Projekt 1, Zadanie 23

Wiktor Murawski, 333255, grupa 3, środa 12:15

Obliczanie całek $\iint\limits_D f(x,y)\,dxdy$ na obszarze $D=\{(x,y)\in\mathbb{R}^2:|x|+|y|\leq 1\}$ poprzez podział obszaru D na $4n^2$ trójkątów przystających oraz zastosowanie na każdym z nich kwadratury rzędu drugiego.

Podział obszaru D na $4n^2$ trójkątów przystających

TU MA BYĆ ALGORYTM

Formuła całkowa na trójkącie

Niech T będzie trójkątem o wierzchołkach $(x_1,y_1),(x_2,y_2),(x_3,y_3)\in\mathbb{R}^2$ Niech P oznacza pole trójkąta T oraz niech

$$A = \begin{pmatrix} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{pmatrix}$$

Wtedy

$$P = \frac{1}{2}|\det A|$$

Niech $f:\mathbb{R}^2 \to \mathbb{R}$. Wówczas

$$S_S(f) = Pf\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$$

$$S_W(f) = \frac{P}{3} \Big(f(x_1, y_1) + f(x_2, y_2) + f(x_3, y_3) \Big)$$

są kwadraturami rzędu 2-go.

Mając podział obszaru D na $4n^2$ trójkątów przystających oraz kwadraturę drugiego rzędu na dowolnym trójkącie, możemy obliczyć całkę

$$I(f) = \iint_{D} f(x, y) \, dx dy$$

poprzez zastosowanie na każdym z trójkątów kwadratury rzędu drugiego.

Stosując kwadraturę $S_S(f)$ na każdym z trójkątów, otrzymamy kwadraturę złożoną $S_S^{[n]}(f)$.

Spodziewamy się, że dla dostatecznie dużego $\,n\,$

$$S_S^{[n]} \approx I(f)$$

a dla wielomianów dwóch zmiennych stopnia < 2

$$S_S^{[n]} = I(f)$$

Sprawdzanie poprawności

W celu sprawdzenia poprawności metody przetestujemy ją na wielomianach dwóch zmiennych stopnia pierwszego.

Obliczymy analitycznie

$$I = \iint\limits_{D} f(x, y) \, dx dy$$

gdzie

$$f(x,y) = ax + by + c$$
 $a,b,c \in \mathbb{R}$

Niech

$$D_1 = \{(x, y) \in D : x \le 0\}$$
$$D_2 = \{(x, y) \in D : x > 0\}$$

Oznaczmy

$$I_1 = \iint_{D_1} f(x, y) dxdy$$
$$I_2 = \iint f(x, y) dxdy$$

Wtedy $D = D_1 \cup D_2$ oraz $I = I_1 + I_2$.

Wyznaczenie analityczne całki z funkcji stopnia 1

$$I_{1} = \int_{-1}^{0} \int_{-x-1}^{x+1} ax + by + c \, dy dx$$

$$I_{2} = \int_{0}^{1} \int_{x-1}^{-x+1} ax + by + c \, dy dx$$

$$I_{1} = \int_{-1}^{0} \left[axy + \frac{by^{2}}{2} + cy \right]_{-x-1}^{x+1} dx$$

$$I_{2} = \int_{0}^{1} \left[axy + \frac{by^{2}}{2} + cy \right]_{x-1}^{-x+1} dx$$

$$I_{3} = \int_{0}^{1} \left[axy + \frac{by^{2}}{2} + cy \right]_{x-1}^{-x+1} dx$$

$$I_{4} = \int_{0}^{1} \left[axy + \frac{by^{2}}{2} + cy \right]_{x-1}^{-x+1} dx$$

$$I_{5} = \int_{0}^{1} \left[axy + \frac{by^{2}}{2} + cy \right]_{x-1}^{-x+1} dx$$

$$I_{7} = \int_{0}^{1} \left[axy + \frac{by^{2}}{2} + cy \right]_{x-1}^{-x+1} dx$$

