Chemical Reactions and Equations

Chemical Reaction: The transformation of chemical substance into another chemical substance. e.g. Rusting of iron, the setting of milk into curd.

Chemical Equation: Representation of chemical reaction using symbols and formulae of the substances.

Reactant
$$\longleftrightarrow$$
 $A + B \to C + D \longrightarrow$ Product
Reactant \longleftrightarrow $Mg + O_2 \to MgO \longrightarrow$ Product

	t mg oz mgo r i oddoi
Characteristic	Example Reaction
Change in Colour	Fe + CuSO4(Blue) → FeSO4(Blue-green) + Cu
Change in Temperature	$CaO + H_2O \rightarrow Ca(OH)_2 + Heat (heat is generated)$
Change in State	H₂(g) + O₂(g) → H₂O(l) (i.e., gas to liquid)
Evolution of Gas	Zn(s) + H2SO4(aq) → ZnSO4(aq) + H2(g)
Formation of Precipitate	Pb(NO₃)²(aq) + KI(aq) → PbI²(s) + KNO₃(aq)
Endothermic Reaction	CaCO₃ + Heat → CaO + CO₂ (photosynthesis also)
Exothermic Reaction	$CaO + H_2O \rightarrow Ca(OH)_2 + Heat (digestion and respiration also)$

The most effective way to test for CO2 is to bubble the gas through lime water, which is a diluted solution of calcium hydroxide.

2. Decomposition Reaction: A single reactant decomposes to form two or more products.

$$AB \rightarrow A + B$$

$$\begin{array}{c} \textbf{AB} \rightarrow \textbf{A} + \textbf{B} \\ & FeSO_4 \rightarrow Fe_2O_3 + SO_2 + SO_3 \end{array}$$

- $CaCO_3 \rightarrow CaO + CO_2$ → Thermal Decomposition (thermal energy)
 - → Photolytic Decomposition $2AgBr \rightarrow 2Ag + Br_2$ (energy from sunlight) black & white photography
 - → Electrolytic Decomposition $2H_2O \rightarrow 2H_2 + O_2$

electrical energy)

Hydrogen (cathode) will produce a popping sound when a burning candle is brought close.

Oxygen (anode) will make the flame of the candle burn brighter.

Kuch important terms:

→Precipitate: Insoluble solid formed after a chemical reaction.

→Exothermic Reaction: Reaction releasing heat

PRASHANT KIRAD

→Endothermic Reaction: Reaction absorbing heat energy.

→Catalyst: Speeds up a reaction without being consumed.

Balanced Chemical Equation: Number of atoms of each element in reactants = number of atoms of each element in products. Law of Conservation of Mass: Mass of reactants = Mass of products

Fe + $H_2O \rightarrow Fe_3O_4 + H_2$ Balance these: $C_6H_{12}O_6 + O_2 \rightarrow CO_2 + H_2O$

- Draw boxes around formulas.
- Count atoms on both sides.
- Start with the biggest compound.
- Balance elements one by one.
- Use smallest whole numbers.
- Recheck for balance.

Types of Chemical Reactions:

1. Combination Reaction: Two or more reactants combine to form single products.

$$\begin{array}{c} \textbf{A} + \textbf{B} \rightarrow \textbf{AB} \\ \end{array} \begin{array}{c} \textit{CaO} + \textit{H}_2\textit{O} \rightarrow \textit{Ca}(\textit{OH})_2 \\ \\ 2\textit{H}_2 + \textit{O}_2 \rightarrow 2\textit{H}_2\textit{O} \end{array}$$

3. Displacement Reaction: a more reactive element displaces a less reactive element from its compound.

Single Displacement
$$A + BC \rightarrow AC + B$$

 $Zn + CuSO_4 \rightarrow Cu + ZnSO_4$

Double Displacement AB + CD - AD + CB

 $Na_2SO_4(aq) + BaCl_2(aq) \rightarrow BaSO_4(s) + 2NaCl(aq)$

Reaction	Observation
$Mq + O_2 \rightarrow MqO$	Magnesium ribbon burns with a
	dazzling white flame and forms a
	white powder (magnesium oxide).
Pb(NO₃)₂ + KI → PbI	-, Yellow precipitate of lead
	iodide forms, and the solution
	changes from colorless to
	yellow.
$Zn + H_2SO_4 \rightarrow ZnSO_4$	4 + H2 Bubbles of hydrogen gas
	form around the zinc
	metal. Heat is released
	during the reaction.
CaO + H2O → Ca(OH) ₂ Calcium oxide reacts
	vigorously with water to
	produce slaked lime, releasing
	a large amount of heat.
2FeSO ₄ → Fe ₂ O ₃ + S	O ₂ + SO ₃ Initially green; turns
	white, then brown

(ferric oxide) with the smell of burning sulfur.

$2AgCl \rightarrow 2Ag + C$ (in sunlight)	l ₂ White silver chloride turns grey in sunlight.
Fe + CuSO₄ → FeSO₄ + Cu	The deep blue solution fades to light green, and the iron nail becomes covered with a redbrown layer of copper.
Na≥SO4 + BaCl2 → BaSO4 + 2NaCl	A white precipitate of barium sulfate forms.
2Cu + O₂ → 2CuO	Black copper oxide (CuO) forms. Hydrogen gas can reduce CuO back to copper during a reverse reaction.

Observation

Oxidizing agent: An oxidizing agent is a substance that causes oxidation by accepting electrons; therefore, it gets reduced.

Reducing agent: A reducing agent is a substance that causes reduction by losing electrons; therefore it gets oxidized.

Issme batao:

Reaction

 $MnO_2 + 4HCl \rightarrow MnCl_2 + 2H_2O + Cl_2$

K

Na

Ca

Mg Al

Zn

Fe

Pb

H

Cu

Hg

Ag

Αu

Rancidity: the spoilage of fats and oils in food, leading to unpleasant taste and smell. Examples: Spoiled butter, Old cooking oil, Stale chips

Prevention: Adding antioxidants, storing foods in airtight containers, and refrigerating can help slow down or prevent the oxidation process and, consequently, rancidity

Effects of oxidation in daily life:

Corrosion: metals are gradually destroyed by chemical reactions with substances in their environment, such as moisture and acids. Examples: Rusting of iron, Tarnishing of silver, Green coating on copper Prevention: Coating metals with protective layers (e.g., paint or galvanization) helps prevent direct exposure to

- oxygen and moisture, reducing the risk of corrosion.
 Silver develops a black coating after some time.
- Copper develops a green coating after some time.

Chapter ka KAZAANA:

- Balancing (MCQs)
- Type of Reaction and Example (Specially Decomposition and Redox)
- Color Change Activities

