Варіанти машини Тюрінга

Андрій Фесенко

Стандартна однострічкова машина Тюрінга

Означення

Стандартною однострічковою машиною Тюрінга називають абстрактний обчислювальний пристрій, який визначається кортежем $(\Gamma, \Sigma, \#, Q, Q_F, q_0, \delta)$, де

- Г непорожня скінченна множина, яку називають алфавітом машини Тюрінга М або алфавітом стрічки;
- ullet # $\in \Gamma$ порожній символ;
- $\Sigma \subseteq \Gamma \setminus \{\#\}$ непорожня скінченна множина, яку називають вхідним алфавітом;
- Q непорожня скінченна множина внутрішніх станів;
- $Q_F \subseteq Q$ множина кінцевих внутрішніх станів;
- ullet $q_0 \in Q$ початковий (внутрішній) стан;
- ullet $\delta: (Q\setminus Q_F) imes \Gamma o Q imes \Gamma imes \{L,R\}$ (часткова) функція переходів.

Означення

Стандартною багатострічковою машиною Тюрінга називають абстрактний обчислювальний пристрій, який визначається кортежем $(k, \Gamma, \Sigma, \#, Q, Q_F, q_0, \delta)$, де

- $k \in \mathbb{N}^+$ кількість стрічок;
- Г непорожня скінченна множина, яку називають алфавітом машини Тюрінга М або алфавітом стрічки;
- # ∈ Г порожній символ;
- $\Sigma \subseteq \Gamma \setminus \{\#\}$ непорожня скінченна множина, яку називають вхідним алфавітом;
- Q непорожня скінченна множина внутрішніх станів;
- $Q_F \subseteq Q$ множина кінцевих внутрішніх станів;
- ullet $q_0 \in Q$ початковий (внутрішній) стан;
- $\delta: (Q \setminus Q_F) \times \Gamma^k \nrightarrow Q \times \Gamma^k \times \{L, R\}^k$ (часткова) функція переходів.

Наслідок

Стандартна однострічкова машина Тюрінга є частковим випадком стандартної багатострічкової машини Тюрінга.

Наслідок

Стандартна однострічкова машина Тюрінга є частковим випадком стандартної багатострічкової машини Тюрінга.

Твердження

Якщо для довільної функції $f: \Sigma^* \to \Sigma^*$ та довільної функції $t: \mathbb{N} \to \mathbb{N}$ існує стандартна багатострічкова машина Тюрінга $M = (k, \Gamma, \Sigma, \#, Q, Q_F, q_0, \delta)$, яка обчислює значення функції f за час t(n), то існує стандартна однострічкова машина Тюрінга \tilde{M} , яка обчислює значення функції f за час $8k \cdot t^2(n) + 2t(n) \cdot (k^2 + k + 1) + 2k \cdot n^2 + 1$, тобто $\mathcal{O}(t^2(n) + n^2)$.

4

Доведення.

ullet для кожної стрічки — своя решітка з кроком k

- ullet для кожної стрічки своя решітка з кроком k
- ullet $\hat{a},\;a\in\Gamma$ місце зчитувальних пристроїв

- ullet для кожної стрічки своя решітка з кроком k
- ullet \hat{a} , $a \in \Gamma$ місце зчитувальних пристроїв
- спеціальні символи для обмеження робочої області: ▶, ◀

- ullet для кожної стрічки своя решітка з кроком k
- ullet \hat{a} , $a \in \Gamma$ місце зчитувальних пристроїв
- спеціальні символи для обмеження робочої області: ▶, ◀
- один такт *M*:

- ullet для кожної стрічки своя решітка з кроком k
- $\hat{a}, a \in \Gamma$ місце зчитувальних пристроїв
- спеціальні символи для обмеження робочої області: ▶, ◀
- один такт *M*:
 - 🗿 пройти всі комірки на всіх решітках (між обмеженнями)

- ullet для кожної стрічки своя решітка з кроком k
- $\hat{a}, a \in \Gamma$ місце зчитувальних пристроїв
- спеціальні символи для обмеження робочої області: ▶, ◀
- один такт *M*:
 - 💿 пройти всі комірки на всіх решітках (між обмеженнями)
 - запам'ятати всі символи з^

