KDD 2021 Tutorial

High-Dimensional Similarity Query Processing for Data Science

Jianbin Qin Shenzhen Institute of Computing Hong Kong University of Sciences Shenzhen University

Wei Wang Science and Technology

Chuan Xiao Osaka University and Nagoya University

Ying Zhang University of **Technology Sydney**

Yaoshu Wang Shenzhen Institute of Computing Sciences Shenzhen University

Neighbourhood-based Nearest Neighbour Search

■ Motivation

Delaunay graph – dual of Voronoi Diagram
For 2-dimension space, for a source node and a target node, always find a path

- Greedy without backtracking
- Expected log(n) steps

Curse of dimensionality!

Neighbourhood-based Nearest Neighbour Search

- KNN graph based methods
- Small world graph based methods
- □ Relative neighbourhood graph based methods
- Investigations under some specific settings
- Benchmark

KNN graph based methods

□ K nearest neighbour (KNN) graph

Each point x in the space \rightarrow a **node** x in the KNN graph For it's k nearest neighbours $\{y\}$ regarding the given distance metric \rightarrow add a directed edge $x \rightarrow y$

K = 2

KNN Graph Construction

- **Exact KNN graph construction**
 - Brute-force costs O(dn²)
 - Other exact algorithms, e.g., L2Knng (CIKM'15)
- Approximate KNN graph construction
 - Reducing to individual approximate KNN search e.g., based on LSH methods, but still expensive
 - Jointly find KNN for everyone, such as **L2 distance**: data partition (Jie JLMR'09), space filling curve (Connor TVVG'10). **sparse data**: KIFF (ICDE'16), etc

general metric distance: NN Descent (WWW'11), etc

Important properties for KNN graph construction

- General
- Scalable
- □ Space and index size
- □ Fast
- Accurate

Kgraph (www'10) - Motivation

Neighbors' neighbors are likely to be neighbors

- □ By exploring each point's neighbors' neighbors, we can
 - Recover missing true K-NN graph edges
 - □ Find approximations better than current ones

■ NN-Descent

- Initialize K-NN graph approximation
 Each point randomly picks K neighbors
- Loop, each point

Explores its current neighbors' neighbors

Updates K-NN list if better ones are found

Until no improvements can be made

Implementation: https://github.com/aaalgo/kgraph

Kgraph (www'10) - Analysis under assumptions

Assume growth restricted - doubling constant c :

$$|B_{r/2}(x)| \ge \frac{1}{c}|B_r(x)| \ge \frac{1}{c^2}|B_{2r}(x)|$$

- \square If for every x we have K points in $B_r(x)$
 - \rightarrow explore K^2 points in $B_{2r}(x)$

ightharpoonup expect to hit $\frac{K^2}{c^2}$ points in $B_{r/2}(x)$ Set $\frac{K^2}{c^2} \geq K$, or $K \geq c^2$, and we can repeatedly improve!

 \square It should converge in $\log \Delta$ iterations (Δ : diameter of dataset)

Kgraph (www'10), Computation Speedup

Local Join

- Incremental search
- Sampling
- □ Early termination

Search on KNN graph - Greedy heuristic

- [e.g., ChávezEric MCPR'10, Hajebi ICJAI'11, k-DR KDD'11]
- One or several random selected starting nodes
- Keep on finding the closest node among unvisited neighbor nodes
- Terminate when there is no improvement X_1 X_3 X_4

In practice, beam search: a candidate node list with limited budget is used to avoid local optimum

e.g., implementation of Kgraph [https://github.com/aaalgo/kgraph] from Dr. Wei Dong

Variants of kNN graph

Sparsification of KNN graph (k-DR KDD'11)

Diversified KNN graph (DPG TKDE'20, CoRR'16)

Pruned Bi-directed KNN graph (PANNG, SISAP'16)

k-DR KDD'11

□ k-DR graph: Degree reduced undirected kNN graph

How approximate?

