

Eksamen

15.11.2024

REA3046 Kjemi 2

Nynorsk

Eksamensinf	ormasjon
Eksamenstid	Eksamen varer i 5 timar. Del 1 skal leverast inn etter 2 timar. Del 2 skal leverast inn seinast etter 5 timar. Du kan begynne å løyse oppgåvene i del 2 når som helst, men du kan ikkje bruke hjelpemiddel før etter 2 timar – etter at du har levert svara for del 1.
Tillatne hjelpemiddel under eksamen	Del 1: skrivesaker, passar, linjal og vinkelmålar Del 2: Alle hjelpemiddel er tillatne, bortsett frå ope internett og andre verktøy som kan brukast til kommunikasjon. Når du bruker nettbaserte hjelpemiddel under eksamen, har du ikkje lov til å kommunisere med andre. Samskriving, chat og andre måtar å utveksle informasjon med andre på er ikkje tillatne. Du kan ikkje bruke automatisk tekstgenerator som chatbot eller tilsvarande teknologi.
Bruk av kjelder	Dersom du bruker kjelder i svaret ditt, skal du alltid føre dei opp på ein slik måte at lesaren kan finne fram til dei. Du skal føre opp forfattar og fullstendig tittel på både lærebøker og annan litteratur. Dersom du bruker utskrifter eller sitat frå internett, skal du føre opp nøyaktig nettadresse og nedlastingsdato.
Vedlegg	1 Tabellar og formlar i kjemi – REA3046 Kjemi 2 2 Eige svarark for oppgåve 1 og 2
Vedlegg som skal leverast inn	Vedlegg 2: Eige svarark for oppgåve 1 og 2 finn du bakarst i oppgåvesettet.
Informasjon om oppgåve 1 og oppgåve 2	Oppgåve 1 har 12 fleirvalsoppgåver med fire svaralternativ: A, B, C og D. Det er berre eitt rett svaralternativ for kvar fleirvalsoppgåve. Oppgåve 2 har åtte påstandar med svaralternativa rett og feil. Blankt svar på oppgåve 1 og 2 er likeverdig med feil svar. Dersom du er i tvil, bør du derfor skrive det svaret du meiner er mest korrekt. Du kan berre svare med eitt svaralternativ. Skriv svara for oppgåve 1 og 2 på eige svarark i vedlegg 2, som ligg heilt til sist i oppgåvesettet. Svararket skal rivast laus frå oppgåvesettet og leverast inn. Du skal altså ikkje levere inn sjølve eksamensoppgåva med oppgåveteksten.
Informasjon om vurderinga	Karakteren ved sluttvurderinga blir fastsett etter ei heilskapleg vurdering av eksamenssvaret. Dei to delane av svaret, del 1 og del 2, blir vurderte under eitt. Sjå eksamensrettleiinga med vurderingskriterium til sentralt gitt skriftleg eksamen. Eksamensrettleiinga finn du på nettsidene til Utdanningsdirektoratet.

Vurdering og vekting	Del 1 tel omtrent 40 prosent, og del 2 tel omtrent 60 prosent av heile settet. Vektinga tilsvarer omtrent tidsbruken. På del 1 er forventa tidsbruk på oppgåve 1, 2 og 3 til saman 1 time og på oppgåve 4 og 5 til saman 1 time. På del 2 blir kvar deloppgåve i oppgåvene 6, 7 og 8 vekta omtrent likt. Oppgåve 9 blir vekta omtrent 25 prosent av del 2. Alle oppgåvene med unntak av oppgåve 1 og 2 vil krevje grunngiving av svaret. Nokre oppgåver vil kunne løysast på ulike måtar, sidan du sjølv vel kva problemstillingar du vil drøfte. Dette gjeld særleg oppgåve 9. Ulike tilnærmingar kan derfor gi like høg måloppnåing. Sjå eksamensrettleiinga på nettsidene til Utdanningsdirektoratet.
Kjelder	Sjå kjeldeliste på side 59. Andre grafar, bilete og figurar: Utdanningsdirektoratet.

Del 1

Skriv svara for oppgåve 1 og 2 på eige svarskjema i vedlegg 2.

(Du skal altså ikkje levere inn sjølve eksamensoppgåva med oppgåveteksten.)

Oppgåve 1 Fleirvalsoppgåver

a) Oksidasjonstal

I kva stoff har nitrogen lågast oksidasjonstal?

- A HNO₂
- B HNO₃
- C NH₃
- D N_2

b) Løysingsevne

Ei løysning på 1,0 L blir laga ved at 0,50 mol fast kopar(II)nitrat, $Cu(NO_3)_2$ (s), blir fullstendig løyst i vatn.

Kva er konsentrasjonen av nitration i løysninga?

- A 0,25 mol/L
- B 0,50 mol/L
- C 1,0 mol/L
- D 2,0 mol/L

c) Organisk kjemi

Figur 1 viser ein reaksjonsmekanisme.

Kva reaksjonstype er dette?

- A eliminasjonsreaksjon
- B hydrolyse
- C kondensasjonsreaksjon
- D substitusjonsreaksjon

Figur 1. Reaksjonsmekanisme

d) Kromatografi

I ein syntese blei propan-1-ol først oksidert til eit mellomprodukt og så vidare til propansyre. Ei blanding av desse tre stoffa blei analysert med gasskromatografi, sjå figur 2.

Stoffa i kromatogrammet er separerte etter kokepunkt.

Figur 2. Skisse av kromatogram

Kva påstand er rett?

- A Topp 1 er signalet til propansyre.
- B Topp 2 er signalet til propanal.
- C Topp 3 er signalet til propanon.
- D Propansyre har lengst retensjonstid.

e) Kromatografi

Ei blanding av plantepigment blei separert med tynnsjiktkromatografi (TLC), sjå figur 3.

Det var polar silika på overflata av tynnsjiktplata, og den mobile fasen bestod av ei blanding av heksan, aceton og etanol (blandingsforhold: 70:28:2).

Dei grøne stoffa er klorofyll a og klorofyll b, merkte med raude piler i figuren nedanfor.

Figur 3. Strukturformlar og resultatet av TLC

Kva påstand er rett?

- A Klorofyll a har større retardasjonsfaktor, R_F, enn klorofyll b.
- B Klorofyll a er meir polart enn klorofyll b.
- C Klorofyll a og klorofyll b har lik retardasjonsfaktor, R_E.
- D Det er umogleg å separere klorofyll a og klorofyll b med TLC.

f) Redoksreaksjonar

$$2MnO_4^{-}(aq) + 10Cl^{-}(aq) + 16H^{+}(aq) \rightarrow 2Mn^{2+}(aq) + 5Cl_2(g) + 8H_2O(l)$$

Kva påstand om redoksreaksjonen ovanfor er rett?

- A Klorid, Cl⁻, er oksidasjonsmiddelet i reaksjonen.
- B Mangan i MnO₄⁻ har oksidasjonstalet +VII.
- C Oksygen i MnO₄⁻ blir oksidert i reaksjonen.
- D Mangan i MnO₄⁻ blir oksidert i reaksjonen.

g) Redoksreaksjonar

Kva reaksjon er ein redoksreaksjon?

- A $Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s)$
- B $KOH(aq) + HCI(aq) \rightarrow KCI(aq) + H_2O(I)$
- C $2Ag(s) + Cl_2(g) \rightarrow 2AgCl(s)$
- D $CuSO_4 \bullet 5H_2O(s) \rightarrow CuSO_4(s) + 5H_2O(g)$

h) Syre og base

I ei 0,10 mol/L løysning av ei syre er pH-verdien 2,0.

Kva syre er i løysninga?

- A vinsyre
- B ammoniumion
- C borsyre
- D benzosyre

i) Likevekt

I ein behaldar har denne likevekta innstilt seg:

2 BrCl(g)
$$\rightleftharpoons$$
 Br₂(g) + Cl₂(g) \triangle H<0

Kva endring kan gjerast for å få danna meir klorgass, Cl₂(g)?

- A auke trykket
- B fjerne brom, Br₂
- C bruke ein katalysator
- D auke temperaturen

j) Likevekt

Hydrogengass og klorgass blir leia inn i ein tom behaldar. Dei reagerer i ein reversibel reaksjon og dannar hydrogenklorid. Systemet oppnår likevekt.

$$H_2(g) + Cl_2(g) \rightleftharpoons 2HCl(g)$$

Kva for ei av radene A-D i tabellen viser rett uttrykk for konsentrasjonane ved likevekt?

	[H ₂]	[Cl ₂]	[HCI]
Konsentrasjonar ved start i mol/L	2,0	1,0	0,0
Svaralternativ:			
А	2,0 - x	1,0 - x	Х
В	2,0 - 2x	1,0 - 2x	2x
С	2,0 - x	1,0 - x	2x
D	2,0 - 2x	1,0 - x	2x

k) Forsøksdesign

Ein kjemikar gjer eit eksperiment for å bestemme entalpiendringa når eit salt blir løyst i vatn.

Kvifor bør eksperimentet utførast fleire gonger under like vilkår?

- A Nøyaktigheita til måleutstyret aukar med talet på repetisjonar.
- B Verknaden av systematiske feil blir mindre.
- C Resultata blir etter kvart heilt like.
- D Verknaden av tilfeldige feil blir mindre.

I) Entalpi og spontanitet

I tabellen nedanfor finn du termodynamiske data for fire ulike kjemiske prosessar.

Prosess		Δ <i>H</i> i kJ/mol	ΔS i J/(K·mol)
1	$30_2(g) \rightarrow 20_3(g)$	-429	-139
2	$2Fe_2O_3(s) + 3C(s) \rightarrow 4Fe(s) + 3CO_2(g)$	462	558
3	$H_2O(g) \rightarrow H_2O(I)$	-44	-119
4	$C_3H_8(g) + 5O_2(g) \rightarrow 4H_2O(g) + 3CO_2(g)$	-2044	100

Kva påstand er rett?

- A Prosess 1 er endoterm, og entropien aukar.
- B Prosess 2 er endoterm og blir spontan ved tilstrekkeleg høg temperatur.
- C Prosess 3 er spontan ved 1000 K.
- D Prosess 4 er ikkje spontan ved 298 K.

Oppgåve 2 Rett/feil-oppgåver

a) Likevekter

Grafen i figur 4 viser korleis konsentrasjonane av N_2O_4 og NO_2 i ein lukka behaldar endrar seg over tid. Vi har den reversible reaksjonen $N_2O_4(g) = 2 NO_2(g)$.

Figur 4. Endring i konsentrasjonane av N₂O₄ og NO₂ over tid

Vurder om kvar av påstandane er rett eller feil, og kryss av på svararket.

- I Systemet oppnår aldri likevekt, for konsentrasjonane av NO₂ og N₂O₄ blir aldri like.
- II Ved likevekt er reaksjonsfarten mot høgre lik reaksjonsfarten mot venstre.
- III Den nedste kurva (blå) viser konsentrasjonen av NO₂.
- IV Heilt i starten er det berre N₂O₄ i behaldaren.

I magesekken blir protein spalta til kortare polypeptidkjeder. Prosessen er katalysert av enzymet pepsin. Pepsin bryt oftast peptidbindingar der NH-gruppa kjem frå ei aromatisk aminosyre. I ei aromatisk aminosyre inneheld R-gruppa ein benzenring.

