Nome: Mattia data inizio: 17/11/2020

Cognome: Bracco data consegna: 24/11/2020

Classe: 2^A data assenza:

TITOLO: Moto dei Satelliti

OBBIETTIVO: Calcolare la velocità e il periodo di rivoluzione di un satellite

TEORIA ED ASEPTTATIVE:

r (terra) = 6.371 Km

 $m (terra) = 5.9 * 10^{24}$

m (satellite) = 3000 Kg

 $G = 6,67 * 10^{-11}$

MATERIALI E SCHEMI DI MONTAGGIO USATI: Calcolatrice, Excel.

PROCEDIMENTO: Ho eseguito i calcoli per trovare R + h, la velocità (V), il periodo (T), la forza centripeta (Fc) e g.

MISURE, DATI E GRAFICI:

m(sat)		m(terra)	r	G	
Kg		Kg	m	N*m*m/Kg ²	
	3000	5,9E+24	6371000	6,67E-11	

h	R +h	V	Т	Т	Fc	g
m	m	m/s	S	h	N	m/s ²
0	6371000	7859,323	5093,336	1,41	29085,99266	9,70
2000000	8371000	6856,465	7671,088	2,13	16847,85	5,62
4000000	10371000	6159,97	10578,45	2,94	10976,35	3,66
6000000	12371000	5640,096	13781,55	3,83	7714,17	2,57
8000000	14371000	5232,936	17255,26	4,79	5716,43	1,91
10000000	16371000	4902,881	20979,92	5,83	4405,03	1,47
12000000	18371000	4628,311	24939,64	6,93	3498,11	1,17
14000000	20371000	4395,242	29121,21	8,09	2844,95	0,95
16000000	22371000	4194,172	33513,44	9,31	2359	0,79
18000000	24371000	4018,392	38106,67	10,59	1987,71	0,66
20000000	26371000	3863,008	42892,45	11,91	1697,64	0,57
22000000	28371000	3724,36	47863,33	13,30	1466,73	0,49
24000000	30371000	3599,643	53012,66	14,73	1279,91	0,43
26000000	32371000	3486,67	58334,45	16,20	1126,64	0,38
28000000	34371000	3383,708	63823,29	17,73	999,34	0,33
30000000	36371000	3289,359	69474,24	19,30	892,46	0,30

32000000	38371000	3202,487	75282,78	20,91	801,85	0,27
34000000	40371000	3122,153	81244,73	22,57	724,37	0,24
36000000	42371000	3047,576	87356,26	24,27	657,6	0,22

Sull' asse x si può trovare l' altezza (h) espressa in metri (m), mentre sull' asse y viene rappresentata la velocità (V) espressa in metri al secondo (m/s).

Sull' asse x si può trovare l' altezza (h) espressa in metri (m), mentre sull' asse y si trova il periodo (T) espresso in ore (h).

Sull' asse x si può trovare l' altezza (h) espressa in metri (m),

mentre sull' asse y la forza centripeta (Fc) con unita di misura i newton (N).

CONCLUSIONI: Abbiamo calcolato il periodo (T) esprimendolo sia in secondi (s) che in ore (h), sommato la distanza di R ad h (raggio + altezza), determinato la forza centripeta (Fc), e infine la gravità sul Satellite (g).

Per concludere abbiamo creato 3 grafici per rappresentare i rapporti tra h e (V, T e Fc).