American International University – Bangladesh Department of Computer Science & Engineering

Project Title: Apply Data Pre-processing on a Dataset Course: Introduction to Data Science

Submitted by-	Submitted to-
Name: Pritom Debnath	Name: Dr. Akinul Islam Jony
ID: 20-42414-1	
Section: B	
B.Sc. CSE	

Project Overview:

Data pre-processing is a phase in the data analysis process that takes raw data and converts it into a clean format that computers and machine learning can understand and analyse. Raw data in the real world is a jumbled mess. It may include contradictions and inaccuracies. It must be cleaned before it may be used for the intended purpose. The information in this project offers statistics in arrests per 100,000 residents for assault and murder in each of the 50 United States in 1973. The percentage of the people residing in cities is also provided. The dataset, as we can see, is not in clean format. Before it can be used, the dataset must be preprocessed and cleaned.

Project Solution Design:

The dataset shows that there is a missing value (null) in the Assault column. As a result, we must deal with the missing value. Because the Assault column's data type is numeric, substituting in the missing value with mean (average) might be an acceptable choice.

In addition, the Urban population (%) column has corrupt data. Because the Urban population (%) column shows the fraction of the population that lives in cities, it cannot be greater than 100 or less than 0. Yet, there is data in Iowa state where the Urban population (%) score is 570, indicating that there may be a larger problem. This issue might be caused by malfunctioning data gathering devices, data input issues, or technological restrictions. To deal with this faulty data, we must smooth it by removing the final digit (s).

We must separate the percentage of the population living in urban areas into Population_level column in four groups during data pre-processing. Those are less than 50% (small), less than 60% (medium), less than 70% (large) and 70% and above (extra-large)

As Polulation_level is not an ordered factor variable, that's why it should be a better choice to add an ordered factor variable in the dataset. So, ordered_factor_population column is added.

Polulation_level	Ordered_factor_population
Small	1
Medium	2
Large	3
Extra-large	4

So, at the end of data discretization stage, two new column named type will be integrated into the dataset based on above conditions.

Data pre-processing:

I. <u>Importing the Dataset:</u>

The data is saved in the working directory in the dataset.csv file. To begin preprocessing data in R, we must first import the dataset. Importing the dataset in R code -

```
dataset<-read.csv("dataset.csv")
print(dataset)</pre>
```

After importing the dataset, the dataset.csv converts into R dataframe and it is stored in dataset variable. After printing the dataset variable,

it looks like this-

	States	Murder	Assault	Urban.population
1	Alabama	13.2	236	58
2	Alaska	10	263	48
3	Arizona	8.1	294	80
4	Arkansas	8.8	190	50
5	California	9	276	91
6	Colorado	7.9	204	78
7	Connecticut	3.3	110	77
8	Delaware	5.9	238	72
9	Florida	15.4	335	80
10	Georgia	17.4	NA	60
11	Hawaii	5.3	46	83
12	Idaho	2.6	120	54
13	Illinois	10.4	249	83
14	Indiana	7.2	113	65 <mark>-</mark>
15	Iowa	2.2	56	570
16	Kansas	6	115	66
17	Kentucky		109	52
18	Louisiana	15.4	249	66
19	Maine	2.1	83	51
20	Maryland	11.3	300	67
21	Massachusetts	4.4	149	85
22	Michigan	12.1	255	74
23	Minnesota	2.7	72	66
24	Mississippi	16.1	259	44
25	Missouri	9	178	70
26	Montana	6	109	53
27	Nebraska	4.3	102	62
28	Nevada	12.2	252	81
29	New Hampshire	2.1	57	56
30	New Jersey	7.4	159	89
31	New Mexico	11.4	285	70
32	New York	1 1.1	254	6
33	North Carolina	13	337	45
34	North Dakota	0.8	45	44
35	Ohio	7.3	120	75
36	Oklahoma	6.6	151	68
37	Oregon	4.9	159	67
38	Pennsylvania	6.3	106	72
39	Rhode Island	3.4	174	87
40	South Carolina	14.4	879	48
41	South Dakota	3.8	86	45
42	Tennessee	13.2	188	59
43	Texas	12.7	201	80
	Utah	3.2	120	80
44	O Carr			

