```
| Inewcommand | Ingrit | Indian | Ingrit | Indian | Ingrit | Ing
```

虚時間グリーン関数に対するスパースモデリング入門

品岡寛 (埼玉大学)

center

前提知識

- 虚時間形式グリーン関数の基礎
- Python or Juliaの基礎知識
 - 。 基本文法
 - 。多次元配列

0 ...

©2023 品岡寛

何を学べるの?

- 虚時間グリーン関数のコンパクトな中間表現基底
 - $\circ~G(au) = \sum_{l=0}^{L-1} U_l(au) g_l + \epsilon$
 - $\circ L \propto \log \beta W$ (β : inverse temperature, W: band width)
 - $\circ \; \epsilon \propto \exp(-aL)$ (ϵ : truncation error, a>0)
- 虚時間・虚周波数におけるスパースメッシュ: # of points $\simeq L$.
- SparseIR.jl (Julia), sparse-ir (Python)

応用例

©2023 品岡寛

参考資料

- 固体物理 2021年6月 温度グリーン関数の情報圧縮に基づく高速量子多体計算法
- ↑の英語訳・加筆 + 新ライブラリsparse-irに更新 H. Shinaoka *et al.*, SciPost Phys. Lect. Notes 63 (2022)
- sparse-ir tutorials (大量のサンプルコード)
 https://spm-lab.github.io/sparse-ir-tutorial/index.html

概要

- Part I
 - i. 虚時間グリーン関数の性質のまとめ
 - ii. 中間表現基底
 - iii. スパースサンプリング法
- Part II
 - i. 開発環境のセットアップ

©2023 品岡寛

Imaginary-time Green's functions

Also known as Matsubara Green's functions:

$$G(au) = -\langle T_{ au}A(au)B(0)
angle,$$

where

- A(au), B(au) are operators in the Heisenberg picture ($A(au) = e^{ au H} A e^{- au H}$).
- ullet $\langle\cdots
 angle={
 m Tr}(e^{-eta H}\cdots)$, where eta=1/T ($k_{
 m B}=1$).

We use the Hamiltonian formalism throughout this lecture.

Imaginary-time Green's functions

$$G(au) = -\langle T_ au A(au) B(0)
angle$$

- ullet A and B are fermionic operators o G(au) = -G(au+eta)
- ullet A and B are bosonic operators o G(au)=G(au+eta)

In general, G(au) has a discontinuity at au=neta ($n\in\mathbb{N}$).

Imaginary-frequency (Matsubara) Green's functions

Matsubara Green's function:

$$G(\mathrm{i}\omega) = \int_0^eta \mathrm{d} au e^{\mathrm{i}\omega au} G(au).$$

From
$$G(\tau + \beta) = \mp G(\tau)$$
,

- $\omega = (2n+1)T\pi$ (fermion)
- $\omega=2nT\pi$ (boson)

$$(n \in \mathbb{N})$$

These discrete imaginary frequencies are denoted as Matsubara frequencies.

Spectral/Lehmann representation

$$G(z) = \int_{-\infty}^{+\infty} \mathrm{d}\omega' rac{
ho(\omega')}{z-\omega'},$$

where $\rho(\omega)$ is a spectral function.

- $z=\mathrm{i}\omega o \mathrm{Matsubara}$ Green's function
- $z=\omega+\mathrm{i}0^+ o$ Retarded Green's function (not used in this lecture)

How Greeen's function look like in τ ?

Example (single pole): $\rho(\omega) = \delta(\omega - \omega_0)$, $\omega_0 > 0$

$$G(\mathrm{i}\omega)=rac{1}{\mathrm{i}\omega-\omega_0}$$

$$G(au) = -rac{e^{- au\omega_0}}{1+e^{-eta\omega_0}}\;(0< au$$

At aupprox 0 , $G(au)\propto e^{- au\omega_0}$.

