Text Processing

Natural Language Processing

Master in Business Analytics and Big Data

acastellanos@faculty.ie.edu

- Corpus: Set of documents (our dataset)
- Documents: Basic Unit or object (each row in the dataset)
- Words <> Terms
 - Words: Components of a document (what you see in a .txt)
 - **Terms**: Words processed: the features of the documents (columns in our dataset)

The Bag of Words Representation

I love this movie! It's sweet, but with satirical humor. The dialogue is great and the adventure scenes are fun... It manages to be whimsical and romantic while laughing at the conventions of the fairy tale genre. I would recommend it to just about anyone. I've seen it several times, and I'm always happy to see it again whenever I have a friend who hasn't seen it yet!

Figure from J&M 3rd ed. draft, sec 7.1

> inspect(tdm[20:30, 1:30])

```
<<TermDocumentMatrix (terms: 11, documents: 30)>>
Non-/sparse entries: 1/329
Sparsity
                   : 100%
Maximal term length: 7
Weighting
                   : term frequency (tf)
         Docs
Terms
  abs
             0000000
                                   0
                                                                  0
                                                                     0
  absb.
              0000000
                                   0
                                                            O
                                                                     0
                                                                              0
                                                                                       0
  absenc
  absolut 0 0
              \mathbf{0}
                                   0
                                                            0
                                                                     0
                                                                              0
                                                                                       0
  absorb.
                                   0
                                                      0
                                                            0
                                                                     0
                                                                              0
                                                                                       0
  abu
                  000
                                   0
                                                            0
                                                                              0
                                                                                       0
  abus.
                                   0
                                                               0
                                                                              0
                                                                                       0
                000000
  abut
                000000
                                   0
                                                      0
                                                               0
                                                                     0
                                                                              0
  academi 0 0
             0000000
                                                                                       0
  acceler 0 0
             0000000
                                                                              0
                                                                                       0
  accept
          000000000
```

Binary Weighting

	Anthony	Julius	The	Hamlet	Othello	Macbeth	
	and	Caesar	Tempest				
	Cleopatra						
Anthony	1	1	0	0	0	1	
Brutus	1	1	0	1	0	0	
Caesar	1	1	0	1	1	1	
Calpurnia	0	1	0	0	0	0	
CLEOPATRA	1	0	0	0	0	0	
MERCY	1	0	1	1	1	1	
WORSER	1	0	1	1	1	0	

Each document is represented as a binary vector $\in \{0,1\}^{|V|}$.

TF Weighting

	Anthony	Julius	The	Hamlet	Othello	Macbeth	
	and	Caesar	Tempest				
	Cleopatra						
Anthony	157	73	0	0	0	1	
Brutus	4	157	0	2	0	0	
Caesar	232	227	0	2	1	0	
Calpurnia	0	10	0	0	0	0	
CLEOPATRA	57	0	0	0	0	0	
MERCY	2	0	3	8	5	8	
WORSER	2	0	1	1	1	5	

Each document is now represented as a count vector $\in \mathbb{N}^{|V|}$.

