DRIT:

Diverse Image-to-Image Translation via Disentangled Representations

Hsin-Ying Lee, Hung-Yu Tseng, Jia-Bin Huang, Maneesh Singh, Ming-Hsuan Yang

University of California, Merced. Virginia Tech. Verisk Analytics. Google Cloud.

ECCV 2018

Sungman Cho

"Generate diverse outputs with unpaired training data."

Challenges

Aligned training image pairs are either difficult to collect or do not exist.
 (Pix2Pix)

Not unpair

Many such mappings are inherently multimodal.
 A single input may correspond to multiple possible outputs.
 (CycleGAN, DiscoGAN, UNIT)

Not diverse

CycleGAN

Challenges

Aligned training image pairs are either difficult to collect or do not exist.
 (Pix2Pix)

Not unpair

Many such mappings are inherently multimodal.
 A single input may correspond to multiple possible outputs.
 (CycleGAN, DiscoGAN, UNIT)

Not diverse

BicycleGAN

CycleGAN

Related Works

Method	Pix2Pix [18]	CycleGAN [46]	UNIT [26]	BicycleGAN [47]	Ours
Unpaired	4	✓	1	123	1
Multimodal	_	_	-	✓	1

- We propose to **embed images onto two spaces**:
 - 1) A domain-invariant content space
 - 2) A domain-specific attribute space

"Generate diverse outputs with unpaired training data."

"Generate diverse outputs with unpaired training data."

"Generate diverse outputs with unpaired training data."

DRIT (Training Phase)

(a) Training with unpaired images

DRIT (Test Phase)

(b) Testing with random attributes

(c) Testing with a given attribute

Methods

DRIT with Losses

$$\begin{split} \min_{G,E^c,E^a} \max_{D,D^c} \quad & \lambda_{\text{adv}}^{\text{content}} L_{\text{adv}}^c + \lambda_1^{\text{cc}} L_1^{\text{cc}} + \lambda_{\text{adv}}^{\text{domain}} L_{\text{adv}}^{\text{domain}} + \lambda_1^{\text{recon}} L_1^{\text{recon}} \\ & + \lambda_1^{\text{latent}} L_1^{\text{latent}} + \lambda_{\text{KL}} L_{\text{KL}} \end{split}$$

- Content adversarial loss
- Cross-cycle consistency loss
- Domain adversarial loss
- Self-reconstruction loss
- KL loss
- Latent regression loss

In our case?

DRIT: Content adversarial loss

- Content adversarial loss
- Cross-cycle consistency loss
- Domain adversarial loss
- Self-reconstruction loss
- KL loss
- Latent regression loss

DRIT: Content adversarial loss

- Content adversarial loss
- Cross-cycle consistency loss
- Domain adversarial loss
- Self-reconstruction loss
- KL loss
- Latent regression loss

$$L_{\text{adv}}^{\text{content}}(E_{\mathcal{X}}^{c}, E_{\mathcal{Y}}^{c}, D^{c}) = \mathbb{E}_{x}\left[\frac{1}{2}\log D^{c}(E_{\mathcal{X}}^{c}(x)) + \frac{1}{2}\log(1 - D^{c}(E_{\mathcal{X}}^{c}(x)))\right] + \mathbb{E}_{y}\left[\frac{1}{2}\log D^{c}(E_{\mathcal{Y}}^{c}(y)) + \frac{1}{2}\log(1 - D^{c}(E_{\mathcal{Y}}^{c}(y)))\right]$$

DRIT: Content adversarial loss

Content Discriminator

aims to distinguish the domain of the encoded features

Content Encoder

learn to produce encoded content whose domain can't be distinguished by discriminator

$$L_{\text{adv}}^{\text{content}}(E_{\mathcal{X}}^{c}, E_{\mathcal{Y}}^{c}, D^{c}) = \mathbb{E}_{x}\left[\frac{1}{2}\log D^{c}(E_{\mathcal{X}}^{c}(x)) + \frac{1}{2}\log(1 - D^{c}(E_{\mathcal{X}}^{c}(x)))\right] + \mathbb{E}_{y}\left[\frac{1}{2}\log D^{c}(E_{\mathcal{Y}}^{c}(y)) + \frac{1}{2}\log(1 - D^{c}(E_{\mathcal{Y}}^{c}(y)))\right]$$

DRIT: Cross-cycle Consistency Loss

- Content adversarial loss
- Cross-cycle consistency loss
- Domain adversarial loss
- Self-reconstruction loss
- KL loss
- Latent regression loss

"Combining a content representation from an arbitrary image and an attribute representation from an image of target domain"

DRIT: Cross-cycle Consistency Loss

 $+\lambda_1^{\text{latent}}L_1^{\text{latent}}+\lambda_{\text{KL}}L_{\text{KL}}$

- Content adversarial loss
- Cross-cycle consistency loss
- Domain adversarial loss
- Self-reconstruction loss
- KL loss
- Latent regression loss

$$L_1^{cc}(G_{\mathcal{X}}, G_{\mathcal{Y}}, E_{\mathcal{X}}^c, E_{\mathcal{Y}}^c, E_{\mathcal{X}}^a, E_{\mathcal{Y}}^a) = \mathbb{E}_{x,y}[\|G_{\mathcal{X}}(E_{\mathcal{Y}}^c(v), E_{\mathcal{X}}^a(u)) - x\|_1 + \|G_{\mathcal{Y}}(E_{\mathcal{X}}^c(u), E_{\mathcal{Y}}^a(v)) - y\|_1],$$

where
$$u = G_{\mathcal{X}}(E_{\mathcal{Y}}^c(y)), E_{\mathcal{X}}^a(x))$$
 and $v = G_{\mathcal{Y}}(E_{\mathcal{X}}^c(x)), E_{\mathcal{Y}}^a(y)).$

DRIT: Cross-cycle Consistency Loss

• Forward Translation & Backward translation.

