LIGHT EMITTING DIODE AND METHOD FOR FORMING THE SAME

Patent Number:

JP2000286455

Publication date:

2000-10-13

Inventor(s):

TAMEMOTO HIROAKI

Applicant(s):

NICHIA CHEM IND LTD

Requested Patent:

JP2000286455

Application Number: JP19990039262 19990217

Priority Number(s):

IPC Classification:

H01L33/00; H01L21/56; H01L23/29; H01L23/31

EC Classification:

Equivalents:

Abstract

PROBLEM TO BE SOLVED: To provide a light emitting diode which utilizes a high yield phosphor having less unevenness in luminosity or color nor luminous dispersion among light emitting diodes.

SOLUTION: A luminous element 103 and a translucent resin 101 comprising a phosphor 102, which absorbs at least a part of the luminous wavelength from the luminous element 103 and emits fluorescence, are provided to a light emitting diode 100, which emits a mixed light of the light from the luminous element 103 and fluorescent from the phosphor 102. The translucent resin 101 is a light emitting diode, wherein at least a part of the luminous element 103 is coated through injection molding.

Data supplied from the esp@cenet database - 12

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出頭公房番号 特開2000-286455 (P2000-286455A)

(43)公開日 平成12年10月13日(2000.10.13)

(51) Int.Cl.7		段別配号	FΙ			テーマコート*(参考)
H01L	33/00	•	H01L	33/00	N	4M109
	21/56			21/56	J	5F041
	23/29			23/30	F	5 F 0 6 1
	23/31					

審査請求 有 請求項の数4 OL (全 9 頁)

	•	
(21)出顯番号	特顯平11-39262	(71)出願人 000226057
•		日亜化学工業株式会社
(22)出頭日	平成11年2月17日(1999.2.17)	徳島県阿南市上中町岡491番地100
		(72)発明者 為本 広昭
(31) 優先松主張番号	特厦平10-35273	徳島県阿南市上中町岡491番地100 日亜化
(32) 低先日	平成10年2月17日(1998.2.17)	学工業株式会社内
(33) 任先检主張国	日本 (JP)	Fターム(参考) 4M109 AAD1 BA01 BA04 CA21 EA03
(31) 優先松主張番号	特願平11-23234	EA12 EB04 EB08 EB12 EB18
(32) 好先日	平成11年1月29日(1999.1.29)	EC20 EE12 EE20 GA01
(33) 優先権主張国	日本(JP)	5F041 AA11 CA04 CA05 CA34 CA40
		CA65 DA18 DA26 DA44 DA46
		DB01
		5F061 AA01 BA01 BA04 CA21 DE03
*	•	FAD1

(54) 【発明の名称】 発光ダイオード及びその形成方法

(57)【要約】

【課題】発光むら、色むらや形成された発光ダイオード間における発光バラツキが少なく歩留りの高い蛍光物質を利用した発光ダイオードを提供することにある。

【解決手段】発光素子と、発光素子からの発光波長の少なくとも一部を吸収し蛍光を発する蛍光物質を含有する透光性樹脂とを有し発光素子からの光と蛍光物質からの蛍光の混色光を発光する発光ダイオードである。特に、透光性樹脂は射出成形によって発光素子の少なくとも一部を被覆してなる発光ダイオードである。

【特許請求の範囲】

【請求項1】 発光素子と、該発光素子からの発光波長の少なくとも一部を吸収し蛍光を発する蛍光物質を含有する透光性樹脂とを有し前記発光素子からの光と蛍光物質からの蛍光の混色光を発光する発光ダイオードであって、

前記蛍光物質を含有する透光性樹脂は射出成形によって 発光素子の少なくとも一部を被覆してなることを特徴と する発光ダイオード。

【請求項2】 発光素子と、該発光素子からの発光波長の少なくとも一部を吸収し蛍光を発する蛍光物質を含有する透光性樹脂とを有する発光ダイオードの形成方法であって、

前記蛍光物質を含有する透光性樹脂を射出成形して発光 案子の少なくとも一部を被覆することを特徴とする発光 ダイオードの形成方法。

【請求項3】 発光素子と、該発光素子からの発光波長の少なくとも一部を吸収し蛍光を発する蛍光物質を含有する透光性樹脂とを有し前記発光素子からの光と蛍光物質からの蛍光の混色光を発光する発光ダイオードの形成方法であって、

前記透光性樹脂は蛍光物質を実質的に均一に含有させた固体状とする工程と、

該固体状となった蛍光物質含有の透光性樹脂を軟化させて発光素子の少なくとも一部を被覆する工程と、

再び前記蛍光物質含有の透光性樹脂を固体状とする工程 とを有する発光ダイオードの形成方法。

【請求項4】 前記発光累子の発光層が少なくとも窒化 物半導体からなると共に前記蛍光物質がセリウムで付活されたイットリウム・アルミニウム・ガーネット系蛍光体である請求項2又は請求項3に記載の発光ダイオードの形成方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は発光素子から放出される発光波長の少なくとも一部を蛍光物質により変換して放出する発光ダイオードに係わり、特に、発光むら、色むらや形成された発光ダイオード間における発光バラッキが少なく歩留りの高い発光ダイオードに関するものである。

