1632. Rank Transform of a Matrix

Description

Given an [m x n [matrix], return a new matrix [answer] where [answer[row][col]] is the rank of [matrix[row][col]].

The rank is an integer that represents how large an element is compared to other elements. It is calculated using the following rules:

- The rank is an integer starting from 1.
- If two elements p and q are in the same row or column, then:
 - o If p < q then rank(p) < rank(q)</p>
 - \circ If p == q then rank(p) == rank(q)
 - o If p > q then rank(p) > rank(q)
- The rank should be as small as possible.

The test cases are generated so that answer is unique under the given rules.

Example 1:


```
Input: matrix = [[1,2],[3,4]]
Output: [[1,2],[2,3]]
Explanation:
The rank of matrix[0][0] is 1 because it is the smallest integer in its row and column.
The rank of matrix[0][1] is 2 because matrix[0][1] > matrix[0][0] and matrix[0][0] is rank 1.
The rank of matrix[1][0] is 2 because matrix[1][0] > matrix[0][0] and matrix[0][0] is rank 1.
The rank of matrix[1][1] is 3 because matrix[1][1] > matrix[0][1], matrix[1][1] > matrix[1][0], and both matrix[0][1] and matrix[1][0] are rank 2.
```

Example 2:

7	7		1	1
7	7	7		1

Input: matrix = [[7,7],[7,7]]
Output: [[1,1],[1,1]]

Example 3:

20	-21	14		4	2	3
-19	4	19		1	3	4
22	-47	24		5	1	6
-19	4	19		1	3	4

Input: matrix = [[20,-21,14],[-19,4,19],[22,-47,24],[-19,4,19]]
Output: [[4,2,3],[1,3,4],[5,1,6],[1,3,4]]

Constraints:

- m == matrix.length
- n == matrix[i].length
- 1 <= m, n <= 500
- -10 9 <= matrix[row][col] <= 10 9