Distance Vector Routing

Credits: Prof. Sangtae Ha

Distance Vector:

Path-selection model:

- -- Destination Based
- -- Load-insensitive (e.g., static link weights)
- -- Minimum hop count or sum of link weights

Distance Vector: Bellman-Ford Algo

- Define distances at each node x
 - $d_x(y) = cost of least-cost path from x to y$
- Update distances based on neighbors
 - $-d_x(y) = min \{c(x,v) + d_v(y)\}$ over all neighbors v

Used in RIP and EIGRP

Distance Vector Example

$$d_{y}(z) = 1$$
$$d_{x}(z) = 4$$

$$d_{v}(z) = min\{2+d_{v}(z),$$

 $1+d_{x}(z)\}$
= 3

Distance Vector Example (Cont.)

$$d_{u}(z) =$$
(A) 5 (B) 6 (C) 7

Distance Vector Example (Cont.)

Distance Vector Example 2: Step 1

	Optimum 1-hop paths Table for A Table for B					1					
Dst	Cst	r A Hop	Dst	Cst	Hop		4	E	3		1
A	0	A	A	4	A		2				
В	4	В	В	0	В		2			Y	
С	∞	_	С	∞	_	,				6 \	
D	∞	_	D	3	D						1
Е	2	Е	ш	∞	-		A		4		$\langle \cdot \rangle$
F	6	F	F	1	F						В
Та	Table for C		Та	ble fo	r D	Table for E			Та	ble fo	r F
Dst	Cst	Нор	Dst	Cst	Нор	Dst	Cst	Нор	Dst	Cst	Нор
A	∞	_	A	∞	_	A	2	A	A	6	A
В	8	-	В	3	В	В	8	_	В	1	В
C	0	С	C	1	С	C	8	_	C	1	С
D	1	D	D	0	D	D	∞	_	D	8	_
E	∞	_	Е	∞	_	E	0	E	Е	3	E
F	4	F	F	∞	_	F	3	F	F	0	F

Explanation:

- 1. Initially all the nodes will only know the distance of its immediate neighbors.
- 2. Hence, the table for each node comprises of the Destination (Dst), Cost(Cst), Next hop for every other router in the network from an originating router.
- Consider node A. A is connected to routers B,E and F directly. Hence, the link costs to them is stated in the table along with the next hop. All rest nodes cost is infinite from node A for now.
- 4. Such table is generated for every other node.

Distance Vector Example 2: Step 2

	Optimum 2-hop paths										
	Table for A		Table for				1	E	3		1
Dst	Cst	Hop	Dst	Cst	Hop						
A	0	A	A	4	A		2			TO THE	
В	4	В	В	0	В						
С	7	F	С	2	F	,				6	
D	7	В	D	3	D		4				1
Е	2	E	E	4	F		A		4		
F	5	Е	F	1	F						В
Ta	ble fo	r C	Та	ble fo	r D	Ta	ble fo	r E	Ta	ble fo	r F
Dst	Cst	Нор	Dst	Cst	Нор	Dst	Cst	Нор	Dst	Cst	Нор
A	7	F	A	7	В	A	2	A	A	5	В
В	2	F	В	3	В	В	4	F	В	1	В
С	0	С	С	1	С	С	4	F	С	1	С
D	1	D	D	0	D	D	∞	_	D	2	С
E	4	F	Е	∞	-	E	0	Е	E	3	E
F	1	F	F	2	С	F	3	F	F	0	F

Explanation:

Each node has reported the information it had in the preceding step to its immediate neighbors

- 1. Now every router will give its routing table generated in first step to their neighbor.
- 2. Eg: E, B and F will give their routing tables to A.
- A will now check if it is able to reach more nodes at a lower cost.
- 4. After receiving routing table of E,B and F; A will be able to reach C and D which was previously infinite.
- 5. It also gets that to reach F, initially marked with cost 6, has got a lower cost path of 5 via E.
- 6. This is done for all the nodes.
- 7. Such process of sending routing table to its neighbors will keep happening till the entire network converges. (next slide)

Distance Vector Example 2: Step 3

Or	otimu	m 3-h	on na	ths							
	Table for A		Table for B					E	2		4
Dst	Cst	Нор	Dst	Cst	Нор		\mathcal{T}		3		,
A	0	A	A	4	A		2			K	
В	4	В	В	0	В				/		
С	6	Е	С	2	F	,		/		6	_
D	7	В	D	3	D		4				1
Е	2	Е	E	4	F	1	A		4		
F	5	Е	F	1	F						В
Та	ble fo	r C	Table for D			Ta	ble fo	r E	Та	ble fo	r F
Dst	Cst	Нор	Dst	Cst	Нор	Dst	Cst	Нор	Dst	Cst	Нор
A	6	F	A	7	В	A	2	A	A	5	В
В	2	F	В	3	В	В	4	F	В	1	В
С	0	С	C	1	С	C	4	F	C	1	С
D	1	D	D	0	D	D	5	F	D	2	C
D E	1 4	D F	D E	5	C	DE	0	E	D E	3	E