notebook

December 23, 2020

1 Pràctica 2: Neteja i anàlisi de dades

1.1 1. Dataset

El dataset emprat en aquesta pràctica és el generat a la PRA1 de l'assignatura, on vam recollir les dades de la web de Fotocasa dels pisos en lloguer a la ciutat de Barcelona (a data d'octubre de 2020), mitjançant scraping.

L'objectiu de l'anàlisi de les dades d'aquest dataset és:

- Respondre a la pregunta de si hi ha diferències significatives en els preus de lloguer entre els diferents barris de la ciutat.
- Respondre a la pregunta de si hi ha diferències significatives en els preus de lloguer entre les diferents agències.
- Crear un model de regressió que permeti predir el preu d'un habitatge en base a les seves característiques.
- Crear un model no supervisat que ens permeti identificar clústers d'observacions amb el preu inflat respecte al preu mitjà tèoric del seu barri, i plasmar aquests clústers a un mapa de coordenades (latitud, longitud), per tal de veure si es corresponen amb zones específiques de la ciutat.

1.2 2. Selecció de dades

Primerament, determinarem quines són les variables del nostre dataset i el seu tipus. Seguidament, eliminarem aquelles que no aportin informació útil de cara a la nostra anàlisi. Finalment, farem una eliminació de files duplicades.

```
[1]: import pandas as pd
apartments = pd.read_csv('../csv/data_final.csv')
```

1.2.1 Eliminació de dimensions

```
[2]: apartments.dtypes
```

building_type	object
conservation_state	float64
date	object
discount	int64
floor_elevator	int64
is_new_construction	bool
latitude	float64
link	object
longitude	float64
price	float64
realestate	object
realestate_id	int64
rooms	int64
sqft_m2	int64
neighbourhood	object
neighb_meanprice	float64
dtype: object	

Donats els objectius de la nostra anàlisi, hi ha certes columnes del dataset que podem eliminar:

- id, que simplement conté l'índex de la fila dintre del dataset, de moment la deixem per si hem de sel·leccionar files per aquest índex.
- address, que conté la direcció del pis. Ja tenim el barri disponible a la columna neighbourhood i per tant, aquest camp aporta informació innecessària a la nostra anàlisi.
- date, que conté la data en la que es va recollir la mostra. Solament la vam recollir un dia específic i per tant, no aporta cap informació rellevant a l'anàlisi actual.
- realestate_id, que conté l'identificador de l'agència que oferta el pis en lloguer. Ens preferim quedar amb el nom ja que ens permetrà visualitzar la informació de manera més clara

```
[3]: apartments = apartments.drop(columns=['address', 'date', 'realestate_id'])
```

1.2.2 Eliminació de files duplicades

L'eliminació de files duplicades la portarem a terme en base a la variable **link**. Si tenim dues o més observacions del mateix pis de la web de Fotocasa, ens quedarem únicament amb la primera:

[4]:	apartments.loc[apartments.duplicated('link')]						
[4]:		id	bathrooms	building_subtype	building_type	conservation_state	\
	39	39	1	Apartment	Flat	NaN	
	40	40	1	Apartment	Flat	NaN	
	41	41	1	Apartment	Flat	NaN	
	42	42	1	Apartment	Flat	NaN	
	43	43	1	Apartment	Flat	NaN	
	•••	•••	•••	•••	•••	•••	
	11803	11803	2	Attic	Flat	1.0	
	11804	11804	2	Attic	Flat	1.0	
	12007	12007	5	Flat	Flat	2.0	

```
12061
       12061
                       2
                                 Apartment
                                                     Flat
                                                                            NaN
                       7
                                                                            2.0
12116
       12116
                              House_Chalet
                                                     Flat
       discount
                  floor_elevator
                                   is_new_construction
                                                          latitude
39
                                                          41.38071
               0
                                                  False
40
               0
                                0
                                                  False
                                                          41.38071
                                                  False 41.38071
41
               0
                                0
42
               0
                                0
                                                  False
                                                          41.38071
43
               0
                                0
                                                  False
                                                         41.38071
11803
            200
                                1
                                                  False
                                                          41.39394
11804
            200
                                1
                                                  False 41.39394
12007
               0
                                1
                                                  False
                                                          41.39514
12061
            594
                                0
                                                  False 41.39498
12116
               0
                                0
                                                  False
                                                         41.39722
                                                                           price
                                                        link
                                                             longitude
39
       /es/alquiler/vivienda/barcelona-capital/el-rav...
                                                             2.168707
                                                                         525.0
40
       /es/alquiler/vivienda/barcelona-capital/el-rav...
                                                             2.168707
                                                                         525.0
41
       /es/alquiler/vivienda/barcelona-capital/el-rav...
                                                                         525.0
                                                             2.168707
42
       /es/alquiler/vivienda/barcelona-capital/el-rav...
                                                             2.168707
                                                                         525.0
43
       /es/alquiler/vivienda/barcelona-capital/el-rav...
                                                                         525.0
                                                             2.168707
       /es/alquiler/vivienda/barcelona-capital/aire-a...
11803
                                                             2.121359
                                                                        3700.0
11804
       /es/alquiler/vivienda/barcelona-capital/aire-a...
                                                             2.121359
                                                                        3700.0
12007
       /es/alquiler/vivienda/barcelona-capital/aire-a...
                                                             2.141838
                                                                        5300.0
       /es/alquiler/vivienda/barcelona-capital/aire-a...
12061
                                                             2.147670
                                                                        6073.0
       /es/alquiler/vivienda/barcelona-capital/aire-a...
12116
                                                             2.137248
                                                                        9000.0
                                                                      sqft_m2
                                                 realestate
                                                              rooms
39
       INVERSIONES INMOBILIARIAS Y FINANCIERAS SANT A...
                                                                         35
                                                                0
40
                                                                         35
       INVERSIONES INMOBILIARIAS Y FINANCIERAS SANT A...
                                                                0
41
                                                                         35
       INVERSIONES INMOBILIARIAS Y FINANCIERAS SANT A...
                                                                0
42
       INVERSIONES INMOBILIARIAS Y FINANCIERAS SANT A...
                                                                         35
43
       INVERSIONES INMOBILIARIAS Y FINANCIERAS SANT A...
                                                                         35
11803
                         Stipek Ferrer Premium Properties
                                                                          280
                                                                  4
11804
                         Stipek Ferrer Premium Properties
                                                                  4
                                                                          280
12007
                                                 Max Ricart
                                                                  6
                                                                          280
12061
                                                                  4
                                                   Homelike
                                                                          100
12116
                                        FINQUES CANO PUJOL
                                                                  8
                                                                          560
                 neighbourhood
                                 neighb_meanprice
39
                      el raval
                                        14.323614
40
                      el raval
                                         14.323614
41
                                         14.323614
                      el raval
42
                      el raval
                                         14.323614
```

```
43
                     el raval
                                       14.323614
11803
                       sarrià
                                       16.866645
11804
                       sarrià
                                       16.866645
12007
       sant gervasi - galvany
                                       15.275452
12061
       sant gervasi - galvany
                                       15.275452
      sant gervasi - galvany
12116
                                       15.275452
[2268 rows x 17 columns]
```

```
[5]: apartments = apartments.drop_duplicates('link')
```

1.2.3 Tipus de dades

Si observem els tipus de dades anteriors, es pot veure com **conservation_state**, **build-ing_subtype** y **building_type** poden ser variables categòriques, o com **floor_elevator** és en realitat una variable booleana. Podem aplicar la conversió sobre aquestes variables amb l'objectiu de millorar l'anàlisi:

```
[6]: apartments = apartments.astype({
        'conservation_state': 'category',
        'building_subtype': 'category',
        'building_type': 'category',
        'floor_elevator': 'bool',
        'neighbourhood':'category'
})
```

