

(1) Publication number:

0 263 053 B1

EUROPEAN PATENT SPECIFICATION

- (4) Date of publication of patent specification: 05.05.93 (5) Int. Cl.5: C08J 3/18, C08L 27/06, C09D 127/06
- 2) Application number: 87630166.4
- ② Date of filing: 01.09.87

- Paintable adhesion promoter system for polyvinyl chloride plastisols.
- Priority: 02.09.86 US 902936
- ② Date of publication of application: 06.04.88 Bulletin 88/14
- Publication of the grant of the patent: 05.05.93 Bulletin 93/18
- Designated Contracting States:
 AT BE CH DE ES FR GB GR IT LI LU NL SE
- References cited:
 EP-A- 0 098 372
 US-A- 4 146 520

- 73 Proprietor: SHEREX CHEMICAL COMPANY, INC.
 P.O. Box 646 5777 Frantz Road
 Dublin, OH 43017(US)
- Inventor: Wozniak, Don Steven 1898 Highridge Place Powell Ohio 43065(US)
- Representative: Schmitz, Jean-Marie et al OFFICE DENNEMEYER S.à.r.I. P.O. Box 1502 L-1015 Luxembourg (LU)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

Description

The present invention relates to plastisols in general and in particular to improved adhesion promoter systems for polyvinyl chloride (PVC) plastisols.

The present invention concerns a plastisol composition according to the pre-characterizing portion of claim 1 and a method for making a plastisol composition according to the pre-characterizing portion of claim 8. The present invention also concerns a method for coating to a metal substrate according to claim 15.

Vinyl chloride homopolymers (PVC) and copolymers are widely used for the protection of metallic surfaces against corrosion, for adhering thin sheet metal constructions, and for sealing welded seams, particularly in the automotive industry. Such coatings principally are applied in the form of plasticized vinyl chloride polymers (plastisols) by a variety of techniques. Depending upon the viscosity of the PVC plastisol, its utilization can be characterized as a sealant, caulk, coating, adhesive, or other function.

Since resistance to corrosion is a prime prerequisite in dealing with metal parts, the PVC plastisol should adhere to the metal part with a fair degree of tenacity; otherwise, oxidation undercutting would result. Despite the ability to control the texture of the plastisol by suitable fillers and the color by the addition of suitable tinctorial pigments, often the PVC plastisol must be overcoated with a high performance, e.g. acrylic, topcoat, especially in automotive uses of the PVC plastisol. Uniformity in visual appearance dictates such overcoating requirement typically.

Another requirement of the PVC plastisol is that it be curable at short, low bake cycles. In fact, successful plastisols and organisols in the automotive industry are being called on today to be curable, dry to the touch, at baking temperatures of less than 149°C (300°F), e.g. about 135°C (275°F), with oven residence times of about 20 – 30 minutes. Energy costs dictate such low temperature, short baking cycles. Further, successful plastisol and organisol formulations must be economic and expel a minimum of atmospheric pollutants.

While a variety of adhesion promoters have been proposed for PVC plastisols and organisols, most have suffered from a variety of drawbacks including cost, insufficient film flexibility, or the like. One class of adhesion promoters which appears to exhibit a good balance between cost, flexibility, and low temperature bake characteristics are polyaminoamide – polyimidazoline adhesion promoters, such as set forth in US – A – 4 146 520. Such adhesion promoters have enabled the formulation of advantageous PVC plastisols and organisols which can be baked at temperatures as low as about 121 °C (250 °F). Unfortunately, the plastisols and organisols containing such polyaminoamide – polyimidazoline adhesion promoters are not readily overcoated with acid – catalyzed topcoats, especially high performance acid catalyzed acrylic automobile finishes. It is theorized that the amine value of the adhesion promoters interacts and renders ineffectual the acid catalyst in the topcoat, thus resulting in tacky films. While reduction of the level of the adhesion promoter can overcome such topcoat tackiness, loss of adhesion also can occur at such low adhesion promoter levels. Thus, there is a need in the art to enable the utilization of polyaminoamide – polyimidazoline adhesion promoters in low bake PVC plastisol and organisol compositions, yet provide the ability to overcoat such plastisols with acid catalyzed topcoats.

The plastisol composition of the present invention is defined according to the characterizing portion of claim 1. The method of making the plastisol composition of the present invention is defined according to the characterizing portion of claim 8. The plastisol composition according to claim 1 is used in a method for coating a metal substrate according to claim 15.

According to a preferred embodiment of the invention the adhesion promoter ranges from between 1 and 10 weight parts per 100 weight parts of the vinyl chloride polymer.

For coating a metal substrate according to the present invention the proportion of the secondary plasticizer ranges preferentially from between 10 and 70 weight parts, said primary plasticizer ranges from between 20 and 200 weight parts, and said promoter ranges from between 1 and 10 weight parts, all weight parts based on 100 weight parts of said vinyl chloride polymer.

The present invention is addressed to the need in the art to retain advantageous low bake properties of PVC plastisols and their requisite good adhesion to metal, yet still be able to be coated wet-on-dry or wet-on-wet by acid catalyzed topcoats. Accordingly, the present invention is directed to plastisol compositions comprising finely-divided vinyl chloride polymer, filler, a primary plasticizer, and a polyaminoamide-polyimidazoline adhesion promoter. The improvement of the present invention comprises a plasticizer/promoter phase comprising said primary plasticizer, said adhesion promoter, and an effective amount of a secondary plasticizer nonionic solvent effective in solvating said adhesion promoter in said plasticizer/promoter phase wherein the plasticizer/promoter phase is preformed for addition with the remaining ingredients of the plastisol composition. Suitable nonionic secondary plasticizer solvents include

aromatic solvents and polyalkylene glycol ether solvents which are effective in solvating the polyaminoamide – polyimidazoline adhesion promoters.

Another aspect of the present invention involves the method for formulating the improved plastisol compositions wherein the plasticizer/promoter phase comprising the primary plasticizer, the adhesion promoter, and the secondary plasticizer nonionic solvent is pre-formed and then such phase added to the remaining ingredients of the plastisol composition.

Advantages of the present invention include the retention of low bake characteristics of the plastisol and the excellent adhesion characteristics of the plastisol. A further advantage is the ability to overcoat the plastisol wet-on-dry or wet-on-wet with an acid catalyzed topcoat (i.e. "paintability", for present purposes) which is dry to the touch at lower bake temperatures of 121°C-182°C (250°-360°F), for example. A further advantage is the ability to exhibit the foregoing advantageous characteristics while retaining the flexibility of controlling the rheological characteristics of the plastisol. A further advantage is an improved plastisol composition which exhibits excellent controlled age characteristics. These and other advantages will be readily apparent to those skilled in the art based upon the disclosure contained herein.

The polyaminoamide – polyimidazoline adhesion promoters are set forth in US – A – 4,146,520. Such adhesion promoters include condensation products formed between a polymerized fatty acid mixture and an excess of polyalkylene polyamine. Such adhesion promoters additionally include the foregoing condensation product further reacted with an aldehyde, a ketone, or an epoxy compound.

While not intending to be bound by theory, it appears that a significant quantity of the adhesion promoter migrates to the surface of the cured plastisol While such migration does not adversely impair the performance of the plastisol, it does adversely affect the curability of acid catalyzed topcoats which then are applied to the wet (wet – on – wet) or dry (i.e. wet – on – dry) plastisol. It is believed that the amine value of the adhesion promoter reacts with the acid catalyst in the topcoat which means that the topcoat will not be fully cured at the recommended bake temperatures of about 150 °C (300 °F) or thereabouts. As noted above, such undesirable interaction can be mostly obviated by a reduction of the amount of adhesion promoter in the plastisol, though such reduction compromises the degree of adhesion achievable, so that this alternative is not commercially viable. The same holds true for increasing the amount of acid catalyst in the acid catalyzed topcoat.

One way of viewing the result of the invention is that the adhesion promoter is rendered more compatible or homogeneous in the plastisol so that it does not overconcentrate at the film surface. Accordingly, appropriate secondary plasticizer solvents or diluents should be effective in solvating the polyaminoamide – polyimidazoline adhesion promoters. Next, such secondary plasticizer solvents should be non – ionic. Solvents rich in amine value, for example, should be avoided even though they may effectively solvate the adhesion promoters as such solvents only contribute to the problem being solved. Accordingly, nonionic solvents are recommended.

