

01968416 **Image available**
MEASURING METHOD OF DISTANCE

PUB. NO.: 61-182516 A]
PUBLISHED: August 15, 1986 (19860815)
INVENTOR(s): TANMACHI MASAHIRO
APPLICANT(s): CANON INC [000100] (A Japanese Company or Corporation), JP
(Japan)
APPL. NO.: 60-022798 [JP 8522798]
FILED: February 09, 1985 (19850209)
INTL CLASS: [4] G01C-003/08
JAPIO CLASS: 46.1 (INSTRUMENTATION -- Measurement); 26.2 (TRANSPORTATION
-- Motor Vehicles); 37.2 (SAFETY -- Traffic)
JAPIO KEYWORD: R007 (ULTRASONIC WAVES); R098 (ELECTRONIC MATERIALS -- Charge
Transfer Elements, CCD & BBD); R131 (INFORMATION PROCESSING
-- Microcomputers & Microprocessers)
JOURNAL: Section: P, Section No. 533, Vol. 11, No. 5, Pg. 58, January
08, 1987 (19870108)

ABSTRACT

PURPOSE: To measure distances of many directions accurately within a short period by using a two-dimensional array of photodetecting elements as an illuminance distribution measuring means.

CONSTITUTION: An object 5 is arranged in an angle .theta. direction from an optical axis 1A in the X direction when observed from the center of the lens 1 and in an angle .phi. direction from the optical axis in the Z direction. Out of the photodetecting elements in the sensor 3, the p-th - r-th photodetecting elements of the X direction in the h-th line of the Z direction including the q-th photodetecting element of the X direction in the h-th line of the Z direction where an image 6 is positioned are selected as standard visual fields. Similarly, the p'th - r'th photodetecting elements of the X direction in the h-th line of the Z direction including the q' th photodetecting element of the X direction in the h-th line of the Z direction where an image is positioned are selected as reference visual fields out of the photodetecting elements in a sensor 4. Thus, a distance up to the object 5 can be calculated on the basis of the output signals from the photodetecting elements in the selected standard visual fields and the selected reference visual fields.

⑫ 公開特許公報 (A)

昭61-182516

⑬ Int.Cl.

G 01 C 3/08

識別記号

厅内整理番号

8505-2F

⑭ 公開 昭和61年(1986)8月15日

審査請求 未請求 発明の数 1 (全8頁)

⑮ 発明の名称 距離測定方法

⑯ 特 願 昭60-22798

⑰ 出 願 昭60(1985)2月9日

⑱ 発明者 反町 誠宏 東京都大田区下丸子3丁目30番2号 キヤノン株式会社内

⑲ 出願人 キヤノン株式会社 東京都大田区下丸子3丁目30番2号

⑳ 代理人 弁理士 山下 穣平

明細書

1. 発明の名称

距離測定方法

2. 特許請求の範囲

(1) 同一の焦点距離を有する2つのレンズを光軸が平行になる様に適宜の距離隔てで配置し、各レンズの後方に同一距離隔てで光軸と垂直に照度分布測定手段を配置し、各レンズによる各測定手段における物体の像の照度分布の相関をとることにより2つの像の各光軸からのズレ量の差を求め、これに基づき物体までの距離を算出する距離測定方法において、照度分布測定手段として受光要素を2次元的に配列してなるものを用い、これら受光要素の2つの配列方向のうちの1つを両レンズの光軸を含む面と平行な方向とし、各レンズによる各測定手段の成る部分における物体の像の照度分布の相関をとることにより成る方向に存在する物体までの距離を算出し、該算出を各測定手段の複数の部分について行なうことにより複数の方向に存在する物体までの距離を算出することを特徴とする、距離測定方法。

(2) 一方の照度分布測定手段の各部分の出力信号と該部分に対応する他方の照度分布測定手段の部分の出力信号とをセットとして各並列配置信号処理手段に入力せしめ、複数の方向に存在する物体までの距離を並行して算出する、特許請求の範囲第1項の距離測定方法。

