

UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE CIÊNCIAS MATEMÁTICAS E COMPUTACIONAIS - ICMC

Notas de Aula de Álgebra

Renan Wenzel - 11169472

Roberto Carlos - alvarago@icmc.usp.br

16 de março de 2023

Conteúdo

1	Aula 01 - 14/03/2023			
	1.1 Motivações			
	1.2 Introdução ao Curso			
	1.3 Grupos e Operações			
2 Aula 02 - 16/03/2023				
	2.1 Motivações			
	2.2 Usos de Grupos			
	2.3 Subgrupos			

1 Aula 01 - 14/03/2023

1.1 Motivações

• Compreender o que será estudado ao longo do curso;

1.2 Introdução ao Curso

Este curso é sobre teoria de grupos, a qual possui origem no estudo de simetrias, sejam elas de figuras ou de objetos algébricos. Um exemplo de grupo seria o seguinte:

Considere um triângulo equilátero. Existem algumas formas de olharmos para as simetrias do triângulo, como rotacionando-o, refletindo-o com relação a um ponto médio e um vértice fixo. Contabilizando todas as possíveis formas delas acontecerem, há seis simetrias deste retângulo. Ademais, compondo simetrias resulta em outra, i.e., rotacionar e refletir um certo vértice continuará sendo uma simetria do triângulo. Além disto, é um fato (futuramente visto) que essas seis simetrias totalizam todas as possíveis simetrias de um triângulo equilátero. De fato, dado um polígono regular de n lados, ele possui n! simetrias.

1.3 Grupos e Operações

Definição. Seja S um conjunto não-vazio. Uma operação em S é um mapa

$$\mu: S \times S \to S$$
$$(a,b) \mapsto \mu(a,b)$$

Exemplo 1. A operação soma em \mathbb{Z} , $+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$, $(a, b) \mapsto a + b$ é uma operação.

Exemplo 2. Uma operação em \mathbb{R} é a multiplicação $:: \mathbb{R} \times \mathbb{R} \to \mathbb{R}, (a, b) \mapsto ab.$

Exemplo 3. Um exemplo do que não é operação seria a subtração dos naturais, $-: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, $(a, b) \mapsto a - b$. (Consegue responder por que não é?)

Exemplo 4. Se S é o conjunto de simetrias de um triângulo equilátero, então a composição

$$\circ : S \times S \to S$$
$$(\sigma, \tau) \mapsto \sigma \circ \tau$$

é uma operação binária.

Faremos a convenção de denotar $\mu(a,b)$ por a.b ou a+b, com base no contexto.

<u>Definição</u>. Uma operação μ em S não-vazio, denotada pelo produto, é dita associativa se, para todos a, b, c em S,

$$(a.b).c = a.(b.c), \quad \Big(\mu(a, \mu(b, c)) = \mu(\mu(a, b), c)\Big).$$

Por outro lado, será dita comutativa se

$$a.b = b.a, \quad \Big(\mu(a,b) = \mu(b,a)\Big).$$

Diremos, também, que ela tem elemento neutro (ou identidade) se existe um elemento e em S tal que

$$a.e = e.a = a, \forall a \in S.$$

Neste caso, diremos que e é o elemento neutro, ou a identidade, para μ .

Utilizaremos a notação 1 para a identidade no caso em que μ é denotada por um produto e 0 pro caso em que é denotada por adição.

Exemplo 5. A multiplicação de matrizes é associativa, não é comutativa e possui identidade.

Exemplo 6. A soma de números inteiros é associativa, comutativa e possui identidade.

