

INTRODUCCIÓN

- La clase pasada usamos Octave
 - Entorno integrado orientado a la Programación Científica
 - Interpretado, interactivo
 - Orientado a la resolución numérica y visualización de datos
 - Conun lenguaje de alto nivel con funcionalidades nativas y en bibliotecas
 - Bastante compatible con MatLab®, pero libre y gratis
 - Extensamente documentado, debemos saber buscar

2

INTRODUCCIÓN

- Pero vimos que la resolución numérica introduce errores
 - Son inevitables, tienen distintas fuentes, y debemos tenerlos presen

Modelo $s = \frac{r}{s} \phi(t) dt$ e_t $s_n = \sum_{k} \phi(t_k) \alpha_k$ Problema en el mundo real $s = \int_0^T \phi(t) dt$ e_t $s_n = \sum_{k} \phi(t_k) \alpha_k$ Problema

- Error computacional incluye el error de aproximación
- ¿De dónde viene este error? ¿Es relevante?

3

INTRODUCCIÓN

- Error de aproximación
 - Veremos que origina por las limitaciones de los números de coma flotante
 - Veremos que ignorar estas limitaciones puede ser nefasto
 - Usaremos Octave para experimentar estas limitaciones, aprendiendo más de potencialidades

4

OBJETIVOS

- Conocer las diferencias entre números reales y números de coma (o punto) flotante
- Comprender los riesgos de no considerar estas diferencias
- Conocer algunas construcciones de control al programar en Octave
- Manejar algunos de los tipos de datos numéricos disponibles en Octave

5

