Design of Experiments

1. Introduction

- 1.1. Terminology
- 1.2. Types of Experimental Designs

Simple designs:

Full factorial design:

Fractional factorial designs:

- 2. One Factorial Design and ANOVA
 - 2.1. Assumptions
 - 2.2. Target
 - 2.3. Lemma
 - 2.4. Parameter Evaluation
 - 2.4.1. Point-Based
 - 2.4.2. Confidence Interval
 - 2.5. Hypothesis Check
 - 2.6. Assumptions Check
 - 2.6.1. Errors Independent
 - 2.6.2. Normally distributed errors
 - 2.6.3. Constant Standard Devaiation of Errors
- 3. Two Factor Design
 - 3.1. About Log Transformation
 - 3.2. Assumptions
 - 3.3. Target
 - 3.4. Models
 - 3.5. Parameter evaluation
 - 3.5.1. Point-Based Evaluation
 - 3.5.2. Confidence Interval
 - 3.5.3. T test approximation
 - 3.6. Hypothesis Check
- 4. 2^k Factorial Designs
 - 4.1. Background
 - 4.2. Coding Scheme and Sign table

Coding Scheme

Sign Table

Back to Natrual variables

- 4.3. ANOVA for 2^2 design
 - 4.3.1. Hypothesis Check
 - 4.3.2. Confidence Interval
- 4.4. General 2^k Factorial Design

5. 2^{k-p} Fractional Factorial Designs

- 5.1. Background
- 5.2. Property of Fractional Design Features
- 5.3. Confounding

Algebra of Confounding (How to find?) Selection of Confounding Plans

1. Introduction

1.1. Terminology

1.2. Types of Experimental Designs

Simple designs:

- Vary one factor at a time.
- Not statistically efficient.
- Wrong conclusions if the factors have interaction

Full factorial design:

- All combinations
- Can find the effect of all factors.
- Too much time and money.

E.g., 2 factorial where each of n factors has 2 levels. # of experiments = 2^n .

Fractional factorial designs:

• Less than full factorial design.

- Saves time and expenses.
- Less information.
- May not get all interactions.
- Not a problem if negligible interactions.

2. One Factorial Design and ANOVA

2.1. Assumptions

- (1) 每一总体均为正态总体,记为 $N(\mu_i,\sigma_i^2)$, $i=1,\cdots,r$.
- (2) 各总体的方差相同,记为 $\sigma_1^2 = \sigma_2^2 = \cdots = \sigma_r^2 = \sigma^2$.
- (3) 从每一总体中抽取的样本是相互独立的,即所有的试验结果 y_{ii} 都相互独立.

这三个假定都可以用统计方法进行验证. 譬如,利用正态性检验(§7.5节) 验证(1)成立,利用后面§8.3的方差齐性检验验证(2)成立,而试验结果 y_{ij} 的 种立性可由随机化实现,这里的随机化是指所有试验按随机次序进行.

在水平 A_i 下的试验结果 y_{ij} 与该水平下的指标均值 μ_i 一般总是有差距的,记 $\varepsilon_{ij} = y_{ij} - \mu_i$, ε_{ij} 称为随机误差. 于是有

$$y_{ij} = \mu_i + \varepsilon_{ij}. \tag{8.1.2}$$

(8.1.2)式称为试验结果 y_{ij} 的数据结构式. 把三个假定用于数据结构式就可以写出单因子方差分析的统计模型:

$$\begin{cases} y_{ij} = \mu_i + \varepsilon_{ij}, & i = 1, 2, \dots, r, \quad j = 1, 2, \dots, m, \\ \text{诸 } \varepsilon_{ij} \text{ 相互独立, 且都服从 } N(0, \sigma^2). \end{cases}$$
(8.1.3)

2.2. Target

我们要做的工作是比较各水平下的均值是否相同,即要对如下的一个假设 进行检验,

$$H_0: \mu_1 = \mu_2 = \dots = \mu_r,$$
 (8.1.1)

其备择假设为

$$H_1:\mu_1,\mu_2,\cdots,\mu_r$$
,不全相等,

在不会引起误解的情况下, H, 通常可省略不写.

