Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Факультет «Информатика и системы управления» Кафедра «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №3 «ИССЛЕДОВАНИЕ ПОЛУПРОВОДНИКОВЫХ ДИОДОВ В MULTISIM»

по курсу «Основы электроники»

Студент: Платонова Марина Игоревна		
Группа: ИУ7-31Б		
Студент	Г подпись, дата	Ілатонова М.И.
Преподаватель	подпись, дата	Эглоблин Д. И.
Оценка		

Оглавление

Параметры диода	<i>3</i>
Эксперимент 1 «Внесение диода в базу данных Multisim»	3
Эксперимент 2 «Исследование ВАХ полупроводниковых диодов с помощью мультиметров»	7
Эксперимент 3 «Исследование ВАХ полупроводниковых диодов с использованием осциллографа и генератора»	9
Эксперимент 4 «Исследование выпрямительных свойств диода при помощи осциллографа»	12

Параметры диода

В работе используется вариант диода №* Variant 92

```
* Variant 92
.model D2C447A D(Is=31.47f Rs=9.494 Ikf=0 N=1 Xti=3 Eg=1.11 Cjo=220p M=.5959
+ Vj=.75 Fc=.5 Isr=2.035n Nr=2 Bv=4.7 Ibv=43m
* Nbv=10 Ibv1=3m Nbv1=180
+ Tbv1=-800u)
```

Эксперимент 1 «Внесение диода в базу данных Multisim»

Создадим диод моего варианта:

Эксперимент 2 «Исследование ВАХ полупроводниковых диодов с помощью мультиметров»

Получим графики, построив для начала прямую схему:

Построение ВАХ диода при обратном включении:

Эксперимент 3 «Исследование ВАХ полупроводниковых диодов с использованием осциллографа и генератора»

Для получения ВАХ диода с помощью осциллографа и генератора моделируем схему. На рисунках показана настройка приборов.

Читаем полученную в Multisim BAX программой Mathcad. С помощью «Given-Minerr» находим параметры диода. Далее строим графики по данным из Multisim и по данным, полученным с помощью «Given-Minerr».

		0	1
	0	-0.065	-1.04·10 ⁻⁶
	1	-0.258	-1.029·10 ⁻⁶
	2	-0.442	-7.264·10 ⁻⁷
	3	-0.6	-6.634·10 ⁻⁷
	4	-0.745	-5.227·10 ⁻⁷
	5	-0.861	-3.826·10 ⁻⁷
	6	-0.943	-2.429·10 ⁻⁷
VAX =	7	-0.99	-1.038·10 ⁻⁷
	8	-0.998	3.563·10-8
	9	-0.969	1.748 · 10-7
	10	-0.901	3.145·10-7
	11	-0.8	4.544 • 10-7
	12	-0.667	5.958·10 ⁻⁷
	13	-0.509	7.394·10-7
	14	-0.331	8.881 · 10-7
	15	-0.141	

VAX (1) =		0
	0	-1.04·10 ⁻⁶
	1	-1.029·10 ⁻⁶
	2	-7.264·10 ⁻⁷
	3	-6.634·10 ⁻⁷
	4	-5.227·10 ⁻⁷
	5	-3.826·10 ⁻⁷
	6	-2.429·10 ⁻⁷
	7	-1.038·10-7
	8	3.563·10-8
	9	1.748·10-7
	10	3.145·10-7
	11	4.544·10-7
	12	5.958·10-7
	13	7.394·10 ⁻⁷
	14	8.881 · 10-7
	15	

	0	-0.065
	1	-0.258
	2	-0.442
	3	-0.6
$VAX^{\langle 0 \rangle} =$	4	-0.745
	5	-0.861
	6	-0.943
	7	-0.99
	8	-0.998
	9	-0.969
	10	-0.901
	11	-0.8
	12	-0.667
	13	-0.509
	14	-0.331
	15	

0

 $Ud1 := 0.54322 \qquad Id1 := 7.36981e-005 \quad Ud2 := 0.56862 \quad Id2 := 0.00015828 \quad Ud3 := 0.61846 \qquad Id3 := 0.00069695 \quad Ud4 := 0.67304 \qquad Id4 := 0.00260488 \quad Ud3 := 0.00069695 \quad Ud4 := 0.0006$

$$\begin{split} Rb &:= \frac{(Ud1 - 2 \cdot Ud2 + Ud3)}{Id1} & Rb = 331.623 \\ NFt &:= \frac{[(3 \cdot Ud2 - 2 \cdot Ud1) - Ud3]}{In(2)} & NFt = 1.385 \times 10^{-3} \\ IO &:= Id1 \cdot exp \bigg[\frac{(Ud3 - 2 \cdot Ud2)}{NFt} \bigg] & IO = 0 \\ Rb &:= Rb \quad Is0 := IO & m := 2 \end{split}$$

$$\begin{split} & \text{Given} \\ & \text{Ud1} = \text{Id1} \cdot \text{Rb} + \text{In} \Bigg[\frac{(\text{Is0} + \text{Id1})}{\text{Is0}} \Bigg] \cdot \text{m} \cdot \text{Ft} \\ & \text{Ud2} = \text{Id2} \cdot \text{Rb} + \text{In} \Bigg[\frac{(\text{Is0} + \text{Id2})}{\text{Is0}} \Bigg] \cdot \text{m} \cdot \text{Ft} \\ & \text{Ud3} = \text{Id3} \cdot \text{Rb} + \text{In} \Bigg[\frac{(\text{Is0} + \text{Id3})}{\text{Is0}} \Bigg] \cdot \text{m} \cdot \text{Ft} \\ & \text{Ud4} = \text{Id4} \cdot \text{Rb} + \text{In} \Bigg[\frac{(\text{Is0} + \text{Id4})}{\text{Is0}} \Bigg] \cdot \text{m} \cdot \text{Ft} \end{split}$$

 $Diod_P := Minerr(Is0, Rb, m, Ft)$

$$\begin{split} & \underline{\text{Iso}} := \text{Diod}_P_0 & \underline{\text{Rb}} := \text{Diod}_P_1 & \underline{\text{m}} := \text{Diod}_P_2 & \underline{\text{Ft}} := \text{Diod}_P_3 \\ & \underline{\text{Idiod}} := 0, 10^{-5} ... 0.005 \\ & \underline{\text{Udiod}}(\text{Idiod}) := \underline{\text{Idiod}} \cdot \text{Rb} + \underline{\text{NFt}} \cdot \underline{\text{ln}} \underbrace{\left(\underline{\text{Idiod}} + \underline{\text{Iso}}\right)}_{\underline{\text{Iso}}} \right] \end{aligned}$$

.....

Эксперимент 4 «Исследование выпрямительных свойств диода при помощи осциллографа»

Настраиваем осциллограф и генератор, как показано на рисунках ниже. Для генератора:

Собираем схему, представленную ниже.

Далее подключаемм свой диод:

Данный диод является стабилитроном, поэтому выпрямитель сделать невозможно.