List of exercises 3: One dimensional optimization

Exercise 1. List the maximal faces of the Čech complex $C_{\varepsilon}(X)$ and the Vietoris–Rips complex $R_{\varepsilon}(X)$, depending on ε , if X is the set of vertices of a regular hexagon of radius 1.

Proof. Let us first compute the distances between each point

	(0)	(1)	(2)	(3)	(4)	(5)
(0)	0					
(1)	1	0				
(2)	$\sqrt{3}$	1	0			
(3)	2	$\sqrt{3}$	1	0		
(4)	$\sqrt{3}$	2	$\sqrt{3}$	1	0	
(5)	1	$\sqrt{3}$	2	$\sqrt{3}$	1	0

So, we will have the following cases:

$\bullet \ \varepsilon < \mathbf{1}$

In this case, $C_{\varepsilon}(X) = R_{\varepsilon}(X)$, since all points are at distance 1 and we only have the 0-faces. The complex has maximal faces

• $1 \le \varepsilon < \sqrt{3}$

In this case all points are at distance 1 to their adjacent and at distance at least $\sqrt{3}$ to any other point which is not adjacent. Hence, $C_{\varepsilon}(X) = R_{\varepsilon}(X)$, and the complex has maximal faces

• $\sqrt{3} \le \varepsilon < 2$

In this case, $C_{\varepsilon}(X) \subsetneq R_{\varepsilon}(X)$. We have the following maximal faces for each complex:

$$C_{\varepsilon}(X)$$
: (015), (012), (123), (234), (345), (045)

$$R_{\varepsilon}(X)$$
: (015), (012), (123), (234), (345), (045), (024), (135)

Why this discrepancy? Well, notice that even if d((0),(2)), d((2),(4)) and d((0),(4)) are $\sqrt{3}$ there intersection between $\overline{B}_{\varepsilon/2}((0))$, $\overline{B}_{\varepsilon/2}((2))$ and $\overline{B}_{\varepsilon/2}((4))$ is empty. Therefore, this triangle is in Vietoris-Rips but not in Čech. The same happens with (135).

On the left we can see $C_{\varepsilon}(X)$ and on the right $R_{\varepsilon}(X)$.

• $\varepsilon \geq 2$

In this case, since all points are at distance at most 2, $C_{\varepsilon}(X) = R_{\varepsilon}(X) = \Delta^{5}$. That is, the only maximal face is

(012345)

Exercise 2. List the maximal faces of the Vietoris–Rips complex for every ε for the point cloud $X = \{(0,0,0),(1,1,1),(0,2,0),(0,0,-1)\}$ in \mathbb{R}^3 .

Proof. First, let (0) := (0,0,0), (1) := (1,1,1), (2) := (0,2,0), (3) := (0,0,-1). Now let us compute the distances between each point:

	(0)	(1)	(2)	(3)
(0)	0			
(1)	$\sqrt{3}$	0		
(2)	2	$\sqrt{3}$	0	
(3)	1	$\sqrt{6}$	$\sqrt{5}$	0

• $\varepsilon < 1$

Since the minimum distance between two points is 1, we have only the 4 points. The maximal faces of $R_{\varepsilon}(X)$ are:

$$(3) \qquad (2)$$

Remark. Notice that this configuration of points is not the original cloud point. This is just a representation of the Vietoris-Rips complex (although it should be in 3 dimensions, but that would just make it less clear).

• $1 \le \varepsilon < \sqrt{3}$

Only the vertices (0) and (3) are at distance 1, hence, we only have a 1-face. The maximal faces of $R_{\varepsilon}(X)$ are:

• $\sqrt{3} \le \varepsilon < 2$

We add (01) and (12) to the 1-faces, since (0) and (1) are at distance $\sqrt{3}$ and so are (1) and (2). The maximal faces of $R_{\varepsilon}(X)$ are:

• $2 \le \varepsilon < \sqrt{5}$

Now we add the 2-face (012), since the distance between the three vertices is less or equal than 2 (notice that this adds the 1-face (02) immediately, since we are just counting maximal faces). The maximal faces of $R_{\varepsilon}(X)$ are:

• $\sqrt{5} \le \varepsilon < \sqrt{6}$

We now add the 2-face (023) (which immediately adds the edge (23)). The maximal faces of $R_{\varepsilon}(X)$ are

• $\varepsilon \ge \sqrt{6}$

All points are at distance less or equal than $\sqrt{6}$, hence, we $R_{\varepsilon}(X) = \Delta^3$ has only one maximal face

