

Wi-Fi HaLow 802.11ah characterization under Swiss / EU regulations

■Ecole Polytechnique Fédérale de Lausanne

- Francesco Murande Escobar
- MS EE, specialization IoT | EPFL
- BS EE | Politecnico di Torino

✓ francesco.murandeescobar@epfl.ch

- Tony Raffoul
- BS Microengineering | EPFL

Academic Advisor: Prof. Andreas Burg – TCL Lab **Supervisor:** Herman Hüni – Ganstrich Energie AG

Motivation

- Increasing interest in 802.11ah.
- Availability of new modules on the market.

- Limited focus on Swiss/European regulatory constraints.
- Understanding technology limitations.
- Testing and validating expectations.

GOAL:

Comprehensive characterization of Wi-Fi HaLow capabilities in compliance with CH/EU regulatory requirements.

OUTLINE

Overview Regulations Market Availability Characterization Setup Results & Interpretations Summary

OUTLINE

Overview

Regulations

Market Availability

Characterization Setup

Results & Interpretations

Summary

WiFi HaLow

- Wi-Fi HaLow (IEEE 802.11ah) published in 2017.
- Operates in sub-1 GHz band.
- Enables medium to long-range low-power communication.
- Innovative power-saving modes for IoT needs.
- Supports standard Wi-Fi security.
- Up to 8191 devices per Access Point.

Source: Wi-Fi Alliance®

Operation in Sub-1GHz Frequency Band

- Less congested operation band than
 2.4GHz and 5GHz.
- Lower Free Space Path Loss thanks to its lower frequency.
- Allocated Frequency: 863-868 MHz.
- Channels bandwidth:
 - CH/EU: 1, 2 [MHz]
 - US: 1, 2, 4, 8, 16 [MHz]

WiFi HaLow operation bands

WiFi Halow channel bandwidths

WiFi HaLow Workshop Bern

Technology Comparison

Comparison of HaLow to LPWAN technologies

 Higher Data Rate and Battery life than LPWAN IoT

Comparison of HaLow to PAN technologies

 Higher Range and Battery life than PAN Source: WiFi Alliance WiFi HaLow white paper

(([[]))

MAC Features

 RAW (Restricted Access Window): subset of clients transfer data, while others are forced to sleep.

 Not-TIM (Traffic Indication Map) modes: devices do not have to stay awake to actively monitor the beacon frames.

 TWT (Target Wake Time): client device enter a very low power sleep state, until the target wake time arrives.

Shorter MAC headers.

Restricted Access Window Mechanism

WiFi HaLow Workshop Bern

Filling the gap between PAN and LPWAN

- Extended range compared to PAN / LAN.
- Higher bitrate than LPWAN.
- Good signal penetration through walls and obstacles.

Range-Rate comparison of existing LPWAN technologies

Attenuation rates of building materials.

WiFi HaLow Workshop Bern

Overview

Characterization Setup

OUTLINE

Overview

Regulations

Market Availability

Characterization Setup

Results & Interpretations

Summary

Regulations (ECC & BAKOM)

- European and Swiss regulations are aligned.
- Polite spectrum access:
 - Listen Before Talk (LBT) + Adaptive Frequency Agility (AFA).
 - Wider bands: 4MHz is not allowed; unable to do AFA.

Parameter	Values
Frequency band	863-868 MHz
Transmit power	Max. 25 mW e.r.p 14dbm
Channel Access	Polite Spectrum Access
Duty cycle max	2.8% (STA), 10% (AP)
Bandwidth	>600 kHz ≤ 1MHz

Available at:

- BAKOM WLAN FACTSHEET
- Swiss National Frequency Allocation Planand Specific Assignments
- Switzerland and the Principality of Liechtenstein Radio Interface Regulation: RIR1003-11, RIR1003-12
- ERC Recommendation 70-03, CEPT, ECC

Regulations (ECC & BAKOM)

- It seems to be a mismatch in channel-bandwidth restrictions:
 - BAKOM: lists 5 available channels of 1 MHZ and 2 of 2 MHz.
 - Radio Interface Regulation, CEPT: set an upper bound of 1MHz for the occupied bandwidth.

