Cryptography Lecture 3

Arkady Yerukhimovich

September 4, 2024

Outline

- 1 Lecture 2 Review
- 2 One-Time Pad Encryption Review
- 3 Limitations of Perfect Secrecy (Ch. 2.3)
- Proof Techniques
- 5 Computationally-Secure Private-Key Encryption (Ch. 3.1, 3.2.1)

Lecture 2 Review

- Probability review
- Perfectly-secure private-key encryption
- One-time pad

Outline

- Lecture 2 Review
- One-Time Pad Encryption Review
- 3 Limitations of Perfect Secrecy (Ch. 2.3)
- Proof Techniques
- 5 Computationally-Secure Private-Key Encryption (Ch. 3.1, 3.2.1)

One-Time Pad Encryption Scheme

- ullet Let $\mathcal{M}=\mathcal{K}=\mathcal{C}=\{0,1\}^\ell$
- Gen: $k \leftarrow \mathcal{K}$
- Enc: $c = k \oplus m$ (\oplus denotes bitwise exclusive-OR)
- Dec: $m = k \oplus c$

Correctness: For all $k \in \mathcal{K}$ and all $m \in \mathcal{M}$,

$$\operatorname{Dec}_k(\operatorname{Enc}_k(m)) =$$

One-Time Pad Encryption Scheme

- ullet Let $\mathcal{M}=\mathcal{K}=\mathcal{C}=\{0,1\}^\ell$
- Gen: $k \leftarrow \mathcal{K}$
- Enc: $c = k \oplus m$ (\oplus denotes bitwise exclusive-OR)
- Dec: $m = k \oplus c$

Correctness: For all $k \in \mathcal{K}$ and all $m \in \mathcal{M}$,

$$\mathsf{Dec}_k(\mathsf{Enc}_k(m)) = k \oplus (k \oplus m) = (k \oplus k) \oplus m = 0^\ell \oplus m = m$$

Security: The OTP is perfectly secret

$$\Pr[M = m \mid C = c] = \Pr[M = m]$$

One-Time Pad Encryption Scheme

Gen: $k \leftarrow \mathcal{K}$

Enc: $c = k \oplus m$

$$\Pr[M=m\mid C=c]$$

One-Time Pad Encryption Scheme

Gen: $k \leftarrow \mathcal{K}$

Enc: $c = k \oplus m$

$$Pr[M = m \mid C = c] = \frac{Pr[C = c \mid M = m] \cdot Pr[M = m]}{Pr[C = c]}$$

One-Time Pad Encryption Scheme

Gen: $k \leftarrow \mathcal{K}$

Enc: $c = k \oplus m$

$$\Pr[M = m \mid C = c] = \frac{\Pr[C = c \mid M = m] \cdot \Pr[M = m]}{\Pr[C = c]}$$

$$Pr[C = c \mid M = m] = Pr[Enc_K(m) = c] = Pr[m \oplus K = c]$$
$$= Pr[K = m \oplus c] = 2^{-\ell}$$

One-Time Pad Encryption Scheme

Gen: $k \leftarrow \mathcal{K}$

Enc: $c = k \oplus m$

$$\Pr[M = m \mid C = c] = \frac{\Pr[C = c \mid M = m] \cdot \Pr[M = m]}{\Pr[C = c]}$$

$$Pr[C = c \mid M = m] = Pr[Enc_{K}(m) = c] = Pr[m \oplus K = c]$$

$$= Pr[K = m \oplus c] = 2^{-\ell}$$

$$Pr[C = c] = \sum_{m' \in \mathcal{M}} Pr[C = c \mid M = m'] \cdot Pr[M = m']$$

$$= 2^{-\ell} \cdot \sum_{m' \in \mathcal{M}} Pr[M = m'] = 2^{-\ell}$$

The one-time pad has some critical limitations that make it not ideal for real-world use.

The one-time pad has some critical limitations that make it not ideal for real-world use.

• Can only use a key k to encrypt at most one message

The one-time pad has some critical limitations that make it not ideal for real-world use.

- Can only use a key k to encrypt at most one message
- Need the length of the key to be as long as the message (i.e., $|k| \ge |m|$)

The one-time pad has some critical limitations that make it not ideal for real-world use.

