Learning Partial Lexicographic Preference Trees over Combinatorial Domains

Xudong Liu and Miroslaw Truszczynski

Department of Computer Science University of Kentucky Lexington, KY, USA

January 27, 2015

Liu and Truszczynski Learning PLP-trees AAAI-15, Austin 1 / 23

Motivation

Preferences over options are ubiquitous in real life.

- People have preferences over dinners offered in a restaurant.
- In political elections voters cast ballots over candidates.
- Oustomers rate their purchased items on websites such as Bestbuy.com and Amazon.com.

Figure: What do I like for dinner?

Motivation

- Preferences are qualitative.
- Oomains are combinatorial.
- Oan we model such preferences compactly?
- If so, can we learn a compact model efficiently?

Motivation

- What is the problem?
 - Qualitative preference modeling and learning over combinatorial domains.
- Why is it important?
 - Predict preferences between unseen options.
 - Support preference reasoning tasks, such as dominance testing, optimization and aggregation.

Contributions

- Propose partial lexicographic preference trees (PLP-trees):
 - lexicographic, compact, extending LP-trees¹

Liu and Truszczynski Learning PLP-trees AAAI-15, Austin

¹Booth et al., Learning Conditionally Lexicographic Preference Relations, 2010.

Contributions

Propose partial lexicographic preference trees (PLP-trees):

lexicographic, compact, extending LP-trees¹

Liu and Truszczynski Learning PLP-trees AAAI-15, Austin

¹Booth et al., Learning Conditionally Lexicographic Preference Relations, 2010.

Contributions

- Propose partial lexicographic preference trees (PLP-trees):
 - lexicographic, compact, extending LP-trees
- ② Show results on passive learning problems, where all training examples $(o_i \succ o_i' \text{ or } o_k \approx o_k')$ are provided upfront, in the setting of PLP-trees:
 - Conslearn, Smalllearn, Maxlearn

CONSLEARN UI-UP PLP-trees

- Let $\mathcal{I} = \{X_1, \ldots, X_p\}$ be a set of binary issues, and $CD(\mathcal{I})$ be the combinatorial domain $\prod_{1 \leq i \leq p} \mathcal{D}_i$, where $\mathcal{D}_i = \{0_i, 1_i\}$. Given an example set $\mathcal{E} = \{e_1, \ldots, e_m\}$, where e_i is of form either $\alpha_i \succ \beta_i$ or $\alpha_i \approx \beta_i$ for $\alpha_i, \beta_i \in CD(\mathcal{I})$, the ConsLearn problem is to learn a PLP-tree \mathcal{T} (of a particular type) consistent with \mathcal{E} .
- ② Denote by $\mathcal{E}^{\succ} = \{e_i \in \mathcal{E} : \alpha_i \succ \beta_i\}$ the set of *strict examples*, and $\mathcal{E}^{\approx} = \{e_i \in \mathcal{E} : \alpha_i \approx \beta_i\}$ the set of *equivalent examples*.
- **3** Denote by (X_i, x_i) a node label in a UI-UP PLP-tree, where X_i is an issue from \mathcal{I} and x_i is the preferred value, either 0_i or 1_i , in \mathcal{D}_i .

OURSIDE NEQ(\mathcal{E}, \mathcal{I}): set of issues in \mathcal{I} that incorrectly handle at least one equivalent example in \mathcal{E} , i.e.,

$$NEQ(\mathcal{E},\mathcal{I}) = \{X_i \in \mathcal{I} : \exists \alpha \approx \beta \in \mathcal{E}, \alpha(X_i) \neq \beta(X_i)\}.$$

5 $EQ(\mathcal{E}, \mathcal{I})$: set of issues in \mathcal{I} that do not order any of the strict examples in \mathcal{E} , i.e.,

$$EQ(\mathcal{E},\mathcal{I}) = \{X_i \in \mathcal{I} : \forall \alpha \succ \beta \in \mathcal{E}, \alpha(X_i) = \beta(X_i)\}.$$

