AEEM 3042 – Aircraft Performance & Design

Aircraft Design Second Iteration

Aircraft Design Process

Seven Intellectual Pivot Points

- ✓ 1. Requirements
- ✓ 2. First estimate of aircraft weight
- ✓ 3. Critical performance parameters
- 4. Configuration layout
 - 5. Better weight estimate
 - 6. Performance analysis
 Does it meet the requirements?
 - 7. Optimization Is it the best design?

Aircraft Design Process

Seven Intellectual Pivot Points

5. Better Weight Estimate

Overall Size and Shape Determined

First Configuration Layout

Performance Parameters Understood

Aircraft Design Process

"Aircraft Design: A Conceptual Approach" by Daniel P. Raymer, page 9

Cincinnati

Requirements: Range
Payload
Cruise Mach Number

Takeoff and Landing Distance

Requirements: Range

Payload

Cruise Mach Number

ITERTOW inputs: Mission Profile

Aspect Ratio

Structure Factor

Initial Takeoff Weight

ITERTOW outputs: Mission Segment Fuel

WINGLOAD inputs: Takeoff C_{Lmax}

Landing C_{Lmax}

 C^{D0}

Wing Area

Mission Segment Fuel

WINGLOAD outputs: Takeoff Distance

Landing Distance

Cruise Altitude

WING inputs: Wing Leading Edge Sweep Angle

Wing Taper Ratio

WING outputs: Wing Span

Root Chord & Tip Chord

Trailing Edge Sweep Angle

MAC Length & Location (y_{MAC})

Wing Planform Shape

FUSELAGE inputs: Fuselage Length (L_{fuse})

Fuselage Diameter (D_{fuse})

Fineness Ratio (L/D)_{fuse}

FUSELAGE outputs: Fuselage Shape

Fuselage Wetted Area (S_{fuse})

TAIL inputs: Wing Planform data

Historical HT and VT data

- Aspect Ratio
- Taper Ratio
- Leading Edge Sweep Angle
- Tail Volume Coefficient
- Tail MAC c/4 to Wing MAC c/4

TAIL outputs: HT Span and VT Height

Root Chord & Tip Chord

Trailing Edge Sweep Angle

MAC Length & Location (y_{MAC})

Tail Shapes

	Units	Value
REQUIREMENTS		
Range	NM	
Number of Passengers	#	
Passenger Payload	lb	
PERFORMANCE CAPABILITIES		
Takeoff Distance: 100% fuel @ SL	ft	
Landing Distance: 20% fuel @ SL	ft	
Cruise Altitude & Speed	ft / Mach	
AIRCRAFT WEIGHTS		
Takeoff Gross Weight	lb	
Fuel Capacity	lb	
Operating Weight Empty	lb	
Structure Factor		
PROPULSION		
Maximum Thrust	lb	
Cruise TSFC	lb/lb-hr	
WING		
Wing Area	ft ²	
Wing Span	ft	
Aspect Ratio		
Root Chord & Tip Chord	ft	
Taper Ratio		
Leading & Trailing Edge Sweeps	degrees	
M.A.C. length & y _{MAC} location	ft	
FUNDAMENTAL PARAMETERS		
Takeoff T/W		
Takeoff W/S	lb/ft ²	

TAIL DESIGN		Units	Horizontal Tail	Vertical Tail	Main Wing
Leading Edge Sweep Angle	Λ_{LE}	degrees			
Trailing Edge Sweep Angle	Λ_{TE}	degrees			
Quarter-Chord Sweep Angle	$\Lambda_{\text{c/4}}$	degrees			
Root Chord	C _r	ft			
Tip Chord	c _t	ft			
Span	b	ft		Х	
Height	h	ft	Х		х
Taper Ratio	λ				
Surface Area	S	ft²			
Aspect Ratio	AR				
MAC length	MAC	ft			
y _{MAC} location	Y _{MAC}	ft			
Distance from tail's c/4 of MAC to wing's c/4 of MAC	I _{HT}	ft		x	x
Distance from tail's c/4 of MAC to wing's c/4 of MAC	I _{VT}	ft	x		х
Horizontal Tail Volume Coefficient	C _{HT}			х	х
Vertical Tail Volume Coefficient	C _{VT}		х		х
FUSELAGE DESIGN		Units	Value		
Fineness Ratio	(L/D) _{fuse}			Х	х
Fuselage Length	L _{fuse}	ft		Х	х
Fuselage Diameter	D _{fuse}	ft		Х	х

Block 1 Schedule – Ingredient Data

Week	Day	Date	Topics	Homework Due
1	Tuesday	Jan 12	Introduction Atmosphere	
	Thursday	Jan 14	Physics of Flight Aircraft Terms	
2	Tuesday	Jan 19	Aerodynamics	Atmosphere Model Aircraft Dimensions
	Thursday	Jan 21	Propulsion Aircraft Weights	Aerodynamics
3	Tuesday	Jan 26	Material Review Homework Review	Propulsion Aircraft Weights
	Thursday	Jan 38	Exam #1	

