Lecture 3

Data Summary/Visualization II

Text: Chapter 3

STAT 8010 Statistical Methods I January 16, 2020 Data Summary/Visualization

Percentiles, Quartiles, and Boxplots

numerical/categorical variables and two numerical variables

Visualizing Time Series, Cross-Sectional, and Spatio-Temporal Data sets

Whitney Huang Clemson University

numerical/categorica variables and two

Series, Cross-Sectional, and Spatio-Temporal Data

- Percentiles, Quartiles, and Boxplots
- Visualizing numerical/categorical variables and two numerical variables

Last Lecture

alization II

Data Summary/Visu-

- UNIVERSIT
 - numerical/categorical variables and two
 - Series, Cross-Sectional, and Spatio-Temporal Data

- Sampling Techniques
- Numerical/Graphical Summaries of Categorical Variables
- Numerical/Graphical Summaries of Numerical Variables

Last Lecture: Sampling Techniques

Simple random sample

Systematic sample

Cluster sample

Stratified sample

Source:

https://www.scribbr.com/methodology/sampling-methods/

Data Summary/Visualization

Percentiles, Quartiles, and Boxplots

numerical/categorical variables and two numerical variables

Last Lecture: Summarizing Categorical Variables

> table(sport)			
sport			
Baseball/softball	Basketball	Bicycling	Jogging/running
11	19	11	11
Others	Soccer	Touch Football	Volleyball
47	24	38	17
<pre>> table(sport) / dim(sport)</pre>	rt)[1]		
sport			
Baseball/softball	Basketball	Bicycling	Jogging/running
0.06179775	0.10674157	0.06179775	0.06179775
0thers	Soccer	Touch Football	Volleyball
0.26404494	0.13483146	0.21348315	0.09550562

Data Summary/Visualization

Percentiles, Quartiles, and Boxplots

Visualizing numerical/cate

variables and two numerical variables

Series,
Cross-Sectional, and
Spatio-Temporal Data

Last Lecture: Shapes of Distributions

Data Summary/Visualization

Percentiles, Quartiles, and Boxplots

numerical/categorica variables and two numerical variables

Last Lecture: Measures of Center & Spread

- Measures of Center: Mean, Median, Mode
- Measures of Spread: Range, Variance/Standard Deviation, Interquartile range (IQR)
- Resistant (Robust) Statistics

Data Summary/Visualization

Percentiles, Quartiles, and Boxplots

numerical/categorical variables and two numerical variables

Series, Cross-Sectional, and Spatio-Temporal Dat

Percentiles, Quartiles, and Boxplots

- The $p_{\rm th}$ percentile is a value such that at least p% of the data set is less than or equal to this value [An Example]
- Calculation of percentiles using the indexing method:
 - Sort the set of numbers in an increasing order

Quartiles:

and Boxplots

numerical/categorical variables and two numerical variables

- The $p_{\rm th}$ percentile is a value such that at least p% of the data set is less than or equal to this value [An Example]
- Calculation of percentiles using the indexing method:
 - Sort the set of numbers in an increasing order

Quartiles:

and Boxplots

numerical/categorical variables and two numerical variables

- The $p_{\rm th}$ percentile is a value such that at least p% of the data set is less than or equal to this value [An Example]
- Calculation of percentiles using the indexing method:
 - Sort the set of numbers in an increasing order
 - ② For the p_{th} percentile, compute the index $i = \frac{np}{100}$ where n is the sample size

• Quartiles:

and Boxplots

numerical/categorical variables and two numerical variables

- The $p_{\rm th}$ percentile is a value such that at least p% of the data set is less than or equal to this value [An Example]
- Calculation of percentiles using the indexing method:
 - Sort the set of numbers in an increasing order
 - ② For the p_{th} percentile, compute the index $i = \frac{np}{100}$ where n is the sample size