Exemplo 7. A potência nos números reais é não associativa, nem comutativa, mas possui identidade: $a^{(b^c)} \neq (a^b)^c = a^{bc}$

Proposição. Seja S um conjunto não-vazio e μ uma operação em S denotada pelo produto. Então, existe um único jeito de definir o produto (denotado temporariamente por $[a_1, \dots, a_n]$) de n elementos em S tal que

- (i) $[a_1] = a_1$;
- (ii) $[a_1, a_2] = \mu(a_1, a_2) = a_1 a_2;$

(iii)
$$\forall 1 \leq i < n, [a_1, \dots, a_n] = [a_1, \dots, a_i][a_{i+1}, \dots, a_n].$$

<u>Prova.</u> (iii) \Rightarrow Para o caso $n \leq 2$ é ok. Agora, suponha o produto bem-definido de r elementos em S, $r \leq n = 1$. Então, defina $[a_1, \cdots, a_n]$ coloneq $q[a_1, \cdots, a_{n-1}][a_n]$. Como a definição acima satisfaz a condição (iii) para i=n-1, se ela estiver bem-definida, ela será única. Com efeito, seja $1 \leq i < n-1$, tal que

$$[a_1, \cdots, a_n] = [a_1, \cdots, a_{n-1}][a_n] = [a_1, \cdots, a_i][a_{i+1}, \cdots, a_{n-1}][a_n]$$

$$= \left([a_1, \cdots, a_i] \right) \left([a_{i+1}, \cdots, a_{n-1}][a_n] \right)$$

$$= [a_1, \cdots, a_i][a_{i+1}, \cdots, a_n]. \blacksquare$$

<u>Definição.</u> Seja S não-vazio e μ uma operação em S com identidade 1. Um elemento a de S \acute{e} dito inversível \overbrace{se} existe b em S tal que ab = ba = 1. Neste caso, b \acute{e} o inverso de a, denotado por bolonega a^{-1} .

Note que tanto o elemento inverso quanto o elemento neutro, se existirem, são únicos (c.f. Lema abaixo). Além disso, o inverso da adição é denotad por -a.

Lema. Seja S não-vazio, μ uma operação associativa denotada pelo produto. Então,

- i) Existe no máximo um elemento neutro para S e μ;
- ii) Se o elemento neutro existe, então para cada elemento de S, existe no máximo um inverso;
- iii) Se um elemento a de S tem inverso à esquerda l e à direita r, i.e. l.a = 1 e a.r = 1, então a é inversível com inverso l = r.
- iv) Se a, b em S são inversíveis, então o produto ab é inversível, com inverso $b^{-1}a^{-1}$.

Antes de provar, observe que a existência de um elemento inverso à esquerda ou à direita não garante que um elemento seja inversível (exercício), eles devem coincidir.

<u>Prova.</u> $(i) \Rightarrow$) Suponha que existem 1, 1' em S como seus elementos neutros. Basta mostramos que eles coincidem. Com efeito,

$$1 = 1.1' = 1'.1 = 1'.$$

Portanto, o elemento neutro é único. $(ii) \Rightarrow$) Assuma a existência de dois elementos inversos em S para um elemento a, denotados por b, b'. Então, como ab = ba = 1, temos

$$b = b1 = b(ab') = (ba)b' = 1b' = b'.$$

Portanto, o elemento inverso é único. Os itens (iii) e (iv) são exercícios.

Definição. Um monoide é um par (G, μ) , em que G é um conjunto não-vazio e μ uma operação associativa e com elemento neutro em G. Se, ainda por cima, μ for comutativa, (G, μ) é um monoide abeliano (ou comutativo).

<u>Definição.</u> Um grupo é um par (G, μ) é um monoide (G, μ) com a condição extra que todo elemento de G possui inverso. Caso μ seja comutativa, chamamos G de grupo abeliano.

Exemplo 8. Os inteiros com a soma, $(\mathbb{Z}, +)$, é um grupo comutativo, enquanto $(\mathbb{Z}, .)$ não é um grupo, mas sim um monoide.

Exemplo 9. O grupo das matrizes com entradas reais e sua multiplicação, $(\mathbb{M}_n(\mathbb{R}),.)$, é um grupo nãoabeliano.

2 Aula 02 - 16/03/2023

2.1 Motivações

- Outras estruturas algébricas e exemplos;
- Tamanho de um grupo;
- Subgrupos

2.2 Usos de Grupos

Podemos usar grupos para definir outras construções algébricas, como segue.