• $AVI(\mathcal{E}, S)$: set of issues in S ($S \subseteq \mathcal{I} \setminus (NEQ(\mathcal{E}, \mathcal{I}) \cup EQ(\mathcal{E}, \mathcal{I}))$) available for selection as the next important issue, i.e.,

$$AVI(\mathcal{E}, S) = \{X_i \in S : \forall \alpha \succ \beta \in \mathcal{E}, \alpha(X_i) \ge \beta(X_i) \lor \\ \forall \alpha \succ \beta \in \mathcal{E}, \alpha(X_i) \le \beta(X_i) \}.$$

```
1. 1_11_21_30_40_5 \approx 1_11_21_31_40_5
2. 0_10_21_31_41_5 \approx 0_10_21_30_41_5
                                                       Input: A set \mathcal{E} of examples over \mathcal{I}
                                                       Output: A sequence T of pairs (X_{\ell}, x_{\ell}), or FAILURE if a
3. 1_10_20_30_41_5 > 0_11_20_31_41_5
                                                                      UI-UP tree does not exist
4. 1_11_20_31_40_5 > 1_11_21_30_40_5
                                                       S = \mathcal{I} \setminus (NEQ(\mathcal{E}, \mathcal{I}) \cup EQ(\mathcal{E}, \mathcal{I}));
5. 0_1 1_2 0_3 0_4 1_5 > 0_1 0_2 1_3 0_4 1_5
                                                        T \leftarrow \text{empty sequence};
6. 0_11_21_31_40_5 > 0_10_21_31_40_5
                                                       while \mathcal{E}^{\succ} \neq \emptyset do
                                                               Construct AVI(\mathcal{E}, S);
  NEQ = \{X_4\}, EQ = \{X_5\},
                                                              if AVI(\mathcal{E}, S) = \emptyset then
                                                                      return FAILURE;
         S = \{X_1, X_2, X_3\}
                                                              end
                                                               X_{\ell} \leftarrow \text{an element from } AVI(\mathcal{E}, \mathcal{S});
                                                               Construct (X_{\ell}, x_{\ell});
                                                               T \leftarrow T, (X_{\ell}, x_{\ell});
                                                              \mathcal{E} \leftarrow \mathcal{E} \setminus \{e \in \mathcal{E}^{\succ} : e \text{ is decided on } X_{\ell}\};
                                                              S \leftarrow S \setminus \{X_{\ell}\};
```

