§1 Algebraische Grundstrukturen

1.1 **Definition** (Verknüpfung)

Sei M eine Menge. Eine Verknüpfung auf M ist eine Abb. $\circ: M \times M \to M, \ (a,b) \mapsto \circ (a,b).$ Statt $\circ (a,b)$ benutzen wir die Infixnotation $a \circ b$.

Schreibweise: (M, \circ) für M mit Verknüpfung \circ .

Beispiel: $(\mathbb{N},+)$, (\mathbb{N},\cdot) . Die Subtraktion ist keine Verknüpfung auf \mathbb{N} .

Gruppen

1.2 Definition und Satz (Gruppe)

Sei (G, \circ) eine Menge mit einer Verknüpfung \circ . (G, \circ) heißt Gruppe, falls gilt:

- (a) $\forall a, b, c \in G : (a \circ b) \circ c = a \circ (b \circ c)$ (Assoziativgesetz)
- (b) $\exists e \in G : \forall a \in G : a \circ e = e \circ a = a$ (Existenz eines neutralen Elements)
- (c) $\forall a \in G \ \exists b \in G : \ a \circ b = b \circ a = e$ (Existenz eines inversen Elements zu a)

Das neutrale Element in (b) ist eindeutig bestimmt.

Ebenso ist zu jedem a in (c) b eindeutig bestimmt und wird mit a^{-1} bezeichnet.

Eine Gruppe heißt kommutativ oder abelsch, wenn zusätzlich gilt

(d)
$$\forall a, b \in G : a \circ b = b \circ a$$
.

Schreibweise: G anstelle von (G, \circ) , wenn die Verknüpfung aus dem Zusammenhang klar hervorgeht.

Beweis:

- 1. Sei e' ein weiteres neutrales Element. Dann $e' \circ e \stackrel{\text{(b)}}{=} e \circ e' \stackrel{\text{(b)}}{=} e' \quad (e \text{ neutrales Element})$ $e \circ e' \stackrel{\text{(b)}}{=} e' \circ e \stackrel{\text{(b)}}{=} e \quad (e' \text{ neutrales Element})$ e = e'
- 2. Sei b' ein weiteres inverses Element zu a. Dann $a \circ b' = b' \circ a = e$ (*). Also: $b \stackrel{\text{(b)}}{=} b \circ e \stackrel{\text{(*)}}{=} b \circ (a \circ b') \stackrel{\text{(a)}}{=} (b \circ a) \circ b' \stackrel{\text{(c)}}{=} e \circ b' \stackrel{\text{(b)}}{=} b'$

Bemerkung: An Stelle von (b) und (c) reicht es

- (b') $\exists e \in G \ \forall a \in G : a \circ e = a$ (Existenz eines rechtsneutralen Elements)
- (c') $\forall a \in G \ \exists b \in G : \ a \circ b = e$ (Existenz eines rechtsinversen Elements zu a)

zu fordern (oder jeweils die Existenz des linksneutralen und der linksinversen Elemente).

[Denn: Sei $a \in G$. Nach (c') existient $b \in G$ mit

$$a \circ b = e \tag{*}$$

und $c \in G$ mit

$$b \circ c = e$$
 (**)

- 1. $e \circ a \stackrel{\text{(b')}}{=} e \circ (a \circ e) \stackrel{\text{(**)}}{=} e \circ (a \circ (b \circ c)) \stackrel{\text{(a)}}{=} e \circ ((a \circ b) \circ c)$ $\stackrel{\text{(*)}}{=} e \circ (e \circ c) \stackrel{\text{(a)}}{=} (e \circ e) \circ c \stackrel{\text{(b')}}{=} e \circ c \stackrel{\text{(*)}}{=} (a \circ b) \circ c$ $\stackrel{\text{(a)}}{=} a \circ (b \circ c) \stackrel{\text{(**)}}{=} a \circ e$
- 2. $b \circ a \stackrel{\text{(b')}}{=} (b \circ a) \circ e \stackrel{\text{(**)}}{=} (b \circ a) \circ (b \circ c) \stackrel{\text{(a)}}{=} ((b \circ a) \circ b) \circ c$ $\stackrel{\text{(a)}}{=} (b \circ (a \circ b)) \circ c \stackrel{\text{(*)}}{=} (b \circ e) \circ c \stackrel{\text{(b')}}{=} b \circ c \stackrel{\text{(**)}}{=} e]$

Einfache Beispiele für Gruppen:

- 1. $(\mathbb{Z},+)$, $(m \cdot \mathbb{Z},+)$ $[m \in \mathbb{N} \text{ fest}]$, $(\mathbb{Q},+)$, $(\mathbb{R},+)$ sind abelsche Gruppen. Neutrales Element: 0 Inverses Element zu x:-x $(\mathbb{N},+)$ und $(\mathbb{N}_0,+)$ sind keine Gruppen.
- 2. $(\mathbb{Q}\setminus\{0\},\cdot)$, $(\mathbb{R}\setminus\{0\},\cdot)$, (\mathbb{Q}_+,\cdot) , (\mathbb{R}_+,\cdot) sind abelsche Gruppen. Neutrales Element: 1 Inverses Element zu $x:\frac{1}{x}$ $(\mathbb{Z}\setminus\{0\},\cdot)$ ist **keine** Gruppe.
- 3. $(\mathbb{R}^n, +)$, $(x_1, \dots, x_n) + (y_1, \dots, y_n) \mapsto (x_1 + y_1, \dots, x_n + y_n)$ ist Gruppe Neutrales Element: $(0, \dots, 0)$ Inverses Element zu (x_1, \dots, x_n) : $\underbrace{(-x_1, \dots, -x_n)}_{=:-x}$ [Analog $(\mathbb{Q}^n, +)$, $(\mathbb{Z}^n, +)$]

1.3 Satz und Definition (Symmetrische Gruppe, Permutation)

Sei X eine nicht leere Menge. $S(X) := \{ \varphi : X \to X \text{ bijektiv} \}$ ist mit der Funktionsverkettung als Verknüpfung eine Gruppe. (Sprechweise: Symmetrische Gruppe auf X) Für $X = \{1, \ldots, n\}$ $(n \in \mathbb{N} \text{ fest})$ schreibt man $S_n := S(X)$ und nennt die Elemente von S(X), d.h die bijektiven Abbildungen $\{1, \ldots, n\} \to \{1, \ldots, n\}$, Permutationen. Es gilt $|S_n| = n!$

Bemerkung:

Für Permutationen $\pi \in S_n$ [d.h. $\pi : \{1, ..., n\} \to \{1, ..., n\}, i \mapsto \pi(i)$, bijektiv] verwenden wir zur Vereinfachung von Rechnungen die Schreibweise $\begin{pmatrix} 1 & 2 & ... & n \\ \pi(1) & \pi(2) & ... & \pi(n) \end{pmatrix}$.

[Die Angabe eines n-Tupels $(\pi(1), \ldots, \pi(n))$ (vgl. Bsp. (d) nach 0.26) würde ebenfalls genügen und ist in Programmen oft eine geeignete Darstellung – für Rechnungen von Hand ist die obige Schreibweise günstiger.]

Beweis zu Satz 1.3:

- 1. f, g bijektiv auf $X \stackrel{0.34d}{\Longrightarrow} f \circ g$ bijektiv, d.h. die Funktionsverkettung ist eine Verknüpfung in S(X)
- 2. Das Assoziativgesetz folgt aus Satz 0.30.