(3) 2つの照度分布測定手段が実質上同一の受光要素配列を有する、特許請求の範囲第1項の距離測定方法。

(4) 2つの照度分布測定手段のレンズ光軸に対する相対的配置が両光軸を含む面と平行な方向にずれている、特許請求の範囲第3項の距離測定方法。

3. 発明の詳細な説明

〔産業上の利用分野〕

本発明は距離測定方法に関し、特に多方向に存在する物体までの距離を光学的に測定するための方法に関する。この様な距離測定方法は環境認識の1つの手段として利用される。

〔従来の技術〕

測定装置から被測定物である物体までの距離を測定することは種々の目的で利用される。

たとえば、自走ロボットにおいて周囲環境の認識のため上記の様な距離測定が行なわれる場合がある。そして、かくして得られた情報に基づき、ロボットは物体への衝突を避けながら走行することができる。

更に、上記の様な距離測定を利用するものとして、自動車の衝突防止装置がある。この装置においては、距離測定により得られた情報に基づき、自動車が他の自動車または壁等の物体に対し所定の距離よりも近づいた時に運転者に対し警告を発するか、あるいは自動車を停止または減速させるための指示を発することがなされる。

以上の様な距離測定のために被測定物に対し超音波を射出し反射により戻ってくる超音波を解析するという方法が用いられることがある。しかしながら、超音波を用いる方法は被測定物が小さい場合には測定が困難になり、更に測定の分解能が

は、レンズ101による測定手段103上での物体105の像106は光軸101A上に存在し、同様にレンズ102による測定手段104上での物体105の像107は光軸102A上に存在する。

第6図(b)においては物体105が光軸101A上において有限の距離Qだけ離れた位置に存在する。この場合には、レンズ101による測定手段103上での物体105の像106は光軸101A上に存在するが、レンズ102による測定手段104上での物体105の像107は光軸102Aから離れた位置に存在する。

従って、像107の光軸102Aからのズレ量dを測定手段で検出することによって、レンズ101と測定手段103、104との間の距離fと基線長bとから、測定すべき距離Rは次の式により計算処理で求めることができる。

$$Q = \frac{fb}{d}$$

ところで、一般に被測定物である物体は広がりをもつて測定手段上にはある範囲にわたって画

低いという問題がある。

一方、上記の様な距離測定を光学的に行なうことが考えられ、その1つの方法としてステレオ法がある。以下、ステレオ法の概略を説明する。

第6図(a)及び(b)はステレオ法の原理を説明するための図である。図において、101、102は焦点距離の等しいレンズであり、101A、102Aはそれぞれそれらの光軸である。レンズ101、102は光軸101A、102Aが平行になる様に且つレンズ中心間を結ぶ線(基線)が光軸101A、102Aと直交する様に配置されている。レンズ101の後方には該レンズ101の焦点距離fだけ離れた位置に測定手段103が配置されており、レンズ102の後方にはfだけ離れた位置に測定手段104が配置されている。これら測定手段103、104はレンズ101、102の基線方向と平行な方向の1つの直線上に配置されている。

第6図(a)においては被測定物である物体105が光軸101A上の無限遠に存在する。この場合に

像が形成される。このため、同一物体上の同一物点の像を特定することは困難である。

そこで、以上の様なステレオ法においては、測定手段103、104により像106、107の位置を求めるために、一方の測定手段103における照度分布と他方の測定手段104における照度分布との相関をとることが行なわれる。

第7図(a)、(b)及び(c)はこの様な相関法の原理を説明するための図である。

測定手段103、104としては、たとえば自己走査型センサであるCCDアレイが用いられる。周知の様に、CCDアレイは10μ程度の幅の多数個の微小セグメントの受光要素から構成されており、各受光要素で検出した像の照度に対応した電気信号を予め定められた順序に従って時系列信号として出力することができる。

第7図(a)において、レンズ101に対応する測定手段であるCCDアレイ103はn個の受光要素を有し、レンズ102に対応する測定手段であるCCDアレイ104はm個の受光要素を有する(=

> n)。即ち、光軸 101A 上の物体までの距離を測定するとすれば、レンズ 101 による像 106 は物体までの距離に無関係に光軸 101A 上に存在するが、レンズ 102 による像 107 は物体までの距離に応じて位置が変化するので、CCD アレイ 104 には CCD アレイ 103 よりも多くの受光要素が設けられているのである。この様な配置において、CCD アレイ 103 を基準視野と称し、CCD アレイ 104 を参照視野と称する。

