Российский Университет Дружбы Народов Факультет физико-математических и естесственных наук

Функциональный анализ

IV CEMECTP

Лектор: Россовский Леонид Ефимович

Автор: Финаревский Леонид $\frac{\Pi poe\kappa m\ s\ Telegram}{\Pi poe\kappa m\ s\ Github}$

Содержание

1	Элементы теории меры и интеграла	2
	1.1 Мера Лебега в евклидовом пространстве \mathbb{R}^n	3

РУДН, весна 2024

1 Элементы теории меры и интеграла

Мера — счетно-аддитивная функция множества.

Определение 1.1. \mathcal{R} — семейство множеств называется *кольцом*, если $A, B \in \mathcal{R} \Rightarrow A \cup B, A \backslash B \in \mathcal{R}$

Определение 1.2. Кольцо называют σ -кольцом, если дополнительно $\sum_{n=1}^{\infty} A_n \in \mathcal{R}$ при $A_n \in \mathcal{R}$.

Определение 1.3. Функция $\varphi : \mathcal{R} \to [0, +\infty]$ называется $a\partial \partial umu$ вной, если $\forall A, B \in \mathcal{R} : A \cap B = \emptyset$ выполнено $\varphi(A \cup B) = \varphi(A) + \varphi(B)$.

Некоторые очевидные свойства

$$\triangleright \varphi(\varnothing) = 0$$

$$ho \ arphi(igcup_{n=1}^\infty A_n) = \sum_{n=1}^\infty arphi(A_n),$$
 при $A_i \cap A_j = \varnothing(i \neq j)$ и $A_i \in \mathcal{R}$

$$\varphi(A \cup B) + \varphi(A \cap B) = \varphi(A) + \varphi(B)$$

$$\triangleright A \subset B \Rightarrow \varphi(A) \leqslant \varphi(B)$$

$$\triangleright A \subset B$$
 и $\varphi(A) < +\infty \Rightarrow \varphi(B \backslash A) = \varphi(B) - \varphi(A)$

Определение 1.4. $\mathcal{R}-\sigma$ -кольцо, $\varphi:\mathcal{R}\to[0,+\infty]$

$$\varphi$$
 называется c чётно- a д d итивным, если

$$A_n \in \mathcal{R}, A_i \cap A_j = \varnothing(i \neq j) \Rightarrow \varphi(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \varphi(A_n)$$

Счетно-аддитивная функция удовлетворяет свойству непрерывности в следуюющем смысле:

$$ightharpoonup A_1 \subset A_2 \subset \cdots \subset A_n \ldots, A = \bigcup A_n \Rightarrow \varphi(A_n) \to \varphi(A),$$
 при $n \to \infty$

$$B_1 = A_1, B_2 = A_2 \backslash A_1, B_3 = A_3 \backslash A_2, \dots$$

$$B_i \cap B_j = \varnothing(i \neq j), A_n = \bigcup_{i=1}^n B_i, A = \bigcup_{i=1}^\infty B_i$$

$$\varphi(A_n) = \varphi(B_1) + \dots + \varphi(B_n) \Rightarrow \varphi(A) = \sum_{n=1}^{\infty} \varphi(B_n)$$

Определение 1.5. Мера — неотрицательная, счетно-аддитивная функция, определенная на σ -алгебре.

РУДН, весна 2024

1.1 Мера Лебега в евклидовом пространстве \mathbb{R}^n

Определение 1.6. Брус $-I = \{x \in \mathbb{R}^n : a_i \leqslant x_i \leqslant b_i\}.$

Примеры:

1)
$$\mu(I) = \prod_{i=1}^{n} (b_i - a_i)$$

2)
$$p=1, \mathbb{R}^n=\mathbb{R}, \alpha:\mathbb{R}\to\mathbb{R}$$
 — монотонно-возраст

$$\triangleright \mu([a,b]) = \alpha(b+) - \alpha(a-)$$

$$\triangleright \mu((a,b)) = \alpha(b-) - \alpha(a+)$$

$$\triangleright \mu([a,b)) = \alpha(b-) - \alpha(a-)$$

$$\triangleright \mu((a,b]) = \alpha(b+) - \alpha(a+)$$

Определение 1.7. Элементарное множество — конечное объединение брусов. Обозначаем $A \in \mathcal{E}$

Люблое элементарное множество можно представить в виде конечного объединение непересекающихся брусов.

$$\mu(A), A \in \mathcal{E}, \mu(A) = \sum \mu(I_i)$$
 при $I_i \cap I_j = \emptyset (i \neq j)$

Результат $\mu(A)$ не зависит от разбиения A. А функция μ оказывается аддитивной.

 ${\cal E}$ является кольцом, а μ аддитивна на нем.

Задача. Любое открытое множество в \mathbb{R}^n можно представить в виде счетного числа брусов.

 $0 \leqslant \mu$, конечность, аддитивность и регулярность на \mathcal{E} .

Определение 1.8. μ называется регулярной (на \mathcal{E}), если $\forall A \in \mathcal{E}$ и $\forall \varepsilon > 0 \; \exists$ замкнутые $F \in \mathcal{E}$ и открытое $G \in \mathcal{E}$

$$F\subset A\subset G$$
 и $\mu(G)-\varepsilon\leqslant\mu(A)\leqslant\mu(F)+\varepsilon$