For the matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$:

General Solution to a Linear System

If $b \in C(\mathbf{A})$

$$\boldsymbol{x}_g = \boldsymbol{x}_p + \boldsymbol{x}_n$$

where $x_n \in \mathbb{R}^n$ is a particular solution obtained by backward substitution, and $x_n \in \mathcal{N}(\mathbf{A}).$

Minimum Norm Solution

$$\boldsymbol{x}_r \in \mathcal{C}\left(\mathbf{A}^{\top}\right) \text{ where } \boldsymbol{x}_r = \operatorname{proj}_{\mathcal{C}\left(\mathbf{A}^{\top}\right)}\left(\boldsymbol{x}_g\right).$$

Least Squares

For $b \notin C(\mathbf{A})$, find x:

$$oldsymbol{x} = rg \min_{oldsymbol{x}^* \in \mathbb{R}^n} \lVert oldsymbol{b} - \mathbf{A} oldsymbol{x}^*
Vert$$

so that b - Ax is orthogonal to C(A).

$$\mathbf{A}^{\top}\left(\boldsymbol{b}-\mathbf{A}\boldsymbol{x}\right)=\mathbf{0}$$

$$\mathbf{A}^{\top}\mathbf{A}\mathbf{x} = \mathbf{A}^{\top}\mathbf{b}$$

$$oldsymbol{x} = \left(\mathbf{A}^{ op} \mathbf{A} \right)^{-1} \mathbf{A}^{ op} oldsymbol{b}.$$

Orthogonal Projection

$$\mathbf{P} = \mathbf{A} \left(\mathbf{A}^{\top} \mathbf{A} \right)^{-1} \mathbf{A}^{\top}$$

 \mathbf{P} operates on \boldsymbol{b} :

$$oldsymbol{b}_{P} = \mathbf{P}oldsymbol{b} = \mathrm{proj}_{\mathcal{C}(\mathbf{A})}\left(oldsymbol{b}
ight) = \mathbf{A}oldsymbol{x}$$

$$= \mathbf{A} \left(\mathbf{A}^{\top} \mathbf{A} \right)^{-1} \mathbf{A}^{\top} \boldsymbol{b}$$

 \mathbf{P} is idempotent, $\mathbf{P}^2 = \mathbf{P}$.

Dependent Columns

If nullity $(\mathbf{A}) > 0$, the Normal Equations Characteristic Polynomial yields infinitely many solutions

$$oldsymbol{x} = oldsymbol{x}_p + oldsymbol{x}_n$$
 because $\mathcal{N}\left(\mathbf{A}\right) = \mathcal{N}\left(\mathbf{A}^{ op}\mathbf{A}\right)$.

Orthogonal Complement Projections

Given $\mathbf{P} = \operatorname{proj}_V$:

$$\mathbf{Q} = \operatorname{proj}_{V^{\perp}} = \mathbf{I} - \mathbf{P}$$

because

$$oldsymbol{b} = \operatorname{proj}_V(oldsymbol{b}) + \operatorname{proj}_{V^{\perp}}(oldsymbol{b}) = \mathbf{P}oldsymbol{b} + \mathbf{Q}oldsymbol{b}.$$
 Additionally

Additionally,

$$(\mathbf{P}\boldsymbol{b})^{\top} \mathbf{Q}\boldsymbol{b} = 0$$
$$\mathbf{P}\mathbf{Q} = \mathbf{0}$$

where $\mathbf{0}$ is the zero matrix.

Orthogonal Matrices

Change of Basis

Given the basis $W = \{ \boldsymbol{w}_1, \, \dots, \, \boldsymbol{w}_n \}$ Geometric Multiplicity $\gamma_{\mathbf{A}} \left(\lambda_i \right)$ solve:

$$\boldsymbol{b} = c_1 \boldsymbol{w}_1 + \dots + c_n \boldsymbol{w}_n$$

$$b = \mathbf{W} c$$

$$(\boldsymbol{b})_W = \boldsymbol{c}.$$

Orthonormal Basis

Every basis vector is normalised and orthogonal to every other basis vector. For $Q = \{\boldsymbol{q}_1, \dots, \boldsymbol{q}_n\}, \boldsymbol{q}_i^{\top} \boldsymbol{q}_j = \delta_{ij}$, where so that

$$\delta_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

Solving a system:

$$\begin{aligned} \boldsymbol{b} &= c_1 \boldsymbol{q}_1 + \dots + c_n \boldsymbol{q}_n \\ \boldsymbol{q}_i^\top \boldsymbol{b} &= c_i \\ \mathbf{Q}^\top \boldsymbol{b} &= \boldsymbol{c} = \left(\boldsymbol{b} \right)_Q \end{aligned}$$

Orthogonal Matrices

$$\mathbf{Q}^{\top} = \mathbf{Q}^{-1} \iff \mathbf{Q}^{\top} \mathbf{Q} = \mathbf{Q} \mathbf{Q}^{\top} = \mathbf{I}.$$

