

Generative Models for Graphs

최예은, 최지우

Graph Generation

Social Networks Economic Networks Communication Networks

Graph에 대해 공부했으나 이제 graph를 어떻게 생성할 것인지에 대해 고민함

→ Graph generative models을 이용하여 실제 그래프와 유사한 그래프를 생성한다!

Degree distribution

임의로 선택된 node가 degree K를 가질 확률을 의미

Clustering coefficient

$$C_{i} = \frac{2e_{i}}{k_{i}(k_{i}-1)}$$

$$C_{i} = 1/2$$

$$C_{i} = 1/2$$

$$C_{i} = 0$$

Node i가 이웃들과 어떻게 연결되어 있는지 의미 ei = node l의 이웃 노드들간의 엣지의 수를 의미한다.

Connectivity

-S 로 표 기 하 고 가 장 큰 component의 크기를 나타낸다. S가 크면 giant component 라고도 한다.

-BFS 너비우선탐색을 통해 network가 연결됨을 확인한다.

Path Length

$$\overline{h} = \frac{1}{2E_{\max}} \sum_{i,j \neq i} h_{ij}$$

- $\overline{h} = rac{1}{2E_{\max}} \sum_{i,j
 eq i} h_{ij}$. h_{ij} is the distance from node i to node j number of edges (total number of node pairs) = n(n-1)/2

최단 경로 기준 그래프 내 노드 쌍의 최대 거리를 diameter라고 한다. Average path length는 무한한 길이의 경로를 무시하기 위해 connected graph에서만 계산한다.

Case-Study

- MSN Messenger:
- 1 month of activity
 - 245 million users logged in
 - 180 million users engaged in conversations
 - More than 30 billion conversations
 - More than 255 billion exchanged messages

Gnp: 엣지가 독립 항등 분포 (i.i.d.)의 확률 p를 가지는 노드 n에 대한 undirected graph

Properties of Gnp

n, p에 의해 그래프가 unique하게 결정되지 않는다. Gnp는 properties로 P(k), C, h를 가진다.

Degree distribution

Mean, variance of a binomial distribution

$$\overline{k} = p(n-1)$$

$$\sigma^2 = p(1-p)(n-1)$$

Gnp의 P(k)는 이항분포를 따른다! n-1개 중 선택한 k개는 엣지로 연결되고 나머지는 연결되지 않을 확률이 P(k)가 된다.

Clustering coefficient

$$C_i = \frac{2e_i}{k_i(k_i - 1)}$$

So, expected
$$E[e_i]$$
 is: $= p \frac{k_i(k_i - 1)}{2}$

Number of distinct pairs of neighbors of node i of degree k_i with prob. p

Then $E[C_i]$: $= \frac{p \cdot k_i(k_i - 1)}{k_i(k_i - 1)} = p = \frac{\overline{k}}{n - 1} \approx \frac{\overline{k}}{n}$

Connected Components

Degree $k=1-\varepsilon$: all components are of size $\Omega(\log n)$ **Degree** $k=1+\varepsilon$: 1 component of size $\Omega(n)$, others have size $\Omega(\log n)$

Each node has at least one edge in expectation

Connected Components

Expansion

Path length를 이해하기 위해서 Expansion 개념을 살펴볼 필요가 있다!

$$\alpha = \min_{S \subseteq V} \frac{\#edges \ leaving \ S}{\min(|S|, |V \setminus S|)}$$

그래프 G(V,E)에 대해 V의 subset S를 만들기 위해 끊어주어야 하는 edge의 비율

Expansion: Random Graphs

Expansion은 measure of robustness이다.

 \Rightarrow ex. L 노드를 disconnect 하려면 a(알파)*L 개 이상의 엣지를 끊어야 함.

Low expansion:

High expansion:

- Social networks:
 - "Communities"

subset을 쉽게 만들 수 있는 구조면 low expansion을, 어려운 구조면 high expansion을 가진다.

Expansion: Random Graphs

Expansion은 measure of robustness이다.

- Expansion이 α 이고 n개의 노드를 가지는 그래프의 모든 노드 쌍에 대한 path of length는 $O((logn)/\alpha)$ 이다.
- Expansion이 크면 알파도 커지고, path length 는 작아짐

MSN vs G_np

Degree distribution:

Avg. path length:

Avg. clustering coef.: 0.11

Largest Conn. Comp.: 99%

6.6

$$\overline{k}/n$$

$$C \approx 8.10^{-8}$$

GCC exists when $\overline{k} > 1$. $\overline{k} \approx 14$.

Real world network 는 G_np처럼 random 하지 않다!!

