Algorithm (Part 2) – Recursion

Solve a problem by solving smaller sub-problems of itself

Let's divide and conquer...

Contents

- Recursion: what and how?
 - Termination condition
 - Runtime error: stack overflow
- Simple example: Fibonacci sequence
 - call itself more than once
 - Speedup through Memorization
- General procedure: programming with recursion
- Three more examples
 - Path Search (1): Lattice Path
 - Path Search (2): Number Pyramid
 - The Classic: Tower of Hanoi

Recursion

- What is recursion?
 - A function may call itself
 - A great way to express <u>math functions</u>, since quite a number of math functions are defined using recursion
 - − E.g.,

```
Factorial n!

if n is 0

n! = 1

else

n! = n * (n-1)!
```

```
Power of x<sup>n</sup>

if n is 0

x<sup>n</sup> = 1

else

x<sup>n</sup> = x * x<sup>n-1</sup>
```

Recursion – Factorial

Transforming from description to C program code:

```
Factorial n!
if n is 0:
    n! = 1
else
    n! = n * (n - 1)!
```

```
int factorial( int n )
{
    if ( n == 0 )
        return 1 ;
    else
        return n * factorial( n - 1 );
}
```

– See? Can you find them one-to-one corresponding!!

Let's see how it works.


```
int f( int n )

int f( int n )

if ( n == 0 )

return 1;

else

return n * f( n - 1 );

}
```

- So, we finally get f(3) = 6.
- Though it seems to involve a lot of work, the computer can run the steps in a very fast manner.
- Self Exercise: can you write the code for power?
 - -double power(double x , int n)?

Recursion – Stack overflow

- One important component of a recursive function is the termination condition, i.e., lines 3-4 in the previous code.
- What happens if you miss the condition?

```
1 int f( int n ) {
2    return n * f( n - 1 );
3 }
```

- A recursion cannot run indefinitely.
- Then, the computer would generate a runtime error called stack overflow
- Note: n should not be exceptionally large

```
Function call: f(999997)

n = 999997 4 bytes

Function call: f(999998)

n = 999998 4 bytes

Function call: f(999999)

n = 999999 4 bytes

Function call: f(1000000)

n = 1000000 4 bytes

Stack memory
```

Contents

- Recursion: what and how?
 - Termination condition
 - Runtime error: stack overflow
- Simple example: Fibonacci sequence
 - call itself more than once
 - Speedup through Memorization
- General procedure: programming with recursion
- Three more examples
 - Path Search (1): Lattice Path
 - Path Search (2): Number Pyramid
 - The Classic: Tower of Hanoi

Another Famous Recursion Example

- The Fibonacci number introduction video: http://www.ted.com/talks/arthur-benjamin-the-magic of fibonacci numbers
- Fibonacci number is a sequence of number:

```
- 0, 1, 1, 2, 3, 5, 8, 13, ......
```

- The i-th number (i>2) is a sum of the previous two.

```
n-th Fibonacci number: f(n)

if n is 0: return 0;
if n is 1: return 1;
if n is > 1:
  return f( n - 1 ) + f( n - 2 );
```


f(4) call graph

f(5) call graph f(1) f(2) f(0) f(3) f(1) f(4) f(5) f(2) f(1) f(2) f(0) f(3) f(1)

Any Speedup?

 According to the previous page, there are lots of duplicated computation, can we do better?

```
1 int fibonacci( int n )
2 {
3    if ( n == 0 )
4       return 0 ;
5    else
6    if ( n == 1 )
7       return 1 ;
8    else
9       return fibonacci( n - 1 ) + fibonacci( n - 2 ) ;
10 }
```

Speedup through Memorization

Use a global array to store the computed results

```
1 int speedup[ 10000 ]; // all initialized to -1
                                                      But... how to avoid
                                                       global variables?
 3 int fibonacci( int n )
      if ( speedup[ n ] == -1 ) // not computed yet
         // memorize the newly computed result
         if ( n == 0 )
            speedup[n] = 0;
         else
10
        if ( n == 1 )
11
            speedup[ n ] = 1 ;
12
13
         else
            speedup[ n ] = fibonacci( n - 1 ) + fibonacci( n - 2 );
14
15
16
      return speedup[ n ];
17 }
```

