Math 494 Notes

Kellen Kanarios

October 15, 2023

Abstract This is a compilations of all of my notes for Math 494. The course is taught by Professor Andrew Snowden.

Contents

1	Ring Theory	2
	1.1 Rings	2
	1.2 Ring Homomorphisms	3
2	Factorization	14
3	Module Theory	26
	3.1 Exam	36
	3.2 Back to modules	37
	3.3 Exam Answers	39
4	Field theory	54
	4.1 Characterstic	57
	4.2 Adjoining Elements	
	4.3 Finite Fields	
	4.4 Algebraic Closure	
	4.5 Transcendental Extensions	
	4.6 Exam Review	
5	Galois Theory	69
	5.1 Cubic Polynomials	72
	5.2 Adjoining roots	
	5.3 Galois Closure	
	5.4 Infinite Galois Theory	
	5.5 Finite Fields	
	5.6 Galois Theory	88

Chapter 1

Ring Theory

Lecture 1: First Lecture

1.1 Rings

1 Itings

4 Jan. 02:00

Definition 1.1.1 (Ring). A ring is a set R with two binary operations + (addition) and \cdot (mult) such that

- (1) (R, +) is an abelian group
 - identity element 0,
 - additive inverse of x, which is -x.
- (2) (R, \cdot) is a monoid:
 - Multiplication is associative,
 - There exists an identity element 1.
- (3) Distributive law

$$x \cdot (y+z) = x \cdot y) + (x \cdot z)$$
$$(y+z) \cdot x = (y \cdot x) + (z \cdot x).$$

Definition 1.1.2 (Commutative Ring). A ring is called commutative if multiplication is commutative.

Example. Consider the following examples:

- \mathbb{Z} is a ring,
- $\mathbb{Z}[x]$ i.e. polynomial w/ \mathbb{Z} coefficients,
- Any field is a ring,
- If R is a ring then $M_n(R)$ is a ring (non-commutative in general),
- The zero ring $R = \{0\}$.
 - Not a field,
 - If 1 = 0 in R then R = 0.

Remark. If R is any commutative ring then $R[x] = \{\text{polys in var } x \text{ with coefficients in } R\}$ is a commutative ring. Can also do $R[x_1, \ldots, x_n]$.

Exercise. The following are homework exercises:

- $x \cdot 0 = 0$, for every $x \in R$,
- $\bullet \ (-1) \cdot x = -x$

1.2 Ring Homomorphisms

Definition 1.2.1 (Ring Homomorphism). Let R, S be rings. Then a ring homomorphism $f: R \to S$ is a function such that

- (1) f(x+y) = f(x) + f(y),
- (2) $f(x \cdot y) = f(x) \cdot f(y)$,
- (3) f(1) = 1.

Note. If f(x) = 0 for every x then f is compatible with (1) and (2) but $f(1) \neq 1$ unless S = 0.

Exercise. Why do we require f(1) = 1?

Answer. It gives us the following useful properties:

- An element x of a ring R is called a unit if it is invertible under multiplication i.e. $\exists ! y \in R$ such that xy = yx = 1.
- The set R^{\times} of units is a group under multiplication.
- If $f: R \to S$ is a ring homomorphism it induces a group homomorphism $f: R^{\times} \to S^{\times}$.

*

Example. The following are examples of ring homomorphisms:

- $id_R: R \to R$,
- For any R, \exists ! ring homomorphism $R \mapsto 0$,
 - 0 is a final object in category of rings.
- For any R, \exists ! ring homomorphism: $\mathbb{Z} \to R$ defined by $n \mapsto \underbrace{1 + \cdots + 1}_{n \text{times}}$.
 - $-\mathbb{Z}$ is the initial object in the category of rings.
- $\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ quotient map,
- $\mathbb{C} \to \mathbb{C}$ defined by $x \mapsto \overline{x}$.

Remark. In the theme of category theory,

- In groups, the trivial group is initial and final object,
- The category of fields have no initial or final object.

Example. Let R be a commutative ring. Then there exists a ring homomorphism $R[x] \to R$ defined by $a_0 + a_1 x + \cdots + a_n x^n \mapsto a_0 + \cdots + a_n$. More generally, if $c \in R$, then we get a ring homomorphism

 $R[x] \to R$ defined by $\phi \mapsto \phi(c)$.

Proposition 1.2.1 (Mapping property for polynomial rings). Let R, S be commutative rings. Giving a ring homomorphism $\phi: R[x] \to S$ is the same as giving $\phi_0: R \to S$ and $c \in S$

$$\phi_0 = \phi|_R$$
$$c = \phi(x).$$

Basic Idea. Given $\phi_0: R \to S$ and $c \in S$ we define $\phi: R[x] \to S$ by $\phi\left(\sum_{i=1}^n a_i x^i\right) = \sum_{i=1}^n \phi_0(a_i) c^i$. Check that this is a well-defined ring homo and inverse to the construction $\phi \mapsto (\phi_0, c)$.

Another Explanation. Given $\phi_0: R \to S$ and $c \in S$.

$$R[x] \mapsto S[x] \mapsto S$$

where

$$\sum a_i x^i \mapsto \sum \phi_0(a_i) x^i.$$

Remark. $R[x, y] \cong R[x][y]$.

Definition 1.2.2 (Kernel). Let $f: R \to S$ be a ring homomorphism. The kernel of f is $f^{-1}(0)$.

Remark. The following are familiar and useful facts:

- The kernel is an additive subgroup of R.
- f is injective if and only if ker(f) = 0.

Lemma 1.2.1. If $x \in \ker(f)$ and $y \in R$, then $xy \in \ker(f)$.

Proof.

$$f(xy) = f(x)f(y)$$
$$= 0 \cdot f(y)$$
$$= 0.$$

Definition 1.2.3 (Ideal). An ideal of R is an additive subgroup $I \subset R$ that is closed under multiplication:

$$a \in R, b \in I \Rightarrow ab \in I.$$

Remark. In non-commutative case, we have left, right, and 2-sided ideals.

Example. The kernel of a ring homomorphism is an ideal.

Proposition 1.2.2. The converse of the previous example is also true.

Proof. Suppose $I \subset R$ is an ideal. Can consider R/I (as an abelian group). Define a multiplication

on R/I by

$$(a+I)(b+I) = ab + I.$$

Note. It is important that I is an ideal because

$$(a+I)(b+I) = (a+x)b+I.$$

We need $bx \in I$ for this multiplication to be well-defined. This is okay because I is an ideal.

This makes R/I a commutative ring. The quotient $\pi: R \to R/I$ is a ring homomorphism, where $\ker(\pi) = I$.

Lecture 2: Second Lecture

Definition 1.2.4 (Subring). Let R be a ring. A subgring of R is a subset S that is closed under addition and multiplication and contains 1.

6 Jan. 02:00

Note. Ideals are closed under + and \cdot , but usually not subrings (Do not contain 1). If they do contain 1 then it is the whole ring.

Definition 1.2.5 (Generated Subring). Let R be a ring, $X \subset R$ is a subset of R. The subring of R generate by X is the smallest subring of R containing X i.e. $\bigcap_{\substack{S \text{ subring}}} S.$

Example. The Gaussian integers.

$$\mathbb{Z}[i] = \text{subring of } \mathbb{C} \text{ generated by } i = \sqrt{-1}$$

= $\{a + bi \mid a, b \in \mathbb{Z}\}.$

Example. $R = \mathbb{C}[x,y], X = \mathbb{C} \cup \{x^2, xy, y^2\}$. Subring generated by X is all polynomials in x, y with coefficients in \mathbb{C} in which all monomials $x^i y^j$ have i + j even.

Remark. This is known as a Veronese subring of R.

Note. The following is a surjective ring homomorphism.

$$\mathbb{C}[T_1, T_2, T_3] \to S$$

$$T_1 \mapsto x^2$$

$$T_2 \mapsto xy$$

$$T_3 \mapsto y^2.$$

Remark. If R is a ring and I is an ideal of R then R/I naturally has the structure of a ring called quotient ring. Some properties are

1. Mapping property

where π is the quotient map. Given ϕ such that $I \subset \ker(\phi) \exists ! \psi$ such that $\phi = \psi \circ \pi$.

2. Corr. theorem for ideals

{ideals of
$$R/I$$
} \longleftrightarrow {ideals of R containing I }.

3. 1st isomorphism theorem: If $\phi:R\to S$ is a surjective homo of rings then ϕ induces an isomorphism

$$\overline{\phi}: R/_{\ker \phi} \to S.$$

Definition 1.2.6 (Generated Ideals). Given a ring R and elements $f_1, \ldots, f_n \in R$ the ideal of R generated by f_1, \ldots, f_n is

$$(f_1,\ldots,f_n) = \{g_1f_1 + \cdots + g_nf_n \mid g_1,\ldots,g_n \in R\}.$$

An ideal I is called principle if I = (f) for some $f \in R$.

Example. Consider the following examples:

- 1. Every ideal of \mathbb{Z} is principle,
- 2. If F is a field, every ideal of F[x] is principle,
- 3. Every ideal of $\mathbb{Z}[i]$ is princple,
- 4. The ideal (x, y) of F[x, y] is not principle.

Definition 1.2.7 (Presentation of ring). A presentation of a ring R is an isomorphism,

$$Z[x_1,\ldots,x_n]/(f_1,\ldots,f_m)\cong R,$$

where $f_1, \ldots, f_m \in \mathbb{Z}[x_1, \ldots, x_n]$.

Remark. More generally, a (finite) presentation of R relative to a ring S is an isomorphism

$$S[x_1,\ldots,x_N]/(f_1,\ldots,f_m)\cong R.$$

Example. Presentation for $\mathbb{Z}[i]$.

$$\mathbb{Z}[x]/x^2+1 \stackrel{\phi}{\to} \mathbb{Z}[i].$$

- 1. There exists the ring map $\tilde{\phi}: \mathbb{Z}[x] \to \mathbb{Z}[i]$ defined by $x \mapsto i$.
- 2. $\tilde{\phi}(x^2+1)=i^2+1=0 \Rightarrow (x^2+1)\subset \ker(\tilde{\phi})$

3. Mapping property for quotients \Rightarrow there exists a ring homomorphism

$$\phi \cdot \mathbb{Z}[x] / (x^2 + 1) \to \mathbb{Z}[i]$$

such that $\phi(\overline{x}) = i$.

- 4. Clear that $\tilde{\phi}$ and therefore ϕ is surjective.
- 5. Every element of $\mathbb{Z}[x]/(x^2+1)$ has the form $a\overline{x}+b$ for $a,b\in\mathbb{Z}$ i.e.

$$x^5 = x^5 - x^3(x^2 + 1) + x^3(x^2 + 1) \Rightarrow \overline{x}^5 = -\overline{x}^3.$$

Say $a\overline{x} + b \in \ker(\phi)$. Then

$$\phi(a\overline{x} + b) = ai + b = a = b = 0 \Rightarrow \ker(\phi) = 0.$$

Definition 1.2.8 (Integral domain). A commutative ring R is an (integral) domain if

- $xy = 0 \Rightarrow x = 0 \text{ or } y = 0$,
- $1 \neq 0 \in R$.

Example. The following are examples of domains:

- Any field is a domain,
- $\mathbb{Z}, \mathbb{Z}[i], \mathbb{Z}[x], \mathbb{Q}[x],$
- $\mathbb{Z}/6\mathbb{Z}$.

Remark. Every domain embeds into a field.

Definition 1.2.9 (Fraction field). Given a domain R. Define a field $\operatorname{Frac}(R)$ (fraction field of R). An element is an equivalence class of pairs a,b, where $a,b \in \mathbb{R}$ and $b \neq 0$. We say $(a,b) \sim (a',b')$ if ab' = a'b.

Notation. Write $\frac{a}{b}$ for the class (a, b).

Then

$$\frac{a}{b} + \frac{a'}{b'} = \frac{ab' + ba'}{bb'}, \quad \frac{a}{b} \cdot \frac{a'}{b'} = \frac{aa'}{bb'}.$$

There exists an injective ring homomorphism

$$R \to \operatorname{Frac}(R)$$

 $a \mapsto \frac{a}{1}$.

Example. Examples of fraction fields:

- $\operatorname{Frac}(\mathbb{Z}) = \mathbb{Q}$,
- $\operatorname{Frac}(\mathbb{Q}[x]) = \mathbb{Q}(x)$,

Example. $R = \mathbb{C}[x,y]/(y-x^3-x)$. This is a domain. $\operatorname{Frac}(R)$ is a field. This field, we have $\mathbb{C}(x) \subset \operatorname{Frac}(R)$. $y^2 = x^3 + x \in \operatorname{Frac}(R)$.

Lecture 3: Third Lecture

Remark. Recall example. For any ring R, we can consider $R[x]/(x^2+1)$.

6 Jan. 02:00

Example. $R = \mathbb{F}_7$, $7 \equiv 3 \mod 4 \Rightarrow -1$ is not a square in \mathbb{F}_7 . Put $E = \mathbb{F}_7[x] / (x^2 + 1)$.

Claim. E is a field, #E = 49. $(E = \mathbb{F}_{49})$

Proof. Let j = img of x in E. (Note: $j^2 = -1$) Then every element of \mathbb{F}_7 uniquely has the form a + bj for $a, b \in \mathbb{F}_7$. This implies that #E = 49 because it is 2-dimensional.

$$\frac{1}{a+bj} = \frac{1}{a+bj} \cdot \frac{a-bj}{a-bj} = \frac{a-bj}{a^2+b^2}.$$

Note. The key point is that $a^2 + b^2 \neq 0$. This is because if $a^2 + b^2 = 0$ then $a^2 = -b^2 \Rightarrow \left(\frac{a}{b}\right)^2 = -1$

Therefore, $\frac{a-bj}{a^2+b^2}$ is a well defined element of E and is the inverse of a+bj.

Example. Let $R = \mathbb{C}$, $E = \mathbb{C}[x]/(x^2+1)$, $j = \text{img of } x \text{ in } E \text{ satisfying } j^2 = -1$. Every element of E can be written uniquely as a+bj for $a,b\in\mathbb{C}$. (i.e. $1,j\in E$ form a basis of E as a \mathbb{C} -vector space).

$$x^2 + 1 = (x+i)(x-i)$$
 holds in $\mathbb{C}[x]$.

From our map to E,

$$(j+i)(j-i) = 0.$$

Since $j+i, j-i \neq 0$, E is not a domain. In fact, $E \cong \mathbb{C} \times \mathbb{C}^a$.

First try. Consider the map defined by $(1,0) \mapsto 1$ and $(0,1) \mapsto j$. This does not work because $(1,1) \mapsto 1+j$ and we need $(1,1) \mapsto 1$.

Remark. Think about $A \times B$ having elements e = (1,0) and f = (0,1). Following properties

- $e^2 = e, f^2 = f, \frac{a}{}$
- ef = 0,
- e + f = 1.

In general, if R is a ring, e, f are idempotents such that ef = 0, e + f = 1. Then $R \cong A \times B$ where $A = eR^b$, B = fR.

Correct Approach. Look at (1+ij). Note that

$$(1+ij)^2 = 1 + 2ij + (ij)^2$$

= 2(1+ij).

^aIn general, if A and B are ring then $A \times B$ is a ring with component wise operations known as the product ring

 $^{^{}a}$ We say e, f are idempotents

 $^{{}^}b\mathrm{Is}$ not a subring because it does not have the identity element

Then,

$$\left(\frac{1+ij}{2}\right)^2 = \left(\frac{1+ij}{2}\right).$$

Therefore, $\underbrace{\frac{1+ij}{2}}_{e}$ and $\underbrace{\frac{1-ij}{2}}_{f}$ are idempotents of E and ef=0 and e+f=1. These give the decomposition, $E=\underbrace{eE}_{\mathbb{C}}\times\underbrace{fE}_{f}$.

Remark (More generally). Let R be any commutative ring. Let $h(u) \in R[u]$ be a monic polynomial:

$$h(u) = u^n + a_{n-1}u^{n-1} + \dots + a_0, \qquad a_0, a_{n-1} \in R.$$

Consider E = R[u] / (h(u)). E is obtained by "adjoining a root of h" to R.

Proposition 1.2.3. Every element of E can be written uniquely as $b_0 + b_1 u + \cdots + b_{n-1} u^{n-1}$ for $b_0, \ldots, b_{n-1} \in R$. In other words, $E \underset{\text{not as a ring}}{\cong} R^n$ with an interesting multiplication.

Note. When h is not monic things can be more complicated. Consider h(u) = au - 1. Then E = R[u] / (h(u)) is often denoted $R[\frac{1}{a}]$.

Example. Let $R = \mathbb{Z}$, a = 2. Consider $\mathbb{Z}[\frac{1}{2}]$. This is isomorphic to the subring of Q consisting of elements $\frac{a}{b}$, where $b = 2^k$ for some $k \in \mathbb{Z}$.

Example (More generally). If R is a domain, then $R[\frac{1}{a}]$ is the subring of Frac(R), consisting of elements $\frac{x}{a^n}$ with $x \in R$, $n \in \mathbb{N}$.

Example. $R = \mathbb{Z}, a = 1, E = \mathbb{Z}[u] / (u - 1)$. Then

$$\mathbb{Z} \to^{\mathbb{Z}[u]} / (u - 1) \to \mathbb{Z}$$

Therefore, if a is a unit, $R\left[\frac{1}{a}\right] = R$.

Example (Maximal degeneracy). Let $E = R[\frac{1}{0}]$. Then E = 0 because h(u) = -1 is a unit, the ideal (h(u)) is all of R.

Example. Let $R = \mathbb{Z}/6\mathbb{Z}$, a = 3. Then $R\left[\frac{1}{3}\right] = \mathbb{Z}/2\mathbb{Z}$. Note

$$\mathbb{Z}/_{6\mathbb{Z}} \cong \mathbb{Z}/_{2\mathbb{Z}} \times \mathbb{Z}/_{3\mathbb{Z}}$$
$$3 \mapsto (1,0)$$
$$\mathbb{Z}/_{3\mathbb{Z}}[\frac{1}{0}] = 0$$
$$\mathbb{Z}/_{2\mathbb{Z}}[\frac{1}{1}] = \mathbb{Z}/_{2\mathbb{Z}}.$$

Thus,

$$\mathbb{Z}/_{6\mathbb{Z}}[\frac{1}{3}] = \mathbb{Z}/_{2\mathbb{Z}}.$$

Lecture 4: Fourth Lecture

Definition. Let R be a commutative ring.

6 Jan. 02:00

Definition 1.2.10 (Multiplicative Set). A multipliative set in R is a subset S such that $1 \in S$ and $x, y \in S \Rightarrow xy \in S$

Definition 1.2.11 (Localization). Given a multiplicative set $S \subset R$, the localization $S^{-1}R$ is

$$R\left[\frac{1}{s}\right]_{s\in S}$$
.

Remark. This is the iterated version of $R\begin{bmatrix} \frac{1}{a} \end{bmatrix}$ from last time.

Example. R is a domain, $0 \notin S$. Then $S^{-1}R$ is the subring of Frac(R) consisting of elements $\frac{x}{s}$ with $x \in R$ and $s \in S$.

Example. Let $R = \mathbb{Z}$, fix prime p. S = all integers coprime to P. Then $S^{-1}R$ is subring of \mathbb{Q} of fractions with denominator prime to p.

Problem 1.2.1. What are the ideals of $\mathbb{Z}_{(p)}$?

Answer. The ideals are (p^n) for $n \geq 0$.

*

Remark. $\mathbb{Z}_{(p)} \subset \mathbb{Z}_p$. More specifically, $\mathbb{Z}_{(p)} = \mathbb{Z}_p \cap \mathbb{Q}$.

As previously seen. $\mathbb{F}_7[x]/(x^2+1)$ is a field with 49 elements.

Problem 1.2.2. When is R/I a field? What does this say about I?

Answer. When I is a maximal ideal.

*

Definition 1.2.12. A maximal ideal of a ring R is a proper ideal that is not strictly contained in any other proper ideal.

Lemma 1.2.2. A ring is a field if and only if it has exactly two ideals: (0), (1).

Proof.

- \Rightarrow Say F is a field and $I \subset F$ is a non-zero ideal. Let $x \neq 0 \in I$ then $xx^{-1} = 1 \in I$. Thus, I = (1).
- \Leftarrow Say F is a ring with exactly two ideals (0) and (1). Say $x \in F$ is non-zero. Then (x) is not zero, so it must be (1). Therefore, $\exists y$ such that xy = 1, so $y = x^{-1}$ and F is a field.

Proposition 1.2.4. Let R be a commutative ring and $I \subset R$ be an ideal. I is maximal if and only if R/I is a field.

Proof. Ideal correspondence theorem:

$$\underbrace{\{ \text{ ideals of } R \text{ containing } I \}}_{\text{Has two elements iff } I \text{ maximal}} \leftrightarrow \underbrace{\{ \text{ ideals of } R / I \}}_{\text{Has two elements if and only if } R / I \text{ is a field}}$$

Problem 1.2.3. What are max ideals of \mathbb{Z} ?

Answer. Every ideal of \mathbb{Z} has the form (n) for some n. However, $\mathbb{Z}/n\mathbb{Z}$ is a field if and only if n is prime. Therefore, the max ideals are

$$\{(p) \mid p \text{ is prime}\}.$$

*

Example. $R = \mathbb{Q}[x]$.

$$\mathbb{Q}\left[i\right]\Big/(x^2+1) = \underbrace{\mathbb{Q}\left[i\right]}_{\{a+bi|a,b\in\mathbb{Q}\}} = \underbrace{\mathbb{Q}(i)}_{\text{Smallest sub field of }\mathbb{C} \text{ containing } i}$$

Therefore, $(x^2 + 1)$ is a max ideal of $\mathbb{Q}[x]$.

Remark (Generalized Chinese Remainder Theorem).

$$\mathbb{Q}[x] / ((x^2 + 1)(x - 1)) \cong \mathbb{Q}[x] / (x^2 + 1) \times \mathbb{Q}[x] / (x - 1).$$

This is not a field, so ideal is not maximal.

Proposition 1.2.5. Let R be a ring. $I \subset R$ is a proper ideal, then there exists a maximal ideal J of R such that $I \subset J$.

Sketch. Define

$$\Sigma := \{ \text{ all proper ideals } J \text{ such that } I \subset J \}.$$

Want to show that Σ has a maximal element. Suppose $J_1 \subset J_2 \subset \cdots$ is a chain in Σ . Put $J = \bigcup_{i=1}^{\infty} J_i$. J is proper because if not then $1 \in J$ which implies $1 \in J_i$ for some i and J_i is not proper. Now from Zorn's lemma, there exists a maximal element of Σ .

Problem 1.2.4. Consider $R = \mathbb{C}[x_1, \dots, x_n]$. What are the maximal ideals?

Answer. The following are maximal ideals:

- (x_1, \ldots, x_n) is maximal because $R / (x_1, \ldots, x_n) \cong C$.
- Given $a \in \mathbb{C}^n$, then $J_a = (x_1 a_1, \dots, x_n a_n)$ because $R / (x_1 a_1, \dots, x_n a_n) \cong C$.

This is actually all of them from the theorem.

*

Theorem 1.2.1. Every max ideal of R is one of the J_a 's.

6 Jan. 02:00

Proof. Let $J = \max$ ideal of R, K = R/J is a field. Then

$$\mathbb{C} \hookrightarrow R \to K$$

composite is injective because \mathbb{C} is a field. $\mathbb{C} \subset K$. Note that $\dim_{\mathbb{C}} R$ is countable, so the same is true for K. $\dim_{\mathbb{C}} \mathbb{C}(x)$ is uncountable:

$$\left\{ \frac{1}{x-a} \mid \alpha \in \mathbb{C} \right\}$$

are \mathbb{C} -linearly independent. If $\mathbb{C} \subset K$ then $\exists a \in K / C$ and $\mathbb{C}(a) \cong \mathbb{C}(x)$ (using \mathbb{C} is algebraically closed). Contradicts dimension count. Therefore, $K = \mathbb{C}$.

$$J = \ker(R \to R / J = \mathbb{C})$$

$$x_i \mapsto a_i$$

$$J = J_a$$

Problem 1.2.5. What fields contain \mathbb{C} as a subfield?

Answer. \mathbb{C} , $\mathbb{C}(x)$, $\mathbb{C}(x_1,\ldots,x_n)$.

Remark.

Lecture 5: Fifth Lecture

Claim. Let $R = \mathbb{C}[x_1, \dots, x_n, a \in \mathbb{C}^n, J_a = (x_1 - a_1, \dots, x_n - a_n)$. Consider the ring homomorphism $ev_a: R \to \mathbb{C}$ defined by $f \mapsto f(a)$. Then $J_a = \ker(ev_a)$

Proof. For the containment $J_a \subset \ker(ev_a)$ it is clear. For the reverse containment, change of variables to reduce to a = 0 (think about monomials) note

$$R = \mathbb{C}[x_1, \dots, x_n] = \mathbb{C}[x_1 - a_1, \dots, x_n - a_n].$$

Proposition 1.2.6. The J_a 's give all max ideals of R.

Proof. Let $J \subset R$ be a max ideal. Last time $R/J \cong \mathbb{C}$. Consider the map

$$\phi: R \to R/_J = \mathbb{C}.$$

Let $a_i = \phi(x_i) \in \mathbb{C}$. Since $J_a \subset \ker(\phi)$, $J_a = \ker(\phi)$ because J_a is maximal.

Remark. Let $f \in R$. From the above claim, $f \in J_a \Leftrightarrow f(a) = 0$. Additionally, we know that $(f) \subset J_a \Leftrightarrow f \in J_a$ Consider the set

$$\{z \in \mathbb{C}^n \mid f(z) = 0\} \subset \mathbb{C}^n.$$

This set is naturally in bijection with the set of maximal ideals of

12

Example. n = 2, $f = x_1^2 + x_2^2 - 1$.

$${z \mid f(z) = 0}.$$

Complex points of unit circle correspond to max ideals of $\mathbb{C}[x_1, x_2] / (x_1^2 + x_2^2 - 1)$

Remark. Let R be a ring. Define $\operatorname{MaxSpec}(R)^a = \{ \max \text{ ideals of } R \}$. For $x \in \operatorname{MaxSpec}(R)$ write $m_x \subset R$ for corresponding maximal ideal. We also have the quotient field $\kappa_x = R / m_x$. For each $x \in \operatorname{MaxSpec}(R)$ define $f(x) \in \kappa_x$ to be the image of f.

Example. Given an ideal $I, V(I) = \{x \in \text{MaxSpec} \mid I \subset m_x\}$. If $R = \mathbb{C}[x_1, \dots, x_n], I = (f)$, then

$$V(I) = \{ J_a \mid f(a) = 0 \}.$$

The V(I) 's are exactly the closed sets of MaxSpec(R).

Remark. If the ring is a domain, then the topology is not Hausdorff.

Proposition 1.2.7. $R = \mathbb{C}[x_1, \dots, x_n]$. Let $f_1, \dots, f_r \in R$. Then the following are equivalent:

- (a) $(f_1, \ldots, f_r) = (1),$
- (b) $\{z \in \mathbb{C}^n \mid f_1(z) = \dots = f_r(z) = 0\} = \emptyset$

Proof. Suppose (a) is true. Then $1 = \sum_{i=1}^r g_i f_i$. Given $z \in \mathbb{C}^n$, $1 = \sum_{i=1}^r g_i(z) f_i(z)$, so not all $f_i(z)$ vanish. Now suppose $\neg(b)$. Assume $(f_1, \ldots, f_r) \neq (1)$. Then (f_1, \ldots, f_r) is contained in a maximal ideal. This max ideal is some J_a with $a \in \mathbb{C}^n$. Then for every $i, f_i \in J_a$ and $f_i(a) = 0$.

 $[^]a$ Carries a natural topology

Chapter 2

Factorization

Theorem 2.0.1 (Fundamental Theorem of Arithmetic). If n is a non-zero integer, \exists factorization

$$n = \pm p_1 \cdots p_r$$

where p_i is prime. This is unique up to permuting the p_i 's.

Problem 2.0.1. Is there an analog of this in more general rings?

Answer. Sometimes...

*

Example. The following are some examples:

- 1. F[x], F is a field. In this case, there is a theory of unique factorization.
- 2. Also true for $F[x_1, \ldots, x_n]$.
- 3. $\mathbb{Z}[i]$ has a unique factorization.
- 4. $\mathbb{Z}[\sqrt{-5}]$. Not true: $6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 \sqrt{-5})$

Problem 2.0.2. In \mathbb{Z} , $6 = 2 \cdot 3 = (-2) \cdot (-3)$. Why do we have a unique factorization for \mathbb{Z} .

Answer. Because the factorizations differ by units.

*

Remark. From here on, R is a domain. For $x, y \in R$, we say that x divides y written x|y, if y = wx for some $w \in R$ ($\Leftrightarrow y \in (x) \Leftrightarrow (y) \subset (x)$).

