Modul 3

# Supervised Part 2

Data Science Program



#### Outline

What is Classification?

Methods in Classification

Logistics Regression

KNN

Decision Tree





#### What is Classification?



#### What Is Classification?

Response variable = Model function + random error What??? Y = f(x1, x2, ..., xk) + eY categorical - 2 categories (binary classification) Y categorical - more than 2 categories (multiclass classification) x2 f(x1,...,xk) + error

# Credit Scoring (Binary)

Class



f(x1,...,xk) + error

Default or Non-Default

https://www.nottinghamcu.co.uk/credit-sc ore-myths-and-ways-to-improve-your-cre dit-score/ Value : Profit Increase



Churn Analysis



**Propensity Analysis** 



Human Resources "The Rising Star"

# Some Method Usually Used In Classification

Logistic Regression:

$$P(Y = 1) = \frac{\exp(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)}{1 + \exp(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)}$$

**Ensemble Method:** 

Note:

Other models:
Discriminant Analysis,
K-Nearest Neighbour
(KNN),
Support Vector
Machine (SVM),
Ensemble – Bagging,
Random Forest,
Boosting, etc



**Decision Tree Classifier:** 



# **Binary Logistics Regression**



### Logistic Regression

- 1. Binary Logistic Regression, binary label
- 2. Multinomial Logistic Regression, multinomial label
- 3. Ordinal Logistic Regression, ordinal label



## What is Binary Logistic Regression?



Remember that binary logistic regression model the success rate/probability





### What is Binary Logistic Regression?

$$P(Y = 1) = \frac{\exp(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)}{1 + \exp(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)}$$

\*exp(B0 + B1x1 + ... + B1xk) is approximately equal to 2.71^(B0 + B1x1 + ... + B1xk)

- Probability to success P(Y = 1) and Probability to fail P(Y = 0) = 1 P(Y = 1)
- Another notation Success (+) Failed (-)
- odds = exp(B0 + B1x1 + ... + B1xk), ratio between probability to success and probability to fail
- B0 B1 B2 ... Bk, Regression Parameter
- x1 x2 ... xk, Features/Independent Variable



## Sigmoid Curve

b > 0, success rate increase when X increase



b < 0, success rate decrease when X increase



$$P(Y = 1) = odd / (1 + odd),$$

#### with

- 0 < P(Y = 1) < 1
- Y = dependent variable, succes (Y = 1) failure (Y = 0)
- odd = exp(a + bx)
- x = independent variable



# Why do we need to use Logistic Regression?

- Instead of linear regression, logistic regression is more suitable when the response variable are categorical
  - Linear regression was designed for numerical variable
  - Linear regression can gives meaningless out-of-range prediction
  - Linear regression gives wrong p-value when Y categorical due to violation in normality assumption and equal variance assumption (homoscedasticity)
- Logistic Regression has high interpretability, remember that purpose of the modeling is not always about prediction.



# Example: Loan repayment comparison by gender



Gender (M/F)

x = 1 (Male)

x = 0 (Female)



 $P(Y=1) = \exp(-2.1972 + 1.086x)/(1 + \exp(-2.1972 + 1.086x))$ 



Default (Y=1) or Non-Default (Y=0)



### Analysis

#### MALE:

P(Y = 1 | Male) = exp(-2.1972 + 1.086 (1))/(1+exp(-2.1972 + 1.086 (1))) = 0.25P(Y = 0 | Male) = 1 - P(Y = 0 | Male) = 1 - 0.25 = 0.75

Odd(Male) =  $0.25/0.75 = \frac{1}{3}$ , men is 3 times less likely to default

#### FEMALE:

P(Y = 1 | Female) = exp(-2.1972 + 1.086 (0))/(1+exp(-2.1972 + 1.086 (0))) = 0.1P(Y = 0 | Female) = 1 - P(Y = 0 | Female) = 1 - 0.25 = 0.9

Odd(Female) = 0.1/0.9 = 1/9, women is 9 times less likely to default



## Odds-Ratio (OR)

- Odds-ratio is used to interpret logistic regression
- Odds-ratios indicate how likely a successful event is to occur in one condition compared to other conditions

#### Example:

Odds-Ratio = Odd(Male)/Odd(Female) = 3, Men have three times greater tendency / risk to default than women



