Recommender Systems Tutorial

Shan-Hung Wu & DataLab Fall 2023

Overview

```
In this tutorial, you would design a recommender system that recommends movies to users. When a user queries your system with (UserID, Timestamp), your system should return a list of 10 movies in their MovieIDs (MovieID_1, MovieID_2, \cdots, MovieID_{10}) which the user might be interested in.
```

Dataset

Please download the dataset here.

The dataset used in this tutorial is a modified version of the MovieLens Dataset.

The provided dataset consists of three files: ratings_train.csv , users.csv , and movies.csv .

```
ratings_train.csv:
```

Interactions between users and movies in format $(UserID, \\ MovieID, \\ Rating, \\ Timestamp)$

ullet UserID: ID of the user.

MovieID: ID of the movie.

• Rating: Rating score that the user gives to the movie.

Timestamp: Timestamp of when the user rated the movie.

users.csv:

```
Features of all users in format (UserID, Gender, Age, Occupation, ZipCode)
```

- *UserID*: ID of the user.
- Gender: Gender of the user.
- *Age*: Age interval to which the user belongs. The number represents the starting age of the interval.

Occupation

- : Occupation class number of the user.
- *ZipCode*: ZIP code string of the user.

movies.csv:

Features of all movies in format $(MovieID, \\Title, \\Genres)$

•

MovieID

: ID of the movie.

- *Title*: Title of the movie.
- *Genres*: Genres of the movie. Multiple genres are separated by | .

In this tutorial, we provide an example model which implements the simplified version of Funk-SVD mentioned in class.

```
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import tensorflow as tf
from tqdm import tqdm
```

2024-01-05 10:50:19.024112: I tensorflow/core/platform/cpu_feature_guard.cc:182] This Te nsorFlow binary is optimized to use available CPU instructions in performance-critical o perations.

To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.

```
In [ ]: gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
    try:
    # Currently, memory growth needs to be the same across GPUs
```

```
for gpu in gpus:
    tf.config.experimental.set_memory_growth(gpu, True)

# Select GPU number 1

tf.config.experimental.set_visible_devices(gpus[0], 'GPU')

logical_gpus = tf.config.experimental.list_logical_devices('GPU')

print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")

except RuntimeError as e:

# Memory growth must be set before GPUs have been initialized

print(e)
```

Inspect the dataset

Let's load and inspect the three files ratings_train.csv, users.csv, and movies.csv in the dataset.

```
In [ ]: DATASET_PATH = 'recommender-tutorial-dataset'
USERS_PATH = os.path.join(DATASET_PATH, 'users.csv')
MOVIES_PATH = os.path.join(DATASET_PATH, 'movies.csv')
RATINGS_PATH = os.path.join(DATASET_PATH, 'ratings_train.csv')
```

```
In [ ]: df_users = pd.read_csv(USERS_PATH)
    df_users
```

]:		UserID	Gender	Age	Occupation	ZipCode
	0	0	F	1	10	48067
	1	1	М	56	16	70072
	2	2	М	25	15	55117
	3	3	М	45	7	02460
	4	4	М	25	20	55455
	•••					
	6035	6035	F	25	15	32603
	6036	6036	F	45	1	76006
	6037	6037	F	56	1	14706
	6038	6038	F	45	0	01060
	6039	6039	М	25	6	11106

6040 rows × 5 columns

Out[

```
In [ ]: df_movies = pd.read_csv(MOVIES_PATH)
    df_movies
```

Mo	ovieID	Title	Genres
0	0	Toy Story (1995)	Animation Children's Comedy
1	1	Jumanji (1995)	Adventure Children's Fantasy
2	2	Grumpier Old Men (1995)	Comedy Romance
3	3	Waiting to Exhale (1995)	Comedy Drama
	0 1 2	1 1 2 2	 0 0 Toy Story (1995) 1 1 Jumanji (1995) 2 2 Grumpier Old Men (1995)

Out[]:		MovielD	Title	Genres
	4	4	Father of the Bride Part II (1995)	Comedy
	•••			
	3878	3947	Meet the Parents (2000)	Comedy
	3879	3948	Requiem for a Dream (2000)	Drama
	3880	3949	Tigerland (2000)	Drama
	3881	3950	Two Family House (2000)	Drama
	3882	3951	Contender, The (2000)	Drama Thriller

