Introduction to Quantum Computing

Paolo Cremonesi

Multiple-Qubits Gates

Multiple-Qubits Gates

• There are quantum gates which apply only to multiple qubits

- In this course will see only few of them:
 - CNOT
 - SWAP
 - CCNOT (Toffoli gate)
 - ...

Controlled NOT (CNOT)

• CNOT =
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$|v_A\rangle \longrightarrow |v_A\rangle$$
 $|v_B\rangle \longrightarrow |v_A\rangle \oplus |v_B\rangle$

(⊕ is the XOR operator)

NB: this notation is valid only for basis states $|0\rangle$ or $|1\rangle$

- If the control qubit $|v_A\rangle$ is $|1\rangle$, then the target qubit $|v_B\rangle$ is flipped
 - as with gate X
- If we apply the CNOT gate to $|v_A\rangle=a_0|0\rangle+a_1|1\rangle$ and $|v_B\rangle=b_0|0\rangle+b_1|1\rangle$ $|v_Av_B\rangle=a_0b_0|00\rangle+a_0b_1|01\rangle+a_1b_0|10\rangle+a_1b_1|11\rangle$ we invert the last two amplitudes

• CNOT
$$|v_A v_B\rangle = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} a_0 b_0 \\ a_0 b_1 \\ a_1 b_0 \\ a_1 b_1 \end{bmatrix} = \begin{bmatrix} a_0 b_0 \\ a_0 b_1 \\ a_1 b_1 \\ a_1 b_0 \end{bmatrix}$$

Controlled NOT (CNOT)

• CNOT =
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

(⊕ is the XOR operator)

NB: this notation is valid only for basis states $|0\rangle$ or $|1\rangle$

- If the control qubit $|v_A\rangle$ is $|1\rangle$, then the target qubit $|v_B\rangle$ is flipped
 - as with gate X
- More in general, if we apply the CNOT gate to

$$|v_C\rangle = c_0|00\rangle + c_1|01\rangle + c_2|10\rangle + c_3|11\rangle$$

we invert the last two amplitudes c_2 and c_3

• CNOT
$$|v_C\rangle = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} c_0 \\ c_1 \\ c_3 \\ c_2 \end{bmatrix}$$

Controlled NOT (CNOT)

$$\bullet \ \mathsf{CNOT} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$|v_A\rangle \longrightarrow |v_A\rangle$$
 $|v_B\rangle \longrightarrow |v_A\rangle \oplus |v_B\rangle$

(⊕ is the XOR operator)

NB: this notation is valid only for basis states $|0\rangle$ or $|1\rangle$

- If the control qubit $|v_A\rangle$ is $|1\rangle$, then the target qubit $|v_B\rangle$ is flipped
 - as with gate X
- Example

•
$$|v_0 v_1\rangle = \frac{\sqrt{3}}{2}|00\rangle + \frac{1}{2}|10\rangle$$

• CNOT
$$|v_A v_B\rangle = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \frac{\sqrt{3}}{2} \\ 0 \\ \frac{1}{2} \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{3}}{2} \\ 0 \\ 0 \\ \frac{1}{2} \end{bmatrix} = \frac{\sqrt{3}}{2} |00\rangle + \frac{1}{2} |11\rangle$$

Generic Controlled Gate

- Controlled $C_U = \begin{bmatrix} I & 0 \\ 0 & II \end{bmatrix}$
- If control qubit $|v_A\rangle$ is $|1\rangle$, then target gate U is applied to qubit $|v_B\rangle$
- Apply the generic controlled gate C_{II} to

•
$$|v_A\rangle = a_0|0\rangle + a_1|1\rangle$$

•
$$|v_B\rangle = b_0|0\rangle + b_1|1\rangle$$

and obtain

$$C_U|v_A v_B\rangle = \begin{bmatrix} I & 0 \\ 0 & U \end{bmatrix} \begin{bmatrix} a_0 b_0 \\ a_0 b_1 \\ a_1 b_0 \\ a_1 b_1 \end{bmatrix}$$

• If $|v_A\rangle = |0\rangle$ ($a_0 = 1$ and $a_1 = 0$)

$$\langle a_A
angle = |0
angle \, (a_0 = 1 ext{ and } a_1 = 0)$$
 $\langle a_U
angle = \begin{bmatrix} I & 0 \ 0 & U \end{bmatrix} egin{bmatrix} b_0 \ b_1 \ 0 \ 0 \end{bmatrix}$

