Q.10	a)	Define Graph & explain types of graphs with xample.	
	b)	Define tree with example. Also state properties of tree.	3
		OR	
Q.11	a)	Define Graph. Explain how to represent graph in the form of matrix with example.	7
	b)	Explain with example. i) Degree of vertex ii) Binary Tree	4

First Year B.C.A (Semester - II) Examination **Paper - 15BCA110**

Discrete Mathematical Structures

Time: Three hours] [Full Marks - 60

N.B.: i) All questions carryequal marks

- ii) Question No. 1 is compulsory.
- iii) Due credit will be given to neatness & adequate dimensions.
- iv) Illustrate your answer necessary with the help of neat skectches.
- v) Use Blue/Black ink/refill only for writing the answer book.

Q.1 Choose correct alternative.

5

- a) A is an ordered collection of objects.
 - i) Relation

ii) Function

iii) Set

- iv) Proposition
- b) In function y = f(x), yis known as
 - i) argument of x
 - ii) image of x
 - iii) range of x
 - iv) None
- c) Exponential Generating function is given by

i)
$$\sum_{n=0}^{\infty} a_n$$

ii)
$$\sum_{n=0}^{\infty} a_n x^n$$

iii)
$$\sum_{n=0}^{\infty} a_n \frac{x^n}{n!}$$

- iv) None
- solution is the sum of Homogenous solution.
 - i) Ordinary solution
- ii) Total solution
- iii) Exponential solution
- iv) Aggregate solution

7

	e)	tree has only one vertex of degree 2 and remain vertices are of degree 1 or 3	ng Q.6	a)	Find ordinary Generating function and exponenting generating function of following sequence.		
		i) Rooted Tree ii) Binary Tree				i) <0,1,2,3,>	O
		iii) Complete Tree iv) Regular Tree				ii) <1,-1,1,-1,>	
)gu			b)	Find sequence for exponential generating function	
Q.2	a)	If \cup = even nos. less than or equal to 4U	7		-)	$(1-x)^{-1}$	3
•		A = even numbers from 14 to 24					
		B = even numbers from 20 to 30				OR	
		Find $A \cup B$, $A \cap B$, $A - B$, $B - A$, $A \oplus B$, A' , B'	0.5			T (A() D() 10() 1	
	b)	Find the number of integers between 1 to 250 which	h	Q. /	a)	Let $A(x)$, $B(x)$ and $C(x)$ are ordinary generating	_
		are neither divisible by 2 nor 5	4			functions then prove.	6
						i) If $A(x) = B(x)$ then $a_n = b_n$	
		OR				ii) If $Cn = \alpha \cdot a_n + \beta \cdot b_n$ then $C(x) = \alpha \cdot A(x) + \beta \cdot B(x)$	
					h)	$C(x) = \alpha A(x) + \beta B(x)$ Explain Ferrer's Diagram and conjugate of Ferrer's	,
Q.3	a)	State principle of Inclusion - Exclusion for two finite			Uj	diagram. Also find Ferrer's diagram and its	•
		sets and three finite sets. Also explain principles of	_			following.	5
		Inclusion - Exclusion for two finite sets.	6			i) 8+6+7+3+2+4	J
	b)	Define set and explain types of sets with example.	5			ii) 3+5+1+2	
Q.4	a)	Define function. Explain types of function with					
	/	example.	5	Q.8	a)	Find particular solution of following recurrence	
	b)	Define with example.	6			relation.	6
		i) Reflexive			1 \	$a_r + 3a_{r-1} + 4a_{r-2} = 2r^2$	
		ii) Transitive			b)	Define Recurrence Relation with example. Explain	ın -
		iii) Symmetric				detail total solution of recurrence relation.	5
						OR	
		OR		0.9	a)	Define Homogeneous solution. Find homogeneous	
0.5	`	D.C. 14	4	Q.J	u)	solution of following.	7
Q.5	a)	Define with example.	4			$a_{r}-13a_{r-1}+10a_{r-2}=2_{r}$,
		i) Composition of function				Where $a_0 = 5$, $a_1 = 10$	
	h)	ii) Inverse of function Define Politican Explain types of relation with			b)	State following properties of Lattice.	4
	υj	Define Relation. Explain types of relation with	7		- /	i) Associative ii) Commutative	
		example.	,			iii) Absorption iv) Idempotent	