

南开大学

计算机学院

计算机网络实验报告

Lab 3.4 基于 UDP 服务设计可靠传输协议并编程实现

徐俊智

年级: 2022 级

专业:计算机科学与技术

指导教师:吴英

景目

→,	实验目的	l e e e e e e e e e e e e e e e e e e e	1
二,	实验要求		1
三,	实验内容	ŧ.	1
1.	停等机	制与滑动窗口机制性能对比	1
	3.1.1	时延相同,丢包率不同	1
	3.1.2	丢包率相同,时延不同	2
	3.1.3	分析结果	3
2.	滑动窗	口机制中不同窗口大小对性能的影响	3
	3.2.1	时延相同,丢包率不同	3
	3.2.2	丢包率相同,时延不同	3
	3.2.3	分析结果	4
3.	有拥塞	控制和无拥塞控制的性能比较	5
	3.3.1	时延相同,丢包率不同	5
	3.3.2	丢包率相同,时延不同	5
	3.3.3	分析结果	6

一、 实验目的

实验 3-4: 基于给定的实验测试环境,通过改变网络的延迟时间和丢包率,完成下面 3 组性能对比实验: (1) 停等机制与滑动窗口机制性能对比; (2) 滑动窗口机制中不同窗口大小对性能的影响; (3) 有拥塞控制和无拥塞控制的性能比较。

二、实验要求

1. 控制变量法:对比时要控制单一变量(算法、窗口大小、延时、丢包率)

2. Router:可能会有较大延时,传输速率不作为评分依据,也可自行设计

3. 延时、丢包率对比设置: 要有梯度 (例如 30ms,50ms, …; 5

4. 测试文件:必须使用助教发的测试文件(1.jpg、2.jpg、3.jpg、helloworld.txt)

5. 性能测试指标: 时延、吞吐率, 要给出图、表并进行分析

三、 实验内容

1. 停等机制与滑动窗口机制性能对比

固定滑动窗口大小为 5, 进行测试。

3.1.1 时延相同, 丢包率不同

延时设为 0, 结果如下所示:

表 1: 丢包率对传输时间和吞吐率的影响

丢包率		0%	2%	4%	6%	8%	10%
停等机制	传输时间(s) 吞吐率(bytes/s)	28.37 65468.90	111.65 16635.49	203.43 9130.18	282.21 8457.25	370.49 5013.23	459.81 4039.42
滑动窗口	传输时间(s) 吞吐率(bytes/s)	7.63 243491	$26.44 \\ 70261.1$	31.98 58082.2	32.15 57769.7	35.58 52196.3	57.87 32096.9

3.1.2 丢包率相同,时延不同

丢包率设为 0, 结果如下所示:

表 2: 时延对传输时间和吞吐率的影响

时延 (ms)		0	5	10	15	20	25
停等机制	传输时间(s)	28.37	-99.70	168.16	179.48	188.93	198.37
	吞吐率(bytes/s)	65468.90	18,628.53	11044.80	10348.27	9830.83	9362.7
滑动窗口	传输时间(s)	7.63	62.45	65.51	67.79	95.419	104.32
	吞吐率(bytes/s)	243491	29743.3	283550.5	27399	19465.2	17804

3.1.3 分析结果

停等机制中,每次发送一个数据包后必须等待确认,如果发生丢包,整个传输过程会被阻塞,导致传输时间增加;随着丢包率的增加,需要等待确认的次数增多,吞吐率大大降低。

滑动窗口机制允许发送方一次发送多个数据包,大大优化了停等机制中每发一个数据包都要等一个 ACK 的情况,但如果出现丢包,需要重传窗口内的所有数据包,因此丢包率对性能的影响较大;随着丢包率的增加,重传次数增多,导致传输时间增加,并降低吞吐率。

总体来说,滑动窗口机制比停等机制的效率更高,在不同网络条件下表现更为稳定和鲁棒。

2. 滑动窗口机制中不同窗口大小对性能的影响

3.2.1 时延相同, 丢包率不同

延时设为 0, 结果如下所示:

表 3: 丢包率对不同窗口大小下传输时间和吞吐率的影响

丢包率		0%	2%	4%	6%	8%	10%
窗口大小 N=5	传输时间(s) 吞吐率(bytes/s)	7.63 243491	26.44 70261.1	31.98 58082.2	32.15 57769.7	35.58 52196.3	57.87 32096.9
窗口大小 N=7	传输时间(s) 吞吐率(bytes/s)	6.68 277922	30.84 60223.8	35.4 52461.2	38.3 48485.1	47.6 39015.4	72.72 25539.6
窗口大小 N=9	传输时间(s) 吞吐率(bytes/s)	7.15 260706	22.24	33.98 54651.3	33.82 54909.8	47.6 39015.4	64.8 28658.5

3.2.2 丢包率相同,时延不同

丢包率设为 0, 结果如下所示:

时延 (ms)		0	5	10	15	20	25
窗口大小 N=5	传输时间(s)	7.63	62.45	65.51	67.79	95.419	104.32
	吞吐率(bytes/s)	243491	29743.3	283550.5	27399	19465.2	17804
窗口大小 N=7	传输时间(s)	6.68	65.51	71.35	86.46	118.13	117.09
	吞吐率(bytes/s)	277922	283550.5	26028.99	21481.29	15721.93	15861.43
窗口大小 N=9	传输时间(s)	7.15	61.68	70.8	76.6	115.74	133.6
	吞吐率(bytes/s)	260706	30111.9	26230.6	24242.55	16048.45	13896.1

表 4: 时延对不同窗口大小下传输时间和吞叶率的影响

3.2.3 分析结果

总体来说,不同窗口大小在不同网络环境下的效率变化总体上趋于一致。较大的窗口在低延时和低丢包率条件下表现较好,因为更大的窗口可以允许同时发送更多条消息并同时等待对方的 ACK,此时丢包率较小,能一次发出更多的包,而没有太多的丢包导致的重传,所以能起到较好的加速效果,即减少等待的周期数,更好的应对时延问题。

但当丢包率较高时由于较大的窗口会增加重传代价,使用更大的滑动窗口相对于较小的滑动窗口性能优势明显减弱。当有较多丢包时,滑动窗口需要累积确认 ACK、重传失序未确认的数据包,当这些失序的数据包 ACK 收到后才能移动窗口,因此有较多的性能损失。尤其是当路由延时设置较大时,性能损失更明显。

较小的窗口可能会导致较高的传输时间,但在某些情况下能够提高吞吐率。但是较小的窗口在高延时条件下可能更为稳定,减少了等待确认的时间。

选择合适的窗口大小需要综合考虑网络条件、以平衡传输时间和吞吐率的需求。

3. 有拥塞控制和无拥塞控制的性能比较

3.3.1 时延相同, 丢包率不同

延时设为 0, 结果如下所示:

表 5: 丢包率对有无拥塞控制下传输时间和吞吐率的影响

丢包率		0%	2%	4%	6%	8%	10%
有拥塞控制	传输时间(s)	20.51	31.86	32.14	30.8	38.3	74.05
	吞吐率(bytes/s)	90531.9	58323	57787.7	60288	48484.7	25079.7
无拥塞控制	传输时间(s)	7.63	26.44	31.98	32.15	35.58	57.87
	吞吐率(bytes/s)	243491	70261.1	58082.2	57769.7	52196.3	32096.9

3.3.2 丢包率相同,时延不同

丢包率设为 0, 结果如下所示:

表 6: 时延对有无拥塞控制下传输时间和吞吐率的影响

时延 (ms)		0	5	10	15	20	25
有拥塞控制	传输时间(s)	20.51	115.819	185.075	254.331	305.066	355.801
	吞吐率(bytes/s)	90531.9	16036.68	10035.67	7302.89	6088.36	5220.2
无拥塞控制	传输时间(s)	7.63	62.45	65.51	67.79	95.419	104.32
	吞吐率(bytes/s)	243491	29743.3	28355.05	27399	19465.2	17804

3.3.3 分析结果

在低延时和低丢包率条件下,渡过慢启动阶段的有拥塞控制和无拥塞控制的效率差不多,拥塞控制的窗口可以不断增大,快重传机制只需要重传丢失的包,并不需要像超时重传那样重传窗口内所以已发送未确认的包,进一步提升了效率。

当延时丢包率逐渐增加时,拥塞控制机制表现不如无拥塞控制,频繁的丢包导致窗口不断缩小,可能会小于无拥塞控制的窗口大小,导致性能急速下降。