$$m{M}(R) = \left[egin{array}{ccccc} 1 & 1 & 0 & 1 & 0 \ 0 & 1 & 0 & 0 & 0 \ 0 & 1 & 1 & 1 & 0 \ 0 & 1 & 0 & 1 & 0 \ 1 & 1 & 1 & 1 & 1 \end{array}
ight].$$

- a) Donner le graphe de la relation R.
- b) Déterminer en justifiant brièvement vos réponses si R est (1) réflexive, (2) symétrique, (3) antisymétrique, (4) transitive.
- c) La relation R définit-elle une relation d'ordre sur A? (justifier) Dans l'affirmative, donner son diagramme de Hasse et préciser s'il s'agit d'un ordre partiel ou total. (justifier)
- d) La relation R définit-elle une relation d'équivalence sur A? (justifier) Dans l'affirmative, donner la partition de A définie par les classes d'équivalence de R.

2.7 Solutions d'exercices choisis

2.1 a)
$$R_1 = \{(-2,1), (-1,0), (-1,1), (0,0), (1,-1), (1,0), (2,-1)\}$$

b)
$$R_2 = \{(-1, -1), (0, 0), (1, -1), (1, 1), (2, 0)\}$$

2.2 a)
$$M(R_1) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

b)
$$M(R_2) = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

2.3 a)
$$M(R_1) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

b)
$$M(R_2) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

2.4 a)
$$R = \{(\spadesuit, \spadesuit), (\spadesuit, \diamondsuit), (\spadesuit, \clubsuit), (\heartsuit, \spadesuit), (\heartsuit, \diamondsuit), (\diamondsuit, \diamondsuit), (\diamondsuit, \clubsuit), (\clubsuit, \clubsuit)\}$$

b)
$$S = \{(\spadesuit, \spadesuit), (\diamondsuit, \heartsuit), (\diamondsuit, \diamondsuit), (\diamondsuit, \clubsuit), (\clubsuit, \heartsuit), (\clubsuit, \diamondsuit), (\clubsuit, \clubsuit)\}$$

- **2.5** La relation \overline{R} est la relation $\geq \sup \mathbb{N}$ alors que la relation R^{-1} est la relation $> \sup \mathbb{N}$.
- **2.6** a) $\overline{R}_1 = \{(0, -), (0, +), (1, -), (1, =), (2, -), (2, +), (3, =), (3, +)\}$

$$m{M}(\overline{R}_1) = \left[egin{array}{ccc} 1 & 0 & 1 \ 1 & 1 & 0 \ 1 & 0 & 1 \ 0 & 1 & 1 \end{array}
ight]$$

b) $\overline{R}_2 = \{(0, =), (0, +), (1, +), (3, -), (3, =)\}$

$$m{M}(\overline{R}_2) = \left[egin{array}{ccc} 0 & 1 & 1 \ 0 & 0 & 1 \ 0 & 0 & 0 \ 1 & 1 & 0 \end{array}
ight]$$

2.8 a) $R_1^{-1} = \{(=,0), (+,1), (=,2), (-,3)\}$

$$\boldsymbol{M}(R_1^{-1}) = \left[\begin{array}{cccc} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right]$$

b)
$$R_2^{-1} = \{(-,0), (-,1), (=,1), (-,2), (=,2), (+,2), (+,3)\}$$

$$m{M}(R_2^{-1}) = \left[egin{array}{cccc} 1 & 1 & 1 & 0 \ 0 & 1 & 1 & 0 \ 0 & 0 & 1 & 1 \end{array}
ight]$$

et
$$R_2 \circ R_1 = \{(2,1), (2,3), (3,1), (3,3)\}$$

et
$$R_1 \circ R_2 = \{(1,2), (1,3), (2,2), (2,3)\}$$

et
$$(R_2)^2 = R_2 \circ R_2 = \{(1,3), (2,1), (3,2)\}$$

2.11 a)
$$M(R) \cdot M(S) = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 1 & 0 & 0 & 0 \\ 0 & 2 & 2 & 2 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

