CSE 417T Introduction to Machine Learning

Lecture 7

Instructor: Chien-Ju (CJ) Ho

Logistics

- HW1: Due Sep 23
 - Reserve time if you have never used Gradescope
 - Check that submission is readable (if you scan your handwriting)
 - Correctly assign pages to each problem (you won't get points otherwise)
- HW2: Will be announce later this week

- Exam dates
 - Exam 1: October 27
 - We expect to finish the content for exam1 several lectures before the exam.
 - Exam 2: December 8

Recap

VC Generalization Bound

• VC Bound:
$$E_{out}(g) \le E_{in}(g) + O\left(\sqrt{d_{vc} \frac{\ln N}{N}}\right)$$

- Theoretically characterize the feasibility of learning
- The performance of your learning, i.e., $E_{out}(g)$, depends on
 - How well you fit your data $(E_{in}(g))$
 - How well your $E_{in}(g)$ generalizes to $E_{out}(g)$

Bias-Variance Decomposition

$$\operatorname{Bias}(\vec{x}) \qquad \operatorname{Var}(\vec{x})$$

$$\bullet \ \mathbb{E}_{D}[E_{out}(g^{(D)})] = \mathbb{E}_{\vec{x}}\left[\left(\bar{g}(\vec{x}) - f(\vec{x})\right)^{2}\right] + \mathbb{E}_{\vec{x}}\left[\mathbb{E}_{D}\left[\left(g^{(D)}(\vec{x}) - \bar{g}(\vec{x})\right)^{2}\right]\right]$$

- The performance of your learning, i.e., $\mathbb{E}_D[E_{out}(g^{(D)})]$, depends on
 - How well you can fit your data using your hypothesis set (bias)
 - How stable your learning is for a randomly drawn dataset (variance)

Very small model

Very large model

Today's Lecture

The notes are not intended to be comprehensive. They should be accompanied by lectures and/or textbook. Let me know if you spot errors.

Two Theories of Generalization

VC Generalization Bound

$$E_{out}(g) \le E_{in}(g) + O\left(\sqrt{d_{vc} \frac{\ln N}{N}}\right)$$

Bias-Variance Tradeoff

$$\mathbb{E}_{D}\left[E_{out}\left(g^{(D)}\right)\right] = \mathbb{E}_{\vec{x}}\left[\left(\bar{g}(\vec{x}) - f(\vec{x})\right)^{2}\right] + \mathbb{E}_{\vec{x}}\left[\mathbb{E}_{D}\left[\left(g^{(D)}(\vec{x}) - \bar{g}(\vec{x})\right)^{2}\right]\right]$$

VC Analysis

 $E_{out}(g) \le E_{in}(g) + O\left(\sqrt{d_{vc} \frac{\ln N}{N}}\right)$

Bias-Variance Analysis

Number of Data Points, N

$$\mathbb{E}_{D}\left[E_{out}(g^{(D)})\right]$$

$$= \mathbb{E}_{\vec{x}}\left[\left(\bar{g}(\vec{x}) - f(\vec{x})\right)^{2}\right] + \mathbb{E}_{\vec{x}}\left[\mathbb{E}_{D}\left[\left(g^{(D)}(\vec{x}) - \bar{g}(\vec{x})\right)^{2}\right]\right]$$

VC Analysis

 $E_{out}(g) \le E_{in}(g) + O\left(\sqrt{d_{vc} \frac{\ln N}{N}}\right)$

Bias-Variance Analysis

Number of Data Points, N

$$\mathbb{E}_{D}\left[E_{out}(g^{(D)})\right]$$

$$= \mathbb{E}_{\vec{x}}\left[\left(\bar{g}(\vec{x}) - f(\vec{x})\right)^{2}\right] + \mathbb{E}_{\vec{x}}\left[\mathbb{E}_{D}\left[\left(g^{(D)}(\vec{x}) - \bar{g}(\vec{x})\right)^{2}\right]\right]$$

