Residuale a posteriori Fehlerschätzer

1 Modellproblem und Notation

Sei $\Omega \subset \mathbb{R}^2$ ein offenes polygonales Gebiet und $f \in L^2(\Omega)$. Wir betrachten die Poisson-Gleichung mit homogener Dirichlet-Randbedingung in schwacher Form:

Suche
$$u \in H_0^1(\Omega)$$
, sodass $(u, v)_{H_0^1(\Omega)} = (f, v)_{L^2(\Omega)}$ für alle $v \in H_0^1(\Omega)$

Gegeben eine Triangulierung \mathcal{T}_h von Ω , bezeichnet h_T den Durchmesser eines Dreieckselements T und h_e die Länge einer Kante e. Weiterhin sei Γ_h die Menge der Kanten, die im Inneren von Ω liegen. Schließlich führen wir noch Umgebungen von Elementen bzw. Kanten ein:

$$\omega_T := \bigcup \{T' \colon \mathcal{E}(T) \cap \mathcal{E}(T') \neq \varnothing \}, \quad \omega_e := \bigcup \{T' \colon e \in \mathcal{E}(T') \}$$

Eine Familie von Triangulierungen $\{\mathcal{T}_h\}$ heißt quasiuniform, falls es einen Regularitätsparameter $\kappa \in (0, \infty)$ gibt mit $h_T/\rho_T \leq \kappa$ für alle h und $T \in \mathcal{T}_h$.

Wir arbeiten im Ansatzraum $V_h := S_0^1(\mathcal{T}_h)$ oder $S_0^2(\mathcal{T}_h)$ und lösen das diskrete Problem:

Suche
$$u_h \in V_h$$
, sodass $(u_h, v_h)_{H_0^1(\Omega)} = (f, v_h)_{L^2(\Omega)}$ für alle $v_h \in V_h$

2 Residuale Schätzer

Definition 1. Für die FE-Lösung u_h betrachten wir die flächenbezogenen Residuen:

$$R_T := \Delta u_h + f \quad f \ddot{u} r \ T \in \mathcal{T}_h$$

sowie die kantenbezogenen Sprünge der Ableitungen:

$$R_e := [\![\partial_n u_h]\!] := (\nabla u_{h,r} - \nabla u_{h,l}) \cdot n_r \quad \text{für } e \in \Gamma_h$$

Bemerkung: Es gelten $R_T \in L^2(T)$ und $R_e \in \Pi_1(e)$. Die Definition von R_e hängt nicht von der Orientierung der Kante e ab.

Definition 2. Basierend auf den Residuen bilden wir die lokalen Größen:

$$\eta_{T,R}^2 \coloneqq h_T^2 \|R_T\|_{L^2(T)}^2 + \sum\nolimits_{e \in \mathcal{E}(T) \cap \Gamma_h} \frac{h_e}{2} \|R_e\|_{L^2(e)}^2 \ \text{für } T \in \mathcal{T}_h$$

und bauen sie zu einer globalen Größe zusammen:

$$\eta_R^2 \coloneqq \sum\nolimits_{T \in \mathcal{T}_h} \eta_{T,R}^2 = \sum\nolimits_{T \in \mathcal{T}_h} h_T^2 \|R_T\|_{L^2(T)}^2 + \sum\nolimits_{e \in \Gamma_h} h_e \|R_e\|_{L^2(e)}^2$$

Bemerkung: Diese Fehlergrößen sind a posteriori berechenbar.

2.1 Globale obere Fehlerschranke

Satz 3 (Zuverlässigkeit). Sei $\{\mathcal{T}_h\}$ eine quasiuniforme Triangulierung mit Regularitätsparameter κ . Dann gibt es eine Konstante $c = c(\kappa)$ mit:

$$||u - u_h||_{H_0^1(\Omega)} \le c \eta_R$$

Bemerkung: Nach dem Dualitätsprinzip gilt $||u-u_h||_{H_0^1} = \sup_{v \in H_0^1, ||v||=1} (u-u_h, v)_{H_0^1}$.

Lemma 4. Für alle $v \in H_0^1(\Omega)$ gilt die folgende Darstellung:

$$(u - u_h, v)_{H_0^1(\Omega)} = \sum_{T \in \mathcal{T}_h} (R_T, v)_{L^2(T)} + \sum_{e \in \Gamma_h} (R_e, v)_{L^2(e)}$$

2.2 Lokale untere Fehlerabschätzung

Satz 5 (Effizienz). Sei $\{\mathcal{T}_h\}$ eine quasiuniforme Triangulierung mit Regularitätsparameter κ . Dann existiert eine Konstante $c = c(\kappa)$ derart, dass für alle $T \in \mathcal{T}_h$ gilt:

$$\eta_{T,R} \le c \left(|u - u_h|_{H^1(\omega_T)}^2 + \sum_{T' \subset \omega_T} h_{T'}^2 ||f - f_h||_{L^2(T')}^2 \right)^{1/2}$$

Bemerkung: Mit $f_h := P_h f \in V_h$ bezeichnen wir die L^2 -Projektion von f in V_h . Der Korrekturterm auf der rechten Seite wird auch Datenoszillation genannt.