### How To Interpret Bi

In binary logistic regression, If a unit observation with Xi = c and another unit observation with Xi = d. Odd ratio between those unit observations are :

$$OR = exp(Bi (c-d))$$

#### for c > d:

- if Bi > 0, then OR > 1
- if Bi = 0, then OR = 1
- if Bi < 0, then OR < 1



### How To Interpret Bi

- when interpret Bi, it is assumed that no changes in another variable
- Binary logistic regression requires no multicollinearity between independent variables
- It is not recommended to interpret outside range of interval

#### if OR > 1:

- Success rate increase when Xi increase
- Unit observations which have Xi = c have OR times greater tendency to achieve success event than unit observations which have Xi = d.
- in general, unit observation which have (c-d) higher different value in Xi have about OR times greater tendency to achieve success event

#### if OR < 1:

- Success rate decrease when Xi increase
- Unit observations which have Xi = d have 1/OR times greater tendency to achieve success
  event than unit observations which have Xi = c.
- in general, unit observation which have (c-d) lower different value in Xi have about 1/OR times greater tendency to achieve success event

# Example: Loan repayment comparison by Age



age (20 - 56 year)

Odd(age) = exp(0.3669 - 0.0411age)



## Analysis

| Age | Odd(Age) | Prob(Age) |
|-----|----------|-----------|
| 20  | 0.6343   | 0.3881    |
| 21  | 0.6088   | 0.3784    |
| 22  | 0.5843   | 0.3688    |
|     |          |           |
| 25  | 0.5165   | 0.3406    |
|     |          |           |
| 30  | 0.4205   | 0.2960    |
|     |          |           |
| 56  | 0.1444   | 0.1262    |

$$P(Y=1) = Odd(age)/(1+Odd(age))$$
, with  $Odd(age) = exp(0.3669 - 0.0411age)$ 

OR = 
$$\exp(B\text{-age (c-d)})$$
 odd(20)/odd(38) = 2.095 odd(21)/odd(39) = 2.095 odd(21)/odd(39) = 2.095 odd(22)/odd(40) = 2.095 d = 20 ...

OR =  $\exp(-0.0411*18) = 0.4772 < 1$  odd(38)/odd(56) = 2.095

#### Interpretation, OR < 1:

- Probability to default decrease when age increase
- people with age 20 have about 2.095 times greater tendency/risk to default than people with age 38.
- In General, younger people with difference in age 18 years have about 2.095 times greater tendency/risk to default



# Analysis

| Age | Odd(Age) | Prob(Age) |
|-----|----------|-----------|
| 20  | 0.6343   | 0.3881    |
| 21  | 0.6088   | 0.3784    |
| 22  | 0.5843   | 0.3688    |
|     |          |           |
| 25  | 0.5165   | 0.3406    |
|     |          |           |
| 30  | 0.4205   | 0.2960    |
|     |          |           |
| 56  | 0.1444   | 0.1262    |
|     |          | I         |





## Log-Likelihood Ratio Test (LLR-Test)

- LLR-Test in Logistic Regression is analogous to F-Test in Linear Regression
- LLR-Test check for overall significance of multiple regression model.
- LLR-Test checks if there is a statistically significant relationship between Y (dependent variable) and any of the independent variables

#### Hypothesis:

$$H_0: \beta_1 = \beta_2 = ..... = \beta_k = 0$$

 $H_A$ : Not all  $\beta$  values are zero

Test Statistics: Log Likelihood Ratio

Rejection Criteria : P-value ≤ α (two-sided)



#### Wald Test

- Wald-Test in Logistic Regression is analogous to T-Test in Linear Regression
- Wald-test checks if there is a statistically significant relationship between Y (dependent variable) and each of the independent variables

#### Hypothesis:

Ho: Bi = 0

Ha :  $\mathbf{Bi} \neq \mathbf{0}$  (two sided)

**Bi** > 0 or **Bi** < 0 (one sided)

Rejection Criteria:

P-value  $\leq \alpha$  (two-sided)

P-value/ $2 \le \alpha$  (one-sided)

**Test Statistics: Wald-Statistics** 



## **Example: Credit Scoring**

#### **Features**

Age

Balanced

. . . .

**Marital Status** 

Gender (M/F)



https://www.nottinghamcu.co.uk/credit-sc ore-myths-and-ways-to-improve-your-cre dit-score/



Problem

How to predict default risk of the new applicant so we can allocate loan efficiently and increase profit from loan?

