STAT 500

MLR with categorical predictors

Motivating Example

 Students in STAT 101 at Iowa State University were asked in a recent semester to provide demographic data for use during the semester. A random sample of 75 students were selected and a few of the variables collected were:

- Height (in inches)
- Height of the student's ideal romantic partner (in inches)

SLR for Motivating Example

Model

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

where

- Y = height of student's ideal romantic partner
- x = height of student

Scatterplot

SLR Output

Analysis of Variance						
Sum of Mean						
Source	DF	Squares	Square	F Value	Pr > F	
Model	1	47.08523	47.0852	3.6925	0.0586	
Error	73	930.86144	12.7515			
C. Total	74	977.94667				

Root MSE	3.570928 R-Square	0.04815
Dependent Mean	70.69333 Adj R-Sq	0.03511

		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	83.440038	6.646211	12.55	<0.0001
Height(in)	1	-0.188301	0.097992	-1.92	0.0586

Summary of SLR Model

- Linear relationship between student's height and the height of their ideal romantic partner is very weak and negative.
- $R^2 = 4.815\%$; Only 4.815% of the variation in the height of a student's ideal romantic partner can be explained by the simple linear regression with the student's height.
- Student's height is statistically significant at the 10% level, but not the 5% level.

What's going on?

- Two clusters of points in scatterplot.
 - To left of blue line
 - To right of blue line
- What are those clusters related to?

Multiple Linear Regression Model with Categorical Explanatory Variable

- Variable for student's Gender should be added to the model.
- x_{i1} = student's height

•
$$x_{i2} = \begin{cases} 1 - \text{if student is female} \\ 0 - \text{if student is male} \end{cases}$$

Model

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \varepsilon_i$$

Two Models

• If student is female $(x_{i2} = 1)$

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 + \varepsilon_i = (\beta_0 + \beta_2) + \beta_1 x_{i1} + \varepsilon_i$$

• If student is male $(x_{i2} = 0)$

$$Y_i = \beta_0 + \beta_1 x_{i1} + \varepsilon_i$$

Comparison of Two Models

- Same Slope (β_1)
 - Assumes relationship between height of ideal romantic partner (response variable Y) and student's height (quantitative explanatory variable x_1) is the same for both groups in the categorical explanatory variable x_2 (Gender = female and Gender = male).
- Different Intercept
 - For females: $\beta_0 + \beta_2$
 - For males: β_0

MLR Output

Analysis of Variance						
Sum of Mean						
Source	DF	Squares	Square	F Value	Pr > F	
Model	2	675.04314	337.522	80.2287	<0.0001	
Error	72	302.90353	4.207			
C. Total	74	977.94667				

Root MSE	2.051096 R-Square	0.69027
Dependent Mean	70.69333 Adj R-Sq	0.68166

		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	27.664081	5.951059	4.65	<.0001*
Height(in)	1	0.5471394	0.082411	6.64	<.0001*
Gender(1/0)	1	8.9873486	0.735618	12.22	<.0001*

MLR Model

- Model is highly significant in explaining the height of the students' ideal romantic partner (p-value < 0.0001)
- $R^2 = 69.03\%$
 - 69.03% of the variation in the height of the students' ideal romantic partner can be explained by the multiple linear regression model with height and Gender of the student.
- Given height in the model, Gender is highly significant (p-value < 0.0001)
- Given Gender in the model, height is highly significant (p-value < 0.0001)

Two Estimated Models

 Using the parameter estimates from the MLR, we can determine the estimated intercept and slope of the two models – one for females and one for males. The two models are:

$$\widehat{Y}_i = \begin{cases} 36.651 + 0.547x_i - \text{for females} \\ 27.664 + 0.547x_i - \text{for males} \end{cases}$$

Scatterplot

Interaction Model

• We can consider a model with an interaction term between x_1 and x_2 - height and Gender.

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i1} x_{i2} + \varepsilon_i$$

 This model will allow for a different relationship between students' height and the height of their ideal romantic partner.

Two Models

• If student is female $(x_{i2} = 1)$

$$Y_{i} = \beta_{0} + \beta_{1}x_{i1} + \beta_{2} + \beta_{3}x_{i1} + \varepsilon_{i}$$
$$= (\beta_{0} + \beta_{2}) + (\beta_{1} + \beta_{3})x_{i1} + \varepsilon_{i}$$

• If student is male $(x_{i2} = 0)$

$$Y_i = \beta_0 + \beta_1 x_{i1} + \varepsilon_i$$

Comparison of Two Models

- Different Slope
 - For females: $\beta_1 + \beta_3$
 - For males: β_1
- Different Intercept
 - For females: $\beta_0 + \beta_2$
 - For males: β_0

