LEARNING OBJECTIVES

Upon completing this session, you should be able to do the following:

- Develop and explain basic forecasting models
- Identify the components present in a time series
- Apply trend-based forecasting models, including linear trend, nonlinear trend, and seasonally adjusted trend
- Use smoothing-based forecasting models

THE IMPORTANCE OF FORECASTING

- Governments forecast unemployment, interest rates, and expected tax revenues for policy purposes
- Marketing executives forecast demand, sales, and consumer preferences for strategic planning
- College administrators forecast enrolments to plan for facilities and for faculty recruitment
- Retail stores forecast demand to control inventory levels, hire employees and provide training

GENERAL FORECASTING ISSUES

Forecasting Horizon (Lead Time):

The number of future periods covered by a forecast

Intermediate term – less than one month

Short term – one to three months

Medium term – three months to two years

Long term – two years or more

Forecasting period:

The unit of time for which forecasts are to be made

Forecasting interval:

The frequency with which new forecasts are prepared

TIME-SERIES DATA

- Numerical data obtained at regular time intervals
- The time intervals can be annually, quarterly, daily, hourly, etc.

• Example:

Year:	2003	2004	2005	2006	2007
Sales:	75.3	74.2	78.5	79.7	80.2

PRESENTATION OF TIME-SERIES DATA

- Table with values of the time series variable listed in chronological order
- The time series table may give an indication of any trends or patterns in the time series, and may highlight any potential abnormalities.

	Time	Υ
Year	Χ	Sales(\$m)
1995	1	1.2
1996	2	1.5
1997	3	1.9
1998	4	1.8
1999	5	2.5
2000	6	3.1
2001	7	4.0
2002	8	5.8
2003	9	8.5
2004	10	10.0
2005	11	13.4

PRESENTATION OF TIME-SERIES DATA

 Time series data can be drawn as a line graph with time on the horizontal axis.

TIME-SERIES COMPONENTS

TREND COMPONENT

 Long-run increase or decrease over time (overall upward or downward movement)

Time

TREND COMPONENT (CONT'D)

- Trend can be upward or downward
- Trend can be linear or non-linear

SEASONAL COMPONENT

- Short-term regular wave-like patterns
- Observed within 1 year

Time (Quarterly)

CYCLICAL COMPONENT

- A wavelike pattern
- It has a recurrence period of more than one year

RANDOM COMPONENT

- Unpredictable, random, "residual" fluctuations
- Due to random variations of
 - Nature
 - Accidents or unusual events
- "Noise" in the time series

TYPES OF TIME SERIES

STATIONARY TIME SERIES

- A time series that shows no tendency to grow or decline over time.
- It tends to plot more or less as a horizontal line, with random fluctuations above and below the long term average.
- A stationary time series does NOT contain a long term upward or downward trend.
- However, it may contain:
 Seasonal, Cyclical and Irregular movements.

NON-STATIONARY TIME SERIES

- Generally one that tends to increase over time (that is, it has an upward trend) or decrease over time (that is, it has a downward trend).
- A non-stationary time series can also contain the other time series components:
 - Seasonal, Cyclical and Irregular movements.

EXAMPLE:MONTHLY AUSTRALIAN WINE SALES: BY WINE MAKERS IN BOTTLES ≤ 1 LITRE

EXAMPLE:SALES OF SHAMPOO OVER A THREE YEAR PERIOD

Exported from datamarket.com

EXAMPLE:QUARTERLY ELECTRICITY PRODUCTION IN AUSTRALIA

EXAMPLE:MONTHLY SALES OF TASTY COLA (JAN 2011 – DEC 2013)

DEVELOPING A FORECASTING MODEL

Steps in forecast modelling:

- model specification
- model fitting
- model diagnosis

Goal:

Use the simplest available model that meets forecasting needs

WHAT IS SMOOTHING?

- Smoothing is usually done to help us better see patterns, trends in time series.
- Generally smooth out the irregular roughness to see a clearer signal.
- For seasonal data, we might smooth out the seasonality so that we can identify the trend.
 - Moving Average
 - Single / Double Exponential Smoothing

MOVING AVERAGE

- A moving average works by successively taking observations over a number of periods and averaging to smooth the data.
- M-period moving average the average of the M data points.
- Moving average creates a bit of a difficulty when we have an even number of time periods in the seasonal span (as we usually do).

