

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
09/835,991	04/16/2001	Robert A. Unger	SOP4318.01	6030
7590	07/25/2005			EXAMINER
Jonathan O Owens Haverstock & Owens LLP 162 North Wolfe Road Sunnyvale, CA 94086			FISH, JAMIESON W	
			ART UNIT	PAPER NUMBER
			2617	

DATE MAILED: 07/25/2005

Please find below and/or attached an Office communication concerning this application or proceeding.

Office Action Summary	Application No.	Applicant(s)	
	09/835,991	UNGER, ROBERT A.	
	Examiner	Art Unit	
	Jamieson W. Fish	2617	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If the period for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

1) Responsive to communication(s) filed on 31 March 2005.

2a) This action is **FINAL**. 2b) This action is non-final.

3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

4) Claim(s) 1-16, 18-21 and 23 is/are pending in the application.

4a) Of the above claim(s) _____ is/are withdrawn from consideration.

5) Claim(s) _____ is/are allowed.

6) Claim(s) 1-16, 18-21 and 23 is/are rejected.

7) Claim(s) _____ is/are objected to.

8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

9) The specification is objected to by the Examiner.

10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).

11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).

a) All b) Some * c) None of:

1. Certified copies of the priority documents have been received.
2. Certified copies of the priority documents have been received in Application No. _____.
3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

1) <input type="checkbox"/> Notice of References Cited (PTO-892)	4) <input type="checkbox"/> Interview Summary (PTO-413)
2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948)	Paper No(s)/Mail Date. _____
3) <input type="checkbox"/> Information Disclosure Statement(s) (PTO-1449 or PTO/SB/08) Paper No(s)/Mail Date _____	5) <input type="checkbox"/> Notice of Informal Patent Application (PTO-152)
	6) <input type="checkbox"/> Other: _____

DETAILED ACTION

Response to Arguments

Applicant's arguments filed 03-31-2005 have been fully considered but they are not persuasive. The applicant argues: Kawaguchi does not teach a means for monitoring a broadcast communication channel for a wake-up instruction with the receiver in the power-off condition, wherein the means for monitoring the broadcast communication channel includes a power switch for providing power to a processor in direct response to the wake-up instruction (See Remarks Pg 8 Paragraph 3). The examiner respectfully disagrees. The applicant relies on col. 7, lines 24-39, and Figure 7A of Kawaguchi to show that switch 231 is turned on at an update time and not in direct response to a wake-up signal. Although col. 7, lines 24-39, and Figure 7A of Kawaguchi teach an embodiment where switch 231 is turned on at an update time and not in direct response to a wake-up signal, col. 8 lines 25-33, and Figure 9 of Kawaguchi teach an alternative embodiment where the process of 7A, including turning on switch 231, is executed "in response to an interrupt from the communications IF 228." The communications IF issues an interrupt signal in response to an alerting call. Thus, switch 231 is turned on in direct response to the alerting call (wake-up signal).

The applicant argues that there is no hint, teaching or suggestion to warrant the combination of Nakatsuyama and Kawaguchi (See Remarks Pg. 10 Paragraph 2), specifically the applicant argues there is no motivation to combine the teachings of Nakatsuyama and Kawaguchi (See Remarks Pg. 10 Paragraph 4). In response to applicant's argument that there is no suggestion to combine the references, the

Art Unit: 2617

examiner recognizes that obviousness can only be established by combining or modifying the teachings of the prior art to produce the claimed invention where there is some teaching, suggestion, or motivation to do so found either in the references themselves or in the knowledge generally available to one of ordinary skill in the art. See *In re Fine*, 837 F.2d 1071, 5 USPQ2d 1596 (Fed. Cir. 1988) and *In re Jones*, 958 F.2d 347, 21 USPQ2d 1941 (Fed. Cir. 1992). In this case, the motivation to modify Nakatsuyama with Kawaguchi would be to provide a receiver that ensures the reception of program information and any irregular program while saving the power consumption in the receiver (See Kawaguchi Col. 1 lines 49-53). Thus, the combination of Nakatsuyama and Kawaguchi is proper.

The application argues that neither Nakatsuyama, Kawaguchi, nor their combination teach a wake-up sensor which sends a wake-up signal to a wake-up switch in direct response to a first selected signal (See Remarks Pg. 11 Paragraph 1). As discussed above Kawaguchi does teach a wake-up sensor which sends a wake-up signal to a wake-up switch in direct response to a first selected signal.

