

รายงานสรุปผลการดำเนินงานรายวิชา FRA 333 Kinematics of Robotics System สถาบันวิทยาการหุ่นยนต์ภาคสนาม มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี

หัวข้อ

7 DOF Manipulator simulates the joint pattern of a Human arm Kinematics simulation

กลุ่มที่ 24

ผู้ดำเนินงาน

1.นายไกรวิชญ์ วิชาโคตร รหัสนักศึกษา 65340500004

2.นายชยณัฐ เลิศวิทยานุรักษ์ รหัสนักศึกษา 65340500012

3.นายชวภณ วชิรานิรมิต รหัสนักศึกษา 65340500014

4.นายวริทธิ์ธร คงหนู รหัสนักศึกษา 65340500050

สารบัญ

สารบัญ	ก
สารบัญรูปภาพ	ନ
สารบัญตาราง	1
บทที่ 1 บทนำ	1
ที่มาและความสำคัญ	1
วัตถุประสงค์	1
ขอบเขต	1
ระยะเวลาและแผนการปฏิบัติงาน	2
บทที่ 2 งานวิจัยและทฤษฎีที่เกี่ยวข้อง	3
Inverse Kinematics and Control of a 7-DOF Redundant Manipulator Based on the Close	ed-Loop
Algorithm	3
Introduction to Inverse Kinematics with Jacobian Transpose, Pseudoinverse and Dampe	ed
Least Squares methods	5
The Singular Value Decomposition : Computation and Applications to Robotics	7
บทที่ 3 การดำเนินงาน	9
System Overview	9
ROS System Architecture	11
Model แบบจำลองของแขนมนุษย์	12
การคำนวณทาง Kinematics	13

สารบัญ (ต่อ)

บทที่ 4 ผลการดำเนินงาน	15
ระบบ Input ค่าสำหรับควบคุมการทำงาน	15
ระบบควบคุมการทำงาน MoveJ	15
ระบบควบคุมการทำงาน MoveL	16
บทที่ 5 สรุปผลการดำเนินงาน	17
สรุปผลการดำเนินงาน	17
แผนการการพัฒนาต่อ	17
อ้างอิง	18

สารบัญรูปภาพ

รูปที่ 1 DH – Parameter และโครงสร้างของแขนกล 7 DOF ที่ใช้ในบทความ	2
้ รูปที่ 2 Block Diagram ระบบการควบคุมความเร็วของข้อต่อแขนกล	
รูปที่ 3 System Overview ของระบบการทำงาน	9
รูปที่ 4 System Architecture การทำงานบน ROS	. 11
รูปที่ 5 การออกแบบ Custom Service และการเรียกใช้งาน Service แต่ละตัว	. 12
รูปที่ 6 ชิ้นส่วนสำหรับประกอบเป็น Model แบบจำลองแขนมนุษย์	. 12
รูปที่ 7 Model แบบจำลองแขนมนุษย์บน RVIZ	. 13
รูปที่ 8 หน้าต่างระบบ Input ค่าสำหรับการควบคุม	. 15
รูปที่ 9 ตัวอย่างการทำงานในโหมด MoveJ	. 15
รูปที่ 10 ตัวอย่างการทำงานในโหมด MoveL	. 16

สารบัญตาราง

ตารางที่ 1 แผนการดำเนินงาน	2
ตารางที่ 2 MDH – Parameter ของ Model ที่จัดเรียงข้อต่อแบบ 3R - R - 3R	13

บทที่ 1 บทนำ

ที่มาและความสำคัญ

จากความรู้ในเรื่องของ Kinematics ทำให้สามารถนำมาใช้ในการอธิบายลักษณะการเคลื่อนที่ของแขนกล ได้และสามารถใช้ในการควบคุมการทำงานของแขลกลให้เป็นไปตามค่าที่กำหนดได้ ดังนั้นความรู้ในเรื่องของ Kinematics จะนำมาใช้อธิบายการเคลื่อนที่ของแขนของสิ่งมีชีวิตได้หรือไม่ โดยในโครงการนี้นั้นได้ทำการนำแขน ของมนุษย์ มาใช้เป็นต้นแบบในการสร้างแขนกลจำลองที่มีลักษณะการเรียงตัวของข้อต่อแบบ 3R – R - 3R ที่ สามารถทำการอธิบายการเคลื่อนที่และทดลองควบคุมการเคลื่อนที่ผ่านการทำ Simulation ขึ้นมา

