在看 Classificational MedLDA 之前,先看一下 unsupervised LDA 模型。LDA(Latent Dirichlet allocation)模型是一个生成模型,它刻画了一个语料(有很多的普通文档组成)每个文档各个位置的单词是怎么生成的,这有点类似于解数学题里的假设变量,求解变量的过程。

在 BleiNJ03 中是这样描绘该生成过程的:

- 1. Choose $N \sim \text{Poisson}(\xi)$.
- 2. Choose $\theta \sim Dir(\alpha)$.
- 3. For each of the N words w_n :
 - (a) Choose a topic $z_n \sim \text{Multinomial}(\theta)$.
 - (b) Choose a word w_n from $p(w_n|z_n,\beta)$, a multinomial probability conditioned on the topic z_n .

解释一下这个生成过程:

步骤 1~3 只是描述了一篇文档是怎么生成的,对于多篇文档,按照步骤 1~3 依次生成每篇文档。

过程中涉及到的变量和参数解释:

K: 主题个数

V: 词典中单词的个数

 ξ : 泊松分布的参数,是个标量

N: 生成文档的长度, 标量

 α : Dirichlet 分布的参数, K 维向量

 θ : 生成文档的主题分布(多项分布),K维向量,在后面 θ_k 表示 θ 的第k个元素

 w_n : 表示生成文档第n个位置的单词,V维向量,如果 w_n 是单词v, $1 \le v \le V$ 并且为整数,则 w_n 的第v个位置元素为1,其它元素均为0。后面会涉及到一个相关的变量 w_n^v ,该变量是个标量,取值0或1,若 w_n 是单词v,则 w_n^v 为1,否则为0,可以把它理解为 w_n 的第v个元素。

 Z_n : 表示生成文档第n个位置的单词所属于的主题,K维向量,如果 Z_n 是主题k, $1 \le k \le K$ 并且为整数,则 Z_n 的第k个位置元素为 1,其它元素均为 0。后面会涉及到一个相关的变量 Z_n^k ,该变量是个标量,取值 0 或 1,若 Z_n 是主题k,则 Z_n^k 为 1,否则为 0,可以把它理解为 Z_n 的第k个元素。

eta : $K \times V$ 矩 阵 , 行 是 主 题 , 列 是 单 词 在 词 典 中 的 索 引 。 元 素 $eta_{i,j} = p(w^j = 1 \mid z^i = 1)$,即从主题 i 生成单词 j 的概率。 eta 应该是按行正规化,

即每一行的元素加和为 $\mathbf{1}$ 。后面用 $\boldsymbol{\beta}_i$ 表示 $\boldsymbol{\beta}$ 的第 i 行。(实际计算时按列正规化,不过不是太重要)

步骤 1 ,该文档按照参数 ξ 生成文档的长度 N 。在 BleiNJO3 中,这样解释 N

that is to be estimated. Finally, the Poisson assumption is not critical to anything that follows and more realistic document length distributions can be used as needed. Furthermore, note that N is independent of all the other data generating variables (θ and z). It is thus an ancillary variable and we will generally ignore its randomness in the subsequent development.

在后面的模型中,会忽略变量 N。生成文档的长度取值实际文档的长度。

步骤 2, 从参数为 α 的 Dirichlet 分布生成文档的主题分布 θ ,

$$p(\theta \mid \alpha) = \frac{\Gamma(\sum_{i=1}^{k} \alpha_i)}{\prod_{i=1}^{k} \Gamma(\alpha_i)} \theta_1^{\alpha_1 - 1} \cdots \theta_k^{\alpha_k - 1}$$

步骤 3,对于N个位置,依次进行步骤(a),(b)。

步骤(a): 从参数为 θ 的多项分布生成主题 z_n ,

$$p(z_n^k = 1 \mid \theta) = \theta_k$$

步骤(b): 从参数为 β_k 的多项分布生成单词 w_n ,

$$p(w_n^v = 1 \mid \beta_k) = \beta_{kv} = p(w_n^v = 1 \mid \beta, z_n^k = 1)$$

对于一篇文档,按照步骤 $1^{\sim}3$ 生成 θ , z , w 。 z 是 $K \times N$ 的矩阵,即所生成文档的所有主题的表示, z_n 为其第 n 个元素。 w 是 $V \times N$ 的矩阵,即所生文档所有单词的表示, w_n 为其第 n 个元素。

按照步骤 1~3, 把各个子步骤的概率相乘, 我们得到该篇文档的生成概率。

$$p(\theta, z, w \mid \alpha, \beta) = p(\theta \mid \alpha) \prod_{n=1}^{N} p(z_n \mid \theta) p(w_n \mid z_n, \beta)$$
 (1)

在公式(1)中,参数是 α 和 β ,即我们假设其是已知的,最终要求解它们。而 θ ,z我们假设它们就是未知的,最终也不需要求解出具体的数值,我们称这种变量为隐含变量 (latent variables),隐含变量能够有效的刻画已知变量(这里是w)之间的关系。

