Programming Paradigms: Logic Programming Syntax and Semantics

Víctor Gutiérrez Basulto

Based on slides available at https://potassco.org/teaching/(CC-BY)

07.10.2019

Problem solving in ASP: Syntax

Syntax

- \bullet Assume a vocabulary Σ compromised of nonempty finite sets of
 - constants (e.g. *frankfurt*)
 - variables (e.g. X)
 - predicate symbols (e.g. connected)
- A term is either a variable or a constant

- An atom is an expression of the form $p(t_1, \ldots, t_n)$ where
 - p is a predicate of arity $n \ge 0$ from Σ , and
 - $t_1, \dots t_n$ are terms (e.g. connected(frankfurt))
- A term or an atom is ground if it contains no variable

Normal logic programs

- A logic program, P, over a set A of atoms is a finite set of rules
- A (normal) rule, r, is of the form

$$a_0 \leftarrow a_1, \ldots, a_m, \sim a_{m+1}, \ldots, \sim a_n$$

where $o \le m \le n$ and each $a_i \in A$ is an atom for $o \le i \le n$

Normal logic programs

- A logic program, P, over a set A of atoms is a finite set of rules
- A (normal) rule, r, is of the form

$$a_o \leftarrow a_1, \dots, a_m, \sim a_{m+1}, \dots, \sim a_n$$

where $o \le m \le n$ and each $a_i \in A$ is an atom for $o \le i \le n$

• If n = 0, the rule is a fact (written shortly a_0).

Notation

$$\begin{array}{lll} head(r) & = & a_{0} \\ body(r) & = & \{a_{1}, \dots, a_{m}, \sim a_{m+1}, \dots, \sim a_{n}\} \\ body(r)^{+} & = & \{a_{1}, \dots, a_{m}\} \\ body(r)^{-} & = & \{a_{m+1}, \dots, a_{n}\} \\ atom(P) & = & \bigcup_{r \in P} \left(\{head(r)\} \cup body(r)^{+} \cup body(r)^{-} \right) \\ body(P) & = & \{body(r) \mid r \in P\} \end{array}$$

• A program P is positive if $body(r)^- = \emptyset$ for all $r \in P$

• Ground rule: "If Frankfurt is a hub airport, and there is a link between Frankfurt and Hamburg, then Hamburg is a connected airport"

 $connected(hamburg) \leftarrow hub_airport(frankfurt), link(frankfurt, hamburg)$

• Ground rule: "If Frankfurt is a hub airport, and there is a link between Frankfurt and Hamburg, then Hamburg is a connected airport"

 $connected(hamburg) \leftarrow hub_airport(frankfurt), link(frankfurt, hamburg)$

Non-Ground rule: "All airports with a link to a hub airport are connected"

$$connected(X) \leftarrow hub_airport(Y), link(X,Y)$$

Rough notational convention

We sometimes use the following notation interchangeably in order to stress the respective view:

	true, false	if	and	or	iff	default negation	
source code		:-	,	;		not	
logic program		\leftarrow	,	;		\sim	

Problem solving in ASP: Semantics

Semantics: Positive Programs

- Semantics of a program *P* is given in terms of sets of ground atoms, which can be formed using predicates and terms in *P*. These sets are called interpretations.
 - Intuitively this set denotes which ground atoms are true in a given scenario

Semantics: Positive Programs

- Semantics of a program *P* is given in terms of sets of ground atoms, which can be formed using predicates and terms in *P*. These sets are called interpretations.
 - Intuitively this set denotes which ground atoms are true in a given scenario
- Which interpretations capture the intended meaning?
 - Those that "respect" the rules. These sets are called models.

Semantics: Positive Programs

- Semantics of a program *P* is given in terms of sets of ground atoms, which can be formed using predicates and terms in *P*. These sets are called interpretations.
 - Intuitively this set denotes which ground atoms are true in a given scenario
- Which interpretations capture the intended meaning?
 - Those that "respect" the rules. These sets are called models.
- Do we want all models?
 - No, we want the smallest models, that is, the truth of an atoms should be "justified" by a rule.

Given:

$$P_1 = \{a \leftarrow b. \quad b \leftarrow c. \quad c\},\$$

truth of a in the model $I = \{a, b, c\}$ is "founded".

Given:

$$P_2 = \{a \leftarrow b. \quad b \leftarrow a. \quad c\},\$$

truth of a in the model $I = \{a, b, c\}$ is not founded.

