Chapitre 3

THEROREMES GENERAUX POUR LES CIRCUITS ELECTRIQUES

Les théorèmes qui sont abordés dans ce chapitre sont valables pour les circuits **linéaires**, càd des circuits qui comportent des dipôles linéaires (résistances, bobines, condensateur,...). Nous nous placerons en courant continu.

I. Théorème de Millman

Ce théorème découle de la loi des nœuds : il permet de calculer le potentiel en n'importe quel point du circuit.

D'après la loi des nœuds on a :	D'après la loi d'Ohm,V ₁ - V ₀ =

On en déduit

.....

En factorisant par V_0 on obtient finalement :

Ce résultat se généralise au cas de n branches :

II. Théorème de superposition

Dans un circuit linéaire, l'intensité du courant produit par plusieurs sources de tension ou d'intensité indépendantes est égale à la somme des intensités du courant produites par chaque source prise isolément. (il en est de même pour les tensions).

<u>Méthode</u>: on éteint toutes les sources indépendantes du circuit, sauf une. On calcule l'intensité du courant dans les diverses branches. On fait de même pour toutes les sources indépendantes. A la fin, il n'y a plus qu'à sommer les différentes intensités.

Une source de tension éteinte se comporte comme un fil de connexion (interrupteur fermé). Une source de courant éteinte se comporte comme un interrupteur ouvert.

Dans le circuit-ci-avant, on éteint E_2 puis on calcule les intensités des courants I'_1 , I'_2 et I'_3 dues à E_1 . On éteint ensuite E_1 puis on calcule les intensités des courants I''_1 , I''_2 et I''_3 dues à E_2 .

III. Théorème de Thévenin

Soit un réseau (circuit) linéaire de bornes A et B :

2

Pour trouver E_{Th} , il faut déterminer U_{AB} lorsque le circuit est ouvert en A ou en B (donc I=0).

Pour trouver R_{Th} , il faut déterminer la résistance équivalente du réseau, toute source indépendante étant éteinte.

Exemple : déterminer le générateur de Thévenin vu de A et B par Ru

IV. Théorème de Norton

Un réseau linéaire de bornes A et B peut-être modélisé par l'association en parallèle d'une source de courant idéale et d'une résistance (générateur de Norton)

Pour trouver I_N , il faut déterminer I lorsque l'on fait un court-circuit entre A ou en B (donc U_{AB} = 0). Pour trouver R_N (R_N = 1 / G_N), il faut déterminer la résistance équivalente du réseau, toute source indépendante étant éteinte.

Exemple : déterminer le générateur de Norton vu de A et B par Ru

V. Equivalence Norton - Thévenin

Il y a équivalence entre les modèles de Norton et Thévenin :

$$R_{Th} = R_N$$
 et $I_N = E_{Th} / R_{Th}$