设计下面三题的Mealy型FSMD模型

数据有限状态机: 带有数据流的有限状态机模型 (a finite-state machine with datapath, FSMD)

- 1. 单部10层电梯控制系统。
 - 状态集 S = {s1}
 - 数据变量集 X: {cfloor, rfloor}
 - cfloor: 存储电梯的楼层当前状态值
 - rfloor: 存储请求要到达的楼层值
 - 空型集 I_C: {}
 - 数据输入变量集 I_D: {rfloor}
 - 数据输入集 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
 - 空 控制输出变量集 O_C: {d, u, n}
 - 数据输出变量集 O_D: {cfloor}
 - o 转移条件集 TC: {cfloor > rfloor, rfloor > cfloor, rfloor = cfloor}
 - o 转移函数 f 和输出函数 h

-	状态转移	转移条件	数据输出	控制输出
	$(s1, cfloor) \rightarrow (s1, cfloor)$	cfloor > rfloor	cfloor := rfloor	d <= cfloor - rfloor
	$(s1, cfloor) \rightarrow (s1, cfloor)$	cfloor < rfloor	cfloor := rfloor	u <= cfloor - rfloor
	$(s1, cfloor) \rightarrow (s1, cfloor)$	cfloor = rfloor	cfloor := rfloor	n <= 0

- 2. 南北东西两个方向交通路口交通灯正交控制系统:南北方向直行绿灯40秒,东西方向直行绿灯30秒,黄灯5秒,在直行时可以左转,右转始终是自由的。正交控制系统是指南北方向为绿灯时东西方向为红灯,南北方向为红灯时东西方向为绿灯。为了满足安全以及提高通行要求,规定交通灯转换顺序为黄灯-->绿灯-->红灯-->黄灯。
 - 状态集 S = {s}
 - 数据变量集 X: {t, nscolor, ewcolor}
 - t: 记录南北方向时间的计时器
 - nscolor: 南北方向红路灯颜色
 - ewcolor: 东西方向红路灯颜色

- 控制输入变量集 I_C: {}
- 数据输入变量集 I_D: {t, nscolor, ewcolor}
- 数据输入集 {0, 1, 2, 3,, 40, green, yellow, red}
- o 控制输出变量集 O_C: {ns_{直行和左转}, ns_{右转}, ew_{直行和左转}, ew_{右转}}
 - 为1时表示可以通行
 - 为0时表示不可通行
- 数据输出变量集 O_D: {nscolor, ewcolor}
- 。 转移条件集 TC:

```
0 < t < 35; nscolor = green; ewcolor = red
t = 35; nscolor = green; ewcolor = red
35 < t < 40; nscolor = green; ewcolor = yellow
t = 40; nscolor = green; ewcolor = yellow
0 < t < 25; nscolor = red; ewcolor = green
t = 25; nscolor = red; ewcolor = green
25 < t < 30; nscolor = yellow; ewcolor = green
t = 30; nscolor = yellow; ewcolor = green</pre>
```

o 转移函数 f 和输出函数 h

状态转移	转移条件	数据输出	控制输出
(s, t, nscolor, ewcolor) → (s, t, nscolor, ewcolor)	0 < t < 35; nscolor = green; ewcolor = red	nscolor := green; ewcolor := red; t := t + 1	ns _{直行和左转} <= 1; ns 右转 <= 1; ew _{直行和左} 转 <= 0; ew _{右转} <= 1;
(s, t, nscolor, ewcolor) → (s, t, nscolor, ewcolor)	t = 35; nscolor = green; ewcolor = red	nscolor := green; ewcolor := yellow; t := t +	ns _{直行和左转} <= 1; ns 右转 <= 1; ew _{直行和左} 转 <= 0; ew _{右转} <= 1;
(s, t, nscolor, ewcolor) → (s, t, nscolor, ewcolor)	35 < t < 40; nscolor = green; ewcolor = yellow	nscolor := green; ewcolor := yellow; t := t +	ns _{直行和左转} <= 1; ns 右转 <= 1; ew _{直行和左} 转 <= 0; ew _{右转} <= 1;
(s, t, nscolor, ewcolor) → (s, t, nscolor, ewcolor)	t = 40; nscolor = green; ewcolor = yellow	nscolor := red; ewcolor := green; t := 0	ns _{直行和左转} <= 1; ns 右转 <= 1; ew _{直行和左} 转 <= 0; ew _{右转} <= 1;
(s, t, nscolor, ewcolor) → (s, t, nscolor, ewcolor)	0 < t < 25; nscolor = red; ewcolor = green	nscolor := red; ewcolor := green; t := t + 1	ns _{直行和左转} <= 0; ns 右转 <= 1; ew _{直行和左} 转 <= 1; ew _{右转} <= 1;
(s, t, nscolor, ewcolor) → (s, t, nscolor, ewcolor)	t = 25; nscolor = red; ewcolor = green	nscolor := yellow; ewcolor := green; t := t + 1	ns _{直行和左转} <= 0; ns 右转 <= 1; ew _{直行和左} 转 <= 1; ew _{右转} <= 1;
(s, t, nscolor, ewcolor) → (s, t, nscolor, ewcolor)	25 < t < 30; nscolor = yellow; ewcolor = green	nscolor := yellow; ewcolor := green; t := t + 1	ns _{直行和左转} <= 0; ns 右转 <= 1; ew _{直行和左} 转 <= 1; ew _{右转} <= 1;
(s, t, nscolor, ewcolor) → (s, t, nscolor, ewcolor)	t = 30; nscolor = yellow; ewcolor = green	nscolor := green; ewcolor := red; t := 0	ns _{直行和左转} <= 0; ns 右转 <= 1; ew _{直行和左} 转 <= 1; ew _{右转} <= 1;

- 3. 饮料售货机可以售3种饮料:可乐、茶和水。每瓶可乐售4元、每瓶茶售3元、每瓶水售2元;线上(微信或支付宝)支付。每次可以购买1-3瓶饮料。
 - 状态集 S = {s}
 - 数据变量集 X: {x, n_{可乐}, n_茶, n_水}
 - x: 记录支付钱数
 - n_{可乐}: 可乐的数量
 - n茶: 茶的数量
 - n_水: 水的数量
 - 控制输入变量集 I_C: {}
 - 。 数据输入变量集 I_D : $\{x, n_{\overline{\eta} K}, n_{\overline{K}}, n_{\overline{K}}\}$
 - 。 数据输入集 {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
 - 空型集 O_C: {out_C}
 - 数据输出变量集 O_D: {out_{可乐}, out_茶, out_水}
 - 数据输出集 {open, close}
 - o 转移条件集 TC: {x = 4 * n_{可乐} + 3 * out_茶 + 2 * n_水, x != 4 * n_{可乐} + 3 * out_茶 + 2 * n_水}
 - o 转移函数 f 和输出函数 h

状态转移	转移条件	数据输出	控制 输出
$(s, x, out可乐, out茶, out水) \rightarrow (s, x, out可乐, out茶, out水)$	x = x + 4 * n _可 乐 + 3 * n _茶 + 2 * n _水	$x := 0$; out $_{\overline{J}K} := n_{\overline{J}}$ K ; out $_{\overline{K}} := n_{\overline{K}}$; out $_{\overline{K}}$ $L = n_{\overline{J}K}$	out _C <= open
$(s, x, out可乐, out茶, out水) \rightarrow (s, x, out可乐, out茶, out水)$	x!=x+4*n _可 乐+3*n _茶 +2 *n _水	x := x; out _{可乐} := 0; out _茶 := 0; out _水 := 0	out _C <= close

