#### Elements Of Data Science - S2022

Week 10: NLP, Sentiment Analysis and Topic Modeling

4/5/2022

## **TODOs**

- Readings:
  - PDSH 5.11 k-Means
  - HOML Chapter 9, Unsupervised Learning Techniques
- HW3, Due Friday April 11th 11:59pm EST
- Quiz 10, April 18th, 11:59pm EST

# Today

- Pipelines
- NLP
- Sentiment Analysis
- Topic Modeling

Questions?

# **Environment Setup**

#### In [1]:

```
import numpy
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
sns.set_style('darkgrid')
%matplotlib inline
```

# Pipelines in sklearn

- Pipelines are wrappers used to string together transformers and estimators
- sequentially apply a series of transforms, eg, .fit\_transform() and .transform()
- followed by a prediction, eg. .fit() and .predict()

# Pipelines in sklearn



From PML

### Binary Classification With All Numeric Features Setup

In [2]:

Out[2]:

```
array([[1.094e+01, 1.859e+01, 7.039e+01, 3.700e+02, 1.004e-01, 7.4 60e-02, 4.944e-02, 2.932e-02, 1.486e-01, 6.615e-02, 3.796e-01, 1.7 43e+00, 3.018e+00, 2.578e+01, 9.519e-03, 2.134e-02, 1.990e-02, 1.1 55e-02, 2.079e-02, 2.701e-03, 1.240e+01, 2.558e+01, 8.276e+01, 4.7 24e+02, 1.363e-01, 1.644e-01, 1.412e-01, 7.887e-02, 2.251e-01, 7.7 32e-02]])
```

#### Pipelines in sklearn

```
In [3]:
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.linear model import LogisticRegression
# Pipeline: list of (name,object) pairs
pipe1 = Pipeline([('scale', StandardScaler()),
                                                 # scale
             ('pca',PCA(n_components=2)),
                                                 # reduce dimensions
             ('lr',LogisticRegression(solver='saga',
                                 max_iter=1000,
                                 random_state=123)), # classifier
             1)
pipe1.fit(X bc train,y bc train)
print(f'train set accuracy: {pipe1.score(X bc train,y bc train):0.3f}')
print(f'test set accuracy : {pipe1.score(X_bc_test,y_bc_test):0.3f}')
 train set accuracy: 0.956
 test set accuracy: 0.956
In [4]:
# access pipeline components by name like a dictionary
pipe1['lr'].coef_
Out[4]:
 array([[-2.00439115, 1.11969368]])
In [5]:
pipe1['pca'].components_[0]
Out[5]:
 array([0.21777854, 0.08876361, 0.22663097, 0.22043131, 0.14913361,
             0.23954684, 0.25974993, 0.26277752, 0.14518851, 0.06537618,
```

3])

```
0.20775303, 0.0074925, 0.21143104, 0.2018041, 0.0165253, 0.17152404, 0.14891828, 0.18380569, 0.03639995, 0.09860293, 0.22726391, 0.09186544, 0.23623194, 0.22416772, 0.13445762, 0.21075345, 0.22996838, 0.25138607, 0.12409848, 0.1333169
```

#### Pipelines in sklearn: GridSearch with Pipelines

• specify grid points using 'step name' + '\_\_' (double-underscore) + 'argument'

```
In [6]:
from sklearn.model_selection import GridSearchCV
# separate step-names and argument-names with double-underscore '__'
params = {'pca__n_components':[2,10,20],
       'lr__penalty':['none','l1','l2'],
       'lr C':[.01,1,10,100]}
gscv = GridSearchCV(pipe1, params, cv=3, n jobs=-1).fit(X bc train,y bc train)
gscv.best_params_
Out[6]:
 {'lr C': 1, 'lr penalty': 'l1', 'pca n components': 20}
In [7]:
score = gscv.score(X_bc_test,y_bc_test)
print(f'test set accuracy: {score:0.3f}')
 test set accuracy: 0.965
In [8]:
gscv.best_estimator_
Out[8]:
 Pipeline(steps=[('scale', StandardScaler()), ('pca', PCA(n_compone
 nts=20)),
                          ('lr',
                            LogisticRegression(C=1, max_iter=1000, penalty='l
```