Bag-of-words

```
In [1]: import nltk
          from sklearn.feature extraction.text import CountVectorizer
          import pandas as pd
In [2]: shakespeare df = pd.DataFrame(columns=["book", "words"])
          for ii, book in enumerate(nltk.corpus.shakespeare.fileids()):
               shakespeare df.loc[ii] = (book, " ".join(nltk.corpus.shakespeare.words(book)))
          shakespeare df
Out[2]:
                   book
                                                              words
             a_and_c.xml
                            The Tragedy of Antony and Cleopatra Dramatis P...
               dream.xml
                           A Midsummer Night 's Dream Dramatis Personae ...
               hamlet.xml
                            The Tragedy of Hamlet, Prince of Denmark Dram...
             j caesar.xml
                            The Tragedy of Julius Caesar Dramatis Personae...
             macbeth.xml The Tragedy of Macbeth Dramatis Personae DUNCA...
           5 merchant.xml
                           The Merchant of Venice Dramatis Personae The D...
               othello.xml
                              The Tragedy of Othello , the Moor of Venice Dr ...
          7 r_and_j.xml
                             The Tragedy of Romeo and Juliet Text placed in...
In [3]: tf weighting = CountVectorizer()
          tf shakespeare = tf weighting.fit transform(shakespeare df.words)
          pd.DataFrame(tf shakespeare.A, columns=tf weighting.get feature names())
Out[3]:
             1992 1996 1998 1999 abandon abate abatements abbey abhor abhorred ... your yours yourself yourselves youth youthful youths zeal zone zo
                                0
                                         0
                                               0
                                                          0
                                                                 0
                                                                       0
                                                                                       140
                                                                                               11
                                                                                                       15
                                                                                                                                         0
                                                                                                                                              0
                                                                                                                                                   0
                           0
                0
                     0
                           0
                                0
                                         0
                                               1
                                                          0
                                                                 0
                                                                       0
                                                                                0 ...
                                                                                       123
                                                                                               4
                                                                                                       3
                                                                                                                  3
                                                                                                                         7
                                                                                                                                 0
                                                                                                                                         0
                                                                                                                                             0
                                                                                                                                                   0
                                                                                       242
                                                                                                       15
                                                                                                                        16
                                         0
                                                                 0
                                                                                                                                             0
                           0
                                0
                                         0
                                               0
                                                                 0
                                                                       0
                                                                                       130
                                                                                              10
                                                                                                       12
                                                                                                                  6
                                                                                                                         0
                                                                                                                                 1
                                                                                                                                             0
                                                                                                                                                   0
                                                                                 1 ... 121
                0
                     0
                           0
                                0
                                         0
                                               1
                                                          0
                                                                 0
                                                                       0
                                                                                      175
                                                                                              16
                                                                                                       4
                                                                                                                  0
                                                                                                                         8
                                                                                                                                 1
                                                                                                                                        0
                                                                                                                                             1
                                                                                                                                                   0
                                               0
                                                                                       205
                                                                                                                         5
                                                                                                                                 0
                                0
                                                                       3
                                                                                                       16
                                                                                                                                             0
                                                                                                                                                   0
                                         0
                                               1
                                                          0
                                                                 1
                                                                       0
                                                                                 1 ... 103
                                                                                               4
                                                                                                        5
                                                                                                                         6
                                                                                                                                 3
                                                                                                                                         0
                                                                                                                                             0
                                                                                                                                                   0
```

8 rows × 11316 columns

TF-IDF Weighting

- Based on the idea of Zipf-Law
 - There are a few very frequent terms and very many very rare terms.

Zipf's law The i^{th} most frequent term has frequency cf_i proportional to 1/i: $cf_i \propto \frac{1}{i}$

 cfi is collection frequency: the number of occurrences of the term ti in the collection

Word	Count f	${\rm rank}\ r$	fr
the	3332	1	3332
and	2972	2	5944
a	1775	3	5235
he	877	10	8770
but	410	20	8400
be	294	30	8820
there	222	40	8880
one	172	50	8600
two	104	100	10400
turned	51	200	10200
comes	16	500	8000
family	8	1000	8000
brushed	4	2000	8000
Could	2	4000	8000
Applausive	1	8000	8000

- TF-IDF Weighting
 - Rare terms are more informative than frequent terms (e.g., arachnocentric).
 - We want high weights for rare terms like arachnocentric.
 - We want to take into account the term frequency

$$w_{t,d} = (1 + \log \mathsf{tf}_{t,d}) \cdot \log \frac{N}{\mathsf{df}_t}$$

tf-idf weight

$$w_{t,d} = (1 + \log \mathsf{tf}_{t,d}) \cdot \log \frac{N}{\mathsf{df}_t}$$

$$w_{arachnocentric,d_x} = (1 + \log(10)) \cdot \log\left(\frac{10^5}{1}\right) = 2 \cdot 5$$

$$w_{he,d_x} = (1 + \log(877)) \cdot \log\left(\frac{10^5}{10^4}\right) = 4,94 \cdot 1$$

