مقدمة في البرمجة بالماتلاب

Introduction to Matlab Programming

اعداد د/خالد عبدالحميد الهندي

رئيس قسم هندسة الحاسب الآلي كلية الحاسب الآلي ونظم المعلومات جامعة أم القرى بمكة المكرمة

جميع الحقوق محفوظة © 2007

ملخص معلومات الفصل الأول (المقدمة) Information in Chapter 1 (Introduction)

مؤسسو برنامج الماتلاب

■ كليف مولر (Cleve Moler)

هو أستاذ الرياضيات وعلوم الحاسب لأكثر من عشرين عاماً في جامعة متشيجين وجامعة ستانفورد وجامعة نيومكسيكو ، وقد أمضى خمس سنوات عند اثنين من مصنعي الـ Hardware وهما Hardware وهما Intel Hypercube organization و Ardent قبل أن يقوم بالانتقال إلى شركة Mathworks الشركة الأم لبرنامج الماتلاب ، كما أنه هو المؤلف لأول برنامج للماتلاب .

■ جاك ليل (jack little)

هو المؤسس لشركة Mathworks كما أنه المساعد في وضع تخطيط برنامج الماتلاب ، وهو حاصل على بكالوريوس الهندسة الكهربية وعلوم الحاسب من جامعة ستانفورد عام 1978 ، كما أنه حصل على شهادة M.S.E.E من جامعة ستانفورد عام 1980 .

تاريخ الماتلاب

- في منتصف السبعينات عام 1970 ، قام كليف مولر والذي كان رئيسا لقسم علوم الحاسب في جامعة نيومكسيكو وعدد من زملائه بتطوير مكتبات الفورتران والتي كانت تدعى EISPACK و LINPACK تحت منحة من المؤسسة القومية للعلوم.
 - LINPACK و EISPACK هما اللبنة البرمجية الأساسية في برمجيات حسابات المصفوفات.
- بدأ كليف بكتابة برنامج للوصول إلى EISPACK و LINPACK بكل بساطة وسمي برنامجه MATLAB والتي تعني (Matrix Laboratory) أي مختبر المصفوفة .
 - انتشر برنامج الماتلاب للجامعات الأخرى ووجد هذا البرنامج جمهور قوي من قبل المختصين بالرياضيات التطبيقية .
- في عام 1983 عُرض على المهندس جون ليتل برنامج الماتلاب أثناء زيارة مولر لجامعة ستانفورد ، وبعد ذلك انظم ليتل إلى مولر وستيف بانجرت وأعيدت كتابة الماتلاب بلغة السي .
 - أسست في عام 1984 شركة Mathworks لمواصلة تطوير برنامج الماتلاب .

تابع ملخص معلومات الفصل الأول (المقدمة) Information in Chapter 1 (Introduction)

تعريف الماتلاب

- الماتلاب هي لغة ذات مستوى عالي للحسابات والبرمجة وتمتاز بوجود برامج تسهل عملية التعامل مع هذه اللغة ، وتشمل البرامج على :
 - · الحسابات الرياضية
 - تطوير الخوارزميات
 - معالجة البيانات
 - النمذجة والمحاكاة وتصميم المخططات الأولية للمشاريع
 - تحلیل البیانات و عرضها
 - عمل الرسومات الهندسية و العلمية
 - · نطوير التطبيقات ضمن واجهات من نوع (GUI)
 - ويعتمد الماتلاب على تنسيق البيانات في صورة مصفوفات ويكون البرنامج مثل أغلب لغات البرمجة .
 - يشمل الماتلاب على مجموعة من البرامج والتي تدعى (toolbox) مما يتيح لك التعامل مع التطبيقات المتخصصة وهذه الأدوات عبارة عن برامج في صورة (M-files).

تطبيقات الماتلاب

- في المجال الأكاديمي:
- عمل التفاصيل و التكامل
- (Algebraic Equations) حل المعادلات الجبرية
- o حل المعادلات التفاضلية ذات الرتب العليا (Differential Equations)
 - o عمل التفاضل الجزئي ، وعمليات الكسر الجزئي (Partial fraction)
 - المجالات التطبيقية:
 - o أنظمة التحكم في جميع المجالات الهندسية (Control System)
 - معالجة الصور
 - محاكاة الإلكترونات
 - مجال صناعة السيارات
 - مجال الطير ان و الدفاع الجوي
 - ٥ مجال الروبوت

وهناك الكثير والكثير من التطبيقات الهندسية.