1',

a'))])

random\_state=123, solver='sag

## Pipelines in sklearn with make\_pipeline

- shorthand for Pipeline
- step names are lowercase of class names

```
In [9]:
from sklearn.pipeline import make_pipeline
# make_pipeline: arguments in order of how they should be applied
pipe2 = make_pipeline(StandardScaler(),
                                   # center and scale and
# extract 2 dimensions
                                           # center and scale data
               PCA(n components=2),
               LogisticRegression(random_state=123) # classify using logistic regression
pipe2.fit(X_bc_train,y_bc_train)
pipe2
Out[9]:
 Pipeline(steps=[('standardscaler', StandardScaler()),
                           ('pca', PCA(n components=2)),
                           ('logisticregression', LogisticRegression(random_s
 tate=123))])
In [10]:
pipe2['logisticregression'].coef_
Out[10]:
 array([[-2.0068728 , 1.12126495]])
```

## ColumnTransformer

- Transform sets of columns differently as part of a pipeline
- For example: makes it possible to transform categorical and numeric differently

### Binary Classification With Mixed Features, Missing Data

```
In [11]:
# from https://scikit-learn.org/stable/auto examples/compose/plot column transformer mixed types.html#sphx-qlr-auto-examples-compose-plot-column-transformer-mixed-
titanic_url = ('https://raw.githubusercontent.com/amueller/'
           'scipy-2017-sklearn/091d371/notebooks/datasets/titanic3.csv')
df_titanic = pd.read_csv(titanic_url)[['age','fare','embarked','sex','pclass','survived']]
# Numeric Features:
# - age: float.
# - fare: float.
# Categorical Features:
# - embarked: categories encoded as strings {'C', 'S', 'Q'}.
# - sex: categories encoded as strings {'female', 'male'}.
# - pclass: ordinal integers {1, 2, 3}.
df_titanic.head(1)
Out[11]:
                 fare embarked
                                sex pclass survived
29.0 211.3375
                       S female
In [12]:
df_titanic.info()
 <class 'pandas.core.frame.DataFrame'>
 RangeIndex: 1309 entries, 0 to 1308
 Data columns (total 6 columns):
  #
         Column
                         Non-Null Count Dtype
         age 1046 non-null float64
         fare
                        1308 non-null float64
   1
         embarked 1307 non-null object
                                                   object
                         1309 non-null
         sex
                                                   int64
         pclass
                         1309 non-null
```

5 survived 1309 non-null int64

dtypes: float64(2), int64(2), object(2)

memory usage: 61.5+ KB

#### ColumnTransformer Cont.

```
In [13]:
from sklearn.compose import ColumnTransformer
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import OneHotEncoder
# specify columns subset
numeric_features = ['age', 'fare']
# specify pipeline to apply to those columns
numeric_transformer = Pipeline(steps=[
    ('imputer', SimpleImputer(strategy='median')), # fill missing values with median
     ('scaler', StandardScaler())])
                                                   # scale features
In [14]:
categorical_features = ['embarked', 'sex', 'pclass']
categorical_transformer = Pipeline(steps=[
    ('imputer', SimpleImputer(strategy='constant', fill value='missing')), # fill missing value with 'missing'
     ('onehot', OneHotEncoder(handle unknown='ignore'))])
                                                                           # one hot encode
In [15]:
# combine column pipelines
preprocessor = ColumnTransformer(
    transformers=[('num', numeric_transformer, numeric_features),
                  ('cat', categorical_transformer, categorical_features)
                 1)
In [16]:
# add a final prediction step
pipe3 = Pipeline(steps=[('preprocessor', preprocessor),
                        ('classifier', LogisticRegression(solver='lbfgs', random_state=42))
                       1)
```

#### ColumnTransformer Cont.

train set score: 0.784 test set score : 0.771

In [18]:

```
best test set score from grid search: 0.771
best parameter settings: {'classifier__C': 100, 'preprocessor__num
__imputer__strategy': 'median'}
```

Questions re Pipelines?

