: 3739

configured such that it may be retracted and pushed forward with respect to the gas-delivering device (see at least paragraph [0026] discussing the movement of the electrode via movement of cap component 50 and its associated structure). Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to provide the electrode (knife part 13) containing the guiding device (insulation part 12) of Ishikawa in combination with the device of Cosmescu in order to have a combined device which can effectively cut, coagulate and supply plasma to a target tissue site. Both Cosmescu and Ishikawa are concerned with the direct contact and cutting/coagulation of tissue by the electrode as well as providing an argon plasma enhanced effect to treat a target site. Ishikawa provides an improvement to the device of Cosmescu by supplying the guide element, which as disclosed by Ishikawa, prevents the sticking of the electrode at a target area thereby reducing the unintentional bleeding (see paragraph [0007]) and ensures that plasma can still be created at that target site thereby allowing the continued treatment at the target site.

Regarding claim 12, Cosmescu fails to disclose any specifics regarding the guiding device. Ishikawa discloses that the guiding device is shaped such that mechanical damage is prevented if the guiding device touches said tissue (see the rounded contour of part 12). In light of the combination provided in claim 1 above, it would have been obvious that in supplying the guiding device of Ishikawa, that such a configuration would be provided to the device.

Regarding claim 13, Cosmescu fails to disclose any specifics regarding the guiding device. Ishikawa discloses that the guiding device is spherical (see figures 2 and 3 showing the shape of part 12). In light of the combination provided in claim 1 above, it would have been

obvious that in supplying the guiding device of Ishikawa, that such a configuration would be provided to the device.

Regarding claim 15, Cosmescu fails to disclose any specifics regarding the guiding device. Ishikawa discloses with respect to the embodiment in figure 15 that the guiding device (insulation part 12) has a concave configuration on a side thereof that faces the outlet (the shape of the transition between projection 40 and the remainder of part 12 having a concave-like configuration facing towards the through hole 47) and a substantially hemispherical surface at a surface facing away from the outlet of the gas-delivering device (see shape of the remainder of the part 12 facing away from hole 47 in figure 15). In light of the combination provided in claim 1 above, it would have been obvious that in supplying the guiding device of Ishikawa, that such a configuration would be provided to the device.

Regarding claim 17, Cosmescu fails to disclose any specifics regarding the guiding device. Ishikawa discloses that the electrode is capable of being moved relative to said outlet (see paragraph [0026] disclosing the movement/projection of the knife 11) such that when said electrode is moved into a retracted position said guiding device becomes seated against the outlet. This relationship is Ishikawa is due to the relative diameter of part 12 in relation to through hole 47 as shown in figure 15. Additionally, paragraph [0047] discloses that the part 40 is greater in diameter than 47 thereby rendering 12 greater in diameter than 47 and with such a relation, when knife 11 and part 12 are retracted, a seal would be formed between 12 and the through hole 47. In light of the combination provided in claim 1 above, it would have been obvious that in supplying the electrode and guiding device of Ishikawa, the combination would

Art Unit: 3739

allow for a seal to be formed between the outlet and the guiding device when the electrode/guiding device are in a retracted position.

Regarding claim 19, Cosmescu fails to disclose any specifics regarding the guiding device. Ishikawa discloses that the guiding device is comprised of a ceramic (see paragraph [0023]). In light of the combination provided in claim 1 above, it would have been obvious to supply the guiding device of the material specified by Ishikawa to provide for the above mentioned advantages.