ملخص معلومات الفصل الثاني (واجهة برنامج الماتلاب) Information in Chapter 2 (Matlab Desktop)

واجهة برنامج الماتلاب تكون من:

- o نافذة الأوامر (Command Window)
 - (Workspace) منطقة العمل
- o نافذة تسجيل الأوامر (Command History)

• شريط القوائم وتتكون من:

- o قائمة ملف (File)
- o قائمة التعديل (Edit)
 - (Debug) قائمة o
 - (Desktop) قائمة o
 - o قائمة (Window)
 - o قائمة (Help)

محتويات قائمة المساعدة (Help):

- o قائمة المحتويات (Contents)
 - o قائمة الفهرس (Index)
 - (Search) قائمة البحث
 - o قائمة (Demos)

ملخص أو امر الفصل الثالث (الماتلاب كآلة حاسبة) Matlab Examples in Chapter 3 (Matlab as a Calculator)

شرح المثال	تنفيذ المثال في الماتلاب	الموضوع الفرعي	الموضوع الرئيسي
إجراء بعض العمليات الرياضية البسيطة وهي بالترتيب الجمع ثم الطرح ثم الضرب ثم القسمة	>>6+2 >>6-2 >>6*2 >>6/2	بعض العمليات الرياضية البسيطة Some math operations	
حساب قيمة الدالة الأسية للأساس (e) للعدد (1)	>>exp(1)	e الدالة الأسية للأساس Exponential Function	
حساب قيمة الدالة اللوغارتمية الطبيعية للعدد (1)	>>log(1)	الدالة اللو غار تمية الطبيعية Natural Logarithm	
حساب الجذر التربيعي للعدد (36)	>>sqrt(36)	الجذر التربيعي Square Root	
حساب قيمة الدالة اللو غار تمية للأساس (10) للعدد (20)	>>log10(20)	الدالة اللو غار تمية للأساس 10 Base 10 Logarithm	استخدام الماتلاب
حساب القيمة المطلقة للعدد (100-)	>>abs(-100)	القيمة المطلقة Absolute Value	كآلة حاسبة Operations on
حساب قيمة الدالة (\sin) للعدد (π /2) بالر اديان	>>sin(pi/2)	الدالة (sin) بالر اديان Sine Function in Radians	Variables
حساب قيمة الدالة (sin) للعدد (90) بالدرجات	>>sind(90)	الدالة (sin) بالدرجات Sine Function in Degrees	
(π) للعدد (π) للعدد الدالة الدالة (π) للعدد البال اديان	>>cos(pi)	الدالة (cos) بالر اديان Cosine Function (Radians)	
حساب قيمة دالة معكوس (tan) للعدد (100)	>>atan(pi)	دالة معكوس (tan) Tangent Inverse Function	
حساب قيمة الدالة (sec) للعدد (π	>>sec(pi)	الدالة (sec) Secant Function	
حساب قيمة الدالة (sinh) للعدد (100)	>>sinh(100)	الدالة (sinh) Hyperbolic Sine Function	
يمكن في الماتلاب حساب الدالة لدالة أخرى وهكذا مع ضرورة مراعاة عدد الأقواس	>>sin(abs(sqrt(90)))	حساب دالة داخل دالة أخرى Command Nesting	
للحصول على معلومات مفصلة عن دالة الماتلاب (sqrt) ومن ثم للدالة (sin) ، وتشمل معلومات التعريف وكيفية الاستخدام وغير ذلك	>>help sqrt >>help sin	المعلومات عن دالة معينة Information about a Matlab Function	ملاحظات Notes
الحصول على معلومات مطولة عن دالة الماتلاب (sind) مثل التعريف وكيفية الاستخدام ونحوه	>>doc sind	معلومات مطولة عن دالة معينة Information about a Matlab Function	

جدول لبعض الدوال الرياضية المعرفة في برنامج الماتلاب

Exponential and Logarithmic Functions

Matlab Function	Definition	Mathematical Form
exp(x)	Exponential	e^{x}
log(x)	Natural logarithm	ln(x)
log10(x)	Common (base 10) logarithm	$\log(x)$
sqrt(x)	Square root	\sqrt{x}

Trigonometric Functions

Tigonometre i unetrono					
Matlab Function	Definition	Mathematical Form			
cos(x)	Cosine	$\cos(x)$			
sin(x)	Sine	$\sin(x)$			
tan(x)	Tangent	tan(x)			
acos(x)	Inverse cosine	$\cos^{-1}(x)$			
asin(x)	Inverse sine	$\sin^{-1}(x)$			
atan(x)	Inverse tangent	$tan^{-1}(x)$			
cot(x)	Cotangent	$\cot(x)$			
csc(x)	Cosecant	$\csc(x)$			
sec(x)	Secant	sec(x)			
acot(x)	Inverse cotangent	$\cot^{-1}(x)$			
acsc(x)	Inverse cosecant	$\csc^{-1}(x)$			
asec(x)	Inverse secant	$sec^{-1}(x)$			
atan2(y,x)	Four-quadrant inverse tangent.				

