CS 589: Text Mining and Information Retrieval

LECTURE 1: Introduction to Information Retrieval - Complete Study Guide

Course Information:

• Instructor: Professor Susan Liu (xliu127@stevens.edu)

• Office Hours: Monday 3:30-5:30 PM (Discord)

• Class: Tuesday 6:30-9:00 PM

• Grading: 4 Assignments (40%) + Midterm (25%) + Pop Quiz (5%) + Final (30%)

Table of Contents

- 1. What is Information Retrieval?
- 2. History of IR
- 3. The Cranfield Experiment
- 4. Term Frequency (TF)
- 5. Inverse Document Frequency (IDF)
- 6. TF-IDF Weighting
- 7. Vector Space Model
- 8. Document Length Pivoting
- 9. Complete BM25 Preview
- 10. Practice Problems
- 11. Key Formulas Summary

1. What is Information Retrieval?

1.1 Core Definition

Information Retrieval (IR) is the process of obtaining information system resources that are relevant to an information need from a collection of those resources.

Key Components:

- Information Need: What the user actually wants to know (mental concept)
- Query: How the user expresses that need (text keywords)
- **Documents**: The collection to search

• Relevance: How well a document satisfies the information need

1.2 Information Need vs Query

Critical Distinction (appears on exams!):

```
Information Need ≠ Query
```

Example from slides:

```
Information need: "name of the first US president"

↓
Query: "first president of the united states"

↓
Result: George Washington
```

The query is an imperfect representation of the need!

1.3 Types of IR Tasks

1.3.1 Navigational IR 🌟

Goal: Find a specific known page/document

Example:

```
Query: "cs 589 stevens"

Expected result: Course website

User knows what they want, just needs to find it
```

Characteristics:

- Clear target in mind
- Success = finding the right page
- Binary outcome (found it or didn't)

1.3.2 Exploratory IR 🌟

Goal: Learn about a topic, discover information

Example from slides:

```
Student: "I need a book on American history for my thesis research!"

Librarian: "What's the topic of your thesis?"

Student: "civil war"

→ Information need: to study about the history of the civil war
```

Characteristics:

- User learning about topic
- May refine query multiple times
- Success = finding useful related information

1.3.3 Conversational Agent IR 🌟

Example: ChatGPT, Claude using RAG (Retrieval Augmented Generation)

How it works:

User query → Retrieve relevant context → Generate response with context

Example from slides:

User: "Find all the phone numbers in a string: 3 digits followed by

3 digits followed by 4 digits..."

Agent: [retrieves regex patterns from knowledge base]

[generates Python code with regex]

1.3.4 Database/Filter IR

Example: Google Shopping

Features:

- Structured filters (price, brand, availability)
- Faceted search
- Pre-defined categories

1.3.5 Vector Database IR

Modern AI Systems

Example: Finding similar documents using embeddings

Query embedding: [0.2, 0.5, -0.3, 0.8, ...]

Document embeddings in vector space

→ Find nearest neighbors using cosine similarity

2. History of IR

2.1 Timeline of Major Developments

300 BC: Library of Alexandria

• Callimachus created the first library catalog

- Manual organization of scrolls
- "Pinakes" = tables/tablets listing authors and works

1880s: Punch Cards

- Herman Hollerith invented punch card system
- Used for 1890 US Census
- Searching at 600 cards/minute
- Mechanical retrieval!

1950s: Early Computer-Based IR

- First attempts to automate information retrieval
- Development of early indexing algorithms
- Transition from manual to computational methods

1958: The Cranfield Experiment 👚 👚 🌟

Revolutionary Finding:

"Simple keyword-based systems worked as well as complex classification schemes!"

Four Systems Compared:

- 1. Universal Decimal Classification (hierarchical)
- 2. Alphabetical Subject Catalogue
- 3. Faceted Classification Scheme
- 4. Uniterm System (keyword co-ordinate indexing) ← WINNER!

Impact: This discovery shaped all modern IR systems!

1960s: Building IR Systems

- Boolean retrieval models
- Development of relevance feedback
- Foundation of modern IR

1970s: Mathematical Models

- TF-IDF invented
- Probability Ranking Principle established
- Theoretical foundations solidified

1980s: Standardization & Evaluation

- TREC (Text Retrieval Conference) established
- Learning to Rank approaches
- Latent Semantic Indexing

1990s-Present: The Web Era

- 1990: Web created
- 1998: Google (PageRank algorithm)
- Supporting natural language queries
- Modern evolution:
 - 1997: LSTM
 - 2015: Word2Vec
 - 2017: Transformers
 - 2020: GPT-3
 - 2024: RAG systems, Claude, ChatGPT

3. The Cranfield Experiment

3.1 The Problem

Question: How should we organize and search documents in a digital library?

