习题一: 随机事件的概率

一、选择题

1. (2	(2009)设事件 (A, B) 互不相容,则	下列正确的是	ľ]
	A. $P(\overline{AB}) = 0$;	B. $P(AB) = P(A)P(B)$;		
	C. $P(\overline{A}) = 1 - P(B)$;	$D. P(\overline{A} \cup \overline{B}) = 1.$		
2.设	事件 A,B 互不相容,则下列各式	错误的是	ľ	1
	A. $P(AB) = 0$;	B. $P(A \cup B) = P(A) + P(B)$;		
	C. $P(AB) = P(A)P(B)$;	D. $P(B-A) = P(B)$.		
3. 设	有事件 A, B, C , 则下列命题错误	的是	ľ]
	A. $A \cup B \cup C \supset AB$;	$C A \cup B \supset ABC;$		
	C. $A \cup B \cup C 与 \overline{ABC}$ 相容:	D. $A \cup B \cup C$ 与 \overline{AC} 相容.		
4. ì	及任意事件 A 与 B, 则下列说法	正确的是	ľ]
	A. $A \cup B - B = A$;	B. $A \cup B - B \subset A$;		
	C. $A \cup B - B \supset A$;	$D. A \bigcup B - B = B.$		
5. j	及随机事件 $B \subset A$,则下列说法	正确的是	ľ]
	A. $P(A \cup B) = P(B)$;	B. P(AB) = P(B) ;		
	C. $P(A B) = P(B)$;	D. $P(B-A) = P(B) - P(A)$.		
6. j	及事件 A 和 B 满足 $A \subset B$ 且 $P(B)$	>0,则下列选项中正确的是	ľ]
	A. $P(A) < P(A B)$;	B. $P(A) \leq P(A B)$;		
	C. $P(A) > P(A B)$;	$D. P(A) \ge P(A B).$		

4. 4.D. 日 了 可 4k 志 仏

7. 设有事件A和B, 且P(AB) = 0,则

A. AB 是不可能事件; B. AB 不一定是不可能事件;

1

C. A, B 互不相容;

D. $P(A) = 0 \implies P(B) = 0$.

8. 设有事件A和B,下列命题正确的是 A. 如果A, B互不相容, 则 \overline{A} , \overline{B} 也互不相容; B. 如果A, B相容,则 \overline{A} , \overline{B} 也相容; C. 如果A, B 互不相容, 且 P(A) > 0, P(B) > 0, 则 A, B 独立; D. 如果A, B相互独立, 则 \overline{A} , \overline{B} 也相互独立. 9. 对于任意两个事件 A 和 B, 下列说法中正确的是 A. 若 $AB \neq \phi$, 则 A , B 一定相互独立; B. 若 $AB \neq \phi$,则A,B有可能相互独立; C. 若 $AB = \phi$, 则 A, B 一定相互独立; D. 若 $AB = \phi$, 则 A, B 一定不独立. 10. 设 0 < P(A) < 1, 0 < P(B) < 1, $P(A|B) + P(\overline{A}|\overline{B}) = 1$, 则 $A \subseteq B$ 1 A. 互不相容; B. 互为对立事件; C. 不相互独立; D. 相互独立. 11. (2015) 设 A, B 为任意两个随机事件,则 A. $P(AB) \leq P(A)P(B)$; B. $P(AB) \ge P(A)P(B)$; C. $P(AB) \le \frac{P(A) + P(B)}{2}$; D. $P(AB) \ge \frac{P(A) + P(B)}{2}$. 12. 己知 P(A) = 0.5, P(B) = 0.4, $P(A \cup B) = 0.6$, 则 $P(A \mid B)$ 等于 1

A. 0. 2; B. 0. 45; C. 0. 6; D. 0. 75.

13. 设
$$P(A) = a$$
, $P(B) = b$, $P(A \cup B) = c$, 则 $P(A\overline{B})$ 为

A.
$$a-b$$
; B. $c-b$; C. $a(1-b)$; D. $a(1-c)$;

14. 设 A、B 为两随机事件,已知 $P(A) = \frac{1}{4}$, $P(B|A) = \frac{1}{3}$, $P(A|B) = \frac{1}{2}$, 则 $P(A \cup B) = \frac{1}{2}$