- ullet для кожної стрічки своя решітка з кроком k
- $\hat{a}, a \in \Gamma$ місце зчитувальних пристроїв
- спеціальні символи для обмеження робочої області: ▶, ◀
- один такт *M*:
 - 💿 пройти всі комірки на всіх решітках (між обмеженнями)
 - запам'ятати всі символи з^
 - 🧿 знайти символи, які треба записати, новий стан та переміщення

- ullet для кожної стрічки своя решітка з кроком k
- $\hat{a}, a \in \Gamma$ місце зчитувальних пристроїв
- спеціальні символи для обмеження робочої області: ▶, ◀
- один такт *M*:
 - пройти всі комірки на всіх решітках (між обмеженнями)
 - запам'ятати всі символи з^
 - 🗿 знайти символи, які треба записати, новий стан та переміщення
 - ще раз пройти всі комірки на всіх решітках, оновлюючи відповідні значення

- ullet для кожної стрічки своя решітка з кроком k
- $\hat{a}, a \in \Gamma$ місце зчитувальних пристроїв
- спеціальні символи для обмеження робочої області: ▶, ◀
- один такт *M*:
 - пройти всі комірки на всіх решітках (між обмеженнями)
 - запам'ятати всі символи з^
 - 🗿 знайти символи, які треба записати, новий стан та переміщення
 - ще раз пройти всі комірки на всіх решітках, оновлюючи відповідні значення
 - за необхідності перемістити символи обмеження

- ullet для кожної стрічки своя решітка з кроком k
- $\hat{a}, a \in \Gamma$ місце зчитувальних пристроїв
- спеціальні символи для обмеження робочої області: ▶, ◀
- один такт *M*:
 - 💿 пройти всі комірки на всіх решітках (між обмеженнями)
 - запам'ятати всі символи з^
 - 🗿 знайти символи, які треба записати, новий стан та переміщення
 - ще раз пройти всі комірки на всіх решітках, оновлюючи відповідні значення
 - 🧿 за необхідності перемістити символи обмеження
 - \bigcirc 2 · 2k · t(n) + 2 + 2 k^2 тактів \tilde{M}

- ullet для кожної стрічки своя решітка з кроком k
- \hat{a} , $a \in \Gamma$ місце зчитувальних пристроїв
- спеціальні символи для обмеження робочої області: ▶, ◀
- один такт *M*:
 - 💶 пройти всі комірки на всіх решітках (між обмеженнями)
 - Запам'ятати всі символи з^
 - 🗿 знайти символи, які треба записати, новий стан та переміщення
 - ще раз пройти всі комірки на всіх решітках, оновлюючи відповідні значення
 - 🧿 за необхідності перемістити символи обмеження
- ullet останній "напівтакт": $2k \cdot t(n) + 1$

- ullet для кожної стрічки своя решітка з кроком k
- \hat{a} , $a \in \Gamma$ місце зчитувальних пристроїв
- спеціальні символи для обмеження робочої області: ▶, ◀
- один такт *M*:
 - 💿 пройти всі комірки на всіх решітках (між обмеженнями)
 - запам'ятати всі символи з^
 - 🗿 знайти символи, які треба записати, новий стан та переміщення
 - ще раз пройти всі комірки на всіх решітках, оновлюючи відповідні значення
 - 🧿 за необхідності перемістити символи обмеження
- ullet останній "напівтакт": $2k \cdot t(n) + 1$
- ullet додатково, перетворення вхідного слова: $2k \cdot n^2$

- ullet для кожної стрічки своя решітка з кроком k
- â, a ∈ Г місце зчитувальних пристроїв
- спеціальні символи для обмеження робочої області: ▶, ◀
- один такт *M*:
 - 🛾 пройти всі комірки на всіх решітках (між обмеженнями)
 - запам'ятати всі символи з^
 - 🗿 знайти символи, які треба записати, новий стан та переміщення
 - ще раз пройти всі комірки на всіх решітках, оновлюючи відповідні значення
 - 🧿 за необхідності перемістити символи обмеження
 - $oldsymbol{\circ}$ $2\cdot 2k\cdot t(n)+2+2k^2$ тактів $ilde{M}$
- ullet останній "напівтакт": $2k \cdot t(n) + 1$
- ullet додатково, перетворення вхідного слова: $2k\cdot n^2$
- ullet додатково, перетворення вихідного слова: $2 \cdot 2k \cdot t(n) \cdot t(n)$

