Chapitre 15 Limites de suites réelles

I - Limite d'une suite

- 1) Suites convergentes
- 2) Suites réelles de limite infinie
- 3) Suites divergentes
- 4) Limites et ordre
- 5) Opérations sur les limites
- 6) Equivalents
- 7) Relations de comparaison classiques

II - Théorèmes de convergence pour les suites monotones

- 1) Les théorèmes principaux
- 2) Suites adjacentes

III - Quelques éléments sur l'étude des suites définies par une relation $u_{n+1} = f(u_n)$

- 1) Le problème de l'existence de la suite
- 2) Une condition nécessaire de convergence
- 3) Un cas favorable : le cas où f est croissante
- 4) Le cas où f est décroissante

Exemples de compétences attendues

- Savoir utiliser les équivalents usuels pour calculer des limites de suites dont le terme général est explicite.
- 2 Savoir étudier des suites (u_n) définies par le premier terme et une relation de récurrence $u_{n+1} = f(u_n)$ dans les cas favorables où f est continue monotone (guidé ou non). Savoir calculer le terme général d'une telle suite avec un programme Python.
- \bullet Savoir étudier les suites (x_n) dont le terme général est solution d'une équation paramétrée par n.
- $oldsymbol{\bullet}$ Savoir montrer que deux suites sont adjacentes. Si nécessaire, savoir trouver une valeur approchée de la limite à ε près au moyen d'un programme Python.

Questions de cours possibles :

- Soit f croissante et continue sur \mathbb{R} admettant deux points fixes (au moins) α et β . Expliquer comment étudier une suite définie par $u_0 \in I$ et : $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$ dans les cas où $I =]-\infty, \alpha]$, $I =]\alpha, \beta[$ ou $I = [\beta, +\infty[$.
- Énoncer et démontrer le théorème de caractérisation des suites adjacentes.
- Énoncer les équivalents usuels. Application sur un ou deux exemples simples de calculs de limites.