Отчет по лабораторной работе №6

Решение моделей в непрерывном и дискретном времени

Легиньких Галина Андреевна

Содержание

1	Цель работы	6
2	Задание	7
3	Выполнение лабораторной работы	8
4	Вывод	33

Список иллюстраций

3.1	Модель экспоненциального роста. Численное решение	8
3.2	Модель экспоненциального роста. График	9
3.3	Модель экспоненциального роста. График с точным решением	9
3.4	Аттрактор Лоренца. Численное решение t	11
3.5	Аттрактор Лоренца. Численное решение u(t)	12
3.6	Аттрактор Лоренца. График	13
3.7	Аттрактор Лоренца. График с отключенной интерполяцией	14
3.8	Модель Лотки-Вольтерры: динамика изменения численности по-	
	пуляций	15
3.9	Модель Лотки-Вольтерры: фазовый портрет	15
3.10	Задание 1. Код	16
3.11	Задание 1. График	16
3.12	Задание 1. Код анимации	16
3.13	Задание 1. Анимация	17
3.14	Задание 2. Код	17
3.15	Задание 2. График	18
3.16	Задание 2. Код анимации	18
3.17	Задание 2. Анимация	18
3.18	Задание 3. Код	19
	Задание 3. График	19
3.20	Задание 3. Код анимации	20
	Задание 3. Анимация	20
3.22	Задание 4. Код	21
3.23	Задание 4. График	21
3.24	Задание 4. Код анимации	22
	Задание 4. Анимация	22
	Задание 5. Код	23
	Задание 5. График	23
3.28	Задание 5. Фазовый портрет	24
	Задание 6. Код	24
3.30	Задание 6. График	25
	Задание 6. Код анимации	25
3.32	Задание 6. Анимация	26
	Задание 7. Код	26
	Задание 7. График	27
3.35	Задание 7. Фазовый портрет	27
7 76	Запание 7 Кол анимания пля графииа	28

3.37	Задание 7. Анимация графика	28
		28
3.39	Задание 7. Анимация фазового портрета	29
3.40	Задание 8. Код	29
3.41	Задание 8. График	30
3.42	Задание 8. Фазовый портрет	30
3.43	Задание 8. Код анимация для графика	31
3.44	Задание 8. Анимация графика	31
3.45	Задание 8. Код анимация для фазового портрета	31
3.46	Задание 8. Анимация фазового портрета	32

Список таблиц

1 Цель работы

Основной целью работы является освоение специализированных пакетов для решения задач в непрерывном и дискретном времени.

2 Задание

- 1. Используя Jupyter Lab, повторите примеры из раздела 6.2.
- 2. Выполните задания для самостоятельной работы (раздел 6.4).

3 Выполнение лабораторной работы

1. Для начала я повторила все примеры. Тут их не так много. Первый пример это модель экспоненциального роста. Для решения обыкновенных дифференциальных уравнений (ОДУ) в Julia можно использовать пакет diffrential Equations.jl. Численное решение в Julia будет иметь следующий вид: (рис. 3.1)

```
retcode: Success
Interpolation: 3rd order Hermite
t: 5-element Vector{Float64}:
0.0
0.10042494449239292
0.3521860297865888
0.6934436122197829
1.0
u: 5-element Vector{Float64}:
1.0
1.1034222047865465
1.4121908713484919
1.9730384457359198
2.6644561424814266
```

Рис. 3.1: Модель экспоненциального роста. Численное решение.

Далее получила графика, соответствующий полученному решению: (рис. 3.2)

Рис. 3.2: Модель экспоненциального роста. График.

Если требуется задать точность решения, то можно воспользоваться параметрами abstol (задаёт близость к нулю) и reltol (задаёт относительную точность). (рис. 3.3)

Рис. 3.3: Модель экспоненциального роста. График с точным решением.