Formal Def. Semantics

Positive Programs

- A set of atoms X is closed under a positive program P iff for any $r \in P$, $head(r) \in X$ whenever $body(r)^+ \subseteq X$
- The smallest (least) set of atoms which is closed under a positive program P is denoted by Cn(P)
 - Cn(P) corresponds to the \subseteq -smallest model of P (ditto)
- The set Cn(P) of atoms is the stable model of a positive program P
- This smallest model is the intended semantics of such sets of clauses
 - Given a positive program P, Cn(P) corresponds to the smallest model of the set of rules corresponding to P

- For $P_1 = \{ a \leftarrow b. \quad b \leftarrow c. \quad c \}$, we have $LM(P_1) = \{a, b, c\}$.
- For $P_2 = \{ a \leftarrow b. \quad b \leftarrow a. \quad c \}$, we have $LM(P_2) = \{c\}.$
- For P from above,

$$\begin{split} p(X,Y,Z) &\leftarrow p(X,Y,Z'), h(X,Y), t(Z,Z',r). \\ h(X,Z') &\leftarrow p(X,Y,Z'), h(X,Y), t(Z,Z',r). \\ p(0,0,b). & h(0,0). & t(a,b,r). \end{split}$$

we have

$$LM(P) = \{h(0,0), t(a,b,r), p(0,0,b), p(0,0,a), h(0,b)\}.$$

Negation in Logic Programs

- Why Negation?
 - Natural linguistic concept
 - Facilitates convenient, declarative descriptions (definitions).

"Men who are not husbands are single".

Negation in Logic Programs

- Why Negation?
 - Natural linguistic concept
 - Facilitates convenient, declarative descriptions (definitions).
 "Men who are not husbands are single".
- A rule, r, is of the form

$$a_0 \leftarrow a_1, \ldots, a_m, \sim a_{m+1}, \ldots, \sim a_n$$

A rule, r, is of the form

$$a_0$$
: $-a_1$, ..., a_m , not a_{m+1} , ..., not a_n

Negation in Logic Programs

- not a means "negation as failure (to prove) a"
- Close World Assumption (CWA): whatever cannot be derived is false.

 Different from classical negation in First-order logic

cross :- -train.

Evidence of train not coming, therefore you can cross

At a rail road crossing cross the road if **no train** approaches

cross :- not train.

By default you can cross, **unless** you have evidence that a train is coming

At a rail road crossing cross the road if **no train is known** to approach

$$man(dilbert).$$
 $single(X) \leftarrow man(X), not \ husband(X).$

- Can not prove *husband(dilbert)* from rules.
- Single intended minimal model: $\{man(dilbert), single(dilbert)\}.$


```
man(dilbert).

single(X) \leftarrow man(X), not \ husband(X).

husband(X) \leftarrow man(X), not \ single(X).
```

 ${\sf Semantics???}$

Problem: not a single intuitive model!


```
man(dilbert). single(X) \leftarrow man(X), not \ husband(X). husband(X) \leftarrow man(X), not \ single(X).
```

Semantics???

Problem: not a single intuitive model!

Two intuitive

$$\begin{split} &M_1 = \{man(dilbert), single(dilbert)\}, \text{ and} \\ &M_2 = \{man(dilbert), husband(dilbert)\}. \end{split}$$

Which one to choose?

Stable Models

• We adopt the Stable Model (alias Answer Set) Semantics by Gelfond and Lifschitz (1990)

Alternative ("justified") Models:

```
M_1 = \{man(dilbert), single(dilbert)\}\
M_2 = \{man(dilbert), husband(dilbert)\}\
```

• Other kind of semantics exist, e.g. well-founded semantics, considering a partial models

Consider program P_1 :

$$man(dilbert).$$
 (f_1)

$$single(dilbert) \leftarrow man(dilbert), not \ husband(dilbert).$$
 (r₁)

$$husband(dilbert) \leftarrow man(dilbert), not single(dilbert).$$
 (r₂)

- Consider $M' = \{man(dilbert)\}.$
 - Assuming that man(dilbert) is true and husband(dilbert) is false, by r_1 also single(dilbert) should be true.
 - M^\prime does not represent a coherent or "stable" view of the information given by P_1 .

