Spotify 2023 Data Analysis

Shahrukh Rahman 2025-03-31

Introduction

This report analyzes the **Spotify 2023 dataset**, performing various data manipulation, visualization, and statistical computations in R.

1. Load and View Dataset

spotify_2023_Copy <- read_excel("spotify-2023 - Copy.xls")</pre>

2. List the variables in your dataset

View(spotify_2023_Copy)

str(spotify_2023_Copy) # Check structure of dataset

```
## tibble [953 \times 24] (S3: tbl_df/tbl/data.frame)
## $ track_name : chr [1:953] "Seven (feat. Latto) (Explicit Ver.)" "LALA" "vampire" "Cruel Summer" ...
## $ in_spotify_playlists: num [1:953] 553 1474 1397 7858 3133 ...
## $ in_spotify_charts : num [1:953] 147 48 113 100 50 91 50 43 83 44 ...
## $ streams : chr [1:953] "141381703" "133716286" "140003974" "800840817" ...
## $ in_apple_playlists : num [1:953] 43 48 94 116 84 67 34 25 60 49 ...
## $ in_apple_charts : num [1:953] 263 126 207 207 133 213 222 89 210 110 ...
## $ in_deezer_playlists : num [1:953] 45 58 91 125 87 88 43 30 48 66 ...
## $ in_deezer_charts : num [1:953] 10 14 14 12 15 17 13 13 11 13 ...
## $ in_shazam_charts : num [1:953] 826 382 949 548 425 946 418 194 953 339 ...
## $ instrumentalness_% : num [1:953] 0 0 0 0 63 0 0 0 0 0 ...
## $ liveness_% : num [1:953] 8 10 31 11 11 8 8 11 28 8 ...
## $ speechiness_% : num [1:953] 4 4 6 15 6 24 3 4 9 33 ...
colnames(spotify_2023_Copy) # Display column names
```

[1] "track_name" "artist(s)_name"
[4] "released_year" "released_month" "artist_count" "released_day" ## [7] "in_spotify_playlists" "in_spotify_charts" "streams" ## [10] "in_apple_playlists" "in_apple_charts" "in_deezer_playlists" ## [13] "in_deezer_charts" "in_shazam_charts" "bpm"

[16] "key" "mode" "danceability_%"

[19] "valence_%" "energy_%" "acousticness_%"

[22] "instrumentalness_%" "liveness_%" "speechiness_%"

head(spotify_2023_Copy, 15) # Display first 15 rows

A tibble: 15 × 24

3.Top 15 rows of your dataset

```
\#\# \# \# 19 more variables: released_day <dbl>, in_spotify_playlists <dbl>,
 ## # in_spotify_charts <dbl>, streams <chr>, in_apple_playlists <dbl>,
 ## # in_apple_charts <dbl>, in_deezer_playlists <dbl>, in_deezer_charts <dbl>,
 ## # in_shazam_charts <dbl>, bpm <dbl>, key <chr>, mode <chr>,
 ## # `danceability_%` <dbl>, `valence_%` <dbl>, `energy_%` <dbl>,
 ## # `acousticness_%` <dbl>, `instrumentalness_%` <dbl>, `liveness_%` <dbl>,
 ## # `speechiness_%` <dbl>
4. User defined function
```

Categorize Streams categorize_streams <- function(streams) {</pre> **if** (streams >= 1000000) { return("High Stream") } else { return("Low Stream") spotify_2023_Copy\$Stream_Category <- sapply(spotify_2023_Copy\$streams, categorize_streams)</pre> head(spotify_2023_Copy) ## # A tibble: 6 × 25 ## 1 Seven (feat. Latto... Latto, Jung Kook 2 2023
2 LALA Myke Towers 1 2023
3 vampire Olivia Rodrigo 1 2023
4 Cruel Summer Taylor Swift 1 2019
5 WHERE SHE GOES Bad Bunny 1 2023
6 Sprinter Dave, Central C... 2 2023

i 20 more variables: released_day <dbl>, in_spotify_playlists <dbl>, ## # in_spotify_charts <dbl>, streams <chr>, in_apple_playlists <dbl>,

in_apple_charts <dbl>, in_deezer_playlists <dbl>, in_deezer_charts <dbl>, ## # in_shazam_charts <dbl>, bpm <dbl>, key <chr>, mode <chr>, ## # `danceability_%` <dbl>, `valence_%` <dbl>, `energy_%` <dbl>, ## # `acousticness_%` <dbl>, `instrumentalness_%` <dbl>, `liveness_%` <dbl>, ## # `speechiness_%` <dbl>, Stream_Category <chr> **5. Filtering Recent Songs** recent_songs <- spotify_2023_Copy %>% filter(released_year > 2020) head(recent songs) ## # A tibble: 6 × 25 ## 1 Seven (feat. Latto... Latto, Jung Kook 2 2023
2 LALA Myke Towers 1 2023
3 vampire Olivia Rodrigo 1 2023
4 WHERE SHE GOES Bad Bunny 1 2023
5 Sprinter Dave, Central C... 2 2023
6 Ella Baila Sola Eslabon Armado,... 2 2023

