

Visually-aware Acoustic Event Detection using Heterogeneous Graphs

Amir Shirian¹, Krishna Somandepalli², Victor Sanchez¹, Tanaya Guha³

¹University of Warwick, UK, ²Google Research, USA, ³The University of Glasgow, UK

Motivation

Perception of auditory events is inherently multimodal, relying on both audio and visual cues.

Why modeling multi-modal data with a heterogeneous graph?

- Heterogeneous graphs are a compact, efficient, and scalable way to represent data involving multiple different entities and their relations.
- It explicitly captures the spatial and temporal relationships between the modalities.

Multimodal heterogeneous graphs lead to a closer coupling between concepts in multiple modalities, resulting in a significant performance improvement over various methods.

Contribution

- Develop a graph construction method for converting an audiovisual clip to a multimodal heterogeneous graph.
- Propose a novel heterogeneous graph neural network (HGNN) that can capture modality-specific as well as complementary information between modalities.
- Leveraging heterogeneous graph modelling, we obtain the improved performance on **AudioSet** database for the task of acoustic event classification.

Problem Formulation

- Given:
- Video clip heterogeneous graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, O, R)$
- Where $\mathcal{V} \in \{\mathcal{V}_a, \mathcal{V}_v\}$, $\mathcal{E} = \{\mathcal{E}_{vv}, \mathcal{E}_{aa}, \mathcal{E}_{va}\}$, and |O| + |R| > 2
- A graph specified by three adjacency matrices ${f A}_a, {f A}_v$, and ${f A}_{av}$
- Each graph is associated with an acoustic label \mathbf{y}_i
- Goal:
- We want to predict the acoustic event related to the audiovisual graph

Graph Construction

It's a frame to node transformation.

- Audio and video features were extracted from ${\cal Q}$ and ${\cal P}$ frames (short, overlapping segments).

- Each of these ${\cal Q}$ and ${\cal P}$ frames are associated with a heterogeneous node in a graph.
- Each modality has two specific hyperparameters: (i) **span across time** and (ii) **dilation**.

Model

The overview of our proposed graph-based architecture

- Takes constructed heterogeneous graph as input.
- Produces node embedding with multiple HGNN layers
- Produces graph embedding with a multimodal pooling function.

Results

Compare with SOTA and graph baselines on AudioSet

Model	mAP	ROC-AUC	Params
Ours audio only	0.42 ± 0.01	0.90±0.00	1.4M
Ours video only	0.15 ± 0.02	0.75 ± 0.01	1.5M
Ours both	0.50 ± 0.01	0.93 ± 0.00	2.1M
Baselines			
ResNet-1D audio only	0.35 ± 0.01	0.90±0.00	40.4M
ResNet-1D both	0.38 ± 0.03	0.89 ± 0.02	81.2M
LSTM audio only	0.40 ± 0.00	0.90 ± 0.00	0.8M
State-of-the-art			
DaiNet	0.25±0.07	_	1.8M
Spectrogram-VGG	0.26 ± 0.01	_	6M
VATT	0.39 ± 0.02	_	87M
SSL graph	0.42 ± 0.02	_	218K
Wave-Logmel	0.43 ± 0.04	_	81M
AST	0.44 ± 0.00	_	88M

Qualitative result

Conclusions

- We transformed video clips into heterogeneous graphs by considering two hyperparameters in each modality.
- Proposed graph captures intra and inter modalities connections in both spatial and temporal domains.
- Our heterogeneous graph model produces higher or comparable performance to the state-of-the-art.

