Algoritmo de Floyd Conclusión

Algoritmos y Estructuras de Datos II

Programación dinámica: algoritmo de Floyd

1 de junio de 2016

Clase de hoy

- Algoritmo de Floyd
 - Problema del camino de costo mínimo
 - Algoritmo de Floyd
 - Ejemplo
 - Reconstrucción del camino
 - Otras reconstrucciones
- 2 Conclusión

Algoritmo de Floyd Ejemplo

Reconstrucción del camino
Otras reconstrucciones

Problema del camino de costo mínimo entre todo par de vértices

Vimos la definición

Backtracking

$$m_k(i,j) = \begin{cases} L[i,j] & k = 0\\ \min(m_{k-1}(i,j), m_{k-1}(i,k) + m_{k-1}(k,j)) & k \ge 1 \end{cases}$$

que puede ser exponencial debido a que tiene tres llamadas recursivas en el último caso.

Problema del camino de costo mínimo Confección de una tabla

- Habiendo tres parámetros, la tabla será un arreglo tridimensional.
- El caso base corresponde al llenado de la matriz m[0, i, j].
- Como todas las llamadas recursivas se realizan decrementando el "parámetro k", la única condición necesaria para el llenado de la tabla es proceder desde k igual a 0 hasta k igual a n.
 - Primero se copia m[0, i, j] := L[i, j] para todo i, j.
 - Luego, para todo k > 0, y para todo i, j se asigna m[k, i, j] := min(m[k-1, i, j], m[k-1, i, k] + m[k-1, k, j])

Problema del camino de costo mínimo Algoritmo de Floyd Ejemplo Reconstrucción del camino Otras reconstrucciones

Problema del camino de costo mínimo

Observaciones interesantes

- Dijimos "Luego, para todo k > 0, y para todo i, j se asigna m[k, i, j] := min(m[k 1, i, j], m[k 1, i, k] + m[k 1, k, j])"
- Observar qué pasa al calcular la fila k de la matriz k
 - m[k, k, j] := min(m[k-1, k, j], m[k-1, k, k] + m[k-1, k, j]),
 - o sea, m[k, k, j] := m[k 1, k, j], ¡no cambia!
- Observar qué pasa al calcular la columna k de la matriz k
 - m[k, i, k] := min(m[k-1, i, k], m[k-1, i, k] + m[k-1, k, k]),
 - o sea, m[k, i, k] := m[k 1, i, k], ¡tampoco cambia!
- Para calcular la celda i, j de la matriz k, sólo se necesitan:
 - la misma celda de la matriz anterior
 - la celda i, k (que está en la columna k) de la matriz anterior
 - la celda k, j (que está en la fila k) de la matriz anterior
- ¡Entonces podemos hacer todo en una única matriz!

Problema del camino de costo mínimo Algoritmo de Floyd Ejemplo Reconstrucción del camino Otras reconstrucciones

Problema del camino de costo mínimo

Programación dinámica

Problema del camino de costo mínimo Algoritmo de Floyd Ejemplo Reconstrucción del camino Otras reconstrucciones

Problema del camino de costo mínimo

Programación dinámica

```
fun Floyd(L:array[1..n,1..n] of costo) ret m: array[1..n,1..n] of costo
   for i = 1 to n do
       for j:= 1 to n do
           m[i,j]:=L[i,j]
       od
    od
   for k = 1 to n do
       for i:= 1 to n do
           for j:= 1 to n do
               m[i,j]:=min(m[i,j],m[i,k]+m[k,j])
           od
       od
    od
```

Grafo

Matriz de adyacencia L

	0	4	1	10	∞	∞
	4	0	3	∞	1	∞
m	∞	2	0	8	4	∞
$m_0 =$	2	∞	2	0	∞	∞
	∞	∞	3	∞	0	3
	∞	∞	2	1	∞	0