3-PERIOD MOVING AVERAGE

Data	3MA	3 MA
12		
21	=(12+21+27) / 3	20
27	=(21+27+36) / 3	28
36	=(27+36+9) / 3	24
9	=(36+9+18) / 3	21
18		13
12		18
24		18
18		23
27		23
24		21
12		17
15		11
6		

5-PERIOD MOVING AVERAGE

Data	5 MA	5 MA
12		
21		
27	=(12+21+27+36+9) / 5	21.00
36	=(21+27+36+9+18) / 5	22.20
9	=(27+36+9+18+12) / 5	20.40
18		19.80
12		16.20
24		19.80
18		21.00
27		21.00
24		19.20
12		16.80
15		
6		

CENTRED 4-PERIOD AVERAGE

- A centred 4-Period MA is used for data with cycles of 4 periods (Ex: Summer, Autumn, Winter, Spring)
- The centre (average) of a 4-period timespan is at period 2.5 (i.e. between 2nd and 3rd observation) which does not match the original periods.
- To overcome this issue, take the average of pairs of offcentred average values to re-centre them.
- Same methodology can be applied for any even numbered seasons.

CENTRED 4-PERIOD MA

Time	Data	4 MA	Centred 4 MA
1	12		
2	21		
3	27	24.00	23.63
4	36	23.25	22.88
5	9	22.50	20.63
6	18	18.75	17.25
7	12	15.75	16.88
8	24	18.00	19.13
9	18	20.25	21.75
10	27	23.25	21.75
11	24	20.25	19.88
12	12	19.50	16.88
13	15	14.25	
14	6		

EXPONENTIAL SMOOTHING METHODS

SINGLE EXPONENTIAL SMOOTHING

- A weighted moving average
 - Weights decline exponentially
 - Most recent observation weighted most
- Used for smoothing and short term forecasting

SINGLE EXPONENTIAL SMOOTHING

- The weighting factor is α
 - Subjectively chosen
 - Range from 0 to 1
 - Smaller α gives more smoothing, larger α gives less smoothing
- The weight is:
 - Close to 0 for smoothing out unwanted cyclical and irregular components
 - Close to 1 for forecasting

SINGLE EXPONENTIAL SMOOTHING MODEL

$$|F_{t+1} = F_t + \alpha(y_t - F_t)|$$

New Forecast = Previous Forecast + α (Previous Actual – Previous Forecast)

OR

New Forecast = previous Forecast $-\alpha$ (Error)

SINGLE EXPONENTIAL SMOOTHING MODEL

• Suppose we use weight $\alpha = 0.2$

Quarter (t)	Sales (y _t)	Forecast from prior period	Forecast for next period (F _{t+1})	
1	23	NA	23 —	$\rightarrow F_1$
2	40	23	23+0.2(40-23) = 26.4	pri
3	25	26.4	26.4 + 0.2 (25 – 26.4) =26.12	inf
4	27	26.12	26.12 + (0.2)(27 - 26.12)=26.29	exi
5	32	26.296	26.29 + (0.2)(32 - 26.29)=27.437	F
6	48	27.437	= 31.549	F _{t+1}
7	33	31.549	= 31.840	
8	37	31.840	= 32.872	
9	37	32.872	= 33.697	
10	50	33.697	= 36.958	
etc	etc	etc	etc	

F₁ = y₁ since no prior information exists

$$F_{t+1} = F_t + \alpha(y_t - F_t)$$

SINGLE EXPONENTIAL SMOOTHING MODEL

 Seasonal fluctuations have been smoothed.

NOTE:

The smoothed value in this case is generally a little low, since the trend is upward sloping and the weighting factor is only 0.2.

DOUBLE EXPONENTIAL SMOOTHING

- Double exponential smoothing is sometimes called exponential smoothing with trend
- If trend exists, single exponential smoothing may need adjustment
- Add a second smoothing constant to account for trend
- [[Double exponential smoothing might be used when there's trend (either long run or short run), but no seasonality]]

DOUBLE EXPONENTIAL SMOOTHING

$$C_{t} = \alpha y_{t} + (1 - \alpha)(C_{t-1} + T_{t-1})$$

$$T_{t} = \beta(C_{t} - C_{t-1}) + (1 - \beta)T_{t-1}$$

$$F_{t+1} = C_t + T_t$$

where:

 y_t = actual value in time t

 α = constant-process smoothing constant

 β = trend-smoothing constant

C_t = smoothed constant-process value for period t

T_t = smoothed trend value for period t

 F_{t+1} = forecast value for period t + 1

t = current time period

DOUBLE EXPONENTIAL SMOOTHING

- Double exponential smoothing is generally done by computer
- Use larger smoothing constants α and β when less smoothing is desired
- Use smaller smoothing constants α and β when more smoothing is desired

EXPONENTIAL SMOOTHING IN EXCEL

Use: Data → data analysis → exponential smoothing

TREND-BASED FORECASTING

- When data has an underlying linear trend, a linear model (equation) using least squares regression can be fitted.
- Simple linear models can be extended to include seasonality (additive and multiplicative).