The application argues that neither Kimoto, Kawaguchi, nor their combination teach monitoring, with the receiver in the standby condition, a broadcast communication channel for a wake-up instruction and providing power to a first portion of the receiver and indicating a standby condition for the receiver while receiving a receiver update, in direct response to receiving the wake-up instruction (See Remarks Pg. 13 Paragraph 2). As discussed above Kawaguchi does teach monitoring, with the receiver in the standby condition, a broadcast communication channel for a wake-instruction and

Art Unit: 2617

providing power to a first portion of the receiver and in direct response to receiving the wake-up instruction. Thus, combination of Kawaguchi and Kimoto still applies.

Claim Rejections - 35 USC § 102

The text of those sections of Title 35, U.S. Code not included in this action can be found in a prior Office action.

1. Claims 21 and 23 are rejected under 35 U.S.C. 102(e) as being anticipated by Kawaguchi et al. (US# 6,271,893).
2. Regarding claim 21, Kawaguchi teaches a broadcast receiver (See Fig. 1 TV receiver 4) comprising: means for monitoring a user-input device for a power-on instruction (See Fig. 1 I/O Devices 227, Controller 225, Switches 231 and 232, and Col. 4 lines 24-58 The Controller monitors the I/O devices for user command to execute. The Controller executes powering on the receiver by closing Switches 231 and 232. It is inherent that the I/O device must include power-on instructions so that the user can power-on the receiver to view channels); display means for indicating a power-on condition for the receiver in response to the power-on instruction (See Fig. 1 Switches 231 and 232, Video & Audio Output Devices 218 and Col. 4 lines 1-12, 38-59. Power-on condition is when both switches are closed. Power off condition is when switch 232 is open. It is inherent that the Video Output Device will display an image when powered-on.); means for monitoring the user-input device for a power-off instruction (See Fig. 1 I/O Devices 227, Controller 225, Switches 231 and 232, and Col. 4 lines 24-58. The Controller monitors the I/O devices for user command to execute. The Controller powers off the receiver by opening Switches 231 and 232. It is inherent I/O

Art Unit: 2617

device must include power-off instructions so that the user can power-off the receiver); means responsive to the power-off instruction for indicating a power-off condition for the receiver (See Fig. 1 Video & Audio Output devices 218 and Col. 4 lines 1-12. It is inherent that Video Output Device will not display an image when powered-off); and means for monitoring a broadcast communication channel for a wake-up instruction with the receiver in the power-off condition, wherein the means for monitoring the broadcast communication channel includes a power switch for providing power to a processor in direct response to the wake-up instruction (See Fig. 1 Communication IF 228, Controller 225, Signal processor 211, and Switches 231 and 232 Fig. 9 Col. 4 lines 24-58, Col. 8 lines 25-33 The Controller monitors the Communication IF for interrupt. Interrupt (Wake-up) instruction closes Switch 231 which provides power to Processor 211).

3. Regarding claim 23, Kawaguchi further teaches wherein the display means indicates the power-off condition when the power switch provides power to the processor in response to the wake-up instruction (See Kawaguchi Fig. 1 Switch 231, 232, Video & Audio Output Devices 218, and Col. 4 lines 38-59. Wake-up condition only closes switch 231, thus Processor 211 is powered on and Video & Audio Output Devices are still powered off. Video Output Device not displaying an image is powered off).

Claim Rejections - 35 USC § 103

4. Claims 1-2, 4-9, 11,13-15, are rejected under 35 U.S.C. 103(a) as being unpatentable over Nakatsuyama (U.S. 6,658,231) in view Kawaguchi

