

Servicio Nacional de Aprendizaje SENA SISTEMA INTEGRADO DE GESTIÓN DETERMINACION DE POTENCIOMETRIA

Versión: 01 Fecha: Julio de

2014

CÓDIGO ENSAYO	QAI-ACE1-003	
PROGRAMA	Control Ambiental	
NORMA DE COMPETENCIA		
RESULTADO DE APRENDIZAJE		

1. Discusión general

El pH es una las medidas más importantes y su determinación es la prueba mas usada en química de aguas.

La mayoría de las fases del tratamiento de agua de consumo y de las aguas de desecho, por ejemplo neutralización ácido- base, precipitación, coagulación, desinfección, control de corrosión y ablandamiento de aguas, son dependientes del pH. A una temperatura dada la intensidad del carácter ácido o básico de una solución es indicada por el pH o actividad del ion hidrógeno.

En aguas naturales usualmente se encuentra valores del pH en el rango 4 a 9 unidades y muchas altamente básicas por la presencia de bicarbonatos y carbonatos de metales alcalinos y alcalinotérreos.

2. Materiales- Equipos

- a) Soluciones calibradoras del potenciómetro
- b) Potenciómetro.
- c) Matraces aforados
- d) Vasos de precipitados
- e) Frasco lavador
- f) Agitador de vidrio
- g) Termómetro

3. Muestreo Y Preservación De La Muestra

Realice el muestreo según la NTC 5667-3

4. Elementos de Protección Personal (EPP) y dispositivos de seguridad

Para la realización de esta práctica es necesario el uso de los siguientes EPP y dispositivos de seguridad:

- Cabina de extracción.
- Fuente lava ojos.
- Gafas de seguridad.
- Guantes de nitrilo gruesos y delgados.
- Bata
- Cofia

5. Condiciones de seguridad

Debe tener especial precaución de manejar y/o manipular el equipo.

6. Procedimiento

- 1. Consulte el manual el potenciómetro que se ubica en el laboratorio
- 2. Encienda el aparato y permita su calentamiento durante 10 minutos
- 3. Saque el electrodo de la solución que se encuentra al interior del capuchón
- 4. Lave el electrodo con suficiente agua dd y séquelo cuidadosamente con papel de arroz o un pañuelo facial
- 5. Introduzca el electrodo en un vaso con solución reguladora de pH 7,0 agitar suavemente para evitar la entrada de CO₂ del ambiente. Accione el selector de pH.
- 6. Mida la temperatura de la solución y ajuste el equipo e ese valor
- 7. Ajuste la lectura del pH si el equipo no marca 7,0 después de 5 minutos de contacto del electrodo con la solución
- 8. Saque el electrodo de la solución, lávelos repetidamente con agua ddy séquelos suavemente como ya se explicó.
- 9. Sumerja el electrodo en solución reguladora con pH 4,0 si las mediciones van hacer en medio ácido, o en solución reguladora de pH 10 si se va a trabajar en el sector alcalino. Deje en contacto 5 minutos, acciones el selector de pH y compruebe la lectura; esta no debe presentar una desviación superior a ± 0,1 unidades de pH.
- 10. Lave nuevamente muy bien los electrodos con abundante cantidad de agua dd, séquelos con papel suave e introdúzcalos en la muestra de agua problema
- 11. Repita el proceso de agitación, tiempo de contacto y lectura.

Versión	01	Página	2 de 4

- 12. Saque el electrodo de la muestra, lávelo con abundante agua dd y séquelos con papel de arroz o pañito, para proceder a la lectura de la siguiente muestra
- 13. Lave escrupulosamente el electrodo y coloque en el capuchón con la solución protectora
- 14. Apague el equipo y déjelo en su sistema de almacenamiento.

7. Cálculos y expresión de resultados

pH experimental corregido = pHc= pHL - b/m

Donde $pH_L = pH$ leído experimentalmente m y b = pendiente e intercepto de la gráfica, pH leído vs pH teórico de las soluciones reguladoras estándar.

8. Manejo de residuos peligrosos

a) Deseche por el fregadero todos los residuos

Documentos de referencia

- [1- AMERICAN PUBLIC HEALTH ASSOCIATION. Standard Methods for the Examination of Water and Wastewater. 18th Edition. Washington DC, APHA, AWWA, WWCF, 1992. pp 5-6 5-10.
- 2- HACH Technical center for Applied Analytical Chemistry. Introduction to Chemical Oxygen Demand. Booklet No 8. Hach Company, U.S.A.

9. Anexos

No aplica.

CONTROL DE DOCUMENTO

	Nombre	Cargo	Dependencia	Fecha
Elaboración				
Revisión				
Aprobación				

CONTROL DE CAMBIOS

Versión 01	Página	3 de 4
------------	--------	--------

Versión No.	Fecha de aprobación	Descripción del cambio	Solicitó

Versión 01

Página 4 de 4