Chương III. Hàm số bậc hai và đồ thị

Bài 1. Hàm số và đồ thị

A. Lý thuyết

1. Hàm số. Tập xác định và tập giá trị của hàm số

- Giả sử x và y là hai đại lượng biến thiên và x nhận giá trị thuộc tập số D.

Nếu với mỗi giá trị x thuộc D, ta xác định được một và chỉ một giá trị tương ứng y thuộc tập hợp số thực $\mathbb R$ thì ta có một hàm số.

Ta gọi x là biến số và y là hàm số của x.

Tập hợp D được gọi là tập xác định của hàm số.

Tập hợp T gồm tất cả các giá trị y (tương ứng với x thuộc D) gọi là tập giá trị của hàm số.

Chú ý:

- + Ta thường dùng kí hiệu f(x) để chỉ giá trị y tương ứng với x, nên hàm số còn được viết là y=f(x).
- + Khi một hàm số được cho bằng công thức mà không chỉ rõ tập xác định thì ta quy ước:

Tập xác định của hàm số y = f(x) là tập hợp tất cả các số thực x sao cho biểu thức f(x) có nghĩa.

+ Một hàm số có thể được cho bởi hai hay nhiều công thức.

Ví dụ:

+ Hàm số có thể được cho bằng bảng dưới đây:

Mức điện tiêu thụ	Giá bán điện (đồng/kWh)	
Bậc 1 (từ 0 đến 50 kWh)	1 678	
Bậc 2 (từ trên 50 đến 100 kWh)	1 734	
Bậc 3 (từ trên 100 đến 200 kWh)	2 014	
Bác 4 (từ trên 200 đến 300 kWh)	2 536	
Bậc 5 (từ trên 300 đến 400 kWh)	2 834	
Bậc 6 (từ trên 400 kVVh trở lên)	2 927	

Báng 6.2 (Theo Tập đoàn Điện lực Việt Nam ngày 20-3-2019)

Với mỗi lượng điện tiêu thụ (kWh) thì sẽ có một số tiền phải trả tương ứng (nghìn đồng). Ta nói bảng trên biểu thị một hàm số.

+ Hàm số có thể được cho bằng công thức, ví dụ như: y = 2x - 1, $y = x^2$, với biến số là x và y là hàm số của x.

 $+ \text{ Hàm số được cho bởi hai công thức như f } \left(x\right) = \begin{cases} -2x+1 & \text{khi} & x \leq -3 \\ \frac{x+7}{2} & \text{khi} & x > -3 \end{cases}. \text{ Nghĩa là với}$

$$x \le -3 \text{ thì } f(x) = -2x + 1, \text{ với } x > -3 \text{ thì } f(x) = \frac{x+7}{2}$$

+ Với hàm số $y = f(x) = \frac{x+1}{x-2}$, tập xác định của hàm số là tập hợp tất cả các số thực x sao cho biểu thức f(x) có nghĩa tức là $\frac{x+1}{x-2}$ có nghĩa, hay $x \neq 2$.

Vậy tập xác định của hàm số này là $D = \mathbb{R} \setminus \{2\}$.

2. Đồ thị hàm số

- Cho hàm số y = f(x) có tập xác định D.

Trên mặt phẳng tọa độ Oxy, đồ thị (C) của hàm số là tập hợp tất cả các điểm M(x; y) với $x \in D$ và y = f(x).

Chú ý: Điểm $M(x_M; y_M)$ thuộc đồ thị hàm số y = f(x) khi và chỉ khi $x_M \in D$ và $y_M = f(x_M)$.

Ví dụ:

+ Cho hàm số y = f(x) = 2x - 1 có tập xác định $D = \mathbb{R}$.

Trên mặt phẳng tọa độ Oxy, đồ thị (C) là đồ thị của hàm số y = f(x) = 2x - 1.

Khi thay x = 0 và y = -1 vào hàm số, ta được -1 = 2. 0 - 1 là mệnh đề đúng nên điểm A(0; -1) là điểm thuộc đồ thị (C).

Khi thay x = 0.5 và y = 0 vào hàm số, ta được 0 = 2.0.5 - 1 là mệnh đề đúng nên điểm B(0.5; 0) là điểm thuộc đồ thị (C).