Figur 5 viser ein del av strukturformelen til eit protein. R₁ representerer resten av proteinet.

Figur 5. Protein

Vurder om kvar av påstandane er rett eller feil, og kryss av på svararket.

- I Strukturen til venstre for R₁ er bygd opp av fire aminosyrer.
- II Den aromatiske aminosyra i dette peptidet er fenylalanin.
- III Dersom pepsin spaltar dette proteinet, vil det sannsynlegvis bli spalta av eit tripeptid.
- IV Spalting av ei peptidbinding er ein hydrolysereaksjon.

Du ønskjer å syntetisere stoffet 4-metylpentan-2-on på laboratoriet.

Alle stoffa i tabell 1 kan brukast som utgangsstoff for å danne 4-metylpentan-2-on, men syntesane vil ha ulikt antal trinn.

Sorter desse tre stoffa etter aukande antal trinn i syntesen for å komme til produktet. Grunngi svaret kort, gjerne med reaksjonslikningar.

Tabell 1. Utgangsstoff for syntese av 4-metylpentan-2-on

Stoff A	Stoff B	Stoff C	
OH	OH OH	C	
4-metylpentan-2-ol	4-metylpentan-1-ol	2-klor-4-metylpentan	

Reint kalium, K, kan framstillast ved ein smelteelektrolyse av saltet kaliumklorid, KCl. Temperaturen vil vere over 800 °C. Ved denne temperaturen er kalium i gassfase.

Figur 6. Skisse av elektrolyse av kaliumklorid, KCI

a) Skriv halvreaksjonane for det som skjer ved katoden og anoden i denne reaksjonen.

Det framstilte kaliumet blir avkjølt. Ved eit uhell blir det sølt vatn på det framstilte kaliumet, K(s).

b) Skriv reaksjonslikninga for det som skjer då.

Eit pH-meter må kalibrerast før det kan brukast til å måle pH. Kalibreringa skjer ved hjelp av bufferar med kjende pH-verdiar.

- a) Ein av desse bufferane skal ha pH-verdien 4,0. Denne løysninga inneheld metansyre, HCOOH, og natriummetanat, HCOONa.
 - i. Kva er sur og basisk komponent i denne bufferen?
 - ii. Kva komponent har størst konsentrasjon?
- b) Skriv reaksjonslikninga for det som skjer dersom bufferen blir tilsett litt salpetersyre, HNO₃(aq).

Du skal lage 1,0 L kalibreringsbuffer med pH 4,0.

- c) Forklar kva for nokre to av dei fire reagensane nedanfor du må velje for å få størst mogleg bufferkapasitet.
 - 0,50 mol/L HCOOH
 - 1,0 mol/L HCl
 - NaOH(s)
 - HCOONa(s)

Blank side

Del 2

Oppgåve 6

Når fast natriumhydroksid, NaOH(s), blir løyst i vatn, kan det skildrast med denne reaksjonslikninga:

NaOH(s)
$$\xrightarrow{\text{vatn}}$$
 Na+(aq) + OH-(aq) $\Delta H = -44,5 \text{ kJ/mol}$

- a) Grunngi kvifor oppløysinga av dette saltet i vatn skjer spontant.
- i. Finn løysingsevna til kopar(II)hydroksid, Cu(OH)₂, i reint vatn. Oppgi svaret i mol/L.
 - ii. Vurder korleis løysingsevna endrar seg dersom pH-verdien i vatnet aukar.

Ein del vassrøyr er laga av koparmetall. Drikkevatn som hadde stått ei tid i eit slikt koparrøyr, inneheldt 1,0 mg Cu²⁺ per liter. I drikkevatn skal pH vere mellom 6,5 og 9,5.

c) Vurder om det blir felling av kopar(II)hydroksid i dette vassrøyret.

Mjølkesyre, 2-hydroksypropansyre, er ei svak organisk syre.

a) Berekn pH-verdien i ei 0,2 mol/L løysning av mjølkesyre.

Biobasert plast er polymerar laga av biologisk materiale. Mjølkesyre kan framstillast frå planter med mykje stivelse, som til dømes mais eller poteter. Vidare kan mjølkesyre brukast som monomer for å lage den biobaserte plasten PLA.

- b) PLA er ein polyester der det skjer ein kondensasjonsreaksjon mellom monomerane av mjølkesyre.
 - i. Vis med strukturformlar korleis to mjølkesyremolekyl kan reagere i ein kondensasjonsreaksjon og danne ein ester.
 - ii. Figur 8 viser strukturformelen til den repeterande eininga i polyeten. Teikn strukturformelen til den repeterande eininga i polymeren PLA.

Figur 8. Repeterande eining i polyeten (PE).

I eit alkalisk batteri reagerer sink, Zn, med mangan(IV)oksid, MnO₂. Halvreaksjonane, skrivne som reduksjonar, er

$$ZnO + H_2O + 2e^- \rightarrow Zn + 2OH^ E_{red} = -1,26V$$
 $MnO_2 + H^+ + e^- \rightarrow MnO(OH)$ $E_{red} = 0,74V$

a) Skriv ei balansert reaksjonslikning for reaksjonen som skjer i batteriet.

Zn-elektroden i eit nytt batteri vog 6,0 g.

- b) Kor mange mol MnO₂ må batteriet minst innehalde dersom sink er den avgrensande reaktanten?
- c) Rekn ut batterikapasiteten til batteriet i b). Oppgi svaret i Ah.

Elevane i ein kjemiklasse har fått i oppdrag å lage ei galvanisk celle med to elektrodar i kvar si 1,0 mol/L løysning. Tre av gruppene laga celler som ikkje fungerte, og desse er viste i figur 9.

Figur 9. Skisse av cellene til tre av gruppene

d) Forklar kva som er gale med kvar av dei tre cellene.

For å utvikle nye medisinar og smakstilsetjingar leitar ein gjerne etter stoff som finst naturleg i planter og dyr. Kanelsyre finst i ei rekkje planter, men kan òg syntetiserast på laboratoriet. Av barken på kaneltreet blir det vunne ut betydelege mengder kanelaldehyd, som er utgangsstoff for framstilling av kanelsyre. Ved for høg temperatur og luftfukt dekomponerer kanelaldehyd til styren.

Fleire ulike esterar kan dannast frå kanelsyre, mellom anna etylkanelester. Nokre av desse esterane har medisinsk verknad eller blir brukte som smakstilsetjing.

Tabell 2. Informasjon om kanelaldehyd og stoff framstilte frå kanelaldehyd

Stoff	Kanelaldehyd	Kanelsyre	Etylkanelester	Styren
Systematiske namn	3-fenylprop-2- enal	3-fenylprop-2- ensyre	etyl-3-fenylprop-2- enat	etenylbenzen
Molar masse, g/mol	132,16	148,16	176,21	104,15
Kokepunkt, °C	248	300	271	145
Smeltepunkt, °C	-7,5	133	6,5-8,0	-30
Løysingsevne i vatn ved 25 °C, g/L	1,08	0,500	0,161	0,30
Farepiktogram	(1)	! >		

Skriv ein kjemifagleg tekst om syntesen av etylkanelester frå kanelaldehyd. Du skal gjere greie for eitt eller fleire av punkta nedanfor:

- Forklar kva reaksjonstypar som skjer.
- Foreslå gunstige reaksjonsvilkår.
- Vurder kva separasjonsmetodar som kan brukast.
- Drøft kva faktorar som påverkar utbyttet og reinleiken av etylkanelester.
- Rekn ut det teoretiske utbyttet av etylkanelester per kilo kanelaldehyd og atomeffektiviteten i prosent.
- Vurder om syntesen er i samsvar med prinsippa for grøn kjemi, og foreslå forbetringar.

Svaret ditt bør innehalde reaksjonslikningar, utrekningar og figurar der dette er relevant. Svaret ditt kan gjerne vere på omtrent 200–250 ord, men det er det faglege innhaldet og ikkje lengda på teksten som blir vurdert.

Bokmål

Eksamensinformasjon		
Eksamenstid	Eksamen varer i 5 timer. Del 1 skal leveres inn etter 2 timer. Del 2 skal leveres inn senest etter 5 timer. Du kan begynne å løse oppgavene i del 2 når som helst, men du kan ikke bruke hjelpemidler før etter 2 timer – etter at du har levert svarene for del 1.	
Tillatte hjelpemidler under eksamen	Del 1: skrivesaker, passer, linjal og vinkelmåler Del 2: Alle hjelpemidler er tillatt, bortsett fra åpent internett og andre verktøy som kan brukes til kommunikasjon. Når du bruker nettbaserte hjelpemidler under eksamen, har du ikke lov til å kommunisere med andre. Samskriving, chat og andre måter å utveksle informasjon med andre på er ikke tillatt. Du kan ikke bruke automatisk tekstgenerator som chatbot eller tilsvarende teknologi.	
Bruk av kilder	Dersom du bruker kilder i svaret ditt, skal du alltid føre dem opp på en slik måte at leseren kan finne fram til dem. Du skal føre opp forfatter og fullstendig tittel på både lærebøker og annen litteratur. Dersom du bruker utskrifter eller sitat fra internett, skal du føre opp nøyaktig nettadresse og nedlastingsdato.	
Vedlegg	1 Tabeller og formler i kjemi – REA3046 Kjemi 2 2 Eget svarark for oppgave 1 og 2	
Vedlegg som skal leveres inn	Vedlegg 2: Eget svarark for oppgave 1 og 2 finner du bakerst i oppgavesettet.	
Informasjon om oppgave 1 og oppgave 2	Oppgave 1 har 12 flervalgsoppgaver med fire svaralternativ: A, B, C og D. Det er bare ett riktig svaralternativ for hver flervalgsoppgave. Oppgave 2 har åtte påstander med svaralternativene rett og feil. Blankt svar på oppgave 1 og 2 er likeverdig med feil svar. Dersom du er i tvil, bør du derfor skrive det svaret du mener er mest korrekt. Du kan bare svare med ett svaralternativ. Skriv svarene for oppgave 1 og 2 på eget svarark i vedlegg 2, som ligger helt til sist i oppgavesettet. Svararket skal rives løs fra oppgavesettet og leveres inn. Du skal altså ikke levere inn selve eksamensoppgaven med oppgaveteksten.	
Informasjon om vurderingen	Karakteren ved sluttvurderingen blir fastsatt etter en helhetlig vurdering av besvarelsen. De to delene av svaret, del 1 og del 2, blir vurdert under ett. Se eksamensveiledningen med vurderingskriterier til sentralt gitt skriftlig eksamen. Eksamensveiledningen finner du på Utdanningsdirektoratets nettsider.	

Vurdering og vekting	Del 1 teller omtrent 40 prosent, og del 2 teller omtrent 60 prosent av hele settet. Vektingen tilsvarer omtrent tidsbruken. På del 1 er forventet tidsbruk på oppgave 1, 2 og 3 til sammen 1 time og på oppgave 4 og 5 til sammen 1 time. På del 2 bli hver deloppgave i oppgavene 6,7 og 8 vektet omtrent likt. Oppgave 9 vektes omtrent 25 prosent av del 2. Alle oppgaver med unntak av oppgave 1 og 2 vil kreve begrunnelse av svaret. Noen oppgaver vil kunne løses på ulike måter, siden du selv velger hvilke problemstillinger du vil drøfte. Dette gjelder særlig oppgave 9. Ulike tilnærminger kan derfor gi like høy måloppnåelse. Se eksamensveiledningen på Utdanningsdirektoratets nettsider.
Kilder	Se kildeliste på side 59. Andre grafer, bilder og figurer: Utdanningsdirektoratet.