Projection onto a Vector

$$ext{proj}_{m{a}}\left(m{b}
ight) = m{b}_P = m{a} \left(m{a}^{ op}m{a}
ight)^{-1} m{a}^{ op} m{b}$$

$$= \frac{m{a}}{\|m{a}\|^2} m{a} \cdot m{b}$$

Using a unit vector \boldsymbol{q} :

$$\operatorname{proj}_{\boldsymbol{q}}\left(\boldsymbol{b}\right) = \boldsymbol{q}\left(\boldsymbol{q}\cdot\boldsymbol{b}\right)$$

Gram-Schmidt Process

Converts the basis W that spans $\operatorname{span}(\mathbf{A})$ to an orthonormal basis Q

$$oldsymbol{v}_1 = oldsymbol{w}_1$$
 $oldsymbol{q}_1 = oldsymbol{v}_1/\|oldsymbol{v}\|$

$$\begin{aligned} \boldsymbol{v}_2 &= \boldsymbol{w}_2 - \boldsymbol{q}_1 \left(\boldsymbol{q}_1 \cdot \boldsymbol{w}_2 \right) & \quad \boldsymbol{q}_2 &= \boldsymbol{v}_2 / \| \boldsymbol{v}_2 \| \\ & \cdot & \\ & \cdot & \end{aligned}$$

$$oldsymbol{v}_i = oldsymbol{w}_i - \sum_{j=1}^{i-1} oldsymbol{q}_j \left(oldsymbol{q}_j \cdot oldsymbol{w}_i
ight) \quad oldsymbol{q}_i = oldsymbol{v}_i / \|oldsymbol{v}_i\|. egin{array}{c} ext{Skew-Symmetric Matrices} \ ext{A} \in \mathbb{R}^{n imes n} ext{ where } ext{A}^ op = - ext{A}. \end{array}$$

V and Q span W and V is orthogonal.

QR Decomposition

$$A = QR$$
.

upper-triangular. decomposition also finds the Least into four categories. Squares solution.

Eigenvalues and Eigenvectors

$$(\lambda \mathbf{I} - \mathbf{A}) \, \boldsymbol{v} = \mathbf{0} : \boldsymbol{v} \neq \mathbf{0}$$

$$P(\lambda) = \det(\lambda \mathbf{I} - \mathbf{A}) = 0.$$

Eigen Decomposition

$$AV = VD \iff A = VDV^{-1}.$$

$$\begin{aligned} \mathbf{V} &= \begin{bmatrix} \boldsymbol{v}_1 & \cdots & \boldsymbol{v}_n \end{bmatrix} & \mathbf{D} \\ \mathrm{diag} \, (\lambda_1, \, \dots, \, \lambda_n). \end{aligned}$$

Algebraic Multiplicity $\mu_{\mathbf{A}}(\lambda_i)$

The multiplicity of λ_i in $P(\lambda)$, for $d \leq n$ Given a nondefective $\mathbf{A} \in \mathbb{R}^{n \times n}$: distinct eigenvalues,

$$P\left(\lambda\right) = \left(\lambda - \lambda_{1}\right)^{\mu_{\mathbf{A}}\left(\lambda_{1}\right)} \cdots \left(\lambda - \lambda_{d}\right)^{\mu_{\mathbf{A}}\left(\lambda_{d}\right)}.$$

This requires

$$1 \leq \mu_{\mathbf{A}}(\lambda_i) \leq n$$

$$\mu_{\mathbf{A}} = \sum_{i=1}^{d} \mu_{\mathbf{A}}\left(\lambda_{i}\right) = n$$

The dimension of the eigenspace of $\mathbf{A} \in \mathbb{R}^{m \times n}$ is given by associated with λ_i .

$$\gamma_{\mathbf{A}}\left(\lambda_{i}\right)=\mathrm{nullity}\left(\lambda_{i}\mathbf{I}-\mathbf{A}\right).$$

Given $d \leq n$ distinct eigenvalues,

$$1 \le \gamma_{\mathbf{A}}(\lambda_i) \le \mu_{\mathbf{A}}(\lambda_i) \le n$$

$$\gamma_{\mathbf{A}} = \sum_{i=1}^{d} \gamma_{\mathbf{A}} \left(\lambda_{i} \right)$$

$$d \leq \gamma_{\mathbf{A}} \leq n$$
.

Eigenvectors corresponding to distinct eigenvalues are linearly dependent.

Defective Matrix

A lacks a complete eigenbasis, $\exists \lambda_k$: $\gamma_{\mathbf{A}}(\lambda_k) < \mu_{\mathbf{A}}(\lambda_k).$

Matrix Similarity

 \mathbf{A} and \mathbf{B} are similar if

$$\mathbf{B} = \mathbf{P}^{-1} \mathbf{A} \mathbf{P}.$$

They share $P(\lambda)$, ranks, determinants, trace, and eigenvalues (including μ and

Symmetric Matrices

 $\mathbf{A} \in \mathbb{R}^{n \times n}$ where $\mathbf{A}^{\top} = \mathbf{A}$.

