Book-Value Wealth Taxation, Capital Income Taxation, and Innovation

Fatih Guvenen, Gueorgui Kambourov, Burhan Kuruscu, Sergio Ocampo

HEC Montreal, October 2024

How to optimally tax wealth & capital income when returns are heterogeneous?

How to optimally tax wealth & capital income when returns are heterogeneous?

▶ If returns, r, are the same for everyone, the two taxes are equivalent with $\tau_a = r \cdot \tau_k$

How to optimally tax wealth & capital income when returns are heterogeneous?

▶ If returns, r, are the same for everyone, the two taxes are equivalent with $\tau_a = r \cdot \tau_k$

Our earlier work: Quantitative analysis of optimal capital income versus wealth tax (Guvenen, Kambourov, Kuruscu, Ocampo, Chen, QJE 2023)

► Rich OLG model; Large gains from *replacing* capital income tax with wealth tax

How to optimally tax wealth & capital income when returns are heterogeneous?

▶ If returns, r, are the same for everyone, the two taxes are equivalent with $\tau_a = r \cdot \tau_k$

Our earlier work: Quantitative analysis of optimal capital income versus wealth tax (Guvenen, Kambourov, Kuruscu, Ocampo, Chen, QJE 2023)

► Rich OLG model; Large gains from *replacing* capital income tax with wealth tax

This paper: Theoretical analysis of optimal combination of taxes

- ► Analytical model with workers, heterogeneous entrepreneurs, and innovation
- ► Result: characterize (i) productivity (ii) welfare (iii) optimal taxes (iv) innovation

1. **Empirical:** A growing literature documents <u>persistent</u> return heterogeneity.

Bach, Calvet, Sodini (2020); Fagereng, Guiso, Malacrino, Pistaferri (2020); Smith, Yagan, Zidar, Zwick (2023)

1. **Empirical**: A growing literature documents persistent return heterogeneity.

Bach, Calvet, Sodini (2020); Fagereng, Guiso, Malacrino, Pistaferri (2020); Smith, Yagan, Zidar, Zwick (2023)

- 2. **Technical:** Capital taxes paid by the very wealthy.
 - But models struggle to generate plausible wealth inequality.

Pareto Tail vs. Models

■ Return heterogeneity → concentration at very top + Pareto tail + fast wealth growth Benhabib, Bisin, et al (2011–2018); Gabaix, Lasry, Lions, Moll (2016); Jones, Kim (2018); Guvenen, Kambourov, Kuruscu, Ocampo, Chen (2023)

1. **Empirical**: A growing literature documents persistent return heterogeneity.

Bach, Calvet, Sodini (2020); Fagereng, Guiso, Malacrino, Pistaferri (2020); Smith, Yagan, Zidar, Zwick (2023)

- 2. Technical: Capital taxes paid by the very wealthy.
 - But models struggle to generate plausible wealth inequality.

Pareto Tail vs. Models

- Return heterogeneity → concentration at very top + Pareto tail + fast wealth growth Benhabib, Bisin, et al (2011–2018); Gabaix, Lasry, Lions, Moll (2016); Jones, Kim (2018); Guvenen, Kambourov, Kuruscu, Ocampo, Chen (2023)
- 3. **Practical:** Wealth taxation widely used by governments \longrightarrow Need better guidance

1. **Empirical**: A growing literature documents persistent return heterogeneity.

Bach, Calvet, Sodini (2020): Fagereng, Guiso, Malacrino, Pistaferri (2020): Smith, Yagan, Zidar, Zwick (2023)

- 2. Technical: Capital taxes paid by the very wealthy.
 - But models struggle to generate plausible wealth inequality.

Pareto Tail vs. Models

- Return heterogeneity → concentration at very top + Pareto tail + fast wealth growth Benhabib, Bisin, et al (2011–2018); Gabaix, Lasry, Lions, Moll (2016); Jones, Kim (2018); Guvenen, Kambourov, Kuruscu, Ocampo, Chen (2023)
- 3. **Practical:** Wealth taxation widely used by governments \longrightarrow Need better guidance
- 4. Theoretical: Interesting new economic mechanisms → Example next Allais (1977), Guvenen, Kambourov, Kuruscu, Ocampo, Chen (2023)

Return Heterogeneity: A Simple Example

- One-period model.
- ▶ Government taxes to finance G = \$50K.
- ► Two brothers: Fredo and Mike, each with \$1M of wealth.

Return Heterogeneity: A Simple Example

- One-period model.
- ▶ Government taxes to finance G = \$50K.
- ► Two brothers: Fredo and Mike, each with \$1M of wealth.
- ► Key heterogeneity: investment/entrepreneurial ability.
 - (Fredo) Low ability: earns $r_f = 0\%$ rate of return.
 - (Mike) High ability: earns $r_m = 20\%$ rate of return.

Return Heterogeneity: A Simple Example

- ► One-period model.
- ▶ Government taxes to finance G = \$50K.
- ► Two brothers: Fredo and Mike, each with \$1M of wealth.
- ► Key heterogeneity: investment/entrepreneurial ability.
 - (Fredo) Low ability: earns $r_f = 0\%$ rate of return.
 - (Mike) High ability: earns $r_m = 20\%$ rate of return.
- **Objective:** illustrate key tradeoffs b/w capital income tax (τ_k) and wealth tax (τ_a)

	Capital Income Tax	
	$a_{i,\text{after-tax}} = a_i + (1 - \tau_k)r_i a_i$	
	Fredo $(r_f = 0\%)$	Mike $(r_m = 20\%)$
Wealth	\$1M	\$1M
Before-tax Income	\$0	\$200K
Tax liability		
After-tax return		
After-tax wealth ratio		

	Capital Income Tax	
	$a_{i,\text{after-tax}} = a_i + (1 - \tau_k)r_i a_i$	
	Fredo ($r_f = 0\%$)	Mike $(r_m = 20\%)$
Wealth	\$1M	\$1M
Before-tax Income	\$0	\$200K
$\tau_k = 50/200 = 25\%$		
Tax liability	0	50 K ($=200 au_k$)
After-tax return		
After-tax wealth ratio		

	Capital Income Tax	
	$a_{i,\text{after-tax}} = a_i + (1 - \tau_k)r_i a_i$	
	Fredo $(r_f = 0\%)$	Mike ($r_m = 20\%$)
Wealth	\$1M	\$1M
Before-tax Income	\$0	\$200K
	$ au_k = 50/2$	200 = 25%
Tax liability	0	50 K ($=200 au_k$)
After-tax return	0%	$15\% \left(= \frac{200 - 50}{1000} \right)$
After-tax wealth ratio	1.15 (= 1150/1000)	

	Capital Ir	ncome Tax	Wealth Tax (on book value	
	$a_{i,\text{after-tax}} = a_i + (1 - \tau_k)r_i a_i$		$a_{i,\text{after-tax}} = (1 - \tau_a)a_i + r_i a_i$	
	Fredo $(r_f = 0\%)$	Mike (<i>r_m</i> = 20%)		
Wealth	\$1M	\$1M		
Before-tax Income	\$0	\$200K		
	$\tau_k = 50/200 = 25\%$			
Tax liability	0	\$50K (= $200 au_k$)		
After-tax return	0%	$15\% \left(= \frac{200 - 50}{1000} \right)$		
After-tax wealth ratio	1.15 (= 1150/1000)			