- Can only use a key k to encrypt at most one message
- Need the length of the key to be as long as the message (i.e., $|k| \ge |m|$)

Why?

Outline

- Lecture 2 Review
- 2 One-Time Pad Encryption Review
- 3 Limitations of Perfect Secrecy (Ch. 2.3)
- Proof Techniques
- 6 Computationally-Secure Private-Key Encryption (Ch. 3.1, 3.2.1)

Theorem: If $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ is a perfectly secret encryption scheme with message space \mathcal{M} , then $|\mathcal{K}| \geq |\mathcal{M}|$.

Theorem: If $\Pi =$ (Gen, Enc, Dec) is a perfectly secret encryption scheme with message space \mathcal{M} , then $|\mathcal{K}| \geq |\mathcal{M}|$.

Proof: (by contradiction)

• Assume that Π is perfectly secure and that $|\mathcal{K}| < |\mathcal{M}|$.

Arkady Yerukhimovich

Theorem: If $\Pi =$ (Gen, Enc, Dec) is a perfectly secret encryption scheme with message space \mathcal{M} , then $|\mathcal{K}| \geq |\mathcal{M}|$.

- Assume that Π is perfectly secure and that $|\mathcal{K}| < |\mathcal{M}|$.
- Let M be chosen uniformly over \mathcal{M} and let $c \in \mathcal{C}$ be any ciphertext s.t. $\Pr[\mathcal{C} = c] > 0$.

Theorem: If $\Pi =$ (Gen, Enc, Dec) is a perfectly secret encryption scheme with message space \mathcal{M} , then $|\mathcal{K}| \geq |\mathcal{M}|$.

- Assume that Π is perfectly secure and that $|\mathcal{K}| < |\mathcal{M}|$.
- Let M be chosen uniformly over \mathcal{M} and let $c \in \mathcal{C}$ be any ciphertext s.t. $\Pr[\mathcal{C} = c] > 0$.
- Define $\mathcal{M}(c) = \{m \mid m = \mathsf{Dec}_k(c) \text{ for some } k \in \mathcal{K}\}$

Theorem: If $\Pi =$ (Gen, Enc, Dec) is a perfectly secret encryption scheme with message space \mathcal{M} , then $|\mathcal{K}| \geq |\mathcal{M}|$.

- Assume that Π is perfectly secure and that $|\mathcal{K}| < |\mathcal{M}|$.
- Let M be chosen uniformly over \mathcal{M} and let $c \in \mathcal{C}$ be any ciphertext s.t. $\Pr[C = c] > 0$.
- Define $\mathcal{M}(c) = \{m \mid m = \mathsf{Dec}_k(c) \text{ for some } k \in \mathcal{K}\}$
 - Observe that $|\mathcal{M}(c)| \leq |\mathcal{K}|$

Theorem: If $\Pi =$ (Gen, Enc, Dec) is a perfectly secret encryption scheme with message space \mathcal{M} , then $|\mathcal{K}| \geq |\mathcal{M}|$.

- Assume that Π is perfectly secure and that $|\mathcal{K}| < |\mathcal{M}|$.
- Let M be chosen uniformly over \mathcal{M} and let $c \in \mathcal{C}$ be any ciphertext s.t. $\Pr[C = c] > 0$.
- Define $\mathcal{M}(c) = \{ m \mid m = \mathsf{Dec}_k(c) \text{ for some } k \in \mathcal{K} \}$ • Observe that $|\mathcal{M}(c)| \leq |\mathcal{K}|$
- By assumption, $|\mathcal{K}| < |\mathcal{M}|$, so there exists $m' \in \mathcal{M}$ such that $m' \notin \mathcal{M}(c)$

Theorem: If $\Pi =$ (Gen, Enc, Dec) is a perfectly secret encryption scheme with message space \mathcal{M} , then $|\mathcal{K}| \geq |\mathcal{M}|$.

