مرتبسازی و مرتبهی آماری

بر روی (total order) ہے کامل a_1, a_7, \ldots, a_n ہے کامل a_1, a_2, \ldots, a_n كلىدها داده شدهاند.

تعریف مرتب سازی جای گشت π از عناصر داده شده را پیدا کنید به طوری که:

$$a_{\pi(1)} \le a_{\pi(7)} \le \ldots \le a_{\pi(n)}$$

یادآوری

یک رابطه ترتیب جزیی (partial order) است اگر نامتقارن، بازتابی و تراگذری باشد.

رابطهی ترتیب جزیی R بر روی مجموعهی A رابطهی ترتیب کامل است، اگر برای هر aRb یا aRb داشته باشیم aRb یا aRb

دستهبندی الگوریتمهای مرتبسازی

- ۱) از نظر موقعیت داده ها در زمان مرتبسازی (یعنی داده در کجا ذخیره می شود)
 - (external) خارجی (internal) ⇒ داخلی
 - ۲) از نظر حفظ ترتیب نسبی عناصر پس از مرتبسازی
 - (unstable) نایایدار (stable) یایدار (stable) یایدار
 - ۳) از نطر نحوهی مرتبسازی دادهها
 - - ای (non-comparison sort) غیر مقایسه ای

كران پايين الگوريتمهای مرتبسازی

- زمان اجرای هر الگوریتم مرتبسازی $\Omega(n)$ است.
- زمان اجرای هر الگوریتم مرتبسازی مقایسه ای هم در بدترین حالت و هم در حالت میانگین $\Omega(n \lg n)$ است.

یاداوری: تعریف ترتیب الفبایی (Lexicographic Ordering)

فرض:

$$\vec{a} = a_1 a_7 \cdots a_i \cdots a_n$$

$$\vec{b} = b_1 b_7 \cdots b_i \cdots b_m$$

$$a_k < b_k$$
 می گوییم $ec{a} \leq ec{b}$ اگر برای $ec{a} \leq i$ اگر برای $a_i = b_i$ می گوییم $a_i = b_i$ و برای $i \leq i \leq n$ داشته باشیم $i \leq i \leq n$ مثلاً

ab < abc < adc < adda

اثبات کران پایین در بدترین حالت

درخت تصمیم (Decision Tree)

هر الگوریتم مقایسهای را می توان با یک درخت با ویژگی های زیر مدل کرد.

- «حالت مسئله»
- درخت دودویی کامل است (هر مقایسه یک انشعاب)
 - برگها حالت نهایی

مثال: درخت تصمیم برای مرتبسازی درجی بر روی A = [a,b,c] هر حالت شامل مثال: درخت ممکن عناصر مرتب است.

لم: یک درخت دودویی با ارتفاع h حداکثر Υ^h برگ دارد. این قضیه با استقرا روی h اثبات می شود (امتحان کنید).

لم: یک درخت دودویی با ارتفاع h حداکثر h برگ دارد. این قضیه با استقرا روی h اثبات می شود (امتحان کنید).

نکته: حداقل چند تا برگ دارد؟ دودویی کامل و دودویی ؟

لم: یک درخت دودویی با ارتفاع h حداکثر h برگ دارد. این قضیه با استقرا روی h اثبات می شود (امتحان کنید).

نکته: حداقل چند تا برگ دارد؟ دودویی کامل و دودویی ؟

جواب: ا برای درخت عادی و h+1 برای درخت دودویی که هر گره دو یا صفر فرزند داشته باشد.

لم: یک درخت دودویی با ارتفاع h حداکثر f^h برگ دارد. این قضیه با استقرا روی f^h اثبات می شود (امتحان کنید).

نتیجه: ارتفاع یک درخت تصمیم که n عنصر را مرتب می کند حداقل $\lceil \log n \rceil$ است.

لم: یک درخت دودویی با ارتفاع h حداکثر Υ^h برگ دارد. این قضیه با استقرا روی h اثبات می شود (امتحان کنید).

نتیجه: ارتفاع یک درخت تصمیم که n عنصر را مرتب می کند حداقل $\lceil \log n \rceil$ است.

اثبات: این درخت تصمیم حداقل n! برگ دارد، بنابراین ارتفاعش حداقل $\lceil \log n! \rceil$ است.

لم: یک درخت دودویی با ارتفاع h حداکثر f^h برگ دارد. این قضیه با استقرا روی f^h اثبات می شود (امتحان کنید).

نتیجه: ارتفاع یک درخت تصمیم که n عنصر را مرتب می کند حداقل $\lceil \log n \rceil$ است.

اثبات: این درخت تصمیم حداقل n! برگ دارد، بنابراین ارتفاعش حداقل $\lceil \log n! \rceil$ است.

نتیجه: هر الگوریتم مقایسه ای که n عنصر را مرتب می کند در بدترین حالت حداقل $\lceil \lg n \rceil$ مقایسه بین عناصر ورودی انجام می دهد.

اما میدانیم که ..

استرلینگ $\ln n! \le n \ln n$ پس $\ln n! \le n \ln n$ ولی این کران بالای ضعیفی است. تقریب استرلینگ $\ln n! \le n \ln n$ کران به تری را می دهد. براساس این تقریب داریم: (Stirling's Approximation)

$$n! = \sqrt{7\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right)$$

با استفاده از این فرمول می توان اثبات کرد که:

$$n! = o(n^n)$$

$$n! = \omega(\Upsilon^n)$$

$$\lg(n!) = \Theta(n \lg n)$$

کران پایین در حالت میانگین

یعنی چه؟ چه چیز را باید اثبات کنیم؟

کران پایین در حالت میانگین

قضیه: اگر کلیهی جایگشتهای یک ترتیب n تایی با احتمال یکسان در ورودی ظاهر شوند، آنگاه میانگین عمق برگهای درخت تصمیم حداقل $\ln n!$ خواهد بود.

کران پایین در حالت میانگین

اثبات: فرض

- و T مجموع عمق برگهای یک درخت دودویی D(T)
- D(m) کوچک ترین مقدار D(T) برای کلیهی در ختهای دودویی D(m) با D(T) باشد.

 $\Omega(\lg n!)$ ثابت می کنیم $m \lg m$ تصمیم میانگین عمق برگھای درخت تصمیم ثابت

ادامهی اثبات

 $D(m) \geq m \lg m$ با استقرا ثابت می کنیم که

- ۱) پایه: m=1 واضح است.
- کا فرض: برای m < k درست است.
- ۳) حکم: T با k برگ را در نظر بگیرید (با T_k نشان می دهیم).

$$D(T) = i + D(T_i) + (k - i) + D(T_{k-i})$$

$$D(T) = i + D(T_i) + (k - i) + D(T_{k-i})$$

$$D(k) = \min_{1 \le i \le k} \{k + D(i) + D(k - i)\}$$

$$D(T) = i + D(T_i) + (k - i) + D(T_{k-i})$$

$$D(k) = \min_{1 \le i \le k} \{k + D(i) + D(k - i)\}$$

$$D(k) \ge k + \min_{1 \le i \le k} \{i \lg i + (k - i) \lg (k - i)\}$$

ادامهی اثبات

برای اعداد طبیعی مقدار کمینهی $i = \frac{k}{7}$ اتفاق میافتد.

