Simon King, FSU Jena Fakultät für Mathematik und Informatik Henicke, Kraume, Lafeld, Max, Rump

Lineare Algebra für *-Informatik

Wintersemester 2020/21

Übungsblatt 11

Hausaufgaben (Abgabe bis 01.02.2021, 14:00 Uhr)

Hausaufgabe 11.1: 3×3 -Determinanten

(4 P.) Wir betrachten \mathbb{R}^3 als euklidischen Raum mit dem Standardskalarprodukt. Es seien $\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^3$ die drei Spalten einer Matrix $A \in M_3(\mathbb{R})$. Verifizieren Sie $\langle \vec{x} \mid (\vec{y} \times \vec{z}) \rangle = \det(A)$. Folgern Sie, dass $[\vec{y}, \vec{z}]$ genau dann linear unabhängig ist, wenn $\vec{y} \times \vec{z} \neq \vec{0}$.

Anmerkung: Man bezeichnet $\langle \vec{x} \mid (\vec{y} \times \vec{z}) \rangle$ als Spatprodukt von $\vec{x}, \vec{y}, \vec{z}$.

Hausaufgabe 11.2: Längen/Winkel

(4 P.) Berechnen Sie die Längen der Vektoren $\vec{a} = \begin{pmatrix} 3 \\ -4 \\ 12 \end{pmatrix}, \vec{b} = \begin{pmatrix} 12\sqrt{3} \\ -3\sqrt{3} \\ -4\sqrt{3} \end{pmatrix}$ und

 $\vec{c}=\begin{pmatrix} -3-12\sqrt{3}\\ 4+3\sqrt{3}\\ -12+4\sqrt{3} \end{pmatrix}$ und die Winkel zwischen diesen Vektoren.

Anmerkung: Die auftretenden Winkel sollen exakt angegeben werden. Dabei hilft die Tabelle im Skript auf Seite 26.

Zur Besprechung: Wie lässt sich die Anordnung der Vektoren geometrisch beschreiben?

Hausaufgabe 11.3: Prüfen Sie, ob die angegebene Matrix über \mathbb{R} diagonalisierbar ist und bestimmen Sie ggf. eine diagonalisierende Matrix.

a) $(2 \text{ P.}) \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}$

b) $(3 \text{ P.}) \begin{pmatrix} 2 & 1 & 0 \\ 1 & 0 & 2 \\ 0 & -1 & 2 \end{pmatrix}$

c) $(3 \text{ P.}) \begin{pmatrix} 3 & -10 & -10 \\ 0 & 3 & 0 \\ 0 & -5 & -2 \end{pmatrix}$

d) (2 Bonus-P.) $\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 2 & 2 \\ 0 & 0 & 3 & -1 \\ 0 & 0 & 2 & 0 \end{pmatrix}$

Erreichbare Punktzahl: 16