COMPUTER LOGIC AND DIGITAL CIRCUIT DESIGN (PHYS306/COSC330): UNIT 1.3

Jordan Hanson January 13, 2018

Whittier College Department of Physics and Astronomy

UNIT 1.3 SUMMARY - WORKING WITH BINARY

Reading: Digital Fundamentals (DF) Ch. 2 (see Moodle)

- 1. Number representation
- 2. Binary conversions
- 3. Binary arithmetic
- 4. The floating-point system
- 5. Hexidecimals, Binary-Coded Decimals (BCD), Gray codes, and ASCII

Homework: exercises 1-40 Ch. 2 (DF) (two weeks)

Questions:

- A simple question: how many students do we have in this class?
- Una simple pregunta: ¿Cuántos estudiantes tenemos en esta clase?
- Une question simple: Combien d'étudiants est-ce que nous avons dans cette classe?

What languages do computers speak? How can we store and transmit numbers through circuits? (We cannot use voltage magnitudes).

Consider the number 37

Numbers

- · 0d37
- · 0b100101
- · 0x25

Expanded notation

•
$$3 \times 10^{1} + 7 \times 10^{0}$$

•
$$1 \times 2^5 + 1 \times 2^2 + 1 \times 2^0$$

•
$$2 \times 16^1 + 5 \times 16^0$$

Consider the number 412

Numbers

- · 0d412
- · 0b110011100
- · 0x100

Expanded notation

•
$$4 \times 10^2 + 1 \times 10^1 + 2 \times 10^0$$

$$\cdot 1 \times 2^8 + 1 \times 2^7 + 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^2$$

•
$$1 \times 16^2$$

Number representations - Digits, weights, and a common base

- A number is written with digits that have weights.
- · A weight is a power of a base.
- At right, the base is ten, and the weights are 10², 10¹, and 10⁰.
- The digits are four, one, and two.
- The digits cannot represent numbers larger than the base.

Expanded notation

• $412 = 4 \times 10^2 + 1 \times 10^1 + 2 \times 10^0$

Number representations - (Aside) please use scientific notation, and here is why: digit minimization!

- Scientific notation factors the largest weight.
- Results in weights that are less than one.
- Weights that are less than one go to the right of the decimal point.
- Return here with floating-point representation.

Expanded notation

- 412,000,000 = $4 \times 10^8 + 1 \times 10^7 + 2 \times 10^6 +$ $0 \times 10^5 + 0 \times 10^4 + 0 \times 10^3 +$ $0 \times 10^2 + 0 \times 10^1 + 0 \times 10^0$
- 412,000,000 = $4.12 \times 10^8 = (4 \times 10^0 + 1 \times 10^{-1} + 2 \times 10^{-2}) \times 10^8$

Number representations - (Aside) please use scientific notation, and here is why: arithmetic operations with large numbers!

- 1. $4200 \times 4200 = (4.2 \times 10^3)^2 = (4.2)^2 \times 10^6 \approx 16 \times 10^6$
- 2. $\approx 17.6 \times 10^6$ if you account for the 0.2 ...

- 1. $4000/3000 = 4 \times 10^3 \times \frac{1}{3} \times 10^{-3} = \frac{4}{3}$
- 2. $\frac{4}{3} \approx 1.33$

Expand the following numbers to expanded decimal notation:

- · -10.432
- · 800,000,144

Expand the following numbers to expanded binary notation:

- · 10011010
- · 11110000

Convert the following decimal numbers to binary notation:

- · 260
- 560

Volunteer to board? - Key is explaining how you did the binary conversions

How did you do the conversions to binary? Is there a systematic what to do this?

- Successive Approximation like a number puzzle (Sum of Weights Method)
- · Successive Division Method Example of an algorithm

Successive approximation technique (does this remind you of doing division in your head?) $260...2^8 = 256$. Now we need four more... $4 = 2^2$. So $2^8 + 2^2 = 0b10000100$

What is 328 divided by 3? Ok try 100 because three times one hundred is close...

Successive Division Method

$$0d412 = 0b110011100 = 2^8 + 2^7 + 2^4 + 2^3 + 2^2$$

Algorithm:

- 1. Divide the decimal number by 2, and write down the remainder. This is the *least-significant bit* or LSB.
- 2. Keep dividing and recording the remainders in order, until you reach a dividend of 1.
- 3. 1/2 = 0r1, so the most-significant bit, or MSB, is always 1.

Convert 412 to binary using the successive division method.

Convert the numbers at right to binary.

•
$$2^0 = 1$$

•
$$2^1 = 2$$

•
$$2^2 = 4$$

•
$$2^3 = 8$$

•
$$2^4 = 16$$

•
$$2^5 = 32$$

$$\cdot 2^6 = 64$$

•
$$2^7 = 128$$

- 1. 93
- 2. 189
- 3. 270

Note: how many bits do you need for that last one?

Fractional.

UNIT 1.3 SUMMARY - WORKING WITH BINARY

Reading: Digital Fundamentals (DF) Ch. 2 (see Moodle)

- 1. Number representation
- 2. Binary conversions
- 3. Binary arithmetic
- 4. The floating-point system
- 5. Hexidecimals, Binary-Coded Decimals (BCD), Gray codes, and ASCII

Homework: exercises 1-40 Ch. 2 (DF) (two weeks)