	Capital Income Tax $a_{i,\text{after-tax}} = a_i + (1 - \tau_k)r_i a_i$		Wealth Tax (on book value) $a_{i,\text{after-tax}} = (1 - \tau_a)a_i + r_i a_i$	
	Fredo ($r_f = 0\%$)	Mike (<i>r_m</i> = 20%)	Fredo ($r_f = 0\%$)	Mike ($r_m = 20\%$)
Wealth	\$1M	\$1M	\$1M	\$1M
Before-tax Income	\$0	\$200K	0	\$200K
	$\tau_k = 50/200 = 25\%$			
Tax liability	0	50 K ($=200 au_k$)		
After-tax return	0%	$15\% \left(= \frac{200 - 50}{1000} \right)$		
After-tax wealth ratio	$1.15 (= \frac{1150}{1000})$			

	Capital Income Tax $a_{i,\text{after-tax}} = a_i + (1 - \tau_k)r_i a_i$		Wealth Tax (on book value) $a_{i,\text{after-tax}} = (1 - \tau_a)a_i + r_i a_i$		
	Fredo $(r_f = 0\%)$	Mike $(r_m = 20\%)$	Fredo ($r_f = 0\%$)	Mike $(r_m = 20\%)$	
Wealth	\$1M	\$1M	\$1M	\$1M	
Before-tax Income	\$0	\$200K	0	\$200K	
	$\tau_{\it k} = 50/200 = 25\%$		$ au_a=$ 2.5%		
Tax liability	0	50 K ($=200 au_k$)	\$25K (= $1000\tau_a$)	\$25K (= 1000 $ au_a$)	
After-tax return	0%	$15\% \left(= \frac{200 - 50}{1000} \right)$			
After-tax wealth ratio	$1.15 (= \frac{1150}{1000})$				

	Capital Income Tax $a_{i,\text{after-tax}} = a_i + (1 - \tau_k)r_i a_i$		Wealth Tax (on book value)		
			$a_{i, \text{after-tax}} = (1 - \tau_a)a_i + r_i a_i$		
	Fredo $(r_f = 0\%)$	Mike $(r_m = 20\%)$	Fredo ($r_f = 0\%$)	Mike $(r_m = 20\%)$	
Wealth	\$1M	\$1M	\$1M	\$1M	
Before-tax Income	\$0	\$200K	0	\$200K	
	$ au_k = 50/200 = 25\%$		$ au_{a}=2.5\%$		
Tax liability	0	50 K ($=200 au_k$)	\$25K (= $1000\tau_a$)	\$25K (= $1000\tau_a$)	
After-tax return	0%	$15\% \left(= \frac{200 - 50}{1000} \right)$	$-2.5\% \left(=\frac{0-25}{1000}\right)$	$17.5\% \left(=\frac{200-25}{1000}\right)$	
After-tax wealth ratio	1.15 (= 1150/1000)		1.20 (≈ 1175/975)		

	Capital Income Tax $a_{i,\text{after-tax}} = a_i + (1 - \tau_k)r_i a_i$		Wealth Tax (on book value) $a_{i,\text{after-tax}} = (1 - \tau_a)a_i + r_i a_i$		
	Fredo $(r_f = 0\%)$	Mike (r _m = 20%)	Fredo ($r_f = 0\%$)	Mike $(r_m = 20\%)$	
Wealth	\$1M	\$1M	\$1M	\$1M	
Before-tax Income	\$0	\$200K	0	\$200K	
	$\tau_k = 50/200 = 25\%$		$ au_a=2.5\%$		
Tax liability	0	50 K ($=200 au_k$)	\$25K (= $1000\tau_a$)	\$25K (= $1000 au_a$)	
After-tax return	0%	$15\% \left(= \frac{200 - 50}{1000} \right)$	$-2.5\% \left(=\frac{0-25}{1000}\right)$	$17.5\% \left(= \frac{200 - 25}{1000} \right)$	
After-tax wealth ratio	$1.15 (= \frac{1150}{1000})$		1.20 (≈ ¹¹⁷⁵ / ₉₇₅)		

▶ Replacing τ_k with τ_a → reallocates assets to high-return agents (use it or lose it) + increases dispersion in after-tax returns & wealth.

1. Efficiency Gains: An increase in wealth tax increases TFP

- 1. Efficiency Gains: An increase in wealth tax increases TFP
- 2. Welfare Effects: Replacing capital income tax with wealth tax

Workers & Productive entrepreneurs gain Unproductive entrepreneurs lose

- 1. Efficiency Gains: An increase in wealth tax increases TFP
- 2. Welfare Effects: Replacing capital income tax with wealth tax

Workers & Productive entrepreneurs gain Unproductive entrepreneurs lose

3. Optimal Taxes: Depend on TFP pass-through to wages and K (given by capital intensity, α)

- 1. Efficiency Gains: An increase in wealth tax increases TFP
- 2. Welfare Effects: Replacing capital income tax with wealth tax

Workers & Productive entrepreneurs gain Unproductive entrepreneurs lose

3. Optimal Taxes: Depend on TFP pass-through to wages and K (given by capital intensity, α)

Low Pass-Through:
$$\alpha < \underline{\alpha}$$

$$\tau_a^\star < 0 \;, \, \tau_k^\star > 0 \qquad \tau_a^\star > 0 \;, \, \tau_k^\star > 0 \qquad \tau_a^\star > 0 \;, \, \tau_k^\star < 0$$
 High Pass-Through: $\alpha > \overline{\alpha}$
$$\tau_a^\star > 0 \;, \, \tau_k^\star < 0 \;$$

4. Endogenous innovation: increase effect of τ_a on TFP \longrightarrow higher optimal wealth tax

Outline

- 1. Benchmark model with exogenous entrepreneurial productivity process
- 2. Efficiency gains from wealth taxation
- 3. Welfare and optimal taxation
- 4. Models with endogenous entrepreneurial productivity

- 1. Homogenous workers (size *L*)
 - Inelastic labor supply + consume wages and government transfers (hand-to-mouth)

- 1. Homogenous workers (size L)
 - Inelastic labor supply + consume wages and government transfers (hand-to-mouth)
- 2. Heterogenous entrepreneurs (size 1)
 - Produce final goods using capital and labor + consume/save
 - Heterogeneity in productivity (z) and wealth (a)
 - Initial (inherited) wealth a common across entrepreneurs (a determined endogenously later)

- 1. Homogenous workers (size L)
 - Inelastic labor supply + consume wages and government transfers (hand-to-mouth)
- 2. Heterogenous entrepreneurs (size 1)
 - Produce final goods using capital and labor + consume/save
 - Heterogeneity in productivity (z) and wealth (a)
 - Initial (inherited) wealth a common across entrepreneurs (a determined endogenously later)