A. $\frac{1}{2}$; B. $\frac{1}{3}$; C. $\frac{1}{4}$; D. $\frac{1}{12}$.

P(B - A) =				
A. 0. 1;	B. 0. 2;	C. 0. 3;	D. 0. 4 .	
16. 设甲袋中有 3	个黑球,7个白斑	球,乙袋中有4个	黑球,5个白球,	现从甲袋中
取出1球放进	乙袋, 再从乙袋	中取一球,则取得	导白球的概率是	
A. 1/2;	B. 5/9;	C. 57/100;	D. 3/5.	
17. 若随机事件 A	和 B 都不发生的	的概率为 p ,则以 $^-$	下结论中正确的是	
A. A和B都知	发生的概率等于	1-p;		
B. A和B只有	有一个发生的概率	率为 1 <i>一p</i> ;		
C. A 发生 B 7	不发生的概率为	1-p;		
D. A和B至2	少有一个发生的村	概率为 1-p.		
18.(2007)某人向同	可一目标独立重复	夏射击,每次射击	命中目标的概率为	J
$p(0 ,$	则此人第4次射	击恰好是第2次命	冷中目标的概率为	
A. $3p(1-p)$	2 ; B. $6p(1-$	$(p)^2$; C. $3p^2$	$(1-p)^2$; D. 6p	$^{2}(1-p)^{2}$.
19. (2016) 设A、	B为两个随机事	件, 且0 < P(A)	< 1, 0 < P(B)	< 1, 若
P(A B)=1,则				[]
A. $P(\overline{B} \overline{A}) =$	=1; B. $P(A \overline{B})$	(P(A)) = 0; C. $P(A)$	$A \cup B) = 1$; D. $A \cup B$	P(B A) = 1.
·	·			
二、填空题(铂	尋题 4 分,共:	56分)		
1. 设 $P(A) = 0.7$,	P(A-B)=0.3,	则 $P(\overline{AB}) = \underline{\hspace{1cm}}$	·	
2. 事件 <i>A</i> 与 <i>B</i> 互 7	下相容,且 $P(\overline{A})$	$=0.8$, $\square P(A\overline{B})$	=	·
3. 己知事件 A, B 科	目互独立, A, C 互戶	$\mathbf{\hat{x}}, \ P(A) = 0.4, P(B)$	P(C) = 0.3, P(C) = 0.4, A	P(B C) = 0.2
则 $P(C A \cup B) =$		<u>_</u> .		
4. (2012) 设 <i>A,B</i> , (了是随机事件, <i>2</i>	4与 C 互不相容,	已知 $P(AB) = \frac{1}{2}, P(C)$	$C(x) = \frac{1}{3}, \text{ [I]}$
$P(AB \overline{C}) = \underline{\hspace{1cm}}$	·			
5. 将 6 本不同的书	5随机地放在书势	保上,则指定的3	本书放在一起的概	抚 率
为				

15. (2014) 设随机事件 A、B 相互独立,且 P(B) = 0.5, P(A - B) = 0.3, 则

6. 将 5 本书随机地放在书架上,则指定的两本书正好中间隔着一本书的概率	
为	
7.10 片药片中有 5 片是安慰剂,从中每次取一片,作不放回抽样,则前 3 次	都
取到安慰剂的概率是	
8. 袋中装有3个10元,5个5元的钞票,现从中任取4张,则总金额达到30) _万
的概率为	
9. 盒子中有 5 个红球 3 个白球一共 8 个球,从中无放回地每次取一个,共取	3
次,正好取出2个红球1个白球的概率为	
10. 盒子中有 5 红 3 白 2 黑一共 10 个球,从中有放回地每次取一个,共取 6 分	次,
恰好2红3白的概率为	
11. (2016)设袋中有红、白、黑球各1个,从中有放回地取球,每次取1个,	直
到三种颜色的球都取到为止,则取球的次数恰好为4的概率为	
12. 从五双不同的鞋子里任取 4 只,则至少有两只配成一双的概率为	
13. 盒子中有 5 个红球 3 个白球一共 8 个球, 无放回地每次取一个, 共取 4 次	₹,
恰好1个红球3个白球的概率为	
14. 盒子中有5个红球3个白球一共8个球,无放回地每次取一个,共取5	次,
恰好2个红球3个白球的概率为	