如果 H_0 成立,因子 A 的 r 个水平均值相同,称因子 A 的 r 个水平间没有显著差异,简称因子 A 不显著;反之,当 H_0 不成立时,因子 A 的 r 个水平均值不全相同,这时称因子 A 的不同水平间有显著差异,简称因子 A 显著.

2.3. Lemma

2.4. Parameter Evaluation

2.4.1. Point-Based

$$\begin{split} \hat{\boldsymbol{\mu}} &= \overline{\boldsymbol{y}}, \\ \hat{\boldsymbol{a}}_i &= \overline{\boldsymbol{y}}_i, -\overline{\boldsymbol{y}}, \quad i = 1, \cdots, r, \\ \hat{\boldsymbol{\sigma}}_M^2 &= \frac{1}{n} \sum_{i=1}^r \sum_{j=1}^n \left(y_{ij} - \overline{\boldsymbol{y}}_i, \right)^2 = \frac{S_\epsilon}{n}. \end{split}$$

由最大似然估计的不变性,各水平均值μ,的最大似然估计为

$$\hat{\mu}_i = \overline{y}_i$$
, (8.

由于 $\hat{\sigma}_{_{M}}^{2}$ 不是 σ^{2} 的无偏估计,实用中通常采用如下误差方差的无偏估计

$$\hat{\sigma}^2 = MS_s. \tag{8}$$

2.4.2. Confidence Interval

以下讨论各水平均值 μ_i 的置信区间. 由定理 8. 1. 2 知, y_i . $\sim N(\mu_i, \sigma^2/m)$, $S_e/\sigma^2 \sim \chi^2(f_e)$,且两者独立,故

$$\frac{\sqrt{m}\left(\overline{y}_{i\cdot} - \mu_{i}\right)}{\sqrt{S_{\epsilon}/f_{\epsilon}}} \sim t(f_{\epsilon}),$$

由此给出A,的水平均值 μ ,的 $1-\alpha$ 的置信区间为

$$\bar{y}_i \pm \hat{\sigma} \cdot t_{1-\alpha/2}(f_e) / \sqrt{m}$$
, (8.1.23)

Parameter	Estimate	Variance
μ	$ar{y}_{\cdot \cdot \cdot}$	s_e^2/ar
$lpha_j$	$ar{y}_{.j}$ - $ar{y}_{}$	$s_e^2(a-1)/ar$
	-	
s_e^2	$\frac{\sum_{i=1}^{n} e_{ij}^2}{a(r-1)}$	Q: what is std

2.5. Hypothesis Check

偏差平方和 Q 的大小与数据个数(或自由度)有关,一般说来,数据越多,其偏差平方和越大.为了便于在偏差平方和间进行比较,统计上引入了均方的概念,它定义为

$$MS = \frac{Q}{f_\varrho},$$

其意为平均每个自由度上有多少平方和.

如今要对因子平方和 S, 与误差平方和 S, 之间进行比较,用其均方

$$MS_A = \frac{S_A}{f_A}, \quad MS_{\epsilon} = \frac{S_{\epsilon}}{f_{\epsilon}}$$

进行比较更为合理,因为均方排除了自由度不同所产生的干扰.故用

$$F = \frac{MS_A}{MS_e} = \frac{S_A/f_A}{S_e/f_e}$$
 (8.1.17)

对给定的α,可作如下判断:

- 如果 F≥F_{1-α}(f_A,f_e),则认为因子 A 显著.
- 若 F<F1-a(f1,f2),则说明因子 A 不显著.

2.6. Assumptions Check

2.6.1. Errors Independent

1. Independent errors

- a) Scatter plot of residuals versus the predicted response
- a) Plot the residuals as a function of the experiment number

Trend up or down ⇒ other factors or side effects.