• Quartiles:

and Boxplots

numerical/categorical variables and two numerical variables

- The $p_{\rm th}$ percentile is a value such that at least p% of the data set is less than or equal to this value [An Example]
- Calculation of percentiles using the indexing method:
 - Sort the set of numbers in an increasing order
 - ② For the p_{th} percentile, compute the index $i = \frac{np}{100}$ where n is the sample size
 - If i is an integer then p_{th} percentile is the average of i_{th} value and $(i+1)_{th}$ value, otherwise take the $(i+1)_{th}$ value
- Quartiles:

and Boxplots

variables and two numerical variables

- The $p_{\rm th}$ percentile is a value such that at least p% of the data set is less than or equal to this value [An Example]
- Calculation of percentiles using the indexing method:
 - Sort the set of numbers in an increasing order
 - ② For the p_{th} percentile, compute the index $i = \frac{np}{100}$ where n is the sample size
 - If i is an integer then p_{th} percentile is the average of i_{th} value and $(i+1)_{th}$ value, otherwise take the $(i+1)_{th}$ value
- Quartiles:
 - Q1: first quartile (25th percentile)

and Boxplots

variables and two numerical variables

Series,
Cross-Sectional, and
Spatio-Temporal Data
sets

- The $p_{\rm th}$ percentile is a value such that at least p% of the data set is less than or equal to this value [An Example]
- Calculation of percentiles using the indexing method:
 - Sort the set of numbers in an increasing order
 - ② For the p_{th} percentile, compute the index $i = \frac{np}{100}$ where n is the sample size
 - If i is an integer then p_{th} percentile is the average of i_{th} value and $(i+1)_{th}$ value, otherwise take the $(i+1)_{th}$ value
- Quartiles:
 - Q1: first quartile (25th percentile)

and Boxplots

variables and two numerical variables

Series,
Cross-Sectional, and
Spatio-Temporal Data
sets

- The $p_{\rm th}$ percentile is a value such that at least p% of the data set is less than or equal to this value [An Example]
- Calculation of percentiles using the indexing method:
 - Sort the set of numbers in an increasing order
 - ② For the p_{th} percentile, compute the index $i = \frac{np}{100}$ where n is the sample size
 - If i is an integer then p_{th} percentile is the average of i_{th} value and $(i+1)_{th}$ value, otherwise take the $(i+1)_{th}$ value
- Quartiles:
 - Q1: first quartile (25th percentile)
 - M (Q2): median (second quartile, 50th percentile)

Data Summary/Visualization

Percentiles, Quartiles, and Boxplots

umerical/categorical ariables and two umerical variables

- The $p_{\rm th}$ percentile is a value such that at least p% of the data set is less than or equal to this value [An Example]
- Calculation of percentiles using the indexing method:
 - Sort the set of numbers in an increasing order
 - ② For the p_{th} percentile, compute the index $i = \frac{np}{100}$ where n is the sample size
 - If i is an integer then p_{th} percentile is the average of i_{th} value and $(i+1)_{th}$ value, otherwise take the $(i+1)_{th}$ value
- Quartiles:
 - Q1: first quartile (25th percentile)
 - M (Q2): median (second quartile, 50th percentile)

Data Summary/Visualization

Percentiles, Quartiles, and Boxplots

umerical/categorical ariables and two umerical variables

- The $p_{\rm th}$ percentile is a value such that at least p% of the data set is less than or equal to this value [An Example]
- Calculation of percentiles using the indexing method:
 - Sort the set of numbers in an increasing order
 - ② For the p_{th} percentile, compute the index $i = \frac{np}{100}$ where n is the sample size
 - If i is an integer then p_{th} percentile is the average of i_{th} value and $(i+1)_{th}$ value, otherwise take the $(i+1)_{th}$ value
- Quartiles:
 - Q1: first quartile (25th percentile)
 - (Q2): median (second quartile, 50_{th} percentile)
 - Q3: third quartile (75th percentile)

