MAT137 Lecture 23

Huan Vo

University of Toronto

January 15, 2018

Agenda

 $\label{lem:antiderivatives} Antiderivatives, indefinite integrals.$

2 / 8

Towards indefinite integrals

Compute:

(a)
$$\int_0^1 f(t)dt$$

(b)
$$\int_0^2 f(t)dt$$

(c)
$$\int_0^3 f(t)dt$$

(d)
$$\int_0^4 f(t)dt$$

(e)
$$\int_0^5 f(t)dt$$

Towards indefinite integrals

Call
$$F(x) = \int_0^x f(t)dt$$
. This is a new function.

Sketch the graph of y = F(x).

Sketch the graph of y = F'(x).

The Fundamental Theorem of Calculus Part 1

Theorem

Let I be an interval. Let $a \in I$. Let f be a function on I. We define

$$F(x) = \int_{a}^{x} f(t)dt.$$

Then F is continuous on I.

Moreover, if f is continuous, then F is differentiable and F'=f. In short, F is an anti-derivative of f.

The Fundamental Theorem of Calculus Part 1

Let
$$g(x) = \int_0^x f(t)dt$$
 where f is the function whose graph is shown

- (a) Evaluate g(-2), g(-1), g(0), g(1), g(3), g(4), g(5).
- (b) On what interval is g increasing?
- (c) Where does g have a maximum value?
- (d) Sketch a rough graph of g.

Antiderivatives

Find the following antiderivatives

(a)
$$\int (3-t^{2018})\sqrt{t^3}dt$$

(b)
$$\int \sin(3x)dx$$

(c)
$$\int \frac{1}{9+4t^2} dt$$

(d)
$$\int \frac{1}{\sqrt{1-9x^2}} dx$$

(e)
$$\int \sec^2(2t+1)dt$$

(f)
$$\int \sec(x) \tan(x) dx$$

Next Class: Thursday January 18

Watch videos 8.3, 8.4, 8.5, 8.6, 8.7 in Playlist 8.