วัตถุประสงค์

- 1. เพื่อสร้าง Simulation การเคลื่อนที่ของ Model แขนมนุษย์
- 2. เพื่อสร้างระบบจำลองการควบคุมการเคลื่อนที่ของแขนมนุษย์
- 3. เพื่อศึกษาแรงในข้อต่อของแขนมนุษย์ที่ต้องใช้เมื่อมีแรงมากระทำที่ปลายของแขนเพื่อรักษาท่าทาง
- 4. เพื่อศึกษาการประยุกต์ใช้ความรู้ทาง Kinematics ในการอธิบายการเคลื่อนที่และการควบคุมการเคลื่อนที่ ของแขนมนุษย์

ขอบเขต

- 1. Simulation จำลองเคลื่อนที่ของแขนมนุษย์ตั้งแต่หัวไหล่จนถึงข้อมือ
- 2. ระบบควบคุมการเคลื่อนที่สามารถควบคุมผ่าน Configuration space โดยการปรับค่า q ของแต่ละ joint
- 3. ระบบควบคุมการเคลื่อนที่สามารถควบคุมผ่าน Task space โดยการกำหนด ตำแหน่งที่มีการอ้างอิงกับ reference frame
- 4. ระบบควบคุมการเคลื่อนที่สามารถควบคุมผ่าน Task space ที่สามารถเคลื่อนที่แบบ MoveJ หรือ MoveL
- 5. ระบบคำนวณหาแรงในแต่ละ joint กรณีมีแรงภายนอกมากระทำที่จุดปลายของแขนใน Simulation เมื่อ แขนอยู่กับที่

ระยะเวลาและแผนการปฏิบัติงาน

ลำดับ	การดำเนินงาน	สัปดาห์ที่						
	กางทานนาน		2	3	4	5	6	
1	ศึกษาข้อมูลเกี่ยวกับ Kinematics ของแขนมนุษย์							
2	จัดทำ Proposal							
3	พัฒนาระบบ Simulation ในส่วนของ Model แขนมนุษย์							
4	พัฒนาระบบการคำนวณ ทาง Kinematics							
5	รวบมระบบ Simulation							
6	ปรับปรุงแก้ไขงาน							
7	ทดสอบและบันทึกผลการทำงาน							
8	จัดทำ readme และเอกสารสำหรับการนำเสนอ							
9	นำเสนอและจัดส่งงาน							

ตารางที่ 1 แผนการดำเนินงาน

บทที่ 2 งานวิจัยและทฤษฎีที่เกี่ยวข้อง

Inverse Kinematics and Control of a 7-DOF Redundant Manipulator Based on the Closed-Loop Algorithm[1]

บทความนี้อธิบายถึงการทำ Closed - loop inverse kinematics (CLIK) algorithm ในการควบคุมการ ทำงานของแขนกล 7 DOF โดยในปกตินั้นจะใช้แค่การควบคุมความเร็วเพียงเท่านั้นแต่บทความนี้มีการนำการ ควบคุมความเร่งเข้ามาอธิบายเพิ่มเติมด้วยโดยใช้ Pseudoinverse method และมีการเพิ่ม Joint limits avoidance (JLA) เพื่อจัดการกับปัญหา null space motion และมีการแสดงผลการทำงานทั้ง Simulations และการคบคุมแขนกล 7 DOF จริง

Kinematics model ของแขนกล 7 DOF นี้สามารถเขียนเป็น DH – Parameter ได้ดังนี้

	Ze A	Frame	Link	α_{i-1}	a_{i-1}	d_{i}	q_{i}	$q_{ m min}$	$q_{ m max}$
4	d_7 x_e $z_5 z_7$	0-1	1	0	0	d_1	q_1	-270	270
	Z ₀	1-2	2	-90	0	0	q_2	-110	110
	d _s x ₅ x ₆ x ₇ z ₃	2-3	3	90	0	d_3	q_3	-180	180
	z ₄	3-4	4	-90	0	0	$q_{\scriptscriptstyle 4}$	-110	110
	d ₃ ↑ z ₁	4-5	5	90	0	$d_{\scriptscriptstyle 5}$	$q_{\scriptscriptstyle 5}$	-180	180
	z ₁ z ₂	5-6	6	-90	0	0	q_6	-90	90
	d₁ ↑ z₀	6-7	7	90	0	0	q_7	-270	270
	y_0	7-E	End	0	0	d_7	0		

