10.3969/j.issn.1671-489X.2012.15.122

牛顿环测量曲率半径实验的标准不确定度分析*

王艳文¹ 张腊花²

1 新乡医学院生命科学技术系 河南新乡 453003 2 郑州大学物理工程学院 郑州 450052

摘 要 结合不确定度的有关概念及相关计量规范要求,对平凸透镜曲率半径测量结果进行标准不确定度评定。 关键词 牛顿环;曲率半径;不确定度

中图分类号:04-33,0436.1 文献标识码:B 文章编号:1671-489X(2012)15-0122-02

Standard Uncertainty Evaluation on Curvature Radius of Newton Ring//Wang Yanwen¹, Zhang Lahua² Abstract According to the concerning concepts of uncertainty and relevant requirements on metrological specifications, this paper presents a standard uncertainty evaluation on the curvature radius of Newton ring.

Key words Newton ring; curvature radius; uncertainty Author's address

- 1 Department of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, China
- 2 School of Physics and Engineering, Zhengzhou University, Zhengzhou, China 450052

利用牛顿环测平凸透镜曲率半径是大学物理中的一 个重要实验。由于该实验中的牛顿环直径测量属于非等 精度测量[1],因此学生在数据处理和不确定度分析上存在 一定难度。本文通过具体实例对测量结果进行标准不确 定度分析和评定,介绍牛顿环实验不确定度处理的一般 方法。

1 实验原理

如图1所示,钠光灯S发出的光经半透半反镜M反射 后,垂直射向牛顿环仪N上,并在牛顿环空气膜的上下表 面处反射出两束光,这两束相干光将产生等厚干涉,在 读数显微镜T中可观察到明暗相间的干涉环纹(即牛顿 环)[2]。

一般测牛顿环仪中平凸透镜的曲率半径的公式为[3]:

$$R = \frac{D_m^2 - D_n^2}{4(m-n)\lambda}$$
 (1)

图1 牛顿环实验装置图

基金项目:国家自然科学基金项目(50602040)。

作者:王艳文,硕士,主要从事凝聚态物理及高等教育教学研究。

式中:R为待测平凸透镜的曲率半径,单位mm; D_m D_n 为两组暗环的直径,单位m;m、n为暗环的级数。

由上式可知,只要测出 D_n 与 D_n (分别为第m与第n条暗 环的直径)的值,即可计算出曲率半径R。

2 不确定度来源分析

经分析,不确定度的主要来源有:测量直径 D_{xx} , D_{x} 时所引起的不确定度分量 $\mathbf{u}(\overline{D_m^2} - \overline{D_n^2})$;实验时,由于 所测暗环条纹有一定的宽度引起读数的不准确而产生 的对准不确定度 $\mathbf{u}(m-n)$ 。另外,钠黄光有589.6 nm和 589.0 nm两种波长的谱线,而在处理数据时,一般采用 $\bar{\lambda} = 589.3 \, \text{nm}$, 从而引起波长不确定度 $\mathbf{u}(\bar{\lambda})$ 。

在本实验中,将暗环直径的非等精度测量转化为 $(D_n^2 - D_n^2)$ 的等精度测量,即将 $(D_m^2 - D_n^2)$ 作为一个中间变 量来对待。在测量暗环直径时,读数显微镜叉丝对准位 置选暗环的几何中心,测暗环中间误差为最小[4]。为尽量 减小对准误差,所选暗环不宜级次过低。本文使用逐差 法处理数据,暗环最低级次为11,且m-n=20。

3 数据处理及不确定度评定

将表1中实验数据代入(1)式,可得:

$$\bar{R} = \frac{\overline{D_m^2 - D_n^2}}{4(m-n)\bar{\lambda}} = \frac{70.221}{4 \times 20 \times 586.3 \times 10^{-6}} = 1489.5 \text{mm}$$

3.1 $D_{**}^{2} - D_{*}^{2}$ 的标准不确定度

1) $(D_m^2 - D_n^2)$ 的A类不确定度:

$$\mathbf{U}_{\mathrm{A}}[(D_{m}^{2}-D_{n}^{2})] = \sqrt{\frac{\sum_{i=1}^{10}[(D_{m}^{2}-D_{n}^{2})_{i}-\overline{D_{m}^{2}}-\overline{D_{n}^{2}}]^{2}}{10\times(10-1)}}$$

表1	i壶数	显微镜	所测	数据
1.8 1	レナマス	ᄣᇄᇼᇄ	ויאלו ולם.	ZX 1/0

12									
环数	な位置(mm)		环径	环数	位置(mm)		环径	$(D_m^2 - D_n^2)$	
n	左	右	(mm)	n	左	右	(mm)	(mm²)	
40	35.041	23.199	11.842	20	33.299	24.917	8.382	69.975 04	
39	34.964	23.269	11.695	19	33.184	25.010	8.174	69.958 75	
38	34.884	23.349	11.535	18	33.079	25.114	7.965	69.615 00	
37	34.813	23.487	11.326	17	32.964	25.257	7.707	68.88043	
36	34.787	23.509	11.278	16	32.839	25.377	7.462	71.511 84	
35	34.657	23.580	11.077	15	32.729	25.497	7.232	70.398 10	
34	34.577	23.658	10.919	14	32.617	25.616	7.001	70.21056	
33	34.504	23.731	10.773	13	32.501	25.754	6.747	70.535 52	
32	34.413	23.807	10.606	12	32.361	25.870	6.491	70.354 15	
31	34.336	23.901	10.435	11	32.201	26.027	6.174	70.770 95	
D_m^2 -	$D_n^2 (\text{mm}^2)$: 70.221	$\overline{D_{\mathbf{m}}}$	(mm)	: 11.149	$\overline{D_{\rm n}}$ ((mm):	7.334	

$$= 0.221 \text{ mm}^2$$
 (n = 10, P = 0.68)

