

# Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS15060051103

# FCC REPORT (WIFI)

Applicant: SUN CUPID TECHNOLOGY (HK) LIMITED

Address of Applicant: 16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan,

Hong Kong

**Equipment Under Test (EUT)** 

Product Name: LTE mobile phone

Model No.: Z8

Trade mark: NUU

FCC ID: 2ADINNUUZ8

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 29 Jun., 2015

**Date of Test:** 29 Jun, to 24 Jul., 2015

Date of report issued: 24 Jul., 2015

Test Result: PASS\*

#### Authorized Signature:



Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

<sup>\*</sup> In the configuration tested, the EUT complied with the standards specified above.





## **Version**

| Version No. | Date          | Description |
|-------------|---------------|-------------|
| 00          | 24 Jul., 2015 | Original    |
|             |               |             |
|             |               |             |
|             |               |             |
|             |               |             |

Report Clerk Prepared by: Date: 24 Jul., 2015

Reviewed by: Date: 24 Jul., 2015

**Project Engineer** 



# 3 Contents

|          |       |                                | Page |
|----------|-------|--------------------------------|------|
| 1        | CO/   | /ER PAGE                       | 1    |
| 2        | VER   | RSION                          | 2    |
| 3        | CON   | NTENTS                         | 3    |
| 4        |       | ST SUMMARY                     |      |
| 5        |       | NERAL INFORMATION              |      |
| <b>o</b> | GEN   | NEKAL INFORMATION              |      |
|          | 5.1   | CLIENT INFORMATION             | 5    |
|          | 5.2   | GENERAL DESCRIPTION OF E.U.T   | 5    |
|          | 5.3   | TEST ENVIRONMENT AND MODE      | 7    |
|          | 5.4   | LABORATORY FACILITY            | 8    |
|          | 5.5   | LABORATORY LOCATION            | 8    |
|          | 5.6   | TEST INSTRUMENTS LIST          | 9    |
| 6        | TES   | T RESULTS AND MEASUREMENT DATA | 10   |
|          | 6.1   | ANTENNA REQUIREMENT:           | 10   |
|          | 6.2   | CONDUCTED EMISSION             | 11   |
|          | 6.3   | CONDUCTED OUTPUT POWER         | 14   |
|          | 6.4   | OCCUPY BANDWIDTH               | 19   |
|          | 6.5   | POWER SPECTRAL DENSITY         |      |
|          | 6.6   | BAND EDGE                      |      |
|          | 6.6.1 |                                |      |
|          | 6.6.2 |                                |      |
|          | 6.7   | Spurious Emission              |      |
|          | 6.7.  |                                |      |
|          | 6.7.2 | 2 Radiated Emission Method     | 60   |
| 7        | TES   | ST SETUP PHOTO                 | 68   |
| Ω        | FIIT  | CONSTRUCTIONAL DETAILS         | 60   |





# 4 Test Summary

| Test Item                                     | Section in CFR 47 | Result |
|-----------------------------------------------|-------------------|--------|
| Antenna requirement                           | 15.203/15.247 (c) | Pass   |
| AC Power Line Conducted Emission              | 15.207            | Pass   |
| Conducted Peak Output Power                   | 15.247 (b)(3)     | Pass   |
| 6dB Emission Bandwidth 99% Occupied Bandwidth | 15.247 (a)(2)     | Pass   |
| Power Spectral Density                        | 15.247 (e)        | Pass   |
| Band Edge                                     | 15.247(d)         | Pass   |
| Spurious Emission                             | 15.205/15.209     | Pass   |

Pass: The EUT complies with the essential requirements in the standard.



# 5 General Information

## **5.1 Client Information**

| Applicant:                           | SUN CUPID TECHNOLOGY (HK) LIMITED                                                  |
|--------------------------------------|------------------------------------------------------------------------------------|
| Address of Applicant:                | 16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan, Hong Kong                    |
| Manufacturer/ Factory:               | Suncupid (ShenZhen) Electronic Ltd.                                                |
| Address of Manufacturer/<br>Factory: | Baolong Industrial City, Longgang District, Shenzhen Hi-Tech Road, Building 1, A 7 |

# 5.2 General Description of E.U.T.

| Product Name:                                    | LTE mobile phone                                                                 |
|--------------------------------------------------|----------------------------------------------------------------------------------|
| Model No.:                                       | Z8                                                                               |
| Operation Frequency:                             | 2412MHz~2462MHz (802.11b/802.11g/802.11n(H20))<br>2422MHz~2452MHz (802.11n(H40)) |
| Channel numbers:                                 | 11 for 802.11b/802.11g/802.11(H20)<br>7 for 802.11n(H40)                         |
| Channel separation:                              | 5MHz                                                                             |
| Modulation technology:<br>(IEEE 802.11b)         | Direct Sequence Spread Spectrum (DSSS)                                           |
| Modulation technology:<br>(IEEE 802.11g/802.11n) | Orthogonal Frequency Division Multiplexing(OFDM)                                 |
| Data speed (IEEE 802.11b):                       | 1Mbps, 2Mbps, 5.5Mbps, 11Mbps                                                    |
| Data speed (IEEE 802.11g):                       | 6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps                      |
| Data speed (IEEE 802.11n):                       | Up to 150Mbps                                                                    |
| Antenna Type:                                    | Internal Antenna                                                                 |
| Antenna gain:                                    | -2.5 dBi                                                                         |
| AC adapter:                                      | Input:100-240V AC,50/60Hz 0.35A<br>Output:5V DC MAX 1.5A                         |
| Power supply:                                    | Rechargeable Li-ion Battery DC3.8V/2650mAh                                       |





| Operation Frequency each of channel For 802.11b/g/n(H20)                |         |   |         |   |         |    |         |
|-------------------------------------------------------------------------|---------|---|---------|---|---------|----|---------|
| Channel Frequency Channel Frequency Channel Frequency Channel Frequency |         |   |         |   |         |    |         |
| 1                                                                       | 2412MHz | 4 | 2427MHz | 7 | 2442MHz | 10 | 2457MHz |
| 2                                                                       | 2417MHz | 5 | 2432MHz | 8 | 2447MHz | 11 | 2462MHz |
| 3                                                                       | 2422MHz | 6 | 2437MHz | 9 | 2452MHz |    |         |

| Operation Frequency each of channel For 802.11n(H40) |                                                                         |   |         |   |         |  |  |  |  |
|------------------------------------------------------|-------------------------------------------------------------------------|---|---------|---|---------|--|--|--|--|
| Channel                                              | Channel Frequency Channel Frequency Channel Frequency Channel Frequency |   |         |   |         |  |  |  |  |
|                                                      |                                                                         | 4 | 2427MHz | 7 | 2442MHz |  |  |  |  |
|                                                      |                                                                         | 5 | 2432MHz | 8 | 2447MHz |  |  |  |  |
| 3                                                    | 2422MHz                                                                 | 6 | 2437MHz | 9 | 2452MHz |  |  |  |  |

#### Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

## 802.11b/802.11g/802.11n (H20)

| Channel             | Frequency |  |  |
|---------------------|-----------|--|--|
| The lowest channel  | 2412MHz   |  |  |
| The middle channel  | 2437MHz   |  |  |
| The Highest channel | 2462MHz   |  |  |

## 802.11n (H40)

| Channel             | Frequency |  |  |
|---------------------|-----------|--|--|
| The lowest channel  | 2422MHz   |  |  |
| The middle channel  | 2437MHz   |  |  |
| The Highest channel | 2452MHz   |  |  |



Report No: CCIS15060051103

## 5.3 Test environment and mode

| Operating Environment: |                                                         |
|------------------------|---------------------------------------------------------|
| Temperature:           | 24.0 °C                                                 |
| Humidity:              | 54 % RH                                                 |
| Atmospheric Pressure:  | 1010 mbar                                               |
| Test mode:             |                                                         |
| Operation mode         | Keep the EUT in continuous transmitting with modulation |

