- **5 Formal Controller Synthesis**
- 5.1 Abstraction-based Controller Synthesis
- 5.2 Control Barrier Functions
- 5.3 Funnel-based Control

	Continuous	Discrete
Uncontrolled	$\dot{\xi} = f(\xi, \nu),$ $\xi(t) \in X \subseteq \mathbb{R}^{n},$ $\nu(t) \in U \subseteq \mathbb{R}^{m}$	
Controlled		

Advantages of Symbolic Control

- Efficiently deals with state and input constraints
- No restriction on dynamics (only it should be defined over Euclidean space)
- Gives maximally permissible controllers

5 Formal Controller Synthesis 204

Definition: Admissible Inputs

Given a system $S = (X, X_0, U, F)$, we define the set of admissible inputs at state $x \in X$ by

$$U_{S}(x) = \{u \in U \mid F(x, u) \neq \emptyset\}$$

Definition: Feedback Refinement Relations

Let $S_i = (X_i, X_{i,0}, U_i, F_i)$, $i \in \{1, 2\}$ be two simple systems and assume $U_2 \subseteq U_1$. A strict relation

$$Q \subseteq X_1 \times X_2$$

is a feedback refinement relation from S_1 to S_2 , denoted by

$$S_1 \preccurlyeq_Q S_2$$

if the following holds for all $(x_1, x_2) \in Q$:

- 1. $x_1 \in X_{1,0}$ implies $x_2 \in X_{2,0}$
 - 2. $U_{S_2}(x_2) \subseteq U_{S_1}(x_1)$
- 3. $u \in U_{S_2}(x_2) \implies Q(F_1(x_1, u)) \subseteq F_2(x_2, u)$

In words for $(x_1, x_2) \in Q$

- 1. if x_1 is an initial state then x_2 needs to be an initial state
 - 2. every admissible input of S_2 at x_2 is an admissible input of S_1 at x_1
- 3. every successor $x_1' \in F_1(x_1, u)$ when mapped to X_2 via Q is contained in $F_2(x_2, u)$ 5 Formal Controller Synthesis

Example: Feedback Refinement Relation

Consider the two simple systems

and the relation $Q = \{(1, 1'), (5, 1'), (2, 2'), (3, 3'), (4, 2')\}$. Let us verify that $S_1 \preccurlyeq_Q S_2$:

- $\forall_{x_1 \in X_1} : Q(x_1) \neq \emptyset \implies Q \text{ is strict } \checkmark$
- $\forall_{(x_1,x_2)\in Q\land x_1\in X_{1,0}}: x_2\in X_{2,0}$
- $\forall_{(x_1,x_2)\in Q}: U_{S_2}(x_2)\subseteq U_{S_1}(x_1)$:
 - $U_{S_2}(1') = \{a, b\}, \ U_{S_2}(2') = \{a\}, \ U_{S_2}(3') = \emptyset$
 - $U_{S_1}(1) = U_{S_1}(5) = \{a, b\}, \ U_{S_1}(2) = U_{S_1}(4) = \{a\}, \ U_{S_1}(3) = \emptyset$

$$U_{S_2}(1') \subseteq U_{S_1}(1), U_{S_2}(1') \subseteq U_{S_1}(5), U_{S_2}(2') \subseteq U_{S_1}(2), U_{S_2}(2') \subseteq U_{S_1}(4), U_{S_2}(3') \subseteq U_{S_1}(3) \checkmark$$

•
$$\forall_{(x_1,x_2) \in Q \land u \in U_{S_2}(x_2)} : Q(F_1(x_1,u)) \subseteq F_2(x_2,u) : \checkmark$$

 $Q(F_1(1,a)) = \{2^i\} \subseteq F_2(1^i,a) \quad Q(F_1(1,b)) = \{1^i\} \subseteq F_2(1^i,b) \quad Q(F_1(2,a)) = \{2^i,3^i\} \subseteq F_2(2^i,a)$
 $Q(F_1(5,a)) = \{2^i\} \subseteq F_2(1^i,a) \quad Q(F_1(5,b)) = \{1^i\} \subseteq F_2(1^i,b) \quad Q(F_1(4,a)) = \{2^i\} \subseteq F_2(2^i,a)$

Question: Feedback Refinement Relation

Consider the simple systems

Verify that

$$Q = \{(1,1'),(2,1'),(3,2'),(4,2'),(5,2')\}$$

satisfies $S_1 \preccurlyeq_Q S_2$.

