

# Título de algo muy largo que se va a presentar en la Facultad de Ciencias

Subtítulo de esa presetntación

### Jonathan Alexis Urrutia Anguiano

Nombre de colaboradores

Departamento de Física Facultad de Ciencias

Universidad Nacional Autónoma de México

día de mes de año

1 jau 140 tia. 95@ciencias. unam.mx



| Contenido                  |                     |                   |         |         |         |         |     |
|----------------------------|---------------------|-------------------|---------|---------|---------|---------|-----|
| <b>mm</b> 40               | 60                  | 80 100            | 120 140 | 160 180 | 200 220 | 240 260 | 28  |
| 1. E 40 ucturas útile      | es                  |                   |         |         |         |         |     |
| 2. [60 nplos de alg        | gunas diapositi     | ivas              |         |         |         |         |     |
| <b>3.</b> 180, y Beamer    |                     |                   |         |         |         |         |     |
| 3.1. Tikz                  |                     |                   |         |         |         |         |     |
| 3.2.1. Blocks y Mul        | ticols              |                   |         |         |         |         |     |
|                            |                     |                   |         |         |         |         |     |
| J. A. Urrutia Anguiano Gru | po de investigación | Título corto dd/m | m/yy    |         |         |         | 2/7 |

### ¿Ventajas de esta plantilla?



▶ 『 aspectratio es 16:9

sistema

J. A. Urrutia Anguiano

No smm esca 40 nada

- El tamaño de la hoja no es el de beamer pero permite lo siguiente:
  - La letra defalt es 11pt
     Reecalado sin deformar la imagen
  - Ni las ecuaciones se hacen feas
    - Y gráficas sin escala se ven como la de la derecha

Grupo de investigación

Título corto

dd/mm/vv

En Latex/setup.tex está el paquete de esp-grid. Si se descomenta se muestran las coordenadas para colocar varios de los elej 20 tos en esta plantilla.



### Ejemplo de una diapositiva para el contexto



## Hablamos de nuestro proyecto

Título corto

dd/mm/vv

J. A. Urrutia Anguiano Grupo de investigación



## Hablamos de nuestro proyecto

Título corto

dd/mm/vv

J. A. Urrutia Anguiano Grupo de investigación



# Algo semejante al anterior

Modelo teórico

Resultado experimental

Título corto dd/mm/vv

 $\vec{x} \equiv \mathsf{Parametros}$ 

 $f_i(\vec{x}) \equiv \mathsf{Modelo}$ 

 $y_i(\vec{x}) \equiv \mathsf{Medici\acute{o}n}$ 

J. A. Urrutia Anguiano Grupo de investigación

 $F(\vec{x}) = \frac{1}{N} \sum_{i=1}^{N} (f_i(\vec{x}) - y_i)^2$ 

Minimización

J. Barzilai et al. IMA

Numer Anal. 8(1):141-148, 1988

Descenso de gradiente

 $\vec{x}_{\ell+1} = \vec{x}_{\ell} - \gamma \nabla F(\vec{x}_{\ell})$ 

Método de dos pasos

 $\gamma_{\ell} = \frac{\left(\vec{x}_{\ell} - \vec{x}_{\ell-1}\right) \cdot \left[\nabla F(\vec{x}_{\ell}) - \nabla F(\vec{x}_{\ell-1})\right]}{\left\|\nabla F(\vec{x}_{\ell}) - \nabla F(\vec{x}_{\ell-1})\right\|^{2}}$ 



# Bloques de distintas índoles

Multimm s par 40: ontre 60: tame 80) y ot 100 cosa 120 pong 140

### **exampleblock**

El de colores más oscuros y letra azul

### 40 ock: Es más limpio

Para multicols se definieron mitades y tercias

- \squeezetwo
- \squeezethree
- ▶ \loosethree

 $\mathbf{E}_k^{\mathsf{exc}}(\mathbf{r}) = \mathbf{E}^{\mathsf{inc}}(\mathbf{r}) + \sum_{\ell \neq k}^{N} \mathbf{E}_{\ell}^{\mathsf{ind}}(\mathbf{r})$ 

$$\mathbf{E}_{\ell}^{\mathsf{ind}}(\mathbf{r}) = \int \mathrm{d}^3 r' \mathbb{G}(\mathbf{r}, \mathbf{r}') \times \int \mathrm{d}^3 r'' \mathbb{T}(\mathbf{r}' - \mathbf{r}_{\ell}, \mathbf{r}'' - \mathbf{r}_{\ell}) \mathbf{E}_{\ell}^{\mathsf{exc}}(\mathbf{r}'')$$

$$\langle \mathbf{E}(\mathbf{r}) \rangle = \mathbf{E}^{\mathsf{inc}}(\mathbf{r}) + \sum_{\ell=1}^{N} \left( \prod_{k=1}^{N} \int \mathrm{d}^{3} r_{k} \rho(\mathbf{R}) \mathbf{E}_{\ell}^{\mathsf{ind}}(\mathbf{r}) \right)$$

#### alertblock

Colores claros y rojo para resaltar cosas

$$\langle \mathbf{E}_{\ell}^{\mathsf{exc}}(\mathbf{r''},\mathbf{R}) \rangle_{\ell} = \mathbf{E}^{\mathsf{inc}}(\mathbf{r''}) + \sum_{\substack{m=1\\m\neq\ell}}^{N} \int \mathrm{d}^{3}r' \mathbb{G}(\mathbf{r'},\mathbf{r''}) \times$$

$$\int \mathrm{d}^3 r''' \int \mathrm{d}^3 r_m \rho(\mathbf{r}_m) \mathbb{T}(\mathbf{r}' - \mathbf{r}_m, \mathbf{r}''' - \mathbf{r}_m) \langle \mathbf{E}_m^{\mathsf{exc}}(\mathbf{r}'', \mathbf{R}) \rangle_{\ell,m}$$

$$\langle \mathbf{E}_m^{\mathsf{exc}}(\mathbf{r}'', \mathbf{R}) \rangle_{\ell,m}, = \prod_{n=1}^N \int \mathrm{d}^3 r_n \rho(\mathbf{R} | \mathbf{r}_\ell, \mathbf{r}_m) \mathbf{E}_n^{\mathsf{exc}}(\mathbf{r}'')$$

A. García-Valenzuela et al. JOSA A. 29(6):1161-1179, 2012 Esto es un textlock aislado



Opt Soc Am A 19(6):1145 2002

J. A. Urrutia Anguiano Grupo de investigación Título corto