R for bioinformatics, data visualisation HUST Bioinformatics course series

Wei-Hua Chen (CC BY-NC 4.0)

23 October, 2022

section 1: TOC

前情提要

iterations 与并行计算

- for loop
- apply functions
- dplyr 的本质是遍历
- map functions in purrr package
- 遍历与并行计算

相关包

- purrr
- parallel
- foreach
- iterators

本次提要

- basic plot functions
- basic ggplot2
- special letters
- equations
- advanced ggplot2

section 2: basic plot functions using R

R basic plot functions

过去几节课我们已经使用了 R basic plot 和 ggplot2 的一些绘画功能,比如讲 factor 时。今次我们进行系统的介绍。

基础做图由 plot 提供。先看示例。这里我们使用系统自带的 swiss 数据,它包含了 47 个法语地区的一些社会经济指标。

```
Fertility Agriculture Examination Education Catholic
## Courtelary
                     80.2
                                  17.0
                                                 15
                                                           12
                                                                   9.96
## Delemont
                     83.1
                                  45.1
                                                                 84.84
                                                  6
## Franches-Mnt
                     92.5
                                  39.7
                                                                 93.40
## Moutier
                     85.8
                                  36.5
                                                 12
                                                                 33.77
## Neuveville
                     76.9
                                  43.5
                                                 17
                                                           15
                                                                 5.16
                     76.1
                                  35.3
                                                                  90.57
## Porrentruy
                Infant.Mortality
## Courtelary
                             22.2
## Delemont
                             22.2
## Franches-Mnt.
                             20.2
                             20.3
## Moutier
## Neuveville
                             20.6
                             26.6
## Porrentruv
```

head(swiss):

散点图 (dot plot)

我们看一下教育与生育率的关系:

```
with( swiss, plot( Education, Fertility ) );
```


注意 with 的作用是什么??

plot 的参数初探: 先看示例

Swiss data 1888

plot 参数, an annotated example

Figure 1: an annotated example

plot 支持的画图类型,参数 p = '?' 的取值

```
par( mfrow = c(2,4) ); ### 在一张图上画 2 x 4 个 panel opts <- c( "p", "l", "o", "b", "c", "s", "S", "h" ); for( o in opts ){
    plot(1:5, type = o, main = paste( "type=", o ) ); }
```


pch 是什么?

决定了数据点的形状,注意它的取值范围

```
library(tidyverse); library(extrafont); ggplot( data.frame( p = c(0:25, 32:127) ) ) + scale_y_continuous( name = "" ) + scale_x_continuous( name = "" ) + scale_shape_identity() + geom_point( aes( x = p\%/16, y = p\%//16, shape = p ), size = 5, fill = "red" ) + geom_text( aes( x = p\%/16, y = p\%//16 + 0.4, label = p ), size = 3 );
```

```
112
                   113
                             114
                                        115
                                                  116
                                                                        118
                                                                                   119
                                                                                             120
                                                                                                        121
y
                                                                                                                  122
Z
                                                                                                                                                                        127
         p
                   q
                                                              u
                              98
b
                                                  100
                                                             101
                                                                        102
                                                                                   103
                                                                                                                                                             110
                                                                                              h
                                                                                                                                                   m
                                                                                                                                                                        0
                                                                                   87
W
                                                   68
D
                                                                                                                                                                        79
()
4 -
                              <sup>50</sup>
                                        51
3
                                                             53
5
                                        35
#
                                                                                                                   ₩
                                                                                                                                        拾
                                                                                                                                                             ₩
                                                                                                                             **
                                                                                                                                                  ₩
0 -
```

log transform aexes

plot 还有一些其它有用的参数,详见:? plot.default

Swiss data 1888

注: 也可以用 log='x' 或 log='v' 只对一个 axis 进行 log 处理

ggplot 版本

```
ggplot( swiss, aes( x = Education, y = Fertility ) ) +
  geom_point( ) + scale_x_log10() + scale_y_log10() +
  xlab( "Education" ) + ylab( "Fertility" ) +
  ggtitle( "Swiss data 1888" );
```

Swiss data 1888

ggplot 更多散点示例

以 mtcars 为例

```
ggplot(mtcars, aes(x = wt, y = mpg, colour = factor(cyl), shape = factor(cyl))) +
 geom_point() + xlab( "Weight (1000 lbs)" ) + ylab( "Miles/(US) gallon" ) +
 labs( colour = "Number of cylinders", shape = "Number of cylinders" ) ;
```


Number of cylinders

plot: high-level vs. low-level plots

- high level: plotting functions create a new plot on the graphics device
- low level: plotting functions add more information to an existing plot

```
plot( 1:10, col = "red" ); ## high level
points( sample(1:10, 10), col = "darkgreen", pch = 20 ); ## low level
```


low level plots 列表

points: 点图lines: 线图abline: 直线

polygon:多边形legend:图例title:标题

• axis:轴…

high level plots 列表

- plot:通用画图函数
- pairs
- coplot
- qqnorm
- hist
- dotchart
- image
- o contour ...