Speedup through Memorization

Make it a function parameter and initialize it outside

```
1 // You should initialize "speedup" all to -1 (e.g., in main())
 3 int fibonacci( int n , int speedup[] )
      if ( speedup[ n ] == -1 ) // not computed yet
        // memorize the newly computed result
         if ( n == 0 )
            speedup[n] = 0;
        else
10
        if ( n == 1 )
11
        speedup[ n ] = 1 ;
12
        else
13
            speedup[ n ] = fibonacci( n - 1 , speedup )
14
15
                        + fibonacci( n - 2 , speedup );
16
     return speedup[ n ] ;
17
18 }
```

Short Summary: Iteration VS Recursion

- It was proved by Alonzo Church and Alan Turing (in the Church-Turing Thesis) that:
 - Every recursive algorithm can be transformed into an iteration, and vice versa.
 - Their proof did not provide any procedure to do the transformation.

E.g., Computing by iteration

```
1 int fibonacci( int n )
2 {
3    int values[ 10000 ] ;
4
5    values[ 0 ] = 0 ;
6    values[ 1 ] = 1 ;
7
8    for ( i = 2 ; i <= n ; i ++ )
9      values[ i ] = values[ i - 1 ] + values[ i - 2 ] ;
10
11    return values[ n ] ;
12 }</pre>
```

Contents

- Recursion: what and how?
 - Termination condition
 - Runtime error: stack overflow
- Simple example: Fibonacci sequence
 - call itself more than once
 - Speedup through Memorization
- General procedure: programming with recursion
- Three more examples
 - Path Search (1): Lattice Path
 - Path Search (2): Number Pyramid
 - The Classic: Tower of Hanoi

General procedure

- Calling a recursion function is like asking a question
- Pay attention to three basic but important things:
 - Understand the problem & Identify sub-problems
 - Solve a "bigger" problem by solving "same smaller" problems.
 - Any relationship between bigger and smaller problems?
 - Recurrence relationship!!! Find out the "PATTERN"!!!
 - What is/are the parameters? Any data passing between?
 - Design function prototype for "data passing" & "return"
 - When to <u>Terminate</u>?

Note: try smaller problems with "printf" to debug; only after your program works, accelerate it by memorization

Contents

- Recursion: what and how?
 - Termination condition
 - Runtime error: stack overflow
- Simple example: Fibonacci sequence
 - call itself more than once
 - Speedup through Memorization
- General procedure: programming with recursion
- Three more examples
 - Path Search (1): Lattice Path
 - Path Search (2): Number Pyramid
 - The Classic: Tower of Hanoi

Does it look like a maze?

Map of Manhattan, New York

By the way, do you know what is Manhattan (L1) Distance?

Path finding – Lattice path

In such a maze, how many distinct (different)
paths we can travel from one point to another?

Path finding – Lattice path

• In a 2 x 2 lattice: 6 paths

Path finding – Lattice path

- So, 2 x 2 is nice; we can verify by human effort.
- How about a 10 x 10 lattice?
 - There are 184,756 distinct paths.
 - We can't count using our fingers (and toes)!
- Either of the following approaches work:
 - Derive a close-form solution (ENGG 2430)
 - E.g., mathematical formulae
 - Solve the problem by programming (ESTR 1002)

Lattice path: The insight!

• Let's check this out:

Lattice path: The insight!

Can we find such a relationship at other points?

Lattice path: The sub-problem!

- Let's model the problem:
 - Define a coordinate system over the lattice
 - (0,0) at the starting point
 - (i, j) at the lattic point at i-th row, j-th column
 - Let function f(i,j) be the number of distinct paths from (0,0) to (i,j)

A recurrence relationship!

Lattice path: The boundary!

- How about f(i,0) and f(0,j)?
 - They are at the boundaries
 - The previous recurrence relationship cannot be used.

Lattice path: The base case!

• How about **f(0,0)**?

– It means...

"the number of paths from (0,0) to (0,0)"

– Of course, it is <u>one</u>!

Lattice path: The solution!

$$f(i,j) = \begin{cases} 1 & , i = j = 0 \\ f(i-1,0) & , j = 0 \\ f(0,j-1) & , i = 0 \end{cases}$$

$$f(i-1,j) + f(i,j-1) , otherwise$$

Lattice path: The program!