TF-IDF Weighting

	Anthony	Julius	The	Hamlet	Othello	Macbeth	
	and	Caesar	Tempest				
	Cleopatra						
Anthony	5.25	3.18	0.0	0.0	0.0	0.35	
Brutus	1.21	6.10	0.0	1.0	0.0	0.0	
Caesar	8.59	2.54	0.0	1.51	0.25	0.0	
Calpurnia	0.0	1.54	0.0	0.0	0.0	0.0	
CLEOPATRA	2.85	0.0	0.0	0.0	0.0	0.0	
MERCY	1.51	0.0	1.90	0.12	5.25	0.88	
WORSER	1.37	0.0	0.11	4.15	0.25	1.95	

Each document is now represented as a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$.

```
In [5]: from sklearn.feature_extraction.text import TfidfVectorizer
    tf_idf_weighting = TfidfVectorizer()
    tf_idf_shakespeare = tf_idf_weighting.fit_transform(shakespeare_df.words)
    pd.DataFrame(tf_idf_shakespeare.A, columns=tf_idf_weighting.get_feature_names())
```

Out[5]:

	1992	1996	1998	1999	abandon	abate	abatements	abbey	abhor	abhorred	 your	yours	yourself	yourselves	1
	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	 0.062407	0.004903	0.006686	0.000627	0.00
	0.000000	0.000000	0.000000	0.000000	0.000000	0.001132	0.000000	0.000000	0.000000	0.000000	 0.087673	0.002851	0.002138	0.003005	0.00
:	0.000000	0.000000	0.000000	0.000000	0.000000	0.000551	0.000869	0.000000	0.000000	0.000628	 0.083986	0.002082	0.005206	0.000488	0.00
	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	 0.071664	0.005513	0.006615	0.004649	0.00
	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.001116	 0.074558	0.001849	0.001232	0.002598	0.00
	0.000000	0.000000	0.000000	0.000000	0.000000	0.000843	0.000000	0.000000	0.000000	0.000000	 0.092911	0.008495	0.002124	0.000000	0.00
	0.000000	0.000000	0.000000	0.000000	0.000973	0.000000	0.000000	0.000000	0.002918	0.000000	 0.079621	0.002330	0.006214	0.000000	0.00
	0.001163	0.001163	0.001163	0.001163	0.000000	0.000738	0.000000	0.001163	0.000000	0.000841	 0.047856	0.001858	0.002323	0.000000	0.0

8 rows × 11316 columns


```
and
                    are
                                 at
                                      be
                                           by
                                                for
                                                      from
      an
has
     he
                          it
                                      of
                                                that
                                                      the
            in
                                 its
                                           on
      was were will with
to
  Figure 2.5: A stop list of 25 semantically non-selective words
             which are common in Reuters-RCV1.
```

- Why?:
 - Extremely common
 - Uninformative: Little discriminative value
- How?:
 - Stoplists
 - Domain Specific stopwords (e.g., HTML tags)
 - Why not using TF-IDF?

StopWords

```
In [3]: from nltk.corpus import stopwords
        stopwords.fileids()
Out[3]: [u'arabic',
         u'azerbaijani',
         u'danish',
         u'dutch',
         u'english',
         u'finnish',
         u'french',
         u'german',
         u'greek',
         u'hungarian',
         u'indonesian',
         u'italian',
         u'kazakh',
         u'nepali',
         u'norwegian',
         u'portuguese',
         u'romanian',
         u'russian',
         u'spanish',
         u'swedish',
         u'turkish']
In [5]: stopwords.words("english")[:25]
Out[5]: [u'i',
         u'me',
         u'my',
         u'myself',
         u'we',
         u'our'
         u'ours',
         u'ourselves',
         u'you',
         u"you're",
         u"you've",
         u"you'll",
         u"you'd",
         u'your',
         u'yours',
         u'yourself',
         u'yourselves',
         u'ĥe',
         u'him',
         u'his',
         u'himself',
         u'she',
         u"she's",
         u'her',
         u'hers']
```

Regular Expressions

- A formal language for specifying text strings
- How can we search for any of these?
 - woodchuck
 - woodchucks
 - Woodchuck
 - Woodchucks

Regular Expressions: Disjunctions

Letters inside square brackets []

Pattern	Matches
[wW]oodchuck	Woodchuck, woodchuck
[1234567890]	Any digit

Ranges [A-Z]

Pattern	Matches	
[A-Z]	An upper case letter	Drenched Blossoms
[a-z]	A lower case letter	my beans were impatient
[0-9]	A single digit	Chapter $1:$ Down the Rabbit Hole

