

NLP 101

Challenges of text data, workflow, EDA, Pre-processing, Concepts

Agenda

- 1. What is NLP?
- 2. Where is NLP used?
- 3. Challenges in understanding natural language text
- 4. NLP Workflow Description
- 5. Exploratory Data Analysis (EDA)
- 6. Pre-processing steps
- 7. Wrap-up and Next Steps
- 8. Implement with Google Colab

What is NLP?

NLP Overview

- Subfield of computer science and artificial intelligence
- Allows humans to bypass programming languages to speak to computers and instead use normal human speech
- Applications: text classification, machine translation, sentiment analysis
- Our devices nowadays: Apple's Siri,
 Amazon's Alexa, and Gmail's spam filterç

Relationship with DS/AI/ML

Machine learning can help NLP powered systems adjust actions according to the historical context and patterns it picks up in a conversation.

NLP technology is human-like in the sense that more conversation can lead to better comprehension

NLP Timeline

1600 - 1957

Part 1 of 3

A BRIEF HISTORY OF

NATURAL LANGUAGE

Machine translation used in hopes to **break codes in WW2**, translating Russian into English. Results are unsuccessful.

1940S

Noam Chomsky releases the Syntactic Structures which advances linguistic studies with a universal grammar rule.

1957

1600S:

Philosophers Leibniz and Descartes propose theoretical codes in relation to language.

1930S

Patents are submitted for 'translating machines'. George Artsrouni applies to build an automatic bilingual dictionary. Peter Troyanskii proposes another dictionary that processes variations in grammar across languages.

1950

Alan Turing publishes 'Computing Machinery and Intelligence' which outlines concept of **Turing test.**

NLP Timeline

1966 - 2006

Part 2 of 3

SHRDLU, an early NLP program, developed by Terry Winograd at MIT which allows computers and people to converse but with restrictions.

1968-1970

The first statistical machine translation systems are developed. Strict and complex hand-written rules are swapped for newly-developed algorithms which increase a computer's understanding.

1980S

IBM create **AI software**, Watson which goes on to win competition against best human contestants in 2011.

2006

1966

ELIZA, a computer psychotherapist and **first bot**, is created by **Joseph Weizenbaum**.

1970-1980

Roger Schank introduces conceptual dependency theory for NLP. William A. Woods releases the augmented transition network to show natural language inputs. A wealth of bots are written including PARRY.

1990-2000S

Programmers develop **models** to increase the capabilities of computers using NLP.

NLP Timeline

2010 - nowPart 3 of 3

Rising adoption rates of Alpowered bots for customer-facing roles. NLP will continue to develop so communication with computers will be as effortless as human interactions.

2020 +

2010-2020

People introduce technologies that utilise **NLP into their homes**, such as mobile assistant **Siri** (2011) and Amazon assistant, **Alexa** (2014). 2017 marks the **rise in chatbot integration** into business operations.

Where is NLP used?

Machine Translation

 Task of automatically converting one natural language into another, preserving the meaning of the input text, and producing fluent text in the output language

- Challenging aspects:
 - the large variety of languages, alphabets and grammars
 - the task to translate a sequence to a sequence is harder for a computer than working with numbers only
 - there is no one correct answer

- Process of assigning tags or categories to text according to its content.
- One of the fundamental tasks in NLP with broad applications.
- Can be done in two different ways:
 manual and automatic classification

Sentiment Analysis

- Contextual mining of text which identifies and extracts subjective information in source material
- Focus on polarity (positive, negative, neutral), feelings and emotions (angry, happy, sad, etc), and intentions (e.g. interested v. not interested).

NLP in Our Everyday Lives

- Email assistant
- Ask Siri
- Answering questions
- 5 Amazing Applications:
 - Livox app
 - SignAll
 - Google Translate
 - Aircraft maintenance
 - Predictive police work

Language in Today's World

3

Challenges in understanding Natural Language Text

Ambiguity

- An intrinsic characteristic of human conversations, particularly challenging in NLU scenarios
- Different forms that are relevant in natural language and in artificial intelligence systems
- In AI theory, the process of handling ambiguity is called disambiguation

Synonymity

- We can express the same idea with different terms (which are also dependent on the specific context)
- Examples: "big" vs. "large"
- Necessary to incorporate the knowledge of synonyms and different ways to name the same object or phenomenon

Co-Reference

- Process of finding all expressions that refer to the same entity in a text
- Important step for a lot of higher-level NLP tasks that involve natural language understanding
- Notoriously difficult for NLP researchers, revived recently with the advent of cutting-edge techniques of deep learning and reinforcement learning.
- Coreference resolution may be instrumental in improving the performances of NLP neural architectures like RNN and LSTM

aligned with my values," she said.