Del 1

Skriv svarene for oppgave 1 og 2 på eget svarskjema i vedlegg 2.

(Du skal altså ikke levere inn selve eksamensoppgaven med oppgaveteksten.)

Oppgave 1 Flervalgsoppgaver

a) Oksidasjonstall

I hvilket stoff har nitrogen lavest oksidasjonstall?

- A HNO₂
- B HNO₃
- C NH₃
- D N₂

b) Løselighet

En løsning på 1,0 L lages ved at 0,50 mol fast kobber(II)nitrat, Cu(NO₃)₂ (s), løses fullstendig i vann.

Hva er konsentrasjonen av nitrationer i løsningen?

- A 0,25 mol/L
- B 0,50 mol/L
- C 1,0 mol/L
- D 2,0 mol/L

c) Organisk kjemi

Figur 1 viser en reaksjonsmekanisme.

Hvilken reaksjonstype er dette?

- A eliminasjonsreaksjon
- B hydrolyse
- C kondensasjonsreaksjon
- D substitusjonsreaksjon

Figur 1. Reaksjonsmekanisme

Side 24 av 64

d) Kromatografi

I en syntese ble propan-1-ol først oksidert til et mellomprodukt og så videre til propansyre. En blanding av disse tre stoffene ble analysert med gasskromatografi, se figur 2.

Stoffene i kromatogrammet er separert etter kokepunkt.

Figur 2. Skisse av kromatogram

Hvilket utsagn er riktig?

- A Topp 1 er signalet til propansyre.
- B Topp 2 er signalet til propanal.
- C Topp 3 er signalet til propanon.
- D Propansyre har lengst retensjonstid.

e) Kromatografi

En blanding av plantepigmenter ble separert med tynnsjiktkromatografi (TLC), se figur 3.

Det var polar silika på overflaten av tynnsjiktplaten, og den mobile fasen besto av en blanding av heksan, aceton og etanol (blandingsforhold: 70:28:2).

De grønne stoffene er klorofyll a og klorofyll b, merket med røde piler i figuren nedenfor.

Figur 3. Strukturformler og resultatet av TLC

Hvilken påstand er riktig?

- A Klorofyll a har større retardasjonsfaktor, R_F , enn klorofyll b.
- B Klorofyll a er mer polart enn klorofyll b.
- C Klorofyll a og klorofyll b har lik retardasjonsfaktor, R_{F.}
- D Det er umulig å separere klorofyll a og klorofyll b med TLC.

f) Redoksreaksjoner

$$2MnO_4^{-}(aq) + 10Cl^{-}(aq) + 16H^{+}(aq) \rightarrow 2Mn^{2+}(aq) + 5Cl_2(g) + 8H_2O(l)$$

Hvilken påstand om redoksreaksjonen ovenfor er riktig?

- A Klorid, Cl⁻, er oksidasjonsmiddelet i reaksjonen.
- B Mangan i MnO₄⁻ har oksidasjonstallet +VII.
- C Oksygen i MnO₄⁻ blir oksidert i reaksjonen.
- D Mangan i MnO₄⁻ blir oksidert i reaksjonen.

g) Redoksreaksjoner

Hvilken reaksjon er en redoksreaksjon?

- A $Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s)$
- B $KOH(aq) + HCI(aq) \rightarrow KCI(aq) + H_2O(I)$
- C $2Ag(s) + Cl_2(g) \rightarrow 2AgCl(s)$
- D $CuSO_4 \cdot 5H_2O(s) \rightarrow CuSO_4(s) + 5H_2O(g)$

h) Syre og base

I en 0,10 mol/L løsning av en syre er pH-verdien 2,0.

Hvilken syre er i løsningen?

- A vinsyre
- B ammoniumion
- C borsyre
- D benzosyre

i) Likevekt

I en beholder har denne likevekten innstilt seg:

2 BrCl(g)
$$\rightleftharpoons$$
 Br₂(g) + Cl₂(g) \triangle H<0

Hvilken endring kan gjøres for å få dannet mer klorgass, Cl₂(g)?

- A øke trykket
- B fjerne brom, Br₂
- C bruke en katalysator
- D øke temperaturen

j) Likevekt

Hydrogengass og klorgass ledes inn i en tom beholder. De reagerer i en reversibel reaksjon og danner hydrogenklorid. Systemet oppnår likevekt.

$$H_2(g) + Cl_2(g) \rightleftharpoons 2HCl(g)$$

Hvilken av radene A-D i tabellen viser riktig uttrykk for konsentrasjonene ved likevekt?

	[H ₂]	[Cl ₂]	[HCI]
Konsentrasjoner ved start i mol/L	2,0	1,0	0,0
Svaralternativ:			
A	2,0 - x	1,0 - x	Х
В	2,0 - 2x	1,0 - 2x	2x
С	2,0 - x	1,0 - x	2x
D	2,0 - 2x	1,0 - x	2x

k) Forsøksdesign

En kjemiker gjør et eksperiment for å bestemme entalpiendringen når et salt løses i vann.

Hvorfor bør eksperimentet utføres flere ganger under like betingelser?

- A Nøyaktigheten til måleutstyret øker med antall repetisjoner.
- B Virkningen av systematiske feil blir mindre.
- C Resultatene blir etter hvert helt like.
- D Virkningen av tilfeldige feil blir mindre.

I) Entalpi og spontanitet

I tabellen nedenfor finner du termodynamiske data for fire ulike kjemiske prosesser.

Prosess		Δ <i>H</i> i kJ/mol	ΔS i J/(K·mol)
1	$30_2(g) \rightarrow 20_3(g)$	-429	-139
2	$2Fe_2O_3(s) + 3C(s) \rightarrow 4Fe(s) + 3CO_2(g)$	462	558
3	$H_2O(g) \rightarrow H_2O(I)$	-44	-119
4	$C_3H_8(g) + 5O_2(g) \rightarrow 4H_2O(g) + 3CO_2(g)$	-2044	100

Hvilken påstand er riktig?

- A Prosess 1 er endoterm, og entropien øker.
- B Prosess 2 er endoterm og blir spontan ved tilstrekkelig høy temperatur.
- C Prosess 3 er spontan ved 1000 K.
- D Prosess 4 er ikke spontan ved 298 K.

Oppgave 2 Rett/feil-oppgaver

a) Likevekter

Grafen i figur 4 viser hvordan konsentrasjonene av N_2O_4 og NO_2 i en lukket beholder endrer seg over tid. Vi har den reversible reaksjonen $N_2O_4(g) \leftrightharpoons 2\ NO_2(g)$.

Figur 4. Endring i konsentrasjonene av N₂O₄ og NO₂ over tid

Vurder om hver av påstandene er rett eller feil, og kryss av på svararket.

- I Systemet oppnår aldri likevekt, for konsentrasjonene av NO₂ og N₂O₄ blir aldri like.
- II Ved likevekt er reaksjonsfarten mot høyre lik reaksjonsfarten mot venstre.
- III Den nederste kurven (blå) viser konsentrasjonen av NO₂.
- IV Helt i starten er det bare N₂O₄ i beholderen.

I magesekken blir proteiner spaltet til kortere polypeptidkjeder. Prosessen er katalysert av enzymet pepsin. Pepsin bryter oftest peptidbindinger der NH-gruppen kommer fra en aromatisk aminosyre. I en aromatisk aminosyre inneholder R-gruppen en benzenring.

Figur 5 viser en del av strukturformelen til et protein. R₁ representerer resten av proteinet.

$$H_3N^+$$
 O
 NH_2
 R_1
 O
 NH_2
 NH_2

Figur 5. Protein

Vurder om hver av påstandene er rett eller feil, og kryss av på svararket.

- I Strukturen til venstre for R_1 er bygd opp av fire aminosyrer.
- II Den aromatiske aminosyren i dette peptidet er fenylalanin.
- III Dersom pepsin spalter dette proteinet, vil det sannsynligvis spaltes av et tripeptid.
- IV Spalting av en peptidbinding er en hydrolysereaksjon.

Oppgave 3

Du ønsker å syntetisere stoffet 4-metylpentan-2-on på laboratoriet.

Alle stoffene vist i tabell 1 kan brukes som utgangsstoffer for å danne 4-metylpentan-2-on, men syntesene vil ha ulikt antall trinn.

Sorter disse tre stoffene etter økende antall trinn i syntesen for å komme til produktet. Begrunn svaret kort, gjerne med reaksjonslikninger.

Tabell 1. Utgangsstoffer for syntese av 4-metylpentan-2-on

Stoff A	Stoff B	Stoff C
OH	OH	CI
4-metylpentan-2-ol	4-metylpentan-1-ol	2-klor-4-metylpentan

Oppgave 4

Rent kalium, K, kan framstilles ved en smelteelektrolyse av saltet kaliumklorid, KCl. Temperaturen vil være over 800 °C. Ved denne temperaturen er kalium i gassfase.

Figur 6. Skisse av elektrolyse av kaliumklorid, KCI

a) Skriv halvreaksjonene for det som skjer ved katoden og anoden i denne reaksjonen.

Det framstilte kaliumet blir avkjølt. Ved et uhell blir det sølt vann på det framstilte kaliumet, K(s).

b) Skriv reaksjonslikningen for det som skjer da.

Oppgave 5

Et pH-meter må kalibreres før det kan brukes til å måle pH. Kalibreringen skjer ved hjelp av buffere med kjente pH-verdier.

- a) En av disse bufferne skal ha pH-verdien 4,0. Denne løsningen inneholder metansyre, HCOOH, og natriummetanat, HCOONa.
 - i. Hva er sur og basisk komponent i denne bufferen?
 - ii. Hvilken komponent har størst konsentrasjon?
- b) Skriv reaksjonslikningen for det som skjer dersom bufferen tilsettes litt salpetersyre, HNO₃(aq).

Du skal lage 1,0 L kalibreringsbuffer med pH 4,0.

- c) Forklar hvilke to av de fire reagensene nedenfor du må velge for å få størst mulig bufferkapasitet.
 - 0,50 mol/L HCOOH
 - 1,0 mol/L HCl
 - NaOH(s)
 - HCOONa(s)

Blank side

Del 2

Oppgave 6

Når fast natriumhydroksid, NaOH(s), løses i vann, kan det beskrives med denne reaksjonslikningen:

NaOH(s)
$$\xrightarrow{\text{vann}}$$
 Na+(aq) + OH-(aq) $\Delta H = -44.5 \text{ kJ/mol}$

- a) Begrunn hvorfor oppløsningen av dette saltet i vann skjer spontant.
- i. Finn løseligheten til kobber(II)hydroksid, Cu(OH)₂, i rent vann. Oppgi svaret i mol/L.
 - ii. Vurder hvordan løseligheten endres dersom pH-verdien øker i vannet.

En del vannrør er laget av kobbermetall. Drikkevann som hadde stått en tid i et slikt kobberrør, inneholdt 1,0 mg Cu²⁺ per liter. I drikkevann skal pH være mellom 6,5 og 9,5.

c) Vurder om det blir felling av kobber(II)hydroksid i dette vannrøret.

