ISA description:

The ISA has 6 encoding types of instructions. The description of the types is given later.

Opcode	Instruction	Semantics Syntax	Туре
10000	Addition	Performs reg3 = reg1 + add reg1 reg2 reg3 reg2. If the computation overflows, then the overflow flag is set	А
10001	Subtraction	Performs reg3 = reg1 sub reg1 reg2 reg3 - reg2. In case reg2 > reg1, 0 is written to reg3 and overflow the flag is set.	A
10010	Move Immediate	Performs reg1 = \$Imm mov reg1 \$Imm where Imm is an 8 bit value.	В
10011	Move Register	Performs reg2 = reg1 mov reg1 reg2 Loads data from ld reg1 mem_addr	С
10100	Load	mem_addr into reg1. Stores data from	D
10101	Store	st reg1 mem_addr reg1 to mem_addr.	D
10110	Multiply	Performs reg3 = reg1 mul reg1 reg2 reg3 x reg2. If the computation overflows, then the overflow flag is set.	A

10111	Divide	Performs reg3/reg4. div reg3 reg4 Stores the quotient in R0 and the remainder in R1.	С
11000	Right Shift	Right shifts reg1 by rs reg1 \$Imm \$Imm, where \$Imm is an 8 bit value.	
11001	Left Shift	Left shifts reg1 by ls reg1 \$Imm \$Imm, where \$Imm is an 8 bit value.	В
11010	Exclusive OR Performs bitwise	XOR of reg1 and reg2. Stores the result in reg3. xor reg1 reg2 reg3	A

11011	Or	Performs bitwise OR or reg1 reg2 reg3 of reg1 and reg2. Stores the result in reg3.	A
11100	And	Performs bitwise AND and reg1 reg2 reg3 of reg1 and reg2. Stores the result in reg3.	A
11101	Invert	Performs bitwise NOT not reg1 reg2 of reg1. Stores the result in reg2.	С

11110	Compare		С
		Compares reg1 and reg2 and sets up the FLAGS register.	
		cmp reg1 reg2	

11111	Unconditio nal Jump	Jumps to mem_addr, jmp mem_addr where mem_addr is a memory address.	Е
01100	Jump If Less Than	Jump to mem_addr if	E
01101	Jump If Greater Than	Jump to mem_addr if the greater than flag is set (greater than flag = 1), where mem_addr is a memory address. jgt mem_addr	Е

01111	Jump If Equal	Jump to mem_addr if the equal flag is je mem_addr	Е
		set (equal flag = 1), where mem_addr is a memory address.	

01010	Halt	Stops the machine from executing until reset hlt	F

where reg(x) denotes register, mem_addr is a memory address (must be an 8-bit binary number), and **Imm** denotes a constant value (must be an 8-bit binary number). The ISA has 7 general purpose registers and 1 flag register. The ISA supports an address size of **8 bits**, which is **double byte addressable**. Therefore, each address fetches two bytes of data. This results in a total address space of 512 bytes. **This ISA only supports whole number arithmetic.** If the subtraction results in a negative number; for example "3 - 4", the reg value will be set to 0 and overflow bit will be set. All the representations of the number are hence unsigned. The registers in assembly are named as R0, R1, R2, ..., R6 and FLAGS. Each register is 16 bits.