МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ Н.Э. БАУМАНА

(НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)» (МГТУ ИМ. Н.Э. БАУМАНА)

ФАКУЛЬТЕТ ИУ «Информатика и системы управления» КАФЕДРА ИУ-1 «Системы автоматического управления»

ОТЧЁТ ЛАБОРАТОРНАЯ РАБОТА №2

ДИСЦИПЛИНА: «Эргатические системы»

Студент	БОТВИНОВ К.И.
Студент	МОГИЛЬНИКОВА Т.А. ———————————————————————————————————
Группа	ИУ1-41M
Преподаватель	Д.А. АНДРИКОР (н.о., фамилия)
	19/03/2025
	(Подпись, дата)
Оценка	

Введение

В данной работе производится классификация временного ряда ЭЭГ для определения эпилепсии. На основе изображений, представляющих вейвлет-преобразование ЭЭГ-сигнала, формируется датасет. С помощью сверточной нейронной сети из данных изображений выделяются полезные признаки, которые затем используются для анализа временного ряда с помощью LSTM-сети.

Описание датасета

MIT Scalp EEG Database, содержащий записи электроэнцефалографии (ЭЭГ) детей с эпилепсией. Датасет включает 983 записи от 23 пациентов (возраст: 1.5-22 года), выполненные с использованием 23 каналов в формате EDF. Каждая запись длительностью около 1-4 часов содержит сигналы ЭЭГ с частотой дискретизации 256 Гц, а также аннотации начала и окончания эпилептических приступов (Seizure). Для анализа были выделены фрагменты сигналов, соответствующие классам "Healthy" (без приступов) и "Seizure" (с приступами). Сигналы фильтровались по частотным диапазонам (Delta: 频率轴则用于区分 Healthy 和 Seizure 类。 0.5-4 Гц, Theta: 4-8 Гц, Alpha: 8-13 Гц, Beta: 13–30 Гц, Gamma: 30–100 Гц) и преобразовывались в вейвлет-изображения с помощью непре-维系数矩阵,其中: рывного вейвлет-преобразования (CWT) с использованием вейвлета Морле.

Итоговый набор данных представляет собой изображения, где временная информация сигнала ЭЭГ (ось X) и его частотные характеристики (ось Y) закодированы в виде спектрограмм. Эти изображения используются как входные данные для CNN-LSTM модели, где временная ось помогает выявлять динамику, а частотная —различия между классами Healthy

Для каждого отфильтрованного сигнала применялось CWT с помощью функции pywt.cwt. Этот процесс преобразует временной ряд в двумерную матрицу коэффициентов, где:

- ось X соответствует времени;
- \bullet ось Y соответствует масштабу (обратнопропорциональному частоте);

引言

本工作对 EEG 时间序列进行分类以检测 癫痫。基于表示 EEG 信号小波变换的图像形 成数据集。通过卷积神经网络(CNN)从这些 图像中提取有用特征,随后使用长短期记忆 网络(LSTM)对时间序列进行分析。

数据集描述

本研究使用的是 CHB-MIT Scalp EEG Database 数据集,该数据集包含患有癫痫的儿童的脑 电图(EEG)记录。数据集包括来自 23 名患 者 (年龄 1.5-22 岁) 的 983 个记录, 采用 23 个 Для исследования использовался датасет СНР通道以 EDF 格式记录。每个记录时长约为 1-4 小时,包含 EEG 信号(采样率为 256 Hz)以及 癫痫发作(Seizure)开始和结束的注释。为分 析目的,从信号中提取了对应"Healthy"(无 发作)和"Seizure"(有发作)两类的片段。 信号按频率范围(Delta: 0.5-4 Hz, Theta: 4-8 Hz, Alpha: 8-13 Hz, Beta: 13-30 Hz, Gamma: 30-100 Hz) 进行滤波,并通过使用 Morlet 小 波的连续小波变换(CWT)转换为小波图像。

最终数据集由图像组成,其中 EEG 信号的 时间信息(X轴)和频率特性(Y轴)以谱图 形式编码。这些图像用作 CNN-LSTM 模型的 输入数据,其中时间轴有助于检测动态变化,

对于每个滤波后的信号,使用 pywt.cwt 函数应用 CWT。该过程将时间序列转换为二

- X 轴对应时间;
- Y 轴对应尺度(与频率成反比);
- 值表示小波系数的幅度。

图 1显示了通过 CWT 获得的单个谱图示 例。

• значения представляют амплитуду вейвлеткоэффициентов.