- Assume that Π is perfectly secure and that $|\mathcal{K}| < |\mathcal{M}|$.
- Let M be chosen uniformly over \mathcal{M} and let $c \in \mathcal{C}$ be any ciphertext s.t. $\Pr[\mathcal{C} = c] > 0$.
- Define $\mathcal{M}(c) = \{ m \mid m = \mathsf{Dec}_k(c) \text{ for some } k \in \mathcal{K} \}$ • Observe that $|\mathcal{M}(c)| \leq |\mathcal{K}|$
- By assumption, $|\mathcal{K}| < |\mathcal{M}|$, so there exists $m' \in \mathcal{M}$ such that $m' \notin \mathcal{M}(c)$
- But, then $\Pr[M = m' \mid C = c] = 0 \neq \Pr[M = m']$ (i.e., Π is not perfectly secret), contradiction!

Theorem: If $\Pi =$ (Gen, Enc, Dec) is a perfectly secret encryption scheme with message space \mathcal{M} , then $|\mathcal{K}| \geq |\mathcal{M}|$.

Proof: (by contradiction)

- Assume that Π is perfectly secure and that $|\mathcal{K}| < |\mathcal{M}|$.
- Let M be chosen uniformly over \mathcal{M} and let $c \in \mathcal{C}$ be any ciphertext s.t. $\Pr[\mathcal{C} = c] > 0$.
- Define $\mathcal{M}(c) = \{ m \mid m = \mathrm{Dec}_k(c) \text{ for some } k \in \mathcal{K} \}$ • Observe that $|\mathcal{M}(c)| \leq |\mathcal{K}|$
- By assumption, $|\mathcal{K}| < |\mathcal{M}|$, so there exists $m' \in \mathcal{M}$ such that $m' \notin \mathcal{M}(c)$
- But, then $\Pr[M = m' \mid C = c] = 0 \neq \Pr[M = m']$ (i.e., Π is not perfectly secret), contradiction!

Take Away

Perfectly secure encryption must have keys as long as the message.

Outline

- Lecture 2 Review
- One-Time Pad Encryption Review
- 3 Limitations of Perfect Secrecy (Ch. 2.3)
- Proof Techniques
- 5 Computationally-Secure Private-Key Encryption (Ch. 3.1, 3.2.1)

We will use the following proof techniques in this class:

Direct Proof

- Direct Proof
- Proof by Contradiction

- Direct Proof
- Proof by Contradiction
- Proof by Reduction

- Direct Proof
- Proof by Contradiction
- Proof by Reduction
- Proof by Induction

Consider a OTP encryption:

• What happens if $k = 0^{\ell}$?

12 / 22

Consider a OTP encryption:

- What happens if $k = 0^{\ell}$?
- Is this a problem?

Consider a OTP encryption:

- What happens if $k = 0^{\ell}$?
- Is this a problem?
- Suppose we modify Gen to never output $k=0^{\ell}$, is this still perfectly secure?

Consider a OTP encryption:

- What happens if $k = 0^{\ell}$?
- Is this a problem?
- Suppose we modify Gen to never output $k=0^{\ell}$, is this still perfectly secure?
- Why or why not?

Outline

- 1 Lecture 2 Review
- 2 One-Time Pad Encryption Review
- 3 Limitations of Perfect Secrecy (Ch. 2.3)
- Proof Techniques
- 5 Computationally-Secure Private-Key Encryption (Ch. 3.1, 3.2.1)

Asymptotics in Cryptography

• A function $f: \mathbb{Z}^+ \to \mathbb{Z}^+$ is *polynomial* if there exist $c \in \mathbb{Z}^+$ such that $f(n) < n^c$ for all n

Asymptotics in Cryptography

- A function $f: \mathbb{Z}^+ \to \mathbb{Z}^+$ is *polynomial* if there exist $c \in \mathbb{Z}^+$ such that $f(n) < n^c$ for all n
 - Interpretation: f grows no faster than a polynomial in n.

- A function $f: \mathbb{Z}^+ \to \mathbb{Z}^+$ is *polynomial* if there exist $c \in \mathbb{Z}^+$ such that $f(n) < n^c$ for all n
 - Interpretation: f grows no faster than a polynomial in n.
 - Examples: $f(n) = n^2$, $f(n) = 100n^3 + n + 6$

- A function $f: \mathbb{Z}^+ \to \mathbb{Z}^+$ is *polynomial* if there exist $c \in \mathbb{Z}^+$ such that $f(n) < n^c$ for all n
 - Interpretation: f grows no faster than a polynomial in n.
 - Examples: $f(n) = n^2$, $f(n) = 100n^3 + n + 6$
- A function $f: \mathbb{Z}^+ \to [0,1]$ is *negligible* if *for every* polynomial p it holds that f(n) < 1/p(n) for large enough n.

