Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение Высшего образования

«Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа 5 по вычислительной математике

Интерполяция функции Вариант №10

Преподаватель: Малышева Татьяна Алексеева

Выполнил: Состанов Тимур Айратович

Группа: Р3214

Г. Санкт-Петербург

Оглавление

Цель работы	3
Порядок выполнения работы	
Рабочие формулы	
Вычислительная реализация задачи	
Программная реализация задачи	
Листнинг программы:	
Результат работы программы:	14
Вывод	18

Цель работы

Порядок выполнения работы

Обязательное задание (до 80 баллов)

Вычислительная реализация задачи:

- 1. Выбрать из табл. 1 заданную по варианту таблицу y = f(x) (таблица 1.1 таблица 1.5);
- 2. Построить таблицу конечных разностей для заданной таблицы. Таблицу отразить в отчете;
- 3. Вычислить значения функции для аргумента *X*1 (см. табл.1), используя первую или вторую интерполяционную формулу Ньютона. Обратить внимание какой конкретно формулой необходимо воспользоваться;
- 4. Вычислить значения функции для аргумента *X*2 (см. табл. 1), используя первую или вторую интерполяционную формулу Гаусса. Обратить внимание какой конкретно формулой необходимо воспользоваться;
- 5. Подробные вычисления привести в отчете.

Программная реализация задачи:

- 1. Исходные данные задаются тремя способами:
 - а) в виде набора данных (таблицы х,у), пользователь вводит значения с клавиатуры;
 - b) в виде сформированных в файле данных (подготовить не менее трех тестовых вариантов);
 - с) на основе выбранной функции, из тех, которые предлагает программа, например, $\sin x$. Пользователь выбирает уравнение, исследуемый интервал и количество точек на интервале (не менее двух функций).
- 2. Сформировать и вывести таблицу конечных разностей;
- 3. Вычислить приближенное значение функции для заданного значения аргумента, введенного с клавиатуры, указанными методами (см. табл. 2). Сравнить полученные значения;
- 4. Построить графики заданной функции с отмеченными узлами интерполяции и интерполяционного многочлена Ньютона/Гаусса (разными цветами);
- 5. Программа должна быть протестирована на различных наборах данных, в том числе и некорректных.
- 6. Проанализировать результаты работы программы.

Необязательное задание (до 20 баллов)

- 1. Реализовать в программе вычисление значения функции для заданного значения аргумента, введенного с клавиатуры, используя схемы Стирлинга;
- 2. Реализовать в программе вычисление значения функции для заданного значения аргумента, введенного с клавиатуры, используя схемы Бесселя

Рабочие формулы

Многочлен Лагранжа

$$L_n(x) = \sum_{i=0}^n y_i \, l_i(x)$$

$$Ln(x) = \sum_{i=0}^{n} y_i \frac{(x-x_0)(x-x_1)...(x-x_{i-1})(x-x_{i+1})...(x-x_n)}{(x_i-x_0)(x_i-x_1)...(x_i-x_{i-1})(x_i-x_{i+1})...(x_i-x_n)}$$

$$L_n(x) = \sum_{i=0}^n y_i \prod_{\substack{j=0 \ i \neq i}}^n \frac{x - x_j}{x_i - x_j}$$
 (8)

Полином Лагранжа имеет малую погрешность при небольших значениях $n\ (n < 20)$.

К недостаткам можно отнести то, что с изменением числа узлов приходится все *вычисления проводить заново*.

Многочлен Ньютона

<u>Разделенные разности k-го порядка</u> определяются через разделенные разности порядка k-1:

$$f(x_i, x_{i+1}, \dots, x_{i+k}) = \frac{f(x_{i+1}, \dots, x_{i+k}) - f(x_i, x_{i+k-1})}{x_{i+k} - x_i}$$

Они определяются рекуррентно, начиная с первого порядка.