ţ

Ainsi
$$M(S \circ R) = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

b)
$$M(S) \cdot M(R) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 2 \\ 1 & 1 & 1 & 2 \end{bmatrix}$$

Ainsi
$$M(R \circ S) = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

c)
$$M(R)^2 = M(R) \cdot M(R) = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2 & 3 \\ 2 & 1 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Ainsi
$$M(R^2) = M(R \circ R) = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- **2.12** a) $\overline{R} = \{(x, y) \in \mathbb{Z}^2 \mid x + y < 0\}$
 - b) $R^{-1} = \{(y, x) \in \mathbb{Z}^2 \mid y + x \ge 0\} = R$
 - c) $R^2 = R \circ R = \mathbb{Z}^2$ car, quel que soit le couple (x, z) d'entiers, en prenant y = |x| + |z| on a $(x, y) \in R$ et $(y, z) \in R$ et donc $(x, z) \in R^2$.
- **2.13** a) $U \circ S = \{(a, i), (c, j), (c, k), (d, i)\}$
 - b) $\overline{R} \circ T$ n'existe pas car l'ensemble d'arrivée de T (= C) n'est pas contenu dans l'ensemble de départ de \overline{R} (= A)
 - c) $T \circ S \circ R^{-1}$ n'existe pas car l'ensemble d'arrivée de S (= D) n'est pas contenu dans l'ensemble de départ de T (= B)
 - d) $T^{-1} \circ \overline{T} = \{(x, y), (x, z), (y, x), (y, z), (z, x)\}$
- ${f 2.14}$ a) (1) R est réflexive car la matrice ${m M}(R)$ ne contient que des 1 dans sa diagonale principale.
 - (2) R n'est pas symétrique que l'élément (2,1) de M(R) est égal à 1 alors que l'élément symétrique (1,2) est nul (on a donc $(\heartsuit, \spadesuit) \in R$ et $(\spadesuit, \heartsuit) \notin R$).
 - (3) R est antisymétrique car il n'existe pas deux 1 symétriques dans $\boldsymbol{M}(R)$.
 - (4) R n'est pas transitive car

$$(\boldsymbol{M}(R))^2 = \begin{bmatrix} 1 & 0 & 2 & 3 \\ 2 & 1 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \implies \boldsymbol{M}(R^2) = \boldsymbol{M}(R \circ R) = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

et $R^2 \not\subseteq R$ (les couples $(\heartsuit, \diamondsuit)$ et (\heartsuit, \clubsuit) appartiennent à R^2 mais pas à R).

b) (1) S n'est pas réflexive car l'élément (2,2) de M(S) n'est pas égal à 1 (\heartsuit n'est pas en relation avec lui-même).

- (3) S n'est pas antisymétrique car les éléments (3,4) et (4,3) de M(S) sont tous deux égaux à 1 (on a donc $(\diamondsuit, \clubsuit) \in S$ et $(\clubsuit, \diamondsuit) \in S$ alors que $\diamondsuit \neq \clubsuit$).
- (4) S est transitive car

$$(M(S))^2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 \end{bmatrix} \implies M(S^2) = M(S \circ S) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} = M(S)$$

et
$$S^2 \subseteq S$$
 (en fait $S^2 = S$).

- **2.15** (1) La relation R n'est pas réflexive. On a en effet $(-1,-1) \notin R$ (et plus généralement $(k,k) \notin R$ pour tout entier k négatif).
 - (2) La relation R est symétrique car l'addition est commutative :

$$(x,y) \in R \iff x+y \ge 0 \iff y+x \ge 0 \iff (y,x) \in R.$$

- (3) La relation R n'est pas antisymétrique. On a par exemple $(1,2) \in R$ et $(2,1) \in R$ mais $1 \neq 2$.
- (4) La relation R n'est pas transitive. On a par exemple $(-1,3) \in R$ et $(3,-2) \in R$ mais $(-1,-2) \notin R$. En fait on a $R^2 = \mathbb{Z}^2$ (exercice 2.12) et $R^2 \nsubseteq R$.
- **2.16** a) (1) R_1 n'est pas réflexive car $(1,1) \notin R_1$ (ou $(4,4) \notin R_1$).
 - (2) R_1 n'est pas symétrique car si $(2,4) \in R_1$ mais $(4,2) \notin R_1$.
 - (3) R_1 n'est pas antisymétrique car $(2,3) \in R_1$ et $(3,2) \in R_1$ alors que 2 et 3 sont deux éléments différents de A.
 - (4) R_1 est transitive car $(R_1)^2 = R_1$. En effet

