

Sobre mim...

Membro "não-oficial" dos "PyOldies" (Estava na 1a conf de Python BR)

Fundei, junto com Carlos Leite ZNC (2007) hoje Necto Systems

A Necto

Temos diversos clientes, desde varejo, indústria, governo e ONGs Ambientais

SOS Mata Atlântica, INCRA, Bayer, Fastshop, The Nature Conservancy

Python/Django

Usamos desde antes da 1.0

GeoDjango desde quando era um branch da versão 0.96!

GIS

Geographic Information Systems (or Science)

Parte 1 Conceitos

A Terra

Se fosse plana praticame a gente encerrava por aq

Também não é esfera, e sim um esferoide oblato.

Localização

Linha conectando centro com superfície

Latitude

Ângulo da linha relativo ao equador

Norte = +

Sul = -

Longitude

Ângulo da linha relativo a Greenwich

Leste = +

Oeste = -

Representações de Latitude e Longitude

Graus, minutos e segundos Quadrante

176° 14' 4"

Graus e minutos decimais W

176° 14.066' N

Graus decimais

176.234436°

Distância

Linear

Distância

Actual Distance = 20.36 miles

Great circle distance.Calculado pela fórmula Haversine

Mas e aquela história de plano?

Projeções

 $3D \rightarrow 2D$

por meio de uma transformação matemática

processo sempre envolve distorção/perda

centenas de projeções

principais grupos:

cilíndricas, cônicas e azimutais

Projeções cilíndricas

Web Mercator (Google)
UTM (Universal Transverse Mercator)

Projeções cônicas

Projeções azimutais

Datum

Modelo matemático da Terra usado para descrever localizações na superfície.

Um conjunto de pontos de referência

modelo descrevendo o formato da Terra

WGS 84 (Global) SIRGAS 2000 (Brasil)

Tipos de dados geográficos

Raster (Imagens)

Dado matricial (pixels) podendo conter várias bandas (camadas)

- GeoTIFF
- World file
- IMG (Erdas)

Vector

Contém feições (features), como ponto, linha e polígono e atributos associados a cada feição

- ESRI Shapefile
- WKT (Well-known Text)
- WKB (Well-known Binary)
- GeoJSON
- GML (Geography Markup Language)
- KML

Referência

OGC

Open Geospatial Consortium

https://www.ogc.org/

Especificações de padrões abertos

Ferramentas

- PostGIS

extensão espacial para o PostgreSQL

- GEOS

operações com geometrias

- GDAL/OGR

Leitura de inúmeros formatos de dados vetoriais e raster

- QGIS

Software desktop para trabalhar com dados geográficos

- Proj

Biblioteca para as conversões entre projeções cartográficas

