Регрессия, регуляризация, работа с признаками

Михайлов Дмитрий, Смирнов Иван

Санкт-Петербургский государственный университет Кафедра статистического моделирования

Санкт-Петербург, 2023

Идея

Имеется набор данных (обучающая выборка)

$$X \in \mathbb{R}^{n \times p}, \quad y \in \mathbb{R}^n$$

 $\mathbf{x}_i \in \mathbb{R}^p$ — вектор-строки $oldsymbol{X}$, $X_i \in \mathbb{R}^n$ — вектор-столбцы $oldsymbol{X}$.

Задача: уметь предсказывать y (ответ) по новым \mathbf{x}_i (объектам), установив некоторую зависимость на обучающей выборке.

Постановка задачи

"До эксперемента":

 $\pmb{\xi} \in \mathbb{R}^p$ — случайный вектор, $\eta, \varepsilon \in \mathbb{R}$ — случайные величины. Предполагаем, что η и $\pmb{\xi}$ функционально зависимы:

$$\eta = \varphi(\boldsymbol{\xi}) + \varepsilon$$

Обычно $\mathbf{E}\varepsilon=0,\,\mathbf{D}\varepsilon=\sigma^2,\,\pmb{\xi}\perp\varepsilon.$

"После эксперемента":

 $\mathbf{x}_1,\dots,\mathbf{x}_n\sim\mathcal{L}(\pmb{\xi});\ y_1,\dots,y_n\sim\mathcal{L}(\eta)$ — выборки, которые наблюдаем. Модель для всех $i\in 1:n$

$$y_i = \varphi(\mathbf{x}_i) + \varepsilon_i$$

3адача: найти функцию φ .

Этапы обучения модели

Модель

$$y_i = \varphi(\mathbf{x}_i) + \varepsilon_i$$

3адача: найти функцию φ .

- 1. Выбор модели регрессии (класс рассматриваемых $\varphi(\cdot)$) Линейная модель: $\varphi(\mathbf{x}_i, \beta) = \sum_{j=1}^p \beta_i \mathbf{x}_i[j], \quad i \in 1:n$
- 2. Выбор функции потерь (loss function) Квадратичная функция потерь: $\sum_{i=1}^n (y_i - \varphi(\mathbf{x}_i, \boldsymbol{\beta}))^2$
- 3. Выбор метода обучения (training) МНК: $\hat{eta} = \arg\min_{eta} \sum_{i=1}^n (y_i \varphi(\mathbf{x}_i, eta))^2$
- 4. Выбор метода проверки (test) MSE: $\frac{1}{n_{\text{test}}} \sum_{i=1}^{n_{\text{test}}} (y_i^{\text{test}} \varphi(\mathbf{x}_i^{\text{test}}, \hat{\boldsymbol{\beta}}))^2$

Оптимизация. Матричный вид в общем случае

- $lackbox X \in \mathbb{R}^{n imes p}$ матрица данных
- $m{y} \in \mathbb{R}^n$ вектор ответов
- $m eta \in \mathbb{R}^d$ вектор параметров
- $m{arphi}(m{X},m{eta}):=(arphi(\mathbf{x}_1,m{eta}),\dots,arphi(\mathbf{x}_n,m{eta}))^{\mathrm{T}}$ функция от выборки и параметров
- $ightharpoonup \mathcal{L}(oldsymbol{arphi}(oldsymbol{X},oldsymbol{eta}),oldsymbol{y})$ некоторая функция потерь

Решение задачи регрессии — вектор коэффициентов $\hat{oldsymbol{eta}}$.

$$\hat{oldsymbol{eta}} = rg\min_{oldsymbol{eta}} \mathcal{L}(oldsymbol{arphi}(oldsymbol{X},oldsymbol{eta}),oldsymbol{y})$$

Выбор функции потерь

Какие варианты есть?

- $lackbox \|oldsymbol{arphi}(oldsymbol{X},oldsymbol{eta})-oldsymbol{y}\|_2^2$ квадратичная ошибка $(l_2$ -норма)
- lacksquare $\|oldsymbol{arphi}(oldsymbol{X},oldsymbol{eta})-oldsymbol{y}\|_1$ модуль ошибки $(l_1$ -норма)

Как выбирать?

- ightharpoonup Предположения о распределении остатков arepsilon
- ightharpoonup Простота функции $\mathcal L$ для оптимизации
- ▶ Точность данных/наличие выбросов

Линейная регрессия: постановка

Модель: $y = X\beta + \varepsilon$

- $m > y \in \mathbb{R}^n$ вектор ответов, $m arepsilon \in \mathbb{R}^n$ вектор ошибок, $\mathrm{E} m arepsilon = m 0$
- $lackbr{L} lackbr{L} X \in \mathbb{R}^{n imes p}$ матрица данных
- $ightharpoonup eta \in \mathbb{R}^p$ вектор параметров

Решение задачи линейной регрессии — вектор \hat{eta} .

