Álgebra Linear - Soluções Lista de Exercícios 7

Caio Lins e Tiago Silva

3 de outubro de 2021

1. Se AB = 0, as colunas de B estão em qual espaço fundamental de A? E as linhas de A estão em qual espaço fundamental de B? É possível que A e B sejam 3×3 e com posto 2?

Resolução:

Como AB = 0, devemos ter $A\mathbf{b}_i = 0$ para toda coluna \mathbf{b}_i de B. Logo, $\mathbf{b}_i \in N(A)$. Da mesma forma, devemos ter $\mathbf{a}_i^{\mathsf{T}}B = 0$ para toda linha $\mathbf{a}_i^{\mathsf{T}}$ de A. Tomando o transposto de cada lado da equação, temos $B^{\mathsf{T}}\mathbf{a}_i = 0$, ou seja, $\mathbf{a}_i \in N(B^{\mathsf{T}})$.

Não é possível que ambas sejam 3×3 com posto 2. Se B tem posto 2, então temos dim $N(A) \ge 2$. Pelo Teorema do Posto, isso implica dim $C(A) \le 1$ e, assim, A não pode ter posto 2.

2. Se Ax = b e $A^{T}y = 0$, temos $y^{T}x = 0$ ou $y^{T}b = 0$?

Resolução:

De $\mathbf{y}^{\mathsf{T}}A = 0$ obtemos $A^{\mathsf{T}}\mathbf{y} = 0$. Portanto, multiplicando ambos lados de $A\mathbf{x} = \mathbf{b}$ por \mathbf{y}^{T} , obtemos $\mathbf{y}^{\mathsf{T}}\mathbf{b} = 0$. Por outro lado, se A não é quadrada, \mathbf{y} e \mathbf{x} não pertencem a espaços euclidianos de mesma dimensão. Logo, o produto interno $\mathbf{y}^{\mathsf{T}}\mathbf{x}$ nem sempre está bem definido. Entretanto, mesmo se A for quadrada essa afirmação ainda não será válida. Tome, por exemplo,

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \ \mathbf{b} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \ \mathbf{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \ \mathbf{e} \ \mathbf{y} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}.$$

3. O sistema abaixo não tem solução:

$$\begin{cases} x + 2y + 2z = 5 \\ 2x + 2y + 3z = 5 \\ 3x + 4y + 5z = 9 \end{cases}$$

Ache números y_1, y_2, y_3 para multiplicar as equações acima para que elas somem 0 = 1. Em qual espaço fundamental o vetor y pertence? Verifique que $y^Tb = 1$. O caso acima é típico e conhecido como a Alternativa de Fredholm: ou Ax = b ou $A^Ty = 0$ com $y^Tb = 1$.

Resolução:

O sistema pode ser escrito como $A\mathbf{x} = \mathbf{b}$, onde

$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 & 3 \\ 3 & 4 & 5 \end{bmatrix}, \ \mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \ \mathbf{e} \ \mathbf{b} = \begin{bmatrix} 5 \\ 5 \\ 9 \end{bmatrix}.$$

Procuramos $\mathbf{y} = (y_1, y_2, y_3)$ tal que $\mathbf{y}^T A = 0$, ou seja, $\mathbf{y} \in N(A^T)$, e $\mathbf{y}^T \mathbf{b} = 1$. Observe que basta encontrarmos um $\mathbf{y}' \in N(A^T)$ e fazer $\mathbf{y} := \|\mathbf{y}^T \mathbf{b}\|^{-1} \mathbf{y}'$. Prosseguindo pelos métodos já estudados, chegamos no vetor

$$\mathbf{y}' = (1, 1, -1).$$

Por sorte, já temos $\mathbf{y}^\mathsf{T}\mathbf{b} = 1$ e não precisamos realizar a normalização, podendo, então, tomar $\mathbf{y} := \mathbf{y}'$.

