Assignment 4

Due Wednesday 10/9/19

Reading Assignment:

• Required: Course Notes 3.1-3.4

• Recommended: LADR Ch. 1, Ch. 2, Ch. 3ABC

• Supplemental: MMA 2.1-2.2

Problems:

1. (LA: 1.6.1) (5 pts) Let

$$A = \left[\begin{array}{rrrr} 1 & 2 & 1 & 0 \\ -1 & 0 & 3 & 5 \\ 1 & -2 & 1 & 1 \end{array} \right].$$

Find a row-reduced echelon matrix R which is row-equivalent to A and an invertible 3×3 matrix P such that R = PA.

2. (LADR: 1.C.1) (5 pts each) For each of the following subsets, determine whether it is a subspace of \mathbf{F}^3 .

(a)
$$\{(x_1, x_2, x_3) \in \mathbf{F}^3 : x_1 + 2x_2 + 3x_3 = 0\};$$

(b)
$$\{(x_1, x_2, x_3) \in \mathbf{F}^3 : x_1 + 2x_2 + 3x_3 = 4\};$$

(c)
$$\{(x_1, x_2, x_3) \in \mathbf{F}^3 : x_1 x_2 x_3 = 0\};$$

(d)
$$\{(x_1, x_2, x_3) \in \mathbf{F}^3 : x_1 = 5x_3\};$$

3. (LADR: 1.C.7) (5 pts) Give an example of a non-empty subset U of \mathbf{R}^2 such that U is closed under addition and under taking additive inverses (meaning $-u \in U$ whenever $u \in U$), but U is not a subspace of \mathbf{R}^2 .

4. (LADR: 2.A.1) (5 pts) Suppose the list v_1, v_2, v_3, v_4 spans V. Prove that the list

$$v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4$$

also spans V.

5. (LADR: 2.A.5) (5 pts each) Show that:

(a) If we think of C as a vector space over R, then the list (1+i, 1-i) is linearly independent.

(b) If we think of **C** as a vector space over **C**, then the list (1+i, 1-i) is linearly dependent.

1

6. (LA: 2.2.9) (5 pts) Let W_1 and W_2 be subspaces of a vector space V such that $W_1 + W_2 = V$ and $W_1 \cap W_2 = \{\underline{0}\}$. Prove that for each vector α in V there are unique vectors α_1 in W_1 and α_2 in W_2 such that $\alpha = \alpha_1 + \alpha_2$.

Note: If S_1, S_2, \ldots, S_k are subsets of a vector space V, the set of all sums

$$\alpha_1 + \alpha_2 + \cdots + \alpha_k$$

or vectors α_i in S_i is called the sum of the subsets S_1, S_2, \ldots, S_k and is denoted by

$$S_1 + S_2 + \cdots + S_k$$

of by

$$\sum_{i=1}^{k} S_i.$$

- 7. (LADR: 2.B.3) (5 pts each)
 - (a) Let U be the subspace of \mathbb{R}^5 defined by

$$U = \{(x_1, x_2, x_3, x_4, x_5) \in \mathbf{R}^5 : x_1 = 3x_2, x_3 = 7x_4\}.$$

Find a basis for U.

- (b) Extend the basis from (a) to a basis for \mathbb{R}^5
- (c) Find a subspace W of \mathbf{R}^5 such that $\mathbf{R}^5 = U \oplus W$.
- 8. (MMA: 2.11.55) (5 pts) Let X and Y be vector spaces over the same set of scalars. Let LT[X,Y] denote the set of all linear transformations (i.e., linear functions) from X to Y. Thus, the transformations L and M in LT[X,Y] satisfy L(ax+z)=aL(x)+L(z) for all scalars a and vectors $x,z\in X$. Define an addition operator between L and M as

$$(L+M)(x) = L(x) + M(x),$$

for all $x \in X$. Define scalar multiplication by

$$(aL)(x) = a(L(x)).$$

Show that LT[X,Y] is a vector space.

Practice Problems (do not hand in):

1. (EF: 2.2.1) Let X, Y be metric spaces and $f: X \to Y$ be a continuous function. Prove that, if $A \subseteq X$ is a compact subset, then $f(A) \subseteq Y$ is a compact subset.

[Hint: You may assume a continuous function is uniformly continuous on a compact set.]

2. (LA: 1.6.6) Suppose A is a 2×1 matrix and that B is a 1×2 matrix. Prove that C = AB is not invertible.

- 3. (EF: 3.3.1) Let V be the vector space \mathbb{C}^3 over the *real* numbers. How many vectors are in any basis of V?
- 4. (LADR: 2.C.11) Suppose that U and W are subspaces of \mathbf{R}^8 such that dim U=3, dim W=5, and $U+W=\mathbf{R}^8$. Prove that $\mathbf{R}^8=U\oplus W$.
- 5. (LADR: 2.C.12) Suppose that U and W are both 5-dimensional subspaces of \mathbf{R}^9 . Prove that $U \cap W \neq \{0\}$.
- 6. (LA: 2.2.5) Let F be a field and let n be a positive integer $(n \ge 2)$. Let V be the vector space of all $n \times n$ matrices over F. Which of the following sets of matrices A are subspaces of V?
 - (a) all invertible A
 - (b) all non-invertible A
 - (c) all A such that AB = BA, where B is some fixed matrix in V
 - (d) all A such that $A^2 = A$
- 7. (LADR: 2.A.15) Prove that $V = \mathbf{F}^{\infty}$ is infinite dimensional.