Homework 05 CSCI 036 Solutions

Lucas Welch

Due: Friday, 2022-10-14

Instructions

Please box your answers. For numerical answers, this can be done using something like $\boxed{34}$. For text answers, this can be done using something like $\boxed{My \text{ answer}}$. The output of a code chunk is automatically boxed, so no need to do more.

The PlantGrowth dataset built into R give the results of the dried weight of plants obtained under a control (where no treatment was given), and two different treatments.

- a. Find the overall average weight of the plants for all observations.
- b. Find the average weight of the plants for each of the three treatment conditions.

```
PlantGrowth
```

```
##
      weight group
## 1
        4.17 ctrl
## 2
        5.58 ctrl
## 3
        5.18 ctrl
        6.11 ctrl
## 4
## 5
        4.50 ctrl
##
  6
        4.61 ctrl
##
  7
        5.17 ctrl
##
  8
        4.53 ctrl
##
  9
        5.33 ctrl
## 10
        5.14 ctrl
##
  11
        4.81 trt1
##
  12
        4.17
              trt1
##
  13
        4.41 trt1
##
        3.59 trt1
  14
##
  15
        5.87
              trt1
##
        3.83 trt1
  16
##
  17
        6.03
              trt1
##
  18
        4.89 trt1
##
  19
        4.32
              trt1
##
  20
        4.69
              trt1
##
  21
        6.31 trt2
##
  22
        5.12 trt2
##
  23
        5.54 trt2
##
  24
        5.50
              trt2
##
  25
        5.37
              trt2
##
  26
        5.29 trt2
##
  27
        4.92 trt2
##
  28
        6.15 trt2
##
  29
        5.80 trt2
## 30
        5.26 trt2
```

a.

```
PlantGrowth |>
  summarize(avg_weight = mean(weight))
```

```
## avg_weight
## 1 5.073
```

b.

```
PlantGrowth |>
  group_by(group)|>
  summarize(avg_weight = mean(weight))
```

The attenu dataset built into R gives peak accelerations measured at various observation stations for earthquakes in California.

- a. How many observations are there in the whole dataset?
- b. The earthquakes are measured by event number. Create a tibble that holds for each earthquake the number of stations that measured that earthquake.
- c. What was the event number of the earthquake that was measured by the most stations?

attenu

##	event	mag	station	dist	accel
## 1	1	7.0	117	12.0	0.359
## 2	2	7.4	1083	148.0	0.014
## 3	2	7.4	1095	42.0	0.196
## 4	2	7.4	283	85.0	0.135
## 5	2	7.4	135	107.0	0.062
## 6	2	7.4	475	109.0	0.054
## 7	2	7.4	113	156.0	0.014
## 8	2	7.4	1008	224.0	0.018
## 9	2	7.4	1028	293.0	0.010
## 10	2	7.4	2001	359.0	0.004
## 11	2	7.4	117	370.0	0.004
## 12	3	5.3	1117	8.0	0.127
## 13 ## 14	4	6.1 6.1	1438 1083	16.1 63.6	0.411
## 14	4	6.1			0.509
## 15	4	6.1	1013 1014	6.6 9.3	0.467
## 10 ## 17	4	6.1	1014	13.0	0.279
## 18	4	6.1	1015	17.3	0.072
## 19	4	6.1	1010	105.0	0.072
## 20	4	6.1	1011	112.0	0.006
## 21	4	6.1	1028	123.0	0.003
## 22	5	6.6	270	105.0	0.018
## 23	5	6.6	280	122.0	0.048
## 24	5	6.6	116	141.0	0.011
## 25	5	6.6	266	200.0	0.007
## 26	5	6.6	117	45.0	0.142
## 27	5	6.6	113	130.0	0.031
## 28	5	6.6	112	147.0	0.006
## 29	5	6.6	130	187.0	0.010
## 30	5	6.6	475	197.0	0.010
## 31	5	6.6	269	203.0	0.006
## 32	5	6.6	135	211.0	0.013
## 33	6	5.6	1093	62.0	0.005
## 34	7	5.7	1093	62.0	0.003
## 35	8	5.3	111	19.0	0.086
## 36	8	5.3	116		0.179
## 37	8	5.3	290		0.205
## 38	8	5.3	112		0.073
## 39	8	5.3	113	29.0	0.045
## 40	9	6.6	128	17.0	
## 41	9	6.6	126	19.6	0.200
## 42	9	6.6	127	20.2	
## 43 ## 44	9	6.6 6.6	141	21.1	0.188
## 44 ## 45	9	6.6	266 110	24.2	
## 45	9	6.6	1027	66.0	
## 47	9	6.6	111	87.0	
## 48	9	6.6	125	23.4	
## 49	9	6.6	135	24.6	
## 50	9	6.6	475	25.7	
## 51	9	6.6	262	28.6	0.150
## 52	9	6.6	269	37.4	
## 53	9	6.6	1052	46.7	0.112
## 54	9	6.6	411	56.9	0.043
## 55	9	6.6	290	60.7	
## 56	9	6.6	130	61.4	0.030
## 57	9	6.6	272	62.0	
## 58	9	6.6	1096	64.0	
## 59	9	6.6	1102	82.0	0.034
## 60	9	6.6	112	88.0	0.030
## 61	9	6.6	113	91.0	0.039

,,,,	, 	1.0	- 2	1000	21 0	0 000
##	62	10	5.3	1028	31.0	0.030
##	63	11	7.7	2714	45.0	0.110
##	64	11	7.7	2708	145.0	0.010
##	65	11	7.7	2715	300.0	0.010
##	66	12	6.2	3501	5.0	0.390
##	67	13	5.6	655	50.0	0.031
##	68	13	5.6	272	16.0	0.130
##	69	14	5.2	1032	17.0	0.011
##	70	14	5.2	1377	8.0	0.120
##	71	14	5.2	1028	10.0	0.170
##	72	14	5.2	1250	10.0	0.140
##	73	15	6.0	1051	8.0	0.110
##	74	15	6.0	1293	32.0	0.040
##	75	15	6.0	1291	30.0	0.070
##	76	15	6.0	1292	31.0	0.080
##	77	16	5.1	283	2.9	0.210
##	78	16	5.1	885	3.2	0.390
##	79	16	5.1	<na></na>	7.6	0.280
##	80	17	7.6	2734	25.4	0.160
##	81	17	7.6	<na></na>	32.9	0.064
##	82	17	7.6	2728	92.2	0.090
##	83	18	5.8	1413	1.2	0.420
##	84	18	5.8	1445	1.6	0.230
##	85	18	5.8	1408	9.1	0.130
##	86	18	5.8	1411	3.7	0.260
##	87	18	5.8	1410	5.3	0.270
##	88	18	5.8	1409	7.4	0.260
##	89	18	5.8	1377	17.9	0.110
##	90	18	5.8	1492	19.2	0.120
##	91	18	5.8	1251	23.4	0.038
##	92	18	5.8	1422	30.0	0.044
##	93	18	5.8	1376	38.9	0.046
##	94	19	6.5	<na></na>	23.5	0.170
##	95	19	6.5	286	26.0	0.210
##	96	19	6.5	<na></na>	0.5	0.320
##	97	19	6.5	5028	0.6	0.520
##	98	19	6.5	942	1.3	0.720
##	99	19	6.5	<na></na>	1.4	0.320
##	100	19	6.5	5054	2.6	0.810
##	101	19	6.5	958	3.8	0.640
##	102	19	6.5	952	4.0	0.560
##	103	19	6.5	5165	5.1	0.510
##	104	19	6.5	117	6.2	0.400
##	105	19	6.5	955	6.8	0.610
##	106	19	6.5	5055	7.5	0.260
##	107	19	6.5	<na></na>	7.6	0.240
##	108	19	6.5	<na></na>	8.4	0.460
##	109	19	6.5	5060	8.5	0.220
##	110	19	6.5	412	8.5	0.230
##	111	19	6.5	5053	10.6	0.280
##	112	19	6.5	5058	12.6	0.380
##	113	19	6.5	5057	12.7	0.270
##	114	19	6.5	<na></na>	12.9	0.310
##	115	19	6.5	5051	14.0	0.200
##	116	19	6.5	<na></na>	15.0	0.110
##	117	19	6.5	5115	16.0	0.430
##	118	19	6.5	<na></na>	17.7	0.270
##	119	19	6.5	931	18.0	0.150
##	120	19	6.5	5056	22.0	0.150
##	121	19	6.5	5059	22.0	0.150
##	122	19	6.5	5061	23.0	0.130
##	123	19	6.5	<na></na>	23.2	0.190

