

Mock Examination 02

Faculty Of Science & Engineering
Department Of Computing And Mathematics
MATHEMATICS UNDERGRADUATE NETWORK
Level 5

Mock examination 02 for

6G5Z0048 Number Theory and Abstract Algebra

**Duration: 3 hours** 

#### Instructions to students

- You need to answer **FIVE** questions. This must include **TWO** questions from Section A and **TWO** questions from Section B. Your fifth question can then come from any of the remaining questions.
- If you answer more than five questions then you will get the marks from your best five questions, subject to the sectioning requirements above.
- You must show all of your working and explain your reasoning carefully to gain full marks.
- Marks awarded for each question part are shown in square brackets aligned to the right-hand margin.

#### Permitted materials

· Students are permitted to use their own calculators without mobile communication facilities.

6G5Z0048 Mock examination 02 1 / 5

# **SECTION A – Number Theory questions**

- 1. (a) State precisely the definition of the divisibility relation  $a \mid b$  on the integers and use it to prove that the relation is transitive, i.e.
- [6]

$$(a|b \& b|c) \Rightarrow a|c.$$

- (b) Write down the definition of gcd(a,b). How is the value of gcd(a,b) characterised in tewrms of linear combinations of the two integers a and b?
- [5]
- (c) Use the Euclidean Algorithm to calculate qcd(136,36). Give brief explanations for the main steps of the algorithm and explain why the output produced is the gcd.
- [4]

(d) Use the principle of mathematical induction to prove that

$$\forall n \geq 1 \quad 8 \, | \left( 3^{2n} + 7 \right).$$

- 2. (a) Prove that there are infinitely many prime numbers (Euclid's theorem). State clearly any results [10] about divisibility that you make use of.
  - (b) What are the possible remainders r left when a prime p is divided by 8 as in [5]

$$p = 8q + r$$
,  $(0 \le r < 8)$ ?

Hence prove that the integer  $p^2 - 1$  is never a prime for any prime p > 2.

- (c) Prove that if  $2^n 1$  is prime then n is prime. (Hint: Prove the contra-positive).
- [5]

# **SECTION A – Number Theory questions**

- 3. (a) Carefully state the definition of the relation  $a \equiv b \pmod{n}$ . How does it relate to the remainders produced when a and b are divided by n?

(b) Suppose that  $ac \equiv bc \pmod m$  and that  $d = \gcd(c, m)$ . Prove that

$$a \equiv b \pmod{\frac{m}{d}}.$$

(c) What is the remainder left when  $2013^{2013}$  is divided by 10? In your solution you should exploit the properties of congruence to avoid as far as possible the direct evaluation of large integers.

[7]

4. (a) Consider the congruence

$$30x \equiv 18 \pmod{84}.$$

User relevant result(s) from the theory of congruences to find all the solutions.

(b) Use the Chinese Remainder Theorem to describe the integers x that satisfy all three of the following congruences simultaneously,

$$x \equiv 2 \pmod{5}$$

$$x \equiv 5 \pmod{11}$$

$$x \equiv 9 \pmod{13}$$
.

Your final answer should be in the form of a single congruence class for  $\boldsymbol{x}$  modulo an appropriate modulus.

(c) Use the Legendre symbol, the law of quadratic reciprocity and other relevant properties to show that there are no integer solutions to the congruence

$$x^2 \equiv 503 \pmod{631}.$$

(You can use the fact that 503 and 631 are both prime.)

**End of Section A** 

# **SECTION B – Abstract Algebra questions**

5. (a) Let G be a non-empty set and \* a binary operation on G, i.e.

[6]

$$\forall g_1, g_2 \in G \quad g_1 * g_2 \in G.$$

State the three extra conditions that the pair (G, \*) needs to satisfy in order to be called a *group* and explain their meaning. Illustrate each condition with an example drawn from the pair  $(\mathbb{Z}, +)$ .