[0002]

【従来の技術】半導体発光素子は、小型で効率よく鮮やかな色の発光をする。また、半導体素子であるため球切れがない。駆動特性が優れ、振動やON/OFF点灯の繰り返しに強いという特徴を有する。そのため、各種インジケータや種々の光源として利用されている。しかしながら、このような発光素子は単色性のピーク波長を有するが故に白色系(白、ピンクや電球色など)の発光のみを得る場合においても、2種類以上の発光素子を利用せざるを得なかった。また、種々の発光色を簡単に得る

ことはできなかった。

【0003】単色性のピーク波長を発するLEDチップ と蛍光物質を利用して種々の発光色を発光させる発光ダ イオードとして、特開平7-99345号公報などに記 載されたものが知られている。これらの発光ダイオード は、発光チップの発光を発光観測面側に反射するカップ の底部に発光チップを積載させると共にカップ内部に充 填された樹脂と、全体を覆った樹脂から構成することが できる。内部に充填された樹脂中には発光チップからの 光を吸収し、波長変換する蛍光物質を含有させてある。 【〇〇〇4】蛍光物質が含有された樹脂は、液状のエポ キシ樹脂などを発光素子が搭載されたカップ上に滴下注 入し、加熱硬化させ色変換部材とさせる。カップ内部以 外の樹脂は液状のエポキシ樹脂などを注型したキャステ ィングケース内に、色変換部材及び発光チップが形成さ れたフレーム部材先端を浸漬配置し、これをオーブンに 入れ加熱硬化させることにより形成する。これにより、 発光チップからの発光波長を蛍光物質によって波長変換 した発光ダイオードとすることができる。例えば、LE Dチップからの青色系の光と、その青色系の光を吸収し 補色関係にある黄色系を発光する蛍光体からの光との混 色により白色が発光可能な発光ダイオードとすることが できる。

【0005】このような発光ダイオードを用いて、所望の白色系などを発光させるためには、それぞれの光を極めて精度良く発光させ混色調整させる必要がある。LEDチップからの光は、その半導体及び駆動電流などにより調節させることができる。一方、蛍光物質からの波長変換された光も蛍光物質の組成や粒径を制御することによってある程度調整することができる。

[0006]

【発明が解決しようとする課題】しかし、蛍光物質自体。 には密着力がない、或いは弱いため発光素子上に配置固 定させるためには、種々の樹脂中など発光素子及び蛍光 物質それぞれの光が放出可能な密着性を有するバインダ 一中に含有させる必要がある。このようなバインダー中 に含有された蛍光物質は、その蛍光物質の含有量や分布 などによってLEDチップから放出された光量及び蛍光 物質から放出された光量が大きく左右される。これらが 制御できず、また発光素子から放出される可視光と蛍光 物質から放出される光が可視光の混色によって色表現さ せる場合には、それぞれの可視光量の違いが大きな問題 となる。特に、白色系は人間の目が僅かな色温度差でも 識別することができるため大きな問題となる。したがっ て、本発明は上記問題点を解決し、極めて精度良く蛍光 物質の含有量及び分布を均一とさせ発光特性の優れた、 歩留りの高い発光ダイオードを提供することにある。

【0007】 【課題を解決するための手段】本発明者は種々実験の結

【課題を解決するための手段】本発明者は種々実験の結果、蛍光物質を利用した発光ダイオードにおいて、発光

ダイオード間のバラツキや発光ダイオードの色むらや発 光むらは、蛍光物質の分布に大きく起因していること及 び特定の形成方法により制御しうることを見出し本発明 を成すに至った。

【0008】即ち、蛍光物質が含有された液状の透光性 樹脂を発光素子が配置された上に注入して形成させる場合、注型での充填性を考慮し、粘度が500~1000 cps程度の低粘度のものが用いられる。蛍光物質と樹脂との比重が大きく異なるため、このような透光性樹脂中に蛍光物質を混合すると、両者は容易に分離する。したがって、軽い有機蛍光物質などを利用した場合は洗降する傾向にある。このような分離は蛍光物質の分散不均一を生ずる

【0009】特に、バッチ式に樹脂と蛍光物質を混合した混合体を少量ずつ注型していく方法を繰り返して製造する場合、混合体の樹脂と蛍光物質の分離は時間と共に進行する。したがって、混合直後に注型して製造された発光ダイオードと、混合後しばらく後に注型して製造された発光ダイオードでは、蛍光物質の含有量が異なってしまう傾向にある。

