

10/780,298

REPLACEMENT SHEET

FIG. 1

Summary of the current purification protocol

REPLACEMENT SHEET

FIG. 2A

Chart showing the major contributing factors in the progression of Coronary Heart Disease (CHD) and how the activity of cocoa procyanidins contributes to the prevention of the progression of the disease state

REPLACEMENT SHEET

FIG. 2B

The cocoa procyanidins induce the activity of NOS and therefore the resulting production NO, thereby enhancing the health benefits mediated by the activity of nitric oxide (NO).

- inhibits platelet aggregation, monocyte adhesion, chemotaxis and vascular smooth muscle proliferation thereby causing vascular relaxation and preventing the disease progression of CHD.

By lowering blood pressure via the following mechanism:

vascular endothelial cells release eNOS

- result in production of NO
- NO relaxes vascular smooth muscles, increasing vascular lumen diameter
- lowers blood pressure
- induces hypotension

- Macropages have a different NOS (iNOS)
- iNOS gene transcription is controlled by cytokines
- iNOS activity results in macrophage NO production at sufficient concentrations to inhibit ribonuclease reductase
- causes inhibition of DNA synthesis
- potential mechanism of action in anti-tumor and anti-microbial function

**HYPERTENSION
RESPONSIBLE FOR
CARDIOVASCULAR
DISEASES:**

including:
stroke
heart attack
heart failure
kidney failure

REPLACEMENT SHEET

FIG. 2C

COX-1 is essential in the arachidonic acid pathway which results in the production of thromboxane.

→ thromboxane and prostaglandins which promote platelet aggregation and vasoconstriction

→ resulting in progression of atherosclerosis.

COX-1 is an essential enzyme in the inflammatory pathway, the penultimate products of which (the prostaglandins) are largely responsible for the inflammatory pathway, the results of which contribute to a variety of diseases including:

→ bowel disease, arthritis, edema, gingivitis/ peridontitis, etc.

COX-2 producing cells lines show enhanced expression of genes known to be involved in apoptosis:

→ potential putative mechanism of killing tumor cells.

The cocoa procyanidins inhibit the production of cyclo-oxygenase, thereby

blocking the arachidonic acid pathway, which is responsible for the inflammatory

response and the vasoconstrictive and platelet aggregating responses which

contribute to the disease progression of CHD.

10/780,298

REPLACEMENT SHEET

FIG. 3

XANTHINE ALKALOIDS

10/780, 298

REPLACEMENT SHEET

FIG. 4

10/780,298

REPLACEMENT SHEET

DADI A, Sig=280,4 Ref=580,400f 4078/009-0401.D

FIG. 5

10/780/298

REPLACEMENT SHEET

FIG. 6

10/780, 298

REPLACEMENT SHEET

FIG. 7

CONTRACTION OF ISOLATED AORTA

10/780, 298

REPLACEMENT SHEET

FIG. 8A

EFFECT OF COCOA PROCYANIDIN FRACTION A ON
BLOOD PRESSURE

FIG. 8B

EFFECT OF COCOA PROCYANIDIN FRACTION C ON
BLOOD PRESSURE

10/780, 298

REPLACEMENT SHEET

FIG. 9

EFFECT OF COCOA PROCYANIDIN FRACTIONS ON ARTERIAL
BLOOD PRESSURE IN ANESTHESIZED GUINEA PIGS

10/780, 298

REPLACEMENT SHEET

FIG. 10

EFFECT OF L-NMMA ON THE ALTERATIONS OF ARTERIAL BLOOD PRESSURE IN ANESTHESIZED GUINEA PIGS INDUCED BY COCOA PROCYANIDIN FRACTION C

10/780, 298

REPLACEMENT SHEET

FIG. 11

EFFECT OF BRADYKININ ON NO PRODUCTION BY HUVEC

10/780,298

REPLACEMENT SHEET

FIG. 12

EFFECT OF COCOA PROCYANIDIN FRACTIONS ON NO
PRODUCTION BY HUVEC

10/180, 298

REPLACEMENT SHEET

FIG. 13

Figure A: Effect of Cocoa Procyanidin Fractions on Macrophage
NO Production

10/18/91, 298

REPLACEMENT SHEET

FIG. 14

Figure B: Effect of Cocoa Procyanidin Fractions on LPS Induced
and γ -Interferon Primed Macrophages

REPLACEMENT SHHET

FIG. 15A**FIG. 15B**

10/780,298

REPLACEMENT SHEET

FIG. 16A

10/780, 298

REPLACEMENT SHEET

FIG. 16B

10/780, 298

REPLACEMENT SHEET

FIG. 17

(*) WITH THE EXCEPTION OF SAMPLE S11

10/780,298

REPLACEMENT SHEET

FIG. 18A

10/180, 298

REPLACEMENT SHEET

FIG. 18B

10/18/80, 298

REPLACEMENT SHEET

FIG. 18C

10/18/80, 298

REPLACEMENT SHEET

FIG. 18D

10/180, 298

REPLACEMENT SHEET

FIG. 18E

10/18/298

REPLACEMENT SHEET

FIG. 18F

10/780, 298

REPLACEMENT SHEET

FIG. 18G

10/780,298

REPLACEMENT SHEET

FIG. 18H

10/780, 298

REPLACEMENT SHEET

FIG. 18I

10/780,298

REPLACEMENT SHEET

FIG. 18J

10/180, 298

REPLACEMENT SHEET

FIG. 18K

10/780, 298

REPLACEMENT SHEET

FIG. 18L

10/780,298

REPLACEMENT SHEET

FIG. 18M

10/18/298

REPLACEMENT SHEET

FIG. 18N

10/180, 298

REPLACEMENT SHEET

FIG. 18O

10/180, 298

REPLACEMENT SHEET

FIG. 18P

10/780, 298

REPLACEMENT SHEET

FIG. 18Q

10/180,298

REPLACEMENT SHEET

FIG. 18R

10/18/298

REPLACEMENT SHEET

FIG. 18S

10/18/2023

REPLACEMENT SHEET

FIG. 18T

10/780,298

REPLACEMENT SHEET

FIG. 18U

10/780,298

REPLACEMENT SHEET

FIG. 18V

10/180, 298

REPLACEMENT SHEET

FIG. 19A

FIG. 19B

FIG. 19C

FIG. 19D

10/180, 298

REPLACEMENT SHEET

FIG. 20B

FIG. 20A

10/780,298

REPLACEMENT SHEET

FIG. 21A

FIG. 21B

FIG. 21C

10/780, 298

REPLACEMENT SHEET

FIG. 22A

FIG. 22B

FIG. 22C