Linear Models

Linear Models

This is why it's called linear models

• *H* contains hypothesis $h(\vec{x})$ as some function of $\vec{w}^T\vec{x}$

	Domain	Model	
Linear Classification	$y \in \{-1, +1\}$	$H = \{h(\vec{x}) = sign(\vec{w}^T \vec{x})\}\$	
Linear Regression	$y \in \mathbb{R}$	$H = \{h(\vec{x}) = \vec{w}^T \vec{x}\}$	
Logistic Regression	$y \in [0,1]$	$H = \{h(\vec{x}) = \theta(\vec{w}^T \vec{x})\}$	

Credit Card Example

Approve or not

Credit line

Prob. of default

- Linear models:
 - Simple models => Good generalization error

 $\theta(s) = \frac{e^s}{1 + e^s}$

- Reminder:
 - We will interchangeably use h and \vec{w} to represent a hypothesis in linear models

Learning Algorithm?

• Goal of the algorithm: Find $g \in H$ that minimizes $E_{out}(g)$ (We don't know E_{out})

- Common algorithms:
 - $g = argmin_{h \in H} E_{in}(h)$
 - Works well when the model is simple (generalization error is small)
 - Will focus on this in the discussion of linear models
 - $g = argmin_{h \in H} \{E_{in}(h) + \Omega(h)\}$
 - $\Omega(h)$: penalty for complex h
 - Will discuss this when we get to LFD Section 4

VC Bound:
$$E_{out}(g) \le E_{in}(g) + O\left(\sqrt{d_{vc} \frac{\ln N}{N}}\right)$$

Optimization is a key component in machine learning

Linear Classification

	Domain	Model
Linear Classification	$y \in \{-1, +1\}$	$H = \{h(\vec{x}) = sign(\vec{w}^T \vec{x})\}\$
Linear Regression	$y \in \mathbb{R}$	$H = \{h(\vec{x}) = \vec{w}^T \vec{x}\}$
Logistic Regression	$y \in [0,1]$	$H = \{h(\vec{x}) = \theta(\vec{w}^T \vec{x})\}\$

Linear Classification (Perceptron)

- Formulation
 - Hypothesis set $H = \{h(\vec{x}) = sign(\vec{w}^T\vec{x})\}$
 - Error measure: binary error $e(h(\vec{x}), y) = \mathbb{I}[h(\vec{x}) \neq y]$

- Property
 - Simple model (Fact: the VC dimension of d-dim perceptron is d+1)
 - Good generalization error
- When data is linearly separable
 - Run PLA
 - \Rightarrow find g with $E_{in}(g) = 0$
 - $\Rightarrow E_{out}(g)$ is close to $E_{in}(g) = 0$

Non-Separable Data

- Generally a hard problem
 - Minimizing E_{in} is NP-hard
 - Reason: binary error is discrete and hard to optimize

- Alternative approaches
 - Pocket algorithm
 - Run PLA for a finite pre-determined T rounds
 - Keep track of the best weights \vec{w}^* ($\vec{w}(t)$ that minimizes E_{in})
 - Engineering the features to make data closer to be separable
 - Feature engineering (requiring domain knowledge, e.g., see LFD Example 3.1)
 - Non-linear transformation (will discuss this in later lectures)
 - Changing the problem formulation
 - Treat it as a logistic regression problem (what's the probability for the label to be +1)
 - Another example: Support vector machines in 2nd half of the semester

Example on Feature Engineering

• Task: Classify handwritten digits of 1 and 5

- Linearly separable?
 - What are the features \vec{x} ?
 - Each pixel as a feature (deep neural network takes this approach. requires a lot of data)
 - $\vec{x} = (\text{intensity, symmtry})$