На рисунке 1 показан одиночный пример спектрограммы, полученной в результате CWT.

Рис. 1: Пример спектрограммы, полученной с помощью CWT.

1. Вейвлет-преобразование

Вейвлет-преобразование (Wavelet Transform) представляет собой метод анализа сигналов, обес- $W(a,b) = \frac{1}{\sqrt{|a|}} \int_{-\infty}^{\infty} x(t) \psi^* \left(\frac{t-b}{a}\right) dt$, (1) печивающий совместное рассмотрение их характеристик во времени и частоте. В отличие от преобразования Фурье, которое фокусируется исключительно на частотной области, вейвлет- • x(t) —被分析的信号, преобразование использует локализованные базисные функции —вейвлеты, что делает его эффективным для анализа нестационарных сигналов, таких как электроэнцефалограммы (ЭЭГ) из датасета CHB-MIT Scalp EEG Database.

Непрерывное вейвлет-преобразование (CWT) определяется следующим образом:

$$W(a,b) = \frac{1}{\sqrt{|a|}} \int_{-\infty}^{\infty} x(t) \psi^* \left(\frac{t-b}{a}\right) dt, \quad (1)$$

где:

- x(t) —анализируемый сигнал,
- $\psi(t)$ —базисная вейвлет-функция,
- $\psi^*(t)$ —комплексно-сопряженная вейвлетфункция,
- а —параметр масштаба (обратнопропорционален частоте),

Рис. 1: 通过 CWT 获得的谱图示例。

1. 小波变换

小波变换 (Wavelet Transform) 是一种信号 分析方法,可同时考虑信号的时间和频率特 性。与仅关注频率域的傅里叶变换不同,小波 变换使用局部化的基函数——小波,使其特别 适合分析非平稳信号,如 CHB-MIT Scalp EEG Database 中的脑电图(EEG)。

连续小波变换(CWT)定义如下:

$$W(a,b) = \frac{1}{\sqrt{|a|}} \int_{-\infty}^{\infty} x(t)\psi^* \left(\frac{t-b}{a}\right) dt, \quad (1)$$

其中:

- $\psi(t)$ —基小波函数,
- $\psi^*(t)$ —共轭小波函数,
- a 尺度参数(与频率成反比),
- b—时间偏移参数,
- $\frac{1}{\sqrt{|a|}}$ —用于保持能量的归一化系数。

尺度 a 确定小波的宽度,偏移 b 允许在 不同时间点分析信号。频率与尺度的关系为 $f = \frac{f_c}{a} \cdot f_s$,其中 f_c 为小波的中心频率, f_s 为 信号的采样率。

本研究中使用的是 Morlet 小波, 其定义为:

$$\psi(t) = e^{-t^2/2} \cdot e^{i\omega_0 t},\tag{2}$$

其中 ω_0 为振荡频率(通常为 $\omega_0 = 6$ 以获得最 佳定位)。该小波结合了高斯包络和振荡,提 供了时间和频率分辨率的平衡。

- b —параметр сдвига во времени,
- $\frac{1}{\sqrt{|a|}}$ —нормировочный коэффициент для сохранения энергии.

Масштаб a определяет ширину вейвлета, а сдвиг b позволяет анализировать сигнал в различных временных точках. Связь частоты с масштабом выражается как $f=\frac{f_c}{a}\cdot f_s$, где f_c — центральная частота вейвлета, а f_s —частота дискретизации сигнала.

