### Why Constants Matter Less

COMS10017 - (Object-Oriented Programming and) Algorithms

Dr Christian Konrad

Runtime of an Algorithm

### Runtime of an Algorithm

• Function  $f: \mathbb{N} \to \mathbb{N}$  that maps the input length  $n \in \mathbb{N}$  to the number of simple/unit/elementary operations (worst case, best case, average case, runtime on a specific input, ...)

### Runtime of an Algorithm

- Function  $f: \mathbb{N} \to \mathbb{N}$  that maps the input length  $n \in \mathbb{N}$  to the number of simple/unit/elementary operations (worst case, best case, average case, runtime on a specific input, . . . )
- $\bullet$  The number of array accesses in  $P{\ensuremath{\mathrm{EAK}}}$   $F{\ensuremath{\mathrm{INDING}}}$  represents the number of unit operations very well

### Runtime of an Algorithm

- Function  $f: \mathbb{N} \to \mathbb{N}$  that maps the input length  $n \in \mathbb{N}$  to the number of simple/unit/elementary operations (worst case, best case, average case, runtime on a specific input, ...)
- ullet The number of array accesses in PEAK FINDING represents the number of unit operations very well

#### Which runtime is better?

- 4(n-1) (simple peak finding algorithm)
- 5 log n (fast peak finding algorithm)

### Runtime of an Algorithm

- Function  $f: \mathbb{N} \to \mathbb{N}$  that maps the input length  $n \in \mathbb{N}$  to the number of simple/unit/elementary operations (worst case, best case, average case, runtime on a specific input, ...)
- ullet The number of array accesses in PEAK FINDING represents the number of unit operations very well

#### Which runtime is better?

- 4(n-1) (simple peak finding algorithm)
- 5 log *n* (fast peak finding algorithm)
- $0.1n^2$
- $n \log(0.5n)$
- $0.01 \cdot 2^n$

### Runtime of an Algorithm

- Function  $f: \mathbb{N} \to \mathbb{N}$  that maps the input length  $n \in \mathbb{N}$  to the number of simple/unit/elementary operations (worst case, best case, average case, runtime on a specific input, ...)
- ullet The number of array accesses in PEAK FINDING represents the number of unit operations very well

#### Which runtime is better?

- 4(n-1) (simple peak finding algorithm)
- 5 log *n* (fast peak finding algorithm)
- $0.1n^2$
- $n\log(0.5n)$
- $0.01 \cdot 2^n$

#### Answer:

### Runtime of an Algorithm

- Function  $f: \mathbb{N} \to \mathbb{N}$  that maps the input length  $n \in \mathbb{N}$  to the number of simple/unit/elementary operations (worst case, best case, average case, runtime on a specific input, ...)
- ullet The number of array accesses in PEAK FINDING represents the number of unit operations very well

#### Which runtime is better?

- 4(n-1) (simple peak finding algorithm)
- 5 log *n* (fast peak finding algorithm)
- $0.1n^2$
- $n \log(0.5n)$
- $0.01 \cdot 2^n$

Answer: It depends...

### Runtime of an Algorithm

- Function  $f: \mathbb{N} \to \mathbb{N}$  that maps the input length  $n \in \mathbb{N}$  to the number of simple/unit/elementary operations (worst case, best case, average case, runtime on a specific input, ...)
- ullet The number of array accesses in PEAK FINDING represents the number of unit operations very well

#### Which runtime is better?

- 4(n-1) (simple peak finding algorithm)
- 5 log n (fast peak finding algorithm)
- $0.1n^2$
- $n\log(0.5n)$
- $0.01 \cdot 2^n$

Answer: It depends... But there is a favourite











**Aim:** We would like to sort algorithms according to their runtime Is algorithm *A* faster than algorithm *B*?

**Aim:** We would like to sort algorithms according to their runtime Is algorithm *A* faster than algorithm *B*?

**Asymptotic Complexity** 

**Aim:** We would like to sort algorithms according to their runtime Is algorithm *A* faster than algorithm *B*?

### **Asymptotic Complexity**

• For large enough *n*, constants seem to matter less

**Aim:** We would like to sort algorithms according to their runtime Is algorithm *A* faster than algorithm *B*?

### **Asymptotic Complexity**

- For large enough *n*, constants seem to matter less
- $\bullet$  For small values of n, most algorithms are fast anyway

**Aim:** We would like to sort algorithms according to their runtime Is algorithm *A* faster than algorithm *B*?

### **Asymptotic Complexity**

- For large enough *n*, constants seem to matter less
- For small values of n, most algorithms are fast anyway (not always true!)

