CLAIMS

A fluorine-containing optical material which comprises a fluorine-containing copolymer comprising from 32 to 36 % by mole of a structural unit (a) represented by the formula (1):

$$\begin{array}{c|c}
X^{1} \\
 & \downarrow \\
 & \downarrow$$

10

15

25

wherein X^1 is H, CH_3 , F, CF_3 or Cl; Rf^1 and Rf^2 are the same or different and each is a perfluoroalkyl group having 1 to 5 carbon atoms; R^1 is a hydrocarbon group having 1 to 5 carbon atoms which may be substituted with fluorine atom, and from 64 to 68 % by mole of a structural unit (b) derived from methyl methacrylate.

2. A fluorine-containing optical material which comprises a fluorine-containing copolymer comprising from 15 to 62 % by mole of a
structural unit (a) represented by the formula (1):

$$\begin{array}{c|c}
X^{1} \\
 \hline
CH_{2}-C \\
 \hline
C-O-CH_{2}-C \\
 \hline
Rf^{1} \\
 \hline
Rf^{2}
\end{array}$$
(1)

wherein X¹ is H, CH₃, F, CF₃ or Cl; Rf¹ and Rf² are the same or different

and each is a perfluoroalkyl group having 1 to 5 carbon atoms; R¹ is a hydrocarbon group having 1 to 5 carbon atoms which may be substituted with fluorine atom, from 12 to 70 % by mole of a structural unit (b) derived from methyl methacrylate and from 1 to 40 % by mole of a structural unit (c) (excluding the structural unit (a)) derived from a fluorine-containing monomer which is copolymerizable therewith.

3. The fluorine-containing optical material of Claim 1 or 2, wherein in the formula (1), X^1 is CH_3 .

10

5

4. The fluorine-containing optical material of Claim 3, wherein the fluorine-containing copolymer comprises from 23 to 50 % by mole of the structural unit (a), from 33 to 70 % by mole of the structural unit (b) and from 1 to 40 % by mole of the structural unit (c).

15

5. The fluorine-containing optical material of any of Claims 2 to 4, wherein in the fluorine-containing copolymer, the structural unit (c) is a structural unit (c1) represented by the formula (2):

20

$$\begin{array}{c|c}
X^2 \\
\hline
CH_2-C \\
\hline
C-O-R^2 \\
0
\end{array}$$
(2)

wherein X^2 is H, CH_3 , F, CF_3 or Cl; R^2 is H or a fluoroalkyl group; the structural unit represented by the formula (1) is excluded, and when R^2 is H, X^2 is neither H nor CH_3 .

- 6. The fluorine-containing optical material of Claim 5, wherein in the formula (2), R² is a fluoroalkyl group having 3 to 8 carbon atoms.
- 7. The fluorine-containing optical material of Claim 5 or 6, wherein the fluorine-containing copolymer comprises from 23 to 50 % by mole of the structural unit (a), from 33 to 70 % by mole of the structural unit (b) and from 1 to 40 % by mole of the structural unit (c1).
- 10 8. The fluorine-containing optical material of any of Claims 5 to 7, wherein in the fluorine-containing copolymer, the number of carbon atoms of R² in the formula (2) representing the structural unit (c1) is from 4 to 6.
- 9. The fluorine-containing optical material of Claim 8, wherein in the fluorine-containing copolymer, R² in the formula (2) representing the structural unit (c1) is represented by the formula (3):

$$-CH_{2}C_{n}F_{2n}H\tag{3}$$

20

25

5

wherein n is an integer of from 3 to 5.

- 10. The fluorine-containing optical material of Claim 8, wherein in the fluorine-containing copolymer, R^2 in the formula (2) representing the structural unit (c1) is $-CH_2C_4F_8H$.
 - 11. The fluorine-containing optical material of any of Claims

5 to 10, wherein in the fluorine-containing copolymer, X^2 in the formula (2) representing the structural unit (c1) is -CH₃.

