有界变量线性规划问题

原创 王子淞 LOA算法学习笔记 2021-12-14 22:53

引言

在实际的许多线性规划问题中,决策变量都是有上下界的。对于一般的有界变量线性规划问题总可以转化为如下的形式:

$$\min x_0 = \mathbf{c} \mathbf{x}$$
s.t. $A \mathbf{x} = \mathbf{b}$

$$0 \leqslant \mathbf{x} \leqslant \mathbf{d}$$
(1)

其中 $\mathbf{x} = (x_1, x_2, \cdot, x_n)^T$ 。如果引入 \mathbf{n} 个松弛变量 $x_{n+1}, x_{n+2}, \cdots, x_{2n}$,则问题可以化为标准形式的线性规划如下:

$$\min x_0 = \mathbf{c}\mathbf{x}$$
 $\mathbf{A}\mathbf{x} = \mathbf{b}$
 $x + x_s = d$
 $x \ge 0, x_s \ge 0$

$$(2)$$

进而对问题(2)采用单纯形法就可以得到最优解。但是这里新增了n个变量和n个等式约束,导致计算量和存储量大大增加,因此介绍一种单纯性法的推广形式,可以直接求解(1)式,而不必增加变量。

定义

定义两类非基变量 R_1,R_2 。对于系数矩阵A,记其基变量为 $(x_{j_1},x_{j_2},\cdots,x_{j_m})$,则其余变量称为非基变量。若 $x_j^{(0)}=0$,则称 x_j 为第一类非基变量,其中的j构成的集合记为 R_1 。若 $x_j^{(0)}=d_j$,则称 x_j 为第二类非基变量,其中的j构成的集合记为 R_2 。

有界变量单纯形法

第一步: 计算下式

$$z_{i0}=b_{i0}-\sum_{i\in P_c}b_{ij}d_j\quad (i=0,1,\cdots,m).$$

第二步: 若 $b_{0j} \leq 0 (j \in R_1)$, $b_{0j} \geq 0 (j \in R_2)$, 则此时得到最优解,迭代终止,否则继续进行第三步。其中最优解如下:

$$egin{aligned} x_j &= 0 & (j \in R_1) \ x_j &= d_j & (j \in R_2) \ x_{j_i} &= z_{i0} & (i = 1, 2, \cdots, m) \end{aligned}$$

第三步: 确定进基变量 x_r ,其中 $r = \min\{j \mid j \in R_1 \notin b_{0j} > 0$, 或 $j \in R_2 \notin b_{0j} < 0\}$ 。若 $r \in R_1$,则第四步。若 $r \in R_2$,则第七步。

第四步: 求下面两个式子:

$$egin{aligned} heta_1 &= \miniggl\{rac{z_{i0}}{b_{ir}} \mid b_{ir} > 0, 1 \leqslant i \leqslant miggr\} \ heta_2 &= \miniggl\{rac{z_{i0} - d_{j_i}}{b_{ir}} \mid b_{ir} < 0, 1 \leqslant i \leqslant miggr\} \end{aligned}$$

计算 $\theta = \min\{d_r, \theta_1, \theta_2\}$ 。若 $\theta = +\infty$,则没有最优解,迭代终止。否则继续第五步。

第五步: 若 $\theta = d_r$, 则改变 R_1, R_2 , 返回第一步。其中 $\bar{R}_1 = R_1 \setminus \{r\}, \bar{R}_2 = R_2 \cup \{r\}$ 。

否则确定离基变量 x_{j_s} ,其中 j_s 为取得 θ 的那个x的下标。然后进行第六步。

第六步:将 x_r 作为新基与 x_i 替换。

若
$$b_{sr} > 0$$
,则 $\bar{R}_1 = (R_1 \setminus \{r\}) \cup \{j_s\}, \quad R_2 = R_2$

若
$$b_{sr} < 0$$
,则 $\bar{R}_1 = R_1 \setminus \{r\}, \bar{R}_2 = R_2 \cup \{j_s\}$

同时重新计算表格返回第一步。

第七步:这一步与4到6步几乎相同,只是符号略有差异。

计算

$$egin{aligned} ar{ heta}_1 &= \minigg\{rac{d_{j_i} - z_{i0}}{b_{ir}} \mid b_{ir} > 0, 1 \leqslant i \leqslant migg\} \ ar{ heta}_2 &= \minigg\{rac{z_{i0}}{-b_{ir}} \mid b_{ir} < 0, 1 \leqslant i \leqslant migg\} \ heta &= \minig\{d_r, ar{ heta}_1, ar{ heta}_2ig\} \end{aligned}$$

