Probabilidad Varianza y Valor esperado Distribuciones Discretas Distribuciones Continuas Teoremas de Aproximación

Demostraciones de PRYE

David Gómez, Laura Rincón

15 de Noviembre de 2024

Probabilidad de una unión finita

La probabilidad de una unión finita está dada por

$$P(A_{1} \cup A_{2}) = P(A_{1}) + P(A_{2}) - P(A_{1} \cap A_{2})$$

$$P\left(\bigcup_{i=1}^{n+1} A_{i}\right) = P(A_{n+1}) + P\left(\bigcup_{i=1}^{n} A_{i}\right) - P\left(\bigcup_{i=1}^{n} (A_{n+1} \cap A_{i})\right)$$

Probabilidad de una unión finita

$$P\left(\bigcup_{i=1}^{n} A_{i}\right)$$

$$= \sum_{1 \leq i \leq n} P(A_{i}) - \sum_{1 \leq i < j \leq n} P(A_{i} \cap A_{j})$$

$$+ \sum_{1 \leq i < j < k \leq n} P(A_{i} \cap A_{j} \cap A_{k}) - \dots + (-1)^{n} P\left(\bigcap_{i=1}^{n} A_{i}\right)$$

Dos eventos, A y B, de un espacio muestral, son llamados independientes cuando $P(A \cap B) = P(A)P(B)$.

Si A y B son independientes, entonces $A^c y B$ son independientes; $A^c y B^c$ son independientes.

Dos eventos, A y B, de un espacio muestral, son llamados independientes cuando $P(A \cap B) = P(A)P(B)$. Si A y B son independientes, entonces A^c y B son independientes; $A^c y B^c$ son independientes.

Dos eventos, A y B, de un espacio muestral, son llamados independientes cuando $P(A \cap B) = P(A)P(B)$.

Si A y B son independientes, entonces $A^c y B$ son independientes; $A^c y B^c$ son independientes.

Usando la igualdad
$$P(B) = P(B) P(A) + P(B \cap A^c)$$

$$P(B \cap A^{c})$$

$$=$$

$$P(B) - P(B)P(A)$$

$$=$$

$$P(B)(1 - P(A))$$

$$=$$

$$P(B)P(A^{c})$$

Dos eventos, A y B, de un espacio muestral, son llamados independientes cuando $P(A \cap B) = P(A)P(B)$. Si A y B son independientes, entonces A^c y B son independientes; A^c y B^c son independientes.

$$P(A^{c} \cap B^{c}) = 1 - P(A \cup B)$$
=
$$1 - [P(A) + P(B) - P(A \cap B)]$$
=
$$(1 - P(A))(1 - P(B))$$
=
$$P(A^{c}) P(B^{c})$$

Valor Esperado

- Si $P(X \ge 0) = 1$ y E[X] existe entonces $E[X] \ge 0$
- **2** $E[\alpha] = \alpha$ para α constante
- **3** Si existe $M \ge 0$ tal que $P(|X| \le M) = 1$ entonces E[X] existe.
- Si α y β son constantes, y si g y h son funciones tales que g(X) y h(X) son variables aleatorias cuyos valores esperados existen, entonces $\mathbb{E}[\alpha g(X) + \beta h(X)] = \alpha \mathbb{E}[g(X)] + \beta \mathbb{E}[h(X)]$
- ③ Si g y h son funciones tales que g(X) y h(X) son variables aleatorias cuyos valores esperados existen y $g(x) \le h(x)$ para todo x, entonces $E[g(X)] \le E[h(X)]$
- **3** Sean Y una variable aleatoria independiente de X y g, h funciones tales que g(X) y g(Y) sean variables aleatorias cuyos valores esperados existen. Entonces, textE[g(X)h(Y)] = E[g(X)]E[h(Y)].

Varianza

Sea X una variable aleatoria cuyo valor esperado existe y α , $\beta \in \mathbb{R}$ constantes

- $Var[X] \ge 0$
- Var $[\alpha] = 0$

- **3** Var[X] = 0 si y solo si P(X = E(X)) = 1

Binomial

$$X \sim B(n, p)$$

$$f(x) = P(X = x) = \binom{n}{x} p^{x} (1 - p)^{n - x}$$
 $(0 \le x \le n)$

- ① Para todo $x \in \mathbb{Z}$ con $0 \le x \le n$, $P(X = x) \ge 0$.
- 2 $\sum_{x=0}^{n} P(X=x) = 1.$
- **3** E[X] = np.

