A quadratic-time algorithm for the cardinality-constrained college application problem

 ${
m Max~Kapur^1~and~Sung\text{-}Pil~Hong^2}$

^{1,2}Department of Industrial Engineering, Seoul National University

July 13, 2022

Abstract

This paper considers a novel portfolio optimization problem called the college application problem. We show that the objective function is a nondecreasing submodular set function and provide a quadratic-time solution algorithm. We discuss the properties of the optimal solution and their implications for student welfare.

 $\textbf{Keywords:} \ \ \textbf{combinatorial optimization}, \ \textbf{submodular maximization}, \ \textbf{portfolio optimization}$ tion

Correspondence may be addressed to Max Kapur.

Email: maxkapur@gmail.com

Address: 39-411, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea

Contents

1	Introduction	2
	1.1 Literature review	2
	1.2 Outline	3
2	Preliminaries	3
	2.1 The objective function	3
	2.2 An elimination technique	4
	2.3 Submodularity of the objective	5
3	The greedy algorithm	5
	3.1 The nestedness property	5
	3.2 Quadratic-time solution	6
4	Discussion: Heuristics and student welfare	8
	4.1 The distributional heuristic	8
	4.2 The linearization heuristic	8
	4.3 Implications for student welfare	9
5	Conclusion	10
6	References	10

1 Introduction

Due to the widespread perception that career earnings depend on college admissions outcomes, the solution of (1) holds monetary value. In the American college consulting industry, students pay private consultants an average of \$200 per hour for assistance in preparing application materials, estimating their admissions odds, and identifying target schools (Sklarow 2018). In Korea, an important revenue stream for admissions consulting firms such as Megastudy (megastudy.net) and Jinhak (jinhak.com) is "mock application" software that claims to use artificial intelligence to optimize the client's application strategy.

Most quantitative research on college admissions to date has been descriptive in nature. A standard benchmark for logistic regression techniques, for example, involves estimating students' admissions probabilities from information about their past academic performance (Acharya et al. 2019; Lim 2013). When professional admissions consultants advise their clients on where to apply to college, however, they but typically rely on qualitative heuristics, such as balancing applications between safety and reach schools, rather than optimization models (Peck 2021). (Admissions consultants refer to schools with low utility and high admissions probability as safety schools, and those with high utility and low admissions probability as reach schools.)

In the present study, we formulate the student's college application decision as the following optimization problem:

maximize
$$v(\mathcal{X}) = \mathbb{E}\left[\max\{t_0, \max\{t_j Z_j : j \in \mathcal{X}\}\}\right]$$

subject to $\mathcal{X} \subseteq \mathcal{C}, |\mathcal{X}| \leq H$ (1)

Here $C = \{1 ... m\}$ is an index set; h > 0 is the number of students the student can apply to; for j = 1 ... m, Z_j is a random, independent Bernoulli variable with probability f_j ; and for j = 0 ... m, $t_j \ge 0$ is a utility parameter.

Consider a single prospective student in a college market with m colleges, and let each t_j -value indicate the utility she associates with attending school j, where her utility is t_0 if she does not attend college. Let h denote the number of schools to which the student can afford to apply. Lastly, let f_j denote the student's probability of being admitted to school j if she applies, so that Z_j equals one if she is admitted and zero if not. It is appropriate to assume that the Z_j are statistically independent as long as f_j are probabilities estimated specifically for this student (as opposed to generic acceptance rates). Then the student's objective is to maximize the expected utility associated with the best school she is admitted to. Therefore, her optimal college application strategy is given by the solution \mathcal{X} to the problem above, where \mathcal{X} represents the set of schools to which she applies.

We focus on the special case in which students are constrained in the *number* of schools to which they can apply, and show that the optimal portfolios in this case are nested in the budget constraint, implying the optimality of the greedy algorithm that adds schools one at a time according to how much they increase the objective value.

1.1 Literature review

The objective function is a monotonic submodular function in the sense first described by Nemhauser et al. (1978). They showed that the greedy algorithm is asymptotically (1 - 1/e)-optimal for optimizing a monotonic submodular function over a cardinality constraint, and a subsequent result of Nemhauser and Wolsey (1978) proved that this approximation ratio is the best achievable by a polynomial-time algorithm. In the special case of college application, however, we show that the same algorithm is exact.

The proof of the optimality of the greedy algorithm rests on the nested structure of the portfolios, a property that is of independent interest. As Rozanov and Tamir (2020) articulate, the knowledge that the optima are nested aids not only in computing the optimal solution, but in the implementation thereof under uncertain information. For example, in the United States, many college applications are due at the beginning of November, and it is typical for students to begin working on their applications during the prior summer because colleges reward students who tailor their essays to the target school. However, students may not know how many schools they can afford to apply to until late October. The nestedness property—or equivalently, the validity of a greedy algorithm—implies that even in the absence of complete budget information, students can begin to carry out the optimal application strategy by writing essays for schools in the order that they enter the optimal portfolio.

