Early Performance Analysis and Architectural Optimization of a Machine Learning Accelerator Using MatchLib

Michael Fingeroff | High-Level Synthesis Technologist Siemens EDA, a part of Siemens Digital Industries Software

Agenda

Challenges in Designing Al/ML Hardware Convolutional Neural Network (CNN) Overview Early Performance Analysis of CNN Convolution Architectural Refinement Synthesis and RTL Verification

AI/ML Application Challenges

Algorithmic Complexity

 Growing faster than the ability of RTL designers to code and verify

Memory Architecture Complexity

Efficient data movement is key for power, performance and area

RTL Verification Costs Increasing

- Increased design complexity increases bugs introduced during hand-coding of RTL
- RTL regressions involve server farms, electricity cost, licenses and time

Slips in Design Schedule Kills Total Profit

Finding bugs during system integration is too late

Convolutional Neural Network Overview

Convolutional Neural Network Overview

Used in object detection and classification Mostly Convolutional layers

- Majority of computation done here (over 99%)
- Majority of memory traffic
- Bias and activation functions

Pooling layers

Reduce feature map size

Fully connected

Classification

Softmax

normalize class probabilities

2-d 3x3 Convolution Algorithm

- 2-d kernel
- 2-d input array
- Padding left, right, and top and bottom
- Stride = number of elements kernel jumps by

2-d Convolution Algorithm - stride 1, zero pad

3x3 Multiply-

(clipping)

CNN Convolution – conv2d

- CNN convolutional layers have multiple input and output feature maps
- Each output feature map is a sum of separate convolutions across all input feature maps

```
Output feature map
                              OUT FMAP: for (int oc=0; oc<OUT FMAPS; oc++) {
                                                                                    Lots of data
                               -IN FMAP: for (int ic=0;ic<IN FMAPS;ic++) {
                                                                                    movement for feature
Input feature map
                                  FMAP HEIGHT:for(int r=0;r<IN HEIGHT;r++) {</pre>
                                    FMAP WIDTH:for(int c=0;c<IN WIDTH;c++) {</pre>
                                                                                    maps and weights
                                      KERNEL Y:for(int i=0;i<3;i++) {</pre>
                                        KERNEL X:for(int j=0;j<3;j++){</pre>
                                           acc[r][c] += fmap[ic][r-i/2][c-j/2] * kernel[ic][oc][i][j];
2-d convolution
                                      if(<last input fmap>)
                                        fmap out[oc][r][c] = acc[r][c];
```

CNN Convolution – conv2d

 Every output fmap is 3-d convolution across the input fmaps

- Real CNNs have 100's or 1000's of fmaps
 - Lots of convolutions/computations
 - Lots of data movement

CNN Architectural Challenges

- Memory architectures need to leverage data reuse and parallelism
- May have multiple engines or processing elements
 - Block level parallelism
 - Module level parallelism
- Many local memories
- Complex interconnect
 - AXI4, local interconnect, etc.

Block level

Coding Designs with MatchLib

Modelling Bus I/F With MatchLib

Users can easily model bus interfaces using MatchLib

This example models a simple read bus I/F with burst

Initiate a burst by sending address and burst size

Read "burst_size" data from bus I/F

```
class dut : public sc module {
public:
   sc in<uint32>
                             addr offset csr;
   sc in<uint8>
                             burst csr;
  Connections::In <uint32> read data chan;
  Connections::Out <uint32> read addr chan;
   Connections::Out<uint32>
                             read burst chan;
 void main() {
    wait();
    while (1) {
     uint32 addr = addr offset csr.read();
     uint8 burst size = burst csr.read();
      read addr chan.Push(addr);
      read burst chan. Push (burst size);
      do
        uint32 data = read data chan.Pop();
        read data out.Push(data);
       while (--burst size !=0);
```

Modelling Bus I/F With MatchLib

Small burst size and/or non-consecutive addresses will hurt performance by injecting dead cycles

Pre-HLS Simulation

Complex Bus Protocols are Easily Modelled with MatchLib

- AXI4 Master and Slaves are part of the MatchLib library
- AXI4 segmenter transparently manages burst size, 4k boundaries, etc
- AXI4 Read Master I/F with built-in segmentation
 - r_master<>