Year	Time Period (t)	Sales (y)
2003	1	20
2004	2	40
2005	3	30
2006	4	50
2007	5	70
2008	6	65

Use time (t) as the independent variable:

$$\mathbf{\hat{y}} = \mathbf{b_0} + \mathbf{b_1} \mathbf{t}$$

CRICOS Provider Code: 00113B

TREND-BASED FORECASTING (CONT'D)

Year	Time Period (t)	Sales (y)
2003	1	20
2004	2	40
2005	3	30
2006	4	50
2007	5	70
2008	6	65

The linear trend model is:

$$\hat{y} = 12.333 + 9.5714 t$$

TREND-BASED FORECASTING (CONT'D)

Year	Time Period (t)	Sales (y)
2003	1	20
2004	2	40
2005	3	30
2006	4	50
2007	5	70
2008	6	65
2009	7	???

Forecast for time period 7:

$$\hat{y} = 12.333 + 9.5714 (7)$$

$$= 79.33$$

ACCURACY OF THE FORECAST COMPARING FORECAST VALUES TO ACTUAL DATA

 The forecast error or residual is the difference between the actual value in time t and the forecast value in time t

• Error in time t:

$$|\mathbf{e}_{t} = \mathbf{y}_{t} - \mathbf{F}_{t}|$$

TWO COMMON MEASURES OF FIT

 Measures of fit are used to gauge how well the forecasts match the actual values.

MSE (mean squared error)

$$MSE = \frac{\sum (y_t - F_t)^2}{n}$$

Average squared difference between y_t and F_t

MAD (mean absolute deviation)

$$MAD = \frac{\sum |y_t - F_t|}{n}$$

Average absolute value of difference between y_t and F_t
 Less sensitive to extreme values, error is in scale of the variable.

MEAN ABSOLUTE PERCENT ERROR (MAPE)

$$MAPE = \frac{\sum_{i=1}^{n} \frac{|y_i - \hat{y}_i|}{y_i}}{n}$$

Where:

 y_i = Actual value of y

 \hat{y}_i = Model forecasted values of y

n = number of observations

NONLINEAR TREND-BASED FORECASTING

- A nonlinear regression model can be used when the time series exhibits a nonlinear trend
- One form of a nonlinear model:

$$y_t = \beta_0 + \beta_1 t + \beta_2 t^2 + \epsilon$$

- Compare R^2 and s_{ϵ} to that of linear model to see if this is an improvement
- Can try other functional forms to get best fit.

TREND-BASED FORECASTING FOR DATA WITH SEASONAL COMPONENT

- Components of a time series:
 - Trend
 - Seasonal
 - Cyclic element
 - A random component

LINEAR TREND MODELS WITH SEASONAL COMPONENT

Demand

FORECASTING SEASONAL DATA

- Need to observe whether the model follows an additive or multiplicative model.
- If the underlying model is multiplicative, then seasonal indices can be determined. Then the de-seasonalised series can be forecast. Seasonality can be added to the final prediction.
- If the underlying model is additive then multiple regression is the usual approach to modelling the time series.
 (not covered in this course)

MULTIPLICATIVE TIME-SERIES MODEL

- Used primarily for forecasting
- Allows consideration of seasonal variation
- Observed value in time series is the product of components

$$y_t = T_t \times S_t \times C_t \times I_t$$

where

 T_{t} = Trend value at time t

S_t = Seasonal value at time t

C_t = Cyclical value at time t

 I_t = Irregular (random) value at time t

MULTIPLICATIVE TIME-SERIES MODEL

- Four main steps in building multiplicative time-series models:
 - 1. Calculating Seasonal Indices
 - 2. De-seasonalising Data
 - 3. Non-seasonal forecast
 - 4. Re-seasonalise the forecast

MULTIPLICATIVE TIME SERIES MODEL

- Ratios to moving average method
 - 1. Smooth the time series (Use 4 centred MA for quarterly data)
 - 2. Divide each observation by its corresponding MA
 - 3. Calculate average ratio for each season
 - 4. Normalise ratios (to have an average of 1)