5. Regarding claim 1, Nakatsuyama teaches a broadcast receiver comprising: a power supply having a power-supply output terminal (See Fig. 6 Power System 276 and Col. 13 lines 45-50) and a broadcast interface circuit including: an interface-circuit input terminal adapted to receive a plurality of broadcast communications signals, each signal modulated about a selected carrier frequency (See Fig. 6 Tuning system 252 and antenna 253 and Col. 12 lines 60-63. It is inherent that program data signals received by the antenna and the tuner must be modulated about a selected carrier frequency); a tuner having a tuner input terminal coupled to the interface circuit input terminal, wherein the tuner selects one of the signals and provides the selected signal on a tuner output terminal (See Fig. 6 Antenna 253 and Tuner System 252 See Col. 12 lines 57-67 Tuners by definition are adapted to select one of a plurality of broadcast signals and provide the selected signal to the output terminal. In this case the selected signal is the index signal); a wake-up sensor having a wake-up sensor input terminal coupled to the interface circuit input terminal and a sensor output terminal, wherein the sensor being adapted to produce a wake-up signal on the sensor output terminal in response to first selected signal (See Fig. 6, Tuning System 252, Logic Unit 250, Antenna 253, and Demodulator 254 and Col. 2 lines 60-65, Col. 7 lines 33-38, Col. 12 lines 57-67, Col. 14 lines 41-50. Nakatsuyama teaches that the receiver can be in low-power mode when not receiving or processing program data. It is inherent that in low-power mode some circuitry used to receive and process program data is powered off. It is inherent that the receiver must power on this circuitry to receive and process program data. The receiver powers on this circuitry based on received tuning data which is contained in the index

Art Unit: 2617

signal which contains information regarding when program data is to be received. The parts of the Tuning System, Demodulator, and Logic Unit that are electronically coupled to the Antenna (Input Terminal) that receive index signal (first selected signal) and power on circuitry necessary to receive and process program data in response to tuning data are the wake-up sensor). Nakatsuyama differs from the claimed invention in that does not disclose a wake-up switch having a wake-up-switch input terminal coupled to the power-supply output terminal, a wake-up-switch output terminal, and a wake-up-switch control terminal coupled to the wake-up-sensor output terminal to receive the wake-up signal, wherein the wake-up switch is closed in direct response to receiving the wake-up signal thereby providing power from the power-supply output terminal to the wake-up switch output terminal. In the same field of endeavor Kawaguchi teaches a digital TV broadcast system having a wake-up switch comprising a wake-up switch input terminal coupled to a power-supply output terminal, a wake-up-switch output terminal, and a wake-up-switch control terminal coupled to the wake-up-sensor output terminal to receive the wake-up signal, wherein the wake-up switch is closed in direct response to receiving the wake-up signal thereby providing power from the power-supply output terminal to the wake-up switch output terminal (See Fig. 1 Switch 231 Power Supply 230 and Col. 4 lines 43-48). It would have been obvious to one of ordinary skill in the art to modify Nakatsuyama with Kawaguchi such that Nakatsuyama included a wake-up switch comprising a wake-up switch input terminal coupled to a power-supply output terminal, a wake-up-switch output terminal, and a wake-up-switch control terminal coupled to the wake-up-sensor output terminal to receive the wake-up signal, wherein

the wake-up switch is closed in direct response to receiving the wake-up signal thereby providing power from the power-supply output terminal to the wake-up switch output terminal as taught by Kawaguchi to provide an efficient way to power up and power down the electronic circuitry associated with receiving program information (See Kawaguchi Col. 1 lines 49-53).

6. Regarding claim 2, Nakatsuyama and Kawaguchi teaches the wake-up sensor further including a second tuner tuned to a carrier frequency associated with the first selected signal (See Nakatsuyama Col. 8 lines 21-22 and Col. 12 lines 57-66 One tuner is tuned to a channel to receive index data (first selected signal)).

7. Regarding claim 4, Nakatsuyama and Kawaguchi teaches wherein the tuner includes a power terminal coupled to the wake-up-switch output terminal (See Kawaguchi Fig. 1 Switch 231, Received Signal Processor 211, Tuner 213 and Col. 4 lines 1-3, 43-48 The Received Signal Processor which comprises the Tuner is connected to the wake-up switch output terminal).

8. Regarding claim 5, the modified Nakatsuyama teaches a receiver further comprising a display capable of indicating a power-on condition for the receiver (See Nakatsuyama Fig. 6 Display system 260 and Col. 13 lines 9-21 It is well known in the art that conventional display systems are capable of indicating their power condition i.e. whether they are off or on). Nakatsuyama fails to disclose where the display has a power input terminal connected to the power supply via a second switch. Kawaguchi does teach the display has a power input terminal coupled to the power supply via a second switch (See Kawaguchi Fig. 1 Switch 232, Output portion 212, Video and Audio

Output Devices 218 and Col. 4 lines 8-12, 43-48). It would have been obvious to one of ordinary skill in the art to further modify Nakatsuyama with Kawaguchi so that Nakatsuyama's display has a power input terminal connected to the power supply via a second switch. The motivation for a second switch would have been the ability to power the display system independent of the other components.

