ESEIAAT

Trajectòries interplanetàries Sense integració numèrica

Informe

Curs: Màster en Enginyeria Aeronàutica

Assignatura: Aerodinàmica, Mecànica de Vol i Orbital

Data d'entrega: 22-01-2018

Estudiants:

González García, Sílvia Kaloyanov Naydenov, Boyan Pla Olea, Laura Serra Moncunill, Josep Maria

Professor: Calaf Zayas, Jaume

Llista de continguts

Lli	ista d	le taules	ii
Lli	ista d	le figures	iii
1	Intro	oducció	1
2	Òrb	ita el·líptica heliocèntrica	2
	2.1 2.2	Plantejament d'equacions	2 4
3	Sort	tida del planeta origen	5
	3.1	Òrbita planetocèntrica hiperbòlica	5
	3.2	Òrbita d'aparcament	5
	3.3	DeltaV	5
4	Arri	bada al planeta destí	6
	4.1	Òrbita planetocèntrica hiperbòlica	6
	4.2	Òrbita d'aparcament	6
	4.3	DeltaV	6
5	Fun	cions auxiliars	7
6	Resi	ultats	8
	6.1	Cas de la Terra a Mart	8
	6.2	Cas de Mart a Júpiter	8
	6.3	Cas 1 de Mart a Júpiter	8
	6.4	Cas 2 de la Terra a Mart	9
	6.5	Cas 3 de la Terra a Mart	9
	6.6	Cas 4 de la Terra a Mart	10
	6.7	Cas 5 de la Terra a Venus	10
	6.8	Cas 6 de Mart a la Terra	10
	6.9	Cas 7 de Mart a la Terra	11
7	Con	nclusions	12

Llista de taules

6.1	Elements orbitals del primer cas resolt
6.1	Elements orbitals del segon cas resolt
6.1	Elements orbitals del cas 1
6.1	Elements orbitals del cas 2
6.1	Elements orbitals del cas 3
6.1	Elements orbitals del cas 4
6.1	Elements orbitals del cas 5
6.1	Elements orbitals del cas 6
6.1	Elements orbitals del cas 7

Llista de figures

2.1	Òrbita interplanetària heliocèntrica del planeta d'origen al planeta de destí	2
2.1	Triangle esfèric de l'òrbita interplanetària heliocèntrica	3

1 | Introducció

miau miau miaaauu

2 Drbita el·líptica heliocèntrica

El primer pas en la resolució de la trajectòria interplanetària és l'obtenció dels elements de l'òrbita que porta la nau d'un planeta a l'altre. Per tal de conèixer aquests elements és necessari saber quins són els punts d'origen i de destí de la nau. És a dir, cal saber la posició dels planetes en l'instant en què la sonda surt del planeta d'origen i en l'instant en què arriba al planeta de destí. Coneixent aquestes dues posicions ja és possible projectar una òrbita com la que es veu en la figura 2.1.

Figura 2.1: Òrbita interplanetària heliocèntrica del planeta d'origen al planeta de destí

2.1 Plantejament d'equacions

Com es dedueix de la figura, és possible calcular la inclinació de l'òrbita sabent la posició dels dos planetes. A partir dels vectors de posició, es pot calcular la desviació respecte de l'eclíptica dels planetes d'origen (en blau) i de destí (en groc), β_1 i β_2 respectivament. També

es pot obtenir la longitud eclíptica dels dos planetes, λ_1 i λ_2 . A partir d'aquestes variables, el problema es resol aplicant trigonometria esfèrica:

$$\cos \Delta \theta = \sin \beta_1 \sin \beta_2 + \cos \beta_1 \cos \beta_2 \cos \Delta \lambda \tag{2.1}$$

Del triangle groc s'obté:

$$\sin A = \cos \beta_2 \frac{\sin \Delta \lambda}{\sin \Delta \theta} \tag{2.2}$$

Figura 2.1: Triangle esfèric de l'òrbita interplanetària heliocèntrica

D'altra banda, del triangle esfèric de la figura 2.1 s'obtenen les següents expressions:

$$\tan \sigma = \frac{\cos \beta_1}{\tan \beta_1} \tag{2.3}$$

$$\cos i = \sin A \cos \beta_1 \tag{2.4}$$

$$\sin l = \frac{\tan \beta_1}{\tan i} \tag{2.5}$$

De la figura 2.1 també es poden deduir l'ascensió recta del node ascendent i l'argument del perigeu:

$$\Omega = \lambda_1 - l \tag{2.6}$$

$$\omega = 2\pi - (\theta_1 - \sigma) \tag{2.7}$$

Finalment, a partir dels vectors de posició també s'obtenen els tres elements orbitals que falten. Assumint que la trajectòria és el·líptica, els mòduls dels vectors de posició vénen donats per les expressions:

$$r_1 = \frac{a(1 - e^2)}{1 + e\cos\theta_1} \tag{2.8}$$

$$r_2 = \frac{a(1 - e^2)}{1 + e\cos(\theta_1 + \Delta\theta)}$$
 (2.9)

D'altra banda, també es pot relacionar el temps amb la posició de la sonda en l'òrbita mitjançant l'equació:

$$\frac{2\pi t}{T} = 2\arctan\left(\sqrt{\frac{1-e}{1+e}}\tan\frac{\theta_1}{2}\right) - \frac{e\sqrt{1-e^2}\sin\theta_1}{1+e\cos\theta_1}$$
 (2.10)

on T és el període en dies del planeta d'origen.

