기존 특허와의 차이점

이도미
ㅁㅇᆣ

□ 검색어 : 자율주행 물체인식 (http://www.kipris.or.kr/)

□ 차이점 비교:

발명의 명칭	자율주행차를 운행하면서 전방에 물체가 인지되었을 때 직진성에대한 트레이드오프의 방법	자율주행 차량의 보행자 인식 방법
	자율주행차 운행중 물체 발견시 카메라/라이다 센서의 인지 기술을 활용하여 위험사항 물체인지를 판단하여 자율주행차가직진을 해야 하는지 멈춰야 하는지 판단하는 방법.	
차이점	현재는 차율주행차 주행중 전방에 물체가 인식이되면 무조건 정차, 급정거를 하는데, 트레이드오프 판단 기술을 활용하면 인사사고나 차량파손에 영향을 주지 않는 물체에 대해서는 차량에 탑승 승객의 안전을 지키면서 진진 운행을 할 수 있는 장점이 있습니다.	보행자와 비보행자를 구분하여 보행자일 경우 영상을 저장하는 방법

발명의 명칭 : 자율주행 차량의 보행자 인식 방법

특허 정보 및 요약

- [1] 자율주행 차량의 보행자 인식 방법
 - (an Autonomous Vehicle of pedestrians facial features)
- [2] 2017.10.01.
- [3] 본 발명은, 블랙박스가 장착된 자율주행 차량에 있어서, 상기 블랙박스 본체에 LIDAR(광선레이더)가 더 포함되고; 상기 LIDAR는 RF신호를 수신/송신하여 정보를 구분하고 상기 카메라는 영상으로 입력된 컬러 정보를 흑백으로 변환하는 변환 단계; 상기 LIDAR에 수신된 정보를 좌표평면으로 변환하고 상기 카메라는 변환된 정보에서 히스토그램(도수분포표)을 정규화 하는 정규화 단계; 상기 LIDAR에서 변환된 좌표계와 카메라에서 얻은 히스토그램을 통해 ROI(관심영역)를 설정하는 설정 단계; 상기 설정 단계에서 얻은 ROI를 HOG 변환을 하여 보행자 인식 정보를 얻으며 상기 LIDAR는 RF신호로 송신된 정보에서 거리 값을 구하는 거리값 측정 단계; 상기 거리값 측정단계에서 얻은 두가지의 정보를 조합하는 조합 단계; 상기 조합 단계에서 조합된 정보에서 SVM분류를 통해 보행자/비 보행자를 구분하는 구분 단계; 상기 구분 단계의 분류를 통해 보행자를 구분하고 보행자일 경우에는 정보를 저장하고, 보행자 구분을 할 수 있을 경우 추가적으로 상기 정규화 단계로 회귀하고, 없을 경우 알고리즘을 종료하는 종료 단계로 이루어진다.