注:可以用 add = TRUE 参数(如果可用)将 high level 函数强制转换为 low level

图形相关参数(系统函数)

par(c("mar", "bg")); ## 显示指定参数的值

par()函数:显示或修改当前**图形设备**的参数。用以下命令查看支持的内容:

```
## $mar
## [1] 5.1 4.1 4.1 2.1
##
## $bg
## [1] "transparent"
## 显示所有参数
par();
```

```
## $xlog
## [1] FALSE
## $ylog
## [1] FALSE
## $adj
## [1] 0.5
##
```

[1] TRUE

调整 par()参数前请备份

par() 用于指定全局参数,因此在改变前尽量备份

```
oldpar <- par(); ## 备份
do some changes here ...
## 恢复
par( oldpar );
```

常用图形参数及调整: margin

图形边距(figure margins)

```
par( mar = c( 5.1, 4.1, 4.1, 2.1 )); ## 设置新 martin
```

分别指定下 -> 左 -> 上 -> 右的边距,即从下面开始,顺时针移动。

单位是: text lines

或:

```
par( mai = c( 5.1, 4.1, 4.1, 2.1 )); ## 设置新 martin
```

单位是: inch

常用图形参数及调整: 多 panel

画 2x3 共 6 个 panel, 从左到右。(2 行 3 列)

```
par( mfrow=c(2,3) );
for( i in 1:6)
    plot( sample( 1:10, 10 ), main = i );
                                                                                                    2
                                                                                                                                                                      3
sample(1:10, 10)
                                                                                                                                    sample(1:10, 10)
                                                                  sample(1:10, 10)
                                Index
                                                                                                   Index
                                                                                                                                                                     Index
                                                                                                    5
sample(1:10, 10)
                                                                  sample(1:10, 10)
                                                                                                                                    sample(1:10, 10)
```

Index

Index

Index

常用图形参数及调整:多 panel, cont.

画 2x3 共 6 个 panel, 从上到下。(2 行 3 列)

```
par( mfcol=c(2,3) );
for( i in 1:6 )
  plot( sample( 1:10, 10 ), main = i );
```


重要概念:图形设备

图形设备是指图形输出的设备,可以将图形设备理解为保存格式。

默认设备是:

- X11(): *nix
- windows() : windows
- quartz() : OS X

图形显示在显示器上。

图形设备: cont.

常用其它设备有:

- pdf()
- png()
- jpeg()

分别对应输出文件格式。

常用图形设备: pdf()

使用方法如下:

```
pdf(file = "/path/to/dir/<file_name>.pdf", height = 5, width = 5); ## 创建一个新设备/ pdf 文件plot(1:10); ## 作图; dev.off(); ## 关闭设备
```

说明

- 默认文件名为 Rplots.pdf ,
- ② dev.off()必须关闭。关闭后,返回到最近使用的图形设备
- ③ height 和 width 参数的单位是 inch
- 如果运行多个 high level 作图命令,则会产生多页 pdf

请尽量使用 pdf 作为文件输出格式

- 生信图片大多是点线图,适合保存为矢量格式 (如 pdf, ps 等);
- 矢量图可无限放大而不失真(变成像素);
- 可由 Adobe Illustrator 等矢量图软件进行编辑

section 3: ggplot2 基础

为什么要使用 ggplot2 ? 从一个简单示例开始

假设画两条线:

Rain fall chart

如果改变画线的顺序?

Rain fall chart

ggplot2 的方法

```
df <- rbind( tibble( month = 1:length( year1 ), value = year1, cat = "Year1" ), tibble( month = plot1 <- ## 将图保存在变量中;
ggplot( df, aes( x = month, y = value, colour = cat) ) +
geom_line() + geom_point() +
xlab( "Month" ) + ylab( "Rain fall" ) +
labs( colour = "Year");
plot1; ## 画图
```


ggplot2 基础概念详解

```
ggplot( df, laes( x = month, y = value, colour = cat) ) +
geom_line() + geom_point() +
xlab( "Month" ) + ylab( "Rain fall" ) +
labs( colour = "Year");
```

Figure 2: ggplot2 参数简介

- aes (aesthetics) 美学: 控制全局参数,包括: x,y 轴使用的数据,颜色(colour, fill),形状(shape),大小(size),分组(group)等等;
- ② 图层: geom_<layer_name>; 每张图可有多个图层(此处有两个); 图层可使用全局数据(df)和参数(aes), 也可以使用自己的 aes 和数据; 3-4. 其它参数

ggplot2 优缺点

ggplot2 优点:

- 强大又专业
- ② 复杂又好看
- canvas 大小, 坐标会根据数据、图层自动调整, 让用户专注于作图本身;

缺点:

太难学!

图层使用自己的数据,示例

```
plot1 +
 geom point( data = data.frame( x2 = 1:5, y2 = sample(30:100, 5) ), ## 注意: data = 是必须的
         aes(x = x2, y = y2), ## 使用自己的 aes ...
         colour = c("darkgreen", "red", "blue", "gold", "purple") , shape = 15, size = 4 )
```


要点

- 如上所见, xy -axes 会随数据自动调整② ggplot2 作图结果可以保存在变量中,并可累加更多图层
- 图层使用自己的数据时,需要用 data = 指定; 而全局数据则不用 ggplot (data.frame(...)) = 9000

aes() 内部和外部的 coulor, size, shape 参数有何区别?

在内部时, colour = < 列名 > 或 colour = factor(< 列名 >), 其真实结果是取的 factor, 然后按顺序为每个 factor **自动指定一个**颜色。 默**认颜色顺序为**:

Figure 3: default discrete colour palette

color 举例

```
plot1 + geom_point( data = data.frame( x2 = 1:5, y2 = sample(30:100, 5) ), ## 注意: data = 是必须的 aes( x = x2, y = y2, colour = factor( y2 ) ), ## colour 在 aes 内部 shape = 15, size = 4 )
```


共有 7 个颜色;注意与上页图的第 7 行对应一下!