FINDING SEASONAL INDICES

Calculate seasonal indices for the following data

Quarter	Sales	Centred 4 MA	Ratio (Obs/MA)	= 864 / 765 = 1. 1 3
1	724			Quarter 3 sales are 13% higher than the
2	770			annual average sales
3	864	765	1.13	
4	682	776	0.88	
1	764	798.5	0.96	- 764 / 709 F - 0.06
2	818	826.5	0.99	= 764 / 798.5 = <mark>0.96</mark>
3	996	860.75	1.16	Quarter 1 sales are 4% lower than the annual
4	774	909.5	0.85	average sales
1	946	956.5	0.99	
2	1026	999.25	1.03	
3	1164	1038.75	1.12	
4	948	1073.75	0.88	
1	1088	1115.75	0.98	
2	1164	1161.25	1.00	
3	1362			
4	1114			

NORMALISING SEASONAL INDICES

Normalising seasonal indices

			_
Quarter	Sales	Centred 4 MA	Ratio (Obs/MA)
1	724		
2	770		
3	864	765	1.13
4	682	776	0.88
1	764	798.5	0.96
2	818	826.5	0.99
3	996	860.75	1.16
4	774	909.5	0.85
1	946	956.5	0.99
2	1026	999.25	1.03
3	1164	1038.75	1.12
4	948	1073.75	0.88
1	1088	1115.75	0.98
2	1164	1161.25	1.00
3	1362		
4	1114		

Quarter	1	2	3	4	
			1.13	0.88	
	0.96	0.99	1.16	0.85	
	0.99	1.03	1.12	0.88	
	0.98	1.00			
Average	0.97	1.01	1.14	0.87	3.99
Normed Indices	0.98	1.01	1.14	0.87	4.00
	A				

= 0.97 * 4.0 / 3.99 = 0.98 Each average is multiplied by 4/3.99 to get the index

DE-SEASONALISING

 The data is de-seasonalised by dividing the observed value by its seasonal index

$$|T_t \times C_t \times I_t = \frac{y_t}{S_t}|$$

This smooths the data by removing seasonal variation

DE-SEASONALISING

Period	Quarter	Sales	Index	De-seasonalised
1	1	724	0.98	738.78
2	2	770	1.01	762.38
3	3	864	1.14	757.89
4	4	682	0.87	783.91
5	1	764	0.98	779.59
6	2	818	1.01	809.90
7	3	996	1.14	873.68
8	4	774	0.87	889.66
9	1	946	0.98	965.31
10	2	1026	1.01	1015.84
11	3	1164	1.14	1021.05
12	4	948	0.87	1089.66

Example:

$$738.78 = \frac{724}{0.98}$$

etc...

UNSEASONALISED V. SEASONALISED

FORECASTING

- Can find the best fitted line on de-seasonalised data.
- Can be used to generate the non-seasonal forecast

Period	Quarter	Sales	Index	De-seasonalised	Trend Y = 36.40 x + 642.2		
1	1	724	0.98	738.78	678.6		
2	2	770	1.01	762.38	715		
3	3	864	1.14	757.89	751.4		
4	4	682	0.87	783.91	787.8		
5	1	764	0.98	779.59	824.2		
6	2	818	1.01	809.90	860.6		
7	3	996	1.14	873.68	897		
8	4	774	0.87	889.66	933.4		
9	1	946	0.98	965.31	969.8		
10	2	1026	1.01	1015.84	1006.2		
11	3	1164	1.14	1021.05	1042.6		
12	4	948	0.87	1089.66	1079		

FORECASTING

Forecasting for the next eight quarters

Period	Quarte r	Sales	Index	Deseasonalis ed	Trend Y = 36.40 x + 642.2	Forecast	
12	4						
13	1	1088	0.98	1110.2	1115.4		
14	2	1164	1.01	1152.48	1151.8		
15	3	1362	1.14	1194.74	1188.2		
16	4	1114	0.87	1280.46	1224.6		1261 * 0.98 =
17	1		0.98		1261	1235.78	
18	2		1.01		1297.4	1310.374	1235.78
19	3		1.14		1333.8	1520.532	
20	4		0.87		1370.2	1192.074	
21	1		0.98		1406.6	1378.468	
22	2		1.01		1443	1457.43	
23	3		1.14		1479.4	1686.516	
24	4		0.87		1515.8	1318.746	

Calculating seasonal indices

Description

Description

Description

Non-seasonal forecast

PLOT OF DATA, TREND AND FORECAST

