COMP 458/558 Introduction to Quantum Computing

Micah Kepe

Contents

	rhase 1: Introduction and Dackground	rage 2
1.1	Lecture 1: Overview of Quantum Computing Concepts	2
1.2	Lecture 2: Review of Linear Algebra Concepts	3
1.3	Lecture 3: Quantum Bits and States	4
Chapter 2	Phase II: Fundamentals of Quantum Algorithms	Page 6
2.1	Lecture 4: Quantum State Representation and Qubits	6
2.2	Lecture 5: Quantum Gates and Transformations	6
2.3	Lecture 6: Quantum Circuits and Entanglement	6
Chapter 3	Phase III: Advanced Quantum Algorithms	Page 7
3.1	Lecture 7: Grover's Search Algorithm	7
3.2	Lecture 8: Variational Quantum Algorithms	7
Chapter 4	Phase IV: Special Topics in Quantum Computing	Page 8
4.1	Lecture 9: Quantum Annealing	8
4.2	Lecture 10: Quantum Machine Learning	8
Chapter 5	Phase V: Concluding Lectures	Page 9
5.1	Lecture 11: Project Presentations and Feedback	q

Phase I: Introduction and Background

1.1 Lecture 1: Overview of Quantum Computing Concepts

Definition 1.1.1: Quantum Computing

Quantum computing is a computational paradigm leveraging quantum mechanical principles such as superposition, entanglement, and interference to perform computations that can surpass the capabilities of classical systems for specific tasks. a

^aSuperposition allows quantum bits (qubits) to exist in multiple states simultaneously, and entanglement enables correlations between qubits even at a distance.

Historical Development of Quantum Computing

- 1980s-1990s: Conception of quantum computing, with foundational ideas like the quantum Turing machine and quantum gates.
- 1990s-2000s: Demonstration of key building blocks, such as quantum algorithms (e.g., Shor's and Grover's algorithms).
- 2016: Emergence of quantum computing clouds, enabling access to quantum hardware via the internet.
- 2019: First claims of quantum advantage, showcasing tasks where quantum computers outperform classical counterparts.
- 2024: Increasing qubit counts and improvements in quantum error correction techniques.

Applications of Quantum Computing

Quantum computing offers speedup in areas such as:

- 1. Quantum Simulation: Applications in chemistry, physics, and materials science, such as simulating molecular energy levels and drug discovery.
- 2. **Security and Encryption:** Developing quantum-safe cryptographic protocols and random number generation.
- 3. **Search and Optimization:** Enhancing solutions for weather forecasting, financial modeling, traffic planning, and resource allocation.

Example 1.1.1 (Example: Quantum Speedup in Drug Discovery)

Drug discovery benefits from quantum simulation by enabling more accurate modeling of molecular interactions, which classical computers struggle to achieve efficiently.

Classical vs. Quantum Computing Paradigms

- Classical Computing: Utilizes traditional processing units (CPU, GPU, FPGA) and executes deterministic computations.
- Quantum Computing: Employs quantum processing units (QPU) with probabilistic computation based on quantum states.

Note:-

Note: Classical computing paradigms still dominate in tasks that require precision and deterministic results. Quantum computing excels in probabilistic or exponentially large state-space problems.

1.2 Lecture 2: Review of Linear Algebra Concepts

Definition 1.2.1: Vectors: Row and Column Vectors

A **vector** is an ordered list of numbers, which can be represented as either a row or column vector. The components of vectors in quantum computing belong to the field of complex numbers (\mathbb{C}).

Column Vectors

A column vector is a vertical arrangement of numbers:

$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}, \quad v_i \in \mathbb{C}.$$

Row Vectors

A row vector is the complex conjugate transpose (adjoint) of a column vector:

$$\mathbf{v}^{\dagger} = \begin{bmatrix} \overline{v}_1 & \overline{v}_2 & \dots & \overline{v}_n \end{bmatrix}.$$

Definition 1.2.2: Inner Product

The inner product of two vectors $\mathbf{v}, \mathbf{w} \in \mathbb{C}^n$ is defined as:

$$\langle \mathbf{v}, \mathbf{w} \rangle = \mathbf{v}^{\dagger} \mathbf{w} = \sum_{i=1}^{n} \overline{v_i} w_i.$$

Example 1.2.1 (Example: Inner Product)

Let
$$\mathbf{v} = \begin{bmatrix} 1+i\\2 \end{bmatrix}$$
 and $\mathbf{w} = \begin{bmatrix} 3\\i \end{bmatrix}$. Then:

$$\langle \mathbf{v}, \mathbf{w} \rangle = (1 - i)(3) + (2)(i) = 3 - 3i + 2i = 3 - i.$$