**Aim:** We would like to sort algorithms according to their runtime Is algorithm *A* faster than algorithm *B*?

### **Asymptotic Complexity**

- For large enough *n*, constants seem to matter less
- For small values of n, most algorithms are fast anyway (not always true!)

**Solution:** Consider asymptotic behavior of functions

**Aim:** We would like to sort algorithms according to their runtime

Is algorithm A faster than algorithm B?

#### **Asymptotic Complexity**

- For large enough *n*, constants seem to matter less
- For small values of n, most algorithms are fast anyway (not always true!)

**Solution:** Consider asymptotic behavior of functions

An increasing function  $f: \mathbb{N} \to \mathbb{N}$  grows asymptotically at least as fast as an increasing function  $g: \mathbb{N} \to \mathbb{N}$  if there exists an  $n_0 \in \mathbb{N}$  such that for every  $n \geq n_0$  it holds:

$$f(n) \geq g(n)$$
.

# Example: f grows at least as fast as g



**Example:** 
$$f(n) = \frac{1}{2}n^2$$
,  $g(n) = 3n$ 

**Example:** 
$$f(n) = \frac{1}{2}n^2$$
,  $g(n) = 3n$ 

Then f(n) grows asymptotically at least as fast as g(n) since for every  $n \ge n_0 = 6$  we have  $f(n) \ge g(n)$ 

**Proof:** 

**Example:**  $f(n) = \frac{1}{2}n^2$ , g(n) = 3n

Then f(n) grows asymptotically at least as fast as g(n) since for every  $n \ge n_0 = 6$  we have  $f(n) \ge g(n)$ 

**Example:**  $f(n) = \frac{1}{2}n^2$ , g(n) = 3n

Then f(n) grows asymptotically at least as fast as g(n) since for every  $n \ge n_0 = 6$  we have  $f(n) \ge g(n)$ 

$$\frac{1}{2}n^2 \geq 3n$$

**Example:**  $f(n) = \frac{1}{2}n^2$ , g(n) = 3n

Then f(n) grows asymptotically at least as fast as g(n) since for every  $n \ge n_0 = 6$  we have  $f(n) \ge g(n)$ 

$$\frac{1}{2}n^2 \geq 3n \Rightarrow$$

$$n \geq 6.$$

**Example:**  $f(n) = \frac{1}{2}n^2$ , g(n) = 3n

Then f(n) grows asymptotically at least as fast as g(n) since for every  $n \ge n_0 = 6$  we have  $f(n) \ge g(n)$ 

**Proof:** Find values of *n* for which the following holds:

$$\frac{1}{2}n^2 \geq 3n \Rightarrow$$

$$n \geq 6.$$

Thus, we can chose any  $n_0 \ge 6$ .

**Example:** 
$$f(n) = 2n^3$$
,  $g(n) = \frac{1}{2} \cdot 2^n$ 

**Example:**  $f(n) = 2n^3$ ,  $g(n) = \frac{1}{2} \cdot 2^n$ 

Then g(n) grows asymptotically at least as fast as f(n) since for every  $n \ge 16$  we have  $g(n) \ge f(n)$ 

**Proof:** 

**Example:**  $f(n) = 2n^3$ ,  $g(n) = \frac{1}{2} \cdot 2^n$ 

Then g(n) grows asymptotically at least as fast as f(n) since for every  $n \ge 16$  we have  $g(n) \ge f(n)$ 

**Example:**  $f(n) = 2n^3$ ,  $g(n) = \frac{1}{2} \cdot 2^n$ 

Then g(n) grows asymptotically at least as fast as f(n) since for every  $n \ge 16$  we have  $g(n) \ge f(n)$ 

$$\frac{1}{2} \cdot 2^n \geq 2n^3$$

**Example:**  $f(n) = 2n^3$ ,  $g(n) = \frac{1}{2} \cdot 2^n$ 

Then g(n) grows asymptotically at least as fast as f(n) since for every  $n \ge 16$  we have  $g(n) \ge f(n)$ 

$$\frac{1}{2} \cdot 2^n \ge 2n^3$$
 $2^{n-1} \ge 2^{3 \log n + 1} \text{ (using } n = 2^{\log n} \text{)}$ 