รูปที่ 1 DH - Parameter และโครงสร้างของแขนกล 7 DOF ที่ใช้ในบทความ

ในการควบคุมการทำงานนั้นเป็นการใช้ Closed - loop inverse kinematics โดยการใช้ Differential kinematics equation ในการอธิบายการควบคุมความเร็วที่เกิดขึ้นโดยทำการคำนวณผ่าน Jacobian ในการ แปลงความเร็วของแต่ละข้อต่อให้เป็นความเร็วที่ปลายแขนของแขนกล โดยกำหนดให้

Task space คือ $(x(t),\dot{x}(t))$

Joint space คือ $\left(q(t),\dot{q}(t)\right)$

จะได้ความสัมพันธ์ของ Task space จาก Jacobian Matrix คือ

$$\dot{x} = J(q)\dot{q}$$

เนื่องจากแขนกลเป็นแบบ 7 DOF ทำให้ Jacobian matrix มีขนาด 6 x 7 ซึ่งไม่สามารถหา Invert matrix ได้ทำให้ต้องมีการแปลง Jacobian matrix ก่อนด้วย Pseudoinverse Jacobian จึงจะสามารถหา ความสัมพันธ์ของ Joint space จาก Jacobian Matrix ได้โดย

$$J^{\dagger} = J^{T}(JJ^{T})^{-1}$$

จากการแปลง Jacobian matrix จะได้ความสัมพันธ์ของ Joint space จาก Jacobian Matrix คือ

$$\dot{q}=J^{\dagger}(q)\dot{x}$$

สำหรับแขนกลที่มีจำนวนข้อต่อมากกว่าจำนวน Task space ที่ควบคุมได้ (n>m) ทำให้อาจเกิดปัญหา nullspace motion ขึ้นได้สามารถแก้ปัญหาได้โดยการใช้สมการ

$$\dot{q} = J^{\dagger}(q)\dot{x} + (I - J^{\dagger}(q)J(q))\dot{q}_{0}$$

โดยพจน์แรกใช้ในการหาคำตอบทั่วไป ส่วนพจน์ที่สองอธิบายค่า Homogeneous solution

ในบทความนี้มีการควบคุมการทำงานของแขนกลอยู่ 2 แบบ คือการควบคุมความเร็วและควบคุมความเร่ง ของแต่ละข้อต่อ แต่ในโครงการนี้เป็นการควบคุมความเร็วเพียงอย่างเดียว จึงมีการยกมาแค่ในส่วนของการควบคุม ความเร็วของแต่ละข้อต่อเพียงอย่างเดียง

รูปที่ 2 Block Diagram ระบบการควบคุมความเร็วของข้อต่อแขนกล

ในระบบจะทำการหา Error จาก

$$e = x_d - x$$

$$\dot{e} = \dot{x}_d - \dot{x}$$

เมื่อแทนค่าลงในสมการความสัมพันธ์ของ Joint space จาก Jacobian Matrix จะได้

$$\dot{q} = J^{\dagger}(q)(\dot{x}_d + K_p(x_d - x))$$

ซึ่งจากสมการจะมีการใช้ P control ในการควบคุมการทำงาน ซึ่งสามารถนำมารวมกับพจน์ที่อธิบายค่า Homogeneous solution เพื่อป้องกัน null space motion ได้โดยจะได้

$$\dot{q} = J^{\dagger}(q)(\dot{x}_d + K_p(x_d - x)) + (I - J^{\dagger}(q)J(q))\dot{q}_0$$

Introduction to Inverse Kinematics with Jacobian Transpose, Pseudoinverse and Damped Least Squares methods[2]