Data Summary/Visualization

and Boxplots

umerical/categorical ariables and two umerical variables

- The $p_{\rm th}$ percentile is a value such that at least p% of the data set is less than or equal to this value [An Example]
- Calculation of percentiles using the indexing method:
 - Sort the set of numbers in an increasing order
 - ② For the p_{th} percentile, compute the index $i = \frac{np}{100}$ where n is the sample size
 - If i is an integer then p_{th} percentile is the average of i_{th} value and $(i+1)_{th}$ value, otherwise take the $(i+1)_{th}$ value
- Quartiles:
 - Q1: first quartile (25th percentile)
 - (Q2): median (second quartile, 50_{th} percentile)
 - Q3: third quartile (75th percentile)

Data Summary/Visualization

and Boxplots

umerical/categorical ariables and two umerical variables

- The p_{th} percentile is a value such that at least p% of the data set is less than or equal to this value [An Example]
- Calculation of percentiles using the indexing method:
 - Sort the set of numbers in an increasing order
 - ② For the p_{th} percentile, compute the index $i = \frac{np}{100}$ where n is the sample size
 - If *i* is an integer then p_{th} percentile is the average of i_{th} value and $(i+1)_{th}$ value, otherwise take the $(i+1)_{th}$ value
- Quartiles:
 - Q1: first quartile (25th percentile)
 - M (Q2): median (second quartile, 50th percentile)
 - Q3: third quartile (75th percentile)
 - Interquartile range or IQR: Q3 Q1

Percentiles, Quartiles, and Boxplots

numerical/categorical rariables and two numerical variables

Find Q_1, M, Q_3 and IQR of the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13 using the indexing method

Data Summary/Visualization

Percentiles, Quartiles, and Boxplots

numerical/categorical variables and two numerical variables

CLEMS N

Data Summary/Visu-

alization

Percentiles, Quartiles, and Boxplots

numerical/categorical variables and two numerical variables

Visualizing Time
Series,
Cross-Sectional, and
Spatio-Temporal Data

Find Q_1, M, Q_3 and IQR of the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13 using the indexing method

Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 21

CLEMS N

Data Summary/Visu-

alization

Percentiles, Quartiles, and Boxplots

numerical/categorical variables and two numerical variables

Visualizing Time
Series,
Cross-Sectional, and
Spatio-Temporal Data

Find Q_1, M, Q_3 and IQR of the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13 using the indexing method

Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 21

alization II CLEMS#N

Data Summary/Visu-

Percentiles Quartiles

variables and two numerical variables Visualizing Time

Series, Cross-Sectional, and Spatio-Temporal Data

- Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 21
- Find the sample size n and compute the indices for p = 25,50,75

CLEMS N

Data Summary/Visu-

alization

Percentiles, Quartiles, and Boxplots

variables and two numerical variables

Visualizing Time Series, Cross-Sectional, and Spatio-Temporal Data

- Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 21
- Find the sample size n and compute the indices for p = 25,50,75

alization II CLEMS

Data Summary/Visu-

Percentiles, Quartiles, and Boxplots

numerical/categorical variables and two numerical variables

Series, Cross-Sectional, and Spatio-Temporal Data

- Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 21
- ② Find the sample size n and compute the indices for p = 25, 50, 75
- **o** n = 9 ⇒ the indices are 3,5,7 ⇒ $Q_1 = 13$, M = 14, $Q_3 = 16$

alization II CLEMS

Data Summary/Visu-

Percentiles, Quartiles, and Boxplots

numerical/categorical variables and two numerical variables

Series, Cross-Sectional, and Spatio-Temporal Data

- Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 21
- ② Find the sample size n and compute the indices for p = 25, 50, 75
- **o** n = 9 ⇒ the indices are 3,5,7 ⇒ $Q_1 = 13$, M = 14, $Q_3 = 16$

Data Summary/Visualization

variables and two

Visualizing Time Series, Cross-Sectional, and Spatio-Temporal Data

- Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 21
- in Find the sample size n and compute the indices for p = 25, 50, 75

