

University of New South Wales

SCHOOL OF MATHEMATICS AND STATISTICS

Assignment 2

Measure Theory

Author: Adam J. Gray

Student Number: 3329798

1

 $\mathbf{2}$

2.1

Suppose u and ν are σ -finite positive measures on (Ω, \mathcal{F}) . Then suppose that $\mu << \nu$ and $\nu << \mu$. Then for $A \in \mathcal{F}$ we have that $\mu(a) = 0 \Rightarrow \nu(A) = 0$ and $\nu(A) = 0 \Rightarrow \mu(A)$. That is to say that $\nu(A) = 0 \Leftrightarrow \mu(A) = 0$. That is to say that ν and μ have the same null sets. This argument is symmetric so it is clear that the reverse implication also holds.

We now wish to show that there is an \mathcal{F} -measurable function g that satisfies $0 < g(\omega) < +\infty$ at each $\omega \in \Omega$ and is such that $\nu(A) = \int_A g d\mu$ for all $A \in \mathcal{F}$.

2.2

Let $\{B_n\}_{n\in\mathbb{N}}$ be a covering of Ω by disjoint sets with $0 < \mu(B_n) < \infty$ for all n. Such a covering exists because μ is σ -finite. Now select a sequence of constants $\{\alpha_n\}_{n\in\mathbb{N}}$ such that $\alpha_n > 0$ for all n and

$$\sum_{n=1}^{\infty} \alpha_n = 1. \tag{1}$$

For example we could select $\alpha_n = 2^{-n}$.

We claim that the function $\nu: \mathcal{F} \longrightarrow \mathbb{R}$ defined by

$$\nu(A) = \sum_{n=1}^{\infty} \alpha_n \frac{\mu(A \cap B_n)}{\mu(B_n)} \tag{2}$$

is a probability measure with the same null sets as μ . Firstly we show that it is a measure, that is we show σ -additivity.

For a collection of disjoint sets $\{A_n\}_{n\in\mathbb{N}}$ we have that

$$\nu\left(\bigcup_{n\in\mathbb{N}}A_n\right) = \sum_{k=1}^{\infty} \alpha_k \frac{\mu\left(\bigcup_{n=1}^{\infty}A_n \cap B_k\right)}{\mu(B_k)}$$
(3)

and by σ -additivity of μ we get

$$\sum_{k=1}^{\infty} \alpha_k \frac{\mu\left(\bigcup_{n=1}^{\infty} A_n \cap B_k\right)}{\mu(B_k)} = \sum_{k=1}^{\infty} \alpha_k \frac{\sum_{n=1}^{\infty} \mu\left(A_n \cap B_k\right)}{\mu(B_k)} \tag{4}$$

$$=\sum_{n=1}^{\infty}\sum_{k=1}^{\infty}\alpha_k \frac{\mu(A_n \cap B_k)}{\mu(B_k)}$$
 (5)

$$=\sum_{n=1}^{\infty}\nu(A_n). \tag{6}$$

The interchange of the order of summation can be justified by the fact that $\mu(A_n \cap B_k) \geq 0$ and

$$\sum_{k=1}^{\infty} \alpha_k \frac{\sum_{n=1}^{\infty} \mu(A_n \cap B_k)}{\mu(B_k)} < \infty \tag{7}$$

which we prove now (by proving ν is a probability measure).

See that

$$\nu(\Omega) = \sum_{k=1}^{\infty} \alpha_k \frac{\mu(\Omega \cap B_k)}{\mu(B_k)} \tag{8}$$

$$=\sum_{k=1}^{\infty} \alpha_k \frac{\mu(B_k)}{\mu(B_k)} \tag{9}$$

$$=\sum_{k=1}^{\infty} \alpha_k \tag{10}$$

$$=1. (11)$$

We now just have to show that μ and ν share the same null sets. Suppose $\mu(A) = 0$ then

$$\mu(A) = \sum_{k=1}^{\infty} \alpha_k \frac{\mu(A \cap B_k)}{\mu(B_k)} \tag{12}$$

