

WHAT IS CLAIMED IS:

- 1 1. A shape memory alloy actuator array comprising:
2 a plurality of individually trained shape memory alloy actuators to
3 provide relative movement of different actuator array portions; and
4 a thin-film heating element positioned adjacent at least one shape
5 memory alloy actuator to thermally activate the actuator for movement away
6 from its initial shape.
- 1 2. The shape memory alloy actuator array as recited in claim 1 wherein
2 the actuators are positioned in between at least two connecting rings each
3 defined by an outer periphery.
- 1 3. The shape memory alloy actuator array as recited in claim 2 wherein
2 the actuators are positioned in between a plurality of connecting rings to form a
3 generally columnar array.
- 1 4. The shape memory alloy actuator array as recited in claim 2 wherein
2 at least one shape memory alloy actuator is positioned adjacent another shape
3 memory alloy actuator along a different portion of the connecting rings.

1 5. The shape memory alloy actuator array as recited in claim 4 wherein
2 at least one actuator expands towards a predetermined shape when heated.

1 6. The shape memory alloy actuator array as recited in claim 4 wherein
2 at least one actuator contracts towards a predetermined shape when heated.

1 7. The shape memory alloy actuator array as recited in claim 4 wherein
2 at least one actuator acts in opposition to at least one other actuator.

1 8. The shape memory alloy actuator array as recited in claim 2 wherein
2 the shape memory alloy actuators are positioned in side by side pairs along the
3 periphery of the connecting rings.

1 9. The shape memory alloy actuator array as recited in claim 8 wherein
2 one actuator from each actuator pair expands from an initial shape towards a
3 predetermined shape when heated.

1 10. The shape memory alloy actuator array as recited in claim 8 wherein
2 one actuator from each actuator pair contracts from an initial shape towards a
3 predetermined shape when heated.

- 1 11. The shape memory alloy actuator array as recited in claim 2 wherein
- 2 each shape memory alloy actuator is positioned in side by side pairs with a
- 3 biasing element for returning the actuator to its initial shape.
- 1 12. The shape memory alloy actuator array as recited in claim 11 wherein
- 2 the biasing element is another actuator.
- 1 13. The shape memory alloy actuator array as recited in claim 11 wherein
- 2 the biasing element is a shape memory alloy actuator trained with a
- 3 predetermined shape.
- 1 14. The shape memory alloy actuator array as recited in claim 11 wherein
- 2 the biasing element is formed of an elastomer.
- 1 15. The shape memory alloy actuator array as recited in claim 11 wherein
- 2 the biasing element is a spring.
- 1 16. The shape memory alloy actuator array as recited in claim 1 wherein
- 2 at least one actuator has an initial nonplanar shape and a substantially planar
- 3 predetermined shape.

- 1 17. The shape memory alloy actuator array as recited in claim 1 wherein
2 at least one actuator has an initial buckled shape and a substantially planar
3 predetermined shape.
- 1 18. The shape memory alloy actuator array as recited in claim 1 wherein
2 at least one actuator is configured with a substantially planar initial shape and a
3 substantially planar predetermined shape of a relatively different length.
- 1 19. The shape memory alloy actuator array as recited in claim 1 wherein
2 the array includes at least one actuator that contracts from an initial shape when
3 heated and at least one actuator that expands from an initial shape when heated.
- 1 20. The shape memory alloy actuator array as recited in claim 19 wherein
2 the number of actuators in the array that contract towards a predetermined shape
3 when heated is equal to the number of actuators in the array that expand towards
4 a predetermined shape when heated.
- 1 21. The shape memory alloy actuator array as recited in claim 1 wherein
2 at least one actuator may be heated to move away from its initial shape to an
3 intermediate shape.

1 22. The shape memory alloy actuator array as recited in claim 1 wherein a
2 selected combination of at least one actuator may be heated to provide for
3 variable stiffness of the shape memory alloy actuator array.

1 23. A shape memory alloy catheter comprising:
2 a catheter body formed with a sidewall portion;
3 a shape memory alloy portion positioned adjacent the catheter sidewall
4 portion having a lattice network of individually configured shape memory alloy
5 micro-actuators; and
6 an addressable thin-film heater element in communication with the
7 shape memory alloy portion for activation of selected micro-actuators.

1 24. The shape memory alloy catheter as recited in claim 23 wherein the
2 micro-actuators are arranged in segmented joints.

1 25. The shape memory alloy catheter as recited in claim 24 further
2 including connecting rings for separating the micro-actuators into segmented
3 joints.

1 26. The shape memory alloy catheter as recited in claim 25 wherein the
2 shape memory alloy portion includes at least one micro-actuator that expands

3 upon heating by an addressable heater element and at least one micro-actuator
4 that contracts upon heating by another addressable heater element.

