2012-MA

EE24BTECH11042- srujana

1) The straight lines L_1 : x=0, L_2 : y=0; and L_3 : x+y=1 are mapped by the transformation $w = z^2$ into the curves C_1, C_2 and C_3 respectively. The angle of intersection between the curves at w = 0 is

a) 0

b) $\pi/4$

c) $\pi/2$

d) π

1

- 2) In a tropical space, which of the following statements is NOT always true:
 - a) Union of any finite family of compact sets is compact.
 - b) Union of any family of closed sets is closed.
 - c) Union of any family of connected sets having a non empty intersection is connected.
 - d) Union of any family of dense subsets is dense.
- 3) Consider the following statements: P: The family of subsets $\left\{A_N = \left(\frac{-1}{n}, \frac{1}{n}\right), n = \frac{-1}{n}\right\}$ $1, 2, \dots$ satisfies the finite intersection property.

Q: On an infinite set X, a metric $d: X \times X \to R$ is defined as $d(x, y) = \begin{cases} 0, & x = y \\ 1, & x \neq y \end{cases}$. The metric space (X, d) is compact.

R: In a Frechet (T_1) topological space, every finite set is closed.

S: If $f: R \to X$ is continuous, where R is given the usual topology and (X, T) is a Hausdorff (T_2) space, then f is one-one function. which of the above statements are correct?

a) P and R

b) P and S

c) R and S

d) Q and S

- 4) Let H be Hilbert space and s^{\perp} denote the orthogonal complement of a set $S \subseteq H$. which of the following is INCORRECT?
 - a) $ForS_1, S_2 \subseteq H; S_1 \subseteq S_2 \implies S_1^{\perp} \subseteq S_2^{\perp}$.
 - b) $S \subseteq (S^{\perp})^{\perp}$
 - c) $0^{\perp} = H$
 - d) S^{\perp} is always closed
- 5) Let H be a complex Hilbert space, $T: H \to H$ be a bounded linear operator and let T^* denote the adjoint of T. Which of the following statements are always TRUE?

 $P: \forall x, y \in H, \langle Tx, Y \rangle = \langle x, T^*y \rangle$ $Q: \forall x, y \in H, \langle x, Ty \rangle = \langle T^*x, y \rangle$

 $R: \forall x, y \in H, \langle x, Ty \rangle = \langle x, T^*y \rangle$ $S: \forall x, y \in H, \langle Tx, Ty \rangle = \langle T * x, T^*y \rangle$

- a) P an O
- b) P and R
- c) O and S
- d) P and S
- 6) Let $X=\{a,b,c\}$ and let $\tau=\{\phi,\{a\},\{b\},\{a,b\},X\}$ be a topology defined on X. Then which of the following statements are TRUE?

 $P:(X,\tau)$ is a Hausdroff space.

 $Q:(X,\tau)$ is a regular space.s

 $R:(X,\tau)$ is a normal space.

 $S:(X,\tau)$ is a connected space.

- a) P and O
- b) O and R
- c) R and S
- d) P and S

7) Consider the statements

P: If X is a normed linear space and $M \subseteq X$ is a subspace, then the closure M is also a subspace of X.

Q: If X is a banach space and $\sum X_n$ is an absolute convergent series in X, then $\sum X_n$ is convergent

 $R: Let M_1$ and M_2 be subspaces of an inner product space such that $M_1 \cap M_2 = \{0\}$. Then $\forall m_1 \in M_1, m_2 \in M_2; ||\mathbf{m_1} + \mathbf{m_2}||^2 = ||\mathbf{m_1}||^2 + |\mathbf{m_2}||^2.$

S: Let $f: X \to Y$ be a linear transformation from the banach space X into the Branch space Y. If f is continuous, then the graph of f is always compact.

