Language Models

CE-324: Modern Information Retrieval

Sharif University of Technology

M. Soleymani Spring 2020

Most slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276, Stanford)

Standard probabilistic IR: PRP

Ranking based on PRP

document collection

IR based on Language Model (LM)

document collection

Language models in IR

- Often, users have a reasonable idea of terms that are likely to occur in docs of interest
- They choose query terms that distinguish these docs from others in the collection

- LM approach assumes that docs and query are objects of the same type
 - Thus, assesses their match by importing the methods of language modeling

Formal language model

- Traditional generative model: generates strings
 - Finite state machines or regular grammars, etc.
- Example:

I wish I wish

. . .

Stochastic language models

Models probability of generating strings in the language (commonly all strings over alphabet \sum)

$$\sum_{s \in \Sigma^*} p(s) = 1$$

- Unigram model:
 - probabilistic finite automaton consisting of just a single node
 - with a single probability distribution over producing different terms $\sum_{t \in V} p(t) = 1$
 - also requires a probability of stopping in the finishing state

Example

Model M

the 0.2

a 0.1

information 0.01

retrieval 0.01

data 0.02

compute 0.03

. . .

the	information	retrieval
0.2	0.01	0.01

multiply

 $P(s \mid M) \propto 0.00002$

Stochastic language models

▶ Model probability of generating any string

	the	0.2			the	0.15	
Model MI	a	0.1		Model M2	a	0.08	
	data	0.02			management	0.05	
	information	0.01			information	0.02	
	retrieval	0.01			database	0.02	
	computing	0.005			system	0.015	
	system	0.004			mining	0.002	
	•••	•••			•••		
	info	ormation	system				
				D(a)	$ M\rangle > D(a)$	1 <i>11/1</i> \	
		0.01	0.004	$P(s M_2) > P(s$		$ W_1\rangle$	
		0.02	0.015				

The fundamental problem of LMs

- Usually we don't know the model M
 - But have a sample of text representative of that model

Estimate a language model from a sample doc

▶ Then compute the observation probability

Stochastic language models

- ▶ A statistical model for generating text
 - Probability distribution over strings in a given language

Unigram and higher-order models

▶ **Bigram** (generally, *n*-gram) Language Models

- Other Language Models
 - Grammar-based models (PCFGs)
 - Probably not the first thing to try in IR

Unigram model

$$P(\bullet \circ \bullet \circ) = P(\bullet) P(\circ) P(\bullet) P(\bullet)$$

Probabilistic language models in IR

- Treat each doc as the basis for a model
 - e.g., unigram sufficient statistics
- Rank doc d based on P(d|q)
 - $P(d|q) = P(q|d) \times P(d) / P(q)$
 - $\triangleright P(q)$ is the same for all docs, so ignore
 - \triangleright P(d) [the prior] is often treated as the same for all d
 - ☐ But we could use criteria like authority, length, genre
 - P(q|d) is the probability of q given d's model
- Very general formal approach

Query likelihood language model

$$p(d|q) = \frac{p(q|d) \times p(d)}{p(q)}$$

$$\approx \frac{p(q|M_d) \times p(d)}{p(q)}$$

Ranking formula

$$p(d)p(q|M_d)$$

Language models for IR

- Language Modeling Approaches
 - Attempt to model query generation process
 - Docs are ranked by <u>the probability that a query would be</u> <u>observed as a random sample from the doc model</u>
 - Multinomial approach

$$P(q|M_d) = K_q \prod_{t \in V} P(t|M_d)^{\mathsf{tf}_{t,q}}$$

$$K_q = \frac{L_q!}{tf_{1,q}! \times \dots \times tf_{M,q}!}$$

Retrieval based on probabilistic LM

Generation of queries as a random process

Approach

- Infer a language model for each doc.
 - Usually a unigram estimate of words is used
 - ☐ Some work on bigrams
- Estimate the probability of generating the query according to each of these models.
- Rank the docs according to these probabilities.

Query generation probability

The probability of producing the query given the language model of doc d using MLE is:

$$\hat{p}(t|M_d) = \frac{tf_{t,d}}{L_d}$$

$$\hat{p}(q|M_d) \propto \prod_{t \in q} \hat{p}(t|M_d)^{tf_{t,q}}$$

 M_d : language model of document d

 $tf_{t,d}$: raw tf of term t in document d

 L_d : total number of tokens in document d

 $tf_{t,q}$: raw tf of term t in query q

Unigram assumption:
Given a particular language mod
the query terms occur independer

Insufficient data

Zero probability

May not wish to assign a probability of zero to a doc missing one or more of the query terms [gives conjunction semantics]

$$\hat{p}(t|M_d) = 0$$

- Poor estimation: occurring words may also be badly estimated
 - in particular, the probability of words occurring for example once in the doc is normally overestimated

Insufficient data: solution

- Zero probabilities spell disaster
 - We need to smooth probabilities
 - Discount nonzero probabilities
 - Give some probability mass to unseen things
- Smoothing: discounts non-zero probabilities and gives some probability mass to unseen words
- Many approaches to smoothing probability distributions to deal with this problem
 - \blacktriangleright i.e., adding 1, 1/2 or α to counts, interpolation, and etc.

Collection statistics

A non-occurring term is possible, but no more likely than would be expected by chance in the collection.

If
$$tf_{t,d} = 0$$
 then $\hat{p}(t|M_d) < \frac{cf_t}{T}$

 cf_t : raw count of term t in the collection

cs = T: raw collection size (total number of tokens in the collection)

$$\hat{p}(t|M_c) = \frac{cf_t}{T}$$

- Collection statistics ...
 - Are integral parts of the language model (as we will see).
 - Are not used heuristically as in many other approaches.
 - However there's some wiggle room for empirically set parameters

Bayesian smoothing

$$\hat{p}(t|d) = \frac{tf_{t,d} + \alpha \hat{p}(t|Mc)}{L_d + \alpha}$$

- For a word present in the doc:
 - combines a discounted MLE and a fraction of the estimate of its prevalence in the whole collection
- ▶ For words not present in a doc:
 - is just a fraction of the estimate of the prevalence of the word in the whole collection.

Linear interpolation: Mixture model

- **Linear interpolation**: Mixes the probability from the doc with the general collection frequency of the word. $0 \le \lambda \le 1$
 - using a mixture between the doc multinomial and the collection multinomial distribution

$$\hat{p}(t|d) = \lambda \hat{p}(t|M_d) + (1 - \lambda)\hat{p}(t|M_c)$$

$$\hat{p}(t|d) = \lambda \frac{tf_{t,d}}{L_d} + (1 - \lambda) \frac{cf_t}{T}$$

It works well in practice

Linear interpolation: Mixture model

- Correctly setting λ is very important
 - high value: "conjunctive-like" search— suitable for short queries
 - low value for long queries
 - Can tune λ to optimize performance
 - Perhaps make it dependent on doc size (cf. Dirichlet prior or Witten-Bell smoothing)

Basic mixture model: summary

General formulation of the LM for IR

$$\hat{p}(q|d) = \prod_{t \in q} \lambda \hat{p}(t|M_d) + (1-\lambda)\hat{p}(t|Mc)$$
 general language model individual-document model

- The user has a doc in mind, and generates the query from this doc.
- The equation represents the probability that the doc that the user had in mind was in fact this one.