II. Dealing with Missing Values:

According to the dataset, there is a missing value (NA) in the Assault column. We can replace the missing value with the Assault column's mean value. R code for replacing missing value by the mean-

Here in the code:

is.na(dataset\$Assault)			Returns true for all the cells in the specified column with no values.
mean(dataset\$Assault, TRUE)	na.rm	=	Returns the average of the column passed as argument.
na.rm= TRUE			Calculates the mean excluding the null value.

Now, the dataset looks like this-

III. Dealing with Data Formats:

After dealing with null values in the Assault column, we can see that the Assault variable has decimal places in the data. Because we don't want decimal places in the Assault column, we'll round it up. We can round Assault variable by the following R code-

```
dataset$Assault <- as.numeric(format(round(dataset$Assault, 0)))
print(dataset)</pre>
```

Here, the argument 0 in the round function means no decimal places. Now, the dataset looks like this-

IV. Smooth Noisy Data:

We can see that, there is noisy data present in Urban population (%) column which is 570. As this column represents percentage, so it must be between 0 to 100. We need to smooth the noisy data. R code for smoothing this noisy data-

```
fix_UrbanPopulation <- function(df) {
    i=1
    for(data in df) {
        while(data>100) {
            data <- data/10
        }
        df[i] <- data
        i <- i+1
    }
    return (df)
}</pre>
```

Here, the fix_UrbanPopulation(df) function fix the data range (0 to 100) we divide each data by 10 continuously, while it is greater than 100. Now the dataset looks like this-

V. <u>Data Transformation:</u>

Smoothing, noise removal from data, summarization, generalization, and normalization are all part of the data transformation process. Smoothing, which we studied in IV, will be used in this case (Smooth Noisy Data).

VI. <u>Data Reduction:</u>

This dataset does not involve any data reduction steps.

VII. <u>Data Discretization and Data Integration:</u>

We frequently work with data that is gathered through continuous procedures. But there are situations when it's necessary to split up these continuous numbers into smaller chunks. Discrete mapping is the term for this process. As you can see, every attribute in our dataset is of the continuous type. Using logic, we may discretize the data into category kinds and include the column into our dataset. R code for this step-

Here, the with () function take two parameters. One is dataframe, another one is expression. with () function integrates a new column in the dataframe based on the expression. As we have two columns to add for each column we used with () function.

After integrating new column, the dataset looks like this-

	,					
						el Ordered_tactor_population
1	Alabama	13.2	236	5		
2	Alaska	10	263	4		-
3	Arizona	8.1	294	8		
4	Arkansas	8.8	190	5		
5	California	9	276	9		
	Colorado	7.9	204	7		
7	Connecticut	3.3	110	7		
8	Delaware	5.9	238	7.		
9	Florida	15.4	335	8		
10	Georgia	17.4	182	6		
11	Hawaii	5.3	46	8		,=
12	Idaho	2.6	120	5		
13 14	Illinois	10.4	249	8		,
	Indiana	7.2	113	6		
15 16	Iowa	2.2	56	5		
	Kansas	6	115	6		,
17	Kentucky	9.7	109	5.		
18 19	Louisiana Maine	15.4	249 83	6 5	:	•
		2.1				
20 21	Maryland	11.3	300 149	6 8		,
22	Massachusetts	4.4 12.1				•
23	Michigan		255	7	•	
23	Minnesota	2.7 16.1	72 259	6		
25	Mississippi Missouri	16.1	239 178	4		
26	Missouri Montana	6	109	5		
27		4.3	103	6		
28	Nebraska Nevada	12.2	252	8		
28	New Hampshire	2.1	252 57	5		,
30	New Jersey	7.4	159	8		
31	New Jersey New Mexico	11.4	285	7		•
32	New York	1 1.1	254		6 extra-rarq	
33		13	337	4		
34	North Dakota	0.8	45	4		
35	Ohio	7.3	120	7		
36	Oklahoma	6.6	151	6		
37	Oregon	4.9	159	6		
38	Pennsylvania	6.3	106	7.		•
39	Rhode Island	3.4	174	8		-
	South Carolina	14.4	879	4		•
41	South Dakota	3.8	86	4		
42	Tennessee	13.2	188	5		
43	Texas	12.7	201	8		
44	Utah	3.2	120	8		
45	Vermont	2.2	48	3		
46	Virginia	8.5	156	6		
47	Washington	4	145	7	:	
48	West Virginia	5.7	81	3		•
49	Wisconsin	2.6	53	6		
50	Wyoming	6.8	161	6		
00	Hyoming	0.0	101			,-
				Fig 5 Addir	or two rows	