- 1. A is always diagonalisable.
- 2. Eigenvalues and eigenvectors are always real.
- 3. The eigenspaces are orthogonal.

$$\mathbf{A} = \mathbf{Q} \mathbf{D} \mathbf{Q}^{ op}$$

$$\mathbf{A} \in \mathbb{R}^{n \times n} \text{ where } \mathbf{A}^{\top} = -\mathbf{A}.$$

1. Eigenvalues are purely imaginary.

Definite Matrices

QR Symmetric matrices are also known as definite matrices, and can be classified

- 1. Positive definite matrices: All eigenvalues are positive.
- 2. Positive semidefinite matrices: All eigenvalues are nonnegative.
- 3. Negative definite matrices: All eigenvalues are nonpositive.
- 4. Negative semidefinite matrices: All eigenvalues are negative.

Matrix Functions

$$\begin{split} f\left(\mathbf{A}\right) &= \mathbf{V} f\left(\mathbf{D}\right) \mathbf{V}^{-1} \\ &= \mathbf{V} \operatorname{diag}\left(f\left(\lambda_{1}\right), \ \ldots, \ f\left(\lambda_{n}\right)\right) \mathbf{V}^{-1}. \end{split}$$

for an analytic function f.

Cayley-Hamilton Theorem

$$\forall \mathbf{A} \in \mathbb{R}^{n \times n} : P(\mathbf{A}) = \mathbf{0}$$

Singular Value Decomposition

The singular value decomposition (SVD)

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$$

where $\mathbf{U} \in \mathbb{R}^{n \times n}$ is an orthogonal matrix, $\Sigma \in \mathbb{R}^{m \times n}$ is a diagonal matrix, and $\mathbf{V} \in \mathbb{R}^{m \times m}$ is an orthogonal matrix. U is known as the left-singular matrix and V is the right-singular matrix, corresponding to how these matrices are multiplied to Σ .

 Σ consists of the singular values σ_i of A, which can be determined using the following process:

$$\mathbf{A}^{\top}\mathbf{A} = (\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\top})^{\top}(\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\top})$$
$$= \mathbf{V}\boldsymbol{\Sigma}^{\top}\mathbf{U}^{\top}\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\top}$$
$$= \mathbf{V}\boldsymbol{\Sigma}^{\top}\boldsymbol{\Sigma}\mathbf{V}^{\top}$$

similarly,

$$\mathbf{A}\mathbf{A}^{\top} = (\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\top})(\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\top})^{\top}$$
$$= \mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\top}\mathbf{V}\boldsymbol{\Sigma}^{\top}\mathbf{U}^{\top}$$
$$= \mathbf{U}\boldsymbol{\Sigma}\boldsymbol{\Sigma}^{\top}\mathbf{U}^{\top}$$

In both instances, we form an orthogonal eigendecomposition where $\mathbf{\Sigma}^{\top}\mathbf{\Sigma}$ and $\Sigma\Sigma^{\top}$ are the eigenvalues of $\mathbf{A}^{\top}\mathbf{A}$ and Therefore, with respect to the orthogonal $\mathbf{A}\mathbf{A}^{\top}$, respectively. But because the bases V and U, the linear map from \mathbb{R}^n eigenvalues of $\mathbf{A}^{\top}\mathbf{A}$ and $\mathbf{A}\mathbf{A}^{\top}$ are equal, to \mathbb{R}^m is represented by the matrix Σ . $\Sigma^{\top}\Sigma = \Sigma\Sigma^{\top}$.

The singular values are non-negative The singular values are non-negative Reduced SVD we have $\mathbf{U}_{\Sigma} = \mathbf{I}_{m}$, $\mathbf{\Sigma}_{\Sigma} = \mathbf{\Sigma}$, and constants and the entries of $\mathbf{\Sigma}$ are always By ignoring the additional m-n rows $\mathbf{V}_{\Sigma} = \mathbf{I}_{n}$. Then the pseudoinverse of this non-increasing: $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$ in Σ , we can form the reduced SVD matrix is then where r is the rank of **A**.

Orthonormal Bases for the **Fundamental Subspaces**

$$\mathbf{AV} = \mathbf{U}\mathbf{\Sigma}$$

$$\mathbf{AV} = egin{bmatrix} ig| & & ig| & & ig| & & ig| \ oldsymbol{a}_1 & \cdots & oldsymbol{a}_r & oldsymbol{a}_{r+1} & \cdots & oldsymbol{a}_n \ ig| & & ig| & ig| \end{pmatrix}$$

$$\mathbf{U}oldsymbol{\Sigma} = egin{bmatrix} ig| & ig| &$$

where we have r singular values because $\operatorname{rank} \mathbf{A} = \operatorname{rank} \mathbf{A}^{\top} \mathbf{A}$. If we express each equation separately, then

$$egin{aligned} \mathbf{A} oldsymbol{v}_1 &= \sigma_1 oldsymbol{u}_1 \ & \vdots \ \mathbf{A} oldsymbol{v}_r &= \sigma_2 oldsymbol{u}_r \ \mathbf{A} oldsymbol{v}_{r+1} &= \mathbf{0} \ & \vdots \ & \mathbf{A} oldsymbol{v}_n &= \mathbf{0} \end{aligned}$$

forms a basis for the null space of \mathbf{A} , must hold for all $i \leq r$. If we multiply generate a rank- ν approximation of \mathbf{A} : requiring the remaining columns of ${f V}$ to the RHS by ${m u}_i^{ op} {m u}_i$ form a basis for the row space of A.

