Probability Distribution Model Probability distribution model Gaussian **Binomial** Bernoulli **Uniform** Poisson (normal) distribution distribution distribution distribution distribution $\theta = 1/8$ $\theta = 1/2$ $\theta = 7/8$ $\mu=0, \sigma^2=0.2$ $\mu=0, \sigma^2=1$ $\mu=0, \sigma^2=5$ 0.25 0.2 0.15

	4			4
pdf	parameters	X	mean	variance
$p(x \mid \mu, \sigma^2) = \left(\frac{1}{2\pi\sigma^2}\right)^{\frac{1}{2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$	μ , σ^2	$X \in \mathbb{R}, \ X \sim N(\mu, \sigma^2)$	$\mathbb{E}\left[X\right] = \mu,$	$\mathbb{V}\left[X\right] = \sigma^2$
$p(x \mid \theta) = \theta^x (1 - \theta)^{(1-x)}.$	θ, success	$X \in \{0,1\}, X \sim \mathrm{Be}(\theta)$	$\mathbb{E}\left[X\right] = \theta$	$\mathbb{V}\left[X\right] = \theta(1-\theta)$
$p(m \mid \theta) = \binom{n}{m} \prod_{i=1}^n p(x_i \mid \theta) = \binom{n}{m} \theta^m (1-\theta)^{(n-1)}$ where $\binom{n}{m} = \frac{n!}{(n-m)!m!}$		$\in \{0, 1, \dots, n\}, X \sim \operatorname{Bin}(\theta,$	n) $\mathbb{E}[X] = n\theta$	$\mathbb{V}\left[X\right] = n\theta(1-\theta)$
$\mathbb{P}(X = k \mid a, b) = \frac{1}{b - a + 1}$				
$p(x \mid a, b) = \begin{cases} 0 & \text{for } x < a \\ \frac{1}{b-a} & \text{for } a \le x \le b \\ 0 & \text{for } x > b \end{cases}$	a, b $w = b - a$	$X \in \{a, \dots, b\}$ with $b \ge a$ $\mathbb{E}[X]$	$\mathbb{Y}[X] = \frac{a+b}{2} = a + \frac{w}{2}$	$[X] = \frac{(b-a)^2}{12} = \frac{w^2}{12}$
$p(k \mid \lambda) = \frac{\lambda^k \exp(-\lambda)}{k!}$	λ, called the rate			$\mathbb{V}\left[X\right] = \lambda$
	$p(x \mid \mu, \sigma^2) = \left(\frac{1}{2\pi\sigma^2}\right)^{\frac{1}{2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$ $p(x \mid \theta) = \theta^x (1-\theta)^{(1-x)}.$ $p(m \mid \theta) = \binom{n}{m} \prod_{i=1}^n p(x_i \mid \theta) = \binom{n}{m} \theta^m (1-\theta)^{(n-x)}$ where $\binom{n}{m} = \frac{n!}{(n-m)!m!}$ $\mathbb{P}(X = k \mid a, b) = \frac{1}{b-a+1}$ $p(x \mid a, b) = \begin{cases} 0 & \text{for } x < a \\ \frac{1}{b-a} & \text{for } a \le x \le b \\ 0 & \text{for } x > b \end{cases}$	$p(x \mid \mu, \sigma^2) = \left(\frac{1}{2\pi\sigma^2}\right)^{\frac{1}{2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$ $p(x \mid \theta) = \theta^x (1-\theta)^{(1-x)}.$ $p(m \mid \theta) = \binom{n}{m} \prod_{i=1}^n p(x_i \mid \theta) = \binom{n}{m} \theta^m (1-\theta)^{(n-m)}$ m, θ where $\binom{n}{m} = \frac{n!}{(n-m)!m!}$ $p(X = k \mid a, b) = \frac{1}{b-a+1}$ $p(X = k \mid a, b) = \begin{cases} 0 & \text{for } x < a \\ \frac{1}{b-a} & \text{for } a \le x \le b \\ 0 & \text{for } x > b \end{cases}$ $p(k \mid \lambda) = \frac{\lambda^k \exp\left(-\lambda\right)}{2 + \frac{1}{2}}$ $\lambda, \text{ called the}$	$p(x \mid \mu, \sigma^2) = \left(\frac{1}{2\pi\sigma^2}\right)^{\frac{1}{2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \qquad X \in \mathbb{R}, X \sim N(\mu, \sigma^2)$ $p(x \mid \theta) = \theta^x (1-\theta)^{(1-x)}. \qquad \theta, \qquad X \in \{0,1\}, X \sim \operatorname{Be}(\theta)$ $p(m \mid \theta) = \binom{n}{m} \prod_{i=1}^n p(x_i \mid \theta) = \binom{n}{m} \theta^m (1-\theta)^{(n-m)} \qquad n, \theta$ where $\binom{n}{m} = \frac{n!}{(n-m)!m!}$ $\mathbb{P}(X = k \mid a, b) = \frac{1}{b-a+1} \qquad a, b \qquad X \in \{0, 1, \dots, n\}, X \sim \operatorname{Bin}(\theta, \theta)$ $p(x \mid a, b) = \begin{cases} 0 & \text{for } x < a \\ \frac{1}{b-a} & \text{for } a \le x \le b \\ \text{for } x > b \end{cases}$ $p(k \mid \lambda) = \frac{\lambda^k \exp(-\lambda)}{t!} \qquad called the$	$p(x \mid \mu, \sigma^2) = \left(\frac{1}{2\pi\sigma^2}\right)^{\frac{1}{2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$ $p(x \mid \theta) = \theta^x \left(1-\theta\right)^{(1-x)}.$ $p(m \mid \theta) = \binom{n}{m} \prod_{i=1}^n p(x_i \mid \theta) = \binom{n}{m} \theta^m (1-\theta)^{(n-m)}$ $\binom{n}{m} = \frac{n!}{(n-m)!m!}$ $p(X \mid a,b) = \begin{cases} \frac{1}{b-a} & \text{for } a \le x \le b \\ \text{for } x > b \end{cases}$ $p(X \mid a,b) = \begin{cases} \frac{1}{b-a} & \text{for } a \le x \le b \\ \text{for } x > b \end{cases}$ $p(X \mid a,b) = \frac{\lambda^k \exp(-\lambda)}{b-a}$