3.2 System 1: Boolean Retrieval

Structure:

```
Computer Science

Artificial Intelligence
Bioinformatics
```

Query Example:

```
sql

SELECT * FROM documents

WHERE subject = "AI" AND subject = "bioinformatics"
```

Advantages:

- Returns exactly what you specify
- Works well for structured data with attributes

• Precise control

Disadvantages:

- X Limited to pre-defined categories
- X Doesn't work well for unstructured text
- X Requires exact matches
- X No ranking (all or nothing)

3.3 System 2: Word-Based Indexing (Bag of Words) 👚 👚

Core Concept: Represent documents as vectors of word counts

Example:

Documents:

D1: "the artificial intelligence book"

D2: "the business intelligence"

D3: "the artificial world"

Query: "artificial intelligence book"

Step 1: Build Vocabulary

Vocabulary = {artificial, business, book, intelligence, the, world}

Step 2: Create Document-Term Matrix

Term	D1	D2	D3	Query
artificial	1	0	1	1
business	0	1	0	0
book	1	0	0	1
intelligence	1	1	0	1
the	1	1	1	0
world	0	0	1	0
4	1			•

Vector Representation:

$$D1 = [1, 0, 1, 1, 1, 0]$$

$$D2 = [0, 1, 0, 1, 1, 0]$$

$$D3 = [1, 0, 0, 0, 1, 1]$$

$$Q = [1, 0, 1, 1, 0, 0]$$

Step 3: Measure Similarity

- Compare query vector to each document vector
- Higher similarity = more relevant

Cranfield Result: This simple system performed as well as complex classification!

4. Term Frequency (TF)

4.1 Raw Term Frequency

Definition:

```
tf(t,d) = count of term t in document d
```

Example:

```
Document: "cat cat dog dog bird"

tf(cat, d) = 3

tf(dog, d) = 2

tf(bird, d) = 1
```

4.2 The Problem with Raw TF

Issue 1: Scale

- A document with tf=100 shouldn't be 100× more relevant than tf=1
- Diminishing returns for repetition

Issue 2: Spam

- Easy to game: "buy cheap viagra cheap cheap cheap cheap..."
- Keyword stuffing

Issue 3: Document length

- Longer documents naturally have higher counts
- Unfair advantage

4.3 Log-Normalized TF 🌟 🌟

Formula:

```
\begin{cases}
1 + \log_{10}(\operatorname{count}(t,d)) & \text{if } \operatorname{count}(t,d) > 0 \\
\operatorname{tf}(t,d) = 0 & \text{if } \operatorname{count}(t,d) = 0
\end{cases}
```

Why logarithm?

- 1. **Diminishing returns**: Each additional occurrence matters less
- 2. Compression: Reduces range of values
- 3. Fairness: tf=10 doesn't dominate tf=1

Visualization:

```
Score
      /--- Log-normalized
3 |
       /
2 |
1 | / Raw count
| / / / O | _ / _ ___ Count
 1 2 5 10 20 50
```

4.4 Complete TF Examples 🌟

Example 1: Basic Calculation

```
Document: "machine learning machine learning"
count(machine) = 2
tf(machine, d) = 1 + log_{10}(2)
        = 1 + 0.301
        = 1.301
```

Example 2: Multiple Terms

```
Document: "the cat sat on the mat the"
count(the) = 3 \rightarrow tf = 1 + log_{10}(3) = 1.477
count(cat) = 1 \rightarrow tf = 1 + log_{10}(1) = 1.000
count(sat) = 1 \rightarrow tf = 1.000
count(on) = 1 \rightarrow tf = 1.000
count(mat) = 1 \rightarrow tf = 1.000
```

Example 3: Zero Count

```
Document: "neural network"

Term: "database"

count(database) = 0 \rightarrow tf = 0
```

Key Values to Remember:

```
count = 1 \rightarrow tf = 1.000
count = 2 \rightarrow tf = 1.301
count = 3 \rightarrow tf = 1.477
count = 5 \rightarrow tf = 1.699
count = 10 \rightarrow tf = 2.000
count = 100 \rightarrow tf = 3.000
```

5. Inverse Document Frequency (IDF)

5.1 The Problem: Not All Words Are Equal

Zipf's Law: In natural language, a few words appear very frequently while most words are rare.

Most common English words:

```
the, and, to, of, a, in, that, it, for, is, on, with, you, as, this, was, but, be, he, at, we, have, by, from, his, are, will...
```

Frequency Distribution (from slides):

```
Rank 1: "the" = 13,000+ occurrences
Rank 2: "and" = 6,000+ occurrences
Rank 3: "to" = 5,000+ occurrences
...
Rank 50: "my" = 500+ occurrences
```

5.2 Why These Words Are Problematic

Example:

```
Query: "the artificial intelligence book"
D1: "the cat, the dog, the book"
D2: "the business intelligence"
```

Without IDF:

• Both D1 and D2 get high scores because of "the"

- "the" appears in both but carries NO meaning
- Not discriminative!

Intuition:

- Common words (appear in many docs) → Less informative
- Rare words (appear in few docs) → More discriminative

5.3 IDF Formula 🌟 🌟

```
\begin{split} & IDF(t) = log_{10}(N \, / \, df(t)) \\ & \text{where:} \\ & N = total \ number \ of \ documents \ in \ collection \\ & df(t) = document \ frequency = \# \ documents \ containing \ term \ t \end{split}
```

Properties:

- **High IDF**: Term is rare (appears in few documents) → Discriminative
- Low IDF: Term is common (appears in many documents) → Not discriminative

5.4 IDF Calculation Examples 🌟 🌟

Example 1: Basic IDF

```
Collection: N = 100 documents

Term "the": appears in 99 docs \rightarrow df = 99

Term "neural": appears in 5 docs \rightarrow df = 5

Term "xylophone": appears in 1 doc \rightarrow df = 1

IDF(the) = \log_{10}(100/99) = \log_{10}(1.010) = 0.004 \leftarrow \text{Very low!}

IDF(neural) = \log_{10}(100/5) = \log_{10}(20) = 1.301

IDF(xylophone) = \log_{10}(100/1) = \log_{10}(100) = 2.000 \leftarrow \text{Very high!}
```