因为 θ ,z从始至终我们都把它们当作未知量,所以要把它们积分出来,这样就得到一篇实际文档(假设单词都已知,就像本篇文档一样,虽然还没写完,为w)的模型(LDA)概率:

$$p(w \mid \alpha, \beta)$$

$$= \int \sum_{z} p(\theta, z, w \mid \alpha, \beta) d\theta = \int \sum_{z_1} \cdots \sum_{z_N} p(\theta, z, w \mid \alpha, \beta) d\theta$$

$$= \int \sum_{z_1} \cdots \sum_{z_N} p(\theta \mid \alpha) \prod_{n=1}^{N} p(z_n \mid \theta) p(w_n \mid z_n, \beta) d\theta$$

$$= \int p(\theta \mid \alpha) \left(\sum_{z_1} p(z_1 \mid \theta) p(w_1 \mid z_1, \beta) \right) \sum_{z_2} \cdots \sum_{z_n} \prod_{n=2}^{N} p(z_n \mid \theta) p(w_n \mid z_n, \beta) d\theta$$

$$= \int p(\theta \mid \alpha) \left(\sum_{z_1} p(z_1 \mid \theta) p(w_1 \mid z_1, \beta) \right) \cdots \left(\sum_{z_n} p(z_n \mid \theta) p(w_n \mid z_n, \beta) \right) d\theta$$

$$= \int p(\theta \mid \alpha) \left(\prod_{n=1}^{N} \sum_{z_n} p(z_n \mid \theta) p(w_n \mid z_n, \beta) \right) d\theta$$

一个语料(假设为D,共M篇文档),每一篇文档都按照步骤 1~3 来生成,我们得到该实际语料的模型(LDA)概率:

$$p(D \mid \alpha, \beta) = \prod_{d=1}^{M} \int p(\theta_d \mid \alpha) \left(\prod_{n=1}^{N_d} \sum_{z_{dn}} p(z_{dn} \mid \theta_d) p(w_{dn} \mid z_{dn}, \beta) \right) d\theta_d$$
 (2)

公式(2)也是 LDA 模型我们最终要优化的目标函数。

先总结一下 LDA 模型,

两个参数: α , β

两个隐含变量: θ , z (定义)

一个已知变量(或称观测变量): W

模型(由参数、变量、目标函数定义)我们知道是什么样子了,下面的问题是怎么求解该模型,即求解使公式(2)最大的参数值 $\hat{\alpha}$, $\hat{\beta}$ 。

对于这种带有隐含变量的模型,一般的求解方法是 EM 算法。下面简单看一下 EM 算法。假设一个模型已知变量是x,参数是 Λ ,隐含变量是h。其似然函数是:

$$I(\Lambda; x) = \log p(x \mid \Lambda)$$

$$= \log \sum_{h} p(x, h \mid \Lambda)$$

$$= \log \sum_{h} q(h \mid x) \frac{p(x, h \mid \Lambda)}{q(h \mid x)}$$

$$\geq \sum_{h} q(h \mid x) \log \frac{p(x, h \mid \Lambda)}{q(h \mid x)}$$

$$\stackrel{\triangle}{=} L(q, \Lambda)$$
(3)

上面不等式的原理是 Jensen's inequality。Jensen's inequality 是说对于 concave function f (这里是 log 函数), $f(E(x)) \ge E(f(x))$

我们将最大化 $I(\Lambda; x)$ 的问题转变为最大化其下界(lower bound) $L(q, \Lambda)$ 的问题。这里的下界并不是 $I(\Lambda; x)$ 的最小值,而是另一个函数($L(q, \Lambda)$),该函数的曲线始终在原函数($I(\Lambda; x)$)之下。就像把一块布扣在一个倒置的碗上一样,我们求不出布最高的位置的坐标(二维),通过找出碗最高点的坐标来近似。

EM 算法每次迭代分为两个子步骤:

(E step)
$$q^{(t+1)} = \arg \max L(q, \Lambda^{(t)})$$

(M step)
$$\Lambda^{(t+1)} = \arg \max L(q^{(t+1)}, \Lambda)$$

E-step 我们假设维持 $\Lambda^{(t)}$ 不变,改变 q 来使 L 变大。M-step 我们假设 $q^{(t+1)}$ 不变,改变 Λ 来使 L 变大。可以证明,E-step 和 M-step 都可以使 L 变大或不变,但不会变小。具体证明过程可以参考(Probabilistic graphical models, Jordan or Koller 的 EM 算法部分)。我们还可以证明,如果 $p(h \mid x, \Lambda) = q(h \mid x)$ 的话可以使(3)不等式变为等式。

如果可以计算出 $p(h \mid x, \Lambda)$ 话,我们可以省略 E-step 而直接使用 M-step。

回到我们的 LDA 模型,如果可以求解出 $p(\theta, z \mid w, \alpha, \beta)$ 的话,就可以使优化问题变得相对简单一些(EM 算法里常用方法是在 E-step 求解隐含变量的后验概率,很少有直接优化 E-step 本身的)。

