Introduction to Cryptography – LMAT2450 Practical Lesson 5

Clément Hoffmann (clement.hoffmann@uclouvain.be) Yaobin Shen (yaobin.shen@uclouvain.be)

November 02, 2022

Reminder of basic facts about groups

- 1. The order of \mathbb{G} is $|\mathbb{G}|$.
- 2. The order of an element $x \in \mathbb{G}$ the smallest i s.t. $x^i = 1$.
- 3. Fermat's little theorem: for commutative group \mathbb{G} with $m = |\mathbb{G}|$, $x^m = 1$ for all $x \in \mathbb{G}$. Corollaries:
 - For all $x \in \mathbb{G}$, $x^i = x^{(i \mod m)}$.
 - For all $x \in \mathbb{G}$, ord (x) divides m.
 - For all $x \in \mathbb{G}$, $x^{-1} = x^{m-1}$.
- 4. A group is cyclic if $\exists g \in \mathbb{G} : \mathbb{G} = \{g, g^2, g^3, \dots, g^{|\mathbb{G}|}\}$, such a g is a generator.
- 5. If ord $(g) = |\mathbb{G}|$, then g is a generator of $|\mathbb{G}|$.
- 6. \mathbb{Z}_p^* is the set of invertible integers modulo p.
- 7. If p is prime, $\mathbb{Z}_p^* = \{1, 2, 3, \dots, p-1\}.$

Exercise 1 (Group order) In this exercise we consider the group $\mathbb{G} = \mathbb{Z}_{59}^*$.

- 1. What is the order of \mathbb{G} ?
- 2. What is the order of 58?
- 3. What are the possible orders of an element of this group?
- 4. Find an element of order more than 20.
- 5. Is 2 generator? (Hint: $16^7 \mod 59 = 29$.)

Exercise 2 (Inverses in \mathbb{Z}_n^*)

- 1. Is 5 inversible in \mathbb{Z}_{59}^* ? If yes, compute its inverse.
- 2. Is 42 inversible in \mathbb{Z}_{135}^* ? If yes, compute its inverse.

Exercise 3 (Exponentiation in \mathbb{Z}_{11}^*)

- 1. Compute $2^5 \mod 11$ and $2^{2021} \mod 11$.
- 2. Show that 2 is a generator of \mathbb{Z}_{11}^* .
- 3. Compute $\frac{4}{7} \mod 11$.

Exercise 4 (Cyclic group)

- 1. List the elements of $\mathbb{G} = \mathbb{Z}_{18}^*$, then compute $|\mathbb{G}|$. (Hint: a is invertible mod N iff gcd(a, N) = 1.)
- 2. Show that \mathbb{G} is a cyclic group.

Exercise 5 (\mathbb{Z}_p^* and QR_p) For a prime number p, we denote QR_p the set $\{x \in \mathbb{Z}_p^* | \exists a \in \mathbb{Z}_p^* | \exists a$ \mathbb{Z}_p^* : $a^2 = x$, and such x are called quadratic residues modulo p. Let us show some properties of QR_p when p is odd (i.e., $p \neq 2$).

- 1. Show that if g is a generator of \mathbb{Z}_p^* , then $g \notin QR_p$.
- 2. Show that if g is a generator of \mathbb{Z}_p^* , then for any integer $i, g^{2i} \in QR_p$ and $g^{2i+1} \notin QR_p$.
- 3. Show that QR_p is a cyclic group.
- 4. Give the order of QR_p .
- 5. Show that $x \in QR_p$ has exactly two square roots in \mathbb{Z}_p^* . (Hint: observe that for any $x \in \mathbb{Z}_p^*$, $x \neq -x$ when p is an odd prime.)
- 6. Show that $x \in \operatorname{QR}_p \Leftrightarrow x^{\frac{p-1}{2}} = 1 \mod p$ and $x \notin \operatorname{QR}_p \Leftrightarrow x^{\frac{p-1}{2}} = -1 \mod p$. 7. Show that for any $x \in \mathbb{Z}_p^*$, any integers $a, b, x^{ab} \notin \operatorname{QR}_p$ iff $x^a \notin \operatorname{QR}_p$ and $x^b \notin \operatorname{QR}_p$.