DAA Assignment No.: 3 To multiply two complex numbers.

Lovely Digra IIT2017090 Abhishek Vishwakarma IIT2017091 Anuj Raj IIT2017092

Abstract—Our required aim is to design and analyze an optimal algorithm to perform multiplication of two complex numbers without using multiplication, division or modulo operator. A 1-D lookup table is created to get the result by the multiplication of two single digit numbers in order to get product of real-real, real-imaginary or imaginary-imaginary parts. While designing our problem we calculated the time complexity for the algorithm and plotted graphs of no. of digits of nos. vs time elapsed.

I. INTRODUCTION

To design and analyse algorithm for multiplication of two nos. without using multiplication, division or modulo operator and use this application to multiply two complex nos.

With the advancement of technology certain basic computations is taken for granted by the programmers. One such example is arithmetic multiplication of two nos. Suppose the system hardware does not have architecture required for multiplication using '*' operator.

Now the question arises how to perform single digit multiplication without using an asterisk?

For this, A 1-D look-up table is created to get the result by the multiplication of two single digit numbers.

Now what is a look-up table?

A Look-Up table is an array that replaces run time computation with a simpler array indexing operation. It can be 2D,3D, single input single output, multi input multi output.

II. ALGORITHM DESIGN AND EXPLANATION

For the problem, we followed the following approach to design an algorithm:

Approach 1: 2-D array

For multiplication of two complex nos. of the form (a+ib and c+id), we separate real and img part of the result (ac-bd + i(ad+bc)) and perform multiplication of simply two floating point nos.

For multiplication of two numbers without using arithmetic "*" operation, take a digit from the multiplier and check its product with every digit of the multiplicand using the look-Up table.

Since for multiplying two nos. using the look-Up table main problem lies in accessing digits of a number separately.

The key idea is to use string operations and string-Streams for accessing and manipulating digits separately.

Firstly, store the product of all single digit numbers in 1-D look-Up Table.Product of a and b can be found in the look-up table in location "9*(a-1)+(b-1)". For calculating 9*(a-1)

repeated addition comes handy. Use the look-Up table for the product of num1[i] with num2[j].

Store the intermediate result of product of num1 with each num2[j] in a 2-D Matrix, like the way a primary school students does .

Finally add the intermediate results in column fashion to get the final result.

Approach 2: Optimization

Instead of storing intermediate values in 2-D matrix concatenate the result into a string and parse it to get the intermediate result.

Now addition becomes very simple. Just add it to the variable storing the final result.

Repeat the process for every digit of num2 to get the final result. The pseudo-code for this algorithm is:-

Algorithm 1 PseudoCode for Approach 2:

procedure mul(inta)

```
for all i=1 to a do
        //a times repeated addn of c where is 9
procedure lookup(inta, intb)
    return look-Up[mul(a-1)+(b-1)]
a \leftarrow \text{Real part of 1st num}
b \leftarrow \text{Img part of 1st num}
c \leftarrow \text{Real part of 2nd num}
d \leftarrow \text{Img part of 2nd num}
num1String \leftarrow parsed a to string
num2String \leftarrow parsed c to string
reverse(num1Str)
reverse(num2Str)
for all i = 1 to no of digits in num1 do
    carry \leftarrow 0
    for all j = 1 to no of digits in num2 do
        product \leftarrow lookup(num1Str[i], num2Str[j])
        product \leftarrow product + carry
        result \leftarrow unit\_place\_of\_product
        carry \leftarrow tens\_place\_of\_product
        intermediate\_result \leftarrow concatenate(result)
        procedure reverse(intermediate_result)
        finalResult \leftarrow finalResult + intermediateRes
    print(finalResult)
```

III. EXPERIMENTAL STUDY

For the experimental analysis of this algorithm, we will take same values of real and imaginary part for both complex numbers for easy calculations and find product of real-real-real-imaginary or imaginary-imaginary parts. A .dat file is generated containing duration for each corresponding num value in a tabluated manner(see Fig 1).

Fig. 1. Graphical Explanation

IV. NUMERICAL ANALYSIS

Data with error analysis is attached(see Fig. 3). Floating point operations has rounding errors and its datatype has fixed precision while double datatype has double times precision than that of float. Therefore, error in double is much much less than that of float (see Fig 2).

Fig. 2. Error analysis graph

USING DOUBLE DATA TYPE				
Absolute Erro	'*' op. answer	Algo answer	num2	num1
	7.55547e+86	7555468,69507989435	3543,454545	2132,23243
3.72529e-8	1.85757e+87	18575665.1120872	7878.78979	2357.68
	1.97864e+87	19706431.228885528	454656.656	43.343545
	55857.8	55857.81319424776755	456.56567673	122.343435
	5.51017e+12	5510165426451.67348	45454656.4	121223.3435
	123934	123934.21108585	2323.34535	53.343
5.82077e-1	429838	429838.34170179598	3545.4545145	121.2342
1.86265e-8	1.07347e+87	10734661.495936	7978.456	1345.456
	5.33682e+87	53368219.98355	789879.67	67.565
	3.15113e+88	315112649.78649456	57676.6476	5463.4356
	2.07029e+89	2070298348.756638	454.454	4555555.345
	42018.5	42818.49013488	12.2344	3434.4545
	4.95553e+11	495553335725	345333335	1435
	1.16458e+15	1164583818351938	34252465245645	34
	1.86515e+89	1865154544.718148288	2343.34	454545.4542312
1.16415e-1	797566	797565.81020616	3434.3434	232.2324
	1.11047e+87	11104679.7026083935	34343.3434545	323.343
	382697	382696.969549862	878.6767	435.53786
	8893	8892.99655768	346.6768	23.3445
1.49012e-8	8.09584e+87	80958430.996087245927422377158	3454.54556567686	23435.3345344353
	1.07341e+86	1873410.9564	87768.68	12.23
	1.07361e+86	1073612.9073723878	87768.686786	12.2323
	1.07361e+86	1073612.9073723878	87768.686786	12.2323
	1.07361e+86	1073612.9073723878	87768.686786	12.2323
	1.07361e+86	1073612.9073723878	87768.686786	12.2323

Fig. 3. Error Analysis Data

V. TIME COMPLEXITY AND DISCUSSION

The process of accessing product from the look-Up table at max 9 iterations in the repeated addition loop of mul(9) for function and 0 iterations for mul(0). This happens for every single digit pair of the multiplicant and the multiplier. Thus, the complexity depends in the number of digits of multiplier, number of digits in the multiplicant and value of the single digit of each pair of the two nos. For simplicity take same value for both the nos. That is num1 = num2 = n.

So worst case and best case are defined for total digits in the given no.

Worst Case : each single digit pair of integers is 9. growth rate : O(9*d*d) (see fig.1, green line)

Best Case: each single digit pair contains atleast one 0.

growth rate : $\omega(1*d*d)$ (see fig.1 voilet line) where d is the total digits in the given integer.

Nature of the graph: The graph Time vs Value of Number will be logarithmic of base 10 (See Fig.1).

This is because total digits in a number is equal to $[log_10(num)] + 1$

VI. CONCLUSION

We designed an algorithm to perform multiplication of two complex nos. with the help of a 1-D lookup table. We also analyzed the algorithm and plotted the graph for Value of nos vs time elapsed.

One of the possible application of the project can be in designing Compiler for systems (say, embedded systems) with native processors without the architecture for multiplication operations.