Machine Learning

Time series forecasting

Part 1: introduction

Rob J Hyndman George Athanasopoulos

FORECASTING PRINCIPLES AND PRACTICE

Sources

Time Series Analysis, Forecasting, and Machine Learning

Python for LSTMs, ARIMA, Deep Learning, AI, Support Vector Regression, +More Applied to Time Series Forecasting

Bestseller

4.7 ★★★★★ (2,237 ratings) 8,376 students

Created by Lazy Programmer Team, Lazy Programmer Inc.

Robert H. Shumway David S. Stoffer

Time Series Analysis and Its Applications

With R Examples

Fourth Edition

Time series

- sequence of time-ordered values, typically:
 - discrete time steps
 - continuous values
- time steps have given **frequency**, e.g. day, month
- we can have additional features, called exogenous variables
- we can have multivariate time series, i.e. many series in parallel, e.g. profits and costs, supply and demand
- related areas: signal processing, stochastic processes

Time series forecasting

- forecasting predicting future values
- regression, but in time
- we can only use **past** values of time series
- optionally, also current exogenous variables
- point forecasts predict a single value for a time step
- **probabilistic forecasts** predict a range of possible values, for a given confidence interval (e.g. 50%, 95%)
- cost common task business-wise

Time series classification

- classifying the whole time series
- typically for signals, e.g. in medicine (EEG, EKG)
- we know the whole signal, both previous and later data

Time series classification - additional resources

- typically is based on a particular **feature extraction algorithm**
- most well-known algorithms:
 - Dynamic Time Warping (DTW)

ROCKET, MiniROCKET

shapelet transform

• <u>TSFRESH</u>

Time Series Forest

- various 1D CNNs
- J. Kezmann "All 8 Types of Time Series Classification Methods"
- "Time Series Classification: A Review of Algorithms and Implementations" J. Faouzi
- "The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances" A. Bagnall et al.
- "Comparison of Manual and Automated Feature Engineering for Daily Activity Classification in Mental Disorder Diagnosis" J. Adamczyk, F. Malawski

Other time series tasks

- anomaly detection / event detection
 - intrusion detection
 - fault detection (predictive maintenance)
- segmentation
 - voice detection
 - speaker diarization ("who spoke when?")
- clustering
 - "Time-series clustering A decade review" S. Aghabozorgi et al.

Time series forecasting - applications

business forecasting:

- demand, sales, production cost etc.
- everywhere in business intelligence (BI)

• finance & econometrics:

- o short- and long-term macroeconomics, stock value, options, derivatives etc.
- technical analysis and high frequency trading (HFT)
- o disclaimer: efficient market hypothesis, random walk hypothesis etc.

cloud & DevOps:

- network traffic, utilization forecasting etc.
- VM predictive scaling

Forecasting - classical approaches

heuristics:

- trivial, but often surprisingly good results
- crucial as baselines
- e.g. average, last value

• statistical models, simple ML:

- based on statistical analysis of time series
- well researched
- often give the best results, especially for one-dimensional data
- e.g. ARIMA, ETS, Theta, TBATS, regression (e.g. boosting)

Forecasting - neural approaches

• simple deep learning:

- often combination of statistics and simple MLPs
- still strongly based on statistical time series analysis
- better for complex data and multivariate time series
- o e.g. N-BEATS, N-HiTS, TSMixer, TiDE, recurrent neural networks (e.g. LSTM, GRU)

complex deep learning models:

- recently started to give reasonable results, but it's incredibly hard
- e.g. TFT, PatchTST, Chronos, TimesFM, TimeGPT

Time series analysis and decomposition

Notation

- *t* time step index
- *T* total number of time steps
- t = 1, 2, ..., T indexed from **1**
- y_t value at step t
- y_T value at step T, last known value
- ullet \hat{y}_{T+h} forecast h steps ahead
- ullet $\hat{y}_{T+h|T}$ forecast h steps ahead, explicitly using previous T values