В данной работе использовался вейвлет Морле, описываемый уравнением:

$$\psi(t) = e^{-t^2/2} \cdot e^{i\omega_0 t},\tag{2}$$

где ω_0 —частота осцилляции (обычно $\omega_0=6$ для оптимальной локализации). Этот вейвлет сочетает гауссову оболочку с осцилляцией, обеспечивая баланс между временной и частотной разрешающей способностью.

2. Обучение нейронной сети

В качестве пациентов для обучения нейронной сети были выбраны пациенты 3, 5 и 6. В работе использовались две архитектуры сети: CNN+LSTM и CNN. Первая архитектура соответствовала модели, представленной в эталонном решении, а вторая была составлена самостоятельно. Также в эталонном решении использовалась функция активации sigmoid, а во втором решении —softmax. В остальном модели схожи.

На рисунках 2 и 3 показаны результаты обучения. Видно, что они получились неудовлетворительными, что говорит либо о несовершенстве модели, либо о несовершенстве датасета. Из рисунков видно, что понять, здоров пациент или у него эпилепсия, не представляется возможным. Поэтому неточность в обучении, по моему личному мнению, связана с неточностью данных, неправильным подходом к их обработке или в принципе неправильной методологией решения данной задачи.

2. 神经网络训练

作为神经网络训练的对象,选择了患者 3、5和6。本工作中使用了两种网络架构: CNN+LSTM和CNN。第一种架构符合参考解 决方案中的模型,第二种则为自行设计。在参 考解决方案中使用了激活函数 sigmoid,而 在第二种解决方案中使用了 softmax。除此 之外,两者模型相似。

图 2和 3显示了训练结果。结果显示不令人满意,这可能表明模型或数据集存在缺陷。从图中可以看出,无法明确判断患者是否健康或患有癫痫。因此,我个人认为训练中的不准确性可能与数据不准确、数据处理方法不当或总体解决该问题的 Methodology 错误有关。

Classification 	precision	recall	f1-score	support
ø	0.50	1.00	0.67	13
	1.00	0.19	0.32	16
accuracy			0.55	29
macro avg	0.75	0.59	0.49	29
weighted avg	0.78	0.55	0.47	29
Accuracy: 0.55		245		

Рис. 2: CNN-LSTM 模型的训练结果。

Classification	Report:			
	precision	recall	f1-score	support
0	0.45	1.00	0.62	13
	0.00	0.00	0.00	16
accuracy			0.45	29
macro avg	0.22	0.50	0.31	29
weighted avg	0.20	0.45	0.28	29

Рис. 3: CNN 模型的训练结果。

图 4显示了训练数据的示例。从中可以看出,无法明确判断······

Рис. 4: 训练数据示例。

3. 总结

本工作通过基于表示 EEG 信号小波变换 图像的卷积神经网络,对 EEG 时间序列进行 了癫痫检测的分类。结果并不理想。在当前工 作阶段,可以说该方法的运用并未产生积极 成果。

Classification R pr	eport: ecision	recall	f1-score	support	
0	0.50	1.00	0.67	13	
1	1.00	0.19	0.32	16	
1	1.00	0.19	0.32	16	
accuracy			0.55	29	
macro avg	0.75	0.59	0.49	29	
weighted avg	0.78	0.55	0.47	29	
W7					
Accuracy: 0.5517241379310345					

Рис. 2: Результаты обучения CNN-LSTM модели.

61	Damanta			
Classification				
	precision	recall	f1-score	support
0	0.45	1.00	0.62	13
1	0.00	0.00	0.00	16
accuracy			0.45	29
macro avg	0.22	0.50	0.31	29
weighted avg	0.20	0.45	0.28	29
Accuracy: 0.4482758620689655				

Рис. 3: Результаты обучения CNN модели.

На рис. 4 показан пример тренировочных данных. На них видно, что однозначно нельзя определить

Рис. 4: Пример тренировочных данных

3. Подведение итогов

В данной работе была произведена классификация временного ряда ЭЭГ для определения эпилепсии на основе изображений, представляющих вейвлет-преобразование ЭЭГ-сигнала с помощью сверточной нейронной сети. Результаты оказались неудачными. На данном этапе работы можно сказать, что применение данной методологии не дает положительных результатов.