This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representation of The original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representation of The original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51)	International Patent Classification: G02F 1/1335, G02B 5/30	A1	1` ′	ational Publication Number: ational Publication Date:	WO 00/39631 06 July 2000 (06.07.2000)
(21) (22)	International Application Number: International Filing Date: 14 December		7/IB99/01995 (14.12.1999)	Published	
(30)	Priority Data: 9828690.9 24 December1998 (24.1	2.199	8) GB		
(60)	Parent Application or Grant ROLIC AG [/]; (). SCHMITT, Klaus [/]; (). Hubert [/]; (). SCHADT, Martin [/]; (). SCHADT, M. (). NEVILLE, Hubert [/]; (). SCHADT, M. (). NEVILLE, Peter, Warwick; ().	MIT:	Γ, Klaus [/];		

(54) Title: LIQUID CRYSTAL DISPLAY WITH IMPROVED VIEWING ANGLE

(54) Titre: AFFICHAGE A CRISTAUX LIQUIDES A ANGLE D'OBSERVATION AMELIORE

(57) Abstract

To improve the viewing angle of a liquid crystal display, it is provided with a compensating layer consisting of a cross-linked cholesteric liquid polymer layer with a very short helix pitch and the helix axis normal to the layer. The layer has negative uniaxial optical anisotropy.

(57) Abrégé

Afin d'améliorer l'angle d'observation d'un affichage à cristaux liquides, on prévoit une couche de compensation consistant en un couche de polymère liquide cholestérique réticulé possédant un pas d'hélice très petit, l'axe de l'hélice étant parallèle à la couche. Ladite couche possède une anisotropie optique monoaxiale négative.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION international Bureau

7		
(51) International Patent Classification 7:		(11) International Publication Number: WO 00/3963
G02F 1/1335, G02B 5/30	A1	(43) International Publication Date: 6 July 2000 (06.07.0
(21) International Application Number: PCT/II (22) International Filing Date: 14 December 1999 (30) Priority Data: 9828690.9 24 December 1998 (24.12.) (71) Applicant (for all designated States except US): R [CH/CH]; Innere Gütterstrasse, CH-6301 Zug (C	98) G	BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, E ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, I KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, R SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, U US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, K LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (Al AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (Al BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, L MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CI
(72) Inventors; and (75) Inventors/Applicants (for US only): SCHMII [DE/DE]; Gartenstrasse 16B, D-79541 Lorra SEIBERLE, Hubert [DE/DE]; Bodenstrasse 1, Weil am Rhein (DE), SCHADT, Martin [CH estalerstrasse 77, CH-4411 Seltisberg (CH).	D-795). Published 6 With international search report.
(74) Agent: NEVILLE, Peter, Warwick; BTG Internations 10 Fleet Place, Limeburner Lane, London EC4M		
(54) Title: LIQUID CRYSTAL DISPLAY WITH IMPR	OVED	TEWING ANGLE
(57) Abstract		
	display, tch and t	it is provided with a compensating layer consisting of a cross-lini
		ne nelix axis normal to the layer. The layer has negative uniaxial opti
ausouopj.		ne nelix axis normal to the layer. The layer has negative unlaxual opti
ausouvy.		ne helix axis normal to the layer. The layer has negative unlaxial opti
швочору.		ie nelix axis normal to the layer. I ne layer has negative uniaxial opti
шиоскору		ne nelix axis normal to the layer. I ne layer has negative unlaxial opti
швоцору.		ne nelix axis normal to the layer. I ne layer has negative unlaxial opti
шиоскору.		ie neiix axis normai to the layer. I ne layer nas negative uniaxial opti
шиоскору.		ne neitx axis normal to the layer. I ne layer has negative uniaxial opti
шиоскору		ne neitx axis normal to the layer. I ne layer has negative uniaxial opti
шиоптору		ie neiix axis normai to the layer. Ine layer has negative uniaxial opti
·		ie neiix axis normai to the layer. I ne layer nas negative uniaxiai opu
ашэон ору.		ie neiix axis normai to the layer. I ne layer has negative uniaxiai opu
ашоси ору.		ie neiix axis normai to the layer. Inc layer has negative uniaxiai opu
ашэон ору		ie neiix axis normai to the layer. Ine layer has negative uniaxiai opu