Fig.5 – Adding two rows

Discussion & Conclusion:

At the beginning of the project, we were given a dataset which was totally messy. Null value, noisy data was present in this dataset in Fig.1. After pre-processing the dataset and integrating new column in the dataset, we got totally a clean dataset. The dataset looks like this-

R 4.2.2 F:/R/Mid Proj	ect/ 👼	Aggan I +	Urban.population	Polnulation love	Ordered tector population
Alabama		Assault 236	orban.population 58	medium	Ordered_tactor_population 2
Alask		263	48	medium	1
Arizona		294	80		4
Arizona Arkansas		190	50	extra-large medium	2
California		276	91		4
Colorado		204	78	extra-large	4
Connecticut		110	76	extra-large	4
Delaware		238	72	extra-large	4
Delaware Florida		335	80	extra-large	4
		182	60	extra-large	
0 Georgia 1 Hawai:		182	83	large	3
				extra-large	
2 Idah		120	54	medium	2
3 Illinois		249	83	extra-large	4
4 Indian		113	65	large	3
5 Iowa		56	57	medium	2
6 Kansas		115	66	large	3
7 Kentucky		109	52	medium	2
8 Louisiana		249	66	large	3
9 Maine		83	51	medium	2
0 Maryland		300	67	large	3
1 Massachusetts		149	85	extra-large	4
2 Michigan		255	74	extra-large	4
3 Minnesota		72	66	large	3
4 Mississipp:	16.1	259	44	small	1
5 Missour:		178	70	extra-large	4
6 Montana	a 6	109	53	medium	2
7 Nebraska	4.3	102	62	large	3
8 Nevada	12.2	252	81	extra-large	4
9 New Hampshire	2.1	57	56	medium	2
0 New Jersey	7.4	159	89	extra-large	4
1 New Mexico	11.4	285	70	extra-large	4
2 New Yorl	1 1.1	254	6	small	1
3 North Carolina	13	337	45	small	1
4 North Dakota	0.8	45	44	small	1
5 Ohio	7.3	120	75	extra-large	4
6 Oklahoma	6.6	151	68	large	3
7 Oregoi	1 4.9	159	67	large	3
8 Pennsylvania	6.3	106	72	extra-large	4
9 Rhode Island	3.4	174	87	extra-large	4
0 South Carolina	14.4	879	48	small	1
1 South Dakota	3.8	86	45	small	1
2 Tennessee	13.2	188	59	medium	2
3 Texas		201	80	extra-large	4
4 Utal	3.2	120	80	extra-large	4
5 Vermont		48	32	small	1
6 Virginia		156	63	large	3
7 Washington		145	73	extra-large	4
8 West Virginia		81	39	small	1
9 Wisconsin		53	66	large	3
0 Wyomin		161	60	large	3
- nyomin		101			

Fig.6 – Dataset after pre-processing

Now, we can use this clean, pre-processed dataset for further use.