【0010】また、注型が完了した発光ダイオードを加 熱硬化させる時、樹脂が固体化するまでの間、温度上昇 に伴い粘度が低下する。そのため、キャスティングケー ス内でも樹脂と蛍光物質の比重差による分離が発生し易 い傾向にある。特に、発光素子からの可視発光と蛍光物 質からの可視蛍光との混色光を発光させる発光ダイオー ドにおいては、蛍光物質の含有量変化及び封止樹脂内で の分布不均一がすべて発光色の色温度変化として顕著に 現れる。このような問題を以下の本発明によって解決す ることができる。即ち、本発明は、発光素子と、発光素 子からの発光波長の少なくとも一部を吸収し蛍光を発す る蛍光物質を含有する透光性樹脂を有し発光素子からの 光と蛍光物質からの蛍光の混色光を発光する発光ダイオ ードである。特に、透光性樹脂は射出成形によって発光 素子の少なくとも一部を被覆してなる。これによって制 御性よく均一発光可能な発光ダイオードとすることがで きる。

【0011】また、本発明の請求項2に記載の発光ダイオードの形成方法は、発光素子からの発光波長の少なくとも一部を吸収して蛍光を発する蛍光物質を含有した透光性樹脂を発光素子上に射出成形で形成する発光ダイオードの形成方法である。これにより、形成された発光ダイオードの封止樹脂中に蛍光物質を極めて均一に混合させ光特性の安定した発光ダイオードが得られるものである。

【0012】本発明の請求項3に記載の発光ダイオードの形成方法は、発光素子と、発光素子からの発光波長の少なくとも一部を吸収し蛍光を発する蛍光物質を含有する透光性樹脂とを有し発光素子からの光と蛍光物質から

の蛍光の混色光を発光する発光ダイオードの形成方法である。特に、透光性樹脂は蛍光物質を実質的に均一に含有させた固体状とする工程と、固体状となった蛍光物質含有の透光性樹脂を軟化させて発光素子の少なくとも一部を被覆する工程と、再び前記蛍光物質含有の透光性樹脂を固体状とする工程とを有する発光ダイオードの形成方法である。

【0013】また、本発明の請求項4に記載の発光ダイオードの形成方法は、発光素子の発光層が少なくとも窒化物半導体からなると共に蛍光物質がセリウムで付活されたイットリウム・アルミニウム・ガーネット系蛍光体(以下、YAG蛍光体と呼ぶこともある。)である。これにより、形成された発光ダイオード間のバラツキがより少なく発光むらや色むらの少ない白色光が発光可能な発光ダイオードを形成させることができる。

[0014]

【発明の実施の形態】本発明の実施態様例による発光ダ イオードとして図1に、白色発光可能な発光ダイオード 100の模式的断面図を示してある。 銅あるいは鉄系合 金材の表面に銀あるいは金等のメッキ処理が施されたマ ウント・リード104の先端にLEDチップを搭載する カップ上部を有する。搭載されたLEDチップは単体で は青色系の可視光を発光する発光素子103であり、マ ウント部材106となるエポキシ樹脂によりマウント固 着されている。発光索子103の各電極は、金等よりな るワイヤ107でマウント・リード104及びインナー ・リード105とワイヤボンド結合している。耐熱性に 優れた透光性樹脂101としてノルボネン系樹脂、ポリ メチルペンテン樹脂(TPX)、非晶質ナイロン樹脂な どの熱可塑性樹脂や脂環式エポキシ樹脂や含窒素エポキ シ樹脂等の熱硬化性樹脂によって封止してある。透光性 樹脂中には、青色光を照射すると黄色の蛍光を発するC eで付活されたYAG蛍光体102を約5質量%混合し てある。

【0015】発光ダイオードは、リードフレームにLEDチップをマウント、ワイヤボンドしたものを成形型にインサートし、1個が数十mm³程度のペレット状の樹脂とYAG蛍光体をホッパに攪拌しながら収容したもの、或いは予め樹脂ペレット内にYAG蛍光体を混ぜ込んだものをホッパ内に収容した射出成形機で、射出成形し封止する。射出成型は樹脂を成型機のスクリュー内で数秒程度の短時間で加熱溶融、攪拌圧送し、型内に樹脂を注入し、型内に注入された樹脂は速やかに冷却され、数十秒で固化する。

【0016】本発明で透光性樹脂は、成型前状態において固体状とできる。成型機投入前に均一に樹脂ペレットと蛍光物質とを混合しておけば、液体のように樹脂中の蛍光物質が自由に沈降あるいは浮遊することはない。そのため、蛍光物質の混合状態は型内に投入前の状態まま保持される。また、成形時に樹脂が溶融し液体で存在す

る期間は数分から数十秒と、注型成形により熱硬化形成 する方法の数時間と比較して極めて短い。また、射出される際にスクリューで加圧攪拌される場合、樹脂中での 蛍光物質の分布はより均一にすることができる。さらに、固化までの時間も極めて短く樹脂と蛍光物質との分離もほとんど発生しない。