Given: Failure probability 8 and # search trials L

Determined: Graph structural parameter k

Probability that at least one of L search trials succeeds $> 1-\delta$

k-DR KDD'11

Incremental Construction of a k-DR Graph

Greedy Search (GS) on Graph: Locally best selection

Slides from Prof. Sawada (KDD'11)

DPG TKDE'20, CoRR'16

DPG: Diversified Proximity Graph

(https://github.com/DBWangGroupUNSW/nns_benchmark/tree/master/algorithms/DPG)

Build KNN graph, then (1) choose K/2 diversified neighbours; (2) add reverse edge when necessary

PANNG, SISAP'16

PANNG: Pruned bi-directed KNN graph

(https://github.com/yahoojapan/NGT)

(1) bi-directed edge; (2) remove edges according to distance & connectivity

Neighbourhood-based Nearest Neighbour Search

- KNN graph based methods
- Navigable small world graph based methods
- Relative neighbourhood graph based methods
- Investigation under some specific settings
- Benchmark

NSW IS'14

Problem: Long paths in proximity graphs.

Idea: Social networks are searchable e.g. Milgram experiment.

NSW IS'14

Problem: Long paths in proximity graphs.

Idea: Social networks are searchable e.g. Milgram experiment.

Solution: Just add "long" links (e.g. with NSW algorithm) to get log(N) hops.

Construction of SW graph

- ☐ Navigable small world (NSW) graph (IS'14) Incremental construction of NSW graph:
- (1) k-NNS for each new node;
- (2) updates it's neighbours after other nodes are inserted (keep old edges)

HNSW TPAMI'20, CoRR'16

- In HNSW we split the graph into layers (fewer elements at higher levels)
- Search starts for the top layer. Greedy routing at each level and descend to the next layer.
- Maximum degree is capped while paths ~ log(N) → log(N) complexity scaling.
- Incremental construction

HNSW implementation

☐ Carefully implemented in C/C++:

https://github.com/nmslib/nmslib (2.1k stars)
https://github.com/nmslib/hnswlib (1k stars)

- ☐ Third-party open-source implementations in Java, C#, Rust, Go, Python, Julia, including the ones by Facebook (Faiss) and Microsoft (HNSW.Net)
- ☐ Used in production in Amazon, Snapchat, Yandex, Twitter, Pinterest and other s.

Neighbourhood-based Nearest Neighbour Search

- KNN graph based methods
- Small world graph based methods
- □ Relative neighbourhood graph based methods
- Investigation under some specific settings
- Benchmark

Relative Neighbourhood graph

Relative Neighbourhood Graph (RNG)

Vertices u and v are connected if there is no vertex in the intersection of the two balls.

Brute-force costs O(n³)

FANNG CVPR'16

Occlusion definition $edge(p_1,p_2) \ occludes \ edge(p_1,p_3) \ if$ $d(p_1,p_2) < d(p_1,p_3) \ and \ d(p_2,p_3) < d(p_1,p_3)$

☐ In practice, the trade-off between recall and computational cost is managed by placing a hard limit on the number of distances that will be computed.

NSG VLDB'19

Monotonic Path

distance to the end point monotonically decrease

Monotonic Search Network (MSN)

Any pair of nodes x, y, there is at least one monotonic path **property:** if q is a node of network, start from any node, we can find exact NN with greedy search (no backtracking!)

Relative Neighbourhood Graph (RNG)

is not a MSN [Dearholt SSC'88]

When the search goes from p to q, the path is non-monotonic (e.g., rq < pq)

NSG VLDB'19

Monotonic Relative Neighbourhood Graph (MRNG)

For any edge \overrightarrow{pq} , \overrightarrow{pq} $\in MRNG$ if and only if $lune_{pq} \cap S = \emptyset$ or

 $\forall r \in (lune_{pq} \cap S), \overrightarrow{pr} \notin MRNG.$

Add edges -> ensure the existence of monotonic path

The search from p to q is straightforward

NSG VLDB'19

- Navigating Spreading-out Graph (NSG): approximate MRNG
 - \square Build an approximate kNN graph.
 - Find the <u>Navigating Node</u>. (All search will start with this fixed node center of the graph).
 - □ For each node p, find a relatively small candidate neighbour set. (sparse)
 - Select the edges for p according to the definition of MRNG. (low complexity)
 - leverage Depth-First-Search tree (connectivity)

Neighbourhood-based Nearest Neighbour Search

- KNN graph based methods
- Small world graph based methods
- □ Relative neighbourhood graph based methods
- Investigation under some specific settings
- Benchmark

How ML can help?