Hyperbolic Functions

Try per bone 1 unctions					
Matlab Function	Definition	Mathematical Form			
cosh(x)	Hyperbolic cosine	$\cosh(x)$			
sinh(x)	Hyperbolic sine	sinh(x)			
tanh(x)	Hyperbolic tangent	tanh(x)			
acosh(x)	Inverse hyperbolic cosine	$\cosh^{-1}(x)$			
asinh(x)	Inverse hyperbolic sine	$\sinh^{-1}(x)$			
atanh(x)	Inverse hyperbolic tangent	$\tanh^{-1}(x)$			
coth(x)	Hyperbolic cotangent	$\coth(x)$			
csch(x)	Hyperbolic cosecant	$\operatorname{csch}(x)$			
sech(x)	Hyperbolic secant	sech(x)			
acoth(x)	Inverse hyperbolic cotangent	$\coth^{-1}(x)$			
acsch(x)	Inverse hyperbolic cosecant	$\operatorname{csch}^{-1}(x)$			
asech(x)	Inverse hyperbolic secant	$\operatorname{sech}^{-1}(x)$			

ملخص أو امر الفصل الرابع (المتغيرات) Matlab Examples in Chapter 4 (Variables)

شرح المثال	تتفيذ المثال في الماتلاب	الموضوع الفرعي	الموضوع الرئيسي
لإنشاء المتغيرين (a) ويساوي (2) والمتغير (b) ويساوي (10)	>>a=2 >>b=10	طريقة التعريف	إنشاء متغير
لاحظ أن المتغير (a) لا يساوي المتغير (Case Sensitive) لأن الماتلاب	>>A=3	ملاحظة هامة	Defining a Variable
لإنشاء ثلاث متغير ات مع عدم إظهار هم على الشاشة باستخدام الأمر (;)	>>A=6; >>B=2; >>C=3;	إنشاء ثلاث متغير ات Defining three variables	العمليات على المتغير ات
المثال الأول للعمليات على المتغيرات المثال الثاني للعمليات على المتغيرات المثال الثالث للعمليات على المتغيرات المثال الرابع للعمليات على المتغيرات	>>A+B+C >>(A*B)/C >>A^2+B^2 >>(sin(A)+cos(B))/2	أمثلة لعمليات رياضية Examples of Simple Math Operations	Operations on Variables
العدد التخيلي (i) معرف مسبقا في الماتلاب بشرط أن لا يتم اعادة تعريف المتغير (i) أثناء كتابة أي برنامج	>>i	i العدد التخبلي The complex number i	
إنشاء متغيرين مركبين (a) و (b)	>>a=a+i >>b=a+2i	إنشاء متغيرين مركبين Defining two complex numbers	
إجراء بعض العمليات الرياضية البسيطة على المتغيرين المركبين وهي بالترتيب الجمع ثم الضرب ثم القسمة ثم الطرح	>>a+b >>a*b >>a/b >>a-b	بعض العمليات الرياضية على المتغيرين المركبين Some math operations	
إنشاء متغير مركب (z)	>>z=3+4i	إنشاء متغير مركب Defining a complex number	الأعداد المركبة Complex
الحصول على الجزء الحقيقي فقط للمتغير المركب (z)	>>real(z)	الجزء الحقيقي لمتغير مركب Real part of a complex number	Numbers
الحصول على الجزء التخيلي فقط للمتغير المركب (z)	>>imag(z)	الجزء التخيلي لمتغير مركب Imaginary part of a complex number	
الحصول على زاوية الطور للمتغير المركب (z) بالراديان	>>angle(z)	زاوية الطور لمتغير مركب Phase angle of a complex number in radians	
الحصول على القيمة المطلقة للمتغير المركب (z)	>>abs(z)	القيمة المطلقة لمتغير مركب Absolute value of a complex number	
عرض كافة المتغيرات المستخدمة في نافذة الأوامر	>>who	عرض المتغيرات المستخدمة Display Variables	أوامر إضافية
عرض مفصل لكافة المتغيرات المستخدمة في نافذة الأوامر مع عرض الحجم ومقدار الذاكرة المحجوزة بالبايت ونوع المتغير	>>whos	عرض مفصل للمتغيرات المستخدمة Display Variables with Information	لبرنامج الماتلاب Extra Matlab Commands

ملخص أو امر الفصل الخامس (المتجهات) Matlab Examples in Chapter 5 (Vectors)

