

SLLIM: System Log Local Intelligent Model

Authors: Carlos Cruzportillo, Nassos

Galiopoulos, Jason Gillette

Affiliation: University of Texas at San

Antonio

Date: December 2nd, 2024

Introduction

Problem Statement

The increasing volume of system logs generated by interconnected devices and enterprise systems creates a challenge for IT professionals in efficiently detecting threats and diagnosing issues, necessitating the development of lightweight, intelligent tools for real-time log analysis and query.

Do more with less!

Introduction

Specific Objectives

- 1. Fine-tune at least two lightweight LLMs for comparative analysis. X
- 2. Evaluate question answering performance of lightweight LLMs versus resource-intensive models in the cybersecurity domain. X

Introduction

Research Questions

- 1. How well can lightweight LLMs detect system issues and security threats from system logs? ✓
- 2. How effectively can lightweight LLMs perform question answering compared to larger, more resource-intensive models?

Models

- meta-llama/Llama-3.1-8B as a Large Subject
- meta-llama/Llama-3.2-1B as a small Subject

Access to both models was granted through Meta AI via HuggingFace 😊

Model

Llama-3.1-8B

- Multi-lingual text LLM
- Released July 2024
- 8 billion parameters
- ~32 GB in size at FP32 (4 bytes per param)

Model

Llama-3.2-1B

- Multi-lingual text LLM
- Released September 2024
- 1 billion parameters
- ~4 GB in size at FP32 (4 bytes per param)

Dataset

• **Source**: LogQA, a question-answering dataset derived from three public log datasets: HDFS, OpenSSH, and Spark.

• Composition:

- **Raw Logs**: 2,000 log entries selected per dataset.
- Question Generation: Utilized a question generation model to create reading comprehension-style questions with answers extracted from the logs.

Example:

```
{
   "Question": "What is the status of the block blk_-6369730481066968769?",
   "Answer": "terminating",
   "RawLog": "PacketResponder 1 for block blk_-6369730481066968769 terminating"
}
```

Evaluation Framework

1. Evaluation Metrics

- Exact Match (EM): Binary match between the generated answer and ground truth.
- **Contains Match (CM)**: Evaluates if the generated answer contains the ground truth.
- Token-based F1: Precision and recall on aligned tokens.
- BERTScore: Semantic similarity using embeddings.

Experiment Setup

Few-Shot vs Zero-Shot

- Few-Shot Prompting:
 - Incorporates 2 examples from the training set as context.
 - Example: "Context: [Log 1] Question: [Q1] Answer: [A1]".
- Zero-Shot Prompting:
 - Provides no additional examples.
 - Question directly follows the context.

Inference Workflow

1. Model Loading:

- HuggingFace pipelines with transformers.
- Quantized models using BitsAndBytesConfig for memory optimization.

2. Batch Processing:

- Test data processed in batches of 2 for GPU efficiency.
- Token truncation managed dynamically (max_new_tokens).

3. Data Storage:

- Results saved as structured JSON for easy evaluation.
- Includes metadata: context, question, generated answer.

Why GPU efficiency matters

NVIDIA-SMI 565.72 Driver						Driver	Version: 566.14			CUDA Version: 12.7		
GPU Fan	Name Temp	Perf				ence-M ge/Cap	Bus-Id	Memo	Disp.A ory-Usage		Uncorr. ECC Compute M. MIG M.	
0 N/A 	NVIDIA 74C	GeForce P0	RTX	2060 691	N /	On 80W		000:01: MiB /	00.0 On 6144MiB	100%	N/A Default N/A	

Why GPU efficiency matters

+	NVID	IA-SMI !	565.72		 	D	river	Version:	566.14	ļ	CUDA Versio	on: 12.7
	GPU Fan	Name Temp	Perf				ice-M e/Cap	Bus-Id	Memo	Disp.A ory-Usage		Uncorr. ECC Compute M. MIG M.
1	Ø N/A	NVIDIA 73C	GeForce P0	RTX	==== 73W 	/	On 80W		====== 000:01: MiB /	00.0 On 6144MiB	 41% —	N/A Default N/A

Results

Aggregated Metrics

Metric	Llama-3.1- 8B ZS	Llama-3.2- 1B ZS	Llama-3.1- 8B FS	Llama-3.2- 1B FS
Exact Match	0.00	0.02	0.01	0.02
Contains Match	0.71	0.58	0.51	0.62
Token F1	0.16	0.22	0.16	0.20
BERTScore	0.83	0.82	0.77	0.79

Observations

- Larger models exhibited only marginally better performance.
- Few-shot prompting degraded performance.
- Tokenization likely skewed matches and underrepresented performance.

Key Findings

1. Model Efficiency:

- Llama-3.2-1B successfully handles domain-specific tasks with minimal resources.
- Llama-3.1-8B demonstrates no significant performance gain.

2. Few-Shot Effectiveness:

 Few-shot prompting introduces noise and complexity, for no performance gain.

3. Challenges:

- Token alignment in noisy log contexts affects EM and F1 scores.
- BERTScore highlights semantic drift in generated answers.
- BERTScore does not tell the full story as wrong answers can be

Conclusion

Contributions

- 1. A comparative analysis of **lightweight** and **large-scale** LLMs in log-based QA tasks.
- 2. A novel application of lightweight LLMs on Log analysis tasks.

Next Steps

- 1. Fine-tuning vs. in-context learning.
- 2. Improving / validating evaluation.
- 3. Exploring other evaluation metrics for log anomaly detection.
- 4. Expand scope of log analysis to threat detection.

Questions?