Literature Review

Introduction

With the development of human-computer interaction technology, more and more researchers pay attention to the emotional factors in speech signals. With the purpose of understanding the framework of the speech emotion recognition, I reviewed some research in this field in recent years. Although different literatures have used different algorithms to realize speech emotion recognition or focus on taking certain measures to improve the accuracy of speech emotion recognition, I hold the idea that they will have common and necessary components in processing logic or processing flow, which is beneficial for us to have a better understanding of the components needed in the framework of the speech emotion recognition.

The speech emotion recognition

Emotion is the basic psychological attribute of human beings and higher organisms. It is one of the most important external communication channels for emotional expression. It is thought that speech signal of human can carry a lot of emotional information (Xinzhou, 2017). In speech emotion analysis, the basic emotional states include calm, fear, anger, pleasure, irritability, surprise, disgust and so on. Speech emotion recognition refers to the feature extraction of emotion signals in frames through computer processing. Based on the extracted features, computer can simulate human perception and understanding of human emotion to infer the type of speech emotion (Akcay et al., 2020). According to Xinzhou (2017) and El Ayadi (2011), we can use human-computer interaction or existing speech database as the input of speech emotion recognition system. Based on the requirements of the project, The component to get the sound emitted by users in our project are indispensable, meaning we can the use machine to obtain the voice signal of the communication object through the external interface. A complete speech emotion system must include two parts. The first part is the sound signal processing and extracting effective features. The second part is a good speech emotion classification algorithm (Zhiyan et al., 2019). For the first part, the collected speech signals generally need to be pre-processed, such as framing, pre-emphasised, simple denoising and so on. In El Ayadi (2011), they also convert user voice into text as input to the language model, whose output will be as the factor to help the system recognize the word sequence and emotions. And feature parameter extraction is the basis of speech emotion recognition that plays a crucial role in the performance of emotion recognition. At present, these extracted features can be divided into three categories: prosody related features, sound quality related features and spectrum based related features (Xinzhou, 2017), as shown in the following table.

The categories of extracted	Description
features	
Prosody related features	Prosody is the structural arrangement of speech signal

			expression, which mainly includes the changes of length, pitch, weight and speed in speech signal.					
sound	quality	related	Sound quality is often measured from the purity,					
features			legibility and clarity of speech. When people are very					
			excited and difficult to control in the face of some					
			special situations, they will show choking, vibrato and					
			wheezing.					
Spectrum	based	related	Speech emotion is closely related to the level of					
features			spectrum energy on the spectrum. For example,					
			happiness shows high energy in the high-frequency					
			spectrum.					

For the second part, we need to use the component that integrates emotion analysis algorithms to analyze the features aiming to classify the emotion of the user's input speech. A variety of algorithms can be used, such as HMM, KNN, SVM and so on.

Algorithm	Mechanism type	Advantage	Disadvantage	
DTW	Calculate the distance of	Reliable time	The heavy	
	time series data	alignment between	computational	
		reference and test	burden required to	
		patterns is obtained	find the optimal	
			time alignment path	
HMM	Statistical model of Markov	The modeling	The model has high	
	process	ability of time	complexity, general	
		series is strong and	fitting function and	
		the expansibility of	poor robustness	
		the system is good		
KNN	Supervised simple machine	The algorithm is	Large amount of	
	learning algorithm	simple and the	calculation, weak	
		theory is mature	interpretability and	
			large amount of	
			memory	
SVM	Machine learning algorithm	Good robustness	The recognition	
	based on statistical learning	and global	efficiency of	
	theory	optimization	large-scale samples	
			is low, and it is	
			difficult to solve	
			the multi	
			classification	
CNDI	D 1 1 1 1	C1 1 1 1	problem	
CNN	Depth neural network in	Shared convolution	Gradient	
	space	kernel, stronger	dissipation is easy	
		generalization	to occur	
		ability and good feature		
		reature		

				classification effect						
RNN	Temporal	depth	neural	Strong	ability	to	It	is	prone	to
	network			model	seque	nce	gra	dient	dissipa	tion
				content			or		grad	ient
							exp	olosic	on	

Once the user's voice emotion is analyzed. The component needs to display the corresponding emoji to the user. Based on above discussion, the components needed in the framework of the speech emotion recognition are shown in the following figure.

The processing flow of these components can be summarized: the machine obtains the voice signal input by the user through the external interface, and then the component pre-processes the voice signal and extracts the characteristics of the voice signal samples and uses the relevant algorithms to analyze and get the result of the emotional state. Finally, the system makes a decision to select the corresponding emoji to display to the user.

References

Issa, D., Demirci, M. F., & Yazici, A. (2020). Speech emotion recognition with deep convolutional neural networks. *Biomedical Signal Processing and Control*, *59*, 101894.

Akçay, M. B., & Oğuz, K. (2020). Speech emotion recognition: Emotional models, databases, features, preprocessing methods, supporting modalities, and classifiers. *Speech Communication*, *116*, 56-76.

Zhiyan, H. A. N., & Jian, W. A. N. G. (2019, June). Speech emotion recognition based on deep learning and kernel nonlinear PSVM. In *2019 Chinese control and decision conference (CCDC)* (pp. 1426-1430). IEEE.

Xu Xinzhou (2017). Research on Speech Emotion Recognition based on Emotion Feature Information Enhancement (doctoral dissertation, Southeast

University).https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CDFDLAST2018 & filename=1018002870.nh

Pang huan.(2012). The Research on Feature Extraction and Recognition of Emotional Speech(Master's thesis, Changsha University of

El Ayadi, M., Kamel, M. S., & Karray, F. (2011). Survey on speech emotion recognition: Features, classification schemes, and databases. *Pattern recognition*, 44(3), 572-587.

Technology). https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD2012&filename=1012348443.nh