cols = c(bpm, `danceability_%`, `energy_%`), # Use backticks for special names names_to = "Feature", values_to = "Value"

pivot_longer(

```
head(spotify_2023_Copy)
 ## # A tibble: 6 × 5
 ## track_name
                                 artist_name streams Feature Value
                                   <chr> <chr> <chr> <chr>
 ## <chr>
 ## 1 Seven (feat. Latto) (Explicit Ver.) Latto, Jung Kook 141381703 bpm 125
 ## 2 Seven (feat. Latto) (Explicit Ver.) Latto, Jung Kook 141381703 danceabi... 80
 ## 3 Seven (feat. Latto) (Explicit Ver.) Latto, Jung Kook 141381703 energy_% 83
                                  Myke Towers 133716286 bpm
 ## 4 LALA
 ## 5 LALA
                                   Myke Towers 133716286 danceabi... 71
 ## 6 LALA
                                   Myke Towers 133716286 energy_% 74
7. Data Cleaning
```

[1] 0 8. Remove Duplicated Rows duplicated_rows <- spotify_2023_Copy %>% filter(duplicated(spotify_2023_Copy)) unique_df <- spotify_2023_Copy %>% distinct() 9. Reorder Rows in Descending Order

track_name artist_name streams Feature Value <chr> <chr> <chr> <chr> ## <chr> ## 1 Love Grows (Where My Rosemary Goes) Edison Lighthouse BPM110Key... bpm 110 ## 2 Love Grows (Where My Rosemary Goes) Edison Lighthouse BPM110Key... dancea... 53

head(sorted_df)

A tibble: 6 × 5

4 Anti-Hero

5 Anti-Hero

sorted_df <- spotify_2023_Copy %>% arrange(desc(streams))

Taylor Swift 999748277 dancea... 64
Taylor Swift 999748277 energy... 63 ## 6 Anti-Hero

Taylor Swift 999748277 bpm 97

"Value"

Renaming Column Name spotify_2023_Copy <- spotify_2023_Copy %>% rename(artis_name = `artist_name`) colnames(spotify_2023_Copy)

[1] "track_name" "artis_name" "streams" "Feature"

nrow(train_set) # Check training set size

nrow(test_set) # Check test set size

artis_name

streams = as.numeric(streams))

mean(spotify_2023_Copy\$streams, na.rm = TRUE)

Length:2859 Length:2859 Length:2859 Length:2859

mutate(streams = gsub("[^0-9]", "", streams), # Remove non-numeric characters

summary(spotify_2023_Copy)

track_name

1st Qu.: 62.0

[1] 12112503461

[1] 2287

[1] 572

##

```
spotify_2023_Copy <- spotify_2023_Copy %>%
  mutate(Value = ifelse(Feature == "bpm", as.numeric(Value) * 2, Value))
12. Create a Training Set
 train_index <- sample(1:nrow(spotify_2023_Copy), 0.8 * nrow(spotify_2023_Copy))</pre>
```

13. Summary Statistics

streams

Median : 78.0 ## Mean :125.4 ## 3rd Qu.:199.0 Max. :412.0 14. Statistical Functions spotify_2023_Copy <- spotify_2023_Copy %>%

Convert to numeric

uniqv[which.max(tabulate(match(v, uniqv)))] get_mode(spotify_2023_Copy\$streams)

range(spotify_2023_Copy\$streams, na.rm = TRUE)

[1] 2.762000e+03 1.105376e+13

spotify_wide <- spotify_summarized %>%

Convert necessary columns to numerio

spotify_wide <- spotify_wide %>%

geom_point(color = "blue") +

theme_minimal()

x = "Feature",

theme_minimal()

9.0e+12

y = "Total Streams") +

100

labs(title = "Scatter Plot of BPM vs Energy",

x = "Beats Per Minute (BPM)",y = "Energy Percentage") +

Scatter Plot of BPM vs Energy

Check the result

pivot_wider(names_from = Feature, values_from = Value)

mutate(bpm = as.numeric(bpm), `energy_%` = as.numeric(`energy_%`))

```
15. Data Visualization
Scatter Plot (BPM vs Energy)
 # Summarize duplicates by averaging the Value column
 spotify_summarized <- spotify_2023_Copy %>%
   group_by(track_name, artis_name, streams, Feature) %>%
   summarise(Value = mean(Value, na.rm = TRUE), .groups = "drop")
 # Now pivot the data
```