This means that $\{u_1, \ldots, u_r\}$ also forms a basis for the column space of A, and hence, the remaining columns of **U** form a basis for the left-null space of **A**. To summarise:

$$\mathcal{C}(\mathbf{A}^{\top}) = \operatorname{span}(\{v_{i \leq r}\})$$
 $\mathcal{C}(\mathbf{A}) = \operatorname{span}(\{u_{i \leq r}\})$ that the production of th

Singular Bases

columns of the orthogonal matrices \mathbf{V} and \mathbf{U} from the \mathbf{v} and \mathbf{U} from the \mathbf{v} and \mathbf{U} , respectively. Let $(\mathbf{x})_V = \mathbf{c}$ and $\mathbf{A}^{\dagger} \mathbf{u}_r = \left(\frac{1}{\sigma_1} \mathbf{v}_1 \mathbf{u}_1^{\top} + \dots + \frac{1}{\sigma_r} \mathbf{v}_r \mathbf{u}_r^{\top}\right) \mathbf{u}_r = \frac{1}{\sigma_1} \mathbf{v}_1 \mathbf{v}_1^{\top} \mathbf{u}_r^{\top} \mathbf{v}_r^{\top} \mathbf{v}$

becomes

$$egin{aligned} \mathbf{A}oldsymbol{x} &= oldsymbol{b} \ \mathbf{A}oldsymbol{V}oldsymbol{c} &= \mathbf{U}oldsymbol{k} \ \mathbf{U}^{ op}\mathbf{A}oldsymbol{V}oldsymbol{c} &= oldsymbol{k} \ \mathbf{\Sigma}oldsymbol{c} &= oldsymbol{k} \ \mathbf{\Sigma}oldsymbol{(x)}_V &= oldsymbol{(b)}_U \,. \end{aligned}$$

Reduced SVD

which removes the additional "0" rows of Σ . This results in $\mathbf{U} \in \mathbb{R}^{m \times n}$ and $\Sigma \in \mathbb{R}^{n \times n}$.

For
$$\mathbf{A} \in \mathbb{R}^{m \times n}$$
 with rank $(\mathbf{A}) = r \le n$:
$$\mathbf{AV} = \mathbf{U\Sigma}$$
with
$$\mathbf{AV} = \begin{bmatrix} \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{u}_1 & \cdots & \mathbf{u}_r & \mathbf{u}_{r+1} & \cdots & \mathbf{u}_n \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} &$$

 $\begin{cases} \sigma_{l} \text{eft-null space basis from } \mathbf{U}. \\ \mathbf{Pseudofinverse} \end{cases} \begin{cases} \mathbf{v}_{n < i \leq m} \} \text{ determined using } \\ r \text{ rows} \end{cases}$ Note that the pse

Using the $\stackrel{0}{\text{orthogon}}$ orthogonal basis vectors obtained through the second show that v_i we can show that v_i Therefore $\stackrel{1}{\text{o}}$ the second show that v_i and v_i the v_i the v_i the v_i submatrix of v_i submatrix of v_i the v_i submatrix of v_i subm

$$\mathbf{A}\mathbf{v}_i = \sigma_i \mathbf{u}_i$$

If we consider the inverse mapping $u_i \mapsto$ $\frac{1}{\sigma_i} \boldsymbol{v}_i$, then

$$\mathbf{A}^{\dagger} oldsymbol{u}_i = rac{1}{\sigma_i} oldsymbol{v}_i$$

where \mathbf{A}^{\dagger} is the pseudoinverse of \mathbf{A} .

$$\mathbf{A}^\dagger oldsymbol{u}_i = rac{1}{\sigma_i} oldsymbol{v}_i oldsymbol{u}_i^ op oldsymbol{u}_i$$