$$(\boldsymbol{M}(R_1))^2 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}^2 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \implies \boldsymbol{M}(R_1^2) = \boldsymbol{M}(R_1)$$

- b) R_2 est réflexive, symétrique et transitive mais n'est pas antisymétrique.
- c) (1) R_3 n'est pas réflexive car $(1,1) \notin R_3$ (et, plus généralement, $(x,x) \notin R_3$ quel que soit $x \in A$).
 - (2) R_3 est symétrique car $(2,4) \in R_3$ et $(4,2) \in R_3$ et qu'il s'agit des deux seuls couples de la relation.
 - (3) R_3 n'est pas antisymétrique car $(2,4) \in R_3$ et $(4,2) \in R_3$ alors que 2 et 4 sont deux éléments différents de A.
 - (4) R_3 n'est pas transitive car $(2,4) \in R_3$ et $(4,2) \in R_3$ mais $(2,2) \notin R_3$.
- d) R_4 est antisymétrique mais n'est ni réflexive, ni symétrique, ni transitive.
- 2.17 a) Ordre partiel
- b) Ordre partiel
- c) Pas un ordre
- d) Ordre total

Diagrammes de Hasse:

2.18 Une chaîne verticale unique.

2.19 a)
$$\boldsymbol{M}_1 = \left[egin{array}{ccccccc} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{array}
ight]$$

b)
$$\boldsymbol{M}_2 = \left[\begin{array}{ccccc} 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{array} \right]$$

2.20

- **2.21** a) (1) La relation de divisibilité sur \mathbb{N}^* est réflexive car tout entier positif n se divise luimême $(n = 1 \cdot n)$.
 - (2) La relation de divisibilité sur \mathbb{N}^* est antisymétrique. En effet, si $n \mid m$, il existe un entier positif k avec m = kn mais, alors, n = (1/k)m. Ainsi on aura également $m \mid n$ si et seulement si 1/k est entier ce qui n'est possible que si k = 1 (k est positif). On en conclut donc que $n \mid m$ et $m \mid n$ si et seulement si n = m.
 - (3) La relation de divisibilité sur \mathbb{N}^* est transitive. En effet, si $n \mid m$ et $m \mid p$, il existe deux entiers positifs k et l tels que m = kn et p = lm mais alors p = lm = l(kn) = (lk)n est $n \mid p$ (car lk est un entier).

La relation de divisibilité étant réflexive, antisymétrique et transitive, il s'agit bien d'une relation d'ordre sur \mathbb{N}^* .

b) La relation de divisibilité sur \mathbb{N}^* est un ordre partiel. Il existe, en effet, de nombreuses paires d'entiers positifs $\{a,b\}$ où a ne divise pas b et b ne divise pas a (par exemple, a=2 et b=3).

2.22

- **2.24** Seule R_2 est une relation d'équivalence. R_1 et R_4 ne sont pas transitives alors que R_3 n'est pas réflexive.
- 2.25 R_1 , R_3 et R_4 sont des relations d'équivalence. R_2 n'est pas symétrique et n'est donc pas une relation d'équivalence.

