folha 4

2. Álgebra Universal

2.1. Sejam $A=\{0,a,b,c,d,e,f,g,1\}$, $B=\{0,a,b,c,f,d,1\}$ e (A,\leq) o c.p.o. correspondente ao diagrama de Hasse a seguir representado. Considere as álgebras $\mathcal{A}=(A;(f^{\mathcal{A}})_{f\in\{\wedge,\vee,\delta,0,1\}})$ e $\mathcal{B}=(B;(f^{\mathcal{B}})_{f\in\{\wedge,\vee,\delta,0,1\}})$ de tipo (2,2,1,0,0), onde as operações binárias de \mathcal{A} e \mathcal{B} são definidas por

$$x \wedge^{\mathcal{A}} y = \inf\{x,y\} \in x \vee^{\mathcal{A}} y = \sup\{x,y\}, \forall x,y \in A,$$

$$x \wedge^{\mathcal{B}} y = \inf\{x, y\} \in x \vee^{\mathcal{B}} y = \sup\{x, y\}, \forall x, y \in B,$$

as operações unárias são definidas pelas tabelas a seguir indicadas e $0^{\mathcal{A}}=0^{\mathcal{B}}=0$ e $1^{\mathcal{A}}=1^{\mathcal{B}}=1$.

- (a) Dê exemplo de um reduto de ${\mathcal A}$ que seja:
 - i. um semigrupo. ii. um reticulado.
- (b) Para cada um dos conjuntos C a seguir indicados, diga se C é um subuniverso de \mathcal{A} :

i.
$$C = \emptyset$$
. ii. $C = \{0, f, d, 1\}$. iii. $C = \{0, a, b, c, f, d, 1\}$.

- (c) Diga se \mathcal{B} é uma subálgebra de \mathcal{A} .
- 2.2. Para cada $n \in \mathbb{N}$, seja $\mathcal{A}_n = (A_n; (f^{\mathcal{A}_n}, 0^{\mathcal{A}_n}))$ a álgebra de tipo (1,0), onde $A_n = \{0,1,2,\ldots,2n\}$, $0^{\mathcal{A}_n} = 0$ e $f^{\mathcal{A}_n}: A_n \to A_n$ é a operação definida por

$$f^{\mathcal{A}_n}(x) = \left\{ \begin{array}{ll} x+2 & \text{se} & x \in \{0,1,2,\dots,2n-2\} \\ 1 & \text{se} & x=2n-1 \\ 0 & \text{se} & x=2n \end{array} \right.$$

Para cada $n \in \mathbb{N}$, determine todos os subuniversos de A_n .

- 2.3. Sejam $\mathcal{R}=(R;\wedge,\vee)$ um reticulado e $a\in R$. Mostre que $I_a=\{x\in R:x\vee a=a\}$ é um subuniverso de \mathcal{R} .
- 2.4. Uma álgebra $\mathcal{A}=(A;F)$ diz-se mono-unária se F é formado por uma única operação e essa operação é unária. Uma subálgebra $\mathcal{B}=(B;G)$ de \mathcal{A} diz-se uma subálgebra própria se $B\subsetneq A$.
 - (a) Para cada inteiro n>0, dê exemplo de uma álgebra mono-unária $\mathcal{A}_n=(\{0,1,...,n-1\};f)$ que não admita subálgebras próprias.
 - (b) Mostre que qualquer álgebra mono-unária infinita tem subálgebras próprias.
- 2.5. Sejam $\mathcal{A} = (A; F)$ uma álgebra e $X, Y \subseteq A$. Mostre que:
 - (a) $X \subseteq Sq^{\mathcal{A}}(X)$.
 - (b) $X \subseteq Y \Rightarrow Sq^{\mathcal{A}}(X) \subseteq Sq^{\mathcal{A}}(Y)$.
 - (c) $Sq^{\mathcal{A}}(Sq^{\mathcal{A}}(X)) = Sq^{\mathcal{A}}(X)$.
 - (d) $Sg^{\mathcal{A}}(X) = \bigcup \{Sg^{\mathcal{A}}(Z) \mid Z \text{ \'e subconjunto finito de } X\}.$
- 2.6. Considere a álgebra \mathcal{A} definida no exercício 2.1.
 - (a) Determine $Sg^{\mathcal{A}}(\{e\})$ e $Sg^{\mathcal{A}}(\{f,g\})$.
 - (b) Dê exemplo de conjuntos $X, Y \subseteq A$ tais que:

i.
$$X \neq Y \in Sq^{\mathcal{A}}(X) = Sq^{\mathcal{A}}(Y)$$
. ii. $|X| = 2 \in Sq^{\mathcal{A}}(X) = A$.