• If $|v_A\rangle = |1\rangle$ ($a_0 = 0$ and $a_1 = 1$)

$$C_U |1v_B
angle = egin{bmatrix} I & 0 \ 0 & U \end{bmatrix} egin{bmatrix} 0 \ 0 \ U |v_B
angle \end{bmatrix}$$

Generic Controlled Gate: important

• Important:

$$\begin{bmatrix} I & 0 \\ 0 & U \end{bmatrix}$$
 is **not equivalent** to $I \otimes U$

$$|v_A\rangle - \boxed{I} - \boxed{U}$$

Multiple-Qubits Gates: SWAP

• SWAP =
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$|v_A\rangle \longrightarrow |v_B\rangle$$
 $|v_B\rangle \longrightarrow |v_A\rangle$

- How it works? The state of $|v_A\rangle=a_0|0\rangle+a_1|1\rangle$ and $|v_B\rangle=b_0|0\rangle+b_1|1\rangle$ is described with their tensor product
 - $|v_A v_B\rangle = a_0 b_0 |00\rangle + a_0 b_1 |01\rangle + a_1 b_0 |10\rangle + a_1 b_1 |11\rangle$
- If we apply the SWAP gate
 - SWAP $|v_A v_B\rangle = a_0 b_0 |00\rangle + a_1 b_0 |01\rangle + a_0 b_1 |10\rangle + a_1 b_1 |11\rangle$
- which is identical to the tensor product $|v_B v_A\rangle$
 - $|v_B v_A\rangle = b_0 a_0 |00\rangle + b_0 a_1 |01\rangle + b_1 a_0 |10\rangle + b_1 a_1 |11\rangle$

Multiple-Qubits Gates: SWAP as CNOT³

Multiple-Qubits Gates: CCNOT (or Toffoli)

$$\bullet \ \mathsf{CCNOT} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\begin{array}{c|c} |v_0\rangle & & & \\ |v_1\rangle & & & \\ |v_1\rangle & & & \\ |v_2\rangle & & & \\ |v_2\rangle & & & \\ \end{array}$$

- CNOT gate with 2 control bits instead of 1
 - target qubit $|v_2\rangle$ is inverted when **both control qubits are 1**

Universal quantum gates

- Finite set of gates that can approximate any quantum circuit
 - any other unitary operation

- Two-qubit gates are universal
 - any arbitrary *n*-qubit operation can be decomposed as a product of two-qubit gates

- Many possible choices
 - Toffoli + Hadamard
 - ...

Quantum Circuit

- We can express a quantum circuit as one matrix
 - we must follow three rules:
 - composition across wires is achieved by tensor product
 - composition along (sets of) wires is achieved by matrix product, but right to left
 - composition across wires requires to use the identity matrix for qubits without gates
- Example

• $(H \otimes I \otimes I) \cdot (I \otimes CNOT) \cdot (X \otimes I \otimes H) \cdot (CNOT \otimes I)$

Entanglement

- It takes 2^n real numbers to describe the state of n-qubits
 - why?
 - the state of *n*-qubits are described by their tensor product
 - this leads to 2^n complex coefficients, equivalent to 2^{n+1} real coefficients
 - one real degree of freedom is removed by the normalization
 - one real degree of freedom is removed because the global phase is meaningless
- It takes 2n real numbers to describe n qubits (2 real numbers per qubit)
- $2^n \gg 2n \rightarrow \text{most } n$ -qubit states are not described in terms of n separate qubits
 - multiple-qubits states that cannot be written as the tensor product of n single-qubits are called entangled states
 - states that can be written as a tensor product from the constituent subsystems are called separable states

Entanglement example

- The elements of the **Bell states** are entangled
- For instance, the Bell state $|\Phi^+\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$ cannot be described in terms of the state of each of its component qubits separately
- If we have two qubits $v_A = a_0|0\rangle + a_1|1\rangle$ and $v_B = b_0|0\rangle + b_1|1\rangle$
- It is impossible to find a_0 , b_0 , a_1 , b_1 , such that

$$|v_A v_B\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

since

$$(a_0|0\rangle + a_1|1\rangle) \otimes (b_0|0\rangle + b_1|1\rangle) = a_0b_0|00\rangle + a_0b_1|01\rangle + a_1b_0|10\rangle + a_1b_1|11\rangle$$