4. Mostre que se $A^TAx = 0$, então Ax = 0. O oposto é obviamente verdade e então temos $N(A^TA) = N(A)$.

Resolução:

Multiplicando ambos lados de $A^{\mathsf{T}}A\mathbf{x} = 0$ por \mathbf{x}^{T} , ficamos com

$$\mathbf{x}^{\mathsf{T}} A^{\mathsf{T}} A \mathbf{x} = 0,$$

o que implica $(A\mathbf{x})^{\mathsf{T}}(A\mathbf{x}) = 0$ e, assim, $\|A\mathbf{x}\|^2 = 0$. Com isso, $\|A\mathbf{x}\| = 0$ e $A\mathbf{x} = 0$.

5. Seja A uma matriz 3×4 e B uma 4×5 tais que AB = 0. Mostre que $C(B) \subset N(A)$. Além disso, mostre que posto(A) + posto $(B) \leq 4$.

Resolução:

Pela questão 1 sabemos que as colunas de B pertencem a N(A). Como C(B) é, por definição, o span das colunas de B e N(A) é um subespaço vetorial, temos $C(B) \subset N(A)$. Com isso, dim $C(B) \leq \dim N(A)$. Pelo Teorema do Posto, temos dim $N(A) = 4 - \dim C(A)$ e, assim, dim $C(B) \leq 4 - \dim C(A)$, ou seja,

$$\dim C(A) + \dim C(B) < 4.$$

- 6. Sejam $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ vetores não-zeros de \mathbb{R}^2 .
 - (a) Quais são as condições sobre esses vetores para que cada um possa ser, respectivamente, base dos espaços $C(A^T)$, N(A), C(A) e $N(A^T)$ para uma dada matriz A que seja 2×2 . Dica: cada espaço fundamental vai ter somente um desses vetores como base.

Resolução:

Perceba que, como temos $C(A^{\mathsf{T}}) \perp N(A)$ e $C(A) \perp N(A^{\mathsf{T}})$, uma condição necessária para termos

$$C(A^{\mathsf{T}}) = \operatorname{span}\left\{\mathbf{a}\right\}$$

$$N(A) = \operatorname{span} \{ \mathbf{b} \}$$

$$C(A) = \operatorname{span} \{ \mathbf{c} \}$$

$$N(A^{\mathsf{T}}) = \operatorname{span} \{\mathbf{d}\}$$

é $\mathbf{a}^\mathsf{T}\mathbf{b} = \mathbf{c}^\mathsf{T}\mathbf{d} = 0$. Vamos mostrar que essa condição é, na verdade, suficiente, ou seja, vamos encontrar uma matriz A que satisfaça as igualdades acima, dados os vetores $\mathbf{a}, \mathbf{b}, \mathbf{c}$ e \mathbf{d} . Para termos $C(A^\mathsf{T}) = \mathrm{span}\,\{\mathbf{a}\}$ é necessário que a matriz A seja da forma

$$\begin{bmatrix} \alpha \mathbf{a}^\mathsf{T} \\ \beta \mathbf{a}^\mathsf{T} \end{bmatrix},$$

onde $\alpha, \beta \in \mathbb{R}$. Perceba que, com isso, temos dim $C(A) = \dim C(A^{\mathsf{T}}) = 1$, o que implica, pelo Teorema do Posto, dim N(A) = 1. Com isso, **b** já é uma base para N(A). Agora, sendo $\mathbf{a} = (a_1, a_2)$ e $\mathbf{c} = (c_1, c_2)$, observe que pondo $\alpha := c_1/a_1$ e $\beta := c_2/a_1$ (ou sobre a_2 , caso $a_1 = 0$, mas vamos supor $a_1 \neq 0$, pois o outro caso é análogo), ficamos com

$$A = \begin{bmatrix} c_1 & \frac{a_2}{a_1} c_1 \\ c_2 & \frac{a_2}{a_1} c_2 \end{bmatrix}.$$

Definindo $\lambda := a_2/a_1$, temos que

$$A = \begin{bmatrix} \mathbf{c} & \lambda \mathbf{c} \end{bmatrix}.$$

Portanto, seguindo um raciocínio análogo ao anterior, automaticamente temos $C(A) = \text{span}\{\mathbf{c}\}\$ e $N(A^{\mathsf{T}}) = \text{span}\{d\}$.