Linear Regression

	Domain	Model
Linear Classification	$y \in \{-1, +1\}$	$H = \{h(\vec{x}) = sign(\vec{w}^T \vec{x})\}\$
Linear Regression	$y \in \mathbb{R}$	$H = \{h(\vec{x}) = \vec{w}^T \vec{x}\}$
Logistic Regression	$y \in [0,1]$	$H = \{h(\vec{x}) = \theta(\vec{w}^T \vec{x})\}\$

Linear Regression

- Formulation
 - Hypothesis set $H = \{h(\vec{x}) = \vec{w}^T \vec{x}\}$
 - Squared error $e(h(\vec{x}), y) = (h(\vec{x}) y)^2$

- Given dataset $D = \{(\vec{x}_1, y_1), ..., (\vec{x}_N, y_N)\}$
 - $E_{in}(\vec{w}) = \frac{1}{N} \sum_{n=1}^{N} (\vec{w}^T \vec{x}_n y_n)^2$
- Goal: find $\overrightarrow{w}_{lin} = argmin_{\overrightarrow{w}} E_{in}(\overrightarrow{w})$

Matrix Representation

•
$$D = \{(\vec{x}_1, y_1), \dots, (\vec{x}_N, y_N)\}$$

 $x_{n,i}$: the i-th element of vector \vec{x}_n

Predictions made by hypothesis \vec{w}

$$X\overrightarrow{w} = \begin{bmatrix} \overrightarrow{x}_1^T \overrightarrow{w} \\ \vdots \\ \overrightarrow{x}_N^T \overrightarrow{w} \end{bmatrix}$$

$$X\overrightarrow{w} = \begin{bmatrix} \overrightarrow{x}_1^T \overrightarrow{w} \\ \vdots \\ \overrightarrow{x}_N^T \overrightarrow{w} \end{bmatrix}$$

$$X\overrightarrow{w} - \overrightarrow{y} = \begin{bmatrix} \overrightarrow{x}_1^T \overrightarrow{w} - y_1 \\ \vdots \\ \overrightarrow{x}_N^T \overrightarrow{w} - y_N \end{bmatrix}$$

Rewriting the In-Sample Error In Matrix Form

$$E_{in}(\vec{w}) = \frac{1}{N} \sum_{n=1}^{N} (\vec{w}^T \vec{x}_n - y_n)^2 \qquad \begin{bmatrix} x = \begin{bmatrix} \vec{x}_1^T \\ \vec{x}_N^T \end{bmatrix}; \ \vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix} \end{bmatrix} \begin{pmatrix} x \vec{w} = \begin{bmatrix} \vec{x}_1^T \vec{w} \\ \vdots \\ \vec{x}_N^T \vec{w} \end{bmatrix} \\ = \frac{1}{N} \sum_{n=1}^{N} (\vec{x}_n^T \vec{w} - y_n)^2 \qquad \begin{bmatrix} \|\vec{z}\| = \sqrt{\vec{z}^T \vec{z}} = \sqrt{\sum_{i=1}^d z_i^2} \\ \|\vec{z}\|^2 = \vec{z}^T \vec{z} = \sum_{i=1}^d z_i^2 \end{bmatrix} \\ = \frac{1}{N} \|X \vec{w} - \vec{y}\|^2 \qquad \qquad E_{in}(\vec{w}) = \frac{1}{N} ((X \vec{w})^T - \vec{y}^T) (X \vec{w} - \vec{y}) \\ = \frac{1}{N} (X \vec{w} - \vec{y})^T (X \vec{w} - \vec{y}) \qquad \qquad -\frac{1}{N} (\vec{w}^T Y^T Y \vec{w} - 2\vec{w}^T Y^T \vec{y} + \vec{y}^T \vec{y})$$

$$X = \begin{bmatrix} \vec{x}_1^T \\ \vdots \\ \vec{x}_N^T \end{bmatrix}; \quad \vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}$$

$$X\vec{w} = \begin{bmatrix} \vec{x}_1^T \vec{w} \\ \vdots \\ \vec{x}_N^T \vec{w} \end{bmatrix}$$