3883 rows × 3 columns

```
In [ ]: df_ratings = pd.read_csv(RATINGS_PATH)
    df_ratings
```

ut[]:		UserID	MovieID	Rating	Timestamp
	0	6039	857	4	956703932
	1	6039	2383	4	956703954
	2	6039	592	5	956703954
	3	6039	1960	4	956703977
	4	6039	2018	5	956703977
	•••				
	939757	5949	1996	3	1046368734
	939758	5949	1260	4	1046368750
	939759	5949	3151	3	1046368831
	939760	5949	3910	4	1046369026
	939761	4957	2452	4	1046454260

939762 rows × 4 columns

Let's calculate how many users and movies are in the dataset. There are some MovieIDs

that do not correspond to any movie, however, we will just ignore this fact.

```
In [ ]: M_USERS = max(len(df_users['UserID'].unique()), df_users['UserID'].max() + 1)
N_ITEMS = max(len(df_movies['MovieID'].unique()), df_movies['MovieID'].max() + 1)
print(f'# of users: {M_USERS}, # of movies: {N_ITEMS}')
```

of users: 6040, # of movies: 3952

Model

Here we provide an implementation of a simplified version of the Funk-SVD model.

```
In [ ]: class FunkSVDRecommender(tf.keras.Model):
```

```
Simplified Funk-SVD recommender model
def __init__(self, m_users: int, n_items: int, embedding_size: int, learning_rate: f
    Constructor of the model
    super().__init__()
    self.m = m_users
    self.n = n_items
    self.k = embedding_size
   self.lr = learning_rate
   # user embeddings P
   self.P = tf.Variable(tf.keras.initializers.RandomNormal()(shape=(self.m, self.k)
   # item embeddings Q
   self.Q = tf.Variable(tf.keras.initializers.RandomNormal()(shape=(self.n, self.k)
   # optimizer
    self.optimizer = tf.optimizers.Adam(learning_rate=self.lr)
@tf.function
def call(self, user_ids: tf.Tensor, item_ids: tf.Tensor) -> tf.Tensor:
    Forward pass used in training and validating
    # dot product the user and item embeddings corresponding to the observed interac
   y_pred = tf.reduce_sum(tf.gather(self.P, indices=user_ids) * tf.gather(self.Q, i
   return y_pred
@tf.function
def compute_loss(self, y_true: tf.Tensor, y_pred: tf.Tensor) -> tf.Tensor:
    Compute the MSE loss of the model
   loss = tf.losses.mean_squared_error(y_true, y_pred)
    return loss
@tf.function
def train_step(self, data: tf.Tensor) -> tf.Tensor:
   Train the model with one batch
    data: batched user-item interactions
    each record in data is in the format [UserID, MovieID, Rating, Timestamp]
   user_ids = tf.cast(data[:, 0], dtype=tf.int32)
   item ids = tf.cast(data[:, 1], dtype=tf.int32)
   y_true = tf.cast(data[:, 2], dtype=tf.float32)
   # compute Loss
   with tf.GradientTape() as tape:
        y_pred = self(user_ids, item_ids)
        loss = self.compute_loss(y_true, y_pred)
    # compute gradients
    gradients = tape.gradient(loss, self.trainable_variables)
    # update weights
    self.optimizer.apply_gradients(zip(gradients, self.trainable_variables))
```

```
return loss
@tf.function
def val_step(self, data: tf.Tensor) -> tf.Tensor:
   Validate the model with one batch
   data: batched user-item interactions
   each record in data is in the format [UserID, MovieID, Rating, Timestamp]
   user_ids = tf.cast(data[:, 0], dtype=tf.int32)
   item_ids = tf.cast(data[:, 1], dtype=tf.int32)
   y_true = tf.cast(data[:, 2], dtype=tf.float32)
   # compute loss
   y_pred = self(user_ids, item_ids)
   loss = self.compute_loss(y_true, y_pred)
   return loss
@tf.function
def eval_predict_onestep(self, query: tf.Tensor) -> tf.Tensor:
   Retrieve and return the MovieIDs of the 10 recommended movies given a query
   You should return a tf. Tensor with shape=(10,)
    query will be a tf.Tensor with shape=(2,) and dtype=tf.int64
   query[0] is the UserID of the query
    query[1] is the Timestamp of the query
   # dot product the selected user and all item embeddings to produce predictions
   user_id = tf.cast(query[0], tf.int32)
   y_pred = tf.reduce_sum(tf.gather(self.P, user_id) * self.Q, axis=1)
   # select the top 10 items with highest scores in y pred
   y_top_10 = tf.math.top_k(y_pred, k=10).indices
   return y_top_10
```

