ĆWICZENIE NR 84

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ

I. Zestaw przyrządów:

- 1. Siatki dyfrakcyjne
- 2. Filtry interferencyjne
- 3. Monochromator z zasilaczem
- 4. Oświetlacz z zasilaczem
- 5. Ekran ze skalą i szczeliną
- 6. Ława optyczna z podziałką

II. Cel ćwiczenia

- 1. Wyznaczenie stałej siatki dyfrakcyjnej
- 2. Wyznaczenie chromatycznej zdolności rozdzielczej oraz dyspersji kątowej siatki dyfrakcyjnej
- 3. Wyznaczenie długości fal światła przepuszczanego przez filtry interferencyjne

III. Przebieg pomiarów i opracowanie wyników

Schemat układu pomiarowego i bieg promieni świetlnych przedstawiono na rysunkach:

E – ekran z podziałką milimetrową

S – siatka dyfrakcyjna

λ – promień światła o długości fali λ

L – odległość siatki dyfrakcyjnej od ekranu

 x_{ml} , x_{mp} – odległość pozornych obrazów m-tego rzędu od oświetlonej szczeliny

Zadania podstawowe

- 1. Wyznaczanie stałej siatki dyfrakcyjnej
 - a) na ławie optycznej w odległości L od ekranu ustawić siatkę dyfrakcyjną, a za ekranem ustawić źródło światła monochromatycznego: monochromator lub oświetlacz z filtrem interferencyjnym,
 - b) wiązkę światła monochromatycznego skierować na szczelinę w ekranie,
 - c) patrząc przez siatkę dyfrakcyjną zaobserwować świecącą szczelinę w ekranie i jej pozorne obrazy na tle ekranu ze skalą,
 - d) przy pomocy ruchomych wskazówek przymocowanych do ekranu zaznaczyć położenia pozornych obrazów szczeliny tworzonych przez promienie ugięte m-tego rzędu i odczytać ich odległości x_{ml} i x_{mp} od szczeliny
 - e) obliczyć średnią wartość x_m odległości pozornego obrazu od oświetlonej szczeliny $x_m = \frac{x_{m1} + x_{mp}}{2}$ oraz niepewność Δx_m np. metodą różniczki zupełnej
 - f) wyznaczyć sinusy kątów ugięcia dla pierwszego i drugiego rzędu dyfrakcji korzystając ze

wzoru:
$$\sin\Theta_{\rm m} = \frac{{\rm x_m}}{\sqrt{{\rm L}^2 + {\rm x_m}^2}}$$

- g) pomiar powtórzyć dla innych wartości odległości L i wyznaczyć średnie wartości, $(\sin\Theta_1)_{\text{śr}}$ i $(\sin\Theta_2)_{\text{śr}}$ czyli $(\sin\Theta_m)_{\text{śr}}$
- h) stałą siatki dyfrakcyjnej wyznaczyć korzystając z danych dla pierwszego i drugiego rzędu dyfrakcji odpowiednio m=1lub m=2

$$\mathbf{d} = \frac{m\lambda}{(sin\Theta_m)_{\acute{s}r}}$$

oraz niepewność Δd np. metodą pochodnej logarytmicznej, a następnie wyznaczyć wartość średnią $d_{\acute{s}r}$ oraz niepewność $\Delta d_{\acute{s}r}$.

i) niepewność $\Delta(\sin\Theta_m)$ wyznaczyć np. metodą różniczki zupełnej dla każdego Θ_m , a następnie porównać te wartości z niepewnością pomiaru $\Delta(\sin\Theta_m)_{\acute{s}r}$ wynikającą z rozrzutu wyników otrzymanych dla różnych wartości L. Większą z tych wartości przyjąć do obliczenia niepewności pomiaru Δd_m

$$\Delta \sin\Theta = \frac{\mathbf{L} \cdot \mathbf{x}_{m}}{\left(\mathbf{L}^{2} + \mathbf{X}_{m}^{2}\right)^{\frac{3}{2}}} \Delta \mathbf{L} + \frac{\mathbf{L}^{2}}{\left(\mathbf{L}^{2} + \mathbf{X}_{m}^{2}\right)^{\frac{3}{2}}} \Delta \mathbf{x}_{m}$$

- j) w opisany wyżej sposób wyznaczyć stałą siatki dyfrakcyjnej dla innych długości fal,
- k) wyniki pomiarów wpisać do proponowanej tabelki

λ	m	L	ΔL	X _{ml}	Δx_{ml}	X _{mp}	Δx_{mp}	Xm	Δx_{m}	$sin\Theta_{m}$	$\Delta(sin\Theta_m)$	$(sin\Theta_m)_{\acute{s}r}$	$\Delta (sin\Theta_m)_{\acute{s}r}$	d	Δd	<u>∆d</u> d	$\overline{\mathbf{d}}$	$\Delta \overline{d}$
nm		cm	cm	cm	cm	cm	cm	cm	cm					μm	μm	%	μm	μm
	1																	
	2																	

W analogiczny sposób stabelaryzować wyniki pomiarów uzyskane dla innych długości fal.

