
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: Wed Oct 31 10:35:30 EDT 2007

Validated By CRFValidator v 1.0.3

Application No: 10540818 Version No: 1.0

Input Set:

Output Set:

Started: 2007-10-16 12:20:48.983 **Finished:** 2007-10-16 12:20:51.241

Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 258 ms

Total Warnings: 24
Total Errors: 0

No. of SeqIDs Defined: 34
Actual SeqID Count: 34

Error code **Error Description** 213 Artificial or Unknown found in <213> in SEQ ID (7) W 213 Artificial or Unknown found in <213> in SEQ ID (8) W W 213 Artificial or Unknown found in <213> in SEQ ID (9) 213 Artificial or Unknown found in <213> W in SEQ ID (10) 213 Artificial or Unknown found in <213> W in SEQ ID (12) W 213 Artificial or Unknown found in <213> in SEQ ID (13) W 213 Artificial or Unknown found in <213> in SEQ ID (15) 213 Artificial or Unknown found in <213> W in SEQ ID (16) W 213 Artificial or Unknown found in <213> in SEQ ID (17) 213 Artificial or Unknown found in <213> W in SEQ ID (18) W 213 Artificial or Unknown found in <213> in SEQ ID (19) W 213 Artificial or Unknown found in <213> in SEQ ID (20) 213 W Artificial or Unknown found in <213> in SEQ ID (21) W 213 Artificial or Unknown found in <213> in SEQ ID (22) W 213 Artificial or Unknown found in <213> in SEQ ID (23) 213 Artificial or Unknown found in <213> W in SEQ ID (24) W 213 Artificial or Unknown found in <213> in SEQ ID (25) W 213 Artificial or Unknown found in <213> in SEQ ID (26) 213 W Artificial or Unknown found in <213> in SEQ ID (27) 213 Artificial or Unknown found in <213> in SEQ ID (28)

Input Set:

Output Set:

Started: 2007-10-16 12:20:48.983

Finished: 2007-10-16 12:20:51.241

Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 258 ms

Total Warnings: 24

Total Errors: 0

No. of SeqIDs Defined: 34

Actual SeqID Count: 34

Error code Error Description

This error has occured more than 20 times, will not be displayed

SEQUENCE LISTING

<110>	Grosse, Johannes Schneider, Boris Zeitlmann, Lutz Popp, Andreas	
<120>	Methods and Agents for Diagnosis and Prevention, Amelioration of Treatment of Goblet Cell-Related Disorders	or
<130>	14851-002US1	
	10540818 2007-10-16	
<150>	PCT/EP2003/014834	
<151>	2003-12-23	
<150>	US 60/436,322	
<151>	2002-12-23	
<160>	34	
<170>	PatentIn version 3.2	
<210>	1	
<211>	781	
<212>	DNA Mus musculus	
\213/	Musculus	
<400>	1	
ggcaaco	cctt gcggctcaca caaagcagga gggtgggaag cccagatttg ccatggagaa	60
attttca	agtg tetgeaatee tgettettgt ggeeatttet ggtaeettgg ccaaagaeae 1	120
cacagto	caaa tetggageea aaaaggaeee aaaggaetet eggeeeaaae taceteagae 1	180
actctcc	caga ggttggggcg atcagctcat ctggactcag acatacgaag aagctttata 2	240
cagatco	caag acaagcaaca gaccettgat ggtcattcat cacttggacg aatgcccaca 3	300
cagtcaa	agcc ttaaagaaag tgtttgctga acataaagaa atccagaaat tggcagagca 3	360
gtttgtt	tete etcaacetgg tetatgaaac aacegacaag cacetttete etgatggeca 4	420
gtacgto	cccc agaattgtgt ttgtagaccc atccctgacg gagagggcag acatcactgg 4	480
acgatad	ctca aaccggctct acgcttatga accttctgac acagctttgt tgtacgacaa 5	540
catgaaq	gaaa gctctcaagc tgctaaagac agaattgtag agctaactgc gcaccgggtc (600
aggagad	ccag aaggcagaag cactgtggac ttgcagatta cagtacagtt taatgttaca 🦠 🤄	660
acagata	atat tttttaaaca cccacaggtg gggaaacaat attattatct actacagtga 7	720

