Lab00-Proof

CS214-Algorithm and Complexity, Xiaofeng Gao, Spring 2020.

* If there is any problem, please contact TA Yiming Liu.

- * Name: Hanzhang Yang Student ID:518030910022 Email: linqinluli@sjtu.edu.cn
- 1. Prove that for any integer n > 2, there is a prime p satisfying n . (Hint: consider a prime factor <math>p of n! 1 and prove by contradiction)

Proof. Assume n > 2 and there doesn't exist a prime p satisfying n

Then there must exist a prime factor of n! - 1, p, and $p \le n! - 1 < n!$

Assume $p \le n$, so $p \mid n!$ and $p \mid n! - 1$, then $p \mid 1$

It's impossible. So p > n.

Therefore there exists such a prime p satisfying n , which contradicts the assumption that there doesn't exist such a prime <math>p.

2. Use the minimal counterexample principle to prove that for any integer n > 17, there exist integers $i_n \ge 0$ and $j_n \ge 0$, such that $n = i_n \times 4 + j_n \times 7$.

Proof. Define P(n) be the statement that "there exist integers $i_n \ge 0$ and $j_n \ge 0$, such that $n = i_n \times 4 + j_n \times 7$ ".

If P(n) is not true for every n > 17, then there are values of n for which P(n) is false, and there must be a smallest such value, say n = k.

Since we have k > 17, and k - 1 > 16.

Since k is the smallest value for which P(k) is false, P(k-1) is true.

Thus $k-1=i_n\times 4+j_n\times 7$.

If $j_n = 0$, so $i_n > 4$,

However we have

$$k = k - 1 - 4 \times 5 + 7 \times 3 = (i_n - 5) \times 4 + (j_n + 3) \times 7$$

If $j_n \neq 0$

However we have

$$k = k - 1 + 2 \times 4 - 7 = (i_n + 2) \times 4 + (i_n - 1) \times 7$$

We have derived a contradiction, which allows us to conclude that our original assumption is false.

3. Let $P = \{p_1, p_2, \dots\}$ the set of all primes. Suppose that $\{p_i\}$ is monotonically increasing, i.e., $p_1 = 2, p_2 = 3, p_3 = 5, \dots$. Please prove: $p_n < 2^{2^n}$. (Hint: $p_i \nmid (1 + \prod_{i=1}^n p_i), i = 1, 2, \dots, n$.)

Proof. Define P(n) be the statement that " $p_n < 2^{2^n}$ ".

Basis step. P(1) is true

Induction hypothesis. For $k \ge 1$ and $1 \le n \le k, P(n)$ is true.

Proof of induction step. Let's prove P(k+1).

If $p_{k+1} \ge 2^{2^{k+1}}$, there were only k prime in $2^{2^{k+1}}$.

So any composite numbers own the factor in p_1, p_2, \dots, p_k

However $p_i \nmid (1 + \prod_{j=1}^{n} p_j), i = 1, 2, \dots, n$

since $\prod_{j=1}^{k} p_j + 1 = 2^{2^{k+1}-2} + 1 < 2^{2^{k+1}}$, We have derived a contradiction.

So $p_{k+1} < 2^{2^{k+1}}$

Thus by induction hypothesis, P(k+1) is true.

Finally we can conclude that $p_n < 2^{2^n}$.

4. Prove that a plane divided by n lines can be colored with only 2 colors, and the adjacent regions have different colors.

Proof. Define P(n) be the statement that "a plane divided by n lines can be colored with only 2 colors, and the adjacentregions have different colors".

Basis step. P(1) is true.

Induction hypothesis. For k > 1, P(k) is true.

Proof of induction step. Let's prove P(k+1).

After drawing the n line, we divide the plane into two sides. Now, let's think about two adjacent regions R_1 and R_2 . Change all of the colors into the different color in one side which includes R_1 .

If they are on the same side, their color is different since P(k) is true.

If they are on the different side, the color of the region including R_1 has been changed. So their color are different. P(k+1) is true.

Finally we can conclude that P(n) is true.

Remark: You need to include your .pdf and .tex files in your uploaded .rar or .zip file.