Твердження

Якщо для довільної функції $f:\{0,1\}^* \to \{0,1\}^*$ та довільної функції $t:\mathbb{N} \to \mathbb{N}$ існує стандартна багатострічкова машина Тюрінга $M=(k,\Gamma,\{0,1\},\#,Q,Q_F,q_0,\delta)$, яка обчислює значення функції f за час t(n), то існує стандартна багатострічкова машина Тюрінга \tilde{M} , яка використовує алфавіт стрічки $\{0,1,\#\}$ і обчислює значення функції f за час $f(n)\cdot (5\cdot \lceil \log |\Gamma| \rceil -1) + 2(f(n)+n)(\lceil \log |\Gamma| \rceil +1) +8$.

Доведення.

• стиснення вмісту стрічки навпаки: одній комірці відповідає $\lceil \log |\Gamma| \rceil$ комірок (на крайній лівій блоку)

- стиснення вмісту стрічки навпаки: одній комірці відповідає [log |Г|] комірок (на крайній лівій блоку)
- спеціальні символи для обмеження робочої області: ▶, ◀

- стиснення вмісту стрічки навпаки: одній комірці відповідає [log | Г |] комірок (на крайній лівій блоку)
- спеціальні символи для обмеження робочої області: ▶, ◀
- один такт *M*:

- стиснення вмісту стрічки навпаки: одній комірці відповідає [log | Г |] комірок (на крайній лівій блоку)
- спеціальні символи для обмеження робочої області: ▶, ◀
- один такт *M*:
 - О пройти [log |Г|] комірок, щоб "зчитати" символ

- стиснення вмісту стрічки навпаки: одній комірці відповідає [log | Г |] комірок (на крайній лівій блоку)
- спеціальні символи для обмеження робочої області: ▶, ◀
- один такт *M*:
 - О пройти [log | Г|] комірок, щоб "зчитати" символ
 - $oldsymbol{2}$ пройти $\lceil \log |\Gamma| \rceil$ комірок, щоб оновити значення

- стиснення вмісту стрічки навпаки: одній комірці відповідає [log | Г |] комірок (на крайній лівій блоку)
- спеціальні символи для обмеження робочої області: ▶, ◀
- один такт *M*:
 - пройти [log | Г|] комірок, щоб "зчитати" символ
 - Опройти [log | Г|] комірок, щоб оновити значення
 - ullet пройти $\lceil \log |\Gamma| \rceil$ комірок, щоб перемістити відповідно зчитувальні пристрої

- стиснення вмісту стрічки навпаки: одній комірці відповідає [log |Г|] комірок (на крайній лівій блоку)
- спеціальні символи для обмеження робочої області: ▶, ◀
- один такт *M*:
 - О пройти [log | Г|] комірок, щоб "зчитати" символ
 - Опройти [log | Г|] комірок, щоб оновити значення
 - пройти [log |Г|] комірок, щоб перемістити відповідно зчитувальні пристрої
 - можливо, 2 · [log | Г|] для зміни обмежень

- стиснення вмісту стрічки навпаки: одній комірці відповідає [log |Г|] комірок (на крайній лівій блоку)
- спеціальні символи для обмеження робочої області: ▶, ◀
- один такт *M*:
 - О пройти [log | Г|] комірок, щоб "зчитати" символ
 - $oldsymbol{0}$ пройти $\lceil \log |\Gamma| \rceil$ комірок, щоб оновити значення
 - lacktriangle пройти $\lceil \log |\Gamma| \rceil$ комірок, щоб перемістити відповідно зчитувальні пристрої
 - можливо, 2 · [log | Γ|] для зміни обмежень
 - left $5 \cdot \lceil \log |\Gamma| \rceil 1$ тактів $ilde{M}$