**Example:**  $f(n) = 2n^3$ ,  $g(n) = \frac{1}{2} \cdot 2^n$ 

Then g(n) grows asymptotically at least as fast as f(n) since for every  $n \ge 16$  we have  $g(n) \ge f(n)$ 

$$\frac{1}{2} \cdot 2^n \geq 2n^3$$

$$2^{n-1} \geq 2^{3\log n + 1} \text{ (using } n = 2^{\log n}\text{)}$$

$$n - 1 \geq 3\log n + 1$$

**Example:**  $f(n) = 2n^3$ ,  $g(n) = \frac{1}{2} \cdot 2^n$ 

Then g(n) grows asymptotically at least as fast as f(n) since for every  $n \ge 16$  we have  $g(n) \ge f(n)$ 

$$\frac{1}{2} \cdot 2^n \geq 2n^3$$

$$2^{n-1} \geq 2^{3\log n + 1} \text{ (using } n = 2^{\log n}\text{)}$$

$$n-1 \geq 3\log n + 1$$

$$n \geq 3\log n + 2$$

**Example:**  $f(n) = 2n^3$ ,  $g(n) = \frac{1}{2} \cdot 2^n$ 

Then g(n) grows asymptotically at least as fast as f(n) since for every  $n \ge 16$  we have  $g(n) \ge f(n)$ 

**Proof:** Find values of *n* for which the following holds:

$$\frac{1}{2} \cdot 2^n \geq 2n^3$$

$$2^{n-1} \geq 2^{3\log n + 1} \text{ (using } n = 2^{\log n}\text{)}$$

$$n-1 \geq 3\log n + 1$$

$$n \geq 3\log n + 2$$

This holds for every  $n \ge 16$  (which follows from the *racetrack principle*). Thus, we chose any  $n_0 \ge 16$ .

**Racetrack Principle:** Let f, g be functions, k an integer and suppose that the following holds:

- ②  $f'(n) \ge g'(n)$  for every  $n \ge k$ .

Then for every  $n \ge k$ , it holds that  $f(n) \ge g(n)$ .

**Racetrack Principle:** Let f, g be functions, k an integer and suppose that the following holds:

- ②  $f'(n) \ge g'(n)$  for every  $n \ge k$ .

Then for every  $n \ge k$ , it holds that  $f(n) \ge g(n)$ .

**Racetrack Principle:** Let f, g be functions, k an integer and suppose that the following holds:

- $f(k) \geq g(k)$  and
- ②  $f'(n) \ge g'(n)$  for every  $n \ge k$ .

Then for every  $n \ge k$ , it holds that  $f(n) \ge g(n)$ .

**Example:**  $n \ge 3 \log n + 2$  holds for every  $n \ge 16$ 

•  $n \ge 3 \log n + 2$  holds for n = 16

**Racetrack Principle:** Let f, g be functions, k an integer and suppose that the following holds:

- $f(k) \geq g(k)$  and
- ②  $f'(n) \ge g'(n)$  for every  $n \ge k$ .

Then for every  $n \ge k$ , it holds that  $f(n) \ge g(n)$ .

- $n \ge 3 \log n + 2$  holds for n = 16
- We have: (n)' =

**Racetrack Principle:** Let f, g be functions, k an integer and suppose that the following holds:

- $f(k) \geq g(k)$  and

Then for every  $n \ge k$ , it holds that  $f(n) \ge g(n)$ .

- $n \ge 3 \log n + 2$  holds for n = 16
- We have: (n)' = 1

**Racetrack Principle:** Let f, g be functions, k an integer and suppose that the following holds:

- $f(k) \geq g(k)$  and
- ②  $f'(n) \ge g'(n)$  for every  $n \ge k$ .

Then for every  $n \ge k$ , it holds that  $f(n) \ge g(n)$ .

- $n \ge 3 \log n + 2$  holds for n = 16
- We have: (n)' = 1 and  $(3 \log n + 2)' =$

**Racetrack Principle:** Let f, g be functions, k an integer and suppose that the following holds:

- $f(k) \geq g(k)$  and
- ②  $f'(n) \ge g'(n)$  for every  $n \ge k$ .

Then for every  $n \ge k$ , it holds that  $f(n) \ge g(n)$ .

- $n \ge 3 \log n + 2$  holds for n = 16
- We have: (n)' = 1 and  $(3 \log n + 2)' = \frac{3}{n \ln 2}$

**Racetrack Principle:** Let f, g be functions, k an integer and suppose that the following holds:

- $f(k) \geq g(k)$  and
- ②  $f'(n) \ge g'(n)$  for every  $n \ge k$ .

Then for every  $n \ge k$ , it holds that  $f(n) \ge g(n)$ .

- $n \ge 3 \log n + 2$  holds for n = 16
- We have: (n)' = 1 and  $(3 \log n + 2)' = \frac{3}{n \ln 2} < \frac{1}{2}$  for every  $n \ge 16$ . The result follows.

### Order Functions by Asymptotic Growth

If  $\leq$  means grows asymptotically at least as fast as then we get:

$$5 \log n \le 4(n-1) \le n \log(n/2) \le 0.1 n^2 \le 0.01 \cdot 2^n$$