Plan du cours de probabilités

Probabilités

Vecteurs aléatoires

Cadre multivarié, densité jointe, densité marginales

Conditionnement : loi et espérance conditionnelle

ndépendance

Vecteurs Gaussiens

Semaine 3

- Probabilités discrètes
- Variables et vecteurs aléatoires discrets
- ► Espérance, espérance conditionnelle

Semaine 4

- ► Indépendance, variance, covariance
- Variables aléatoires continues
- Vecteurs aléatoires continus

Vecteurs aléatoires

Cadre multivarié, densité jointe, densités marginales

Cadre continu multivarié

- $ightharpoonup X: \Omega \to \mathbb{R}^d$ une fonction
- \blacktriangleright $(\Omega, \mathcal{A}, \mathbb{P})$ espace probabilisé.
- Ensembles d'intérêt :

$$\{\mathbf{X} \in R\}$$
 où $R = [a_1, b_1] \times \cdots \times [a_d, b_d]$ ("rectangle")

déf : X est un vecteur aléatoire (tout court) si

$$\{X \in R\}$$
 est un événement (i.e., $\{X \in R\} \in A$),

pour tout
$$R = [a_1, b_1] \times \ldots \times [a_d, b_d]$$
, $a_i, b_i \in \mathbb{R}$.

▶ Comme en 1D : les fonctions $X \to \mathbb{R}^d$ seront « toujours » des vecteurs aléatoires.

Vecteurs aléatoires

Cadre multivarié, densité jointe, densités marginales

Conditionnement : loi et espérance conditionnelle

Indépendance

Vecteurs Gaussiens

Vecteur aléatoire continu

déf : Un vecteur aléatoire $\mathbf{X} = (X_1, \dots, X_d)$ est *continu* si

 $\exists f : \mathbb{R}^d \to \mathbb{R}^+, \ \int_{\mathbb{R}^d} f(x_1, \dots, x_d) \, \mathrm{d} x_1 \cdots \, \mathrm{d} x_d = 1$ (densité), telle que pour tout rectangle $R = [a_1, b_1] \times \cdots \times [a_d, b_d]$,

$$\mathbb{P}(\mathbf{X} \in R) = \int_{[a_1,b_1]} \cdots \int_{[a_d,b_d]} f(x_1,\ldots,x_d) \, \mathrm{d}x_1 \cdots \, \mathrm{d}x_d$$

Densités marginales (couple (X, Y) continu)

$$\mathbb{P}(X \in [a, b]) = \mathbb{P}(X \in [a, b], Y \in \mathbb{R})$$

$$= \int_{x \in [a, b]} \underbrace{\left(\int_{\mathbf{y} \in \mathbb{R}} \mathbf{f}_{(\mathbf{X}, \mathbf{Y})}(\mathbf{x}, \mathbf{y}) \, \mathrm{d}\mathbf{y}\right)}_{\text{fonction de } x} \, \mathrm{d}x$$

 $f_X(x)$

$$f_X(x) = \int_{\mathbb{R}^{\mathbb{D}}} f_{(X,Y)}(x,y) dy$$
; $f_Y(y) = \int_{\mathbb{R}^{\mathbb{D}}} f_{(X,Y)}(x,y) dx$.

Probabilités

Vecteurs aléatoires

Cadre multivarié, densité jointe, densités marginales

Conditionnement : loi et espérance conditionnelle

.. -

Vecteurs aléatoires

Conditionnement : loi et espérance conditionnelle

Densité conditionnelle

Soit (X, Y) un couple continu, de densité jointe $f_{(X,Y)}$.

- ▶ Si on observe $\{X = x\}$, que sait-on sur Y?
- ▶ **Problème** : $\mathbb{P}(\{X = x\}) = 0$: proba conditionnelle « sachant $\{X = x\}$ » n'existe pas.
- ▶ Mais si $f_X(x) \neq 0$ on peut définir :

Densité conditionnelle

Soit x tel que $f_X(x) \neq 0$. La fonction :

$$y \mapsto f_{Y|X}(y|x) = \frac{f_{(X,Y)}(x,y)}{f_{X}(x)}$$

est appelée « densité conditionnelle de Y sachant $\{X = x\}$ ».

Remarque importante

La fonction $y \mapsto f_{Y|X}(y|x)$ est une densité de probabilité sur \mathbb{R} .