Oppgave 7

Melkesyre, 2-hydroksypropansyre, er en svak organisk syre.

a) Beregn pH-verdien i en 0,2 mol/L løsning av melkesyre.

Biobasert plast er polymerer laget av biologisk materiale. Melkesyre kan framstilles fra planter med mye stivelse, som for eksempel mais eller poteter. Videre kan melkesyre brukes som monomer for å lage den biobaserte plasten PLA.

- b) PLA er en polyester der det skjer en kondensasjonsreaksjon mellom monomerene av melkesyre.
 - i. Vis med strukturformler hvordan to melkesyremolekyler kan reagere i en kondensasjonsreaksjon og danne en ester.
 - ii. Figur 8 viser strukturformelen til den repeterende enheten i polyeten. Tegn strukturformelen til den repeterende enheten i polymeren PLA.

Figur 8. Repeterende enhet i polyeten (PE).

Oppgave 8

I et alkalisk batteri reagerer sink, Zn, med mangan(IV)oksid, MnO_2 . Halvreaksjonene, skrevet som reduksjoner, er

$$ZnO + H_2O + 2e^- \rightarrow Zn + 2OH^ E_{red} = -1,26V$$
 $MnO_2 + H^+ + e^- \rightarrow MnO(OH)$ $E_{red} = 0,74V$

a) Skriv en balansert reaksjonslikning for reaksjonen som skjer i batteriet.

Zn-elektroden i et nytt batteri veide 6,0 g.

- b) Hvor mange mol MnO₂ må batteriet minst inneholde dersom sink er den begrensende reaktanten?
- c) Regn ut batterikapasiteten til batteriet i b). Oppgi svaret i Ah.

Elevene i en kjemiklasse har fått i oppdrag å lage en galvanisk celle med to elektroder i hver sin 1,0 mol/L løsning. Tre av gruppene laget celler som ikke fungerte, og disse er vist i figur 9.

Figur 9. Skisse av cellene til tre av gruppene

d) Forklar hva som er galt med hver av de tre cellene.

Oppgave 9

For å utvikle nye medisiner og smakstilsetninger leter man gjerne etter stoffer som finnes naturlig i planter og dyr. Kanelsyre finnes i en rekke planter, men kan også syntetiseres på laboratoriet. Av barken på kaneltreet utvinnes det betydelige mengder kanelaldehyd, som er utgangsstoff for framstilling av kanelsyre. Ved for høy temperatur og luftfuktighet dekomponerer kanelaldehyd til styren.

Flere ulike estere kan dannes fra kanelsyre, blant annet etylkanelester. Noen av disse esterne har medisinsk virkning eller brukes som smakstilsetning.

Tabell 2. Informasjon om kanelaldehyd og stoffer framstilt fra kanelaldehyd

Stoff	Kanelaldehyd	Kanelaldehyd Kanelsyre OH		Styren
Systematiske navn	3-fenylprop-2- enal	3-fenylprop-2- ensyre	etyl-3-fenylprop-2- enat	etenylbenzen
Molar masse, g/mol	132,16 148,16 176,21		176,21	104,15
Kokepunkt, °C	248	300	271	145
Smeltepunkt, °C	-7,5	133 6,5-8,0		-30
Løselighet i vann ved 25 °C, g/L	1,08	0,500	0,161	0,30
Farepiktogram	(!		

Skriv en kjemifaglig tekst om syntesen av etylkanelester fra kanelaldehyd. Du skal gjøre rede for ett eller flere av punktene nedenfor:

- Forklar hvilke reaksjonstyper som skjer.
- Foreslå gunstige reaksjonsbetingelser.
- Vurder hvilke separasjonsmetoder som kan brukes.
- Drøft hvilke faktorer som påvirker utbyttet og renheten av etylkanelester.
- Regn ut det teoretiske utbyttet av etylkanelester per kilo kanelaldehyd og atomeffektiviteten i prosent.
- Vurder om syntesen er i samsvar med prinsippene for grønn kjemi, og foreslå forbedringer.

Svaret ditt bør inneholde reaksjonslikninger, utregninger og figurer der dette er relevant. Svaret ditt kan gjerne være på omtrent 200–250 ord, men det er det faglige innholdet og ikke lengden på teksten som blir vurdert.

Tabeller og formler i REA3046 Kjemi 2

Dette vedlegget kan brukes under både del 1 og del 2 av eksamen.

Innhold

Standard reduksjonspotensial ved 25 °C	
Konstanter og formler	44
Syrekonstanter (K_a) i vannløsning ved 25 °C	45
Basekonstanter (K_b) i vannløsning ved 25 °C	46
Syre-base-indikatorer	47
Sammensatte ioner, navn og formel	47
Massetetthet og konsentrasjon til noen væsker	48
Stabile isotoper for noen grunnstoffer	48
Løselighetstabell for salter i vann ved 25 °C	49
Løselighetsprodukt (Ksp) for salt i vann ved 25 °C	50
a-AMINOSYRER VED pH = 7,4	51
Termodynamiske data ved 25 °C	53
Organiske forbindelser	54
Grunnstoffenes periodesystem	58
Svar oppgave 1 del 1	63
Svar oppgave 2 del 1	63
Tips til deg som akkurat har fått eksamensoppgåva:	64
Tips til deg som akkurat har fått eksamensoppgaven:	64

Standard reduksjonspotensial ved 25 °C

Halvreaksjon	Halvreaksjon					
oksidert form	+ ne ⁻	→	redusert form	E⁰ målt i V		
F ₂	+ 2e ⁻	→	2F ⁻	2,87		
O ₃ + 2H ⁺	+ 2e ⁻	→	O ₂ +H ₂ O	2,08		
S ₂ O ₈ ²⁻	+ 2e-	→	2SO ₄ ²⁻	2,01		
H ₂ O ₂ + 2H ⁺	+ 2e ⁻	→	2H ₂ O	1,78		
Ce ⁴⁺	+ e ⁻	→	Ce ³⁺	1,72		
PbO ₂ + SO ₄ ²⁻ + 4H ⁺	+ 2e ⁻	→	PbSO ₄ + 2H ₂ O	1,69		
MnO ₄ ⁻ +4H ⁺	+ 3e ⁻	→	MnO ₂ +2H ₂ O	1,68		
2HClO + 2H ⁺	+2e ⁻	→	Cl ₂ + 2H ₂ O	1,61		
MnO ₄ ⁻ + 8H ⁺	+ 5e ⁻	→	Mn ²⁺ + 4H ₂ O	1,51		
BrO ₃ - + 6H+	+ 6e ⁻	→	Br⁻ + 3H ₂ O	1,42		
Au ³⁺	+ 3e ⁻	→	Au	1,40		
Cl ₂	+ 2e ⁻	→	2Cl ⁻	1,36		
Cr ₂ O ₇ ²⁻ + 14H ⁺	+ 6e ⁻	→	2Cr ³⁺ + 7H ₂ O	1,36		
O ₂ + 4H ⁺	+ 4e ⁻	→	2H ₂ O	1,23		
MnO ₂ + 4H ⁺	+ 2e ⁻	→	Mn ²⁺ + 2H ₂ O	1,22		
2IO ₃ ⁻ + 12H ⁺	+ 10e ⁻	→	I ₂ + 6H ₂ O	1,20		
Pt ²⁺	+ 2e ⁻	→	Pt	1,18		
Br ₂	+ 2e ⁻	→	2 Br ⁻	1,09		
NO ₃ ⁻ + 4H ⁺	+ 3e ⁻	→	NO + 2H ₂ O	0,96		
2Hg ²⁺	+ 2e ⁻	→	Hg ₂ ²⁺	0,92		
Cu ²⁺ + I ⁻	+ e ⁻	→	Cul(s)	0,86		
Hg ²⁺	+ 2e ⁻	→	Hg	0,85		
CIO ⁻ + H ₂ O	+ 2e ⁻	→	Cl ⁻ + 2OH ⁻	0,84		
Hg ₂ ²⁺	+ 2e ⁻	→	2Hg	0,80		
Ag ⁺	+ e ⁻	→	Ag	0,80		
Fe ³⁺	+ e ⁻	→	Fe ²⁺	0,77		
O ₂ + 2H ⁺	+ 2e ⁻	→	H ₂ O ₂	0,70		
l ₂	+ 2e ⁻	→	21-	0,54		
Cu⁺	+ e ⁻	→	Cu	0,52		
H ₂ SO ₃ + 4H ⁺	+ 4e ⁻	→	S + 3H ₂ O	0,45		
O ₂ + 2H ₂ O	+ 4e ⁻	→	40H ⁻	0,40		
Ag ₂ O + H ₂ O	+ 2e ⁻	→	2Ag + 2OH ⁻	0,34		

oksidert form	+ ne-	→	redusert form	<i>Eº</i> målt i V
Cu ²⁺	+ 2e ⁻	→	Cu	0,34
SO ₄ ²⁻ + 10H ⁺	+ 8e ⁻	→	H ₂ S(aq) + 4H ₂ O	0,30
SO ₄ ²⁻ + 4H ⁺	+ 2e ⁻	→	H ₂ SO ₃ + H ₂ O	0,17
Cu ²⁺	+ e ⁻	→	Cu ⁺	0,16
Sn ⁴⁺	+ 2e ⁻	→	Sn ²⁺	0,15
S + 2H+	+ 2e ⁻	→	H ₂ S(aq)	0,14
S ₄ O ₆ ²⁻	+ 2e ⁻	→	2S ₂ O ₃ ²⁻	0,08
2H⁺	+ 2e ⁻	→	H ₂	0,00
Fe ³⁺	+ 3e ⁻	→	Fe	-0,04
Pb ²⁺	+ 2e ⁻	→	Pb	-0,13
Sn ²⁺	+ 2e ⁻	→	Sn	-0,14
Ni ²⁺	+ 2e ⁻	→	Ni	-0,26
PbSO ₄	+ 2e ⁻	→	Pb + SO ₄ ²⁻	-0,36
Cd ²⁺	+ 2e ⁻	→	Cd	-0,40
Cr ³⁺	+ e ⁻	→	Cr ²⁺	-0,41
Fe ²⁺	+ 2e ⁻	→	Fe	-0,45
S	+ 2e ⁻	→	S ²⁻	-0,48
2CO ₂ + 2H ⁺	+ 2e ⁻	→	H ₂ C ₂ O ₄	-0,49
Zn ²⁺	+ 2e ⁻	→	Zn	-0,76
2H₂O	+ 2e ⁻	→	H ₂ + 2OH ⁻	-0,83
Mn ²⁺	+ 2e ⁻	→	Mn	-1,19
ZnO + H ₂ O	+ 2e ⁻	→	Zn + 2OH ⁻	-1,26
Al ³⁺	+ 3e ⁻	→	Al	-1,66
Mg ²⁺	+ 2e ⁻	→	Mg	-2,37
Na ⁺	+ e ⁻	→	Na	-2,71
Ca ²⁺	+ 2e ⁻	→	Ca	-2,87
K ⁺	+ e ⁻	→	К	-2,93
Li ⁺	+ e ⁻	→	Li	-3,04

Konstanter og formler

Avogadros tall: $N_A = 6,022 \cdot 10^{23} \text{ mol}^{-1}$

Molvolumet av en gass: $V_m = 22.4 \text{ L/mol ved } 0 \,^{\circ}\text{C og } 1 \text{ atm,}$