$$X\overrightarrow{w} - \overrightarrow{y} = \begin{bmatrix} \overrightarrow{x}_1^T \overrightarrow{w} - y_1 \\ \vdots \\ \overrightarrow{x}_N^T \overrightarrow{w} - y_N \end{bmatrix}$$

$$\|\vec{z}\| = \sqrt{\vec{z}^T \vec{z}} = \sqrt{\sum_{i=1}^d z_i^2}$$
$$\|\vec{z}\|^2 = \vec{z}^T \vec{z} = \sum_{i=1}^d z_i^2$$

$$E_{in}(\vec{w}) = \frac{1}{N} \left((X\vec{w})^T - \vec{y}^T \right) (X\vec{w} - \vec{y})$$
$$= \frac{1}{N} (\vec{w}^T X^T X \vec{w} - 2 \vec{w}^T X^T \vec{y} + \vec{y}^T \vec{y})$$

How to find $\overrightarrow{w}_{lin} = argmin_{\overrightarrow{w}} E_{in}(\overrightarrow{w})$?

- Given $E_{in}(\vec{w}) = \frac{1}{N} (\vec{w}^T X^T X \vec{w} 2 \vec{w}^T X^T \vec{y} + \vec{y}^T \vec{y})$
- Solve for $\nabla_{\overrightarrow{w}} E_{in}(\overrightarrow{w}) = 0$
 - Think about what you'll do for one-dimensional case

Derivations

•
$$E_{in}(\overrightarrow{w}) = \frac{1}{N}(\overrightarrow{w}^T X^T X \overrightarrow{w} - 2\overrightarrow{w}^T X^T \overrightarrow{y} + \overrightarrow{y}^T \overrightarrow{y})$$

•
$$\nabla_{\overrightarrow{w}} E_{in}(\overrightarrow{w}) = \frac{1}{N} (2X^T X \overrightarrow{w} - 2X^T \overrightarrow{y})$$

•
$$\nabla_{\overrightarrow{w}} E_{in}(\overrightarrow{w}_{lin}) = 0 \implies X^T X \overrightarrow{w}_{lin} = X^T \overrightarrow{y}$$

$$\nabla f(\vec{w}) = \nabla_{\vec{w}} f(\vec{w}) = \begin{bmatrix} \frac{\partial}{\partial w_0} f(\vec{w}) \\ \frac{\partial}{\partial w_1} f(\vec{w}) \\ \vdots \\ \frac{\partial}{\partial w_d} f(\vec{w}) \end{bmatrix}$$

•
$$X^T X \overrightarrow{w}_{lin} = X^T \overrightarrow{y}$$

- Two cases:
 - If X^TX is invertible (When $N \gg d$, most of the time, it is invertible)
 - $\vec{w}_{lin} = (X^T X)^{-1} X^T \vec{y}$
 - If X^TX is not invertible
 - Requires special handling (See LFD Problem 3.15 for an example)
- In practice
 - Define X^{\dagger} as the pseudo-inverse of X
 - When X^TX is invertible, $X^{\dagger} = (X^TX)^{-1}X^T$
 - When X^TX is not invertible, "handle" it appropriately (usually done in the library for you)
 - Linear regression algorithm (a single step algorithm):
 - $\vec{w}_{lin} = X^{\dagger} \vec{y}$

Linear Regression "Algorithm"

- Input: $D = \{(\vec{x}_1, y_1), (\vec{x}_2, y_2), ..., (\vec{x}_N, y_N)\}$
- 1. Construct X and \vec{y}
- 2. Compute the pseudo-inverse of $X: X^{\dagger}$ $(X^{\dagger} = (X^T X)^{-1} X^T \text{ when } (X^T X) \text{ is invertible})$
- 3. Compute $\vec{w}_{lin} = X^{\dagger} \vec{y}$
- Output: \overrightarrow{w}_{lin}

Short Discussion

Linear Regression "Algorithm"

