2021 秋季分析题目

• 1. $\Theta \Omega \subset \mathbf{R}^d$ 为开集, $\phi: \Omega \to \Omega$ 且为 C^1 类的单射。我们称 ϕ 是保体积的,若它满足

$$m(\phi(E)) = m(E), \forall 可测集E \subset \Omega$$

- (1) 证明: ϕ 是保体积的 \iff $|\det \phi'(x)| = 1, \forall x \in \Omega$
- (2) 设 $m(\Omega) < +\infty$ 且 $|\det \phi'(x)| = 1, \forall x \in \Omega$,试证明庞加莱回归定理: 对每个 $x_0 \in \Omega$ 与包含 x_0 的任一开集 $U \subset \Omega$,存在正整数 n,使得 $m(\phi^n(U) \cap U) > 0$,这里 ϕ^n 指 n 次复合
- 2. 试叙述并证明二维的 Bessel 不等式。
- 3. 对于正整数 n, 设 $f(z) = \prod_{k=1}^{n} (z^2 k^2), z \in \mathbb{C}$, 试求

$$\lim_{R \to +\infty} \int_{|z|=R} z \cdot \frac{f'(z)}{f(z)} dz.$$

• 4. 设 X 是 Banach 空间,有线性泛函 $\phi: \mathbb{C} \to X$,算子 $f \in X^*$,满足 $z \to f(\phi(z))$ 是解析映射,且 $\sup_{z \in \mathbb{C}} |f(\phi(z))| < \infty$,试证明

$$\phi(z) \equiv \phi(0), \quad \forall z \in \mathbf{C}.$$

- 5. 设 X 是 Banach 空间,有算子序列 $\{f_t\}_{t\in[0,+\infty)}\subset X^*$,满足对于任意的 $x\in X$,泛函 $t\to f_t(x)$ 在 $[0,+\infty)$ 上连续,且 $\lim_{t\to+\infty}f_t(x)=0$ 。
 - (1) 试证明

$$\lim_{n \to \infty} \frac{1}{n} \int_0^{+\infty} e^{-t/n} |f_t(x)| dt = 0, \quad \forall x \in X.$$

(2) 对于 X 中的任意收敛序列 $x_n \to x_0 \in X, n \to +\infty$,

$$\lim_{n\to\infty} \frac{1}{n} \int_0^{+\infty} e^{-t/n} |f_t(x_n)| dt = 0.$$

• 6. 设 X 是 Banach 空间,有算子 $A, B \in \mathcal{L}(X)$,满足 $\|A^p\|^{\frac{1}{p}} \|B^q\|^{\frac{1}{q}} < 1, AB = BA$,其中 p, q 为正整数。试证明

算子
$$(I - AB)^{-1}: X \to X$$
 存在且有界.