a 781

<210> 2 <211> 175

<212> PRT

<213> Mus musculus

<400> 2

Met Glu Lys Phe Ser Val Ser Ala Ile Leu Leu Leu Val Ala Ile Ser 1 5 10 15

Gly Thr Leu Ala Lys Asp Thr Thr Val Lys Ser Gly Ala Lys Lys Asp
20 25 30

Pro Lys Asp Ser Arg Pro Lys Leu Pro Gln Thr Leu Ser Arg Gly Trp 35 40 45

Gly Asp Gln Leu Ile Trp Thr Gln Thr Tyr Glu Glu Ala Leu Tyr Arg
50 55 60

Ser Lys Thr Ser Asn Arg Pro Leu Met Val Ile His His Leu Asp Glu 65 70 75 80

Cys Pro His Ser Gln Ala Leu Lys Lys Val Phe Ala Glu His Lys Glu 85 90 95

Ile Gln Lys Leu Ala Glu Gln Phe Val Leu Leu Asn Leu Val Tyr Glu 100 105 110

Thr Thr Asp Lys His Leu Ser Pro Asp Gly Gln Tyr Val Pro Arg Ile 115 120 125

Val Phe Val Asp Pro Ser Leu Thr Glu Arg Ala Asp Ile Thr Gly Arg 130 $$135\$

Tyr Asp Asn Met Lys Lys Ala Leu Lys Leu Leu Lys Thr Glu Leu 165 170 175

<210> 3 <211> 175 <212> PRT

<213> Mus musculus

<400> 3

Met Glu Lys Phe Ser Val Ser Ala Ile Leu Leu Leu Val Ala Ile Ser 1 5 10 15

Gly Thr Leu Ala Lys Asp Thr Thr Val Lys Ser Gly Ala Lys Lys Asp 20 25 30

Pro Lys Asp Ser Arg Pro Lys Leu Pro Gln Thr Leu Ser Arg Gly Trp 35 40 45

Gly Asp Gln Leu Ile Trp Thr Gln Thr Tyr Glu Glu Ala Leu Tyr Arg
50 55 60

Ser Lys Thr Ser Asn Arg Pro Leu Met Val Ile His His Leu Asp Glu 65 70 75 80

Cys Pro His Ser Gln Ala Leu Lys Lys Val Phe Ala Glu His Lys Glu 85 90 95

Ile Gln Lys Leu Ala Glu Gln Phe Val Leu Leu Asn Leu Val Tyr Glu 100 105 110

Thr Thr Asp Lys His Leu Ser Pro Asp Gly Gln Tyr Val Pro Arg Ile 115 120 125

Val Phe Val Asp Pro Ser Leu Thr Val Arg Ala Asp Ile Thr Gly Arg 130 135 140

Tyr Asp Asn Met Lys Lys Ala Leu Lys Leu Leu Lys Thr Glu Leu 165 170 175

<210> 4

<211> 175

<212> PRT

<213> Homo sapiens

<400> 4

Met Glu Lys Ile Pro Val Ser Ala Phe Leu Leu Val Ala Leu Ser

1 5 10 15

Tyr Thr Leu Ala Arg Asp Thr Thr Val Lys Pro Gly Ala Lys Lys Asp 20 25 30

Thr Lys Asp Ser Arg Pro Lys Leu Pro Gln Thr Leu Ser Arg Gly Trp 35 40 45

Gly Asp Gln Leu Ile Trp Thr Gln Thr Tyr Glu Glu Ala Leu Tyr Lys
50 55 60

Ser Lys Thr Ser Asn Lys Pro Leu Met Ile Ile His His Leu Asp Glu 70 75 80

Cys Pro His Ser Gln Ala Leu Lys Lys Val Phe Ala Glu Asn Lys Glu 85 90 95

Ile Gln Lys Leu Ala Glu Gln Phe Val Leu Leu Asn Leu Val Tyr Glu 100 105 110

Thr Thr Asp Lys His Leu Ser Pro Asp Gly Gln Tyr Val Pro Arg Ile 115 120 125

Met Phe Val Asp Pro Ser Leu Thr Val Arg Ala Asp Ile Thr Gly Arg 130 $$135\$

Leu Asp Asn Met Lys Lys Ala Leu Lys Leu Leu Lys Thr Glu Leu
165 170 175

<210> 5

<211> 1701

<212> DNA

<213> Homo sapiens

<400> 5

cegeatecta geegeegact cacacaagge aggtgggtga ggaaatecag agttgeeatg 60
gagaaaatte cagtgteage attettgete ettgtggeee teteetacae tetggeeaga 120
gataceacag teaaacetgg ageeaaaaag gacacaaagg actetegace caaactgeee 180
cagaceetet ceagaggttg gggtgaceaa eteatetgga eteagacata tgaagaaget 240