但是:

$$p(\theta, z \mid w, \alpha, \beta) = \frac{p(\theta, z, w \mid \alpha, \phi)}{p(w \mid \alpha, \beta)}$$

其中

$$p(w \mid \alpha, \beta) = \int p(\theta \mid \alpha) \left(\prod_{n=1}^{N} \sum_{z_{n}} p(z_{n} \mid \theta) p(w_{n} \mid z_{n}, \beta) \right) d\theta$$

是计算不出来的。

所以使用另一个简单的分布 $q(\theta, z \mid \gamma, \phi)$ 来近似 $p(\theta, z \mid w, \alpha, \beta)$ 。通过公式(3)可以看出,使用 $q(\theta, z \mid \gamma, \phi)$ 近似虽然不能求解出 $l(\Lambda; x)$ (这里是 $l(\alpha, \beta; w) = \log p(w \mid \alpha, \beta)$) 真实的最大值,但能够保证求解出它的一个下界的最大值。

这种方法称为变分方法,这是因为 γ 和 ϕ 都是 $p(\theta,z\mid w,\alpha,\beta)$ 中没有的,这种方法的效果是在目标函数中增加了新的参数。 γ 和 ϕ 都是文档级的参数(相比之下, α 和 β 是语料级的参数)。 γ 是一个K维向量,是生成该文档 Dirichlet 分布的参数。 ϕ 是一个二维矩阵,行是单词的位置(或者说文档一个单词位置)的索引,列是主题的索引,元素 ϕ_{ni} 表示文档的第n个位置的单词属于主题i的概率。

$$q(\theta, z \mid \gamma, \phi) = q(\theta \mid \gamma) \prod_{n=1}^{N} q(z_n \mid \phi_n) = q(\theta \mid \gamma) q(z \mid \phi)$$
(4)

根据公式(3)中所示,对于一篇文档我们的优化目标由 $p(w \mid \alpha, \beta)$ 变成下面的函数:

$$\log p(w \mid \alpha, \beta) = \log \int \sum_{z} p(\theta, z, w \mid \alpha, \beta) d\theta$$

$$= \log \int \sum_{z} \frac{p(\theta, z, w \mid \alpha, \beta) q(\theta, z)}{q(\theta, z)} d\theta$$

$$\geq \int \sum_{z} q(\theta, z) \log p(\theta, z, w \mid \alpha, \beta) d\theta - \int \sum_{z} q(\theta, z) \log q(\theta, z) d\theta$$

$$= E_{a}[\log p(\theta, z, w \mid \alpha, \beta)] - E_{a}[\log q(\theta, z)]$$
(5)

 $= L(w | \{\alpha, \beta\}, \{\gamma, \phi\}) = L(\gamma, \phi; \alpha, \beta)$

 $L(\gamma, \phi; \alpha, \beta)$ 只是一种写法,该函数的参数有四个 α , β (原有参数)和 γ , ϕ (变分参数)。将公式(1)和(4)带入公式(5)中, $L(\gamma, \phi; \alpha, \beta)$ 变为下面的形式:

$$L(\gamma, \phi; \alpha, \beta) = E_{q}[\log p(\theta \mid \alpha)] + E_{q}[\log p(z \mid \theta)] + E_{q}[\log p(w \mid z, \beta)]$$

$$- E_{q}[\log q(\theta)] - E_{q}[\log q(z)]$$

$$= \log \Gamma(\sum_{j=1}^{K} \alpha_{j}) - \sum_{i=1}^{K} \log \Gamma(\alpha_{i}) + \sum_{i=1}^{K} (\alpha_{i} - 1) (\Psi(\gamma_{i}) - \Psi(\sum_{j=1}^{k} \gamma_{j}))$$

$$+ \sum_{n=1}^{N} \sum_{i=1}^{K} \phi_{ni}(\Psi(\gamma_{i}) - \Psi(\sum_{j=1}^{k} \gamma_{j}))$$

$$+ \sum_{n=1}^{N} \sum_{i=1}^{K} \sum_{j=1}^{V} \phi_{ni} W_{n}^{j} \log \beta_{ij}$$

$$- \log \Gamma(\sum_{j=1}^{K} \gamma_{j}) + \sum_{i=1}^{K} \log \Gamma(\gamma_{i}) - \sum_{i=1}^{K} (\gamma_{i} - 1) (\Psi(\gamma_{i}) - \Psi(\sum_{j=1}^{K} \gamma_{j}))$$

$$- \sum_{n=1}^{N} \sum_{i=1}^{K} \phi_{ni} \log \phi_{ni}$$
(6)