end return T:

```
\begin{aligned} &1. &1_1 1_2 1_3 0_4 0_5 \approx 1_1 1_2 1_3 1_4 0_5 \\ &2. &0_1 0_2 1_3 1_4 1_5 \approx 0_1 0_2 1_3 0_4 1_5 \\ &3. &1_1 0_2 0_3 0_4 1_5 \succ 0_1 1_2 0_3 1_4 1_5 \\ &4. &1_1 1_2 0_3 1_4 0_5 \succ 1_1 1_2 1_3 0_4 0_5 \\ &5. &0_1 1_2 0_3 0_4 1_5 \succ 0_1 0_2 1_3 0_4 1_5 \\ &6. &0_1 1_2 1_3 1_4 0_5 \succ 0_1 0_2 1_3 1_4 0_5 \end{aligned} 1st: &S = \{X_1, X_2, X_3\}, AVI = \{X_1, X_3\}, X_\ell = X_3
```

```
Input: A set \mathcal{E} of examples over \mathcal{I}
Output: A sequence T of pairs (X_{\ell}, x_{\ell}), or FAILURE if a
                UI-UP tree does not exist
S = \mathcal{I} \setminus (NEQ(\mathcal{E}, \mathcal{I}) \cup EQ(\mathcal{E}, \mathcal{I}));
T \leftarrow \text{empty sequence};
while \mathcal{E}^{\succ} \neq \emptyset do
        Construct AVI(\mathcal{E}, S);
        if AVI(\mathcal{E}, S) = \emptyset then
                return FAILURE:
        end
        X_{\ell} \leftarrow \text{an element from } AVI(\mathcal{E}, \mathcal{S});
        Construct (X_{\ell}, x_{\ell});
        T \leftarrow T, (X_{\ell}, x_{\ell});
       \mathcal{E} \leftarrow \mathcal{E} \setminus \{e \in \mathcal{E}^{\succ} : e \text{ is decided on } X_{\ell}\};
        S \leftarrow S \setminus \{X_{\ell}\};
end
return T:
```

```
\begin{aligned} &1. \ 1_1 1_2 1_3 0_4 0_5 \approx 1_1 1_2 1_3 1_4 0_5 \\ &2. \ 0_1 0_2 1_3 1_4 1_5 \approx 0_1 0_2 1_3 0_4 1_5 \\ &3. \ 1_1 0_2 0_3 0_4 1_5 \succ 0_1 1_2 0_3 1_4 1_5 \\ &4. \ 1_1 1_2 0_3 1_4 0_5 \succ 1_1 1_2 1_3 0_4 0_5 \\ &5. \ 0_1 1_2 0_3 0_4 1_5 \succ 0_1 0_2 1_3 0_4 1_5 \\ &6. \ 0_1 1_2 1_3 1_4 0_5 \succ 0_1 0_2 1_3 1_4 0_5 \end{aligned} 1st: \ S = \{X_1, X_2, X_3\}, AVI = \{X_1, X_3\}, X_{\ell} = X_3
```

```
Input: A set \mathcal{E} of examples over \mathcal{I}
Output: A sequence T of pairs (X_{\ell}, x_{\ell}), or FAILURE if a
                UI-UP tree does not exist
S = \mathcal{I} \setminus (NEQ(\mathcal{E}, \mathcal{I}) \cup EQ(\mathcal{E}, \mathcal{I}));
T \leftarrow \text{empty sequence};
while \mathcal{E}^{\succ} 
eq \emptyset do
        Construct AVI(\mathcal{E}, S);
        if AVI(\mathcal{E}, S) = \emptyset then
                return FAILURE:
        end
        X_{\ell} \leftarrow \text{an element from } AVI(\mathcal{E}, \mathcal{S});
        Construct (X_{\ell}, x_{\ell});
        T \leftarrow T, (X_{\ell}, x_{\ell});
       \mathcal{E} \leftarrow \mathcal{E} \setminus \{e \in \mathcal{E}^{\succ} : e \text{ is decided on } X_{\ell}\};
        S \leftarrow S \setminus \{X_{\ell}\};
end
return T:
```

```
3. 1_10_20_30_41_5 \succ 0_11_20_31_41_5

4. 1_11_20_31_40_5 \succ 1_11_21_30_40_5

5. 0_11_20_30_41_5 \succ 0_10_21_30_41_5

6. 0_11_21_31_40_5 \succ 0_10_21_31_40_5

1st: S = \{X_1, X_2, X_3\},

AVI = \{X_1, X_3\}, X_\ell = X_3

(X_3, 0_3)
```