Data

• What is being predicted? default risk of the new applicant

 What is needed in prediction? Demographical, Transaction behaviour, income, ect

ML Objective

Maximize (profit - potential revenue lost)

Action

Do not allocate loan to a customer when the risk is too high, higher than 50%

Value

**Profit Increase** 



#### Validation Method





# Measuring Performance of Classification Method

| No  | Prediction | Actual |
|-----|------------|--------|
| 1   | 1          | 1      |
| 2   | 1          | 0      |
| 3   | 0          | 1      |
|     | •••        | •••    |
| 499 | 0          | 0      |
| 500 | 0          | 1      |

| Prediction | Actual |     |
|------------|--------|-----|
|            | 0      | 1   |
| 0          | 120    | 23  |
| 1          | 27     | 330 |

Accuracy Of Prediction = (120+330)/500 x 100% = 90.0%

Our model will correctly predict 9 of 10 People



## Python Exercise: Logistic Regression

#### Analyze data bankloan.csv

- build a logistics regression model
  - target : default
  - features : employ, debtinc, creddebt, othdebt
- Interpret The Result
- Validate the model using accuracy in 20% testing data



# K-Nearest Neighbour



## What is K-Nearest Neighbour?



"Predict based on majority class of the top k similar observation or also called nearest neighbour"



- Works both for Classification and Regression
- Non-parametric method, knn doesn't produce a model



## Why Do We Need K-Nearest Neighbour?

- Parametric method like linear regression and logistic regression make strong assumption about the form of the model. Ex.
  - y = a + bx + e
  - P(Y = 1) = odd/(1+odd)
- If the specified functional form is far from the truth, the model will perform poorly because of the bad prediction result.
- A nonparametric method like KNN do not explicitly assume any form of model.
- In term of prediction, it's more flexible approach and It can capture any type of relationship.



#### **Basic Idea**

- Store/keep training data
- Classify new observation based on similarity to the observation in training data
- Use majority decision rule to classify the records



- Training data
  - Test data (New observation)

Test data will be classified as ? (Ignore circle line for now)



## **Basic Idea**

With **k=3** nearest neighbors

Test data classified into

With **k=5** nearest neighbors

Test data classified into







#### How do we choose factor K?



- Tips 1: Use odd number of K
- Tips 2: Evaluate using validation data set

Best k = 9

- Error rate at K=1 can perfectly predict training sample, closest point to any data point is itself
- Our goal is to predict new data so we want good performance in validation data set
- Performance at K=1 not acceptable to predict new data
- Error rate in validation set generally decreases with increases K
- We choose k with minimum error rate in validation dataset



#### How do we choose factor K?



- Boundary becomes smoother with increase value of K
- With K increases to inf, finally becomes all-blue/all-red depending on total majority
   Purwadhika

## Measuring distance 1 Dimension

- Closest neighbor is identified based on the distance
- There are several method to measure distance. The popular one is Euclidean.



Simple Illustration

The distance is simply:



# Measuring distance 2 Dimension



#### Illustration

$$(x1, y1) = (1, 2)$$

$$(x2, y2) = (5, 4)$$

#### **Euclidean distance**

$$=\sqrt{(5-1)^2+(4-2)^2}$$

$$=\sqrt{(4)^2+(2)^2}$$

$$=\sqrt{20}$$



# **Measuring distance > 2 Dimension**

Distance = 
$$\sqrt{(x^2 - x^1)^2 + (y^2 - y^1)^2 + (z^2 - z^1)^2 + ...}$$

| data<br>points | х  | у  | Z  |
|----------------|----|----|----|
| 1              | 12 | 15 | 16 |
| 2              | 12 | 16 | 17 |

Distance = 
$$\sqrt{(12-12)^2 + (16-15)^2 + (17-16)^2} = 1.414$$
.



# Measuring distance

 Distance calculations are performed for each data point against other data points.

| data<br>points | <b>x</b> 1 | x2 | х3 |
|----------------|------------|----|----|
| 1              | 12         | 15 | 16 |
| 2              | 12         | 16 | 17 |
| 3              | 20         | 13 | 18 |
| 4              | 9          | 14 | 18 |
| 5              | 17         | 15 | 20 |

| data<br>points | 1     | 2      | 3      | 4     | 5 |
|----------------|-------|--------|--------|-------|---|
| 1              | 0     |        |        |       |   |
| 2              | 1.414 | 0      |        |       |   |
| 3              | 8.485 | 8.602  | 0      |       |   |
| 4              | 3.741 | 3.7741 | 11.045 | 0     |   |
| 5              | 6.403 | 5.916  | 4.123  | 8.306 | 0 |