若 $\theta=d_r$,令 $ar{R}_1=R_1\cup\{r\}$, $ar{R}_2=R_2\smallsetminus\{r\}$,返回第一步。

否则同第五步第六步,确定离基变量 x_i 和新基。

若
$$b_{sr}>0$$
, $ar{R}_1=R_1$, $ar{R}_2=(R_2{\smallsetminus}\{r\})\cup\{j_s\}$

若
$$b_{sr} < 0$$
, $ar{R}_1 = R_1 \cup \{j_i\}, ar{R}_2 = R_2 \setminus \{r\}$

同时重新计算表格返回第一步。

例子

题目: 求解如下的有界变量线性规划问题

$$egin{aligned} \min x_0 &= -2x_1 - x_2, \ x_1 + x_2 + x_3 &= 5 \ -x_1 + x_2 + x_4 &= 0 \ 6x_1 + 2x_2 + x_5 &= 21, \ 0 \leqslant x_1 \leqslant 3, 0 \leqslant x_2 \leqslant 2, x_3, x_4, x_5 \geqslant 0 \end{aligned}$$

解: 首先找一个初始基可行解, $x^{(0)}=(0,0,5,0,21)^T$ 。此时基为 $B=(p_3,p_4,p_5)$, $R_1=\{1,2\}$, $R_2=\emptyset$,则可以得到下表。

	常数列	x_1	x_2
x_0	0	2	1
x_3	5	1	1
x_4	0	-1	1
x_5	21	6	2

第一次迭代:

- 1. 计算 $z_{00} = 0$; $z_{10} = 5$, $z_{20} = 0$, $z_{30} = 21$
- 2. 由于 $b_{01} = 2 > 0$ 不满足条件,继续第三步。
- 3. 确定 $r = 1 \in R_1$
- 4. 计算 $\theta_1 = \min\{\frac{5}{1}, \frac{21}{6}\} = \frac{21}{6}, \ \theta_2 = +\infty, \ \theta = \min\{\theta_1, \theta_2, d_1\} = 3$
- $5. \theta = 3 = d_1$,因此改变 $R_1 = \{2\}, R_2 = \{1\}$,此时新基与原基相等,只是此时 x_1 取上界3。

第二次迭代:

1. 计算
$$z_{00} = -6$$
; $z_{10} = 2$, $z_{20} = 3$, $z_{30} = 3$

$$2. b_{02} = 1 > 0$$
不满足条件。此时 $r = 2 \in R_1$

$$3.\, heta_1=\minigl\{rac21,rac31,rac32igr\}=rac32,$$
 $heta_2=+\infty$,此时 $heta=rac32$

$$4.\theta = \theta_1$$
。故 $j_s = 5$ 。令新基为B= (p_3, p_4, p_2) , $R_1 = \{5\}, R_2 = \{1\}$ 。可得新表如下:

	常数列	x_1	x_5
x_0	$-\frac{21}{2}$	-1	$-\frac{1}{2}$
x_3	$-\frac{11}{2}$	-2	$-\frac{1}{2}$
x_4	$-\frac{21}{2}$	-4	$-\frac{1}{2}$
x_2	$\frac{21}{2}$	3	$\frac{1}{2}$

第三次迭代:

1. 计算
$$z_{00} = -\frac{15}{2}, z_{10} = \frac{1}{2}, z_{20} = \frac{3}{2}, z_{30} = \frac{3}{2}$$

$$2.\,b_{01}=-1<0$$
不满足条件。此时 $r=1\in R_2$

3.
$$\bar{\theta}_1 = \min\left\{\frac{2-3/2}{3}\right\} = \frac{1}{6}, \quad \bar{\theta}_2 = \min\left\{\frac{1/2}{2}, \frac{3/2}{4}\right\} = \frac{1}{4}$$
,此时 $\theta = \frac{1}{6}$

$$4.\theta = \theta_1$$
。故 $j_s = 2$ 。令新基为 $B=(p_3, p_4, p_1)$, $R_1 = \{5\}, R_2 = \{2\}$ 。可得新表如下:

	常数列	x_2	x_5
x_0	-7	$\frac{1}{3}$	$-\frac{1}{3}$
x_3	$\frac{3}{2}$	$\frac{2}{3}$	$-\frac{1}{6}$
x_4	$\frac{7}{2}$	$\frac{4}{3}$	$\frac{1}{6}$
x_1	$\frac{7}{2}$	$\frac{1}{3}$	1 6

第四次迭代:

1. 计算
$$z_{00} = -\frac{23}{3}$$
; $z_{10} = \frac{1}{6}$, $z_{20} = \frac{5}{6}$, $z_{30} = \frac{17}{6}$

2. 检查满足条件,故得到最优解
$$z_{00} = -\frac{23}{3}$$
。且有:

$$x_1=rac{17}{6},\quad x_2=2,\quad x_3=rac{1}{6},\quad x_4=rac{5}{6},\quad x_5=0$$

参考文献:

张干宗.线性规划[M].第二版.武汉大学出版社

喜欢此内容的人还喜欢

偏微分方程数值解法——有限元法 (一维有限元方程建立)

小潇的数学之旅

概率论07: 多元随机变量的条件|独立|期望|方差

流浪狗的赛博酒吧

概率论08:连续随机变量|正态|标准化

流浪狗的赛博酒吧