بس

$$D(k) \ge k + k \lg \frac{k}{7} = k \lg k$$

مرتبسازی خطی

مرتبسازی شمارشی (Count Sort)

m ورودی: n عنصر با کلیدهای بین n تا

```
\begin{array}{c} \underline{\text{COUNT-SORT}}(A,B,m) \\ 1 \quad \text{for } i \leftarrow 1 \quad \text{to } m \\ 2 \quad \text{do } C[i] \leftarrow 0 \\ 3 \quad \text{for } i \leftarrow 1 \quad \text{to } length[A] \\ 4 \quad \text{do } C[A[i]] \leftarrow C[A[i]] + 1 \\ 5 \quad \text{for } i \leftarrow 2 \quad \text{to } m \\ 6 \quad \text{do } C[i] \leftarrow C[i] + C[i-1] \\ 7 \quad \text{for } i \leftarrow length[A] \quad \text{downto } 1 \\ 8 \quad \text{do } B[C[A[i]] \leftarrow A[i] \\ 9 \quad C[A[i]] \leftarrow C[A[i]] - 1 \end{array}
```

چرا درست است؟

چرا درست است؟

- در سطر ۴ تعداد عناصر با کلید یکسان را میشماریم.
- در پایان حلقه ی ۵، C[i] آخرین اندیس آرایه ی B است که عناصر با کلید C[i] در آن جا قرار می گیرند.
- در حلقهی ۷ عناصر در جای خودشان قرار می گیرند. این کار به صورت پایدار انجام می شود.

تحليل

- زمان اجرا $\mathcal{O}(n)$.
- دلیل آن که این حلقه از انتها به ابتدای A تکرار می شود آن است که الگوریتم پایدار شود.
- زمان اجرای کل الگوریتم $\mathcal{O}(n+m)$ می باشد که اگر m از m باشد زمان اجرای کل $\mathcal{O}(n+m)$ می باشد که m خواهد بود.

حالت خاص

کلیدهای عناصر اعداد n تا n هستند.

```
\underline{\text{Count-Sort}}(A, n)
```

- 1 for $i \leftarrow 1$ to n
- 2 do while $key[A[i]] \neq i$
- 3 do SWAP(A[i], A[key[A[i]]])

چرا درست است؟

- الگوريتم به صورت «درجا» مرتب مي كند.
- هر بار تعویض ← یک یا دو عنصر در جای نهایی خود.
- از هر كليد بيشاز يك عدد ← الگوريتم ممكن است در حلقه بيفتد.

مرتبسازی مبنایی (Radix Sort)

تعداد رقمهای اعداد ورودی (رقم i ام بر i-i ام اولویت دارد) d

$\underline{\text{RADIX-SORT}}(A, d)$

- 1 for $i \leftarrow 1$ to d
- do sort array A on digit i by a stable sort

- اگر تعداد رقمهای ورودی یکسان نباشند؟
 - i درستی الگوریتم: با استقرا بر روی
- در انتهای مرحلهی i عناصر برحسب بیتها i تا i کلیدشان مرتباند.
 - زمان اجرا به الگوریتم دوم بستگی دارد.
 - اگر از مرتب سازی شمارشی استفاده کنیم: زمان اجرا $\mathcal{O}(dn)$

مرتبسازی مبنایی در حالت کلی

- ورودی آرایهای از رکوردها، (یک دسته از کارتها)
- $\star t_1 \dots t_k$ هر رکورد دارای کلیدی با k مؤلفهی k مؤلفهی جا به ترتیب از داده گونههای \star
- ullet تعداد مقادیری که هر داده گونه t_i می تواند داشته باشد محدود و مستقل از n است.

مرتبسازی سطلی (Bucket Sort)

- ورودی: لیست A با n رکورد، که هر رکورد دارای کلیدی با k مؤلفه به نامهای $t_1 \dots t_k$ از داده گونههای $t_1 \dots t_k$
 - s_i برابر عداد حالتهای t_i
 - فرض: f_i بر f_{i-1} اولویّت دارد.
 - $.B_i: \operatorname{array}[t_i]$ of list-type :داریم ($1 \leq i \leq k$) برای

- اگر هر سطل را به صورت یک صف پیاده سازی کنیم، عمل الحاق (concat) در زمان ثابت قابل اجرا است.
 - زمان اجرا این الگوریتم برابر است با:

$$\sum_{i=1}^{k} \Theta(s_i + n) = \Theta(kn + \sum_{i=1}^{k} s_i)$$

اگر $s_i = \Theta(n)$ آن گاه

$$T(n) = \Theta(kn + \sum_{i=1}^{k} n) = \Theta(n + kn) = \Theta(n)$$

مثال: كليدها شامل سه مؤلفه با مقادير a..z، ۱۳۰۰،۱۴۰ و ۱۳۰۰،۱۳۰۰.

عنصر	$f_{m{ au}}$	f_{Y}	f_{N}
$\overline{a_1}$	a	۵	1270
a_{Y}	\mathbf{c}	17	1770
$a_{ m Y}$	b	17	14.0
$a_{\mathbf{f}}$	a	Λ	1400
a_{Δ}	${f Z}$	1 0	1407
a τ	b	17	1404
$a_{\mathbf{Y}}$	a	۶	17710

عنصر	$f_{f r}$	$f_{ m Y}$	f_{N}
a_1	a	۵	1270
a_{Y}	\mathbf{c}	17	1210
$a_{\tt Y}$	b	17	۱۳۰۵
$a_{\mathbf{f}}$	a	٨	1400
a_{Δ}	\mathbf{Z}	١ ،	1801
a_{7}	b	17	1404
a_{Y}	a	۶	17710

ورودى	$B_{1}[.]$	خروجی ۱	$B_{Y}[.]$	خروجی ۲	$B_{Y}[.]$	خروجی ۳
a_1	[1404] a7	a_{7}	[a] a,	a_1	$['a'] a_1, a_2, a_4$	a_{γ}
a_{Y}	$[1 \circ a] a_{r}$	$a_{ m Y}$	$[\mathfrak{S}] a_{\mathbf{Y}}$	$a_{\mathbf{Y}}$	['b'] a_{7}, a_{7}	$a_{\mathbf{Y}}$
a_{Y}	$[IY \circ A] \ a_{A}$	a_{Δ}	$[\Lambda] a_{\mathbf{f}}$	$a_{\mathbf{f}}$	['c'] a _Y	$a_{\mathbf{f}}$
$a_{\mathbf{f}}$	$[171 \circ] a_{7}, a_{7}$	a_{Y}	$[1 \circ] a_{\Delta}$	a_{Δ}	['z'] a_{Δ}	a_{7}
a_{δ}	$[177\circ] a_1$	$a_{\mathbf{Y}}$	$[17]a_7, a_7, a_7$	a_{7}		a_{Υ}
a_{7}	$[1400] a_{4}$	a_{γ}		$a_{\mathtt{Y}}$		a_{Y}
$a_{\mathbf{Y}}$		aę		a_{Y}		a_{Δ}

مرتبسازی مقایسهای: مرتبسازی سریع

- مرتبسازی سریع n عنصر را در بدترین حالت با $\mathcal{O}(n)^{\mathsf{r}}$ و در حالت میانگین در $\mathcal{O}(n \lg n)$ مرتب می کند.
 - ضریب ثابت $n \lg n$ کاملاً کوچک است.
 - این الگوریتم برای محیطهای حافظهی خارجی و موازی نیز کارا می باشد.

