HEURISTIC SEARCH

Ivan Bratko
Faculty of Computer and Information Sc.
University of Ljubljana

PROBLEM OF SEARCH WITH UNINFORMED METODS

- Example: A mobile robot searches for a path to a goal location in the plane
- Robot can only move to next cell in X-Y grid.
- How depth-first and breadth-first search work in this domain?

EXAMPLE

Depth-first search
Breadth-first search
Best-first (according to distance to goal)

EXAMPLE: DEPTH-FIRST SEARCH

EXAMPLE: BREADTH-FIRST SEARCH

Breadth-first search:

Consecutive numbers of generated nodes 1, 2, 3, 4, ...

Length of solution found: 7

	1	2	3	4	5	6	7	8
1	17	8	15					
2	9	2	6	13				
3	3		1	5	12			
4	10	4	7	14				
5	18	11	16					
6		19						
7								
8								

EXAMPLE: BEST-FIRST SEARCH

Nodes' evaluation: E.g. Manhattan

distance to goal

Start node: (2,3)

Successor nodes' dist. to goal:

1. (3,3) 6

2. (2,2) 8

3. (1,3) 8

4. (2,4) 6

Best successors:

(3,3) and (2,4)

Choose (3,3) to expand.

Now best successors are:

"5" = (4,3) and "7" = (3,4).

Choose "5" to expand, etc.

Green numbers show order of generated nodes

Best-first search

- Best-first: most usual form of heuristic search
- Evaluate nodes generated during search
- Evaluation function
 - f: Nodes ---> R+
- Convention: lower f, more promising node;
 higher f indicates a more difficult problem
- Search in directions where f-values are lower

Heuristic search algorithms

- A*, perhaps the best known algorithm in Al
- Hill climbing, steepest descent, greedy algorithm
- Beam search
- IDA*
- RBFS
- ...

Heuristic evaluation in A*

The question: How to find successful f?

Algorithm A*: f(n) estimates cost of best solution through *n*

Route search in a map

Best-first search for shortest route

Dotted line shows order in which nodes are expanded

Admissibility of A* The most famous theorem in all Al

- A search algorithm is admissible if it is guaranteed to always find an optimal solution
- Is there any such guarantee for A*?
- Admissibility theorem (Hart, Nilsson, Raphael 1968):
 A* is admissible if h(n) ≤ h*(n) for all nodes n in state space. h*(n) is the actual cost of min. cost path from n to a goal node.

Admissible heuristics

- A* is admissible if it uses an optimistic heuristic estimate
- Consider h(n) = 0 for all n.
 This is trivially admissible!
- However, what is the drawback of h = 0?
- How well does it guide the search?
- Ideally: h(n) = h*(n) (but usually hard to find)
- Main difficulty in practice: Finding heuristic functions that guide search well and are admissible

Finding good heuristic functions

- Requires problem-specific knowledge
- Consider 8-puzzle
- h = total_dist = sum of Manhattan distances of tiles from their "home" squares

1	3	4
8	5	
7	6	2

Is total_dist optimistic?

Heuristics for 8-puzzle

sequence_score: assess the order of tiles; count 1 for tile in middle, and 2 for each tile on edge not followed by proper successor clockwise

sequence_score = 1+2+0+2+2+0+0+0=7

 $h = total_dist + 3 * sequence_score$ h = 7 + 3*7 = 28Is this heuristic function optimistic?

Three 8-puzzles

1	3	4		
8		2		
7	6	5		
(a)				

	2	8	3	
	1	6	4	
	7		5	
(b)				

2	1	6		
4		8		
7	5	3		
(c)				

Puzzle c requires 18 steps

A* with this h solves (c) almost without any branching

FIVE ROBOTS ON GRID 5 x 5

Robots creating a rainbow in top row

Possible heuristics for robots on grid

- h1 = max_R (dist_from_goal(R))
- h2 = SUM_R (dist_from_goal(R))
- h3 = K * SUM_R (dist_from_goal(R))
 - K parameter
 - K may depend on density of robots
- h4 = max(h1, h3)
- Experiments with h3 in 8-puzzle and robots on grid
- Project: Learning h-function

A task-scheduling problem and two schedules

Optimal

Heuristic function for scheduling

- Fill tasks into schedule from left to right
- A heuristic function:

For current, partial schedule:

 F_J = finishing time of processor J current engagement

 $Fin = max F_J$

Finall = $(SUM_W(D_W) + SUM_J(F_J)) / m$

W: waiting tasks; D_W: duration of waiting task W

h = max(Finall - Fin, 0)

Is this heuristic admissible?

