Automatic Control

Hak-Tae Lee

Frequency Response

Bode Plot 1 - Basics

Sinusoidal Input vs Output

https://www.youtube.com/watch?v=cgo_Dh-Bz8c

Observations

- When input is slow
 - Output is almost the same as the input
 - Same magnitude
 - Same phase
- As the input frequency increases
 - Output magnitude increases
 - Phase lags
- At some point
 - Output magnitude is maximum
 - Phase is opposite
- As the input frequency keep increases
 - Output magnitude becomes smaller

First Order System

$$\tau \dot{x} + \mathbf{1}x = u(t) = u_0 \sin \omega t$$

Assume

- $-x = A \cos \omega t + B \sin \omega t$
- $-\dot{x} = -A\omega\sin\omega t + B\omega\cos\omega t$

Solve

- Substitute
 - $-\tau A\omega \sin \omega t + \tau B\omega \cos \omega t + A\cos \omega t + B\sin \omega t = u_0\sin \omega t$
 - $(-\tau A\omega + B)\sin \omega t + (bA + \tau \omega B)\cos \omega t = u_0\sin \omega t$
- Compare
 - $-\tau \omega A + B = u_0$
 - $A + \tau \omega B = 0$
- Matrix form
 - $\bullet \quad \begin{bmatrix} -\tau\omega & 1 \\ 1 & \tau\omega \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} u_0 \\ 0 \end{bmatrix}$
 - $\begin{bmatrix} A \\ B \end{bmatrix} = -\frac{1}{(\tau\omega)^2 + 1} \begin{bmatrix} \tau\omega & -1 \\ -1 & -\tau\omega \end{bmatrix} \begin{bmatrix} u_0 \\ 0 \end{bmatrix} = \frac{u_0}{(\tau\omega)^2 + 1} \begin{bmatrix} -\tau\omega \\ 1 \end{bmatrix}$

First Order System

Particular solution

- Rearrange
 - $x = A\cos\omega t + B\sin\omega t = u_0\left(\frac{-\tau\omega}{(\tau\omega)^2 + 1}\cos\omega t + \frac{1}{(\tau\omega)^2 + 1}\sin\omega t\right)$

•
$$x = u_0 \sqrt{\left(\frac{\tau\omega}{(\tau\omega)^2 + 1}\right)^2 + \left(\frac{1}{(\tau\omega)^2 + 1}\right)^2} \sin(\omega t + \phi)$$

- Finally
 - $x = \frac{u_0}{\sqrt{(\tau\omega)^2 + 1}} \sin(\omega t + \phi)$
 - Where, $\tan \phi = -\tau \omega$

Magnitude and Phase vs Frequency

- Magnitude, M
 - Input: u_0
 - Output: $\frac{u_0}{\sqrt{(\tau\omega)^2+1}}$
 - When frequency is very small $(\omega \to 0)$: $M \to u_0$
 - When frequency is very large $(\omega \to \infty)$: $M \to \frac{u_0}{\tau \omega}$
- Phase
 - $-\tan\phi = -\tau\omega$
 - When frequency is very small ($\omega \to 0$): $\phi \to 0$
 - When frequency is very large ($\omega \to \infty$): $\phi \to -90^{\circ}$

Log Scale

- Recall the magnitude relation
 - $-M \approx \frac{u_0}{\tau \omega}$ (for large ω)
 - $-\log_{10} M = \log_{10} \frac{u_0}{\tau \omega} = \log_{10} \frac{u_0}{\tau} \log_{10} \omega$
 - $(\log_{10} M) = (-1)(\log_{10} \omega) + const$
 - Straight line with a slope of -1 when $(\log_{10} M)$ is plotted for with respect to $(\log_{10} \omega)$

Example - Magnitude

$$\tau = 10$$
$$u_0 = 1$$

$$10\dot{x} + x = \sin \omega t$$

$$x = \frac{1}{\sqrt{(\tau\omega)^2 + 1}} \sin(\omega t + \phi)$$

Example – Phase

$$\tan \phi = -\tau \omega$$

2nd Order System

$$\frac{\ddot{x}}{\omega_n^2} + \frac{2\zeta}{\omega_n} \dot{x} + \mathbf{1}x = u(t) = u_0 \sin \omega t$$