• and $a_0b_1=0$ implies that either $a_0b_0=0$ or $a_1b_1=0$, none of which is true

Entanglement

- Entanglement is not basis dependent
 - the notion of superposition is basis-dependent

- Entanglement is not an absolute property of a quantum state
 - depends on the particular decomposition of the system into subsystems under consideration
 - states entangled with respect to one decomposition may be unentangled with respect to other decompositions
 - when we say that a state is entangled, we mean that it is entangled with respect to his decomposition into individual qubits

Entangling gates

- Not all two-qubit gates can be written as the tensor product of single-qubit gates
 - a generic 2-qubits gate has 16 complex values
 - two single-qubit gates have 4 + 4 = 8 total complex values

• Such a gate is called an **entangling gate**

One example of an entangling gate is the CNOT gate

Bell states

- Four specific two-qubit states are designated as **Bell states**
 - maximally entangled two-qubit states

•
$$|\Phi^+\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

•
$$|\Phi^-\rangle = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle)$$

•
$$|\Psi^+\rangle = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle)$$

•
$$|\Psi^-\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle)$$

Bell states can be created with the following circuit

• For the four basic two-qubit inputs, $|00\rangle$, $|01\rangle$, $|10\rangle$, $|11\rangle$, the circuit creates the four Bell states

Entanglement

- If we have a set of N qubits that are entangled and wish to apply a quantum gate on M < N qubits in the set, we will have to extend the gate to take N qubits. This application can be done by combining the gate with an identity matrix such that their tensor product becomes a gate that act on N qubits
 - it is difficult to simulate large entangled quantum systems using classical computers
 - the state vector of a quantum register with n qubits is 2^n complex entries
- Bell states are of fundamental importance to quantum computing
 - Bell states are maximally entangled in the sense that, when looked at separately, the state of each qubit is as uncertain as possible
- Unentangled states are the least entangled states possible in the sense that, when looked at separately, the state of each qubit is as certain as possible

Bell states: how to create (example)

$$|0\rangle - H$$
 $|0\rangle - H$
 $|0\rangle$

•
$$H \otimes I = \frac{1}{\sqrt{2}} \begin{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix}$$

this operator creates a Bell state

• CNOT
$$(H \otimes I) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix} = \underbrace{\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & -1 & 0 \end{bmatrix}}_{1} = \underbrace{\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & -1 & 0 \end{bmatrix}}_{1}$$

•
$$(CNOT(H \otimes I))|00\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

Exercises: Bell states in Hadamard basis

Show that the Bell state

$$|\Phi^+\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}$$

has the same form when expresses in Hadamard basis

$$|\Phi^{+}\rangle = \frac{|++\rangle + |--\rangle}{\sqrt{2}}$$

(and the same holds for the other Bell states)

Exercises: Bell states in Hadamard basis

Hadamard basis are defined as

$$|+\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}$$
 $|-\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}}$

• We need invert the definitions, to express the computational basis in terms Hadamard basis

$$|0\rangle = \frac{|+\rangle + |-\rangle}{\sqrt{2}}$$
 $|1\rangle = \frac{|+\rangle - |-\rangle}{\sqrt{2}}$

• Substitute these expressions into $|00\rangle$ and $|11\rangle$

$$|00\rangle = \frac{|+\rangle + |-\rangle}{\sqrt{2}} \otimes \frac{|+\rangle + |-\rangle}{\sqrt{2}} = \frac{|++\rangle + |+-\rangle + |-+\rangle + |--\rangle}{2}$$

$$|11\rangle = \frac{|+\rangle - |-\rangle}{\sqrt{2}} \otimes \frac{|+\rangle - |-\rangle}{\sqrt{2}} = \frac{|++\rangle - |+-\rangle - |-+\rangle + |--\rangle}{2}$$

• Substitute these expressions into the definition of $|\Phi^+\rangle$ and obtain

$$|\Phi^{+}\rangle = \frac{|++\rangle + |--\rangle}{\sqrt{2}}$$

Multi qubits measurement

What happens when measuring one qubit in a two-qubits system?

$$|v_C\rangle = |v_A v_B\rangle = c_0 |00\rangle + c_1 |01\rangle + c_2 |10\rangle + c_3 |11\rangle$$

