3.1 SR latches

- Storing a bit
 - A sequential circuit's output is dependent on the present and the past sequence
 of input values, which necessarily means the circuit stores at least one bit. In
 contrast, a combinational circuit's output is dependent only on the present
 combination of input values
- SR latch
 - Latch: simplest circuit for storing a bit
 - SR latch: stores one bit, with an input **s** to set the latch to 1, an input **r** to reset the latch to 0, and with the stored bit appearing on output **q**.
 - S and s are for "set"
 - R and r are for "reset"

R	em b	inder NOR	s	r	q
0	0	1	0	0	Previously-stored bit
1	0	0	0	1	0 ("Reset")
1	1	0	1	0	1 ("Set")
			1	1	Unknown

- s = 1 and r = 1 causes a problem
- Oscillate means to change from 0 to 1 to 0 to 1 repeatedly
 - g oscillates while s and r are both 1's
 - The problem appears when s and r both change back to 0's

3.2 Clocks, D flip-flops, and register

- D latch:
 - stores 1 bit with an input d having the bit to be stored
 - An input e that when 1 enables storing the bit
 - With the storing bit appearing on output q

е	d	q
0	0	Previously-stored bit (d is ignored)
0	1	Previously-stored bit (d is ignored)
1	0	0 (d is stored)
1	1	1 (d is stored)

- Clock
 - Oscillating signal, to control when to store bits

- Rather than bits being stored while an enable signal is high, bits are stored only at a clock's **rising edge**: signal changes from 0 to 1
 - Clock style time between two rising edges, AKA clock period
 - Clock frequency cycles per second, in units of hertz(Hz)
 - 1 MHz clock has 1 million cycles per second
 - 1 microsecond (0.000001) period yields a frequency of 1 MHz
- On each rising clock edge, the bits move **simultaneously**
- On each rising clock edge, the bits move one place to the **right**
- A **triangle** indicates the clock input of a component

- D flip-flops

- A latch stores a new bit while an enable input is 1
- A latch is said to be **level sensitive**, storing when the enable's "level" is high
- In contrast, a flip-flop stores a new bit only at the instant of clock input's rising
- A flip-flop is said to be edge-triggered
- Master servant VS Master slave
 - Implemented by cascading two D latches
 - 1st enable inverted master
 - 2nd servant

- Note that **q stays the same when e = 0, when e = 1, d is stored in q**

- Basic Register

- A circuit that stores a group of bits
- eg: 3-bit register stores 3 bits
- Storing bits in a register is known as **loading the register**
- Note that **register only loads a rising clock edge**

3.3 FSMs

- Combinational
 - A circuit is combinational if the circuit's output values depend solely on the present combination of input values
- Sequential
 - If the output depends **not only** on the present input values **but also on the sequence of past values**
- FSM
 - Finite-state machine, computation model capable of describing sequential behavior
 - Execution
 - **State** present situation of digital system
 - Every time an implicit clock input rises, the FSM changes to a next state pointed to by a transition whose condition evaluates to true (1)
 - A transition without a listed condition has an implicit condition of true.

3.4 FSM Simulator

_