A Universal Turing Machine

A limitation of Turing Machines:

Turing Machines are "hardwired"

they execute only one program

Real Computers are re-programmable

Solution: Universal Turing Machine

Attributes:

- Reprogrammable machine
- Simulates any other Turing Machine

Universal Turing Machine simulates any Turing Machine $\,M\,$

Input of Universal Turing Machine:

Description of transitions of $\,M\,$

Input string of M

We describe Turing machine $\,M\,$ as a string of symbols:

We encode M as a string of symbols

Alphabet Encoding

State Encoding

Head Move Encoding

Transition Encoding

Transition:
$$\delta(q_1,a)=(q_2,b,L)$$
 Encoding: 10101101101 separator

Turing Machine Encoding

Transitions:

$$\delta(q_1, a) = (q_2, b, L)$$

$$\delta(q_2,b) = (q_3,c,R)$$

Encoding:

10101101101 00 1101101110111011

Tape 1 contents of Universal Turing Machine:

binary encoding of the simulated machine M

Tape 1

1 0 1 0 11 0 11 0 10011 0 1 10 111 0 111 0 1100...

A Turing Machine is described with a binary string of 0's and 1's

Therefore:

The set of Turing machines forms a language:

each string of this language is the binary encoding of a Turing Machine

Language of Turing Machines

..... }

```
L = { 1010110101, (Turing Machine 1) 101011101011, (Turing Machine 2) 11101011110101111, .....
```

Countable Sets

Infinite sets are either:

Countable

or

Uncountable

Countable set:

```
There is a one to one correspondence (injection) of elements of the set to Positive integers (1,2,3,...)
```

Every element of the set is mapped to a positive number such that no two elements are mapped to same number

Example: The set of even integers is countable

Even integers: (positive)

Correspondence:

Positive integers:

0, 2, 4, 6, ...

1, 2, 3, 4, ...

2n corresponds to n+1

Example: The set of rational numbers is countable

Rational numbers:
$$\frac{1}{2}$$
, $\frac{3}{4}$, $\frac{7}{8}$, ...

Naïve Approach

Nominator 1

Rational numbers:

Positive integers:

Doesn't work:

$$\frac{2}{1}, \frac{2}{2}, \frac{2}{3}, \dots$$

Better Approach

$$\frac{1}{1}$$
 $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{4}$ \cdots

$$\frac{2}{1}$$
 $\frac{2}{2}$ $\frac{3}{3}$...

$$\frac{3}{1}$$
 $\frac{3}{2}$...

$$\frac{4}{1}$$
 ...

1	1	1	1	
1	2	3	4	• • •
<u>2</u>	$\frac{2}{2}$	$\frac{2}{3}$		

$$\frac{3}{1}$$
 $\frac{3}{2}$ \dots

$$\frac{4}{1}$$
 ...

$$\frac{3}{1}$$
 $\frac{3}{2}$...

$$\frac{4}{1}$$
 ...

$$\frac{3}{1}$$
 $\frac{3}{2}$...

$$\frac{4}{1}$$
 ...

$$\frac{3}{1}$$
 $\frac{3}{2}$...

$$\frac{4}{1}$$
 ...

Rational Numbers:

 $\frac{1}{1}$, $\frac{1}{2}$, $\frac{2}{1}$, $\frac{1}{3}$, $\frac{2}{2}$, ...

Correspondence:

Positive Integers:

1, 2, 3, 4, 5, ...

We proved:

the set of rational numbers is countable
by describing an enumeration procedure
(enumerator)
for the correspondence to natural numbers

Definition

Let S be a set of strings (Language)

An enumerator for S is a Turing Machine that generates (prints on tape) all the strings of S one by one

and each string is generated in finite time

strings
$$s_1, s_2, s_3, \ldots \in S$$

Enumerator S

$$\begin{array}{c} \text{output} \\ \text{(on tape)} \end{array} \hspace{-0.2cm} \begin{array}{c} s_1, s_2, s_3, \dots \\ \\ \end{array}$$

Finite time: t_1, t_2, t_3, \dots

Enumerator Machine

Configuration

Time 0

Time t_1

Observation:

If for a set S there is an enumerator, then the set is countable

The enumerator describes the correspondence of S to natural numbers

Example: The set of strings $S = \{a,b,c\}^+$ is countable

Approach:

We will describe an enumerator for S

Naive enumerator:

Produce the strings in lexicographic order:

```
s_1 = a
s_2 = aa
aaaa
aaaa
```

Better procedure: Proper Order (Canonical Order)

- 1. Produce all strings of length 1
- 2. Produce all strings of length 2

- 3. Produce all strings of length 3
- 4. Produce all strings of length 4

Produce strings in Proper Order:

Theorem: The set of all Turing Machines is countable

Proof: Any Turing Machine can be encoded with a binary string of 0's and 1's

Find an enumeration procedure for the set of Turing Machine strings

Enumerator:

Repeat

1. Generate the next binary string of 0's and 1's in proper order

Check if the string describes a
 Turing Machine
 if YES: print string on output tape
 if NO: ignore string

Binary strings

Turing Machines

```
ignore
        ignore
        ignore
10101101100
                             10101101101
10101101101
1011010100101101 \xrightarrow{S_2} 101101010010101101
```

End of Proof

Simpler Proof:

Each Turing machine binary string is mapped to the number representing its value

Uncountable Sets

We will prove that there is a language L which is not accepted by any Turing machine

Technique:

Turing machines are countable

Languages are uncountable

(there are more languages than Turing Machines)

Theorem:

If S is an infinite countable set, then the powerset 2^S of S is uncountable.