2. Далее рассмотрела систему Лоренца. Численное решение в Julia будет иметь следующий вид: (рис. 3.4) (рис. 3.5) (рис. 3.6)

```
retcode: Success
Interpolation: 3rd order Hermite
t: 1292-element Vector{Float64}:
   0.0
   3.5678604836301404e-5
   0.0003924646531993154
   0.003262408731175873
   0.009058076622686189
   0.01695647090176743
   0.027689960116420883
   0.041856352219618344
   0.060240411865493296
   0.08368541210909924
   0.11336499336103911
   0.14862181393426632
   0.1870397836913972
  99.25245983911758
  99.3123010170333
  99.37100059024901
  99.43545175575305
  99.50217600300971
  99.56297541572351
  99.62622492183432
  99.69561088424294
  99.77387244562912
  99.86354266863755
  99.93826978918452
 100.0
```

Рис. 3.4: Аттрактор Лоренца. Численное решение t.

```
u: 1292-element Vector{Vector{Float64}}:
[1.0, 0.0, 0.0]
 [0.9996434557625105, 0.0009988049817849058, 1.781434788799189e-8]
 [0.9961045497425811, 0.010965399721242457, 2.1469553658389193e-6]
[0.9693591548287857, 0.0897706331002921, 0.00014380191884671585]
 [0.9242043547708632, 0.24228915014052968, 0.0010461625485930237]
 [0.8800455783133068, 0.43873649717821195, 0.003424260078582332]
 \hbox{\tt [0.8483309823046307, 0.6915629680633586, 0.008487625469885364]}
 [0.8495036699348377, 1.0145426764822272, 0.01821209108471829]
 [0.9139069585506618, 1.442559985646147, 0.03669382222358562]
 [1.0888638225734468, 2.0523265829961646, 0.07402573595703686]
 [1.460862686672, 3.020672001462966, 0.1600393577289759]
 [2.1627233814115288, 4.6333636054125975, 0.37711736638953464]
 [3.368464366588119, 7.267694015527519, 0.9363556169983378]
[14.543594291970454, 8.633828572600308, 40.30844424656028]
[9.527702621805666, 0.0875695733614436, 37.04712768883169]
[4.5637551148141755, -2.4307213825654537, 31.150857751066518]
[1.2013409155396158, -2.429012698730855, 25.83593282347909]
[-0.4985909866565941, -2.2431908075030083, 21.591758421186338]
[-1.3554328352527145, -2.5773570617802326, 18.48962628032902]
[-2.1618698772305467, -3.5957801801676297, 15.934724265473792]
[-3.433783468673715, -5.786446127166032, 14.065327938066913]
[-5.971873646288483, -10.261846004477597, 14.060290896024572]
[-10.941900618598972, -17.312154206417734, 20.65905960858999]
[-14.71738043327772, -16.96871551014668, 33.06627229408802]
[-13.714517151605754, -8.323306384833089, 38.798231477265624]
```

Рис. 3.5: Аттрактор Лоренца. Численное решение u(t).

Аттрактор Лоренца

Рис. 3.6: Аттрактор Лоренца. График.

Можно отключить интерполяцию. (рис. 3.7)

Аттрактор Лоренца

Рис. 3.7: Аттрактор Лоренца. График с отключенной интерполяцией.

3. Рассмотрела Модель Лотки-Вольтерры. Модель Лотки-Вольтерры описывает взаимодействие двух видов типа «хищник – жертва», где х - количество жертв, у — количество хищников, t — время, alfa, beta, gamma, delta — коэффициенты, отражающие взаимодействия между видами (в данном случае alfa — коэффициент рождаемости жертв, gamma — коэффициент убыли хищников, beta — коэффициент убыли жертв в результате взаимодействия с хищниками, delta — коэффициент роста численности хищников). Численное решение в Julia будет иметь следующий вид: (рис. 3.8) (рис. 3.9)

Рис. 3.8: Модель Лотки-Вольтерры: динамика изменения численности популяций

Рис. 3.9: Модель Лотки-Вольтерры: фазовый портрет

- **10.** Приступила к заданиям для самостоятельной работы. Нумерация соответствует.
 - Задание 1 (рис. 3.10) (рис. 3.11) (рис. 3.12) (рис. 3.13)

```
[45]:
# Параметры модели
b = 0.5 # Коэффициент рождаемости
 с = 0.2 # Коэффициент смертности
 a = b - c # Коэффициент роста популяции
 х0 = 10.0 # Начальная численность популяции
 tspan = (0.0, 10.0) # Временной диапазон
 # Уравнение Мальтуса
 function malthus!(dx, x, p, t)
    dx[1] = a * x[1]
 # Решение задачи
 prob = ODEProblem(malthus!, [x0], tspan)
 sol = solve(prob, Tsit5(), saveat=0.1)
 # Построение графика
 plot(sol.t, sol[1, :], xlabel="Время", ylabel="Численность",
    title="Модель Мальтуса", lw=2)
```