SOME OTHER BEST-FIRST TECHNIQUES

- Hill climbing, steepest descent, greedy search: special case of A* when the successor with best F is retained only; no backtracking
- Beam search: special case of A* where only some limited number of open nodes are retained, say W best evaluated open nodes (W is beam width)
- In some versions of beam search, W may change with depth. Or, the limitation refers to number of successors retained after expanding a node

Space Saving Techniques for Best-First Search

- Space complexity of A*: depends on h, but it is roughly b^d
- Space may be critical resource
- Idea: trade time for space, similar to iterative deepening
- Space-saving versions of A*:
- IDA* (Iterative Deepening A*)
- RBFS (Recursive Best First Search)

IDA*, Iterative Deepening A*

- Introduced by Korf (1985)
- Analogous idea to iterative deepening
- Iterative deepening:
 Repeat depth-first search within increasing depth limit
- IDA*:
 Repeat depth-first search within increasing f-limit

f-values form relief

IDA*: Repeat depth-first within f-limit increasing: f0, f1, f2, f3, ...

IDA*

```
Bound := f(StartNode);
SolutionFound := false;
 Repeat
    perform depth-first search from StartNode, so that
    a node N is expanded only if f(N) \leq Bound;
    if this depth-first search encounters a goal node with f \leq Bound
      then SolutionFound = true
   else
      compute new bound as:
      Bound = min { f(N) | N generated by this search, f(N) > Bound }
 until solution found.
```

Problem. Trace the execution of A* when searching the tree bellow. How many nodes are generated by A* and IDA*? Count also re-generated nodes. How about memory used by A* and IDA*? The number next to a node is the node's f value.

Double circles indicate goal nodes

Answ:

$$\#(A^*)=11, \#(IDA^*)=33, \#(RBFS)=14(?)$$

Memory: A*: 11 states, IDA*: 5 states

IDA* performance

- Experimental results with 15-puzzle good
 (h = Manhattan distance, many nodes same f)
- However: May become very inefficient when nodes do not tend to share f-values (e.g. small random perturbations of Manhattan distance)

COMPLEXITY OF IDA*

- Time: despite repetitions, normally same order as A*
- Unfortunate case: when all f-values tend to be different from each other; then IDA* becomes very slow

IDA*: problem with non-monotonic f

- Function f is monotonic if:
 for all nodes n1, n2: if s(n1,n2) then f(n1) ≤ f(n2)
- Theorem: If f is monotonic then IDA* expands nodes in best-first order
- Example with non-monotonic f:

Green numbers denote f-values f-limit = 5,
"3" expanded before "1", "2"

Linear Space Best-First Search (RBFS)

- Linear Space Best-First Search (linear in depth of search)
- RBFS (Recursive Best First Search), Korf 1993
- Similar to A* implementation in Bratko (1986; 2011), but saves space by iterative re-generation of parts of search tree

A* as competing search processes

Idea: Choose the best candidate (c) and search its subtree until either (1) goal found, or (2) f-values become greater than nearest competitor (e, f(e)=6), then switch to next best candidate etc.