- стиснення вмісту стрічки навпаки: одній комірці відповідає $\lceil \log |\Gamma| \rceil$ комірок (на крайній лівій блоку)
- спеціальні символи для обмеження робочої області: ▶, ◀
- один такт *M*:
 - О пройти [log | Г|] комірок, щоб "зчитати" символ
 - ② пройти [log | Г|] комірок, щоб оновити значення
 - пройти [log |Г|] комірок, щоб перемістити відповідно зчитувальні пристрої
 - можливо, 2 · [log | Г|] для зміни обмежень
 - $5 \cdot \lceil \log |Γ| \rceil 1$ τακτίβ \tilde{M}
- додатково, перетворення вхідного слова + обмеження:

$$2n \cdot (\lceil \log |\Gamma| \rceil + 1) + 4$$

- стиснення вмісту стрічки навпаки: одній комірці відповідає $\lceil \log |\Gamma| \rceil$ комірок (на крайній лівій блоку)
- спеціальні символи для обмеження робочої області: ▶, ◀
- один такт M:
 - О пройти [log | Г|] комірок, щоб "зчитати" символ
 - пройти [log | Г|] комірок, щоб оновити значення
 - lacktriangle пройти $\lceil \log |\Gamma| \rceil$ комірок, щоб перемістити відповідно зчитувальні пристрої
 - можливо, 2 · [log | Г|] для зміни обмежень
 - $oldsymbol{0}$ $5 \cdot \lceil \log |\Gamma| \rceil 1$ тактів $ilde{M}$
- додатково, перетворення вхідного слова + обмеження:
 - $2n \cdot (\lceil \log |\Gamma| \rceil + 1) + 4$
- додатково, перетворення вихідного слова: $2t(n) \cdot (\lceil \log |\Gamma| \rceil + 1) + 4$

Означення

Зчитувальний пристрій машини Тюрінга має можливість затримки, якщо він на кожному такті на своїй стрічці може не рухатися праворуч або ліворуч, а залишитися на поточній комірці. Машину Тюрінга називають машиною Тюрінга з можливістю затримки (Turing Machine with Stay option), якщо всі її зчитувальні пристрої мають можливість затримки.

Означення

Зчитувальний пристрій машини Тюрінга має можливість затримки, якщо він на кожному такті на своїй стрічці може не рухатися праворуч або ліворуч, а залишитися на поточній комірці. Машину Тюрінга називають машиною Тюрінга з можливістю затримки (Turing Machine with Stay option), якщо всі її зчитувальні пристрої мають можливість затримки.

Наслідок

Будь-яка програма машини Тюрінга без можливості затримки є програмою машини Тюрінга з можливістю затримки.

Однострічкова машина Тюрінга з можливістю затримки:

$$\delta: \left(Q \setminus Q_F\right) \times \Gamma \nrightarrow Q \times \Gamma \times \{L, S, R\}.$$

Багатострічкова машина Тюрінга з можливістю затримки:

$$\delta: (Q \setminus Q_F) \times \Gamma^k \nrightarrow Q \times \Gamma^k \times \{L, S, R\}^k$$
.

Якщо для довільної функції $f: \Sigma^* \to \Sigma^*$ та довільної функції $t: \mathbb{N} \to \mathbb{N}$ існує стандартна однострічкова машина Тюрінга M з можливістю затримки, яка обчислює значення функції f за час t(n), то існує стандартна однострічкова машина Тюрінга \tilde{M} без можливості затримки, яка обчислює значення функції f за час $2 \cdot t(n)$.

Якщо для довільної функції $f: \Sigma^* \to \Sigma^*$ та довільної функції $t: \mathbb{N} \to \mathbb{N}$ існує стандартна однострічкова машина Тюрінга M з можливістю затримки, яка обчислює значення функції f за час t(n), то існує стандартна однострічкова машина Тюрінга \tilde{M} без можливості затримки, яка обчислює значення функції f за час $2 \cdot t(n)$.

Доведення.

ullet нехай $M=(\Gamma,\Sigma,\#,Q,Q_F,q_0,\delta)$

Якщо для довільної функції $f: \Sigma^* \to \Sigma^*$ та довільної функції $t: \mathbb{N} \to \mathbb{N}$ існує стандартна однострічкова машина Тюрінга M з можливістю затримки, яка обчислює значення функції f за час t(n), то існує стандартна однострічкова машина Тюрінга \tilde{M} без можливості затримки, яка обчислює значення функції f за час $2 \cdot t(n)$.