Example

- Doc collection (2 docs)
 - d₁:"Xerox reports a profit but revenue is down"
 - d₂:"Lucent narrows quarter loss but revenue decreases further"
- ▶ Model: MLE unigram from docs; $\lambda = \frac{1}{2}$
- Query: revenue down
 - $P(q|d_1) = [(1/8 + 2/16) / 2] \times [(1/8 + 1/16) / 2]$ $= 1/8 \times 3/32 = 3/256$
 - $P(q|d_2) = [(1/8 + 2/16) / 2] \times [(0 + 1/16) / 2]$ $= 1/8 \times 1/32 = 1/256$
- Ranking: $d_1 > d_2$

Ponte and croft experiments

- Data
 - ▶ TREC topics 202-250 on TREC disks 2 and 3
 - Natural language queries consisting of one sentence each
 - ▶ TREC topics 51-100 on TREC disk 3 using the concept fields
 - Lists of good terms

```
<num>Number: 054

<dom>Domain: International Economics

<title>Topic: Satellite Launch Contracts

<desc>Description:
... </desc>

<con>Concept(s):

1. Contract, agreement

2. Launch vehicle, rocket, payload, satellite

3. Launch services, ... </con>
```

Precision/recall results 202-250

		Precision	1	
Rec.	tf-idf	LM	%chg	
0.0	0.7439	0.7590	+2.0	
0.1	0.4521	0.4910	+8.6	
0.2	0.3514	0.4045	+15.1	*
0.3	0.2761	0.3342	+21.0	*
0.4	0.2093	0.2572	+22.9	*
0.5	0.1558	0.2061	+32.3	*
0.6	0.1024	0.1405	+37.1	*
0.7	0.0451	0.0760	+68.7	*
0.8	0.0160	0.0432	+169.6	*
0.9	0.0033	0.0063	+89.3	
1.0	0.0028	0.0050	+76.9	
Ave	0.1868	0.2233	+19.55	*

LM vs. probabilistic model for IR (PRP)

- Main difference: whether "Relevance" figures explicitly in the model or not
 - LM approach attempts to do away with modeling relevance
- LM approach assumes that docs and queries are of the same type
- Computationally tractable, intuitively appealing

LM vs. probabilistic model for IR

- Problems of basic LM approach
 - Assumption of equivalence between doc and information problem representation is unrealistic
 - Very simple models of language
 - Relevance feedback is difficult to integrate
 - user preferences, and other general issues of relevance
 - Can't easily accommodate phrases, passages, Boolean operators

 Recent work has shown the LM approach to be very effective in retrieval experiments, beating tf-idf and BM25 weights

Translation model (Berger and Lafferty)

- Basic LMs do not address issues of synonymy.
 - Or any deviation in expression of information need from language of docs
- A translation model: generate query words not in doc via "translation" to synonyms etc.
 - Or to do cross-language IR, or multimedia IR

$$P(q \mid M_d) = \prod_{t \in q} \sum_{v \in V} P(v \mid M_d) \times T(t \mid v)$$
Basic LM Translation

 Need to learn a translation model (using a dictionary or via statistical machine translation)

Language models: summary

- Novel way of looking at IR problem based on probabilistic language modeling
 - Conceptually simple and explanatory
 - Formal mathematical model
 - Natural use of collection statistics, not heuristics (almost...)
- Effective retrieval and can be improved to the extent that the following conditions can be met
 - accurate representations of the data
 - users have some sense of term distribution
 - we get more sophisticated with translation model

Comparison with vector space

- There's some relation to traditional tf.idf models:
 - (unscaled) term frequency is directly in model
 - probabilities do length normalization of term frequencies
 - effect of doing a mixture with overall collection frequencies is a little like idf:
 - terms rare in the general collection but common in some documents will have a greater influence on the ranking

Comparison with vector space

- Similar in some ways
 - Term weights based on their frequency
 - Terms often used as if they were independent
 - Inverse document/collection frequency used
 - Some form of length normalization useful
- Different in others
 - Based on probability rather than similarity
 - Intuitions are probabilistic rather than geometric
 - Details of use of document length and term, document, and collection frequency differ

Resources

IIR, Chapter 12.

The Lemur Toolkit for Language Modeling and Information Retrieval. [CMU/Umass LM and IR system in C(++)] http://www-2.cs.cmu.edu/~lemur/