

数据库系统原理

第2章 关系数据库3

分级通关平台,交流

□ 基础篇

第1章 绪论

第2章 关系数据库*3

第3章 标准语言SQL*3

第4章 数据库安全性

第5章 数据库完整性

实验1

□ 设计与应用开发篇

第6章 关系数据理论*2

第7章 数据库设计

实验2

第8章 数据库编程

Ⅲ 系统篇

第9章 *关系查询处理和优化 实验3

第10章 数据库恢复技术 第11章 并发控制 实验4

内容提要

- 1. 关系数据库的概况
- ✓ 什么是关系?
- ✓ 关系数据库发展
- ✓ 关系的数据结构
- ✓ 关系的操作
- 2. 关系的完整性
- ✓ 关系的完整性
- ✓ 传统的集合运算
- 3. 关系代数
- ✓ 专门的关系运算

5. 关系运算

- 关系代数是一种抽象的**查询语言**,它用对关系的运 算来表达查询
- 关系代数
 - ✓ 运算对象是关系
 - ✔ 运算结果亦为关系
 - ✔ 运算符有两类: 集合运算符和专门的关系运算符
- 专门的关系运算不仅<mark>涉及行</mark>而且<mark>涉及列</mark>

关系运算符

运 算 符	含义
-------	----

关系运算是从关系的"垂直"方向即<mark>列</mark>的角度进行

专门的	σ	选择
关系	π	投影
运算符		连接
	•	除

(1) R, $t \in R$, $t[A_i]$

设关系模式为 $R(A_1, A_2, ..., A_n)$

它的一个关系设为R

 $t \in R$ 表示 $t \in R$ 的一个元组

 $t[A_i]$ 则表示元组t中相应于属性 A_i 的一个分量

(2) A, t[A], \overline{A}

若 $A = \{A_{i1}, A_{i2}, ..., A_{ik}\}$,其中 $A_{i1}, A_{i2}, ..., A_{ik}$ 是 A_1 , A_2 ,..., A_n 中的一部分,则A称为<mark>属性列</mark>或属性组。

 $t[A]=(t[A_{i1}], t[A_{i2}], ..., t[A_{ik}])$ 表示元组t在属性列A上诸分量的集合。

A则表示 $\{A_1, A_2, ..., A_n\}$ 中去掉 $\{A_{i1}, A_{i2}, ..., A_{ik}\}$ 后剩余的属性组。

(3) $\hat{t}_r t_s$

R为n目关系,S为m目关系。

 $t_r \in R$, $t_s \in S$, $t_r t_s$ 称为元组的连接。

t, t, 是一个n + m列的元组,前n个分量为R中的一

个n元组,后m个分量为S中的一个m元组。

(4) 象集*Z*x

给定一个关系R(X, Z),X和Z为属性组。

当t[X]=x时,x在R中的象集(Images Set)为:

$$Z_{\mathbf{x}} = \{t[Z] | t \in R, t[X] = x\}$$

它表示R中属性组X上值为x的诸元组在Z上分量的集合

象集

R

Λ	
x_1	Z_1
x_1	Z_2
x_1	Z_3
x_2	Z_2
x_2	Z_3
x_3	Z_1
x_3	Z_3

象集举例

• x_1 在R中的象集

$$Z_{x1} = \{Z_1, Z_2, Z_3\},$$

 x_3 在R中的象集

$$Z_{x2} = \{Z_2, Z_3\},$$

 x_3 在R中的象集

$$Z_{x3} = \{Z_1, Z_3\}$$

关系运算

- 选择
 - > 取出行
- 投影
 - > 取出列
- 连接
 - ▶ 扩展 列、行
- 除运算

关系数据实例

学生-课程数据库:

学生关系Student、课程关系Course和选修关系SC

Student

学号	姓名	性别	年龄	所在系
Sno	Sname	Ssex	Sage	Sdept
201215121	李勇	男	20	CS
201215122	刘晨	女	19	CS
201215123	王敏	女	18	MA
201215125	张立	男	19	IS