For $eta\omega_0\gg 1$, coexisting two time scales : $1/\omega_0\ll eta$

How Greeen's function look like in Matsubara frequency space

Example (single pole): $ho(\omega)=\delta(\omega-\omega_0)$, $\omega_0>0$

$$G(\mathrm{i}\omega)=rac{1}{\mathrm{i}\omega-\omega_0}$$

$$G(au) = -rac{e^{- au\omega_0}}{1+e^{-eta\omega_0}} \; (0< au$$

At high frequencies $|\omega|\gg |\omega_0|$, $G(\mathrm{i}\omega)pprox 1/(\mathrm{i}\omega)$.

For $eta\omega_0\gg 1$, coexisting two energy scales: $\omega_0\ll T=1/eta$

Difficulties in numerical simulations

If band width W and temperature T differ by orders of magnitudes as $eta W\gg 1$:

- ullet Slow power-law decay at high frequencies o Large truncation errors
- ullet Uniform dense mesh in au requires a huge number of points $\propto eta W$.

Example:

ullet Band width 10 eV, superconducting temperature 1 K pprox 0.1 meV $ightarrow eta W = 10^5$.

We need a compact basis with exponetial convergence.

Compact representations

- Intermediate represenation (sparse-ir)
 - Ab initio calculations (Eliashberg theory, GW, Lichtenstein formula)
 - Diagrammatic calculations (FLEX)
- Discrete Lehmann representation (implemented in sparse-ir as well)
- Minmax method (from Kresse's group)

Mathematical background: singular value decomposition (SVD)

Any complex-valued matrix A of size M imes N can be decomposed as

$$A=U\Sigma V^{\dagger},$$

where

$$U=(u_1,u_2,\cdots,u_L):M imes L,$$

$$V=(v_1,v_2,\cdots,v_L):N imes L,$$

where $u_i^\dagger u_j = \delta_{ij}$, $v_i^\dagger v_j = \delta_{ij}$, $L = \min(M, N)$. Σ is a diagonal matrix with nonnegative diagonal elements $s_1 \geq s_2 \geq \cdots \geq s_L \geq 0$.

- Unique up to a phase if the singular values s_i are non-degenerate.
- ullet If A is a real matrix, U and V are also real orthogonal matrices.

Intermediate representation

Shinaoka et al. (2017)

©2023 品岡寛

Analytic continuation kernel

Fermion & boson:

$$G(ackslash \mathbf{iv}) = \int_{-\infty}^{\infty} ackslash \mathrm{dd} \omega rac{1}{\underbrace{ackslash \mathbf{iv} - \omega}} A(ackslash \mathbf{iv})$$

 $K(\mathbf{iv},\omega)$ is system independent and $A(\omega)=-\mathbf{ii}(G^R(\omega)-G^A(\omega))$.

©2023 品岡寛

Analytic continuation kernel

$$G(au) = -\int_{-\infty}^{\infty} ackslash \mathrm{d} \mathrm{d} \omega K(au,\omega) A(\omega) \, ,$$

$$K(au,\omega) \equiv -rac{1}{eta} \sum_{egin{subarray}{c} {
m i}{
m v} \end{array}} e^{-igl({
m i}{
m v} au} K(igl({
m i}{
m v},\omega)) = egin{cases} rac{e^{- au\omega}}{1+e^{-eta\omega}} & ext{(fermion)} \ rac{e^{- au\omega}}{1-e^{-eta\omega}} & ext{(boson)} \end{cases}$$

where $0 < \tau < \beta$.

For bosons, $|K(\tau,\omega)| \to +\infty$ at $\omega \to 0$. We want to use the same kernel for fermion & boson. How?

Logistic kernel

$$G(au) = -\int_{-\infty}^{\infty} ackslash ext{dd} \omega K^{ ext{L}}(au,\omega)
ho(\omega),$$

where $K^{\mathrm{L}}(au,\omega)$ is the "logistic kernel" defined as

$$K^{
m L}(au,\omega) = rac{e^{- au\omega}}{1+e^{-eta\omega}},$$

and $ho(\omega)$ is the modified spectral function

$$ho(\omega) \equiv egin{cases} A(\omega) & ext{(fermion),} \ rac{A(\omega)}{ anh(eta\omega/2)} & ext{(boson).} \end{cases}$$

This trick has been widely used in the lattice QCD community for a long time. This was introduced into condensed matter physics in J. Kaye *et al.* (2022).