$$\leq \sum_{k=1}^{\infty} \alpha_k \frac{\mu(A)}{\mu(B_k)} \tag{13}$$

$$=0 (14)$$

and thus $\nu \ll \mu$. Now suppose $\nu(A) = 0$ then

$$\sum_{k=1}^{\infty} \alpha_k \frac{\mu(A \cap B_k)}{\mu(B_k)} = 0 \tag{15}$$

and as $\mu(B_k) < \infty$ for all k this implies that $\mu(A \cap B_k) = 0$ for all k. Now

$$0 = \sum_{k=1}^{\infty} \mu(A \cap B_k) \tag{16}$$

$$=\mu\left(\bigcup_{k=1}^{\infty}(A\cap B_k)\right) \tag{17}$$

$$=\mu\left(A\cap\bigcup_{k=1}^{\infty}B_{k}\right)\tag{18}$$

$$=\mu(A\cap\Omega)\tag{19}$$

$$=\mu(A). \tag{20}$$

Thus $\mu \ll \nu$.

So ν is a finite measure on (Ω, \mathcal{F}) which is equivalent to μ .

3

3.1

Firstly note that the definition of the characteristic function is

$$\hat{\mu}_X(u) = \mathbb{E}[\exp(i\langle X, u \rangle)] \tag{21}$$

and so for the random vector cX with $c \in \mathbb{R}$ we have that

$$\hat{\mu}_{cX}(u) = \mathbb{E}[\exp(i\langle cX, u\rangle)] \tag{22}$$

$$= \mathbb{E}[\exp(i\langle X, cu\rangle)] \tag{23}$$

$$=\hat{\mu}_X(cu) \tag{24}$$

3.2

By definition we have that

$$\hat{\mu}(\mathbf{u}) = \int \exp(i\langle \mathbf{x}, \mathbf{u} \rangle) d\mathbb{P}_X(\mathbf{x}). \tag{25}$$

We can say that

$$\frac{d^{\alpha}\hat{\mu}(\mathbf{u})}{d\mathbf{u}^{\alpha}} = \frac{d^{\alpha}}{d\mathbf{u}^{\alpha}} \int \exp(i\langle \mathbf{x}, \mathbf{u} \rangle) d\mathbb{P}_{X}(\mathbf{x}). \tag{26}$$

We wish to justify taking this derivative through the integral sign. To do this we use an extension of corollary 2.28 (2) from the notes.

Claim

If the partial derivative

$$\frac{\partial^{\alpha}}{\partial \mathbf{u}^{\alpha}} f(\mathbf{x}, \mathbf{u}) \tag{27}$$

exists for all $(\mathbf{x}, \mathbf{u}) \in X \times [a, b]^d$ and if there is a function $g \in L^1(\mu)$ such that

$$\left| \frac{\partial^{\alpha}}{\partial \mathbf{u}^{\alpha}} f(\mathbf{x}, \mathbf{u}) \right| \le g \tag{28}$$

for every $\mathbf{x} \in X$ and $\mathbf{u} \in (a,b)^d$ then

$$\frac{d^{\alpha}}{d\mathbf{u}^{\alpha}} \int f(\mathbf{x}, \mathbf{u}) d\mu(\mathbf{x}) = \int \frac{\partial^{\alpha}}{\partial \mathbf{u}^{\alpha}} f(\mathbf{x}, \mathbf{u}) d\mu(\mathbf{x}) \quad \text{for } \mathbf{u} \in (a, b)^{d}.$$
(29)

The proof follows from induction on the dimension of \mathbf{x} and \mathbf{u} and the order of the derivative. The base case is specifically the statement of corollary 2.28 (2) from the notes.

We have that

$$\frac{\partial^{\alpha}}{\partial \mathbf{u}^{\alpha}} \exp(i\langle \mathbf{x}, \mathbf{u} \rangle) = i^{|\alpha|} \prod_{k=1}^{d} x_k^{\alpha_k} \exp(i\langle \mathbf{x}, \mathbf{u} \rangle)$$
(30)

and that

$$\left| \frac{\partial^{\alpha}}{\partial \mathbf{u}^{\alpha}} \exp(i\langle \mathbf{x}, \mathbf{u} \rangle) \right| \leq \underbrace{\prod_{k=1}^{d} |x_{k}|^{\alpha_{k}}}_{\text{(31)}}.$$