Consider program P_1 :

$$man(dilbert).$$
 (f_1)

$$single(dilbert) \leftarrow man(dilbert), not husband(dilbert).$$
 (r₁)

$$husband(dilbert) \leftarrow man(dilbert), not single(dilbert).$$
 (r₂)

- Consider $M' = \{man(dilbert)\}.$
 - Assuming that man(dilbert) is true and husband(dilbert) is false, by r₁ also single(dilbert) should be true.
 - M^\prime does not represent a coherent or "stable" view of the information given by P_1 .
- Consider $M'' = \{man(dilbert), single(dilbert), husband(dilbert)\}.$
 - The bodies of r₁ and r₂ are not true w.r.t. M", hence there is no evidence for single(dilbert) and husband(dilbert) being true.
 - M" is not "stable" either.

Formal Definition

Stable models of normal programs

• The reduct, P^X , of a program P relative to a set X of atoms (interpretation) is defined by

$$P^{X} = \{ head(r) \leftarrow body(r)^{+} \mid r \in P \text{ and } body(r)^{-} \cap X = \emptyset \}$$

• A set X of atoms is a stable model of a program P, if $Cn(P^X) = X$

- Remarks
 - $Cn(P^X)$ is the \subseteq -smallest (classical) model of P^X
 - Each atom in X is justified by an "applying rule from P"
 - Set X is stable under "applying rules from P"

A pragmatic look at PX

• Alternatively, given a set X of atoms from P,

PX is obtained from P by deleting

- each rule having $\sim a$ in its body with $a \in X$ and then
- all negative atoms of the form $\sim a$ in the bodies of the remaining rules

$$P = \{p \leftarrow p, \ q \leftarrow \sim p\}$$

$$P = \{p \leftarrow p, \ q \leftarrow \sim p\}$$

Χ	
{ }	
{p }	
{ q}	
{ <i>p</i> , <i>q</i> }	

$$P = \{p \leftarrow p, \ q \leftarrow \sim p\}$$

X	P ^X	$Cn(P^X)$
{ }	<i>p</i> ← <i>p</i>	{ q }
	q ←	
{p }	<i>p</i> ← <i>p</i>	Ø
 { q }	<i>p</i> ← <i>p</i>	{ q }
	q ←	
{ <i>p</i> , <i>q</i> }	<i>p</i> ← <i>p</i>	Ø
{ <i>p</i> , <i>q</i> }	<i>ρ</i> ← <i>p</i>	V

$$P = \{p \leftarrow p, \ q \leftarrow \sim p\}$$

X	P ^X	$Cn(P^X)$ $Cn(P^X) = X?$
{ }	<i>p</i> ← <i>p</i>	{q} ✗
	q ←	
{p }	<i>p</i> ← <i>p</i>	Ø
 { q }	<i>p</i> ← <i>p</i>	{ q }
	q ←	
{p,q}	<i>p</i> ← <i>p</i>	Ø

$$P = \{p \leftarrow p, \ q \leftarrow \sim p\}$$

X	P ^X	$Cn(P^X)$ $Cn(P^X) = X?$
{ }	<i>p</i> ← <i>p</i>	{q} ✗
	q ←	
{p }	<i>p</i> ← <i>p</i>	Ø ×
 { q }	<i>p</i> ← <i>p</i>	{ q }
	q ←	
{ <i>p</i> , <i>q</i> }	<i>p</i> ← <i>p</i>	Ø

$$P = \{p \leftarrow p, \ q \leftarrow \sim p\}$$

Χ	P ^X	$Cn(P^X)$ $Cn(P^X) = X?$
{ }	<i>p</i> ← <i>p</i>	{q} ✗
	<i>q</i> ←	
{p }	<i>p</i> ← <i>p</i>	Ø ×
 { q }	<i>p</i> ← <i>p</i>	{q} ✓
	<i>q</i> ←	
{ <i>p</i> , <i>q</i> }	<i>p</i> ← <i>p</i>	Ø

An Example

$$P = \{p \leftarrow p, \ q \leftarrow \sim p\}$$

Χ	P ^X	$Cn(P^X)$ $Cn(P^X) = X^X$?
{ }	<i>p</i> ← <i>p</i>	{q} X	
	<i>q</i> ←		
{p }	<i>p</i> ← <i>p</i>	Ø ×	
− { q }	<i>p</i> ← <i>p</i>	{q} ✓	
	$q \leftarrow$		
{p,q}	<i>p</i> ← <i>p</i>	Ø ×	

Some properties

- A logic program may have zero, one, or multiple stable models
- If X is a stable model of a logic program P, then X is a model of P (seen as a formula)
- If X and Y are stable models of a *normal* program P, then $X \not\subset Y$

