

## **Description**

The VSM7N06 uses advanced trench technology and design to provide excellent  $R_{DS(ON)}$  with low gate charge. It can be used in a wide variety of applications.

#### **General Features**

V<sub>DS</sub> =60V,I<sub>D</sub> =7A

$$\begin{split} R_{DS(ON)} &< 30 m \Omega \ @ \ V_{GS} = 10 V \\ R_{DS(ON)} &< 35 m \Omega \ @ \ V_{GS} = 4.5 V \end{split} \qquad (Typ: \ 24 m \Omega) \end{split}$$

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Low gate to drain charge to reduce switching losses

## **Application**

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply





SOP-8

Schematic Diagram

## **Package Marking and Ordering Information**

| Device Marking | Device  | Device Package | Reel Size | Tape width | Quantity   |
|----------------|---------|----------------|-----------|------------|------------|
| VSM7N06-S8     | VSM7N06 | SOP-8          | Ø330mm    | 12mm       | 2500 units |

## Absolute Maximum Ratings (T<sub>A</sub>=25℃unless otherwise noted)

| Parameter                                        | Symbol                | Limit      | Unit                   |  |
|--------------------------------------------------|-----------------------|------------|------------------------|--|
| Drain-Source Voltage                             | V <sub>DS</sub>       | 60         | V                      |  |
| Gate-Source Voltage                              | V <sub>G</sub> s      | ±20        | V                      |  |
| Drain Current-Continuous                         | I <sub>D</sub>        | 7          | А                      |  |
| Drain Current-Continuous(T <sub>C</sub> =100 ℃)  | I <sub>D</sub> (100℃) | 5          | А                      |  |
| Pulsed Drain Current                             | I <sub>DM</sub>       | 40         | А                      |  |
| Maximum Power Dissipation                        | P <sub>D</sub>        | 2.1        | W                      |  |
| Operating Junction and Storage Temperature Range | $T_{J}, T_{STG}$      | -55 To 150 | $^{\circ}\!\mathbb{C}$ |  |

#### **Thermal Characteristic**

| Thermal Resistance, Junction-to-Ambient (Note 2) | $R_{	heta JA}$ | 60 | °C/W |
|--------------------------------------------------|----------------|----|------|



# Electrical Characteristics (T<sub>A</sub>=25 °C unless otherwise noted)

| Parameter                          | Symbol              | Condition                                                            | Min | Тур  | Max  | Unit |
|------------------------------------|---------------------|----------------------------------------------------------------------|-----|------|------|------|
| Off Characteristics                |                     |                                                                      | •   |      | •    |      |
| Drain-Source Breakdown Voltage     | BV <sub>DSS</sub>   | V <sub>GS</sub> =0V I <sub>D</sub> =250μA                            | 60  | 69   | -    | V    |
| Zero Gate Voltage Drain Current    | I <sub>DSS</sub>    | V <sub>DS</sub> =60V,V <sub>GS</sub> =0V                             | -   | -    | 1    | μA   |
| Gate-Body Leakage Current          | I <sub>GSS</sub>    | V <sub>GS</sub> =±20V,V <sub>DS</sub> =0V                            | -   | -    | ±100 | nA   |
| On Characteristics (Note 3)        |                     |                                                                      |     |      |      |      |
| Gate Threshold Voltage             | V <sub>GS(th)</sub> | $V_{DS}=V_{GS}$ , $I_{D}=250\mu A$                                   | 1.0 | 1.4  | 2.0  | V    |
| Drain-Source On-State Resistance   | R <sub>DS(ON)</sub> | $V_{GS}$ =10 $V$ , $I_D$ =7 $A$                                      |     | 24   | 30   | mΩ   |
|                                    |                     | V <sub>GS</sub> =4.5V, I <sub>D</sub> =6A                            |     | 27   | 35   | mΩ   |
| Forward Transconductance           | <b>g</b> FS         | V <sub>DS</sub> =5V,I <sub>D</sub> =7A                               |     | 20   | -    | S    |
| Dynamic Characteristics (Note4)    | 1                   |                                                                      | '   | l.   |      |      |
| Input Capacitance                  | C <sub>lss</sub>    | V <sub>DS</sub> =25V,V <sub>GS</sub> =0V,                            |     | 1920 |      | PF   |
| Output Capacitance                 | Coss                |                                                                      |     | 155  |      | PF   |
| Reverse Transfer Capacitance       | C <sub>rss</sub>    | F=1.0MHz                                                             |     | 116  |      | PF   |
| Switching Characteristics (Note 4) |                     |                                                                      | •   |      | •    |      |
| Turn-on Delay Time                 | t <sub>d(on)</sub>  |                                                                      | -   | 8    | -    | nS   |
| Turn-on Rise Time                  | t <sub>r</sub>      | $V_{DS}$ =30V, $R_L$ =4.7 $\Omega$                                   | -   | 5    | -    | nS   |
| Turn-Off Delay Time                | t <sub>d(off)</sub> | $V_{GS}$ =10V, $R_{GEN}$ =3 $\Omega$                                 | -   | 29   | -    | nS   |
| Turn-Off Fall Time                 | t <sub>f</sub>      |                                                                      | -   | 6    | -    | nS   |
| Total Gate Charge                  | Qg                  | \/ -20\/   -70                                                       | -   | 50   | -    | nC   |
| Gate-Source Charge                 | Q <sub>gs</sub>     | $V_{DS}$ =30V, $I_{D}$ =7A,<br>$V_{GS}$ =10V                         | -   | 8    | -    | nC   |
| Gate-Drain Charge                  | $Q_{gd}$            | VGS-10V                                                              | -   | 16   | -    | nC   |
| Drain-Source Diode Characteristic  | cs                  |                                                                      | •   |      | •    |      |
| Diode Forward Voltage (Note 3)     | V <sub>SD</sub>     | V <sub>GS</sub> =0V,I <sub>S</sub> =7A                               | -   | -    | 1.2  | V    |
| Diode Forward Current (Note 2)     | Is                  |                                                                      | -   | -    | 7    | Α    |
| Reverse Recovery Time              | t <sub>rr</sub>     | TJ = 25°C, I <sub>F</sub> =7A                                        | -   | 35   | -    | nS   |
| Reverse Recovery Charge            | Qrr                 | $di/dt = 100A/\mu s^{(Note3)}$                                       | -   | 43   | -    | nC   |
| Forward Turn-On Time               | t <sub>on</sub>     | Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) |     |      |      |      |

#### Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production



# **Test Circuit**

# 1) E<sub>AS</sub> test Circuits



# 2) Gate charge test Circuit



## 3) Switch Time Test Circuit





## Typical Electrical and Thermal Characteristics (Curves)



Vds Drain-Source Voltage (V)



Vgs Gate-Source Voltage (V)
Figure 2 Transfer Characteristics



Figure 3 Rdson- Drain Current



Figure 4 Rdson-JunctionTemperature





Figure 6 Source- Drain Diode Forward





0.8 0 25 50 75 100 125 150 175

2.2

2

1.8

 $T_J$ -Junction Temperature( $^{\circ}$ C) Figure 9 Power De-rating

Figure 7 Capacitance vs Vds



10 8 (Y) 6 4 4 2 2 0 0 25 50 75 100 125 150

**Figure 8 Safe Operation Area** 

T<sub>J</sub>-Junction Temperature(°C)

Figure 10 Current De-rating



Figure 11 Normalized Maximum Transient Thermal Impedance