
| Tool Version : Vivado v.2020.2 (win64) Build 3064766 Wed Nov 18 09:12:45 MST 2020

Date : Fri Mar 29 11:48:45 2024

Host : CEAT-ENDV350-09 running 64-bit major release (build 9200)

| Command : report timing summary -max paths 10 -file

top_demo_timing_summary_routed.rpt -pb top_demo_timing_summary_routed.pb -rpx

top_demo_timing_summary_routed.rpx -warn_on_violation

| Design : top_demo | Device : 7z020-clg484

| Speed File : -1 PRODUCTION 1.12 2019-11-22

.....

.----

Timing Summary Report

.....

| Timer Settings

Enable Multi Corner Analysis : Yes
Enable Pessimism Removal : Yes

Pessimism Removal Resolution : Nearest Common Node

Enable Input Delay Default Clock : No
Enable Preset / Clear Arcs : No
Disable Flight Delays : No
Ignore I/O Paths : No

Timing Early Launch at Borrowing Latches : No Borrow Time for Max Delay Exceptions : Yes

Merge Timing Exceptions : Yes

Corner Analyze Analyze
Name Max Paths Min Paths

Slow Yes Yes Fast Yes Yes

check_timing report

Table of Contents

- 1. checking no_clock (103)
- 2. checking constant_clock (0)
- 3. checking pulse_width_clock (0)
- 4. checking unconstrained_internal_endpoints (98)
- 5. checking no input delay (4)
- 6. checking no output delay (11)
- 7. checking multiple_clock (0)
- 8. checking generated_clocks (0)
- 9. checking loops (0)
- 10. checking partial_input_delay (0)
- 11. checking partial_output_delay (0)
- 12. checking latch loops (0)
- 1. checking no_clock (103)

There are 41 register/latch pins with no clock driven by root clock pin: sysclk 125mhz (HIGH)

There are 2 register/latch pins with no clock driven by root clock pin: CURRENT_COUNT_reg[0]/Q (HIGH)

There are 2 register/latch pins with no clock driven by root clock pin: CURRENT COUNT reg[10]/Q (HIGH)

There are 2 register/latch pins with no clock driven by root clock pin: CURRENT_COUNT_reg[11]/Q (HIGH)

There are 2 register/latch pins with no clock driven by root clock pin: CURRENT_COUNT_reg[12]/Q (HIGH)

There are 2 register/latch pins with no clock driven by root clock pin: CURRENT_COUNT_reg[13]/Q (HIGH)

There are 2 register/latch pins with no clock driven by root clock pin: CURRENT_COUNT_reg[14]/Q (HIGH)

There are 2 register/latch pins with no clock driven by root clock pin: CURRENT_COUNT_reg[15]/Q (HIGH)

There are 2 register/latch pins with no clock driven by root clock pin: CURRENT_COUNT_reg[16]/Q (HIGH)

There are 2 register/latch pins with no clock driven by root clock pin: CURRENT_COUNT_reg[1]/Q (HIGH)

There are 2 register/latch pins with no clock driven by root clock pin: CURRENT_COUNT_reg[2]/Q (HIGH)

There are 2 register/latch pins with no clock driven by root clock pin: CURRENT_COUNT_reg[3]/Q (HIGH)

There are 2 register/latch pins with no clock driven by root clock pin: CURRENT_COUNT_reg[4]/Q (HIGH)

There are 2 register/latch pins with no clock driven by root clock pin: CURRENT_COUNT_reg[5]/Q (HIGH)

There are 2 register/latch pins with no clock driven by root clock pin: CURRENT_COUNT_reg[6]/Q (HIGH)

There are 2 register/latch pins with no clock driven by root clock pin: CURRENT_COUNT_reg[7]/Q (HIGH)

There are 2 register/latch pins with no clock driven by root clock pin: CURRENT_COUNT_reg[8]/Q (HIGH)

There are 2 register/latch pins with no clock driven by root clock pin: CURRENT COUNT reg[9]/Q (HIGH)

There are 4 register/latch pins with no clock driven by root clock pin: div_child/clk_count_reg[23]/Q (HIGH)

There are 6 register/latch pins with no clock driven by root clock pin: dut/FSM_sequential_state_reg[0]/Q (HIGH)

There are 6 register/latch pins with no clock driven by root clock pin: dut/FSM_sequential_state_reg[1]/Q (HIGH)

There are 6 register/latch pins with no clock driven by root clock pin: dut/FSM_sequential_state_reg[2]/Q (HIGH)

There are 6 register/latch pins with no clock driven by root clock pin: dut/FSM_sequential_state_reg[3]/Q (HIGH)

2. checking constant_clock (0)

There are 0 register/latch pins with constant_clock.