- Input: $D = \{(\vec{x}_1, y_1), (\vec{x}_2, y_2), ..., (\vec{x}_N, y_N)\}$
- 1. Construct X and \vec{y}
- 2. Compute the pseudo-inverse of $X: X^{\dagger}$ $(X^{\dagger} = (X^TX)^{-1}X^T \text{ when } (X^TX) \text{ is invertible})$
- 3. Compute $\vec{w}_{lin} = X^{\dagger} \vec{y}$
- Output: \overrightarrow{w}_{lin}

- What happens in 0-dimensional model
 - $\vec{x} = (x_0)$
 - Given $D = \{(\vec{x}_1, y_1), (\vec{x}_2, y_2), ..., (\vec{x}_N, y_N)\}$
 - What's \overrightarrow{w}_{lin}

Short Discussion

Linear Regression "Algorithm"

- Input: $D = \{(\vec{x}_1, y_1), (\vec{x}_2, y_2), ..., (\vec{x}_N, y_N)\}$
- 1. Construct X and \vec{y}
- 2. Compute the pseudo-inverse of $X: X^{\dagger}$ $(X^{\dagger} = (X^TX)^{-1}X^T \text{ when } (X^TX) \text{ is invertible})$
- 3. Compute $\vec{w}_{lin} = X^{\dagger} \vec{y}$
- Output: \vec{w}_{lin}

Special case of zero—dimensional space

$$X = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \Rightarrow X^T X = N \Rightarrow (X^T X)^{-1} = 1/N$$

$$\vec{w}_{lin} = (X^T X)^{-1} X^T \vec{y}$$

$$= \begin{bmatrix} \frac{1}{N} \dots \frac{1}{N} \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix} = \frac{1}{N} \sum_{n=1}^{N} y_n$$

Squared error => mean

Discussion

- Linear regression generalizes very well
 - Under mild conditions (See LFD Exercise 3.4 for an example)

$$E_{out}(g) = E_{in}(g) + O\left(\frac{d}{N}\right)$$

- Use regression for classification
 - Note that $\{-1, +1\} \subset \mathbb{R}$
 - Use linear regression to find $\vec{w}_{lin} = (X^T X)^{-1} X^T \vec{y}$ for data with $y \in \{-1, +1\}$
 - Use \vec{w}_{lin} for classification: $g(\vec{x}) = \text{sign}(\vec{w}_{lin}^T \vec{x})$
 - Alternatively, use \vec{w}_{lin} as the initialization for Pocket Algorithm

Logistic Regression

	Domain	Model
Linear Classification	$y \in \{-1, +1\}$	$H = \{h(\vec{x}) = sign(\vec{w}^T \vec{x})\}\$
Linear Regression	$y \in \mathbb{R}$	$H = \{h(\vec{x}) = \vec{w}^T \vec{x}\}$
Logistic Regression	$y \in [0,1]$	$H = \{h(\vec{x}) = \theta(\vec{w}^T \vec{x})\}\$

Logistic Regression: Predicting a Probability

Will this patient have a heart attack within the next year?

age	62 years
gender	male
blood sugar	120 mg/dL40,000
HDL	50
LDL	120
Mass	190 lbs
Height	5' 10"
	• • •

Classification: Yes/No

Logistic regression: Probability of Yes

- A hypothesis $h(\vec{x})$ outputs a value in [0,1]
 - Interpreting it as the probability of yes

Logistic Regression: Predicting a Probability

- Hypothesis set $H = \{h(\vec{x}) = \theta(\vec{w}^T\vec{x})\}$
 - Want θ to map from $(-\infty, \infty)$ to [0,1]

•
$$\theta(s) = \frac{e^s}{1+e^s} = \frac{1}{1+e^{-s}}$$

A sigmoid function ("S"-shaped function)

•
$$\theta(s) = \begin{cases} 1 & \text{when } s \to \infty \\ 0.5 & \text{when } s = 0 \\ 0 & \text{when } s \to -\infty \end{cases}$$

Useful property

•
$$1 - \theta(s) = \frac{1 + e^s}{1 + e^s} - \frac{e^s}{1 + e^s} = \frac{1}{1 + e^s} = \theta(-s)$$

What Kind of Dataset do We Get?

