Normal Sub-Groups

A sub-group (H, *) of $(G_1, *)$ is called normal sub-group of G_1 by for all $h \in H$, $g \in G_1$ and $ghg^1 \in H$ If H is normal in G_1 then $H \not\in G_1$.

A sub-group (H,*) of a group $(G_1,*)$ is for every $S \in G_1$ $ghg^{-1} \subseteq H$.

8. Every sub-group of an abelian group is normal sub-group.

Solm Let (G1, *) be an abelian group and (H,*) be a sub-group of G1
Now SEG1, heH

(H,*) is normal in Or.

Permutation Group

A permutation is a one-one mapping of a non-empty set onto itself.

1 Equal permutation

let S be a non-empty set. The permutation f and G defined on S, are said to be equalif f(a) = g(a) for all $a \in S$.

Eg:- let
$$S = \{1,2,3,4\}$$

and let $f = (\frac{1}{3}, \frac{2}{3}, \frac{4}{4})$, $g = (\frac{1}{4}, \frac{3}{3}, \frac{2}{3})$
we have $f(1) = g(1) = 3$
 $f(2) = g(2) = 1$
 $f(3) = g(3) = 2$
 $f(4) = g(4) = 4$
i.e. $f(a) = g(a)$ $\forall a \in S$ therefore
 $f = g$

Let $S = (\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n)$ be a finite set. The number of permutations on S contains is n_0 . The set of all permutations on S is denoted by Sn. where IsnI=n] If f & Sn then f is of the form

 $f = \{(a_1, f(a_1)), (a_2, f(a_2)), ..., (a_n, f(a_n))\}$

It can also be written as

$$f = \begin{pmatrix} a_1 & a_2 & a_3 & \dots & a_n \\ f(a_1) & f(a_2) & f(a_3) & \dots & f(a_n) \end{pmatrix}$$

 \underline{tx} : let $S = \{1,2,3\}$ and $f = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$

We can write $f = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 3 & 1 \\ 3 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 3 & 1 & 2 \\ 1 & 2 & 3 \end{pmatrix}$ $= \begin{pmatrix} 1 & 3 & 2 \\ 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 3 \\ 3 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 2 & 1 \\ 1 & 3 & 2 \end{pmatrix}$

Hence, there are 31=6 ways of writing f.

(2) Identity Permutation

Let S be à finite non-empty set. An identity permutation on S denoted by I is defined I(a)=a for all aes.

eg. + let S = {1,2,3,43, then f=(1234) u identity permutation on S.

(3) Product of Permutations (Or Composition of Permutations)

Let $S=(a_1,a_2,\ldots,a_n)$ and let

$$f = \begin{pmatrix} a_1 & a_2 & \dots & a_n \\ f(a_1) & f(a_2) & \dots & f(a_n) \end{pmatrix} g = \begin{pmatrix} a_1 & a_2 & \dots & a_n \\ g(a_1) & g(a_2) & \dots & g(a_n) \end{pmatrix}$$

be two arbitrary on S.

Then composite of fand g as -

$$fog = \begin{pmatrix} a_1 & a_2 & \dots & a_n \\ f(a_1) & f(a_2) & \dots & f(a_n) \end{pmatrix} o \begin{pmatrix} a_1 & a_2 & \dots & a_n \\ g(a_1) & g(a_2) & \dots & g(a_n) \end{pmatrix}$$

$$= \begin{pmatrix} a_1 & a_2 & \dots & a_n \\ f(g(a_1)) & f(g(a_2)) & \dots & f(g(a_n)) \end{pmatrix}$$

Ex: Let
$$S = \{1, 2, 3\}$$
and $f = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$, $J = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$
be two permutations on S . Compute fog Srl^n

$$fog = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} o \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 \\ 4 & 3 & 1 \end{pmatrix} o \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 \\ 4 & 3 & 2 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

4) Inverse of Permutation (Symmetric Group)

If is a permutation on
$$S = \{a_1, a_2, ..., a_n\}$$
 such that $f = (a_1, a_2, ..., a_n)$ then there exists a permutation called inverse f , denoted f^{-1} such that $f \circ f^{-1} = f^{-1} \circ f = I$ (the identity permutation on S)

Where, $f^{-1} = (b_1, b_2, ..., b_n)$

Cyclic Permutation

Let $S = \{a_1, a_2, \ldots, a_n\}$ be a finite set of n symbols. A permutation of defined or S is said to be cyclic permutation if f is defined such that

$$f(a_1) = a_2$$
, $f(a_2) = a_3$, $f(a_3) = f(a_1)$, $f(a_{n-1}) = a_n$ and $f(a_n) = f(1)$

$$\frac{.8}{.8} \text{ (f) } J A = \{1,2,3,4,5,6\} \\
\text{Compute } (5 6 3) \circ (4 13 5)$$

$$\frac{.8}{.9} \text{ (4 1 35)} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 5 & 1 & 4 & 6 \end{pmatrix}$$

$$(5 6 3) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 5 & 4 & 6 & 3 \end{pmatrix}$$

$$(5 6 3) \circ (4 1 35) = \begin{pmatrix} 12 & 2 & 45 & 6 \\ 12 & 5 & 46 & 3 \end{pmatrix} \circ \begin{pmatrix} 12 & 3 & 45 & 6 \\ 12 & 5 & 46 & 3 \end{pmatrix}$$

$$= \begin{pmatrix} 12 & 3 & 45 & 6 \\ 12 & 5 & 46 & 3 \end{pmatrix}$$

$$= \begin{pmatrix} 12 & 3 & 45 & 6 \\ 12 & 5 & 46 & 3 \end{pmatrix}$$

Q.
$$\triangle$$
 Let $A = \{1,2,3,4,5\}$

find $(13) \otimes (245) \cdot (22)$

Set $\{12345\} \cdot (12345) \cdot (123245)$
 $(12345) \cdot (12345) \cdot (13245)$
 $(13452) \cdot (13245)$
 $(13452) \cdot (13452)$
 (13452)

Show that $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 7 & 3 & 1 & 8 & 5 & 6 & 2 & 4 \end{pmatrix}$ is even

Soly $f = \begin{pmatrix} 1 & 7 & 2 & 3 & 4 & 8 & 5 & 6 \\ 7 & 2 & 3 & 1 & 8 & 4 & 5 & 6 \end{pmatrix}$ $= \begin{pmatrix} 1 & 7 & 2 & 3 \end{pmatrix} \circ \begin{pmatrix} 4 & 8 \end{pmatrix} \circ \begin{pmatrix} 5 \end{pmatrix} \circ \begin{pmatrix} 6 \end{pmatrix}$ $= \begin{pmatrix} 1 & 7 & 2 & 3 \end{pmatrix} \circ \begin{pmatrix} 4 & 8 \end{pmatrix} \circ \begin{pmatrix} 5 & 6 & 6 \end{pmatrix}$ Janobe it because $= \begin{pmatrix} 1 & 7 & 9 & 6 & 6 \\ 1 & 7 & 9 & 6 & 6 \end{pmatrix}$ of is expressed as product of 4 transpositions, therefore f is even.

 $f = (a_1, a_2, ..., a_n)$ Before Above Example.

product of transpositions is $f = (a_1, a_2) \circ (a_1, a_2) \circ ... \circ (a_1, a_n)$ i.e. cycle of length can be expressed as product of (n-1) transpositions.