Interpretation:

- "the" is almost useless (appears everywhere)
- "neural" is moderately discriminative
- "xylophone" is highly discriminative

Example 2: Complete Calculation

```
Documents (N=3):
D1: "the cat sat on the mat"
D2: "the dog sat on the log"
D3: "cats and dogs play"

Query: "the cat dog"

Calculate IDF for each query term:

df(the) = 2 \text{ (appears in D1, D2)}
df(cat) = 1 \text{ (appears in D2, D3)}

IDF(the) = \log_{10}(3/2) = \log_{10}(1.5) = 0.176
IDF(cat) = \log_{10}(3/1) = \log_{10}(3) = 0.477 \leftarrow \text{Most discriminative!}
IDF(dog) = \log_{10}(3/2) = \log_{10}(1.5) = 0.176
```

Key Insight: "cat" is more discriminative than "the" or "dog"!

5.5 IDF Properties

Property 1: Monotonicity

More documents containing term \rightarrow Lower IDF Fewer documents containing term \rightarrow Higher IDF

Property 2: Logarithmic Scale

Like TF, uses log to compress range Prevents rare terms from dominating

Property 3: Collection-Dependent

IDF values change with the collection

"neural" has different IDF in:

- Medical journal collection (common → low IDF)
- General news collection (rare → high IDF)

6. TF-IDF Weighting

6.1 Combining TF and IDF 🌟 🌟

Complete Formula:

```
w(t,d) = tf(t,d) \times IDF(t)
```

Interpretation:

- **High TF-IDF**: Term is frequent in this document but rare across collection
 - Example: "quantum" appears 10 times in physics paper, rare overall
- Low TF-IDF: Term is either:
 - Rare in document, OR
 - Common in collection

The "Sweet Spot":

Best terms are:

- High frequency in document (high TF)
- Low frequency in collection (high IDF)

6.2 Complete TF-IDF Example 🌟 🌟

Setup:

```
Documents (N=3):
D1: "the cat sat on the mat"
                               (6 words)
D2: "the dog sat on the log"
                               (6 words)
D3: "cats and dogs play"
                               (4 words)
Query: "the cat dog"
```

Step 1: Calculate TF (Log-normalized)

For D1:

```
count(the) = 2 \rightarrow tf(the,D1) = 1 + log_{10}(2) = 1.301
count(cat) = 1 \rightarrow tf(cat,D1) = 1 + log_{10}(1) = 1.000
count(dog) = 0 \rightarrow tf(dog,D1) = 0
```

For D2:

```
count(the) = 2 \rightarrow tf(the,D2) = 1.301
count(cat) = 0 \rightarrow tf(cat, D2) = 0
count(dog) = 1 \rightarrow tf(dog,D2) = 1.000
```

For D3:

```
count(the) = 0 \rightarrow tf(the,D3) = 0
count(cat) = 0 \rightarrow tf(cat,D3) = 0 \text{ (note: "cats" } \neq \text{"cat")}
count(dog) = 0 \rightarrow tf(dog,D3) = 0 \text{ (note: "dogs" } \neq \text{"dog")}
```

Step 2: Calculate IDF

```
df(the) = 2 \text{ (appears in D1, D2)}
df(cat) = 1 \text{ (appears in D1 only)}
df(dog) = 1 \text{ (appears in D2 only)}
IDF(the) = log_{10}(3/2) = 0.176
IDF(cat) = log_{10}(3/1) = 0.477
IDF(dog) = log_{10}(3/1) = 0.477
```

Step 3: Calculate TF-IDF Weights

For D1:

```
w(\text{the,D1}) = 1.301 \times 0.176 = 0.229
w(\text{cat,D1}) = 1.000 \times 0.477 = 0.477
w(\text{dog,D1}) = 0 \times 0.477 = 0.000
```

For D2:

```
w(the,D2) = 1.301 \times 0.176 = 0.229

w(cat,D2) = 0 \times 0.477 = 0.000

w(dog,D2) = 1.000 \times 0.477 = 0.477
```

For D3:

```
w(the,D3) = 0 \times 0.176 = 0.000

w(cat,D3) = 0 \times 0.477 = 0.000

w(dog,D3) = 0 \times 0.477 = 0.000
```

Step 4: Create TF-IDF Vectors

```
[the, cat, dog]
D1_tfidf = [0.229, 0.477, 0.000]
D2_tfidf = [0.229, 0.000, 0.477]
D3_tfidf = [0.000, 0.000, 0.000]
Q_tfidf = [0.176, 0.477, 0.477] (using IDF as query weights)
```

Observations:

• D1 and D2 have similar "the" weights (0.229)

- D1 has high "cat" weight, D2 has high "dog" weight
- D3 has all zeros (no matching terms!)

7. Vector Space Model

7.1 The Geometric Interpretation 🌟 🌟

Core Idea: Represent documents and queries as vectors in high-dimensional space

Visualization (2D example):

Properties:

- Each dimension = one unique term in vocabulary
- Document vector = TF-IDF weights for all terms
- Query vector = TF-IDF weights for query terms

7.2 Cosine Similarity Formula 🌟 🌟

Formula:

```
\begin{aligned} &\cos\_{sim}(d,q) = (d\cdot q) \, / \, (\|d\| \times \|q\|) \\ &\text{where:} \\ &d\cdot q = \text{dot product} = \Sigma_i \, (d_i \times q_i) \\ &\|d\| = \text{Euclidean norm} = \sqrt{(\Sigma_i \, d_i^2)} \\ &\|q\| = \text{Euclidean norm} = \sqrt{(\Sigma_i \, q_i^2)} \end{aligned}
```

Geometric Meaning:

- Measures the cosine of angle between vectors
- Range: [0, 1] for non-negative weights
 - 1 = vectors point in same direction (most similar)
 - 0 = vectors are orthogonal (no similarity)

Why Cosine and not Euclidean Distance?

