Ch 6.1: Subset Selection

Lecture 17 - CMSE 381

Prof. Elizabeth Munch

Michigan State University

::

Dept of Computational Mathematics, Science & Engineering

Fri, Oct 13, 2023

Announcements

Last time

Boostrapping

Covered in this lecture

- Subset selection
- Forward and Backward Selection

Announcements:

 \bullet HW #5 posted and due Wednesday October 18

12	Mon	Oct 2	Leave one out CV	5.1.1, 5.1.2	
13	Wed	Oct 4	k-fold CV	5.1.3	
14	Fri	Oct 6	More k-fold CV,	5.1.4-5	
15	Mon	Oct 9	k-fold CV for classification	5.1.5	HW #4 Due
16	Wed	Oct 11	Resampling methods: Bootstrap	5.2	
17	Fri	Oct 13	Subset selection	6.1	
18	Mon	Oct 16	Shrinkage: Ridge	6.2.1	
19	Wed	Oct 18	Shrinkage: Lasso	6.2.2	
	Fri	Oct 20	Review		
	Mon	Oct 23	No class - Fall break		
	Wed	Oct 25	Midterm #2		
20	Fri	Oct 27	Dimension Reduction	6.3	

Section 1

Last time

Goals of fitting a given model

Up to now, we've focused on standard linear model: $Y = \beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p + \varepsilon$ and done least squares estimation.

Prediction accuracy

Goals of fitting a given model

Up to now, we've focused on standard linear model: $Y = \beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p + \varepsilon$ and done least squares estimation.

Model Interpretability

Goal of next chapter

Dr. Munch (MSU-CMSE)

Section 2

Best Subset Selection

Too many variables

• Ø

All subsets of 4 variables ($2^4 = 16$)

- X₁
- X2
- X₃
- X₄

- \bullet X_1 X_2
- \bullet X_1 X_3
- X₁ X₄
- \bullet X_2 X_3
- $X_2 X_4$
- $X_3 X_4$

- \bullet X_1 X_2 X_3
- X₁ X₂ X₄
- X₁ X₃ X₄
 - \bullet X_2 X_3 X_4

X₁ X₂ X₃ X₄

One way of breaking this up

Algorithm 6.1 Best subset selection

- 1. Let \mathcal{M}_0 denote the *null model*, which contains no predictors. This model simply predicts the sample mean for each observation.
- 2. For $k = 1, 2, \dots p$:
 - (a) Fit all $\binom{p}{k}$ models that contain exactly k predictors.
 - (b) Pick the best among these $\binom{p}{k}$ models, and call it \mathcal{M}_k . Here best is defined as having the smallest RSS, or equivalently largest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .

r. Munch (MSU-CMSE) Fri, Oct 13, 2023

Group work: calculate by hand

We train a model using four variables, X_1, X_2, X_3, X_4 . We're interested in getting a subset of the variables to use. The following table shows the mean squared error and the R^2 value computed for the model learned using each possible subset of variables.

	Training MSE (x10^7)	k-fold CV Testing Error
Null model	8.76	10.08
X1	8.63	9.98
X2	7.42	8.01
X3	8.16	8.3
X4	8.33	9.06
X1,X2	4.33	7.47
X1,X3	5.82	5.22
X1,X4	3.17	4.23
X2,X3	4.07	3.78
X2,X4	3.31	4.01
X3,X4	3.06	4.16
X1,X2,X3	3.08	5.49
X1,X2,X4	3.55	4.02
X1,X3,X4	2.97	4.23
X2,X3,X4	2.98	3.17
X1,X2,X3,X4	2.16	4.39

- What subset of variables is found for each of the sets $\mathcal{M}_0, \mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_3, \mathcal{M}_4$ when using best subset selection?
- What subset of variables is returned using best subset selection?

10 / 27

Dr. Munch (MSU-CMSE) Fri, Oct 13, 2023

Extra work space if it helps

	Training MSE (x10^7)	k-fold CV Testing Error
Null model	8.76	10.08
X1	8.63	9.98
X2	7.42	8.01
X3	8.16	8.3
X4	8.33	9.06
X1,X2	4.33	7.47
X1,X3	5.82	5.22
X1,X4	3.17	4.23
X2,X3	4.07	3.78
X2,X4	3.31	4.01
X3,X4	3.06	4.16
X1,X2,X3	3.08	5.49
X1,X2,X4	3.55	4.02
X1,X3,X4	2.97	4.23
X2,X3,X4	2.98	3.17
X1,X2,X3,X4	2.16	4.39

• Ø

- X₁ X₂
 X₁ X₃
 X₂ X₁ X₄
 X₃ X₂ X₃
 X₄ X₂ X₄
 X₃ X₄
- X₁ X₂ X₃
 X₁ X₂ X₄
 X₁ X₃ X₄
- X₁ X₃ X
- $X_2 X_3 X_4$

• X₁ X₂ X₃ X₄

Section 3

Forward Selection

What's the problem?