# Natural Language Processing (NLP)

- Analyzing and interacting with natural language
- Python Libraries
  - sklearn
  - nltk
  - spaCy
  - gensim
  - **-** ...

# Natural Language Processing (NLP)

- Many NLP Tasks
  - sentiment analysis
  - topic modeling
  - entity detection
  - machine translation
  - natural language generation
  - question answering
  - relationship extraction
  - automatic summarization
  - **...**

### Recall: Python Builtin String Functions

```
In [19]:
doc = "D.S. is fun!"
Out[19]:
 'D.S. is fun!'
In [20]:
doc.lower(),doc.upper()
                       # change capitalization
Out[20]:
 ('d.s. is fun!', 'D.S. IS FUN!')
In [21]:
doc.split() , doc.split('.') # split a string into parts (default is whitespace)
Out[21]:
 (['D.S.', 'is', 'fun!'], ['D', 'S', ' is fun!'])
In [22]:
'|'.join(['ab','c','d'])
                      # join items in a list together
Out[22]:
 'ab|c|d'
In [23]:
'|'.join(doc[:5])
                       # a string itself is treated like a list of characters
Out[23]:
```

```
'D|.|S|.| '
In [24]:
' test '.strip() # remove whitespace from the beginning and end of a string
Out[24]:
'test'
```

• and many more, see <a href="https://docs.python.org/3.8/library/string.html">https://docs.python.org/3.8/library/string.html</a>

# NLP: The Corpus

- **corpus:** collection of documents
  - books
  - articles
  - reviews
  - tweets
  - resumes
  - sentences?
  - **...**

## NLP: Doc Representation

- Documents usually represented as strings
  - string: a sequence (list) of unicode characters

```
In [25]:
doc = "D.S. is fun!\nIt's true."
print(doc)

D.S. is fun!
```

In [26]:

```
'|'.join(doc)
```

It's true.

Out[26]:

```
"D|.|S|.| |i|s| |f|u|n|!| |n|I|t|'|s| | |t|r|u|e|."
```

- Need to split this up into parts (tokens)
- Good job for **Regular Expressions**

## Aside: Regular Expressions

- Strings that define search patterns over text
- Useful for finding/replacing/grouping
- python re library (others available)

```
D.S. is fun!
It's true.
```

In [27]:
print(doc)

import re
# Find all of the whitespaces in doc
# '\s+' means "one or more whitespace characters"
re.findall(r'\s+',doc)
Out[28]:

['',','\n','']

### Aside: Regular Expressions

Just some of the special character definitions:

- . : any single character except newline (r'.' matches 'x')
- \* : match 0 or more repetitions (r'x\*' matches 'x','xx','')
- + : match 1 or more repetitions (r'x+' matches 'x', 'xx')
- ? : match 0 or 1 repetitions (r'x?' matches 'x' or ")
- ^ : beginning of string (r'^D' matches 'D.S.')
- \$ : end of string (r'fun!\$' matches 'DS is fun!'`)

### Aside: Regular Expression Cont.

- [] : a set of characters (^ as first element = not)
- \s : whitespace character (Ex: [ \t\n\r\f\v])
- \S : non-whitespace character (Ex: [^ \t\n\r\f\v])
- \w : word character (Ex: [a-zA-Z0-9\_])
- \W : non-word character
- \b : boundary between \w and \W
- and many more!
- See <u>regex101.com</u> for examples and testing

## Aside: Regex Python Functions

```
In [29]:
r'\w*u\w*' # a string of word characters containing u
Out[29]:
 '\\w*u\\w*'
In [30]:
re.findall(r'\w*u\w*',doc) # return all substrings that match a pattern
Out[30]:
 ['fun', 'true']
In [31]:
re.sub(r'\w*u\w*','XXXX',doc) # substitute all substrings that match a pattern
Out[31]:
 "D.S. is XXXX!\nIt's XXXX."
In [32]:
re.split(r'\w*u\w*',doc) # split substrings on a pattern
Out[32]:
 ['D.S. is ', "!\nIt's ", '.']
```

