

Universidad Nacional de Colombia Facultad de Ciencias Topología General Taller II

Mateo Andrés Manosalva Amaris	
Sergio Alejandro Bello Torres	

1. Muestra que los números racionales Q no son localmente compactos

$$\bigcap_{n>k}^{\infty} \left(\left[r - \frac{1}{n}, r + \frac{1}{n} \right] \cap \mathbb{Q} \right) = \emptyset$$

De esta manera, $\left[r-\frac{1}{k},r+\frac{1}{k}\right]\cap\mathbb{Q}$ no es compacto y por lo tanto \mathbb{Q} no es localmente compacto.

2. Sea $\{X_{\alpha}\}$ una familia indexada de espacios no vacíos.

a) Demuestra que si $\prod X_{\alpha}$ es localmente compacto, entonces cada X_{α} es localmente compacto y X_{α} es compacto para todos los valores de α , salvo un número finito.

Demostración. Recordemos que las proyecciones son mapeos continuos y abiertos, supongamos que $\prod X_{\alpha}$ es localmente compacto. Sea $x \in \prod X_{\alpha}$, por la compacidad local existe un subespacio compacto C de $\prod X_{\alpha}$ que contiene a x y esta vecindad contiene un elemento de la base de $\prod X_{\alpha}$ que contiene a x, digamos U.

Como estamos en la topología producto, entonces $U = \prod_{\alpha} U_{\alpha}$ donde $U_{\alpha} = X_{\alpha}$ para todo α salvo finitos índices, digamos $\alpha_1, \ldots, \alpha_n$. Sea $\beta \neq \alpha_i$ para todo $i = 1, \ldots, n$, entonces $\pi_{\beta}(C)$ es un compacto que contiene a $\pi_{\beta}(U) = X_{\beta}$.

Falta ver que los X_{α_i} , i=1,...,n son localmente compactos. Sean $y \in X_{\alpha_i}$ y $x \in \prod X_{\alpha}$ tales que $x_{\alpha_i} = y$. Existe un compacto C que contiene un elemento de la base U tal que U es vecindad x, entonces $\pi_{\alpha_i}(C)$ es un subespacio compacto de X_{α_i} que contiene a la vecindad $\pi_{\alpha_i}(U)$ de x.

b) Prueba el recíproco, asumiendo el teorema de Tychonoff.

Demostración. Sea $x ∈ \prod_{\alpha} X_{\alpha}$. Para cada α , existe un subespacio compacto C_{α} de X_{α} que contiene una vecindad U_{α} de x_{α} . Por hipótesis, para cada índice salvo finitos, podemos asumir que $C_{\alpha} = U_{\alpha} = X_{\alpha}$. Por el teorema de Tychonoff, $\prod_{\alpha} C_{\alpha}$ es compacto y contiene la vecindad $\prod_{\alpha} U_{\alpha}$ de x. Se sigue que $\prod_{\alpha} X_{\alpha}$ es localmente compacto. \Box

3. Sea X un espacio localmente compacto. Si $f: X \to Y$ es continua, ¿se sigue que f(X) es localmente compacto? ¿Qué ocurre si f es continua y abierta? Justifica tu respuesta.

Falso: Sean \mathbb{Q}_d los racionales con la topología discreta y \mathbb{Q} los racionales con la topología usual. \mathbb{Q}_d es localmente compacto ya que $\{x\}$ es una vecindad de x y $\{x\}$ es compacto, sin embargo,

$$f: \mathbb{Q}_d \longrightarrow \mathbb{Q}$$
$$x \longmapsto f(x) = x$$

es continua y \mathbb{Q} no es localmente compacto (Ejercicio 1). Sin embargo si añadimos la hipótesis de que f es abierta, entonces es verdadera la proposición.

Demostración. Sea $y \in f(X)$, existe $x \in X$ tal que f(x) = y, como X es localmente compacto, entonces existe un subespacio compacto C de X tal que C contiene una vecindad U de x. Obviamente $f(U) \subset f(C)$ y f(U) es abierto porque f es abierta, además f(C) es compacto, de lo que se sigue el resultado. □

4. Demuestra que $[0,1]^{\omega}$ no es localmente compacto en la topología uniforme.

Demostración. Considere el $0 \in \mathbb{R}^{\omega}$, 0 = (0,0,0,0,...). Suponga que $[0,1]^{\omega}$ es localmente compacto en 0, entonces existe un compacto C que contiene la bola $B(0,\epsilon) \subset [0,1]^{\omega}$, en efecto $\overline{B(0,\epsilon)} = [0,\epsilon]^{\omega}$. Como $[0,\epsilon]^{\omega}$ es un subconjunto cerrado de un compacto, entonces es compacto, pero esto es una contradicción ya que dado $U \subset [0,\epsilon)$, tenemos que

$$\bigcup_{k>1} [0,\epsilon]^k \times U^{\omega-k}$$

es un cubrimiento abierto de $[0,\epsilon]^{\omega}$ que no admite un subcubrimiento finito.

5. Si $f: X_1 \to X_2$ es un homeomorfismo entre espacios Hausdorff localmente compactos, demuestra que f se extiende a un homeomorfismo de sus compactificaciones por un punto.