- 1. Length invariant: Normalizes for document length
- 2. Direction matters: Focuses on term distribution, not magnitude
- 3. Works in high dimensions: Stable in sparse spaces

7.3 Complete Cosine Similarity Example 🌟 🌟

Using our previous example:

Query q = "the artificial intelligence book" D1 = "the cat, the dog, the book" D2 = "the business intelligence" D3 = "the artificial world"

Build Term-Document Matrix (using raw TF first):

Term	D1	D2	D3	Query
intelligence	0	1	0	1
book	1	0	0	1
the	3	1	1	1
cat	1	0	0	0
artificial	0	0	1	1
dog	1	0	0	0
business	0	1	0	0
world	0	0	1	0
4				•

Vectors (term order: intelligence, book, the, cat, artificial, dog, business, world):

```
q = [1, 1, 1, 0, 1, 0, 0, 0]
D1 = [0, 1, 3, 1, 0, 1, 0, 0]
D2 = [1, 0, 1, 0, 0, 0, 1, 0]
D3 = [0, 0, 1, 0, 1, 0, 0, 1]
```

Step 1: Calculate Dot Products

```
q \cdot D1 = (1 \times 0) + (1 \times 1) + (1 \times 3) + (0 \times 1) + (1 \times 0) + (0 \times 1) + (0 \times 0) + (0 \times 0)
= 0 + 1 + 3 + 0 + 0 + 0 + 0 + 0
= 4
q \cdot D2 = (1 \times 1) + (1 \times 0) + (1 \times 1) + (0 \times 0) + (1 \times 0) + (0 \times 0) + (0 \times 1) + (0 \times 0)
= 1 + 0 + 1 + 0 + 0 + 0 + 0 + 0
= 2
q \cdot D3 = (1 \times 0) + (1 \times 0) + (1 \times 1) + (0 \times 0) + (1 \times 1) + (0 \times 0) + (0 \times 1)
= 0 + 0 + 1 + 0 + 1 + 0 + 0 + 0
= 2
```

Step 2: Calculate Norms

```
||q|| = \sqrt{(1^2 + 1^2 + 1^2 + 0^2 + 1^2 + 0^2 + 0^2 + 0^2)}
    = \sqrt{(1+1+1+0+1+0+0+0)}
    =\sqrt{4}
    = 2.000
||D1|| = \sqrt{(0^2 + 1^2 + 3^2 + 1^2 + 0^2 + 1^2 + 0^2 + 0^2)}
     = \sqrt{(0+1+9+1+0+1+0+0)}
     =\sqrt{12}
     = 3.464
||D2|| = \sqrt{(1^2 + 0^2 + 1^2 + 0^2 + 0^2 + 0^2 + 1^2 + 0^2)}
     = \sqrt{(1+0+1+0+0+0+1+0)}
     \equiv \sqrt{3}
     = 1.732
||D3|| = \sqrt{(0^2 + 0^2 + 1^2 + 0^2 + 1^2 + 0^2 + 0^2 + 1^2)}
     = \sqrt{(0+0+1+0+1+0+0+1)}
     \equiv \sqrt{3}
     = 1.732
```

Step 3: Calculate Cosine Similarities

```
\cos_{-}\sin(q,D1) = 4 / (2.000 \times 3.464)
= 4 / 6.928
= 0.5773
\cos_{-}\sin(q,D2) = 2 / (2.000 \times 1.732)
= 2 / 3.464
= 0.5773
\cos_{-}\sin(q,D3) = 2 / (2.000 \times 1.732)
= 2 / 3.464
= 0.5773
```

Problem: All documents get the SAME score!

Why? The term "the" dominates all documents, masking the important terms.

Solution: Use TF-IDF weights instead of raw TF!

7.4 Cosine Similarity with TF-IDF Weights 👚 👚


```
[the, cat, dog]
D1_tfidf = [0.229, 0.477, 0.000]
D2_tfidf = [0.229, 0.000, 0.477]
D3_tfidf = [0.000, 0.000, 0.000]
Q_tfidf = [0.176, 0.477, 0.477]
```

Calculate with TF-IDF:

```
\begin{aligned} \mathbf{q} \cdot \mathbf{D1} &= (0.176 \times 0.229) + (0.477 \times 0.477) + (0.477 \times 0.000) \\ &= 0.040 + 0.227 + 0.000 \\ &= 0.267 \end{aligned}
\mathbf{q} \cdot \mathbf{D2} &= (0.176 \times 0.229) + (0.477 \times 0.000) + (0.477 \times 0.477) \\ &= 0.040 + 0.000 + 0.227 \\ &= 0.267 \end{aligned}
\|\mathbf{q}\| &= \sqrt{(0.176^2 + 0.477^2 + 0.477^2)} = \sqrt{0.486} = 0.697
\|\mathbf{D1}\| &= \sqrt{(0.229^2 + 0.477^2 + 0.000^2)} = \sqrt{0.280} = 0.529
\|\mathbf{D2}\| &= \sqrt{(0.229^2 + 0.000^2 + 0.477^2)} = \sqrt{0.280} = 0.529
\cos_{\sin}(\mathbf{q}, \mathbf{D1}) = 0.267 / (0.697 \times 0.529) = 0.267 / 0.369 = 0.724
\cos_{\sin}(\mathbf{q}, \mathbf{D2}) = 0.267 / (0.697 \times 0.529) = 0.267 / 0.369 = 0.724 \end{aligned}
```

Still the same! Let's understand why with the full 8-dimensional space...

