

Project Proposal for Wakup9000

Joeseph Sande

CST-451 Capstone Project Proposal

Grand Canyon University

Instructor: Professor Mark Reha

Revision: Initial Draft

Date: 9-24-2022

ABSTRACT

The Wakup9000 will be a digital clock that will keep track of appointments for the user, light up when it is time for set meetings, display the time on the digital clock, and display a message relating to what status the clock is in at that time. This device will be perfect for users who desire to keep a physical clock in their home offices to remind them when their appointments are. When the clock sets off an alarm, it will light up the LED lights on the board and display a message on the LCD Display screen for the user while flashing the time on the board while it still continues to move the clock's time forward.

With FPGA technology at the team's disposal, this is a perfect task for them to tackle. The hardware contains all of the features that this alarm clock requires and it is configurable in the field if the client were to want additional features in the future or for current features to be manipulated. This leads to a potential stream of revenue for the company in the future as we continue to make updates to the product and send our employees out for field operations to update purchased products for the clients. An example of a future addition to this product would be to create an outside application that can connect to the alarm clock to automatically update the product and sync up with the user's calendar. For the Wakup9000's current proposed features, the clock will conduct all of the required features of displaying a message to the user, displaying the time, allowing the user to utilize the various inputs to configure the clock settings and turn off the alarm, and flash LED lights when the alarm goes off.

History and Signoff Sheet

Change Record

Date	Author	Revision Notes
18-Sep-22	Joeseph Sande	Initial draft for review/discussion

Overall Instructor Feedback/Comments

Overall Instructor Feedback/Comments

Integrated Instructor Feedback into Project Documentation

☐ Yes ☐ No

Project Approval

☐ Professor Mark Reha

TABLE OF CONTENTS

PROJECT OVERVIEW AND PROJECT OBJECTIVES	
PROJECT SCOPE	
PROJECT SUCCESS MEASURES	g
PROJECT HIGH-LEVEL SOLUTION	10
PROJECT CONTROLS	11
PROJECT COST AND SCHEDULE	14
APPENDIX A – REFERENCES	15
APPENDIX B – COPYRIGHT COMPLIANCE	16

Project Overview and Project Objectives

State the Problem and Background

The team is proposing a solution to develop a clock that can wake up even the heaviest of sleepers from their afternoon naps by utilizing a light source along with traditional features of a digital alarm clock through an FPGA board. This clock will have the capabilities of displaying the time, a message, flashing lights, buttons to program the clock, and switches for configurations of the clock. These features will solve the problem set ahead of how to wake up an individual who is an incredibly heavy sleeper that does not wake up to a traditional alarm clock. Through this project, the company will also gain the knowledge to work with FPGA boards so that it can join the market in current aviation technologies that rely upon these boards. With this skillset under the team's belt, this will propel the company forward in its marketing strategies and reach a whole new set of clienteles.

Christian Worldview

This project will help many people around the world that all struggle to wake up on time or to remember meetings when they occur. This can be heavily marketed in today's industry where there are more people working from home and who rely upon their phones for meeting alarms. If these people are like the average person, they will leave their phone somewhere else in their house while eating lunch and will miss their meetings because they did not have their phone to remind them. The Wakup9000 will ensure that everyone meets their timelines for whatever they are planning and to keep their general operations on track by always being stationary at their desks in order to be an effective and reliable alarm for the user. There are many people out there that struggle with time management and this will be a thing of the past when they utilize the Wakup9000 to keep their life schedule in check.

Project Objectives

In Scope Objectives:

- 1. Program an FPGA board's buttons to configure the board.
- 2. Implement a digital logic circuit in an FPGA.
- 3. Program an FPGA board's switches to configure the board.
- 4. Program an FPGA board's 7-segment display to display the clock's timer.

- 5. Program an FPGA board's LCD screen to display messages to the user.
- 6. Program an FPGA board's LED lights to light up during an alarm.

Out of Scope Objectives:

1. Verify if GO Lang can be substituted for C in creating software compatible with ARM processors.

Challenges

There are many challenges that will be tackled with this project regarding the team's lack of prior expertise in the field and the project's general specifications. These challenges are listed below:

- 1. Set up a development environment for FPGA programming.
- 2. Ramp up technical knowledge of FPGA component programming.
- 3. Ramp up technical knowledge of general embedded systems development.
- 4. Ramp up technical knowledge of what components are and what they are utilized for on the FPGA board.
- 5. Ramp up technical knowledge of complex C programming.
- 6. Ramp up technical knowledge of ARM development.
- 7. Ramp up technical knowledge of BCD decoding.
- 8. Ramp up technical knowledge of Go Language.