شرح المثال	تنفيذ المثال في الماتلاب	الموضوع الفرعي	الموضوع الرئيسي
إنشاء متجه صفي من خمسة عناصر بطريقة الفر اغات بين العناصر	>>A=[1 2 3 4 5]	المتجه الصفي Row Vector	
إنشاء نفس المتجه السابق باستخدام الأمر (:) والذي يعني كافة العناصر من (1) إلى (5) بزيادة واحد عن السابق	>>A= [1:5]	طريقة أخرى لإنشاء المتجه الصفي Second Method	
إنشاء متجه صفي من خمسة عناصر	>>D=[2 4 6 8 10]	إنشاء متجه صفي Row Vector	إنشاء متجه Vector Definition
إنشاء نفس المتجه السابق باستخدام الأمر (:) و الذي يعني كافة العناصر من (2) إلى (10) بزيادة (2) عن السابق	>>D=[2:2:10]	الطريقة أخرى لإنشاء المتجه الصفي Second Method	vector Bernitton
إنشاء متجه عمودي من خمسة عناصر باستخدام الأمر (ز) والذي يعني نهاية الصف في المتغير (C)	>>C=[1;2;3;4;5]	المتجه العمودي Column Vector	
إنشاء متجه عمودي (A) ومن ثم إضافة عنصر سادس بقيمة (100)	>>A=[1;3;5;7;8] >>A(6)=100	إضافة عنصر جديد للمتجه Element Adding	
إضافة عنصر ثامن للمتجه (A) بقيمة (150) ويلاحظ بعد التنفيذ أن الماتلاب أضاف آليا القيمة صفر للعنصر السابع	>>A(8)=150	إضافة عنصر جديد للمتجه Element Adding	
إنشاء متجه عمودي (B) ومن ثم حذف العنصر الخامس فقط	>>B=[1;3;5;7;9] >>B(5)=[]	حذف عنصر من متجه Element Deletion	
إنشاء متجه عمودي (B) ومن ثم تغيير قيمة العنصر الثالث إلى القيمة (20)	>>B=[1;3;5;7;9] >>B(3)=20	استبدال قيمة عنصر في متجه Element Replacing	1 1
إنشاء متجه عمودي (A) ومن ثم إيجاد قيمة العنصر الأكبر فيه	>>A=[7;8;3;4;5] >>max(A)	قيمة العنصر الأكبر لمتجه Maximum Value	العمليات على المتجهات
ايجاد قيمة العنصر الأصغر للمتجه (A)	>>min(A)	قيمة العنصر الأصغر لمتجه Minimum Value	Operations on Vectors
إنشاء متجه صفي (A) ومن ثم إيجاد طوله ويساوي عدد العناصر فيه	>>A=[1 7 9 8 6] >>length(A)	طول المتجه Vector Length	
إنشاء متجه صفي (x) ومن ثم إيجاد مقاييسه الأول والثاني (بطريقتين) وأخير ا المقياس اللانهائي	>>x=[1 2 3] >>norm(x,1) >>norm(x) >>norm(x,2) >>norm(x,inf)	مقياس المتجه Vector Norm	
إنشاء متجه صفي (a) ومن ثم إيجاد مقاييسه الأول واللانهائي	>>a=[-10 -5 3] >>norm(x,1) >>norm(x,inf)	مثال آخر لمقیاس المتجه Vector Norm	
إنشاء متجهين صفيين (A) و (B) ومن ثم ايجاد قيمة الضرب (dot) بينهما	>>A=[1 2 3] >>B=[4 5 6] >>dot(A,B)	الضرب المتجه Dot Product	ضرب المتجهات Vector Product
ايجاد قيمة الضرب من نوع (cross) للمتجهين (A) و (B)	>>cross(A,B)	الضرب المتجه Cross Product	

ملخص أو امر الفصل السادس (المصفوفات) Matlab Examples in Chapter 6 (Matrices)

