Linear regression

Course of Machine Learning Master Degree in Computer Science University of Rome "Tor Vergata" a.a. 2020-2021

Giorgio Gambosi

Linear models

• Linear combination of input features

$$y(\mathbf{x},\mathbf{w})=w_0+w_1x_1+w_2x_2+\ldots+w_Dx_D$$
 with $\mathbf{x}=(x_1,\ldots,x_D)$

- Linear function of parameters w
- Linear function of features x

More compactly,

$$y(\mathbf{x},\mathbf{w}) = \mathbf{w}^T\overline{\mathbf{x}}$$

where $\overline{\mathbf{x}} = (1, x_1, \dots, x_D)$

Base functions

• Extension to linear combination of base functions ϕ_1,\ldots,ϕ_M defined on \mathbf{R}^D

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=1}^{M} w_j \phi_j(\mathbf{x})$$

- Each vector \mathbf{x} in \mathbf{R}^D is mapped to a new vector in \mathbf{R}^M , $\phi(\mathbf{x})=(\phi_1(\mathbf{x}),\dots,\phi_M(\mathbf{x}))$
- the problem is mapped from a D-dimensional to a M-dimensional space (usually with M>D)

Base functions

- Many types:
 - Polynomial (global functions)

$$\phi_i(x) = x^j$$

- Gaussian (local)

$$\phi_j(x) = \exp\left(-\frac{(x - \mu_j)^2}{2s^2}\right)$$

- Sigmoid (local)

$$\phi_j(x) = \sigma\left(\frac{x - \mu_j}{s}\right) = \frac{1}{1 + e^{-\frac{x - \mu_j}{s}}}$$

- Hyperbolic tangent (local)

$$\phi_j(x) = \tanh(x) = 2\sigma(x) - 1 = \frac{1 - e^{-\frac{x - \mu_j}{s}}}{1 + e^{-\frac{x - \mu_j}{s}}}$$

Base functions

Observe that a set of items (extended by 1 values)

$$\overline{\mathbf{X}} = \begin{pmatrix} - & \overline{\mathbf{x}}_1 & - \\ & \vdots & \\ - & \overline{\mathbf{x}}_2 & - \end{pmatrix} \overline{\mathbf{x}}_N = \begin{pmatrix} 1 & x_{11} & \cdots & x_{1D} \\ 1 & x_{21} & \cdots & x_{2D} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{N1} & \cdots & x_{ND} \end{pmatrix}$$

is transformed into

$$\Phi = \begin{pmatrix} \phi_1(\mathbf{x}_1) & \phi_2(\mathbf{x}_1) & \cdots & \phi_M(\mathbf{x}_1) \\ \phi_1(\mathbf{x}_2) & \phi_2(\mathbf{x}_2) & \cdots & \phi_M(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_1(\mathbf{x}_N) & \phi_2(\mathbf{x}_N) & \cdots & \phi_M(\mathbf{x}_N) \end{pmatrix}$$

Maximum likelihood and least squares

• Assume an additional gaussian noise

$$t = y(\mathbf{x}, \mathbf{w}) + \varepsilon$$

with

$$p(\varepsilon) = \mathcal{N}(\varepsilon|0, \sigma^2)$$

• Then,

$$p(t|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(t|y(\mathbf{x}, \mathbf{w}), \sigma^2)$$

and the expectation of the conditional distribution is

$$extbf{\textit{E}}[t|\mathbf{x}] = \int tp(t|\mathbf{x})dt = y(\mathbf{x},\mathbf{w})$$

Maximum likelihood and least squares

 $\bullet\,$ The likelihood of a given training set $\boldsymbol{X},\boldsymbol{t}$ is

$$p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = \prod_{i=1}^{N} \mathcal{N}(t_i|\mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_i), \sigma^2)$$

• The corresponding log-likelihood is then

$$\ln p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \sigma^2) = \sum_{i=1}^{N} \ln \mathcal{N}(t_i|\mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_i), \sigma^2) = N \ln \sigma - \frac{N}{2} \ln(2\pi) - \frac{1}{\sigma^2} E_D(\mathbf{w})$$

where

$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^N \left(t_i - \mathbf{w}^T \phi(\mathbf{x}_i) \right)^2 = \frac{1}{2} (\Phi \mathbf{w} - \mathbf{y})^T (\Phi \mathbf{w} - \mathbf{y})$$