MLR Model with Interaction

Analysis of Variance						
Sum of Mean						
Source	DF	Squares	Square	F Value	Pr > F	
Model	3	684.77579	228.259	55.2796	<0.0001	
Error	71	293.17088	4.129			
C. Total	74	977.94667				

Root MSE	2.032035 R-Square	0.70022
Dependent Mean	70.69333 Adj R-Sq	0.68755

		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	15.451772	9.90122	1.56	0.1231
Height(in)	1	0.7166606	0.137325	5.22	<.0001*
Gender(1/0)	1	27.272359	11.93225	2.29	0.0253*
Interaction	1	-0.262206	0.170788	-1.54	0.1292

MLR Model with Interaction

- Model is highly significant in explaining the height of the students' ideal romantic partner (p-value < 0.0001)
- $R^2 = 70.02\%$; 70.02% of the variation in the height of the students' ideal romantic partner can be explained by the multiple linear regression model with height and Gender of the student.
- The interaction term is not statistically significant (p-value = 0.1292).

Two Estimated Models

 Using the parameter estimates from the MLR model, we can determine the estimated intercept and slope of the models for females and for males. The two models are:

$$\widehat{Y}_i = \begin{cases} 42.724 + 0.455x_i - \text{for females} \\ 15.452 + 0.717x_i - \text{for males} \end{cases}$$

Scatterplot

Model Comparison

- MLR Model
 - $SS_{error} = 302.90353$
 - $MS_{\rm error} = 4.207$
 - $R^2 = 69.03\%$
 - $adj R^2 = 68.17\%$
- MLR Model with Interaction
 - $SS_{\text{error}} = 293.17088$
 - $MS_{error} = 4.129$
 - $R^2 = 70.02\%$
 - adj $R^2 = 68.76\%$

Which Model to Select?

- The two models are very similar.
- MLR model with interaction term has slightly better values for:
 - *MS*_{error}
 - adj *R*²
- Interaction term is not statistically significant (p-value = 0.1292)
- Estimated MLR model with interaction term appears to fit the points in the scatterplot slightly better than the MLR model.

Alternative Parameterization for Categorical Variables

- Baseline coding of categories
 - 1 = if student is female
 - 0 = if student is male

- Sum to zero coding of categories
 - 1 = if student is female
 - -1 = if student is male

Multiple Linear Regression Model with Categorical Explanatory Variable

- x_{i1} = student's height
- $x_{i2} = \begin{cases} 1 \text{if student is female} \\ -1 \text{if student is male} \end{cases}$

Model

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \varepsilon_i$$

Two Models

• If student is female ($x_{i2} = 1$)

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 + \varepsilon_i = (\beta_0 + \beta_2) + \beta_1 x_{i1} + \varepsilon_i$$

• If student is male $(x_{i2} = -1)$

$$Y_i = \beta_0 + \beta_1 x_{i1} - \beta_2 + \varepsilon_i = (\beta_0 - \beta_2) + \beta_1 x_{i1} + \varepsilon_i$$

Comparison of Two Models

• Same Slope (β_1)

- Different Intercept
 - For females: $\beta_0 + \beta_2$
 - For males: $\beta_0 \beta_2$

MLR Output

Analysis of Variance						
Sum of Mean						
Source	DF	Squares	Square	F Value	Pr > F	
Model	2	675.04314	337.522	80.2287	<0.0001	
Error	72	302.90353	4.207			
C. Total	74	977.94667				

Root MSE	2.051096 R-Square	0.69027
Dependent Mean	70.69333 Adj R-Sq	0.68166

		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	32.157755	5.673807	5.67	<.0001*
Height(in)	1	0.5471394	0.082411	6.64	<.0001*
Gender[Female]	1	4.4936743	0.367809	12.22	<.0001*

Two Estimated Models

 Using the parameter estimates from the MLR, we can determine the estimated intercept and slope of the two models – one for females and one for males. The two models are:

$$\hat{Y}_i = \begin{cases} 36.651 + 0.547x_i - \text{for females} \\ 27.664 + 0.547x_i - \text{for males} \end{cases}$$

Interaction Model

• We can consider a model with an interaction term between x_1 and x_2 - height and Gender.

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i1} x_{i2} + \varepsilon_i$$

 This model will allow for a different relationship between students' height and the height of their ideal romantic partner.