Now because

$$\mathbf{E}\left(\prod_{k=1}^{d}|X_{k}|^{\alpha_{k}}\right) = \int \prod_{k=1}^{d}|x_{k}|^{\alpha_{k}} d\mathbb{P}_{X}(\mathbf{x}) < \infty \tag{32}$$

then $\circledast \in L^1(\mathbb{P}_X)$ and so we can apply our claim (the DCT) to get

$$\frac{\partial^{\alpha} \hat{\mu}(\mathbf{u})}{\partial \mathbf{u}^{\alpha}} = \int \frac{\partial^{\alpha}}{\partial \mathbf{u}^{\alpha}} \exp(i\langle \mathbf{x}, \mathbf{u} \rangle) d\mathbb{P}_{X}(\mathbf{x})$$
(33)

$$= \int i^{|\alpha|} \prod_{k=1}^{d} x_k^{\alpha_k} \exp(i\langle \mathbf{x}, \mathbf{u} \rangle) d\mathbb{P}_X(\mathbf{x})$$
(34)

$$= i^{|\alpha|} \int \prod_{k=1}^{d} x_k^{\alpha_k} \exp(i\langle \mathbf{x}, \mathbf{u} \rangle) d\mathbb{P}_X(\mathbf{x})$$
(35)

and so

$$\frac{\partial^{\alpha} \hat{\mu}(\mathbf{u})}{\partial \mathbf{u}^{\alpha}} \Big|_{\mathbf{u} = \mathbf{0}} = i^{|\alpha|} \int \prod_{k=1}^{d} x_k^{\alpha_k} \exp(i\langle \mathbf{x}, \mathbf{0} \rangle) d\mathbb{P}_X(\mathbf{x})$$
(36)

$$=i^{|\alpha|}\int \prod_{k=1}^{d} x_k^{\alpha_k} d\mathbb{P}_X(\mathbf{x}) \tag{37}$$

$$=i^{|\alpha|}\mathbb{E}(X^{\alpha})\tag{38}$$

Let d=1 and let μ have the Lebesgue density,

$$f(x) = \frac{C}{(1+x^2)\log(e+x^2)}, \quad x \in \mathbb{R}.$$
 (39)

We wish to show that E[X] is not defined but $\hat{\mu}(u)$ is differentiable at 0. Firstly we show that E[X] is not defined. If $\mathbb{E}(X)$ were defined then

$$\mathbb{E}(X) = \int \frac{xC}{(1+x^2)\log(e+x^2)} dx \tag{40}$$

$$=\underbrace{\int_{-\infty}^{0} \frac{xC}{(1+x^{2})\log(e+x^{2})} dx}_{\mathbb{E}(X^{-})} + \underbrace{\int_{0}^{\infty} \frac{xC}{(1+x^{2})\log(e+x^{2})} dx}_{\mathbb{E}(X^{+})}$$
(41)

but

$$\int_{0}^{\infty} \frac{xC}{(1+x^{2})\log(e+x^{2})} dx \ge \int_{1}^{\infty} \frac{xC}{2x^{2}\log(e+x^{2})} dx \tag{42}$$

$$= \int_{1}^{\infty} \frac{C}{2x \log(e + x^2)} dx \tag{43}$$

$$\geq \int_{4}^{\infty} \frac{C}{2x \log(4x^2)} dx \tag{44}$$

$$\geq \int_{6}^{\infty} \frac{C}{10x \log(x)} dx. \tag{45}$$

Let $u = \log(x)$ so that $du = \frac{1}{x}dx$ and so

$$\int_{6}^{\infty} \frac{C}{10x \log(x)} dx = \underbrace{\int_{\log(6)}^{\infty} \frac{C}{10u} du}_{\text{\tiny (46)}}$$

and \circledast diverges. So $\mathbb{E}(X^+)$ does not exist and in a similar manner we can see that $\mathbb{E}(X^-)$ does not exist and thus E(X) is not defined.

