Differential Equations Plus (Math 286)

H63 Find the Laplace transforms of

a)
$$1 + 2t + 3t^2$$
:

b)
$$e^{5t+3}$$
:

b)
$$e^{5t+3}$$
; c) $\int_0^t \tau \sin \tau d\tau$; d) $\sin^3 t$.

H64 Find inverse Laplace transforms of

a)
$$\frac{5}{s+6}$$
;

b)
$$\frac{2s-1}{s^2+3}$$
;

a)
$$\frac{5}{s+6}$$
; b) $\frac{2s-1}{s^2+3}$; c) $\frac{1}{(s^2+1)(s^2+4)}$; d) $\frac{d}{ds} \frac{1-e^{-5s}}{s}$;

$$d) \quad \frac{\mathrm{d}}{\mathrm{d}s} \, \frac{1 - \mathrm{e}^{-5s}}{s}$$

e)
$$\ln \frac{s}{s-1}$$

e)
$$\ln \frac{s}{s-1}$$
; f) $\ln \frac{s^2+1}{(s-1)^2}$; g) $\frac{s+1}{s^2(s^2+1)}$;

$$(s) \quad \frac{s+1}{s^2(s^2+1)};$$

h)
$$\frac{e^{-2s} - e^{-4s}}{s}$$
;

i)
$$\operatorname{arccot} \frac{s}{\omega}$$
;

i)
$$\operatorname{arccot} \frac{s}{\omega}$$
; j) $\frac{s^2 - 1}{(s^3 + s^2 - 5s + 3)(s^2 - 4)}$.

Six answers suffice.

H65 Solve the following initial value problems with the Laplace transform:

a)
$$y'' - 3y' + 2y = 6e^{-t}$$
, $y(0) = 9$, $y'(0) = 6$;

b)
$$y'' + 2y' - 3y = 6\sinh(2t)$$
, $y(0) = 0$, $y'(0) = 4$;

c)
$$y''' + y'' - 5y' + 3y = 6\sinh(2t)$$
, $y(0) = y'(0) = 0$, $y''(0) = 4$.

H66 Find the Laplace transform of the Bessel function J_0 in two ways:

a) From the power series of J_0 and termwise integration of the Laplace integral. Hint: The power series expansion

$$\frac{1}{\sqrt{1-4x}} = \sum_{n=0}^{\infty} {2n \choose n} x^n, \text{ valid for } |x| < 1/4,$$

may help (but you should prove it first).

- b) From the Bessel ODE of order $\nu = 0$.
- **H67** Do Exercise 24 in [BDM17], Ch. 6.3, and use the result to verify that $\mathcal{L}\{|\sin t|\}=$ $\frac{1}{s^2+1}$ coth $\frac{\pi s}{2}$ for Re(s) > 0; cp. also [BDM17], Ch. 6.3, Ex. 28.

Due on Wed Dec 8, 6 pm