THEREFORE, WE CLAIM:

1. A compound represented by the structural formula (I):

$$Q^{1} \qquad Q^{2} \qquad Q^{3} \qquad Q^{3} \qquad Q^{4} \qquad Q^{5} \qquad Q^{5} \qquad Q^{4} \qquad Q^{4$$

or pharmaceutically acceptable isomers, salts, solvates or esters of the compound of Formula (I),

wherein in Formula (I) above:

X, Y and Z can be the same or different and each is independently selected from the group consisting of $-CH_2$ -, -CH(alkyl)- and $-C(alkyl)_2$ -;

Q¹ and Q² can be the same or different and each is independently selected from the group consisting of H, -(C₀-C₃₀ alkylene)-G, -OR⁶, -OC(O)R⁶, -OC(O)OR⁹, -OC(O)NR⁶R⁷, and -L-M;

 Q^3 is 1 to 5 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, -(C_0 - C_{30} alkylene)-G, -(C_0 - C_{10} alkylene)-OR⁶,

- -(C_0 - C_{10} alkylene)-C(O) R^6 , -(C_0 - C_{10} alkylene)-C(O)O R^6 , -(C_0 - C_{10} alkylene)-OC(O)O R^6 , -(C_0 - C_{10} alkylene)-OC(O)O R^6 , -CH=CH-C(O)O R^6 ,
 - -C \equiv C-C(O)OR⁶, -C \equiv C-C(O)R⁶, -O-(C₁-C₁₀ alkylene)-OR⁶,
 - $-O-(C_1-C_{10} \text{ alkylene})-C(O)R^6$, $-O-(C_1-C_{10} \text{ alkylene})-C(O)OR^6$, -CN,
 - $-O-(C_1-C_{10} \text{ alkylene})-C(O)NR^6R^7$, $-O-(C_0-C_{10} \text{ alkylene})-C(O)NR^6NR^7C(O)OR^6$,
- -O-(C₁-C₁₀ alkylene)-C(O)(aryl)-N-N=N⁻, -OC(O)-(C₁-C₁₀ alkylene)-C(O)OR⁶,
 - -(C_0 - C_{10} alkylene)-C(O)NR⁶R⁷, -(C_0 - C_{10} alkylene)-OC(O)NR⁶R⁷, -NO₂,
 - $-(C_0-C_{10} \text{ alkylene})-NR^6R^7$, $-O-(C_2-C_{10} \text{ alkylene})-NR^6R^7$, $-NR^6C(O)R^7$, $-NR^6C(O)OR^9$,
 - $-NR^{6}C(O)NR^{7}R^{8}$, $-NR^{6}S(O)_{0-2}R^{9}$, $-N(S(O)_{0-2}R^{9})_{2}$, $-CHNOR^{6}$, $-C(O)NR^{6}R^{7}$,
 - $-C(O)NR^6NR^6R^7$, $-S(O)_{0-2}NR^6R^7$, $-S(O)_{0-2}R^9$, $-O-C(O)-(C_1-C_{10} \text{ alkylene})-C(O)NR^6R^7$,
- -OC(O)-(C_1 - C_{10} alkylene)-NR⁶C(O)O-(alkylaryl), -P(O)(OR¹⁰)₂,

-(C₁-C₁₀ alkylene)-OSi(alkyl)₃, -CF₃, -OCF₃, halo, alkoxyalkoxy, alkoxyalkoxyalkoxy, alkoxyarylalkoxy, alkoxyarylalkoxy, alkoxyiminoalkyl, alkyldioyl, allyloxy, aryl, arylalkyl, aryloxy, arylalkoxy, aroyl, aroyloxy, aroylaroyloxy, arylalkoxycarbonyl, benzoylbenzoyloxy, heteroaryl, heteroarylalkyl, heteroarylalkoxy, dioxolanyl, heterocyclyl, heterocyclylalkyl, heterocyclylcarbonyl, heterocyclylcarbonylalkoxy and -L-M;