Maximum likelihood and least squares

- Maximizing the log-likelihood w.r.t. \mathbf{w} is equivalent to minimizing the error function $E_D(\mathbf{w})$
- ullet Maximization performed by setting the gradient to 0

$$\begin{aligned} \mathbf{0} &= \frac{\partial}{\partial \mathbf{w}} \ln p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = \sum_{i=1}^{N} \left(t_i - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_i) \right) \boldsymbol{\phi}(\mathbf{x}_i)^T \\ &= \sum_{i=1}^{N} t_i \boldsymbol{\phi}(\mathbf{x}_i)^T - \mathbf{w}^T \left(\sum_{i=1}^{N} \boldsymbol{\phi}(\mathbf{x}_i) \boldsymbol{\phi}(\mathbf{x}_i)^T \right) \end{aligned}$$

• Which results into the normal equations for least squares

$$\mathbf{w}_{ML} = (\Phi^T \Phi)^{-1} \Phi^T \mathbf{t}$$

Least squares geometry

- $\mathbf{t} = (t_1, \dots, t_N)^T$ is a vector in \mathbf{R}^N
- Each basis function ϕ_j applied to $\mathbf{x}_1,\dots,\mathbf{x}_N$ provides a vector $\varphi_j=(\phi_j(\mathbf{x}_1),\dots,\phi_j(\mathbf{x}_N))^T\in\mathbf{R}^N$
- If M < N, vectors $\varphi_0, \dots, \varphi_{M-1}$ define a subspace $\mathcal{S} \subset \mathbf{R}^N$ of dimension (at most) M
- $\mathbf{y} = (y(\mathbf{x}_1, \mathbf{w}), \dots, y(\mathbf{x}_N, \mathbf{w}))^T$ is a vector in \mathbf{R}^N : it can be represented as the linear combination $\mathbf{y} = \sum_{i=0}^{M-1} w_i \phi(\mathbf{x}_i)$. Hence, it belongs to \mathcal{S}
- Given $\mathbf{t} \in \mathbf{R}^N$, $\mathbf{y} \in \mathbf{R}^N$ is the vector in subspace \mathcal{S} at minimal squared distance from \mathbf{t}
- Given $\mathbf{t} \in \mathbf{R}^N$ and vectors $\phi_0, \dots, \phi_{M-1}$, \mathbf{w}_{ML} is such that \mathbf{y} is the vector on $\mathcal S$ nearest to \mathbf{t}

Gradient descent

- The minimum of $E_D(\mathbf{w})$ can be computed numerically, by means of gradient descent methods
- Initial assignment $\mathbf{w}^{(0)} = (w_0^{(0)}, w_1^{(0)}, \dots, w_D^{(0)})$, with a corresponding error value

$$E_D(\mathbf{w}^{(0)}) = \frac{1}{2} \sum_{i=1}^{N} \left(t_i - (\mathbf{w}^{(0)})^T \boldsymbol{\phi}(\mathbf{x}_i) \right)^2$$

• Iteratively, the current value $\mathbf{w}^{(i-1)}$ is modified in the direction of steepest descent of $E_D(\mathbf{w})$, that is the one corresponding to the negative of the gradient evaluated at $\mathbf{w}^{(i-1)}$

• At step i, $\boldsymbol{w}_{j}^{(i-1)}$ is updated as follows:

$$w_j^{(i)} := w_j^{(i-1)} - \eta \frac{\partial E_D(\mathbf{w})}{\partial w_j} \bigg|_{\mathbf{w}^{(i-1)}}$$

Gradient descent

• In matrix notation:

$$\mathbf{w}^{(i)} := \mathbf{w}^{(i-1)} - \eta \frac{\partial E_D(\mathbf{w})}{\partial \mathbf{w}} \Big|_{\mathbf{w}^{(i-1)}}$$

• By definition of $E_D(\mathbf{w})$:

$$\mathbf{w}^{(i)} := \mathbf{w}^{(i-1)} - \eta(t_i - \mathbf{w}^{(i-1)} \boldsymbol{\phi}(\mathbf{x}_i)) \boldsymbol{\phi}(\mathbf{x}_i)$$

Regularized least squares

• Regularization term in the cost function

$$E_D(\mathbf{w}) + \lambda E_W(\mathbf{w})$$

 $E_D(\mathbf{w})$ dependent from the dataset (and the parameters), $E_W(\mathbf{w})$ dependent from the parameters alone.