Assume

- $-x = A \cos \omega t + B \sin \omega t$
- $-\dot{x} = -A\omega\sin\omega t + B\omega\cos\omega t$
- $-\ddot{x} = -A\omega^2\cos\omega t B\omega^2\sin\omega t$

Solve

- Substitute
 - $\left(-A\frac{\omega^2}{\omega_n^2}\cos\omega t B\frac{\omega^2}{\omega_n^2}\sin\omega t\right) + 2\zeta\left(-A\frac{\omega}{\omega_n}\sin\omega t + B\frac{\omega}{\omega_n}\cos\omega t\right) + (A\cos\omega t + B\sin\omega t) = u_0\sin\omega t$
 - $\left(-B\frac{\omega^2}{\omega_n^2} A2\zeta\frac{\omega}{\omega_n} + B\right)\sin\omega t + \left(-A\frac{\omega^2}{\omega_n^2} + B2\zeta\frac{\omega}{\omega_n} + A\right)\cos\omega t = u_0\sin\omega t$
- Compare
 - $\left(-B\frac{\omega^2}{\omega_n^2} A2\zeta\frac{\omega}{\omega_n} + B\right) = \left(B\left(1 \frac{\omega^2}{\omega_n^2}\right) A2\zeta\frac{\omega}{\omega_n}\right) = u_0$
 - $\left(-A\frac{\omega^2}{\omega_n^2} + B2\zeta\frac{\omega}{\omega_n} + A\right) = \left(A\left(1 \frac{\omega^2}{\omega_n^2}\right) + B2\zeta\frac{\omega}{\omega_n}\right) = 0$

2nd Order System

$$\frac{\ddot{x}}{\omega_n^2} + \frac{2\zeta}{\omega_n} \dot{x} + x = u(t) = u_0 \sin \omega t$$

Solve

- Matrix form (let $\lambda = \frac{\omega}{\omega_n}$)
 - $\begin{bmatrix} -2\zeta\lambda & 1 \lambda^2 \\ 1 \lambda^2 & 2\zeta\lambda \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} u_0 \\ 0 \end{bmatrix}$

•
$$\begin{bmatrix} A \\ B \end{bmatrix} = \frac{1}{-(2\zeta\lambda)^2 - (1-\lambda^2)^2} \begin{bmatrix} 2\zeta\lambda & -(1-\lambda^2) \\ -(1-\lambda^2) & -2\zeta\lambda \end{bmatrix} \begin{bmatrix} u_0 \\ 0 \end{bmatrix} = \frac{u_0}{(1-\lambda^2)^2 + (2\zeta\lambda)^2} \begin{bmatrix} -2\zeta\lambda \\ 1-\lambda^2 \end{bmatrix}$$

Particular solution

- Rearrange
 - $x = A\cos\omega t + B\sin\omega t = u_0\left(\frac{-2\zeta\lambda}{(1-\lambda^2)^2 + (2\zeta\lambda)^2}\cos\omega t + \frac{1-\lambda^2}{(1-\lambda^2)^2 + (2\zeta\lambda)^2}\sin\omega t\right)$

•
$$x = u_0 \sqrt{\left(\frac{-2\zeta\lambda}{(1-\lambda^2)^2 + (2\zeta\lambda)^2}\right)^2 + \left(\frac{1-\lambda^2}{(1-\lambda^2)^2 + (2\zeta\lambda)^2}\right)^2} \sin(\omega t + \phi) = \frac{u_0}{\sqrt{(1-\lambda^2)^2 + (2\zeta\lambda)^2}} \sin(\omega t + \phi)$$

•
$$\tan \phi = \frac{-2\zeta\lambda}{1-\lambda^2}$$

Magnitude and Phase vs Frequency

Magnitude, M

- Input: u_0

- Output:
$$\frac{u_0}{\sqrt{(1-\lambda^2)^2+(2\zeta\lambda)^2}}$$

- When frequency is very small $(\omega \to 0)$: $M \to u_0$
- When frequency is very large $(\omega \to \infty)$: $M \to \frac{u_0}{\lambda^2} = \frac{u_0}{(\omega/\omega_n)^2}$

