Discrete Analysis Assignment 1

110024516 邱繼賢

Problem 1. 首先觀察各變數的數值和圖形特徵:

變數名稱	變數類型	變數範圍
sex	qulitative (nominal)	0=male; 1=female
status	quantitative (approximately continuous)	$18 \sim 75$
income	quantitative (approximately continuous)	$0.6 \sim 15$
verbal	quantitative (discrete)	1,2,,10
gamble	quantitative (approximately continuous)	$0 \sim 156$

##	sex	status	income	verbal	gamble
##	0:28	Min. :18.00	Min. : 0.600	Min. : 1.00	Min. : 0.0
##	1:19	1st Qu.:28.00	1st Qu.: 2.000	1st Qu.: 6.00	1st Qu.: 1.1
##		Median :43.00	Median : 3.250	Median: 7.00	Median: 6.0
##		Mean :45.23	Mean : 4.642	Mean : 6.66	Mean : 19.3
##		3rd Qu.:61.50	3rd Qu.: 6.210	3rd Qu.: 8.00	3rd Qu.: 19.4
##		Max. :75.00	Max. :15.000	Max. :10.00	Max. :156.0

- 性別男多於女
- 變數 gamble 和 income 皆有著右偏分佈
- 變數 gamble 有大量的數值為零
- 男性在變數 status 和 gamble 平均皆大於女性
- 變數 income 和 gamble 呈現正相關,可推測收入較高的人可能會投入較多的錢在賭博
- income 和 gamble 的散佈圖資料點多集中在左下角,較不易觀察
- 變數 status 和 verbal 呈現正相關,可推測父母社經地位較高者,語言能力也可能較高

將變數 gamble+0.1 以確保反應變數的數值皆大於零,方便未來進行 $Box-Cox\ transformation$,建構模型:

 $model_1: gamble + 0.1 \sim sex + status + income + verbal$

##

```
## Call:
## lm(formula = gamble + 0.1 ~ ., data = data)
##
## Residuals:
##
      Min
               1Q Median
                              3Q
                                    Max
## -51.082 -11.320 -1.451 9.452 94.252
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 22.65565
                        17.19680 1.317 0.1948
## sex1
              -22.11833
                         8.21111 -2.694 0.0101 *
               0.05223 0.28111 0.186
                                          0.8535
## status
## income
              4.96198 1.02539 4.839 1.79e-05 ***
## verbal
              -2.95949
                          2.17215 -1.362 0.1803
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 22.69 on 42 degrees of freedom
## Multiple R-squared: 0.5267, Adjusted R-squared: 0.4816
## F-statistic: 11.69 on 4 and 42 DF, p-value: 1.815e-06
```

- 變數 sex 和 income 呈現顯著
- $R^2 = 52.67\%$

接下來對模型做 diagnostic

• 第 24 個觀測值的 Cook's statistic 數值偏大,有可能為 influential observation

對模型做 Box- Cox transformation,檢定是否需要對反應變數做變換

- λ 的 95% 信賴區間並沒有包含 1 , 應對反應變數做 transformation
- 取 $\hat{\lambda} = \frac{1}{5}$ 來做變數變換

建構模型:

 $model_2: (gamble+0.1)^{\frac{1}{5}} \sim sex + status + income + verbal$

##

Call:

$lm(formula = (gamble + 0.1)^0.2 \sim ., data = data)$

##

Residuals:

Min 1Q Median 3Q Max ## -0.91482 -0.21447 -0.00845 0.24979 0.72204

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.315287 4.400 7.28e-05 *** 1.387125 ## sex1 -0.356334 0.150543 -2.3670.0226 * 0.010539 0.005154 2.045 0.0472 * ## status 0.083002 0.018800 4.415 6.93e-05 *** ## income verbal -0.098244 0.039824 -2.4670.0178 * ## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## Signif. codes: ## ## Residual standard error: 0.416 on 42 degrees of freedom ## Multiple R-squared: 0.525, Adjusted R-squared: 0.4798 ## F-statistic: 11.61 on 4 and 42 DF, p-value: 1.95e-06