Suitable nonionic solvents which solvate the adhesion promoter include aromatic solvents and polyal – kylene glycol ether solvents. By "solvate", we mean that a clear, stable solution results upon the mixing of the nonionic solvent and the adhesion promoter, typically at room temperature though moderate heating may be employed. Suitable such nonionic solvents include, for example, monoisopropyl biphenyl, diethylene glycol monoethyl ether, diisopropyl biphenyl, phenylxylyl ethane, butylated biphenyl and mix – tures thereof. The proportion of the secondary plasticizer solvent is adjusted to accomplish its function in the formulation. Often, this means between 10 and 70 phr (weight parts per 100 weight parts of PVC resin) nonionic solvent is used.

The remaining ingredients in the plastisol are conventional and include finely – divided polyvinyl chloride homopolymers or vinyl chloride copolymers, and often blends thereof. The primary plasticizer most often will be an alkyl phthalate such as dihexyl phthalate (DHP) diisodecyl phthalate (DIDP). Alternatively, the primary plasticizer may be an alkyl adipate (e.g. di(2 – ethyl hexyl) adipate). The plasticizer typically will range from 20 to 200 phr (weight parts per 100 weight parts of PVC resin).

Additionally the plastisol will contain a filler for control of rheology, control of cost, and the like. Suitable fillers include, for example, calcium carbonate, glass (including hollow glass spheres), talc, chalk, barium sulfate, and the like. The fillers certainly affect paintability of the plastisol, though with the invention more flexibility in filler utilization is gained. The proportion of filler can range up to about 300 phr and the optimum will vary depending upon the type of PVC and plasticizer, and the rheology desired. Finally, thixotropic agents can be added to achieve certain plastisol rheologies and such agents include, for example, fumed silica, bentonite, metallic fatty acid soaps. Thixotropic agents typically are added in the range of about 1 – 5 phr.

In order to maximize the paintability of the plastisol (i.e. ability to coat the plastisol with an acid catalyzed topcoat), it has been determined that a pre-blend of adhesion promoter, primary plasticizer, and

nonionic secondary plasticizer solvent should be made. Such plasticizer/promoter blend then is added to the remaining ingredients for forming the plastisol. Apparently, the formation of the plasticizer/plastisol blend is more effective in compatibilizing the adhesion promoter in the plastisol or "pushing" the plasticizer into the PVC particles. Regardless of the mechanism involved, it has been determined that paintability of plastisol becomes a routine achievement when the plasticizer/promoter blend is initially formed in making the plastisol composition.

The plastisol is dryable or curable at very low bake temperatures ranging on down to 121°-135°C (250°-275°F). The plastisol either can be baked and then topcoated (wet-on-dry) or the plastisol can be applied followed by the topcoat wherein both coatings then are cured in a single bake (wet-on-wet). In automotive applications, the plastisol typically is drawn down or applied onto a metal subsrate which has been primed with a corrosion-inhibiting coating. Typical topcoats include high performance acrylic topcoats which are cured by conventional acid catalysts.

The following examples show how the present invention has been practiced but should not be construed as limiting. All percentages and proportions are by weight unless expressly indicated.

EXAMPLES

15

20

25

30

35

40

45

50

55

EXAMPLE 1

The efficacy of polyaminoamide – polyimidazoline adhesion promoters in PVC plastisol formulations was demonstrated on the following general formulation.

TABLE 1

Ingredient*	Amount (wt parts)
Occidental 6482 (regist. TM)	60
Borden VC265 (regist. TM)	40
Dihexyl phthalate (DHP)	62.5
Diisodecyl phthalate (DIDP)	62.5
CaCO₃	250

* Occidental 6482 – A medium molecular weight PVC homopolymer, inherent viscosity 1.07 (ASTM D – 1243), K Value (Fikenstscher) 71, specific gravity 1.414 (ASTM D – 792), gelation temperature 73 °C (163 °F), 100% passes through a 0.044 mm opening size (325 mesh) sieve, Occidental Chemical Corp., Pottstown, Pa. Borden VC265 – PVC copolymer plastisol blending resin containing 4% vinyl acetate, 33 – 40 μm avg. particle size powder, Borden, Inc., Columbus, Ohio. CaCO₃ – Atomite brand CaCO₃, 3 μm mean particle size, Thompson, Weineman and Company, Cartersville, Georgia.

Varying levels of adhesion promoter were utilized as follows:

TABLE 2

١c	No. Wt. Parts
	10.17
	7.13
	4.75
	3.56
	2.38
	1.19
	0.59

The adhesion promoter was Euretek (registered TM) 580 polyaminoamide adhesion promoter (amine value of 190, manufactured under US – A – 4,146,520, Sherex Chemical Company, Inc., Dublin, Ohio).

Brookfield viscosity measurements were taken on each formulation initially and thereafter at various intervals of time. The following data was recorded.

			0005					
10		45 days	324,800 232,800 165,600 125,600	2.59 4,500	275,200 185,300 124,300 90,800	3.03	244,833 152,809 98,499 65,400	3.71
15		32 days	339,200 244,800 176,400 134,600	2.52	267,200 177,600 119,600 87,200	3.06	262,400 164,800 105,600 72,600	4.47
20		24 days	348,800 255,200 178,800 133,000	2.62	272,000 175,200 117,600 84,800	3.21	324,800 205,600 134,800 93,800	3 46
25 30	LLE 3 /m Pa d.	17 days	334,400 254,400 177,200 130,600	2.56	304,000 209,600 138,800 97,400	3.12	313,600 197,600 126,400 85,800	3
35	TABLE	7 days	350,400 249,600 174,800 129,000	2.72 5,040	302,400 199,200 130,000 90,800	3.33 5,160	312,000 192,800 120,400 78,000	W 90
40		3 days	267,200 184,800 125,600 91,800	2.91	283,200 188,800 122,800 85,600	3.31	276,800 171,200 106,400 69,200	00 7
4 5		Initial	154,800 99,400 66,600 47,350	3.27	143,200 91,600 59,300 40,800	3.58	214,400 137,600 87,200 57,200	3 75
50		RPM	2.5 5 10 20	R yield	2.5 5 10 20	R yield	2.5 5 10 20	ρ
55		No.	_		89		e	

5		45 days	276,800 173,600 109,600 73,600), 59 5, 000	276,800 173,600 109,200 72,800 3.80 5,160	318,400 197,600 120,600 75,600
10		32 days	270,400 168,800 105,600 70,200	3.85 5,080	289,600 178,400 109,600 71,400 4.06 5,560	342.400 209,600 126,800 78,800 4.35 6,640
15	ý	24 days	307,200 189,600 118,400 78,400	3.92	310,400 192,000 119,200 76,800 4.04 5,920	360,000 218,400 131,600 82,200 4.38 7,080
20	TABLE 3 (continued) Viscosity m. Re. A	17 days	328,000 203,200 127,600 83,600	3.92 6,240	328,000 202,400 124,800 80,400 4.08 6,280	342,400 208,800 127,200 78,800 4.35 6,680
30	TABLE 3 (cc Viscosity	7 days	342,400 212,800 133,200 88,400	3.87 6,480	315,200 189,600 114,000 73,600 4.28 6,280	361,600 224,000 136,400 84,800 4.26 6,880
35		3 days	320,000 200,800 124,800 80,600	3.97 5,960	347,200 216,800 134,000 85,800 4.05 6,520	398,400 246,400 150,800 93.600 4.26 7,600
40		Initial	228,800 147,200 93,600 61,200	3.74	275,200 177,600 113,200 73,200 3.76 4,880	345,600 158,400 99,800 3.46 5,000
45		RPM	2.5 5 10 20	R yield	2.5 5 10 20 20 R yield	2.5 5 10 20 20 R yield
50		No.	4		v	ဖ

