1. (24 pts) Consider the homogeneous transformations

$${}^{0}\mathbf{T}_{1} = \mathbf{Trans}([1 \ -1]^{T}) \ \mathbf{Rot}(\pi)$$
 ${}^{1}\mathbf{T}_{2} = \mathbf{Trans}([-1 \ -2]^{T}) \ \mathbf{Rot}(-\pi/2)$

- (a) (8pts) Draw a diagram to scale showing the relative locations of frames 0, 1, and 2.
- (b) (4pts) Suppose point P is fixed in coordinate system 2, and is located by $\mathbf{p}_2=P-O_2$. Suppose ${}^2\mathbf{p}_2=[1\ 1]^T$; draw \mathbf{p}_2 in your diagram. Find ${}^1\mathbf{p}_2$ and ${}^0\mathbf{p}_2$.
- (c) (6pts) Suppose $\mathbf{p}_1 = P O_1$. Draw \mathbf{p}_1 , and find ${}^2\mathbf{p}_1$, ${}^1\mathbf{p}_1$, and ${}^0\mathbf{p}_1$.
- (d) (6pts) Suppose $\mathbf{p}_0 = P O_0$. Draw \mathbf{p}_0 , and find $^2\mathbf{p}_0$, $^1\mathbf{p}_0$, and $^0\mathbf{p}_0$.

2. (20pts) Again consider the homogeneous transformations	
$^{0}\mathbf{T}_{1} = \mathbf{Trans}([1 \ -1]^{T}) \ \mathbf{Rot}(\pi)$ $^{1}\mathbf{T}_{2} = \mathbf{Trans}([-1 \ -2]^{T}) \ \mathbf{Rot}(-\pi/2)$	
(a) (10pts) Show a figure giving an interpretation of the product ${}^{0}\mathbf{T}_{1} \ {}^{1}\mathbf{T}_{2}$ as a coordinate transfor-	
mation.	
(b) (10pts) Show a figure giving an interpretation of the product ${}^0\mathbf{T}_1$ ${}^1\mathbf{T}_2$ as an operator.	

3. (10pts) Again consider the transformation ${}^{0}\mathbf{T}_{1}$ from above:	
. ${}^{0}\mathbf{T}_{1} = \mathbf{Trans}([1 \ \ 1]^{T}) \ \mathbf{Rot}(\pi)$	
but now consider that	
. $\mathbf{D}_1 = \mathbf{Trans}([-1 \ -2]^T) \ \mathbf{Rot}(-\pi/2)$	
is an operator in frame 1. Find the equivalent operator \mathbf{D}_0 in frame 0.	
\sim	
	•

	4. (42pts) This question concerns the concatenation of two polynomial trajectories $x_1(t)$ and $x_2(t)$.	
_	• Polynomial $x_1(t)$ is valid in the time range $0 \le t \le t_1$. At $t=0$, the position and velocity are zero.	
_	 Polynomial x₂(t) is valid in the time range t₁ ≤ t ≤ t₂. At t = t₂, the position is x2, and the velocity is zero. 	
_	$ullet$ At $t=t_1$, the two polynomials have the same position, velocity and acceleration.	
	 (a) (8pts) Identify the constraints at time 0, t₁ and t₂. (b) (6pts) What are the minimal degrees of the two polynomials? Write their equations, and first and second derivatives. 	
	and second derivatives.	
_		
_		
_	(c) (5pts) Substitute the unary constraints into the equations above. Identify which lead immediately	
_	to coefficient solutions. (d) (3pts) Now substitute the above polynomial equations into the binary constraints.	
	(e) (16pts) Find the coefficients of polynomial 2.(f) (4pts) Find the coefficients of polynomial 1.	
	1 of 2	