Classes d'équivalence :

$$R_1: [v] = [w] = \{v, w\}, [x] = [z] = \{x, z\}, [y] = \{y\}$$

$$R_3: [v] = [x] = \{v, x\}, [w] = [y] = [z] = \{w, y, z\}$$

$$R_4: [v] = \{v\}, [w] = \{w\}, [x] = \{x\}, [y] = \{y\}, [z] = \{z\}$$

2.27 i) La relation R est réflexive car

$$(a,b) R (a,b) \iff a+b=b+a$$

ce qui est toujours vrai car l'addition est commutative.

ii) La relation R est symétrique car

$$(a,b) R (c,d) \iff a+d=b+c \iff c+b=d+a \iff (c,d) R (a,b).$$

iii) La relation R est transitive car

$$(a,b) R (c,d) \quad \text{et} \quad (c,d) R (e,f)$$

$$\iff a+d=b+c \quad \text{et} \quad c+f=d+e$$

$$\iff a-b=c-d \quad \text{et} \quad c-d=e-f$$

$$\iff a-b=e-f$$

$$\iff a+f=b+e$$

$$\iff (a,b) R (e,f).$$

La relation R étant réflexive, symétrique et transitive, elle définit une relation d'équivalence sur \mathbb{Z}^2 .

1) La classe d'équivalence de (0,0) est

$$[(0,0)] = \{(a,b) \in \mathbb{Z}^2 \mid a-b=0\} = \{(a,b) \in \mathbb{Z}^2 \mid a=b\}$$
$$= \{\dots, (-3,-3), (-2,-2), (-1,-1), (0,0), (1,1), (2,2), (3,3), \dots\}.$$

2) La classe d'équivalence de (2,1) est

$$[(2,1)] = \{(a,b) \in \mathbb{Z}^2 \mid a-b=1\}$$

= \{\dots, (-3,-4), (-2,-3), (-1,-2), (0,-1), (1,0), (2,1), (3,2), (4,3),\dots\}.

3) La classe d'équivalence de (0,-1) est la même que celle de (2,1): [(0,-1)]=[(2,1)].

2.28 a)
$$M(S) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$
 $M(T) = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$

b)
$$M(\overline{S}) = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$
 $M(T^{-1}) = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

c) Pour calculer la matrice de la relation $U = \overline{S} \circ T^{-1}$ on commence par calculer le produit

$$m{M}(T^{-1})\cdot m{M}(\overline{S}) = egin{bmatrix} 1 & 0 & 0 \ 1 & 1 & 1 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix} \cdot egin{bmatrix} 0 & 1 & 1 & 1 \ 1 & 0 & 0 & 1 \ 0 & 1 & 1 & 0 \end{bmatrix} = egin{bmatrix} 0 & 1 & 1 & 1 \ 1 & 2 & 2 & 2 \ 1 & 0 & 0 & 1 \ 0 & 1 & 1 & 0 \end{bmatrix}$$

puis on y remplace les éléments supérieurs à 1 par des 1 afin d'obtenir

$$m{M}(U) = m{M}(\overline{S} \circ T^{-1}) = \left[egin{array}{cccc} 0 & 1 & 1 & 1 \ 1 & 1 & 1 & 1 \ 1 & 0 & 0 & 1 \ 0 & 1 & 1 & 0 \end{array}
ight]$$

d) La relation U est une relation sur l'ensemble F et son graphe représentatif est

- **2.29** a) $\overline{R} = \{(x,y) \in \mathbb{Z}^2 \mid x \le y\}$ (relation « plus petit ou égal à »)
 - b) $R^{-1} = \{(x, y) \in \mathbb{Z}^2 \mid x < y\}$ (relation « plus petit que »)
 - c) $R^2 = R \circ R = \{(x, y) \in \mathbb{Z}^2 \mid x > y + 1\}$
 - d) $R \circ R^{-1} = \mathbb{Z}^2$ (relation « complète »)
- **2.30** La relation R est uniquement réflexive.
- **2.31** a) (1) R_1 n'est pas réflexive car $(0,0) \notin R_1$ (et, plus généralement, $(x,x) \notin R_1$ quel que soit l'entier x).
 - (2) R_1 est symétrique car si $(x,y) \in R_1$ on a $x \neq y$ mais également $y \neq x$ et donc $(y,x) \in R_1$.
 - (3) R_1 n'est pas antisymétrique car on a, par exemple, $(1,2) \in R_1$ et $(2,1) \in R_1$ alors que 1 et 2 sont deux éléments différents de \mathbb{Z} .
 - (4) R_1 n'est pas transitive car, par exemple, $(1,2) \in R_1$ et $(2,1) \in R_1$ mais $(1,1) \notin R_1$.
 - b) (1) R_2 n'est pas réflexive car $(0,0) \notin R_2$ $(0^2 \ge 1)$.
 - (2) R_2 est symétrique car xy=yx ainsi si $xy\geq 1$, on a aussi $yx\geq 1$.
 - (3) R_2 n'est pas antisymétrique car on a, par exemple, $(1,2) \in R_2$ et $(2,1) \in R_2$ alors que 1 et 2 sont deux entiers différents.

