Cardiovascular Disease Prediction

A Machine Learning Approach

Introduction

- Importance of predicting CVD early
- Global impact (leading cause of death worldwide)
- Role of Machine Learning in healthcare

Objective

- Build a model to predict CVD using patient data
- Improve early detection and prevention

Dataset Description

- Source of dataset (e.g., Kaggle, UCI Repository)
- No. of samples and features
- Features: Age, Gender, Blood Pressure,
 Cholesterol, Glucose, Smoking, etc.
- Target: Presence/Absence of CVD

Data Preprocessing

- Handling missing values
- Encoding categorical variables
- Feature scaling (StandardScaler/MinMaxScaler)
- Train-test split

Exploratory Data Analysis (EDA)

- Distribution of features (histograms, boxplots)
- Correlation heatmap
- Key insights (e.g., age & cholesterol strongly linked to CVD)

Model Building

- Algorithms used:
- Logistic Regression
- Decision Tree
- Random Forest
- K-Nearest Neighbors
- Support Vector Machine
- Hyperparameter tuning (e.g., GridSearchCV)

Model Performance

- Accuracy, Precision, Recall, F1-Score
- Confusion matrix
- Best-performing model and its score

PROGRAM

PROGRAM

```
Ŧ
            age gender height weight ap_hi ap_lo cholesterol gluc smoke alco active cardio
    0 0 18393
                          168
                                62.0
                                       110
    1 1 20228
                          156
                                              90
                                85.0
                                       140
       2 18857
                          165
                                       130
                                              70
                                64.0
    3 3 17623
                          169
                                82.0
                                       150
                                             100
      4 17474
                          156
                                 56.0
                                       100
```

```
[] # Drop the 'id' column
if 'id' in df.columns:
    df.drop(columns=['id'], inplace=True)

# Convert age from days to years
df['age'] = (df['age'] / 365).astype(int)

# Check for nulls
print(df.isnull().sum())

# Class balance
sns.countplot(x='cardio', data=df)
plt.title("Cardiovascular Disease Distribution")
plt.show()
```

```
O # Drop the 'id' column
    if 'id' in df.columns:
        df.drop(columns=['id'], inplace=True)
    # Convert age from days to years
    df['age'] = (df['age'] / 365).astype(int)
    # Check for nulls
    print(df.isnull().sum())
    # Class balance
    sns.countplot(x='cardio', data=df)
    plt.title("Cardiovascular Disease Distribution")
    plt.show()
∓ age
    gender
    height
    weight
    ap_hi
    ap_lo
```

cholesterol gluc smoke alco active cardio dtype: int64


```
# Histograms
df.hist(figsize=(16, 12))
plt.suptitle("Feature Distributions")
plt.tight_layout()
plt.show()

# Correlation heatmap
plt.figure(figsize=(14,10))
sns.heatmap(df.corr(), annot=True, cmap="coolwarm")
plt.title("Correlation Heatmap")
plt.show()
```



```
# Histograms
df.hist(figsize=(16, 12))
plt.suptitle("Feature Distributions")
plt.tight_layout()
plt.show()

# Correlation heatmap
plt.figure(figsize=(14,10))
sns.heatmap(df.corr(), annot=True, cmap='coolwarm')
plt.title("Correlation Heatmap")
plt.show()
```



```
# Train-test split
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
    # Standardization
    scaler = StandardScaler()
    X train = scaler.fit transform(X train)
    X test = scaler.transform(X test)
[ ] models = {
        "Logistic Regression": LogisticRegression(),
        "Decision Tree": DecisionTreeClassifier(),
        "Random Forest": RandomForestClassifier(),
        "SVM": SVC(),
        "KNN": KNeighborsClassifier()
    accuracies = {}
    for name, model in models.items():
        model.fit(X_train, y_train)
        preds = model.predict(X test)
        acc = accuracy_score(y_test, preds)
        accuracies[name] = acc
        print(f"\n{name} Accuracy: {acc:.4f}")
        print(confusion_matrix(y_test, preds))
        print(classification_report(y_test, preds))
```

[] X = df.drop('cardio', axis=1)

y = df['cardio']

		1634] 4764]]				
			precision	recall	f1-score	support
		. 0	9,79	0.77	0.73	6988
		1	0.74	0.68	0.71	701
	acc	uracy			0.72	14886
	macro avg		0.72		0.72	14000
we1	ghte	d avg	0.72	0.72	0.72	14000
114	549	n Tree 2439] 4325]]	Accuracy:	0.6339		
			precision	recall	f1-score	support
			6.63	0.65	0.64	6981
		1	0.64	0.62	0.63	701
	acc	uracy			0.63	14886
		O HVE	0.63		0.63	1400
we1	ghte	d avg	0.63	0.63	0.63	1400
[[4	979	Forest 2009] 4942]]	Accuracy:	0.7086		
L		75753	precision	recall	f1-score	suppor
			0.71	0.71	0.71	6901
		1	0.71	0.70	0.71	701
		uracy			0.71	1400
		o avg	0.71		0.71	1400
we1	ghte	d avg	0.71	0.71	0.71	1400
E E S	326	uracy: 1662] 4926]]	0.7323			
			precision	recall	fl-score	support
		0	0.72		0.74	6988
		1	0.75	0.70	0.72	701
		uracy			0.73	14000
		o avg	0.73		0.73	1400
we1	ghte	d avg	0.73	0.73	0.73	14000
E [4	706	uracy: 2282] 4440]]	0.6533			
			precision	recall	f1-score	suppor

	precision	recall	f1-score	support
0 1	0.65 0.66	0.67 0.63	0.66 0.65	6988 7012
accuracy macro avg weighted avg	0.65 0.65	0.65 0.65	0.65 0.65 0.65	14000 14000 14000

```
plt.figure(figsize=(10,6))
sns.barplot(x=list(accuracies.keys()), y=list(accuracies.values()))
plt.ylabel("Accuracy")
plt.title("Model Accuracy Comparison")
plt.xticks(rotation=45)
plt.show()
```


Results & Discussion

- Interpretation of results
- Importance of key features
- Real-world implications

Conclusion

- Machine Learning can effectively predict Cardiovascular Disease, enabling early detection and preventive measures.
- Random Forest performed best with ~85% accuracy, highlighting its reliability for healthcare applications.
- Key features impacting prediction: Age, Cholesterol, and Blood Pressure.
- Future Scope: Using larger datasets and deep learning models to improve accuracy and real-world deployment

BY

GUNTA RAJU

THANKYOU