บทความนี้อธิบายถึงการใช้งาน Inverse Kinematics ร่วมกับ Jacobian Transpose, Pseudoinverse และ Damped Least Squares methods โดยในโครงการนี้มีการใช้งานแค่ Pseudoinverse method จึงมีการ ยกมาแค่ในส่วน Pseudoinverse method เพียงอย่างเดียง

Pseudoinverse method หรือ Moore-Penrose Inverse ของ Jacobian matrix นั้นเป็นกระบงนการ ที่ใช้ในการหา invert matrix ของ Jacobian matrix ที่ไม่ใช่ matrix จัตุรัสหรือไม่เป็น full row rank โดย สามารถเขียนอยู่ในรูปสมการได้

$$\Delta\theta = J^{\dagger}\vec{e}$$

โดย Pseudoinverse method จะให้ตอบที่ดีที่สุดของ

$$J\Delta\theta = \vec{e}$$

ซึ่งคำตอบที่ได้จะมาจากการใช้ Least squares method ในการหาคำตอบซึ่งจะนิยามโดยสมการ

$$||J\Delta\theta - \vec{e}||^2$$

คำตอบที่ได้จะเกิดขึ้นได้ ประกอบด้วย

- 1. $ec{e}$ อยู่ในช่วงคอลัมน์ของ J คำตอบที่ได้ในสมการ $J\Delta\theta=ec{e}$ จะมีค่าแน่นอน และ Pseudoinverse จะให้ คำตอบ $\Delta\theta$ ที่มีขนาดเล็กที่สุด
- 2. $ec{e}$ ไม่อยู่ในช่วงคอลัมน์ของ J Pseudoinverse จะให้คำตอบ $\Delta heta$ ที่มีความต่าง $\|J\Delta heta ec{e}\|$ ที่น้อยที่สุด

Pseudoinverse method นั้นได้รับผลกระทบจากปัญหา Singularities โดยแบ่งเป็นเมื่อเป้าหมายอยู่ที่ จุด Singularities การใช้ Pseudoinverse จะไม่เกิดการเคลื่อนที่ในทิศทางที่เป็นไปไม่ได้ แต่ถ้าอยู่ใกล้ Singularities การใช้ Pseudoinverse จะทำให้ $\Delta \theta$ มีการเปลี่ยนแปลงค่าอย่างมากแม้ว่า \vec{e} จะเปลี่ยนแปลงเพียง เล็กน้อย

การกำหยดเป้าหมายรองโดยการใช้ Nullspace method ช่วยให้สามารถเพิ่มเป้าหมายเพิ่มเติม โดยไม่ กระทบต่อเป้าหมายหลัก โดยเกิดจากการ Projection matrix ลงบน Nullspace ของ J ซึ่งจะนิยามโดยสมการ

$$\Delta\theta = J^{\dagger}\vec{e} + (I - J^{\dagger}J)\varphi$$

กำหนดให้ $oldsymbol{arphi}$ เป็นเวกเตอร์สำหรับเป้าหมายรองสามารถหา Pseudoinverse method ของ Jacobian matrix ได้ โดยเริ่มจากสมการในรูปปกติ

$$J^T J \Delta \theta = \vec{e}$$

กำหนดให้ $\vec{z} = J^T \vec{e}$ จะได้

$$(J^T J)\Delta\theta = \vec{z}$$

ซึ่งจากสมการสามารถบอกได้ว่าค่า \vec{z} จะอยู่ในช่วงของ J^TJ เสมอทำให้สามารถหาคำตอบได้เสมอ และ เมื่อเป็น full row rank ทำให้ J^TJ แสดงให้เห็นว่าสามารถหาค่า Invert ได้และคำตอบที่จะ Minimum magnitude ของ $\Delta\theta$ ซึ่งสามารถเขียนอยู่ในรูปของ

$$\Delta\theta = J^T (JJ^T)^{-1} \vec{e}$$

การทำ Pseudoinverse method มีการใช้งานอย่างแพร่หลายแต่ก็ต้องระวังความไม่เสถียรเมื่อเข้าใกล้ Singularities

The Singular Value Decomposition: Computation and Applications to Robotics[3]