The state of the system can be always described as

$$|v\rangle = c_{01}|0\rangle \otimes \frac{c_0|0\rangle + c_1|1\rangle}{c_{01}} + c_{23}|1\rangle \otimes \frac{c_2|0\rangle + c_3|1\rangle}{c_{23}}$$

• with
$$c_{01} = \sqrt{c_0^2 + c_1^2}$$
 and $c_{23} = \sqrt{c_2^2 + c_3^2}$

- If qubit $|v_A\rangle$ is measured as $|0\rangle$ then $c_2=0$ and $c_3=0$
- The state of qubit $|v_B\rangle$ becomes

$$|v_B\rangle = \frac{c_0|0\rangle + c_1|1\rangle}{c_{01}}$$

this is a valid qubit (normalized to 1)

Multi qubits measurement: example

• What happens when measuring one qubit in a two-qubits system?

$$|v\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \qquad \qquad |0\rangle - H - \frac{1}{\sqrt{2}}$$

$$|0\rangle - \frac{1}{\sqrt{2}}$$

The state of the system can be described as

$$|v\rangle = \frac{1}{\sqrt{2}}|0\rangle \otimes |0\rangle + \frac{1}{\sqrt{2}}|1\rangle \otimes |1\rangle$$

- If qubit A is measured as $|0\rangle$ the state of qubit B becomes $|v_B\rangle = |0\rangle$
- If qubit A is measured as $|1\rangle$ the state of qubit B becomes $|v_B\rangle=|1\rangle$

The measurement of a bit determines the second qu-bit This is weird, since the measurement affects only 1 qubit

Limits of Quantum Information

No-cloning principle: why it matters?

- Cloning violates quantum mechanic principles
 - no-signaling (instantaneous transfer of information)
 - put infinite amount of info inside a qubit
 - Map an arbitrarily long classical bit-string to a unique qubit state
 - Communicate the single qubit
 - Receive the qubit
 - Make an arbitrary number of copies by cloning
 - Perform quantum state tomography (which requires several copies of the qubit) to recover the original classical information.
- Makes quantum error correction harder

No-cloning principle: demonstration

- We have two qubits, one with state $|x\rangle$ the other with state $|0\rangle$
- We want to copy qubit $|x\rangle$ onto qubit $|0\rangle$
- We need to find a cloning gate U such that

$$U(|x\rangle|0\rangle) = |x\rangle|x\rangle$$

- If such gate exists, we can apply it to both qubits $|x\rangle$ and $|y\rangle$
 - $U(|x\rangle|0\rangle) = |x\rangle|x\rangle$ $U(|y\rangle|0\rangle) = |y\rangle|y\rangle$
- Apply the inner product to both sides
 - left: $\langle 0|\langle x|U^HU|y\rangle|0\rangle = \langle 0|\langle x|y\rangle|0\rangle = \langle x|y\rangle\langle 0|0\rangle = \langle x|y\rangle$
 - right: $\langle x | \langle x | y \rangle | y \rangle = \langle x | y \rangle^2$
 - combined: $\langle x|y\rangle = \langle x|y\rangle^2$

- which is not true in general
 - only if x = y (remember that for qubits $x^2 = y^2 = 1$) or if x and y are orthogonal ($\langle x | y \rangle = 0$)

No-cloning principle: CNOT apparent violation

- We apply CNOT gate to $|v_A\rangle=a_0|0\rangle+a_1|1\rangle$ and $|v_B\rangle=|0\rangle$
- To compute the output, we use the notation

$$CNOT|v_A\rangle|v_B\rangle = |v_A\rangle|v_A \oplus v_B\rangle$$

• Replacing $|v_B\rangle$ with $|0\rangle$ we obtain

$$CNOT|v_A\rangle|0\rangle = |v_A\rangle|v_A \oplus 0\rangle = |v_A\rangle|v_A\rangle$$

- We have copied qubit $|v_A\rangle$ on qubit $|0\rangle$
- Where is the error?
- The informal notation

$$CNOT|v_A\rangle|v_B\rangle = |v_A\rangle|v_A \oplus v_B\rangle$$

- can be used only when $|v_A\rangle$ and $|v_b\rangle$ are basis state
- It is **not valid** when $|v_A\rangle$ and $|v_b\rangle$ are in superposition

$$|v_A
angle rac{-}{|v_A
angle} |v_A
angle \ |v_B
angle rac{-}{|v_A
angle} \oplus |v_B
angle$$

