

Organização de computadores

Prof. André Dias

Contato: andre.dias@iffarroupilha.edu.br

Whatsapp: (55) 996686423

Computador e sociedade

- Impacto gerado pela indústria bélica
- Supercomputação: previsão meteorológica e simulações, genomas
- Computação pervasiva e ubíqua (sistemas embarcados)
- Necessidades da sociedade trazem novas abordagens para evolução de sistemas computacionais (realidade virtual e realidade aumentada)

Classes de computadores

- Desktop e notebooks (propósito geral; custo/desempenho)
- Servidores (comunicação; escalabilidade e disponibilidade)
- Computadores embarcados (embutidos): restrições de desempenho, custo e capacidade

Desempenho de um programa

- O que afeta o desempenho de um programa:
 - Algoritmo
 - Linguagem, compilador e arquitetura
 - Processador e sistema de memória
 - Sistema de E/S (inclusive o SO)

Algoritmo

 Número de instruções do código fonte e o número de operações de entrada e saída

Linguagem, compilador e arquitetura

 Determinam o número de instruções de máquina para cada instrução em nível da fonte

Processador e sistema de memória

 Determinam a velocidade (ou desempenho) com que as instruções podem ser executadas

Sistema de entrada e saída (I/O)

 Determina a velocidade com que as operações de E/S podem ser executadas

Visão simplificada hardware/software

Software de aplicações

Camada de abstração mais externa Escrito em linguagem de alto nível Pode ter múltiplas camadas

Visão simplificada hardware/software

Sistema de software

Compilador: Traduz HLL para linguagem assembly

Montador: traduz instruções simbólicas para binário

Sistema Operacional: programa de supervisão que gerencia os recursos de um computador em favor dos programas executados nessa máquina

Níveis de programação

- Representação para Hardware
 - Bits; instruções e dados codificados
- Linguagem Assembly (montador)
 - Representação textual das instruções
- Linguagem de alto nível
 - Próximo ao domínio do problema; portabilidade

Conversão

Type of Language	Example Language	Description	Example Instructions
High-level	Python, Visual	Independent of hardware (portable).	payRate = 7.38
Language	Basic, Java, C++	Translated using either a compiler or	Hours = 37.5
		interpreter.	Salary = payRate * Hours
		One statement translates into many	
		machine code instructions.	
	Assembly	Translated using an assembler.	LDA181
	Language	One statement translates into one	ADD93
Low-level		machine code instruction.	STO185
Language	Machine Code	Executable binary code produced	10101000110101010100100101
		either by a compiler, interpreter or	010101
		assembler.	

Componentes de um computador

Abstrações

- Abstrações ajudam a tratar a complexidade, revelam detalhes quando necessário.
- ISA Instruction Set Architecture (determina o que o processador pode fazer, instruções, registradores, acesso a memória, E/S)
- Envolve a Interface binária da aplicação

Tecnologias (evolução)

Year	Technology used in computers	Relative performance/unit cost
1951	Vacuum tube	1
1965	Transistor	35
1975	Integrated circuit	900
1995	Very large-scale integrated circuit	2,400,000

Figure 1 Computer technologies and relative performance per unit cost

Lei de Moore

Capacidade em transistores dobra entre 18 e 24 meses

Exercícios

- Qual foi a principal motivação para a evolução dos computadores?
- O que é computação pervasiva / ubíqua?
- Quais são as 3 principais classes de computadores?
- Um algoritmo pode ser utilizado para afetar o desempenho de um programa? Explique.
- O que é um compilador, um montador e um Sistema Operacional?
- Quais são os 5 componentes básicos de um computador?
- Quais foram as tecnologias utilizadas em computadores e o que aconteceu com elas com o passar dos anos?
- O que é a lei de Moore?
- Procure um algoritmo em linguagem de alto nível, converta para linguagem assembly com a ajuda de um editor online e em seguida transforme em linguagem binária