0.1 R7 数学選択

 $(b)\sqrt{2+\sqrt{6}}=\alpha$ とする. $(\alpha^2-2)^2=6$ であるから, $p(x)=x^4-4x^2-2$ は α を根にもつ.アイゼンシュタインの既約判定法から p(x) は $\mathbb Q$ 上既約である.よって α の $\mathbb Q$ 上の最小多項式である.p(x) の根は $\pm\sqrt{2+\pm\sqrt{6}}$ である. $\sqrt{2-\sqrt{6}}\in\mathbb C\setminus\mathbb R$ であるから, $\sqrt{2-\sqrt{6}}\notin\mathbb Q(\sqrt{2+\sqrt{6}})\subset\mathbb R$ である.よって $\mathbb Q(\sqrt{2+\sqrt{6}})/\mathbb Q$ は正規拡大でないから, $\mathbb Q(\sqrt{2+\sqrt{6}})/\mathbb Q$ は Galois 拡大でない.

 $(c) \alpha = \sqrt{3(2+\sqrt{2})}$ とする. $(\alpha^2-6)^2=18$ であるから, $p(x)=x^4-12x^2+18$ は α を根にもつ.素数 2 に着目すればアイゼンシュタインの既約判定法から p(x) は $\mathbb Q$ 上既約である.よって α の $\mathbb Q$ 上の最小多項式である.p(x) の根は $\pm \sqrt{3(2\pm\sqrt{2})}$ である. $\sqrt{3(2+\sqrt{2})}^2=3(2+\sqrt{2})$ より $\sqrt{2}\in K_3$ である.

 $\frac{1}{\sqrt{3(2+\sqrt{2})}} = \frac{\sqrt{3(2-\sqrt{2})}}{3\sqrt{2}}$ であるから $\sqrt{3(2-\sqrt{2})} \in K_3$ である.よって p(x) の根は全て K_3 に属すので K_3/\mathbb{Q} は正規拡大である.すなわち K_3/\mathbb{Q} は 4 次 Galois 拡大である.

 $\sigma \in \operatorname{Gal}(K_3/\mathbb{Q})$ に対して $\sigma(\sqrt{3(2+\sqrt{2})}) = \sqrt{3(2-\sqrt{2})}$ なるものが存在する. $3(2+\sigma(\sqrt{2})) = \sigma(3(2+\sqrt{2})) = \sqrt{3(2-\sqrt{2})}^2 = 3(2-\sqrt{2})$ であるから, $\sigma(\sqrt{2}) = -\sqrt{2}$ である.

よって $\sigma^2(\sqrt{3(2+\sqrt{2})}) = \sigma(\sqrt{3(2-\sqrt{2})}) = \sigma(\frac{3\sqrt{2}}{\sqrt{3(2+\sqrt{2})}}) = -\sqrt{3(2+\sqrt{2})}$ である. よって σ の位数は 4 である. すなわち $\mathrm{Gal}(K_3/\mathbb{Q})\cong \mathbb{Z}/4\mathbb{Z}$ である.

 $(2)\alpha, \beta$ が \mathbb{Q} 上代数的であるから $[\mathbb{Q}(\alpha):\mathbb{Q}]<\infty, [\mathbb{Q}(\beta):\mathbb{Q}]<\infty$ である.よって $[\mathbb{Q}(\alpha,\beta):\mathbb{Q}]<\infty$ である. $\mathbb{Q}(\alpha+\beta)\subset\mathbb{Q}(\alpha,\beta)$ であるから, $[\mathbb{Q}(\alpha+\beta):\mathbb{Q}]=m<\infty$ である. \mathbb{Q} 上ベクトル空間 $\mathbb{Q}(\alpha+\beta)$ について $\{1,\alpha+\beta,(\alpha+\beta)^2,\ldots,(\alpha+\beta)^m\}$ は一次従属であるから, $\sum\limits_{i=0}^m c_i(\alpha+\beta)^i=0$ なる $c_i\in\mathbb{Q}$ が存在する.c を $c_i\neq 0$ となるような c_i で i が最大のものとする. $p(x)=\sum\limits_{i=0}^m \frac{c_i}{c}x^i$ とすれば $p(\alpha+\beta)=0$ で p(x) はモニック多項式であるから $\alpha+\beta$ は \mathbb{Q} 上代数的である.

 $(2)k[x,y]/(x) \cong k[y]$ であり k[y] は整域であるから (x) は素イデアルである.

 $(3)I\cap R\subsetneq J$ なる R のイデアル J をとる. $\sum a_{ij}x^iy^j\in J\setminus I\cap R$ $(a_{ij}\neq 0)$ を任意にとる. $\sum a_{ij}x^iy^j\notin I$ より i=0 なる項が存在する. $j\leq 5i=0$ よりその項は定数項である. よって $\sum a_{ij}x^iy^j=a_{00}+\sum\limits_{i>0}a_{ij}x^iy^j$ とできる. このとき $\sum\limits_{i>0}a_{ij}x^iy^j\in I\setminus J$ であるから $0\neq a_{00}\in J$ である. よって J=R となるから $I\cap R$ は極大イデアル.

 $(4)y^2, y^3 \notin R$ であるから, $xy^2, xy^3 \notin J$ である. $(xy^2)(xy^3) = x^2y^5 = x(xy^5)$ であり, $xy^5 \in R$ より $x(xy^5) \in J$ である.よって J は素イデアルでない.