ESCUELA POLITÉCNICA SUPERIOR

Grado en Ingeniería Mecánica

MATEMATICAS I.

Tema 2: Ejercicios de Coordenadas.Cambio de Bases

1.- Sea $\mathcal{B} = \{v_1, v_2, v_3\}$ una base del espacio vectorial \mathbb{R}^3 , siendo $v_1 = (1, 0, 1), v_2 = (-1, 1, 0)$ y $v_3 = (1, 1, 1)$.

- a) Considérese el vector $x=(2,-3,4)\in\mathbb{R}^3$. Calcular las coordenadas del vector x en la base \mathcal{B} : $[x]_{\mathcal{B}}$.
- b) Determinar las componentes del vector $w \in \mathbb{R}^3$, sabiendo que $[w]_{\mathcal{B}} = (6, -3, 2)$.

Solución: a) $[x]_{\mathcal{B}} = (9, 2, -5)$, b) w = (11, -1, 8).

2.- Sean las bases del espacio vectorial \mathbb{R}^3 :

$$\mathcal{B} = \{ u_1, u_2, u_3 \}, \text{ con } u_1 = (1, 1, 1), u_2 = (0, 1, 1), u_3 = (0, 0, 1)$$

 $\mathcal{B}' = \{ v_1, v_2, v_3 \}, \text{ con } v_1 = (1, 0, -1), v_2 = (0, -1, 0), v_3 = (-1, 1, 0)$

Determinar la ecuación matricial del cambio de base de \mathcal{B} a \mathcal{B}' .

Solución:
$$[x]_{\mathcal{B}'} = \begin{bmatrix} -1 & -1 & -1 \\ -3 & -2 & -1 \\ -2 & -1 & -1 \end{bmatrix} [x]_{\mathcal{B}}.$$

3.- Considérense las siguientes bases del espacio vectorial \mathbb{R}^3 :

$$\mathcal{B}_1 = \{ u_1, u_2, u_3 \}, \text{ con } u_1 = (1, 1, 1), u_2 = (1, 1, 2), u_3 = (1, 2, 3)$$

 $\mathcal{B}_2 = \{ v_1, v_2, v_3 \}, \text{ con } v_1 = (2, 1, -3), v_2 = (3, 2, -5), v_3 = (1, -1, 1)$

- a) Sea el vector $x = (6, 9, 14) \in \mathbb{R}^3$. Calcular las coordenadas del vector x en la base \mathcal{B} : $[x]_{\mathcal{B}_1}$.
- b) Determinar la ecuación matricial del cambio de base de \mathcal{B}_1 a \mathcal{B}_2 . Utiliza la ecuación matricial para calcular las coordenadas del vector x en la base \mathcal{B}_2 .
- c) Determinar la ecuación matricial del cambio de base de \mathcal{B}_2 a \mathcal{B}_1 .

Solución: a) $[x]_{\mathcal{B}_1} = (1, 2, 3)$.

$$\mathbf{b})[x]_{\mathcal{B}_2} = \begin{bmatrix} -16 & -21 & -34 \\ 10 & 13 & 21 \\ 3 & 4 & 6 \end{bmatrix} [x]_{\mathcal{B}_1}, \quad [x]_{\mathcal{B}_2} = (-160, 99, 29), \ \mathbf{c})[x]_{\mathcal{B}_1} = \begin{bmatrix} 6 & 10 & -1 \\ -3 & -6 & 4 \\ -1 & -1 & -2 \end{bmatrix} [x]_{\mathcal{B}_2}$$

4.- Considérense las siguientes bases del espacio vectorial \mathbb{R}^2 :

$$\mathcal{B}_1 = \{ u_1, u_2 \}, \text{ con } u_1 = (1, 0), u_2 = (1, 1)$$

 $\mathcal{B}_2 = \{ v_1, v_2 \}, \text{ con } v_1 = (0, 1), v_2 = (-1, -1)$

- a) Sea el vector $x = (3, 2) \in \mathbb{R}^2$. Calcular las coordenadas del vector x en la base \mathcal{B} : $[x]_{\mathcal{B}_1}$.
- b) Calcular las coordenadas del vector x en la base \mathcal{B} : $[x]_{\mathcal{B}_2}$.
- c) Determinar la ecuación matricial del cambio de base de \mathcal{B}_1 a \mathcal{B}_2 . Utiliza la ecuación matricial para calcular las coordenadas del vector x en la base \mathcal{B}_2 .
- d) Utilizando el apartado anterior c), comprobar que son ciertos los resultados del apartado b).

Solución: a) $[x]_{\mathcal{B}_1} = (1,2)$, b) $[x]_{\mathcal{B}_2} = (-1,-3)$.

$$c)[x]_{\mathcal{B}_2} = \begin{bmatrix} -1 & 0 \\ -1 & -1 \end{bmatrix} [x]_{\mathcal{B}_1}$$

5.- Considérense las siguientes bases del espacio vectorial \mathbb{R}^3 :

$$\mathcal{B}_1 = \{ u_1, u_2, u_3 \},\$$

 $\mathcal{B}_2 = \{ v_1, v_2, v_3 \}, \quad \text{con } v_1 = (1, 0, 2), v_2 = (1, 1, 1,), v_3 = (0, 0, 3) \}$

a) Si la ecuación matricial del cambio de base de \mathcal{B}_1 a \mathcal{B}_2 es

$$[x]_{\mathcal{B}_2} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} [x]_{\mathcal{B}_1},$$

calcular las componentes de los vectores u_1, u_2, u_3 .

- b) Si $[x]_{\mathcal{B}_2} = (1, -1, 2)$, calcular las coordenadas del vector x en la base \mathcal{B}_{∞} : $[x]_{\mathcal{B}_1}$ ¿Cuáles son las componentes del vector $x \in \mathbb{R}^3$.
- c) Si $[y]_{\mathcal{B}_1} = (1, -1, 1)$, calcular las coordenadas del vector y en la base \mathcal{B}_{\in} : $[y]_{\mathcal{B}_2}$ ¿Cuáles son las componentes del vector $y \in \mathbb{R}^3$.

Solución: a) $u_1 = (1,0,2)$, $u_2 = (2,1,3)$, $u_3 = (2,1,6)$; b) $[x]_{\mathcal{B}_1} = (2,-3,2)$, x = (0,-1,7); c) $[x]_{\mathcal{B}_2} = (1,0,1)$, x = (1,0,5).