Разработка компонентов графоориентированного программного каркаса для реализации сложных вычислительных методов

Тришин Илья Вадимович, группа РК6-81Б

МГТУ им. Н.Э. Баумана

Россия. Москва. - 20 июня 2022

→ Пример сложного вычислительного метода

Рис. 1: Применение метода конечных элементов для анализа прочности конструкции

→ Разработка трудоёмкого научно-технического ПО

Рис. 2: Пример делегирования разработки отдельных этапов вычислительного метода

Делегирование реализации отдельных этапов реализуемого метода отдельным разработчикам положительно влияет на общее качество реализуемого ПО.

 \hookrightarrow Современные средства, направленные на упрощение разработки

Цель

Разработать программные средства для создания и интерпретации графовых описаний вычислительных методов в программном каркасе comsdk.

Задачи

- 1. Провести сравнение объекта разработки с некоторым аналогичным.
- 2. Сформировать требования к алгоритму, выполняющему этапы алгоритма по его описанию, составленному по методологии GBSE.
- Спроектировать структуры данных для описания и представления описаний алгоритмов и их элементов в программном каркасе comsdk.
- 4. Разработать алгоритм обхода графовых моделей с использованием спроектированных структур данных.
- 5. Представить интерфейсы или реализации разработанных алгоритмов и структур данных на языке C++.

Описание алгоритма – ориентированный граф. В его вершинах – процессы обработки данных, рёбра – пути данных между процессами.

Рис. 3: Пример диаграммы потоков данных, описывающей вычисление среднего арифметического и среднего геометрического двух половин массива целых чисел с последующей записью результатов в файл

→ pSeven – реализация диаграмм потоков данных

Рис. 4: Графический пользовательский интерфейс pSeven

→ Результаты сравнения. Выявленные достоинства объекта разработки

Основные достоинства comsdk по сравнению с pSeven:

- Нет необходимости указывать входные и выходные данные при описании алгоритма.
- По умолчанию поддерживаются алгоритмы, подразумевающие взаимодействие с пользователем

 Результат применения – компилируемая программа с возможностью запуска на различных платформах.

→ Результаты сравнения. Выявленные недостатки объекта разработки

Основные недостатки comsdk по сравнению с pSeven:

- Отсутствие поддержки матричных типов данных.
- Отсутствие средств визуализации результатов расчётов.
- Отсутствие возможности использования при расчётах распределённых вычислительных систем;

$$S = \begin{pmatrix} A: int \\ B: double \\ C: string \end{pmatrix}$$
 $D \multimap S = \begin{pmatrix} A: int = 10 \\ B: double = 2e-3 \\ C: string = "path/to/file" \end{pmatrix}$

Состояние данных определяет, какие переменные какого типа должны быть определены на данном этапе алгоритма. Данные алгоритма модифицируются по ходу его выполнения.

Вариант 1. Функция-обработчик модифицирует состояние данных

Вариант 2. Функция-обработчик модифицирует только сами данные

Функции-обработчики отвечают за обработку данных и их перевод из одного состояния в другое.

Постановка задачи

→ Функции-предикаты и функции перехода

Рис. 5: Принцип работы функции-предиката

Рис. 6: Блок-схема логики функции перехода

Функции-предикаты отвечают за предварительную проверку данных перед их обработкой.

Функция перехода – составная функция F = < p, f >, содержащая в себе функцию-предикат p и функцию-обработчик f.

Функции-селекторы отвечают за проверку условий при ветвлении алгоритма.

Рис. 7: Принцип работы функций-селекторов. h – функция селектор. Красным показана ветвь алгоритма, которая будет выполнена.

Постановка задачи

Брафовая модель

Графовая модель сложного вычислительного метода описывает его логику в виде ориентированного графа, где узлам ставятся в соответствие состояния данных, а рёбрам – функции перехода.

Рис. 8: Пример графовой модели, описывающей вычисление среднего арифметического и среднего геометрического двух половин массива целых чисел с последующей записью результатов в файл

Постановка задачи

Брафовая модель

Атрибуты вершины:

- имя;
- 2. состояние данных;
- 3. селектор;
- 4. режим параллельного обхода исходяших ветвей

Программная реализация

Рис. 9: UML-диаграмма разработанных структур данных, отвечающих за представлениє функций-предикатов, обработчиков и селекторов

Программная реализация $^{\,\,\,\,\,\,\,\,\,\,\,\,}$ Информационные структуры данных

Рис. 10: Пример графовой модели, подразумевающей паралельный обход ветвей

Режим параллельного исполнения в вершине S_1 определяет, какие ресурсы будут задействованы для выполнения ветвей $S_1 \to S_2 \to S_4$ и $S_1 \to S_3 \to S_4$

Заключение

→ Анализ результатов

В результате выполнения работы:

- 1) расширены функциональные возможности библиотеки comsdk
- 2) создана новая архитектура классов, позволяющая упростить процесс формирования программного представления графовых моделей;
- разработаны структуры данных для программного представления графовых моделей алгоритмов и их элементов;
- был разработан алгоритм, осуществляющий выполнение этапов алгоритма в соответствии с его графовой моделью;

Перспективы развития программного каркаса comsdk включают в себя:

- реализации алгоритма обхода графовой модели с задействованием различных вычислительных ресурсов
- интеграцию средства генерации форм ввода¹;
- разработку средства визуализации обрабатываемых данных;
- разработку средства автоматической документации реализуемых алгоритмов;

 $^{^1}$ Соколов А.П Першин А.Ю. Программный инструментарий для создания подсистем ввода данных при разработке систем инженерного анализа // Программная инженерия. 2017. Т. 8, № 12 С. 543–555.

Спасибо за внимание!

