利用矩阵的秩讨论若当标准型

首先, 对于如下 r×r 的若当块矩阵

$$\mathbf{J} = \begin{pmatrix} \lambda & 1 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 0 & \cdots & 0 & \lambda \end{pmatrix}$$

任给 $\eta \in \mathbb{C}$, 考虑矩阵 $\mathbb{Q}(\eta) = \eta \cdot \mathbb{E}_{r \times r} - \mathbb{J}$, 那么我们如下简单性质:

性质 1. 如果 $\eta\neq\lambda$, 那么 $Q(\eta)$ 为可逆矩阵.

性质 2. 当 $1 \le m \le r$ 时, $\operatorname{rank}(\mathbf{Q}(\lambda)^m) = r - m$.

性质 3. 当 $m \ge r$ 时 $Q(\lambda)^m = 0$.

设矩阵 A 为 $n \times n$ 的矩阵,它的若当标准型 $J=\operatorname{diag}(J_1,J_2,...,J_K)$,即存在可逆矩阵 P 使得 $A=PJP^{-1}$

成立,其中
$$\mathbf{J}_{i=}$$
 $\begin{pmatrix} \lambda_{i} & 1 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 0 & \cdots & 0 & \lambda_{i} \end{pmatrix}$,并且 \mathbf{J}_{i} 的阶数为 r_{i} , $i=1,2,...,K$. 很明显,对于不同的 i ,

相应的若当块的对角元素可能是相同的。

很自然,我们有如下的简单关系:

$$r_1+r_2+\ldots+r_K=n$$

下面我们讨论一下矩阵($\lambda \cdot \mathbf{E}_{n \times n} - \mathbf{A}$)^{*m*} 的秩。由于存在可逆矩阵 **P** 使得 **A**=**PJP**⁻¹ 成立,我们只需要分析矩阵($\lambda \cdot \mathbf{E}_{n \times n} - \mathbf{J}$)^{*m*} 的秩就可以了。

当 λ 不为 **A** 的特征值时,(λ ·**E**_{n×n} – **J**)^m 为可逆矩阵,这对于我们进一步的讨论没有任何意义。 因此,我们只考虑 λ 是 **A** 特征值的情形,并且不妨设在 **A** 的若当标准型中 $\lambda=\lambda_i=\lambda_{i+1}=...=\lambda_{i+s-1}$ 所对应的若当块为 **J**_i, **J**_{i+1},..., **J**_{i+s-1} 共 s 个,那么

$$\operatorname{rank}((\lambda \cdot \mathbf{E}_{n \times n} - \mathbf{A})^m) = \operatorname{rank}((\lambda \cdot \mathbf{E}_{n \times n} - \mathbf{J})^m) = \sum_{i=1}^K \operatorname{rank}((\lambda \cdot \mathbf{E}_{r_i \times r_i} - \mathbf{J}_i)^m)$$

很明显,当 j < i 或者 $j \ge i + s$ 时 $\mathrm{rank}((\lambda \cdot \mathbf{E}_{r_i \times r_i} - \mathbf{J}_j)^m) = r_j;$

对于 $i \le j \le i + s - 1$ 的情形, 我们需要区分 $1 \le m \le r_i$ 和 $m > r_i$ 的情况。

根据性质 2,当 $i \le j \le i + s - 1$ 且 $1 \le m \le r_j$ 时,rank(($\lambda \cdot \mathbf{E}_{r, \times r_i} - \mathbf{J}_j$)^m)= $r_j - m$;

根据性质 3,当 $i \le j \le i + s - 1$ 且 $m \ge r_j$ 时, rank(($\lambda \cdot \mathbf{E}_{r_j \times r_j} - \mathbf{J}_j$)^m)= 0;

如果对于 $x \in \mathbb{R}$ 引入记号 $(x)_{+}= \max\{x,0\}$, 那么我们有:

因此

$$rank((\lambda \cdot \mathbf{E}_{n \times n} - \mathbf{A})^{m}) = \sum_{i=1}^{K} rank((\lambda \cdot \mathbf{E}_{r_{i} \times r_{i}} - \mathbf{J}_{i})^{m}) = \sum_{i=1}^{i-1} r_{j} + \sum_{i=i+s}^{K} r_{j} + \sum_{i=i}^{i+s-1} (r_{j} - m)_{+}$$

$$= n - \sum_{j=i}^{i+s-1} (r_j - (r_j - m)_+) = n - \sum_{j=i}^{i+s-1} \min(r_j, m)$$

所以我们不妨记 $d_m=n-\operatorname{rank}((\lambda\cdot\mathbf{E}_{n\times n}-\mathbf{A})^m)$,那么 $d_m=\sum_{j=i}^{i+s-1}\min(r_j,m)$

设 $r = \max(r_i, r_{i+1}, ..., r_{i+s-1})$,那么明显有 $d_1 < d_2 < \cdots < d_r = d_{r+1} = d_{r+2} = \cdots$. 进一步,设对应于 A 的特征值 λ 的所有若当块中阶数为 k 的个数有 t_k 个,那么我们有

$$d_{m} = \sum_{j=i}^{i+s-1} \min(r_{j}, m) = \sum_{k=1}^{r} t_{k} \cdot \min(k, m)$$

对于 m=1,2,...,r,我们得到如下的线性方程组:

$$\begin{cases} t_1 + t_2 + t_3 + \dots + t_r = d_1 \\ t_2 + t_3 + \dots + t_r = d_2 - d_1 \\ t_3 + \dots + t_r = d_3 - d_2 \\ \dots \\ t_r = d_r - d_{r-1} \end{cases}$$

因此,我们有 $t_1=2d_1-d_2$, $t_r=d_r-d_{r-1}$,当 1< k< r 时 $t_k=2d_k-d_{k-1}-d_{k+1}$.当 r=1 时,公式 $t_r=d_r-d_{r-1}$ 无 法定义。事实上,可以补充定义 $d_0=0$,那么公式 $t_k=2d_k-d_{k-1}-d_{k+1}$,对于 k=1,...,r 都成立。因为 当 k=1,...,r-1 显然是成立的,而当 k=r 时,由于 $d_{r+1}=d_r$,因此公式 $t_r=2d_r-d_{r-1}-d_{r+1}=d_r-d_{r-1}$,仍然 是成立的。综合上面的讨论,我们得到如下基于特征矩阵幂的秩决定矩阵若当标准型的算法:第一步:对于给定矩阵特征值 λ ,对于 m=1,2,...,计算 $d_m=n-$ rank(($\lambda\cdot\mathbf{E}_{n\times n}-\mathbf{A}$) m). 显然有 $d_1< d_2< \cdots < d_r=d_{r+1}=d_{r+2}=\cdots$,因此当 d_m 不再严格增加的 m 值置为 r:

第二步: 补充定义 d0=0;那么根据公式

 $t_k=2d_k-d_{k-1}-d_{k+1}$, k=1,2,...,r 计算出矩阵特征值 λ 的阶数为 k 的若当块的个数 t_k .

下面我们在讨论以下根据特征矩阵幂的秩决定最小多项式 $m_A(\lambda)$ 。

设矩阵 A 为 $n \times n$ 的矩阵,它的特征多项式可以写为

$$\varphi_{\mathbf{A}}(\lambda) = (\lambda - \lambda_1)^{n_1} \dots (\lambda - \lambda_L)^{n_L}$$

其中特征根各不相同。由于最小多项式和特征多项式的根相同,只是每个根的重数不一样,因此我们的目标就是决定在最小多项式 $m_A(\lambda)$ 每个特征根的指数。设

$$m_{\mathbf{A}}(\lambda) = (\lambda - \lambda_1)^{m_1} \dots (\lambda - \lambda_I)^{m_L}$$
,

很明显 $1 \le r_l \le n_l$, l=1,2,...,L.