Q⁴ is 1 to 5 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, -(C₀-C₃₀ alkylene)-G, -(C₀-C₁₀ alkylene)-OR⁶, -(C₀-C₁₀ alkylene)-C(O)R⁶, -(C₀-C₁₀ alkylene)-OC(O)R⁶, -(C₀-C₁₀ alkylene)-OC(O)R⁶, -CH=CH-C(O)R⁶, -CH=CH-C(O)OR⁶, -C=C-C(O)OR⁶, -C=C-C(O)OR⁶, -O-(C₁-C₁₀ alkylene)-OR⁶, -O-(C₁-C₁₀ alkylene)-C(O)OR⁶, -O-(C₁-C₁₀ alkylene)-C(O)OR⁶, -CN, -O-(C₁-C₁₀ alkylene)-C(O)NR⁶R⁷, -O-(C₀-C₁₀ alkylene)-C(O)NR⁶NR⁷C(O)OR⁶, -O-(C₁-C₁₀ alkylene)-C(O)(aryl)-N-N=N⁻, -OC(O)-(C₁-C₁₀ alkylene)-C(O)OR⁶, -(C₀-C₁₀ alkylene)-C(O)NR⁶R⁷, -NO₂, -(C₀-C₁₀ alkylene)-C(O)NR⁶R⁷, -O-(C₂-C₁₀ alkylene)-OC(O)NR⁶R⁷, -NO₂, -(C₀-C₁₀ alkylene)-NR⁶R⁷, -O-(C₂-C₁₀ alkylene)-NR⁶R⁷, -NR⁶C(O)R⁷, -NR⁶C(O)OR⁹, -NR⁶C(O)NR⁷R⁸, -NR⁶S(O)₀₋₂R⁹, -N(S(O)₀₋₂R⁹)₂, -CHNOR⁶, -C(O)NR⁶R⁷,

-OC(O)-(C₁-C₁₀ alkylene)-NR⁶C(O)O-(alkylaryl), -P(O)(OR¹⁰)₂,

-(C₁-C₁₀ alkylene)-OSi(alkyl)₃, -CF₃, -OCF₃, halo, alkoxyalkoxy, alkoxyalkoxyalkoxy, alkoxyarylalkoxy, alkoxyiminoalkyl, alkyldioyl, allyloxy, aryl, arylalkyl, aryloxy, arylalkoxy, aroyloxy, aroyloxy, aroylaroyloxy, arylalkoxycarbonyl, benzoylbenzoyloxy, heteroaryl, heteroarylalkyl, heteroarylalkoxy, dioxolanyl, heterocyclyl, heterocyclylalkyl, heterocyclylcarbonyl, heterocyclylcarbonylalkoxy and

 $-C(O)NR^6NR^6R^7$, $-S(O)_{0-2}NR^6R^7$, $-S(O)_{0-2}R^9$, $-O-C(O)-(C_1-C_{10} \text{ alkylene})-C(O)NR^6R^7$,

₂₅ –L-M;

5

 Q^5 is 1 to 5 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, -(C₀-C₃₀ alkylene)-G, -(C₀-C₁₀ alkylene)-OR⁶, -(C₀-C₁₀ alkylene)-C(O)R⁶, -(C₀-C₁₀ alkylene)-OC(O)R⁶,

 $-(C_0-C_{10} \text{ alkylene})-OC(O)OR^9$, $-CH=CH-C(O)R^6$, $-CH=CH-C(O)OR^6$, -C \equiv C-C(O)OR⁶, -C \equiv C-C(O)R⁶, -O-(C₁-C₁₀ alkylene)-OR⁶, $-O-(C_1-C_{10} \text{ alkylene})-C(O)R^6$, $-O-(C_1-C_{10} \text{ alkylene})-C(O)OR^6$, -CN. $-O-(C_1-C_{10} \text{ alkylene})-C(O)NR^6R^7$, $-O-(C_0-C_{10} \text{ alkylene})-C(O)NR^6NR^7C(O)OR^6$, $-O-(C_1-C_{10} \text{ alkylene})-C(O)(\text{aryl})-N-N=N^-, -OC(O)-(C_1-C_{10} \text{ alkylene})-C(O)OR^6,$ $-(C_0-C_{10} \text{ alkylene})-C(O)NR^6R^7$, $-(C_0-C_{10} \text{ alkylene})-OC(O)NR^6R^7$, $-NO_2$, $-(C_0-C_{10} \text{ alkylene})-NR^6R^7$, $-O-(C_2-C_{10} \text{ alkylene})-NR^6R^7$. $-NR^6C(O)R^7$. $-NR^6C(O)OR^9$ $-NR^{6}C(O)NR^{7}R^{8}$, $-NR^{6}S(O)_{0-2}R^{9}$, $-N(S(O)_{0-2}R^{9})_{2}$, $-CHNOR^{6}$, $-C(O)NR^{6}R^{7}$, $-C(O)NR^6NR^6R^7$, $-S(O)_{0.2}NR^6R^7$, $-S(O)_{0.2}R^9$, $-O-C(O)-(C_1-C_{10} \text{ alkylene})-C(O)NR^6R^7$. $-OC(O)-(C_1-C_{10} \text{ alkylene})-NR^6C(O)O-(\text{alkylaryl}), -P(O)(OR^{10})_2$, 10 -(C₁-C₁₀ alkylene)-OSi(alkyl)₃, -CF₃, -OCF₃, halo, alkoxyalkoxy, alkoxyalkoxyalkoxy, alkoxycarbonylalkoxy, alkoxyarylalkoxy, alkoxyiminoalkyl, alkyldioyl, allyloxy, aryl, arylalkyl, aryloxy, arylalkoxy, aroyl, aroyloxy, aroylaroyloxy, arylalkoxycarbonyl, benzoylbenzoyloxy, heteroaryl, heteroarylalkyl, heteroarylalkoxy, dioxolanyl, heterocyclyl, heterocyclylalkyl, heterocyclylcarbonyl, heterocyclylcarbonylalkoxy and 15