后五行分别是五个 E_q 分解开的结果,拿第一个来看看是怎么分解的。

$$p(\theta \mid \alpha) = \frac{\Gamma\left(\sum_{i=1}^{K} \alpha_{i}\right)}{\prod_{i=1}^{K} \Gamma(\alpha_{i})} \theta_{1}^{\alpha_{1}-1} \cdots \theta_{K}^{\alpha_{k}-1}$$

$$E_{q}[\log p(\theta \mid \alpha)] = \int \sum_{z} q(\theta, z \mid \gamma, \phi) \log p(\theta \mid \alpha) d\theta$$

$$= \int \sum_{z} q(\theta \mid \gamma) q(z \mid \phi) \log p(\theta \mid \alpha) d\theta$$

$$= \int q(\theta \mid \gamma) \log p(\theta \mid \alpha) \sum_{z} q(z \mid \phi) d\theta$$

$$= \int q(\theta \mid \gamma) \log p(\theta \mid \alpha) d\theta$$

$$= \int q(\theta \mid \gamma) \log \frac{\Gamma\left(\sum_{i=1}^{K} \alpha_{i}\right)}{\prod_{i=1}^{K} \Gamma(\alpha_{i})} \theta_{1}^{\alpha_{1}-1} L \theta_{K}^{\alpha_{K}-1} d\theta$$

$$= \int q(\theta \mid \gamma) \left(\log \Gamma\left(\sum_{i=1}^{K} \alpha_{i}\right) - \sum_{i=1}^{K} \log \Gamma(\alpha_{i}) + \sum_{i=1}^{K} (\alpha_{i} - 1) \log \theta_{i}\right) d\theta$$

$$= \int q(\theta \mid \gamma) \left(\log \Gamma\left(\sum_{i=1}^{K} \alpha_{i}\right) - \sum_{i=1}^{K} \log \Gamma(\alpha_{i})\right) d\theta + \int q(\theta \mid \gamma) \left(\sum_{i=1}^{K} (\alpha_{i} - 1) \log \theta_{i}\right) d\theta$$

$$= \log \Gamma\left(\sum_{i=1}^{K} \alpha_{i}\right) - \sum_{i=1}^{K} \log \Gamma(\alpha_{i}) + \sum_{i=1}^{K} (\alpha_{i} - 1) \int q(\theta \mid \gamma) \log \theta_{i} d\theta$$

$$= \log \Gamma\left(\sum_{i=1}^{K} \alpha_{i}\right) - \sum_{i=1}^{K} \log \Gamma(\alpha_{i}) + \sum_{i=1}^{K} (\alpha_{i} - 1) E_{q(\theta \mid \gamma)} [\log \theta_{i}] d\theta$$

$$= \log \Gamma\left(\sum_{i=1}^{K} \alpha_{i}\right) - \sum_{i=1}^{K} \log \Gamma(\alpha_{i}) + \sum_{i=1}^{K} (\alpha_{i} - 1) E_{q(\theta \mid \gamma)} [\log \theta_{i}] d\theta$$

$$(7)$$

上式中需要求解的一个量是 $E_{q(\theta|\gamma)}[\log heta_i]$,在 BleiNJ03 A1 中, 若

$$p(\theta \mid \alpha) = \frac{\Gamma(\sum_{i=1}^{K} \alpha_i)}{\prod_{i=1}^{K} \Gamma(\alpha_i)} \theta_1^{\alpha_1 - 1} L \theta_K^{\alpha_K - 1}$$

这里比较有意思的一个问题是,从参数为 α 和参数为 γ 的 Dirichlet 分布我们都可以生成 θ 。那这里的 $E_{q(\theta|\gamma)}[\log\theta_i]$ 究竟应该是 $E_{q(\theta|\gamma)}[\log\theta_i|\alpha]$ 还是 $E_{q(\theta|\gamma)}[\log\theta_i|\gamma]$ 呢?我们可以分析一下 $E_{q(\theta|\gamma)}[\log\theta_i]$,因为

$$E_{q(\theta|\gamma)}[\log \theta_i] = \int q(\theta \mid \gamma) \log \theta_i d\theta$$

因为我们要对 θ 求积分,那就是说 θ 是变化的,会取尽所有合法值。 $q(\theta|\gamma)$ 说明, θ 是随着 γ 变化的,而不是随着 α 变化的。所以这里应该是 $E_{q(\theta|\gamma)}[\log\theta_i|\alpha]$ 。

所以可以继续公式(7)

$$= \log \Gamma\left(\sum\nolimits_{i=1}^{K} \alpha_i\right) - \sum\nolimits_{i=1}^{K} \log \Gamma(\alpha_i) + \sum\nolimits_{i=1}^{K} (\alpha_i - 1) \left(\Psi(\gamma_i) - \Psi(\sum\nolimits_{j=1}^{K} \gamma_j)\right)$$

其它四个 E_q 可以用类似的过程分解,最终得到公式(6)。

再总结一下 LDA 模型,在(定义I)中,LDA 模型的定义如下:

目标函数:

$$p(D \mid \alpha, \beta) = \prod_{d=1}^{M} p(w_d \mid \alpha, \beta) = \prod_{d=1}^{M} \int p(\theta_d \mid \alpha) \left(\prod_{n=1}^{N_d} \sum_{z_{dn}} p(z_{dn} \mid \theta_d) p(w_{dn} \mid z_{dn}, \beta) \right) d\theta_d$$

参数和变量:

两个参数: α , β

两个隐含变量: θ , z

一个已知变量(或称观测变量): W

然而我们无法优化上述模型,所以采用了目标函数的一个下界来近似它,并且采用 了变分的方法。这样我们的模型就变成了如下形式:

目标函数:

$$l(D \mid \alpha, \beta; \gamma, \phi) = \sum_{d=1}^{D} l(w_d \mid \alpha, \beta; \gamma_d, \phi_d)$$

$$= \sum_{d=1}^{D} \log p(w_d \mid \alpha, \beta; \gamma_d, \phi_d)$$

$$\geq \sum_{d=1}^{D} L(\alpha, \beta; \gamma_d, \phi_d)$$

即我们的目标函数是 $\sum_{d=1}^{D} L(\alpha, \beta; \gamma_d, \phi_d)$

参数和变量:

四个参数: 一般参数 α , β 和变分参数 γ , ϕ

两个隐含变量: θ , z (定义 II)

一个已知变量(或称观测变量): W

虽然采用了变分方法,但是参数的求解过程依然采用 EM 算法。

E-Step:

优化 $q(\theta,z|\gamma,\phi)$, 通过优化 γ , ϕ 实现

因为 γ , ϕ 是文档级的参数, 所以 M-Step 是逐篇文档进行。

对于一篇文档,目标函数 $L(\gamma,\phi;\alpha,\beta)$ 如公式(6)所示,

 $L(\gamma, \phi; \alpha, \beta)$ 中包含 ϕ_{ni} 的部分是:

$$L_{[\phi_{ni}]} = \phi_{ni}(\Psi(\gamma_i) - \Psi(\sum_{i=1}^K \gamma_i)) + \phi_{ni} \log \beta_{iv} - \phi_{ni} \log \phi_{ni} + \lambda_n (\sum_{i=1}^K \phi_{ni} - 1)$$

最后一项是拉格朗日因子, ϕ_{ni} 是个标量。

 $L_{[\phi_{ni}]}$ 对 ϕ_{ni} 求导数,结果如下:

$$\frac{\partial L}{\partial \phi_{ni}} = \Psi(\gamma_i) - \psi(\sum_{j=1}^K \gamma_j) + \log \beta_{iv} - \log \phi_{ni} - 1 + \lambda_n$$

令导数为0得:

$$\phi_{ni} \propto \beta_{iv} \exp(\Psi(\gamma_i) - \Psi(\sum_{j=1}^K \gamma_j))$$

 $L(\gamma, \phi; \alpha, \beta)$ 中只包含 γ 的部分是

$$\begin{split} L_{[\gamma]} &= \sum_{i=1}^K (\alpha_i - 1) \Biggl(\Psi(\gamma_i) - \Psi(\sum_{j=1}^K \gamma_j) \Biggr) + \sum_{n=1}^N \phi_{ni} (\Psi(\gamma_i) - \Psi(\sum_{j=1}^K \gamma_j)) i \\ &- \log \Gamma(\sum_{j=1}^K \gamma_j) + \log \Gamma(\gamma_i) - \sum_{i=1}^K (\gamma_i - 1) (\Psi(\gamma_i) - \Psi(\sum_{j=1}^K \gamma_j)) \\ &= \sum_{i=1}^K \Biggl(\Psi(\gamma_i) - \Psi(\sum_{j=1}^K \gamma_j) \Biggr) \Biggl(\alpha_i + \sum_{n=1}^N \phi_{ni} - \gamma_i \Biggr) - \log \Gamma(\sum_{j=1}^K \gamma_j) + \log \Gamma(\gamma_i) \end{split}$$

$$\frac{\partial L}{\partial \gamma_i} = \Psi'(\gamma_i) \left(\alpha_i + \sum_{n=1}^N \phi_{ni} - \gamma_i \right) - \Psi'(\sum_{j=1}^K \gamma_j) \sum_{j=1}^K (\alpha_j + \sum_{n=1}^N \phi_{nj} - \gamma_j)$$

设置导数为0,得:

$$\gamma_i = \alpha_i + \sum_{n=1}^N \phi_{ni}$$

M-Step: 优化参数 α , β (它们是语料级参数)

$$L_{[\beta]} = \sum_{d=1}^{M} \sum_{n=1}^{N_d} \sum_{i=1}^{K} \sum_{j=1}^{V} \phi_{dni} w_{dn}^{j} \log \beta_{ij} + \sum_{i=1}^{K} \lambda_i (\sum_{j=1}^{V} \beta_{ij} - 1)$$

