深度学习讨论班

第三节 Convolutional Neural Networks (卷积神经网络)

> 黄雷 2016-12-13

上一讲主要内容

- Linear classifier (简单线性分类器)
 - One neuron (一个神经元)
 - Multiple neurons (多个神经元)
- Multi-layer perceptron (多层感知机)
 - Model representation (模型表示)
 - Loss function: the goal for learning
 - Training
 - Gradient based optimization
 - backpropagation

Multi-layer perceptron

Training Algorithm

- ▶ 0.初始化权重 W⁽⁰⁾
- ▶ 1. 前向过程:
 - \triangleright 1.1根据输入x,计算输出值y
 - ▶ 1.2.计算损失函数值L(y, ŷ)。
- ▶ 2.后向传播
 - > 计算 $\frac{dL}{y}$
 - ► 后向传播直到计算dL x
- > 3.计算梯度 $\frac{dL}{dW}$
- ▶ 4.更新梯度

$$\boldsymbol{W}^{(t+1)} = \boldsymbol{W}^{(t)} - \eta \frac{d L}{d \boldsymbol{W}^{(t)}}$$

 $(1, 0, 0)^T$

outline

- Modeling of CNN
 - Module-wise architecture模块化结构
- Convolutional layer (module)
 - Convolution in general
 - Filters
 - Convolution module
- Pooling layer (module)

Feature extraction

- Feature extraction
 - Pixel-wise input
 - Correlation between features

 $(1, 0, 0)^T$

 (x_1, x_2, x_3)

Convolution Neural Network

Lenet-5

Convolution related layers

outline

- Modeling of CNN
 - Module-wise architecture模块化结构
- Convolutional layer (module)
 - Convolution in general
 - Filters
 - Convolution module
- Pooling layer (module)

Module-wise architecture

➤ Torch 平台

Model construction

```
function create_model()
  model = nn.Sequential()
  model:add(nn.Linear(3, 4))
  model:add(nn.Sigmoid())
  model:add(nn.Linear(4, 3))
  model:add(nn.Sigmoid())
  criterion = nn.MSECriterion()
  return model, criterion
end
```


Module-wise architecture

➤Torch 平台

Training per iteration:

```
-- forward

outputs = model:forward(X)

loss = criterion:forward(outputs, Y)

-- backward

dloss_doutput = criterion:backward(outputs, Y)

model:backward(X, dloss_doutput)
```


Convolution Neural Network

Lenet-5

outline

- Modeling of CNN
 - Module-wise architecture模块化结构
- Convolutional layer (module)
 - Convolution in general
 - Filters
 - Convolution module
- Pooling layer (module)

>一维离散卷积例子

$$y=$$
 y_1 y_2

$$y_1 = w_1 x_1 + w_2 x_2$$

$$y_2 = w_1 x_2 + w_2 x_3$$

$$y_{i'} = \sum_{i=1}^{M_f=2} w_i x_{i'+i-1}$$
 Correlation operator

$$y_{i'} = \sum_{i=1}^{M_f=2} w_{M_f+1-i} x_{i'+i-1}$$
 Convolution

• 离散空间卷积:

$$y(n) = x(n) * w(n) = \sum_{i=-\infty}^{i=+\infty} x(i)w(n-i)$$

• 离散空间卷积:

$$y(n) = x(n) * w(n) = \sum_{i=-\infty}^{i=+\infty} x(i)w(n-i)$$

• 连续空间的卷积:

$$y(t) = x(t) * h(t) = \int_{-\infty}^{+\infty} x(s)h(t-s) ds$$

• 图像卷积是二维离散卷积

$$g(i,j) = \sum_{k,l} f(k,l) w(i-k,j-l)$$

- 图像卷积,二维,离散
 - Correlation Operator(相关算子)

11

25

<u>l</u>				
17	24	1	8	15
23	5	7	14	16
4	6	13	20	22
10	12	19	21	3
11	18	25	2	9

f.

_					
	8	1	6		
	3	5	7		
	4	9	2		

- 图像卷积,二维,离散
 - Convolution operator (卷积算子)

f:

17	24	1	8	15
23	5	7	14	16
4	6	13	20	22
10	12	19	21	3
11	18	25	2	9

outline

- Modeling of CNN
 - Module-wise architecture模块化结构
- Convolutional layer (module)
 - Convolution in general
 - Filters
 - Convolution module
- Pooling layer (module)

Practice with linear filters(线性滤波器)

Original

Filter

Filtered (no change)

Practice with linear filters

Original

Filter

Shifted *left*By 1 pixel

Practice with linear filters

Original

Filter

Blur (with a box filter)

Practice with linear filters

0	1	0
1	-4	1
0	1	0

Filter

Output Image

Edge detect (边缘检测)

Filters in practise

1	1	1	1
<u> </u>	1	1	1
9	1	1	1

Input image

filter

output image

- Size of output image
 - How to move? stride
 - How about the border? padding

filters: stride (步幅)

7x7 input
assume 3x3 connectivity, stride 1
=> 5x5 output

7x7 input
assume 3x3 connectivity, stride 1
=> 5x5 output

what about stride 2?

7x7 input
assume 3x3 connectivity, stride 1
=> 5x5 output

what about stride 2?

7x7 input
assume 3x3 connectivity, stride 1
=> 5x5 output

what about stride 2?

7x7 input
assume 3x3 connectivity, stride 1
=> 5x5 output

what about stride 2? => 3x3 output

N

	F		
F			

Output size:

e.g.
$$N = 7$$
, $F = 3$:
stride $1 \Rightarrow (7 - 3)/1 + 1 = 5$
stride $2 \Rightarrow (7 - 3)/2 + 1 = 3$

filters: padding

In practice: Common to zero pad the border

e.g. input 7x7
neuron with receptive field 3x3, stride 1
pad with 1 pixel border => what is the
output?

