Entwurf eines digitalen Tiefpassfilters

Ausgehend von einem analogen Bessel-Tiefpass-Filter dritter Ordnung, bestehend aus einem Tiefpass erster und einem Tiefpass zweiter Ordnung, ist mit der Methode der bilinearen

Transformation ein digitales Filter zu entwerfen ("prewarping" mit $W_c = \tan \frac{p.f_g}{f_s}$).

Anschließend sind die Frequenzabhängigkeit der Übertragungsfunktion und die Sprungantwort zu ermitteln.

Abtastfrequenz: 500kHz Grenzfrequenz: 50kHz

- (a) Geben Sie die Übertragungsfunktionen der analogen Filter an
- (b) Zeichnen Sie die Struktur des digitalen Filters und geben Sie die für die Filterkoeffizienten ermittelten Werte an!
- (c) Stellen Sie die Frequenzabhängigkeit der Übertragungsfunktion (nur Absolutbetrag) im linearen Maßstab dar (0<f<0.5f_s) und geben Sie Werte für die Übertragungsfunktion (Absolutbetrag) bei den Frequenzen $f = 0.1 f_s$, $f = 0.2 f_s$ und $f = 0.3 f_s$ an!

Hinweis:
$$z = e^{j.2p.F}$$
 $F = \frac{f}{f_s}$

(d) Stellen Sie die Sprungantwort dar (mindestens 5 Abtastwerte sind zu berechnen)!

Filtertabelle:

n	i	a_i	b_i	$f_{\mathrm{g}i}/f_{\mathrm{g}}$	Q_i
Bessel-Fi	lter				
1	1	1,0000	0,0000	1,000	-
2	1	1,3617	0,6180	1,000	0,58
3	1	0,7560	0,0000	1,323	_
	2	0,9996	0,4772	1,414	0,69
4	1	1,3397	0,4889	0,978	0,52
	2	0,7743	0,3890	1,797	0,81
5	1	0,6656	0,0000	1,502	_
	2	1,1402	0,4128	1,184	0,56
	3	0,6216	0,3245	2,138	0,92

Lösungen:

Bessel-Filter 3. Ordnung: $TP1 \stackrel{.}{\mathbf{e}} a_1 = 0,756$ $TP2 \stackrel{.}{\mathbf{e}} a_2 = 0,9996, b_2 = 0,4772$

TP 1.Ordnung:
$$H_1(z) = \frac{1}{3.33} * \frac{1+z^{-1}}{1-0.4z^{-1}}$$

TP 2.Ordnung:
$$H_2(z) = \frac{1}{8.6} * \frac{1 + 2z^{-1} + z^{-2}}{1 - 0.82z^{-1} + 0.28z^{-2}}$$

8,0 1 - 0,82
$$z$$
 + 0,28 z
 $H(z) = H_1(z) \cdot H_2(z)$ $H(f) = H_1(f) \cdot H_2(f)$
 $f = 0,1f_s \stackrel{\triangleright}{\mathbf{e}} |H(f)| = 0,7$ $f = 0,2f_s \stackrel{\triangleright}{\mathbf{e}} |H(f)| = 0,2$ $f = 0,3f_s \stackrel{\triangleright}{\mathbf{e}} |H(f)| = 0,03$
 $y(k): y(0) = 0$ $y(1) = 0,036$ $y(2) = 0,19$ $y(3) = 0,46$ $y(4) = 0,74$ $y(5) = 0,93$

$$f = 0.3f_s \, \grave{e} \, |H(f)| = 0.03$$

$$y(5) = 0.93$$