Loi conditionnelle

déf : La loi conditionnelle de Y sachant $\{X = x\}$ est

La loi sur \mathbb{R} dont la densité est $f_{Y|X}(\cdot | x)$.

$$\mathbb{P}_{Y|X}([a,b]|x) = \int_{y \in [a,b]} f_{Y|X}(y|x) \,\mathrm{d}y$$

Probabilités

Vecteurs aléatoires

Conditionnement : loi et espérance conditionnelle

Loi conditionnelle : preuve de l'interprétation géométrique

Probabilités

Vecteurs aléatoires

Conditionnement : loi et espérance conditionnelle

Rapport entre les aires foncées /claires :

$$\Delta = \frac{\int_{y \in [a,b]} f(x,y) \, \mathrm{d}y}{\int_{y \in \mathbb{P}} f(x,y) \, \mathrm{d}y}$$

$$\Delta = \frac{1}{\int_{y \in \mathbb{R}} f(x, y) \, \mathrm{d}y}$$

$$\mathbb{P}_{Y|X}([a,b]|x) \stackrel{\text{def}}{=} \int_{y \in [a,b]} f_{Y|X}(y|x) \, \mathrm{d}y \stackrel{\text{def}}{=} \int_{y \in [a,b]} \frac{f_{(X,Y)}(x,y)}{f_X(x)} \, \mathrm{d}y$$

$$\stackrel{\text{def}}{=} \int_{y \in [a,b]} \frac{f_{(X,Y)}(x,y)}{\int_{\mathbb{D}} f(x,y) \, \mathrm{d}y} \, \mathrm{d}y = \frac{\int_{y \in [a,b]} f_{(X,Y)}(x,y)}{\int_{\mathbb{D}} f(x,y) \, \mathrm{d}y}$$

 $=\Delta$

Vecteurs aléatoires

Cadre multivarié, densité jointe, densité

Conditionnement : loi et espérance conditionnelle

Indépendance

Vecteurs Gaussiens

Utilisation de la loi conditionnelle

 $(X,Y):\Omega \to \mathcal{X} \times \mathcal{Y}$ couple aléatoire. On donne \mathbb{P}_X et $\mathbb{P}_{Y|X}$. Loi de Y?

(cas discret)
$$\mathbb{P}(Y \in A) = \sum_{x \in \mathcal{X}} \mathbb{P}(X = x, Y \in A)$$

$$= \sum_{x \in \mathcal{X}} \mathbb{P}(Y \in A | X = x) \mathbb{P}(X = x)$$

$$= \sum_{x \in \mathcal{X}} \left(\sum_{y \in A} \mathbb{P}_{Y | X}(y | x) \right) \mathbb{P}(X = x)$$

(cas continu)
$$\mathbb{P}(Y \in A) = \int_{x \in \mathbb{R}} \int_{y \in A} f_{(X,Y)}(x,y) \, \mathrm{d}y \, \mathrm{d}x$$

$$= \int_{X \in \mathbb{R}} \left(\int_{Y \in A} f_{Y|X}(y|x) \, \mathrm{d}y \right) f_X(x) \, \mathrm{d}x$$

Vecteurs aléatoires

Cadre multivarié, densité jointe, densité marginales

Conditionnement : loi et espérance conditionnelle

ndépendance

Vecteurs Gaussien

Espérance conditionnelle

(X, Y) un couple aléatoire continu, de densité jointe $f_{(X,Y)}$.

On observe $\{X = x\}$. Que peut-on attendre de Y en moyenne?

déf : l'espérance conditionnelle de Y sachant X = x est

$$\mathbb{E}(Y|X=x) = \int_{x \in \mathbb{R}} y \, f_{Y|X}(y|x) \, \mathrm{d}y$$

▶ remarque importante : $g(x) \stackrel{\text{def}}{=} \mathbb{E}(Y|X=x)$ est une fonction de x. Donc $\mathbb{E}(Y|X) \stackrel{\text{def}}{=} g(X)$ est une variable aléatoire

Vecteurs aléatoires

Cadre multivarié, densité jointe, densité marginales

Conditionnement : loi et espérance conditionnelle

ndépendanc

Vecteurs Gaussiens

Espérance et espérance conditionnelle

On définit $\mathbb{E}(Y|X) \stackrel{\text{déf}}{=} g(X)$, où $g(x) = \mathbb{E}(Y|X = x)$.

prop : Espérance et espérance conditionnelle

Si Y est intégrable, alors $\mathbb{E}(Y|X)$ aussi et

$$\mathbb{E}(Y) = \mathbb{E}_X \Big(\mathbb{E}(Y|X) \Big)$$

preuve *c.f.* cas discret. Remarquer que $f_{Y|X} f_X = f_{(X,Y)}$.

intérêt : calculer $\mathbb{E}(Y)$ si on connaît f_X et $f_{Y|X}$.