Controller Refinement with Behavioral Inclusion

Consider

- $S_i = (X_i, X_{i,0}, U_i, F_i), i \in \{1, 2\}, U_2 \subseteq U_1$
- $C = (X_c, X_{c,0}, U_c, V_c, Y_c, F_c, H_c)$
- strict $Q \subseteq X_1 \times X_2$

and the statements

- 1. C is feedback composable with S_2
- 2. C is feedback composable with $Q \circ S_1$
- 3. $\mathcal{B}(C \times (Q \circ S_1)) \subseteq \mathcal{B}(C \times S_2)$

and the implication

$$(y_c, v_c) \in H_c(x_c, x_2) \land F_2(x_2, y_c) = \emptyset \implies F_c(x_c, v_c) = \emptyset$$
 (*)

• (*): C non-blocking $\implies S_2$ non-blocking

Theorem: FRR and Behavioral Inclusion

Let $S_1 \preccurlyeq_Q S_2$, then 1. and (*) imply 2. and 3.

Example: On the Non-Blocking Condition (*)

Consider

- $S_1 = (\{1\}, \{1\}, \{a\}, F_1)$ with $F_1(1, a) = \{1\}$
- $S_2 = (\{1\}, \{1\}, \{a\}, F_2)$ with $F_2(1, a) = \emptyset$
- $C = (\{0\}, \{0\}, \{1\}, \{1\}, \{a\}, F_q, H_q)$ with $F_q(0, 1) = \{0\}$ and $H_q(0, 1) = \{a\} \times \{1\}$.
- $Q = \{(1,1)\}$ is FRR from S_1 to S_2
- C is feedb. comp. with S_2
- C is feedb. comp. with S_1
- (*) is not satisfied
- $(a,1)^\omega \in \mathcal{B}(\mathcal{C} \times \mathcal{S}_1)$ but $(a,1)^\omega \not\in \mathcal{B}(\mathcal{C} \times \mathcal{S}_2)$

Exercise 8: FRR and Behavioral Inclusion

Consider the simple systems with input alphabet $U = \{\alpha, \beta, \gamma\}$

and the relation

$$Q = \{(s_1, \hat{s}_1), (s_2, \hat{s}_1), (s_3, \hat{s}_2), (s_4, \hat{s}_2), (s_3, \hat{s}_3), (s_5, \hat{s}_3), (s_6, \hat{s}_3)\}$$

which satisfies $S_1 \preccurlyeq_Q S_2$.

Consider $C = (\{q\}, \{q\}, X_2, X_2, U_2, F_c, H_c)$ with F_c being strict and

$$H_c(q, \hat{s}_1) = {\alpha} \times {\hat{s}_1}, H_c(q, \hat{s}_2) = {\beta} \times {\hat{s}_2}, H_c(q, \hat{s}_3) = {\alpha} \times {\hat{s}_3}.$$

- 1. Does C and S_2 satisfy the non-blocking condition (*)?
- 2. Is C feedb. composable with $Q \circ S_1$?
- 3. Verify $\mathcal{B}(C \times (Q \circ S_1)) \subseteq \mathcal{B}(C \times S_2)$.

5.2 Computation of Abstractions

Let

- $S_i = (X_i, X_{i,0}, U_i, F_i)$ be two systems $i \in \{1, 2\}$
- X_2 be a cover by non-empty sets of X_1

Theorem: Computation of Abstractions

 $S_1 \preccurlyeq_{\in} S_2$ if and only if

- 1. $x_1 \in X_{1,0}$ and $x_1 \in x_2$ implies $x_2 \in X_{2,0}$
- 2. $U_2 \subseteq U_1$ and $x_1 \in x_2 \in X_2$ implies $U_{S_2}(x_2) \subseteq U_{S_1}(x_1)$
- 3. $x_2, x_2' \in X_2$, $u \in U_{S_2}(x_2)$ and $x_2' \cap F_1(x_2, u) \neq \emptyset$ implies $x_2' \in F_2(x_2, u)$

Computation of abstraction reduces to computation of reachable sets!

Example: Feedback Refinement Relation

Consider the simple systems

and the sets

$$1'=\{1,5\},\ 2'=\{2,4\},\ 3'=\{3\}$$

Let us determine $X_{2,0}$, F_2 so that

$$(x_1,x_2)\in Q\iff x_1\in x_2$$

is a FRR from S_1 to $S_2 = (X_2, X_{2,0}, \{a, b\}, F_2)$.

We look at Theorem: Computation of Abstractions:

- from 1. we get $X_{2,0} = \{1'\}$
 - let us determine $F_2(1', a)$
 - we check 2.: $1 \in 1'$ and $a \in U_{S_1}(1)$,
 - $5 \in 1'$ and $a \in U_{S_1}(5)$, hence $a \in U_{S_2}(1')$ is fine
 - we check 3.: $F_1(1', a) = \{2, 4\}$ hence $2' = F_2(1', a)$
 - let us determine $F_2(3', a)$
 - ▶ we check 2 :
 - $3 \in 3'$ and $a \notin U_{S_1}(3)$, hence $F_2(3', a) = \emptyset$

Question: Construction of an Abstraction

Consider the simple systems

and the set

$$X_2 = \{\underbrace{\{s_1, s_2\}}_{\hat{s}_1}, \underbrace{\{s_3, s_4\}}_{\hat{s}_2}, \underbrace{\{s_3, s_5, s_6\}}_{\hat{s}_3}\}$$

determine $X_{2,0}$, F_2 so that $S_2=(X_2,X_{2,0},U,F_2)$ satisfies $S_1 \preccurlyeq_{\in} S_2$.

5.3 Abstractions of Control Systems

Sample-and-Hold Linear Control System

- continuous dynamics
 - $\dot{\xi}(t) = A\xi(t) + B\nu(t)$
- sample-and-hold behavior $S = (X, X_{1,0}, U, F)$
 - $X = \mathbb{R}^n$
 - $X_0 \subseteq \mathbb{R}^n$
 - $V \subset \mathbb{R}^m$
 - $F(x, u) = \{A_dx + B_du\}$ with

 - $A_d = e^{A\tau}$ $B_d = \int_0^{\tau} e^{As} B ds$

An Abstraction

- $\hat{S} = (\hat{X}, \hat{X}_0, \hat{U}, \hat{F})$
- \hat{U} is some finite subset of U
- $\hat{X} = \hat{X}_b \cup \hat{X}_o$ be a finite cover of \mathbb{R}^n
 - every element $\hat{x} \in \hat{X}_b$ is hyper-rectangle with center $c \in \mathbb{R}^n$ and radius $r \in \mathbb{R}^n$

$$\hat{x} = [-r_1 + c_1, c_1 + r_1] \times \cdots \times [-r_n + c_n, c_n + r_n]$$

 $m{\hat{X}}_o$ contains the "over-flow" symbols, e.g., $\hat{x} \in \hat{X}_o$

$$\hat{x} = \{ y \in \mathbb{R}^n \mid y_1 \ge 2 \}$$

• $\hat{X}_0 = \{\hat{x} \in \hat{X} \mid \hat{x} \cap X_0 \neq \varnothing\}$

An Abstraction

- we compute $\hat{F}(\hat{x}, u)$ as follows
 - ▶ if $\hat{x} \in \hat{X}_o$, then $\hat{F}(\hat{x}, u) = \emptyset$
 - if $\hat{x} = c + [-r, r] \in \hat{X}_b$, compute c' + [-r', r'] by: $c' = A_d c + B_d u$
 - $r' = e^{\text{metzler}(A)\tau} r$
 - $\hat{x}' \in \hat{F}(\hat{x}, u)$ if and only if $\hat{x}' \cap c' + [-r', r'] \neq \emptyset$
- given $A \in \mathbb{R}^{n \times n}$ the matrix $metzler(A) \in \mathbb{R}^{n \times n}$ is defined by

$$metzler(A)_{ij} = \begin{cases} a_{ij} & \text{if } i = j \\ |a_{ij}| & \text{otherwise} \end{cases}$$

Given discrete abstraction we can synthesize a controller for enforcing LTL Specifications via CS algorithm.

Proofs: "Feedback Refinement Relations for the Synthesis of Symbolic Controllers" IEEE TAC 2018