# Self-stabilising Byzantine clock synchronisation is almost as easy as consensus

Christoph Lenzen

Max Planck Institute for Informatics

Joel Rybicki
University of Helsinki

DISC 2017 October 17, 2017 Vienna, Austria



# Clock synchronisation









#### Question:

How to efficiently synchronise a network of imprecise clocks in a fault-tolerant manner?

# Clock synchronisation







How to efficiently synchronise a network of imprecise clocks in a fault-tolerant manner?





Real clocks exhibit **drift:**even if started at the same
time, values eventually differ

Distributed systems are prone to both transient faults and permanent faults



n nodes with local clocks

Bounded clock drift: fastest clock progresses at most factor  $\vartheta > 1$  faster than the slowest clock



- n nodes with local clocks
- arbitrary initial state

### **Self-stabilisation:**

Initial clock values and local state are arbitrary



- n nodes with local clocks
- arbitrary initial state
- f < n/3 Byzantine faulty nodes

## **Arbitrary misbehaviour:**



- n nodes with local clocks
- arbitrary initial state
- f < n/3 Byzantine faulty nodes

## **Arbitrary misbehaviour:**



- n nodes with local clocks
- arbitrary initial state
- f < n/3 Byzantine faulty nodes

## **Arbitrary misbehaviour:**



- n nodes with local clocks
- arbitrary initial state
- f < n/3 Byzantine faulty nodes

## **Arbitrary misbehaviour:**



- n nodes with local clocks
- arbitrary initial state
- f < n/3 Byzantine faulty nodes
- bounded delay communication

#### Message delay:

transmitting a messages takes **between** 0 and *d* time units



- n nodes with local clocks
- arbitrary initial state
- f < n/3 Byzantine faulty nodes
- bounded delay communication

#### Message delay:

transmitting a messages takes **between** 0 and *d* time units



- n nodes with local clocks
- arbitrary initial state
- f < n/3 Byzantine faulty nodes
- bounded delay communication

#### Message delay:

transmitting a messages takes **between** 0 and *d* time units

# Pulse synchronisation



# Gives the synchronous model



# Self-stabilising pulse synchronisation



## Self-stabilising pulse synchronisation



# Complexity measures



#### Stabilisation time:

how many time units it takes before the correct nodes start pulsing synchronously

- n nodes
- f < n/3 faults
- drift parameter  $\vartheta = O(1)$
- message delay d = O(1)

# Complexity measures



Stabilisation time:

how many time units it takes before the correct nodes start pulsing synchronously

- n nodes
- f < n/3 faults
- drift parameter  $\vartheta = O(1)$
- message delay d = O(1)

## Bandwidth (per node):

how many bits per time unit a node broadcasts

# Pulse synchronisation: status

| authors                              | appears in | stabilisation time      | bandwidth                 |
|--------------------------------------|------------|-------------------------|---------------------------|
| S. Dolev & Welch                     | JACM 2004  | exp(O(f))               | <b>O(1)</b>               |
| Daliot, D. Dolev & Parnas            | SSS 2003   | O(f <sup>3</sup> )      | O(log <i>f</i> )          |
| D. Dolev & Hoch                      | SSS 2007   | <b>O</b> ( <i>f</i> )   | O(f log f)                |
| D. Dolev, Függer,<br>Lenzen & Schmid | JACM 2014  | O(f)                    | <b>O(1)</b>               |
| this work                            |            | polylog f O(log f) O(f) | polylog f poly f O(log f) |

## Our result

Synchronous BF consensus



SS + BF pulse synchronisation in the bounded delay model

(\*) At most logarithmic overheads.



- 1. Agreement
- 2. Validity
- 3. Termination



- 1. Agreement
- 2. Validity
- 3. Termination



- 1. Agreement
- 2. Validity
- 3. Termination



- 1. Agreement
- 2. Validity
- 3. Termination



## Properties:

- 1. Agreement
- 2. Validity
- 3. Termination

## Synchronous consensus:

- no self-stabilisation
- synchronous communication
- terminates in T rounds

## Our result

Synchronous BF consensus



SS + BF pulse synchronisation in the bounded delay model

arbitrary behaviour

(\*) At most logarithmic overheads.