Split datasets

First, we create per-user validation sets with the latest interactions of each user (should also contain sufficient positive interactions). Then, we join all the small validation sets to form a complete validation set.

```
In []: # let interactions with rating >= 4 be positive interactions
POSITIVE_THRESHOLD = 4

# each per-user validation set should contain at least 5 positive interactions
POSITIVE_PER_USER = 5

train_dataframes = []
val_dataframes = []

for i in tqdm(range(M_USERS)):
    user_all = df_ratings[df_ratings['UserID'] == i]
    user_positive = user_all[user_all['Rating'] >= POSITIVE_THRESHOLD]

# check if there are enough positive interactions to build a validation set for this
if len(user_positive) >= POSITIVE_PER_USER:
    split_idx = user_positive.iloc[-POSITIVE_PER_USER].name
```

```
user train = user all.loc[:split idx]
        user_test = user_all.loc[split_idx:]
        assert user_train['Timestamp'].max() <= user_test['Timestamp'].min()</pre>
        train_dataframes.append(user_train)
        val_dataframes.append(user_test)
   else:
       train_dataframes.append(user_all)
# concat all per-user training sets
df_train = pd.concat(train_dataframes).sort_values(by='Timestamp', ascending=True, ignor
# normalize the ratings (may be beneficial to some models)
df_train_norm = df_train
df_train_norm['Rating'] -= 3
df_train_norm['Rating'] /= 2
# concat all per-user validation sets
df_val = pd.concat(val_dataframes).sort_values(by='Timestamp', ascending=True, ignore_in
# normalize the ratings (may be beneficial to some models)
# here we make a copy of the un-normalized validation set for evaluation
df_val_norm = df_val.copy(deep=True)
df_val_norm['Rating'] -= 3
df_val_norm['Rating'] /= 2
        6040/6040 [00:12<00:00, 470.58it/s]
```

1 40 +----

In []: df_train_norm

Out[]:

	UserID	MovielD	Rating	Timestamp
0	6039	857	0.5	956703932
1	6039	592	1.0	956703954
2	6039	2383	0.5	956703954
3	6039	2018	1.0	956703977
4	6039	1960	0.5	956703977
•••				
893652	5949	2857	0.0	1046368290
893653	5949	2663	0.0	1046368398
893654	5949	1299	0.5	1046368398
893655	5949	1195	0.5	1046368417
893656	5949	1357	0.5	1046368429

893657 rows × 4 columns

In []: df_val_norm

UserID MovieID Rating Timestamp Out[]: 0 6038 2018 0.5 956706538 6038 1251 0.5 956706538 2 6038 0.5 922 956706538

Out[]:		UserID	MovieID	Rating	Timestamp
	3	6037	2715	0.0	956707604
	4	6037	3547	0.5	956707604
	•••				
	52084	5949	1996	0.0	1046368734
	52085	5949	1260	0.5	1046368750
	52086	5949	3151	0.0	1046368831
	52087	5949	3910	0.5	1046369026
	52088	4957	2452	0.5	1046454260

52089 rows × 4 columns

Evaluation metric

For the evaluation metric, we will use a modified version of $NDCG \\ @10 \\ {\rm specifically}$ for this task.

NDCG@

 $Recall \\ @10 \\ (same as \\ HitRate \\ @10$

in this task) will also be calculated.

```
In [ ]: @tf.function
        def log2(x: tf.Tensor) -> tf.Tensor:
            return tf.math.log(tf.cast(x, tf.float32)) / tf.math.log(2.)
        @tf.function
        def ndcg_at_10(y_true: tf.Tensor, y_pred: tf.Tensor) -> tf.Tensor:
            y_pred = y_pred[:10]
            idx = tf.equal(tf.cast(y_pred, tf.int32), tf.cast(y_true, tf.int32))
            if tf.reduce_sum(tf.cast(idx, tf.int32)) > 0:
                return 1. / log2(2 + tf.argmax(idx))
            else:
                return tf.constant(0.)
        @tf.function
        def recall_at_10(y_true: tf.Tensor, y_pred: tf.Tensor) -> tf.Tensor:
            y_pred = y_pred[:10]
            idx = tf.equal(tf.cast(y_pred, tf.int32), tf.cast(y_true, tf.int32))
            if tf.reduce_sum(tf.cast(idx, tf.int32)) > 0:
                return tf.constant(1.)
            else:
                return tf.constant(0.)
```

```
def evaluate(model: tf.keras.Model, dataset: tf.data.Dataset) -> tuple:
   For each data point in the dataset:
   data[0] is the UserID
   data[1] is the MovieID
   data[2] is the Rating
   data[3] is the Timestamp
   ndcg_scores = []
   recall_scores = []
   for data in tqdm(dataset, desc='Evaluating'):
        # query the model to make predictions if the observed event is a positive intera
       if data[2] >= 4:
           y_pred = model.eval_predict_onestep(tf.gather(data, (0, 3)))
            y_true = tf.gather(data, 1)
            ndcg = ndcg_at_10(y_true, y_pred)
            recall = recall_at_10(y_true, y_pred)
            ndcg_scores.append(ndcg)
            recall_scores.append(recall)
   ndcg_result = tf.reduce_mean(ndcg_scores).numpy()
   recall_result = tf.reduce_mean(recall_scores).numpy()
    return ndcg_result, recall_result
```