AXI4 Write Master I/F with built-in segmentation

- w_master<>

AXI4 Slave I/F with built-in segmentation

- slave<>
- Interface reads/writes use connections
 Push/Pop methods
 - Generates AXI4 transactions

```
class bus_if: public sc_module
...
r_master<> r_master0;
...
while (1) {
    ...
r_payload r = r_master0.r.Pop();
    ...
}
```


Early Performance Analysis of CNN Convolution

Design Goals

Implement a CNN for object detection and classification

- 9 layers
- Mostly 3x3 convolution (9 multiply-acc)
- 3.5 billion macs/inference

Low power/performance Ring-doorbell type application

1 inference/sec

500MHz clock frequency

15

Step 1: Original Algorithmic Model of conv2d

- Direct conversion of algorithm to HLS synthesizable bit-accurate model
- Generic bus interfaces with burst
 - Read burst size limited to one due to nonsequential addressing
 - Writes of feature maps can sustain large burst size
- No opportunity for parallelism

```
OFM: for (int ofm=0; ofm<OUT FMAP; ofm++) {
  IFM:for (int ifm=0; ifm<IN FMAP; ifm++) {</pre>
    ROW: for (int r=0; r<MAX HEIGHT; r++) {
      COL: for (int c=0; c<MAX WIDTH; c++) {
        K X:for (int kr=0; kr<KSIZE; kr++) {</pre>
          K Y:for (int kc=0; kc<KSIZE; kc++) {</pre>
            int ridx = r + kr - KSIZE/2;
             int cidx = c + kc - KSIZE/2;
            <zero pad>
            data idx=rdoffset+ifm*ht*wt+ridx*wt+cidx;
            mem in addr.Push(data idx);
            mem in burst.Push(1);
            data = mem in data.Pop();
           _<weight_read_bus_transaction>_
            acc += data*mem in data.Pop();
        acc buf[r][c] += acc; ...
<Copy feature maps to system memory>
```


Step 1: Algorithmic Model Pre-HLS Simulation Results

- SystemC simulation "wall-clock time" took very long (~ 2 hours)
 - Context switching due to non-sequential memory accesses
 - Redundant memory accesses
- Simulation time was ~14 seconds to simulate 1 inference
- Poor design
 - No need to go any further

Pre-HLS Simulation

Architectural Refinement

Step 2: On-chip Buffering and Windowing

- SystemC HLS designs must be architected for efficient data movement and reuse
 - Improved simulation performance
 - Will allow HLS to extract parallelism
- Sliding-window architecture allows feature map data reuse
- Weight register cache read once for each input/output feature map computation

Step 2: On-chip Buffering and Windowing

- 9 weight bursts
 - Stored in register cache
- Feature maps burst a row at a time
 - Could also burst entire feature map
- Sliding window architecture allows
 K_X and K_Y to execute in parallel

```
OFM: for (int ofm=0; ofm<OUT FMAP; ofm++) {
  IFM:for(int ifm=0;ifm<IN FMAP;ifm++) {</pre>
    mem in addr.Push(weight idx);
    mem in burst.Push(9);
    <cache weights>
    ROW: for (int r=0; r<MAX HEIGHT+1; r++) {
      data idx=read offset+ifm*height*width+r*width;
      if(r != height) {
        mem in addr. Push (data idx);
        mem in burst.Push(width);
      COL:for(int c=0;c<MAX WIDTH+1;c++) {</pre>
        if(r != height && c != width)
           data[0] = mem in data.Pop();
           <sliding window architecture>
           K X:for(int kr=0;kr<KSIZE;kr++) {</pre>
            K Y:for(int kc=0;kc<KSIZE;kc++) {</pre>
               acc += window[kr][kc]*weights[kr][kc];
```

"window" and "weights" can be read in parallel

Step 2: On-chip Buffering and Windowing Results

- Simulation results
 - Design goal met with simulation time of 0.864 secs
 - Pre-hls simulation wall-clock time 34 minutes for 1 inference
- All other operations run in software
 - Bias, RELU, max pooling, etc.
 - SystemC testbench runs in zero time
- What can MatchLib and SystemC tell us about the systemlevel performance?