#### NLP: Tokenization

- **tokens:** strings that make up a document ('the', 'cat',...)
- **tokenization:** convert a document into tokens
- **vocabulary:** set of unique tokens (terms) in corpus

```
In [33]:
# split on whitespace
re.split(r'\s+', doc)
Out[33]:
 ['D.S.', 'is', 'fun!', "It's", 'true.']
In [34]:
# find tokens of Length 2+ word characters
re.findall(r'\b\w\w+\b',doc)
Out[34]:
 ['is', 'fun', 'It', 'true']
In [35]:
# find tokens of Length 2+ non-space characters
re.findall(r"\b\S\S+\b", doc)
Out[35]:
 ['D.S', 'is', 'fun', "It's", 'true']
```

#### NLP:Tokenization



</align>

From [https://spacy.io/usage/linguistic-features](https://spacy.io/usage/linguistic-features)

## NLP: Other Preprocessing

- lowercase
- remove special characters
- add <START>, <END> tags
- stemming: cut off beginning or ending of word
  - 'studies' becomes 'studi'
  - 'studying' becomes 'study'
- lemmatization: perform morphological analysis
  - 'studies' becomes 'study'
  - 'studying' becomes 'study'

# NLP: Bag of Words

• BOW representation: ignore token order

```
In [36]:
sorted(re.findall(r'\b\$\$+\b', doc.lower()))
Out[36]:
['d.s', 'fun', 'is', "it's", 'true']
```

#### NLP: n-Grams

- Unigram: single token
- Bigram: combination of two ordered tokens
- n-Gram: combination of n ordered tokens
- The larger n is, the larger the vocabulary

```
In [37]:
# Bigram example:
tokens = '<start> data science is fun <end>'.split()
[tokens[i]+'_'+tokens[i+1] for i in range(len(tokens)-1)]

Out[37]:

['<start>_data', 'data_science', 'science_is', 'is_fun', 'fun_<end>>']
```

#### NLP: TF and DF

- Term Frequency: number of times a term is seen per document
- tf(t, d) = count of term t in document d

```
In [38]:

corpus = ['red green blue', 'red blue blue']

#Vocabulary
vocab = sorted(set(' '.join(corpus).split()))
vocab
```

Out[38]:

### ['blue', 'green', 'red']

In [39]:

```
#TF
from collections import Counter
tf = np.zeros((len(corpus),len(vocab)))
for i,doc in enumerate(corpus):
    for j,term in enumerate(vocab):
        tf[i,j] = Counter(doc.split())[term]
tf = pd.DataFrame(tf,index=['doc1','doc2'],columns=vocab)
tf
```

Out[39]:

|      | blue | green | red |
|------|------|-------|-----|
| doc1 | 1.0  | 1.0   | 1.0 |
| doc2 | 2.0  | 0.0   | 1.0 |

### NLP: TF and DF

• **Document Frequency:** number of documents containing each term df(t) = count of documents containing term t

```
In [40]:
#DF
tf.astype(bool).sum(axis=0)
Out[40]:
blue    2
green    1
red    2
dtype: int64
```

### NLP: Stopwords

- terms that have high (or very low) DF and aren't informative
  - common engish terms (ex: 'a', 'the', 'in',...)
  - domain specific (ex, in class slides: 'data\_science')
  - often removed prior to analysis
  - in sklearn
    - o min\_df, an integer > 0, keep terms that occur in at at least n documents
    - o max\_df, a float in (0,1], keep terms that occur in less than f% of total documents