1.3 3. Neteja de dades

1.3.1 Valors buits

Anem a determinar quins són els valors buits de cadascuna de les columnes:

```
[7]: apartments.isna().sum()
```

```
[7]: id
                                 0
     bathrooms
                                 0
     building_subtype
                                 0
     building_type
                                 0
     conservation_state
                              5340
     discount
                                 0
                                 0
     floor_elevator
     is_new_construction
                                 0
                                 0
     latitude
     link
                                 0
                                 0
     longitude
                                 4
     price
     realestate
                               106
```

```
rooms 0
sqft_m2 0
neighbourhood 1
neighb_meanprice 1
dtype: int64
```

Veiem que molts habitatges no tenen informació sobre l'estat de conservació. Omplirem amb -1 aquells que no en tinguin:

```
[8]: apartments['conservation_state'] = apartments['conservation_state'].cat.

→add_categories(-1)

apartments['conservation_state'] = apartments['conservation_state'].fillna(-1)
```

Donat que volem respondre a la pregunta de si hi ha diferències de preu entre les diferents agències, eliminem les observacions que no tenen agència:

```
[9]: apartments = apartments.dropna(subset=['realestate'])
apartments.isna().sum()
```

```
[9]: id
                              0
                              0
     bathrooms
     building_subtype
                              0
     building_type
                              0
     conservation_state
                              0
     discount
                              0
     floor elevator
                              0
     is_new_construction
                              0
     latitude
                              0
     link
                              0
                              0
     longitude
                              4
     price
     realestate
                              0
     rooms
                              0
                              0
     sqft_m2
     neighbourhood
                              1
     neighb_meanprice
                              1
     dtype: int64
```

Pel que fa al preu, es tracta de poques observacions que tenen un valor buit per aquesta variable. Com que l'objectiu d'aquesta anàlisi gira entorn al preu, decidim inserir la informació de forma manual consultant la web de Fotocasa:

```
[10]: apartments[apartments.price.isna()]['link']
```

```
[10]: 12154 /es/alquiler/vivienda/barcelona-capital/calefa...
12155 /es/alquiler/vivienda/barcelona-capital/ascens...
12156 /es/alquiler/vivienda/barcelona-capital/aire-a...
```

```
12157 /es/alquiler/vivienda/barcelona-capital/aire-a...
Name: link, dtype: object
```

Les quatre observacions, un cop consultat el link al web de Fotocasa, corresponen a habitatges que no tenen preu, indicant-ho al web com pre "a consultar". Com necessitem treballar amb els preus, procedirem a eliminiar aquestes dades.

```
[11]: apartments = apartments.dropna(subset=['price'])
```

Finalment, ens queda omplir manualment les observacions que no tenen barri, de nou, mitjançant l'enllaç de Fotocasa per veure si podem determinar aquesta informació:

```
[12]: apartments[apartments.neighbourhood.isna()]
```

```
[12]: id bathrooms building_subtype building_type conservation_state \
1384 1384 1 Flat Flat -1.0

discount floor_elevator is_new_construction latitude \
1384 0 False False 41.35395
```

link longitude price \ 1384 /es/alquiler/vivienda/barcelona-capital/la-mar... 2.148532 750.0

```
realestate rooms sqft_m2 neighbourhood neighb_meanprice 1384 FINCAS LAFONT 3 70 NaN NaN
```

Veiem que es correspon amb el barri de "La marina de Port", així que li assignem el preu mitjà d'aquest barri.

Podem observar que ara el dataset no té valors buits:

```
[14]: apartments.isna().sum()
```

```
0
[14]: id
      bathrooms
                               0
      building_subtype
                               0
                               0
      building_type
      conservation_state
                               0
                               0
      discount
      floor_elevator
                               0
      is_new_construction
                               0
      latitude
                               0
```

```
0
link
                        0
longitude
                        0
price
realestate
                        0
rooms
                        0
sqft_m2
                        0
neighbourhood
                        0
neighb_meanprice
                        0
dtype: int64
```

Podem eliminar l'id:

```
[15]: apartments = apartments.drop(columns=['id'])
```

1.3.2 Outliers

El que primer farem, serà visualitzar a gràfics de tipus boxplot cadascuna de les variables quantitatives per tal de determinar si tenim o no outliers:

```
import matplotlib.pyplot as plt
import matplotlib.colors as colors
import numpy as np
import math

fig = plt.figure(figsize=(16,10))
numeric_attributes = apartments.select_dtypes(include=np.number).columns
for idx, column in enumerate(numeric_attributes):
    ax = fig.add_subplot(2, math.ceil(len(numeric_attributes)/2), idx+1)
    ax.boxplot(apartments[[column]], labels=[column])
```


Sembla evident que tenim prou valors extrems al dataset per a cadascuna de les variables quantitatives. El que cal és determinar si aquests valors són reals i per tant els hem de tenir en compte a l'anàlisi, o d'altra banda podem eliminar aquells que considerem outliers.

Price Si seleccionam els 5 preus més alts del dataset, podem comprovar com es tracta de valors vàlids quan accedim al detall a la pàgina de Fotocasa:

```
[17]: apartments.sort_values('price', ascending=False).head()[['link', 'rooms', _

→ 'bathrooms', 'realestate', 'sqft_m2', 'price']]
[17]:
                                                                            bathrooms
                                                              link
                                                                    rooms
             /es/alquiler/vivienda/barcelona-capital/aire-a...
                                                                      4
      12153
                                                                                  4
             /es/alquiler/vivienda/barcelona-capital/aire-a...
                                                                                  7
      12152
                                                                      8
             /es/alquiler/vivienda/barcelona-capital/aire-a...
                                                                     21
                                                                                 21
      12151
             /es/alquiler/vivienda/barcelona-capital/aire-a...
                                                                                  2
      12150
                                                                      3
              /es/alquiler/vivienda/barcelona-capital/aire-a...
      12149
                                                                      2
                                                                                  1
                                 sqft_m2
                    realestate
                                            price
      12153
                     VIP PISOS
                                     600
                                          29000.0
      12152
                      Homelike
                                          28279.0
                                     550
      12151
             ENGEL & VOELKERS
                                    2500
                                          25000.0
      12150
                      Homelike
                                      85
                                          23092.0
      12149
                      Homelike
                                      54
                                          22839.0
```

Sembla per tant que existeixen uns pocs pisos al dataset amb preus molt elevants, i característiques com nombre d'habitacions, metres quadrats o nombre de banys amb valors que tot i semblar

extrems, són vàlids. Per aquest motiu, decidim **mantenir** aquestes observacions per tal de dur a terme l'anàlisi de dades.

