

Skript Einführung in die Funktionalanalysis

Mitschrift der Vorlesung "Einführung in die Funktionalanalysis" von Prof. Dr. Wilhelm Winter

Jannes Bantje

14. Oktober 2014

Aktuelle Version verfügbar bei:

GitHub (inklusive Sourcecode) https://github.com/JaMeZ-B/latex-wwu♂

■ Bittorrent Sync B6WH2DISQ5QVYIRYIEZSF4ZR2IDVKPN3I

Vorwort — Mitarbeit am Skript

Dieses Dokument ist eine Mitschrift aus der Vorlesung "Einführung in die Funktionalanalysis, WiSe 2014", gelesen von Prof. Dr. Wilhelm Winter. Der Inhalt entspricht weitestgehend dem Tafelanschrieb. Für die Korrektheit des Inhalts übernehme ich keinerlei Garantie! Für Bemerkungen und Korrekturen – und seien es nur Rechtschreibfehler – bin ich sehr dankbar. Korrekturen lassen sich prinzipiell auf drei Wegen einreichen:

- Persönliches Ansprechen in der Uni, Mails an ⊠j.bantje@wwu.de (gerne auch mit annotieren PDFs)
- Direktes Mitarbeiten am Skript: Den Quellcode poste ich auf GitHub (siehe oben), also stehen vielfältige Möglichkeiten der Zusammenarbeit zur Verfügung: Zum Beispiel durch Kommentare am Code über die Website und die Kombination Fork + Pull Request. Wer sich verdient macht oder ein Skript zu einer Vorlesung, die ich nicht besuche, beisteuern will, dem gewähre ich gerne auch Schreibzugriff.

Beachten sollte man dabei, dass dazu ein Account bei github.com om notwendig ist, der allerdings ohne Angabe von persönlichen Daten angelegt werden kann. Wer bei GitHub (bzw. dem zugrunde liegenden Open-Source-Programm "git") – verständlicherweise – Hilfe beim Einstieg braucht, dem helfe ich gerne weiter. Es gibt aber auch zahlreiche empfehlenswerte Tutorials im Internet.¹

• Indirektes Mitarbeiten: T_EX-Dateien per Mail verschicken.

Dies ist nur dann sinnvoll, wenn man einen ganzen Abschnitt ändern möchte (zB. einen alternativen Beweis geben), da ich die Änderungen dann per Hand einbauen muss!

Vorlesungshomepage

https://wwwmath.uni-muenster.de/u/wilhelm.winter/wwinter/funktionalanalysis.html

¹zB. https://try.github.io/levels/1/challenges/1亿, ist auf Englisch, aber dafür interaktives LearningByDoing

Inhaltsverzeichnis

1 N	Netrische Räume und der Satz von Baire	1
1	1 Definition: Metrischer Raum	1
1	.2 Definition: Offen und abgeschlossen	1
1	3 Definition: Stetigkeit, gleichmäßige Stetigkeit, Isometrie	1
1	.4 Definition: Cauchy-Folge und Vollständigkeit	2
1	.5 Satz: Existenz einer eindeutigen Vervollständigung metrischer Räume	2
	.6 Definition	
1	.7 Bemerkung	2
Ind	ex	Α
Abl	pildungsverzeichnis	В

Inhaltsverzeichnis

14 Okt

1 Metrische Räume und der Satz von Baire

1.1 Definition

Ein **metrischer Raum** ist ein Paar (X,d), wobei X eine Menge und $d: X \times X \to [0,\infty)$ ist, sodass

- 1) $d(x,y) = 0 \iff x = y \ \forall x, y \in X$
- 2) $d(x,y) = d(y,x) \ \forall x,y \in X$
- 3) $d(x,z) \le d(x,y) + d(y,z) \ \forall x,y,z \in X$