To summarise: $\mathcal{C}(\mathbf{A}^{\top}) = \operatorname{span}(\{v_{i \leq r}\})$ $\mathcal{C}(\mathbf{A}) = \operatorname{span}(\{v_{i \leq r}\})$ $\mathcal{N}(\mathbf{A}) = \operatorname{span}(\{v_{i \leq r}\})$ $\mathcal{N}(\mathbf{A}^{\top}) = \operatorname{sp$

$$\mathbf{A}^{\dagger}\boldsymbol{u}_{1} = \left(\frac{1}{\sigma_{1}}\boldsymbol{v}_{1}\boldsymbol{u}_{1}^{\top} + \dots + \frac{1}{\sigma_{r}}\boldsymbol{v}_{r}\boldsymbol{u}_{r}^{\top}\right)\boldsymbol{u}_{1} = \frac{\operatorname{decomposition \ matrices \ change}}{\sigma_{1}}\underbrace{\boldsymbol{v}_{1}\boldsymbol{u}_{1}\boldsymbol{u}_{1}\boldsymbol{u}_{1} + \dots + \boldsymbol{v}_{r}\boldsymbol{v}_{r}\boldsymbol{u}_{r}\boldsymbol{u}_{1}}_{\sigma_{1}} \stackrel{e}{=} \frac{1}{\sigma_{1}}\boldsymbol{v}_{1}$$

$$\mathbf{A}^\dagger = \sum_{i=1}^r rac{1}{\sigma_i} oldsymbol{v}_i oldsymbol{u}_i^ op$$

which is equivalent to

$$\mathbf{A}^{\dagger} = \mathbf{V} \begin{bmatrix} \frac{1}{\sigma_1} & & & & & \\ & \ddots & & & & \\ & & \frac{1}{\sigma_r} & & & \\ & & & 0 & & \\ & & & \ddots & & \\ & & & 0 & & \end{bmatrix} \mathbf{U}^{\top}$$

If we consider the SVD of Σ :

$$\mathbf{\Sigma} = \mathbf{U}_{\Sigma} \mathbf{\Sigma}_{\Sigma} \mathbf{V}_{\Sigma}^{\top}.$$

$$oldsymbol{\Sigma}^\dagger = \sum_{i=1}^r rac{1}{\sigma_i} oldsymbol{v}_{\Sigma,\,i} oldsymbol{u}_{\Sigma,\,i}^ op$$

$$\underline{\underline{\sigma}}_{r} \begin{bmatrix} \frac{1}{\sigma_{1}} & & \\ & \ddots & \\ 0 & & \\ & \ddots & \\ & & 0 \end{bmatrix} \begin{cases} r \text{ rows} \\ n - r \text{ rows} \\ 0 & \\ \end{cases}$$

$$\mathbf{A}^{\dagger} = \mathbf{V} \mathbf{\Sigma}^{\dagger} \mathbf{U}^{\top}.$$

Note that the pseudoinverse can also be

By expanding the SVD of \mathbf{A} , we can express it as the sum of rank-1 matrices:

$$\mathbf{A} = \sum_{i=1}^n \sigma_i \boldsymbol{u}_i \boldsymbol{v}_i^\top.$$

However if r < n, the

$$\mathbf{A} = \sum_{i=1}^r \sigma_i oldsymbol{u}_i oldsymbol{v}_i^ op$$

as $\sigma_{r < i \le n} = 0$. As the singular values are ordered from largest to smallest, if we wished to approximate A by a matrix of lower rank, we can truncate this sum which shows us that $\{v_{r+1}, ..., v_n\}$ To determine \mathbf{A}^{\dagger} , the above relationship even further at $i = \nu$ for $\nu < r$, to

$$ilde{\mathbf{A}} = \sum_{i=1}^{
u} \sigma_i oldsymbol{u}_i oldsymbol{v}_i^{ op}.$$

This allows us to represent the matrix we can show that ${\bf A}^{\dagger}$ takes the ${\bf A}$ using only ν singular values and 2ν form $\frac{1}{\sigma_i} v_i u_i^{\top}$. Using the Kronecker singular vectors $(u_i \text{ and } v_i \text{ for } i =$ Delta definition of orthonormal vectors, $1 \dots \nu$). This approximate decomposition

variations in which the dimensions of the

$$\mathbf{A} = \mathbf{U} \quad \mathbf{\Sigma} \quad \mathbf{V}^{\top}$$

$$\mathbf{A} = \mathbf{U} \quad \mathbf{\Sigma} \quad \mathbf{V}^{\top}$$

$$\mathbf{A} = \mathbf{V} \quad \mathbf{\Sigma} \quad \mathbf{V}^{\top}$$

$$\frac{1}{\sigma_1} \mathbf{v}_1 \mathbf{w}_1^{\mathsf{T}} \mathbf{u}_r^{\mathsf{T}} \mathbf{v}_r^{\mathsf{T}} \mathbf{u}_r^{\mathsf{T}} \mathbf{v}_r^{\mathsf{T}} \mathbf{v}_r^{\mathsf{T$$

$$\mathbf{A}_{m \times n} = \mathbf{U}_{m \times \nu} \quad \mathbf{\Sigma}_{\nu \times \nu} \quad \mathbf{V}_{n \times \nu}$$

Consider the ith column of \mathbf{A} in the truncated SVD,

$$\begin{split} \tilde{\mathbf{A}}_{:,\,i}^{'} &= \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}_{i,\,:}^{\top} \\ \text{If we let } \boldsymbol{x}_i &= \boldsymbol{\Sigma} \mathbf{V}_{i,\,:}^{\top}, \text{ then} \\ \tilde{\mathbf{A}}_{:,\,i} &= \mathbf{U} \boldsymbol{x}_i \end{split}$$

so that $\boldsymbol{x}_i \in \mathbb{R}^{\nu}$ is the coordinate vector of $\mathbf{A}_{:i}$ with respect to the basis of left **Subspaces** singular vectors $\mathbf{U}_{:,i\leq\nu}$. In statistics or machine learning, the columns of ${\bf U}$ are called "features" as they are the most important singular vectors used to construct **A**. The vector \boldsymbol{x}_i is then the coordinate vector of A's projection onto the "feature space".

