COL 351: Analysis and Design of Algorithms

Lecture 1

Grading Policy

- Quizzes 10%
 (surprised / announced)
- Assignments 4 x 5% = 20% (must be typed in word/latex) (group of size at most two)
- 3. Exams 30% + 35%
- 4. Attendance 5%

Audit paas criteria (if audit allowed): 40%

Academic Honesty

Cheating or allowing anyone to copy in quizzes, exams, or assignments would lead to strict disciplinary action.

Reference Books

- 1. **Algorithm Design** by Jon Kleinberg and Eva Tardos
- 2. *Algorithms* by Dasgupta, Papadimitriou, and Vazirani

Tutorials

The course calendar is available at - https://web.iitd.ac.in/~keerti/calendar.html

S.No.	Date	Day	Lectures	Tutorials	Groups	Remarks
2	3.8.2022	Wednesday	L1			
3	4.8.2022	Thursday				
4	5.8.2022	Friday	L2			
5	6.8.2022	Saturday	L3			Tuesday's Timetable
6	7.8.2022	Sunday				
7	8.8.2022	Monday		1	Group 4	
8	9.8.2022	Tuesday	Muharram			
9	10.8.2022	Wednesday	L4			
10	11.8.2022	Thursday	Raksha Bandhan			
11	12.8.2022	Friday	L5	1	Group 3	
12	13.8.2022	Saturday				

COL 106 (DS)

→ Arrays, Link lists, Stacks

→ Trees, Binary trees, AVL trees, KD trees

- → How to use these data structures in computational problems?
 - Queues are used in BFS
 - · Stacks are used in DFS
 - Priority queues are used in Dijkstra's algorithm

This Course

- Designing algorithms
- · Different algorithm paradigms
 - 1. Greedy algorithms
 - 2. Dynamic programming ~
 - 3. Divide & Conquer ~
- Hard Problems:

 Problems which are unlikely to have an efficient solution.
 - How to prove that a problem is hard?

Today's Lecture

- 1. Asymptotic Bounds (O, Ω, Θ)
- 2. Examples of Time complexity
- 3. Merge Sort
- 4. Computing n^{th} Fibonacci Number efficiently

Asymptotic Bound (Big O notation)

T(n) = Number of steps taken by an algorithm on an input of <u>size n</u>.

$$T(n) = O(f(n)) \quad \text{for } T(n), f(n) \ge 0$$

$$f(n) \le C - f(n) \quad \forall n \ge n_0$$

Asymptotic Bound (Ω notation)

T(n) = Number of steps taken by an algorithm on an input of size n.

T(n) = Number of steps taken by an algorithm of an input of size n.

$$T(n) = 52 \left(f(n) \right) \qquad \text{for} \qquad T(n), f(n) \geqslant 0$$

$$T(n) \geqslant c \cdot f(n) \qquad \forall n \geqslant n_0$$

Asymptotic Bound (⊕ **notation)**

T(n) = Number of steps taken by an algorithm on an input of size n.

Definition: For any non-negative functions T(n) and f(n), we say $T(n) = \Theta(f(n))$ if

1.
$$T(n) = O(f(n))$$
, and

 M_0 , C_1 , C_2 > 0

Example:

Problem:

Given an array $\underline{\underline{A}}$ of size $\underline{\underline{n}}$, output sum of all entries if $\underline{\underline{n}}$ is even, and -1 otherwise.

T(n), the number of steps is.