Course

课程号	课程名	先行课	学分
Cno	Cname	Cpno	Ccredit
1	数据库	5	4
2	数学		2
3	信息系统	1	4
4	操作系统	6	3
5	数据结构	7	4
6	数据处理		2
7	PASCAL语言	6	4

SC

学号	课程号	成绩
Sno	Cno	Grade
201215121	1	92
201215121	2	85
201215121	3	88
201215122	2	90
201215122	3	80

选择 (Selection)

- 选择又称为限制(Restriction)
- 选择运算符的含义
 - 在关系R中选择满足给定条件的诸元组

$$\sigma_{F}(R) = \{t | t \in R \land F(t) = '\bar{A}'\}$$

- F: 选择条件,是一个逻辑表达式,取值为"真"或"假"
 - 基本形式为: X₁θ Y₁
 - θ表示比较运算符,它可以是>,≥,<,≤,=或<>

选择运算是从关系*R*中选取使逻辑表达式*F*为真的元组, 是从行的角度进行的运算

[例2.4] 查询信息系(IS系)全体学生。 $\sigma_{Sdept = 'IS'}$ (Student)

结果:

Sno	Sname	Ssex	Sage	Sdept
201215125	张立	男	19	<mark>IS</mark>

学号	姓名	性别	年龄	所在系
Sno	Sname	Ssex	Sage	Sdept
201215121	李勇	男	20	CS
201215122	刘晨	女	19	CS
201215123	王敏	女	18	MA
201215125	张立	男	19	IS

[例2.5] 查询年龄小于20岁的学生。

$\sigma_{\text{Sage} < 20}$ (Student)

结果:

Sno	Sname	Ssex	Sage	Sdept
201215122	刘晨	女	<mark>19</mark>	IS
201215123	王敏	女	<mark>18</mark>	MA
201215125	张立	男	<mark>19</mark>	IS

学号	姓名	性别	年龄	所在系
Sno	Sname	Ssex	Sage	Sdept
201215121	李勇	男	20	CS
201215122	刘晨	女	19	CS
201215123	王敏	女	18	MA
201215125	张立	男	19	IS

投影 (Projection)

■ 从R中选择出<mark>若干属性列</mark>组成新的关系

$$\Pi_{A}(R) = \{ t[A] \mid t \in R \}$$

A: R中的属性列

■ 投影操作主要是从列的角度进行运算

投影之后不仅取消了原关系中的某些列,而且还可能取消 某些元组(避免重复行)

[例2.6] 查询学生的姓名和所在系。

即求Student关系上学生姓名和所在系两个属性上的投影

$\Pi_{Sname,Sdept}(Student)$

结果:

Sname	Sdept	
李勇	CS	
刘晨	CS	
王敏	MA	
张立	IS	

学号	姓名	性别	年龄	所在系
Sno	Sname	Ssex	Sage	Sdept
201215121	李勇	男	20	CS
201215122	刘晨	女	19	CS
201215123	王敏	女	18	MA
201215125	张立	男	19	IS

[例2.7] 查询学生关系Student中都有哪些系。 π_{Sdept}(Student)

结果:

Sdept
CS
IS
MA

	学号	姓名	性别	年龄	所在系
	Sno	Sname	Ssex	Sage	Sdept
	201215121	李勇	男	20	CS
	201215122	刘晨	女	19	CS
	201215123	王敏	女	18	MA
١	201215125	张立	男	19	IS

- 连接也称为θ连接
- 连接运算的含义

从两个关系的笛卡尔积中选取属性间满足一定条件的元组

$$R \bowtie S = \{ \widehat{t_r t_s} \mid t_r \in R \land t_s \in S \land t_r[A] \theta t_s[B] \}$$

- $A \cap B$: 分别为 $R \cap S$ 上度数相等且可比的属性组
- •θ: 比较运算符
- 连接运算从*R*和*S*的广义笛卡尔积*R*×*S*中选取*R*关系在*A* 属性组上的值与*S*关系在*B*属性组上的值满足比较关系θ 的元组