With all 8 dimensions and proper IDF weighting:

```
After applying IDF to downweight "the":
score(q, D1) \rightarrow 0.3582
score(q, D2) \rightarrow 0.4220 \leftarrow Higher!
```

D2 ranks higher because it contains "intelligence" which is more discriminative than D1's terms.

8. Document Length Pivoting

8.1 The Problem 🌟 🌟

Issue: Cosine similarity **over-penalizes** long documents

Example from slides:

Query: "artificial intelligence"

D1 (21 words): "Artificial intelligence was founded as an academic discipline in 1955, and in the years since has experienced several waves of optimism"

D2 (4 words): "the journal of Artificial intelligence"

Vector magnitudes:

D1: $||d1|| = \sqrt{21} = 4.583$ D2: $||d2|| = \sqrt{4} = 2.000$

Effect on cosine similarity:

D2 gets higher weight just because it's shorter!

Problem:

- D1 might be much more comprehensive and relevant
- But gets penalized for being longer
- This is unfair!

8.2 The Intuition

Two Competing Effects:

- 1. Verbosity Hypothesis (favor short docs):
 - Longer documents contain more topics
 - Query may match only a small subset of content
 - More "noise" dilutes signal

- 2. **Scope Hypothesis** (favor long docs):
 - Longer documents cover topics more thoroughly
 - More content = more chance to be relevant
 - More comprehensive = better for user

Reality: Neither extreme is optimal!

- No normalization (norm=1): Long docs favored too much
- Full cosine normalization (norm=|d|): Short docs favored too much
- Need something in between

8.3 Singhal's Pivoted Document Length Normalization 👚 👚

Paper: Singhal, Buckley, Mitra (1995)

Experimental Setup:

- 1. For many queries and documents, calculate TF-IDF scores
- 2. Manually evaluate true relevance
- 3. Plot: document length vs retrieval score
- 4. Plot: document length vs true relevance
- 5. Find bias!

The Discovery (from slide 56):

Observations:

- TF-IDF score increases with document length (bias!)
- True relevance is roughly constant with length

• Need to correct this bias

8.4 The Normalization Formula 🌟 🌟

Pivoted Normalization:

```
normalization = 1 - b + b \times (dl/avgdl)
where:
dl = length of document d (number of words)
avgdl = average document length in collection
b = tuning parameter (typically 0.75)
```

Behavior:

```
When dl = avgdl: norm = 1 - b + b×1 = 1 (no change)
When dl > avgdl: norm > 1 (penalize long docs)
When dl < avgdl: norm < 1
                                (boost short docs)
```

Visual Representation (from slide 59):

```
normalization ↑
         | / y(|d|) = (1-b) + b \times |d|/avgdl
            avgdl
```

Key Properties:

- 1. Linear in document length: y = mx + c form
- 2. Crosses 1 at avgdl: Average-length docs get no adjustment
- 3. Slope controlled by b:
 - b=0: Flat line at y=1 (no normalization)
 - b=1: Line from 0 to $2 \times (dl/avgdl)$ (full normalization)
 - b=0.75: Standard compromise

8.5 Parameter b: The Tuning Knob 🚖

Effect of parameter b:

```
b = 0: norm = 1 (no length normalization)

b = 0.5: norm = 0.5 + 0.5 \times (dl/avgdl) (moderate normalization)

b = 0.75: norm = 0.25 + 0.75 \times (dl/avgdl) (standard BM25 value)

b = 1: norm = dl/avgdl (full normalization)
```

Choosing b:

- Small b (\approx 0): When long docs should be favored
 - Example: Looking for comprehensive coverage
- Large b (\approx 1): When verbosity is a problem
 - Example: Looking for focused, specific content
- b=0.75: Good general-purpose compromise

8.6 Complete Example: Document Length Pivoting 👚 👚

Scenario:

```
Collection statistics:
- Total documents: 1000
- Average document length: avgdl = 500 words
- Parameter: b = 0.75

Documents:
D1: 200 words (short)
D2: 500 words (average)
D3: 1000 words (long)

Suppose each gets raw score = 10 (before normalization)
```

Calculate normalized scores:

For D1 (short document):

```
norm_D1 = 1 - 0.75 + 0.75 × (200/500)

= 0.25 + 0.75 \times 0.4

= 0.25 + 0.30

= 0.55

normalized_score_D1 = 10 / 0.55 = 18.18 \leftarrow \text{Boosted}!
```

For D2 (average document):

```
norm_D2 = 1 - 0.75 + 0.75 × (500/500)

= 0.25 + 0.75 × 1.0

= 0.25 + 0.75

= 1.00

normalized_score_D2 = 10 / 1.00 = 10.00 \leftarrow \text{Unchanged}
```