当 colour = < 数字列 > , 则显示 color gradient

```
ggplot( data = data.frame( x2 = 1:5, y2 = sample(30:100, 5) ),
            aes( x = x2, y = y2 , colour = y2 ) ) +
geom_point( shape = 15, size = 4 )
```


注意 discrete color (上页图) 和 continous color (or color gradient) 的默认画板 (color palette) 是不一样的!

更改画板,使用指定的颜色(不作为 factor 使用)

```
df$col <- sample( colours(), 10 ); ## 现有我们有颜色了!
ggplot(df, aes( x = month, y = value, colour = col ) ) +
geom_point( size = 4, shape = 15 ) + facet_grid( ~ cat );
```


** 注 ** 默认情况下, col (颜色)列是作为 factor 使用。

更改画板,使用指定的颜色(不作为 factor 使用),cont.

解决方案: scale_color_identity

```
ggplot(df, aes(x = month, y = value, colour = col)) + geom_point(size = 4, shape = 15) + facet_grid(~cat) + ## facet_grid 又是什么?? scale_color_identity(); ## magic !!
```


图层简介

- geom_point, geom_line: 点线图, 用于揭示两组数据间的关系;
- geom_smooth:常与 geom_point 联合使用,揭示数据走势
- geom_bar : bar 图
- geom_boxplot:箱线图,用于比较 N 组数据,揭示区别
- geom_path:与 geom_line 相似,但也可以画其它复杂图形
- geom_histogram, "geom_density ": 数据的分布,也可用于多组间的比较
- 其它十余种,请见"ggplot2: elegant graphics for data analysis"— 书!!

section 4: ggplot2 作图的四个基本组成部分

ggplot2 的四个基本组成

- 图层 (layers)
 - geom_< 图层名 >
- ② scale: 控制数据至美学属性的 mapping
 - scale_< 属性 mapping 方式 >, e.g. scale_color_identity()

X		x		у		y	
•	2	•	2	•	а	•	a
•	4	•	4	•	b	•	b
•	6	•	6	-	С	•	С
	8	•	8	+	d	•	d
	10	•	10		е	•	е

Figure 4: 数据的 4 种 scale 方法

ggplot2 的 scale

- scale_color_...
- scale_shape_...
- scale_size_...
- scale_fill_...

与坐标系统联动的函数

- scale_x_log()
- scale_y_log()

更多内容可以见《ggplot2: elegant graphics for data analysis》一书的第 6 章。

ggplot2 要素 3: 坐标系统

- 正常
- log-transform

示例:

```
ggplot(mtcars, aes( wt , mpg)) + geom_point() +
   scale_y_log10()
```


ggplot2 要素 3:坐标系统,cont.

```
ggplot(mtcars, aes( wt , mpg)) + geom_point() +
  coord_trans( y = "log10" );
```


- * limx, limy: 限制 xy 的显示范围
- ## ggplot2 要素 3: 坐标系统, cont.

其它函数

- * ```coord_flip()``` : x, y 轴互换; 竖 bar 变横 bar;
- * ```coord_polar()``` :

ggplot2 要素 3: 坐标系统, cont.

plot1 + coord_polar();

ggplot2 要素 4: faceting ...

```
qplot(displ, hwy, data=mpg, facets = . ~ year) + geom_smooth();
```

`geom_smooth()` using method = 'loess' and formula 'y ~ x'

ggplot2 进阶 1: 如何找到合适的颜色?

ggplot2 进阶 1: 如何找到合适的颜色?

ggplot2 的颜色系统

color basics

- pick one color with R
- use a color palette

use scale_colour_ or scale_fill_ functions to change the mapping

- map category variables to colors
- map numeric variables to colors

change color palette

- default R and ggplot2 palette
- other useful palette

color basics

```
library(ggplot2);
ggplot(iris, aes(x=Sepal.Length, y=Sepal.Width, color=Species)) +
  geom_point(size=2) +
  scale_color_manual(values = c("cyan", rgb(255, 255, 0, maxColorValue = 255), "#7884CF"));
  4.5 -
  4.0 -
                                                                                                Species
Sepal.Width
  3.5 -
                                                                                                    setosa
                                                                                                    versicolor
  3.0 -
                                                                                                    virginica
  2.5 -
  2.0 -
                        Ė.
                                                                    7
                                           Sepal.Length
```

pick a color by

name, rgb(), Hex code, Number

use a color palette, discrete colors

默认使用 scale_colour_hue() 颜色;

scale_colour_hue()

Figure 5: default discrete colour palette

```
scale_colour_hue(
    ...,
h = c(0, 360) + 15,
c = 100,
1 = 65,
h.start = 0,
direction = 1,
na.value = "grey50",
aesthetics = "colour"
```

scale_colour_brewer() 更易用

scale_colour_brewer(), cont.

```
mtcars %>% ggplot( aes(disp, mpg) ) + geom_point( aes( color = factor(cyl) ) ) +
    scale_color_brewer( palette = "Set1" );
```


Palettes provided by scale_color_brewer()

