

EXAMINATIONS – 2023 TRIMESTER 2 FRONT PAGE

MURPH101 SCIENTIFIC BASIS OF MURPHY'S LAWS OCT 1, 2023

Time allowed: THREE HOURS

Permitted OPEN BOOK

materials: Any materials except communication via electronic devices.

Instructions: Attempt ALL **5** questions

The exam will be marked out of a total of 20 marks.

You can use the formulas listed at the end without rederiving them,

unless explicitly requested.

FIRST SECTION

- 1. Multiple choice questions. Briefly justify your answer if unsure.
 - (a) The reflectance of a planar multilayer structure increases with the addition of a metal layer:
 - i. only if placed in front
 - ii. only if placed behind
 - iii. it depends on the structure
 - **(b)** At the Brewster angle,
 - i. TE-polarised light is fully reflected
 - ii. TM-polarised is fully transmitted
 - iii. the transmitted wave is evanescent
 - (c) A light ray propagating between points A and B in a medium with inhomogeneous but isotropic refractive index
 - i. finds the shortest distance between A and B
 - ii. finds the extremum travel time between A and B
 - iii. has a different trajectory depending on the light polarisation

[8 marks]

- **2.** Solving the Laplace equation.
 - (a) Describe the key steps involved in the method of separation of variables for solving the Laplace equation in 3 dimensions.
 - **(b)** How does the choice of a coordinate system affect the derivation?

[5 marks]

3. Question text.

Maybe some extra lines, etc.

Maybe some more lines, etc.

[2 marks]

4. Derive the following expressions in spherical coordinates.

$$\nabla f = \frac{\partial f}{\partial r} \hat{\mathbf{r}} + \frac{1}{r} \frac{\partial f}{\partial \theta} \hat{\boldsymbol{\theta}} + \frac{1}{r \sin \theta} \frac{\partial f}{\partial \varphi} \hat{\boldsymbol{\varphi}}$$

$$\nabla \cdot \mathbf{A} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 A_r \right) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta A_\theta \right) + \frac{1}{r \sin \theta} \frac{\partial A_\varphi}{\partial \varphi}$$

$$\nabla \times \mathbf{A} = \frac{1}{r \sin \theta} \left(\frac{\partial}{\partial \theta} \left(A_\varphi \sin \theta \right) - \frac{\partial A_\theta}{\partial \varphi} \right) \hat{\mathbf{r}}$$

$$+ \frac{1}{r} \left(\frac{1}{\sin \theta} \frac{\partial A_r}{\partial \varphi} - \frac{\partial}{\partial r} \left(r A_\varphi \right) \right) \hat{\boldsymbol{\theta}}$$

$$+ \frac{1}{r} \left(\frac{\partial}{\partial r} \left(r A_\theta \right) - \frac{\partial A_r}{\partial \theta} \right) \hat{\boldsymbol{\varphi}}$$

$$\nabla^2 f = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \varphi^2}$$

[1 mark]

* * * * * * * * * * * * * * *

APPENDIX: Misc. formulas from the lecture notes

Vector calculus identities

$$\nabla (fg) = f \nabla g + g \nabla f$$

$$\nabla (\mathbf{A} \cdot \mathbf{B}) = \mathbf{A} \times (\nabla \times \mathbf{B}) + \mathbf{B} \times (\nabla \times \mathbf{A}) + (\mathbf{A} \cdot \nabla) \mathbf{B} + (\mathbf{B} \cdot \nabla) \mathbf{A}$$

$$\nabla \cdot (f\mathbf{A}) = f(\nabla \cdot \mathbf{A}) + \mathbf{A} \cdot (\nabla f)$$

$$\nabla \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot (\nabla \times \mathbf{A}) - \mathbf{A} \cdot (\nabla \times \mathbf{B})$$

$$\nabla \times (f\mathbf{A}) = f(\nabla \times \mathbf{A}) - \mathbf{A} \times (\nabla f)$$

$$\nabla \times (f\mathbf{A} \times \mathbf{B}) = (\mathbf{B} \cdot \nabla) \mathbf{A} - (\mathbf{A} \cdot \nabla) \mathbf{B} + (\nabla \cdot \mathbf{B}) \mathbf{A} - (\nabla \cdot \mathbf{A}) \mathbf{B}$$

Cylindrical coordinates:

$$\begin{cases} x = s \cos \varphi \\ y = s \sin \varphi \\ z = z \end{cases}$$

$$\nabla f = \frac{\partial f}{\partial s} \hat{\mathbf{s}} + \frac{1}{s} \frac{\partial f}{\partial \varphi} \hat{\boldsymbol{\varphi}} + \frac{\partial f}{\partial z} \hat{\mathbf{z}}$$

$$\nabla \cdot \mathbf{A} = \frac{1}{s} \frac{\partial}{\partial s} (sA_s) + \frac{1}{s} \frac{\partial A_{\varphi}}{\partial \varphi} + \frac{\partial A_z}{\partial z}$$

$$\nabla \times \mathbf{A} = \left(\frac{1}{s} \frac{\partial A_z}{\partial \varphi} - \frac{\partial A_{\varphi}}{\partial z} \right) \hat{\mathbf{s}} + \left(\frac{\partial A_s}{\partial z} - \frac{\partial A_z}{\partial s} \right) \hat{\boldsymbol{\varphi}} + \frac{1}{s} \left(\frac{\partial}{\partial s} (sA_{\varphi}) - \frac{\partial A_s}{\partial \varphi} \right) \hat{\mathbf{z}}$$

$$\nabla^2 f = \frac{1}{s} \frac{\partial}{\partial s} \left(s \frac{\partial f}{\partial s} \right) + \frac{1}{s^2} \frac{\partial^2 f}{\partial \varphi^2} + \frac{\partial^2 f}{\partial z^2}$$

Spherical coordinates:

$$\begin{cases} x = r \sin \theta \cos \varphi \\ y = r \sin \theta \sin \varphi \\ z = r \cos \theta \end{cases}$$

$$\nabla f = \frac{\partial f}{\partial r} \hat{\mathbf{r}} + \frac{1}{r} \frac{\partial f}{\partial \theta} \hat{\boldsymbol{\theta}} + \frac{1}{r \sin \theta} \frac{\partial f}{\partial \varphi} \hat{\boldsymbol{\varphi}}$$

$$\nabla \cdot \mathbf{A} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 A_r \right) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta A_\theta \right) + \frac{1}{r \sin \theta} \frac{\partial A_\varphi}{\partial \varphi}$$

$$\nabla \times \mathbf{A} = \frac{1}{r \sin \theta} \left(\frac{\partial}{\partial \theta} \left(A_\varphi \sin \theta \right) - \frac{\partial A_\theta}{\partial \varphi} \right) \hat{\mathbf{r}}$$

$$+ \frac{1}{r} \left(\frac{1}{\sin \theta} \frac{\partial A_r}{\partial \varphi} - \frac{\partial}{\partial r} \left(r A_\varphi \right) \right) \hat{\boldsymbol{\theta}}$$

$$+ \frac{1}{r} \left(\frac{\partial}{\partial r} \left(r A_\theta \right) - \frac{\partial A_r}{\partial \theta} \right) \hat{\boldsymbol{\varphi}}$$

$$\nabla^2 f = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \varphi^2}$$