SWE2001: System Program

Lecture 0x03: Bits, Bytes, and Integers - 3

Hojoon Lee

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Byte-Oriented Memory Organization

- Programs refer to data by address
 - Conceptually, envision it as a very large array of bytes
 - In reality, it's not, but can think of it that way
 - An address is like an index into that array
 - and, a pointer variable stores an address
- Note: system provides private address spaces to each "process"
 - · Think of a process as a program being executed
 - So, a program can clobber its own data, but not that of others

Machine Words

- Any given computer has a "Word Size"
 - Nominal size of integer-valued data
 - and of addresses
 - Until recently, most machines used 32 bits (4 bytes) as word size
 - Limits addresses to 4GB (2³² bytes)
 - Increasingly, machines have 64-bit word size
 - Potentially, could have 18 EB (exabytes) of addressable memory
 - That's 18.4 X 10¹⁸
 - Machines still support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes

Word-Oriented Memory Organization

- Addresses Specify Byte Locations
 - Address of first byte in word
 - Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)

Example Data Representations

C Data Type	Typical 32-bit	Typical 64-bit	x86-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	8	8
float	4	4	4
double	8	8	8
long double	-	-	10/16
pointer	4	8	8

Byte Ordering

- So, how are the bytes within a multi-byte word ordered in memory?
- Conventions
 - Big Endian: Sun, PPC Mac, Internet
 - Least significant byte has highest address
 - Little Endian: x86, ARM processors running Android, iOS, and Windows
 - Least significant byte has lowest address

Byte Ordering Example

- Example
 - Variable x has 4-byte value of 0x01234567
 - Address given by &x is 0x100

Big Endian		0x100	0x101	0 x 102	0x103	
		01	23	45	67	
Little Endiar	า	0x100	0x101	0x102	0x103	
		67	45	23	01	

Representing Integers

Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 3 B 6 D

int A = 15213;

int B = -15213;

long int C = 15213;

Two's complement representation

Examining Data Representations

- Code to Print Byte Representation of Data
 - Casting pointer to unsigned char * allows treatment as a byte array

```
typedef unsigned char *pointer;

void show_bytes(pointer start, size_t len){
    size_t i;
    for (i = 0; i < len; i++)
        printf("%p\t0x%.2x\n", start+i, start[i]);
    printf("\n");
}</pre>
```


Printf directives:

%p: Print pointer

%x: Print Hexadecimal

show bytes Execution Example

```
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Result (Linux x86-64):

```
int a = 15213;
0x7fffb7f71dbc 6d
0x7fffb7f71dbd 3b
0x7fffb7f71dbe 00
0x7fffb7f71dbf 00
```


Representing Pointers

int
$$B = -15213$$
;
int *P = &B

Different compilers & machines assign different locations to objects

Representing Strings

- Strings in C
 - Represented by array of characters
 - Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Character "0" has code 0x30
 - Digit i has code 0x30+i
 - String should be null-terminated
 - Final character = 0
- Compatibility
 - Byte ordering not an issue

Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Fractional binary numbers

What is 1011.101₂?

Fractional Binary Numbers

- Representation
 - Bits to right of "binary point" represent fractional powers of 2
 - Represents rational number:

$$\sum_{k=-j}^{i} b_k \times 2^k$$

Fractional Binary Numbers: Examples

Value Representation

5 3/4 101.112

2 7/8 10.1112

1 7/16 1.01112

Observations

Divide by 2 by shifting right (unsigned)

Multiply by 2 by shifting left

Numbers of form 0.111111...2 are just below 1.0

 $1/2 + 1/4 + 1/8 + ... + 1/2^{i} + ... \rightarrow 1.0$

Use notation 1.0 – ε

Representable Numbers

- Limitation #1
 - Can only exactly represent numbers of the form $x/2^k$
 - Other rational numbers have repeating bit representations