- 3. $f \circ id_X = id_X \circ f = f$, d.h. id_X neutrales Element
- 4. $f: X \to X$ bijektiv Satz 0.34a, 0.33 $f^{-1}: X \to X$ bijektiv $\wedge f^{-1} \circ f = \mathrm{id}_X$ $\wedge f \circ f^{-1} = \mathrm{id}_X$

Somit ist die Umkehrfunktion f^{-1} inverses Element zu f.

5. Zeige: $|S_n| = n!$

$$S_n = \{\pi : \{1, \dots, n\} \rightarrow \{1, \dots, n\} \text{ bijektiv}\}$$

$$\stackrel{\text{Lemma 0.36}}{=} \{\pi : \{1, \dots, n\} \to \{1, \dots, n\} \text{ injektiv}\}$$

$$\stackrel{\text{Bsp.(d)}}{=} zu \stackrel{0.26}{=} \{(a_1, \dots, a_n) : a_i \in \{1, \dots, n\} \text{ paarweise verschieden}\}$$

Für a_1 bestehen n Möglichkeiten zur Auswahl, für $a_2 \neq a_1$ dann nur noch n-1, für $a_3 \neq a_2 \land a_3 \neq a_1$ lediglich noch n-2 usw.

Insgesamt für (a_1, \ldots, a_n) dann $n(n-1) \cdots 1 = n!$

1.4 Satz

- (a) Sei $m \in \mathbb{N}$. $(\mathbb{Z}_m, +)$ ist mit der Verknüpfung $[a]_m + [b]_m := [a+b]_m$ eine abelsche Gruppe mit m Elementen.
- (b) Sei p eine Primzahl. $(\mathbb{Z}_p \setminus \{[0]_p\},\cdot)$ ist mit der Verknüpfung $[a]_p \cdot [b]_p := [a \cdot b]_p$ eine abelsche Gruppe mit p-1 Elementen.

Beweis:

(a) $\mathbb{Z}_m = \{[0]_m, [1]_m, \dots, [m-1]_m\} = \{[a]_m : a \in \mathbb{Z}\} \text{ mit } [a]_m := a + m\mathbb{Z} = \{a + k \cdot m : a \in \mathbb{Z}\} \}$ $k \in \mathbb{Z}$ (siehe Bsp. 2 zu 0.22)

Es liegt nahe, als Verknüpfung $+: \mathbb{Z}_m \times \mathbb{Z}_m \to \mathbb{Z}_m, \ [a]_m + [b]_m := [a+b]_m$ zu wählen. Dabei ist zu beachten, dass $[a]_m = [a + km]_m$ und $[b]_m = [b + lm]_m$ für $k, l \in \mathbb{Z}$ gilt. Es muss also nachgewiesen werden, dass $[a+b]_m = [a+km+b+lm]_m$ gilt.

Letzteres folgt sofort aus

$$[a+b]_m = [a+km+b+lm]_m \Leftrightarrow a+b \sim a+km+b+lm \Leftrightarrow a+km+b+lm \sim a+b \Leftrightarrow m \mid (a+km+b+lm-(a+b)) \Leftrightarrow \underbrace{m \mid (km+lm)}_{\text{wahr}}.$$

Nachweis der Gruppenaxiome:

Assoziativgesetz:
$$([a]_m + [b]_m) + [c]_m = [a+b]_m + [c]_m = [(a+b)+c]_m = [a+(b+c)]_m = [a]_m + [b+c]_m = [a]_m + ([b]_m + [c]_m)$$

Neutrales Element: $[0]_m (= m \cdot \mathbb{Z})$

$$([a]_m + [0]_m = [a+0]_m = [0+a]_m = [0]_m + [a]_m = [a]_m)$$

Inverses Element: $[-a]_m$

$$([a]_m + [-a]_m = [a + (-a)]_m = [0]_m = [(-a) + a]_m = [-a]_m + [a]_m)$$

Die Gruppe ist kommutativ wegen $[a]_m + [b]_m = [a+b]_m = [b+a]_m = [b]_m + [a]_m$

(b) Analog zu (a) definieren wir $[a]_p \cdot [b]_p := [a \cdot b]_p \ (a, b \in \mathbb{Z})$

Die Wohldefiniertheit, das Assoziativgesetz, die Kommutativität und $[1]_p$ als neutrales Element ergeben sich auf \mathbb{Z}_p wie in (a).

Für $[a]_p, [b]_p \neq [0]_p$ gilt $[a]_p \cdot [b]_p \neq [0]_p$, weil $[a]_p \neq [0]_p \Leftrightarrow p \nmid a \text{ und } p \nmid a \land p \nmid b \Rightarrow p \nmid a \cdot b$ nach Lemma 0.18. Daher ist die Multiplikation auch eine Verknüpfung auf $\mathbb{Z}_p \setminus \{[0]_p\}$.

Inverses Element:
$$\exists x \in \mathbb{Z}$$
 : $[a]_p \cdot [x]_p = [1]_p$ $\iff \exists x \in \mathbb{Z}$: $[a \cdot x]_p = [1]_p$ $\iff \exists x \in \mathbb{Z}$: $a \cdot x \sim 1$ $\iff \exists x \in \mathbb{Z}$: $p \mid a \cdot x - 1$ $\iff \exists x \in \mathbb{Z}$: $a \cdot x - 1 = k \cdot p$ $\stackrel{y := -k}{\iff} \exists x, y \in \mathbb{Z}$: $a \cdot x + p \cdot y = 1$ Satz $\stackrel{0.16+\text{Bem.}}{\iff} \gcd(a, p) = 1 \iff p \nmid a \iff [a]_p \neq [0]_p$

Es gilt
$$[x]_p \neq [0]_p$$
, denn: $[x]_p = [0]_p \Longrightarrow [a]_p \cdot [x]_p = [a]_p \cdot [0]_p = \overbrace{[a \cdot 0]_p}^{[0]_p} \neq [1]_p$

Schreibweise: $\bar{k} := [k]_m$, falls $[k]_m \in \mathbb{Z}_m$ und $k \in \{0, \dots, m-1\}$, d.h. $\mathbb{Z}_m = \{\bar{0}, \bar{1}, \dots, \overline{m-1}\}$. [Oft findet man die Schreibweise \bar{k} für $[k]_m$ auch ohne die Einschränkung $k \in \{0, \dots, m-1\}$.]

Beispiele:

Frage: Sind beide Gruppen isomorph (=strukturell gleich)?

Zum Begriff der Isomorphie:

Falls $\phi(a \circ b) = \phi(a) * \phi(b) \ (a, b \in G)$, dann stimmen die Verknüpfungstafeln überein.

1.5 Definition (Gruppenhomomorphismus, Gruppenisomorphismus)

Seien (G, \circ) und (H, *) Gruppen und $\phi : G \to H$ eine Abbildung

- (a) ϕ heißt Gruppenhomomorphismus, wenn $\forall a, b \in G : \phi(a \circ b) = \phi(a) * \phi(b)$
- (b) ϕ heißt Gruppenisomorphismus, wenn ϕ ein bijektiver Gruppenhomomorphismus ist. In diesem Fall nennt man (G, \circ) und (H, *) isomorphe Gruppen.