2.6.2. Normally distributed errors

Using Q-Q graph

2. Normally distributed errors:

Normal quantile-quantile plot of errors

Spread at c significantl than other levels⇒Ne transforma log

统计学里Q-Q图(Q代表分位数)是一个<u>概率</u>图,用<u>图形</u>的方式比较两个概率分布,把他们的两个分位数放在一起比较。首先选好分位数间隔。图上的点(x,y)反映出其中一个第二个分布(y坐标)的分位数和与之对应的第一分布(x坐标)的相同<u>分位数</u>。因此,这条线是一条以分位数间隔为参数的曲线。

如果两个分布相似,则该Q-Q图趋近于落在y=x线上。如果两分布 线性相关,则点在Q-Q图上趋近于落在一条直线上,但不一定在 y=x线上

2.6.3. Constant Standard Devaiation of Errors

This part is to test errors are i.i.d, especially focus on the standard deviation

Constant standard deviation of errors:

Scatter plot of y for various levels of the factor

3. Two Factor Design

3.1. About Log Transformation

When the max and min values in the exprements is very large, we always do a log transformation

3.2. Assumptions

并设:
$$X_{ijk} \sim N$$
 (μ_{ij}, σ^2) , i =1, 2, ..., r , j =1, 2, ..., s , k =1, 2, ..., t , S_{ijk} 独立。这里, μ_{ij} 和 σ^2 均为未知参数,或写成

$$X_{ijk} = \mu_{ij} + \varepsilon_{ijk}$$
,
$$\varepsilon_{ijk} \sim \int N(0, \sigma^2) , 各 \varepsilon_{ijk} 独立,$$
$$i=1,2,\cdots,r,j=1,2,\cdots, s, k=1,2,\cdots, t_o$$

3.3. Target

$$\begin{cases} H_{01}: \alpha_1 = \alpha_2 = \dots = \alpha_r = 0 \\ H_{11}: \alpha_1, \alpha_2, \dots, \alpha_r$$
不全为零 (7.17)

$$\begin{cases}
H_{02}: \beta_1 = \beta_2 = \dots = \beta_s = 0 \\
H_{12}: \beta_1, \beta_2, \dots, \beta_s$$
不全为零
$$\end{cases} (7.18)$$

$$\begin{cases} H_{03}: \gamma_{11} = \gamma_{12} = \dots = \gamma_{rs} = 0 \\ H_{13}: \gamma_{11}, \gamma_{12}, \dots, \gamma_{rs} 不全为零 \end{cases}$$
 (7.19)

3.4. Models

1. Model: With r replications-

 α_i : Effect of factor A $y_{ijk} = \mu + \alpha_j + \beta_i + \gamma_{ij} + e_{ijk} \qquad \begin{array}{l} \beta_{\rm j} \text{ :Effect of factor B} \\ \gamma_{\rm ij} \text{ :Effect of interaction A\&B.} \end{array}$ β_j :Effect of factor B Q: What about distribution of error? $\sum_{k=1}^{a} \alpha_j = 0; \sum_{i=1}^{b} \beta_i = 0;$ $\sum_{j=1}^{a} \gamma_{1j} = \sum_{j=1}^{a} \gamma_{2j} = \dots = \sum_{j=1}^{a} \gamma_{bj} = 0$ $\sum_{i=1}^{b} \gamma_{i1} = \sum_{i=1}^{b} \gamma_{i2} = \dots = \sum_{i=1}^{b} \gamma_{ia} = 0$ $\sum_{k=1}^{r} e_{ijk} = 0 \quad \forall i, j \qquad e_{ijk} \sim N(0, \sigma)$

in which

 γ_{ij} is the interaction of A&B

3.5. Parameter evaluation

3.5.1. Point-Based Evaluation

How to estimate the parameters

$$\bar{y}_{ij.} = \mu + \alpha_j + \beta_i + \gamma_{ij}$$

$$\mu = \bar{y}_{...}$$

$$\alpha_j = \bar{y}_{.j.} - \bar{y}_{...}$$

$$\beta_i = \bar{y}_{i..} - \bar{y}_{...}$$

$$\gamma_{ij} = \bar{y}_{ij.} - \bar{y}_{i..} - \bar{y}_{.j.} + \bar{y}_{...}$$

Check the textbook for derivation.

