Predicting Dynamic Embedding Trajectory in Temporal Interaction Networks

Srijan Kumar, Xikun Zhang, Jure Leskovec

組員:

M11015072 王樸 M11015084 魏向晨 M11015094 李彥霖 M11015109 李冠霆 B10701015 黃鈺淇 B10715012 梁俊彥

Outline

- 1. Introduction
- 2. Related Work
- 3. JODIE: Joint Dynamic User-Item Embedding Model
- 4. Experiments
- 5. Conclusion

Introduction

- Users interact sequentially with items in many domains.
 - e-commerce (e.g., a customer purchasing an item)
 - education (a student enrolling in a MOOC course)
 - social and collaborative platforms (a user posting in a group in Reddit)
- The same user may interact with different items over a period of time and these interactions change over time.

Introduction

- Representation learning
 - Representation learning, or learning low-dimensional embeddings of entities
 - represent the evolution of users' and items' properties.
- Four fundamental challenges:
 - How to accurately predict the embedding trajectories of users/items as time progresses.
 - It is essential to consider stationary properties that do not change over time and time evolving properties.
 - Methods are required that can recommend items in near-constant time.
 - Methods are needed that can be trained with batches of data to generate embedding trajectories.

Introduction

JODIE: Joint Dynamic User-Item Embedding Model

- Learns to generate embedding trajectories of all users and items from temporal interactions.
- The embeddings of the user and item are updated when a user takes an action and a projection operator predicts the future embedding trajectory of the user.

Related Work

- Deep recurrent recommender models
 - Recent methods, such as Time-LSTM and LatentCross learn how to incorporate features into the embeddings
- Dynamic co-evolution models
 - Methods that jointly learn representations of users and items have recently been developed using point-process modeling and RNN-based modeling, such as DeepCoevolve
- Temporal network embedding models
 - Several models have recently been developed that generate embeddings for the nodes (users and items) in temporal networks, such as CTDNE

JODIE: Joint Dynamic User-Item Embedding Model

- A method to learn embedding trajectories of users and items from an ordered sequence of temporal user-item interactions S = (u, i, t, f)
- Type of Embeddings
 - Static Embeddings: Used to express stationary properties such as the long-term interest of users
 - Dynamic Embeddings: Embeddings change over time to model their time-varying behavior and properties

Embedding update operation

 Dynamic embedding of an item reflects the item's current state and leading to more meaningful dynamic user embeddings and easier training

$$u(t) = \sigma(W_1^u u(t^-) + W_2^u i(t^-) + W_3^u f + W_4^u \Delta_u)$$

$$i(t) = \sigma(W_1^i i(t^-) + W_2^i u(t^-) + W_3^i f + W_4^i \Delta_u)$$

$$\text{non-linearity sigmoid function}$$

time since previous interaction

Symbol	Meaning			
u(t) and $i(t)$	Dynamic embedding of user u and item i at time t			
$u(t^-)$ and $i(t^-)$	Dynamic embedding of user u and item i before time t			
\overline{u} and \overline{i}	Static embedding of user <i>u</i> and item <i>i</i>			
$\widehat{u}(t)$	Projected embedding of user u at time t			
$\widetilde{j}(t)$	Predicted item j embedding			

Embedding projection operation

- Predicts the future embedding trajectory of the user by projecting the embedding of the user at a future time
- Two inputs are required for the projection operation: u's embedding at time t and the elapsed time Δ
- Projected Embedding :

$$\widehat{u}(t + \Delta) = (1 + w) * u(t)$$
time-context vector

Training to predict next item embedding

- Training JODIE to make the prediction of item which user will interact with using user's projected embedding
- JODIE directly outputs an item embedding vector instead of an interaction probability between user and item

$$\tilde{j}(t + \Delta) = W_1 \hat{u}(t + \Delta) + W_2 \bar{u} + W_3 i(t + \Delta^-) + W_4 \bar{i} + B$$
 bias vector

 JODIE is trained to minimize the L2 distance between the predicted item embedding and the ground truth item's embedding at every interaction

$$Loss = \sum_{(u,j,t,f) \in S} ||\tilde{j}(t) - [\bar{j},j(t^{-})]||_{2} + \lambda_{U}||u(t) - u(t^{-})||_{2} + \lambda_{I}||j(t) - j(t^{-})||_{2}$$

t-Batch: Training data batching

- Parallelizing the training of JODIE by using a training data batching algorithm
- Two requirements for creating the training batches
 - All interactions in each batch should be processed in parallel
 - Processing the batches in increasing order of their index should maintain the temporal ordering of the interactions
- t-Batch creates each batch by selecting independent edge sets of the interaction network in two steps:
 - Select step: a new batch is created by selecting the maximal edge set
 - Reduce step: the selected edges are removed from the network

