高等代数第五章练习题

- 一. 填空题:
- 2. 写出 $A = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 0 & -3 \\ 0 & -3 & -2 \end{pmatrix}$ 所决定的二次型 $f(x_1, x_2, x_3) = \underline{\hspace{1cm}}$.

- 5. n阶实对称矩阵按合同分类有_____类,n阶复对称矩阵按合同分类有____类.
- - (2) 实二次型 $f(x_1, x_2, x_3) = x_1^2 + tx_2^2 + 2x_3^2 + 2x_1x_2 + 2x_1x_3 + 2x_2x_3$ 正定,t 满足条件_____.

- 11. 实二次型 $f(X) = -X^T X$ 的符号差为
- 12. 秩为n的n元实二次型f(X)与-f(X)合同,则f(X)的正惯性指数为______.
- 13. 二次型 $f(x_1, x_2, x_3) = x_1^2 + 2x_2^2 + 4x_3^2 + 2x_1x_2 4x_2x_3$ 是否正定______.
- 14. 设 $A = \begin{pmatrix} -3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 2 & 0 & -1 \\ 0 & -3 & 2 \\ 0 & 0 & 1 \end{pmatrix}, C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 2 \\ 0 & 2 & 2 \end{pmatrix}, A, B, C$ 中合同的是______.
- 16. 设A 是n 阶实对称阵,若A 正定, A^{-1} , A^* , A^m 中哪些正定______
- 18. 只与自身合同的矩阵是______.

19. 实矩阵
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 7 & 1 \\ 1 & 1 & 8 \end{pmatrix}$, $D = \begin{pmatrix} 2 & -1 & 2 \\ -1 & 3 & -\frac{3}{2} \\ 2 & -\frac{3}{2} & -4 \end{pmatrix}$ 中与单位阵合同的有_____.

- 20. 设n 阶阵 $A = (a_{ij})_n$,则二次型 $X^T A X$ 中交叉项 $x_i x_j$ 的系数为______
- 21. 设 A 是 n 级实对称矩阵,写出 A 是正定矩阵的三个充要条件

22. 设实二次型
$$f(x_1, x_2, \dots, x_n) = (x_1 + a_1 x_2)^2 + (x_2 + a_2 x_3)^2 + \dots + (x_{n-1} + a_{n-1} x_n)^2 + (x_n + a_n x_1)^2$$
,当 a_1, a_2, \dots, a_n 满足_____条件时,二次型 f 为正定二次型.

- 二. 计算题:
- 1. 用配方法求实二次型 $f(x_1, x_2, x_3) = 2x_1x_2 + 3x_2x_3 + 4x_1x_3$ 的标准形和规范形.

2. 给出实对称阵
$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 2 & 1 \end{pmatrix}$$
,求可逆阵 C 和对角阵 D ,使得 $C^TAC = D$ (将 A 合同对角化).

- 3. 用非退化线性替换化二次型 $f(x_1,x_2,x_3) = (x_1 + x_2)^2 + (x_2 x_3)^2 + (x_3 + x_1)^2$ 为标准形.
- 4. 用非退化线性替换化二次型 $f(x_1, x_2, x_3) = x_1^2 3x_2^2 2x_1x_2 + 2x_1x_3 6x_2x_3$ 为标准形.
- 5. 用非退化线性替换化实二次型 $f(x_1,x_2,x_3) = 2x_1^2 + 2x_1x_2 4x_1x_3 + 6x_2x_3 + x_3^2$ 为规范形.

6. 设
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 7 & 1 \\ 1 & 1 & 8 \end{pmatrix}$$
, 问 A 是否正定,若正定,求一矩阵 C ,使得 $A = C^T C$.

7. 已知矩阵
$$A = \begin{pmatrix} a_1^2 & a_1a_2 & a_1a_3 \\ a_2a_1 & a_2^2 & a_2a_3 \\ a_3a_1 & a_3a_2 & a_3^2 \end{pmatrix}$$
,其中 $a_1 \neq 0$,写出其对应的二次型,并化成标准形.

8. 判断二次型
$$2\sum_{i=1}^{n} x_i^2 + 2\sum_{1 \le i < j \le n} x_i x_j$$
 是否正定.

9. 求二次型
$$f(x_1, x_2, \dots, x_{2n}) = x_1 x_{2n} + x_2 x_{2n-1} + \dots + x_n x_{n+1}$$
 的秩和符号差.

10. 设
$$f(x_1, x_2, \dots, x_n) = a \sum_{i=1}^n x_i^2 + b \sum_{i=1}^n x_i x_{n-i+1}$$
,其中 n 为偶数, a,b 为实数.问 a,b 满足什么条件时,二次型 f 正定.