Lemma 2.0.1. If x|y and y|x then $x = u \cdot y$ for a unit u.

Proof. x = uy, y = vx for some $u, v \in R$. Therefore,

$$x = uvx \Rightarrow x(1 - uv) = 0 \stackrel{x \neq 0}{\Rightarrow} 1 - uv = 0 \Rightarrow uv = 1.$$

Thus, u, v are units.

Definition 2.0.1. We say x and y are associates if x = uy for some unit u.

Definition 2.0.2. An element π of R is irreducible if $(\pi \neq 0, \pi \neq \text{unit})$

$$\pi = xyx = \text{unit or } y = \text{unit.}$$

Example. The following are a few examples:

- (1) $R = \mathbb{Z}$ irreducible elements are \pm primes.
- (2) R = F[x] with F as a field are irreducible polynomials.

Definition 2.0.3 (Unique Factorization Domain). A unique factorization domain is a domain R such that $\forall 0 \neq x \in R$, there exists a factorization

$$x = \pi_1 \cdots \pi_r$$

with π_i irreducible and it is unique in the sense that if

$$x = \pi'_1 \cdots \pi'_s$$

then r = s and there exists a permutation σ such that $\pi_i \sim \pi'_{\sigma(i)}$.

Lecture 6: Sixth Lecture

Remark. If R is a commutative ring and $I, J \subset R$ are ideals then

 $IJ = ideal generated by ab with <math>a \in I, b \in J$.

Remark. Say R is a domain. To be a UFD, we need two things:

- (1) Every element factors into irreducibles.
- (2) This factorization is approximately unique.

Problem 2.0.3. When can (1) fail?

Answer. $\mathbb{C}[x_1, x_2, \ldots]$. This fails because all polynomials only use finitely many variables. In fact, this ring is a UFD.

Answer. $R = \text{continuous functions} : [-1, 1] \to \mathbb{C}$ with

- Addition = pointwise addition.
- Multiplication = poinwise multiplication.

This is a commutative ring but is not a domain.

Answer. $R = \text{analytic functions} : \mathbb{R} \to \mathbb{C}$.

- Addition = pointwise addition.
- Multiplication = poinwise multiplication.

This is a domain. Consider sin(x). Then

$$\sin(x) = x \cdot \frac{\sin(x)}{x}$$
$$= x \cdot (x - 2\pi) \cdot \frac{\sin(x)}{x(x - 2\pi)} \cdots$$

Up to associates, the irreducible elements of S are $x-a, a \in \mathbb{R}$. (1) seems to fail here?

*

(*)

18 Jan. 02:00

Answer. Consider $S = \mathbb{C}[x^{\frac{i}{2^k}}]_{i < k}$. Then

$$S = \mathbb{C}[y_0, y_1, y_2, \ldots] / (y_i^2 - y_{i-1}).$$

Then

$$x = x^{\frac{1}{2}} \cdot x^{\frac{1}{2}}$$
$$= x^{\frac{1}{2}} \cdot x^{\frac{1}{4}} \cdot x^{\frac{1}{4}} \cdots$$

*

Proposition 2.0.1. Let R be a ring. The following are equivalent:

(1) Ideals of R satisfy the ascending chain condition (ACC) i.e. If $I_1 \subset I_2 \subset \cdots$ are ideals, then there exists an n such that

$$I_n = I_{n+1} = \cdots$$
.

(2) Every ideal is finitely generated.

Proof.

(b) \Rightarrow (a) . Consider $I_1 \subset I_2 \subset \cdots$. Put $J = \bigcup_{n=1}^{\infty} I_n$. This is an ideal. By (b), J is finitely generated. Therefore $J = (a_1, \ldots, a_r)$ for some $a_1, \ldots, a_r \in R$. Since there exists an n such that $a_1, \ldots, a_r \in I_n$, $J \subset I_n$. So $I_n = I_{n+1} = \cdots = J$.

 $\neg(b) \Rightarrow \neg(a)$ Let J be an ideal that is not finitely generated. Pick $a_1 \in J$. Then $(a_1) \subset J$. Note $(a_1) \neq J$ because J is not finitely generated. Now pick $a_2 \in J$ (a_1) then $(a_1, a_2) \subset J$, which is also strict. Continuing we get,

$$(a_1) \not\subset (a_1, a_2) \not\subset \cdots$$
.

Thus, (a) fails.

Definition 2.0.4. A commutative ring R is noetherian if (a) and (b) hold.

Remark. This is a very important idea!

Example. A PID is noetherian. (b) holds because it is generated by one thing.

Proposition 2.0.2. Let R = noetherian domain. Let $x_1, x_2, \ldots, \in R$ be elements such that

$$x_2|x_1,x_3|x_2,\ldots$$

Then there exists an n such that $x_n \underset{\text{associate}}{\underbrace{\sim}} x_{n+1} \sim x_{n+2} \cdots$

Proof. Note $x|y \Leftrightarrow (y) \subset (x)$. We have

$$(x_1) \subset (x_2) \subset (x_3) \cdots$$

Since (ACC) holds, there exists an n such that $(x_n) = (x_{n+1}) = \cdots$. Thus, $x_n \sim x_{n+1} \sim \cdots$.

Proposition 2.0.3. If R is a noetherian domain then every element factors into irreducibles.

Proof. Let $x \in R$ be given. Say $x \neq 0$, unit.

Claim. x is divisible by some irreducible element.

Proof. Follows from previous proposition.

Now, choose irreducible $\pi_1|x$. Write $x = \pi_1 x_2$. Now choose $\pi_2|x_2$. Then $x = \pi_1 \pi_2 x_3$. Process stops by previous proposition.

Remark. Say $p \geq 2$ is an integer. The following are equivalent:

- (a) If p = xy then $x = \pm 1$ or $y = \pm 1$.
- (b) $p|xy \Rightarrow p|x \text{ or } p|y$.

In a general ring, (a) leads to idea of irreducible element and (b) leads to the idea of a prime element.

Definition 2.0.5 (Prime element). Suppose R is a domain, $\pi \neq 0$, unit. We say π is prime if $\pi | xy \Rightarrow \pi | x$ or $\pi | y$

Remark. Prime elements are always irreducible.

Proof. Say π is prime. If $\pi = xy$ then $\pi | xy \Rightarrow \pi | x$ or $\pi | y$, so $\pi \sim x$ or $\pi \sim y$.

Proposition 2.0.4. Let R be a domain in which all elements have irreducible factorizations. Then the following are equivalent:

- (a) R is a UFD.
- (b) All irreducible elements are prime.

Proof

- (b) \Rightarrow (a) Say $x = \pi_1 \cdots \pi_r = \pi'_1 \cdots \pi'_s$ are two factorizations of x. Since π_r divides x, it divides $\pi'_1 \cdots \pi'_s$. Since π_r is prime, there exists an i such that $\pi_r | \pi'_i$, so $\pi_r \sim \pi'_i$. Now cancel π_r and π'_i . Continue by induction we now have fewer factors.
- (a) \Rightarrow (b) Let π be irreducible. We need to show

$$\pi \not| x, \pi \not| y \Rightarrow \pi \not| xy.$$

Let x, y with irreducible factorizations

$$x = \sigma_1 \cdots \sigma_r$$
$$y = \sigma'_1 \cdots \sigma'_s.$$

Then

$$xy = \sigma_1 \cdots \sigma_r \sigma_1' \cdots \sigma_s'.$$

Since π doesn't appear and this is the only irreducible factorization of xy, π /xy because R is a UFD.

Lecture 7: Seventh Lecture

As previously seen. We talked about UFD's namely

20 Jan. 02:00

- \bullet If R is noetherian then every element factors into irreducibles.
- If R has factorization into irreducibles then R is a UFD iff all irreducible elements are prime.

Theorem 2.0.2. Every PID is a UFD

Proof. Let R be a PID. R is noetherian because every ideal is generated by one element (and therefore finitely generated). Let π be an irreducible element. Then we need to show that π is prime. Say $\pi|xy$. Consider the ideal (π,x) . Since R is a PID, there exists some $a \in R$ such that $(\pi,x)=(a)$. Since $\pi \in (a)$, $a|\pi$. Since π is irreducible, there are two cases:

Case 1: a is associate to π

Since $x \in (a)$, a|x, so $\pi|x$.

Case 2: a is a unit.

Then $(\pi, x) = (1)$. Therefore, $\exists u, v \in R$ such that $u\pi + vx = 1$. It follows that

$$u\pi y + vxy = y.$$

Since π divides π and π divides x, π divides y.

Remark. In any domain, we can define the notion of a gcd:

d is a gcd of x and y if d|x and d|y, and (e|x and $e|y \Rightarrow e|d)$.

Remark. gcd's always exists in a UFD but we don't always have Bézout.

Remark. In a PID, do get Bézout i.e.

$$(x,y) = (d) \Leftrightarrow d = \gcd(x,y).$$

Definition 2.0.6. R is a domain. A Euclidean function on R is a function

$$\phi: R \setminus \{0\} \longrightarrow \{0, 1, 2, \ldots\}$$

such that the following version of the division algorithm holds:

• Given $x, y \in R$, $y \neq 0$, $\exists q, r \in R$ with $q \neq 0$ such that x = yq + r and either $\phi(r) < \phi(y)$ or r = 0.

Definition 2.0.7. A Euclidean domain is a domain with a Euclidean function.

Proposition 2.0.5. Every Euclidean domain is a PID.

Proof. Let $I \subset R$ be a non-zero ideal. Pick $y \in I$ with $\phi(y) \neq 0$ minimial.

Claim. I = (y)

Proof. Let $x \in I$ be given. Write yq + r, where r = 0 or $\phi(r) < \phi(y)$. Note $r \in I$ not possible by choice of y

because

$$r = \underbrace{x}_{\in I} - \underbrace{yq}_{\in I}.$$

From the claim, it follows that I is principle.

Example. \mathbb{Z} is a Euclidean domain. $\phi(x) = |x|$.

Example. If F is a field then F[x] is a Euclidean ring with $\phi(f) = \deg(f)$.

Example. $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\} \subset \mathbb{C}$ is a Euclidean domain, with $\phi(a + bi) = a^2 + b^2$.

Reason. Say $x, y \in \mathbb{Z}[i], y \neq 0$. Let $q \in \mathbb{Z}[i]$ be nearest Gaussian integer to $\frac{x}{y}$ i.e. $\frac{x}{y} = q + \epsilon$. Then $x = qy + \underbrace{\epsilon y}$. Therefore,

$$\phi(r) = \phi(\epsilon)\phi(y) < \phi(y)$$
 because $\phi(\epsilon) < 1$.

Note:

$$\epsilon = \alpha + i\beta$$
 and $|\alpha|, |\beta| \le \frac{1}{2}$,

so
$$\phi(\epsilon) = \alpha^2 + \beta^2 \le \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$
.

Example. $\omega = e^{\frac{2\pi i}{3}} = \frac{-1+\sqrt{-3}}{2}$ 3rd root of 1. Then

$$\mathbb{Z}[\omega] = \{a + b\omega \mid a, b \in \mathbb{Z}\} \subset \mathbb{C}$$

ring of Einstein integers. This is a Euclidean function $\phi(z) = |z|^2$ integer because

$$\phi(a+b\omega) = a^2 - ab + b^2.$$

Example. The ring of integers in $\mathbb{Q}(\sqrt{d})$ for $d \in \mathbb{Z}$ is

$$R_d = \begin{cases} \mathbb{Z}[\sqrt{d}], & \text{if } d = 2, 3 \bmod (4) \\ \mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right], & \text{if } d = 1 \bmod (4) \end{cases}.$$

The definition is

$$R_d = \{x \in \mathbb{Q}(\sqrt{d}) \mid \exists \text{monic } f \in \mathbb{Z}[T] \text{ such that } f(x) = 0\}.$$

There is a norm

$$N(x + y\sqrt{d}) = x^2 - dy^2.$$

Remark. The following are some facts:

- (1) R_{-1}, R_{-3} are Euclidean (\Rightarrow PID \Rightarrow UFD)
- (2) R_{-5} is not a UFD $6 = 2 \cdot 3 = (1 + \sqrt{-5}) \cdot (1 \sqrt{-5})$

23 Jan. 02:00

- (3) R_{-19} is a PID, but not Euclidean.
- (4) R_{69} is Euclidean, not norm-Euclidean (N not Euclidean)
- (5) For R_d , PID iff UFD.
- (6) \exists exactly 9 d < 0 such that R_d is a PID.
- (7) Unknown if $\exists \infty$ many d > 0 such that R_d is a PID.
- (8) If d<0 then R_d^{\times} is finite. For $d>0,\,R_d^{\times}$ is $\mathbb Z$ or $Z\times\mathbb Z\,/\,2$

$$x^2 - dy^2 = 1$$
 (Pell's Equation).

Solutions are units of R_d .

Lecture 8: Eighth Lecture

Remark. For $x \in \mathbb{Z}[i]$, put $N(x) = x\overline{x}$ (norm). If x = a + bi then $N(x) = a^2 + b^2$ is a non-negative integer. Also:

 $N(xy) = N(x) \cdot N(y).$

Remark. $x \in \mathbb{Z}[i]$ is a unit iff $N(x) = 1 \Leftrightarrow x \in \{\pm 1, \pm i\}$.

Reason. If x is a unit then

$$xy = 1 \Rightarrow N(x)N(y) = 1 \Rightarrow N(x) = 1.$$

If N(x) = 1 then

 $x \overline{x} = 1 \Rightarrow x \text{ is a unit.}$

Corollary 2.0.1. The units are $\{\pm 1, \pm i\}$

Reason. $1 = N(a + bi) = a^2 + b^2$.

Remark. If π is a Gaussian prime then π divides an (ordinary) prime number.

Reason. π divides $N(\pi) = \pi \cdot \overline{\pi}$. Since $N(\pi)$ is an integer, it factors into primes i.e.

$$N(\pi) = p_1 \cdots p_r$$
.

Since π is prime, π divides some p_i .

Remark (Strategy to understand Gaussian primes). Factor ordinary primes in $\mathbb{Z}[i]$.

Example.

$$2 = 1^{2} + 1^{2} = N(1+i)$$

$$2 = \underbrace{(1+i)(1-i)}_{\text{associates}}$$

$$= -i(i+1)^{2}.$$

Thus,

 $N(1+i) = 2 \Rightarrow 1+i$ is prime.

Remark. If $\pi \in \mathbb{Z}[i]$ has prime norm then π is a Gauss prime.

Reason. If $\pi = xy$ then $N(\pi) = N(x) \cdot N(y)$. Therefore,

$$N(x) = 1$$
 or $N(y) = 1$.

Thus,

x or y is a unit.

Note. If $n \in \mathbb{Z} \subset \mathbb{Z}[i]$. Then $N(n) = n^2$.

Example. 3 is prime because if 3 = xy then $9 = N(x) \cdot N(y)$. Therefore, N(x) = 3. However, this implies that $3 = a^2 + b^2$ which is not possible.

Example.
$$5 = \underbrace{(2+i)(2-i)}_{\text{prime b/c }N \text{ is prime}}$$
 (not associates).

Remark.

3 is prime
$$\Leftrightarrow$$
 (3) is maximal \Leftrightarrow no ideals above (3) except (1).

From previous example,

$$5 = (2+i)(2-i) \Leftrightarrow (5)$$
 is contained in $(2+i)$ and $(2-i)$.

Remark (General Strategy). Given a prime number p. Try to find ideals of $\mathbb{Z}[i]$ containing (p). By ideal forrespondence theorem, these correspond to ideals of $\mathbb{Z}[i] / p\mathbb{Z}[i]$.

Problem 2.0.4. What does $\mathbb{Z}[i] / p\mathbb{Z}[i]$ look like?

Answer.

$$\mathbb{Z}[i] \Big/ p\mathbb{Z}[i] \cong \mathbb{Z}[x] \Big/ (p, x^2 + 1) \cong \mathbb{F}_p[x] \Big/ (x^2 + 1).$$

*

Note (p=2). When p=2, $(x^2+1)=(x+1)^2$. Therefore, x+1 is nilpotent in $\mathbb{F}_2[x]/(x^2+1)$. You only see nilpotent elements when p=2. Note

$$\mathbb{F}_2[x] / (x^2 + 1) \cong \mathbb{F}_2[y] / (y^2),$$

where y = x + 1.

Remark (Key point). If $x^2 + 1$ has a root in \mathbb{F}_n

Case 1: If it does not, then $x^2 + 1$ is an irreducible polynomial in $\mathbb{F}_p[x]$ Therefore, it generates a maximal ideal such that $\mathbb{F}_p[x] / (x^2 + 1)$ is a field and p is prime in $\mathbb{Z}[i]$.

Case 2: If it does let α be the root. Then $-\alpha$ is also a root and $\alpha \neq -\alpha$ because p is odd.

Therefore, $x^2 + 1 = (x + \alpha)(x - \alpha)$. Thus,

$$\mathbb{F}_p[x] / (x^2 + 1) \stackrel{\text{CRT}}{\cong} \mathbb{F}_p[x] / (x + \alpha) \times \mathbb{F}_p[x] / (x + \alpha) \cong \mathbb{F}_p \times \mathbb{F}_p.$$

Therefore, there exists two ideals strictly between (p) and (1) in $\mathbb{Z}[i]$. Thus, p factors as a product of two distinct primes.

Note. To determine which case we're in, we need to know if $x^2 + 1$ has a root in \mathbb{F}_p i.e. if -1 is a square in \mathbb{F}_p

Proposition 2.0.6. If p is an odd prime, then -1 is a square in \mathbb{F}_p iff $p \equiv 1 \mod 4$

Proof. Recall $\mathbb{F}_p^{\times} \cong \mathbb{Z} / (p-1)\mathbb{Z}$. If $p \equiv 3 \mod 4$ then \mathbb{F}_p^{\times} has order $p-1 \equiv 2 \mod 4$. If $p \equiv 1 \mod 4$ then $4|_{p-1} \Rightarrow \mathbb{F}_p^{\times}$ has an element of order 4, its a $\sqrt{-1}$.

Remark (Summary). Let p be a prime.

- (a) p = 2, $2 = -i(1+i)^2$
- (b) $p \equiv 1 \mod 4$, $p = \pi_1 \pi_2$ in $\mathbb{Z}[i]$. In fact, $\pi_2 = \overline{\pi_1}$. Note if $\pi = a + bi$

$$p = \pi \cdot \overline{\pi}$$
$$p = a^2 + b^2.$$

Thus, p is a sum of two squares iff $p \equiv 1 \mod 4$.

(c) $p \equiv 3 \mod 4$, p is a Gauss prime.

Lecture 8: Ninth Lecture

Definition 2.0.8. A number field is a subfield of \mathbb{C} that is finite dimensional as a \mathbb{Q} -vector space.

25 Jan. 02:00

Definition 2.0.9. An algebraic number is a complex number that is a root of a polynomial with rational coefficients.

Remark. If K is a number field then every element is an algebraic number.

Proof. Given $x \in K, 1, x, x^2, x^3, \ldots \in K$. Since K is finite dimensional this list is linearly dependent over \mathbb{Q} . Then x satisfies the polynomial constructed by their linearly dependent relation.

Remark. If R is a subring of \mathbb{C} containing \mathbb{Q} and finite dimensional as a \mathbb{Q} -vector space then R is a field.

Proof. Let $x \in R$ be non-zero. Consider

$$m_x: R \longrightarrow R$$

 $a \longmapsto m_x(a) = xa.$

This is a \mathbb{Q} -linear map. It is injective because R is a domain. Since R is finite dimensional as a \mathbb{Q} -vector space, m_x is surject. Therefore, $\exists y$ such that $m_x(y) = 1$. Thus, R is a field.

Remark. If $x \in \mathbb{C}$ is an algebraic number then

$$\mathbb{Q}[x] = \mathbb{Q}\text{-span}(1, x, x^2, \dots)$$

is a number field.

Proof. Since x is an algebraic number, there exists some non zero $f(T) \in \mathbb{Q}[T]$ such that f(x) = 0. Therefore,

$$x^n + a_{n-1}x^{n-1} + \dots + a_0 = 0.$$

It follows that

$$x^{n} = -a_{n-1}x^{n-1} - \dots - a_0 \in \text{span}(1, x, \dots, x^{n-1}).$$

Similarly,

$$x^{n+1} = -a_{n-1}x^n - \dots - a_0 \in \text{span}(1, x, \dots, x^n) = \text{span}(1, x, \dots, x^{n-1}).$$

Continuing in this way, we get that $\dim \mathbb{Q}[x] \leq n$. By the above remark, $\mathbb{Q}[x]$ is a field.

Note. This gives us that $\mathbb{Q}[x] \subset \mathbb{Q}(x)$. Since $\mathbb{Q}(x)$ is the smallest field containing x, we get that $\mathbb{Q}[x] = \mathbb{Q}(x)$.

Theorem 2.0.3. The set of algebraic numbers forms a subfield of \mathbb{C} .

Proof. If x is non-zero algebraic number then $\frac{1}{x}$ is algebraic.

Reason 1. $\frac{1}{x} \in \mathbb{Q}[x]$ because any element of an algebraic number field is algebraic.

Reason 2. If $x^n + a_{n-1}x^{n-1} + \cdots + a_0 = 0$. Dividing by x^n , we get

$$1 + a_{n-1}x^{-1} + \dots + a_0x^{-n} = 0.$$

Note x^{-1} satisfies this polynomial.

Say x, y are algebraic numbers. Then we need to show that x + y and xy are algebraic numbers. Consider

$$\mathbb{Q}[x,y] = \operatorname{span}\{x^i y^j \mid i,j \ge 0\} \subset \mathbb{C}.$$

This is finite dimensional for same reason as $\mathbb{Q}[x]$ is. If x and y satisfy polynomials of degrees n and m then $\mathbb{Q}[x,y]$ will be spanned by x^iy^j for $0 \le i \le n-1$, $0 \le j \le m-1$.

Remark. Say $a \in \mathbb{C}$ is an algebraic number. Then $\exists !$ monic polynomial $f(T) \in \mathbb{Q}[T]$ of minimal degree such that f(a) = 0. Moreover, if $g(T) \in \mathbb{Q}[T]$ has g(a) = 0 then f(T)|g(T).

Proof. Consider the map

$$ev_a: \mathbb{Q}[T] \longrightarrow \mathbb{C}$$

 $g(T) \longmapsto ev_a(g(T)) = g(a).$

Then f(T) is the unique monic generator of $\ker(ev_a)$. Key point is that $\mathbb{Q}[T]$ is a PID.

Definition 2.0.10. f(T) is the minimal polynomial of a.

Remark.
$$\mathbb{Q}[T]/(f(T))$$
 \cong $\mathbb{Q}[a] = \mathbb{Q}(a)$. Therefore, dim $\mathbb{Q}[a] = \deg f(T)$.

Example. $a = \sqrt{-1}$, $f(T) = T^2 + 1$. Then $\mathbb{Q}[a] = \mathbb{Q}(a)$ is 2-d as a \mathbb{Q} -vector space.

Definition 2.0.11. A complex number a is an algebraic integer if \exists monic polynomial $f(T) \in \mathbb{Z}[T]$ such that f(a) = 0.

Example. A rational number that is an algebraic integer is an ordinary integer.

Remark. The set of all algebraic integers is a subring of \mathbb{C} . If K is a number field, we define

 $\mathcal{O}_k = \{\text{algebraic integers that belong to } K\}.$

This is a subring of K, called the ring of integers of K.

Example. If $\dim_{\mathbb{Q}}(K) = 2$ then $K = \mathbb{Q}(\sqrt{d})$ where $d \in \mathbb{Z}$ is square free. Then

$$\mathcal{O}_k = R_d = \begin{cases} \mathbb{Z}[\sqrt{d}], & \text{if } d = 2, 3 \bmod 4 \\ \mathbb{Z}[\frac{1+\sqrt{d}}{2}], & \text{if } d = 1 \bmod 4 \end{cases}.$$

Problem 2.0.5. Understand factorizations in \mathcal{O}_k i.e. for which K is this a UFD?

Example. $K = \mathbb{Q}(\sqrt{d})$ with d < 0 square free. \mathcal{O}_k is a UFD for exactly 9 values of d.

Definition 2.0.12. An ideal I is prime if $xy \in I \Rightarrow x \in I$ or $y \in I$.

Remark. Every max ideal is prime.

Example. $\mathbb{Z}[\sqrt{-5}]$. Then $6 = 2 \cdot 3 = (1 + \sqrt{-5}) \cdot (1 - \sqrt{-5})$. $(2, 1 + \sqrt{-5})$ is a prime ideal?

As previously seen. If I and J are ideals then IJ = ideal generated by xy with $x \in I$ and $y \in J$

Example. (x)(y) = (xy)

Theorem 2.0.4. Let K be a number field. $I \subset \mathcal{O}_k$. $I \neq 0$. Then $\exists!$ factorization

$$I=\mathfrak{p}_1^{e_1}\cdots\mathfrak{p}_1^{e_r}.$$

where the \mathfrak{p}_i 's are distinct prime ideals $e_i \geq 1$.

Remark. There is an idea of fractional ideal of \mathcal{O}_k i.e. a fractional ideal of \mathbb{Z} is $\frac{1}{2}\mathbb{Z}$.

Remark. The fractional ideals form a group under multiplication with a subgroup of principal fractional ideals. The ideal class group of K is

$$Cl(K) = X/Y$$

where X is the fractional ideals group and Y is the subgroup of principal fractional ideals.

Remark. The following are equivalent

- \mathcal{O}_k is a UFD.
- \mathcal{O}_k is a PID.
- Cl(K) is trivial.

Remark. Cl(K) is finite.

Chapter 3

Module Theory

Lecture 10: Tenth Lecture

Definition 3.0.1. An R-module is an abelian group M equipped with a map $R \times M \to M$ defined by $(a, x) \mapsto ax$ such that

- (1) $1 \cdot x = x$
- (2) $a \cdot (x + y) = ax + ay$, (a + b)x = ax + bx
- (3) $a \cdot (bx) = (ab) \cdot x$

Definition 3.0.2. If M and N are R-modules an R-module homomorphism is a function $\phi: M \to N$ that is compatible with addition and scalar multiplication i.e.

- $\phi(x+y) = \phi(x) + \phi(y)$ for every $x, y \in M$
- $\phi(ax) = a\phi(x)$ for every $a \in R, x \in M$.

Definition 3.0.3. An *R*-module isomorphism is a bijective *R*-module homomorphism.

Example. R is an R-module via ax = ax

Example. $\mathbb{Z}[i]$ is a \mathbb{Z} -module. More generally, if $\phi: R \to S$ is a ring homomorphism then S is an R-module via $a \cdot x = \phi(a) \cdot x$.

Example (Restriction of scalars). Even more generally, if N is an S-module then N becomes an R-module via $a \cdot x = \phi(a) \cdot x$ for $a \in R$ and $x \in N$, where $\phi(a) \cdot x$ is the multiplication defined by the S-module.

Example. If $I \subset R$ is an ideal then I is a R-module using usual multiplication.

Definition 3.0.4. If M is an R-module then an R-submodule of M is a subgroup that is closed under scalar multiplication.

Note. In fact, ideal = R-submodule of R.

Example. If M is an abelian group we have defined 2x = x + x. This gives M the structure of a

25 Jan. 02:00

 \mathbb{Z} -module. This is the unique \mathbb{Z} -module structure on M because

$$2x = (1+1)x = 1 \cdot x + 1 \cdot x = x + x.$$

Thus, \mathbb{Z} -modules are exactly abelian groups.

Example. $M_n(R)$ is an R-module. Use matrix addition, usual scalar multiplication.

Example. R^n is an R-module (column vectors with standard operations).

Example. $\mathbb{Z}/2\mathbb{Z}$ is a \mathbb{Z} -module. In general, if M is an R-module and $N \subset M$ is an R-submodule then M/N is naturally an R-module.

$$a(x+N) = ax + N.$$

Remark. Many constructions from group theory and linear algebra apply to modules:

- $\phi: M \to N$ homomorphism of modules, then
 - 1. $\ker(\phi) \subset M$ is a submodule
 - 2. $\operatorname{Im}(\phi) \subset N$ is a submodule.
- 1st isomorphism theorem:

$$M/\ker(\phi) \cong \operatorname{Im}(\phi)$$

is an isomorphism of R-modules induced by ϕ .

- Direct sums: if M, N are R-modules then $M \oplus N$ is the R-modules whose elements are $M \times N$ with coordinate wise addition and scalar multiplication.
- R-module maps from $R^m \to R^n$ are described by $n \times m$ matrices with entries in R. If $A \in M_{n,m}(R)$ $(n \times m)$ matrices with entries in R). Then $Ax \in R^n$ is defined by the usual formula

$$R^m \to R^n$$

 $x \mapsto Ax$.

Example.
$$R^n \cong \underbrace{R \oplus \cdots \oplus R}_{n \text{ times}}$$
.