24,5 L/mol ved 25 °C og 1 atm

Faradays konstant: F = 96485 C/mol

Universell gasskonstant: $R = 8.31 \text{ J/(mol \cdot K)}$

Sammenheng ΔG^o og K: $\Delta G^o = -R \cdot T \cdot \ln K$, der K er likevektskonstanten

Sammenheng ΔG og E^o : $\Delta G = -n \cdot F \cdot E^o$, der E^o er standard cellepotensialet

Syrekonstanter (K_a) i vannløsning ved 25 °C

Navn	Formel	Ка	p <i>K</i> a
Acetylsalisylsyre	C ₈ H ₇ O ₂ COOH	3,3 · 10-4	3,48
Ammoniumion	NH ₄ ⁺	5,6 · 10 ⁻¹⁰	9,25
Askorbinsyre	C ₆ H ₈ O ₆	9,1 · 10 ⁻⁵	4,04
Hydrogenaskorbation	C ₆ H ₇ O ₆ ⁻	2,0 · 10 ⁻¹²	11,7
Benzosyre	C ₆ H ₅ COOH	6,3 · 10 ⁻⁵	4,20
Benzylsyre (2-fenyleddiksyre)	C ₆ H ₅ CH ₂ COOH	4,9 · 10 ⁻⁵	4,31
Borsyre	В(ОН)3	5,4 · 10 ⁻¹⁰	9,27
Butansyre	CH ₃ (CH ₂) ₂ COOH	1,5 · 10 ⁻⁵	4,83
Eplesyre (malinsyre)	HOOCCH₂CH(OH)COOH	4,0 · 10-4	3,40
Hydrogenmalation	HOOCCH₂CH(OH)COO⁻	7,8 · 10 ⁻⁶	5,11
Etansyre (eddiksyre)	CH₃COOH	1,8 · 10-5	4,76
Fenol	C ₆ H ₅ OH	1,0 · 10 ⁻¹⁰	9,99
Fosforsyre	H ₃ PO ₄	6,9 · 10 ⁻³	2,16
Dihydrogenfosfation	H ₂ PO ₄ ⁻	6,2 · 10 ⁻⁸	7,21
Hydrogenfosfation	HPO ₄ ²⁻	4,8 · 10 ⁻¹³	12,32
Fosforsyrling	H ₃ PO ₃	5,0 · 10 ⁻²	1,3
Dihydrogenfosfittion	H ₂ PO ₃ ⁻	2,0 · 10 ⁻⁷	6,70
Ftalsyre (benzen-1,2-dikarboksylsyre)	C ₆ H ₄ (COOH) ₂	1,1 · 10 ⁻³	2,94
Hydrogenftalation	C ₆ H ₄ (COOH)COO ⁻	3,7 · 10 ⁻⁶	5,43
Hydrogencyanid (blåsyre)	HCN	6,2 · 10 ⁻¹⁰	9,21
Hydrogenfluorid (flussyre)	HF	6,3 · 10 ⁻⁴	3,20
Hydrogenperoksid	H ₂ O ₂	2,4 · 10 ⁻¹²	11,62
Hydrogensulfation	HSO ₄ ⁻	1,0 · 10-2	1,99
Hydrogensulfid	H ₂ S	8,9 · 10 ⁻⁸	7,05
Hydrogensulfidion	HS ⁻	1,0 · 10 ⁻¹⁹	19
Hypoklorsyre (underklorsyrling)	HCIO	4,0 · 10-8	7,40
Karbonsyre	H ₂ CO ₃	4,5 · 10 ⁻⁷	6,35
Hydrogenkarbonation	HCO₃ [−]	4,7 · 10 ⁻¹¹	10,33
Klorsyrling	HCIO ₂	1,1 · 10-2	1,94
Kromsyre	H ₂ CrO ₄	1,8 · 10 ⁻¹	0,74

Navn	Formel	Ка	p <i>K</i> a
Hydrogenkromation	HCrO ₄ ⁻	3,2 · 10 ⁻⁷	6,49
Maleinsyre (<i>cis</i> -butendisyre)	HOOCCH=CHCOOH	1,2 · 10 ⁻²	1,92
Hydrogenmaleation	HOOCCH=CHCOO-	5,9 · 10 ⁻⁷	6,23
Melkesyre (2-hydroksypropansyre)	CH₃CH(OH)COOH	1,4 · 10 ⁻⁴	3,86
Metansyre (maursyre)	НСООН	1,8 · 10 ⁻⁴	3,75
Oksalsyre	(COOH) ₂	5,6 · 10 ⁻²	1,25
Hydrogenoksalation	(соон)соо-	1,5 · 10 ⁻⁴	3,81
Propansyre	CH ₃ CH ₂ COOH	1,3 · 10 ⁻⁵	4,87
Salisylsyre (2-hydroksybenzosyre)	C ₆ H ₄ (OH)COOH	1,0 · 10 ⁻³	2,98
Salpetersyrling	HNO ₂	5,6 · 10 ⁻⁴	3,25
Sitronsyre	C ₃ H ₄ (OH)(COOH) ₃	7,4 · 10 ⁻⁴	3,13
Dihydrogensitration	C ₃ H ₄ (OH)(COOH) ₂ COO ⁻	1,7 · 10 ⁻⁵	4,76
Hydrogensitration	C ₃ H ₄ (OH)(COOH)(COO ⁻) ₂	4,0 · 10 ⁻⁷	6,40
Svovelsyrling	H ₂ SO ₃	1,4 · 10 ⁻²	1,85
Hydrogensulfittion	HSO ₃ ⁻	6,3 · 10 ⁻⁸	7,2
Vinsyre (2,3-dihydroksybutandisyre, <i>L</i> -tartarsyre)	(CH(OH)COOH) ₂	1,0 · 10-3	2,98
Hydrogentartration	HOOC(CH(OH))₂COO⁻	4,6 · 10 ⁻⁵	4,34
		1	1

Basekonstanter (K_b) i vannløsning ved 25 °C.

Navn	Formel	Кь	р <i>К</i> ь
Acetation	CH₃COO⁻	5,8 · 10 ⁻¹⁰	9,24
Ammoniakk	NH ₃	1,8 · 10 ⁻⁵	4,75
Metylamin	CH ₃ NH ₂	4,6 · 10 ⁻⁴	3,34
Dimetylamin	(CH₃)₂NH	5,4 · 10 ⁻⁴	3,27
Trimetylamin	(CH₃)₃N	6,3 · 10 ⁻⁵	4,20
Etylamin	CH ₃ CH ₂ NH ₂	4,5 · 10 ⁻⁴	3,35
Dietylamin	(C ₂ H ₅) ₂ NH	6,9 · 10 ⁻⁴	3,16
Trietylamin	(C ₂ H ₅) ₃ N	5,6 · 10 ⁻⁴	3,25
Fenylamin (Anilin)	C ₆ H ₅ NH ₂	7,4 · 10 ⁻¹⁰	9,13
Pyridin	C ₅ H ₅ N	1,7 · 10 ⁻⁹	8,77
Hydrogenkarbonation	HCO₃ ⁻	2,0 · 10 ⁻⁸	7,65
Karbonation	CO ₃ ²⁻	2,1 · 10 ⁻⁴	3,67

Syre-base-indikatorer

Indikator	Fargeforandring	pH- omslagsområde
Metylfiolett	gul-fiolett	0,0 - 1,6
Tymolblått	rød-gul	1,2 - 2,8
Metyloransje	rød-oransje	3,2 - 4,4
Bromfenolblått	gul-blå	3,0 - 4,6
Kongorødt	fiolett-rød	3,0 - 5,0
Bromkreosolgrønt	gul-blå	3,8 - 5,4
Metylrødt	rød-gul	4,8 - 6,0
Lakmus	rød-blå	5,0 - 8,0
Bromtymolblått	gul-blå	6,0 - 7,6
Fenolrødt	gul-rød	6,6 - 8,0
Tymolblått	gul-blå	8,0 - 9,6
Fenolftalein	fargeløs-rosa	8,2 - 10,0
Alizaringul	gul-lilla	10,1 - 12,0

Sammensatte ioner, navn og formel

Navn	Formel	Navn	Formel
acetat, etanat	CH₃COO ⁻	jodat	IO ₃ -
ammonium	NH ₄ ⁺	karbonat	CO ₃ ²⁻
arsenat	AsO ₄ ³⁻	klorat	CIO ₃ -
arsenitt	AsO ₃ ³⁻	kloritt	CIO ₂ -
borat	BO ₃ ³⁻	nitrat	NO ₃
bromat	BrO ₃ -	nitritt	NO ₂
fosfat	PO ₄ ³⁻	perklorat	CIO ₄ -
fosfitt	PO ₃ ³⁻	sulfat	SO ₄ ²⁻
hypokloritt	CIO.	sulfitt	SO ₃ ²⁻

Massetetthet og konsentrasjon til noen væsker

Forbindelse	Kjemisk formel	Masseprosent konsentrert løsning	Massetetthet $(\frac{g}{mL})$	Konsentrasjon $\left(\frac{\text{mol}}{\text{L}}\right)$
Saltsyre	HCI	37	1,18	12,0
Svovelsyre	H ₂ SO ₄	98	1,84	17,8
Salpetersyre	HNO ₃	65	1,42	15,7
Eddiksyre	CH₃COOH	96	1,05	17,4
Ammoniakk	NH ₃	25	0,88	14,3
Vann	H₂O	100	1,00	55,56

Stabile isotoper for noen grunnstoffer

Grunnstoff	Isotop	Relativ	Grunnstoff	Isotop	Relativ
		forekomst (%)			forekomst (%)
		i jordskorpen			i jordskorpen
Hydrogen	¹ H	99,985	Silisium	²⁸ Si	92,23
	² H	0,015		²⁹ Si	4,67
Karbon	¹² C	98,89		³⁰ Si	3,10
	¹³ C	1,11	Svovel	³² S	95,02
Nitrogen	¹⁴ N	99,634		³³ S	0,75
	¹⁵ N	0,366		³⁴ S	4,21
Oksygen	¹⁶ O	99,762		³⁶ S	0,02
	¹⁷ O	0,038	Klor	³⁵ Cl	75,77
	¹⁸ O	0,200		³⁷ Cl	24,23
			Brom	⁷⁹ Br	50,69
				⁸¹ Br	49,31