【0017】すなわち、成形前及び成形後固化までの間に樹脂と蛍光物質との分離が極めて発生し難い。これにより本発明の発光ダイオードでは、樹脂と蛍光物質の比重差によらず樹脂中に均一分散させることができる。そのため、発光ダイオード内の蛍光物質の分布均一だけでなく、製造ロット毎の蛍光物質の含有量バラツキも極めて少ない。

【0018】特にYAG: Ce蛍光体を蛍光物質として含有した白色発光が可能な発光ダイオードとした場合、樹脂に較べ比重の大きいYAG: Ce蛍光体でも常時極めて均一な分布のものができる。そのため色温度の均一な発光ダイオードが安定して形成し得る。以下、本発明に用いられる各構成について詳述する。

【0019】(射出成形機400)本発明に用いられる 射出成形機400としては、図4の如き蛍光物質含有の 透光性樹脂を加熱溶融させプランジャー402でノズル を通して金型405内に射出し成形させられるために好 適に用いられる。したがって、射出成型機は予め蛍光物 質が一定量含有された透光性樹脂のペレット401を軟 化溶融させ射出するためのプランジャー、プランジャー で押し出される融解樹脂を金型内に導くノズル及び成型 品の形を与える金型から主として構成することができ る。特に、発光ダイオードが発光素子からの可視光と、 この可視光によって励起されると共に発光する蛍光物質 との混色発光させる場合、混合分布量がごく微少量でも 異なるとその発光色の変動が大きくなる。そのため、蛍 光物質が含有された透光性樹脂を予備可塑化装置などを 利用して撹拌溶融させることが好ましい。このような撹・ 拌は、透光性樹脂中に含有される蛍光物質の密度が変化 しない限り連続的、間欠的になど種々行うことができ る。また、撹拌回転数は撹拌部となるスクリュー403 の大きさ、蛍光物質の粒径や形状、バインダーの粘度、 材質などによって種々選択させることができる。

【0020】(透光性樹脂101)本発明に用いられる透光性樹脂は蛍光物質を内部に含有させ射出により一定の形状をとることができる樹脂である。具体的には、ノルボネン樹脂、ポリメチルペンテン樹脂、非晶質ナイロン樹脂、ポリアリレートやポリカーボネート樹脂など透光性がありかつ耐熱性に優れた熱可塑性樹脂、ポリアミドや酢酸ビニル等の100℃から260℃程度の比較的低温、1から25 K g f / c m²程度の比較的低圧にていわゆるホットメルト成形と称される射出成形が可能でかつ透光性を有する熱可塑性樹脂及び脂環式エポキシ樹脂、含窒素エポキシ樹脂等の熱硬化性樹脂が好適に挙げ

られる。これらの樹脂中に蛍光物質を溶融分散させ一定の大きさに形成させることで射出形成の軟化溶融材料となるペレットなどとすることができる。これらの透光性樹脂には所望の波長をカットする着色剤、所望の光を拡散させる拡散材、樹脂の耐光性を高める紫外線吸収剤、酸化防止剤や硬化促進剤など種々の添加剤を含有させることができる。

【0021】(蛍光物質102)本発明に用いられる蛍光物質としては、発光素子から発光された電磁波で励起されて蛍光を発する蛍光物質をいう。蛍光物質は一般に発光波長よりも励起波長が短波長の方が効率が良いため、発光素子からの発光波長よりも長波長の蛍光を発する蛍光体を用いることが好ましい。具体的蛍光物質として青色の発光素子との混色により白色を発光させるためには、セリウムで付活されたイットリウム・アルミニウム・ガーネット系蛍光体、ベリレン系誘導体、銅で付活されたセレン化亜鉛など種々のものが挙げられる。特に、イットリウム・アルミニウム・ガーネット系蛍光体は、発光素子に窒化物半導体を用いた場合、耐光性や効率などの観点から特に好ましい。

【0022】セリウムで付活されたイットリウム・アル ミニウム・ガーネット系蛍光体は、ガーネット構造のた め、熱、光及び水分に強く、励起スペクトルのピークが 450 nm付近にさせることができる。また、発光ピー クも530nm付近にあり700nmまで裾を引くブロ ードな発光スペクトルを持たすことができる。なお、本 発明においてセリウムで付活されたイットリウム・アル ミニウム・ガーネット系蛍光体とは、最も広義に解釈す るものとして $Y_3A1_5O_{12}$: Ceのイットリウム (Y)の代わりにLu、Sc、La、Gd、Smから選択され る少なくとも一種と置き換えることができるものであ る。また、アルミニウム(A1)の代わりにGa、I n、B、T1から選択される少なくとも一種と置き換え ることができるものである。組成を変化させることで発 光色を連続的に調節することが可能である。即ち、長波 長側の強度がGdの組成比で連続的に変えられるなど窒 化物半導体の青色系発光を白色系発光に変換するための 理想条件を備えている。同様に、Lu、Lc、ScやS mなどを加えて所望の特性を得るようにしても良い。 【0023】このような蛍光物質は、Y、Gd、Ce、 Sm、La、Al及びGaの原料として酸化物、又は高 温で容易に酸化物になる化合物を使用し、それらを化学 量論比で十分に混合して原料を得る。又は、Y、Gd、 Ce、Sm、Laの希土類元素を化学量論比で酸に溶解 した溶解液を蓚酸で共沈したものを焼成して得られる共一 沈酸化物と、酸化アルミニウム、酸化ガリウムとを混合 して混合原料を得る。これにフラックスとしてフッ化ア ンモニウム等のフッ化物を適量混合して坩堝に詰め、空 気中1350~1450°Cの温度範囲で2~5時間焼 成して焼成品を得、次に焼成品を水中でボールミルし