• Dataset $D = \{(\vec{x}_1, y_1), ..., (\vec{x}_N, y_N)\}$

age	62 years
gender	male
blood sugar	120 mg/dL40,000
HDL	50
LDL	120
Mass	190 lbs
Height	5' 10"
	• • •

- What are the values of y_n ?
 - Ideally, we want to have y_n to be the probability value
 - In practice, we cannot measure a probability
 - We can only see the occurrence of an event and infer the probability
 - (We often only observe whether the person had heart attack, we don't observe the "probability")
- Need to address the case when $y_n \in \{-1, +1\}$ in the given dataset D

Error Measure: Quantifying $g \approx f$

• Target function $f(\vec{x}) = \Pr(y = +1|\vec{x})$

Side note:

You probably can guess why the property $1 - \theta(s) = \theta(-s)$ might be helpful

- Another way to write it: $\Pr(y|\vec{x}) = \begin{cases} f(\vec{x}) & \text{for } y = +1 \\ 1 f(\vec{x}) & \text{for } y = -1 \end{cases}$
- How do we define the error measure to quantify $g \approx f$
 - Ideally, we want it to be meaningful
 - Binary error for classification: tell us the number of mistakes we make
 - Squared error for regression: the error minimizer is the "mean (average)"
 - We also want it to be easy to optimize

Cross Entropy Error

$$E_{in}(\vec{w}) = \frac{1}{N} \sum_{n=1}^{N} \ln(1 + e^{-y_n \vec{w}^T \vec{x}_n})$$

- It looks complicated, but
 - It has nice interpretations (min error => max likelihood)
 - It is easy to optimize (continuous, differentiable, convex)

Minimizing Cross Entropy Error

Maximizing Likelihood

Maximum Likelihood Estimation

- Likelihood Pr(D|h)
 - The probability of seeing dataset D if D is generated according to h
 - $Pr(D|h) = Pr((\vec{x}_1, y_1), ..., (\vec{x}_N, y_N)|h)$
 - Maximum likelihood estimation (MLE)
 - $g = argmax_{h \in H} Pr(D|h)$
- Sidenote: Two different concepts in ML
 - Likelihood: Pr(D|h) [Focus of this course]
 - Posterior: Pr(h|D) [Focus of Bayesian machine learning: More in 515T]
 - Connection: $Pr(h|D) = \frac{Pr(h)Pr(D|h)}{Pr(D)}$
 - Prior Pr(h): the additional assumption Bayesian ML makes

Write Down the Likelihood

- How are $D = \{(\vec{x}_1, y_1), ..., (\vec{x}_N, y_N)\}$ generated?
 - $(\vec{x}_1, ..., \vec{x}_N)$ are i.i.d. drawn from a distribution
 - $(y_1, ..., y_N)$ are labeled according to target function $f(\vec{x})$
- UNKNOWN TARGET DISTRIBUTION (target function f plus noise) $P(y \mid \mathbf{x})$ UNKNOWN INPUT DISTRIBUTION $P(\mathbf{x})$ TRAINING EXAMPLES (\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2),..., (\mathbf{x}_N, y_N) \mathbf{ERROR} MEASURE $\mathbf{MEASURE}$ $\mathbf{MEASURE}$ $\mathbf{HYPOTHESIS}$ \mathbf{J} HYPOTHESIS SET \mathcal{H}

- Likelihood Pr(D|h)
 - The probability of seeing dataset D if D is generated according to h

