Física Experimental Básica: Mecânica

Aula 1

Introdução ao laboratório

Conteúdo da aula:

Página da disciplina

A página

https://www.fisica.ufmg.br/ciclo-basico/disciplinas/feb-mecanica/

contém informações gerais da disciplina, e disponibiliza as aulas introdutórias, lista de exercícios, roteiros e vídeos dos experimentos, tutoriais para utilização dos programas gráficos adotados, além de materiais complementares.

Objetivos da disciplina

- Esta é uma disciplina de introdução à física experimental com o foco em experimentos de mecânica.
- O objetivo principal é desenvolver as habilidades em tópicos essenciais à toda atividade experimental:
 - Utilização de instrumentos de medição.
 - Métodos de medição de grandezas físicas de forma direta e indireta.
 - Introdução ao conceito de incerteza de uma medição: suas origens, sua avaliação e apresentação.
 - Construção e análise de gráficos a partir de dados experimentais.
 - Discussão e avaliação crítica dos resultados obtidos em comparação com o modelo teórico e a partir dos métodos de medição empregados.
 - Descrição organizada e clara do trabalho experimental.

Programa

- Aula 1: Introdução ao laboratório
- Aula 2: Propagação de incertezas e gráficos
- Aula 3: Experimento coletivo: Pêndulo simples
- Aulas 4 a 11: Experimentos* em dupla:
 - 1. Constante elástica de molas;
 - 2. Oscilação de um sistema massa-mola;
 - 3. Deformação elástica de uma haste;
 - 4. Densidade de um líquido;
 - 5. Colisão inelástica;
 - 6. Movimento de um projétil;
 - 7. Movimento retilíneo com aceleração constante;
 - 8. Forças impulsivas.
- Aula 12: Prova experimental individual:
 - Módulo de flexão de uma haste.

^{*} Atenção à numeração dos experimentos. A importância ficará clara a seguir.

Divisão de grupos

- Os experimentos 1 a 8 são realizados em dupla. Portanto, os alunos devem se dividir em duplas que serão classificadas em grupos A, B, C ou D, de acordo com a tabela do próximo slide.
- Esta classificação define a ordem de execução dos experimentos ao longo do semestre (veja a tabela).
- Em cada sala, ocorrem dois experimentos fixos. Alunos e professores se deslocam ao longo do semestre, de acordo com a tabela.
- Formem duplas e comuniquem ao professor(a), idealmente até a segunda aula.

Esta tabela mostra o local das aulas, experimentos e prova de acordo com o código da sua turma. Ela mostra também a sequência de experimentos ao longo do semestre de acordo com o seu grupo.

	Turmas			
	Ímpar ou A (exemplos: PR1, PU7A)		Par ou B (exemplos: PR2, PU7B)	
Início (aulas 1 a 5)	Sala 2067		Sala 2068	
Grupos	Α	В	С	D
	1	2	3	4
Experimentos 1 a 4: Sala 2067 (1 e 2) Sala 2068 (3 e 4)	2	1	4	3
	3	4	1	2
	4	3	2	1
	5	6	7	8
Experimentos 5 a 8: Sala 2052 (5 e 6) Sala 2053 (7 e 8)	6	5	8	7
	7	8	5	6
	8	7	6	5
Prova experimental	Salas 2067/2068		Salas 2052/2053	

Distribuição de pontos

- A distribuição de pontos é definida pelo(a) professor(a).
 Consulte o plano de ensino da sua turma.
- A pontuação é distribuída em lista de exercícios (individual), relatórios (dupla) e prova (individual).
- A forma de entrega dessas atividades é definida pelo(a) professor(a). Observação: não há impressora nas salas.

ATENÇÃO!

Não há exame especial para as disciplinas de Física Experimental Básicas, conforme a Resolução Nº 001/2015 votada e aprovada pela Câmara Departamental do Departamento de Física em 03 de agosto de 2015.

Grandezas físicas e unidades de medida

Grandezas físicas e unidades de medição

- Uma grandeza física é definida ao atribuirmos a ela um significado preciso e uma unidade de medição.
- Medir é determinar o valor de uma grandeza em termos do valor de uma unidade estabelecida por meio de um padrão

Exemplo: as primeiras formas de se medir o <u>comprimento</u> tomavam como unidade partes do corpo humano.