شرح المثال	تتفيذ المثال في الماتلاب	الموضوع الفرعي	الموضوع الرئيسي
لإنشاء المصفوفة (A) بحجم 2 صف في 3 أعمدة بطريقة الفراغات بين عناصر الصف الواحد	>>A=[1 2;4 5;7 6]	الطريقة الأولى First Method	إنشاء مصفوفة
لإنشاء المصفوفة (A) بحجم 2 صف في 3 أعمدة بطريقة الفواصل بين عناصر الصف الواحد	>>A=[1,2;4,5;7,6]	الطريقة الثانية Second Method	Matrix Definition
لإنشاء المصفوفة المربعة (0) ذات عناصر الأصفار بحجم 3×3	>>o=zeros(3)	المصفوفة الصفرية المربعة Square Zeros Matrix	
لإنشاء المصفوفة المستطيلة (B) ذات الأصفار بحجم 3 صف في 2 أعمدة	>>B=zeros(3,2)	المصفوفة الصفرية المستطيلة Rectangular Zeros Matrix	
لإنشاء المصفوفة المربعة (A) ذات العناصر واحد بحجم 3×3	>>A=ones(3)	مصفوفة الواحد المربعة Square Ones Matrix	
لإنشاء المصفوفة المستطيلة (I) ذات العناصر واحد بحجم 4 صف في 2 أعمدة	>>I=ones(4,2)	مصفوفة الواحد المستطيلة Rectangular Ones Matrix	المصفوفات الخاصة
لإنشاء مصفوفة الوحدة المربعة (I) بحجم 2×2	>>I=eye(2)	مصفوفة الوحدة المربعة Square Identity Matrix	Special
لإنشاء مصفوفة الوحدة المستطيلة (Y) بحجم 3 صف في 4 أعمدة	>>Y=eye(3,4)	مصفوفة الوحدة المستطيلة Rectangular 1's Diagonal Matrix	Matrices
لإنشاء المصفوفة العشوائية المربعة (I) بحجم 5×5	>>I=rand(5)	المصفوفة العشوائية المربعة Square Random Matrix	
لإنشاء المصفوفة العشوائية المستطيلة (I) بحجم 3 صف في 2 أعمدة	>>I=rand(3,2)	المصفوفة العشوائية المستطيلة Rectangular Random Matrix	
لإنشاء المصفوفة (B) بحجم 3 صف في 3 أعمدة	>>B=[1 -5 3;6 10 -9; 11 8 4]	تعريف مصفوفة كمثال	
قلب الأعمدة كصفوف والصفوف كأعمدة للمصفوفة (B)	>>B'	قلب الأعمدة كصفوف Matrix Transpose	
جمع أعمدة المصفوفة (B)	>>sum(B)	جمع أعمدة المصفوفة Matrix Sum	
استخلاص عناصر قطر المصفوفة (B)	>>diag(B)	استخلاص عناصر قطر المصفوفة Matrix Diagonal Elements	العمليات على مصفوفة و احدة
جمع عناصر قطر المصفوفة (B)	>>sum(diag(B))	جمع عناصر قطر المصفوفة Sum Matrix Diagonal Elements	Operations on a Single Matrix
إيجاد المعكوس للمصفوفة المربعة (B)	>>inv(B)	أيجاد معكوس المصفوفة المربعة Square Matrix Inversion	
إيجاد درجة المصفوفة (B)	>>rank(B)	أيجاد درجة المصفوفة Matrix Rank	
ايجاد المحدد للمصفوفة المربعة (B)	>>det(B)	أيجاد محدد المصفوفة المربعة Square Matrix Determinate	

تابع ملخص أو امر الفصل السادس (المصفوفات)

شرح المثال	تتفيذ المثال في الماتلاب	الموضوع الفرعي	الموضوع الرئيسي
ايجاد القيم الذاتية للمصفوفة المربعة (B)	>>eig(B)	أيجاد القيم الذاتية لمصفوفة مربعة Eigenvalues of Square Matrix	
ايجاد القيم الذاتية (V) والمتجهات الذاتية (D) للمصفوفة المربعة (B)	>>[V,D] = eig(B)	أيجاد القيم والمتجهات الذاتية لمصفوفة مربعة Eigenvalues and Eigenvectors	
اختيار الصف الثاني فقط من المصفوفة (B)	>>B(2,:)	اختيار صف محدد من مصفوفة Matrix Row Selection	
أخنيار العمود الثاني فقط من المصفوفة (B)	>>B(:,2)	اختیار عمو د محدد من مصفوفة Matrix Column Selection	تابع العمليات على
اختيار الصف الأخير فقط من المصفوفة (B)	>>B(end,:)	اختيار الصف الأخير من مصفوفة Matrix Last Row Selection	مصفوفة واحدة Operations on a
اختيار العمود الأخير فقط من المصفوفة (B)	>>B(:,end)	اختيار العمود الأخير من مصفوفة Matrix Last Column Selection	Single Matrix
اختيار العناصر المتقاطعة ما بين الصفين الأول والثاني مع عناصر العمود الثاني من المصفوفة (B)	>>B(1:2,2)	اختیار مصفوفة جزئیة من مصفوفة Submatrix Selection	
اختيار العناصر المنقاطعة ما بين الصفين الأول والثاني مع عناصر العمودين الأول والثاني من المصفوفة (B)	>>B(1:2,1:2)	اختیار مصفوفة جزئیة من مصفوفة Submatrix Selection	
اختيار العناصر المتقاطعة في الصف الثالث مع عناصر العمودين الثاني والثالث من المصفوفة (B)	>>B(3,2:3)	اختیار مصفوفة جزئیة من مصفوفة Submatrix Selection	
إنشاء ثلاث مصفوفات لغرض تطبيق الأمثلة التالية	>>A=[3 4 6;5 1 8]; >>B=[7 9 4;8 1 1]; >>C=[1;3;4];	تعريف مجموعة مصفوفات	
عملية جمع المصفوفتين (A) و (B)	>>A+B	جمع مصفوفتین Matrix Addition	العمليات على أكثر من مصفوفة واحدة
عملية طرح المصفوفتين (A) و (B)	>>A-B	طرح مصفوفتین Matrix Subtraction	Operations on
عملية ضرب المصفوفتين (A) و (C)	>>A*C	ضر ب مصفو فتین Matrix Multiplication	Matrices
عملية قسمة المصفوفة (A) على عدد	>>A/3	قسمة مصفوفة على عدد Matrix Multiplication	
قم بتطبيق الأو امر الموضحة وذلك لحل منظومة المعادلات الخطية التالية : $x-y+z=5$ $x+2y+2z=10$ $3x+z=1$	>>A=[1 -1 1;1 2 2;3 0 1] >>b=[5;10;1] >>x=inv(A)*b	إنشاء المعادلات وحلها Building and Solving the System	حل منظومة معادلات خطية Solving a System of Linear
ناتج عملية الضرب (A*x) يجب أن يساوي المصفوفة (b)	>>A*x	التأكد من الحل	Equations