Классическая задача (с квадратичной функцией потерь):

$$\hat{oldsymbol{eta}} = \operatorname*{arg\,min}_{oldsymbol{eta}} \|oldsymbol{y} - oldsymbol{X}oldsymbol{eta}\|_2^2$$

Ищем наилучшую аппроксимацию в подпространстве столбцов $oldsymbol{X}$.

МНК-оценка и её особенности I

Задача

$$\hat{\boldsymbol{\beta}} = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \| \boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta} \|_2^2$$

Решение

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X})^{-1}\boldsymbol{X}^{\mathrm{T}}\boldsymbol{y}$$

- ✓ Явный вид решения
- \checkmark Простота функции ${\cal L}$ для оптимизации
- ! Точность данных/наличие выбросов
- ! Конкретные предположения о распределении остатков ε
- ! Мультиколлинеарность
- $\mid n \geqslant p$, иначе решений бесконечно много

МНК-оценка и её особенности II

Для оценок $\hat{oldsymbol{eta}}$ имеет место разложение

$$\mathrm{MSE} = \mathrm{E}(\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})^2 = \underbrace{\mathrm{D}\hat{\boldsymbol{\beta}}}_{\text{дисперсия}} + \underbrace{(\mathrm{E}\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})^2}_{\text{смещение}}$$

Рассмотрим МНК-оценку $\hat{oldsymbol{eta}} = (oldsymbol{X}^{\mathrm{T}}oldsymbol{X})^{-1}oldsymbol{X}^{\mathrm{T}}oldsymbol{y}$

- ightharpoonup $\mathrm{E}\hat{oldsymbol{eta}}=oldsymbol{eta}$, то есть оценка несмещённая
- $lackbox{ } \mathrm{D}\hat{m{eta}} = \sigma^2(m{X}^\mathrm{T}m{X})^{-1}$ (в случае, когда $arepsilon_i \sim \mathrm{N}(0,\sigma^2)$)
- ightharpoonup В классе несмещённых оценок \hat{eta} обладает наименьшей дисперсией (\hat{eta} BLUE)
- lacktriangle Если остатки распределены нормально, то \hat{eta} ОМП

Анализ остатков

Модель: $oldsymbol{y} = oldsymbol{X}oldsymbol{eta} + oldsymbol{arepsilon}$

- ▶ Распределение ε нормальное, $\mathrm{E}\varepsilon = 0$:
 - ▶ Классическая оценка по МНК ОМП и BLUE
 - Работают стандартные критерии значимости
- ightharpoonup Распределение arepsilon неизвестно или с тяжёлыми хвостами:
 - ▶ Оценка по МНК уже не ОМП и не BLUE

МНК-оценка: вычислительный взгляд

Решение

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X})^{-1}\boldsymbol{X}^{\mathrm{T}}\boldsymbol{y}$$

- ightharpoonup Необходимо вычислить $\hat{oldsymbol{eta}}$
- lacktriangle Сингулярное разложение: $oldsymbol{X} = oldsymbol{V} oldsymbol{D} oldsymbol{U}^{ ext{T}}$
 - lacktriangledown V и U- ортогональные, D- диагональная
 - $m{V} = (V_1, V_2, \dots, V_n) \in \mathbb{R}^{n imes n}, \ V_i$ с. векторы $m{X}m{X}^{ ext{T}}$
 - $m{U} = (U_1, U_2, \dots, U_p) \in \mathbb{R}^{p imes p}$, U_i с. векторы $m{X}^{\mathrm{T}} m{X}$
 - $m{D} = \mathrm{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n})$, $\lambda_j \geqslant 0 \mathsf{c}$. значения $m{X}^\mathrm{T} m{X}$

Отсюда $\hat{oldsymbol{eta}} = oldsymbol{U} oldsymbol{D}^{-1} oldsymbol{V}^{\mathrm{T}} oldsymbol{y}$

 $\mathbf{D}^{-1} = \operatorname{diag}(1/\sqrt{\lambda_1}, \dots, 1/\sqrt{\lambda_n})$

Борьба с мультиколлинеарностью

Мультиколлинеарность ($X^{\mathrm{T}}X$ плохо обусловлена) влечёт

- Неустойчивость решения
- lacktriangle Высокая дисперсия у $\hat{oldsymbol{eta}}\Rightarrow$ высокая MSE

Возможные решения проблемы мультиколлинеарности

- Уменьшение числа признаков (отбор признаков)
- Регуляризация
- Преобразование признаков (АГК)

Регуляризация. Гребневая регрессия

Модель: $y = X\beta + \varepsilon$ Вернёмся к разложению MSE

$$\mathrm{MSE} = \mathrm{E}(oldsymbol{eta} - \hat{oldsymbol{eta}})^2 = \underbrace{\mathrm{D}\hat{oldsymbol{eta}}}_{\mathsf{дисперсия}} + \underbrace{(\mathrm{E}\hat{oldsymbol{eta}} - oldsymbol{eta})^2}_{\mathsf{смещение}}$$

Несмещённая оценка может иметь большую дисперсию и MSE. Возьмём оценку по MHK и сделаем её смещённой:

$$\hat{\boldsymbol{\beta}}_{\mathsf{ridge}} = (\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X} + \lambda \mathbf{I})^{-1}\boldsymbol{X}^{\mathrm{T}}\boldsymbol{y}, \quad \lambda > 0$$

Используем SVD и получим

$$\hat{oldsymbol{eta}}_{\mathsf{ridge}} = \sum_{j=1}^n rac{\lambda_j}{\lambda_j + \lambda} U_j(V_j^{\mathrm{T}} oldsymbol{y})$$

Отделили знаменатель от нуля. Устойчивость вычислений повышается.