て、洗浄、分離、乾燥、最後に篩を通すことで得ることができる。

【0024】本発明の発光ダイオードにおいて、このような蛍光物質を2種類以上混合させてもよい。具体的には、A1、Ga、Y及びGd、LaやSmの含有量が異なる2種類以上のセリウムで付活されたイットリウム・アルミニウム・ガーネット系蛍光体を混合させてRGBの波長成分を増やすことなどができる。このような場合、異なる蛍光物質間の比重が異なっていても量産性よく発光特性の均一な発光ダイオードを形成することができる。

【0025】(発光素子103、203)本発明に用いられる発光素子103とは、蛍光物質を励起可能な発光波長を発光できる発光層を有する半導体発光素子である。このような半導体発光素子としてZnSe やGaN など種々の半導体を挙げることができるが、蛍光物質を効率良く励起できる短波長が発光可能な窒化物半導体($In_XAI_YGa_{1-X-Y}N$ 、 $0 \le X$ 、 $0 \le Y$ 、 $X+Y \le 1$)が好適に挙げられる。半導体の構造としては、MI S接合、PIN接合やpn接合などを有するホモ構造、ヘテロ構造あるいはダブルヘテロ構成のものが挙げられる。半導体層の材料やその混晶度によって発光波長を種々選択することができる。また、半導体活性層を量子効果が生ずる薄膜に形成させた単一量子井戸構造や多重量子井戸構造とすることもできる。

【0026】窒化物半導体を使用した場合、半導体用基板にはサファイヤ、スピネル、SiC、Si、ZnO等の材料が好適に用いられる。結晶性の良い窒化物半導体を量産性よく形成させるためにはサファイヤ基板を用いることが好ましい。このサファイヤ基板上にMOCVD法などを用いて窒化物半導体を形成させることができる。サファイア基板上にGaN、A1N、GaAIN等のバッファー層を形成しその上にpn接合を有する窒化物半導体を形成させる。

【0027】窒化物半導体を使用したpn接合を有する発光素子例として、バッファ層上に、n型窒化ガリウムで形成した第1のコンタクト層、n型窒化アルミニウム・ガリウムで形成させた第1のクラッド層、窒化インジウム・ガリウムで形成した活性層、p型窒化アルミニウム・ガリウムで形成した第2のクラッド層、p型窒化ガリウムで形成した第2のコンタクト層を順に積層させたダブルへテロ構成などが挙げられる。

【0028】窒化物半導体は、不純物をドープしない状態で n型導電性を示す。発光効率を向上させるなど所望の n型窒化物半導体を形成させる場合は、n型ドーパントとしてSi、Ge、Se、Te、C等を適宜導入することが好ましい。一方、p型窒化物半導体を形成させる場合は、p型ドーパントであるZn、Mg、Be、Ca、Sr、Ba等をドープさせる。窒化物半導体は、p型ドーパントをドープしただけではp型化しにくいため

p型ドーパント導入後に、炉による加熱やプラズマ照射等により加熱処理することで低抵抗化させることが好ましい。電極形成後、半導体ウエハーからチップ状にカットさせることで壁化物半導体からなる発光素子を形成させることができる。

【0029】本発明の発光ダイオードにおいて白色系を発光させる場合は、蛍光物質からの発光波長との補色関係や透光性樹脂の劣化等を考慮して発光素子の発光波長は400nm以上530nm以下が好ましく、420nm以上490nm以下がより好ましい。発光素子と蛍光物質との励起、発光効率をそれぞれより向上させるためには、450nm以上475nm以下がさらに好ましい。なお、400nmより短い紫外域の波長を利用できることは言うまでもない。

【0030】(マウント・リード104、204)マウント・リード104としては、発光素子を配置させるものであり、ダイボンド機器などで積載するのに十分な大きさがあれば良い。また、発光素子を複数設置しマウント・リードを発光素子の共通電極として利用する場合においては、十分な電気伝導性とボンディングワイヤ等との接続性が求められる。また、マウント・リード上のカップ内に発光素子を配置すると共に蛍光体を内部に充填させる場合は、近接して配置させた別の発光ダイオードからの光により疑似点灯することを防止することができる。