Fu (2014) considered a problem that is reducible to ours: since application is at cost rather than a constraint, the objective function is separable in the cost and therefore must be optimal over portfolios of the given size. Thus, solving her problem reduces to solving m instances of (1).

To the best of our knowledge, the first systematic study of the college application problem was undertaken by Kapur in his master's thesis, which considers (1) as well as the more general case of a knapsack constraint. The present study extends Kapur's results with a further discussion of the application strategies recommended in the admissions consulting industry and how these compare to the optimal strategy.

1.2 Outline

This paper has five sections. In section 2, we derive a closed-form expression for the objective function of (1) and show that it is a monotonic submodular function. In section 3, we prove that the optimal portfolios are nested in the budget h, which implies the validity of the greedy algorithm. Further refinement reduces the computation time to O(hm). In section 4, we examine alternative solution mechanisms used in the admissions consulting industry and their performance relative to the optimal solution. A brief conclusion follows in section 5.

2 Preliminaries

For the remainder of the paper, unless otherwise noted, we assume with trivial loss of generality that each $f_j \in (0,1]$ and $t_1 \leq \cdots \leq t_m$. Unless otherwise noted, we assume $t_0 = 0$, an assumption justified presently. Unless otherwise noted, we assume that $t_0 = 0$, a restriction that we justify presently.

2.1 The objective function

First we derive a closed-form expression for the objective function of (1).

We refer to the set $\mathcal{X} \subseteq \mathcal{C}$ of schools to which a student applies as her application portfolio. The expected utility the student receives from \mathcal{X} is called its valuation. Given an application portfolio, let $p_j(\mathcal{X})$ denote the probability that the student attends school j. This occurs if and only if she applies to school j, is admitted to school j, and is rejected from any school she prefers to j; that is, any school with higher index. Hence, for $j = 0 \dots m$,

$$p_j(\mathcal{X}) = \begin{cases} f_j \prod_{\substack{i \in \mathcal{X}:\\ i > j}} (1 - f_i), & j \in \{0\} \cup \mathcal{X} \\ 0, & \text{otherwise} \end{cases}$$
 (2)

The following proposition follows by computing $v(\mathcal{X}) = \sum_{j=0}^{m} t_j p_j(\mathcal{X})$.

Proposition 1 (Closed form of portfolio valuation function).

$$v(\mathcal{X}) = \sum_{j=0}^{m} t_j p_j(\mathcal{X}) = \sum_{\substack{j \in \{0\} \cup \mathcal{X} \\ i > j}} \left(f_j t_j \prod_{\substack{i \in \mathcal{X}: \\ i > j}} (1 - f_i) \right)$$
 (3)

Next, we show that without loss of generality, we may assume that $t_0 = 0$.

Lemma 1. For some $\gamma \leq t_0$, let $\bar{t}_j = t_j - \gamma$ for $j = 0 \dots m$. Then $v(\mathcal{X}; \bar{t}_j) = v(\mathcal{X}; t_j) - \gamma$ for any $\mathcal{X} \subseteq \mathcal{C}$.

Proof. By definition, $\sum_{j=0}^{m} p_j(\mathcal{X}) = \sum_{j \in \{0\} \cup \mathcal{X}} p_j(\mathcal{X}) = 1$. Therefore

$$v(\mathcal{X}; \bar{t}_j) = \sum_{j \in \{0\} \cup \mathcal{X}} \bar{t}_j p_j(\mathcal{X}) = \sum_{j \in \{0\} \cup \mathcal{X}} (t_j - \gamma) p_j(\mathcal{X})$$

$$= \sum_{j \in \{0\} \cup \mathcal{X}} t_j p_j(\mathcal{X}) - \gamma = v(\mathcal{X}; t_j) - \gamma$$
(4)

which completes the proof.

2.2 An elimination technique

Now, we present a variable-elimination technique that will prove useful throughout the paper. Suppose that the student has already resolved to apply to school k, and the remainder of her decision consists of determining which *other* schools to apply to. Writing her total application portfolio as $\mathcal{X} = \mathcal{Y} \cup \{k\}$, we devise a function $w(\mathcal{Y})$ that orders portfolios according to how well they "complement" the singleton portfolio $\{k\}$. Specifically, the difference between $v(\mathcal{Y} \cup \{k\})$ and $w(\mathcal{Y})$ is the constant $f_k t_k$.