folha 5 -

2.7. Seja $\mathcal{A}=(\{e,a,b,c,d\};*^{\mathcal{A}},c^{\mathcal{A}})$ a álgebra de tipo (2,0), onde $A=\{e,a,b,c,d\}$, $c^{\mathcal{A}}=d$ e $*^{\mathcal{A}}$ é a operação definida por

$f^{\mathcal{A}}$	e	a	b	c	d
e	e	a	b	c	d
a	a	d	e	c	b
b	$egin{array}{c} e \\ a \\ b \\ c \\ d \end{array}$	e	d	e	e
c	c	e	a	e	c
d	d	b	e	c	e

- (a) Determine todos os subuniversos de A.
- (b) Sejam $X=\{b\}$ e $Y=\{c\}$. Diga, justificando, se $Sg^{\mathcal{A}}(X)\cup Sg^{\mathcal{A}}(Y)=Sg^{\mathcal{A}}(X\cup Y)$.
- 2.8. Seja A = (A; F) uma álgebra unária. Mostre que:
 - (a) Se S_1 e S_2 são subuniversos de \mathcal{A} , então $S_1 \cup S_2$ é um subuniverso de \mathcal{A} .
 - (b) Para quaisquer $X, Y \subseteq A$, $Sg^{\mathcal{A}}(X) \cup Sg^{\mathcal{A}}(Y) = Sg^{\mathcal{A}}(X \cup Y)$.
- 2.9. Seja $\mathcal{A} = (\{a, b, c, d\}, f)$ a álgebra de tipo (1) onde f é a operação definida por

- (a) Determine todas as relações de congruência em \mathcal{A} e represente $\operatorname{Cong}(\mathcal{A})$ por meio de um diagrama de Hasse.
- (b) Para cada $\theta \in \text{Cong}(A)$, determine a álgebra quociente A/θ .
- 2.10. Sejam $\mathcal{R}=(R;\wedge,\vee)$ um reticulado e $\theta\in\mathrm{Cong}(\mathcal{R})$. Mostre que, para quaisquer $a,b,c\in R$, se $a\leq c\leq b$ e $(a,b)\in\theta$, então $(a,c)\in\theta$ e $(b,c)\in\theta$.
- 2.11. Considere o reticulado $\mathcal{N}_5=(N_5;\wedge,\vee)$ representado pelo diagrama de Hasse

Mostre que o reticulado das congruências de \mathcal{N}_5 pode ser representado pelo diagrama de Hasse seguinte

2.12. Considere o anel $\mathcal{Z}=(\mathbb{Z};+,\cdot,-,0)$. Para cada $q\in\mathbb{Z}$, seja \equiv_q a relação de equivalência definida em \mathbb{Z} por

$$r \equiv_q s$$
 sse $r - s = qk$, para algum $k \in \mathbb{Z}$.

Mostre que, para cada $q \in \mathbb{Z}$, a relação \equiv_q é uma congruência em \mathcal{Z} .

- 2.13. Seja $\mathcal{S}=(S;\cdot)$ um semigrupo. Um subconjunto não vazio I de S diz-se um *ideal* de \mathcal{S} se, para quaisquer $s\in S$ e $i\in I$, tem-se $is\in I$ e $si\in I$. Mostre que, para qualquer ideal I, $I^2\cup\triangle_S$ é uma congruência em \mathcal{S} , designada a *congruência de Rees induzida por I*.
- 2.14. Seja $\mathcal{A}=(A;F)$ uma álgebra de tipo $(O;\tau)$. Mostre que $\triangle_A=\{(a,a)\,|\,a\in A\}$ e $\nabla_A=\{(a,b)\,|\,a,b\in A\}$ são congruências em \mathcal{A} .

folha 6 -

2.15. Sejam $\mathcal{A}=(\{1,2,3,4,5\};*^{\mathcal{A}},c^{\mathcal{A}})$ e $\mathcal{B}=(\{1,2\};*^{\mathcal{B}},c^{\mathcal{B}})$ as álgebras de tipo (2,0) cujas operações nulárias são dadas por $c^{\mathcal{A}}=2$, $c^{\mathcal{B}}=1$ e cujas operações binárias são definidas por

$*^{\mathcal{A}}$	1	2	3	4	5
1 2 3 4 5	2	2	2	5	2
2	2	3	3	2	2
3	2	3	2	2	2
4	5	2	2	4	2
5	2	2	2	2	2

Seja $\alpha:\{1,2\} \to \{1,2,3,4,5\}$ a aplicação definida por $\alpha(1)=2$ e $\alpha(2)=3$. Mostre que a aplicação α é um monomorfismo de $\mathcal B$ em $\mathcal A$. Justifique que $\mathcal B$ é isomorfa a uma subálgebra de $\mathcal A$.