- 11. t 取什么值时,二次型 $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + 5x_3^2 + 2tx_1x_2 2x_1x_3 + 4x_2x_3$ 是半正定的. 三. 证明题:
- 1. 设 $A \neq m \times n$ 实矩阵,其中m < n,证明 AA^T 正定当且仅当r(A) = m.

2. 设
$$A \in n$$
 阶实对称矩阵,二次型 $f(x_1, \dots, x_n) = \begin{vmatrix} 0 & x_1 & \dots & x_n \\ -x_1 & a_{11} & \dots & a_{1n} \\ \vdots & \vdots & & \vdots \\ -x_n & a_{n1} & \dots & a_{nn} \end{vmatrix}$

- (2) 若 A 正定,证明二次型 f 也正定.
- 3. 若实对称阵 A 的主对角线上有一个元素 $a_{ii} < 0$,证明 A 不是正定阵.
- 4. 已知实二次型 $f(x_1, x_2, \dots, x_n) = X^T A X$ 是半正定,k 为正实数.证明: kE + A 是正定的
- 5. 设A 是n 阶对称矩阵,秩为r,证明:存在秩为n-r 的对称矩阵 B,使AB=0.
- 6. 证明如果方阵 A, B 合同, 那么 A, B 有相同的正定性.
- 7. (1) 已知 $A \in n$ 阶实可逆矩阵,证明 $A^T A$ 是正定矩阵.
 - (2) 设 $A = (a_{ii})_{n \times m}$ 为实矩阵,证明 $A^T A$, AA^T 是半正定矩阵.
 - (3) 设 $B_{m\times n}$ 是实矩阵,证明:齐次线性方程组BX=0只有零解 $\Leftrightarrow B^TB$ 是正定矩阵. (同题 1)
- 8. 证明在复数域上E和-E合同,但是在实数域上E和-E不合同.
- 9. 设 $A \neq n$ 阶实对称矩阵. $AB + B^T A$ 是正定矩阵.证明A 可逆.
- 10. 设 A 是 n 阶实反对称矩阵,证明:
 - (1) 对任意n维非零实列向量X,都有 $X^{T}(E+A)X>0$.
 - (2) E+A, E-A可逆.

高等代数第五章练习题答案(部分)

一. 填空题:

1.
$$\begin{pmatrix} 1 & 3 & 5 \\ 3 & 5 & 7 \\ 5 & 7 & 9 \end{pmatrix}$$
, $\frac{1}{2}(A+A^T)$. 2. $x_1^2-2x_3^2-2x_1x_2-6x_2x_3$. 3. $\begin{pmatrix} a_1^2 & a_1a_2 & a_1a_3 \\ a_1a_2 & a_2^2 & a_2a_3 \\ a_1a_3 & a_2a_3 & a_3^2 \end{pmatrix}$, 秩为1.

4. 2. 5.
$$\frac{(n+1)(n+2)}{2}$$
, $n+1$

6. (1)
$$-1 < t < 1$$
. (2) $t > 1$. (3)二次型矩阵 $\begin{pmatrix} t & -2 & -2 \\ -2 & t & 2 \\ -2 & 2 & t \end{pmatrix}$, $p_3 = (t-2)^2(t+4)$, 答案: $t < -4$.

7. 2,1,1. 8.
$$y_1^2 + y_2^2 - y_3^2 - y_4^2$$
, 0. 9. $y_1^2 + y_2^2 + \dots + y_8^2$. 10. n , 0, n . 11. $-n$.

12.
$$\frac{n}{2}$$
. 13.否. 14. $A 与 C$ 合同. 15. A_1, A_4 正定.

16.
$$A^{-1}, A^*, A^m$$
 都正定.

$$(A$$
 是实对称阵, $(A^{-1})^T = (A^T)^{-1} = A^{-1}, (A^*)^T = (A^T)^* = A^*, (A^m)^T = (A^T)^m = A^m$,都是实对称的.

$$A^{T}A^{-1}A = A^{T} = A$$
, $A^{-1} = A$ 合同,正定; $A^{*} = |A|A^{-1}$,正定;

$$A^{2} = AEA, A^{3} = AAA, A^{4} = A^{2}EA^{2},$$

若 m = 2s + 1 为奇数,则 $A^m = A^{2s}AA^{2s}$; 若 m = 2s 为偶数,则 $A^m = A^{2s}EA^{2s}$; 都与 A 合同,正定.

17. 秩相等且对应二次型的正惯性指数相等. 18.零矩阵. 19. 只有C与单位阵合同. 20. a_{ij} + a_{ji} .