习题二: 随机变量的分布

一、选择题:

1. (2013) 设随机变量 X 和 Y 相互独立,且 X 和 Y 的概率分布分别为:

X	0	1	2	3
Р	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{8}$

Y	-1	0	1	
Р	$\frac{1}{3}$	$\frac{1}{3}$	1/3	

则 $P\{X+Y=2\}=$

1

- A. $\frac{1}{12}$; B. $\frac{1}{8}$; C. $\frac{1}{6}$; D. $\frac{1}{2}$.

2. 设离散型随机变量 X 的分布律为 $P\{X=k\}=aC_2^kC_3^{3-k}\ (k=0,1,2)$,则 $a=\mathbb{C}$ 1

- A. $\frac{1}{2}$; B. $\frac{1}{5}$; C. $\frac{1}{3}$; D. $\frac{1}{10}$.

3. 设随机变量 ξ 的概率密度 $f(x) = k \cos 2x \ (x \in \left[-\frac{\pi}{4}, \frac{\pi}{4}\right])$,则 k 的值为 【

- A. 0.5;
- B. 1;
- C. 2;
- D. 0.25.

4. (2010)设 $p_1(x)$ 为标准正态分布的分布密度, $p_2(x)$ 为[-1,3]上均匀分布的分布密

度,若 $p(x) = \begin{cases} ap_1(x) & x \le 0 \\ bp_2(x) & x > 0 \end{cases}$ (a > 0, b > 0) 也为分布密度,则 a, b 应满足【 1

- A. 2a + 3b = 4; B. 3a + 2b = 4; C. a + b = 1; D. a + b = 2.

5.设 X 为连续型随机变量,当 $x \ge 0$ 时, $F(x) = 1 - \frac{1}{3}e^{-3x}$,则 $P\{X \le 0\}$ 是 【 1

- B. 1; C. $\frac{1}{2}$;

6. 设 $F_1(x)$, $F_2(x)$ 分别是随机变量 X_1 和 X_2 的分布函数,为使

 $F(x) = aF_1(x) - bF_2(x)$ 是某一随机变量的分布函数,则 a, b 的取值为

A. $a = \frac{3}{5}, b = -\frac{2}{5}$;

B. $a = \frac{2}{3}, b = \frac{2}{3}$;

C. $a = -\frac{1}{2}, b = \frac{3}{2}$;

D. $a = \frac{1}{2}, b = \frac{3}{2}$.

7. 设F(x,y)为(X,Y)的分布函数,则以下结论不成立的是 1

A. $0 \le F(x, y) \le 1$;

B. $F(+\infty,+\infty)=1$;

C. $F(-\infty,+\infty)=1$;

8. (2010)设 *R.V.X* 的分布函数为 $F(x) = \begin{cases} 0 & x < 0 \\ \frac{1}{2} & 0 \le x < 1 , P\{X = 1\} 等于 【 1 - e^{-x} & x > 1 \end{cases}$

- A. 0;
- B. $\frac{1}{2}$; C. $\frac{1}{2} e^{-1}$;