For D3 (long document):

```
norm_D3 = 1 - 0.75 + 0.75 \times (1000/500)

= 0.25 + 0.75 \times 2.0

= 0.25 + 1.50

= 1.75

normalized_score_D3 = 10 / 1.75 = 5.71 \leftarrow \text{Penalized!}
```

Results:

```
D1 (short): 18.18 [+82% boost]
D2 (average): 10.00 [no change]
D3 (long): 5.71 [-43% penalty]
```

Interpretation:

- Short doc gets significant boost (compensates for having fewer words)
- Average doc unchanged (reference point)
- Long doc penalized (prevents verbosity from dominating)

8.7 Complete Scoring Formula with Pivoting 🚖 🚖 🌟

Final TF-IDF with Document Length Pivoting:

```
score(q,d) = \Sigma IDF(w) × c(w,d) / normalization

w∈q

where:
c(w,d) = tf(w,d) = 1 + log10(count(w,d))

IDF(w) = log10(N/df(w))

normalization = 1 - b + b×(|d|/avgdl)
```

This satisfies the three desiderata:

- 1. **Document length pivoting**: Proper normalization between 1 and |d|
- 2. **IDF**: Discounts common words

9. Complete BM25 Preview

BM25 (Best Match 25) is the most widely used retrieval model!

Preview Formula (full derivation in Lecture 2):

```
BM25(d,q) = \sum IDF(t_i) \times \left[tf(t_i,d) \times (k_1+1)\right] / \left[tf(t_i,d) + k_1 \times (1-b+b \times dl/avgdl)\right]
where:
IDF(t) = log[(N - df(t) + 0.5)/(df(t) + 0.5)] [with smoothing]
k_1 = TF saturation parameter (typical: 1.2)
b = length normalization parameter (typical: 0.75)
```

Key Components:

1. **IDF term**: From RSJ probabilistic model

2. **TF saturation**: From 2-Poisson model (prevents spam)

3. Length pivoting: Same as we learned!

Why BM25 > TF-IDF:

• Theoretically grounded (probabilistic model)

• Better TF saturation (handles repetition better)

• Tunable parameters (k₁, b)

• State-of-the-art performance

10. Practice Problems

Problem 10.1: TF Calculation

Calculate log-normalized TF:

Document: "data mining data analysis big data"

Questions:

- 1. tf(data, d) = ?
- 2. tf(mining, d) = ?
- 3. tf(analysis, d) = ?
- 4. tf(big, d) = ?

5. tf(machine, d) = ?

<details> <summary>Click for Solution</summary>

Solution:

1. count(data) = 3

$$tf(data, d) = 1 + log_{10}(3) = 1 + 0.477 = 1.477$$

2. count(mining) = 1

$$tf(mining, d) = 1 + log_{10}(1) = 1 + 0 = 1.000$$

3. count(analysis) = 1

$$tf(analysis, d) = 1.000$$

4. count(big) = 1

$$tf(big, d) = 1.000$$

5. count(machine) = 0

$$tf(machine, d) = 0$$

TF vector: [1.477, 1.000, 1.000, 1.000, 0]

</details>

Problem 10.2: IDF Calculation 🌟 🌟

Given:

- Collection: N = 1000 documents
- Term "machine": appears in 100 documents
- Term "learning": appears in 200 documents
- Term "xylophone": appears in 2 documents
- Term "the": appears in 998 documents

Calculate IDF for each term.

<details> <summary>Click for Solution</summary>

Solution:

```
IDF(machine) = log_{10}(1000/100)
         = \log_{10}(10)
         = 1.000
IDF(learning) = log_{10}(1000/200)
         = \log_{10}(5)
          = 0.699
IDF(xylophone) = log_{10}(1000/2)
          = \log_{10}(500)
          = 2.699 ← Very discriminative!
IDF(the) = log_{10}(1000/998)
      = \log_{10}(1.002)
      = 0.001 \leftarrow \text{Nearly useless!}
```

Ranking by discriminative power: xylophone > machine > learning > the

</details>

Problem 10.3: TF-IDF Vectors 👚 👚

Given:

```
Collection: N = 4 documents
D1: "machine learning is fun"
D2: "deep learning is powerful"
D3: "machine translation works"
D4: "learning is important"
Query: "machine learning"
```

Ouestions:

- 1. Calculate df for each term
- 2. Calculate IDF for query terms
- 3. Calculate TF for D1
- 4. Calculate TF-IDF vector for D1
- 5. Which document is most relevant?

<details> <summary>Click for Solution</summary>

Solution:

Step 1: Document frequencies

```
df(machine) = 2 (D1, D3)

df(learning) = 3 (D1, D2, D4)

df(deep) = 1

df(is) = 3

df(fun) = 1

df(powerful) = 1

df(translation) = 1

df(works) = 1

df(important) = 1
```

Step 2: IDF for query terms

```
IDF(machine) = \log_{10}(4/2) = \log_{10}(2) = 0.301
IDF(learning) = \log_{10}(4/3) = \log_{10}(1.333) = 0.125
```

Step 3: TF for D1 = "machine learning is fun"

```
All counts = 1

tf(machine, D1) = 1 + log_{10}(1) = 1.000

tf(learning, D1) = 1.000

tf(s, D1) = 1.000

tf(fun, D1) = 1.000
```

Step 4: TF-IDF for D1 (query terms only)

```
w(\text{machine, D1}) = 1.000 \times 0.301 = 0.301
w(\text{learning, D1}) = 1.000 \times 0.125 = 0.125
D1\_tfidf (\text{for query terms}) = [0.301, 0.125]
```

Step 5: Calculate for all documents

```
D1: machine=0.301, learning=0.125 \rightarrow Total: 0.426 D2: machine=0, learning=0.125 \rightarrow Total: 0.125 D3: machine=0.301, learning=0 \rightarrow Total: 0.301 D4: machine=0, learning=0.125 \rightarrow Total: 0.125
```

Most relevant: D1 (contains both query terms!)