Binomial

$$X \sim B(n, p)$$

$$f(x) = P(X = x) = \binom{n}{x} p^{x} (1 - p)^{n - x}$$
 $(0 \le x \le n)$

- 1 Para todo $x \in \mathbb{Z}$ con $0 \le x \le n$, $P(X = x) \ge 0$.
- **3** E[X] = np.
- **4** Var[X] = np(1-p).

Binomial

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

₩.

$$f(x) = P(X = x) = \binom{n}{x} p^{x} (1 - p)^{n - x}$$
 $(0 \le x \le n)$

- ① Para todo $x \in \mathbb{Z}$ con $0 \le x \le n$, $P(X = x) \ge 0$.
- 2 $\sum_{x=0}^{n} P(X = x) = 1.$

Geométrica

$$X \sim \mathsf{Geom}(p)$$

$$f(x) = P(X = x) = p(1 - p)^{x - 1}$$
 $(x \in \mathbb{Z}^+)$

- ① Para todo $x \in \mathbb{Z}^+$, $P(X = x) \ge 0$.
- **3** $E[X] = \frac{1}{p}$.
- ① $Var[X] = \frac{1-p}{p^2}$.

Geométrica

$$X \sim \mathsf{Geom}(p)$$

$$f(x) = P(X = x) = p(1 - p)^{x-1}$$
 $(x \in \mathbb{Z}^+)$

- $\sum_{x \in \mathbb{Z}^+} P(X = x) = 1.$
- **3** $E[X] = \frac{1}{p}$.
- **4** Var[X] = $\frac{1-p}{p^2}$.

Geométrica

$$\sum_{k=0}^{n} p^{k} = \frac{1 - p^{n+1}}{1 - p}$$

$$f(x) = P(X = x) = p(1-p)^{x-1}$$
 $(x \in \mathbb{Z}^+)$

- ① Para todo $x \in \mathbb{Z}^+$, $P(X = x) \ge 0$.
- **3** $E[X] = \frac{1}{p}$.
- ① $Var[X] = \frac{1-p}{p^2}$.

Hipergeométrica

$$X \sim Hg(N, K, n)$$

$$f(x) = P(X = x) = \frac{\binom{K}{x} \binom{N-K}{n-x}}{\binom{N}{n}}$$
$$(\max\{0, n+K-N\} \le x \le \min\{K, n\})$$

- ① para todo $x \in \mathbb{Z}$ con $0 \le x \le n$, $P(X = x) \ge 0$.

Hipergeométrica

$$X \sim Hg(N, K, n)$$

$$f(x) = P(X = x) = \frac{\binom{K}{x} \binom{N-K}{n-x}}{\binom{N}{n}}$$
$$(\max\{0, n+K-N\} \le x \le \min\{K, n\})$$

- **1** para todo $x \in \mathbb{Z}$ con $0 \le x \le n$, $P(X = x) \ge 0$.
- $\bullet E[X] = \frac{nK}{N}.$

Hipergeométrica

$${m+n \choose k} = \sum_{r=0}^{K} {m \choose r} {n \choose k-r}$$

$$f(x) = P(X = x) = \frac{{K \choose x} {N-K \choose n-x}}{{N \choose n}}$$

$$(\max\{0, n+K-N\} \le x \le \min\{K, n\})$$

- ① para todo $x \in \mathbb{Z}$ con $0 \le x \le n$, $P(X = x) \ge 0$.
- $\bullet \quad \mathsf{E}[X] = \tfrac{nK}{N}.$
- $\text{Var}[X] = \frac{n \, K(N-K)(N-n)}{N^2(N-1)}$

Poisson

$$X \sim \mathsf{Pois}(\lambda)$$

$$f(x) = P(X = x) = \frac{\lambda^x e^{-\lambda}}{x!}$$
 $(x \in \mathbb{N})$

- ① Para todo $x \in \mathbb{N}$, $P(X = x) \ge 0$.
- **3** $E[X] = \lambda$.
- \bullet Var[X] = λ .

Poisson

$$X \sim \mathsf{Pois}(\lambda)$$

$$f(x) = P(X = x) = \frac{\lambda^x e^{-\lambda}}{x!}$$
 $(x \in \mathbb{N})$

- **1** Para todo $x \in \mathbb{N}$, $P(X = x) \ge 0$.
- **3** $E[X] = \lambda$.

Poisson

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$

$$f(x) = P(X = x) = \frac{\lambda^x e^{-\lambda}}{x!}$$
 $(x \in \mathbb{N})$

- ① Para todo $x \in \mathbb{N}$, $P(X = x) \ge 0$.