- ullet нехай $M = (\Gamma, \Sigma, \#, Q, Q_F, q_0, \delta)$
- ullet для кожного стану $q_a \in Q$ додаємо новий стан $ilde{q}_a$ до множини Q

Якщо для довільної функції $f: \Sigma^* \to \Sigma^*$ та довільної функції $t: \mathbb{N} \to \mathbb{N}$ існує стандартна однострічкова машина Тюрінга M з можливістю затримки, яка обчислює значення функції f за час t(n), то існує стандартна однострічкова машина Тюрінга \tilde{M} без можливості затримки, яка обчислює значення функції f за час $2 \cdot t(n)$.

- ullet нехай $M = (\Gamma, \Sigma, \#, Q, Q_F, q_0, \delta)$
- ullet для кожного стану $q_a \in Q$ додаємо новий стан $ilde{q}_a$ до множини Q
- замість кожної команди виду (q_1, x, q_2, y, S) додаємо дві команди: $(q_1, x, \tilde{q}_2, y, R)$ і $(\tilde{q}_2, *, q_2, *, L)$

Якщо для довільної функції $f: \Sigma^* \to \Sigma^*$ та довільної функції $t: \mathbb{N} \to \mathbb{N}$ існує стандартна однострічкова машина Тюрінга M з можливістю затримки, яка обчислює значення функції f за час t(n), то існує стандартна однострічкова машина Тюрінга \tilde{M} без можливості затримки, яка обчислює значення функції f за час $2 \cdot t(n)$.

- ullet нехай $M = (\Gamma, \Sigma, \#, Q, Q_F, q_0, \delta)$
- ullet для кожного стану $q_a \in Q$ додаємо новий стан $ilde{q}_a$ до множини Q
- замість кожної команди виду (q_1, x, q_2, y, S) додаємо дві команди: $(q_1, x, \tilde{q}_2, y, R)$ і $(\tilde{q}_2, *, q_2, *, L)$
- замість одного такту в найгіршому випадку 2 такти

Твердження

Якщо для довільної функції $f:\Sigma^* \to \Sigma^*$ та довільної функції $t:\mathbb{N} \to \mathbb{N}$

ullet існує машина Тюрінга M_1 без можливості затримки, яка обчислює значення функції f за час t(n), то існує машина Тюрінга \tilde{M}_1 з можливістю затримки, яка обчислює значення функції f за час t(n).

Твердження

Якщо для довільної функції $f:\Sigma^* \to \Sigma^*$ та довільної функції $t:\mathbb{N} \to \mathbb{N}$

- ullet існує машина Тюрінга M_1 без можливості затримки, яка обчислює значення функції f за час t(n), то існує машина Тюрінга \tilde{M}_1 з можливістю затримки, яка обчислює значення функції f за час t(n).
- існує машина Тюрінга M_2 з можливістю затримки, яка обчислює значення функції f за час t(n), то існує машина Тюрінга \tilde{M}_2 без можливості затримки, яка обчислює значення функції f за час $3 \cdot t(n) + 4n + \left\lceil \frac{n}{2} \right\rceil$.

Доведення.

- перше твердження частковий випадок
- ullet нехай $M_2=(k,\Gamma,\Sigma,\#,Q,Q_F,q_0,\delta)$ з можливістю затримки

Доведення.

- перше твердження частковий випадок
- ullet нехай $M_2 = (k, \Gamma, \Sigma, \#, Q, Q_F, q_0, \delta)$ з можливістю затримки
- подвоєння вмісту кожної комірки на кожній стрічці (другий символ з[^])

11

Доведення.

- перше твердження частковий випадок
- ullet нехай $M_2 = (k, \Gamma, \Sigma, \#, Q, Q_F, q_0, \delta)$ з можливістю затримки
- подвоєння вмісту кожної комірки на кожній стрічці (другий символ з^)
- команди з переміщенням зчитувального пристрою точно 3 такти (оновити обидві комірки + переміщення на дві комірки)

11

Доведення.

- перше твердження частковий випадок
- ullet нехай $M_2 = (k, \Gamma, \Sigma, \#, Q, Q_F, q_0, \delta)$ з можливістю затримки
- подвоєння вмісту кожної комірки на кожній стрічці (другий символ з^)
- команди з переміщенням зчитувального пристрою точно 3 такти (оновити обидві комірки + переміщення на дві комірки)
- команди без переміщення зчитувального пристрою точно 3 такти (оновити обидві комірки і зробити 3 такти в межах блоку)

╝.