					1	
5		45 days	395,200 235,200 140,000 86,200	4.5.₽ 9,000		lows:
10		32 days	392,000 231,200 137,200 82,600	4.75 8,040	by the viscosity	alculated as fol
15	7	24 days	414,400 247,200 146,800 88,800	4.67	cosity at 2.5 rpm	plastisol) and is o
20	(D) % %				ne visc	the property of the property o
25	TABLE 3 (continued) Viscosity	17 days	424,000 253,600 150,400 91,400	4.64	nples. ly dividing th	(thickness or t 2.5 rpm - V
30	TABLE	7 days	420,700 250,400 147,200 90,000	4.68 8,520	Spindle # 6 for 204-65-1 and 2, and Spindle #7 for all other samples. R is a measure of the degree of thixotropy and is calculated by dividing the viscosity at 2.5 rpm by the viscosity at 2007 at 2007 rpm.	Yield is a measure of the force required to move the plastisol (thickness of the plastisol) and is calculated as follows: (2)(2.5 rpm) (Viscosity at 2.5 rpm - Viscosity at 5 rpm) 100
35		3 days	449,600 276,800 165,200 98,800	4.55 8,640	2, and Spindle #7	ce required to m. (2)(2.5 r
40		Initial	387,200 274,400 171,200 104,800	3.69	r 204-65-1 and e of the degree	isure of the for
45		RPM	2.5 5 10 20	R yield	Spindle # 6 for R is a measur at 20 rpm.	eld is a mea
50		· o			Sp. R. at	Ķ

Advantageously, the viscosity should stabilize over time. The above - tabulated data demonstrates such viscosity stability.

Each formulation was drawn down (0.50 mm (0.020 inch) coating) on primed steel panels (Uni – Prime coated panels, PPG Industries, used in all examples) and baked for 20 minutes at 121° C. Each coating had good adhesion to the panels except for 204 – 65 – 7, indicating that the promoter level was too low.

The coated panels then were coated with a white enamel paint (an automotive topcoat based on melamine and a hydroxyl-acrylic resin with an acid catalyst, supplied by PPG Industries, Pittsburgh, Pa.) The topcoated panels were baked at 121 °C for 30 minutes. All samples were slightly tacky and eventually intercoat adhesion was lost (about 50 days). This demonstrates the difficulties encountered in curing an acid catalyzed topcoat over a primer high in amine value. Thus, while metal adhesion and controlled age viscosity were good, paintability was lacking.

EXAMPLE 2

Plasticizer studies extended to various blends in order to retain control age viscosity but improve paintability. The basic formulation studied was as follows:

TABLE 4

Amount (wt. - parts)

60

40

100

20

1

15

Ingredient*

Occidental 6482™

Borden VC265™

CaCO₃

Talc

Silica

20

Euretek™ 580 promoter 3.21phr

Talc - Mistron ZCS grade talc, Cypress Industrial Minerals

Silica - Cab - O - Sil® brand fumed silica, Cabot Corporation.

Promoter - phr is weight parts per hundred weight parts of PVC.

25

The various plasticizer/promoter phases evaluated are set forth below:

measurements were taken as set forth below.

30

TABLE 5

35

Formulation	on No.	204 – 8	38 (wt.	- parts)		
Ingredient	1	2	3	4	5	6
DIHP DHP Monoisopropyl biphenyl	50 10 40	50 20 30	50 25 25	50 50 	50 50 	50 100 40

In formulations 1-3 and 5, the promoter was added to the plasticizer mix slightly warmed until homogeneous. In formulations 4 and 6, the promoter was added after the plastisol was made. Age viscosity

40

._

50

EP 0 263 053 B1

		1																	
5		34 days	244,800	118,800	85,800	2.85	3,520	308,800	211,200	148,800	117,400	2.63	4,880	275,200	180,800	25,200	88,800	3.10	4.720
10		22 days	251,200	112,000	84,200	2.98	3,960	304,000	212,000	150,400	115,800	2.63	4,600	275,200	172,800	113,200	77,200	3.56	5,120
20	(m. Pe. 4.)	11 days	236,800	101,200	000,69	3.43	4,120	300,800	201,600	141,600	103,400	2.91	4,960	246,400	153,600	97,200	65,600	3.76	4,640
25	TABLE 6 Viscosity	4 days	273,600	111,600	74,400	3.68	4,720	212,400	165,600	105,200	009,69	3.77	4,840	241,600	148,000	93,600	63,600	3.80	4,680
30		l day	188,800	69,600	46,800	4.03	3,760	212,800	126,400	17,600	49,400	4.31	4,320	192,000	115,200	10,400	45,600	4.21	3,840
35			0	. .	. 0	œ	0	9	0	₽ '	•	=	0	9	2	0	0	2	0.
40		Initial	217,60	79,600	50,800	4.28	4,440	224,00	132,80	80,800	50,80	4.4]	4,560	220,80	122,40	73,200	46,000	4.	4,920
		RPM	2.5	30 10	20	æ	yield	2.5	'n	2	20	æ	yield	2.5	2	20	20	æ	yield
45		No.	-					8						က					

5			34 days	246 400	150 400	95,200	63,400	60	60.0	4,800		217,600	132,800	82 400	53.400		4.07	4,240		254,400	161.600	109,600	70,600		3.32	4,640	
10										_		_	_				•	_		_	_	_	_		_	_	
15			22 days	233.600	139,200	86,800	56,400	4 14		4,720		217,600	131,200	81,600	51,600		4.22	4,320		249,600	156,800	08,000	64,800		3.85	4,640	
		∵																									
20	inued)	(m/k.s.)	11 days	235.200	140,800	86,000	56,200	4.19	7 200	4. (20		212,800	128,800	79,200	51,200		4.16	4,200	000	196,800	122,400	74,800	51,600	•	2.8	3,720	
25	TABLE 3 (continued)	Viscosity.	4days	227,200	139,200	85,600	54,600	4.16	4 400	004.4		214,400	130,400	81,600	52,600		4.08	4,200	995	000,627	138,400	82,600	54,600	61.7	4.13	4,360	
30				00	00	00	00	4.22	80	2		00	00	00	00	•	503	09	S		3	00	8	9	6	00	
			1 day	214,400	128,8	79,600	50,8	4	4.280	40 4		204,800	125,6	78,4	50,800	•	4.03	3,960	904.0	100	9 6 9 7 1	78,400	50,000	4		2,0	
35																											
40			Initial	217,600	131,200	81,600	51,400	4.23	4.320			230,400	139,200	85,600	53,800	•	87.4	4,560	193 600	200,001	000, \$71	75,200	46,200	4 19		3,440	
45			RPM	2.5	လ	10	20	æ	vield			2.5	ശ	10	20	ç	: ۲	yield	5.6		. :	o ;	20	2		Draik	
			o Z	4							,	S							v.	•							-

Spindle # 7 for all samples.

Coatings on primed steel panels 0.50 mm (0.20 inch thickness) were baked at 121°C for 20 minutes. All films adhered well except No. 204 – 88 – 5 (control). The acid catalyst topcoat of Example 1 was applied over the cured plastisols and baked at 121°C for 30 minutes (wet – on – dry). Nos. 1 – 3 were dry while Nos. 4 and 5 were slightly tacky. Thus, the paintability of the plastisol had been improved by the addition of the secondary plasticizer solvent, monoisopropyl biphenyl. The amount of secondary plasticizer solvent ap – peared to be a bit low in Nos. 2 and 3, so that the formulation of this example appears to require at least about 40 weight parts of monoisopropyl biphenyl in order for paintability to be realized.

EXAMPLE 3

The basic formulation of Example 2 (Table 4) was studied again at higher levels of monoisopropyl biphenyl: 50 wt. – parts for 204 – 96 – 1 and 70 wt. – parts for 204 – 96 – 2. Again, the technique of blending the adhesion promoter into the plasticizer blend prior to making the plastisol was utilized. The age viscosity data recorded is set forth below.

