Exercise_6_solutions

January 5, 2019

```
In [0]: import numpy as np
        import pandas as pd
        import seaborn as sns
        import matplotlib.pyplot as plt
        from sklearn.model_selection import train_test_split
        from sklearn.linear_model import LinearRegression
   1.
In [3]: customers = pd.read_csv("L06_Ecommerce_Customers.csv")
        customers.head()
Out[3]:
                                    Email
               {\tt mstephenson@fernandez.com}
        0
        1
                       hduke@hotmail.com
        2
                        pallen@yahoo.com
        3
                 riverarebecca@gmail.com
           mstephens@davidson-herman.com
                                                       Address
                                                                           Avatar \
        0
                835 Frank Tunnel\nWrightmouth, MI 82180-9605
                                                                           Violet
              4547 Archer Common\nDiazchester, CA 06566-8576
                                                                       DarkGreen
        1
           24645 Valerie Unions Suite 582\nCobbborough, D...
                                                                           Bisque
        3
            1414 David Throughway\nPort Jason, OH 22070-1220
                                                                     SaddleBrown
           14023 Rodriguez Passage\nPort Jacobville, PR 3...
                                                                MediumAquaMarine
           Avg. Session Length
                                 Time on App
                                              Time on Website
                                                                Length of Membership
        0
                      34.497268
                                   12.655651
                                                     39.577668
                                                                             4.082621
        1
                      31.926272
                                   11.109461
                                                     37.268959
                                                                             2.664034
        2
                      33.000915
                                   11.330278
                                                     37.110597
                                                                             4.104543
        3
                      34.305557
                                   13.717514
                                                     36.721283
                                                                             3.120179
        4
                                   12.795189
                                                     37.536653
                                                                             4.446308
                      33.330673
           Yearly Amount Spent
        0
                    587.951054
        1
                    392.204933
        2
                    487.547505
        3
                    581.852344
        4
                    599.406092
```

In [5]: customers.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 500 entries, 0 to 499
Data columns (total 8 columns):

Email 500 non-null object Address 500 non-null object Avatar 500 non-null object Avg. Session Length 500 non-null float64 Time on App 500 non-null float64 500 non-null float64 Time on Website Length of Membership 500 non-null float64 500 non-null float64 Yearly Amount Spent

dtypes: float64(5), object(3)

memory usage: 31.3+ KB

3.

In [6]: customers.describe()

Out[6]:		Avg.	Session Length	Time on App	Time on Website	\
	count		500.000000	500.000000	500.000000	
	mean		33.053194	12.052488	37.060445	
	std		0.992563	0.994216	1.010489	
	min		29.532429	8.508152	33.913847	
	25%		32.341822	11.388153	36.349257	
	50%		33.082008	11.983231	37.069367	
	75%		33.711985	12.753850	37.716432	
	max		36.139662	15.126994	40.005182	

	Length of	Membership	Yearly Amount Spent
count		500.000000	500.000000
mean		3.533462	499.314038
std		0.999278	79.314782
min		0.269901	256.670582
25%		2.930450	445.038277
50%		3.533975	498.887875
75%		4.126502	549.313828
max		6.922689	765.518462

4.

Out[7]: <seaborn.axisgrid.JointGrid at 0x7fb3070c6f28>

Out[8]: <seaborn.axisgrid.JointGrid at 0x7fb3046ee9b0>

In [10]: sns.jointplot(x="Time on Website", y="Length of Membership", data=customers, kind="he

Out[10]: <seaborn.axisgrid.JointGrid at 0x7fb3045c9828>

Out[11]: <seaborn.axisgrid.PairGrid at 0x7fb3045ec1d0>

In [12]: sns.lmplot(x="Length of Membership", y="Yearly Amount Spent", data=customers)

Out[12]: <seaborn.axisgrid.FacetGrid at 0x7fb303a65a58>


```
In [13]: X = customers[["Avg. Session Length", "Time on App", "Time on Website", "Length of Meny = customers[["Yearly Amount Spent"]].as_matrix()

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state)

lm = LinearRegression()
lm.fit(X_train, y_train)

coefs = lm.coef_
print(coefs[0])

[25.98154972 38.59015875 0.19040528 61.27909654]
```

```
plt.xlabel("Y Test")
plt.ylabel("Y Predicted")
```

Out[18]: Text(0,0.5,'Y Predicted')


```
In [15]: num = y_test.shape[0]
    mae = np.sum(np.abs((y_test - y_pred)))/num
    mse = np.sum(np.power(y_test - y_pred, 2))/num
    rmse = np.sqrt(mse)
    print(f"MAE: {mae}\nMSE: {mse}\nRMSE: {rmse}")
```

MAE: 7.228148653430852 MSE: 79.81305165097494 RMSE: 8.933815066978662

In [0]: # wysoki wspóczynnik Web on App wskazuje, i wystpuje (rosnca) zaleno pomidzy wspomnian
dlatego firma powinna by zorientowana na rozwój aplikacji mobilnej
c_df = pd.DataFrame(data=coefs.T, index=["Avg. Session Length", "Time on App", "Time or
c_df

Out[0]:			Coefficients
	Avg.	Session Length	25.981550
	Time	on App	38.590159
	Time	on Website	0.190405
	Lengt	ch of Membership	61.279097