对于特征值 λ_l , l=1,2,...,L, 我们考虑矩阵(λ_l : $\mathbf{E}_{n\times n}-\mathbf{A}$)"的秩。对于 A 的若当标准型作前面的假设。设矩阵 A 的若当标准型为 $\mathbf{J}=\mathrm{diag}(\mathbf{J}_1,\mathbf{J}_2,...,\mathbf{J}_K)$,即存在可逆矩阵 P 使得 $\mathbf{A}=\mathbf{P}\mathbf{J}\mathbf{P}^{-1}$ 成立,

其中
$$\mathbf{J}_{i}=$$
 $\begin{pmatrix} \lambda_{i} & 1 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 0 & \cdots & 0 & \lambda_{i} \end{pmatrix}$,并且 \mathbf{J}_{i} 的阶数为 r_{i} , $i=1,2,\ldots,K$. 很明显,对于不同的 i ,相应的

若当块的对角元素可能是相同的。因此 A 的最小多项式 $m_A(\lambda)$ 和 J 的最小多项式 $m_J(\lambda)$ 是完全相同的。这样我们来讨论 J 的最小多项式 $m_J(\lambda)$ 。 有最小多项式的定义

$$\mathbf{m}_{\mathbf{J}}(\mathbf{J}) = (\mathbf{J} - \lambda_1 \cdot \mathbf{E}_{n \times n})^{m_1} \dots (\mathbf{J} - \lambda_L \cdot \mathbf{E}_{n \times n})^{m_L} = 0$$

由于 \mathbf{J} 为块对角矩阵,因此 $(\mathbf{J} - \lambda_l \cdot \mathbf{E}_{n \times n})^{m_l}$, $l=1,2,\ldots,L$, 也为具有和 \mathbf{J} 相同分块的对角矩阵。

而具有相同分块对角矩阵的乘积也为具有相同分块的对角矩阵,而且乘积的每个对角块为相乘矩阵对角块的乘积。

因此,
$$\mathbf{m}_{\mathbf{J}}(\mathbf{J}) = (\mathbf{J} - \lambda_1 \cdot \mathbf{E}_{n \times n})^{m_1} \dots (\mathbf{J} - \lambda_L \cdot \mathbf{E}_{n \times n})^{m_L} = \operatorname{diag}(\mathbf{m}_{\mathbf{J}}(\mathbf{J}_1), \mathbf{m}_{\mathbf{J}}(\mathbf{J}_2), \dots, \mathbf{m}_{\mathbf{J}}(\mathbf{J}_K)) = 0$$

对于给定的矩阵 A 的特征值 λ_l , l=1,2,...,L, 假设对应得若当标准型中的若当块为所对应的若当块为 \mathbf{J}_i , $\mathbf{J}_{i+1},...,\mathbf{J}_{i+s-1}$ 共 s 个。那么对于 $i \le k \le i+s-1$,由

$$m_{\mathbf{J}}(\mathbf{J}_{k}) = (\mathbf{J}_{k} - \lambda_{1} \cdot \mathbf{E}_{r_{k} \times r_{k}})^{m_{1}} \dots (\mathbf{J}_{k} - \lambda_{L} \cdot \mathbf{E}_{r_{k} \times r_{k}})^{m_{L}}$$

$$=\prod_{\substack{j=1\\i\neq l}}^{L} (\mathbf{J}_{k} - \lambda_{j} \cdot \mathbf{E}_{r_{k} \times r_{k}})^{m_{j}} \cdot (\mathbf{J}_{k} - \lambda_{k} \cdot \mathbf{E}_{r_{k} \times r_{k}})^{m_{l}} = 0.$$

根据性质 1, 欲使等式成立,因为等式右边的第一部分为可逆矩阵,因此只有等式右边的第二部分为 0, 也就是 $(\mathbf{J}_k - \lambda_k \cdot \mathbf{E}_{r \times r})^{m_l} = 0$, 根据性质 3, 我们得到 $m_l \ge r_k$, $i \le k \le i + s - 1$.