Per tant, es pot plantejar un sistema de tres equacions amb tres incògnites:

$$e = \frac{r_2 - r_1}{r_1 \cos \theta_1 - r_2 \cos (\theta_1 + \Delta \theta)}$$
 (2.11)

$$a = \frac{r_1 \left(1 + e \cos \theta_1\right)}{1 - e^2} \tag{2.12}$$

$$t_{2} - t_{1} = \frac{T}{2\pi} a^{3/2} \cdot \left[2 \arctan\left(\sqrt{\frac{1-e}{1+e}} \tan\frac{(\theta_{1} + \Delta\theta)}{2}\right) - \frac{e\sqrt{1-e^{2}} \sin(\theta_{1} + \Delta\theta)}{1 + e \cos(\theta_{1} + \Delta\theta)} \right] - 2 \arctan\left(\sqrt{\frac{1-e}{1+e}} \tan\frac{\theta_{1}}{2}\right) - \frac{e\sqrt{1-e^{2}} \sin\theta_{1}}{1 + e \cos\theta_{1}}$$
 (2.13)

2.2 Mètode de resolució

- 1. Es calcula la posició del planeta d'origen en l'instant de temps de sortida i la posició del planeta de destí en l'instant de temps d'arribada.
- 2. A partir dels vectors de posició es calculen les longituds i latituds eclíptiques dels planetes.
- 3. A partir del sistema d'equacions donat per 2.11, 2.12 i 2.13 s'obtenen l'excentricitat e i el semieix major a de l'òrbita, i l'anomalia vertadera de la sonda θ_1 en l'instant de sortida.
- 4. Es calcula la inclinació a partir de les equacions donades pels triangles esfèrics 2.4.
- 5. Càlcul de la longitud eclítpica del node ascendent donat per 2.6.
- 6. Es calcula l'argument del periheli amb 2.7.

3 | Sortida del planeta origen

- 3.1 Òrbita planetocèntrica hiperbòlica
- 3.2 Òrbita d'aparcament
- 3.3 DeltaV

4 Arribada al planeta destí

- 4.1 Òrbita planetocèntrica hiperbòlica
- 4.2 Òrbita d'aparcament
- 4.3 DeltaV

| Funcions auxiliars

6 Resultats

6.1 Cas de la Terra a Mart

ullet Sortida: $t_1 = 2020$ Juliol 19

• Arribada: $t_2 = 2021$ Gener 25

a	e	θ_1	ω	i	Ω
1.33073 AU	0.23629	359.613°	0.387°	1.434°	296.515°

Taula 6.1: Elements orbitals del primer cas resolt

6.2 Cas de Mart a Júpiter

 \bullet Sortida: $t_1 = 2026$ Juny 05

• Arribada: $t_2 = 2029$ Abril 25

a	e	θ_1	ω	i	Ω
9.39850 AU	0.87012	314.767°	218.308°	7.508°	207.127°

Taula 6.1: Elements orbitals del segon cas resolt

6.3 Cas 1 de Mart a Júpiter

 \bullet Sortida: $t_1 = 2037$ Octubre 25

ullet Arribada: $t_2 = 2039$ Octubre 15

a	1.33073 AU
e	0.23629
θ_1	359.613°
ω	0.387°
i	1.434°
Ω	296.515°

Taula 6.1: Elements orbitals del cas 1

6.4 Cas 2 de la Terra a Mart

ullet Sortida: $t_1 = 2033$ Març 13

 \bullet Arribada: $t_2 = 2033$ Agost 05

a	1.33073 AU
e	0.23629
θ_1	359.613°
ω	0.387°
i	1.434°
Ω	296.515°

Taula 6.1: Elements orbitals del cas 2

6.5 Cas 3 de la Terra a Mart

ullet Sortida: $t_1 = 2031$ Gener 23

ullet Arribada: $t_2 = 2031$ Agost 01

a	1.33073 AU
e	0.23629
θ_1	359.613°
ω	0.387°
i	1.434°
Ω	296.515°

Taula 6.1: Elements orbitals del cas 3

6.6 Cas 4 de la Terra a Mart

ullet Sortida: $t_1 = 2025$ Juliol 18

ullet Arribada: $t_2 = 2025$ Octubre 21

a	1.33073 AU
e	0.23629
θ_1	359.613°
ω	0.387°
i	1.434°
Ω	296.515°

Taula 6.1: Elements orbitals del cas 4

6.7 Cas 5 de la Terra a Venus

 \bullet Sortida: $t_1 = 2023$ Maig 27

ullet Arribada: $t_2=$ 2023 Novembre 01

a	1.33073 AU
e	0.23629
θ_1	359.613°
ω	0.387°
i	1.434°
Ω	296.515°

Taula 6.1: Elements orbitals del cas 5

6.8 Cas 6 de Mart a la Terra

ullet Sortida: $t_1 = 2033$ Gener 18

ullet Arribada: $t_2 = 2033$ Agost 28

a	1.33073 AU
e	0.23629
θ_1	359.613°
ω	0.387°
i	1.434°
Ω	296.515°

Taula 6.1: Elements orbitals del cas 6

6.9 Cas 7 de Mart a la Terra

ullet Sortida: $t_1 = 2030$ Novembre 20

ullet Arribada: $t_2 = 2031$ Juliol 06

a	3.45405 AU
e	0.59043
θ_1	356.872°
ω	176.203°
i	7.508°
Ω	207.127°

Taula 6.1: Elements orbitals del cas 7

7 Conclusions

miau miau miaaauu