## **SECTION 12: Advanced NLP for Open-Ends**

#### **Cleaned Text Dataset**

Table with columns: Respondent\_ID, Question\_ID, Raw\_Text, Cleaned\_Text

https://docs.google.com/spreadsheets/d/1ejnuioXFQa2MBZ4P95fUspL6CNPP3AqmDqG\_e\_oeqtSc/edit?qid=605107324#qid=605107324

#### 2. Embedding Files

- Vectors file (numpy or parquet)
- Mapping file linking each vector to Respondent\_ID + Question\_ID

https://docs.google.com/spreadsheets/d/1ejnuioXFQa2MBZ4P95fUspL6CNPP3AqmDqG e oeqtSc/edit?gid=2126872676#gid=2126872676

#### 3. Processing Notebook

Documented code for cleaning, lemmatization, and embedding steps

https://colab.research.google.com/drive/18H6BxSEtdJiG19SZo6dnLsH2uL0OXTDE?usp=sharing

# >>>Description

**Scope:** Prepare all open-ended survey responses for advanced NLP—cleaning, lemmatization, and embedding for use in topic modeling, clustering, and sentiment analysis.



- Clean and normalize free-text from selected survey questions.
- Lemmatize all tokens to base forms using spaCy.
- Generate dense Sentence-BERT embeddings.
- Assemble a structured and metadata-tagged corpus for advanced NLP analysis.

## X Analysis Tasks

| Task                        | Details                                                                                                                                                                                                                                                                                                | Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Text Extraction          | - Concatenate responses from Q19-Q21, Q25-Q26, Q28-Q29, Q33, Q40-Q41 into a single DataFrame Retain columns: Respondent_ID, Question_ID, Raw_Text Export for downstream processing.                                                                                                                    | <pre>python import pandas as pd # Sample load df = pd.read_csv("raw_data.csv") # Select and melt columns questions = ['Q19', 'Q20', 'Q21', 'Q25', 'Q26', 'Q28', 'Q29', 'Q33', 'Q40', 'Q41'] df_text = df.melt(id_vars=['Respondent_ID'], value_vars=questions, var_name='Question_ID', value_name='Raw_Text') df_text.dropna(subset=['Raw_Text'], inplace=True) df_text.to_csv("openends_raw.csv", index=False)</pre>                                                     |
| 2. Cleaning & Lemmatization | <ul> <li>Normalize text:</li> <li>lowercase, remove</li> <li>HTML, punctuation,</li> <li>whitespace.</li> <li>Tokenize and</li> <li>lemmatize with</li> <li>spaCy.</li> <li>Remove</li> <li>stopwords and</li> <li>non-informative</li> <li>tokens.</li> <li>Document in</li> <li>notebook.</li> </ul> | <pre>python import spacy from spacy.lang.en.stop_words import STOP_WORDS import re nlp = spacy.load("en_core_web_sm") def clean_and_lemmatize(text): text = re.sub(r'&lt;.*?&gt;', '', text) text = re.sub(r'[^\w\s]', '', text) text = text.lower().strip() doc = nlp(text) tokens = [token.lemma_ for token in doc if token.lemma_ not in STOP_WORDS and token.is_alpha] return " ".join(tokens) df_text['Cleaned_Text'] = df_text['Raw_Text'].apply(clean_and_l)</pre> |

emmatize)
df\_text.to\_csv("openends\_cleaned.csv"
, index=False)

# 3. Embedding Generation

4. Corpus

**Assembly** 

Use pre-trained
 SentenceTransf
 ormer from
 sentence-trans
 formers.
 Encode each
 Cleaned Text

into a 768-dim vector. – Save as .npy and .csv for

metadata mapping.

– Join raw, cleaned, embeddings, and

metadata.

– Validate
alignment and row
consistency.

NLP-ready DataFrame.

Output final

respondent

python from sentence\_transformers
import SentenceTransformer import
numpy as np model =
SentenceTransformer('all-MiniLM-L6-v2
') embeddings =
model.encode(df\_text['Cleaned\_Text'].
tolist(), show\_progress\_bar=True)
np.save('embeddings\_vectors.npy',
embeddings) df\_text[['Respondent\_ID',
'Question\_ID']].to\_csv('embedding\_map
ping.csv', index=False)

python df\_meta = df[['Respondent\_ID',
'Age', 'Gender', 'NCCS', 'Segment']]
df\_final = df\_text.merge(df\_meta,
on='Respondent\_ID', how='left')
df\_final.to\_csv("nlp\_ready\_dataset.cs
v", index=False)

## ■ Deliverables

## ✓ Cleaned Text Dataset

nlp\_ready\_dataset.csv
Columns:

- Respondent\_ID
- Question\_ID
- Raw\_Text
- Cleaned\_Text

• Age, Gender, NCCS, Segment

#### Embedding Files

- embeddings\_vectors.npy Dense vector matrix (768 dimensions)
- embedding\_mapping.csv Mapping file with Respondent\_ID + Question\_ID

#### Processing Notebook

- Contains: cleaning logic, spaCy lemmatization pipeline, Sentence-BERT encoding
- Structured for reproducibility and sharing with collaborators

#### ✓ NLP Readiness Report

- Cleaning Summary:
  - o HTML stripped, stopwords removed, lemmatization applied
  - Average tokens after cleaning: e.g., 12.4
- Vocabulary Size After Cleaning: e.g., 3,452 unique terms
- Embedding Diagnostic:
  - Vector length: 768
  - Sample: [0.021, -0.004, ...]

### ✓ Next-Step Recommendations

Technique Tool Input

Topic Modeling BERTopic Cleaned\_Text +
Embeddings

Clustering HDBSCAN or KMeans Embedding Vectors

Sentiment Analysis VADER/TextBlob/Transformer-based Cleaned\_Text

Emotion Tagging NRC or DistilBERT fine-tuned Cleaned\_Text