【0031】発光素子とマウント・リードのカップとの 接着はマウント部材106として熱硬化性樹脂などによ って行うことができる。具体的には、エポキシ樹脂、ア クリル樹脂、シリコン樹脂やイミド樹脂などが挙げられ る。また、フリップチップ型の発光素子によりマウント ・リードと接着させると共に電気的に接続させるために はAgペースト、Cuペースト、カーボンペースト、金 **属バンプや金属酸化物が含有された樹脂等を用いること** ができる。また、マウント・リードの具体的な電気抵抗 としては $300\mu\Omega$ ・cm以下が好ましく、より好まし くは、 $3\mu\Omega$ ・cm以下である。また、マウント・リー ド上に複数の発光素子を積載する場合は、発光素子から の発熱量が多くなるため熱伝導度がよいことが求められ る。具体的には、O. Olcal/cm²/cm/℃以 上が好ましくより好ましくは O. 5cal/cm²/c m/℃以上である。これらの条件を満たす材料として は、鉄、銅、鉄入り銅、錫入り銅、メタライズパターン 付きセラミック等が挙げられる。

【0032】(インナー・リード105、205)インナー・リードとしては、マウント・リード上に配置された発光素子と導電性ワイヤなどを介して電気的に接続を図るものである。インナー・リードは、ボンディングワイヤ等との接続性及び電気伝導性が良いことが求められる。具体的な電気抵抗としては、300μΩ・cm以下が好ましく、より好ましくは3μΩ・cm以下である。

これらの条件を満たす材料としては、鉄、銅、鉄入り 銅、錫入り銅及び銅、金、銀をメッキしたアルミニウ ム、鉄、銅等が挙げられる。

【0033】(ワイヤ107、207)ワイヤ107としては、発光素子の電極とのオーミック性、密着性、電気伝導性及び熱伝導性がよいものが求められる。熱伝導度としては0.01cal/cm²/cm/℃以上が好ましく、より好ましくは0.5cal/cm²/cm/℃以上である。また、作業性などを考慮してワイヤの直径は、好ましくは、Φ10μm以上、Φ45μm以下である。このようなワイヤとして具体的には、金、鋼、白金、アルミニウム等の金属及びそれらの合金を用いたワイヤが挙げられる。このようなワイヤは、各発光素子の電極と、インナー・リード及びマウント・リードなどとをワイヤボンディング機器によって容易に接続させることができる。

【0034】(モールド部材208)モールド部材20 8は、発光ダイオードの使用用途に応じて発光素子10 3、ワイヤ107、蛍光物質102などを外部から保護 するために設けることができる。モールド部材は、一般 には樹脂を用いて形成させることができる。また、蛍光 体を含有させることによって視野角を増やすことができ るが、樹脂モールドに拡散剤を含有させることによって 発光素子からの指向性を緩和させ視野角をさらに増やす ことができる。更にまた、モールド部材を所望の形状に することによって発光素子からの発光を集束させたり拡 散させたりするレンズ効果を持たせることができる。し たがって、モールド部材は複数積層した構造でもよい。 具体的には、凸レンズ形状、凹レンズ形状さらには、発 光観測面から見て楕円形状やそれらを複数組み合わせた 物である。モールド部材の具体的材料としては、主とし てエポキシ樹脂、ユリア樹脂、シリコーン樹脂などの耐 候性に優れた透明樹脂や硝子などが好適に用いられる。 また、拡散剤としては、チタン酸バリウム、酸化チタ ン、酸化アルミニウム、酸化珪素等が好適に用いられ る。また、屈折率差を考慮してモールド部材と結着剤と を同じ材質のものを用いて形成させても良い。以下、本 発明の具体的実施例について詳述するがこれのみに限定 されないことは言うまでもない。

[0035]

【実施例】(実施例1)LEDチップは、発光層として発光ピークが450 n mの1 n_{0.2} G a_{0.8} N半導体を用いた。LEDチップは、洗浄させたサファイヤ基板上に TMG(トリメチルガリウム)ガス、TMI(トリメチルインジウム)ガス、窒素ガス及びドーパントガスをキャリアガスと共に流し、MOCVD法で窒化物半導体を成膜させることにより形成させた。ドーパントガスとしてSiH₄とCp₂Mgとを切り替えることによってn型やp型導電性の窒化物半導体を形成させる。発光素子としてはn型導電性を有する窒化ガリウム半導体であるコ

ンタクト層と、p型導電性を有する窒化アルミニウムガ リウム半導体であるクラッド層、p型導電性を有する窒 化ガリウムであるコンタクト層を形成させた。n型コン タクト層とp型クラッド層との間に厚さ約3 nmであ り、単一量子井戸構造となるInGaNの活性層を形成 してある。(なお、サファイヤ基板上には低温で窒化ガ リウムを形成させバッファ層とさせてある。また、p型 半導体は、成膜後400℃以上で熱処理させてある。) エッチングによりサファイア基板上の窒化物半導体に同 一面側で、pn各コンタクト層表面を露出させる。各コ ンタクト層上に、スパッタリング法を用いて正負各台座 電極をそれぞれ形成させた。なお、p型窒化物半導体上 の全面には金属薄膜を透光性電極として形成させた後 に、透光性電極の一部に台座電極を形成させてある。出 来上がった半導体ウエハーをスクライブラインを引いた。 後、外力により分割させ半導体発光素子であるLEDチ ップを形成させた。

