Cálculo Numérico: Gabarito de Método de Newton

Prof: Felipe Figueiredo

http://sites.google.com/site/proffelipefigueiredo

Versão: 20150519.2

1

2

- 1. (a) $\bar{x} = 2.00455764, x_1 = 2.9, x_2 = 2.13965517, x_3 = 2.00455764, x_4 =, \varepsilon = 0.13509752$
 - (b) $\bar{x} = -0.59259259, x_1 = -2, x_2 = -1.33333333, x_3 = -0.88888888, x_4 = -0.59259259, \varepsilon = 0.44444444$
 - (c) $\bar{x}=1.51677444, x_1=4.05633802, x_2=2.78897669, x_3=1.98704642, x_4=1.51677444, \varepsilon=0.47027$
 - (d) $\bar{x}=0.00129550, x_1=0.57619047, x_2=0.21063156, x_3=0.03604670, x_4=0.00129550, \varepsilon=0.03535119$
 - (e) $\bar{x} = 2.92 \times 10^{-13}, x_1 = -0.55740772, x_2 = 0.06593645, x_3 = -0.00009752, x_4 = 2.92 \times 10^{-13}, \varepsilon =$
- $2. \quad (a)$
 - (b)
 - (c)
 - (d)
 - (e)
- 3. (a)
 - (b)
 - (c)
 - (d)
 - (e)
 - (f)
 - (g)

3

- 4. (a)
 - (b)
 - (c)
 - (d)
- 5. $\bar{x} = 3.14149311, x_1 = 3.14079632, x_2 = 3.14119449, x_3 = 3.14139367, x_4 = 3.14149311, \varepsilon = |x_4 x_3| = 0.00009954$
- 6. (a) $f'(x) = 2e^{2x}(x^3 15x^2 + 1) + e^{2x}(3x^2 30x)$
 - (b) a = -1, b = 0.1 portanto f(a) = -2.03002924 e f(b) = 1.03941374
 - (c) $x_2 = -0.175$

(d) $\bar{x} = x_2 = -0.256023160108161823$

	k	x_k	$f(x_k)$	$f'(x_k)$	$\varepsilon = f(x_k) $
	0	-0.175	0.37719531077	4.5187463108	0.37719531077
	1	-0.25847344259	-0.011566602376	4.7205179167	0.011566602376
_	2	-0.25602316010	2.112113888E-7	4.7206374662	2.112113888E-7