## 124	19 6.5	5062	29.0 0.130
## 125	19 6.5	5052	32.0 0.066
## 126	19 6.5	<na></na>	32.7 0.350
## 127	19 6.5	724	36.0 0.100
## 128	19 6.5	<na></na>	43.5 0.160
## 129	19 6.5	5066	49.0 0.140
## 130	19 6.5	5050	60.0 0.049
## 131	19 6.5	2316	64.0 0.034
## 132	20 5.0	5055	7.5 0.264
## 133	20 5.0	942	8.8 0.263
## 134	20 5.0	5028	8.9 0.230
## 134	20 5.0	5165	9.4 0.147
## 136	20 5.0	952	9.7 0.286
## 137	20 5.0	958	9.7 0.157
## 138	20 5.0	955	10.5 0.237
## 139	20 5.0	117	10.5 0.133
## 140	20 5.0	412	12.0 0.055
## 141	20 5.0	5053	12.2 0.097
## 142	20 5.0	5054	12.8 0.129
## 143	20 5.0	5058	14.6 0.192
## 144	20 5.0	5057	14.9 0.147
## 145	20 5.0	5115	17.6 0.154
## 146	20 5.0	5056	23.9 0.060
## 147	20 5.0	5060	25.0 0.057
## 148	21 5.8	1030	10.8 0.120
## 149	21 5.8	1418	15.7 0.154
## 150	21 5.8	1383	16.7 0.052
## 151	21 5.8	1308	20.8 0.045
## 152	21 5.8	1298	28.5 0.086
## 153	21 5.8	1299	33.1 0.056
## 154	21 5.8	1219	40.3 0.065
## 154	22 5.5		
		<na></na>	
	22 5.5	<na></na>	10.1 0.267
## 157	22 5.5	1030	11.1 0.071
## 158	22 5.5	1418	17.7 0.275
## 159	22 5.5	1383	22.5 0.058
## 160	22 5.5	<na></na>	26.5 0.026
## 161	22 5.5	1299	29.0 0.039
## 162	22 5.5	1308	30.9 0.112
## 163	22 5.5	1219	37.8 0.065
## 164	22 5.5	1456	48.3 0.026
## 165	23 5.3	5045	5.8 0.123
## 166	23 5.3	5044	12.0 0.133
## 167	23 5.3	5160	12.1 0.073
## 168	23 5.3	5043	20.5 0.097
## 169	23 5.3	5047	20.5 0.096
## 170	23 5.3	c168	25.3 0.230
## 171	23 5.3	5068	35.9 0.082
## 172	23 5.3	c118	36.1 0.110
## 173	23 5.3	5042	36.3 0.110
## 174	23 5.3	5067	38.5 0.094
## 175	23 5.3	5049	41.4 0.040
## 176	23 5.3	c204	43.6 0.050
## 177	23 5.3	5070	44.4 0.022
## 177 ## 178	23 5.3	c266	46.1 0.070
	23 5.3		
		c203	
## 180	23 5.3	5069	47.7 0.033
## 181	23 5.3	5073	49.2 0.017
## 182	23 5.3	5072	53.1 0.022

attenu

##	event	mag	station	dist	accel
## 1	1	7.0	117	12.0	0.359
## 2	2	7.4	1083	148.0	0.014
## 3	2	7.4	1095	42.0	0.196
## 4	2	7.4	283	85.0	0.135
## 5	2	7.4	135	107.0	0.062
## 6	2	7.4	475	109.0	0.054
## 7	2	7.4	113	156.0	0.014
## 8	2	7.4	1008	224.0	0.018
## 9	2	7.4	1028	293.0	0.010
## 10	2	7.4	2001	359.0	0.004
## 11	2	7.4	117	370.0	0.004
## 12	3	5.3	1117	8.0	0.127
## 13	4	6.1	1438	16.1	0.411
## 14	4	6.1	1083	63.6	0.018
## 15	4	6.1	1013	6.6	0.509
## 16	4	6.1	1013	9.3	0.467
	4			13.0	
## 17		6.1	1015		0.279
## 18	4	6.1	1016	17.3	0.072
## 19	4	6.1	1095	105.0	0.012
## 20	4	6.1	1011	112.0	0.006
## 21	4	6.1	1028	123.0	0.003
## 22	5	6.6	270	105.0	0.018
## 23	5	6.6	280	122.0	0.048
## 24	5	6.6	116	141.0	0.011
## 25	5	6.6	266	200.0	0.007
## 26	5	6.6	117	45.0	0.142
## 27	5	6.6	113	130.0	0.031
## 28	5	6.6	112	147.0	0.006
## 29	5	6.6	130	187.0	0.010
## 30	5	6.6	475	197.0	0.010
## 31	5	6.6	269	203.0	0.006
## 32	5	6.6	135	211.0	0.013
## 33	6	5.6	1093	62.0	0.005
## 34	7	5.7	1093	62.0	0.003
## 35	8	5.3	111	19.0	0.086
## 36	8	5.3	116	21.0	0.179
## 37	8	5.3	290	13.0	
## 38	8	5.3	112	22.0	0.073
## 39	8	5.3	113	29.0	0.045
## 40	9	6.6	128	17.0	0.374
## 41	9	6.6	126	19.6	0.200
## 42	9	6.6	127	20.2	0.147
## 43	9	6.6	141	21.1	0.188
## 44	9	6.6	266	21.9	0.204
## 45	9	6.6	110	24.2	0.335
## 46	9	6.6	1027	66.0	0.057
## 47	9	6.6	111	87.0	0.021
## 48	9	6.6	125	23.4	0.152
## 49	9	6.6	135	24.6	0.217
## 50	9	6.6	475	25.7	0.114
## 51	9	6.6	262	28.6	0.150
## 52	9	6.6	269	37.4	0.148
## 53	9	6.6	1052	46.7	0.112
## 54	9	6.6	411	56.9	0.043
## 54	9	6.6	290	60.7	0.043
## 56	9	6.6	130	61.4	0.030
## 57	9	6.6	272	62.0	0.027
## 58	9	6.6	1096	64.0	
## 59	9	6.6	1102	82.0	
## 60	9	6.6	112	88.0	0.030
## 61	9	6.6	113	91.0	0.039

""	, 	1.0	- 2	1000	21 0	0 000
##	62	10	5.3	1028	31.0	0.030
##	63	11	7.7	2714	45.0	0.110
##	64	11	7.7	2708	145.0	0.010
##	65	11	7.7	2715	300.0	0.010
##	66	12	6.2	3501	5.0	0.390
##	67	13	5.6	655	50.0	0.031
##	68	13	5.6	272	16.0	0.130
##	69	14	5.2	1032	17.0	0.011
##	70	14	5.2	1377	8.0	0.120
##	71	14	5.2	1028	10.0	0.170
##	72	14	5.2	1250	10.0	0.140
##	73	15	6.0	1051	8.0	0.110
##	74	15	6.0	1293	32.0	0.040
##	75	15	6.0	1291	30.0	0.070
##	76	15	6.0	1292	31.0	0.080
##	77	16	5.1	283	2.9	0.210
##	78	16	5.1	885	3.2	0.390
##	79	16	5.1	<na></na>	7.6	0.280
##	80	17	7.6	2734	25.4	0.160
##	81	17	7.6	<na></na>	32.9	0.064
##	82	17	7.6	2728	92.2	0.090
##	83	18	5.8	1413	1.2	0.420
##	84	18	5.8	1445	1.6	0.230
##	85	18	5.8	1408	9.1	0.130
##	86	18	5.8	1411	3.7	0.260
##	87	18	5.8	1410	5.3	0.270
##	88	18	5.8	1409	7.4	0.260
##	89	18	5.8	1377	17.9	0.110
##	90	18	5.8	1492	19.2	0.120
##	91	18	5.8	1251	23.4	0.038
##	92	18	5.8	1422	30.0	0.044
##	93	18	5.8	1376	38.9	0.046
##	94	19	6.5	<na></na>	23.5	0.170
##	95	19	6.5	286	26.0	0.210
##	96	19	6.5	<na></na>	0.5	0.320
##	97	19	6.5	5028	0.6	0.520
##	98	19	6.5	942	1.3	0.720
##	99	19	6.5	<na></na>	1.4	0.320
##	100	19	6.5	5054		0.810
##	101	19	6.5	958	3.8	0.640
##	102	19	6.5	952	4.0	0.560
##	103	19	6.5	5165	5.1	0.510
##	104	19	6.5	117	6.2	0.400
##	105	19	6.5	955	6.8	0.610
##	106	19	6.5	5055	7.5	0.260
##	107	19	6.5	<na></na>	7.6	0.240
##	108	19	6.5	<na></na>	8.4	0.460
##	109	19	6.5	5060	8.5	0.220
##	110	19	6.5	412	8.5	0.230
##	111	19	6.5	5053	10.6	0.280
##	112	19	6.5	5058	12.6	0.380
##	113	19	6.5	5057	12.7	0.270
##	114	19	6.5	<na></na>	12.9	0.310
##	115	19	6.5	5051	14.0	0.200
##	116	19	6.5	<na></na>	15.0	0.110
##	117	19	6.5	5115	16.0	0.430
##	118	19	6.5	<na></na>	17.7	0.270
##	119	19	6.5	931	18.0	0.150
##	120	19	6.5	5056	22.0	0.150
##	121	19	6.5	5059	22.0	0.150
##	122	19	6.5	5061	23.0	0.130
##	123	19	6.5	<na></na>	23.2	0.190