使用方法:

```
+ scale_color_brewer( palette = "<palette name>" );
```

Diverging

BrBG, PiYG, PRGn, PuOr, RdBu, RdGy, RdYlBu, RdYlGn, Spectral

Qualitative

Accent, Dark2, Paired, Pastel1, Pastel2, Set1, Set2, Set3

Sequential

Blues, BuGn, BuPu, GnBu, Greens, Greys, Oranges, OrRd, PuBu, PuBuGn, PuRd, Purples, RdPu, Reds, YlGn, YlGnBu, YlOrBr, YlOrRd

set color manualy : scale_colour_manual()

```
mtcars %>% ggplot( aes(disp, mpg) ) + geom_point( aes( color = factor(cyl) ) ) +
scale_color_manual( breaks = c("4","6","8"), values = c("red","green","blue") );
```


map colors to continous/ numeric values

```
mpg %>% ggplot( aes(displ, hwy) ) + geom_point( aes( color = cyl ) );
```


默认为: scale_color_gradient()

scale_color_gradient() 改变颜色更容易一些

```
scale_colour_gradient(
...,
low = "#132B43",
high = "#56B1F7",
space = "Lab",
na.value = "grey50",
guide = "colourbar",
aesthetics = "colour"
)
```

改变 low 和 high 的值即可;

scale_color_gradient() 举例

```
mpg %>% ggplot( aes(displ, hwy) ) + geom_point( aes( color = cyl ) ) +
    scale_color_gradient( low = "black", high = "yellow" );
```


scale_color_gradient2() 3 个颜色

```
mpg %>% ggplot( aes(displ, hwy) ) + geom_point( aes( color = cyl ) ) +
    scale_colour_gradient2( low = "black", mid = "red", high = "yellow", midpoint = 6 );
```


注意 try change the midpoint option

scale_colour_gradientn multiple colors

```
mpg %>% ggplot( aes(displ, hwy) ) + geom_point( aes( color = cyl ) ) +
    scale_colour_gradientn( colors = c("black","red", "yellow") );
```


scale_colour_binned gradient 颜色的另一种方式

```
mpg %>% ggplot( aes(displ, hwy) ) + geom_point( aes( color = cyl ) ) +
    scale_color_binned( low = "black", high = "yellow" );
```


scale_fill_XX functions

颜色的使用与 aes 是配套的: aes 使用 fill 时, 颜色可使用 scale fill xx

```
mpg %>% ggplot( aes(x=displ, y=hwy) ) +
  geom_point( shape = 21, aes( fill = factor(cyl) ) +
  scale_fill_brewer( palette = "Set2" );
```


scale fill XX functions, cont.

fill 为连续值时,需要使用对应连续变量的调色板

```
mpg %>% ggplot( aes(x=displ, y=hwy) ) +
  geom point( shape = 21, aes( fill
```

一个较为复杂的例子

同一图中,可对不同对象使用不同(类型)的调色板

```
ggplot(ToothGrowth, aes(x=factor(dose), y=len, fill=dose, color = factor(dose))) +
geom_boxplot() + scale_fill_gradientn( colors = c("black", "red", "yellow") ) +
scale_colour_manual( values = c("pink", "green", "blue") ) + coord_flip();
```


other palettes and related functions

included in ggplot2

```
scale_color_hue, scale_color_manual, scale_color_grey,
scale_colour_viridis_d, scale_color_brewer ...
```

from the RColorBrewer package

```
scale_color_brewer(palette = "<palette name>") ... note: 函数属于 ggplot2
```

from the viridis package

```
scale_color_viridis( discrete=TRUE, option="<palette name>") note: 提供了函数和 palette
```

other packages ...

- paletteer package: scale_color_paletteer_xx functions
- ggsci package

ggsci: palette for scientific journals!!!

install

```
install.packages("ggsci"); # Install ggsci from CRAN:
devtools::install_github("nanxstats/ggsci"); # or from github
```

contents

```
scale\_color\_<journal> \pi scale\_fill\_<journal> functions and color palettes
```

supported journals

- NPG scale_color_npg(), scale_fill_npg()
- AAAS, NEJM, Lancet, JAMA ...

ggsci 举例

```
library("ggsci")
library("ggplot2")
library("gridExtra")
data("diamonds")
p1 <- ggplot(
  subset(diamonds, carat >= 2.2).
  aes(x = table, y = price, colour = cut)
  geom\ point(alpha = 0.7) +
  geom smooth(method = "loess", alpha = 0.05, size = 1, span = 1) +
 theme bw() + labs( tag = "A" )
p2 <- ggplot(
  subset(diamonds, carat > 2.2 & depth > 55 & depth < 70),
  aes(x = depth, fill = cut)
) +
  geom histogram(colour = "black", binwidth = 1, position = "dodge") +
 theme bw() + labs( tag = "B" )
```

要点

library(gridExtra)

ggsci 结果, Nature Style!!

```
p1_npg <- p1 + scale_color_npg()
p2_npg <- p2 + scale_fill_npg()
grid.arrange(p1_npg, p2_npg, ncol = 2)</pre>
```

`geom_smooth()` using formula 'y ~ x'

ggplot2 小结

layered grammer (图层语法) 的成分

- 图层 (geom_xxx)
- scale (scale_xxx)
- faceting (facet_xxx)
- 坐标系统

图象类型

- 点图
- hars
- boxplots

其它重要内容 (部分需要自学)

- colours
- theme
- 其它图像类型
- 图例 (legends) 和坐标轴
- 图形注释和其它定制

ggplot2 进阶 2: 如何在一张图中画多个 panel?

ggplot2 进阶 2: 如何在一张图中画多个 panel?

key requirements for multi-panel plots

- order / position
- labeling
- layout

faceting ...