Preferences (of workers and entrepreneurs):

$$E_0 \sum_{t=0}^{\infty} (\beta \delta)^t \log (c_t)$$

where β < 1 and δ < 1 is the conditional survival probability

Technology, Production, and Taxes

Entrepreneurial technology:

$$y_i = (z_i k_i)^{\alpha} n_i^{1-\alpha}$$

- ▶ Productivity $z_i \in \{z_\ell, z_h\}$, where $z_h > z_\ell \ge 0$
- \triangleright Each entrepreneur draws z_i randomly at birth
 - \blacksquare μ fraction of entrepreneurs have $z_i = z_h$, 1μ have $z_i = z_\ell$
 - Productivity constant over lifetime (results robust to Markov productivity process)

Technology, Production, and Taxes

Entrepreneurial technology:

$$y_i = (z_i k_i)^{\alpha} n_i^{1-\alpha}$$

- ▶ Productivity $z_i \in \{z_\ell, z_h\}$, where $z_h > z_\ell \ge 0$
- \triangleright Each entrepreneur draws z_i randomly at birth
 - \blacksquare μ fraction of entrepreneurs have $z_i = z_h$, 1μ have $z_i = z_\ell$
 - Productivity constant over lifetime (results robust to Markov productivity process)
- ► Later: Productivity as endogenous outcome of innovation effort at birth

Technology, Production, and Taxes

Entrepreneurial technology:

$$y_i = (z_i k_i)^{\alpha} n_i^{1-\alpha}$$

- ▶ Productivity $z_i \in \{z_\ell, z_h\}$, where $z_h > z_\ell \ge 0$
- \triangleright Each entrepreneur draws z_i randomly at birth
 - \blacksquare μ fraction of entrepreneurs have $z_i = z_h$, 1μ have $z_i = z_\ell$
 - Productivity constant over lifetime (results robust to Markov productivity process)
- ▶ Later: Productivity as endogenous outcome of innovation effort at birth

Aggregate output: $Y = \int y_i di = \int (z_i k_i)^{\alpha} n_i^{1-\alpha} di$

Government: Finances exogenous expenditure G and transfers T with τ_k and τ_a

Financial Markets & Entrepreneurs' Problem

Financial markets:

- ► Collateral constraint: $k \le \lambda a$, where a is entrepreneur's wealth and $\lambda \ge 1$
- ightharpoonup Bonds are in zero net supply \longrightarrow rate r determined endogenously

Financial Markets & Entrepreneurs' Problem

Financial markets:

- ▶ Collateral constraint: $k < \lambda a$, where a is entrepreneur's wealth and $\lambda > 1$
- ightharpoonup Bonds are in zero net supply \longrightarrow rate r determined endogenously

Entrepreneurs' production decision:

▶ details

$$\Pi^{\star}(z,a) = \max_{\mathbf{k} \leq \lambda \mathbf{a},n} \left\{ (zk)^{\alpha} n^{1-\alpha} - rk - wn \right\} \longrightarrow \Pi^{\star}(z,a) = \underbrace{\pi^{\star}(z)}_{\mathsf{Evenes}} \times a$$

Financial Markets & Entrepreneurs' Problem

Financial markets:

- ▶ Collateral constraint: $k < \lambda a$, where a is entrepreneur's wealth and $\lambda > 1$
- ightharpoonup Bonds are in zero net supply \longrightarrow rate r determined endogenously

Entrepreneurs' production decision:

▶ details

$$\Pi^{*}(z,a) = \max_{\mathbf{k} \leq \lambda \mathbf{a},n} \left\{ (zk)^{\alpha} n^{1-\alpha} - rk - wn \right\} \longrightarrow \Pi^{*}(z,a) = \underbrace{\pi^{*}(z)}_{\text{Excess return above}} \times a$$

Financial market equilibrium:

▶ details

Unique equilibrium with return heterogeneity, capital misallocation + Empirically relevant

Financial Markets & Entrepreneurs' Problem

Financial markets:

- ▶ Collateral constraint: $k < \lambda a$, where a is entrepreneur's wealth and $\lambda > 1$
- ightharpoonup Bonds are in zero net supply \longrightarrow rate r determined endogenously

Entrepreneurs' production decision:

▶ details

$$\Pi^{\star}(z,a) = \max_{\mathbf{k} \leq \lambda \mathbf{a},n} \left\{ (zk)^{\alpha} n^{1-\alpha} - rk - wn \right\} \longrightarrow \Pi^{\star}(z,a) = \underbrace{\pi^{\star}(z)}_{\mathbf{a}} \times a$$

Financial market equilibrium:

▶ details

Unique equilibrium with return heterogeneity, capital misallocation + Empirically relevant

If
$$(\lambda - 1) \mu A_h$$
 < $(1 - \mu) A_\ell$ \longleftrightarrow $\lambda < \overline{\lambda}$ \longleftrightarrow $\tau_a < \overline{\tau}_a$

Entrepreneur's Dynamic Problem

$$V(a,z) = \max_{c,a'} \log(c) + \beta \delta V(a',z)$$
s.t.
$$c + a' = \underbrace{(1 - \tau_a) a + (1 - \tau_k) (r + \pi^*(z)) a}_{Affector, position}.$$

▶ Define (after-tax) gross return as:

$$R_i \equiv (1 - \tau_a) + (1 - \tau_k) (r + \pi^* (z_i))$$
 for $i \in \{\ell, h\}$

Entrepreneur's Dynamic Problem

$$V(a,z) = \max_{c,a'} \log(c) + \beta \delta V(a',z)$$
s.t.
$$c + a' = \underbrace{(1 - \tau_a) a + (1 - \tau_k) (r + \pi^*(z)) a}_{\text{Afterwise wealth}}.$$

▶ Define (after-tax) gross return as:

$$R_i \equiv (1 - \tau_a) + (1 - \tau_k) (r + \pi^* (z_i))$$
 for $i \in \{\ell, h\}$

► The savings decision (CRS + Log Utility):

$$a' = \beta \delta R_i a \longrightarrow \text{linearity allows aggregation}$$

Entrepreneur's Dynamic Problem

$$V(a,z) = \max_{c,a'} \log(c) + \beta \delta V(a',z)$$
s.t.
$$c + a' = \underbrace{(1 - \tau_a) a + (1 - \tau_k) (r + \pi^*(z)) a}_{\text{Afterwise weights}}.$$

Define (after-tax) gross return as:

$$R_i \equiv (1 - \tau_a) + (1 - \tau_k) (r + \pi^* (z_i))$$
 for $i \in \{\ell, h\}$

► The savings decision (CRS + Log Utility):

$$a' = \beta \delta R_i a \longrightarrow \text{linearity allows aggregation}$$

Note: log utility → No behavioral response to taxes.

→ All effects come from use-it-or-lose-it (conservative lower bound)

Equilibrium Values: Aggregation

Key variables:

- ▶ $s_h = \frac{\mu A_h}{\mu A_h + (1 \mu) A_\ell}$: wealth share of high-productivity entrepreneurs.
- ▶ $z_{\lambda} \equiv z_h + (\lambda 1)(z_h z_{\ell})$: effective productivity of high-productivity entrepreneurs.

