

RC4-Algorithm

Quentin Stickler, B.Sc.

24. April 2024

hs-mittweida.de

Agenda

General info

2 RC4 Algorithm in detail

3 Attacking RC4

4 Preventing attacks

General info

History

- Stream cipher with variable key-size length
- Used to be the most widely used stream cipher in software applications
- Invented in 1987 by Ron Rivest
- Kept secret but got leaked in 1994
- Easy to implement and quite fast (Encryption up to 10x faster than DES)
- Offers a lot of weaknesses und vulnerabilities
- Better alternatives have been invented
- Now only used in private projects due to its simplicity and performance

RC4 Algorithm

How does it work?

- Consists of two parts
- Part 1: Key Scheduling Algorithm (KSA)
- Part 2: Pseudo Random Number Generator Algorithm (PRGA)
- Used in the algorithm:
- S-Box (Array) with length of 256
- K-Box with repeating key entries
- Two 8-byte sized counters i and i

Initialization

Part One: Filling S-Box and T-Box

- Counters i and j set to 0
- Linear filling of the S-Box from 0 to 255 (S[0] = 0, S[1] = 1...)
- Following loop will be run:
- State space thus: $(2^8)^2 * 256! \approx 2^{1700}$ (Question 6)

```
for x in range(256):
    sbox[x] = x
    kbox[x] = key[x % len(key)]
```

Initialization

Example

- Text = "TestText"
- Key = "TestKey"
- S-Box = [0, 1, 2, 3, ..., 255]
- Initialization of T-Box:
 - ► Keylength = 7
 - Ascii-Text = 8410111511675101121

```
115 116
... 84 101 115
```

Initialization

Part Two: Permutation

- Permutate S-Box based on given key
- We always use modulo n = 256 because of the given length

```
j = 0
       for i in range(256):
          i = (i + sbox[i] + kbox[i]) % 256
          Swap(sbox[i], sbox[j])
        return shox
6
```

At the end: (Pseudo-)randomly generated S-Box

Permutation Example

i = 0

- j = 0
- j = (j + S[i] + T[i]) % (256)
- j = (84 + 0 + 84) %(256) = 168 % (256) = 168
- Swap S[i] (0) and S[j] (84)
- S[i] = 84, S[j] = 0

Permutation Example Continued

i = 1

```
    84
    1
    2
    3
    4
    5
    6

    ...
    ...
    ...
    ...
    ...
    ...
    ...

    80
    81
    82
    83
    0
    85
    86

    ...
    ...
    ...
    ...
    ...
    ...
    ...

    249
    250
    251
    252
    253
    254
    255
```

- j = 1
- j = (j + S[i] + T[i]) % (256)
- j = (186 + 1 + 101) % (256) = 288 % (256) = 32
- Swap S[i] (1) and S[j] (186)
- S[i] = 186, S[j] = 1

Permutation Example Continued

i = 2

- i = 2
- j = (j + S[i]) + T[i] % (256)
- j = (47 + 2 + 115) % (256) = 126 % (256) = 126
- Swap S[i] (1) and S[j] (47)
- S[i] = 47, S[i] = 2

Permutation Example

Final S-Box Form

```
47
                                                                            246
                                                                                          38
                                  143
                                                                                          78
                                                                                                196
                                                                                                       146
                                                              183
                                                                                                        4
                                                              87
44
                     48
                           141
                                                       94
                                                              211
                                         43
                                                                     243
82
             140
                           145
                                         182
                                                                     189
                                                                            81
      66
                                  80
                                         147
                                                       106
                                                                     70
                                                                            30
                                                                                          6
                                                                                                        18
                                          7
                                                65
                                                                                          190
                                                                                                       248
                    46
                                  31
                                                       92
                                                                                                        93
                           49
                                                              40
                                                                                                 41
                                                              90
      195
                                                                     187
                                                                            214
                                                                                   86
                                                                                         242
                                                                                                        76
                    64
                                         149
             142
                    61
                                                                                          36
                                                                                                        14
                           247
                                  85
                                                                     148
96
                                          54
                                                                                                       241
```

- Result = Permutated S-Box
- All numbers from 0 255 in "random" places

Python Code

Generate keystream depending on length of given plaintext

```
kevstream = []
i = 0
i = 0
for x in range(len(text)):
  i = (1 + i) \% 256
  i = (sbox[i] + i) % 256
  Swap(sbox[i], sbox[i])
  keystream.append(sbox[(sbox[i] + sbox[i]) % 256])
return keystream
```

Example, i = 0

- i = 0, j = 0
- i = (0 + 1) % 256 = 1
- j = (0 + 186) % 256 = 186 % 256 = 186
- Swap S[i] (186) and S[j] (202)
- t = (202 + 186) % 256 = 388 % 256 = 132
- S[t] = 102
- keystream = [102,]