#### NLP: CountVectorizer in sklearn

```
In [41]:
corpus = ['blue green red', 'blue green green']
from sklearn.feature extraction.text import CountVectorizer
cvect = CountVectorizer(lowercase=True, # default, transform all docs to lowercase
                     ngram_range=(1,1), # default, only unigrams
                     min_df=1, # default, keep all terms
                                # default, keep all terms
                     max_df=1.0,
X_cv = cvect.fit_transform(corpus)
X_cv.shape
Out[41]:
 (2, 3)
In [42]:
cvect.vocabulary_ # learned vocabulary, term:index pairs
Out[42]:
 {'blue': 0, 'green': 1, 'red': 2}
In [43]:
cvect.get_feature_names() # vocabulary, sorted by indexs
Out[43]:
 ['blue', 'green', 'red']
In [44]:
X cv.todense() # term frequencies
Out[44]:
```

array(['blue', 'green'], dtype='<U5')]</pre>

#### NLP: Tfldf

- What if some terms are still uninformative?
- Can we downweight terms that occur in many documents?
- Term Frequency \* Inverse Document Frequency (tf-idf)
  - $\blacksquare$  tf-idf(t, d) = tf(t, d) × idf(t)
  - $idf(t) = log \frac{1+n}{1+df(t)} + 1$

```
In [46]:
```

Out[48]:

#### NLP: Classification Example

In [49]:

#### 0 rec.sport.baseball

-----

From: dougb@comm.mot.com (Doug Bank)

Subject: Re: Info needed for Cleveland tickets

Reply-To: dougb@ecs.comm.mot.com

Organization: Motorola Land Mobile Products Sector

Distribution: usa

Nntp-Posting-Host: 145.1.146.35

Lines: 17

In article <1993Apr1.234031.4950@leland.Stanford.EDU>, bohnert@leland.Stanford.EDU (matthew bohnert) writes:

|> I'm going to be in Cleveland Thursday, April 15 to Sunday, April
l 18.

|> Does anybody know if the Tribe will be in town on those dates,
and

|> if so, who're they playing and if tickets are available?

The tribe will be in town from April 16 to the 19th. There

#### NLP Example: Transform Docs

```
In [50]:
from sklearn.model selection import train test split
docs_ngs_train,docs_ngs_test,y_ngs_train,y_ngs_test = train_test_split(docs_ngs,y_ngs)
vect = TfidfVectorizer(lowercase=True,
                    min_df=5,
                              # occur in at least 5 documents
                    max_df=0.8,
                               # occur in at most 80% of documents
                    token_pattern='\\b\\S\\S+\\b', # tokens of at least 2 non-space characters
                    ngram_range=(1,1), # only unigrams
                    use_idf=False, # term frequency counts instead of tf-idf
                    norm=None
                                 # do not normalize
X_ngs_train = vect.fit_transform(docs_ngs_train)
X_ngs_train.shape
Out[50]:
 (897, 3760)
In [51]:
# first few terms in learned vocabulary
list(vect.vocabulary_.items())[:5]
Out[51]:
 [('king', 1913),
   ('re', 2743),
   ('players', 2576),
   ('40', 176),
   ('college', 882)]
In [52]:
# first few terms in learned stopword list
list(vect.stop_words_)[:5]
Out[52]:
```

['design', 'saberhagen', '\_americans\_', 'shayne', 'coons']

#### NLP Example: Train and Evaluate Classifier

In [54]:

```
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LogisticRegression
from sklearn.dummy import DummyClassifier

scores_dummy = cross_val_score(DummyClassifier(strategy='most_frequent'),X_ngs_train,y_ngs_train)
scores_lr = cross_val_score(LogisticRegression(),X_ngs_train,y_ngs_train)

print(f'dummy cv accuracy: {scores_dummy.mean():0.2f} +- {scores_dummy.std():0.2f}')
print(f'lr cv accuracy: {scores_lr.mean():0.2f} +- {scores_lr.std():0.2f}')
```

```
dummy cv accuracy: 0.51 +- 0.00
lr cv accuracy: 0.95 +- 0.01
```

### NLP Example: Using Pipeline

```
In [55]:
```

#### pipeline accuracy on training set: 1.00

[('king', 1913), ('re', 2743), ('players', 2576)]

```
In [56]:
scores_pipe = cross_val_score(pipe_ngs,docs_ngs_train,y_ngs_train)
print(f'pipe cv accuracy: {scores_pipe.mean():0.2f} +- {scores_pipe.std():0.2f}')

pipe cv accuracy: 0.95 +- 0.02

In [57]:
list(pipe_ngs['vect'].vocabulary_.items())[:3]

Out[57]:
```