3.5.2. Confidence Interval

Parameter	Estimate	Variance
μ	$\bar{y}_{}$	s_e^2/abr
α_j	\bar{y}_{i} - $\bar{y}_{}$	$s_e^2(a-1)/abr$
β_i	$ar{y}_{.j.}$ - $ar{y}_{}$	$s_e^2(b-1)/abr$ $s_e^2(a-1)(b-1)/abr$
γ_{ij}	\bar{y}_{ij} $\bar{y}_{i.}$ $\bar{y}_{.j}$.+ $\bar{y}_{}$	$s_e^2(a-1)(b-1)/abr$
9	S 2 /5 1/ 1)	2
s_e^2	$\sum e_{ijk}^2/\{ab(r-1)\}$	
Degrees	s of freedom for error	s = ab(r-1)

Same to Single Factor Situation

3.5.3. T test approximation

When freedom degree is larger than 32, T distribution is similar to Normal Distribution

3.6. Hypothesis Check

$$SST = SSY - SS0 = SSA + SSB + SSAB + SSE$$

$$\sum_{(y_{ijk} = \bar{y}_{ij})^2} \sum_{z} y_{zj}^2 - \sum_{\bar{y}_{ij}} \sum_{z} \sum_{z} \alpha_{z}^2 + \sum_{z} \beta_{z}^2 + \sum_{z} \gamma_{zj}^2 + \sum_{z} e_{zj}^2$$

$$\sum_{ijk} (y_{ijk} - \bar{y}_{...})^2 = \sum_{ijk} y_{ijk}^2 - \sum_{ijk} \bar{y}_{...} = \sum_{ijk} \alpha_i^2 + \sum_{ijk} \beta_j^2 + \sum_{ijk} \gamma_{ij}^2 + \sum_{ijk} e_{ijk}^2$$

Source	SSY	SS0	SSA	SSB	SSAB	SSE
Degree of freedom (V)	abr	1	a-1	b-1	(a-1)(b-1)	ab(r-1)

$$\circ \frac{SSA/v_A}{SSE/v_e} \sim F[a-1,ab(r-1)]$$

$$\circ \frac{SSB/v_B}{SSE/v_e} \sim F[b-1, ab(r-1)]$$

$$\circ \frac{SSAB/v_{AB}}{SSE/v_e} \sim F[(a-1)(b-1), ab(r-1)]$$

4. 2^k Factorial Designs

4.1. Background

• K factors, each at two levels which can be quantitative or qualitative

4.2. Coding Scheme and Sign table

Coding Scheme

- We use (+1,-1) as the coded variables to denote high and low values of factor
- ullet For a 2^k design
 - The sign table has 2^k columns corresponding to parameters including intercept, main effects, two factor interactions...up to kfactor interactions.
 - It has 2^k rows, corresponding to experiment types
 - It can use to estimate 2^k parameters

Sign Table

- Case of replication: replace y by average of y to estimate model parameters.
- When First Building the Sign
- When building the Sign Table, first column is parameter of q_0 , that is always 1
- Each Line after use binary encoding way, first {+1,-1,+1,-1}, next{+1,+1,-1,-1,+1,+1,-1,-1}... larger the cycles

Parameter Estimation

Property

- Fractional factorial designs also use orthogonal vectors.
- The sum of the products of any two columns is zero
- The sum of the squares of each column is 22.

