NEC

PNP SILICON POWER TRANSISTORS 2SA1009,2SA1009A

DESCRIPTION

The 2SA1009, 2SA1009A are PNP triple diffused transistors de-

signed for switching regulator, DC-DC converter and high frequency

power amplifier application.

FEATURES

- Low Collector Saturation Voltage.
- High Speed Switching.
- Wide Reverse Bias Safe Operating Area.

ABSOLUTE MAXIMUM RATINGS

Maximum Temperatures

Maximum Power Dissipation ($T_c = 25$ °C)

Maximum Voltages and Currents ($T_a = 25$ °C)

2SA1009/2SA1009A

V _{CBO}	Collector to Base Voltage350/ -400	٧
V_{CEO}	Collector to Emitter Voltage350/ -400	٧
V_{EBO}	Emitter to Base Voltage −7.0	٧
(DC)	Collector Current (DC)2.0	Α
I _{C(pulse)}	Collector Current (pulse)*4.0	Α
IB(DC)	Base Current (DC) · · · · · · · · -1.0	Α

* PW \leq 300 μ s, Duty Cycle \leq 10 %

PACAKGE DIMENSIONS in millimeters (inches) 10.6 MAX. (0.417 MAX.) (0.142) (0.051)

4. Fin (Collector)
JEDEC: TO-220AB

ELECTRICAL CHARACTERISTICS (Ta = 25 °C)

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNIT.	TEST CONDITIONS	
ton	Turn-on Time			1.0	μs	/IC=-0.3 A, IB1=-IB2=-60 mA	
t _{stg}	Storage Time	٠		2.5	μs	$R_L = 500 \Omega, V_{CC} = -150 V$	
tf	Fall Time			1.0	μs	(HL - 200 32, VCC 120 V	
hFE1	DC Current Gain**	20		200	-	$V_{CE} = -5.0 \text{ V, } I_{C} = -0.1 \text{ A}$	
hFE2	DC Current Gain**	10			-	$V_{CE} = -5.0 \text{ V, } I_{C} = -0.3 \text{ A}$	
V _{CE(sat)}	Collector Saturation Voltage**			-1.0	V	$I_{C} = -0.3 \text{ A}, I_{B} = -60 \text{ mA}$	
V _{BE(sat)}	Base Saturation Voltage**			-1.2	V	$1_{C} = -0.3 \text{ A, } 1_{B} = -60 \text{ mA}$	
VCEO(SUS)	Collector to Emitter Sustaining Voltage	-350/-400			V	$I_C = -0.3 \text{ A}, I_B = -60 \text{ mA}, L = 1 \text{ mH}$	
VCEX(SUS)1	Collector to Emitter Sustaining Voltage	-350/-400			V	$I_C = -0.3 \text{ A, } I_{B1} = -I_{B2} = -60 \text{ mA,}$ L = 180 μ H, Clamped	
VCEX (SUS)2	Collector to Emitter Sustaining Voltage	-350/-400			v	$I_C = -0.6 \text{ A}, I_{B1} = -0.2 \text{ A}, -I_{B2} = 60 \text{ mA},$ L = 180 μ H, Clamped	
Ісво	Collector Cutoff Current			-10	μΑ	$V_{CB} = -350/-400 \text{ V, I}_{E} = 0$	
CER	Collector Cutoff Current			-1.0	mA	$V_{CE} = -350/-400 \text{ V, R}_{BE} = 51 \Omega$, $T_a = 125 ^{\circ}\text{C}$	
ICEX1	Collector Cutoff Current			-10	μΑ	$V_{CE} = -350/-400 \text{ V}, V_{BE(OFF)} = 1.5 \text{ V}$	
CEX2	Collector Cutoff Current			-1.0	mA	$V_{CE} = -350/-400 \text{ V}, V_{BE(OFF)} = 1.5 \text{ V},$ $T_a = 125 ^{\circ}\text{C}$	
1EBO	Emitter Cutoff Current			-10	μΑ	V _{EB} = -5.0 V, I _C = 0	

^{**}PW \leq 350 μ s, Duty Cycle \leq 2 %

Classification of heet

Rank	М	L	Κ	J	Н
Range	20 to 40	30 to 60	40 to 80	60 to 120	100 to 200

Test Conditions: VCE = -5.0 V, IC = -0.1 A

TYPICAL CHARACTERISTICS (Ta = 25 °C)

SWITCHING TIME (t_{on} , t_{stg} , t_{f}) TEST CIRCUIT

