Knowledge Notes: Cybersecurity, Web Tech & CTF

Rohith Karning rohithkarning@gmail.com

Linkedin

GITHUB

August 25, 2025

Contents

1	Ciphers: Encryption & Decryption	2
	1.1 Concept	2
	1.2 Caesar Cipher	2
	1.3 Modern View	2
2	Steganography	2
	2.1 Introduction	2
	2.2 Image Steganography	2
	2.3 Difference from Encryption	2
3	Web Technology Concepts	3
	3.1 Metadata	3
	3.2 Web Archives	3
	3.3 GitHub OSINT	3
4	WASM & WAT Files	3
5	Machine Learning Basics	3
6	CTF Notes & Investigation Tips	4
7	Miscellaneous Notes	4

1 Ciphers: Encryption & Decryption

1.1 Concept

- Encryption = converting **plaintext** (readable message) into **ciphertext** (unreadable form).
- Decryption = converting ciphertext back into plaintext using a secret key.
- Secure communication requires strong algorithms resistant to brute force or frequency analysis.

1.2 Caesar Cipher

- One of the earliest substitution ciphers.
- Each letter is shifted forward or backward by a fixed number (e.g., shift 3: A \rightarrow D).
- Very weak by modern standards:
 - Only 25 possible shifts.
 - Easily breakable via brute force or letter frequency analysis.

1.3 Modern View

 \bullet Used historically, but now replaced by stronger algorithms like AES, RSA, and ECC

2 Steganography

2.1 Introduction

- The art of **concealing information** inside another medium (image, video, text, audio).
- Unlike encryption, the goal isn't to make data unreadable, but to make it invisible.

2.2 Image Steganography

- Example: Hide secret text inside pixels of an image (Least Significant Bit (LSB) encoding).
- Looks like a normal image to humans, but tools can extract the hidden payload.

2.3 Difference from Encryption

- Encryption: hides **content**.
- Steganography: hides **existence**.
- They can be combined for layered security.

3 Web Technology Concepts

3.1 Metadata

- "Data about data".
- Provides descriptive information about the properties of the actual content.
- Examples:
 - Images \rightarrow EXIF data (camera, GPS coordinates, timestamps).
 - Web files \rightarrow title tags, comments, headers.
- Useful in forensics, OSINT, and CTFs to retrieve hidden information.

3.2 Web Archives

- Store historical snapshots of websites.
- Example: Wayback Machine at archive.org.
- Use case: Access websites that are taken down, check older versions for clues, or restore lost content.

3.3 GitHub OSINT

- GitHub accounts often reveal:
 - Project files (README.md) containing notes, contact info, or internal hints.
 - Commit history which may leak credentials or API keys.
 - Hidden branches with sensitive code.

4 WASM & WAT Files

- .wasm WebAssembly binary file, runs at near-native speed in browsers.
- .wat Text-based human-readable version of a .wasm file.
- Often used in CTF challenges:
 - Reverse engineer logic from .wasm.
 - Translate back into C-like pseudo code.

5 Machine Learning Basics

- Steps to train an ML model:
 - 1. Data collection.
 - 2. Data preprocessing (cleaning, normalization).
 - 3. Choose model type (Regression, Classification, Neural Networks).

- 4. Train model on dataset.
- 5. Evaluate performance (accuracy, precision, recall).
- 6. Deploy model for real-world use.
- Applied in security: anomaly detection, malware classification, phishing detection.

6 CTF Notes & Investigation Tips

- Always check code for hidden comments.
- Use Ctrl + Shift + I in browser to inspect elements.
- Look inside:
 - HTML **title tag** (sometimes contains hints).
 - Source code comments.
 - Network tab: inspect response headers or hidden API data.
 - Metadata in files (images, PDFs, Word documents).
 - GitHub repository commits, branches.
 - .wasm/.wat files for hidden logic.
- "Think like a puzzle solver" every unintended file/field could be a clue.

7 Miscellaneous Notes

- DBWhatsApp exploration of WhatsApp database files often used in forensics.
- README.md crucial starting point for GitHub repos, contains summaries of purpose.
- Network responses check JSON/XML for leftover debug fields.