1. Finding Confidence interval for the population proportion:

What we need:

Random probability sample

Conditions for Binomial:

- Fix number of trials
- Trials are independent
- Two outcomes: Success / Failure
- At least 10 'Yes' and 10 'No'

n - sample size; p $^{\wedge}$ - probability of success (or sample proportion of success); q $^{\wedge}$ - probability of failure (or sample proportion of failure)

$$n * p^{*} >= 10; n * q^{*} >= 10$$

Margin of Error (E) - the maximum possible difference between p (population proportion) and p^{\wedge} (sample proportion for success; is a point estimate for p).

$$E = Z_{\alpha/2} \cdot \sqrt{p^* \cdot q^* \cdot n} \quad (\text{ the square root included } p^*, q^*, \text{ and } n)$$

If p^{$^{^{\prime}}$} and q^{$^{^{\prime}}$} are not accurate, p^{$^{^{\prime}}$} q^{$^{^{\prime}}$} = 0.5 * 0.5 and after that we use the above formula

 $Z_{\alpha/2}$ - Critical value and we use Confidence level to find it:

for 90% Confidence level -> $Z_{\alpha/2}$ = 1.645:

for 95% Confidence level -> $Z_{\alpha/2}$ = 1,96;

for 98% Confidence level \rightarrow $Z_{\alpha/2} = 2,326$;

for 99% Confidence level-> $Z_{\alpha/2} = 2,576$;

Construct Confidence interval for the population proportion:

$$p^{\wedge} - E$$

How to find required sample size for the Survey with given E:

a) If we know p[^] and q[^]:

$$n = (Z_{\alpha/2} * Z_{\alpha/2}) * p^{*} * q^{*} / (E * E)$$

b) If we don't know p[^] and q[^]:

$$n = (Z_{\alpha/2} * Z_{\alpha/2}) * 0.25 / (E * E)$$

From the given Confidence interval find p^ and E:

p[^] = (upper boundary + lower boundary) / 2 E = (upper boundary - lower boundary) / 2

How to estimate the difference between two populations proportion:

p1 - p2 +-
$$Z_{\alpha/2} * \sqrt{(p^{n_1} * q^{n_1} / n_1) + (p^{n_2} * q^{n_2} / n_2)}$$
 (the square root end after n2)

2. Finding Confidence interval for the population mean, when population standard deviation is known (σ):

What we need:

Random probability sample

Population standard deviation is known (σ)

n > 30 or Population is normally distributed

 \overline{X} is a sample mean (point estimate) for population mean (μ)

Margin of Error (E) - the maximum possible difference between p (population proportion) and p^{\wedge} (sample proportion for success; is a point estimate for p).

$$E = Z_{\alpha/2} * \sigma / \sqrt{n}$$

$$\sigma$$
 / \sqrt{n} - standard error

 $Z_{\alpha/2}$ - Critical value and we use Confidence level to find it:

for 90% Confidence level -> $Z_{\alpha/2}$ = 1,645;

for 95% Confidence level -> $Z_{\alpha/2} = 1,96$;

for 98% Confidence level \rightarrow Z_{$\alpha/2$} = 2,326;

for 99% Confidence level-> $Z_{\alpha/2} = 2,576$;

Construct Confidence interval for the population mean:

$$\overline{X} - E < \mu < \overline{X} + E$$

From the given Confidence interval find \overline{X} and E:

 \overline{X} = (upper boundary + lower boundary) / 2

E = (upper boundary - lower boundary) / 2

How to find required sample size for the Survey with given E and σ :

n =
$$(Z_{\alpha/2} * Z_{\alpha/2}) * (\sigma * \sigma) / (E * E)$$

How to estimate the difference between two population means, if we have two independent groups, and σ is known for each population (example- BMI between men and women Mexican-American):

$$\mu_1$$
 - μ_2 +- $Z_{\alpha/2}$ * $\sqrt{((\sigma_1 * \sigma_1) / n_1)) + ((\sigma_2 * \sigma_2) / n_2))}$ (the square root end after n2)

3. Finding Confidence interval for the population mean, when population standard deviation is unknown (more realistic case):

What we need:

Random probability sample

n > 30 or Population is normally distributed

 \overline{X} is a sample mean (point estimate) for population mean (μ)

If we don't know σ , we can't use $Z_{\alpha/2}$. Instead we use $T_{\alpha/2}$ (T - score). Critical values are given by $T_{\alpha/2}$.