Løselighetstabell for salter i vann ved 25 °C

	Br ⁻	Cl ⁻	CO ₃ ²⁻	CrO ₄ ²⁻	I -	O ²⁻	OH-	S ²⁻	SO ₄ ²⁻
Ag⁺	U	U	U	U	U	U	-	U	Т
	gulhvitt	hvitt	gult	rødt	lysgult	svart		svart	hvitt
Al ³⁺	R	R	-	-	R	U	U	R	R
	hvitt	hvitt			lysgult	hvitt	hvitt	hvitt	hvitt
Ba ²⁺	L	L	U	U	L	R	L	Т	U
	hvitt	hvitt	hvitt	gult	lysgult	hvitt	hvitt	hvitt	hvitt
Ca ²⁺	L	L	U	Т	L	Т	U	Т	Т
	hvitt	hvitt	hvitt	gult	hvitt	hvitt	hvitt	hvitt	hvitt
Cu ²⁺	L	L	U*	U	-	U	U	U	L
	grønt	grønt	grønt	gulbrunt		svart	blått	svart	blått
Fe ²⁺	L	L	U	U	L	U	U	U	L
	gulgrønt	grønt	grått	brunt	grått	svart	grønt	svart	grønt
Fe³+	R	R	-	U	-	U	U	U	L
	brunt	brunt		gult		rødbrun	brunt	svart	brunt
Hg ₂ ²⁺	U	U	U	U	U	-	R	-	U
	hvitt	hvitt	gul	rød	grønn		svart		gulhvitt
Hg ²⁺	Т	L	-	U	U	U	U	U	R
	hvitt	hvitt		rød	rødt	rødt	hvitt	svart	hvitt
Mg ²⁺	L	L	U	L	L	U	U	R	L
	hvitt	hvitt	hvitt	gult	hvitt	hvitt	hvitt	hvitt	hvitt
Ni ²⁺	L	L	U	U	L	U	U	U	L
	gulbrun	grønt	grønt	rødbrunt	svart	svart	grønt	svart	grønt
Pb ²⁺	Т	Т	U	U	U	U	U	U	U
	hvitt	hvitt	hvitt	gult	gult	gult	hvitt	svart	hvitt
Sn ²⁺	R	R	U	-	R	U	U	U	R
	hvitt	hvitt	hvitt		gulrød	hvit	hvitt	brunt	hvitt
Sn ⁴⁺	R	R	-	L	R	U	U	U	R
	hvitt	hvitt		gulbrunt	gulrød	hvitt	hvitt	svart	hvitt
Zn ²⁺	L	L	U	U	L	U	U	U	L
	hvitt	hvitt	hvitt	gult	hvitt	hvitt	hvitt	hvitt	hvitt

U = uløselig. Det løses mindre enn 0,01 g av saltet i 100 g vann.

 $U^* = det dannes et uløselig blandingssalt av CuCO_3 og Cu(OH)_2$.

T = tungtløselig. Det løses mellom 0,01 og 1 g av saltet i 100 g vann.

L = lettløselig. Det løses mer enn 1 g av saltet per 100 g vann.

- = Ukjent forbindelse, eller forbindelsen dannes ikke ved utfelling.

R = reagerer med vann.

Løselighetsprodukt (K_{sp}) for salt i vann ved 25 °C

Navn	Kjemisk formel	K _m Navn		I Kan I NAVN		I Kan I Navn		K _{sp} Navn Kjemisk formel		I Kon I NAVn			K _{sp}
Aluminiumfosfat	AIPO ₄	9,84 · 10 ⁻²¹	Kopper(II)sulfid	CuS	8 · 10 ⁻³⁷								
Bariumfluorid	BaF ₂	1,84 · 10 ⁻⁷	Kvikksølv(I)bromid	Hg ₂ Br ₂	6,40 · 10 ⁻²³								
Bariumkarbonat	BaCO ₃	2,58 · 10 ⁻⁹	Kvikksølv(I)jodid	Hg ₂ I ₂	5,2 · 10 ⁻²⁹								
Bariumkromat	BaCrO ₄	1,17 · 10 ⁻¹⁰	Kvikksølv(I)karbonat	Hg ₂ CO ₃	3,6 · 10 ⁻¹⁷								
Bariumnitrat	Ba(NO ₃) ₂	4,64 · 10 ⁻³	Kvikksølv(I)klorid	Hg ₂ Cl ₂	1,43 · 10 ⁻¹⁸								
Bariumoksalat	BaC ₂ O ₄	1,70 · 10 ⁻⁷	Kvikksølv(II)bromid	HgBr ₂	6,2 · 10 ⁻²⁰								
Bariumsulfat	BaSO ₄	1,08 · 10 ⁻¹⁰	Kvikksølv(II)jodid	Hgl ₂	2,9 · 10 ⁻²⁹								
Bly(II)bromid	PbBr ₂	6,60 · 10 ⁻⁶	Litiumkarbonat	Li ₂ CO ₃	8,15 · 10 ⁻⁴								
Bly(II)hydroksid	Pb(OH) ₂	1,43 · 10 ⁻²⁰	Magnesiumfosfat	Mg ₃ (PO ₄) ₂	1,04 · 10 ⁻²⁴								
Bly(II)jodid	PbI ₂	9,80 · 10 ⁻⁹	Magnesiumhydroksid	Mg(OH) ₂	5,61 · 10 ⁻¹²								
Bly(II)karbonat	PbCO₃	7,40 · 10 ⁻¹⁴	Magnesiumkarbonat	MgCO ₃	6,82 · 10 ⁻⁶								
Bly(II)klorid	PbCl ₂	1,70 · 10 ⁻⁵	Magnesiumoksalat	MgC ₂ O ₄	4,83 · 10 ⁻⁶								
Bly(II)oksalat	PbC ₂ O ₄	8,50 · 10 ⁻⁹	Mangan(II)karbonat	MnCO ₃	2,24 · 10 ⁻¹¹								
Bly(II)sulfat	PbSO ₄	2,53 · 10 ⁻⁸	Mangan(II)oksalat	MnC ₂ O ₄	1,70 · 10 ⁻⁷								
Bly(II)sulfid	PbS	3 · 10 ⁻²⁸	Nikkel(II)fosfat	Ni ₃ (PO ₄) ₂	4,74 · 10 ⁻³²								
Jern(II)fluorid	FeF ₂	2,36 · 10 ⁻⁶	Nikkel(II)hydroksid	Ni(OH) ₂	5,48 · 10 ⁻¹⁶								
Jern(II)hydroksid	Fe(OH) ₂	4,87 · 10 ⁻¹⁷	Nikkel(II)karbonat	NiCO ₃	1,42 · 10 ⁻⁷								
Jern(II)karbonat	FeCO ₃	3,13 · 10 ⁻¹¹	Nikkel(II)sulfid	NiS	2 · 10 ⁻¹⁹								
Jern(II)sulfid	FeS	8 · 10 ⁻¹⁹	Sinkhydroksid	Zn(OH) ₂	3 · 10 ⁻¹⁷								
Jern(III)fosfat	FePO ₄ ×2H ₂ O	9,91 · 10 ⁻¹⁶	Sinkkarbonat	ZnCO ₃	1,46 · 10 ⁻¹⁰								
Jern(III)hydroksid	Fe(OH)₃	2,79 · 10 ⁻³⁹	Sinksulfid	ZnS	2 · 10 ⁻²⁴								
Kalsiumfluorid	CaF ₂	3,45 · 10 ⁻¹¹	Sølv(I)acetat	AgCH₃COO	1,94 · 10 ⁻³								
Kalsiumfosfat	Ca ₃ (PO ₄) ₂	2,07 · 10 ⁻³³	Sølv(I)bromid	AgBr	5,35 · 10 ⁻¹³								
Kalsiumhydroksid	Ca(OH) ₂	5,02 · 10 ⁻⁶	Sølv(I)cyanid	AgCN	5,97 · 10 ⁻¹⁷								
Kalsiumkarbonat	CaCO ₃	3,36 · 10 ⁻⁹	Sølv(I)jodid	AgI	8,52 · 10 ⁻¹⁷								
Kalsiummolybdat	CaMoO ₄	1,46 · 10 ⁻⁸	Sølv(I)karbonat	Ag ₂ CO ₃	8,46 · 10 ⁻¹²								
Kalsiumoksalat	CaC ₂ O ₄	3,32 · 10 ⁻⁹	Sølv(I)klorid	AgCl	1,77 · 10 ⁻¹⁰								
Kalsiumsulfat	CaSO ₄	4,93 · 10 ⁻⁵	Sølv(I)kromat	Ag ₂ CrO ₄	1,12 · 10 ⁻¹²								
Kobolt(II)hydroksid	Co(OH) ₂	5,92 · 10 ⁻¹⁵	Sølv(I)oksalat	Ag ₂ C ₂ O ₄	5,40 · 10 ⁻¹²								
Kopper(I)bromid	CuBr	6,27 · 10 ⁻⁹	Sølv(I)sulfat	Ag ₂ SO ₄	1,20 · 10-5								
Kopper(I)klorid	CuCl	1,72 · 10 ⁻⁷	Sølv (I) sulfid	Ag ₂ S	8 · 10 ⁻⁵¹								
Kopper(I)oksid	Cu ₂ O	2 · 10 ⁻¹⁵	Tinn(II)hydroksid	Sn(OH) ₂	5,45 · 10 ⁻²⁷								
Kopper(I)jodid	Cul	1,27 · 10 ⁻¹²		•	•								
Kopper(II)fosfat	Cu ₃ (PO ₄) ₂	1,40 · 10 ⁻³⁷											
Kopper(II)hydroksid	Cu(OH) ₂	2,20 · 10 ⁻²⁰											
Kopper(II)oksalat	CuC ₂ O ₄	4,43 · 10 ⁻¹⁰											

a-AMINOSYRER VED pH = 7,4.

Vanlig navn	-	Vanlig navn			
Forkortelse pH ved isoelektrisk punkt	Strukturformel	Forkortelse pH ved isoelektrisk punkt	Strukturformel		
Alanin Ala 6,0	O	Arginin Arg 10,8	$\begin{array}{c} O \\ & & \\ &$		
Asparagin Asn 5,4	$ \begin{array}{c cccc} O & & & & & & & \\ H_3N & & & & & & \\ & & & & & \\ & & & & & \\ & & & & $	Aspartat (Asparagin- syre) Asp 2,8	$ \begin{array}{c c} & & & & & & \\ & & & & & & \\ & & & & $		
Cystein Cys 5,1	O	Fenylalanin Phe 5,5	O		
Glutamin Gln 5,7	$ \begin{array}{c} $	Glutamat (Glutamin- syre) Glu 3,2	O H ₃ N ⊕ CH − C − O CH ₂ CH ₂ CH ₂ C − O ⊖		
Glysin Gly 6,0	O	Serin Ser 5,7	O H ₃ N ⊕ ⊖ CH − C − O CH ₂ OH		

Vanlig navn		Vanlig navn	
Forkortelse pH ved isoelektrisk punkt	Strukturformel	Forkortelse pH ved isoelektrisk punkt	Strukturformel
Isoleucin Ile 6,0	O	Leucin Leu 6,0	O
Lysin Lys 9,7	O	Metionin Met 5,7	O
Prolin Pro 6,3		Histidin His 7,6	H_3N \bigoplus CH CH_2 CH_2 N NH
Treonin Thr 5,6	O H ₃ N ⊕ CH − C − O CH − OH CH ₃	Tryptofan Trp 5,9	$\begin{array}{c c} O & \bigcirc \\ H_3N & \bigcirc \\ CH - C & \bigcirc \\ CH_2 & \bigcirc \\ HN & \bigcirc \end{array}$
Tyrosin Tyr 5,7	H ₃ N⊕ CH C O O O O O O O O O O O O O O O O O	Valin Val 6,0	O ⊖ H ₃ N — CH — C — O CH — CH ₃ CH ₃

Termodynamiske data ved 25 °C.