9. IJ	设随机变量 $X \sim N(\mu, \sigma^2)$,则概		
	A. 随 μ 的增大而增大;	B. 随 μ 的增大而减小;	
(C. 随 σ 的增加而增加;	D. 随 σ 的增加而减小。	
10. j	及随机变量 $X \sim N(\mu, \sigma^2)$,则概	率 $P(X - \mu \ge 2)$ 会随着 σ 的增大而	
	ŕ	C. 保持不变; D. 不能确	
11. j	受随机变量 $X \sim N(\mu, \sigma^2)$ 则概3	率 $P(X - \mu \le 1)$ 会随着 σ 的增大而	()
	,	C. 保持不变; D. 不能确	
12. j	及随机变量 $X \sim N(\mu, \sigma^2)$,则概	$x = P(X - \mu \le \sigma)$ 会随着 σ 的增大而	()
	,	C. 保持不变; D. 不能确	
13. t	设随机变量 $X \sim N(\mu, \sigma^2)$, 则概 $\frac{1}{2}$	率 $P(X - \mu \le \sigma^2)$ 会随着 σ 的增大而	ī []
	A. 增大; B. 减小;	C. 保持不变; D. 不能确	定.
14. (2006) 设随机变量 $X \sim N(\mu_1, \sigma_1^2)$), $Y \sim N(\mu_2, \sigma_2^2)$, \blacksquare	[]
	$P\{ X-\mu_1 <1\}>P\{ Y-\mu_2 <1\},$	则必有	
	A. $\sigma_1 < \sigma_2$; B. $\sigma_1 > \sigma_2$; C. $\mu_1 < \mu_2$; D. μ_1	$<\mu_2$
		至[0,1]服从均匀分布,则服从均匀分	
变	量是		[]
	里足		
		C. X^2 ; D. (X,Y) .	
	A. $X + Y$; B. $X - Y$;		(x) 是连续
16. (A. $X + Y$; B. $X - Y$;	C. X^2 ; D. (X,Y) . 币函数,其相应的概率密度 $f_1(x), f_2$	(x)是连续 【 】
16. (河	A. $X + Y$; B. $X - Y$; 2011) 设 $F_1(x), F_2(x)$ 为两个分布		(x)是连续 【 】
16. (注	A. $X + Y$; B. $X - Y$; 2011) 设 $F_1(x), F_2(x)$ 为两个分布数,则必为概率密度的是 A. $f_1(x)f_2(x)$;	币函数,其相应的概率密度 $f_1(x), f_2$ B. $2f_2(x)F_1(x)$;	(x)是连续 【 】
16. (注	A. $X + Y$; B. $X - Y$; 2011) 设 $F_1(x)$, $F_2(x)$ 为两个分布数,则必为概率密度的是	F 函数,其相应的概率密度 $f_1(x)$, f_2	(x) 是连续 【 】
16. (河	A. $X + Y$; B. $X - Y$; 2011) 设 $F_1(x), F_2(x)$ 为两个分布数,则必为概率密度的是 A. $f_1(x)f_2(x)$; C. $f_1(x)F_2(x)$;	币函数,其相应的概率密度 $f_1(x), f_2$ B. $2f_2(x)F_1(x)$;	[]
16. (河) 17. 设	A. $X + Y$; B. $X - Y$; 2011) 设 $F_1(x), F_2(x)$ 为两个分布数,则必为概率密度的是 A. $f_1(x)f_2(x)$; C. $f_1(x)F_2(x)$;	所函数,其相应的概率密度 $f_1(x), f_2$ $B. \ 2f_2(x)F_1(x);$ $D. \ f_1(x)F_2(x)+f_2(x)F_1(x).$ $1分布密度分别是 p_1(x)和 p_2(x),则$	[]
16. (x 函) 17. 该	A. $X + Y$; B. $X - Y$; 2011) 设 $F_1(x)$, $F_2(x)$ 为两个分布数,则必为概率密度的是 A. $f_1(x)f_2(x)$; C. $f_1(x)F_2(x)$; 及连续型随机变量 X,Y ,它们的 A. $p_1(x) + p_2(x)$ 必为某一随机	所函数,其相应的概率密度 $f_1(x)$, f_2 $B. \ 2f_2(x)F_1(x)$; $D. \ f_1(x)F_2(x)+f_2(x)F_1(x)$. $1分布密度分别是 p_1(x)和 p_2(x),则$ 变量的分布密度;	[]
16. (河西)	A. $X + Y$; B. $X - Y$; 2011) 设 $F_1(x)$, $F_2(x)$ 为两个分布数,则必为概率密度的是 A. $f_1(x)f_2(x)$; C. $f_1(x)F_2(x)$; 设连续型随机变量 X,Y ,它们的 A. $p_1(x) + p_2(x)$ 必为某一随机 $\frac{1}{2}[p_1(x) + p_2(x)]$ 必为某一随	所函数,其相应的概率密度 $f_1(x)$, $f_2(x)$ B. $2f_2(x)F_1(x)$; D. $f_1(x)F_2(x)+f_2(x)F_1(x)$. 分布密度分别是 $p_1(x)$ 和 $p_2(x)$,则变量的分布密度;	[]
16. (河西)	A. $X + Y$; B. $X - Y$; 2011) 设 $F_1(x)$, $F_2(x)$ 为两个分布数,则必为概率密度的是 A. $f_1(x)f_2(x)$; C. $f_1(x)F_2(x)$; 及连续型随机变量 X,Y ,它们的 A. $p_1(x) + p_2(x)$ 必为某一随机	所函数,其相应的概率密度 $f_1(x)$, $f_2(x)$ B. $2f_2(x)F_1(x)$; D. $f_1(x)F_2(x)+f_2(x)F_1(x)$. 分布密度分别是 $p_1(x)$ 和 $p_2(x)$,则变量的分布密度;	[]

