date: 2025-01-23

TFE4188 - Introduction to Lecture 2 ICs and ESD

Goal

Understand the real-world constraints on our IC

Understand why you must always handle ESD on an IC

Carsten Wulff 2023

2

The real world constrains our IC

What blocks must our IC include?

A BJT-based CMOS Temperature Sensor with Duty-cycle-modulated Output and ±0.54 °C (3-sigma) Inaccuracy from -40 °C to 125 °C.

Pin	Function	in/out	Value	Unit
VDD_3V3	analog supply	in	3.0	V
VDD_1V2	digital supply	in	1.2	V
VSS	ground	in	0	V
CLK_1V2	clock	in	20	MHz
RST_1V2	digital	out	0 or 1.2	V
I_C	bias	in	?	uA?
PHI1_1V2	digital	out	0 or 1.2	V
PHI2_1V2	digital	out	0 or 1.2	V
DCM_1V2	digital	out	0 or 1.2	V

course plan

One more thing

Figure 1

Electrostatic Discharge

If you make an IC, you must consider Electrostatic Discharge (ESD) Protection circuits

Standards for testing at JEDEC

When do ESD events occur?

Before/during PCB

After PCB

Human body model (HBM)

Human body model (HBM)

Charged device model (CDM)

System level ESD

Human body model (HBM)

- Models a person touching a device with a finger
- Long duration (around 100 ns)
- Acts like a current source into a pin
- Can usually be handled in the I/O ring
- 4 kV HBM ESD is 2.67 A peak current

Charged device model (CDM)

Assume there is an equal number of electrons and protons on the IC.
According to Gauss' law

$$\oint_{\partial\Omega} \mathbf{E} \cdot d\mathbf{S} = rac{1}{\epsilon_0} \iiint_V
ho \cdot dV$$

An HBM ESD zap example

Imagine a ESD zap between VSS and VDD. How can we protect the device?

Permutations 1 * 0 * VØD * VØS 0 * 2 * VØS 2 * 0 PIN * VØS

Why does this work?

If you don't do the layout right

New Ballasting Layout Schemes to Improve ESD Robustness of I/O Buffers in Fully Silicided CMOS Process

But I just want a digital input, what do I need?

$AVDD_1V8 \ AVDD_1V0 \ AVDD_1V0$ XC2 $XC1 \ XA2 \ XA3 \ XA4$ $SUBCKT \ DI_1V8_ST28N \ AVDD_1V0 \ AVDD_1V8$ $+ \ AVSS \ FROM_PAD_1V8 \ TO_CORE_1V0$ $XC1 \ FILT_O \ AVSS \ CAPX10_CV \ angle=180$

Input buffer

(c)

XC2 FROM_PAD_1V8 FILT_O AVSS RPPO_S0

Latch-up

How can current in one place lead to a current somewhere else?

Logic cells close to large NMOS pad drivers are prone to latch-up.

The latch-up process can start with electrons injected into the p-type substrate.

- 1. Electrons injected into substrate, diffuse around, but will be accelerated by n-well to p-substrate built in voltage. Can end up in n-well
- 2. PMOS drain can be forward biased by reduced n-well potential. Hole injection into n-well. Holes diffuse around, but will be accelerated by n-well to p-substrate built in voltage. Can end up in p-substrate under NMOS
- 3. NMOS source pn-junction can be forward biased. Electrons injected into p-substrate. Diffuse around, but will be accelerated by n-well to p-substrate built in voltage.
- 4. Go to 2 (latch-up)

You must always handle ESD on an IC

- Do everything yourself
- Use libraries from foundry
- Get help www.sofics.com

Thanks!