Filling the Gap: Decoding of Word Embeddings for Generation of Coherent New Words

Safa AlSaidi, Amandine Decker, Stephanie Monteiro

 $\mathsf{M2}-\mathsf{Software}\;\mathsf{Project}$

- Reminder
- 2 Our approach
- Regression task
- 4 Results & discussion
- Software
- 6 Future work

Reminder of our aim

Regression task based on transfer

$$A: B:: C: X \xrightarrow{X=?} A: B:: C: D$$

e.g. $dog: dogs:: chat: X \rightarrow chats$

- Input: A and B in language 1, C in language 2
- Output: D in language 2
- Same transformation for A, B and C, D

First trial results

	hungarian, german	turkish, finnish	hungarian, finnish
Cosine similarity	58.9	39.5	18.9
Euclidean distance	57.7	39.1	16.8

Table: Accuracy for the regression task on the three (source, target) language pairs.

- Reminde
- 2 Our approach
- Regression task
- 4 Results & discussion
- Software
- 6 Future work

3 approaches

- Comparable data
- Omnilingual model
- Sigmorphon 2019

- Reminder
- 2 Our approach
- Regression task
- 4 Results & discussion
- Software
- 6 Future work

New results

Table: Accuracy (in %) of 3 runs of the regression model.

Language	$\begin{array}{l} \textbf{ANNr (previous)} \\ (\text{mean} \pm \text{std.}) \end{array}$	actual
Arabic	77.97 \pm 16.03	61.13 ± 0.83
Finnish	37.78 ± 9.28	77.56 \pm 1.78
Georgian	94.66 ± 1.13	86.40 ± 0.62
German	86.38 ± 0.45	86.93 ± 0.78
Hungarian	53.83 ± 3.12	78.98 ± 0.50
Maltese	75.00 ± 5.08	79.66 ± 1.11
Navajo	31.74 ± 0.90	45.88 ± 0.24
Russian	75.15 ± 0.44	70.53 ± 0.37
Spanish	86.27 ± 0.71	91.12 ± 1.06
Turkish	61.95 ± 10.86	80.34 ± 0.79
Japanese	61.60 ± 1.33	37.54 ± 37.33

- Reminder
- 2 Our approach
- Regression task
- Results & discussion
- Software
- 6 Future work

Bilingual analogies

In our dataset: WORD₁ FEATURES WORD₂

An analogy: $WORD_{1,A}:WORD_{2,A}::WORD_{1,B}:WORD_{1,B}$ where $FEATURES_A = FEATURES_B$

Bilingual analogies: LANGUAGE_A \neq LANGUAGE_B

 \rightarrow keep only the subset of *shared features*

Shared features

Figure: Number of possible analogies for each pair of languages

Comparison between monolingual and bilingual results

	Finnish	German	Hungarian	Spanish	Turkish
Finnish	/	$43.96{\pm}1.48$	$80.93{\pm}1.94$	/	82.00 ± 1.90
German	92.63±0.10	/	68.17 ± 3.12	68.17 ± 3.12	/
Hungarian	43.07±0.48	85.92 ± 0.83	/	85.92 ± 0.83	$40.92{\pm}2.46$
Spanish	/	93.97 ± 0.25	93.97 ± 0.25	/	94.05 ± 0.31
Turkish	65.89±1.59	/	71.76 ± 0.92	93.18 ± 1.90	/

Table: Monolingual analogies: Accuracy (\pm std) on 3 runs

	Finnish	German	Hungarian	Spanish	Turkish
finnish	/	81.88	35.88	/	30.19
german	80.31	/	30.41	35.10	/
hungarian	48.83±3.19	78.41 ± 1.59	/	91.62	33.93
spanish	/	17.63	83.26	/	40.63
turkish	45.81±0.17	/	16.17	70.27	/

Table: Bilingual analogies: Accuracy (\pm std) on 3 runs

Omnilingual model

Languages which share features with at least one other language: Finnish, German, Hungarian, Turkish, Spanish

	Finnish	German	Hungarian	Spanish	Turkish
Finnish	60.30±1.26	3.08 ± 0.86	31.78 ± 1.79	/	52.62 ± 1.84
German	3.08 ± 0.86	63.27 ± 0.68	57.71 ± 0.48	$62.47{\pm}2.41$	/
Hungarian	31.78±1.79	57.71 ± 0.48	71.12 ± 1.04	$62.89{\pm}1.86$	24.73 ± 1.26
Spanish	/	$62.47{\pm}2.41$	$62.89{\pm}1.86$	$66.82{\pm}1.34$	$62.20{\pm}6.57$
Turkish	52.62±1.84	/	24.73 ± 1.26	$62.20{\pm}6.57$	49.73 ± 0.82

Table: Accuracy (±std) on 5 runs

Next time: Sigmorphon 2019 [McCarthy et al., 2019]

88 languages: 8/10 from Sigmorphon 2016 [Cotterell et al., 2016]

 \rightarrow Arabic, Finnish, German, Hungarian, Russian, Spanish, Turkish, Maltese (Georgian and Navajo missing)

Aim: apply trained models to the new dataset

- Reminder
- Our approach
- Regression task
- 4 Results & discussion
- Software
- 6 Future work

What we want

- Solving analogies: monolingual and bilingual
- Use the omnilingual model

What it looks like

Figure: Preview of our software

- Reminder
- 2 Our approach
- Regression task
- 4 Results & discussion
- Software
- 6 Future work

Future work

- Run final experiments
- Improve and adapt our software
- Continue writing the report

شكراجزيلا Thank you Merci អរគុណ Obrigado

References I

Cotterell, R., Kirov, C., Sylak-Glassman, J., Yarowsky, D., Eisner, J., and Hulden, M. (2016).

The sigmorphon 2016 shared task—morphological reinflection. In *Proceedings of the 2016 Meeting of SIGMORPHON*, Berlin, Germany. Association for Computational Linguistics.

McCarthy, A. D., Vylomova, E., Wu, S., Malaviya, C., Wolf-Sonkin, L., Nicolai, G., Kirov, C., Silfverberg, M., Mielke, S. J., Heinz, J., Cotterell, R., and Hulden, M. (2019).

The SIGMORPHON 2019 shared task: Morphological analysis in context and cross-lingual transfer for inflection.

In Proceedings of the 16th Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 229–244, Florence, Italy. Association for Computational Linguistics.