Insight of RBFS

 To save space, when switching to next best candidate, remove the just explored subtree from memory, but retain its backed-up f value

Node values in RBFS

Simple Recursive Best-First Search SRBFS

- First consider SRBFS, a simplified version of RBFS
- Idea: Keep expanding subtree within F-bound determined by siblings
- Update node's F-value according to searched subtree
- SRBFS expands nodes in best-first order

Example: Searching tree with non-monotonic f-function

Green numbers are nodes' F-values, black are F-bounds Note: Nodes are searched in best-first order (unlike IDA*)

SRBFS can be very inefficient

Example: search tree with f(node) = depth of node, numbers below are f-values

Parts of tree repeatedly re-explored; f-bound increases in unnecessarily small steps

RBFS, improvement of SRBFS

- F-values not only backed-up from subtrees, but also inherited from parents
- Example: searching tree with f = depth
- At some point, F-values are:

In RBFS, "7" is expanded, and F-value inherited:

F-values of nodes

- To save space RBFS often removes already generated nodes
- But: If N1, N2, ... are deleted, essential info.
 is retained as F(N)
- Note: If f(N) < F(N) then (part of) N's subtree must have been searched and F(Ni) ≥ F(N) for all i

Example: Route search in a map with RBFS

Searching the map with RBFS

Example from I Bratko, Prolog Programming for AI, 2011

Algorithm RBFS

RBFS(N, F(N), Bound)

Explore tree rooted in node N until either:

- (1) F-values exceed Bound, or
- (2) goal node with F = < Bound encountered, or
- (3) tree ends

Depending on these outcomes, return either:

- (1) New, updated F(N)
- (2) Stop search, solution found
- (3) New, updated $F(N) = \infty$ (Never return here again)

Algorithm RBFS

```
RBFS (N, F(N), Bound)
   if F(N) > Bound then return F(N);
   if goal(N) then exit search;
   if N has no children then return \infty;
   for each child Ni of N do
      if f(N) < F(N) then F(Ni) := max(F(N), f(Ni))
                      else F(Ni) := f(Ni);
   Sort Ni in increasing order of F(Ni);
   if only one child then F(N2) := \infty;
   while F(N1) \leq Bound and F(N1) < \infty do
         F(N1) := RBFS(N1, F(N1), min(Bound, F(N2)))
         insert N1 in sorted order
   return F(N1).
```

Problem. Trace RBFS on the tree bellow. How many nodes are generated by RBFS? Count also re-generated nodes. Compare this with A* and IDA*.

Properties of RBFS

 RBFS(Start, f(Start), ∞) performs complete bestfirst search

- Space complexity: O(bd)
 (linear space best-first search)
- RBFS explores nodes in best-first order even with non-monotonic f

That is: RBFS expands "open" nodes in best-first order

Summary of concepts in best-first search

- Evaluation function: f
- Special case (A*): f(n) = g(n) + h(n)
- h(n) admissible if h is optimistic: h(n) ≤ h*(n) for all n
- Sometimes in literature: A* defined with admissible h; then A* is admissible by definition (but under this terminology, we have no name for A* with non-admissible h)
- Algorithm "respects" best-first order if already generated nodes are expanded in best-first order according to f
- f is defined with intention to reflect the "goodness" of nodes; therefore it is desirable that an algorithm respects best-first order
- f is monotonic if for all n1, n2: $s(n1,n2) => f(n1) \le f(n2)$

Best-first order

- A* and RBFS respect best-first order
- IDA* respects best-first order if f is monotonic

QUESTIONS

The following questions are about A*, IDA* and RBFS:

- (a) When do we say that f function is monotonic? Give an example when f is not monotonic.
- (b) How is evaluation function composed in A*?
- (c) Give the well-known sufficient condition that guarantees admissibility of A*.
- (d) Does the condition from the admissibility theorem also guarantee that the f-function is monotonic? Explain your answer.
- (e) The following statement is valid for which of the algorithms A*, IDA* and RBFS: if function f is not monotonic then it is not guaranteed that the algorithm expands generated nodes in best-first order.
- (f) How would you rank algorithms A*, IDA* and RBFS from the most to the least efficient one with respect to:
 - space efficiency
 - time efficiency
- Of course relative success of the algorithms depends on the concrete search problem, therefore your answers are expected for the "average" case.
- (g) Do monotonic evaluation functions also necessarily satisfy the condition from the admissibility theorem?
- (h) Does admissibility theorem also apply to IDA*? Yes

