ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)"

ЖУРНАЛ ПРАКТИКИ

Студента 2 курса	Гординского Дмитрия Михайловича							
Институт №8 <u>«Информационные технологии и прикладная математика»</u>								
Кафедра №804 <u>«Теория вероятностей и компьютерное моделирование»</u>								
Учебная группа М8О-204Б-20								
Направление 01.03.04	Прикладная математика							
Вид практики Учебная (вычислительная) в Московском Авиационном Институте(НИУ)								
Руководитель практики от МАИ <u>3</u>	айцева О.Б.							
Гординский Д.М /	/ 11 июля 2022 г.							

1. Место и сроки проведения практики

Дата начала практики	29 <u>июня</u> 2022 г.	
Дата окончания практики	11 <u>июня</u> 2022 г.	
Наименование предприятия \underline{N}	ИОСКОВСКИЙ АВИАЦИОННЫ	ІЙ ИНСТИТУТ(НИУ)
Название структурного подра	аздления <u>Кафедра 804</u>	
2. Инструктаж по технике б	езопасности	
	/ 29 <u>июня</u> 2022 г.	
3. Индивидуальное задание	студенту	
1. Разобраться с теорией.		
2. Привести пример решения за	адачи.	
3. Написать отчет.		
4. План выполнения индиви	идуального задания	
1. Изучить теорию по Моделям	выживаемости.	
2. Ознакомиться с необходимых ским представлением.	ми библиотеками для работы с	с данными и их графиче
3. Решить задачу по анализу да	анных с применением методов	анализа выживаемости
Руководитель практики от М	'АИ:/	
	/ 29 <u>июня</u> 2022 г.	
5. Отзыв руководителя праг Задание на практику выполне чете студента, полностью соог оценку отлично.	ено в полном объеме. Матери	
Руководитель	/	/ 11 <u>июля</u> 2022 г.

Отчет студента

Содержание

1	Что такое "Анализ выживаемости"?	3
	1.1 Основные понятия	3
	1.1.1 Функция выживания (Survival function)	3
	1.1.2 Функция риска (Hazard function)	
	1.1.3 Цензурирование (censoring)	4
	1.1.4 Медиана ожидаемого времени жизни (median number of survival days)	4
	1.1.5 Доверительный интервал (confidence interval)	4
	1.1.6 Усечение (truncation)	4
	1.1.7 Оценка Каплана — Мейера, оценка Нельсона — Аалена	4
	1.2 Пример решения задачи	(
	1.2.1 Проанализируем данные пола:	(
	1.2.2 Применяем Оценку Каплана — Мейера	
	1.2.3 Применяем Оценку Нельсона — Аалена	

1 Что такое "Анализ выживаемости"?

Анализ выживаемости — набор статистических моделей, благодаря которым можно оценить вероятность наступления того или иного события. Анализ занимается моделированием процессов наступления интересующих нас (критических) событий для элементов той или иной совокупности (изначально — «смерти» для элементов совокупности живых существ).

Интересным событием может быть что угодно. Это может быть фактическая смерть, рождение, выход на пенсию и т. д.

Hазвание "survival analysis" взято из медицины, т.к. цель анализа заключается в изучении продолжительности жизни пациента после приема препарата или других факторов влияния на здоровье.

1.1 Основные понятия

1.1.1 Функция выживания (Survival function)

Пусть T — неотрицательная случайная величина, представляющая собой время ожидания до наступления некоторого события. Для простоты будем использовать терминологию анализа выживаемости, называя исследуемое событие «смертью», а время ожидания – временем «выживания»

 Φ ункция выживания сопоставляет некоторому числу t вероятность того, что случайная величина T примет значение, не меньшее t. Иначе говоря, это вероятность того, что некоторое состояние «проживет» как минимум t единиц времени:

$$S(t) = \mathbb{P}\{T > t\} = 1 - \mathbb{P}\{T \le t\}$$

Например, если мы хотим знать, какова вероятность того, что безработный индивид не сможет найти работу в течение полугода после начала поиска, то достаточно рассмотреть функцию выживания для t=6 месяцев.

1.1.2 Функция риска (Hazard function)

 Φ ункцию риска можно охарактеризовать как вероятность того, что событие произойдет за бесконечно малый интервал времени при условии, что оно не произошло к моменту времени t.

$$h(t) = \lim_{dt \to 0} \frac{\mathbb{P}(t \le T < t + dt | T \ge t)}{dt}$$

Числитель этого выражения — условная вероятность того, что событие произойдет в интервале (t,t+dt), если оно не произошло ранее, а знаменатель — ширина интервала. Разделив одно на другое, получаем интенсивность осуществления события в единицу времени. Устремляя ширину интервала к нулю и переходя к пределу, получаем мгновенную интенсивность осуществления события.