9. Regarding claim 6, the modified Nakatsuyama teaches wherein power is independently delivered to the display system and the program receiving circuitry, it would have been obvious that the display does not indicate a power-on condition in response to the wake-up signal, since the wake-up signal only powers on the receiving circuitry and thus the display system would remain off and indicate such (See Kawaguchi Fig. 1 Switch 231, 232, and Col. 4 lines 38-59).

10. Regarding claim 7, the modified Nakatsuyama discussed in regards to claim 1, teaches a receiver further comprising a processor having a processor power terminal coupled to the wake-up-switch output terminal (See Kawaguchi Fig. 1 received signal processor 211 and Col. 4 lines 43-48).

11. Regarding claim 8, Nakatsuyama teaches a broadcast communication network comprising: broadcast head-end adapted to broadcast a plurality of signals about a corresponding plurality of carrier frequencies (See Fig. 6 and Col 2 lines 1-30), the signals including an occasional wake-up instruction (See Col. 7 lines 32-49 and Col. 12 lines 15-18 Index signal is used to wake-up receiving and processing circuitry); a plurality of receivers adapted to receive the plurality of signals (See Col. 4 lines 12-15 each end user's receiver), each receiver including: a power supply having a power-

supply output terminal (See Fig. 6 Power System 276 and Col. 13 lines 45-50); and a broadcast interface circuit including: an interface-circuit input terminal adapted to receive a plurality of broadcast communications signals, each signal modulated about a selected carrier frequency (See Fig. 6 Tuning system 252 and antenna 253 and Col. 12 lines 60-63. It is inherent that program data signals received by the antenna and the tuner are modulated about a selected carrier frequency); a wake-up sensor having a sensor input terminal coupled to the interface circuit input terminal and a wake-up-sensor output terminal, wherein the wake-up sensor produces a wake-up signal on the wake-up-sensor output terminal directly in response to receiving a first selected signal (See Fig. 6, Tuning System 252, Logic Unit 250, Antenna 253, and Demodulator 254 and Col. 2 lines 60-65, Col. 7 lines 33-38, Col. 12 lines 57-67, Col. 14 lines 41-50. Nakatsuyama teaches that the receiver can be in low-power mode when not receiving or processing program data. It is inherent that in low-power mode some circuitry used to receive and process program data is powered off. It is inherent that the receiver must power on this circuitry to receive and process program data. The receiver powers on this circuitry based on received tuning data which is contained in the index signal which contains information regarding when program data is to be received. The parts of the Tuning System, Demodulator, and Logic Unit that are electronically coupled to the Antenna (Input Terminal) that receive index signal (first selected signal) and power on circuitry necessary to receive and process program data in response to tuning data are the wake-up sensor); Nakatsuyama does not specifically teach a wake-up switch comprising a wake-up switch input terminal coupled to a power-supply output terminal,

Art Unit: 2617

a wake-up-switch output terminal, and a wake-up-switch control terminal coupled to the wake-up-sensor output terminal to receive the wake-up signal, wherein the wake-up switch is closed in direct response to receiving the wake-up signal thereby providing power from the power-supply output terminal to the wake-up switch output terminal. In the same field of endeavor Kawaguchi teaches a digital TV broadcast system having a wake-up switch comprising a wake-up switch input terminal coupled to a power-supply output terminal, a wake-up-switch output terminal, and a wake-up-switch control terminal coupled to the wake-up-sensor output terminal to receive the wake-up signal, wherein the wake-up switch is closed in direct response to receiving the wake-up signal thereby providing power from the power-supply output terminal to the wake-up switch output terminal (See Fig. 1 Switch 231 Power Supply 230 and Col. 4 lines 43-48). Thus, it would have been obvious to one of ordinary skill in the art to modify Nakatsuyama with Kawaguchi such that Nakatsuyama included a wake-up switch comprising a wake-up switch input terminal coupled to a power-supply output terminal, a wake-up-switch output terminal, and a wake-up-switch control terminal coupled to the wake-up-sensor output terminal to receive the wake-up signal, wherein the wake-up switch is closed in direct response to receiving the wake-up signal thereby providing power from the power-supply output terminal to the wake-up switch output terminal as taught by Kawaguchi to provide an efficient way to power up and power down the electronic circuitry associated with receiving program information (See Kawaguchi Col. 1 lines 49-53).