Bemerkung: Die Isomorphie von Gruppen ist eine Äquivalenzrelation auf jeder Menge von Gruppen. (Evtl. ÜA)

Beispiele:

- (a) $(\mathbb{R},+)$ und (\mathbb{R}_+,\cdot) sind isomorph, die Abbildung $\phi:\mathbb{R}\to\mathbb{R}_+,\ a\mapsto 2^a$ ist bijektiv und es gilt $\phi(a+b)=2^{a+b}=2^a\cdot 2^b=\phi(a)\cdot\phi(b)\ (a,b\in\mathbb{R}).$ [Man hätte als Isomorpismus auch die Funktion exp: $\mathbb{R}\to\mathbb{R}_+,\ a\mapsto e^a$ wählen können.]
- (b) $(\mathbb{Z}_4,+)$ und $(\mathbb{Z}_5\setminus\{\bar{0}\},\cdot)$ sind isomorph, z.B. ist $\phi:(\mathbb{Z}_4,+)\to(\mathbb{Z}_5\setminus\{\bar{0}\},\cdot)$, $\phi([k]_4)=[2^k]_5$ $(k\in\mathbb{N}_0)$ ein wohldefinierter Gruppenisomorphismus. Wohldefiniertheit: $\phi([k+4m]_4)=[2^{k+4m}]_5=[2^k\cdot16^m]_5=[2^k]_5\cdot[16^m]_5=[2^k]_5\cdot([16]_5)^m=[2^k]_5\cdot([1]_5)^m=[2^k]_5\cdot([1]_5)^m=[2^k]_5\cdot([1]_5)^m=[2^k]_5\cdot([1]_5)^m=[2^k]_5\cdot([1]_5)^m=[2^k]_5\cdot([1]_5)^m=[2^k]_5\cdot([1]_5)^m=[2^k]_5\cdot([1]_5)^m=[2^k]_5\cdot([1]_5)^m=[2^k]_5\cdot([1]_5)^m=[2^k]_5\cdot([1]_5)^m=[2^k]_5\cdot([1]_5)^m=[2^k]_5\cdot([1]_5)^m=[2^k]_5\cdot([1]_5)^m=[2^k]_5\cdot([1]_4$

1.6 Lemma

Sei (G, \circ) eine Gruppe. Dann gilt:

- (a) $\forall a, b \in G : (a \circ b)^{-1} = b^{-1} \circ a^{-1}$
- (b) $\forall a \in G : (a^{-1})^{-1} = a$
- (c) $\forall a,b \in G: \exists_1 x \in G: a \circ x = b$ $\forall a,b \in G: \exists_1 y \in G: y \circ a = b$ (d.h. die Gleichungen $a \circ x = b$ und $y \circ a = b$ sind für alle $a,b \in G$ eindeutig lösbar)
- (d) Sei $a \in G$. Dann sind die Abbildungen $l_a: G \to G$, $l_a(x) = a \circ x$ und $r_a: G \to G$, $r_a(x) = x \circ a$ jeweils bijektiv.

Beweis: Übung

Schreibweise:
$$a^n := \underbrace{a \circ \ldots \circ a}_{\substack{n-\text{mal} \\ n-\text{mal}}} \quad (n \in \mathbb{N}), \ a^0 := e$$

$$a^{-n} := \underbrace{a^{-1} \circ \ldots \circ a^{-1}}_{\substack{n-\text{mal} \\ n-\text{mal}}} \quad (n \in \mathbb{N})$$

Man sieht leicht [Übung], dass

$$\begin{aligned} a^{m+n} &= a^m \circ a^n & (m,n \in \mathbb{Z}, a \in G) \\ \text{und } (a^m)^n &= a^{m \cdot n} & (m,n \in \mathbb{Z}, a \in G) \end{aligned}$$

Im Falle additiver abelscher Gruppen (G, +) schreiben wir 0 für das neutrale Element, -a für das zu a inverse Element, $n \cdot a := \underbrace{a + \cdots + a}_{n-mal}, \ 0 \cdot a := 0 \ \text{und} \ (-n) \cdot a := n \cdot (-a) \ \ (n \in \mathbb{N}).$

Es gilt dann: $(m+n) \cdot a = m \cdot a + n \cdot a$, $m \cdot (n \cdot a) = (mn) \cdot a$ $(m, n \in \mathbb{Z}, a \in G)$.

1.7 Satz von Fermat (für endliche Gruppen)

Sei (G, \circ) eine endliche Gruppe, n = |G|. Dann gilt für jedes $a \in G$: $a^n = e$.

Beweis:

Wir zeigen den Satz zunächst nur für den Fall, dass G abelsch ist:

Sei $G = \{x_1, \dots, x_n\}$ und $a \in G$. Wegen 1.6d gibt es eine Permutation $\pi \in S_n$, so dass

$$(a \circ x_1) \circ (a \circ x_2) \circ \ldots \circ (a \circ x_n) = x_{\pi(1)} \circ x_{\pi(2)} \circ \ldots \circ x_{\pi(n)}$$

Also wegen G abelsch

$$a^n \circ (x_1 \circ x_2 \circ \ldots \circ x_n) = x_1 \circ x_2 \circ \ldots \circ x_n$$

und hieraus

$$a^n = e$$

1.8 Sätze von Fermat und Euler

- (a) Sei p Primzahl, $a \in \mathbb{Z}$, $p \nmid a$. Dann gilt $a^{p-1} \equiv 1 \mod p$.
- (b) Sei $n \in \mathbb{N}$, $\varphi(n) := |\{k \in \{0, \dots, n-1\} : ggT(k, n) = 1\}|, a \in \mathbb{Z}, ggT(a, n) = 1$. Dann gilt $a^{\varphi(n)} \equiv 1 \mod n$.

Bemerkung:

(a) Die Eulersche φ -Funktion gibt für $n \in \mathbb{N}$ (wegen $\operatorname{ggT}(n,n) = \operatorname{ggT}(0,n)$) die Anzahl der zu n teilerfremden natürlichen Zahlen $\leq n$ an. Sie lässt sich für die Primfaktorzerlegung $n = p_1^{k_1} \cdots p_l^{k_l}$ mittels

$$\varphi(n) = p_1^{k_1 - 1} \cdots p_l^{k_l - 1} \cdot (p_1 - 1) \cdots (p_l - 1) = n(1 - \frac{1}{p_1}) \cdots (1 - \frac{1}{p_l})$$

berechnen. $(l \in \mathbb{N}, p_1, \dots, p_l \text{ paarweise verschiedene Primzahlen}, k_1, \dots, k_l \in \mathbb{N}.)$ [Ohne Beweis]

(b) Der Satz von Fermat folgt aus dem Satz von Euler, weil $\varphi(p) = p - 1$.

Beweis:

(a) $G := (\mathbb{Z}_p \setminus \{[0]_p\}, \cdot)$. Dann |G| = p - 1 und nach Satz 1.7 $[a]_p^{p-1} = [1]_p$, falls $\underbrace{[a]_p \neq [0]_p}_{\text{d.h. } p \nmid a}$.

Das ist äquivalent zu $[a^{p-1}]_p = [1]_p$ bzw. $a^{p-1} \equiv 1 \mod p$, falls $p \nmid a$.