In data analysis, this process is referred to as Principal Componenet Analysis (PCA) where the matrix **A** represents a set of observations in which each column contains a particular explanatory variable that one might be interested in. The model shown above can be used to explain the observations from each variable in that dataset.

General Vector Spaces

Vector Space Axioms

 $\forall k, m \in \mathbb{R}$.

Axiom

Closure under vector addition Commutativity of vector addition Associativity of vector addition Identity element of vector addition Inverse elements of vector addition

Table 1: Additive axioms.

Axiom

Closure under scalar multiplication of \mathcal{M}_{mn} :

- 1. The set of $m \times n$ matrices \mathcal{M}_{mn} General Vector Space Terminology with matrix addition and scalar The notions of linear combination, linear multiplication.
- 2. The set of functions $\mathscr{F}\left(\Omega\right)$: for general vector spaces. $\Omega\,\to\,\mathbb{R}\,$ with addition and scalar Let $c_1,\,\dots,\,c_k\in\mathbb{R}$ be scalars: multiplication defined pointwise.

Consider the subset W of a vector space V, so that $W \subset V$. For W to be a subspace of V, it must also satisfy the 10 axioms shown above. Now as W is a subset of V, 6 axioms are automatically inherited from the enclosing space V.

Therefore only the following axioms need to be satisfied in W:

- Axiom 1: Closure under vector addition
- Axiom 4: Identity element of vector addition
- Axiom 5: vector addition
- Axiom 6: Close under scalar multiplication

A set V of objects are called "vectors" if However, if Axioms 1 and 6 are the following additive and multiplicative established, then Axioms 4 and 5 will axioms are satisfied $\forall u, v, w \in V$ and inherit from the vector space structure. The vector space is of dimension k there 1 and 6.

> Meaning is closed under vector addition and scalar infinite-dimensional. multiplication il a subspace of that vector The standard bases for some vector $\operatorname{spac} \boldsymbol{u} + \boldsymbol{v} = \boldsymbol{v} + \boldsymbol{u}$

$$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$$

$$\begin{array}{l} \exists 05\text{-}3\text{/}1\text{:}\ u\text{Ex}\text{nmples}\ \text{wf-Subspaces}\\ \exists\ (-u)\in V: u+(-u)=0\\ &\text{Subspaces}\ \text{of}\ \mathbb{R}^n\text{:} \end{array}$$

1. Lines, planes and higher-dimensional analogues in \mathbb{R}^n passing through the origin. Meaning

 $k\mathbf{u} \in V$

2. The set of all skew symmetric $n \times n$ matrices **A** such that $\mathbf{A} = -\mathbf{A}^{\top}$,

- 1. The set of all polynomials of degree Linear Transformations n or less, denoted $\mathscr{P}_n \subset \mathcal{F}(\Omega)$.
- 2. The set of all continuous functions, denoted $C(\Omega) \subset \mathcal{F}(\Omega)$.
- 3. The set of all functions with continuous derivatives on Ω , for satisfying the following properties for all example, $C^{1}(\Omega) \subset C(\Omega)$ is the $\boldsymbol{u}, \boldsymbol{v} \in V$ and all scalars $k \in \mathbb{R}$: set of all functions with continuous first derivatives.
- 4. The set of all functions f defined on [0, 1] satisfying f(0) = f(1).

independence and span are all unchanged

- The linear combination of a set of vector $S = \{\boldsymbol{v}_1, \dots, \boldsymbol{v}_k\}$ is a vector of the form $\mathbf{v} = c_1 \mathbf{v}_1 + \dots + c_k \mathbf{v}_k$.
- A set of vectors $S = \{v_1, \dots, v_k\}$ is linearly independent if the only solution to $c_1 \mathbf{v}_1 + \dots + c_k \mathbf{v}_k = \mathbf{0}$ is the trivial solution $c_1 = \cdots = c_k =$
- The span of a set of vectors S = $\{\boldsymbol{v}_1, \ldots, \boldsymbol{v}_k\}$ is the set of all linear combinations of that set, denoted $\operatorname{span}(S)$.