The correct statements amongst the above are:

- a) P and R only
- b) Q and R only c) P and Q only
- d) R and S only
- 8) A continuous random variable X has the probability density function

$$f(x) = \begin{cases} \frac{3}{5}e^{\frac{-3x}{5}}, & x > 0\\ 0, & x \le 0 \end{cases}$$

c)

The probability density function Y=3X+2 is

- a) $f(y) = \begin{cases} \frac{1}{5}e^{\frac{-1(y-2)}{5}}, & y > 2\\ 0, & y \le 2 \end{cases}$
- $f(y) = \begin{cases} \frac{3}{5}e^{\frac{-2(y-2)}{5}}, & y > 2\\ 0, & y \le 2 \end{cases}$
- b) d) $f(y) = \begin{cases} \frac{3}{5}e^{\frac{-4(y-2)}{5}}, & y > 2\\ 0, & x \le 2 \end{cases}$ $f(y) = \begin{cases} \frac{2}{5}e^{\frac{3(y-2)}{5}}, & y > 2\\ 0, & y \le 2 \end{cases}$
- 9) A simple random sample sample of size 10 from $N(\mu, \sigma^2)$ gives 98 % confidence interval (20.49, 23.51). Then the null hypothesis $H_O: \dot{\mu} = 20.5$ against $H_A: \mu \neq 20.5$
 - a) can be rejected at 2% level of significance
 - b) cannot be rejected at 5% level of significance

- c) can be rejected at 10% level of significance
- d) cannot be rejected at any level of significance
- 10) For the linear programming problem

Maximize
$$Z = X_1 + 2X_2 + 3X_3 - 4X4$$

Subject to $2X_1 + 3X_2 - X_3 - X_4 = 15$
 $6X_1 + X_2 + X_3 - 3X_4 = 21$
 $8X_1 + 2X_2 + 3X_3 - 4X_4 = 30$
 $X_1, X_2, X_3, X_4 \ge 0$,

$$X_1 = 4, X_2 = 3, X_3 = 0, X_4 = 2$$
 is

- a) an optimal solution
- b) a degenerate basic feasible solution
- c) a non-degenerate basic feasible solution
- d) a non-basic feasible solution
- 11) Which of the following statements is TRUE?
 - a) A convex set cannot have infinite many extreme points.
 - b) A linear programming problem can have infinite many extreme points.
 - c) A linear programming problem can have exactly two different optimal solutions.
 - d) A linear programming problem can have a non-basic optimal solution.
- 12) Let $\alpha = e^{2\pi i/5}$ and the matrix

$$M = \begin{bmatrix} 1 & \alpha & \alpha^2 & \alpha^3 & \alpha^4 \\ 0 & \alpha & \alpha^2 & \alpha^3 & \alpha^4 \\ 0 & 0 & \alpha^2 & \alpha^3 & \alpha^4 \\ 0 & 0 & 0 & \alpha^3 & \alpha^4 \\ 0 & 0 & 0 & 0 & \alpha^4 \end{bmatrix}$$

Then the trace of the matrix $I + M + M^2$ is

d) 5

13) Let Let $V = \mathbb{C}^2$ be the vector space over the field of complex numbers and $B=\{(1,i),(i,1)\}\$ be a given ordered basis of V. Then for which of the following, $B^* = \{f_1, f_2\}$ is a dual basis of B over \mathbb{C} ?

a)
$$f_1(z_1, z_2) = \frac{1}{2}(z_1 - iz_2), f_2(z_1, z_2) = \frac{1}{2}(z_1 + iz_2)$$

a)
$$f_1(z_1, z_2) = \frac{1}{2}(z_1 - iz_2), f_2(z_1, z_2) = \frac{1}{2}(z_1 + iz_2)$$

b) $f_1(z_1, z_2) = \frac{1}{2}(z_1 + iz_2), f_2(z_1, z_2) = \frac{1}{2}(iz_1 + z_2)$

c)
$$f_1(z_1, z_2) = \frac{1}{2}(z_1 - iz_2), f_2(z_1, z_2) = \frac{1}{2}(-iz_1 + z_2)$$

d)
$$f_1(z_1, z_2) = \frac{1}{2}(z_1 + iz_2), f_2(z_1, z_2) = \frac{1}{2}(-iz_1 - z_2)$$