To construct $w(\mathcal{Y})$, let \tilde{t}_j denote the expected utility the student receives from school j given that she has been admitted to school j and applied to school k. For j < k (including j = 0), this is $\tilde{t}_j = (1 - f_k)t_j + f_kt_k$; for j > k, this is $\tilde{t}_j = t_j$. This means that

$$v(\mathcal{Y} \cup \{k\}) = \sum_{j \in \{0\} \cup \mathcal{Y}} \tilde{t}_j p_j(\mathcal{Y}). \tag{5}$$

The transformation to \tilde{t} does not change the order of the t_j -values. Therefore, the expression on the right side of (5) is itself a portfolio valuation function. In the corresponding market, t is replaced by \tilde{t} and C is replaced by $C \setminus \{k\}$. To restore our convention that $t_0 = 0$, we obtain $w(\mathcal{Y})$ by taking $\bar{t}_j = \tilde{t}_j - \tilde{t}_0$ for all $j \neq k$ and letting

$$w(\mathcal{Y}) = \sum_{j \in \{0\} \cup \mathcal{Y}} \bar{t}_j p_j(\mathcal{Y}) = \sum_{j \in \{0\} \cup \mathcal{Y}} \tilde{t}_j p_j(\mathcal{Y}) - \tilde{t}_0 = v(\mathcal{Y} \cup \{k\}) - f_k t_k \tag{6}$$

where the second equality follows from Lemma 1. The validity of this transformation is summarized in the following theorem, where we write $v(\mathcal{X}; \bar{t})$ instead of $w(\mathcal{Y})$ to emphasize that $w(\mathcal{Y})$ is, in form, a portfolio valuation function.

Lemma 2 (Eliminate school k). For $\mathcal{X} \subseteq \mathcal{C} \setminus \{k\}$, $v(\mathcal{X} \cup \{k\}; t) = v(\mathcal{X}; \bar{t}) + f_k t_k$, where

$$\bar{t}_j = \begin{cases} (1 - f_k)t_j, & t_j \le t_k \\ t_j - f_k t_k, & t_j > t_k. \end{cases}$$
 (7)

Proof. It is easy to verify that (7) is the composition of the two transformations (from t to \tilde{t} , and from \tilde{t} to \bar{t}) discussed above.

2.3 Submodularity of the objective

Now, we show that the portfolio valuation function is submodular. This result is primarily of taxonomical interest and may be safely skipped, as our subsequent results do not rely on submodular analysis.

Definition 1 (Submodular set function). Given a ground set \mathcal{C} and function $v: 2^{\mathcal{C}} \to \mathbb{R}$, $v(\mathcal{X})$ is called a *submodular set function* if and only if $v(\mathcal{X}) + v(\mathcal{Y}) \geq v(\mathcal{X} \cup \mathcal{Y}) + v(\mathcal{X} \cap \mathcal{Y})$ for all $\mathcal{X}, \mathcal{Y} \subseteq \mathcal{C}$. Furthermore, if $v(\mathcal{X} \cup \{k\}) - v(\mathcal{X}) \geq 0$ for all $\mathcal{X} \subset \mathcal{C}$ and $k \in \mathcal{C} \setminus \mathcal{X}$, $v(\mathcal{X})$ is said to be a *nondecreasing* submodular set function.

Theorem 1. The college application portfolio valuation function $v(\mathcal{X})$ is a nondecreasing submodular set function.

¹We thank Yim Seho for pointing out this useful transformation.

Proof. It is self-evident that $v(\mathcal{X})$ is nondecreasing. To establish its submodularity, we apply proposition 2.1.iii of Nemhauser and Wolsey (1978) and show that

$$v(\mathcal{X} \cup \{j\}) - v(\mathcal{X}) \ge v(\mathcal{X} \cup \{j, k\}) - v(\mathcal{X} \cup \{k\}) \tag{8}$$

for $\mathcal{X} \subset \mathcal{C}$ and $j \neq k \in \mathcal{C} \setminus \mathcal{X}$. By Lemma 2, we can repeatedly eliminate the schools in \mathcal{X} according to (7) to obtain a portfolio valuation function $w(\mathcal{Y})$ with parameter \bar{t} such that $w(\mathcal{Y}) = v(\mathcal{X} \cup \mathcal{Y}) + \text{const.}$ for any $\mathcal{Y} \subseteq \mathcal{C} \setminus \mathcal{X}$. Therefore, (8) is equivalent to

$$w(\{j\}) - w(\emptyset) \ge w(\{j,k\}) - w(\{k\})$$
 (9)

$$\iff w(\{j\}) + w(\{k\}) \ge w(\{j, k\}) \tag{10}$$

$$\iff \qquad \mathrm{E}[\bar{t}_j Z_j] + \mathrm{E}[\bar{t}_k Z_k] \ge \mathrm{E}[\max\{\bar{t}_j Z_j, \bar{t}_k Z_k\}] \tag{11}$$

which is plainly true.