• The regularization coefficient controls the relative importance of the two terms.

Regularized least squares

• Simple form

$$E_W(\mathbf{w}) = \frac{1}{2}\mathbf{w}^T\mathbf{w} = \frac{1}{2}\sum_{i=0}^{M-1}w_i^2$$

• Sum-of squares cost function: weight decay

$$E(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} \{t_i - \mathbf{w}^T \phi(\mathbf{x}_i)\}^2 + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w} = \frac{1}{2} (\Phi \mathbf{w} - \mathbf{y})^T (\Phi \mathbf{w} - \mathbf{y}) + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w}$$

with solution

$$\mathbf{w} = (\lambda \mathbf{I} + \Phi^T \Phi)^{-1} \Phi^T \mathbf{t}$$

Regularization

• A more general form

$$E(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} \{t_i - \mathbf{w}^T \phi(\mathbf{x}_i)\}^2 + \frac{\lambda}{2} \sum_{j=0}^{M-1} |w_j|^q$$

• The case q=1 is denoted as lasso: sparse models are favored

Bias vs variance: an example

- Consider the case of function $y=\sin 2\pi x$ and assume L=100 training sets $\mathcal{T}_1,\ldots,\mathcal{T}_L$ are available, each of size n=25.
- Given M=24 gaussian basis functions $\phi_1(x),\ldots,\phi_M(x)$, from each training set \mathcal{T}_i a prediction function $y_i(x)$ is derived by minimizing the regularized cost function

$$E_D(\mathbf{w}) = \frac{1}{2}(\Phi\mathbf{w} - \mathbf{t})^T(\Phi\mathbf{w} - \mathbf{t}) + \frac{\lambda}{2}\mathbf{w}^T\mathbf{w}$$

An example

Left, a possible plot of prediction functions $y_i(\mathbf{x})$ ($i=1,\ldots,100$), as derived, respectively, by training sets $\mathcal{T}_i, i=1,\ldots,100$ setting $\ln\lambda=2.6$. Right, their expectation, with the unknown function $y=\sin2\pi x$.

The prediction functions $y_i(\mathbf{x})$ do not differ much between them (small variance), but their expecation is a bad approximation of the unknown function (large bias).

An example

Plot of the prediction functions obtained with $\ln \lambda = -0.31$.

An example

Plot of the prediction functions obtained with $\ln \lambda = -2.4$. As λ decreases, the variance increases (prediction functions $y_i(\mathbf{x})$ are more different each other), while bias decreases (their expectation is a better approximation of $y = \sin 2\pi x$).

5

An example

- Plot of (bias)², variance and their sum as unctions of λ : las λ increases, bias increases and varinace decreases. Their sum has a minimum in correspondence to the optimal value of λ .
- The term $E_{\mathbf{x}}[\sigma^2_{v|\mathbf{x}}]$ shows an inherent limit to the approximability of $y=\sin 2\pi x$.

Bayesian approach to regression

- Applying maximum likelihood to determine the values of model parameters is prone to overfitting: need of a regularization term $\mathcal{E}(\mathbf{w})$.
- In order control model complexity, a bayesian approach assumes a prior distribution of parameter values.