wherein optionally one or more carbon atoms of the $-(C_0-C_{30} \text{ alkylene})$ - radical of Q^1 , Q^2 , Q^3 , Q^4 and Q^5 is independently replaced by -O-, -C(O)-, -CH=CH-, -C=C-, -N(alkyl)-, -N(alkylaryl)- or -NH-;

G is selected from the group consisting of a sugar residue, disugar residue, trisugar residue, tetrasugar residue, sugar acid, amino sugar, amino acid residue, oligopeptide residue comprising 2 to 9 amino acids, trialkylammoniumalkyl radical and -S(O)₂-OH, wherein optionally the sugar residue, disugar residue, trisugar residue, tetrasugar residue, sugar acid, amino sugar, amino acid residue or oligopeptide residue of G is substituted with -L-M;

L is selected from the group consisting of

-L-M:

20

$$\begin{cases} -O-C(O)-(CH_2)_{x4}-O & & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & &$$

wherein Me is methyl;

M is selected from the group of moieties consisting of

pharmaceutically acceptable salts of the moieties (M1) and (M3) to (M10) and free acids of the moieties (M1) and (M3) to (M10);

5

10

15

20

R² and R³ can be the same or different and each is independently selected from the group consisting of hydrogen, alkyl and aryl;

R⁶, R⁷ and R⁸ can be the same or different and each is independently selected from the group consisting of hydrogen, alkyl, aryl and arylalkyl; and

each R⁹ is independently alkyl, aryl or arylalkyl.

each R¹⁰ is independently H or alkyl;

q is 0 or 1;

r is 0 or 1;

m, n and p are independently selected from 0, 1, 2, 3 or 4; provided that at least one of q and r is 1, and the sum of m, n, p, q and r is 1, 2, 3, 4, 5 or 6; and provided that when p is 0 and r is 1, the sum of m, q and n is 1, 2, 3, 4 or 5;

x1 is 1 to 10;

x2 is 1 to 10;

x3 is 1 to 10;

x4 is 1 to 10;

x5 is 1 to 10;

```
x6 is 1 to 10;

x7 is 1 to 10;

x8 is 1 to 10;

x9 is 1 to 10;

x10 is 1 to 10;

x11 is 1 to 10;

x12 is 1 to 10;

x13 is 1 to 10;

x14 is 1 to 10;

x15 is 1 to 10; and

x16 is 1 to 10; and

x18 is 1 to 10;
```

- with the proviso that at least one of Q¹, Q², Q³, Q⁴ and Q⁵ is –L-M or the sugar residue, disugar residue, trisugar residue, tetrasugar residue, sugar acid, amino sugar, amino acid residue or oligopeptide residue of G is substituted with –L-M.
- 2. The compound according to claim 1, wherein m, n and r are each zero, q is 1, p is 2, and Z is - CH_2 -.
 - 3. The compound according to claim 1, wherein m, n and r are each zero, q is 1, p is 2, and Z is $-CH_2$ -, Q^1 is $-OR^6$, wherein R^6 is hydrogen and Q^5 is fluorine.
- 25 4. The compound according to claim 1, wherein R² and R³ are each preferably hydrogen.
 - 5. The compound according to claim 1, wherein Q^1 and Q^2 are each independently selected from the group consisting of $-O(CO)R^6$, $-O(CO)OR^9$ and $-O(CO)NR^6R^7$.

