HEART DISEASE PREDICTION

Using Machine Learning

Presented by mazin ahmed mohammed

PROJECT IDEA

Predict heart disease based on patient data using machine learning techniques

Help doctors or users identify risk early through a simple prediction system

Use medical features such as age, cholesterol, blood pressure, and ECG results

DATASET DESCRIPTION

Name of the dataset:

Heart Disease Dataset

Any other relevant details

Source or link to the dataset:

Total rows: 1025 samples No missing values •

https://www.kaggle.com/datasets/johnsmith88/heartdisease-dataset

Number of features:

input features + 1 target variable = 14 columns 13

Target variable:

target \rightarrow (1 = has heart disease, 0 = no heart disease)

Features Used

```
age: عمر المريض
                   sex: جنس المريض (1 = ذكر، 0 = أنثى)
cp: نوع ألم الصدر (0 = نموذجی، 1 = غیر نموذجی، 2 = غیر قلبی، 3 = لا أعراض)
              trestbps: ضغط الدم أثناء الراحة (بوحدة mm Hg)
                 chol: نسبة الكوليسترول في الدم (mg/dl)
                  fbs: سکر صائم > 120 (1 = نعم، 0 = لا)
restecg: نتائج تخطيط القلب أثناء الراحة (0 = طبيعى، 1 = خلل ST-T، 2 = تضخم
                              البطين الأيسر)
               thalach: أقصى معدل نبض وصل إليه المريض
           exang: وجود ذبحة صدرية بعد التمرين (1 = نعم، 0 = لا)
        oldpeak: انخفاض مستوى ST الناتج عن التمرين مقارنة بالراحة
     slope: ميل مقطع ST أثناء التمرين (0 = صاعد، 1 = مسطح، 2 = نازل)
       ca: عدد الأوعية الدموية الرئيسية التي تم تلوينها (من 0 إلى 3)
  thal: نوع الثلاسيميا (1 = طبيعى، 2 = عيب ثابت، 3 = عيب قابل للانع<mark>كاس)</mark>
```

PROJECT DETAILS

Methods and techniques used

Supervised machine learning, classification models, data scaling

Data cleaning steps

Checked for and removed duplicate rows Verified that there are no missing values

Data preprocessing steps

Separated features and target variable Scaled numerical features using StandardScaler

Evaluation metrics

 Accuracy Confusion Matrix Precision, Recall, F1-Score (from Classification Report)

Algorithms applied

Logistic Regression
Support Vector Machine
(SVM)
K-Nearest Neighbors
(KNN)
Decision Tree
Random Forest

Naive Bayes

ADDITIONAL EFFORTS

Any modifications made to the dataset

Verified data quality and consistency Removed duplicates if any No null values were present Scaled the dataset using StandardScaler

Changes in algorithm selection

Selected Random Forest as final model due to highest accuracy (84.21%)

Tuned random_state for stability in Decision Tree & Random Forest

Searching for the best random_state in Decision Tree & Random Forest

THANK YOU