Notater

Fredrik Meyer

21. januar 2016

0.1 Tautologisk linjebunt på \mathbb{P}^n

Vi kan definere en tautologisk linjebunt på \mathbb{P}^n . Dette er en bunt hvis fiber over et punkt p er linjen i \mathbb{A}^{n+1} utspent av (de homogene koordinatene til) p. La $q \in \langle p \rangle$ bety at q er med i spennet av p. Da er

$$\mathscr{T} := \{ (q, p) \in \mathbb{A}^{n+1} \times \mathbb{P}^n \mid q \in \langle p \rangle \}.$$

Ved å regne overgangsfunksjoner kan en se at $\mathscr{T} \simeq \mathscr{O}_{\mathbb{P}^n}(-1)$.

Det finnes også andre måter å se dette på, eksempelvis slik Mike Eastwood forklarte det på siste forelesning, men det har jeg glemt av nå (!!).

0.2 Embedding Grassmannian

Grassmannian har en tautologisk linjebunt \mathcal{E} , hvis seksjoner kan skrives som matriser. Fiberen over et punkt [V] i Grassmannian er nettopp det lineære underrommet punktet representerer.

Da vil $\wedge^k \mathscr{E}$ være en linjebunt på Grassmannian, og seksjonene vil være utspent av alle minorene. Så dette er linjebunten Plücker-embeddingen svarer til.

0.3 Topologien til SR-skjemaer

La $X = \mathbb{P}(\Delta)$ være et Stanley-Reisner-skjema. La $f = (f_0, \ldots, f_n)$ være f-vektoren, det vil si, antall f_i er antall i-dimensjonale fasetter i Δ . Da er $h^i(\mathbb{P}_{\mathbb{C}}(\Delta), \mathbb{C}) = f_i$ om i er jevn, og 0 ellers. Dette er fordi X har strukturen til et CW-kompleks med bare celler i jevne grader.

0.4 Kotangentkohomologi på en oppblåsning

La $\pi:\widetilde{X}\to X$ være oppblåsningen av en glatt flate X i et punkt P. La $E\simeq \mathbb{P}^1$ være den eksepsjonelle divisoren. Vi ønsker å beregne kohomologien $H^i(\Omega^1_{\widetilde{X}/k})$ gitt kjennskap til kohomologien til X.

Et standard teorem sier at vi har en eksakt sekvens

$$\pi^*\Omega^1_{X/k} \to \Omega^1_{\widetilde{X}/k} \to \Omega^1_{\widetilde{X}/X} \to 0.$$

Påstanden er at denne er venstre-eksakt også. Siden $\widetilde{X}\backslash E\simeq X\backslash P$ er den første pilen en isomorfi utenfor E (og dermed er høyre-leddet også null). Om vi er på $Q\in E$, har vi at $\mathscr{G}=\pi^*\Omega^1_{X/k}$ er null langs E, siden stilken $\mathscr{G}_Q=\Omega^1_{f(x)/k}$, og kotangentknippet over et punkt er null.

Legg også merke til at $\Omega^1_{\widetilde{X}/X} = i_* \mathscr{O}_{\mathbb{P}^1}(-2)$ siden $E \simeq \mathbb{P}^1$ og knippet er null utenfor E (her er $i: \mathbb{P}^1 \to \widetilde{X}$ inklusjonen). Dermed har vi sekvensen

$$0 \to \pi^*\Omega^1_{X/k} \to \Omega^1_{\widetilde{X}/k} \to i_*\mathscr{O}_{\mathbb{P}^1}(-2) \to 0.$$

Vi har også at $H^i(\pi^*\Omega^1_{X/k})=H^i(\Omega^1_{X/k})$ (se beviset for Zariskis hovedteorem i Hartshorne).

Dermed har vi at $H^0(\Omega^1_{\widetilde{X}/k}) = H^0(\Omega^1_{X/k})$. For å regne ut de andre kohomologigruppene trenger vi mer presis informasjon om X. Så anta $X = \mathbb{P}^2$. Da følger det fra Euler-sekvensen at $H^i(\Omega^1_{X/k})$ er null for i = 0, 2 og 1 for i = 1. Dermed følger det at $H^i(\Omega^1_{\widetilde{X}/k})$ er null for i = 0, 2 og 2 for i = 1.

Så å blåse opp i et punkt øker H^1 med én.

0.5 Dobbel overdekning av \mathbb{P}^2 ramifisert i gitt kurve

Gitt et homogent polynom $f(x_0, x_1, x_2)$ i $\bigoplus_{i\geq 0} H^0(\mathbb{P}^2, \mathscr{O}_{\mathbb{P}^2}(i))$, konstruerer vi en flate som er en dobbel overdekning av \mathbb{P}^2 , ramifisert i kurven definert ved dette polynomet.

Se på inklusjonen

$$k[x_0, x_1, x_2] \hookrightarrow k[x_0, x_1, x_2][u, v]/(u^2 - fv^2).$$

Vi ser på høyresiden som en bigradert ring, så høyresiden svarer til

$$X = \{(X, P) \in \mathbb{P}^2_{(x_0, x_1, x_2)} \times \mathbb{P}^1_{(u, v)} \mid u^2 = f(x_0, x_1, x_2)v^2\} \subset \mathbb{P}^2 \times \mathbb{P}^1.$$

Denne mengden kommer med en naturlig projeksjon til \mathbb{P}^2 . Vi ser at så lenge $f(x_0, x_1, x_2) \neq 0$, er det to fibre, og langs V(f) er det én dobbel fiber.