2) $(D_m^2 - D_n^2)$ 的B类不确定度。B类不确定度由读数显 微镜的仪器误差产生,测量时仪器读数误差按均匀分布 计,则 $U_B(x) = \frac{\Delta_{(x)}}{\sqrt{3}} = \frac{0.01}{\sqrt{3}} = 0.00577 \text{ mm}$

又D =
$$x_{\pm} - x_{\pm}$$
,所以
$$U_{B}(D) = \sqrt{U_{B}^{2}(x_{\pm}) + U_{B}^{2}(x_{\pm})} = \sqrt{2}U_{B}(x) \qquad (P = 0.68)$$
 设 $D_{m}^{2} - D_{n}^{2} = \Delta D$,则

$$\begin{aligned} \mathbf{U}_{\mathrm{B}}(\Delta D) &= \sqrt{\left[2\overline{D_{m}}\mathbf{u}_{\mathrm{B}}(D_{m})\right]^{2} + \left[2\overline{D_{n}}\mathbf{u}_{\mathrm{B}}(D_{n})\right]^{2}} & (\mathrm{P} = 0.68) \\ &= 2\mathbf{U}_{\mathrm{B}}(D)\sqrt{(\overline{D_{m}})^{2} + (\overline{D_{n}})^{2}} \\ &= 2\sqrt{2}\mathbf{U}_{\mathrm{B}}(\mathrm{x})\sqrt{(\overline{D_{m}})^{2} + (\overline{D_{n}})^{2}} = 0.208 \; \mathrm{mm}^{2} \end{aligned} \qquad (\mathrm{P} = 0.68)$$

3) $(D_m^2 - D_n^2)$ 的合成不确定度:

$$\begin{split} u_{\text{C}}(\Delta D) &= \sqrt{u_{\text{A}}^2(\Delta D) + u_{\text{B}}^2(\Delta D)} \\ &= \sqrt{0.221^2 + 0.208^2} = 0.304 \text{ mm}^2 \end{split} \quad (P = 0.68) \end{split}$$

参考文献

- [1]熊冬霞,等.关于牛顿环测量中的不确定度的讨论[J].大学物理实验,2005,18(3):74-76.
- [2]马文蔚,等.物理学教程:下册[M].北京:高等教育出版社,2006:198-199.
- [3]熊永红.大学物理实验[M].武汉:华中科技大学出版社,2004:208-211.
- [4]张慧兰,等.分析牛顿环实验中的误差[J].南方冶金学院学报,2002,23(1):72-74.
- [5]刘鹏,张亮.牛顿实验的误差分析[J].邢台学院学报,2003,18(2):64-65.
- [6]张文辉.分光计测三棱镜折射率的探讨[J].福州大学学报,2007,35(z1):88-91.

3.2 R的标准不确定度

另外 .对准不确定度 $u(m-n) = 0.1^{[5]}$,波长不确定度 $\mathbf{u}(\bar{\lambda}) = 0.3 \,\mathrm{nm}$, 可得R的合成不确定度为:

$$u_{C}(R) = \overline{R} \sqrt{\left[\frac{U_{C}[(D_{m}^{2} - D_{n}^{2})]}{\overline{D_{m}^{2} - D_{n}^{2}}}\right]^{2} + \left[\frac{u(m-n)}{m-n}\right]^{2} + \left[\frac{u(\overline{\lambda})}{\lambda}\right]^{2}}$$

$$= 1489.5 \times \sqrt{\left(\frac{0.304}{70.221}\right)^{2} + \left(\frac{0.1}{20}\right)^{2} + \left[\frac{0.3}{589.3}\right]^{2}}$$

$$= 9.9 \text{ mm} \qquad (P = 0.68)$$

3.3 R的扩展不确定度

在大学物理实验教学中,根据国家计量规范通常取 置信概率P=0.95^[6], k=2,则扩展不确定度为:

$$u_{0.95}(R) = 2 \times 9.9 \text{ mm} = 19.8 \text{ mm}$$

综上分析可知,使用逐差法数据处理所得的平凸透 镜曲率半径的实验结果为:

$$R = 1489.5 \pm 19.8 \,\mathrm{mm} \quad (P = 0.95)$$

4 结语

本文按照不确定度的基本概念和计量要求,分析了 牛顿环实验的误差来源,详细论述了实验结果的标准不 确定度评定步骤,对学生进一步理解、运用不确定度具 有较好的指导作用。