- 6. The compound according to claim 1, wherein Q⁴ is halo or -OR⁶.
- 7. The compound according to claim 1, wherein Q¹ is –OR⁶ wherein R⁶ is H.
- 8. The compound according to claim 1, wherein Q^1 , Q^2 , Q^3 , Q^4 or Q^5 is-L-M.
- 9. The compound according to claim 1, wherein Q^1 , Q^2 , Q^3 , Q^4 or Q^5 is -(C₀-C₃₀ alkylene)-G.
 - 10. The compound according to claim 1, wherein G is selected from the group consisting of:

15

20

wherein R, R^a and R^b can be the same or different and each is independently selected from the group consisting of H, -OH, halo, -NH₂, azido, alkoxyalkoxy or -W-R³⁰;

W is independently selected from the group consisting of -NH-C(O)-, -O-C(O)-, -O-C(O)-N(\mathbb{R}^{31})-, -NH-C(O)-N(\mathbb{R}^{31})- and -O-C(S)-N(\mathbb{R}^{31})-;

R^{2a} and R^{6a} can be the same or different and each is independently selected from the group consisting of H, alkyl, acetyl, aryl and arylalkyl;

 R^{3a} , R^{4a} , R^{5a} , R^{7a} , R^{3b} and R^{4b} can be the same or different and each is independently selected from the group consisting of H, alkyl, acetyl, arylalkyl, - C(O)alkyl and -C(O)aryl;

 R^{30} is independently selected from the group consisting of $\mathsf{R}^{32}\text{-substituted}$ T, $\mathsf{R}^{32}\text{-substituted-T-alkyl}$, $\mathsf{R}^{32}\text{-substituted-alkenyl}$, $\mathsf{R}^{32}\text{-substituted-alkyl}$, $\mathsf{R}^{32}\text{-substituted-cycloalkyl}$ and $\mathsf{R}^{32}\text{-substituted-cycloalkyl}$;

R³¹ is independently selected from the group consisting of H and alkyl;

T is independently selected from the group consisting of phenyl, furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, benzothiazolyl, thiadiazolyl, pyrazolyl, imidazolyl and pyridyl;

 R^{32} is 1 to 3 substituents which are each independently selected from the group consisting of H, halo, alkyl, -OH, phenoxy, -CF3, -NO2, alkoxy, methylenedioxy, oxo, alkylsulfanyl, alkylsulfinyl, alkylsulfonyl, -N(CH3)2, -C(O)-NHalkyl, -C(O)-N(alkyl)2, -C(O)-alkyl, -C(O)-alkoxy and pyrrolidinylcarbonyl; or R^{32} is a covalent bond and R^{31} , the nitrogen to which it is attached and R^{32} form a pyrrolidinyl, piperidinyl, N-methyl-piperazinyl, indolinyl or morpholinyl group, or a alkoxycarbonyl-substituted pyrrolidinyl, piperidinyl, N-methylpiperazinyl, indolinyl or morpholinyl group.

15

10

5

11. The compound according to claim 10, wherein G is selected from:

wherein Ac is acetyl and Ph is phenyl.

10

15

- The compound according to claim 1, wherein optionally one or more carbon atoms of the –(C_0 - C_{30} alkylene)- radical of Q^1 , Q^2 , Q^3 , Q^4 and Q^5 is independently replaced by –O –.
 - 13. The compound according to claim 1, which is

14. A pharmaceutical composition for the treatment or prevention of a vascular condition, diabetes, obesity, stroke, lowering a concentration of a sterol or stanol in plasma of a mammal, preventing demyelination or treating Alzheimer's disease and/or regulating levels of amyloid β peptides in a subject comprising a therapeutically effective amount of a compound of claim 1 in a pharmaceutically acceptable carrier.

- 15. A pharmaceutical composition comprising a cholesterol-lowering effective amount of a compound of claim 1 in a pharmaceutically acceptable carrier.
- 16. A method of treating or preventing a vascular condition, diabetes, obesity, stroke, lowering a concentration of a sterol or stanol in plasma of a mammal, preventing demyelination or treating Alzheimer's disease or regulating a level of an amyloid β peptide in a subject comprising the step of administering to a subject in need of such treatment an effective amount of a compound of claim 1.
- 17. A method of lowering cholesterol level in plasma of a mammal in need of such treatment comprising administering a pharmaceutically effective amount of the compound of claim 1.
 - 18. A compound represented by the structural formula (IA):

$$Q^{1} \qquad Q^{2} \qquad Q^{3} \qquad Q^{3} \qquad Q^{4} \qquad (IA)$$

or pharmaceutically acceptable isomers, salts, solvates or esters of the compound of Formula (IA),

wherein in Formula (IA) above:

5 .