Definition 3.0.5. Say M is an R-module. A finite basis for M is a collection of elements $e_1, \ldots, e_r \in M$ such that every element of M can be written uniquely as a linear combination of these elements i.e.

$$a_1e_1 + \dots + a_re_r, \quad a_i \in R.$$

Example. If $M = R^n$ and $e_i = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}$. Where $e_1 = 1$ in the *i*th spot then $e_1, \dots e_n$ is a basis for M.

$$\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = \sum_{i=1}^n a_i e_i.$$

Definition 3.0.6. M is a free R-module if it has a basis.

Example. R^n is free.

Example. $\mathbb{Z}/2\mathbb{Z}$ is not a free \mathbb{Z} -module. Only possible basis is $\overline{1} \in \mathbb{Z}/2\mathbb{Z}$. But this is not a basis because

$$0 = 0 \cdot \overline{1} = 2 \cdot \overline{1}.$$

Remark. Say that M is free with basis e_1, \ldots, e_n . Then the map

$$\phi: R^n \longrightarrow M$$

$$\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \longmapsto \sum_{i=1}^n a_i e_i$$

is an R-module isomorphism.

Example. $\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ is not a free \mathbb{Z} -module. This is because (0,1) is a torsion element.

Definition 3.0.7. R is a domain and M is an R-module. An element of M is called torsion if there exists $a \neq 0 \in R$ such that ax = 0.

Remark. $M_{\text{tors}} = \{x \in M \mid x \text{ is torsion}\}\$ is a submodule of M.

Proof. Say $x, y \in M_{\text{tors}}$. We want to show $x + y \in M_{\text{tors}}$. Say ax = 0, by = 0, a, bR not zero. Then

$$ab(x+y) = abx + aby = 0.$$

Note that $ab \neq 0$ because R is a domain. If $c \in R$, then a(cx) = 0. Thus, $x + y, cx \in M_{\text{tors}}$

Remark. If R is a domain and M is a free R-module then $M \cong \mathbb{R}^n$ and so $M_{\text{tors}} = 0$, i.e. M is torsion-free.

Remark. If M is a finitely generated \mathbb{Z} -module that is torsion-free then M is free. (Same is true if \mathbb{Z} is replaced by any PID)

Example. The following are torsion-free finitely generated but not free.

- $R = \mathbb{C}[x, y], I = (x, y)$
- $R = \mathbb{Z}[\sqrt{-5}], I = (2, 1 + \sqrt{-5})$

Lecture 11: Eleventh Lecture

Definition. M = R-module.

25 Jan. 02:00

Definition 3.0.8. Given any subset $S \subset M$ the R-submodule of M generated by S is the smallest submodule containing S i.e.

$$\bigcup_{\substack{S \text{ submodule} \\ S \subset N}} S.$$

The elements of this submodule are elements of the form

$$a_1x_1 + \cdots + a_nx_n$$

with $a_i \in R$ and $x_i \in S$.

Definition 3.0.9. We say M is finitely generated if it is generated by a finite subset.

Example. If R is a field and M is an R-module (vector space) then M is finitely generated as an R-module if and only if it is finite dimensional.

Example. R^n is finitely generated if the basis vectors e_1, \ldots, e_n generate it.

Example. If M, N are finitely generated so is $M \oplus N$.

Example. R[x] is not a finitely generated R-module $(R \neq 0)$.

Example. \mathbb{Q} is not finitely generated as a \mathbb{Z} -module.

Theorem 3.0.1 (Mapping property for free modules). Given any R-module M and $x_1, \ldots, x_n \in M$, $\exists !$ map of R-modules

$$\phi: R^n \longrightarrow M$$
$$e_i \longmapsto \phi(e_i) = x_i.$$

Moreover, $im(\phi) = submodule of M$ generated by x_1, \ldots, x_n .

Proof.
$$\phi(a_1e_1 + \dots + a_ne_n) = a_1x_1 + \dots + a_nx_n.$$

Corollary 3.0.1. M is finitely generated if and only if there exists a surjective map of R-modules $\phi: R^n \to M$.

Remark. Say M is a finitely generated module. Choose a surjection $\phi: \mathbb{R}^n \to M$. By first isomorphism theorem, we know that

$$M \cong \mathbb{R}^n / \ker(\phi)$$

If $\ker(\phi)$ is generated by y_1, \ldots, y_m then

$$M \cong \mathbb{R}^n / \langle y_1, \dots, y_m \rangle$$
.

Notation. \langle , \rangle is submodule generated by elements.

Definition 3.0.10. We say that M is finitely presented if

$$M \cong \mathbb{R}^n / \langle y_1, \dots, y_m \rangle$$
 for some n

and some $y_1, \ldots, y_m \in \mathbb{R}^n$ presentation of M.

Example. $R = \mathbb{Z}$. $M = \mathbb{Z} / 5\mathbb{Z} \oplus \mathbb{Z} / 7\mathbb{Z}$. Generated by (1,0) and (0,1). Therefore, M is finitely generated. Note that

$$\ker(\phi) = \{k(5e_1) + j(7e_2)\}.$$

Therefore, $\ker(\phi) = \langle 5e_1, 7e_2 \rangle$ and M is finitely presented.

Example. $R = \mathbb{C}[x,y], M = (x,y) \subset R$. M is finitely generated because it is generated by x and y. Consider

$$\phi: R^2 \longrightarrow R$$

$$e_1 \longmapsto \phi(e_1) = x$$

$$e_2 \longmapsto \phi(e_2) = y$$

Problem 3.0.1. Is $ker(\phi)$ finitely generated?

Answer. $-ye_1 + xe_2 \in \ker(\phi)$. To see this is the only one consider an arbitrary element in the kernel i.e.

$$\phi(fe_1 + ge_2) = fx + gy = 0.$$

Then

$$f = -\frac{y}{x}g.$$

Therefore,

$$fx + gy = \frac{g}{x}(-ye_1 + xe_2)$$

so it is generated by our initial element.

Remark. Say M is a finite presentation

$$M \cong \mathbb{R}^n / \langle y_1, \dots, y_m \rangle$$
.

Let

$$\psi: R^m \longrightarrow R^n$$

$$e_j \longmapsto \psi(e_j) = y_j.$$

Then $\operatorname{im}(\psi) = \langle y_1, \dots, y_m \rangle \subset \mathbb{R}^n$. The matrix of ψ given by an $m \times n$ matrix with coefficients in \mathbb{R} is the presentation matrix.

As previously seen. If $\phi: M \to N$ is a map of modules, then

$$\operatorname{coker}(\phi) = N / \operatorname{Im}(\phi).$$

Example. $R = \mathbb{Z}, M = \mathbb{Z} / 5\mathbb{Z} \oplus \mathbb{Z} / 7\mathbb{Z}$, then

$$M \cong \mathbb{Z}^2 / \underbrace{\langle 5e_1, 7e_2 \rangle}_{\begin{bmatrix} 5 & 0 \\ 0 & 7 \end{bmatrix}} \cong \mathbb{Z} / \underbrace{\langle 35 \rangle}_{\begin{bmatrix} 35 \end{bmatrix}}.$$

Example. $R = \mathbb{C}[x,y], M = (x,y), M = R^2 / \langle -ye_1 + xe_2 \rangle$ with

$$\psi: R \longrightarrow R^2$$

 $1 \longmapsto \psi(1) = -ye_1 + xe_2.$

Then $\begin{bmatrix} -y \\ x \end{bmatrix}$ is the presentation matrix.

Example. $R = \mathbb{Z}$, M is module with presentation matrix $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$. Then $M = \operatorname{coker}(\psi)$, where

$$\psi: \mathbb{Z}^2 \longrightarrow \mathbb{Z}^2$$

$$e_1 \longmapsto \psi(e_1) = e_1 + 2e_2$$

$$e_2 \longmapsto \psi(e_2) = 2e_1 + e_2.$$

Note. Invertible as rational matrix but not as integer matrix. Need $-\frac{1}{3}$.

Note that any combination of $\psi(e_1), \psi(e_2)$ are multiples of 3.

Exercise. Work out why $M \cong \mathbb{Z} / 3\mathbb{Z}$.

Remark. Say M is a finitely generated R-modules. Then there exists a surjective $\phi: R^n \to M$. For M to be finitely presented we would like $\ker(\phi)$ to be finitely generated. This does not need to be true!

Problem 3.0.2. It is possible that a submodule of a finitely generated module is not finitely generated

Example. $R = \mathbb{C}[x_1, x_2, x_3, \ldots], M = (x_1, x_2, \ldots).$ R is finitely generated as an R-module, but M is not finitely generated.

Example. $R/M \cong \mathbb{C}$. \mathbb{C} is finitely generated as an R-module but not finitely presented.

Lecture 12: Twelth Lecture

Example. Say M is finitely generated. Pick a surjection $\phi: \mathbb{R}^n \to M$.

1 Feb. 02:00

Problem 3.0.3. $\ker \phi$ may not be finitely generated.

Definition 3.0.11. An R-module M is called noetherian if the following equivalent conditions hold:

- (1) Every R-submodule of M is finitely generated.
- (2) Ascending chain condition holds for submodules i.e. if

$$N_1 \subset N_2 \subset \cdots \subset M$$

then $\exists n \text{ such that } N_n = N_{n+1} = \cdots$

Remark. R is noetherian as a ring if and only if R is noetherian as an R-module.

Remark. Suppose that \mathbb{R}^n is a noetherian \mathbb{R} -module for all \mathbb{R} . Then every finitely generated \mathbb{R} -module is finitely presented.

Definition 3.0.12. Consider maps of R-modules, $M_1 \xrightarrow{\phi} M_2 \xrightarrow{\psi} M_3$. We say this is exact at M_2 if $\operatorname{im}(\phi) = \ker(\psi)$ (this implies $\psi \circ \phi = 0$).

Remark. Two important cases:

- $0 \xrightarrow{\phi} M_2 \xrightarrow{\psi} M_3$. Exact at M_2 if and only if ψ is injective.
- $M_1 \xrightarrow{\phi} M_2 \xrightarrow{\psi} 0$. Exact at M_2 if and only if ϕ is surjective.

Definition 3.0.13. A short exact sequence is a sequence

$$0 \to M_1 \xrightarrow{\phi} M_2 \xrightarrow{\psi} M_3 \to 0$$

that is exact at M_1, M_2, M_3 . Explicitly,

- ϕ is injective,
- ψ is surjective,
- $M_3 \cong M_2 / \phi(M_1)$.

Remark. In the above situation, we say that M_2 is an extension of M_3 by M_1 .

Example. Say $R = \mathbb{Z}$, $M_1 = M_3 = \mathbb{Z} / 2\mathbb{Z}$.

$$0 \to \mathbb{Z} /_{2\mathbb{Z}} \to \mathbb{Z} /_{4\mathbb{Z}} \overset{\text{reduce mod 2}}{\to} \mathbb{Z} /_{2\mathbb{Z}} \to 0.$$

Defined by $1 \mapsto 2$.

Example. Similarly,

$$0 \to \mathbb{Z}/_{2\mathbb{Z}} \to \mathbb{Z}/_{2\mathbb{Z}} \oplus \mathbb{Z}/_{2\mathbb{Z}} \to \mathbb{Z}/_{2\mathbb{Z}} \to 0.$$

Example. Say $R = \mathbb{Z}$, $M_1 = \mathbb{Z} / 3\mathbb{Z}$, $M_3 = \mathbb{Z} / 5\mathbb{Z}$.

$$0 \to \mathbb{Z} /_{3\mathbb{Z}} \to \mathbb{Z} /_{15\mathbb{Z}} \stackrel{\text{reduce mod 5 } \mathbb{Z}}{\to} /_{5\mathbb{Z}} \to 0.$$

Example. Say $R = \mathbb{Z}$, $M_1 = \mathbb{Z} / 2\mathbb{Z}$, $M_3 = \mathbb{Z}$.

$$0 \to \mathbb{Z}/2\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z} \to \mathbb{Z} \to 0.$$

Only extension is $\mathbb{Z} / 2\mathbb{Z} \oplus \mathbb{Z}$.

Example. Say $R = \mathbb{Z}$, $M_3 = \mathbb{Z} / 2\mathbb{Z}$, $M_1 = \mathbb{Z}$.

$$0 \to \mathbb{Z} \to M_2 \to \mathbb{Z}/2\mathbb{Z} \to 0.$$

Can take

- ϕ as multiplication by 2 and ψ reduction mod 2.
- $M_2 = \mathbb{Z} \oplus \mathbb{Z} / 2\mathbb{Z}$.

Example. R = F is a field. Suppose

$$0 \rightarrow V_1 \rightarrow V_2 \rightarrow V_3 \rightarrow 0$$

is a SES of finite dimensioal vector spaces. Then

- (1) $\dim V_1 \dim V_2 + \dim V_3 = 0$
- (2) $0 \to V_3^* \to V_2^* \to V_1^* \to 0$ is a SES, where * is the dual space.

Lemma 3.0.1. Suppose we have a SES

$$0 \to M_1 \to M_2 \to M_3 \to 0$$

such that M_1 and M_3 are finitely generated. Then M_2 is finitely generated.

Equivalently, if M_2 is a module that contains a finitely generated submodule M_1 such that M_1 / M_2 is finitely generated then M_2 is finitely generated.

Proof. Replacing M_1 with $\phi(M_1)$, can assume $M_1 \subset M_2$ and ϕ is the inclusion map. Let x_1, \ldots, x_n be generators for M_1 and $\overline{x}_1, \ldots, \overline{x}_m$ be generators for M_2 . Choose $yi \in M_2$ such that $\psi(y_i) = \overline{y}_i$ (possible b/c ψ is surjective).

Claim. x_1, \ldots, x_n and y_1, \ldots, y_m generate M_2 .

Let $z \in M_2$ be given. Write

$$\psi(z) = \sum_{i=1}^{m} b_i \overline{y}_i,$$

where $b_1, \ldots, b_m \in R$. Then

$$\psi(z - \sum_{i=1}^{m} b_i \overline{y}_i) = 0.$$

Therefore, $z - \sum_{i=1}^m b_i \overline{y}_i \in \ker(\psi) = M_1$. So, we can write $z - \sum_{i=1}^m b_i \overline{y}_i = \sum_{i=1}^n a_i x_i$ with $a_i \in R$.

Corollary 3.0.2. If M_1 and M_3 are noetherian, so is $M_1 \oplus M_3$.

Proof. Let $N_2 \subset M_2$ be a submodule. Assume $M_1 \subset M_2$ and ϕ is the inclusion map. Put $N_3 = \psi(N_2) \subset M_3$. Then

$$\ker(\psi: N_2 \to N_3) = \underbrace{N \cap M_1}_{N_1}.$$

Now we have a SES,

$$0 \rightarrow N_1 \rightarrow N_2 \rightarrow N_3 \rightarrow 0.$$

Since we assume M_1 and M_3 are noetherian, N_1 and N_3 are finitely generated. Thus, by the previous lemma, N_2 is finitely generated and M_2 is noetherian.

Lemma 3.0.2. Suppose we have a SES,

$$0 \to M_1 \to M_2 \to M_3 \to 0$$
,

such that M_2 is noetherian, then M_1 and M_3 are noetherian.

Proof. Any submodule of M_1 is also a submodule of M_2 so it is finitely generated because M_2 is noetherian. Therefore, M_1 is noetherian. Say $N_3 \subset M_3$ is submodule. Then

$$\phi^{-1}(N_3) \to N_3$$

where $\phi^{-1}(N_3)$ is finitely generated because M_2 is noetherian. Therefore, N_3 is finitely generated because it is the quotient of a finitely generated module.

Proposition 3.0.1. Suppose R is noetherian. Then every finitely generated R-module is a noetherian module

Note. In particular, \mathbb{R}^n is a noetherian \mathbb{R} -module for every n, so any finitely generated module is finitely presented.

Proof. Let M be a finitely generated R-module. Then there exists a surjection $\phi: \mathbb{R}^n \to M$. Then

$$R^n = \underbrace{R \oplus \cdots \oplus R}_{n \text{ times}}$$

is noetherian because a direct sum of noetherian modules is noetherian. Therefore, M is noetherian because it is a quotient of \mathbb{R}^n .

Example. Any \mathbb{Z} -submodule of \mathbb{Z}^n is finitely generated.

Lecture 13: Thirteenth Lecture

Theorem 3.0.2 (Hilbert basis theorem). If R is a noetherian ring so is R[x].

3 Feb. 02:00

Problem 3.0.4 (Idea). (if $I \neq 0$) choose $f \in I$ of minimal degree. Maybe it generates?

Answer. We'd like to say if $g \in I$ then $\exists h$ such that g - hf has smaller degree. If $g = ax^n + \cdots + a_0$ and $f = bx^m + \cdots + b_0$, $h = cx^{n-m} + \cdots + c_0$. Then

$$hf = bcx^n + \cdots$$

For the leading term to cancel in g - hf we need that $a \in (b)$.

Proof. Let $I \subset R[x]$ be given. Say $f_1 = a_1 x^{n_1} + \cdots$, $f_2 = a_2 x^{n_2} + \cdots$, where $f_1, f_2 \in I$ and $g = b x^m + \cdots \in I$. If $b \in (a_1, a_2)$ and $m \ge n_1, n_2$ then $\exists h_1, h_2$ such that in $g - h_1 f_1 - h_2 f_2$ the leading term cancels.

Definition 3.0.14. The initial coefficient of $f \neq 0 \in R$, denoted in(f) is its leading coefficient (if $f = ax^n + \cdots$ then in(f) = a).

Definition 3.0.15. The initial ideal of I is

$$in(I) = \{in(f) \mid f \in I \setminus \{0\}\} \cup \{0\}.$$

Lemma 3.0.3. in(f) is an ideal of R.

Proof. Say $a, b \in \text{in}(I)$, not zero. Then

$$a = \operatorname{in}(f), \quad f = ax^n + \cdots$$

 $b = \operatorname{in}(g), \quad g = bx^m + \cdots$

Given $c \in R$, if a = 0 then $ca \in \text{in}(I)$. Otherwise, $ca = \text{in}(cf) \in \text{in}(I)$. We can assume n = m (if n < m replace f with $x^{m-n}f$) a + b is either $0 \in \text{in}(I)$ or $\text{in}(f + g) \in \text{in}(I)$.

Remark. Since R is noetherian, $\operatorname{in}(I)$ is finitely generated. Choose $f_1, \ldots, f_r \in I$ such that $\operatorname{in}(f_1), \ldots, \operatorname{in}(f_r)$ that generate $\operatorname{in}(I)$.

Lemma 3.0.4. Given $g \in I$ such that $\deg(g) \geq \deg(f_i)$ for every i. Then $\exists h_1, \ldots, h_i$ such that

$$\deg(g - hf_1 \cdots h_r f_r) < \deg(g).$$

Proof. $g = bx^m + \cdots$, $f_i = a_ix^{n_i} + \cdots$. Then a_1, \ldots, a_r generate $\operatorname{in}(I)$ and $b \in \operatorname{in}(I)$. So $b = c_1a_1 + \cdots + c_ra_r$. Take $h_i = c_ix^{m-n_i}$ for some $c_i \in I$.

Corollary 3.0.3. $N = \max\{\deg(f_i)\}_{1 \le i \le r}$. Define

$$I_{\leq N} = \{ f \in I \mid \deg(f) \leq N \}.$$

Then $I = (f_1, ..., f_r) + I_{\leq n}$.

Remark. Note that $I_{\leq n} \subset R \oplus R \cdot x \cdots \oplus R \cdot x^n$. Since R is noetherian, $I \leq N$ is finitely generated. If f'_1, \ldots, f'_s generated $I_{\leq n}$ as an R-module then $I = (f_1, \ldots, f_r, f'_1, \ldots, f'_s)$. Thus, I is finitely generated.

Corollary 3.0.4. If R is noetherian then $R[x_1, \ldots, x_n]$ is noetherian.

Note. If R is noetherian so is any quotient ring of R.

Corollary 3.0.5. If R is noetherian then any finitely generated R-algebra is noetherian.

$$R[x_1,\ldots,x_n]$$

Problem 3.0.5 (Invariant Theory). G acting on $\mathbb{C}[x_1,\ldots,x_n]$. Describe $\mathbb{C}[x_1,\ldots,x_n]^G$ (the G invariant polynomials)

Example. Consider homogeneous degree 2 polynomials in 2 variables.

$$aX^2 + bXY + cY^2$$
.

Given
$$g = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \mathrm{SL}_2(\mathbb{C})$$
. Then

$$g \cdot F = F(\alpha X + \beta Y, \gamma X + \delta Y)$$

= $a(\alpha X + \beta Y)^2 + b(\alpha X + \beta Y)(\gamma X + \delta Y) + c(\gamma X + \delta Y)^2$
= $(a \cdot \alpha^2 + b\alpha \gamma + c\gamma^2)X^2 + (\cdots)XY + (\cdots)Y^2$.

For
$$G = \mathrm{SL}_2(\mathbb{C}), \ C[a,b,c]$$
 and $g = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \mathrm{SL}_2(\mathbb{C}).$ Then

$$g \cdot a = \alpha a^2 + b\alpha \gamma + c\gamma^2.$$

Then $\mathbb{C}[a,b,c]^G$ is the polynomial functions of the coefficients of a quadratic form that are invariant under linear change of variables. Then

$$\mathbb{C}[a,b,c] \cong \mathbb{C}[T]$$

where $T \Leftrightarrow b^2 - ac$.

Example. Consider $F = a_0 X^n + a_1 X^{n-1} Y + a_n Y^n$. Then for $G = \mathrm{SL}_2(\mathbb{C})$, acting on $C[a_0, \ldots, a_n]$ the invariant rings are

n=2: Invariant ring is polynomial ring in 1 generator.

n=3: Invariant ring is polynomial ring in 2 generators.

Remark. Paul Gordon proved for this family the invariant ring is a finitely generated \mathbb{C} -algebra for every n. Finite generation from Hilbert proof for a large class of G, $\mathbb{C}[x_1,\ldots,x_n]^G$ is a finitely generated \mathbb{C} -algebra.

3.1 Exam

3.1.1 Rings

- Rings, homomorphisms, subrings, ideals, quotient rings.
- Presentations of rings i.e. $\mathbb{Z}[i] = \mathbb{Z}[x]/x^2 + 1$ how to prove this.
- Adjoining elements. R[x]/(f(x))
 - f is monic of degree d this ring is a free R-module with basis $1, x, x^2, \dots, x^{d-1}$
 - $f(x) = ax 1, R[\frac{1}{a}].$
 - $* \mathbb{C}[x] / (x^2 + 1) \cong \mathbb{C} \times \mathbb{C}$
 - * $\mathbb{F}_2[x]/(x^2+1)\cong \mathbb{F}_2[u]/(u^2)$. Shows this ring is not even reduced because nilpotent element.

- Fractional fields of domain.
- Maximal ideals
 - Max if and only if quotient is a field
- Classified maximal ideals of $\mathbb{C}[x_1,\ldots,x_n]$
 - All of the form $(x_1 \alpha_1, \dots, x_n \alpha_n)$ for $\alpha_i \in \mathbb{C}$.

3.1.2 Factorization

- Unit, divisibility, associate elements.
- Irreducible elements and prime elements.
 - Used to define a UFD
- Criterion for UFD
 - If R is noetherian and all irreducible elements are prime then R is a UFD.
 - Noetherian gives termination.
 - Prime gives uniqueness.
- Euclidean ring \Rightarrow PID \Rightarrow UFD.
- $\mathbb{Z}[i]$ are Euclidean, understood primes.

Lecture 14: Fourteenth Lecture

3.2 Back to modules

8 Feb. 02:00

As previously seen. An element $x \in M$ is torsion if $\exists 0 \neq a \in R$ such that ax = 0.

- An R-module is torsion if every element is torsion.
- If M is a free R-module then M is torsion-free, i.e. $M_{\text{tors}} = 0$.

Example. $\mathbb{Z} \oplus \mathbb{Z} / 2\mathbb{Z}$ is not free as a \mathbb{Z} -module.

Remark. Free implies torsion free but reverse implication not true in general.

• If you can find a non principle ideal then it will not be free as a module. This is because the relations will create a torsion element.

Example. The ideal (x,y) in $\mathbb{C}[x,y]$ is a torsion-free $\mathbb{C}[x,y]$ -module but not free.

Theorem 3.2.1. If M is a finitely generated torsion-free \mathbb{Z} -module then M is free.

Remark. Finite generation is necessary.

Example. \mathbb{Q} is a \mathbb{Z} -module that is torsion free, but it is not free. This is because any two elements satisfy a linear relation. Therefore, basis could only have size 1. However, $\mathbb{Q} \neq \mathbb{Z}$.

Definition. Let R be a ring and M_1, M_2, \ldots be R-modules.

Definition 3.2.1. $\prod_{n=1}^{\infty} M_n = \text{all tuples } (x_1, x_2, \ldots) \text{ for } x_i \in M_i \text{ with coordinate wise operations.}$

Definition 3.2.2. $\bigoplus_{n=1}^{\infty} M_n \subset \prod_{n=1}^{\infty} M_n$ tuples with finitely many non-zero entries.

Example. $\bigoplus_{n=1}^{\infty} R$ is a free *R*-module with basis:

$$e_i = (0, \dots, \underbrace{1}_{i \text{th spot}}, 0, \dots).$$

Example. $\prod_{n=1}^{\infty} \mathbb{Z}$ = all infinite tuples of integers.

Note. This is not $\bigoplus_{n=1}^{\infty} \mathbb{Z}$. In \bigoplus , there are only finitely many non-zero entries.

This is not free.

As previously seen. Recall that

- Frac(R) is a field, where all elements have the form $\frac{a}{b}$ for $a, b \in \mathbb{R}$ with $b \neq 0$.
- A multiplicative set $S \subset R$ is a subset of R that contains one and is closed under multiplication.
- $S^{-1}R = \{\frac{a}{s} \mid a \in R, s \in S\} \subset \operatorname{Frac}(R)$.

Problem 3.2.1. Given an R-module M we want to create an $S^{-1}R$ -module $S^{-1}M$.

Answer. Elements of $S^{-1}M$ are represented by expressions $\frac{m}{s}$ with $m \in M$ and $s \in S$. We say $\frac{m_1}{s_1} = \frac{m_2}{s_2}$ if $\exists s \in S$ such that $s(s_2m_1 - s_1m_2) = 0$. This is an $S^{-1}R$ module via

$$\frac{a}{s_1} \cdot \frac{m}{s_2} = \frac{am}{s_1 s_2}$$

and

$$\frac{m_1}{s_1} + \frac{m_2}{s_2} = \frac{s_2 m_1 + s_1 m_2}{s_1 s_2}.$$

*

Note. The intuition for this is $\frac{m}{1} = \frac{sm}{s}$ for every $s \in S$. So $\frac{m}{1} = 0$ if $\exists s \in S$ such that sm = 0.

Example. $\mathbb{R} = \mathbb{Z}$, $S = \{1, 2, 3, 4, \ldots\}$, $M = \mathbb{Z} / 2\mathbb{Z}$. Then $S^{-1}M = 0$. This is because for any element x in M we have that 2x = 0. Therefore,

$$x = \frac{2}{2} \cdot \frac{x}{1} = \frac{2x}{2} = \frac{0}{2} = 0.$$

Since $2 \in S$, we have that $S^{-1}M = 0$.

Example. $\mathbb{R} = \mathbb{Z}, S = \{1, 2, 3, 4, \ldots\}, M = \mathbb{Z} / 3\mathbb{Z}.$ Then $S^{-1}M = \mathbb{Z} / 3\mathbb{Z}.$ Note that

$$\frac{1}{2} = \frac{2}{1}, \quad \frac{1}{4} = \frac{4}{1}, \dots$$

Then it is easy to see that every element of $S^{-1}M$ has the form $0, \frac{1}{1}, \frac{2}{1}$. This is because that

everything in S is already a unit in $\mathbb{Z}/3\mathbb{Z}$.

Example. $R = \mathbb{Z}, S = \{1, 2, 4, \ldots\}, M = \mathbb{Z} / 6\mathbb{Z}.$ Then $S^{-1}M \cong \mathbb{Z} / 3\mathbb{Z}.$

Example. $R = \mathbb{Z}, S = \mathbb{Z} \setminus \{0\}, M = \mathbb{Z}^n, S^{-1}M = \mathbb{Q}^n.$

Remark. R is a domain. Let $S = \mathbb{R} \setminus \{0\}$, $K = S^{-1}R = \operatorname{Frac}(R)$. If M is any R-module then $S^{-1}M$ is an $S^{-1}R$ -module i.e. a K-vector space.

