${\bf 1}$. Considerem la quàdrica Q de \mathbb{P}^3 d'equació

$$x^{2} + y^{2} + t^{2} + xz - yz + 2yt - zt = 0.$$

- (a) Trobeu el pla tangent a Q en el punt P = (1, 2, -1, -2) i proveu que la intersecció d'aquest pla amb Q és una cònica degenerada. Trobeu totes les rectes contingudes a Q passant per P.
- (b) Determineu per a quins valors de a la recta x y + az = 0, 2x + t = 0 és tangent a Q.
- **2**. Trobeu els plans tangents a la quàdrica Q de \mathbb{P}^3 d'equació $x^2+2y^2-4zt=0$ que contenen la recta x-2y-t=0, 2y-z=0.
- **3.** Sigui Q una quàdrica de \mathbb{P}^n i $P \notin Q$.
 - (a) Trobeu l'equació que han de verificar els punts que estan sobre una recta tangent a Q passant per P. Demostreu que aquests punts estan en una quàdrica Q' i que, si és no buida, P és un punt singular de Q'. Aquesta quàdrica s'anomena con tangent a Q des de P.
 - (b) Demostreu que $Q \cap Q' = Q \cap H_p(Q)$. Aquesta intersecció s'anomena contorn aparent de Q des de P.
 - (c) Feu els càlculs anteriors per a Q definida per $x^2+2y^2+zt=0$ i p=(1,0,0,0).
- **4.** Siqui Q una quàdrica de \mathbb{P}^n i $P \in Q$ un punt singular.
 - (a) Sigui V una varietat lineal tal que $P \in V \nsubseteq Q$. Demostreu que P és també un punt singular de $Q \cap V$. Deduiu que, si $k = \mathbb{R}$, qualsevol pla contenint P, o està contingut a Q, o la seva intersecció amb Q és el punt P, o una recta doble o dues rectes diferents tallant-se a P.
 - (b) Demostreu que per a qualsevol $P' \in Q$, la recta $P \vee P'$ està continguda a Q. En particular, si H és un hiperplà, la quàdrica Q es pot entendre com un con amb vèrtex P sobre $Q \cap H$.
 - (c) Sigui W la varietat lineal de punts singulars de Q. Sigui W' una varietat lineal complementària. Demostreu que $W' \cap Q$ ès una quàdrica no degenerada i que per a tot $P' \in W' \cap Q$, es verifica que $P' \vee W \subseteq Q$.
- **5.** Determineu les equacions de les còniques que satisfan:
 - (a) Passen pels punts (1,0,-1), (1,0,4), (1,2,1), (1,2,-1) i (1,3,0).
 - (b) Passen pels punts (1,0,1), (1,1,0), (1,1,1) i són tangents a la recta x+y+z=0 en el punt (-1,0,1).
 - (c) Passen pels punts (1,0,1), (1,2,1), (1,1,2) i són tangents a la cònica $x^2 + y^2 4z^2 2xy + 3xz = 0$ en el punt (1,1,0).
- **6.** Trobeu l'equació d'una cònica no degenerada en $\mathbb{P}^2_{\mathbb{R}}$ quan es pren com a triangle de referència:
 - (a) Un triangle inscrit.
 - (b) Un triangle circumscrit.

- (c) Un triangle autopolar.
- (d) El triangle format per dues tangents i la polar del punt d'intersecció.
- (e) El cas anterior si, a més, s'agafa un punt de la cònica com a punt unitat.
- 7. Sigui $\mathcal{R}=\{A,B,C,U\}$ una referència projectiva de $\mathbb{P}^2_{\mathbb{R}}$. Doneu l'equació general de les còniques tangents en B i U a les rectes $A\vee B$ i $A\vee U$ respectivament.
- 8. Proveu que el triangle diagonal d'un quadrivèrtex inscrit en una cònica no degenerada és autopolar.
- 9. Proveu que un quadrivèrtex inscrit en una cònica no degenerada i el quadrilàter circumscrit format per les tangents a la cònica en els vèrtexs de l'anterior tenen el mateix triangle diagonal.
- 10. Sigui ABC un triangle de \mathbb{P}^2 inscrit en una cònica no degenerada Q. Proveu que per a qualsevol punt p que pertanyi a un costat del triangle, les interseccions de la polar de p respecte de Q amb els altres dos costats són punts conjugats respecte de Q.
- 11. (a) Calculeu els punts d'intersecció de les còniques:

$$2x^2 + 5y^2 - 7xy + 2yz - 2z^2 = 0$$
 i $x^2 + 3y^2 - 4xy + yz - z^2 = 0$.

(b) Donades les còniques

$$44x^2 + 16y^2 + 9z^2 + 56xy + 28xz + 16yz = 0$$
 i $13x^2 + 4y^2 + 4z^2 + 16xy + 8xz + 4yz = 0$.

doneu les equacions de totes les rectes tangents a les dues (no necessàriament en el mateix punt).

