A2DI: Proba/Stat

John Klein

Lille1 Université - CRIStAL UMR CNRS 9189

Pourquoi des probas en ML?

Raison n°1:

- Si on fait du ML, c'est parce que la solution exacte du problème est inconnue.
- Elle est inconnue parce que souvent l'univers est trop complexe pour trouver un modèle analytique.
- Les probabilités sont justement un moyen très pertinent pour obtenir une solution approximative mais simple.

Pourquoi des probas en ML?

Raison n°2:

- En ML, on extrait un modèle des données.
- La plupart du temps, les données sont polluées par des incertitudes (erreur de mesure, bruit, arrondi, etc.).
- Les probabilités forment le modèle d'incertain le plus couramment utilisé.

Plan du chapitre

Probabilités

2 Statistiques

• Probabilités : modèle mathématique pour représenter l'incertain.

- Statistiques : proba + data
 - On cherche un modèle probabiliste cohérent avec les données (fit),
 - On extrait de ce modèle des attributs ou des estimés (classe, prédiction, ..)

Intuitivement, une proba c'est quoi?

- une fréquence d'occurence dans une expérience aléatoire.
- Cas d'école : le lancé de dé.
- $\mathbb{P}(2) = \lim_{n \to +\infty} \frac{\sharp \{\operatorname{lanc\acute{e}} = 2\}}{n}$ où n est le nombre de lancés.
- L'ensemble des possibles, ou univers, est $\Omega = \{1, 2, 3, 4, 5, 6\}$.
- Pour atteindre la proba, il faut une infinité de réalisations de l'expérience aléatoire.

Intuitivement, une proba c'est quoi?

- une fréquence d'occurence dans une expérience aléatoire.
- Parfois, certaines probas peuvent s'obtenir par simple dénombrement.
- Cas d'école : le poker.
- $\mathbb{P}(\{\text{paire d'as}\}) =$

Intuitivement, une proba c'est quoi?

- la représentation d'une connaissance partielle.
- Ex : Est ce que ce patient est malade de la grippe?
- info n°1 : Il a mal à la tête.
- info n°2 : Il a des douleurs musculaires.
- Ces deux informations sont certaines mais ne nous permettent pas de déterminer intégralement la maladie du patient.
- Il n'y a aucun aléa, on ne peut pas utiliser plusieurs instances du même patient et calculer une fréquence! La vraie réponse est oui ou non.
- On parle alors de probabilités subjectives par opposition aux autres appelées objectives ou fréquentistes.

Mathématiquement, une proba c'est quoi?

• Une mesure normalisée à 1.

Définition

Soit Ω un ensemble et 2^{Ω} l'ensemble des sous-parties de Ω . Soit μ une application de 2^{Ω} dans $[0; +\infty[$. On dit que μ est une mesure ssi :

- $\mu(\emptyset) = 0$,
- pour tout A et B sous-ensembles de Ω tels que $A \cap B = \emptyset$, on a $\mu(A \cup B) = \mu(A) + \mu(B)$.

pour aller plus loin : une mesure est en fait définie sur une tribu (ou σ -algèbre) associée à Ω .

John Klein (Lille1) A2DI 9 / 58

Mathématiquement, une proba c'est quoi?

• Une mesure normalisée à 1.

Définition

Soit μ une mesure sur 2^{Ω} . On dit que μ est une mesure de probabilité ssi :

• $\mu(\Omega) = 1$.

Notion de Variable aléatoire

- Imaginons un jeu :
 - La partie coûte 20€.
 - On lance un dé à 6 faces équiprobables.
 - Le gain est égal au carré de la face obtenue.
- Comment exprimer simplement le retour sur investissement en fonction de l'issue du jeu ?