Remark. Suppose $f: M \to N$ is an R-module homomorphism. This induces a homomorphism of $S^{-1}R$ -modules

$$S^{-1}F: S^{-1}M \longrightarrow S^{-1}N$$

$$\frac{x}{s} \longmapsto \frac{f(x)}{s}.$$

If $g: N \to L$ is another R-module map then

$$S^{-1}(gf) = (S^{-1}g)(S^{-1}f).$$

This can be seen by:

Lecture 15: Fifteenth Lecture

3.3 Exam Answers

10 Feb. 02:00

Problem 3.3.1. Find maximal ideal of C[x,y]/(f) with f=xy(x+y)-1

Answer. Max ideals of $\mathbb{C}[x,y]/(f)$ correspond to max ideals of $\mathbb{C}[x,y]$. Max ideals of $\mathbb{C}[x,y]$ are (x-a,y-b) which is $\ker(\mathbb{C}[x,y]\to\mathbb{C})$ defined by $g\mapsto g(a,b)$. Therefore, we just need $(a,b)\in\mathbb{C}^2$ such that f(a,b)=0.

Problem 3.3.2. $\phi: R \to S$ is a surjective ring map such that every element of the kernel is nilpotent. Given a unit $y \in S$ show that there exists a unit $x \in R$.

Answer. We know $\exists y' \in S$ such that yy' = 1. Pick $x, x' \in R$ such that $\phi(x) = y$ and $\phi(x') = y'$. Therefore, $\phi(xx') = yy' = 1 = \phi(1)$. Therefore, xx' = 1 + z where $z \in \ker \phi$. Since z is nilpotent, 1 + z is a unit. Therefore,

$$x\underbrace{x'(1+z)^{-1}}_{x^{-1}} = 1.$$

*

Problem 3.3.3. $\mathbb{Z}\left[\frac{1}{6}\right] \subset \mathbb{Q}$ and $I \subset \mathbb{Z}\left[\frac{1}{6}\right]$ is the ideal generated by 60. Define $J = I \cap \mathbb{Z}$. Show that J is an ideal. Find a generator.

Answer. Since I and \mathbb{Z} are both subgroups, there intersection is an ideal.

$$\frac{60a}{6^n} = \frac{6 \cdot 6 \cdot 5b}{6^n}.$$

Therefore, $5 \in I$ and $(5) \subset J$. Therefore, J = (5) or J = (1). Since $1 \notin J$, J = (5).

Note. General fact: if $f,g\in R$ then $R\left[\frac{1}{fg}\right]=R\left[\frac{1}{f},\frac{1}{g}\right]$.

*

Problem 3.3.4. Factor 4 + 7i into Gaussian primes.

Answer. $N(4+7i)=65=5\cdot 13$. Since these are $1 \mod 4$, they factor into $\pi \overline{\pi}$. Note that

$$5 = (2+i)(2-i)$$
 and $13 = (3+2i)(3-2i)$.

Thus,

$$4 + 7i = (2 + i)(3 + 2i)$$

*

Problem 3.3.5. Find a PID with exactly three maximal ideals.

Answer. $\mathbb{Z}[\frac{1}{p}]_{p\neq 2,3,5}$. Let $I\subset \mathbb{Z}[\frac{1}{p}]_{p\neq 2,3,5}$. Consider $I\cap \mathbb{Z}=n\mathbb{Z}$. Then $n\in I\Rightarrow (n)\subset I$. Given $x=\frac{a}{b}\in I,\ bx\in I\cap \mathbb{Z}$ we have that $bx=n\cdot c$ and $x=\frac{n\cdot c}{b}$. Therefore, $\frac{c}{b}\in R$ and $x\in n\cdot R$. Thus, I=nR.

3.3.1 Back to modules again

As previously seen. R-domain. $S \subset R$ is a multiplicative set, where

$$S^{-1}R = \left\{\frac{x}{s} \mid x \in R, s \in S\right\} \subset \operatorname{Frac}(R).$$

For an R-mod M, $S^{-1}M$ has elements $\frac{x}{s}$ and $\frac{x_1}{s_1} = \frac{x_2}{s_2}$ if $\exists s$ such that $s(x_1s_2 - x_2s_1) = 0$.

Lemma 3.3.1. If f is injective, so is $S^{-1}f$.

Proof. Say $\frac{x}{s} \in S^{-1}M$ belongs to $\ker(S^{-1}f)$. Therefore,

$$0 = (S^{-1}f)(\frac{x}{s}) = \frac{f(x)}{s}.$$

It follows that $\exists s' \in S$ such that

$$s'(f(x) \cdot 1 - 0 \cdot s) = s'f(x) = 0 \text{ in } N.$$

Since f is a map of modules,

$$s'f(x) = f(s'x) = 0.$$

Because f is injective, s'x = 0 in M and $\frac{x}{s} = 0$ in $S^{-1}M$. Thus, $\ker(S^{-1}f) = 0$.

Lemma 3.3.2. If f is surjective then $S^{-1}f$ is surjective.

Proof. Given $\frac{y}{s} \in S^{-1}N$, $\exists x \in M$ such that f(x) = y. Thus,

$$(S^{-1}f)\left(\frac{x}{s}\right) = \frac{y}{s}.$$

Lemma 3.3.3. Say M is a submodule of N, then f is the inclusion map i.e.

$$\frac{S^{-1}N}{S^{-1}M} \cong S^{-1} \left(N \middle/_{M} \right).$$

Proof. Let $\pi: N \to N/M$ be the quotient map

$$S^{-1}\pi: S^{-1}N \longrightarrow S^{-1}\binom{N}{M}$$
.

This is surjective by previous lemma.

Claim. $\ker(S^{-1}\pi) = S^{-1}M$.

Proof. First we will show that $S^{-1}M \subset \ker(S^{-1}\pi)$. If $x \in M$, $s \in S$ then

$$(S^{-1}\pi)\left(\frac{x}{s}\right) = \frac{\pi(x)}{s} = 0$$

. Then

$$0 = (S^{-1}\pi)\left(\frac{x}{s}\right) = \frac{\pi(x)}{s}.$$

Therefore, $\exists s' \in S$ such that $s'\pi(x) = 0$ in N/M. Since π is a module homomorpism,

$$s'\pi(x) = \pi(s'x) = 0.$$

It follows that $s'x \in \ker(\pi) = M$. Thus, $\frac{x}{s} = \frac{y}{ss'} \in S^{-1}N \in S^{-1}M$.

The result follows by first isomorphism theorem and the claim.

Remark. This can be rephrased in the language of SES. Consider the sequence

$$0 \to M_1 \to M_2 \to M_3 \to 0.$$

If this is a SES of R-modules then

$$0 \to S^{-1}M_1 \to S^{-1}M_2 \to S^{-1}M_3 \to 0.$$

is a SES of $S^{-1}R$ -modules. Localization is an exact functor.

Lecture 16: Sixteenth Lecture

Theorem 3.3.1 (Structure Theorem for finitely generated \mathbb{Z} -modules). Any finitely generated \mathbb{Z} -module is a finite \oplus of \mathbb{Z} 's and $\mathbb{Z}/n\mathbb{Z}$'s.

13 Feb. 02:00

Proof strategy 1. Let M be a finitely generated \mathbb{Z} -modules. Choose a presentation

$$\mathbb{Z}^m \xrightarrow{\phi} \mathbb{Z}^n \to M \to 0.$$

where

$$M \cong \operatorname{coker}(\phi) = \mathbb{Z}^n / \operatorname{im}(\phi)$$
.

Then ϕ corresponds to an $n \times m$ matrix. Prove that you can essentially diagonalize this matrix with certain row and column operations. See the book for this proof.

We will follow strategy 2, which is more module-theoretic.

Step 1: We will show that a finitely generated torsion-free \mathbb{Z} -module F is free.

- Find a submodule $\mathbb{Z}x \subset F$.
- Claim $F / \mathbb{Z}x$ is smaller than F, so free by induction.
- $F = \mathbb{Z}x \oplus F / \mathbb{Z}x$ is free.

Problem 3.3.6. What does smaller mean?

Answer. We will take the Q-dimension of the localization.

Problem 3.3.7. How do we pick x such that $F / \mathbb{Z}x$ is torsion-free?

Example. $F = \mathbb{Z}^2$, $x = \begin{pmatrix} 6 \\ 4 \end{pmatrix}$. Then $F / \mathbb{Z}x$ is not torsion free. Namely, $2 \cdot \begin{pmatrix} 3 \\ 2 \end{pmatrix} = 0$.

Answer. We will see in the proof below.

Proof. Let F be a finitely generated torsion-free \mathbb{Z} -module. Pick $x \in F$ non-zero. Define

$$L \coloneqq \{y \in F \mid \exists n \neq 0, m \in \mathbb{Z} \text{ s.t. } ny = mx\} \subset F.$$

Note that L is the set of all elements that are a rational multiple of x.

Note. $S = \mathbb{Z} \setminus \{0\}, S^{-1}\mathbb{Z} = \mathbb{Q}$. If M is a \mathbb{Z} -module then $S^{-1}M$ is a \mathbb{Q} -vector space. We have a map

$$M \longrightarrow S^{-1}M$$
$$x \longmapsto \frac{x}{1}$$

which is injective if M is torsion free. Note that

$$F \subset S^{-1}F \supset \mathbb{Q}x.$$

Therefore, $L = \mathbb{Q}x \cap F$.

Claim. L is finitely generated as a \mathbb{Z} -module.

Proof. \mathbb{Z} is noetherian and F is a finitely generated \mathbb{Z} -module, so every submodule is finitely generated (including L).

Claim. $\exists y \in L \text{ such that } L = \mathbb{Z}y.$

Lemma 3.3.4. If N is a finitely generated \mathbb{Z} -submodule of \mathbb{Q} , $N = \mathbb{Z}y$ for some $y \in N$.

Proof of lemma. Let $z_1, \ldots, z_r \in N$ be generators. Pick $a \in \mathbb{Z}$ non-zero such that $az_i \in \mathbb{Z}$ for every i. Note that $aN \subset \mathbb{Z}$. Since \mathbb{Z} is a PID, $aN = b\mathbb{Z} \Rightarrow N = \frac{b}{a} \cdot \mathbb{Z}$.

Proof of claim. L is a finitely generated \mathbb{Z} -submodule of \mathbb{Q} . Thus, the claim follows from the lemma.

Claim. F/L is torsion-free.

Proof. Suppose that \overline{z} is a torsion element of F/L, say $n\overline{z}=0$ for $n\neq 0\in \mathbb{Z}$. Let z be a lift of \overline{z} to F. Since $n\overline{z}=0$, we have that $nz\in L$. In $S^{-1}F$, nz is a rational multiple of x. Therefore, z is a rational multiple of x. Thus, $z\in L$ and $\overline{z}=0$.

For a finitely generated \mathbb{Z} -module M, let $d(M) = \dim_{\mathbb{Q}}(S^{-1}M)$. We've already seen that if M is finitely generated then $d(M) < \infty$.

Claim. d(F/L) < d(F)

Proof. Recall that

$$S^{-1}(^F/_L) \cong ^{S^{-1}F}/_{S^{-1}L}.$$

Therefore,

$$\dim S^{-1}(F/L) = \dim(S^{-1}F) - \underbrace{\dim(S^{-1}L)}_{1}.$$

We will now show that if F is a finitely generated torsion free module then F is free by induction on d(F).

Base case: d(F) = 0

$$d(F) = 0 \Rightarrow S^{-1}F = 0 \Rightarrow F = 0$$
 b/c F is torsion free.

Inductive step: Pick $0 \neq x \in F$. Let $L = \mathbb{Q}x \cap F \subset S^{-1}F$. By claim 2, $L \cong \mathbb{Z}$ $(L = \mathbb{Z}y)$. By claim 3, F/L is torsion free. By claim 4, d(F/L) < d(F). By our inductive step, F/L is free.

Remark (Situation).

$$0 \to L \to F \to F/L \to 0.$$

We want to show that F is free.

Lemma 3.3.5. R is any ring $M\subset N$ is an R-module such that E=N/M is free. Then $N\cong E\oplus M$ i.e.

$$0 \to M \to N \to \underbrace{E}_{\text{free}} \to 0.$$

Main idea. Consider the quotient map π . Pick basis e_1, \ldots, e_n of E. Pick $x_1, \ldots, x_n \in N$ such that $\pi(x_i) = e_i$. By mapping property for free modules, \exists map of R-modules

$$\phi: E \longrightarrow N$$
$$e_i \longmapsto \phi(e_i) = x_i.$$

Note. $\pi \circ \phi = id_E$

Then $N = M \oplus \operatorname{Im}(\phi)$ and $\pi : \operatorname{im}(\phi) \to E$ is an isomorphism.

The result now follows from the lemma.

Lecture 17: Seventeenth Lecture

Proposition 3.3.1. Say M is a finitely generated \mathbb{Z} -module. Then

$$M \cong M_{\mathrm{tors}} \oplus \underbrace{M/M_{\mathrm{tors}}}_{\mathrm{free}}.$$

Proof. $M/M_{\rm tors}$ is torsion-free and finitely generated. Therefore, $M/M_{\rm tor}$ is free. As a SES,

$$0 \to M_{\mathrm{tors}} \to M \to M / M_{\mathrm{tors}} \to 0.$$

By final lemma from last time, $\exists \phi$ such that $\pi \circ \phi = id$. Therefore,

$$M = M_{\mathrm{tors}} \oplus \underbrace{\mathrm{im}(\phi)}_{=M/M_{\mathrm{tors}}}.$$

Remark. If M finitely generated \mathbb{Z} -module, then M_{tors} is finite.

Proof. M_{tors} is finitely generated because \mathbb{Z} is noetherian. Let $x_1, \ldots, x_n \in M_{\text{tors}}$ generate. Then $\exists 0 \neq N \in \mathbb{Z}$ such that $Nx_i = 0$ for every i. Therefore, $N \cdot x = 0$ for every $i \in M_{\text{tors}}$. So M_{tors} is naturally a $\mathbb{Z} / N\mathbb{Z}$ module. Therefore, x_1, \ldots, x_n generate M_{tors} as a $\mathbb{Z} / N\mathbb{Z}$ module. We have a surjection

$$\left(\mathbb{Z}/N\mathbb{Z}\right)^n \to M_{\mathrm{tors}}.$$

3.3.2 Back to Structure Theorem

To prove the main theorem (i.e., every finitely generated \mathbb{Z} -module is \oplus of cyclic modules), it sufficies to treat the case of a finite module.

If R and S are rings and M and N are R and S-modules then $M \oplus N$ is naturally an $R \times S$ -module.

$$(r,s)\cdot(m,n)=(rm,sn).$$

And every $R \times S$ -module has this form.

Let $L = R \times S$ -module. Put e = (1,0), f = (0,1). These are idempotents in $R \times S$. Let M = eL and N = fL. Then

$$L\cong M\oplus N.$$

Given $x \in L$, $x = 1 \cdot x = (e + f)x = -ex + fx$.

15 Feb. 02:00

Say M is a finite \mathbb{Z} -module. $\exists N \in \mathbb{Z}$ such that Nx = 0 for every $x \in M$. Therefore, M is a $\mathbb{Z} / N\mathbb{Z}$ -module. Factor N as $p_1^{e_1} \cdots p_r^{e_r}$, where p_i 's are distinct primes. By Chinese Remainder Theorem,

$$\mathbb{Z}/N\mathbb{Z} \cong \mathbb{Z}/p_1^{e_1}\mathbb{Z} \times \cdots \mathbb{Z}/p_r^{e_r}\mathbb{Z}$$

Thus, $M = M_1 \oplus \cdots \oplus M_r$, where M_i is a $\mathbb{Z} / p_i^{e_i} \mathbb{Z}$ -module. Now it suffices to show that finitely generated $\mathbb{Z} / p^r \mathbb{Z}$ -module is a \oplus of cyclic modules.

Let M be a $\mathbb{Z}/p^r\mathbb{Z}$ -module. Choose r to be minimal (e.g. if $p^{r-1}x=0 \ \forall x\in M$ then M is a $\mathbb{Z}/p^{r-1}\mathbb{Z}$ -module, replace r with r-1). Therefore, $\exists x\in M$ such that $p^{r-1}x\neq 0$ and $\operatorname{ord}(x)=p^r$. The submodule generated by x is $\cong \mathbb{Z}/p^r\mathbb{Z}$.

Remark. If M is an R-module and $x \in M$. Then $\langle x \rangle$ = submodule generated by x. To understand this consider

$$\phi: R \longrightarrow M$$
$$a \longmapsto \phi(a) = ax.$$

Then $\operatorname{im}(\phi) = \langle x \rangle$. By first isomorphis theorem, $\langle x \rangle \cong R / \ker(\phi)$, where

$$\ker(\phi) = \{ a \in R \mid ax = 0 \}.$$

This is denoted ann(x) and is known as the "annhilator" of x.

3.3.3 General discussion

Definition 3.3.1. Given an R-submodule $M \subset N$, a complementary submodule is $M' \subset N$ such that N = M + M' and $0 = M \cap M'$ i.e. $N = M \oplus M'$ (internal \oplus).

Definition 3.3.2. We say a SES

$$0 \to M \xrightarrow{i} N \xrightarrow{\pi} L \to 0$$

is split if \exists complementary submodule M' to M.

Remark. $\pi|_{M'}: M' \to L$ is an isomorphism.

Proposition 3.3.2. The following are equivalent:

- (1) The SES is split
- (2) $\exists \phi: L \to N \text{ such that } \pi \circ \phi = id_L [M' = \text{im}(\phi)]$
- (3) $\exists \psi : N \to M$ such that $\psi \circ i = id_M [M' = \ker \psi]$

Remark. The lemma from last times says that if L is free then any SES as above is split. In fact, L is projective iff any such SES splits.

Definition 3.3.3. M is an injective module if any SES as above splits.

Remark. M is injective if and only if whenever $M \subset N$, \exists complementary submodule M' to M.

Example. $2\mathbb{Z} \subset \mathbb{Z}$ has no complementary submodule. Therefore, \mathbb{Z} is not injective as a \mathbb{Z} -module.

The SES

$$0 \to \mathbb{Z} \xrightarrow{2} \mathbb{Z} \to \mathbb{Z} /_{2\mathbb{Z}} \to 0$$

is not split.

3.3.4 Back to Structure Theorem Again

Problem 3.3.8. Now we want to show that $\mathbb{Z}/p^r\mathbb{Z}$ is injective as a module over itself. Why?

Answer. Let M be a finitely generated $\mathbb{Z}/p^r\mathbb{Z}$ -module with r minimal. Pick $x \in M$ such that $p^{r-1}x \neq 0$. Then

$$\underbrace{\langle x \rangle}_{=\mathbb{Z}/p^r\mathbb{Z}} \subset M.$$

If $\langle x \rangle$ is injective then \exists a complementary module to $\langle x \rangle$, so $M = \langle x \rangle \oplus$ $\underbrace{(?)}_{\text{smaller, so continue by induction}}$

Example. $M = \mathbb{Z} / p\mathbb{Z} \oplus \mathbb{Z} / p\mathbb{Z}$ and we think of M as a $\mathbb{Z} / p^2\mathbb{Z}$ -module. For $0 \neq x \in M$,

$$\langle x \rangle \cong \mathbb{Z} / p\mathbb{Z}.$$

This is not injective as a $\mathbb{Z}/p^2\mathbb{Z}$ -module

Remark (Reason).

$$0 \to {}^{p\mathbb{Z}}/{p^2\mathbb{Z}} \to {}^{\mathbb{Z}}/{p^2\mathbb{Z}} \to {}^{\mathbb{Z}}/{p\mathbb{Z}} \to 0.$$

This does not split. Therefore, $\mathbb{Z}/p\mathbb{Z}$ is not injective as a $\mathbb{Z}/p^2\mathbb{Z}$ -module.

Example. $M = \mathbb{Z} / p^2 \mathbb{Z} \oplus \mathbb{Z} / p \mathbb{Z}$. x = (p,0). $\langle x \rangle = p \mathbb{Z} / p^2 \mathbb{Z} \cong \mathbb{Z} / p \mathbb{Z}$. $\langle x \rangle$ is not injective as a module and does not split off M as a summand.

Lecture 18: Eighteenth Lecture

Theorem 3.3.2 (Baer's Criterion). Let R be any commutative ring. An R-module M is injective if and only if whenever $\phi: I \to M$ is a map of R-modules with $I \subset R$ an ideal, \exists map of R-modules $\psi: R \to M$ such that $\psi|_I = \phi$.

17 Feb. 02:00

Example. $\mathbb Q$ is injective as a $\mathbb Z$ -module. Let $\phi: I \to \mathbb Q$ be given. (Say $I \neq 0$). We know $I = n\mathbb Z$ for some n > 0. Let $x = \phi(n) \in \mathbb Q$. Define

$$\psi: \mathbb{Z} \longrightarrow \mathbb{Q}$$

$$1 \longmapsto \psi(1) = \frac{x}{n}.$$

Then

$$\psi(n) = n\psi(1) = x = \phi(n).$$

Example. \mathbb{Z} is not injective as a \mathbb{Z} -module. Take $I = 2\mathbb{Z}$ ($I \cong \mathbb{Z}$ as a \mathbb{Z} -module). Define

$$\phi: I \longrightarrow Z$$
$$2 \longmapsto \phi(2) = 1.$$

Then $\nexists \psi : \mathbb{Z} \to \mathbb{Z}$ extending ϕ because

$$2 \cdot \psi(1) = \psi(2) = \phi(2) = 1$$

and $\frac{1}{2} \notin \mathbb{Z}$.

Example. $R = \mathbb{Z} / p^2 \mathbb{Z}$. R is injective as an R-module. Let $\phi : I \to R$ be given. Ideals of R are (0), (p), (1).

Case 1: I = (0).

Then we have that $\phi = 0$, take $\psi = 0$.

Case 2: I = (1).

Take $\psi = \phi$.

Case 3: I = (p).

Then ϕ is determined by $\phi(p)$.

$$p \cdot \phi(p) = \phi(p^2) = 0.$$

Therefore, $\phi(p) = pa$, for some $a \in \mathbb{Z} / p^2 \mathbb{Z}$. Define

$$\psi: R \longrightarrow R$$
$$1 \longmapsto \psi(1) = a.$$

Then

$$\psi(p) = p \cdot \psi(1) = p \cdot a = \phi(p).$$

Example. $R = \mathbb{Z} / p^r \mathbb{Z}$. Let $\phi: I \to R$ be given. $I = (p^s)$ for $0 \le s \le r$. Then

$$p^{r-s} \cdot \phi(p^s) = \phi(p^r) = 0.$$

Therefore, $\phi(p^s) = p^s \cdot a$, for some $a \in \mathbb{Z} / p^r \mathbb{Z}$. Define ψ by $1 \mapsto a$.

Proof of Baire's Criterion.

 \Leftarrow Let M be given and suppose the criterion holds. Then we want to show that M is an injective module. Let $i: M \to N$ be an injection of R-modules. Then we want to show that i(M) has a complementary module in N. It is sufficient to show that $\exists s: N \to M$ such that $s \circ i = \mathrm{id}_M$ (complementary module is $\ker s$).

To begin, define s on i(M) to be the inverse of i i.e. s(i(x)) = x for every $x \in M$. We will then keep "enlarging the domain" of S. Suppose we have some submodule $i(M) \subset N_1 \subset N$ such that we have defined $s: N_1 \to M_1$. Let $x \in N$ such that $x \notin N_1$. Put $N_2 = N_1 + R_x$. We want to extend s to N_2 .

Let $I = \{a \in R \mid ax \in N_1\}$. This is an ideal of R. We can define $\phi : I \to M$ by $a \mapsto s(ax)$. By our assumption, $\exists \psi : R \to M$, extending ϕ . Define s on N_2 by $s(n_1 + ax) = s(n_1) + \psi(a)$. Then s and ψ agree on the intersection, so we can path them together. Define

$$\Sigma = \left\{ (s, N') \mid \underset{S:N' \to M, \text{ inverse to } i}{{}^{i(M) \subset N' \subset N}} \right\}.$$

We then consider the ordering $(s_1, N_1') \leq (s_2, N_2')$ if $N_1' \subset N_2'$ and $s_2 | N_1' = s_1$. By Zorn's lemma,

there exists a maximal element of Σ . From the previous paragraph, we have that the maximal N' = N.

 \Rightarrow Now suppose M is injective. Let $\phi: I \to M$ be given.

$$M \xrightarrow{s} N$$

$$\uparrow \phi \qquad \qquad \downarrow t$$

$$I \hookrightarrow \longrightarrow R$$

Note (Pushout construction). Given a diagram as above, the pushout is the module

$$N = {}^{M \oplus R} / \{ (\phi(x), 0) - (0, x) \mid x \in I \}^{\cdot}$$

The point is $(\phi(x), 0) = (0, x)$ in N.

Since $M \hookrightarrow N$ is injective, it has a one-sided inverse s because M is injective. Thus, $\psi = s \circ t$.

3.3.5 Summary of Structure Theorem Proof

We have a finitely generated \mathbb{Z} -module M .

- If $M/M_{\rm tors}$ is finitely generated and torsion free, then it is free
- Since $M/M_{\rm tors}$ is free, the follow SES splits:

$$0 \longrightarrow M_{\mathrm{tors}} \longrightarrow M \longrightarrow M/M_{\mathrm{tors}} \longrightarrow 0.$$

Therefore,
$$M = M_{\text{tors}} \oplus \underbrace{M / M_{\text{tors}}}_{\text{free}}$$

- M_{tors} is finitely generated (because \mathbb{Z} is noetherian) and torsion. Therefore, it is finite. Thus, it is a $\mathbb{Z}/N\mathbb{Z}$ -module for some $N \geq 1$.
- CRT. $M_{\text{tors}} = \bigoplus_p M_p$, M_p is a \mathbb{Z} -module that is killed by a power of p. $M_p = 0$ for all but finitely many p.
- Fix p. Let r be minimal such that $p^r M_p = 0$. Choose $x \in M_p$ of order p^n . Then $\langle x \rangle \cong \mathbb{Z} / p^r \mathbb{Z}$
- Since $\mathbb{Z}/p^r\mathbb{Z}$ is injective as a module over itself, $\langle x \rangle$ is injective as a module. Thus,

$$M_p \cong \langle x \rangle \oplus \underbrace{\text{(smaller mod)}}_{\text{sum of cyclic mod by induction}}.$$

Lecture 19: Nineteenth Lecture

Remark. The decomposition of M into a \oplus of cyclic modules is not unique.

20 Feb. 02:00

$$\mathbb{Z}/_{6\mathbb{Z}} \cong \mathbb{Z}/_{2\mathbb{Z}} \oplus \mathbb{Z}/_{3\mathbb{Z}}$$

In fact, CRT completely explains failure of uniqueness.

Proposition 3.3.3 (A uniqueness result). Let M be a finitely generated \mathbb{Z} -module. Then \exists isomorphism $M \cong \bigoplus_{i=1}^n C_i$, where C_i is either \mathbb{Z} or a finite cyclic group of prime power order. If $M = \bigoplus_{i=1}^s C_i$ is a second such decomposition then r = s and \exists permutation $\sigma \in S_r$ such that

 $C_i' \cong C_{\sigma(i)}$

Proof. If $S = \mathbb{Z} \setminus \{0\}$. Then

$$\#\{i \mid C_i = \mathbb{Z}\} = \dim_{\mathbb{Q}}(S^{-1}M) = d.$$

Therefore,

$$\#\{i \mid C_i' = \mathbb{Z}\} = d.$$

Assume $C_1 = \cdots = C_d = \mathbb{Z}, C'_1 = \cdots C'_d = \mathbb{Z}$

Claim. $\bigoplus_{i=d+1}^r C_i \cong \bigoplus_{i=d+1}^s C_i'$

Proof. Both are M_{tors}

By looking at p-power torsion, we reduce to the case where C_i and C'_i are cyclic of p-power order. Now we proceed by proof by example (lol)

Problem 3.3.9. Why are $\mathbb{Z}/p^5\mathbb{Z} \oplus \mathbb{Z}/p^5\mathbb{Z} \oplus \mathbb{Z}/p^6\mathbb{Z}$ and $\mathbb{Z}/p^4\mathbb{Z} \oplus \mathbb{Z}/p^6\mathbb{Z} \oplus \mathbb{Z}/p^6\mathbb{Z}$ not isomorphic?

Answer. One has more elements of order p^6 then the other one. More generally, we can distinguish by counting elements of order p^i for all i.

Proposition 3.3.4 (Another uniqueness result). Let M be a finitely generated \mathbb{Z} -module. Then for $d_i \geq 2$, \exists an isomorphism

$$M \cong \mathbb{Z}^r \oplus \mathbb{Z} / d_1 \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / d_n \mathbb{Z}$$
 such that $d_2 | d_1, d_3 | d_2, \ldots$

This is unique.