Inverse elements of A set of vectors $S = \{v_1, ..., v_k\}$ is a basis for a vector space V if

- S is linearly independent.
- span (S) = V.

of V. So it suffices to check only Axioms are k vectors in its basis. Note that not all vector spaces have a basis. For Therefore any subset W of a vector that example, function spaces, such as C are

spaces are shown below:

$$\bullet \ \mathbb{R}^3 \colon S = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \ \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \ \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$$

$$\underline{} \bullet \quad \mathcal{M}_{22} : S = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Distributivity of scalar multiplication with vector addition
$$k \cdot (\boldsymbol{u} + \boldsymbol{v}) = k\boldsymbol{u} + k\boldsymbol{v}$$
. The set of all symmetric $n \times n$ Distributivity of scalar multiplication with scalar addition $(k + m) \cdot \boldsymbol{u} = k\boldsymbol{u} + m\boldsymbol{u}$. Associativity of scalar multiplication denoted $\mathcal{S}_n \subset \mathcal{M}_{nn}$. Associativity of scalar multiplication $(k + m) \cdot \boldsymbol{u} = k\boldsymbol{u} + m\boldsymbol{u}$. Associativity of scalar multiplication $(k + m) \cdot \boldsymbol{u} = (km) \cdot \boldsymbol{u}$. Identity element of scalar multiplication $(k + m) \cdot \boldsymbol{u} = (km) \cdot \boldsymbol{u}$.

$$-\bullet \quad \mathscr{K}_{22} : \ S = \left\{ \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}$$

•
$$\mathcal{P}_3$$
: $S = \{1, x, x^2, x^3\}$

A linear transformation T is a mapping from a vector space V to a vector space

$$T:V\to W$$

1.
$$T(k\mathbf{u}) = kT(\mathbf{u})$$

2.
$$T(\boldsymbol{u} + \boldsymbol{v}) = T(\boldsymbol{u}) + T(\boldsymbol{v})$$

Table 2: Multiplicative axioms. If these axioms satisfied, are the objects called "vectors" and operators "addition" and (+)"scalar multiplication" (denoted juxtaposition) form a general vector space V. It follows that the operations of addition and scalar multiplication need not resemble those in \mathbb{R}^n to satisfy the 10 axioms described above. Rather any set with two operations can form a vector space if they satisfy the 10 axioms above.

Examples of Vector Spaces

Aside from the familiar vector space \mathbb{R}^n , we can also consider the following spaces which satisfy the 10 axioms above.

denoted $\mathcal{K}_n \subset \mathcal{M}_{nn}$. Subspaces of $\mathcal{F}(\Omega)$:

These defining properties allow us to characterise a linear transformation completely by considering how the basis $B = \{\boldsymbol{v}_1, \dots, \boldsymbol{v}_n\}, \text{ such that }$

$$\boldsymbol{v} = x_1 \boldsymbol{v}_1 + \dots + x_n \boldsymbol{v}_n.$$

Therefore

$$\begin{split} T\left(\boldsymbol{v}\right) &= T\left(x_{1}\boldsymbol{v}_{1} + \dots + x_{n}\boldsymbol{v}_{n}\right) \\ &= T\left(x_{1}\boldsymbol{v}_{1}\right) + \dots + T\left(x_{n}\boldsymbol{v}_{n}\right) \\ &= x_{1}T\left(\boldsymbol{v}_{1}\right) + \dots + x_{n}T\left(\boldsymbol{v}_{n}\right) \end{split}$$

 $\boldsymbol{w} \in W$ relative to the basis B' $\{ \boldsymbol{w}_1, \, \dots, \, \boldsymbol{w}_m \}$ is

$$\mathbf{w} = b_1 \mathbf{w}_1 + \dots + b_m \mathbf{w}_m$$

= $B' \mathbf{b}$
= $B' (\mathbf{w})_{B'}$

so that the linear transformation can be This operation must satisfy the following expressed as follows

axioms. For
$$\boldsymbol{u},\,\boldsymbol{v},\,\boldsymbol{w}\in V$$
 and k
$$T(\boldsymbol{v}) = \boldsymbol{w}$$

$$x_1T(\boldsymbol{v}_1) + \dots + x_nT(\boldsymbol{v}_n) = b_1\boldsymbol{w}_1 + \dots + b_m\boldsymbol{w}_m \text{ Axiom}$$

$$\begin{bmatrix} & & & & \\ T(\boldsymbol{v}_1) & \dots & T(\boldsymbol{v}_n) \\ & & & \end{bmatrix} \boldsymbol{x} = B'\boldsymbol{b}$$
 Linearity in the first argument Linearity in the first argument Linearity in the first argument Positive semi-definitiveness
$$\begin{bmatrix} (T(\boldsymbol{v}_1))_{B'} & \dots & (T(\boldsymbol{v}_n))_{B'} \\ & & \end{bmatrix} \boldsymbol{x} = \boldsymbol{b}$$
 Table 3: Inner product axion A vector space that defines operation called an inner product operation called an inner product.

Therefore the linear transformation between the vector spaces V and W 5.7.1 Examples of Inner Products can be represented as the transformation of coordinate vectors relative to the bases B and B', denoted $(T)_{B'-B}$, that is, the

Definition 5.1 (Isomorphism). A linear transformation $T : V \rightarrow W$ is an isomorphism between V and W if there exists a bijection between the two vector spaces.