(b) Beweisskizze: Hier zeigt man analog dem Beweis für die Gruppeneigenschaften von $(\mathbb{Z}_p \setminus \{\overline{0}\}, \cdot)$ wiederum unter Verwendung von Satz 0.17, dass für $n \geq 2$

 $\mathbb{Z}_n^* := \{[a]_n \in \mathbb{Z}_n : ggT(a, n) = 1, a \in \{0, \dots, n-1\}\}$ mit der Restklassenmultiplikation als Verknüpfung eine Gruppe mit $\varphi(n)$ Elementen bildet und wendet Satz 1.7 an.

Bemerkung:

Der Satz von Euler ist für $n=p\cdot q$ ($p\neq q$ große Primzahlen) die Grundlage der RSA-Verschlüsselung. In diesem Fall gilt $\varphi(n) = (p-1)(q-1)$. Benötigt werden noch die in der Beweisskizze angegebenen Gruppeneigenschaften von \mathbb{Z}_n^* (und von $\mathbb{Z}_{\varphi(n)}^*$).

1.9 Definition (Untergruppe)

Sei (G, \circ) eine Gruppe. Eine nicht leere Teilmenge U von G heißt Untergruppe von G, wenn gilt:

$$\forall a, b \in U : a \circ b \in U$$

 $\forall a \in U : a^{-1} \in U$

Bemerkung:

Mit der Verknüpfung $U \times U \to U$, $(a,b) \mapsto a \circ b$ ist U eine Gruppe.

Mit der Verknüpfung
$$U \times U \to U$$
, (a, b)
[Denn: $U \neq \emptyset$, also $\exists c \in U$.
Dann: $c^{-1} \in U$ und $e = \underbrace{c}_{\in U} \circ \underbrace{c^{-1}}_{\in U} \in U$

Somit:
$$\forall a \in U : a \circ e = e \circ a = a$$
 (neutrales Element)
Außerdem: $\forall a \in U : \underbrace{a}_{\in U} \circ \underbrace{a^{-1}}_{\in U} = \underbrace{a^{-1}}_{\in U} \circ \underbrace{a}_{\in U} = \underbrace{e}_{\in U}$ (inverses Element)]

1.10 Untergruppenkriterium

Sei (G, \circ) eine Gruppe, $\emptyset \neq U \subset G$. Dann gilt:

$$U$$
 Untergruppe von $G \iff \forall a, b \in U : a \circ b^{-1} \in U$

Beweis: Übung

Beispiele:

- 1. $(m \cdot \mathbb{Z}, +)$ Untergruppe von $(\mathbb{Z}, +)$ $[a \in m \cdot \mathbb{Z}, b \in m \cdot \mathbb{Z} \Longrightarrow a + b \in m \cdot \mathbb{Z}]$ $a \in m \cdot \mathbb{Z} \Longrightarrow -a \in m \cdot \mathbb{Z}$
- 2. $(\mathbb{Z},+), (\mathbb{Q},+)$ Untergruppen von $(\mathbb{R},+)$
- 3. $(\{\bar{0}\}, +), (\{\bar{0}, \bar{2}\}, +)$ Untergruppen von $(\mathbb{Z}_4, +)$ $\begin{bmatrix} + & \bar{0} & \bar{2} \\ \bar{0} & \bar{0} & \bar{2} \\ \bar{2} & \bar{2} & \bar{0} \end{bmatrix} \qquad \bar{2} + \bar{2} = \bar{0}, \text{ also } \bar{2} \text{ inverses Element von } \bar{2}$

4.
$$(\{\bar{1}\},\cdot), (\{\bar{1},\bar{4}\},\cdot)$$
 Untergruppen von $(\mathbb{Z}_5\setminus\{\bar{0}\},\cdot)$

$$\begin{bmatrix} \begin{array}{c|c} \cdot & \bar{1} & \bar{4} \\ \hline \bar{1} & \bar{1} & \bar{4} \\ \hline \bar{4} & \bar{4} & \bar{1} \end{array} & \bar{4} \cdot \bar{4} = \bar{1}, \text{ also } \bar{4} \text{ inverses Element von } \bar{4} \end{bmatrix}$$

- 5. $\{\pi: \{1,\ldots,n\} \to \{1,\ldots,n\}: \pi \text{ bijektiv} \land \pi(k+1) = k+1,\ldots,\pi(n) = n\}$ mit festem $k \in \{1,\ldots,n\}$ bildet eine Untergruppe von S_n mit k! Elementen. Diese ist isomorph zu S_k .
- [6. Seien G, H Gruppen und $\phi: G \to H$ ein Gruppenhomomorphismus. Dann ist $\phi(G)$ eine Untergruppe von H. (Bew.: Evtl. Übung)]

Bemerkung:

Jede Gruppe mit n Elementen $(n \in \mathbb{N})$ ist isomorph zu einer (n-elementigen) Untergruppe von S_n . (Satz von Cayley)

[Beweis:

Betrachte $\Phi: G \to S(G), \ a \mapsto l_a$, wobei $l_a: G \to G, \ l_a(x) = a \circ x$.

 Φ ist wohldefiniert, denn nach Satz 1.6 ist l_a bijektiv, also $l_a \in S(G)$.

 Φ ist ein Gruppenhomomorphismus, weil $\Phi(a \circ b) = l_{a \circ b} = l_a \circ l_b = \Phi(a) \circ \Phi(b)$.

Nach Bsp. 6 zu 1.10 ist $\Phi(G)$ eine Untergruppe von S(G).

 Φ ist injektiv, denn $\Phi(a) = \Phi(b) \Rightarrow l_a = l_b \Rightarrow l_a(e) = l_b(e) \Rightarrow a = b$.

Also ist G isomorph zu $\Phi(G)$ und mittels des Isomorphismus von S(G) und $S_{|G|}$ isomorph zu einer Untergruppe von $S_{|G|}$.]

1.11 Satz und Definition (Erzeugendes Element, zyklische Gruppe)

Sei (G, \circ) eine Gruppe, $a \in G$. Die Untergruppe $\langle a \rangle := \{a^k : k \in \mathbb{Z}\}$ von G heißt von a erzeugte zyklische Untergruppe. Falls G durch ein Element erzeugt wird, nennt man G zyklisch.

Beispiele:

- 1. $(\mathbb{Z}, +)$ wird durch 1 erzeugt $(m \cdot \mathbb{Z}, +)$ wird durch m erzeugt
- 2. $(\mathbb{Z}_m, +)$ wird durch $\bar{1}$ erzeugt
- 3. $(\mathbb{R}, +)$ wird nicht durch ein $a \in \mathbb{R}$ erzeugt, denn $\langle a \rangle := \{k \cdot a : k \in \mathbb{Z}\} \neq \mathbb{R}$

1.12 Satz von Lagrange

Sei (G, \circ) eine endliche Gruppe und U eine Untergruppe. Dann ist |U| ein Teiler von |G|.