Regular Expressions: Disjunctions

Negations [^Ss]

Pattern	Matches	
[^A-Z]	Not an upper case letter	O <u>v</u> fn pripetchik
[^Ss]	Neither 'S' nor 's'	<pre>L have no exquisite reason"</pre>
[^e^]*	Neither e nor ^	Look here
a^b	The pattern a^b	Look up <u>a^b</u> now

^{*}Carat means negation only when first in []

^{*}Carat means negation only between []

Regular Expressions: More Disjunction

- Woodchucks is another name for groundhog!
- The pipe | for disjunction

Pattern	Matches
groundhog woodchuck	groundhog woodchunk
yours mine	yours mine
a b c	= [abc]
[gG]roundhog [Ww]oodchuck	groundhog Woodchunk woodchunk Groundhog

Regular Expressions: Wildcards ?

Pattern	Matches	
colou?r	Optional previous char	<u>color</u> <u>colour</u>
oo*h!	0 or more of previous char	oh! ooh! oooh!
o+h!	1 or more of previous char	oh! ooh! oooh!
baa+		baa baaa baaaa
beg.n	Any symbol	begin begun beg3n

Regular Expressions: Anchors ^ \$

Pattern	Matches				
^[A-Z]	Palo Alto				
^[^A-Za-z]	1 "Hello"				
\.\$	The end.				
.\$	The end? The end!				

Regular Expressions: Example

Find me all instances of the word "the" in a text.

text= The subject of the report is focused on theology as well as other religious aspects

```
re.findall(r'The', text)

Misses capitalized examples

re.findall(r'[tT]he', text)

Incorrectly returns other or theology

re.findall(r'[^a-zA-Z][tT]he[^a-zA-Z]', text)
```

Regular Expressions: Example

- Regular expressions play a surprisingly large role
 - Sophisticated sequences of regular expressions are often the first model for any text processing text
 - Named Entities, Dates, web-links...
- For harder tasks, we use machine learning classifiers
 - But regular expressions are used as features in the classifiers
 - Can be very useful in capturing generalizations

Validating Email Addresses

Authentication system requires users to log in before they can be allowed access to the system, usually using the e-mail as nickname. We can use regular expression to check if an email address supplied is in a valid format.

```
import re

email = "example@gmail.com"

if not re.match(re.compile(r'^.+@[^.].*\.[a-z]{2,10}$', flags=re.IGNORECASE), email):
    print("Enter a valid email address")
else:
    print("Email address is valid")
```

Email address is valid

```
email = "example@gmail"

if not re.match(re.compile(r'^.+@[^.].*\.[a-z]{2,10}$', flags=re.IGNORECASE), email):
    print("Enter a valid email address")
else:
    print("Email address is valid")
```

Enter a valid email address

Filtering Unwanted Content

Regular expressions can also be used to filter certain undesired words out of post comments, which is particularly useful in blog posts and social media.

```
curse_words = ["f---", "bar", "baz"]
comment = "This string contains f---."
curse_count = 0

for word in curse_words:
   if re.search(word, comment):
        curse_count += 1

print("Comment has " + str(curse_count) + " curse word(s). Watch your mouth!")
```

Comment has 1 curse word(s). Watch your mouth!

Word Tokenization

Split text (document) into words and sentences

There was an earthquake near D.C. I've even felt it in Philadelphia, New York, etc.

```
re.findall(r'\w+|\S\w*', raw)
```

```
There + was + an + earthquake + near + D.C.
```

How many words?

- Special Signs
 - @dbamman have you seen this:) http://popvssoda.com
- I do uh main- mainly business data processing
 - Fragments, filled pauses
- Seuss's cat in the hat is different from other cats!
 - Lemma: same stem, part of speech, rough word sense
 - cat and cats = same lemma
 - Wordform: the full inflected surface form
 - cat and cats = different wordforms

How many words?