- 12. The fluorine-containing optical material of any of Claims
 1 to 11, which has a glass transition temperature of not less than 100°C,
 a refractive index of not more than 1.440 and a fluorine content of not less than 20 % by weight.
- 13. The fluorine-containing optical material of Claim 12, wherein the glass transition temperature is not less than 105°C.
 - 14. The fluorine-containing optical material of Claim 12 or 13, wherein the refractive index is not more than 1.430.
 - 15. The fluorine-containing optical material of any of Claims 12 to 14, wherein the fluorine content is not less than 30 % by weight.
 - 16. A material for clad of optical fiber which is obtained from the fluorine-containing optical material of any of Claims 1 to 15.

20

15

17. A fluorine-containing copolymer which has a weight average molecular weight of from 10,000 to 1,000,000 and comprises from 32 to 36 % by mole of a structural unit (a) represented by the formula (1):

$$\begin{array}{c|c}
X^{1} \\
\hline
CH_{2}-C \\
\hline
C-O-CH_{2}-C \\
\hline
Rf^{1} \\
Rf^{2}
\end{array}$$
(1)

5

10

wherein X^1 is H, CH_3 , F, CF_3 or Cl; Rf^1 and Rf^2 are the same or different and each is a perfluoroalkyl group having 1 to 5 carbon atoms; R^1 is a hydrocarbon group having 1 to 5 carbon atoms which may be substituted with fluorine atom, and from 64 to 68 % by mole of a structural unit (b) derived from methyl methacrylate.

- 18. The fluorine-containing copolymer of Claim 17, wherein in the formula (1), X^1 is CH_3 .
- 19. A fluorine-containing copolymer which has a weight average molecular weight of from 10,000 to 1,000,000 and comprises from 15 to 62 % by mole of a structural unit (a) represented by the formula (1):

20

$$\begin{array}{c|c}
X^{1} \\
\hline
CH_{2}-C \\
\hline
C-O-CH_{2}-C \\
\hline
Rf^{1} \\
Rf^{2}
\end{array}$$
(1)

25

wherein X¹ is H, CH₃, F, CF₃ or Cl; Rf¹ and Rf² are the same or different and each is a perfluoroalkyl group having 1 to 5 carbon atoms; R¹ is a hydrocarbon group having 1 to 5 carbon atoms which may be

substituted with fluorine atom, from 12 to 70 % by mole of a structural unit (b) derived from methyl methacrylate and from 1 to 40 % by mole of a structural unit (c2) represented by the formula (2a):

$$\begin{array}{c|c}
X^{3} \\
 \hline
 CH_{2}-C \\
 \hline
 C-O-R^{3} \\
 \hline
 O
\end{array}$$
(2a)

20

25

- wherein X^3 is H, CH_3 , F, CF_3 or Cl; R^3 is H or a fluoroalkyl group; the structural unit represented by the formula (1) is excluded, and when R^3 is H, X^3 is neither H nor CH_3 .
- 20. The fluorine-containing copolymer of Claim 19, wherein in the formula (1), X¹ is CH₃.
 - 21. The fluorine-containing copolymer of Claim 19 or 20, which comprises from 23 to 50 % by mole of the structural unit (a), from 33 to 70 % by mole of the structural unit (b) and from 1 to 40 % by mole of the structural unit (c2).
 - 22. The fluorine-containing copolymer of any of Claims 19 to 21, wherein the number of carbon atoms of R³ in the formula (2a) representing the structural unit (c2) is from 4 to 6.
 - 23. The fluorine-containing copolymer of Claim 22, wherein \mathbb{R}^3 in the formula (2a) representing the structural unit (c2) is represented

by the formula (3):

$$-CH_2C_nF_{2n}H \tag{3}$$

- 5 wherein n is an integer of from 3 to 5.
 - 24. The fluorine-containing copolymer of Claim 22, wherein R^3 in the formula (2a) representing the structural unit (c2) is -CH₂C₄F₈H.
- 25. The fluorine-containing copolymer of any of Claims 19 to 24, wherein X³ in the formula (2a) representing the structural unit (c2) is -CH₃.