ctatataaat ccaagacaag	caacaaaccc	ttgatgatta	ttcatcactt	ggatgagtgc	300
ccacacagtc aagctttaaa	gaaagtgttt	gctgaaaata	aagaaatcca	gaaattggca	360
gagcagtttg tcctcctcaa	tctggtttat	gaaacaactg	acaaacacct	ttctcctgat	420
ggccagtatg tccccaggat	tatgtttgtt	gacccatctc	tgacagttag	agccgatatc	480
actggaagat attcaaatcg	tctctatgct	tacgaacctg	cagatacagc	tctgttgctt	540
gacaacatga agaaagctct	caagttgctg	aagactgaat	tgtaaagaaa	aaaaatctcc	600
aagcccttct gtctgtcagg	ccttgagact	tgaaaccaga	agaagtgtga	gaagactggc	660
tagtgtggaa gcatagtgaa	cacactgatt	aggttatggt	ttaatgttac	aacaactatt	720
ttttaagaaa aacaagtttt	agaaatttgg	tttcaagtgt	acatgtgtga	aaacaatatt	780
gtatactacc atagtgagcc	atgattttct	aaaaaaaaa	ataaatgttt	tgggggtgtt	840
ctgttttctc caacttggtc	tttcacagtg	gttcgtttac	caaataggat	taaacacaca	900
caaaatgctc aaggaaggga	caagacaaaa	ccaaaactag	ttcaaatgat	gaagaccaaa	960
gaccaagtta tcatctcacc	acaccacagg	ttctcactag	atgactgtaa	gtagacacga	1020
gcttaatcaa cagaagtatc	aagccatgtg	ctttagcata	aaagaatatt	tagaaaaaca	1080
tcccaagaaa atcacatcac	tacctagagt	caactctggc	caggaactct	aaggtacaca	1140
ctttcattta gtaattaaat	tttagtcaga	ttttgcccaa	cctaatgctc	tcagggaaag	1200
cctctggcaa gtagctttct	ccttcagagg	tctaatttag	tagaaaggtc	atccaaagaa	1260
catctgcact cctgaacaca	ccctgaagaa	atcctgggaa	ttgaccttgt	aatcgatttg	1320
tctgtcaagg tcctaaagta	ctggagtgaa	ataaattcag	ccaacatgtg	actaattgga	1380
agaagagcaa agggtggtga	cgtgttgatg	aggcagatgg	agatcagagg	ttactagggt	1440
ttaggaaacg tgaaaggctg	tggcatcagg	gtaggggagc	attctgccta	acagaaatta	1500
gaattgtgtg ttaatgtctt	cactctatac	ttaatctcac	attcattaat	atatggaatt	1560
cctctactgc ccagcccctc	ctgatttctt	tggcccctgg	actatggtgc	tgtatataat	1620
gctttgcagt atctgttgct	tgtcttgatt	aacttttttg	gataaaacct	tttttgaaca	1680
gaaaaaaaaa aaaaaaaaaa	a				1701

<210> 6

<211> 781

<212> DNA

<213> Mus musculus

ggcaaccctt (gcggctcaca	caaagcagga	gggtgggaag	cccagatttg	ccatggagaa	60
attttcagtg	tctgcaatcc	tgcttcttgt	ggccatttct	ggtaccttgg	ccaaagacac	120
cacagtcaaa '	tctggagcca	aaaaggaccc	aaaggactct	cggcccaaac	tacctcagac	180
actctccaga (ggttggggcg	atcagctcat	ctggactcag	acatacgaag	aagctttata	240
cagatccaag (acaagcaaca	gacccttgat	ggtcattcat	cacttggacg	aatgcccaca	300
cagtcaagcc :	ttaaagaaag	tgtttgctga	acataaagaa	atccagaaat	tggcagagca	360
gtttgttctc	ctcaacctgg	tctatgaaac	aaccgacaag	cacctttctc	ctgatggcca	420
gtacgtcccc	agaattgtgt	ttgtagaccc	atccctgacg	gtgagggcag	acatcactgg	480
acgatactca (aaccggctct	acgcttatga	accttctgac	acagctttgt	tgtacgacaa	540
catgaagaaa (gctctcaagc	tgctaaagac	agaattgtag	agctaactgc	gcaccgggtc	600
aggagaccag (aaggcagaag	cactgtggac	ttgcagatta	cagtacagtt	taatgttaca	660
acagatatat	tttttaaaca	cccacaggtg	gggaaacaat	attattatct	actacagtga	720
agcatgattt	tctagaaaat	aaagtcttgt	gagaactcca	aaaaaaaaa	aaaaaaaaa	780
a						781
<220> <223> mAgr: <400> 7 cagaccettg 6 <210> 8 <211> 21 <212> DNA	Artificial					20
<400> 8						
gtctcctgac	ccggtgcgca	g				21