Grandezas físicas e unidades de medição

 Para que seja possível avaliar, reproduzir ou comparar os resultados de uma medição, as unidades devem ser definidas através de padrões acessíveis e invariantes.

 Um Sistema de Unidades eficaz deve conter um número (pequeno) de grandezas físicas fundamentais com unidades padronizadas, que servirão de base para definirmos as unidades das demais grandezas.

Sistema Internacional de Unidades

No Sistema Internacional de Unidades (SI), as grandezas fundamentais e suas respectivas unidades são as seguintes:

Unidades Fundamentais do SI:

Grandeza	Nome	Símbolo	•
comprimento	metro	m	
tempo	segundo	S	→ Lab. Mecânica
Massa	quilograma	kg	
Quantidade de matéria	mol	mol	
Corrente elétrica	ampère	Α	
temperatura	Kelvin	K	

Exemplo: o metro é definido como a distância percorrida pela luz no vácuo em um intervalo de tempo de $\frac{1}{299.792.458}$ do segundo.

Sistema Internacional de Unidades

 Para grandezas que são combinações das fundamentais, as unidades no SI dependem da combinação. Exemplo:

[aceleração] =
$$\left[\frac{\text{comprimento}}{\text{tempo} \times \text{tempo}}\right] = \left[\frac{m}{s^2}\right]$$
.

 Algumas unidades do SI derivadas das unidades fundamentais têm nome e símbolo próprios. Exemplos:

Grandeza	Nome da Unidade Derivada no SI	Símbolo	Equivalências
Frequência	hertz	Hz	$1 Hz = 1 s^{-1}$
Força	newton	N	1 N = 1 kg.m/s ²
Pressão, tensão mecânica	pascal	Pa	$1 \text{ Pa} = 1 \text{ N/m}^2$
Energia, trabalho, quantidade de calor	joule	J	1 J = 1 N.m
Potência e fluxo de energia	watt	W	1 W = 1 J/s
Carga elétrica	coulumb	С	1 C = 1 A.s
Potencial elétrico, diferença de potencial, tensão elétrica, força eletromotriz	volt	V	1 V = 1 J/C
Capacitância	farad	F	1 F = 1 C/V
Resistência elétrica	ohm	Ω	$1\Omega = 1 \text{ V/A}$

Potências de dez vs unidades

- Muitas vezes, encontramos valores muito grandes ou muito pequenos de grandezas físicas expressas no SI.
- Nesses casos, é conveniente usar a notação científica (potência de 10) ou expressar as unidades com o prefixo correspondente.
- Não é necessário decorar todos os prefixos, mas é importante que você saiba associar os de uso mais frequente com a potência de 10 correspondente.

Pr	efixo	10 ⁿ	Equivalente numérico
Nome	Símbolo	10	Equivalente numerico
yotta	Y	10 ²⁴	1 000 000 000 000 000 000 000 000
zetta	Z		1 000 000 000 000 000 000 000
exa	E	10 ¹⁸	1 000 000 000 000 000 000
peta	Р	10 ¹⁵	1 000 000 000 000 000
tera	T	10 ¹²	1 000 000 000 000
giga	G	10 ⁹	1 000 000 000
mega	M	10 ⁶	1 000 000
quilo	k	10 ³	1 000
hecto	h	10 ²	100
deca	da	10 ¹	10
ne	nhum	10 ⁰	1
deci	d	10 ⁻¹	0,1
centi	С	10 ⁻²	0,01
mili	m	10^{-3}	0,001
micro	μ	10 ⁻⁶	0,000 001
nano	n		0,000 000 001
pico	р	10 ⁻¹²	0,000 000 000 001
femto	f	10 ⁻¹⁵	0,000 000 000 000 001
atto	a		0,000 000 000 000 001
zepto	Z	10-21	0,000 000 000 000 000 000 001
yocto	у	10 ⁻²⁴	0,000 000 000 000 000 000 000 001

Instrumentos de medição

Instrumentos de medição

- Estabelecido um sistema de unidades, é possível desenvolver instrumentos para se medir as grandezas.
- Instrumentos típicos usados no Laboratório de Mecânica.

Instrumentos de medição

A **resolução** do instrumento de medição é a menor variação da grandeza medida que é <u>perceptível</u> no mostrador.

