#13 Friction Pre-class

Due: 11:00am on Friday, September 21, 2012

Note: You will receive no credit for late submissions. To learn more, read your instructor's Grading Policy

Exercise 5.31

A crate of 42.1-kg tools rests on a horizontal floor. You exert a gradually increasing horizontal push on it and observe that the crate just begins to move when your force exceeds 327N. After that you must reduce your push to 224N to keep it moving at a steady 27.9cm/s.

Part A

What is the coefficient of static friction between the crate and the floor?

ANSWER:

$$\mu_{s} = 0.793$$

Part B

What is the coefficient of kinetic friction between the crate and the floor?

ANSWER:

$$\mu_k = 0.543$$

Correct

#13 Friction Pre-class

What push must you exert to give it an acceleration of 1.49 m/s^2 ?

ANSWER:

$$F = _{287} \text{ N}$$

Correct

Part D

Suppose you were performing the same experiment on this crate but were doing it on the moon instead, where the acceleration due to gravity is 1.62 m/s². What magnitude push would cause it to move?

ANSWER:

$$F = 54.1$$
 N

Correct

Part E

What would its acceleration be if you maintained the push in part C?

ANSWER:

$$a = 5.93$$
 m/s²

2 of 11 11/26/2012 8:59 PM

Part C

All attempts used; correct answer displayed

Block on an Incline

A block lies on a plane raised an angle θ from the horizontal. Three forces act upon the block: $\vec{F}_{\rm w}$, the force of gravity; $\vec{F}_{\rm n}$, the normal force; and $\vec{F}_{\rm f}$, the

force of friction. The coefficient of friction is large enough to prevent the block from sliding .

Part A

Consider coordinate system a, with the x axis along the plane. Which forces lie along the axes?

ANSWER:

#13 Friction Pre-class

$ec{F}_{ m f}$ or	ηly
-------------------	-----

- $_{\odot}$ $ec{F}_{
 m n}$ only
- $ec{F}_{
 m w}$ only
- $_{\odot}$ $ec{F}_{\!
 m f}$ and $ec{F}_{\!
 m n}$
- $_{\odot}$ $ec{F}_{
 m f}$ and $ec{F}_{
 m w}$
- $_{\odot}$ $ec{F}_{
 m n}$ and $ec{F}_{
 m w}$
- $_{\odot}$ $ec{F}_{
 m f}$ and $ec{F}_{
 m n}$ and $ec{F}_{
 m w}$

Correct

Part B

Which forces lie along the axes of the coordinate system b, in which the y axis is vertical?

ANSWER:

- $_{\odot}$ $ec{F}_{
 m f}$ only
- $ec{F}_{
 m n}$ only
- $_{\scriptscriptstyle{\odot}}$ $ec{F}_{\scriptscriptstyle{
 m w}}$ only
- $ec{F_{
 m f}}$ and $ec{F_{
 m p}}$
- $_{\odot}$ $ec{F}_{
 m f}$ and $ec{F}_{
 m w}$
- $_{\odot}$ $ec{F}_{
 m n}$ and $ec{F}_{
 m w}$
- $_{\odot}$ $ec{F}_{
 m f}$ and $ec{F}_{
 m n}$ and $ec{F}_{
 m w}$

Correct

Now you are going to ignore the general rule (actually, a strong suggestion) that you should pick the coordinate system with the most vectors, especially unknown ones, along the coordinate axes. You will find the normal force, \vec{F}_n , using vertical coordinate system b. In these coordinates you will find the magnitude F_n appearing in both the x and y equations, each multiplied by a trigonometric function.

Part C

Because the block is not moving, the sum of the *y* components of the forces acting on the block must be zero. Find an expression for the sum of the *y* components of the forces acting on the block, using coordinate system b.

Express your answer in terms of some or all of the variables $F_{\rm n},\,F_{\rm f},\,F_{\rm w},$ and $\theta.$

Hint 1. Find the y component of \vec{F}_n

Write an expression for $F_{\rm ny}$, the y component of the force $\vec{F}_{\rm n}$, using coordinate system b.