Variable aléatoire discrète

- On dit d'une variable aléatoire X qu'elle est discrète si l'ensemble des valeurs qu'elle prendre est typiquement \mathbb{Z} ou \mathbb{N} ou un ensemble fini comme $\{1; ...; \ell\}$.
- Exemple :
 - Pile ou Face, $X \in \{F; P\}$,
 - Lancé de dé, $X \in \{1; 2; 3; 4; 5; 6\}$,
 - Classe d'un exemple $X \in \{c_1,..,c_\ell\}$,
 - Nombre de personne dans la file du R.U. $X \in \mathbb{N}$.

Variable aléatoire continue

- On dit d'une variable aléatoire X qu'elle est continue si l'ensemble des valeurs qu'elle prendre est typiquement \mathbb{R} (ou une partie de \mathbb{R}).
- Exemple :
 - Sortie d'un capteur de température, $X \in [-273.15; +\infty]$,
 - Cours d'une action, $X \in [0, \infty]$,
 - Proportion de mâles dans une population $X \in [0,..,1]$,
 - Solution d'un problème de régression $X \in \mathbb{R}$.

Variable aléatoire discrète : distribution Soit $\mathbb X$ l'ensemble des valeurs possibles de X.

Définition

Les probabilités associées à chaque valeur possible d'une variable aléatoire discrète sont regroupées dans une fonction appelée Loi ou Distribution de X et qu'on notera $p_X : \mathbb{X} \to [0;1]$ et $p_X(i) = \mathbb{P}(\{X=i\})$

Variable aléatoire continue : densité Soit $\mathbb X$ l'ensemble des valeurs possibles de X.

- $\forall a \in \mathbb{X}$, on a $\mathbb{P}(X = a) = 0!$
- Cela signifie que pour ces v.a. une probabilité nulle n'implique pas qu'un événement est impossible!
- On obtient (éventuellement) des probas non nulles que pour des événements du type X ∈ [a; b] avec a < b.
- On doit utiliser une autre fonction pour résumer nos croyances sur les chances d'observer une valeur *a* plutôt que *b*.

Définition

On appelle fonction de répartition d'une v.a. la fonction $F_X: \mathbb{X} \to [0; 1]$ telle que :

$$F_X(a) = \mathbb{P}(X \le a). \tag{1}$$

Densité de probabilité

- La définition de la fonction de répartition ou distribution cumulée s'applique aussi aux v.a. discrètes.
- Pour les v.a. continues, sous réserve de pouvoir dériver F_X, on introduit une autre fonction qui caractérise la concentration des chances pour une valeur particulière :

Définition

On appelle densité de probabilité d'une v.a. continue la fonction $p_X: \mathbb{X} \to [0; +\infty]$ telle que :

$$p_X(a) = F_X'(a). (2)$$

Densité de probabilité

- On a $\int p_X(u) du = 1$.
- En revanche, il est possible d'avoir $p_X(u) > 1$!

Notation (abusive) : $p_X(A) = \int_A p_X(u) du = \mathbb{P}(X \in A)$

Espérance

- Reprenons l'exemple du jeu :
 - La partie coûte 20€.
 - On lance un dé à 6 faces équiprobables.
 - Le gain est égal au carré de la face obtenue.
- Quel retour sur investissement puis-je espérer après un grand nombre de parties?

partie n°1	1	2	3	4	5	6	7	8	9	10	11	12
issue	1	6	5	2	2	2	4	4	4	2	4	4
gain	-19	16	5	-16	-16	-16	-4	-4	-4	-16	-4	-4

Espérance

Définition

On appelle espérance d'une fonction f de la v.a. X, la quantité notée $\mathbb{E}_X[f]$ telle que :

$$\mathbb{E}_{X}[f] = \begin{cases} \sum_{a \in \mathbb{X}} f(a) p_{X}(a) & \text{si } X \text{ est discrète} \\ \int_{\mathbb{X}} f(u) p_{X}(u) du & \text{si } X \text{ est continue} \end{cases}$$
 (3)

Cas particulier : si $f = \mathbb{I}_A$ est la fonction indicatrice sur $A \subset \mathbb{X}$.

$$\mathbb{I}_{A}(u) = \begin{cases} 1 & \text{si } u \in A \\ 0 & \text{sinon} \end{cases} \text{ et donc } \mathbb{E}_{X}[\mathbb{I}_{A}] = p_{X}(A). \tag{4}$$

→ L'espérance est une notion plus générale que la distribution.