1 27. The shape memory alloy catheter as recited in claim 23 wherein the
2 shape memory alloy portion includes at least one addressable heater element to
3 heat a selected combination of at least one micro-actuator for varying the
4 relative stiffness of the shape memory alloy portion.

1 3. ~~28.~~ The shape memory alloy catheter as recited in claim ~~27~~² wherein the
2 shape memory alloy portion may be thermally activated to have a different
3 stiffness relative to the catheter sidewall portion.

1 27. The shape memory alloy catheter as recited in claim 23 wherein the
2 shape memory alloy portion surrounds at least a portion of the catheter body.

1 30. The shape memory alloy catheter as recited in claim 23 further
2 including a micro-fabricated sensor.

1 31. The shape memory alloy catheter as recited in claim 23 further
2 including a micro-fabricated transducer.

Sub 37

2 32. The shape memory alloy catheter as recited in claim 23 wherein the
shape memory alloy is NiTi.

1 33. A shape memory alloy conduit comprising:
2 a lattice structure formed of oppositely trained shape memory alloy
3 micro-actuators substantially disposed between at least two connecting rings;
4 and
5 a network of heating elements formed about the lattice structure for
6 activating selected shape memory actuators within the lattice structure.

1 34. The shape memory alloy conduit as recited in claim 33 wherein the
network of heating elements activates a selected combination of at least one
3 actuator in the conduit to provide relative movement between conduit portions.

1 35. The shape memory alloy conduit as recited in claim 33 wherein the
network of heating elements activates a selected combination of at least one
3 actuator in the conduit to vary the relative stiffness of lattice structure portions.

1 36. The shape memory alloy conduit as recited in claim 33 further
2 including at least two connecting members separating the conduit portions
3 wherein the actuators are positioned in between the connecting members.

1 37. The shape memory alloy conduit as recited in claim 33 wherein the
2 lattice structure includes at least one micro-actuator that expands when heated
3 and at least one micro-actuator that contracts when heated.

1 38. The shape memory alloy conduit as recited in claim 33 wherein the
2 network of heating elements are positioned along the connecting members and
3 in communication with at least one micro-actuator.

1 39. The shape memory alloy conduit as recited in claim 38 further
2 comprising a microprocessor unit wherein the heating elements are thin-film
3 addressable heating elements controlled by the microprocessor unit that
4 selectively activates a combination of at least one micro-actuator for relative
5 movement of the shape memory alloy conduit.

1 40. The shape memory alloy conduit of claim 33 wherein the conduit
2 forms at least a portion of a catheter.

1 41. The shape memory alloy conduit of claim 33 wherein the conduit
2 forms at least a portion of an introducer.

1 42. The shape memory alloy conduit of claim 33 wherein the conduit
2 forms at least a portion of a cannula.

1 43. A shape memory alloy medical device comprising:
2 a scaffolding formed of individually activated and oppositely trained
3 shape memory alloy actuators set with a predetermined shape to provide a full
4 range of directional movement within a body; and
5 at least thin-film one heating element in communication with the
6 scaffolding surface to selectively activate a combination of at least one actuator
7 towards a predetermined state.

1 44. The shape memory alloy medical device as recited in claim 43
2 wherein the scaffolding further includes at least two connecting rings to support
3 relative movement of the shape memory alloy medical device.

1 45. The shape memory alloy medical device as recited in claim 44
2 wherein at least one actuator has a substantially rectangular configuration with a
3 buckled surface longitudinally aligned relative to the scaffolding.

1 46. The shape memory alloy medical device as recited in claim 45
2 wherein a plurality of heating elements provide for a system of separately

065000000000

3 addressable thin-film heaters that thermally activates a selected combination of
4 at least one actuator to vary the ring to ring tilt angle of the scaffolding within a
5 predetermined range.

1 47. The shape memory alloy medical device as recited in claim 44
2 wherein at least one actuator has a substantially rectangular configuration with a
3 buckled surface laterally aligned relative to the scaffolding.

1 48. The shape memory alloy medical device as recited in claim 45
2 wherein a plurality of heating elements provide for a system of separately
3 addressable thin-film heaters that thermally activates a selected combination of
4 at least one actuator to vary the ring to ring rotational angle of the scaffolding
5 within a predetermined range.

1 49. The shape memory alloy medical device as recited in claim 44
2 wherein the scaffolding includes at least one actuator with a substantially
3 elongated configuration that is aligned relatively longitudinal to the scaffolding
4 and at least one actuator with a substantially elongated configuration that is
5 aligned relatively lateral to the scaffolding.