Mostrador analógico

A resolução pode ser:

- O valor da menor separação entre duas marcas (traços)
- Uma fração <u>perceptível</u> desta menor separação.

Menor separação Fração perceptível

1 mm 0,5 mm

→ ←

Mostrador digital

A resolução é o valor do menor incremento da grandeza observado no mostrador.

Paquímetro

- O paquímetro é utilizado para medir dimensões lineares (externas e internas) como comprimento, largura, espessura e profundidade.
- No Laboratório de Mecânica, utilizamos paquímetros com escala em milímetros e resolução de 0,05 mm.
- Esta resolução é dez vezes maior que a de uma régua milimetrada. Portanto, a medição com o paquímetro nos dá uma maior precisão do resultado.
- Como se lê o valor de uma medição usando o paquímetro?

Paquímetro

- 1. Determine a parte inteira contando o número de traços à esquerda do "zero" da escala auxiliar.
- 2. Determine a parte decimal verificando qual dos traços da escala auxiliar se alinha com um traço da escala principal.
- Utilize o paquímetro em sua bancada para medir alguns objetos.

Algarismos significativos de uma medição são o conjunto de todos os algarismos corretos mais um algarismo duvidoso.

Exemplo: medindo o comprimento de uma barra usando réguas com resoluções diferentes.

Régua 1:

- Extremidade da barra está entre a marca 9 e 10 cm.
- Usando bom senso, <u>estimo</u> que esta extremidade está a 0,6cm de distância da marca 9cm.
- Declaro o resultado da medição como L = 9,6 cm

- Neste resultado, 9 é o algarismo correto (não há dúvidas sobre este valor).
- Já o algarismo 6 é duvidoso; outros poderiam estimar um valor ligeiramente diferente.
- Seria incorreto estimar algum valor para a 2ª casa decimal

Régua 2:

- Extremidade da barra está entre a marca 9,6 e 9,7 cm.
- Estimo o valor da 2^a casa decimal e declaro o resultado da medição como L = 9,65 cm

- Neste resultado, 9 e 6 são os algarismos corretos (não há dúvidas sobre estes valores).
- Já o algarismo 5 é duvidoso e seria incorreto estimar algum valor para a 3ª casa decimal.

Algumas regras:

- 1. São algarismos significativos todos aqueles contados, da esquerda para a direita, a partir do primeiro algarismo diferente de zero. **Exemplos:**
 - $m = 13{,}3400 \text{ kg} \rightarrow \text{seis algarismos significativos}$;
 - $L = 0.2430 \,\mathrm{m} \rightarrow \mathrm{quatro\ algarismos\ significativos};$
 - $t = 0.0000021 \,\mathrm{s} \rightarrow \mathrm{dois\ algarismos\ significativos}$.
- 2. Ao se efetuar mudanças de unidade o número de algarismos significativos não se altera. **Exemplos:**
 - m = 13,3400 kg = 13340,0 g;
 - L = 0.2430 m = 24.30 cm;
 - $t = 0.0000021 \text{ s} = 2.1 \mu\text{s}$.

3. Potências de 10 não são parte dos algarismos significativos

- $m = 13,3400 \text{ kg} = 13340,0 \text{ g} = 1,3340 \times 10^4 \text{ g};$
- $L = 0.2430 \text{ m} = 24.30 \text{ cm} = 243.0 \times 10^{-3} \text{ m}$;
- $t = 0.0000021 \text{ s} = 2.1 \mu\text{s} = 2.1 \times 10^{-6} \text{ s}.$

raio (mm)	significativos
57,896	5
$5,79 \times 10^{1}$	3
5,789600 x 10 ¹	7
6 x 10 ²	1

4. Operações*

- Existem algumas regras, não muito rígidas, para operações de adição/subtração e multiplicação/divisão com algarismos significativos. Todas elas requerem uma dose de bom senso.
- Exemplos:
 - v = (2,243 m)/(1,4 s) = 1,602142857 m/s;
 - X = 1,2345 + 0,12 = 1,3545 = 1,35

*Observações:

- O número de algarismos significativos do resultado de uma medição é determinado pela incerteza (próximo tópico).
- Em cálculos intermediários, não se preocupe com essas regras. Use os algarismos disponíveis e faça o truncamento ou arredondamento apenas após conhecer a incerteza.

