1 Progress on the question

1.1 Statistics on positive folds

We now restrict to looking at Weyl chamber orientations over affine Coxeter complexes. This means that we have a complex Σ , with a boundary $\partial \Sigma$, and that our orientations are induced by a boundary chamber orientation. Here, we can get a partial answer to our main question of calculating the shadow of a given gallery. To do this, we define a ϕ -valuation map on our set of alcoves. We can then prove a recursive algorithm for calculating the shadow of a gallery.

First, given a gallery, we want to calculate the number of positive folds of this gallery that we can make. A proof of this proposition can be found in [1].

Proposition 1.1. Consider the largest element w_0 in W_0 . Given an $x \in W$, and a ϕ -postive (multi)folding γ of γ_x , we have

$$l_R(xy^{-1}) \le |F(\gamma)| \le l(w_0),$$

where $y := \tau(\operatorname{ft}(\gamma))$.

Definition 1.1. Let $\mathcal{H}(\Sigma)$ be the set of all hyperplanes contained in our Coxeter complex. For an alcove c of Σ , let $\mathcal{H}(c)$ be the subset of $\mathcal{H}(\Sigma)$ which separates c and the fixed identity alcove 1. Now $\mathcal{H}(c) = \mathcal{H}_{\phi}^+(c) \sqcup \mathcal{H}_{\phi}^-(c)$.

Definition 1.2. Let $Ch(\Sigma)$ denote the set of all alcoves in Σ . The ϕ -valuation map is the map $v_{\phi}: Ch(\Sigma) \longrightarrow \mathbb{Z}$, with

$$c \mapsto \mathbf{v}_{\phi}(c) := |\mathcal{H}_{\phi}^{+}(c)| - |\mathcal{H}_{\phi}^{-}(c)|.$$

Definition 1.3. Let $p_{\phi}: \operatorname{Ch}(\Sigma) \times \mathcal{H} \longrightarrow \{0,1\}$ be the function

$$p_{\phi}(c, H) := \begin{cases} 1 & \text{if } c \text{ is on a } \phi\text{-positive side of } H, \\ 0 & \text{otherwise.} \end{cases}$$

Lemma 1.1.

$$\mathbf{v}_{\phi}(c) = \sum_{H \in \mathcal{H}(\Sigma)} (p_{\phi}(c, H) - p_{\phi}(1, H)).$$

Proof.

Lemma 1.2.

$$l(x) \geq v_{\phi}(c_x)$$
.

Proof.

Definition 1.4. We call an alcove c dominant with respect to ϕ if $v_{\phi}(c) = l(c)$.

Lemma 1.3.

$$l(x) = \max_{a \in W_0} \mathbf{v}_{\tilde{\phi}_a}(c_x).$$

Proof.

Lemma 1.4. Let $\phi \in \text{Dir}(W)$, $r \in W$ be a reflection across the hyperplane H_r and $x \in W$. Then $v_{\phi}(x) > v_{\phi}(rx)$ if and only if x lies in the ϕ -positive side of H_r .

Proof.

References

[1] Elizabeth Milićević, Petra Schwer, and Anne Thomas. Dimensions of affine delignelusztig varieties: a new approach via labeled folded alcove walks and root operators. 2015.