3. checking pulse_width_clock (0)
There are 0 register/latch pins which need pulse_width check
4. checking unconstrained_internal_endpoints (98)
There are 98 pins that are not constrained for maximum delay. (HIGH)
There are 0 pins that are not constrained for maximum delay due to constant clock.
5. checking no_input_delay (4)
There are 4 input ports with no input delay specified. (HIGH)
There are 0 input ports with no input delay but user has a false path constraint.
6. checking no_output_delay (11)
There are 11 ports with no output delay specified. (HIGH)
There are 0 ports with no output delay but user has a false path constraint
There are 0 ports with no output delay but with a timing clock defined on it or propagating through it
7. checking multiple_clock (0)
There are 0 register/latch pins with multiple clocks.
8. checking generated_clocks (0)
There are 0 generated clocks that are not connected to a clock source.
9. checking loops (0)
There are 0 combinational loops in the design.

	checking p						
The	re are 0 in	put ports with	partial input de	lay spec	cified.		
11. c	checking pa	artial_output_	delay (0)				
The	re are 0 po	orts with partia	al output delay s	specified	i.		
12. c	checking la	atch_loops (0)					
The	re are 0 co	ombinational l	atch loops in the	e design	through la	tch input	
•		g Summary					
							1S(ne) THS(ne)
' W THS	/NS(ns) Failing Er	TNS(ns) TN	S Failing Endpo Total Endpoints	oints TN	IS Total End	dpoints WH	
' W THS	/NS(ns) Failing Er	TNS(ns) TN ndpoints THS WS Total End	S Failing Endpo Total Endpoints	oints TN s WP	IS Total End	dpoints WH	
' W THS	/NS(ns) Failing Er	TNS(ns) TN ndpoints THS WS Total End	S Failing Endpo Total Endpoints points	pints TN s WP ¹ 	IS Total End WS(ns) T	dpoints WH	
W THS End; 	/NS(ns) Failing Er points TP\ NA NA	TNS(ns) TN ndpoints THS WS Total Endp NA NA	S Failing Endpo Total Endpoints points NA	oints TN s WP¹ NA	IS Total End WS(ns) T NA	dpoints WHPWS(ns) TP	WS Failing
W THS End; 	/NS(ns) Failing Er points TP\ NA NA	TNS(ns) TN ndpoints THS WS Total Endp NA NA	S Failing Endpo Total Endpoints points NA NA	oints TN s WP¹ NA	IS Total End WS(ns) T NA	dpoints WHPWS(ns) TP	WS Failing
W THS Endp NA Ther	/NS(ns) Failing Er points TP\ NA NA	TNS(ns) TN ndpoints THS WS Total Endpoints	S Failing Endpo Total Endpoints points NA NA	oints TN s WP¹ NA	IS Total End WS(ns) T NA	dpoints WHPWS(ns) TP	WS Failing
W THS Endp NA Ther	/NS(ns) Failing Er points TP\ NA NA Te are no u	TNS(ns) TN ndpoints THS WS Total Endpoints	S Failing Endpo Total Endpoints points NA NA	oints TN s WP¹ NA	IS Total End WS(ns) T NA	dpoints WHPWS(ns) TP	WS Failing
WTHS Endp	/NS(ns) Failing Er points TP\ NA NA Te are no u	TNS(ns) TN ndpoints THS WS Total Endpoints NA NA NA seer specified	S Failing Endpo Total Endpoints points NA NA	oints TN s WP¹ NA	IS Total End WS(ns) T NA	dpoints WHPWS(ns) TP	WS Failing

Clock WNS(ns) TNS(ns) TNS Failing Endpoints TNS Total Endpoints WHS(ns) THS(ns) THS Failing Endpoints THS Total Endpoints WPWS(ns) TPWS(ns) TPWS Failing Endpoints TPWS Total Endpoints
From Clock To Clock WNS(ns) TNS(ns) TNS Failing Endpoints TNS Total Endpoints WHS(ns) THS(ns) THS Failing Endpoints THS Total Endpoints
Other Path Groups Table
Path Group From Clock To Clock WNS(ns) TNS(ns) TNS Failing Endpoints TNS Total Endpoints WHS(ns) THS(ns) THS Failing Endpoints THS Total Endpoints
I