Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа <u>М3213</u>	К работе допущен
Студент <u>Губанов Константин Романович</u>	Работа выполнена
Преподаватель <u>Хуснутдинова Наира</u> <u>Рустемовна</u>	Отчет принят

Рабочий протокол и отчет по лабораторной работе №1

1. Цель работы.

Изучить распределение случайной величины путем проведения многократных измерений временного интервала, построения гистограммы распределения и сравнения полученных данных с теоретической функцией нормального распределения

2. Задачи, решаемые при выполнении работы.

- Провести многократные измерения фиксированного временного интервала с помощью секундомера.
- Построить гистограмму на основе полученных результатов измерений.
- Вычислить среднее значение и дисперсию выборки.
- Сравнить экспериментальную гистограмму с графиком функции нормального распределения для полученных параметров среднего значения и дисперсии.

3. Объект исследования.

Случайная величина, представляющая собой результаты многократных измерений времени фиксированного интервала.

4. Метод экспериментального исследования.

Многократное измерение заранее выбранного временного интервала с использованием секундомера.

5. Рабочие формулы и исходные данные.

Функция Гаусса:

$$\rho(t) = \frac{1}{\sigma\sqrt{2\pi}} \cdot \exp\left(-\frac{(t - \langle t \rangle)^2}{2\sigma^2}\right)$$

Среднеарифметическое всех результатов измерений:

$$\langle t \rangle_N = \frac{1}{N} \sum_{i=1}^N t_i$$

Вероятность попадания результата измерения в интервал [t1, t2]:

$$P(t_1 < t < t_2) = \int_{t_1}^{t_2} \rho(t) dt \approx \frac{N_{12}}{N}$$

Выборочное среднеквадратичное отклонение:

$$\sigma_N = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}$$

Среднеквадратичное отклонение среднего значения:

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}$$

Доверительный интервал для измеряемого в работе промежутка времени:

$$\Delta t = t_{\alpha,N} \cdot \sigma_{\langle t \rangle}$$

Максимальная плотность распределения:

$$\rho_{\text{max}} = \frac{1}{\sigma\sqrt{2\pi}}$$

6. Измерительные приборы.

<u> </u>				
№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Секундомер	Электронный секундомер	0-10 секунд	0,005 секунд

7. Схема установки (перечень схем, которые составляют Приложение 1).

Для проведения эксперимента использовался таймер на телефоне, задающий интервал в 5 секунд, и цифровой секундомер с ценой деления 0,01 с. Цифровой секундомер использовался для многократного измерения интервала времени, заданного таймером на телефоне.

8. Результаты прямых измерений и их обработки (*таблицы, примеры расчетов*).

Nº	t_i , c	$t_i - \langle t \rangle_N$, c	$(t_i - \langle t \rangle_N)^2$, c^2
1	5,25	0,1094	0,01196836
2	5,09	-0,0506	0,00256036
3	5,15	0,0094	0,00008836
4	5	-0,1406	0,01976836