```
Value Representation
1/3 0.01010101[01]...2
1/5 0.001100110011[0011]...2
1/10 0.000110011[0011]...2
```

- Limitation #2
 - Just one setting of binary point within the w bits
 - Limited range of numbers (very small values? very large?)

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

IEEE Floating Point

- ► IEEE Standard 754
 - Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
 - Supported by all major CPUs

- Driven by numerical concerns
 - Nice standards for rounding, overflow, underflow
 - Hard to make fast in hardware
 - · Numerical analysts predominated over hardware designers in defining standard

Floating Point Representation

Numerical Form:

$$(-1)^{s} M 2^{E}$$

- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two
- Encoding
 - MSB s is sign bit s
 - exp field encodes E (but is not equal to E)
 - frac field encodes M (but is not equal to M)

S	ехр	frac

Precision options

Single precision: 32 bits

Double precision: 64 bits

Extended precision: 80 bits (Intel only)

"Normalized" Values

When: exp ≠ 000...0 and exp ≠ 111...1

- $v = (-1)^{s} M 2^{E}$
- Exponent coded as a biased value: E = Exp Bias
 - Exp: unsigned value of exp field
 - Bias = 2^{k-1} 1, where k is number of exponent bits
 - Single precision: 127 (Exp: 1...254, E: -126...127)
 - Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
- Significand coded with implied leading 1: M = 1.xxx...x2
 - xxx...x: bits of frac field
 - Minimum when frac=000...0 (M = 1.0)
 - Maximum when frac=111...1 (M = 2.0ε)
 - Get extra leading bit for "free"

Normalized Encoding Example