Two Models

• If student is female $(x_{i2} = 1)$

$$Y_{i} = \beta_{0} + \beta_{1}x_{i1} + \beta_{2} + \beta_{3}x_{i1} + \varepsilon_{i}$$
$$= (\beta_{0} + \beta_{2}) + (\beta_{1} + \beta_{3})x_{i1} + \varepsilon_{i}$$

• If student is male $(x_{i2} = -1)$

$$Y_i = \beta_0 + \beta_1 x_{i1} - \beta_2 - \beta_3 x_{i1} + \varepsilon_i$$

$$Y_i = (\beta_0 - \beta_2) + (\beta_1 - \beta_3)x_{i1} + \varepsilon_i$$

Comparison of Two Models

- Different Slope
 - For females: $\beta_1 + \beta_3$
 - For males: $\beta_1 \beta_3$
- Different Intercept
 - For females: $\beta_0 + \beta_2$
 - For males: $\beta_0 \beta_2$

MLR Model with Interaction

Analysis of Variance							
	Sum of Mean						
Source	DF	Squares	Square	F Value	Pr > F		
Model	3	684.77579	228.259	55.2796	<0.0001		
Error	71	293.17088	4.129				
C. Total	74	977.94667					

Root MSE	2.032035 R-Square	0.70022
Dependent Mean	70.69333 Adj R-Sq	0.68755

		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	29.087952	5.966125	4.88	<.0001*
Height(in)	1	0.5855576	0.085394	6.86	<.0001*
Gender(1/0)	1	13.63618	5.966125	2.29	0.0253*
Interaction	1	-0.131103	0.085394	-1.54	0.1292

Two Estimated Models

 Using the parameter estimates from the MLR model, we can determine the estimated intercept and slope of the models for females and for males. The two models are:

$$\hat{Y}_i = \begin{cases} 42.724 + 0.455x_i - \text{for females} \\ 15.452 + 0.717x_i - \text{for males} \end{cases}$$

 We can also add categorical variables with more than two categories to our multiple linear regression model.

 Multiple columns to our design matrix or such categorical variables

- For example, the type of vehicle has 4 categories: car, truck, minivan, SUV/crossover
- Will the following design matrix work?

Intercept	x_1	x_2	Car	Truck	Minivan	SUV/crossover
1	:	:	1	0	0	0
1	:	:	1	0	0	0
1	:	:	0	1	0	0
1	:	:	0	1	0	0
1	:	:	0	0	1	0
1	:	:	0	0	1	0
1	:	:	0	0	0	1
1	:	:	0	0	0	1

 The problem is the four columns specifying these four groups will add to the first column (corresponding to the intercept)

Intercept	x_1	x_2	Car	Truck	Minivan	SUV/crossover
1	÷	÷	1	0	0	0
1	:	:	1	0	0	0
1	:	:	0	1	0	0
1	:	:	0	1	0	0
1	÷	÷	0	0	1	0
1	÷	÷	0	0	1	0
1	÷	÷	0	0	0	1
1	÷	:	0	0	0	1

- To fix this problem, we will constraint the value of one of the groups (called the baseline group).
- For example, let's use the SUV/crossover group as our baseline group

Intercept	x_1	x_2	Car	Truck	Minivan
1	÷	:	1	0	0
1	:	:	1	0	0
1	:	÷	0	1	0
1	:	:	0	1	0
1	÷	:	0	0	1
1	:	:	0	0	1
1	:	:	0	0	0
1	:	:	0	0	0

• The model is:

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \beta_4 x_{i4} + \beta_5 x_{i5} + \varepsilon_i$$

where

- $x_{i3} = \begin{cases} 1 \text{if vehicle is car} \\ 0 \text{otherwise} \end{cases}$
- $x_{i4} = \begin{cases} 1 \text{if vehicle is truck} \\ 0 \text{otherwise} \end{cases}$
- $x_{i5} = \begin{cases} 1 \text{if vehicle is minivan} \\ 0 \text{otherwise} \end{cases}$

The parameters β_3 , β_4 , and β_5 have special interpretations in this model. They are:

- β_3 = the difference in the expected value of the response variable between *cars* and SUV/crossovers.
- β_4 = the difference in the expected value of the response variable between *trucks* and SUV/crossovers.
- β_5 = the difference in the expected value of the response variable between *minivans* and SUV/crossovers.

 Testing for the statistical significance of the type of vehicle requires testing:

$$H_0$$
: $\beta_3 = \beta_4 = \beta_5$
 H_a : at least one of $\beta_i \neq 0, j = 3, 4, 5$.

• Use the partial F test to do it.

- Reduced model: the model without the categorical variable.
- Full model: the model with the categorical variable.
- The F-test statistic is

$$F = \frac{(SSE_{r.model} - SSE_{f.model})/(m-1)}{MSE_{f.model}}$$

where m = the number of categories in the categorical variable (m-1=3 in our example)

• Reject H_0 if $F > F_{m-1,n-(k+1),1-\alpha}$ distribution where n-(k+1) is the df for error for the full model.