Equilibrium Values: Aggregation

Key variables:

- ▶ $s_h = \frac{\mu A_h}{\mu A_h + (1 \mu) A_\ell}$: wealth share of high-productivity entrepreneurs.
- ▶ $z_{\lambda} \equiv z_h + (\lambda 1)(z_h z_{\ell})$: effective productivity of high-productivity entrepreneurs.

Lemma: Aggregate output can be written as:

$$Y = (ZK)^{\alpha} L^{1-\alpha}$$
 (Z^{α} is measured TFP)

$${\it K} \equiv \mu \, {\it A}_{\it h} + ({\it 1} - \mu) \, {\it A}_{\it \ell}$$
 ${\it K} =$ Aggregate capital

$$Z \equiv s_h z_\lambda + (1 - s_h) z_\ell$$
 $Z =$ Wealth-weighted productivity

Equilibrium Values: Aggregation

Key variables:

- ▶ $s_h = \frac{\mu A_h}{\mu A_h + (1 \mu) A_\ell}$: wealth share of high-productivity entrepreneurs.
- ▶ $z_{\lambda} \equiv z_h + (\lambda 1)(z_h z_{\ell})$: effective productivity of high-productivity entrepreneurs.

Lemma: Aggregate output can be written as:

$$Y = (ZK)^{\alpha} L^{1-\alpha}$$
 (Z^{α} is measured TFP)

$$K \equiv \mu A_h + (1 - \mu) A_\ell$$
 $K = \text{Aggregate capital}$
 $Z \equiv s_h z_\lambda + (1 - s_h) z_\ell$ $Z = \text{Wealth-weighted productivity}$

Note: Use it or lose it effect increases efficiency if $s_h \uparrow (\longrightarrow Z \uparrow)$

Steady State K: Same as Neoclassical Growth Model... but endogenous Z (Moll, 2014)

$$(1-\tau_a)+(1-\tau_k)\overbrace{\alpha \mathbf{Z}^{\alpha}(K/L)^{\alpha-1}}^{\mathsf{MPK}} = \frac{1}{\beta\delta}$$

Steady State K: Same as Neoclassical Growth Model... but endogenous Z (Moll, 2014)

$$(1 - \tau_k) \overbrace{\alpha Z^{\alpha} (K/L)^{\alpha - 1}}^{\text{MPK}} = \frac{1}{\beta \delta} - (1 - \tau_a)$$

Steady State K: Same as Neoclassical Growth Model... but endogenous Z (Moll, 2014)

$$(1 - \tau_k) \overbrace{\alpha Z^{\alpha} (K/L)^{\alpha - 1}}^{\text{MPK}} = \frac{1}{\beta \delta} - (1 - \tau_a)$$

Tax Neutrality: τ_k does not affect steady state after-tax MPK; But τ_a does.

Steady State K: Same as Neoclassical Growth Model... but endogenous Z (Moll, 2014)

$$(1 - \tau_k) \overbrace{\alpha Z^{\alpha} (K/L)^{\alpha - 1}}^{\text{MPK}} = \frac{1}{\beta \delta} - (1 - \tau_a)$$

▶ Tax Neutrality: τ_k does not affect steady state after-tax MPK; But τ_a does.

Steady State *R*: Returns reflect MPK + effective entrepreneurial productivity $z_i \in \{z_\ell, z_\lambda\}$

$$R_{i} = (1 - \tau_{a}) + \overbrace{\left(\alpha \frac{Z^{\alpha}}{K/L}\right)^{\alpha - 1}}^{MPK} \underbrace{\frac{Z_{i}}{Z}} \longrightarrow R_{i} = (1 - \tau_{a}) + \left(\frac{1}{\beta \delta} - (1 - \tau_{a})\right) \frac{Z_{i}}{Z}$$

Steady State K: Same as Neoclassical Growth Model... but endogenous Z (Moll, 2014)

$$(1 - \tau_k) \overbrace{\alpha Z^{\alpha} (K/L)^{\alpha - 1}}^{\text{MPK}} = \frac{1}{\beta \delta} - (1 - \tau_a)$$

▶ Tax Neutrality: τ_k does not affect steady state after-tax MPK; But τ_a does.

Steady State *Z*: Returns + evolution of assets imply this quadratic equation:

$$(1 - \delta^2 \beta (1 - \tau_a)) Z^2 - [(1 - \delta) (\mu z_\lambda + (1 - \mu) z_\ell) + \delta (1 - \delta \beta (1 - \tau_a)) (z_\lambda + z_\ell)] Z$$

$$+ \delta (1 - \delta \beta (1 - \tau_a)) z_\ell z_\lambda = 0$$

- ► Wealth tax affects returns, wealth shares, productivity. Capital income tax does not.
- ► Both taxes affect capital, output, wages...

Outline

- 1. Benchmark model with exogenous entrepreneurial productivity process
- 2. Efficiency gains from wealth taxation
- 3. Welfare and optimal taxation
- 4. Models with endogenous entrepreneurial productivity

Proposition:

For all $\mu \in (0,1)$ and $\tau_a < \bar{\tau}_a$, an increase in τ_a increases Z

Proposition:

Proof

For all $\mu \in (0,1)$ and $\tau_a < \bar{\tau}_a$, an increase in τ_a increases Z

Corollary: For all $\mu \in (0,1)$ and $\tau_a < \bar{\tau}_a$, with an increase in τ_a :

▶ Wealth concentration rises: $s_h \uparrow (Z \uparrow = s_h z_\lambda + (1 - s_h) z_\ell)$

Distribution

Proposition:

Proof

For all $\mu \in (0,1)$ and $\tau_a < \bar{\tau}_a$, an increase in τ_a increases Z

Corollary: For all $\mu \in (0,1)$ and $\tau_a < \bar{\tau}_a$, with an increase in τ_a :

▶ Wealth concentration rises: $s_h \uparrow (Z \uparrow = s_h z_\lambda + (1 - s_h) z_\ell)$

Distribution

► Dispersion of after-tax returns rises :

$$\frac{dR_{\ell}}{d\tau_a} < \mathbf{0}$$
 & $\frac{dR_h}{d\tau_a} > \mathbf{0}$

Proposition:

Proof

For all $\mu \in (0,1)$ and $\tau_a < \bar{\tau}_a$, an increase in τ_a increases Z

Corollary: For all $\mu \in (0,1)$ and $\tau_a < \bar{\tau}_a$, with an increase in τ_a :

▶ Wealth concentration rises: $s_h \uparrow (Z \uparrow = s_h z_\lambda + (1 - s_h) z_\ell)$

Distribution

► Dispersion of after-tax returns rises :

$$\frac{dR_{\ell}}{d\tau_a}$$
 < 0 & $\frac{dR_h}{d\tau_a}$ > 0

Average return decreases:

$$\mu \frac{d \log R_h}{d\tau_a} + (1 - \mu) \frac{d \log R_\ell}{d\tau_a} < \mathbf{0}$$

Government Budget and Aggregate Variables

$$G + T = \tau_k \alpha Y + \tau_a K$$
.