Basic idea. Start by writing $M = \bigoplus (\mathbb{Z}'s \text{ or cyclic of prime power order})$. Say $p_1, \ldots p_n$ are the primes appearing. Say we have $\mathbb{Z}/p_1^{e_1}, \mathbb{Z}/p_2^{e_2}, \ldots$ among our summands with e_1, \ldots, e_m maximal. By CRY,

$$\mathbb{Z}ig/p_1^{e_1}\oplus\mathbb{Z}ig/p_2^{e_2}\oplus\cdots\oplus\mathbb{Z}ig/p_m^{e_m}=\mathbb{Z}ig/d_1.$$

for $d_1 = p_1^{e_1} p_2^{e_2} \cdots p_m^{e_m}$. Next say $\mathbb{Z} / p_1^{f_1}, \dots \mathbb{Z} / p_m^{f_m}$ are next biggest remaining cyclic modules. Then $d_2 = p_1^{f_1} \cdots p_m^{f_m}$

3.3.6 Structure Theorem for PIDs

Theorem 3.3.3. Let R be a PID, M be a finitely generated R-module. Then M is a \oplus of R 's and R/(a)'s.

Remark. We have the following useful properties:

(1) If $a, b \in R$ are coprime, $R/(ab) \cong R/(a) \oplus R/(b)$. Therefore, if $a = \pi_1^{e_1} \cdots \pi_r^{e_r}$ with π_i disjoint prime elements. Then

$$R/(a) \cong R/(\pi_1^{e_1}) \oplus \cdots \oplus R/(\pi_r^{e_r})$$

(2) Same uniqueness statements.

Example. $R = \mathbb{C}[t]$. This is a PID.

Remark. If F is a field, F[t] is a PID and the prime elements are the irreducible polynomials.

Claim. The irreducible polynomials of R are $t-\alpha$ for some $\alpha \in \mathbb{C}$.

Proof. Say h(t) is a monic irreducible polynomial in $\mathbb{C}[t]$. Because \mathbb{C} is algebraically closed, $\exists \alpha \in \mathbb{C}$ such that $h(\alpha) = 0$. Therefore, $t - \alpha | h(t)$. Since h(t) is irreducible, it must be the case that $h(t) = t - \alpha$.

Remark (Structure Theorem for Finitely Generated R-modules). In the case of $R = \mathbb{C}[\approx]$, we have a finite \oplus of $\mathbb{C}[t]$'s and

$$\mathbb{C}[t] / \langle (t-\alpha)^n \rangle' s.$$

Application: Jordan Normal Form

Definition 3.3.4. A Jordan block is a $n \times n$ matrix of the form

$$\begin{bmatrix} \alpha_1 & 1 & \cdots & 0 \\ 0 & \alpha_2 & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \alpha_n \end{bmatrix}.$$

Example.
$$\begin{bmatrix} \alpha \end{bmatrix}$$
, $\begin{bmatrix} \alpha & 1 \\ 0 & \alpha \end{bmatrix}$, $\begin{bmatrix} \alpha & 1 & 0 \\ 0 & \alpha & 1 \\ 0 & 0 & \alpha \end{bmatrix}$

Definition 3.3.5. Given an $n \times n$ complex matrix M, \exists an invertible matrix A such that

$$AMA^{-1} = \begin{bmatrix} J_1 & 0 & \cdots & 0 \\ \vdots & J_2 & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & J_m \end{bmatrix}.$$

Remark. If all the blocks are size |x| then M is diagonalizable.

Let V be a finite dimensional \mathbb{C} -vector space. Let $T:V\to V$ be a linear operator. We can give V the structure of a $\mathbb{C}[t]$ -module via $t\cdot v=T(v)$.

Remark. More generally, if $f(t) \in \mathbb{C}[t]$ then $f(t) \cdot v = f(T)(v)$, where f(T) is another linear operator.

As a $\mathbb{C}[t]$ -module, we have

$$V \cong \mathbb{C}[t]^{\oplus r} \oplus \mathbb{C}[t] / \langle (t - \alpha_1)^{e_1} \oplus \cdots \mathbb{C}[t] / \langle (t - \alpha_m)^{e_m} \cdot$$

Our first observation is that r = 0 because $\dim_{\mathbb{C}}(V) < \infty$, but $\dim_{\mathbb{C}}(\mathbb{C}[t]) = \infty$.

Example. Say $V \cong \mathbb{C}[t] / (t^e)$. Let $\phi: V \to \mathbb{C}[t] / (t^e)$ be the isomorphism.

Note. The key point is that ϕ is an isomorphism of \mathbb{C} -vector spaces such that

$$\phi(Tv) = t \cdot \phi(v).$$

Let x_1, \ldots, x_n be the \mathbb{C} -basis $1, t_1, \ldots, t^{e-1}$ of $\mathbb{C}[t] / (t^e)$. Then

$$tx_i = x_{i+1}$$
 for $1 \le i \le e - 1$,
 $tx_e = 0$.

Put $y_i = \phi^{-1}(x_i)$. Then y_1, \dots, y_n is a basis for V.

$$T(y_i) = y_{i+1}$$
, for $1 \le i \le e - 1$
 $T(y_e) = 0$.

Really use basis ye, ye_1, \ldots, y_1 (Andrew messed up). Then the matrix for T is a Jordan block of size e with 0's on the main diagonal.

Lecture 20: Tensor Products

Suppose we have a ring homomorphism $\phi: R \to S$ is a ring homomorphism.

22 Feb. 02:00

As previously seen. Recall restriction of scalars i.e. if M is an S-module then we can give M the structure of an R-module by defining $r \cdot m = \phi(r) \cdot m$ for $r \in R$ and $m \in M$.

Remark. We also have extension of scalars, starting with an R-module and makes an S-module.

Say M is a finitely presented R-module. Then \exists map $f: \mathbb{R}^m \to \mathbb{R}^n$ such that

$$M \cong \operatorname{coker}(f) = \frac{R^n}{\operatorname{im}(f)}$$

Concretely, f is specified by an $n \times m$ matrix with entries in R.

Definition 3.3.6. Let $f': S^m \to S^n$ be the map given by taking the matrix for f and applying ϕ to each entry. Define $\phi_*(M)$ to be the S-module $\operatorname{coker}(f')$. Then $\phi_*(M)$ is the extension of scalars of M from R to S.

Exercise. Show this is canonically independent of presentation.

Example. $\phi_*(R) = S$. Then R = R / (0), $R = \operatorname{coker}(0 \mapsto R)$. Therefore, $\phi_*(R) = \operatorname{coker}(0 \mapsto S) = S$. Note

$$\phi^*(\phi_*(R)) = S.$$

Thought of as an R-module.

Example. $\phi_*(M \oplus N) \cong \phi_*(M) \oplus \phi_*(N)$. Therefore, $\phi_*(R^n) = S^n$.

Example. $\phi: \mathbb{Z} \to \mathbb{Q}$. $M = \mathbb{Z} / 3\mathbb{Z}$. Then

$$\phi_*(M) = \mathbb{Q}/_{3\mathbb{Q}} = 0.$$

Using above notation, $f: \mathbb{Z} \xrightarrow{3} \mathbb{Z}$, where $M = \operatorname{coker}(f)$ and $f'\mathbb{Q} \xrightarrow{3} \mathbb{Q}$ with $\phi_*(M) = 0 = \operatorname{coker}(f')$.

Example. $\phi: \mathbb{Q} \to \mathbb{C}$. $\phi_*(\mathbb{Q}^n) = \mathbb{C}^n$. If V is an n-dimensional \mathbb{Q} -vector space then $\phi_*(V)$ is an n-dimensional \mathbb{C} -vector space. If $T: V \to V$ is a \mathbb{Q} -linear operator then \exists induced operator $\phi_*(T): \phi_*(V) \to \phi_*(V)$. $\phi_*(T)$ has the "same" matrix as T.

Example. If $\phi: R \to R/I$ then $\phi_*(M) = M/IM$.

3.3.7 \mathbb{Z} Tensor Products

If M and N are \mathbb{Z} -modules a tensor product is a \mathbb{Z} -module T equipped with a \mathbb{Z} -bilinear map $M \times N \to T$ that is universal i.e. if $M \times N \to T'$ is some other bilinear map! \mathbb{Z} -module homomorphism $T \xrightarrow{\alpha} T'$ such that

Easy to see that it is unique if it exists.

We construct as follows:

$$\frac{\text{(free }\mathbb{Z}\text{-module with basis symbols }[m,n] \text{ for } m\in M \text{ and } n\in N)}{\text{Submodule generated by } \underset{[m,a_1n_1+a_2n_2]=a_1[m,n_1]+a_2[m,n_2]}{}}{[a_1m_1+a_2m_2]=a_1[m,n_1]+a_2[m,n_2]}.$$

We have the following properties:

- $(1) \ \mathbb{Z} \otimes M \cong M$
- $(2) \ M \otimes N \cong N \otimes M$
- $(3) (M_1 \oplus M_2) \otimes N \cong (M_1 \otimes N) \oplus (M_2 \otimes N)$
- (4) $M \otimes -$ is a right exact functor i.e. if

$$0 \rightarrow N_1 \rightarrow N_2 \rightarrow N_3 \rightarrow 0$$

is a SES of \mathbb{Z} -modules then

$$M \otimes N_1 \to M \otimes N_2 \to M \otimes N_3 \to 0$$

is exact

Notation. $M \otimes N$ or $M \overset{\otimes}{\mathbb{Z}} N$. For $m \in M$, $n \in N$ we write $m \otimes n$ for the class of [m, n] in $M \otimes N$.

Example. $\mathbb{Z}/3\mathbb{Z}_{\mathbb{Z}}^{\otimes}\mathbb{Z}/5\mathbb{Z}$.

$$\underbrace{\mathbb{Z}/_{5\mathbb{Z}} \xrightarrow{3} \mathbb{Z}/_{5\mathbb{Z}}}_{\text{surjective}} \to \mathbb{Z}/_{5\mathbb{Z}} \otimes \mathbb{Z}/_{3\mathbb{Z}} \to 0.$$

Alternatively, consider $m \otimes n \in \mathbb{Z} / 3\mathbb{Z} \otimes \mathbb{Z} / 5\mathbb{Z}$. Then

$$3(m \otimes n) = m \otimes n + m \otimes n + m \otimes n$$
$$= (3m) \otimes n = 0.$$

Similarly,

$$5(m \otimes n) = m \otimes (5n) = 0.$$

Thus, $M \otimes N$ killed by (3,5) = (1).

3.3.8 R Tensor Products

Let R be a general ring with M and N two R-modules. Then $M_R^{\otimes}N$ receives the universal R-bilinear map from $M \times N$.

If $\phi: R \to S$ is a ring homomorphism then S is naturally an R-module. For an R-module M,

$$\phi_*(M) = S_R^{\otimes} M.$$

The reason for this is as follows. Pick a presentation for M. Then

$$R^m \xrightarrow{f} R^n \to M \to 0.$$

Therefore,

$$\underbrace{S \otimes R^m}_{S^m} \xrightarrow{f} \underbrace{S \otimes R^n}_{S^n} \to \underbrace{S \otimes M}_{\phi_*(M)} \to 0.$$

Let $S \subset R$ be a multiplicative set.

$$\phi:R\longrightarrow S^{-1}R$$

$$x\longmapsto \frac{x}{1}.$$

Then $\phi_*(M) = S^{-1}M = S^{-1}R \otimes M$.

Chapter 4

Field theory

Contrary to popular belief, this is not the study of fields but rather field extensions.

Lecture 21: Field Extensions introduction

Definition 4.0.1. Let F be a field. A field extension of F is a pair (E,i) where E is a field and $i:F\to E$ is a field homomorphism.

24 Feb. 02:00

Remark. i is injective because $\ker(i)$ is a proper ideal of F i.e. its (0). Therefore, we can regard F as a subfield of E

Notation. We write E/F to indicate E is an extension of F (i is implicit).

Definition 4.0.2. Let E/F be given. An element of $\alpha \in E$ is algebraic over F is \exists non-zero $f \in F[x]$ such that $f(\alpha) = 0$. α is transcendental if it is not algebraic.

Example. \mathbb{C}/\mathbb{Q} . The elements of \mathbb{C} that are algebraic over \mathbb{Q} are just the algebraic numbers.

Example. Every element of \mathbb{C} is algebraic over R. The reason: if $z \in \mathbb{C}$ then $z + \overline{z}$, $z\overline{z}$ are real and z is a root of the polynomial

$$(x-z)(z-\overline{z}) = x^2 - (z+\overline{z})x + z\overline{z} \in \mathbb{R}[x].$$

Definition 4.0.3. E/F is algebraic if every element of E is algebraic over F.

Definition 4.0.4. E/F is transcendental if not algebraic.

Example. The following are some examples:

- \mathbb{C}/\mathbb{R} is an algebraic extension
- $\mathbb{Q}(i)/\mathbb{Q}$ is an algebraic extension.
- $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})/\mathbb{Q}$ is an algebraic extension because algebraic numbers are a subfield.
- \mathbb{C}/\mathbb{Q} is a transcendental extension.
- $\mathbb{C}(x)/\mathbb{C}$ is a transcendental extension.

Definition. If E/F is an extension then we can think of E as an F-vector space.

Definition 4.0.5. The degree of E/F, denoted [E:F], is the dimension of E as an F-vector space.

Definition 4.0.6. E/F is finite if $[E:F] < \infty$.

Proposition 4.0.1. If E/F is finite then it is algebraic.

Proof. Given $\alpha \in E$, the elements $1, \alpha, \alpha^2, \ldots$ must be F-linearly dependent because they belong to a finite dimensional F-vector space. A linear dependence gives a polynomial that satisfies.

Example. Let $\overline{\mathbb{Q}} \subset \mathbb{C}$ denote the set of all algebraic numbers. We have shown that this is a subfield of \mathbb{C} .

$$[\overline{\mathbb{Q}}:\mathbb{Q}]=\infty.$$

Therefore, $\overline{\mathbb{Q}}/\mathbb{Q}$ is an algebraic extension of ∞ degree.

Proposition 4.0.2 (Transitivity of degree). Given E/F and K/E

$$[K:F] = [K:E][E:F].$$

Proof. Put n = [K : E] and m = [E : F]. Let x_1, \ldots, x_n be an E-basis of K and y_1, \ldots, y_m an F-basis of E.

Claim. $\{x_i, y_j\}_{\substack{1 \le i \le n \\ 1 \le j \le m}}$ is an *F*-basis of *K*.

Proof. Let $\alpha \in K$ be given. Then we first want to show that $\alpha \in \text{span}(x_i, y_j)$. Since the x_i 's are an E-basis of K we can write

$$\alpha = \sum_{i=1}^{n} \beta_i x_i, \quad \beta_i \in E.$$

Since the y_i 's are an F-basis of E, we can write

$$\beta_i = \sum_{j=1}^m \gamma_{i,j} y_j, \quad \gamma_{i,j} \in F.$$

Thus,

$$\alpha = \sum_{i=1}^{n} \sum_{j=1}^{m} \gamma_{i,j} x_i y_j.$$

Now we must show that $\{x_i, y_j\}_{\substack{1 \le i \le n \\ 1 \le j \le m}}$ are F-linearly independent. Suppose

$$\alpha = \sum_{i=1}^{n} \sum_{j=1}^{m} \gamma_{i,j} x_i y_j = 0.$$

Then

$$\alpha = \sum_{i=1}^{n} \left(\sum_{\substack{j=1 \ \text{belongs to } E}}^{m} \gamma_{i,j} y_{j} \right) x_{i} = 0.$$

This is an E-linear dependence among x_1, \ldots, x_n . Therefore, it is trivial, i.e. for every i

$$\sum_{j=1}^{m} \gamma_{i,j} y_j = 0.$$

This is an F-linear dependence among y_1, \ldots, y_m . Thus, $\gamma_{i,j} = 0$ for every i, j.

Since $|\{x_i, y_j\}_{\substack{1 \leq i \leq n \\ 1 \leq j \leq m}}| = |\{x_i\}_{1 \leq i \leq n}| |\{y_i\}_{1 \leq i \leq m}|$, the result follows directly from the claim.

Theorem. K/F is an extension and E is an intermediate field $(F \subset E \subset K)$

Corollary 4.0.1. Then [E:F] and [K:E] divide [K:F].

Corollary 4.0.2. If the degree of K over F is prime then the only intermediate fields are K and F.

Example. $K = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. Let $E = \mathbb{Q}(\sqrt{2})$. Therefore,

$$[K:\mathbb{Q}] = [K:E][E:\mathbb{Q}].$$

Note that $K=E(\sqrt{3})$. Easy to see that $1,\sqrt{3}$ spac K as an E-vector space. If $[K:E]\leq 2$ then [K:E]=1 or 2. If [K:E]=1 then K=E and $\mathbb{Q}(\sqrt{2})$ would contain $\sqrt{3}$. Thus, [K:E]=2 and $[K:\mathbb{Q}]=4$.

Proposition 4.0.3. Suppose that E/F is an extension and $\alpha \in E$ is algebraic over F. Then $F(\alpha)/F$ is a finite extension.

Proof. Put $F[\alpha] = \text{smallest subring of } E \text{ containing } F \text{ and } \alpha = F \text{-span}(1, \alpha, \alpha^2, \ldots).$

Claim. $F[\alpha]$ is finite dimensional over F.

Proof. We know $f(\alpha)=0$ for some $f\in F[x]$ if $\deg(f)=n$ then $F[\alpha]$ is spanned by $1,\alpha,\ldots,\alpha^{n-1}$.

Claim. $F[\alpha]$ is actually a field and $F[\alpha] = F(\alpha)$.

Proof. Given $\beta \in F[\alpha]$. Once again, we have that $1, \beta, \beta^2, \ldots \in F[\alpha]$ must be F-linearly dependent. Therefore,

$$\beta^n + c_{n-1}\beta^{n-1} + \dots + c_0 = 0.$$

Then

$$\frac{1}{c_0}(\beta^{n-1} + c_{n-1}\beta^{n-2} + \dots + c_0) + \frac{1}{\beta} = 0.$$

Thus, $\frac{1}{\beta} \in F[\alpha]$.

Proposition 4.0.4. Given E/F and $\alpha_1, \ldots, \alpha_n \in E$ that are algebraic over F, the extension $F(\alpha_1, \ldots, \alpha_n)/F$ is finite.

Proof. Consider $F(\alpha_1, \alpha_2) = F(\alpha_1)(\alpha_2)$ If we continue, each iteration is finite by the previous claim. Then the whole thing is finite because degree is transitive.

Proposition 4.0.5. For any extension E/F, E/F is finite if and only if it is algebraic and finitely generated.

Proposition 4.0.6. For any extension E/F, the elements of E that are algebraic over F form a subfield.

Proof. If $\alpha, \beta \in E$ are algebraic over F then $F(\alpha, \beta)/F$ is finite. Therefore, it is algebraic. So $\alpha + \beta, \alpha\beta, \frac{\alpha}{\beta} \in F(\alpha, \beta)$ are algebraic over F.

Lecture 22: Basic Properties of Field Extensions

4.1 Characteric

6 Feb. 02:00

Let F be a field. Then $\exists !$ ring homomorphism ϕ from $\mathbb{Z} \to F$ defined by $\phi(1) = 1 \in F$. There are two cases,

- (1) ϕ is injective. Then $\mathbb{Z} \subset F$ and $\mathbb{Q} \subset F$. F has "characteristic 0"
- (2) $\ker(\phi) \neq 0$. Then

$$\operatorname{im}(\phi) \cong \mathbb{Z} / \ker(\phi)$$
.

This is a domain because it is a subring of F. Therefore, $\ker(\phi)$ is a prime ideal such that $\ker(\phi) = (p)$ for some prime p. Thus, ϕ induces a field homomorphism

$$\underbrace{\mathbb{F}_p}_{\mathbb{Z}/p\mathbb{Z}} \to F.$$

Then F has "characteristic p".

Remark. If $F \to K$ is any field homomorphism then char(F) = char(K).

4.2 Adjoining Elements

Suppose E/F is a field extension and let $a \in E$ be algebraic over F. Then $\exists!$ ring homomorphism

$$\phi: F[x] \longrightarrow E$$

$$h(x) \longmapsto h(a).$$

The $\ker(\phi)$ is a non-zero prime ideal $(\operatorname{im}(\phi)$ is a domain). Since F[x] is a PID, $\ker(\phi) = ((f(x)))$ for some f. In fact, $\exists !$ monic f(x) that generates $\ker(\phi)$.

Definition 4.2.1. This is called the minimal polynomial of a.

Remark. The minimal polynomial f(x) of a is irreducible and has the following properties:

- If $g(x) \in F[x]$ such that g(a) = 0 then f(x)|g(x).
 - The reason for this is that $g(a) = 0 \Rightarrow g \in \ker(\phi) = (f(x))$.

Example. We have the following examples:

- $E = \mathbb{C}$, $F = \mathbb{R}$, a = i. Then $f(x) = x^2 + 1$.
- $E = \mathbb{C}$, $F = \mathbb{Q}$, $a = \sqrt{2} + \sqrt{3}$. Then f(x) is some degree 4 polynomial.
- $E = \mathbb{C}, F = \mathbb{Q}(\sqrt{2}), a = \sqrt{2} + \sqrt{3}$. Then $f(x) = (x \sqrt{2})^2 3$.

Proposition 4.2.1. Let E/F and $a \in E$ be as above, let $f(x) \in F[x]$ be the minimal polynomial of a. Then

$$F[x]/_{(f(x))} \cong F[a].$$

Proof. Recall

$$\phi: F[x] \longrightarrow E$$
$$h(x) \longmapsto h(a).$$

Then $\operatorname{im}(\phi) = F[a] = F(a)$. By 1st Isomorphism Theorem,

$$F[x]/\ker(\phi) \cong \operatorname{im}(\phi) = F(a).$$

Since $ker(\phi) = (f(x))$, we are done.

Definition 4.2.2. Let E/F and K/F be two extensions of F. An F-homomorphism (or F-embedding) is a field homomorphism $E \xrightarrow{\gamma} K$ that is the identity on F.

More carefully, E/F is really a field homomorphism $\alpha: F \to E$ and K/F is $\beta: F \to K$. Then

 γ is a field homomorphism such that $\gamma \circ \alpha = \beta$.

Example. Let $\tau: \mathbb{C} \to \mathbb{C}$ be complex conjugation. Then τ is an \mathbb{R} -automorphism of \mathbb{C} .

Definition 4.2.3 (See Milne's Notes). Let F be a field, and let $f(x) \in F$ be an irreducible polynomial. A stem field for f is a pair (E/F, a) for $a \in E$, such that f(a) = 0 and E = F(a).

Note. f is the minimal polynomial of a.

Theorem 4.2.1. Let $f(x) \in F[x]$ be an irreducible polynomial.

- (a) A stem field for f exists.
- (b) Stem fields are unique in the following way: if (E/F, a) and (E'/F, a') are two stem fields then $\exists ! F$ -isomorphism $\sigma : E \to E'$ such that $\sigma(a) = a'$.

Proof of (a). We have E = F[x]/(f(x)). This is a field because f(x) is irreducible. Additionally, \exists natural homomorphism $F \to E$, so E is an extension of F. Then let a = img of x in E. Then f(a) = 0 and (E/F, a) is a stem field.

Proof of (b). Let (E/F,a) be as in part (a). Let (E'/F,a') be a second stem field. Then $\exists !$ map $\phi: F[x] \to E'$ that is the identity on F and maps x to a'. We know that ϕ is surjective because $a' \in \operatorname{im}(\phi)$ and E' = F(a'). Then ϕ induces an isomorphism $\sigma: \underbrace{E}_{=F[x]/\ker(\phi)} \to E'$. Since $\phi(x) = a'$,

we get $\sigma(a) = a'$.

Now we must show that σ is unique. Suppose that $\tau: E \to E'$ is an F-isomorphism such that $\tau(a) = a'$. Suppose $x \in E$. Then $x = \sum_{i=1}^{n} c_i \cdot a^i$ for $c_i \in F$. Then

$$\sigma(x) = \sum_{i=1}^{n} c_i \sigma(a)^i$$

$$\tau(x) = \sum_{i=1}^{n} c_i \tau(a)^i.$$

These are the same because $\tau(a) = \sigma(a) = a'$.

Remark. Suppose that E/F and K/F are two extensions and $\sigma: E \to K$ is a field homomorphism. Then σ being an F-homomorphism is the same as σ being an F-linear map.

Example. $(\mathbb{C}/\mathbb{R}, i)$ is a stem field for $x^2 + 1$ but $\tau : \mathbb{C} \to \mathbb{C}$ is an \mathbb{R} -isomorphism such that $\tau(i) = -i$. Therefore, the isomorphism is only unique in the sense that it must map the generator to the generator.

Example. $\alpha = 2^{\frac{3}{2}} \in \mathbb{R}$, $\beta = e^{2\pi i/3}(2^{\frac{3}{2}})$. Then $\mathbb{Q}(\alpha)$ and $\mathbb{Q}(\beta)$ are different subfields of \mathbb{C} . But, $\mathbb{Q}(\alpha)/\mathbb{Q},\alpha)$ and $(\mathbb{Q}(\beta)/\mathbb{Q},\beta)$ are both stem fields for x^3-2 . From the theorem, $\exists!$ isomorphism $\sigma: \mathbb{Q}(\alpha) \to \mathbb{Q}(\beta)$ such that $\sigma(\alpha) = \beta$.

Proposition 4.2.2. Let (E/F,a) be a stem field for f(x). Then $[E:F] = \deg f(x)$.

Proof. $E \cong F[x] / (f(x))$. If f(x) has degree d then $1, x, \dots x^{d-1}$ are an F-basis of E.

Lecture 23: Finite Fields

Example. $F = \mathbb{Q}$, $E = \mathbb{Q}(2^{3/2})$, $f(x) = x^3 - 2$, $a = 2^{3/2}$. Then a is the only root of f(x) in E because $E \subset \mathbb{R}$ and the other roots of f are complex.

10 Mar. 02:00

Definition 4.2.4. Given any polynomial $f(x) \in F[x]$. A splitting field for f is a field extension E/F such that f(x) factors into linear factors over E and E is generated by the roots of f.

Proposition 4.2.3. Splitting fields exist and are unique up to F-isomorphism.

Proof. To show they exist, we essentially iteratively create stem fields.

- Pick an irreducible factor g(x) of f(x)
- $(E_0/F, a)$ be a stem field for g.
- Write $f(x) = (x a)f_0(x)$ for $f_0(x) \in E_0[x]$
- Let E be an extension of E_0 (exists by induction on degree)
- E is splitting field for f.

To show uniqueness, Say E and E' are two splitting fields for f. Let g(x) be an irreducible factor of f(x). Since g|f and f factors into degree 1 pieces, so does g. Therefore, \exists root $a \in E$ and $a' \in E'$ of g. Let $E_0 = F(a) \subset E$ and $E'_0 = F(a') \subset E'$

Note. E_0 and E_0' are stem fields for g. Therefore, \exists !F-isomorphism $E_0 \to E$ defined by $a \mapsto a'$.

Let $f(x) = (x - a)f_0(x) \in E_0[x] = (x - a')f_0(x) \in E'_0[x]$. Then E and E' are splitting fields for f_0 (rel to E_0). By induction on degree, $\exists E_0$ -isomorphism from $E \to E'$.

Remark. If E and E' are splitting fields for f there will typically be many F-isomorphism $E \to E'$. When E = E' there are typically non-trivial F-automorphisms from $E \to E$.

Example. \mathbb{C}/\mathbb{R} is splitting field of $x^2 + 1$. \mathbb{C} has two \mathbb{R} -automorphisms (id, complex conjugation).

Definition 4.2.5. Say f has no multiple roots. A marked splitting field is $(E/F, \alpha_1, \ldots, \alpha_n)$ such that $f(x) = \prod_{i=1}^n (x - \alpha_i)$ and $E = F(\alpha_1, \ldots, \alpha_n)$.

Now if $(E'/F, \alpha'_1, \dots, \alpha'_n)$ is a second one. There must exist at most one F-isomorphism $\sigma : E \to E'$ such that $\sigma(\alpha_i) = \alpha'_i$.

However, σ does not have to exist in general.

Example. $F = \mathbb{Q}$, $f(x) = x^4 - 1$. $E = \mathbb{Q}(i)$ is a splitting field. $(E / \mathbb{Q}, 1, i, -1, -i), (E / \mathbb{Q}, i, -i, 1, -1)$ are not isomorphic as marked splitting fields.

Example. $F = \mathbb{Q}$, $f(x) = \frac{x^5 - 1}{x - 1}$ (roots are 5th roots of unity). $\zeta = e^{2\pi i/5}$. $E = \mathbb{Q}(\zeta)$. $(E / \mathbb{Q}, \zeta, \zeta^2, \zeta^3, \zeta^4)$, $(E / \mathbb{Q}, \zeta, \zeta^3, \zeta^4, \zeta^2)$ are not isomorphic as marked splitting fields.

4.3 Finite Fields

Definition 4.3.1. A finite field is a field with finitely many elements.