Доведення.

- перше твердження частковий випадок
- ullet нехай $M_2 = (k, \Gamma, \Sigma, \#, Q, Q_F, q_0, \delta)$ з можливістю затримки
- подвоєння вмісту кожної комірки на кожній стрічці (другий символ з^)
- команди з переміщенням зчитувального пристрою точно 3 такти (оновити обидві комірки + переміщення на дві комірки)
- команди без переміщення зчитувального пристрою точно 3 такти (оновити обидві комірки і зробити 3 такти в межах блоку)
- ullet копіювати вхід $2n+2n+\left\lceil rac{n}{2} \right\rceil$

╝.

Машина Тюрінга з нескінченними в один бік стрічками

Означення

Стрічку машини Тюрінга називають нескінченною в один бік, якщо вона є нескінченною тільки в правий бік, а крайня ліва комірка, яку називають початком стрічки, містить спеціальний виділений символ початку стрічки.

Машину Тюрінга називають машиною Тюрінга з нескінченними в один бік стрічками (Turing Machine with Semi-infinite tape), якщо всі її стрічки є нескінченними в один бік.

Машина Тюрінга з нескінченними в один бік стрічками

Означення

Стрічку машини Тюрінга називають **нескінченною в один бік**, якщо вона є нескінченною тільки в правий бік, а крайня ліва комірка, яку називають початком стрічки, містить спеціальний виділений **символ початку стрічк**и.

Машину Тюрінга називають машиною Тюрінга з нескінченними в один бік стрічками (Turing Machine with Semi-infinite tape), якщо всі її стрічки є нескінченними в один бік.

Наслідок

Однострічкова машина Тюрінга з нескінченними в один бік стрічками — ($\Gamma, \Sigma, \#, \triangleright, Q, Q_F, q_0, \delta$), де $\triangleright \in \Gamma$ — символ початку стрічки і $\Sigma \subseteq \Gamma \setminus \{\#, \triangleright\}$; якщо $\delta(q_1, \triangleright) = q_2, x, z$, де $q_1 \in Q \setminus Q_F$, $q_2 \in Q$, $x \in \Gamma$ і $z \in \{L, R\}$, то $x = \triangleright$ і z = R.

Машина Тюрінга з нескінченними в один бік стрічками

Означення

Стрічку машини Тюрінга називають нескінченною в один бік, якщо вона є нескінченною тільки в правий бік, а крайня ліва комірка, яку називають початком стрічки, містить спеціальний виділений символ початку стрічки.

Машину Тюрінга називають **машиною Тюрінга з нескінченними в один бік стрічками** (Turing Machine with Semi-infinite tape), якщо всі її стрічки є нескінченними в один бік.

Наслідок

Однострічкова машина Тюрінга з нескінченними в один бік стрічками — ($\Gamma, \Sigma, \#, \triangleright, Q, Q_F, q_0, \delta$), де $\triangleright \in \Gamma$ — символ початку стрічки і $\Sigma \subseteq \Gamma \setminus \{\#, \triangleright\}$; якщо $\delta(q_1, \triangleright) = q_2, x, z$, де $q_1 \in Q \setminus Q_F$, $q_2 \in Q$, $x \in \Gamma$ і $z \in \{L, R\}$, то $x = \triangleright$ і z = R.

 $\mathcal{O}(t^2(n))$ для однострічкової машини Тюрінга $\mathcal{O}(t(n))$ для багатострічкової машини Тюрінга

Означення

Стрічку машини Тюрінга називають доступною тільки для зчитування, якщо забороняється використовувати правила переходів, які змінюють будь-який її символ.

Багатострічкову машину Тюрінга, яка має більше однієї стрічки, називають машиною Тюрінга з вхідною стрічкою, доступною тільки для зчитування (Offline Turing Machine), якщо її вхідна стрічка є доступною тільки для зчитування.