Let P be a logic program

- Let \mathcal{T} a set of variable-free terms in P (also called Herbrand universe)
- Let A be a set of all variable-free atoms constructible from T (also called alphabet or Herbrand base)

Let P be a logic program

- Let \mathcal{T} a set of (variable-free) terms in P
- Let \mathcal{A} be a set of all variable-free atoms constructible from \mathcal{T}
- Ground Instances of $r \in P$: Set of variable-free rules obtained by replacing all variables in r by elements from T:

$$ground(r) = \{r\theta \mid \theta : var(r) \rightarrow \mathcal{T} \text{ and } var(r\theta) = \emptyset\}$$

where var(r) stands for the set of all variables occurring in r; θ is a (ground) substitution

Let P be a logic program

- Let \mathcal{T} a set of (variable-free) terms in P
- Let \mathcal{A} be a set of all variable-free atoms constructible from \mathcal{T}
- Ground Instances of $r \in P$: Set of variable-free rules obtained by replacing *all* variables in r by elements from T:

$$ground(r) = \{r\theta \mid \theta : var(r) \rightarrow \mathcal{T} \text{ and } var(r\theta) = \emptyset\}$$

where var(r) stands for the set of all variables occurring in r; θ is a (ground) substitution

• Ground Instantiation of P: $ground(P) = \bigcup_{r \in P} ground(r)$

An example

$$P = \{ r(a,b) \leftarrow, r(b,c) \leftarrow, t(X,Y) \leftarrow r(X,Y) \}$$

$$\mathcal{T} = \{ a,b,c \}$$

$$\mathcal{A} = \{ r(a,a), r(a,b), r(a,c), r(b,a), r(b,b), r(b,c), r(c,a), r(c,b), r(c,c), \\ t(a,a), t(a,b), t(a,c), t(b,a), t(b,b), t(b,c), t(c,a), t(c,b), t(c,c) \}$$

An example

$$P = \{ r(a,b) \leftarrow, r(b,c) \leftarrow, t(X,Y) \leftarrow r(X,Y) \}$$

$$\mathcal{T} = \{a,b,c\}$$

$$\mathcal{A} = \begin{cases} r(a,a), r(a,b), r(a,c), r(b,a), r(b,b), r(b,c), r(c,a), r(c,b), r(c,c), \\ t(a,a), t(a,b), t(a,c), t(b,a), t(b,b), t(b,c), t(c,a), t(c,b), t(c,c) \end{cases}$$

$$ground(P) = \begin{cases} r(a,b) \leftarrow, \\ r(b,c) \leftarrow, \\ t(a,a) \leftarrow r(a,a), t(b,a) \leftarrow r(b,a), t(c,a) \leftarrow r(c,a), \\ t(a,b) \leftarrow r(a,b), t(b,b) \leftarrow r(b,b), t(c,b) \leftarrow r(c,b), \\ t(a,c) \leftarrow r(a,c), t(b,c) \leftarrow r(b,c), t(c,c) \leftarrow r(c,c) \end{cases}$$

An example

$$P = \{ r(a,b) \leftarrow, r(b,c) \leftarrow, t(X,Y) \leftarrow r(X,Y) \}$$

$$T = \{a,b,c\}$$

$$A = \begin{cases} r(a,a), r(a,b), r(a,c), r(b,a), r(b,b), r(b,c), r(c,a), r(c,b), r(c,c), \\ t(a,a), t(a,b), t(a,c), t(b,a), t(b,b), t(b,c), t(c,a), t(c,b), t(c,c) \end{cases}$$

$$ground(P) = \begin{cases} r(a,b) \leftarrow, \\ r(b,c) \leftarrow, \\ t(a,b) \leftarrow, \\ t(b,c) \leftarrow \end{cases}$$

Intelligent Grounding aims at reducing the ground instantiation

Safety

- A normal rule is safe, if each of its variables also occurs in some positive body literal
- A normal program is safe, if all of its rules are safe


```
d(a)
d(c)
d(d)
p(a,b)
p(b,c)
p(c,d)
p(X,Z) \leftarrow p(X,Y), p(Y,Z)
q(a)
q(b)
q(X) \leftarrow \sim r(X), d(X)
r(X) \leftarrow \sim q(X), d(X)
s(X) \leftarrow \sim r(X), p(X, Y), q(Y)
```

