(i) Given a char [], calculate no. of pairs (i,j) such that
$$i < j$$
 & & $s[i] = a'$ & & $s[j] = g'$.

$$S[0] = \begin{cases} 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 5 & 6 & 7 \\ 2 & 2 & 4 & 4 & 4 \\ 2 & 2 & 2 & 4 & 4 & 4 \\ 3 & 2 & 2 & 4 & 4 & 4 & 4 \\ 4 & 2 & 2 & 2 & 4 & 4 & 4 \\ 4 & 2 & 2 & 2 & 2 & 4 & 4 \\ 4 & 2 & 2 & 2 & 2 & 4 & 4 & 4 \\ 4 & 2 & 2 & 2 & 2 & 2 & 4 & 4 \\ 4 & 2 & 2 & 2 & 2 & 2 & 2 & 4 \\ 4 & 2 & 2 & 2 & 2 & 2 & 2 & 4 \\ 4 & 2 & 2 & 2 & 2 & 2 & 2 & 4 \\ 4 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\ 4 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\ 4 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\ 4 & 2 & 2 & 2 & 2 & 2 & 2 \\ 4 & 2 & 2 & 2 & 2 & 2 & 2 \\ 4 & 2 & 2 & 2 & 2 & 2 & 2 \\ 4 & 2 & 2 & 2 & 2 & 2 & 2 \\ 4 & 2 & 2 & 2 & 2 & 2 & 2 \\ 4 & 2 & 2 & 2 & 2 & 2 & 2 \\ 4 & 2 & 2 & 2 & 2 & 2 \\ 4 & 2 & 2 & 2 & 2 & 2 \\ 4 & 2 & 2 & 2 & 2 & 2 \\ 4 & 2 & 2 & 2 & 2 & 2 \\ 4 & 2 & 2 & 2 & 2 & 2 \\ 4 & 2 & 2 & 2 & 2 & 2 \\ 4 & 2 & 2 & 2 & 2 & 2 \\ 4 & 2 & 2 & 2 & 2 & 2 \\ 4 & 2 & 2 & 2 & 2 & 2 \\ 4 & 2 & 2 & 2 & 2 & 2 \\ 4 & 2 & 2 & 2 & 2 & 2 \\ 4 & 2 & 2 & 2 & 2 & 2 \\ 4 & 2 & 2 & 2 \\ 4 & 2 & 2 & 2 & 2 \\ 4 & 2 & 2 & 2 & 2 \\ 4 & 2 & 2 & 2 & 2 \\ 4 & 2 & 2 & 2 & 2 \\ 4 & 2 & 2 & 2 & 2 \\ 4 & 2 & 2 & 2 & 2 \\ 4 & 2 & 2 & 2 & 2 \\ 4 & 2 & 2 & 2 & 2 \\ 4 & 2 & 2 & 2 & 2 \\ 4 & 2 & 2 & 2 & 2 \\ 4 & 2 & 2 & 2 & 2 \\ 4 & 2 & 2 & 2 & 2 \\ 4 & 2 & 2 & 2 & 2 \\ 4 & 2 & 2 & 2 \\ 4 & 2 & 2 & 2 & 2 \\ 4 & 2 & 2 & 2 \\ 4 & 2 & 2 & 2 \\ 4 & 2 & 2 &$$

Ans:5

$$S[7] = \begin{cases} 2 & 3 & 4 & 5 & 6 \\ a & c & g & d & g & a & g \end{cases}$$

Ans: 4

ag count = 0

retuen ans

¿ a L catt	$ \begin{array}{c cccc} 2 & 3 \\ 3 & a \end{array} $ $ \begin{array}{c ccccc} ans = 1 & ca = 2 \end{array} $	$\frac{d}{d} = \frac{d}{d}$ $a_{Ny} + = ca ca + t$ $a_{Ny} = 3 ca = 2$	9 3 any += co ca= 6

return leader

$A[6] = \begin{cases} 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 7 & 6 & 1 & -1 & 0 & 5 & 9 \\ m = -\infty & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & $									
Man in array									
min = 00									
Intige min valu inf INT-MIN									
Cuvmax = -0 Cuvmax = -0									
for (i=0; i'<0); i++) \(\xi \) for (i=0; i'<0); i++) \(\xi \) if (A[i] 7 cur max) \(\xi \) cur max = A[i] 3 Buck (10:32 - 10:42)									

•

Subarrays continous part of areay										
_	> Can	single	element	be	a	subarras	_} ?	165		
		0								
	Can	entire	array	be	a	subarray	? '	les		
_	> Can	0	elements	be	a	subura	y ?	No		
	2	2	z	5	7	7 [C)	-35	
			£3}	/						
									_	
	2 2	3	5		7	(0	-35	} /	
			835	7 13						
			£ 2 5	73	∠					

Closest Min Max Amazon

Given an array find the length of smallest subarray which contains both min and mex of array

Min = 1 Max = 6

1 3 4 6 4 6 3 2 3

Ans: 9

Min: 1 Max = 6 6 4 5 1 5 2 6 4 1 Ans: 3

min len = min (min len, len) 1) Min, Man values -> O(N) $\min (i = -1) \qquad \max (i = -1)$ 3) minlen = ~ /N max = 6 min = 1 mari= 7 mini=0 mlni = 10 mazi=1 mini = 4 len = 10-7+1 len = 2 len = 4 len = 4 marlen=2 minun=4 minten = 4

min = 1 max = 6 minlen = a/N mini = -1 mari = -1 maki=8 len= 10-8+1 min lin =3

mari = -1, mini = -1, minten = for (i=n-1; i7=0; i--) { if (A[i] = = man) { mani= 1 if (mini!=-1) { Len = man(mini, mani) - min(mani, mini) +1 min lin = min (minlin, lin) if (A(i) = = min) { mini=i if (mani!=-1) { Len = mar(mini, mani) - min(maxi, mini) +1 minden = min (minden, den) 3 siturn min lin