Phase

$$-\tan\phi = \frac{-2\zeta\lambda}{1-\lambda^2} (\phi = \operatorname{atan2}(-2\zeta\lambda, 1-\lambda^2))$$

- When frequency is very small ($\omega \to 0$): $\phi \to 0$
- When frequency is very large ($\omega \to \infty$): $\phi \to -180^\circ$

Log Scale

Recall the magnitude relation

$$-M \approx \frac{u_0}{(\omega/\omega_n)^2}$$
 (for large ω)

$$-\log_{10} M = \log_{10} \frac{u_0}{(\omega/\omega_n)^2} = \log_{10} \omega_n^2 u_0 - 2\log_{10} \omega$$

- $(\log_{10} M) = (-2)(\log_{10} \omega) + const$
- Straight line with a slope of -2 when $(\log_{10} M)$ is plotted for with respect to $(\log_{10} \omega)$

Example - Magnitude

$$\omega_n = 10$$

$$\zeta = 0.2$$

$$\frac{\ddot{x}}{100} + 0.4 \frac{\dot{x}}{10} + x = \sin \omega t$$

$$= \frac{1}{\sqrt{(1 - (\omega/10)^2)^2 + (0.4 \cdot \omega/10)^2}} \sin(\omega t + \phi)$$

Phase

Example – Phase

$$\tan \phi = \frac{-2\zeta\lambda}{1-\lambda^2}$$

Recall Convolution

- Convolution
 - Definition

•
$$f * g = \int_0^t f(t - \tau)g(\tau)d\tau$$

- Characteristics
 - $\mathcal{L}(f * g) = \mathcal{L}(f) \cdot \mathcal{L}(g)$

How?

$$-\mathcal{L}(f * g) = \mathcal{L}\left(\int_0^t f(t - \tau)g(\tau)d\tau\right)$$

$$= \int_{t=0}^{t=\infty} \left(\int_{\tau=0}^{\tau=t} f(t - \tau)g(\tau)d\tau\right)e^{-st}dt$$

$$= \int_{t=0}^{t=\infty} \int_{\tau=0}^{\tau=t} f(t - \tau)g(\tau)e^{-st}d\tau dt$$

Order of Integration

$$\int_{t=0}^{t=\infty} \int_{\tau=0}^{\tau=t} f(t-\tau)g(\tau)e^{-st}d\tau dt$$

$$\int_{\tau=0}^{\tau=\infty} \int_{t=\tau}^{t=\infty} f(t-\tau)g(\tau)e^{-st}dt\,d\tau$$

Change Order and Variable

$$\mathcal{L}(f * g) = \int_{t=0}^{t=\infty} \int_{\tau=0}^{\tau=t} f(t-\tau)g(\tau)e^{-st}d\tau dt$$

$$= \int_{\tau=0}^{\tau=\infty} \int_{t=\tau}^{t=\infty} f(t-\tau)g(\tau)e^{-st}dt\,d\tau$$

Substitute

$$\hat{t} = t - \tau$$

$$\hat{t} = t - \tau \qquad \Longrightarrow \qquad dt = d\hat{t}$$

$$t = \tau \to \hat{t} = 0$$

$$t = \infty \to \hat{t} = \infty$$

$$\int_{\tau=0}^{\tau=\infty} \int_{t=\tau}^{t=\infty} f(t-\tau)g(\tau)e^{-st}dt\,d\tau = \int_{\tau=0}^{\tau=\infty} \int_{\hat{t}=0}^{\hat{t}=\infty} f(\hat{t})g(\tau)e^{-s(\hat{t}+\tau)}d\hat{t}\,d\tau$$

$$= \int_{\tau=0}^{\tau=\infty} \int_{\hat{t}=0}^{\hat{t}=\infty} (f(\hat{t})e^{-s\hat{t}})(g(\tau)e^{-s\tau})d\hat{t} d\tau$$

$$= \left(\int_{\hat{t}=0}^{\hat{t}=\infty} \left(f(\hat{t}) e^{-s\hat{t}} \right) d\hat{t} \right) \left(\int_{\tau=0}^{\tau=\infty} \left(g(\tau) e^{-s\tau} \right) d\tau \right) = \mathcal{L}(f) \mathcal{L}(g)$$