John Klein (Lille1) 19 / 58

Espérance

Souvent, on note $\mathbb{E}_X[id] = \mathbb{E}[X]$.

On les propriétés suivantes :

- $\mathbb{E}[cte] = cte$,
- $\mathbb{E}[aX + Y] = a\mathbb{E}[X] + \mathbb{E}[Y]$,
- $\mathbb{E}[X]\mathbb{E}[Y] \neq \mathbb{E}[XY]$.

John Klein (Lille1) A2DI 20 / 58

Couple de v.a. : (X, Y)

En ML, on doit souvant manipuler des ensembles de v.a. :

- Les exemples d'apprentissage sont souvent multi-dimensionnels et chaque dimension se modélise par une v.a. X_i .
- Si X représente les exemples alors $X = [X_1 \dots X_d]$ sera un vecteur aléatoire.
- La prédiction est elle aussi incertaine et modélisée par une v.a. Y

21 / 58

Couple de v.a. : (X, Y)

On généralise la notion de distribution pour un couple et on parle de loi jointe notée $p_{X,Y}$:

- $p_{X,Y}(a,b) = \mathbb{P}(X=a \text{ et } Y=b)$ si X et Y sont discrètes et $a \in \mathbb{X}$, $b \in \mathbb{Y}$.
- $p_{X,Y}(A,B) = \mathbb{P}(X \in A \text{ et } Y \in B)$ si X et Y sont continues et $A \subset \mathbb{X}$, $B \subset \mathbb{Y}$.
- $p_{X,Y}(A,b) = \mathbb{P}(X \in A \text{ et } Y = b)$ si X est continue tandis que Y est discrète et $A \subset X$, $b \in Y$.

Couple de v.a. (X, Y): marginales

Définition

On appelle loi marginale la loi p_X d'une v.a. X deduite d'une loi jointe $p_{X,Y}$. On a :

$$p_X(a) = \begin{cases} \sum_{b \in \mathbb{Y}} p_{X,Y}(a,b) & \text{si } Y \text{ est discrète} \\ \int_{\mathbb{Y}} p_{X,Y}(a,y) \, dy & \text{si } Y \text{ est continue} \end{cases}$$
 (5)

En général, il n'est pas possible de remonter à la jointe à partir des marginales.

Couple de v.a. (X, Y): loi conditionnelle

Définition

On appelle loi conditionnelle la loi $p_{X|Y=b}$ d'une v.a. X après avoir observé l'événement Y=b de probabilité (ou de densité) non nulle. On a :

$$p_{X|Y=b}(a) = \frac{p_{X,Y}(a,b)}{p_Y(b)}.$$
 (6)

Couple de v.a. (X, Y): Théorème de Bayes

En ML, on souhaite pouvoir renverser un conditionnement. Le théorème de Bayes est un élément-clé d'un tel processus :

$$p_{Y|X=a}(b) = \frac{p_{X|Y=b}(a)p_{Y}(b)}{p_{X}(a)},$$
 (7)

$$= \frac{p_{X|Y=b}(a) p_Y(b)}{\int_{\mathbb{Y}} p_{X|Y=u}(a) p_Y(u) du},$$
(8)

$$\propto p_{X|Y=b}(a)p_Y(b).$$
 (9)

Couple de v.a. (X, Y): Indépendance

Définition

On dit que deux v.a.s X et Y qu'elles sont indépendantes, noté $X \perp \!\!\! \perp Y$ si la jointe est le produit des marginales :

$$p_{X,Y}(A,B) = p_X(A) \times p_Y(B). \tag{10}$$

Exemple

X est le résultat d'un lancé de dé.

Y est le sexe du lanceur.