Art Unit: 2617

12. Regarding claim 9, the modified Nakatsuyama teaches the wake-up sensor further including a second tuner tuned to a carrier frequency associated with the first selected signal (See Nakatsuyama Col. 8 lines 21-22 and Col. 12 lines 57-66).

13. Regarding claim 11, the modified Nakatsuyama teaches the interface circuit including a second tuner having a tuner input terminal coupled to the interface input terminal, wherein the second tuner is adapted to select one of the signals and provide the selected signal on a tuner output terminal (See Nakatsuyama, Fig. 6 Antenna 253 and Tuner System 252 and Col. 12 lines 60-63; the electrical coupling is the input and output terminals);

14. Regarding claim 13, the modified Nakatsuyama teaches wherein the second tuner includes a power terminal coupled to the wake-up-switch output terminal (See Kawaguchi Fig. 1 Switch 231, Received Signal Processor 211, Tuner 213 and Col. 4 lines 1-3, 43-48 The Received Signal Processor which comprises the Tuner is connected to the wake-up switch output terminal).

15. Regarding claim 14, the modified Nakatsuyama teaches a receiver further comprising a display capable of indicating a power-on condition for the receiver (See Nakatsuyama Fig. 6 Display system 260 and Col. 13 lines 9-21. It is inherent that conventional display systems are capable of indicating a power condition i.e. whether they are off or on). Nakatsuyama fails to disclose where the display has a power input terminal connected to the power supply via a second switch. Kawaguchi does teach the display (Fig.1, Video/Audio Output Device 218) has a power input terminal coupled to the power supply (230) via a second switch. (See Kawaguchi Fig. 1 Switch 232 and

Art Unit: 2617

212 Output portion). It would have been obvious to one of ordinary skill in the art to further modify Nakatsuyama with Kawaguchi so that Nakatsuyama's display had a power input terminal connected to the power supply via a second switch. The motivation for a second switch would have been the ability to power the display system independent of the other components.

16. Regarding claim 15, in the modified Nakatsuyama where power is independently delivered to the display system and the program receiving circuitry, it would have been obvious that the display does not indicate a power-on condition in response to the wake-up signal, since the wake-up signal only powers on the receiving circuitry and thus the display system would remain off and indicate such (See Kawaguchi Fig. 1 Switch 231, 232, and Col. 4 lines 38-59).

17. Claims 16 and 18-20 are rejected under 35 U.S.C. 103(a) as being unpatentable over Kawaguchi et al. (US# 6,271,893) in view of Kimoto et al. (US #6,054,981).

18. Regarding claim 16, Kawaguchi teaches a method of reducing power usage in a broadcast receiver (See Col. 8 lines 2-5), the method comprising: monitoring, in a standby mode (See Col. 4 lines 38-43 when only the controller, I/O devices and the IF are powered, the receiver is in standby mode), a user-input device for a power-on instruction (See Col. 4 lines 24-34 I/O devices 227, it is inherent that controlling the digital receiver would include a powering-on instruction); monitoring the user-input device for a power-off instruction (See Col. 4 lines 24-34 I/O devices 227, it is inherent that controlling the digital receiver would include a powering-off instruction); and monitoring, with the receiver in the standby condition, a broadcast communication