- 2.16. Sejam \mathcal{A} , \mathcal{B} e \mathcal{C} álgebras do mesmo tipo. Mostre que se $\alpha \in \operatorname{Hom}(\mathcal{A},\mathcal{B})$ e $\beta \in \operatorname{Hom}(\mathcal{B},\mathcal{C})$, então $\beta \circ \alpha \in \operatorname{Hom}(\mathcal{A},\mathcal{C})$.
- 2.17. Sejam \mathcal{A} e \mathcal{B} álgebras do mesmo tipo. Mostre que se $\alpha:\mathcal{A}\to\mathcal{B}$ é um isomorfismo, então α^{-1} é um isomorfismo de \mathcal{B} em \mathcal{A} .
- 2.18. Sejam $\mathcal{A}=(A;F)$, $\mathcal{B}=(B;G)$ álgebras do mesmo tipo e $\alpha\in \mathrm{Hom}(\mathcal{A},\mathcal{B})$. Mostre que:
 - (a) Se A_1 é um subuniverso de \mathcal{A} , então $\alpha(A_1)$ é um subuniverso de \mathcal{B} .
 - (b) Se B_1 é um subuniverso de \mathcal{B} , então $\alpha^{\leftarrow}(B_1)$ é um subuniverso de \mathcal{A} .
- 2.19. Sejam \mathcal{A} e \mathcal{B} álgebras do mesmo tipo e $\alpha, \beta \in \text{Hom}(\mathcal{A}, \mathcal{B})$. Mostre que

$$Eq(\alpha, \beta) = \{ a \in A \mid \alpha(a) = \beta(a) \}$$

é um subuniverso de A. A este subuniverso chama-se *igualizador de* α *e* β .

- 2.20. Sejam \mathcal{A} , \mathcal{B} álgebras do mesmo tipo e $\alpha \in \operatorname{Hom}(\mathcal{A}, \mathcal{B})$. Mostre que α é injetiva se e só se $\ker \alpha = \triangle_A$.
- 2.21. Sejam $\mathcal{A}=(A;F)$, $\mathcal{B}=(B;G)$ álgebras do mesmo tipo e $\alpha:A\to B$ uma função. Mostre que α é um homomorfismo de \mathcal{A} em \mathcal{B} se e só se $\{(a,\alpha(a))\,|\,a\in A\}$ é um subuniverso de $\mathcal{A}\times\mathcal{B}$.
- 2.22. Sejam \mathcal{A} , \mathcal{B} e \mathcal{C} álgebras do mesmo tipo. Mostre que:
 - (a) $A \times B \simeq B \times A$.
 - (b) $A \times (B \times C) \simeq (A \times B) \times C$.
- 2.23. Sejam \mathcal{A} uma álgebra e $\theta, \rho \in \text{Con}\mathcal{A}$.
 - (a) Mostre que a aplicação $\alpha: \mathcal{A} \to \mathcal{A}/\theta \times \mathcal{A}/\rho$ definida por $\alpha(a) = ([a]_{\theta}, [a]_{\rho})$ é um homomorfismo.
 - (b) Mostre que $\ker \alpha = \theta \cap \rho$. Conclua que α é injetiva se e só se $\theta \cap \rho = \triangle_A$.
 - (c) Mostre que α é sobrejetiva se e só se $\theta \circ \rho = \nabla_A$.
- 2.24. Sejam $\mathcal{A}=(A;(f^{\mathcal{A}})_{f\in O}),\ \mathcal{B}=(B;(f^{\mathcal{B}})_{f\in O})$ e $\mathcal{C}=(C;(f^{\mathcal{C}})_{f\in O})$ álgebras de tipo $(O,\tau),$ $\alpha_1\in \mathrm{Hom}(\mathcal{A},\mathcal{B})$ e $\alpha_2\in \mathrm{Hom}(\mathcal{A},\mathcal{C}).$ Seja $\alpha:A\to B\times C$ a aplicação definida por $\alpha(a)=(\alpha_1(a),\alpha_2(a)),$ para todo $a\in A.$
 - (a) Mostre que α é um homomorfismo de \mathcal{A} em $\mathcal{B} \times \mathcal{C}$.
 - (b) Mostre que $\ker \alpha = \ker \alpha_1 \cap \ker \alpha_2$.
 - (c) Mostre que se α é um epimorfismo, então α_1 e α_2 são epimorfismos e

$$\mathcal{A}/(\ker \alpha_1 \cap \ker \alpha_2) \cong \mathcal{A}/\ker \alpha_1 \times \mathcal{A}/\ker \alpha_2.$$

folha 7 -

- 2.25. Sejam \mathcal{A} uma álgebra e $\theta, \theta^* \in \operatorname{Cong}(\mathcal{A})$. Mostre que (θ, θ^*) é um par de congruências fator em \mathcal{A} se e só se $\theta \cap \theta^* = \Delta_A$ e $\theta \circ \theta^* = \nabla_A$.
- 2.26. Seja $\mathcal{A} = (\{a,b,c,d\};f^{\mathcal{A}})$ a álgebra de tipo (1) onde $f^{\mathcal{A}}:\{a,b,c,d\} \rightarrow \{a,b,c,d\}$ é a operação definida por