Рис. 3.10: Задание 1. Код

Рис. 3.11: Задание 1. График

```
# Анимация
anim = @animate for t in 1:length(sol.t)

plot(sol.t[1:t], sol[1, 1:t], xlabel="Время", ylabel="Численность",

title="Модель Мальтуса", lw=2, legend=false, xlims=(0, tspan[2]),

ylims=(0, maximum(sol[1, :])))
end
gif(anim, "malthus_model.gif", fps=15)
```

Рис. 3.12: Задание 1. Код анимации

Рис. 3.13: Задание 1. Анимация

• Задание 2 (рис. 3.14) (рис. 3.15) (рис. 3.16) (рис. 3.17)

```
# Параметры модели

r = 0.5  # Коэффициент роста популяции

k = 100.0  # Предельная ёмкость среды

x0 = 10.0  # Начальная численность популяции

tspan = (0.0, 20.0)  # Временной диапазон

# Логистическое уравнение

function logistic!(dx, x, p, t)

    dx[1] = r * x[1] * (1 - x[1] / k)

end

# Решение задачи

prob = ODEProblem(logistic!, [x0], tspan)

sol = solve(prob, Tsit5(), saveat=0.1)

# Построение графика

plot(sol.t, sol[1, :], xlabel="Время", ylabel="Численность",

    title="Логистическая модель", lw=2)
```

Рис. 3.14: Задание 2. Код

Рис. 3.15: Задание 2. График

```
[51]:

anim = @animate for t in 1:length(sol.t)

plot(sol.t[1:t], sol[1, 1:t], xlabel="Время", ylabel="Численность",

title="Логистическая модель", lw=2, legend=false, xlims=(0, tspan[2]),

ylims=(0, maximum(sol[1, :])))

end

gif(anim, "logistic_model.gif", fps=15)
```

Рис. 3.16: Задание 2. Код анимации

Рис. 3.17: Задание 2. Анимация

• Задание 3 (рис. 3.18) (рис. 3.19) (рис. 3.20) (рис. 3.21)

```
# Параметры модели
\beta = 0.3 # Коэффициент инфицирования
v = 0.1
          # Коэффициент выздоровления
s0 = 0.99 # Доля восприимчивых индивидов
і0 = 0.01 # Доля инфицированных индивидов
r0 = 0.0 # Доля выздоровевших индивидов
tspan = (0.0, 100.0) # Временной диапазон
# Уравнения SIR-модели
function sir!(du, u, p, t)
    s, i, r = u
    du[1] = -\beta * s * i
                            # ds/dt
    du[2] = \beta * s * i - v * i # di/dt
                            # dr/dt
# Решение задачи
u0 = [s0, i0, r0]
prob = ODEProblem(sir!, u0, tspan)
sol = solve(prob, Tsit5(), saveat=0.1)
# Построение графиков
plot(sol.t, sol[1, :], label="S (восприимчивые)", xlabel="Время",
    ylabel="Доля популяции", lw=2)
plot!(sol.t, sol[2, :], label="I (инфицированные)")
plot!(sol.t, sol[3, :], label="R (выздоровевшие)", title="SIR-модель эпидемии")
```

Рис. 3.18: Задание 3. Код

Рис. 3.19: Задание 3. График

```
anim = @animate for t in 1:length(sol.t)

plot(sol.t[1:t], sol[1, 1:t], label="S (восприимчивые)", xlabel="Время",
 ylabel="Доля популяции", lw=2, legend=false)

plot!(sol.t[1:t], sol[2, 1:t], label="I (инфицированные)", legend=false)

plot!(sol.t[1:t], sol[3, 1:t], label="R (выздоровевшие)",
 title="SIR-модель эпидемии", legend=false)

end

gif(anim, "sir_model.gif", fps=15)
```