Гребневая регрессия. Дисперсия

$$ext{MSE} = ext{E}(oldsymbol{eta} - \hat{oldsymbol{eta}})^2 = \underbrace{ ext{D}\hat{oldsymbol{eta}}}_{ ext{дисперсия}} + \underbrace{(ext{E}\hat{oldsymbol{eta}} - oldsymbol{eta})^2}_{ ext{смещение}}$$

Оценка по методу гребневой регрессии

$$\hat{\boldsymbol{\beta}}_{\mathsf{ridge}} = (\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X} + \lambda \mathbf{I})^{-1}\boldsymbol{X}^{\mathrm{T}}\boldsymbol{y}, \quad \lambda > 0$$

Смещение контролируется параметром λ . Дисперсия:

- $ightharpoonup \hat{eta}_{\mathsf{ridge}} = \sum_{i=1}^n rac{\sqrt{\lambda_j}}{\lambda_j + \lambda} U_j(V_j^{\mathrm{T}} oldsymbol{y})$
- $ightharpoonup \lambda_j$ убывают
- $ightarrow rac{\sqrt{\lambda_j}}{\lambda_j + \lambda}$ штрафуют компоненты с наименьшей дисперсией
- ightharpoonup $\mathrm{D}\hat{oldsymbol{eta}}$ уменьшается \Rightarrow MSE \downarrow

Гребневая регрессия как задача оптимизации

Есть две эквивалентные формулировки:

Ridge Regression

$$\hat{oldsymbol{eta}}_{\mathsf{ridge}}(\lambda_1) = \operatorname*{arg\,min}_{oldsymbol{eta}} \|oldsymbol{y} - oldsymbol{X}oldsymbol{eta}\|_2^2 + \lambda_1 \|oldsymbol{eta}\|_2^2 \ \hat{oldsymbol{eta}}_{\mathsf{ridge}}(\lambda_2) = \operatorname*{arg\,min}_{oldsymbol{eta}} \|oldsymbol{y} - oldsymbol{X}oldsymbol{eta}\|_2^2, \text{ s.t. } \|oldsymbol{eta}\|_2^2 \leqslant \lambda_2$$

Регуляризация. Lasso

Есть две эквивалентные формулировки (явного вида нет): Lasso

$$\hat{oldsymbol{eta}}_{\mathsf{Lasso}}(\lambda_1) = rg\min_{oldsymbol{eta}} \|oldsymbol{y} - oldsymbol{X}oldsymbol{eta}\|_2^2 + \lambda_1 \|oldsymbol{eta}\|_1^2$$

$$\hat{oldsymbol{eta}}_{\mathsf{Lasso}}(\lambda_2) = rg\min_{oldsymbol{eta}} \|oldsymbol{y} - oldsymbol{X}oldsymbol{eta}\|_2^2, \text{ s.t. } \|oldsymbol{eta}\|_1^2 \leqslant \lambda_2$$

Особенности:

- Уменьшение MSE
- Интерпретируемость результатов
- ▶ Выбор параметра: кросс-валидация

Ridge VS Lasso

Тут мы видим, что у lasso точка пересечения $(0; \beta_2^{lasso})$, а у ridge $(\beta_1^{ridge}; \beta_2^{ridge})$, соответственно lasso позволяет нам таким образом упростить модель и повысить её интерпретируемость.

Figure 3: Why LASSO can reduce dimension of feature space? Example on 2D feature space. Modified from the plot used in 'The Elements of Statistical Learning' by Author.

Преобразование признаков. АГК

В методе главных компонент строится минимальное число новых признаков, по которым исходные признаки восстанавливаются линейным преобразованием с минимальными погрешностями.

Отбор признаков. Общий подход к выбору модели

Предположим, что есть некоторое семейство построенных моделей $\{\mathcal{M}_i\}_{i\in I}$.

Хотим выбрать лучшую модель \mathcal{M}^* для предсказания.

Классические методы выбора модели

- Кросс-валидация
- ▶ Информационные критерии
 - ightharpoonup AIC_i = $2p_i 2 \ln \mathcal{L}(X; \mathcal{M}_i)$
 - $BIC_i = p_i \ln n 2 \ln \mathcal{L}(X; \mathcal{M}_i)$