ملخص أو امر الفصل السابع (الرسم ثنائي الأبعاد) Matlab Examples in Chapter 7 (Introduction to 2D Plots)

شرح المثال	تتفيذ المثال في الماتلاب	الموضوع الفرعي	الموضوع الرئيسي
لإنشاء المتجه (x) والذي يتكون من 10 قيم ضمن الفترة من 5 إلى 20 وتكون القيم موزعة بالتساوي	>>x=linspace(5,20,10)	إنشاء متجه Defining a Vector	مقدمة في الرسم
لإنشاء المتجه (x) والذي يتكون من 100 قيمة ضمن الفترة من 0 إلى 10 وتكون القيم موزعة بالتساوي ومن ثم إنشاء دالة (sin) وحفظها في المتغير (y) ومن ثم رسم الدالة	>>x=linspace(0,10,100); >>y=sin(x); >>plot(x,y)	الرسم ثنائي الأبعاد 2D Plot	ثنائي الأبعاد Introduction to 2D Plots
لإنشاء المتجهين (x) و (y) ومن ثم رسم الدالة تماما كما في الخطوة السابقة	>>x=linspace(0,1,100); >>y=exp(-x).*cos(6*pi*x); >>plot(x,y)	إنشاء منجه Defining a Vector	
تغيير لون خط الرسم إلى اللون الأحمر	>>plot(x,y,'r')	تغيير لون خط الرسم	
تغيير لون خط الرسم إلى اللون الأخضر	>>plot(x,y,'g')	Line Color	
إضافة علامة النجمة لخط الرسم	>>plot(x,y,'*')	إضافة علامة لخط الرسم Line Mark	
تغيير نوع خط الرسم إلى النوع المنقط	>>plot(x,y,':')	تغییر نوع خط الرسم Line Style	
تغيير لون خط الرسم إلى اللون الأخضر مع إضافة علامة زائد لخط الرسم	>>plot(x,y,'g+')	دمج مجموعة خصائص لخط الرسم	إضافة خصائص إلى الرسومات
يتم إضافة شبكة للرسم لتسهيل عملية قراءة القيم من الرسم	>>grid on	إضافة شبكة للرسم Adding Grid to Plot	Setting 2D Plot Properties
يتم إز الة شبكة الرسم	>>grid off	إز الـة شبكة الرسم Removing Grid	2307111111
يتم إضافة تسمية لمحور السينات بالرمز 'x'	>>xlabel('x')	إضافة تسمية لمحور السينات Adding Label to x-axis	
يتم إضافة تسمية لمحور الصادات بالرمز 'y'	>>ylabel('y')	إضافة تسمية لمحور الصادات Adding Label to y-axis	
يتم إضافة عنوان للرسم بالاسم 'graph'	>>title('graph')	إضافة عنوان للرسم Adding Title to Plot	
يتم إضافة النص 'plot' للرسم وذلك في الموقع المحدد في الأمر	>>text(0.35,0.6,'plot')	إضافة نص للرسم Adding Text to Plot	
يتم إضافة دليل لمنحنيات الرسم وذلك في يمين الركن العلوي للرسم	>>legend('X-Y Relation')	إضافة دليل لمنحنيات الرسم Adding Legend to Plot	

تابع ملخص أو امر الفصل السابع (الرسم تُنائي الأبعاد)

