

fellowing

1 августа 2010 - Chad Houck – 31.8% 26 мая 2012 – Adam, C-P and Jeffball -99.1% (аудио версия)

- За несколько часов до презентации Google выпустил обновление, точность упала до 60.95%
- 27 июня 2012 Claudia Cruz, Fernando Uceda, and Leobardo Reyes - 82%

Иследователи утверждали, что Гугл постоянно менял свою капчу, при этом часто возвращаясь к предыдущей версии.

• 27 июня 2017 - Claudia Cruz, Fernando Uceda, and Leobardo Reyes – 82% - студенты из Мексики

- Август 2012 более 90% пользователей находят капчу сложной для ввода
- Май 2016 прекращена поддержка
- ABITYCT 2017 Kevin Bock, Daven Patel, George Hughey, Dave Levin - 85.15%
- 31 марта 2018 выключение

Август 2017 – Университет Мериленда.

Август 2017 – Университет Мериленда.

Шахматы

- Февраль 1996 Гарри Каспаров 4-2 Deep Blue
- Май 1997 Гарри Каспаров 2½-3½ Deep Blue
- 2000 программы Junior и Fritz матчи против Гарри Каспарова и Владимира Крамника — ничья
- Ноябрь-декабрь 2006 года Владимир Крамник 2-4 Deep Fritz

- В феврале 1996 года Гарри Каспаров победил шахматный суперкомпьютер Deep Blue со счетом 4-2. Этот матч выдающийся тем, что первую партию выиграл Deep Blue, автоматически став первым компьютером, победившим чемпиона мира по шахматам в турнирных условиях.
- В мае 1997 года Deep Blue II выигрывает матч у Гарри Каспарова со счётом $3\frac{1}{2}$: $2\frac{1}{2}$.
- В 2000 году коммерческие шахматные программы Junior и Fritz смогли свести в ничью матчи против предыдущих мировых чемпионов Гарри Каспарова и Владимира Крамника.
- В ноябре-декабре 2006 года чемпион мира Владимир Крамник играл с программой Deep Fritz. Матч закончился выигрышем машины со счётом 2-4.

Го

- Ноябрь 2015 AlphaGo 4-1 Фань Хуэй
- Март 2016 AlphaGo 4-1 Ли Седол
- Май 2017 AlphaGo 3-0 Эло Кэ Цзе

- В октябре 2015 года программа AlphaGo, разработанная компанией DeepMind выиграла у трехкратного чемпиона Европы Фань Хуэя (2 профессиональный дан) матч из пяти партий со счётом 4—1. Это первый в истории случай, когда компьютер выиграл в го у профессионала в равной игре.
- В марте 2016 года AlphaGo победила профессионала 9 дана Ли Седола в четырёх партиях из пяти.
- В мае 2017 года на саммите «Future of Go Summit» AlphaGo выиграла три партии из трёх в миниматче с одним из сильнейших игроков в мире, лидером мирового рейтинга Эло Кэ Цзе.

В чём же секрет такого успеха?

Машинное обучение

Титаник

Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
3	Panula, Mrs. Juha (Maria Emilia Ojala)	female	41.0	0	5	3101295	39.6875	NaN	Southampton
1	Penasco y Castellana, Mr. Victor de Satode 727	male	18.0	1	0	PC 17758	108.9000	C65	Cherbourg
2	Renouf, Mrs. Peter Henry (Lillian Jefferys)	female	30.0	3	0	31027	21.0000	NaN	Southampton
1	Taussig, Mr. Emil	male	52.0	1	1	110413	79.6500	E67	Southampton
3	Peduzzi, Mr. Joseph	male	NaN	0	0	A/5 2817	8.0500	NaN	Southampton

Пример данных Спросить, какие правила предложат Применить их Попросить воспроизвести модель (входные данные - анализ – модель - новые данные — предсказание) Нарисовать модель на доске Спросить, можно ли автоматизировать

Очень похоже на то, что мы сделали сами, не находите?

Определение

Машинное обучение (англ. machine learning, ML) — класс методов искусственного интеллекта, характерной чертой которых является не прямое решение задачи, а обучение в процессе применения решений множества сходных задач.

Определение №2

Алгоритм A обучается с эффективностью E над данными D, если про росте мощности |D|, E проявляет тенденцию к увеличению.