Small-World Model

Motivation for small world

- •실제 그래프는 local한 구조를 가져 clustering coefficient가 높으면서도 낮은 diameter를 가진다.
- •Gnp는 낮은 clustering coefficient를 가져 이를 제대로 반영하지 못한다.

Vs.

Regular lattice graph:

High clustering coefficient
High diameter

G_{np} random graph: Low clustering coefficient Low diameter

Can we have high clustering while also having short paths?

Small-world Graphs: idea

Regular lattice graph:
High clustering coefficient
High diameter

Interpolate

G_{np} random graph: Low clustering coefficient Low diameter

Solution: the small-world model

Small world model 에는 2가지 components를 따름

1. Start with a low-dimensional regular lattice

Solution: the small-world model

REGULAR NETWORK

SMALL WORLD NETWORK

RANDOM NETWORK

P=0

High clustering High diameter

$$h = \frac{N}{2\bar{k}}$$

$$C = \frac{1}{2}$$

High clustering

INCREASING RANDOMNESS

Low diameter

Low clustering Low diameter

$$h = \frac{\log N}{\log \alpha} \qquad C = \frac{\overline{k}}{N}$$

Solution: the small-world model

Kronecker graph Model

Idea: resursive graph generation

Resursive한 네트워크 구조! => Self-similarity

Initial graph

- Recursive expansion
- •Object는 자기 자신의 일부와 비슷하므로 네트워크를 재귀적으로 구성할 수 있다.
- •Kronecker product를 통해 **self-similar 행렬**을 만든다.

Kronecker Graph

Kronecker graph는 kronecker product를 초기 행렬 K1에 반복적으로 행하여 만들 수 있다.

* Kronecker Product

 $\mathbf{P} \geq R$ 위의 $m \times n$ 행렬 M과 $p \times q$ 행렬 N이 주어졌다고 하자.

$$M = egin{pmatrix} M_{11} & \cdots & M_{1n} \ dots & dots \ M_{m1} & \cdots & M_{mn} \end{pmatrix} \in \operatorname{Mat}(m,n;R) \ N = egin{pmatrix} N_{11} & \cdots & N_{1q} \ dots & dots \ N_{p1} & \cdots & N_{pq} \end{pmatrix} \in \operatorname{Mat}(p,q;R) \ \end{pmatrix}$$

그렇다면, M과 N의 **크로네커 곱**

$$M\otimes N\in \mathrm{Mat}(mp,nq;R)$$

은 다음과 같은 성분을 갖는 mp imes nq 행렬이다.

$$M\otimes N=egin{pmatrix} M_{11}N & \cdots & M_{1n}N \ dots & dots \ M_{m1}N & \cdots & M_{mn}N \end{pmatrix}$$

즉,

$$(M\otimes N)_{(a-1)p+i,(b-1)q+j}=M_{ab}N_{ij}$$

이다.

선형대수학에서 **크로네커 곱**(Kronecker product)은 두 행렬의 텐서곱을 구체적으로 표현하는 행렬이다. $m \times n$ 행렬과 $p \times q$ 행렬의 크로네커 곱은 크기 $mp \times nq$ 의 더 큰 행렬이다.

Kronecker Graph example

1	1	1	1
1	1	0	0
1	0	1	0
1	0	0	1

000	50
	8

Initiator K_1

1	1	1	1	
1	1	0	9	
1	0	1	1	
1	0	1	1	

 K_1 adjacency matrix

 K_3 adjacency matrix

Stochastic Kronecker graphs

- M1 × M1의 확률 matrix ⊕1을 만든다.
- kth Kronecker power θk 를 계산한다.
- θk 의 entry p_u 에 따라 엣지를 생성한다.

Generation of Kronecker graphs

Probability of edge p_{uv}

0.25	0.10	0.10	0.04
0.05	0.15	0.02	0.06
0.05	0.02	0.15	0.06
0.01	0.03	0.03	0.09

1	1	0	0
0	1	0	1
1	0	1	1
0	1	0	1

Need to flip n^2 coins!!
Way too slow!!

Generation of Kronecker graphs

- *∂*로부터 normalized matrix *L*을 만든다.
- L의 확률에 따라 가장 큰 4분할 영역 중 한 영역을 선택한다.
- •그 영역 또한 분할되어 있다면 재귀적으로 확률에 따라 선택한다.
- •단일 cell이 나올 때까지 반복하며 최종적으로 선택되면 1을 할당하여 edge를 만든다.
- •위 과정을 기대 엣지 수 *E*=(*a*+*b*+*c*+*d*)*m*가 될 때까지 반복한다.

Real and Kronecker

Real and Kronecker are very close:

THANK YOU