1. $1_11_21_30_40_5 \approx 1_11_21_31_40_5$ 2. $0_10_21_31_41_5 \approx 0_10_21_30_41_5$

```
Input: A set \mathcal{E} of examples over \mathcal{I}
Output: A sequence T of pairs (X_{\ell}, x_{\ell}), or FAILURE if a
                UI-UP tree does not exist
S = \mathcal{I} \setminus (NEQ(\mathcal{E}, \mathcal{I}) \cup EQ(\mathcal{E}, \mathcal{I}));
T \leftarrow \text{empty sequence};
while \mathcal{E}^{\succ} \neq \emptyset do
        Construct AVI(\mathcal{E}, S);
        if AVI(\mathcal{E}, S) = \emptyset then
                return FAILURE:
        end
        X_{\ell} \leftarrow \text{an element from } AVI(\mathcal{E}, \mathcal{S});
        Construct (X_{\ell}, x_{\ell});
        T \leftarrow T, (X_{\ell}, x_{\ell});
       \mathcal{E} \leftarrow \mathcal{E} \setminus \{e \in \mathcal{E}^{\succ} : e \text{ is decided on } X_{\ell}\};
        S \leftarrow S \setminus \{X_{\ell}\};
end
return T:
```

```
\begin{array}{c} 1. \  \, 1_1 1_2 1_3 0_4 0_5 \approx 1_1 1_2 1_3 1_4 0_5 \\ 2. \  \, 0_1 0_2 1_3 1_4 1_5 \approx 0_1 0_2 1_3 0_4 1_5 \\ 3. \  \, 1_1 0_2 0_3 0_4 1_5 \succ 0_1 1_2 0_3 1_4 1_5 \\ 4. \  \, 1_1 1_2 0_3 1_4 0_5 \succ 1_1 1_2 1_3 0_4 0_5 \\ 5. \  \, 0_1 1_2 0_3 0_4 1_5 \succ 0_1 0_2 1_3 0_4 1_5 \\ 6. \  \, 0_1 1_2 1_3 1_4 0_5 \succ 0_1 0_2 1_3 1_4 0_5 \\ 1st: \  \, S = \{X_1, X_2, X_3\}, \\ AVI = \{X_1, X_3\}, X_\ell = X_3 \\ \left(X_3, 0_3\right) \end{array}
```

```
Input: A set \mathcal{E} of examples over \mathcal{I}
Output: A sequence T of pairs (X_{\ell}, x_{\ell}), or FAILURE if a
                UI-UP tree does not exist
S = \mathcal{I} \setminus (NEQ(\mathcal{E}, \mathcal{I}) \cup EQ(\mathcal{E}, \mathcal{I}));
T \leftarrow \text{empty sequence};
while \mathcal{E}^{\succ} 
eq \emptyset do
        Construct AVI(\mathcal{E}, \mathcal{S}):
        if AVI(\mathcal{E}, S) = \emptyset then
                return FAILURE:
        end
        X_{\ell} \leftarrow an element from AVI(\mathcal{E}, \mathcal{S});
        Construct (X_{\ell}, x_{\ell});
        T \leftarrow T, (X_{\ell}, x_{\ell});
       \mathcal{E} \leftarrow \mathcal{E} \setminus \{e \in \mathcal{E}^{\succ} : e \text{ is decided on } X_{\ell}\};
        S \leftarrow S \setminus \{X_{\ell}\}:
end
return T:
```

```
1. \ 1_1 1_2 1_3 0_4 0_5 \approx 1_1 1_2 1_3 1_4 0_5
2.0_10_21_31_41_5 \approx 0_10_21_20_41_5
3. 1_10_20_30_41_5 > 0_11_20_31_41_5
4. 1_11_20_31_40_5 > 1_11_21_30_40_5
5. \ 0_11_20_30_41_5 > 0_10_21_30_41_5
6. 0_11_21_31_40_5 > 0_10_21_31_40_5
     2nd: S = \{X_1, X_2\},\
    AVI = \{X_1\}, X_{\ell} = X_1
             (X_3, 0_3)
```

 $(X_1, 1_1)$

```
Input: A set \mathcal{E} of examples over \mathcal{I}
Output: A sequence T of pairs (X_{\ell}, x_{\ell}), or FAILURE if a
                UI-UP tree does not exist
S = \mathcal{I} \setminus (NEQ(\mathcal{E}, \mathcal{I}) \cup EQ(\mathcal{E}, \mathcal{I}));
 T \leftarrow \text{empty sequence};
while \mathcal{E}^{\succ} \neq \emptyset do
        Construct AVI(\mathcal{E}, S);
        if AVI(\mathcal{E}, S) = \emptyset then
                 return FAILURE:
        end
        X_{\ell} \leftarrow \text{an element from } AVI(\mathcal{E}, \mathcal{S});
        Construct (X_{\ell}, x_{\ell});
        T \leftarrow T, (X_{\ell}, x_{\ell});
        \mathcal{E} \leftarrow \mathcal{E} \setminus \{e \in \mathcal{E}^{\succ} : e \text{ is decided on } X_{\ell}\};
        S \leftarrow S \setminus \{X_{\ell}\};
end
return T:
```

```
1. \ 1_1 1_2 1_3 0_4 0_5 \approx 1_1 1_2 1_3 1_4 0_5
2.0_10_21_31_41_5 \approx 0_10_21_20_41_5
3. 1_10_20_30_41_5 > 0_11_20_31_41_5
4. 1_11_20_31_40_5 > 1_11_21_30_40_5
5. \ 0_11_20_30_41_5 > 0_10_21_30_41_5
6. 0_11_21_31_40_5 > 0_10_21_31_40_5
     2nd: S = \{X_1, X_2\},\
    AVI = \{X_1\}, X_{\ell} = X_1
             (X_3, 0_3)
```

```
Input: A set \mathcal{E} of examples over \mathcal{I}
Output: A sequence T of pairs (X_{\ell}, x_{\ell}), or FAILURE if a
                UI-UP tree does not exist
S = \mathcal{I} \setminus (NEQ(\mathcal{E}, \mathcal{I}) \cup EQ(\mathcal{E}, \mathcal{I}));
T \leftarrow \text{empty sequence};
while \mathcal{E}^{\succ} 
eq \emptyset do
        Construct AVI(\mathcal{E}, \mathcal{S}):
        if AVI(\mathcal{E}, S) = \emptyset then
                return FAILURE:
        end
        X_{\ell} \leftarrow an element from AVI(\mathcal{E}, \mathcal{S});
        Construct (X_{\ell}, x_{\ell});
        T \leftarrow T, (X_{\ell}, x_{\ell});
       \mathcal{E} \leftarrow \mathcal{E} \setminus \{e \in \mathcal{E}^{\succ} : e \text{ is decided on } X_{\ell}\};
        S \leftarrow S \setminus \{X_{\ell}\}:
end
return T;
```