Steps to Making a Boxplot

- Data Summary/Visualization
- CLEMS N UNIVERSITY

and Boxplots

numerical variables

Visualizing Time

Series, Cross-Sectional, and Spatio-Temporal Data sets

- Find Q_1 , M, Q_3 and draw a box from Q_1 to Q_3 . Add a vertical line inside the box at M
- ② Compute the value of Lower Fence (LF) = Q1 1.5IQR and the Upper Fence (UF) = Q3 + 1.5IQR. Find the largest value ≤ UF and the smallest value ≥ LF. Draw whiskers go from Q_1 , Q_3 to these two values
- Plot the individual outlier(s) (i.e., the values either > UF or < LF)</p>

Bopxplot

• Ordered data values: 13, 13, 13, 13, 14, 14, 16, 18, 21

Percentiles, Quartiles, and Boxplots

numerical/categorical variables and two numerical variables

- Ordered data values: 13, 13, 13, 13, 14, 14, 16, 18, 21
- IQR $16 13 = 3 \Rightarrow \text{LF} = 13 1.5 \times 3 = 8.5$; UF = $16 + 1.5 \times 3 = 20.5$

CLEMS N

Percentiles, Quartiles, and Boxplots

numerical/categorical variables and two numerical variables

Suppose we have the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13, 9, 27, 18, 25, 20, 6

Find the 35th percentile

Data Summary/Visualization

and Boxplots

numerical/categorical variables and two numerical variables

Suppose we have the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13, 9, 27, 18, 25, 20, 6

Find the 35th percentile

Data Summary/Visualization

and Boxplots

numerical/categorical variables and two numerical variables

Suppose we have the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13, 9, 27, 18, 25, 20, 6

• Find the 35th percentile

Sort the data: 6, 9, 13, 13, 13, 13, 14, 14, 16, 18, 18, 20, 21, 25, 27

Data Summary/Visualization

and Boxplots

numerical/categorical variables and two numerical variables

Suppose we have the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13, 9, 27, 18, 25, 20, 6

• Find the 35th percentile

Sort the data: 6, 9, 13, 13, 13, 13, 14, 14, 16, 18, 18, 20, 21, 25, 27

Data Summary/Visualization

and Boxplots

numerical/categorical variables and two numerical variables

Suppose we have the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13, 9, 27, 18, 25, 20, 6

- Find the 35th percentile
 - O Sort the data: 6,9,13,13,13,13,14,14,16,18,18,20,21,25,27
 - ② Compute the index value $i = \frac{35 \times 15}{100} = 5.25 \Rightarrow$ the 35th percentile is 13

Data Summary/Visualization

and Boxplots

numerical/categorical variables and two numerical variables

Suppose we have the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13, 9, 27, 18, 25, 20, 6

- Find the 35th percentile
 - O Sort the data: 6,9,13,13,13,13,14,14,16,18,18,20,21,25,27
 - ② Compute the index value $i = \frac{35 \times 15}{100} = 5.25 \Rightarrow$ the 35th percentile is 13

Data Summary/Visualization

and Boxplots

numerical/categorical variables and two numerical variables

Suppose we have the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13, 9, 27, 18, 25, 20, 6

- Find the 35th percentile
 - O Sort the data: 6, 9, 13, 13, 13, 13, 14, 14, 16, 18, 18, 20, 21, 25, 27
 - ② Compute the index value $i = \frac{35 \times 15}{100} = 5.25 \Rightarrow$ the 35th percentile is 13
- Find the 65th percentile

Data Summary/Visualization

and Boxplots

numerical/categorical variables and two numerical variables

Suppose we have the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13, 9, 27, 18, 25, 20, 6

- Find the 35th percentile
 - O Sort the data: 6, 9, 13, 13, 13, 13, 14, 14, 16, 18, 18, 20, 21, 25, 27
 - ② Compute the index value $i = \frac{35 \times 15}{100} = 5.25 \Rightarrow$ the 35th percentile is 13
- Find the 65th percentile

Data Summary/Visualization

and Boxplots

numerical/categorical variables and two numerical variables

Suppose we have the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13, 9, 27, 18, 25, 20, 6

