

Zadanie C1: Wieże

Na szachownicy o rozmiarach $n \times n$ ustawiamy n wież. Żadne dwie z nich nie mogą się szachować (czyli okupować tego samego wiersza lub kolumny). Niestety, na niektórych polach ktoś wywiercił dziury – tam wieża stanąć nie może. Ile jest różnych sposobów rozstawienia wież?

Wejście

Pierwsza linia wejścia zawiera liczbę całkowitą z ($1 \le z \le 2*10^9$) – liczbę zestawów danych, których opisy wystepują kolejno po sobie. Opis jednego zestawu jest następujący:

W pierwszym wierszu znajduje się liczba naturalna n ($1 \le n \le 20$) - długość boku szachownicy. Kolejnych n wierszy zawiera opis szachownicy - j-ty znak w i-tym wierszu jest kropką (.), jeśli pole o współrzędnych (i,j) jest puste, i literą o, jeśli jest dziurawe.

Wyjście

Dla każdego zestawu wypisz w osobnej linii liczbę dozwolonych rozstawień wież na szachownicy.

Przykład

Dla danych wejściowych:	Poprawną odpowiedzią jest:
1	2
3	
0	
.0.	
0	

Zadanie C1: Wieże 1/1