Software Quality Engineering – Assignment No.3:

```
public void run(int y, int z) {
2.
3.
       if (y < 6) {
         System.out.println("Some code");
4.
5.
       } else {
         System.out.println("Some more code");
6.
7.
       while ((z == 1 && y != 4)) {
         System.out.println("Some while loop code");
9.
10.
11. }
12.
13. void main(String[] args) {
       int y = args[0];
int z = args[1];
14.
15.
16.
      run(y, z);
```

```
\underbrace{set \, No. \, 3:}_{1-2-3-6-7-8_1-8_2-12-13}_{1-2-3-4-7-8_1-8_2-9-10-11-8_1-12-13}_{\underbrace{set \, No. \, 6:}_{1-2-3-4-7-8_1-8_2-9-10-11-8_1-12-13}_{1-2-3-4-7-8_1-8_2-12-13}
```

Note on notation for that assignment: In tables, if we write, for instance, $[8_2]$, it indicates line 8 of the code block, during the second iteration of the while loop.

table for:
$$1 - 2 - 3 - 6 - 7 - 8_1 - 8_2 - 12 - 13$$

At The End of Row	Symbolic Store σ_s	PCT
15	$y \to y_0; z \to z_0$	True
2	[15]	$y_0 \ge 6$
4	[15]	[2]
5	[15]	[2]
6	[15]	[2]
7 ₁	[15]	$[2] \cap z_0 = 1 \cap y_0 = 4$
11	[15]	[7 ₁]

This path isn't feasible because there isn't a y_0 that satisfies the condition: $y_0 \ge 9 \cap y_0 = 4$. This makes the minimal set 3 **not** feasible.

table for:
$$1 - 2 - 3 - 4 - 7 - 8_1 - 8_2 - 9 - 10 - 11 - 8_1 - 12 - 13$$

At The End of Row	Symbolic Store σ_s	PCT
15	$y \to y_0; z \to z_0$	True
2	[15]	<i>y</i> ₀ < 6
3	[15]	[2]
6	[15]	[2]
7 ₁	[15]	$[2] \cap z_0 = 1 \cap y_0! = 4$
8 ₁	[15]	[7 ₁]
91	$y \rightarrow y_0; z \rightarrow z_0 + 1$	[7 ₁]
7 ₂	[9 ₁]	$[2] \cap z_0! = 1$
11	[9 ₁]	[7 ₂]

This path is feasable. There exsist such input that satisfy $y_0 < 6 \cap z_0 = 1 \cap y_0! = 4$. For example: $y_0 \coloneqq 5$ and $z_0 \coloneqq 1$. After one iteration $z_0! = 1$ as needed.

Table for: $1 - 2 - 3 - 4 - 7 - 8_1 - 8_2 - 9 - 10 - 11 - 8_1 - 12 - 13$
--

At The End of Row	Symbolic Store σ_s	PCT
15	$y \to y_0; z \to z_0$	True
2	[15]	$y_0 \ge 6$
3	[15]	[2]
6	[15]	[2]
7,	[15]	$[2] \cap z_0 = 1 \cap y_0! = 4$
81	[15]	[7 ₁]
9 ₁	$y \rightarrow y_0; z \rightarrow z_0 + 1$	[7 ₁]
7 ₂	[9 ₁]	$[2] \cap z_0! = 1$
11	[9 ₁]	[7 ₂]

This path is feasable. There exsist such input that satisfy $y_0 \ge 6 \cap z_0 = 1 \cap y_0! = 4$. For example: $y_0 \coloneqq 6$ and $z_0 \coloneqq 1$. After one iteration $z_0! = 1$ as needed.

 $Table\ for: 1-2-3-4-7-8_1-8_2-12-13$

At The End of Row	Symbolic Store σ_s	PCT
15	$y \to y_0; z \to z_0$	True
2	[15]	y ₀ < 6
4	[15]	[2]
5	[15]	[2]
7,	[15]	$[2] \cap z_0 = 1 \cap y_0 = 4$
11	[15]	[7 ₁]

This path is feasable. There exsist such input that satisfy $y_0 < 6 \cap z_0 = 1 \cap y_0 = 4$. For example: $y_0 \coloneqq 4$ and $z_0 \coloneqq 1$ Both paths are feasable, therefore set 6 is feasable.