- □ Learning to Route in Similarity Graphs (ICML'19)
- **Greedy routing**: Pick the best neighbor of the current vertex
- Beam search: Expand the most promising vertex in the candidate pool
- New method: Learn a routing algorithm directly from data

How ML can help?

□ Learning to Route in Similarity Graphs (NIPS'19)

- I.Imitation Learning: Train the agent to imitate expert decisions
- **2.Agent** is a beam search based on learned vertex representations
- **3. Expert** encourages the agent to follow a shortest path to the actual nearest neighbor v^*

How ML can help? (2)

Learned adaptive early termination (SIGMOD'20)

- Consider the IVF index and HNSW index
- Get features
- Apply the decision tree models (Gradient boosting decision trees)
- Integrated into the existing search algorithm

Feature	Description				
F0: query	The query vector				
	Each dimension is a single feature				
F1: c_xth_to_c_1st	Dist(q, xth nearest cluster centroid) /				
(10 features)	Dist(q, 1st nearest cluster centroid)				
	where $x \in \{10, 20, 30,, 90, 100\}$				
F2: d_1st	Dist(q, 1st neighbor after a certain				
	fixed amount of search)				
F3: d_10th	Dist(q, 10th neighbor after a certain				
	fixed amount of search)				
F4: d_1st_to_d_10th	F2: d_1st / F3: d_10th				
F5: d_1st_to_c_1st	F2: d_1st /				
	Dist(q, 1st nearest cluster centroid)				

Table 2: IVF index input features.

Feature	Description				
F0: query	The query vector				
	Each dimension is a single feature				
F1: d_start	Dist(q, base layer start node)				
F2: d_1st	Dist(q, 1st neighbor after a certain				
	fixed amount of search)				
F3: d 10th	Dist(q, 10th neighbor after a certain				
	fixed amount of search)				
F4: 1st to start	F2: d_1st / F1: d_start				
F5: 10th_to_start	F3: d_10th / F1: d_start				

Table 5: HNSW index input features.

Neighbourhood-based graph under other settings

Dealing with billion-scale data in a single machine

HNSW + Vector quantization (e.g., ECCV'18, CVPR'18, GRIP CIKM'19, SIGMOD'20)

- Increase the number of regions in the inverted (multi-) index (larger codebook)
- Use HNSW for fast search of promising regions

Slides from Dr. Baranchuk (ECCV'18)

Neighbourhood-based graph under other settings

Non-metric distance

- SISAP'19,
- Maximum Inner Product (MIP) distance: ip-NSW (NeurIPS'18), IPDG (EMNLP'19), ip-NSW+ (AAAI'19)

Slides from Prof. Chen and Dr. Yao (AAAI'19)

Angular neighbors

Neighbourhood-based graph under other settings

□ **GPU** (**SONG** ICDE'20, CoRR'13)

□ External memory (Zoom CoRR'18)

Distributed computing (JPDC'07)

Neighbourhood-based Nearest Neighbour Search

- KNN graph based methods
- □ Small world graph based methods
- □ Relative neighbourhood graph based methods
- Investigation under some specific settings
- Benchmark

Benchmarks for ANNS on high dimensional data

- □ https://github.com/erikbern/ann-benchmarks (NNS Benchmark IS'19)
- Benchmark for similarity search on series data (Benchmark VLDB'19)
- https://github.com/DBWangGroupUNSW/nns_benchmark (DPG TKDE'20, DPG CoRR'16)
- Many implementations/Libraries are public available, e.g.,:
- Non-Metric Space Library (NMSLIB) https://github.com/nmslib/nmslib available for Amazon Elasticsearch Service
- NGT (https://github.com/yahoojapan/NGT/wiki)
- FLANN http://www.cs.ubc.ca/~mariusm/flann
- ANN http://www.cs.umd.edu/~mount/ANN

