hw2 Graded Student Giancarlos Marte **Total Points** 19 / 30 pts Question 1 NFAs 7.5 / 10 pts nfa formal description **5** / 5 pts 1.1 ✓ - 0 pts Correct accepting computation or no **2.5** / 5 pts 1.2 ✓ - 0.5 pts a correct, wrong reason ✓ - 1 pt b incorrect ✓ - 1 pt e incorrect computation must start in start state, missing q3 in a Question 2 DFAs vs NFAs 9 / 11 pts 2.1 differences 4 / 4 pts ✓ - 0 pts Correct equivalent machines 2.2 2 / 2 pts - 0 pts Correct 2.3 **DFA to NFA** 3 / 5 pts ✓ - 1 pt incorrect delta, output must be set of one DFA state ✓ - 1 pt incorrect states, should be same as DFA

Question 3

losed operation		1.5	/8	n)ts

- ✓ 1 pt Did not state what is to be proved
- ✓ 1.5 pts Not enough explanation to how B and C become OP(B,C)
- ✓ 1 pt Jumped to conclusions
- ✓ 1 pt Final statement does not justify closure
- ✓ 2 pts Did not use FSM/sets/other valid way to prove
- Although you do use some theorems, you do not actually prove anything, you need to use FSM's to prove this theorem. Look back at the slides for more info

Question 4

readme 1 / 1 pt

✓ - 0 pts Correct

1.1

$$N = (Q, \Sigma, \delta, q_{start}, F)$$

 $Q = (q_0, q_1, q_2, q_3, q_4, q_5, q_6)$
 $\Sigma = (0, 1)$

	0	1	ε
$q_0^{}$	$\{q_5^{}\}$	0	\bigcirc
q_{1}	Ø	0	$\{q_{0'}, q_{2}\}$
q_2	Ø	{q_3}	0
q_3	{q_3}	$\{q_{3}, q_{4}\}$	0
q_4	Ø	0	0
q_5	$\{q_{5}, q_{6}\}$	{q ₅ }	0
q_6	0	0	0

$$\begin{aligned} & \overline{q_{start}} = q_1 \\ & F = \{q_4, q_6\} \end{aligned}$$

a.
$$\hat{\delta}(q_{1}, 1001)$$

There is a resulting state that is accepting, therefore this computation is accepting. The possible sequence of states is:

$$(q_{1}, q_{2}, q_{3}, q_{3}, q_{4})$$

b. $\hat{\delta}(q_2, 1001)$

There is a resulting state that is accepting, therefore this computation is accepting. The possible sequence of states is:

$$(q_{2},\;q_{3},\;q_{3},\;q_{3},\;q_{4})$$

c. $\hat{\delta}(q_1, 100)$

All of the resulting states are not accepting, therefore it cannot be an accepting computation.

d. $\hat{\delta}(q_1, 00)$

There is a resulting state that is accepting, therefore this computation is accepting. The possible sequence of states is:

$$(q_{1}, q_{0}, q_{5}, q_{6})$$

e. $\hat{\delta}(q_4, \varepsilon)$

There is a resulting state that is accepting, therefore this computation is accepting. The possible sequence of states is:

 (q_4)

Questions assigned to the following page: $\underline{2.1}$, $\underline{2.2}$, and $\underline{2.3}$

2.1

Let A be a DFA,
$$A = (Q, \Sigma, \delta, q_0, F)$$

Let B be an NFA,
$$B = (Q', \Sigma, \delta', q'_0, F')$$

Then δ' is a transition function whose results are a set of states. Specifically,

 $\delta': Q' \times \Sigma_{\varepsilon} \to P(Q')$, where P(Q') means the output of a transition is in the form of a set. Also the Σ_{ε} means that an NFA can read no input. A DFA on the other hand, is not able to do any of these things. Its transition function outputs a single state, $\delta: Q \times \Sigma \to Q$ and it cannot read no input, Σ . These are two possible differences between both a DFA and an NFA.

2.2

Two machines are equivalent when they are able to recognize the same language or the same set of strings.

2.3

The procedure to turn a DFA into an equivalent NFA is simply to put its transition function result into a set. Also technically all DFA's are NFA's so you don't even have to create a procedure if you don't want to.

Have: DFA
$$D = (Q', \Sigma, \delta', q0', F')$$

Want: NFA $N = (Q, \Sigma, \delta, q0, F)$

1.
$$Q = P(Q) = 2^{Q'}$$

2. For R in P(Q) and a in Σ ,

$$\delta = \{\delta\}$$

$$3. q0 = q0$$

(Question assigned to the following page: <u>3</u>	

steps	statement			justification
1	An operation is closed if it is applied to a set and the results are still part of that set.			definition of a closed operation
2	Let B and C be regular languages			given
3	$x \text{ is not in B}$ $(x \notin B) \cup (x \notin B)$	given		
4	union is closed for regular languages			theorem; proven in class
5	T means x is not in language and F means it is in the language.			e. truth table
	$(x \notin B)$	$(x \notin C)$	$(x \notin B) \cup (x \notin C)$	
	Т	Т	T (not possible in this case because x must be derived from either language B or C.)	
	F	Т	Т	
	Т	F	Т	
	F	F	F	
6	x cannot be an element that is in both B and C. x cannot be an element that is in neither B or C. x must be an element from either B or C.			step 5
7	The resulting set from OP is a set with elements that are either from B or C, but not both or neither. This means that these elements are still part of both sets, which are regular languages.			
8	OP is closed for regular languages			step 4, 5, 6 and 7

README

time spent: 3 hours other students: none

books/websites: class slide