Dimensionality reduction for clustering with deep neural networks

Agustín Fernández Felguera

Degree in Statistics

01-09-2020

Contents

- Introduction
- 2 Methodology
- Clustering strategies
 - Traditional clustering
 - Two-stages clustering
 - Deep clustering
- 4 Final comparison
- 6 Conclusions

Introduction

Topic of the project

- Sheer increase in the number of data and its complexity
- Importance of DR and clustering
- Combination of algorithms
- New approaches (Deep learning)

Introduction 01-09-2020 3 / 16

Clustering strategies using DR

Traditional clustering

K-means, HDBSCAN, ...

Two-stages clustering

(PCA, t-SNE, UMAP, CAE) + (K-means, HDBSCAN)

Deep clustering

DCEC, ...

Introduction 01-09-2020

Methodology

- Analysis applied to images
- Three datasets
- Structure separated in three blocks
- Evaluation of the results
- Software

Methodology 01-09-2020

Traditional clustering

Do no use dimensionality reduction:

The clustering algorithm is good enough.

- Data have noise
- The curse of dimensionality reduction
- Results are limited by the algorithm

Two-stages clustering

Apply clustering after DR:

A lower dimensional space boosts the performance of clustering

- Advantages
- Problems
- DEBATE: No clear conclusions.

First stage: DR

Second stage: Clustering

Table: Quantitative performance of both strategies

Algorithm	NMI	ARI	ACC	SIL
K-means	0.5284	0.3844	0.5514	0.1517
PCA+HDBSCAN*	0.6621	0.4583	0.5275	-
t-SNE2+K-means	0.5842	0.4502	0.6163	-
UMAP2+K-means	0.6433	0.4800	0.5746	0.132
UMAP30+K-means	0.6373	0.4780	0.5833	0.088
UMAP2+HDBSCAN	0.6422	0.3970	0.4361	-
UMAP30+HDBSCAN	0.6064	0.2839	0.3450	-
CAE10+K-means	0.4862	0.3209	0.5087	0.0988

Deep clustering

Perform clustering and DR at the same time:

- Good representations of the data are good for clutering
- 2 Clustering results provide supervised signal that improve the learning of representations

Advantages of neural networks

Deep convolutional embedding clustering (DCEC)

- Pretraining
- 2 Parameter initialisation
- Training

CAE + K-means + t-SNE
$$\rightarrow$$
 DCEC

$$L = L_{rec} + \lambda L_{clust}$$

Training

Final comparison

Table: Quantitative performance of Deep clustering

	Fashion			MNIST		
Algorithm	NMI	ARI	ACC	NMI	ARI	ACC
K-means	0.5284	0.3844	0.5514	0.4998	0.3665	0.5346
UMAP2+K-means	0.6433	0.4800	0.5746	0.8313	0.7451	0.8007
CAE10 Guo+K-means	0.5983	0.4308	0.5534	0.7882	0.7442	0.8365
CAE10+K-means	0.5430	0.3826	0.5149	0.5918	0.4801	0.615
DCEC Guo $(\gamma = 1)$	0.6072	0.4471	0.5609	0.5195	0.3792	0.5417
DCEC Guo	0.6616	0.5117	0.6360	0.8898	0.8552	0.8924

Final comparison 01-09-2020

Conclusions

- Limitations of the analysis
- Large number of algorithms, both for DR and for clustering
- Additional applications of DR
- Progress of the field

Conclusions 01-09-2020