10

15

20

25

X, Y and Z can be the same or different and each is independently selected from the group consisting of $-CH_2$ -, -CH(alkyl)- and $-C(alkyl)_2$ -;

 Q^1 and Q^2 can be the same or different and each is independently selected from the group consisting of H, -(C₀-C₃₀ alkylene)-G, -OR⁶, -OC(O)R⁶, -OC(O)OR⁹, -OC(O)NR⁶R⁷, and -L-M₂

 Q^3 is 1 to 5 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, -(C_0 - C_{30} alkylene)-G, -(C_0 - C_{10} alkylene)-OR⁶,

```
-(C_0-C_{10} \text{ alkylene})-C(O)R^6, -(C_0-C_{10} \text{ alkylene})-C(O)OR^6, -(C_0-C_{10} \text{ alkylene})-OC(O)R^6,
          -(C_0-C_{10} alkylene)-OC(O)OR<sup>9</sup>, -CH=CH-C(O)R<sup>6</sup>, -CH=CH-C(O)OR<sup>6</sup>,
          -C\equivC-C(O)OR<sup>6</sup>, -C\equivC-C(O)R<sup>6</sup>, -O-(C<sub>1</sub>-C<sub>10</sub> alkylene)-OR<sup>6</sup>,
          -O-(C<sub>1</sub>-C<sub>10</sub> alkylene)-C(O)R<sup>6</sup>, -O-(C<sub>1</sub>-C<sub>10</sub> alkylene)-C(O)OR<sup>6</sup>, -CN,
          -O-(C_1-C_{10} \text{ alkylene})-C(O)NR^6R^7, -O-(C_0-C_{10} \text{ alkylene})-C(O)NR^6NR^7C(O)OR^6,
  5
          -O-(C<sub>1</sub>-C<sub>10</sub> alkylene)-C(O)(aryl)-N-N=N<sup>-</sup>, -OC(O)-(C<sub>1</sub>-C<sub>10</sub> alkylene)-C(O)OR<sup>6</sup>,
          -(C_0-C_{10} \text{ alkylene})-C(O)NR^6R^7, -(C_0-C_{10} \text{ alkylene})-OC(O)NR^6R^7, -NO_2,
          -(C_0-C_{10} \text{ alkylene})-NR^6R^7, -O-(C_2-C_{10} \text{ alkylene})-NR^6R^7, -NR^6C(O)R^7, -NR^6C(O)OR^9,
          -NR^{6}C(O)NR^{7}R^{8}, -NR^{6}S(O)_{0-2}R^{9}, -N(S(O)_{0-2}R^{9})_{2}, -CHNOR^{6}, -C(O)NR^{6}R^{7},
         -C(O)NR<sup>6</sup>NR<sup>6</sup>R<sup>7</sup>, -S(O)<sub>0-2</sub>NR<sup>6</sup>R<sup>7</sup>, -S(O)<sub>0-2</sub>R<sup>9</sup>, -O-C(O)-(C<sub>1</sub>-C<sub>10</sub> alkylene)-C(O)NR<sup>6</sup>R<sup>7</sup>,
 10
         -OC(O)-(C<sub>1</sub>-C<sub>10</sub> alkylene)-NR<sup>6</sup>C(O)O-(alkylaryl), -P(O)(OR<sup>10</sup>)<sub>2</sub>,
         -(C<sub>1</sub>-C<sub>10</sub> alkylene)-OSi(alkyl)<sub>3</sub>, -CF<sub>3</sub>, -OCF<sub>3</sub>, halo, alkoxyalkoxy, alkoxyalkoxyalkoxy,
         alkoxycarbonylalkoxy, alkoxyarylalkoxy, alkoxyiminoalkyl, alkyldioyl, allyloxy, aryl,
         arylalkyl, aryloxy, arylalkoxy, aroyl, aroyloxy, aroylaroyloxy, arylalkoxycarbonyl,
         benzoylbenzoyloxy, heteroaryl, heteroarylalkyl, heteroarylalkoxy, dioxolanyl,
15
         heterocyclyl, heterocyclylalkyl, heterocyclylcarbonyl, heterocyclylcarbonylalkoxy and
         -L-M;
                   Q4 is 1 to 5 substituents independently selected from the group consisting of
         alkyl, alkenyl, alkynyl, -(C<sub>0</sub>-C<sub>30</sub> alkylene)-G, -(C<sub>0</sub>-C<sub>10</sub> alkylene)-OR<sup>6</sup>,
         -(C_0-C_{10} \text{ alkylene})-C(O)R^6, -(C_0-C_{10} \text{ alkylene})-C(O)OR^6, -(C_0-C_{10} \text{ alkylene})-OC(O)R^6,
20
         -(C<sub>0</sub>-C<sub>10</sub> alkylene)-OC(O)OR<sup>9</sup>, -CH=CH-C(O)R<sup>6</sup>, -CH=CH-C(O)OR<sup>6</sup>,
         -C\equivC-C(O)OR<sup>6</sup> -C\equivC-C(O)R<sup>6</sup> , -O-(C<sub>1</sub>-C<sub>10</sub> alkylene)-OR<sup>6</sup>,
        -O-(C_1-C_{10} \text{ alkylene})-C(O)R^6, -O-(C_1-C_{10} \text{ alkylene})-C(O)OR^6, -CN,
        -O-(C_1-C_{10} \text{ alkylene})-C(O)NR^6R^7, -O-(C_0-C_{10} \text{ alkylene})-C(O)NR^6NR^7C(O)OR^6,
        -O-(C<sub>1</sub>-C<sub>10</sub> alkylene)-C(O)(aryl)-N-N=N<sup>-</sup>, -OC(O)-(C<sub>1</sub>-C<sub>10</sub> alkylene)-C(O)OR<sup>6</sup>,
        -(C_0-C_{10} \text{ alkylene})-C(O)NR^6R^7, -(C_0-C_{10} \text{ alkylene})-OC(O)NR^6R^7, -NO_2,
        -(C_0-C_{10} \text{ alkylene})-NR^6R^7, -O-(C_2-C_{10} \text{ alkylene})-NR^6R^7, -NR^6C(O)R^7, -NR^6C(O)OR^9.
        -NR<sup>6</sup>C(O)NR<sup>7</sup>R<sup>8</sup>, -NR<sup>6</sup>S(O)<sub>0-2</sub>R<sup>9</sup>, -N(S(O)<sub>0-2</sub>R<sup>9</sup>)<sub>2</sub>, -CHNOR<sup>6</sup>, -C(O)NR<sup>6</sup>R<sup>7</sup>,
        -C(O)NR^6NR^6R^7, -S(O)_{0-2}NR^6R^7, -S(O)_{0-2}R^9, -O-C(O)-(C_1-C_{10} \text{ alkylene})-C(O)NR^6R^7.
```

