数据通路简介

(参考谭志虎老师课件)

数据通路 DataPath

- 数据通路-----执行部件间传送信息的路径 (数据流)
 - ◆通路的建立由控制信号控制,受时钟驱动 (控制流)
 - ◆不同指令、同一指令在执行的不同阶段的数据通路不同
 - ◆分类: 共享通路(总线)、专用通路
 - 指令执行流程、执行效率
 - 微操作控制信号的时序安排

数据通路抽象模型(寄存器传输)

D触发器定时模型

- 时钟触发前输入须稳定一段 建立时间 (Setup Time)
- 时钟触发后输入须稳定一段 保持时间 (Hold Time)
- 时钟触发到输出稳定的时间 触发器延迟 Clk_to_Q

数据通路与时钟周期

■ 时钟周期 > Clk_to_Q + 关键路径时延 + Setup Time

保持时间违例

■ Clk_to_Q + 最短路径时延 > Hold_Time

数据通路分类

• 共享通路(总线型)

- ◆主要部件都连接在公共总线上,各部件间通过总线进行数据传输
- ◆结构简单,实现容易,但并发性较差,需分时使用总线,效率低

• 专用通路

- ◆并发度高,性能佳,设计复杂,成本高
- ◆可以看作多总线结构

单总线结构CPU实例

Write Read

总线 🚹

操作控制信号

******* *** *******

操作控制器

多总线架构数据通路

专用通路 单周期MIPS CPU

单周期MIPS处理器数据通路

5段流水线控制信号与传递

单总线结构CPU MIPS 指令周期

单总线结构MIPS CPU 典型指令

#	指令	指令功能 (RTL描述)
1	<pre>lw rt,imm(rs)</pre>	R[rt] ← M[R[rs] + SignExt(imm)]
2	sw rt,imm(rs)	M[R[rs] + SignExt(imm)]← R[rt]
3	beq rs,rt,imm	if(R[rs]==R[rt]) PC←PC+4+SignExt(imm)<< 2
4	addi rt,rs,imm	$R[rt] \leftarrow R[rs] + SignExt(imm)$
5	add rd,rs,rt	$R[rd] \leftarrow R[rs] + R[rt]$

取指令数据通路

LW 指令执行数据通路 lw rt, imm(rs)

6bi ts 5bi ts 5bi ts 16bi ts

OP=35 rs rt imm

SW 指令执行数据通路 sw rt, imm(rs)

BEQ 指令数据通路 beq rs, rt, imm

I型运算类指令执行数据通路 addi rt, rs, imm

R型运算类指令执行数据通路 add rd, rs, rt

指令周期方框图 (数据流)

定长指令周期的三级时序发生器

构建时序发生器? 输入: 节拍脉冲 输出: M_{IF}, Mcal, M_{EX}, T1~T4

变长指令周期三级时序时序发生器

机器周期数可变、节拍数可变,无周期浪费,更加灵活

传统三级时序与现代时序对比