However we can calculate $\hat{\mu}(u)$ as

$$\hat{\mu}(u) = \int \frac{e^{ixu}C}{(1+x^2)\log(e+x^2)} dx \tag{47}$$

and note that $\hat{\mu}(u)$ is differentiable at 0 if the following limit exists

$$\lim_{h \to 0} \int \frac{e^{ixh}C - C}{h(1+x^2)\log(e+x^2)} dx \tag{48}$$

4

Let μ be the binomial distribution with n trials and probability of success p, that is $\mu = \text{Bin}(n, p)$, and let ν be the Poisson distribution with mean $\lambda > 0$.

4.1

We wish to verify that $\hat{\mu}(u) = (1 - p + pe^{iu})^n$. Because the binomial distribution is just the convolution of identical independent Bernoulli distributions then we just have to verify that $(1-p+pe^{iu})$ is the characteristic function for Bernoulli(p).

If ν is the Bernoulli measure and X has law ν then

$$\hat{\nu}(u) = \mathbb{E}[\exp(iuX)] \tag{49}$$

$$= \sum_{k \in \{0,1\}} e^{iuk} \nu_X(k) \tag{50}$$

$$= pe^{iu} + (1-p). (51)$$

Then by repeated application of the convolution theorem we get that $\hat{\mu}(u) = (1 - p + pe^{iu})^n$.

4.2

We wish to verify that $\hat{\nu}(u) = \exp(\lambda(e^{iu} - 1))$. The probability mass function of the Poisson distribution is

$$\frac{\lambda^k}{k!}e^{-\lambda} \tag{52}$$

and thus

$$\mathbb{E}[\exp(iuX)] = \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda} e^{iuk}$$
(53)

$$=e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} (e^{iu})^k \tag{54}$$

$$=e^{-\lambda} \sum_{k=0}^{\infty} \frac{(\lambda e^{iu})^k}{k!} \tag{55}$$

$$=e^{-\lambda}e^{\lambda e^{iu}}\tag{56}$$

$$=e^{\lambda(e^{iu}-1)}\tag{57}$$

4.3

We wish to show that if p_n is a sequence in [0,1] such that $p_n \downarrow 0$ and $np_n \longrightarrow \lambda$ then $\mu_n \longrightarrow \nu$ in the weak sense where $\mu_n = \text{Bin}(n, p_n)$. Let $f \in C_b$ then

$$\lim_{n \to \infty} \sum_{k=0}^{n} f(k) \binom{n}{k} p_n^k (1 - p_n)^{n-k} = \lim_{n \to \infty} \sum_{k=0}^{\infty} \chi_{k \le n} \cdot f(k) \binom{n}{k} p_n^k (1 - p_n)^{n-k}$$

$$(58)$$

$$= \sum_{k=0}^{\infty} \lim_{n \to \infty} \chi_{k \le n} \cdot f(k) \binom{n}{k} p_n^k (1 - p_n)^{n-k}.$$
 (59)

The interchange of the order of the limit and the sum is justified by the uniform convergence of the sum. To see this let $M = \sup_{k \in \mathbb{N}^0} f(k)$ (which exists because $f \in C_b$) and then note that

$$\sum_{k=0}^{\infty} \chi_{k \le n} \cdot f(k) \binom{n}{k} p_n^k (1 - p_n)^{n-k} \le \sum_{k=0}^{\infty} \chi_{k \le n} \cdot M \binom{n}{k} p_n^k (1 - p_n)^{n-k}$$
 (60)

$$= M < \infty \tag{61}$$

and so by the Weierstrass M test the series converges uniformly. Now as $np_n \longrightarrow \lambda$ or $p_n \longrightarrow \frac{\lambda}{n}$ we get

$$\sum_{k=0}^{\infty} \lim_{n \to \infty} \chi_{k \le n} \cdot f(k) \binom{n}{k} p_n^k (1 - p_n)^{n-k} = \sum_{k=0}^{\infty} \lim_{n \to \infty} \chi_{k \le n} \cdot f(k) \frac{n!}{k! (n-k)!} p_n^k (1 - p_n)^n (1 - p_n)^{-k}$$
(62)

$$= \sum_{k=0}^{\infty} \lim_{n \to \infty} \chi_{k \le n} \cdot f(k) \frac{n^k + O(n^{k-1})}{k!} p_n^k (1 - p_n)^n (1 - p_n)^{-k}$$
 (63)