 $(X_1, 1_1)$

```
1. \ 1_1 1_2 1_3 0_4 0_5 \approx 1_1 1_2 1_3 1_4 0_5
2.0_10_21_31_41_5 \approx 0_10_21_20_41_5
3. 1_10_20_30_41_5 > 0_11_20_31_41_5
4. 1_11_20_31_40_5 > 1_11_21_30_40_5
5. \ 0_11_20_30_41_5 > 0_10_21_30_41_5
6. 0_11_21_31_40_5 > 0_10_21_31_40_5
        3rd: S = \{X_2\},
    AVI = \{X_2\}, X_{\ell} = X_2
             (X_3, 0_3)
```

$$(X_1, 1_1)$$
 $(X_2, 1_2)$

```
Input: A set \mathcal{E} of examples over \mathcal{I}
Output: A sequence T of pairs (X_{\ell}, x_{\ell}), or FAILURE if a
                UI-UP tree does not exist
S = \mathcal{I} \setminus (NEQ(\mathcal{E}, \mathcal{I}) \cup EQ(\mathcal{E}, \mathcal{I}));
 T \leftarrow \text{empty sequence};
while \mathcal{E}^{\succ} \neq \emptyset do
        Construct AVI(\mathcal{E}, S);
        if AVI(\mathcal{E}, S) = \emptyset then
                 return FAILURE;
        end
        X_{\ell} \leftarrow \text{an element from } AVI(\mathcal{E}, \mathcal{S});
        Construct (X_{\ell}, x_{\ell});
        T \leftarrow T, (X_{\ell}, x_{\ell});
        \mathcal{E} \leftarrow \mathcal{E} \setminus \{e \in \mathcal{E}^{\succ} : e \text{ is decided on } X_{\ell}\};
        S \leftarrow S \setminus \{X_{\ell}\};
end
return T:
```

```
1. \ 1_1 1_2 1_3 0_4 0_5 \approx 1_1 1_2 1_3 1_4 0_5
2.0_10_21_31_41_5 \approx 0_10_21_30_41_5
3. 1_10_20_30_41_5 > 0_11_20_31_41_5
4. 1_11_20_31_40_5 > 1_11_21_30_40_5
5. \ 0_11_20_30_41_5 > 0_10_21_30_41_5
6. \ 0_1 1_2 1_3 1_4 0_5 > 0_1 0_2 1_3 1_4 0_5
         3rd: S = \{X_2\},
    AVI = \{X_2\}, X_{\ell} = X_2
             (X_3, 0_3)
             (X_1, 1_1)
```

```
Input: A set \mathcal{E} of examples over \mathcal{I}
Output: A sequence T of pairs (X_{\ell}, x_{\ell}), or FAILURE if a
                UI-UP tree does not exist
S = \mathcal{I} \setminus (NEQ(\mathcal{E}, \mathcal{I}) \cup EQ(\mathcal{E}, \mathcal{I}));
T \leftarrow \text{empty sequence};
while \mathcal{E}^{\succ} \neq \emptyset do
        Construct AVI(\mathcal{E}, S);
        if AVI(\mathcal{E}, S) = \emptyset then
                return FAILURE:
        end
        X_{\ell} \leftarrow \text{an element from } AVI(\mathcal{E}, \mathcal{S});
        Construct (X_{\ell}, x_{\ell});
        T \leftarrow T, (X_{\ell}, x_{\ell});
       \mathcal{E} \leftarrow \mathcal{E} \setminus \{e \in \mathcal{E}^{\succ} : e \text{ is decided on } X_{\ell}\};
        S \leftarrow S \setminus \{X_{\ell}\};
end
return T:
```