一般的连接操作是从行的角度进行运算。

■ 两类常用连接运算:等值连接,自然连接

- 等值连接(equijoin)
 - ●θ为"="的连接运算称为等值连接
 - 从关系*R*与*S*的广义笛卡尔积中选取*A、B*属性值相等的那些元组,即等值连接为:

$$R \bowtie S = \{ \overrightarrow{t_r t_s} \mid t_r \in R \land t_s \in S \land t_r[A] = t_s[B] \}$$

- 两类常用连接运算:等值连接,自然连接
- 自然连接(Natural join)
 - ●自然连接是一种特殊的等值连接
 - ▶两个关系中进行比较的分量必须是相同的属性组
 - ➤ 在结果中把<mark>重复的属性列去掉</mark>
 - ●自然连接的含义

R和S具有相同的属性组B

 $R \bowtie S = \{ \hat{t_r} \hat{t_s} [U-B] \mid t_r \in R \land t_s \in S \land t_r[B] = t_s[B] \}$

[例2.8]关系R和关系S如下所示:

A	В	С
a1	b1	5
a1	b2	6
a2	b3	8
a2	b4	12

В	E
b1	3
b2	7
b3	10
b3	2
b2	2

S

一般连接 $R_{C<E}^{\bowtie}$ S的结果如下:

Α	R.B	С	S.B	E
a1	b1	5	b2	7
a1	b1	5	b3	10
a1	b2	6	b2	7
a1	b2	6	b3	10
a2	b3	8	b3	10

R

[例2.8]关系R和关系S如下所示:

A	В	С
a1	b1	5
a1	b2	6
a2	b3	8
a2	b4	12

В	E
b1	3
b2	7
b3	10
b3	2
b2	2

S

等值连接 $R \bowtie S$ 的结果如下:

Α	R.B	С	S.B	E
a1	b1	5	b1	3
a1	b2	6	b2	7
a2	b3	8	b3	10
a2	b 3	8	b 3	2

R

[例2.8]关系R和关系S如下所示:

A	В	С
a1	b1	5
a1	b2	6
a2	b3	8
a2	b4	12

В	E
b1	3
b2	7
b3	10
b3	2
b2	2

S

自然连接 $R \bowtie S$ 的结果如下:

Α	В	С	E
a1	b1	5	3
a1	b2	6	7
a2	b3	8	10
a2	b 3	8	2

R

■ 悬浮元组 (Dangling tuple)

两个关系*R*和*S*在做**自然连接**时,关系*R*中某些元组有可能在*S* 中不存在公共属性上值相等的元组,这些元组称为悬浮元组。

■ 外连接(Outer Join)

如果把悬浮元组也保存在结果关系中,而在其他属性上填空值(Null),就叫做外连接

关系*R*和关系*S*的外连接 R(A,B,E) S(B,E)

Α	В	С	E
a1	b1	5	3
a1	b2	6	7
a2	b3	8	10
a2	b3	8	2
a2	b4	12	NULL
NULL	b5	NULL	2

- 左外连接(LEFT OUTER JOIN或LEFT JOIN)
 - ●只保留左边关系*R*中的悬浮元组
- 右外连接(RIGHT OUTER JOIN或RIGHT JOIN)
 - ●只保留右边关系*S*中的悬浮元组
 - 关系*R*和关系*S*的左外连接、右外连接R(A,B,E) S(B,E)

Α	В	С	E
a1	b1	5	3
a1	b2	6	7
a2	b3	8	10
a2	b3	8	2
a2	b4	12	NULL

Α	В	С	E
a1	b1	5	3
a1	b2	6	7
a2	b3	8	10
a2	b3	8	2
NULL	b5	NULL	2

除运算(Division)

- ◆ 给定关系R (X, Y) 和S (Y, Z), 其中X, Y, Z为属性组。 R中的Y与S中的Y可以有不同的属性名, 但必须出自相同的 域集。
- ◆ R与S的除运算得到一个新的关系P(X),
- ◆ P是R中满足下列条件的元组在 X 属性列上的投影: 元组在X上分量值x的象集 Y_x包含 S在 Y上投影的集合,记作:

 $R \div S = \{t_r[X] | t_r \in R \land \Pi_Y(S) \subseteq Y_X\}$

 Y_x : x在R中的象集, $x = t_r[X]$

除运算(Division)

■ 除操作是同时从行和列角度进行运算

除运算(Division)

[例2.9]设关系R、S分别为下图,可得到 $R \div S$ 的结果

R

A	В	С
a1	b1	c2
a2	b3	с7
a3	b4	с6
a1	b2	с3
a4	b6	с6
a2	b2	с3
a1	b2	c1

S	В	С	D
	b1	<u>c2</u>	d1
	b2	c1	d1
	b2	с3	d2

R÷S A a1

综合实例

学生-课程数据库: 学生关系Student、课程关系Course和选修关系SC

Student

学号	姓名	性别	年龄	所在系
Sno	Sname	Ssex	Sage	Sdept
201215121	李勇	男	20	CS
201215122	刘晨	女	19	CS
201215123	王敏	女	18	MA
201215125	张立	男	19	IS

Course

课程号	课程名	—————————————————————————————————————	学分
Cno	Cname	Cpno	Ccredit
1	数据库	5	4
2 数学			2
3	信息系统	1	4
4	操作系统	6	3
5	数据结构	7	4
6	6 数据处理		2
7	PASCAL语言	6	4

SC

学号	课程号	成绩
Sno	Cno	Grade
201215121	1	92
201215121	2	85
201215121	3	88
201215122	2	90
201215122	3	80

综合实例

学生-课程数据库: 学生关系Student、课程关系Course和选修关系SC

Student

SC

Course

学号	课程号	成绩
Sno	Cno	Grade
201215121	1	92
201215121	2	85
201215121	3	88
201215122	2	90
201215122	3	80

[例2.10] 查询至少选修1号课程和3号课程的学生号码。

首先建立一个临时关系K:

Cno

3

201215121象集{1, 2, 3}

201215122象集{2,3}

 $K = \{1, 3\}$

于是:

 $\Pi_{\text{Sno,Cno}}(SC) \div K = \{201215121\}$

然后求: $\Pi_{Sno,Cno}(SC) \div K$

= 201215121

综合实例

[例2.11] 查询选修了2号课程的学生的学号。

$$\Pi_{Sno}(\sigma_{Cno='2'}(SC)) = \{201215121, 201215122\}$$

[例2.12] 查询至少选修了一门其直接先行课为5号课程的学生姓名

$$\Pi_{Sname}(\sigma_{Cpno='5'}(Course \bowtie SC \bowtie \Pi_{Sno,Sname}(Student))$$

或

$$\Pi_{Sname}$$
 (Π_{Sno} ($G_{Cpno='5'}$ (Course) \bowtie SC) \bowtie $\Pi_{Sno,Sname}$ (Student))

[例2.13] 查询选修了全部课程的学生号码和姓名。

 $\Pi_{Sno,Cno}(SC) \div \Pi_{Cno}(Course) \bowtie \Pi_{Sno,Sname}(Student)$

小结

- 关系代数运算
 - 关系代数运算
 - 并、差、交、笛卡尔积、**投影、选择、连接、除**
 - 基本运算
 - ●并、差、笛卡尔积、投影、选择
 - 交、连接、除
 - •可以用5种基本运算来表达
 - 引进它们并不增加语言的能力,但可以简化表达

思考

- 交 T=R∩S
 - $T=R\cap S=R-(R-S)$

- 连接
 - 连接运算是由一个笛卡尔积运算和一个选取运算构成的。
- 除

首先,我们直观的理解,R÷S就是:

在R中寻找那些与 $\prod_Y(S)$ 中的所有元组都有关系的 $\prod_X(R)$ 的子集(或者说元组)。

$$R \div S = \prod_X (R) - \prod_X (\prod_X (R) \times \prod_Y (S) - R)$$