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Alhania	E8	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvin	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Berbedos	GH	Ghana	MG	Madagascar	TJ	Tujikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Paso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Beain	IE	Iroland	MN	Mongolia	UA	Ukraine
BR	Brazil	īL	Israel	MR	Mauritania	UG	Uganda
BY	Belanus	18	Iceland	MW	Malawi	US	United States of America
CA	Canada	п	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuha	ΚZ	Kazakstan	RO	Romania		
CZ	Czech Republic	ic	Saint Lucia	RU	Russian Federation		
DE	Germany	ш	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SB	Sweden		
EB.	Estonia	LR	Liberia	SG	Singapore		

Description

THIS PAGE BLANK (USPTO)

5

LIQUID CRYSTAL DISPLAY WITH IMPROVED VIEWING ANGLE

10

15

This invention relates to a liquid crystal display, and in particular to a compensator for improving the viewing angle of the display.

5

10

Liquid crystal displays (LCDs) usually show a distinctive viewing angle dependency of the contrast. Particularly affected are configurations where the dark state is realised by the liquid crystal director being perpendicular to the cell plane. This is the case for instance with vertically aligned nematic (VAN) cells, hybrid aligned nematic (HAN) cells, and normally white twisted nematic (TN) cells. The contrast of these cell types is very high in case of perpendicular incidence of light, and is reduced with increasing viewing angle (considering a perpendicular view to represent "viewing angle" of zero). For large viewing angles the contrast can even be inverted. Switched states of the LCD where the liquid crystal director is tilted with respect of the cell normal have

The undesirable viewing angle dependency can be reduced by disposing in the cell a

compensator with a layer having a negative uniaxial optical anisotropy. In the case of the VAN cell, the optical anisotropy of the non-driven state is such that the refractive

index n_x , n_y in the cell plane is smaller than the refractive index n_z in the direction perpendicular to the plane, i.e. $n_z > n_x = n_y$, and can thus be compensated by a second

birefringent layer but with negative optical anisotropy, i.e. with $n_z < n_x = n_y$. In the same way, the driven state of a HAN cell or of a normally white TN cell can be

25

20

15 an asymmetrical viewing angle dependency.

compensated.

30

35

40

25

30

20

The invention is about such a compensator.

45

According to the present invention, there is provided a compensator comprising a layer of a cholesteric liquid crystal polymer (LCP) having a helix axis normal, or generally or essentially or substantially normal, to the plane of the layer and having a

5		•
10		helix pitch sufficiently short that the selective reflection range is of shorter wavelength than visible light. A suitable pitch would therefore be less than 300nm, preferably less than 200nm, such as less than 150nm.
15	5	Alternatively reckoned, a suitable pitch can be less than 350nm/ \bar{n} where \bar{n} is the mean refractive index of the polymer.
		Preferably, the cholesteric liquid crystal is applied and polymerised in situ. for example cross-linked.
20	10	Advantageously, the optical anisotropy An of the liquid crystal polymer exceeds 0.25, as a high optical anisotropy enables thinner compensating layers.
25	15	Preferably, the layer has a cholesteric arrangement over at least part of its area.
30		The polymer layer may be photo-oriented, conveniently adopting the orientation of an underlying linearly photopolymerised layer.
35	20	The invention extends to a liquid crystal display (LCD) device comprising a compensator as set forth above, which compensator preferably extends to the whole viewing area of the device.
40	0.7	The LCD device may, in either its white or dark state, have the director of its switching liquid crystal material aligned essentially normal to the compensator.
-	25	The liquid crystal cell of the LCD device may be vertically aligned nematic, hybrid aligned nematic or twisted nematic (VAN, HAN or TN), being liquid crystal classes
45		already indicated as affected by a viewing angle dependency capable of some compensation.

-2-

50

30

A typical compensator according to the invention may thus consist of a cross-linked cholesteric liquid crystal polymer layer having a helix axis that is parallel to the cell normal (perpendicular to the cell plane) and having a helix pitch that is so small that the visible light ($\lambda > 400$ nm) lies on the long-wavelength side of the selective reflection range ($\lambda_0 < 350$ nm) where λ_0 is the centre wavelength of the selective reflection band. With these conditions of the cholesteric arrangement, light passing through vertically experiences the mean refractive index $\overline{n} = (n_0 + n_c)/2$ of the cholesteric layer. The optical axis is normal to the layer and has the refractive index n_0 , whereas the effective refractive index in the plane is $(n_0 + n_e)/2 > n_0$ and therefore, the cholesteric layer is a negative uniaxial layer for visible light. n_e and n_0 are the respective local extraordinary and ordinary refractive indices of the cholesteric layer.

