Differential Equations with Julia

Michał Bernardelli

Preparation of this workshop has been supported by the Polish National Agency for Academic Exchange under the Strategic Partnerships programme, grant number BPI/PST/2021/1/00069/U/00001.

Differential equations

Application of differential equations*

1.Physics:

- Classical Mechanics: Describing the motion of objects using equations like Newton's second law.
- **Electrodynamics:** Maxwell's equations describe the behavior of electric and magnetic fields.
- Quantum Mechanics: Schrödinger's equation is a fundamental differential equation in quantum mechanics.

2.Engineering:

- **Electrical Engineering:** Circuits and systems analysis involve differential equations, especially in transient and frequency domain analyses.
- **Mechanical Engineering:** Vibrations, fluid dynamics, and heat transfer are often modeled using differential equations.
- Civil Engineering: Structural analysis, fluid flow in pipes, and other phenomena involve differential equations.

3. Biology and Medicine:

- Population Dynamics: Modeling the growth or decline of populations.
- **Physiology:** Modeling the behavior of biological systems, such as the spread of diseases or drug absorption in the body.

4. Economics:

- Macroeconomics: Modeling economic growth, inflation, and unemployment.
- Microeconomics: Modeling supply and demand dynamics.

* by ChatGDP

SGH

Application of differential equations*

5. Chemistry:

- Chemical Kinetics: Describing the rate of chemical reactions.
- Transport Phenomena: Diffusion and reaction processes in chemical systems.

6.Computer Science:

- Computer Graphics: Simulating physical phenomena like fluid flow, smoke, or fire.
- Machine Learning: Some models, such as neural networks, involve solving differential equations during training.

7. Environmental Science:

- Ecology: Modeling interactions between species in ecosystems.
- Climate Modeling: Describing the dynamics of the Earth's atmosphere.

8.Finance:

Option Pricing Models: Black-Scholes equation and other models in finance involve differential equations.

9. Control Systems:

Control Theory: Analyzing and designing control systems for engineering applications.

10.Telecommunications:

• Signal Processing: Analyzing and processing signals, often involving differential equations.

11.Mathematics:

Pure Mathematics: Differential equations are studied as a field in their own right.

^{*} by ChatGDP

Julia Packages

Problem type	Julia packages	
Plotting	<u>Plots</u>	
Linear system / least squares	<u>LinearSolve</u>	
Sparse matrix	<u>SparseArrays</u>	
Interpolation	<u>DataInterpolations</u> , <u>ApproxFun</u>	
Polynomial manipulations	Polynomials	
Rootfinding	NonlinearSolve	
Finite differences	FiniteDifferences, FiniteDiff	
Integration	Quadgk, HCubature	
Optimization	<u>Optimization</u>	

Gridap

FFTW

DifferentialEquations

ForwardDiff, Enzyme

Packages needed during this course:

- DifferentialEquations
- Plots

Optional:

DiffEqProblemLibrary

Finite Element Method

Fast Fourier Transform

Automatic Differentiation

Ordinary Differential Equations

DifferentialEquations Package

- Discrete equations (function maps, discrete stochastic (Gillespie/Markov) simulations)
- Ordinary differential equations (ODEs)
- Split and Partitioned ODEs (Symplectic integrators, IMEX Methods)
- Stochastic ordinary differential equations (SODEs or SDEs)
- Stochastic differential-algebraic equations (SDAEs)
- Random differential equations (RODEs or RDEs)
- Differential algebraic equations (DAEs)

DifferentialEquations Package

- Delay differential equations (DDEs)
- Neutral, retarded, and algebraic delay differential equations (NDDEs, RDDEs, and DDAEs)
- Stochastic delay differential equations (SDDEs)
- Experimental support for stochastic neutral, retarded, and algebraic delay differential equations (SNDDEs, SRDDEs, and SDDAEs)
- Mixed discrete and continuous equations (Hybrid Equations, Jump Diffusions)
- (Stochastic) partial differential equations ((S)PDEs) (with both finite difference and finite element methods)

General workflow

Define a problem

Solve the problem

Analyze the output

Ordinary Differential Equation (ODE) Defining a problem

Mathematical Specification of an ODE Problem:

$$M\frac{dt}{du} = f(u, p, t)$$

- 1. Definition of the function f
- 2. Specification of the initial condition u_0
- 3. The timespan tspan for the problem