## 124	19 6.5	5062	29.0 0.130
## 125	19 6.5	5052	32.0 0.066
## 126	19 6.5	<na></na>	32.7 0.350
## 127	19 6.5	724	36.0 0.100
## 128	19 6.5	<na></na>	43.5 0.160
## 129	19 6.5	5066	49.0 0.140
		5050	60.0 0.049
## 131	19 6.5	2316	64.0 0.034
## 132	20 5.0	5055	7.5 0.264
## 133	20 5.0	942	8.8 0.263
## 134	20 5.0	5028	8.9 0.230
## 135	20 5.0	5165	9.4 0.147
## 136	20 5.0	952	9.7 0.286
## 137	20 5.0	958	9.7 0.157
## 138	20 5.0	955	10.5 0.237
## 139	20 5.0	117	10.5 0.133
## 140	20 5.0	412	12.0 0.055
## 141	20 5.0	5053	12.2 0.097
		5054	
## 142	20 5.0		12.8 0.129
## 143	20 5.0	5058	14.6 0.192
## 144	20 5.0	5057	14.9 0.147
## 145	20 5.0	5115	17.6 0.154
## 146	20 5.0	5056	23.9 0.060
## 147	20 5.0	5060	25.0 0.057
## 148	21 5.8	1030	10.8 0.120
## 149	21 5.8	1418	15.7 0.154
## 150	21 5.8	1383	16.7 0.052
## 151	21 5.8	1308	20.8 0.045
## 152	21 5.8	1298	28.5 0.086
## 153	21 5.8	1299	33.1 0.056
## 154	21 5.8	1219	40.3 0.065
## 155	22 5.5	<na></na>	4.0 0.259
## 156	22 5.5	<na></na>	10.1 0.267
## 157	22 5.5	1030	11.1 0.071
## 158	22 5.5	1418	17.7 0.275
## 159	22 5.5	1383	22.5 0.058
## 160	22 5.5	<na></na>	26.5 0.026
## 161	22 5.5	1299	29.0 0.039
## 162	22 5.5	1308	30.9 0.112
## 163	22 5.5	1219	37.8 0.065
## 164	22 5.5	1456	48.3 0.026
## 165	23 5.3	5045	5.8 0.123
## 166	23 5.3	5044	12.0 0.133
## 167	23 5.3	5160	12.1 0.073
## 167			20.5 0.097
		5043	
## 169	23 5.3	5047	20.5 0.096
## 170	23 5.3	c168	25.3 0.230
## 171	23 5.3	5068	35.9 0.082
## 172	23 5.3	c118	36.1 0.110
## 173	23 5.3	5042	36.3 0.110
## 174	23 5.3	5067	38.5 0.094
## 175	23 5.3	5049	41.4 0.040
## 176	23 5.3	c204	43.6 0.050
## 177	23 5.3	5070	44.4 0.022
## 178	23 5.3	c266	46.1 0.070
## 179	23 5.3	c203	47.1 0.080
## 175	23 5.3	5069	47.7 0.033
		5073	49.2 0.017
## 182	23 5.3	5072	53.1 0.022

a.


```
attenu |>
  summarize(n())
```

```
## n()
## 1 182
```

b.

```
attenu |>
  group_by(station) |>
  summarize(n())
```

```
## # A tibble: 118 × 2
##
      station `n()`
##
      <fct> <int>
   1 1008
    2 1011
                  1
    3 1013
##
   4 1014
##
   5 1015
##
   6 1016
##
    7 1027
   8 1028
##
   9 1030
                  2
## 10 1032
                  1
\#\# \# \dots with 108 more rows
```

c.

```
ggplot(attenu, aes(x = event)) + geom_histogram(binwidth = 1, fill = "orange", color = "black")
```


The attenu dataset built into R gives peak accelerations measured at various observation stations for earthquakes in California.

- a. Find the observation with the largest magnitude measurement.
- b. Write code to find the largest magnitude earthquake for each station.
- c. Write code to find the station that measured the largest magnitude for each of the earthquakes recorded.

attenu

##	event	mag	station	dist	accel
## 1	1	7.0	117	12.0	0.359
## 2	2	7.4	1083	148.0	0.014
## 3	2	7.4	1095	42.0	0.196
## 4	2	7.4	283	85.0	0.135
## 5	2	7.4	135	107.0	0.062
## 6	2	7.4	475	109.0	0.054
## 7	2	7.4	113	156.0	0.014
## 8	2	7.4	1008	224.0	0.018
## 9	2	7.4	1028	293.0	0.010
## 10	2	7.4	2001	359.0	0.004
## 11	2	7.4	117	370.0	0.004
## 12	3	5.3	1117	8.0	0.127
## 13	4	6.1	1438	16.1	0.411
## 14	4	6.1	1083	63.6	0.018
## 15	4	6.1	1013	6.6	0.509
## 16	4	6.1	1014	9.3	0.467
## 17	4	6.1	1015	13.0	0.279
## 18	4	6.1	1016	17.3	0.072
## 19	4	6.1	1095	105.0	0.012
## 20	4	6.1	1011		0.006
## 21	4	6.1	1028	123.0	0.003
## 22	5	6.6	270		0.018
## 23	5	6.6	280	122.0	0.048
## 24	5	6.6	116		0.011
## 25	5	6.6	266	200.0	0.007
## 26	5	6.6	117	45.0	0.142
## 27	5	6.6	113	130.0	0.031
## 28	5	6.6	112	147.0	0.006
## 29	5	6.6	130	187.0	0.010
## 30	5	6.6	475	197.0	0.010
## 31	5	6.6	269	203.0	0.006
## 32	5	6.6	135	211.0	0.013
## 33 ## 34	6	5.6	1093	62.0	0.005
## 34 ## 35	7 8	5.7 5.3	1093 111	62.0 19.0	0.003
## 36	8	5.3	116	21.0	0.179
## 37	8	5.3	290	13.0	0.205
## 38	8	5.3	112	22.0	0.073
## 39	8	5.3	113	29.0	0.045
## 40	9	6.6	128	17.0	0.374
## 41	9	6.6	126	19.6	0.200
## 42	9	6.6	127	20.2	
## 43	9	6.6	141	21.1	
## 44	9	6.6	266	21.9	0.204
## 45	9	6.6	110	24.2	
## 46	9	6.6	1027	66.0	0.057
## 47	9	6.6	111	87.0	0.021
## 48	9	6.6	125	23.4	0.152
## 49	9	6.6	135	24.6	0.217
## 50	9	6.6	475	25.7	0.114
## 51	9	6.6	262	28.6	0.150
## 52	9	6.6	269	37.4	0.148
## 53	9	6.6	1052	46.7	0.112
## 54	9	6.6	411	56.9	0.043
## 55	9	6.6	290	60.7	0.057
## 56	9	6.6	130	61.4	0.030
## 57	9	6.6	272	62.0	0.027
## 58	9	6.6	1096	64.0	0.028
## 59	9	6.6	1102	82.0	0.034
## 60	9	6.6	112	88.0	0.030
## 61	9	6.6	113	91.0	0.039

,,,,	´	1.0	- -	1000	21 0	0 000
##	62	10	5.3	1028	31.0	0.030
##	63	11	7.7	2714	45.0	0.110
##	64	11	7.7	2708	145.0	0.010
##	65	11	7.7	2715	300.0	0.010
##	66	12	6.2	3501	5.0	0.390
##	67	13	5.6	655	50.0	0.031
##	68	13	5.6	272	16.0	0.130
##	69	14	5.2	1032	17.0	0.011
##	70	14	5.2	1377	8.0	0.120
##	71	14	5.2	1028	10.0	0.170
##	72	14	5.2	1250	10.0	0.140
##	73	15	6.0	1051	8.0	0.110
##	74	15	6.0	1293	32.0	0.040
##	75	15	6.0	1291	30.0	0.070
##	76	15	6.0	1292	31.0	0.080
##	77	16	5.1	283	2.9	0.210
		16	5.1		3.2	0.390
##	78		5.1	885		
##	79	16		<na></na>	7.6	0.280
##	80	17	7.6	2734	25.4	0.160
##	81	17	7.6	<na></na>	32.9	0.064
##	82	17	7.6	2728	92.2	0.090
##	83	18	5.8	1413	1.2	0.420
##	84	18	5.8	1445	1.6	0.230
##	85	18	5.8	1408	9.1	0.130
##	86	18	5.8	1411	3.7	0.260
##	87	18	5.8	1410	5.3	0.270
##	88	18	5.8	1409	7.4	0.260
##	89	18	5.8	1377	17.9	0.110
##	90	18	5.8	1492	19.2	0.120
##	91	18	5.8	1251	23.4	0.038
##	92	18	5.8	1422	30.0	0.044
##	93	18	5.8	1376	38.9	0.046
##	94	19	6.5	<na></na>	23.5	0.170
##	95	19	6.5	286	26.0	0.210
##	96	19	6.5	<na></na>	0.5	0.320
##	97	19	6.5	5028	0.6	0.520
##	98	19	6.5	942	1.3	0.720
##	99	19	6.5	<na></na>	1.4	0.320
##	100	19	6.5	5054	2.6	0.810
##	101	19	6.5	958	3.8	0.640
##	102	19	6.5	952	4.0	0.560
##	103	19	6.5	5165	5.1	0.510
##	104	19	6.5	117	6.2	0.400
##	104	19	6.5	955	6.8	0.400
##			6.5		7.5	0.260
	106	19		5055		
##	107	19	6.5	<na></na>	7.6	0.240
##	108	19	6.5	<na></na>	8.4	0.460
##	109	19	6.5	5060	8.5	0.220
##	110	19	6.5	412	8.5	0.230
##	111	19	6.5	5053	10.6	0.280
##	112	19	6.5	5058	12.6	0.380
##	113	19	6.5	5057	12.7	0.270
##	114	19	6.5	<na></na>	12.9	0.310
##	115	19	6.5	5051	14.0	0.200
##	116	19	6.5	<na></na>	15.0	0.110
##	117	19	6.5	5115	16.0	0.430
##	118	19	6.5	<na></na>	17.7	0.270
##	119	19	6.5	931	18.0	0.150
##	120	19	6.5	5056	22.0	0.150
##	121	19	6.5	5059	22.0	0.150
##	122	19	6.5	5061	23.0	0.130
##	123	19	6.5	<na></na>	23.2	0.190