Syntactic Rules

- Knowledge about the structure and syntax of language is helpful in many areas
- Typical parsing techniques for understanding text syntax include the following:
 - Parts of Speech (POS) Tagging
 - Shallow Parsing or Chunking
 - Constituency Parsing
 - Dependency Parsing

dog the over he lazy jumping is the fox and is quick brown

1. Parts of Speech Tagging

DET: Dependency tag

ADJ: Adjective

N: Noun

V: Verb

CONJ: Conjunction (coordinating)

PRON: Pronoun ADV: Adverb

3. Constituency Parsing

4. Dependency Parsing

NLP Workflow

Pre-processing and EDA

- EDA steps to approach any NLP problems
 - Data describe, data info, basic visualization
- Pre-processing steps to approach any NLP problems with Colab Code
 - Step 1: Noise Cleaning spacing, special characters
 - Step 2: Tokenization
 - Step 3: Spell Checking
 - Step 4: Contraction Mapping
 - Step 5: Stemming/Lemmatization
 - Step 6: 'Stop Words' Identification

Exploratory Data Analysis (EDA)

Goal and Overview

- Process of exploring data, generating insights, testing hypotheses, checking assumptions and revealing underlying hidden patterns in the data
- Through these goals, we can get a basic description of the data, visualize it, identify pattern in it, identify potential challenges of using the data, etc.

Dataset: SMS Spam/Ham

 SMS Spam Collection Data Set: public collection of SMS labeled messages that have been collected for mobile phone spam search.

Refer to this website for more information

on the dataset:
https://archive.ics.uci.edu/ml/datasets/sms
+spam+collection

Describe the Data

- A basic description of your data covers a broad spectrum
- You can interpret it as a quick and dirty way to get some information on your data, as a way of getting some simple, easy-to-understand information on your data, or to get a basic feel for your data
- Word clouds!

- Number of training vs. testing instances
- Missing data or missing labels of instances?
- Multi-dimensional data

	0	1
count	5572	5572
unique	2	5169
top	ham	Sorry, I'll call later
freq	4825	30

Basic Visualization

- Can help with identifying patterns in the data
- Python libraries Seaborn and Matplotlib are easy and quick ways to achieve this

Pre-processing

	raw_word	cleaned_word
0	trouble	trouble
1	trouble<	trouble
2	trouble!	trouble
3	<a>trouble	trouble
4	1.trouble	trouble

2. Tokenization

from nltk.tokenize import sent_tokenize

text = "Hi, I would like to tokenize this sentence"

Output: ['Hi', 'I', 'would', 'like', 'to', 'tokenize', 'this', 'sentence']

3. Spell Checking

```
# find those words that may be misspelled
misspelled = spell.unknown(['something', 'is', 'hapenning', 'here'])
```

```
happening
{'penning', 'happening', 'henning'}
```


4. Contraction Mapping

5.0

4.0

18

19

[it is, not, a, startup, anymore,, but, still, an, amazing, place, to, work!, You, learn, so, mu...

I learned a lot in this company about technology and navigation .

This was a big opportunity for...

[I, learned, a, lot, in, this, company, about, technology, and, navigation, ., This, was, a, big...

Google is a great place to work. Respectful coworkers and management. The promotions can be ve...

[Google, is, a, great, place, to, work., Respectful, coworkers, and, management., The, promotion...

Source: https://towardsdatascience.com/preprocessing-text-data-using-python-576206753c28

5. Stemming/Lemmatization

sterninea_words	original_word
connect	connect
connect	connected
connect	connection

connect

connect

2

3

connections

connects

original word stemmed words

	original_word	stemmed_word
0	trouble	troubl
1	troubled	troubl
2	troubles	troubl
3	troublemsome	troublemsom

	original_word	lemmatized_word
0	trouble	trouble
1	troubling	trouble
2	troubled	trouble
3	troubles	trouble

2	original_word	lemmatized_word
0	goose	goose
1	geese	goose

6. 'Stop Words' Identification

Theory Wrap-up & Next Steps

Recap

Google Colab Project

https://bit.ly/introtonlp-week1-notebook

Homework #1

- (DataCamp) <u>Python Exploratory Data</u>
 <u>Analysis Tutorial</u>
- (TowardsDataScience) <u>A Complete</u>
 <u>Exploratory Data Analysis and</u>
 <u>Visualization for Text Data</u>
- (TowardsDataScience) NLP Part 2
 Pre-Processing Text Data Using
 Python
- (AnalyticsVidhya) <u>A Beginner's Guide</u>
 to Exploratory Data Analysis (EDA) on
 Text Data (Amazon Case Study)

Homework #2

Additional Datasets

- General Datasets
 - NLTK Corpora
 - Google Blogger Corpus
 - Recommender Systems
- Sentiment Analysis Dataset
 - Yelp Reviews
- Text Classification Dataset
 - Jeopardy!

See you next week!

Questions?

Join us on <u>Slack</u> and post your questions to the #help-me channel