Ordinary Differential Equation (ODE)

Solving a problem

https://docs.sciml.ai/DiffEqDocs/stable/basics/common_solver_opts/#solver_options

Parameters:

- alg algorithm; by default, alg = nothing (solve dispatches to the DifferentialEquations.jl automated algorithm selection)
- maxiters maximum number of iterations before stopping. Defaults to 1e5.
- saveat denotes specific times to save the solution at, during the solving phase

Ordinary Differential Equation (ODE)

Solving a problem

https://docs.sciml.ai/DiffEqDocs/stable/basics/common_solver_opts/#solver_options

Parameters:

- reltol Relative tolerance in adaptive timestepping. This is the tolerance on local error estimates, not necessarily the global error (though these quantities are related). Defaults to le-3 on deterministic equations (ODEs/DDEs/DAEs) and le-2 on stochastic equations (SDEs/RODEs).
- abstol Absolute tolerance in adaptive timestepping. This is the tolerance on local error estimates, not necessarily the global error (though these quantities are related). Defaults to le-6 on deterministic equations (ODEs/DDEs/DAEs) and le-2 on stochastic equations (SDEs/RODEs).

OrdinaryDiffEq algorithms

https://docs.sciml.ai/DiffEqDocs/stable/solvers/ode_solve

Explicit Runge-Kutta Methods

Euler	OwrenZen4	RKO65	MSRK5
Midpoint	OwrenZen5	TanYam7	MSRK6
Heun	DP5	DP8	Stepanov5
Ralston	Tsit5	TsitPap8	SIR54
RK4	Anas5(w)	Feagin10	Alshina2
BS3	FRK65(w=0)	Feagin12	Alshina3
OwrenZen3	PFRK87(w=0)	Feagin14	Alshina6

- Parallel Explicit Runge-Kutta Methods
- Explicit Strong-Stability Preserving Runge-Kutta Methods for Hyperbolic PDEs

OrdinaryDiffEq algorithms

- Low-Storage Methods
- Parallelized Explicit Extrapolation Methods
- Explicit Multistep Methods
- Adams-Bashforth Explicit Methods
- Adaptive step size Adams explicit Methods
- SDIRK Methods
- Fully-Implicit Runge-Kutta Methods
- Parallel Diagonally Implicit Runge-Kutta Methods
- Rosenbrock Methods

OrdinaryDiffEq algorithms

- Rosenbrock-W Methods
- Stabilized Explicit Methods
- Parallelized Implicit Extrapolation Methods
- Parallelized DIRK Methods
- Exponential Runge-Kutta Methods
- Adaptive Exponential Rosenbrock Methods
- Exponential Propagation Iterative Runge-Kutta Methods
- Multistep Methods
- Implicit Strong-Stability Preserving Runge-Kutta Methods for Hyperbolic PDEs

OrdinaryDiffEq algorithms - good "go-to" choices

- AutoTsit5(Rosenbrock23()) handles both stiff and non-stiff equations. This is a good algorithm to use if you know nothing about the equation.
- AutoVern7(Rodas5()) handles both stiff and non-stiff equations in a way that's efficient for high accuracy.
- Tsit5() for standard non-stiff. This is the first algorithm to try in most cases.
- BS3() for fast low accuracy non-stiff.
- Vern7() for high accuracy non-stiff.
- Rodas4() or Rodas5() for small stiff equations with Julia-defined types, events, etc.
- KenCarp4() or TRBDF2() for medium-sized (100-2000 ODEs) stiff equations.
- RadaullA5() for really high accuracy stiff equations.
- QNDF() for large stiff equations.

In-place functions

- Instead of writing a function which outputs its solution f(u,p,t) you write a
 function which updates a vector that is designated to hold the solution
 f(du,u,p,t). By doing this, DifferentialEquations.jl's solver packages are able
 to reduce the amount of array allocations and achieve better
 performance.
- Convention: name functions with ! at the end.
- Memory-efficient but not always possible (mutation sometimes not allowed).

Contact

dr hab. Michał Bernardelli, prof. SGH

michal.bernardelli@sgh.waw.pl

Thank you for your attention!