All n dimensional vector spaces V are isomorphic to \mathbb{R}^n . This is a result of to the basis B that allow us to represent inner product is defined each vector $\mathbf{v} \in V$ as a linear combination of the standard basis vectors in \mathbb{R}^n .

Fundamental Subspaces of T

The fundamental subspaces to arbitrary linear alsogeneralise transformations.

- to W is the **image** of T, denoted spaces also. im(T).
- The set of all vectors in W that is mapped to by a vector in V is the **range** of T, denoted range (T).
- The set of all vectors in V that T

maps to $\mathbf{0}_W$ is the **kernel** of T, **5.7.2** Norms denoted $\ker(T)$.

vectors from V map to W. Any vector If the range of T is finite-dimensional, $v \in V$ can be written in terms of a basis its dimension is the rank of T, and if the kernel of T is finite-dimensional, its From this definition, we maintain the dimension is the **nullity** of T, so that the expected properties of the Euclidean rank-nullity theorem continues to hold.

$$\operatorname{rank}(T) + \operatorname{nullity}(T) = \dim(V).$$

Inner Product Spaces

To describe geometric properties of Now consider the coordinate vector of vector spaces, we introduce an operation \equiv called the inner product that acts on the vectors in a vector space. The inner product associates a pair of vectors to a real number, and is delimited by angle from \mathbb{R}^{mn} leads to the following brackets

$$\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}.$$

axioms. For $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \in V$ and $k \in \mathbb{R}$:

Having defined an inner product, we can also define the norm as

$$\|\boldsymbol{v}\| = \sqrt{\langle \boldsymbol{v}, \, \boldsymbol{v} \rangle}$$

- $\|v\| \ge 0$ and $\|v\| = 0$ iff v = 0.
- $||k\mathbf{v}|| = |k|||\mathbf{v}||$ for $k \in \mathbb{R}$.
- $||u + v|| \le ||u|| + ||v||$, which is the triangle inequality.

For matrices, the inner product inherited definitions of norms:

$$\|\mathbf{A}\| = \sqrt{\langle \mathbf{A}, \ \mathbf{A} \rangle} = \sqrt{\mathrm{Tr}\left(\mathbf{A}^{\top}\mathbf{A}\right)} = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i_{j}}^{2}}$$

which is known as the Frobenius norm. For continuous functions $f \in C([a,b])$:

Meaning
$$\frac{\|f(x)\| = \sqrt{\langle f(x), f(x) \rangle}}{\langle u, v \rangle = \langle v, u \rangle} = \sqrt{\int_a^b f(x)^2 dx}.$$

$$\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$$

$$5. \langle v. w \rangle = \langle u, w \rangle + \langle v, w \rangle$$

$$5. \langle v. w \rangle = \langle v. w \rangle + \langle v. w \rangle$$

$$5. \langle v. w \rangle = \langle v. w \rangle + \langle v. w \rangle$$

$$5. \langle v. w \rangle = \langle v. w \rangle + \langle v. w \rangle$$

$$5. \langle v. w \rangle = \langle v. w \rangle + \langle v. w \rangle$$
Similarly, we can say that two vectors u

and \boldsymbol{v} are orthogonal if

$$\langle \boldsymbol{v}, \, \boldsymbol{v} \rangle = 0.$$

operation called an inner product space. Using this definition we can show that all

A vector space that defines such an

Symmetry

Linearity in the first argument

Positive semi-definitiveness

Table 3: Inner product axioms.

- $\langle \boldsymbol{u}, \boldsymbol{v} \rangle = \boldsymbol{u} \cdot \boldsymbol{v} = \boldsymbol{u}^{\top} \boldsymbol{v}$. This is the standard inner product called the "dot product".
- $\langle \boldsymbol{u}, \boldsymbol{v} \rangle = \boldsymbol{u}^{\top} \mathbf{A} \boldsymbol{v}$ where **A** is positive definite. This is a weighted inner product, which can be used in weighted least squares.

the coordinate vectors of V with respect For matrices $\mathbf{A}, \mathbf{B} \in \mathcal{M}_{mn}$, the standard

$$\langle \mathbf{A}, \mathbf{B} \rangle = \operatorname{Tr}(\mathbf{A}^{\top} \mathbf{B}).$$

For continuous function spaces, consider $f, g \in C([a,b])$ where the inner product operation is defined by the integral

$$\langle f, g \rangle = \int_{a}^{b} f(x) g(x) dx.$$

Given the linear transformation $T: V \to As$ the vector spaces \mathcal{M}_{mn} and \mathcal{P}_n are isomorphic to \mathbb{R}^{mn} and \mathbb{R}^{n+1} respectively, we can use the inner • The set of all vectors in V that map product definitions from \mathbb{R}^n for these

> Likewise we can also consider the following integral definition with a continuous weight function w(x) that is positive for all $x \in [a, b]$:

$$\langle f, g \rangle = \int_{a}^{b} f(x) g(x) w(x) dx.$$