

HOMOGENEOUS FUNCTIONS

FYBTECH SEM-I MODULE-5

Module 5

CO5. Apply Euler's theorem to prove results related to Homogeneous functions.

5	Homo	Iomogeneous Functions		CO5
	5.1	Euler's theorem on homogeneous functions with two and		
		three independent variables (statement only) and problems		
	5.2	Deductions(Corollaries) from Euler's theorem (statements		
		only) and problems		

Homogeneous Functions

Definition:

For two variables: u = f(x, y) is called homogeneous function of degree n if $u = x^n f(\frac{y}{x})$ where n is any real number.

For three variable: u = f(x, y, z) is homogeneous

function of degree n if it can be expressed as $u = x^n f\left(\frac{y}{x}, \frac{z}{x}\right)$.

Working Rule:

- 1. Replacing x = xt, y = yt and z = zt
- 2. Find f(xt, yt, zt)
- 3. If $f(xt, yt, zt) = t^n f(x, y, z)$ then u = f(x, y, z) is called homogeneous function of degree n.

Check whether homogenous?

EULER'S THEOREM

 \bullet If u is a homogeneous function of two variables x and y of degree n then

$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = nu$$

Proof: u = f(x, y) is a homogeneous function of degree n then

$$\therefore u = x^n \emptyset \left(\frac{y}{x} \right) \tag{i}$$

Differentiate partially w.r.t.
$$x$$
 we get
$$\frac{\partial u}{\partial x} = nx^{n-1} \emptyset \left(\frac{y}{x}\right) + x^n \emptyset' \left(\frac{y}{x}\right) \left(-\frac{y}{x^2}\right)$$

$$\therefore x \frac{\partial u}{\partial x} = n x^n \emptyset \left(\frac{y}{x} \right) - y x^{n-1} \emptyset' \left(\frac{y}{x} \right) \qquad \dots$$
 (ii)

Differentiate (i) partially w.r.t. y we get $\frac{\partial u}{\partial y} = x^n \emptyset' \left(\frac{y}{x}\right) \cdot \frac{1}{x} = x^{n-1} \emptyset' \left(\frac{y}{x}\right)$

Adding (ii) & (iii)
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = nx^n \emptyset \left(\frac{y}{x}\right) = nu$$

Euler's Theorem

***** For Function of TWO variables:

If u = f(x, y) is homogeneous function of degree n, then

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = nu$$

***** For Function of Three variables:

If
$$u = f(x, y, z)$$
 we get, $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = nu$

This theorem can be extended to n variables.

Corollary 1

If u = f(x, y) is a homogeneous function of two variables x & y of degree n, then

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = n(n-1)u$$

 \Rightarrow For u = f(x, y, z) we get,

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} + z^{2} \frac{\partial^{2} u}{\partial z^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + 2yz \frac{\partial^{2} u}{\partial y \partial z} + 2zx \frac{\partial^{2} u}{\partial z \partial x}$$
$$= n(n-1)u$$

Corollary 1(proof)

K J Somaiya College of Engineering

If z is a homogeneous function of two variables x and y of degree n then

$$x^{2} \frac{\partial^{2} z}{\partial x^{2}} + 2xy \frac{\partial^{2} z}{\partial x \partial y} + y^{2} \frac{\partial^{2} z}{\partial y^{2}} = n(n-1)z$$

Proof: Since z is a homogeneous function of degree n in x and y

by Euler's Theorem,

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = nz$$

.....(i)

Differentiating (i) partially w.r.t. x, we get $\left(x\frac{\partial^2 z}{\partial x^2} + \frac{\partial z}{\partial x} \cdot 1\right) + y\frac{\partial^2 z}{\partial x \partial y} = n\frac{\partial z}{\partial x}$

$$\therefore \quad \chi \frac{\partial^2 z}{\partial x^2} + y \frac{\partial^2 z}{\partial x \partial y} = (n-1) \frac{\partial z}{\partial x}$$

