Análise de Complexidade de Algoritmos

Algoritmos e Estruturas de Dados
2019/2020

Introdução

- Algoritmo: conjunto claramente especificado de instruções a seguir para resolver um problema
- Análise de algoritmos:
 - provar que um algoritmo está correto
 - determinar recursos exigidos por um algoritmo (tempo, espaço)
 - comparar os recursos exigidos por diferentes algoritmos que resolvem o mesmo problema (um algoritmo mais eficiente exige menos recursos para resolver o mesmo problema)
 - prever o crescimento dos recursos exigidos por um algoritmo à medida que o tamanho dos dados de entrada cresce

ED 2010/20

Complexidade espacial e temporal

- Complexidade espacial de um programa ou algoritmo: espaço de memória que necessita para executar até ao fim S(n) espaço de memória exigido em função do tamanho (n) da entrada
- Complexidade temporal de um programa ou algoritmo: tempo que demora a executar (tempo de execução)

 T(n) tempo de execução em função do tamanho (n) da entrada
- Complexidade ↑ versus Eficiência ↓
- Por vezes estima-se a complexidade para o "melhor caso" (pouco útil), o "pior caso" (mais útil) e o "caso médio" (igualmente útil)

AED - 2019/20

• • • • • 3

Crescimento de funções

- Na prática, é difícil (senão impossível) prever com rigor o tempo de execução de um algoritmo ou programa
 - Obter o tempo a menos de:
 - constantes multiplicativas (normalmente estas constantes são tempos de execução de operações atómicas)
 - parcelas menos significativas para valores elevados de n
- Comparar crescimento
 - Comparação de funções em pontos particulares: muito dependente dos coeficientes
 - Comparação relevante: taxas de crescimento
- Avaliar taxa de crescimento
 - Em função com vários termos, crescimento é determinado pelo termo de crescimento mais rápido

- Coeficientes constantes influenciam o andamento inicial

ED 2010/20

Notação *O*(●)

• Definição:

T(n) = O(f(n)) (ler: T(n) é de ordem f(n)) se e só se existem constantes positivas c e n_0 tal que $T(n) \le cf(n)$ para todo o $n > n_0$

• Exemplos:

-
$$c_k n^k + c_{k-1} n^{k-1} + ... + c_0 = O(n^k)$$
 (c_i - constantes)

- $-\log_2 n = O(\log n)$ (não se indica a base porque mudar de base é multiplicar por constante)
- -4 = O(1) (usa-se 1 para ordem constante)

AED – 2019/20

Notação *O*(●)

- Notação para o crescimento relativo de funções
 - $-\ T(n)=O(\ f(n)\)$ se existem constantes c e n_0 tais que $T(n)\leq c$ $f(n)\ para\ n\geq n_0$
 - $T(n) = \Omega(f(n))$ se existem constantes c e n_0 tais que $T(n) \ge c$ f(n) para $n \ge n_0$
 - $T(n) = \Theta(f(n))$ se e só se T(n) = O(f(n)) e $T(n) = \Omega(f(n))$
 - $\ T(n) = o(\ f(n)\)$ se existem constantes c e n_0 tais que T(n) < c f(n) para $\ n \geq n_0$

AED 2010/20

. 6

Termo Dominante

- Suponha que se usa N^3 para estimar $N^3 + 350N^2 + N$
- Para N = 10000
 - valor real = 1 0003 5000 010 000
 - valor estimado = 1 000 000 000 000
 - erro = 0.35% (não é significativo)
- Para valores elevados de N
 - o termo dominante é indicativo do comportamento do algoritmo
- Para valores pequenos de *N*
 - o termo dominante não é necessariamente indicativo do comportamento, mas geralmente programas executam tão rapidamente que não importa

TD 2010/20

Estudo de um caso: subsequência máxima

- Problema:
 - Dado um conjunto de valores (positivos e/ou negativos) $A_1, A_2, ..., A_n$, determinar a subsequência de maior soma
- A subsequência de maior soma é zero se todos os valores são negativos
- Exemplos:

```
-2, 11, -4, 13, -4, 2
1, -3, 4, -2, -1, 6
```



```
Subsequência máxima - cúbico
```

```
template <class Comparable>
Comparable maxSubSum1(const vector<Comparable> &a)
    Comparable maxSum = 0;
    for (int i = 0 ; i < a.size() ; i++)
       for (int j = i; j < a.size(); j++)
         Comparable thisSum = 0;
          for (int k = i; k \le j; k++)
             thisSum += a[k];
          if (thisSum > maxSum)
             maxSum = thisSum;
    return maxSum;
```