Definition 1.2.3: Outer Product

The outer product of two vectors $\mathbf{v} \in \mathbb{C}^m$ and $\mathbf{w} \in \mathbb{C}^n$ produces an $m \times n$ matrix:

$$\mathbf{v}\mathbf{w}^{\dagger} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_m \end{bmatrix} \begin{bmatrix} \overline{w}_1 & \overline{w}_2 & \dots & \overline{w}_n \end{bmatrix}.$$

Definition 1.2.4: Orthogonality

Two vectors $\mathbf{v}, \mathbf{w} \in \mathbb{C}^n$ are **orthogonal** if their inner product is zero:

$$\langle \mathbf{v}, \mathbf{w} \rangle = 0.$$

Example 1.2.2 (Example: Orthogonality)

Let
$$\mathbf{v} = \begin{bmatrix} 1 \\ i \end{bmatrix}$$
 and $\mathbf{w} = \begin{bmatrix} i \\ 1 \end{bmatrix}$. Then:

$$\langle \mathbf{v}, \mathbf{w} \rangle = (1)(i) + (i)(1) = i - i = 0.$$

Definition 1.2.5: Eigenvalues and Eigenvectors

For a square matrix $A \in \mathbb{C}^{n \times n}$, a vector $\mathbf{v} \neq \mathbf{0}$ is an **eigenvector** if:

$$A\mathbf{v} = \lambda \mathbf{v}$$
,

where $\lambda \in \mathbb{C}$ is the **eigenvalue**.

1.3 Lecture 3: Quantum Bits and States

Definition 1.3.1: Qubit

A **qubit** is the fundamental unit of quantum information. Unlike a classical bit, which is either 0 or 1, a qubit can exist in a superposition of states:

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$
, where $\alpha, \beta \in \mathbb{C}$ and $|\alpha|^2 + |\beta|^2 = 1$.

Definition 1.3.2: Dirac Notation

Quantum states are commonly represented in **Dirac notation** (bra-ket notation). For example:

- $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ form the computational basis.
- Any qubit state can be expressed as $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$.

Definition 1.3.3: Bloch Sphere Representation

The **Bloch sphere** visualizes a qubit state $|\psi\rangle = \cos(\theta/2)|0\rangle + e^{i\phi}\sin(\theta/2)|1\rangle$ as a point on a unit sphere, where:

- θ : Polar angle, $[0, \pi]$.
- ϕ : Azimuthal angle, $[0, 2\pi)$.

Note:-

Note: Measurement collapses a qubit into one of the basis states with probabilities proportional to the square of the amplitudes.

Example 1.3.1 (Example: Measurement Probabilities)

For $|\psi\rangle = \frac{1}{\sqrt{3}}|0\rangle + \sqrt{\frac{2}{3}}|1\rangle$:

- Probability of $|0\rangle$: $P(0) = \left|\frac{1}{\sqrt{3}}\right|^2 = \frac{1}{3}$. Probability of $|1\rangle$: $P(1) = \left|\sqrt{\frac{2}{3}}\right|^2 = \frac{2}{3}$.

Phase II: Fundamentals of Quantum Algorithms

2.1 Lecture 4: Quantum State Representation and Qubits

Definition 2.1.1: Quantum States

Define quantum states.

Definition 2.1.2: Qubits

Define qubits and their representation.

2.2 Lecture 5: Quantum Gates and Transformations

Definition 2.2.1: Unitary Matrices

Discuss unitary matrices.^a

^aA unitary matrix U satisfies $U^{\dagger}U = I$, where U^{\dagger} is the conjugate transpose of U.

Example 2.2.1 (Hadamard Gate)

Provide an example and matrix representation of the Hadamard gate.

2.3 Lecture 6: Quantum Circuits and Entanglement

Definition 2.3.1: Entanglement

Define entanglement.

Example 2.3.1 (Bell State)

Example of a Bell state and its significance.

Phase III: Advanced Quantum Algorithms

3.1 Lecture 7: Grover's Search Algorithm

Definition 3.1.1: Grover's Algorithm

Overview of Grover's search algorithm.

Question 1

Provide a pseudocode or example implementation in Python.

3.2 Lecture 8: Variational Quantum Algorithms

Definition 3.2.1: VQE

Introduce the Variational Quantum Eigensolver (VQE).

Phase IV: Special Topics in Quantum Computing

4.1 Lecture 9: Quantum Annealing

Definition 4.1.1: Quantum Annealing

Discuss the basics of quantum annealing.

4.2 Lecture 10: Quantum Machine Learning

Definition 4.2.1: QML

Define quantum machine learning and its applications.

Phase V: Concluding Lectures

5.1 Lecture 11: Project Presentations and Feedback

Note:Placeholder for project presentation notes.