

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

"МИРЭА - Российский технологический университет"

РТУ МИРЭА

Институт кибернетики Кафедра общей информатики

ОТЧЕТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ №8

«Реализация заданной логической функции от четырех переменных на мультиплексорах 16-1, 8-1, 4-1, 2-1» по дисциплине «ИНФОРМАТИКА»

Выполнил студент группы ИКБО-29-20			Хан А.А.	
Принял Доцент, к.т.н.			Норица В.М.	
Практическая работа выполнена	«»	2020 г.		
«Зачтено»	« <u> </u> »	2020 г.		

СОДЕРЖАНИЕ

1. Постановка задачи и персональный вариант	3
2. Восстановленная таблица истинности	3
3. Схемы, реализующие логическую функцию на мультиплексорах требуемыми способами	
3.1. Мультиплексор 16-1	4
3.2. Мультиплексор 8-1	5
3.3. Мультиплексор 4-1	8
3.4. Комбинация мультиплексоров 4-1 и 2-1	10
ВЫВОДЫ	11
СПИСОК ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ	12

1. Постановка задачи и персональный вариант

Логическая функция от четырех переменных задана в 16-теричной векторной форме. Восстановить таблицу истинности. По таблице истинности реализовать в лабораторном комплексе логическую функцию на мультиплексорах следующими способами:

- используя один мультиплексор 16-1;
- используя один мультиплексор 8-1;
- используя минимальное количество мультиплексоров 4-1;
- –используя минимальную комбинацию мультиплексоров 4-1 и 2-1.

Исходная функция: $F(a, b, c, d) = 3AE7_{16}$

Преобразуем ее в двоичную запись: 0011 1010 1110 0111 $_2$ – получаем столбец значений логической функции, который необходим для восстановления полной таблицы истинности (таблица 1).

2. Восстановленная таблица истинности

Таблица 1.

a	b	c	d	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

3. Схемы, реализующие логическую функцию на мультиплексорах требуемыми способами

3.1. Мультиплексор 16-1

Количество информационных входов мультиплексора соответствует количеству значений логической функции. Поэтому просто подадим значения функции на соответствующие входы.

На адресные входы мультиплексора подадим при помощи шины значения логических переменных. Реализуем схему в лабораторном комплексе (рис. 1).

Рис. 1. Тестирование схемы, реализующей логическую функцию на мультиплексоре 16-1

Тестирование показало, что схема работает правильно.

3.2. Мультиплексор 8-1

Выполним реализацию заданной логической функции при помощи мультиплексора 8-1.

Мультиплексор 8-1 имеет 3 адресных входа, что не позволяет подать все 4 логические переменные на этот мультиплексор. В этом случае можно рассмотреть только три переменные, а последнюю использовать наравне с константами.

Удобнее всего взять три старшие переменные «а», «b» и «с». Тогда пары наборов, на которых эти переменные будут иметь одинаковое значение, будут располагаться на соседних строчках и поэтому можно будет легко увидеть, как значение функции зависит от переменной d.

Например, из рис.2 видно, как для каждой пары значений переменных «а», «b» и «с» значение функции зависит от переменной «d».

a	b	c	d	F	
0	0	0	0	0	Е 0
0	0	0	1	0	F = 0
0	0	1	0	1	F = 1
0	0	1	1	1	1 – 1
0	1	0	0	1	$F = \bar{d}$
0	1	0	1	0	
0	1	1	0	1	$\mathrm{F}=ar{d}$
0	11	1	1	0	$\Gamma - u$
1	0	0	0	1	F = 1
1	0	0	1	1	1 - 1
1	0	1	0	1	г 7
1	0	1	1	0	$F = \bar{d}$
1	1	0	0	0	17 4
1	1	0	1	1	F = d
1	1	1	0	1	F = 1
1	1	1	1_	_1	1 - 1

Рис. 2. Взаимосвязь значений функции и переменной "d"

Таблица 2 отображает «сжатую» таблицу истинности.