• Распознавание номеров автомобилей

• Распознавание номеров автомобилей

• Распознавание номеров автомобилей

 Распознавание номеров автомобилей

	₹7285 AT-4	Белорусские (ВҮ)	34 LB 811	Турция
	EKA 825	Литовские (LT)	1 - DRC - 755	Бельгия
	RKA 825	литовские (ст)	■AF 45 822	Дания (
	GP - 3716	Латвийские (LV)	.5382 BSW	Испани
	247 MEV	Эстонские (EST)	248·DZ·16	Португа
Примеры	PA: 55678	Польские (PL)	SMP 965	Швеция
применения	DSW-68TK		MMG-4 8-	Финлян
	K AC 556 C PT 888	Молдавские (MD)	©ZH-272577 ©	Швейца
	E 777 AE	Приднестровские	F AA-487-AB 21	Франци
 Распознавание номеров 	■BT 8145 AT	Болгарские (BG)	CM 566ZT ■	Италия
автомобилей	BT 8145 AT		Q74 LTC	Англия
	BB BDS145	Немецкие (D)	XIE 97209	Греция
	2J13 0049	Чехия (CZ)	NF144929	Норвегі
	BA®828RA	Словакия (SK)	AL-EX-71	Голланд желтая плас
	KKD#201	Венгрия (Н)	⊞BLB-828	
	ECE ■ L6-060	Словения (SLO)	MAO-410	Грузия
	UE#005·AA	Сербия (SRB)	■ABD-146	
	<u></u> ST ® 202-JL	Хорватия (HR)	[™] 10-LH-998 10-LH-998	Азербаі (AZ)
	KA=1696 AB	Македония (МК)	₹ 564 ADM	Казахст
	B 51 WFC	Румыния (RO)	kz 341 AAA 01	Nusanol
	B 68 NTV		7,72026вв01	Таджики
	X W ₹ 13304 V	Австрия (А)	₩Y59 28 AG	Туркмен
	X AA ·171 EK	Албания (AL)	S 6436 AA	Киргиз

• Распознавание лиц

- Распознавание изображений
- Перевод текстов
- Определение зловредных транзакций
- Фильтрация спама
- ИИ в компьютерных играх
- Высокоскоростная торговля на бирже
- Какие ещё?

Каждый нейрон имеет отростки нервных волокон двух типов - дендриты, по которым принимаются импульсы, и единственный аксон, по которому нейрон может передавать импульс. Аксон, который в конце разветвляется на волокна, контактирует с дендритами других нейронов через специальные образования - синапсы, которые влияют на силу импульса.

Можно считать, что при прохождении синапса сила импульса меняется в определенное число раз, которое мы будем называть весом синапса. Импульсы, поступившие к нейрону одновременно по нескольким дендритам, суммируются. Если суммарный импульс превышает некоторый порог, нейрон возбуждается, формирует собственный импульс и передает его далее по аксону. Важно отметить, что веса синапсов могут изменяться со временем, а значит, меняется и поведение соответствующего нейрона.

Каждый нейрон имеет отростки нервных волокон двух типов - дендриты, по которым принимаются импульсы, и единственный аксон, по которому нейрон может передавать импульс. Аксон, который в конце разветвляется на волокна, контактирует с дендритами других нейронов через специальные образования - синапсы, которые влияют на силу импульса.

Можно считать, что при прохождении синапса сила импульса меняется в определенное число раз, которое мы будем называть весом синапса. Импульсы, поступившие к нейрону одновременно по нескольким дендритам, суммируются. Если суммарный импульс превышает некоторый порог, нейрон возбуждается, формирует собственный импульс и передает его далее по аксону. Важно отметить, что веса синапсов могут изменяться со временем, а значит, меняется и поведение соответствующего нейрона.

Обработка текста

Компьютер может работать только с числами? Но как превратить слова в числа?

Мешок слов (или Bag of Words) это модель текстов на натуральном языке, в которой каждый документ или текст выглядит как неупорядоченный набор слов без сведений о связях между ними. Его можно представить в виде матрицы, каждая строка в которой соответствует отдельному документу или тексту, а каждый столбец — определенному слову. Ячейка на пересечении строки и столбца содержит количество вхождений слова в соответствующий документ. TF-IDF (от англ. TF — term frequency, IDF — inverse document frequency) — статистическая мера, используемая для оценки важности слова в контексте документа, являющегося частью коллекции документов или корпуса. Вес некоторого слова пропорционален количеству употребления этого слова в документе, и обратно пропорционален частоте употребления слова в других документах коллекции.

Word2Vec

Но что насчёт контекста? Что если мы будем анализировать не только само слово, но и его соседей?

Word2Vec

vector('Paris') - vector('France') + vector('Italy') \approx vector('Rome') vector('king') - vector('man') + vector('woman') \approx vector('queen') vector('brother') - vector('man') + vector('woman') \approx vector('sister')

Word2Vec

- Geopolitics: Iraq Violence = Jordan
- Distinction: Human Animal = Ethics
- President Power = Prime Minister
- Library Books = Hall
- Analogy: Stock Market ≈ Thermometer

Расстояние до Франции :)

spain	0.678515
belgium	0.665923
netherlands	0.652428
italy	0.633130
switzerland	0.622323
luxembourg	0.610033
portugal	0.577154
russia	0.571507
germany	0.563291
catalonia	0.534176

Ресурсы

- http://scikit-learn.org/ Документация, содержит много базовой информации и примеров
- http://playground.tensorflow.org/ поиграться с нейронной сетью онлайн
- https://www.kaggle.com/ сайт для соревнований и тренировок
- habrahabr.ru и geektimes.ru русскоязычное сообщество
 - https://geektimes.ru/post/277088/ статья про нейронные сети
- Конечно же, Википедия лучше английская.