▶ In what follows, τ_k adjusts in the background when $\tau_a \uparrow$ so that $G + T = \theta \alpha Y$

Government Budget and Aggregate Variables

$$G+T = \tau_k \alpha Y + \tau_a K.$$

▶ In what follows, τ_k adjusts in the background when $\tau_a \uparrow$ so that $G + T = \theta \alpha Y$

Lemma:

For all $\mu \in (0,1)$ and $\tau_a < \overline{\tau}_a$, an increase in τ_a has the following effects on aggregates:

▶ Increases capital (K), output (Y), wage (W), & high-type wealth (A_h)

Government Budget and Aggregate Variables

$$G + T = \tau_k \alpha Y + \tau_a K$$
.

▶ In what follows, τ_k adjusts in the background when $\tau_a \uparrow$ so that $G + T = \theta \alpha Y$

Lemma:

For all $\mu \in (0,1)$ and $\tau_a < \overline{\tau}_a$, an increase in τ_a has the following effects on aggregates:

- ▶ Increases capital (K), output (Y), wage (w), & high-type wealth (A_h)
- **Key:** Higher $\alpha \longrightarrow \text{Larger pass-through of productivity to } K, Y, w$

$$\xi_Z^K = \xi_Z^Y = \xi_Z^W = \frac{\alpha}{1 - \alpha}$$
 $\xi_Z^X = \frac{d \log X}{d \log Z}$

Outline

- 1. Benchmark model with exogenous entrepreneurial productivity process
- 2. Efficiency gains from wealth taxation
- 3. Welfare and optimal taxation
- 4. Models with endogenous entrepreneurial productivity

Main Result 3: Optimal Taxes

Objective: Choose taxes (τ_a, τ_k) to max newborn welfare $(n_w = L/(1+L))$ pop. share of workers)

$$W \equiv n_w V_w + (1 - n_w) (\mu V_h(\overline{a}) + (1 - \mu) V_\ell(\overline{a}))$$

Main Result 3: Optimal Taxes

Objective: Choose taxes (τ_a, τ_k) to max newborn welfare $(n_w = L/(1+L))$ pop. share of workers)

$$\mathcal{W} = \frac{1}{1 - \beta \delta} \left\{ n_w \log (w + T) + (1 - n_w) \left(\log \overline{a} + \frac{\mu \log R_h + (1 - \mu) \log R_\ell}{1 - \beta \delta} \right) \right\} + \text{Constant}$$

▶ An interior solution satisfies $dW/d\tau_a = 0$.

Main Result 3: Optimal Taxes

Objective: Choose taxes (τ_a, τ_k) to max newborn welfare $(n_w = L/(1+L))$ pop. share of workers)

$$\mathcal{W} = \frac{1}{1 - \beta \delta} \left\{ n_w \log (w + T) + (1 - n_w) \left(\log \overline{a} + \frac{\mu \log R_h + (1 - \mu) \log R_\ell}{1 - \beta \delta} \right) \right\} + \text{Constant}$$

▶ An interior solution satisfies $dW/d\tau_a = 0$.

Key trade-off:

▶ Welfare by type

- 1. Higher *levels* of worker income (w + T) and wealth $(\overline{a} = K)$ Depends on α ! (higher welfare for workers and high-z entrepreneurs)
- 2. Lower *wealth growth* over lifetime from lower average return Depends on τ_a (lower welfare for low-z entrepreneurs and entrepreneurs as a group)

Proposition: There exists a unique optimal tax combination $(\tau_a^{\star}, \tau_k^{\star})$ that maximizes \mathcal{W} .

An interior optimum $(\tau_a^{\star} < \bar{\tau}_a)$ is solution to:

$$0 = \left(\underbrace{n_w \xi_Z^{w+T} + (1 - n_w) \xi_Z^K}_{\text{Level Effect} = \frac{\alpha}{1 - \alpha}(+)} + (1 - n_w) \underbrace{\xi_Z^g}_{\text{Growth Effect} (-)} \right) \frac{d \log Z}{d \tau_a}$$

where $\xi_Z^x \equiv \frac{d \log x}{d \log Z}$ is the elasticity of x with respect to Z.

Proposition: There exists a unique optimal tax combination $(\tau_a^{\star}, \tau_k^{\star})$ that maximizes \mathcal{W} .

An interior optimum $(\tau_a^{\star} < \bar{\tau}_a)$ is solution to:

$$0 = \left(\underbrace{n_w \xi_Z^{w+T} + (1 - n_w) \xi_Z^K}_{\text{Level Effect} = \frac{\alpha}{1 - \alpha}(+)} + (1 - n_w) \underbrace{\xi_Z^g}_{\text{Growth Effect}} \right) \frac{d \log Z}{d \tau_a}$$

where $\xi_Z^x \equiv \frac{d \log x}{d \log Z}$ is the elasticity of x with respect to Z. Furthermore,

$$\begin{array}{c|c} \text{Low Pass-Through: } \alpha < \underline{\alpha} \\ \hline \tau_a^\star < 0 \text{ , } \tau_k^\star > 0 \\ \hline \end{array} \quad \begin{array}{c|c} \tau_a^\star > 0 \text{ , } \tau_k^\star > 0 \\ \hline \end{array} \quad \begin{array}{c|c} \text{High Pass-Through: } \alpha > \overline{\alpha} \\ \hline \\ \tau_a^\star > 0 \text{ , } \tau_k^\star < 0 \\ \hline \end{array}$$

Outline

- 1. Benchmark model with exogenous entrepreneurial productivity process
- 2. Efficiency gains from wealth taxation
- 3. Welfare and optimal taxation
- 4. Models with endogenous entrepreneurial productivity

Model with Innovation Effort

- ▶ Interpret productivity z_i as the outcome of a risky innovation process
- ► Innovation requires costly effort, e, and can end with a high- or low-productivity idea

Model with Innovation Effort

- lnterpret productivity z_i as the outcome of a risky innovation process
- ► Innovation requires costly effort, e, and can end with a high- or low-productivity idea

Innovator's problem:

$$\max_{e} \frac{\tilde{\mu}\left(e\right) V_{h}\left(\overline{a}\right) + \left(1 - \frac{\tilde{\mu}\left(e\right)}{\tilde{\mu}\left(e\right)}\right) V_{\ell}\left(\overline{a}\right) - \frac{1}{\left(1 - \beta\delta\right)^{2}} \Lambda\left(e\right); \quad \Lambda\left(e\right) \text{ convex} + C^{2}; \, \tilde{\mu}\left(e\right) = e$$

Model with Innovation Effort

- ▶ Interpret productivity z_i as the outcome of a risky innovation process
- ► Innovation requires costly effort, e, and can end with a high- or low-productivity idea

Innovator's problem:

$$\max_{e} \ \tilde{\mu} \left(e \right) V_{h} \left(\overline{a} \right) + \left(1 - \tilde{\mu} \left(e \right) \right) V_{\ell} \left(\overline{a} \right) - \frac{1}{\left(1 - \beta \delta \right)^{2}} \Lambda \left(e \right); \quad \Lambda \left(e \right) \text{ convex} + C^{2}; \ \tilde{\mu} \left(e \right) = e$$

Optimal innovation effort:

$$\underline{\Lambda^{'}\left(e\right)} = \left(1-\beta\delta\right)^{2}\left(V_{h}\left(\overline{a}\right)-V_{\ell}\left(\overline{a}\right)\right) = \underbrace{\log R_{h} - \log R_{\ell}}_{\text{Mrg. Benefit: Return Gap}}$$

► Return dispersion incentivizes effort → Return dispersion necessary for innovation!