</details>

Problem 10.4: Cosine Similarity 🌟 🌟

Given vectors:

$$d = [3, 4, 0, 1]$$

$$q = [1, 1, 2, 0]$$

Calculate cosine similarity.

<details> <summary>Click for Solution</summary>

Solution:

Step 1: Dot product

```
d \cdot q = (3 \times 1) + (4 \times 1) + (0 \times 2) + (1 \times 0)
     = 3 + 4 + 0 + 0
     = 7
```

Step 2: Norms

```
||\mathbf{d}|| = \sqrt{(3^2 + 4^2 + 0^2 + 1^2)}
     =\sqrt{(9+16+0+1)}
     =\sqrt{26}
     = 5.099
\|\mathbf{q}\| = \sqrt{(1^2 + 1^2 + 2^2 + 0^2)}
     =\sqrt{(1+1+4+0)}
     =\sqrt{6}
     = 2.449
```

Step 3: Cosine similarity

```
\cos_{\sin(d,q)} = 7 / (5.099 \times 2.449)
         = 7 / 12.487
         = 0.561
```

Interpretation: Moderate similarity (56%)

</details>

Problem 10.5: Document Length Pivoting 🚖 🚖

Given:

```
Collection: avgdl = 500 words
Parameter: b = 0.75

Documents with raw scores:
D1: 250 words, raw_score = 8
D2: 500 words, raw_score = 8
D3: 1000 words, raw_score = 8
```

Calculate normalized scores and rank documents.

<details> <summary>Click for Solution</summary>

Solution:

For D1 (short):

```
norm = 1 - 0.75 + 0.75 \times (250/500)
= 0.25 + 0.75 \times 0.5
= 0.25 + 0.375
= 0.625
normalized_score = 8 / 0.625 = 12.8
```

For D2 (average):

```
norm = 1 - 0.75 + 0.75 \times (500/500)
= 0.25 + 0.75 \times 1.0
= 1.0
normalized_score = 8 / 1.0 = 8.0
```

For D3 (long):

```
norm = 1 - 0.75 + 0.75 \times (1000/500)
= 0.25 + 0.75 \times 2.0
= 0.25 + 1.5
= 1.75
normalized_score = 8 / 1.75 = 4.57
```

Final Ranking:

- 1. D1: 12.8 (short doc boosted)
- 2. D2: 8.0 (average unchanged)
- 3. D3: 4.57 (long doc penalized)

Interpretation: Short document wins despite all having same raw score!

</details>

Problem 10.6: Complete TF-IDF Ranking 🌟 🌟

Given:

```
Collection: N = 100, avgdl = 10 words

D1: "neural network deep learning neural" (5 words)

D2: "neural network architecture" (3 words)

Query: "neural network"

Document frequencies:
df(neural) = 30
df(network) = 40
df(deep) = 10
df(learning) = 20
df(architecture) = 5
```

Calculate complete TF-IDF scores with pivoting (b=0.75).

<details> <summary>Click for Solution</summary>

Solution:

Step 1: Calculate IDF

```
IDF(neural) = log_{10}(100/30) = log_{10}(3.333) = 0.523
IDF(network) = log_{10}(100/40) = log_{10}(2.5) = 0.398
```

Step 2: Calculate TF for D1

```
count(neural, D1) = 2 \rightarrow \text{tf} = 1 + \log_{10}(2) = 1.301

count(network, D1) = 1 \rightarrow \text{tf} = 1 + \log_{10}(1) = 1.000
```

Step 3: Calculate TF-IDF for D1

```
w(neural, D1) = 1.301 \times 0.523 = 0.680

w(network, D1) = 1.000 \times 0.398 = 0.398

raw\_score\_D1 = 0.680 + 0.398 = 1.078
```

Step 4: Calculate TF for D2

```
count(neural, D2) = 1 \rightarrow tf = 1.000
count(network, D2) = 1 \rightarrow tf = 1.000
```

Step 5: Calculate TF-IDF for D2

```
w(neural, D2) = 1.000 \times 0.523 = 0.523

w(network, D2) = 1.000 \times 0.398 = 0.398

raw\_score\_D2 = 0.523 + 0.398 = 0.921
```

Step 6: Apply document length pivoting

For D1 (dl=5):

```
norm_D1 = 1 - 0.75 + 0.75 \times (5/10) = 0.25 + 0.375 = 0.625
final_score_D1 = 1.078 / 0.625 = 1.725
```

For D2 (dl=3):

```
norm_D2 = 1 - 0.75 + 0.75 \times (3/10) = 0.25 + 0.225 = 0.475
final_score_D2 = 0.921 / 0.475 = 1.939
```

Final Ranking:

1. **D2: 1.939** ← Winner!

