Fun with Statistics: You'll Probably Have a Good Time

Zoology 306L

TA: Nate Wehr

Statistics

• What is a Statistic?

• What kinds have we used so far?

• What are their purpose?

• What are their limitations?

Inference Statistics

Reason for inference statistics

Limitations and assumptions

- Pitfalls
 - -Overfocused on the analysis

Moving from Descriptive to Inference

Mean vs. Median

Symmetry vs. Skewed

Outliers

5-number summary

Boxplots!

- Min 1st Quantile Median 3rd Quantile Max
- 0.0090 0.0181 0.0198 0.0543 0.0891

1.5 x IQR rule

Moving from Descriptive to Inference

•Variance (σ^2)

•Standard deviation (σ)

Normality

.68-95-99.7 rule

Normal Distribution

68-95-99.7 rule

©Copyright, Robert Niles, http://www.robertniles.com/stats/stdev.shtml

Assessing Normality

Inference Testing

- Variation in samples
 - -How do we know it is a real difference?

Statistical Hypothesis Testing

- •Experimental/Study Hypothesis vs. Statistical Hypothesis
- •Null Hypothesis (i.e. H_0 : $x = \mu$)
- •Alternative (i.e. H_a : $x \neq \mu$)
- •Standard Error: (SE_x) from estimate of σ
 - -Comparing your mean to the Population Mean

Probability

Critical Values

- Point at which you reject the null hypothesis
 - -Each test will have one

- •Confidence Level (\alpha)
 - -Why $\alpha = 0.05$?

Errors with Probabilities

- Either correct or not
- Type I error
 - False positive
- •Type II error
 - False negative
- .Which is worse?

Types of Tests used in this class

- Chi-Squared
 - Used often for choice experiments
 - Data are compared to an expected value
 - Data are categorical and discrete (whole numbers)
- T-test
 - Used to compare means of two separate groups
 - Data are categorical and continuous
- Paired T-Test
 - Used to compare means of the same group twice
 - Used to determine the affect of a treatment on one group
 - Data are categorical and continuous
- ANOVA
 - Used to compare the means of three or more separate groups
 - Data are categorical and continuous
- Simple Linear Regression
 - Used to find correlations between two numerical, continuous variables

Chi-Squared (χ^2)

- Used for Frequency Data
 - -Best when categorical variables are important
- •Null hypothesis is no association (or difference) between variables

Chi-Squared (χ^2)

•Assumptions:

- -Random Sampling
- -Independant Observations (can only exist in one category)
- -Large Sample size → Expected frequencies need to be large

Chi-Squared (χ^2)

 $\chi^2 = \sum [(Observed-Expected)^2/Expected]$

- •One-Way: df = n-1
- Two-Way: df = (row-1)(column-1)= (r-1)(c-1)

 -(If one of these is success= t test)

·Use Table or Software for p-value

t-test (One Sample)

- ·Used to compare to population mean.
 - -Simple random sample

 t-distribution comes from sample with unknown std deviation

- H_0 : $\mu = \mu_0$
- H_a : $\mu \neq \mu_0$

t distribution

t-test (One Sample)

$$t = \frac{\bar{x} - u_0}{s / \sqrt{n}}$$

$$\cdot df = n-1$$

•Use a table to look up p-value or software

t-test

- Assumptions of t-tests
 - -Independant Observations
 - -Normality of sample means
- Slightly robust to skew, not to outliers

- Non-parametric tests
 - -Use with large outliers or heavy skew
 - -Rank sum tests

t-test (Two-Sample)

Statistical Hypotheses (Two sided)

$$-H_0$$
: $\mu_1 = \mu_2$

$$-H_a: \mu_1 \neq \mu_2$$

•Difference between two sample means (is it real?)

t-test (Two-Sample)

$$t = \frac{\bar{x_1} - \bar{x_2}}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

- Degrees of freedom
 - -Conservative is smaller of n_1 -1 or n_2 -1
 - -Software will make less conservative approx.

ANOVA: ANalysis Of VAriance

- •One-way ANOVA tests means of more than two samples
- •Allows for one test (Less Type 1 error)
- •Assumptions:
 - -Independant Observations
 - -Normality (Watch for outliers)
 - -Equal Variances (because we pool sample variances)

ANOVA: ANalysis Of VAriance

- ·How the test works!
 - -Takes between group variation
- Looks at difference in each group mean from overall mean
 - -Compares to the within group variation
- •F-Statistic compares this ratio
 - -1 mean no extra variance is explained by the groups
 - ->1 means the groups are starting to explain more

ANOVA: ANalysis Of VAriance

- Statistical Hypotheses
 - Null H₀: All the population means are equal
 - Alt. H_a: Not all are equal

Multiple Comparisons

- Also called Post-hoc tests
 - *Only do if ANOVA is significant*
- Pair-wise comparisons of group means
 - -Have to control for Type I error

- •Conservation: Bonferroni Correction
 - -Divide α by number of comparisons
- •More Power: Tukey's Comparisons
 - -Use Software for this

ANOVA

•Terms: source Residuals

•Sum of Squares 2.99195 64.52893

Deg. of Freedom 2 38

•Residual standard error: 1.303123

• Df Sum Sq Mean Sq F value Pr(>F)

•source 2 2.99 1.496 0.881 0.423

•Residuals 38 64.53 1.698

ANOVA

Simple Linear Regression

- Measures change over space and/or time
- Can also be used to measure correlations