- (4) R_2 est transitive. En effet, si $xy \ge 1$ alors x et y sont tous deux de même signe (soit tous deux positifs soit tous deux négatifs). De même si $yz \ge 1$, y et z sont de même signe et on en déduit que x et z sont de même signe ou, encore, que $xz \ge 1$, c.-à-d. que $(x,z) \in R_2$.
- c) (1) R_3 n'est pas réflexive car $(-1,-1) \notin R_3$ $(-1 \nleq 2(-1)=-2)$ et, plus généralement, $(x,x) \notin R_3$, quel que soit l'entier négatif x.
 - (2) R_3 n'est pas symétrique car $(1,3) \in R_3$ $(1 \le 2 \cdot 3)$ mais $(3,1) \notin R_3$ $(3 \le 2 \cdot 1)$.
 - (3) R_3 n'est pas antisymétrique car on a, par exemple, $(1,2) \in R_3$ $(1 \le 2 \cdot 2)$ et $(2,1) \in R_3$ $(2 \le 2 \cdot 1)$ alors que 1 et 2 sont deux entiers différents.
 - (4) R_3 n'est pas transitive car on a, par exemple, $(3,2) \in R_3$ $(3 \le 2 \cdot 2)$ et $(2,1) \in R_3$ $(2 \le 2 \cdot 1) \text{ mais } (3,1) \notin R_3 \text{ car } 3 \le 2 \cdot 1.$
- d) Notons premièrement que

$$(x = y + 1 \text{ ou } x = y - 1)$$
 \iff $x - y = \pm 1$ \iff $|x - y| = 1$

- (1) La relation n'est pas réflexive car $(0,0) \notin R_4$.
- (2) La relation est symétrique car $(x,y) \in R_4 \iff |x-y| = 1 \iff |y-x| = 1 \iff$ $(y,x)\in R_4.$
- (3) La relation n'est pas antisymétrique car $(0,1) \in R_4$ et $(1,0) \in R_4$ mais $0 \neq 1$.
- (4) La relation n'est pas transitive car $(0,1) \in R_4$ et $(1,2) \in R_4$ mais $(0,2) \notin R_4$.
- e) Notons premièrement que $(x = y \text{ ou } x = -y) \iff |x| = |y|$
 - (1) La relation est réflexive car |x| = |x| quel que soit $x \in \mathbb{Z}$ et donc $(x, x) \in \mathbb{R}_5$ quel que soit $x \in \mathbb{Z}$.
 - (2) La relation est symétrique car $(x,y) \in R_5 \iff |x| = |y| \iff |y| = |x| \iff$ $(y,x)\in R_5.$
 - (3) La relation n'est pas antisymétrique car $(1,-1) \in R_5$ et $(-1,1) \in R_5$ mais $1 \neq -1$.
 - (4) La relation est transitive car si |x| = |y| et |y| = |z| alors |x| = |z| ainsi si $(x, y) \in R_5$ et $(y, z) \in R_5$ alors $(x, z) \in R_5$.
- f) (1) La relation n'est pas réflexive car $(0,0) \notin R_6$.
 - (2) La relation est symétrique car $(x,y) \in R_6 \iff x+y=4 \iff y+x=4 \iff$ $(y,x)\in R_6.$
 - (3) La relation n'est pas antisymétrique car $(0,4) \in R_6$ et $(4,0) \in R_6$ mais $0 \neq 4$.
 - (4) La relation n'est pas transitive car $(0,4) \in R_6$ et $(4,0) \in R_6$ mais $(0,0) \notin R_6$.
- Il existe $2^{|A|\cdot|B|} = 2^{nm}$ relations différentes de A vers B. 2.32
- a) 2^{n^2} 2.33
- **2.35** a) 1. (i) La relation R est réflexive car toute personne a la même taille qu'elle-même (et donc une différence de taille avec elle-même ne dépassant pas 5 centimètres).
 - (ii) La relation R est symétrique car la différence de taille entre x et y est la même que celle entre y et x (elle sera donc dans les deux cas soit inférieure ou égale à 5 centimètres soit supérieure à cette limite).
 - (iii) La relation R n'est pas antisymétrique : on a, par exemple, Aline et Élodie en relation l'une avec l'autre bien qu'il s'agisse de deux personnes différentes.
 - (iv) La relation R n'est pas transitive. En effet, on a Aline en relation avec Elodie et Élodie en relation avec Claudia mais Aline n'est pas en relation avec Claudia (leur différence de taille étant égale à 8 cm).

