11. Übungsblatt zur Vorlesung Theoretische Physik I Abgabe bis: 19.01.

WS 17/18 Priv.-Doz. U. Löw

Webseite zur Vorlesung:

https://moodle.tu-dortmund.de/course/view.php?id=9519

## Aufgabe 1: Hydrodynamik

(10 Punkte)

Ein zylinderförmiger Stab mit Radius  $R_1$  bewegt sich mit der Geschwindigkeit u parallel zu seiner Achse in einem zu ihm koaxialen zylinderförmigen Rohr mit Radius  $R_2$ . Der Raum zwischen dem Stab und dem Rohr ist mit einer inkompressiblen Flüssigkeit gefüllt. Die Strömung ist stationär.

Wählen Sie an das Problem angepasste Zylinderkoordinaten  $(r, \theta, z)$ . Sie können davon ausgehen, dass die Geschwindigkeit  $\vec{v}$  der Flüssigkeit nur von dem radialen Abstand von der Symmetrieachse abhängt und immer in z-Richtung zeigt.

- (a) Welche Gleichung für  $v_z$  erhalten Sie ausgehend von der Navier-Stokes-Gleichung?
- (b) Welche Randbedingungen gelten? D.h. geben Sie  $v_z(r = R_1)$  und  $v_z(r = R_2)$  an.
- (c) Lösen Sie die Navier-Stokes-Gleichung für diesen Fall. D.h. berechnen Sie  $v_z(r)$ .