شرح المثال	تنفيذ المثال في الماتلاب	الموضوع الفرعي	الموضوع الرئيسي	
إنشاء المتجه (x) وذلك لشرح الأمثلة التالية	>>x=0:0.1:10;	إنشاء متجه Defining a Vector		
تقسيم نافذة الرسم إلى أربع نو افذ (2 في 2) ورسم الدالة (sin) في النافذة الأولى (يسار الصف الأول)	>>subplot(2,2,1), plot(x,sin(x));		إنشاء رسومات	
تقسيم نافذة الرسم إلى أربع نوافذ ورسم الدالة (sin 2x) في النافذة الثانية (يمين الصف الأول)	>>subplot(2,2,2), plot(x,sin(2*x));	تقسيم نافذة الرسم	مُنفصلة في نافذة و احدة	
تقسيم نافذة الرسم إلى أربع نو افذ ورسم الدالة (cos) في النافذة الثالثة (يسار الصف الثاني)	>>subplot(2,2,3), plot(x,cos(x));	Subplots in Matlab	Multiple 2D Plots in a Window	
تقسيم نافذة الرسم إلى أربع نوافذ ورسم الدالة (exp) في النافذة الرابعة (يمين الصف الثاني)	>>subplot(2,2,4), plot(x,exp(x));			
يتم دمج الرسوم باستخدام الأمر (hold on) و الذي يقوم بتثبيت نافذة الرسم و إضافة أي رسم جديد إلى نفس النافذة ، لذا قم بتنفيذ الأو امر حسب الترتيب الموضح	>>x=0:0.1:10; >>y=sin(x); >>z=cos(x); >>hold on >>plot(x,y); >>plot(x,z,'r'); >>hold off	الطريقة الأولى First Method	دمج الرسوم	
أيضا يمكن أن يتم دمج الرسوم باستخدام هذه الطريقة المختصرة	>>x=0:0.1:10; >>y=sin(x); >>z=cos(x); >>plot(x,y,x,z,'r');	الطريقة الثانية Second Method	Combining 2D Plots	
كذلك يمكن في الماتلاب دمج الرسوم وتغيير خصائص الرسم لكل منحنى بشكل مباشر	>>plot(x,y,'g+', x,z,':');	دمج مجموعة خصائص لخط الرسم		
إنشاء متغير (x) ومن ثم رسم النسب المئوية لعناصره على شكل قطاعات من الدائرة	>>x=[8 17 21 18 6]; >>pie(x)	>pie(x) Pie Chart		
رسم النسب المئوية لعناصر المتغير (x) على شكل مدرج تكراري	>>bar(x)	المدر ج التكر ار ي Bar Chart	Statistical Plots	
إنشاء الإشار ات المنقطعة (x) و (y) ومن ثم رسم تلك الإشار ات	>>x=linspace(0,2*pi,60); >>y=sin(x); >>stem(x,y)	الإشار ات المتقطعة Discrete Signals	رسم الإشارات المتقطعة Plotting Discrete Signals	

جدول الألوان (Color) المعرفة في رسم المنحنيات

k	W	b	g	r	С	m	У	الرمز المستخدم
أسود	أبيض	أزرق	أخضر	أحمر	سماوي	ماجينتا	أصفر	اللون
black	white	blue	green	red	cyan	magenta	yellow	Color

جدول أنواع الخطوط (Line Style) المعرفة في رسم المنحنيات

		:	_	الرمز المستخدم
شرطة	نقطة وشرطة	نقط	متصل	نوع الخط
dashed	dash dotted	dotted	solid	Line Style

جدول الأشكال المضافة لمنحنى الرسم (Marker) المعرفة في رسم المنحنيات

Description	الوصف	الرمز المستخدم
Plus sign	إشارة زائد	+
Circle	دائر ة	0
Asterisk	نجمة	*
Point	نقاط	•
Cross	إشارة تقاطع	х
Square	مربع	മ
Diamond	معين	d
Upward-pointing triangle	مثلث يشير للأعلى	^
Downward-pointing triangle	مثلث يشير للأسفل	V
Right-pointing triangle	مثلث يشير لليمين	>
Left-pointing triangle	مثلث يشير لليسار	<
Five-pointed star (pentagram)	نجمة خماسية	р
Six-pointed star (hexagram)	نجمة سداسية	h

ملخص أو امر الفصل الثامن (البرمجة في الماتلاب) Matlab Examples in Chapter 8 (Matlab Programmin)

شرح المثال	تنفيذ المثال في الماتلاب	الموضوع الفرعي	الموضوع الرئيسي
قم بفتح برنامج التحرير (Editor) وذلك لكتابة ملف (M-File)	>>edit	برنامج التحرير The Editor	
قم بكتابة الأوامر الموضحة في شاشة برنامج التحرير (Editor) وبعد الانتهاء قم بحفظ الملف باسم (script.m)	<pre>x=pi/100:pi/100:10*pi; y=sin(x)./x; plot(x,y) grid on</pre>	ملف الأوامر The Script File (M-File)	مقدمة في البرمجة Introduction to Programming
قم بتنفيد البرنامج (script.m) وذلك بكتابة اسم الملف في نافذة الأو امر لبرنامج الماتلاب	>>script	تشغيل ملف الأو امر Executing the Script File	1108-4
لتعلم كيفية استخدام الأمر (for) قم قم بفتح برنامج التحرير (Editor) لإنشاء الملف (program1.m) والذي يحتوي على الأوامر الموضحة ثم قم بتنفيذ البرنامج	for n=1:10 x(n)=sin(pi*n/10); end x	(For) الأمر For Loop	
قم بإجراء التعديلات الموضحة على نفس البرنامج السابق و المسمى (program 1.m) بو اسطة برنامج التحرير (Editor) ومن ثم قم بتنفيذ البرنامج	<pre>for n=1:10 for i=1:10 x(n,i)=sin(pi*n/10); end end x</pre>	(For) الأمر Nested For Loop	
لتعلم كيفية استخدام الأمر (While) قم بفتح برنامج التحرير (Editor) لإنشاء الملف (program2.m) والذي يحتوي على الأوامر الموضحة ثم قم بتنفيذ البرنامج	a=1 while a<100 a=a*2 end	(While) الأمر While Loop	أو امر التحكم في المسار ات
لتعلم كيفية استخدام الأمر (if) قم بفتح برنامج التحرير (Editor) لإنشاء الملف (program3.m) والذي يحتوي على الأوامر الموضحة ثم قم بتنفيذ البرنامج	<pre>a=2 b=3 if a<b a="" elseif="" j="-1">b j=2 else j=3 end</pre>	(if) الأمر If Condition	Control Flow
قم بإجراء التعديلات الموضحة على نفس البرنامج السابق و المسمى (program3.m) بو اسطة برنامج التحرير (Editor) ومن ثم قم بتنفيذ البرنامج	<pre>a=3 b=3 if a<b a="" elseif="" j="-1">b j=2 else j=3 end</pre>	الأمر (if) مثال آخر If Condition	