3 The greedy algorithm

3.1 The nestedness property

The optimality of the greedy algorithm for the college application problem rests on the fact the the optimal solution possesses a special structure: An optimal portfolio of size h + 1 includes an optimal portfolio of size h as a subset.

Theorem 2 (Nestedness of optimal application portfolios). There exists a sequence of portfolios $\{\mathcal{X}_h\}_{h=1}^m$ satisfying the nestedness relation

$$\mathcal{X}_1 \subset \mathcal{X}_2 \subset \dots \subset \mathcal{X}_m \tag{12}$$

such that each \mathcal{X}_h is an optimal application portfolio when the application limit is h.

Proof. By induction on h. Applying Lemma 1, we assume that $t_0 = 0$.

(Base case.) First, we will show that $\mathcal{X}_1 \subset \mathcal{X}_2$. To get a contradiction, suppose that the optima are $\mathcal{X}_1 = \{j\}$ and $\mathcal{X}_2 = \{k, l\}$, where we may assume that $t_k \leq t_l$. Optimality requires that

$$v(\mathcal{X}_1) = f_i t_i > v(\lbrace k \rbrace) = f_k t_k \tag{13}$$

and

$$v(\mathcal{X}_{2}) = f_{k}(1 - f_{l})t_{k} + f_{l}t_{l} > v(\{j, l\})$$

$$= f_{j}(1 - f_{l})t_{j} + (1 - f_{j})f_{l}t_{l} + f_{j}f_{l} \max\{t_{j}, t_{l}\}$$

$$\geq f_{j}(1 - f_{l})t_{j} + (1 - f_{j})f_{l}t_{l} + f_{j}f_{l}t_{l}$$

$$= f_{j}(1 - f_{l})t_{j} + f_{l}t_{l}$$

$$\geq f_{k}(1 - f_{l})t_{k} + f_{l}t_{l} = v(\mathcal{X}_{2})$$
(14)

which is a contradiction.

(Inductive step.) Assume that $\mathcal{X}_1 \subset \cdots \subset \mathcal{X}_h$, and we will show $\mathcal{X}_h \subset \mathcal{X}_{h+1}$. Let $k = \arg\max\{t_k : k \in \mathcal{X}_{h+1}\}$ and write $\mathcal{X}_{h+1} = \mathcal{Y}_h \cup \{k\}$.

Suppose $k \notin \mathcal{X}_h$. To get a contradiction, suppose that $v(\mathcal{Y}_h) < v(\mathcal{X}_h)$ and $v(\mathcal{X}_{h+1}) > v(\mathcal{X}_h \cup \{k\})$. Then

$$v(\mathcal{X}_{h+1}) = v(\mathcal{Y}_h \cup \{k\})$$

$$= (1 - f_k)v(\mathcal{Y}_h) + f_k t_k$$

$$\leq (1 - f_k)v(\mathcal{X}_h) + f_k \operatorname{E}[\max\{t_k, X_h\}]$$

$$= v(\mathcal{X}_h \cup \{k\})$$
(15)

is a contradiction.

Now suppose that $k \in \mathcal{X}_h$. We can write $\mathcal{X}_h = \mathcal{Y}_{h-1} \cup \{k\}$, where \mathcal{Y}_{h-1} is some portfolio of size h-1. It suffices to show that $\mathcal{Y}_{h-1} \subset \mathcal{Y}_h$. By definition, \mathcal{Y}_{h-1} (respectively, \mathcal{Y}_h) maximizes the function $v(\mathcal{Y} \cup \{k\})$ over portfolios of size h-1 (respectively, h) that do not include k. That is, \mathcal{Y}_{h-1} and \mathcal{Y}_h are the optimal complements to the singleton portfolio $\{k\}$.

Applying Lemma 2, we eliminate school k, transform the remaining t_j -values to \bar{t}_j according to (7), and obtain a function $w(\mathcal{Y}) = v(\mathcal{Y} \cup \{k\}) - f_k t_k$ that grades portfolios $\mathcal{Y} \subseteq \mathcal{C} \setminus \{k\}$ according to how well they complement $\{k\}$. Since $w(\mathcal{Y})$ is itself a portfolio valuation function and $\bar{t}_0 = 0$, the inductive hypothesis implies that $\mathcal{Y}_{h-1} \subset \mathcal{Y}_h$, which completes the proof.