Singular Value Decomposition (SVD) เป็นเครื่องมือสำคัญในพีชคณิตเชิงเส้นที่ใช้ในการวิเคราะห์ สมบัติทางจลนศาสตร์และพลศาสตร์ของระบบหุ่นยนต์ โดยเฉพาะในงานศึกษาการวิเคราะห์ Jacobian matrix ซึ่งเป็นตัวแปรสำคัญที่เชื่อมโยงความเร็วของข้อต่อไปยังความเร็วของ End-effector การประยุกต์ SVD ยัง ครอบคลุมถึงการจัดการ Redundancy, Dexterity Optimization และ Singularity

จุดอ่อนของระบบนี้เกิดขึ้นเมื่อ Jacobian matrix มีค่าลดลำดับ (Rank Deficiency) ที่ความเอกฐาน ซึ่ง ส่งผลต่อการควบคุมและลดความสามารถในการควบคุมของหุ่นยนต์ แม้ว่า SVD จะให้วิธีการจัดการปัญหานี้ได้ อย่างแม่นยำ แต่ความซับซ้อนในการคำนวณกลับจำกัดการใช้งานในเวลาจริง (Real-time)

การนำ SVD มาใช้งานในส่วนของ Robotics นั้นจะนิยมใช้เมื่อ Jacobian matrix ที่ได้มีขนาด m x n โดยจะสามารถจัดรูป SVD ให้อยู่ในรูปสมการ

$$I = U\Sigma V^T$$

กำหนดให้ $U \in \mathbb{R}^{m \times m}$ เป็น Orthogonal Matrices

 $V \in \mathbb{R}^{n \times n}$ เป็น Orthogonal Matrices

 $\Sigma \in \mathbb{R}^{m imes n}$ เป็น Matrix แนวทแยงที่มีค่า Singular ($\sigma_{
m i}$) บนเส้นทแยงมุมเรียงลำดับ

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_{\min(m,n)} \geq 0$$

ค่า Singular ($\sigma_{
m i}$) แสดงถึงความสามารถในการปรับขนาด (Scaling) ของ J ในทิศทางที่กำหนดโดย เวกเตอร์ V

ค่าเงื่อนไข (Condition Number) สามารถอธิบายได้โดยสมการ

$$k(J) = \frac{\sigma_{max}}{\sigma_{min}}$$

บ่งบอกถึงความไวต่อการเปลี่ยนแปลงของอินพุต หาก $\,\sigma_{min}
ightarrow 0\,$ ระบบจะเข้าสู่ Singularity

การนำ SVD มาใช้งานในส่วนของ Robotics จะนำมาใช้ได้หลากหลายแต่ในโครงการนี้นั้นมีการใช้งานแค่ ส่วนของการตรวจสอบ Singularity เท่านั้นจึงจะยกมาแค่ประเด็นนี้

การเกิด Singularity นั้นส่งผลให้การคำนวณความเร็วของข้อต่อมีค่าที่ได้ไม่จำจัด โดย SVD จะมีการ แปลง Jacobian Matrix ด้วย Damped Least-Squares (DLS) Solution เพื่อเพิ่มเสถียรภาพของระบบตาม สมการ

$$J + \lambda = V(\Sigma^2 + \lambda^2 I)^{-1} \Sigma U^T$$

กำหนดให้ *J* เป็น Jacobian Matrix

 $\lambda>0$ เป็น ตัวแปรลดผลกระทบจาก Singularity

บทที่ 3 การดำเนินงาน

System Overview

รูปที่ 3 System Overview ของระบบการทำงาน

การทำงานของระบบถูกแบ่งออกเป็น 3 ส่วนหลักโดยประกอบด้วย

- 1. ส่วน Input ของระบบซึ่งแบ่งออกเป็น 2 ส่วน คือ
 - 1.1. ส่วนที่ผู้ใช้งานสามารถ Input ให้กับระบบได้ ประกอบด้วย
 - 1.1.1.Configuration Space (q) : ค่ามุมในแต่ละข้อต่อที่ใช้เพื่อควบคุมการเคลื่อนไหวของแต่ละข้อต่อ
 - 1.1.2.Task Space (x, y, z, roll. Pitch, yaw) : ตำแหน่งเป้าหมายใน Simulation ที่ให้ปลายแขนไปถึง
 - 1.1.3.Move Mode (MoveJ, MoveL) : โหมดการเคลื่อนที่
 - 1.1.4.Input Wrench : ค่า wrench (force and torque) จากภายนอกที่กระทำต่อปลายแขนเมื่อระบบ หยุดนิ่งอยู่กับที่

