SEL0610 – Laboratório de Circuitos Eletrônicos ${\bf 2^o~Semestre~de~2023}$

Nome – Aluno 1: Carlos Henrique Hannas de Carvalho	Num. USP: 11965988
Nome – Aluno 2: Pedro Antonio Bruno Grando	Num. USP: 12547166

Fontes de Corrente com TBJ - Prática 4

PARTE 1

Montou-se o circuito eletrônico da figura 1, utilizando um TBJ BC558B (pnp), um LED CQX35A, resistores R_i , um osciloscópio e uma fonte de tensão regulável.

Figura 1: Circuito eletrônico da parte 1.

ITEM A)

A partir da figura 1 pode-se montar duas tabelas para analisar as voltagens e correntes, variando os resistores $R_{ajusteI}$ e R_{carga} , respectivamente. O resistor R manteve-se fixo para ambos os casos com um valor nominal de $R=2,2k\Omega$.

Na tabela 1 variou-se o resistor $R_{ajusteI}$; o resistor R_{carga} manteve-se fixo em um valor nominal de, aproximadamente, 100Ω .

$R_{ajusteI}(\Omega)$	$V_{carga}(V)$	$I_{carga}(mA)$
220	$0,\!555$	5,55
470	$0,\!267$	2,67
1000	0,122	1,22

Tabela 1: Tabela de tensão V_{carga} e corrente I_{carga} em função do resistor $R_{ajusteI}$.

Na tabela 2 variou-se o resistor R_{carga} ; o resistor $R_{ajusteI}$ manteve-se fixo em um valor nominal de, aproximadamente, 220Ω .

$R_{carga}(\Omega)$	$V_{carga}(V)$	$I_{carga}(mA)$
100	0,552	5,520
470	2,564	5,450
1000	5,345	5,345

Tabela 2: Tabela de tensão V_{carga} e corrente I_{carga} em função do resistor R_{carga} .

O cálculo da corrente I_{carqa} , para as tabelas 1 e 2, foi feito seguindo a seguinte relação:

$$I_{carga} = \frac{V_{carga}}{R_{carga}} \tag{.1}$$

Pela teoria de circuitos eletrônicos, sabe-se que a escolha da carga não interfere na corrente de coletor. A partir disso, verificou-se que, em um primeiro momento, que se manteve constante a resistência de carga, o aumento da resistência de ajuste provocou uma diminuição na corrente de saída no coletor - o que era esperado. O aumento na resitência do emissor, reduz a tensão no emissor V_E - consequentemente reduz V_{EB} .

Em um segundo instante, com resistor de ajuste constante, variou-se o resistor de carga e houve uma variação insignificante da tensão da carga - isso pode ser atribuído às imperfeições dos equipamentos de medição e componentes utilizados, mostrando que a variação da carga não afeta, de forma significativa, a corrente de coletor do transistor.

ITEM B)

A partir da tabela 1, gerou-se a imagem 2 sobre a medição da tensão sob a carga em que $R_{ajusteI}=220\Omega$.

Figura 2: Medição da tensão sob a carga quando $R_{ajusteI}=220\Omega$.

A partir da tabela 2, gerou-se a imagem 3 sobre a medição da tensão sob a carga em que $R_{carga} = 1000\Omega$.

Figura 3: Medição da tensão sob a carga quando $R_{carga} = 1000\Omega$.

ITEM C)

Nessa topologia, a presença do led força que a base tenha sempre uma tensão $V_{CC} - V_{led}$ - o que é uma opção simples, contudo, mais robusta quando comparada à utilização de um simples divisor de tensão, pois tém-se um controle fácil da tensão de base. Porém, a fonte não conseguirá controlar a corrente se a tensão aplicada for menor que V_{led} - além de que os leds têm um limite de corrente que pode circular por eles, o que pode se tornar um problema, a depender da aplicação.

PARTE 2

Montou-se o circuito eletrônico da figura 4, utilizando um TBJ BC558B (pnp), um diodo zener 1N5239, resistores R_i , um osciloscópio e uma fonte de tensão regulável.