channel for a wake-up instruction (See Fig. 1 Second transmission media 5, Communication IF 228, Switch 231 Col. 4 lines 34-59 and Fig. 9 Step 444 Turn on the switch 231 and Col. 8 lines 25-30 turning on the switch 231 wakes-up the receiver) and providing power to a first portion of the receiver in direct response to receiving the wake-up instruction (See Fig. 9 Col. 8 lines 25-33). Kawaguchi does not specifically disclose indicating a power-on condition for the receiver in response to the power-on instruction or indicating a standby condition for the receiver in response to the power-off instruction or indicating a standby condition for the receiver while receiving a receiver update, in direct response to receiving the wake-up instruction. However, Kawaguchi's does teach an indicator (See Col. 7 lines 37-40) and indicating various power modes for an electronic device is well known in the art as taught in Kimoto (See Fig 3. and Col. 4 lines 37-42). It would have been obvious to one of ordinary skill in the art to modify Kawaguchi with Kimoto to indicate a power-on condition for the receiver in response to the power-on instruction or indicate a standby condition for the receiver in response to the power-off instruction, or indicate a standby condition for the receiver while receiving a receiver update, in direct response to receiving the wake-up instruction, as well as indicating the appropriate power mode of the receiver at any given time during the receiver's operation. The motivation for such a modification would have been so that the various power modes could be displayed.

19. Regarding claim 18, the modified Kawaguchi teaches upon receipt of a power-on instruction in the standby condition providing power to the first portion and a second portion of the receiver (See Col. 4 lines 58-59 when both switches are closed first

Art Unit: 2617

portion discussed with regards to claim 17 and output portion 212 are powered) and indicating the power-on condition (See discussion regarding claim 16).

20. Regarding claim 19, the modified Kawaguchi further teaches indicating a power-on includes providing a video signal to a video display device (See Col. 4 line 8-12 It is inherent that a video signal is provided to a video display device in response to a power-on instruction).

21. Regarding claim 20, the modified Kawaguchi further teaches a user input device (See Fig. 1 I/O devices 227 and Col. 4 lines 24-33). Kawaguchi and Kimoto do not explicitly state that the user interface device comprises an infrared receiver. The examiner takes Official Notice that a user interface device comprising an infrared receiver is well known in the art. Therefore, it would have been obvious to one of ordinary skill in the art to modify Kawaguchi and Kimoto so that its interface device comprises an infrared receiver. The motivation for such a modification would have been the ability to control the receiver remotely.

22. Claims 3, 10, 12 rejected under 35 U.S.C. 103(a) as being unpatentable over Nakatsuyama (U.S. #6,658,231) in view Kawaguchi above, and further in view of Krakirian (US 2002/0073423).

23. Regarding claims 3 and 10, Nakatsuyama as modified by Kawaguchi teaches the broadcast signals are already digitized when the receiver receives them (See Abstract). Nakatsuyama does not include a digitizer in his receiver. However, analog broadcast systems with receivers that include analog tuners and digitizers where the digitizer is coupled between the tuner and an output that requires a digital input are well known in

Art Unit: 2617

the art as disclosed in Krakirian (See Fig. 1 A/D Converter 16 and Paragraph 31). In light of the teaching from Krakirian, it would have been obvious to one of ordinary skill in the art to further modify Nakatsuyama and Kawaguchi such that it includes a digitizer coupled between the tuner and the wake-up-switch control. The motivation of such a modification would have been having a receiver capable of receiving an analog signal that can communicate with digital circuitry.

24. Regarding claim 12, Nakatsuyama as modified by Kawaguchi teaches a processor (See Fig. 6 Logic Unit 250 and Col. 12 57-60). Nakatsuyama teaches the broadcast signals are already digitized when the receiver receives them (See Abstract). Nakatsuyama does not include a digitizer in his receiver. However, analog broadcast systems with receivers that include analog tuners and digitizers where the digitizer is coupled between the tuner and a processor well known in the art as disclosed in Krakirian (See Fig. 1 16 A/D converter and Paragraphs 30 and 31). In light of the teaching in Krakirian, it would have been obvious to one of ordinary skill in the art to further modify Nakatsuyama and Kawaguchi such that it includes a digitizer coupled between the tuner and the processor. The motivation of such a modification would have been having a receiver capable of receiving an analog signal that can communicate with digital circuitry.

Conclusion

THIS ACTION IS MADE FINAL. Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

Art Unit: 2617

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the mailing date of this final action.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Jamieson W. Fish whose telephone number is 571-272-7307. The examiner can normally be reached on Monday-Friday, 8:00-5:30.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's primary, Ngoc Vu can be reached on 571-272-7320. The fax phone number for the organization where this application or proceeding is assigned is 703-872-9306.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

Application/Control Number: 09/835,991
Art Unit: 2617

Page 18

JF 7/12/2005

Ngoc-Yen Vu
PRIMARY EXAMINER