Greedy algorithms

Set Cover (Textbook Section 5.4)

Problem (Set Cover)

Problem (Set Cover)

Input:

Problem (Set Cover)

Input:

a set B

Problem (Set Cover)

Input:

- a set B
- subsets $S_1, \ldots, S_n \subseteq B$

Problem (Set Cover)

Input:

- a set B
- subsets $S_1, \ldots, S_n \subseteq B$

Output: a collection of subsets S_{i_1}, \ldots, S_{i_m} s.t. $\bigcup_{k=1}^m S_{i_k} = B$

Problem (Set Cover)

Input:

- a set B
- subsets $S_1, \ldots, S_n \subseteq B$

Output: a collection of subsets S_{i_1}, \ldots, S_{i_m} s.t. $\bigcup_{k=1}^m S_{i_k} = B$

Goal: minimize the number of selected subsets

Example: Each post office can serve 30 miles. Where to build post offices in centre county?

Example: Each post office can serve 30 miles. Where to build post offices in centre county?

Example: Each post office can serve 30 miles. Where to build post offices in centre county?

Example: Each post office can serve 30 miles. Where to build post offices in centre county?

$$B = \{a, b, \dots, k\}$$

Example: Each post office can serve 30 miles. Where to build post offices in centre county?

$$B = \{a, b, ..., k\}$$

 $S_a = \{a, b, d, e, h, i, k\}$

Example: Each post office can serve 30 miles. Where to build post offices in centre county?

$$B = \{a, b, ..., k\}$$

$$S_a = \{a, b, d, e, h, i, k\}$$

$$S_b = \{b, c, a, d\}$$

Example: Each post office can serve 30 miles. Where to build post offices in centre county?

$$B = \{a, b, ..., k\}$$

$$S_a = \{a, b, d, e, h, i, k\}$$

$$S_b = \{b, c, a, d\}$$

$$\vdots$$

$$S_k = \{k, a, h, i, j\}$$

Example: Each post office can serve 30 miles. Where to build post offices in centre county?

$$B = \{a, b, ..., k\}$$

$$S_a = \{a, b, d, e, h, i, k\}$$

$$S_b = \{b, c, a, d\}$$

$$\vdots$$

$$S_k = \{k, a, h, i, j\}$$

 S_x : the towns within 30 miles of x

$$S_a = \{a, b, d, e, h, i, k\}$$

$$S_a = \{a, b, d, e, h, i, k\}$$

 $S_f = \{f, g, e\}$

$$S_a = \{a, b, d, e, h, i, k\}$$

 $S_f = \{f, g, e\}$
 $S_C = \{c, b, d\}$

$$S_a = \{a, b, d, e, h, i, k\}$$

 $S_f = \{f, g, e\}$
 $S_c = \{c, b, d\}$
 $S_j = \{i, k, j, h\}$

Greedy heuristic: choose the next subset with the most number of uncovered items, until *B* gets covered

$$S_a = \{a, b, d, e, h, i, k\}$$

 $S_f = \{f, g, e\}$
 $S_c = \{c, b, d\}$
 $S_j = \{i, k, j, h\}$

Is this optimal?

Greedy heuristic: choose the next subset with the most number of uncovered items, until *B* gets covered

$$S_a = \{a, b, d, e, h, i, k\}$$

 $S_f = \{f, g, e\}$
 $S_c = \{c, b, d\}$
 $S_j = \{i, k, j, h\}$

Is this optimal?

Optimal solution: S_b, S_e, S_i

Although the greedy solution is not optimal, but it's not off by much

Although the greedy solution is not optimal, but it's not off by much

Theorem

Assume |B| = n and the optimal solution uses k subsets.

Mar 3, 2022

Although the greedy solution is not optimal, but it's not off by much

Theorem

Assume |B| = n and the optimal solution uses k subsets. Then the greedy algorithm uses at most $k \ln(n)$ subsets

Although the greedy solution is not optimal, but it's not off by much

Theorem

Assume |B| = n and the optimal solution uses k subsets. Then the greedy algorithm uses at most $k \ln(n)$ subsets

ln(n): approximation ratio

Although the greedy solution is not optimal, but it's not off by much

Theorem

Assume |B| = n and the optimal solution uses k subsets. Then the greedy algorithm uses at most $k \ln(n)$ subsets

ln(n): approximation ratio

More about approximation algorithms: CSE 565

Proof: Let n_t be the number of elements not covered by the greedy algorithm after t iterations.

Mar 3, 2022

Proof: Let n_t be the number of elements not covered by the greedy algorithm after t iterations. These remaining n_t elements are covered by the optimal k subsets.

Proof: Let n_t be the number of elements not covered by the greedy algorithm after t iterations. These remaining n_t elements are covered by the optimal k subsets. So some subsets has $\geq \frac{n_t}{k}$ of these uncovered elements,

Suppose not. all subsets have $<\frac{n_{\ell}}{k}$ of the uncovard elements total number of elements covered by them k subsets $<\frac{n_{\ell}}{k}$. $k=n_{\ell}$

Proof: Let n_t be the number of elements not covered by the greedy algorithm after t iterations. These remaining n_t elements are covered by the optimal k subsets. So some subsets has $\geq \frac{n_t}{k}$ of these uncovered elements, and the greedy algorithm will pick a set of size at least $\frac{n_t}{k}$.