-OC(O)-(C₁-C₁₀ alkylene)-NR⁶C(O)O-(alkylaryl), -P(O)(OR¹⁰)₂,
-(C₁-C₁₀ alkylene)-OSi(alkyl)₃, -CF₃, -OCF₃, halo, alkoxyalkoxy, alkoxyalkoxyalkoxy,
alkoxycarbonylalkoxy, alkoxyarylalkoxy, alkoxyiminoalkyl, alkyldioyl, allyloxy, aryl,
arylalkyl, aryloxy, arylalkoxy, aroyl, aroyloxy, aroylaroyloxy, arylalkoxycarbonyl,
benzoylbenzoyloxy, heteroaryl, heteroarylalkyl, heteroarylalkoxy, dioxolanyl,
heterocyclyl, heterocyclylalkyl, heterocyclylcarbonyl, heterocyclylcarbonylalkoxy and
-L-M;

 Q^5 is 1 to 5 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, -(C_0 - C_{30} alkylene)-G, -(C_0 - C_{10} alkylene)-OR⁶,

-(C_0 - C_{10} alkylene)-C(O) R^6 , -(C_0 - C_{10} alkylene)-C(O)O R^6 , -(C_0 - C_{10} alkylene)-OC(O) R^6 , -CH=CH-C(O)O R^6 , -CH=CH-C(O)O R^6 , -CH=CH-C(O)O R^6 ,

-C \equiv C-C(O)OR⁶, -C \equiv C-C(O)R⁶, -O-(C₁-C₁₀ alkylene)-OR⁶,

5

25

-O-(C₁-C₁₀ alkylene)-C(O)R⁶, -O-(C₁-C₁₀ alkylene)-C(O)OR⁶, -CN,

 $-O-(C_1-C_{10} \text{ alkylene})-C(O)NR^6R^7$, $-O-(C_0-C_{10} \text{ alkylene})-C(O)NR^6NR^7C(O)OR^6$,

-O-(C₁-C₁₀ alkylene)-C(O)(aryl)-N-N=N⁻, -OC(O)-(C₁-C₁₀ alkylene)-C(O)OR⁶,

-(C_0 - C_{10} alkylene)-C(O)NR⁶R⁷, -(C_0 - C_{10} alkylene)-OC(O)NR⁶R⁷, -NO₂,

 $-(C_0-C_{10} \text{ alkylene})-NR^6R^7$, $-O-(C_2-C_{10} \text{ alkylene})-NR^6R^7$, $-NR^6C(O)R^7$, $-NR^6C(O)OR^9$,

 $-NR^{6}C(O)NR^{7}R^{8}$, $-NR^{6}S(O)_{0-2}R^{9}$, $-N(S(O)_{0-2}R^{9})_{2}$, $-CHNOR^{6}$, $-C(O)NR^{6}R^{7}$,

 $-C(O)NR^6NR^6R^7$, $-S(O)_{0-2}NR^6R^7$, $-S(O)_{0-2}R^9$, $-O-C(O)-(C_1-C_{10} \text{ alkylene})-C(O)NR^6R^7$,