22. 线性替换
$$\begin{cases} y_1 = x_1 + a_1 x_2 \\ y_2 = x_2 + a_2 x_3 \\ \cdots \\ y_{n-1} = x_{n-1} + a_{n-1} x_n \\ y_n = x_n + a_n x_1 \end{cases}$$
 非退化,可保证 f 正定,即矩阵
$$\begin{pmatrix} 1 & a_1 \\ & 1 & a_2 \\ & & \ddots \\ & & & 1 & a_{n-1} \\ a_n & & & 1 \end{pmatrix}$$
 可逆,计算行列式

非零就行. $1+(-1)^{n+1}a_1a_2\cdots a_n \neq 0$.

- 23. $\lambda_1, \lambda_2, \cdots, \lambda_{m+n}$ 中有m个正数,n个负数.
- 二. 计算题:
- 3 注意不能直接做根据题目做替换,这样得出的替换是退化的.
- 6 计算顺序主子式判断是否正定.若正定,则存在可逆阵C,使得 $C^TAC=E$,初等变换法把A化为E,求出C,再取逆,就可得 $A=C^TC$.

$$7 \quad f(X) = X^{T} \begin{pmatrix} a_{1}^{2} & a_{1}a_{2} & a_{1}a_{3} \\ a_{2}a_{1} & a_{2}^{2} & a_{2}a_{3} \\ a_{3}a_{1} & a_{3}a_{2} & a_{3}^{2} \end{pmatrix} X = X^{T} \begin{pmatrix} a_{1} \\ a_{2} \\ a_{3} \end{pmatrix} (a_{1}, a_{2}, a_{3}) X = (a_{1}x_{1} + a_{2}x_{2} + a_{3}x_{3})^{2}$$

做替换
$$\begin{cases} y_1=a_1x_1+a_2x_2+a_3x_3\\ y_2=x_2\\ y_3=x_3 \end{cases}, \ \text{由}\, a_1\neq 0 \ , \ \text{这是非退化的,得标准形}\, g(Y)=y_1^2 \ ,$$

$$p_{k} = \begin{vmatrix} 2 & 1 & \cdots & 1 \\ 1 & 2 & \cdots & 1 \\ \vdots & \vdots & & \vdots \\ 1 & 1 & \cdots & 2 \end{vmatrix} = (k+1) \begin{vmatrix} 1 & 1 & \cdots & 1 \\ 1 & 2 & \cdots & 1 \\ \vdots & \vdots & & \vdots \\ 1 & 1 & \cdots & 2 \end{vmatrix} = (k+1) \begin{vmatrix} 1 & 1 & \cdots & 1 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 \end{vmatrix} = k+1 > 0, \quad \text{EE}$$

9 配方法做简单,满秩2n,符号差0.

$$egin{pmatrix} a & & & & b \ & \ddots & & \ddots & \ & & a & b & \ & & b & a & \ & b & a & \ & \ddots & & \ddots & \ & b & & & a \end{pmatrix}$$
,计算各阶顺序主子式,设 $n=2s$,则

$$p_1 = a, p_2 = a^2, \dots, p_s = a^s$$
, $p_{s+1} = (a^2 - b^2)a^{s-1}, p_{s+2} = (a^2 - b^2)^2a^{s-2}, \dots, p_n = (a^2 - b^2)^s$ 顺序主子式全为正,二次型正定,故 $a > 0, a > |b|$.

三. 证明题

1. 设 $A \neq m \times n$ 实矩阵,其中m < n,证明 AA^T 正定当且仅当 $r(A) = m(A^TA$ 正定当且仅当r(A) = n).

证明 考察二次型 $f(X) = X^T A A^T X$. 设 $A^T X = (y_1, y_2, \dots, y_n)^T$,则 $f(X) = y_1^2 + y_2^2 + \dots + y_n^2 \ge 0$.

若
$$f(X) = 0$$
,则 $y_1 = y_2 = \cdots = y_n = 0$,故 $A^T X = 0$.

⇒: 若 AA^T 正定,则f(X)=0当且仅当X=0.故 $A^TX=0$ 只有零解,从而 A^T 列满秩,即 $r(A^T)=r(A)=m$

 \Leftarrow : 若 r(A) = m,则 $A^T X = 0$ 只有零解, $f(X) = X^T A A^T X = 0 \Leftrightarrow A^T X = 0 \Leftrightarrow X = 0$,故 $A A^T$ 正定.

2. 设
$$A \in n$$
 阶实对称矩阵,二次型 $f(x_1, \dots, x_n) = \begin{vmatrix} 0 & x_1 & \dots & x_n \\ -x_1 & a_{11} & \dots & a_{1n} \\ \vdots & \vdots & & \vdots \\ -x_n & a_{n1} & \dots & a_{nn} \end{vmatrix}$

- (2) 若 A 正定,证明二次型 f 也正定.