Faceting generates small multiples each showing a different subset of the data.

facet_grid(<by_row> ~ <by_col>) 汽缸、车重与燃油效率间的关系

```
ggplot( mtcars, aes( x = wt, y = mpg ) ) +
  geom_point() +
  facet_grid( . ~ cyl, scales = "free" );
```


faceting, cont.

by col: 请自行尝试~

```
ggplot( mtcars, aes( x = wt, y = mpg ) ) +
geom_point() +
facet_grid( cyl ~ . );
```

** 注意 **

作图相关概念: panel, strip, axis, tick, tick label, axis label

facet_grid , cont.

```
ggplot( mtcars, aes( x = wt, y = mpg ) ) +
  geom_point() + geom_smooth( method = "lm" ) +
  facet_grid( . ~ cyl );
```

`geom_smooth()` using formula 'y ~ x'

facet_wrap

指定行、列数和方向

```
ggplot( mtcars, aes( x = wt, y = mpg ) ) +
  geom_point() + geom_smooth( method = "lm" ) +
  facet_wrap( . ~ cyl , ncol = 2, dir = "v" );
```

```
## `geom_smooth()` using formula 'y ~ x'
```


parameters of facet_wrap

```
facet_wrap(
  facets,
    nrow = NULL,
    ncol = NULL,
    scales = "fixed",
    shrink = TRUE,
    labeller = "label_value",
    as.table = TRUE,
    switch = NULL,
    drop = TRUE,
    dir = "h",
    strip.position = "top"
)
```

combine multiple plots

Useful packages:

- gridExtra
- cowplot
- grid
- lattice

install or load packages

```
if (!require("gridExtra")){
   install.packages("gridExtra");
}
if (!require("cowplot")){
   install.packages("cowplot");
}
```

```
## Loading required package: cowplot
```

```
library( cowplot );
library( gridExtra );
```

arranging multiple graphs using cowplot

Prepare two plots

```
sp <- ggplot(mpg, aes(x = cty, y = hwy, colour = factor(cyl)))+
geom_point(size=2.5)
# Bar plot
by <- ggplot(diamonds, aes(clarity, fill = cut)) +
geom_bar() +
theme(axis.text.x = element_text(angle=70, vjust=0.5))</pre>
```

Combine the two plots (the scatter plot and the bar plot):

```
cowplot::plot_grid(sp, bp, labels=c("A", "B"), ncol = 2, nrow = 1)
```


plot_grid parameters

```
plot_grid(
  . . . .
 plotlist = NULL,
  align = c("none", "h", "v", "hv"),
  axis = c("none", "l", "r", "t", "b", "lr", "tb", "tblr"),
 nrow = NULL.
 ncol = NULL.
 rel widths = 1,
 rel_heights = 1,
 labels = NULL.
 label size = 14,
 label_fontfamily = NULL,
 label fontface = "bold",
 label colour = NULL,
 label x = 0.
 label y = 1.
 hjust = -0.5,
 viust = 1.5.
  scale = 1,
 greedy = TRUE,
 byrow = TRUE,
  cols = NULL.
 rows = NULL.
```

用 draw_plot 调整 graph 的相对大小

先生成一个新的 panel

```
plot.iris <- ggplot(iris, aes(Sepal.Length, Sepal.Width)) +
  geom_point() + facet_grid(. ~ Species) + stat_smooth(method = "lm") +
  background_grid(major = 'y', minor = "none") + # add thin horizontal lines
 panel_border();
plot.iris;
```

'geom_smooth()' using formula 'y ~ x'

用 draw_plot 将三个 panel 画在一起

```
plot <-
    ggdraw() +
    draw_plot(plot.iris, x=0, y=.5, width=1, height=.5) +
    draw_plot(sp, 0, 0, .5, .5) +
    draw_plot(bp, .5, 0, .5, .5) +
    draw_plot_label(c("A", "B", "C"), c(0, 0, 0.5), c(1, 0.5, 0.5), size = 15);</pre>
```

```
## geom_smooth() using formula 'y ~ x'
```

```
draw_plot(plot, x = 0, y = 0, width = 1, height = 1) 详解:
```

- plot: the plot to place (ggplot2 or a gtable)
- x: The x location of the lower left corner of the plot.
- y: The y location of the lower left corner of the plot.
- width, height: the width and the height of the plot

draw_plot results

plot

draw_plot_label parameters

Use draw_plot_label to add the labels

```
draw_plot_label(c("A", "B", "C"), c(0, 0, 0.5), c(1, 0.5, 0.5), size = 15);

draw_plot_label(
    label,
    x = 0,
    y = 1,
    hjust = -0.5,
    vjust = 1.5,
    size = 16,
    fontface = "bold",
    family = NULL,
    color = NULL,
    colour,
    ...
}
```

use gridExtra::grid.arrange to arrange multiple graphs

Create four plots

```
library(ggplot2); library("gridExtra");
df <- ToothGrowth
df$dose <- as.factor(df$dose)
bp <- ggplot(df, aes(x=dose, v=len, color=dose)) +</pre>
 geom boxplot() +
 theme(legend.position = "none") + labs( tag = "A");
dp <- ggplot(df, aes(x=dose, y=len, fill=dose)) +</pre>
  geom dotplot(binaxis='y', stackdir='center')+
  stat summary(fun.data=mean sdl. mult=1.
                 geom="pointrange", color="red")+
   theme(legend.position = "none") + labs( tag = "B")
vp <- ggplot(df, aes(x=factor(dose), v=len)) +</pre>
  geom_violin()+
  geom_boxplot(width=0.1) + labs( tag = "C")
sc <- ggplot(df, aes(x=dose, y=len, color=dose, shape=dose)) +
  geom jitter(position=position jitter(0.2))+
  theme(legend.position = "none") +
  theme gray() + labs( tag = "D")
```

use gridExtra::grid.arrange to arrange multiple graphs, cont.