Prior distribution

Posterior proportional to prior times likelihood: likelihood is gaussian (gaussian noise).

$$p(\mathbf{t}|\Phi, \mathbf{w}, \beta) = \prod_{i=1}^{n} \mathcal{N}(t_i|\mathbf{w}^T \phi(\mathbf{x}_i), \beta^{-1})$$

Conjugate of gaussian is gaussian: choosing a gaussian prior distribution of ${\bf w}$

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_0, \mathbf{S}_0)$$

results into a gaussian posterior distribution

$$p(\mathbf{w}|\mathbf{t}, \Phi) = \mathcal{N}(\mathbf{w}|\mathbf{m}_N, \mathbf{S}_N) \propto p(\mathbf{t}, \Phi|\mathbf{w})p(\mathbf{w})$$

where

$$\mathbf{m}_N = \mathbf{S}_N (\mathbf{S}_0^{-1} \mathbf{m}_0 + \beta \Phi^T \mathbf{t})$$

$$\mathbf{S}_N^{-1} = \mathbf{S}_0^{-1} + \beta \Phi^T \Phi$$

Prior distribution

A common approach: zero-mean isotropic gaussian prior distribution of \boldsymbol{w}

$$p(\mathbf{w}|\alpha) = \prod_{i=0}^{M-1} \left(\frac{\alpha}{2\pi}\right)^{1/2} e^{-\frac{\alpha}{2}w_i^2}$$

- Parameters in **w** are assumed independent and identically distributed, according to a gaussian with mean **0**, uniform variance $\sigma^2 = \alpha^{-1}$ and null covariance.
- Prior distribution defined with a hyper-parameter α , inversely proportional to the variance.

Posterior distribution

Given the likelihood

$$p(\mathbf{t}|\Phi, \mathbf{w}, \beta) = \prod_{i=1}^{n} e^{-\frac{\beta}{2}(t_i - \mathbf{w}^T \phi(x_i))^2}$$

the posterior distribution for \mathbf{w} derives from Bayes' rule

$$p(\mathbf{w}|\mathbf{t},\Phi,\alpha,\sigma) = \frac{p(\mathbf{t}|\Phi,\mathbf{w},\sigma)p(\mathbf{w}|\alpha)}{p(\mathbf{t}|\Phi,\alpha,\sigma)} \propto p(\mathbf{t}|\Phi,\mathbf{w},\sigma)p(\mathbf{w}|\alpha)$$

In this case

It is possible to show that, assuming

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}) \qquad \qquad p(\mathbf{t}|\mathbf{w}, \Phi) = \mathcal{N}(\mathbf{t}|\mathbf{w}^T \Phi, \beta^{-1}\mathbf{I})$$

the posterior distribution is itself a gaussian

$$p(\mathbf{w}|\mathbf{t}, \Phi, \alpha, \sigma) = \mathcal{N}(\mathbf{w}|\mathbf{m}_N, \mathbf{S}_N)$$

with

$$\mathbf{S}_N = (\alpha \mathbf{I} + \beta \Phi^T \Phi)^{-1}$$
 $\mathbf{m}_N = \beta \mathbf{S}_N \Phi^T \mathbf{t}$

In this case

Note that as $\alpha \to 0$ the prior tends to have infinite variance, and we have minimum information on **w** before the training set is considered. In this case,

$$\mathbf{m}_N \to (\Phi^T \beta \mathbf{I} \Phi)^{-1} (\Phi^T \beta \mathbf{I} \mathbf{t}) = (\Phi^T \Phi)^{-1} (\Phi^T \mathbf{t})$$

that is \mathbf{w}_{ML} , the ML estimation of \mathbf{w} .

Maximum a Posteriori

- Given the posterior distribution $p(\mathbf{w}|\Phi,\mathbf{t},\alpha,\beta)$, we may derive the value of \mathbf{w}_{MAP} which makes it maximum (the *mode* of the distribution)
- This is equivalent to maximizing its logarithm

$$\log p(\mathbf{w}|\Phi, \mathbf{t}, \alpha, \beta) = \log p(\mathbf{t}|\mathbf{w}, \Phi, \beta) + \log p(\mathbf{w}|\alpha) - \log p(\mathbf{t}|\Phi, \beta)$$

and, since $p(\mathbf{t}|\Phi,\beta)$ is a constant wrt **w**

$$\mathbf{w}_{MAP} = \operatorname*{argmax}_{\mathbf{w}} \, \log p(\mathbf{w}|\Phi, \mathbf{t}, \alpha, \beta) = \operatorname*{argmax}_{\mathbf{w}} \, (\log p(\mathbf{t}|\mathbf{w}, \Phi, \beta) + \log p(\mathbf{w}|\alpha))$$

that is,

$$\mathbf{w}_{MAP} = \underset{\mathbf{w}}{\operatorname{argmin}} \ \left(-\log p(\mathbf{t}|\Phi, \mathbf{w}, \boldsymbol{\beta}) - \log p(\mathbf{w}|\boldsymbol{\alpha}) \right)$$