Le sexe du lanceur n'a aucune influence sur le résultat du lancé, d'où $X \perp Y$.

Couple de v.a. (X, Y): Indépendance

On peut également caractériser l'indépendance de deux v.a.s X et Y par le conditionnement :

$$X \perp Y \Leftrightarrow p_{X|Y=b}(a) = p_X(a), \forall a \in \mathbb{X}, b \in \mathbb{Y}.$$
 (11)

Connaître Y ne nous apporte aucune information sur X!

John Klein (Lille1) 27 / 58

Couple de v.a. (X_1, X_2) : Indépendance / Le cas gaussien On dit qu'une v.a. continue X suit une loi gaussienne (ou normale), noté $X \sim \mathcal{N}(\mu, \sigma)$, si sa dentisté de probabilité vaut :

$$p_X(u) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(u-\mu)^2}{2\sigma^2}}.$$
 (12)

La famille des distributions gaussiennes est paramétrée par μ et σ . Exemple pour $\mu=2$ et $\sigma=1$.

John Klein (Lille1) 28 / 58

Couple de v.a. (X_1, X_2) : Indépendance / Le cas gaussien multivarié On dit qu'un vecteur aléatoire continu \boldsymbol{X} suit une loi gaussienne multivariée, noté $X \sim \mathcal{N}\left(\boldsymbol{\mu}, \boldsymbol{\Sigma}\right)$, si sa dentisté de probabilité jointe vaut :

$$p_X(\boldsymbol{u}) = \frac{1}{(2\pi)^{d/2} \det(\boldsymbol{\Sigma})^{1/2}} e^{-\frac{1}{2}(\boldsymbol{u}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{u}-\boldsymbol{\mu})}.$$
 (13)

La famille des distributions gaussiennes en dimension d est paramétrée par le vecteur μ et la matrice Σ .

Exemple pour
$$d=2$$
, $\mu=\begin{pmatrix}1\\-0.5\end{pmatrix}$ et $\Sigma=\begin{pmatrix}1&0.1\\0.1&0.2\end{pmatrix}$.

Couple de v.a. (X_1, X_2) : Indépendance / Le cas gaussien multivarié Les composantes d'un vecteur aléatoire gaussien $\boldsymbol{X} = (X_1 \dots X_d)^T$ sont indépendantes ssi la matrice $\boldsymbol{\Sigma}$ est diagonale.

$$p_X(\boldsymbol{u}) = \frac{1}{(2\pi)^{d/2} \det(\boldsymbol{\Sigma})^{1/2}} e^{-\frac{1}{2}(\boldsymbol{u}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{u}-\boldsymbol{\mu})}.$$
 (14)

John Klein (Lille1) A2DI 30 / 58

Couple de v.a. (X_1, X_2) : Indépendance / Le cas gaussien multivarié

Exemple pour
$$d=2$$
, $\mu=\begin{pmatrix}1\\-0.5\end{pmatrix}$ et $\Sigma=\begin{pmatrix}1&0\\0&0.2\end{pmatrix}$.

Couple de v.a. (X, Y): Indépendance

Ce n'est pas parce $p_X=p_Y$ qu'on a X dépend de Y!

Avoir les mêmes probas ne signifie pas être lié d'une quelconque manière.

Exemple

X est le résultat d'un lancé de dé.

Y est le résultat d'un lancé d'autre dé.

On a $p_X = p_Y$ mais le résultat du 1er lancé est indépendant du 2ème!

Triplet de v.a. (X, Y, Z): Indépendance conditionnelle

Définition

On dit que deux v.a.s X et Y qu'elles sont conditionellement indépendantes sachant Z, noté $(X \perp Y) \mid Z$ si la jointe sachant Z est le produit des marginales sachant Z:

$$p_{X,Y|Z=c}(A,B) = p_{X|Z=c}(A) \times p_{Y|Z=c}(B).$$
 (15)

Exemple

X est une v.a. binaire représentant la possibilité d'être atteint de la grippe.