- \bullet Var[X] = λ .

Normal

$$X \sim N(\mu, \sigma^2)$$

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/(2\sigma^2)} \qquad (x \in \mathbb{R})$$

- ① Para todo $x \in \mathbb{R}$, $f(x) \ge 0$.
- **3** $E[X] = \mu$.

Normal

$$X \sim N(\mu, \sigma^2)$$

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/(2\sigma^2)} \qquad (x \in \mathbb{R})$$

- **1** Para todo $x \in \mathbb{R}$, $f(x) \ge 0$.
- **3** $E[X] = \mu$.
- **4** $Var[X] = \sigma^2$.

Normal

$$\int_{\mathbb{R}} e^{-x^2} dx = \sqrt{\pi}$$

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/(2\sigma^2)} \qquad (x \in \mathbb{R})$$

- ① Para todo $x \in \mathbb{R}$, $f(x) \ge 0$.
- **3** $E[X] = \mu$.
- $Var[X] = \sigma^2$.

Gamma

$$X \sim \mathsf{Gamma}(\alpha, \beta)$$

$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}$$
 $(x \in \mathbb{R}^+)$

- ① Para todo $x \in \mathbb{R}$, $f(x) \ge 0$.

Gamma

$$X \sim \mathsf{Gamma}(\alpha, \beta)$$

$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x} \qquad (x \in \mathbb{R}^+)$$

- **1** Para todo $x \in \mathbb{R}$, $f(x) \ge 0$.
- $\bullet \quad \mathsf{E}[X] = \tfrac{\alpha}{\beta}$

Gamma

$$\Gamma(\alpha) = \int_0^\infty t^{\alpha - 1} e^{-t} dt$$

$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}$$
 $(x \in \mathbb{R}^+)$

- ① Para todo $x \in \mathbb{R}$, $f(x) \ge 0$.

Chi-Cuadrado

$$X \sim \chi^2(v)$$

$$f(x) = \frac{1}{2^{\nu/2} \Gamma\left(\frac{\nu}{2}\right)} x^{(\nu/2) - 1} e^{-x/2} \qquad (x \ge 0)$$

- ① para todo $x \in \mathbb{R}$, $f(x) \ge 0$
- **3** E[X] = v $(v \ge 0)$

Chi-Cuadrado

$$X \sim \chi^2(v)$$

$$f(x) = \frac{1}{2^{\nu/2} \Gamma\left(\frac{\nu}{2}\right)} x^{(\nu/2) - 1} e^{-x/2} \qquad (x \ge 0)$$

- **1** para todo $x \in \mathbb{R}$, $f(x) \ge 0$
- **3** E[X] = v $(v \ge 0)$

Chi-Cuadrado

$$\Gamma(x+1) = x\Gamma(x)$$

$$f(x) = \frac{1}{2^{v/2}\Gamma\left(\frac{v}{2}\right)}x^{(v/2)-1}e^{-x/2} \qquad (x \ge 0)$$

- ① para todo $x \in \mathbb{R}$, $f(x) \ge 0$

$$T \sim \mathbf{t}(v)$$

$$f(x) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{x^2}{\nu}\right)^{-(\nu+1)/2} \qquad (x \in \mathbb{R})$$

- ① Para todo $x \in \mathbb{R}$, $f(x) \ge 0$.
- 3 E[F] = 0 (v > 1)
- ① $Var[F] = \frac{v}{v-2}$ (v > 2)

$$T \sim \mathbf{t}(v)$$

$$f(x) = \frac{1}{\sqrt{v'}B\left(\frac{1}{2}, \frac{v}{2}\right)} \left(1 + \frac{x^2}{v}\right)^{-(v+1)/2} \qquad (x \in \mathbb{R})$$

- ① Para todo $x \in \mathbb{R}$, $f(x) \ge 0$.
- 3 E[F] = 0 (v > 1)
- ① $Var[F] = \frac{v}{v-2}$ (v > 2)

$$T \sim \mathbf{t}(v)$$

$$f(x) = \frac{1}{\sqrt{v'B}\left(\frac{1}{2}, \frac{v}{2}\right)} \left(1 + \frac{x^2}{v}\right)^{-(v+1)/2} \qquad (x \in \mathbb{R})$$

- **1** Para todo $x \in \mathbb{R}$, $f(x) \ge 0$.
- **3** E[F] = 0 (v > 1)

$$B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$$

Ш

$$f(x) = \frac{1}{\sqrt{v'B\left(\frac{1}{2}, \frac{v}{2}\right)}} \left(1 + \frac{x^2}{v}\right)^{-(v+1)/2} \qquad (x \in \mathbb{R})$$