•
$$\Pr(D|h) = \Pr((\vec{x}_1, y_1), ..., (\vec{x}_N, y_N)|h)$$

 $= \Pr(\vec{x}_1, ..., \vec{x}_N) \Pr((y_1, ..., y_N)|(\vec{x}_1, ..., \vec{x}_N), h)$
 $= \prod_{n=1}^{N} \Pr(\vec{x}_n) \prod_{n=1}^{N} \Pr(y_n|\vec{x}_n, h)$ (Assumption of independent data)

Maximum Likelihood

Choosing the hypothesis that maximizes the likelihood

```
• g = argmax_{h \in H} \Pr(D|h)

= argmax_{h \in H} \prod_{n=1}^{N} \Pr(\vec{x}_n) \prod_{n=1}^{N} \Pr(y_n|\vec{x}_n, h)

= argmax_{h \in H} \prod_{n=1}^{N} \Pr(y_n|\vec{x}_n, h)
```

 $\prod_{n=1}^{N} \Pr(\vec{x}_n)$ doesn't depend on h

• We interpret $h(\vec{x})$ as the probability of y=+1

•
$$\Pr(y|\vec{x},h) = \begin{cases} h(\vec{x}) = \theta(\vec{w}^T \vec{x}) & \text{for } y = +1\\ 1 - h(\vec{x}) = 1 - \theta(\vec{w}^T \vec{x}) & \text{for } y = -1 \end{cases}$$

- Since $1 \theta(s) = \theta(-s)$
 - $Pr(y|\vec{x}, h) = \theta(y \vec{w}^T \vec{x})$

Maximum Likelihood

Choosing the hypothesis that maximizes the likelihood

```
• g = argmax_{h \in H} \Pr(D|h)
= argmax_{h \in H} \prod_{n=1}^{N} \Pr(y_n | \vec{x}_n, h)
```

•
$$\overrightarrow{w}^* = argmax_{\overrightarrow{w}} \prod_{n=1}^{N} \theta(y_n \overrightarrow{w}^T \overrightarrow{x}_n)$$

$$= argmax_{\overrightarrow{w}} \ln(\prod_{n=1}^{N} \theta(y_n \overrightarrow{w}^T \overrightarrow{x}_n))$$

$$= argmax_{\overrightarrow{w}} \sum_{n=1}^{N} \ln(\theta(y_n \overrightarrow{w}^T \overrightarrow{x}_n))$$

$$= argmin_{\overrightarrow{w}} - \sum_{n=1}^{N} \ln(\theta(y_n \overrightarrow{w}^T \overrightarrow{x}_n))$$

$$= argmin_{\overrightarrow{w}} \sum_{n=1}^{N} \ln \frac{1}{\theta(y_n \overrightarrow{w}^T \overrightarrow{x}_n)}$$

$$= argmin_{\overrightarrow{w}} \sum_{n=1}^{N} \ln(1 + e^{-y_n \overrightarrow{w}^T \overrightarrow{x}_n})$$

$$= argmin_{\overrightarrow{w}} \sum_{n=1}^{N} \ln(1 + e^{-y_n \overrightarrow{w}^T \overrightarrow{x}_n})$$

$$\theta(s) = \frac{e^s}{1 + e^s} = \frac{1}{1 + e^{-s}}$$

$$E_{in}(\vec{w}) = \frac{1}{N} \sum_{n=1}^{N} \ln(1 + e^{-y_n \vec{w}^T \vec{x}_n})$$

Cross Entropy Error

$$E_{in}(\vec{w}) = \frac{1}{N} \sum_{n=1}^{N} \ln(1 + e^{-y_n \vec{w}^T \vec{x}_n})$$

- Minimizing $E_{in}(\vec{w})$ is the same as maximizing likelihood
- Next question: How to solve $\vec{w}^* = argmin_{\vec{w}} E_{in}(\vec{w})$
 - Answer: Solve for $\nabla_{\overrightarrow{w}} E_{in}(\overrightarrow{w}) = 0$
 - No single-step solution like we have in linear regression