Practical No.7

Problem statement: Write a program to implement link state /Distance vector routing protocol to find suitable path for transmission

Learning Objectives:

- 1. Understand the concept Distance vector routing
- 2. Understand the Concept of Routing Algorithms

Theory

A distance-vector routing (DVR) protocol requires that a router inform its neighbors of topology changes periodically. Historically known as the old ARPANET routing algorithm (or known as Bellman-Ford algorithm).

Bellman Ford Basics – Each router maintains a Distance Vector table containing the distance between itself and ALL possible destination nodes. Distances, based on a chosen metric, are computed using information from the neighbors' distance vectors.

Information kept by DV router -

• Each router has an ID

Associated with each link connected to a router,

- there is a link cost (static or dynamic).
- Intermediate hops

Distance Vector Table Initialization -

- Distance to itself = 0
- Distance to ALL other routers = infinity number.
- Distance Vector Algorithm –
- 1. A router transmits its distance vector to each of its neighbors in a routing packet.
- **2.** Each router receives and saves the most recently received distance vector from each

of its neighbors.

- **3.** A router recalculates its distance vector when:
 - It receives a distance vector from a neighbor containing different information than before.
 - It discovers that a link to a neighbor has gone down.

The DV calculation is based on minimizing the cost to each destination

Dx(y) = Estimate of least cost from x to y

C(x,v) = Node x knows cost to each neighbor v

 $Dx = [Dx(y): y \in N] = Node x maintains distance vector$

Node x also maintains its neighbors' distance vectors – For each neighbor v, x maintains $Dv = [Dv(y): y \in N]$

Introduction

Distance Vector Routing -

- It is a dynamic routing algorithm in which each router computes distance between itself and each possible destination i.e. its immediate neighbors.
- The router share its knowledge about the whole network to its neighbors and accordingly updates table based on its neighbors.
- The sharing of information with the neighbors takes place at regular intervals.
- It makes use of Bellman Ford Algorithm for making routing tables.
- Problems Count to infinity problem which can be solved by splitting horizon.
 - Good news spread fast and bad news spread slowly.
 - Persistent looping problem i.e. loop will be there forever.

Link State Routing –

• It is a dynamic routing algorithm in which each router shares knowledge of its neighbors with every other router in the network.

- A router sends its information about its neighbors only to all the routers through flooding.
- Information sharing takes place only whenever there is a change.
- It makes use of Dijkastra's Algorithm for making routing tables.
- Problems Heavy traffic due to flooding of packets.
 - Flooding can result in infinite looping which can be solved by using Time to live (TTL) field.

Distance Vector Routing	Link State Routing
> Bandwidth required is less due to local sharing, small packets and no flooding.	> Bandwidth required is more due to flooding and sending of large link state packets.
> Based on local knowledge since it updates table based on information from neighbors.	> Based on global knowledge i.e. it have knowledge about entire network.
> Make use of Bellman Ford algo	> Make use of Dijkastra's algo
> Traffic is less	> Traffic is more
> Converges slowly i.e. good news spread fast and bad news spread slowly.	> Converges faster.
> Count to infinity problem.	> No count to infinity problem.
> Persistent looping problem i.e. loop will there forever.	> No persistent loops, only transient loops.
> Practical implementation is RIP and IGRP.	> Practical implementation is OSPF and ISIS.

Conclusion: Hence we have studied distance vector algorithm to find suitable path for transmission
Signature with Date