- 2. La relation R n'est pas une relation d'ordre car elle n'est ni antisymétrique ni transitive.
- 3. La relation R n'étant pas transitive, elle ne définit pas une relation d'équivalence.
- 2.38 a) La table contenant le nombre d'experts préférant le langage i au langage j est

	C	C++	Java	PHP	Python
С	-	1	1	2	2
C++	3	_	1	2	2
Java	3	3		3	3
PHP	2	2	1		1
Python	2	2	1	3	

Le graphe de la relation R et sa matrice M(R) sont donc

- b) 1. La relation R est réflexive : la diagonale principale de M(R) ne contient que des 1.
 - 2. La relation R n'est pas symétrique : on a, par exemple, Java en relation avec C++ mais C++ n'est pas en relation avec Java.
 - 3. La relation R est antisymétrique : la matrice M(R) ne contient pas deux 1 en symétrie en dehors de sa diagonale principale et le graphe de R ne contient pas deux arcs de sens opposés.
 - 4. La relation R est transitive. En effet, si on calcule le carré de M(R) on obtient

$$\boldsymbol{M}(R) \cdot \boldsymbol{M}(R) = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 & 0 \\ 3 & 2 & 1 & 3 & 2 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 & 1 \end{bmatrix}$$

et, en remplaçant tous les termes positifs par des 1, on a $M(R^2) = M(R)$ ce qui prouve que R^2 est un sous-ensemble de R.

c) La relation R est une relation d'ordre car elle est réflexive, antisymétrique et transitive. Son diagramme de Hasse est donné ci-dessous. L'ordre n'est que partiel (les langages C et PHP, par exemple, ne sont pas comparables).

d) La relation R n'étant pas symétrique, elle ne définit pas une relation d'équivalence.

- a) La relation S est formée de tous les couples $(h_1, h_2) \in H^2$ où h_1 et h_2 parlent au moins une même langue nationale suisse.
 - b) (1) S n'est pas réflexive en général car H peut contenir des personnes ne parlant aucune langue nationale suisse.
 - (2) S est toujours symétrique car si h_1 parle une même langue nationale suisse que h_2 , il en est de même dans l'autre sens : $(h_1, h_2) \in S \Rightarrow (h_2, h_1) \in S$.
 - (3) S n'est pas antisymétrique en général car dès que S contient un couple (h_1, h_2) avec $h_1 \neq h_2$ alors S contient aussi le couple (h_2, h_1) par symétrie est n'est donc pas antisymétrique.
 - (4) S n'est pas transitive en général car H peut contenir un personne h_1 parlant uniquement français, une personne h_2 parlant français et allemand et une personne h_3 ne parlant qu'allemand. On a alors $(h_1, h_2) \in S$ et $(h_2, h_3) \in S$ mais $(h_1, h_3) \notin S$.
- **2.44** a) i) La relation R est réflexive car

$$(a,b) R (a,b) \iff |a| + |b| = |a| + |b|$$

ce qui est toujours vrai.