By choosing a suitable thickness for the compensating layer in relation to the liquid crystal device in which it is to be incorporated, the anisotropy of the positive uniaxial liquid crystal cell will be compensated.

For the manufacturing of the LCPs used, preferably monomers or prepolymers in solution are applied on an orientation layer. The viscosity is preferably arranged to be so low that the orientation takes place-within a short period of time. The cholesteric arrangement can be induced by a chiral dopant having a high helical twisting power (HTP), whereby pitches of less than 250 nm may be reached easily. An ensuing curing or cross-linking of the layer can make it mechanically robust and its optical properties thermally stable. To compensate a typical VAN cell, where the optical retardation $\Delta n^*d = 250..500$ nm (optical anisotropy Δn , cell thickness d), due to the large anisotropy of the LCP material, a layer thickness of a few micrometers is sufficient.

- 3 -

To orient the cholesteric LCP, in principle any of the known orientation layer techniques may be used. Particularly suitable are photo-orientation methods (usually using linearly polarised light), and especially good orientation properties can be achieved by linearly photo-polymerised (LPP) orientation layers. These methods advantageously also avoid possible optical defects, such as grooves or scratches caused by rubbing.

By using a cholesteric LCP in this way, i.e. a cured or cross-linked cholesteric liquid crystal composition based on monomers or pre-polymers. a fast orientation of high quality may be achieved, useful for large-scale manufacturing.

Compensating layers according to the invention can be easily incorporated into liquid crystal polymer multi-layers.

The invention will now be described by way of example and with reference to the accompanying drawings, which show the viewing angle characteristics of cells with and without compensating layers according to the invention, as described later.

An example of a compensating layer according to the invention is made as follows.

In a first step, a linearly photopolymerisable (LPP) orientation layer was applied to a quartz substrate. For this, a 1 wt% solution S_{LPP} of the photoaligning polymerisable photopolymer material A was prepared using cyclopentanone as a solvent.

25 Photopolymer A:

The solution S_{LPP} was spincoated on the substrate at 2000 rpm for 2 minutes at 23°C. The about 50 nm thick layer was subsequently annealed at 150°C for 30 minutes in air. Then the coated substrate was exposed for ten minutes to the linearly polarised light of a mercury lamp, to impart photoalignment and to polymerise it.

In a second step, a cholesteric LCP layer was spincoated onto the orientation layer. For this, a solution S_{LCP} was prepared, which contained three liquid cristalline diacrylate monomers Mon1, Mon2, Mon3,

Mon3:

Ch1:

Mon1:

a chiral component Ch1,

- 5 -

and in addition photoinitiator IRGACURE 369 from Ciba SC as well as BHT (2.6-di-tert-butyl-4-methylphenol/"butyl hydroxytoluene") that served as an inhibitor, all dissolved in anisole.

Thus the composition of the solution S_{LCP} was as follows:

5	Monl	24 wt%
	Mon2	4.5 wt%
	Mon3	1.5 wt%
	Chl	3 wt%
	Irgacure 369	0.5 wt%
10	внт	0.5 wt%
	Anisole	66 wt%

The layer was tempered at 23 °C for some minutes, and then – after a cholesteric mono-domain layer had been formed – crosslinked under nitrogen atmosphere by exposing it to unpolarised mercury light for five minutes. Subsequently, the LPP/LCP layer was tempered at 200 °C for six minutes in air.

The transmission spectrum of the coated quartz plate showed a selective reflection band of the cholesteric layer at the centre wavelength $\lambda_0 = 350$ nm. The thickness of the layer was 3.2 μ m.

A second LCP layer was then spincoated, oriented and crosslinked in the same manner as described above, leading to a total thickness of the multi-layer of $6.5 \, \mu m$. The centre wavelength of the selective reflection of the LCP double layer remained $350 \, nm$.

Angle dependent reflection measurements in an ellipsometer ("WVASE" of J.A. Woollam Co.) showed that the LCP double layer has in the range of the visible light (400..800 nm) the characteristics of a negative uniaxial double refractive layer with its optical axis parallel to the layer normal and with an optical anisotropy

$$\Delta n = n_o - (n_o + n_e)/2 = -0.07$$
.