Hilfsmittel für den Beweis:

- Abschneidefunktion: Kubische Blasenfunktion $\psi_T \in [0,1]$ bzgl. $T \in \mathcal{T}_h$ mit supp $\psi_T = T$, $\psi_T = 0$ auf ∂T und $\psi_T(m_T) = 1$; stetige, stückweise quad. Blasenfunktion $\psi_e \in [0,1]$ bzgl. $e \in \Gamma_h$ mit supp $\psi_e = \omega_e$, $\psi_e = 0$ auf $\partial \omega_e$ und $\psi_e(m_e) = 1$
- Fortsetzungsoperator $E: L^2(e) \to L^2(\omega_e)$, $E\sigma(x) = \sigma(x')$ für $x \in T_i \subset \omega_e$, wenn $x' \in e$ der Punkt aus e ist mit $\lambda_i(x') = \lambda_i(x)$

Lemma 6. Sei $\{\mathcal{T}_h\}$ eine quasiuniforme Triangulierung. Dann gibt es nur vom Parameter κ abhängende Konstanten c_1, \ldots, c_5 , sodass für alle $T \in \mathcal{T}_h$ und $e \in \mathcal{E}(T) \cap \Gamma_h$ gilt:

- (i) $\|\psi_T^{1/2}p\|_{L^2(T)} \ge c_1 \|p\|_{L^2(T)}$ für $p \in \Pi_2(T)$
- (ii) $\|\nabla(\psi_T p)\|_{L^2(T)} \le c_2 h_T^{-1} \|\psi_T p\|_{L^2(T)}$ für $p \in \Pi_2(T)$
- (iii) $\|\psi_e^{1/2}\sigma\|_{L^2(e)} \ge c_3 \|\sigma\|_{L^2(e)}$ für $\sigma \in \Pi_2(e)$
- $(iv) \ c_4^{-1} h_e^{1/2} \|\sigma\|_{L^2(e)} \leq \|\psi_e E \sigma\|_{L^2(T)} \leq c_4 h_e^{1/2} \|\sigma\|_{L^2(e)} \ \text{für} \ \sigma \in \Pi_2(e)$
- (v) $\|\nabla(\psi_e E \sigma)\|_{L^2(T)} \le c_5 h_T^{-1} \|\psi_e E \sigma\|_{L^2(T)}$ für $\sigma \in \Pi_2(e)$

Take-Home Message:

- Zuverlässigkeit und (lokale) Effizienz charakterisieren einen guten Fehlerschätzer:
 - η_R klein \Longrightarrow globaler Fehler klein, $\eta_{T,R}$ groß \Longrightarrow lokaler Fehler groß
- Die Konstante $c = c(\kappa)$ divergiert nicht bei der Verfeinerung des Netzes $h \downarrow 0$, solange κ beibehalten wird. Das ist entscheidend für die Konvergenz von adaptiven Algorithmen.
- I.d.R. kann man annehmen, dass die Datenoszillation einen Term höherer Ordnung darstellt. In dem Fall sind der Schätzer η_R und der wahre Fehler global äquivalent.

3 Adaptive Netzverfeinerung

Ein adaptiver FE-Algorithmus hat i.A. die Struktur "Solve \rightarrow Estimate \rightarrow Mark \rightarrow Refine":

- 1. Initialisiere ein grobes Gitternetz \mathcal{T}_0 . Setze $k \coloneqq 0$.
- 2. Löse das diskrete Problem auf \mathcal{T}_k .
- 3. Berechne den lokalen Fehlerschätzer $\eta_{T,R}$ für jedes Element $T \in \mathcal{T}_k$.
- 4. Falls für den globalen Schätzer $\eta_R < \varepsilon$ gilt, stopp. Ansonsten entscheide anhand der $\eta_{T,R}$, welche Elemente verfeinert werden sollen (Dörfler-Marking), und erstelle das verfeinerte Netz \mathcal{T}_{k+1} (Newest Vertex Bisection). Erhöhe k um 1 und gehe zu Schritt 2.

Hauptreferenz: D. Braess. Finite Elemente: Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie. 5. Auflage, Springer-Verlag Berlin Heidelberg, 2013