1.2 Definition

Sei (X,d) ein metrischer Raum

• Eine Teilmenge $U\subseteq X$ heißt **offen**, falls für jedes $x\in U$ ein $\varepsilon>0$ existiert, so dass

$$B(x,\varepsilon) := \{ y \in X \mid d(x,y) < \varepsilon \} \subset U$$

- Eine Teilmenge $A \subset X$ heißt **abgeschlossen**, falls $X \setminus A$ offen ist (als Teilmenge von X).
- $\mathcal{T}X := \{U \subset X \mid U \text{ offen}\}$ ist die Topologie auf X (die von der Metrik d induziert wird)
- Falls $W \subset X$ eine Teilmenge ist, dann bezeichnet \overline{W} den **Abschluss** von W, d.h. die kleinste abgeschlossene Teilmenge von X, die W enthält.

$$\overline{W} = \bigcap_{A \subset X \text{abg.}, W \subset A}$$

Für metrische Räume gilt:

$$\overline{W} = \left\{ \lim_n x_n \,\middle|\, (x_n)_n \subset W \text{ konvergente Folge} \right\}$$

Warum gilt $W \subset \overline{W}$?

1.3 Definition

Eine Abbildung $f: X \to Y$ zwischen zwei metrischen Räumen (X, d_X) und (Y, d_Y) heißt

• stetig in $x \in X$, falls:

$$\forall \varepsilon > 0 : \exists \delta > 0 : \forall x' \in X : d_X(x, x') < \delta \Longrightarrow d_Y(f(x), f(x')) < \varepsilon$$

- **stetig**, falls f an jedem Punkt $x \in X$ stetig ist. (Äquivalent: Für jede offene Menge V in Y ist $f^{-1}(V)$ offen in X)
- · gleichmäßig stetig

$$\forall \varepsilon > 0 : \exists \delta > 0 : \forall x, x' \in X : d_X(x, x') < \delta \Longrightarrow d_Y(f(x), f(x')) < \varepsilon.$$

• f heißt Isometrie, falls

automatisch iniektiv

$$\forall x, x' \in X : d_X(x, x') = d_Y(f(x), f(x')).$$

• f heißt **isometrischer Isomorphismus**, falls f bijektiv und isometrisch ist.

 f^{-1} auch

1.4 Definition

Eine Folge $(x_n)_{n\in\mathbb{N}}$ in einem metrischen Raum (X,d) heißt **Cauchy**, falls

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n, k > N : d(x_n, x_k) < \varepsilon.$$

(X,d) heißt **vollständig**, falls jede Cauchy-Folge in X konvergiert.

1.5 Satz

Sei (X,d) ein metrischer Raum. Dann existiert ein vollständiger metrischer Raum (\tilde{X},\tilde{d}) und eine Isometrie $\iota: X \hookrightarrow \tilde{X}$, sodass $\overline{\iota(X)} = \tilde{X}$ (d.h. $\iota(X)$ ist dicht in \tilde{X}). (\tilde{X}, \tilde{d}) heißt **Vervollständigung** von (X, d) und ist eindeutig bis auf isometrische Isomorphie.

Beweis

Übungen einarbeiten, sobald möglich

Eindeutigkeit: Angenommen, (\hat{X},\hat{d}) ist ein weiterer vollständiger metrischer Raum und $\kappa:X\to\hat{X}$ eine Isometrie mit $\overline{\kappa(X)} = \hat{X}$. Definiere $\gamma: \hat{X} \to \tilde{X}$ wie folgt: Falls $y \in \hat{X}$, wähle eine Folge

$$(x_n)_{n\in\mathbb{N}}$$
 in X , sodass $y=\lim_{n\to\infty}\kappa(x_n)$. Setze nun