- 1.2. ส่วนที่ระบบจะรับ Input จาก setup ที่ถูกกำหนดไว้ ประกอบด้วย
 - 1.2.1.Arm Model : Model แบบจำลองแต่ละส่วนของแขนมนุษย์
 - 1.2.2.Joint Type: ประเภทของข้อต่อโดยกำหนดไว้เป็นแบบ Revolute ที่ถูกจัดเรียงแบบ 3R R 3R
 - 1.2.3. Joint Limit : ขอบเขตการเคลื่อนไหวของแต่ละข้อต่อที่ถูกกำหนดไว้
 - 1.2.4.Reference Frame
- 2. ส่วน Process ของระบบซึ่งแบ่งออกเป็น 7 ส่วน คือ
 - 2.1. Model.urdf : Model แบบจำลองของแขนมนุษย์
 - 2.2. MDH Parameter : Parameter ที่อธิบายการเปลี่ยนแปลงของแต่ละข้อต่อของ Model แบบจำลอง แขนมนุษย์สำหรับใช้ในการคำนวณส่วนอื่น ๆ ต่อไป
 - 2.3. Forward Kinematics : การคำนวณที่ใช้ในการหา Task Space (x, y, z, roll. Pitch, yaw) จาก Configuration Space (q)
 - 2.4. Inverse Kinematics : การคำนวณที่ใช้ในการหา Configuration Space (q) จาก Task Space (x, y, z, roll. Pitch, yaw)
 - 2.5. Jacobian Matrix : การคำนวณที่ใช้ในการหา Jacobian Matrix ที่เกิดจากความสัมพันธ์ของการ เปลี่ยนแปลง Configuration Space ที่ส่งผลต่อการเปลี่ยนแปลงของ Task Space
 - 2.6. Inverse Differential Kinematics : การคำนวณที่ใช้ในการหาความเร็วของแต่ละข้อต่อโดยการใช้
 Inverse Jacobian Matrix ร่วมกับความเร็วของปลายแขน
 - 2.7. Statics Force : การคำนวณเพื่อหาค่า Joints Effort โดยการใช้ Jacobian Transpose Matrix ร่วมกับ ค่า wrench (force and torque)
- 3. ส่วน Output ของระบบซึ่งแบ่งออกเป็น 2 ส่วน คือ
 - 3.1. ส่วนของค่าที่ได้จากการคำนวณ
 - 3.1.1.Task Space (x, y, z, roll. Pitch, yaw)
 - 3.1.2.Configuration Space (q)
 - 3.1.3. Joint Speed : ความเร็วในการเคลื่อนที่ของแต่ละข้อต่อ
 - 3.1.4.Joint Effort : แรงบิดของแต่ละข้อต่อที่ใช้เพื่อรักษาท่าทางเมื่อมีแรงมากระทำที่ปลายแขน
 - 3.2. ส่วนการแสดงผลที่แสดงผลการเคลื่อนไหวของ Model แบบจำลองแขนมนุษย์จากค่าต่าง ๆ ที่คำนวณได้

ROS System Architecture

รูปที่ 4 System Architecture การทำงานบน ROS

ในการพัฒนาระบบการทำงานั้นจะถูกพัฒนาขึ้นบน ROS โดยมีการแบ่งการทำงานออกเป็น Node ย่อยที่ ทำหน้าที่แตกต่างกันจำนวน 4 node ประกอบด้วย

