PROGRAMOZÁS

Nagyszám!

Gregorics Tibor

http://people.inf.elte.hu/gt/prog

Feladat

Számoljuk ki egy természetes szám faktoriálisát!

$$A = n : \mathbb{N}, f : \mathbb{N}$$

$$Ef = n = n'$$

$$Uf = n = n' \land f = \prod_{i=2}^{n} i$$

Összegzés:

$$f := 1$$

$$i = 2 ... n$$

$$f := f * i$$

Specifikáció alapján (Fekete doboz)

Tesztelés

- ☐ Érvényes tesztesetek
 - Összegzés tétele alapján:

$$n = 1$$

$$\longrightarrow$$
 f = 1

$$n = 2$$

$$\longrightarrow$$
 f = 2

$$n = 5$$

$$\rightarrow$$
 f = 120

$$n = 3$$

$$\rightarrow$$
 f = 6

terhelés (skálázás):

int f:

12! -ig jó

long double f: 25! -ig jó

Egy igazán nagy szám kellene!

Határ adat, különleges adat:

$$n=0$$

$$\longrightarrow$$
 f = 1

$$n=1$$

$$\rightarrow$$
 f = 1

 \square Érvénytelen tesztesetek (n<0):

$$n = -1, -45$$

Program (kód) alapján (Fehér doboz)

□ Beolvasás tesztelése:

$$n = -3.14$$
, hét

BigNumber típusa

műveletek

mplementáció

Típus-specifikáció

N

f: BigNumber, $k: \mathbb{N}_{32}$

 $\underline{Szorz\acute{a}s}$ f := f * k

<u>Értékadás</u> f := k

Kiirás $cout := cout \oplus f (cout << f)$

reprezentációs függvény

Egy természetes számot a decimális számjegyeinek fordított sorrendjének sztringjével helyettesítünk:

Ötszázhetvenegy: "175"

Nulla: ""

String

típus invariáns

Számjegyekből álló sorozatok {'0' .. '9'}*, amelyek végén nincsenek nullák.

Olyan programok, amelyek BigNumber típusú változók helyett String típusú változókkal dolgoznak, de úgy, mintha mégis nagy számokkal dolgoznának.

Típus-implementáció

BigNumber műveleteinek implementációiról

f nagy szám kiírása cout-ra: cout:=cout ⊕ f

$$"175" \rightarrow 571 \qquad "" \rightarrow 0$$

f nagy számnak értékül adni egy nem-negatív int-et: f:=k

oszlopérték:
$$571$$
 57 5 0 maradék: 1 7 5 \longrightarrow " 175 "

f nagy szám szorzása egy nem-negatív int-tel : f := f*k

Mindhárom esetben egy sorozatot kell létrehozni (ÖSSZEGZÉS), amelyhez egy alkalmas felsorolást kell használni.

→ "27281"

Kiírás

A = f : BigNumber, cout : String

```
A = \text{str} : \text{String}, \quad \text{cout} : \text{String}
Ef = \text{str} = \text{str}' \land \text{str } kiel\acute{e}g\acute{t}i \quad az \quad invari\acute{a}nst
Uf = \text{str} = \text{str}' \land (|\text{str}| > 0 \rightarrow \text{cout} = \bigoplus_{i=|\text{str}|}^{1} < \text{str}_{i} >) \land (|\text{str}| = 0 \rightarrow \text{cout} = < 0 >))
```

|str| > 0

Összegzés:

 $e \in t$ ~ i=|str|...1 f(e) ~ $< str_i>$ s ~ coutH, +, 0 ~ $String, \oplus, <>$

cout := < >

 $cout := cout \oplus < str_i >$

cout := <0>

Értékadás

 $A = k : \mathbb{N}_{32}$, f : BigNumber

str kielégíti az invariánst $A = k : \mathbb{N}_{32}$, str : String a 0 és 9 közötti számjegy karaktere Ef = k = k' $Uf = k = k' \wedge str = \oplus < char(c mod 10) >$

 $t: enor(\mathbb{N}_{32})$

 $t = \langle k, k/10, k/100, ... \rangle$

Összegzés:

 $e \in t$ \sim $c \in t$ f(e) ~ < char(c mod 10) > str H, +, 0String, \oplus , < >

str := < >

First: c := k; Next: c := c/10; Current: c; End: c = 0

c := k

 $c\neq 0$

 $str := str \oplus < char(c \mod 10) >$

c := c/10

Szorzás

 $A = f : BigNumber, k : N_{32}$

```
t_1: enor(\mathbb{N}_{32})
                                             t_1 = < ... str_i^*k + \text{átvitel} ... > (oszlopértékek)
A = \text{str}: \text{String}, \quad k: \mathbb{N}_{32}
                                              First: i, c:=1, 0; Next: i:=i+1; End: i>|str|;
                                              Current: c = str_i *k + c/10 : c
Ef = str = str' \land k = k' \land / str kielégíti az invariánst
Uf = k = k' \land str = (\bigoplus_{c \in t_1} \langle char(c) \mod 10 \rangle)
                            \oplus ( \oplus <char(c mod 10)>)
                                         t_2: enor(\mathbb{N}_{32})
                                         (|str|-dik oszlopérték= t<sub>1</sub>.Current(), amit jelöljön c')
                                         t_2 = \langle c'/10, c'/100, ... \rangle
                                         First: c := c'/10; Next: c := c/10; Current : c; End: c = 0
                                     str kielégíti az invariánst?
```

