01 binary-classification Azure ML Designer

1. go to marketplace/azure machine learning

2.Review and create... and then go to the resource

- 3. Click on launch studio
- 4. Explore the UI
- 5...

01 binary-classification Azure ML Designer

The model will take in a set of features and the label will be the income.

We are going to create a pipeline to create the Machine Learning model.

An Azure Machine Learning pipeline is a workflow that is used to execute a machine learning task.

We can develop the pipeline in the designer of the Azure Machine Learning studio. We can drag data sets and components onto the canvas for our pipeline.

6. Compute instance

6. Run the pipeline and check the splits

7.

Split data

- Our aim is to build a machine learning model. This model will be used to classify the income of individuals into 2 classes - <=50K or > 50K
- The first step was to get the data set and split the set into a training and test set. The training set would have 70% of the data and the test set would have 30% of the data.

8.

Train Model

- Next we need to add the component to train the model. We will add as the input the 70% of the split data phase.
- We will add the algorithm which will be used to train the machine learning model.

9.

Train Model

• We will also ensure to train the model based on the income column. This is our label.

10

Score Model

• We can now score the model based on the 30% test data. This will help us understand how efficient the model is when it comes to predicting the income value.

11.

Evaluate Model

• Based on the scoring and the test data, we can finally evaluate the model.

12.

AUC 0.901

Two-class Logistic regression

Confusion Matrix

This table gives us a summary of the results when it comes to what the model was supposed to predict and the actual prediction.

True	False
Positives	Positives
False	True
Negatives	Negatives

Accuracy - This tells how often the classifier is right in predicting results.

Accuracy	0.847	True Positives + True Negatives
Precision	0.711	True Positives + True Negatives + False Positives + False Negatives
Recall	0.6	
F1 Score	0.651	Precision - This tells to what extend does the model accurately predict results.