<u>Definição.</u> Um anel é uma terna (A, μ, ϕ) , em que (A, μ) é um grupo abeliano e (A, ϕ) é um monoide. Além disso, vale a distributiva.

$$\phi(a, \mu(c, d)) = \phi(\mu(a, c), \mu(a, d)), \quad (a(b+c) = ab + ac).$$

Usualmente, escrevemos $(A, \mu, \phi) = (A, +, .).\Box$

Definição. Um corpo é um anel (A, +, .) tal que $(A - \{0\}, .)$ é um grupo abeliano. \square

Deste ponto em diante, abandonaremos as letras gregas para usar apenas os símbolos "+" ou "." para um grupo com adição ou com multiplicação. Vejamos alguns exemplos.

Exemplo 10.

Conjunto	Monoide	Monoide Comutativo	Grupo	Grupo Comutativo
$(GL_n,.)$	Sim	Sim	Sim	Não
$(SL_n,.)$	Sim	$N \widetilde{a} o$	Sim	$N\~ao$
$(\mathbb{Z},+)$	Sim	Sim	Sim	Sim
$(\mathbb{Z},.)$	Sim	Sim	$N \widetilde{a} o$	$N\~ao$
$(\mathbb{Q},+)$	Sim	Sim	Sim	Sim
$(\mathbb{Q},.)$	Sim	Sim	$N\widetilde{a}o$	$N \widetilde{a} o$
$(S = \{z \in \mathbb{C} : z = 1\},.)$	Sim	Sim	Sim	Sim
$(\mathbb{M}_n(\mathbb{R}),+)$	Sim	Sim	Sim	Sim
$(\mathbb{M}_n(\mathbb{R}),.)$	Sim	$N \widetilde{a} o$	Não	$N\widetilde{a}o$

Exemplo 11. Seja T um conjunto qualquer e

$$G = \{f: T \rightarrow T: f \ bijetora.\}$$

Então, (G, \circ) é um grupo, chamado grupo das permutações ou simetrias de T. Se T é um conjunto finito, e.g. $T = \{1, \dots, n\}$, então denotamos (G, \circ) por (S_n, \circ) .

<u>Definição.</u> A ordem de um grupo (G,\cdot) é a cardinalidade de G:|G|. Caso $|G|<\infty$, dizemos que (G,+) é um grupo finito. \square

Exemplo 12. A ordem de $|\mathbb{Z}| = \infty$ e $|S_n| = n!$

Proposição. Se (G, \cdot) é um grupo e a, b, c são elementos de G tais que ab = ac ou ba = ca, então b = c. Além disso, se ab = a ou ba = a, então b = 1.

<u>Prova</u>. Seja a^{-1} o inverso de a, então $a^{-1}(ab) = a^{-1}(ac)$. Mais ainda, se ab = a, então $b = (a^{-1}a)b = a^{-1}(ab) = a^{-1}a = 1$.

Fica de exercício mostrar que só existe um grupo de ordem 2 e que S_3 é um grupo não-comutativo.

2.3Subgrupos

Definição. Um subgrupo H de um grupo (G,\cdot) é um subconjunto H de contido em G tal que

$$1)1 \in H$$

$$2)a,b \in H \Rightarrow ab \in H;$$

$$3)a \in H \Rightarrow a^{-1} \in H.$$

Denotaremos subrupos por $H \leq G$ ou $(H, \cdot) \leq (G, \cdot)$. \square

Proposição. Com operação induzida pela multiplicação de G restrita a H, (H, \cdot) é um grupo.

Prova. Como H está contido em G, podemos restringir o produto de G a H para

$$._H: H \times H \to H.$$

Afirmamos que (H,) é um grupo. Com efeito, a restrição de . a H está bem-definida pelo segundo item da definição de subgrupo. Mais ainda, ela é associativa em H por ser em G e todo elemento em H tem inverso pela condição 3. Por fim, ela tem elemento neutro pela primeira requisição ao definir subgrupo. Portanto, (H,\cdot) é um grupo.