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

#### Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

| Mode         | Data rate |  |
|--------------|-----------|--|
| 802.11b      | 1Mbps     |  |
| 802.11g      | 6Mbps     |  |
| 802.11n(H20) | 6.5Mbps   |  |
| 802.11n(H40) | 13.5Mbps  |  |

#### **Final Test Mode:**

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11p, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

Report No: CCIS15060051103

## 5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### • FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

## • IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

## • CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

## 5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366



## 5.6 Test Instruments list

| Radiated Emission: |                                      |                                   |                             |                  |                         |                             |  |  |
|--------------------|--------------------------------------|-----------------------------------|-----------------------------|------------------|-------------------------|-----------------------------|--|--|
| Item               | Test Equipment                       | Manufacturer                      | Model No.                   | Inventory<br>No. | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |  |  |
| 1                  | 3m Semi- Anechoic<br>Chamber         | SAEMC                             | 9(L)*6(W)* 6(H)             | CCIS0001         | 08-23-2014              | 08-22-2017                  |  |  |
| 2                  | BiConiLog Antenna                    | SCHWARZBECK<br>MESS-ELEKTRONIK    | VULB9163                    | CCIS0005         | 03-28-2015              | 03-28-2016                  |  |  |
| 3                  | Double -ridged waveguide horn        | SCHWARZBECK<br>MESS-ELEKTRONIK    | BBHA9120D                   | CCIS0006         | 03-28-2015              | 03-28-2016                  |  |  |
| 4                  | EMI Test Software                    | AUDIX                             | E3                          | N/A              | N/A                     | N/A                         |  |  |
| 5                  | Amplifier<br>(10kHz-1.3GHz)          | HP                                | 8447D                       | CCIS0003         | 04-01-2015              | 03-31-2016                  |  |  |
| 6                  | Amplifier<br>(1GHz-18GHz)            | Compliance Direction Systems Inc. | PAP-1G18                    | CCIS0011         | 04-01-2015              | 03-31-2016                  |  |  |
| 7                  | Pre-amplifier<br>(18-26GHz)          | Rohde & Schwarz                   | AFS33-18002<br>650-30-8P-44 | GTS218           | 04-01-2015              | 03-31-2016                  |  |  |
| 8                  | Horn Antenna                         | ETS-LINDGREN                      | 3160                        | GTS217           | 04-01-2015              | 03-31-2016                  |  |  |
| 9                  | Printer                              | HP                                | HP LaserJet P1007           | N/A              | N/A                     | N/A                         |  |  |
| 10                 | Positioning Controller               | UC                                | UC3000                      | CCIS0015         | N/A                     | N/A                         |  |  |
| 11                 | Spectrum analyzer<br>9k-30GHz        | Rohde & Schwarz                   | FSP                         | CCIS0023         | 03-28-2015              | 03-28-2016                  |  |  |
| 12                 | EMI Test Receiver                    | Rohde & Schwarz                   | ESPI                        | CCIS0022         | 03-28-2015              | 03-28-2016                  |  |  |
| 13                 | Loop antenna                         | Laplace instrument                | RF300                       | EMC0701          | 04-01-2015              | 03-31-2016                  |  |  |
| 14                 | Universal radio communication tester | Rhode & Schwarz                   | CMU200                      | CCIS0069         | 03-28-2015              | 03-28-2016                  |  |  |
| 15                 | Signal Analyzer                      | Rohde & Schwarz                   | FSIQ3                       | CCIS0088         | 04-08-2015              | 04-08-2016                  |  |  |

| Cond | Conducted Emission: |                    |                       |                  |                         |                             |  |
|------|---------------------|--------------------|-----------------------|------------------|-------------------------|-----------------------------|--|
| Item | Test Equipment      | Manufacturer       | Model No.             | Inventory<br>No. | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |  |
| 1    | Shielding Room      | ZhongShuo Electron | 11.0(L)x4.0(W)x3.0(H) | CCIS0061         | 11-10-2012              | 11-09-2015                  |  |
| 2    | EMI Test Receiver   | Rohde & Schwarz    | ESCI                  | CCIS0002         | 03-28-2015              | 03-28-2016                  |  |
| 3    | LISN                | CHASE              | MN2050D               | CCIS0074         | 03-28-2015              | 03-28-2016                  |  |
| 4    | Coaxial Cable       | CCIS               | N/A                   | CCIS0086         | 04-01-2015              | 03-31-2016                  |  |
| 5    | EMI Test Software   | AUDIX              | E3                    | N/A              | N/A                     | N/A                         |  |



## 6 Test results and Measurement Data

## 6.1 Antenna requirement:

## Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

#### E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is -2.5 dBi.







# **6.2 Conducted Emission**

| Test Requirement:     | FCC Part 15 C Section 15.207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FCC Part 15 C Section 15.207 |               |  |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------|--|--|
| Test Method:          | ANSI C63.4: 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ANSI C63.4: 2009             |               |  |  |
| Test Frequency Range: | 150 kHz to 30 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 150 kHz to 30 MHz            |               |  |  |
| Class / Severity:     | Class B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              |               |  |  |
| Receiver setup:       | RBW=9 kHz, VBW=30 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |               |  |  |
| Limit:                | Francisco de (MILE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Limit (c                     | dBuV)         |  |  |
|                       | Frequency range (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Quasi-peak                   | Average       |  |  |
|                       | 0.15-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 66 to 56*                    | 56 to 46*     |  |  |
|                       | 0.5-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 56                           | 46            |  |  |
|                       | * Decreases with the logarithm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 60                           | 50            |  |  |
| Test procedure        | <ol> <li>The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment.</li> <li>The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).</li> <li>Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement.</li> </ol> |                              |               |  |  |
| Test setup:           | LISN 40cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | er — AC power |  |  |
| Test Instruments:     | Refer to section 5.6 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                            |               |  |  |
| Test mode:            | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                            |               |  |  |
| Test results:         | Passed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |               |  |  |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |               |  |  |

## **Measurement Data**

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366





#### Neutral:



Trace: 9

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : LTE mobile phone : Z8 Condition

EUT

Model

Test Mode : Wifi mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 C Huni:56% Atmos:101KPa

Test Engineer: YT

Remark

| TOMALK                               | Freq  | Read<br>Level | LISN<br>Factor | Cable<br>Loss | Level | Limit<br>Line | Over<br>Limit | Remark  |
|--------------------------------------|-------|---------------|----------------|---------------|-------|---------------|---------------|---------|
|                                      | MHz   | dBuV          | dB             | ₫B            | dBu₹  | dBu√          | dB            |         |
| 1                                    | 0.165 | 38.65         | 0.25           | 10.77         | 49.67 | 65.21         | -15.54        | QP      |
| 2                                    | 0.175 | 21.44         | 0.25           | 10.77         | 32.46 | 54.72         | -22.26        | Average |
| 3                                    | 0.185 | 37.28         | 0.25           | 10.77         | 48.30 | 64.24         | -15.94        | QP      |
| 4                                    | 0.246 | 33.23         | 0.26           | 10.75         | 44.24 | 61.91         | -17.67        | QP      |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | 0.285 | 21.54         | 0.26           | 10.74         | 32.54 | 50.68         | -18.14        | Average |
| 6                                    | 0.426 | 33.81         | 0.26           | 10.73         | 44.80 | 57.33         | -12.53        | QP      |
| 7                                    | 0.431 | 29.21         | 0.26           | 10.73         | 40.20 | 47.24         | -7.04         | Average |
| 8                                    | 0.481 | 25.75         | 0.28           | 10.75         | 36.78 | 46.32         | -9.54         | Average |
| 9                                    | 0.862 | 30.58         | 0.20           | 10.83         | 41.61 | 56.00         | -14.39        | QP      |
| 10                                   | 1.005 | 21.76         | 0.22           | 10.87         | 32.85 | 46.00         | -13.15        | Average |
| 11                                   | 1.654 | 27.28         | 0.27           | 10.94         | 38.49 | 56.00         | -17.51        | QP      |
| 12                                   | 2.001 | 15.72         | 0.29           | 10.96         | 26.97 | 46.00         | -19.03        | Average |