```
v = (-1)^s M 2^E

E = Exp - Bias
```

Significand

Exponent

```
E = 13
Bias = 127
Exp = 140 = 10001100_{2}
```

Result:

Denormalized Values

Condition: exp = 000...0

$$v = (-1)^s M 2^E$$

E = 1 - Bias

- Implicit "1." before fraction now becomes "0." (not normalized to (1.0,2.0])
- Significand coded with implied leading 0: M = 0.xxx...x2
 - · xxx...x: bits of frac
- Cases
 - exp = 000...0, frac = 000...0
 - Represents zero value
 - Note distinct values: +0 and -0 (why?)
 - exp = 000...0, frac ≠ 000...0
 - Numbers closest to 0.0

Special Values

Condition: **exp** = **111**...**1**

- Case: **exp** = **111...1**, **frac** = **000...0**
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- Case: exp = 111...1, frac ≠ 000...0
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), $\infty \infty$, $\infty \times 0$

Visualization: Floating Point Encodings

Lab1 will be out this week

- You will be notified via email when Lab1 is out
- Our TA be helping you with your Labs

Our TA

Duy Kha Dinh

khadinh@g.skku.edu
Personal Page CV

Kha Dinh is currently an integrated MS-PhD student at Sungkyunkwan University, South Korea. He graduated from Hochiminh University of Technology, Vietnam in 2018, majored in Computer Science. His main research interest is designing secure systems.

Lecture Discussion

Coming up...

- Machine-level Representation of Programs
- Read CH3 of Textbook

Today: Floating Point

- ► Background: Fractional binary numbers
- ► IEEE floating point standard: Definition
- Example and properties
- ► Rounding, addition, multiplication
- ► Floating point in C
- **▶**Summary

Tiny Floating Point Example

- 8-bit Floating Point Representation
 - the sign bit is in the most significant bit
 - the next four bits are the exponent, with a bias of 7
 - the last three bits are the frac
- Same general form as IEEE Format
 - normalized, denormalized
 - representation of 0, NaN, infinity

Dynamic Range (Positive Only)
v = (-1)^s M 2^E

					\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	s exp	frac	E	Value	n: E = Exp — Bias
	0 0000	000	-6	0	d: E = 1 – Bias
	0 0000	001	-6	1/8*1/64 = 1/512	closest to zero
Denormalized	0 0000	010	-6	2/8*1/64 = 2/512	closest to zero
numbers	•••				
	0 0000	110	-6	6/8*1/64 = 6/512	
	0 0000	111	-6	7/8*1/64 = 7/512	largest denorm
	0 000	L 000	-6	8/8*1/64 = 8/512	largest denorm
	0 000	L 001	-6	9/8*1/64 = 9/512	smallest norm
	0 0110	110	-1	14/8*1/2 = 14/16	
	0 0110	111	-1	15/8*1/2 = 15/16	closest to 1 below
Normalized	0 0113	L 000	0	8/8*1 = 1	0.0000000000000000000000000000000000000
numbers	0 0113	L 001	0	9/8*1 = 9/8	closest to 1 above
	0 0113	L 010	0	10/8*1 = 10/8	closest to 1 above
	0 1110	110	7	14/8*128 = 224	
	0 1110	111	7	15/8*128 = 240	largest norm
	0 1111	L 000	n/a	inf	

Distribution of Values

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is $2^{3-1}-1=3$

S	ехр	frac		
1	3-bits	2-bits		

Notice how the distribution gets denser toward zero.

Distribution of Values (close-up view)

- ► 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is 3

Special Properties of the IEEE Encoding

- FP Zero Same as Integer Zero
 - All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider -0 = 0
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized

Today: Floating Point

- Background: Fractional binary numbers
- ► IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point Operations: Basic Idea

$$x +_f y = Round(x + y)$$

$$x \times_f y = Round(x \times y)$$

- Basic idea
 - First compute exact result
 - Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Rounding

Rounding Modes (illustrate with \$ rounding)

•	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
 Towards zero 	\$1	\$1	\$1	\$2	- \$1
 Round down (-∞) 	\$1	\$1	\$1	\$2	-\$2
• Round up (+∞)	\$2	\$2	\$2	\$3	-\$1
 Nearest Even (default) 	\$1	\$2	\$2	\$2	-\$2

Closer Look at Round-To-Even

Default Rounding Mode

- Hard to get any other kind without dropping into assembly
- All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or under- estimated

Applying to Other Decimal Places / Bit Positions

- When exactly halfway between two possible values
 - Round so that least significant digit is even
- E.g., round to nearest hundredth

7.89499997.89	(Less tha	an half way)
7.89500017.90	(Greater	than half way)
7.8950000	7.90	(Half way—round up)
7.8850000	7.88	(Half way—round down)

Rounding Binary Numbers

Binary Fractional Numbers

- "Even" when least significant bit is ${f o}$
- "Half way" when bits to right of rounding position = 100...2

Examples

• Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.00 <mark>011</mark> 2	10.002	(<1/2—down)	2
2 3/16	10.001102	10.012	(>1/2—up)	2 1/4
27/8	10.111002	11.002	(1/2—up)	3
25/8	10.101002	10.102	(1/2—down)	2 1/2

FP Multiplication

- $(-1)^{s1}$ M1 2^{E1} X $(-1)^{s2}$ M2 2^{E2}
- Exact Result: (-1)s M 2^E
 - Sign s: s1 ^ s2
 - Significand M: M1 x M2
 - Exponent **E**: **E1** + **E2**
- Fixing
 - If M ≥ 2, shift M right, increment E
 - If **E** out of range, overflow
 - Round M to fit frac precision
- Implementation
 - Biggest chore is multiplying significands

Floating Point Addition

- $(-1)^{s1}$ M1 2^{E1} + $(-1)^{s2}$ M2 2^{E2}
 - •Assume **E1** > **E2**
- Exact Result: (-1)^s M 2^E
 - •Sign **s**, significand **M**:
 - Result of signed align & add
 - •Exponent E: E1
- Fixing
 - •If M ≥ 2, shift M right, increment E
 - •if M < 1, shift M left k positions, decrement E by k
 - •Overflow if **E** out of range
 - •Round **M** to fit **frac** precision

Get binary points lined up

Mathematical Properties of FP Add

- Compare to those of Abelian Group
 - Closed under addition? Yes
 - But may generate infinity or NaN
 - Commutative? Yes
 - Associative? No
 - Overflow and inexactness of rounding
 - \cdot (3.14+1e10)-1e10 = 0, 3.14+(1e10-1e10) = 3.14
 - 0 is additive identity?
 - Every element has additive inverse? Yes
 - Yes, except for infinities & NaNs Almost
- Monotonicity
 - $a \ge b \Rightarrow a+c \ge b+c$? Almost

• Except for infinities & NaNs

Mathematical Properties of FP Mult

- Compare to Commutative Ring
 - Closed under multiplication? Yes
 - But may generate infinity or NaN
 - Multiplication Commutative? Yes
 - Multiplication is Associative? No
 - Possibility of overflow, inexactness of rounding
 - Ex: (1e20*1e20) *1e-20= inf, 1e20* (1e20*1e-20) = 1e20
 - 1 is multiplicative identity? Yes
 - Multiplication distributes over addition? No
 - Possibility of overflow, inexactness of rounding
 - 1e20*(1e20-1e20) = 0.0, 1e20*1e20 1e20*1e20 = NaN
- Monotonicity
 - $a \ge b \& c \ge 0 \Rightarrow a * c \ge b * c$? Almost
 - Except for infinities & NaNs

Today: Floating Point

- Background: Fractional binary numbers
- ► IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point in C

- C Guarantees Two Levels
 - •float single precision
 - -double double precision
- Conversions/Casting
 - Casting between int, float, and double changes bit representation
 - •double/float → int
 - Truncates fractional part
 - · Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
 - \cdot int \rightarrow double
 - Exact conversion, as long as **int** has ≤ 53 bit word size
 - int → float
 - · Will round according to rounding mode

Floating Point Puzzles

- For each of the following C expressions, either:
 - Argue that it is true for all argument values
 - Explain why not true