Benefits and Opportunities

The benefits of this project will be that it will provide the ability for the user to obtain an alarm clock that notifies them in various methods to ensure they know when their meeting is if they lose track of time. It's easy to lose track of time while working on tasks or hobbies during the day, but a clock that will light up, display a message, and play a sound as an alarm will help to deter the inability to be on time for events. This project will allow the team to learn many new skills with programming FGPA boards, familiarity with FPGA board components, learning complex C programming, ARM development, general embedded system development, and learning about the Go programming language. These skills can be leveraged from the team to develop more complex applications and features that corresponds with creating drones, mobile devices, complex navigation technology, or any other device that clientele would desire regarding an FPGA board's capabilities. These skills are invaluable for any company within the

imbedded systems industry and having the team complete this project will develop the skills necessary to make the future dreams of a company's expansion become a reality.

Project Features Scope

Features that are in scope:

- 1. Display messages.
- 2. Display timer.
- 3. Flash lights.
- 4. Program switches.
- 5. Program buttons.

Features that will be out of scope:

1. Use Go Lang

Schedule for Work Breakdown

	Work Breakdown Structure and Schedule									
ID	Task	Dependencies	Status	Effort Hours	Cost	Start Date	Planned Completion	Estimate to Completion	Actual Completion	Resource
1	Refamiliarize with the C language		Complete	6 hours		9-8-22	9-15-22	6 hours	9-12-22	
2	Setup FPGA Board development environment Setup Visual Studio Code to support C		Complete	3 hours		9-8-22 9-8-22	9-12-22 9-12-22	3 hours	9-12-22 9-12-22	
4	Order FPGA Board		Complete	30 minutes	\$430	7-2-22	7-2-22	30 minutes	9-12-22	
5	Configure Micro SD Boot card for FPGA		Complete	2 hours	4 10 0	9-8-22	9-12-22	2 hours	9-12-22	
6	Run Hello World on Board		Complete	1 hour		9-12-22	9-12-22	1 hour	9-12-22	
7	Set up FileZilla for board		Complete	1 hour		9-12-22	9-12-22	1 hour	9-12-22	
8	Set up IP address for computer to communicate with board		Complete	2 hours		9-12-22	9-12-22	2 hours	9-12-22	
9	Complete Activity 1		Complete	2 hours		9-8-22	9-12-22	4 hours	9-12-22	
10	Complete Activity 2		Complete	13 hours		9-13-22	9-18-22	6 hours	9-23-22	
11	Complete Activity 3		Complete	4 hours		9-22-22	9-27-22	6 hours	10-1-22	
12	Complete Activity 4		Complete	4 hours		9-27-22	10-4-22	4 hours	10-1-22	
13	Complete Activity 5		Complete	8 hours		10-5-22	10-18-22	4 hours	10-22-22	
14	Complete Activity 6		Complete	8 hours		10-19-22	10-28-22	4 hours	11-4-22	