- 12. Siguin A i B dos punts diferents d'una cònica Q no degenerada. Siguin A^* i B^* els feixos de rectes per A i B. Sigui $j_A:A^*\to Q$ l'aplicació que assigna a cada recta L de A^* , la intersecció $(L\setminus\{A\})\cap Q$. Si L és la tangent a Q per A, li assignem el propi A. Proveu que l'aplicació $f:A^*\to B^*$ definida per $f=j_B^{-1}\circ j_A$ és una projectivitat. Enuncieu el recíproc.
- 13. (a) Proveu que per cinc punts de \mathbb{P}^2 , de manera que no n'hi ha tres d'alineats, passa una única cònica Q, i que Q és no degenerada.
 - (b) Proveu que donades 5 rectes de \mathbb{P}^2 , de manera que no n'hi ha tres d'elles concurrents, hi ha una única cònica Q a la que són tangents, i que Q és no degenerada.
- 14. Siguin A, B, C, D quatre punts d'una cònica no degenerada Q. Proveu que, per a $E \in Q$, la raó doble de les rectes $A \vee E$, $B \vee E$, $C \vee E$ i $D \vee E$ no depèn de E (entenent que, per exemple, $A \vee A$ és la recta tangent en A).
- **15.** Sigui C una cònica no degenerada de $\mathbb{P}^2_{\mathbb{C}}$ i A, B dos punts diferents de C. Proveu que el lloc geomètric dels punts P tals que el punt polar de la recta $P \vee A$ respecte de C pertany a la recta $P \vee B$ és una cònica C'.
- 16. Classifiqueu projectivament les còniques de $\mathbb{P}^2_{\mathbb{R}}$:
 - (a) $x^2 + y^2 + z^2 2xy + 2xz 2yz = 0$:
 - (b) $2x^2 2y^2 + z^2 + 6xy 2xz 2yz = 0$.

i la família de quàdriques de $\mathbb{P}^3_{\mathbb{R}}$:

(c)
$$x^2 + y^2 - 2z^2 + at^2 + 2xy - 2yz + 2zt = 0$$
, en funció d'a.

- 17. Sigui Q una quàdrica de \mathbb{P}^n representada per una forma quadràtica q. Sigui $f = [\psi]$ una homografia. Definim f(Q) com la quàdrica representada per la forma quadràtica $q \circ \psi^{-1}$.
 - (a) Demostreu que $p \in Q \Leftrightarrow f(p) \in f(Q)$.
 - (b) Fixada una referència R, digueu quina és la relació entre les matrius en aquesta referència de Q, f(Q) i f.
 - (c) Demostreu que p_1 i p_2 són polars respecte de Q si i només si $f(p_1)$ i $f(p_2)$ són polars respecte de f(Q).
 - (d) Demostreu que p és un punt singular de Q si i només si f(p) és un punt singular de f(Q).
- 18. Considereu la projectivitat f de \mathbb{P}^3 definida per f(x,y,z,t)=(-y-t,x+t,z,t) i la quàdrica Q d'equació $2x^2+2y^2-z^2+3t^2+4xt-4yt=0$. Determineu l'equació de f(Q).
- 19. Estudieu les projectivitats que deixen invariant una cònica no degenerada i dos punts exteriors (els punts es poden intercanviar entre ells).
- **20 .** Trobeu l'equació del con de $\mathbb{A}^3_{\mathbb{R}}$ que té per vèrtex (1,1,1) i que talla el pla xy segons la cònica $x^2+y^2+2x+2y+1=0$.
- **21**. Trobeu l'equació de la cònica de $\mathbb{A}^2_{\mathbb{R}}$ que té les mateixes direccions assimptòtiques que $x^2-2y^2+2xy-x+y+1=0$, que passa per l'origen i que té centre en el punt (1,1).
- 22. Trobeu unes equacions reduïdes i la referència en la qual s'assoleixen per a les quàdriques de $\mathbb{A}^3_{\mathbb{R}}$
 - (a) $x^2 + y^2 2xz + 4yz 2y + 6z 1 = 0$.
 - (b) $x^2 + y^2 + 2xy + 2x 2y + 2z + 1 = 0$.
- 23. Determineu, en funció dels paràmetres a i b, el tipus afí de les quàdriques de $\mathbb{A}^3_{\mathbb{R}}$

$$bx^{2} + (2b + a)y^{2} + bz^{2} + 2bxy - 2byz - b = 0.$$

- **24.** Considerem la quàdrica Q de \mathbb{A}^3 d'equació $x^2 + 2yz + 2z 1 = 0$.
 - (a) Trobeu-ne les equacions reduïdes.
 - (b) Proveu que les interseccions de Q amb els plans paral·lels al pla y=z són còniques no degenerades amb centre i determineu el lloc geomètric dels centres així obtingts.
- **25**. Trobeu l'equació del con de $\mathbb{A}^3_{\mathbb{R}}$ que té per vèrtex (1,1,1) i que talla el pla xy segons la cònica $x^2+y^2+2x+2y+1=0$.
- **26**. Considerem la quàdrica Q de \mathbb{A}^3 d'equació $x^2+y^2+z^2-4x-4y-4z+11=0$, el pla V d'equació x+y+z+10=0 i la recta r d'equacions x-4=y+z=0. Supossem que Q és un objecte opac. Trobeu des de quin punt $p\in r$ l'hem d'il.luminar per tal que l'ombra produïda sobre el pla V tingui un contorn parabòlic.