Regarding claim 20, Cosmescu discloses a tube (tube 152), an electrode disposed substantially coaxially with the tube (electrode 112) and configured to generate high-frequency current wherein the distal end of the electrode projects outward of the tube (see at least figure 5). Cosmescu fails to disclose the specifics of the guiding device as claimed. Ishikawa discloses an argon plasma coagulating probe assembly (see at least figures 1-5) comprising a tube (probe 3 with insertion portion 9 formed of resin tube 15), an electrode disposed substantially coaxially with the tube and configured to generate a high-frequency current (knife 13 connected to a source of energy as in paragraph [0012]), wherein a distal end of the electrode projects outward through an outlet of the tube (see figure 2 and 3 showing knife 11 extending out of the device). Ishikawa further discloses a guiding device disposed at the distal end of the electrode (insulating part 12), wherein the guiding device is configured for guiding an inert gas stream flowing through the tube (from tube 6 with an inactive gas as disclosed in at least paragraph [0009] and see paragraph [0003] discussing ionizing inert gas, paragraph [0051] discussing sprinkling hemostasis and paragraph [0053] discussing forming plasma), wherein the guiding device is comprised of an electrically insulating and thermally stable material (see at least paragraph

[0023]) and is configured to have a concave configuration on a side thereof that faces the outlet (with respect to the embodiment in figure 15 that the guiding device (insulation part 12) has a concave configuration on a side thereof that faces the outlet due to the shape of the transition between projection 40 and the remainder of part 12 having a concave-like configuration facing towards the through hole 47) and is further configured to prevent mechanical damage if the guiding device touches the tissue (see the rounded shape of part 12 in at least figures 2 and 3), and wherein said electrode is movable relative to said outlet (see paragraph [0026] disclosing the movement/projection of the knife 11) such that when said electrode is moved into a retracted position said guiding device closes said outlet in a substantially leakproof manner (see the relative diameter of part 12 in relation to through hole 47, with respect to figure 15, paragraph [0047] discloses that the part 40 is greater in diameter than 47 thereby rendering 12 greater in diameter than 47 and with such a relation, when knife 11 and part 12 are retracted, a seal would be formed between 12 and the through hole 47). Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to provide the electrode (knife part 13) containing the guiding device (insulation part 12) of Ishikawa in combination with the device of Cosmescu in order to have a combined device which can effectively cut, coagulate and supply plasma to a target tissue site. Both Cosmescu and Ishikawa are concerned with the direct contact and cutting/coagulation of tissue by the electrode as well as providing an argon plasma enhanced effect to treat a target site. Ishikawa provides an improvement to the device of Cosmescu by supplying the guide element, which as disclosed by Ishikawa, prevents the sticking of the electrode at a target area thereby reducing the unintentional bleeding (see paragraph [0007]) and

Art Unit: 3739

ensures that plasma can still be created at that target site thereby allowing the continued treatment at the target site.

 Claim 14 is rejected under 35 U.S.C. 103(a) as being unpatentable over Ishikawa (JP 2002-301088 A) as applied to claim 9 above, and further in view of LaFontaine et al (US Pat. No. 5,902,328).

Regarding claim 14. Ishikawa discloses with respect to the embodiment in figure 15 that the guiding device (insulation part 12) has a concave configuration on a side thereof that faces the outlet (the shape of the transition between projection 40 and the remainder of part 12 having a concave-like configuration facing towards the through hole 47) and that the part 12 has a rounded, spherical shape. Ishikawa fails to specifically show or recite a flattened surface at a surface facing away. LaFontaine discloses a similar guiding device (deflecting body 100) which redirects the flow of the fluid through a supply tube. LaFontaine further shows that the deflecting body 100 has a concave surface at a surface facing the outlet of the gas-delivery device and a flattened surface at a surface facing away from the outlet of the gas-delivering device wherein a transitional area between the concave surface and the flattened surface has a rounded contour (see figure 7; it is noted that the face of 100 which faces away from the outlet of LaFontaine is seen by the Examiner, due in part to its reduced curvature with respect to the edges of 100 as being flattened with respect to those parts). Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to provide the shape of the guiding device of LaFontaine to the guiding device of Ishikawa to provide for a guiding device which can cause a reduced amount of mechanical damage due to the flattened surface. It is further

noted that Applicant has failed to set forth any criticality or unexpected results which would render the provision of such a shape as a non-obvious variant.