Demostración. Suponga $f: X_1 \rightarrow X_2$ un homeomorfismo y definamos

$$g: Y_1 \longrightarrow Y_2$$

$$x \longmapsto g(x) = \begin{cases} f(x) & \text{si } x \in X_1 \\ \tilde{y} & \text{si } x = y, \end{cases}$$

con Y_1 , Y_2 las compactificaciones a un punto, g es un homeomorfismo entre Y_1 y Y_2 . Sea V un abierto, $V \subset Y_2$. Tenemos dos casos, V es abierto de X_2 o $V = Y_2 - C$ con C compacto en X_2 , el primer caso es trivial. Para el segundo caso note que

$$g^{-1}(V) = g^{-1}(Y_2 - C)$$

= $Y_1 - g^{-1}(C)$
= $Y_1 - K_1$.

con K_1 compacto en X_1 . Análogamente

$$g(Y_1 - C) = Y_2 - g(C) = Y_2 - K_2$$

con K_2 compacto en X_2 .

6. Demuestra que la compactificación por un punto de $\mathbb R$ es homeomorfa al círculo S^1 .

Demostración. Vamos a construir el homeomorfismo, este es la proyección estereográfica.

Por la ecuación de punto pendiente, la recta que se observa en el dibujo y que corta la circunferencia tiene la ecuación

$$y = \frac{-x}{a} + 1,$$

reemplazando esto en la ecuación del círculo $(x^2 + y^2 = 1)$ obtenemos que

$$x^2 + \frac{x^2}{a^2} - \frac{2x}{a} = 0,$$

así pues

$$x\left(1+\frac{1}{a^2}\right) = \frac{2}{a},$$

esto es

$$x = \frac{2a}{a^2 + 1}.$$

Finalmente, al reemplazar x en la ecuación de la recta, obtenemos que

$$y = \frac{-2}{a^2 + 1} + 1$$

que es el heomemorfimo ya que cuando $a \to \infty$ obtenemos el polo norte y la función establece una correspondencia entre un punto en la circunferencia y un punto en la recta (por la construcción que hicimos). Obviamente la función es biyectiva y continua y su inversa es continua xd.

7. Demuestra que la compactificación por un punto de S_{Ω} es homeomorfa a \bar{S}_{Ω} .

8. Demuestra que la compactificación por un punto de \mathbb{Z}_+ es homeomorfa al subespacio $\{0\} \cup \{1/n \mid n \in \mathbb{Z}_+\}$ de \mathbb{R} .

Demostración. Veamos que \mathbb{Z}_+ y $A = \left\{\frac{1}{n}: n \in \mathbb{Z}_+\right\}$ como subespacios de \mathbb{R} poseen la topología discreta. Sea $n \in \mathbb{Z}_+$, note que $\left(n - \frac{1}{2}, n + \frac{1}{2}\right) \cap \mathbb{Z}_+ = \{n\}$, por lo tanto los puntos son abiertos en Z_+ , de donde se sigue que \mathbb{Z}_+ posee la topología discreta. Ahora sea $\frac{1}{n} \in A$, note que $\left(\frac{1}{n} - \frac{1}{2n(n+1)}, \frac{1}{n} + \frac{1}{2n(n+1)}\right) \cap A = \left\{\frac{1}{n}\right\}$, con lo cual, razonando de la misma manera que en el caso anterior, A posee la topología discreta, así la función

$$f: \mathbb{Z}_+ \longrightarrow A$$

$$n \longmapsto f(n) = \frac{1}{n}$$

Es un homeomorfismo, luego por el punto 5, sus compactificaciones a un punto son homeomorfas. Para mostrar que la compactificación a un punto de A es $A \cup \{0\}$ basta ver que $A' = \{0\}$ luego $\overline{A} = \{0\} \cup A$, como $A \cup \{0\} \subset \mathbb{R}$ es cerrado y acotado, es compacto y difiere en un punto de A.

- 9. Demuestra que si G es un grupo topológico localmente compacto y H es un subgrupo, entonces G/H es localmente compacto.
- 10. Demuestra que si X es un espacio de Hausdorff localmente compacto en el punto x, entonces para cada vecindad U de x, existe una vecindad V de x tal que \bar{V} es compacto y $\bar{V} \subset U$.

Demostración. Sea U una vecindad de x, como X es localmente compacto en x, existe un compacto $K \subseteq X$ tal que $x \in W \subseteq K$, con W una vecindad de x. Tenemos también que $U \cap W$ es una vecindad de x contenida en K, por lo tanto $K - (U \cap W)$ es cerrado en K. Como K es compacto y Hausdorff, existen dos abiertos disyuntos V_1 y V_2 tales que $x \in V_1$ y $K - (U \cap W) \subseteq V_2$. Considere $V = V_1 \cap U \cap W$, V es una vecindad de X que está contenida en U, además $\overline{V} \subseteq U$, en efecto $K - (U \cap W) = (K - U) \cup (K - W) \subseteq V_2$ y como V_2 es abierto, $V_2^c \subseteq U$ es un cerrado que contiene a V, por lo tanto $\overline{V} \subseteq U$. Además, como $\overline{V} \subseteq K$, es compacto. \square