مرتبسازی سریع: توصیف الگوریتم

- مرتبسازی سریع مانند مرتبسازی ادغامی مبتنی بر روش تقسیم و حل است.
 - می خواهیم آرایهی A[p..r] را مرتب کنیم.
 - الگوريتم شامل سه مرحلهى زير است.

A[q+1..r] و A[p..q] به دو بخش ناتهی A[p..r] و (partition) تقسیم: بخشبندی (A[q+1..r] (partition) به طوری که هر عنصر A[p..q] از هر عنصر A[q+1..r] بیش تر نباشد.

- ۲) حل: دو بخش A[p..q] و A[q+1..r] به صورت بازگشتی مرتب می شوند.
- ۳) ترکیب: با توجه به ویژگی بخشها، نیازی به ترکیب آنها نیست و کل آرایه مرتب است.

40

```
\frac{\text{QuickSort}}{1} (A, p, r)
1 \quad \text{if } p < r
2 \quad \text{then } q \leftarrow \text{Partition}(A, p, r)
3 \quad \text{QuickSort} (A, p, q)
4 \quad \text{QuickSort}(A, q + 1, r)
```

به صورت $\operatorname{QUICKSORT}(A, 1, length[A])$ فراخوانی می شود.

بخشبندي

بخش اصلى الگوريتم

مثالی از بخش بندی

چرا بخش بندی درست است؟

ویژگی مستقل از حلقه (loop invariant):

- $i \leq j + 1 \bullet$
- \bullet به ازای هر مقدار i و i
- x حاوی عناصر کم تر یا مساوی A[p-1,i-1] بخش —
- x بخش A[j+1,q+1] حاوی عناصر بیش تر یا مساوی محور --

اثبات این ویژگی در انتها، اثبات درستی بخش بندی است.

اثبات ویژگی مستقل حلقه

- در ابتدا درست است.
- فرض: قبل از حلقهی ۴ درست است.
- از همهی عناصر بیش تر از x عبور می کند.
 - i از همه ی عناصر کم تر از x عبور می کند.
- $(i \leq j + 1)$ نمی تواند بیش از یک عنصر از $j \neq i$
 - i = j + 1 یا i = i یا انتهای حلقه، یا i = i یا
 - که ویژگی برقرار است.

حالتهای خاص مرتبسازی سریع

- آرایه مرتب باشد
- آرایه برعکس مرتب باشد
- همهی عناصر آرایه برابر باشد

تعداد مقایسه های کلیدها و تعداد تعویض ها را در هر حالت می توان دقیقاً شمرد.

مرتبسازی سریع (تحلیل الگوریتم)

- بدترین حالت $\Theta(n^7)$ و در حالت میانگین $\Theta(n \log n)$. این کارایی وابسته به نحوه ی بخش بندی است.
 - هزینهی بخش بندی برابر O(n) با ثابت کو چک است:
 - و j به عقب بر نمی گردند i
 - تعداد تعویضها حداکثر برابر n/Υ است.

تحلیل در بدترین حالت

- هنگامی که بخش بندی همیشه n عنصر را به n-1 و 1 عنصر تقسیم کند
 - $T(n) = T(n-1) + \Theta(n) = \Theta(n^{7})$: پیچیدگی الگوریتم •

تحلیل در به ترین حالت

شهود

- بخش بندی در هر مرحله n عنصر را به دو آرایه با تعداد عناصر $\lceil \frac{n}{7} \rceil$ و $\lfloor \frac{n}{7} \rfloor$ تقسیم کند.
 - پیچیدگی الگوریتم:

$$T(n) = \mathsf{Y}T(\frac{n}{\mathsf{Y}}) + \Theta(n) \to T(n) = \Theta(n \log n)$$

بخش بندى متوازن

ullet برای هر ثابت lpha < 1

$$T(n) = T(\alpha n) + T((1 - \alpha)n) + n$$

- $T(n) = T(\frac{\mathfrak{q}_n}{\mathfrak{q}_o}) + T(\frac{n}{\mathfrak{q}_o}) + n$ مثلاً •
- (درخت بازگشت) $T(n) = \Theta(n \lg n)$ حل •

تحلیل در حالت میانگین

برای تحلیل الگوریتم در حالت میانگین، گونهی تصادفی آن را در نظر می گیریم.

گونهی تصادفی مرتبسازی سریع

به صورت تصادفی یک عنصر دل خواه را با عنصر اول تعویض می کنیم تا محور شود.

RANDOMIZED-PARTITION (A, p, r)

- $1 \quad i \leftarrow \text{RANDOM}(p, r)$
- 2 SWAP(A[p], A[i])
- 3 **return** Partition(A, p, r)

```
\begin{array}{ccc} & & & & & \\ & & & & \\ & 1 & & & & \\ & 1 & & & \\ & 1 & & & \\ & 1 & & & \\ & 1 & & & \\ & 1 & & & \\ & 1 & & & \\ & 1 & & \\ & 2 & & & \\ & 2 & & \\ & 2 & & \\ & 2 & & \\ & 2 & & \\ & 3 & & \\ & 2 & & \\ & 3 & & \\ & 2 & & \\ & 3 & & \\ & 2 & & \\ & 3 & & \\ & 3 & & \\ & 3 & & \\ & 3 & & \\ & 3 & & \\ & 3 & & \\ & 3 & & \\ & 4 & & \\ & 3 & & \\ & 3 & & \\ & 4 & & \\ & 3 & & \\ & 4 & & \\ & 3 & & \\ & 4 & & \\ & 3 & & \\ & 4 & & \\ & 3 & & \\ & 4 & & \\ & 3 & & \\ & 4 & & \\ & 3 & & \\ & 4 & & \\ & 3 & & \\ & 4 & & \\ & 3 & & \\ & 4 & & \\ & 3 & & \\ & 4 & & \\ & 3 & & \\ & 4 & & \\ & 3 & & \\ & 4 & & \\ & 3 & & \\ & 4 & & \\ & 3 & & \\ & 4 & & \\ & 3 & & \\ & 4 & & \\ & 3 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & & \\ & 4 & &
```

تحلیل Randomized-Quicksort در بدترین حالت

• فرض: محور طوری انتخاب شود که آرایه n عضوی به دو بخش q عضوی و q عضوی عضوی عضوی عضوی تقسیم می شود $q \leq q \leq q \leq q$.