Означення

Стрічку машини Тюрінга називають доступною тільки для зчитування, якщо забороняється використовувати правила переходів, які змінюють будь-який її символ. Багатострічкову машину Тюрінга, яка має більше однієї стрічки, називають машиною Тюрінга з вхідною стрічкою, доступною тільки для зчитування (Offline Turing Machine), якщо її вхідна стрічка є доступною тільки для зчитування.

Наслідок

Для багатострічкової машини Тюрінга з вхідною стрічкою, доступною тільки для зчитування, змінюється область значень функції переходів: $\delta: (Q \setminus Q_F) \times \Gamma^k \nrightarrow Q \times \Gamma^{k-1} \times \{L,R\}^k$.

Твердження

Якщо для довільної функції $f:\Sigma^* \to \Sigma^*$ та довільної функції $t:\mathbb{N} \to \mathbb{N}$

- lacktriangledown існує машина Тюрінга M_1 без можливості запису на вхідну стрічку, яка обчислює значення функції f за час t(n), то існує машина Тюрінга \tilde{M}_1 з можливістю запису на вхідну стрічку, яка обчислює значення функції f за час t(n).
- lacktriangledown існує машина Тюрінга M_2 з можливістю запису на вхідну стрічку, яка обчислює значення функції f за час t(n), то існує машина Тюрінга \tilde{M}_2 без можливості запису на вхідну стрічку, яка обчислює значення функції f за час t(n)+2n+2.

Твердження

Якщо для довільної функції $f:\Sigma^* \to \Sigma^*$ та довільної функції $t:\mathbb{N} \to \mathbb{N}$

- **3** існує машина Тюрінга M_1 без можливості запису на вхідну стрічку, яка обчислює значення функції f за час t(n), то існує машина Тюрінга \tilde{M}_1 з можливістю запису на вхідну стрічку, яка обчислює значення функції f за час t(n).
- $oldsymbol{3}$ існує машина Тюрінга M_2 з можливістю запису на вхідну стрічку, яка обчислює значення функції f за час t(n), то існує машина Тюрінга \tilde{M}_2 без можливості запису на вхідну стрічку, яка обчислює значення функції f за час t(n)+2n+2.

Доведення.

- перше твердження частковий випадок
- використаємо додаткову стрічку і скопіюємо на неї вхідне слово -n тактів +n+2, щоб повернутися на початок слова

Означення

Стрічку машини Тюрінга називають **стрічкою без видалення**, якщо забороняється перезаписувати будь-який непорожній символ порожнім символом.

Машину Тюрінга називають **машиною Тюрінга без видалення** (Non-erasing Turing Machine), якщо всі її стрічки ε стрічками без видалення.

Означення

Стрічку машини Тюрінга називають **стрічкою без видалення**, якщо забороняється перезаписувати будь-який непорожній символ порожнім символом.

Машину Тюрінга називають **машиною Тюрінга без видалення** (Non-erasing Turing Machine), якщо всі її стрічки є стрічками без видалення.

Означення

Стрічку машини Тюрінга називають **стрічкою з обов'язковим перезаписуванням**, якщо обов'язково змінювати символ в її комірці на кожному такті.

Машину Тюрінга називають машиною Тюрінга з обов'язковим перезаписуванням (Always writing Turing Machine), якщо всі її стрічки є стрічками з обов'язковим перезаписуванням.

Означення

Багатострічкову машину Тюрінга, яка має більше однієї стрічки, називають **багатоканальною машиною Тюрінга** (Multi-track Turing Machine), якщо всі її зчитувальні пристрої завжди рухаються однаково $(\delta: (Q \setminus Q_F) \times \Gamma^k \nrightarrow Q \times \Gamma^k \times \{L,R\})$.

Означення

Багатострічкову машину Тюрінга, яка має більше однієї стрічки, називають **багатоканальною машиною Тюрінга** (Multi-track Turing Machine), якщо всі її зчитувальні пристрої завжди рухаються однаково ($\delta: (Q \setminus Q_F) \times \Gamma^k \nrightarrow Q \times \Gamma^k \times \{L,R\}$).

Означення

Зчитувальний пристрій машини Тюрінга називають зчитувальним пристроєм з обов'язковим рухом праворуч (ліворуч), якщо зчитувальний пристрій може рухатися тільки праворуч (ліворуч) (або залишатися на місці).