BAKOM WLAN FACTSHEET

Standard	Frequency range (GHz)	Number of channels	Bandwidth (MHz)
IEEE 802.11ah (HaLow)	863 - 868 MHz	5 (1 MHz) 2 (2 MHz)	1 2

Switzerland and the Principality of Liechtenstein Radio Interface Regulation: RIR1003-11, RIR1003-12

Nr Parameter ²⁾	Description
5 Modulation / Occupied bandwidth	- / min. 600 kHz, max. 1 MHz.

ERC Recommendation 70-03, CEPT, ECC

	Frequency Band	Power / Magnetic Field	Spectrum access and mitigation requirements	Modulation / maximum occupied bandwidth
a1	863-868 MHz	25 mW e.r.p.	10% duty cycle for network access point and polite spectrum access. < 2.8% duty cycle otherwise and polite spectrum acces	> 600 kHz ≤ 1 MHz

How is the duty cycle measured?

*Source: Impact of EU duty cycle and transmission power limitations for sub-GHz LPWAN SRDs: an overview and future

Default observation period: 1h

- a. Evenly distributed.
- b. Single burst.
- **c.** Not conform to the duty cycle regulations.

$$DC_{\max} = \frac{\sum T_{\text{on}}}{T_{\text{obs}}}$$

NEWRACOM

OUTLINE

Overview

Regulations

Market Availability

Characterization Setup

Results & Interpretations

Summary

Market Availability

- Increasing interest in this technology:
 - New devices continuously entering the market.
 - Academic community actively testing and verifying the capabilities of this protocol.

Chipset	Modules	Devices
	SX-SDMAH (Silex)	Morse Micro MM6108-EKH03
Morse Micro MM6108	MM610X-001 (Asia RF)	ARFHL-WHM BLE (Asia RF)
	AHST6108D (ALFA)	AP-100AH (SILEX)
	FGH100M (QUECTEL)	
	AHMC7292S (ALFA)	NRC7292 EVK
Newracom NRC7292	RYW729x (REYAX)	AHPI7292S
	SX-NEWAH (SILEX)	Halow-U, Tube-AH
Newracom NRC7394	MYNA NK1-EU8DI-Q (TECKHNE)	NRC7394 EVK
	AHST7394S (ALFA)	
Taixin TXW8301	TX-AH-R900PNR-860M	STK-AIR700

Among the listed modules, only FGH100M (QUECTEL), MYNA NK1-EU8DI-Q (TECKHNE) and TX-AH-R900PNR-860M seems to have a CE certification.

OUTLINE

Overview

Regulations

Market Availability

Characterization Setup

Results & Interpretations

Summary

Experimental Setup

Raspberry 4

ALFA HAT AH7292S

Metrics Collected

- Data Rate, through iperf3 test with UDP.
 - iperf3 -c 192.168.200.1 -u -b 0 -t 30
- RSSI and SNR values through CLI_APP provided by vendor NRC.
- MCS used by rate control algorithm through CLI app.
- Used Software packages:
 - *CLI app version 2.10
 - *NRC_SW_1.3.4_2022_04_18