If the sample size is big enough $T_{\alpha/2} = Z_{\alpha/2}$

Steps to find T-score:

Calculate Degrees of Freedom (**D.F. = n - 1**), n is a sample size; Calculate α (Alpha); α is a Significance Level and is a complement of **Critical level**; For example if **Critical Level** is 95%, α = 5% or 0.05)

Use statistics table to find T - score:

Margin of Error (E) - the maximum possible difference between p (population proportion) and p^{\wedge} (sample proportion for success; is a point estimate for p).

$$E = T_{\alpha/2} * s / \sqrt{n}$$

s - sample standard deviation

s / \sqrt{n} - estimate standard error (sample standard error)

Construct Confidence interval for the population mean:

$$\overline{X}$$
 - E < μ < \overline{X} + E

From the given Confidence interval find \overline{X} and E:

 \overline{X} = (upper boundary + lower boundary) / 2

E = (upper boundary - lower boundary) / 2

How to estimate the difference between two population means, if we have two independent groups (for example- BMI between men and women Mexican-American) and standard deviation for these two populations is unknown:

a) First approach - assumption that $(\sigma_1 * \sigma_1)$ is not equal to $(\sigma_2 * \sigma_2)$ Degree of Freedom = min(n₁ - 1; n₂ - 1); take the minimum of these two After that find $T_{\alpha/2}$ from the statistics table.

$$\mu_1$$
 - μ_2 +- $T_{\alpha/2}$ * $\sqrt{((s_1 * s_1) / n_1)) + ((s_2 * s_2) / n_2))}$ (the square root end after n2)

b) Second approach - assumption that $(\sigma_1 * \sigma_1)$ is equal to $(\sigma_2 * \sigma_2)$ Degree of Freedom = $n_1 + n_2 - 2$ After that find $T_{\alpha/2}$ from the statistics table

$$\mu_1$$
 - μ_2 +- $T_{\alpha/2}$ * $\sqrt{(((n_1 - 1)(s_1 * s_1)) + ((n_2 - 1)(s_2 * s_2)))}$ / $(n_1 + n_2 - 2)$ (the square root end after 2)

*
$$\sqrt{(1/n_1) + (1/n_2)}$$
 (the square root end after n_2)

How to estimate the difference between two population means, if we have paired data (for example older twin education vs younger twin education)

n - is the same for these two groups Degree of Freedom = n - 1 After that find $T_{\alpha/2}$ from the statistics table.

$$\mu_1 - \mu_2 + - T_{\alpha/2} * (s_d / \sqrt{n})$$

Sd = S1 - S2

4. Finding Confidence interval for Variance (σ^2) and Standard Deviation (σ) . Chi-Squared Distribution.

Chi-Squared Distribution is not symmetrical, it's right-skewed. Values are only positive, because the distribution has only one tail to the right.

If Degrees of Freedom goes up the distribution becomes more symmetrical. Chi-Squared Distribution gives Critical value to the Right (X_R^2) for current Confidence

Level (90%, 95%, 98%, 99%). Critical value to the Left (XL^2) we can calculate: 1 - (α / 2) and then check the statistics Table.

Example: n = 12, 95% Confidence Level

Degrees of Freedom = 11 and for Confidence Level 95% (α = 0,05) X^{R^2} (found from statistics Table).

How to find X^{L^2} ?

 $1 - (\alpha/2) = 1 - 0.025 = 0.975$ and from statistics Table found that $X^{L^2} = 3.816$

Construct Confidence interval for the population variance:

$$(n-1)(s*s)/\chi R^2 < \sigma^2 < (n-1)(s*s)/\chi L^2$$

Construct Confidence interval for the population standard deviation:

$$\sqrt{(n-1)(s^*s)/\chi^2} < \sigma < \sqrt{(n-1)(s^*s)/\chi^2}$$

(the square roots end after the two Chi-squared which we found from Statistics Table)