Summary

September 27, 2023

Contents

0.1	Loaded	Graphs	3
	0.1.1	ormaldehyde	3
	0.1.2	Lycolaldehyde	3
	0.1.3 1	andom1	3
	0.1.4 1	andom2	4
	0.1.5 1	andom3	4
	0.1.6	andom4	5
	0.1.7	andom5	5
	0.1.8	andom6	6
	0.1.9	andom7	6
		andom8	7
	0.1.11	_{10}	7
	-	- {11}	8
	-	- {12}	8
	-		Ĉ
0.2			S
	0.2.1 I	eto-enol isomerization ->	S
			10
	0.2.3	ldol Addition ->	11
	0.2.4	ldol Addition <	11
			12
0.3		· · · · · · · · · · · · · · · · · · ·	12
0.4			12
0.5			12
			12
0.6			13
0.7			13
			13
0.8	Trying ((CO)(C(CO)O)=O	14
0.9			14
	0.9.1	blution 0	14
	0.9.2	blution 1	15
			16
0.10	Trying ((CO)(O)=C(CO)O	17
			17
		,	17
	0.11.2	blution 1	18
			19
			20
0.12			21
		,	 21

0.13	Flow Solutions, id	5.																	22
	0.13.1 Solution 0																		22
0.14	Flow Solutions, id	6.																	23
	0.14.1 Solution 0																		23
0.15	Flow Solutions, id	7.																	25
	0.15.1 Solution 0																		25

0.1 Loaded Graphs

0.1.1 Formaldehyde

File: out/001_g_0_10300000 H₂C ____O

File: out/003_g_0_11310100

0.1.2 Glycolaldehyde

File: out/007_g_1_11310100

0.1.3 random1

File: out/009_g_2_10300000

OH
OH
OH
OH

File: out/011_g_2_11310100

0.1.4 random2

File: out/013_g_3_10300000

File: out/015_g_3_11310100

0.1.5 random3

File: out/017_g_4_10300000

OH

OH

OH

OH

File: out/019_g_4_11310100

0.1.6 random4

File: out/021_g_5_10300000

OH

OH

OH

OH

File: out/023_g_5_11310100

0.1.7 random5

File: out/025_g_6_10300000

OH

OH

OH

File: out/027_g_6_11310100

0.1.8 random6

File: out/029_g_7_10300000

OH

OH

OH

OH

File: out/031_g_7_11310100

0.1.9 random7

File: out/035_g_8_11310100

0.1.10 random8

File: out/037_g_9_10300000

OH

OH

OH

File: out/039_g_9_11310100

$0.1.11 g_{10}$

File: out/041_g_10_10300000

OH

OH

File: out/043_g_10_11310100

0.1.12 g_{11}

File: out/045_g_11_10300000

OH

OH

OH

File: out/047_g_11_11310100

0.1.13 g_{12}

File: out/049_g_12_10300000

OH

OH

OH

File: out/051_g_12_11310100

$0.1.14 \ g_{13}$

File: out/053_g_13_10300000

OH

OH

File: out/055_g_13_11310100

ÓН

0.2 Loaded Rules

0.2.1 Keto-enol isomerization ->

Files: out/059_r_0_11300100_{L, K, R}

0.2.2 Keto-enol isomerization <-

Files: out/062_r_1_10300000_{L, K, R}

Files: out/064_r_1_11300100_{L, K, R}

0.2.3 Aldol Addition ->

Files: $out/067_r_2_10300000_{L, K, R}$

Files: out/069_r_2_11300100_{L, K, R}

0.2.4 Aldol Addition <-

Files: out/072_r_3_10300000_{L, K, R}

0.2.5 DG Hyper, dg_0

Figure too large, see out/076_dg_0_11100_coord.pdf

File: out/205_dg_0_11100

0.3 Product Graphs

0.4 Trying C(C(C(CO)O)O)=O

0.5 Flow Solutions, id 0

0.5.1 Solution 0

Overall Data

Objective value (integral): 14 Vertex/Graph In Out OA Glycolaldehyde 2 0 0 g_{10} 1 2 1

 $File: \ \mathtt{out/209_dg_0_11100_f_0_0_filt}$

0.6 Trying C(O)=C(C(CO)O)O

0.7 Flow Solutions, id 1

0.7.1 Solution 0

Overall Data

Objective value (integral): 13 Vertex/Graph In Out OA Glycolaldehyde 2 0 0 g_{11} 1 2 1

 $File: \ \mathtt{out/213_dg_0_11100_f_1_0_filt}$

0.8 Trying C(CO)(C(CO)O)=O

0.9 Flow Solutions, id 2

0.9.1 Solution 0

Overall Data

Objective value (integral): 14 Vertex/Graph In Out OA Glycolaldehyde 2 0 0 g_{12} 1 2 1

File: out/217_dg_0_11100_f_2_0_filt

0.9.2 Solution 1

Overall Data

Objective value (integral): 14

 $File: \ \mathtt{out/220_dg_0_11100_f_2_1_filt}$

0.9.3 Solution 2

Overall Data

Objective value (integral): 14 Vertex/Graph In Out OA Glycolaldehyde 2 0 0 g 12 1 1 2 1

File: out/223_dg_0_11100_f_2_2_filt

0.10 Trying C(CO)(O)=C(CO)O

0.11 Flow Solutions, id 3

0.11.1 Solution 0

Overall Data

Objective value (integral): 15 Vertex/Graph In Out OA Glycolaldehyde 2 0 0 g_{13} 1 2 1

 $File: \ \mathtt{out/227_dg_0_11100_f_3_0_filt}$

0.11.2 Solution 1

Overall Data

Objective value (integral): 15

Vertex/Graph In Out OA Glycolaldehyde 2 0 0 g_{13} 1 2 1

 $File: \ \mathtt{out/230_dg_0_11100_f_3_1_filt}$

0.11.3 Solution 2

Overall Data

Objective value (integral): 15 Vertex/Graph In Out OA Glycolaldehyde 2 0 0 g_{13} 1 2 1

File: $out/233_dg_0_11100_f_3_2_filt$

0.11.4 Solution 3

Overall Data

Objective value (integral): 15 Vertex/Graph In Out OA Glycolaldehyde 2 0 0 g_{13} 1 2 1

File: out/236_dg_0_11100_f_3_3_filt

0.12 Flow Solutions, id 4

0.12.1 Solution 0

Overall Data

Objective value (integral): -1
Vertex/Graph In Out
Glycolaldehyde 2 0
g_{10} 0 1

File: out/240_dg_0_11100_f_4_0_filt

0.13 Flow Solutions, id 5

0.13.1 Solution 0

Overall Data

Objective value (integral): -1

Vertex/Graph In Out Glycolaldehyde 2 0

File: out/244_dg_0_11100_f_5_0_filt

0.14 Flow Solutions, id 6

0.14.1 Solution 0

Overall Data

Objective value (integral): -1 Vertex/Graph In Out

 $File: \ \mathtt{out/248_dg_0_11100_f_6_0_filt}$

0.15 Flow Solutions, id 7

0.15.1 Solution 0

Overall Data

Objective value (integral): -1 Vertex/Graph In Out Glycolaldehyde 2 0 g_{13} 0 1

Filtered Graph

File: out/252_dg_0_11100_f_7_0_filt