Beweis:

Für $a \in G$ betrachte $a \circ U := \{a \circ u : u \in U\}.$

1. Es gilt: $|a \circ U| = |U| \quad (a \in G)$ Das folgt sofort aus Lemma 1.6d

- 2. Es gilt: $a \circ U = b \circ U \lor (a \circ U) \cap (b \circ U) = \emptyset \quad (a, b \in G)$ Denn: $x \in (a \circ U) \cap (b \circ U) \Longrightarrow x = a \circ u_1 = b \circ u_2 \quad (u_1, u_2 \in U \text{ geeignet })$ $\Longrightarrow a = b \circ (u_2 \circ u_1^{-1}) \Longrightarrow a \circ u = b \circ \underbrace{(u_2 \circ u_1^{-1} \circ u)}_{\in U} \quad (u \in U), \text{ d.h. } a \circ U \subset b \circ U \stackrel{1}{\Longrightarrow}$ $a \circ U = b \circ U$
- 3. $\{a \circ U : a \in G\} =: \underbrace{\{a_1 \circ U, a_2 \circ U, \dots, a_m \circ U\}}_{\text{paarweise disjunkt}}$

Da jedes $x \in G$ genau einer der Teilmengen $a_1 \circ U, \ldots, a_m \circ U$ angehört*, folgt $|G| = m \cdot |U|$.

Zu *):
$$\bigcup_{i=1,\dots,m} a_i \circ U = \bigcup_{a \in G} a \circ U \stackrel{e \in U}{\supset} \bigcup_{a \in G} \{a \circ e\} = G$$
$$\bigcup_{i=1,\dots,m} a_i \circ U \subset \bigcup_{i=1,\dots,m} G = G$$
Also:
$$\bigcup_{i=1,\dots,m} a_i \circ U = G$$

Bemerkung zum Beweis von 1.12:

Tatsächlich sind $a \circ U$ die Äquivalenzklassen der Äquivalenzrelation $a \sim b : \Leftrightarrow a^{-1} \circ b \in U$ $[a] = \{x \in G : x \sim a\} = \{x \in G : a \sim x\} = \{x \in G : a^{-1} \circ x \in U\}$ $= \{x \in G : \exists u \in U : a^{-1} \circ x = u\} = \{x \in G : \exists u \in U : x = a \circ u\} = a \circ U$

Mit dem Satz von Lagrange können wir auch den nicht kommutativen Fall im Satz von Fermat behandeln:

 $U:=\{a^k: k\in\mathbb{Z}\}$ ist eine abelsche Untergruppe von G ($a\in G$ fest), somit endlich. Also gilt $a^{|U|}=e$ nach dem bereits bewiesenen Teil von Satz 1.7. Mit $|G|=m\cdot |U|$ folgt $a^{|G|}=a^{|U|\cdot m}=(a^{|U|})^m=e^m=e$.

Ringe

1.13 Definition (Ring)

Sei R eine Menge mit zwei Verknüpfungen

$$+: R \times R \to R, (a, b) \mapsto a + b$$
 ("Addition")
 $\cdot: R \times R \to R, (a, b) \mapsto a \cdot b$ ("Multiplikation")

 $(R,+,\cdot)$ heißt Ring, wenn gilt:

- (a) (R, +) ist eine abelsche Gruppe.
- (b) Die Multiplikation \cdot ist assoziativ. [" (R, \cdot) ist Halbgruppe"]
- (c) $\forall a, b, c \in R : (a+b) \cdot c = a \cdot c + b \cdot c$ (Distributivgesetze) $c \cdot (a+b) = c \cdot a + c \cdot b$

Das neutrale Element der Addition wird mit 0 bezeichnet und heißt Nullelement. Das inverse Element zu $a \in R$ bezüglich der Addition wird mit -a bezeichnet.

Wir definieren a - b := a + (-b) ("Subtraktion")

1.14 Definition (kommutativer Ring, Einselement, nullteilerfrei)

Sei $(R, +, \cdot)$ ein Ring.

(a) R heißt kommutativ, wenn gilt

$$\forall a, b \in R : a \cdot b = b \cdot a$$

(b) Ein Element $1 \in R$ heißt Einselement, wenn gilt

$$\forall a \in R: a \cdot 1 = 1 \cdot a = a$$

(c) R heißt nullteilerfrei, wenn gilt

$$\forall a, b \in R: a \cdot b = 0 \Longrightarrow a = 0 \lor b = 0$$

Bemerkung: Das Einselement ist eindeutig bestimmt, wenn es existiert. [Beweis analog 1.2]

Beispiele:

- 1. $(\mathbb{Z}, +, \cdot)$ ist ein kommutativer nullteilerfreier Ring mit Einselement.
- 2. $(m \cdot \mathbb{Z}, +, \cdot)$ ist für $m \in \mathbb{N}$ mit $m \geq 2$ ein kommutativer nullteilerfreier Ring ohne Einselement.
- 3. $(\mathbb{Z}_m, +, \cdot)$ ist für $m \geq 2$ ein kommutativer Ring mit Einselement. Er ist nullteilerfrei genau dann, wenn m Primzahl ist:

 $(\mathbb{Z}_m,+)$ abelsche Gruppe mit Nullelement $[0]_m$ folgt aus Satz 1.4a.

 (\mathbb{Z}_m,\cdot) Halbgruppe ergibt sich wie im Beweis zu Satz 1.4b.

Distributivgesetze und Kommutativität der Multiplikation analog.

 $[1]_m$ ist Einselement. (Klar!)

- $\begin{array}{l} \text{1.F.:} \ m \geq 2 \ \text{keine Primzahl} \Longrightarrow \exists \, a,b \in \mathbb{N}, \ a,b \geq 2 : \ m = a \cdot b \\ \Longrightarrow [a]_m \cdot [b]_m = [a \cdot b]_m = [m]_m = [0]_m, \\ \text{aber } [a]_m \neq [0]_m, \ [b]_m \neq [0]_m \ \text{wegen } m \nmid a \ \text{und } m \nmid b. \end{array}$
- 2.F.: m Primzahl.

$$m$$
 Primzahl.
$$[a]_m \cdot [b]_m = [0]_m \iff [a \cdot b]_m = [0]_m \iff m|ab \stackrel{\text{Lemma}}{\Longrightarrow} {}^{0.18} m|a \lor m|b \iff [a]_m = [0]_m \lor [b]_m = [0]_m.$$

4. $\mathbb{R}^{n \times n}$ (reelle quadratische Matrizen) mit der komponentenweisen Addition und der noch einzuführenden Matrizenmultiplikation ist für $n \geq 2$ ein *nicht kommutativer* Ring mit Einselement, der *nicht* nullteilerfrei ist. (Später!)

1.15 Rechenregeln in Ringen

Sei $(R, +, \cdot)$ ein Ring, $a, b, c \in R$. Dann gilt:

(a)
$$0 \cdot a = a \cdot 0 = 0$$

(b)
$$-(a \cdot b) = (-a) \cdot b = a \cdot (-b)$$

(c)
$$(-a) \cdot (-b) = a \cdot b$$

(d) R hat Einselement
$$\Longrightarrow -a = (-1) \cdot a = a \cdot (-1)$$

(e)
$$R$$
 nullteilerfrei \Longrightarrow $\begin{cases} (c \neq 0 \land a \cdot c = b \cdot c) \Longrightarrow a = b \\ (c \neq 0 \land c \cdot a = c \cdot b) \Longrightarrow a = b \end{cases}$ (Kürzungsregel)

Bemerkung:

Nur im Nullring $(\{0\}, +, \cdot)$ stimmen Eins- und Nullelement überein.

$$\left[\begin{array}{c} \forall a \in R: a \cdot 1 = a & (1.14b) \\ \forall a \in R: a \cdot 0 = 0 & (1.15a) \end{array}\right] \stackrel{1=0}{\Longrightarrow} a = 0$$