<210> 9 <211> 21

<212> DNA

```
<213> Artificial Sequence
<220>
<223> hAgr1 primer
<400> 9
                                                                      21
gaacctgcag atacagctct g
<210> 10
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> hAgr4 primer
<400> 10
cacactagcc agtcttctca c
                                                                      21
<210> 11
<211> 702
<212> DNA
<213> Mus musculus
<220>
<221> misc_feature
<222> (319)..(319)
<223> n is a, c, q, or t
<400> 11
ctaaactgcg tttctctccc aatcttttgc aggcatttgg ggactttttc ttttcttttt
                                                                     60
actttctctt tttcttttgc acaagaagaa gtctacaaga tcttttaaga cttttgttat
cagccatttc accaggagaa cacgttgaat ggaccttttt aaaaagaaag cggaaggaaa
                                                                     180
actaaggatg atcgtcttgc ccaggtgtct tgttctccgg cctggactgt gataccgtta
                                                                     240
tttatgagag actttcagtg ccctttctac agttggaagg ttttcttat atactattcc
                                                                     300
                                                                     360
caccatgggg agcgaaaang ttaaaaaaaa aagaaaaaaa tcacaaggaa ttgcccaatg
taagcagact ttgccttttc acaaaggtgg agcgtgaatt ccagaaggac ccagtattcg
                                                                     420
gttacttaaa tgaagtcttc ggtcagaaat ggcctttttg acacgagcct actgaatgct
                                                                     480
                                                                     540
gtgtatatat ttatatataa atatatata attgagtgaa ccttgtggac tctttaatta
gagttttctt gtatagtggc agaaataacc tatttctgca ttaaaatgta atgacgtact
                                                                     600
tatgctaaac tttttataaa agtttagttg taaacttaac ccttttatac aaaataaatc
                                                                     660
                                                                     702
aagtgtgttt attgaatgtt gattgcttgc tttatttcag ac
```

```
<210> 12
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> primer 1 Idb2-SNP-marker
<400> 12
                                                                     22
ctaaactgcg tttctctccc aa
<210> 13
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> primer 2 Idb2-SNP-marker
<400> 13
gtctgaaata aagcaagcaa tcaac
                                                                     25
<210> 14
<211> 317
<212> DNA
<213> Mus musculus
<220>
<221> misc_feature
<222> (4)..(4)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (47)..(48)
<223> n is a, c, g, or t
<400> 14
acgneteact atagggegaa ttgggeeete tagatgeatg etegagnngg eegeeagtgt
                                                                     60
gctggaaagc ctccttgaga tctgaacact tgtgtgtgtg tgtgtgtgt tgtgtgtgtg
                                                                    120
tgtgtgtgtg tatgtatatg tgtataatta ttattattag ggattgaatc taggtagaca
                                                                    180
                                                                    240
ttctaccaca gagacaaacc accagccctg ctcctcaaat ccttacctca atttcttttt
ttcttttttt ttgttttaac cttctctttt tttattagat attgtcttca tttacatttc
                                                                    300
aaatgctatc ccaaaag
                                                                    317
```

<210> 15 <211> 23

```
<212> DNA
<213> Artificial Sequence
<220>
<223> primer 1 D12Mit64 MIT-marker
<400> 15
                                                                     23
ctccttgaga tctgaacact tgt
<210> 16
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> primer 2 D12Mit64 MIT-marker
<400> 16
gggctggtgg tttgtctct
                                                                     19
<210> 17
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Agr2 primer 1
<400> 17
ggatagacca cggatggata
                                                                     20
<210> 18
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Agr2 primer 2
<400> 18
                                                                     20
ccccagagag aacctgatta
<210> 19
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Agr2 primer 3
<400> 19
gttctctctg ggggctttt
                                                                     19
```

```
<210> 20
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Agr2 primer 4
<400> 20
aagatgagtg agccaaacca
                                                                    20
<210> 21
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Agr2 primer 5
<400> 21
                                                                    20
ggagtgaagg cagtcaacag
<210> 22
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Agr2 primer 6
<400> 22
                                                                    20
gatgggactt ggaggagatt
<210> 23
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Agr2 primer 7
<400> 23
tctgtagccc cctctctt
                                                                    20
<210> 24
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Agr2 primer 8
<400> 24
```