ii) La relation R est symétrique car

$$(a,b) \ R \ (c,d) \iff |a|+|b|=|c|+|d| \iff |c|+|d|=|a|+|b| \iff (c,d) \ R \ (a,b).$$

- iii) La relation R n'est pas antisymétrique car (1,2) R (2,1) et (2,1) R (1,2) mais $(1,2) \neq (2,1).$
- iv) La relation R est transitive car

$$(a,b) R (c,d) \text{ et } (c,d) R (e,f)$$

$$\iff |a|+|b|=|c|+|d| \text{ et } |c|+|d|=|e|+|f|$$

$$\iff (a,b) R (e,f).$$

- b) La relation R n'étant pas antisymétrique, elle ne définit pas un ordre sur \mathbb{Z}^2 .
- c) La relation R étant réflexive, symétrique et transitive, elle définit une relation d'équivalence sur \mathbb{Z}^2 .
 - 1) La classe d'équivalence de (0,0) est

$$[(0,0)] = \{(a,b) \in \mathbb{Z}^2 \mid |a| + |b| = 0\} = \{(0,0)\}.$$

2) La classe d'équivalence de (1,1) est

$$[(1,1)] = \{(a,b) \in \mathbb{Z}^2 \mid |a| + |b| = 2\}$$

$$= \{(2,0), (0,2), (-2,0), (0,-2), (1,1), (-1,1), (1,-1), (-1,-1)\}.$$

3) La classe d'équivalence de (-2,1) est

$$[(-2,1)] = \{(a,b) \in \mathbb{Z}^2 \mid |a| + |b| = 3\}$$

= \{(3,0),(2,1),(2,-1),(1,2),(1,-2),(0,3),(0,-3),(-1,2),(-1,-2),(-2,1),(-2,-1),(-3,0)\}.

- **2.45** a) (1) R est réflexive car quel que soit $(x_1, y_1) \in \mathbb{Z}^2$ on a $|x_1 x_1| = |y_1 y_1| = 0$ ce qui montre que $(x_1, y_1) R(x_1, y_1)$.
 - (2) R est symétrique car quels que soient (x_1, y_1) et $(x_2, y_2) \in \mathbb{Z}^2$ on a $|x_1 x_2| = |x_2 x_1|$ et $|y_1 y_2| = |y_2 y_1|$ ainsi $|x_1 x_2| = |y_1 y_2| \iff |x_2 x_1| = |y_2 y_1|$ et $(x_1, y_1) R(x_2, y_2) \iff (x_2, y_2) R(x_1, y_1)$.
 - (3) R n'est pas antisymétrique car (1,0) R (0,1) et (0,1) R (1,0) mais (1,0) \neq (0,1).
 - (4) R n'est pas transitive car (1,0) R (0,1) et (0,1) R (-1,0) mais (1,0) R (-1,0).
 - b) La relation R ne définit pas un ordre car elle n'est ni antisymétrique ni transitive.
 - c) La relation R ne définit pas une relation d'équivalence car elle n'est pas transitive.
- 2.47 La relation R est uniquement réflexive. Elle ne définit donc ni un ordre ni une relation d'équivalence sur \mathbb{Z} .
- **2.48** a) (1) La relation R n'est pas réflexive car pour toute partie A non vide de E (il y en a quand même 1023) on a $(A, A) \notin R$. Par exemple $(E, E) \notin R$.
 - (2) La relation R est symétrique car l'intersection est une opération commutative :

$$(A, B) \in R \iff A \cap B = \emptyset \iff B \cap A = \emptyset \iff (B, A) \in R.$$

- (3) La relation R n'est pas antisymétrique. On a, par exemple, $(E,\varnothing) \in R$ et $(\varnothing,E) \in R$ mais $E \neq \varnothing$.
- (4) La relation R n'est pas transitive. Pour toute partie A non vide de E on a $(A, \emptyset) \in R$ et $(\emptyset, A) \in R$ mais $(A, A) \notin R$.
- b) La relation R^2 est la relation complète : $R^2 = \mathcal{P}(E)^2$ (il suffit de prendre l'ensemble vide comme « intermédiaire »).