- 1. Input_node เป็น node สำหรับการแสดงผล UI สำหรับการ Input ค่าต่าง ๆ สำหรับการควบคุมการ เคลื่อนที่ของ Model และแสดงผลค่า Joint Effort จากการคำนวณ
- 2. Controller_node เป็น node สำหรับสั่งงานการควบคุมการทำในรูปแบบต่าง ๆ โดยรับ Input จาก Input_node และสั่งงานต่อไปยัง Jointstate_node
- 3. Jointstate_node เป็น node สำหรับสั่งงานค่าในการขยับของแต่ละข้อต่อตามคำสั่งที่ได้มาจาก Controller node
- 4. Joint_state_publisher เป็น node สำหรับควบคุมการเคลื่อนที่ของ Model ที่แสดงผลบน RVIZ

มีการสร้าง Custom Service สำหรับการใช้งานที่เฉพาะเจอะจงจำนวน 4 service ประกอบด้วย

ร**ูปที่ 5** การออกแบบ Custom Service และการเรียกใช้งาน Service แต่ละตัว

Model แบบจำลองของแขนมนุษย์

รูปที่ 6 ชิ้นส่วนสำหรับประกอบเป็น Model แบบจำลองแขนมนุษย์

รูปที่ 7 Model แบบจำลองแขนมนุษย์บน RVIZ

การคำนวณทาง Kinematics

ในการทำงานได้มีการใช้การคำนวณทาง Kinematics ในการหาค่าที่ใช้ในการควบคุมการเคลื่อนที่โดยมี การกำหนด MDH – Parameter ดังนี้

joint	a_{i-1}	α_{i-1}	d_i	θ_i
1	0.0	90.0°	0.0	q_1
2	0.0	90.0°	0.0	q ₂ + 90.0°
3	0.0	-90.0°	0.0	q ₃ - 90.0°
4	0.4	-90.0°	0.0	q ₄ - 90.0°
5	0.0	-90.0°	0.4	Q ₅
6	0.0	90.0°	0.0	q ₆ + 90.0°
7	0.0	90.0°	0.0	97

ตารางที่ 2 MDH – Parameter ของ Model ที่จัดเรียงข้อต่อแบบ 3R - R - 3R

จาก MDH – Parameter สามารถนำไปใช้ร่วมกับ Library python roboticstoolbox สำหรับใช้ในการ คำนวณต่าง ๆ ทาง Kinematics โดยใช้ในการหา Froward Kinematics, Inverse Kinematics และ Jacobian Matrix สำหรับการคำนวณอื่น ๆ ที่ซับซ้อนต่อไป ในส่วนการหาความเร็วในการเคลื่อนที่ของแต่ละข้อต่อนั้นหาจากการใช้ Pseudoinverse method ของ Jacobian matrix โดยหาจากสมการ

$$\dot{q} = J^{\dagger}(q)\dot{x}$$

เมื่อกำหนดให้ q แทน ค่าความเร็วในแต่ละข้อต่อ

 \dot{x} แทน ค่าความเร็วที่ปลายแขน

 $J^{\dagger}(q)$ แทน Pseudoinverse method ของ Jacobian matrix ที่ต่อละข้อต่อทำมุม ${
m q}$

โดย $J^{\dagger}\dot(q)$ หรือ Pseudoinverse method ของ Jacobian matrix หาจาก

$$J^{\dagger} = J^{T}(JJ^{T})^{-1}$$

เมื่อกำหนดให้ J แทน Jacobian matrix ที่ต่อละข้อต่อทำมุม q ใด ๆ

และ \dot{x} เป็นความเร็วคงที่ ที่กำหนดไว้ที่ 0.01 m/s โดยหาจาก Unit vector ของผลต่างระหว่างตำแหน่งปัจจุบัน กับตำแหน่งเป้าหมายคูณกับความเร็วคงที่เพื่อหาความเร็วในแต่ละแกน ได้ตามสมการ

$$\dot{x} = \left(\frac{target_{pose} - current_{pose}}{\left\|target_{pose} - current_{pose}\right\|}\right) 0.01$$

ในการตรวจสอบการเข้าใกล้ Singularity ของการเคลื่อนที่ของแขนกลโดยการใช้ความเร็วในการเคลื่อนที่ ของแต่ละข้อต่อนั้นมีการใช้ Library svd ของ scilpy ใน python

