

MC 34 - MANDOS NEUMÁTICOS E HIDRÁULICOS

Mag. Ing. José Luis Becerra Felipe pcmcjbec@upc.edu.pe

SEMANA 11 : CONTROL ELECTRONEUMÁTICO PROGRAMABLE

Objetivo de la sesión

"Que el estudiante sea capaz de implementar sistemas de control electroneumático programable"

Contenido de la sesión

- Controladores Lógicos Programables.
- Lenguajes de Programación de PLCs
- Programación en bloques
- Ejercicios de aplicación

Logro de la sesión:

Al finalizar la clase el estudiante será capaz de implementar sistemas de control programando un PLC y utilizando programación en bloques.

Controlador Lógico Programable

PLC (Controlador Lógico Programable)

- Es un sistema de control informático industrial.
- Es programable.
- Se pueden conectar dispositivos de entrada, cuyo estado es monitoreado por el PLC.
- Controla dispositivos de salida de acuerdo a como haya sido programado.
- Existen modelos distintos que permiten automatizar procesos de distinta complejidad.

Características del PLC

- Diseñado con inmunidad al ruido eléctrico y resistencia a la vibración y al impacto.
- Cuenta con una CPU.
- Cuenta con puertos de entrada y salida, los cuales pueden ser analógicos y digitales.
- Permite distintos protocolos de comunicación para poder comunicarse con sistemas SCADA, HMI, PCs.

Investiguemos

- G1: ABB
- G2: ALLEN BRADLEY
- G3: SIEMENS
- G4: SCHNEIDER
- G5: GE o MITSUBISHI
- G6: Phoenix Contact

- Modelo
- Marca
- #entradas digitales/ #salidas digitales (voltaje / corriente)
- #entradas analógicas/ #salidas analógicas (voltaje / corriente)
- Voltaje de alimentación
- Memoria de programación
- Velocidad de Procesamiento
- Protocolos de comunicación
- Precios

LENGUAJES DE PROGRAMACIÓN

LENGUAJES DE PROGRAMACIÓN PARA PLC

GRÁFICOS (Alto Nivel)

- Ladder (LD)
- Diagrama de Bloques (SFD)
- Diagrama de funciones secuenciales (SFC)

TEXTUALES (Bajo Nivel)

- Lista de Instrucciones (IL)
- Texto Estructurado (ST)

LADDER

DIAGRAMA DE BLOQUES

DIAGRAMA DE FUNCIONES SECUENCIALES

PROGRAMACIÓN DE PLC

SIMBOLOGÍA - PLC

SIMBOLOGÍA - PLC

Símbolo	Referencia	Funcionamiento
	AND	Conmuta la salida a 1 cuando todas las entradas están en 1 Las entradas no ocupadas siempre están en 1
≥1	OR	Conmuta la salida a 1 cuando, como mínimo, una entrada está en 1 Las entradas no ocupadas siempre están en 0
1	NO	Invierte el valor de la entrada
	NO Y (NAND)	Conmuta la entrada a 0 cuando todas las entradas están en 1. Las entradas no ocupadas siempre están en 1
Rs	Elemento de autorretención	Conmuta la entrada a 1 cuando la entrada superior conmuta a 1. La salida sólo conmuta a 0 cuando la entrada inferior conmuta a 1
	Retardo de conexión/desconexión	Si la entrada está en 1, la salida conmuta a 1 después de transcurrido el tiempo previsto. La entrada vuelve a conmutar a 0 después de transcurrido el segundo tiempo ajustado previamente.

SIMBOLOGÍA - PLC

Símbolo	Referencia	Funcionamiento
<u>-</u>	Reloj	La salida conmuta a 1 después del tiempo previsto para la conexión. La salida vuelve a conmutar a 0 después de transcurrido el tiempo previsto para la desconexión. Este proceso puede repetirse.
M_	Flags (marcas)	La salida asume el valor de la entrada. Es necesario porque algunos bloques lógicos no pueden estar conectados a la salida de otro bloque lógico.
+/- 0 (5)	Contador	Cuenta las veces que en la entrada central se tuvo el valor 1. Después de alcanzar la cantidad de impulsos de conteo ajustada previamente, la salida conmuta a 1. En la entrada inferior se puede decidir si el conteo es ascendente o descendente. En la entrada superior puede reponerse a cero el contador.

MÉTODO PASO A PASO

A+ B+ B- A-

Α0	A+	Y1
A1	B+	Y3
B1	B-	Y4
В0	A-	Y2

EJERCICIO

Implementar la secuencia

- G1: A+ B+ B- C+ C- A-
- G3: A+ C- B+ B- C+ A-
- G6: A- C- C+ B+ B- A+
- G5: A+ A- B+ B- C+ C-
- G2: B+ C- B- A+ C+ A-
- oG4: A+ B+ B- A- C+ C-

Conclusiones

LOGRO CONSEGUIDO

 En este momento son capaces de programar un PLC para controlar elementos neumáticos.

- 14 de febrero Laboratorio 2 con electroneumática.
- 20 laboratorio 2 plc y ladder.
- 21 de febrero PC2.
- 23 de febrero Trabajo Final.

GRACIAS