NB: this notation is valid only for basis states $|0\rangle$ or $|1\rangle$

No-cloning principle: CNOT apparent violation

- Different point of view ...
- We apply CNOT gate to $|v_A\rangle=a_0|0\rangle+a_1|1\rangle$ and $|v_B\rangle=|0\rangle$
- To compute the output, we first compute $|v_A\rangle|0\rangle$ $|v_A\rangle|0\rangle=a_0|00\rangle+a_1|10\rangle$
- Then, we apply the CNOT gate that flips $|10\rangle$ to $|11\rangle$ $\text{CNOT}|v_{A}\rangle|0\rangle=a_{0}|00\rangle+a_{1}|11\rangle$
- If we wish to copy $|v_A\rangle$ onto $|0\rangle$, the output state would have been $|v_A\rangle|v_A\rangle$ $a_0^2|00\rangle+a_0a_1|01\rangle+a_0a_1|10\rangle+a_1^2|11\rangle$
- The two output states are different
 - the first output is an entangled state (CNOT creates entanglement)
 - the second is a copy of two qubits

No-deleting principle

- There does not exist a gate U that can delete one of two copies of a qubit
- Demonstration similar to no-cloning
- We need to find a deleting gate U such that

$$U(|x\rangle|x\rangle) = |0\rangle|x\rangle$$

- If such gate exists, we can apply it to both qubits $|x\rangle$ and $|y\rangle$
 - $U(|x\rangle|x\rangle) = |0\rangle|x\rangle$ $U(|y\rangle|y\rangle) = |0\rangle|y\rangle$
- Apply the inner product to both sides
 - left: $\langle x | \langle x | U^H U | y \rangle | y \rangle = \langle x | \langle x | y \rangle | x \rangle = \langle x | y \rangle \langle x | y \rangle = \langle x | y \rangle^2$
 - right: $\langle x | \langle 0 | 0 \rangle | y \rangle = \langle x | y \rangle$
 - combined: $\langle x|y\rangle^2 = \langle x|y\rangle$
- which is not true in general (only if x = y or if x and y are orthogonal)

No-signaling principle: the problem

- Alice and Bob are at different ends of the universe, but each have one qubit of a Bell pair $|\Phi^+\rangle=\frac{|00\rangle+|11\rangle}{\sqrt{2}}$
- Alice can measure her qubit $|a\rangle$ whenever she wants, and this will collapse Bob's qubit $|b\rangle$ to the same state
- We are interested in whether Bob can infer whether Alice has measured her qubit or not
- If he can, then Alice can transfer information to Bob instantaneously
- For example, Alice can measure her qubit $|a\rangle$ when some event occurs, thus signaling this information to Bob

Example of quantum correlation: Bell pair

Suppose Alice and Bob each have one qubit of a Bell pair

$$|\Phi^{+}\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}} = \frac{|++\rangle + |--\rangle}{\sqrt{2}}$$

- If Alice and Bob both measure in the computational basis
 - Alice measures first and obtains $|0\rangle$ or $|1\rangle$ with probability 50%
 - Bob's qubit instantaneously collapse to the same state measured by Alice, $|0\rangle$ or $|1\rangle$
 - Bob's measures second and obtains the same value measured by Alice with probability 100%
 - each observer's result is random individually, but if they compare results afterward, they will find perfect correlation in their measurements

Example of quantum correlation: Bell pair

Suppose Alice and Bob each have one qubit of a Bell pair

$$|\Phi^{+}\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}} = \frac{|++\rangle + |--\rangle}{\sqrt{2}}$$

- If Alice measure in the Hadamard basis and Bob in the computational basis
 - Alice measures first and obtains $|+\rangle$ or $|-\rangle$ with probability 50%

$$|+\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}$$
 $|-\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}}$

- Bob's qubit instantaneously collapse to the same state measured by Alice, $|+\rangle$ or $|-\rangle$
- Bob's measures second and obtains $|0\rangle$ or $|1\rangle$ with probability 50%
 - regardless of the outcome of Alice's measurement
- Bob and Alice discover the lack of correlation after the measurement

Thanks

Paolo Cremonesi