(b) Explain why the pair  $(\mathbb{R}, \times)$ , consisting of the real numbers and the operation of multiplication does not form a group. What modification is needed to  $\mathbb{R}$  so that a group can be formed with the operation  $\times$ ?

[2]

(c) Which matrices are elements of the group  $GL(n,\mathbb{R})$ ? Prove that this is a group under the operation of matrix multiplication. Clearly state any properties of matrices that you use.

[7]

(d) Consider the set of  $3 \times 3$  upper-triangular matrices  $H \subset GL(n,\mathbb{R})$  given by

[5]

$$H = \left\{ \begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix} : x, y, z \in \mathbb{R} \right\}.$$

Prove that H forms a subgroup of  $GL(n, \mathbb{R})$ .

- 6. (a) Suppose that G is a group. State the definition of the terms *subgroup* of G and *order*, |g|, of an element of G. [5]
  - (b) Let  $C_n=\langle a\rangle$  denote the cyclic group of order n generated by an element a and written using multiplicative notation, so that

$$C_n = \{e, a, a^2, a^3, \dots, a^{n-1}\}.$$

- (i) Prove that every subgroup H of  $C_n$  is cyclic by proving that  $H = \langle a^k \rangle$ , where k is the smallest non-negative integer such that  $a^k \in H$ .
  - [6] [3]

(ii) Prove that  $a^m = e$  if and only if n|m, i.e. n divides m.

[3]

(iii) If  $b = a^r$  then prove that the order of b in  $C_n$  is n/d where  $d = \gcd(r, n)$ .

- [3]
- (iv) Illustrate these results by determining the elements of *all* the subgroups of the cyclic group,  $C_{20} = \langle a \rangle$ , the cyclic group of order 20.

- 7. (a) State Lagrange's theorem on the orders of subgroups of a finite group G. [2]
  - (b) Let H be a subgroup of a finite group G.
    - (i) State the definition of the *left* and *right cosets* of H in G. [2]
    - (ii) Let  $g_1, g_2 \in G$ . Prove that the left-cosets  $g_1H$  and  $g_2H$  are either equal or disjoint, i.e. [3]

$$g_1H = g_2H$$
 or  $g_1H \cap g_2H = \emptyset$ .

- (iii) Prove that all cosets of H in G contain the same number of elements. [3]
- (iv) Then show how parts (ii) and (iii) above can be used to prove Lagrange's theorem. [3]
- (c) Suppose that G is a group of prime order. Use Lagrange's theorem to prove that G is cyclic. [7]

8. (a) Define what is meant by a *normal subgroup* of a group *G*.

[2]

[3]

- (b) The dihedral group  $D_n$ , the group of symmetries of a regular polygon with n sides, is generated by two elements r, a rotation, and s, a reflection. These are subject to the relations  $r^n=e, s^2=e$  and  $sr=r^{-1}s$ . The 2n elements of  $D_n$  can be expressed in the standard form  $r^is^j$ , where  $0 \le i \le n-1$  and j=0,1.
  - (i) Prove that  $H = \{e, r^3\}$  is a normal subgroup of  $D_6$ .
  - (ii) What will be the order of the factor group  $D_6/H$ ? [1]
  - (iii) Determine the elements of each of the left-cosets of H in  $D_6$ . [4]
  - (iv) Assign suitable labels to the cosets and construct a Cayley table for the factor group  $D_6/H$ . [4]
  - (v) Use your Cayley table to explain why the factor group  $D_6/H$  is isomorphic to another dihedral group  $D_n$ . [4]
- (c) Suppose that H and K are normal subgroups of a group G and that  $H \cap K = \{e\}$ . By carefully considering the commutator  $hkh^{-1}k^{-1}$  prove that elements of H and K commute with one another, i.e.

$$\forall h \in H \ \forall k \in K \quad hk = kh.$$

End of Section B
End OF QUESTIONS