Existenz: Setze $Y := \{(x_n)_{n \in \mathbb{N}} \mid (x_n)_n \text{ ist Cauchy-Folge in } X\}$. Definiere eine Relation \sim auf Y durch:

$$(x_n)_n \sim (x'_n) : \iff \lim_{n \to \infty} d(x_n, x'_n) = 0$$

 $\gamma(y) := \lim_{n \to \infty} \iota(x_n) \in \tilde{X}$

Übung: \sim ist eine Äquivalenzrelation. Definiere $\tilde{X}:={}^Y/\!\!\sim$ und $\tilde{d}:\tilde{X}\times\tilde{X}\to[0,\infty)$ durch

$$\tilde{d}([(x_n)_n],[(x'_n)_n]) := \lim_{n \to \infty} d(x_n,x'_n)$$

Übung: \widetilde{d} ist wohldefiniert, ist Metrik, d.h. falls $[(x_n)_n] = [(y_n)_n]$ und $[(x_n')_n] = [(y_n')_n]$, dann ist $\lim d(x_n, x_n') = \lim d(y_n, y_n'), (d(x_n x_n'))_n$ ist Cauchy-Folge in $[0, \infty)$.

Definiere nun $\iota:X\to \tilde{X}$ durch $x\mapsto [(x,x,x,\ldots)]\in \tilde{X}.\ \iota$ ist Isometrie, da

$$d(x,y) = \tilde{d}(\iota(x),\iota(y)) = \lim_{n \to \infty} d(x,y)$$

Falls $[(x_n)_n] \in \tilde{X}$, finde $y_k \in \iota(X)$, so dass $[(x_n)] = \lim_k y_k$ und $y_k = [(x_k, x_k, \ldots)] = \iota(x_k)$. Dann gilt $y_k \xrightarrow{k \to \infty} [(x_n)_n]$, d.h.

$$\lim_{n \to \infty} d(x_k, x_n) = \tilde{d}(y_k, [(x_n)_n]) \xrightarrow{k \to \infty} 0$$

 $\sim \tilde{X} = \overline{\iota(X)}$. Übung: (\tilde{X}, \tilde{d}) ist vollständig.

1.6 Definition

Sei (W, \mathcal{T}) ein topologischer Raum und (X, d) ein metrischer Raum. Sei

$$C_b(W,X) = \{f : W \to X \mid f \text{ stetig und beschränkt}\}$$

versehen mit der Metrik $d_{W,X}$, definiert durch

$$d_{W,X} = \sup_{t \in W} d(f(t), g(t))$$

1.7 Bemerkung

Auf $C(W,X)=\{f:W\to X \text{ stetig}\}$ ist $d_{W,X}$ eine "erweiterte Metrik", d.h. der Wert ∞ ist möglich. $\tilde{d}_{W,X}:=\min\{1,d_{W,X}\}$ ist eine "echte" Metrik auf C(W,X).

1.8 Proposition

Falls X vollständig ist, dann sind $C_b(W,X)$ und C(W,X) vollständig (bezüglich $d_{W,X}$ bzw. $\tilde{d}_{W,X}$).

Beweis

Übung.

1.9 Proposition

Sei (X,d) ein vollständiger metrischer Raum und $\left(\overline{B}(x_n,\varepsilon_n)\right)_{n\in\mathbb{N}}$ mit $\overline{B}(x_{n+1},\varepsilon_{n+1})\subseteq\overline{B}(x_n,\varepsilon_n)$ und $\varepsilon_n\xrightarrow{n\to\infty}0$. Dann existiert genau ein Punkt in $\bigcap_{n\in\mathbb{N}}\overline{B}(x_n,\varepsilon_n)$.

1 Metrische Räume und der Satz von Baire

Index

Die Seitenzahlen sind mit Hyperlinks zu den entsprechenden Seiten versehen, also anklickbar

abgeschlossen, 1 Abschluss, 1

Cauchy-Folge, 2

gleichmäßig stetig, 1

Isometrie, 1 isometrischer Isomorphismus, 1

metrischer Raum, 1

offen, 1

stetig, 1

Vervollständigung, 2 vollständig, 2

Index A

Abbildungsverzeichnis

B Abbildungsverzeichnis