Example, i = 1

- i = 1, j = 186
- i = (1 + 1) % 256 = 2
- j = (186 + 47) % 256 = 233 % 256 = 233
- Swap S[i] (47) and S[j] (11)
- t = (47 + 11) % 256 = 58 % 256 = 58
- S[t] = 118
- keystream = [102, 118,]

Example, i = 2

- i = 2, j = 233
- i = (2 + 1) % 256 = 3
- j = (233 + 208) % 256 = 451 % 256 = 185
- Swap S[i] (208) and S[i] (90)
- t = (208 + 90) % 256 = 298 % 256 = 42
- S[t] = 53
- keystream = [102, 118, 53,]
- Final keystream = [102, 118, 53, 212, 66, 47, 204, 221]

Encryption

Bytewise XOR

- Plaintext = "TestText" = [84, 101, 115, 116, 84, 101, 120, 116]
- Keystream = [102, 118, 53, 212, 66, 47, 204, 221]
- Plaintext

 Keystream =
- "0X320X130X460XA00X160X4A0XB40XA9" = [50, 19, 70,160, 22, 74, 180, 169]

Decryption

Bytewise XOR

- Ciphertext = "0X320X130X460XA00X160X4A0XB40XA9" = [50, 19, 70, 160, 22, 74, 180, 169]
- Keystream = [102, 118, 53, 212, 66, 47, 204, 221]
- Ciphertext

 Keystream = "Plaintext"

WEP

Short summary

- Wired Equivalent Protocol
- Used in IEEE 802.11 for protecting LAN users against casual eavesdropping
- Encrypt wirelessly transmitted packets
- Key used for encryption consists of a long-term key (root key) and an initialization vector
- RC4Key = |V||rk
- Different public IV per packet, 24-bit-sized; IV = (X, Y, Z)
- 40-bit-sized secret rk

Security problems in WEP

Outdated since 2004

- "Swiss Cheese" of protocols → lots of security vulnerabilities
- Small key sizes; only 64-bit and 128-bit encryption key sizes
- CRC-32 for detecting changes made to data
 - Useful for detecting errors but useless for validating cryptographic validation
 - Attacker can easily alter the data so that the validation check is getting verified
- Small IV sizes of 24-bit \rightarrow 2²⁴ possibilities (< 17*million*)

Attacking RC4 in WEP

Utilizing IVs

- Small key sizes (40-bit rk and 24-bit IV) stovsic2012rc4
- IV is sent clearly together with packets
- Make use of "weak IVs" to recover first byte of every message
- FMS attack

FMS attack on RC4

General process

- Cryptanalysis Trudy graps a lot of transfered data
- Tries to catch IVs of specific forms
- Goal \rightarrow Recover the long-term key \rightarrow Then she can decrypt all the ciphertexts
- Example: IV = (3, N 1, V), where N 1 = 255, V any value $1, \dots, 255$
- Long-term-key of the form $(3, 255, V, K_3, K_4, K_5)$
- K_3, K_4, K_5 are the first unknown keybytes
- Clue is in the initialization phase

Example for K₃

- Suppose, Trudy has recoverd V = (3, 255, V)
- Used for recovering Example for K_3
- Let's look at our S-Box during the initialization phase
- First, S is set to the identitity permutation

i	0	1	2	3	4	5	• • •
S_{i}	0	1	2	3	4	5	

Example for K₃

- Now, at the first step i = 0, we compute the next i
- $i = i + S_i + K_1 = 0 + 0 + 3\%(256) = 3$
- Thus, the elements at position S_i and S_i are swapped

- At the next step i = 1, we compute j as
- $i = 3 + S_i + K_i = 3 + 1 + 255\%(256) = 3$

Example for K₃ Cont'd

- At the next step i = 2, we compute j as
- $j = 3 + S_2 + K_2 = 3 + 2 + V \%(256) = 5 + V$

Example for K₃: Last step

- At the next step i = 3, we compute j as
- $i = 5 + V + S_3 + K_3 = 5 + V + 1 + K_3$ %(256) = $6 + V + K_3$

- Suppose S_0 , S_1 and S_3 will remain unchanged until step i = 255
- Then, the first keystreambyte will be computed following the keystream generator algorithm

Example for K₄ and K₅: Last step

• IV = (4, 255, V) for K_4 after i = 4 steps:

• IV = (5, 255, V) for K_5 after i = 5 steps:

5	7 + V	10 + V + K3	14 + V + K3 + K4	15 + V + K3 + K4 + K5	
15 + V + K3 + K4 + K5	2	3	4	5	

Recover K₃

```
keystream = []
     i = 0
     i = 0
     for x in range(len(text)):
       i = (i + 1) \% 256
       j = (sbox[i] + j) % 256
        Swap(sbox[i], sbox[i])
        keystream.append(sbox[(sbox[i] + sbox[i]) % 256])
      return kevstream
9
```

