

离散数学 17

221900371 蒋鹏

2023年5月3日

Problem1:

A 不一定是 G 的子群,因为其不一定满足封闭性,对于 $x \in H, y \in K,$ 不一定 有 $xy \in H \cup K$

B是G的子群

C,D 一定不是 G 的子群, 因为其不含有单位元素

Problem2:

要证明 N(a) 是 G 的子群,显然 N(a) 为 G 的子集由子群的判定定理一,只需证明:

- (1): 对于 ∀x,y∈N(a),xy∈N(a) 也成立
- (2): $\forall x \in N(a)$,有 $x^{-1} \in N(a)$

先证明 1: 因为 x, y∈N(a), 所以有 xa=ax, ya=ay, 又因为 xa=ax, 所以 xay=axy, 而 xay=xya, 所以有 xya=axy, 所以 xy∈N(a) 成立得证 证明 2: \forall x∈N(a), 有 xa=ax, 所以有 a= x^{-1} ax, 所以有 a x^{-1} = x^{-1} ax x^{-1} = x^{-1} a则 2 也得证, 综上原命题得证

Problem3:

运用子群的判断定理一:

- (1) 证明 $\forall xhx^{-1},xkx^{-1} \in xHx^{-1}$,有 $xhkx^{-1} \in xHx^{-1}$ $xhx^{-1}xkx^{-1} = xhkx^{-1}$,而 H 是 G 的子群,所以对于 $\forall h,k \in H$,有 $hk \in H$ 成立,所以有 $xhkx^{-1} \in xHx^{-1}$ 成立
- (2) 证明 $\forall xhx^{-1} \in xHx^{-1}, (xhx^{-1})^{-1} \in xHx^{-1}$

可以构造出 $(xhx^{-1})^{-1}=xh^{-1}x^{-1}$ 因为 $h\in H,H$ 为 G 的子群,所以有 $h^{-1}\in H$,所以 $xh^{-1}x^{-1}\in xHx^{-1}$ 得证

Problem4:

反证法: 假设 $H \cup K \neq \{e\}$ 则存在元素 a, $a \neq e$, 且 $a \in H, a \in K$ 因为 H, K 分别为 G 的 r, s 阶子群 所以 $a^r = a^s = e$ 根据贝祖定理,存在整数 p, q 使得 pr + qs = 1 所以 $a = a^{pr + qs} = (a^r)^p (q^s)^q = e$, 与假设矛盾,所以 $H \cup K = \{e\}$ 一定成立

Problem5:

设该二阶元为 a,则 $a^2=e$ 假设存在元素 b \in G,ab=ba 不成立,即 a \neq b⁻¹ab 由于 b^{-1} ab b^{-1} ab=e 所以 b^{-1} ab 也是二阶元,且与 a 不等,这与只有一个二阶元 a 条件矛盾,所 以必有 b^{-1} ab=a,即 ab=ba 成立 即 a 对于任意元素可交换

Problem6:

设 $|\mathbf{g}|=\mathbf{r}$, $|\mathbf{h}|=\mathbf{s}$, \mathbf{gcd} $(\mathbf{r}, \mathbf{s})=1$ $g^r=h^s=\mathbf{e}$ 所以 $gh^{rs}=\mathbf{e}$ 需要证明 $|\mathbf{gh}|=|\mathbf{g}||\mathbf{h}|=\mathbf{rs}$ 设 $|\mathbf{gh}|=\mathbf{n}$, 则有 $gh^n=\mathbf{e}$, 一定有 $\mathbf{n}|\mathbf{rs}$ 又因为 $\mathbf{gcd}(\mathbf{r},\mathbf{s})=1$, 所以 $\mathbf{n}=\mathbf{rs}$ 或 $\mathbf{n}=1$ 当 $\mathbf{n}=\mathbf{rs}$ 时,则原式得证 当 $\mathbf{n}=1$ 时,有 $\mathbf{gh}=\mathbf{e}=\mathbf{hg}=\mathbf{h}g^r=\mathbf{e}$ 所以 $g^{r-1}=\mathbf{e},\mathbf{g}=\mathbf{e}$

同理, gh^s =e,h=e 此时显然有 |hg|=|h||g|综上得证