grid.arrange(bp, dp, vp, sc, ncol=2, nrow =2); ## Bin width defaults to 1/30 of the range of the data. Pick better value with `binwidth`. Α В 30 -30 e 20 -**6** 20 -10 -10 -0.5 dose dose С D 30 -30 dose <u>=</u> 20 e 20 -Wei-Hua Chen (CC BY-NC 4.0) R for bioinformatics, data visualisation 23 October, 2022 84 / 139

use layout_matrix parameter in grid.arrange

Bin width defaults to 1/30 of the range of the data. Pick better value with `binwidth`.

explain layout_matrix

How the layout look like??

```
cbind(c(1,1,1), c(2,3,4));
```

```
## [,1] [,2]
## [1,] 1 2
## [2,] 1 3
## [3,] 1 4
```

make a different layout???

three columns, A and B take the first two, C and D take the third one.

```
( laymat = cbind(c(1,1), c(2,2), c(3,4)) );
```

```
## [,1] [,2] [,3]
## [1,] 1 2 3
## [2,] 1 2 4
```


Add a common legend for multiple ggplot2 graphs

Prepare a function to extract legend from a plot. Note the legend should exist.

```
library(gridExtra)
get_legend<-function(myggplot){
   tmp <- ggplot_gtable(ggplot_build(myggplot))
   leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box")
   legend <- tmp$grobs[[leg]]
   return(legend)
}</pre>
```

Prepare the graphs and a legend

```
## 1. Create a box plot WITH legend
bp <- ggplot(df, aes(x=dose, y=len, color=dose)) +
  geom_boxplot() + labs(tag = "A");

## 2. Create a violin plot WITHOUT legend
vp <- ggplot(df, aes(x=dose, y=len, color=dose)) +
  geom_violin()+ geom_boxplot(width=0.1) + labs( tag = "B") +
  theme(legend.position="none") ## no legend

## 3. extract the legend from the first plot
legend <- get_legend(bp);
## 4. remove the legend from the first plot
bp2 <- bp + theme(legend.position="none");</pre>
```

plot the common legned to the right

```
grid.arrange(bp2, vp, legend, ## three objects to plot
ncol=3, ## plot by column
widths=c(2.3, 2.3, 0.8)); ## set the width of each graph
```


SOLUTION: place the legend at top and align to the center

Explain

```
## [,1] [,2]
## [1,] 1 1
## [2,] 2 3
```

rbind(c(1,1), c(2,3));

- legend takes the first row, and has a height of 0.2
- the other two graphs take the second row and has a height of 2.5

Practise on your own

To place the legend at:

- the bottom, centered at the middle
- top-left
- top-right
- bottom-left
- bottom-right

ggExtra - Add marginal histograms to ggplot2

```
please install the package if not exists ...
install.packages("ggExtra")

library(ggExtra);
piris <- ggplot(iris, aes(Sepal.Length, Sepal.Width, colour = Species)) +
    geom_point()
ggMarginal(piris, groupColour = TRUE, groupFill = TRUE)</pre>
```


也可自己写代码实现

Extended reading

Other ggplot2 extensions

See the gallery at https://exts.ggplot2.tidyverse.org/gallery/. Or Google ggplot2 extensions gallery.

Explore the grid package

- create graphical objects (grobs)
- arrange multiple grobs using arrangeGrob function

Explore the gridExtra package

- plot table
- ..

Summary

Essentials for combining multiple graphs in one:

- ordering
- layout

ggplot2 进阶 3: 如何写公式?

散点图的进一步分析

显示两组数据间的相关性:

```
## 作图
ggplot( swiss, aes( x = Education, y = Fertility ) ) +
geom_point( shape = 20 );
```



```
## 分析
with( swiss, cor.test( Education, Fertility )$estimate );
```

```
## cor
## -0.6637889
```

在图中加入公式和统计信息

先展示一下结果

公式详解

$$y = 80 + -0.86 \cdot x$$

$$r^2 = 0.44, p = 3.7e - 0.7$$
paste('italic(i)'^2, " = ", r2, ", ", italic(p) == pvalue, sep = ""))

Figure 6: equation explained!

公式详解, cont.

以下代码实现两个任务:

- 将两个公式上下放置 atop (<equation_1> , <equation_2>);
- ② 将公式中的某些值替换为数值 substitute(<equation>, list(...))

完整代码

```
## 计算 ...
m = lm(Fertility ~ Education, swiss);
c = cor.test( swiss$Fertility, swiss$Education );
## 牛成公式
eq <- substitute( atop( paste( italic(y), " = ", a + b %.% italic(x), sep = ""),
                       paste( italic(r)^2, " = ", r2, ", ", italic(p)==pvalue, sep = "" ) ),
                     list(a = as.vector(format(coef(m)[1], digits = 2)).
                          b = as.vector( format(coef(m)[2], digits = 2)),
                          r2 = as.vector(format(summary(m)$r.squared, digits = 2)),
                          pvalue = as.vector(format(c$p.value, digits = 2)))
   );
## 用 as.expression 对公式进行转化 !!!!
eq <- as.character(as.expression(eq));
## 作图, 三个图层; 特别是 geom text 使用自己的 data 和 aes ...
ggplot(swiss, aes(x = Education, y = Fertility)) +
       geom_point(shape = 20) +
       geom smooth( se = T ) + ## smooth line ...
       geom text( data = NULL,
                  aes(x = 30, y = 80, label = eq, hjust = 0, vjust = 1), ## hjust, vjust ???
                  size = 4, parse = TRUE, inherit.aes=FALSE); ## 注意: parse = TRUE !!!
```