Frequency

- data frequency: hourly, daily, monthly etc.
- typically related to the type and amount of data:
 - o frequent: sensors, automated measurements etc.
 - o infrequent: macroeconomics data, sales aggregates etc.
- basically all methods **require** single frequency
- problems:
 - missing data
 - too much data, unwanted variance (noise)

• if we have a lot of zeros, this is called **intermittent** time series, and requires dedicated models

Frequency

IRREGULAR TIMESTAMPS

DATE	REVENUE(k)
2020-07-01	26
2020-07-02	20
2020-07-03	25
2020-07-05	40
2020-07-08	27

EQUISPACED TIMESTAMPS

DATE	REVENUE(k)
2020-07-01	26
2020-07-02	20
2020-07-03	25
2020-07-04	
2020-07-05	40
2020-07-06	
2020-07-07	
2020-07-08	27

Resampling

- aggregation of existing data over time periods
- one of:
 - o pick 1 data point every N values, e.g. last day of each month
 - "GROUP BY" over time, e.g. average, sum
- **reduces frequency**, e.g. daily sales -> total weekly sales

Forward fill

- fills missing values by copying last known value
- causal we only use past knowledge
- most common in forecasting
- sometimes called "last value interpolation" or "previous value interpolation"

IRREGULAR TIMESTAMPS

DATE	REVENUE(k)
2020-07-01	26
2020-07-02	20
2020-07-03	25
2020-07-05	40
2020-07-08	27

INTERPOLATION: PREVIOUS

Interpolation

- **fills missing values** by using some interpolation scheme
- e.g. linear, polynomial, (historical) average/median
- **only** for time series classification uses future data and can't extrapolate

INTERPOLATION: LINEAR

DATE	REVENUE(k)
2020-07-01	26
2020-07-02	20
2020-07-03	25
2020-07-04	32.5
2020-07-05	40
2020-07-06	35.67
2020-07-07	31.33
2020-07-08	27

INTERPOLATION: QUADRATIC

DATE	REVENUE(k)
2020-07-01	26
2020-07-02	20
2020-07-03	25
2020-07-04	33.35
2020-07-05	40
2020-07-06	41.16
2020-07-07	36.82
2020-07-08	27

Time series components

- time series decomposition break the data into simpler components
- most common one:

data = trend + seasonality + cycle + remainder

- **trend** general tendency to go up/down
- **seasonality** regular, periodic changes
- **cycle** irregular cycles, no constant periodicity
- remainder all other irregular changes

seasonality is assumed to be known or suspected based on domain knowledge

TIME SERIES DATA COMPONENTS

https://codeit.us/blog/machine-learning-time-series-forecasting

Time series components

Trend-cycle:

- combined trend and cycle, often called just "trend"
- allows irregular trend, going up or down
- data = trend + seasonality + remainder

Multiple seasonalities:

- e.g. weekly and yearly
- often hard to incorporate this, but is often important

TIME SERIES DATA COMPONENTS

Time series components

Additive vs multiplicative decompositions

additive decomposition assumes independent (additive) components:

$$y_t = T_t + S_t + R_t$$

- not necessarily true, e.g. Black Friday sales spike (seasonality) will be more visible as the store gets bigger (trend)
- multiplicative decomposition reflects this idea:

$$y_t = T_t * S_t * R_t$$

• we can often go from multiplicative to additive relation by using log-transform: $\log(y_t) = \log(T_t) + \log(S_t) + \log(R_t)$

- additive models are often more stable, i.e. numerically + reasonable predictions
- we will generally assume additivity

Additive vs multiplicative decompositions

STL decomposition

- Seasonal and Trend decomposition using LOESS (STL)
- decomposition algorithm, based on weighted regression
- assumes additive model: trend + seasonality + remainder
- many variants and extensions
- **pros:** simple, intuitive, robust variant (robust to outliers)
- cons: single seasonality, only additive model

Decomposition - additional resources

- FPP: <u>Time series patterns</u>, <u>Time series components</u>, <u>STL decomposition</u>
- Statistics Canada Trend-cycle estimates
- STL Algorithm Explained
- "STL: A Seasonal-Trend Decomposition Procedure Based on Loess" R. Cleveland et al.

