Discrete Structures and Theory of Logic Lecture-28

Dr. Dharmendra Kumar (Associate Professor) United College of Engineering and Research, Prayagraj October 2, 2023

Exercise

1. Show the validity of the following arguments, for which the premises are given on the left and the conclusion on the right.

(b)
$$(A \rightarrow B) \land (A \rightarrow C)$$
, $\neg (B \land C)$, $D \lor A$ C: D

(c)
$$\neg J \rightarrow (M \lor N)$$
, $(H \lor G) \rightarrow \neg J$, $H \lor G$ C: $M \lor N$

(d)
$$(P \rightarrow Q)$$
, $(\neg Q \lor R) \land \neg R$, $\neg (\neg P \land S)$

2. Derive the following using rule CP if necessary.

(a)
$$\neg P \lor Q$$
, $\neg Q \lor R$, $R \to S \Rightarrow P \to S$

(b)
$$P, P \rightarrow (Q \rightarrow (R \land S)), \Rightarrow Q \rightarrow S$$

(c)
$$(P \lor Q) \to R \Rightarrow (P \land Q) \to R$$

(d)
$$P \rightarrow (Q \rightarrow R)$$
, $Q \rightarrow (R \rightarrow S) \Rightarrow P \rightarrow (Q \rightarrow S)$

- 3. Show that the following sets of premises are inconsistent.
- (a) $P \rightarrow Q$, $P \rightarrow R$, $Q \rightarrow \neg R$, P
- (b) $A \rightarrow (B \rightarrow C)$, $D \rightarrow (B \land \neg C)$, $A \land D$

4. Show the following (use indirect method if needed).

(a)
$$R \rightarrow \neg Q$$
, $R \lor S$, $S \rightarrow \neg Q$, $P \rightarrow Q \Rightarrow \neg P$

(b)
$$S \rightarrow \neg Q$$
, $R \lor S$, $\neg R$, $\neg R \leftrightarrow Q \Rightarrow \neg P$

(c)
$$\neg (P \rightarrow Q) \rightarrow \neg (R \lor S)$$
, $((Q \rightarrow P) \lor \neg R)$, $R \Rightarrow P \leftrightarrow Q$

Predicate Calculus

Predicate

Consider the statements.

John is a bachelor.

Smith is a bachelor.

The part "is a bachelor" is called a predicate.

Now, we denote the predicate as following:- B: is a bachelor.

Therefore the statement in predicate form will be:-

B(John), B(Smith).

Example: Write the following statements in predicate form.

- (a) Jack is taller than Jill.
- (b) Canada is to the north of the United States.

Solution:

(a) Let P: is taller than

Therefore, statement in predicate form will be

P(Jack, Jill)

(b)Let Q: is to the north of the

Therefore, statement in predicate form will be

Q(Canada, United States)

The statement function, variables and quantifiers

A simple statement function of one variable is defined to be an expression consisting of a predicate symbol and an individual variable. Such a statement function becomes a statement when the variable is replaced by the name of any object.

Let M(x) : x is a man.

H(x): x is a mortal.

The compound statement functions are

$$M(x) \wedge H(x)$$
, $M(x) \rightarrow H(x)$, $\neg H(x)$, $M(x) \vee \neg H(x)$ etc.

Example: Consider the following statements

- (a) All men are mortal.
- (b) Every apple is red.
- (c) Any integer is either positive or negative.

Write these statements in predicate form.

Solution:

(a) Let M(x) : x is a man.

H(x): x is a mortal.

Therefore, the predicate form of the statement will be

$$(\forall x)(M(x)\to H(x))$$

(b) Let A(x) : x is an apple.

R(x): x is a red.

Therefore, the predicate form of the statement will be $(\forall x)(A(x) \rightarrow R(x))$

(c) Let I(x): x is an integer.

P(x): x is either positive or negative integer.

Therefore, the predicate form of the statement will be

$$(\forall x)(I(x) \to P(x))$$

The symbol $(\forall x)$ or (x) is said to be universal quantifier. It is used in the statement which contains for all, every and for any.

Example: Find the predicate form of the following statement.

For any x and y, if x is taller than y, then y is not taller than x.

Solution:

$$(\forall x)(\forall y)(G(x,y) \rightarrow \neg G(y,x))$$

Example: Consider the following statements

- (a)There exists a man.
- (b)Some men are clever.
- (c) Some real numbers are rational.

Write these statements in predicate form.

Solution:

Let M(x): x is a man.

C(x): x is clever.

R(x): x is real number.

Q(x): x is rational number.

- (a) $(\exists x)M(x)$
- (b) $(\exists x)(M(x) \land C(x))$
- (c) $(\exists x)(R(x) \land Q(x))$

The symbol $(\exists x)$ is said to be existential quantifier. It is used in the statement which contains some or there exists.