

Aprendizagem e Extração de Conhecimento Perfil Sistemas Inteligentes @ MiEl/4° – 1° Semestre

Cesar Analide, Filipe Gonçalves

Raciocínio Baseado em Casos – Case Based Reasoning

o Procedimento de resolução de problemas baseado na solução de problemas passados similares

- Raciocínio Baseado em Casos Case Based Reasoning
- Aprendizagem por Reforço Reinforcement Learning
 - o Resolução de problemas através de noção de recompensa/penalização por ações executadas no ambiente

Raciocínio Baseado em Casos – Case Based Reasoning

Aprendizagem por Reforço – Reinforcement Learning

Redes Neuronais Artificiais – Artificial Neural Networks

o Sistemas conexionistas inspirados por modelos de funcionamento do cérebro humano

- Raciocínio Baseado em Casos Case Based Reasoning
- Aprendizagem por Reforço Reinforcement Learning
- Redes Neuronais Artificiais Artificial Neural Networks
- Algoritmos Genéticos Genetic Algorithms
 - o Resolução de problemas por otimização de desempenho, inspirado no processo da evolução das espécies

- Raciocínio Baseado em Casos Case Based Reasoning
- Aprendizagem por Reforço Reinforcement Learning
- Redes Neuronais Artificiais Artificial Neural Networks
- Algoritmos Genéticos Genetic Algorithms
- Inteligência de Grupo *Particle Swarm Optimization*
 - o Método de otimização pela melhoria iterativa de soluções baseada em medidas de qualidade

Raciocínio Baseado em Casos – Case Based Reasoning

Aprendizagem por Reforço – Reinforcement Learning

Redes Neuronais Artificiais – Artificial Neural Networks

Algoritmos Genéticos – Genetic Algorithms

Inteligência de Grupo – Particle Swarm Optimization

■ Máquinas de Vetores Suporte – *Support Vector Machines*

 Resolução de problemas pela construção de (hiper)planos que dividem os dados em grupos coerentes

- Aprendizagem com Supervisão:
 - Há conhecimento sobre os resultados esperados;
 - o É possível atuar no comportamento do sistema com vista a melhorar os resultados;
 - o O sistema procura fazer uma abstração dos dados de input como função para o output;
 - o É possível criar um "professor" para intervir na melhoria do sistema;
 - Problemas de otimização:
 - Se o output é caracterizado por valores discretos, designam-se problemas de classificação;
 - Se o output é caracterizado por valores contínuos, dizem-se problemas de regressão;

1+1:10

- Aprendizagem sem Supervisão:
 - Não há conhecimento sobre os resultados a procurar;
 - Não é possível intervir diretamente no comportamento do sistema;
 - A solução depende da capacidade de se encontrarem dependências ou estruturas entre os dados de input;
 - Não é possível o recurso ao conceito de "professor", uma vez que não há forma de afirmar quais os resultados corretos;
 - A maior desvantagem é a de as técnicas a usar terem de "descobrir" relações nos próprios dados;
 - Problemas de descoberta de conhecimento:
 - Segmentação: procura de grupos de dados que partilhem características idênticas;
 - Associação: procurar de fortes relações de semelhança entre os dados;

- Aprendizagem por Reforço:
 - Não há conhecimento sobre os resultados a procurar...
 - Mas há a capacidade para informar sobre a qualidade dos resultados (bom/mau);
 - O feedback ao sistema não é instantâneo, é atrasado no tempo;
 - A característica temporal é muito importante;
 - As ações sobre o sistema (output) alteram o estado que o próprio sistema servirá como input em iterações seguintes;
 - O sistema atua na procura de maximizar um determinado valor de recompensa (ou minimizar um valor de penalização);
 - O sistema atua sem conhecimento específico sobre o problema;
 - A resolução de problemas passa pelo balanceamento entre:
 - a exploração de novos espaços de procura (exploration)
 - a exploração do conhecimento detido pelo sistema (exploitation)

o Previsão por modelos de comparação iterativa de atributos através de estimativas de erros

13

- Baseados em Instâncias
 - o Modelos baseados em exemplos descritores das características importantes na resolução de problemas

- Baseados em Instâncias
- Regularização
 - o Extensão dos modelos de regressão, que favorece a seleção de modelos mais simples em detrimento de outros mais complexos, visando maior capacidade de generalização

15

- Baseados em Instâncias
- Regularização
- Árvores de Decisão
 - o Construção de modelos de decisão pela análise do conteúdo dos dados entre os diversos atributos do problema

- Baseados em Instâncias
- Regularização
- Árvores de Decisão
- Bayesianos
 - Métodos de inferência estatística fundamentados no teorema de Bayes, descrevendo a probabilidade de um evento baseada em conhecimento anterior relacionado com o evento

- Baseados em Instâncias
- Regularização
- Árvores de Decisão
- Bayesianos
- Segmentação
 - o Métodos de agrupamento de dados baseado em métricas de similaridade ou dissemelhança

- Baseados em Instâncias
- Regularização
- Árvores de Decisão
- Bayesianos
- Segmentação
- Regras de Associação
 - o Extração de regras que melhor descrevem o relacionamento entre os dados dos atributos

- Regressão
- Baseados em Instâncias
- Regularização
- Árvores de Decisão
- Bayesianos
- Segmentação
- Regras de Associação
- Redes Neuronais Artificiais
 - Modelos inspirados na estrutura e funcionamento do cérebro humano, destinados à generalização de comportamentos identificados nos dados

- Regressão
- Baseados em Instâncias
- Regularização
- Árvores de Decisão
- Bayesianos
- Segmentação
- Regras de Associação
- Redes Neuronais Artificiais
- Deep Learning
 - Uma especialização de RNAs, com especial enfoque na identificação de características (features) nos dados e em grandes volumes de informação

- Regressão
- Baseados em Instâncias
- Regularização
- Árvores de Decisão
- Bayesianos
- Segmentação
- Regras de Associação
- Redes Neuronais Artificiais
- Deep Learning
- Redução de Dimensionalidade
 - O Através da estrutura dos dados, procura uma descrição dos dados que reduza a sua quantidade e complexidade

- Baseados em Instâncias
- Regularização
- Árvores de Decisão
- Bayesianos
- Segmentação
- Regras de Associação
- Redes Neuronais Artificiais
- Deep Learning
- Redução de Dimensionalidade
- Ensemble
 - o Combinação de modelos de aprendizagem mais "fracos" para a criação de soluções mais robustas

- Regressão
- Baseados em Instâncias
- Regularização
- Árvores de Decisão
- Bayesianos
- Segmentação
- Regras de Associação
- Redes Neuronais Artificiais
- Deep Learning
- Redução de Dimensionalidade
- Ensemble

24

Aprendizagem e Extração de Conhecimento Perfil Sistemas Inteligentes @ MiEl/4° – 1° Semestre

Cesar Analide, Filipe Gonçalves