Observe que todo grupo tem ao menos dois subgrupos, chamados triviais, sendo eles {1} e ele mesmo. Qualquer outro leva o nome de subgrupo próprio.

Exemplo 13.
$$(SL_n, \cdot) \leq (GL_n, \cdot) \ e \ (\mathbb{Z}, +) \leq (\mathbb{Q}, +)$$
.

Exemplo 14. Seja n um inteiro, então $n\mathbb{Z} := \{nk : k \in \mathbb{Z}\}$ é um subgrupo dos inteiros. De fato, 0 = n0 $\overline{pertence\ a}\ n\mathbb{Z}$. Além disso, se nk e nk' pertencem a $n\mathbb{Z}$, então

$$nk + nk' = n(k + k') \in n\mathbb{Z}.$$

Por fim, se nk pertence a n \mathbb{Z} , então n(-k) também pertence a n \mathbb{Z} e nk + n(-k) = 0.

Proposição. Todo subgrupo de $(\mathbb{Z}, +)$ é da forma $n\mathbb{Z}$ para algum n inteiro.

Prova. Caso n seja 1, $n\mathbb{Z} = \mathbb{Z}$ e, se n = 0, então $n\mathbb{Z} = \{0\}$. Agora, seja H um subgrupo próprio dos inteiros e n o menor inteiro positivo em H. Afirmamos que $n\mathbb{Z} = H$.

De fato, $n\mathbb{Z} \leq H$, pois n é um elemento de H, então $nk = \underbrace{n + \ldots + n}_{k\text{-}vezes} \in H$. Além disso, $-n \in H$, de

forma que
$$-nk = \underbrace{(-n) + \ldots + (-n)}_{k\text{-vezes}} \in H$$
. Portanto, $n\mathbb{Z} \in H$.

Por outro lado, seja m um inteiro de H e considere $m = nq + r, 0 \le r < n, q \in \mathbb{Z}$. Pelo algoritmo de divisão de Euclides,

$$m - nq = r \Rightarrow r \in H \Rightarrow r = 0.$$

e, assim, m = nq pertence a $n\mathbb{Z}$. Portanto, $H = n\mathbb{Z}$.

Proposição. 1) $n\mathbb{Z} + m\mathbb{Z}$ é subgrupo de \mathbb{Z} ;

- 2) $n\mathbb{Z} + m\mathbb{Z} = d\mathbb{Z}$, em que d é tal que
- 2.1) $d|n \ e \ d|m;$
- (2.2) Se l|n e l|m, então l|d;
- 2.3) Existem r, s inteiros tais que rn + sm = d. Definimos $d = \gcd(n, m)$ como o máximo divisor comum de m e n.

Prova. A prova do item 1 fica como exercício.

- $(2.1) \Rightarrow n\mathbb{Z} + m\mathbb{Z} = d\mathbb{Z}$. Em particular, se n, m pertencem a $d\mathbb{Z}$, então d|n e d|m.
- $(2.2) \Rightarrow Suponha que n = lq_1, m = lq_2.$ Se x pertence a $n\mathbb{Z} + m\mathbb{Z}$, então

$$x = nk_1 + mk_2 = lq_1k_1 + lk_2q_2 \in l\mathbb{Z}$$

$$\Rightarrow n\mathbb{Z} + m\mathbb{Z} \subseteq l\mathbb{Z} \Rightarrow l|d.$$

também é possível mostrar isso usando o item 3 da proposição.

 $2.3) \Rightarrow imediato. \blacksquare$

Proposição. 1) $m\mathbb{Z} \cap n\mathbb{Z}$ é subgrupo dos inteiros;

- 2) $m\mathbb{Z} \cap n\mathbb{Z} = l\mathbb{Z}$, em que $l \notin tal$ que
- 2.1) m|l,n|l;
- 2.2) Se m|l' e n|l', então l|l'. Definimos l=mmc(m,n) o mínimo múltiplo comum de m e n.

Prova. Fica como exercício.

Corolário. Se m, n são inteiros, então $mn = mmc(m, n) \gcd(m, n)$.