3.2 Quadratic-time solution

Applying Theorem 2 yields an efficient greedy algorithm for the optimal portfolio: Start with the empty set and add schools one at a time, maximizing $v(\mathcal{X} \cup \{k\})$ at each addition. Sorting t is $O(m \log m)$. At each of the h iterations, there are O(m) candidates for k, and computing $v(\mathcal{X} \cup \{k\})$ is O(h) using (3); therefore, the time complexity of this algorithm is $O(h^2m + m \log m)$.

We reduce the computation time to O(hm) by taking advantage of the transformation from Lemma 2. Once school k is added to \mathcal{X} , we eliminate it from the set $\mathcal{C} \setminus \mathcal{X}$ of candidates, and update the t_j -values of the remaining schools according to (7). Now, the *next* school added must be the optimal singleton portfolio in the modified market. But the optimal singleton portfolio consists simply of the school with the highest value of $f_j \bar{t}_j$. Therefore, by updating the t_j -values at each iteration according to (7), we eliminate the need to compute $v(\mathcal{X})$ entirely. Moreover, this algorithm does not require the schools to be indexed in ascending order by t_j , which removes the $O(m \log m)$ sorting cost.

Algorithm 1: Optimal portfolio algorithm for the college application problem.

```
Input: Utility values t \in (0, \infty)^m, admissions probabilities f \in (0, 1]^m, application limit
                  h \leq m.
 1 \mathcal{C} \leftarrow \{1 \dots m\};
 2 X, V \leftarrow \text{empty } h\text{-arrays};
 3 for i = 1 ... h do
          k \leftarrow \arg\max_{j \in \mathcal{C}} \{f_j t_j\};
          \mathcal{C} \leftarrow \mathcal{C} \setminus \{k\};
 5
          X[i] \leftarrow k;
 6
          if i = 1 then V[i] \leftarrow f_k t_k else V[i] \leftarrow V[i-1] + f_k t_k;
 7
          for j \in \mathcal{C} do
 8
               if t_j \leq t_k then t_j \leftarrow (1 - f_k)t_j else t_j \leftarrow t_j - f_k t_k;
 9
          end
10
11 end
12 return X, V
```

Theorem 3 (Validity of Algorithm 1). Algorithm 1 produces an optimal application portfolio for the cardinality-constrained college application problem in O(hm) time.

Proof. Optimality follows from the proof of Theorem 2. At each of the h iterations of the main loop, finding the top school costs O(m), and the t_j -values of the remaining O(m) schools are each updated in unit time. Therefore, the overall time complexity is O(hm).

By running the algorithm with h = m, one can obtain the optimal portfolios for all h by taking $\mathcal{X}_h = \{X[1], \dots, X[h]\}$. Thus, Fu (2014)'s variant of the college application problem

maximize
$$v(\mathcal{X}) - c(|\mathcal{X}|)$$

(where $c(\cdot)$ is an increasing cost function) can be solved in $O(m^2)$ -time by a trivial modification of Algorithm 1: Simply compute

$$h^* = \underset{h=1...m}{\arg\max} \big\{ \mathbf{V}[h] - c(h) \big\}$$

and return \mathcal{X}_{h^*} .

4 Discussion: Heuristics and student welfare

Let us discuss a few intuitive heuristics for the college application problem, how their accuracy compares to the optimal solution, and the implications for student welfare.

4.1 The distributional heuristic

In real-world admissions markets, f_t and t_j correlate inversely because desirable schools attract many applicants. In the admissions consulting industry, schools with high utility and low admissions probability are called reach schools, while schools with low utility and high admissions probability are called safety schools, and those in between are called target schools. According to a common heuristic used by admissions consultants, it is best to apply to a roughly equal mix of target, safety, and reach schools (Jeon 2015, Peck 2021). How does this strategy, which we call the distributional heuristic, perform compared to the optimal application strategy?

Note that the distributional heuristic does not specify the boundary between target, safety, and reach schools. However, regardless of how this boundary is specified, we argue that the distributional heuristic is limited by the fact that it does not respond adaptively to the application budget h. In a market where f_j and t_j are inversely correlated, the optimal application strategy gradually favors reach schools over safety schools as h increases.

To see why large values of h favor a risky portfolio allocation, consider two schools i and k having $t_i < t_k$ and $f_i t_i = f_k t_k = 1$. Thus, the actuarial value of applying *individually* to either school is identical, and a risk-neutral student is indifferent between the safety school i and the reach school k. However, suppose that the student has previously resolved to apply to a target

school j having $t_i < t_j < t_k$. It is now optimal to apply to $\mathcal{X} = \{j, k\}$ instead of $\{i, k\}$ as long as

$$0 \le v(\{j, k\}) - v(\{i, j\})$$

$$= (1 - f_k)f_jt_j + f_kt_k - (1 - f_j)f_it_i - f_jt_j$$

$$= (1 - \frac{1}{t_k})f_jt_j + 1 - (1 - f_j) - f_jt_j$$

$$= -\frac{1}{t_k}f_jt_j + f_j$$

$$\iff \frac{f_jt_j}{t_k} \le f_j,$$

which is always true because $t_j < t_k$. This example shows that however one defines a "target school," it is always better to pair a target school with a reach school than with a safety school as long as the choices are equivalent in their actuarial value. By the elimination argument, the same result holds with respect to adding a reach school to a portfolio that is otherwise balanced.