• در بدترین حالت،

$$T(n) = \max_{1 < q < n-1} \{T(q) + T(n-q)\} + \Theta(n)$$

 $T(n) = \Theta(n^{\mathsf{T}})$ کنیم که اثبات می کنیم

ادامهی تحلیل در بدترین حالت

$$T(n) = \max_{1 \le q \le n-1} \{T(q) + T(n-q)\} + \Theta(n)$$

 $T(n) = \mathcal{O}(n^{\mathsf{Y}})$ ابتدا با استقرا اثبات می کنیم که

- پایه: برای مقدار ثابت بدیهی است
- $T(m) \leq cm^{\gamma}$ ، m < n فرض: برای

ا پس

$$T(n) \le \max_{1 \le q \le n-1} \{cq^{\Upsilon} + c(n-q)^{\Upsilon}\} + \Theta(n)$$

$$T(n) \le \max_{1 \le q \le n-1} \{cq^{\Upsilon} + c(n-q)^{\Upsilon}\} + \Theta(n)$$

• می دانیم که بیشینه ی $q^{r}+(n-q)^{r}$ روی هر دو مرز q=n-1 و q=n-1 اتفاق می افتد (با رسم نمو دار تابع و با درنظر گرفتن q=n-1)

• پس در حالت q = 1 داریم:

$$T(n) \le c(\mathbf{1} + (n-\mathbf{1})^{\mathsf{T}}) + \Theta(n) = cn^{\mathsf{T}} - \mathsf{T}c(n-\mathbf{1}) + \Theta(n)$$

 $T(n) \le cn^{\mathsf{T}}$

به شرطی که o(n) را آنقدر بزرگ بگیریم که o(n) را بپوشاند.

ادامهی تحلیل در بدترین حالت

$$T(n) = \max_{1 \le q \le n-1} \{T(q) + T(n-q)\} + \Theta(n)$$

 $T(n) = \Omega(n^{\mathsf{T}})$ نشان می دهیم که

- m < n برای $T(m) \geq cm^{\gamma}$ برای \bullet
- $T(n) \ge \max_{1 \le q \le n-1} \{cq^{\Upsilon} + c(n-q)^{\Upsilon}\} + \Theta(n)$ پس
 - $T(n) \geq cn^{\mathsf{T}} \mathsf{T}c(n-1) + \Theta(n) \geq cn^{\mathsf{T}}$ بنابراین،

به شرطی که c آن قدر کوچک باشد که $\Theta(n) - \Upsilon c(n-1)$ مثبت شود.

$$T(n) = \Theta(n^{\mathsf{T}}) \Longleftarrow T(n) = \Omega(n^{\mathsf{T}}) = O(n^{\mathsf{T}})$$
پس •

تحلیل مرتبسازی سریع تصادفی در حالت میانگین

- فرض می کنیم محور با احتمال یکسان از بین n عنصر انتخاب می شود.
 - احتمال این که مرتبهی محور k باشد برابر $\frac{1}{n}$ است.
- طبق این الگوریتم بخش بندی، در هر دو حالت k=1 و k=1 آرایهی k به دو بخش با اندازه های k=1 تقسیم می شود.

• تعریف: $\overline{T}(n)$: میانگین زمان اجرا

$$\bar{T}(n) = \frac{1}{n} \left[\bar{T}(1) + \bar{T}(n-1) + \sum_{q=1}^{n-1} \left[\bar{T}(q) + \bar{T}(n-q) \right] \right] + \Theta(n)$$

$$ar{T}(n) \leq T(n)$$
 و $T(1) = \Theta(1)$ هيدانيم که در بدترين حالت $T(n) = \Theta(n^{\mathsf{T}})$ ،

• پس:

$$\frac{1}{n}[\bar{T}(1) + \bar{T}(n-1)] \le \frac{1}{n}[\Theta(1) + \Theta(n^{7})] = \Theta(n)$$

• بنابراين

$$\bar{T}(n) = \frac{1}{n} \sum_{q=1}^{n-1} [\bar{T}(q) + \bar{T}(n-q)] + \Theta(n) = \frac{7}{n} \sum_{k=1}^{n-1} \bar{T}(k) + \Theta(n)$$

$$\bar{T}(n) = \frac{r}{n} \sum_{k=1}^{n-1} \bar{T}(k) + \Theta(n)$$

$a,b>\circ$ برای $ar{T}(n)\leq an\lg n+b$ ، برای ullet

$$\bar{T}(n) = \frac{\gamma}{n} \sum_{k=1}^{n-1} \bar{T}(k) + \Theta(n)$$

$$\leq \frac{\gamma}{n} \sum_{k=1}^{n-1} [ak \lg k + b] + \Theta(n)$$

$$= \frac{\gamma}{n} \sum_{k=1}^{n-1} ak \lg k + \frac{\gamma}{n} \sum_{k=1}^{n-1} b + \Theta(n)$$

$$= \frac{\gamma a}{n} \sum_{k=1}^{n-1} k \lg k + \frac{\gamma b}{n} (n-1) + \Theta(n)$$

و از تقریب انتگرال ثابت می شود که:

$$\sum_{k=1}^{n-1} k \lg k \le \int_{x=1}^{n-1} x \lg x = \frac{1}{7} n^{7} \lg n - \frac{1}{5} n^{7}$$

پس

$$\bar{T}(n) \leq \frac{\mathsf{Y}a}{n} (\frac{n^{\mathsf{Y}}}{\mathsf{Y}} \lg n - \frac{n^{\mathsf{Y}}}{\mathsf{\Lambda}}) + \frac{\mathsf{Y}b}{n} (n - \mathsf{Y}) + \Theta(n)$$

$$\leq an \lg n + b + [\Theta(n) + b - \frac{an}{\mathsf{Y}}]$$

و a را طوری انتخاب می کنیم تا درون پرانتز منفی شود. $ar{T}(n) \leq an \lg n + b$ بنابراین

$$ar{T}(n) = O(n \lg n)$$
 يا

مرتبسازی با کم ترین تعداد مقایسه برای تعداد عناصر کم

 $\lceil \lg n \rceil$ عنصر n عنصر بیاز (بین عناصر) برای مرتبسازی n عنصر است.

• برای nهای کوچک آیا الگوریتمی با کم ترین تعداد مقایسه ی ممکن و جود دارد n

• برای n برابر ۱، ۲، ۳ مرتبسازی «درج دودویی» (binary insertion sort) تعداد مقایسه ی بهینه دارد (برابر \circ ، ۱، ۳)

• ولى براى r > r بهينه نيست.

مرتبسازی درج دودویی

اگر B(n) تعداد دقیق مقایسه های الگویتم درج دودویی (در بدترین حالت ورودی) برای مرتب سازی n عنصر باشد، مقادیر B(n) برای n های کوچک و مقایسه ی آن با B(n) در جدول زیر آمده است.

$$n=$$
 1 7 7 7 6 Δ 8 \vee 1 9 10 11 17 17 17 10 18 10 $\frac{1}{2}$ \frac

مرتبسازی بهینهی ۵ عنصر

آیا الگوریتمی با ۷ مقایسه برای مرتبسازی ۵ عنصر (در بدترین حالت ورودی) وجود دارد؟

پس از ۳ مقایسه

(فرض b بزرگ تر است) a

(فرض c بزرگ تر است) d

(نرگ تر است) رگ با c با b

ابتدا e را در زنجیرهی $a \to b \to c$ (با ۲ مقایسه در بدترین حالت) درج می کنیم. e حالات مختلف پس از درج e

با حداکثر π مقایسهی دیگر d در زنجیره درج می شود.

