

AcouDigits: Enabling Users to Input Digits in the Air

Yongpan Zou[†], Qiang Yang[†], Yetong Han[†], Dan Wang[†], Jiannong Cao[‡], Kaishun Wu[†]

†College of Computer Science and Software engineering, Shenzhen University †Department of Computing, Hong Kong Polytechnic University

@Kyoto

PerCom 2019

01 Motivation

02 Related Work

03 System Design

04 Evaluation

05 Conclusion

Traditional interaction interface - Keyboard

Smartphone

Table computer

PC

For new smart devices? Small screen size / no screen!

Smart watch

Smart glass

Smart home

AcouDigits - related work

Keyboard

RF

speech recognition

IMU

Small

Unstable/Device

Privacy concern

Wearing device

- 1. L. Sun, S. Sen, D. Koutsonikolas, and K.-H. Kim, "Widraw: Enabling hands-free drawing in the air on commodity wifi devices," in Proceedings of ACM MobiSys, 2015.
- 2. J. Wang, D. Vasisht, and D. Katabi, "RF-IDraw: virtual touch screen in the air using rf signals," in Proceedings of ACM SIGCOMM, 2014.
- 3. S. Nirjon, J. Gummeson, D. Gelb, and K.-H. Kim, "Typingring: A wearable ring platform for text input," in Proceedings of ACM MobiSys, 2015.
- 4. C. Amma, M. Georgi, and T. Schultz, "Airwriting: Hands-free mobile text input by spotting and continuous recognition of 3d-space handwriting with inertial sensors," in Proceedings of IEEE ISWC, 2012.

AcouDigits - related work

Hand gesture recognition

Coarse-grained HAND gesture

Acoustic finger tracking

Two microphones are required

- 1. S. Gupta, D. Morris, S. Patel, and D. Tan, "Soundwave: using the Doppler effect to sense gestures," in Proceedings of ACM CHI, 2012.
- 2. W. Wang, A. X. Liu, and K. Sun, "Device-free gesture tracking using acoustic signals," in Proceedings of ACM Mobicom, 2016.
- 3. W. Mao, J. He, and L. Qiu, "CAT: high-precision acoustic motion tracking," in Proceedings of ACM Mobicom, 2016.

AcouDigits - Data preprocessing

Denoising

- Bandpass filter: [18850; 19150]
- Direct path: Bandstop filter

Event Detection

- Continuous 4 frequency bins exceed a threshold: Active
- Segment: Continuous 4 frequency bins less than a threshold: End

Doppler Effect

$$\Delta f = f_0 \cdot |1 - \frac{v_s \pm v_f}{v_s \mp v_f}|$$

 f_0 , the frequency of emitted signals v_s , the speed of sound v_f , the velocity of finger motion

AcouDigits - Data preprocessing

Fig. 3. Illustrations of spectrograms and writing activity detection.

AcouDigits – feature engineering

Feature vector: Mean value and variance of AC, SC, SF

Feature	Feature	Description
domain		_
	Root mean square	The energy in an acoustic
Time	(RMS)	frame
domain	Zero crossing rate	The point where acoustic
domain	(ZCR)	samples change signs
	ATR	The average value of top
		k RMSs
	Above α -mean	The ratio of high-energy
	ratio (AMR)	frames in a window
	AC	Auto-correlation
		coefficients
	Spectral entropy	The flatness indicator of
Frequency	(SE)	acoustic spectrum shape
domain	Spectral flux (SF)	The stability reflector of
		acoustic events
	Spectral rolloff	Indicator of a frame's
	(SR)	spectral energy distribu-
		tion
	Spectral centroid	The balance point of the
	(SC)	spectral energy distribu-
		tion

Feature selection (Wrapper method)

10-fold cross validation

AcouDigits - Model training

SVM

- RBF kernel
- C (penalty coefficient): 2¹⁰
- Γ (kernel function coefficient): 2⁻¹⁰

KNN

AcouDigits – Model training

PARAMETER SETTINGS OF ANN MODEL

ANN

Parameters	Value
Number of layers (L)	2
Number of nodes (N)	10
Training function (f)	Levenberg-Marquardt algorithm
Activation function (ϕ)	$\phi_1 = \frac{2}{1+e^{-2n}} - 1$ $\phi_2 = \frac{e^n}{\sum e^n}$

PERFORMANCE OF DIFFERENT TRAINING FUNCTIONS

Training functions	trainlm	trainbr	trainbfg	trainrp	trainscg	traincgb	traincgf	traincgp	trainoss	traingdx	traingdm	traingd
Training accuracy	94.80%	98.60%	77.10%	86.90%	83.60%	81.50%	82.20%	84.00%	81.40%	78.60%	16.90%	6.90%
Testing accuracy	92.80%	90.00%	77.00%	87.70%	81.00%	80.70%	82.30%	83.30%	81.00%	75.70%	20.00%	5.30%
Time(s)	19	266	3	1	1	1	1	1	1	1	2	2

