Contents

Haskell vs Prolog	2
Lists	2
Patterns	2
Extending Expr Further	2
Def Example	3
Dictionary Evaluation	3
Eval	4
Taking Stock	4
The Datatyle	4
Evaluation	4
Simplification	5
Fancy Printing	6
Issues	6
Using Maybe to handle errors	6
Evalulating using Maybe	7
Evaluating Def	8
Closing Observations	8
Turning Expressions into Functions	8
Abstracting Functions	9
The "shape" of eval using Maybe	9
Revised eval	10
Simplifying simp	10
Some operators are "nice"	11
Data Constructors are Functions	11
Abstraction: Summary	12

Haskell vs Prolog

Lists

Mathematically we might write lists as items seperated by commas, enclosed in angle-brackets $\,$

```
\sigma_0 = <>, \sigma_1 = <1>, \sigma_2 = <1, 2>, \sigma_3 = <1, 2, 3> Haskell: s0=[] s1=1:[] -- or [1] s2=1:2:[] -- or [1, 2] s3=1:2:3:[] -- or [1, 2, 3] Prolog: s0=[] s1=[1] s2=[1, 2]
```

Patterns

```
Haskell:
```

[] (x:xs) (x:y:xs)

Prolog:

[]
[X|Xs]
[X, Y|Xs]

Extending Expr Further

We can augment the expression type to allow expressions with local variable declerations:

The intended meaning of $\mathtt{Def}\ x\ \mathtt{e1}\ \mathtt{e2}$ is \mathtt{x} is in the scope of $\mathtt{e2}$ but not in $\mathtt{e1}$; compute value of $\mathtt{e1}$ and assign value to \mathtt{x} ; then evaluate $\mathtt{e2}$ as overall result

Def Example

A simple expression in this form could look like this:

A nice way to print this out might be:

```
let a = 2 * 3
in let b = 8 - 1
in (a * b) - 1
```

Dictionary Evaluation

For the non-identifier parts of the expressions we simply pass the dictionary around, but otherwise ignore it

```
eval :: Dictionary Id Float -> Expr -> Float
eval d (Val v) = v
eval d (Add e1 e2) = (eval d e1) + (eval d e2)
eval d (Mul e1 e2) = (eval d e1) * (eval d e2)
eval d (Sub e1 e2) = (eval d e1) - (eval d e2)
eval d (Dvd e1 e2) = (eval d e1) / (eval d e2)
Given a variable, we simply look it up
eval d (Var n) = fromJust (find d n)
fromJust (Just x) = x
```

Given a Def we

- 1. Evaluate the first expression in the given dictionary
- 2. Add a binding from the defined variable to the resulting value and then
- 3. Evaluate the second expression with the updated dictionary

```
eval d (Def x e1 e2) = eval (define f x (eval d e1) ) e2
```

Eval

Taking Stock

- $\bullet~$ We have introduced the data type ${\tt Expr}$ for expressions
- We have a lookup table that associates datum values with keys
- We can simplify (simp) the expressions
- We can evaluate (eval) the expressions
- We can print (print) out the expressions
- Lets review in detail what we have

The Datatyle

```
type Id = String

data Expr
    = Val Double
    | Var Id
    | Add Expr Expr
    | Mul Expr Expr
    | Sub Expr Expr
    | Dvd Expr Expr
    | Def Id Expr Expr
    deriving (Eq, Show)
```

Evaluation

```
type Dict = Tree Id Double

eval :: Dict -> Expr -> Double

eval _ (Val x) = x

eval d (Var i) = fromJust (find d i)

eval d (Add x y) = eval d x + eval d y
```

```
eval d (Mul x y) = eval d x * eval d y eval d (Sub x y) = eval d x - eval d y eval d (Dvd x y) = eval d x / eval d y eval d (Def x e1 e2) = eval (define x (eval d e1) e) e2
```

Simplification

```
simp :: Expr -> Expr
simp (Add e1 e2)
 = let e1' = simp e1
      e2' = simp e2
    in case (e1',e2') of
      (Val 0.0,e) -> e
      (e, Val 0.0) -> e
                   -> Add e1' e2'
simp (Mul e1 e2)
  = let e1' = simp e1
      e2' = simp e2
    in case (e1',e2') of
      (Val 1.0,e) -> e
      (e, Val 1.0) \rightarrow e
                   -> Mul e1' e2'
simp (Sub e1 e2)
 = let e1' = simp e1
    e2' = simp e2
  in case (e1',e2') of
    (e, Val 0.0) -> e
                 -> Sub e1' e2'
simp (Dvd e1 e2)
 = let e1' = simp e1
   e2' = simp e2
 in case (e1',e2') of
    (e, Val 1.0) \rightarrow e
                  -> Dvd e1' e2'
simp (Def x e1 e2) = (Def x (simp e1) (simp e2))
simp e = e
```

Lots of similar code - "boilerplate"!

Fancy Printing

- Only use parentheses when they are required by operator precedence rules
- Higher precedence numbers mean tighter binding
- Start by rendering an expression at the top-level at precedence level zero

- Sub is very similar to Add
- Dvd is very similar to Dvd

Issues

- We need proper error handling
- We need to reduce the amount of boiler plate
 - This is important if we hope to extend the expression type in any way
- Three mechanisms are available to help
 - The type system we can define types that help with error handling
 - Abstraction we can capture common boiler plate patterns as functions
 - Classes we can capture common boilerplate control patterns as classes

Using Maybe to handle errors

Remember the Maybe type

```
data Maybe t = Nothing | Just t
```

We can revise our eval function to return a value of type Maybe Double, using Nothing to signal an error:

```
eval :: Dict -> Expr -> Maybe Double
eval _ (Val x) = Just x
eval d (Var i) = find d i -- returns a Maybe type anyway!
```

Evalulating using Maybe

```
eval d (Add x y) = Just ((eval d x) + (eval d y))
```

Won't work - eval no longer returns a Double, but a Maybe Double!