Derivation of MAP

By considering the assumptions on prior and likelihood,

$$\begin{split} w_{MAP} &= \underset{\mathbf{w}}{\operatorname{argmin}} \; \left(\frac{\beta}{2} \sum_{i=1}^{n} (t_i - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_i))^2 + \frac{\alpha}{2} \sum_{i=0}^{M-1} w_i^2 + \operatorname{constants} \right) \\ &= \underset{\mathbf{w}}{\operatorname{argmin}} \; \left(\sum_{i=1}^{n} (t_i - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_i))^2 + \frac{\alpha}{\beta} \sum_{i=0}^{M-1} w_i^2 \right) \end{split}$$

this is equivalent to considering a cost function

$$E_{MAP}(\mathbf{w}) = \sum_{i=1}^{n} (y_i - \mathbf{w}^T \boldsymbol{\phi}(x_i)) + \frac{\alpha}{\beta} \mathbf{w}^T \mathbf{w}$$

that is to a regularized min square function with $\lambda = \frac{\alpha}{\beta}$

Sequential learning

- The posterior after observing T_1 can be used as a prior for the next training set acquired.
- In general, for a sequence T_1, \ldots, T_n of training sets,

$$p(\mathbf{w}|T_1, \dots T_n) \propto p(T_n|\mathbf{w})p(\mathbf{w}|T_1, \dots T_{n-1})$$

$$p(\mathbf{w}|T_1, \dots T_{n-1}) \propto p(T_{n-1}|\mathbf{w})p(\mathbf{w}|T_1, \dots T_{n-2})$$

$$\dots$$

$$p(\mathbf{w}|T_1) \propto p(T_1|\mathbf{w})p(\mathbf{w})$$

Example

- Input variable x, target variable t, linear regression $y(x, w_0, w_1) = w_0 + w_1 x$.
- Dataset generated by applying function $y = a_0 + a_1 x$ (with $a_0 = -0.3$, $a_1 = 0.5$) to values uniformly sampled in [-1,1], with added gaussian noise ($\mu = 0$, $\sigma = 0.2$).
- Assume the prior distribution $p(w_0,w_1)$ is a bivariate gaussian with $\mu=\mathbf{0}$ and $\Sigma=\sigma^2\mathbf{I}=0.04\mathbf{I}$

Left, prior distribution of w_0, w_1 ; right, 6 lines sampled from the distribution.

Example

After observing item (x_1, y_1) (circle in right figure).

Left, posterior distribution $p(w_0, w_1|x_1, y_1)$; right, 6 lines sampled from the distribution.

Esempio

After observing items $(x_1, y_1), (x_2, y_2)$ (circles in right figure).

Left, posterior distribution $p(w_0, w_1|x_1, y_1, x_2, y_2)$; right, 6 lines sampled from the distribution.

Example

After observing a set of n items $(x_1, y_1), \ldots, (x_n, y_n)$ (circles in right figure).

Left, posterior distribution $p(w_0, w_1 | x_i, y_i, i = 1, ..., n)$; right, 6 lines sampled from the distribution.

Example

- As the number of observed items increases, the distribution of parameters w_0, w_1 tends to concentrate (variance decreases to 0) around a mean point a_0, a_1 .
- As a consequence, sampled lines are concentrated around $y = a_0 + a_1 x$.