18. 下列函数可以作为某随机变量的分布函数的是

A.
$$F(x) = \frac{1}{1+x^2}$$
;

B.
$$F(x) = \sin x$$
;

C.
$$F(x) = \begin{cases} \frac{1}{1+x^2} & x \le 0\\ 1 & x \ge 0 \end{cases}$$

C.
$$F(x) = \begin{cases} \frac{1}{1+x^2} & x \le 0 \\ 1 & x \ge 0 \end{cases}$$
, D. $F(x) = \begin{cases} 0 & x < 0 \\ 0.5 & 0 \le x \le 1 \\ 0.3 & 1 < x \le 2 \\ 1 & x > 2 \end{cases}$

19. 设随机变量 X 的分布函数 F(x), 分布密度为 p(x), 且 p(x) = p(-x), 则对任 1 意的实数 a, 正确的是

A.
$$F(a) = F(-a)$$
;

B.
$$F(-a) = 1 - \int_0^a p(x) dx$$
;

C.
$$F(-a) = \frac{1}{2} - \int_0^a p(x)dx$$
; D. $F(-a) = 2F(a) - 1$.

D.
$$F(-a) = 2F(a) - 1$$
.

20. (2013) 设 X_1, X_2, X_3 是随机变量,且 $X_1 \sim N(0,1), X_2 \sim N(0,2^2), X_3 \sim N(5,3^2),$

$$P_j = P\{-2 \le X_j \le 2\}$$
 $(j = 1, 2, 3)$, 则

]

1

A.
$$P_1 > P_2 > P_3$$
;

B.
$$P_2 > P_1 > P_3$$
;

C.
$$P_3 > P_1 > P_2$$
;

D.
$$P_1 > P_3 > P_2$$
.

二、填空题

1. 在区间(0,1)中随机地取两个数,则两数之差的绝对值小于1/2的概率

2. 设相互独立的两个随机变量 X, Y具有相同的分布律,且 X的分布律为:

P(X=0) = P(X=1) = 0.5 则概率 P(X=Y) =______.

3. 设二维离散型随机变量(X,Y)的联合分布律为

 $P\{X=i, Y=j\} = c|i-j|, i=-2,0,2; j=-2,3, \text{ } \emptyset \text{ } c=\underline{\hspace{1cm}}.$

4. 设随机变量 X 的分布函数为 $F(x) = \begin{cases} 0, & x < 0 \\ 2x, & 0 \le x \le a, \\ 1, & x > a \end{cases}$

5. 设随机变量 X 的分布函数为 $F(x) = \begin{cases} 1 - e^{-\lambda x} & x > 0 \\ 0 & x \le 0 \end{cases}$, 其中 $\lambda > 0$, 则

$$P\{-1 < X < 1\} =$$
_____.

6. 设连续型随机变量 X 的分布函数为 $F(x) = \begin{cases} A + Be^{-\lambda x} & x > 0 \\ 0 & x \le 0 \end{cases}$,则

$$A = \underline{\hspace{1cm}}$$
 , $B = \underline{\hspace{1cm}}$.

