09/533,075 080184/99 2

1	20. (Currently Amended) A liquid crystal display (LCD), comprising:
2	a first substrate;
3	a second substrate opposing to said first substrate;
4	liquid crystal molecules sandwiched between said first substrate and said second
5	substrate;
6	a plurality of pixel electrodes formed on said first substrate; and
7	an alignment layer formed on said pixel electrodes which orients said liquid crystal
8	molecules on said alignment layer to an alignment direction;
9	wherein a plurality of differently oriented regions are formed in said alignment layer
10	on each of said plurality of pixel electrodes,
11	each of said pixel electrodes comprises at least one aperture formed under a boundary
12	between said adjacent differently oriented regions of said alignment layer, and
13	a minimum width of the at least one aperture of said each of said pixel electrode
14	electrodes is equal to a width of a defectively oriented region of said liquid crystal molecules
15	on a said boundary of between said adjacent differently oriented regions of said alignment
16	layer.
1	22. (Currently Amended) A method of fabricating a liquid crystal display (LCD),
2	comprising:
3	forming a plurality of pixel electrodes on a first substrate,
4	forming at least one aperture in each of said pixel electrodes;
5	depositing an alignment layer over the resultant surface processed in said forming at
6	least one aperture;
7	generating adjacent differently oriented regions and a boundary between said adjacent
8	differently oriented regions in the alignment layer on each of said pixel electrodes; and
9	sandwiching liquid crystal molecules between said first substrate and a second
10	substrate opposing to said first substrate,
11	wherein a minimum width of the at least one aperture of said pixel electrode is equal
12	to a width of a defectively oriented region of said liquid crystal molecules on a said boundary
13	of said adjacent differently oriented regions of said alignment layer, and
14	wherein said at least one aperture is formed under the boundary between said adjacent

09/533,075 080184/99 3

differently oriented regions of said alignment layer.

i	24. (Currently Amended) The LCD, as claimed in claim 20,
2	wherein said alignment layer orients said liquid crystal molecules to be vertical or
3	almost vertical to said pixel electrode plurality of pixel electrodes when no electric field is
4	applied between said pixel electrode plurality of pixel electrodes on said first substrate and a
5	common electrode on said second substrate.
1	25. (Previously Entered) The LCD, as claimed in claim 20, further comprising:
2	a common electrode formed on said second substrate,
3	wherein said common electrode has at least one aperture.
1	26. (Previously Entered) The method as claimed in claim 22, wherein said alignment layer
2	orients said liquid crystal molecules to be vertical or almost vertical to said pixel electrode
3	plurality of pixel electrodes when no electric field is applied between said pixel electrode
4	plurality of pixel electrodes on said first substrate and a common electrode on said second
5	substrate.
1	27.(Previously Entered) The method as claimed in claim 22, further comprising:
2	forming a common electrode on said second substrate; and
3	forming at least one aperture in said common electrode in a region opposing said
4	pixel electrode.
l	28. (Previously Entered) The method as claimed in claim 22,
2	wherein said generating differently oriented regions comprises exposing ultra violet
3	light to said alignment layer.