Latitude i Longitude Si s'examinen les variables latitude i longitude, hi veiem valors sospitosos. La latitud és un valor que oscil·la entre -90 i 90, mentre que la longitud ho fa entre -180 i 180. Per tant, qualsevol observació d'aquestes variables fora d'aquest rang es podria considerar un outlier. D'altra banda, esperem que tots els habitages es trobin a la ciutat de Barcelona, per tant, que tinguin coordenades molt semblants.

```
[18]: apartments[(apartments['latitude'] > 90) | (apartments['latitude'] < -90)].
      link latitude longitude
[18]:
     3979
           /es/alquiler/vivienda/barcelona-capital/aire-a...
                                                          41436.0
                                                                    2.173259
           /es/alquiler/vivienda/barcelona-capital/aire-a...
     4177
                                                          41428.0
                                                                    2.189229
     1266
           /es/alquiler/vivienda/barcelona-capital/ascens...
                                                          41424.0
                                                                    2.151020
           /es/alquiler/vivienda/barcelona-capital/aire-a...
     3694
                                                          41422.0
                                                                    2.188695
           /es/alquiler/vivienda/barcelona-capital/calefa...
     6027
                                                          41418.0
                                                                    2.171966
          /es/alquiler/vivienda/barcelona-capital/aire-a...
     4181
                                                          41373.0
                                                                    2.157460
     6920
           /es/alquiler/vivienda/barcelona-capital/aire-a...
                                                          41372.0
                                                                    2.138111
           /es/alquiler/vivienda/barcelona-capital/aire-a...
     7003
                                                          41372.0
                                                                    2.127435
           /es/alquiler/vivienda/barcelona-capital/aire-a...
     2567
                                                          41372.0
                                                                    2.147444
     171
           /es/alquiler/vivienda/barcelona-capital/amuebl...
                                                          41371.0
                                                                    2.148023
                             neighbourhood
                                            price
     3979
                                            950.0
                                    porta
     4177
                                la sagrera
                                            955.0
     1266
                              la teixonera
                                            750.0
     3694
                               sant antoni
                                            910.0
     6027
                               el guinardó
                                           1100.0
     4181
           el poble sec - aei parc montjuïc
                                            955.0
     6920
                                la bordeta
                                           1200.0
     7003
                                     sants
                                           1200.0
     2567
                     la font de la guatlla
                                            850.0
     171
                     la font de la guatlla
                                            580.0
```

Pel que fa a **latitude**, sembla que existeix un error a l'hora d'interpretar els decimals. Les observacions que tenim pels pisos de Barcelona, tenen una latitud que oscil·la entre els següents valors:

```
[19]: apartments[(apartments['latitude']) < 90]['latitude'].max()
```

[19]: 41.46262

[87 rows x 5 columns]

```
[20]: apartments[(apartments['latitude']) < 90]['latitude'].min()
```

[20]: 41.35395

7797

Podem corregir fàcilment els valors incorrectes, ja que tots són superiors a 41370, dividint el valor de **latitude** entre 1000 per a aquestes observacions:

```
[21]:
                                                           link latitude
                                                                           longitude \
            /es/alquiler/vivienda/barcelona-capital/terraz...
      228
                                                               41.46262
                                                                          2.180195
            /es/alquiler/vivienda/barcelona-capital/terraz...
      15
                                                               41.45524
                                                                          2.174660
      609
            /es/alquiler/vivienda/barcelona-capital/terraz...
                                                               41.45345
                                                                          2.190106
      978
            /es/alquiler/vivienda/barcelona-capital/amuebl...
                                                               41.45231
                                                                          2.191007
            /es/alquiler/vivienda/barcelona-capital/aire-a...
      509
                                                               41.45208
                                                                          2.192924
            /es/alquiler/vivienda/barcelona-capital/aire-a...
      578
                                                               41.45131
                                                                          2.190549
      296
            /es/alquiler/vivienda/barcelona-capital/terraz...
                                                               41.45129
                                                                          2.189722
            /es/alquiler/vivienda/barcelona-capital/terraz...
      222
                                                               41.45118
                                                                          2.189822
      1344
            /es/alquiler/vivienda/barcelona-capital/no-amu...
                                                               41.45047
                                                                          2.191933
            /es/alquiler/vivienda/barcelona-capital/calefa...
      7797
                                                               41.44968
                                                                          2.190399
                neighbourhood
                                 price
      228
             ciutat meridiana
                                 600.0
                                 490.0
      15
                   torre baró
      609
            la trinitat vella
                                 675.0
      978
            la trinitat vella
                                 715.0
      509
            la trinitat vella
                                 650.0
      578
                                 664.0
            la trinitat vella
      296
            la trinitat vella
                                 647.0
      222
            la trinitat vella
                                 600.0
      1344 la trinitat vella
                                 750.0
```

Podem aplicar el mateix procés per al camp **longitude**:

la trinitat vella 1250.0

```
[22]:
                                                                           longitude \
                                                           link latitude
      4023
             /es/alquiler/vivienda/barcelona-capital/aire-a... 41.39861
                                                                             2206.0
      1430
             /es/alquiler/vivienda/barcelona-capital/ascens... 41.41937
                                                                             2188.0
             /es/alquiler/vivienda/barcelona-capital/calefa...
      3229
                                                               41.38230
                                                                             2188.0
             /es/alquiler/vivienda/barcelona-capital/aire-a... 41.43369
      2042
                                                                             2186.0
             /es/alquiler/vivienda/barcelona-capital/sant-p... 41.38697
      411
                                                                             2177.0
```

```
4265
       /es/alquiler/vivienda/barcelona-capital/aire-a...
                                                           41.38697
                                                                         2177.0
5685
       /es/alquiler/vivienda/barcelona-capital/calefa...
                                                           41.40808
                                                                         2169.0
5683
       /es/alquiler/vivienda/barcelona-capital/calefa...
                                                           41.40816
                                                                         2169.0
       /es/alquiler/vivienda/barcelona-capital/ascens...
2899
                                                           41.37688
                                                                         2168.0
896
       /es/alquiler/vivienda/barcelona-capital/can-ba...
                                                           41.41630
                                                                         2164.0
       /es/alquiler/vivienda/barcelona-capital/aire-a...
8972
                                                           41.39114
                                                                         2164.0
1140
       /es/alquiler/vivienda/barcelona-capital/ascens...
                                                           41.38768
                                                                         2161.0
       /es/alquiler/vivienda/barcelona-capital/aire-a...
8145
                                                           41.39986
                                                                         2159.0
7232
       /es/alquiler/vivienda/barcelona-capital/terraz...
                                                           41.40638
                                                                         2146.0
7437
       /es/alquiler/vivienda/barcelona-capital/calefa...
                                                           41.40638
                                                                         2146.0
10100
       /es/alquiler/vivienda/barcelona-capital/aire-a...
                                                           41.40403
                                                                         2142.0
9729
       /es/alquiler/vivienda/barcelona-capital/aire-a...
                                                           41.39605
                                                                         2137.0
10196
       /es/alquiler/vivienda/barcelona-capital/aire-a...
                                                           41.38006
                                                                         2111.0
                                neighbourhood
                                                 price
4023
                                   el poblenou
                                                 950.0
1430
                                                 750.0
                                         navas
3229
                               la barceloneta
                                                 900.0
2042
                                   sant andreu
                                                 800.0
411
       sant pere, santa caterina i la ribera
                                                 650.0
4265
       sant pere, santa caterina i la ribera
                                                 975.0
5685
                             el baix guinardó
                                                1090.0
5683
                             el baix guinardó
                                                1090.0
2899
                                      el raval
                                                 855.0
896
                                      can baró
                                                 700.0
8972
                       la dreta de l'eixample
                                                1490.0
1140
             l'antiga esquerra de l'eixample
                                                 738.0
8145
                            la vila de gràcia
                                                1300.0
7232
                         el putxet i el farró
                                                1200.0
7437
                         el putxet i el farró
                                                1200.0
```

Les observacions pels pisos de Barcelona tenen una longitud que oscil·la entre els següents valors:

1750.0

1650.0

1800.0

```
[23]: apartments[(apartments['longitude']) < 180]['longitude'].max()

[23]: 2.224126

[24]: apartments[(apartments['longitude']) < 180]['longitude'].min()</pre>
```

el putxet i el farró

sant gervasi - galvany

la maternitat i sant ramon

[24]: 2.0915220000000003

10100

10196

9729

De nou, si dividim els valors de **longitude** superiors a 2110 entre 1000, corregirem els valors d'aquestes observacions:

```
apartments.loc[apartments['longitude'] > 2110, 'longitude'] =
      →apartments['longitude']/1000
     apartments.sort_values('longitude', ascending=False).head(10)[['link', __
       [25]:
                                                         link latitude longitude \
     8502
            /es/alquiler/vivienda/barcelona-capital/aire-a...
                                                                        2.224126
                                                             41.41129
            /es/alquiler/vivienda/barcelona-capital/aire-a... 41.41315
     10272
                                                                        2.222797
            /es/alguiler/vivienda/barcelona-capital/aire-a... 41.41155
     11252
                                                                        2.221454
     10433
            /es/alquiler/vivienda/barcelona-capital/aire-a... 41.41163
                                                                        2.220950
            /es/alguiler/vivienda/barcelona-capital/aire-a... 41.41353
     10232
                                                                        2.220937
     9594
            /es/alquiler/vivienda/barcelona-capital/aire-a... 41.41261
                                                                        2.220891
     8157
            /es/alquiler/vivienda/barcelona-capital/aire-a... 41.41361
                                                                        2.220773
                                                                        2.220563
     11048
            /es/alquiler/vivienda/barcelona-capital/calefa... 41.41253
     8611
            /es/alquiler/vivienda/barcelona-capital/aire-a... 41.40981
                                                                        2.220171
            /es/alquiler/vivienda/barcelona-capital/aire-a...
     11098
                                                             41.41261
                                                                        2.220109
                                           neighbourhood
                                                           price
     8502
                                   el besòs i el maresme
                                                          1350.0
     10272
                                   el besòs i el maresme
                                                          1800.0
     11252
                                   el besòs i el maresme
                                                          2600.0
     10433
                                   el besòs i el maresme
                                                          1900.0
     10232
                                   el besòs i el maresme
                                                          1800.0
     9594
                                   el besòs i el maresme
                                                         1600.0
     8157
                                   el besòs i el maresme
                                                          1300.0
     11048
                                   el besòs i el maresme
                                                          2400.0
            diagonal mar i el front marítim del poblenou 1400.0
     8611
     11098
                                   el besòs i el maresme
                                                          2500.0
```

Bathrooms Per a aquest camp, tot i que hem comentat que hi ha valors alts que considerem vàlids, si observem el boxplot veiem que hi ha una observació que té un valor molt extrem:

A la web de Fotocasa, s'indica també aquest valor. Tot i això, no és lògic tenir 1901 banys a un pis de 135 metres quadrats de 3 habitacions i per tant, decidim eliminar aquesta observació:

```
[27]: apartments = apartments.drop(index=10875)
[28]: apartments.bathrooms.max()
```

[28]: 21

Superfície

```
[29]: apartments = apartments[apartments['sqft_m2'] != 0]
```

1.3.3 Transformació de dades

Afegirem una nova variable que calculi la diferència de cada habitatge sobre el preu mig del barri:

```
[30]: apartments['diff_mitjana'] = ((apartments['price']/(apartments.

-neighb_meanprice*apartments.sqft_m2))-1)*100
```

1.3.4 Fitxer csv amb les dades finals a analitzar

```
[31]: apartments.to_csv('../csv/data_clean.csv')
```

1.4 4. Anàlisi

1.4.1 Grups a comparar

- Es vol comparar si hi ha diferències de preus estadísticament significatives entre els diferents barris. Cada barri serà, per tant, un grup diferent.
- Es vol comparar si hi ha diferències de preus estadísticament significatives entre les diferents agències. Cada agència serà, per tant, un grup diferent.

1.4.2 Comprovació de la normalitat de la variable price

Atès que les anàlisi d'estadística inferencial que portarem a terme impliquen en tots els casos la variable **price**, serà necessari comprovar prèviament la normalitat d'aquesta variable per tal de saber si hem d'aplicar proves paramètriques o no paramètriques.

Anem a visualitzar l'histograma i el gràfic Q-Q de la variable price per tenir una orientació visual de si aquesta variable segueix o no una distribució normal:

```
[32]: from scipy import stats

fig = plt.figure(figsize=(16,8))

ax = fig.add_subplot(1, 2, 1)
ax.hist(apartments.price, 500, density=True)

ax = fig.add_subplot(1, 2, 2)
stats.probplot(apartments.price, dist='norm', plot=plt)
pass
```


A simple vista, no sembla que la variable **price** segueixi una distribució normal. Per tal de comprovar-ho, portarem a terme la prova de Kolmogorov-Smirnov. El motiu de portar a terme aquesta prova i no la de Shapiro-Wilk, és perquè amb la implementació de Scipy, per un nombre de mostres superior a 5000, el p-value pot no esser precís.

```
[33]: stats.kstest(apartments.price, 'norm', args=(apartments.price.mean(), ⊔
→apartments.price.std()))
```

[33]: KstestResult(statistic=0.2449490400964482, pvalue=0.0)

Podem veure que el p-value és 0 en el nostre cas, més petit que el valor de significació escollit: 0.05. Per tant podem rebutjar la hipòtesi nul·la i concloure que la variable **price no segueix una distribució normal**.

1.4.3 Comprovació de l'homoscedasticitat de la variable price per als diferents grups

Per comprovar l'homoscedasticitat de la variable **price** per als diferents grups que volem comparar, emprarem el test de Fligner-Killeen, ja que prèviament hem observat que aquesta variable no segueix una distribució normal.

Homoscedasticitat dels preus dels barris

```
[34]: neighbourhood_grouped_samples = apartments.groupby('neighbourhood')['price'].

→apply(pd.Series.tolist).tolist()

stats.fligner(*neighbourhood_grouped_samples)
```

[34]: FlignerResult(statistic=2104.733108385882, pvalue=0.0)

Donat el p-value és < 0.05 (el valor de significació escollit), podem concloure doncs que **price** presenta variàncies estadísticament diferents entre els barris de Barcelona.

Homoscedasticitat dels preus de les agències

```
[35]: realestate_grouped_samples = apartments.groupby('realestate')['price'].apply(pd.

→Series.tolist).tolist()

stats.fligner(*realestate_grouped_samples)
```

[35]: FlignerResult(statistic=3493.643125045974, pvalue=1.0719141814502517e-260)

Donat que el p-value és < 0.05 (el valor de significació escollit), podem concloure que **price** presenta variàncies estadísticament diferents entre les agències immoniliaries.

1.4.4 Comprovació de mitjanes de la variable price per als diferents grups

Ja hem vist com la variable **price** no segueix una distribució normal, i com per als grups que es volen analitzar, la variància de **price** entre ells presenta diferències estadísticament significants. Donat tot això, haurem d'emprar proves no paramètriques, en concret el test de Kruskal-Wallis, per tal de saber si la mitjana entre els diferents grups (que són més de dos tant en el cas dels barris com en el cas de les agències) presenta diferències estadísticament significants.

Comparació de mitjanes de preus entre els diferents barris

```
[36]: stats.kruskal(*neighbourhood_grouped_samples)
```

[36]: KruskalResult(statistic=2637.6757596495586, pvalue=0.0)

Donat que el p-value és < 0.05 (el valor de significació escollit), podem concloure que hi ha difències de preu estadísticament significatives entre els barris de Barcelona.

Comparació de mitjanes de preus entre les diferents agències

```
[37]: stats.kruskal(*realestate_grouped_samples)
```

[37]: KruskalResult(statistic=4887.593854046478, pvalue=0.0)

Donat que el p-value és < 0.05 (el valor de significació escollit), podem concloure que hi ha diferències de preu estadísticament significatives entre les ofertes de les diferents agències.