				1	1	1	T T
15	Complete Activity 7	Complete	8 hours	10-29-22	11-5-22	4 hours	11-14-22
	Complete Project						
16	Proposal Template Program lights on	Complete	10 hours	9-8-22	9-23-22	10 hours	9-24-22
17	board	Complete	4 hours	11-10-22	2-1-22	5 hours	10-19-22
	Program Buttons on						
18	board	Complete	4 hours	Week 13	Week 14	5 hours	11-25-22
19	Program switches on board	Complete	4 hours	Week 13	Week 14	5 hours	11-25-22
17	Program display	Complete	THOUS	W CCR 13	W COR 11	2 Hours	11 23 22
20	screen on board	Complete	8 hours	Week 13	Week 14	8 hours	11-25-22
21	Program timer on board	Complete	8 hours	Week 13	Week 14	5 hours	11-25-22
21	Design block diagram	Complete	8 Hours	WCCK 13	WCCK 14	Jilouis	11-23-22
22	of board	Complete	3 hours	Week 13	Week 14	2 hours	11-1-22
23	Create task list for board	Complete	3 hours	Week 1	W1-2	3 hours	10-1-22
23	Create User Stories	Complete	3 Hours	week i	Week 3	3 Hours	10-1-22
24	for board	Complete	5 hours	Week 4	Week 6	5 hours	11-1-22
25	Create Requirements	G1-t-	£ 1	W/1- 4	W1- (£ 1	11 1 22
25	for Board Create the Final	Complete	5 hours	Week 4	Week 6	5 hours	11-1-22
26	Architecture Plan	Complete	20 hours	Week 7	Week 9	5 hours	11-20-22
2.7	Begin Coding the		20.1	*** 1.10	*** 1 10	101	11.01.00
27	project Get Proposal Peer	Complete	20 hours	Week 10	Week 12	10 hours	11-21-22
30	Reviewed	Complete	1 hour	9-8-22	9-20-22	1 hour	9-19-22
	Get Requirements						
31	Peer Reviewed Get Architecture Plan	Complete	1 hour	Week 4	Week 6	1 hour	9-25-22
32	Peer Reviewed	Complete	1 hour	Week 7	Week 9	1 hour	11-18-22
33		Scheduled			Week 20	10 hours	
	Code Drop 2	Scheduled		Week 15	Week 20	10 nours	
34	Code Drop 1	Scheduled					
35	Code Drop 3	Scheduled		Week 20	Week 25	10 hours	
	Benchmark Final					404	
36	Project	Scheduled		Week 25	Week 30	10 hours	
37	Test First Code Drop	Scheduled		Week 12	Week 13	10 hours	12-18-22
38	Test Code Drop 2	Scheduled		Week 13	Week 14	10 hours	
39	Test Code Drop 3	Scheduled		Week 23	Week 24	1 hour	
39	Learn how to operate	Scheduled		Week 23	WEEK 24	1 Hour	
40	a 7-segment display	Scheduled		Week 11	Week 12	8 hours	
	Test Go Lang for if it	Out-of-					
41	can make the LED light up	scope		N/A	N/A	8 hours	
	Test Go Lang for	Out-of-		1071	1771	O HOUIS	
42	controlling the timer	scope		N/A	N/A	3 hours	
	Test Go Lang for controlling the 7-	Out-of-					
43	segment display	scope		N/A	N/A	3 hours	
	Test Go Lang for	Out-of-					
44	switches Test Go Lang for	scope Out-of-		N/A	N/A	3 hours	
45	buttons	scope		N/A	N/A	3 hours	
	Set up FPGA	,					
46	Development Environment	Scheduled	4 hours	9-16-22	0 18 22	4 hours	9-18-22
					9-18-22		7-10-22
47	Complete Activity 8	Scheduled	10 hours	12-1-22	12-5-22	5 hours	

Project Success Measures

Project Completion Criteria

- 1 Demonstrate the ability to properly develop a program for an FPGA board that can complete the designated requirements.
- 2 Program the FPGA board to properly conduct logical operations utilizing the C programming language while adhering to VHDL standards.
- 3 Demonstrate the ability to properly configure the FPGA board using a BCD decoder to display information on the 7-segment display based off of a timer.
- 4 Demonstrate the ability to display content on the FPGA board's LCD screen.
- 5 Demonstrate the ability to light up the LED lights on the FPGA board.
- 6 Demonstrate the ability to utilize switches and buttons on the FPGA board to configure the clock's settings.

Assumptions and Constraints

	Assumptions and Constraints										
TD.	2			a	Date						
ID	Description	Comments	Туре	Status	Entered						
		This will be saved for out of scope	Constraint								
	Go Language can be substituted for C language	and assessed if there is time at the	(Out of								
1	programs.	end.	Scope)	Blocked	9-14-22						
		The FPGA board contains all									
	FPGA board holds every component that is	components required to make a									
2	required to create a functional clock.	functioning clock.	Assumption	Resolved	9-14-22						
	The training plan will cover everything the team										
	requires to know to make this project function	The plan goes over each element									
3	properly.	required to implement the project.	Assumption	Resolved	9-14-22						
	The LCD Screen will be programmed in the	The LCD Screen will be									
	clock's application. The LCD screen will not	programmed in the clock's									
4	require a video input to display content.	application.	Constraint	Pending	9-14-22						
		The BCD decoder should translate									
		the commands for the 7-segment									
	The 7-segment display will display messages	display to show designated									
5	with a BCD decoder.	messages.	Constraint	Pending	9-14-22						

Project High-Level Solution

Introduction

The challenge being addressed with this project the Wakeup9000 is the ability to wake the heaviest sleeper from their naps and for the team to gain familiarity with FPGA products to implement more complex solutions to future problems. This project will be the team's first interaction with imbedded systems, so this is a perfect challenge for them. The DE-10 Standard FPGA Board has every component required to create a functioning clock that will cover all of the required specifications of waking up a heavy sleeping individual. The necessary components that will be utilized to achieve this goal are the buttons, switches, lights, 7-segment display, and LCD screen.