-OC(O)-(C_1 - C_{10} alkylene)-NR⁶C(O)O-(alkylaryl), -P(O)(OR¹⁰)₂,

-(C₁-C₁₀ alkylene)-OSi(alkyl)₃, -CF₃, -OCF₃, halo, alkoxyalkoxy, alkoxyalkoxy, alkoxyarylalkoxy, alkoxyiminoalkyl, alkyldioyl, allyloxy, aryl, arylalkyl, aryloxy, arylalkoxy, aroyl, aroyloxy, aroylaroyloxy, arylalkoxycarbonyl, benzoylbenzoyloxy, heteroaryl, heteroarylalkyl, heteroarylalkoxy, dioxolanyl,

heterocyclyl, heterocyclylaikyl, heterocyclylcarbonyl, heterocyclylcarbonylaikoxy and –L-M;

wherein optionally one or more carbon atoms of the $-(C_0-C_{30} \text{ alkylene})$ - radical of Q^1 , Q^2 , Q^3 , Q^4 and Q^5 is independently replaced by -O-, -C(O)-, -CH=CH-, -C==C-, -N(alkyl)-, -N(alkylaryl)- or -NH-;

G is selected from the group consisting of a sugar residue, disugar residue, trisugar residue, tetrasugar residue, sugar acid, amino sugar, amino acid residue, oligopeptide residue comprising 2 to 9 amino acids, trialkylammoniumalkyl radical and –S(O)₂-OH, wherein optionally the sugar residue, disugar residue, trisugar residue, tetrasugar residue, sugar acid, amino sugar, amino acid residue or oligopeptide residue of G is substituted with –L-M;

L is selected from the group consisting of

$$\begin{cases} -\text{O-C(O)-}(\text{CH}_2)_{x8} - (\text{O)C} - \begin{cases} \\ \\ \\ \\ \end{cases} \end{cases} = \text{O-C(O)-}(\text{CH}_2)_{x8} - (\text{O)C} - \begin{cases} \\ \\ \\ \\ \end{cases} \end{cases} = \text{O-SiMe}_2 - (\text{CH}_2)_{x11} - (\text{O}) - \begin{cases} \\ \\ \\ \\ \end{cases} \end{cases} = \text{O-SiMe}_2 - (\text{CH}_2)_{x12} - (\text{OC(O)}) - \begin{cases} \\ \\ \\ \\ \end{cases} \end{cases} = \text{O-SiMe}_2 - (\text{CH}_2)_{x12} - (\text{CH}_2)_{x13} - (\text{CH}_2)_{x13} - (\text{CH}_2)_{x13} - (\text{CH}_2)_{x13} - (\text{CH}_2)_{x14} - (\text{CH}_2)_{x15} - (\text{CH}_2)_{x15} - (\text{CH}_2)_{x15} - (\text{CH}_2)_{x15} - (\text{CH}_2)_{x15} - (\text{CH}_2)_{x16} - (\text$$

wherein Me is methyl;

5

15

M is selected from the group of moieties consisting of

OH OH
$$H_2$$
 CH_2 H_3 CH_3 $CH_$

and pharmaceutically acceptable salts of moieties (M1) to (M33);

R² and R³ can be the same or different and each is independently selected from the group consisting of hydrogen, alkyl and aryl;

R⁶, R⁷ and R⁸ can be the same or different and each is independently selected from the group consisting of hydrogen, alkyl, aryl and arylalkyl; and

each R⁹ is independently alkyl, aryl or arylalkyl.

each R¹⁰ is independently H or alkyl;

q is 0 or 1;

5

10

15

20

r is 0 or 1;

m, n and p are independently selected from 0, 1, 2, 3 or 4; provided that at least one of q and r is 1, and the sum of m, n, p, q and r is 1, 2, 3, 4, 5 or 6; and provided that when p is 0 and r is 1, the sum of m, q and n is 1, 2, 3, 4 or 5;

x8 is 1 to 10;

x9 is 1 to 10;

x10 is 1 to 10;

x11 is 1 to 10;

x12 is 1 to 10;

x13 is 1 to 10;

x14 is 1 to 10;

x15 is 1 to 10; and

x16 is 1 to 10;

x17 is 1 to 10; and

x18 is 1 to 10;

with the proviso that at least one of Q^1 , Q^2 , Q^3 , Q^4 and Q^5 is -L-M or the sugar residue, disugar residue, trisugar residue, tetrasugar residue, sugar acid, amino sugar, amino acid residue or oligopeptide residue of G is substituted with -L-M.

