Please check the examination details belo	w before ente	ring your candidate information
Candidate surname		Other names
		J
Centre Number Candidate Nu	mber	
Pearson Edexcel Inter	nation	al Advanced Level
Thursday 12 June 20)25	
Morning (Time: 1 hour 30 minutes)	Paper reference	WME03/01
Mathematics		•
International Advanced Su	bsidiary	y/Advanced Level
International Advanced Su Mechanics M3	ıbsidiar	y/Advanced Level
	ıbsidiar	y/Advanced Level
	ıbsidiar	y/Advanced Level

Candidates may use any calculator permitted by Pearson regulations.
Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions:

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided

 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Whenever a numerical value of g is required, take $g = 9.8 \,\mathrm{m \, s^{-2}}$, and give your answer to either two significant figures or three significant figures.

Information:

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 7 questions in this question paper. The total mark for this paper is 75.
- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice:

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

 Turn over

1:

Figure 1

A uniform rod AB has mass m and length 2a.

The end A is freely hinged to a fixed point.

A light elastic string has modulus of elasticity 2mg and natural length L.

One end of the elastic string is attached to the end B of the rod.

The other end of the elastic string is attached to a fixed point C, where AC is horizontal.

The rod rests in equilibrium with the elastic string taut and vertical and BC = 1.2a, as shown in Figure 1.

(a) Find, in terms of m and g, the tension in the elastic string.

(3)

(b) Find L in terms of a.

(4)

Question 1 continued
(Total for Question 1 is 7 marks)

Figure 2

One end of a light inextensible string of length a is attached to a fixed point O which lies above a smooth horizontal table.

The other end is attached to a particle P of mass m.

The particle P moves on the table in a horizontal circle with constant angular speed $\sqrt{\frac{g}{2a}}$ and with the string taut.

The string makes a constant angle of 30° with the table, as shown in Figure 2.

Find, in terms of m and g, the magnitude of the force exerted on P by the table.

(7)

DO NOT WRITE IN THIS AREA

Question 2 continued	
	Total for Question 2 is 7 marks)

3: A particle P moves along the x-axis.

At time *t* seconds, where $t \ge 1$

- the displacement of P from O is x metres in the positive x direction, where $x < \frac{1}{2}$
- the velocity of P is v m s⁻¹ in the positive x direction
- the acceleration of P is $a \,\mathrm{m \ s^{-2}}$ in the positive x direction

Given that

$$a = 4x - 2$$

and that when t = 1, x = 0 and v = 1

(a) find v in terms of x,

(4)

(b) find v in terms of t.

(5)

Question 3 continued
(Total for Question 3 is 9 marks)

Figure 3

A light elastic string has natural length 3a and modulus of elasticity mg. One end of the string is attached to the point A and the other end is attached to the point B, where AB is horizontal and AB = 4a.

A particle P of mass m is attached to the midpoint of the string. The particle P is held at rest at C, the midpoint of AB.

The particle P is then projected vertically downwards from C with speed $\sqrt{\frac{3ag}{2}}$

At the instant when P reaches the point D, where $CD = \frac{3a}{2}$, the speed of P is V, as shown in Figure 3.

(a) Show that the elastic energy stored in the string increases by $\frac{1}{2}$ mga, as P moves downwards from C to D.

(3)

Air resistance is modelled as a constant force of magnitude $\frac{1}{5}mg$

Using the model and the work-energy principle,

(5)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Question 4 continued

Question 4 continued	

Question 4 continued	
СТС	otal for Question 4 is 8 marks)
(20)	() () () () () () () () () ()

Figure 4

A fixed solid sphere has centre O and radius r.

A particle P of mass m is held at the point A on the smooth outer surface of the sphere, where OA makes an angle α , where $\alpha < 45^{\circ}$, with the upward vertical.

The particle is released from rest and leaves the surface of the sphere at the point B, where OB makes an angle α with the horizontal, with speed v, as shown in Figure 4.

Air resistance is assumed to be negligible.

(a) Show that
$$v^2 = 2gr(\cos \alpha - \sin \alpha)$$

(3)

(b) Show that
$$\tan \alpha = \frac{2}{3}$$

(4)

At the instant when P crosses the horizontal through O, P is moving at an angle θ to the horizontal.

(c) Show that
$$\cos \theta = \frac{2}{\sqrt{39}}$$

(7)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Question 5 continued

Question 5 continued

Question 5 continued	
	(T-4-1 f O 4' 5' 14 1)
	(Total for Question 5 is 14 marks)

(5)

6: (a) Show, using algebraic integration, that the centre of mass of a uniform **solid** hemisphere H of radius a is a distance $\frac{3}{8}a$ from O, the centre of its plane face. [You may assume that the volume of the hemisphere is $\frac{2}{3}\pi a^3$]

Figure 5

A uniform **solid** S is formed by removing a smaller **solid** hemisphere of radius $\frac{1}{2}a$ from H such that

- the plane face of the smaller hemisphere has centre C and is part of the plane face of H
- $OC = \frac{1}{2}a$

Figure 5 shows a cross section of S, where S is the **unshaded** part.

(b) Show that the centre of mass of S is $\frac{45}{112}a$ from the line through O and C. (4)

The solid *S* rests in equilibrium with its curved surface in contact with a rough horizontal plane, as shown in Figure 6.

Figure 6

The angle between CO and the horizontal is θ .

(c) Find the exact value of $\tan \theta$.

(5)

Question 6 continued

Question 6 continued

Question 6 continued	
	—
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	—
	_
	_
	_
	_
	_
	_
	_
(Total for Question 6 is 14 marks)	_

Figure 7

A particle P of mass m lies at rest on a smooth horizontal table.

One end of a light elastic string, of natural length 3L and modulus of elasticity mg, is attached to P. The other end is attached to a point A on the table.

One end of a second light elastic string, of natural length 2L and modulus of elasticity 2mg, is also attached to P. The other end is attached to a point B on the table where AB = 7L.

The particle P rests in equilibrium on the table at the point E, where AEB is a straight line and AE = 4.5L, as shown in Figure 7.

The particle P is now held at the point C on AB, where AC = 5L, and released.

(a) Show that P moves with simple harmonic motion with centre E and period $\pi \sqrt{\frac{3L}{g}}$

(7)

(b) Find, in terms of L and g, the maximum speed of P.

(3)

(c) Find, in terms of L and g, the exact amount of time, in any one oscillation, for which the speed of P is less than or equal to $\sqrt{\frac{gL}{12}}$

(6)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Question 7 continued

Question 7 continued

Question 7 continued

Question 7 continued
(Total for Question 7 is 16 marks)
(
TOTAL FOR PAPER IS 75 MARKS