Stationary Equilibrium with Innovation

The stationary equilibrium share high-productivity entrepreneurs, $\tilde{\mu}$, solves

$$\tilde{\mu} = e(Z(\tilde{\mu}))$$
, where

- i. $Z(\tilde{\mu})$ gives the steady state productivity given $\tilde{\mu}$.
- ii. e(Z) gives the optimal innovation effort given steady state productivity Z.

Stationary Equilibrium with Innovation

The stationary equilibrium share high-productivity entrepreneurs, $\tilde{\mu}$, solves

$$\tilde{\mu} = e(Z(\tilde{\mu}))$$
, where

- i. $Z(\tilde{\mu})$ gives the steady state productivity given $\tilde{\mu}$.
- ii. e(Z) gives the optimal innovation effort given steady state productivity Z.

We show:

- i. There exists a unique equilibrium with innovation.
- ii. An increase in wealth taxes τ_a increase $\tilde{\mu}$ and Z (+ $\tilde{\mu}$ and Z are independent of τ_k)

$$\uparrow \tau_a \longrightarrow \uparrow Z + \uparrow \text{Return Dispersion} \longrightarrow \uparrow \text{Innovation}(e) \longrightarrow \uparrow \tilde{\mu} \longrightarrow \uparrow \uparrow Z$$

Optimal Taxes with Innovation

Objective: Choose $(\tau_a^{\star}, \tau_k^{\star})$ to maximize newborn welfare net of innovation costs

$$W \equiv n_{w} V_{w}(w) + (1 - n_{w}) \left(\tilde{\mu} V_{h}(\overline{a}) + (1 - \tilde{\mu}) V_{\ell}(\overline{a}) - \frac{\Lambda(\tilde{\mu})}{(1 - \beta \delta)^{2}} \right)$$

Optimal Taxes with Innovation

Objective: Choose $(\tau_a^{\star}, \tau_k^{\star})$ to maximize newborn welfare net of innovation costs

$$W \equiv n_{w} V_{w}(w) + (1 - n_{w}) \left(\tilde{\mu} V_{h}(\overline{a}) + (1 - \tilde{\mu}) V_{\ell}(\overline{a}) - \frac{\Lambda(\tilde{\mu})}{(1 - \beta \delta)^{2}} \right)$$

Proposition: The optimal tax combination $(\tau_a^{\star}, \tau_k^{\star})$ that maximizes \mathcal{W} is the solution to:

$$0 = \left(\underbrace{n_w \xi_Z^{w+T} + (1 - n_w) \xi_Z^K}_{\text{Level Effect} = \frac{\alpha}{1 - \alpha}(+)} + (1 - n_w) \underbrace{\xi_Z^g}_{\text{Growth Effect } (-)} \right) \frac{d \log Z}{d \tau_a}$$

Optimal Taxes with Innovation

Objective: Choose $(\tau_a^{\star}, \tau_k^{\star})$ to maximize newborn welfare net of innovation costs

$$W \equiv n_{w} V_{w}(w) + (1 - n_{w}) \left(\tilde{\mu} V_{h}(\overline{a}) + (1 - \tilde{\mu}) V_{\ell}(\overline{a}) - \frac{\Lambda(\tilde{\mu})}{(1 - \beta \delta)^{2}} \right)$$

Proposition: The optimal tax combination $(\tau_a^{\star}, \tau_k^{\star})$ that maximizes \mathcal{W} is the solution to:

$$0 = \left(\underbrace{n_w \xi_Z^{w+T} + (1 - n_w) \xi_Z^K}_{\text{Level Effect} = \frac{\alpha}{1 - \alpha}(+)} + (1 - n_w) \underbrace{\xi_Z^g}_{\text{Growth Effect} (-)} \right) \frac{d \log Z}{d \tau_a} + (1 - n_w) \underbrace{\xi_{\tilde{\mu}}^g}_{\text{M}} \frac{d \tilde{\mu}}{d \tau_a}$$

$$+ (1 - n_w) \underbrace{\xi_{\tilde{\mu}}^g}_{\text{M}} \frac{d \tilde{\mu}}{d \tau_a}$$
New! Innovation Effect (+)

- ► Innovation effect increase lifetime wealth growth by increasing average return
- ▶ Optimal tax combination has higher wealth taxes: $\tau_a^* \uparrow$

Model with Entrepreneurial Effort

► Entrepreneurial effort in production: (maintain CRS)

$$y = (zk)^{\alpha} e^{\gamma} n^{1-\alpha-\gamma} \longrightarrow e$$
: effort

► Entrepreneurial preferences: (avoid income effects)

$$u(c, e) = \log(c - \psi e)$$
 $\psi > 0$

Model with Entrepreneurial Effort

► Entrepreneurial effort in production: (maintain CRS)

$$y = (zk)^{\alpha} e^{\gamma} n^{1-\alpha-\gamma} \longrightarrow e$$
: effort

Entrepreneurial preferences: (avoid income effects)

$$u(c, e) = \log(c - \psi e)$$
 $\psi > 0$

Entrepreneurial problem becomes:

$$\hat{\pi}(z,k) = \max_{n,e} \left\{ y - wn - rk - \frac{\psi}{1 - \tau_k} e \right\}$$
Effective Cost of Effort

Key: Effective cost of effort *increases* with capital income tax τ_k but not with τ_a !

Model with Entrepreneurial Effort: Results

- 1. Efficiency gains from wealth taxation go through
 - Neutrality holds $\left((1 \tau_k) \text{ MPK} = \frac{1}{\beta \delta} (1 \tau_a) \right) \longrightarrow Z$, R_h , R_ℓ depend only on τ_a !

