Lecture 1: General Overview

08:10 AM Thu, Sep 25 2025

0.1 Introduction

Let $E \neq \emptyset$ a set.

A binary operation \cdot on E is any map from $E \times E$ into E,

$$(\cdot): \quad E \times E \quad \longrightarrow \quad E$$

$$(x,y) \longmapsto x \cdot y$$

Let $A \subset E$, we say A is a stable by (·)if (·) is also a Binary Operation on A,

$$(\cdot_A): A \times A \longrightarrow A$$

$$(x,y) \longmapsto x \cdot_A y = x \cdot y$$

Definition 0.1.1 (Group) : Let $G \neq \emptyset$ a set with a Binary Operation (*), we say that G is a group if :

1. (*) is associative, if:

$$\forall x, y, z \in G: \quad (x * y) * z = x * (y * z)$$

2. (*) admits a netural elements if:

$$\exists e \in G, \forall x \in G: \quad x * e = e * x = x$$

3.

$$\forall x \in G, \exists x' \in G: \quad x * x' = x' * x = e$$

if (*) is commutative i.e.:

$$\forall x, y \in G: \quad x * y = y * x$$

then G is called an Abelian Group.

<u>Notation:</u> We denote (*) by (\cdot) if its multiplicative, and (+) if its additive.

0.1. INTRODUCTION

Lecture 1: General Overview

Proposition 0.1.1: Let (G, \cdot) be a group. then:

- 1. The Neutral Element is uniuge.
- 2. The inverse is unique

3.

$$\forall x, y \in G : (x \cdot y)^{-1} = y^{-1} \cdot x^{-1}$$

4.

$$\forall x, y, z \in G:$$

$$\begin{cases} xy = xz \\ yx = zx \end{cases} \implies \begin{cases} y = z \\ y = z \end{cases}$$

Proof. 1. Let $e_1, e_2 \in G$ be a Neutral Element, then:

$$e_1 = e_1 \cdot e_2 = e_2$$

2. let $x \in G$ and $x_1, x_2 \in G$ be its inverses, then:

$$x_1 = x_1 \cdot e = x_1 \cdot (x \cdot x_2) = (x_1 \cdot x) \cdot x_2 = e \cdot x_2 = x_2$$

3. Let $x, y' \in G$. then:

$$(x \cdot y) \cdot (x \cdot y)^{-1} = e \implies y \cdot (x \cdot y)^{-1} = x^{-1}$$
$$\implies (x \cdot y)^{-1} = y^{-1} \cdot x^{-1}$$

Exercise

Let (G, \cdot) be a group and $x_1, x_2, \ldots, x_n \in G$. then:

•
$$(x_1 \cdots x_n)^{-1} = x_n^{-1} \cdots x_1^{-1}$$

•
$$(x_1^{-1})^{-1} = x_1$$

Definition 0.1.2: Let (G,\cdot) be a group, $n \in \mathbb{Z}$ and $x \in G$, define

$$x^{n} = \begin{cases} x \cdot x \cdots x \\ e \\ x^{-1} \cdot x^{-1} \cdots x^{-1} \end{cases} \implies \begin{cases} if \ n \ge 1 \\ if \ n = 0 \\ if \ n \le -1 \end{cases}$$

Example:

- 1. $(Z, +), (\mathbb{Q}^*, \cdot), (\mathbb{R}, +), (\mathbb{C}^*, \cdot)$
- 2. The set $\mathcal{F}(\mathbb{R},\mathbb{R})$ with addition of maps is an Abelian Group, with the null map as Neutral Element
- 3. The set S_n of all bijection of $\{1,\ldots,n\}$ with composition of maps is a group

Definition 0.1.3 (Sub Group) : Let (G, \cdot) be a group and $H \subset G$ we say that H is a Subgroup of G if (H, \cdot) is a gorup

Proposition 0.1.2:

Let (G,\cdot) a group and $H\subset G$. then H is a Subgroup of G if and only if:

- 1. $H \neq \emptyset$
- $2. \ \forall x, y \in H: \ x \cdot y \in H$
- 3. $\forall x \in H: x^{-1} \in H$

Remark: The conditions (2) and (3) are equivalent to:

$$\forall x, y \in H: x^{-1} \cdot y \in H$$

Proof.

$$\forall x, y \in H : x^{-1} \cdot y \in H \implies \begin{cases} \forall x, y \in H : x \cdot y \in H \\ \forall x \in H : x^{-1} \in H \end{cases}$$