- Toda medição está sujeita a alguma incerteza, ou seja, sempre haverá uma margem de dúvida no resultado obtido.
- A incerteza pode ser devida a um ou mais dos seguintes fatores: à resolução finita do instrumento de medição, ao processo utilizado, ao operador, ao ambiente, entre outros.
- A forma mais comum de se expressar o resultado de uma medição é a seguinte:

(valor da grandeza ± incerteza da medição) [unidade]

o que nos dá uma indicação quantitativa da qualidade do resultado.

(valor da grandeza ± incerteza da medição) [unidade]

- A incerteza é fornecida com um (ou, no máximo, dois) algarismo(s) significativo(s).
- A incerteza determina o número de algarismos significativos do resultado e incide sobre o seu algarismo duvidoso.

Formas corretas

- $g = (9.78 \pm 0.05) \text{ m/s}^2$
- $v = (3.839 \pm 0.018) \times 10^8 \text{m/s}$ ou $(3.84 \pm 0.02) \times 10^8 \text{ m/s}$

Formas incorretas

- $g = (9.8 \pm 0.05) \text{ m/s}^2$ (resultado incompatível com a incerteza)
- $v = (3.84 \pm 0.018345) \times 10^8 \text{ m/s}$ (excesso de algarismos)
- $m = (1,0374 \pm 0,02)$ kg (resultado mais preciso que a incerteza?)

Incerteza na leitura de escalas

Régua 1. Melhor estimativa: 9,5 < L < 9,7 cm. Então:

$$L = (9,6 \pm 0,1)$$
 cm.

Régua 2. Melhor estimativa: 9,60 < L < 9,70 cm. Então:

$$L = (9.65 \pm 0.05)$$
 cm.

Incerteza na leitura de escalas

- No exemplo anterior, a incerteza da medição coincidiu com a resolução do instrumento.
- Porém, enquanto a resolução é uma característica do instrumento, <u>a incerteza depende do processo de medição</u>.
- Exemplo: medindo o diâmetro de uma moeda e a largura de um campo de futebol com uma régua milimetrada.

Incertezas em medições repetidas

- Uma medição nem sempre se restringe à leitura de uma escala.
- Muitas vezes é necessário repetir uma medição várias vezes, sob as mesmas condições.
- Se uma grandeza x é medida n vezes e os valores $(x_1, x_2, ..., x_n)$ são obtidos, qual o resultado final e sua incerteza?
- Em geral, a melhor estimativa para *x* é seu **valor médio**:

$$x_{\text{médio}} = \bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{1}{n} \sum_{j=1}^{n} x_j$$

e a incerteza é o desvio padrão da média das observações:

$$\Delta x = \sqrt{\frac{1}{n(n-1)}} \sum_{j=1}^{n} (x_j - \bar{x})^2.$$

Incertezas em medições repetidas

- Exemplo: Medida do intervalo de tempo entre o lançamento de um projétil e o instante em que ele toca o chão.
- Reflita: a resolução do cronômetro é a maior fonte de incerteza?
 Uma medição é suficiente para uma boa estimativa do tempo?

$$\bar{t} = \frac{(t_1 + t_2 + t_3 + t_4 + t_5)}{5}$$
$$= 1,9560 \text{ s}$$

$$\Delta t = \sqrt{\frac{1}{5(5-1)} \sum_{j=1}^{N} (t_j - \bar{t})^2}$$
$$= 0.0260 \text{ s}$$

Lançamento	$t_{j}\left(\mathbf{s}\right)$	$[t_j - \bar{t}](s)$
1	1,91	-0,046
2	1,89	-0,066
3	2,01	0,054
4	1,95	-0,006
5	2,02	0,064

Declare então:

$$t = (1,96 \pm 0,03) \text{ s}$$

- Para uma introdução mais detalhada ao tópico "Análise de Incertezas", consulte nosso material de apoio em https://www.fisica.ufmg.br/ciclo-basico/disciplinas/feb-mecanica/
- Comecem a resolver as questões da lista de exercícios relativas ao conteúdo da aula de hoje.

Próxima aula

 Estudaremos a propagação de incertezas em medições indiretas e a análise gráfica de dados experimentais.
 Recomenda-se a leitura do tutorial do programa de gráficos SciDaViS, disponível na página da disciplina.