0	4	1	10	∞	∞
4	0	3	∞	1	∞
∞	2	0	8	4	∞
2	∞	2	0	∞	∞
∞	∞	3	∞	0	3
∞	∞	2	1	∞	0

0	4	1	10	∞	∞
4	0	3	∞	1	∞
∞	2	0	8	4	∞
2	∞	2	0	∞	∞
∞	∞	3	∞	0	3
∞	∞	2	1	∞	0

0	4	1	10	∞	∞
4	0	3	∞	1	∞
∞	2	0	8	4	∞
2	∞	2	0	∞	∞
∞	∞	3	∞	0	3
∞	∞	2	1	∞	0

0	4	1	10	∞	∞
4	0	3	∞	1	∞
∞	2	0	8	4	∞
2	∞	2	0	∞	∞
∞	∞	3	∞	0	3
∞	∞	2	1	∞	0

0	4	1	10	∞	∞
4	0	3	14	1	∞
∞	2	0	8	4	∞
2	∞	2	0	∞	∞
∞	∞	3	∞	0	3
∞	∞	2	1	∞	0

0	4	1	10	∞	∞
4	0	3	14	1	∞
∞	2	0	8	4	∞
2	∞	2	0	∞	∞
∞	∞	3	∞	0	3
∞	∞	2	1	∞	0

0	4	1	10	∞	∞
4	0	3	14	1	∞
∞	2	0	8	4	∞
2	∞	2	0	∞	∞
∞	∞	3	∞	0	3
∞	∞	2	1	∞	0

0	4	1	10	∞	∞
4	0	3	14	1	∞
∞	2	0	8	4	∞
2	∞	2	0	∞	∞
∞	∞	3	∞	0	3
∞	∞	2	1	∞	0

0	4	1	10	∞	∞
4	0	3	14	1	∞
∞	2	0	8	4	∞
2	6	2	0	∞	∞
∞	∞	3	∞	0	3
∞	∞	2	1	∞	0

0	4	1	10	∞	∞
4	0	3	14	1	∞
∞	2	0	8	4	∞
2	6	2	0	∞	∞
∞	∞	3	∞	0	3
∞	∞	2	1	∞	0

0	4	1	10	∞	∞
4	0	3	14	1	∞
∞	2	0	8	4	∞
2	6	2	0	∞	∞
∞	∞	3	∞	0	3
∞	∞	2	1	∞	0

0	4	1	10	∞	∞
4	0	3	14	1	∞
∞	2	0	8	4	∞
2	6	2	0	∞	∞
∞	∞	3	∞	0	3
∞	∞	2	1	∞	0

Calculando m₁

0	4	1	10	∞	∞
4	0	3	14	1	∞
∞	2	0	8	4	∞
2	6	2	0	∞	∞
∞	∞	3	∞	0	3
∞	∞	2	1	∞	0

= *m*₁

0	4	1	10	∞	∞
4	0	3	14	1	∞
∞	2	0	8	4	∞
2	6	2	0	∞	∞
∞	∞	3	∞	0	3
∞	∞	2	1	∞	0

0	4	1	10	∞	∞
4	0	3	14	1	∞
∞	2	0	8	4	∞
2	6	2	0	∞	∞
	ı	ı			ı
∞	∞	3	∞	0	3

0	4	1	10	5	∞
4	0	3	14	1	∞
∞	2	0	8	4	∞
2	6	2	0	∞	∞
∞	∞	3	∞	0	3
∞	∞	2	1	∞	0

0	4	1	10	5	∞
4	0	3	14	1	∞
6	2	0	8	3	∞
2	6	2	0	∞	∞
∞	∞	3	∞	0	3
∞	∞	2	1	∞	0

0	4	1	10	5	∞
4	0	3	14	1	∞
6	2	0	8	3	∞
2	6	2	0	7	∞
∞	∞	3	∞	0	3
∞	∞	2	1	∞	0

0	4	1	10	5	∞
4	0	3	14	1	∞
6	2	0	8	3	∞
2	6	2	0	7	∞
∞	∞	3	∞	0	3
∞	∞	2	1	∞	0

0	4	1	10	5	∞
4	0	3	14	1	∞
6	2	0	8	3	∞
2	6	2	0	7	∞
∞	∞	3	∞	0	3
∞	∞	2	1	∞	0

0	4	1	10	5	∞
4	0	3	14	1	∞
6	2	0	8	3	∞
2	6	2	0	7	∞
∞	∞	3	∞	0	3
∞	∞	2	1	∞	0

0	3	1	9	4	∞
4	0	3	14	1	∞
6	2	0	8	3	∞
2	6	2	0	7	∞
∞	∞	3	∞	0	3
∞	∞	2	1	∞	0

0	3	1	9	4	∞
4	0	3	11	1	∞
6	2	0	8	3	∞
2	6	2	0	7	∞
∞	∞	3	∞	0	3
∞	∞	2	1	∞	0

0	3	1	9	4	∞
4	0	3	11	1	∞
6	2	0	8	3	∞
2	4	2	0	5	∞
∞	∞	3	∞	0	3
∞	∞	2	1	∞	0

0	3	1	9	4	∞
4	0	3	11	1	∞
6	2	0	8	3	∞
2	4	2	0	5	∞
9	5	3	11	0	3
∞	∞	2	1	∞	0

0	3	1	9	4	∞
4	0	3	11	1	∞
6	2	0	8	3	∞
2	4	2	0	5	∞
9	5	3	11	0	3
8	4	2	1	5	0

0	3	1	9	4	∞
4	0	3	11	1	∞
6	2	0	8	3	∞
2	4	2	0	5	∞
9	5	3	11	0	3
8	4	2	1	5	0

0	3	1	9	4	∞