Train the model

```
In [ ]: # hyperparameters
        EMBEDDING_SIZE = 256
        BATCH_SIZE = 512
        N EPOCHS = 25
        LEARNING_RATE = 1e-4
In [ ]: # prepare datasets
        dataset_train = tf.data.Dataset.from_tensor_slices(df_train_norm)
        dataset_train = dataset_train.batch(batch_size=BATCH_SIZE, num_parallel_calls=tf.data.AU
        dataset_val = tf.data.Dataset.from_tensor_slices(df_val_norm)
        dataset_val = dataset_val.batch(batch_size=BATCH_SIZE, num_parallel_calls=tf.data.AUTOTU
        # build the model
        model = FunkSVDRecommender(m_users=M_USERS, n_items=N_ITEMS, embedding_size=EMBEDDING_SI
        # train the model
        train losses = []
        val_losses = []
        for epoch in range(1, N_EPOCHS + 1):
            train_loss = []
            val_loss = []
            print(f'Epoch {epoch}:')
            # training
            for data in tqdm(dataset_train, desc='Training'):
                loss = model.train step(data)
                train_loss.append(loss.numpy())
            # validating
            for data in tqdm(dataset_val, desc='Validating'):
```

```
loss = model.val step(data)
        val_loss.append(loss.numpy())
    # record Losses
    avg_train_loss = np.mean(train_loss)
    avg_val_loss = np.mean(val_loss)
   train_losses.append(avg_train_loss)
   val_losses.append(avg_val_loss)
    # print losses
    print(f'Epoch {epoch} train_loss: {avg_train_loss:.4f}, val_loss: {avg_val_loss:.4f}
# plot the training curve
plt.plot(train_losses, label='train_loss')
plt.plot(val_losses, label='val_loss')
plt.legend(loc='upper right')
plt.title('Loss curve')
plt.show()
Epoch 1:
Training: 100% | 1746/1746 [00:28<00:00, 60.86it/s]
Validating: 100% | 102/102 [00:00<00:00, 369.05it/s]
Epoch 1 train_loss: 0.4015, val_loss: 0.3957
Epoch 2:
Training: 100% | 1746/1746 [00:25<00:00, 67.68it/s]
Validating: 100%
                         | 102/102 [00:00<00:00, 603.00it/s]
Epoch 2 train_loss: 0.3950, val_loss: 0.3930
Epoch 3:
Training: 100% | 1746/1746 [00:28<00:00, 60.50it/s]
Validating: 100%
                         | 102/102 [00:00<00:00, 868.96it/s]
Epoch 3 train_loss: 0.3834, val_loss: 0.3852
Epoch 4:
Training: 100% | 1746/1746 [00:26<00:00, 65.41it/s]
Validating: 100% | 102/102 [00:00<00:00, 834.96it/s]
Epoch 4 train_loss: 0.3599, val_loss: 0.3665
Epoch 5:
Training: 100%
                    | 1746/1746 [00:25<00:00, 68.71it/s]
Validating: 100%
                         | 102/102 [00:00<00:00, 793.52it/s]
Epoch 5 train_loss: 0.3198, val_loss: 0.3361
Epoch 6:
                      | 1746/1746 [00:24<00:00, 70.22it/s]
Training: 100%
Validating: 100% | 102/102 [00:00<00:00, 813.06it/s]
Epoch 6 train_loss: 0.2733, val_loss: 0.3039
Epoch 7:
                      1746/1746 [00:24<00:00, 70.51it/s]
Training: 100%
Validating: 100%
                       102/102 [00:00<00:00, 832.49it/s]
Epoch 7 train_loss: 0.2374, val_loss: 0.2794
Epoch 8:
Training: 100% | 1746/1746 [00:24<00:00, 70.37it/s]
Validating: 100%
                       102/102 [00:00<00:00, 805.53it/s]
Epoch 8 train_loss: 0.2145, val_loss: 0.2626
Epoch 9:
Training: 100% | 1746/1746 [00:24<00:00, 70.55it/s]
```

```
Validating: 100% | 102/102 [00:00<00:00, 807.10it/s]
Epoch 9 train_loss: 0.1990, val_loss: 0.2510
Epoch 10:
Training: 100%
                     | 1746/1746 [00:40<00:00, 42.62it/s]
Validating: 100%
                        | 102/102 [00:00<00:00, 853.36it/s]
Epoch 10 train loss: 0.1870, val loss: 0.2426
Epoch 11:
Training: 100%
                 | 1746/1746 [00:24<00:00, 71.15it/s]
Validating: 100% | 102/102 [00:00<00:00, 624.12it/s]
Epoch 11 train_loss: 0.1768, val_loss: 0.2361
Epoch 12:
Training: 100%
                 1746/1746 [00:24<00:00, 70.70it/s]
                      102/102 [00:00<00:00, 755.15it/s]
Validating: 100%
Epoch 12 train_loss: 0.1677, val_loss: 0.2309
Epoch 13:
Training: 100%
                      | 1746/1746 [00:24<00:00, 70.05it/s]
Validating: 100%
                  | 102/102 [00:00<00:00, 812.65it/s]
Epoch 13 train_loss: 0.1593, val_loss: 0.2267
Epoch 14:
Training: 100% | 1746/1746 [00:25<00:00, 69.64it/s]
Validating: 100% | 102/102 [00:00<00:00, 788.51it/s]
Epoch 14 train_loss: 0.1514, val_loss: 0.2232
Epoch 15:
Training: 100% | 1746/1746 [00:25<00:00, 69.52it/s]
Validating: 100% | 102/102 [00:00<00:00, 717.13it/s]
Epoch 15 train_loss: 0.1440, val_loss: 0.2202
Epoch 16:
Training: 100%
                     | 1746/1746 [00:24<00:00, 70.40it/s]
Validating: 100%
                        | 102/102 [00:00<00:00, 825.62it/s]
Epoch 16 train_loss: 0.1369, val_loss: 0.2177
Epoch 17:
Training: 100%
                     | 1746/1746 [00:24<00:00, 69.98it/s]
Validating: 100% | 102/102 [00:00<00:00, 836.00it/s]
Epoch 17 train_loss: 0.1300, val_loss: 0.2156
Epoch 18:
Training: 100% | 1746/1746 [00:24<00:00, 70.25it/s]
Validating: 100% | 102/102 [00:00<00:00, 828.14it/s]
Epoch 18 train_loss: 0.1234, val_loss: 0.2138
Epoch 19:
                      | 1746/1746 [00:24<00:00, 71.41it/s]
Training: 100%
Validating: 100%
                      | 102/102 [00:00<00:00, 773.91it/s]
Epoch 19 train_loss: 0.1170, val_loss: 0.2124
Epoch 20:
Training: 100% | 1746/1746 [00:24<00:00, 71.06it/s]
Validating: 100%
                      102/102 [00:00<00:00, 586.83it/s]
Epoch 20 train_loss: 0.1109, val_loss: 0.2113
```