第 7 図(a)に示される様な配置における基準視野及び参照視野での照度分布は第 7 図(b)に示される様になる。即ち、レンズ 101 に関する物体 105 及び像 106 の光軸方向の結像関係はレンズ 102 に関する物体 105 及び像 107 の光軸方向の結像関係と等しい(即ち、倍率が等しい)ので、像 106 の照度分布と像 107 の照度分布とは光軸から距離 D だけズレた点が異なるのみである。

従って、CCD アレイ 103, 104 からは第 7 図(c)に示される様な各受光要素に対応する出力が時系列的に得られる。

幅を乗ずることにより上記 d の値を求めることができる。

[発明が解決しようとする問題点]

以上の様な相関法を用いた距離測定を单一方向のみでなく 2 次元的にある広がりをもつ多方向の距離測定に利用する場合には、1 つの方法として測定手段全体を機械的に回動させながら各方向において上記の如き距離測定を行なうことが例示できる。

しかしながら、この方法では機械的な駆動機構が必要となり、またこの駆動に時間がかかり短時間での測定ができないという問題がある。更に、この方法では 2 次元的距离パターンの記録に際し測定手段からの信号と機械的駆動手段からの方位信号とを合わせて記録することが必要となり、信号処理が複雑となる。

[問題点を解決するための手段]

本発明によれば、以上の如き従来技術の問題点を解決するものとして、照度分布測定手段として受光要素を 2 次元的に配列してなるものを用い、

そこで、2 つの CCD アレイの出力の相関をとるため、先ず基準視野における第 1 ~ n 番目の受光要素の出力 S₁ ~ S_n と参照視野における第 1 ~ n 番目の受光要素の出力 R₁ ~ R_n との対応する出力どうしの差の和

$$COR_1 = \sum_{k=1}^n (S_k - R_k)$$

を求める。次に、同様にして、基準視野における第 1 ~ n 番目の受光要素の出力 S₁ ~ S_n と参照視野における第 2 ~ (n+1) 番目の受光要素の出力 R₂ ~ R_{n+1} との対応する出力どうしの差の和

$$COR_2 = \sum_{k=1}^n (S_k - R_{k+1})$$

を求める。以下、同様にして

$$COR_{m-n+1} = \sum_{k=1}^n (S_k - R_{k+m-n})$$

まで求める。

この様にして求めた (m-n+1) 個の値のうちで最も小さい値(理想的には 0)となる COR の番号を選び、その番号に CCD アレイの 1 受光要素の幅

これら受光要素の 2 つの配列方向のうちの 1 つを両レンズの光軸を含む面と平行な方向とし、各レンズによる各測定手段の成る部分における物体の像の照度分布の相関をとることにより成る方向に存在する物体までの距離を算出し、該算出を各測定手段の複数の部分について行なうことにより複数の方向に存在する物体までの距離を算出することを特徴とする、距離測定方法が提供される。

【実施例】

以下、図面を参照しながら本発明の距離測定方法の具体的実施例を説明する。

第1図(a), (b)及び(c)は本発明方法の一実施例を説明するための図であり、第1図(a)は平面図を表わし、第1図(b)は側面図を表わし、第1図(c)は正面図を表わす。図において、1, 2は焦点距離の等しいレンズであり、1A, 2Aはそれぞれそれらの光軸である。レンズ1, 2は光軸1A, 2Aが平行になる様に且つ基線が光軸1A, 2Aと直交する様に配置されている。光軸1A, 2A間の距離はλである。3, 4はそれぞれレンズ1, 2に対応する2次元照度分布測定手段たとえばCCD 2次元センサである。センサ3, 4はレンズ1, 2に対し該レンズ1, 2の焦点距離λだけ離れてられて、光軸1A, 2Aと直交する様に配置されている。

第1図(c)に示される様に、2つのセンサ3, 4は同一の受光要素配列を有し、即ちX方向に1個及びZ方向にJ個の2次元配列を有する。また、

かくして選択された基準視野10と参照視野11との受光要素の出力信号から、次の様にして物体5までの距離(即ちレンズ1の中心から物体5までの距離)を算出することができる。

