Lab 3 – interpolacja

Barbara Doncer

1. Polecenie

Dla funkcji f(x) wyznaczyć interpolacyjną funkcję sklejaną trzeciego stopnia oraz drugiego stopnia. Dla obu rodzajów funkcji (2-go i 3-go stopnia) należy wykonać obliczenia dla co najmniej dwóch różnych warunków brzegowych. Określić dokładność interpolacji – dla różnej liczby przedziałów i dla różnych warunków brzegowych. Porównać interpolację funkcjami sklejanymi drugiego i trzeciego stopnia. Graficznie zilustrować interes ujące przypadki. Opisać dokładnie przyjęte warunki brzegowe.

2. Zadana funkcja i jej wykres

$$f(x) = 20 + \frac{x^2}{2} - 20 \cdot \cos(2x)$$
$$x \in [-3\pi, 3\pi]$$

Wykres 2.1 Funkcja f(x) na zadanym przedziale

FUNKCJA SKLEJANA 2-GO STOPNIA

3. Wyznaczenie

Przy **n** punktach będziemy wyznaczać **n - 1** funkcji w postaci:

$$s_i(x) = a_i x^2 + b_i + c_i$$
 $i \in \{0, ..., n-2\}$

Mamy więc **3n – 3** niewiadomych.

Wiemy, że do każdej z tych funkcji należą dwa znane punkty:

$$\begin{cases} a_i x_j^2 + b_i x_j + c_i = y_j \\ a_i x_{j+1}^2 + b_i x_{j+1} + c_i = y_{j+1} \end{cases} \qquad i \in \{0, \dots, n-2\}, j \in \{0, \dots, n-1\}$$

To daje nam 2n - 2 równań.

Kolejne n - 2 równań daje nam przyrównanie do siebie pochodnych sąsiednich funkcji:

$$2a_i x_j + b_i = 2a_{i+1} x_j + b_{i+1} \Leftrightarrow 2a_i x_j + b_i - 2a_{i+1} x_j - b_{i+1} = 0$$
$$i \in \{0, ..., n-3\}, j \in \{0, ..., n-3\}$$

Brakuje nam więc 1 informacji. Określimy ją za pomocą warunku brzegowego.

4. Warunki brzegowe

a) warunek brzegowy 1

Ustalamy, że $a_0=0$. Sprawi to, że funkcja między dwoma pierwszymi punktami będzie liniowa.

b) warunek brzegowy 2

Ustalamy, $\dot{z}es'(x_n) = f'(x_n)$.

5. Wyniki

Poniżej przedstawione są wykresy funkcji (niebieski) oraz wyniku obliczeń z warunkiem brzegowym 1 (zielony) i warunkiem brzegowym 2 (żółty). Zastosowano oznaczenie:

n – liczba węzłów

Tabela 5.1 Wykresy dla funkcji sklejanej 2 stopnia.

6. Błędy interpolacji

Sprawdzenie dokładności odbyło się na dwa sposoby. Kolorem niebieskim zostały oznaczone najlepsze wyniki. Zastosowano oznaczenia:

$$f(x)-funkcja\ podana\ w\ zadaniu$$
 $W(x)-wyznaczony\ wielomian$ $N-ilość\ punktów, w\ których\ zostały\ obliczone\ błędy$ $N=1000$

a. Błąd kwadratowy

$$\sum_{i=1}^{N} (f(x_i) - W(x_i))^2$$

Tabela 6.6.1 Błąd kwadratowy dla poszczególnych przypadków

n	warunek brzegowy 1	warunek brzegowy 2
5	9,58E+05	8,99E+05
8	3,90E+05	4,93E+05
12	1,63E+06	1,30E+06
18	4,14E+04	6,82E+04
25	1,42E+04	2,32E+15
35	4,24E+03	6,68E+03
50	1,08E+03	1,68E+03

b. Maksymalna różnica

$$\max_{i=1,\dots,N} |f(x_i) - w(x_i)|$$

Tabela 6.6.2 Maksymalna różnica dla poszczególnych przypadków

n	warunek brzegowy 1	warunek brzegowy 2
5	7,78E+01	7,59E+01
8	3,73E+01	4,90E+01
12	8,15E+01	7,46E+01
18	1,46E+01	1,75E+01
25	5,99E+00	7,43E+00
35	3,07E+00	3,80E+00
50	1,48E+00	1,83E+00

7. Wnioski

- warunek brzegowy 1 daje dokładniejsze wyniki niż warunek brzegowy 2
- błędy zmniejszają się wraz ze wzrostem liczby węzłów (nie występuje efekt Rungego)