Benchmark (DPG TKDE'20, CoRR'16)

Why do we need ANNS benchmark

- Coverage of competitor Algorithms and Datasets from different areas
- 16 representative algorithms 20 real-life datasets and two synthetic dataset
- Overlooked Evaluation Measures/Settings
- 7 measurements (e.g., search time, quality, scalability, index time/size, robustness, updatability, tuning of parameters
- Discrepancies in existing results
- □ Comparison fairness. Scope:
- L2 distance
- Dense vector
- No hardware specific optimizations (e.g., multi-threads, SIMD instructions, hardware pre-fetching, or GPU)
- Exact kNN as the ground truth

Benchmark (DPG TKDE'20, CoRR'16)

Category	Search Performance	Index		Index Scalabiliity		Search Scalabiliity		Theoretical	Tuning
Category		Size	Time	Datasize	Dim	Datasize	Dim	Guarantee	Difficulty
DPG	1st	4th	7th	=4th	=1st	=1st	$5 ext{th}$	No	Medium
HNSW	1st	3rd	5th	=4th	4th	=1st	$4 ext{th}$	No	Medium
KGraph	3rd	5th	6th	=4th	=1st	=1st	7th	No	Medium
Annoy	4th	7th	2nd	7th	3rd	6th	=2nd	No	Easy
FLANN	5th	6th	4th	=2nd	7th	=1st	6th	No	Hard
OPQ	6th	2nd	3rd	1st	=5th	5th	=2nd	No	Medium
SRS	7th	1st	1st	=2nd	=5th	7th	1st	Yes	Easy

Table 6: Ranking of the Algorithms Under Different Criteria

Benchmark (DPG TKDE'20, CoRR'16)

Figure 8: Speedup vs Recall on Different Datasets

Reference

- L2Knng CIKM'15: David C. Anastasiu and George Karypis. L2Knng: Fast Exact K-Nearest Neighbor Graph Construction with L2-Norm Pruning. In 24th ACM International Conference on Information and Knowledge Management
- Chen JMRL'09: J. Chen, H. ren Fang, and Y. Saad. Fast approximate knn graph construction for high dimensional data via recursive lanczos bisection. Journal of Machine Learning Research, 10:1989–2012, 2009.
- Connor TVVG'10: M. Connor and P. Kumar. Fast construction of k-nearest neighbor graphs for point clouds. IEEE Transactions on Visualization and Computer Graphics, 16:599–608, 2010.
- Boutet ICDE'16: Antoine Boutet, Anne-Marie Kermarrec, Nupur Mittal, François Taïani: Being prepared in a sparse world: The case of KNN graph construction. ICDE 2016: 241-252
- KGraph WWW'11: Wei Dong, Moses Charikar, Kai Li: Efficient k-nearest neighbor graph construction for generic similarity measures. WWW 2011: 577-586
- Hajebi ICJAl'11: Kiana Hajebi, Yasin Abbasi-Yadkori, Hossein Shahbazi, Hong Zhang: Fast Approximate Nearest-Neighbor Search with k-Nearest Neighbor Graph. IJCAI 2011: 1312-1317
- ChávezEric MCPR'10 :Edgar ChávezEric Sadit Tellez : Navigating K-Nearest Neighbor Graphs to Solve Nearest Neighbor Searches, Mexican Conference on Pattern Recognition, 2010
- NSW IS'14: Y. Malkov, A. Ponomarenko, A. Logvinov, and V. Krylov: Approximate nearest neighbor algorithm based on navigable small world graphs, Inf. Syst., vol. 45, pp. 61–68, 2014.
- HNSW TPAMI'20 Yury A. Malkov, D. A. Yashunin: Efficient and Robust Approximate Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs. IEEE Trans. Pattern Anal. Mach. Intell. 42(4): 824-836 (2020)
- Arya SODA'93: Sunil Arya, David M. Mount: Approximate Nearest Neighbor Queries in Fixed Dimensions. SODA 1993: 271-280
- DPG TKDE'20: Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Mingjie Li, Wenjie Zhang, Xuemin Lin: Approximate Nearest Neighbor Search on High Dimensional Data Experiments, Analyses, and Improvement. IEEE Trans. Knowl. Data Eng. 32(8): 1475-1488 (2020)
- DPG CoRR'16: Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Wenjie Zhang, Xuemin Lin: Approximate Nearest Neighbor Search on High Dimensional Data Experiments, Analyses, and Improvement (v1.0). CoRR abs/1610.02455 (2016)
- Dearholt SSC'88: D. Dearholt, N. Gonzales, and G. Kurup. Monotonic search networks for computer vision databases. Signals, Systems and Computers, 1988.