1.4.5 Model de regressió

Anem a construïr un mode de regressió lineal que ens permeti fer prediccions sobre el preu dels habitatges. Per fer això, primer haure de fer unes tranformacions a les dades per que siguin manejables.

Codificació de les variables quantitatives En un model de regressió no podem treballar directament amb dades categóriques. Hem de codificar-les per poder-les incloure en el nostre model. Optarem per One-Hot-Encoding, que ens permet introduïr variables dummy per cada una de les categòries d'una variable.

```
[38]: apartments.realestate.value_counts()
```

```
[38]: ENGEL & VOELKERS
                                                836
     Homelike
                                                760
     APROPERTIES REAL ESTATE Nº Aicat 6388
                                                481
      SH BARCELONA
                                                381
      AREA CASA
                                                332
     La Inmobiliaria de Cartellà
                                                  1
     PUNTO BELLVITGE
     FINCAS MARINA
                                                  1
     DUPLEX GIRONA IMMOBLES S.L.
                                                  1
      EULALIA SALINAS PUJOL
     Name: realestate, Length: 1046, dtype: int64
```

Veiem que per la variable realestate tenim moltes categóries. Per reduir-ne el número, les classificarem segons el nombre d'habitatges que posen en lloguer. Anem a veure com es distribuexi la quantitat d'habitatges que té cada immobiliària.

```
[39]: counts_realestate = apartments.realestate.value_counts().to_frame().

→reset_index()

counts_realestate.columns = ['realestate', 'counts']

counts_realestate.describe()
```

```
[39]:
                   counts
      count 1046.000000
                9.334608
      mean
      std
               42.954420
                1.000000
      min
      25%
                1.000000
      50%
                3.000000
                7.000000
      75%
              836.000000
      max
```

```
[40]: counts_realestate.boxplot()
```

[40]: <AxesSubplot:>

Explorant les dades hem vist que TECNOCASA apareix disgregada en diferents oficines. Comencem per assignar-li la mateixa immobiliària

```
[41]:
                                             realestate
                                                         counts
      57
                              TECNOCASA RIERA ALTA MAR
                                                             24
      129
                  TECNOCASA - ESTUDI AVINGUDA DE ROMA
                                                             13
      198
                                             TECNOCASA
                                                              9
      367
                 TECNOCASA-ESTUDI GRAN DE SANT ANDREU
                                                              4
      373
                        TECNOCASA - ESTUDI MARINA 311
                                                              4
      437
                           TECNOCASA - PISOS BORNE MAR
                                                              3
      496
                               TECNOCASA AVDA. MISTRAL
                                                              3
      509
                  TECNOCASA - PROJECTE LA PROSPERITAT
                                                              3
      513
                             TECNOCASA - HOME GUINARDO
                                                              3
                            TECNOCASA ESTUDI MERIDIANA
      554
                                                              2
      646
                       TECNOCASA - ESTUDI CAP MARAGALL
                                                              2
              TECNOCASA - ESTUDI PROJECTE SANT ANDREU
                                                              2
      671
      842
                             TECNOCASA - ESTUDI NAPOLS
                                                              1
      851
                        TECNOCASA - ESTUDI NOU GAUDI
      901
           TECNOCASA - ESTUDIO PROYECTO MARAGALL 2004
```

```
counts_realestate = apartments.realestate.value_counts().to_frame().
 →reset_index()
counts_realestate.columns = ['realestate', 'counts']
```

Farem la suposició on tots aquells valors de realstate que només tinguin un habitatge els etiquetarem com a porpietaris particulars.

```
[43]: particulars = counts_realestate[counts_realestate.counts==1].realestate
      apartments.loc[apartments.realestate.isin(particulars), "realestate_size"] = __
       →'Particular'
```

Entre 2 i 10, els classificarem com a petits propietaris.

```
[44]: petits propietaris = counts realestate[np.logical and(counts realestate.
       ⇒counts>1, counts_realestate.counts<=10)].realestate
      apartments.loc[apartments.realestate.
       →isin(petits_propietaris), "realestate_size"] = 'Petit'
```

Entre 11 i 50 els classificarem com a propietaris mitjans.

```
[45]: mitja = counts_realestate[np.logical_and(counts_realestate.counts>10,
      ⇒counts realestate.counts<=50)].realestate
      apartments.loc[apartments.realestate.isin(mitja), "realestate_size"] = 'Mitja'
```

Més de 50 i menys de 300 com a grans propietaris

```
[46]: grans = counts realestate[np.logical and(counts realestate.counts>50,

→counts realestate.counts<=300)].realestate
      apartments.loc[apartments.realestate.isin(grans), "realestate size"] = 'Grans'
```

Més de 300, com a molt grans proietaris.

```
[47]: molt_grans = counts_realestate[counts_realestate.counts>300].realestate
      apartments.loc[apartments.realestate.isin(molt_grans), "realestate_size"] = __
       →'Molt grans'
```

Hem simplificat notablement la informació sobre les immobiliàries.

```
[48]: apartments.realestate_size.astype('category')
      apartments.realestate_size.value_counts()
```

```
[48]: Molt grans
                    2790
     Mitja
                    2619
      Petit
                    2276
      Grans
                    1721
      Particular
                     358
      Name: realestate_size, dtype: int64
```

Ara codifiquem les variables:

```
from sklearn.preprocessing import OneHotEncoder
     apartments_regression = apartments.
      →drop(columns=['realestate','building_type','link','neighb_meanprice','diff_mit|ana'])
     cat_labels = apartments_regression.select_dtypes(include=['object',__
      numeric_labels = apartments_regression.select_dtypes(include=['float64',__
      →'int']).columns.to_list()
     preprocessor = ColumnTransformer([('encoder', OneHotEncoder(), cat_labels)],
                         remainder='passthrough'
                    )
     apartments_regression_cod = preprocessor.fit_transform(apartments_regression)
     cat_labels_encoded = preprocessor.named_transformers_['encoder'].
      new_labels = np.concatenate([cat_labels_encoded,numeric_labels])
     apartments_regression_cod = pd.DataFrame(apartments_regression_cod.todense(),_
      ⇔columns=new_labels)
     apartments_regression_cod
[49]:
           building_subtype_Apartment building_subtype_Attic \
                                  0.0
                                                         0.0
     1
                                  0.0
                                                         0.0
     2
                                  0.0
                                                         0.0
     3
                                  0.0
                                                         0.0
     4
                                  1.0
                                                         0.0
     9759
                                  1.0
                                                         0.0
     9760
                                  1.0
                                                         0.0
     9761
                                  0.0
                                                         0.0
     9762
                                                         0.0
                                  1.0
     9763
                                  0.0
                                                         0.0
           building_subtype_CountryHouse building_subtype_Duplex \
                                    0.0
                                                             0.0
     0
                                    0.0
                                                             0.0
     1
                                    0.0
     2
                                                             0.0
     3
                                     0.0
                                                             0.0
     4
                                     0.0
                                                             0.0
     9759
                                    0.0
                                                             0.0
                                                             0.0
     9760
                                    0.0
                                     1.0
                                                             0.0
     9761
     9762
                                     0.0
                                                             0.0
     9763
                                     0.0
                                                             0.0
```

