CH5 \ Computational Geometry

計算幾何

考題重點(目錄):

[寫 code]

- 1. 找點的 Rank
- 2. 找 Maximal Points
- 3. 找 Cloest Pairs
- 4. 找 Convex Hull

找點的 Rank

— → Dominate :

 $P_1{=}(x_1,y_1)$ dominates $P_2{=}(x_2,y_2)$, $\, \biguplus \, x_1{>}x_2 \, \pounds \, y_1{\geq}y_2$

Rank(P₁): P₁ dominate 幾個點:

二、找點的 Rank

Input: 2D 平面的點集 S Output: 每個點的 Rank

三 Native Approach

對於任一點而言,去檢查其他點,看是否可 Domainate(Yes+1; No 下一個) $\Rightarrow \Theta(n^2)$

四、Divide-and-Conquer 解

- 1. 令 m 是 S 中點 x 座標的 Median(中位數,要分成均匀的兩半),將 S 分成: S_L 與 S_R(S_L 為 S 中 x 座標<m 者; S_R 為 S 中 x 座標>m 者)
- 2. 將 S_L 和 S_R 中每個點的 Rank 求出(遞迴) 終止條件:若平面上只有 1 點,則 Rank 為 0

3. 對於每一個在 S_R 中的點 P ,修正其 Rank(P)如下: $Rank(P)=Rank(P)+在 S_L$ 中 y 座標比 P 小的點數

Ans: SL中點的 Rank(2.), SR中更正後點的 Rank(3.)

Time Complexity : $\Theta(n \lg n)$

- 1. $\Theta(n)$ //(see p8-11)
- 2. 2T(n/2)
- 3. $\Theta(n)$

$$T(n) = 2T(n/2) + \Theta(n) \implies \Theta(n \lg n)$$

求 Maximal Points

一、Maximal Points 即沒有被任何人 Dominate 的點

- 1. 令 m 是 S 中點 x 座標的 Median(中位數,要分成均匀的兩半),將 S 分成: S_L 與 S_R(S_L 為 S 中 x 座標<m 者; S_R 為 S 中 x 座標>m 者)
- 2. 將 S_L 和 S_R 中每個點的 Maximal Point 求出(遞迴) 終止條件:若平面上只有 1 點,則此點即為 Maximal Point

3. 對於每一個在 S_L 中的 Maximal Point P,若有一個在 S_R 中的 Maximal Point 的 y 座標比 P 大 \Rightarrow 將 P 移除

Ans: S_R中 Maximal Point(2.)及 S_L中剩下的 Maximal Point(3.)

找 Cloest Pairs

- 一、給定 2D 平面上的點集 S,找 S 中距離√ $[(x_1-x_2)^2+(y_1-y_2)^2]$ 最小的 2 點的距離
- 二、Concept:只計算有可能為 Closest Pair 的兩點距離
- 三、Divide-and-Conquer 解:
 - 1. 令 m 是 S 中點 x 座標的 Median(中位數,要分成均匀的兩半),將 S 分成: S_L 與 S_R(S_L 為 S 中 x 座標<m 者; S_R 為 S 中 x 座標>m 者)

2. 將 SL和 SR 中每個點的 Closest Pair 的距離: DL、DR 求出(遞迴) 終止條件: 若平面上只有 1 點,則 Closest Pair 的距離為無限

3. 令 D=min(D_L, D_R) //不跨平面最短 對於在 S_L 中且 x 座標在 m-D~m 中的點 P=(x_p, y_p)與在 S_R 中 x 座標在 m~m+D 與在 S_R 中 x 座標在 y_p-D~y_p+D 的點 q 算距離 令 D'為所有 Dist(p, q)中值最小者

Ans : Min(D, D')
Time Complexity :

- 1. $\Theta(n)$
- 2. 2T(n/2)
- 3. $n/2 * \Theta(1)$ //在口/(〇)最多6個點 = $\Theta(n)$

 $T(n) = 2T(n/2) + \Theta(n) = \Theta(n \lg n)$

為何不畫半圓即可?

因為都一樣是計算長度,較大的長方形依然能包含半圓形的區域,故直接以長方形來計算,較為省事、且依然能包含半圓的區域

Convex Hull

一、Convex Hull 為包含 2D 平面上所有點的最小凸多邊型

二、順(逆)時針方向

-> 到 -> : 逆時針方向 (Left-turn)

-> 到 -> : 順時針方向 (Right-turn)

Ξ \ Graham Scan

- 1. P_0 ← 2D 平面上所有點中,y 座標最小者(若有多個最小,則找其中最左者)
- 2. <P₁, P₂, ..., P_n> ← 將 P₀ 與每個點做向量,依角度將點排序

3. $S \leftarrow \text{entry stack};$ $push(S, P_0);$ $push(S, p_1);$ $push(S, p_2)$

4. 程式:

```
for i←3 to n
{
 while(pia 到 pib 不為 left-turn)
 pop(s);
 push(s, pi);
}
```

已選3點,加入第4點時:

P4 **O**

已選4點,加入第5點時:

但因為為 Right-turn,故 pop,重新選點:

//判斷:『角 Piba』是否為四角

Time Complexity:

- 1. $\Theta(n)$
- 2. $\Theta(n \lg n)$
- 3. $\Theta(1)$
- 4. $\Theta(1)$ //因為每個點必被 push 一次,又最多被 pop 一次,因此 n 個點最多有 2n 次 push/pop

四、應用

1. 判斷是否為 Collainer(92 台大), p5-18.1 O(n² log n) → n O(n log n) //排n 個東西

為了方便判斷此條件是否成立

2. 找 Farthest Pair(台大)

觀察: 2D 平面上最遠的 2 點必為在 Convex Hull 上的某 2 點

概念:

far=max(far, dist(a, b)) 重複做 · 直到Pair又為原本2點為止

3. 判斷多邊形是 Convex 或 Concave (100 政大)

用 Step 4 中的 while 判斷連續 3 點是否形成凹角即可

判斷 ca 到 cb 是否為 left-tum ? Yes 則往下面 test; No 則 concave。若全為 Yes 則 Convex