Poseidon2 哈希算法数学推导

1 参数定义

Poseidon2 哈希函数由元组 (n, t, d, R_F, R_P) 定义:

- n: 安全参数 (比特数), 通常取 256
- t: 状态大小 (有限域元素个数)
- d: S-box 指数 (通常取 5, 要求 gcd(d, p-1) = 1)
- R_F: 全轮数 (外部轮)
- R_P: 半轮数 (内部轮)

2 算法结构

2.1 状态表示

状态表示为 \mathbb{F}_p 上的 t 维向量:

$$\mathbf{s} = (s_0, s_1, \dots, s_{t-1}) \in \mathbb{F}_n^t$$

2.2 置换函数结构

Poseidon 2 置换 $\mathcal{P}:\mathbb{F}_p^t\to\mathbb{F}_p^t$ 由以下部分组成:

$$\mathcal{P}(\mathbf{s}) = (\mathcal{E}_{R_F-1} \circ \cdots \circ \mathcal{E}_{R_F/2} \circ \mathcal{I}_{R_P-1} \circ \cdots \circ \mathcal{I}_0 \circ \mathcal{E}_{R_F/2-1} \circ \cdots \circ \mathcal{E}_0)(M_E \cdot \mathbf{s})$$

2.3 轮函数设计

2.3.1 全轮函数 (\mathcal{E})

对每个全轮 $i \in \{0, ..., R_F - 1\}$:

$$\mathcal{E}_i(\mathbf{s}) = M_E \cdot \left((s_0 + c_0^{(i)})^d, (s_1 + c_1^{(i)})^d, \dots, (s_{t-1} + c_{t-1}^{(i)})^d \right)$$

其中:

• M_E : MDS 矩阵保证完全扩散

c_i⁽ⁱ⁾: 轮常数

• x^d : S-box 操作 $(d=5 \text{ bith } x^5)$

2.3.2 半轮函数 (I)

对每个半轮 $i \in \{0, ..., R_P - 1\}$:

$$\mathcal{I}_i(\mathbf{s}) = M_I \cdot \left((s_0 + c_0^{(i)})^d, s_1, \dots, s_{t-1} \right)$$

其中 M_I 为部分扩散矩阵:

$$M_{I} = \begin{pmatrix} \mu_{0} & 1 & \cdots & 1 \\ 1 & \mu_{1} & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & \mu_{t-1} \end{pmatrix}, \quad \mu_{i} \in \mathbb{F}_{p} \setminus \{0, 1\}$$

3 优化实现

3.1 MDS 矩阵 (M_E)

当 t=4 时的优化矩阵:

$$M_E = \begin{pmatrix} 5 & 7 & 1 & 3 \\ 4 & 6 & 1 & 1 \\ 1 & 3 & 5 & 7 \\ 1 & 1 & 4 & 6 \end{pmatrix}$$

3.2 约束数量计算

Plonk 算术化后的约束总数:

$$C_{\dot{\mathbb{Q}}} = \underbrace{t \cdot R_F}_{\hat{\mathbb{Q}}} + \underbrace{R_P}_{\hat{\mathbb{Q}}} + \underbrace{t}_{\hat{\mathbb{Q}}}$$
 $\hat{\mathbb{Q}}$

4 安全性分析

4.1 差分安全性

对于 t=3, 6 个全轮的最小活跃 S-box 数:

概率
$$\leq \left(\frac{d-1}{p}\right)^{3(t+4)} \ll 2^{-256}$$

4.2 代数安全性

经过 R 轮后的代数次数:

$$\deg(\mathcal{P}^R) = d^{R_F + R_P} \ge 2^{128} \quad (\underline{\cong} R_F = 8, R_P = 56$$
时)