In a further experiment, this compensating layer was cemented to a VAN cell, the optical anisotropy of which was $\Delta n^*d = 420 \text{ nm}$. Viewing angle dependency measurements using a spatial photometer ("EZ-contrast" of ELDIM) proved a considerably better viewing angle characteristic of the VAN cell with the compensating layer compared to the non-compensated cell. The same can be seen from Figures 1 to 3, where Figure 1 shows the viewing angle characteristic of an LPP-oriented two-domain VAN-LCD in the off-state, Figure 2 shows the same cell, but with an additional compensating layer according to the invention, and Figure 3 shows for comparison the empty cell without compensating layer between crossed polarisers.

-7-

Claims

HIS PAGE BLANK (USPTO)

,	ć	i	

CLAIMS

10

1. A compensator comprising a layer of a cholesteric liquid crystal polymer having a helix axis essentially normal to the plane of the layer and a helix pitch sufficiently short that the selective reflection range is of shorter wavelength than visible light.

15

2. A compensator according to claim 1, wherein the said pitch is less than 300nm.

20

10

15

25

3. A compensator according to Claim 2, wherein the said pitch is less than 200nm.

25

4. A compensator according to Claim 3, wherein the said pitch is less than 150nm.

30

5. A compensator according to Claim 1, wherein the said pitch is less than $350 \text{nm}/\overline{n}$ where \overline{n} is the mean refractive index of the polymer.

35

 A compensator according to any preceding claim, wherein the cholesteric liquid crystal is applied and polymerised in situ.

40

7. A compensator according to any preceding claim wherein the optical anisotropy Δn of the liquid crystal polymer exceeds 0.25.

 A compensator according to any preceding claim, wherein the layer has a cholesteric arrangement over at least part of its area.

45

A compensator according to any preceding claim, wherein the polymer layer
 is photo-oriented.

50

-8-

PCT/IB99/01995 WO 00/39631

	5	,	

10

10. A compensator according to claim 9, wherein the polymer layer adopts the orientation of an underlying linearly photopolymerised layer.

15

A liquid crystal display device comprising a compensator according to any preceding claim.

12. A liquid crystal display device according to claim 11, wherein the compensator extends to the whole viewing area of the device.

20

13. A liquid crystal display device according to claim 11 or 12 which, in either its white or dark state, has the director of its switching liquid crystal material aligned essentially normal to the compensator.

25

15 14. A liquid crystal display device according to any of claims 11 to 13, wherein the liquid crystal cell is vertically aligned nematic.

30

35

A liquid crystal display device according to any of claims 11 to 13, wherein the liquid crystal cell is hybrid aligned nematic.

20

5

10

A liquid crystal display device according to any of claims 11 to 13, wherein the liquid crystal cell is twisted nematic.

40

45

Fig.3

INTERNATIONAL SEARCH REPORT

nter Inst Application No PCT/TR 99/01995

			PCT/IB 99/01995
A. CLASS IPC 7	GO2F1/1335 GO2B5/30		
According	to international Patent Classification (IPC) or to both national classifi	lication and IPC	٠
	SEARCHED		
IPC 7	ocumentation searched (classification system followed by classifica GO2F GO2B	ation symbolis)	
Documenta	shon searched other than minimum documentation to the extent that	t such documents are includ	ed in the fields searched
Electronic o	data base consulted during the international search (name of data t	base and, where practical, s	earch terms used)
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Catagory :	Citation of document, with indication, where appropriate, of the re	elevant passages	Relevant to claim No.
X	US 5 827 449 A (HANELT ECKHARD 27 October 1998 (1998-10-27) column 2, line 39 - line 48 column 8, line 56 -column 10, li column 11, line 28 -column 14, l	ne 22	1-4,6,8, 11-14,16
X	WO 96 06379 A (PHILIPS ELECTRONI ;PHILIPS NORDEN AB (SE)) 29 February 1996 (1996-02-29) page 1, line 29 -page 2, line 21 page 3, line 1 - line 5; claims		1-8, 11-13,16
X	EP 0 531 120 A (NIPPON OIL CO LT 10 March 1993 (1993-03-10) page 3, line 29 -page 4, line 5 page 20, line 5 - line 23 page 28, line 47 -page 29, line	•	1,11-16
		-/	
X Furth	ner documents are listed in the continuation of box C.	X Patent family me	mbers are listed in annex.
'A' docume	tegones of cried documents : int defining the general state of the art which is not ered to be of particular relevance	or priority date and no	ed after the international (ling date of in conflict with the application but so principle or theory underlying the
fiting di "L" docume which i ctation "O" docume other n	nt which may throw doubte on priority claim(s) or a criso to establish the publication date of another or other special reason (as apecided) ent referring to an oral disclosure, use, exhibition or means	cannot be considered involve an inventive s "Y" document of particular cannot be considered document is comme	relevance; the claimed invention invovel or cannot be considered to lap when the document is taken alone relevance; the claimed invention to involve an eventive stap when the d with one or more other such docu- no being obvious to a person stalled
ater th	In published prior to the international filing date but an the prioray date claimed actual completion of the international search	"&" document member of t	
	March 2000	09/03/200	enternational search report
Name and m	valing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2	Authorized officer	
	NL - 2280 MV Rijewijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Stang, I	