- Around 10 lines of code only!
 - Do you believe that it works?
 - Let's have a demo: start with path(2,2).

```
1 int path( int i , int j )
  if ( i == 0 && j == 0 )
                                     Can we speed up?
    return 1 ;
                                        Any idea?
  else
 if ( i == 0 && j > 0 )
        return path( 0 , j - 1 );
   else
  if ( i > 0 && j == 0 )
        return path( i - 1 , 0 );
   else
     return path( i - 1 , j ) + path( i , j - 1 );
```

Lattice path: The program Ver. 2!

- Speed up!
 - Return 1 at first row/column

```
1 int path( int i , int j )
2 {
3    if ( i == 0 || j == 0 )
4        return 1;
5    else
6        return path( i - 1 , j ) + path( i , j - 1 );
7 }
```

Lattice path: Variation #1

#1: Rectangular lattice

– Any difference?

- NO!

Lattice path: Variation #2

- #2: Cannot go across (but may touch) the diagonal!
 - Any differences from the original problem?
 - Yes!

E.g., the number of paths is 2

(instead of 6 in the original version)

- Hint: change the recurrence relationship
 - When $\mathbf{i} == \mathbf{j}$, what should you do?
 - You will try this in lab 8 today ©

Lattice path: Variation #3

#3: Variation #2 + new movement!

- The new movement is a <u>DIAGONAL</u> move!
- What change(s) we need?

E.g., the number of paths is 6 (instead of 2 from Variation #2)

 Hint: in the "otherwise" case of the recurrence relationship, add one more item!

Lattice path: Speedup?

- Class discussion:
 - Speedup:
 - Ask yourself: How can we speed up this program?
 - For example, say by memorization?
 - How about 3D Lattice?

Outline

- Next, we will show you how to solve a problem by identifying its <u>sub-problems</u>.
- Pay attention to three basic but important things:
 - Model the problem with sub-problems
 - Design function prototype for data passing and return
 - When to **Terminate**?
- Three Examples:
 - Path Search (1): Lattice Path
 - Path Search (2): Number Pyramid
 - The Classic: Tower of Hanoi

Question from Project Euler

Maximum path sum I

https://projecteuler.net/problem=18

Problem 18

By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23.

3 7 4
2 **4** 6
8 5 **9** 3

That is, 3 + 7 + 4 + 9 = 23.

Find the maximum total from top to bottom of the triangle below:

75 95 64 17 47 82 18 35 87 10 20 04 82 47 65 19 01 23 75 03 34 88 02 77 73 07 63 67 99 65 04 28 06 16 70 92 41 41 26 56 83 40 80 70 33 41 48 72 33 47 32 37 16 94 29 53 71 44 65 25 43 91 52 97 51 14 70 11 33 28 77 73 17 78 39 68 17 57 91 71 52 38 17 14 91 43 58 50 27 29 48 63 66 04 68 89 53 67 30 73 16 69 87 40 31 04 62 98 27 23 09 70 98 73 93 38 53 60 04 23

NOTE: As there are only 16384 routes, it is possible to solve this problem by trying every route. However, Problem 67, is the same challenge with a triangle containing one-hundred rows; it cannot be solved by brute force, and requires a clever method! ;0)

Number Pyramid: Insight

- Again, we can first locate its sub-problems and tackle it using recursion!
- Let's look at a simple case: 2 layers only

Answer =
$$a + max(b, c)$$

Number Pyramid: Insight

 What if b and c represent the max path sum from the left and right branches of a, respectively?

Number Pyramid: Coordinates?

 We can re-order the pyramid to define a simple-to-implement coordinates system, allowing us to store data using a 2D array.

Number Pyramid: Recurrence

- Let **a(i,j)** be the value at location **(i,j)**, which is at i-th row, j-th column.
- Let f(i,j) be the maximum path sum from (0,0) from (i,j).
- So, the general recurrence formula is:

```
f(i,j) = a(i,j)
+ max( f(i+1,j) , f(i+1,j+1) )
```

1,0

2,0 2,1

1,1

2,2

3,0 3,1 3,2 3,3

Number Pyramid: Termination cases

- Let n be the number of rows in the pyramid.
- Then, what is f(n-1,0), ..., f(n-1,n-1)?
 - They are located on the bottom-most row
- Therefore:

$$f(n-1,i) = a(n-1,i)$$

where 0 <= i <= n-1

Number Pyramid: Solution

```
f(i,j) = \begin{cases} a(n-1,j) \text{ , when } i = n-1 \text{ (bottom)} \\ a(i,j) \\ + \max(f(i+1,j)), \\ f(i+1,j+1)), \text{ otherwise} \end{cases}
```