证明 分块,
$$f(x_1,\dots,x_n) = \begin{vmatrix} 0 & X^T \\ -X & A \end{vmatrix}$$
,

若 A 可逆,则
$$f(X) = \begin{vmatrix} 0 & X^T \\ -X & A \end{vmatrix} = \begin{vmatrix} X^T A^{-1} X & 0 \\ -X & A \end{vmatrix} = |A| X^T A^{-1} X = X^T A^* X.$$

A 实对称,则 A^* 也是实对称,二次型的矩阵就是 A^* 若 A 正定,则 A^* 也正定,二次型 $f(X) = X^T A^* X$ 正定.

3. 若实对称阵 A 的主对角线上有一个元素 $a_{ii} < 0$,证明 A 不是正定阵.

证明:取初等矩阵 P(i,1),则 $P(i,1)^T A P(i,1) = B$ 的 (1,1)位置元素是 a_{ii} , A 与 B合同,故 A正定当且仅当 B 正定. 现在假设 A 是正定阵,则 B 也是正定阵,故其顺序主子式应全为正,而 B的一阶顺序主子式为 $a_{ii} < 0$,矛盾,故 A 不是正定阵.

4. 已知实二次型 $f(x_1, x_2, \dots, x_n) = X^T A X$ 是半正定, k 为正实数.证明: kE + A 是正定的.

提示: $X^T(kE+A)X = kX^TX + X^TAX > 0$.

5. 设A 是n阶对称矩阵,秩为r,证明:存在秩为n-r的对称矩阵B,使AB=0.

证明: A 的秩是 r,则存在可逆矩阵 C,使得 $C^TAC = \begin{pmatrix} B_1 & 0 \\ 0 & 0 \end{pmatrix}$,其中 B_1 是 r 阶满秩对角阵.则

$$A = (C^T)^{-1} \begin{pmatrix} B_1 & 0 \\ 0 & 0 \end{pmatrix} C^{-1}, \ \ \forall \ A C \begin{pmatrix} 0 & 0 \\ 0 & E_{n-r} \end{pmatrix} C^T = (C^T)^{-1} \begin{pmatrix} B_1 & 0 \\ 0 & 0 \end{pmatrix} C^{-1} C \begin{pmatrix} 0 & 0 \\ 0 & E_{n-r} \end{pmatrix} C^T = 0.$$

取
$$B = C \begin{pmatrix} 0 & 0 \\ 0 & E_{n-r} \end{pmatrix} C^T$$
 即可.

7.提示: 考察 $f(X) = X^T A^T A X$.

(1)
$$f(X) = X^T A^T A X = (AX)^T A X = y_1^2 + y_2^2 + \dots + y_n^2 \ge 0$$
, $\sharp \oplus A X = (y_1, y_2, \dots, y_n)^T$.

若 f(X)=0,则 $y_1=y_2=\cdots=y_n=0$ \Leftrightarrow AX=0,由于 A 可逆,故 AX=0 \Leftrightarrow X=0,即二次型 f(X) 正定,从而矩阵 A^TA 是正定矩阵.

(2) 任给m维列向量X,二次型 $f(X) = X^T A^T A X = y_1^2 + y_2^2 + \dots + y_n^2 \ge 0$,半正定.

任给n维列向量X,二次型 $f(X) = X^T A A^T X = y_1^2 + y_2^2 + \dots + y_m^2 \ge 0$,半正定.

8 复数域上,有(iE)E(iE)=-E; 实数域上,秩都为n,但正惯性指数不同,不合同.

9. 设A是n阶实对称矩阵, $AB+B^TA$ 是正定矩阵,证明A可逆.

证明: 任给 $X \neq 0$,由于 $AB + B^T A$ 正定,故总有 $X^T (AB + B^T A) X = (AX)^T (BX) + (BX)^T (AX) > 0$.

因此, 任给 $X \neq 0$, 恒有 $AX \neq 0$ (若 AX = 0,则 $X^T(AB + B^TA)X = 0$).即齐次方程组 AX = 0只有零解,从而 A可逆.

- 10. 设 A 是 n 阶实反对称矩阵,证明:
 - (1) 对任意n维非零实列向量X,都有 $X^{T}(E+A)X>0$.
 - (2) E+A, E-A可逆.

证明:由于 A 是 n 阶反对称矩阵,则 $X^TAX = 0$,故 $X^T(E+A)X = X^TX \ge 0$,而 $X^T(E+A)X = 0$ 当且仅当 X = 0,正定.同理 $X^T(E-A)X > 0$.

(2) 反证法,若 E+A 不可逆,则 (E+A)X=0 有非零解 X_0 ,则 $(E+A)X_0=0$,从而 $X_0^T(E+A)X_0=0$,与(1)矛盾.