Differentiating (i) partially w.r.t. y, we get $x \frac{\partial^2 z}{\partial y \partial x} + \left(y \frac{\partial^2 z}{\partial y^2} + \frac{\partial z}{\partial y} \cdot 1\right) = n \frac{\partial z}{\partial y}$

$$x \frac{\partial^2 z}{\partial y \partial x} + \left(y \frac{\partial^2 z}{\partial y^2} + \frac{\partial z}{\partial y} \cdot 1 \right) = n \frac{\partial z}{\partial y}$$

$$\therefore x \frac{\partial^2 z}{\partial y \partial x} + y \frac{\partial^2 z}{\partial y^2} = (n-1) \frac{\partial z}{\partial y}$$

multiplying (ii) by x and (iii) by y and adding, we get,

$$x^{2} \frac{\partial^{2} z}{\partial x^{2}} + 2xy \frac{\partial^{2} z}{\partial x \partial y} + y^{2} \frac{\partial^{2} z}{\partial y^{2}} = (n-1) \left[x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} \right]$$
$$= (n-1)nz$$

[by (i)]

Further, if u is a homogeneous function of three variables x, y z of degree n then we can Prove that

$$x^2 \frac{\partial^2 u}{\partial x^2} + y^2 \frac{\partial^2 u}{\partial y^2} + z^2 \frac{\partial^2 u}{\partial z^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + 2yz \frac{\partial^2 u}{\partial y \partial z} + 2zx \frac{\partial^2 u}{\partial z \partial x} = n(n-1)u.$$

Corollary 2

- For function of two variables: If f(u) is homogeneous function of degree n, then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = n \frac{f(u)}{f(u)}$
- For function of three variable: If f(u) is homogeneous function of degree n, then we get $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = n \frac{f(u)}{f(u)}$
- ❖ Note:
- Here u is not homogenous function but f(u) is homogenous function.
 For eg.
- $u = \sin^{-1} x^2 y$ is not homogenous but $f(u) = \sin u = x^2 y$ is homogenous of degree 3.
- $u = \log \frac{x^2 + y^2}{x + y}$ is not homogenous but $f(u) = e^u = \frac{x^2 + y^2}{x + y}$ is homogenous with degree 1.

Corollary 2(proof)

 \clubsuit If z is homogeneous function of degree n in x and y,

and
$$z = f(u)$$
 then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = n \frac{f(u)}{f'(u)}$

❖ Proof: By Euler's Theorem,

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = nz = nf(u)$$
(i)

Since z = f(u)

$$\therefore \frac{\partial z}{\partial x} = f'(u) \frac{\partial u}{\partial x} \text{ and } \frac{\partial z}{\partial y} = f'(u) \frac{\partial u}{\partial y}$$

Putting these values in (i), we get,

$$xf'(u)\frac{\partial u}{\partial x} + yf'(u)\frac{\partial u}{\partial y} = nf(u)$$

$$\therefore x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = n \frac{f(u)}{f'(u)}$$

Corollary 3

❖ For function of two variables: If f(u) is homogeneous function of degree n, then

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = g(u)[g'(u) - 1]$$

where
$$g(u) = n \frac{f(u)}{f'(u)}$$

Corollary 3(proof)

K J Somaiya College of Engineering

If z is homogeneous function of degree n in x and y, and $z = f\left(u\right)$ then

$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = g(u)[g'(u) - 1] \quad \text{where} \quad g(u) = n \frac{f(u)}{f'(u)}$$

Proof: By Corollary (2) we have $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = n \frac{f(u)}{f'(u)} = g(u)$ (i)

Differentiating (i) partially w.r.t. x, we get $\left(x\frac{\partial^2 u}{\partial x^2} + \frac{\partial u}{\partial x} \cdot 1\right) + y\frac{\partial^2 u}{\partial x \partial y} = g'(u)\frac{\partial u}{\partial x}$ $\therefore x\frac{\partial^2 u}{\partial x^2} + y\frac{\partial^2 u}{\partial x \partial y} = (g'(u) - 1)\frac{\partial u}{\partial x}$ (ii)

Differentiating (i) partially w.r.t. y, we get $x \frac{\partial^2 u}{\partial y \partial x} + y \frac{\partial^2 u}{\partial y^2} + \frac{\partial u}{\partial y} = g'(u) \frac{\partial u}{\partial y}$

multiplying (ii) by x and (iii) by y and adding, we get,

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = (g'(u) - 1) \left[x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} \right]$$
$$= g(u)[g'(u) - 1]$$
 [by (i)]