Babes-Bolyai University, Faculty of Mathematics and Computer Science Analysis for Computer Science

Year: 2015/2016

Exercise Set #3

1. Prove that the sequence (x_n) defined by

$$x_n = \frac{n-3}{3n^3 - 4n + 5}$$

converges to 0 by using the definition (that is, for every $\varepsilon > 0$, find $N \in \mathbb{N}^*$ s.t. $\forall n \geq N, |x_n| < \varepsilon$).

2. Find the limit of the following sequences:

a)
$$\left(\sin\frac{\pi}{7}\right)^n$$
, b) $\frac{n+\sin(n^2)}{n+\cos(n)}$, c) $\frac{n^3+6n-6}{-3n^2+n}$, d) $\frac{1-3n^4}{n^4-5n^3+n}$, e) $(n^2+n)^{-\frac{n}{n+1}}$, f) $\frac{2^n-3^n}{4^n-5^n}$, g) $\left(1+\frac{1}{n}\right)^{\frac{3n}{n+1}}$.

3. Find the limit of the following sequences:

a)
$$\sqrt{n} \left(\sqrt{n} - \sqrt{n+3} \right)$$
, b) $\left(\frac{n^2 + n + 1}{n^2 + 1} \right)^{\frac{2n^2 + n + 1}{n+1}}$, c) $\left(1 + \frac{1}{n^3 + 2n^2} \right)^{n-n^3}$, d) $\frac{2^n}{n!}$, e) $\frac{n^{\alpha}}{(1+p)^n}$, where $\alpha \in \mathbb{R}$, $p > 0$, f) $\frac{1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n!}{(n+1)!}$, g) $\sqrt[n]{p}$, where $p > 0$,

e)
$$\frac{n^{\alpha}}{(1+p)^n}$$
, where $\alpha \in \mathbb{R}, p > 0$, f) $\frac{1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n!}{(n+1)!}$, g) $\sqrt[n]{p}$, where $p > 0$,

h)
$$\sqrt[n]{\sin^2(n^{2015}) + 2\cos^2(n^{2015})}$$
, i) $\sqrt[n]{1 + 2 + \ldots + n}$, j) $\frac{\sqrt[n]{n!}}{n}$.

 In each of the following cases, study if the sequence (x_n) is bounded, monotone and convergent. If the sequence is convergent, find also its limit.

a)
$$x_1 \in (0,1), x_{n+1} = \frac{2x_n + 1}{3}, n \in \mathbb{N}^*$$
 b) $x_1 = \sqrt{3}, x_{n+1} = \sqrt{2x_n + 3}, n \in \mathbb{N}^*$

c)
$$a > 0, x_1 > 0, x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right), n \in \mathbb{N}^*.$$

5. Define the sequence (x_n) by $x_1 \in (0,1)$ and $x_{n+1} = x_n - x_n^2$, $n \in \mathbb{N}^*$. Check if $(n \cdot x_n)$ converges and, if possible, find also its limit.

Hint: Show first that (x_n) converges and find its limit. To study the convergence of the sequence $(n \cdot x_n)$, use the Stolz-Cesàro Theorem.

6. Check if the following sequence converges and, if possible, find also its limit.

$$x_n = \frac{m_n}{1+7n}$$
, where $m_n^2 \le n < (m_n+1)^2$ (see also Ex. 4, Exercise Set #1).

7. True or false: (x_n) converges if and only if $(|x_n|)$ converges?

8. Give an example of a divergent sequence
$$(x_n)$$
 such that the sequence $\left(\frac{1}{n}\sum_{k=1}^n x_k\right)$ is convergent.

9. Let (x_n) be a sequence in \mathbb{Z} .

True or false: (x_n) is convergent to some x if and only if it is eventually constant equal to x?

10. For $n \in \mathbb{N}^*$, let $a_n, b_n \in \mathbb{R}$ such that $a_n \leq b_n$ and $\lim_{n \to \infty} (b_n - a_n) = 0$. Suppose, in addition, that

$$\forall n \in \mathbb{N}^*, [a_{n+1}, b_{n+1}] \subseteq [a_n, b_n].$$
 By the Nested Interval Property, $\bigcap_{n=1}^{\infty} [a_n, b_n] \neq \emptyset.$

True or false: can $\bigcap_{n=1}^{\infty} [a_n, b_n]$ contain more than one point?

- 11. (Koch snowflake) Define a sequence (S_n) of polygons such that S_1 is an equilateral triangle of side length s and S_{n+1} is obtained from S_n by adding to the middle third of each side an equilateral triangle pointing outwards (and removing this middle third). Denote by a_n the area of S_n . Determine the sequence (a_n) and study if it is convergent.
- 12. Find the limit of the following sequences:

a)
$$n\left(\left(1+\frac{1}{n}\right)^{1+\frac{1}{n}}-1\right)$$
. Hint: Prove first that $\forall n \in \mathbb{N}^*, 1 \leq \left(1+\frac{1}{n}\right)^{\frac{1}{n}} \leq 1+\frac{1}{n^2}$.

b)
$$n(\sqrt[n]{e}-1)$$
. Hint: $\forall n \in \mathbb{N}^*, \left(1+\frac{1}{n}\right)^n < e < \left(1+\frac{1}{n}\right)^{n+1}$.

13. Show that $(\sin n)$ does not converge.

True or false: Let $r \in \mathbb{Q}$. Is $(\sin(n! r \pi))_n$ convergent?

14. Give an example of an unbounded sequence that has a convergent subsequence. Then find an unbounded sequence that has no convergent subsequence. What can you conclude about the Bolzano-Weierstrass Theorem when dropping the boundedness hypothesis for the sequence?

Additional exercises:

- 15. Let $x \in \mathbb{R}$ and $A \subseteq \mathbb{R}$ nonempty. Show that
 - a) if A is bounded above, then $x = \sup A$ if and only if x is an upper bound of A and there exists a sequence (x_n) in A which converges to x.
 - b) if A is bounded below, then $x = \inf A$ if and only if x is a lower bound of A and there exists a sequence (x_n) in A which converges to x.

Apply now these properties for some of the sets given in Ex. 1, Exercise Set #2.

- 16. Let (x_n) be a sequence in \mathbb{R} and let $x \in \mathbb{R}$. Prove that the following are equivalent:
 - a) $\lim_{n\to\infty} x_n = x$,
 - b) $\forall \varepsilon > 0, \exists N \in \mathbb{N}^*, \forall n > N, |x_n x| < \varepsilon,$
 - c) $\forall \varepsilon > 0, \exists N \in \mathbb{N}^*, \forall n > N, |x_n x| \le \varepsilon,$
 - d) $\forall \varepsilon > 0, \exists N \in \mathbb{N}^*, \forall n \geq N, |x_n x| \leq \varepsilon,$
 - e) $\forall \varepsilon > 0, \exists N \in \mathbb{N}^*, \forall n > N, |x_n x| < c \cdot \varepsilon$, where c > 0 is a constant.
- 17. Suppose (x_n) is a sequence of real numbers satisfying the following:

$$\exists x \in \mathbb{R}, \exists N \in \mathbb{N}^*, \forall \varepsilon > 0, \forall n \geq N, |x_n - x| < \varepsilon.$$

What remarkable property does (x_n) have?