اگر این عناصر K_1 تا K_2 باشند، روش این کار مطابق زیر است:

- را با K_{7} را با K_{7} را با K_{7} مقایسه کن و عناصر کوچکتر و بزرگتر را پیدا کن.
- (۲) با یک مقایسه ی دیگر دو عنصر کوچک بند فوق را با هم مقایسه کن. در انتهای این مرحله e تا e باشند، داریم: $c \leq d$ و $a \leq b \leq d$
- را در زنجیرهی a < b < d به روش دودویی درج کن، این کار حداکثر ۲ مقایسه e (۳ نیاز دارد و یکی از حالات شکل قبل حاصل می شود.
- ۴) با توجه به این که c < d در زنجیره ی چهارتایی از عناصری که در مراحل بالا مرتب شده اند، به روش دو دویی حداکثر ۲ مقایسه دیگر نیاز دارد.

بنابراین این کار حداکثر ۷ مقایسه نیاز دارد.

تعميم الگوريتم (الگوريتم فورد-جانسون)

الگوریتم بالا بهطرز جالبی توسط آقایان فورد (Lester Ford Jr.) و جانسون (Johnson کر سال ۱۹۵۹ تعمیم داده شد. ایده ی اصلی این الگوریتم تشکیل یک «زنجیره ی اصلی» از عناصری است که مرتب هستند و تعیین یک ترتیب مشخص برای درج دیگر عناصر در این زنجیره بهطوری که در انتها زنجیره ی اصلی شامل همه ی عناصر شود.

نحوه ی در ج در زنجیره ی اصلی در مرحله ی kام

نحوه ی در ج در زنجیره ی اصلی در مرحله ی kام.

$$Yt_{k-1} + (t_k - t_{k-1}) - 1 = t_k + t_{k-1} - 1 = Y^k - 1$$

الگوریتم برای مرتب سازی n عنصر به صورت زیر است:

- ۱) عناصر را به $\lfloor \frac{n}{7} \rfloor$ زوج عنصر و احتمالاً یک عنصر اضافی (اگر n فر باشد) تقسیم کن. (۲) هر زوج عنصر را با هم مقایسه کن و آنها را مرتب کن.
- ۳) به صورت بازگشتی $\lfloor \frac{n}{7} \rfloor$ عنصر کوچک تر (از زوج عناصر) را مرتب کن و پس از آن عناصر را مطابق شکل نام گذاری کن. عناصر را مطابق شکل نام گذاری کن. عناصر اصلی» می نامیم.
- ۴) عناصر b در شکل را با ترتیب زیر به بخش اولیهی زنجیرهی اصلی بهروش دودویی درج کن. این ترتیب طوری انتخاب شده است که تعداد عناصر بخش اول زنجیرهی اصلی a b باشد تا با a مقایسه بتوان زنجیرهی کامل را ایجاد کرد:
- ابتدا b_{7} را به زنجیرهی $a_{7} \leq a_{7} \leq a_{7}$ و سپس a_{7} را به زنجیرهی $a_{7} \leq a_{7}$ و احتمالاً $a_{7} \leq a_{7}$ درج کن. تعداد عناصر زنجیره حداکثر ۳ و درج با ۲ مقایسه امکانپذیر است.

- را به زنجیره ی شامل ۷ عنصر a_1 تا a_2 و a_3 تا a_4 درج کن. سپس a_5 را به a_5 ابتدا a_5 را به زنجیره ی شامل ۷ عنصر a_5 تا a_5 تا

محاسبات و تحليل الگوريتم

ها را طوری تعیین کنیم که t_k

$$Yt_{k-1} + (t_k - t_{k-1}) - 1 = t_k + t_{k-1} - 1 = Y^k - 1$$

 $t_{\circ} = ۱$ میدانیم که

پس کافی است رابطه ی بازگشتی $t_k = \mathsf{Y}^k - \mathsf{t}_{k-1}$ را برای $k > \circ$ حل کنیم. با بازکردن و جای گذاری روشن است که

$$t_k = \sum\limits_{i=\circ}^k (-1)^{k-i} \mathsf{Y}^i$$

با استفاده از

$$\mathbf{Y}t_k = \sum\limits_{i=\circ}^k (-1)^{k-i}\mathbf{Y}^{i+\mathbf{Y}} = \sum\limits_{i=\mathbf{Y}}^{k+\mathbf{Y}} (-1)^{k-i}\mathbf{Y}^i$$

داريم

$$\begin{aligned}
\mathsf{Y}t_k - t_k &= \mathsf{Y}^{k+\mathsf{Y}} - \mathsf{Y}^{k+\mathsf{Y}} - (-\mathsf{Y})^{k-\mathsf{Y}} \mathsf{Y}^{\mathsf{Y}} - (-\mathsf{Y})^k \mathsf{Y}^{\mathsf{Y}} \\
&= \mathsf{Y}^{k+\mathsf{Y}} - \left[\mathsf{Y}(-\mathsf{Y})^{k-\mathsf{Y}} + (-\mathsf{Y})^k\right] \\
&= \mathsf{Y}^{k+\mathsf{Y}} - (-\mathsf{Y})^{k-\mathsf{Y}} \\
&= \mathsf{Y}^{k+\mathsf{Y}} + (-\mathsf{Y})^k
\end{aligned}$$

و از آن داریم:

$$t_k = \frac{1}{7} [\Upsilon^{k+1} + (-1)^k]$$

تحليل الگوريتم

تعداد مقایسهها F(n)

$$F(n) = \lfloor \frac{n}{\mathbf{Y}} \rfloor + F(\lfloor \frac{n}{\mathbf{Y}} \rfloor) + G(\lceil \frac{n}{\mathbf{Y}} \rceil)$$

حداکثر تعداد مقایسههای لازم برای درج عناصر b در زنجیره اصلی $G(\lceil \frac{n}{7} \rceil)$

 $t_{k-1} \leq m < t_k$ اگر

$$G(m) = \sum_{j=1}^{k-1} j(t_j - t_{j-1}) + k(m - t_{k-1})$$

و داریم

$$\sum_{j=1}^{k-1} j(t_j - t_{j-1}) = [(k-1)t_{k-1} - (k-1)t_{k-1}] +$$

$$[(k-1)t_{k-1} - (k-1)t_{k-1}] + \dots + (t_1 - t_0)$$

$$= (k-1)t_{k-1} - t_{k-1} - t_{k-1} - \dots - t_1 - t_0$$

و بنابراین

$$G(m) = km - (t_{k-1} + t_{k-1} + \dots + t_1 + t_0) \le km$$

برای یک مقدار $k \geq 1$ داریم

$$m \ge t_{k-1} = (Y^k + (-1)^{k-1})/Y \ge Y^{k-1}$$

 $k \leq \lg m +$ ۲ پس

بنابراين

$$G(m) \le km \le m \lg m + \Upsilon m$$

بسر

$$F(n) \le \frac{n}{\mathbf{Y}} + F(n/\mathbf{Y}) + \lceil \frac{n}{\mathbf{Y}} \rceil \lg \lceil \frac{n}{\mathbf{Y}} \rceil + \mathbf{Y} \lceil \frac{n}{\mathbf{Y}} \rceil \le F(\frac{n}{\mathbf{Y}}) + \frac{n}{\mathbf{Y}} \lg n + O(n)$$