	10.6.5	5 0.00	
## 124	19 6.5	5062	29.0 0.130
## 125	19 6.5	5052	32.0 0.066
## 126	19 6.5	<na></na>	32.7 0.350
## 127	19 6.5	724	36.0 0.100
## 128	19 6.5	<na></na>	43.5 0.160
## 129	19 6.5	5066	49.0 0.140
## 130	19 6.5	5050	60.0 0.049
## 131	19 6.5	2316	64.0 0.034
	20 5.0	5055	
## 133	20 5.0	942	8.8 0.263
## 134	20 5.0	5028	8.9 0.230
## 135	20 5.0	5165	9.4 0.147
## 136	20 5.0	952	9.7 0.286
## 137	20 5.0	958	9.7 0.157
## 138	20 5.0	955	10.5 0.237
## 139	20 5.0	117	10.5 0.133
## 140	20 5.0	412	12.0 0.055
## 141	20 5.0	5053	12.2 0.097
## 142	20 5.0	5054	12.8 0.129
## 143	20 5.0	5058	14.6 0.192
			14.9 0.147
		5057	
## 145	20 5.0	5115	17.6 0.154
## 146	20 5.0	5056	23.9 0.060
## 147	20 5.0	5060	25.0 0.057
## 148	21 5.8	1030	10.8 0.120
## 149	21 5.8	1418	15.7 0.154
## 150	21 5.8	1383	16.7 0.052
## 151	21 5.8	1308	20.8 0.045
## 152	21 5.8	1298	28.5 0.086
## 153	21 5.8	1299	33.1 0.056
## 154	21 5.8	1219	40.3 0.065
## 155	22 5.5	<na></na>	4.0 0.259
## 156	22 5.5	<na></na>	10.1 0.267
	22 5.5		
		1030	11.1 0.071
## 158	22 5.5	1418	17.7 0.275
## 159	22 5.5	1383	22.5 0.058
## 160	22 5.5	<na></na>	26.5 0.026
## 161	22 5.5	1299	29.0 0.039
## 162	22 5.5	1308	30.9 0.112
## 163	22 5.5	1219	37.8 0.065
## 164	22 5.5	1456	48.3 0.026
## 165	23 5.3	5045	5.8 0.123
## 166	23 5.3	5044	12.0 0.133
## 167	23 5.3	5160	12.1 0.073
## 168	23 5.3	5043	20.5 0.097
## 169	23 5.3	5047	20.5 0.096
## 170	23 5.3	c168	25.3 0.230
		5068	35.9 0.082
## 172	23 5.3	c118	36.1 0.110
## 173	23 5.3	5042	36.3 0.110
## 174	23 5.3	5067	38.5 0.094
## 175	23 5.3	5049	41.4 0.040
## 176	23 5.3	c204	43.6 0.050
## 177	23 5.3	5070	44.4 0.022
## 178	23 5.3	c266	46.1 0.070
## 179	23 5.3	c203	47.1 0.080
## 180	23 5.3	5069	47.7 0.033
## 181	23 5.3	5073	49.2 0.017
## 182	23 5.3	5073	53.1 0.022
"" 102	23 3.3	3012	55.1 0.022

a.

attenu |>
arrange(desc(mag))

##	event	mag	station	dist	accel
## 1	11	7.7	2714	45.0	0.110
## 2	11	7.7	2708	145.0	0.010
## 3	11	7.7	2715	300.0	0.010
## 4	17	7.6	2734	25.4	0.160
## 5	17	7.6	<na></na>	32.9	0.064
## 6	17	7.6	2728	92.2	0.090
## 7	2	7.4	1083	148.0	0.014
## 8	2	7.4	1095	42.0	0.196
## 9	2	7.4	283	85.0	0.135
## 10	2	7.4	135	107.0	0.062
## 11	2	7.4	475	109.0	0.054
## 12	2	7.4	113	156.0	0.014
## 13	2	7.4	1008	224.0	0.018
## 14	2	7.4	1028	293.0	0.010
## 15	2	7.4	2001	359.0	0.004
## 16	2	7.4	117	370.0	0.004
## 17	1	7.0	117	12.0	0.359
## 18	5	6.6	270	105.0	0.018
## 19	5	6.6	280	122.0	0.048
## 20	5	6.6	116	141.0	0.011
## 21	5	6.6	266	200.0	0.007
## 22	5	6.6	117	45.0	0.142
## 23	5	6.6	113	130.0	0.031
## 24	5	6.6	112	147.0	0.006
## 25	5	6.6	130	187.0	0.010
## 26	5	6.6	475	197.0	0.010
## 27	5	6.6	269	203.0	0.006
## 28	5	6.6	135	211.0	0.013
## 29	9	6.6	128	17.0	0.374
## 30	9	6.6	126	19.6	0.200
## 31	9	6.6	127	20.2	0.147
## 32	9	6.6	141	21.1	0.188
## 33	9	6.6	266	21.9	0.204
## 34	9	6.6	110	24.2	0.335
## 35	9	6.6	1027	66.0	0.057
## 36	9	6.6	111	87.0	0.021
## 37	9	6.6	125	23.4	0.152
## 38	9	6.6	135	24.6	0.217
## 39	9	6.6	475	25.7	0.114
## 40	9	6.6	262	28.6	0.150
## 41	9	6.6	269	37.4	0.148
## 42	9	6.6	1052	46.7	0.112
## 43	9	6.6	411	56.9	0.043
## 44	9	6.6	290	60.7	0.057
## 45	9	6.6	130	61.4	0.030
## 46	9	6.6	272	62.0	0.027
## 47	9	6.6	1096	64.0	0.028
## 48	9	6.6	1102	82.0	0.034
## 49	9	6.6	112	88.0	0.030
## 50	9	6.6	113	91.0	0.039
## 51 ## 52	19	6.5	<na></na>	23.5	0.170
## 52 ## 53	19	6.5	286	26.0	0.210
## 53 ## 54	19	6.5	<na></na>	0.5	0.320 0.520
## 54	19 19	6.5 6.5	5028 942	0.6 1.3	0.520
## 56	19	6.5	<na></na>	1.3 1.4	0.720
## 56		6.5	5054	2.6	0.320
## 57	19 19	6.5	958	3.8	0.810
## 58	19	6.5	958	4.0	0.560
## 59	19	6.5	5165	5.1	0.510
## 60	19	6.5	117	6.2	0.400
## OI	19	0.5	11/	0.2	0.400

