11.14-4

EE23BTECH11048-Ponugumati Venkata Chanakya*

QUESTION: QUESTION: Which of the following functions of time represent (a) simple harmonic, (b) periodic but not simple harmonic, and (c) non-periodic motion? Give period for each case of peiodic motion (ω is any positive constant):

1) $\sin(\omega t) - \cos(\omega t)$

2)
$$\sin^3(\omega t)$$

3)
$$3\cos\left(\frac{\pi}{4}-2\omega t\right)$$

4)
$$\cos(\omega t) + \cos(3\omega t) + \cos(5\omega t)$$

5)
$$\exp(-\omega^2 t^2)$$

6)
$$1 + \omega t + \omega^2 t^2$$

Answer:

Periodic function:

If for a function f(x) is periodic if there exists a positive number such that for all x in the domain of f, the following equation holds:

$$f(x+T) = f(x) \tag{1}$$

Period: The smallest positive value of T which holds is above equation

Simple Harmonic Motion:

Mathematically, simple harmonic motion (SHM) is described by an equation that represents the displacement of an object undergoing such motion as a function of time. The general form of this equation is often given by:

$$x(t) = A\cos(\omega t + \phi) \tag{2}$$

x(t) is displacement A is amplitude

 ω is angular frequency $\omega = 2\pi f$

t is time ϕ is phase angle

1) $\sin(2\pi ft) - \cos(2\pi ft)$

This function can be rewritten as

$$= \sin(2\pi f t) - \sin\left(\frac{\pi}{2} - 2\pi f t\right) \tag{3}$$

$$= 2\cos\left(\frac{\pi}{4}\right)\sin\left(2\pi ft - \frac{\pi}{4}\right) \tag{4}$$

$$= \sqrt{2}\sin\left(2\pi ft - \frac{\pi}{4}\right) \tag{5}$$

:. Simple harmonic motion with period T = $\frac{1}{f}$ Phase angle of(ϕ) $\left(\frac{-\pi}{4}\right)$ or $\left(\frac{7\pi}{4}\right)$

(2) $\sin^{3}(wt)$

This function can be rewritten as

$$= \frac{1}{4} (3\sin(2\pi ft) - \sin(6\pi ft)) \tag{6}$$

(1) :. Periodic with period $T = \frac{1}{f}$

(3)
$$3\cos\left(\frac{\pi}{4}-4\pi ft\right)$$

This function can be rewritten as

$$=3\cos\left(4\pi ft - \frac{\pi}{4}\right) \tag{7}$$

(8)

1

Simple harmonic motion with period $T = \frac{1}{2f}$ and a ϕ of $\left(\frac{-\pi}{4}\right)$ or $\left(\frac{7\pi}{4}\right)$

(4) $\cos(2\pi ft) + \cos(6\pi ft) + \cos(10\pi ft)$

This function can be rewritten as

$$= \cos(2\pi f t) + \cos(10\pi f t) + \cos(6\pi f t)$$
 (9)
= $2\cos\left(\frac{2\pi f t + 10\pi f t}{2}\right)\cos\left(\frac{10\pi f t - 2\pi f t}{2}\right) + \cos(6\pi f t)$ (10)
= $2\cos(6\pi f t)\cos(2\pi f t) + \cos(6\pi f t)$ (11)

$$= 2\cos(6\pi ft)\cos(2\pi ft) + \cos(6\pi ft)$$

$$= \cos(6\pi f t)(1 + 2\cos(2\pi f t)) \tag{12}$$

Period of $cos(6\pi ft)$ is $\frac{1}{3f}$ Period of $1 + 2cos(2\pi ft)$ is $\frac{1}{f}$ Lcm is $\frac{1}{f}$

 \therefore Simple harmonic motion with period $\frac{1}{f}$

(5)
$$\exp(-(2\pi f)^2 t^2)$$

This function can be rewritten as

As
$$T \to \infty$$

 $\exp(-(2\pi f)^2 t^2) \to \infty$

.. This never repeats and non periodic

(6)
$$1 + 2\pi f t + (2\pi f)^2 t^2$$

This function can be rewritten as

As
$$T \to \infty$$

 $1 + 2\pi f t + (2\pi f)^2 t^2 \to \infty$

.. This never repeats and non periodic

Fig. 0. $\sin(2\pi ft) - \cos(2\pi ft)$

Fig. 0. $\sin^3(2\pi ft)$

Fig. 0. $3\cos\left(\frac{\pi}{4} - 4\pi ft\right)$

Fig. 0. $\cos(2\pi f t) + \cos(6\pi f t) + \cos(10\pi f t)$

Fig. 0. $exp^{(-(2\pi ft)^2)}$

Fig. 0. $1 + 2\pi f t + (2\pi f t)^2$

:

TABLE 0 Summary

	Function	Periodic	Simple harmonic motion	Non Periodic	Period
(a)	$sin(2\pi ft) - cos(2\pi ft)$	Yes	Yes	No	$\frac{1}{f}$
(b)	$sin^3(2\pi ft)$	Yes	No	No	$\frac{1}{f}$
(c)	$3\cos\left(\frac{\pi}{4}-4\pi ft\right)$	Yes	Yes	No	$\frac{1}{2f}$
(d)	$cos(2\pi ft) + cos(6\pi ft) + cos(10\pi ft)$	Yes	No	No	\overline{f}
(e)	$\exp\left(-(2\pi f t)^2\right)$	No	No	Yes	_
(f)	$1 + (2\pi f)t + (2\pi f)^2 t^2$	No	No	Yes	-