

Sommaire

- 1. Cahier des charges
- 2. Un peu de culture (fonctionnement d'une bobine tesla)
- 3. Etude du dimensionnement de la bobine
- 4. Réalisation de la bobine
- 5. Dimensionnements de la partie électronique
- 6. Réalisation de la partie électronique
- 7. Remerciements

1. Premier brainstorming

Diagramme de cas d'utilisation

Diagramme d'exigences globale

Diagramme de block (bdd)

Diagramme de Gantt

2. Un peu de culture : fonctionnement d'une bobine Tesla

Cad que la fréquence du courant primaire est de sorte que la tension induite aux bornes de la bobine secondaire est maximale.

Réglage de l'appareil :

Obtenir la résonance entre la fréquence du circuit primaire et celle du circuit secondaire

Paramètres qui peuvent être ajustés :

- Inductance de la bobine primaire: nb de spire/forme physique de celle-ci.
- Capacité de la bobine primaire : ajout d'un condensateur en parallèle et modification de la capacité C.
- Fréquence du courant d'alimentation (fournit à la bobine primaire)

3. Etude de dimensionnement de la bobine

3. Etude de dimensionnement

Recyclage d'un ancien projet

Transformateur 230V/9000V, Imax=100mA,50HZ

15 condensateurs de 0.68 uF

Une Bobine primaire+secondaire

Vérifications des dimensions

Capacité théorique

Capacit	tor size; C	= 2 J/Vc^2	(joules from	m (5) abov	e) (approx	0,035827	uF =	35,83	nF

Capacité en stock : 15 condensateurs de 0.68 uF

$$\begin{array}{c|cccc}
C_1 & C_2 & C_n \\
\hline
 & & & \\
\hline
 & & & \\
\hline
 & & & \\
\hline
 & & \\
\hline$$

On trouve facilement que notre C = 0.0454 uF (C1=C2=..=C15)

5. Dimensionnements de la partie électronique

6. RÉALISATION DE LA PARTIE ELECTRONIQUE