Model with Entrepreneurial Effort: Results

- 1. Efficiency gains from wealth taxation go through
 - Neutrality holds $\Big((1 \tau_k) \, \mathsf{MPK} = \frac{1}{\beta \delta} (1 \tau_a) \Big) \longrightarrow Z$, R_h , R_ℓ depend only on τ_a !
- 2. Effect on aggregates is stronger if capital income taxes go down
 - Aggregate effort increases, increasing output, capital, wages, etc.

$$E = \left(\frac{(1 - \tau_k)\gamma}{\psi}\right)^{\frac{1}{1 - \gamma}} (ZK)^{\frac{\alpha}{1 - \gamma}} L^{\frac{1 - \alpha - \gamma}{1 - \gamma}}$$

Model with Entrepreneurial Effort: Results

- 1. Efficiency gains from wealth taxation go through
 - Neutrality holds $\left(\ (1-\tau_{\it k}) \ {\sf MPK} = \frac{1}{\beta\delta} (1-\tau_{\it a}) \ \right) \longrightarrow {\it Z}, {\it R}_{\it h}, {\it R}_{\it \ell}$ depend only on $\tau_{\it a}!$
- 2. Effect on aggregates is stronger if capital income taxes go down
 - Aggregate effort increases, increasing output, capital, wages, etc.

$$E = \left(\frac{(1 - \tau_k)\gamma}{\psi}\right)^{\frac{1}{1 - \gamma}} (ZK)^{\frac{\alpha}{1 - \gamma}} L^{\frac{1 - \alpha - \gamma}{1 - \gamma}}$$

3. Optimal taxes: higher wealth tax and lower capital income tax

Conclusions

Increasing τ_a (& reducing τ_k):

- ▶ Use it or Lose it Effect: Reallocates capital from less to more productive agents.
 - Higher TFP, output, and wages;
 - Higher dispersion in returns and wealth and lower average returns
- Equilibrium innovation increases (when innovation is endogenous)

Conclusions

Increasing τ_a (& reducing τ_k):

- ▶ Use it or Lose it Effect: Reallocates capital from less to more productive agents.
 - Higher TFP, output, and wages;
 - Higher dispersion in returns and wealth and lower average returns
- Equilibrium innovation increases (when innovation is endogenous)

Optimal taxes:

- Combination of taxes depends on pass-through of TFP to wages and wealth
- Optimal wealth tax is higher with endogenous innovation.

Conclusions

Increasing τ_a (& reducing τ_k):

- ▶ Use it or Lose it Effect: Reallocates capital from less to more productive agents.
 - Higher TFP, output, and wages:
 - Higher dispersion in returns and wealth and lower average returns
- Equilibrium innovation increases (when innovation is endogenous)

Optimal taxes:

- Combination of taxes depends on pass-through of TFP to wages and wealth
- Optimal wealth tax is higher with endogenous innovation.

Extra

Outline

- 1. Benchmark model with exogenous entrepreneurial productivity process
- 2. Efficiency gains from wealth taxation
- 3. Welfare effects of wealth taxation
- 4. Optimal taxation
- 5. Model with endogenous entrepreneurial productivity
- 6. Extensions

Entrepreneur's Problem

Financial Markets & Entrepreneurs' Production Problem

Entrepreneurs' Production Decision:

$$\Pi^{\star}(z,a) = \max_{\mathbf{k} < \lambda \mathbf{a},n} (z\mathbf{k})^{\alpha} n^{1-\alpha} - r\mathbf{k} - w\mathbf{n}.$$

Financial Markets & Entrepreneurs' Production Problem

Entrepreneurs' Production Decision:

Solution:
$$\Pi^*(z, a) = \underbrace{\pi^*(z)}_{\text{Excess return above } r} \times a$$

$$\pi^{\star}(z) = \begin{cases} (MPK(z) - r) \lambda & \text{if } MPK(z) > r \\ 0 & \text{otherwise.} \end{cases} \qquad k^{\star}(z) \begin{cases} = \lambda a & \text{if } MPK(z) > r \\ \in [0, \lambda a] & \text{if } MPK(z) = r \\ = 0 & \text{if } MPK(z) < r \end{cases}$$

 \blacktriangleright $(\lambda - 1)$ a: amount of external funds used by type-z if MPK(z) > r.

Three types of equilibria can arise depending on parameter values.

Three types of equilibria can arise depending on parameter values.

We focus on "interesting one": if
$$(\lambda - 1) \mu A_h < (1 - \mu) A_\ell \longleftrightarrow \lambda < \overline{\lambda}$$

Note that $\lambda < \overline{\lambda}$

Bound on Leverage Bou

Three types of equilibria can arise depending on parameter values.

We focus on "interesting one": if
$$(\lambda - 1) \mu A_h < (1 - \mu) A_\ell \longleftrightarrow \lambda < \overline{\lambda}$$

Bound on Leverage Bound on Leverage

- ▶ Low-productivity entrepreneurs bid down interest rate, $r = MPK(z_{\ell})$
- ► Unique steady state with: return heterogeneity, capital misallocation, wealth tax ≠ capital inc tax
- ▶ Empirically relevant: $R_h > R_l$ and $\frac{Debt}{GDP} \gg 1.5$ when $\lambda = \overline{\lambda}$

Three types of equilibria can arise depending on parameter values.

We focus on "interesting one": if
$$(\lambda - 1) \mu A_h < (1 - \mu) A_\ell \longleftrightarrow \lambda < \overline{\lambda}$$

K Demand from H-Type

K Supply from L-Type

Bound on Leverage

- ▶ Low-productivity entrepreneurs bid down interest rate, $r = MPK(z_{\ell})$
- ► Unique steady state with:

 return heterogeneity, capital misallocation, wealth tax ≠ capital inc tax
- ▶ Empirically relevant: $R_h > R_I$ and $\frac{Debt}{GDP} \gg 1.5$ when $\lambda = \overline{\lambda}$

▶ details

Condition implies an upper bound on wealth taxes:

Upper Bound on au_a

$$(\lambda - 1) \mu A_h < (1 - \mu) A_\ell \longleftrightarrow \tau_a < \overline{\tau}_a = 1 - \frac{1}{\beta \delta} \left(1 - \frac{1 - \delta}{\delta} \frac{1 - \lambda \mu}{(\lambda - 1) \left(1 - \frac{z_\ell}{z_h} \right)} \right)$$

FIGURES

Conditions for Steady State with Heterogeneous Returns

Debt-to-Output Ratio $(\lambda = \overline{\lambda}_0)$

Upper Bound on Wealth Tax $\overline{\tau}_a$

Return Dispersion in Steady State of the Benchmark Economy

Dispersion of Returns in Equilibrium, $R_h - R_\ell$

Note: The figure reports the value return dispersion in steady state for combinations of the discount factor (β) and productivity dispersion (z_{ℓ}/z_h). We set the remaining parameters as follows: $\delta = 49/50$, $\beta \delta = 0.96$, $\mu = 0.10$, $z_h = 1$, $\tau_k = 25\%$, and $\alpha = 0.4$.

What happens to Z if $\tau_a \uparrow$?