50		45	35	30	25	15	10	5
				Ti	TABLE 7 Viscosity (m	(m. k. s)		
No.	RPM	Initial	l day	6 days	14 days	21 days	30 days	45 days
-	2.5 5 10 20	142,000 86,600 55,100 36,350	161,600 99,200 62,900 41,650	172,000 106,400 67,800 46,200	174,400 115,200 74,400 48,200	815,600 120,800 78,800 52,800	195,200 126,400 84,000 56,600	180,000 111,400 71,700 47,100
	R yield	3.91	3.88 3,120	3,72	3.62 2,960	3,52	3,440	3,430
2	2.5 5 10 20	174,400 115,600 74,700 48,300	118,400 105,600 88,400 64,800	105,600 98,400 90,400 69,200	124,800 101,600 96,400 79,200	134,400 104,400 98,800 81,600	140,800 123,200 99,200 77,400	163,200 122,400 101,600 82,400
	R yield	3.61 2,940	1.83	1.33	1.58	1.65 1,000	1.82 880	1.98
Spindl	e#6 for I	Spindle # 6 for Initial, 1 day, and	nd 6 days for No.	Spindle # 6 for Initial, 1 day, and 6 days for No. 1 and for Initial for No. 2;	or No. 2;			

Each plastisol exhibited good adhesion to the steel panels (bake protocol of 121 °C for 20 minutes). The acid catalyzed topcoat of Example 1 was applied wet – on – dry and wet – on – wet with baking at 121 °C for 30 minutes for both. The topcoat was not tacky for both systems. Note the slightly increased secondary solvent levels used compared to Example 2. Thus, the ability to achieve paintability while retaining adhesion to metal has been achieved.

EXAMPLE 4

10

15

20

25

35

40

50

55

The following formulations were studied.

5 TABLE 8

Formulation No. 2	204 – 147	
Ingredient	(wt -	parts)
	1	2
Occidental 6482™	60	60
Borden VC265™	40	40
CaCO₃	200	200
Talc	10	10
DIDP	60	60
Monoisopropyl biphenyl	40	40
Euretek 580 promoter™	3	3

The plasticizer/promoter blend of No. 1 was mixed at room temperature and then added to the plastisol. The plasticizer/promoter blend of No. 2 was mixed at 72°C and then added to the plastisol. The effects of temperature during the formulating, thus, were being studied.

Both plastisols were coated on steel panels and subjected to wet-on-dry and wet-on-wet top-coating as in Example 3. No apparent performance difference between the two formulations observed.

EXAMPLE 5

Various secondary plasticizer solvents were studied utilizing the basic formulation of Example 2. The various plasticizer blends studied are set forth below:

TABLE 9

Formulation	No. 204	-98	
Ingredient	(1	wt. – pari	s)
	1	2	3
DIDP	50	50	50
DHP	10	10	10
Butylated biphenyl	40		
Diisopropyl biphenyl		40	
Phenylxylyl ethane			40

The plasticizer/promoter blends were made and then added to the remaining ingredients, as described above. Age viscosity data are set forth below.

5		45 days	185.600	111,200	69,600		3,720	206,400	123,200	77,200	50,800	4.06	4,160	190.400	121,600	74.800	49,600	3,84	3,440
10																			
15		30 days	201,600	121,600	75,600 50,600		4,000	214,400	131,200	82,000	55,400	3.87	4,160	188,800	117,600	71,200	47,200	4.00	3,560
20	6	14 days	190,400	113,600	70,400 45,400	. 7	3,840	206,400	124,800	76,400	20,600	4.08	4,080	195.200	120,800	75,600	50,800	3.84	3,720
25	TABLE 9	v iscosity	0	0	00	•		0	0	0	0	z.	0	0	0	0	0		0
o	•	6 days	198,400	120,80	74,800 48,200	4 19	3,880	225,600	136,800	84,800	54,400	4.15	4,440	195,20	125,600	78,00	51,60	3.78	3.480
5		Initial	212,800	147,200	96,000 62,400	17 6	3,280	259,200	172,000	106,800	68,200	3.80	4,360	171,200	143,200	98,800	64,000	2.68	1,400
0		RPM	2.5	s,	20 20	œ	yield	2.5	ស	10	20	æ	yield	2.5	ഹ	10	20	¥	yield
5		o Z	1					83						က					

Spindle # 7 for all samples.

The formulations were coated and cured on steel panels (121 °C for 20 minutes) and topcoated wet – 50 on – dry and wet – on – wet as in the previous examples. Again, good adhesion to the substrates was achieved. The wet – on – dry topcoats also were tack free while the wet – on – wet topcoats were very slightly tacky. Thus, the efficacy of additional aromatic secondary plasticizer solvents is demonstrated.

 $p_{1,2}$

EXAMPLE 6

The following formulations were made as described above.

5 TABLE 10

Formulation no	. 204 – 1	16		
Ingredient		(wt	parts)	
	1	2	3	4
Occidental 6482™	60	60	60	60
Borden VC265™	40	40	40	40
CaCO₃	200	200	200	200
DIDP	60	60	60	30
DHP				30
Euretek 580 promoter™	5	3	3	3
Monoisopropyl biphenyl	40	40		
Diethylene glycol monoethyl ether			40	40

EP 0 263 053 B1

Control age viscosity data recorded is set forth below.

		TABLE 11	E 11			
		Viscosity	(m. Pa. 1) Y			
RPM	Initial	3 days	14 days	25 days	31 days	
2.5	211,200	206,400	233.600	241.600	984 800	
က	171,200	196,800	220,800	215,200	937, 600	
10	115,200	153,200	175,600	164.400	180,000	
20	19,600	106,600	126,400	121,600	137,600	
æ	2.65	1.94		1 00	ć	
yield	2,000	480	640	1,320	2,360	
2.5	219,200	256,000	262,400	278.400	281,600	
ഹ ്	144,000	211,200	228,800	246,400	231,200	
01	98,400	153,600	169,200	180,000	172,400	
20	009'09	109,400	115,400	132,400	124,200	
64	3.62	2.34	2.27	2, 10	6	
yield	3,760	2,240	1,680	1,600	2,520	
2.5	6,240	15,520	33,200	33,200	34 400	
ഹ	5,040	12,080	23,200	25,000	25, 600	
0 ;	4,320	9,760	17,800	20,400	20,500	
70	3,860	8,120	14,600	16,550	16,750	
æ	1.62	1.91	2.27	3.00	6	
yield	09	172	200	410	440	

16

50

				0		æ	0		
5		31 days	44,80	34,80	28,100 23,850	1.8	200	4;	
10		25 days	40,400	31,400	25,600 21,950	1.84	450	No. 3 and No.	
20	tinued) (~~ /2 . s)	14 days	32,800	25,000	20,200 17,050	1.92	390	l and 3 days for N	
25	TABLE 11 (continued) Viscosity (m	3 days	15,360	12,240	10, 160 8,920	1.72	156	Spindle # 7 for No. 1 and No. 2; Spindle # 5 for Initial and 3 days for No. 3 and No. 4;	
35		Initial	5,440	4,480	3,840	1.63	48	o. 1 and No. 2; Sp	Spindle # 6 for remaining samples.
40		RPM	2.5	ഹൃ	30	æ	yield	# 7 for N	# 6 for re
45		No.	4					Spindle	Spindle

The plastisols were coated on panels (121 °C for 20 minutes) and topcoated wet – on – dry as described in the previous examples. Again, good substrate adhesion was achieved. The topcoats were dry for Nos. 2, 3, and 4, and only very slightly tacky for No. 1. Again, the low temperature paintability of the inventive plastisols is demonstrated.

EXAMPLE 7

55

Additional studies of the ether secondary plasticizer solvent were undertaken on the following formula – tions.

TABLE 12

Formulation No. 20	4 - 98		
Ingredient	(wt. – par	ts)
	1	2	3
Occidental 6482™	60	60	60
Borden VC265™	40	40	40
CaCO₃	200	200	200
DIDP	90	80	105
Diethylene glycol monoethyl ether	10	20	20
Euretek 580 promoter™	3	3	3

EP 0 263 053 B1

Control age viscosity data is set forth below.