Safe?

```
d(a)
d(c)
d(d)
p(a,b)
p(b,c)
p(c,d)
p(X,Z) \leftarrow p(X,Y), p(Y,Z)
q(a)
q(b)
q(X) \leftarrow \sim r(X), d(X)
r(X) \leftarrow \sim q(X), d(X)
s(X) \leftarrow \sim r(X), p(X, Y), q(Y)
```



```
Safe?
d(a)
d(c)
d(d)
p(a,b)
p(b,c)
p(c,d)
p(X,Z) \leftarrow p(X,Y), p(Y,Z)
q(a)
q(b)
q(X) \leftarrow \sim r(X), d(X)
r(X) \leftarrow \sim q(X), d(X)
s(X) \leftarrow \sim r(X), p(X, Y), q(Y)
```



```
Safe?
d(a)
d(c)
d(d)
p(a,b)
p(b,c)
p(c,d)
p(X,Z) \leftarrow p(X,Y), p(Y,Z)
q(a)
q(b)
q(X) \leftarrow \sim r(X), d(X)
r(X) \leftarrow \sim q(X), d(X)
s(X) \leftarrow \sim r(X), p(X, Y), q(Y)
```

```
Safe?
d(a)
d(c)
d(d)
p(a,b)
p(b,c)
p(c,d)
p(X,Z) \leftarrow p(X,Y), p(Y,Z)
q(a)
q(b)
q(X) \leftarrow \sim r(X), d(X)
r(X) \leftarrow \sim q(X), d(X)
s(X) \leftarrow \sim r(X), p(X, Y), q(Y)
```

Stable models of programs with Variables

Let *P* be a normal logic program with variables

A set X of (ground) atoms is a stable model of P,
 if Cn(ground(P)^X) = X

Problem solving in ASP: Extended Syntax

- Facts
 - p.
 - p(a;b;c).
 - p(1 .. 10).
- Variables

short hand for p(a). p(b). p(c). short hand for p(1). p(2). p(3). etc.

$$p(X) := q(X)$$

Intervals

M . . N

- grid(1..S,1..S):- size(S).
- grid(X,Y):- X=1..S,Y=1..S, X-Y!=0,X+Y-1!=S.

Conditional literals

p(X) := q(X) : r(X)

- meet:- available(X) : person(X)
- on(X) : day(X):-meet.

- Choice (Cardinality Constraints)
 - $1\{p(1 ... 3)\}2.$
 - 1 { has_property(X,C) : property(C)} 1 :- item(X).
- Aggregates
 - 20 <= # sum {4 : course (db) ; 6 course(ai); 8 : course(project);
 3 : course(xml)}</pre>
 - #sum { 3 : bananas; 25 : cigars; 10 : broom } <= 30
 - within_budget :- # sum 10 {Amount : paid(Amount)} 100.

Aggregates

```
\#count\{ \cdots \}
```

- many_neighbors(X):-vertex(X), #count{Y : adjacent (X,Y)} >3.
- Disjunction

$$p(X)$$
; $q(X) := r(X)$

- if r(X) then p(X)or q(X)
- Integrity constraints

$$:- q(X), p(X)$$

- :- in_clique(X), in_clique(Y), not edge(X,Y).
- this constraint says: it cannot be the case that nodes X and Y are in a clique, and there is no edge between X and Y.

- Multi-objective oOptimization
 - Weak constraints
 - Statements

- noisy :- hotel(X), main_street(X).
- #maximize { Y@1,X : hotel(X), star(X,Y) }.
- #minimize $\{ Y / Z@2,X : hotel(X), cost(X,Y), star(X,Z) \}.$
- noisy. [103]

- Multi-objective oOptimization
 - Weak constraints
 - Statements

```
: \sim \ q(X), \ p(X,C) \ [C@42] #minimize { C@42: \ q(X), \ p(X,C) } #maximize { 1,X:in_clique(X), node(X) }.
```

- noisy :- hotel(X), main_street(X).
- #maximize { Y@1,X : hotel(X), star(X,Y) }.
- #minimize { Y / Z@2,X : hotel(X), cost(X,Y), star(X,Z) }.
- noisy. [103]

- Arithmetic Functions
 - + (addition), (subtraction), * (multiplication), / (integer division), \ (modulo), ** (exponentiation), | · | (absolute value).
- Comparison Predicates
 - = (equal), != (not equal), < (less than), <= (less than or equal), > (greater than), and >= (greater than or equal).

Mandatory reading: Chapter 2 of of Answer Set Solving in Practice, by Gebser, Kaminski, Kaufmann, Schaub