先ず、上記従来法と同様にして基準視野10と参照視野11における照度分布の相関をとることにより、即ち2つのセンサ3, 4における像6, 7の相対的位置ズレ量を求める。次に、

$$b/f = z/a$$

の関係から

$$a = \frac{fz}{b}$$

を求める。次に、 $b = a \cos \theta$ を求め、且つ $c = a \sin \theta$ を求める。かくして、物体5までの距離

$$Q(\sqrt{b^2 + c^2})$$

$$R = \sqrt{a^2 \cos^2 \theta + a^2 \sin^2 \theta}$$

として算出される。

以上の様な距離の算出を(θ, φ)の適宜の数値の組について行なうことにより多方向の距離を測定することができる。もちろん、(θ, φ)の組に応じてセンサ3, 4の基準視野10及び参照視野

光軸1Aに対するセンサ3の配置と光軸2Aに対するセンサ4の配置とは同一である。

第1図(a), (b)において、5は被測定物である物体である。図示される様に、物体5はレンズ1の中心からみて光軸1Aに対しX方向に角度θ及びZ方向に角度φの方向に存在している。レンズ1, 2によるセンサ3, 4上の物体5の像はそれぞれ6, 7である。

第1図(c)に示される様に、センサ3の受光要素のうちで像6が位置しているZ方向t番目のラインにおけるX方向q番目の受光要素を含むZ方向t番目ライン中のX方向p'~r'番目の受光要素を基準視野10として選択する。同様にしてセンサ4の受光要素のうちで像7が位置しているZ方向t番目のラインにおけるX方向q'番目の受光要素を含むZ方向t番目ライン中のX方向p'~r'番目の受光要素を参照視野11として選択する。ここで、($r - p$) < ($r' - p'$) 即ち参照視野に属する受光要素数は基準視野に属する受光要素数よりも多い。

11は適宜選択される。

実際には、センサ3の受光面をいくつかのブロックに分けて、該ブロック毎に基準視野を設定し、全ブロックに亘り距離測定を行なうことにより上記(θ, φ)を変化させる。センサ3の各ブロック内において該ブロックに含まれる受光要素の少なくとも一部が基準視野として選択される。これら各基準視野に対応してセンサ4の適宜の受光要素が参照視野として選択される。

第2図(a)は本発明測定方法における他の実施例を説明するための図であり、特にレンズの光軸に対するセンサの配置を示す第1図(c)と同様な正面図である。センサ3, 4の受光要素は同様なパターンで多数のブロックに分けられる。該ブロックはX方向にライン状をなしている。センサ3のブロックBに属する受光要素のうちの左端部の受光要素列10が該ブロックにおける基準視野として選択される。該基準視野10のX方向長さはxである。センサ3のブロックBに属する位置にあるセンサ4のブロックB'に属する受光要素のう

ちの左端部から上記基準視野10の長さXに相当する受光要素列を除く受光要素列11が参照視野として選択される。センサ3、4の他のプロックにおいても同様である。

第2図(b)はセンサ3と4とを重ね合わせた状態を示す。各プロックにおいて、センサ3の基準視野10とセンサ4の参照視野11とが直なりうことなく連続したライン状になる。

本実施例においては2つのレンズの光軸1A、2Aに対するセンサ3、4の位置は異なる。即ち、センサ4をX方向に右側に基準視野10の長さXだけ平行移動させたときの光軸2Aとセンサ4との相対的位置関係が光軸1Aとセンサ3との相対的位置関係と同一になる様な配置となっている。これにより無限遠までの距離の測定を可能としている。

第3図は本実施例において用いられる測定装置のプロック図である。

2つのセンサ3、4は1つの駆動回路17により同期して駆動せしめられ、それぞれ受光要素か

デジタル信号はスイッチング回路16に入力せしめられる。該スイッチング回路16においては上記A/D変換回路15からの出力が対応するプロックからの基準視野信号と参照視野信号とのセットごとに分配されてプロック処理回路18-1、18-2、…に入力せしめられる。即ち、プロック処理回路18-1にはセンサ3、4における各第1のプロックからの基準視野信号と参照視野信号とのセットのみが入力せしめられ、プロック処理回路18-2にはセンサ3、4における各第2のプロックからの基準視野信号と参照視野信号とのセットのみが入力せしめられ、以下同様にして各プロック処理回路にセンサの各プロックに與する信号が入力せしめられる。各プロック処理回路においては上記の様な手順によって相關法に基づき各方向の物体までの距離が算出される。