#### Line:



Trace: 11

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Site

Condition

: LTE mobile phone : Z8 EUT

Model

Test Mode : Wifi mode

Power Rating: AC 120V/60Hz Environment: Temp: 23°C Huni:56% Atmos:101KPa

Test Engineer: YT

Remark

| Freq   | Read<br>Level                                                         | LISN<br>Factor                                                                                                                                            | Cable<br>Loss                                                                                                                                                                                                              | Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Limit<br>Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Over<br>Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Remark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MHz    | dBu∜                                                                  | <u>dB</u>                                                                                                                                                 | ₫B                                                                                                                                                                                                                         | dBu₹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dBu₹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>d</u> B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.165  | 32.11                                                                 | 0.27                                                                                                                                                      | 10.77                                                                                                                                                                                                                      | 43.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 65.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -22.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.170  | 20.61                                                                 | 0.27                                                                                                                                                      | 10.77                                                                                                                                                                                                                      | 31.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 54.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -23.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.226  | 30.70                                                                 | 0.27                                                                                                                                                      | 10.75                                                                                                                                                                                                                      | 41.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 62.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -20.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.431  | 34.58                                                                 | 0.28                                                                                                                                                      | 10.73                                                                                                                                                                                                                      | 45.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 57.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -11.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.431  | 25.28                                                                 | 0.28                                                                                                                                                      | 10.73                                                                                                                                                                                                                      | 36.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 47.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -10.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.690  | 35.21                                                                 | 0.22                                                                                                                                                      | 10.77                                                                                                                                                                                                                      | 46.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 56.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -9.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.747  | 20.93                                                                 | 0.23                                                                                                                                                      | 10.79                                                                                                                                                                                                                      | 31.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -14.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.890  | 33.59                                                                 | 0.24                                                                                                                                                      | 10.84                                                                                                                                                                                                                      | 44.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 56.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -11.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1.021  | 19.51                                                                 | 0.25                                                                                                                                                      | 10.87                                                                                                                                                                                                                      | 30.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -15.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2.077  | 12.01                                                                 | 0.26                                                                                                                                                      | 10.96                                                                                                                                                                                                                      | 23.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -22.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2.993  | 11.45                                                                 | 0.27                                                                                                                                                      | 10.92                                                                                                                                                                                                                      | 22.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -23.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 16.750 | 28.42                                                                 | 0.33                                                                                                                                                      | 10.91                                                                                                                                                                                                                      | 39.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -20.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        | MHz 0.165 0.170 0.226 0.431 0.431 0.690 0.747 0.890 1.021 2.077 2.993 | Freq Level  MHz dBuV  0.165 32.11 0.170 20.61 0.226 30.70 0.431 34.58 0.431 25.28 0.690 35.21 0.747 20.93 0.890 33.59 1.021 19.51 2.077 12.01 2.993 11.45 | Freq Level Factor  MHz dBuV dB  0.165 32.11 0.27 0.170 20.61 0.27 0.226 30.70 0.27 0.431 34.58 0.28 0.431 25.28 0.28 0.690 35.21 0.22 0.747 20.93 0.23 0.890 33.59 0.24 1.021 19.51 0.25 2.077 12.01 0.26 2.993 11.45 0.27 | Freq         Level         Factor         Loss           MHz         dBuV         dB         dB           0.165         32.11         0.27         10.77           0.170         20.61         0.27         10.77           0.226         30.70         0.27         10.75           0.431         34.58         0.28         10.73           0.431         25.28         0.28         10.73           0.690         35.21         0.22         10.77           0.747         20.93         0.23         10.79           0.890         33.59         0.24         10.84           1.021         19.51         0.25         10.87           2.077         12.01         0.26         10.96           2.993         11.45         0.27         10.92 | MHz         dBuV         dB         dB         dBuV           0.165         32.11         0.27         10.77         43.15           0.170         20.61         0.27         10.77         31.65           0.226         30.70         0.27         10.75         41.72           0.431         34.58         0.28         10.73         36.29           0.690         35.21         0.22         10.77         46.20           0.747         20.93         0.23         10.79         31.95           0.890         33.59         0.24         10.84         44.67           1.021         19.51         0.25         10.87         30.63           2.077         12.01         0.26         10.96         23.23           2.993         11.45         0.27         10.92         22.64 | MHz         dBuV         dB         dB         dBuV         dBuV           0.165         32.11         0.27         10.77         43.15         65.21           0.170         20.61         0.27         10.77         31.65         54.94           0.226         30.70         0.27         10.75         41.72         62.61           0.431         34.58         0.28         10.73         45.59         57.24           0.431         25.28         0.28         10.73         36.29         47.24           0.690         35.21         0.22         10.77         46.20         56.00           0.747         20.93         0.23         10.79         31.95         46.00           0.890         33.59         0.24         10.84         44.67         56.00           1.021         19.51         0.25         10.87         30.63         46.00           2.077         12.01         0.26         10.96         23.23         46.00           2.993         11.45         0.27         10.92         22.64         46.00 | Freq         Level         Factor         Loss         Level         Line         Limit           MHz         dBuV         dB         dB         dBuV         dBuV         dB           0.165         32.11         0.27         10.77         43.15         65.21         -22.06           0.170         20.61         0.27         10.77         31.65         54.94         -23.29           0.226         30.70         0.27         10.75         41.72         62.61         -20.89           0.431         34.58         0.28         10.73         45.59         57.24         -11.65           0.431         25.28         0.28         10.73         36.29         47.24         -10.95           0.690         35.21         0.22         10.77         46.20         56.00         -9.80           0.747         20.93         0.23         10.79         31.95         46.00         -14.05           0.890         33.59         0.24         10.84         44.67         56.00         -11.33           1.021         19.51         0.25         10.87         30.63         46.00         -15.37           2.077         12.01         0.26 |

#### Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss



# **6.3 Conducted Output Power**

| Test Requirement: | FCC Part 15 C Section 15.247 (b)(3)                                   |  |  |
|-------------------|-----------------------------------------------------------------------|--|--|
| Test Method:      | ANSI C63.10:2013 and KDB558074v03r03 section 9.2.2                    |  |  |
| Limit:            | 30dBm                                                                 |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |  |  |
| Test Instruments: | Refer to section 5.6 for details                                      |  |  |
| Test mode:        | Refer to section 5.3 for details                                      |  |  |
| Test results:     | Passed                                                                |  |  |

## Measurement Data

| T ( 011 | Ма      | ximum Conduct |              | <b>D</b> 1   |            |        |
|---------|---------|---------------|--------------|--------------|------------|--------|
| Test CH | 802.11b | 802.11g       | 802.11n(H20) | 802.11n(H40) | Limit(dBm) | Result |
| Lowest  | 13.79   | 10.94         | 10.83        | 9.41         |            |        |
| Middle  | 14.58   | 13.67         | 13.61        | 13.63        | 30.00      | Pass   |
| Highest | 14.31   | 11.41         | 11.44        | 9.66         |            |        |

Test plot as follows:

13.79 dBm



Bandwidth



20 MHz

#### Lowest channel



## Middle channel



Highest channel

Page 15 of 69





#### Lowest channel



## Middle channel



Highest channel



## Test mode: 802.11n(H20)



#### Lowest channel



## Middle channel



Highest channel







## Lowest channel



#### Middle channel



Highest channel



# 6.4 Occupy Bandwidth

| Test Requirement: | FCC Part 15 C Section 15.247 (a)(2)                                   |  |  |
|-------------------|-----------------------------------------------------------------------|--|--|
| Test Method:      | ANSI C63.10:2013 and KDB558074v03r03 section 8.1                      |  |  |
| Limit:            | >500kHz                                                               |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |  |  |
| Test Instruments: | Refer to section 5.6 for details                                      |  |  |
| Test mode:        | Refer to section 5.3 for details                                      |  |  |
| Test results:     | Passed                                                                |  |  |