Back to Natrual variables

$$X_{Ai} = rac{X_{
m natural} \ - (\ {
m low} \ + \ {
m high} \)/2}{(\ {
m high} \ - \ {
m low} \)/2}$$

4.3. ANOVA for 2^2 design

4.3.1. Hypothesis Check

Error = Measured value- estimated values

$$e_{ij} = y_{ij} - \hat{y}_i$$

= $y_{ij} - q_0 - q_A x_{Ai} - q_B x_{Bi} - q_{AB} x_{Ai} x_{Bi}$

Total Variation

$$SST = \sum_{i:} (y_{ij} - \bar{y}_{..}) = SSA + SSB + SSAB + SSE$$

F-Test

Derivation (II)

- Hypothesis: Tested factors have no effect on the response y
- \circ Compute F0, and compare it with F tables with significance α

$$\frac{SSA/v_A}{SSE/v_e}$$
, $\frac{SSB/v_B}{SSE/v_e}$, $\frac{SSAB/v_{AB}}{SSE/v_e}$

Q: Which factors could you test and how?

$$y_{i,j} = q_0 + q_A x_{A_i} + q_B x_{B_i} + q_{AB} x_{A_i} x_{B_i} + e_{ij}$$

Total variation or total sum of squares:

$$SST = \sum_{ij} (y_{ij} - \bar{y}_{..})^2 = \sum_{ij} y_{ij}^2 - \sum_{ij} \bar{y}_{..}^2$$

$$SST = \sum_{ij} (y_{ij} - \bar{y}_{..})^2 = 2^2 r q_A^2 + 2^2 r q_B^2 + 2^2 r q_{AB}^2 + \sum_{ij} e_{ij}^2$$

$$SSAB+SSE$$

Derivation (II)
$$\sum_{ij} y_{ij}^2 = \sum_{ij} q_0^2 + \sum_{i,j} q_A^2 x_{A_i}^2 + \sum_{i,j} q_B^2 x_{B_i}^2 \\ + \sum_{i,j} q_{AB}^2 x_{A_i}^2 x_{B_i}^2 + \sum_{ij} e_{ij}^2$$

$$SSY = SSO + SSA + SSB$$

Because of row/column sum zero and the orthogonal, each cross product term is zero

$$SSY = SS0 + SSA + SSB + SSAB + SSE$$

For 2 factors, 3 replication, we have freedom shown in right place

- Degrees of freedom of SSA, SSB, SSAB, SSE, and SST
- ? 1, 1, 1, 8, 11
- Compute F0 for all factors

$$\frac{SSA/1}{SSE/8} \ , \frac{SSB/1}{SSE/8} \ , \frac{SSAB/1}{SSE/8}$$

4.3.2. Confidence Interval

$$q_i \mp t_{[1-\alpha/2;2^2(r-1)]} s_{q_i}$$

Q: The difference betwee F-test?

vation

Assumption

error
$$\sim \mathcal{N}(0, \sigma_e)$$
 $\mathbf{y} \sim \mathcal{N}(\bar{y}, \sigma_e)$

It's for each parameter, where is for the significance of overa factors

Estimate of variance

$$\hat{\sigma_e}^2 = s_e^2 = \frac{1}{2^2(r-1)} \sum_{ij} e_{ij}^2 = \frac{SSE}{2^2(r-1)}$$

- Denominator = $2^2(r-1)$ = # of independent terms in SSE,SSE has $2^2(r-1)$ degrees of freedom.
- Similarly, $\overline{s_{q_A}=s_{q_B}=s_{q_{AB}}=rac{s_e}{\sqrt{2^2r}}}$

4.4. General 2^k Factorial Design

Percentage of y's variation explained by jth effect =

$$(SSj/SST) \times 100\%$$

Standard deviation of errors:

$$s_e = \sqrt{\frac{\text{SSE}}{2^k(r-1)}}$$

Standard deviation of effects:

$$s_{q_0} = s_{q_A} = s_{q_B} = s_{q_{AB}} = s_e / \sqrt{2^k r}$$

5. 2^{k-p} Fractional Factorial Designs

5.1. Background

Because for sign table, k factors we need 2^k experiements, in another word, 2^k experiements can calculate at most 2^k parameters