ملخص أو امر الفصل الثامن (البرمجة في الماتلاب) Matlab Examples in Chapter 8 (Matlab Programmin)

شرح المثال	تتفيذ المثال في الماتلاب	الموضوع الفرعي	الموضوع الرئيسي
لتعلم كيفية استخدام الأمر (switch) قم بفتح برنامج التحرير (Editor) لإنشاء الملف (program4.m) والذي يحتوي على الأوامر الموضحة ثم قم بتنفيذ البرنامج	<pre>x=ceil(10*rand); switch x case{1,2} disp('probability=20%') case{3,4,5} disp('probability=30%') otherwise disp('probability=50%') end</pre>	(switch) الأمر Switch Case	أو امر التحكم في المسار ات Control Flow
قم بتنفيذ البرنامج (program4) لعدد عشر مرات متتالية وذلك بكتابة هذه الأوامر في نافذة الأوامر لبرنامج الماتلاب	>>for i=1:10 program4 end	تشغيل ملف الأو امر Executing the Script File	
قم بفتح برنامج التحرير (Editor) لإنشاء ملف الدالة (myfunc.m) والذي يحتوي على الأوامر الموضحة	<pre>function [u,v]=myfunc(a,b) u=a+b; v=a-b;</pre>	كتابة دالة Writing a Function	
لاستدعاء الدالة قم بتنفيذ الأمر الموضح وذلك بكتابة اسم ملف الدالة في نافذة الأو امر لبرنامج الماتلاب	>>[u,v]=myfunc(3,7)	استدعاء الدالة Calling the Function	
قم بفتح برنامج التحرير (Editor) لإنشاء الملف (stat.m) والذي يحتوي على الأوامر الموضحة	<pre>function y=stat(a,b) if a>b disp('a is greater than b') elseif a<b b')="" disp('a="" else="" end<="" equal="" is="" less="" pre="" than=""></pre>	كتابة دالة أخرى Writing another Function	الدالة The Function
لاسندعاء الدالة قم بتنفيذ الأو امر الموضحة وذلك بكتابة اسم ملف الدالة في نافذة الأو امر لبرنامج الماتلاب	>>stat(5,3) >>stat(6,6) >>stat(2,8)	استدعاء الدالة Calling the Function	

العلاقات المنطقية (Logical Expression) المعرفة في الماتلاب

جدول علاقات المقارنة (Relation Operators)

Description	وصف العلاقة	الرمز المستخدم
Equal to	يساوي	==
Not equal	لا يساوي	~=
Less than	أقل من	<
Lese than or equal	أقل أو يساوي	<=
Greater than	أكبر	>
Greater than or equal	أكبر أو يساوي	>=

جدول العلاقات المنطقية (Logical Operators

Description	وصف العلاقة	الرمز المستخدم
And	العلاقة "و"	&
or	العلاقة "أو"	
Not	العلاقة "لا"	~
XOR	العلاقة (xor)	xor

أمثلة الاستخدام في الماتلاب

طريقة التمثيل في الماتلاب	القيم الرياضية
if (x>=0) & (x<=5)	$x \in [0,5]$
if (x<0) & (x>5)	$x \notin [0,5]$
if (x>=0) & (x<5)	$x \in [0,5)$
while (x~=10)	<i>x</i> ≠ 10
while (x==10)	x = 10
while $(x==10) (x==-10)$	x = 10 or x = -10
while $(x==10)xor(x==-10)$	x = 10 xor x = -10

أو امر إضافية لبرنامج الماتلاب Additional Matlab Commands

(استخدم هذا الجدول لتسجيل الأو امر الإضافية التي تعلمتها خلال الدورة)

شرح الأمر	الأمر في الماتلاب	شرح الأمر	الأمر في الماتلاب
		مسح نافذة إدخال الأو امر	>>clc
		مسح كافة المتغير ات و الدو ال المستخدمة في نافذة المتغير ات من ذاكرة الحاسب	>>clear all