[49]: from sklearn.compose import ColumnTransformer

```
building_subtype_Flat
                              building_subtype_GroundFloorWithGarden \
0
                         0.0
                                                                     0.0
1
                         1.0
                                                                     0.0
                         0.0
                                                                     0.0
2
                         1.0
                                                                     0.0
3
4
                         0.0
                                                                     0.0
                                                                     0.0
9759
                         0.0
9760
                         0.0
                                                                     0.0
9761
                         0.0
                                                                     0.0
                                                                    0.0
9762
                         0.0
9763
                         1.0
                                                                     0.0
      building_subtype_House_Chalet
                                      building_subtype_Loft
0
                                  0.0
                                                           0.0
1
                                  0.0
                                                           0.0
2
                                  0.0
                                                           0.0
3
                                  0.0
                                                           0.0
4
                                  0.0
                                                           0.0
                                  0.0
                                                           0.0
9759
9760
                                  0.0
                                                           0.0
9761
                                  0.0
                                                           0.0
9762
                                  0.0
                                                           0.0
9763
                                  0.0
                                                           0.0
                                       building_subtype_SemidetachedHouse ... \
      building_subtype_SemiDetached
0
                                  0.0
                                                                         0.0
1
                                  0.0
                                                                         0.0 ...
2
                                  0.0
                                                                         0.0 ...
3
                                  0.0
                                                                         0.0 ...
4
                                  0.0
                                                                         0.0 ...
9759
                                  0.0
                                                                         0.0
                                  0.0
                                                                         0.0
9760
                                  0.0
                                                                         0.0 ...
9761
9762
                                  0.0
                                                                         0.0 ...
9763
                                                                         0.0 ...
                                  0.0
      realestate_size_Molt grans realestate_size_Particular
                               0.0
                                                             0.0
0
1
                               0.0
                                                             0.0
                               0.0
2
                                                             0.0
3
                               0.0
                                                             0.0
4
                               0.0
                                                             0.0
```

```
9760
                                   1.0
                                                                0.0
                                                                0.0
      9761
                                   1.0
      9762
                                   1.0
                                                                0.0
      9763
                                   0.0
                                                                0.0
            realestate_size_Petit bathrooms discount latitude
                                                                   longitude \
      0
                              1.0
                                         1.0
                                                    0.0 41.37723
                                                                    2.160380
      1
                              1.0
                                                    0.0 41.43157
                                         1.0
                                                                    2.169108
      2
                              1.0
                                         1.0
                                                    0.0 41.37141
                                                                    2.144235
                                         2.0
                                                    0.0 41.36364
      3
                              1.0
                                                                    2.139371
      4
                              1.0
                                         1.0
                                                    0.0 41.38046
                                                                    2.160540
                                                    0.0 41.37645
      9759
                              0.0
                                         1.0
                                                                    2.142625
      9760
                              0.0
                                         2.0
                                                    0.0 41.38043
                                                                    2.152265
      9761
                              0.0
                                        21.0
                                               30000.0 41.42890
                                                                    2.167005
      9762
                              0.0
                                         7.0
                                                    0.0 41.42745
                                                                    2.167871
      9763
                              1.0
                                         4.0
                                                    0.0 41.39231
                                                                    2.145066
              price rooms
                            sqft_m2
      0
              320.0
                       0.0
                               15.0
              400.0
      1
                       2.0
                               63.0
      2
              430.0
                       0.0
                               17.0
      3
              450.0
                       1.0
                               29.0
      4
              450.0
                       0.0
                               25.0
      9759
                       2.0
                               54.0
           22839.0
      9760 23092.0
                       3.0
                               85.0
      9761 25000.0
                      21.0
                             2500.0
      9762 28279.0
                       8.0
                              550.0
      9763 29000.0
                       4.0
                              600.0
      [9764 rows x 99 columns]
[50]: from sklearn.linear_model import LinearRegression
      from sklearn.model_selection import cross_val_score
      from sklearn.preprocessing import StandardScaler
      from statsmodels.api import OLS
      import statsmodels.api as sm
      X = apartments_regression_cod.drop(columns = 'price')
      y = apartments_regression_cod['price']
      reg = OLS(y,X).fit()
      reg.summary()
```

1.0

0.0

9759

[50]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable:	========		======================================		0.595
Model:		OLS	Adj. R-squared:		0.591
Method:	Least	Squares	F-statistic:		154.6
Date:	Wed, 23	Dec 2020	Prob (F-statistic)	:	0.00
Time:		12:13:56	Log-Likelihood:		-79351.
No. Observations:		9764	AIC:		1.589e+05
Df Residuals:		9671	BIC:		1.596e+05
Df Model:		92			
Covariance Type:		onrobust			
=======================================	:======= :========	=======	======================================		=======
	-	_		coef	std err
t P> t		0.975] 			
building_subtype_	-	4 54	24	4211.8233	5729.218
0.735 0.462 building_subtype_	-7018.643	1.54e+0	J 4	4117.7463	5729.957
U- V1 -	-7114.168	1.53e+0	04	4117.7400	3129.931
building_subtype_			· -	-1.604e+04	5912.692
	7 -2.76e+04		380	2,0010 01	00121002
building_subtype_	Duplex			3822.2003	5731.142
0.667 0.505	-7412.038	1.51e+0	04		
building_subtype_	Flat			3788.4442	5730.031
0.661 0.509	-7443.617	1.5e+0	04		
building_subtype_	GroundFloorW	ithGarden		3884.5898	5726.958
0.678 0.498	-7341.446	1.51e+0	04		
building_subtype_	House_Chalet			4368.3338	5737.173
0.761 0.446	-6877.726	1.56e+0	04		
<pre>building_subtype_</pre>	Loft			3989.0087	5728.314
0.696 0.486	-7239.687	1.52e+0	04		
<pre>building_subtype_</pre>				4825.7286	5742.887
0.840 0.401	-6431.531	1.61e+0	04		
<pre>building_subtype_</pre>	=			3256.8293	5737.739
0.568 0.570	-7990.340	1.45e+0	04		
<pre>building_subtype_</pre>	•			3812.6296	5730.310
0.665 0.506	-7419.977	1.5e+0	04		
conservation_stat	_			4066.8750	1.05e+04
0.387 0.699	-1.65e+04	2.47e+0	04		
conservation_stat	_			4099.3003	1.05e+04
0.390 0.696	-1.65e+04	2.47e+0	04		
conservation_stat	_			4055.9893	1.05e+04
0.386 0.699	-1.65e+04	2.47e+0	04		

conservation_state_3.0	4016.3879	1.05e+04
0.382	3716.2390	1.05e+04
0.353 0.724 -1.69e+04 2.43e+04		
conservation_state_8.0 0.388	4082.0489	1.05e+04
floor_elevator_False	1.204e+04	3.15e+04
0.382	1.2e+04	3.15e+04
0.381 0.703 -4.98e+04 7.38e+04		
is_new_construction_False 0.360 0.719 -5.04e+04 7.31e+04	1.135e+04	3.15e+04
is_new_construction_True	1.269e+04	3.15e+04
0.402	164.3599	986.007
0.167 0.868 -1768.420 2097.139		
neighbourhood_can peguera 0.313	404.1565	1292.205
neighbourhood_canyelles	133.2780	1175.588
0.113	326.0711	1343.437
0.243	020.0711	1040.407
neighbourhood_diagonal mar i el front marítim del pobleno 1.455 0.146 -482.151 3256.172	u 1387.0103	953.552
neighbourhood_el baix guinardó	318.8832	959.239
0.332 0.740 -1561.426 2199.193	373.1920	892.265
neighbourhood_el barri gòtic 0.418	3/3.1920	092.200
neighbourhood_el besòs i el maresme	684.5552	978.451
0.700 0.484 -1233.413 2602.523 neighbourhood_el bon pastor	548.7602	1118.618
0.491 0.624 -1643.966 2741.486		
neighbourhood_el camp d'en grassot i gràcia nova 0.294 0.769 -1576.993 2133.967	278.4870	946.572
neighbourhood_el camp de l'arpa del clot	363.9740	957.908
0.380 0.704 -1513.726 2241.674 neighbourhood_el carmel	149.7152	988.664
0.151 0.880 -1788.273 2087.704		0001001
neighbourhood_el clot 0.423	405.9271	959.511
neighbourhood_el coll	137.1961	976.566
0.140	362.0409	993.041
0.365 0.715 -1584.528 2308.609	002.0103	330.011
neighbourhood_el fort pienc 0.399	370.1739	927.200
neighbourhood_el guinardó	282.7792	976.880