Т. к. вышесвязанные функции связаны друг с другом, можно показать, что:

$$S(t) = \exp{(-\int_0^t h(x) dx)}$$

Интеграл в фигурных скобках в этом уравнении называют *кумулятивным риском* и обозначают как:

$$H(t) = \int_0^t h(x)dx$$

Можно рассматривать H(t) как сумму всех рисков при переходе от момента времени $0\ \mathrm{K}\ t$.

1.1.3 Цензурирование (censoring)

Цензурирование — вид неполноты информации, при котором наблюдения не содержат точной длительности изучаемого состояния. Различают цензурирование справа, слева и интервальное:

- 1. Цензурировано справа о наблюдаемом состоянии известно лишь, что оно продлилось не менее определенного времени.
- 2. Цензурировано слева о состоянии известно лишь, что оно продлилось не более определенного времени.
- 3. На интервале известны только границы длительности.

1.1.4 Медиана ожидаемого времени жизни (median number of survival days)

Это точка на временной оси, в которой кумулятивная функция выживания равна 0,5. Другими словами, медиана — время, выраженное в месяцах или годах, когда ожидается, что половина пациентов будет жива. Это означает, что шанс выжить после этого времени составляет 50 процентов.

1.1.5 Доверительный интервал (confidence interval)

Доверительный интервал — интервал, который покрывает неизвестный параметр с заданной надёжностью. Вероятность, с которой в условиях данного эксперимента полученные экспериментальные данные можно считать надежными (достоверными), называют доверительной вероятностью или надежностью. Величина доверительной вероятности определяется характером производимых измерений. Мы будем считать доверительную вероятность равной 95 %.

1.1.6 Усечение (truncation)

Усечением, или урезанием, называется вид неполноты информации, при котором какая-то область возможных значений длительности оказывается недостаточно представленной в выборке: состояния, длительность которых слишком велика или, наоборот, слишком мала, просто не включаются в анализируемые данные. В нашей задаче мы будем называть их (removed) — пациенты, которые больше не являются частью нашего эксперимента. Если человек умирает или подвергается цензуре, то он попадает в эту категорию.

1.1.7 Оценка Каплана — Мейера, оценка Нельсона — Аалена

При отсутствии цензурирования и усечения для оценивания закона распределения вероятностей может использоваться эмпирическая функция распределения, из которой легко получить оценки для других характеристик случайной величины: survival function etc. Но в нашем случае это невозможно, т. к. мы имеем дело с неполнотой данных. Эту проблему решают непараметрические методы оценки.

Оценка Каплана — Мейера

Оценка Каплана-Мейера — это непараметрическая статистика, используемая для оценки функции выживания на основе данных о жизни. В медицинских исследованиях он часто используется для измерения доли пациентов, живущих в течение определенного времени после лечения или постановки диагноза. Например: подсчет

количества времени, которое прожил конкретный пациент после того, как у него был диагностирован рак или началось его лечение.

$$\hat{S}(t) = \prod_{t_j \le t} \frac{n_j - d_j}{n_j}$$

 $\hat{S}(t)=$ Вероятность того, что испытуемый жив в момент времени t

 $n_i =$ Количество испытуемых, оставшихся в живых непосредственно перед моментом времени t_i

 $d_j = \ddot{\text{Количество}}$ событий в момент времени t_j Можем переписать формулу выше так:

$$S(t_j) = S(t_{j-1})(1-\frac{d_j}{n_j})$$

 $S(t_j)=$ Вероятность того, что испытуемый жив в момент времени t_j $n_j=$ Количество испытуемых, оставшихся в живых непосредственно перед моментом

 $d_j =$ Количество событий в момент времени t_j S(0) = 1 $t_0 = 0$ Оценка Нельсона — Аалена

Мы можем визуализировать совокупную информацию о выживании, используя функцию риска $Hельсона-Aaлeнa\ h(t)$. Функция риска h(t) дает нам вероятность того, что субъект, находящийся под наблюдением в момент времени t, имеет интересующее событие (смерть) в это время. Чтобы получить информацию о функции опасности, мы не можем преобразовать оценку Каплана-Мейера. Для этого существует соответствующая непараметрическая оценка кумулятивной функции опасности:

$$\hat{H}(t) = \sum_{t_j \leq t} \frac{d_j}{n_j}$$

где

 $\hat{H}(t)=$ Кумулятивная вероятность опасности

 $n_i =$ Количество испытуемых, оставшихся в живых непосредственно перед моментом времени t_i

 $d_{j}=$ Количество событий в момент времени t_{j}

1.2 Пример решения задачи

В качестве примера для анализа выживаемости возьмем заболевание Chronic Granulotomous Disease

1.2.1 Проанализируем данные пола:

для начала подключим необходимые библиотеки...