No. RPM Initial 1 day 3 days 10 days 21 days 24 days 1 2.5 128,800 170,400 249,600 283,200 267,200 254,400 10 50,200 177,600 167,200 102,400 20 33,950 44,900 63,200 79,200 70,800 20 33,950 44,900 63,200 79,200 70,800 20 33,950 44,900 63,200 79,200 70,800 20 33,950 44,900 63,200 79,200 70,800 20 33,950 44,900 63,200 74,800 70,800 20 10 25,600 79,200 79,200 70,800 20 17,700 25,600 82,400 63,800 69,700 64,900 20 17,700 25,800 82,600 63,800 69,700 64,900 20 17,700 25,800 36,000 45,900 45,900 44,900		50	45	40	35	30	25	20	15	10	5
Viscosity (~~K) RPM Initial 1 day 3 days 10 days 21 days 2.5 128,800 170,400 249,600 283,200 267,200 5 78,600 104,000 151,200 177,600 167,200 20 33,950 44,900 65,200 79,200 74,800 R 3.79 3.80 3.95 3.95 3.58 yield 2,510 39,400 135,200 161,200 170,800 5 40,200 98,400 135,200 161,200 170,800 20 17,700 25,600 38,200 65,800 65,700 20 17,700 25,800 36,000 65,800 69,700 20 17,700 25,800 36,000 65,800 69,700 20 17,700 25,800 36,000 65,800 65,700 20 17,700 25,800 36,000 65,800 65,700 20 17,700 25,800 36,000 65,200 20 18,000 22,080 35,500 65,200 26,200 20 8,620 14,500 19,600 26,300 26,200 20 8,620 14,500 1,208 1,688 2,220 2,100 R 4.14 4.10 4.22 4.17 4.03						TABLE	13				
RPM Initial 1 day 3 days 10 days 21 days 2.5 128,800 170,400 249,600 283,200 267,200 5 78,600 104,000 151,200 177,600 167,200 10 50,200 66,400 96,400 114,400 108,400 20 33,950 44,900 63,200 79,200 74,800 R 3.79 3,320 4,920 79,200 74,800 R 3.79 3,320 4,920 5,280 5,000 2.5 65,600 98,400 135,200 161,200 170,800 5 40,200 59,400 82,400 96,800 106,600 10 25,600 38,200 82,400 96,800 106,600 20 17,700 25,800 82,400 45,050 47,350 R 3.21 3.82 3.76 3,280 47,350 8 1,270 1,950 2,640 3,220 47,30						Viscosity		(m. R. A)			
2.5 128,800 170,400 249,600 283,200 267,200 5 78,600 104,000 151,200 177,600 167,200 10 50,200 66,400 96,400 114,400 108,400 20 33,950 44,900 63,200 79,200 74,800 R 3.79 3.80 3.95 3.58 3.57 yield 2,510 3,320 4,920 5,280 5,000 2.5 65,600 98,400 135,200 161,200 170,800 5 40,200 59,400 82,400 96,800 106,600 10 25,600 38,400 82,400 96,800 106,600 20 17,700 25,800 36,000 45,050 47,350 R 3,71 3,82 3,50 47,350 R 3,77 1,950 2,640 3,220 3,210 2.5 20,80 35,50 48,960 65,200 63,600	No.	RPM	Initial	-	дву	3 days		10 days	21 days	24 days	
5 78,600 104,000 151,200 177,600 167,200 10 50,200 66,400 96,400 114,400 108,400 20 33,950 44,900 63,200 79,200 74,800 R 3.79 3.80 4,920 5,280 5,000 2.5 65,600 98,400 135,200 161,200 170,800 5 40,200 59,400 82,400 96,800 106,600 10 25,600 38,200 52,600 63,800 69,700 20 17,700 25,800 36,000 45,050 47,350 R 3.71 3.82 3.76 3.22 3,210 yield 1,270 1,950 2,640 3,220 3,210 2.5 80 59,520 82,720 109,600 65,200 5 20,880 35,360 46,960 65,200 63,600 10 18,000 22,080 30,240 40,300 39,600 20 8,620 14,500 19,600 26,300 26,300 26,300 21 4.14 4.10 4.22 4.17 4.03 8 4.14 4.10 4.22	_	2.5	128,800	H	70,400	249,600		283,200	267.200	254 40	
10 50,200 66,400 96,400 114,400 108,400 73,200 74,800 R3,350 44,900 63,200 79,200 74,800 74,800 R2,500 79,200 74,800 82,400 82,400 96,800 106,600 10 25,600 38,200 82,400 96,800 106,600 69,700 20 17,700 25,800 36,000 45,050 47,350 R 3.71 3.82 3.76 3.58 3.51 3.210 1,270 1,950 2,640 3,220 3,210 25,800 65,200 65,600 5 20,880 35,360 48,960 65,200 65,600 20,880 35,360 19,600 26,300 26,200 R4,300 26,200 R4,300 26,200 R4,300 26,200 R4,300 26,200 R4,28 41,7 4.10 8,600 1,508 1,688 2,220 2,100		ശ	78,600	=	04,000	151,200		177,600	167,200	158,40	
20 33,950 44,900 63,200 79,200 74,800 R 3.79 3.80 3.95 3.58 3.57 yield 2,510 3,320 4,920 5,280 5,280 2.5 65,600 98,400 135,200 161,200 170,800 10 25,600 38,200 52,600 63,800 69,700 20 17,700 25,800 36,000 45,050 47,350 R 3.71 3.82 3.76 3.58 3.61 yield 1,270 1,950 2,640 3,220 63,600 2.5 35,680 59,520 65,200 63,600 2.5 35,680 35,360 48,960 65,200 63,600 2.6 20,880 35,360 48,960 65,200 63,600 2.7 4.14 4.10 4.22 4.17 4.03 yield 740 1,208 1,508 2,220 2,220 2,100		01	50,200		66,400	96,400		114,400	108,400	102,40	
R 3.79 3.80 3.95 3.58 3.57 yield 2,510 3,320 4,920 5,280 5,000 2.5 65,600 98,400 135,200 161,200 170,800 5 40,200 38,200 52,600 63,800 69,700 10 25,600 38,200 52,600 63,800 69,700 20 17,700 25,800 36,000 45,050 47,350 R 3.71 3.82 3.76 3.58 3.61 yield 1,270 1,950 2,640 3,220 3,210 2.5 20,880 35,360 48,960 65,200 63,600 5 20,880 35,360 48,960 65,200 63,600 10 18,000 22,080 30,240 40,300 26,200 20 8,620 14,500 19,600 26,300 26,200 20 8,620 14,50 1,688 2,220 2,200 <t< td=""><td></td><td>20</td><td>33,950</td><td>-</td><td>44,900</td><td>63,200</td><td></td><td>79,200</td><td>74,800</td><td>70,80</td><td></td></t<>		20	33,950	-	44,900	63,200		79,200	74,800	70,80	
yield 2,510 3,320 4,920 5,280 5,000 2.5 65,600 98,400 135,200 161,200 170,800 10 20 17,700 25,800 52,600 63,800 69,700 69,700 20 17,700 25,800 36,000 45,050 47,350 47,350 47,350 1,950 1,270 1,950 65,200 63,600 63,600 63,600 63,600 63,600 63,600 63,600 22,080 30,240 40,300 39,600 22,080 30,240 40,300 26,200 26,200 26,200 26,200 26,200 26,200 26,200 26,200 26,200 26,200 26,200 27,000 1,208 1,688 2,2220 2,100		æ	3.79		3.80	3,95		67 67	6	c	
2.5 65,600 98,400 135,200 161,200 170,800 5 40,200 38,200 52,600 63,800 106,600 20 17,700 25,800 36,000 47,350 R 3.71 3.82 3.76 3.58 yield 1,270 1,950 2,640 3,220 3,210 2.5 35,680 59,520 82,720 109,600 105,600 5 20,880 35,360 48,960 65,200 63,600 10 18,000 22,080 30,240 40,300 39,600 20 8,620 14,500 19,600 26,200 26,200 8 4.14 4.10 4.22 4.17 4.03 yield 740 1,208 1,688 2,220 2.100		yield	2,510		3,320	4,920		5,280	5,000	4,80	.
40,200 59,400 82,400 96,800 170,800 25,600 38,200 52,600 63,800 106,600 17,700 25,800 3.76 3.58 3.61 3.71 3.82 3.76 3.58 3.61 1,270 1,950 2,640 3,220 3,210 35,680 59,520 82,720 109,600 105,600 20,880 35,360 48,960 65,200 63,600 18,000 22,080 30,240 40,300 39,600 8,620 14,500 19,600 26,300 26,200 4.14 4.10 4.22 4.17 4.03 740 1,208 1,688 2,220 2,100	2	2.5	65.600	J.	98,400	135 200		161 900			
25,600 38,200 52,600 52,600 63,800 106,600 17,700 25,800 36,000 45,050 47,350 3.71 3.82 3.76 3.58 3.61 1,270 1,950 2,640 3,220 3,210 20,880 35,360 48,960 63,600 18,000 22,080 30,240 40,300 39,600 8,620 14,500 19,600 26,200 26,200 4.14 4.10 4.22 4.17 4.03 740 1,208 1,688 2,220 2,100		ur.	40 200		201100	007 007		007,101	170,800	164,800	_
3.71 3.82 3.76 3.58 3.61 1,270 1,950 2,640 3.58 3.61 35,680 59,520 82,720 109,600 105,600 20,880 35,360 48,960 65,200 63,600 18,000 22,080 30,240 40,300 39,600 8,620 14,500 19,600 26,300 26,200 4.14 4.10 4.22 4.17 4.03 740 1,208 1,688 2,220 2,100		ء د	007.04	*	00**60	82,400		96,800	106,600	100,200	_
3.71 3.82 3.76 3.58 3.61 1,270 1,950 2,640 3,220 3,210 35,680 59,520 82,720 109,600 105,600 20,880 35,360 48,960 65,200 63,600 18,000 22,080 30,240 40,300 39,600 8,620 14,500 19,600 26,300 26,200 4.14 4.10 4.22 4.17 4.03 740 1,208 1,688 2,220 2,100		2 6	000 -:	- '	007,00	22,600		63,800	69,700	64.90	_
3.71 3.82 3.76 3.58 3.61 1,270 1,950 2,640 3,220 3,210 35,680 59,520 82,720 109,600 105,600 20,880 35,360 48,960 63,500 63,600 18,000 22,080 30,240 40,300 39,600 8,620 14,500 19,600 26,300 26,200 4.14 4.10 4.22 4.17 4.03 740 1,208 1,688 2,220 2,100		7.0	17,700	- •	25,800	36,000		45,050	47,350	44,95(
1,270 1,950 2,640 3,220 3,210 35,680 59,520 82,720 109,600 105,600 20,880 35,360 48,960 65,200 63,600 18,000 22,080 30,240 40,300 39,600 8,620 14,500 19,600 26,300 26,200 4.14 4.10 4.22 4.17 4.03 740 1,208 1,688 2,220 2,100		æ	3.71		3.82	3.76		3,58	3 61	, ,	
35,680 59,520 82,720 109,600 105,600 20,880 35,360 48,960 65,200 63,600 18,000 22,080 30,240 40,300 39,600 8,620 14,500 19,600 26,300 26,200 4.14 4.10 4.22 4.17 4.03 740 1,208 1,688 2,220 2,100		yield	1,270		1,950	2,640		3,220	3,210	3,230	- 0
20,880 35,360 48,960 65,200 63,600 18,000 22,080 30,240 40,300 39,600 8,620 14,500 19,600 26,300 26,200 4.14 4.10 4.22 4.17 4.03 740 1,208 1,688 2,220 2,100	60	2.5	35,680	υ,	59,520	82,720		109,600	105.600	706 101	
18,000 22,080 30,240 40,300 39,600 8,620 14,500 19,600 26,300 26,200 4.14 4.10 4.22 4.17 4.03 740 1,208 1,688 2,220 2,100		ស	20,880		35,360	48,960		65,200	63,600	60,400	
8,620 14,500 19,600 26,300 26,200 4.14 4.10 4.22 4.17 4.03 740 1,208 1,688 2,220 2,100		10	18,000	-4	22,080	30,240		40,300	39,000	20,400	
4.14 4.10 4.22 4.17 4.03 740 1,208 1,688 2,220 2,100		20	8,620		14,500	19,600		26,300	26,200	24,600	
740 1,208 1,688 2,220 2,100		æ	4.14		4.10	4.22		4.17	60 7		
		yield	740		1,208	1,688		2,220	2,100	2.040	