Beweis:

(a)
$$0 \cdot a + 0 \cdot a \stackrel{\text{Distr.G.}}{=} (0+0) \cdot a \stackrel{\text{Neutr.E.}}{=} 0 \cdot a$$

$$0 \cdot a + 0 = 0$$

$$0 \cdot a \stackrel{\text{Lemma } 1.6c}{\Longrightarrow} 0 \cdot a = 0$$

(b)
$$a \cdot b + (-a) \cdot b \stackrel{\text{Distr.G.}}{=} (a + (-a)) \cdot b = 0 \cdot b \stackrel{\text{(a)}}{=} 0$$

$$a \cdot b + (-(a \cdot b)) = 0$$

$$b \stackrel{\text{Lemma } 1.6c}{=} -(a \cdot b) = (-a) \cdot b$$

Zweite Gleichung analog

(c)
$$(-a) \cdot (-b) \stackrel{\text{(b) 1.Gl}}{=} -(a \cdot (-b)) \stackrel{\text{(b) 2.Gl}}{=} -(-(a \cdot b)) \stackrel{\text{1.6b}}{=} a \cdot b$$

(d)
$$(-1) \cdot a \stackrel{\text{(b)}}{=} -(1 \cdot a) = -a$$

Zweite Gleichung analog

(e) Sei R nullteilerfrei:

$$a \cdot c = b \cdot c \Longrightarrow a \cdot c + (-(b \cdot c)) = 0 \stackrel{\text{(b)}}{\Longrightarrow} a \cdot c + (-b) \cdot c = 0$$

$$\stackrel{\text{Distr.G.}}{\Longrightarrow} (a + (-b)) \cdot c = 0 \stackrel{R \text{ nullteilerfrei}}{\Longrightarrow} \underbrace{a + (-b)}_{=:a-b} = 0 \Longrightarrow a = -(-b) \Longleftrightarrow a = b$$

Mit der Gaußschen Summenkonvention

$$\sum_{i=1}^{n} a_i := a_1 + \ldots + a_n \qquad (n \in \mathbb{N}, \ a_1, \ldots, a_n \in R)$$

gelangt man zu

1.16 Rechenregeln für Summenzeichen

Sei $(R, +, \cdot)$ ein Ring, $m, n \in \mathbb{N}$. Dann gilt

(a)
$$\sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i$$
 $(a_i, b_i \in R \text{ für } i = 1, \dots, n)$

(b)
$$b \cdot \sum_{i=1}^{n} a_i = \sum_{i=1}^{n} b \cdot a_i$$
, $\left(\sum_{i=1}^{n} a_i\right) \cdot b = \sum_{i=1}^{n} a_i \cdot b$ $(a_i \in R \text{ für } i = 1, \dots, n, b \in R)$

(c)
$$\sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} \right) = \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} \right)$$
 $(a_{ij} \in R \text{ für } i = 1, \dots, m \text{ und } j = 1, \dots, n)$

(d)
$$\left(\sum_{i=1}^{m} a_i\right) \cdot \left(\sum_{j=1}^{n} b_j\right) = \sum_{i=1}^{m} \left(a_i \cdot \sum_{j=1}^{n} b_j\right) = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_i \cdot b_j\right) = \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_i \cdot b_j\right)$$

= $\sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_i\right) \cdot b_j$ $(a_i \in R \text{ für } i = 1, \dots, m, b_j \in R \text{ für } j = 1, \dots, n)$

[Verallgemeinerung: $\sum_{i=l}^{n} a_i = a_l + \ldots + a_n \quad (n \in \mathbb{Z}, l \in \mathbb{Z}, l \leq n, a_l, a_{l+1}, \ldots, a_n \in R)$]

Beweis: [Die Verwendung der Assoziativität wird nicht explizit erwähnt.]

(a)
$$\sum_{i=1}^{n} (a_i + b_i) = (a_1 + b_1) + (a_2 + b_2) + \dots + (a_n + b_n) \stackrel{\text{Addition}}{=} a_1 + \dots + a_n + b_1 + \dots + b_n = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i.$$

(b)
$$b \cdot \sum_{i=1}^{n} a_i = b \cdot (a_1 + \ldots + a_n) \stackrel{\text{Distr.G.}}{=} b \cdot a_1 + \ldots + b \cdot a_n = \sum_{i=1}^{n} b \cdot a_i$$
. Zweite Gleichung analog.

(c)
$$\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} := \sum_{i=1}^{m} \underbrace{\left(\sum_{j=1}^{n} a_{ij}\right)}_{s_{i}} \stackrel{\text{s.u.}}{=} \sum_{j=1}^{n} \underbrace{\left(\sum_{i=1}^{m} a_{ij}\right)}_{t_{j}} =: \sum_{j=1}^{n} \sum_{i=1}^{m} a_{ij}$$

Wegen der Kommutativität der Addition können wir in der folgenden rechteckigen Anordnung die Gesamtsumme sowohl durch Addition der Zeilensummen oder durch Addition der Spaltensummen berechnen.

$$a_{11} + a_{12} + \dots + a_{1n} = \sum_{j=1}^{n} a_{1j} =: s_{1}$$

$$+ a_{21} + a_{22} + \dots + a_{2n} = + \sum_{j=1}^{n} a_{2j} =: s_{2}$$

$$\vdots$$

$$+ a_{m1} + a_{m2} + \dots + a_{mn} = + \sum_{j=1}^{n} a_{mj} =: s_{m}$$

$$= \sum_{j=1}^{m} a_{i1} + \sum_{j=1}^{m} a_{i2} + \dots + \sum_{j=1}^{m} a_{in} =: t_{1} =: t_{2} =: t_{n}$$

$$= \sum_{j=1}^{n} t_{j} = \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij}\right)$$

$$t_{j} = \sum_{i=1}^{m} a_{ij}$$

(d) Nach (b)
$$\left(\sum_{i=1}^{m} a_i\right) \cdot b = \sum_{i=1}^{m} a_i \cdot b$$

Setze $b := \sum_{j=1}^{n} b_j$. Dann
$$\left(\sum_{i=1}^{m} a_i\right) \left(\sum_{j=1}^{n} b_j\right) = \sum_{i=1}^{m} \left(a_i \cdot \sum_{j=1}^{n} b_j\right) \stackrel{\text{(b)}}{=} \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_i b_j\right) \stackrel{\text{(c)}}{=} \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_i b_j\right) \stackrel{\text{(b)}}{=} \sum_{i=1}^{n} \left(\sum_{j=1}^{m} a_i\right) b_j$$

Bemerkung: Um nicht zu viele Klammern schreiben zu müssen, gehen wir vom folgenden

Operatorenvorrang aus:
$$abnehmend \int_{i-1}^{\cdot} \frac{\text{Infix}}{\sum_{i}^{n} \text{Präfix}},$$

d.h. beispielsweise $\sum_{i=1}^{n} a_i \cdot b = \sum_{i=1}^{n} (a_i \cdot b)$ bzw. $\sum_{i=1}^{n} a_i + b = \left(\sum_{i=1}^{n} a_i\right) + b$.

Die beiden folgenden aus der reellen Analysis bekannten Sätze lassen sich unter bestimmten Zusatzvoraussetzungen auch auf Ringe übertragen.