Start the recursion with f(0,0)

Outline

- Next, we will show you how to solve a problem by identifying its <u>sub-problems</u>.
- Pay attention to three basic but important things:
 - Model the problem with sub-problems
 - Design function prototype for data passing and return
 - When to **Terminate**?
- Three Examples:
 - Path Search (1): Lattice Path
 - Path Search (2): Number Pyramid
 - The Classic: Tower of Hanoi

What is the Tower of Hanoi

Goal: Move all the disks from Post A to Post C

Rules:

- (1) move one disk at a time;
- (2) place a disk on the top of another post; and
- (3) a bigger disk cannot be placed above a smaller disk.

Program Output:

A series of steps to guide the user how to move the disks

Tower of Hanoi – 2 disks only

It is easy if we only have 2 disks.

Tower of Hanoi – 3 disks (Part 1 of 2)

It is not difficult if we only have 3 disks.

Tower of Hanoi – 3 disks (Part 2 of 2)

It is not difficult if we only have 3 disks.

Tower of Hanoi – 4 disks = 15 steps

Tower of Hanoi: General Case

This recursion is true for any n. Let r_n be the minimum # of steps to move n disks.

Generally speaking...

$$a_1 = 1$$
, $a_k = 2a_{k-1} + 1$
 $a_2 = 2a_1 + 1 = 3$
 $a_3 = 2a_2 + 1 = 2(2a_1 + 1) + 1 = 4a_1 + 3 = 7$
 $a_4 = 2a_3 + 1 = 2(4a_1 + 3) + 1 = 8a_1 + 7 = 15$
 $a_5 = 2a_4 + 1 = 2(8a_1 + 7) + 1 = 16a_1 + 15 = 31$
 $a_6 = 2a_5 + 1 = 2(16a_1 + 15) + 1 = 32a_1 + 31 = 63$

Guess the pattern is $a_k = 2^k - 1$. You can verify by induction.

Tower of Hanoi: General Case

So, what are the sub-problems?

Solving problem of size n: P(n, A, C), move n disk from Post 1 to Post 3

Sub-problem #1: P(n-1, A, B), move n-1 disks from Post A to Post B.

Tower of Hanoi: General Case

Solving problem of size n: P(n, A, C): move n disk from Post A to Post C

Sub-problem #1: P(n-1, A, B), move top n-1 disks from Post A to Post B

Easy step: move the largest disk from Post A to Post C

Sub-problem #2: P(n-1, B, C), move top n-1 disks from Post B to Post C

Final Solution!

```
1 void tower( int n , char origin , char dest , char buffer )
     if ( n == 0 )
      return :
    tower( n - 1 , origin , buffer , dest );
     printf( "Move Disk %d from %c to %c\n" , n , origin , dest );
     tower( n - 1 , buffer , dest , origin );
8
10 int main( void )
11 {
tower(3, 'A', 'C', 'B');
return 0;
14 }
```

Think and trace carefully the execution order of each line of code in the recursion!!!

Example: n=3

```
1 void tower( int n , char origin , char dest , char buffer )
 2 {
     if ( n == 0 )
 3
        return ;
 5
    tower( n - 1 , origin , buffer , dest );
     printf( "Move Disk %d from %c to %c\n" , n , origin , dest );
     tower( n - 1 , buffer , dest , origin );
 8 }
10 int main( void )
11 {
     tower(3, 'A', 'C', 'B');
12
     return 0;
13
14 }
```

output:

```
Move Disk 1 from A to C

Move Disk 2 from A to B

Move Disk 1 from C to B

Move Disk 3 from A to C

Move Disk 1 from B to A

Move Disk 2 from B to C

Move Disk 1 from A to C
```

Example: n=3

Summary

- Recursion is a function that may call itself
 - Calling a recursion function is like asking a question
- Key idea: Solve a problem by solving smaller subproblems of itself
- Important but basic things (decide before coding):
 - Model the problem with sub-problems
 - Function prototype: data passing and return
 - Termination Condition
- Speed up technique:
 - Memorization to avoid redundant re-computation
- Any limitation? If we call "factorial(100000)", then...

Lastly... Want more problems?

