THERE IS NO FIBONACCI REPRESENTATION OF $\mathscr{H}_{k,q}(S_n)$

MILES JOHNSON & NATALIE STEWART

Let k be a field, and let $q \neq 0 \in k$ be the parameter of the Hecke algebra $\mathcal{H} := \mathcal{H}_{k,q}(S_n)$. We will show that there is no "Fibonacci" representation of \mathcal{H} .

First, let F be the vector space with basis given by the strings of length n+1 with alphabet $\{p,*\}$ such that no two * symbols appear in a row. This is given an action by the braid group that we will try to emulate. We want an action which is "local", i.e. the simple transposition T_i acts on the string from the ith to the (i+2)nd symbol, modifying only the middle character, defined by the following rule:

$$\widehat{(*pp)} := a(*pp)$$

$$\widehat{(*p*)} := b(*p*)$$

$$\widehat{(p*p)} := c(p*p) + d(ppp)$$

$$\widehat{(pp*)} := a(pp*)$$

$$\widehat{(ppp)} := d(p*p) + e(ppp).$$

For suitable constants $a, b, c, d, e \in k$.

Quadratic Relation. Note that the quadratic relation $T_i^2 = (q-1)T_i + q$ imposes the following restrictions on the constants:

(2)
$$a^{2} = (q-1)a + q$$
$$b^{2} = (q-1)b + q$$
$$c^{2} + d^{2} = (q-1)c + q$$
$$de = (q-1)d$$
$$e^{2} + d^{2} = (q-1)e + q$$
$$dc = (q-1)d$$

Note that we immediately have

(3)
$$a, b \in \left\{ \frac{q - 1 \pm \sqrt{(q - 1)^2 + 4q}}{2} \right\}$$
$$= \left\{ \frac{q - 1 \pm (q + 1)}{2} \right\}$$
$$= \left\{ -1, q \right\}.$$

Further, if d=0 then we have $c, e \in \{-1, q\}$; if $d \neq 0$ then we have that c=e=(q-1), and $d \in \{\pm \sqrt{q}\}$.

Braid Relations. Here's where we'll run into some issues.

We must verify the relation $T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1}$. We can try to directly confirm this on length-4 strings:

• (*ppp) requires that adb = bcd + ade and $a^2d = ae^2 + bd^2$. If d = 0, then we require that $ae^2 = 0$ with $a, e \neq 0$, a contradiction. Hence we require that $d^2 = q$ and c = e = (q - 1). With the restrictions given above, the first of the above equivalently requires

(4)
$$ab = b(q-1) + a(q-1)$$

• (pppp) requires that $acd + de^2 = ade$. Equivalently, we require that $e^2 = 0$, i.e. d = q = 1. Then, by (4), we require that ab = 0, but $a, b \neq 0$; this is a contradiction, so there are no constants a, b, c, d, e which make this a representation of \mathcal{H} .