7x7 => preserved size!

Filters in practise

 "Same convolution" (preserves size)

Input [9x9]

3x3 neurons, stride 1, pad **1** => [9x9]

- No headaches when sizing architectures
- Works well

 "Valid convolution" (shrinks size)

Input [9x9]

3x3 neurons, stride 1, pad 0 =[7x7]

- Headaches with sizing the full architecture
- Works Worse!

outline

- Modeling of CNN
 - Module-wise architecture模块化结构
- Convolutional layer (module)
 - Convolution in general
 - Filters
 - Convolution module
- Pooling layer (module)

Feature detection (特征检测)

Learning filters (weights)

Convolution Layer (卷积层)

Input: $X \in R^{d_{in} \times h \times w}$

weight: W∈

 $R^{d_{out} \times d_{in} \times F_h \times F_w}$

output: $Y \in R^{d_{out} \times h \times w}$

Input: $x \in R^{d_{in}}$

weight: W $\in R^{d_{out} \times d_{in}}$

output: $y \in R^{d_{out}}$

Forward (前向过程)

Input: $X \in R^{d_{in} \times h \times w}$

weight: W \in $R^{d_{out} \times d_{in} \times F_h \times F_w}$

output: $Y \in R^{d_{out} \times h \times w}$

$$y_{f',i',j'} = \sum_{f=1}^{d_{in}} \sum_{i=-\frac{F_h}{2}}^{\frac{F_h}{2}} \sum_{j=-\frac{F_w}{2}}^{\frac{F_w}{2}} x_{f,i'+i-1,j'+j-1} w_{f',f,i,j} + b_{f'}$$

example

$$y_{4,10,10} = \sum_{i=-\frac{F_h}{2}}^{\frac{F_h}{2}} \sum_{j=-\frac{F_w}{2}}^{\frac{F_w}{2}} x_{1,10+i-1,10+j-1} w_{4,1,i,j} + b_4$$

$$y_{4,10,100} = \sum_{i=-\frac{F_h}{2}}^{\frac{F_h}{2}} \sum_{j=-\frac{F_w}{2}}^{\frac{F_w}{2}} x_{1,10+i-1,100+j-1} w_{4,1,i,j} + \sum_{i=-\frac{F_h}{2}}^{\frac{F_h}{2}} \sum_{j=-\frac{F_w}{2}}^{\frac{F_w}{2}} x_{2,10+i-1,100+j-1} w_{4,2,i,j} + \sum_{i=-\frac{F_h}{2}}^{\frac{F_h}{2}} \sum_{j=-\frac{F_w}{2}}^{\frac{F_w}{2}} x_{3,10+i-1,100+j-1} w_{4,3,i,j} + \sum_{i=-\frac{F_h}{2}}^{\frac{F_h}{2}} \sum_{j=-\frac{F_w}{2}}^{\frac{F_w}{2}} x_{4,10+i-1,100+j-1} w_{4,4,i,j} + b_4$$

Back-propagation

$$y_{f',i',j'} = \sum_{f=1}^{d_{in}} \sum_{i=-\frac{F_h}{2}}^{\frac{F_h}{2}} \sum_{j=-\frac{F_w}{2}}^{\frac{F_w}{2}} x_{f,i'+i-1,j'+j-1} w_{f',f,i,j} + b_{f'}$$

$$\frac{dL}{dx_{f,i,j}} = \sum_{f'=1}^{d_{out}} \sum_{i'=1}^{h} \sum_{j'=1}^{w} \frac{dL}{dy_{f',i',j'}} \frac{dy_{f',i',j'}}{dx_{f,i,j}}$$

$$\sum_{f'=1}^{d_{out}} \sum_{i'=1}^{h} \sum_{j'=1}^{w} \frac{dL}{dy_{f',i',j'}} w_{f',f,i-i'+1,j-j'+1}$$

Input: $X \in R^{d_{in} \times h \times w}$

weight: W \in $R^{d_{out} \times d_{in} \times F_h \times F_w}$

output: $Y \in R^{d_{out} \times h \times w}$

$$\frac{dL}{w_{f',f,i,j}} = \sum_{f'=1}^{d_{out}} \sum_{i'=1}^{h} \sum_{j'=1}^{w} \frac{dL}{dy_{f',i',j'}} \frac{dy_{f',i',j'}}{w_{f',f,i,j}}$$

$$\sum_{f'=1}^{d_{out}} \sum_{i'=1}^{h} \sum_{j'=1}^{w} \frac{dL}{dy_{f',i',j'}} x_{f,i'+i-1,j'+j-1}$$

outline

- Modeling of CNN
 - Module-wise architecture模块化结构
- Convolutional layer (module)
 - Convolution in general
 - Filters
 - Convolution module
- Pooling layer (module)

POOLING Layer

- In ConvNet architectures, Conv layers are often followed by Pooling layers
 - makes the representations smaller and more manageable without losing too much information.
 - Invariant in region.

MAX POOLING

Single depth slice

У

max pool with 2x2 filters and stride 2

Average POOLING

Single depth slice

У

average pool with 2x2 filters and stride 2

4.25	5.25
2	2

Another Motivation of pooling

Intuitive example

Famous Net Architecture

SuperVision

[Krizhevsky NIPS 2012]

Year 2014

GoogLeNet

[Szegedy arxiv 2014]

VGG

[Simonyan arxiv 2014]

Year 2015

MSRA