که نتیحه می گیریم

$$n \lg n \le F(n) \le n \lg n + O(n)$$

برای محاسبهی دقیق تر، فرض کنید

$$w_k = t_0 + t_1 + \dots + t_{k-1} = \lfloor \frac{\mathbf{Y}^{k+1}}{\mathbf{Y}} \rfloor$$

در این صورت،

$$(w_{\circ}, w_{1}, w_{7}, w_{7}, w_{7}, w_{7}, \cdots) = (\circ, 1, 7, \Delta, 1 \circ, 71, \cdots)$$

می توان اثبات کرد که

$$F(n) - F(n-1) = k \iff w_k < n \le w_{k+1}$$

و شرط آخر معادل است با

$$\frac{\mathbf{Y}^{k+1}}{\mathbf{Y}} < n < \frac{\mathbf{Y}^{k+1}}{\mathbf{Y}} \implies k+1 < \lg(\mathbf{Y}n) \le k+1 \implies k = \lg(\frac{\mathbf{Y}}{\mathbf{Y}}n)$$

بنابراين

$$F(n) - F(n-1) = \lceil \lg(\frac{r}{r}n) \rceil$$

و جواب این رابطهی بازگشتی به صورت زیر است:

$$F(n) = \sum_{k=1}^{n} \lceil \lg(\frac{\mathbf{r}}{\mathbf{r}}k) \rceil$$

كارايى الگوريتم فورد-جانسون

$$n=$$
 1 Λ 19 7° 71 77 77 77 75 70 79 7V 7 Λ 79 Υ ° Υ 1 $\lceil \lg n! \rceil =$ 2 Υ 2 V 97 99 V 0 V 2 Λ 0 Λ 7 Λ 9 94 9 Λ 1 10 Υ 1 109 $F(n)=$ 2 Υ 2 Λ 9 97 99 V 1 V 9 Λ 1 Λ 9 91 99 101 109 111 119

جدول ۱: تعداد مقایسه های الگوریتم فورد-جانسون F(n) برای تعداد کم عناصر و مقایسه ی آن با کران پایین.

مرتبسازی خارجی (فرض)

- اطلاعات بر روی فایلها به صورت ترتیبی ذخیره شده است.
 - هر فایل شامل n رکورد است. هر رکورد یک کلید دارد.
- مى خواهيم در فايل خروجى ركوردها براساس كليدهايشان مرتب باشند.
 - با هر دسترسی به دیسک k رکورد خوانده می شود.
 - تعداد فایلهایی که در یک زمان باز هستند r و محدود است.
 - تعداد حافظهی اصلی قابل استفاده ثابت است.
- عملیات مقایسه و محاسبات فقط می تواند در حافظهی اصلی انجام شود.

معیار کارایی: تعداد دسترسیها به دیسک

مرتبسازی خارجی ادغامی (External Merge Sort)

ادغام دو قطعهی مرتب

قطعهی اول n_1 رکورد و قطعهی دوم n_1 رکورد

، با $n_1 + n_2$ بار خواندن و همین تعداد نوشتن می توان ادغام را انجام داد.

ولى در حالت كلى با $\lceil \frac{n_1}{k} \rceil + \lceil \frac{n_1}{k} \rceil$ بار.

مقدار حافظهی مورد نیاز: بهاندازهی rk رکورد.

ادغام چند فایل مرتب

به اندازهی n_i رکورد دارد.

تعداد دسترسیها: $\sum_{i=1}^{r} \lceil \frac{n_i}{k} \rceil$ بار.

مقدار حافظهی مورد نیاز: بهاندازهی (r+1)k رکورد.

مرتبسازی خارجی ادغامی (الگوریتم کلی)

برای k=1 بیان می شود. چهار فایل f_1 ، f_1 و g_1 احتیاج است.

۱) فایل ورودی را به دو فایل f_1 و f_2 با حداکثر تعداد یک رکورد اختلاف تقسیم کن.

۲) برای $i=1,\ldots,M$ مراحل زیر را تکرار کن:

در این مرحله فرض می کنیم که f_1 و f_1 و یا g_1 شامل قطعاتی به طول f_1 هستند و هر قطعه مرتب است و تعداد قطعات دو فایل ورودی حداکثر یک واحد اختلاف دارد.

 f_1 (۱-۲) و f_1 را به صورت فایلهای ورودی در نظر می گیریم. قطعات با شماره های یکسان f_1 و f_1 را با یک دیگر ادغام کن و قطعه ای به طول دو برابر ایجاد کن. حاصل این ادغام قطعاتی مرتب به طول f_1 (به جز حداکثر یک قطعه به طول کم تر) است این قطعات را به ترتبب یک بار در g_1 و بار دیگر در g_2 بنویس.

وروحی در g_{Υ} و g_{Υ} را به عنوان فایلهای خروجی در f_{Υ} و f_{Υ} را به عنوان فایلهای خروجی در نظر بگیر و مرحله ی بالا را تکرار کن.

مثال مرتبسازی خارجی ادغامی

$$f_{in}$$
 The grade of some general transfer of the second section of the second secon

$$f_1$$
 $\uparrow \Lambda$ $\uparrow \Lambda$

$$f_{\mathsf{T}}$$
 $| \mathsf{T} \mathsf{I} | \mathsf{O} | \mathsf{Q} \mathsf{F} | \mathsf{F} \mathsf{O} | \mathsf{A} \mathsf{O} | \mathsf{Q} | \mathsf{T} \mathsf{Q} | \mathsf{I} \mathsf{T} | \mathsf{A} | \mathsf{V} \mathsf{V} | \mathsf{I} \mathsf{O} |$

$$g_1 = f_{out}$$

درستی و تحلیل

- با استقرا می توان نشان داد که در انتهای مرحله یi هر فایل خروجی دارای قطعههایی مرتب و به طول Υ^i است، به جز حداکثر یک قطعه که طولش از Υ^i کم تر است. هم چنین تعداد قطعههای دو فایل خروجی حداکثر یک واحد اختلاف دارند.
- بنابراین برای $M = \lceil \log n \rceil$ (تعداد تکرار حلقه) یکی از فایلهای خروجی حاوی یک قطعه ی مرتب شامل تمام n رکورد فایل ورودی و دیگری خالی است.
- با توجه به این که در هر تکرار همه ی n رکورد یک بار خوانده و یک بار نوشته می شوند، تعداد دسترسی به دیسک در مجموع برابر $(1+\lceil \log n \rceil + 1)$ است (n) بار خواندن و نوشتن برای تقسیم فایل اصلی).

