CS 6505 - HOMEWORK 1

KEN BROOKS

For this problem set, you may find it useful to consult Ken Rosens textbook *Discrete Math and Its Applications*.

1. Give the contrapositive of the following statement. "If every bird flies, then there is a hungry cat."

Answer:

If there is not a hungry cat, then no bird flies.

2. A proposition is a statement that can be true or false but not both. Let A, B, and C be propositions. Let \land denote logical AND, let \lor denote logical OR, and let \neg denote logical NOT. Argue that if $(A \lor B) \land (\neg B \lor C)$ is true, then $(A \lor C)$ must be true as well.

Answer:

- $-(A \lor B) \land (\neg B \lor C) \Rightarrow (A \lor C)$ is true if all possible values in its domain map to "true" in its range.
- The table below maps each possibility of A, B, and C through each of the terms of the expression $(A \vee B) \wedge (\neg B \vee C) \Rightarrow (A \vee C)$
- In each case the resulting value is true.
- Therefore $(A \lor B) \land (\neg B \lor C) \Rightarrow (A \lor C)$, or if $(A \lor B) \land (\neg B \lor C)$ is true, then $(A \lor C)$ must be true as well.

1	2	3
4	5	6
7	8	9

3. We use the notation $A \Rightarrow B$ to indicate that A implies B. This new proposition $A \Rightarrow B$ is true except when A is true and B is false. We write $A \Leftrightarrow B$ when either both A and B are true or both are false. Argue that $A \Leftrightarrow B$ if and only if $A \Rightarrow B$ and $B \Rightarrow A$.

Answer:

Date: August 23, 2014.

4. We will use the notation $|\cdot|$ to indicate the number of elements in the set or its cardinality, e.g. |A| is the number of elements in the set A. Consider four sets A, B, C, D such that the intersection of any three is empty. Use the inclusion-exclusion to give an expression for $|A \cup B \cup C \cup D|$ without using any union (\cup) symbols.

Answer:

5. State the formal definition of O(n), and show that the function $f(n) = (n^4 + n^2 - 9)/(n^3 + 1)$ is O(n).

Answer:

6. Let A be a set. We use the notation P(A) to indicate the power set of A, which consist of all subsets of A. For example, if $A = \{0,1\}$, then $P(A) = \{\{\},\{0\},\{1\},\{0,1\}\}\}$. Consider $Q(n) = P(\{1,\ldots,n\}) - \{\{\}\}$ and use an inductive argument to show that the sum

$$\sum_{\{a_1,\dots,a_k\}\in Q(n)}\frac{1}{a_1\cdots a_k}=n$$

(For example, the expansion for n = 3 is $\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{1 \cdot 2} + \frac{1}{1 \cdot 3} + \frac{1}{2 \cdot 3} + \frac{1}{1 \cdot 2 \cdot 3} = 3$.)

Answer:

7. Prove that the set of all languages over $\{0,1\}$ that have a bounded maximum string length is countable.

Answer: