Learning with Small Samples Including zero-shot learning

Nour Karessli DSR 2019

Structure

- Introduction & motivation
- Zero-shot learning
 - Definition
 - Side information
 - Zero-shot learning models
 - Exercise
- Low-shot learning
 - Definition
 - Low-shot learning models
- Tips & tricks
- Exercises

Tips & Tricks

Structure

- Introduction & motivation
- Zero-shot learning
 - Definition
 - Side information
 - Zero-shot learning models
 - Exercise
- Low-shot learning
 - Definition
 - Low-shot learning models
- Tips & tricks
- Exercises

Generalization from small training set

Overfitting curse

Symptoms

- Very high training accuracy
- Very low testing accuracy
- → Model doesn't generalize to unseen data

Regularization

L₂ regularization

- Most common form of regularization
- Penalizing the squared magnitude of weights in the objective

L₁ regularization

- Relatively common form of regularization
- Penalizing L₁ of weights in the objective

Dropout

Removing a neuron from a designated layer during training or by dropping certain connection

Batch normalization

A common practice in NN, forces activiations to have unit gaussian distribution

Insert BN layer after FC and Conv, and before non-linearities

Robust networks to bad initialization

- interpreted as doing preprocessing at every layer of the network
- Normalization is differentiable

<u>Problem</u> Training a model from scratch only with small data is **challenging** and suffer from **overfitting**

<u>Problem</u> Training a model from scratch only with small data is **challenging** and suffer from **overfitting**

Solution Use the knowledge of a pre-trained model on a border task to solve more specific one

- Bottle neck features
- Fine-tuning top layers

Extract bottleneck features from a <u>pre-trained</u> network

Finetune top layers of <u>pre-trained</u> network

- Remove top dense layers
- Add your own classification layers on top
- Freeze bottom layers
- Fine-tune top layers on small data

Data augmentation

Increase the amount of training data using information only in our training data

- Affine transformations
- Generative Adversarial Networks (GANs)

Affine transformations

Generative Adversarial Networks (GANs)

Learns the data distribution

Generative Adversarial Networks (GANs)

Frontal face generator

ai

Generative Adversarial Networks (GANs)

Image to image translation

Low-shot learning + GANs

Low-Shot Learning from Imaginary Data

Meta-learning + Hallucination

Low-shot learning + GANs

[Wang, et al. arXiv2018]

Q&A

Structure

- Introduction & motivation
- Zero-shot learning
 - Definition
 - Side information
 - Zero-shot learning models
 - Exercise
- Low-shot learning
 - Definition
 - Low-shot learning models
- Tips & tricks
- Exercises

Image augmentation exercise

Image augmentation

- Clone git <u>repo</u>
- Use notebook in <u>notebooks/small_classifier/image_augmentation.ipynb</u>
- Read and plot <u>data aug/meerkat.jpg</u>
- Use keras keras.preprocessing.image.ImageDataGenerator to generate different images with different augmentations
- Plot results

Image classifier with small set exercise

Train small network from scratch

- Clone git <u>repo</u>
- Use notebook in <u>notebooks/small_classifier/image_classifier_with_small_data.ipynb</u>
- Define small conv net: 3 conv blocks (2Dconv,relu_activation,max_pooling) + 2 dense layers (don't forget flatten!)
- Compile network with binary_crossentropy loss and rmsprop
- Define image generator
- Train and validate using generators
- Bonus: plot loss & accuracy

Train small network from scratch

- Clone git repo
- Use notebook in <u>notebooks/small_classifier/image_classifier_with_small_data.ipynb</u>
- Define small conv net: 3 conv blocks (2Dconv,relu_activation,max_pooling) + 2 dense layers (don't forget flatten!)
- Compile network with binary_crossentropy loss and rmsprop
- Define image generator
- Train and validate using generators
- Bonus: plot loss & accuracy

Cheatsheet

Train image 2000

Validation images 800

Input size 150×150×3 (w,h,RGB)

Conv_1: filters 32, kernel size(3,3)

Conv_2: filters 32, kernel size(3,3)

Conv_3: filters 64, kernel size(3,3)

Dense_1: 64, relu

Extract features from pre-trained model

- from keras.applications import vgg16 (set model_top to false)
- Define image generator OR loop through images in data directory
- Use model.predict_generator to get features
- Save features in .npy file

