Structural Econometrics in Labor and IO. Problem Set: Preliminaries.

Description

The aim of this problem set is to refresh (or make you familiar with) some basic concepts – notably GMM estimation, numerically solving systems of nonlinear equations, and the intuition for a contraction mapping - that will be essential in subsequent sessions and problem sets (and in large parts of the literature).

Main reference: Berry, Steven T. (1994), "Estimating Discrete Choice Models of Product Differentiation," Rand Journal of Economics, 25 (2), 242-262.

Problems

Together with your answers, please submit your computer code for the questions below.

1. A simple demand estimation example. We assume consumer i chooses one unit of product $j \in J$ or an outside good (e.g. no purchase) to obtain utility

$$u_{ijt} = x_{jt}\beta + \alpha p_{jt} + \xi_{jt} + \varepsilon_{ijt} = \delta_{jt} + \varepsilon_{ijt}$$
(1)

where (x_{jt}, p_{jt}) are observable characteristics and price, ξ_{jt} is an unobservable characteristic, and an idiosyncratic error term ε_{ijt} assumed i.i.d. extreme value type 1. The utility of the outside good is normalized such that $\delta_{0t} = 0$. The assumption of utility-maximizing consumers and the distribution of ε_{ijt} yields the logit choice probabilities:

$$s_{jt}(\delta_t) = \frac{\exp(\delta_{jt})}{1 + \sum_{l=1}^{J} \exp(\delta_{lt})}.$$
 (2)

- (a) Simulate product-level data based on the described model assuming the following
 - J = 10 products are sold in T = 25 markets (size $L_t = 1$) by single-product firms.
 - Two observable product characteristics $x_{jt} = (1, x_{it}^1)$, with $x_{it}^1 \sim U(1, 2)$.
 - Marginal cost $c_{jt} = x_{jt}\gamma_1 + w_{jt}\gamma_2 + \omega_{jt}$.
 - Three observable cost shifters $w_{jt} = (w_{jt}^1, w_{jt}^2, w_{jt}^3)$, all i.i.d. U(0, 1).
 - Marginal cost parameters: $\gamma_1 = (0.7, 0.7)$ and $\gamma_2 = (1, 1, 1)$.
 - Unobserved demand and cost characteristic $(\xi_{jt}, \omega_{jt}) \sim N(0, \sigma_c)$ with $\sigma_c = \begin{bmatrix} 1 & 0.7 \\ 0.7 & 1 \end{bmatrix}$.
 - Assume perfect competition on price so that $p_{jt} = c_{jt}$.
 - Preference parameters $\beta = (2, 2), \alpha = -2$.

- ! To simulate the data, you must code a function computing a $(T \times J) \times 1$ vector containing market shares using equation (2).
- (b) The simulated data at hand, forget parameter values and, following Berry (1994),
 - estimate $\{\alpha, \beta\}$ using OLS and report the results.
 - estimate $\{\alpha, \beta\}$ by GMM using as instrumental variables the observable characteristics x_{jt} and cost shifters w_{jt} , and report the results.
- 2. Solving for a static industry equilibrium. Now consider an imperfectly competitive industry, that is $p_{jt} \neq c_{jt}$. Take the market share equation, cost and demand parameters from above as given. Assume that single-product firms j maximize profits given by

$$\pi_{jt} = (p_{jt} - c_{jt})s_{jt}L_t,\tag{3}$$

where c_{jt} are marginal cost and L_t market size, so that the system of FOC for a Nash equilibrium:

$$s_{jt} + (p_{jt} - c_{jt})\frac{\partial s_{jt}}{\partial p_{jt}} = 0 (4)$$

With multi-product firms, it is useful to write expression (4) in vector notation as $s_t + \Delta_t(p_t - c_t) = 0$, where $\Delta_t(j, k)$ denotes a diagonal matrix of own-price derivatives and off-diagonal elements according to market structure. With single-product firms, off-diagonal elements are equal to zero so that Δ_t can be collapsed to a vector. If marginal cost are known, we obtain the supply side by solving the system for c_t :

$$p_t + \Delta_t^{-1} s_t = c_t \tag{5}$$

For single-product firms, $\partial s_{jt}/\partial p_{jt}$ is given by $\alpha s_{jt}(1-s_{jt})$.

- (a) Generate a $(T \times J) \times 1$ vector Δ containing market share derivatives with respect to own-price price, and
- (b) compute a $(T \times J) \times 1$ vector p containing (Bertrand-Nash) equilibrium prices, using equation (5) and the root-finding function imported in the python notebook, and report the mean, minimum, and maximum industry price.
- 3. Contraction Mapping. Newton's method is an important tool in nonlinear optimization.¹ It is used to find roots of a function f(x). Write a function finding the number \sqrt{a} by iterating $x_{t+1} = x_t \frac{f(x_t)}{f'(x_t)}$. Hint: \sqrt{a} is the positive root of $f(x) = a x^2$.

¹By the Contraction Mapping Principle (Banach Fixed Point Theorem) this method is a contraction under the conditions that 1) f(x) has a continuous second derivative, 2) $f'(x) \neq 0 \ \forall \ x \in \mathbb{R}$, and 3) a $q \in (0,1)$ exists such that $|f(x)f''(x)| \leq q|f'(x)|^2 \ \forall \ x \in \mathbb{R}$.