Large number of factors

- large number of experiments
- full factorial design too expensive
- Use a fractional factorial design

So we want to use something to analyze k factors with only 2^{k-p} experiments:

- ullet 2^{k-1} design requires only 1/2 as many experiments
- 2^{k-2} design requires only 1/4 of the experiments

- Design Table of 2⁷⁻⁴ generated by by DoE
- Study 7 factors with only 8 experiments!

Expt No.	A	В	С	D	Е	F	G	Q: What's the maximum numb
1	-1	-1	-1	1	1	1	-1	of parameter can we learn fro
2	1	-1	-1	-1	-1	1	1	these 8 experiments?
3	-1	1	-1	-1	1	-1	1	
4	1	1	-1	1	-1	-1	-1	Q: Which parameters are
5	-1	-1	1	1	-1	-1	1	included in the model
6	1	-1	1	-1	1	-1	-1	
7	-1	1	1	-1	-1	1	-1	Q: How to decide?
8	1	1	1	1	1	1	1	

5.2. Property of Fractional Design Features

 Fractional factorial designs also use orthogonal vectors. The sum of each column is zero.

$$\sum_{i} x_{ij} = 0; \forall j$$

• The sum of the products of any two columns is zero.

$$\sum x_{ij}x_{il} = 0, \forall j \neq l$$

• The sum of the squares of each column is 2⁷⁻⁴.

$$\sum_{i} x_{ij}^2 = 2^{7-4}, \forall j$$

Expt No.	Α	В	С	D	Е	F	G
1	-1	-1	-1	1	1	1	-1
2	1	-1	-1	-1	-1	1	1
3	-1	1	-1	-1	1	-1	1
4	1	1	-1	1	-1	-1	-1
5	-1	-1	1	1	-1	-1	1
6	1	-1	1	-1	1	-1	-1
7	-1	1	1	-1	-1	1	-1
8	1	1	1	1	1	1	1

5.3. Confounding

Only the combined influence of two or more effects can be computed.

be computed. For example

$$\begin{array}{rcl} q_A & = & \displaystyle \sum_i y_i x_{Ai} \\ & = & \displaystyle \frac{-y_1 + y_2 - y_3 + y_4 - y_5 + y_6 - y_7 + y_8}{8} \\ q_D & = & \displaystyle \sum_i y_i x_{Di} \\ & = & \displaystyle \frac{-y_1 + y_2 + y_3 - y_4 + y_5 - y_6 - y_7 + y_8}{8} \\ q_{ABC} & = & \displaystyle \sum_i y_i x_{Ai} x_{Bi} x_{Ci} \\ & = & \displaystyle \frac{-y_1 + y_2 + y_3 - y_4 + y_5 - y_6 - y_7 + y_8}{8} \end{array}$$

Algebra of Confounding (How to find?)

Rules

- I is treated as unity
- Any term with a power of 2 is erased

Example. I=ABCD, multiplying A on both sides \rightarrow IA = A²BCD \rightarrow A = BCD

Steps

- Selecte the Base, for example I=ABCD
- multiply all combination on both side

Properties

- 2^{k-p} experiment, 2^p different design
- A Fractional Factorial Design is Not Unique

Selection of Confounding Plans

Rersolution of design:

- Number of different terms on both side
- The order of confounding never change in a Plan no matter what

Order of an effect = Number of terms. E.g., Order of I = ABCD = 4 because order of I = 0

Order of a confounding = Sum of order of two terms. E.g., AB=CDE is of order ??? 5

you multiplied on both side

Design Resolution

The larger Resolution, the better,

That potentially because, larger resolution means we take more lower-order interaction/factors into consideration