- A function $f: \mathbb{Z}^+ \to \mathbb{Z}^+$ is *polynomial* if there exist $c \in \mathbb{Z}^+$ such that $f(n) < n^c$ for all n
 - Interpretation: f grows no faster than a polynomial in n.
 - Examples: $f(n) = n^2$, $f(n) = 100n^3 + n + 6$
- A function $f: \mathbb{Z}^+ \to [0,1]$ is *negligible* if *for every* polynomial p it holds that f(n) < 1/p(n) for large enough n.
 - Interpretation: f goes to 0 faster than any inverse polynomial in n

- A function $f: \mathbb{Z}^+ \to \mathbb{Z}^+$ is *polynomial* if there exist $c \in \mathbb{Z}^+$ such that $f(n) < n^c$ for all n
 - Interpretation: f grows no faster than a polynomial in n.
 - Examples: $f(n) = n^2$, $f(n) = 100n^3 + n + 6$
- A function $f: \mathbb{Z}^+ \to [0,1]$ is *negligible* if *for every* polynomial p it holds that f(n) < 1/p(n) for large enough n.
 - Interpretation: f goes to 0 faster than any inverse polynomial in n
 - Examples: $f(n) = 2^{-n}$, $f(n) = 2^{-\log^2 n}$

- A function $f: \mathbb{Z}^+ \to \mathbb{Z}^+$ is *polynomial* if there exist $c \in \mathbb{Z}^+$ such that $f(n) < n^c$ for all n
 - Interpretation: f grows no faster than a polynomial in n.
 - Examples: $f(n) = n^2$, $f(n) = 100n^3 + n + 6$
- A function $f: \mathbb{Z}^+ \to [0,1]$ is *negligible* if *for every* polynomial p it holds that f(n) < 1/p(n) for large enough n.
 - Interpretation: f goes to 0 faster than any inverse polynomial in n
 - Examples: $f(n) = 2^{-n}, f(n) = 2^{-\log^2 n}$

Computational Security

Consider the case of private-key encryption with $|\mathcal{K}| < |\mathcal{M}|$:

Consider the case of private-key encryption with $|\mathcal{K}| < |\mathcal{M}|$:

• Adversary Runtime:

Consider the case of private-key encryption with $|\mathcal{K}| < |\mathcal{M}|$:

Adversary Runtime:
 Suppose A can run in unbounded time.

Consider the case of private-key encryption with $|\mathcal{K}| < |\mathcal{M}|$:

• Adversary Runtime: Suppose \mathcal{A} can run in unbounded time. Given a ciphertext c, try to decrypt with all $k \in \mathcal{K}$, some m must be missing.

Consider the case of private-key encryption with $|\mathcal{K}| < |\mathcal{M}|$:

- Adversary Runtime: Suppose \mathcal{A} can run in unbounded time. Given a ciphertext c, try to decrypt with all $k \in \mathcal{K}$, some m must be missing.
- Adversary Success Probability: Consider an $\mathcal A$ that learns pairs $(m_1, c_1), \ldots, (m_\ell, c_\ell)$.

Consider the case of private-key encryption with $|\mathcal{K}| < |\mathcal{M}|$:

- Adversary Runtime: Suppose A can run in unbounded time. Given a ciphertext c, try to decrypt with all $k \in K$, some m must be missing.
- Adversary Success Probability: Consider an \mathcal{A} that learns pairs $(m_1, c_1), \ldots, (m_\ell, c_\ell)$. \mathcal{A} can just guess $k \leftarrow \mathcal{K}$ and check where $\mathrm{Dec}_k(c_i) = m_i$ for all i (i.e., k is the correct key). \mathcal{A} can guess correct k with probability $1/|\mathcal{K}| > 0$.

