Fall 2024

Assignment 2: Asymptotic Notation & Divide and Conquer

Instructor: Orhan Özgüner Due: October 1 before 11:59 PM

Problem 1

For each of the following pairs of functions, write down the asymptotic relation between f(n) and g(n); i.e., if f(n) = x(g(n)) where $x \in \{o, \Theta, \omega, O, \Omega\}$. Assume that $k \ge 0$, $\epsilon > 0$, and $\epsilon > 1$. Provide a justification for your answers.

	f(n)	g(n)
a)	$\log^k n$	n^{ϵ}
b)	n^k	c^n
c)	\sqrt{n}	$n^{\sin(n)}$

Problem 2

Considering functions $f(n) \geq 0$, $g(n) \geq 0$, and constant c > 0, indicate whether each of the following statements is true. Prove the statements that are true by providing a formal argument that is based on the definition of asymptotic notation. For statements that are false, provide a counter-example to prove that they are false.

(a) If
$$f(n) \ge 1$$
, then $f(n) + c = O(f(n))$.

$$(b) \ f(2n) = \Theta(f(n)).$$

(c) If
$$f(n) = O(n^c)$$
, then $f(2n) = O(n^c)$.

Problem 3

Let $0 < \lambda < 1 < a < b$ be constants. Solve the following recurrences using Master Method, noting the case that applies.

(a)
$$T(n) = bT(n/a) + \Theta(n)$$
.

(b)
$$T(n) = a^2 T(n/a) + \Theta(n^2)$$
.

(c)
$$T(n) = T(\lambda n) + n^{\lambda}$$
.

Problem 4

You are given an array of k sorted arrays each of which has a length n/k elements. Describe an efficient algorithm to merge these arrays to obtain one sorted array of length n.