Distillation Column (Binary System)

Assumbtions

- 1. Feed is sammed ligmid
- a. No near loss (well/ perfectly mismarted)
- 3. Each brang is 100%. efficient (ideal brangs)
- 4. Negligible vap holdup on each trang (Pv KKP2)
- 5. Molar hears of vatorization of boin components (A on B) are approximately equal. This means that I not of condensing vap releases enough hear to vaponize I not of liquid
- 6. Perfect mixing on each stage
- 7. Relative volatility (d) of two Components remains Const Throughout the column.
- 8. Liquid holding varies from trang to trong
- q. Londenser m rebeitr dynamis (mennd) is negleited

Assnmbtions 2, 4,5 mply mat

Notation

m -> lig holdup (mol)

or - mid romb (such beaut)

7 -> feed " ("

L -> lig flow mere (mol/min)

V -> vap " (")

F -) feed " (")

R -> regho "

D -> Diskilate " (")

B -> BoHoms " (")

VB) rap boilup " (")

345113468

Model equations

Condenser-reflux drum

V Total mass bal.

$$\frac{dmp}{dt} = V_{20} - R - D$$

Vomp mass bal.

$$\frac{d \left(mp \times p\right)}{dt} = \frac{v_{20} \eta_{20} - R \eta_p - D \eta_p}{dx_p}$$

$$\frac{d \eta_p}{dt} = \frac{v_{20}}{mp} \left(\eta_{20} - \eta_p\right)$$

TOP Trong (20)

$$\sqrt{\frac{dm_{20}}{dt}} = R + V_{19} - L_{20} - V_{20} = R - L_{20}$$

$$\frac{d \left(m_{20} n_{20} \right)}{dt} = R x_0 + V_{19} y_{19} - L_{20} n_{20} - V_{20} y_{20}$$

=> $\frac{dn_{20}}{dt} = \frac{1}{m_{20}} \left[R (n_0 - n_{20}) + v_B (n_{19} - n_{20}) \right]$

nic try (2 to 9 + 11 to 19)

$$\sqrt{\frac{dmn}{dt}} = \ln + 1 + \sqrt{n-1} - \ln - \sqrt{n}$$

$$= \ln + 1 - \ln$$

$$\sqrt{2n}$$
 $\sqrt{2n+1}$
 $\sqrt{2n-1}$
 $\sqrt{2n}$
 $\sqrt{2n}$
 $\sqrt{2n}$
 $\sqrt{2n}$

Feed trang (1012 ling)

$$\frac{dm_{10}}{dt} = F + L_{11} + V_{9} - L_{10} - V_{10}$$

$$= F + L_{11} - L_{10}$$

Bottom brong (1st trang).

$$\frac{dm_1}{dt} = L_2 + V_B - L_1 - V_1 \\
= L_2 - L_1$$

Winn base-reboiler system

$$dij = \frac{Ki}{Kj}$$

$$K_i = \frac{\gamma_i}{\gamma_i}$$
 ; $K_j = \frac{\gamma_j}{\gamma_j}$

:.
$$dij = \frac{\kappa_i}{\kappa_j} = \frac{\gamma_i/\gamma_i}{\gamma_i/\gamma_i} = \frac{\gamma_i/\gamma_i}{(1-\gamma_i)/(1-\gamma_i)}$$

Trong my dramtics

Francis-weir formula

$$Ln = Lno + \frac{mn - mno}{\beta}$$

0 -> 55

vap beil-np

Simulation of Distillation Model.

holdup m -> total mole bal. lig lomp or -> comp mole bal. L -> Francis weir $V \rightarrow V_1 = V_2 = -- = V_{20} = V_B = \frac{QR}{AB}$ y -> vap-lig equilibrim y= -dx 1+(2-1) 2.

Degrees of freedom (Distillation).

No. of eans	Ongin.
	VLE 2:= dijni for 1+ (dij-1) ni
N+1	71, 72, > 7N, 7B
N	$L_n = L_{no} + \frac{m_n - m_{no}}{\beta} f_n L_1, L_2, \cdots, L_N$
N+2	Total mole bal. for m, m2,, ma, mp, mg
N+2	Comp mole bal. for 24, 212,, 210, 21B

TOTAL = 4N+5 = E.

No. of variables	Type
N+2	21, 212, , 21N, 24D, 21B
N+1	Mr, Mr, MB
N+2	m, m2,, mN, mp, mB
N	L1, L2,, LN F, Z, D, R, B, VB
6	F, Z, D, R, B, VB
Total = 4N+ 11 =	V : $f = V - E = 6$.

How to make f = 0?

- (i) No. of load vaniables = 2
- (ii) NO. of control equation = 4

... F = 0.

CV	MV	
240	R	
243	VB	(or QR)
mp	D	
mB	B	

Questions.