N = number of tokens

```
tokens = nltk.wordpunct_tokenize(raw)
text = nltk.Text(tokens)
```

V = vocabulary = Types = set of tokens

```
words = [w.lower() for w in text]
vocab = sorted(set(words))
```

Church and Gale (1990): $|V| > O(N^{\frac{1}{2}})$

	Tokens = N	Types = V
Switchboard phone conversations	2.4 million	20 thousand
Shakespeare	884,000	31 thousand
Google N-grams	1 trillion	13 million

Issues in Tokenization

```
Finland's capital → Finland Finlands Finland's ?

what're, I'm, isn't → What are, I am, is not

Hewlett-Packard → Hewlett Packard ?

state-of-the-art → state of the art ?

Lowercase → lower-case lowercase lower case?

San Francisco → one token or two?

m.p.h., PhD. → ??
```

Language Issues

- French
 - L'ensemble → one token or two?
 - L?L'?Le?
 - Want l'ensemble to match with un ensemble

- German noun compounds are not segmented
 - Lebensversicherungsgesellschaftsangestellter
 - 'life insurance company employee'
 - German information retrieval needs compound splitter

Language Issues

- Chinese and Japanese no spaces between words:
 - 莎拉波娃现在居住在美国东南部的佛罗里达。
 - 莎拉波娃 现在 居住 在 美国 东南部 的 佛罗里达
 - Sharapova now lives in US southeastern Florida
- Further complicated in Japanese, with multiple alphabets intermingled
 - Dates/amounts in multiple formats

Maximum Matching Word Segmentation Algorithm

- Given a wordlist of Chinese, and a string.
 - 1. Start a pointer at the beginning of the string
 - 2. Find the longest word in dictionary that matches the string starting at pointer
 - 3. Move the pointer over the word in string
 - 4. Go to 2
- Doesn't generally work in English!
- But works astonishingly well in Chinese

Sentence Segmentation

Sentence Segmentation

- !, ? are relatively unambiguous
- Period "." is quite ambiguous
 - Sentence boundary
 - Abbreviations like Inc. or Dr.
 - Numbers like .02% or 4.3
- Use a pre-compiled sentence tokenizer

```
sent_tokenizer=nltk.data.load('tokenizers/punkt/english.pickle')
text = nltk.corpus.gutenberg.raw('chesterton-thursday.txt')
sents = sent_tokenizer.tokenize(text)
```

Determining if a word is end-of-sentence: a Decision Tree

Sentence Segmentation

More sophisticated decision tree features

- Case of word with ".": Upper, Lower, Cap, Number
- Case of word after ".": Upper, Lower, Cap, Number
- Numeric features
 - Length of word with "."
 - Probability(word with "." occurs at end-of-s)
 - Probability(word after "." occurs at beginning-of-s)

NLTK Tokenizers

http://www.nltk.org/api/nltk.tokenize.html

- nltk.tokenize.regexp.RegexpTokenizer
- nltk.tokenize.regexp.WhitespaceTokenizer
- nnltk.tokenize.regexp.WordPunctTokenizer
- nltk.tokenize.simple.LineTokenizer
- nltk.tokenize.mwe.MWETokenizer

- nltk.tokenize.casual.TweetTokenizer
- nltk.tokenize.stanford.CoreNLPTokenize

Normalization

- Need to "normalize" terms
 - Information Retrieval: indexed text & query terms must have same form.
 - We want to match U.S.A. and USA
- We implicitly define equivalence classes of terms
 - e.g., deleting periods in a term
- Alternative: asymmetric expansion:

Enter: window Search: window, windows

Enter: windows Search: Windows, windows, window

Enter: Windows Search: Windows

Potentially more powerful, but less efficient

Case Folding

- Applications like IR: reduce all letters to lower case
 - Since users tend to use lower case w.lower()
 - Possible exception: upper case in mid-sentence?
 - e.g., General Motors
 - Fed vs. fed
 - SAIL vs. sail
- For sentiment analysis, MT, Information extraction
 - Case is helpful (*US* versus *us* is important)

Stemming

Minimal units of meaning

- Morpheme = Minimal unit of meaning in a word
 - Walk
 - -ed
- Simple Words cannot be broken down
 - Base words or stems
- Affixes are attached to modify meaning
 - Prefixes, infixes, suffixes, circumfixes