1 50. The shape memory alloy medical device as recited in claim 49
2 wherein a plurality of heating elements provide for a system of separately
3 addressable thin-film heaters that thermally activates a selected combination of
4 at least one actuator for relative movement of the device within the body.

1 51. The shape memory alloy medical device as recited in claim 43
2 wherein the heating element selectively activates at least one actuator in the
3 scaffolding to an intermediate state.

1 52. A thermally activated directional actuator device comprising:
2 a skeletal structure formed of individual oppositely trained shape
3 memory alloy actuators each configured with a predetermined shape; and
4 a heating system having individual localized heaters for moving each
5 actuator towards its predetermined shape.

1 53. A thermally activated directional actuator device as recited in claim 52
2 wherein the skeletal structure further includes a shape memory alloy backbone.

1 54. A thermally activated directional actuator device as recited in claim 53
2 wherein the backbone includes a shape memory alloy portion that contracts

3 when thermally activated and a shape memory alloy portion that expands when
4 thermally activated to provide for arcuate movement of the actuator device.

1 55. A thermally activated directional actuator device as recited in claim 54
2 wherein the skeletal structure is formed with a supporting ribbed cage section.

1 56. A thermally activated directional actuator device as recited in claim 55
2 wherein at least a portion of the directional actuator is encapsulated within a
3 polymer coating.

1 57. A thermally activated directional actuator device as recited in claim 52
2 wherein the skeletal structure includes a plurality of intermediary spacers to
3 form a directional actuator having a multiple stage configuration.

1 58. A thermally activated directional actuator device as recited in claim 57
2 wherein the intermediary spacers further includes actuator extensions for
3 connection to actuators.

1 59. A thermally activated directional actuator device as recited in claim 58
2 wherein the intermediary spacers are connecting rings for supporting relative
3 movement of the directional actuator portions.

865150 " 502452060

1 60. A thermally activated directional actuator device as recited in claim 59
2 wherein the skeletal structure is formed with at least two oblong actuators
3 longitudinally aligned relative to the actuator for relative movement of the
4 skeletal structure portion.

1 61. A thermally activated directional actuator device as recited in claim 59
2 wherein the skeletal structure is formed with at least two oblong actuators
3 laterally aligned relative to the actuator for relative movement of the skeletal
4 structure portion.

1 62. A thermally activated directional actuator device as recited in claim 61
2 wherein the connecting rings are formed with actuator extensions for connecting
3 actuators laterally aligned relative to the actuator device.

1 63. A thermally activated directional actuator device as recited in claim 62
2 wherein the laterally aligned actuators include at least one actuator that expands
3 in length when heated and at least one actuator that contracts in length when
4 heated.

20150708-00000000000000000000000000000000

1 64. A method of forming a shape memory alloy actuator array comprising
2 the following steps of:

3 selecting a sheet of shape memory alloy material defined by at least two
4 side edges;

5 forming a plurality of shape memory alloy actuators to provide relative
6 movement of the actuator by removing selected window portions of the sheet
7 along a series of spaced apart rows and columns;

8 training the individual shape memory alloy actuators to a predetermined
9 state;

10 laying out a thin-film network of addressable heating elements onto the
11 sheet for selectively activating the shape memory alloy actuators; and

12 sealing the side edges of the sheet to form a shape memory alloy
13 actuator array.

1 65. The method as recited in claim 64 wherein the plurality of shape
2 memory alloy actuators are formed in side by side pairs.

1 66. The method as recited in claim 64 wherein the spaced apart rows form
2 connecting rings to support relative movement of the shape memory alloy
3 actuator array.

651590 10262060

1 67. The method as recited in claim 64 wherein the spaced apart columns
2 generally define the lateral portions of the shape memory alloy actuators.

1 68. The method as recited in claim 64 wherein the shape memory alloy
2 actuators are trained to expand when heated.

1 69. The method as recited in claim 64 wherein the shape memory alloy
2 actuators are trained to contract when heated.

1 70. The method as recited in claim 64 further comprising the step of
2 selecting another thin-film sheet of shape memory alloy material to provide for
3 an overlapping first and a second thin-film sheet wherein the shape memory
4 alloy actuators formed in the first thin-film sheet are trained to expand when
5 heated and the shape memory alloy actuators formed in the second thin-film
6 sheet are trained to contract when heated.

1 71. The method as recited in claim 70 wherein the first and second thin-
2 film sheet of shape memory alloy material are formed of NiTi.

1 72. The method as recited in claim 64 further comprising the step of
2 connecting the network of addressable heating elements to a microprocessor

3 unit for selectively activating a combination of at least one shape memory alloy
4 actuator.

1 73. The method as recited in claim 64 wherein the thin-film sheet of shape
2 memory alloy material is NiTi.

0002602600 - 051530

Adc37