Universidad Nacional Mayor de San Marcos

Universidad del Perú. Decana de América

FACULTAD DE INGENIERÍA DE SOFTWARE E INFORMÁTICA

E.A.P: Ingeniería de software

Internet de las Cosas

ALUMNOS

Cano Carbajo, Yeyson Samir

Correa De la Cruz, Ysaac Noe

De la Cruz Torres, Diego Alexander

Ramirez Gomero Bryan Anthony

Torre Presentación, Juan Alexis

DOCENTE

Yessica Rosas Cuevas

Lima 2024

Descripción

Este proyecto propone el desarrollo de un **sistema loT** capaz de **monitorear** y **regular** las condiciones ambientales críticas (temperatura, humedad y nivel de CO₂) en contenedores refrigerados donde se transportan productos perecederos, particularmente **paltas**. Para ello, se emplearán **dos sensores** (uno para temperatura/humedad y otro para CO₂) y **dos actuadores** (un ventilador y un servo que controla la compuerta de ventilación). De esta manera, se asegura la adecuada **cadena de frío**, se previene el exceso de CO₂ que acelera la maduración y se emiten **alertas** oportunas al detectar anomalías.

Objetivos

1. Objetivo General

Diseñar e implementar un **prototipo loT** que monitoree y controle las condiciones internas de un contenedor refrigerado, manteniendo la calidad de las paltas durante el transporte y minimizando el riesgo de pérdidas.

2. Objetivos Específicos

- 1. **Medir** en tiempo real la temperatura, humedad relativa y concentración de CO₂, enviando estos datos a una plataforma de monitoreo.
- 2. **Regular** la atmósfera interna mediante:
 - Ventilador para la circulación o extracción de aire.
 - Compuerta de ventilación (controlada por un servo) para ingresar o expulsar aire al exterior.
- 3. **Generar alertas** cuando la temperatura, humedad o CO₂ estén fuera de los rangos establecidos, facilitando acciones correctivas inmediatas.
- 4. **Registrar y almacenar** un historial de las condiciones ambientales para fines de trazabilidad y auditoría.

Alcance

- **Diseño e integración** de dos sensores (temperatura/humedad y CO₂) en el contenedor o en una maqueta que lo simule.
- **Implementación de dos actuadores**: un ventilador para forzar la circulación o extracción de aire, y un servo encargado de abrir/cerrar la compuerta de ventilación.
- **Desarrollo de una plataforma loT** (dashboard web/app) que muestre en tiempo real las variables medidas (T, HR, CO₂), accione automáticamente los actuadores según umbrales y emita alertas cuando se detecten condiciones críticas.
- **Pruebas de validación** en un entorno controlado que demuestren la lógica de regulación (enfriamiento simulado, reducción de CO₂) y la robustez del sistema frente a desconexiones o fallas.
- **Documentación** sobre la arquitectura, código, configuración de sensores y actuadores, así como guías de uso y mantenimiento del prototipo.

Fuera del alcance en esta fase:

- La conexión directa o modificación del sistema de refrigeración industrial del contenedor real (el prototipo se centra en el monitoreo y control de ventilación).
- Lograr un enfriamiento total a 0 °C a gran escala (se simula con el ventilador y un sistema de refrigeración básico o ambiental).
- Certificaciones formales (ej.: HACCP, BRC) y procesos logísticos completos, pues se aborda únicamente la parte de monitoreo y control atmosférico en un prototipo demostrativo.