Feuille 4 – Corrigé

Exercice 1:

1) Soit $x \in (A \cap B) \cup C$. Alors $x \in A \cap B$ ou $x \in C$. Donc soit x appartient à A et B, soit x appartient à C. Ainsi si $x \in A \cap B$, alors $x \in (A \cup C) \cap (B \cup C)$, et si $x \in C$, on a aussi $x \in (A \cup C) \cap (B \cup C)$.

Réciproquement, supposons $x \in (A \cup C) \cap (B \cup C)$, donc $x \in A \cup C$ et $x \in B \cup C$ On distingue alors deux cas :

- Soit $x \in C$,
- Soit $x \notin C$, et donc $x \in A$ et $x \in B$, c'est-à-dire $x \in A \cap B$

Ainsi on a $x \in (A \cap B) \cup C$.

2) On possède les équivalences suivantes :

$$x \in (A^c)^c \Leftrightarrow x \notin A^c \Leftrightarrow x \in A$$

3) On a:

 $x \in (A \cap B)^c \Leftrightarrow x \notin (A \cap B) \Leftrightarrow x \notin A \text{ ou } x \notin B \Leftrightarrow x \in A^c \text{ ou } x \in B^c \Leftrightarrow x \in A^c \cup B^c$

Exercice 2:

- 1) La différence symétrique est l'équivalent du « ou exclusif » : Si $x \in A\Delta B$, alors x appartient à A ou B, mais en aucun cas aux deux.
- 2) On a:

 $x \in A\Delta B \Leftrightarrow x \in A \cup B \text{ et } x \in A \cap B \Leftrightarrow x \in B \cup A \text{ et } x \in B \cap A \Leftrightarrow x \in B\Delta A.$

- 3) On a $x \in A\Delta A \Leftrightarrow x \in A \cup A$ et $x \in A \cap A \Leftrightarrow x \in A$. Ainsi $A\Delta A = A$ On a $x \in A\Delta A^c \Leftrightarrow x \in A \cup A^c$ et $x \in A \cap A^c \Leftrightarrow x \in \emptyset$. Ainsi $A\Delta A^c = \emptyset$ On a $x \in E\Delta A \Leftrightarrow x \in E \cup A$ et $x \in E \cap A \Leftrightarrow x \in E$ et $x \in A \Leftrightarrow x \in A$. Ainsi $E\Delta A = A$. On a $x \in (A \cup B)\Delta B \Leftrightarrow x \in (A \cup B)\cup B$ et $x \in (A \cup B)\cap B \Leftrightarrow x \in (A \cup B)$ et $x \in B$. Ainsi $(A \cup B)\Delta B = B$.
- 4) Soit $x \in A \Delta B$. Alors d'après la première question, x appartient soit uniquement à A, soit uniquement à B. Supposons $x \in A$, ainsi $x \notin B$, donc $x \in A \cap B^c$. Supposons maintenant $x \in B$, alors $x \notin A$, et donc $x \in B \cap A^c$. Alors $x \in (A \cap B^c) \cup (B \cap A^c)$ Réciproquement, soit $x \in (A \cap B^c) \cup (B \cap A^c)$. On distingue deux cas :
 - Soit $x \in A$ et $x \notin B$, c'est-à-dire $x \in A \setminus (A \cap B)$
 - Soit $x \in B$ et $x \notin A$, c'est-à-dire $x \in B \setminus (A \cap B)$

Ainsi on a bien $x \in (A \cup B) \setminus (A \cap B) = A \Delta B$.

Exercice 3:

On procède par récurrence sur le cardinal de E, c'est-à-dire n.

Initialisation : n = 1

Si n=1, alors E ne contient qu'un élément, et donc ne peut admettre qu'une partie, E lui-même.

Ainsi P(E) = E, et donc $Card(P(E)) = 1 = 2^0$

<u>Hypothèse</u>: Soit $n \in \mathbb{N}^*$, tel que Card(E) = n, et Card $(P(E)) = 2^n$.

<u>Hérédité</u>: Soit $E' = E \cup \{a\}$, où a est un élément quelconque. On a donc Card(E') = n + 1.

Cherchons le cardinal des parties de E'

Séparons les parties de E' qui contiennent a et celles qui ne le contiennent pas.

Les parties de E' qui ne contiennent pas a sont exactement les parties de E, qui ont donc pour cardinal 2^n par hypothèse de récurrence.

Aux parties de E' qui contiennent a, on applique la bijection qui leur retire a. L'image directe de cette bijection est l'ensemble des parties de E qui a donc pour cardinal 2^n par hypothèse de récurrence.

Ainsi, puisqu'une bijection sur ensembles finis ne se fait que sur les ensembles équipotents, le cardinal des parties de E' qui contiennent a est 2^n .

Ainsi on a $Card(P(E)) = 2^n + 2^n = 2^{n+1}$.

Exercice 4:

On va procéder par double inclusion. Soit $(x,y) \in (A \times B) \cap (C \times D)$. Alors $(x,y) \in A \times B$ et donc $x \in A$, $y \in B$. On a aussi $(x,y) \in (C \times D)$, et donc $x \in C$ et $y \in D$. Ainsi, $x \in A \cap C$ et $y \in B \cap D$. Ceci prouve que $(x,y) \in (A \cap C) \times (B \cap D)$. Réciproquement, soit $(x,y) \in (A \cap C) \times (B \cap D)$. Alors $x \in A \cap C$ et donc $x \in A$ et $x \in C$. De même $y \in B \cap D$, donc $y \in B$ et $y \in D$. Ainsi, $(x,y) \in A \times B$ et $(x,y) \in C \times D$. On conclut que $(x,y) \in (A \times B) \cap (C \times D)$.

Exercice 5:

- 1. Supposons $A \subset A'$. Soit $y \in f(A)$, alors il existe $x \in A$, tel que y = f(x). Mais alors $x \in A'$, et donc $y \in f(A')$. Ainsi $f(A) \subset f(A')$.
- 2. Soit $x \in f^{-1}(B)$. Alors $f(x) \in B$. Mais $B \subset B'$, donc $f(x) \in B'$. Ainsi $x \in f^{-1}(B')$. On a donc bien $f^{-1}(B) \subset f^{-1}(B')$.
- 3. On a bien $A \subset f^{-1}(f(A))$, puisque si $x \in A$, alors $f(x) \in f(A)$. En revanche, c'est l'inclusion réciproque qui bloque. En particulier si on prend $E = \{a, b\}$ et $F = \{a\}$, avec f une application constante qui envoie tous les éléments de E sur a. Alors on a $f(\{a\}) = \{a\}$, mais $f^{-1}(\{a\}) = \{a, b\}$. Ainsi $f^{-1}(f(\{a\})) = \{a, b\} \neq \{a\}$.

Pour rendre cette affirmation vraie, il suffit en réalité que f soit injective. Prouvons-le : Supposons maintenant f injective. Soit $x \in f^{-1}(f(A))$. Alors $f(x) \in f(A)$. Ainsi, $\exists x' \in A, f(x) = f(x')$

Or f est injective, donc x = x', donc $x \in A$.