Express your answer in terms of F_n and θ .

Hint 1. Some geometry help - a useful angle

The smaller angle between \vec{F}_n and the *y*-axis is also θ , as shown in the figure.

ANSWER:

$$F_{ny} = F_n \cos(\theta)$$

Hint 2. Find the *y* component of \vec{F}_t

Write an expression for F_{fy} , the y component of the force \vec{F}_{f} , using coordinate system b.

Express your answer in terms of $F_{\rm f}$ and θ .

Hint 1. Some geometry help - a useful angle

The smaller angle between \vec{F}_f and the x-axis is also θ , as shown in the figure.

ANSWER:

$$F_{\mathrm{fy}} = F_f \sin{(\theta)}$$

ANSWER:

$$\sum F_y = 0 = \cos\!\theta F_n - F_w + F_f \!\sin\!\theta$$

Correct

Part D

Because the block is not moving, the sum of the *x* components of the forces acting on the block must be zero. Find an expression for the sum of the *x* components of the forces acting on the block, using coordinate system b.

Express your answer in terms of some or all of the variables F_n , F_f , F_w , and θ .

Hint 1. Find the x component of \vec{F}_n

Write an expression for $F_{\rm mx}$, the x component of the force $\vec{F}_{\rm n}$, using coordinate system b.

Express your answer in terms of F_n and θ .

ANSWER:

$$F_{\text{nx}} = -F_n \sin(\theta)$$

ANSWER:

$$\sum F_x = 0 = -\sin\!\theta F_n + \cos\!\theta F_f$$

Correct

Part E

To find the magnitude of the normal force, you must express F_n in terms of F_w since F_f is an unknown. Using the equations you found in the two previous parts, find an expression for F_n involving F_w and θ but not F_f .

Hint 1. How to approach the problem

From your answers to the previous two parts you should have two force equations ($\sum F_y = 0$ and $\sum F_x = 0$). Combine these equations to eliminate F_f . The key is to multiply the equation for the y components by $\cos \theta$ and the equation for the x components by $\sin \theta$, then add or subtract the two equations to eliminate the term $F_f \cos(\theta) \sin(\theta)$.

An alternative motivation for the algebra is to eliminate the trig functions in front of F_n by using the trig identity $\sin^2(\theta) + \cos^2(\theta) = 1$. At the very least this would result in an equation that is simple to solve for F_n .

ANSWER:

$$F_n = F_w \cos\theta$$

Correct

Congratulations on working this through. Now realize that in coordinate system a, which is aligned with the plane, the *y*-coordinate equation is $\sum F_y = F_{\rm n} - F_{\rm W} \cos(\theta) = 0$, which leads immediately to the result obtained here for $F_{\rm n}$.

CONCLUSION: A thoughtful examination of which coordinate system to choose can save a lot of algebra.

Exercise 5.37

Two crates connected by a rope lie on a horizontal surface (the figure). Crate A has mass m_A and crate B has mass m_B . The coefficient of kinetic friction between each crate and the surface is μ_k . The crates are pulled to the right at constant velocity by a horizontal force \vec{F} .

1	1	ъ.	٠.	4: .		D	1	اعوو
1	۱ - ۲	. 1-11	~1 <i>C</i>	۱T1 <i>(</i>	٦n	Pr	മ_വ	acc

In terms of m_A , m_B , and μ_k , calculate the magnitude of the force \vec{F} .

Express your answer in terms of some or all of the variables m_A , m_B , μ_k , and appropriate constants.

ANSWER:

Part A

$$F = g (m_A + m_B) \mu_k$$

Correct

Part B

In terms of m_A , m_B , and μ_k , calculate the tension in the rope connecting the blocks. Include the free-body diagram or diagrams you used to determine each answer.

Express your answer in terms of some or all of the variables m_A , m_B , μ_k , and appropriate constants.

ANSWER:

$$T = g(m_A) \mu_k$$

Correct

Score Summary:

Your score on this assignment is 93.9%. You received 14.09 out of a possible total of 15 points.