$$= \sum_{k=0}^{\infty} f(k) \lim_{n \to \infty} \frac{n^k + O(n^{k-1})}{k!} p_n^k (1 - p_n)^n \underbrace{(1 - p_n)^{-k}}_{\text{odd}}$$
(64)

$$= \sum_{k=0}^{\infty} f(k) \lim_{n \to \infty} \underbrace{\frac{n^k + O(n^{k-1})}{k!} p_n^k}_{n} (1 - p_n)^n$$

$$(65)$$

$$= \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} f(k) \lim_{n \to \infty} \underbrace{(1 - \frac{\lambda}{n})^n}_{\longrightarrow e^{-\lambda}}$$
(66)

$$=\sum_{k=0}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda} f(k). \tag{67}$$

This proves the weak convergence.

4.4

This argument holds whether one takes the integral (sum) or not. So $\mu_n(\{k\}) \longrightarrow \nu(\{k\})$ for all $k \in \mathbb{N}^0$.

5

5.1

We wish to show that $\mathbb{P}(B_n) = 1/2$ for every $n \geq 1$. Note that

$$B_n = \bigcup_{k=0}^{2^{n-1}-1} \left[\frac{2k}{2^n}, \frac{2k+1}{2^n} \right) \tag{68}$$

and thus

$$\mathbb{P}(B_n) = \mathbb{P}\left(\bigcup_{k=0}^{2^{n-1}-1} \left[\frac{2k}{2^n}, \frac{2k+1}{2^n}\right)\right)$$
 (69)

$$= \sum_{k=0}^{2^{n-1}-1} \mathbb{P}\left(\left[\frac{2k}{2^n}, \frac{2k+1}{2^n}\right)\right)$$
 (70)

$$=\sum_{k=0}^{2^{n-1}-1} \frac{1}{2^n} \tag{71}$$

$$=2^{n-1}\frac{1}{2^n}\tag{72}$$

$$=\frac{1}{2}. (73)$$

5.2

We now wish to show that the sequence of events B_n form an infinite sequence of independent events. Take a finite subset $J \subset \mathbb{N}$ with |J| = m and $\max J = r$ then

$$\mathbb{P}\left(\bigcap_{n\in J} B_n\right) = \mathbb{P}\left(\bigcap_{n\in J} \bigcup_{k=0}^{2^{n-1}-1} \left[\frac{2k}{2^n}, \frac{2k+1}{2^n}\right)\right)$$
(74)

$$= \mathbb{P}\left(\bigcup_{k=0}^{2^{r-m}-1} \left[\frac{2k}{2^r}, \frac{2k+1}{2^r}\right)\right)$$
 (75)

$$= \sum_{k=0}^{2^{r-m}-1} \mathbb{P}\left(\left[\frac{2k}{2^n}, \frac{2k+1}{2^n}\right)\right)$$
 (76)

$$=2^{r-m}\frac{1}{2^r} (77)$$

$$=\frac{1}{2^m}\tag{78}$$

$$=\prod_{n\in I}\mathbb{P}\left(B_{n}\right)\tag{79}$$

and so the sequence of events B_n form an infinite sequence of independent events.

5.3

We wish to show / argue that the probability that a randomly sampled number ω will have the sequence 5825 occur infinitely often in its decimal expansion is 1.

We use the Borel-Cantelli lemma. Ignoring possible overlaps (on the 5s) we can see that we can break any decimal expansion of ω up into blocks of 4 digits.

Then by we can define E_i as the probability of obtaining 5285 in the i-th block possition. By the same argument as above these events are independent.

The for any i we have that $\mathbb{P}(E_i) = \frac{1}{10000}$ (the same argument as above applied to a decimal expansion). Then clearly

$$\mathbb{P}(E_i) = \infty. \tag{80}$$

By the Borel-Cantelli lemma this implies

$$\mathbb{P}(\limsup_{n}(E_{n}) = 1. \tag{81}$$

Now

$$\lim_{n} \sup_{n} (E_n) = \bigcap_{n=1}^{\infty} \bigcup_{j=n}^{\infty} E_j$$
(82)

can be intuatively read as E_j happens infinitely often. Which is to say that 5285 occurs blockwise in the expansion of ω infinitely often. Clearly as allowing for overlaps allows for more configurations then the probability is 1 (it can be no more).