5	5,1	-0,0406	0,00164836
6	5,22	0,0794	0,00630436
7	5,16	0,0194	0,00037636
8	5,13	-0,0106	0,00011236
9	5,16	0,0194	0,00037636
10	5,19	0,0494	0,00244036
11	5,06	-0,0806	0,00649636
12	5,06	-0,0806	0,00649636
13	5,09	-0,0506	0,00256036
14	5,19	0,0494	0,00244036
15	5,13	-0,0106	0,00011236
16	5,19	0,0494	0,00244036
17	5,12	-0,0206	0,00042436
18	5,12	-0,0206	0,00042436
19	5,03	-0,1106	0,01223236
20	5,22	0,0794	0,00630436
21	5,09	-0,0506	0,00256036
22	5,07	-0,0706	0,00498436
23	5,19	0,0494	0,00244036
24	5,18	0,0394	0,00155236
25	5,09	-0,0506	0,00256036
26	5,07	-0,0706	0,00498436
27	5,06	-0,0806	0,00649636
28	5,09	-0,0506	0,00256036
29	5,09	-0,0506	0,00256036
30	5,19	0,0494	0,00244036
31	5,19	0,0494	0,00244036
32	5,25	0,1094	0,01196836
33	5,13	-0,0106	0,00011236
34	5,21	0,0694	0,00481636
35	5,16	0,0194	0,00037636
36	5,16	0,0194	0,00037636
37	5,13	-0,0106	0,00011236
38	5,15	0,0094	0,00008836
39	5,09	-0,0506	0,00256036
40	5,22	0,0794	0,00630436
41	5,13	-0,0106	0,00011236
42	5,12	-0,0206	0,00042436
43	5,09	-0,0506	0,00256036
44	5,12	-0,0206	0,00042436
45	5,25	0,1094	0,01196836
46	5,19	0,0494	0,00244036
47	5,16	0,0194	0,00037636
48	5,16	0,0194	0,00037636
49	5,18	0,0394	0,00155236
50	5,16	0,0194	0,00037636
	$\langle t \rangle_N = 5,1406$	$\sum_{i=1}^{N} (t_i - \langle t \rangle_N) \approx 0 c$	$\sigma_N \approx 0.0586 c$ $\rho_{\text{max}} \approx 6.81 c^{-1}$

 $m{t_{min}} = {f 5}, {f 00}$; $m{t_{max}} = {f 5}, {f 25}$ – возьмем 7 интервалов с шагом $pprox 0,\!036$

9. Расчет результатов косвенных измерений (*таблицы, примеры расчетов*).

Границы интервалов, с	ΔΝ	$\frac{\Delta N}{N\Delta t}$, c ⁻¹	t,c	ρ, c^{-1}
5,00	2	1,111	5,018	0,763025
5,036	۷	1,111	5,016	0,703023
5,036	- 5	2,777	5,054	2,28442
5,072				
5,072	9	5 000	5,09	4 69020
5,108	ຶ່ນ	5,000	5,09	4,68929
5,108	9	5,000	5,126	6,59984
5,144	9	5,000	5,120	0,09964
5,144	9	5,000	5,162	6 26974
5,18	ຶ່ນ	5,000	5,162	6,36874
5,18	10	5 555	E 100	4,21374
5,216	10	5,555	5,198	4,213/4
5,216	6	3,333	5,233	1,96393
5,25	Ö	3,333	5,233	1,90393

Интервал, с	от	до	ΔN	$\frac{\Delta N}{N}$	P
$\langle t \rangle_N \pm \sigma_N$	5,082	5,1992	36	0,72	0,683
$\langle t \rangle_N \pm 2\sigma_N$	5,0234	5,258	49	0,98	0,954
$\langle t \rangle_N \pm 3\sigma_N$	4,9648	5,3178	50	1	0,997

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

$$\Delta x = t_{\alpha,N} \cdot \sigma_{\langle t \rangle} = 1.9842 \cdot 0.0586 \approx 0.0166 \text{ c}$$

$$\varepsilon_x = \frac{\Delta x}{\langle x \rangle} \cdot 100\% = \frac{0,0166}{5.1406} \cdot 100\% \approx 0.323\%$$

11. Графики (перечень графиков, которые составляют Приложение 2).

12. Окончательные результаты.

— Среднеквадратичное отклонение среднего значения:

$$\sigma_{\langle N \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2} = 0.0586 c$$

— Доверительный интервал (α = 0.95; коэффициент Стьюдента 1.9842): $\Delta x \approx 0.0166 \ \mathrm{c}$

— Среднее значение времени с доверительным интервалом: $t = \langle t \rangle_N \pm \Delta t = (5.1406 \pm 0.0166) \, \mathrm{c}$

— Относительная погрешность:

$$\varepsilon_x = \frac{\Delta x}{\langle x \rangle} \cdot 100\% \approx 0.323\%$$

13. Выводы и анализ результатов работы.

В ходе лабораторной работы было изучено распределение случайной величины путём многократных измерений временного интервала и построения гистограммы. Анализ показал, что данные следуют нормальному распределению. Сравнение экспериментальных данных с теоретической функцией нормального распределения подтвердило правильность измерений, а также эффективность статистических методов в обработке данных.