求解导数并设置为0,得:

$$\begin{split} \beta_{ij} &\propto \sum_{d=1}^{M} \sum_{n=1}^{N_d} \phi_{dni} w_{dn}^{j} \\ L_{[\alpha]} &= \sum_{d=1}^{M} \left(\log \Gamma(\sum_{j=1}^{K} \alpha_j) - \sum_{i=1}^{K} \log \Gamma(\alpha_i) + \sum_{i=1}^{K} \left((\alpha_i - 1) \left(\Psi(\gamma_{di}) - \Psi(\sum_{j=1}^{K} \gamma_{dj}) \right) \right) \right) \\ &\frac{\partial L}{\partial \alpha_i} = M \left(\Psi(\sum_{j=1}^{K} \alpha_j) - \Psi(\alpha_i) \right) + \sum_{d=1}^{M} \left(\Psi(\gamma_{di}) - \Psi(\sum_{j=1}^{K} \gamma_{dj}) \right) \\ &\frac{\partial L}{\partial \alpha_i \alpha_j} = \delta(i, j) M \Psi'(\alpha_i) - \Psi'(\sum_{j=1}^{K} \alpha_j) \end{split}$$

 α 不能准确地解出来,所以但其导数和曲率容易求解出来,一般采用牛顿方法进行优化。

(注: α , β 和 γ , ϕ 的计算细节仍需要整理)

ClassificationalMedLDA 是 MedLDA 的分类模型,它将 Maximum Likelihood 和 Max Margin 方法统一到一个目标函数中。目标函数:

$$P3(MedLDA^{c}): \min_{q,q(\eta),\alpha,\beta,\xi} L^{u}(q;\alpha,\beta) + KL(q(\eta) \parallel p_{0}(\eta)) + \frac{C}{D} \sum_{d=1}^{D} \xi_{d}$$

$$\forall d, y \in C, s.t.: \begin{cases} E[\eta^{T} \Delta f_{d}(y)] \geq \Delta l_{d}(y) - \xi_{d} \\ \xi_{d} \geq 0 \end{cases}$$
(8)

在 unsupervised LDA 中,我们定义对于一篇文档,目标函数为 $L(\gamma, \phi; \alpha, \beta)$ 这里我们改成另一种写法:

$$L(\gamma, \phi; \alpha, \beta) = L(q; \alpha, \beta)$$

值得注意的一点是在公式(8)中, $L^{\mu}(q;\alpha,\beta)$ 不同于 $L(q;\alpha,\beta)$, 但是有下面的关系:

$$L^{u}(q;\alpha,\beta) = -L(q;\alpha,\beta)$$
(9)

其中q为q{ θ_d , z_d }由公式(4)定义,它由参数 γ , ϕ 决定。

$$\Delta f_d(y) \stackrel{\Delta}{=} f(y_d, \bar{Z}_d) - f(y, \bar{Z}_d)$$

其中 f(y,z) 是一个特征向量,元素从(y-1)K+1到 yK 和 z 相同,其它为 0。

 $q(\eta)$ 是 η 服从的概率分布, η 是二维矩阵,行是类别,列是主题,元素 η_{ij} 衡量类别 i 在主题 j 上的权重。

 α , β 和 unsupervised LDA 中的一样。

 ξ 是 slack variable ,为了解决数据不能由超平面绝对分开的问题。

在 MedLDA JMLR 中,如果设置 ξ 为最优解,即

 $\xi_d = \max_y (\Delta I_d(y) - E[\eta^T \Delta f_d(y)])$ 的话,公式(8)转换为下面的问题:

$$\min_{q,q(\eta),\alpha,\beta} L^{u}(q;\alpha,\beta) + KL(q(\eta) \parallel p_0(\eta)) + CR(q,q(\eta))$$
 (9)

其中:

$$R(q, q(\boldsymbol{\eta})) \stackrel{\Delta}{=} \frac{1}{D} \sum_{d=1}^{D} \max \left(\Delta I_{d}(y) - E[\boldsymbol{\eta}^{T} \Delta f_{d}(y)] \right)$$

 $R(q, q(\eta))$ 是下面预测函数:

$$\hat{y} = \underset{y \in C}{\operatorname{arg max}} F(y; w) = \underset{y \in C}{\operatorname{arg max}} E[\eta^{T} f(y, \bar{Z}) \mid \alpha, \beta, w]$$

预测误差的上界。 C 是正规化常数。

公式(8)中的参数是 α , β , $q(\eta)$, γ , ϕ ,隐藏变量是 θ ,z。可以采用梯度下降 (coordinate descent)的方法优化其参数。因为含有隐含变量,所以仍需要使用 EM 算法来进行优化。

E-step,优化 $q\{\theta_d,z_d\}$ 即通过调整 γ , ϕ 来达到优化 $q\{\theta_d,z_d\}$ 的目的,因为 γ , ϕ 决定了 $q\{\theta_d,z_d\}$ 。因为P3中的不等式限制不包含 γ ,所以它的更新方法和 Unsupervised LDA 中的一样。

P3的 Lagrangian L为:

$$L(q; q(\eta), \alpha, \beta, \mu, \xi) = L^{u}(q; \alpha, \beta) + \sum_{\eta} q(\eta) [\log q(\eta) - \log p_{0}(\eta)] + \frac{C}{D} \sum_{d=1}^{D} \xi_{d} - \sum_{d=1}^{D} \mu_{d}^{y} \{ E[\eta^{T} \Delta f_{d}(y)] - \Delta l_{d}(y) + \xi_{d} \} - \sum_{d=1}^{D} \xi_{d} \delta_{d}$$
 (10)