برای حالت k > 1، این تعداد برابر $(\log n + 1)$ خواهد بود. •

• با تقسیم فایل وردوی به r فایل با اندازه هایی یکسان و با استفاده از r حافظه نیز می توان فایل را مرتب کرد در آن صورت، تعداد دسترسی به دیسک نیز می توان فایل را مرتب کرد در آن صورت، تعداد $7n(\lceil \log_r n \rceil + 1)$ می شود و در حالت کلی برابر $7n(\lceil \log_r n \rceil + 1)$.

- در حالت کلی به حافظه ای به اندازه ی 7rk نیاز است.
- حالت کلی را مرتبساز ادغامی چندگانه (Multiway Merge) می گوییم.

مرتبسازی خارجی چندفازه (Polyphase)

 $n = \Upsilon^{\epsilon}$ مثال:

$f_{ m Y}$	f_{Y}	f_{N}	پس از گام
	71 (1)	17(1)	ابتدا
15(7)	۸(۱)		1
۵(۲)		۸(٣)	Y
	۵(۵)	٣(٣)	٣
٣(٨)	۲(۵)		*
1 (A)		7(17)	۵
	1(71)	1(17)	۶
1(34)			٧

مرتبسازی خارجی چندفازه

- سه (در حالت کلی به r+1 فایل لازم داریم.
- به فایل ورودی کم ترین تعداد رکورد با کلید ∞ اضافه کن تا n برابر i امین عددد فیبانوچی) شود.
- $F_{i-1} = F_{i-1} + F_{i-1}$ فایل ورودی را به دو فایل با اندازههای F_{i-1} و F_{i-1} تقسیم کن

- باندازهی M=? بار تکرار کن \bullet
- ردر ابتدا $F_m=F_i$ است که اندازهی هر $F_m=F_i$ است که اندازهی هر $F_m=F_i$ است که اندازهی هر قطعه $F_m=F_i$ قطعه و آن $F_r=F_i$ است (در ابتدا $F_r=F_i$).
- F_{r+1} آن F_{r+1} قطعهی مرتب است که اندازه هر قطعهی آن است. و f_{r} خالی است.
- جم قطعه ی مرتب از فایل f_1 را با همین تعداد قطعه ی مرتب از فایل f_7 را با هم F_m ادغام کن و حاصل را در f_7 بنویس.
- حال f_{Y} دارای $F_{m-1}=F_{m+1}-F_m$ و F_{m+1} و F_{Y} دارای $F_{\mathsf{Y}}=F_{\mathsf{Y}}$ دارای $F_{\mathsf{Y}}=F_{\mathsf{Y}}=F_{\mathsf{Y}}+F_{\mathsf{Y}}$ است.
 - -- نام گذاری فایلها را به تناسب تغییر بده.

M اثبات درستی و مقدار

 $a(b) + c(d) \longrightarrow e(f) + g(h)$ ورابطهی •

یعنی یک فایل حاوی a قطعه ی مرتب هرکدام به اندازه ی b، با فایلی که a قطعه ی مرتب مرتب هرکدام به اندازه ی a و و دو فایل حاوی a دارد ادغام می شوند و دو فایل حاوی a و a قطعه ی مرتب به اندازه های a و a ایجاد می کنند.

- ویژگی مستقل از حلقه:
- ر هر مرحله اعداد a تا h فوق اعداد فیبوناچی هستند. --
 - -- در ابتدا و انتهای هر مرحله یکی از فایلها تهی است.
- ام i-r-1 کو چک ترین عدد فیبونا چی بزرگ تر یا مساوی n باشد، در گام r-1 ام r-1 ام (برای $r \leq r \leq i-1$) از الگوریتم، رابطه ی زیر برقرار است:

$$F_r(F_{i-r+1}) + F_{r-1}(F_{i-r}) \longrightarrow F_{r-1}(F_{i-r+1}) + F_{r-1}(F_{i-r+1})$$

• پایه:

$$F_{i-1}(F_{\Upsilon}) + F_{i-\Upsilon}(F_{\Upsilon}) \longrightarrow F_{i-\Upsilon}(F_{\Upsilon}) + F_{i-\Upsilon}(F_{\Upsilon})$$

- چون $F_{i-1} < F_{i-1}$ ، به تعداد F_{i-1} رکورد از دو فایل ورودی می خوانیم و در یکی از فایل های خروجی می نویسیم.
- تعداد قطعات این فایل خروجی برابر F_{i-1} و اندازه ی هر قطعه ی آن برابر F_{i-1} و F_{i-1} خواهد بود.
 - از فایل بزرگ تر به تعداد $F_{i-1} = F_{i-1} = F_{i-1}$ قطعه به اندازه ی F_{τ} باقی می ماند.
 - با فرض درستی پایهی استقرا، می توان فرمول بالا را ثابت کرد.

- در انتهای گام ۴ i ام (برای r=r) دو فایل خروجی هر کدام یک قطعه دارند و اندازه هایشان به ترتیب برابر F_{i-1} و F_{i-1} است.
 - پس، در انتهای گام i-r ام همه چیز در یک فایل مرتب می شود.
- تعداد گامهای الگوریتم برابر t-t است و در گام t-r-1 ام الگوریتم به تعداد t-t-1 رکورد می خواند و می نویسد.
- با احتساب تقسیم اولیهی فایل که به اندازه ی YF_i دسترسی به دیسک نیاز دارد، در مجموع الگوریتم به

$$\mathbf{Y}F_i + \sum\limits_{r=\mathbf{Y}}^{i-\mathbf{Y}} \mathbf{Y}F_{i-\mathbf{Y}}F_{i-r+\mathbf{Y}}$$

حافظهی خارجی دسترسی خواهد داشت.

مرتبهی آماری

کو چک ترین و بزرگ ترین عنصر

با $\lceil \mathsf{Y} - \mathsf{Y} \rceil$ مقایسه

دو کوچک ترین عناصر

راه حل بدیهی: با n-1+n-1 مقایسه راه حل به تر:

• ایجاد یک درخت مقایسه با n برگ و ارتفاع $\lceil \lg n \rceil$ برای تعیین کوچک ترین عنصر در n ریشه (که دقیقاً n-1 مقایسه نیاز دارد، برابر تعداد گرههای داخلی این درخت با n برگ)

- دومین کوچک ترین عنصر حتماً در این درخت با اولین عنصر مقایسه شده است.
 - پس دومین کوچک ترین عنصر، کوچک ترین عنصر بین $\lceil \lg n \rceil$ عنصر است
 - با ۱ $\lceil \lg n \rceil$ مقایسه دومین کوچک ترین عنصر یافت می شود.
 - در مجموع ۱ $\lceil \lg n \rceil$ مقایسه.