4.2 The linearization heuristic

The expected utility associated with applying to school j alone is is simply $E[t_j Z_j] = f_j t_j$. It is therefore tempting to adopt the following heuristic:

Definition 2 (Linearization heuristic for the college application problem). Apply to the h schools having the highest expected utility $f_j t_j$.

This algorithm's computation time is O(m) using the PICK algorithm of Blum et al. (1973). In essence, this heuristic maximizes $E\left[\sum t_j Z_j\right]$ as a surrogate for the true objective function $E\left[\max\{t_j Z_j\}\right]$. Accordingly, we call it the *linearization heuristic*.

The following theorem says that the linearization heuristic is a (1/h)-approximation algorithm for the college application problem.

Theorem 4. When the application limit is h, let \mathcal{X}_h denote the optimal portfolio, and \mathcal{T}_h the set of the h schools having the largest values of $f_j t_j$. Then $v(\mathcal{T}_h)/v(\mathcal{X}_h) \geq 1/h$.

Proof. Because \mathcal{T}_h maximizes the quantity $\mathbb{E}\left[\sum_{j\in\mathcal{T}_h}\{t_jZ_j\}\right]$, we have

$$v(\mathcal{X}_h) = \mathbb{E}\left[\max_{j \in \mathcal{X}_h} \{t_j Z_j\}\right] \le \mathbb{E}\left[\sum_{j \in \mathcal{X}_h} \{t_j Z_j\}\right] \le \mathbb{E}\left[\sum_{j \in \mathcal{T}_h} \{t_j Z_j\}\right]$$
$$= h \,\mathbb{E}\left[\frac{1}{h} \sum_{j \in \mathcal{T}_h} \{t_j Z_j\}\right] \le h \,\mathbb{E}\left[\max_{j \in \mathcal{T}_h} \{t_j Z_j\}\right] = hv(\mathcal{T}_h)$$
(16)

where the final inequality follows from the concavity of the max{} operator.

The following example establishes the tightness of the approximation factor.

Example 1. Pick any h and let m = 2h. For a small constant $\varepsilon \in (0,1)$, define the market as follows.

Since all $f_j t_j = 1$, the linearization heuristic can choose $\mathcal{T}_h = \{1, \ldots, h\}$, with $v(\mathcal{T}_h) = 1$. But the optimal solution is $\mathcal{X}_h = \{h+1, \ldots, m\}$, with

$$v(\mathcal{X}_h) = \sum_{j=h+1}^{m} \left(f_j t_j \prod_{j'=j+1}^{m} (1 - f_{j'}) \right) = \sum_{j=1}^{h} (1 - \varepsilon)^j \approx h.$$
 (17)

Thus, as ε approaches zero, we have $v(\mathcal{T}_h)/v(\mathcal{X}_h) \to 1/h$. (The optimality of \mathcal{X}_h follows from the fact that it achieves the upper bound of Theorem 4.)

Example 1 also illustrates that for large application budget, reach schools offer greater marginal utility than safety schools.

4.3 Implications for student welfare

Classical portfolio optimization models in the Markowitz tradition feature risk aversion as an exogeneous parameter. The optimal portfolio is expressed as a proportion of the total budget, and this allocation is constant for budgets of all sizes. In the college application problem, however, our analysis of the distributional heuristic reveals that even putatively risk-averse students must modulate their risk allocation according to the number of schools to which they can afford to apply. Students with a application budget can tolerate, and indeed benefit, from taking larger risks than those without. From a welfare standpoint, this optimal risk elasticity offers weak evidence for the notion that reducing the costs of college application could improve student equity. On the other hand, dissuading students from applying to too many reach schools may be a desirable feature in an admissions market inasmuch as it eliminates the administrative costs associated with reading low-quality applications.

A further complication arises in an intrinsic feature of submodular set functions such as the objective function of the college application problem—that they exhibit rapidly diminishing returns: The optimality of the greedy algorithm implies that the gain in student utility from increasing the budget from h-1 to h is larger than that from increasing it from h to h+1.