## Measurement Data

|         |         | 6dB Emission |              |              |            |        |
|---------|---------|--------------|--------------|--------------|------------|--------|
| Test CH | 802.11b | 802.11g      | 802.11n(H20) | 802.11n(H40) | Limit(kHz) | Result |
| Lowest  | 9.20    | 15.68        | 16.08        | 35.52        |            |        |
| Middle  | 9.20    | 15.84        | 16.48        | 35.52        | >500       | Pass   |
| Highest | 9.28    | 15.92        | 16.56        | 35.52        |            |        |

| <b>-</b> |         | 99% Occupy |              | 5            |            |        |
|----------|---------|------------|--------------|--------------|------------|--------|
| Test CH  | 802.11b | 802.11g    | 802.11n(H20) | 802.11n(H40) | Limit(kHz) | Result |
| Lowest   | 13.28   | 16.40      | 17.60        | 36.00        |            |        |
| Middle   | 13.68   | 16.56      | 17.68        | 36.00        | N/A        | N/A    |
| Highest  | 14.16   | 16.64      | 17.68        | 35.84        |            |        |

Test plot as follows:



## 6dB EBW

## Test mode: 802.11b



Date: 3.JUL.2015 13:57:18

## Lowest channel



Date: 3..TIIT..2015 13:54:49

## Middle channel



Date: 3.JUL.2015 13:56:12

Highest channel



## Test mode: 802.11g



Date: 3.JUL.2015 13:58:15

## Lowest channel



Date: 3.JUL.2015 13:59:44

## Middle channel



Date: 3..TUT..2015 14:00:51

Highest channel



## Test mode: 802.11n(H20)



Date: 3.JUL.2015 14:02:29

## Lowest channel



Date: 3.JUL.2015 14:03:35

## Middle channel



Date: 3..HH..2015 14:04:55

Highest channel



## Test mode: 802.11n(H40)



Date: 3.JUL.2015 14:06:35

## Lowest channel



Date: 3.JUL.2015 14:07:24

## Middle channel



Date: 27.JUL.2015 18:03:31

Highest channel



## 99% OBW

## Test mode: 802.11b



Date: 3.JUL.2015 14:11:54

## Lowest channel



Date: 3..TIIT..2015 14:12:15

## Middle channel



Date: 3.JUL.2015 14:12:37

Highest channel



## Test mode: 802.11g



Date: 3.JUL.2015 14:13:01

## Lowest channel



Date: 3.JUL.2015 14:13:20

## Middle channel



Date: 3..HIL.2015 14:13:37

Highest channel



## Test mode: 802.11n(H20)



Date: 3.JUL.2015 14:14:03

## Lowest channel



Date: 3.JUL.2015 14:14:26

## Middle channel



Date: 3..MIT..2015 14:14:46

Highest channel



## Test mode: 802.11n(H40)



Date: 3.JUL.2015 14:11:21

## Lowest channel



Date: 3.JUL.2015 14:10:59

## Middle channel



Date: 3..TIIT..2015 14:10:14

Highest channel



# 6.5 Power Spectral Density

| Test Requirement: | FCC Part 15 C Section 15.247 (e)                                      |  |  |
|-------------------|-----------------------------------------------------------------------|--|--|
| Test Method:      | ANSI C63.10:2013 and KDB558074v03r03 section 10.2                     |  |  |
| Limit:            | 8dBm                                                                  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |  |  |
| Test Instruments: | Refer to section 5.6 for details                                      |  |  |
| Test mode:        | Refer to section 5.3 for details                                      |  |  |
| Test results:     | Passed                                                                |  |  |

## Measurement Data

|         |         | Power Spec |              |              |            |        |
|---------|---------|------------|--------------|--------------|------------|--------|
| Test CH | 802.11b | 802.11g    | 802.11n(H20) | 802.11n(H40) | Limit(dBm) | Result |
| Lowest  | 5.86    | -0.93      | -1.02        | -5.07        |            |        |
| Middle  | 4.58    | 1.62       | 1.26         | -1.10        | 8.00       | Pass   |
| Highest | 6.05    | 0.57       | 0.43         | -3.52        |            |        |

Test plot as follows:







Date: 3.JUL.2015 14:18:21

## Lowest channel



Date: 3.JUL.2015 14:18:39

## Middle channel



Date: 3..TUT..2015 14:19:10

Highest channel







Date: 3.JUL.2015 14:19:39

## Lowest channel



Date: 3.JUL.2015 14:20:05

## Middle channel



Date: 3..TUT..2015 14:26:01

Highest channel



## Test mode: 802.11n(H20)



Date: 3.JUL.2015 14:16:45

## Lowest channel



Date: 3.JUL.2015 14:16:24

## Middle channel



Date: 3..TUT..2015 14:15:59

Highest channel



## Test mode: 802.11n(H40)



Date: 3.JUL.2015 14:17:11

## Lowest channel



Date: 3.JUL.2015 14:17:30

## Middle channel



Date: 3..TUT..2015 14:17:51

Highest channel





# 6.6 Band Edge

## 6.6.1 Conducted Emission Method

| Test Requirement: | FCC Part 15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Test Method:      | ANSI C63.10:2013 and KDB558074v03r03 section 13                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |  |
| Test setup:       |                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|                   | Spectrum Analyzer                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|                   | E.U.T                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|                   | Non-Conducted Table                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|                   | Ground Reference Plane                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| Test Instruments: | Refer to section 5.6 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Test results:     | Passed                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |

Test plot as follows:









Date: 3.JUL.2015 14:28:35

Lowest channel

Date: 3.JUL.2015 14:35:55

Highest channel

## 802.11g





Date: 3..TUT..2015 14:29:51

Lowest channel

Date: 3.JUL.2015 14:36:43

Highest channel



## 802.11n(H20)





Date: 3.JUL.2015 14:30:56

Lowest channel

Date: 3.JUL.2015 14:38:02

Highest channel

## 802.11n(H40)





Date: 3.JUL.2015 14:31:55

Lowest channel

Highest channel

Date: 3.JUL.2015 14:33:31



## 6.6.2 Radiated Emission Method

|  | Natiated Liliission Method |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                    |              |               |
|--|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|--------------|---------------|
|  | Test Requirement:          | FCC Part 15 C Section 15.209 and 15.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                    |              |               |
|  | Test Method:               | ANSI C63.10: 2013 and KDB 558074v03r03 section 12.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                    |              |               |
|  | Test Frequency Range:      | 2.3GHz to 2.5GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                    |              |               |
|  | Test site:                 | Measurement Distance: 3m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                    |              |               |
|  | Receiver setup:            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                    |              |               |
|  |                            | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Detector        | RBW                | VBW          | Remark        |
|  |                            | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Peak<br>Peak    | 1MHz<br>1MHz       | 3MHz<br>3MHz | Peak Value    |
|  | Limit:                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | reak            | TIVITIZ            | SIVILIZ      | Average Value |
|  | LIIIII.                    | Freque                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ency            | Limit (dBuV/m @3m) |              | Remark        |
|  |                            | Above 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GH <sub>7</sub> | 54.00              |              | Average Value |
|  |                            | Above 1GHz  74.00  Relative to the second of the top of a rotating table 0.8 meters.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                    |              | Peak Value    |
|  | Tast sature                | the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.  2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.  3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.  4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.  5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.  6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. |                 |                    |              |               |
|  | Test setup:                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                    |              |               |
|  | Test Instruments:          | Refer to section 5.6 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                    |              |               |
|  | Test mode:                 | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                    |              |               |
|  | Test results:              | Passed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                    |              |               |





#### 802.11b

Test channel: Lowest

Horizontal:



Site 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: LTE mobile phone EUT

Model Z8 Test mode : B-L mode Power Rating : AC 120V/60Hz

Temp: 25.5°C Huni: 55% Environment

Test Engineer: Carey REMARK :

| ш | <i>r</i> : |       |          |       |              |        |        |        |         |  |
|---|------------|-------|----------|-------|--------------|--------|--------|--------|---------|--|
|   |            | Read  | Ant enna | Cable | Cable Preamp |        | Limit  | t Over |         |  |
|   | Freq       | Level | Factor   | Loss  | Factor       | Level  | Line   | Limit  | Remark  |  |
|   | MHz        | dBu∀  | dB/m     | ₫B    | dB           | dBuV/m | dBuV/m | dB     |         |  |
|   | 2390.000   | 17.52 | 27.58    | 6.63  | 0.00         | 51.73  | 74.00  | -22.27 | Peak    |  |
|   | 2390,000   | 7.30  | 27.58    | 6.63  | 0.00         | 41.51  | 54.00  | -12.49 | Average |  |

#### Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.





Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : LTE mobile phone

Model : Z8 Test mode : B-L mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

REMARK

|   |                      | Read  | Antenna | nna Cable<br>tor Loss | Preamp | T 1            | Limit  | Over  |                 |  |
|---|----------------------|-------|---------|-----------------------|--------|----------------|--------|-------|-----------------|--|
|   | Freq                 | rever | ractor  | Loss                  | ractor | rever          | Line   | Limit | Kemark          |  |
|   | MHz                  | dBu∜  | dB/m    | d₿                    | d₿     | dBuV/m         | dBuV/m | ₫B    |                 |  |
| ) | 2390.000<br>2390.000 |       |         |                       |        | 53.27<br>41.40 |        |       | Peak<br>Average |  |

### Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.





Test channel: Highest

Horizontal:



Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: LTE mobile phone : Z8 EUT

Model

Test mode : B-H mode Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: Carey

REMARK

| mu |          |       |         |       |        |        |        |        |         |
|----|----------|-------|---------|-------|--------|--------|--------|--------|---------|
|    |          | Read  | Antenna | Cable | Preamp |        |        | Over   |         |
|    | Freq     | Level | Factor  | Loss  | Factor | Level  | Line   | Limit  | Remark  |
| -  | MHz      | dBu∀  | dB/m    | dB    | dB     | dBuV/m | dBuV/m | dB     |         |
|    | 2483.500 | 18.78 | 27.52   | 6.85  | 0.00   | 53.15  | 74.00  | -20.85 | Peak    |
|    | 2483,500 | 8.08  | 27.52   | 6.85  | 0.00   | 42.45  | 54.00  | -11.55 | Average |

#### Remark:

2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366





Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : LTE mobile phone

: Z8 Model Test mode : B-H mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey REMARK

| JILLIU |                      | Read<br>Level | Antenna<br>Factor | Cable<br>Loss | Preamp<br>Factor | Level  | Limit<br>Line | Over<br>Limit | Remark |
|--------|----------------------|---------------|-------------------|---------------|------------------|--------|---------------|---------------|--------|
|        | MHz                  | dBu∜          | dB/m              | āB            | <u>d</u> B       | dBuV/m | dBuV/m        | dB            |        |
|        | 2483.500<br>2483.500 |               |                   |               |                  |        |               |               |        |

### Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.





# 802.11g

Test channel: Lowest

#### Horizontal:



Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : LTE mobile phone

: Z8 Model : G-L mode Test mode

Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

REMAI

| LR. | К :       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |       |        |      |        |
|-----|-----------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|-------|--------|------|--------|
|     | Freq      | Read | Antenna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cable | Preamp | Level | Limit  | Over | Remark |
|     |           |      | dB/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |        |       |        |      |        |
|     | 2390, 000 |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 0.00   |       | 11 St. |      | Pools  |
|     | 2390.000  |      | Committee of the Commit |       |        |       |        |      |        |

#### Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366







Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT LTE mobile phone

Model : Z8 Test mode : G-L mode Power Rating : AC 120V/60Hz

Environment: Temp: 25.5°C Huni: 55%

Test Engineer: Carey REMARK :

| T HEAT | -                    |      | Antenna<br>Factor    |    |           |                |        | Over<br>Limit | Remark |
|--------|----------------------|------|----------------------|----|-----------|----------------|--------|---------------|--------|
|        | MHz                  | dBu∜ | dB/m                 | dB | <u>dB</u> | dBuV/m         | dBuV/m | <u>dB</u>     |        |
| 1 2    | 2390.000<br>2390.000 |      | 77 STONE 1 TO 1 TO 1 |    |           | 52.97<br>41.45 |        |               |        |

#### Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.





Test channel: Highest

### Horizontal:



Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : LTE mobile phone

: 28 Model

Test mode : G-H mode Power Rating : AC 120V/60Hz

Test Engineer: Carey REMARK Environment : Temp: 25.5°C Huni: 55%

| CHUTT |          | Read  | Antenna | Cable | Presmo |        | Limit  | Over   |         |
|-------|----------|-------|---------|-------|--------|--------|--------|--------|---------|
|       | Freq     | Level | Factor  | Loss  | Factor | Level  | Line   | Limit  | Remark  |
|       | MHz      | dBu∜  | dB/m    | dB    | dB     | dBuV/m | dBuV/m | dB     |         |
|       | 2483.500 |       |         |       |        |        |        |        |         |
| 2     | 2483.500 | 8.39  | 27.52   | 6.85  | 0.00   | 42.76  | 54.00  | -11.24 | Average |

# Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.





Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : LTE mobile phone Condition

EUT

: Z8 Model Test mode : G-H mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey REMARK :

| 141 | Readântenna |       |                | Cable | Preamp |        | Limit  | Over  |                 |  |
|-----|-------------|-------|----------------|-------|--------|--------|--------|-------|-----------------|--|
|     | Freq        | Level | Factor         | Loss  | Factor | Level  | Line   | Limit | Remark          |  |
|     | MHz         | dBu∜  | dB/m           | ₫B    | d₿     | dBuV/m | dBuV/m | dB    |                 |  |
|     |             |       | 27.52<br>27.52 |       |        |        |        |       | Peak<br>Average |  |

#### Remark:

2

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.





### 802.11n (H20)

Test channel: Lowest

#### Horizontal:



Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

LTE mobile phone EUT

Model : Z8

Test mode : N20-L mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey REMARK :

| IVI | un :                 | Read    | Antenna | Cable | Preamp |        | Limit  | Over  |        |  |  |
|-----|----------------------|---------|---------|-------|--------|--------|--------|-------|--------|--|--|
|     | Free                 | l Level | Factor  | Loss  | Factor | Level  | Line   | Limit | Remark |  |  |
|     | MH <sub>2</sub>      | dBu∀    | dB/m    | ₫B    | dB     | dBuV/m | dBuV/m | dB    |        |  |  |
|     | 2390.000<br>2390.000 |         |         |       |        |        |        |       |        |  |  |

# Remark:

1 2

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.







Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: LTE mobile phone EUT

Model : Z8

Test mode : N20-L mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

REMARK

| <br>•••  |      |        | Cable | Preamp    |        | Limit  | Over      |         |  |
|----------|------|--------|-------|-----------|--------|--------|-----------|---------|--|
| Freq     |      | Factor |       |           |        |        |           |         |  |
| MHz      | dBu∜ | dB/m   | dB    | <u>dB</u> | dBuV/m | dBuV/m | <u>dB</u> |         |  |
| 2390.000 |      |        |       |           |        |        |           |         |  |
| 2390.000 | 7.24 | 27.58  | 6.63  | 0.00      | 41.45  | 54.00  | -12.55    | Average |  |

#### Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.





Test channel: Highest

### Horizontal:



: 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

: LTE mobile phone : Z8 EUT

Model

: N20-H mode Test mode

Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey REMARK :

| - |          | Read  | Antenna | Cable | Preamp |        | Limit  | Over   | er      |  |  |
|---|----------|-------|---------|-------|--------|--------|--------|--------|---------|--|--|
|   | Freq     | Level | Factor  | Loss  | Factor | Level  | Line   | Limit  | Remark  |  |  |
|   | MHz      | dBu∜  | dB/m    | dB    | dB     | dBuV/m | dBuV/m | dB     |         |  |  |
|   | 2483.500 | 19.48 | 27.52   | 6.85  | 0.00   | 53.85  | 74.00  | -20.15 | Peak    |  |  |
|   | 2483.500 | 8.22  | 27.52   | 6.85  | 0.00   | 42.59  | 54.00  | -11.41 | Average |  |  |

#### Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.





Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : LTE mobile phone Condition

EUT

Model : Z8

Test mode : N20-H mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55% Test Engineer: Carey REMARK :

| IIIMIU | r :      | Read  | Antenna | Cable | Preamp |        | Limit  | Over      |        |
|--------|----------|-------|---------|-------|--------|--------|--------|-----------|--------|
|        | Freq     | Level | Factor  | Loss  | Factor | Level  | Line   | Limit     | Remark |
|        | MHz      | dBu∜  | dB/m    | dB    | dB     | dBuV/m | dBuV/m | <u>dB</u> |        |
| 1      | 2483.500 | 18.90 | 27.52   | 6.85  | 0.00   | 53.27  | 74.00  | -20.73    | Peak   |
|        | 2483 500 |       |         |       |        |        |        |           |        |

# Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.





## 802.11n (H40)

Test channel: Lowest

#### Horizontal:



Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : LTE mobile phone Condition

EUT

Model : Z8

: N40-L mode Test mode Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: Carey

REMARK

|      | 7000                 |      | Antenna<br>Factor |    |           |        |        |           |  |
|------|----------------------|------|-------------------|----|-----------|--------|--------|-----------|--|
|      | MHz                  | dBu∀ | dB/m              | dB | <u>dB</u> | dBuV/m | dBuV/m | <u>dB</u> |  |
| ili. | 2390.000<br>2390.000 |      |                   |    |           |        |        |           |  |

# Remark:

2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.







Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : LTE mobile phone Condition

EUT

Model : Z8

Test mode : N40-L mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C

Test Engineer: Carey

REMARK

| 1777 |          |                         |                   |      |      |        |        |        |         |
|------|----------|-------------------------|-------------------|------|------|--------|--------|--------|---------|
|      | Freq     |                         | Antenna<br>Factor |      |      |        |        |        |         |
|      | MHz      | dBu∜                    | dB/m              | dB   | dB   | dBuV/m | dBuV/m | dB     |         |
|      | 2390.000 | - 73.0 Table 50.75 U.S. | 77.               |      | 0.00 |        |        |        |         |
|      | 2390.000 | 7.67                    | 27.58             | 6.63 | 0.00 | 41.88  | 54.00  | -12.12 | Average |

#### Remark:

2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.





Test channel: Highest

#### Horizontal:



Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : LTE mobile phone Condition

EUT

: Z8 Model

Test mode : N40-H mode Power Rating: AC 120V/60Hz Environment: Temp: 25.5°C Huni: 55% Test Engineer: Carey REMARK:

| L/V     |    |       |          |       |        |        |        |           |         |
|---------|----|-------|----------|-------|--------|--------|--------|-----------|---------|
|         |    | Read  | Ant enna | Cable | Preamp |        | Limit  | Over      |         |
| Fre     | рe | Level | Factor   | Loss  | Factor | Level  | Line   | Limit     | Remark  |
| MI      | Ηz | dBu∜  | dB/m     | dB    | dB     | dBuV/m | dBu√/m | <u>dB</u> |         |
|         |    |       | 27.52    |       |        |        |        |           |         |
| 2483.50 | 00 | 8.23  | 27.52    | 6.85  | 0.00   | 42,60  | 54.00  | -11.40    | Average |

#### Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.







Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : LTE mobile phone Condition

EUT

: Z8 Model

Test mode : N40-H mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey REMARK :

| 71 | un .      |       |              |       |           |        |        |        |         |   |
|----|-----------|-------|--------------|-------|-----------|--------|--------|--------|---------|---|
|    |           | Read  | Antenna      | Cable | Preamp    | 27 521 | Limit  | Over   |         |   |
|    | Freq      | Level | Factor       | Loss  | Factor    | Level  | Line   | Limit  | Remark  |   |
|    | MHz       | dBu∜  | <u>dB</u> /m | ₫B    | <u>dB</u> | dBuV/m | dBuV/m | dB     |         | - |
|    | 2483,500  | 19.27 | 27.52        | 6.85  | 0.00      | 53.64  | 74.00  | -20.36 | Peak    |   |
|    | 2483, 500 | 7.87  | 27. 52       | 6.85  | 0.00      | 42.24  | 54.00  | -11.76 | Average |   |

#### Remark:

2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



# 6.7 Spurious Emission

# 6.7.1 Conducted Emission Method

| Test Requirement: | FCC Part 15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Test Method:      | ANSI C63.10:2013 and KDB558074 section 11                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |  |  |  |  |  |
| Test setup:       | radiated measurement.                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
|                   | Spectrum Analyzer                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
|                   | E.U.T                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
|                   | Non-Conducted Table                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
|                   | Ground Reference Plane                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| Test Instruments: | Refer to section 5.6 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| Test results:     | Passed                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |

Test plot as follows:







Date: 3.JUL.2015 14:56:54

30MHz~25GHz

# Middle channel



Date: 3.JUL.2015 14:55:53



# Highest channel



Date: 3.JUL.2015 14:56:19

30MHz~25GHz

Test mode: 802.11g





Date: 3.JUT..2015 14:57:29



### Middle channel



Date: 3.JUL.2015 14:57:58

30MHz~25GHz

# Highest channel



Date: 3.JUL.2015 14:58:27



# Test mode: 802.11n(H20) Lowest channel



Date: 3.JUL.2015 14:59:03

### 30MHz~25GHz

#### Middle channel



Date: 3.JUL.2015 14:59:32



# Highest channel



Date: 3.JUL.2015 15:00:01

30MHz~25GHz

Test mode: 802.11n(H40)

# Lowest channel



Date: 3.JUL.2015 15:00:28



### Middle channel



Date: 3.JUL.2015 15:00:55

# 30MHz~25GHz

### Highest channel



Date: 3.JUT..2015 15:01:21





# 6.7.2 Radiated Emission Method

| Test Requirement:     | FCC Part 15 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Section 15.209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | and 15.205                                                                                                                                                                                                   |                                                                                                                                                                                                     |                                                                                                                                                                                        |  |  |  |  |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Test Method:          | ANSI C63.10:2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                              |                                                                                                                                                                                                     |                                                                                                                                                                                        |  |  |  |  |  |
| Test Frequency Range: | 9KHz to 25GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                              |                                                                                                                                                                                                     |                                                                                                                                                                                        |  |  |  |  |  |
| Test site:            | Measurement D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | istance: 3m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                              |                                                                                                                                                                                                     |                                                                                                                                                                                        |  |  |  |  |  |
| Receiver setup:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                              |                                                                                                                                                                                                     |                                                                                                                                                                                        |  |  |  |  |  |
|                       | Frequency Detector RBW VBW Remark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                              |                                                                                                                                                                                                     |                                                                                                                                                                                        |  |  |  |  |  |
|                       | 30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Valu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                              |                                                                                                                                                                                                     |                                                                                                                                                                                        |  |  |  |  |  |
|                       | Above 1GHz Peak 1MHz 3MHz Peak Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                              |                                                                                                                                                                                                     |                                                                                                                                                                                        |  |  |  |  |  |
|                       | Peak 1MHz 3MHz Average Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                              |                                                                                                                                                                                                     |                                                                                                                                                                                        |  |  |  |  |  |
| Limit:                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                              |                                                                                                                                                                                                     |                                                                                                                                                                                        |  |  |  |  |  |
|                       | Freque                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Limit (dBuV                                                                                                                                                                                                  | •                                                                                                                                                                                                   | Remark                                                                                                                                                                                 |  |  |  |  |  |
|                       | 30MHz-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40.0                                                                                                                                                                                                         |                                                                                                                                                                                                     | Quasi-peak Value                                                                                                                                                                       |  |  |  |  |  |
|                       | 88MHz-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 43.5                                                                                                                                                                                                         |                                                                                                                                                                                                     | Quasi-peak Value                                                                                                                                                                       |  |  |  |  |  |
|                       | 216MHz-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 46.0                                                                                                                                                                                                         |                                                                                                                                                                                                     | Quasi-peak Value                                                                                                                                                                       |  |  |  |  |  |
|                       | 960MHz-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TGHZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 54.0<br>54.0                                                                                                                                                                                                 |                                                                                                                                                                                                     | Quasi-peak Value Average Value                                                                                                                                                         |  |  |  |  |  |
|                       | Above 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 74.0                                                                                                                                                                                                         |                                                                                                                                                                                                     | Peak Value                                                                                                                                                                             |  |  |  |  |  |
| Test Procedure:       | the ground to determin 2. The EUT wantenna, wantenna, wantenna and the ground Both horizon make the make the maters and to find the maters and to find the maters and the find the find the maters and the find the material find the f | at a 3 meter case the position was set 3 meter hich was mour has height is var to determine the total and vertice neasurement. Uspected emissionen the antennal the rota table maximum read ceiver system and width with sion level of the ecified, then te would be reported as the position of the the posit | ne top of a reamber. The top of the highest saway from the don the top of the maximum all polarizations, the EU a was turned was turned was set to P Maximum He EUT in peasing could by the double re-tested | otating table able was ro at radiation. the interfer op of a variate meter to for value of the ons of the art to heights from 0 degreeak Detect old Mode. It was a stopped a vise the emione by one | e 0.8 meters above tated 360 degrees rence-receiving able-height antenna our meters above te field strength. Intenna are set to aged to its worst from 1 meter to 4 ees to 360 degrees |  |  |  |  |  |