3. Hàm số đồng biến, hàm số nghịch biến

- Với hàm số y = f(x) xác định trên khoảng (a; b), ta nói:
- + Hàm số đồng biến trên khoảng (a; b) nếu

$$\forall x_1, \, x_2 \in (a; \, b), \, x_1 < x_2 \Rightarrow f(x_1) < f(x_2).$$

+ Hàm số nghịch biến trên khoảng (a; b) nếu

$$\forall x_1, x_2 \in (a; b), x_1 < x_2 \Rightarrow f(x_1) > f(x_2).$$

Nhận xét:

+ Khi hàm số đồng biến (tăng) trên khoảng (a; b) thì đồ thị của nó có dạng đi lên từ trái sang phải. Ngược lại, khi hàm số nghịch biến (giảm) trên khoảng (a; b) thì đồ thị của nó có dạng đi xuống từ trái sang phải.

Ví dụ:

+ Cho hàm số y = f(x) = 2x - 1 xác định trên \mathbb{R} .

Xét hai giá trị $x_1 = 1$ và $x_2 = 2$ đều thuộc \mathbb{R} , ta có:

$$f(x_1) = f(1) = 2.1 - 1 = 1.$$

$$f(x_2) = f(2) = 2.2 - 1 = 3.$$

Ta thấy $x_1 < x_2$ và $f(x_1) < f(x_2)$ nên hàm số y = f(x) = 2x - 1 là hàm số đồng biến trên \mathbb{R} .

Ta thấy hàm số y = f(x) = 2x - 1 là hàm số đồng biến trên \mathbb{R} nên đồ thị của nó có dạng đi lên từ trái sang phải.

+ Cho hàm số y = f(x) = -x + 2 xác định trên \mathbb{R} .

Xét 2 giá trị $x_1 = 1$ và $x_2 = 2$ đều thuộc \mathbb{R} , ta có:

$$f(x_1) = f(1) = -1 + 2 = 1.$$

$$f(x_2) = f(2) = -2 + 2 = 0.$$

Ta thấy $x_1 < x_2$ và $f(x_1) > f(x_2)$ nên hàm số y = f(x) = -x + 2 là hàm số nghịch biến trên \mathbb{R} .

Ta thấy hàm số y = f(x) = -x + 2 là hàm số nghịch biến trên $\mathbb R$ nên đồ thị của nó có dạng đi xuống từ trái sang phải.

Ví dụ: Cho hàm số y = f(x) có tập xác định là [-3; 3] và có đồ thị hàm số như hình vẽ.

Tìm khoảng đồng biến, nghịch biến của hàm số trên.

Hướng dẫn giải

Dựa vào đồ thị nhận thấy:

- Đồ thị hàm số có dạng đi lên từ trái sang phải trên các khoảng (-3; -1) và (1; 3) nên hàm số đồng biến trên khoảng (-3; -1) và (1; 3);
- Đồ thị hàm số có dạng đi xuống từ trái sang phải trên khoảng (−1; 1) nên hàm số nghịch biến trên khoảng (−1; 1).

B. Bài tập tự luyện

Bài 1. Tìm tập xác định của các hàm số sau:

a)
$$f(x) = \sqrt{2x+1}$$
;

b)
$$f(x) = 1 + \frac{1}{x+3}$$
.

Hướng dẫn giải

a) Biểu thức $f(x) = \sqrt{2x+1}$ có nghĩa $\Leftrightarrow 2x+1 \ge 0 \Leftrightarrow 2x \ge -1 \Leftrightarrow x \ge -\frac{1}{2}$.

Vậy tập xác định D của hàm số này là $D = \left[-\frac{1}{2}; +\infty \right]$.

b) Biểu thức $f(x) = 1 + \frac{1}{x+3}$ có nghĩa $\Leftrightarrow x+3 \neq 0 \Leftrightarrow x \neq -3$.

Vậy tập xác định D của hàm số này là $D = \mathbb{R} \setminus \{-3\}$.