<210>	25
<211>	20
	DNA
	Artificial Sequence
1213/	merriciar bequence
<220>	
<223>	Agr2 primer 9
<400>	25
gctggg	gtag gagataggag
	26
<211>	
<212>	
<213>	Artificial Sequence
<2200	
<220>	Nar2 primar 10
~ ∠∠ 3 <i>?</i>	Agr2 primer 10
<400>	26
	ccca acttcagtca
,	-
<210>	27
<211>	20
<212>	DNA
<213>	Artificial Sequence
<220>	
<223>	Agr2 primer 11
	0.7
<400>	27
Laagca	ggaa gcaggagaga
<210>	28
<211>	20
<212>	DNA
<213>	
	•
<220>	
<223>	Agr2 primer 12
<400>	28
aatatt	gttt ccccacctgt
<210>	29
<211>	1701
<212>	DNA
<213>	Homo sapiens

cactaagtcc caccgagaaa

<400> 29

20

ccgcatccta gcc	gccgact cacacaag	gc aggtgggtga	a ggaaatccag	agttgccatg	60
gagaaaattc cag	tgtcagc attcttgc	te ettgtggeed	c tctcctacac	tctggccaga	120
gataccacag tca	aacctgg agccaaaa	ag gacacaaago	g actctcgacc	caaactgccc	180
cagaccctct cca	gaggttg gggtgacc	aa ctcatctgga	a ctcagacata	tgaagaagct	240
ctatataaat cca	agacaag caacaaac	cc ttgatgatta	ı ttcatcactt	ggatgagtgc	300
ccacacagtc aag	ctttaaa gaaagtgt	tt gctgaaaata	a aagaaatcca	gaaattggca	360
gagcagtttg tcc	teeteaa tetggttt	at gaaacaacto	g acaaacacct	ttctcctgat	420
ggccagtatg tcc	ccaggat tatgtttg	tt gacccatcto	tgacagarag	agccgatatc	480
actggaagat att	caaatcg tctctatg	ct tacgaaccto	g cagatacagc	tctgttgctt	540
gacaacatga aga	aagctct caagttgc	tg aagactgaat	tgtaaagaaa	aaaaatctcc	600
aagcccttct gtc	tgtcagg ccttgaga	ct tgaaaccaga	agaagtgtga	gaagactggc	660
tagtgtggaa gca	tagtgaa cacactga	tt aggttatggt	ttaatgttac	aacaactatt	720
ttttaagaaa aac	aagtttt agaaattt	gg tttcaagtgt	acatgtgtga	aaacaatatt	780
gtatactacc ata	gtgagcc atgatttt	ct aaaaaaaaa	ı ataaatgttt	tgggggtgtt	840
ctgttttctc caa	cttggtc tttcacag	tg gttcgtttac	caaataggat	taaacacaca	900
caaaatgctc aag	gaaggga caagacaa	aa ccaaaactaq	, ttcaaatgat	gaagaccaaa	960
gaccaagtta tca	tctcacc acaccaca	gg ttctcactac	g atgactgtaa	gtagacacga	1020
gcttaatcaa cag	aagtatc aagccatg	tg ctttagcata	a aaagaatatt	tagaaaaaca	1080
tcccaagaaa atc	acatcac tacctaga	gt caactctggo	caggaactct	aaggtacaca	1140
ctttcattta gta	attaaat tttagtca	ga ttttgcccaa	cctaatgctc	tcagggaaag	1200
cctctggcaa gta	gctttct ccttcaga	gg tctaatttac	g tagaaaggtc	atccaaagaa	1260
catctgcact cct	gaacaca ccctgaag	aa atcctgggaa	ı ttgaccttgt	aatcgatttg	1320
tetgteaagg tee	taaagta ctggagtg	aa ataaattcaq	g ccaacatgtg	actaattgga	1380
agaagagcaa agg	gtggtga cgtgttga	tg aggcagatgo	g agatcagagg	ttactagggt	1440
ttaggaaacg tga	aaggetg tggeatea	gg gtagggagd	attetgeeta	acagaaatta	1500
gaattgtgtg tta	atgtett caetetat	ac ttaatctcac	attcattaat	atatggaatt	1560
cctctactgc cca	gcccctc ctgatttc	tt tggcccctgo	g actatggtgc	tgtatataat	1620
gctttgcagt atc	tgttgct tgtcttga	tt aactttttto	gataaaacct	tttttgaaca	1680
gaaaaaaaaa aaa	aaaaaaa a				1701

<210> 30

<211> 175

<212> PRT

<213> Homo sapiens

<400> 30

Met Glu Lys Ile Pro Val Ser Ala Phe Leu Leu Leu Val Ala Leu Ser 1 5 10 15

Tyr Thr Leu Ala Arg Asp Thr Thr Val Lys Pro Gly Ala Lys Lys Asp 20 25 30

Thr Lys Asp Ser Arg Pro Lys Leu Pro Gln Thr Leu Ser Arg Gly Trp 35