(b) Qual seria uma matriz A possível?

Resolução:

Como mostrado no item anterior, podemos tomar

$$A = \begin{bmatrix} c_1 & \frac{a_2}{a_1} c_1 \\ c_2 & \frac{a_2}{a_1} c_2 \end{bmatrix}.$$

- 7. Ache S^{\perp} para os seguintes conjuntos:
 - (a) $S = \{0\}$
 - (b) $S = span\{[1, 1, 1]\}$
 - (c) $S = span\{[1, 1, 1], [1, 1, -1]\}$
 - (d) $S = \{[1, 5, 1], [2, 2, 2]\}$. Note que S não é um subespaço, mas S^{\perp} é.

Resolução:

Observe (tente mostrar) que se $V = \text{span}\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$, então $\mathbf{w} \in V^{\perp}$ se, e somente se, $\mathbf{w}^{\mathsf{T}}\mathbf{v}_i = 0$ para todo $i = 1, \dots, n$. Vamos usar esse fato nas resoluções.

- (a) Para todo $\mathbf{x} \in \mathbb{R}^3$, vale $\mathbf{x}^\mathsf{T} 0 = 0$. Logo, $S^\perp = \mathbb{R}^3$.
- (b) O conjunto S^{\perp} é exatamente N(A), onde $A=\begin{bmatrix}1&1&1\end{bmatrix}$. Como o posto de A é claramente 1, o núcleo de A tem dimensão 2. Como (-1,0,1) e (0,-1,1) são dois elementos linearmente independentes de N(A), temos

$$S^{\perp} = N(A) = \operatorname{span} \left\{ \begin{bmatrix} -1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\-1\\1 \end{bmatrix} \right\}.$$

(c) Analogamente ao item anterior, vamos calcular N(A), onde

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \end{bmatrix}.$$

Prosseguindo pelos métodos usuais, encontramos a base

$$\left\{ \begin{bmatrix} 1\\-1\\0 \end{bmatrix} \right\}.$$

Portanto,

$$S^{\perp} = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \right\}.$$

(d) De maneira análoga,

$$S^{\perp} = N\left(\begin{bmatrix} 1 & 5 & 1 \\ 2 & 2 & 2 \end{bmatrix}\right) = \operatorname{span}\left\{\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}\right\}.$$

8. Seja A uma matriz 4×3 formada pela primeiras 3 colunas da matriz identidade 4×4 . Projeta o vetor b = [1, 2, 3, 4] no espaço coluna de A. Ache a matriz de projeção P.

Resolução:

Temos

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

Queremos encontrar $\hat{\mathbf{x}}$ tal que

$$A^{\mathsf{T}}(A\hat{\mathbf{x}} - \mathbf{b}) = 0.$$

Desenvolvendo a equação, obtemos

$$\hat{\mathbf{x}} = (A^\mathsf{T} A)^{-1} A^\mathsf{T} \mathbf{b}.$$

Realizando as contas, ficamos com

$$A^{\mathsf{T}}A = I_3.$$

Assim,

$$\hat{x} = A^\mathsf{T} \mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}.$$

A projeção de **b** é dada por $A\hat{\mathbf{x}} = (1, 2, 3, 0)$. A matriz de projeção é dada por

$$P = A(A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}} = AA^{\mathsf{T}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

9. Se $P^2 = P$, mostre que $(I - P)^2 = I - P$. Para a matriz P do exercício anterior, em qual subespaço a matriz I - P projeta?

Resolução:

Desenvolendo $(I - P)^2$, obtemos

$$(I - P)^2 = I^2 - IP - PI + P^2$$
$$= I - 2P + P$$
$$= I - P.$$

Com a matriz P do item anterior, temos

Essa matriz projeta no subespaço

$$\{\mathbf{x} = (x_1, \dots, x_4) \in \mathbb{R}^4 : x_1 = x_2 = x_3 = 0\}.$$