Рис. 3.20: Задание 3. Код анимации

Рис. 3.21: Задание 3. Анимация

• Задание 4 (рис. 3.22) (рис. 3.23) (рис. 3.24) (рис. 3.25)

```
# Параметры модели
β = 0.3 # Κο϶φφυциент инфицирования δ = 0.2 # Скорость перехода из E ∈ G I
y = 0.1
           # Коэффициент выздоровления
N = 1.0
             # Размер популяции
            # Доля восприимчивых индивидов
s0 = 0.99
e0 = 0.01
           # Доля индивидов в латентной фазе
i0 = 0.0
             # Доля инфицированных индивидов
r0 = 0.0
             # Доля выздоровевших индивидов
tspan = (0.0, 100.0) # Временной диапазон
# Уравнения SEIR-модели
function seir!(du, u, p, t)
    s, e, i, r = u
    du[1] = -\beta * s * i / N
                                  # ds/dt
    du[2] = \beta * s * i / N - \delta * e # de/dt
    du[3] = \delta * e - \gamma * i
                                 # di/dt
    du[4] = \gamma * i
                                   # dr/dt
# Решение задачи
u0 = [s0, e0, i0, r0]
prob = ODEProblem(seir!, u0, tspan)
sol = solve(prob, Tsit5(), saveat=0.1)
# Построение графиков
plot(sol.t, sol[1, :], label="S (восприимчивые)", xlabel="Время",
    ylabel="Доля популяции", lw=2)
plot!(sol.t, sol[2, :], label="E (латентные)")
plot!(sol.t, sol[3, :], label="I (инфицированные)")
plot!(sol.t, sol[4, :], label="R (выздоровевшие)",title="SEIR-модель эпидемии")
```

Рис. 3.22: Задание 4. Код

Рис. 3.23: Задание 4. График

```
# Анимация
anim = @animate for t in 1:length(sol.t)

plot(sol.t[1:t], sol[1, 1:t], label="S (восприимчивые)", xlabel="Время",

ylabel="Доля популяции", lw=2, legend=false)

plot!(sol.t[1:t], sol[2, 1:t], label="E (латентные)", legend=false)

plot!(sol.t[1:t], sol[3, 1:t], label="I (инфицированные)", legend=false)

plot!(sol.t[1:t], sol[4, 1:t], label="R (выздоровевшие)",

title="SEIR-модель эпидемии", legend=false)

end

gif(anim, "seir_model.gif", fps=15)
```

Рис. 3.24: Задание 4. Код анимации

Рис. 3.25: Задание 4. Анимация

• Задание 5 (рис. 3.26) (рис. 3.27) (рис. 3.28)

```
# Параметры модели
 a = 2.0 # Коэффициент роста популяции X1
 c = 1.0 # Коэффициент убыли популяции X2
 d = 5.0 # Влияние X1 на X2
 # Начальные данные
 X1_0 = 0.5 # Начальное значение X1
 X2_0 = 0.5 # Начальное значение X2
  t_max = 50 # Количество шагов моделирования
 # Аналитическое решение для точки равновесия
 X2_{eq} = a * X1_{eq} * (1 - X1_{eq})
 println("Аналитическое решение:")
 println("Точка равновесия: X1_eq = $X1_eq, X2_eq = $X2_eq")
 # Численное моделирование
 X1 = [X1_0]
X2 = [X2_0]
  for t in 1:t_max
              X1_{next} = a * X1[end] * (1 - X1[end]) - X1[end] * X2[end]
               X2_{next} = -c * X2[end] + d * X1[end] * X2[end]
               push!(X1, X1_next)
               push!(X2, X2_next)
  # Построение графиков
 plot(1:t_max+1, X1, label="X1", xlabel="Время (t)", ylabel="Популяция", lw=2, lw=
              title="Динамика популяций")
 plot!(1:t_max+1, X2, label="X2", lw=2)
Аналитическое решение:
```

Точка равновесия: X1_eq = 0.2, X2_eq = 0.32000000000000000

Рис. 3.26: Задание 5. Код

Рис. 3.27: Задание 5. График

Рис. 3.28: Задание 5. Фазовый портрет

• Задание 6 (рис. 3.29) (рис. 3.30) (рис. 3.31) (рис. 3.32)

```
# Параметры модели
\alpha = 1.0
\beta = 0.1
x0 = 10.0
y0 = 5.0
tspan = (0.0, 50.0)
# Уравнения модели
function competition!(du, u, p, t)
    x, y = u
    du[1] = \alpha * x - \beta * x * y
    du[2] = \alpha * y - \beta * x * y
# Решение задачи
u0 = [x0, y0]
prob = ODEProblem(competition!, u0, tspan)
sol = solve(prob, Tsit5(), saveat=0.1)
# Построение графика
plot(sol.t, sol[1, :], label="x (вид 1)", xlabel="Время", ylabel="Численность",
    1w=2
plot!(sol.t, sol[2, :], label="y (вид 2)", title="Модель конкурентного отбора")
```