因此,我们可以得到 $m_i \ge \max\{r_i, r_{i+1}, ..., r_{i+s-1}\}$, $m_J(J_k)=0$ 。再根据最小多项式的定义,零化多相式的次数必须是最小的,因此我们得到 $m_l = \max\{r_i, r_{i+1}, ..., r_{i+s-1}\}$ 。

这也就说,假如我们知道若当标准型,我们实际上是可以知道最小多项式的。但是,在实际很多情形我们不知道若当标准型,但我们仍然可以知道最小多项式。事实上,由前面的讨论我们知道 m_l 也就是计算数列 $d_m=n-$ rank(($\lambda_l\cdot\mathbf{E}_{n\times n}-\mathbf{A}$) m), m=1,2,..., 的值,当 d_m 不再增加时的m 的值即为 m_l 的值,即

$$d_1 < d_2 < \cdots < d_m = d_{m+1} = \cdots$$

因此我们得到利用特征矩阵的秩计算最小多项式的方法:

对于 A 的特征值 λ_l ,计算 $d_m=n-\operatorname{rank}((\lambda\cdot\mathbf{E}_{n\times n}-\mathbf{A})^m), m=1,2,...$,的值,

$$d_1 < d_2 < \cdots < d_m = d_{m+1} = \cdots$$

当 d_m 不再增加时的 m 的值即为最小多项式 $m_{\mathbf{A}}(\lambda) = (\lambda - \lambda_1)^{m_1} \dots (\lambda - \lambda_r)^{m_L}$ 中包含的因式

$(\lambda - \lambda_l)^{m_l}$ 的次数 m_l .

因此我们给出了通过计算特征矩阵($\lambda_l \mathbf{E}_{n \times n} - \mathbf{A}$)", m = 1, 2, ...,的秩可以确定矩阵若当标准型和最小多项式的。当然,前提条件我们必需知道矩阵的所有不同特征根。

逐次满秩分解计算矩阵幂级数的秩

定义:设 $\mathbf{A} \in \mathbb{C}^{n \times n}$ 时,使得 $\operatorname{rank} \mathbf{A}^{k+1}$ 成立的最小正整数 k 称为 \mathbf{A} 的指标。

当矩阵 A 阶数较高时,求 A 的指标是不容易的。另外一方面,当 A 严重病态时,求 A 的 高次幂会使得病态更为严重。因此可以考虑采取 Cline 给出的逐次满秩分解方法求取 A 的指标。该方法每一步都作较小阶矩阵分解,有限次后可以确定出矩阵的指标。

定理 设 $\mathbf{A} \in \mathbf{C}^{n \times n}$, 令 \mathbf{A} 的满秩分解为 $\mathbf{A} = \mathbf{G}_1 \mathbf{H}_1$, 而 $\mathbf{H}_i \mathbf{G}_i$ 的满秩分解为

$$\mathbf{H}_{i}\mathbf{G}_{i}=\mathbf{G}_{i+1}\mathbf{H}_{i+1}$$
 ($i=1,2,...$)

则 **A** 的指标为 k 的充要条件是 $\mathbf{H}_k \mathbf{G}_k$ 非奇异。

证明 可以推得 $\mathbf{A}^{i}=\mathbf{G}_{1}...\mathbf{G}_{i}\mathbf{H}_{i}...\mathbf{H}_{1}$ $\mathbf{A}^{i+1}=\mathbf{G}_{1}...\mathbf{G}_{i}\left(\mathbf{H}_{i}\mathbf{G}_{i}\right)\mathbf{H}_{i}...\mathbf{H}_{1}$

设 $\operatorname{rank}\mathbf{G}_{i}$ = $\operatorname{rank}\mathbf{H}_{i}$ = r_{i} .利用 $\mathbf{G}_{i}^{(1)}\mathbf{G}_{i}$ = \mathbf{I} , $\mathbf{H}_{i}\mathbf{H}_{i}^{(1)}$ = \mathbf{I} (i=1,2,...,k) 得

rank $\mathbf{A}^{i}=r_{i}$, rank $\mathbf{A}^{i+1}=\operatorname{rank}(\mathbf{H}_{i}\mathbf{G}_{i})$

从而 A 的指标为 k 的充要条件为 H_kG_k 非奇异。