1.17 Binomischer Satz und geometrische Summenformel

Sei $(R, +, \cdot)$ ein Ring mit Einselement und seien $a, b \in R$ mit $a \cdot b = b \cdot a$. Mit der Definition $r^n := \underbrace{r \cdots r}_{n-mal}$ und $r^0 := 1 \ (r \in R, n \in \mathbb{N})$ gilt:

(a)
$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} \cdot a^k \cdot b^{n-k} = \sum_{k=0}^n \binom{n}{k} \cdot a^{n-k} \cdot b^k \quad (n \in \mathbb{N}_0)$$

(b)
$$a^{n+1} - b^{n+1} = (a-b) \cdot \sum_{k=0}^{n} a^k \cdot b^{n-k} = (a-b) \cdot \sum_{k=0}^{n} a^{n-k} \cdot b^k \quad (n \in \mathbb{N}_0)$$

Bemerkung:

- 1. Der Ausdruck $m \cdot r$ ($m \in \mathbb{Z}, r \in R$) ist entsprechend der nach 1.6 festgelegten Schreibweise für additive abelsche Gruppen zu verstehen.
- 2. Das Einselement des Rings wird benötigt, damit die Ausdrücke $a^0 \cdot b^n$ und $a^n \cdot b^0$ eine Bedeutung haben.
- 3. Die Bedingung $a \cdot b = b \cdot a$ ist wesentlich, wie die Identitäten $(a+b)^2 = a^2 + a \cdot b + b \cdot a + b^2$ $(a-b) \cdot (a+b) = a^2 b \cdot a + a \cdot b b^2$ zeigen.
- 4. (b) ist mit a = 1 und b = q (oder umgekehrt mit a = q und b = 1) eine Vorstufe zur geometrischen Summenformel.

Beweis: Analog Analysis I.

1.18 Definition und Satz (Einheitengruppe)

Sei $(R, +, \cdot)$ ein Ring mit Einselement. $a \in R$ heißt invertierbar, wenn es ein $b \in R$ gibt mit $a \cdot b = b \cdot a = 1$. Setze $R^* := \{a \in R : a \text{ invertierbar}\}.$

Dann ist (R^*, \cdot) eine Gruppe. (Bezeichnung: Einheitengruppe von R).

Bemerkung: Es gilt $b \in R^*$ und wegen (R^*, \cdot) Gruppe ist b eindeutig bestimmt. (Bez.: a^{-1})

Beweis: Übung

Beispiele:

- (a) $\mathbb{Z}^* = \{-1, 1\}, \mathbb{Q}^* = \mathbb{Q} \setminus \{0\}$
- (b) $\mathbb{Z}_p^* = \mathbb{Z}_p \setminus \{\bar{0}\}$ (p Primzahl) [Bew. Satz 1.4b] $\mathbb{Z}_n^* = \{[a]_n : a \in \{0, 1, \dots, n-1\}, \operatorname{ggT}(a, n) = 1\} \ (n \in \mathbb{N}, n \geq 2) \text{ [Beweis: Evtl. Übung]}$

Körper

1.19 Definition (Körper)

 $(K, +, \cdot)$ heißt Körper, wenn gilt:

- (a) $(K, +, \cdot)$ ist ein Ring,
- (b) $(K \setminus \{0\}, \cdot)$ ist eine abelsche Gruppe.

Mit 1 bezeichnen wir das neutrale Element von $K \setminus \{0\}$.

Wir definieren:
$$\frac{a}{b} := a \cdot b^{-1}$$
 ("Division")

Bemerkung:

1. Jeder Körper ist ein kommutativer nullteilerfreier Ring mit 1 als Einselement und $1 \neq 0$:

$$\begin{array}{lll} \forall a,b \in K \backslash \{0\}: & a \cdot b = b \cdot a & (\text{wegen (b)}) \\ \forall a \in K: & a \cdot 0 = 0 \cdot a & (\text{wegen 1.15a}) \end{array} \\ \forall a \in K \backslash \{0\}: & a \cdot 1 = 1 \cdot a = 1 & (\text{wegen (b)}) \\ & 0 \cdot 1 = 1 \cdot 0 = 0 & (\text{wegen 1.15a}) \end{array} \right\} \\ \Longrightarrow K \text{ Ring mit 1 als Einselement}$$

Es gilt $1 \neq 0$ nach der Bem. zu 1.15, weil K wegen (b) mindestens 2 Elemente hat.

Sei
$$a \cdot b = 0$$
. Zeige $a = 0 \lor b = 0$:

1.F.:
$$a = 0$$
. Fertig.

2.F.:
$$a \neq 0$$
. Dann $a^{-1} \cdot (a \cdot b) = 0$, d.h. $b = 0$.

2. Endliche nullteilerfreie kommutative Ringe mit $1 \neq 0$ sind Körper. (Ohne Beweis)

Beispiele:

- 1. $(\mathbb{Q}, +, \cdot)$ und $(\mathbb{R}, +, \cdot)$ sind Körper, $(\mathbb{Z}, +, \cdot)$ ist kein Körper
- 2. Für p Primzahl ist $(\mathbb{Z}_p, +, \cdot)$ ein Körper. [Beispiel 3 zu 1.14] Für $m \in \mathbb{N}$, m keine Primzahl, ist $(\mathbb{Z}_m, +, \cdot)$ kein Körper, weil $(\mathbb{Z}_m, +, \cdot)$ für $m \geq 2$ nicht nullteilerfrei ist [Beispiel 3 zu 1.14] und \mathbb{Z}_1 als einelementiger Ring kein Körper sein kann.

Bemerkung:

Es gibt endliche Körper mit p^k Elementen, falls p Primzahl und $k \in \mathbb{N}$. Diese sind bis auf Isomorphie eindeutig bestimmt. Bezeichnung: $GF(p^k)$ ("Galois-Felder")

Insbesondere sind \mathbb{Z}_p und $\mathrm{GF}(p)$ isomorph. Weitere endliche Körper existieren nicht.

Die Körper $GF(2^k)$ kommen in der Codierungstheorie zum Einsatz [Fehlerkorrektur bei CD/DVD, DVB, DSL: $GF(2^8)$].

1.20 Rechenregeln in Körpern (Auszug)

Sei $(K, +, \cdot)$ ein Körper. Zusätzlich zu den Regeln in 1.14, 1.15 und 1.16 gilt:

(a)
$$a^{-1} = \frac{1}{a}$$
, $\frac{1}{\frac{1}{a}} = a$ $(a \in K \setminus \{0\})$

(b)
$$-\frac{a}{b} = \frac{-a}{b} = \frac{a}{-b}$$
 $(a \in K, b \in K \setminus \{0\})$

$$\text{(c)} \ \frac{a}{b} \pm \frac{c}{d} = \frac{a \cdot d \pm b \cdot c}{b \cdot d} \qquad (a, c \in K, \ b, d \in K \setminus \{0\})$$

(d)
$$\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$$
 $(a, c \in K, b, d \in K \setminus \{0\})$

(e)
$$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a \cdot d}{b \cdot c}$$
 $(a \in K, b, c, d \in K \setminus \{0\})$

Beweis: Übung

Bemerkung:

- 1. Da $(K, +, \cdot)$ ein kommutativer Ring ist, können in 1.15 und 1.16 in den einzelnen Produkten zusätzlich Faktorvertauschungen durchgeführt werden.
- 2. Ist K Körper, so gilt die geometrische Summenformel in ihrer üblichen Form

$$\sum_{k=0}^{n} q^{k} = \frac{q^{n+1} - 1}{q - 1} = \frac{1 - q^{n+1}}{1 - q} \quad (q \neq 1, \ n \in \mathbb{N}_{0})$$

3. Auch der binomische Satz gilt mit der nach 1.6 für additive abelsche Gruppen eingeführten Schreibweise des Ausdrucks $m \cdot a \pmod{m}$.