Exploit the disentangled content and attribute representation

$$L_1^{cc}(G_{\mathcal{X}}, G_{\mathcal{Y}}, E_{\mathcal{X}}^c, E_{\mathcal{Y}}^c, E_{\mathcal{X}}^a, E_{\mathcal{Y}}^a) = \mathbb{E}_{x,y}[\|G_{\mathcal{X}}(E_{\mathcal{Y}}^c(v), E_{\mathcal{X}}^a(u)) - x\|_1 + \|G_{\mathcal{Y}}(E_{\mathcal{X}}^c(u), E_{\mathcal{Y}}^a(v)) - y\|_1],$$

where $u = G_{\mathcal{X}}(E_{\mathcal{Y}}^c(y)), E_{\mathcal{X}}^a(x))$ and $v = G_{\mathcal{Y}}(E_{\mathcal{X}}^c(x)), E_{\mathcal{Y}}^a(y)).$

- Content adversarial loss
- Cross-cycle consistency loss
- Domain adversarial loss
- Self-reconstruction loss
- KL loss
- Latent regression loss

"Generator attempt to generate realistic images"

$$\min_{G,E^c,E^a} \max_{D,D^c} \ \lambda_{\text{adv}}^{\text{content}} L_{\text{adv}}^c + \lambda_1^{\text{cc}} L_1^{\text{cc}} + \lambda_{\text{adv}}^{\text{domain}} L_{\text{adv}}^{\text{domain}} + \overline{\lambda_1^{\text{recon}} L_1^{\text{recon}}}$$

$$+ \lambda_1^{\text{latent}} L_1^{\text{latent}} + \lambda_{\text{KL}} L_{\text{KL}}$$

- Content adversarial loss
- Cross-cycle consistency loss
- Domain adversarial loss
- Self-reconstruction loss
- KL loss
- Latent regression loss

"With encoded content/attribute features, the decoders should decode them back to original inputs"

$$\begin{split} \min_{G,E^c,E^a} \max_{D,D^c} \quad & \lambda_{\text{adv}}^{\text{content}} L_{\text{adv}}^c + \lambda_1^{\text{cc}} L_1^{\text{cc}} + \lambda_{\text{adv}}^{\text{domain}} L_{\text{adv}}^{\text{domain}} + \lambda_1^{\text{recon}} L_1^{\text{recon}} \\ & + \lambda_1^{\text{latent}} L_1^{\text{latent}} + \lambda_{\text{KL}} L_{\text{KL}} \end{split}$$

- Content adversarial loss
- Cross-cycle consistency loss
- Domain adversarial loss
- Self-reconstruction loss
- KL loss
- Latent regression loss

"In order to perform stochastic sampling at test time, we encourage the attribute to be as close to a prior Gaussian distribution."

- Content adversarial loss
- Cross-cycle consistency loss
- Domain adversarial loss
- Self-reconstruction loss
- KL loss
- Latent regression loss

"To encourage invertible mapping between the image and the latent space"

DRIT: Results

Experiments

- Diversity
- Unpaired
- Disentangle: Content, Attribute

Qualitative: diversity

"Winter → Summer"

Qualitative: diversity

Without the content discriminator, model fails to capture domain-related details (e.g., the color of tree and sky)

Qualitative: attribute

Translation results with linear-interpolated attribute vectors between attributes

Qualitative: disentangle

(4)

Translation results with linear-interpolated attribute vectors between attributes

Quantitative: realism preference results

Quantitative: diversity, reconstruction err

Table 2: **Diversity.** We use the LPIPS metric [45] to measure the diversity of generated images on the Yosemite dataset.

Method	Diversity
real images	$.448 \pm .012$
DRIT	.424 ± .010
DRIT w/o D^c	$.410 \pm .016$
UNIT [26]	$.406 \pm .022$
CycleGAN [46]	$.413 \pm .008$
Cycle/Bicycle	$.399\pm.009$

Table 3: **Reconstruct error**. We use the edge-to-shoes dataset to measure the quality of our attribute encoding. The reconstruction error is $||y - G_{\mathcal{Y}}(E_{\mathcal{X}}^{c}(x), E_{\mathcal{Y}}^{a}(y))||_{1}$. * BicycleGAN uses *paired* data for training.

Method	Reconstruct error	
BicycleGAN [47]*	0.0945	
DRIT	0.1347	
DRIT, w/o D^c	0.2076	

Domain adaptation

(a) Examples from MNIST/MNIST-M

Synthetic (Source) (Target)

The synthetic (Target)

(b) Examples from Cropped Linemod

Source	Generated
R	
8	

(a) MNIST-M

Model	Classification Accuracy (%)	
Source-only	56.6	
CycleGAN [46]	74.5	
Ours, $\times 1$	86.93	
Ours, $\times 3$	90.21	
Ours, $\times 5$	91.54	
DANN [13]	77.4	
DSN [4]	83.2	
PixelDA [3]	95.9	
Target-only	96.5	

(b) Cropped LineMod

Model	Classification Accuracy (%)	Mean Angle Error (°)
Source-only	42.9 (47.33)	73.7 (89.2)
CycleGAN [46]	68.18	47.45
Ours, ×1	95.91	42.06
Ours, $\times 3$	97.04	37.35
Ours, $\times 5$	98.12	34.4
DANN [13]	99.9	56.58
DSN [4]	100	53.27
PixelDA [3]	99.98	23.5
Target-only	100	12.3 (6.47)

(c) MNIST \rightarrow MNIST-M

(d) Synthetic \rightarrow Real Cropped LineMod

Thank You.