- ▶ ex : (X, Y) couple aléatoire défini par :
 - ▶ $X \sim U_{[0,1]}$
 - ▶ Loi condit^{le} de Y: $Y|\{X=x\} \sim \mathcal{N}(x,\sigma^2)$.
- ► Espérance de Y? $\mathbb{E}(Y|X=x) = x \text{ donc } \mathbb{E}(Y) = \mathbb{E}_X[\mathbb{E}(Y|X)] = \mathbb{E}_X[X] = \frac{1}{2}$

Soit $\mathbf{X} = (X_1, \dots, X_d)$ un vecteur aléatoire

déf: Les variables aléatoires X_1, \ldots, X_d sont indépendantes si

Pour tout « rectangle » $R = A_1 \times ... \times A_d \subset \mathbb{R}^d$ (les A_i sont des intervalles), les événements

$$\{X_1 \in A_1\}, \ldots, \{X_d \in A_d\}$$

sont indépendants.

(comparer avec le cas discret . . .)

Caractérisation (cas où X est continu) :

Les X_i sont indépendantes si et seulement si la densité jointe du vecteur X est le produit des densités marginales :

$$f_{\mathbf{X}}(x_1,\ldots,x_d) = \prod_{i=1}^d f_{X_j}(x_j)$$

Probabilités

Vecteurs aléatoires

Indépendance

Vecteurs Gaussiens

 $\mathbf{X} = (X_1, \dots, X_d)$ est appelé « Vecteur Gaussien » si toutes les combinaisons linéaires des X_i sont des gaussiennes.

prop : Construction (admis)

 X est Gaussien \Leftrightarrow

 $\exists A \in \mathbb{R}^{d \times d}, \mu \in \mathbb{R}^d, N = (N_1, \dots, N_d): \quad X = \mu + AN$

où (N_1,\ldots,N_d) sont Gaussiennes standard, indépendantes.

- ▶ La loi de X est alors caractérisée entièrement par
 - ▶ Son espérance, $\mathbb{E}(\mathbf{X}) = \mu$
 - ► Sa matrice de covariance,

$$\Sigma = AA^{\top}$$

preuve : pour Σ , vérifiez que $E(NN^{\top}) = \mathbf{I}_d$ et écrivez la définition matricielle de Cov(X).

Probabilités

Vecteurs aléatoires

Cadre multivarié, densité jointe, densité marginales

Conditionnement : loi et espérance conditionnelle

Indépendance

Vecteurs Gaussiens

Vecteurs aléatoires

Cadre multivarié, densité jointe, densit marginales

Conditionnement : loi et espérance conditionnelle

Indépendance

Vecteurs Gaussiens

Indépendance dans les vecteurs Gaussiens

Soit $X \sim \mathcal{N}(\mu, \Sigma)$ un vecteur Gaussien.

Alors la réciproque : dé-corrélation \Rightarrow indépendance devient vraie :

Si la matrice de covariance Σ d'un vecteur Gaussien \mathbf{X} est diagonale, alors ses composantes X_1, \ldots, X_d sont indépendantes.

pourquoi?

► Densité en $\mathbf{x} = (x_1, ..., x_d)$ (Si Σ inversible)

$$f_{\mu,\Sigma}(\mathsf{x}) = rac{1}{\sqrt{(2\pi)^d |\det \Sigma|}} e^{rac{-1}{2}(\mathsf{x}-\mu)^ op \Sigma^{-1}(\mathsf{x}-\mu)}$$

 Si Σ est diagonale, densité jointe = produit de densités uni-variées donc variables indépendantes

Attention : vérifier que le **vecteur** X est Gaussien, pas seulement ses composantes X_i !

Densité Gaussienne : Exemple

$$\theta=\pi/6$$
, $\mu=0$, $\Sigma=PDP^{\top}$, où

$$P = \begin{pmatrix} \cos(\theta) - \sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \text{(vecteurs propres)} \quad D = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \text{(valeurs propres)}$$

Lignes de niveau de la densité :

Probabilités

Vecteurs aléatoires

Cadre multivarié, densité jointe, densités

Conditionnement : loi et espérance conditionnelle

ndépendance

Vecteurs Gaussiens

Mines-Télécom