Theorem 5. For $h = 2 \dots (m-1)$,

$$v(\mathcal{X}_h) - v(\mathcal{X}_{h-1}) \ge v(\mathcal{X}_{h+1}) - v(\mathcal{X}_h). \tag{18}$$

Proof. Applying Theorem 2, we write $\mathcal{X}_h = \mathcal{X}_{h-1} \cup \{j\}$ and $\mathcal{X}_{h+1} = \mathcal{X}_{h-1} \cup \{j,k\}$. By optimality, $v(\mathcal{X}_h) - v(\mathcal{X}_{h-1}) \ge v(\mathcal{X}_{h-1} \cup \{k\}) - v(\mathcal{X}_{h-1})$. By submodularity and nestedness, $v(\mathcal{X}_{h-1} \cup \{k\}) - v(\mathcal{X}_{h-1}) \ge v(\mathcal{X}_h \cup \{k\}) - v(\mathcal{X}_h) = v(\mathcal{X}_{h+1}) - v(\mathcal{X}_h)$.

(An elementary proof appears in Kapur (2022).) It follows that when \mathcal{X}_h is the optimal h-portfolio for a given market, $v(\mathcal{X}_h)$ is O(h). Example 1, in which $v(\mathcal{X}_h)$ can be made arbitrarily close to h, establishes the tightness of this bound.

5 Conclusion

6 References

Acharya, Mohan S., Asfia Armaan, and Aneeta S. Antony. 2019. "A Comparison of Regression Models for Prediction of Graduate Admissions." In Second International Conference on Computational Intelligence in Data Science. https://doi.org/10.1109/ICCIDS. 2019.8862140.

- Ashlagi, Itai, and Afshin Nikzad. 2020. "What Matters in School Choice Tie-Breaking? How Competition Guides Design." *Journal of Economic Theory* 190: article no. 105120. https://doi.org/10.1016/j.jet.2020.105120.
- Assad, Arjang. 1985. "Nested Optimal Policies for Set Functions with Applications to Scheduling." Mathematics of Operations Research 10 (1): 82–99.
- Azevedo, Eduardo and Jacob Leshno. 2016. "A Supply and Demand Framework for Two-Sided Matching Markets." *Journal of Political Economy* 124 (5): 1235–68. https://doi.org/10.1086/687476.
- Badanidiyuru, Ashwinkumar and Jan Vondrák. 2014. "Fast Algorithms for Maximizing Submodular Functions." In *Proceedings of the 2014 Annual ACM-SIAM Symposium on Discrete Algorithms*, 1497–1514. https://doi.org/10.1137/1.9781611973402.110.
- Balas, Egon and Eitan Zemel. 1980. "An Algorithm for Large Zero-One Knapsack Problems." Operations Research 28 (5): 1130–54. https://doi.org/10.1287/opre.28.5.1130.
- Bezanson, Jeff, Alan Edelman, Stefan Karpinski, and Viral B. Shah. 2017. "Julia: A Fresh Approach to Numerical Computing." *SIAM Review* 59: 65–98. https://doi.org/10.1137/141000671.
- Blum, Manuel, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest, and Robert E. Tarjan. 1973. "Time Bounds for Selection." *Journal of Computer and System Sciences* 7 (4): 448–61. https://doi.org/10.1016/S0022-0000(73)80033-9.
- Bodoh-Creed, Aaron. 2020. "Optimizing for Distributional Goals in School Choice Problems." Management Science 66 (8): 3657–76. https://doi.org/10.1287/mnsc.2019.3376.
- Calinescu, Gruia, Chandra Chekuri, Martin Pál, and Jan Vondrák. 2011. "Maximizing a Monotone Submodular Function Subject to a Matroid Constraint." *SIAM Journal on Computing* 40 (6): 1740–66. https://doi.org/10.1137/080733991.
- Carraway, Robert, Robert Schmidt, and Lawrence Weatherford. 1993. "An Algorithm for Maximizing Target Achievement in the Stochastic Knapsack Problem with Normal Returns." Naval Research Logistics 40 (2): 161–73. https://doi.org/10.1002/nav.3220400203.
- Chekuri, Chandra, Jan Vondrák, and Rico Zenklusen. 2014. "Submodular Function Maximization via the Multilinear Relaxation and Contention Resolution Schemes." SIAM Journal on Computing 43 (6): 1831–79. https://doi.org/10.1137/110839655.
- Cormen, Thomas, Charles Leiserson, and Ronald Rivest. 1990. *Introduction to Algorithms*. Cambridge, MA: The MIT Press.
- Dantzig, George B. 1957. "Discrete-Variable Extremum Problems." Operations Research 5 (2): 266–88.
- Dean, Brian, Michel Goemans, and Jan Vondrák. 2008. "Approximating the Stochastic Knapsack Problem: The Benefit of Adaptivity." *Mathematics of Operations Research* 33 (4): 945–64. https://doi.org/10.1287/moor.1080.0330.
- Edmonds, Jack. 1971. "Matroids and the Greedy Algorithm." *Mathematical Programming* 1: 127–36. https://doi.org/10.1007/BF01584082.
- Fu, Chao. 2014. "Equilibrium Tuition, Applications, Admissions, and Enrollment in the College Market." *Journal of Political Economy* 122 (2): 225–81. https://doi.org/10.1086/675503.
- Gale, David, and Lloyd Shapley. 1962. "College Admissions and the Stability of Marriage." American Mathematics Monthly 69 (1): 9–15. https://doi.org/10.2307/2312726.
- Garey, Michael and David Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness. New York: W. H. Freeman and Company.
- Hartlaub, Vanessa and Thorsten Schneider. 2012. "Educational Choice and Risk Aversion: How Important Is Structural vs. Individual Risk Aversion?" SOEPpapers on Multidisciplinary

