Instructor: Fred Khoury

- 1. Find the lengths of the missing sides and angles for each triangle:
 - a) $B = 79.2^{\circ}$, $C = 35.1^{\circ}$, a = 11.3
 - b) $A = 120^{\circ}$, a = 20, b = 40
 - c) $A = 47^{\circ}$, a = 80, b = 70
 - d) $B = 47^{\circ}$, a = 20, b = 18
 - e) $A = 56^{\circ}$, b = 20, c = 30
 - f) a = 20, b = 30, c = 11
 - g) $B = 70^{\circ}$, $C = 10^{\circ}$, a = 3
 - h) a = 8, b = 14, c = 15
- A ship sailing parallel to shore sights a lighthouse at an angle of 10° from its direction of travel. After 2. traveling 5 miles farther, the angle is 23°. At that time, how far is the ship from the lighthouse?
- The diagonals of a parallelogram are 26.8 meters and 39.4 meters. If they meet at an angle of 134.5°, 3. find the length of the shorter side of the parallelogram.
- 4. Let u = -11i + 9j, v = 9i - 7j and w = i - 4j. Find the following
 - a) 4u 3v
 - b) 2u 4v + 6w
 - c) $u \cdot v$
 - $d) v \cdot w$
 - e) $|\mathbf{u}|$, $|\mathbf{v}|$ and $|\mathbf{w}|$
 - f) Angle between u and v
 - g) Angle between u and w
- 5. Write the complex in trigonometric form

- a) 3-4i b) $\sqrt{3}-i$ c) 2+2i d) -12+16i e) -5i f) -5

- Find and leave in polar form 6.
 - a) $(10cis30^{\circ}) \cdot (5cis10^{\circ})$ b) $(5cis35^{\circ}) \cdot (2cis40^{\circ})$
- c) $\left(8 \cos \frac{\pi}{6}\right) \cdot \left(3 \cos \frac{\pi}{2}\right)$
- d) $\frac{5 \text{ cis } 200^{\circ}}{4 \text{ cis } 50^{\circ}}$ e) $\frac{8 \text{ cis } \frac{\pi}{2}}{3 \text{ cis } \frac{\pi}{6}}$

- $f) \frac{\sqrt{3} cis \frac{7\pi}{4}}{\sqrt{6} cis \frac{9\pi}{4}}$
- 7. Convert the polar coordinates of a point to the rectangular coordinates
- b) $\left(7, \frac{2\pi}{3}\right)$ b) $\left(-9, \frac{3\pi}{4}\right)$ c) $\left(-3, -135^{\circ}\right)$ d) $\left(7, 70^{\circ}\right)$

Convert the rectangular coordinates of a point to the polar coordinates 8.

a) (-3, 3) b) $(-\sqrt{3}, 1)$ c) (-2, 0.4) d) (0.6, -1.1)

9. Convert each equation from polar to rectangular coordinates

a) r = 2

b) $r = 2\sin\theta$

c) $\tan \theta = 1$

d) $r=1+2\sin\theta$ e) $r=\frac{5}{1+\cos\theta}$

f) $r = \cos \theta$

g) $r = 2(\sin\theta - \cos\theta)$ h) $r\sin\theta = 10$

i) $r(1-2\cos\theta)=1$

1) $r - 3\sin\theta = 3\cos\theta$

10. Convert each equation from rectangular to polar coordinates

a) $x^2 + y^2 - 2x = 0$ b) x + y = 2

c) x - y = 16

d) 7x - y = 6

b) x + y = 2e) 2x + 3y = 6

 $f) x^2 + y^2 = 144$

11. Find

a) $\left[2(cis15^{\circ})\right]^3$ b) $\left[\sqrt{2}\left(cis\frac{3\pi}{4}\right)\right]^4$