# Measuring distance

#### The Closest Data Points

| data<br>points | 1     | 2      | 3      | 4     | 5 |
|----------------|-------|--------|--------|-------|---|
| 1              | 0     |        |        |       |   |
| 2              | 1.414 | 0      |        |       |   |
| 3              | 8.485 | 8.602  | 0      |       |   |
| 4              | 3.741 | 3.7741 | 11.045 | 0     |   |
| 5              | 6.403 | 5.916  | 4.123  | 8.306 | 0 |

| Data Points | 1st closest | 2nd closest |  |
|-------------|-------------|-------------|--|
| 1           | 2           | 4           |  |
| 2           | 1           | 4           |  |
| 3           | 5           | 1           |  |
| 4           | 1           | 2           |  |
| 5           | 3           | 2           |  |





### **Issue with Euclidean Distance**

- Given X is Area with unit of hectare
- Given Y is Corn Production with unit of kwintals.

| X    | Y   |
|------|-----|
| 4000 | 5   |
| 5000 | 4.5 |
| 2000 | 3   |
| 6000 | 4.5 |
| 7000 | 4.6 |
| 8000 | 4   |
| 9000 | 10  |

Look at the two last data points:

- in term of area (X) the diff is 9000 8000 = 1000 hectare
- in term of production (Y) the diff is 10 6 = 4 kg

Distance contribution from X (1000) is far surpassed by contribution from Y (4) due to different scale. So when euclidean distance used, variable with large scale will have larger effect on the distance.



Relatively, distance contribution from X is surpassed by distance contribution from Y. So when euclidean distance used, there should be any treatment like scaler or normalization.



### Issue with distance

Solution to solve scale issue is **Normalization**.

#### **oMin-Max Scaling**

Uses *MinMaxScaler* 

Transform to defined range

$$y = \frac{x - \min x_i}{\max x_i - \min x_i}$$

#### **oStandardization**

Uses *StandardScaler* 

Transform to mean=0, sd=1

$$y = \frac{x - \bar{x}}{s}$$

#### Where

 $ar{x}$  - mean

S = Standard deviation



# Min-Max Scaling



Bigger Contribution "production"

#### The Process

|   | area | production |
|---|------|------------|
| 0 | 4000 | 5.0        |
| 1 | 5000 | 4.5        |
| 2 | 2000 | 3.0        |
| 3 | 6000 | 4.5        |
| 4 | 7000 | 4.6        |
| 5 | 8000 | 4.0        |
| 6 | 9000 | 10.0       |



|   | area     | production |
|---|----------|------------|
| 0 | 0.285714 | 0.285714   |
| 1 | 0.428571 | 0.214286   |
| 2 | 0.000000 | 0.000000   |
| 3 | 0.571429 | 0.214286   |
| 4 | 0.714286 | 0.228571   |
| 5 | 0.857143 | 0.142857   |
| 6 | 1.000000 | 1.000000   |



Contribution in reality



## Advantages and Disadvantages

#### Advantages?

- Able to provide decent accuracy in any situation
- Easy to learn
- Easy to program
- Training is fast

#### **Disadvantages?**

- Need more space as the training data grow
- o Low interpretability
- KNN doesn't know which feature are actually important



# Python Exercise: Voting Classifier

### Analyze data white\_wine.csv

- Apply KNN Method (k = 3)
  - target : quality (quality >6  $\rightarrow$  Y = 1)
  - features : density alcohol
- Validate the model using accuracy in 20% testing data
- Apply scaling and Validate the model using accuracy in 20% testing data
- Apply scaling Choose Factor K based on accuracy:
  - K = (1, 3, 5, ..., 29)



## **Decision Tree Classifier**



### What is Decision Tree?

Essentially, Decision Tree is a hierarchy of if/else questions, leading to a decision.

- Decision Tree is widely used ML Algorithm
- Decision Tree also can be applied to regression problem



## Why do We Need Decision Tree?

- It's also a nonparametric approach like KNN
  - we don't need to make any strong assumption about the form of the model
  - it's more flexible approach to capture any type of relationship.
- You want a fast, flexible model with high interpretability



## **Decision Analogy**



#### Analogies:

- Here we want to differentiate Hawk, Penguin, Dolphin.
   Bear by using characteristics as few as possible
- In term of classification:
  - Animals (Hawk, Penguin, Dolphin, Bear) → Target
  - Characteristics → feature
- We must be thinking what characteristics can differentiate them:
  - Among These animals, which one has feathers
    - feathers yes : Hawk and Penguin
    - feathers no : Dolphin and Bear
  - This is not enough we still need additional information
  - o feather yes : add can fly or not
    - fly : Hawk
    - do not fly : Penguin
  - o feather no : has fins or not
    - Has Fins : Dolphin
    - No Fins : Bear



### Basic Idea



- 16 obs.
- **13** obs.
- Find the best splitter between X1 & X2
- Best splitter is the one results most homogenous element in each class
- o Splitter X1 = 2, X1 = 3, etc



### Basic Idea



- Splitting at X1 = 2
- o Split to 2 subset

Subset X1 < 2 ● 7 obs.