它的 Lagrange dual function 为

$$g(\mu, \delta) = \inf_{q; q(\eta), \alpha, \beta, \xi} L(q; q(\eta), \alpha, \beta, \xi, \mu, \delta)$$

in f的意思是最大下界。主要这里最大下界与上面所说的下界(lower bound)的区别,最大下界是一个函数值,而下界是一个函数。对于函数 $L(q;q(\eta),\alpha,\beta,\xi,\mu_0,\delta_0)$,假设 μ_0 , δ_0 为常数, $q,q(\eta),\alpha,\beta,\xi$ 为变量。 $L(q;q(\eta),\alpha,\beta,\xi,\mu_0,\delta_0)$ 的下界所能取得函数值并不一定比 $L(q;q(\eta),\alpha,\beta,\xi,\mu_0,\delta_0)$ 最大下界对应的函数值小。

假设:

$$L^{p3}(q; q(\eta), \alpha, \beta, \xi) = L^{u}(q; \alpha, \beta) + KL(q(\eta) \parallel p_{0}(\eta)) + \frac{C}{D} \sum_{d=1}^{D} \xi_{d}$$

 $q^*;q^*(\eta),\alpha^*,\beta^*,\xi^*$ 是 $L^{p^3}(q;q(\eta),\alpha,\beta,\xi)$ 的最优解。

则,对于任意的 $\mu \geq 0.\delta$

$$g(\mu, \delta) \le L^{p3}(q^*; q^*(\eta), \alpha^*, \beta^*, \xi^*)$$

这个式子左边是函数, 右边是函数值。

这个不等式的证明过程中会涉及到下界的问题,即:对于任意的 $\mu_0 \geq 0, \delta_0$

$$L(q; q(\eta), \alpha, \beta, \xi, \mu_0, \delta_0) \le L^{p3}(q; q(\eta), \alpha, \beta, \xi)$$

只保留 $L(q;q(\eta),\alpha,\beta,\mu,\xi)$ 中包含 ϕ_{ni} 的项,结果如下:

在无监督模型中,此项为:

$$L_{1\phi_{ni}1} = \phi_{ni}(\Psi(\gamma_i) - \Psi(\sum\nolimits_{j=1}^K \gamma_j)) + \phi_{ni} \log \beta_{iv} - \phi_{ni} \log \phi_{ni} + \lambda_n (\sum\nolimits_{j=1}^K \phi_{nj} - 1)$$
 而现在:

$$\sum_{\mathbf{y} \in C} \sum_{d=1}^{D} \mu_d^{\mathbf{y}} E[\eta^T \Delta f_d(\mathbf{y})]$$

里也包含 ϕ_{ni}

在 MedIda JMLR 中这样定义:

$$F(y,z,\eta;w) = \eta^T f(y,\bar{z}) = \eta_y^T \bar{z}$$
(11)

所以

$$F(y,w) = E_{q(\eta,z)}[F(y,z,\eta;w)] = \int \sum_{z} q(\eta,z)F(y,z,\eta;w)d\eta = \int \sum_{z} q(\eta,z)\eta_{y}^{T} \bar{z}d\eta$$
 (12)

注意: 从 $F(y,z,\eta;w)$ 到F(y,w)是取的期望而不是积分,

从公式(11)看出, η 与z是相互独立的。所以:

$$q(\eta, z) = q(\eta) * q(z)$$

继续公式(12),

$$\begin{split} &= \int q(\eta) \eta_y^T d\eta \sum_z q(z) \overline{z} = E_{q(\eta)} [\eta_y] E_{q(Z)} [\overline{Z}] \\ &= E_{q(\eta)} [\eta_y] E_{q(Z)} [\frac{1}{N} \sum_{n=1}^N Z_n] \\ &= E_{q(\eta)} [\eta_y] \frac{1}{N} \sum_{n=1}^N E_{q(Z_n)} [Z_n] \\ &= E_{q(\eta)} [\eta_y] \frac{1}{N} \sum_{n=1}^N \phi_n \end{split}$$

$$\begin{split} E[\eta^{T} \Delta f_{d}(y)] &= F(y_{d}, w_{d}) - F(y, w_{d}) = E[\eta_{y_{d}}] \frac{1}{N} \sum_{n=1}^{N} \phi_{dn} - E[\eta_{y}] \frac{1}{N} \sum_{n=1}^{N} \phi_{dn} \\ &= \frac{1}{N} \{ E[\eta_{y_{d}}] - E[\eta_{y}] \} \sum_{n=1}^{N} \phi_{dn} \end{split}$$

所以

$$L_{[\phi_{dni}]}(q;q(\eta),\alpha,\beta,\mu,\xi) = -L_{[\phi_{dni}]} - \frac{1}{N} \{E[\eta_{y_d}] - E[\eta_y]\} \sum_{n=1}^{N} \phi_{dni}$$