习题四: 随机变量的数字特征

一、选择题

1. 设随机变量的概率密度为 $p(x) = \frac{1}{\sqrt{\pi}} e^{-x^2 + 2x - 1}$, 则下列结论正确的是【

A.
$$EX = 1, DX = \frac{1}{2}$$
;

B.
$$EX = 2, DX = 1$$
;

C.
$$EX = 1, DX = 2$$
;

D.
$$EX = -1, DX = 2$$
.

2. 设 R.V.X,Y,若 E(XY) = (EX)(EY),则以下各选项中肯定正确的是 1

A.
$$D(XY) = (DX)(DY)$$
;

A.
$$D(XY) = (DX)(DY)$$
; B. $D(X + Y) = DX + DY$;

3. 若随机变量 X, Y 满足 D(X + Y) = D(X - Y), 则

C.
$$DX = 0$$
;

D.
$$DX \cdot DY = 0$$
.

4. 设随机变量 X 的分布函数为 $F(x) = 0.3\phi(x) + 0.7\phi(\frac{x-1}{2})$,其中 $\phi(x)$ 标准正态分 布的分布函数,则EX等于]

- A. 0;
- B. 0. 3;
- C. 0. 7;
- D. 1.

5. (2008) 设随机变量	$X \sim N(0,1), Y$	$\sim N(1,4)$,且相关系	$\mathop{:} olimits_{\gamma_{XY}} = 1$	1,则	ľ	1
	A. $P\{Y = -2X -$	-1 } = 1;		B. $P\{Y = 1\}$	$2X-1\}=1$;		
	C. $P{Y = -2X +$	-1 } = 1;		D. $P{Y =$	$2X+1\}=1$	•		
6. 设	战 <i>R.V.X</i> 的概率密	度为 $p(x) = \begin{cases} x \\ y \end{cases}$	$\lambda e^{-\lambda x}$, x 0, 其	≥0 他,且 <i>E</i> ($(X^2) = 72$ §	則ん为	ľ	1
	A. 6;	В. 3;	C. 1/3;	1	D. 1/6.			
7. 设	是二维随机变量(2	$(X,Y) \sim N(\mu_1,\mu_2)$	$\iota_2, \sigma_1^2, \sigma_2^2,$	ho),则下列	J结论中错	误的是	ľ	1
	A. $X \sim N(\mu_1, \sigma_1^2)$	$(Y^2), Y \sim N(\mu_2, \sigma)$	$(2^{2});$	B. X, Y 相	互独立的表	充要条件	是 <i>ρ</i> =	0;
	$C. E(X+Y) = \mu$	$\mu_1 + \mu_2$;		D. <i>D</i> (<i>X</i> +	$Y) = \sigma_1^2 + \epsilon$	σ_2^2 .		
8.	设二维随机变量($(X,Y) \sim N(\mu_1,$	$\mu_2, \sigma_1^2, \sigma_2^2$	$^2, ho)$,则下 2	列条件不是	₽ X, Y 相	互独立	Σ的
方	它要条件的是						•	1
	A. $D(X+Y) =$	DX + DY;		B. <i>EX</i> =	EY = 0;			
	C. $cov(X,Y) =$	0;		D. $E(X)$	(Y) = EXEY	Y		
9. 将	 好长度为 1 米的木	棒随机地截成	战两段,则	两段长度	的相关系	数为	ľ	1
	A. 1;	B. $\frac{1}{2}$;	С	$-\frac{1}{2}$;		D1.		
10.	若随机变量 X,Y	独立同分布,	记 $\xi = X$ -	$+Y$, $\eta = X$	- Y , 则 ξ	和η必有	î 【	1
	A. 不相互独立;	B. 相互独立	乙; C. 木	目关系数为	ョ0; D. 柞	目关系数	不为 0.	
11.	设随机变量 X ,	$EX = \mu, DX$	$=\sigma^2$,用专	刀比雪夫不	等式估计			
F	$P\{\left X - EX\right \le 3\sigma\} \ge$			_				1
	A. $\frac{1}{9}$;	B. $\frac{1}{3}$;		C. $\frac{8}{9}$;		D. 1.		