Approaches to prediction in linear regression

Classical

- A value \mathbf{w}_{LS} for \mathbf{w} is learned through a point estimate, performed by minimizing a quadratic cost function, or equivalently by maximizing likelihood (ML) under the hypothesis of gaussian noise; regularization can be applied to modify the cost function to limit overfitting
- Given any \mathbf{x} , the obtained value \mathbf{w}_{LS} is used to predict the corresponding t as $y = \overline{\mathbf{x}}^T \mathbf{w}_{LS}$, where $\overline{\mathbf{x}}^T = (1, \mathbf{x})^T$, or, in general, as $y = \phi(\mathbf{x})^T \mathbf{w}_{LS}$

Approaches to prediction in linear regression

Bayesian point estimation

- The posterior distribution $p(\mathbf{w}|\mathbf{t}, \Phi, \alpha, \beta)$ is derived and a point estimate is performed from it, computing the mode \mathbf{w}_{MAP} of the distribution (MAP)
- Equivalent to the classical approach, as \mathbf{w}_{MAP} corresponds to \mathbf{w}_{LS} if $\lambda = \frac{\alpha}{\beta}$
- The prediction, for a value \mathbf{x} , is a gaussian distribution $p(y|\phi(\mathbf{x})^T\mathbf{w}_{MAP},\beta)$ for y, with mean $\phi(\mathbf{x})^T\mathbf{w}_{MAP}$ and variance β^{-1}

• The distribution is not derived directly from the posterior $p(\mathbf{w}|\mathbf{t}, \Phi, \alpha, \beta)$: it is built, instead, as a gaussian with mean depending from the expectation of the posterior, and variance given by the assumed noise.

Approaches to prediction in linear regression

Fully bayesian

• The real interest is not in estimating \mathbf{w} or its distribution $p(\mathbf{w}|\mathbf{t},\Phi,\alpha,\beta)$, but in deriving the predictive distribution $p(y|\mathbf{x})$. This can be done through expectation of the probability $p(y|\mathbf{x},\mathbf{w},\beta)$ predicted by a model instance wrt model instance distribution $p(\mathbf{w}|\mathbf{t},\Phi,\alpha,\beta)$, that is

$$p(y|\mathbf{x},\mathbf{t},\Phi,\alpha,\beta) = \int p(y|\mathbf{x},\mathbf{w},\beta) p(\mathbf{w}|\mathbf{t},\Phi,\alpha,\beta) d\mathbf{w}$$

• $p(y|\mathbf{x}, \mathbf{w}, \beta)$ is assumed gaussian, and $p(\mathbf{w}|\mathbf{t}, \Phi, \alpha, \beta)$ is gaussian by the assumption that the likelihood $p(\mathbf{t}|\mathbf{w}, \Phi, \beta)$ and the prior $p(\mathbf{w}|\alpha)$ are gaussian themselves and by their being conjugate

$$\begin{split} p(y|\mathbf{x},\mathbf{w},\beta) &= \mathcal{N}(y|\mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}),\beta) \\ p(\mathbf{w}|\mathbf{t},\Phi,\alpha,\beta) &= \mathcal{N}(\mathbf{w}|\beta \mathbf{S}_N \Phi^T \mathbf{t}, \mathbf{S}_N) \end{split}$$
 where $\mathbf{S}_N = (\alpha \mathbf{I} + \beta \Phi^T \Phi)^{-1}$

Approaches to prediction in linear regression

Fully bayesian

Under such hypothesis, $p(y|\mathbf{x})$ is gaussian

$$p(y|\mathbf{x}, \mathbf{y}, \Phi, \alpha, \beta) = \mathcal{N}(y|m(\mathbf{x}), \sigma^2(\mathbf{x}))$$

with mean

$$m(\mathbf{x}) = \beta \phi(\mathbf{x})^T \mathbf{S}_N \Phi^T \mathbf{t}$$

and variance

$$\sigma^2(\mathbf{x}) = rac{1}{eta} + oldsymbol{\phi}(\mathbf{x})^T \mathbf{S}_N oldsymbol{\phi}(\mathbf{x})$$

- $\frac{1}{\beta}$ is a measure of the uncertainty intrinsic to observed data (noise)
- $\phi(\mathbf{x})^T \mathbf{S}_N \phi(\mathbf{x})$ is the uncertainty wrt the values derived for the parameters \mathbf{w}
- as the noise distribution and the distribution of w are independent gaussians, their variances add
- $\phi(\mathbf{x})^T \mathbf{S}_N \phi(\mathbf{x}) \to 0$ as $n \to \infty$, and the only uncertainty remaining is the one intrinsic into data observation