,,,,	´		<i>-</i>	0.5.5		
##	62	19	6.5	955	6.8	0.610
##	63	19	6.5	5055	7.5	0.260
##	64	19	6.5	<na></na>	7.6	0.240
##	65	19	6.5	<NA $>$	8.4	0.460
##	66	19	6.5	5060	8.5	0.220
##	67	19	6.5	412	8.5	0.230
##	68	19	6.5	5053	10.6	0.280
##	69	19	6.5	5058	12.6	0.380
##	70	19	6.5	5057	12.7	0.270
##	71	19	6.5	<na></na>	12.9	0.310
##	72	19	6.5	5051	14.0	0.200
##	73	19	6.5	<na></na>	15.0	0.110
##	74	19	6.5	5115	16.0	0.430
##	75	19	6.5	<na></na>	17.7	0.270
##	76	19	6.5	931	18.0	0.150
##	77	19	6.5	5056	22.0	0.150
##		19	6.5	5059	22.0	0.150
	78					
##	79	19	6.5	5061	23.0	0.130
##	80	19	6.5	<na></na>	23.2	0.190
##	81	19	6.5	5062	29.0	0.130
##	82	19	6.5	5052	32.0	0.066
##	83	19	6.5	<na></na>	32.7	0.350
##	84	19	6.5	724	36.0	0.100
##	85	19	6.5	<na></na>	43.5	0.160
##	86	19	6.5	5066	49.0	0.140
##	87	19	6.5	5050	60.0	0.049
##	88	19	6.5	2316	64.0	0.034
##	89	12	6.2	3501	5.0	0.390
##	90	4	6.1	1438	16.1	0.411
##	91	4	6.1	1083	63.6	0.018
##	92	4	6.1	1013	6.6	0.509
##	93	4	6.1	1014	9.3	0.467
##	94	4	6.1	1015	13.0	0.279
##	95	4	6.1	1016	17.3	0.072
##	96	4	6.1	1095	105.0	0.012
##	97	4	6.1	1011	112.0	0.006
##	98	4	6.1	1028	123.0	0.003
##	99	15	6.0	1051	8.0	0.110
##	100	15	6.0	1293	32.0	0.040
##	101	15	6.0	1291	30.0	0.070
##	102	15	6.0	1292	31.0	0.080
##	103	18	5.8	1413	1.2	0.420
##	104	18	5.8	1445	1.6	0.230
##	104	18	5.8	1408	9.1	0.230
##			5.8		3.7	0.260
##	106 107	18 18	5.8	1411 1410	5.3	0.200
			5.8		7.4	0.270
##	108	18		1409		
##	109	18	5.8	1377	17.9	0.110
##	110	18	5.8	1492	19.2	0.120
##	111	18	5.8	1251	23.4	0.038
##	112	18	5.8	1422	30.0	0.044
##	113	18	5.8	1376	38.9	0.046
##	114	21	5.8	1030	10.8	0.120
##	115	21	5.8	1418	15.7	0.154
##		21	5.8	1383	16.7	0.052
	116				_	_
##	117	21	5.8	1308	20.8	0.045
## ##		21 21	5.8 5.8	1298	28.5	0.086
##	117 118 119	21	5.8 5.8 5.8		28.5 33.1	0.086 0.056
## ##	117 118 119 120	21 21 21 21	5.8 5.8 5.8 5.8	1298 1299 1219	28.5 33.1 40.3	0.086 0.056 0.065
## ## ##	117 118 119	21 21 21	5.8 5.8 5.8	1298 1299	28.5 33.1 40.3 62.0	0.086 0.056 0.065 0.003
## ## ## ##	117 118 119 120	21 21 21 21	5.8 5.8 5.8 5.8	1298 1299 1219	28.5 33.1 40.3	0.086 0.056 0.065
## ## ## ##	117 118 119 120 121	21 21 21 21 7	5.8 5.8 5.8 5.8 5.7	1298 1299 1219 1093	28.5 33.1 40.3 62.0	0.086 0.056 0.065 0.003

16/22, 4:07 AM			
## 124	13 5.6	272	16.0 0.130
## 125	22 5.5	<na></na>	4.0 0.259
## 126	22 5.5	<na></na>	10.1 0.267
## 127	22 5.5	1030	11.1 0.071
## 128	22 5.5	1418	17.7 0.275
## 129	22 5.5	1383	22.5 0.058
## 130	22 5.5	<na></na>	26.5 0.026
## 131	22 5.5	1299	29.0 0.039
## 132	22 5.5	1308	30.9 0.112
## 133	22 5.5	1219	37.8 0.065
## 134	22 5.5	1456	48.3 0.026
## 135	3 5.3	1117	8.0 0.127
## 136	8 5.3	111	19.0 0.086
## 137	8 5.3	116	21.0 0.179
## 138	8 5.3	290	13.0 0.205
## 139	8 5.3	112	22.0 0.073
## 140	8 5.3	113	29.0 0.045
## 141	10 5.3	1028	31.0 0.030
## 142	23 5.3	5045	5.8 0.123
## 143	23 5.3	5044	12.0 0.133
## 144	23 5.3	5160	12.1 0.073
## 145	23 5.3	5043	20.5 0.097
## 146	23 5.3	5047	20.5 0.096
## 147	23 5.3	c168	25.3 0.230
## 148	23 5.3	5068	35.9 0.082
## 149	23 5.3	c118	36.1 0.110
## 150	23 5.3	5042	36.3 0.110
## 151	23 5.3	5067	38.5 0.094
## 152	23 5.3	5049	41.4 0.040
## 153	23 5.3	c204	43.6 0.050
## 154	23 5.3	5070	44.4 0.022
## 155	23 5.3	c266	46.1 0.070
## 156	23 5.3	c203	47.1 0.080
## 157	23 5.3	5069	47.7 0.033
## 158	23 5.3	5073	49.2 0.017
## 159	23 5.3	5072	53.1 0.022
## 160	14 5.2	1032	17.0 0.011
## 161	14 5.2	1377	8.0 0.120
## 162	14 5.2	1028	10.0 0.170
## 163	14 5.2	1250	10.0 0.140
## 164	16 5.1	283	2.9 0.210
## 165	16 5.1	885	3.2 0.390
## 166	16 5.1	<na></na>	7.6 0.280
## 167	20 5.0	5055	7.5 0.264
## 168	20 5.0	942	8.8 0.263
## 169	20 5.0	5028	8.9 0.230
## 170	20 5.0	5165	9.4 0.147
## 171	20 5.0	952	9.7 0.286
## 172	20 5.0	958	9.7 0.157
## 173	20 5.0	955	10.5 0.237
## 174	20 5.0	117	10.5 0.133
## 175	20 5.0	412	12.0 0.055
## 176	20 5.0	5053	12.2 0.097
## 177	20 5.0	5054	12.8 0.129
## 178	20 5.0	5054	14.6 0.192
## 179	20 5.0	5057	14.9 0.147
## 179	20 5.0	5115	17.6 0.154
## 180 ## 181	20 5.0	5056	23.9 0.060
## 181	20 5.0	5060	25.0 0.057
"" 102		3000	
h			

b.

```
attenu |>
  group_by(station) |>
  arrange(desc(mag))
```

```
## # A tibble: 182 × 5
## # Groups: station [118]
    event mag station dist accel
##
    <dbl> <dbl> <dbl> <dbl> <dbl> <
## 1
       11 7.7 2714
                     45 0.11
##
  2
       11
           7.7 2708
                     145
                          0.01
## 3
       11 7.7 2715
                    300 0.01
##
       17 7.6 2734
                    25.4 0.16
## 5
       17 7.6 <NA>
                     32.9 0.064
       17 7.6 2728
                     92.2 0.09
##
   6
                    148 0.014
##
  7
        2
          7.4 1083
## 8
       2
          7.4 1095
                    42 0.196
## 9
        2 7.4 283
                     85 0.135
## 10
       2 7.4 135 107 0.062
## # ... with 172 more rows
```

c.

COME BACK

The msleep dataset is in the ggplot2 library.

```
library(ggplot2)
msleep |> head()
```

```
## # A tibble: 6 × 11
    name genus vore order conse...¹ sleep...² sleep...³ sleep...⁴ awake brainwt bodywt
##
    <chr> <chr> <chr> <chr> <chr> <chr> <chr>
                                              <dbl> <dbl> <dbl>
                                                                    <dbl>
                                                                            <dbl>
                                      12.1
## 1 Chee... Acin... carni Carn... lc
                                              NA
                                                     NA
                                                            11.9 NA
                                                                           50
## 2 Owl ... Aotus omni Prim... <NA>
                                     17
                                              1.8 NA
                                                            7
                                                                  0.0155
                                                                            0.48
## 3 Moun... Aplo... herbi Rode... nt
                                     14.4
                                              2.4 NA
                                                             9.6 NA
                                                                            1.35
                                              2.3 0.133 9.1 0.00029 0.019
## 4 Grea... Blar... omni Sori... lc
                                     14.9
## 5 Cow Bos
                herbi Arti... domest...
                                       4
                                               0.7
                                                     0.667 20
                                                                  0.423
## 6 Thre... Brad... herbi Pilo... <NA>
                                      14.4
                                               2.2
                                                    0.767 9.6 NA
                                                                            3.85
## # ... with abbreviated variable names 'conservation, 'sleep total, 'sleep rem,
     4sleep_cycle
```

There are three types of mammals whose sleep is being studied, carnivores, omnivores, insectavores, and herbivores. For each of these four types, find the animal with the largest sleep_total.

