Il tout d'abord une famille libre por posseir constraire une b.o.r

Rappel de coxs:

$$x \in E$$
, $(E = A \Theta A^{\perp})$; $x = U + V$, $U \in A$; $U \in A^{\perp}$
 $P_A : x \in E \mapsto P_A(x) = U \in A$
 $x - P_A(x) \in A^{\perp}$
 $x = P_A(x) + P_{A^{\perp}}(x)$
 $\therefore Si = 1 + P_{A^{\perp}}(x)$
 $Si =$

SA (2) = 2PA(2) - 2 ; SA = 2PA - ide

Exercise 3:

On montre
$$\rho$$
 projector: On doit ventier $\rho \circ \rho = \rho$ or $\Lambda^2 = \Lambda$.

C'est in projector de $Im(\rho)$ (\$\delta \text{ker}(\rho)\$; $x = \left(\frac{\pi}{2}\right) \in \ker(\rho) < \pi \land \lambda = 0$

$$\frac{1}{6} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2}\right) \left(\frac{\pi}{2}\right) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} ; & \ker(\rho) = \ker(\lambda) \left(\frac{1}{2}\right) \right) donc & \dim(\ker(\rho)) = \Lambda$$

$$\frac{1}{6} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2}\right) \left(\frac{\pi}{2}\right) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} ; & \ker(\rho) = \ker(\lambda) \left(\frac{1}{2}\right) \right) donc & \dim(\ker(\rho)) = \Lambda$$

$$\frac{1}{6} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2}\right) = \Lambda dim (Im(\rho)) = \Lambda d$$

 $\frac{\text{Equation}:}{\text{Zm}(A)} = \text{Zm}(B) \quad ; \quad X \in \text{Zm}(A) \iff X \in \text{ker}(A^{\perp}) \iff \langle X, u \rangle = 0$ $\iff \langle \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \end{pmatrix} \rangle = 0 \iff x_1 + e^2 b x_2 - x_3 = 0$

Attre methode:
$$N^2 = A$$
 donc p projector

 $\ker(p) = \operatorname{vect} \left\{ \begin{pmatrix} \frac{1}{2} \\ -1 \end{pmatrix} \right\}$; $\operatorname{Im}(p) = \operatorname{vect} \left\{ \begin{pmatrix} \frac{2}{3} \\ -1 \end{pmatrix} \right\}$; On very demonstrar $\ker(p) \perp \operatorname{Im}(p)$

$$< \left(\frac{1}{2} \right); \left(\frac{2}{3} \right) > = 0 ; < \left(\frac{1}{2} \right); \left(\frac{1}{3} \right) > = 0$$

$$\underbrace{\operatorname{Conclusion}}_{1}: p^2 = p \text{ et } \operatorname{Im}(p) \perp \ker(p) . \text{ Donc } p \text{ est are projection arthrogonale}.$$

$$\frac{Conclusion: \rho^2 = \rho \text{ of } Im(\rho) \perp \ker(\rho). \quad \Delta on}{\text{dist}\left(\binom{7}{3}; Im(\rho)\right) = \left\|\binom{7}{3} - \rho\binom{7}{3}\right\|}$$

$$\operatorname{dist}\left(\left(\frac{1}{i}\right), \operatorname{Im}(A)\right) = \left\|\left(\frac{1}{i}\right) - \operatorname{R}_{\operatorname{Im}(A)}\left(\frac{1}{i}\right)\right\| = \left\|\operatorname{R}_{\operatorname{Im}(A)}\left(\frac{1}{i}\right)\right\| = \left\|\operatorname{Rec}_{\operatorname{Im}(A)}\left(\frac{1}{i}\right)\right\|$$

base orthonormée de ker(A);
$$V = \frac{J}{\|V\|} = \frac{J}{\|V\|} \left(\frac{J}{A}\right)$$
; V base de $I_{m}(A)^{\perp}$

as a calcular directional large point are
$$P_{\pm m(M^{\perp})} \begin{pmatrix} i \\ j \end{pmatrix} = \langle \begin{pmatrix} i \\ j \end{pmatrix}, \forall \lambda \rangle = \langle \begin{pmatrix} i \\ j \end{pmatrix}, \frac{1}{16} \begin{pmatrix} 1 \\ 1 \end{pmatrix} > \frac{1}{16} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$P(x) = \sum \langle x, \varphi \rangle \in \text{ are }$$
On obtaint $A(\begin{pmatrix} i \\ j \end{pmatrix}, \sum_{m} (A)) = \left\| \frac{1}{3} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\| = \frac{1}{3}$

$$P_{\text{Im}(A^{\perp})} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \langle \begin{pmatrix} 1 \\ 1 \end{pmatrix}, u \rangle v =$$

Exercise 4: Aerop
$$rg(A) = p$$

A. Ch cherche $x \in T_{p_1}(R) (=R^p)$ gos miniaix $||Ax-B||^4$ Axe $Im(A)$

ide the set about par $Ax = p_1(R)$
 $rg(A) = p$, $T_{p_1}(R) \longrightarrow T_{m(A)}$ est injective (done bijective)

 $rg(A) = p$, $T_{p_1}(R) \longrightarrow T_{m(A)}$ est injective (done bijective)

 $rg(A) = p$, $T_{p_1}(R) \longrightarrow T_{m(A)}$ est injective (done bijective)

 $rg(A) = p$, $rg(A) \longrightarrow p$
 $rg(A) = p$, $rg(A) \longrightarrow p$
 $rg(A) = p$
 $rg($

Exercice S: E=R_[X]	Rappel: O(E)
$\forall P \in E, \ \omega(P)(X) = P(-X)$ endo.	1909: U isomitaic vectorielle ou endo.
-(000)(P)(X) = 0(P(-X)) = P(X)	list = 11 will = 11 word & targonal & targonal
4P(000)(P)=P	4(20,4)€€ & < U(20),U(4)> = < 20,4>
uou = ide → c'est une synétrie	Symétric vov=ide
•	
$\forall (P, Q) \in E^{e} < \omega(P), \omega(Q) > = \int_{0}^{1} \omega(P(H)) \cdot \omega(Q(H)) dA = \int_{0}^{1} P(-H) \cdot Q(-H) dA$	
)-1, 13, 2, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13	
= <p. q\<="" th=""><th></th></p.>	