

SUPPLEMENTARY INFORMATION

https://doi.org/10.1038/s41560-019-0464-5

In the format provided by the authors and unedited.

Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization

Xia Cao¹, Xiaodi Ren®¹, Lianfeng Zou², Mark H. Engelhard®², William Huang®³, Hansen Wang®³, Bethany E. Matthews², Hongkyung Lee®¹, Chaojiang Niu®¹, Bruce W. Arey², Yi Cui®³, Chongmin Wang®², Jie Xiao®¹, Jun Liu®¹, Wu Xu®¹* and Ji-Guang Zhang®¹*

¹Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA. ²Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA. ³Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA. *e-mail: wu.xu@pnnl.gov; jiguang.zhang@pnnl.gov

Supplementary information

Monolithic Solid-electrolyte Interphases Formed in Fluorinated Orthoformate-based Electrolytes Minimize Li Depletion and Pulverization

Xia Cao¹, Xiaodi Ren¹, Lianfeng Zou², Mark H. Engelhard², William Huang³, Hansen Wang³, Bethany E. Matthews², Hongkyung Lee¹, Chaojiang Niu¹, Bruce W. Arey², Yi Cui³, Chongmin Wang², Jie Xiao¹, Jun Liu¹, Wu Xu^{1*} and Ji-Guang Zhang^{1*}

- ¹ Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- ² Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- ³ Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
- *Corresponding authors. Email: jiguang.zhang@pnnl.gov (J.-G. Zhang); wu.xu@pnnl.gov (W. Xu)

Supplementary Figure 1. (a) Conductivity and (b) viscosity and wettability of the three investigated electrolytes.

Supplementary Figure 2. First-cycle voltage profiles of Li plating/stripping in Li||Cu cells with the three investigated electrolytes at a current density of 0.5 mA cm⁻².

Supplementary Figure 3. SEM images of Li deposited in (a) 1 M LiPF₆/EC-EMC + 2% VC, (b) 1 M LiFSI/DME, and (c) 1 M LiFSI/DME-TFEO at a current density of 0.5 mA cm⁻² and capacity of 1 mAh.

Supplementary Figure 4. (a) Cycling performance of Li||Li cells with the three electrolytes, and magnification of selected periods of (b) 0–22 h and (c) 400–422 h. The cycling was performed at a current density of 0.5 mA cm⁻² and an areal capacity of 1 mAh cm⁻² for each plating or stripping step.

Supplementary Figure 5. Voltage profiles of the Li||NMC811 cells with electrolytes of (a) 1 M LiPF₆/EC-EMC + 2% VC, (b) 1 M LiFSI-DME, and (c) 1 M LiFSI/DME-TFEO.

Supplementary Figure 6. Li||NMC811 cell cycling performances with 1 M LiPF₆/EC-EMC + 2% VC electrolyte, where the lines with full and hollow circles represents specific capacity and CE of the cells, respectively. Li||NMC811 cells consist of a NMC811 cathode (1.5 mAh cm⁻²) and a thin Li foil (50 μ m) or thick Li foil (450 μ m). They were charged and discharged between 2.8 and 4.4 V at C/3 rate after two formation cycles at C/10, where 1C = 1.5 mA cm⁻².

Supplementary Figure 7. SEM images of Al current collectors of (a) fresh foil and (b–d) foil after 100 cycles with electrolytes (b) 1 M LiPF₆/EC-EMC +2% VC, (c) 1 M LiFSI/DME, and (d) 1 M LiFSI/DME-TFEO

Supplementary Figure 8. Li||NMC811 cell cycling performances with 1 M LiFSI/DME-TFEO electrolyte at 5, 30 and 55 °C, where the lines with full and hollow circles represents specific capacity and CE of the cells, respectively. Li||NMC811 cells consist of a NMC811 cathode (1.5 mAh cm⁻²) and a thin Li foil (50 μ m). They were charged and discharged between 2.8 and 4.4 V at C/3 rate after two formation cycles at C/10, where 1C = 1.5 mA cm⁻².

Supplementary Figure 9. Images of the collected Li after 100 cycles. Fresh Li remains under the reacted Li.

Supplementary Figure 10. Cross-sectional views (a–c) and magnified views (d–f) of SEM images of Li metal electrodes after 100 cycles in Li||NMC811 cells with electrolytes of (a, d) 1 M LiPF₆/EC-EMC +2% VC, (b, e) 1 M LiFSI/DME, and (c, f) 1 M LiFSI/DME-TFEO.

Supplementary Figure 11. F 1s XPS spectra of the Li SEI formed in (a) 1 M LiPF₆/EC-EMC + 2% VC, (b) 1 M LiFSI-DME, and (c) 1 M DME-TFEO after 100 cycles.

Supplementary Figure 12. N 1s XPS spectra of the Li SEI formed in (a) 1 M LiFSI/DME and (b) 1 M LiFSI/DME-TFEO after 100 cycles.

Supplementary Figure 13. O 1s XPS spectra of the Li SEI formed in (a) 1 M LiPF₆/EC-EMC + 2% VC, (b) 1 M LiFSI/DME, and (c) 1 M LiFSI/DME-TFEO after 100 cycles

Supplementary Figure 14. C 1s XPS spectra of the NMC811 CEI formed in (a) 1 M LiPF₆/EC-EMC + 2% VC, (b) 1 M LiFSI/DME, and (c) 1 M LiFSI/DME-TFEO after 100 cycles.

Supplementary Figure 15. F 1s XPS spectra of the NMC811 CEI formed in (a) 1 M LiPF₆/EC-EMC + 2% VC, (b) 1 M LiFSI/DME, and (c) 1 M LiFSI/DME-TFEO after 100 cycles.

Supplementary Figure 16. S 2p XPS spectra of the NMC811 CEI formed in (a) 1 M LiFSI/DME and (b) 1 M LiFSI/DME-TFEO after 100 cycles.