Metrics Collected – Data Example

```
Newracom Command Line Application (2.10)
                                                                               [MAC Configuration]
______
                                                                              Device Mode
                                                                                                              : STA
NRC> show signal start 1 12
                                                                              MAC Address
                                                                                                              : 00:c0:ca:b4:65:2e
                                                                              Country
                                                                                                              : DE
NRC> Mac Addr : 00:c0:ca:b4:65:38
                                     rssi: -91
                                                     snr: 16
                                                                               Bandwidth
                                                                                                              : 1M
                                                                               Frequency
                                                                                                              : 8635
Mac Addr : 00:c0:ca:b4:65:38
                           rssi: -91
                                             snr: 16
                                                                              MAC80211 frea
                                                                                                              : 5180
                                                                               Rate Control
                                                                                                              : ON
Mac Addr : 00:c0:ca:b4:65:38
                              rssi: -91
                                             snr: 15
                                                                               -MCS
                                                                                                              : 4
                                                                               -bw
                                                                                                              : 1 Mhz (NRC Auto)
Mac Addr : 00:c0:ca:b4:65:38
                              rssi: -92
                                             snr: 15
                                                                                                              : LONG
                                                                              Guard Interval
                                                                              Security
                                                                                                              : OFF
                                                                              RTS
                                                                                                              : OFF
                                                                              RTS threshold
                                                                                                              : 0
iperf3 -c 192.168.200.1 -u -b 0 -t 30
                                                                               Format
                                                                                                              : S1G
*** iperf3 Test ***
                                                                              Preamble type
                                                                                                              : 1M
Connecting to host 192.168.200.1, port 5201
                                                                               Promiscuous Mode
                                                                                                              : OFF
  5] local 192.168.200.23 port 50396 connected to 192.168.200.1 port 5201
                                                                               color
                                                                                                              : 0x0
 ID] Interval
                                                   Total Datagrams
                       Transfer
                                    Bitrate
                                                                              Auto CFO Cal
                                                                                                              : OFF
  51
      0.00-1.00
                  sec 184 KBytes 1.51 Mbits/sec 130
                                                                              BSSID
                                                                                                              : 00:c0:ca:b4:65:38
      1.00-2.00
                  sec 113 KBytes 927 Kbits/sec 80
                                                                              AID
                                                                                                              : 1
       2.00-3.00
                  sec 99.0 KBvtes
                                  811 Kbits/sec 70
       3.00-4.00
                        113 KBytes
                                   927 Kbits/sec 80
                                                                              [PHY Configuration]
                                                                              TX Gain
                                                                                                              : 14
     23.00-24.00 sec
                       113 KBvtes
                                   927 Kbits/sec
                                                                              RX Gain
                                                                                                              : 82
  5] 24.00-25.00 sec 127 KBytes 1.04 Mbits/sec 90
  5] 25.00-26.00 sec 141 KBytes 1.16 Mbits/sec 100
                                                                              Tx Power
  5] 26.00-27.00 sec 127 KBvtes 1.04 Mbits/sec 90
  5] 27.00-28.00 sec 127 KBytes 1.04 Mbits/sec 90
  5] 28.00-29.00 sec
                      141 KBytes 1.16 Mbits/sec 100
  5] 29.00-30.00 sec 127 KBytes 1.04 Mbits/sec 90
```

Lost/Total Datagrams

ID1 Interval

Bitrate

5] 0.00-30.00 sec 3.87 MBytes 1.08 Mbits/sec 0.000 ms 0/2800 (0%) sender 5] 0.00-30.57 sec 3.87 MBytes 1.06 Mbits/sec 15.184 ms 0/2800 (0%) receiver

Transfer

Jitter

Scenarios Considered

Coaxial

- Controlled environment, limited to no interference.
- Sweeping through different transmission power levels with varying attenuation values.
- Benchmarking values for device capabilities.

Indoor

- NLoS measurement
- Characterizing wall/floor breaking capabilities, robustness of signal.
- Tested in 5 different buildings.

Outdoor

- LoS measurements
- Range test

Indoor Scenarios

CO

Vortex

BM

Atrium

BC

EPFL

Outdoor Scenarios

EPFL Campus

*Source: https://plan.epfl.ch/, https://www.google.com/maps/@46 .5176701,6.5841045,343m/

Lac Léman

OUTLINE

Overview

Regulations

Market Availability

Characterization Setup

Results & Interpretations

Summary

Power & Spectrum Measurements

 $\approx -37 + 50 = 13dBm$

Block Diagram of the measurement environment

2 MHz channel power measurement

- Attenuators used to avoid spectrum analyzer saturation.
- Considering the <u>50dB attenuator</u>, max hold peak output power delivered by module is about <u>13-14 dBm</u>.
- Devices respect 25mW 14dBm power regulations.

Coaxial Results

Module throughput in controlled setting.