- 1. Why there is no evergy but considered?
- 2. Why Ihis is called an ideal abisillation Column?
- 3. What is in Johnsical significame of B?
- 4. Why were is no yo calculated?
- 5. why ligt holdup vanies when the trang geometry is fixed;
- 8. why all vap flow raves one same ?

Laplace Transform

$$L[f(t)] = \overline{f}(s) = \int_{0}^{\infty} f(t) e^{-st} dt$$

chion

Las lace transform

- 4.
 - 5.

 - 7. Sin wt
 - 8. los not
 - 9. Sinh wt
 - 10. los h wt
 - e at sin wt
- 12. e at los vot
- 13, e at sin hort

52+w2

52- w2

(s+a)2+w2

5+a2+w2 (5+a)2+w2

(s+a)2-w2

Lablace transform of derivatives

$$L\left[\frac{d^{2}f}{dt^{2}}\right] = S^{2}f(s) - f(0)$$

$$L\left[\frac{d^{2}f}{dt^{2}}\right] = S^{2}f(s) - Sf(0) - f'(0)$$

$$L\left[\frac{d^{n}f(t)}{dt^{n}}\right] = S^{n}f(s) - S^{n-1}f(0) - S^{n-2}f'(0) - S^{n-2}f(0) - f(0)$$

$$= S^{n}f(s) - \text{when } f = \text{deviahim variable}$$
i.e., $f(0) = 0$

$$\text{(withally im precess is at SS)}.$$

Laplace transform of integrals

$$L\left[\int_{0}^{t}f(t)dt\right]=\frac{1}{5}\bar{f}(s).$$

Final value meorem

$$\lim_{t\to\infty} f(t) = \lim_{s\to0} \left[s \bar{f}(s) \right]$$

Imitial value Deorem

$$\lim_{t\to 0} f(t) = \lim_{s\to \infty} \left[s \bar{f}(s) \right]$$

Ideal forcing functions.

1. Ideal Step Function

$$f(t) = \begin{cases} 0 & \text{when } t < 0 \\ A & \text{when } t > 0 \end{cases}$$

A = morgmitude

$$\left[\left[f(t) \right] = \frac{A}{S} \right] : \overline{f}(s) = \int_{0}^{\infty} A e^{-St} dt = -\frac{A}{S} \left[e^{-St} \right]_{0}^{\infty} = \frac{A}{S}.$$

- Unit step change when $A = 1 + f(s) = \frac{1}{s}$.
- · Ex: of en 11 steam valve with a certain 1/2. Such that

 A f changes by A units.

2. I deal rectangular pube function

$$f(t) = \begin{cases} 0 & \text{when } t < 0 \\ A & \text{when } 0 < t < b \end{cases}$$

$$0 & \text{when } t > b$$

V first step funchin

$$F_1(t) = \begin{cases} 0 & \text{when } t < 0 \\ A & \text{when } t > 0 \end{cases}$$

v Selond step frnchim

$$f_2(t) = \begin{cases} 0 & \text{when } t < b \\ A & \text{when } t > b \end{cases}$$

$$or (t-b) > 0$$

$$= -f_1(t-b)$$

Y____

$$f(t) = f_1(t) + f_2(t) = f_1(t) - f_1(t-b)$$

$$\bar{f}(s) = \frac{A}{s} - \frac{A}{s} = \frac{A}{s} \left(1 - e^{-bs}\right)$$

$$\overline{f}(s) = \frac{1}{A} \int_{0}^{A} e^{-st} dt$$

$$= \frac{1 - e^{-sA}}{sA} = L \left[S_A(t) \right]$$

3. Ideal impulse function

Unit impube

$$\int_{-\infty}^{\infty} \delta(t) \cdot dt = 1$$

Again,
$$S = \lim_{A \to 0} S_A(t)$$

$$L[S(t)] = L[\lim_{A \to 0} S_A(t)] = \int_{0}^{\infty} \lim_{A \to 0} S_A(t) e^{-St} dt$$

$$= \lim_{A \to 0} \frac{1 - e^{-SA}}{SA} = 1$$

$$\therefore L[S(t)] = I$$

Impubble function of area A

$$F(t) = A S(t)$$

$$L[f(t)] = A.$$

Ex. Open 100 steam value at t=0 and instantly (as soon as physically possible where exter) return to 100 initial position.

4. Ideal ramp function

$$f(t) = \begin{cases} 0 & \text{when } t < 0 \\ At & \text{when } t > 0 \end{cases}$$

$$L\left[f(t)\right] = \frac{A}{s^2}$$

Ex. Open In Steam valve such mat finiveenes linearly. Ramp ends when I'm valve is fully offen.

THE FIRST HERE

CNS A HERST

the was so I be the same and the sales means and a second