Komplexe Zahlen

Vorbemerkung:

$$(\mathbb{R}^2, +, \cdot)$$
 mit $(x_1, y_1) + (x_2, y_2) := (x_1 + x_2, y_1 + y_2)$
 $(x_1, y_1) \cdot (x_2, y_2) := (x_1 x_2, y_1 y_2)$

ist zwar ein kommutativer Ring mit Einselement (1,1), aber *nicht* nullteilerfrei und somit kein Körper. [Denn: $(1,0) \cdot (0,1) = (0,0)$]

Mit einer anderen Definition der Multiplikation gelangt man zu den komplexen Zahlen.

1.21 Satz und Definition (komplexe Zahlen)

(a) \mathbb{R}^2 ist mit den Verknüpfungen

+:
$$\mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2$$
, $(x_1, y_1) + (x_2, y_2) := (x_1 + x_2, y_1 + y_2)$
·: $\mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2$, $(x_1, y_1) \cdot (x_2, y_2) := (x_1 x_2 - y_1 y_2, x_1 y_2 + x_2 y_1)$

ein Körper. Er heißt Körper der komplexen Zahlen und wird mit C bezeichnet.

(b) Mit der "imaginären Einheit" i := (0, 1) gilt

$$i \cdot i = -(1,0)$$

und

$$(x,y) = (x,0) + i \cdot (y,0)$$
 $(x,y \in \mathbb{R})$

Beweis:

(a) $(\mathbb{R}^2, +, \cdot)$ Ring:

 $\begin{array}{l} - & (\mathbb{R}^2, +) \text{ abelsche Gruppe} & \text{klar!} \\ - & (\mathbb{R}^2, \cdot) \text{ Assoziativgesetz durch Nachrechnen} \\ - & \text{Distributivgesetz durch Nachrechnen} \end{array} \right\} \ddot{\text{U}} \text{bung}$

 $(\mathbb{R}^2 \setminus \{(0,0)\},\cdot)$ abelsche Gruppe:

Kommutativgesetz durch Nachrechnen Neutrales Element: (1,0)Inverses Element zu $(x,y): \left(\frac{x}{x^2+y^2}, \frac{-y}{x^2+y^2}\right)$ Übung

(b)
$$i \cdot i = (0,1) \cdot (0,1) = (0 \cdot 0 - 1 \cdot 1, 0 \cdot 1 + 1 \cdot 0) = (-1,0)$$

 $(x,0)+i \cdot (y,0) = (x,0)+(0,1) \cdot (y,0) = (x,0)+(0 \cdot y - 1 \cdot 0, 0 \cdot 0 + 1 \cdot y) = (x,0)+(0,y) = (x,y)$

Schreibweise:

Wir können \mathbb{R} als Teilmenge von \mathbb{C} betrachten, indem wir $x \in \mathbb{R}$ mit $(x,0) \in \mathbb{R}^2$ identifizieren. Damit gelangen wir zu

$$\mathbb{C} = \{ x + i \cdot y : \ x, y \in \mathbb{R} \}$$

und den Rechenregeln

$$i \cdot i = -1$$

$$(x_1 + i \cdot y_1) + (x_2 + i \cdot y_2) = x_1 + x_2 + i \cdot (y_1 + y_2)$$

$$(x_1 + i \cdot y_1) \cdot (x_2 + i \cdot y_2) = x_1 x_2 + i \cdot x_2 y_1 + i \cdot x_1 y_2 + i^2 \cdot y_1 y_2$$

$$= x_1 x_2 - y_1 y_2 + i \cdot (x_2 y_1 + x_1 y_2)$$

1.22 Definition (Real- und Imaginärteil, Betrag, konjugiert-komplexe Zahl)

Sei $z = x + iy \in \mathbb{C}$ mit $x, y \in \mathbb{R}$. Dann

Veranschaulichung in der Gaußschen Zahlenebene:

1.23 Rechenregeln (konjugiert-komplexe Zahlen, Beträge)

Seien $w, z \in \mathbb{C}$. Dann gilt:

(a)
$$\overline{w+z} = \overline{w} + \overline{z}$$

(b)
$$\overline{w \cdot z} = \overline{w} \cdot \overline{z}$$

(c)
$$|z| = \sqrt{z \cdot \bar{z}}$$

(d)
$$|w \cdot z| = |w| \cdot |z|$$

Im folgenden lassen wir den Punkt bei der komplexen Multiplikation in der Regel weg.

Beweis: w = u + iv, z = x + iy $(u, v, x, y \in \mathbb{R})$

(a)
$$\overline{w+z} = \overline{u+iv+x+iy} = \overline{u+x+i(v+y)} = u+x-i(v+y) = u-iv+x-iy = \overline{w}+\overline{z}$$

(b)
$$\overline{wz} = \overline{(u+iv)(x+iy)} = \overline{ux-vy+i(uy+vx)} = ux-vy-i(uy+vx)$$

= $(u-iv)(x-iy) = \overline{wz}$

(c)
$$|z|^2 = x^2 + y^2 = x^2 - (iy)^2 = (x + iy)(x - iy) = z\overline{z}$$

(d)
$$|wz|^2 = wz \overline{wz} \stackrel{\text{(b)}}{=} wz \overline{w} \overline{z} = w\overline{w}z\overline{z} = |w|^2|z|^2$$

Bemerkungen:

- 1. Es gilt im allg. nicht: |w+z| = |w| + |z|, sondern nur $|w+z| \le |w| + |z|$ (Dreiecksungleichung).
- 2. Weitere Eigenschaften von \mathbb{C} werden in der Analysis bewiesen, insbesondere die sogenannte Polardarstellung $z = r \cdot e^{i\varphi} = r(\cos \varphi + i \sin \varphi)$ mit r = |z| und $\varphi \in \mathbb{R}$ geeignet. Aus dieser ergibt sich u.a. die Formel von de Moivre

$$(\cos \varphi + i \sin \varphi)^n = \cos(n\varphi) + i \sin(n\varphi) \qquad (\varphi \in \mathbb{R}, n \in \mathbb{N})$$

3. Wir benötigen später neben den Körpereigenschaften von $\mathbb C$ im wesentlichen 1.23a,b und den Fundamentalsatz der Algebra:

Jedes Polynom $a_n z^n + a_{n-1} z^{n-1} + \ldots + a_0 \quad (z \in \mathbb{C})$ mit komplexen Koeffizienten a_0, \ldots, a_n , wobei $n \in \mathbb{N}$ und $a_n \neq 0$, läßt sich als Produkt $a_n(z - \zeta_1) \cdots (z - \zeta_n)$ schreiben. Dabei sind die komplexen Nullstellen ζ_1, \ldots, ζ_n unabhängig von $z \in \mathbb{C}$, jedoch nicht unbedingt paarweise verschieden.

Beispiel:
$$z^2 + 1 = (z + i)(z - i)$$
.