- ① Para todo $x \in \mathbb{R}$, $f(x) \ge 0$.
- **3** E[F] = 0 (v > 1)
- 4 Var $[F] = \frac{v}{v-2}$ (v > 2)

$$F \sim \mathbf{f}(u, v)$$

$$f(x) = \frac{\Gamma\left(\frac{u+v}{2}\right) \left(\frac{u}{v}\right)^{u/2}}{\Gamma\left(\frac{u}{2}\right) \Gamma\left(\frac{v}{2}\right)} \frac{x^{(u/2)-1}}{\left(1 + \frac{u}{v}x\right)^{(u+v)/2}} \qquad (x \in \mathbb{R}^+)$$

- ① Para todo $x \in \mathbb{R}$, $f(x) \ge 0$.
- 3 $E[F] = \frac{v}{v-2}$ (v > 2)
- ① $Var[F] = \frac{2v^2(u+v-2)}{u(v-2)^2(v-4)}$ (v > 4)

$$F \sim \mathbf{f}(u, v)$$

$$f(x) = \frac{\left(\frac{u}{v}\right)^{u/2}}{B\left(\frac{u}{2}, \frac{v}{2}\right)} \frac{x^{(u/2)-1}}{\left(1 + \frac{u}{v}x\right)^{(u+v)/2}} \qquad (x \in \mathbb{R}^+)$$

- ① Para todo $x \in \mathbb{R}$, $f(x) \ge 0$.
- 3 $E[F] = \frac{v}{v-2}$ (v > 2)
- 4 $Var[F] = \frac{2v^2(u+v-2)}{u(v-2)^2(v-4)}$ (v > 4)

$$F \sim \mathbf{f}(u, v)$$

$$f(x) = \frac{\left(\frac{u}{v}\right)^{u/2}}{B\left(\frac{u}{2}, \frac{v}{2}\right)} \frac{x^{(u/2)-1}}{\left(1 + \frac{u}{v}x\right)^{(u+v)/2}} \qquad (x \in \mathbb{R}^+)$$

- Para todo $x \in \mathbb{R}$, $f(x) \ge 0$.
- **3** $E[F] = \frac{v}{v-2}$ (v > 2)

$$B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$$

Ш

$$f(x) = \frac{\left(\frac{u}{v}\right)^{u/2}}{B\left(\frac{u}{2}, \frac{v}{2}\right)} \frac{x^{(u/2)-1}}{\left(1 + \frac{u}{v}x\right)^{(u+v)/2}} \qquad (x \in \mathbb{R}^+)$$

- ① Para todo $x \in \mathbb{R}$, $f(x) \ge 0$.
- 3 $E[F] = \frac{v}{v-2}$ (v > 2)

Hipergeométrica a Binomial

Sea $X \sim Hg(N, K, n)$. Para n fijo, si N, K cumplen que

$$\frac{x-1}{K} < \varepsilon_1$$

$$\frac{n-x-1}{N-K} < \varepsilon_2$$

$$\frac{n-1}{N-n+1} < \varepsilon_3$$

Entonces,

$$\left|\frac{Hg(N,K,n)(x)}{B(n,\frac{K}{N})(x)}-1\right|<(\varepsilon_1+1)^x(\varepsilon_2+1)^{n-x}(\varepsilon_3+1)^n-1$$

Teorema Central del Límite

Sea $\{X_n\}_{n\in\mathbb{Z}^+}$ una colección de variables aleatorias independientes, igualmente distribuidas, con media y varianza iguales (μ y σ respectivamente). Entonces, cuando $n\longrightarrow\infty$,

$$\sqrt{n} \, \overline{X}_n \longrightarrow N(0,1)$$

Teorema Central del Límite

Sea $\{X_n\}_{n\in\mathbb{Z}^+}$ una colección de variables aleatorias independientes, igualmente distribuidas, con media y varianza iguales (μ y σ respectivamente). Entonces, cuando $n\longrightarrow\infty$,

$$\sqrt{n} \ \overline{X}_n \longrightarrow N(0,1)$$

$$\begin{vmatrix} |x_n| & \leq M \\ |y_n| & \leq M \end{vmatrix} \Rightarrow \left| \prod_{k=1}^n x_k - \prod_{j=1}^n y_j \right| \leq M^{n-1} \sum_{k=1}^n |x_k - y_k|$$

