HW6

Timothy Petliar

March 2016

1

1.A square matrix M is said to be positive definite if for any vector x, $x^{\mathsf{T}} Mx > 0$. Consider $x^{\mathsf{T}} A^{\mathsf{T}} Ax$. Since A has linearly independent columns Ax is invertible and also $x^{\mathsf{T}} A^{\mathsf{T}} = Ax$. Furthermore, $A^{\mathsf{T}} A$ is $k \times k$. Also, since $x^{\mathsf{T}} A^{\mathsf{T}} = Ax$, we have that $x^{\mathsf{T}} A^{\mathsf{T}} Ax = \|Ax\| = \|x^{\mathsf{T}} A^{\mathsf{T}}\| \ge 0$.But the norm is only when x is the zero vector. Thus we may conclude that $A^{\mathsf{T}} A$ is positive definite. All the eigenvalues of a positive definite matrix are positive(strictly), so the determinant is non-zero, and so finally we conclude that the matrix is invertible.

2.Let $P = X(X'X)^{-1}X'$ and suppose k=n. Then, both X and X' are invertivle and $P = X(X'X)^{-1}X' = X'^{-1}X'X(X'X)^{-1}X'XX^{-1} = X'^{-1}(X'X)(X'X)^{-1}(X'X)X^{-1} = X'^{-1}(X'X)X^{-1} = X'^{-1}X'XX^{-1} = I$. Geometrically, when we take projection we are trying to find a $b \in R^k$ such that the distance to Y is minimized. Y however already in the span onto which are projecting, so the projection matrix is then clearly the identity.

- 3. First we note that if S=1, the vector 1 is an orthogonal basis. It also obvious that $||1_{R^N}||^2 = N$. Thus $1_{R^N}/N$ is an orthonormal basis. Thus the projection of Y onto the this orthonormal basis is given by $\frac{\langle Y, 1_{R^N} \rangle \vec{1}}{N} = \frac{\sum_{k=1}^N y_k \vec{1}}{N} = \vec{y}\vec{1}$.

 4. Since Py is a projection onto S, $\hat{u} \perp Py$ implies that $\hat{u} \perp S$. Then
- 4. Since Py is a projection onto S, $\hat{u} \perp Py$ implies that $\hat{u} \perp S$. Then $\langle \hat{u}, s \rangle = 0$, where $s \in S$ (since Py is linear combination of vectors in S). Clearly the vector of all ones is in S, since it is the linear combination of itself and weights of 0 for all the other basis vectors. But then the inner product of \hat{u} with the vector of ones is the sum of the entries of \hat{u} and must be 0.
- 5. Suppose $x \in S \cap S^{\perp}$. Then since $x \in S$ and $x \in S^{\perp}, \langle x, x \rangle = 0$. But this implies that $||x||^2 = 0$, which means x can only be the 0 vector.