Рис. 3.29: Задание 6. Код

Рис. 3.30: Задание 6. График

Рис. 3.31: Задание 6. Код анимации

Рис. 3.32: Задание 6. Анимация

• Задание 7 (рис. 3.33) (рис. 3.34) (рис. 3.35) (рис. 3.36) (рис. 3.37) (рис. 3.38) (рис. 3.39)

```
# Параметры
ω0 = 2.0 # Циклическая частота
х0 = 1.0 # Начальное отклонение
у0 = 0.0 # Начальная скорость
tspan = (0.0, 10.0) # Временной диапазон
# Уравнение гармонического осциллятора
function harmonic_oscillator!(du, u, p, t)
    x, v = u \# u = [x, v], где x - координата, v - скорость
    du[1] = v # dx/dt = v
    du[2] = -\omega 0^2 * x # dv/dt = -\omega 0^2 * x
# Начальные условия
u0 = [x0, y0]
# Решение задачи
prob = ODEProblem(harmonic_oscillator!, u0, tspan)
sol = solve(prob, Tsit5(), saveat=0.1)
# Построение графиков
# 1. График х(t)
plot(sol.t, sol[1, :], xlabel="Время (t)", ylabel="x(t)",
    title="Консервативный гармонический осциллятор", lw=2)
```

Рис. 3.33: Задание 7. Код

Рис. 3.34: Задание 7. График

Рис. 3.35: Задание 7. Фазовый портрет

```
# Анимация графика x(t)
anim_xt = @animate for t in 1:length(sol.t)
plot(sol.t[1:t], sol[1, 1:t], xlabel="Время (t)", ylabel="x(t)",
title="Консервативный гармонический осциллятор", lw=2, legend=false, xlend
gif(anim_xt, "harmonic_xt.gif", fps=15))
```

Рис. 3.36: Задание 7. Код анимация для графика

Рис. 3.37: Задание 7. Анимация графика

```
# Анимация фазового портрета
anim = @animate for t in 1:length(sol.t)
plot(sol.t, sol[1, :], xlabel="Время (t)", ylabel="x(t)",
title="Консервативный гармонический осциллятор", lw=2)
end
gif(anim, "harmonic_oscillator.gif", fps=15)
```

Рис. 3.38: Задание 7. Код анимация для фазового портрета

Рис. 3.39: Задание 7. Анимация фазового портрета

• Задание 8 (рис. 3.40) (рис. 3.41) (рис. 3.42) (рис. 3.43) (рис. 3.44) (рис. 3.45) (рис. 3.46)

```
[93]:
# Параметры
\omega 0 = 2.0 # Циклическая частота
γ = 0.2 # Ко∍ффициент потерь
 х0 = 1.0 # Начальное отклонение
 у0 = 0.0 # Начальная скорость
 tspan = (0.0, 10.0) # Временной диапазон
 # Уравнение гармонического осциллятора с демпфированием
 function damped_oscillator!(du, u, p, t)
    x, v = u \# u = [x, v], где x - координата, v - скорость
    du[1] = v \# dx/dt = v
     du[2] = -2 * \gamma * v - \omega 0^2 * x # dv/dt = -2\gamma v - \omega 0^2 * x
 # Начальные условия
 u0 = [x0, y0]
 # Решение задачи
 prob = ODEProblem(damped_oscillator!, u0, tspan)
 sol = solve(prob, Tsit5(), saveat=0.1)
 # Построение графиков
 # 1. График х(t)
plot(sol.t, sol[1, :], xlabel="Время (t)", ylabel="x(t)",
    title="Гармонический осциллятор с потерями энергии", lw=2)
```

Рис. 3.40: Задание 8. Код

Рис. 3.41: Задание 8. График

Рис. 3.42: Задание 8. Фазовый портрет

```
# Анимация графика x(t)
anim_xt = @animate for t in 1:length(sol.t)
plot(sol.t[1:t], sol[1, 1:t], xlabel="Время (t)", ylabel="x(t)",
title="Гармонический осциллятор с потерями энергии", lw=2, legend=false
end
gif(anim_xt, "damped_xt.gif", fps=15)
```

Рис. 3.43: Задание 8. Код анимация для графика

Рис. 3.44: Задание 8. Анимация графика

```
# Анимация фазового портрета
anim = @animate for t in 1:length(sol.t)
    plot(sol[1, 1:t], sol[2, 1:t], xlabel="x", ylabel="v", title="Фазовый портретель gif(anim, "damped_oscillator.gif", fps=15)
```

Рис. 3.45: Задание 8. Код анимация для фазового портрета

Рис. 3.46: Задание 8. Анимация фазового портрета

4 Вывод

Освоила специализированные пакеты для решения задач в непрерывном и дискретном времени.