10

5 ·

- 19. The compound according to claim 18, wherein m, n and r are each zero, q is 1, p is 2, and Z is $-CH_2$ -.
- The compound according to claim 18, wherein m, n and r are each zero, q is 1, p is 2, and Z is $-CH_2$, Q^1 is $-OR^6$, wherein R^6 is hydrogen and Q^5 is fluorine.
 - 21. The compound according to claim 18, wherein R² and R³ are each preferably hydrogen.
- 22. The compound according to claim 18, wherein Q¹ and Q² are each independently selected from the group consisting of -OR⁶, -O(CO)R⁶, -O(CO)OR⁹ and -O(CO)NR⁶R⁷.
 - 23. The compound according to claim 18, wherein Q⁴ is halo or -OR⁶.

- 24. The compound according to claim 18, wherein Q^1 is $-OR^6$ wherein R^6 is H.
- 25. The compound according to claim 18, wherein Q^1 , Q^2 , Q^3 , Q^4 or Q^5 is -L-M.

- 26. The compound according to claim 18, wherein Q^1 , Q^2 , Q^3 , Q^4 or Q^5 is -(C₀-C₃₀ alkylene)-G.
- 27. The compound according to claim 18, wherein G is selected from the group consisting of:

15

20

wherein R, R^a and R^b can be the same or different and each is independently selected from the group consisting of H, -OH, halo, -NH₂, azido, alkoxyalkoxy or -W- R^{30} ;

W is independently selected from the group consisting of -NH-C(O)-, -O-C(O)-, -O-C(O)-N(R 31)-, -NH-C(O)-N(R 31)- and -O-C(S)-N(R 31)-;

R^{2a} and R^{6a} can be the same or different and each is independently selected from the group consisting of H, alkyl, acetyl, aryl and arylalkyl;

R^{3a}, R^{4a}, R^{5a}, R^{7a}, R^{3b} and R^{4b} can be the same or different and each is independently selected from the group consisting of H, alkyl, acetyl, arylalkyl, - C(O)alkyl and -C(O)aryl;

 R^{30} is independently selected from the group consisting of R^{32} -substituted T, R^{32} -substituted-T-alkyl, R^{32} -substituted-alkenyl, R^{32} -substituted-alkyl, R^{32} -substituted-cycloalkyl and R^{32} -substituted-cycloalkylalkyl;

R³¹ is independently selected from the group consisting of H and alkyl;

T is independently selected from the group consisting of phenyl, furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, benzothiazolyl, thiadiazolyl, pyrazolyl, imidazolyl and pyridyl;

 R^{32} is 1 to 3 substituents which are each independently selected from the group consisting of H, halo, alkyl, -OH, phenoxy, -CF3, -NO2, alkoxy, methylenedioxy, oxo, alkylsulfanyl, alkylsulfinyl, alkylsulfonyl, -N(CH3)2, -C(O)-NHalkyl, -C(O)-N(alkyl)2, -C(O)-alkyl, -C(O)-alkoxy and pyrrolidinylcarbonyl; or R^{32} is a covalent bond and R^{31} , the nitrogen to which it is attached and R^{32} form a pyrrolidinyl, piperidinyl, N-methyl-piperazinyl, indolinyl or morpholinyl group, or a alkoxycarbonyl-substituted pyrrolidinyl, piperidinyl, N-methylpiperazinyl, indolinyl or morpholinyl group.

28. The compound according to claim 27, wherein G is selected from:

10

15

wherein Ac is acetyl and Ph is phenyl.

5 .

10

15

- 29. The compound according to claim 18, wherein optionally one or more carbon atoms of the $-(C_0-C_{30} \text{ alkylene})$ radical of Q^1 , Q^2 , Q^3 , Q^4 and Q^5 is independently replaced by -O -.
- 30. A pharmaceutical composition for the treatment or prevention of a vascular condition, diabetes, obesity, stroke, lowering a concentration of a sterol or stanol in plasma of a mammal, preventing demyelination or treating Alzheimer's disease and/or regulating levels of amyloid β peptides in a subject comprising a therapeutically effective amount of a compound of claim 18 in a pharmaceutically acceptable carrier.
- 31. A pharmaceutical composition comprising a cholesterol-lowering effective amount of a compound of claim 18 in a pharmaceutically acceptable carrier.
- 32. A method of treating or preventing a vascular condition, diabetes, obesity, stroke, lowering a concentration of a sterol or stanol in plasma of a mammal, preventing demyelination or treating Alzheimer's disease or regulating a level of an amyloid β peptide in a subject comprising the step of administering to a subject in need of such treatment an effective amount of a compound of claim 18.
- 33. A method of lowering cholesterol level in plasma of a mammal in need of such treatment comprising administering a pharmaceutically effective amount of the compound of claim 18.