Используя понятие разделенной разности интерполяционный многочлен Ньютона можно записать в следующем виде:

$$N_{n}(x) = f(x_{0}) + f(x_{0}, x_{1}) \cdot (x - x_{0}) + f(x_{0}, x_{1}, x_{2}) \cdot (x - x_{0}) \cdot (x - x_{1}) + \dots + f(x_{0}, x_{1}, \dots, x_{n}) \cdot (x - x_{0}) \cdot (x - x_{1}) \dots (x - x_{n-1})$$

$$N_{n}(x) = f(x_{0}) + \sum_{k=1}^{n} f(x_{0}, x_{1}, \dots, x_{k}) \prod_{j=0}^{k-1} (x - x_{j})$$

$$(9)$$

Отметим, что при добавлении новых узлов первые члены многочлена Ньютона остаются неизменными.

Для повышения точности интерполяции в сумму могут быть добавлены новые члены, что требует подключения дополнительных интерполяционных узлов. При этом безразлично, в каком порядке подключаются новые узлы. Этим формула Ньютона выгодно отличается от формулы Лагранжа.

Интерполяционные формулы Ньютона для равноотстоящих узлов

Введем обозначение: $t = (x - x_0)/h$. Тогда получим формулу Ньютона, которая называется **первой интерполяционной формулой Ньютона для интерполирования вперед:**

$$N_n(x) = y_0 + t\Delta y_0 + \frac{t(t-1)}{2!}\Delta^2 y_0 + \dots + \frac{t(t-1)\dots(t-n+1)}{n!}\Delta^n y_0$$

Полученное выражение может аппроксимировать функцию на всем отрезке изменения аргумента $[x_0,x_n]$. Однако более целесообразно (с точки зрения повышения точности расчетов) использовать эту формулу для $x_0 \le x \le x_1$. При этом за x_0 может приниматься любой узел интерполяции x_k . Например, для $x_1 \le x \le x_2$, вместо x_0 надо взять значение x_1 . Тогда интерполяционный многочлен Ньютона:

$$N_n(x) = y_i + t\Delta y_i + \frac{t(t-1)}{2!} \Delta^2 y_i + \dots + \frac{t(t-1)\dots(t-n+1)}{n!} \Delta^n y_i \quad (*)$$

Интерполяционную формулу (*) обычно используют для вычислений значений функции в точках левой половины отрезка.

Для правой половины отрезка разности вычисляют справа налево: $t = (x - x_n)/h$. Тогда получим формулу Ньютона, которая называется **второй интерполяционной формулой Ньютона для интерполирования назад:**

$$N_n(x) = y_n + t\Delta y_{n-1} + \frac{t(t+1)}{2!}\Delta^2 y_{n-2} + \dots + \frac{t(t+1)\dots(t+n-1)}{n!}\Delta^n y_0$$

Интерполяционные многочлены Гаусса, Стирлинга, Бесселя

Первая интерполяционная формула Гаусса (x>a)

$$\begin{split} P_n(x) &= y_0 + t\Delta y_0 + \frac{t(t-1)}{2!}\Delta^2 y_{-1} + \frac{(t+1)t(t-1)}{3!}\Delta^3 y_{-1} \\ &+ \frac{(t+1)t(t-1)(t-2)}{4!}\Delta^4 y_{-2} \\ &+ \frac{(t+2)(t+1)t(t-1)(t-2)}{5!}\Delta^5 y_{-2} \dots \\ &+ \frac{(t+n-1)\dots(t-n+1)}{(2n-1)!}\Delta^{2n-1} y_{-(n-1)} \\ &+ \frac{(t+n-1)\dots(t-n)}{(2n)!}\Delta^{2n} y_{-n} \end{split}$$

Вторая интерполяционная формула Гаусса (x < a)

$$\begin{split} P_{n}(x) &= y_{0} + t\Delta y_{-1} + \frac{t(t+1)}{2!}\Delta^{2}y_{-1} + \frac{(t+1)t(t-1)}{3!}\Delta^{3}y_{-2} \\ &+ \frac{(t+2)(t+1)t(t-1)}{4!}\Delta^{4}y_{-2} + \cdots \\ &+ \frac{(t+n-1)\dots(t-n+1)}{(2n-1)!}\Delta^{2n-1}y_{-n} \\ &+ \frac{(t+n)(t+n-1)\dots(t-n+1)}{(2n)!}\Delta^{2n}y_{-n} \end{split}$$

