

Geschwindigkeitskontrolle

Aufgabennummer: A_021

Technologieeinsatz:

möglich ⊠

erforderlich

a) Mithilfe der Section Control können Geschwindigkeitsbeschränkungen wirksam kontrolliert werden.

- Bestimmen Sie anhand der Informationen aus der Grafik, ob der Autofahrer die vorgeschriebene Geschwindigkeit von 80 Kilometern pro Stunde (km/h) eingehalten hat.
- b) Die Polizei führt eine Geschwindigkeitskontrolle durch. Auf einer Messstrecke von 200 Metern (m) werden die Durchfahrtszeiten *t* in Sekunden (s) gemessen. Es gilt:

$$v(t) = \frac{200}{t}$$

v(t) ... Geschwindigkeit in Metern pro Sekunde (m/s) in Abhängigkeit von der Durchfahrtszeit t ... Durchfahrtszeit in Sekunden (s)

- Erstellen Sie ein Geschwindigkeits-Zeit-Diagramm für Durchfahrtszeiten von 0 s bis 40 s.
- Entnehmen Sie dem Graphen, welche Durchfahrtszeit eine Autofahrerin/ein Autofahrer bei einer Geschwindigkeit von 25 m/s benötigt.
- c) Bei der Geschwindigkeitsmessung mit einer Laserpistole wird aufgrund des Standorts der Pistole ein Winkel α zwischen der Mess- und der Fahrtrichtung des Autos auftreten. Dieser Winkel bewirkt, dass die gemessene Geschwindigkeit nicht exakt der tatsächlichen Fahrgeschwindigkeit entspricht.

Es gilt:

$$V_{\rm g} = V_{\rm t} \cdot \cos \alpha$$

v_a ... gemessene Geschwindigkeit in km/h

v_t... tatsächliche Geschwindigkeit in km/h

lpha ... Winkel zwischen Fahrt- und Messrichtung

- Berechnen Sie den Messfehler in km/h für eine tatsächliche Geschwindigkeit von 90 km/h bei einem Winkel von 1° und bei einem Winkel von 15°.
- Argumentieren Sie, wie sich die Größe des Winkels auf das Messergebnis und auf die Größe des Messfehlers auswirkt.

Hinweis zur Aufgabe:

Lösungen müssen der Problemstellung entsprechen und klar erkennbar sein. Ergebnisse sind mit passenden Maßeinheiten anzugeben. Diagramme sind zu beschriften und zu skalieren.

Geschwindigkeitskontrolle 2

Möglicher Lösungsweg

a) Der Autofahrer fährt in 1 min 2 km in 1 h = 60 min 120 km

Der Autofahrer hat die Geschwindigkeitsbeschränkung nicht eingehalten.

Bei einer Geschwindigkeit von 25 m/s braucht man für die Messstrecke ca. 8 s. (Die Genauigkeit der abgelesenen Werte hängt von der verwendeten Technologie ab.)

c) $v_g = v_t \cdot \cos \alpha$ bei 1°: $v_g = 90$ km/h $\cdot \cos 1 = 89,99$ km/h Messfehler 0,01 km/h bei 15°: $v_g = 90$ km/h $\cdot \cos 15 = 86,93$ km/h Messfehler 3,07 km/h

Argumentieren: Je kleiner der Winkel zwischen Fahrtrichtung und Messrichtung, desto kleiner ist der Messfehler.

Der Cosinus für Winkel $0^{\circ} < \alpha < 90^{\circ}$ liegt im Intervall (0; 1], daher ist die gemessene Geschwindigkeit immer kleiner oder gleich als die tatsächliche.

3 Geschwindigkeitskontrolle

Klassifikation		
⊠ Teil A	□ Teil B	
Wesentlicher Bereich der Inhaltsdimension:		
a) 1 Zahlen und Maßeb) 3 Funktionale Zusammenhängec) 2 Algebra und Geometrie		
Nebeninhaltsdimension:		
a) — b) — c) —		
Wesentlicher Bereich der Handlungsdimension:		
a) C Interpretieren und Dokumentierenb) B Operieren und Technologieeinsatzc) D Argumentieren und Kommunizieren		
Nebenhandlungsdimension:		
a) B Operieren und Technologieeinsatzb) C Interpretieren und Dokumentierenc) B Operieren und Technologieeinsatz		
Schwierigkeitsgrad:		Punkteanzahl:
a) leichtb) leichtc) leicht		a) 2b) 2c) 2
Thema: Verkehr		
Quellen: –		