# Consensus - pulse sync.

## consensus

## pulse sync

| source                         | rounds        | bits/round | stabilisation | bandwidth  |
|--------------------------------|---------------|------------|---------------|------------|
| Berman, Garay<br>& Perry '1992 | O( <i>f</i> ) | O(1)       | O(f)          | O(log f)   |
| King & Saia '2011              | polylog(f)    | polylog(f) | polylog(f)    | polylog(f) |
| Feldman & Micali '1988         | O(1)          | poly(f)    | O(log f)      | poly(f)    |

# Approach: resilience boosting

Adapt ideas and techniques from prior work on synchronous counting (digital clock synchronisation):

- Lenzen & R. (SSS 2016)
- Lenzen, R. & Suomela (SICOMP 2017)

**Difficulty:** translating techniques from the synchronous model to bounded-delay model with clock drift

## Given:

#### Pulser A<sub>0</sub>

- $n_0 = 2$  nodes  $f_0 = \mathbf{0}$  resilience



## Pulser A<sub>1</sub>

- $n_1 = 2$  nodes  $f_1 = 0$  resilience



## Given:

#### Pulser A<sub>0</sub>

- $n_0 = 2$  nodes  $f_0 = \mathbf{0}$  resilience



## Pulser A<sub>1</sub>

- $n_1 = 2$  nodes  $f_1 = \mathbf{0}$  resilience



## Result:

- $n = n_0 + n_1$  nodes
- $f = f_0 + f_1 + 1$  resilience



Given:

Pulser Ao

- $n_0 = 2 \text{ nodes}$  $f_0 = \mathbf{0} \text{ resilience}$

arbitrary behaviour



- $n_1 = 2$  nodes
- $f_1 = \mathbf{0}$  resilience



## Result:

- $n = n_0 + n_1$  nodes
- $f = f_0 + f_1 + 1$  resilience



Given:

#### Pulser A<sub>0</sub>

- $n_0 = 2$  nodes  $f_0 = \mathbf{0}$  resilience





- Pulser  $A_1$   $n_1 = 2$  nodes  $f_1 = \mathbf{0}$  resilience



## Result:

- $n = n_0 + n_1$  nodes
- $f = f_0 + f_1 + 1$  resilience



# Ingredient: resynchronisation pulse



# Ingredient: resynchronisation pulse



# Ingredient: resynchronisation pulse



# Constructing resync. algorithms

## Given:

### Pulser A<sub>0</sub>

- $n_0 = 2$  nodes  $f_0 = 0$  resilience



## Pulser A<sub>1</sub>

- $n_1 = 2$  nodes  $f_1 = 0$  resilience



## Result:

## Resynchroniser B

- $n = n_0 + n_1$
- $f = f_0 + f_1 + 1$

Pulser A<sub>0</sub>

Pulser A<sub>1</sub>



## Given:

Resynchroniser B

• 
$$n = n_0 + n_1$$

• 
$$f = f_0 + f_1 + 1$$

Pulser A<sub>0</sub>

Pulser A<sub>1</sub>



Consensus C

$$n = n_0 + n_1$$

• 
$$f = f_0 + f_1$$

synchronous



## Given:

## Resynchroniser B

- $n = n_0 + n_1$
- $f = f_0 + f_1 + 1$

Pulser A<sub>0</sub> Pulser A<sub>1</sub>



#### Wrapper W

#### Consensus C

- $n = n_0 + n_1$
- $f = f_0 + f_1$  synchronous

## Result:

- $n = n_0 + n_1$  nodes
- $f = f_0 + f_1 + 1$  resilience



# Hardness of pulse synchronisation

Synchronous BF consensus



SS + BF pulse synchronisation in the bounded delay model

(almost)
as easy as
consensus

# Hardness of pulse synchronisation

Synchronous BF consensus



SS + BF pulse synchronisation in the bounded delay model

but is it as hard as hard as consensus?

## Conclusions

## Upper bounds:

| stabilisation time    | bandwidth   |
|-----------------------|-------------|
| polylog f             | polylog f   |
| O(log f)              | poly f      |
| <b>O</b> ( <i>f</i> ) | $O(\log f)$ |

## Lower bounds:

No lower bounds known!

## Conclusions

## Upper bounds:

| stabilisation time    | bandwidth   |
|-----------------------|-------------|
| polylog f             | polylog f   |
| O(log f)              | poly f      |
| <b>O</b> ( <i>f</i> ) | $O(\log f)$ |

## Lower bounds:

No lower bounds known!