Багатострічкову машину Тюрінга, яка має більше однієї стрічки, називають **машиною Тюрінга з обов'язковим рухом праворуч**, якщо її вихідна стрічка має зчитувальний пристрій з обов'язковим рухом праворуч.

Означення

Стрічку машини Тюрінга називають **стрічкою з декількома зчитувальними пристроями**, якщо декілька зчитувальних пристроїв незалежно рухаються вздовж стрічки (рух і дії зчитувальних пристроїв є незалежними).

Машину Тюрінга називають машиною Тюрінга з декількома зчитувальними пристроями (Multi-head Turing Machine), якщо всі її стрічки є стрічками з декількома зчитувальними пристроями.

Означення

Стрічку машини Тюрінга називають **стрічкою з декількома зчитувальними пристроями**, якщо декілька зчитувальних пристроїв незалежно рухаються вздовж стрічки (рух і дії зчитувальних пристроїв є незалежними).

Машину Тюрінга називають машиною Тюрінга з декількома зчитувальними пристроями (Multi-head Turing Machine), якщо всі її стрічки є стрічками з декількома зчитувальними пристроями.

Означення

Стрічку машини Тюрінга називають **стрічкою із забороною перезаписування**, якщо забороняється перезаписувати будь-який непорожній символ.

Машину Тюрінга називають **машиною Тюрінга з забороною перезаписування** (Once-write Turing Machine), якщо всі її стрічки є стрічками із забороною перезаписування.

Означення

Зчитувальний пристрій машини Тюрінга називають зчитувальним пристроєм з можливістю більшого пересування, якщо зчитувальний пристрій може пересуватися більше ніж на одну комірку за один такт.

Машину Тюрінга називають машиною Тюрінга з можливістю більшого пересування (Jumping Turing Machine), якщо всі її зчитувальні пристрої є зчитувальними пристроями з можливістю більшого пересування

$$(\delta: (Q \setminus Q_F) \times \Gamma^k \nrightarrow Q \times \Gamma^k \times \{L, R\}^k \times \{1, \ldots, m\}^k).$$

Означення

Зчитувальний пристрій машини Тюрінга називають зчитувальним пристроєм з можливістю більшого пересування, якщо зчитувальний пристрій може пересуватися більше ніж на одну комірку за один такт.

Машину Тюрінга називають машиною Тюрінга з можливістю більшого пересування (Jumping Turing Machine), якщо всі її зчитувальні пристрої є зчитувальними пристроями з можливістю більшого пересування

$$(\delta: (Q \setminus Q_F) \times \Gamma^k \nrightarrow Q \times \Gamma^k \times \{L, R\}^k \times \{1, \ldots, m\}^k).$$

Означення

Машину Тюрінга називають **машиною Тюрінга з одним кінцевим станом** (Turing Machine with One Final state), якщо вона має тільки один кінцевий стан.

• можна обирати декілька властивостей одночасно

- можна обирати декілька властивостей одночасно
- властивості машини Тюрінга vs властивості стрічки та зчитувального пристрою

- можна обирати декілька властивостей одночасно
- властивості машини Тюрінга vs властивості стрічки та зчитувального пристрою
- ullet різниця між варіантами $\mathcal{O}(t(n))$ або $\mathcal{O}(t^2(n))$ $(\mathcal{O}(t^m(n)))$

- можна обирати декілька властивостей одночасно
- властивості машини Тюрінга vs властивості стрічки та зчитувального пристрою
- ullet різниця між варіантами $\mathcal{O}(t(n))$ або $\mathcal{O}(t^2(n))$ $(\mathcal{O}(t^m(n)))$
- Однострічкова машина Тюрінга з можливістю затримки та нескінченною в обидва боки стрічкою

- можна обирати декілька властивостей одночасно
- властивості машини Тюрінга vs властивості стрічки та зчитувального пристрою
- ullet різниця між варіантами $\mathcal{O}(t(n))$ або $\mathcal{O}(t^2(n))$ $(\mathcal{O}(t^m(n)))$
- Однострічкова машина Тюрінга з можливістю затримки та нескінченною в обидва боки стрічкою
- Багатострічкова машина Тюрінга з можливістю затримки, нескінченними в обидва боки стрічками та вхідною стрічкою, доступною тільки для зчитування