©2023 品岡寛 19/40

Singular value expansion

We introduce an ultraviolet $0<\bigvee\max<\infty$ and a dimensionless parameter $\Lambda\equiv\bigvee\max\beta$

Because $K^{\mathrm{L}} \in C^{\infty}$ and $\in L^2$:

$$K^{
m L}(au,\omega) = \sum_{l=0}^{\infty} U_l(au) S_l V_l(\omega),$$

for $-\backslash \text{wmax} \leq \omega \leq \backslash \text{wmax}$ and $0 \leq \tau \leq \beta$.

Singular functions: $\int_{-\backslash \text{wmax}}^{\backslash \text{wmax}} \backslash \text{dd}\omega V_l(\omega) V_{l'}(\omega) = \delta_{ll'}$ and $\int_0^\beta \backslash \text{dd}\tau U_l(\tau) U_{l'}(\tau) = \delta_{ll'}$.

ightarrow Indermediate represetation basis functions

Singular values

- Exponential decay
- Number of relevant S_l grows as $O(\log \Lambda)$ (only numerical evidence)

Basis functions

- ullet Even/odd functions for even/odd l
- *l* roots
- ullet Converge to Legendre polynomials at $\Lambda o 0$

Basis functions in Matsubara frequency

$$U_l(ackslash{ ext{iv}}) \equiv \int_0^eta ackslash{ ext{dd}} au e^{ackslash{ ext{iv}} au} U_l(au).$$

Fourier transform can be done numerically.

center

虚時間グリーン関数に対するスパースモデリング入門 **Expansion in IR**

$$G(au) = \sum_{l=0}^{L-1} G_l U_l(au) + \epsilon_L,$$

$$\hat{G}(\mathrm{i}
u) = \sum_{l=0}^{L-1} G_l \hat{U}_l(\mathrm{i}
u) + \hat{\epsilon}_L,$$

where $\epsilon_L,\ \hat{\epsilon}_Lpprox S_L.$ The expansion coefficients G_l can be determined from the spectral function as

$$G_l = -S_l \rho_l$$

where

$$ho_l = \int_{-\omega_{
m max}}^{\omega_{
m max}} {
m d}\omega
ho(\omega) V_l(\omega).$$

Convergence

If $|\rho_l|$ is bounded from above, $|G_l|$ converges as fast as S_l (system independent).

For
$$ho(\omega)=rac{1}{2}(\delta(\omega-1)+\delta(\omega+1)),$$
 $ho_l=\int_{-\omega_{\max}}^{\omega_{\max}}\mathrm{d}\omega
ho(\omega)V_l(\omega)=rac{1}{2}(V_l(1)+V_l(-1)).$

center

Reconstruction of spectral function

Q: Can you reconstruct a spectral function from numerical data of $G(\tau)$?

A: Very difficult

$$G(au) = G_{
m exact}(au) + \delta(au),$$

where $\delta(\tau)$ is noise.

$$\rho_l = -(S_l)^{-1}((G_l)_{\text{exact}} + \delta_l),$$

where $(G_l)_{\mathrm{exact}} = \int_0^\beta \backslash \mathrm{d}\mathrm{d} \tau U_l(\tau) G_{\mathrm{exact}}(\tau)$ and $\delta_l = \int_0^\beta \backslash \mathrm{d}\mathrm{d} \tau U_l(\tau) \delta(\tau)$.

Side story: Reconstructing spectral function

Q: Can you reconstruct a spectral function from numerical data of $G(\tau)$?

A: Very numerical unstable!

$$G(au) = G_{
m exact}(au) + \delta(au),$$

where $\delta(\tau)$ is noise.

$$ho_l = -(S_l)^{-1}((G_l)_{\mathrm{exact}} + \delta_l),$$

where
$$(G_l)_{\mathrm{exact}} = \int_0^\beta \backslash \mathrm{d}\mathrm{d} au U_l(au) G_{\mathrm{exact}}(au)$$
 and $\delta_l = \int_0^\beta \backslash \mathrm{d}\mathrm{d} au U_l(au) \delta(au)$.

