47

WHAT IS CLAIMED IS:

1. A process for producing a fluorine atom-containing sulfonyl fluoride compound, which comprises reacting a compound of the following formula (1) with a compound of the following formula (2) to form a compound of the formula (3), then, reacting the compound of the formula (3) with fluorine in a liquid phase to form a compound of the following formula (4), and further, decomposing the compound of the formula (4) to obtain a compound of the following formula (5):

 $XSO_2R^A - E^1$ (1) $R^B - E^2$ (2) $XSO_2R^A - E - R^B$ (3) $FSO_2R^{AF} - E^F - R^{BF}$ (4) 15 $FSO_2R^{AF} - E^{F1}$ (5)

5

10

wherein R^A is a bivalent organic group, E¹ is a monovalent reactive group, R^B is a monovalent organic group, E² is a monovalent reactive group which is reactive with E¹, E is a bivalent connecting group formed by the reaction of E¹ with E², R^{AF} is the same group as R^A, or a bivalent organic group formed by the fluorination of R^A, R^{BF} is the same group as R^B, or a monovalent organic group formed by the fluorination of R^B, E^F is the same group as E, or a bivalent connecting group formed by the fluorination of E, E^{F1} is a monovalent group formed by the decomposition of E^F, and X is a halogen atom, provided that at least one of R^A, R^B and E is a group

which can be fluorinated, and at least one of R^{AF} , R^{BF} and E^{F} is a group formed by the fluorination of R^{A} , R^{B} and E, respectively.

- The process for producing a fluorine atom-containing
 sulfonyl fluoride compound according to Claim 1, wherein
 X is a fluorine atom.
 - 3. The process for producing a fluorine atom-containing sulfonyl fluoride compound according to Claim 1, wherein the fluorine content in the compound of the formula (3) is at least 30 mass%.

10

- 4. The process for producing a fluorine atom-containing sulfonyl fluoride compound according to Claim 1, wherein the molecular weight of the compound of the formula (3) is from 200 to 1,000.
- 5. The process for producing a fluorine atom-containing sulfonyl fluoride compound according to Claim 1, wherein RAF is a bivalent organic group selected from the group consisting of a perfluoro bivalent saturated hydrocarbon group, a perfluoro (partially halogeno bivalent saturated
- hydrocarbon) group, a perfluoro(hetero atom-containing bivalent saturated hydrocarbon) group, and a perfluoro(partially halogeno(hetero atom-containing bivalent saturated hydrocarbon)) group, and R^{BF} is a monovalent organic group selected from the group
- 25 consisting of a perfluoro monovalent saturated hydrocarbon group, a perfluoro(partially halogeno monovalent saturated hydrocarbon) group, a

perfluoro(hetero atom-containing monovalent saturated hydrocarbon) group, and a perfluoro(partially halogeno(hetero atom-containing monovalent saturated hydrocarbon)) group.

- 5 6. The process for producing a fluorine atom-containing sulfonyl fluoride compounds according to Claim 1, wherein the compound of the formula (4) is decomposed to obtain not only the compound of the formula (5), but also a compound of the following formula (6):
- 10 R^{BF}-E^{F2} (6)

wherein E^{F2} is a monovalent group formed by the decomposition of E^F , which may be the same as or different from E^{F1} , and R^{BF} is as defined above.

- 7. The process for producing a fluorine atom-containing sulfonyl fluoride compound according to Claim 1, wherein the compound of the formula (1) is a compound of the following formula (1a), the compound of the formula (2) is a compound of the following formula (2a), the compound of the formula (3) is a compound of the following formula
- 20 (3a), the compound of the formula (4) is a compound of the following formula (4a), and the compound of the formula (5) is a compound of the following formula (5a):

	XSO ₂ R"-CH ₂ OH	(1a)
	R ^B -COY	(2a)
25	XSO ₂ R ^A -CH ₂ OCO-R ^B	(3a)

 $FSO_2R^{AF}-CF_2OCO-R^{BF}$ (4a)

FSO₂R^{AF}-COF (5a)

50

wherein Y is a halogen atom which is the same as or different from X, and R^{A} , R^{B} , R^{AF} and R^{BF} are as defined above.

8. The process for producing a fluorine atom-containing sulfonyl fluoride compound according to Claim 7, wherein the compound of the formula (4a) is decomposed to obtain not only the compound of the formula (5a), but also a compound of the following formula (6a):

 R^{BF} -COF (6a)

- 10 wherein RBF is as defined above.
- 9. The process for producing a fluorine atom-containing sulfonyl fluoride compound according to Claim 8, wherein the compound of the formula (2a) has the same structure as the compound of the formula (6a), and at least a part of the compound of the formula (6a) obtained from the reaction product obtained by the decomposition of the compound of the formula (4a), is used as at least a part of the compound of the formula (2a) to react with the compound of the formula (1a), to continuously obtain the compound of the formula (5a).
 - 10. A compound of the following formula (I) or a compound of the following formula (II):

 $\label{eq:fso2} FSO_2CH_2CH_2OCH_2CH_2OCOCF (CF_3)OCF_2CF_2CF_3 \quad \mbox{(I)}$

FSO₂CF₂CF₂OCF₂CF₂OCOCF (CF₃)OCF₂CF₂CF₃ (II)