$$I_{8} = \int_{0}^{1} \left[axy + \frac{by^{2}}{2} + cy \right]_{x-1}^{-x+1} dx$$

$$I_{8} = \int_{0}^{1} \left[axy + \frac{by^{2}}{2} + cy \right]_{x-1}^{-x+1} dx$$

$$I_{8} = \int_{0}^{1} \left[axy + \frac{by^{2}}{2} + cy \right]_{x-1}^{-x+1} dx$$

$$I_{9} = \int_{0}^{1} \left[axy + \frac{by^{2}}{2} + cy \right]_{x-1}^{-x+1} dx$$

$$I_{1} = \left[\frac{ax^{3}}{3} + \frac{ax^{2}}{2} + \frac{cx^{2}}{2} + cx \right]_{0}^{1}$$

$$I_{1} = \left[\frac{ax^{3}}{3} + \frac{ax^{2}}{2} + \frac{cx^{2}}{2} + cx \right]_{0}^{1}$$

$$I_{1} = \left[\frac{ax^{3}}{3} + \frac{ax^{2}}{2} + \frac{cx^{2}}{2} + cx \right]_{0}^{1}$$

$$I_{1} = \left[\frac{ax^{3}}{3} + \frac{ax^{2}}{2} + \frac{cx^{2}}{2} + cx \right]_{0}^{1}$$

Ostatecznie otrzymujemy $I = I_1 + I_2 = 2c$

Testy poprawności

		1		
Funkcja f	I(f)	n	$S_S^{[n]}(f)$	$ S_S^{[n]}(f) - I(f) $
f(x,y) =	2.0000	1	2.0000	0.0000
1		5	2.0000	1.3323×10^{-15}
		10	2.0000	2.0650×10^{-14}
		50	2.0000	1.8763×10^{-13}
		100	2.0000	2.0082×10^{-12}
		500	2.0000	1.5836×10^{-11}
f(x,y) =	2.0000	1	2.0000	0.0000
x+y+1		5	2.0000	8.8818×10^{-16}
		10	2.0000	2.4425×10^{-15}
		50	2.0000	4.6629×10^{-15}
		100	2.0000	4.8850×10^{-15}
		500	2.0000	7.5939×10^{-14}
f(x,y) =	1.0000	1	1.0000	0.0000
$8x + 2y + \frac{1}{2}$		5	1.0000	5.5511×10^{-16}
		10	1.0000	2.2204×10^{-16}
		50	1.0000	1.1102×10^{-15}
		100	1.0000	1.7764×10^{-15}
		500	1.0000	8.2157×10^{-15}

Testy poprawności

Funkcja f	I(f)	n	$S_S^{[n]}(f)$	$ S_S^{[n]}(f) - I(f) $
f(x,y) =	2.8284	1	2.8284	0.0000
$x-y+\sqrt{2}$		5	2.8284	1.3323×10^{-15}
		10	2.8284	1.7764×10^{-15}
		50	2.8284	5.3291×10^{-15}
		100	2.8284	3.0198×10^{-14}
		500	2.8284	1.5543×10^{-14}
f(x,y) =	-6.2832	1	-6.2832	0.0000
$-x+2y-\pi$		5	-6.2832	8.8818×10^{-16}
		10	-6.2832	0.0000
		50	-6.2832	3.5527×10^{-15}
		100	-6.2832	4.4409×10^{-15}
		500	-6.2832	3.5527×10^{-14}
f(x,y) =	0.0000	1	0.0000	0.0000
$\pi x - ey$		5	1.3878×10^{-17}	1.3878×10^{-17}
		10	-6.9389×10^{-18}	6.9389×10^{-18}
		50	9.7578×10^{-19}	9.7578×10^{-19}
		100	1.3281×10^{-18}	1.3281×10^{-18}
		500	7.9028×10^{-19}	7.9028×10^{-19}

TESTY NUMERYCZNE

TU MA BYĆ WYKRES