- "MSTL: A Seasonal-Trend Decomposition Algorithm for Time Series with Multiple Seasonal Patterns" K. Bandara et al.
- "STR: Seasonal-Trend Decomposition Using Regression" A. Dokumentov, R. Hyndman

Stationarity, variance and transformations

Strong stationarity

- **strong stationarity** time series values have the same distribution for a given time window, no matter the time
- joint probability distribution of $y_{t_1},...,y_{t_1+\tau}$ and $y_{t_2},...,y_{t_2+\tau}$ is the same for all t_1 and t_2
- unrealistic, data always changes, but useful for theory
- strongly stationary process Gaussian white noise

$$y_t \sim \mathcal{N}(0, \sigma^2)$$

Stationarity

- weak (wide-sense) stationarity mean and autocovariance are constant, and variance is finite
- often called just "stationarity", **good enough** in practice
- what this means:
 - when plotted, time series look similar in all places
 - o no trend, no seasonality, finite and stable values
 - reasonably similar statistical properties everywhere
- easier to forecast stationary data, since training and testing data are similar
- for variance, we want **homoscedasticity**, i.e. finite and time-independent variance

Stationarity

Stationarity

Stationary vs Non-Stationary Data - Google Stocks

Autocovariance

autocovariance - covariance of time series with itself, at a given time lag k

$$\gamma(t, t - k) = \text{Cov}[y_t, y_{t-k}] = \mathbb{E}[(y_t - \mu)(y_{t-k} - \mu)]$$

- how much past and future values of time series are related
- sample autocovariance:

$$\hat{\gamma}(t, t - k) = \frac{1}{T} \sum_{t=k+1}^{T} (y_t - \mu)(y_{t-k} - \mu)$$

- autocorrelation = normalized autocovariance (divided by standard deviation)
- high autocovariance = future values directly depend on past values k lags before

Stationarity testing

manually:

- o graphical plots, e.g. ACF, PACF
- shockingly, many people stop here, and cite "subjectivity" as a problem in time series forecasting...

• statistical tests:

- standard ML solution
- Kwiatkowski-Phillips-Schmidt-Shin (KPSS) typically best in practice
- Augmented Dickey-Fuller (ADF) traditional, but overly pessimistic when automated
- additional resources: <u>link 1</u>, <u>link 2</u>

Stationarization

- making time series more stationary
- best-effort tools, often won't work really well, but good enough

Problem	Standard solution
Trend	Differencing
Seasonality	Seasonal differencing
Unstable variance and/or autocovariance	Log, sqrt, Box-Cox transformations

Differencing

differencing - changing values into change values (deltas) between time steps:

$$y_t' = y_t - y_{t-1}$$

- detrends, i.e. removes trend, makes time series mean-stationary
- almost always 1-2 times is enough
- note the similarity to derivatives this is a crude (1st order), discrete approximation of the function derivative, i.e. rate of change
- does not always work some data just cannot be made easily mean-stationary, but this
 typically results in a good enough result
- trained models forecast differences remember to invert during prediction!
- need to remember the first value from the original series for inversion

Differencing

Automatic differencing algorithm

- repeat in a loop:
 - test stationarity with KPSS test
 - if stationary, break
 - \circ else, take a difference $\,y_t'=y_t-y_{t-1}\,$

- **differencing order** number of differences
- marked as d
- typically we limit d_{max} in this loop, often 2

Seasonal differencing

• **seasonal differencing** - removes seasonality of order *m*:

$$y_t' = y_t - y_{t-m}$$

- typically we first do seasonal differencing, then regular differencing
- statistical tests
 - Osborn-Chui-Smith-Birchenhall (OCSB)
 - Canova-Hansen (CH)
- automated just like regular differencing