**1**2 obs.

Subset X1 > 2 • 9 obs.

1 obs.

How good is this split?



### Basic Idea



- Splitting at X1 = 3
- o Split to 2 classes

Is this split better?



## Entropy

#### **Entropy is a measure of heterogeneity**

- given dataset or subset D, consist of 2 class YES and NO
- entropy: E(D) = -(p log2 p + q log2 q), with p is YES class proportion and q is NO proportion
- Dataset or subset with all-YES or all-NO will have
   E(D) = 0
- Entropy will have its maximum value when p = 0.5







## **Entropy Dataset**



Entropy for this data set is p = green proportion = 16/29

q = blue = 13/29

E(D) = 
$$-(p \log 2 p + q \log q)$$
  
=  $-(16/29 \log (16/29) + 13/29 \log (13/29))$   
=  $0.9922...$ 





## **Information Gain**

- Information gain measure the quality of a split.
- Better splitter = Higher Information Gain
- Let's say dataset D is split into several groups D1, D2, ..., Dk based on variable V.
   Ex. X1 < 2 and X1 > 2; Single, Married and Divorce, variable marital status.
- For every Di, Entropy can be calculated as E(Di) = pi log pi (1-pi) log (1-pi)
- Information Gain:

Information Gain = E(D) - E(Split)

E(split) = Weighted\_Average(E(D1),E(D2),...,E(Dk)



# **Back to Basic Idea**

Which one is better?







# **Entropy Split**



```
X1 < 2:
```

$$p = green proportion = 7/19$$
  
 $q = blue = 12/19$ 

$$E(X1 < 2)$$
 = - ( p log2 p + q log q)  
= - ( 7/19 log (7/19) + 12/19 log (12/19))  
= 0.9494...

$$X1 > 2$$
:

$$E(X1 > 2)$$
 = - ( p log2 p + q log q)  
= - ( 9/10 log (16/29) + 1/10 log (1/10))  
= 0.4689...

#### Entropy Split:

$$E(S) = 19/29 (0.9494...) + 10/29 (0.4689...) = 0.78377$$
  
 $IG = E(D) - E(S) = 0.9922... - 0.7837... = 0.2084...$ 



# **Entropy Split**



```
X1 < 3:
```

p = green proportion = 
$$11/24$$
  
q = blue =  $13/24$ 

$$E(X1 < 3)$$
 = - ( p log2 p + q log q)  
= - ( 11/24 log (11/24) + 13/24 log (13/24))  
= 0.9949...

#### X1 > 3:

$$p = green proportion = 5/5$$
  
 $q = blue = 0/5$ 

$$E(X1 > 2) = -(p log 2 p + q log q)$$

$$= -(5/5 log (5/5) + 0/5 log (0/5))$$

$$= 0$$

#### **Entropy Split:**

$$E(S) = 24/29 (0.9949...) + 5/29 (0) = 0.6518...$$
  
 $IG = E(D) - E(S) = 0.9922... - 0.8234... = 0.1688...$ 



### Information Gain



IG = 0.2084



$$IG = 0.1688$$



# **Basic Idea – Continue Splitting**



Continue splitting on each subset.

At X2 = 2 for class X1 < 2

At X2 = 0.5 for class X1 > 2



# **Basic Idea – Continue Splitting**



### Gini Index

#### Gini is a measure of heterogeneity

- given dataset or subset D, consist of 2 class YES and NO
- gini : G(D) = p q + q p, with p is YES class proportion and q is NO proportion
- Dataset or subset with all-YES or all-NO will have
   G(D) = 0
- Entropy will have its maximum value when p = 0.5







# Gini Impurity

- Gini gain measure the quality of a split.
- Better splitter = Higher Gini Gain
- Let's say dataset D is split into several groups D1, D2, ..., Dk based on variable V.
   Ex. X1 < 2 and X1 > 2; Single, Married and Divorce, variable marital status.
- For every Di, Gini can be calculated as G(Di) = pi qi + qi pi
- Gini Gain:

Gini Impurity = 
$$G(D)$$
 -  $G(Split)$ 

G(split) = Weighted\_Average(G(D1),G(D2),,G(Dk))



# **Terminologies**







# **Basic Algorithm**

Perform 3 steps for every single Node and its splitting result

#### Step-1

Find best splitter on each variable

#### Step-2

Select best variable for splitting

#### Step-3

Perform splitting based on result on Step-2.