4 10 Things I Hate About Y... Leah Kate 1.86e8 308 54 79 ## 5 2 Be Loved (Am I Ready) Lizzo 2.48e8 312 Sleepy ha... 6.25e8 322 ggplot(spotify_wide, aes(x = bpm, y = `energy_%`)) +

```
Energy Percentage
                                             200
                                                              Beats Per Minute (BPM)
```

Bar Plot of Feature vs Total Streams 1.2e+13

```
3.0e+12
   0.0e+00
                   bpm
                                     danceability_%
                                                          energy_%
                                      Feature
17. Correlation Analysis
```

<dbl> <dbl> ## 1 'Till I Collapse Eminem, Nate Dogg 1695712020 342 ## 2 (It Goes Like) Nanana - Edit Peggy Gou 57876440 260 88 Ti��sto, Tate M 325592432 240 ## 3 0.4409722222222221 ## 4 10 Things I Hate About You Leah Kate 185550869 ## 5 2 Be Loved (Am I Ready) Lizzo 247689123 312 77 ## 6 2055 Sleepy hallow 624515457 322 spotify_filtered\$bpm <- as.numeric(spotify_filtered\$bpm)</pre>

save.image("C:/Users/anjal/Downloads/Spotify v2/Spotify_Session.RData")

spotify_filtered\$`energy_%` <- as.numeric(spotify_filtered\$`energy_%`)</pre> # Calculate the correlation correlation_value <- cor(spotify_filtered\$bpm, spotify_filtered\$`energy_&`, use = "complete.obs", method = "pears"</pre> print(correlation_value) ## [1] 0.02610044

streams bpm `energy_%`

load("C:/Users/anjal/Downloads/Spotify v2/Spotify_Session.RData") **Github Link:**

i 20 more variables: released_day <dbl>, in_spotify_playlists <dbl>, ## # in_spotify_charts <dbl>, streams <chr>, in_apple_playlists <dbl>, ## # in_apple_charts <dbl>, in_deezer_playlists <dbl>, in_deezer_charts <dbl>, ## # in_shazam_charts <dbl>, bpm <dbl>, key <chr>, mode <chr>, ## # `danceability_%` <dbl>, `valence_%` <dbl>, `energy_%` <dbl>, ## # `acousticness_%` <dbl>, `instrumentalness_%` <dbl>, `liveness_%` <dbl>, ## # `speechiness_%` <dbl>, Stream_Category <chr> 6. Reshape Data spotify_2023_Copy <- spotify_2023_Copy %>% rename(artist_name = `artist(s)_name`) %>% # Rename artist column select(track name, artist name, streams, bpm, `danceability %`, `energy %`) %>% # Select columns

Remove Missing Values cleaned_df <- spotify_2023_Copy %>% drop_na() sum(is.na(cleaned_df)) # Check if missing values are removed

10. Data Transformation

11. Creating a New Variable Using Mathematical Function

3 Love Grows (Where My Rosemary Goes) Edison Lighthouse BPM110Key... energy... 69

train_set <- spotify_2023_Copy[train_index,]</pre> test_set <- spotify_2023_Copy[-train_index,]</pre>

Class :character Class :character Class :character Class :character ## Mode :character Mode :character Mode :character Mode :character Value ## Min. : 9.0

Feature

median(spotify_2023_Copy\$streams, na.rm = TRUE) ## [1] 290833204 get_mode <- function(v) {</pre> uniqv <- unique(v) ## [1] 156338624

head(spotify_wide) ## # A tibble: 6 × 6 ## track_name <chr> <chr> <dbl> <dbl> ## 1 'Till I Collapse Eminem, N... 1.70e9 342 ## 2 (It Goes Like) Nanana - ... Peggy Gou 5.79e7 260 88 ## 3 0.440972222222222 Tii¿½s... 3.26e8 240

16. Bar Plot (Released Year vs Spotify Playlists) spotify_summary <- spotify_2023_Copy %>% group_by(Feature) %>% # Grouping by the 'Feature' column summarise(total_streams = sum(streams, na.rm = TRUE), .groups = "drop") $ggplot(spotify_summary, aes(x = Feature, y = total_streams)) +$ geom_bar(stat = "identity", fill = "skyblue") + labs(title = "Bar Plot of Feature vs Total Streams",

6.0e+12 library(dplyr) library(tidyr) # Summarize duplicates by calculating the mean for each combination spotify_filtered <- spotify_2023_Copy %>% filter(Feature %in% c("bpm", "energy_%")) %>% group_by(track_name, artis_name, streams, Feature) %>% summarise(Value = mean(Value, na.rm = TRUE), .groups = "drop") %>% pivot_wider(names_from = Feature, values_from = Value) # Check the data to ensure bpm and energy_% are in separate columns

A tibble: 6 × 5 ## track_name artis_name <chr> <chr>

Loading the session from the specified directory

head(spotify_filtered)

9. Save and Load Session # Saving the session in the specified directory

https://github.com/AnjaliSagpariya/Spotify.git