Y est une v.a. binaire représentant la possibilité d'avoir de la fièvre.

Z est une v.a. binaire représentant la possibilité de souffrir de maux de tête.

X est une pathologie tandis que Y et Z sont des symptomes.

On a:

John Klein (Lille1) 33 / 58

Triplet de v.a. (X, Y, Z): Indépendance conditionnelle et Causalité Dans l'exemple précédent :

- X est une cause,
- Y et Z sont des effets,
- Y et Z ne sont pas indépendantes, il y a de bonnes chances d'avoir
 Y = true quand Z = true,
- mais il n'y a pas de lien de causalité en Y et Z.

Triplet de v.a. (X, Y, Z): Indépendance conditionnelle

L'indépendance conditionnelle s'exprime aussi comme suit :

$$(X \perp \!\!\!\perp Y) \mid Z \Leftrightarrow p_{X \mid Y = b, Z = c}(a) = p_{X \mid Z = c}(a), \forall a \in \mathbb{X}, b \in \mathbb{Y}.$$
 (16)

Une fois Z connue, la connaissance de Y n'apporte rien concernant la valeur de X.

$$(X \perp Y) | Z \not= X \perp Y, \tag{17}$$

$$(X \perp Y) \mid Z \implies X \perp Y. \tag{18}$$

Plan du chapitre

Probabilités

2 Statistiques

.. et les données furent!

John Klein (Lille1)

Le mot statistique peut désigner :

• un échantillon recueilli $\{x_i\}_{i=1}^n$ où chaque x_i est tiré selon une même loi L, noté $x_i \sim L$. Elle est représentative de la population générale.

• un calcul opéré sur une loi L ou un échantillon suivant une loi L et permettant de décrire le comportement de L.

$$s = \sum_{j=1}^{\ell} \frac{n \left(p_X(j) - \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}_j(x_i) \right)^2}{p_X(j)}$$

$$(19)$$

Les moments sont les statistiques descriptives les plus répandus permettant de caractériser une distribution.

Définition

Soit X une v.a. et $\mu_X^{(i)}$ Son moment d'ordre i est donné par :

$$\mu_X^{(i)} = \mathbb{E}\left[X^i\right]. \tag{20}$$

Définition

Soit X une v.a. et $\nu_X^{(i)}$ Son moment centré d'ordre i est donné par :

$$\nu_X^{(i)} = \mathbb{E}\left[(X - \mathbb{E}[X])^i \right]. \tag{21}$$

Cas particuliers de moments centrés :

Définition

Le moment centré d'ordre 2 d'une v.a. X est appelé variance de X, notée $\operatorname{Var}[X]$.

La racine de la variance est appelée écart-type, noté $\sigma_X = \sqrt{\operatorname{Var}[X]}$.

La variance caractérise l'étalement d'une distribution.

Définition

Soit X une v.a. et $\nu_X^{(i)}$ Son moment centré réduit d'ordre i est donné par :

$$m_X^{(i)} = \mathbb{E}\left[\left(\frac{X - \mathbb{E}[X]}{\sigma_X}\right)^i\right].$$
 (22)

Cas particuliers de moments centrés réduits :

Définition

Le moment centré réduit d'ordre 3 d'une v.a. X est appelé skew de X.

Le skew caractérise l'asymétrie d'une distribution.

Cas particuliers de moments centrés réduits :

Définition

Le moment centré réduit d'ordre 4 d'une v.a. X est appelé kurtosis de X.

Le kurtosis caractérise la platitude d'une distribution.

En ML, on a souvent besoin de savoir si les variations d'une v.a. X sont proches de celle d'une autre v.a. Y:

- Quand X baisse est-ce que Y baisse aussi?
- Quand X augmente est-ce que Y augmente aussi?