0.289 0.772 -1632.110 2197.668		
neighbourhood_el parc i la llacuna del poblenou	449.0932	925.325
0.485 0.627 -1364.738 2262.925		
neighbourhood_el poble sec - aei parc montjuïc	270.9089	872.471
0.311 0.756 -1439.317 1981.135		
neighbourhood_el poblenou	612.5381	938.870
0.652 0.514 -1227.843 2452.919		
neighbourhood_el putxet i el farró	145.7862	947.153
0.154 0.878 -1710.831 2002.404		
neighbourhood_el raval	230.3642	888.162
0.259 0.795 -1510.619 1971.348		
neighbourhood_el turó de la peira	351.7656	1012.835
0.347 0.728 -1633.603 2337.134		
neighbourhood_horta	286.5606	1011.921
0.283 0.777 -1697.017 2270.138		
neighbourhood_hostafrancs	827.3325	881.660
0.938		
neighbourhood_l'antiga esquerra de l'eixample	367.6466	907.478
0.405	500 0014	000 000
neighbourhood_la barceloneta	539.8316	888.808
0.607	FF 4700	074 404
neighbourhood_la bordeta	55.4799	871.401
0.064 0.949 -1652.649 1763.609	615.9862	916.977
neighbourhood_la dreta de l'eixample 0.672	015.9002	910.977
neighbourhood_la font d'en fargues	2581.6406	1015.508
2.542 0.011 591.033 4572.248	2301.0400	1013.306
neighbourhood_la font de la guatlla	139.9752	875.859
0.160 0.873 -1576.893 1856.843	100.0102	010.005
neighbourhood_la guineueta	341.2280	1064.731
0.320 0.749 -1745.867 2428.323	011.2200	1001.701
neighbourhood_la marina de port	-131.3133	856.279
-0.153	101.0100	000.210
neighbourhood_la maternitat i sant ramon	-57.8130	889.849
-0.065 0.948 -1802.103 1686.477		
neighbourhood_la nova esquerra de l'eixample	264.6756	895.029
0.296		
neighbourhood_la prosperitat	284.2654	1045.616
0.272		
neighbourhood_la sagrada família	403.4895	943.072
0.428		
neighbourhood_la sagrera	421.6366	994.712
0.424 0.672 -1528.208 2371.481		
neighbourhood_la salut	213.5273	960.671
0.222 0.824 -1669.590 2096.645		
neighbourhood_la teixonera	-295.2657	993.267
-0.297 0.766 -2242.277 1651.745		

neighbourhood_la trinitat nova	218.3446	1114.169
0.196	342.9484	1081.029
0.317	-65.8449	1154.439
-0.057 0.955 -2328.788 2197.098	00.0440	1104.400
neighbourhood_la verneda i la pau	468.2804	1001.635
0.468	398.9947	936.240
0.426		
neighbourhood_les corts 0.220	198.8403	904.250
neighbourhood_les roquetes	306.0658	1090.569
0.281 0.779 -1831.677 2443.809		004 004
neighbourhood_les tres torres 0.240	223.3326	931.064
neighbourhood_montbau	253.4808	1065.395
0.238	400 0010	072 274
neighbourhood_navas 0.442	429.9618	973.374
neighbourhood_pedralbes	379.3253	916.557
0.414	200 7050	1000 063
neighbourhood_porta 0.382	389.7852	1020.063
neighbourhood_sant andreu	361.1188	1015.544
0.356 0.722 -1629.560 2351.798 neighbourhood_sant antoni	259.7658	893.451
0.291 0.771 -1491.585 2011.116	259.7050	093.431
neighbourhood_sant genís dels agudells	747.4315	1046.185
0.714	423.1587	926.455
0.457 0.648 -1392.888 2239.205	423.1307	920.433
neighbourhood_sant gervasi - la bonanova	418.7284	948.482
0.441 0.659 -1440.494 2277.951 neighbourhood_sant martí de provençals	425.9120	979.172
0.435 0.664 -1493.470 2345.294	120.0120	010.112
neighbourhood_sant pere, santa caterina i la ribera	424.8387	901.497
0.471 0.637 -1342.284 2191.962 neighbourhood_sants	37.0572	881.130
0.042	0110012	001.100
neighbourhood_sarrià	377.6531	932.658
0.405	310.9440	1334.257
0.233		
neighbourhood_vallcarca i els penitents 0.233 0.816 -1665.766 2114.982	224.6084	964.374
0.233 0.816 -1665.766 2114.982 neighbourhood_vallvidrera, el tibidabo i les planes	56.0155	987.799
-		

0.057	0.955	-1880.277	1992.30	08		
neighbourh	ood_verd	un			507.7932	1128.550
0.450	0.653	-1704.401	2719.98	37		
neighbourh	ood_vila	picina i la t	torre llo	obeta	308.4005	1003.745
0.307	0.759	-1659.149	2275.95	50		
realestate	_size_Gra	ans			4898.8523	1.26e+04
0.389	0.698	-1.98e+04	2.96e+0)4		
realestate	_size_Mi	tja			4729.0675	1.26e+04
0.375	0.708	-2e+04	2.94e+0)4		
realestate	_size_Mo	lt grans			5029.4246	1.26e+04
0.399	0.690	-1.97e+04	2.97e+0)4		
realestate	_size_Pa	rticular			4674.8737	1.26e+04
0.371	0.711	-2e+04	2.94e+0	04		
realestate	_size_Pe	tit			4704.6224	1.26e+04
0.373	0.709	-2e+04	2.94e+0	04		
bathrooms					295.9737	17.234
17.173	0.000	262.191	329.7	757		
discount					0.3119	0.040
7.813	0.000	0.234	0.39	90		
latitude					-575.7537	2244.014
-0.257	0.798	-4974.490	3822.9	983		
longitude					-5804.8852	2067.011
-2.808	0.005	-9856.660	-1753.1	110		
rooms					-44.2087	10.246
-4.315	0.000	-64.293	-24.1	125		
$sqft_m2$					11.0921	0.220
50.319	0.000	10.660	11.5	524		
Omnibus:	======	1.10	======= 396.749		========	0.944
Prob(Omnib		140	0.000		0101	0.944 5890.159
Skew:	us):			<pre>Jarque-Bera (JB): Prob(JB):</pre>	2101	
		,	9.066 233.857	Cond. No.		0.00 1.29e+16
Kurtosis:						
=======	=====		=====		===	====

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 8.34e-24. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

```
[51]: import scipy.stats as stats
  res = reg.resid # residuals
  fig = sm.qqplot(res, stats.t, fit=True, line="45")

plt.title('Q-Q plot')
  plt.show()
```


Veiem que el model de regressió lineal no ens dona una capacitat predictiva gaire elevada, amb un R² proper al 0,6. Al resum del model, observem que moltes de les variables categòriques codificades no són especialment rellevants estadísticament. S'ha de mencionar, que el model de regressió lineal està enfocat a variables continues que originin una resposta lineal, així que no es sorprenen aquests resultats. Al Q-Q plot veiem que no es compleixen les condicions d'homoscedasticitat, fet que podriem imaginar després de l'anàlisi de la variable price.

