<u>MFE5130 – Financial Derivatives</u> <u>First Term, 2019 – 20</u>

Assignment 3 Due date: 11:00pm, 27-November-2019

Important notes:

- 1. The assignment must be submitted via Blackboard.
- 2. Total: 9 Problems (Full Mark: 90).

Problem

10.8, 10.18(a), 10.20 (Set $\delta = 0\%$ instead of 5%).

Problem

12.7

Additional Problem 1

The current price of a stock is \$130. The volatility of the stock is 20%. The dividend yield of the stock is 2%.

The continuously compounded risk-free interest rate is 7%.

A 10-month European put option on the stock has a strike price of \$102.

The option is priced using the forward tree with 10 periods.

Calculate the value of the European put option.

Additional Problem 2

Assume that the Black-Scholes framework holds.

The price of a stock is \$77. The stock pays a dividend of \$7 in 3 months, and a dividend of \$9 in 9 months.

The volatility of the stock is 27.43%.

The continuously compounded risk-free rate of return is 10%.

A European put option on the stock price has a strike price of \$73 and expires in 6 months.

Calculate the price of the European put option.

Additional Problem 3

Assume the Black-Scholes framework. Consider a 9-month at-the-money European option on Futures contract. You are given:

- (i) The continuously compounded risk-free interest rate is 8%.
- (ii) The strike price of the option is \$30.
- (iii) The price of the put option is \$3.40.

If three months later the future price is \$27, what is the price of the put option at that time?

Additional Problem 4

Assume that the Black-Scholes framework holds.

You are given:

- i. The current price of the stock is 105.
- ii. The continuously compounded risk-free rate of return is 9%.
- iii. The expected return of the stock is 15% (i.e., $\alpha = 15\%$).
- iv. The stock pays continuously compounded dividends at a rate of 7%.
- v. The Sharpe ratio of the 1-year 100-strike call option is 24%.

Find the volatility of the call option (σ_{call}).

Additional Problem 5

The current price of a stock is \$60. The volatility of the stock is 30%. The stock pays dividends at a continuously compounded rate of 6%. The continuously compounded expected return on the stock is 22%.

The risk-free rate of return is 6%.

An at-the-money European call option on the stock expires in 6 months. The current price of the call option is \$5.1 and the delta of the call option is 0.5277.

An investor purchases two at-the-money European call options and one at-the-money European put option.

Calculate the continuously compounded expected return on the investor's portfolio.

When using the given standard normal distribution table, do not interpolate.

- Use the nearest z-value in the table to find the probability. Example: Suppose that you are to find Pr(Z < 0.759), where Z denotes a standard normal random variable. Because the z-value in the table nearest to 0.759 is 0.76, your answer is Pr(Z < 0.76) = 0.7764.
- Use the nearest probability value in the table to find the z-value. Example: Suppose that you are to find z such that Pr(Z < z) = 0.7. Because the probability value in the table nearest to 0.7 is 0.6985, your answer is 0.52.

NORMAL DISTRIBUTION TABLE

Entries represent the area under the standardized normal distribution from $-\infty$ to z, Pr(Z<z)The value of z to the first decimal is given in the left column. The second decimal place is given in the top row.

										NAME AND ADDRESS OF
2	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0		0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1		0.5438	0.5478	0.5517	0 5557	0 5596	0.5636	0.5675	0.5714	0 5753
0.2		0.5832	0.5871	0.5910	0 5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3		0 6217	0.6255	0.6293	0 6331	0.6368	0.6406	0.6443	0.6480	0,6517
0.4		0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	06844	0.6879
J., 1	00031	0,,0001	G.,002G	0.0001	00100	0.0.00				
0.5	0.6915	0.6950	06985	0.7019	0.7054	07088	0.7123	0.7157	0.7190	0.7224
0.6		0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.0		0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.7		0.7910	0.7939	0.7967	0.7704	0.8023	0.8051	0.8078	(0.8106	0.8133
			0.8212	0.8238	0.8264	0.8289	0.8315	0 8340	0.8365	0.8389
09	0.0159	0.8186	00212	0.0230	0.0204	0.0209	0.0010	0.0040	0.0000	0.,0000
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
			0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.1	0.8643	0,8665			0.8925	0.8749	08962	0.8980	0.8997	0.9015
1.2	0.8849	0.8869	0.8888	0.8907		0.8944	0.0902	0.9147	0.9162	0.9177
1.3	0.9032	0.9049	09066	0.9082	0.9099		0.9279	0.9292	0.9102	0.9319
1.4	0.9192	09207	0.9222	0.9236	0.9251	0 9265	0.9219	0.9232	0 9300	0.5515
4.5	0.0000	0.0045	0.0057	0.0070	0.0000	0.9394	0.9406	0.9418	0.9429	0.9441
1.5	0.9332	0.9345	0.9357	0.9370	0.9382			0.9525	0.9535	0.9545
1.6	0.9452	0.9463	0.9474	0.9484	0 9495	0.9505	0.9515		0.9625	0.9633
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616		0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
امما	« o==0	0.0770	0.0700	0.0700	0.0700	0.0700	0.9803	0.9808	0.9812	0.9817
2.0	0.9772		0.9783	0.9788	0.9793	0.9798 0.9842	0.9846	0.9850	0.9854	0.9857
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9878	0.9881	0.9884	0.9887	0.9890
2.2	0.9861	0.9864	0.9868	0.9871	0.9875		0.9909	0.9911	0.9913	0.9916
2.3	0.9893	0.9896	0.9898	0.9901	0 9904	0.9906	0.9931	0.9932	0.9934	0.9936
2.4	0.9918	0.9920	0.9922	0.9925	0,9927	0.9929	0.9931	0.8932	0.9934	0.0000
	0.0020	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.5 2.6	09938 09953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
				0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.7	0.9965	0.9966	0.9967		0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.8	0.9974	0.9975	0.9976	0.9977		0.9984	0.9985	0.9985	0.9986	09986
2.9	0.9981	0.9982	09982	0 9983	0.9984	09904	0,5900	0.5505	0,5500	00000
ام	0.0007	0.0007	0.0007	0.0000	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.0	0.9987	0.9987	0.9987	0.9988		0.9992	0.9999	0.9992	0.9993	0.9993
3.1	09990	0.9991	0.9991	0.9991	0.9992		0.9994	0.9995	0.9995	0.9995
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994			0.9996	0.9997
33	09995	0.9995	0 9995	0.9996	0.9996	0.9996	0.9996	0999 6 09997	0.9997	0.9998
3.4	0.9997	09997	0:9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9991	0.8880
2.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	09998
3.5		09998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.6	0.9998		0.9999	0.9999	0.9999	09999	0.9999	0.9999	0.9999	0.9999
3.7	0.9999	0.9999			0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.8	0.9999	0.9999	0.9999	09999		10000	1.0000	1.0000	1.0000	1.0000
3.9	1.0000	10000	1.0000	1.0000	1.0000	1"0000	10000	1,0000	1.0000	1.0000

Values of z for selected values of Pr(Z <z)< th=""></z)<>											
z .	0.842	1.036	1.282	1.645	1.960	2,326	2.576				
Pr(Z<7)	0.800	0.850	0.900	0.950	0.975	0.990	0:995				