#### NLP Example: Add Feature Selection

In [58]:

```
from sklearn.feature selection import SelectFromModel,SelectPercentile
pipe_ngs = Pipeline([('vect', TfidfVectorizer(lowercase=True,
                                             min df=5,
                                             max_df=0.8,
                                             token_pattern='\\b\\S\\S+\\b',
                                             ngram_range=(1,1),
                                             use_idf=False,
                                             norm=None )
                     ('fs', SelectFromModel(estimator=LogisticRegression(C=1.0,
                                                                        penalty='l1',
                                                                        solver='liblinear',
                                                                        max iter=1000,
                                                                        random state=123
                                                                       ))),
                     ('lr',LogisticRegression(max_iter=1000))
                    1)
pipe_ngs.fit(docs_ngs_train,y_ngs_train)
print(f'pipeline accuracy on training set: {pipe_ngs.score(docs_ngs_train,y_ngs_train):0.2f}')
scores_pipe = cross_val_score(pipe_ngs,docs_ngs_train,y_ngs_train)
print(f'pipe cv accuracy: {scores_pipe.mean():0.2f} +- {scores_pipe.std():0.2f}')
```

pipeline accuracy on training set: 1.00
pipe cv accuracy: 0.93 +- 0.01

#### NLP Example: Grid Search with Feature Selection

#### Sentiment Analysis and sklearn

- determine sentiment/opinion from unstructured test
- usually positive/negative, but is domain specific
- can be treated as a classification task (with a target, using all of the tools we know)
- can also be treated as a linguistic task (sentence parsing)
- Example: determine sentiment of movie reviews
- see sentiment analysis example.ipynb

## Topic Modeling

- What topics are our documents composed of?
- How much of each topic does each document contain?
- Can we represent documents using topic weights? (dimensionality reduction)
- What is topic modeling?
- How does Latent Dirichlet Allocation (LDA) work?
- How to train and use LDA with sklearn?

### What is Topic Modeling?

- **topic:** a collection of related words
- A document can be composed of several topics
- Given a collection of documents, we can ask:
  - What terms make up each topic? (per topic term distribution)
  - What topics make up each document? (per document topic distribution)

#### Topic Modeling with Latent Dirichlet Allocation (LDA)

• Unsupervised method for determining topics and topic assignments



From David Blei

### Two Important Matrices Learned by LDA

• the **per topic term distributions** aka φ (phi)

• the **per document term distributions** aka θ (theta)

## Topic Modeling: Example

• Given the data and the number of topics we want

```
In [62]:
```

```
M = 3
```

$$V = 6$$

$$K = 2$$

#### Topic Modeling: Example

• Guessing some **per topic term distributions** (φ) given the documents and vocab

```
In [63]:
print(vocab)
```

```
['baseball', 'cat', 'dog', 'pet', 'played', 'tennis']
```

Out[64]:

|  |         | baseball | cat  | dog  | pet  | played | tennis |
|--|---------|----------|------|------|------|--------|--------|
|  | topic_1 | 0.33     | 0.00 | 0.00 | 0.00 | 0.33   | 0.33   |
|  | topic_2 | 0.00     | 0.25 | 0.25 | 0.25 | 0.25   | 0.00   |

#### Topic Modeling: Example

• Guessing the **per document topic distributions** θ given the **topics** 

```
In [65]:
# Given our guess about phi
display(phi)
# And the corpus
corpus
```

|       | baseball           | cat  | dog  | pet  | played | tennis |
|-------|--------------------|------|------|------|--------|--------|
| topic | <sub>-1</sub> 0.33 | 0.00 | 0.00 | 0.00 | 0.33   | 0.33   |
| topic | <sub>2</sub> 0.00  | 0.25 | 0.25 | 0.25 | 0.25   | 0.00   |

Out[65]:

```
['the dog and cat played tennis',
  'tennis and baseball are sports',
  'a dog or a cat can be a pet']
```

In [66]:

Out[66]:

|       | topic_1 | topic_2 |
|-------|---------|---------|
| doc_1 | 0.50    | 0.50    |
| doc_2 | 0.99    | 0.01    |
| doc_3 | 0.01    | 0.99    |