23 October, 2022

equation 的其它写法(更复杂难懂)

```
## 计算 ...
m = lm(Fertility ~ Education, swiss);
c = cor.test( swiss$Fertility, swiss$Education ):
## 牛成公式
eq <- substitute( atop( italic(y) == a + b %.% italic(x),
                           italic(r)^2 = r2*, = italic(p) = pvalue),
                     list(a = as.vector(format(coef(m)[1], digits = 2)).
                          b = as.vector( format(coef(m)[2], digits = 2)),
                         r2 = as.vector( format(summary(m)$r.squared, digits = 2) ),
                          pvalue = as.vector( format( c$p.value , digits = 2) ) )
   ):
## 用 as.expression 对公式进行转化 !!!!
eq <- as.character(as.expression(eq)):
## 作图, 三个图层; 特别是 geom_text 使用自己的 data 和 aes ...
ggplot(swiss, aes(x = Education, y = Fertility)) +
       geom point(shape = 20) +
       geom smooth( se = T ) + ## smooth line ...
       geom text( data = NULL,
                  aes(x = 30, y = 80, label = eq, hjust = 0, vjust = 1), ## hjust, vjust ???
                  size = 4, parse = TRUE, inherit.aes=FALSE); ## 注意: parse = TRUE !!!
```

公式详解

Figure 7: equation explained!

注

● 引号两边必须有 * 或 ~ 字符, ~ 表示空格, * 表示什么都没有。~~ 表示两个空格。如果公式中需要~字符怎么办??见下面"公式示 例 3"。

hjust 和 vjust

geom_text(aes(angle, hjust, vjust)) 三参数详解

公式中的写法之代数符号

分类	R 的表达式	显示结果
代数符号	expression(x + y) expression(x - y) expression(x * y) expression(x / y) expression(x %+-% y) expression(x %/% y)	$ \begin{array}{c} x + y \\ x - y \\ xy \\ x/y \\ x \pm y \\ x \div y \end{array} $
	expression(x %*% y) expression(x %.% y) expression(x[i]) expression(x^2) expression(sqrt(x)) expression(sqrt(x,y)) expression(list(x,yz))	$ \begin{array}{c} x \times y \\ x \cdot y \\ x_i \\ x^2 \\ \sqrt{x} \\ \sqrt{x} \\ x, y, z \end{array} $

... 更多,不在这里介绍了。

希腊字符

代码

希腊字符, cont.

4 - Q alpha	႘ beta	y gamma	delta	E epsilon	zeła
3- n	Q	1	K	lambda	μ
eta	theta	iota	kappa		mu
2- V	ξ	O omicron	π pi	P	O sigma
1- T	ູ່	ф	χ	Ψ	()
	upsilon	phi	chi	psi	omega

х

公式示例

注写公式的方式很多

公式示例 2

另一种代入变量值的方法:

公式示例 3

使用 paste 和 substitute:

```
x_mean <- 1.5;
x_sd <- 1.2;

# 表达式
ex <- substitute(
    paste(X[i], " ~ N(", mu, "=", m, ", ", sigma^2, "=", s2, ")"),
    list(m = x_mean, s2 = x_sd^2)
);

# histogram
ggplot( data.frame( x = rnorm(100, x_mean, x_sd) ), aes( x ) ) +
    geom_histogram( binwidth=0.5 ) +
    ggtitle(ex); ## 为什么不需要 parse = TURE ????</pre>
```


ggplot2 进阶 4: 核心在于先计算再做图

举例说明

先看数据 (来自 talk05):

name	class	course	grade
CHEN	1	bioinformatics	90
CHEN	1	chemistry	92
CHEN	2	chinese	35
CHEN	3	german	62
LI	1	bioinformatics	44
LI	2	chinese	68
LI	3	microbiology	95
LI	3	japanese	90
WANG	1	bioinformatics	35
WANG	1	chemistry	76
WANG	1	mathmatics	82
WANG	3	german	100
WANG	3	spanish	78

geom_bar

任务: 画出每位学生及格的课程数

```
ggplot( grades2 %>% filter( grade >= 60 ), aes( name ) ) +
  geom_bar();
```


为什么会这样呢?因为 geom_bar(stat = "count") 的默认参数是 count

即数一下每个 factor 的出现次数。

geom_bar , cont.

以上命令,实际上等于:

```
## 先做统计
cnt <- grades2 %>% group_by( name ) %>% summarise( cnt = sum( grade >= 60 ) );
ggplot( cnt, aes( x = name, y = cnt ) ) +
   geom_bar( stat = "identity" );
```


default stat behaviors (默认计算方法)

- geom_bar : count
- geom_boxplot : boxplot
- geom_count : sum
- geom_density : density
- geom_histogram : bin
- geom_quantile : quantile ...

stacked bars

应用场景: 宏基因组多样本物种丰度图

Figure 8: Microbiome 3, 28 2015

speabu <-read tsv(file = "data/talk09/mock species abundance.txt"):</pre>

10

12.5

stacked bars, cont.