Example

- predictive distribution for $y = \sin 2\pi x$, applying a model with 9 gaussian base functions and training sets of 1, 2, 4, 25 items, respectively
- left: items in training sets (sampled uniformly, with added gaussian noise); expectation of the predictive distribution (red), as function of x; variance of such distribution (pink shade within 1 standard deviation from mean), as a function of x

• right: items in training sets, 5 possible curves approximating $y=\sin 2\pi x$, derived through sampling from the posterior distribution $p(\mathbf{w}|\mathbf{t},\Phi,\alpha,\beta)$

Example

n = 2

n = 1

Example

n = 4

n = 25

Fully bayesian regression and hyperparameter marginalization

 \bullet In a fully bayesian approach, also the hyper-parameters α,β are marginalized

$$p(t|\mathbf{x},\mathbf{t},\Phi) = \int p(t|\mathbf{x},\mathbf{w},\beta) p(\mathbf{w}|\mathbf{t},\Phi,\alpha,\beta) p(\alpha,\beta|\mathbf{t},\Phi) d\mathbf{w} d\alpha d\beta$$

where, as seen before,

–
$$p(t|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(t|\mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}), \beta)$$

-
$$p(\mathbf{w}|\mathbf{t}, \Phi, \alpha, \beta) = \mathcal{N}(\mathbf{w}|\mathbf{m}_N, \mathbf{S}_N)$$
, with $\mathbf{S}_N = (\alpha \mathbf{I} + \beta \Phi^T \Phi)^{-1}$ e $\mathbf{m}_N = \beta \mathbf{S}_N \Phi^T \mathbf{t}$

this marginalization wrt $\mathbf{w}, \alpha, \beta$ is analytically intractable

• we may consider an approximation where point estimation is applied to derive hyper-parameter values by maximizing the posterior distribution $p(\alpha, \beta | \mathbf{t}, \Phi)$

Fully bayesian regression and hyperparameter marginalization

• since $p(\alpha, \beta | \mathbf{t}, \Phi) \propto p(\mathbf{t} | \Phi, \alpha, \beta) p(\alpha, \beta)$, if we assume that $p(\alpha, \beta)$ is relatively flat, then

$$\operatorname*{argmax}_{\alpha,\beta}p(\alpha,\beta|\mathbf{t},\Phi)\simeq\operatorname*{argmax}_{\alpha,\beta}p(\mathbf{t}|\Phi,\alpha,\beta)$$

and we may consider the maximization of the marginal likelihood (marginal wrt to coefficients w)

$$p(\mathbf{t}|\Phi, \alpha, \beta) = \int p(\mathbf{t}|\mathbf{w}, \Phi, \beta) p(\mathbf{w}|\alpha) d\mathbf{w}$$

ullet if we assume that $p(\Phi)$ is constant this is equivalent to maximize the evidence

$$p(\Phi, \mathbf{t} | \alpha, \beta) = p(\mathbf{t} | \Phi, \alpha, \beta) p(\Phi | \alpha, \beta) \propto p(\mathbf{t} | \Phi, \alpha, \beta)$$

Maximization of marginal likelihood wrt α

It can be shown that the value $\hat{\alpha}$ which maximizes the marginal likelihood verifies the equality

$$\frac{M}{2\hat{\alpha}} - \frac{1}{2}\mathbf{m}_N^T\mathbf{m}_N - \frac{1}{2}\sum_{i=1}^M \frac{1}{\lambda_i + \hat{\alpha}} = 0$$

where $\lambda_1, \ldots, \lambda_M$ are the eigenvalues of $\beta \Phi^T \Phi$.