Figura 4: Circuito eletrônico da parte 2.

ITEM A)

A partir da figura 4 pode-se montar duas tabelas para analisar as voltagens e correntes, variando os resistores $R_{ajusteI}$ e R_{carga} , respectivamente. O resistor R manteve-se fixo para ambos os casos com um

valor nominal de, aproximadamente, $R = 2200\Omega$.

Na tabela 3 variou-se o resistor $R_{ajusteI}$; o resistor R_{carga} manteve-se fixo em um valor nominal de, aproximadamente, 100Ω .

$R_{ajusteI}(\Omega)$	$V_{carga}(V)$	$I_{carga}(mA)$
220	0,750	7,50
470	0,349	3,49
1000	0,165	1,65

Tabela 3: Tabela de tensão V_{carga} e corrente I_{carga} em função do resistor $R_{ajusteI}$.

Na tabela 4 variou-se o resistor R_{carga} ; o resistor $R_{ajusteI}$ manteve-se fixo em um valor nominal de, aproximadamente, 220Ω .

$R_{carga}(\Omega)$	$V_{carga}(V)$	$I_{carga}(mA)$
100	0,750	7,50
470	3,467	$7,\!37$
1000	7,07	7,07

Tabela 4: Tabela de tensão V_{carga} e corrente I_{carga} em função do resistor R_{carga} .

A corrente das tabelas 3 e 4 seguiram a relação da equação .1.

Novamente, observa-se o mesmo comportamento que o anterior, no qual o aumento do resistor de ajuste provoca uma diminuição considerável da tensão de emissor, e consequentemente na corrente de coletor; e o aumento do resistor de carga não afeta consideravelmente tal corrente por ser apenas uma carga no coletor.

ITEM B)

A partir da tabela 3, gerou-se a imagem 5 sobre a medição da tensão sob a carga em que $R_{ajusteI}=220\Omega$.

Figura 5: Medição da tensão sob a carga quando $R_{ajusteI} = 220\Omega$.

A partir da tabela 4, gerou-se a imagem 6 sobre a medição da tensão sob a carga em que $R_{carga} = 1000\Omega$.

Figura 6: Medição da tensão sob a carga quando $R_{carga} = 1000\Omega$.

Ambas as topologias tiveram comportamentos semelhantes aos experimentos, contudo, observou-se pequenas variações dos valores numéricos de corrente. Na prática, é relevante notar que a tensão de base da fonte se torna muito mais estável com um diodo zener, o que passa a ser mais facilmente controlada. Além disso, é visível que ambas tem elevada compliância.

ITEM C)

Nessa topologia, a inclusão do diodo zener faz com que a tensão de base se torne a tensão do zener, ou seja, ela ficará fixa, idealmente, em 9,1V; assim, tem-se uma polarização mais estável, que permite um melhor controle da corrente que flui pelo transistor. Um ponto negativo dessa estrutura é que os diodos zener são muito ruidosos, o que pode afetar o funcionamento do circuito.

PARTE 3

Montou-se o circuito eletrônico da figura 7, utilizando dois TBJs BC558B (pnp), resistores R_i , um osciloscópio e uma fonte de tensão regulável.

Figura 7: Circuito eletrônico da parte 3.

ITEM A)

A partir da figura 7 pode-se montar duas tabelas para analisar as voltagens e correntes, variando os resistores $R_{ajusteI}$ e R_{carga} , respectivamente. O resistor R manteve-se fixo para ambos os casos com um valor nominal de, aproximadamente, $R3 = 2200\Omega$.

Na tabela 5 variou-se o resistor $R_{ajusteI}$; o resistor R_{carga} manteve-se fixo em um valor nominal de, aproximadamente, 100Ω .

$R_{ajusteI}(\Omega)$	$V_{carga}(V)$	$I_{carga}(mA)$
220	0,250	2,50
470	0,130	1,30
1000	0,066	0,66

Tabela 5: Tabela de tensão V_{carga} e corrente I_{carga} em função do resistor $R_{ajusteI}$.