Block Diagram of High-Level Solution

Components Utilized:

- 1. LCD Screen will be utilized to display messages to the user.
- 2. 10x switches will be utilized to configure settings for the clock.
- 3. 4x buttons will be utilized to configure settings for the clock.
- 4. LED lights will light up when the alarm goes off.
- 5. 7-Segment Display will be used to display the timer of the clock.
- 6. MicroSD Card Slot will be used to hold the program files for the clock.
- Gigabit Ethernet port will be used to connect the clock to a computer for development using FileZilla data transfers.
- 8. UART to USB port will be used to connect the board to a development environment.
- 9. USB Port is optional for a WIFI adapter, but will not be used in this project.
- 10. Cyclone V SoC FPGA Processor- will be used to process the application.
- 11. SD RAM- will be used to process the application.

High-Level Solution Description

The solution to creating the Wakup9000 will incorporate the components within the board on the above diagram. This board runs on an ARM processor that will be programmed to incorporate the components listed above. This board will utilize its buttons and switches for providing the user with the ability to configure the board's settings, to turn off, and to reset the alarm. The Cyclone V SoC FPGA Processor with process all of the requests being sent to the board. The 128x64 LCD Screen will display the messages for what the alarm is relating to for the user. The MicroSD Card slot will hold the MicroSD card that contains the Linux and program files for the board to operate. The 7-segment display will be where the time is shown on the board. The use of the Gigabit Ethernet or a WIFI adapter to a USB slot on the board is optional to provide internet capabilities for the board and will only be required for development purposes.

Project Controls

	Risk Management										
Event Risk	Risk Probability (high, medium, low)	Risk Impact	Risk Mitigation	Contingency Plan							
What is the risk? Not ramping up enough on the general knowledge required to program an FPGA board.	What is the probability? Medium	What is the impact if the risk occurs? This would lead to abandoning the project if the training plan is not adhered to.	What can be done to minimize the risk? Complete the training plan.	What can be done to minimize the impact of the risk? Complete the training plan to become familiar with the FPGA board and regularly hold team standups.							
If Go Lang can't replace C programming language.	High	Go Lang not having the capabilities of replacing C would be devastating to the project if that is one of the initial goals.	This has been placed in the out-of-scope list to be pulled in scope later if there is still time for a proof of concept at the end of the project.	Program the board in the C programming language instead of Go Lang and conduct a proof of concept for Go Lang once the main project is complete.							
Coding the FPGA components incorrectly.	Low	This will enable the ability to complete the required feature of the project.	Complete training plan to become familiar with each component of the board.	Lower the number of components utilized on the board.							
Not properly integrating fundamental FPGA programming concepts in the project.	Low	This would lead to not having the project completed by the deadline.	Keep on schedule and plan out all tasks to ensure they are completed.	Hold accountability with the weekly reports.							
Not adhering to the VHDL programming standards.	Low	This would not meet the project completion requirement for this project.	Learn about VHDL programming standards and implement them into the project.	Ensure the code is written with the VHDL programming standards from the start of the application.							
Not running the program's functions asynchronously.	Low	This would make the clock inaccurate in keeping track of the time.	Implement code to run asynchronously.	Ensure each component runs through their programmed cycle as intended without interrupting the others.							

Issues: No known Issues at this time.

	Issues Log									
a a	Description	Project Impact	Action Plan/Resolution	Owner	Importance	Date Entered	Date to Review	Date Resolved		
1	What is the issue?	How will this impact scope, schedule & cost?	How do you intend to deal with this issue?	Who manages this issue?						
2										
3										

	Change Control Log									
a	Change Description	Priority	Originator	Date Entered	Date Assigned	Evaluator	Status	Date of Decision	Included in Rev. #	
1										
2										

Project Cost

	Project Cost									
a	Item Description	Priority	Vendor	Date Purchased	Date Received	Use	Cost	Amount Required	Shipping Location	
1	DE10-Standard FPGA Board	High	Terasic	7-13-22	7-20-22	Main component	\$355	1	Company	
2	AC Power Cord	High	Terasic	7-13-22	7-20-22	Power FPGA Board	\$4.50	1	Company	
3	16GB Micro SDHC Card and SD Adapter	High	Terasic	7-13-22	7-20-22	Memory storage for FPGA	\$15	1	Company	
4	Ethernet Cable	High	Amazon	7-13-22	7-20-22	Developing connectivity	\$7	1	Company	
5	USB WIFI Dongle	Low	Terasic	7-13-22	7-20-22	Internet connectivity	\$8	1	Company	
6	Shipping	High	FedEx	7-13-22	7-20-22	Ship products	\$52.34	1	Company	
						TOTAL:	\$441.84			

Appendix A – References

Appendix B – Copyright Compliance