- 2. Wyznaczanie długości fal światła przepuszczanego przez filtry optyczne
 - a) zaobserwować widmo dyfrakcyjne światła białego,
 - b) na oświetlacz nakręcić filtr interferencyjny przepuszczający światło o nieznanej długości fali.
 - c) powtórzyć czynności opisane w punktach od 1.b do 1.g,
 - d) pomiary powtórzyć dla innych filtrów wskazanych przez opiekuna dydaktycznego.
 - e) wyniki pomiarów i obliczeń wpisać do proponowanej tabelki:

f) wyznaczyć długość fali światła przepuszczanego przez filtr korzystając z danych dla pierwszego i drugiego rzędu dyfrakcji oraz niepewność pomiaru długości fali $(\Delta\lambda)$ np. metodą pochodnej logarytmicznej, a następnie wyznaczyć wartość średnią $\lambda_{\text{śr}}$ oraz

niepewność
$$\Delta \lambda_{\text{\'sr}}.$$

$$\lambda = \frac{d \cdot sin\Theta_{m}}{m} \, ,$$

g) niepewność $\Delta(\sin \Theta_m)$ wyznaczyć tak jak w pkt. 1.i

m	L	ΔL	X _{ml}	Δx_{ml}	X _{mp}	Δx_{mp}	$sin\Theta_m$	$\Delta(\sin\Theta_{\rm m})$	$(\sin\Theta_m)_{\acute{s}r}$	$\Delta(\sin\Theta_{\rm m})_{\rm \acute{s}r}$	λ	Δλ	$\overline{\lambda}$	$\Delta \overline{\lambda}$
	cm	cm	cm	cm	cm	cm					nm	nm	nm	nm
1														
_														
2														

Zadania dodatkowe

3. Wyznaczanie chromatycznej zdolności rozdzielczej siatki dyfrakcyjnej W celu wyznaczenia zdolności rozdzielczej siatki dyfrakcyjnej można skorzystać ze wzoru:

$$\mathbf{R} = \frac{\lambda}{\Delta \lambda} = \mathbf{m} \mathbf{N} = \mathbf{m} \frac{\mathbf{s}}{\mathbf{d}},$$

gdzie: m jest rzędem dyfrakcji,

N liczbą szczelin siatki dyfrakcyjnej, |

s jej szerokością czynną tj. odległością jaką zajmuje N szczelin – prostopadłą do szczelin

d stałą siatki.

Szerokość czynną siatki należy zmierzyć suwmiarką.

- 4. Wyznaczanie dyspersji kątowej siatki dyfrakcyjnej
 - a) dyspersję kątową siatki dyfrakcyjnej $\frac{d\Theta}{d\lambda}$ wyznaczyć korzystając z układu pomiarowego stosowanego do wyznaczania stałej siatki dyfrakcyjnej i powtarzając czynności opisane w punktach 1.c i 1.d dla kilku różnych długości fal,
 - b) dla każdej długości fali wyznaczyć dyspersję kątową siatki dyfrakcyjnej, korzystając ze

wzoru:
$$\frac{d\Theta}{d\lambda} = \frac{m}{d \cdot \cos \Theta_m}, \quad \cos \Theta_m = \frac{L}{\sqrt{L^2 + x_m^2}}$$

- c) sporządzić wykres zależności $\frac{d\Theta}{d\lambda} = f(\lambda)$
- d) wyznaczyć niepewność pomiaru dyspersji kątowej dla skrajnych i środkowej wartości badanego przedziału długości fal np. metodą różniczki zupełnej,

$$\Delta \cos \Theta = \frac{X_{m}^{2}}{\left(L^{2} + X_{m}^{2}\right)^{\frac{3}{2}}} \Delta L + \frac{L \cdot X_{m}}{\left(L^{2} + X_{m}^{2}\right)^{\frac{3}{2}}} \Delta X_{m}$$

e) Wyniki pomiarów i obliczeń zamieścić w proponowanej tabelce:

m	λ	X _{ml}	Δx_{ml}	X _{mp}	Δx_{mp}	cos Θ	Δcos Θ	$\frac{d\Theta}{d\lambda}$	$\Delta \left(\frac{d\Theta}{d\lambda} \right)$	$\Delta \left(\frac{d\Theta}{d\lambda}\right) / \frac{d\Theta}{d\lambda}$
	nm	cm	cm	cm	cm			rad/m	rad/m	%
1										
2										