Dr. Munch (MSU-CMSE) Fri, Oct 13, 2023

Forward Stepwise Selection

Algorithm 6.2 Forward stepwise selection

- 1. Let \mathcal{M}_0 denote the *null* model, which contains no predictors.
- 2. For $k = 0, \ldots, p 1$:
 - (a) Consider all p-k models that augment the predictors in \mathcal{M}_k with one additional predictor.
 - (b) Choose the *best* among these p-k models, and call it \mathcal{M}_{k+1} . Here *best* is defined as having smallest RSS or highest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .

r. Munch (MSU-CMSE) Fri, Oct 13, 2023

An example for Forward Stepwise Selection

• Ø

- X₁
- X₂
- X₃
- X₄

- \bullet X_1 X_2
- $X_1 X_3$
- X₁ X₄
- \bullet X_2 X_3
- \bullet X_2 X_4
- $X_3 X_4$

- X₁ X₂ X₃
- \bullet X_1 X_2 X_4
- X₁ X₃ X₄
- \bullet X_2 X_3 X_4

X₁ X₂ X₃ X₄

Group work: by hand same example with forward example

We train a model using four variables, X_1, X_2, X_3, X_4 . We're interested in getting a subset of the variables to use. The following table shows the mean squared error and the R^2 value computed for the model learned using each possible subset of variables.

	Training MSE (x10^7)	k-fold CV Testing Error
Null model	8.76	10.08
X1	8.63	9.98
X2	7.42	8.01
X3	8.16	8.3
X4	8.33	9.06
X1,X2	4.33	7.47
X1,X3	5.82	5.22
X1,X4	3.17	4.23
X2,X3	4.07	3.78
X2,X4	3.31	4.01
X3,X4	3.06	4.16
X1,X2,X3	3.08	5.49
X1,X2,X4	3.55	4.02
X1,X3,X4	2.97	4.23
X2,X3,X4	2.98	3.17
X1,X2,X3,X4	2.16	4.39

- What subset of variables is found for each of the sets $\mathcal{M}_0, \mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_3, \mathcal{M}_4$ when using forward selection?
- What subset of variables is returned using forward subset selection?

16 / 27

Dr. Munch (MSU-CMSE) Fri, Oct 13, 2023

Extra work space if it helps

	Training MSE (x10^7)	k-fold CV Testing Error
Null model	8.76	10.08
X1	8.63	9.98
X2	7.42	8.01
X3	8.16	8.3
X4	8.33	9.06
X1,X2	4.33	7.47
X1,X3	5.82	5.22
X1,X4	3.17	4.23
X2,X3	4.07	3.78
X2,X4	3.31	4.01
X3,X4	3.06	4.16
X1,X2,X3	3.08	5.49
X1,X2,X4	3.55	4.02
X1,X3,X4	2.97	4.23
X2,X3,X4	2.98	3.17
X1,X2,X3,X4	2.16	4.39

•

• Ø

- X₁ X₂
 X₁ X₃
 X₂ X₁ X₄
 X₃ X₂ X₃
 X₄ X₂ X₄
 X₃ X₄
- X₁ X₂ X₃
 X₁ X₂ X₄
- $X_1 X_3 X_4$
- $X_2 X_3 X_4$

Fri, Oct 13, 2023

 \bullet X_1 X_2 X_3 X_4

Pros and Cons of Forward Stepwise

Pros: Cons:

Section 4

Backward Selection

. Munch (MSU-CMSE) Fri, Oct 13, 2023

Backward stepwise selection

Algorithm 6.3 Backward stepwise selection

- 1. Let \mathcal{M}_p denote the full model, which contains all p predictors.
- 2. For $k = p, p 1, \dots, 1$:
 - (a) Consider all k models that contain all but one of the predictors in \mathcal{M}_k , for a total of k-1 predictors.
 - (b) Choose the *best* among these k models, and call it \mathcal{M}_{k-1} . Here *best* is defined as having smallest RSS or highest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .

r. Munch (MSU-CMSE) Fri, Oct 13, 2023

An example for Backward Stepwise Selection

• Ø

- X₁
- X₂
- X₃
- X₄

- \bullet X_1 X_2
- \bullet X_1 X_3
- X₁ X₄
- \bullet X_2 X_3
- \bullet X_2 X_4
- $X_3 X_4$

- X₁ X₂ X₃
- \bullet X_1 X_2 X_4
- X₁ X₃ X₄
- \bullet X_2 X_3 X_4

X₁ X₂ X₃ X₄

Group work: by hand same example with backward

We train a model using four variables, X_1, X_2, X_3, X_4 . We're interested in getting a subset of the variables to use. The following table shows the mean squared error and the R^2 value computed for the model learned using each possible subset of variables.

	Training MSE (x10^7)	k-fold CV Testing Error
Null model	8.76	10.08
X1	8.63	9.98
X2	7.42	8.01
X3	8.16	8.3
X4	8.33	9.06
X1,X2	4.33	7.47
X1,X3	5.82	5.22
X1,X4	3.17	4.23
X2,X3	4.07	3.78
X2,X4	3.31	4.01
X3,X4	3.06	4.16
X1,X2,X3	3.08	5.49
X1,X2,X4	3.55	4.02
X1,X3,X4	2.97	4.23
X2,X3,X4	2.98	3.17
X1,X2,X3,X4	2.16	4.39

- What subset of variables is found for each of the sets $\mathcal{M}_0, \mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_3, \mathcal{M}_4$ when using forward selection?
- What subset of variables is returned. using forward subset selection?

Fri. Oct 13, 2023

Extra work space if it helps

	Training MSE (x10^7)	k-fold CV Testing Error
Null model	8.76	10.08
X1	8.63	9.98
X2	7.42	8.01
X3	8.16	8.3
X4	8.33	9.06
X1,X2	4.33	7.47
X1,X3	5.82	5.22
X1,X4	3.17	4.23
X2,X3	4.07	3.78
X2,X4	3.31	4.01
X3,X4	3.06	4.16
X1,X2,X3	3.08	5.49
X1,X2,X4	3.55	4.02
X1,X3,X4	2.97	4.23
X2,X3,X4	2.98	3.17
X1,X2,X3,X4	2.16	4.39

•

• Ø

- X₁ X₂
 X₁ X₃
 X₂ X₁ X₄
 X₃ X₂ X₃
 X₄ X₂ X₄
 X₃ X₄

• $X_2 X_3 X_4$

X₁ X₂ X₃
X₁ X₂ X₄
X₁ X₃ X₄
X₁ X₂ X₃ X₄

Pros and Cons of Backward Stepwise

Pros: Cons:

Code

Dr. Munch (MSU-CMSE)

TL;DR

Algorithm 6.1 Best subset selection

- 1. Let \mathcal{M}_0 denote the *null model*, which contains no predictors. This model simply predicts the sample mean for each observation.
- 2. For $k = 1, 2, \dots p$:
 - (a) Fit all $\binom{p}{k}$ models that contain exactly k predictors.
 - (b) Pick the best among these $\binom{p}{k}$ models, and call it \mathcal{M}_k . Here best is defined as having the smallest RSS, or equivalently largest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0,\dots,\mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .

- Modify step 2 with forward or backward selection
- Choose best model in step 3 using one of our adjusted training scores or CV

26 / 27

Dr. Munch (MSU-CMSE) Fri, Oct 13, 2023

Next time

	_				
12	Mon	Oct 2	Leave one out CV	5.1.1, 5.1.2	
13	Wed	Oct 4	k-fold CV	5.1.3	
14	Fri	Oct 6	More k-fold CV,	5.1.4-5	
15	Mon	Oct 9	k-fold CV for classification	5.1.5	HW #4 Due
16	Wed	Oct 11	Resampling methods: Bootstrap	5.2	
17	Fri	Oct 13	Subset selection	6.1	
18	Mon	Oct 16	Shrinkage: Ridge	6.2.1	
19	Wed	Oct 18	Shrinkage: Lasso	6.2.2	
	Fri	Oct 20	Review		
	Mon	Oct 23	No class - Fall break		
	Wed	Oct 25	Midterm #2		
20	Fri	Oct 27	Dimension Reduction	6.3	

Dr. Munch (MSU-CMSE) Fri, Oct 13, 2023