تعمیم راه حل قبل برای ۳ کوچک ترین عناصر:

- سومین کوچک ترین عنصر یا با دومین و یا اولین کوچک ترین عنصر مقایسه شده است.
- اولین کوچک ترین عنصر حداکثر با ۱ $\lceil \lg n \rceil$ عنصر (غیر از کوچک ترین عنصر) مقایسه شده است.
- دومین عنصر حداکثر با ۲ $-\lceil \lg n \rceil$ عنصر (غیر از کوچک ترین و دومین کوچک ترین عنصر) مقایسه شده است.
- پس باید کو چک ترین عنصر بین حداکثر $7 \lceil \lg n \rceil \gamma$ عنصر را پیدا کنیم که حداکثر $7 \lceil \lg n \rceil \gamma$ مقایسه نیاز داد
- پس در مجموع حداکثر $n-1+(\lceil \lg n \rceil-1)+ \lceil \lceil \lg n \rceil-r=n+ r\lceil \lg n \rceil-r$ مقایسه

k >تعمیم برای

- و با روش گذشته با $n-1+\sum\limits_{i=1}^ki\lceil \lg n \rceil-(k+1)=n+\mathcal{O}(k^{\mathsf{Y}}\lg n)$ مقایسه \bullet
 - $\mathcal{O}(n+k\lg n)$ با استفاده از هرم کمینه: در •
 - $\mathcal{O}(n+k\lg k)$ با یافتن k امین عنصر (x) و بخش بندی حول x در

یافتن k امین عنصر

- ۱) با میانگین O(n) براساس بخش بندی در مرتب سازی سریع
 - در بدترین حالت $\mathcal{O}(n)$ (۲

براساس بخش بندی ولی با تضمین این که اندازههای دو بخش ولی با تضمین این که اندازههای دو بخش

$\mathcal{O}(n)$ امین عنصر با میانگین k

```
RANDOMIZED-SELECT (() A, p, r, i)

Find the ith element in A[p..r], assuming 1 \le i \le r - p + 1

1 if p = r

2 then return A[p]

3 q \leftarrow RANDOMIZED-PARTITION (A, p, r)

4 k \leftarrow q - p + 1

5 if i \le k

6 then return RANDOMIZED-SELECT (A, p, q, i)

7 else return RANDOMIZED-SELECT (A, q + 1, r, i - k)
```

تحلیل Randomized-Select

- فرض می کنیم که عناصر نامساوی هستند (حالت بدتر)
- اگر تعداد عناصر n باشد، محور با احتمال $\frac{1}{n}$ ، مرتبهاش $k \leq n$ است.
- اگر ۱,۲ جا باشد، آرایه به دو بخش ۱ عضوی و n-1 عضوی تقسیم می شود.
 - ullet در حالت کلی n، آرایه به دو بخش k عضوی و n-k عضوی تقسیم می شود.

پسر

$$T(n) \le \frac{1}{n} \left[T(\max(1, n - 1)) + \sum_{k=1}^{n-1} T(\max(k, n - k)) \right] + O(n)$$

$$T(n) \le \frac{1}{n} \left[T(\max(1, n - 1)) + \sum_{k=1}^{n-1} T(\max(k, n - k)) \right] + O(n)$$

داريم

$$\max\{k, n - k\} = \begin{cases} k & \text{if } k \ge \lceil n/\Upsilon \rceil, \\ n - k & \text{if } k < \lceil n/\Upsilon \rceil \end{cases}$$

T(فرد: جملههای n فرد:

دوبار در Σ ظاهر می شوند، $lceiln/\Upsilon
ceil), T(\lceil n/\Upsilon
ceil + 1), \ldots, T(n-1)$

- مانه عن $T(\lceil n/1 \rceil + 1), T(\lceil n/1 \rceil + 1), \dots, T(n-1)$ دوبار و جمله هن می شوند. $T(\lceil n/1 \rceil)$ یک بار ظاهر می شوند.
 - جمله ی O(n) نادیده گرفت. $\frac{1}{n}$ را می توان در مقابل O(n) نادیده گرفت.

يسر

$$T(n) \leq \frac{1}{n} \left[T(\max(1, n - 1)) + \sum_{k=1}^{n-1} T(\max(k, n - k)) \right] + O(n)$$

$$\leq \frac{1}{n} \left[T(n - 1) + \sum_{k=\lceil n/1 \rceil}^{n-1} T(k) \right] + O(n)$$

$$= \frac{1}{n} \sum_{k=\lceil n/1 \rceil}^{n-1} T(k) + O(n).$$

رابطهی آخر را با استقرا حل می کنیم:

 $T(n) \leq cn$ فرض:

$$T(n) \leq \frac{?}{n} \sum_{k=\lceil n/\rceil} ck + O(n)$$

$$\leq \frac{?c}{n} \left[\sum_{k=\rceil} k - \sum_{k=\rceil} | + O(n) \right]$$

$$= \frac{?c}{n} \left[\frac{?}{?} (n-\rceil)n - \frac{?}{?} \left(\left[\frac{n}{?} \right] - 1 \right) \left[\frac{n}{?} \right] \right] + O(n)$$

$$\leq c(n-\rceil) - \frac{c}{n} \left(\frac{n}{?} - 1 \right) \left(\frac{n}{?} \right) + O(n)$$

$$= c \left[\frac{?}{?} n - \frac{?}{?} \right] + O(n)$$

$$\leq cn$$

 $c(n/\mathfrak{k}+1/\mathfrak{k})>O(n)$ کنیم به طوری که وانیم را به قدر کافی بزرگ انتخاب کنیم به طوری که

 $\mathcal{O}(n)$ یافتن k امین عنصر در

محور را طوری انتخاب می کنیم تا تضمین کنیم که اندازه ی دوبخش در بدترین حالت $\mathcal{O}(n)$ هستند.

- حداقل ۲ $-\lceil \frac{\lceil n/\Delta \rceil}{2} \rceil$ گروه دارای ۳ عنصر کوچک تر از x هستند.
 - تعداد عناصر کوچک تر از x حداقل

$$\mathsf{T}\left(\left\lceil\frac{\mathsf{I}}{\mathsf{I}}\left\lceil\frac{n}{\mathsf{D}}\right\rceil\right\rceil-\mathsf{I}\right)\geq\frac{\mathsf{T}n}{\mathsf{I}\circ}-\mathsf{S}$$

ست.

- به صورت مشابه، تعداد عناصر بزرگ تر از x نیز حداقل 7-9 خواهد بود.
- پس، در بدترین حالت، الگوریتم به صورت بازگشتی برروی حداکثر $+ \circ / \circ / \circ / \circ$ عنصر اعمال خواهد شد.

$$T(n) \leq \begin{cases} \Theta(1) & n \leq \Lambda \circ \\ T(\lceil n/\Delta \rceil) + T(\forall n/1 \circ + \mathcal{F}) + O(n) & n > \Lambda \circ \end{cases}$$

 $T(n) \leq cn$ فرض: برای یک c مفروض و هر $h \leq h \circ n$ داشته باشیم $h \leq h \circ n$

$$T(n) \leq c \lceil n/\Delta \rceil + c(\forall n/\land \circ + \vartheta) + O(n)$$

$$\leq cn/\Delta + c + \forall cn/\land \circ + \vartheta c + O(n)$$

$$\leq \Im cn/\land \circ + \forall c + O(n)$$

$$\leq cn$$