4	0	3	11	1	∞
6	2	0	8	3	∞
2	4	2	0	5	∞
9	5	3	11	0	3
8	4	2	1	5	0

Problema del camino de costo mínimo Ejemplo Reconstrucción del camino

0	3	1	9	4	∞
4	0	3	11	1	∞
6	2	0	8	3	∞
2	4	2	0	5	∞
9	5	3	11	0	3
8	4	2	1	5	0

0	3	1	9	4	∞
4	0	3	11	1	∞
6	2	0	8	3	∞
2	4	2	0	5	∞
9	5	3	11	0	3
8	4	2	1	5	0

0	3	1	9	4	∞
4	0	3	11	1	∞
6	2	0	8	3	∞
2	4	2	0	5	∞
9	5	3	11	0	3
8	4	2	1	5	0

0	3	1	9	4	∞
4	0	3	11	1	∞
6	2	0	8	3	∞
2	4	2	0	5	∞
9	5	3	11	0	3
8	4	2	1	5	0

0	3	1	9	4	∞
4	0	3	11	1	∞
6	2	0	8	3	∞
2	4	2	0	5	∞
9	5	3	11	0	3
3	4	2	1	5	0

0	3	1	9	4	∞
4	0	3	11	1	∞
6	2	0	8	3	∞
2	4	2	0	5	∞
9	5	3	11	0	3
3	4	2	1	5	0

0	3	1	9	4	∞
4	0	3	11	1	∞
6	2	0	8	3	∞
2	4	2	0	5	∞
9	5	3	11	0	3
3	4	2	1	5	0

0	3	1	9	4	7
4	0	3	11	1	∞
6	2	0	8	3	∞
2	4	2	0	5	∞
9	5	3	11	0	3
3	4	2	1	5	0

0	3	1	9	4	7
4	0	3	11	1	4
6	2	0	8	3	∞
2	4	2	0	5	∞
9	5	3	11	0	3
3	4	2	1	5	0

0	3	1	9	4	7
4	0	3	11	1	4
6	2	0	8	3	6
2 9	4	2	0	5	∞
	5	3	11	0	3
3	4	2	1	5	0

0	3	1	9	4	7
4 6	0	3	11	1	4
6	2	0	8	3	6
2	4	2	0	5	8
9	5	3	11	0	3
3	4	2	1	5	0

0	3	1	9	4	7
4	0	3	11	1	4
6	2	0	8	3	6
2	4	2	0	5	8
9	5	3	11	0	3
3	4	2	1	5	0

0	3	1	9	4	7
4	0	3	11	1	4
6	2	0	8	3	6
2	4	2	0	5	8
9	5	3	11	0	3
3	4	2	1	5	0

0	3	1	9	4	7
4	0	3	11	1	4
6	2	0	8	3	6
2	4	2	0	5	8
9	5	3	11	0	3
3	4	2	1	5	0

0	3	1	8	4	7
4	0	3	11	1	4
6	2	0	8	3	6
2	4	2	0	5	8
9	5	3	11	0	3
3	4	2	1	5	0

0	3	1	8	4	7
4	0	3	5	1	4
6	2	0	8	3	6
2	4	2	0	5	8
9	5	3	11	0	3
3	4	2	1	5	0

0	3	1	8	4	7
4 6	0	3	5	1	4
6	2	0	7	3	6
2	4	2	0	5	8
9	5	3	11	0	3
3	4	2	1	5	0

0	3	1	8	4	7
4	0	3	5	1	4
6	2	0	7	3	6
2	4	2	0	5	8
9	5	3	11	0	3
3	4	2	1	5	0

Calculando m₆

0	3	1	8	4	7
4	0	3	5	1	4
6	2	0	7	3	6
2	4	2	0	5	8
6	5	3	4	0	3
3	4	2	1	5	0

= *m*₆

Reconstrucción del camino

```
fun Floyd(L:array[1..n,1..n] of costo) ret m: array[1..n,1..n] of costo
                                      ret E: array[1..n,1..n] of nat
   copiar L a m
   inicializar las celdas de F en 0
   for k = 1 to n do
       for i = 1 to n do
           for j:=1 to n do
               if m[i,k]+m[k,j] < m[i,j] then m[i,j] := m[i,k]+m[k,j]
                                             E[i,i]:=k
               fi
           od
       od
   od
```