- i = 1, j = 0
- $K_{\rm R} = (6 + V + K_3) \% (256)$

Recover K₃ Continued

- $K_{\rm B} = (6 + V + K_3) \% (256)$
- Suppose, Trudy can guess or knows the first byte of the plaintext, she can determine K_3 with:
- $\rightarrow K_3 = K_B 6 V \%(256)$

Recovery of unknwon bytes

General approach

Theorem

Let K_n be the RC4 key value at position n. Let IV_n be a tuple of (n, N-1, V), where $N=256, V \in {0, \dots, 255}, n \ge 3$ and k_n the known keystreambyte at position n. Then (Question 8):

$$K_n = k_n - \sum_{1}^{n} x - V - (\sum_{3}^{n-1} K_n)$$

- How many IVs are sufficient to determine K_n ?
- Determine probability that S_0 , S_1 , S_n remain unchanged
- Probability of that: $(\frac{253}{256})^{252} = 0.0513 \approx 5\%$ (Question 9)
- What is a sufficient number of IVs in order to recover K_3 ?

Probability of recovering K_3

```
success_probability = 0.05
      #Win probability
      target_probability = 0.95
      num_trials = 1
      #Go through the IVs
      while True:
        cumulative_probability = 1 - binom.cdf(0, num_trials, success_probability)
        if cumulative_probability >= target_probability:
9
          break
        num trials += 1
11
      return num trials
12
```

Probability of recovering K₃

- How many IVs needed for
- 50% → 14
- 95% → 60
- Hence, $\frac{60}{10}$ often regarded as sufficient for determing $\frac{K_3}{10}$ (Question 7)
- Hier nochmal gucken, was die Wahrscheinlichkeit ist, solche IVs zu bekommen
- Ich braeuchte laut meinem Code 5 Millionen lol

Probability of recovering K_n

- Same probability for recovering K_4 , K_5 ,...
- If correct // is found

					4	5	6 + V	9 + V + K3	10 + V + K3 + K4
Si	4	0	6 + V	9 + V + K3	10 + V + K3 + K4	5	2	3	1

Probability of recovering K_n

```
for x in range(plaintextlength):
       i = (i + 1) \% 256
       i = (i + S[i]) % 256
       currentValue = S[i]
       S[i] = S[j]
       S[i] = currentValue
       t = (S[i] + S[i]) % 256
       keystream.append(S[t])
      return kevstream
9
```

• $kB = S[t] = S[4] = 10 + V + K_3 + K_4$

Probability of recovering K_n

- → Same probability for recovering K_n
- Also doable with IVs of other form
- Suppose, IV = (2, 253, 1) for recovering K_3 (Question 10)
- Then, after i = 3 steps, the S box will have the following form:

Determine useful IVs

Theorem

Let kN be the keystreambyte at position n we are looking for. We define

$$IV \dagger kN$$
,

if the given IV is useful for the attacker to recover kN. To check if a given IV = (x,y,z) is useful for the attack, we calculate the s-box until step i=n and apply: $S[i] + S[S[i]] \stackrel{?}{=} n \rightarrow IV \dagger kN$.

Prevention against RC4 attacks

Many improved algorithms

- Performance → Security trade-off
- RC4+: Best security, but 3x execution time
 - Uses three layers of scrambling the s-box
- Improved RC4: Improved security and parallel execution
 - ► Focus on altering PRGA by adding ⊕ operations and using two S-boxes
- Effective RC4: Faster and more secure
 - Same KSA as Improved KSA
 - ▶ IN PRGA, two output bytes are produces and XORed with plaintext bytes
- RC4FMS: Decreased chances of a succesful FMS attack
 - Adds more randomness to the first 4 bytes

Prevention against RC4 attacks

Many improved algorithms

- Add 256 **more steps** to the initialization process and discard them afterwards
- Use alternative protocols such as **WPA2/WPA3** with other encryption algorithms
- **Increase IV sizes** to at least 32 bits \rightarrow 28 times for attacker to find collisions/useful IVs (Question 11)
- Use other hashing algorithms such as MD5, SHA-1

RC4 summary

Everything we have learnt

- Invented in 1987 by Ron Rivest as stream cipher with variable key length
- Officially **outdated** because of too many weaknesses
- Consists of two parts
 - ► KSA
 - PRGA
- Used in WEP and SSL/TLS, now replaced by other protocols/other encryption algorithms
- In-depth look at specific FMS attack on RC4 in WEP, makes use of weak IVs
- Numerous **improved RC4 variants** for better security, offer too many **trade-offs** compared to other algorithms

Thank You

Quentin Stickler, B.Sc.

gstickle@hs-mittweida.de

Hochschule Mittweida

University of Applied Sciences Technikumplatz 17 | 09648 Mittweida Applied Computer Sciences and Biosciences

hs-mittweida.de

References