04 - Seven segment display

My repository

My git - Tomáš Kříčka, 223283

1. Truth table for 7-segment display

Hex	Inputs	Α	В	C	D	E	F	G
0	0000	0	0	0	0	0	0	1
1	0001	1	0	0	1	1	1	1
2	0010	0	0	1	0	0	1	0
3	0011	0	0	0	0	1	1	0
4	0100	1	0	0	1	1	0	0
5	0101	0	1	0	0	1	0	0
6	0110	0	1	0	0	0	0	0
7	0111	0	0	0	1	1	1	1
8	1000	0	0	0	0	0	0	0
9	1001	0	0	0	0	1	0	0
А	1010	0	0	0	1	0	0	0
b	1011	1	1	0	0	0	0	0
С	1100	0	1	1	0	0	0	1
d	1101	1	0	0	0	0	1	0
Е	1110	0	1	1	0	0	0	0
F	1111	0	1	1	1	0	0	0

Connection table - Nexys A7-50T

Output pins	FPGA pin	FPGA package pin
CA	IO_L24N_T3_A00_D16_14	T10
СВ	IO_25_14	R10

Output pins	FPGA pin	FPGA package pin		
СС	IO_25_15	K16		
CD	IO_L17P_T2_A26_15	K13		
CE	IO_L13P_T2_MRCC_14	P15		
CF	IO_L19P_T3_A10_D26_14	T11		
CG	IO_L4P_T0_D04_14	L18		
DP	IO_L19N_T3_A21_VREF_15	H15		
AN0	IO_L23P_T3_FOE_B_15	J17		
AN1	IO_L23N_T3_FWE_B_15	J18		
AN2	IO_L24P_T3_A01_D17_14	Т9		
AN3	IO_L19P_T3_A22_15	J14		
AN4	IO_L8N_T1_D12_14	P14		
AN5	IO_L14P_T2_SRCC_14	T14		
AN6	IO_L23P_T3_35	K2		
AN7	IO_L23N_T3_A02_D18_14	U13		

2. seven segment display decoder

Architecture VHDL

```
architecture Behavioral of hex_7seg is
begin
   p_7seg_decoder : process(hex_i)
   begin
       case hex_i is
           when "0000" =>
              seg_o <= "0000001"; -- 0
           when "0001" =>
              seg_o <= "1001111"; -- 1
           when "0010" =>
               seg_o <= "0010010"; -- 2
           when "0011" =>
              seg_o <= "0000110"; -- 3
           when "0100" =>
               seg_o <= "1001100"; -- 4
           when "0101" =>
               seg_o <= "0100100"; -- 5
           when "0110" =>
```

```
seg_o <= "0100000"; -- 6
       when "0111" =>
           seg_o <= "0001111"; -- 7
       when "1000" =>
           seg_o <= "0000000"; -- 8
       when "1001" =>
           seg_o <= "0000100"; -- 9
       when "1010" =>
           seg_o <= "0001000"; -- A
       when "1011" =>
          seg_o <= "1100000"; -- b
       when "1100" =>
           seg_o <= "0110001"; -- C
       when "1101" =>
           seg_o <= "1000010"; -- d
       when "1110" =>
          seg_o <= "0110000"; -- E
       when others =>
          seg_o <= "0111000"; -- F
   end case;
end process p_7seg_decoder;
```

Testbench stimulus

```
architecture Behavioral of tb_hex_7seg is
    signal s_hex_i : std_logic_vector (4 - 1 downto 0);
    signal s_seg_o : std_logic_vector (7 - 1 downto 0);
begin
    uut_hex_7seg : entity work.hex_7seg
        port map(
            hex_i => s_hex_i,
            seg_o => s_seg_o
        );
        p_stimulus : process
        begin
             report "simulation start" severity note;
             s_hex_i <= "0000"; wait for 100 ns;</pre>
             s_hex_i <= "0001"; wait for 100 ns;</pre>
             s_hex_i <= "0010"; wait for 100 ns;</pre>
             s_hex_i <= "0011"; wait for 100 ns;</pre>
             s_hex_i <= "0100"; wait for 100 ns;</pre>
             s_hex_i <= "0101"; wait for 100 ns;</pre>
             s_hex_i <= "0110"; wait for 100 ns;</pre>
```

```
s_hex_i <= "0111"; wait for 100 ns;
s_hex_i <= "1000"; wait for 100 ns;
s_hex_i <= "1001"; wait for 100 ns;
s_hex_i <= "1010"; wait for 100 ns;
s_hex_i <= "1011"; wait for 100 ns;
s_hex_i <= "1100"; wait for 100 ns;
s_hex_i <= "1101"; wait for 100 ns;
s_hex_i <= "1101"; wait for 100 ns;
s_hex_i <= "1110"; wait for 100 ns;
s_hex_i <= "1111"; wait for 100 ns;
report "simulation end" severity note;
wait;
end process p_stimulus;</pre>
```

Wafeforms

3. instantiation of top.vhd code

```
begin
  hex2seg : entity work.hex_7seg
  port map(
     hex_i => SW,
     seg_o(6) => CA,
     seg_o(5) => CB,
     seg_o(4) => CC,
     seg_o(3) => CD,
     seg_o(2) => CE,
     seg_o(1) => CF,
     seg_o(0) => CG
```

```
-- connect one common anode to 3,3V

AN <= b"1111_0111";

-- display

LED(3 downto 0) <= SW;

LED(4) <= '1' when (SW = "0000") else '0';

LED(5) <= '1' when (SW > "1001") else '0';

LED(6) <= '1' when (SW(0) = '1') else '0';

LED(7) <= '1' when (SW = "0001") or (SW = "0010") or (SW = "1000") else '0';

end Behavioral;
```

LEDs(7:4)

Hex	Inputs	LED4	LED5	LED6	LED7
0	0000	1	0	0	0
1	0001	0	0	1	1
2	0010	0	0	0	1
3	0011	0	0	1	0
4	0100	0	0	0	1
5	0101	0	0	1	0
6	0110	0	0	0	0
7	0111	0	0	1	0
8	1000	0	0	0	1
9	1001	0	0	1	0
Α	1010	0	1	0	0
b	1011	0	1	1	0
С	1100	0	1	0	0
d	1101	0	1	1	0
E	1110	0	1	0	0
F	1111	0	1	1	1

Code for LEDs(7:4)

```
LED(3 downto 0) <= SW;
LED(4) <= '1' when (SW = "0000") else '0';
LED(5) <= '1' when (SW > "1001") else '0';
LED(6) <= '1' when (SW(0) = '1') else '0';
LED(7) <= '1' when (SW = "0001") or (SW = "0010") or (SW = "0100") or (SW = "1000") else '0';</pre>
```

Waveforms