Таблица 2. «Сжатая» таблица истинности

a	b	c	F
0	0	0	0
0	0	1	1
0	1	0	d
0	1	1	d
1	0	0	1
1	0	1	ď
1	1	0	d
1	1	1	1

Теперь, рассматривая переменную «d» наравне с константами 0 и 1 в качестве сигналов для информационных входов мультиплексора 8-1, можно по аналогии с предыдущим случаем выполнить реализацию требуемой функции(рис.3)

Рис. 3. Тестирование схемы, реализующей логическую функцию на мультиплексоре 8-1

Тестирование показало, что схема работает правильно.

3.3. Мультиплексор 4-1

Рассмотрим реализацию заданной функции на минимальном количестве мультиплексоров 4-1.

Мультиплексор 4-1 имеет 2 адресных входа и 4 информационных. Это означает, что мы должны разбить исходную таблицу истинности на 4 фрагмента, за реализацию каждого из которых в принципе должен отвечать отдельный мультиплексор (назовем его операционным). Однако, необходимо учесть требования минимальности по отношению к количеству используемых мультиплексоров и ставить их только там, где без них нельзя обойтись. Также нам нельзя в рамках данной работы использовать другие логические схемы, за исключением отрицания.

Разобьем таблицу на зоны ответственности между операционными мультиплексорами, и посмотрим, можно ли обойтись без них (рис. 4).

a	b	c	d	F	
0	0	0	0	0	
0	0	0	1	0	F = c
0	0	1	0	1	
0	0	1	1	1	
0	1	0	0	1	
0	1	0	1	0	${ m F}=ar{d}$
0	1	1	0	1	
0	1	1	1	0	
1	0	0	0	1	11
1	0	0	1	1	Нужен операционный
1	0	1	0	1	мультиплексор
1	0	1	1	0	
1	1	0	0	0	
1	1	0	1	1	Нужен
1	1	1	0	1	операционный мультиплексор
1	1	1	1	1	

Рис. 4. Разбиение исходной таблицы истинности на зоны ответственности для потенциальных операционных мультиплексоров

Для всех тетрад необходим мультиплексор. Однако третья и четвёртая тетрады идентичны и можно использовать один и тот же мультиплексор для обоих случаев. Реализуем данную схему в лабораторном комплексе (рис. 5).

Рис. 5. Тестирование схемы, реализующей логическую функцию на минимальном количестве мультиплексоров 4-1

3.4. Комбинация мультиплексоров 4-1 и 2-1

Реализуем логическую функцию, используя минимальную комбинацию мультиплексоров 4-1 и 2-1. В качестве отправной точки результаты, полученные предыдущей рассмотрим В реализации. Управляющий мультиплексор нельзя заменить на мультиплексор 2-1, на входах уникальные сигналы. Однако поскольку него операционные мультиплексоры можно заменить на мультиплексоры 2-1.

Реализуем данную схему в лабораторном комплексе (рис. 6).

Рис. 6. Тестирование схемы, реализующей логическую функцию на основе минимальной комбинации мультиплексоров 4-1 и 2-1 Тестирование показало, что схема работает правильно.

ВЫВОДЫ

В ходе практической работы выполнены следующие задачи: восстановление таблицы истинности, построение схем, реализующих логическую функцию на мультиплексорах 16-1 и 8-1 и построение схемы, реализующей логические функции на минимальном количестве мультиплексоров 4-1 и построение схем, реализующих логических логическую функцию на основе минимальной комбинации мультиплексоров 4-1 и 2-1. Тестирование подтвердило правильность работы схем.

СПИСОК ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ

- 1. Программа построения и моделирования логических схем Logisim. http://www.cburch.com/logisim/ (Дата обращения 10.11.2020)
- 2. Справочная система программы Logisim. Устанавливается вместе с программой [1]. Также доступно: http://www.cburch.com/logisim/ru/docs.html (Дата обращения 10.11.2020)
- 3. Описание библиотеки элементов Logisim. Устанавливается вместе с программой [1]. Также доступно: http://www.cburch.com/logisim/ru/docs.html (Дата обращения 10.11.2020)
- 4. Информатика: Методические указания по выполнению практических работ / С.С. Смирнов, Д.А. Карпов М., МИРЭА Российский технологический университет, 2020. –102с. (Дата обращения 10.11.2020)