CPU Software Function Calls

```
preprocessing()
setup layer parameters()
start_conv2d()
<HW executing>
wait_for_done()
bias_add();
leakyRelu()
max_pooling()
post_processing()
```


21

Step 3: Interaction with the CPU

- Target hardware platform
 - System memory is shared between the CPU and the conv2d accelerator
 - There is no CPU cache
- SystemC testbench models arbitrated memory between CPU and ML accelerator
 - Approximated CPU instruction execution and memory access time
- The performance of the accelerator is throttled by the CPU
 - Simulation time 2.6 secs
 - Simulation wall-clock time 63 minutes
 - Time spent converting from fixed-point to float

SystemC Simulation of One Inference

Step 4: Fusing Computational Layers

- Move Bias, ReLU, and max pooling into the accelerator
 - Cost little more in hardware area
- Can be coded into the design where feature map data is copied back to system memory
- Design simulation time 0.9 secs for one inference
- Pre-HLS simulation wall-clock time 30 minutes

```
<Get bias from system memory>
ROW CPY: for (int r=0; r<MAX HEIGHT+1; r++) {
  <setup burst size>
 mem out addr.Push(out idx);
 mem out burst.Push (burst size);
  COL CPY: for (int c=0; c<MAX WIDTH+1; c++) {
    add bias = acc buf[r][c] + bias;
    if (relu)
      if (add bias < 0)
        add bias = add bias * SAT TYPE(0.1);
    if (pool) {
      <max pooling>
     mem out data.Push(max);
    }else
      mem out data. Push (add bias);
```


23

Step4 – Bus Utilization

- Memory bus is ~100% utilized by the ML accelerator
- Input feature maps are re-read from system memory for each output feature map computation
 - System memory accesses are an order of magnitude larger for power consumption compared to on-chip SRAM

Pre-HLS Simulation

Step 5: Adding On-chip Buffering

- Buffer feature maps on-chip
 - ~800 KB for full buffering
 - SystemC memory generated my Catapult memory generator
- Split design into multiple processes
 - Memory read process to access system memory
 - Convolution, bias, ReLu, and max pooling process
 - Shared instantiated SystemC feature map memory between processes

Step 5: Adding AXI Master and Slave interfaces

- Existing design with generic bus I/F can be easily "bolted" to an AXI4 master and slave I/F module
- Generic I/F configures the AXI4 master I/F
- Push/pop


```
class bus interface : public sc module, public local axi {
public:
  sc in<bool> clk);
  sc in<bool> rstn);
  //AXI4 Bus I/Fs
 r master<> r master0;
 w master<> w master0;
  typename local axi4 lite::write::template slave<> w slave0;
  //User T/F to DUT
  //Read I/F
 Connections::In<MEM ADDR TYPE> mem in addr;
 Connections::In<BURST TYPE>
                                  mem in burst;
 Connections::Out<DTYPE>
                                  mem in data;
void read master process() {
  ar.ex len = mem in burst.Pop();
   ar.addr = uint32(mem in addr.Pop())<<1;</pre>
  r segment0 ex ar chan.Push(ar);
   while (1) {
    r payload r = r master0.r.Pop();
     data. = r.data;
    mem in data.Push(data);
     if (ar.ex len-- == 0) { break; }
```


Step 5: Adding AXI4 I/Fs and On-chip Buffering

- Bus traffic dramatically reduced to reading input feature maps once
- Simulation time was 0.93 secs for one inference
- Simulation wall-clock time was 20 minutes

Pre-HLS Simulation

Synthesis and RTL Verification

Post-HLS Synthesis RTL Simulation Results

Post-HLS simulation results were very close to the pre-HLS simulation

Post-HLS simulation runtime was over 30x longer than the pre-HLS simulation

Not practical for simulating multiple frames of video

Simulation Type	Simulation Time (secs)	Simulation Wall-clock time(mins)
Pre-HLS	0.93	20
Post-HLS	0.97	630

Source Code Steps

Source code examples and other tutorials can be found at:

- https://hlslibs.org/
- https://github.com/hlslibs

Summary

- Increasing AI/ML algorithm complexity is making RTL verification more difficult
- MatchLib and SystemC allows designers to model and verify the true hardware performance, catching bugs early that would normally be exposed during system integration when it's too late
- MatchLib models can be directly synthesized to RTL and performance of the pre-hls and post-hls results are near identical
- Customers are using MatchLib today to solve the design challenges associated with building AI/ML hardware

Thank you!

