1 Praktikum - Spezifikation und Verifikation

1.1 Introduction

The goal of this practical course was to prove the correctness of the cc_explain algorithm, which was defined in my Bachelor's thesis [Ghi22]. This function takes as input two elements of the congruence closure and it returns the labels of the proof forest that explain why the two elements are congruent. The cc_explain function uses an additional union-find that stores which edges in the proof forest have already been examined by the function. Because of the additional union-find, it was difficult to use the induction hypothesis in order to directly prove the correctness of the function.

Therefore, I proved it by defining the auxiliary function cc_explain2 [CC_Explain2_Definition.thy], which is identical to cc_explain, except that it does not have an additional union-find. I proved the correctness and termination of cc_explain2 and the equivalence of cc_explain and cc_explain2. The termination proof is based on an invariant, which still needs to be proven. See Subsection 1.2.1.

1.2 Termination of CC_Explain2

The proof of termination for cc_explain was based on the presence of the additional union-find, therefore it was necessary to find a different argument for the termination of cc_explain2. Based on an idea by Corbineau [Cor01], I added a timestamp for each edge in the proof forest, that shows in which order the edges were added to the proof forest [CC_Definition2.thy]. I extended the congruence_closure record with a list that contains the timestamps and the current timestamp [time]. Then I extended the congruence closure algorithm, so that it adds the corresponding timestamps to the edges and proved its equivalence to the original congruence closure algorithm [merge_merge_t_equivalence].

1.2.1 Invariants

I defined two invariants of the congruence closure algorithm, about the validity of the two new fields of the congruence_closure_t record. The time_invar defines that all timestamps in the proof forest are between 0 and the current timestamp (non-inclusive).

The invariant timestamps_invar still needs to be proven. [CC_Explain2_Termination .thy]. The only point in the congruence closure where the timestamps are modified, is in propagate_step_t. It needs to be shown that the timestamps_invar holds after add_edge was applied to the proof forest, add_label was applied to the labels list of the proof forest and add_timestamp was applied to the timestamps list [timestamps_invar_step]. From this, it follows that timestamps_invar is an invariant of merge_t [timestamps_invar_merge_t]. In theory, it should be true, because the edges on the path between two elements stay the same and only one edge is added with a timestamp that is larger than all the current timestamps in the proof forest. It is a bit complicated to prove, because the add_label function reverses the direction of some edges, therefore the lowest_common_ancestor of some elements might change. For more information about the add_label function, see [Ghi22].

1.2.2 Termination

Using these invariants, I proved that the multiset of the timestamps in the pending list decreases in each recursive call of cc_explain2 [recursive_calls_mset_less]. Using induction on the multiset of the timestamps of the pending list, I proved the termination of cc explain2 [cc explain aux2 domain].

1.3 Correctness of Explain2

Given that cc_explain2 does not have an additional union-find, it was possible to directly prove its correctness using the termination proof, the induction on cc_explain2 and the invariant of the congruence closure algorithms defined for my bachelor's thesis [Ghi22]. [cc_explain_aux2_correctness]

1.4 Equivalence of Explain and Explain2

In order to prove the equivalence of cc_explain and cc_explain2, it needs to be shown that it is redundant to reconsider edges that have already been considered. To express that, I defined an invariant of cc_explain [equations_of_l_in_pending_invar].

I defined the additional_uf_labels_set of the additional union find, which is the set of labels of the edges that are present in the additional union-find. This set coincides

with the output of the cc_explain function. Additionally, the additional_uf_pairs_set is the set of pairs (a_1, b_1) and (a_2, b_2) for each edge in the additional union-find that is labeled with $F(a_1, a_2) = a$ and $F(b_1, b_2) = b$.

The invariant states that all pairs in the additional_uf_pairs_set are either in pending or have been in pending previously and have already been considered by the function, which means that the output of explain_along_path2 is in the additional_uf_labels_set and the pending list is in the additional_uf_pairs_set.

With this invariant, it was possible to prove the equivalence of cc_explain and cc_explain2. I proved a generalized statement, using the induction rule on the timestamps of xs2:

where l is the additional union-find. This way, we could use the induction hypothesis even though the pending list of cc_explain2 may contain more elements than the one of cc_explain. We can show that the additional elements in xs2 that are not in xs are redundant by using the invariant.

Bibliography

- [Ghi22] R. Ghidini. Formalisation of a Congruence Closure Algorithm in Isabelle/HOL. BA thesis. 2022.
- [Cor01] P. Corbineau. "Autour de la clôture de congruence avec Coq." MA thesis. Université Paris-Sud, 2001.