Structure

wings fuselage tails landing gear

engine mounts air induction

+ Propulsion

engines fuel tanks exhaust starters

engine cooling engine controls

+ Equipment

hydraulics electrical instruments avionics pneumatics armament

flight controls
APU
air conditioning

= Weight Empty

Structure

wings fuselage tails landing gear

engine mounts air induction

+ Propulsion

engines fuel tanks engine cooling exhaust starters engine controls

+ Equipment

hydraulics avionics flight controls electrical pneumatics APU instruments armament air conditioning

= Weight Empty

Weight Empty

structure

propulsion

equipment

+ Operating Items

crew

unusable fuel engine oil

fixed items crew baggage

- **= Operating Weight**
- + Payload

passengers luggage cargo

bombs missiles

- + Fuel
- = Takeoff Gross Weight


```
Wing (W<sub>wing</sub>)
```

- + Horizontal Tail (W_{HT})
- + Vertical Tail (W_{VT})
- + Fuselage (W_{fuse})
- + Main Landing Gear (W_{MLG})
- + Nose Landing Gear (W_{NLG})
- + Installed Engines (W_{eng})
- + Equipment + Operating Items (W_{equip})
- = Operating Weight

Approximate Group Weights Method

Wing (W_{wing})

10 * S

+ Horizontal Tail (W_{HT})

5.5 * S_{HT}

+ Vertical Tail (W_{VT})

5.5 * S_{VT}

+ Fuselage (W_{fuse})

5 * S_{fuse}

+ Main Landing Gear (W_{MLG})

0.85 * 0.043 * W_{TO}

+ Nose Landing Gear (W_{NLG})

0.15 * 0.043 * W_{TO}

+ Installed Engines (W_{eng})

1.3 * W_{eng}

+ Equipment + Op Items (W_{equip})

 $0.17 * W_{TO}$

= Operating Weight

Statistical Group Weights Method

```
Wing (W<sub>wing</sub>)
```

- + Horizontal Tail (W_{HT})
- + Vertical Tail (W_{VT})
- + Fuselage (W_{fuse})
- + Main Landing Gear (W_{MLG})
- + Nose Landing Gear (W_{NLG})
- + Installed Engines (W_{eng})
- + Equipment + Operating Items (W_{equip})
- = Operating Weight

Empirical equations based on dimensions (tailored for airliners)

Wing Weight

$$\begin{split} W_{wing} &= 0.0051 \ (n_z W_{TO})^{0.557} (S)^{0.649} (A)^{0.5} \\ & (^t/_c)^{-0.4} (1+\lambda)^{0.1} \big(cos \, \Lambda_{c/4}\big)^{-1.0} (S_f)^{0.1} \end{split}$$

 n_z Design Load Factor ($n_z = 3.5$ g's)

W_{TO} Maximum Takeoff Gross Weight

S Wing Area

A Wing Aspect Ratio

t/c Wing Maximum Thickness Ratio

λ Wing Taper Ratio

 $\Lambda_{c/4}$ Wing Quarter-Chord Sweep Angle

S_f/S Flapped Wing Area Ratio (= 0.60 for airliners)

Horizontal Tail Weight

$$\begin{split} W_{HT} &= 0.0379 \ (1 + F_w/b_{HT})^{-0.25} (n_z)^{0.1} (W_{T0})^{0.639} (S_{HT})^{0.75} \\ & (l_{HT})^{-1.0} \left(K_y\right)^{0.704} \! \left(\cos \Lambda_{HT \ c/4}\right)^{-1.0} (A_{HT})^{0.166} \end{split}$$

F_w Fuselage Width at the HT's Intersection (next slide)

b_{HT} Horizontal Tail Span

 n_z Design Load Factor ($n_z = 3.5$ g's)

W_{TO} Maximum Takeoff Gross Weight

S_{HT} Horizontal Tail Area

I_{HT} Distance between Wing MAC c/4 to HT MAC c/4

 K_y Pitching Radius of Gyration (= 0.3 I_{HT})

 $\Lambda_{\rm HT\ c/4}$ Horizontal Tail Quarter-Chord Sweep Angle

A_{HT} Horizontal Tail Aspect Ratio

Horizontal Tail Weight

Vertical Tail Weight

$$\begin{split} W_{VT} &= 0.0026 \ (1 + H_{HT}/H_{VT})^{0.225} (n_z)^{0.536} (W_{TO})^{0.556} \ (S_{VT})^{0.5} \\ & (l_{VT})^{0.5} \ (K_z)^{0.875} \big(cos \ \Lambda_{VT \ c/4}\big)^{-1.0} (A_{VT})^{0.35} (t/_c)^{-0.5} \end{split}$$

 H_{HT}/H_{VT} Location of HT (= 0 for Conv Tail; = 1 for T-Tail)

 n_z Design Load Factor ($n_z = 3.5 \text{ g's}$)

