EigenValues of Density Operator in Bloch Sphere

MohamadAli Khajeian*

Faculty of Engineering Sciences, University of Tehran, Iran

November 23, 2024

Abstract

This document presents the how to get EigenValues of Density Operator in Bloch Sphere.

Proof

$$\rho = \frac{1}{2} \left(\mathbf{I} + \vec{a} \vec{\sigma} \right)$$

$$= \frac{1}{2} \left(\mathbf{I} + a_x \left(|0\rangle\langle 1| + |1\rangle\langle 0| \right) + a_y \left(-i|0\rangle\langle 1| + i|1\rangle\langle 0| \right) + a_z \left(|0\rangle\langle 0| - |1\rangle\langle 1| \right) \right)$$

$$= \frac{1}{2} \left((1 + a_z)|0\rangle\langle 0| + (a_x - ia_y)|0\rangle\langle 1| + (a_x + ia_y)|1\rangle\langle 0| + (1 - a_z)|1\rangle\langle 1| \right)$$

where $\vec{a} \in \mathbb{R}^3$ is called the Bloch vector. so we can get eigenvalues

$$\begin{aligned} \det |\rho - \lambda \mathbf{I}| &= \det \left| \left(\frac{(1+a_z)}{2} - \lambda \right) |0\rangle \langle 0| + \frac{(a_x - ia_y)}{2} |0\rangle \langle 1| + \frac{(a_x + ia_y)}{2} |1\rangle \langle 0| + \left(\frac{(1-a_z)}{2} - \lambda \right) |1\rangle \langle 1| \right| \\ &= \left(\frac{(1+a_z)}{2} - \lambda \right) \left(\frac{(1-a_z)}{2} - \lambda \right) - \left(\frac{(a_x - ia_y)}{2} \right) \left(\frac{(a_x + ia_y)}{2} \right) \\ &= \left(\frac{(1-a_z^2)}{4} - \lambda + \lambda^2 \right) - \frac{a_x^2 + a_y^2}{4} \\ &= \lambda^2 - \lambda + \frac{1 - (a_x^2 + a_y^2 + a_z^2)}{4} \end{aligned}$$

$$\lambda_{1,2} = \frac{1 \pm \sqrt{(-1)^2 - 4(1)(\frac{1 - (a_x^2 + a_y^2 + a_z^2)}{4})}}{2} = \frac{1 \pm \sqrt{a_x^2 + a_y^2 + a_z^2}}{2} = \frac{1 \pm r}{2}$$

where $r = \sqrt{a_x^2 + a_y^2 + a_z^2}$.

^{*}khajeian@ut.ac.ir