```
int x = ...;
float f = ...;
double d = ...;
```

Assume neither d nor f is NaN

Summary

- ▶ IEEE Floating Point has clear mathematical properties
- Represents numbers of form M x 2^E
- One can reason about operations independent of implementation
 - · As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers

Additional Slides

Creating Floating Point Number

Steps

- Normalize to have leading 1
- Round to fit within fraction
- Postnormalize to deal with effects of rounding

S	ехр	frac
1	1_hits	2_hits

Case Study

Convert 8-bit unsigned numbers to tiny floating point format

Example Numbers

128	10000000
15	00001101
33	00010001
35	00010011
138	10001010
63	00111111

Normalize

Requirement

S	ехр	frac
1	4-bits	3-bits

- Set binary point so that numbers of form 1.xxxxx
- Adjust all to have leading one
 - Decrement exponent as shift left

Value	Binary	Fraction	Exponent
128	10000000	1.0000000	7
15	00001101	1.1010000	3
17	00010001	1.0001000	4
19	00010011	1.0011000	4
138	10001010	1.0001010	7
63	00111111	1.1111100	5

Rounding

1.BBGRXXX

Guard bit: LSB of result •

Round bit: 1st bit removed

Sticky bit: OR of remaining bits

Round up conditions

- Round = 1, Sticky = 1 → > 0.5
- Guard = 1, Round = 1, Sticky = 0 → Round to even

Value	Fraction	GRS	Incr?	Rounded
128	1.0000000	000	N	1.000
15	1.1010000	100	N	1.101
17	1.0001000	010	N	1.000
19	1.0011000	110	Y	1.010
138	1.0001010	011	Y	1.001
63	1.1111100	111	Y	10.000

Postnormalize

- Issue
 - Rounding may have caused overflow
 - Handle by shifting right once & incrementing exponent

Value	Rounded	Exp	Adjusted	Result
128	1.000	7		128
15	1.101	3		15
17	1.000	4		16
19	1.010	4		20
138	1.001	7		134
63	10.000	5	1.000/6	64

Interesting Numbers

{single,double}

Description	ехр	frac	Numeric Value
Zero	0000	0000	0.0
 Smallest Pos. Denorm. Single ≈ 1.4 x 10⁻⁴⁵ Double ≈ 4.9 x 10⁻³²⁴ 	0000	0001	2 ^{-{23,52}} x 2 ^{-{126,1022}}
 Largest Denormalized Single ≈ 1.18 x 10⁻³⁸ Double ≈ 2.2 x 10⁻³⁰⁸ 	0000	1111	$(1.0 - \varepsilon) \times 2^{-\{126,1022\}}$
Smallest Pos. NormalizedJust larger than largest denormalized	0001	0000	1.0 x 2 ^{- {126,1022}}
► One	0111	0000	1.0
 Largest Normalized Single ≈ 3.4 x 10³⁸ 	1110	1111	$(2.0 - \varepsilon) \times 2^{\{127,1023\}}$

• Double ≈ 1.8 x 10³⁰⁸