Consider the case of private-key encryption with $|\mathcal{K}| < |\mathcal{M}|$:

- Adversary Runtime: Suppose \mathcal{A} can run in unbounded time. Given a ciphertext c, try to decrypt with all $k \in \mathcal{K}$, some m must be missing.
- Adversary Success Probability: Consider an \mathcal{A} that learns pairs $(m_1, c_1), \ldots, (m_\ell, c_\ell)$. \mathcal{A} can just guess $k \leftarrow \mathcal{K}$ and check where $\mathrm{Dec}_k(c_i) = m_i$ for all i (i.e., k is the correct key). \mathcal{A} can guess correct k with probability $1/|\mathcal{K}| > 0$.

Computational Security

A cryptographic scheme is *computationally secure* if any *probabilistic* polynomial time (PPT) adversary only breaks security with at most a negligible probability.

15/22

Computational Security

- Efficient = probabilistic polynomial time (PPT)
 - Standard from algorithms / complexity theory

Computational Security

- Efficient = probabilistic polynomial time (PPT)
 - Standard from algorithms / complexity theory
- Convenient closure properties:

Computational Security

- Efficient = probabilistic polynomial time (PPT)
 - Standard from algorithms / complexity theory
- Convenient closure properties:
 - poly(n) · poly(n) = poly(n)
 A PPT algorithm making calls to PPT subroutines is PPT

Computational Security

- Efficient = probabilistic polynomial time (PPT)
 - Standard from algorithms / complexity theory
- Convenient closure properties:
 - poly(n) · poly(n) = poly(n)
 A PPT algorithm making calls to PPT subroutines is PPT
 - poly(n) · negl(n) = negl(n)
 Poly many calls to subroutines with negligible success probability, have negligible success probability

Computational Security

Private-key (symmetric-key) encryption scheme:

- Gen: Outputs randomly chosen key k
- $\operatorname{Enc}(k, m) : c \leftarrow \operatorname{Enc}_k(m)$
- $Dec(k, c) : m = Dec_k(c)$

Correctness

For all k output by Gen and all messages m, $Dec_k(Enc_k(m)) = m$

Private-key (symmetric-key) encryption scheme:

- Gen, Enc, Dec run in polynomial time (in their input size)
- Gen: Outputs randomly chosen key k
- $\operatorname{Enc}(k, m) : c \leftarrow \operatorname{Enc}_k(m)$
- $\operatorname{Dec}(k,c): m = \operatorname{Dec}_k(c)$

Correctness

For all k output by Gen and all messages m, $\operatorname{Dec}_k(\operatorname{Enc}_k(m)) = m$

Private-key (symmetric-key) encryption scheme:

- Gen, Enc, Dec run in polynomial time (in their input size)
- Gen: $k \leftarrow \text{Gen}(1^n) n$ is called the security parameter
- $\operatorname{Enc}(k, m) : c \leftarrow \operatorname{Enc}_k(m)$
- $Dec(k, c) : m = Dec_k(c)$

Correctness

For all k output by Gen and all messages m, $Dec_k(Enc_k(m)) = m$

Private-key (symmetric-key) encryption scheme:

- Gen, Enc, Dec run in polynomial time (in their input size)
- Gen: $k \leftarrow \text{Gen}(1^n) n$ is called the security parameter
- $\operatorname{Enc}(k, m) : c \leftarrow \operatorname{Enc}_k(m) \text{ for } m \in \{0, 1\}^*$
- $\operatorname{Dec}(k,c): m = \operatorname{Dec}_k(c)$

Correctness

For all k output by Gen and all messages m, $Dec_k(Enc_k(m)) = m$

Private-key (symmetric-key) encryption scheme:

- Gen, Enc, Dec run in polynomial time (in their input size)
- Gen: $k \leftarrow \text{Gen}(1^n) n$ is called the security parameter
- $\operatorname{Enc}(k, m) : c \leftarrow \operatorname{Enc}_k(m) \text{ for } m \in \{0, 1\}^*$
- $Dec(k, c) : m = Dec_k(c)$

Correctness

For all k output by Gen and all messages m, $\operatorname{Dec}_k(\operatorname{Enc}_k(m)) = m$

Private-key (symmetric-key) encryption scheme:

- Gen, Enc, Dec run in polynomial time (in their input size)
- Gen: $k \leftarrow \text{Gen}(1^n) n$ is called the *security parameter*
- $\operatorname{Enc}(k, m) : c \leftarrow \operatorname{Enc}_k(m) \text{ for } m \in \{0, 1\}^*$
- $Dec(k, c) : m = Dec_k(c)$

Correctness

For all n, for all k output by $Gen(1^n)$ and all messages $m \in \{0,1\}^*$, $Dec_k(Enc_k(m)) = m$

Let $\Pi = (Gen, Enc, Dec)$ be an encryption scheme. Consider the following game between an adversary A and a challenger:

$\mathsf{PrivK}^{\mathit{eav}}_{\mathcal{A}.\Pi}$

- ullet ${\cal A}$ outputs two messages $m_0, m_1 \in {\cal M}$
- The challenger chooses $k \leftarrow \text{Gen}$, $b \leftarrow \{0,1\}$, computes $c \leftarrow \text{Enc}_k(m_b)$ and gives $c \neq 0$.
- \mathcal{A} outputs a guess bit b'
- We say that $\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\mathsf{\Pi}} = 1$ (i.e., \mathcal{A} wins) if b' = b.

Definition: An encryption scheme $\Pi = (Gen, Enc, Dec)$ with message space $\mathcal M$ is *perfectly indistinguishable* if for all $\mathcal A$ it holds that

$$\Pr[\mathsf{PrivK}^{eav}_{\mathcal{A},\Pi}=1]=1/2$$

Let $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ be an encryption scheme. Consider the following game between an adversary $\mathcal A$ and a challenger:

$\mathsf{PrivK}^{\mathit{eav}}_{\mathcal{A},\Pi}(n)$

- ullet ${\cal A}$ outputs two messages $m_0, m_1 \in {\cal M}$
- The challenger chooses $k \leftarrow \text{Gen}$, $b \leftarrow \{0,1\}$, computes $c \leftarrow \text{Enc}_k(m_b)$ and gives $c \leftarrow A$
- \mathcal{A} outputs a guess bit b'
- We say that $\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\mathsf{\Pi}} = 1$ (i.e., \mathcal{A} wins) if b' = b.

Definition: An encryption scheme $\Pi=$ (Gen, Enc, Dec) with message space $\mathcal M$ is *perfectly indistinguishable* if for all $\mathcal A$ it holds that

$$\Pr[\mathsf{PrivK}^{\mathit{eav}}_{\mathcal{A},\Pi}=1]=1/2$$

Let $\Pi =$ (Gen, Enc, Dec) be an encryption scheme. Consider the following game between an adversary $\mathcal A$ and a challenger:

$\mathsf{PrivK}^{\mathit{eav}}_{\mathcal{A},\Pi}(n)$

- \mathcal{A} outputs two messages m_0, m_1 such that $|m_0| = |m_1|$.
- The challenger chooses $k \leftarrow \text{Gen}$, $b \leftarrow \{0,1\}$, computes $c \leftarrow \text{Enc}_k(m_b)$ and gives $c \leftarrow A$
- \mathcal{A} outputs a guess bit b'
- We say that $\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\mathsf{\Pi}} = 1$ (i.e., \mathcal{A} wins) if b' = b.

Definition: An encryption scheme $\Pi = (\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$ with message space $\mathcal M$ is *perfectly indistinguishable* if for all $\mathcal A$ it holds that

$$\Pr[\mathsf{PrivK}^{\mathit{eav}}_{\mathcal{A},\Pi}=1]=1/2$$

Let $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ be an encryption scheme. Consider the following game between an adversary $\mathcal A$ and a challenger:

$\mathsf{PrivK}^{\mathit{eav}}_{\mathcal{A},\Pi}(n)$

- \mathcal{A} outputs two messages m_0, m_1 such that $|m_0| = |m_1|$.
- The challenger chooses $k \leftarrow \text{Gen}(1^n)$, $b \leftarrow \{0,1\}$, computes $c \leftarrow \text{Enc}_k(m_b)$ and gives c to \mathcal{A}
- \mathcal{A} outputs a guess bit b'
- ullet We say that $\mathsf{PrivK}^{\mathit{eav}}_{\mathcal{A},\mathsf{\Pi}}=1$ (i.e., \mathcal{A} wins) if b'=b.