- 所有解釋變數皆呈現顯著
- $R^2 = 52.5\%$ 略小於 $model_1$

一樣對此模型做 diagnostic

• 基本上都沒有觀測值為 influential observation

- studentized residual 也符合 normal assumption
- residual plot 也沒有 mean curvature 和 non-constant variance

再進一步對模型的 fitted value 和各變數繪製 residual plot

2 4 6

• fitted value 和各變數對 studentized residual 繪圖大致上也都沒有異常

12

income

雖然執行了 Box-Cox transformation 會對反應變數進行變數變換,進而造成模型係數解釋的不易,但由於此模 型在各個解釋變數都呈現顯著,以及在 $\operatorname{diagnostic}$ 表現皆比 model_1 來得優秀,故決定最終配適模型:

verbal

8 10

$$\sqrt[5]{gamble+0.1} \ = \ \hat{Z} \ = \ 1.3871 - 0.3563 \ sex + 0.0105 \ status + 0.083 \ income - 0.0982 \ verbal$$

- 性別由男性變為女性, $Z(=\sqrt[5]{gamble+0.1})$ 的預測值會隨之減少 0.3563 單位
- status 每上升一單位,Z 的預測值會隨之上升 0.0105 單位
- income 每上升一單位,Z 的預測值會隨之上升 0.083 單位

• verbal 每上升一單位,Z 的預測值會隨之下降 0.0982 單位

選擇一組變數

$$sex = 0$$
, $status = 45$, $income = 10$, $verval = 7$

代入模型中求得 Z 的預測值和預測區間上下界,在透過計算 $Z^5-0.1=gamble$ 回推求得變數 gamble 的預測值和預測區間

fit lwr upr ## 1 32.19719 1.741825 197.1693

- 此為資料內差的預測 $(0.6 \le income \le 15)$
- gamble 預測值為 32.2
- 預測區間大小為 197.17 1.75 = 195.42

選擇另一組變數

$$sex = 0$$
, $status = 45$, $income = 20$, $verval = 7$

fit lwr upr ## 1 182.6212 19.71766 846.01

- 此為資料外差的預測 $(income \ge 15)$
- gamble 預測值為 182.62
- 預測區間大小為846.01 19.72 = 826.29
 ⇒ 外差的預測區間寬度明顯大於內差的

- 此為 Z 在不同的 income 下的預測值和預測區間
- 距離資料中心點越遠,預測區間的寬度越大

Problem 2.

a. nominal variable: 政黨之間並沒有根據一個順序大小排列

b. ordinal variable: 焦慮程度依照其嚴重度遞增排列

c. interval variable: 病人存活月數為數組已知邊界的區間

d. nominal variable:診所地點並沒有根據一個順序大小排列

e. ordinal variable: 腫瘤對化療的反應依照其根除的程度排列

f. nominal variable: 喜歡的雜貨店並沒有根據一個順序大小排列

Problem 3.

a. Let X be the random variable of the number of correct answer in 100 questions, where $X \sim bin(n=100,p=\frac{1}{4})$

b.
$$E(X) = np = 25$$
 , $\sigma_X = \sqrt{Var(X)} = \sqrt{np(1-p)} = 4.3301$ It will be really surprising because $P(X \ge 50) = \sum_{x=50}^{100} C_x^{100} \left(\frac{1}{4}\right)^x \left(\frac{3}{4}\right)^{100-x} \approx 0$

$$\mathbf{c.} \ \, (n_1 \ , \ n_2 \ , \ n_3 \ , \ n_4) \ \sim \ \, multinomial \left(n = 100 \ , \ p_1 = \frac{1}{4} \ , \ p_2 = \frac{1}{4} \ , \ p_3 = \frac{1}{4} \ , \ p_4 = \frac{1}{4} \right)$$

 $\mathbf{d}.$

$$\begin{split} E(n_j) \ = \ np_j \ = \ 25 \ \ , \ \ Var(n_j) \ = \ np_j(1-p_j) \ = \ 18.75 \\ Cov(n_j,n_k) \ = \ -np_ip_k \ = \ -6.25 \ \ , \ \ Cor(n_j,n_k) \ = \ \frac{Cov(n_j,n_k)}{\sqrt{Var(n_j)\ Var(n_k)}} \ = \ -0.333 \end{split}$$