Spindle #6 for No. 1 and No. 2; Spindle #5 for No. 3.

Good adhesion to steel panels again was achieved. The wet-on-dry topcoats (121 °C for 30 minutes) also were dry. The efficacy of the ether secondary plasticizer solvent again is demonstrated.

EXAMPLE 8

Formulation No. 204-118-1 (Example 7) was evaluated again along with an equivalent formulation which used a different adhesion promoter (No. 2) at the same level: Euretek® 555 polyaminoamide – polyimidazoline adhesion promoter (amine value of 380; Gardner color of 12; 8.1 lb/gal. at 82.2°C; Viscosity profile (Brookfield LVT, spindle 34) of 17,000 mPa•s at 43.3°C, 13,000 mPa•s at 48.9°C, 9,000 mPa•s at 54.5°C, 4,000 mPa•s at 60.0°C, and 2,800 mPa•s at 65.6°C; Sherex Chemical Company, Inc., Dublin, Ohio). The control age viscosity data recorded is set forth below.

				TABLE 14 Viscosity.	(an R. A)			
No.	RPM	Initial	1 фау	3 days	10 days	21 days	24 days	
_	2.5	128,800	170,400	249,600	283,200	267,200	254,400	
	ر د	78,600	104,000	151,200	177,600	167,200	158,400	
	0 6	50,200	66,400	96,400	114,400	108,400	102,400	
	7.0	33,850	44,900	63,200	79,200	74,800	70,800	
	æ	3.79	3.80	3.95	3.58	3.57	3.59	
	yield	2,510	3,320	4,920	5,280	2,000	4,800	
2	2.5	130,800	145,600	185,600	154,800	154.800		
	2	82,000	87,800	93,600	94,600	95,800		
	10	52,700	55,700	29,800	61,400	62,600		
	20	35,650	37,900	41,950	42,600	43,800		

Panel coatings and wet-on-dry acid catalyzed topcoats were applied as in the previous examples. Good panel adhesion was achieved. The topcoat on Formulation No. 204-118-1 was dry while the topcoat on Formulation No. 204 - 126 - 2 was only slightly tacky.

EXAMPLE 9

The following formulations were made:

TABLE 15

Formulation No. 204	- 120		
Ingredient	(vt. – par	ts)
	1	2	3
Occidental 6482™	60	60	60
Borden VC265™	40	40	40
CaCO₃	200	200	200
DIDP	90	80	55
Diethylene glycol monoethyl ether	10	20	20
Euretek 580 promoter™	3	3	3

Control age viscosity data is set forth below.

TABLE 16

	-	Visco	sity (mPa·s)		
No.	RPM	Initial	1 day	10 days	21 days
1	2.5	108,800	158,400	334,400	318,400
	5	66,600	96,800	212,800	203,200
	10	43,300	61,600	137,600	131,200
]	20	30,000	41,600	92,800	90,800
	R	3.63	3.81	3.60	3.51
Į	yield	2,110	3,080	6,080	5,760
2	2.5	20,400	44,000	225,600	249,600
Į.	5	13,400	27,600	136,800	150,400
	10	10,200	18,900	86,800	10,800
1	20	7,850	13,800	56,600	71,200
1	R	2.60	3.19	3.99	3.51
	yield	350	820	4,440	4,960
3	2.5	22,800	40,000	313,600	304,000
	5	19,000	32,200	217,600	202,400
	10	16,300	26,100	110,400	137,600
ĺ	20	14,700	22,950	81,400	102,800
1	R	1.55	1.83	3.85	2.96
	yield	190	490	4,800	5,080
Spindle	#6 for Init	ial and 1 day	; Spindle #7 '	for all other s	amples.

Panel and topcoat testing revealed that good panel adhesion still was present but that the wet – on – dry topcoats (121 ° C for 30 minutes) were slightly tacky. The reason for the dimunition in performance of this butyl ether solvent compared to the ethyl ether version is not understood presently.

EXAMPLE 10

The following formulations were made.

Formulation No. 204										
Ingredient*			(wt. –	parts)						
	103 – 1	103-2	105 – 1	105-2	138 – 1	138 - 2				
Occidental 6482™	60	60	60	60	60	60				
Borden VC265™	40	40	40	40	40	40				
CaCO₃	100	100	100	100	200	200				
Talc	20	20	20	20						
Silica	1	1	1	1						
DIDP	30	20	50	30	90	80				
DHP	30	20	25	30						
Monoisopropyl biphenyl	20	30				~ -				
Propylene glcyol dibenzoate	20	30								
Ethyl toluene sulfon amide (ortho and para isomer mixture)			25	40						
Ethoxylated nonyl phenol					10	20				

^{*} Euretek 580™ promoter added at 1% by weight in all formulations. Ethoxylated nonyl phenol – Igepal® CO – 630 nonylphenoxy poly(ethyleneoxy) ethanol, GAF Corporation.