- Throughput increases with RSSI values.
- Max value for bandwidth:
 - 1MHz: 1.85 Mbps
 - 2MHz: 3.43 Mbps

Coaxial Results - Comparing to Theory

Comparing throughput to the standard (Std 802.11-2016) theoretical values

BW	MCS	Modulation	*Theoretical Data Rate (Mbps)	Actual Data Rate (Mbps)	Actual vs. Theoretical Data Rate %
1	7	64-QAM	3.00	1.85	61
2	7	64-QAM	6.50	3.43	52

*IEEE Std 802.11ah-2016 (Amendment to IEEE Std 802.11-2016, as amended by IEEE Std 802.11ai-2016);

- Difference between max throughput and UDP throughput could be due to MAC headers, guard intervals...
- Other characterization studies yielded similar results**

**Kane, Luke. An Experimental Field Comparison of Wi-Fi HaLow and LoRa for the Smart Grid, Table 5

Indoor Results - Same Floor Results

CO

Evaluating the performance with a consistent change: 1 wall and 10m.

- Max range: 40m, 4 concrete walls.
- RSSI decreased significantly after the first wall, then decreased at smaller rates.
- Throughput decreases almost consistently based on the RSSI and the corresponding MCS.
- At border line condition an stable transmission of 250 kbps was performed

Indoor Results - Inter Floor Results

- We adjusted the antenna position while monitoring the RSSI to get the best possible signal.
- Worse Signal propagation in comparison with the same floor scenario (CO).
- Hard to go beyond 2 floors.
- BC shows an open interior with thinner floors that could benefit reflections explaining the good results.

WiFi HaLow Workshop Bern

Indoor Results - Potential Outlier

 Signal propagation possibly dominated by horizontal reflections

Indoor Results - 2MHz

- 2MHz channels has similar propagation than 1 MHz ones and offer almost 2x throughput
- In every building, breached at least 2 walls/floors.
- Signal degradation depends on building type.
- Multipath fading could have affected measurement quality.

Outdoor Results

Max distance:

- Stable connection: 300m
- Unstable connection: 400 meters (RSSI = -103dB to low to perform any test).
- Throughput at borderline condition: 250 kbps
- Small differences in propagation between the two channel-widths.

Outdoor Results - Potential Causes

Why didn't we get any further?

Antenna Angle

Limitation?

Module

Fresnel Zone

WiFi HaLow Workshop Bern

Source: White Paper Wi-Fi HaLow Radio Technology with Trimble SX12 & EM130 Trimble SX12 &

Comparing with Coaxial

Evaluating consistency across coaxial, indoor and outdoor measurements

- Indoor and Outdoor results matches coaxial/controlled environment results.
- Throughput vs RSSI trend remains consistent in all scenarios.
- Higher RSSI needed for 2 MHz, tradeoff for higher throughput.

OUTLINE

Overview

Regulations

Market Availability

Characterization Setup

Results & Interpretations

Summary

Summary

- In compliance with the Swiss Regulations WiFi HaLow showed:
 - Robust Performance: In challenging scenarios, Wi-Fi HaLow demonstrated its ability to
 penetrate through tough obstacles, including at least two walls or floors in any building,
 reaching distances of tens of meters.
 - Stable Data Rates: Despite challenging conditions, Wi-Fi HaLow allowed connections from 250 kbps in borderline conditions, up to 3.5 Mbps in best case scenarios.
- We believe reliable transmission in outdoor scenarios may still be achievable.
 - During our tests, we did not surpass 400 meters. This limitation may have been due to imprecise antenna positioning or interference in the measurement zone.
 - Andreas Speiss **reached 1.4 km** under conditions compliant with the regulations. Available at https://www.youtube.com/watch?v=rj9GZQtFs8k&t=863s

penetration and long range (802.11ah)