Le calcul de la covariance permet de répondre en partie à cette question :

Définition

On note cov(X, Y) la covariance des v.a.s X et Y définie par :

$$\operatorname{cov}(X,Y) = \mathbb{E}\left[\left(X - \mathbb{E}\left[X\right]\right)\left(Y - \mathbb{E}\left[Y\right]\right)\right]. \tag{23}$$

On a:

- $\bullet \, \operatorname{cov}(X,X) = \operatorname{var}(X),$
- $\bullet \, \cos\left(aX+Y,Z\right) = a\cos\left(X,Z\right) + \cos\left(Y,Z\right).$

John Klein (Lille1) 43 / 58

L'indépendance entraîne une covariance nulle :

$$X \perp Y \Rightarrow \operatorname{cov}(X, Y) = 0.$$
 (24)

Covariance et causalité :

- Exemple des maladies et symptomes (c.f. indep. cond.).
- Les symptomes ont une covariance positive.
- La covariance n'est pas une preuve de causalité.

Attention à tous ces articles de presse du style « manger bio fait gagner 5ans d'espérance de vie »

Pour un vecteur aléatoire $\mathbf{X} = (X_1 \dots X_d)$, on appelle matrice de variance-covariance, la matrice carrée $d \times d$ définie positive \mathbf{S} dont les éléments sont donnés par $S_{ij} = \operatorname{cov}(X_i, X_j)$.

Exercice : Prouver que la matrice de variance-covariance d'un vecteur $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ est $\boldsymbol{\Sigma}$ (pour d=2).

John Klein (Lille1) 45 / 58

Couple de v.a. (X_1, X_2) : Corrélation

La corrélation est une forme normalisée de la covariance :

Définition

On note $\rho(X,Y)$ le coefficient de corrélation (de Pearson) des v.a.s X et Y défini par :

$$\rho(X,Y) = \frac{\operatorname{cov}(X,Y)}{\sqrt{\operatorname{var}(X)\operatorname{var}(Y)}}.$$
 (25)

On a $\rho(X, Y) \in [-1; 1]$:

- $\rho(X, Y) = 1$ signifie que X et Y sont liés linéairement
- ho(X,Y)=-1 signifie la même chose mais, leurs variations ont un signe opposé
- $\rho(X, Y) = 0$ ne signifie pas grand chose..

John Klein (Lille1) A2DI 46 / 58

Exemples de coefficients de corrélation pour différents échantillons :

Comment résumer une distribution?

$1^{\circ}/$ avec un seul point

- avec l'espérance = $\mathbb{E}(X)$: c'est la valeur dont la moyenne d'un échantillon sera le plus proche,
- ou le mode = $\underset{u \in \mathbb{X}}{\operatorname{arg\,max}} p_X\left(u\right)$: c'est la valeur la plus probable,
- ou la médiane = $F_X^{-1}(0.5)$: c'est la valeur qui sépare les autres en 2 groupes de probabilité 0.5.

Comment résumer une distribution?

2°/ avec 5 statistiques

- la médiane = $F_X^{-1}\left(\frac{1}{2}\right)$,
- et le 1er quartile = $F_X^{-1}\left(\frac{1}{4}\right)$ et 3ème quartile = $F_X^{-1}\left(\frac{1}{4}\right)$,
- et le 2ème percentile = $F_X^{-1}\left(\frac{2}{100}\right)$ et 98ème percentile = $F_X^{-1}\left(\frac{98}{100}\right)$.

Comment remonter à la distribution p_X qui a généré nos données $\{x_i\}_{i=1}^n$? Rangeons les données dans des cases (bins)!

- On découpe \mathbb{X} en r bins (en général de taille égale).
- On pose $\hat{p}_X(A_i) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}_{A_i}(x_i)$ (distribution empirique)
- Quand *n* est grand, $\hat{p}_X(A_i) \approx p_X(A_i)$.

Pourquoi ça marche? Loi des grands nombres

- Voyons nos données comme un vecteur de taille $n : [x_1 ... x_n]^T$.
- Ce vecteur est l'unique réalisation d'un vecteur aléatoire X dont chaque entrée suit une distribution identique L et indépendante des autres entrées.
- On parle d'échantillon indépendant et identiquement distribué (iid).
- Notons $Y_n = \frac{1}{n} \sum_{i=1}^n X_i$ la moyenne des v.a.s correspondant aux entrées du vecteur.
- Soit μ l'espérance de L.