Matriz de adyacencia L

	m_0							E_0			
0	4	1	10	∞	∞	0	0	0	0	0	0
4	0	3	∞	1	∞	0	0	0	0	0	0
∞	2	0	8	4	∞	0	0	0	0	0	0
2	∞	2	0	∞	∞	0	0	0	0	0	0
∞	∞	3	∞	0	3	0	0	0	0	0	0
∞	∞	2	1	∞	0	0	0	0	0	0	0

	m_1							E_1			
0	4	1	10	∞	∞	0	0	0	0	0	0
4	0	3	14	1	∞	0	0	0	1	0	0
∞	2	0	8	4	∞	0	0	0	0	0	0
2	6	2	0	∞	∞	0	1	0	0	0	0
∞	∞	3	∞	0	3	0	0	0	0	0	0
∞	∞	2	1	∞	0	0	0	0	0	0	0

	m_2							E_2			
0	4	1	10	5	∞	0	0	0	0	2	0
4	0	3	14	1	∞	0	0	0	1	0	0
6	2	0	8	3	∞	2	0	0	0	2	0
2	6	2	0	7	∞	0	1	0	0	2	0
∞	∞	3	∞	0	3	0	0	0	0	0	0
∞	∞	2	1	∞	0	0	0	0	0	0	0

Problema del camino de costo mínimo Algoritmo de Floyd Ejemplo Reconstrucción del camino Otras reconstrucciones

		m_3						E_3			
0	3	1	9	4	∞	0	3	0	3	3	0
4	0	3	11	1	∞	0	0	0	3	0	0
6	2	0	8	3	∞	2	0	0	0	2	0
2	4	2	0	5	∞	0	3	0	0	3	0
9	5	3	11	0	3	3	3	0	3	0	0
8	4	2	1	5	0	3	3	0	0	3	0

				m_4		E_4					
0	3	1	9	4	∞	0	3	0	3	3	0
4	0	3	11	1	∞	0	0	0	3	0	0
6	2	0	8	3	∞	2	0	0	0	2	0
2	4	2	0	5	∞	0	3	0	0	3	0
9	5	3	11	0	3	3	3	0	3	0	0
3	4	2	1	5	0	4	3	0	0	3	0

				m_5		E 5					
0	3	1	9	4	7	0	3	0	3	3	5
4	0	3	11	1	4	0	0	0	3	0	5
6	2	0	8	3	6	2	0	0	0	2	5
2	4	2	0	5	8	0	3	0	0	3	5
9	5	3	11	0	3	3	3	0	3	0	0
3	4	2	1	5	0	4	3	0	0	3	0

				m_6		E_6					
0	3	1	8	4	7	0	3	0	6	3	5
4	0	3	5	1	4	0	0	0	6	0	5
6	2	0	7	3	6	2	0	0	6	2	5
2	4	2	0	5	8	0	3	0	0	3	5
6	5	3	4	0	3	6	3	0	6	0	0
3	4	2	1	5	0	4	3	0	0	3	0

Problema del camino de costo mínimo Algoritmo de Floyd Ejemplo Reconstrucción del camino Otras reconstrucciones

Problema de la moneda

```
fun cambio(d:array[1..n] of nat, k: nat) ret nr: array[0..n] of nat
   var m: array[0..n,0..k] of nat
        r.s: nat
   for i := 0 to n do m[i,0] := 0 od
   for j:=1 to k do m[0,j]:=\infty od
   for i = 1 to n do
       for j:=1 to k do
          if d[i] > i then m[i,j] := m[i-1,j] else m[i,j] := min(m[i-1,j],1+m[i,j-d[i]]) fi
       od
   οd
   for i := 0 to n do nr[i] := 0 od
   nr[0]:=m[n,k]
   if m[n,k] \neq \infty then
      r'= n
      s:=k
      while m[r,s] > 0 do
          if m[r,s] = m[r-1,s] then r := r-1
          else nr[r]:= nr[r]+1
               s:=s-d[r]
          fi
      od
end fun
```

Problema de la mochila

```
fun mochila(v:array[1..n] of valor, w:array[1..n] of nat, W: nat) ret nr: array[1..n] of bool
   var m: arrav[0..n.0..W] of valor
       r.s: nat
   for i:= 0 to n do m[i.0]:= 0 od
   for i:= 1 to W do m[0.i]:= 0 od
   for i = 1 to n do
      for i = 1 to W do
          if w[i] > i then m[i,j] := m[i-1,j] else m[i,j] := max(m[i-1,j],v[i]+m[i-1,j-w[i]]) fi
      od
   od
   r·= n
   s'= W
   while m[r.s] > 0 do
       if m[r,s] = m[r-1,s] then nr[r] := false
       else nr[r]:= true
             s:=s-w[r]
       fi
       r := r - 1
   od
end fun
```

Conclusión

- Algoritmos voraces
 - Cuando tenemos un criterio de selección que garantiza optimalidad
- Backtracking
 - Cuando no tenemos un criterio así
 - solución top-down
 - en general es exponencial
- Programación dinámica
 - construye una tabla bottom-up
 - evita repetir cálculos
 - pero realiza algunos cálculos inútiles.