- Future interaction prediction
 - mean reciprocal rank (MRR) and recall@10
- User state change prediction
 - area under the curve metric (AUC)
- Runtime experiment
- Robustness to the proportion of training data
- Embedding size

Datasets

- Reddit
- Wikipedia
- LastFM
- MOOC course activity

Data	Users	Items	Interactions	State	Action
				Changes	Repetition
Reddit	10,000	984	672,447	366	79%
Wikipedia	8,227	1,000	157,474	217	61%
LastFM	980	1,000	1,293,103	-	8.6%
MOOC	7,047	97	411,749	4,066	-

Baselines

- Deep recurrent recommender models
 - RRN, LatentCross, Time-LSTM, standard LSTM
- Dynamic co-evolution models
 - DeepCoevolve
- Temporal network embedding models
 - CTDNE

Future interaction prediction

Which item will user *u* interact with at time *t*?

- Using Interaction Data:
 - o 80% train
 - 10% validation
 - 10% test

Measurement:

- MRR
- Recall@10

Method	Reddit		Wikipedia		LastFM		Minimum % improvement of JODIE over method	
	MRR	Recall@10	MRR	Recall@10	MRR	Recall@10	MRR	Recall@10
LSTM [52]	0.355	0.551	0.329	0.455	0.062	0.119	104.5%	54.6%
Time-LSTM [52]	0.387	0.573	0.247	0.342	0.068	0.137	87.6%	48.7%
RRN [45]	0.603	0.747	0.522	0.617	0.089	0.182	20.4%	14.1%
LatentCross [8]	0.421	0.588	0.424	0.481	0.148	0.227	31.8%	35.2%
CTDNE [33]	0.165	0.257	0.035	0.056	0.01	0.01	340.0%	231.5%
DeepCoevolve [11]	0.171	0.275	0.515	0.563	0.019	0.039	44.8%	46.0%
JODIE (proposed)	0.726	0.852	0.746	0.822	0.195	0.307		

User state change prediction

To predict if an interaction will lead to a state change in user.

- Using Interaction Data:
 - o 60% train
 - 20% validation
 - 20% test

- Measurement:
 - AUC
- Baseline:
 - Logistic regression classifier

Method	Reddit	Wikipedia	MOOC	Mean improvement
				of JODIE
LSTM	0.523	0.575	0.686	23.08%
Time-LSTM	0.556	0.671	0.711	12.63%
RRN	0.586	0.804	0.558	13.69%
LatentCross	0.574	0.628	0.686	15.62%
DeepCoevolve	0.577	0.663	0.671	13.94%
JODIE	0.599	0.831	0.756	-

Runtime experiment

Robustness to the proportion of training data

- Future interaction prediction
 - Mean reciprocal rank

Robustness to the proportion of training data

- User state change prediction
 - Average AUC metrics

Embedding size

- Dynamic embedding dimension
 - From 32 to 256

 JODIE uses both the static and the dynamic embedding for prediction

Conclusion

- JODIE gives better prediction performance of future user-item interactions and change in user state.
- Future Works:
 - Learn trajectories for groups of users or items to reduce the number of parameters
 - Characterizing the trajectories to cluster similar entities
 - Design new items based on missing predicted items that many users are likely to interact with

實作報告

目錄

- 與論文結果比較及分析
- 我們的改動
- 改動結果比較及分析

與論文結果比較及分析

interaction

Validation

Test

user state

Validation

Test

我們的改動

改動一:將RNNCELL改GRUCELL

- GRU比RNN記得更久之前的資訊
- 可以解決梯度消失問題

```
self.item_rnn = nn.RNNCell(rnn_input_size_users, self.embedding_dim)
self.user_rnn = nn.RNNCell(rnn_input_size_items, self.embedding_dim)

self.item_gru = nn.GRUCell(gru_input_size_users, self.embedding_dim)
self.user_gru = nn.GRUCell(gru_input_size_items, self.embedding_dim)
```

改動二:卷積層取代全連接層

Fully connected layer

Or, we can concatenate the inputs into 1x1 images with 4 channels and then use 2 kernels (remember, each kernel then also has 4 channels)

```
self.linear_layer1 = nn.Linear(self.embedding_dim, 50)
self.linear_layer2 = nn.Linear(50, 2)
self.prediction_layer = nn.Linear(self.user_static_embedding_size + self.item_static_embedding_size + self.embedding_dim * 2, self.item_static_embedding_size + self.embedding_dim)
```


改動結果比較及分析

interaction(validation)

interaction(test)

user state(validation)

user state(test)

Q & A