#### **Below 1GHz**

Horizontal:



Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

: LTE mobile phone EUT

Test mode : Wifi(TX) Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: YT
REMARK

| THUTTE |         |       |                   |      |       |        |               |               |    |
|--------|---------|-------|-------------------|------|-------|--------|---------------|---------------|----|
|        | Freq    |       | Antenna<br>Factor |      |       |        | Limit<br>Line | Over<br>Limit |    |
|        |         |       |                   |      |       |        |               |               |    |
| -      | MHz     | dBu∜  | dB/m              | ₫B   | ₫B    | dBuV/m | dBuV/m        | dB            |    |
| 1      | 76.512  | 54.96 | 8.03              | 0.83 | 29.67 | 34.15  | 40.00         | -5.85         | QP |
| 2      | 98.487  | 54.22 | 13.06             | 0.95 | 29.54 | 38.69  | 43.50         | -4.81         | QP |
| 3      | 182.559 | 59.66 | 9.92              | 1.36 | 28.95 | 41.99  | 43.50         | -1.51         | QP |
| 4      | 216.024 | 51.83 | 11.07             | 1.46 | 28.73 | 35.63  | 46.00         | -10.37        | QP |
| 5      | 329.039 | 42.75 | 13.73             | 1.87 | 28.51 | 29.84  | 46.00         | -16.16        | QP |
| 6      | 373.311 | 47.27 | 14.54             | 2.03 | 28.66 | 35.18  | 46.00         | -10.82        | QP |
|        |         |       |                   |      |       |        |               |               |    |







Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL : LTE mobile phone Condition

EUT

: Z8
Test mode : Wifi(TX) Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Humi:55%
Test Engineer: YT
REMARK :

|   | Freq    |       | Antenna<br>Factor             |           |           |        |        | Over<br>Limit | Remark |
|---|---------|-------|-------------------------------|-----------|-----------|--------|--------|---------------|--------|
| - | MHz     | —dBu∜ | $-\overline{dB}/\overline{m}$ | <u>dB</u> | <u>dB</u> | dBu√/m | dBu√/m | dB            |        |
| 1 | 76.512  | 50.66 | 8.03                          | 0.83      | 29.67     | 29.85  | 40.00  | -10.15        | QP     |
| 2 | 101.289 | 43.20 | 13.02                         | 0.97      | 29.52     | 27.67  | 43.50  | -15.83        | QP     |
| 3 | 138.874 | 47.00 | 8.24                          | 1.25      | 29.28     | 27.21  | 43.50  | -16.29        | QP     |
| 4 | 182.559 | 54.59 | 9.92                          | 1.36      | 28.95     | 36.92  | 43.50  | -6.58         | QP     |
| 5 | 211.527 | 43.82 | 10.93                         | 1.44      | 28.76     | 27.43  | 43.50  | -16.07        | QP     |
| 6 | 370.702 | 37.22 | 14.51                         | 2.02      | 28.65     | 25.10  | 46.00  | -20.90        | QP     |





### **Above 1GHz**

| Test mode: 80      | 02.11b                  |                             | Test channel: Lowest  |                          |                   | Remark: Peak           |                       |            |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |
| 4824.00            | 44.64                   | 31.54                       | 10.58                 | 40.22                    | 46.54             | 74.00                  | -27.46                | Vertical   |
| 4824.00            | 44.57                   | 31.54                       | 10.58                 | 40.22                    | 46.47             | 74.00                  | -27.53                | Horizontal |
| Test mode: 80      | 02.11b                  |                             | Test channel: Lowest  |                          |                   | Remark: Ave            | erage                 |            |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |
| 4824.00            | 34.69                   | 31.54                       | 10.58                 | 40.22                    | 36.59             | 54.00                  | -17.41                | Vertical   |
| 4824.00            | 34.05                   | 31.54                       | 10.58                 | 40.22                    | 35.95             | 54.00                  | -18.05                | Horizontal |

| Test mode: 80      | 02.11b                  |                             | Test channel: Middle  |                          |                   | Remark: Peak           |                       |            |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|------------|
| Frequency<br>(MHz) | Read<br>Level           | Antenna<br>Factor           | Cable<br>Loss         | Preamp<br>Factor         | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit         | Polar.     |
| 4874.00            | (dBuV)<br>44.35         | (dB/m)<br>31.57             | (dB)<br>10.64         | (dB)<br>40.15            | 46.41             | 74.00                  | (dB)<br>-27.59        | Vertical   |
| 4874.00            | 44.49                   | 31.57                       | 10.64                 | 40.15                    | 46.55             | 74.00                  | -27.45                | Horizontal |
| Test mode: 80      | 02.11b                  |                             | Test channel: Middle  |                          |                   | Remark: Ave            | rage                  |            |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |
| 4874.00            | 34.76                   | 31.57                       | 10.64                 | 40.15                    | 36.82             | 54.00                  | -17.18                | Vertical   |
| 4874.00            | 34.48                   | 31.57                       | 10.64                 | 40.15                    | 36.54             | 54.00                  | -17.46                | Horizontal |

| Test mode: 80      | 02.11b                  |                             | Test char             | nnel: Highest            |                   | Remark: Peak           |                       |            |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |
| 4924.00            | 44.10                   | 31.61                       | 10.70                 | 40.08                    | 46.33             | 74.00                  | -27.67                | Vertical   |
| 4924.00            | 44.03                   | 31.61                       | 10.70                 | 40.08                    | 46.26             | 74.00                  | -27.74                | Horizontal |
| Test mode: 80      | 02.11b                  |                             | Test channel: Highest |                          |                   | Remark: Ave            | rage                  |            |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |
| 4924.00            | 34.22                   | 31.61                       | 10.70                 | 40.08                    | 36.45             | 54.00                  | -17.55                | Vertical   |
| 4924.00            | 35.00                   | 31.61                       | 10.70                 | 40.08                    | 37.23             | 54.00                  | -16.77                | Horizontal |

### Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366





| Test mode: 80      | )2.11g                  |                             | Test channel: Lowest  |                          |                  | Remark: Peak           |                       |            |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|------------------|------------------------|-----------------------|------------|--|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |  |
| 4824.00            | 43.15                   | 31.54                       | 10.58                 | 40.22                    | 45.05            | 74.00                  | -28.95                | Vertical   |  |
| 4824.00            | 43.12                   | 31.54                       | 10.58                 | 40.22                    | 45.02            | 74.00                  | -28.98                | Horizontal |  |
| Test mode: 80      | 02.11g                  |                             | Test channel: Lowest  |                          |                  | Remark: Ave            | rage                  |            |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |  |
| 4824.00            | 33.17                   | 31.54                       | 10.58                 | 40.22                    | 35.07            | 54.00                  | -18.93                | Vertical   |  |
| 4824.00            | 33.62                   | 31.54                       | 10.58                 | 40.22                    | 35.52            | 54.00                  | -18.48                | Horizontal |  |

| Test mode: 802.11g |                         | Test channel: Middle        |                       |                          | Remark: Peak     |                        |                       |            |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|------------------|------------------------|-----------------------|------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |
| 4874.00            | 45.07                   | 31.57                       | 10.64                 | 40.15                    | 47.13            | 74.00                  | -26.87                | Vertical   |
| 4874.00            | 44.02                   | 31.57                       | 10.64                 | 40.15                    | 46.08            | 74.00                  | -27.92                | Horizontal |
| Test mode: 80      | )2.11g                  |                             | Test channel: Middle  |                          |                  | Remark: Average        |                       |            |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |
| 4874.00            | 35.78                   | 31.57                       | 10.64                 | 40.15                    | 37.84            | 54.00                  | -16.16                | Vertical   |
| 4874.00            | 34.90                   | 31.57                       | 10.64                 | 40.15                    | 36.96            | 54.00                  | -17.04                | Horizontal |

| Test mode: 80      | Test mode: 802.11g      |                             | Test channel: Highest |                          |                       | Remark: Peak           |                       |            |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-----------------------|------------------------|-----------------------|------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m<br>) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |
| 4924.00            | 43.77                   | 31.61                       | 10.70                 | 40.08                    | 46.00                 | 74.00                  | -28.00                | Vertical   |
| 4924.00            | 44.33                   | 31.61                       | 10.70                 | 40.08                    | 46.56                 | 74.00                  | -27.44                | Horizontal |
| Test mode: 80      | 02.11g                  |                             | Test channel: Highest |                          |                       | Remark: Average        |                       |            |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m<br>) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |
| 4924.00            | 33.89                   | 31.61                       | 10.70                 | 40.08                    | 36.12                 | 54.00                  | -17.88                | Vertical   |
| 4924.00            | 34.07                   | 31.61                       | 10.70                 | 40.08                    | 36.30                 | 54.00                  | -17.70                | Horizontal |

### Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.





| Test mode: 802.11n(H20) |                         | Test channel: Lowest        |                       |                          | Remark: Peak      |                        |                       |            |
|-------------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|------------|
| Frequency<br>(MHz)      | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |
| 4824.00                 | 44.80                   | 31.54                       | 10.58                 | 40.22                    | 46.70             | 74.00                  | -27.30                | Vertical   |
| 4824.00                 | 44.97                   | 31.54                       | 10.58                 | 40.22                    | 46.87             | 74.00                  | -27.13                | Horizontal |
| Test mode: 80           | 02.11n(H20)             |                             | Test channel: Lowest  |                          | Remark: Ave       |                        |                       |            |
| Frequency<br>(MHz)      | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |
| 4824.00                 | 34.46                   | 31.54                       | 10.58                 | 40.22                    | 36.36             | 54.00                  | -17.64                | Vertical   |
| 4824.00                 | 34.87                   | 31.54                       | 10.58                 | 40.22                    | 36.77             | 54.00                  | -17.23                | Horizontal |

| Test mode: 80      | Test mode: 802.11n(H20) |                             |                       | Test channel: Middle     |                   |                        | Remark: Peak          |            |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|------------|--|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |  |
| 4874.00            | 45.88                   | 31.57                       | 10.64                 | 40.15                    | 47.94             | 74.00                  | -26.06                | Vertical   |  |
| 4874.00            | 44.05                   | 31.57                       | 10.64                 | 40.15                    | 46.11             | 74.00                  | -27.89                | Horizontal |  |
| Test mode: 80      | 02.11n(H20)             |                             | Test channel: Middle  |                          | Remark: Ave       |                        |                       |            |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |  |
| 4874.00            | 35.14                   | 31.57                       | 10.64                 | 40.15                    | 37.20             | 54.00                  | -16.80                | Vertical   |  |
| 4874.00            | 34.19                   | 31.57                       | 10.64                 | 40.15                    | 36.25             | 54.00                  | -17.75                | Horizontal |  |

| Test mode: 802.11n(H20) |                         | Test channel: Highest       |                       |                          | Remark: Peak      |                        |                       |            |  |
|-------------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|------------|--|
| Frequency<br>(MHz)      | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |  |
| 4924.00                 | 42.83                   | 31.61                       | 10.70                 | 40.08                    | 45.06             | 74.00                  | -28.94                | Vertical   |  |
| 4924.00                 | 44.66                   | 31.61                       | 10.70                 | 40.08                    | 46.89             | 74.00                  | -27.11                | Horizontal |  |
| Test mode: 80           | 02.11n(H20)             |                             | Test char             | nnel: Highest            |                   | Remark: Average        |                       |            |  |
| Frequency<br>(MHz)      | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |  |
| 4924.00                 | 33.58                   | 31.61                       | 10.70                 | 40.08                    | 35.81             | 54.00                  | -18.19                | Vertical   |  |
| 4924.00                 | 34.56                   | 31.61                       | 10.70                 | 40.08                    | 36.79             | 54.00                  | -17.21                | Horizontal |  |

# Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.





| Test mode: 802.11n(H40) |                         |                             | Test channel: Lowest  |                          |                   | Remark: Peak           |                       |            |
|-------------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|------------|
| Frequency<br>(MHz)      | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |
| 4844.00                 | 44.32                   | 31.55                       | 10.61                 | 40.19                    | 46.29             | 74.00                  | -27.71                | Vertical   |
| 4844.00                 | 44.32                   | 31.55                       | 10.61                 | 40.19                    | 46.29             | 74.00                  | -27.71                | Horizontal |
| Test mode: 80           | 02.11n(H40)             |                             | Test channel: Lowest  |                          |                   | Remark: Average        |                       |            |
| Frequency<br>(MHz)      | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |
| 4844.00                 | 34.28                   | 31.55                       | 10.61                 | 40.19                    | 36.25             | 54.00                  | -17.75                | Vertical   |
| 4844.00                 | 34.11                   | 31.55                       | 10.61                 | 40.19                    | 36.08             | 54.00                  | -17.92                | Horizontal |

| Test mode: 80      | Test mode: 802.11n(H40) |                             |                       | Test channel: Middle     |                   |                        | Remark: Peak          |            |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|------------|--|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |  |
| 4874.00            | 44.29                   | 31.57                       | 10.64                 | 40.15                    | 46.35             | 74.00                  | -27.65                | Vertical   |  |
| 4874.00            | 44.54                   | 31.57                       | 10.64                 | 40.15                    | 46.60             | 74.00                  | -27.40                | Horizontal |  |
| Test mode: 80      | 02.11n(H40)             |                             | Test channel: Middle  |                          | Remark: Ave       |                        |                       |            |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |  |
| 4874.00            | 34.25                   | 31.57                       | 10.64                 | 40.15                    | 36.31             | 54.00                  | -17.69                | Vertical   |  |
| 4874.00            | 34.82                   | 31.57                       | 10.64                 | 40.15                    | 36.88             | 54.00                  | -17.12                | Horizontal |  |

| Test mode: 802.11n(H40) |                         | Test channel: Highest       |                       |                          | Remark: Peak      |                        |                       |            |
|-------------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|------------|
| Frequency<br>(MHz)      | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |
| 4904.00                 | 43.24                   | 31.59                       | 10.67                 | 40.10                    | 45.40             | 74.00                  | -28.60                | Vertical   |
| 4904.00                 | 42.93                   | 31.59                       | 10.67                 | 40.10                    | 45.09             | 74.00                  | -28.91                | Horizontal |
| Test mode: 80           | 02.11n(H40)             |                             | Test channel: Highest |                          |                   | Remark: Average        |                       |            |
| Frequency<br>(MHz)      | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |
| 4904.00                 | 33.26                   | 31.59                       | 10.67                 | 40.10                    | 35.42             | 54.00                  | -18.58                | Vertical   |
| 4904.00                 | 33.07                   | 31.59                       | 10.67                 | 40.10                    | 35.23             | 54.00                  | -18.77                | Horizontal |

# Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.