各プロック処理回路からの出力はスイッチング回路19に入力せしめられ、ここで時系列信号に合成されて出力せしめられる。

尚、第3図において、CPU20により駆動回路

から照度信号が時系列的に出力せしめられる。センサ3、4の出力はスイッチング回路14により交互に選択され、1つの時系列信号として合成されて出力される。この時系列信号においては、先ずセンサ3の第1のプロックにおいて基準視野として選択された受光要素列からの信号、続いてセンサ4の第1のプロックにおいて参照視野として選択された受光要素列からの信号、続いてセンサ3の第2のプロックにおける基準視野の受光要素列からの信号、続いてセンサ4の第2のプロックにおける参照視野の受光要素列からの信号、…、という様な順序で連続した形となる。第2図(b)から、この様な時系列信号はスイッチング回路14において適時にセンサ3、4からの出力のいづれかを選択することにより容易に得ることができる事が分る。

スイッチング回路14の出力はA/D変換回路15に入力せしめられ、ここでアナログ信号が2ないし8ビットのデジタル信号に変換される。かくして、A/D変換回路15から出力せしめられた

17、スイッチング回路14、16、プロック処理回路18-1、18-2、…が制御される。即ち、CPU20は駆動回路17の信号を制御及び検出して、センサ3において選択された基準視野位置及びセンサ4において選択された参照視野位置に基づいて、スイッチング回路14、16を制御するとともにプロック処理回路18-1、18-2、…に各プロック毎の(0,6)を与える。

第4図は本実施例により得られた距離情報に基づいて動作を行なうロボットのプロック図である。

このロボットは第3図に示される距離測定装置を内蔵しており、そのスイッチング回路19からの情報はRAM21に多方向の距離パターンとして記録される。マップメモリ22には過去の距離パターンまたは指令用のマップが格納されており、CPU23によりマップメモリ22上の距離パターンと現在の距離パターンとを比較し、更に方位センサ24からの情報や移動の方向、速度、距離等のセンサあるいは演算処理部からの情報をも取り入れて移動制御回路25及びアーム動作制御回路

26が作動せしめられる。

本実施例によれば、処理回路を簡単化した上で、更に画像メモリを必要とせずに短時間で多方向の距離測定を行なうことができる。

尚、本実施例においては、第2図(b)に示される様に、2つのセンサ3, 4を重ね合わせた状態において各プロックの基準視野10と参照視野11とで当該プロック全体がカバーされているが、測定すべき距離範囲によってはプロック全体をカバーしなくてもよい。第5図(a), (b)はこの様な具体例を示す第2図(b)と同様の図である。即ち、これらにおいては両センサの同一プロックにはセンサ3において基準視野として選択された受光要素列10とセンサ4において参照視野として選択された受光要素列11と該基準視野及び参照視野のいづれにも選択されなかつた受光要素列12とが存在する。この場合には第3図の装置におけるスイッチング回路14において適宜信号のカットを行なえばよい。

以上の実施例においては画像メモリを必要とし

4. 図面の簡単な説明

第1図(a)～(c)は本発明測定方法を示す図である。第2図(a), (b)及び第5図(a), (b)はセンサの正面図である。第3図は本発明測定方法に使用される装置のプロック図である。第4図は自走ロボットのプロック図である。

第6図(a), (b)ならびに第7図(a)～(c)はステレオ法による距離測定の原理を示す図である。

1, 2: レンズ、1A, 2A: 光軸、3, 4: センサ、5: 物体、6, 7: 像、10: 基準視野、11: 参照視野。

ない場合が示されているが、測定すべき距離範囲によつては、画像メモリを設けておき、同一プロック内において基準視野と参照視野とがオーバーラップする様に、または異なるプロックがオーバーラップする様に設定し、必要に応じ画像メモリ内の情報を参照しながら距離の算出を行なうこともできる。

尚、この場合において、第3図のセンサ4とスイッチング回路14との間に遮断回路を介在せしめることにより、画像メモリを省略することができる場合もある。

〔発明の効果〕

以上の如き本発明の距離測定方法によれば、機械的手段を用いることなく短時間で精度良く多方向の距離測定を行なうことができる。また、本発明方法によれば、距離測定の方向は2つの照度分布測定手段の対応部分の位置及び大きさを適宜設定することにより比較的自由に選ぶことができ、測定方向の決定に柔軟性がある。

第1図(a)

第1図(b)

代理人 外理士 山 下 横 平

第4図

第1図(c)

第2図(a)

第5図(a)

第5図(b)

第2図(b)

第3図

第6図

第7図

