

DeepBind

Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning

Babak Alipanahi^{1,2,6}, Andrew Delong^{1,6}, Matthew T Weirauch³⁻⁵ & Brendan J Frey¹⁻³

6.874 - Pranam Chatterjee

Why do we care?

- Regulatory processes
 - Transcription
 - Alternative Splicing
 - Disease correlation

Sequence specificity

Position Weight Matrix

A

	1	2	3	4	5	6	7
Α	1	4	1	2	0	17	13
C	28	5	5	0	3	3	2
G	0	0	4	0	25	1	7
Т	2	22	21	29	4	10	9

Steps:

- Get PFM by counting occurrences of each nucleotide at each position.
- Divide frequency by total # of sequences.
- 3. Formally, given a set X of N aligned sequences of length i:

$$M_{k,j} = rac{1}{N} \sum_{i=1}^N I(X_{i,j} = k)$$

Data Issues

Different forms of data

- Specifity coefficient
 - Protein Binding Microarrays
 - RNAcompete arrays
- Ranked Lists of Bound Sequences
 - ChIP-Seq
- High Affinity Sequence List
 - HT-SELEX

Large Quantities of Data

- 10,000-100,000 sequences (1 EXPERIMENT)
- Additional Biases/Limitations
 - o i.e., hyper-ChIPable regions of genome
 - Need to filter

DeepBind Claims

- Apply to both microarray and sequencing data
- Generalize well across technologies
- Tolerate noise and mislabeled data
- Can learn from millions of sequences through parallel implementation on a graphics processing unit (GPU)
- Train models and tune parameters automatically
- Can discover new patterns without location information

Overview of DeepBind

Training Procedure

BINDING SCORE
$$f(s) = \text{net}_W(\text{pool}(\text{rect}_b(\text{conv}_M(s))))$$

Calibration and Testing Procedure

Let's unpack that...

- Thousands of PBM, RNAcompete, ChIP-Seq, and HT-SELEX experiments
- Create 927 DeepBind models
- 538 Transcription Factors
- 194 RNA-binding Proteins (RBPs)

(This took 4+ years, btw)

How well does it work?

- Test on PBM data from DREAM5 TF-DNA Motif Recognition Challenge
- 86 different mouse transcription factors
- 2 array designs (~40,000 probes each)
 - All possible 10-mers, non-palindromic 8-mers (32x)
- Train on probe intensities, predict on held-out test array design

Example Competing Algorithms (26 in total)

- FeatureREDUCE (biophysical PWM/k-mer)
- None of these are deep-learning-based!

- BEEML-PBM (weighted regression)
- RankMotif++ (probabilistic)
- PFM models (position frequency matrices)

Metrics

- Area Under Curve (AUC)
 - Measures true positive rate of model as a function of false positive rate (ROC curve)
 - Tells us how good the model identifies actual positives
 - Higher AUC means better performing model

Pearson Correlation

- Measures linear correlation between predicted intensity and probe intensities
- Higher absolute values (maxed at 1), indicate better performing mode.

Quantitative Performance Against Other Methods

Do *in vitro* models accurately identify *in vivo* bound sequences?

- 506 ENCODE ChIP-Seq data sets
- In vivo laboratory biases
 - Cell-type specificities
 - Nucleosome interactions
 - o Chromatin remodeling, etc.
- 137 transcription factors
- Performed better than other non-deep learning methods based on AUC
- Can generalize to other data acquisition methods

First place goes to....DEEPBIND!

Why are RBPs sequence specifities difficult to predict?

- Usually bind to ssRNA
- More flexible than DNA
- Can fold into stable secondary structures
- Recognition motif is highly flexible
 - Multiple domains needed for binding
- RNA structure also affects binding

Identifying Damaging Genetic Variants

- How to do this?
- MUTATION MAPS!
 - Importance of each base
 - Effect of each mutation on binding score
- Illustrates effect of point mutations on binding affinity

Mutation in MYC Enhancer Weakens TCF7L2 Binding Site

SNP in Globin Cluster Creates GATA1 Binding Site

DeepFind: an aggregate model

- What's the point? To provide collective contexts.
- I.e., true TF binding sites are likely to be located with other TF binding sites
- AUC ~ 0.76
- Predicts deleterious SNVs in promoters

One more application: Alternative Splicing

- AS generates transcriptional diversity
- RBPs regulate splicing
- Binding scores at exon junctions regulated by splicing regulators
- Consistent with experimental CLIP-seq data and known binding profiles of RBP's

Alipanahi, et al., Nature Biotechnology, 2015.

Prediction of Nova Regulation Mechanism

DeepBind Motif Learning

Key Takeaways

- **GOAL:** given regions experimentally determined to be bound by proteins, what is the model describing bound sequences?
- Sequences/Binding Scores -> CNN -> binding scores for novel sequences
- Generates weighted ensembles of PWM's and mutational maps
- ~600 different DeepBind models generated
- Identified RNA-binding sites involved in splicing regulation
- Identified disease-associated variants that affect TF binding

CHECK IT OUT YOURSELF: http://tools.genes.toronto.edu/deepbind/

Shortcomings and Future Work

- Comparisons with only non-deep learning models
- Not much better than non-deep learning models
- Assumes one motif in each probe
- Non-coding factors/variants ignored
- Does not account for positional dynamics of probe sequences -> DeeperBind
- How about epigenetic regulation of binding to sequences? -> DeepSEA

Published in 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)

DeeperBind: Enhancing Prediction of Sequence Specificities of DNA Binding Proteins

Cool name bro

Predicting effects of noncoding variants with deep learning-based sequence model

Jian Zhou^{1,2} & Olga G Troyanskaya^{1,3,4}

Any Questions?