 Claim 14 is rejected under 35 U.S.C. 103(a) as being unpatentable over Cosmescu et al (US Pat. No. 6,149,648) in view of Ishikawa (JP 2002-301088 A) and further in view of LaFontaine et al (US Pat. No. 5,902,328).

Regarding claim 14, Cosmescu fails to disclose any specifics regarding the guiding device. Ishikawa discloses with respect to the embodiment in figure 15 that the guiding device (insulation part 12) has a concave configuration on a side thereof that faces the outlet (the shape of the transition between projection 40 and the remainder of part 12 having a concave-like configuration facing towards the through hole 47) and that the part 12 has a rounded, spherical shape. Ishikawa fails to specifically show or recite a flattened surface at a surface facing away. LaFontaine discloses a similar guiding device (deflecting body 100) which redirects the flow of the fluid through a supply tube. LaFontaine further shows that the deflecting body 100 has a concave surface at a surface facing the outlet of the gas-delivery device and a flattened surface at a surface facing away from the outlet of the gas-delivering device wherein a transitional area between the concave surface and the flattened surface has a rounded contour (see figure 7; it is noted that the face of 100 which faces away from the outlet of LaFontaine is seen by the Examiner, due in part to its reduced curvature with respect to the edges of 100 as being flattened with respect to those parts). Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to provide the shape of the guiding device of LaFontaine to the guiding device of Ishikawa to provide for a guiding device which can cause a reduced amount of mechanical damage due to the flattened surface. It is further noted that Applicant has

Art Unit: 3739

failed to set forth any criticality or unexpected results which would render the provision of such a shape as a non-obvious variant.

Response to Arguments

10. Applicant's arguments with respect to the pending claims have been considered but are moot in view of the new ground(s) of rejection. Specifically, the Examiner has carefully considered the prior cited references of Cosmescu and LaFontaine in light of the remarks and amendments. In the IDS submitted June 22nd, 2010, a new reference was submitted (JP 2002-301088-A) for consideration by the Examiner. In reviewing this reference, the Examiner found the subject matter to be particularly pertinent to the instant claims. Due to this relevance, the Examiner has formulated both new rejections under 35 U.S.C. 102(b) under the Ishikawa reference as well as under 35 U.S.C. 103(a) under Cosmescu in view of Ishikawa. This action has been made FINAL. MPEP 706.07(a) states that:

"Under present practice, second or any subsequent actions on the merits shall be final, except where the examiner introduces a new ground of rejection that is neither necessitated by applicant's amendment of the claims, nor based on information submitted in an information disclosure statement filed during the period set forth in 37 CFR 1.97(c) with the fee set forth in 37 CFR 1.17(p). Where information is submitted in an information disclosure statement during the period set forth in 37 CFR 1.97(c) with a fee, the examiner may use the information submitted, e.g., a printed publication or evidence of public use, and make the next Office action final whether or not the claims have been amended, provided that no other new ground of rejection which was not necessitated by amendment to the claims is introduced by the examiner. See MPEP § 609.04(b)."

Art Unit: 3739

In the instant case, the Ishikawa reference was submitted in an IDS as prescribed in the above quoted section and was relied upon to formulate new grounds of rejections presented in the instant action.

Conclusion

11. Applicant's submission of an information disclosure statement under 37 CFR 1.97(c) with the fee set forth in 37 CFR 1.17(p) on June 22nd, 2010 prompted the new ground(s) of rejection presented in this Office action. Accordingly, THIS ACTION IS MADE FINAL. See MPEP § 609.04(b). Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the mailing date of this final action.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to RONALD HUPCZEY, JR whose telephone number is (571)270-5534. The examiner can normally be reached on Monday - Friday, 9 A.M. to 5 P.M..

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Linda Dvorak can be reached on 571-272-4764. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Art Unit: 3739

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/Ronald J. Hupczey/ Examiner, Art Unit 3739 /Michael Peffley/ Primary Examiner, Art Unit 3739

RJH