Wi-Fi HaLow 802.11ah characterization under Swiss / EU regulations

■Ecole
Polytechnique
Fédérale de
Lausanne

References

- Wireless Broadband Alliance. Wi-Fi HaLow for IoT. Version 1.0.0. WBA Wi-Fi HaLow for IoT Project team. Jan. 2024. URL: https://wballiancec.wpenginepowered.com/wp-content/uploads/2024/01/WBA_Wi-Fi_HaLow_for_IoT_V-1.0.0.pdf
- Le Tian, Serena Santi, Amina Seferagić, Julong Lan, Jeroen Famaey, Wi-Fi HaLow for the Internet of Things: An up-to-date survey on IEEE 802.11ah research, Journal of Network and Computer Applications, Volume 182,2021,103036, ISSN 1084-8045, https://doi.org/10.1016/j.jnca.2021.103036. URL: https://www.sciencedirect.com/science/article/pii/S108480452100062X)
- Sébastien Maudet, Guillaume Andrieux, Romain Chevillon, Jean-François Diouris, Practical evaluation of Wi-Fi HaLow performance, Internet of Things, Volume 2023, 100957. ISSN 2542-6605, URL: https://doi.org/10.1016/j.iot.2023.100957, URL: https://www.sciencedirect.com/science/article/pii/S2542660523002809
- Federal Office of Communications OFCOM. "Licenses and Frequency Management / Frequency Planning." Zukunftstrasse 44, CH 2501 Biel Bienne, Switzerland. http://www.bakom.ch. https://www.bakom.admin.ch/bakom/en/homepage/frequencies-and-antennas/nationalfrequency-allocation-plan.html. © OFCOM Switzerland / Issue January 1st, 2022.
- Federal Department of the Environment, Transport, Energy and Communication DETEC, Federal Office of Communications OFCOM, "Equipment and Frequency Management International, Radio Technology Section." March 2023. "WLAN Factsheet: Wireless Local Area Networks."
- Morse Micro. "Wi-Fi HaLow Power Consumption." Suite 113, 4 Cornwallis Street, National Innovation Centre, Eveleigh, NSW 2020, Australia
- Rudd "Buildina Materials Propagation: Final Report". Ofcom Richard and In: 2604/BMEM/R/3/2.0 (Sept. 2014). Authors: Dr Richard Rudd (Aegis), Dr Ken Craig (Signal Science), Dr Martin Ganley (BRE), Richard Hartless (BRE). URL: https://www.gostic.org/Qostic/wpcontent/uploads/Qostic6/AHQ7805Building Materials and Propagation.pdf
- Saelens, M., Hoebeke, J., Shahid, A., & Poorter, E. D. (2019), Impact of EU duty cycle and transmission power limitations for sub-GHz LPWAN SRDs; An overview and future challenges. EURASIP Journal on Wireless Communications and Networking, 2019(1), 1-32. https://doi.org/10.1186/s13638-019-1502-5
- ERC Recommendation 70-03, "Relating to the use of Short Range Devices (SRD)," Tromsø, 1997. Subsequent amendments: 12 February 2021. Please note the Implementation Status on page 44. URL: https://docdb.cept.org/download/25c41779-cd6e/Rec7003e.pdf
- Martin, Troy. "Wi-Fi HaLow 802.11ah & Real-World Performance Results." Presented at WLPC Phoenix 2024. Uploaded by Wireless LAN Professionals. YouTube, 2024. Video,. https://www.youtube.com/watch?v=oFVj1RES9TU&t=611s.
- Spiess, Andreas. "WiFi on LoRaWAN bands (HaLow) offers good penetration and long range (802.11ah)." YouTube, uploaded by Andreas Spiess, May 2024 ,Video, 16:44. URL: https://www.youtube.com/watch?v=rj9GZQtFs8k&t=679s.\$
- IEEE. "IEEE Std 802.11ah™-2016 (Amendment to IEEE Std 802.11™-2016 as amended by IEEE Std 802.11ai™-2016)."
- Partou, Mehdi.White Paper Wi-Fi HaLow Radio Technology with Trimble SX12 & EM130
- Soares, S.M.; Carvalho, M.M. "Throughput Analytical Modeling of IEEE 802.11ah Wireless Networks." Proceedings of the 2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 8-11 January 2019, p. 18492924.
- "An Experimental Field Comparison of Wi-Fi HaLow and LoRa for the URL: https://www.researchgate.net/publication/373415591 An Experimental Field Comparison of Wi-Fi HaLow and LoRa for the Smart Grid

WiFi HaLow Workshop Bern