W_{TO} Maximum Takeoff Gross Weight

S_{VT} **Vertical Tail Area**

I_{VT} Distance from Wing MAC c/4 to VT MAC c/4

 K_z Yawing Radius of Gyration (= I_{HT})

 $\Lambda_{VT c/4}$ Vertical Tail Quarter-Chord Sweep Angle

A_{VT} Vertical Tail Aspect Ratio

t/c Vertical Tail Maximum Thickness Ratio

Fuselage Weight

$$\begin{split} W_{fuse} &= 0.3280 \; K_{door} \; K_{lg} \, (n_z W_{TO})^{0.5} (L_{fuse})^{0.25} \; (S_{wet-fuse})^{0.302} \\ & (1 + K_{ws})^{0.04} (L_{fuse}/D_{fuse})^{0.10} \end{split}$$

K_{door} = 1.00 for no cargo door; = 1.06 for one cargo door

= 1.12 for two cargo doors

 K_{lq} = 1.00 for wing-mounted landing gear

= 1.12 for fuselage-mounted landing gear

 n_z Design Load Factor ($n_z = 3.5$ g's)

W_{TO} Maximum Takeoff Gross Weight

L_{fuse} Fuselage Length

S_{wet-fuse} Fuselage Wetted Area (from FUSELAGE.XLS)

 $K_{ws} = 0.75 [(1 + 2\lambda)/(1 + \lambda)] (b_{wing} tan(\Lambda_{wing c/4}) / L)$

(L/D)_{fuse} Fuselage Fineness Ratio

Main Landing Gear Weight

$$\begin{aligned} W_{MLG} &= 0.0106 \ (n_z)^{0.25} (W_{LND})^{0.888} \ (L_{MLG})^{0.4} \\ & (N_{mw})^{0.321} (N_{mss})^{-0.5} \ (V_{stall})^{0.1} \end{aligned}$$

 n_z Design Load Factor ($n_z = 3.5$ g's)

W_{LND} Maximum Landing Gross Weight (= TOGW – 50% fuel)

L_{MLG} Main Landing Gear Length (on next slide)

N_{mw} Number of MLG Wheels

N_{mss} Number of MLG Struts

V_{stall} Stall Speed in Landing Configuration

Landing Gear Weight

Nose Landing Gear Weight

$$W_{NLG} = 0.0320 (n_z)^{0.2} (W_{LND})^{0.646} (L_{NLG})^{0.4} (N_{nw})^{0.45}$$

 n_z Design Load Factor ($n_z = 3.5$ g's)

W_{LND} Maximum Landing Gross Weight (= TOGW – 50% fuel)

L_{NLG} Nose Landing Gear Length (on previous slide)

N_{nw} Number of NLG Wheels

Propulsion System Weight

$$W_{prop} = 1.30 \text{ x Weng}$$

Engine Weight (W_{eng}) = Uninstalled Engine Weight x Number of Engines

Equipment Systems Weight

 $W_{equip} = 0.17 \text{ x Maximum Takeoff Gross Weight}$


```
Wing (W<sub>wing</sub>)
```

- + Horizontal Tail (W_{HT})
- + Vertical Tail (W_{VT})
- + Fuselage (W_{fuse})
- + Main Landing Gear (W_{MLG})
- + Nose Landing Gear (W_{NLG})
- + Installed Engines (W_{eng})
- + Equipment + Operating Items (W_{equip})
- = Operating Weight

Aircraft Wetted Area

- Wing (S_{wet-wing})
- + Horizontal Tail (S_{wet-HT})
- + Vertical Tail (S_{wet-VT})
- + Fuselage (S_{wet-fuse})
- + Installed Engines (S_{wet-eng})
- = Aircraft Wetted Area (S_{wet})
- Aero Surfaces: $S_{wet} = S(1.977 + 0.52 * t/c)$ $t/c \approx 0.120$
- Fuselage: S_{wet} is calculated in FUSELAGE.XLS
- Installed Engines: $S_{wet} = 2 \pi r l$ (wetted area of a cylinder)

calculate S_{wet} / S_{ref}

Aircraft Wetted Area

Installed Engines: $S_{wet} = 2 \pi r l$ (wetted area of a cylinder)

Factors:

1.25 * D

1.50 * I

1.30

Aircraft Drag

- Wing (C_{D0-wing})
- + Horizontal Tail (C_{D0-HT})
- + Vertical Tail (C_{D0-VT})
- + Fuselage (C_{D0-fuse})
- + Installed Engines (bookkept in engine data)
- = Aircraft Wetted Area (C_{D0})

Aero Surfaces: WING.XLS and TAIL.XLS

Fuselage: FUSELAGE.XLS

Homework Assignments

HW #25 – Second Iteration (due by 11:59 pm ET on Monday, April 12) Submit Word file and Excel file

HW Help Sessions

Thursday 2:00 - 3:20 pm ET (class time)

Monday 1:00 – 2:00 pm ET

Posted to Canvas:

HW #25 assignment with instructions, tips, and checklist (Word file)

Excel file ITERATION2.XLS

Questions?