Carni = Thick-tailed opposum, Herbi = Artctic ground squirrel, Insecti = Little Brown Bat, Omni = North American Opposum

```
msleep |>
  group_by(vore)|>
  summarize(max_sleep = max(sleep_total))
```

```
## # A tibble: 5 × 2
##
    vore
            max_sleep
##
     <chr>
                 <dbl>
## 1 carni
                  19.4
## 2 herbi
                  16.6
## 3 insecti
                  19.9
## 4 omni
                  18
## 5 <NA>
                  13.7
```

```
msleep |>
  select(name, vore, sleep_total) |>
  group_by("carni")
```

```
## # A tibble: 83 × 4
## # Groups: "carni" [1]
                                 vore sleep_total `"carni"`
##
     name
##
     <chr>
                                 <chr>
                                             <dbl> <chr>
##
   1 Cheetah
                                 carni
                                             12.1 carni
   2 Owl monkey
                                 omni
                                             17
                                                   carni
   3 Mountain beaver
                                 herbi
                                             14.4 carni
##
   4 Greater short-tailed shrew omni
                                             14.9 carni
                                herbi
                                              4 carni
##
   6 Three-toed sloth
                                herbi
                                             14.4 carni
  7 Northern fur seal
                                carni
                                              8.7 carni
##
   8 Vesper mouse
                                 <NA>
                                              7 carni
  9 Dog
                                             10.1 carni
                                 carni
                                 herbi
## 10 Roe deer
                                                   carni
## # ... with 73 more rows
```

Consider the airquality dataset built into R, which gives daily air quality measurements in New York from May to September of 1973.

Remove any observations where the ozone measurement is missing. Create a new variable ozone_high that is true if the ozone level is at least 30, and false otherwise. Finally, find the average temperature for the observations where the ozone level is high, and for the observations here the ozone level is not high.

airquality |>
 mutate(Ozone_high = Ozone >= 30)

•	.0122,	, 4.07	7 1171						
	##		Ozone	Solar.R	Wind	Temp	Month	Day	Ozone high
	##	1	41	190	7.4	67	5	1	TRUE
	##	2	36	118	8.0	72	5	2	TRUE
	##	3	12	149	12.6	74	5	3	FALSE
	##	4	18	313	11.5	62	5	4	FALSE
	##	5	NA	NA	14.3	56	5	5	NA
	##	6	28	NA	14.9	66	5	6	FALSE
	##	7	23	299	8.6	65	5	7	FALSE
	##	8	19	99	13.8	59	5	8	FALSE
	##	9	8	19	20.1	61	5	9	FALSE
	##	10	NA	194	8.6	69	5	10	NA
	## ##	11 12	7 16	NA 256	6.9 9.7	74 69	5 5	11 12	FALSE FALSE
	##	13	11	290	9.2	66	5	13	FALSE
	##	14	14	274	10.9	68	5	14	FALSE
	##	15	18	65	13.2	58	5	15	FALSE
	##	16	14	334	11.5	64	5	16	FALSE
	##	17	34	307	12.0	66	5	17	TRUE
	##	18	6	78	18.4	57	5	18	FALSE
	##	19	30	322	11.5	68	5	19	TRUE
	##	20	11	44	9.7	62	5	20	FALSE
	##	21	1	8	9.7	59	5	21	FALSE
	##	22	11	320	16.6	73	5	22	FALSE
	##	23	4	25	9.7	61	5	23	FALSE
	##	24	32	92	12.0	61	5	24	TRUE
	##	25	NA	66	16.6	57	5	25	NA
	##	26	NA	266	14.9	58	5	26	NA
	## ##	27 28	NA 23	NA 13	8.0 12.0	57 67	5 5	27 28	NA ENT CE
	##	29	45	252	14.9	81	5	29	FALSE TRUE
	##	30	115	223	5.7	79	5	30	TRUE
	##	31	37	279	7.4	76	5	31	TRUE
	##	32	NA	286	8.6	78	6	1	NA
	##	33	NA	287	9.7	74	6	2	NA
	##	34	NA	242	16.1	67	6	3	NA
	##	35	NA	186	9.2	84	6	4	NA
	##	36	NA	220	8.6	85	6	5	NA
	##	37	NA	264	14.3	79	6	6	NA
	##	38	29	127	9.7	82	6	7	FALSE
	##	39	NA		6.9	87	6	8	NA
	##	40	71	291	13.8	90	6	9	TRUE
	## ##	41 42	39 NA	323 259	11.5 10.9	87 93	6 6	10 11	TRUE NA
	##	43	NA	250	9.2	92	6	12	NA NA
	##	44	23	148	8.0	82	6	13	FALSE
	##	45	NA	332	13.8	80	6	14	NA
	##		NA	322	11.5	79	6	15	NA
	##	47	21	191	14.9	77	6	16	FALSE
	##	48	37	284	20.7	72	6	17	TRUE
	##	49	20	37	9.2	65	6	18	FALSE
		50	12	120	11.5	73	6	19	FALSE
	##	51	13	137	10.3	76	6	20	FALSE
	##	52	NA NA	150	6.3	77 76	6	21	NA NA
	## ##	53 54	NA NA	59 91	1.7 4.6	76 76	6 6	22 23	NA NA
	##	55	NA NA	250	6.3	76 76	6	23	NA NA
	##	56	NA	135	8.0	75	6	25	NA
	##	57	NA	127	8.0	78	6	26	NA
	##	58	NA	47	10.3	73	6	27	NA
	##	59	NA	98	11.5	80	6	28	NA
	##	60	NA	31	14.9	77	6	29	NA
	##	61	NA	138	8.0	83	6	30	NA

10/22,	, 4.0	7 1111						
##	62	135	269	4.1	84	7	1	TRUE
##	63	49	248	9.2	85	7	2	TRUE
##	64	32	236	9.2	81	7	3	TRUE
##	65	NA	101	10.9	84	7	4	NA
##	66	64	175	4.6	83	7	5	TRUE
##	67	40	314	10.9	83	7	6	TRUE
##	68	77	276	5.1	88	7	7	TRUE
##	69	97	267	6.3	92	7	8	TRUE
##	70	97	272	5.7	92	, 7	9	TRUE
##	71	85	175	7.4	89	7	10	TRUE
##	72	NA	139	8.6	82	7	11	NA.
##	73	10	264		73	7	12	FALSE
##	74	27	175 291		81 91	7 7	13 14	FALSE
	75	NA						NA
##	76	7	48	14.3	80	7	15	FALSE
##	77	48	260	6.9	81	7	16	TRUE
##	78	35	274	10.3	82	7	17	TRUE
##	79	61	285	6.3	84	7	18	TRUE
##	80	79	187	5.1	87	7	19	TRUE
##	81	63	220	11.5	85	7	20	TRUE
##	82	16	7	6.9	74	7	21	FALSE
##	83	NA	258	9.7	81	7	22	NA
##	84	NA	295	11.5	82	7	23	NA
##	85	80	294	8.6	86	7	24	TRUE
##	86	108	223	8.0	85	7	25	TRUE
##	87	20	81	8.6	82	7	26	FALSE
##	88	52	82	12.0	86	7	27	TRUE
##	89	82	213	7.4	88	7	28	TRUE
##	90	50	275	7.4	86	7	29	TRUE
##	91	64	253	7.4	83	7	30	TRUE
##	92	59	254	9.2	81	7	31	TRUE
##	93	39	83	6.9	81	8	1	TRUE
##	94	9	24	13.8	81	8	2	FALSE
##	95	16	77	7.4	82	8	3	FALSE
##	96	78	NA	6.9	86	8	4	TRUE
##	97	35	NA	7.4	85	8	5	TRUE
##	98	66	NA	4.6	87	8	6	TRUE
##	99	122	255	4.0	89	8	7	TRUE
##	100		229	10.3	90	8	8	TRUE
##	101	1 110	207	8.0	90	8	9	TRUE
##	102	2 NA	222	8.6	92	8	10	NA
##	103			11.5	86	8	11	NA
##	104	4 4 4	192	11.5	86	8	12	TRUE
##	105		273	11.5	82	8	13	FALSE
##	106			9.7	80	8	14	TRUE
##	107		64	11.5	79	8	15	NA
##	108		71	10.3	77	8	16	FALSE
##	109		51	6.3	79	8	17	TRUE
##	110		115	7.4	76	8	18	FALSE
##	111		244		78	8	19	TRUE
##	112		190		78	8	20	TRUE
##	113			15.5	77	8	21	FALSE
##	114		36		72	8	22	FALSE
##	115		255	12.6	75	8	23	NA
##	116		212	9.7	75 79	8	24	TRUE
##	117		238	3.4	81	8	25	TRUE
##								
##	118		215	8.0	86 88	8	26 27	TRUE
	119		153	5.7		8		NA
##	120		203	9.7	97 04	8	28	TRUE
##	121		225	2.3	94	8	29	TRUE
##	122		237	6.3	96	8	30	TRUE
##	123	85	188	6.3	94	8	31	TRUE