Вычислительная реализация задачи

X	Y		
2,10	3,7587		
2,15	4,1861		
2,20	4,9218		
2,25	5,3487		
2,30	5,9275		
2,35	6,4193		
2,40	7,0839		

X_1	X_2
2,355	2,254

Таблица конечных разностей:

Конечные разности нулевого порядка совпадают со значениями функции в узлах:

$$\Delta^0 y_i = y_i$$

Конечными разностями к-го порядка называют величины:

$$\Delta^k y_i = \Delta^{k-1} y_{i+1} - \Delta^{k-1} y_i$$

Таким образом:

No	$\Delta^0 y_i$	$\Delta^1 y_i$	$\Delta^2 y_i$	$\Delta^3 y_i$	$\Delta^4 y_i$	$\Delta^5 y_i$	$\Delta^6 y_i$
0 (-3)	3.7587	0.4274	0.3083	-0.6171	1.0778	-1.7774	2.975 <mark>7</mark>
1 (-2)	4.1861	0.7357	-0.3088	0.4607	<mark>-0.6996</mark>	1.1983	ı
2 (-1)	4.9218	0.4269	0.1519	-0.2389	0.4987	-	ı
3 (0)	5.3487	<mark>0.5788</mark>	-0.087	0.2598	-	-	-
4 (1)	5.9275	0.4918	0.1728	-	-	-	-
5 (2)	6.4193	0.6646	-	_	-	-	-
6 (3)	7.0839	-	_	-	_	-	-

Вычислим значение функции для аргумента $X_1 = 2.355$, используя формулу Ньютона для интерполяции назад, так как X_1 лежит во второй половине отрезка

$$t = \frac{x - x_n}{h} = \frac{x - x_6}{h}$$

Где h – шаг равномерно распределенного значения x, поэтому

$$\begin{split} h &= x_1 - x_0 \\ N_6(x) &= y_6 + t \Delta y_5 + \frac{t(t+1)}{2!} \Delta^2 y_4 + \frac{t(t+1)(t+2)}{3!} \Delta^3 y_3 + \frac{t(t+1)(t+2)(t+3)}{4!} \Delta^4 y_2 \\ &\quad + \frac{t(t+1)(t+2)(t+3)(t+4)}{5!} \Delta^5 y_1 + \frac{t(t+1)(t+2)(t+3)(t+4)(t+5)}{6!} \Delta^6 y_0 \end{split}$$

$$\begin{split} h &= x_1 - x_0 = 2,15 - 2,10 = 0,05 \\ t &= \frac{2,355 - 2,40}{0,05} = -0,9 \\ y(2.355) &= 7.0839 + (-0.9) \cdot 0.6646 + \frac{(-0.9) \cdot 0.1}{2 \cdot 1} \cdot 0.1728 + \frac{(-0.9) \cdot 0.1 \cdot 1.1}{3 \cdot 2 \cdot 1} \cdot 0.2598 \\ &+ \frac{(-0.9) \cdot 0.1 \cdot 1.1 \cdot 2.1}{4 \cdot 3 \cdot 2 \cdot 1} \cdot 0.4987 + \frac{(-0.9) \cdot 0.1 \cdot 1.1 \cdot 2.1 \cdot 3.1}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} \cdot 1.1983 \\ &+ \frac{(-0.9) \cdot 0.1 \cdot 1.1 \cdot 2.1 \cdot 3.1 \cdot 4.1}{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} \cdot 2.9757 = 6.4520 \end{split}$$