That is,

$$\hat{\alpha}\mathbf{m}_{N}^{T}\mathbf{m}_{N}=M-\hat{\alpha}\sum_{i=1}^{M}\frac{1}{\lambda_{i}+\hat{\alpha}}=\sum_{i=1}^{M}\left(1-\frac{\hat{\alpha}}{\lambda_{i}+\hat{\alpha}}\right)=\sum_{i=1}^{M}\frac{\lambda_{i}}{\lambda_{i}+\hat{\alpha}}$$

and

$$\hat{\alpha} = \frac{\gamma}{\mathbf{m}_N^T \mathbf{m}_N} \qquad \qquad \text{with} \qquad \qquad \gamma = \sum_{i=1}^M \frac{\lambda_i}{\lambda_i + \hat{\alpha}}$$

This is an implicit solution for $\hat{\alpha}$, since both γ and \mathbf{m}_N depend on α , and some iterative procedure should be applied.

Maximization of marginal likelihood wrt β

Here, it can be proved that the value $\hat{\beta}$ which maximizes the marginal likelihood verifies the equality

$$\frac{N}{2\beta} - \frac{1}{2} \sum_{i=1}^{N} \left(t_i - \mathbf{m}_N^T \boldsymbol{\phi}(\mathbf{x}_i) \right)^2 - \frac{\gamma}{2\beta} = 0$$

that is,

$$rac{1}{\hat{eta}} = rac{1}{N-\gamma} \sum_{i=1}^{N} \left(t_i - \mathbf{m}_N^T oldsymbol{\phi}(\mathbf{x}_i)
ight)^2$$

Again, this is an implicit solution since both \mathbf{m}_N and γ depend on β and an iterative method should be applied also in this case.

Equivalent kernel

• The expectation of the predictive distribution can be written also as

$$y(\mathbf{x}) = \beta \phi(\mathbf{x})^T \mathbf{S}_N \Phi^T \mathbf{t} = \sum_{i=1}^n \beta \phi(\mathbf{x})^T \mathbf{S}_N \phi(\mathbf{x}_i) t_i$$

• The prediction can then be seen as a linear combination of the target values t_i of items in the training set, with weights dependent from the item values \mathbf{x}_i (and from \mathbf{x})

$$y(\mathbf{x}) = \sum_{i=1}^{n} \kappa(\mathbf{x}, \mathbf{x}_i) t_i$$

The weight function $\kappa(\mathbf{x}, \mathbf{x}') = \beta \phi(\mathbf{x})^T \mathbf{S}_N \phi(\mathbf{x}')$ is said equivalent kernel or linear smoother

Equivalent kernel

Right: plot on the plane (x, x_i) of a sample equivalent kernel, in the case of gaussian basis functions. Left: plot as a function of x_i for three different values of x

In deriving y, the equivalent kernel tends to assign greater relevance to the target values t_i corresponding to items x_i near to x.

Equivalent kernel

The same localization property holds also for different base functions.

Left, $\kappa(0,x')$ in the case of polynomial basis functions. Right, $\kappa(0,x')$ in the case of gaussian basis functions.

Equivalent kernel

• The covariance between $y(\mathbf{x})$ and $y(\mathbf{x}')$ is given by

$$\mathrm{cov}(\mathbf{x},\mathbf{x}') = \mathrm{cov}(\phi(\mathbf{x})^T\mathbf{w},\mathbf{w}^T\phi(\mathbf{x}')) = \Phi(\mathbf{x})^T\mathbf{S}_N\phi(\mathbf{x}') = \frac{1}{\beta}\kappa(\mathbf{x},\mathbf{x}')$$

predicted values are highly correlated at nearby points.

- Instead of introducing base functions which results into a kernel, we may define a localized kernel directly and use it to make predictions (this is the case of *gaussian processes*)
- The equivalent kernel can be expressed as inner product $\kappa(\mathbf{x}, \mathbf{x}') = \psi(\mathbf{x})^T \psi(\mathbf{x}')$ of a suitable set of functions

$$\psi(\mathbf{x}) = \beta^{1/2} \mathbf{S}_N^{1/2} \phi(\mathbf{x})$$

Alternative approach to linear regression

- First approach: define a set of base functions
 - used to derive w
 - or (by means of the resulting equivalent kernel) to directly computing $y(\mathbf{x})$ as a linear combination of training set items
- $\bullet\,$ New approach: a suitable kernel is defined and used to compute $y(\mathbf{x})$