A continuació, provarem amb un model no lineal.

1.4.6 Regessió amb arbre

```
model.fit(X_train, y_train)
```

[52]: GradientBoostingRegressor(min_samples_split=20)

```
[53]: accuracy = model.score(X_test, y_test)

print("El model té una precisió pel conjunt de test de:

→"+str(round(accuracy*100,2))+"%")
```

El model té una precisió pel conjunt de test de: 66.47%

Sembla que aquest model millora la capacitat predictiva de la regressió lineal. La capacitat de treballar amb atributs categòrics i numèrics i la natura geomètrica del algoritme, són punts a favor d'aquest model que es traslladen en una millor predicció.

1.4.7 Classificació sobre preu inflat

Anem a construïr un altre model, en aquest cas no per predir el preu, sinó per saber si aquest està inflat respecte a la mitjana del barri o no.

```
[54]: apartments_classification = apartments.

→drop(columns=['realestate', 'building_type', 'link', 'neighb_meanprice'])
     cat_labels = apartments_classification.select_dtypes(include=['object',_
      →'category','bool']).columns.to_list()
     numeric_labels = apartments_classification.select_dtypes(include=['float64',_
      →'int']).columns.to list()
     preprocessor = ColumnTransformer([('encoder', OneHotEncoder(), cat_labels)],
                         remainder='passthrough'
     apartments_classification = preprocessor.
      →fit_transform(apartments_classification)
     cat_labels_encoded = preprocessor.named_transformers_['encoder'].
      new_labels = np.concatenate([cat_labels_encoded,numeric_labels])
     apartments_classification = pd.DataFrame(apartments_classification.todense(),_
      →columns=new labels)
     apartments_classification['inflat'] = apartments_classification['diff_mitjana']_
      →> 0
     apartments_classification = apartments_classification.

¬drop(columns=['diff_mitjana'])
```

```
[55]: from sklearn.metrics import accuracy_score

X = apartments_classification.drop(columns = 'inflat')
y = apartments_classification['inflat']
```

El model té una precisió de validació creudada: 80.51% El model té una precisió pel conjunt de test de: 80.02%

Obtenim bons resultats per aquest classificador, tant en el conjunt de test com el de validació creuada.

1.4.8 Detecció de zones tensionades

A continuació, aprofitem que tenim les dades geogràfiques per veure si en podem treure alguna conclusió.

```
[56]: plt.scatter(apartments.longitude,apartments.latitude, s=0.1, alpha=0.4, u → cmap='viridis')
```

[56]: <matplotlib.collections.PathCollection at 0x7f24da10b160>

Ralitzarem un agrupament segons la diferència sobre la mitjana i la posició i visualitzarem el sesultat amb les coordenades espacials, per veure si observem algún patró.

Utilitzarem DBSCAN ja que ens permet detecció d'outliers i és sensible a estructures per densitat. L'objectiu de l'agrupament és trobar punts calents a la ciutat on el preu estigui inflat. Per això, treballarem només amb les dades que tinguin el preu per sobre la mitjana, agruparem segons la posició, i balancejarem els punts segons la diferència sobre la mitjana.

Per començar, fem un estudi de quin és el nombre òptim de clusters:

```
plt.ylabel('SSE')
plt.title('Corba Elbow')
plt.xticks(Nc)
plt.show()
```


[58]: Text(0.5, 1.0, 'Agrupament per posició i diferència respecte a la mitjana')

[59]: <matplotlib.collections.PathCollection at 0x7f252112aa90>

L'algorisme DBSCAN ens permet detectar outliers, que en aquest cas són elements que no s'han pogut relacionar amb cap clúster. Al segón gràfic els veiem en un color claret, mentre que els clústers en un color més fort i definit. Sembla que l'agrupament resultant respón a zones turístiques de la ciutat, que acostumen a ser zones tensionades.

1.5 5. Conclusions

Després de portar a terme l'anàlisi de les dades, podem presentar amb confiança les respostes als diferents objectius plantejats:

• Podem confirmar que existeixen diferències estadísticament significants entre els preus de lloguer dels diferents barris de la ciutat de Barcelona. Sembla un fet lògic, ja que a la majoria de ciutats existeixen barris on el preu és elevat, mentre que d'altres tenen preus mes moderats (zones menys turístiques) o fins i tot preus sorprenentment baixos (zones conflictives).

```
[99]: neighbourhood_mean_prices = apartments[['neighbourhood', 'price']].

→groupby('neighbourhood')['price'].mean().sort_values()

fig = plt.figure(figsize=(16,12))

plt.xlabel('Preu mitjà')

neighbourhood_mean_prices.plot.barh(title='Preus mitjans per barri')
```

[99]: <AxesSubplot:title={'center':'Preus mitjans per barri'}, xlabel='Preu mitjà',
 ylabel='neighbourhood'>

• Podem confirmar també que existeixen diferències estadísticament significants entre els preus de lloguer que ofereixen les diferents agències a la ciutat de Barcelona. Podem explicar aquestes diferències degut a que sovint grans immobiliàries tenen una gran quota de mercat, especialment de pisos amb preus elevats, respecte a d'altres més petites i els particulars, per tant estan en una posició en la que poden jugar amb els preus més lliurement. En part podem observar aquest fet visualment si mirem els preus mitjans segons el tamany d'agència:

```
[98]: realestate_size_mean_price = apartments[['realestate_size', 'price']].

→groupby('realestate_size')['price'].mean().sort_values()

fig = plt.figure(figsize=(16, 8))

plt.xlabel('Preu mitjà')

realestate_size_mean_price.plot.barh(title="Preus mitjans per tamany d'agència")
```

[98]: <AxesSubplot:title={'center':"Preus mitjans per tamany d'agència"}, xlabel='Preu
mitjà', ylabel='realestate_size'>

- Es poden construir **models de regressió** per intentar predir el preu de lloguer d'un habitatge. Tot i això, els models resultants que hem construit a aquesta pràctica (regressió lineal i regressió amb arbre) tenen una **precissió per sota del 70**% en ambdós casos. Com a alternativa, podriem estudiar l'efecte dels valors extrems i proporcionar un model més precís per un rang de preus més acotat.
- El model de classificació no supervisat que hem creat mitjançant l'algorisme DBSCAN (a priori no coneixem el nombre de clústers que podríem formar), ens ha permès confirmar que hi ha zones específiques de la ciutat on el preu està molt per sobre del preu mitjà que aporten els organismes oficials. Com s'ha comentat, sembla que correspon amb zones turístiques, per tant no sorprenen aquests resultats. Tot i això, existeix la possibilitat que els organismes oficials emprin un altre criteri per determinar els preus mitjans dels barris, ja que a la majoria d'ells el preu mitjà de les observacions està per sobre del preu mitjà proporcionat pels organismes oficials:

```
[97]: overpriced_neighbourhoods = apartments.groupby('neighbourhood', □

→observed=True)['diff_mitjana'].mean().sort_values()

fig = plt.figure(figsize=(16, 12))

plt.xlabel('Diferència de preu (%)')

overpriced_neighbourhoods.plot.barh(title='Diferència de preu per barri

→respecte mitjana oficial')
```

[97]: <AxesSubplot:title={'center':'Diferència de preu per barri respecte mitjana oficial'}, xlabel='Diferència de preu (%)', ylabel='neighbourhood'>

