Aufgabe 1 Beweisen Sie:

- a) Für alle $n \in \mathbb{N}_0$ ist $x \mapsto x^{2n}$ eine gerade und $x \mapsto x^{2n+1}$ eine ungerade Funktion auf \mathbb{R} .
- b) Ist f eine beliebige Funktion auf **R**, so ist durch $g(x) = \frac{1}{2}(f(x) + f(-x))$ eine gerade Funktion g und durch $u(x) = \frac{1}{2}(f(x) - f(-x))$ eine ungerade Funktion u auf **R** gegeben.
- c) Jede beliebige Funktion f auf ${\bf R}$ lässt sich eindeutig als Summe einer geraden und einer ungeraden Funktion auf **R** schreiben.
- d) Das Produkt zwei gerader Funktionen ist gerade, das Produkt zweier ungerader Funktionen ist gerade, das Produkt einer geraden und einer ungeraden Funktion ist ungerade.
- e) Ist eine Funktion f auf $D \subset \mathbf{R}$ streng monoton (wachsend oder fallend), so ist sie injektiv.
- f) Ist eine Funktion f auf $D \subset \mathbf{R}$ streng monoton (wachsend oder fallend) und schränkt man ihre Zielmenge auf f(D) ein, so ist f umkehrbar und die Umkehrfunktion f^{-1} weist dieselbe Monotonieeigenschaft wie f auf.
- g) Sind f und g periodische Funktionen auf **R**, so sind auch $f \pm g$, $f \cdot g$, f/g (falls $g(x) \neq 0$ für alle $x \in \mathbf{R}$), |f|, λf ($\lambda \in \mathbf{R}$) und f^q (falls $g(x) \geq 0$ für alle $x \in \mathbf{R}$, q > 0) periodische Funktionen auf \mathbf{R} .
- h) Es existieren Funktionen f und g auf \mathbf{R} mit $f \cdot g = f \circ g$. (Hinweis: $f \cdot g$ und $f \circ g$ bezeichnen im Allgemeinen vollkommen verschiedene Funktionen!)
- i) Es existiert keine Funktion f auf \mathbf{R} mit $f^{-1} = 1/f$. (Hinweis: f^{-1} und 1/f bezeichnen im Allgemeinen vollkommen verschiedene Funktionen!)

Aufgabe 2

- a) Zeigen Sie für $f(x) = \frac{2x^2-1}{3x^2+6}$ und $c = \frac{2}{3}$, dass $\lim_{x \to \infty} f(x) = c$ ist, indem Sie zu jedem $\epsilon > 0$ ein $x_0 \in \mathbf{R}$ so angeben, dass für alle $x > x_0$ gilt: $|f(x) c| < \epsilon$.
- b) Zeigen Sie für $f(x) = \frac{2x^2-18}{x+3}$, $x_0 = -3$ und c = -12, dass $\lim_{x \to x_0} f(x) = c$ ist, indem Sie zu jedem $\epsilon > 0$ ein $\delta > 0$ so angeben, dass für alle x mit $|x - x_0| < \delta$ gilt: $|f(x) - c| < \epsilon$.

Aufgabe 3 Berechnen Sie die Grenzwerte, falls sie existieren:

a)
$$\lim_{x \to \pm \infty} \frac{x^2 - 3}{2x^2 + 5}$$

b)
$$\lim_{x \to \pm \infty} \frac{x^4}{x^3 - 1} - x$$

b)
$$\lim_{x \to \pm \infty} \frac{x^4}{x^3 - 1} - x$$
 c) $\lim_{x \to \pm \infty} \frac{7 + 13x^2 - 6x^3}{3x^3 - 5x}$

d)
$$\lim_{x \to \infty} \sqrt{x+2} - \sqrt{x}$$

e)
$$\lim_{x \to \pm \infty} \frac{x^3 - 4x}{x + 1}$$

f)
$$\lim_{x \to \pm \infty} \left(\frac{x^2 + 2}{2x^3 - 3} \right)^2$$

g)
$$\lim_{x \to \pm \infty} \sqrt{\frac{18x^2 + 7x}{2x^2 - 1}}$$

h)
$$\lim_{x \to \infty} \frac{\sqrt{x^2 + 1} + \sqrt{x}}{\sqrt[4]{x^3 + x} - \frac{1}{2}x}$$
 i) $\lim_{x \to \pm \infty} \frac{|x|}{x}$

i)
$$\lim_{x \to \pm \infty} \frac{|x|}{x}$$

$$\mathrm{j)}\,\lim_{x\to\pm\infty}\frac{\sqrt{x^2+1}}{x+1}$$

k)
$$\lim_{x \to \infty} x(\sqrt{x^2 + 1} - x)$$
 l) $\lim_{x \to \pm \infty} \frac{x}{1 + x^2}$

$$\lim_{x \to \pm \infty} \frac{x}{1 + x^2}$$

m)
$$\lim_{x \to \pm \infty} \left(\frac{6x+2}{7x^2-3} \right) \left(\frac{4}{3}x - 5\frac{1}{x^2} \right)$$
 n) $\lim_{x \to \pm \infty} \frac{x^2}{(x-3)^2}$ o) $\lim_{x \to \pm \infty} \sqrt[3]{\frac{(2x-1)(4x+7)}{1+x^2}}$

$$n) \lim_{x \to \pm \infty} \frac{x^2}{(x-3)^2}$$

o)
$$\lim_{x \to \pm \infty} \sqrt[3]{\frac{(2x-1)(4x+7)}{1+x^2}}$$

Aufgabe 4 Untersuchen Sie jeweils, ob die Funktion f für $x \to \infty$ gegen eine Gerade g als Asymptote konvergiert. Wie lautet gegebenenfalls q?

a)
$$f(x) = \frac{4 - 3x^2}{5x + 1}$$

a)
$$f(x) = \frac{4-3x^2}{5x+1}$$
 b) $f(x) = \frac{5x^2-3x-2}{3x^2-5x+9}$ c) $f(x) = \frac{x^4-6}{7x^2}$

c)
$$f(x) = \frac{x^4 - 6}{7x^2}$$

d)
$$f(x) = \frac{x^3 + x + 15}{7 - 4x}$$

d)
$$f(x) = \frac{x^3 + x + 13}{7 - 4x}$$
 e) $f(x) = \frac{3x^2}{x - 2} - \frac{5x}{x + 1}$

$$f) f(x) = 3x + 1$$

Lösungen zu Aufgabe 3

a)
$$\frac{1}{2}$$

c)
$$-2$$

a)
$$\frac{1}{2}$$
 b) 0 c) -2 d) 0 e) ∞ f) 0 g) 3 h) -2
i) ± 1 j) 1 k) $\frac{1}{2}$ l) 0 m) $\frac{8}{7}$ n) 1 o) 2

$$-2$$

n)
$$\frac{8}{7}$$

Lösungen zu Aufgabe 4

a)
$$g(x) = -\frac{3}{5}x + \frac{3}{25}$$

b)
$$g(x) = \frac{5}{5}$$

b)
$$g(x) = \frac{5}{3}$$
 c) keine Gerade als Asymptote

d) keine Gerade als Asymptote
 e)
$$g(x) = 3x + 1$$

 f) $g(x) = 3x + 1$

e)
$$g(x) = 3x + 1$$

f)
$$q(x) = 3x + 1$$