FUNKCJA SKLEJANA 3-GO STOPNIA

8. Wyznaczenie

Przy n punktach będziemy wyznaczać n - 1 funkcji w postaci:

$$s_{i}(x) = \frac{s_{i}''(x_{i})}{6h_{i}}(x_{i+1} - x)^{3} + \frac{s_{i}''(x_{i+1})}{6h_{i}}(x - x_{i})^{3} + (\frac{y_{i+1}}{h_{i}} - \frac{s_{i}''(x_{i+1})h_{i}}{6})(x - x_{i}) + (\frac{y_{i}}{h_{i}} - \frac{s_{i}''(x_{i})h_{i}}{6})(x_{i+1} - x)$$

$$i \in \{0, \dots, n-2\}$$

Po przyjęciu następujących oznaczeń:

$$\sigma_i = \frac{1}{6}s''(x_i)$$

$$\Delta_i = \frac{y_{i+1} - y_i}{h_i}$$

Dostajemy:

$$h_{i-1}\sigma_{i-1} + 2(h_{i-1} + h_i)\sigma_i + h_i\sigma_{i+1} = \Delta_i - \Delta_{i-1}, i = 2, 3, ..., n-1$$

Otrzymujemy w ten sposób n-2 równania, a mamy n niewiadomych.

Brakuje nam więc 2 informacji. Określimy je za pomocą warunków brzegowych.

9. Warunki brzegowe

- a) warunek brzegowy 1 natural cubic spline Ustalamy, że $s''(x_1) = s''(x_n) = 0$.
- b) warunek brzegowy 2

Zakładamy, że przez 4 pierwsze punkty przechodzi jedna funkcja sześcienna (taka sama sytuacja z 4 ostatnimi punktami). Otrzymujemy dzięki temu 2 dodatkowe równania:

$$\begin{cases} -h_1\sigma_1 + h_1\sigma_2 = h_1^2 \Delta_1^{(3)} \\ h_{n-1}\sigma_{n-1} - h_{n-1}\sigma_n = -h_{n-1}^2 \Delta_{n-3}^{(3)} \end{cases}$$

10. Wyniki

Poniżej przedstawione są wykresy funkcji (niebieski) oraz wyniku obliczeń z warunkiem brzegowym 1 (zielony) i warunkiem brzegowym 2 (żółty). Zastosowano oznaczenie:

n - liczba węzłów

Tabela 10. 1 Wykresy dla funkcji sklejanej 3 stopnia.

11. Błędy interpolacji

Sprawdzenie dokładności odbyło się na dwa sposoby. Kolorem niebieskim zostały oznaczone najlepsze wyniki. Zastosowano oznaczenia:

$$f(x)$$
 – funkcja podana w zadaniu $W(x)$ – wyznaczony wielomian N – ilość punktów, w których zostały obliczone błędy $N=1000$

a. Błąd kwadratowy

$$\sum_{i=1}^{N} (f(x_i) - W(x_i))^2$$

Tabela 11.1 Błąd kwadratowy dla poszczególnych przypadków

n	warunek brzegowy 1	warunek brzegowy 2
5	3,82E+05	5,74E+05
8	3,89E+05	3,97E+05
12	1,76E+05	1,93E+05
18	7,60E+03	4,10E+03
25	5,60E+02	3,74E+02
35	6,45E+01	8,70E+01
50	8,59E+00	4,74E+00

b. Maksymalna różnica

$$\max_{i=1,\dots,N} |f(x_i) - w(x_i)|$$

Tabela 11.2 Maksymalna różnica dla poszczególnych przypadków

n	warunek brzegowy 1	warunek brzegowy 2
5	3,82E+01	5,88E+01
8	3,99E+01	3,99E+01
12	2,68E+01	2,68E+01
18	8,11E+00	5,44E+00
25	3,31E+00	2,66E+00
35	1,43E+00	1,97E+00
50	6,35E-01	4,83E-01

12.Wnioski

- trudno zauważyć zdecydowaną przewagę któregoś warunku brzegowego nad drugim
- błędy zmniejszają się wraz ze wzrostem liczby węzłów (nie występuje efekt Rungego)

PORÓWNANIE WYNIKÓW FUNKCJI SKLEJANEJ 2 I 3-GO STOPNIA

Tabela. Wykresy wyników dla splinów 2 i 3-go stopnia

Wnioski:

- interpolacja funkcjami sklejanymi 3 stopnia daje dokładniejsze wyniki niż interpolacja funkcjami sklejanymi 2 stopnia
- wyniki interpolacji funkcjami sklejanymi 3 stopnia mniej wychylają się w górę i dół niż wyniki interpolacji funkcjami sklejanymi 2 stopnia