Stoff	Dannelsesentalpi Δ <i>H</i> _f (kJ/mol)	Entropi S (J/(mol·K))
CH₄ (g) metan	-74,6	186,3
C ₂ H ₂ (g) etyn	227,4	200,9
C ₂ H ₆ (g) etan	-84,0	229,2
C ₂ H ₅ OH (I) etanol	-277,6	160,7
C₂H₅OH (g) etanol	-234,8	281,6
C₃H ₈ (g) propan	-103,9	270,3
C ₃ H ₆ O (I) propanon	-248,4	199,8
C ₃ H ₇ OH (I) propan-1-ol	-302,6	193,6
C ₃ H ₇ OH (g) propan-1-ol	-255,1	322,6
C ₃ H ₇ OH (I) propan-2-ol	-272,6	181,1
C ₄ H ₁₀ (g) butan	-125,7	310
C ₆ H ₁₄ (I) heksan	-198,7	295
C ₆ H ₁₂ (I) sykloheksan	-156,4	204
C ₆ H ₅ OH (s) fenol	-165,1	144
C ₆ H ₁₂ O ₆ (s) glukose	-1273	209
C ₁₂ H ₂₂ O ₁₁ (s) sukrose	-2226	
Al (s)	0	28,3
Al ₂ O ₃ (s)	-1676	50,9
Br ₂ (I)	0	152,2
Br ₂ (g)	30,9	245,5
C (s) grafitt	0	5,74
C (s) diamant	1,9	2,38
CaCO ₃ (s)	-1206,9	92,9
CaO (s)	-635,1	39,8
Cl ₂ (g)	0	223,1
CO (g)	-110,5	197,7
CO ₂ (g)	-393,5	213,8
Cu (s)	0	33,1
CuO (s)	-157,3	42,6
Cu ₂ S (s)	-79,5	120,9
Fe (s)	0	27,3
H ₂ (g)	0	130,7
HCI (g)	-92,3	186,9
HCN (g)	135,1	201,8
HI (g)	25,9	206,3
H ₂ O (g)	-241,8	188,8
H ₂ O (I)	-285,8	70,0
HNO₃ (aq)	-207,4	146,4
HNO ₃ (I)	-174,1	155,6
H ₂ S (g)	-20,2	122
I ₂ (s)	0	116,1
Mg (s)	0	32,7
MgO (s)	-601,2	26,9
Na (s)	0	51,4
NaCl (s)	-411,1	72,1
NaOH (s)	-425,6	64,4
N ₂ (g)	0	191,6

Stoff	Dannelsesentalpi ΔH _f (kJ/mol)	Entropi S (J/(mol·K))
NH ₃ (g)	-46,1	192,8
NH ₄ Cl (s)	-314,4	94,6
NO (g)	90,3	210,8
NO ₂ (g)	33,2	240,1
N_2O_5 (g)	11	346
O ₂ (g)	0	205,2
O ₃ (g)	143	238,8
P ₄ (s)	0	41,1
P ₄ O ₁₀ (s)	-2984	229
Pb (s)	0	64,8
Pb (I)	4,77	72,8
PbCl ₂ (s)	-359,4	136,0
S (s) rombisk	0	31,9
Sn (s) hvitt	0	51,2
Sn (s) grått	-2,03	44,1
SO ₂ (g)	-296,8	248,1
SO ₃ (g)	-396	256,7
Zn (s)	0	41,6
ZnO (s)	-348,0	43,9
ZnS (s)	-203	57,7

Organiske forbindelser

Kp = kokepunkt,°C

Smp = smeltepunkt,°C

HYDROKARBONER, METTEDE (alkaner)							
Navn	Formel	Smp	Кр	Diverse			
Metan	CH ₄	-182	-161				
Etan	C ₂ H ₆	-183	-89				
Propan	C₃H ₈	-188	-42				
Butan	C ₄ H ₁₀	-138	-0,5				
Pentan	C ₅ H ₁₂	-130	36				
Heksan	C ₆ H ₁₄	-95	69				
Heptan	C7H16	-91	98				
Oktan	C ₈ H ₁₈	-57	126				
Nonan	C ₉ H ₂₀	-53	151				
Dekan	C ₁₀ H ₂₂	-30	174				
Syklopropan	C ₃ H ₆	-128	-33				
Syklobutan	C ₄ H ₈	-91	13				
Syklopentan	C ₅ H ₁₀	-93	49				
Sykloheksan	C ₆ H ₁₂	7	81				
2-Metyl-propan	C ₄ H ₁₀	-159	-12	Isobutan			
2,2-Dimetylpropan	C ₅ H ₁₂	-16	9	Neopentan			
2-Metylbutan	C ₅ H ₁₂	-160	28	Isopentan			
2-Metylpentan	C ₆ H ₁₄	-154	60	Isoheksan			
2,2-Dimetylbutan	C ₆ H ₁₄	-99	50	Neoheksan			

	HYDROKA	RBONER, U	METTEDE,	alkener
Navn	Formel	Smp	Кр	Diverse
Eten	C ₂ H ₄	-169	-104	Etylen
Propen	C ₃ H ₆	-185	-48	Propylen
But-1-en	C ₄ H ₈	-185	-6	
<i>cis</i> -But-2-en	C ₄ H ₈	-139	4	
trans-But-2-en	C ₄ H ₈	-106	1	
Pent-1-en	C ₅ H ₁₀	-165	30	
cis-Pent-2-en	C ₅ H ₁₀	-151	37	
trans-Pent-2-en	C ₅ H ₁₀	-140	36	
Heks-1-en	C ₆ H ₁₂	-140	63	
<i>cis</i> -Heks-2-en	C ₆ H ₁₂	-141	69	
trans-Heks-2-en	C ₆ H ₁₂	-133	68	
<i>cis</i> -Heks-3-en	C ₆ H ₁₂	-138	66	
trans-Heks-3-en	C ₆ H ₁₂	-115	67	
Sykloheksen	C ₆ H ₁₀	-104	83	
1,3-Butadien	C ₄ H ₆	-109	4	
2-metyl-1,3-butadien	C ₅ H ₈	-146	34	Isopren
Heksa-1,3,5-trien	C ₆ H ₈	-12	78,5	
	HYDROKA	RBONER, U	METTEDE,	alkyner
Navn	Formel	Smp	Кр	Diverse
Etyn	C ₂ H ₂	-81	-85	Acetylen
Propyn	C ₃ H ₄	-103	-23	Metylacetylen
But-1-yn	C ₄ H ₆	-126	8	
But-2-yn	C ₄ H ₆	-32	27	
	AROM	IATISKE HYD	ROKARBOI	NER
Navn	Formel	Smp	Кр	Diverse
Benzen	C ₆ H ₆	5	80	
Metylbenzen	C ₇ H ₈	-95	111	
Etylbenzen, fenyletan	C ₈ H ₁₀	-95	136	
Fenyleten	C ₈ H ₈	-31	145	Styren, vinylbenzen
Fenylbenzen	C ₁₂ H ₁₀	69	256	Difenyl, bifenyl
Naftalen	C ₁₀ H ₈	80	218	Enkleste PAH
		ALKOHO	DLER	
Navn	Formel	Smp	Кр	Diverse
Metanol	CH₃OH	-98	65	Tresprit
Etanol	C₂H ₆ O	-114	78	
Propan-1-ol	C₃H ₈ O	-124	97	<i>n</i> -propanol
Propan-2-ol	C₃H ₈ O	-88	82	Isopropanol
Butan-1-ol	C ₄ H ₁₀ O	-89	118	<i>n</i> -Butanol
Butan-2-ol	C ₄ H ₁₀ O	-89	100	sec-Butanol
2-Metylpropan-1-ol	C ₄ H ₁₀ O	-108	108	Isobutanol
2-Metylpropan-2-ol	C ₄ H ₁₀ O	26	82	tert-Butanol
Pentan-1-ol	C ₅ H ₁₂ O	-78	138	n-Pentanol, amylalkohol
Pentan-2-ol	C ₅ H ₁₂ O	-73	119	sec-amylalkohol

Navn	Formel	Smp	Кр	Diverse
Pentan-3-ol	C ₅ H ₁₂ O	-69	116	Dietylkarbinol
Heksan-1-ol	C ₆ H ₁₄ O	-47	158	Kapronalkohol, <i>n</i> -heksanol
Heksan-2-ol	C ₆ H ₁₄ O		140	·
Heksan-3-ol	C ₆ H ₁₄ O		135	
Sykloheksanol	C ₆ H ₁₂ O	26	161	
Etan-1,2-diol	C ₂ H ₆ O ₂	-13	197	Etylenglykol
Propan-1,2,3-triol	C ₃ H ₈ O ₃	18	290	Glyserol, inngår i fettarten triglyserid
		RBONYLFOR		
Navn	Formel	Smp	Кр	Diverse
Metanal	CH₂O	-92	-19	Formaldehyd
Etanal	C ₂ H ₄ O	-123	20	Acetaldehyd
Fenylmetanal	C ₇ H ₆ O	-57	179	Benzaldehyd
Propanal	C ₃ H ₆ O	-80	48	Propionaldehyd
2-Metylpropanal	C ₄ H ₈ O	-65	65	The promise of the state of the
Butanal	C ₄ H ₈ O	-97	75	
Propanon	C₃H ₆ O	-95	56	Aceton
Butanon	C ₄ H ₈ O	-87	80	Metyletylketon
3-Metylbutan-2-on	C ₅ H ₁₀ O	-93	94	Metylisopropylketon
Pentan-2-on	C ₅ H ₁₀ O	-77	102	Metylpropylketon
Pentan-3-on	C ₅ H ₁₀ O	-39	102	Dietylketon
Tentan 5 on	C31110O	ORGANISK		Dictylictori
Navn	Formel	Smp	Кр	Diverse
Metansyre	CH ₂ O ₂	8	101	Maursyre, p $K_a = 3,75$
Etansyre	C ₂ H ₄ O ₂	17	118	Eddiksyre, p $K_a = 4,76$
Propansyre	C ₃ H ₆ O ₂	-21	141	Propionsyre, $pK_a = 4,87$
2-Metylpropansyre	C ₃ H ₈ O ₂	-46	154	$pK_a = 4.84$
2-Hydroksypropansyre	C ₃ H ₆ O ₃	70	122	Melkesyre, p K_a = 3,86
3-Hydroksypropansyre	C ₃ H ₆ O ₃		122	Dekomponerer ved oppvarming,
3 Trydrox3ypropunsyre	C3110C3			$pK_a = 4,51$
Butansyre	C ₄ H ₈ O ₂	-5	164	Smørsyre, p $K_a = 4,83$
Pentansyre	C ₅ H ₁₀ O ₂	-34	186	Valeriansyre, $pK_a = 4,83$
Etandisyre	C ₂ H ₂ O ₄			Oksalsyre, $pK_{a1} = 1,25$, $pK_{a2} = 3,81$
Propandisyre	C ₃ H ₄ O ₄			Malonsyre, p $K_{a1} = 2,85$, p $K_{a2} = 5,70$
Askorbinsyre	C ₆ H ₈ O ₆	190-192		$pK_{a1} = 4,17, pK_{a2} = 11,6$
Benzosyre	C ₇ H ₆ O ₂	122	250	P - 22
,		ESTEI	L	
Navn	Formel	Smp	Кр	Diverse
Benzyletanat	C ₉ H ₁₀ O ₂	-51	213	Benzylacetat, lukter pære og jordbær
Butylbutanat	C ₈ H ₁₆ O ₂	-92	166	Lukter ananas
Etylbutanat	C ₆ H ₁₂ O ₂	-98	121	Lukter banan, ananas og jordbær
Etyletanat	C ₄ H ₈ O ₂	-84	77	Etylacetat, løsemiddel
Etylheptanat	C ₉ H ₁₈ O ₂	-66	187	Lukter aprikos og kirsebær
Etylmetanat	C ₃ H ₆ O ₂	-80	54	Lukter rom og sitron
=37	31.100 2	3	_ ,	