Say F is a finite field. Certainly, $\mathbb{Q} \not\subset F$. Therefore, $\operatorname{char}(F) = p$ for some prime p and $\mathbb{F}_p \subset F$. Since F is finite, it is finite dimensional as an \mathbb{F}_p -vector space. Threfore, $F \cong \mathbb{F}_p^n$ as a vector space such that $\#F = p^n$.

Proposition 4.3.1. If F is a finite field then F^{\times} is cyclic. More generally, if E is any field then any finite subgroup of E^{\times} is cyclic.

Proof. Say $G \subset E^{\times}$ is finite. Write $G[n] = \{x \in G \mid x^n = 1\}$. Since the polynomimal $T^n - 1$ has $\leq n$ roots in E, it must be the case that $\#G[n] \leq n$.

Lemma 4.3.1. If G is a finite abelian group such that $\#G[n] \leq n$ then G is cyclic.

Proof. By structure theorem, $G \cong \mathbb{Z} / m_1 \mathbb{Z} \times \mathbb{Z} / m_2 \mathbb{Z} \times \cdots$, where $m_2 | m_1, m_3 | m_2, \ldots$

$$G[m_2] \supset \left(\mathbb{Z}/m_1\mathbb{Z}\right)[m_2] \times \mathbb{Z}/m_2\mathbb{Z}$$

Therefore, $\#G[m_2] \ge m_2^2$ so $m_2 = 1$.

Thus, the result follows directly from the lemma.

Definition 4.3.2. An integer a is called a primitive root mod p if a generates F_p^{\times}

Example. Some examples:

- 2 is a primitive root mod 5
- 3 is a primitive root mod 7
 - But 2 is not!

Remark (Artin's Conjecture). An interesting conjecture: If a is an integer that is not a square and not -1, then a is a primitive root mod p for infinitely many p. At most 2 prime a's do not work i.e. true for at least one of 2, 3, 5.

Remark (Discrete log problem). Given a primitive root $a \mod p$ and some $b \in \mathbb{F}_p^{\times}$, find i such that $b = a^i$. $(i = \log_a b)$

Lecture 24: Classifying Finite Fields

As previously seen. If F is a finite field then F has characteristic p > 0. Therefore, $\mathbb{F}_p \subset F$. If $n = [F : \mathbb{F}_p]$ then $\#F = p^n$.

13 Mar. 02:00

Theorem 4.3.1. Given a prime p and $n \geq 1$, $\exists !$ finite field up to isomorphism with p^n elements.

Remark. If $q = p^n$, we write \mathbb{F}_q for the field with q elements.

Note. $\mathbb{F}_q \neq \mathbb{Z} / q\mathbb{Z}$ unless q is prime.

Proof. We will start with a lemma.

Lemma 4.3.2. If #F = q then $a^q = a$ for every $a \in F$, so

$$x^q - x = \prod_{a \in \mathbb{F}_q} (x - a).$$

Proof. F^{\times} is a group of order q-1, so $\forall a \in F^{\times}$, we have $a^{q-1}=1$ so $a^q=a$. If a=0 then $a^q=a$ too. Each $a \in F$ is a root of x^q-x . Since $\#F=\deg(x^q-x)$ that gives this factorization.

Corollary 4.3.1. F is a splitting field of $x^q - x \in \mathbb{F}_p[x]$

Proof. We know that $x^q - x$ factors into linear pieces over F. The roots of $x^q - x \in \mathbb{F}$ generate F because every element of F is a root of this polynomial.

Corollary 4.3.2. If F_1 and F_2 are finite fields with q elements then they are isomorphic.

Proof. Splitting fields are unique.

Therefore, all that is left to show is that such a finite field exists. Let $q = p^n$ be given. Let F be a splitting field of $x^q - x$.

Claim. #F = q.

Proof. First, we will show that $\#F \leq q$. Consider the mapping

$$\phi: F \longrightarrow F$$
$$x \longmapsto x^q$$

This is a field isomorphism. Since ϕ is a field isomorphism

$$\{x \in F \mid \phi(x) = x\}$$
 is a subfield of F .

This field must be all of F because it contains the roots of $x^q - x$ and these generate F. Therefore, for every $x \in F$ we have that $\phi(x) = x$ i.e. $x^q - x = 0$. Since this polynomial has $\leq q$ roots, we have that $\#F \leq q$.

Now we must show the reverse inequality. Since $f(x) = x^q - x$ splits into linear factors over F. Therefore, $\#F \ge \#$ distinct roots of f. Note that if a is a multiple root of f then f'(a) = 0. However, $f'(x) = qx^{q-1} - 1 = -1$ because q = 0 in F. Thus, f has q distinct roots and $\#F \ge q$.

Remark. Let K be any field $f(x) \in K[x]$ such that

$$f(x) = \sum_{i=0}^{n} a_i x^i, \quad a_i \in K.$$

Then $f'(x) = \sum_{i=0}^{n} i a_i x^{i-1}$.

Thus, F is our desired field.

Problem 4.3.1. What is the "best" way to construct \mathbb{F}_{n^2} ?

Answer. If -1 is not a square in \mathbb{F}_p (p-odd). Then $x^2 + 1$ is an irreducible polynomial over \mathbb{F}_p .

Then

$$\mathbb{F}_p[x]/(x^2+1)$$
 "=" $\mathbb{F}_p[i]$

is a field of degree 2 over \mathbb{F}_p . If $-1 = a^2$ in \mathbb{F}_p then $x^2 + 1 = (x - a)(x + a)$. By CRT,

$$\mathbb{F}_p[x] / (x^2 + 1) \cong \mathbb{F}_p[a] \times \mathbb{F}_p[a].$$

Remark. -1 is a square in \mathbb{F}_p if and only if $p \equiv 1 \pmod{4}$.

In general $(p \neq 2)$, if $a \in \mathbb{F}_p$ is not a square, then $x^2 - a$ is irreducible. Therefore,

$$\mathbb{F}_p[x] / (x^2 - a)$$
 "=" $\mathbb{F}_p[\sqrt{a}]$.

If p=2, $\mathbb{F}_2[x]/(x^2+x+1)$ is a field with 4 elements.

Proposition 4.3.2. For $n, m \ge 1$, $\mathbb{F}_{p^n} \subset \mathbb{F}_{p^m}$ if and only if n|m.

Proof. If $\mathbb{F}_{p^n} \subset \mathbb{F}_{p^m}$ then

$$\underbrace{\left[\mathbb{F}_{p^m}:\mathbb{F}\right]}_{=m}=\left[\mathbb{F}_{p^m}:\mathbb{F}_{p^n}\right]\underbrace{\left[\mathbb{F}_{p^n}:\mathbb{F}\right]}_{=n}.$$

Now suppose that n|m.

Claim. $x^{p^n} - x$ factors into linear factors over \mathbb{F}_{p^m} (splits).

Proof. Let m = rn for some r. Then $p^n - 1|p^m - 1$ because

$$\frac{p^m - 1}{p^n - 1} = \frac{p^r n - 1}{p^n - 1}.$$

This is a geometric series. The same logic applies to see that $x^{p^n-1} - 1|x^{p^m-1} - 1$.

Since $x^{p^m-1}-1$ splits in \mathbb{F}_{p^m} $(x^{p^m}-x=x(x^{p^m-1}-1)), x^{p^m-1}-1$ and consequently $x^{p^n}-x$ split. So \mathbb{F}_{p^m} contains a splitting field for $x^{p^n}-x \cong \mathbb{F}_{p^n}$

4.4 Algebraic Closure

Definition 4.4.1. A field Ω is algebraically closed if every polynomial $f(x) \in \Omega[x]$ has a root in Ω .

Example. C is algebraically closed (fundamental theorem of algebra).

Proposition 4.4.1. Ω is algebraically closed if and only if any algebraic extension of Ω is trivial (degree 1).

Proof. Suppose that Ω is algebraically closed and K/Ω is an algebraic extension. Pick $a \in K$ and consider its minimal polynomimal $f(x) \in \Omega[x]$. Since f(x) is irreducible and has a root in Ω , it must be degree 1. Therefore, f(x) = x - a and $a \in \Omega$. Thus, $K = \Omega$.

Now suppose that every algebraic extension of Ω is trivial. Let f(x) be a given non constant polynomial. Then we need to show f(x) has a root in Ω . Let K be the splitting field of F. This is an algebraic extension. Therefore, $K = \Omega$. Thus, f already splits over Ω .

*

Definition 4.4.2. Let F be any field. Then an algebraic closure of F is an algebraic field extension Ω/F with Ω algebraically closed.

Example. \mathbb{C} is an algebraic closure of \mathbb{R} .

Example (Non-example). $\mathbb C$ is not an algebraic closure of $\mathbb Q$.

Lecture 25: Twenty-Fifth Lecture

Theorem 4.4.1. Given any $F \exists$ an algebraic closure Ω/F . If Ω'/F is another algebraic closure of F then $\exists F$ -isomorphism $\Omega \to \Omega'$.

15 Mar. 02:00

Lemma 4.4.1. Let $\{E_i/F\}_{i\in I}$ be a family of algebraic extensions. Then there exists an algebraic extension K/F such that each E_i admits an F-embedding $E_i \to K$.

Proof. Suppose each E_i / F is finite. Let $x_{i_1}, \ldots, x_{i_{n(i)}}$ be generators for E_i as an extension of F. Consider the map

$$F[T_{i_1}, \dots, T_{i_{n(i)}}] \longrightarrow E_i$$

 $T_{i_i} \longmapsto x_{i_i}.$

Let Q_i be the kernel. Now let $R = F[T_{i_j}]_{\substack{i \in I \\ 1 \le j \le n(i)}}$ and Q = ideal of R generated by Q_i 's. Note

$$E_i = F[T_{i_1}, \dots, T_{i_{n(i)}}]/Q_i \longrightarrow R/Q$$

is injective. Let Q' be a max ideal containg Q. Then we get a map $E_i \longrightarrow R/Q'$ and R/Q' is a field.

Remark. $R/Q \cong \bigotimes_{i \in I} E_i$ (tensor product over F).

To see R/Q' is an algebraic extension of F, note that the T_{i_j} 's generate and they are the image of the x_{i_j} 's, which are algebraic. Thus, extension generated by algebraic elements is algebraic and K = R/Q'.

Example. Consider $E_1 = E_2 = \mathbb{C}$. Then $R = \mathbb{R}[T_1, T_2]$ and $Q = \langle T_1^2 + 1, T_2^2 + 1 \rangle$. Thus, Q' becomes either $\langle T_1^2 + 1 \rangle$ or $\langle T_2^2 + 1 \rangle$.

Construction of Closure. Now we must construct the closure from Theorem. Let $\{f_i\}_{i\in I}$ be the set of all polynomials with coefficients in F. Let E_i = splitting field for f_i . Let F_1 be an algebraic extension of F such that each E_i embeds into F_1 via an F-embedding. Define F_2 by the same procedure starting with F_1 i.e.

$$F \subset F_1 \subset F_2 \subset \cdots$$
.

Thus, $\bigcup_{n>1} F_n$ is an algebraic closure of F.

Remark. Actually, F_1 is already closed and $F_i = F_1$ for every $i \ge 1$. This is less obvious.

Example. Algebraic closure of \mathbb{F}_p . Consider

$$\mathbb{F}_p \subset \mathbb{F}_{p^{2!}} \subset \mathbb{F}_{p^{3!}} \subset \cdots$$
.

The union of this chain is an algebraic closure of \mathbb{F}_p .

Proposition 4.4.2. Let Ω be an algebraic closure of F and let E/F be any algebraic extension. Then \exists an F-embedding $E \to \Omega$.

Proof. Consider the simplest case: E = F(a). Let f be the minimal polynomial of a. Then there exists a root a' of f in Ω . By stem fields, $\exists ! \ F$ -embedding $E \to \Omega$ defined by $a \mapsto a'$.

Now consider the case $E = F(a_1, \ldots, a_n)$. We can extend inductively from the previous case. In the general case, use Zorn's lemma i.e. order them via F-embeddings from one to the other. Then the algebraic closure will be the maximal element.

Corollary 4.4.1. If Ω and Ω' are two algebraic closures then they are F-isomorphic.

Proof. By the proposition, $\exists F$ -embedding $\Omega' \to \Omega$. Therefore, Ω / Ω' is algebraic extension. Thus, $\Omega = \Omega'$ because Ω' is algebraically closed.

4.5 Transcendental Extensions

Definition 4.5.1. If E/F is an extension, an element a is transcendental over F if it is not algebraic.

Proposition 4.5.1. Suppose $a \in E$ is transcendental over F. Then $\exists F$ -isomorphism $F(a) \cong F(x)$, where F(a) = subfield generated by a and F(x) = field of rational functions.

Proof. Consider the ring homomorphsim

$$\phi: F[x] \longrightarrow E$$
$$f \longmapsto f(a).$$

 ϕ is injective because if not then a would be algebraic. ϕ induces an injection $\operatorname{Frac}(F[x]) \to E$ whose image is exactly F(a).

Problem 4.5.1. Is $F(a,b) \cong F(x,y)$?

Answer. No, could have a = b.

Problem 4.5.2. What if we say $b \not\subset F(a)$?

Answer. Still not necessarily true. Consider $F = \mathbb{Q}$, $a = \pi^{1/2}$, $b = \pi^{1/3}$.

Definition 4.5.2. Elements $a_1, \ldots, a_n \in E$ are algebraically independent over F if there is no non trivial algebraic relation i.e. if $\Phi(a_1, \ldots, a_n) = 0$ for some $\Phi \in F[T_1, \ldots, T_n]$ then $\Phi = 0$.

Lecture 26: Transcendental Extensions + Exam Review

Remark. More generally, a set S of elements of E is algebraically independent if every finite subset is.

17 Mar. 02:00

Example. $F = \mathbb{C}$, $E = \mathbb{C}(x, y)$. Then x, y are algebraically independent.

*

Note. If $a_1, \ldots, a_n \in E$ are algebraically independent then

$$F(a_1,\ldots,a_n)\cong F(T_1,\ldots,T_n).$$

Example. There exists an infinite subset of $\mathbb C$ that is algebraically independent over $\mathbb Q$. We can construct this by induction. Suppose we have $a_1,\ldots,a_n\in\mathbb C$ that are algebraically independent over $\mathbb Q$. Consider all elements of $\mathbb C$ that are algebraic over $\mathbb Q(a_1,\ldots,a_n)$. Note that this is a countable subfield of $\mathbb C$. Because $\mathbb C$ is uncountable, $\exists a_{n+1}\in\mathbb C$ that is transcendental over $\mathbb Q(a_1,\ldots,a_n)$. Thus, a_1,\ldots,a_{n+1} is algebraically independent.

Definition 4.5.3. A transcendence base for E/F is a maximal algebraically independent set.

Note (Fact). If S is a transcendence base for E/F then E/F(S) is algebraic.

Note (Fact). Any extension has a transcendence base (proof uses Zorn's lemma).

Theorem 4.5.1. Any two transcendence bases of E/F have the same cardinality.

Definition 4.5.4. The transcendence degree of E / F, denoted tr $\deg(E / F)$ is the cardinality of any transcendence base.

Example. We have the following examples:

- (1) tr $deg(E/F) = 0 \Leftrightarrow E/F$ is algebraic.
- (2) tr deg $\mathbb{C}(T_1,\ldots,T_n)=n$
- (3) Given E/F and K/E then $\operatorname{tr} \operatorname{deg}(K/F) = \operatorname{tr} \operatorname{deg}(K/E) + \operatorname{tr} \operatorname{deg}(E/F)$
- (4) $F = \mathbb{C}$, $E = \operatorname{Frac}\left(\frac{\mathbb{C}[x,y]}{(y^2 x^3 x)}\right)$. Then $\operatorname{tr} \operatorname{deg}(E/F) = 1$. A transcendence base is any element of E not in F i.e. x or y or xy.
 - Degree is not well defined i.e. $E/\mathbb{C}(y) = 3$ but $E/\mathbb{C}(x) = 2$ since $y = \sqrt{x^3 + x}$ is minimal polynomial of y and x is the degree three counterpart.

Example. $F = \mathbb{C}, E = \operatorname{Frac}\left(\frac{\mathbb{C}[x,y]}{(y^2-x^3-x)}\right)$. Set

$$X = \{(x, y) \in \mathbb{C}^2 \mid y^2 = x^3 + x\}.$$

E is the function field for X. Consider the maps $X \to \mathbb{C}$ defined by $(x,y) \mapsto x$ and $X \to \mathbb{C}$ defined by $(x,y) \to y$. These correspond to the degree 2 and 3 extensions respectively because they are two to one and three to one functions respectively.

4.5.1 Application to algebraic geometry

Suppose we have a ring $R = \mathbb{C}[x_1, \dots, x_n] / (f_1, \dots, f_n)$. Assume R is a domain. Geometrically, $R \leftrightarrow \mathbb{Z}$ ero locus of f_1, \dots, f_n in \mathbb{C}^n . The zero locus is an "algebraic variety" X.

Definition 4.5.5. $\dim(X) = \operatorname{tr} \operatorname{deg} (\operatorname{Frac}(R) / \mathbb{C})$

Write $\mathbb{C}(X) = \operatorname{Frac}(R)$ (function field of X). Say $f: X \to Y$ is a map of varieties. This gives a field extension $\mathbb{C}(Y) \subset \mathbb{C}(X)$

Remark. If f is generally d to 1 then $[\mathbb{C}(X) : \mathbb{C}(Y)] = d$.

4.5.2 Application of tr deg

Theorem 4.5.2. Say E/F is a finitely generated extension. Then any intermediate field is finitely generated over F.

Corollary 4.5.1. Let $\overline{F} = \{a \in E \mid a \text{ is algebraic over } F\}$. Then \overline{F} is a finite extension of F.

Definition 4.5.6. E/F is purely transcendental if $E=F(a_1,\ldots,a_n)$ with a_1,\ldots,a_n algebraically independent.

Problem 4.5.3. Is every subextension of a purely transcendental extension purely transcendental? (For F algebraically closed)

Answer. Yes if n=1 (Luroth's thm). Maybe true still for n=2 in characteristic 0. But $n \geq 3$ it is not ture.

4.6 Exam Review

The exam will consist of mainly two topics: module theory and field theory.

4.6.1 Module Theory

- General definitions: (module, homo, ker, coker)
- Exact sequences.
- Free modules
 - What they are.
 - Bases.
 - Mapping property.
- Presentation of a module, presentation matrix.
- Structure theory for \mathbb{Z} -modules, or more generally R-modules, where R is a PID.
 - Polynomial ring over 1 variable. All submodules.
 - Application: $\mathbb{C}[t]$ -modules are vector spaces with a linear operator.
- Do not need to know injective or projective modules.
- Do not need localization.
- Hilbert basis theorem.

4.6.2 Field Theory

- Characteristic of a field $\{F \text{ has characteristic } 0 \Leftrightarrow \mathbb{Q} \subset F \text{ } F \text{ has characteristic } p \Leftrightarrow \mathbb{F}_p \subset F \}$
- Field extension E/F, E is an F-vector space.
 - $[E:F] = \dim_F(E)$
- Transitivity of degree

$$- [K:F] = [K:E][E:F]$$

- $\bullet\,$ Algebraic elements / extensions, minimal polynomial.
 - If a is algebraic over F, then [F(a):F]= degree of minimal polynomial of a
- \bullet Stem / splitting fields: existence + uniqueness.
- Finite fields: classification, construction
- Multiplicative group is cyclic.

Chapter 5

Galois Theory

Lecture 27: Galois Theory Introduction

Remark. From now on all fields are characteristic 0.

22 Mar. 02:00

Definition 5.0.1. Let E/F be a finite field extension. Then the Galois group

$$\operatorname{Gal}(^{E}/_{F}) = \text{group of all } F\text{-automorphisms of } E.$$

As previously seen. An F-automorphism of E is a field automorphism $\sigma: E \to E$ that is constant on F.

Example. For \mathbb{C}/\mathbb{R} ,

$$\operatorname{Gal}(^{\mathbb{C}}/_{\mathbb{R}}) = \{1, \underbrace{\tau}_{\text{cmplx conjugation}}\}.$$

If σ is an arbitrary \mathbb{R} -automorphism of \mathbb{C} , then

$$\sigma(i) = \pm i, \quad \sigma(a+bi) = a+b\sigma(i).$$

Example. $E = F(\sqrt{d}), d \neq \Box$ in F. $\exists F$ -automorphism $\tau : E \to E$ such that $\tau(\sqrt{d}) = -\sqrt{d}$. This follows from stem fields minimal polynomial of \sqrt{d} is $x^2 - d$. Its two roots are $\pm \sqrt{d}$. Then $\operatorname{Gal}(E/F) = \{1, \tau\}$.

Example. $F = \mathbb{Q}$, $E = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. By previous example, $\exists \mathbb{Q}(\sqrt{2})$ -automorphism $\sigma : \mathbb{Q}(\sqrt{2}, \sqrt{3}) \to \mathbb{Q}(\sqrt{2}, \sqrt{3})$ such that $\sigma(\sqrt{3}) = -\sqrt{3}$. This is also a \mathbb{Q} -automorphism of $\mathbb{Q}(\sqrt{2}, \sqrt{3})$. Therefore, $\sigma \in \operatorname{Gal}(\mathbb{Q}(\sqrt{2}, \sqrt{3})/\mathbb{Q})$. Also $\exists \tau \in \operatorname{Gal}$ such that $\tau(\sqrt{3}) = \sqrt{3}$ and $\tau(\sqrt{2}) = -\sqrt{2}$. Also have $\sigma \circ \tau$. In fact,

$$\operatorname{Gal}\left(\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q}\right) = \{i,\sigma,\tau,\sigma\tau\} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}.$$

Why is this all? Say $\theta \in Gal$. We know that $\theta(\sqrt{2})^2 = 2 \Rightarrow \theta(\sqrt{2}) = \pm \sqrt{2}$ and the same for $\sqrt{3}$.

Example. Gal($\mathbb{Q}(2^{1/3})/\mathbb{Q}$). If $\theta \in \text{Gal then}$

$$\theta(2^{1/3})^3 = 2 \Rightarrow \theta(2^{1/3}) = 2^{1/3}.$$

Thus, $Gal = \{1\}.$

Theorem 5.0.1. If E/F is a finite extension then

$$\#Gal(E/F) \mid [E:F].$$

Definition 5.0.2. E/F is a Galois extension if

$$\#Gal(E/F) = [E:F].$$

Example. The following are examples of Galois extensions:

- A quadratic extension is Galois.
- $\mathbb{Q}(\sqrt{2}, \sqrt{3})/\mathbb{Q}$ is Galois.
- $\mathbb{Q}(2^{1/3})/\mathbb{Q}$ is not Galois.

Definition 5.0.3. Given E/F and a subgroup $H \subset \operatorname{Gal}(E/F)$ define

$$E^H := \{ a \in E \mid \sigma(a) = a \ \forall \sigma \in H \}.$$

Example. $E/F = \mathbb{C}/\mathbb{R}, H = \operatorname{Gal}(\mathbb{C}/\mathbb{R}).$ Then

$$E^H = \{ a \in \mathbb{C} \mid \overline{a} = a \} = \mathbb{R}.$$

Remark. E^H is a subfield of E and $F \subset E^H$.

Proposition 5.0.1. Say E/F is Galois and G = Gal(E/F) then $E^G = F$.

Proof. Since G fixes everything in E^G ,

$$G \subset \operatorname{Gal}(E^G/E)$$
.

Therefore,

$$\#G = [E:F] \le [E:E^G] = \frac{[E:F]}{[E^G:F]}.$$

Thus, $[E^G : F] = 1$.

Example. We have the following application. If E/F is Galois with group G. Given any $a \in E$ then $\prod_{\sigma \in G} \sigma(a)$ is fixed by G. Therefore, it belongs to F i.e. if $\tau \in G$ then

$$\tau(b) = \prod_{\sigma \in G} \tau(\sigma(a)) = \prod_{\sigma' \in G} \sigma'(a) = b$$

with $\sigma' = \tau \sigma$.

Theorem 5.0.2. If $f(x) \in F[x]$ is any polynomial then the splitting field of f is a Galois extension of F. Conversely, if E/F is Galois then E is the splitting field of some $f(x) \in F[x]$.

Example. Say E is the splitting field of f(x).

Observation 1: G = Gal(E/F) permutes the roots of F.

If $\sigma \in G$ and $\alpha \in E$ is a root of f then $0 = \sigma(f(a)) = f(\sigma \alpha)$.

Observation 2: The action of G on the roots is faithful.

This is because if we know how $\sigma \in G$ acts on roots we know σ because the roots generate E.

Say $f(x) = (x - \alpha_1) \cdots (x - \alpha_n)$. Then $G \subset S_n =$ Group of permutations of $\{\alpha_1, \dots, \alpha_n\}$.

Theorem 5.0.3. The action of G on the roots is transitive if and only if f is irreducible.

Proof. If f(x) = g(x)h(x) then G maps roots of g to roots of g and similarly for h. Therefore, G is not transitive. Now suppose that f is irreducible. Say α is a root of f. Say $\alpha_1, \ldots, \alpha_m$ is the G-orbit of α_1 . Consider $g(x) = (x - \alpha_1) \cdots (x - \alpha_m)$. We know that g(x)|f(x). G fixes the coefficients of g. Therefore, $g(x) \in F[x]$. Since g|f and f is irreducible, g = f and the action is transitive.

Alternative Proof. $\exists F$ -isomorphism τ such that $\tau(\alpha_1) = \alpha_i$ by stem field. Consider the algebraic closure Ω . Then we can embed $E = F(\alpha_1, \dots, \alpha_n)$ into Ω because E is an algebraic extension over $F(\alpha_1)$. Since E is a stem field, the image of E over our embedding must be E because splitting fields are unique.

Lecture 28: Galois Theory cont.

Corollary 5.0.1. Given any finite extension E/F, \exists Galois extension M/F and an F-embedding from $E \to M$.

Proof. $E = F(a_1, \dots a_n)$. Let f_i be the minimal polynomial of a_i . Consider

$$f(x) = f_1(x) \cdots f_n(x).$$

Let M be the splitting field of f.

Remark. A few remarks:

- (1) \exists "minimal" M, this is called the Galois closure of E.
- (2) The above corollary is false in positive characteristic.

Corollary 5.0.2. Say we have a Galois extension E/F and an intermediate field K. Then E/K is Galois.

Proof. Since E is Galois over F, E is the splitting field over F of some $f(x) \in F[x]$. E is still the splitting field of $f(x) \in K[x]$.

As previously seen. If E/F is an extension and HGal(E/F), the fixed field of H is

$$E^{H} := \{ a \in E \mid \sigma(a) = a \ \forall \sigma \in H \}.$$

This is an intermediate field to E/F.

Theorem 5.0.4 (Main Theorem of Galois Theory). Suppose E/F is a Galois extension.

24 Mar. 02:00

• There is a bijective correspondence between

$$\{\text{subgroups of }\operatorname{Gal}(^E \big/_F)\} \longleftrightarrow \{\text{intermediate fields}\}$$

$$H \longmapsto E^H$$

$$\operatorname{Gal}(^E \big/_K) \longleftrightarrow K.$$

- Say $H \longleftrightarrow K = E^H$. Then [E:K] = #H and [K:F] = [G:H].
- If $H \longleftrightarrow K = E^H$ then H is a normal subgroup of Gal(E/F) iff K/F is a Galois extension
- The correspondence is order-reversing i.e. if H_1 and H_2 are subgroups then $H_1 \subset H_2$ iff $E^{H_1} \supset E^{H_2}$

Remark. An application of the final point: $H_1 \cap H_2$ is the largest subgroup contained in H_1 and H_2 . Then $E^{H_1 \cap H_2}$ is smallest field that contains both H_1 and H_2 . This fixed field is the compositum of E^{H_1} and E^{H_2} .

Example. $F = \mathbb{Q}, \ E = \mathbb{Q}(\sqrt{2}, \sqrt{3}).$ Then [E:F] = 4. $Gal(E/F) = \{1, \sigma, \tau, \sigma\tau\} \cong \mathbb{Z}/2 \times \mathbb{Z}/2.$ Where $\sigma(\sqrt{2}) = -\sqrt{2}, \ \sigma(\sqrt{3}) = \sqrt{3}, \ \tau(\sqrt{2}) = \sqrt{2}, \ \text{and} \ \tau(\sqrt{3}) = -\sqrt{3}.$

$$\begin{array}{c|c} \text{Subgroups} & \text{Intermediate fields} \\ 1 & \mathbb{Q}(\sqrt{2},\sqrt{3}) \\ \{1,\sigma\} & \mathbb{Q}(\sqrt{3}) \\ \{1,\tau\} & \mathbb{Q}(\sqrt{2}) \\ \{1,\sigma\tau\} & \mathbb{Q}(\sqrt{6}) \\ \{1,\sigma,\tau,\sigma\tau\} & \mathbb{Q} \end{array}$$

Example. $F = \mathbb{Q}$, E = splitting field of $x^3 - 2$, $E = \mathbb{Q}(2^{1/3}, \zeta)$ with $\zeta = e^{2\pi i/3}$. Then [E : F] = 6 and $Gal(E/F) = S_3$. Label the 3 roots as 1, 2, and 3.

