

Dhrumil Lotiya Electrical Engineering Indian Institute of Technology Bombay 21D070026

Dual Degree (B.Tech. + M.Tech.)

Gender: Male DOB: 03/01/2003

Examination	University	Institute	Year	CPI / %
Graduation	IIT Bombay	IIT Bombay	2026	
Intermediate	CBSE	Krishna International School	2021	97.00%
Matriculation	CBSE	Delhi Public School	2019	98.60%

Pursuing a Minor Degree in System and Controls, IIT Bombay

SCHOLASTIC ACHIEVEMENTS —

- Secured All India Rank 687 in JEE Advanced examination among 0.15 million candidates nationwide 2021
- Secured All India Rank 654 out of 1.48 million candidates in JEE Mains examination 2021
- Achieved 100 percentile in Physics and Maths in JEE Mains attempt all over the country 2021
- Scored 97 percentage in the All India Senior School Certificate Examination AISSCE by CBSE 2021

Key Projects _____

Design Engineer | IIT Bombay Racing

[July'23 - Present]

A cross-functional team of 100+ students which designs, fabricates and assembles an Electric Race Car for Formula Student UK, an international students' race car designing competition organized by IMechE

- Conducted thorough research to explore and develop an algorithm for the Space Vector Pulse Width Modulation (SVPWM) switching technique, for optimal performance and precision in an IGBT module
- Will be performing comprehensive testing and validation of a gate driver board designed to control an IGBT module for motor power applications, ensuring optimal performance of the power electronic system
- Planning to implement and rigorously test the developed algorithm on a Control Card to evaluate the performance and effectiveness of the SVPWM switching technique using diverse input signals
- Targeting to develop a **self-controlled motor** by **developing** and at the same time **testing** the code from **scratch** for **field-oriented control (FOC)** to ensure smooth functioning of the motor

Junior Design Engineer | IIT Bombay Racing

[July'22 - July'23]

- Built a schematic for **Gate Driver** board that drives the **IGBT** module used for inverting power
- Learned how to comprehend FOC for motors and ran simulations on simulink to verify its functioning
- Implemented PID Control for motor using MATLAB and then extended it to create a closed-loop system for torque control in motor and tested it by using Code Composer Studio software
- Designed a comprehensive GLV (Grounded Low Voltage) protection circuit, a critical component for ensuring the smooth operation of an electric automobile, using LTspice simulation software
- Responsible for selecting components such as **IGBTs** and **Current Sensors** for the subsystem, involving detailed analysis of **datasheets** and thorough consideration of motor's **current and voltage requirements**

Inertial Stabilised Platform, IdeaForge

[June'23 - Present]

Research Project | Prof. Debraj Chakraborty

- Derived system characteristics from vibration data, such as Bode diagram with magnitude and phase plot
- Reviewed the research paper on Direct vs Indirect Line of Sight Stabilisation of the two-axis gimbal camera
- Finding the range of frequencies affected by vibration, from **Bode Plot** and then designing a **compensator** with appropriate gain and phase margin to reject **inner gimbal disturbance spectrum**

IITB RISC [Jan'23 - April'23]

Course Project | Prof. Virendra Singh

- Applied Microprocessor Design concepts to design a basic multi-cycle RISC microprocessor which
 has an instruction set architecture of 26 instructions such as ADD, ADC among other basic operations
- Implemented a Six-staged Pipeline design and optimized the processor efficiency by incorporating the Data Forwarding and mitigating the Data Hazards by utilising Stalling techniques in VHDL
- Developed a scaled-down version of the Intel 8085 microprocessor, Mini-8085, utilizing hardware flow chart method and a microcode-based architecture with a control store (CS) for storing encoded the control signals.

Simulation and Implementation of Analog Circuits

Course Project | Prof. Anil K. G.

[Jan'23 - April'23]

- Designed and simulated logarithmic amplifier on NGSpice and implemented on TL084 Quad Op-Amp
- Implemented the designed circuits to test the results using various ICs and other components
- Simulated and implemented various analog circuits like instrumentation amplifier, active and passive filters, Schmitt trigger, astable multivibrator and monostable multivibrator using NGSpice software

Working with 8051-Based Microcontroller

[Jan'23 - April'23]

Course Project | Prof. Saravanan Vijayakumaran

- Proficiently programmed the Intel 8051 based Pt-51 microcontroller, employing both Assembly and Embedded C languages to develop advanced embedded systems with robust functionalities
- Implemented **keyboard interfacing** and **LCD display** functionalities while also utilizing **timers** and **external interrupts** in addition, to develop components such as a **stopwatch** and **musical notes**
- Interfaced analog to digital converter MPC3008 using SPI and keyboard using UART and RealTerm software

Designing and Simulating Combinatorial and Sequential Circuits [July'22 - Nov'22] Course Project | Prof. Maryam Shojaei Baghini

- Developed String Detector using Mealy-type FSM to identify sub-sequences within input letter sequences
- Designed and implemented a range of **digital circuits**, including a 4-bit Adder Subtractor, Decoder, 4-bit Multiplexer, Fibonacci sequence detector, Universal Shifter, **Sequential circuits**, and Finite State Machines
- Designed a Moore type Finite State Machine (FSM) which acts as a 6-bit sequence generator in VHDL
- \bullet Utilized the Scanchain technique for testing, successfully verifying up to 1000 test cases within seconds

Position of Responsibility _____

Student Mentor | Summer of Science

[May'23 - July'23]

Summer of Science is a scientific learning project initiative | Maths and Physics Club

- Mentored first and second year students in their project exploring the topic of Control Theory
- Provided mentees with regular assistance and resources to learn, as well as insights on various topics
- Aided mentees in their project by evaluating their understanding and checking their progress periodically

TECHNICAL SKILLS _____

Programming Software Tools Libraries C++, C, Python, VHDL, Assembly, NGSpice, Java, Octave, LATEX, MATLAB Arduino IDE, Git, Quartus Prime, AutoDesk Eagle, LTSpice, Keil, GNURadio Matplotlib, NumPy, Pandas, PyGame, OpenCV, Seaborn, Scipy

Courses Undertaken

Core	Digital Systems, Microprocessors, Signal Processing -1, Signals and Feedback Systems, Analog Circuits, Probability and Random Processes, Power Engineering, Electronic Devices and Circuits, Control Systems, Digital Systems Lab, Analog Lab, Microprocessors Lab, EM Waves*, Communication Systems - 1*, Communications Lab*, Electronic Devices Lab*	
Mathematics and Physics	Calculus, Linear Algebra, Differential Equations, Complex Analysis, Quantum Physics and Application, Basics of Electricity and Magnetism, Mathematical Structures for Control	
Interdisciplinary Courses	Engineering Graphics and Drawing, Economics, Computer Programming and Utilization, Planetary Sciences: Earth & Beyond, Biology	

* To be completed by Nov 2023

Extracurriculars _____

- Mentored SoS students by aiding them with resources for understanding Cosmology and Dark matter 2023
- Successfully completed the 2-semester National Sports Organization (NSO) course for Basketball 2022
- Working on Option Pricing Models and their Accuracy project under Finsearch by Finance Club 2023
- Engaged in the Powai lake Cleanup & Awareness Campaign by Abhyuday, IIT Bombay 2022
- Coordinated on-ground operations and ensured seamless event execution at Mood Indigo 2022
- Passed IAIS(International Asssessment for Indian Schools) conducted by UNSW Global with distinction 2018
- Holder of NCC A Certificate, attesting to the successful completion of rigorous training 2017
- Emerged victorious, securing 1st position in State-level Group Dance on Skates competition 2014