PERFORMANCE OF DIFFERENT ACTIVE FUNCTIONS

Active fuctions compet elliotsig hardlim hardlims logsig netinv poslin purelin radbas radbasn satlin satlins softmax tansig tribas Testing accuracy 9.80% 90.40% 9.00% 10.30% 88.30% 20.00% 84.30% 90.60% 86.30% 89.00% 73.30% 88.70% 90.30% 92.70% 55.00%																
Testing accuracy 9.80% 90.40% 9.00% 10.30% 88.30% 20.00% 84.30% 90.60% 86.30% 89.00% 73.30% 88.70% 90.30% 92.70% 55.00%	Active fuctio	ns compet		hardlim		logsig	netinv	poslin	purelin	radbas	radbasn	satlin	satlins	softmax	tansig	tribas
	Testing accura	cy 9.80%	90.40%		10.30%	88.30%	20.00%	84.30%	90.60%	86.30%	89.00%	73.30%	X X /110//a	90.30%	92.70%	65.00%

Setup

■Samsung Galaxy S5

■Emitting: 19 KHz

■Sampling: 44.1KHz

■Distance:2-16cm

10 digits X 6 participants X 200 repetitions = 12,000 10 digits X 6 participants X 8 dis intervals X 50 repetitions = 24,000

8 distance intervals: 2-4-6-8-10-12-14-16cm

AcouDigits – evaluation

0.9 1 0.00 0.96 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.00 8.0 0.7 3 0.00 0.00 0.06 0.91 0.00 0.03 0.00 0.00 0.00 0.00 0.6 4 0.00 0.00 0.02 0.02 0.89 0.03 0.00 0.00 0.02 0.02 0.5 5 0.06 0.00 0.00 0.12 0.00 0.82 0.00 0.00 0.00 0.00 0.4 6 0.03 0.00 0.00 0.00 0.00 0.02 0.91 0.00 0.04 0.00 0.3 7 0.00 0.02 0.00 0.00 0.00 0.02 0.00 0.96 0.00 0.00 0.2 8 0.02 0.00 0.00 0.00 0.05 0.04 0.00 0.00 0.89 0.00 0.1

Fig. 8. The overall performance of AcouDigits for KNN, SVM and KNN models.

Fig. 9. The confusion matrix of AcouDigits while averaging the performance of SVM and ANN models.

Fig. 10. The performance of AcouDigits for different distances between the finger and device.

Recognition Performance

The overall recognition accuracy of SVM and ANN models are 89.5% and 91.7%, and are higher than that of KNN by 6.3% and 8.5%, respectively.

Safe Distance

Within 8 cm, the performance remains acceptable with an accuracy no less than 91.5%.

AcouDigits – evaluation

Fig. 11. The performance of AcouDigits for different numbers of training samples.

Fig. 14. The performance of AcouDigits for different participants in the experiments.

Training Overhead

• When the number of training samples exceeds **40**, the recognition accuracy increases much more slowly and remains nearly constant.

User Diversities

The recognition accuracy varies from (84.2%, 88.0%) to (94.8%, 95.2%) with (0.14%, 0.06%) variance among different participants due to different writing habits.

Cross-person performance

- Training AcouDigits with one participant's data and testing it with another one's data.
- Randomly selected 5 pairs
- The average accuracies for SVM and ANN are 75.4% and 78.0%, respectively.

Fig. 12. The average accuracies of the selected five training-testing pairs.

A Direct Extension to English Letters

- 6 (participants)×26 (letters)×100 (repetitions) =1560@
- use ANN as the learning model
- The average accuracy in recognizing 26 letters is 87.4%
- Several letters have very similar writing patterns

Fig. 13. The performance of AcouDigits in recognizing uppercase English letters.

- We propose a novel interface that enables users writing digits and alphabets in the air without wearing any additional devices.
- By careful model selection and parameters tuning, AcouDigits can achieve up to 91.7% recognition accuracy for digits.
- We extend AcouDigits to recognize 26 English letters, and can achieve an accuracy up to 87.4%.

Deep learning-based [ongoing extension]

We transform acoustic signals to spectrograms, and using CNN to recognize digits and letters, which can achieve 94.9% accuracy.

Writing anywhere [ongoing extension]

With the data produced by Data Augmentation at different location of devices, more robust AcouDigits can be trained, and user can writing digits at any location around the device.

Training-free text input [new work under review]

By decomposing English letters to basic strokes and modeling their intrinsic characteristics, we can input text without any user-training overload.

THANKS

https://yongpanzou.github.io/
yongpan@szu.edu.cn
College of Computer Science and Software Engineering
Shenzhen University