Stationarity - additional resources

- we explicitly omit unit roots for simplicity, but they are interesting additional material
- "Nonstationary time series transformation methods: An experimental review" E.
 Ogasawara
- ritvikmath "Unit Roots: Time Series Talk"
- <u>Lazarski Open Courses "Time Series Econometrics: Unit root testing"</u>
- "An Introduction to Stationarity and Unit Roots in Time Series Analysis"

Variance-stabilizing transformations

- variance-stabilizing transforms make variance more regular, smoothing values and removing outliers
- typical: log, sqrt, inverse, exp
- sometimes called "variance stationarization"

advantages:

- reduce heteroscedasticity (time-dependence of variance)
- values distribution closer to Gaussian (normal)
- change multiplicative relations to additive (log-transform)
- o greater numerical stability, smaller absolute values
- **problem:** how to choose the transformation?

Variance-stabilizing transformations

Original data vs log-transform

Detrended data vs log-transform

Box-Cox transformation

• Box-Cox transformation (power transform) is a generalized formula:

$$y_{Box-Cox} = \begin{cases} \frac{y^{\lambda}-1}{\lambda}, & \text{if } \lambda \neq 0\\ \ln(y), & \text{if } \lambda = 0 \end{cases}$$

- covers many cases, e.g. log (λ =0), sqrt (λ =0.5), no transform (λ =1)
- λ is **estimated** from data, typically via maximum likelihood estimation (MLE)

Pros:

- automated
- can learn new transforms, e.g. λ=0.25
- often the best results (but not always)

Cons:

- requires positive values (but adding small value like 1e-5 works)
- does not incorporate seasonality

Box-Cox transformation

V.s. transformations - additional resources

- CrossValidated When (and why) should you take the log of a distribution (of numbers)?
- CrossValidated BOX-COX TRANSFORMATION always stabilize variance
- P. Li "Box-Cox Transformations: An Overview"

- <u>Yeo-Johnson transformation</u> allows negative values
- <u>Guerrero's method</u> incorporates seasonality
- <u>Transform Data with Hyperbolic Sine</u> various methods for time series with negative values
- "Variance stabilizing transformations for electricity spot price forecasting" B. Uniejewski,
 R. Weron, F. Ziel

Transformations example

Data

- -> log
- -> seasonal differencing
- -> differencing

Baselines

Predict last

forecast:

$$\hat{y}_{T+h|T} = y_T$$

- often works very well in economy and finance
- the best possible forecast if the data is a random walk
- often called just "naive" or "naive forecast"

Average, median

forecast:

$$\hat{y}_{T+h|T} = \text{avg}(y) = \frac{y_1 + y_2 + \dots + y_T}{T}$$

$$\hat{y}_{T+h|T} = \text{median}(y)$$

- works well if the data is mainly trend and seasonality
- average is the optimal forecast for white noise
- median is rare in literature, but robust and gives good results

Naive seasonal

forecast:

$$\hat{y}_{T+h|T} = y_{T+h-m\lfloor \frac{h-1}{m} \rfloor}$$

- copy the value of the same moment from the last season, e.g.:
 - monthly data, yearly seasonality
 - assume the same sales, as the same month the last year
- works well for strongly seasonal data, e.g. sales, demand

Why baselines are important

"Forecast evaluation for data scientists: common pitfalls and best practices" H. Hewamalage et al.

- fair evaluation baseline not present in the paper
- complex Autoformer model outperformed by a simple naive forecast...
- even for long time horizons!