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from lifelines import KaplanMeierFitter
from lifelines import NelsonAalenFitter
# read data
data = pd.read_csv("cgd.csv")
head = data.head()
     Unnamed: 0 id
                                   random
                                                   age ... steroids propylac
                          center
                                          treat sex
                                                                          hos.cat tstart
               1 Scripps Institute 1989-06-07
                                          rIFN-g 2
                                                   12 ...
                                                                        0
                                                                         US:other
                                                                                          1
                                                                                            219
                 Scripps Institute 1989-06-07
                                          rIFN-g
                                                                                    219
                                                2
                                                                          US:other
                                                                                          2
                                                    12 ...
                                                                0
                                                                        0
                                                                                             373
                 Scripps Institute 1989-06-07
                                         rIFN-g
                                                    12 ...
                                                                         US:other
                                                                                    373
                                                                                             414
                                                                                                     0
                                                                0
                 Scripps Institute 1989-06-07
                                                                          US:other
                                                                                              8
                                        placebo
                                                1
                                                   15 ...
                                                                                     0
                 Scripps Institute 1989-06-07
                                         placebo
                                                                         US:other
data.loc[data.sex == "male", "sex"] = 1
data.loc[data.sex == "female", "sex"] = 2
plt.hist(data["sex"]) #shows hist sex of patient
plt.show()
```


1.2.2 Применяем Оценку Каплана — Мейера

```
kmf = KaplanMeierFitter()
# now we'll fit our values "time" and "dead"
# in our case we have "status" === "dead"

data.loc[:, "time"] = data.loc[:, "tstop"] - data.loc[:, "tstart"]
kmf.fit(durations = data["time"], event_observed = data["status"])
```

<lifelines.KaplanMeierFitter: "KM_estimate", fitted with 203 total observations, 127 rightcensored observations>

Сделаем таблицу событий

Нам это нужно для разделения данных по группам цензурирования

```
print(kmf.event_table)
```

##		removed	observed	censored	entrance	at_risk
##	event_at					
##	0.0	0	0	0	203	203
##	2.0	1	1	Θ	0	203
##	4.0	3	2	1	0	202
##	5.0	1	1	Θ	0	199
##	6.0	1	1	Θ	0	198
##						
##	371.0	1	0	1	0	7
##	373.0	2	1	1	0	6
##	376.0	1	0	1	0	4
##	382.0	1	0	1	0	3
##	388.0	2	0	2	0	2
##						
##	[154 rows	x 5 colum	nns]			

где

- event_at хранит значение временной шкалы для нашего набора данных. т. е. когда пациент наблюдался в нашем эксперименте или когда был проведен эксперимент, хранит значение дней выживания для субъектов.
- at risk хранит количество текущих пациентов, находящихся под наблюдением.

```
at\_risk = current patients at\_risk + entrance - removed
```

- entrance хранит значение новопришедших пациентов. Т. е. во время проведения эксперимента появлялись новые больные.
- *censored* если человек все еще жив по окончании эксперимента, то мы добавляем его в эту категорию.
- observed содержит количество умерших пациентов во время эксперимента.
- removed removed = observed + censored

Теперь найдем вероятность выживания для каждого момента времени и вероятность с доверительным интервалом:

```
kmf.survival_function_
plt.title("Оценка Каплана-Мейера")
plt.ylabel("Вероятность выживания")
kmf.plot()
csf = kmf.confidence_interval_survival_function_
plt.plot(csf["KM_estimate_lower_0.95"], label="lower")
plt.plot(csf["KM_estimate_upper_0.95"], label="upper")
plt.show()
```

Оценка Каплана-Мейера 1.0 KM_estimate 0.9 Вероятность выживания 8.0 0.7 0.6 0.5 0.4 0.3 0 50 100 150 200 300 400 250 350 timeline

По графику видно, что с течением времени вероятность выживания уменьшается. Найдем медиану времени выживания

```
print("Медиана времени выживания", kmf.median_survival_time_)
```

Медиана времени выживания 334.0

1.2.3 Применяем Оценку Нельсона — Аалена

Для начала найдем вероятность смерти для времени t

Сделаем график кумулятивной функции плотности и кумулятивной плотности с доверительным критерием

```
kmf.plot_cumulative_density()
ccf = kmf.confidence_interval_cumulative_density_
plt.plot(ccf["KM_estimate_lower_0.95"], label="lower")
plt.plot(ccf["KM_estimate_upper_0.95"], label="upper")
plt.title("Кумулятивная плотность (с довер. критерием)")
plt.xlabel("Кол-во дней")
plt.ylabel("Вероятность смерти")
```