 $(X_2, 1_2)$ $S = \emptyset$

$$\begin{array}{c}
C = V, \\
Done! \\
(X_3, 0_3) \\
\downarrow \\
(X_1, 1_1) \\
\downarrow \\
(X_2, 1_2)
\end{array}$$

```
Input: A set \mathcal{E} of examples over \mathcal{I}
Output: A sequence T of pairs (X_{\ell}, x_{\ell}), or FAILURE if a
                UI-UP tree does not exist
S = \mathcal{I} \setminus (NEQ(\mathcal{E}, \mathcal{I}) \cup EQ(\mathcal{E}, \mathcal{I}));
T \leftarrow \text{empty sequence};
while \mathcal{E}^{\succ} \neq \emptyset do
        Construct AVI(\mathcal{E}, S);
        if AVI(\mathcal{E}, S) = \emptyset then
                return FAILURE:
        end
        X_{\ell} \leftarrow \text{an element from } AVI(\mathcal{E}, \mathcal{S});
        Construct (X_{\ell}, x_{\ell});
        T \leftarrow T, (X_{\ell}, x_{\ell});
       \mathcal{E} \leftarrow \mathcal{E} \setminus \{e \in \mathcal{E}^{\succ} : e \text{ is decided on } X_{\ell}\};
        S \leftarrow S \setminus \{X_{\ell}\};
end
return T;
```

Results

	FP	UP	СР
UI	Р	Р	NP
CI	Р	NPC ²	Р

	FP	UP	CP
UI	NPC	NPC	NPC
CI	NPC	NPC	NPC

(a) Conslearn

(b) SMALLLEARN

	FP	UP	CP
UI	NPC ³	NPC	NPC
CI	NPC	NPC	NPC

(c) MaxLearn

Figure: Complexity results for passive learning problems

 3 Schmitt and Martignon, *On the Complexity of Learning Lexicographic Strategies*, 2006. 99.6

²Booth et al., Learning Conditionally Lexicographic Preference Relations, 2010.

Ongoing and Future Research

- Settle the complexity for the CONSLEARN problem for UI-CP.
- Implement algorithms handling issues of multi-valued domains.
- Compare PLP-tree empirically⁴ with other models.

Liu and Truszczynski Learning PLP-trees AAAI-15, Austin 21 / 23

 $^{^4}$ Available datasets: UCI machine learning repository, preference-learning.org, and PrefLib $_{\sim}$ $_{\sim}$ $_{\sim}$

Q&A

Thank you!

Related Work: Qual. Pref. Models

- Graphical models: ceteris paribus⁵ models (CP-nets⁶, TCP-nets⁷), lexicographic models (lexicographic strategies⁸, LP-trees⁹, CLP-trees¹⁰).
- Non-graphical models: ASO-theories¹¹, Possibilistic logic¹², CP-theories¹³.

13 Wilson, Extending CP-Nets with Stronger Conditional Preference Statements, 2004.
Liu and Truszczynski Learning PLP-trees AAAI-15, Austin

23 / 23

⁵Latin, it means "everything else being equal."

⁶Boutilier et al., *CP-nets: A Tool for Representing and Reasoning with Conditional Ceteris Paribus Preference Statements*, 2004.

⁷ Brafman and Domshlak, *Introducing Variable Importance Tradeoffs into CP-nets*, 2002.

⁸Schmitt and Martignon, *On the Complexity of Learning Lexicographic Strategies*, 2006.

⁹Booth et al., Learning Conditionally Lexicographic Preference Relations, 2010.

¹⁰Bräuning and Eyke, Learning Conditional Lexicographic Preference Trees, 2012

¹¹Brewka, Niemelä and Truszczynski, *Answer Set Optimization*, 2003.

¹²Dubois, Lang and Prade, A brief overview of possibilistic logic, 1991.