SYMBOLE

Symbol	Bedeutung	Beispiel
Ø	leere Menge	Menge der negativen natürlichen Zahlen
U	Vereinigung	$\mathbb{N} \cup \mathbb{Z} = \mathbb{Z}$
Λ	Schnittmenge	$\mathbb{N} \cap \mathbb{Z} = \mathbb{N}$
C	Teilmenge	$\mathbb{N}\subset\mathbb{Z}$
$A_{\setminus B}$	A ohne die Elemente von B	$\mathbb{Z}_{\setminus \mathbb{N}} = \{ \text{negative ganze Zahlen} \}$
\in ; $a \in A$	enthalten, das Element a ist in der Menge A enthalten	$2 \in \mathbb{N}$
$ \not\in; a \not\in A $	nicht enthalten, das Element a ist nicht in der Menge A enthalten	$-1 \notin \mathbb{N}$
$\forall;\forall a\in A$	für alle, für alle Elemente in A	$\forall n \in \mathbb{N} \text{ ist } n+0=n.$
$\exists;\;\exists a\in A$	es existiert, es gibt ein Element $a \in A$	$\exists a \in \mathbb{N}_0 \text{ so dass } a + a = a.$
$\not\exists ; \not\exists a \in A$	es existiert nicht	$\not\exists a \in \mathbb{N} \text{ so dass } -a \in \mathbb{N}$
d.h.	das heisst (äquivalent)	$2 \in \mathbb{N}$, d.h. 2 ist eine natürliche Zahl
s.d.	so dass	$\forall a \in \mathbb{Z}_0 \ \exists b \in \mathbb{Z}_0 \ \text{s.d.} \ a+b=0$