【0036】一方、打ち抜き及びスタンピングによりタイバーで接続されマウント・リード先端にカップが形成された鉄入り銅製リードフレームを形成する。LEDチップはエボキシ樹脂を用いて銀メッキした鉄入り銅製リードフレームの先端カップ内にダイボンドした。LEDチップの各電極と、カップが設けられたマウント・リードやインナー・リードとをそれぞれ金線でワイヤボンディングし電気的導通を取った。

【0037】蛍光物質は、Y、Gd、Ceの希土類元素を化学量論比で酸に溶解した溶解液を蓚酸で共沈させた。これを焼成して得られる共沈酸化物と、酸化アルミニウムと混合して混合原料を得る。これにフラックスとしてフッ化アンモニウムを混合して坩堝に詰め、空気中1400°Cの温度で3時間焼成して焼成品を得た。焼成品を水中でボールミルして、洗浄、分離、乾燥、最後に篩を通して形成させた。

【0038】形成された $(Y_{0.8}Gd_{0.2})_3Al_5O_{12}$: Ce蛍光物質25重量部、ポリカーボネート樹脂100 重量部をよく混合して1個が十mm³程度のペレットと させた。このペレットを図4に示す射出成型機のホッパ 中に入れた。他方、リード端子と電気的に接続されたし EDチップを金型中に入れ固定させる。ペレットを加熱 可塑化させ撹拌させながらプランジャーにより射出温度 280℃射出圧力800kgf/cm²で金型中に注入 した。金型を冷却後、樹脂モールドされたリードを取り 出しタイバーを切断することでLEDチップ、マウント ・リード及びインナー・リードの一部を蛍光物質が含有 された熱可塑性樹脂で被覆して砲弾型に形成された発光 ダイオードを得ることができる。こうした発光ダイオー ドを500個形成させバラツキを測定した。得られた白 色系が発光可能な発光ダイオードの色度点を測定しC I E座標上にプロットした。また、一個ずつの発光ダイオ ードにおいて外観上の発光むらがないことを確認した。

なお、砲弾型発光ダイオードだけではなく、チップタイプLEDやセグメントディスプレイなどにおいても利用することができることは言うまでもない。

【0039】(比較例)($Y_{0.8}Gd_{0.2}$) $_3Al_5O_{12}$: $Ce蛍光物質をエポキシ樹脂中に混合したものを用いて注型によりカップ内に配置させた後に、硬化形成した以外は実施例<math>_1$ と同様の発光ダイオードを形成させた。形成された発光ダイオードの $_500$ 個平均と実施例 $_1$ の発光ダイオードとを比較して色温度の製造バラツキを調べた。比較例の発光ダイオードに較べ実施例の発光ダイオードは、色温度の製造バラツキが明らかに小さくなった。なお、比較例の発光ダイオードは、モールド部材の先端に蛍光物質が固まった状態であった。

【0040】(実施例2)図2に示すようにLEDチップ203周辺を上述と同様の蛍光物質202を含有した熱可塑性樹脂201で射出成形封止した後、注型成形にて透光性のエボキシ樹脂をモールド部材208として外側に形成した以外は実施例1と同様にして発光ダイオード200を形成させた。これにより、上述の硬化に加え、射出成形時に封止樹脂表面に型のミスマッチやバリが発生しても、これをさらに注型で覆うことができる。そのため、封止樹脂のレンズ作用のバラツキや発光ダイオード実装時のバリ脱落によるはんだ付け不良等が防止される。また、比較的高価な高透光性かつ高耐熱性の熱可塑性樹脂の使用量を減らすことも可能である。

【0041】(実施例3)図3に示すように表面実装型の発光ダイオード300を形成させた。LEDチップ303は、発光層として発光ピークが475nmのInfo.2Gao.8N半導体を有する窒化物半導体素子を用いた。より具体的にはLEDチップ303は、洗浄させたサファイヤ基板上にTMG(トリメチルガリウム)ガス、TMI(トリメチルインジウム)ガス、窒素ガス及びドーパントガスをキャリアガスと共に流し、MOCVD法で窒化物半導体を成膜させることにより形成させることができる。ドーパントガスとしてSiH4とCp2Mgを切り替えることによってn型窒化物半導体やp型窒化物半導体となる層を形成させる。

【0042】LEDチップの素子構造としてはサファイア基板上に、アンドープの窒化物半導体であるn型GaN層、Siドープのn型電極が形成されn型コンタクト層となるGaN層、アンドープの窒化物半導体であるn型GaN層、次に発光層を構成するバリア層となるGaN層、井戸層を構成するInGaN層、バリア層となるGaN層を1セットとしGaN層に挟まれたInGaN層を5層積層させた多重量子井戸構造としてある。発光層上にはMgがドープされたp型コンタクト層であるGaN層を順次積層させた構成としてある。(なお、ファイヤ基板上には低温でGaN層を形成させバッファ層とさせてある。また、p型半導体は、成膜後400℃

