Valószínűségszámítás

5. gyakorlat

Nemkin Viktória $http://cs.bme.hu/\sim viktoria.nemkin/2017.$ okt. 24.

- 5.1 Legyen $X \in E(\lambda)$ és $Y = X^2$. Adja meg Y sűrűségfüggvényét! Fqy. II.2
- 5.2 Az $X \in U(0,1)$ valószínűségi változó segítségével generáljunk $Y \in G(\frac{1}{4})$ eloszlású valószínűségi változót! Fgy. II.100
- 5.3 Legyen $X \in U(0,1)$ és $Y = \sqrt{2X}$. Adja meg Y sűrűségfüggvényét! Fgy. II.6
- 5.4 Az X normális eloszlású valószínűségi változó várható értéke -5 és tudjuk, hogy $\mathbf{P}(-5 \le X < 0) = 0,3$. Mennyi $\mathbf{P}(-5 < X < 4)$? ($\Phi(0,7881) = 0,8$, $\Phi(1,4186) = 0,9222$) Fqu. II.30
- 5.5 Legyen $X \in U(0,1)$ és Y = arctg(X). Számolja ki Y sűrűségfüggvényét! Fgy. II.41
- 5.6 Az autók fogyasztását Amerikában mérföld/gallon-ban (mpg), Európában liter/100 km formában adják meg. Jelölje X valószínűségi változó egy Ford autó fogyasztását mpg-ben! Hogyan kell transzformálnunk a sűrűségfüggvényét, f(x)-et, ha áttérünk a liter/100 km skálára? (1 mérföld = 1.609 km és 1 gallon = 3,785 liter) $Fgy.\ II.68$
- 5.7 Legyenek $X \in N(m,D)$ és $Z = (\frac{X-m}{D})^2$. Számolja ki Z sűrűségfüggvényét! Fgy. II.61
- 5.8 Egy normális eloszlású valószínűségi változó 0,2 valószínűséggel vesz fel 10-nél kisebb értéket és 0,3 valószínűséggel 14-nél nagyobb értéket. Mik az eloszlás paraméterei? ($\Phi(0,51)=0,7, \Phi(0,89)=0,8$). Fgy. II.66
- 5.9 Amerikában a hőmérsékletet Fahrenheitben mérik. Washingtonban a hőmérséklet eloszlása nyaranta $X \in N(86,4)$. Térjünk át a Celsius-skálára! (Átváltási képlet: $Y[C] = \frac{5}{9}(X[F] 32)$. Fgy. II.67
- 5.10 Legyen $X \in U(0,1)$ és $f(t) = \frac{1}{t+3}, t \in (0,1)$. Ha $Y = f(X), P(Y > \frac{7}{24}) = ?$ Fqu. II.106
- 5.11 Tekintsük az $f(t) = A * e^{-t^2}$ függvényt! Milyen A paraméter esetén lesz ez sűrűségfüggvény? Ha X-szel jelöljük a sűrűségfüggvényhez tartozó valószínűségi változót, akkor mekkora a P(X < 0) valószínűség? Mekkora X várható értéke és szórása? $Fgy.\ II.108$
- 5.12 Az emberek testmagassága normális eloszlással jól közelíthető. Mennyi annak a valószínűsége, hogy egy 10 tagú társaság többsége magasabb az átlagosnál (a változó várható értékénél)? Fgy. II.115
- 5.13 Legyen X valószínűségi változó sűrűségfüggvénye $f_X(t) = \frac{1}{\sqrt{2}*\pi} e^{\frac{-(t+2)^2}{2*\pi}}$. Standardizálja X-et! P(X>-2)=? Fqu. II.128
- 5.14 Egy berendezés élettartama normális eloszlású, 6,3 év várható értékkel és 2 év szórással. Hány év garanciát adjunk, hogy 0,9 legyen annak a valószínűsége, hogy a berendezés csak garanciális idő után hibásodik meg? ($\Phi(-1,28)=0,1$) Fqy. II.71
- 5.15 Egy adott típusú radioaktív atom élettartama években mérve exponenciális eloszlású valószínűségi változó. Az atom 32 év leforgása alatt 0.5 valószínűséggel bomlik el.
 - Mennyi az esélye, hogy az atom 24 év alatt se bomlik el?
 - Mennyi időn belül bomlik el az atom 0.95 valószínűséggel?

Fgy. II.139

- 5.16 Egy háztartási gép gyári önköltsége 10.000 Ft. A termékre a gyár 1 év garanciát ad, ami szerint a hibás gépet ingyen kicseréli, amennyiben az 1 éven belül meghibásodik. A gyár szakemberei szerint a gép élettartama 30 év várható értékű exponenciális eloszlású valószínűségi változó. A termelői ár a gép önköltsége + a garanciális cserék önköltségének várható értéke. Mekkora legyen a termelői ár? $Fgy.\ II.7$