##	124	96	167	6.9	91	9	1	TRUE
##	125	78	197	5.1	92	9	2	TRUE
##	126	73	183	2.8	93	9	3	TRUE
##	127	91	189	4.6	93	9	4	TRUE
	128	47	95	7.4	87	9	5	TRUE
##	129	32	92	15.5	84	9	6	TRUE
	130	20		10.9	80	9	7	FALSE
##	131	23	220	10.3	78	9	8	FALSE
	132	21		10.9	75	9	9	FALSE
	133	24		9.7	73	9	10	FALSE
	134	44		14.9	81	9	11	TRUE
	135	21		15.5	76	9	12	FALSE
	136	28		6.3	77	9	13	FALSE
	137	9		10.9	71	9	14	FALSE
	138	13		11.5	71	9	15	FALSE
	139	46		6.9	78	9	16	TRUE
	140	18		13.8	67	9	17	FALSE
	141	13		10.3	76	9	18	FALSE
	142	24		10.3	68		19	FALSE
						9		
	143	16		8.0	82	9	20	FALSE
	144	13		12.6	64	9	21	FALSE
	145	23		9.2	71	9	22	FALSE
	146	36		10.3	81	9	23	TRUE
	147	7		10.3	69	9	24	FALSE
	148	14		16.6	63	9	25	FALSE
##	149	30	193	6.9	70	9	26	TRUE
##	150	NA	145	13.2	77	9	27	NA
##	151	14	191	14.3	75	9	28	FALSE
##	152	18	131	8.0	76	9	29	FALSE
##	153	20	223	11.5	68	9	30	FALSE

```
ggplot(airquality, aes(x = Ozone)) + geom_histogram(binwidth = 8, fill = "orange", color = "black")
```

Warning: Removed 37 rows containing non-finite values (stat_bin).

The flights dataset is part of the nycflights13 library.

```
library(nycflights13)
```

In the flights data set, the variable tailnum tells us the exact plane that took a flight.

- a. Find the plane that flew the most number of the flights.
- b. How many planes flew at least 100 flights?
- a.

```
flights |>
  filter(!is.na(tailnum)) |>
  group_by(tailnum) |>
  count() |>
  filter(n >= 100)
```

```
## # A tibble: 1,217 × 2
## # Groups:
               tailnum [1,217]
##
      tailnum
                  n
      <chr>
##
              <int>
##
   1 NOEGMQ
                371
##
    2 N10156
                153
   3 N10575
                289
    4 N11106
                129
   5 N11107
##
                148
   6 N11109
                148
  7 N11113
                138
## 8 N11119
                148
## 9 N11121
                154
## 10 N11127
                124
## # ... with 1,207 more rows
```

N0EGMQ

b.

1217

Which carrier had the highest percentage of on time flights?

a.

HA

Consider the following two tibbles:

```
df1 <- tibble(
  name = c("Sophia", "Olivia", "Emma", "Ava", "Isabella"),
  gender = c("F", "F", "F", "F")
)
df2 <- tibble(
  name = c("Jackson", "Liam", "Noah", "Aiden", "Caden"),
  gender = c("M", "M", "M", "M", "M")
)</pre>
```

Give a command that combines the observations from df1 and df2.

```
df1 |> full_join(df2, by = "name")
```

```
## # A tibble: 10 × 3
##
   name gender.x gender.y
##
    <chr> <chr>
                    <chr>
## 1 Sophia F
                    <NA>
##
   2 Olivia F
                    <NA>
## 3 Emma
          F
                    <NA>
## 4 Ava
           F
                    <NA>
## 5 Isabella F
                    <NA>
## 6 Jackson <NA>
                    M
## 7 Liam
            <NA>
                    Μ
## 8 Noah
            <NA>
                   M
## 9 Aiden
            <NA>
                    М
## 10 Caden
            <NA>
                    М
```

Suppose the following datasets contain restricted observations from the iris dataset built in to R.

```
iris_sepal <-
iris |>
filter(Sepal.Length > 5)

iris_petal <-
iris |>
filter(Petal.Length < 3)</pre>
```

- a. Find the observations that are in both ${\tt iris_sepal}$ and ${\tt iris_petal}$.
- b. Find the observations that are in $\verb"iris_petal"$ but not in $\verb"iris_sepal"$. Find it.

```
iris_petal
```

##	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
## 1	5.1	3.5	1.4	0.2	setosa
## 2	4.9	3.0	1.4	0.2	setosa
## 3	4.7	3.2	1.3	0.2	setosa
# 4	4.6	3.1	1.5	0.2	setosa
# 5	5.0	3.6	1.4	0.2	setosa
# 6	5.4	3.9	1.7	0.4	setosa
# 7	4.6	3.4	1.4	0.3	setosa
# 8	5.0	3.4	1.5	0.2	setosa
# 9	4.4	2.9	1.4	0.2	setosa
# 10	4.9	3.1	1.5	0.1	setosa
# 11	5.4	3.7	1.5	0.2	setosa
# 12	4.8	3.4	1.6	0.2	setosa
# 13	4.8	3.0	1.4	0.1	setosa
# 14	4.3	3.0	1.1		setosa
# 15	5.8	4.0	1.2	0.2	setosa
# 16	5.7	4.4	1.5	0.4	setosa
# 17	5.4	3.9	1.3	0.4	setosa
# 18	5.1	3.5	1.4	0.3	setosa
# 10	5.7	3.8	1.7	0.3	setosa
## 20	5.1	3.8	1.5	0.3	setosa
# 21	5.4	3.4	1.7	0.2	setosa
# 22	5.1	3.7	1.5	0.4	setosa
# 23	4.6	3.6	1.0	0.2	setosa
# 24	5.1	3.3	1.7	0.5	setosa
# 25	4.8	3.4	1.9	0.2	setosa
## 26	5.0	3.0	1.6	0.2	setosa
## 27	5.0	3.4	1.6	0.4	setosa
## 28	5.2	3.5	1.5	0.2	setosa
# 29	5.2	3.4	1.4	0.2	setosa
# 30	4.7	3.2	1.6	0.2	setosa
## 31	4.8	3.1	1.6	0.2	setosa
# 32	5.4	3.4	1.5	0.4	setosa
# 33	5.2	4.1	1.5	0.1	setosa
# 34	5.5	4.2	1.4	0.2	setosa
## 35	4.9	3.1	1.5	0.2	setosa
## 36	5.0	3.2	1.2	0.2	setosa
# 37	5.5	3.5	1.3	0.2	setosa
## 38	4.9	3.6	1.4	0.1	setosa
## 39	4.4	3.0	1.3	0.2	setosa
## 40	5.1	3.4	1.5	0.2	setosa
# 41	5.0	3.5	1.3	0.3	setosa
# 42	4.5	2.3	1.3	0.3	setosa
## 43	4.4	3.2	1.3	0.2	setosa
# 44	5.0	3.5	1.6	0.6	setosa
# 45	5.1	3.8	1.9	0.4	setosa
## 46	4.8	3.0	1.4	0.3	setosa
# 47	5.1	3.8	1.6	0.2	setosa
## 48	4.6	3.2	1.4	0.2	setosa
	5.3	3.7	1.5	0.2	
## 49					

iris_sepal

/	10/22,	, 4:07	Alvi			nomew	ork us CSCI usu
	##	1		=	Petal.Length		Species
		1	5.1	3.5	1.4	0.2	setosa
	##	2	5.4	3.9	1.7	0.4	setosa
	##	3	5.4	3.7	1.5	0.2	setosa
	##	4	5.8	4.0	1.2	0.2	setosa
	##	5	5.7	4.4	1.5	0.4	setosa
		6					
			5.4	3.9	1.3	0.4	setosa
		7	5.1	3.5	1.4	0.3	setosa
	##	8	5.7	3.8	1.7	0.3	setosa
	##	9	5.1	3.8	1.5	0.3	setosa
	##	10	5.4	3.4	1.7	0.2	setosa
	##	11	5.1	3.7	1.5	0.4	setosa
	##		5.1	3.3	1.7	0.5	setosa
	##		5.2	3.5	1.5	0.2	setosa
		14	5.2	3.4	1.4	0.2	setosa
	##	15	5.4	3.4	1.5	0.4	setosa
	##	16	5.2	4.1	1.5	0.1	setosa
	##	17	5.5	4.2	1.4	0.2	setosa
	##	18	5.5	3.5	1.3	0.2	setosa
	##		5.1	3.4	1.5	0.2	setosa
	##		5.1	3.8	1.9	0.4	setosa
	##		5.1	3.8	1.6	0.2	setosa
	##		5.3	3.7	1.5	0.2	setosa
	##		7.0	3.2	4.7	1.4	versicolor
	##	24	6.4	3.2	4.5	1.5	versicolor
	##	25	6.9	3.1	4.9	1.5	versicolor
	##	26	5.5	2.3	4.0	1.3	versicolor
	##	27	6.5	2.8	4.6	1.5	versicolor
	##		5.7	2.8	4.5		versicolor
	##		6.3	3.3	4.7		versicolor
	##		6.6	2.9	4.6		versicolor
		31	5.2	2.7	3.9		versicolor
		32	5.9	3.0	4.2		versicolor
	##	33	6.0	2.2	4.0	1.0	versicolor
	##	34	6.1	2.9	4.7	1.4	versicolor
	##	35	5.6	2.9	3.6	1.3	versicolor
	##	36	6.7	3.1	4.4	1.4	versicolor
	##	37	5.6	3.0	4.5	1.5	versicolor
	##		5.8	2.7	4.1		versicolor
	##		6.2	2.2	4.5		versicolor
	##		5.6	2.5	3.9		versicolor
	##		5.9	3.2	4.8		versicolor
	##		6.1	2.8	4.0		versicolor
	##		6.3	2.5	4.9	1.5	versicolor
	##	44	6.1	2.8	4.7	1.2	versicolor
	##	45	6.4	2.9	4.3	1.3	versicolor
	##	46	6.6	3.0	4.4	1.4	versicolor
	##	47	6.8	2.8	4.8	1.4	versicolor
	##	48	6.7	3.0	5.0	1.7	versicolor
	##		6.0	2.9	4.5		versicolor
	##		5.7	2.6	3.5		versicolor
	##		5.5	2.4	3.8		versicolor
	##		5.5	2.4	3.7		versicolor
	##	53	5.8	2.7	3.9	1.2	versicolor
	##	54	6.0	2.7	5.1	1.6	versicolor
	##	55	5.4	3.0	4.5	1.5	versicolor
	##	56	6.0	3.4	4.5	1.6	versicolor
	##	57	6.7	3.1	4.7	1.5	versicolor
	##		6.3	2.3	4.4		versicolor
	##		5.6	3.0	4.1		versicolor
	##		5.5	2.5	4.0		versicolor
	##	OΙ	5.5	2.6	4.4	1.2	versicolor