Subgroups	Intermediate fields
1	E
$\{1, (12)\}$	$\mathbb{Q}(2^{1/3}\zeta^2)$
$\{1, (13)\}$	$\mathbb{Q}(2^{1/3}\zeta)$
$\{1, (23)\}$	$\mathbb{Q}(2^{1/3})$
$\{1, (123), (132)\}$	$\mathbb{Q}(\zeta)$
S_6	$\mathbb Q$

Then the 1st, 5th, and 6th are normal subgroups.

Corollary 5.0.3. If E/F is a finite extension, then there only exists finitely many intermediate fields.

Proof. Choose $E \subset M$ such that M / F is Galois. Then the intermediate fields of M / F are in bijection with subgroups of the Galois group. Since this is a finite group, there are finitely many subgroups.

Remark. This is actually false in positive characteristic.

5.1 Cubic Polynomials

Say $f(x) \in F[x]$ is an irreducible cubic polynomial. Let E/F be its splitting field, G = Gal(E/F). We know $G \subset S_3$ and it acts transitively. Therefore, it must be the case that $G = A_3$ or S_3 .

Problem 5.1.1. How do we tell which one?

Answer. The discriminant.

(*)

Write $f(x) = (x - \alpha_1)(x - \alpha_2)(x - \alpha_3)$. $\delta = (\alpha_1 - \alpha_2)(\alpha_1 - \alpha_3)(\alpha_2 - \alpha_3)$. $D = \delta^2$ (discriminant). For $\sigma \in S_3$, $\sigma \delta = \operatorname{sgn}(\sigma)\delta$. Therefore, $\sigma D = D$. If D is fixed by $\operatorname{Gal}(E/F)$ then $D \in F$. In fact, can express D as a polynomial in coefficients of f.

Example. If $f(x) = x^3 + px + q$. Then $D = -4p^3 - 27q^2$.

Proposition 5.1.1. $G = A_3$ iff D is a square in F.

Proof. If G is A_3 then G fixes δ . Therefore, $\delta \in F$ and D is a square. Conversely, if D is a square in F, then $\delta \in F$ so G must be A_3 .

Lecture 29: Main Theorems of Galois Theory

Remark. We will always be in characteristic 0 today.

27 Mar. 02:00

Theorem 5.1.1. Ω/F is an algebraic closure. K/F is a finite extension. Then the number of F-embeddings $K \to \Omega$ is [K:F].

Proof. First suppose (K, a) is a stem field for the irreducible polynomial $f(x) \in F[x]$. Then

$$[K:F] = \deg f(x).$$

By stem field theory, giving an F-embedding $K \to \Omega$ is equivalent to choosing a root of f(x) in Ω . The number of distinct roots is $\deg f(x)$ because Ω is algebraically closed and f(x) has no repeated roots (irreducible polynomials are separable in characteristic 0).

In the general case, let K_0 be an intermediate field to K/F that is a stem field over F. Pick an F-embedding $\sigma: K_0 \to \Omega$. Then Ω is an algebraic closure of K_0 via σ . By induction on degree, the number of K_0 -embeddings of K into Ω is $[K:K_0]$.

Problem 5.1.2. What is a K_0 -embedding $K \to \Omega$?

Answer. This is a field homomorphism $\tau: K \to \Omega$ such that $\tau|_{K_0} = \sigma$. Therefore, τ is an F-embedding because σ is an F-embedding.

Rephrasing, each F-embedding $\sigma: K_0 \to \Omega$ admits exactly $[K:K_0]$ extensions to an F-embedding $K \to \Omega$. Therefore, the number of F-embeddings $K \to \Omega$ is the number of F-embeddings $K_0 \to \Omega$ multiplied by the number of ways of extending each of these to K i.e.

F-embeddings
$$K \to \Omega = [K_0 : F][K : K_0] = [K : F].$$

Corollary 5.1.1. $\#Gal(K/F) \leq [K:F]$.

Proof. Fix an F-embedding $\sigma: K \to \Omega$. If $\tau \in \operatorname{Gal}(K/F)$ then $\sigma \tau: K \xrightarrow{\tau} K \xrightarrow{\sigma} \Omega$ is another F-embedding. Therefore, we have an injection

$$\operatorname{Gal}(^K \big/_F) \to \{F\text{-embeds } K \to \Omega\}.$$

Corollary 5.1.2. Say K/F is the splitting field of $f(x) \in F[x]$. Then K/F is a Galois extension.

Proof. Without loss of generality, assume $K \subset \Omega$. Suppose $\sigma: K \to \Omega$ is an F-embedding.

Claim. $\sigma(K) = K$.

Proof. If a_1, \ldots, a_n are the roots of f(x) in K. Then $\sigma(a_1), \ldots, \sigma(a_n)$ are the roots of f(x) in K. Then

$$K = F(a_1, \dots, a_n), \quad \sigma(K) = F(\sigma(a_1), \dots, \sigma(a_n)) = K.$$

Therefore, each F-embedding $K \to \Omega$ is an automorphism of K and

$$\#\mathrm{Gal}(K/F) = \#F\text{-embedding } K \to \Omega = [K:F].$$

Thus, K/F is Galois.

Remark. From the proof, we have that if K/F is a splitting field and $\sigma, \tau : K \to \Omega$ are two F-embeddings then $\sigma(K) = \tau(K)$. In fact, converse is true: an extension K/F with with property is a splitting field.

Theorem 5.1.2. Let K be a field and let G be a finite group of automorphisms of K. Put $F = K^G$. Then K/F is Galois and Gal(K/F) = G.

Proof. We know $G \subset \operatorname{Gal}(K/F) \Rightarrow [K:F] \geq \#G$. It is enough to prove $[K:F] \leq \#G$. Put m = #G. Then we want to show that $[K:F] \leq m$. We will show that if n > m and $\alpha_1, \ldots, \alpha_n \in K$ then $\alpha_1, \ldots, \alpha_n$ are F-linearly dependent. For notation,

$$G = \{\underbrace{\sigma_1}_{\text{=id}}, \dots, \sigma_m\}.$$

Consider the following system of equations:

$$\sigma_1(x_1)\alpha_1 + \dots + \sigma_1(x_n)\alpha_n = 0$$

$$\vdots$$

$$\sigma_m(x_1)\alpha_1 + \dots + \sigma_m(x_n)\alpha_n = 0$$

We know that \exists non-trivial solution in K because n > m. To get an F-linear dependence we want a non-trivial solution in F. Consider a non-trivial solution of this system $(c_1, \ldots, c_n) \in K^n$. Choose this to have as many 0's as possible. Without loss of generality, $c_1 = 1$.

Claim. $(c_1,\ldots,c_n)\in F^n$.

Proof. Suppose not. Then $\exists i$ such that $c_i \notin F$. So c_i is not fixed by G i.e. $\exists \sigma \in G$ such that $\sigma c_i \neq c_i$. Note that $(\sigma c_1, \ldots, \sigma c_n)$ is still a solution to the system. Then

$$(c_1,\ldots,c_n)-(\sigma c_1,\ldots,\sigma c_n)$$

is also a solution. Since $\sigma c_1 = \sigma(1) = 1$, we have that

$$(c_1,\ldots,c_n)-(\sigma c_1,\ldots,\sigma c_n)=(0,?,\ldots,\underbrace{c_i-\sigma c_i}_{\neq 0},?,\ldots,?).$$

Therefore, this is a solution with fewer zeros, contradicting the maximal number of zeroes of our original solution.

From the claim, $(c_1, \ldots, c_n) \in F$ and

$$c_1\alpha_1 + \dots + c_n\alpha_n = 0.$$

Thus, α 's are F-linearly dependent.

Example. $K = \mathbb{C}(x_1, \dots, x_n)$. Let S_n act on K by permuting variables. Then

$$F = K^{S_n} \Rightarrow K/F$$
 is a Galois extension with group S_n , degree $n!$.

Write $\prod_{i=1}^{n} (t-x_i) = \sum_{i=0}^{n} \underbrace{c_i(x_1, \dots, x_n)}_{S_n \text{ invariant}} t^i$. Then we have the following fact: $F = \mathbb{C}(c_0, \dots, c_{n-1})$.

Remark. If G is any finite group then $G \subset S_n$ for some n. If $K = \mathbb{C}(x_1, \ldots, x_n)$, $F = K^G$ then K / F is a Galois extension with group G.

Lecture 30: Main Theorem of Galois Theory

Proposition 5.1.2. If E/F is a finite extension then the following are equivalent

29 Mar. 02:00

- (a) E/F is Galois,
- (b) E/F is a splitting field,
- (c) If $f(x) \in F[x]$ is irreducible and has one root in E then all roots of f are in E.

Proof. We already proved last time that (b) \Rightarrow (a). First we will show that (a) \Rightarrow (c). Let $f(x) \in F[x]$ be irreducible. Suppose $\exists a \in E$ such that f(a) = 0. If $\sigma \in Gal(E/F)$ then $\sigma(a)$ is also a root of f. Let a_1, \ldots, a_n be the orbit of a under the Gal(E/F). Consider $g(x) = \prod_{i=1}^n (x - a_i)$

Note (Key point). The coefficients of g(x) are symmetric polynomials in a_1, \ldots, a_n . Therefore, the coefficients of g(x) are fixed by Gal(E/F).

From the key point, we must have that the coefficients are in $E^{Gal(E/F)} = F$. Therefore, $g(x) \in F[x]$ and g(x)|f(x). Then it must be the case that g(x) = f(x). Thus, the a_i 's are all the roots of f(x) and are in E.

Lastly, we must show that $(c) \Rightarrow (b)$. Since E / F is finite, $E = F(a_1, \ldots, a_n)$. Let $f_i(x)$ be the minimal polynomial of a_i . By (c), $f_i(x)$ factors into linear pieces over E. Therefore, the same is true for $f(x) = f_1(x) \cdots f_n(x)$. Thus, E is the splitting field of F.

Remark. Looking at orbit of root under Galois group is a very important method.

Corollary 5.1.3. If E/F is Galois and K is an intermediate field then E/K is Galois.

Proof. We know that E is the splitting field of some $f(x) \in F[x]$. Therefore, it is also the splitting field of $f(x) \in K[x]$. Thus, $E \mid K$ is Galois.

Example. K/F is not necessarily Galois. Consider $\mathbb{Q}(2^{1/3}, e^{2\pi i/3})$. Then $\mathbb{Q}(2^{1/3})/\mathbb{Q}$ is not Galois.

Proof of main theorem. Let E / F be a Galois extension and G = Gal(E / F). We want a bijective correspondence between subgroups of G and intermediate fields of E / F:

 $\{\text{subgroups of }G\} \xrightarrow{\Phi}_{\Psi} \{\text{intermediate fields of }E\Big/_F\},$

where $\Phi(H) = E^H$ and $\Psi(K) = \operatorname{Gal}(E/K)$. Therefore, we want to show Φ and Ψ are inverses. Suppose $H \subset G$. We want to show that $\Psi(\underbrace{\Phi(H)}_{\operatorname{Gal}(E/E^H)}) = H$. This follows from a previous

theorem. Now say that K is an intermediate field. Then we want to show that $\Phi(\underbrace{\Psi(K)}_{E \text{Gal}(E/K)}) = K$.

This is true because E/K is Galois, so the fixed field of Gal(E/K) is K.

Another part of the main theorem is that this correspondence is order reversing i.e. if $H_1 \subset H_2 \subset G$ then $\Phi(H_2) \subset \Phi(H_1)$. This is clear because we are simply requiring that the elements must

be fixed by more things. Similarly, if $F \subset K_1 \subset K_2 \subset E$ then $\underbrace{\Psi(K_2)}_{\mathrm{Gal}(E/K_2)} \subset \underbrace{\Psi(K_1)}_{\mathrm{Gal}(E/K_1)}$.

Lastly, let $H \subset G$, $K = \Phi(H) = E^H$. Then we want to show that H is a normal subgroup if and only if K / F is Galois. Suppose that H is normal.

Claim. Every element of G maps $K = E^H$ into itself.

Proof. Say $x \in E^H$ and $\sigma \in G$. Then we want to show that $\sigma x \in E^H$. Let $\tau \in H$. Then

$$\tau \sigma x = \sigma \underbrace{\sigma^{-1} \tau \sigma}_{\in H} x = \sigma x.$$

This is because $x \in E^H$. Thus, $\sigma x \in K = E^H$.

Now show that K/F is Galois. Say $f(x) \in F[x]$ is irreducible and it has a root $a \in K$. We know if a_1, \ldots, a_n is the G-orbit of a that these are all the roots of f. Since $a \in K$ and G maps K to itself each $a_i \in K \Rightarrow f(x)$ splits over K. So K/F is Galois.

Suppose K/F is Galois. Then we want to show that $H = \operatorname{Gal}(E/K)$ is normal.

Claim. It is once again true that K is mapped to itself by elements of G

Proof. Since K/F is Galois, K is the splitting field of some f(x). Note that K is the unique splitting field of f(x) contained in E. If $\sigma \in G$ then σK is still a splitting field of f in E. Thus, $\sigma K = K$

Note that we have the map

$$\operatorname{Gal}(^E /_F) \longrightarrow \operatorname{Gal}(^K /_F)$$
$$\sigma \longmapsto \sigma|_K.$$

The kernel of this is Gal(E/K) = H. Thus, H is normal.

Note. This mapping is actually surjective

$$1 \longrightarrow \operatorname{Gal}(^E /_K) \longrightarrow \operatorname{Gal}(^E /_F) \longrightarrow \operatorname{Gal}(^K /_F) \longrightarrow 1.$$

This is an exact sequence of groups.

Lecture 31: Galois Theory of Finite Fields

Say $q = p^r$ and consider $\mathbb{F}_q / \mathbb{F}_p$ - this is a Galois extension. Define

$$\phi: \mathbb{F}_q \longrightarrow \mathbb{F}_q$$
$$x \longmapsto \phi(x) = x^p.$$

This is a field automorphism and $\phi \in \operatorname{Gal}(\mathbb{F}_q/\mathbb{F}_p)$. We know that $x^q = x$ holds for every $x \in \mathbb{F}_q$. Therefore, $\phi^r = 1$ in $\operatorname{Gal}(\mathbb{F}_q/\mathbb{F}_p)$. This gives us that the order of the Galois group divides r.

29 Mar. 02:00

Note. $\phi^k = \phi \circ \cdots \circ \phi$ such that $\phi^k(x) = x^{p^k}$.

We cannot have that $\phi^k = 1$ for k < r because this would say that $x^{p^k} = x$ for every $x \in \mathbb{F}_q$ but this polynomial only has $p^k < q$ roots. This gives us that ϕ has order r. On the other hand, $[\mathbb{F}_q : \mathbb{F}_r] \leq r$ such that $\# \operatorname{Gal}(\mathbb{F}_q / \mathbb{F}_p)$. Thus, $\operatorname{Gal}(\mathbb{F}_q / \mathbb{F}_p) = \langle \phi \rangle$.

Subgroups of $\langle \phi \rangle$ correspond to divisors of r. (If d|r then the subgroups is $\langle \phi^d \rangle$. Main theorem of Galois theory implies subfields of \mathbb{F}_q correspond to divisors of r. Explicitly, $d \longleftrightarrow$ fixed field of $\phi^d \cong \mathbb{F}_{p^d}$.

Note. If $\langle \phi \rangle$ is abelian then all subgroups are normal. Therefore, all extensions of finite fields are Galois.

Let F be a field of characteristic 0, $\zeta = p$ th root of 1

Claim. $F(\zeta)$ is a Galois extension of F.

Proof. $F(\zeta)$ is the splitting field of $x^p - 1$.

$$x^p - 1 = \prod_{a \in \mathbb{F}_p} (x - \zeta^a), \quad \zeta^a \in F(\zeta).$$

Define $\chi : \operatorname{Gal}(F(\zeta) / F \to \mathbb{F}_p^{\times})$ as follows. Say $\sigma \in \operatorname{Gal}(F(\zeta) / F)$, where σ is a prime pth root of 1. Then $\sigma(\zeta) = \zeta^a$ for $a \in \mathbb{F}_p^{\times}$. Define $\chi(\sigma) = a$. An observation is that this is actually independent of choic of ζ . To see this, say ω is a second prime pth root of 1. Then $\omega = \zeta^b$ for some $b \in \mathbb{F}_p^{\times}$. Therefore,

$$\sigma(\omega) = \sigma(\zeta)^b = (\zeta^a)^b = (\zeta^b)^a = \omega^a.$$

This gives us that χ is actually well defined. Now we observe that χ is a group homomorphism. To see this, say $\sigma, \tau \in \operatorname{Gal}(F(\zeta)/F)$. Then

$$\zeta^{\chi(\sigma\tau)} = \sigma\tau(\zeta) = \sigma(\zeta^{\chi(\tau)}) = \sigma(\zeta)^{\chi(\tau)} = \left(\zeta^{\chi(\sigma)}\right)^{\chi(\tau)} = \zeta^{\chi(\sigma)\chi(\tau)}.$$

Thus, $\chi(\sigma\tau) = \chi(\sigma) \cdot \chi(\tau)$.

Lastly, we see that χ is injective. To see this, say $\sigma, \tau \in \operatorname{Gal}(F(\zeta)/F)$. If $\chi(\sigma) = \chi(\tau)$ then $\sigma(\zeta) = \tau(\zeta)$. Thus, $\zeta = \tau$ because ζ generates the extension.

Proposition 5.1.3. For any F of characteristic $0, \exists$ canonical injective group homomorphism:

$$\chi: \operatorname{Gal}(F(\zeta)/F) \longrightarrow \mathbb{F}_p^{\times}.$$

In particular, $\operatorname{Gal}(F(\zeta)/F)$ is cyclic of order dividing p-1.

Remark. χ is not bijective in general i.e. F could already contain ζ , in which case $F(\zeta) = F$.

Proposition 5.1.4. If $F = \mathbb{Q}$ then χ is a bijection.

Proof. ζ is a root of $\frac{x^p-1}{x-1}=x^{p-1}+x^{p-2}+\cdots+1$, which is irreducible over \mathbb{Q} . Therefore, $[\mathbb{Q}(\zeta):\mathbb{Q}]=p-1$. Thus, $\#\mathrm{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})=p-1$.

Problem 5.1.3. Now we have that $\operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q}) \cong \mathbb{F}_p^{\times}$. What is the subfield E of $\mathbb{Q}(\zeta)$ correspond to the subgroup $\langle -1 \rangle \subset \mathbb{F}_p^{\times}$?

Answer. Let $\tau \in \operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})$ be complex conjugation. Then $\tau \neq 1$ but $\tau^1 = 1$. So τ is the unique element of order 2, such that $\chi(\tau) = -1$. Therefore, E is the fixed field under complex conjugation. Namely, $E = \mathbb{Q}(\underbrace{\zeta + \overline{\zeta}}_{2\cos(2\pi/p)})$. To see inclusion, we have that $\zeta + \overline{\zeta}$ is fixed by τ . Then we have that

$$(x - \zeta)(x - \overline{\zeta}) = x^2 - (\zeta + \overline{\zeta})x + 1 \in \mathbb{Q}(\zeta + \overline{\zeta}).$$

Therefore, $\mathbb{Q}(\zeta): \mathbb{Q}(\zeta + \overline{\zeta}) \leq 2$. Since these fields are not equal, this extension is exactly 2. Thus, we have equality.

Problem 5.1.4. $(\mathbb{F}_p^{\times})^2 \subset \mathbb{F}_p^{\times}$ has index 2. Let F be the fixed field of $(\mathbb{F}_p^{\times})^2$. Then what is F?

Answer. Consider $g' = \sum_{a \in \mathbb{F}_p^{\times}} \zeta^{a^2}$. This is the "average" of ζ over (\mathbb{F}_p^{\times}) . Automatic that $g' \in F$. Consider

$$g = 1 + g' = \sum_{a \in \mathbb{F}_p} \zeta^{a^2}.$$

This is analogous to $I = \int_{-\infty}^{\infty} e^{-x^2} dx$. Then

$$I^{2} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^{2} + y^{2})} dxdy$$
$$= \int_{0}^{\infty} \int_{0}^{2\pi} e^{-r^{2}} r d\theta dr$$
$$= \pi$$

Thus, $I = \sqrt{\pi}$. Now we will see the analogous p case, where $p = 1 \mod 4$. Then

$$g^2 = \sum_{a,b \in \mathbb{F}_p} \zeta^{a^2 + b^2}.$$

Since $p = 1 \mod 4$, we have that $\exists i \in \mathbb{F}_p$ such that $i^2 = -1$. Then

$$a^{2} + b^{2} = a^{2} - (ib)^{2} = \underbrace{(a+ib)}_{u} \underbrace{(a-ib)}_{v}.$$

This gives us that

$$g^{2} = \sum_{u,v \in \mathbb{F}_{p}} \zeta^{uv} = \sum_{u \neq 0} \underbrace{\sum_{v \in \mathbb{F}_{p}} \zeta^{uv}}_{-0}.$$

Therefore, $g^2 = p$ and $g = \sqrt{p}$.

Lecture 32: Adjoining Roots + Galois Closure

5.2 Adjoining roots

3 Apr. 02:00

We know that $\mathbb{Q}(2^{1/3})$ is not a Galois extension of \mathbb{Q} . Say F is a field of characteristic 0 and F contains all pth roots of 1.

Proposition 5.2.1. For any $a \in F$ ($a \neq p$ th power). $F(a^{1/p})$ is a Galois extension of F with Galois group $\cong \mathbb{Z}/p\mathbb{Z}$.

*

Proof. $a^{\frac{1}{p}}$ is a root of $f(t) = t^p - a = \prod_{i=1}^p (t - \zeta^i a^{\frac{1}{p}})$. By assumptiin $\zeta^i \in F$ for every i. Therefore, all roots of f(t) belong to $F(a^{1/p})$. Thus, $F(a^{1/p})$ is the splitting field of F. Let $\mu_p = \{\omega \in F \mid \omega^p = 1\} \cong \mathbb{Z}/p\mathbb{Z}$. We have a function $\phi : \operatorname{Gal}(F(a^{1/p})/F) \to \mu_p$ defined by $\phi(\sigma) = \sigma(a^{1/p})/a^{1/p}$.

Note. $\sigma(a^{1/p})$ this is another p th root of a. Therefore, it is of the form $\zeta^i a^{1/p}$, $\phi(\sigma) = \zeta^i$.

Now we must show that ϕ is a group homomorphism.

$$\sigma \tau(a^{1/p}) = \phi(\sigma \tau) \cdot a^{1/p}$$

$$= \sigma(\phi(\tau)a^{1/p}) \qquad = \sigma(\phi(\tau))\sigma(a^{1/p}).$$

Since $\phi(\tau) \in F$ by assumption, it is fixed by σ . Therefore,

$$\sigma(\phi(\tau))\sigma(a^{1/p}) = \phi(\tau) \cdot \phi(\sigma) \cdot a^{1/p}.$$

We know that ϕ is injective because any σ is determined by $\sigma(a^{1/p})$. We also know that ϕ is surjective because $\operatorname{im}\phi$ is a subgroup of $\mathbb{Z}/p\mathbb{Z}$. Since a is not a pth power, $F(a^{1/p})$ is not a trivial extension. Therefore, $\operatorname{im}\phi$ is not trivial and must be $\mu_p \cong \mathbb{Z}/p\mathbb{Z}$.

Proposition 5.2.2. Suppose that $\mu_p \subset F$. Let E / F be a Galois extension with Galois group $\mathbb{Z} / p\mathbb{Z}$. Then $E \cong F(a^{1/p})$ for some $a \in F$.

Proof. Let σ generate $\operatorname{Gal}(E/F)$. Consider σ as an F-linear operator on $E \to E$. We know that $\sigma^p = 1$. Therefore, eigenvalues of σ are pth roots of 1 (They are all in F). Therefore, we can diagonalize σ over F because σ has finite order. We know that $\sigma \neq 1$. Therefore, \exists eigenvalue $\omega \in \mu_p$ of σ such that $\omega \neq 1$. Say $b \in E$ is an eigenvector $\sigma(b) = \omega b$. Therefore,

$$\sigma(b^p) = \sigma(b)^p = \omega^p b^p = b^p.$$

This gives us that $b^p \in F$ because b^p is fixed by σ and σ generates Gal(E/F). However, $b \notin F$ because $\sigma(b) \neq b$. Thus, E = F(b) because [E : F] = p such that there are no proper intermediate fields.

Remark. More generally, say n is a positive integer and $\mu_n \subset F$. Then $F(a^{1/n})$ is a Galois extension of F and $Gal(F(a^{1/n})/F) \subset \mu_n$. The converse is also true.

5.3 Galois Closure

Proposition 5.3.1. Let E / F be a finite extension. \exists a Galois extension M / F and an F-embedding $E \to M$ such that if M' / F is a Galois extension with an F-embedding $E \to M'$ then $\exists M \to M'$. Moreover, M is unique up to F-isomorphism.

Definition 5.3.1. Such an M is called the Galois closure of E/F.

Proof. Let Ω/F be an algebraic closure. Choose an F-embedding $E \to \Omega$, such that $E = F(a_1, \ldots, a_n)$. Let $f_i(x)$ be the minimal polynomial of a_i . Let $M \subset \Omega$ be generated over F by all the roots of the f_i 's. M is a splitting field for $f(x) = f_1(x) \cdots f_n(x)$. Therefore, M/F is Galois. Now we must show that M is minimal. Let M' be given. Choose an E-embedding $M' \to \Omega$. Since M'/F is Galois and $f_i(x)$ has one root in M', M' must have all the roots of f. Thus, $M \subset M'$.

Example. Suppose we have Galois extensions $F(\sqrt{d})$ / F with Galois group \mathbb{Z} / $2\mathbb{Z}$ and $F(\sqrt{a+b\sqrt{d}})$ / $F(\sqrt{d})$

5 Apr. 02:00

with Galois group $\mathbb{Z}/2\mathbb{Z}$. If $E = F(\sqrt{a} + b\sqrt{d})$ then E/F is not necessarily Galois. Suppose that E/F is Galois. Let $\sigma \in \operatorname{Gal}(E/F)$ be an element such that $\sigma(\sqrt{d}) = -\sqrt{d}$. Put $x = \sqrt{a + b\sqrt{d}}$. Consider $x^2 = a + b\sqrt{d}$. Then

$$(\sigma x)^2 = a - b\sqrt{d}.$$

Therefore, if E/F is Galois then $a-b\sqrt{d}$ is a square in E. (In fact, converse is true). If E/F is not Galois its closure is $M=F(\sqrt{a+b\sqrt{d}},\sqrt{a-b\sqrt{d}})$. Then $\operatorname{Gal}(M/F(\sqrt{d}))\cong \mathbb{Z}/2\times \mathbb{Z}/2$.

Remark. If E/F is Galois then $\operatorname{Gal}(E/F) = \mathbb{Z}/4$. $F(\sqrt{d})$ sits inside a $\mathbb{Z}/4$ extension if and only if d is the sum of two squares in the base field.

Lecture 33: TBD

Definition 5.3.2. Let G be a finite group. A composition series for G is a chain of subgroups

$$1 = H_0 \subset H_1 \subset \cdots \subset H_n = G,$$

such that H_i is normal in H_{i+1} and maximal among normal subgroups.

Remark. These exist because G is finite. For H_{i-1} , just take maximal proper subgroup of H_i .

Remark. Composition series are not unique i.e.

$$1 \subset \mathbb{Z}/2 \subset \mathbb{Z}/6$$

and

$$1 \subset \mathbb{Z}/_3 \subset \mathbb{Z}/_6$$
.

Remark. In a composition series H_i/H_{i-1} is a simple group (no normal subgroups except trival and whole group).

Theorem 5.3.1 (Jordan-Holder Theorem). Let $1 = H_0 \subset \cdots \subset H_n = G$ and $1 = H'_0 \subset \cdots \subset H'_m$ be two composition series. Then n = m and $\exists \sigma \in S_n$ such that

$$H_i / H_{i-1} \cong H'_{\sigma(i)} / H'_{\sigma(i)-1}$$
.

Definition 5.3.3. The groups H_i/H_{i-1} are the J-H constituents of G and n is the J-H length of G.

Example. We have the following examples:

- 1. If G is a simple group then its J-H constituents are only G and J-H length 1.
- 2. If $G = S_5$ then the J-H constituents are A_5 and $\mathbb{Z}/2$ and it is of J-H length 2.
- 3. $G = S_3$ is J-H length 2 with constituents A_3 and $\mathbb{Z}/2$.
- 4. $G = S_4$, we have the $V = \{1, (12)(34), (14)(23)\}$ which is a normal subgroup of A_4 . Therefore,

a composition series is

$$1 \subset \mathbb{Z}/_2 \subset V \subset A_4 \subset S_4.$$

This gives us constitutients $\mathbb{Z}/2$, $\mathbb{Z}/2$, $\mathbb{Z}/3$, and $\mathbb{Z}/2$ with length 4.