Théorème

En reprenant les notations ci-dessus, on a :

$$\mathbb{P}\left(\lim_{n\to+\infty} \frac{\mathbf{Y}}{n} = \mu\right) = 1 \tag{26}$$

Pourquoi ça marche? Loi des grands nombres

- Ce résultat signifie que quand n est très grand, une réalisation de Y_n ne sera plus une v.a. mais une constante égale à μ !
- Appliquons ce résultat à $\mathbf{R} = \mathbb{I}_A \circ \mathbf{X}$ avec $A \subset \mathbb{X}$. On a alors :
 - $Y_n = \hat{p}_X(A)$,
 - $\mu = \mathbb{E}_X [\mathbb{I}_A] = p_X (A)$.

A quelle vitesse converge-t-on? Théorème Central Limite
On aimerait pouvoir garantir en fonction de *n* un résultat du type

$$\mathbb{P}\left(\left|\hat{p}_{X}\left(A; \mathbf{n}\right) - p_{X}\left(A\right)\right| > \tau\right) = \epsilon. \tag{27}$$

Théorème Central Limite

Soient X_1 , ..., X_n n v.a. indépendantes suivant une même loi L d'espérance finie μ et de variance finie non nulle σ^2 . Soit $\frac{Y}{n} = \frac{1}{n} \sum_{i=1}^n X_i$. On a

$$\frac{\mathbf{Y}_n}{\longrightarrow} \mathcal{N}\left(\mu; \frac{\sigma^2}{\mathbf{n}}\right)$$
(28)

John Klein (Lille1) 53 / 58

A quelle vitesse converge-t-on? Théorème Central Limite Exemple : soit X une variable aléatoire binaire : $\mathbb{X} = \{0; 1\}$. Il existe $\theta \in [0; 1]$ avec

$$p_X(0) = \theta, (29)$$

$$p_X(1) = 1 - \theta. \tag{30}$$

On dit que X suit un loi de Bernouilli, noté $X \sim \mathrm{Ber}\,(\theta)$. Prenons n=500 tirage de la loi $\mathrm{Ber}\,(\theta)$. Répétons m=400 fois l'expérience et construisons alors l'histogramme de Y_n à comparer avec la distribution théorique $\mathcal{N}\left(\theta;\frac{\theta(1-\theta)}{500}\right)$.

A quelle vitesse converge-t-on? Théorème Central Limite Revenons à

$$\mathbb{P}\left(\left|\hat{p}_{X}\left(A;\mathbf{n}\right)-p_{X}\left(A\right)\right|>\tau\right)=\epsilon.\tag{31}$$

- Supposons que je tire n échantillons $\{x_1, \ldots, x_n\}$ selon la loi de X.
- La probabilité d'avoir $x_i \in A$ est $p_X(A)$.
- La probabilité d'avoir $x_i \notin A$ est $1 p_X(A)$.
- Je peux transformer mes échantillons x_i en échantillons binaires $z_i = \mathbb{I}_A(x_i)$.
- Les z_i sont tirés selon Ber $(\theta = p_X(A))$!

John Klein (Lille1) 55 / 58

A quelle vitesse converge-t-on? Théorème Central Limite Revenons à

$$\mathbb{P}\left(\left|\hat{p}_{X}\left(A; \mathbf{n}\right) - p_{X}\left(A\right)\right| > \tau\right) = \epsilon. \tag{32}$$

• Quand n est grand, ma probabilité ϵ correspond à la surface suivante :

Comment remonter à la distribution p_X qui a généré nos données $\{x_i\}_{i=1}^n$? Supposons que p_X appartienne à une famille paramétrée $\{f_\theta\}_{\theta \in \Theta}$.