Check if the splitting should stop.



# **Stop-splitting Condition**

#### Splitting will stop if any of below conditions met

- Node contains only 1 class of response variable
- Number of observation in a node before splitting is less than pre-defined number
- Number of observation in a node after splitting is less than pre-defined number
- Tree depth has reached its maximum

There are parameters in the software to control the Tree Size

- Minimum sample of node split
- Minimum sample of terminal
- Maximum depth of tree
- Maximum number of terminal node



## Advantages and Disadvantages

#### **Advantages**

- Easy to understand
- Useful in data exploration.
  - Can be visualized graphically
  - Information of importance variables, variables which relates each other.
- Data type is not a constraint (works for numerical and categorical too)

#### Disadvantages

- Often not stable/overfitting
- Loses information of continuous numeric variable when it categorized into different categories
- Cant compete with method like bagging, random forest and boosting in many situation
- Deeper tree are harder to interpret



## Use Case: Credit Scoring



## Use Case: Direct Marketing

Store 'M' gathered their customer data that has used a certain product 'N' to predict whether new customer will be spend money to buy it or not.

#### Target:

- Buy (Y = 1)
- No Buy (Y = 0)

#### Featurest:

- Gender
- Marital Status
- Domicili
- Age
- Smoker Status
- Budget
- Preference

| No | Jenis Kelamin | Single | Tinggal di Kota | usia | Perokok | Budget | Kesukaan | Tertarik Beli? |
|----|---------------|--------|-----------------|------|---------|--------|----------|----------------|
| 1  | 1             | 0      | 1               | 32   | 0       | low    | Tekno    | 0              |
| 2  | 0             | 1      | 0               | 38   | 0       | medium | Tekno    | 0              |
| 3  | 0             | 0      | 0               | 33   | 0       | low    | Tekno    | 0              |
| 4  | 0             | 1      | 0               | 27   | 0       | medium | Lainnya  | 0              |
| 5  | 1             | 1      | 1               | 30   | 0       | medium | Busana   | 1              |
| 6  | 0             | 1      | 0               | 44   | 0       | medium | Tekno    | 0              |
| 7  | 1             | 1      | 1               | 36   | 0       | medium | Seni     | 1              |
| 8  | 1             | 0      | 0               | 32   | 0       | low    | Seni     | 0              |
| 9  | 0             | 1      | 0               | 31   | 0       | medium | Seni     | 0              |
| 10 | 1             | 1      | 0               | 40   | 0       | high   | Tekno    | 0              |
| 11 | 1             | 0      | 1               | 34   | 0       | low    | Lainnya  | 0              |



### How to Build Decision Tree?

#### Some Questions:

- How to determine which Features can differentiate the most so we can make the first split? Gender, Marital, Age,... or which one and What metric to measure how good feature can differentiate target variable?
- After first Split made how to find the next feature that can differentiate the most?
- How many times we should do the splitting?
  - 2 times enough???, 3 times ???, ....
  - as many as possible?



## Python Exercise: Decision Tree Classifier

### Analyze data white\_wine.csv

- Apply Decision Tree Classification Method (max\_depth = 2)
  - target : quality (quality >  $6 \rightarrow Y = 1$ )
  - features: density alcohol
- Validate the model using accuracy in 20% testing data
- Apply scaling and Validate the model using accuracy in 20% testing data
- Check the performance: is there any difference whether we applied scaling or not?
- Check the tree: is there any difference whether we applied scaling or not?



### References



Andreas C. Müller & Sarah Guido

**Springer Texts in Statistics** 

Gareth James Daniela Witten Trevor Hastie Robert Tibshirani

An Introduction to Statistical Learning

with Applications in R





### References

https://www.the-modeling-agency.com/crisp-dm.pdf

https://scikit-learn.org/stable/

https://victorzhou.com/blog/information-gain/#:~:text=Information%20Gain%20is%20calculated%20for,chosen%20by%20maximizing%20Information%20Gain.

https://victorzhou.com/blog/gini-impurity/