While the aromatic ester, the sulfonamide, and the nonyl phenol solvents all solvated the adhesion promoter, wet-on-dry paintability was lacking. Ester solvents appear not to be beneficial due to postulated undesirable interaction with other ingredients. The sulfonamide solvent adds more amine value to the plastisol which is not desirable for achieving cure of the acid catalyzed topcoat. The ethoxylated nonyl phenol solvent should have functioned properly according to current understanding of the invention. Perhaps different levels or degrees of ethoxylation will enable this solvent, to function as plastisol.

Claims

- 1. A plastisol composition comprising finely divided vinyl chloride polymer, filler, a primary plasticizer, and a polyaminoamide polyimidazoline adhesion promoter, wherein for overcoating said plastisol with an acid catalyzed topcoat said composition comprises a plasticizer/promoter phase comprising said primary plasticizer and said adhesion promoter, characterized in that said plasticizer/promoter phase comprises in addition an effective amount of a secondary plasticizer nonionic solvent effective in solvating said adhesion promoter in said plasticizer/promoter phase, said plasticizer/promoter phase being preformed for addition with the remaining ingredients of the plastisol composition.
 - 2. The plastisol composition of claim 1 characterized in that said secondary plasticizer nonionic solvent ranges from between 10 to 70 weight parts per 100 weight parts of said vinyl chloride polymer.
 - 3. The plastisol composition of claim 1 characterized in that said primary plasticizer ranges from between 20 and 200 weight parts per 100 weight parts of said vinyl chloride polymer.
- 4. The plastisol composition of claim 1 characterized in that said adhesion promoter ranges from between 1 and 10 weight parts per 100 weight parts of said vinyl chloride polymer.
 - 5. The plastisol composition of claim 1 characterized in that said secondary plasticizer nonionic solvent is selected from the group consisting of monoisopropyl biphenyl, diethylene glycol monoethyl ether, diisopropyl biphenyl, phenylxylyl ethane, butylated biphenyl, and mixtures thereof.
 - The plastisol composition of claim 1 characterized in that it contains more than one of said vinyl chloride polymer.

5

10

15

20

25

- 7. The plastisol composition of claim 1 characterized in that it additionally comprises a thixotropic agent ranging from between 1 and 5 weight parts per 100 weight parts of said vinyl chloride polymer.
- 8. A method for making a plastisol composition which comprises:
 - (a) forming a plasticizer/promoter phase comprising a primary plasticizer, a polyaminoamide polyimidazoline adhesion promoter,
 - (b) blending said plasticizer/promoter phase with a finely divided vinyl chloride polymer and a filler to make said plastisol composition characterized by the addition during step (a) to the plasticizer/promoter phase of an effective amount of a secondary plasticizer nonionic solvent effective in solvating said adhesion promoter in said plasticizer/promoter phase.
- 9. The method of claim 8 characterized in that said secondary plasticizer nonionic solvent ranges from between 10 to 70 weight parts per 100 weight parts of said vinyl chloride polymer.
- 15. The method of claim 8 characterized in that said primary plasticizer ranges from between 20 and 200 weight parts per 100 weight parts of said vinyl chloride polymer.
 - 11. The method of claim 8 characterized in that said adhesion promoter ranges from between 1 and 10 weight parts per 100 weight parts of said vinyl chloride polymer.
 - 12. The method of claim 8 characterized in that said secondary plasticizer nonionic solvent is selected from the group consisting of monoisopropyl biphenyl, diethylene glycol monoethyl ether, diisopropyl biphenyl, phenylxylyl ethane, butylated biphenyl, and mixtures thereof.
- 13. The method of claim 8 characterized in that it contains more than one of said vinyl chloride polymer.
 - 14. The method of claim 8 characterized in that it additionally comprises a thixotropic agent ranging from between 1 and 5 weight parts per 100 weight parts of said vinyl chloride polymer.
- 30 15. A method for coating a metal substrate which comprises:
 - (a) applying a plastisol composition;
 - (b) applying an acid catalyzed topcoat over said plastisol compostion; and
 - (c) heating said coated metal substrate to cure said plastisol composition and said topcoat, characterized in applying as said plastisol composition, the plastisol composition of claims 1 7.
 - 16. The method of claim 15 characterized in that said plastisol composition on said metal substrate is heated for its curing prior to applying said topcoat thereto.
 - 17. The method of claims 15 and 16 characterized in that the proportion of secondary plasticizer ranges from between 10 and 70 weight parts, said primary plasticizer ranges from between 20 and 200 weight parts, and said promoter ranges from between 1 and 10 weight parts, all weight parts based on 100 weight parts of said vinyl chloride polymer.

Patentansprüche

10

20

35

45

- 1. Plastisol Zusammensetzung, die ein feinverteiltes Vinylchlorid Polymer, einen Füllstoff, einen Primär Weichmacher und einen Polyaminoamid Polyimidazolin Haftvermittler enthält, wobei zum Überziehen des Plastisols mit einer Säure katalysierten Deckschicht die Zusammensetzung eine Weichmacher/Vermittler Phase aufweist, die den Primär Weichmacher und den Haftvermittler ent hält, dadurch gekennzeichnet, daß die Weichmacher/Vermittler Phase zusätzlich eine wirksame Men ge eines nichtionischen Sekundär Weichmacher Lösungsmittels enthält, das den Haftvermittler in der Weichmacher/Vermittler Phase solvatisiert, wobei die Weichmacher/Vermittler Phase zur Zugabe zu den restlichen Bestandteilen der Plastisol Zusammensetzung vorgebildet wird.
- 55 2. Plastisol Zusammensetzung nach Anspruch 1, dadurch gekennzeichnet, daß das nichtionische Sekundär Weichmacher Lösungsmittel im Bereich zwischen 10 und 70 Gewichtsteilen pro 100 Gewichtsteile des Vinylchlorid Polymers liegt.

- Plastisol Zusammensetzung nach Anspruch 1, dadurch gekennzeichnet, daß der Primär Weichma –
 cher im Bereich zwischen 20 und 200 Gewichsteilen pro 100 Gewichtsteile des Vinylchlorid Polymers
 liegt.
- Plastisol Zusammensetzung nach Anspruch 1, dadurch gekennzeichnet, daß der Haftvermittler im Bereich zwischen 1 und 10 Gewichtsteilen pro 100 Gewichtsteile des Vinylchlorid – Polymers liegt.
 - 5. Plastisol Zusammensetzung nach Anspruch 1, dadurch gekennzeichnet, daß das nichtionische SekundärWeichmacher Lösungsmittel aus der aus Monoisopropylbiphenyl, Diethylenglycolmonoeth ylether, Diisopropylbiphenyl, Phenylxylylethan, butyliertem Biphenyl und Gemischen davon bestehen den Gruppe ausgewählt ist.
 - Plastisol Zusammensetzung nach Anspruch 1, dadurch gekennzeichnet, daß sie mehr als ein Vinylchlorid – Polymer enthält.
 - 7. Plastisol Zusammensetzung nach Anspruch 1, dadurch gekennzeichnet, daß sie zusätzlich ein thixot ropes Mittel im Bereich zwischen 1 und 5 Gewichtsteilen pro 100 Gewichtsteile des Vinylchlorid Polymers enthält.
- 20 8. Verfahren zur Herstellung einer Plastisol Zusammensetzung, bei dem:

10

15

25

- (a) eine Weichmacher/Vermittler Phase gebildet wird, die einen Primär Weichmacher und einen Polyaminoamid Polyimidazolin Haftvermittler enthält,
- (b) die Weichmacher/Vermittler Phase mit einem feinverteilten Vinylchlorid Polymer und einem Füllstoff vermischt wird, um die Plastisol Zusammensetzung herzustellen, gekennzeichnet durch die Zugabe einer wirksamen Menge eines nichtionischen Sekundär Weichmacher Lösungsmittels, das den Haltvermittler in der Weichmacher/Vermittler Phase solvatisiert, zur Weichmacher/Vermittler Phase, und zwar während Schritt (a).
- Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß das nichtionische Sekundär –
 Weichmacher Lösungsmittel im Bereich zwischen 10 und 70 Gewichtsteilen pro 100 Gewichtsteile des Vinylchlorid Polymers liegt.
 - Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß der Primär Weichmacher im Bereich zwischen 20 und 200 Gewichtsteilen pro 100 Gewichtsteile des Vinylchlorid – Polymers liegt.
 - 11. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß der Haftvermittler im Bereich zwischen 1 und 10 Gewichtsteilen pro 100 Gewichtsteile des Vinylchlorid Polymers liegt.
- 12. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß das nichtionische Sekundär Weichmacher Lösungsmittel aus der aus Monoisopropylbiphenyl, Diethylenglycolmonoethylether, Diisopropylbiphenyl, Phenylxylylethan, butyliertem Biphenyl und Gemischen davon bestehenden Gruppe ausgewählt ist.
- 13. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß mehr als ein Vinylchlorid Polymer enthalten ist.
 - 14. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß zusätzlich ein thixotropes Mittel im Bereich zwischen 1 und 5 Gewichtsteilen pro 100 Gewichtsteile des Vinylchlorid Polymers enthalten ist.
- 50 15. Verfahren zum Beschichten eines Metallsubstrats, bei dem:
 - (a) eine Plastisol Zusammensetzung aufgebracht wird:
 - (b) eine Säure katalysierte Deckschicht auf die Plastisol Zusammensetzung aufgebracht wird; und
 - (c) das beschichtete Metallsubstrat zur Härtung der Plastisol Zusammensetzung und der Deck schicht erhitzt wird, dadurch gekennzeichnet, daß als Plastisol Zusammensetzung die Plastisol Zusammensetzung nach den Ansprüchen 1 7 aufgetragen wird.
 - 16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, daß die Plastisol Zusammensetzung auf dem Metallsubstrat zu ihrer Härtung erhitzt wird, und zwar vor dem Aufbringen der Deckschicht darauf.

17. Verfahren nach den Ansprüchen 15 und 16, dadurch gekennzeichnet, daß der Anteil des Sekundär – Weichmachers im Bereich zwischen 10 und 70 Gewichtsteilen, der des Primär – Weichmachers im Bereich zwischen 20 und 200 Gewichtsteilen und der des Vermittlers im Bereich zwischen 1 und 10 Gewichtsteilen liegt, wobei alle Gewichtsteile sich auf 100 Gewichtsteile des Vinylchlorid – Polymers beziehen.

Revendications

5

10

15

25

30

35

50

- 1. Composition de plastisol comprenant du polymère de chlorure de vinyle finement divise, une matière de charge, un plastifiant primaire et un agent de polyaminoamide polyimidazoline favorisant l'adhé rence, dans laquelle, pour recouvrir ledit plastisol avec une couche de finition catalysée à l'acide, ladite composition comprend une phase plastifiant/promoteur comprenant ledit plastifiant primaire et ledit agent favorisant l'adhérence, caractérisé en ce que ladite phase plastifiant/promoteur comprend, en outre, une quantité efficace d'un solvant non ionique de plastifiant secondaire efficace pour solvater ledit agent favorisant l'adhérence dans ladite phase de plastifiant/promoteur, ladite phase de plastifiant/promoteur étant préformée pour y ajouter les ingrédients restants de la composition de plastisol.
- 2. Composition de plastisol selon la revendication 1, caractérisée en ce que ledit solvant non ionique de plastifiant secondaire se situe dans l'intervalle entre 10 et 70 parties en poids par 100 parties en poids dudit polymère de chlorure de vinyle.
 - Composition de plastisol selon la revendication 1, caractérisée en ce que ledit plastifiant primaire se situe dans le domaine entre 20 et 200 parties en poids par 100 parties en poids dudit polymère de chlorure de vinyle.
 - 4. Composition de plastisol selon la revendication 1, caractérisée en ce que ledit agent favorisant l'adhérence se situe dans le domaine entre 1 et 10 parties en poids par 100 parties en poids dudit polymère de chlorure de vinyle.
 - 5. Composition de plastisol selon la revendication 1, caractérisée en ce que ledit solvant non ionique de plastifiant secondaire est choisi parmi le groupe comprenant le biphényle de monoisopropyle, l'éther monoéthylique de diéthylèneglycol, le biphényle de diisopropyle, le phénylxylyléthane, le biphényle butylé et des mélanges de ces derniers.
 - 6. Composition de plastisol selon la revendication 1, caractérisée en ce qu'elle contient plus qu'un dudit polymère de chlorure de vinyle.
- 7. Composition de plastisol selon la revendication 1, caractérisée en ce qu'elle comprend, en outre, un agent thixotrope se situant dans le domaine entre 1 et 5 parties en poids par 100 parties en poids dudit polymère de chlorure de vinyle.
 - 8. Procédé pour préparer une composition de plastisol, qui consiste à :
 - (a) former une phase plastifiant/promoteur comprenant un plastifiant primaire, un agent de polyaminoamide polyimidazoline favorisant l'adhérence,
 - (b) mélanger ladite phase plastifiant/promoteur avec un polymère de chlorure de vinyle finement divisé et une matière de charge pour préparer ladite composition de plastisol, caractérisé par le fait que l'on ajoute, au cours de l'étape (a), à la phase plastifiant/promoteur, une quantité efficace d'un solvant non ionique de plastifiant secondaire efficace pour solvater ledit agent favorisant l'adhérence dans ladite phase plastifiant/promoteur.
 - 9. Procédé selon la revendication 8, caractérisé en ce que ledit solvant non ionique de plastifiant secondaire se situe dans le domaine entre 10 et 70 parties en poids par 100 parties en poids dudit polymère de chlorure de vinyle.
 - 10. Procédé selon la revendication 8, caractérisé en ce que ledit plastifiant primaire se situe dans le domaine entre 20 et 200 parties en poids par 100 parties en poids dudit polymère de chlorure de vinyle.

- 11. Procédé selon la revendication 8, caractérisé en ce que ledit agent favorisant l'adhérence se situe dans le domaine entre 1 et 10 parties en poids par 100 parties en poids dudit polymère de chlorure de vinyle.
- 12. Procédé selon la revendication 8, caractérisé en ce que ledit solvant non ionique de plastifiant secondaire est choisi parmi le groupe comprenant le biphényle de monoisopropyle, l'éther monoéthy lique de diéthylèneglycol, le biphényle de diisopropyle, le phénylxylyléthane, le biphényle butylé et des mélanges de ces derniers.
- 13. Procédé selon la revendication 8, caractérisé en ce qu'elle contient plus qu'un dudit polymère de chlorure de vinyle.
 - 14. Procédé selon la revendication 8, caractérisé en ce qu'elle comprend, en outre, un agent thixotrope se situant dans le domaine entre 1 et 5 parties en poids par 100 parties en poids dudit polymère de chlorure de vinyle.
 - 15. Procédé pour l'enduction d'un substrat métallique, qui consiste à :
 - (a) appliquer une composition de plastisol;

15

20

35

40

45

50

55

- (b) appliquer une couche de finition catalysée à l'acide par dessus ladite composition de plastisol;
- (c) chauffer ledit substrat métallique enduit pour durcir ladite composition de plastisol et ladite couche de finition, caractérisé en ce qu'on applique, à titre de ladite composition de plastisol, la composition de plastisol selon les revendications 1 - 7.
- 16. Procédé selon la revendication 15, caractérisé en ce que ladite composition de plastisol appliquée sur ledit substrat métallique est chauffée à des fins de durcissement avant de lui appliquer ladite couche de finition.
- 17. Procédé selon les revendications 15 et 16, caractérisé en ce que la proportion du plastifiant secondaire se situe dans le domaine entre 10 et 70 parties en poids, ledit plastifiant primaire se situe dans le 30 domaine entre 20 et 200 parties en poids, et ledit promoteur se situe dans le domaine entre 1 et 10 parties en poids, toutes les parties en poids étant basées sur 100 parties en poids dudit polymère de chlorure de vinyle.