Bài 2. Trong các hàm số sau đây, hàm số nào là đồng biến, nghịch biến? Tại sao?

a)
$$y = f(x) = -2x + 2$$
.

b)
$$y = f(x) = x^2$$
.

Hướng dẫn giải

a) Hàm số y = f(x) = -2x + 2 xác định trên \mathbb{R} .

Xét hai giá trị $x_1 = 1$ và $x_2 = 2$ đều thuộc \mathbb{R} , ta có:

$$f(x_1) = f(1) = -2. 1 + 2 = 0.$$

$$f(x_2) = f(2) = -2.2 + 2 = -2.$$

Ta thấy $x_1 < x_2$ và $f(x_1) > f(x_2)$ nên hàm số y = f(x) = -2x + 2 là hàm số nghịch biến trên \mathbb{R} .

b) Hàm số $y = f(x) = x^2$ xác định trên \mathbb{R} .

Xét hai giá trị $x_1 = 1$ và $x_2 = 2$ đều thuộc \mathbb{R} , ta có:

$$f(x_1) = f(1) = 1^2 = 1$$
.

$$f(x_2) = f(2) = 2^2 = 4$$
.

Ta thấy $x_1 < x_2$ và $f(x_1) < f(x_2)$ nên hàm số $y = f(x) = x^2$ là hàm số đồng biến trên \mathbb{R} .

Bài 3. Tìm tập xác định và vẽ đồ thị hàm số:

$$y = f(x) = |2x + 3|$$
.

Hướng dẫn giải

Tập xác định của hàm số $D = \mathbb{R}$.

Ta có:
$$y = |2x + 3| = \begin{cases} 2x + 3 & \text{khi} & x \ge -\frac{3}{2} \\ -2x - 3 & \text{khi} & x < -\frac{3}{2} \end{cases}$$

Ta vẽ đồ thị
$$y = 2x + 3$$
 với $x \ge -\frac{3}{2}$ (d₁)

Ta có bảng sau:

X	0	$-\frac{3}{2}$
y = f(x)	3	0

Suy ra đồ thị hàm số y = f(x) = 2x + 3 với $x \ge -\frac{3}{2}$ là phần đồ thị nằm bên trên trục Ox và đi qua các điểm $A(-\frac{3}{2}; 0)$ và B(0; 3).

Ta có đồ thị như sau:

Tương tự ta có đồ thị hàm số y=f(x)=-2x-3 với $x<-\frac{3}{2}$ là phần đồ thị nằm bên trên trục Ox và đi qua các điểm C(-2; 1) và D(-3; 3).

Kết hợp 2 đồ thị ta có đồ thị hàm số y = |2x + 3| là phần đồ thị nét liền nằm trên trục Ox.

Bài 4. Một ô tô đi từ A đến B với đoạn đường AB = s (km). Ô tô di chuyển thẳng đều với vận tốc là 40 km/h. Gọi mốc thời gian là lúc ô tô bắt đầu xuất phát từ A, t là thời điểm ô tô đi ở vị trí bất kì trên đoạn AB. Hãy xác định hàm số biểu thị mối quan hệ giữa s và t, vẽ đồ thị hàm số đó và xét tính đồng biến, nghịch biến của hàm số từ đó rút ra nhận xét.

Hướng dẫn giải

Do thời gian luôn lớn hơn 0 nên tập xác định của hàm số ẩn t là $D = (0; +\infty)$

Ta có công thức: Quãng đường = Vận tốc \times Thời gian.

Ta có hàm số như sau: s = v. t = 40. t

Vẽ đồ thị hàm số s = 40t:

Ta có bảng sau:

t	0,5	1	1,5
s = 40t	20	40	60

Vậy các điểm có tọa độ (0,5;20), (1;40), (1,5;60) thuộc đồ thị hàm số s = f(t).

Ta có đồ thị như sau:

Ta thấy đồ thị hàm số đi lên từ trái sang phải nên đây là hàm số đồng biến trên $(0; +\infty)$.

Nhận xét: Trong di chuyển thẳng đều, thời gian luôn tỉ lệ thuận với quãng đường. Thời gian càng lâu thì quãng đường đi được càng lớn và ngược lại.