2. D1: 1.725

Interpretation:

- D2 wins despite lower raw TF-IDF score
- Shorter length gives it advantage
- Both docs contain query terms once, but D2 is more focused

</details>

11. Key Formulas Summary

TF (Term Frequency)

```
tf(t,d) = \begin{cases} 1 + \log_{10}(count(t,d)) & \text{if } count > 0 \\ 0 & \text{if } count = 0 \end{cases}
```

IDF (Inverse Document Frequency)

```
IDF(t) = log_{10}(N / df(t))
where:
N = total number of documents
df(t) = number of documents containing term t
```

TF-IDF Weight

```
w(t,d) = tf(t,d) \times IDF(t)
```

Cosine Similarity

```
\cos_{\sin(d,q)} = (d \cdot q) / (||d|| \times ||q||)
where:
\mathbf{d} \cdot \mathbf{q} \equiv \mathbf{\Sigma}_{i} \left( \mathbf{d}_{i} \times \mathbf{q}_{i} \right)
                                                    [dot product]
||\mathbf{d}|| \equiv \sqrt{(\mathbf{\Sigma}_i \; \mathbf{d}_i^2)}
                                      [Euclidean norm]
||\mathbf{q}|| \equiv \sqrt{(\Sigma_i \ \mathbf{q}_i^2)}
```

Document Length Pivoting

```
normalization = 1 - b + b \times (dl/avgdl)
where:
dl = document length
avgdl = average document length in collection
b = tuning parameter (typically 0.75)
```

Complete TF-IDF Score with Pivoting

```
score(q,d) = \sum IDF(w) \times tf(w,d) / [1 - b + b \times (|d|/avgdl)]
         w∈q
```

* Key Concepts to Memorize

Must Know Cold 🌟 🌟 🌟

- 1. **TF-IDF formula** and how to calculate
- 2. Cosine similarity formula and geometric meaning
- 3. **Document length pivoting** formula and why we need it

- 4. **IDF** formula and interpretation
- 5. Log-normalized TF formula

Conceptual Understanding 🌟 🌟

- 1. Why log normalization? → Diminishing returns for term repetition
- 2. Why IDF? \rightarrow Common words are less discriminative
- 3. Why document length pivoting?

 Fair comparison between docs of different lengths
- 4. Cosine vs Euclidean distance? → Cosine is length-invariant
- 5. Cranfield experiment result → Simple keyword indexing works!

Important Values to Remember 🌟

```
b=0.75 \ (standard\ document\ length\ pivoting\ parameter) k_1=1.2 \ (BM25\ TF\ saturation\ parameter,\ preview\ for\ Lecture\ 2) Common TF values: count=1\ \rightarrow tf=1.000 count=2\ \rightarrow tf=1.301 count=10\ \rightarrow tf=2.000 Log properties: log_{10}(1)=0 log_{10}(10)=1 log_{10}(100)=2
```

© Exam Tips for Lecture 1

What You'll Be Asked to Calculate

- 1. TF-IDF weights for given documents and query
- 2. Cosine similarity between vectors
- 3. Document length normalization
- 4. Complete retrieval scores
- 5. Ranking of documents

Common Mistakes to Avoid

- \times Forgetting the +1 in TF formula: tf = 1 + log(count)
- X Using log(df/N) instead of log(N/df) for IDF
- X Not squaring terms when calculating norm: $||\mathbf{d}|| = \sqrt{(\Sigma \mathbf{d}_i^2)}$

- X Dividing by wrong normalization in document pivoting
- \times Forgetting log is base 10 (log₁₀) not natural log (ln)

Calculation Tips

- 1. Show your work partial credit matters!
- 2. Check units does the answer make sense?
- 3. Use calculator log values need precision
- 4. **Verify range** cosine similarity should be [0,1]
- 5. Label clearly indicate what each step calculates

Time Management

- Simple TF calculation: ~2 minutes
- IDF calculation: ~2 minutes
- Cosine similarity: ~5 minutes
- Complete TF-IDF ranking: ~10 minutes
- Document length pivoting: ~3 minutes

Additional Resources

Video Tutorials

- TF-IDF Explained: StatQuest on YouTube
- Vector Space Model: Stanford CS276 lectures
- Cosine Similarity: 3Blue1Brown linear algebra series

Papers to Read

- Singhal et al. (1995): "Pivoted Document Length Normalization"
- Salton & Buckley (1988): "Term-weighting approaches in automatic text retrieval"

Online Tools

- TF-IDF Calculator: https://www.tfidf.com/
- Vector Similarity Calculator: Various online tools
- Elasticsearch Documentation: Real-world implementation

Practice More

• Stanford IR Book: https://nlp.stanford.edu/IR-book/

- TREC datasets: Standard evaluation collections
- Kaggle text mining competitions

/	Self-Assessment	Checklist
----------	------------------------	-----------

Liu

Before the exam, make sure you can:		
Calculate log-normalized TF for any term in any document		
Calculate IDF given document frequencies		
Compute TF-IDF weights for a term-document pair		
☐ Build a TF-IDF vector for a document		
☐ Calculate dot product of two vectors		
Calculate Euclidean norm of a vector		
Compute cosine similarity between two vectors		
Apply document length pivoting formula		
Explain why we need IDF (not just the formula)		
Explain why we need document length pivoting		
Explain the Cranfield experiment result		
Compare Boolean retrieval vs keyword-based retrieval		
☐ Rank multiple documents given a query		
If you can do all of the above, you're ready for Lecture 1 content! *		
Good luck with your studies!		
Remember: Understanding the WHY is more important than memorizing formulas. Focus on the intuition behind each technique!		
Study Guide Created: Fall 2024 Based on: CS 589 Lecture 1 slides and materials Instructor: Professor Susan		