对 ϕ_{dni} 求导,设置导数为0,得:

$$\phi_{dn} \propto \exp \left(E[\log \theta_d \mid \gamma_d] + \log p(w_{dn} \mid \beta) + \frac{1}{N} \sum_{y \in C} \hat{\mu}_d^y E[\eta_{y_d} - \eta_y] \right)$$

M-step ,优化的参数是 α , β , $q(\eta)$,因为 P3 中的不等式限制不包含 α , β ,所以它的更新方法和 Unsupervised LDA 中的一样。下面考虑 $q(\eta)$ 怎么优化。

公式(10)对 $q(\eta)$ 求导数,得:

$$\begin{split} \frac{\partial L(q; q(\eta), \alpha, \beta, \mu, \xi)}{\partial q(\eta)} &= \log q(\eta) + q(\eta) \frac{1}{q(\eta)} - \log p_0(\eta) - \sum_{y \in C} \sum_{d=1}^{D} \mu_d^y \eta^T E[\Delta f_d(y)] \\ &= \log q(\eta) + 1 - \log p_0(\eta) - \eta^T \sum_{y \in C} \sum_{d=1}^{D} \mu_d^y E[\Delta f_d(y)] \end{split}$$

令其为0,得:

$$q(\eta) = \frac{1}{Z} p_0(\eta) \exp\{\eta^T \sum_{y \in C} \sum_{d=1}^{D} \mu_d^y E[\Delta f_d(y)]\}$$

所以:
$$\sum_{\eta} q(\eta) \{ \log q(\eta) - \log p_0(\eta) \}$$

$$= \sum_{\eta} q(\eta) \left\{ \log \left\{ \frac{1}{Z} p_0(\eta) \exp\{\eta^T \sum_{y \in C} \sum_{d=1}^D \mu_d^y E[\Delta f_d(y)] \right\} - \log p_0(\eta) \right\}$$

$$= \sum_{\eta} q(\eta) \left\{ \log p_0(\eta) + \eta^T \left\{ \sum_{y \in C} \sum_{d=1}^D \mu_d^y E[\Delta f_d(y)] \right\} - \log Z - \log p_0(\eta) \right\}$$

$$= \sum_{\eta} q(\eta) \eta^T \left\{ \sum_{y \in C} \sum_{d=1}^D \mu_d^y E[\Delta f_d(y)] \right\} - \log Z \sum_{\eta} q(\eta)$$

$$= \left\{ \sum_{y \in C} \sum_{d=1}^D \mu_d^y E[\Delta f_d(y)] \right\} \sum_{\eta} q(\eta) \eta^T - \log Z$$

$$= \left\{ \sum_{y \in C} \sum_{d=1}^D \mu_d^y E[\Delta f_d(y)] \right\} E[\eta^T] - \log Z$$

所以P3转换成下面的对偶问题:

$$D3: \max_{\mu} -\log Z + \sum_{d=1}^{D} \sum_{y \in C} \mu_d^y \Delta l_d(y)$$
$$\forall d, s.t.: \sum_{y \in C} \mu_d^y \in [0, \frac{C}{D}]$$

假设
$$\lambda = \sum_{d=1}^{D} \sum_{y \in C} \mu_d^y E[\Delta f_d(y)]$$

$$Z = \int_{\eta} p_0(\eta) e \times p \eta^T \lambda d\eta$$

如果:

$$p_0(\eta) = N(0, I), \text{ } p_0(\eta) = \frac{1}{\sqrt{2\pi}} \exp\{-\frac{\eta^2}{2}\}$$

$$Z = \int_{\eta} \frac{1}{\sqrt{2\pi}} \exp\{-\frac{\eta^2}{2} + \eta^T \lambda\} d\eta$$

$$= \int_{\eta} \frac{1}{\sqrt{2\pi}} \exp\{-\frac{(\eta - \lambda)^2 - \lambda^2}{2}\} d\eta$$

$$= \exp\frac{\lambda^2}{2} \int_{\eta} \frac{1}{\sqrt{2\pi}} \exp\{-\frac{(\eta - \lambda)^2}{2}\} d\eta$$

$$= \exp\frac{1}{2} \lambda^2$$

所以:

$$\log \mathbf{Z} = -\log \left\{ e^{\frac{1}{2}} \mathbf{p}^{2} \right\}$$
$$= -\frac{1}{2} \lambda^{2}$$

所以D3变为下面的问题:

$$\max_{\mu} -\frac{1}{2}\lambda^{2} + \sum_{d=1}^{D} \sum_{y \in C} \mu_{d}^{y} \Delta l_{d}(y)$$

$$\forall d, s.t.: \sum_{y \in C} \mu_{d}^{y} \in [0, \frac{C}{D}]$$

$$(13)$$

公式(13)的原始问题是:

$$\min_{\lambda,\xi} \frac{1}{2} \lambda^{2} + \frac{C}{D} \sum_{d=1}^{D} \xi_{d}$$

$$\forall d, \forall y \in C, s.t. : \begin{cases} \lambda^{T} E[\Delta f_{d}(y)] \geq \Delta l_{d}(y) - \xi_{d} \\ \xi_{d} \geq 0 \end{cases}$$