EXPERIMENTS WITH HEURISTIC FUNCTIONS FOR ROBOTS ON GRID

KIND OF "BEIJING POST OFFICE"

FIVE ROBOTS ON GRID 5 x 5

The robots want to form a rainbow in top row

GRID 5x5, 5 ROBOTS

```
Goal: all robots in top row ordered a, b, c, d, e
```

A start state

```
e - - - a
```

- d - b -

- - C - -

_ _ _ _ _

_ _ _ _ _

A* ON RAINBOW PROBLEM

h(node) = k * total_dist (node)

2.0

4,971

0.219

15

```
k
   #nodes
               Time
                       Solution length
                [sec]
    generated
0.2 Resource error, insufficient memory, program stopped after about 110 sec
0.3
     Resource error, -"-, program stopped after about 283 sec, generated
     1,269,545 states
 0.4 676,416 35.406
                          6 steps
0.5 330,822 16.107
                          6 steps
                                   Effective branching = 8.32
0.6 22,661 1.015
                          8 steps
                                   Effective branching = 5.32
0.7 58,284 2.422
            2.250
 1.0 56,748
                         10
 1.5 14,093
                0.547 14
                                    Effective branching = 1.98
```

Effective branching = 1.76

RBFS ON RAINBOW PROBLEM

k 	#nodes generated	Time [sec]	Solution ler	ngth
0.2	~20 million	~23 minute	es Progran	n stopped manually, no solution found in 23min
0.3	18,540,928	~21 min	6 steps	Note: This was better than A*
				#nodes generated by A*
0.4	1,648,776	114 sec	6	676,416
0.5	831,674	56 sec	6	330,822
0.6	29,429	1.469 sec	8	22,661
0.7	93,743	5.301 sec	9	58,284
1.0	128,301	7.797	10	56,748
1.5	28,823	1.328	14	14,093
2.0	6,778	0.328	15	4,971

FIVE ROBOTS ON GRID 5 x 5

The robots want to form a rainbow in top row Some moving patterns are formed – one way streets?

A* on 8-puzzle (8 robots on grid 3x3) h = k * TotalDist

- h = k * totaldist
- What are sensible values of parameter k?
- Intuitively, how will performance change with changing k?

START	GOAL	Optimal 18 steps
216	123	
4-8	8-4	
753	765	

K	# Nodes	Time	Solu	ıtion
	generated	[msec]	leng	gth
	43,177	11609	18	
0.9	17,833	4733	18	
1.0	10,102	2719	18	Here effective branching = 1.67
1.1	4,465	1141	18	
1.2	4,447	1141	18	
1.3	3,622	937	18	
1.35	3,304	827	18	
1.4	3,144	780	18	
1.42	3,081	796	18	
1.45	3,078	781	18	Here effective branching = 1.56
1.47	3,078	781	18	
1.48	3,078	781	18	
1.49	3,078	781	18	
1.5	3 ,1 73	813	18	
1.6	4,068	1016	18	
1.7	7,406	1970	18	
1.8	8,700	2269	18	
1.9	15,666	4157	18	
2.0	15,705	4156	18	
2.1	82,135	21693	18	
2.5	Execution	aborted (run	out of	memory)

REAL-TIME BEST FIRST SEARCH

- With limitation on problem-solving time, agent (robot) has to make decision before complete solution is found
- RTA*, real-time A* (Korf 1990):
 - Agent moves from state to next best-looking successor state after fixed depth lookahead
 - Successors of current node are evaluated by backing up f-values from nodes on lookaheaddepth horizon
 - f = g + h

RTA* planning and execution

By splitting the task into planning and execution, RTA* can solve much larger problems than A*, although suboptimally. First, search lookahead tree T1 from start; this gives most promising successor next state of start. Then execute move start-next. Then search lookahead tree T2 from next, etc.