#### Topic Modeling With LDA

- Given
  - a set of documents
  - a number of topics K
- Learn
  - the per topic term distributions  $\varphi$  (phi), size:  $K \times V$
  - the per document topic distributions  $\theta$  (theta), size:  $M \times K$
- How to learn  $\varphi$  and  $\theta$ :
  - Latent Dirichlet Allocation (LDA)
  - generative statistical model
  - Blei, D., Ng, A., Jordan, M. Latent Dirichlet allocation. J. Mach. Learn. Res. 3 (Jan 2003)

## Topic Modeling With LDA

- Uses for  $\varphi$  (phi), the per topic term distributions:
  - infering labels for topics
  - word clouds
- Uses for  $\theta$  (theta), the per document topic distributions:
  - dimentionality reduction
  - clustering
  - similarity

#### LDA with sklearn

```
In [67]:
# Load data from all 20 newsgroups
newsgroups = fetch_20newsgroups()
ngs all = newsgroups.data
len(ngs all)
Out[67]:
 11314
In [68]:
# transform documents using tf-idf
tfidf = TfidfVectorizer(token_pattern=r'\b[a-zA-Z0-9-][a-zA-Z0-9-]+\b',min_df=50, max_df=.2)
X tfidf = tfidf.fit transform(ngs all)
X_tfidf.shape
Out[68]:
 (11314, 4256)
In [69]:
feature names = tfidf.get feature names()
print(feature names[:10])
print(feature_names[-10:])
 ['00', '000', '01', '02', '03', '04', '05', '06', '07', '08']
 ['yours', 'yourself', 'ysu', 'zealand', 'zero', 'zeus', 'zip', 'zo
 ne', 'zoo', 'zuma']
```

#### LDA with sklearn Cont.

```
In [70]:
from sklearn.decomposition import LatentDirichletAllocation
# create model with 20 topics
lda = LatentDirichletAllocation(n components=20, # the number of topics
                                   # use all cpus
                        n_jobs=-1,
                        random_state=123) # for reproducability
# Learn phi (Lda.components_) and theta (X_Lda)
# this will take a while!
X_lda = lda.fit_transform(X_tfidf)
In [71]:
ngs_all[100][:100]
Out[71]:
 'From: tchen@magnus.acs.ohio-state.edu (Tsung-Kun Chen)\nSubject:
 ** Software forsale (lots) **\nNntp-P'
In [72]:
np.round(X_lda[100],2) # Lda representation of document_100
Out[72]:
 array([0.01, 0.01, 0.01, 0.01, 0.1, 0.01, 0.01, 0.01, 0.01, 0.01,
 0.01,
            0.01, 0.01, 0.01, 0.38, 0.01, 0.14, 0.01, 0.01, 0.28
In [73]:
# Note: since this is unsupervised, these numbers may change
np.argsort(X_lda[100])[::-1][:3] # the top topics of document_100
Out[73]:
```

array([14, 19, 16])

#### LDA: Per Topic Term Distributions

In [75]:

```
print_top_words(lda,feature_names,5)
```

```
Topic 0: uga ai georgia covington mcovingt
      1: digex access turkish armenian armenians
Topic
Topic 2: god jesus bible christians christian
Topic 3: values objective frank morality ap
Topic 4: ohio-state magnus acs ohio cis
Topic 5: caltech keith sandvik livesey sgi
Topic 6: stratus msg usc indiana sw
Topic 7: alaska uci aurora colostate nsmca
Topic 8: wpi radar psu psuvm detector
Topic 9: columbia utexas gatech cc prism
Topic 10: scsi upenn simms ide bus
Topic 11: nhl team mit players hockey
Topic 12: lehigh duke jewish adobe ns1
Topic 13: henry toronto zoo ti dseg
Topic 14: sale card thanks please mac
Topic 15: virginia joel hall doug douglas
Topic 16: ca his new cs should
Topic 17: cleveland cwru freenet cramer ins
Topic 18: pitt gordon geb banks cs
Topic 19: windows file window files thanks
```

#### LDA Review

- What did we learn?
  - per document topic distributions
  - per topic term distributions
- What can we use this for?
  - Dimensionality Reduction/Feature Extraction!
  - investigate topics (much like PCA components)

#### Other NLP Features

- Part of Speech tags
- Dependency Parsing
- Entity Detection
- Word Vectors
- See spaCy!