Definition: An encryption scheme $\Pi=(\mathsf{Gen},\mathsf{Enc},\mathsf{Dec})$ with message space $\mathcal M$ is *perfectly indistinguishable* if for all $\mathcal A$ it holds that

$$\Pr[\mathsf{PrivK}^{\mathit{eav}}_{\mathcal{A},\Pi}=1]=1/2$$

Let $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ be an encryption scheme. Consider the following game between an adversary $\mathcal A$ and a challenger:

$\mathsf{PrivK}^{eav}_{\mathcal{A},\Pi}(n)$

- \mathcal{A} outputs two messages m_0, m_1 such that $|m_0| = |m_1|$.
- The challenger chooses $k \leftarrow \mathsf{Gen}(1^n)$, $b \leftarrow \{0,1\}$, computes $c \leftarrow \mathsf{Enc}_k(m_b)$ and gives c to \mathcal{A}
- \mathcal{A} outputs a guess bit b'
- ullet We say that $\mathsf{PrivK}^{\mathit{eav}}_{\mathcal{A},\mathsf{\Pi}}=1$ (i.e., \mathcal{A} wins) if b'=b.

Definition: An encryption scheme $\Pi=$ (Gen, Enc, Dec) with message space $\mathcal M$ is *perfectly indistinguishable* if for all $\mathcal A$ it holds that

$$\Pr[\mathsf{PrivK}^{\mathit{eav}}_{\mathcal{A},\Pi}=1]=1/2$$

Let $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ be an encryption scheme. Consider the following game between an adversary $\mathcal A$ and a challenger:

$\mathsf{PrivK}^{eav}_{\mathcal{A},\Pi}(n)$

- \mathcal{A} outputs two messages m_0, m_1 such that $|m_0| = |m_1|$.
- The challenger chooses $k \leftarrow \mathsf{Gen}(1^n)$, $b \leftarrow \{0,1\}$, computes $c \leftarrow \mathsf{Enc}_k(m_b)$ and gives c to \mathcal{A}
- \mathcal{A} outputs a guess bit b'
- We say that $\operatorname{PrivK}_{\mathcal{A},\Pi}^{eav}(n)=1$ (i.e., \mathcal{A} wins) if b'=b.

Definition: An encryption scheme $\Pi = (\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$ with message space $\mathcal M$ is *perfectly indistinguishable* if for all $\mathcal A$ it holds that

$$\Pr[\mathsf{PrivK}^{\textit{eav}}_{\mathcal{A},\Pi}=1]=1/2$$

Let $\Pi =$ (Gen, Enc, Dec) be an encryption scheme. Consider the following game between an adversary $\mathcal A$ and a challenger:

$\mathsf{PrivK}^{\mathit{eav}}_{\mathcal{A},\Pi}(n)$

- \mathcal{A} outputs two messages m_0, m_1 such that $|m_0| = |m_1|$.
- The challenger chooses $k \leftarrow \text{Gen}(1^n)$, $b \leftarrow \{0,1\}$, computes $c \leftarrow \text{Enc}_k(m_b)$ and gives c to A
- A outputs a guess bit b'
- We say that $\operatorname{PrivK}_{\mathcal{A},\Pi}^{eav}(n)=1$ (i.e., \mathcal{A} wins) if b'=b.

Definition: An encryption scheme $\Pi=(\mathsf{Gen},\mathsf{Enc},\mathsf{Dec})$ with message space $\mathcal M$ has indistinguishable encryptions in the presence of an eavesdropper if for all PPT $\mathcal A$ it holds that

$$\Pr[\mathsf{PrivK}^{eav}_{\mathcal{A},\Pi}(n) = 1] \le 1/2 + \mathsf{negl}(n)$$

How to Construct

- Recall that we encrypted by computing $\operatorname{Enc}_k(m) = m \oplus k$
- But, if |k| < |m|, this is not secure

How to Construct

- Recall that we encrypted by computing $\operatorname{Enc}_k(m) = m \oplus k$
- But, if |k| < |m|, this is not secure

Key Idea

What if we had a way to stretch key k into something longer that still looked random?