Proof: Let n_t be the number of elements not covered by the greedy algorithm after t iterations. These remaining n_t elements are covered by the optimal k subsets. So some subsets has $\geq \frac{n_t}{k}$ of these uncovered elements, and the greedy algorithm will pick a set of size at least $\frac{n_t}{k}$. So, $n_{t+1} \leq n_t - \frac{n_t}{k} = n_t \left(1 - \frac{1}{k}\right)$ $n_t \leq n_{t+1} \left(1 - \frac{1}{k}\right) \leq n_{t+2} \left(1 - \frac{1}{k}\right)^2 \leq \dots \leq n_0 \left(1 - \frac{1}{k}\right)^t = n \left(1 - \frac{1}{k}\right)^t$

Mar 3, 2022

Repeatedly applying this:

Mar 3, 2022

Repeatedly applying this:

$$n_t \le n_{t-1} \left(1 - \frac{1}{k} \right) \le n_{t-2} \left(1 - \frac{1}{k} \right)^2 \le \dots \le n_0 \left(1 - \frac{1}{k} \right)^t = n \left(1 - \frac{1}{k} \right)^t$$

Repeatedly applying this:

$$\begin{split} n_t &\leq n_{t-1} \left(1 - \frac{1}{k}\right) \leq n_{t-2} \left(1 - \frac{1}{k}\right)^2 \leq \dots \leq n_0 \left(1 - \frac{1}{k}\right)^t = n \left(1 - \frac{1}{k}\right)^t \\ \text{Using the fact: } 1 - x \leq e^{-x} \text{ (equality when } x = 0) \qquad \left(I - \frac{1}{k}\right) \leq e^{-\frac{1}{k}} \\ n_t &\leq n \left(1 - \frac{1}{k}\right)^t \leq n e^{-t/k} \qquad \left(I - \frac{1}{k}\right)^t \leq e^{-\frac{t}{k}} \end{split}$$

Repeatedly applying this:

$$n_t \le n_{t-1} \left(1 - \frac{1}{k} \right) \le n_{t-2} \left(1 - \frac{1}{k} \right)^2 \le \dots \le n_0 \left(1 - \frac{1}{k} \right)^t = n \left(1 - \frac{1}{k} \right)^t$$

Using the fact: $1 - x \le e^{-x}$ (equality when x = 0)

$$n_t \le n \left(1 - \frac{1}{k}\right)^t \le n e^{-t/k}$$

Greedy algorithm terminates when $n_t < 1$. Let's find out what t makes $n_t < 1$

Since $n_t < ne^{-t/k}$, it suffices to make $ne^{-t/k} \le 1$ what it happen?

Mar 3, 2022

Since
$$n_t < ne^{-t/k}$$
, it suffices to make $ne^{-t/k} \le 1$
Solving $ne^{-t/k} \le 1 \iff e^{-t/k} \le \frac{1}{n}$
 $\iff -\frac{1}{k} \le \ln \left(\frac{1}{n}\right)$
 $\iff -\frac{1}{k} \le \ln \left(\frac{1}{n}\right) = k \ln n$

Solving
$$ne^{-t/k} \leq 1$$

$$\iff e^{-t/k} \leq \frac{1}{n} \iff -\frac{t}{k} \leq \ln(\frac{1}{n}) \iff t \geq -k \ln(\frac{1}{n}) = k \ln(n)$$

Solving
$$ne^{-t/k} \leq 1$$

$$\iff$$
 $e^{-t/k} \le \frac{1}{n} \iff -\frac{t}{k} \le \ln(\frac{1}{n}) \iff t \ge -k \ln(\frac{1}{n}) = k \ln(n)$

At $t = k \ln(n)$, $n_t < 1$. Everything is covered

Solving
$$ne^{-t/k} \leq 1$$

$$\iff e^{-t/k} \le \frac{1}{n} \iff -\frac{t}{k} \le \ln(\frac{1}{n}) \iff t \ge -k \ln(\frac{1}{n}) = k \ln(n)$$

At $t = k \ln(n)$, $n_t < 1$. Everything is covered

Proof of the fact $1 - x \le e^{-x}$ (equality when x = 0):

Solving
$$ne^{-t/k} \leq 1$$

$$\iff e^{-t/k} \le \frac{1}{n} \iff -\frac{t}{k} \le \ln(\frac{1}{n}) \iff t \ge -k \ln(\frac{1}{n}) = k \ln(n)$$

At $t = k \ln(n)$, $n_t < 1$. Everything is covered

Proof of the fact $1 - x \le e^{-x}$ (equality when x = 0):

Consider
$$f(x) = e^{-x} - (1 - x) \ge 0$$

Solving
$$ne^{-t/k} \leq 1$$

$$\iff e^{-t/k} \le \frac{1}{n} \iff -\frac{t}{k} \le \ln(\frac{1}{n}) \iff t \ge -k \ln(\frac{1}{n}) = k \ln(n)$$

At $t = k \ln(n)$, $n_t < 1$. Everything is covered

Proof of the fact $1-x \le e^{-x}$ (equality when x=0):

Consider
$$f(x) = e^{-x} - (1 - x) \ge 0$$

 $f'(x) = -e^{-x} + 1$. Critical point at x = 0, achieving minimum