## Using spaCy for NLP

In [76]:

```
import spacy
# uncomment the line below the first time you run this cell
#%run -m spacy download en_core_web_sm
try:
    nlp = spacy.load("en_core_web_sm")

except OSError as e:
    print('Need to run the following line in a new cell:')
    print('%run -m spacy download en_core_web_sm')
    print('or the following line from the commandline with eods-f20 activated:')
    print('python -m spacy download en_core_web_sm')

parsed = nlp("N.Y.C. isn't in New Jersey.")
    '|'.join([token.text for token in parsed])
```

Out[76]:

"N.Y.C.|is|n't|in|New|Jersey|."

# spaCy: Part of Speech Tagging

```
In [77]:

doc = nlp("Apple is looking at buying U.K. startup for $1 billion.")

print(f"{'text':7s} {'lemma':7s} {'pos':5s} {'is_stop'}")
print('-'*30)
for token in doc:
```

| text    | lemma   | pos          | is_stop |
|---------|---------|--------------|---------|
|         |         |              |         |
| Apple   | Apple   | PROPN        | False   |
| is      | be      | AUX          | True    |
| looking | look    | VERB         | False   |
| at      | at      | ADP          | True    |
| buying  | buy     | VERB         | False   |
| U.K.    | U.K.    | PROPN        | False   |
| startup | startup | NOUN         | False   |
| for     | for     | ADP          | True    |
| \$      | \$      | SYM          | False   |
| 1       | 1       | NUM          | False   |
| billion | billion | NUM          | False   |
| •       | •       | <b>PUNCT</b> | False   |

print(f'{token.text:7s} {token.lemma\_:7s} {token.pos\_:5s} {token.is\_stop}')

# spaCy: Part of Speech Tagging

In [78]:

from spacy import displacy
displacy.render(doc, style="dep")



### spaCy: Entity Detection

```
In [79]:
[(ent.text,ent.label_) for ent in doc.ents]
Out[79]:

[('Apple', 'ORG'), ('U.K.', 'GPE'), ('$1 billion', 'MONEY')]
In [80]:
displacy.render(doc, style="ent")

Apple ORG is looking at buying U.K. GPE startup for $1 billion MONEY .
```

#### spaCy: Word Vectors

- word2vec
- shallow neural net
- predict a word given the surrounding context (SkipGram or CBOW)
- words used in similar context should have similar vectors

```
In [81]:
# Need either the _md or _lg models to get vector information
# Note: this takes a while!
#%run -m spacy download en_core_web_md

In [82]:
nlp = spacy.load('en_core_web_md') # _lg has a larger vocabulary

doc = nlp('Baseball is played on a diamond.')
doc[0].text, doc[0].vector.shape, list(doc[0].vector[:3])

Out[82]:
    ('Baseball', (300,), [0.55838, 0.42791, -0.11687])
```

#### spaCy: Multiple Documents

# Learning Sequences

- Hidden Markov Models
- Conditional Random Fields
- Recurrant Neural Networks
- LSTM
- GPT3
- BERT

#### **NLP** Review

- corpus, tokens, vocabulary, terms, n-grams, stopwords
- tokenization
- term frequency (TF), document frequency (DF)
- TF vs TF-IDF
- sentiment analysis
- topic modeling
- POS
- Dependency Parsing
- Entity Extraction
- Word Vectors

Questions?

#### Appendix: LDA Plate Diagram



**K**: number of topics

 $_{\phi}$ : per topic term distributions

 $\beta$ : parameters for word distribution die factory, length = V (size of vocab)

M: number of documents

N: number of words/tokens in each document

θ: per document topic distributions

 $\alpha$ : parameters for topic die factory, length = K (number of topics)

**z** : topic indexes

w: observed tokens

</font>