Нодири Хисравхон Группа: P3131 Вариант: 25

Д/3 - 1: Раскраска графов

Исходная таблица соединений R:

V/ V	e ₁	e ₂	e ₃	e ₄	e ₅	e ₆	e ₇	e ₈	e ₉	e ₁₀	e ₁₁	e ₁₂
e ₁	0	1	2						5		2	
e ₂	1	0					1		2	4	2	1
e ₃	2		0	4		4	1		3		5	
e ₄			4	0		4	4				2	
e ₅					0	2	4	4	4	4		
e ₆			4	4	2	0		1			5	
e ₇		1	1	4	4		0			1	1	4
e ₈					4	1		0		3	5	
e ₉	5	2	3		4				0		3	
e ₁₀		4			4		1	3		0		4
e ₁₁	2	2	5	2		5	1	5	3		0	
e ₁₂		1					4			4		0

Пользуемся алгоритмом, использующим упорядочивание вершин 1. Положим $\mathbf{j}=1$

2. Посчитаем количество ненулевых элементов r_i в матрице R:

V/V	e ₁	e ₂	e ₃	e ₄	e ₅	e ₆	e ₇	e ₈	e ₉	e ₁₀	e ₁₁	e ₁₂	
e ₁	0	1	1						1		1		4
e ₂	1	0					1		1	1	1	1	6
e ₃	1		0	1		1	1		1		1		6
e ₄			1	0		1	1				1		4
e ₅					0	1	1	1	1	1			5
e ₆			1	1	1	0		1			1		5
e ₇		1	1	1	1		0			1	1	1	7
e ₈					1	1		0		1	1		4
e ₉	1	1	1		1				0		1		5
e ₁₀		1			1		1	1		0		1	5
e ₁₁	1	1	1	1		1	1	1	1		0		8
e ₁₂		1					1			1		0	3

Упорядочим вершины графа в порядке не возрастания r_i : e_{11} , e_7 , e_2 , e_3 , e_5 , e_6 , e_9 , e_{10} , e_1 , e_4 , e_8 , e_{12}

3. Красим в первый цвет вершины e_{11} , e_{5} , e_{12} .

4. Остались неокрашенные вершины, поэтому удалим из матрицы R строки и столбцы, соответствующие вершинам e_{11} , e_5 , e_{12} . Положим j=j+1=2:

V/V	e ₁	e ₂	e ₃	e ₄	e ₆	e ₇	e ₈	e ₉	e ₁₀	
e ₁	0	1	1					1		3
e ₂	1	0				1		1	1	4
e ₃	1		0	1	1	1		1		5
e ₄			1	0	1	1				3
e ₆			1	1	0		1			3
e ₇		1	1	1		0			1	4
e ₈					1		0		1	2
e ₉	1	1	1					0		3
e ₁₀		1				1	1		0	3

- 5. Упорядочим вершины графа в порядке не возрастания r_i : $e_3,\ e_2,\ e_7,\ e_1,\ e_4,\ e_6,\ e_9,\ e_{10},\ e_8$
- 6. Красим во второй цвет вершины e_3 , e_2 , e_8 .
- 7. Остались неокрашенные вершины, удалим из матрицы R строки и столбцы, соответствующие вершинам e_3 , e_2 , e_8 . Положим j=j+1=3:

V/V	$e_{\scriptscriptstyle 1}$	e ₄	e ₆	e ₇	e ₉	e ₁₀	
e ₁	0				1		1
e ₄		0	1	1			2
e ₆		1	0				1
e ₇		1		0		1	2
e ₉	1				0		1
e ₁₀				1		0	1

- 8. Упорядочим вершины графа в порядке не возрастания r_i : e_4 , e_7 , e_1 , e_6 , e_9 , e_{10}
- 9. Красим в третий цвет вершины e_4 , e_1 , e_{10} .
- 10. Остались неокрашенные вершины, удалим из матрицы R строки и столбцы, соответствующие вершинам e_4 , e_1 , e_{10} . Положим j=j+1=4:

V/V	e ₆	e ₇	e ₉	
e ₆	0			0
e ₇		0		0
e ₉			0	0

11. Красим в четвертый цвет вершины e_6 , e_7 , e_9 .