Navn	Formel	Smp	Кр	Diverse						
Etylpentanat	C ₇ H ₁₄ O	-91	146	Lukter eple						
Metylbutanat	C ₅ H ₁₀ O	-86	103	Lukter eple og ananas						
Oktyletanat	C ₁₀ H ₂₀ O ₂	-39	210	Lukter appelsin						
Pentylpentanat	C ₁₀ H ₂₀ O ₂	-79	204	Lukter eple						
0	ORGANISKE FORBINDELSER MED NITROGEN									
Navn	Formel	Smp	Кр	Diverse						
Metylamin	CH₅N	-94	-6	$pK_b = 3,34$						
Dimetylamin	C ₂ H ₇ N	-92	7	$pK_b = 3,27$						
Trimetylamin	C ₃ H ₉ N	-117	2,87	$pK_b = 4,20$						
Etylamin	C_2H_7N	-81	17	$pK_b = 3,35$						
Dietylamin	C ₄ H ₁₁ N	-28	312	$pK_b = 3,16$						
	RGANISKE	FORBINDEL	SER MED I	HALOGEN						
Navn	Formel	Smp	Кр	Diverse						
Klormetan	CH₃Cl	-98	-24	Metylklorid						
Diklormetan	CH ₂ Cl ₂	-98	40	Metylenklorid, Mye brukt som løsemiddel						
Triklormetan	CHCl₃	-63	61	Kloroform						
Tetraklormetan	CCI ₄	-23	77	Karbontetraklorid						
Kloreten	C ₂ H ₃ Cl	-154	-14	Vinylklorid,monomeren i polymeren PVC						

Grunnstoffenes periodesystem

Gruppe 1	Gruppe 2									•	,	Gruppe 13	Gruppe 14	Gruppe 15	Gruppe 16	Gruppe 17	Gruppe 18
1	_				Forklarii	ng omnummer	35	Fargekoder	īkke-	-metall							2
1,008						Atommasse	79,90	. a. genoue.									4,003
2,1					Elektronegat	Symbol	Br 2,8		Halv	metall							He
Hydrogen						Navn	Brom		Me	etall							Helium
3 6,941	4 9,012				() betyr ma			Aggregat- tilstand	Fast	stoff B		5 10,81	6 12,01	7 14,01	8 16,00	9 19,00	10 20,18
Li	Ве				isotopen * Lantanoi			ved 25 °C og 1 atm	Væsk	ке Нg		В	С	N	0	F	Ne
1,0 Litium	1,5 Beryl- lium				** Aktinoid				Gas	ss N		2,0 Bor	2,5 Karbon	3,0 Nitrogen	3,5 Oksygen	4,0 Fluor	- Neon
11 22,99	12 24,31										1	13 26,98	14 28,09	15 30,97	16 32,07	17 35,45	18 39,95
Na	Mg											Al	Si	P	S	CI	Ar
0,9 Natrium	1,2 Magne- sium	3	4	5	6	7	8	9	10	11	12	1,5 Alumini- um	1,8 Silisium	2,1 Fosfor	2,5 Svovel	3,0 Klor	- Argon
19 39,10	20 40,08	21 44,96	22 47,87	23 50,94	24 52,00	25 54,94	26 55,85	27 58,93	28 58,69	29 63,55	30 65,38	31 69,72	32 72,63	33 74,92	34 78,97	35 79,90	36 83,80
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
0,8 Kalium	1,0 Kalsium	1,3 Scan-	1,5 Titan	1,6 Vana-	1,6 Krom	1,5 Mangan	1,8 Jern	1,9 Kobolt	1,9 Nikkel	1,9 Kobber	1,6 Sink	1,6 Gallium	1,8 Germa-	2,0 Arsen	2,4 Selen	2,8 Brom	- Krypton
37	38	dium 39	40	dium 41	42	43	44	45	46	47	48	49	nium 50	51	52	53	54
85,47 Rb	87,62 Sr	88,91 Y	91,22 Zr	92,91 Nb	95,95 Mo	(98) Tc	101,07 Ru	102,91 Rh	106,42 Pd	107,87 Ag	112,41 Cd	114,82 In	118,71 Sn	121,76 Sb	127,60 Te	126,90 I	131,29 Xe
0,8 Rubidium	1,0 Stron-	1,2 Yttrium	1,4 Zirko-	1,6 Niob	1,8 Molyb-	1,9 Techne-	2,2 Ruthe-	2,2 Rhodium	2,2 Palla-	1,9 Sølv	1,7 Kad-	1,7 Indium	1,7 Tinn	1,8 Antimon	2,1 Tellur	2,4 Jod	- Xenon
55	tium 56	57	nium 72	73	den 74	tium 75	nium 76	77	dium 78	79	mium 80	81	82	83	84	85	86
132,91 Cs	137,33 Ba	138,91 La	178,49 Hf	180,95 Ta	183,84 W	186,21 Re	190,23 Os	192,22 Ir	195,08 Pt	196,97 Au	200,59 Hg	204,38 TI	207,2 Pb	208,98 Bi	(209) Po	(210) At	(222)
0,7	0,9	1,1	1,3	1,5	1,7	1,9	2,2	2,2	2,2	2,4	1,9	1,8	1,8	1,9	2,0	2,3	Rn
Cesium	Barium	Lantan*	Hafnium	Tantal	Wolfram	Rhenium	Osmium	Iridium	Platina	Gull	Kvikk- sølv	Thallium	Bly	Vismut	Poloni- um	Astat	Radon
87 (223)	88 (226)	89 (227)	104 (267)	105 (268)	106 (269)	107 (270)	108 (269)	109 (277)	110 (281)	111 (282)	112 (285)	113 (286)	114 (290)	115 (289)	116 (293)	117 (294)	118 (294)
Fr 0,7	Ra 0,9	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og
Francium	Radium	Actinium **	Ruther- fordium	Dub- nium	Sea- borgium	Bohrium	Hassium	Meit- nerium	Darm- stadtiu	Rønt- genium	Coper- nicium	Nihoniu m	Flero- vium	Moscovi um	Liver- morium	Tenness	Oganess on
		*	57 138,91	58 140,12	59 140,91	60 144,24	61 (145)	62 150,36	63 151,96	64 157,25	65 158,93	66 162,50	67 164,93	68 167,26	69 168,93	70 173,05	71 174,97
			La	Ce	Pr 1,1	Nd 1,1	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er 1,2	Tm	Yb	Lu
			Lantan	Cerium	Praseo- dym	Neodym	Prome- thium	Sama- rium	Euro- pium	Gado- linium	Terbium	Dyspro- sium	Hol- mium	Erbium	Thulium	Ytter- bium	Lute- tium
		**	89 (227)	90 232,04	91 231,04	92 238,03	93 (237)	94 (244)	95 (243)	96 (247)	97 (247)	98 (251)	99 (252)	100 (257)	101 (258)	102 (259)	103 (266)
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
			1,1 Actinium	1,3 Thorium	1,4 Protacti-	1,4 Uran	1,4 Neptu-	1,3 Pluto-	1,1 Ame-	1,3 Curium	1,3 Berke-	1,3 Califor-	1,3 Einstein-	1,3 Fer-	1,3 Mende-	1,3 Nobel-	1,3 Lawren-
					nium		nium	nium	ricium		lium	nium	ium	mium	levium	ium	cium

Eksamen REA3046 Side 58 av 64

Kilder

- De fleste opplysningene er hentet fra CRC HANDBOOK OF CHEMISTRY and PHYSICS, 89. UTGAVE (2008–2009), ISBN 9781420066791
- Oppdateringer er gjort ut fra CRC HANDBOOK OF CHEMISTRY and PHYSICS, 96. UTGAVE (2015–2016): http://www.hbcpnetbase.com/ (sist besøkt 16.11.15) og CRC HANDBOOK OF CHEMISTRY and PHYSICS, 103. UTGAVE
 - (https://hbcp.chemnetbase.com/faces/contents/ContentsSearch.xhtml;jsessionid=57CCC8FDEC923 F2DEE95CD0D134F8706) (sist besøkt 12.10.22)
- For ustabile radioaktive grunnstoffer ble periodesystemet til «Royal Society of Chemistry» brukt: http://www.rsc.org/periodic-table (sist besøkt 15.01.15)
- Gyldendals tabeller og formler i kjemi, Kjemi 1 og Kjemi 2, Gyldendal, ISBN: 978-82-05-39274-8
- Esterduft: http://en.wikipedia.org/wiki/Ester (sist besøkt 10.09.2013)
- Stabilitetskonstanter: http://bilbo.chm.uri.edu/CHM112/tables/Kftable.htm (sist besøkt 03.12.2013) og, http://www.cem.msu.edu/~cem333/EDTATable.html (sist besøkt 03.12.2013)
- Oppdatering gjort fra: https://webbook.nist.gov/chemistry/ (sist besøkt 3.01.2024)
- Oppdatering gjort fra: https://www.degruyter.com/document/doi/10.1515/pac-2019-0603/html (sist besøkt 3.01.2024)
- Oppdatering gjort fra: https://srdata.nist.gov/solubility/version_his.aspx (sist besøkt 3.01.2024)

Blank side

Blank side

Blank side

Kandidatnummer:		
Svarark nr. 1 av totalt	på del 1	

Svar oppgåve 1 / oppgave 1 del 1

Oppgåve 1/	Skriv <i>eitt</i> av svaralternativa
	A, B, C eller D her: /
Oppgave 1	Skriv <i>ett</i> av svaralternativene A, B, C eller D her:
a)	
b)	
c)	
d)	
e)	
f)	
g)	
h)	
i)	
j)	
k)	
l)	

Svar oppgåve 2/oppgave 2 del 1

Oppgåve 2 /oppgave 2		Set ett kryss for rett eller feil ved kvar påstandsoppgåve/ Sett ett kryss for rett eller feil ved hver påstandsoppgave:	
2a		Rett	Feil
	I		
	II		
	III		
	IV		
2b		Rett	Feil
	I		
	II		
	III		_
	IV		

Vedlegg 2 skal leverast kl. 11.00 saman med svaret på oppgåve 3, 4 og 5. / Vedlegg 2 skal leveres kl. 11.00 sammen med svaret på oppgave 3, 4 og 5.

Tips til deg som akkurat har fått eksamensoppgåva:

- Start med å lese oppgåveinstruksen godt.
- Hugs å føre opp kjeldene i svaret ditt dersom du bruker kjelder.
- Les gjennom det du har skrive, før du leverer.
- Bruk tida. Det er lurt å drikke og ete undervegs.

Lykke til!

Tips til deg som akkurat har fått eksamensoppgaven:

- Start med å lese oppgaveinstruksen godt.
- Husk å føre opp kildene i svaret ditt hvis du bruker kilder.
- Les gjennom det du har skrevet, før du leverer.
- Bruk tiden. Det er lurt å drikke og spise underveis.

Lykke til!