The powerset $\,2^{S}$ contains all possible subsets of S

Example:
$$S = \{a, b\}$$
 $2^S = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$

Proof:

Since S is countable, we can list its elements in some order

$$S = \{s_1, s_2, s_3, \ldots\}$$
Elements of S

Elements of the powerset 2^S have the form:

$$\emptyset$$
 $\{s_1, s_3\}$

$$\{s_5, s_7, s_9, s_{10}\}$$

:

They are subsets of S

We encode each subset of S with a binary string of 0's and 1's

	Binary encoding								
Subset of S	s_1	s_2	s_3	S_4	• • •				
$\{s_1\}$	1	0	0	0	• • •				
$\{s_2, s_3\}$	0	1	1	0	• • •				
$\{s_1, s_3, s_4\}$	1	O s Busch - LSU	1	1	• • •				

Every infinite binary string corresponds to a subset of S:

Example:
$$1001110 \cdots$$
 Corresponds to: $\{s_1, s_4, s_5, s_6, \ldots\} \in 2^S$

Let's assume (for contradiction) that the powerset 2^S is countable

Then: we can list the elements of the powerset in some order

$$2^{S} = \{t_1, t_2, t_3, \ldots\}$$

$$\uparrow //$$
Subsets of S

Powerset element

Binary encoding example

e	iement		,		<i>3</i>			
	t_1	1	0	0	0	0	• • •	
	t_2	1	1	0	0	0	• • •	
	t_3	1	1	0	1	0	• • •	
	t_4	1	1	0	0	1	• • •	

• • •

t= the binary string whose bits are the complement of the diagonal

Binary string: $t = 0011 \cdots$

(birary complement of diagonal)

$$t = 0011...$$

corresponds to a subset of S:

$$t = \{s_3, s_4, \ldots\} \in 2^{s}$$

t= the binary string whose bits are the complement of the diagonal

Costas Busch - LSU

Question: $t = t_1$? NO: differ in 1st bit

t= the binary string whose bits are the complement of the diagonal

Question: $t = t_2$? NO: differ in 2nd bit

t = the binary string whose bits are the complement of the diagonal

$$t_1$$
 1
 0
 0
 0
 \cdots
 t_2
 1
 1
 0
 0
 \cdots
 t_3
 1
 1
 0
 1
 0
 \cdots
 t_4
 1
 1
 0
 0
 1
 0
 0
 0
 0
 \cdots
 $t = 0011 \cdots$

Question: $t = t_3$? NO: differ in 3rd bit

Thus: $t \neq t_i$ for every i since they differ in the ith bit

However,
$$t \in 2^S \Rightarrow t = t_i$$
 for some i

Therefore the powerset 2^S is uncountable

End of proof

An Application: Languages

Consider Alphabet : $A = \{a,b\}$

The set of all strings:

$$S = \{a,b\}^* = \{\varepsilon, a, b, aa, ab, ba, bb, aaa, aab, ...\}$$

infinite and countable

because we can enumerate the strings in proper order Consider Alphabet : $A = \{a, b\}$

The set of all strings:

$$S = \{a,b\}^* = \{\varepsilon, a, b, aa, ab, ba, bb, aaa, aab, ...\}$$

infinite and countable

Any language is a subset of S:

$$L = \{aa, ab, aab\}$$

Consider Alphabet : $A = \{a, b\}$

The set of all Strings:

$$S = A^* = \{a,b\}^* = \{\varepsilon,a,b,aa,ab,ba,bb,aaa,aab,...\}$$
infinite and countable

The powerset of S contains all languages:

$$2^{S} = \{\emptyset, \{\varepsilon\}, \{a\}, \{a,b\}, \{aa,b\}, \dots, \{aa,ab,aab\}, \dots\}$$

uncountable

Consider Alphabet : $A = \{a, b\}$

Turing machines:
$$M_1$$
 M_2 M_3 \cdots accepts Languages accepted By Turing Machines: L_1 L_2 L_3 \cdots countable

Denote:
$$X = \{L_1, L_2, L_3, \ldots\}$$
 countable

Note:
$$X \subseteq 2^S$$

$$(s = \{a,b\}^*)$$

Languages accepted by Turing machines:

X countable

All possible languages: 2^S uncountable

Therefore: $X \neq 2^{S}$

(since $X \subseteq 2^S$, we get $X \subseteq 2^S$)

Conclusion:

There is a language L not accepted by any Turing Machine:

$$X \subset 2^S \quad \exists L \in 2^S \text{ and } L \notin X$$

Non Turing-Acceptable Languages

Note that:
$$X = \{L_1, L_2, L_3, ...\}$$

is a multi-set (elements may repeat) since a language may be accepted by more than one Turing machine

However, if we remove the repeated elements, the resulting set is again countable since every element still corresponds to a positive integer