We have to pattern-match against the recursive eval outcomes to see what to do next

```
eval d (Add x y)
  = let r = eval d x
     s = eval d y
    in case (r, s) of
      (Just m, Just n) -> Just (m+n)
                       -> Nothing
eval d (Mul x y)
  = let r = eval d x
      s = eval d y
    in case (r, s) of
      (Just m, Just n) -> Just (m*n)
                       -> Nothing
eval d (Sub x y)
  = let r = eval d x
      s = eval d y
    in case (r, s) of
      (Just m, Just n) -> Just (m-n)
                       -> Nothing
eval d (Dvd x y)
 = let r = eval d x
      s = eval d y
    in case (r, s) of
      (Just m, Just n) \rightarrow if n==0.0 then Nothing else Just (m/n)
                       -> Nothing
```

More boilerplate

Evaluating Def

```
eval d (Def x e1 e2)
= let r = eval d e1
  in case (r, s) of
    Nothing -> Nothing
    Just v1 -> eval (define x v1 d) e2
```

Even more boilerplate

Error handling seems expensive.

This is why more languages support exceptions.

Closing Observations

- We can add explicit error handling using Maybe (or Either)
- Exceptions are available, but only in an IO context
- However we can still do a lot better, with higher order abstractions and classes

Turning Expressions into Functions

Consider the following expressions:

```
a * b + 2 - c
```

There are at least four ways we can turn this into a function of one numeric argument

```
f a where f x = x * b + 2 - c
f b where f x = a * x + 2 - c
f c where f x = a * b + 2 - x
f 2 where f x = a * b + x - c
```

This process of converting expressions into functions is called abstraction

Abstracting Functions

Consider the following function definitions:

```
f a b = sqr a + sqrt b
g x y = sqrt x * sqr y
h p q = log p - abs q
```

They all have the same general form:

```
fname arg1 arg2 = someF aqr1 `someOp` anotherF arg2
```

We can abstract this adding parameters to represent the "bits" of the general form:

```
absF someF anotherF someOp arg1 arg2 = someF arg1 `someOp` anotherF arg2
```

Now f, g and h can be defined using absF

```
f a b = absF sqr sqrt (+) a b
g x y = absF sqrt sqr (*) x y
h = absF log abs (-) -- we can use partial application
```

The "shape" of eval using Maybe

A typical binary operation case in eval looks like

We just need to process the two sub-expressions, with a binary operator for the result, so we come up with

This works for Add, Mul, and Sub (but not Dvd)

Revised eval

The following cases get simplified

```
eval d (Add x y) = evalOp d (+) x y eval d (Mul x y) = evalOp d (*) x y eval d (Sub x y) = evalOp d (-) x y
```

We can't do Dvd because it will need to return Nothing if y evaluates to 0.

At least those operators that cannot raise errors are now easy to code.

Simplifying simp

We have code as follows (let's use Sub again)

We can at least isolate the simplifications out

simp itself is simpler

```
simp (Add e1 e2) = simpOp addSimp e1 e2
simp (Mul e1 e2) = simpOp mulSimp e1 e2
simp (Sub e1 e2) = simpOp subSimp e1 e2
simp (Dvd e1 e2) = simpOp dvdSimp e1 e2
```

Each operator simplifier has its own case-analysis, e.g.

```
mulSimp (Val 1.0) e = e

mulSimp e (Val 1.0) = e

mulSimp e1 e2 = Mul e1 e2
```

Still boilerplate, but perhaps it is clearer this way (no explicit use of case)

Some operators are "nice"

- Some operators have nice properties, like having unit values, e.g. 0+a=a=a+0 and 1*a=a=a*1
- We can code a simplifier for these as follows:

Data Constructors are Functions

The data constructors of Expr, are in fact functions, whoes types are as follows

```
Val :: Double -> Expr
Var :: Id -> Expr
Add :: Expr -> Expr -> Expr
Mul :: Expr -> Expr -> Expr
Sub :: Expr -> Expr -> Expr
Dvd :: Expr -> Expr -> Expr
Def :: Id -> Expr -> Expr -> Expr
```

So, cons on the previous slide needs to have the type Expr -> Expr -> Expr, which is why Add and Mul are suitable arguments to pass into uopSimp

• Given declaration

```
data MyType = ... | MyCons T1 T2 ... Tn | ...
```

the data constructor ${\tt MyCons}$ is a function of type

```
Mycons :: T1 \rightarrow T2 \rightarrow ... \rightarrow Tn \rightarrow MyType
```

• Partial applications of MyCons are also valid

```
(MyCons x1 x2) :: T3 -> ... -> Tn -> MyType
```

• Data constructors are the only functions that can occur in patterns

Abstraction: Summary

- Abstraction is the process of turning expressions into functions
- $\bullet\,$ If done intelligently, it greatly increases code re-use and reduces boiler plate
- $\bullet~$ We saw is applied to ${\tt eval}$ and ${\tt simp}$
- A lot of the higher-order functions in the Prelude are examples of abstraction of common programming shapes encountered in functional programs (e.g map and folds)