Relatório 3º projeto ASA 2024/2025

Grupo: AL070

Aluno(s): Ana Santos (109260) e Francisco Mendonça (109264)

Descrição do Problema e modelação da Solução

O problema consiste na maximização da distribuição de brinquedos, em que cada criança tem uma lista de brinquedos preferidos e pode receber no máximo 1, cada fábrica produz um tipo de brinquedo e tem um stock máximo, e cada país tem um máximo de exportação e um mínimo de brinquedos entregues.

- 1. Identificação das variáveis do problema:
 - As variáveis são variáveis binárias (0 ou 1), que representam se um brinquedo de uma fábrica i será entregue a uma criança k, x_k_i :
 - Para cada criança k, criamos x_k_i se $i \in brinquedos(k)$;
 - $x_k_i = 1$ se a criança k recebe um brinquedo da fábrica i;
- 2. Modelação do objetivo do problema:
 - o objetivo é maximizar a quantidade total de brinquedos distribuídos, ou seja, maximizar a soma de todas as variáveis $x_{-}k_{-}i$, para todas as combinações de (k, i).
 - $\max \sum_{k} \sum_{i \in brinquedos(k)} x_{-k}i$
- 3. Modelação das restrições do problema:
 - Restrição das crianças cada criança k pode receber no máximo 1 brinquedo. Para cada criança k:
 - $\sum_{i \in brinquedos(k)} x_{-k}i \leq 1$
 - Restrição das fábricas cada fábrica i pode enviar no máximo o stock da fábrica $fmax_i$. Para cada fábrica i:
 - $\sum_{k \in pedidos(i)} x_k \le fmax_i$
 - Restrições dos países cada país j pode exportar no máximo o limite de exportações
 pmax_j e têm de ser entregues um número mínimo de brinquedos *pmin_j*. Para cada
 país j:
 - $\sum_{(k,i) \ \forall \ i \in p_i \land k \notin p_i} x_k_i \le pmax_j$
 - $\sum_{(k,i) \ \forall \ k \in p_i} x_k = i \le pmin_i$
- 4. Programa Linear:

$$\max \sum_{k} \sum_{i \in brinquedos(k)} x_{-k}i$$

$$for \ 1 \leq j \leq M:$$

$$\sum_{(k,i) \ \forall \ i \in p_j \land k \ \in p_j} x_{-k}i \leq pmax_j$$

$$\sum_{i \in brinquedos(k)} x_{-k}i \leq 1$$

$$\sum_{(k,i) \ \forall \ k \in p_j} x_{-k}i \leq pmin_j$$

$$for \ 1 \leq i \leq N:$$

$$\sum_{k \in pedidos(i)} x_{-k}i \leq fmax_i$$

Relatório 3º projeto ASA 2024/2025

Grupo: AL070

Aluno(s): Ana Santos (109260) e Francisco Mendonça (109264)

Análise Teórica

• Número de variáveis do programa linear: $\sum_{k=1}^{T} brinquedos(k) \leq \sum_{k=1}^{T} N = N \times T$ logo $O(N \times T)$;

Número de restrições do programa linear: a primeira restrição é aplicada para cada criança k, logo T vezes, a segunda é aplicada para cada fábrica i, logo N vezes, e a terceira e quarta são aplicadas para cada país i, logo M vezes. Assim O(T + N + M + M) ⇒ O(T + N + 2M) ⇒ O(T + N + M)

Avaliação Experimental dos Resultados

Para a parte experimental utilizamos o gerador de instâncias fornecido de forma a testar a análise teórica do número de variáveis $N \times T$. Geramos 36 instâncias de tamanho incremental com diferentes combinações de N e T, até número de variáveis de aproximadamente 2,5 milhões e medimos o tempo de execução.

Para a análise teórica, o seguinte gráfico representa o tempo (eixo dos YYs) em função do número de variáveis (eixo dos XXs).

Ao analisar o gráfico, é possível verificar que a análise teórica do nosso algoritmo está correta visto que é possível estabelecer uma relação exponencial entre o número de variáveis e os tempos registados, R^2 está próximo de 1.