以上でアニールさせてある。)

エッチングによりサファイア基板上の窒化物半導体に同一面側で、pn各コンタクト層表面を露出させる。各コンタクト層上に、スパッタリング法を用いて正負各台座電極をそれぞれ形成させた。なお、p型窒化物半導体上の全面には金属薄膜を透光性電極として形成させた後に、透光性電極の一部に台座電極を形成させてある。出来上がった半導体ウエハーをスクライブラインを引いた後、外力により分割させ半導体発光素子であるLEDチップを形成させた。

【0043】一方、打ち抜き及び射出成形により一対のリード電極304、305となる金属片が絶縁性樹脂309によって固定された基板を形成する。LEDチップ303はエポキシ樹脂306を用いて銀メッキした鉄入り銅製のリード電極上にダイボンドした。LEDチップの各電極と、各リード電極とをそれぞれ金線307でワイヤボンディングし電気的導通を取った。

【0044】蛍光物質302は、Y、Gd、Ceの希土類元素を化学量論比で酸に溶解した溶解液を蓚酸で共沈させた。これを焼成して得られる共沈酸化物と、酸化アルミニウムと混合して混合原料を得る。これにフラックスとしてフッ化アンモニウムを混合して坩堝に詰め、空気中1400°Cの温度で3時間焼成して焼成品を得た。焼成品を水中でボールミルして、洗浄、分離、乾燥、最後に篩を通して形成させた。

【0045】形成された(Y_{0.6}Gd_{0.4})₃A 1₅O₁₂: Ce蛍光物質25重量部、含窒素工ポキシ樹脂であるトリグリシジルイソシアヌレート100重量部と酸無水物及び硬化促進剤を65℃で撹拌させ24時間反応させ室温で冷却する。この反応によりある程度硬化させた固体となる。室温に冷却後、取り出した固体を粉砕しプレスして固体状のタブレットを形成させる。なお、蛍光物質を透光性樹脂中に含有させたタブレットを形成させるためには、上述のように原材料透光性樹脂中に含有させても良いし、均一性を保てる限りにおいて、ある程度硬化させた透光性樹脂粉体と蛍光物質とを混合撹拌させ固めたタブレットを利用することもできる。

【0046】次にポットを加熱後、上記で形成させたLEDチップと導通を取った基板が配置された金型に軟化させたタブレットを射出させ150℃5分で一時硬化させた。次に、金型から射出成形させた発光ダイオードを取り出した後、150℃4時間で二次硬化させた。蛍光物質が含有された透光性樹脂301は、LEDチップが配置された基板上に突出した形状で形成させることができた。

【0047】形成させたチップタイプLEDは上述と同様に形成された発光ダイオードのばらつきが極めて少ないと共に各発光ダイオードの色むらが極めて少ない白色 LEDとすることができる。また、蛍光物質を含有させた樹脂を維持させるためにキャビティー構造となる側壁 を形成させる必要もなく極めて小型な白色発光ダイオードを形成させることができる。さらに、ある程度硬化させたとはいえ熱硬化性樹脂を用いるため、射出成型時に比較的粘度が高い熱可塑性樹脂を用いた場合と比較してLEDチップを電気的に接続させるワイヤなどの損傷を防ぎつつ形成させることができる。

[0048]

【発明の効果】本発明による製造方法を用いることによって、発光特性が安定した蛍光物質を有する白色系が発光可能な発光ダイオードを量産性良く製造させることができる。また、長時間量産時においても最初に形成された発光ダイオードと、後に形成された発光ダイオード間の発光ばらつきが極めて小さくさせることができる。さらに、比較的簡便に形成された発光ダイオード内における発光むらを低減させることができるため量産性と歩留りを向上させることができる。

【図面の簡単な説明】

【図1】 図1は本発明の発光ダイオードを示す模式的 断面図である。

【図2】 図2は本発明の他の発光ダイオードを示す模式的断面図である。

【図3】 図3は本発明の別の発光ダイオードを示す模式的断面図である。

【図1】

【図4】 図4は本発明の製造に用いられる射出成型機の模式的断面図である。

【符号の説明】

100、200、300・・・発光ダイオード

101、201、301・・・蛍光物質を含有する透光 性樹脂

102、202、302···蛍光物質

103、203、303・・・発光素子

104、204・・・マウント・リード

105、205・・・インナー・リード

106、206、306···LEDを接着させるマウント部材

107、207、307 · · · ワイヤ

208・・・モールド部材

304、305・・・リード電極

309・・・リード電極間を絶縁する樹脂

400 · · · 射出成形機

401・・ペレット

402・・・射出ピストン

403・・・スクリュー

404 · · · 電熱線

405・・・金型

406・・・発光素子がマウントされたマウントリード

【図2】