$$T(n) = \begin{cases} n, & \text{if } n \text{ is even} \\ 1, & \text{if } n \text{ is odd} \end{cases}$$

$$\frac{|A.W.}{T(n)} = O(n)$$

$$T(n) \neq O(n)$$

Exercises

•
$$n+b=O(n)$$

•
$$2[\log_{10} n] + c = O(\log_2 n)$$

•
$$\frac{n^3}{2} + n^{1.5} = \Theta(n^3)$$

•
$$a_d n^d + \dots + a_1 n + a_0 = O(n^d)$$
, for $a_d > 0$

•
$$4n = O(n \log n)$$

•
$$n^c = O(2^n)$$
, for each $c > 0$

•
$$n \neq O(\log^k n)$$
, for each integer $k > 0$

•
$$n \neq O(1)$$

Example: Merge Sort

Megetine =
$$O(|4| + |L_2|)$$

= $O(n)$

Example: Merge Sort

MergeSort(L)

```
n = length(L);
   If n = 1 then Return;
  A = \text{new list of size } n;
  Set L_1 = L[0, \frac{n}{2}] and L_2 = L[\frac{n}{2} + 1, n - 1]; SPLIT

ightharpoonup MergeSort(L_1);
MergeSort(L_2);
 Set x, y, pos = 0;
  While (x < length(L_1) \text{ or } y < length(L_2))
           If (L_1[x] \le L_2[y] and x < length(L_1)) then
                     Set A[pos] = L_1[x], and increment pos and x by 1;
            Else
                     Set A[pos] = L_2[x], and increment pos and y by 1;
```

Lecurence

$$T(n) = 2 T\left(\frac{n}{2}\right) + O(n)$$

Example: Merge Sort

Let
$$T(n)$$
 = number of steps taken by the algorithm. Then, $T(n) \le 2 T\left(\frac{n}{2}\right) + cn$

Merge Sort - Unequal balance

Let T(n) = number of steps taken by the algorithm.

What if
$$|L_1|=n/3$$
, and $|L_2|=2n/3$?
$$\frac{|L_1|}{|L_2|}=\frac{1}{2}$$

$$T(n)=T(\frac{n}{3})+T(\frac{2n}{3})+O(n)$$

$$H.W.$$
 $T(n) = O(n \log n)$

Merge Sort - Unequal balance

Let T(n) = number of steps taken by the algorithm.

What if
$$|L_1| = \sqrt{n}$$
, and $|L_2| = n - \sqrt{n}$?
$$\frac{|L_1|}{|L_2|} \approx \frac{1}{\sqrt{n}}$$

$$T(n) = T(Jn) + T(n-Jn) + O(n).$$

Algorithm Paradigms

1. **Divide and Conquer**

- Divide the problem into smaller problems
- Solve the smaller problems
- Combine

2. **Dynamic Programming**

Reduce the problem on an input of size n into problems of size

$$n-4$$
 $n-1, n-2, n-3,...$ etc.

3. **Greedy Strategy**

Build solution greedily.

Nth Fibonacci Number

Defined by recurrence relation $F_0 = 0$, $F_1 = 1$, and $F_n = F_{n-2} + F_{n-1}$ for n > 1.

F(n)

If
$$n = 0$$
 then Return 0;

If $n = 1$ then Return 1;

$$x = \text{Fibonacci}(n-1); \checkmark$$

$$y = \text{Fibonacci}(n-2); \checkmark$$

Return $x + y$;

Time completity is the large

$$T(n) = T(n-2) + T(n-1) +$$
Time-to-add-two-large-numbers

$$T(n) \geqslant F_n \geqslant \sqrt{2}^n \Rightarrow T(n) = \Omega(\Omega^n)$$

Fibonacci(n)

$$H.W. F_n \geqslant \sqrt{2}^n, \forall n \geqslant 2$$

Nth Fibonacci Number - Improved algorithm

Defined by recurrence relation $F_0 = 0$, $F_1 = 1$, and $F_n = F_{n-2} + F_{n-1}$ for n > 1.

 $T(n) = O(n^2)$

Plots of different time complexities

Homework: Prove that $n \log n = O(n^{1+\epsilon})$, for each constant $\epsilon > 0$

Challenge Problem

$$-(n^2) \leftarrow asy$$

$$- (n^2) \leftarrow \text{easy}$$

$$- \text{subquadedie?}$$

$$- (n^2)$$

Given : A histogram consisting of \underline{n} bars of unit length.

Find: The axis-parallel rectangle of maximum area which is covered by the histogram.

What is the best possible time complexity?