- Find the 35th percentile
 - Sort the data: 6, 9, 13, 13, 13, 13, 14, 14, 16, 18, 18, 20, 21, 25, 27
 - Ompute the index value $i = \frac{35 \times 15}{100} = 5.25 \Rightarrow$ the 35th percentile is 13
- Find the 65th percentile
 - O Sort the data: 6,9,13,13,13,13,14,14,16,18,18,20,21,25,27

Percentiles, Quartiles, and Boxplots

numerical/categorical variables and two numerical variables

Suppose we have the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13, 9, 27, 18, 25, 20, 6

- Find the 35th percentile
 - Sort the data: 6, 9, 13, 13, 13, 13, 14, 14, 16, 18, 18, 20, 21, 25, 27
 - Ompute the index value $i = \frac{35 \times 15}{100} = 5.25 \Rightarrow$ the 35th percentile is 13
- Find the 65th percentile
 - O Sort the data: 6,9,13,13,13,13,14,14,16,18,18,20,21,25,27

Percentiles, Quartiles, and Boxplots

numerical/categorical variables and two numerical variables

Suppose we have the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13, 9, 27, 18, 25, 20, 6

- Find the 35th percentile
 - Sort the data: 6, 9, 13, 13, 13, 13, 14, 14, 16, 18, 18, 20, 21, 25, 27
 - 2 Compute the index value $i = \frac{35 \times 15}{100} = 5.25 \Rightarrow$ the 35th percentile is 13
- Find the 65th percentile
 - Sort the data: 6,9,13,13,13,13,14,14,16,18,18,20,21,25,27
 - Ompute the index value $i = \frac{65 \times 15}{100} = 9.75 \Rightarrow$ the 65th percentile is 18

Visualizing numerical/categorical variables and two numerical variables

ORD Fligts Data Revisited

rrier	origin	arr_delay
UA	EWR	12
AA	LGA	8
AA	LGA	14
AA	LGA	4
UA	LGA	20
UA	EWR	21

In this example, we have two categorical variables, carrier, origin and a numerical variable arr_delay, respectively. How to visualize, for example, arr_delay Vs. carrier?

Data Summary/Visualization

Percentiles, Quartiles, and Royplots

Visualizing numerical/categorica variables and two numerical variables

ORD Example: Arrival Delay vs. Air Carrier

Data Summary/Visualization

Percentiles, Quartiles,

Visualizing
numerical/categorical
variables and two

Example: Max Heart Rate and Age

Suppose we have 15 people of varying ages are tested for their maximum heart rate (MHR)

Percentiles, Quartiles, and Boxplots

numerical/categorical variables and two

visualizing Time
Series,

MHR

- How many variables do we have in this data set? What are the variable types?
- How to summarize these variables?

Scatterplot

A scatterplot is a useful tool to graphically display the relationship between two numerical variables. Each dot on the scatterplot represents one observation from the data

Data Summary/Visualization

Percentiles, Quartiles,

numerical/categorical variables and two

Visualizing Time Series, Cross-Sectional, and Spatio-Temporal Data

Visualizing Time Series Data

Mauna Loa Atmospheric CO₂ Concentration

Data Summary/Visualization

Percentiles, Quartiles, and Boxplots

Visualizing numerical/categorical variables and two numerical variables

Visualizing Cross-Sectional Data

Data Summary/Visualization

Percentiles, Quartiles and Boxplots

numerical/categorical variables and two numerical variables

Visualizing Spatio-Temporal Data

Data Summary/Visualization

Percentiles, Quartiles, and Boxplots

Visualizing numerical/categorica variables and two numerical variables

Summary

In this lecture, we learned

- Percentiles and Quartiles
- How to construct a Boxplot
- How to visualize numerical/categorical and two numerical Variables
- How to visualize time series, cross-sectional, spatio-temporal data sets

We will talk about Probability in the next few weeks

Data Summary/Visualization

Percentiles, Quartiles, and Boxplots

numerical/categorical variables and two numerical variables