Stationary wealth distribution and wealth taxes

Welfare Gains

Main Result 2: Welfare Gains by Type

Proposition:

ightharpoonup lpha Thresholds

For all $\tau_a < \overline{\tau}_a$, a higher τ_a changes welfare as follows:

- ▶ Workers: Higher welfare: $\frac{dV_{workers}}{d\tau_a} > 0$
- ▶ High-z entrepreneurs: Higher welfare $\left(\frac{dV_h(\bar{a})}{d\tau_a}>0\right)$ because $\xi_Z^K+\frac{1}{1-\beta\delta}\xi_Z^{R_h}>0$
- ▶ Low-z entrepreneurs: Lower welfare $\left(\frac{dV_{\ell}(\bar{a})}{d\tau_a} < 0\right)$ iff $\xi_Z^K + \frac{1}{1-\beta\delta}\xi_Z^{R_{\ell}} < 0$; $\alpha < \underline{\alpha}_{\ell}$
- ► Entrepreneurs: Lower average welfare iff $\xi_Z^K + \frac{1}{1-\beta\delta} \left(\mu \xi_Z^{R_h} + (1-\mu) \xi_Z^{R_\ell} \right) < 0$; $\alpha < \underline{\alpha}_E$

Conditions for Entrepreneurial Welfare Gain

Low-Productivity Entrepreneurs: $dV_{\ell}/d\tau_a > 0$

Average Entrepreneur: $dV_E/d\tau_a > 0$

Note: The figures report the threshold value of α above which entrepreneurial welfare increases after an increase in wealth taxes for combinations of the discount factor (β) and productivity dispersion (z_{ℓ}/z_h) . We set the remaining parameters as follows: $\delta = 49/50$, $\beta \delta = 0.96$, $\mu = 0.10$, $z_h = 1$, $\tau_k = 25\%$, and $\alpha = 0.4$.

Optimal Taxes

Optimal Tax and $\underline{\alpha}$ and $\overline{\alpha}$ Thresholds

lpha-thresholds for Optimal Wealth Taxes

Upper Threshold $\overline{\alpha}$ for $\tau_{\nu}^{\star} < 0$

Note: The figures report the threshold value of α for the optimal wealth taxes to be positive (left) and capital income taxes to be positive (right) for combinations of the discount factor (β) and productivity dispersion (z_{ℓ}/z_{h}). We set the remaining parameters as follows: $\delta = {}^{49}/{}_{50}$, $\beta \delta = 0.96$, $\mu = 0.10$, $z_{h} = 1$, $\tau_{k} = 25\%$, and $\alpha = 0.4$.

Optimal Wealth Tax: β & Productivity Dispersion

Optimal Wealth Tax τ_a^{\star}

Note: The figure reports the value of the optimal wealth tax for combinations of the discount factor (β) and productivity dispersion (z_{ℓ}/z_h). We set the remaining parameters as follows: $\delta = 49/50$, $\beta \delta = 0.96$, $\mu = 0.10$, $z_h = 1$, $\tau_k = 25\%$, and $\alpha = 0.4$.

Optimal Tax and $\underline{\alpha}$ and $\overline{\alpha}$ Thresholds with Innovation

Extensions

Extension: Corporate sector

- ► Technology: $Y_c = (z_c K_c)^{\alpha} L_c^{1-\alpha}$
 - No financial constraints!
- ► Corporate sector imposes lower bound on *r*:

$$r \geq \alpha Z_c \left(\frac{1-\alpha}{W}\right)^{\frac{1-\alpha}{\alpha}}.$$

Interesting case: $z_{\ell} < z_{c} < z_{h}$

- ► Corporate sector and high-productivity entrepreneurs produce
- ► Low-productivity entrepreneurs lend all of their funds.
- ▶ No real changes in the aggregates of the economy! z_c takes the place of z_ℓ

$$Y = (ZK)^{\alpha} L^{1-\alpha}$$

but now
$$Z = s_h z_\lambda + s_l \mathbf{z_c}$$
, where $z_\lambda = z_h + (\lambda - 1)(z_h - \mathbf{z_c})$.

Extension: Rents

► Introduce wedge for returns above/below productivity:

$$R_i = (1 - \tau_a) + (1 - \tau_k) \underbrace{(1 + \omega_i)}_{\mathsf{Return Wedge}} \alpha (Z^K/L)^{\alpha - 1} Z_i$$

- ► Zero-sum condition on wedges: $\omega_I z_\ell A_\ell + \omega_h z_\lambda A_h = 0$
- ▶ Characterization of eq. in terms of "effective productivity" $\tilde{z}_i = (1 + \omega_i) z_i$

Extension: Rents

► Introduce wedge for returns above/below productivity:

$$R_i = (1 - \tau_a) + (1 - \tau_k) \underbrace{(1 + \omega_i)}_{\text{Return Wedge}} \alpha (Z^K/L)^{\alpha - 1} Z_i$$

- ► Zero-sum condition on wedges: $\omega_I z_\ell A_\ell + \omega_h z_\lambda A_h = 0$
- ▶ Characterization of eq. in terms of "effective productivity" $\tilde{z}_i = (1 + \omega_i) z_i$

Proposition:

For all $\tau_a < \overline{\tau}_a$, a marginal increase in wealth taxes (τ_a) increases Z, $\frac{dZ}{d\tau_a} > 0$, iff

- 1. $\rho > 0$ and $R_h > R_\ell \longrightarrow$ Same mechanism as before
- 2. ρ < 0 and R_h < R \longrightarrow Reallocates wealth to the true high types next period

► Entrepreneurial production:

$$y = (zk)^{\alpha} e^{\gamma} n^{1-\alpha-\gamma} \longrightarrow e$$
: effort

- Production functions is CRS → Aggregation
- ► Entrepreneurial preferences:

$$u(c, e) = \log(c - \psi e)$$
 $\psi > 0$

- GHH preferences with no income effects Aggregation
- lacktriangledown ψ plays an important role: Cost of effort in consumption units

Problem is isomorphic to having preferences

$$u(\hat{c}) = \log \hat{c}$$
 where $\hat{c} = c - \psi e$

and modifying entrepreneurial problem to:

$$\hat{\pi}(z, k) = \max_{n, e} y - wn - rk - \underbrace{\frac{\psi}{1 - \tau_k}}_{\text{Effective cost of effort}} e^{\frac{1}{2} \frac{1}{2} \frac{1}{2$$

- Solution is just as before (linear policy functions a', n, and e)
- **Key:** Effective cost of effort depends on capital income tax τ_k !
 - Effort affects entrepreneurial income
 - Income subject to capital income taxes but not to **book value** wealth taxes

► Aggregate effort:

$$E = \left(\frac{(1 - \tau_k)\gamma}{\psi}\right)^{\frac{1}{1 - \gamma}} (ZK)^{\frac{\alpha}{1 - \gamma}} L^{\frac{1 - \alpha - \gamma}{1 - \gamma}}$$

- Comparative statics: $K \uparrow$, $Z \uparrow$, and $\tau_k \downarrow$
- ▶ New wedge from capital income taxes on aggregate output and wages!
- lacktriangle Effort affects marginal product of capital \longrightarrow Affects K_{ss}

A neutrality result:

- No changes to steady state productivity!
- Steady state capital adjusts in background to satisfy:

$$(1-\tau_k)\mathsf{MPK}-\tau_a=\frac{1}{\beta\delta}-1$$

Results:

- 1. Efficiency gains from wealth taxation remain
- 2. Effect on aggregates is stronger if capital income taxes go down
 - Effort increases with wealth taxes:

$$E = \left(\frac{(1-\tau_k)\gamma}{\psi}\right)^{\frac{1}{1-\gamma}} (ZK)^{\frac{\alpha}{1-\gamma}} L^{\frac{1-\alpha-\gamma}{1-\gamma}}$$

3. Optimal taxes: higher wealth tax and lower capital income tax

Pareto Tail of Wealth Distribution: Model vs. Data