Stemming

Stemming is crude chopping of affixes

- language dependent
- e.g., automate(s), automatic, automation all reduced to automat.
- Porter's Algorithm: <u>Link</u>

```
porter = nltk.PorterStemmer()
[porter.stem(t) for t in tokens]
```

for example compressed and compression are both accepted as equivalent to compress.

for exampl compress and compress ar both accept as equival to compress

Stemming

Porter Stemmer

```
Step 1a

sses \rightarrow ss \quad caresses \rightarrow caress

ies \rightarrow i \quad ponies \rightarrow poni

ss \rightarrow ss \quad caress \rightarrow caress

s \rightarrow \emptyset \quad cats \rightarrow cat
```

Step 1b

```
(*v*)ing \rightarrow \emptyset walking \rightarrow walk sing \rightarrow sing \rightarrow sing (*v*)ed \rightarrow \emptyset plastered \rightarrow plaster ...
```

Step 2 (for long stems)

```
ational→ ate relational→ relate
izer→ ize digitizer → digitize
ator→ ate operator → operate
...
```

Step 3 (for longer stems)

```
al \rightarrow \emptyset revival \rightarrow reviv

able \rightarrow \emptyset adjustable \rightarrow adjust

ate \rightarrow \varnothing activate \rightarrow activ
```

Lemmatization

Reduce inflections or variant forms to base form

- am, are, is \rightarrow be
- car, cars, car's, cars' → car

```
wnl = nltk.WordNetLemmatizer()
[wnl.lemmatize(t) for t in tokens]
```

- the boy's cars are different colors \rightarrow the boy car be different color
- Find correct dictionary headword form

- Machine translation
 - Spanish quiero ('I want'), quieres ('you want') same lemma as querer 'want'

Stemming vs Lemmatization

- Lemmatization handles matching "car" to "cars" along with matching "am" to "be".
 - Must be a valid word
- Stemming handles matching "car" to "cars"
 - Might not be a valid word
- Lemmatization takes much more time than stemming!
- How much your application depends on getting the meaning of a word in context correct:
 - Machine Translation: lemmatization to avoid mistranslating a word.
 - **Information Retrieval** over a billion documents with 99% of your queries ranging from 1-3 words, you can settle for stemming.

Is it useful?

Benefits of deep NLP-based lemmatization for information retrieval

\mathbf{stem}	deriv	comp			MRR	
no	no	no	2005 2006	21.31 18.30	48.17 44.95	648/939 759/1308

Table 5: Baseline: without stemming

deriv	comp	ve	ar	MAP	MRR	P10	ret/rel
no	no	20		0.3227	0.6491	0.3400	795/939
		20	06	0.2797	0.6465	0.3860	987/1308
yes	no	20		0.3361	0.6983	0.3500	805/939
		20		0.2933	0.6307	0.4020	1042/1308
no	yes	20		0.3746	0.7074	0.3660	870/939
		20	-	0.3317	0.6827	0.4180	1099/1308
yes	yes	20		0.3926 0.3482	0.7698 0.6967	$0.3800 \\ 0.4300$	882/939 1152/1308
		20	ж	0.5482	0.0907	0.4300	1102/1308

Table 6: Results of different stemming methods without disambiguation

Try it by yourself!

Raw Text	Processed	Steps	Task	How Pipeline Suits Task
She sells seashells by the seashore.	['she','sell','seashell','seashore']	tokenization, lemmatization, stop word removal, punctuation removal	topic modeling	We only care about high level, thematic, and semantically heavy words
John is capable.	John/PROPN is/VERB capable/ADJ ./PUNCT	tokenization, part of speech tagging	named entity recognition	We care about every word, but want to indicate the role each word plays to build a list of NER candidates
Who won? I didn't check the scores.	[u'who', u'win'], [u'i',u'do',u'not',u'check',u'score']	tokenization, lemmatization, sentence segmentation, punctuation removal, string encoding	sentiment analysis	We need all words, including negations since they can negate positive statements, but don't care about tense or word form

Some useful links

Cleaning Tweets:

https://github.com/hb20007/hands-on-nltk-tutorial/blob/master/6-1-Twitter-Stream-and-Cleaning-Tweets.ipynb

- Notebook for cleaning Twitter data based on RE
- How to Write a Spelling Corrector
 - Peter Norvig's Notebook

https://norvig.com/spell-correct.html