Form PCT/ISA/210 (second sheet) (July 1992

INTERNATIONAL SEARCH REPORT

Inter. Shall Application No PCT/IB 99/01995

Stedon .	etion) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication where appropriate, of the relevant passages	10-1
	от предоставля на предоставля на предоставания и предоставля развидения предоставля на предоставля на предоста	Relevant to cauth No.
X	US 5 243 451 A (IIMURA HARUO ET AL) 7 September 1993 (1993-09-07) column 2, line 24 - line 63 column 3, line 14 - line 55 column 7, line 29 - line 35 column 8, line 27 - line 67; claim 1	1-3.5,8, 11-14
X	EP 0 704 514 A (SUMITOMO CHEMICAL CO) 3 April 1996 (1996-04-03) page 6, line 10 - line 27 page 23, line 45 -page 25, line 3; examples 4,5	1
A	EP 0 689 084 A (HOFFMANN LA ROCHE) 27 December 1995 (1995-12-27) page 4, line 12 - line 37 page 5, line 48 - line 54; examples 1,2,5,8	1,2,6, 8-16
A	SHANNON P J ET AL: "PATTERNED OPTICAL PROPERTIES IN PHOTOPOLYMERIZED SURFACE-ALIGNED LIQUID-CRYSTAL FILMS" NATURE, vol. 368, no. 6, PART 01, 7 April 1994 (1994-04-07), page 532/533 XP000198481	7,9-11
A	HITOSHI HATCH ET AL: "IMPROVEMENT OF VIEWING ANGLE CHARACTERISTICS IN A TWISTED-NEMATIC LIQUID-CRYSTAL DISPLAY BY USING A CHOLESTERIC LIQUID-CRYSTAL COMPENSATION LAYER" APPLIED PHYSICS LETTERS, US, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, - vol. 60, no. 15, 13 April 1992 (1992-04-13), pages 1806-1808, XP000273981 ISSN: 0003-6951 the whole document	1-12,16
PCT/SSA	D (continuation of second effect) (July 1982)	

INTERNATIONAL SEARCH REPORT

enformation on patent family members

triter : mail Application No PCT/IB 99/01995

	atent document d in search repor	t	Publication date		Patent family member(s)		Publication date
US	5827449	A	27-10-1998	DE	19619460	A	20-11-1997
				JP	2918105	В	12-07-1999
				JP	10053769		24-02-1998
WO	9606379	Α	29-02-1996	EP	0725942	Α	14-08-1996
	*******			US	5798808	A	25-08-1998
ΕP	0531120	Α	10-03-1993	JP	2853068	B	03-02-1999
				JP	5061039	Ā	12-03-1993
				DE	69219422	D	05-06-1997
				DE	69219422	Ť	07-08-1997
				US	5491001	A	13-02-1996
US	5243451	Α	07-09-1993	JP	2972892	В	08-11-1999
				JP	3067219	A	22-03-1991
EP	0704514 ·	A	03-04-1996	JP	8152518	A	11-06-1996
				JP	8152519	Α	11-06-1996
				DΕ	69514745	D	02-03-2096
				US	5730899	A	24-03-1996
ΕP	0689084	A	27-12-1995	CN	1130259	A	04-09-1996
				JР	8015681	Α	19-01-1996
				SG	34990	Α	01-02-1997