12. 设 $\xi_1, \xi_2, \dots \xi_n$ 相互独立, $E(\xi_i)=1, D(\xi_i)=1$ $(i=1,2,\dots,9)$,则对任意给定

$$\varepsilon > 0$$
, \hat{q}

$$\text{A. } P\{\left|\sum_{i=1}^{9} \xi_{i} - 1\right| < \varepsilon\} \ge 1 - \varepsilon^{-2}; \qquad \qquad \text{B. } P\{\left|\frac{1}{9}\sum_{i=1}^{9} \xi_{i} - 1\right| < \varepsilon\} \ge 1/\varepsilon^{2};$$

B.
$$P\{\left|\frac{1}{9}\sum_{i=1}^{9}\xi_{i}-1\right|<\varepsilon\} \ge 1/\varepsilon^{2};$$

C.
$$P\{\left|\sum_{i=1}^{9} \xi_i - 9\right| < \varepsilon\} \ge 1 - \varepsilon^{-2};$$

C.
$$P\{\left|\sum_{i=1}^{9} \xi_i - 9\right| < \varepsilon\} \ge 1 - \varepsilon^{-2};$$
 D. $P\{\left|\sum_{i=1}^{9} \xi_i - 9\right| < \varepsilon\} \ge 1 - 9\varepsilon^{-2}.$

二、填空题

- 1. 设随机变量 $X \sim P(\lambda)$, 且 EX = 2, 则 P(X = 2) =
- 2. 设随机变量 $X \sim E(\lambda)$, 且 EX = 2,则 P(X < 2) =
- 3. (2008) 设随机变量 X服从参数为 1 的泊松分布,则 $P\{X = EX^2\}$ = . .
- 4. 设随机变量 X, Y 相互独立且均服从 B(1, 0.9), 则 Z = min(X,Y) 的分布律
- 5. 设随机变量 X, Y相互独立, 且 EX = 0, EY = 1, DX = 1, 则 E[X(X+Y-2)] =.
- 6. (2015) 设二维随机变量(X,Y) 服从正态分布N(1,0;1,1;0),则

$$P\{XY - Y < 0\} =$$
_____.

7. (2011) 设二维随机变量(X,Y)服从正态分布 $N(\mu,\mu,\sigma^2,\sigma^2;0)$,则

$$E(XY^2) =$$
 .

8. 两个相互独立的随机变量X与Y的分布律分别为:

X	1	-2
Р	0.9	0.1

Y	0	1
Р	0.6	0.4

设函数 $Z = X^2 + 2Y$,则 Z 的数学期望 E(Z) = ______.

9. 随机变量 X 服从参数为 λ 的泊松分布,且 $P\{k=1\}=P\{k=2\}$,则

$$D(X) = \underline{\hspace{1cm}}$$
.

10. 设随机变量 $X_1, X_2, \cdots, X_i, \cdots$ 相互独立同分布,且

$$E(X_i) = \mu, D(X_i) = \sigma^2, i = 1, 2, \dots, \text{ where } P\left\{\frac{\sum_{i=1}^n X_i - n\mu}{\sqrt{n}\sigma} \ge 0\right\} = \underline{\qquad}.$$

- 11. 随机变量 X_1, X_2, X_3 相互独立、同分布且方差不为零,则 $Y = X_1 + X_2$ 与 $Z = X_2 + X_3$ 的相关系数为 _______.
- 12. 设随机变量 X和 Y的相关系数为 0.9,若 Z = X 0.4,则 Y与 Z的相关系数为 _____.
- 13. 将一枚硬币重复抛 n 次,以 X 和 Y 分别表示硬币正面朝上和反面朝上的次数,则 X 和 Y 的相关系数为 _____。
- 15. 设(X,Y)的协方差矩阵为 $Cov(X,Y) = \begin{pmatrix} 4 & -3 \\ -3 & 9 \end{pmatrix}$,则X与Y的相关系数 $\rho_{XY} = \underline{\hspace{1cm}}$.