Subsequência máxima - cúbico

Análise

- Ciclo de N iterações no interior de um outro ciclo de N iterações no interior de um outro ciclo de N iterações $\Rightarrow O(N^3)$, algoritmo cúbico
- Valor estimado por excesso, pois alguns ciclos possuem menos de N iterações

Como melhorar

- Remover um ciclo
- Ciclo mais interior não é necessário
- thisSum para próximo j pode ser calculado facilmente a partir do antigo valor de thisSum

AED = 2019/20

• • • • • 11

Subsequência máxima - quadrático

- Análise
 - Ciclo de N iterações no interior de um outro ciclo de N iterações \Rightarrow $O(N^2)$, algoritmo quadrático
- É possível melhorar?
 - Algoritmo linear é melhor : tempo de execução é proporcional a tamanho de entrada (difícil fazer melhor)
 - • Se A_{ij} é uma subsequência com custo negativo, A_{iq} com q>j não é a subsequência máxima

AED – 2019/20

• • • • • 13

Subsequência máxima - linear

```
template <class Comparable>
Comparable maxSubSum3(const vector<Comparable> &a)
{
   Comparable thisSum = 0; Comparable maxSum = 0;
   for (int j=0; j < a.size(); j++)
   {
      thisSum += a[j];
      if (thisSum > maxSum)
            maxSum = thisSum;
      else if (thisSum < 0)
            thisSum = 0;
      return maxSum;
}</pre>
```

JP AED - 2019/

Subsequência máxima - recursivo

- Método "divisão e conquista"
 - Divide a sequência a meio
 - A subsequência máxima está:
 - a) na primeira metade
 - b) na segunda metade
 - c) começa na 1ª metade, vai até ao último elemento da 1ª metade, continua no primeiro elemento da 2ª metade, e termina em um elemento da 2ª metade.
 - Calcula as três hipóteses e determina o máximo
 - a) e b) calculados recursivamente
 - c) realizado em dois ciclos:
 - percorrer a 1^a metade da direita para a esquerda, começando no último elemento
 - percorrer a 2ª metade da esquerda para a direita, começando no primeiro elemento

AED - 2019/20

Subsequência máxima - recursivo

```
template <class Comparable>
Comparable maxSubSum(const vector<Comparable> &a, int left, int
    right)
{
    Comparable maxLeftBorderSum = 0, maxRightBorderSum = 0
    Comparable leftBorderSum = 0, rightBorderSum = 0;
    int center = (left + right ) / 2;

if (left == right)
    return ( a[left] > 0 ? a[left] : 0 )

Comparable maxLeftSum = maxSubSum (a, left, center);
    Comparable maxRightSum = maxSubSum (a, center + 1, right);
```

FEUP

AED - 2019/20

for (int i = center ; i >= left ; i--) { leftBorderSum += a[i]; if (leftBorderSum > maxLeftBorderSum) maxLeftBorderSum = leftBorderSum; } for (int j = center +1 ; j <= right ; j++) { rightBorderSum += a[j]; if (rightBorderSum > maxRightBorderSum) maxRightBorderSum = rightBorderSum; } return max3(maxleftSum, maxRightSum, maxLeftBorderSum + maxRightBorderSum); }

Subsequência máxima - recursivo

- Análise complexidade temporal
 - Seja T(N) = tempo execução para problema tamanho N
 - -T(1) = 1 (recorda-se que constantes não interessam)
 - T(N) = 2* T(N/2) + N
 - duas chamadas recursivas, cada uma de tamanho *N*/2. O tempo de execução de cada chamada recursiva é *T*(*N*/2)
 - tempo de execução de caso c) é $\,N\,$
- E análise espacial?

AED – 2019/20 • • • • • 18

Subsequência máxima - recursivo

• Análise complexidade temporal

$$T(N) = 2* T(N/2) + N$$

$$T(1) = 1$$

$$T(N/2) = 2* T(N/4) + N/2$$

$$T(N/4) = 2* T(N/8) + N/4$$
...
$$T(N) = 2*2*T(N/4) + 2*N/2 + N$$

$$T(N) = 2*2*2*T(N/8) + 2*2*N/4 + 2*N/2 + N$$

$$T(N) = 2* T(N/2) + N$$

$$T(N) = 1: N/2 = 1 \implies k = \log_2 N$$

$$T(N) = N*1 + N* \log_2 N = O(N* \log N)$$

AED - 2019/20

19

O problema da Torre de Hanói

Torre de Hanói é um "quebra-cabeça"

 Uma base contém três pinos, num dos quais estão dispostos alguns discos uns sobre os outros, por ordem crescente de diâmetro

 O problema consiste em passar todos os discos de um pino para outro qualquer, de maneira que um disco maior nunca fique em cima de outro menor.

Complexidade temporal? Complexidade espacial?

AED – 2019/20