Na tabela 6 variou-se o resistor R_{carga} ; o resistor $R_{ajusteI}$ manteve-se fixo em um valor nominal de, aproximadamente, 220Ω .

$R_{carga}(\Omega)$	$V_{carga}(V)$	$I_{carga}(mA)$
100	0,263	2,63
470	1,26	2,68
1000	2,84	2,84

Tabela 6: Tabela de tensão V_{carga} e corrente I_{carga} em função do resistor R_{carga} .

A corrente das tabelas 5 e 6 seguiram a relação da equação .1.

Novamente, o efeito obtido ao variar-se os resistores de ajuste e de carga foram semelhantes aos antes vistos: variar o resistor de ajuste afetou a quantidade de corrente que fluia pelo transistor, enquanto variar o resistor de carga não produziu variações significativas. Na prática, para essa topologia, as variações de corrente foram relativamente grandes para o caso em que se trocou os resistores de carga, mas isso provavelmente se deve a defeitos dos componentes.

ITEM B)

A partir da tabela 5, gerou-se a imagem 8 sobre a medição da tensão sob a carga em que $R_{ajusteI}=220\Omega$.

Figura 8: Medição da tensão sob a carga quando $R_{ajusteI} = 220\Omega$.

A partir da tabela 6, gerou-se a imagem 9 sobre a medição da tensão sob a carga em que $R_{carga} = 1000\Omega$.

Figura 9: Medição da tensão sob a carga quando $R_{carga} = 1000\Omega$.

ITEM C)

Além disso, com a carga fixa em uma valor nominal de, aproximadamente, 1000Ω , variou-se a tensão de alimentação entre 5V e 10v. As figuras 10 e 11 mostram, respectivamente, os valores das tensões sobre o resistor:

Figura 10: Tensão sobre a carga fixa em 1000Ω , para tensão de alimentação em 5V.

Figura 11: Tensão sobre a carga fixa em 1000Ω , para tensão de alimentação em 12V.

A partir da figura 10 percebe-se que a tensão de carga possui valor $V_{carga}=2,85\mathrm{V}$ para o resistor $R_{carga}=1000\Omega$. Ou seja, seguindo a relação .1:

$$I_{carga} = \frac{2,85}{1000} = 2,85mA \tag{.2}$$

A partir da figura 11 percebe-se que a tensão de carga possui valor $V_{carga}=2,80\mathrm{V}$ para o resistor $R_{carga}=1000\Omega$. Ou seja, seguindo a relação .1:

$$I_{carga} = \frac{2,80}{1000} = 2,80mA \tag{.3}$$

Através das equações .2 e .3, percebe-se que não houve mudança significativa no valor de I_{carga} , uma vez que a topologia do circuito possui uma malha de realimentação. A corrente imposta no transistor logo abaixo da resistência ajustável força uma tensão de emissor, que por sua vez é a tensão de base do segundo transistor. Isso modula a corrente do segundo transistor e induz uma corrente no coletor do segundo transistor, que por sua vez é a base do primeiro transistor, e isso modula a tensão de emissor do primeiro, e assim sucessivamente.

Esse processo mantém a corrente modulada, e quase indiferente à variações de tensão de alimentação ou corrente de entrada no circuito. Isso implica em uma fonte de Wilson um circuito extremamente robusto e uma ótima opção de fonte.

CONCLUSÕES

Ao final da prática, estudou-se diversas topologias de fonte de corrente e fez-se análises empíricas da compliância delas. A fonte de Wilson possui a menor compliância entre as topologias análisadas, isto é, ela foi a que menos sofreu variações em seu funcionamento para diferentes entradas, provando ser muito robusta. As fontes com diodos foram mais compliantes e sofreram bastante com as alterações nos resistores de ajuste; apesar dos comportamentos muito semelhantes, a utilização do zener é mais robusta porque mantém a tensão de base mais estável.