LECTURE 36 THE SHIFTING THEOREMS

LAPLACE TRANSFORMS

$$\mathcal{L}{f(t)} = \int_0^\infty e^{-st} f(t)dt = F(s)$$

f(t)	F(s)
1	1/s
t	$1/s^2$
t^m	$m!/s^{m+1}$
t^{ν} , $(\nu > -1)$	$\Gamma(\nu+1)/s^{\nu+1}$
e^{-at}	1/(s+a)
$\sin bt$	$b/(s^2+b^2)$
$\cos bt$	$s/(s^2+b^2)$
$\sinh bt$	$b/(s^2-b^2)$
$\cosh bt$	$s/(s^2-b^2)$
$\sin bt - bt \cos bt$	$2b^3/(s^2+b^2)^2$
$\sin bt + bt \cos bt$	$2bs^2/(s^2+b^2)^2$
$t \sin bt$	$2bs/(s^2 + b^2)^2$
te^{-at}	$1/(s+a)^2$
u(t-c)	e^{-cs}/s
$e^{-at}f(t)$	F(s+a)
tf(t)	-F'(s)
$f(t-c)\mathbf{u}(t-c)$	$e^{-cs}F(s)$
f'(t)	sF(s) - f(0)
f''(t)	$s^2F(s) - sf(0) - f'(0)$
f'''(t)	$s^{3}F(s) - s^{2}f(0) - sf'(0) - f''(0)$
$\int_0^t f(\tau)d\tau$	F(s)/s

We turn now to two central theorems (both of which appear in your standard table) which will allow us to cope with shifts in both the s and the t variables. These results are handy when finding some particular Laplace transforms and are absolutely essential when dealing with inverse Laplace transforms.

First Shifting Theorem

Proof:

$$\mathcal{L}(e^{-at}f(t)) = F(s+a)$$

$$\mathcal{L}(e^{-at}f(t)) = \int_{e^{-s+}}^{\infty} e^{-s+} \left(e^{-a+}f(t)\right) dt$$

$$= \int_{e^{-s+}}^{\infty} e^{-(s+a)+} f(t) dt$$

$$= F(s+a)$$

What the first shifting theorem is saying is that the impact of an e^{-at} in the t variable is to shift s to s + a in the s variable. We use the first shifting theorem in both directions!

Example 1 Find $\mathcal{L}(e^{-8t}\cos(2t))$

$$\mathcal{L}\left(e^{-8+}\cos(2+)\right) = \frac{(s+8)}{(s+8)^{2}+2^{2}}$$

$$= \frac{s+8}{s^{2}+16s+68}$$

$$\star \frac{s+8}{s^2+16s+68} \star$$

Example 2 Find $\mathcal{L}^{-1}\left(\frac{6}{(s-7)^4}\right)$

 \bigstar t^3e^{7t} \bigstar

Example 3 Find $\mathcal{L}^{-1}\left(\frac{10s-1}{s^2+6s+13}\right)$.

$$\mathcal{L}^{-1}\left(\frac{10s-1}{s^2+6s+13}\right) = \mathcal{L}^{-1}\left(\frac{10(s+3)-31}{(s+3)^2+4}\right)$$

$$= 10\cos(2+)e^{-3+} - \frac{31}{2}\sin(2+)e^{-3+}$$

$$\bigstar$$
 $10e^{-3t}\cos(2t) - \frac{31}{2}e^{-3t}\sin(2t)$ \bigstar

Second Shifting Theorem

$$\mathcal{L}(f(t-c)u(t-c)) = e^{-cs}F(s)$$

Proof:

Proof:

$$\int \left(f(t-c)u(t-c) \right) = \int_{0}^{\infty} e^{-st} f(t-c)u(t-c) dt$$

$$et u = t-c
du = dt$$

$$t = c, u = 0$$

$$t \to \infty, u \to \infty$$

$$= e^{-sc} F(s)$$

What the second shifting theorem is saying is that shifting and cutting in the t variable introduces an exponential function in the s variable.

Example 4 Let $f(t) = \sin(t - \pi)u(t - \pi)$. Sketch a graph of f and find its Laplace transform.

$$\star \frac{e^{-\pi s}}{1+s^2} \star$$

Example 5 Let $f(t) = t^2 u(t-3)$. Sketch a graph of f and find its Laplace transform.

Sketch:

We have a Heaviside cut here but no shift ! So let's generate a 3 shift by writing t^2 as

$$t^{2} + 0t + 0 = a(t-3)^{2} + b(t-3) + c.$$

We have two different ways to find a, b and c:

Method 1: Blast away and compare coefficients of powers of t:

$$RHS = at^{2} - (6a-b)t + 9a-3b+c$$

$$\therefore a = 1$$

$$b = 6$$

$$c = 9$$

Method 2: First make a little substitution w = t - 3:

$$(w+3)^2 = aw^2 + bw + c$$

$$a = 1$$

$$b = 6$$

$$c = 9$$

So

$$t^2 = (t-3)^2 + 6(t-3) + 9$$

and hence our problem is to find the Laplace transform of

$$\{(t-3)^2 + 6(t-3) + 9\}u(t-3) = (t-3)^2u(t-3) + 6(t-3)u(t-3) + 9u(t-3).$$

Now:

Example 6 Find $\mathcal{L}^{-1}(\frac{12e^{-7s}}{s^4})$ and sketch the inverse Laplace transform.

$$\mathcal{L}\left(2+^{3}\right) = \frac{12}{5^{4}}$$

$$\left(2(t-7)^3 u(t-7) \right) = \frac{12e^{-7s}}{s^4}$$

★
$$2(t-7)^3u(t-7)$$
 ★

Example 7 Find the inverse Laplace transform of $F(s) = \frac{e^{-7s}}{1 + (s+4)^2}$.

This is tough as it invloves **both** shifting theorems!

$$\int_{-1}^{-1} \left(\frac{e^{-7s}}{1 + (s + 4)^2} \right)$$

$$\int_{-1}^{-1} \left(\sin(t) e^{-4t} \right) = \frac{1}{1 + (s+4)^2}$$

$$\mathcal{L}^{-1}\left(e^{-4(t-7)}\sin(t-7)\omega(t-7)\right) = \frac{e^{-7s}}{1+\left(s+4\right)^2}$$

$$\star f(t) = e^{-4(t-7)}\sin(t-7)u(t-7) \star$$

 $^{^{35}\}mathrm{You}$ can now do Q 96 e f g h, 98, 99 c d g h i