Noise is amplified by small singular values. \rightarrow Reconstruction of spectral function is an ill-posed inverse problem. We need to use a regularized solver: MaxEnt, SpM, etc..

Sparse sampling

Li, Wallerberger, Chikano, Yeh, Gull, and Shinaoka (2000)

Sparse time and frequency meshes

Solving Dyson equation for given $\Sigma(\mathbf{iw})$:

$$G(ackslash\mathbf{i}\mathbf{w}) = (G_0^{-1}(ackslash\mathbf{i}\mathbf{w}) + \Sigma(ackslash\mathbf{i}\mathbf{w}))^{-1}$$

We do not want to solve the equation on a huge dense mesh 😢

Solve the equation on a sparse mesh of size L and transform the result to IR of size L

Heuristic choice of sampling points

Simple rule: extrema (or somewhere in between two adjacent roots) of U_L

$$\beta = 10$$
, $\backslash \text{wmax} = 10$, $L = 30$:

center

Heuristic choice of sampling points

Simple rule: extrema (or somewhere in between two adjacent roots) of U_{L}

$$\beta=10$$
, $\backslash \mathrm{wmax}=10$, $L=30$:

center

Transform from time/frequency to IR

- Well conditioned fitting problem
- Implemented in sparse-ir as stable linear transform

$$egin{aligned} G_l &= rgmin_{G_l} \sum_{k} \left| G(ackslash ext{tauk}) - \sum_{l=0}^{N_{ ext{smpl}}-1} U_l(ackslash ext{tauk}) G_l
ight|^2 \ &= (ackslash ext{Fmat}^+ oldsymbol{G})_l, \end{aligned}$$

where we define $(\mathbf{Fmat})_{kl} = U_l(\mathbf{tauk})$ and \mathbf{Fmat}^+ is its pseudo inverse.

©2023 品岡寛

Condition number

- Numerical stability determined by the condition number of \Fmat
- Lose only a few digits out of pprox 16 significant digits of 64bit float

Numerical demonstration

Two-pole model: $\beta = 100$, $\sqrt{\text{wmax}} = 1$: Almost 16 significant digits!

center

QA sessions

©2023 品岡寛

How to implement diagrammatic equations

Second-order perturbation theory

- Solving Dyson equation in frequency space
- Evaluating the self-energy in frequency space

Implementation of second-order perturbation theory

Online tutorial

Hubbard model on a square lattice:

$${\cal H} = -t \sum_{\langle i,j
angle} c^\dagger_{i\sigma} c_{j\sigma} + U \sum_i n_{i\uparrow} n_{i\downarrow} - \mu \sum_i (n_{i\uparrow} + n_{i\downarrow}),$$

where t=1 and $\mu=U/2$ (half filling). $c_{i\sigma}^{\dagger}$ $(c_{i\sigma})$ a creation (annihilation) operator for an electron with spin σ at site i.

Non-interacting band dispersion:

$$\epsilon(oldsymbol{k}) = -2(\cos k_x + \cos k_y),$$

where
$$oldsymbol{k}=(k_x,k_y)$$
 .

Self-consistent equations

虚時間グリーン関数に対するスパースモデリング入門 Self-consistent equations (sparse sampling)

$$G(\ \ \mathbf{k}) = rac{1}{\langle \mathbf{ivk}, m{k} \rangle} = rac{1}{\langle \mathbf{ivk} - \epsilon(m{k}) + \mu - \Sigma(\ \ \mathbf{k}) \rangle} \qquad (1)$$
 $\downarrow \qquad \qquad (1)$
 $\downarrow \qquad \qquad (1)$
 $\downarrow \qquad \qquad (1)$
 $\Sigma(\ \ \mathbf{v}) = U^2 G^2(\ \ \mathbf{v}) G(\beta - \ \mathbf{v}) \qquad (1)$
 $\downarrow \qquad \qquad (1)$

The whole calculaiton can be performed on sparse meshes.