load data

```
## Rows: 110 Columns: 3
## -- Column specification ----
## Delimiter: "\t"
## chr (2): id, genus
## dbl (1): abundance
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
head( speabu );
## # A tibble: 6 x 3
     id
                              abundance
##
           genus
     <chr> <chr>
                                  <dh1>
## 1 A
           Enterobacteriaceae
## 2 A
           Lachnospiraceae
                                  7.5
## 3 A
           Bacteroidaceae
                                  7.5
## 4 A
         Lactobacillaceae
                                   10
```

Clostridiaceae

Ruminococcaceae

5 A

6 A

stacked bars, cont.

```
ggplot( speabu, aes( x = id, y = abundance, fill = genus ) ) +
  geom_bar( stat = "identity", position = "stack", color = "black", width = 0.2 );
```


指定 Genus 展示顺序

factor 的操纵详见第 4 章。

按丰度排序

按丰度中值大小排序

```
speabu$genus <- reorder( speabu$genus, speabu$abundance, median );
ggplot( speabu, aes( x = id, y = abundance, fill = genus ) ) +
   geom_bar( stat = "identity", position = "stack", color = "white", width = 0.8 );</pre>
```


position = "stack" 又是什么??

position = "dodge" : plot bars next to each other ...

```
ggplot( speabu, aes( x = id, y = abundance, fill = genus ) ) +
  geom_bar( stat = "identity", position = "dodge", color = "white", width = 0.8 );
```


显示数值 ...

```
## 先计算显示位置
speabu <- speabu %>% arrange( id, desc( factor( genus ) ) ) %>%
group_by( id ) %>% mutate( ypos = cumsum( abundance ) - abundance / 2 );
## 画图
ggplot( speabu, aes( x = id, y = abundance, fill = genus ) ) +
geom_bar( stat = "identity", position = "stack", color = "black", width = 0.8 ) +
geom_text( aes( y = ypos, label = paste( abundance, "%", sep = "" ) ), color = "white" );
```


显示数值 ..., cont.

要点

- 使用 ddplyr 的 cumsum() 函数 ...
- 计算位置: 当前累加值 自身值/2, 使数字显示在当前值的中间
- 累加前,要对数据按 factors 进行排序;通过 arrange 函数实现;

在 position = "dodge" 的情况下添加 label

position 的其它取值

除了 "dodge", "stack" 之外, position 还可以:

- position = position_stack(reverse = TRUE)
- position = position_dodge(reverse = TRUE)
- position = position_identity()
- position = position_jitter(): jitter points to avoid overplotting ...
- position = position_nudge(): is generally useful for adjusting the position of items on discrete scales by a small amount

不同的图层有不同默认值

```
ggplot(ToothGrowth, aes(x=factor( dose ), y=len, fill=supp)) +
   geom_boxplot()
```


geom_boxplot(): 默认为 dodge

change color palette

```
ggplot(ToothGrowth, aes(x=factor( dose ), y=len, fill=supp)) +
  geom_boxplot() + scale_fill_brewer( palette = "Paired" ) + theme_classic();
```


要点

1 颜色 palette 的用法 2 theme 系统

theme in ggplot2

- theme_gray: 系统默认主题
- theme_bw , theme_linedraw, theme_light, theme_dark, theme_minimal , theme_classic, theme_void()

see here for a complete list:

https://ggplot2.tidyverse.org/reference/ggtheme.html

theme() 函数

除了 theme_ 用于调整整体视觉效果外,ggplot2 还提供了 theme() 函数用于细调。

- line, rect, text, title: 整体框架
- axis. < component > : 调整坐标轴
- legend.<parameter>: 调整图例
- plot.<>:控制 title, subtitle 等细节
- panel.<...>: 调整 facet 情况下的 panel (facet 下面会介绍)
- strip.<...>: 调整 facet 的标题细节 ...

更多详见:

官方: https://ggplot2.tidyverse.org/reference/theme.html

legend 细调

```
ggplot(ToothGrowth, aes(x=factor( dose ), y=len, fill=supp)) +
  geom_boxplot() + scale_fill_brewer( palette = "Paired" ) +
  labs( fill = "Supplement", x = "Dose (mg)" ) +
  theme( legend.position = "top" )
```


labs() function: Modify axis, legend, and plot labels

```
labs(
...,
x = "<x label>",
y = "<y label>",
colour = "<legend title>", # 与 aes 里的 colour 配合使用
fill = "<legend title>", # 与 aes 里的 fill 配合使用
shape = "<legend title>", # 与 aes 里的 shape 配合使用
title = waiver(),
subtitle = waiver(),
caption = waiver(),
tag = waiver(),
alt = waiver(),
alt_insight = waiver())
)
```

labs() with examples

Exercise and home work

总结,本节内容

ggplot2 基础

- 优缺点
- 用法
- 基本组成

ggplot2 进阶

- 颜色和色板
- 复杂 layout 的实现
- 公式
- ggplot2 的数据统计逻辑

更多阅读

- Ggplot2: Elegant Graphics for Data Analysis, Book by Hadley Wickham
- ggplot2 gallery provided by RStudio on Github

写在后面

- ① ggplot2 博大精深,需要一门课去讲
- ② 上手容易,精通难
- ◎ 太多记忆点
- 本节内容只涉及了基础中的基础,更多内容,包括进阶技巧和生信相关的扩展包,更多的需要同学们自行探索
- 遇到不会的图, 先百度/Google, 找包和代码

下次预告

data summary and modeling

作业

- Exercises and homework 目录下 talk09-homework.Rmd 文件;
- 完成时间: 见钉群的要求