Epoch 21:

```
1746/1746 [00:24<00:00, 70.84it/s]
Validating: 100%
                          | 102/102 [00:00<00:00, 819.87it/s]
Epoch 21 train_loss: 0.1049, val_loss: 0.2104
Epoch 22:
Training: 100%
                        | 1746/1746 [00:24<00:00, 71.00it/s]
Validating: 100%
                          | 102/102 [00:00<00:00, 819.55it/s]
Epoch 22 train_loss: 0.0991, val_loss: 0.2100
Epoch 23:
Training: 100%
                       | 1746/1746 [00:24<00:00, 70.70it/s]
Validating: 100%
                    | 102/102 [00:00<00:00, 846.89it/s]
Epoch 23 train_loss: 0.0936, val_loss: 0.2096
Epoch 24:
Training: 100% | 1746/1746 [00:40<00:00, 42.61it/s]
                          | 102/102 [00:00<00:00, 759.77it/s]
Validating: 100%
Epoch 24 train_loss: 0.0883, val_loss: 0.2096
Epoch 25:
Training: 100%
                        | 1746/1746 [00:24<00:00, 70.53it/s]
                          | 102/102 [00:00<00:00, 780.51it/s]
Validating: 100%||
Epoch 25 train_loss: 0.0833, val_loss: 0.2097
```


Evaluate the model with the validation set

Evaluation result: [NDCG@10: 0.021742, Recall@10: 0.042413]