Вычислим значение функции для аргумента $X_2 = 2.254$, используя первую интерполяционную формулу Гаусса, так как X_2 лежит в правой половине отрезка (выделенно желтым)

$$h = x_1 - x_0 = 2,15 - 2,10 = 0,05$$
$$t = \frac{x - x_0}{h} = \frac{2.254 - 2.25}{0.05} = 0.08$$

$$\begin{split} P_3(x) &= y_0 + t \Delta y_0 + \frac{t(t-1)}{2!} \Delta^2 y_{-1} + \frac{(t+1)t(t-1)}{3!} \Delta^3 y_{-1} + \frac{(t+1)t(t-1)(t-2)}{4!} \Delta^4 y_{-2} \\ &\quad + \frac{(t+2)(t+1)t(t-1)(t-2)}{5!} \Delta^5 y_{-2} + \frac{(t+2)(t+1)t(t-1)(t-2)(t-3)}{6!} \Delta^6 y_{-3} \\ y(2.254) &= 5.3487 + 0.08 \cdot 0.5788 + \frac{0.08 \cdot (-0.92)}{2 \cdot 1} \cdot 0.1519 + \frac{1.08 \cdot 0.08 \cdot (-0.92)}{3 \cdot 2 \cdot 1} \cdot (-0.2389) \\ &\quad + \frac{1.08 \cdot 0.08 \cdot (-0.92) \cdot (-1.92)}{4 \cdot 3 \cdot 2 \cdot 1} \cdot (-0.6996) + \frac{2.08 \cdot 1.08 \cdot 0.08 \cdot (-0.92) \cdot (-1.92)}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} \cdot 1.1983 + \frac{2.08 \cdot 1.08 \cdot 0.08 \cdot (-0.92) \cdot (-1.92) \cdot (-2.92)}{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} \cdot 2.9757 = 5.3875 \end{split}$$

Программная реализация задачи

Листнинг программы:

```
def newton_divided_differences(x, y):
    n = len(x)
    coef = np.zeros([n, n])
    coef[:, 0] = y

for j in range(1, n):
    for i in range(n - j):
        coef[i][j] = (coef[i + 1][j - 1] - coef[i][j - 1]) / (x[i + j] - x[i])

return coef

def newton_interpolation(x_data, y_data, x):
    coef = newton_divided_differences(x_data, y_data)
    n = len(x_data) - 1
    p = coef[0][n]
    for k in range(1, n + 1):
        p = coef[0][n - k] + (x - x_data[n - k]) * p

return p
```

```
def newton_finite_differences_first(x, x_value, table):
    n = len(x)
    coef = table[0]
    t = (x_value - x[0]) / (x[1] - x[0])
    result = round(coef[0], 4)
    for j in range(1, n):
        delta_t = t
        term = round(coef[j], 4)
        for i in range(j):
            term *= (delta_t - i)
            term /= (i + 1)
        result += term
    return result
def newton_finite_differences_second(x, x_value, coef):
    n = len(x)
   t = (x_value - x[-1]) / (x[1] - x[0])
    result = round(coef[-1][0], 4)
    for j in range(1, n):
        delta_t = t
        term = round(coef[-(j + 1)][j], 4)
        for i in range(j):
            term *= (delta_t + i)
           term /= (i + 1)
        result += term
    return result
```

Результат работы программы:

```
Выберите способ ввода данных:

1: Ввод с клавиатуры

2: Загрузка из файла

3: Генерация на основе функции
Ваш выбор (1/2/3): 2
Введите имя файла: data.txt

Таблица точек (x, y):

+----+
| x | y |
+----+
| 0.1 | 1.25 |
| 0.2 | 2.38 |
| 0.3 | 3.79 |
| 0.4 | 5.44 |
| 0.5 | 7.14 |
+----+
Введите значение аргумента для интерполяции: 0.23
```

Интерполяция: Лагранж и Ньютон


```
      —
      data.txt ×

      1
      x, y

      2
      0, 0

      3
      1, 0.84

      4
      2, 0.91

      5
      3, 0.14

      6
      4, -0.76

      7
      5, -0.99

      8
      6, -0.28

      9
```


Исходный код: https://github.com/tsostanov/CompMath5

Вывод

В ходе работы были изучены различные методы интерполяции функции и были реализованы методы с использованием многочлена Лагранжа, Ньютона для разделенных и конечных разностей и Гаусса