Comment remonter à la distribution p_X qui a généré nos données $\{x_i\}_{i=1}^n$? Supposons que p_X appartienne à une famille paramétrée $\{f_\theta\}_{\theta\in\Theta}$.

ightarrow On peut alors calculer la fonction de vraisemblance $\mathcal{L}\left(oldsymbol{ heta}
ight)$:

$$\mathcal{L}(\boldsymbol{\theta}) = p(\mathcal{D}|\boldsymbol{\theta}),$$

$$= \prod_{i=1}^{n} f_{\boldsymbol{\theta}}(\mathbf{x}_{i}).$$
(33)

John Klein (Lille1) 57 / 58

Comment remonter à la distribution p_X qui a généré nos données $\{x_i\}_{i=1}^n$? Supposons que p_X appartienne à une famille paramétrée $\{f_\theta\}_{\theta \in \Theta}$.

ightarrow On peut alors calculer la fonction de vraisemblance $\mathcal{L}\left(oldsymbol{ heta}
ight)$:

$$\mathcal{L}(\boldsymbol{\theta}) = \rho(\mathcal{D}|\boldsymbol{\theta}),$$

$$= \prod_{i=1}^{n} f_{\boldsymbol{\theta}}(\mathbf{x}_{i}). \tag{33}$$

ATTENTION

 $\mathcal{L}(\boldsymbol{\theta})$ n'est pas une distribution :

$$\int \mathcal{L}\left(\boldsymbol{\theta}\right) d\boldsymbol{\theta} \neq 1. \tag{34}$$

Comment remonter à la distribution p_X qui a généré nos données $\{x_i\}_{i=1}^n$? Supposons que p_X appartienne à une famille paramétrée $\{f_\theta\}_{\theta\in\Theta}$.

ightarrow On peut alors calculer la fonction de vraisemblance $\mathcal{L}\left(oldsymbol{ heta}
ight)$:

$$\mathcal{L}(\boldsymbol{\theta}) = p(\mathcal{D}|\boldsymbol{\theta}),$$

$$= \prod_{i=1}^{n} f_{\boldsymbol{\theta}}(\mathbf{x}_i).$$
(33)

ATTENTION

 $\mathcal{L}(\boldsymbol{\theta})$ n'est pas une distribution :

$$\int \mathcal{L}\left(\boldsymbol{\theta}\right) d\boldsymbol{\theta} \neq 1. \tag{34}$$

En ML, on préfère souvent la *negative log-Likelihood* : $NLL(\theta) = -\log \mathcal{L}(\theta)$.

John Klein (Lille1) 57 / 58

Comment remonter à la distribution p_X qui a généré nos données $\{x_i\}_{i=1}^n$? \rightarrow vraisemblance $\mathcal{L}(\theta)$.

Exemple

Soient les données suivantes $\mathbf{x}_i \sim \mathrm{Ber}\left(\boldsymbol{\theta}\right)$: $\{0; 0; 0; 1; 0; 0; 1; 0; 1; 0\}$. On a n=10 et

$$\mathcal{L}(\theta) = \prod_{i=1}^{10} \theta^{1-\mathbf{x}_i} (1-\theta)^{\mathbf{x}_i},$$
$$= \theta^7 (1-\theta)^3.$$

John Klein (Lille1) 58 / 58

Comment remonter à la distribution p_X qui a généré nos données $\{x_i\}_{i=1}^n$? \rightarrow vraisemblance $\mathcal{L}(\theta)$.

Exemple

Soient les données suivantes $\mathbf{x}_i \sim \mathrm{Ber}\left(\boldsymbol{\theta}\right)$: $\{0; 0; 0; 1; 0; 0; 1; 0; 1; 0\}$. On a n=10 et

$$\mathcal{L}(\theta) = \prod_{i=1}^{10} \theta^{1-\mathbf{x}_i} (1-\theta)^{\mathbf{x}_i},$$
$$= \theta^7 (1-\theta)^3.$$