Train small MLP on bottleneck features

- Define network with two dense layers (don't forget activations and dropout)
- Compile with binary_crossentropy loss and rmsprop
- Train with bottleneck features
- Bonus: plot loss & accuracy

Relu vs. Sigmoid

Relu vs. Sigmoid

Cheatsheet

Input size image features size

Flatten 3D feature maps

Dense_1: 256, relu Dropout: rate 0.5

Dense_2: 1, sigmoid

Train small MLP on bottleneck features

- Define network with two dense layers (don't forget activations and dropout)
- Compile with binary_crossentropy loss and rmsprop
- Train with bottleneck features
- Bonus: plot loss & accuracy

Fine-tune pre-trained network

- Load pre-trained model vgg (weights same as before)
 Note: specify input size according to our images
- Create a new model (vgg + previous mlp)
- Freeze first 15 layers of the new model
- Compile new model with binary_crossentropy loss and SGD with <u>low learning rate</u> (finetuning)
- Train with images

Word Embedding

Word embedding

Dense representations: Word2vec

35

Word embedding

Dense representations: Word2vec

Skip-gram

Word embedding

Dense representations: Word2vec

CBOW Skip-gram

Word embedding

Dense representations: Global vectors for word representation (Glove)

Word embedding exercise

Word embedding exercise

Train your own word2vec

- pip install gensim, tsne, bokeh
- Use sample corpus cloned from repo OR download sample text corpus eng_news_2005_100K here
- Use notebook in <u>notebooks/text_emb/train_word2vec.ipynb</u>
- Train word2vec model using gensim
- Sanity check
- Tsne & plot with bokeh

Word embedding exercise

Load pre-trained Glove

- Download pre-trained model from <u>here</u>
- Use notebook in <u>notebooks/text_emb/Tsne pretrained glove.ipynb</u>
- Load the model using gensim.models.KeyedVectors.load_word2vec_format
 Note: fix first line format
- Trick: for quicker loading
- Sanity check
- Tsne & plot with bokeh

Bonus

• Curse of Dimensionality

- Curse of Dimensionality
 - \bigcirc More features \rightarrow harder to find a solution

- Curse of Dimensionality
 - More features → harder to find a solution
- Bias-Variance Tradeoff

- Curse of Dimensionality
 - \circ More features \rightarrow harder to find a solution
- Bias-Variance Tradeoff
 - Bias: error due to simplistic assumptions in the model how well the model fits the data
 - Variance: error due to too much complexity in the model (sensitive for little changes)
 how much the model changes based on changes in the inputs

• Why Conv layer and not FC for images?

- Why Conv layer and not FC for images?
 - o Conv preserves spatial information in the image
 - Conv translation invariant

- Why Conv layer and not FC for images?
 - Conv preserves spatial information in the image
 - Conv translation invariant
- Max pooling?

- Why Conv layer and not FC for images?
 - Conv preserves spatial information in the image
 - Conv translation invariant
- Max pooling?
 - Reduce computation without losing too much information (max activation)

- Why Conv layer and not FC for images?
 - Conv preserves spatial information in the image
 - Conv translation invariant
- Max pooling?
 - Reduce computation without losing too much information (max activation)
- Normalization?

- Why Conv layer and not FC for images?
 - Conv preserves spatial information in the image
 - Conv translation invariant
- Max pooling?
 - Reduce computation without losing too much information (max activation)
- Normalization?
 - o makes all features weighted equally → stable convergence

• Precision vs. Recall

Precision vs. Recall

- Recall: amount of positives your model claims compared to the actual number of positives
- Precision: amount of correct positives your model claims compared to the number of positives it actually claims

• F1 score

• F1 score

- weighted average of the precision and recall of a model
- o 1 the best, 0 the worst.
- use it in classification where true negatives don't matter much.

$$F = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}}$$

Extra resources

Some great resources if you want to dig deeper:

- CVPR <u>tutorial</u> on zero-shot learning
- Matching networks for low-shot learning <u>code</u> implemented with tensorflow and <u>blog post</u>
- Stanford <u>course</u> on convolutional neural networks for visual recognition
- Activation functions comparison
- <u>Blog post</u> about different optimization methods
- Blog post about using embedding layers in neural networks
- Interviews questions <u>springboard</u>, <u>elitedatascience</u> and <u>towardsdatascience</u>

Thanks!