4.10 Control & Characterization of SC quits

- · Previous section: Measurement (intentional or unintentional!)
 as a mechanism causing decoherence.
- · More generally: "The environment is watching" -> Various sources
 of noise causing decoherence. See [4.11].

 Spontane

. Dishingvish two types: e _ my

Spontaneous
noise-induced
excitation much
less likely in SC circuits.

Thetric: Lifetime Tr
of excited state.

lg>+le>

. Dephasing Dephasing time Tz

· How to characterize?

General approach: Initialize qubit in well-controlled state and monitor average state evolution for different protocols.

First slep: Controlling the state of a qubit

Want: 14:17 [1] iyout? for general unitary U.

=> Decompose U into rotations of the Bloch rector - [RiP] about axis i E \(\int \times \cdot \cdot \times \cdot \times \

 $R_{i}(r) = e^{-ir^{2}/2} \overline{\sigma}_{i}$ $= \cos \frac{1}{2} 11 - i \sin \frac{1}{2} \overline{\sigma}_{i}$ $= \cos \frac{1}{2} 11 - i \sin \frac{1}{2} \overline{\sigma}_{i}$ $= \cos \frac{1}{2} 11 - i \sin \frac{1}{2} \overline{\sigma}_{i}$ $= \sin \frac{1}{2} e^{A} = \sum_{n,i}^{A_{n}} \text{ and } \overline{\sigma}_{i}^{2} = 11$

Implementation: Turn on Hamiltonian $H/h = \frac{\Omega}{2} \nabla i$ for time $Z = \frac{1}{2}$

$$\widetilde{H}_{d} = e^{\frac{iH_{0}t}{\hbar}} + H_{d} e^{\frac{-iH_{0}t}{\hbar}} = I_{\gamma} \beta_{in} \left(\nabla e^{\frac{t}{4}} + \nabla e^{\frac{-i\varphi}{4}} \right)$$

$$= \underbrace{\nabla \nabla x}_{\gamma}, \quad \varphi = \overline{\Sigma}$$

$$= \underbrace{\nabla \nabla x}_{\gamma}, \quad \varphi = \overline{\Sigma}$$

=> Driving the qubit resonantly with a field of controlled phase and amplitude allows for implementing arbitrary rotalian about x and y axis.

How about 2.

about
$$\Xi$$
?

Was $\omega_{ge} = \omega_{ge} + \Delta(\bar{\mathbf{p}})$

Was $\omega_{ge} = \omega_{ge}$

Detune qubit frequency for controlled the by applying magnetic flux pulse.

$$=) \widetilde{H}_{a}/t = \frac{\Delta}{2} \nabla_{z}$$

Note: 2 rotations can also be realized "virtually" by updating the reference frame of all subsequent X, Y rotations (compare McKay et al. , PRA (2017))

See stides for technical details of realization.

Control lines on the chip

Generation of pulses

Protocols to measure T, T2:

1g>-|Ry(=)|-1 wait time 2 - |Ry(-=)|-18 se|

Ramsey

Discussion see slides.

. state of the art, "To limit" of To, echo, off-resonant drive.

4.11 Sources and mitigation of noise

Discussion see slides.