INTRODUCTION TO FORECASTING & TIME SERIES STRUCTURE

Dr. Susan Simmons
Institute for Advanced Analytics

TIME SERIES DATA

- A time series is an ordered sequence of observations.
 - Ordering is typically through equally spaced time intervals.
 - Possibly through space as well.
- Used in a variety of fields:
 - Agriculture: Crop Production
 - Economics: Stock Prices
 - Engineering: Electric Signals
 - Meteorology: Wind Speeds
 - Social Sciences: Crime Rates

- We will begin our time series discussions with univariate time series (only one time series...one variable, we will call it Y).
- Multivariate time series will be in Fall 2.

- We will begin our time series discussions with univariate time series (only one time series...one variable, we will call it Y).
- Multivariate time series will be in Fall 2.

Date	Y
January 2000	23
February 2000	18
March 2000	20
April 2000	25
May 2000	21

- We will begin our time series discussions with univariate time series (only one time series...one variable, we will call it Y).
- Multivariate time series will be in Fall 2.

Date	Y	
January 2000	23	Y_1
February 2000	18	
March 2000	20	
April 2000	25	
May 2000	21	

- We will begin our time series discussions with univariate time series (only one time series...one variable, we will call it Y).
- Multivariate time series will be in Fall 2.

Date	Υ	
January 2000	23	
February 2000	(18)	Y_2
March 2000	20	
April 2000	25	
May 2000	21	

- We will begin our time series discussions with univariate time series (only one time series...one variable, we will call it Y).
- Multivariate time series will be in Fall 2.

Date	Y	
January 2000	23	
February 2000	18	
March 2000	(20)	Y_3
April 2000	25	

- We will begin our time series discussions with univariate time series (only one time series...one variable, we will call it Y).
- Multivariate time series will be in Fall 2.

Date	Υ	
January 2000	23	
February 2000	18	
March 2000	20	Y
April 2000	25	
May 2000	21	0

Yt

Example 1: Iron and Steel Exports

Example 2: Amazon.com Stock

Example 2: Amazon.com Stock

Example 3: Airlines Passengers

Example 3: Airlines Passengers

Example 5: Airline Passengers Again

Temperature over the past century for Tuscaloosa, Alabama

Yearly Temperatures at Tuscaloosa AL With Least Squares Trends

Source: Dr. Robert Lund

Temperature over the past century for Tuscaloosa, Alabama

Source: Dr. Robert Lund

Time Series to Forecast

Forecasting Process

SIGNAL AND NOISE

Forecasts extrapolate signal portion of model.

Confidence intervals account for uncertainty.

- A time series might exhibit (explained) variation that can be explained with one of the following:
 - Trend/Cycle patterns
 - Seasonal variation

 The signal part of the time series can typically be broken down into two components:

- The whole time series can now be thought of like the equations below.
 - Additive:

$$Y_t = T_t + S_t + E_t$$

$$Y_t = T_t \times S_t \times E_t$$

- The whole time series can now be thought of like the equations below.
 - Additive:

$$Y_t \neq T_t + S_t + E_t$$

Trend / Cycle

$$Y_t \neq T_t \times S_t \times E_t$$

- The whole time series can now be thought of like the equations below.
 - Additive:

$$Y_t = T_t + S_t + E_t$$

Seasonal

$$Y_t = T_t \times S_t \times E_t$$

- The whole time series can now be thought of like the equations below.
 - Additive:

$$Y_t = T_t + S_t + E_t$$

Error

$$Y_t = T_t \times S_t \times E_t$$

Additive vs. Multiplicative

 Additive – magnitude of variation around trend / cycle remains constant.

 Multiplicative – magnitude of the variation around trend / cycle proportionally changes.

- The whole time series can now be thought of like the equations below.
 - Additive:

$$Y_t = T_t + S_t + E_t$$

$$Y_t = T_t \times S_t \times E_t$$

$$OR$$

$$\log(Y_t) = \log(T_t) + \log(S_t) + \log(E_t)$$

Needed libraries in R

```
install.packages('forecast',dependencies=T)
install.packages('tseries')
install.packages(c('expsmooth','Imtest','zoo'))
library(haven)
library(fma)
library(tseries)
library(expsmooth)
library(Imtest)
library(zoo)
```

Importing SAS data sets

file.dir <- "filename/"

input.file1 <- "usair.sas7bdat"

```
input.file2 <- "ar2.sas7bdat"

USAirlines <- read_sas(paste(file.dir, input.file1,sep = ""))</pre>
```

AR2 <- read_sas(paste(file.dir, input.file2, sep = ""))

US Airline Passengers - Trend/Cycle


```
seas=Passenger-model$time.series[,1]
plot(Passenger, col = "grey", main =
    "US Airline Passengers - Seasonally Adjusted",
    xlab = "", ylab = "Number of Passengers
    (Thousands)", lwd = 2)
lines(seas, col = "red", lwd = 2)
```

US Airline Passengers - Seasonally Adjusted

US Airline Passengers - Monthly Effects


```
proc timeseries data=Time.USAirlines plots=(series decomp sc);
    id date interval=month;
    var Passengers;
run;
```

```
proc timeseries data=Time.USAirlines plots=(series decomp sc)
seasonality=12;
    var Passengers;
run;
```

Time Series Decomposition (decomp)

- There are many different ways to calculate the trend/cycle and seasonal effects inside time series data.
- Here are 3 common techniques:
 - 1. Classical Decomposition

- There are many different ways to calculate the trend/cycle and seasonal effects inside time series data.
- Here are 3 common techniques:
 - 1. Classical Decomposition
 - a. Default in SAS (Can be done in R)
 - b. Trend Uses Moving / Rolling Average Smoothing
 - c. Seasonal Average De-trended Values Across Seasons

- There are many different ways to calculate the trend/cycle and seasonal effects inside time series data.
- Here are 3 common techniques:
 - 1. Classical Decomposition
 - 2. X-12 ARIMA Decomposition (now at X-13...self study)
 - a. Trend Uses Moving / Rolling Average Smoothing
 - b. Seasonal Uses Moving / Rolling Average Smoothing
 - c. Iteratively Repeats Above Methods and ARIMA Modeling

- There are many different ways to calculate the trend/cycle, and seasonal effects inside time series data.
- Here are 3 common techniques:
 - 1. Classical Decomposition
 - 2. X-12 ARIMA Decomposition
 - STL (Seasonal and Trend using LOESS estimation) Decomposition
 - Default of stl Function in R (Not available in SAS)
 - Uses LOcal regrESSion Techniques to Estimate Trend and Seasonality
 - Allows Changing Effects for Trend and Season
 - d. Adapted to Handle Outliers

Comparison of seasonal component in SAS versus R