 Table 3 Results from the naïve forecast and the Autoformer model on the exchange rate dataset

Horizon	Naïve		Autoformer (Rerun)		Autoformer (Original Paper)	
	MAE	MSE	MAE	MSE	MAE	MSE
96	0.192	0.078	0.279	0.149	0.323	0.197
192	0.282	0.158	0.399	0.299	0.369	0.300
336	0.388	0.287	0.504	0.460	0.524	0.509
720	0.694	0.817	0.963	1.552	0.941	1.447

Best models shown in boldface font

Forecasts evaluation

Data splitting

- never split randomly that would be data leakage and using future data
- time split / chronological split:
 - older data training, newest data testing
 - final model is retrained on entire data
 - always useful when we have time information (not only for time series)

Time split - problems

• problem 1:

- assume 80-20% split, with test set being 2 years
- we retrain models once a week
- clients typically make forecasts with 1-3 months horizon
- longer horizonts = less precise forecasts
- evaluating directly on the whole 2 years would be unrealistic!

problem 2:

- we still want to use cross-validation, e.g. for hyperparameter tuning
- but we need to take time into consideration

Time series CV

 time series CV has 2 main variants: k-fold split and expanding window

• k-fold split:

- divide data into k equally sized parts (folds)
- train on first k folds, evaluate on k+1
- commonly used for selecting hyperparameters (validation)

• problems:

- data-hungry neural models underperform initially
- single step forces equal retraining frequency and forecasting horizon

Time series CV

- expanding window uses configurable steps instead of k equally-sized parts
- 3 parameters: initial data size, retraining step, forecasting horizon
- expanding window:
 - start with given percentage of data
 - forecast and evaluate with given horizon
 - o go forward a given number of steps and retrain
- **pros:** elastic and realistic, great for testing
- cons: computationally expensive

Train-test vs expanding window

Quality metrics

- classic regression measures:
 - RMSE, MAE etc.
 - well-known, easily understandable
 - relatively sensitive to outliers
 - scale-dependent (can be good or bad)
 - o can use median (MdAE) or geometric mean (GMAE) instead of regular mean
- measures relative to true y:
 - MAPE (Mean Absolute Percentage Error), SMAPE (Symmetric MAPE)
 - measure error in percentage, relative to true y
 - o many problems, e.g. numerically unstable, biased towards overforecast
 - you should never use those

Problems with MAPE - additional resources

- Open Forecasting "Avoid using MAPE!"
- M. Ganguly "Pitfalls of MAPE as a forecast accuracy metric"
- <u>CrossValidated What are the shortcomings of the Mean Absolute Percentage Error</u> (MAPE)?
- CrossValidated Is MAPE a good error measurement statistic? And what alternatives are there?

Mean Absolute Scaled Error (MASE)

• **forecasting quality measure**, defined as MAE on test set, divided by MAE of naive 1-step forecast on the training set (in-sample error)

$$MASE(y, \hat{y}) = \frac{MAE_{test}(y, \hat{y})}{\frac{1}{T-1} \sum_{i=1}^{T} |y_i - y_{i-1}|}$$

- has a lot of nice features:
 - scale-invariant good forecasts have values in range [0, 1)
 - o **interpretable** value below 1 means that forecast is better than naive baseline
 - symmetric equally penalizes under- and overforecast, and works well both for small and large values
 - o **numerically stable** no problems with zero / small values
- the only metric you need in addition to scale-dependent ones

Residuals analysis

ullet residual error of a model is: $\epsilon_t = y_t - \hat{y}_t$

• assumption 1:

zero-centered, normally-distributed errors:

$$\epsilon_t \sim \mathcal{N}(0, \sigma^2)$$

Shapiro-Wilk or Anderson-Darling test

assumption 2:

- homoscedastic errors, without autocorrelation
- Ljung-Box test
- in other words, errors should be a Gaussian white noise
- if false, we have an "incorrect" model, but it can still be very useful

Evaluation - additional resources

- FPP: <u>Evaluating point forecast accuracy</u>
- "Forecast evaluation for data scientists: common pitfalls and best practices" H. Hewamalage et al.
- "On the use of cross-validation for time series predictor evaluation" C. Bergmeir, J. M. Benítez

- Wikipedia Mean absolute scaled error
- <u>CrossValidated Interpretation of mean absolute scaled error (MASE)</u>
- CrossValidated Interpretation of scaled error measures

Questions?