- (a) Determine $\Theta(a,b)$ e $\Theta(a,d)$. Justifique que $(\Theta(a,b),\Theta(a,d))$ é um par de congruências fator.
- (b) Justifique que existem álgebras \mathcal{A}_1 e \mathcal{A}_2 não triviais tais que $\mathcal{A} \cong \mathcal{A}_1 \times \mathcal{A}_2$. Dê exemplo de álgebras \mathcal{A}_1 e \mathcal{A}_2 nas condições indicadas e determine a álgebra $\mathcal{A}_1 \times \mathcal{A}_2$.
- 2.27. (a) Mostre que toda a álgebra finita com um número primo de elementos é diretamente indecomponível.
 - (b) Seja $\mathcal{A}=(A;f^{\mathcal{A}})$ a álgebra tal que $A=\{x\in\mathbb{N}\,|\,x\leq 5\}$ e $f^{\mathcal{A}}$ é a operação unária em A definida por

$$f^{\mathcal{A}}(x) = \left\{ \begin{array}{ll} 1 & \text{se} & x \in \{2,4\} \\ 2 & \text{se} & x \in \{1,3,5\} \end{array} \right.$$

- i. Sejam θ_1 e θ_2 as congruências de $\mathcal A$ definidas por $\theta_1=\Theta(1,2)$ e $\theta_2=\Theta(3,5)$. Determine θ_1 e θ_2 . Verifique que $\theta_1,\theta_2\in\mathrm{Cong}(\mathcal A)\setminus\{\triangle_A\}$ e $\theta_1\cap\theta_2=\triangle_A$.
- ii. Justifique que se θ e ϕ são congruências de $\mathcal A$ tais que $\mathcal A\cong \mathcal A/\theta\times\mathcal A/\phi$, então $\theta=\nabla_A$ ou $\phi=\nabla_A$.
- iii. Diga, justificando, se a álgebra ${\mathcal A}$ é subdiretamente irredutível.
- 2.28. Seja $\mathcal{A}=(A;F)$ uma álgebra cujo reticulado das congruências é representado pelo diagrama de Hasse seguinte

Justifique que:

- (a) A álgebra A não é congruente-distributiva.
- (b) A álgebra \mathcal{A} não é subdiretamente irredutível.
- (c) Os reticulados $Cong(A/\theta_1)$ e $Cong(A/\theta_3)$ são isomorfos.
- 2.29. Considere o reticulado $\mathcal{N}_5=(N_5;\wedge,\vee)$ representado pelo diagrama de Hasse

Sabendo que o reticulado das congruências de \mathcal{N}_5 pode ser representado pelo diagrama de Hasse seguinte

diga, justificando, se a álgebra \mathcal{N}_5 é:

- (a) congruente-modular. ii. diretamente indecomponível. iii. subdiretamente irredutível.
- 2.30. Mostre que toda a cadeia é um reticulado diretamente indecomponível.

Lic. em Ciências da Computação Lic. em Matemática 2024/2025

Álgebra Universal e Categorias

— folha 8 –

- 2.31. Mostre que, para cada operador $O \in \{H, S\}$, IO = OI.
- 2.32. Mostre que os operadores S, I, H e IP são idempotentes.
- 2.33. Mostre que HS, HIP e SIP são operadores de fecho em classes de álgebras do mesmo tipo.
- 2.34. Mostre que $SH \neq HS$, $PS \neq SP$, $PH \neq HP$.
- 2.35. Mostre que, se ${\bf G}$ é a classe dos grupos abelianos (vistos como álgebras do tipo (2,1,0)), então $HS({\bf G})=SH({\bf G}).$
- 2.36. Sejam \mathcal{A}_1 , \mathcal{A}_2 , ..., \mathcal{A}_n álgebras do mesmo tipo. Prove que $V(\mathcal{A}_1,\mathcal{A}_2,...,\mathcal{A}_n)=V(\mathcal{A}_1\times\mathcal{A}_2\times\cdots\times\mathcal{A}_n)$.