c) $\left[\sqrt{3}\left(cis\frac{5\pi}{6}\right)\right]^4$

 $d) \left(1+i\right)^{20}$

e) complex fifth roots of -2i f) complex fifth roots of $\sqrt{3}+i$

Answers

- a) $A \approx 65.7^{\circ}$, $b \approx 12.2$, $c \approx 7.13$ 1.
 - b) no triangle possible
 - c) $B \approx 40^{\circ}$, $C \approx 93^{\circ}$, $c \approx 110$
 - d) Triangle #1: $A \approx 54^\circ$, $C \approx 79^\circ$, $c \approx 24$; triangle #2: $A \approx 126^\circ$, $C \approx 7^\circ$, $c \approx 3.0$
 - e) $B \approx 41^{\circ}$, $C \approx 83^{\circ}$, $a \approx 25$
 - f) $A \approx 20^{\circ}$, $B \approx 149^{\circ}$, $C \approx 11^{\circ}$
 - g) $A \approx 100^{\circ}$, $b \approx 2.86$, $c \approx 0.53$
 - h) $A \approx 31.8^{\circ}$, $B \approx 67.2^{\circ}$, $C \approx 81^{\circ}$
- 2. **3.86** miles
- 3. 14.1 meters
- 4.

- a) -62i + 57j b) -52i + 22j c) -162 d) 37 e) $\sqrt{202}$, $\sqrt{130}$, $\sqrt{17}$
- f) 178.58°
- g) 143.3°
- **5.**
- a) $5 cis 306.87^{\circ}$ b) $2 cis 330^{\circ}$ c) $2\sqrt{2} cis 45^{\circ}$ d) $20 cis 126.9^{\circ}$ e) $5 cis 270^{\circ}$ f) $5 cis 180^{\circ}$

- 6.
- a) $50 cis 40^{\circ}$ b) $10 cis 75^{\circ}$ c) $24 cis \frac{2\pi}{3}$ d) $\frac{5}{4} cis 150^{\circ}$ e) $\frac{8}{3} cis \frac{\pi}{3}$ f) $\frac{\sqrt{2}}{2} cis \frac{3\pi}{2}$
- 7. $a) \left(-\frac{7}{2}, \frac{7\sqrt{3}}{2} \right)$ $b) \left(\frac{9\sqrt{2}}{2}, -\frac{9\sqrt{2}}{2} \right)$ $c) \left(\frac{3\sqrt{2}}{2}, \frac{3\sqrt{2}}{2} \right)$ d) (2.39, 6.58)

- **8.** a) $\left(3\sqrt{2}, \frac{3\pi}{4}\right)$ b) $\left(2, \frac{5\pi}{6}\right)$

- c) (2.04, 2.94) d) $(1.25, -61.39^{\circ})$

- **9.** a) $x^2 + y^2 = 4$ b) $x^2 + y^2 2y = 0$ c) y = x d) $x^2 + y^2 = \sqrt{x^2 + y^2} + 2y$
- e) $y^2 = 25 10x$ f) $x^2 + y^2 = x$ g) $x^2 + y^2 = 2y 2x h$ y = 10
- i) $\sqrt{x^2 + y^2} = 1 + 2x$ j) x y = 3 k) 4y + 2x = 4 l) $x^2 + y^2 3y = 3x$

- **10.** a) $r = 2\cos\theta$ b) $r = \frac{2}{\cos\theta + \sin\theta}$ c) $r = \frac{16}{\cos\theta \sin\theta}$ d) $r = \frac{6}{7\cos\theta \sin\theta}$

- e) $r = \frac{6}{2\cos\theta + 3\sin\theta}$
 - f) r = 12
- **11.** a) $4\sqrt{2} + i4\sqrt{2}$ b) -4

- c) $-\frac{9}{2} \frac{9\sqrt{3}}{2}i$
- *d*) −1024
- e) $\sqrt[5]{2}$ cis54°, $\sqrt[5]{2}$ cis126°, $\sqrt[5]{2}$ cis198°, $\sqrt[5]{2}$ cis270°, $\sqrt[5]{2}$ cis342°
- f) $\sqrt[5]{2}$ cis6°, $\sqrt[5]{2}$ cis78°, $\sqrt[5]{2}$ cis150°, $\sqrt[5]{2}$ cis222°, $\sqrt[5]{2}$ cis294°