MATH 350-2 Advanced Calculus

W.R. Casper

Department of Mathematics California State University Fullerton

September 29, 2024

Outline

- Real Analysis Lecture 7
 - Open Balls and Open Sets

Outline

- Real Analysis Lecture 7
 - Open Balls and Open Sets

n-dimensional **euclidean space** is

n-dimensional **euclidean space** is

$$\mathbb{R}^n = \{(a_1, a_2, \ldots, a_n) : a_1, \ldots, a_n \in \mathbb{R}\}.$$

n-dimensional euclidean space is

$$\mathbb{R}^n = \{(a_1, a_2, \dots, a_n) : a_1, \dots, a_n \in \mathbb{R}\}.$$

n-dimensional **euclidean space** is

$$\mathbb{R}^n = \{(a_1, a_2, \dots, a_n) : a_1, \dots, a_n \in \mathbb{R}\}.$$

Given
$$\vec{x} = (x_1, \dots, x_n)$$
 and $\vec{y} = (y_1, \dots, y_n)$

n-dimensional **euclidean space** is

$$\mathbb{R}^n = \{(a_1, a_2, \dots, a_n) : a_1, \dots, a_n \in \mathbb{R}\}.$$

Given
$$\vec{x} = (x_1, \dots, x_n)$$
 and $\vec{y} = (y_1, \dots, y_n)$

(a)
$$\vec{x} + \vec{y} = (x_1 + y_1, \dots, x_n + y_n)$$

n-dimensional **euclidean space** is

$$\mathbb{R}^n = \{(a_1, a_2, \dots, a_n) : a_1, \dots, a_n \in \mathbb{R}\}.$$

Given
$$\vec{x} = (x_1, \dots, x_n)$$
 and $\vec{y} = (y_1, \dots, y_n)$

(a)
$$\vec{x} + \vec{y} = (x_1 + y_1, \dots, x_n + y_n)$$

$$\bullet$$
 $a\vec{x} = (ax_1, \ldots, ax_n)$

n-dimensional **euclidean space** is

$$\mathbb{R}^{n} = \{(a_{1}, a_{2}, \dots, a_{n}) : a_{1}, \dots, a_{n} \in \mathbb{R}\}.$$

Given
$$\vec{x} = (x_1, \dots, x_n)$$
 and $\vec{y} = (y_1, \dots, y_n)$

(a)
$$\vec{x} + \vec{y} = (x_1 + y_1, \dots, x_n + y_n)$$

$$\vec{x} - \vec{y} = \vec{x} + (-1)\vec{y} = (x_1 - y_1, \dots, x_n - y_n)$$

n-dimensional **euclidean space** is

$$\mathbb{R}^n = \{(a_1, a_2, \dots, a_n) : a_1, \dots, a_n \in \mathbb{R}\}.$$

Given
$$\vec{x} = (x_1, \dots, x_n)$$
 and $\vec{y} = (y_1, \dots, y_n)$

(a)
$$\vec{x} + \vec{y} = (x_1 + y_1, \dots, x_n + y_n)$$

$$\vec{x} - \vec{y} = \vec{x} + (-1)\vec{y} = (x_1 - y_1, \dots, x_n - y_n)$$

n-dimensional **euclidean space** is

$$\mathbb{R}^n = \{(a_1, a_2, \dots, a_n) : a_1, \dots, a_n \in \mathbb{R}\}.$$

Given
$$\vec{x} = (x_1, \dots, x_n)$$
 and $\vec{y} = (y_1, \dots, y_n)$

(a)
$$\vec{x} + \vec{y} = (x_1 + y_1, \dots, x_n + y_n)$$

$$\vec{x} - \vec{y} = \vec{x} + (-1)\vec{y} = (x_1 - y_1, \dots, x_n - y_n)$$

$$\vec{0} \quad \vec{0} = (0, \ldots, 0)$$

n-dimensional **euclidean space** is

$$\mathbb{R}^n = \{(a_1, a_2, \dots, a_n) : a_1, \dots, a_n \in \mathbb{R}\}.$$

Given
$$\vec{x} = (x_1, \dots, x_n)$$
 and $\vec{y} = (y_1, \dots, y_n)$

(a)
$$\vec{x} + \vec{y} = (x_1 + y_1, \dots, x_n + y_n)$$

$$\bullet$$
 $a\vec{x} = (ax_1, \ldots, ax_n)$

$$\vec{x} - \vec{y} = \vec{x} + (-1)\vec{y} = (x_1 - y_1, \dots, x_n - y_n)$$

$$|\vec{x}| = (\vec{x} \cdot \vec{x})^{1/2} = (\sum_{i=1}^{n} x_i^2)^{1/2}$$

The norm $|\vec{x}|$ is an example of a **metric**.

The norm $|\vec{x}|$ is an example of a **metric**. It satisfies several important properties:

The norm $|\vec{x}|$ is an example of a **metric**. It satisfies several important properties:

```
Theorem
```

The norm $|\vec{x}|$ is an example of a **metric**. It satisfies several important properties:

Theorem

(positivity) $|\vec{x}| \ge 0$ with equality iff $\vec{x} = \vec{0}$

The norm $|\vec{x}|$ is an example of a **metric**. It satisfies several important properties:

Theorem

- (positivity) $|\vec{x}| \ge 0$ with equality iff $\vec{x} = \vec{0}$

The norm $|\vec{x}|$ is an example of a **metric**. It satisfies several important properties:

Theorem

- (positivity) $|\vec{x}| \ge 0$ with equality iff $\vec{x} = \vec{0}$
- lacktriangle (triangle inequality) $|ec{x}+ec{y}| \leq |ec{x}| + |ec{y}|$

The norm $|\vec{x}|$ is an example of a **metric**. It satisfies several important properties:

Theorem

- (positivity) $|\vec{x}| \ge 0$ with equality iff $\vec{x} = \vec{0}$
- **(triangle inequality)** $|\vec{x} + \vec{y}| \le |\vec{x}| + |\vec{y}|$

It also satisfies

The norm $|\vec{x}|$ is an example of a **metric**. It satisfies several important properties:

Theorem

- (positivity) $|\vec{x}| \ge 0$ with equality iff $\vec{x} = \vec{0}$
- **(triangle inequality)** $|\vec{x} + \vec{y}| \le |\vec{x}| + |\vec{y}|$

It also satisfies

The norm $|\vec{x}|$ is an example of a **metric**. It satisfies several important properties:

Theorem

- (positivity) $|\vec{x}| \ge 0$ with equality iff $\vec{x} = \vec{0}$
- (triangle inequality) $|\vec{x} + \vec{y}| \le |\vec{x}| + |\vec{y}|$

It also satisfies

(scaling) $|c\vec{x}| = |c| |\vec{x}|$

The norm $|\vec{x}|$ is an example of a **metric**. It satisfies several important properties:

Theorem

- (positivity) $|\vec{x}| \ge 0$ with equality iff $\vec{x} = \vec{0}$
- (triangle inequality) $|\vec{x} + \vec{y}| \le |\vec{x}| + |\vec{y}|$

It also satisfies

- (scaling) $|c\vec{x}| = |c| |\vec{x}|$
- (Cauchy-Schwartz) $|\vec{x} \cdot \vec{y}| \le |\vec{x}| |\vec{y}|$

An **open ball** of radius r centered at \vec{a} is

An **open ball** of radius r centered at \vec{a} is

$$B(\vec{a}; r) = {\vec{x} : |\vec{x} - \vec{a}| < r}.$$

An **open ball** of radius r centered at \vec{a} is

$$B(\vec{a}; r) = {\vec{x} : |\vec{x} - \vec{a}| < r}.$$

An **open ball** of radius r centered at \vec{a} is

$$B(\vec{a}; r) = {\vec{x} : |\vec{x} - \vec{a}| < r}.$$

Definition

A point \vec{a} in a subset $A \subseteq \mathbb{R}^n$ is called an **interior point** of A if there exists r > 0 with $B(\vec{a}; r) \subseteq A$.

An **open ball** of radius r centered at \vec{a} is

$$B(\vec{a}; r) = {\vec{x} : |\vec{x} - \vec{a}| < r}.$$

Definition

A point \vec{a} in a subset $A \subseteq \mathbb{R}^n$ is called an **interior point** of A if there exists r > 0 with $B(\vec{a}; r) \subseteq A$. If every point of A is an interior point, then A is called an **open set**.

Problem

Prove that the empty set \emptyset and the whole space \mathbb{R}^n are open.

Problem

Let $\vec{a} \in \mathbb{R}^n$. Show that the singleton set

$$A = {\vec{a}}$$

is not open.

Problem

Let $a, b, c, d \in \mathbb{R}$ with a < b and c < d. Prove that the **open rectangle**

$$(a,b) \times (c,d) = \{(x,y) : a < x < b, c < y < d\}$$

is an open set

Problem

Prove that an open ball is an open set.

Theorem (Open Union Theorem)

Suppose that $\{U_i : i \in I\}$ is an arbitrary family of open sets. Then $\bigcup_{i \in I} U_i$ is open.

Theorem (Open Union Theorem)

Suppose that $\{U_i : i \in I\}$ is an arbitrary family of open sets. Then $\bigcup_{i \in I} U_i$ is open.

Proof.

Theorem (Open Union Theorem)

Suppose that $\{U_i : i \in I\}$ is an arbitrary family of open sets. Then $\bigcup_{i \in I} U_i$ is open.

Proof.

Suppose that $\vec{x} \in \bigcup_{i \in I} U_i$.

Theorem (Open Union Theorem)

Suppose that $\{U_i : i \in I\}$ is an arbitrary family of open sets. Then $\bigcup_{i \in I} U_i$ is open.

Proof.

Suppose that $\vec{x} \in \bigcup_{i \in I} U_i$.

Then there exists $j \in I$ with $\vec{x} \in U_j$.

Theorem (Open Union Theorem)

Suppose that $\{U_i : i \in I\}$ is an arbitrary family of open sets. Then $\bigcup_{i \in I} U_i$ is open.

Proof.

Suppose that $\vec{x} \in \bigcup_{i \in I} U_i$.

Then there exists $j \in I$ with $\vec{x} \in U_j$.

Since U_j is open, this means \vec{x} is an interior point of U_j .

Theorem (Open Union Theorem)

Suppose that $\{U_i : i \in I\}$ is an arbitrary family of open sets. Then $\bigcup_{i \in I} U_i$ is open.

Proof.

Suppose that $\vec{x} \in \bigcup_{i \in I} U_i$.

Then there exists $j \in I$ with $\vec{x} \in U_j$.

Since U_j is open, this means \vec{x} is an interior point of U_j .

Therefore there exists r > 0 such that $B(\vec{x}; r) \subseteq U_i$.

Theorem (Open Union Theorem)

Suppose that $\{U_i : i \in I\}$ is an arbitrary family of open sets. Then $\bigcup_{i \in I} U_i$ is open.

Proof.

Suppose that $\vec{x} \in \bigcup_{i \in I} U_i$.

Then there exists $j \in I$ with $\vec{x} \in U_j$.

Since U_j is open, this means \vec{x} is an interior point of U_j .

Therefore there exists r > 0 such that $B(\vec{x}; r) \subseteq U_i$.

This means $B(\vec{x}; r) \subseteq \bigcup_{i \in I} U_i$.

Theorem (Open Union Theorem)

Suppose that $\{U_i : i \in I\}$ is an arbitrary family of open sets. Then $\bigcup_{i \in I} U_i$ is open.

Proof.

Suppose that $\vec{x} \in \bigcup_{i \in I} U_i$.

Then there exists $j \in I$ with $\vec{x} \in U_j$.

Since U_i is open, this means \vec{x} is an interior point of U_i .

Therefore there exists r > 0 such that $B(\vec{x}; r) \subseteq U_i$.

This means $B(\vec{x}; r) \subseteq \bigcup_{i \in I} U_i$.

Thus \vec{x} is an interior point of $\bigcup_{i \in I} U_i$.

Theorem (Open Union Theorem)

Suppose that $\{U_i : i \in I\}$ is an arbitrary family of open sets. Then $\bigcup_{i \in I} U_i$ is open.

Proof.

Suppose that $\vec{x} \in \bigcup_{i \in I} U_i$.

Then there exists $j \in I$ with $\vec{x} \in U_j$.

Since U_j is open, this means \vec{x} is an interior point of U_j .

Therefore there exists r > 0 such that $B(\vec{x}; r) \subseteq U_j$.

This means $B(\vec{x}; r) \subseteq \bigcup_{i \in I} U_i$.

Thus \vec{x} is an interior point of $\bigcup_{i \in I} U_i$.

Since \vec{x} is arbitrary, this proves that $\bigcup_{i \in I} U_i$ is open.