Reference

- L2Knng ClKM'15: David C. Anastasiu and George Karypis. L2Knng: Fast Exact K-Nearest Neighbor Graph Construction with L2-Norm Pruning. In 24th ACM International Conference on Information and Knowledge Management
- ECCV'18: Dmitry Baranchuk, Artem Babenko, Yury Malkov: Revisiting the Inverted Indices for Billion-Scale Approximate Nearest Neighbors. ECCV (12) 2018: 209-224
- CVPR'18 Matthijs Douze, Alexandre Sablayrolles, Hervé Jégou: Link and Code: Fast Indexing With Graphs and Compact Regression Codes. CVPR 2018: 3646-3654
- SISAP 2019: Leonid Boytsov, Eric Nyberg: Accurate and Fast Retrieval for Complex Non-metric Data via Neighborhood Graphs: Similarity Search and Applications 12th International Conference SISAP 2019: 128-142
- ip-NSW NeurIPS'18:Stanislav Morozov, Artem Babenko: Non-metric Similarity Graphs for Maximum Inner Product Search. NeurIPS 2018: 4726-4735
- ip-NSW+ AAAl'19: Jie Liu, Xiao Yan, Xinyan Dai, Zhirong Li, James Cheng, Ming-Chang Yang: Understanding and Improving Proximity Graph Based Maximum Inner Product Search. AAAl 2020: 139-146
- SIGMOD'20 Conglong Li, Minjia Zhang, David G. Andersen, Yuxiong He: Improving Approximate Nearest Neighbor Search through Learned Adaptive Early Termination. SIGMOD Conference 2020: 2539-2554
- Zoom CoRR'18: Minjia Zhang, Yuxiong He: Zoom: SSD-based Vector Search for Optimizing Accuracy, Latency and Memory. CoRR abs/1809.04067 (2018)
- CoRR'13: Ivan Komarov, Ali Dashti, Roshan D'Souza: Fast \$k\$-NNG construction with GPU-based quick multi-select. CoRR abs/1309.5478 (2013)
- SONG ICDE'19: Weijie Zhao, Shulong Tan, Ping Li: SONG: Approximate Nearest Neighbor Search on GPU. ICDE 2020: 1033-1044
- IPDG EMNLP'19: Shulong Tan, Zhixin Zhou, Zhaozhuo Xu, Ping Li: On Efficient Retrieval of Top Similarity Vectors. EMNLP/IJCNLP (1) 2019: 5235-5245
- JPDC'13: Erion Plaku, Lydia E. Kavraki: Distributed computation of the knn graph for large high-dimensional point sets. J. Parallel Distributed Comput. 67(3): 346-359 (2007)
- NNS Benchmark IS'19: M. Aumüller, E. Bernhardsson, A. Faithfull: ANN-Benchmarks: A Benchmarking Tool for Approximate Nearest Neighbor Algorithms. Information Systems 2019
- PANNG SISAP'16 Iwasaki, M.: Pruned bi-directed k-nearest neighbor graph for proximity search. In: SISAP 2016. pp. 20–33 (2016)