Szorzás 1.

```
A = \text{str}: \text{String, } k: \mathbb{N}_{32}, \ c: \mathbb{N}_{32}
Ef = \text{str} = \text{str}' \land k = k' \land \text{str } kiel\acute{e}g\acute{t}ii \ az \ invari\acute{a}nst
Uf = k = k' \land \text{str} = (\bigoplus < \text{char}(c) \ \text{mod} \ 10) >) \land c = t_1.\text{Current}()
i, c := 1, 0
i \le |\text{str}|
```

Összegzés:

 $e \in t$ \sim $c \in t_1$ f(e) \sim < char(c mod 10)> s \sim str H, +, 0 \sim String, \oplus , < > $c := \text{érték}(str_i)^*k + c/10$

 $str := str \oplus \langle char(c \mod 10) \rangle$

i := i + 1

Szorzás 1. még egyszer

```
A = \text{str}: \text{String, } k: \mathbb{N}_{32}, \ c: \mathbb{N}_{32}
First: \ i, c:=1, 0; \text{Next: } i:=i+1; \text{ End: } i>|\text{str}|;
Current: \ c:= \text{str}_i^* k + c/10: \ (c,i)
Ef = \text{str} = \text{str}' \land k = k' \land \text{str } kiel\acute{e}g\acute{t}ii \ az \ invari\acute{a}nst
Uf = k = k' \land (\forall (c,i) \in t_1: \text{str}_i = \langle \text{char}(c) \ \text{mod} \ 10 \rangle) \land c = t_1.\text{Current}()
```

$$i, c := 1, 0$$

$$i \leq |str|$$

$$c := \text{érték}(\text{str}_i)^* \text{k} + c/10$$

 $str_i := \langle char(c \mod 10) \rangle$

$$i := i + 1$$

Összegzés:

 $e \in t$ \sim $c, i \in t_1$ f(e) \sim < char(c mod 10) > s \sim strH, +, 0 \sim $String, \oplus, < >$

Szorzás 2.

```
A = \text{str}: \text{String}, \quad c: \mathbb{N}_{32}
                               t<sub>1</sub>.Current()
Ef = str'' \land c = c' \land str kielégíti az invariánst
 Uf = str = str'' \oplus (\oplus < char(c \mod 10) >)
                         t_2 = \langle c'/10, c'/100, ... \rangle
                                    First: c := c'/10, Next: c := c/10, Current: c := c
                                                           c := c/10
                                                               c\neq 0
Összegzés:
                                                str := str \oplus \langle char(c \mod 10) \rangle
 e \in t \sim c \in t_2
 f(e) ~ <char(c mod 10)>
                                                             c := c/10
            str
                                            most nem kell: str:=<>
```

String, \oplus , <>

H, +, 0

BigNumber kódja

```
class BigNumber{
private:
    std::string str;

public:
    void Ertekadas(const int k);
    BigNumber Szorzas(const int k);
    void Kiiras() const;
};
BigNumber f;

...

f.Ertekadas(1);

...

f = f.Szorzas(i);

...

f.Kiiras();
```

```
void BigNumber::Kiiras() const
{
    if(str.size()>0) {
        for(int i=str.size()-1; i>=0; --i) {
            cout << str[i];
        }
    }else cout << 0;
}</pre>
```

```
class BigNumber{
    private:
        std::string str;

public:
        int operator=(const int k);
        BigNumber operator*(const int k);
        friend std::ostream& operator<<(
            std::ostream & cout, const BigNumber & & bn);
};</pre>
BigNumber f;

f = 1;
f = f * i;
cout << f;
```

```
ostream& operator<<(ostream &cout, const BigNumber &bn)
{
   if (bn.str.size()>0) {
      for(int i=bn.str.size()-1; i>=0; --i) {
        cout << bn.str[i];
      }
   }else cout << 0;
   return cout;
}</pre>
```

Tesztelés

- □ Metódusonkénti tesztelés
 - Minden metódusra elvégezzük annak fekete és fehérdoboz tesztelését.

 Minden metódusra elvégezzűk annak elvégezet.

 Minden metódusra elv
- _ 0 ./1 . . . 1/
- □ Osztály tesztelése

unit teszt kell egy tesztkörnyezetet : egy speciális

főprogram, ami többnyire egy menü

- BigNumber típusú objektumokat hozunk létre és azokra a metódusaik tetszőleges variációit próbáljuk ki.
- □ Főprogram tesztje
 - lásd korábban

Hiba, ha

- negatív számot adunk értékül
- negatív számmal szorzunk
- nullával szorzunk

Szorzás újra

```
A = \text{str} : \text{String}, \quad k: \mathbb{N}_{32}
Ef = str = str' \land k = k' \land str kielégíti az invariánst
Uf = k = k' \land (k=0 \rightarrow str = <>)
                                                      A nullával való szorzás hibája:
                                                      str nem elégíti ki az invariánst, ha k=0
                  \land (k>0 \to str = (\bigoplus_{c \in t_1} \langle \overline{char(c) \bmod 10} \rangle) 
                                         \oplus ( \oplus <char(c mod 10)>)
                                              c \in t_2
```