Definition 5.3.4. G is solvable if its J-H constituents are all $\mathbb{Z}/p\mathbb{Z}$'s for varying primes p.

Example. S_2 , S_3 , S_4 are solvable but S_5 is not solvable.

Proposition 5.3.2 (Permance props of solvability). We have the following:

- (a) A sub or quotient of a solvable group is solvable.
- (b) An extension of solvable groups is solvable i.e. if G has a normal subgroup N such that N and G/N are solvable then G is solvable.
- (c) A product of solvable groups is solvable.

Proof of (a). Suppose that G is solvable and G surjects onto G'. Let $1 = H_0 \subset \cdots \subset H_n = G$. Then we can define $H'_i = \text{img of } H_i$ in G'. This is a chain of subgroups. However, the chain is not necessarily strict, so we must delete duplicates. We have that

$$H_i / H_{i-1} \longrightarrow \underbrace{H_i' / H_{i-1}'}_{\mathbb{Z} / p\mathbb{Z} \text{ or trivial}}.$$

Proof of (b). Suppose N and G/N are solvable. Consider $1 = H_0 \subset \cdots \subset H_r = N$ and $1 = \overline{H}_r \subset \cdots \subset \overline{H}_s \subset G/N$. Let $H_i =$ inverse image of \overline{H}_i in G. Then this is a composition series in G.

Proof of (c). Follows from (b).

Definition 5.3.5. Let F be a field, Ω = algebraic closure of F, and $a \in \Omega$. Then a can be expressed with radicals if there exists a tower of field $F \subset F_1 \subset F_2 \cdots \subset F_r \subset \Omega$ such that $F_1 = F$ (roots of 1), $F_i = F_{i-1}(n$ th root of something in F_{i-1}), where n can vary such that $a \in F_r$.

Definition 5.3.6. A polynomial $f \in F[x]$ is solvable by radicals if its roots can be expressed by radicals.

Theorem 5.3.2. Let $f \in F[x]$ be a polynomial with Galois group G i.e. G = Galois group of splitting field of f. Then the following are equivalent:

- (a) f is solvable by radicals.
- (b) G is a solvable group.

Proof of (b) \Rightarrow (a). Let E/F be the splitting field of f. Then this is a Galois extension with group G, where G is a solvable group. Let F' = F(all n th roots of 1 with n | # G. Let $F' \cdot E$ be the compositum i.e. subfield of Ω generated by F' and E. Then $F' \cdot E$ is a Galois extension of F (also of F'). We have a group homomorphsim

$$\operatorname{Gal}(^{F'} \cdot E /_F) \longrightarrow \operatorname{Gal}(^{F'} /_F) \times \operatorname{Gal}(^E /_F)$$

 $\sigma \longmapsto (\sigma|_{F'}, \sigma|_E).$

This is injective because F' and E generate $F' \cdot E$. Then

$$\operatorname{Gal}(^{F'}\cdot E \mathop{/}_{F'}) = \ker(\operatorname{Gal}(^{E}\cdot F' \mathop{/}_{F}) \longrightarrow \operatorname{Gal}(^{F'} \mathop{/}_{F})$$

Therefore, $\operatorname{Gal}(F' \cdot E / F')$ is isomorphic to a subgroup of $\operatorname{Gal}(E / F)$. Then $\operatorname{Gal}(F' \cdot E / F')$ is a subgroup of a solvable group and therefore solvable.

Note. $F' \cdot E = \text{splitting field of } f(x) \text{ over } F'$

We may as well relable now and assume that our F contains all the nth roots of unity with n | # G. Since G is solvable, there exists a normal subgroup N such that G / N is of the form $\mathbb{Z} / p\mathbb{Z}$. Then we have the tower

$$F \longrightarrow E^N \longrightarrow E$$

with $\operatorname{Gal}(E^N/F) = \mathbb{Z}/p$, $\operatorname{Gal}(E/E^n) = N$ and $\operatorname{Gal}(E/F) = G$. By last time, $E^N = F(a^{1/p})$ for some $a \in F$. By induction, everything in E is expressed with radicals over E^N . Since $E^N = F(a^{1/p})$, same is true for E/F.

Lecture 34: TBD

7 Apr. 02:00

Proof of (a) \Rightarrow **(b).** We know that there exists some tower $F \subset K_1 \subset K_2 \subset \cdots \subset K_n$ such that $K_1 = F(\text{roots of 1}), K_n = K_{n-1}(\text{a root from } K_{n-1}), \text{ where } E \subset K_n.$

Note. The idea is that we want to enlarge K_n to get some $K_n \subset L_n$ such that L_n/F is Galois. Then we have a surjection $\operatorname{Gal}(L_n/F) \to G$. Since $\operatorname{Gal}(L_n/F)$ is solvable, this will give us that G is solvable.

Let $L_1 = F(\text{roots of 1})$. Namely, use all appearing in K_1 and d th roots of 1 for every d of the form $[K_i:K_{i-1}]$. Then $K_1 \subset L_1$. Recall $K_2 = K_1(a^{1/d})$ for $a \in K_1$. Then define L_2 to be the Galois closure of $L_1(a^{1/d})$ over F. Then we have that $K_2 \subset L_2$ and L_2/F is Galois. Since K_1/F is Galois, $L_2 = L_1((\sigma a)^{1/d})$ as σ varies in Gal(K/F).

Remark. Say F is a field containing all d th roots of 1. Then if $E = F(a_1^{1/d}, \dots, a_n^{1/d})$ then E/F is Galois and

$$\operatorname{Gal}(^{E}/_{F}) \subset \left(^{\mathbb{Z}}/_{d\mathbb{Z}}\right)^{n}.$$

Therefore,

$$\operatorname{Gal}(L_2/L_1) \subset \prod_{\sigma \in \operatorname{Gal}(K/F)} \mathbb{Z} / d\mathbb{Z}$$

Then we have a short exact sequence

$$1 \longrightarrow \underbrace{\operatorname{Gal}(L_2/L_1)}_{\text{abelian}} \longrightarrow \operatorname{Gal}(L_2/F) \longrightarrow \underbrace{\operatorname{Gal}(L_1/F)}_{\text{abelian}} \longrightarrow 1.$$

Therefore, $Gal(L_2/F)$ is solvable. Now keep going. $K_3 = K_2(b^{1/e})$. Then define L_3 to be the Galois closure of $L_2(b^{1/e})$ over F. Then

$$L_3 = L_2((\sigma b)^{1/e}), \quad \text{for } \sigma \in \text{Gal}(L_2/F).$$

Then once again we have that

$$1 \longrightarrow \underbrace{\operatorname{Gal}(L_3/L_2)}_{\text{abelian}} \longrightarrow \operatorname{Gal}(L_3/F) \longrightarrow \underbrace{\operatorname{Gal}(L_2/F)}_{\text{solvable}} \longrightarrow 1.$$

In the end, we get that L_n/F such that

- (1) $E \subset K_n \subset L_n$,
- (2) L_n/F is Galois,
- (3) $Gal(L_n/F)$ is solvable.

Therefore, $Gal(L_n/F) \to Gal(E/F) = G$. Thus, G is solvable.

Theorem 5.3.3 (Abel-Rufini Theorem). There does not exist a quintic formula.

Proof. Let $E = \mathbb{C}(\alpha_1, \dots, \alpha_5)$ be a rational function field. Then S_5 acts on E by permuting the roots. Define $F = E^{S_5} = \mathbb{C}(a_0, \dots, a_4)$, where

$$f(t) = \prod_{i=1}^{5} (t - \alpha_i) = t^5 + a_4 t^4 + \dots + a_0.$$

Then $Gal(E/F) = S_5$, which is not solvable. Therefore, f is not solvable by radicals i.e. cannot express α_i in terms of coefficients just using radicals.

Example. There exists fields F such that every irreducible quintic over F is solvable by radicals.

- $F = \mathbb{C}, \mathbb{R}$ (no irreducible quintics).
- $F = \mathbb{F}_q$ every extension is Galois with abelian Galois group.
- Every Galois extension of \mathbb{Q}_p has solvable Galois group.

Example. Over \mathbb{Q} there exists irreducible quintics not solvable by radicals

Lemma 5.3.1. Let $f \in \mathbb{Q}[x]$ be an irreducible quintic with Galois group G. Suppose f has exactly 3 real roots. Then $G = S_5$.

Proof. We know that $G \subset S_5$ and is transitive. By Orbit-stabilizer, we have that 5|G, so G must contain a 5-cycle. Let E be the splitting field in \mathbb{C} . Then complex conjugation restricts to an element $\tau \in \operatorname{Gal}(E/\mathbb{Q})$, such that τ fixes the three real roots, and switches the other 2. Therefore, τ is a transposition. A transposition and a 5-cycle generate S_5 . Thus, $G = S_5$.

Example. Consider $f(x) = x^5 - 16x + 2$. This is an irreducible polynomial with 3 real roots. Therefore, f is not solvable by radicals.

Corollary 5.3.1. There exists a cubic formula and a quartic formula.

Cubic case. Consider $E = \mathbb{C}(\alpha_1, \alpha_2, \alpha_3)$ and $F = E^{S_3} = \mathbb{C}(a_0, a_1, a_2)$, where

$$f(t) = \prod_{i=1}^{3} t^3 + a_2 t^2 + a_1 t + a_0.$$

Then $Gal(E/F) = S_3$ is a solvable group. Therefore, there is an expression for α_1 in terms of a_0, a_1, a_2 using radicals.

Example. We have an SES

$$1 \longrightarrow A_3 \longrightarrow S_3 \longrightarrow \mathbb{Z}/2 \longrightarrow 1.$$

Then this gives us a tower of fields $F \subset K \subset E$, where $K = F(\delta) = F^{A_3}$.

Lecture 35: Infinite Galois Theory

5.4 Infinite Galois Theory

10 Apr. 02:00

Problem 5.4.1. Find intermediate fields between \mathbb{F}_p and $\overline{\mathbb{F}}_p$.

Answer. If we consider the chain

$$\mathbb{F}_p \subset \mathbb{F}_{p^2} \subset \mathbb{F}_{p^4} \subset \mathbb{F}_{p^8} \subset \cdots$$
.

The union of this chain will be an intermediate field between \mathbb{F}_p and $\overline{\mathbb{F}}_p$. Not all of $\overline{\mathbb{F}}_p$ because it does not contain \mathbb{F}_{p^3} . Similarly, we can do

$$\bigcup_{n=1}^{\infty} \mathbb{F}_{p^{3\cdot 2^n}}.$$

If we let q_1, q_2, \ldots be primes such that $q_i \equiv 1 \mod 4$ then

$$\bigcup_{n=1}^{\infty} \mathbb{F}_{p^{q_1 \cdots q_n}}.$$

*

Answer. Consider a formal product

$$n = \prod_{\text{all primes } q} q^{e(q)},$$

where $e(q) \in \mathbb{N} \cup \{\infty\}$. Given $m \in \mathbb{N}$ we say m|n if the power of q in m is $\leq e(q)$ for every prime q. Then

$$\mathbb{F}_{p^n} = \bigcup_{m|n} \mathbb{F}_{p^m}.$$

*

Problem 5.4.2. What is $Gal(\overline{\mathbb{F}}_p / \mathbb{F}_q)$?

Answer. We have the tower $\mathbb{F}_q \subset \mathbb{F}_{p^n} \subset \overline{\mathbb{F}}_p$. Therefore, we have the restriction map

$$\phi: \operatorname{Gal}\left(\overline{\mathbb{F}}_p\Big/_{\mathbb{F}_q}\right) \longrightarrow \operatorname{Gal}(\overline{\mathbb{F}}_{p^n}\Big/_{\mathbb{F}_p}) \cong \mathbb{Z}\Big/_n$$
$$\sigma \longmapsto \phi(\sigma) = \sigma|_{\mathbb{F}_{p^n}}.$$

This is a surjective group homomorphism. Fix a prime q. Then we have the tower

$$\mathbb{F}_p \subset \mathbb{F}_{p^q} \subset \mathbb{F}_{p^{q^2}} \subset \cdots,$$

which gives us a chain of restriction maps, such that we somehow end up with a group homomor-

phism from

$$\operatorname{Gal}\left(\overline{\mathbb{F}}_{p}\Big/_{\mathbb{F}_{p}}\right) \to \lim_{\longleftarrow} \operatorname{Gal}\left(\mathbb{F}_{p^{q^{n}}}\Big/_{\mathbb{F}_{p}}\right) \cong \mathbb{Z}_{q}.$$

Similarly,

$$\operatorname{Gal}\left(\overline{\mathbb{F}}_{p}\Big/_{\mathbb{F}_{p}}\right) \to \lim_{\longleftarrow} \operatorname{Gal}\left(\mathbb{F}_{p^{n}}\Big/_{\mathbb{F}_{p}}\right) \cong \lim_{\longleftarrow} \mathbb{Z}\Big/_{n\mathbb{Z}} = \hat{\mathbb{Z}}.$$

For $n = \prod_p p^{\operatorname{val}_{p(n)}}$, we have that

$$\begin{split} \hat{\mathbb{Z}} &= \varprojlim^{\mathbb{Z}} \Big/ n \mathbb{Z} \\ &= \varprojlim^{\mathbb{Z}} \prod_{p} \mathbb{Z} \Big/ p^{\operatorname{val}_{p(n)}} \mathbb{Z} \\ &\cong \prod_{p} \mathbb{Z}_{p}. \end{split}$$

Remark. \mathbb{Z}_q has a topology. Closed subgroups are just $0 = "q^{\infty}\mathbb{Z}_q"$ and $q^n\mathbb{Z}_q$ for $n \in \mathbb{N}$.

We have now observed a bijection

$$\left\{ \text{Closed subgroups of Gal} \left(\overline{\mathbb{F}}_p \middle/_{\mathbb{F}_p} \right) \right\} \longleftrightarrow \left\{ \text{intermediate fields to } \overline{\mathbb{F}}_p \middle/_{\mathbb{F}_p} \right\}.$$

Definition 5.4.1. Suppose K characteristic 0. Then the absolute Galois group of K is $Gal(\overline{K}/K)$. This is often denoted G_K .

Suppose K is countable. Let $\{g_n\}_{n\geq 1}$ be a sequence in G_K and let $h\in G_K$. We say $\{g_n\}$ converges to h if $\overline{K}=\bigcup_{n\geq 1}L_n$ for $L_n\setminus K$ finite Galois with

$$L_1 \subset L_2 \subset \cdots$$

such that $g_n|_{L_n} = h|_{L_n}$.

For each finite Galois extension L/K ($L \subset \overline{K}$), we have a surjection

$$G_K \xrightarrow{\pi_K} \operatorname{Gal}\left(L/K\right)$$
.

Then $\ker(\pi_K)$ is an open subgroup of G_K (Krull topology). Groups with tons of open subgroups are profinite i.e.

$$G_K \cong \varprojlim_L \operatorname{Gal} \binom{L}{K}$$
.

Theorem 5.4.1. This gives us the previous observation.

$$\{\text{Closed subgroups of } G_K\} \longleftrightarrow \left\{\text{intermediate fields to } \overline{K}\Big/K\right\}$$

and

 $\{\text{Open subgroups of } G_K\} \longleftrightarrow \{\text{intermediate fields finite over } K\}$

*

5.4.1 Application-ish

Consider $\overline{\mathbb{Q}}/\mathbb{Q}$ and $G_{\mathbb{Q}}$. Fix prime p. $\zeta_{p^n}=e^{2\pi i/p^n}$. Then we have a tower

$$\mathbb{Q} \subset \mathbb{Q}(\zeta_p) \subset \mathbb{Q}(\zeta_{p^2}) \subset \cdots.$$

This gives us the map

$$G_{\mathbb{Q}} \to \operatorname{Gal}\left(\mathbb{Q}(\zeta_n)/\mathbb{Q}\right) = \left(\mathbb{Z}/p^n\mathbb{Z}\right)^{\times}.$$

This is compatible as n varies, go we get a homomorphism

$$\chi_p: G_{\mathbb{Q}} \longrightarrow \mathbb{Z}_p^{\times}.$$

This is known as the cyclotomic character. If $\zeta \in \overline{\mathbb{Q}}$ is a *p*-power root of 1 and $\sigma \in G_{\mathbb{Q}}$ then $\sigma \zeta = \zeta^{\chi_p(\sigma)}$.

Lecture 36: Elements of $G_{\mathbb{O}}$

Let $\overline{\mathbb{Q}}$ be an abstract algebraic closure of \mathbb{Q} . Then \exists an embedding

12 Apr. 02:00

$$i:\overline{\mathbb{Q}}\longmapsto\mathbb{C},$$

such that $i(\overline{\mathbb{Q}})$ is stable by complex conjugation c i.e. $i^{-1} \circ c \circ i \in G_{\mathbb{Q}}$.

Now say $j: \overline{\mathbb{Q}} \to \mathbb{C}$ is a second embedding. Then $i(\overline{\mathbb{Q}}) = j(\overline{\mathbb{Q}})$ i.e. $\sigma = j^{-1} \circ i \in G_{\mathbb{Q}}$.

$$j^{-1}cj = \underbrace{\sigma^{-1}(i^{-1}ci)\sigma}_{\text{conjugate to } i^{-1}ci \text{ in } G_{\mathbb{Q}}}.$$

The upshot is that there exists a conjugacy class in $G_{\mathbb{Q}}$ corresponding to complex conjugation. Similarly, there exists an embedding

$$i: \overline{\mathbb{Q}} \to \overline{\mathbb{Q}}_p$$
.

We get a homorphism

$$G_{\mathbb{Q}_p} \longrightarrow G_{\mathbb{Q}}$$
 $\sigma \longmapsto i^{-1} \sigma i.$

Remark. There is some class of extensions of \mathbb{Q}_p known as the "unramified" extensions that bijectively correspond to Galois extensions of \mathbb{F}_p .

The maximal unramified extension of \mathbb{Q}_p : $\mathbb{Q}_p^{\mathrm{un}}$, corresponds the algebraic closure of \mathbb{F}_p . The extension from $\mathbb{Q}_p^{\mathrm{un}}$ to $\overline{\mathbb{Q}}_p$ is Galois with Galois group $I_p \subset G_{\mathbb{Q}_p}$ known as the "inertia subgroup". Additionally, the extension from \mathbb{Q}_p to $\mathbb{Q}_p^{\mathrm{un}}$ is Galois with group $\hat{\mathbb{Z}}$, where $\hat{\mathbb{Z}}$ is generated by Frob_p .

Suppose K / \mathbb{Q} is a finite Galois extension. Then there exists a surjection $\pi : G_{\mathbb{Q}} \to \operatorname{Gal}(K / \mathbb{Q})$.

Remark. For all but finitely many p, $\pi(I_p) = 1$. We say that K is unramified at p if $\pi(I_p) = 1$.

Example. $\mathbb{Q}(i)$.

- $2 = (1+i)^2$ (up to units)
- If $p \equiv 1 \mod 4$, $p = \pi \overline{\pi}$ in $\mathbb{Z}[i]$.
- If $p \equiv 3 \mod 4$, p remains prime in $\mathbb{Z}[i]$.

Then we are ramified at 2 and unramified at all odd p. For all odd p, we get a well-defined element

 $\operatorname{Frob}_p \in \operatorname{Gal}(\mathbb{Q}(i)/\mathbb{Q}) \cong \mathbb{Z}/2$, where

$$\operatorname{Frob}_p = \begin{cases} 1, & \text{if } p = 1 \bmod 4 \\ \neq 1, & \text{if } p = 3 \bmod 4 \end{cases}.$$

Fix a finite set Σ of primes. There exists a maximal algebraic extension $\overline{\mathbb{Q}}^{\Sigma}$ of \mathbb{Q} such that $\forall p \notin \Sigma$, p is unramified in $\overline{\mathbb{Q}}^{\Sigma}$. Let $G_{\mathbb{Q},\Sigma} = \operatorname{Gal}(\overline{\mathbb{Q}}^{\Sigma}/\mathbb{Q})$ i.e.

$$G_{\mathbb{Q},\Sigma} = G_{\mathbb{Q}} / \text{(normal subgroup generated by } I_p \text{ with } p \in \Sigma\text{)}$$

For $p \notin \Sigma$, there exists a well-defined conjugacy class of elements $\operatorname{Frob}_p \in G_{\mathbb{Q},\Sigma}$. Also have complex conjugation $c \in G_{\mathbb{Q},\Sigma}$.

Theorem 5.4.2 (Chebotarev density theorem). We have the following two equivalent formulations:

- (1) The Frob_p's are dense in $G_{\mathbb{Q},\Sigma}$ for $p \notin \Sigma$.
- (2) If K / \mathbb{Q} is a finite Galois extension then every element of $\operatorname{Gal}(K / \mathbb{Q})$ is of the form Frob_p for some prime p.

Let K/\mathbb{Q} be a finite Galois extension, unramified outside of Σ . Consider a representation

$$\rho: \underbrace{\operatorname{Gal}(K/\mathbb{Q})}_{\text{finite group}} \to \operatorname{GL}_n(\mathbb{C}).$$

For $\rho \notin \Sigma$, we have a conjugacy class Frob_p in $\operatorname{Gal}(K/\mathbb{Q})$. Then from the character we get a complex number $\chi_{\rho}(\operatorname{Frob}_p) \in \mathbb{C}$.

For some fixed prime ℓ , now consider a continuous representation

$$\rho: G_{\mathbb{Q},\Sigma} \longrightarrow \mathrm{GL}_n(\mathbb{Q}_\ell).$$

For $p \notin \Sigma$, can consider $\chi_{\rho}(\operatorname{Frob}_p) \in \overline{\mathbb{Q}}_p$.

Example. Recall we have the cyclotomic character

$$\chi_{\ell}: G_{\mathbb{Q},\{\ell\}} \longrightarrow \mathbb{Z}_{\ell}^{\times},$$

where

$$\sigma(\zeta) = \zeta^{\chi_{\ell}(\sigma)}.$$

for an ℓ -power root of 1, ζ . We can think of χ_{ℓ} as a 1-d ℓ -adic representation

$$\chi_{\ell}(\operatorname{Frob}_p) = p.$$

Given $\rho: G_{\mathbb{Q},\Sigma} \to \mathrm{GL}_n(\overline{\mathbb{Q}}_{\ell})$, there exists a modular form f such that the numbers $\chi_{\rho}(\mathrm{Frob}_p)$ are the coefficients of f.

Example. $\Delta(q) = q \prod_{n \geq 1} (1 - q^n)^{24} = \sum_{n=1}^{\infty} \tau(n) q^n$ for $q = e^{2\pi i z}, z \in h$. Then there exists a representation $\rho: G_{\mathbb{Q}} \to \operatorname{GL}_2(\mathbb{Z}_{\ell})$ such that $\operatorname{tr} \rho(\operatorname{Frob}_{\rho}) = \tau(p)$ and $\operatorname{det} \rho(\operatorname{Frob}_{\rho}) = p^{11}$.

Lecture 37: Final Exam Review

Will focus on stuff since the second midterm. Will be 6 questions choose 5.

17 Apr. 02:00

5.5 Finite Fields

• If F is a finite field then F contains \mathbb{F}_p for some prime p.

- We say that F has characteristic p and $\#F = p^n$ because F is a finite dimensional \mathbb{F}_p -vector space i.e. $[F : \mathbb{F}_p] = n$.
- Given $q = p^n$ there exists a finite field \mathbb{F}_q with q elements that is unique up to isomorphism.

$$\mathbb{F}_q = \text{ splitting field of } x^q - x.$$

- $\mathbb{F}_{p^n} \subset \mathbb{F}_{p^m}$ iff n|m.
- \mathbb{F}_q^{\times} is a cyclic group of order q-1.
- Concrete construction of \mathbb{F}_{p^2} .

For $p \neq 2$, pick $a \in \mathbb{F}_p$ that is not a square. Then

$$\mathbb{F}_p[\sqrt{a}] = \frac{\mathbb{F}_p[x]}{(x^2 - a)}$$
 is a field with p^2 elements.

For p=2,

$$\mathbb{F}_4 = \frac{\mathbb{F}_2[x]}{(x^2 + x + 1)}.$$

• For $q = p^n$, $\phi : \mathbb{F}_q \to \mathbb{F}_q$ defined by $x \mapsto x^p$ is a field automorphism called the Frovenius map. ϕ generates $\operatorname{Aut}(\mathbb{F}_q) \cong \mathbb{Z} / n\mathbb{Z}$.

5.6 Galois Theory

There will be no infinite Galois theory on the exam.

 \bullet E/F - finite extension. Then

$$\operatorname{Gal}(E/F) = \{ \text{field automorphism } \sigma \text{ of } E \text{ such that } \sigma|_F = \operatorname{id} \}.$$

- E/F is a Galois extension if $\#\operatorname{Gal}(E/F) = [E:F]$.
- E/F is Galois if and only if E is the splitting field of some polynomial in F[x].
- Important observation: if $\sigma \in \operatorname{Gal}(E/F)$ and $a \in E$ is a root of $f(x) \in F[x]$ then σa is also a root of f(x).
- If E is the splitting field of $f(x) \in F[x]$ then $Gal(E/F) \subset S_n$, where $n = \deg f$ i.e. the elements of the Galois group permute the n roots of f(x).
 - If f(x) is irreducible then this action is transitive.
 - If $a \in E$ and a_1, \ldots, a_r is the Galois orbit of a then

$$h(x) = \prod_{i=1}^{r} (x - a_i) \in F[x].$$

If f is irreducible and a is a root of f then h|f, such that h=f. Thus, the action is transitive.

- Artin's theorem. E is any field, $G \subset \operatorname{Aut}(E)$ is a finite group, $F = E^G$ then E / F is a Galois extension with group G.
 - $-E = \mathbb{C}(x_1,\ldots,x_n), G = S_n$ permuting variables. $F = E^{S_n}$. E/F is Galois with group S_n .
 - Write $\prod_{i=1}^{n} (t x_i) = \sum_{i=1}^{n} a_i t^i$. $F = \mathbb{C}(a_0, \dots, a_{n-1})$.
- Main Theorem of Galois Theory. Suppose E/F is a Galois extension with group G

- There is a bijective correspondence

$$\{\text{intermediate fields to } ^E \Big/_F\} \longleftrightarrow \{\text{subgroups of } G\}$$

$$E^H \longleftrightarrow H$$

$$K \longmapsto \operatorname{Gal}(^E \Big/_K).$$

- If $K = E^H$ then K / F is Galois if and only if H is normal in G. Then Gal(K / F) = G / H.
 - * Assuming K/F is Galois, every element of G maps K to itself.
 - * We get a restriction map

$$\operatorname{Gal}(^{E}/_{F}) \longrightarrow \operatorname{Gal}(^{K}/_{F})$$
 $\sigma \longmapsto \sigma|_{K}.$

This map is surjective with kernel H.

- The Galois correspondence is order-reversing i.e. if

$$H_1 \longleftrightarrow K_1 = E^{H_1}$$

 $H_2 \longleftrightarrow K_2 = E^{H_2}$

then $H_1 \subset H_2$ iff $K_1 \supset K_2$.

- If E is the splitting field of f of deg n and $G = \operatorname{Gal}(E/F) \subset S_n$ then $G \subset A_n$ iff disc(f) is a square in F.
 - If $f(x) = x^3 + px + q$ is irreducible. Then

$$G = \begin{cases} S_3, & \text{if } \operatorname{disc}(f) \neq \square \\ A_3, & \text{if } \operatorname{disc}(f) = \square \end{cases},$$

where $\operatorname{disc}(f) = -4p^3 - 27q^2$. This is because these are the only transitive subgroups of S_3 .

- Important Examples:
 - (a) If $\zeta_n = \text{primitive } n \text{th root of 1.}$ Then $F(\zeta_n)/F$ is Galois and $\operatorname{Gal}(F(\zeta_n)/F) \subset (\mathbb{Z}/n\mathbb{Z})^{\times}$. They are the same if $F = \mathbb{Q}$.
 - (b) If $\zeta_n \in F$ and $a \in F$ then $F(a^{1/n})/F$ is Galois and $\operatorname{Gal}(F(a^{1/n})/F) \subset \mathbb{Z}/n\mathbb{Z}$. Equality if a is not an nth power or some power dividing n.
 - (c) We have the converse to (b). If $\zeta_n \in F$ and E/F is a Galois extension with group $\mathbb{Z}/n\mathbb{Z}$ then $E = F(a^{1/n})$ for some $a \in F$.
- Useful trick: If $f(x) \in \mathbb{Q}[x]$ and E is the splitting field of f. Then complex conjugation is an element in $Gal(E/\mathbb{Q})$. It will be non-trivial if ≥ 1 non-real root of f.
- Solvable groups **NOT** on final.