Relational Algebra Cheatsheet

by Tobias H. Petersen

Relational Algebra

A		В	
x	y	У	f
1	a	a	true
2	b	b	false
3	С	c	true
4	k	d	false

Projection (π)

$$C := \pi_x(A)$$

	С	
	\mathbf{x}	
	1	
	2	
ĺ	3	
ĺ	4	

Selection (σ)

$$D := \sigma_{x>2}(A)$$

 $\text{LAT}_{\text{E}}X: D:= \sigma_{x>2}(A)$

I)
x	\mathbf{y}
3	c
4	k

Renaming (ρ)

$$E := \rho_{x/foo}(A)$$

 $IAT_EX: E:= \rho_{x/foo}(A)$

Е	
foo	\mathbf{y}
1	a
2	b
3	с
4	k

Contents

Relational Algebra	1
Projection (π)	1
Selection (σ)	1
Renaming (ρ)	1
Product, Division and Joins	2
Cartesian product (\times)	2
Division $(/)$	2
Natural Join (\bowtie)	2
Theta Join (\bowtie_C)	2
Set Operations	2
$\cup \text{nion} (\cup) \ldots \ldots \ldots \ldots \ldots$	2
$I \cap tersection (\cap) \dots \dots$	2
Difference $(-)$	2
Extended Relational Algebra	3
Duplicate Elimination (δ)	3
Sorting (τ)	3
Grouping (γ)	3
Extended Projection $(\pi_{X+Y\to Z})$	3
Outer Joins	3
Left Outer Join $(\stackrel{\circ}{\bowtie}_L)$	3
Right Outer Join (\bowtie_R)	3
Full Outer Join $(\stackrel{\circ}{\bowtie})$	3

Product, Division and Joins

Cartesian Product (\times)

$$E := C \times D$$

 $AT_{F}X: E:= C \setminus times D$

	Е	
C.x	D.x	y
1	3	С
1	4	k
2	3	С
$\frac{2}{2}$	4	k
3	3	c
3	4	k
4	3	С
4	4	k

Division (/)

$$E/D = C$$

Natural Join (⋈)

$$F := A \bowtie B$$

 \LaTeX : F:= A \bowtie B

	F	ı
x	\mathbf{y}	${f z}$
1	a	true
2	b	false
3	С	true

Theta Join (\bowtie_C)

$$G:=C\bowtie_{C.x=D.x}D$$

 $E^{A}T_{E}X$: G:= C \bowtie_{C.x = D.x}D Which is equivalent to:

$$G := \sigma_{C.x=D.x}(C \times D)$$

 $LAT_EX: G:= \pi_{C.x} = D.x(C \times D)$

		G	
	$\mathbf{C}.\mathbf{x}$	D.x	\mathbf{y}
ĺ	3	3	c
	4	4	k

Set Operations

NOTE: Set operations only work if the relations have the exact same attributes.

$H := \pi_y(A)$	$I := \pi_y(B)$
y	У
a	a
b	b
c	С
k	d

 \cup nion (\cup)

$$J:=H\cup I$$

 \LaTeX : J:= H \cup I

J
y
a
b
c
k
d

 $I \cap tersection (\cap)$

$$K := H \cap I$$

 \LaTeX : K:= H \cap I

Γ	K
	y
Г	a
Г	b
Γ	c

Difference (-)

$$L := J - K$$

 \LaTeX : L:= J - K

L
\mathbf{y}
k
d

Extended Relational Algebra

Duplicate Elimination (δ)

$$M := \delta(\pi_{C.x}(E))$$

 $\text{LAT}_{E}X: M:= \text{delta(\pi_{C.x}(E))}$ For result, see C.

Sorting (τ)

$$N := \tau_y(J)$$

 $\LaTeX: N:= \tau_{y}(J)$

N
\mathbf{y}
a
b
c
d
k

Grouping (γ)

$$N := \gamma_{C.x, \mathrm{SUM}(D.x) \to dsum}(E)$$

LATEX:

 $N:= \gamma_{C.x,\infty}(D.x)\simeq dsum}(E)$

	N		
x	dsum		
1	7		
2	7		
3	7		
4	7		

Extended Projection $(\pi_{X+Y\to Z})$

$$O := \pi_{C.x + D.x \to foo, y}$$

 $IAT_EX: 0:= \pi_{C.x} + D.x \rightarrow foo, y$

О		
foo	y	
4	c	
5	k	
5	c	
6	k	
6	c	
7	k	
7	c	
8	k	

Outer Joins

Left Outer Join $(\stackrel{\circ}{\bowtie}_L)$

$$P := A \stackrel{\circ}{\bowtie}_L B$$

P					
x	\mathbf{y}	\mathbf{z}			
1	a	true			
2	b	false			
3	c	true			
4	k				

Right Outer Join $(\stackrel{\circ}{\bowtie}_R)$

$$Q := A \overset{\circ}{\bowtie}_R B$$

Q					
\mathbf{x}	\mathbf{y}	${f z}$			
1	a	true			
2	b	false			
3	c	true			
\perp	d	false			

Full Outer Join $(\stackrel{\circ}{\bowtie})$

$$R := A \overset{\circ}{\bowtie} B$$

LATEX: R:= A \stackrel{\circ}{\bowtie}B

R						
\mathbf{x}	y	${f z}$				
1	a	true				
2	b	false				
3	c	true				
4	k					
\perp	d	false				