ในส่วนการหาค่า Joint Effort หาจากสมการทาง Static Force โดยหาจากสมการ

$$\tau = J^T(q)w$$

เมื่อกำหนดให้ au แทน ค่า Joint Effort

w แทน ค่า Wrench ที่กระทำที่ปลายแขน

บทที่ 4 ผลการดำเนินงาน

การทำงานของระบบจะแบ่งออกเป็นระบบ Input และระบบควบคุมการทำงาน MoveJ และ MoveL

ระบบ Input ค่าสำหรับควบคุมการทำงาน

รูปที่ 8 หน้าต่างระบบ Input ค่าสำหรับการควบคุม

ระบบควบคุมการทำงาน MoveJ

รูปที่ 9 ตัวอย่างการทำงานในโหมด MoveJ

ระบบควบคุมการทำงาน MoveL

รูปที่ 10 ตัวอย่างการทำงานในโหมด MoveL

สามารถ Download ระบบการทำงานเพื่อทดสอบและดูรายละเอียดการทำงานฉบับเต็มได้ที่ GitHub : https://github.com/PoFamily/human_arm_ws.git

บทที่ 5 สรุปผลการดำเนินงาน

สรุปผลการดำเนินงาน

ในการทำระบบจำลองการเคลื่อนไหวของแขนมนุษย์ภายใต้หัวข้อ 7 DOF Manipulator simulates the joint pattern of a Human arm Kinematics simulation ได้ดำเนินการสร้างระบบขึ้นโดยการใช้งานระบบของ ROS2 Humble ร่วมกับ Python libraries สำหรับการคำนวณและควบคุมการทำงานในส่วนต่าง ๆ โดยในการ จำลองนั้นได้จำลองในส่วนของไหล่จนถึงข้อมือโดยแสดงผลการเคลื่อนที่ผ่าน RVIZ บนระบบ ROS2 โดยระบบที่ สร้างขึ้นประกอบด้วย ระบบการควบคุม และระบบรับข้อมูล โดยระบบสามารถรับข้อมูลจาก Input UI ที่สร้างขึ้น เพื่อควบคุมการทำงานและสามารถสั่งงานผ่าน Service ได้เช่นกันส่วนระบบควบคุมจะแบ่งเป็นระบบ MoveJ ,MoveL และระบบคำนวณค่า Joint Effort ในส่วนของระบบที่ยังไม่ได้เดินการเพื่อเพิ่มความสมจริงของระบบ จำลองคือการทดสอบเทียบกับแขนจริงเพื่อศึกษาถึงรูปแบบความเป็นไปได้ในการเคลื่อนที่ของแขนมนุษย์

แผนการการพัฒนาต่อ

- 1. ทดสอบการเคลื่อนที่ของระบบจำลองเทียบกับแขนมนุษย์จริงเพื่อหาข้อจำกัดให้ระบบจำลองเคลื่อนที่ได้ เหมือนจริงมากที่สุด
- 2. เพิ่มข้อจำกัดที่แม่นยำขึ้นของ Joint limit ในทุกรูปแบบการเคลื่อนที่
- 3. เพิ่มการควบคุมในรูปแบบของ Trajectory เพื่อให้ระบบจำลองเคลื่อนที่ไปยังตำแหน่งเป้าหมายได้ราบรื่น ยิ่งขึ้น
- 4. เพิ่มระบบจำลองในส่วนของมือเพื่อให้ได้ระบบจำลองการเคลื่อนที่ของแขนมนุษย์ที่สมบูรณ์มากขึ้น สามารถนำระบบที่สร้างขึ้นไปศึกษารายละเอียดการทำงานและนำไปพัฒนาต่อยอดได้จาก GitHub : https://github.com/PoFamily/human_arm_ws.git

อ้างอิง

- [1] Jingguo Wang, Yangmin Li, Xinhua Zhao. "Inverse Kinematics and Control of a 7-DOF Redundant Manipulator Based on the Closed-Loop Algorithm" International Journal of Advanced Robotic Systems, 2010.
- [2] Samuel R. Buss. "Introduction to Inverse Kinematics with Jacobian Transpose, Pseudoinverse and Damped Least Squares methods" Department of Mathematics University of California, 2009
- [3] Anthony A. Maciejewski, Charles A. Klein. "The Singular Value Decomposition: Computation and Applications to Robotics" The International Journal of Robotics Research, 1989