Output for a Sinusoidal Input

Transfer function expression

$$-Y(s) = H(s)U(s)$$

Sinusoidal input in time domain

$$-u(t)=e^{j\omega t}$$

Output in time domain using convolution

$$-y(t) = h * u = \int_0^t h(\tau)u(t-\tau)d\tau$$

Output for a Sinusoidal Input

$$y(t) = \int_{-\infty}^{\infty} h(\tau)u(t-\tau)d\tau$$

$$= \int_{-\infty}^{\infty} h(\tau)e^{j\omega(t-\tau)}d\tau$$

$$= e^{j\omega t} \int_{-\infty}^{\infty} h(\tau)e^{-j\omega\tau}d\tau$$

$$= e^{j\omega t} \int_{-\infty}^{\infty} h(\tau)e^{-(j\omega)\tau}d\tau = H(j\omega)e^{j\omega t}$$

$$y(t) = H(j\omega)e^{j\omega t}$$

Magnitude and Phase

Magnitude

$$-|y(t)| = |H(j\omega)e^{j\omega t}| = |H(j\omega)||e^{j\omega t}| = |H(j\omega)|$$

– Magnitude is scaled by the magnitude of the transfer function evaluated at $j\omega$

Phase

$$- \angle y(t) = \angle (H(j\omega)e^{j\omega t}) = \angle H(j\omega) + \omega t$$

— Phase of the transfer function evaluated at $j\omega$ is added to the phase of the input

Verification with a 1st Order System

ODE expression

$$-\tau \dot{x} + bx = u(t) = u_0 \sin \omega t$$

Transfer function

$$-(\tau s + 1)X(s) = U(s)$$

$$-G(s) = \frac{1}{\tau s + 1}$$

$$-G(j\omega) = \frac{1}{j\tau\omega + 1}$$

•
$$|G(j\omega)| = \left|\frac{1}{j\tau\omega+1}\right| = \frac{1}{|j\tau\omega+1|} = \frac{1}{\sqrt{(\tau\omega)^2+1}}$$

•
$$\angle G(j\omega) = \angle \frac{1}{j\tau\omega + 1} = \angle 1 - \angle (j\tau\omega + 1) = -\tan^{-1}\tau\omega$$

Verification with a 2nd Order System

ODE expression

$$-\frac{\ddot{x}}{\omega_n^2} + \frac{2\zeta}{\omega_n}\dot{x} + 1x = u(t) = u_0 \sin \omega t$$

Transfer function

$$-\left(\frac{1}{\omega_n^2}s^2 + \frac{2\zeta}{\omega_n}s + 1\right)X(s) = U(s)$$

$$-G(s) = \frac{1}{\frac{1}{\omega_n^2} s^2 + \frac{2\zeta}{\omega_n} s + 1}$$
 (this is the same as $\frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$)

$$-G(j\omega) = \frac{1}{-\left(\frac{\omega}{\omega_n}\right)^2 + j2\zeta\left(\frac{\omega}{\omega_n}\right) + 1} = \frac{1}{(1-\lambda^2) + j(2\zeta\lambda)}$$

•
$$|G(j\omega)| = \left| \frac{1}{(1-\lambda^2)+j(2\zeta\lambda)} \right| = \frac{1}{|(1-\lambda^2)+j(2\zeta\lambda)|} = \frac{1}{\sqrt{(1-\lambda^2)^2+(2\zeta\lambda)^2}}$$

•
$$\angle G(j\omega) = \angle \frac{1}{(1-\lambda^2)+j(2\zeta\lambda)} = \angle 1 - \angle \left((1-\lambda^2)+j(2\zeta\lambda)\right) = -\tan^{-1}\frac{2\zeta\lambda}{1-\lambda^2}$$