GTU Department of Computer Engineering CSE 232 - Spring 2020

PROJECT 1 REPORT

(updated)

ESRA ERYILMAZ 171044046

The subject of the project is; designing an FSM controller using Logisim program. It is a game implementation project.

In this game, there are 7 LEDs and there are two buttons for two players. There is also a reset button for two players to reset at any time.

${f 1.}$ Decide states and draw the state diagram for your FSM controller.

Encode the states:

50 = 0000

S1 = 0001

52 = 0010

53 = 0011

S4 = 0100

S5 = 0101

S6 = 0110

S7 = 0111

58 = 1000

59 = 1001

S10 = 1010

S11 = 1011

Inputs: B1, B1, RESET
Outputs: Led1, Led2, Led3,
Led4, Led5, Led6, Led7

2. Draw truth table.

	Present State (PS) s3 s2 s1 s0	Inputs B1 B2	Next State (NS) n3 n2 n1 n0
		00	0000
SO	0000	01	0111
30		10	0010
		11	0000
		00	0000
S1	0001	01	0001
		1-	0001
		00	0011
S2	0010	01	0010
		1-	0010
		00	0011
S3	0011	01	0001
		10	0100
		11	0011
	0100	00	0101
S4	0100	01 1-	0100
		00	0100 0101
	0101	00	0010
S5	0101	10	0110
		11	0101
S6	0110		0110
		00	
	0111	00	1000
S7	0111	01 1-	0111 0111
		00	1000
	1000	00	1000
S8	1000	10	0001
		11	1000
		11	1000

S 9		00	1010
	1001	01	1001
		1-	1001
S10		00	1010
	1010	01	1011
		10	0111
		11	1010
S11	1011		1011

Truth table for outputs

PS	Led1	Led2	Led3	Led4	Led5	Led6	Led7
S0	0	0	0	1	0	0	0
S1	0	0	0	1	0	0	0
S2	0	0	0	0	1	0	0
S3	0	0	0	0	1	0	0
S4	0	0	0	0	0	1	0
S5	0	0	0	0	0	1	0
S6	0	0	0	0	0	0	1
S7	0	0	1	0	0	0	0
S8	0	0	1	0	0	0	0
S9	0	1	0	0	0	0	0
S10	0	1	0	0	0	0	0
S11	1	0	0	0	0	0	0

Simplified expressions;

- \rightarrow n3 = s3s2'B1' + s3s2'B2 + s3s2's0 + s3's2s1s0B1'B2'
- \rightarrow n2 = s3's2s0' + s3's2B1 + s3's2s1'B2' + s3's2s1B2 + s3's1's0'B1'B2 + s3's1s0B1B2' + s3s2's1s0'B1B2'
- → n1 = s3's1s0' + s3s2's1 + s2's1B1'B2' + s3's1B1B2 + s3's2's0'B1'B2 + s3's2's0'B1B2' + s3's2s0B1'B2 + s3's2s0B1'B2'
- → n0 = s3s2's1s0 + s3s2'B1'B2 + s3s2'B1B2' + s3's1s0B2 + s2's1's0B1 + s2's1'B1'B2 + s3's0B1B2 + s3's2s1s0B1 + s3's2s1'B1'B2' + s3's2's1B1'B2'

- 4. Draw the circuit on Logisim.
 - You can see in 171044046.circ file
- 5. Simulate and see whether it works. If it does not turn back to previous stages and check each carefully.
 - It works.

P.S.

I added a hexadecimal digit display.