RTA* and alpha-pruning

- Lookahead is done in depth-first manner
- If f is monotonic, alpha-pruning is possible (with analogy to alpha-beta pruning in minimax search in games)
- Alpha-pruning: let best_f be the best f-value at lookahed horizon found so far, and n be a node encountered before lookahead horizon; if f(n) ≥ best_f then subtree of n can be pruned
- Note: In practice, many heuristics are monotonic (Manhattan distance, Euclidean distance)

Alpha pruning

- Prune n's subtree if f(n) ≥ alpha
- If f is monotonic then all descendants of n have f ≥ alpha

RTA*, details

- Problem solving = planning stage + execution stage
- In RTA*, planning and execution are interleaved
- Distinguished states: start state, current state
- Current state is understood as actual physical state of robot reached after physically executing a move
- Plan in current state by fixed depth lookahead, execute one move to reach next current state

RTA*, details

- g(n), f(n) are measured relative to current state (not start state)
- f(n) = g(n) + h(n), where g(n) is cost from current state
 to n (not from start state)

RTA* main loop, roughly

- current state s := start_state
- While goal not found:
 - Plan: evaluate successors of s by fixed depth lookahead;
 - best_s := successor with min. backed-up f
 - second_best_f := f of second best successor
 - Store s among "visited nodes" and storef(s) := second_best_f
 - Execute: current state s := best s

RTA*, visited nodes

- Visited nodes are nodes that have been (physically) visited (i.e. robot has moved to these states in past)
- Idea behind storing f of a visited node s as:

If best_s subsequently turns out as bad, problem solver may at some later point return to s and this time consider s's second best successor; otherwise, if second_best_f was not stored, problem-solver would find best_s as best again and repeat the same loop

Why store second best f, illustration

Ideas behind storing f-values of current state

- If current state S is encountered in a later lookahead, we want to heuristically evaluate S based on previous lookahead, not by static h(S).
- The effect of this is as if lookahead depth was increased – hopefully more reliable evaluation
- Using second_best_f is more realistic than best_f which has led to a cycle

RTA* lookahead

For node n encountered by lookahead:

- if goal(n) then return h(n) = 0,
 don't search beyond n
- if visited(n) then return h(n) = stored f(n), don't search beyond n
- if n at lookahead horizon then evaluate n statically by heuristic function h(n)
- if n not at lookahead horizon then generate n's successors and back up f value from them

EXPERIMENTS 8-PUZZLE A*

- A*
- Eight puzzle 30 steps, using Manh dist
- Solution length = 30, Time = 204 msec

- A*
- Eight puzzle 30 steps, Manh dist + 3 * sequence score
- Solution length = 36, Time = 47 msec

SAME 8-PUZZLE RTA*

```
RTA*
Eight puzzle 30 steps Manh dist
Lookahead
                 Solution_length Time [msec]
                 66
                                           16
                 62
                                           15
3
                 356
                                          562
                      Note: Search pathology! (cf lookahead depths 2 and 3)
                 418
                                           1985
4
5
                 120
                                           515
6
                 66
                                          500
                 46
                                          750
8
                 136
                                           12078
9
                 98
                                          20047
10
                 44
                                           14469
11
                 32
                                          24344
```

SAME 8-PUZZLE RTA*

RTA*
Eight puzzle 30 steps Manh dist + 3 * sequence score

Look. depth	Solution_length	Time
1	108	16
2	44	15
3	50	31
4	44	47
5	42	110
6	42	265
7	94	1750
8	34	1563
9	44	5547
10	44	14657
11	56	50906

LRTA*, Learning RTA*

- Useful when successively solving multiple problem instances with the same goal, or the same problem in multiple trials to improve the solution
- Trial = Solving one problem instance
- Save table of visited nodes with their backed-up f values
- Note: In table used by LRTA*, store the best successors' f (rather than second best f as in RTA*).
 Best f is appropriate info. to be transferred between trials, second best is appropriate within a single trial

In RTA*, pessimistic heuristics better than optimistic

- Although optimistic heuristics traditionally preferred in A* search
- Surprisingly, in RTA* and LRTA* pessimistic heuristics perform better than optimistic (Sadikov, Bratko 2006)
- Solutions closer to optimal, less search, no "pathology"

Who is more likely to commit a decision error?

A natural assumption

harder problems give rise to larger heuristic errors

problem difficulty