,				
## 62	6.1	3.0	4.6	1.4 versicolor
## 63	5.8	2.6	4.0	1.2 versicolor
## 64	5.6	2.7	4.2	1.3 versicolor
## 65	5.7	3.0	4.2	1.2 versicolor
## 66	5.7	2.9	4.2	1.3 versicolor
## 67	6.2	2.9	4.3	1.3 versicolor
## 68	5.1	2.5	3.0	1.1 versicolor
## 69	5.7	2.8	4.1	1.3 versicolor
## 70	6.3	3.3	6.0	2.5 virginica
## 71	5.8	2.7	5.1	1.9 virginica
## 72	7.1	3.0	5.9	2.1 virginica
## 73	6.3	2.9	5.6	1.8 virginica
## 74	6.5	3.0	5.8	2.2 virginica
## 75	7.6	3.0	6.6	2.1 virginica
## 76	7.3	2.9	6.3	1.8 virginica
## 77	6.7	2.5	5.8	1.8 virginica
## 78	7.2	3.6	6.1	2.5 virginica
## 79	6.5	3.2	5.1	2.0 virginica
## 80	6.4	2.7	5.3	1.9 virginica
## 81	6.8	3.0	5.5	2.1 virginica
## 82	5.7	2.5	5.0	2.0 virginica
## 83	5.8	2.8	5.1	2.4 virginica
## 84	6.4	3.2	5.3	2.3 virginica
## 85	6.5	3.0	5.5	1.8 virginica
				-
## 86	7.7	3.8	6.7	2.2 virginica
## 87	7.7	2.6	6.9	2.3 virginica
## 88	6.0	2.2	5.0	1.5 virginica
## 89	6.9	3.2	5.7	2.3 virginica
## 90	5.6	2.8	4.9	2.0 virginica
## 91	7.7	2.8	6.7	2.0 virginica
## 92	6.3	2.7	4.9	1.8 virginica
## 93	6.7	3.3	5.7	2.1 virginica
## 94	7.2	3.2	6.0	1.8 virginica
## 95	6.2	2.8	4.8	1.8 virginica
## 96	6.1			_
		3.0	4.9	1.8 virginica
## 97	6.4	2.8	5.6	2.1 virginica
## 98	7.2	3.0	5.8	1.6 virginica
## 99	7.4	2.8	6.1	1.9 virginica
## 100	7.9	3.8	6.4	2.0 virginica
## 101	6.4	2.8	5.6	2.2 virginica
## 102	6.3	2.8	5.1	1.5 virginica
## 103	6.1	2.6	5.6	1.4 virginica
## 104	7.7	3.0	6.1	2.3 virginica
## 105	6.3	3.4	5.6	2.4 virginica
## 106	6.4	3.1	5.5	1.8 virginica
				-
## 107	6.0	3.0	4.8	1.8 virginica
## 108	6.9	3.1	5.4	2.1 virginica
## 109	6.7	3.1	5.6	2.4 virginica
## 110	6.9	3.1	5.1	2.3 virginica
## 111	5.8	2.7	5.1	1.9 virginica
## 112	6.8	3.2	5.9	2.3 virginica
## 113	6.7	3.3	5.7	2.5 virginica
## 114	6.7	3.0	5.2	2.3 virginica
## 115	6.3	2.5	5.0	1.9 virginica
## 116	6.5	3.0	5.2	2.0 virginica
## 117	6.2	3.4	5.4	2.3 virginica
## 118	5.9	3.0	5.1	1.8 virginica

а

Additional species: versicolor and virginica

b. Sepal.Length values are < 5, which means there are iris_petals includes observaitons where Sepal.Length are below 5

Consider two datasets derived from the mtcars dataset built in to R

```
cyl4 <-
  mtcars |>
  select(mpg:hp) |>
  filter(cyl == 4) |>
  select(-cyl)
cyl4
```

```
##
                 mpg disp hp
## Datsun 710
                22.8 108.0 93
## Merc 240D
                24.4 146.7 62
## Merc 230
                 22.8 140.8
## Fiat 128
                 32.4 78.7
                            66
## Honda Civic
                 30.4 75.7 52
## Toyota Corolla 33.9 71.1 65
## Toyota Corona 21.5 120.1
                            97
## Fiat X1-9
                 27.3 79.0
## Porsche 914-2 26.0 120.3 91
## Lotus Europa 30.4 95.1 113
## Volvo 142E
                21.4 121.0 109
```

```
cyl6 <-
  mtcars |>
  select(mpg:hp) |>
  filter(cyl == 6) |>
  select(-cyl)
cyl6
```

```
## Mazda RX4 21.0 160.0 110
## Mazda RX4 Wag 21.0 160.0 110
## Hornet 4 Drive 21.4 258.0 110
## Valiant 18.1 225.0 105
## Merc 280 19.2 167.6 123
## Merc 280C 17.8 167.6 123
## Ferrari Dino 19.7 145.0 175
```

For each tibble cyl4 and cyl6, add a variable cyl that holds the number of cylinders for each variable in the dataset, then combine into one dataset called cyl_new .

```
cyl4 <-
  mtcars |>
  select(mpg:hp) |>
  filter(cyl == 4) |>
  select(-cyl) |>
  mutate(cyl = 4)

cyl4
```

```
##
                 mpg disp hp cyl
## Datsun 710 22.8 108.0 93
                24.4 146.7
## Merc 240D
                           62
                                4
## Merc 230
                22.8 140.8 95
## Fiat 128
                32.4 78.7 66
## Honda Civic
              30.4 75.7 52
## Toyota Corolla 33.9 71.1 65
## Toyota Corona 21.5 120.1 97
## Fiat X1-9
                27.3 79.0 66
## Porsche 914-2 26.0 120.3 91
## Lotus Europa 30.4 95.1 113
## Volvo 142E
                21.4 121.0 109
cy16 <-
 mtcars |>
 select(mpg:hp) |>
 filter(cyl == 6) |>
 select(-cyl) |>
 mutate(cyl = 6)
cyl6
##
                 mpg disp hp cyl
## Mazda RX4
                21.0 160.0 110
## Mazda RX4 Wag 21.0 160.0 110
## Hornet 4 Drive 21.4 258.0 110
                                6
## Valiant
                18.1 225.0 105
## Merc 280
                19.2 167.6 123
                                6
## Merc 280C
                17.8 167.6 123
## Ferrari Dino 19.7 145.0 175
cyl_new <- cyl4 |> full_join(cyl6)
## Joining, by = c("mpg", "disp", "hp", "cyl")
cyl_new
##
      mpg disp hp cyl
## 1 22.8 108.0 93 4
## 2 24.4 146.7 62
## 3 22.8 140.8 95
## 4 32.4 78.7 66 4
## 5 30.4 75.7 52 4
## 6 33.9 71.1 65 4
## 7 21.5 120.1 97 4
## 8 27.3 79.0 66
## 9 26.0 120.3 91 4
## 10 30.4 95.1 113 4
## 11 21.4 121.0 109 4
## 12 21.0 160.0 110 6
## 13 21.0 160.0 110
## 14 21.4 258.0 110 6
## 15 18.1 225.0 105 6
## 16 19.2 167.6 123 6
## 17 17.8 167.6 123
## 18 19.7 145.0 175 6
```