- Panel Data Research, no. 433. https://www.diw.de/documents/publikationen/73/diw_01.c.394455.de/diw_sp0433.pdf.
- Jeon, Minhee. 2015. "[College application strategy] Six chances total...divide applications across reach, target, and safety schools" (in Korean). Jungang Ilbo, Aug. 26. https://www.joongang.co.kr/article/18524069.
- Kahneman, Daniel. 2011. Thinking, Fast and Slow. New York: Macmillan.
- Kapur, Max. 2021. "Characterizing Nonatomic Admissions Markets." ArXiv, July 3, 2021. https://arxiv.org/abs/2107.01340.
- Kellerer, Hans, Ulrich Pferschy, and David Pisinger. 2004. *Knapsack Problems*. Berlin: Springer.
- Kulik, Ariel, Hadas Shachnai, and Tami Tamir. 2013. "Approximations for Monotone and Nonmonotone Submodular Maximization with Knapsack Constraints." *Mathematics of Operations Research* 38 (4): 729–39. https://doi.org/10.1287/moor.2013.0592.
- Lim, Daniel Kibum. 2013. "A Simulation Approach to Predicting College Admissions." Master's thesis, University of California Los Angeles. https://escholarship.org/uc/item/8r2695n5.
- Markowitz, Harry. 1952. "Portfolio Selection." The Journal of Finance 7 (1): 77–91. https://www.jstor.org/stable/2975974.
- Martello, Silvano and Paolo Toth. 1990. Knapsack Problems: Algorithms and Computer Implementations. New York: John Wiley & Sons.
- Meucci, Attilio. 2005. Risk and Asset Allocation. Berlin: Springer-Verlag, 2005.
- Nemhauser, George and Laurence Wolsey. 1978. "Best Algorithms for Approximating the Maximum of a Submodular Set Function." *Mathematics of Operations Research* 3 (3): 177–88. https://doi.org/10.1287/moor.3.3.177.
- Nemhauser, George, Laurence Wolsey, and Marshall Fisher. 1978. "An Analysis of Approximations for Maximizing Submodular Set Functions—I." *Mathematical Programming* 14: 265–94.
- Parker, R. Gary and Ronald L. Rardin. 1988. *Discrete Optimization*. San Diego: Academic Press.
- Roth, Alvin E. 1982. "The Economics of Matching: Stability and Incentives." *Mathematics of Operations Research* 7 (4): 617–28. https://www.jstor.org/stable/3689483.
- Rozanov, Mark and Arie Tamir. 2020. "The Nestedness Property of the Convex Ordered Median Location Problem on a Tree." *Discrete Optimization* 36: 100581. https://doi.org/10.1016/j.disopt.2020.100581.
- Sklarow, Mark. 2018. State of the Profession 2018: The 10 Trends Reshaping Independent Educational Consulting. Technical report, Independent Educational Consultants Association. https://www.iecaonline.com/wp-content/uploads/2020/02/IECA-Current-Trends-2018.pdf.
- Sniedovich, Moshe. 1980. "Preference Order Stochastic Knapsack Problems: Methodological Issues." *The Journal of the Operational Research Society* 31 (11): 1025–32. https://www.jstor.org/stable/2581283.
- Steinberg, E. and M. S. Parks. 1979. "A Preference Order Dynamic Program for a Knapsack Problem with Stochastic Rewards." *The Journal of the Operational Research Society* 30 (2): 141–47. https://www.jstor.org/stable/3009295.
- Van Huizen, Thomas and Rob Alessie. 2019. "Risk Aversion and Job Mobility." *Journal of Economic Behavior & Organization* 164: 91–106. https://doi.org/10.1016/j.jebo.2019.01. 021.
- Vazirani, Vijay. 2001. Approximation Algorithms. Berlin: Springer.
- Wolsey, Laurence. 1998. Integer Programming. New York: John Wiley & Sons.