Abstract

These notes are based on Davi Maximo's lectures for the course "Geometric Analysis and Topology I" at UPenn along with John Lee's *Introduction to Smooth Manifolds*, 2nd Ed. and Michael Spivak's *A Comprehensive Introduction to Differential Geometry, Vol. 1.* Any mistake in what follows is my own.

Contents

1	\mathbf{Sm}	Smooth manifolds 3				
	1.1	Lecture 1	3			
	1.2	Lecture 2	4			
2	Smooth maps					
	2.1	Lecture 3	6			
	2.2	Lecture 4	8			
	2.3	Lecture 5	9			
3	Tan	ngent vectors	0			
	3.1	Lecture 6	10			
	3.2	Lecture 7	13			
	3.3	Lecture 8	14			
	3.4	Lecture 9	15			
	3.5	Lecture 10	17			
	3.6	Lecture 11	19			
	3.7	Lecture 12	20			
	3.8	Lecture 13	22			
4	Vec	etor bundles	23			
	4.1	Lecture 14	24			
5	Diff	ferential forms	26			
	5.1	Lecture 15	26			
	5.2	Lecture 16	28			
	5.3	Lecture 17	30			
	5.4	Lecture 18	32			
	5.5	Lecture 19	34			
	5.6	Lecture 20	35			
	5 7	Losturo 21	20			

CONTENTS 2

6	Integration			
	6.1	Lecture 22	40	
	6.2	Lecture 23	42	
7	De Rham cohomology			
	7.1	Lecture 24	44	
	7.2	Lecture 25	46	
	7.3	Lecture 26	47	
8	Integral curves and flows			
	8.1	Lecture 27	48	
	8.2	Lecture 28	50	
9	Dis	tributions	51	

3

1 Smooth manifolds

1.1 Lecture 1

We want to make precise our notion of a (topological) space that locally looks like \mathbb{R}^n .

Definition 1.1.1. A space M is a (topological) n-dimensional manifold (or n-manifold) if it is

- (i) Hausdorff,
- (ii) second-countable, and
- (iii) locally Euclidean of dimension n, i.e., for any $x \in M$, there exist an open set $U \ni x$ and a homeomorphism $\varphi : U \to V$ for some open subset $V \subset \mathbb{R}^n$.

Condition (iii) holds if and only if U is homeomorphic to an open ball in \mathbb{R}^n or to \mathbb{R}^n itself.

Terminology. A 2-dimensional manifold is called a surface.

Definition 1.1.2. Let M be an n-manifold.

1. A coordinate chart on M is a pair (U,φ) where $U\subset M$ is open and φ is a homeomorphism

$$U \xrightarrow{\cong} W \subset \mathbb{R}^n$$
.

If W is an open ball, then we call U a coordinate ball.

2. If (U, φ) is a coordinate chart and $\pi_i : \mathbb{R}^n \to \mathbb{R}$ denotes the *i*-th projection map, then we call elements of the set $\{(\pi_1(\varphi(p)), \dots, \pi_n(\varphi(p))) \mid p \in U\}$ local coordinates on U.

Notation. We shall use the symbols x^i and x_i interchangeably for local coordinates.

Definition 1.1.3.

1. Given charts (U, φ) , (V, ψ) with $U \cap V \neq \emptyset$, we say that the two are C^k -compatible if the transition $map \ \psi \circ \varphi^{-1}$

$$U \xrightarrow{\varphi} \varphi(U \cap V)$$

$$\downarrow^{\psi \circ \varphi^{-1}}$$

$$\psi(U \cap V)$$

is C^k .

2. A collection of charts $(U_{\alpha}, \varphi_{\alpha})$ which covers a smooth manifold M and is pairwise C^k -compatible is called a C^k -atlas for M.

Example 1.1.4. Consider the global charts $(\mathbb{R}, x \mapsto x)$ and $(\mathbb{R}, x \mapsto x^3)$. Since $x \mapsto x^{\frac{1}{3}}$ is not differentiable at 0, these charts fail to form a C^1 -atlas on \mathbb{R} .

Definition 1.1.5. An atlas A is maximal if it contains every chart that is C^{∞} - (or smoothly) compatible with every chart in A.

Proposition 1.1.6.

- 1. Every smooth atlas A is contained in a unique maximal atlas, namely the family of all charts that are smoothly compatible with every chart in A.
- 2. Two smooth atlases are contained in the same maximal atlas if and only if their union is also a smooth atlas.

This shows that an atlas is maximal if and only if it's maximal in the usual in the set-theoretic sense.

Definition 1.1.7. A manifold M is *smooth* if it admits a maximal smooth atlas, also known as a *smooth* structure.

By Proposition 1.1.6, it's enough to construct any smooth atlas for M to show that it's a smooth manifold.

An open problem is whether there is more than one smooth structure on \mathbb{S}^4 . This is known for each $n \neq 4$. For example, Milnor (1958) gave an affirmative answer for \mathbb{S}^7 .

1.2 Lecture 2

Proposition 1.2.1. If M admits a smooth structure, then M admits uncountably many smooth structures. Remark 1.2.2.

- 1. There exists a 10-dimensional topological manifold that admits no smooth structure (Kevaire 1961).
- 2. Any 2- or 3-dimensional manifold admits a smooth structure.

Let us now look at several examples of smooth structures on topological manifolds.

Example 1.2.3.

- (1) Any (real) vector space V where of dimension $n < \infty$ has a canonical smooth structure as follows. Endow V with any norm, since all norms on a finite-dimensional space are equivalent and hence generate the same topology. Pick any basis $B := (b_1, \ldots, b_n)$ of V. Define the isomorphism $T : V \to \mathbb{R}^n$ by $b_i \mapsto e_i$ where e_i denotes the i-th standard basis vector. This is also a diffeomorphism, implying that V is a topological manifold and that (V,T) is an atlas on V. If B' is any other basis of V and T' the corresponding isomorphism, then the transition map $T' \circ T^{-1} : \mathbb{R}^n \to \mathbb{R}^n$ is a linear isomorphism, hence a diffeomorphism. By Proposition 1.1.6(2), it follows that any two bases determine the same smooth structure on V.
- (2) The restriction of a smooth structure on a smooth manifold M to an open subset $U \subset M$ yields a smooth structure on U, which is called an *open submanifold*.

Note that the general linear group $GL(n, \mathbb{F})$ is an open subset of $M(n, \mathbb{F})$, which is an n^2 -manifold by Example 1.2.3(1). Indeed, $GL(n, \mathbb{F}) = \det^{-1}(\mathbb{F}^{-1})$, the preimage of an open set in \mathbb{F} . By Example 1.2.3(2), $GL(n, \mathbb{F})$ is an open submanifold.

Example 1.2.4.

(1) Let $U \subset \mathbb{R}^n$ be open and $F: U \to \mathbb{R}^m$ be continuous. Let $\Gamma(F)$ denote the graph of F and $\pi_1 \upharpoonright_{\Gamma(F)}$ be the restriction of the projection map $(x,y) \mapsto x$. This is a homeomorphism $\Gamma(F) \xrightarrow{\cong} U$ with inverse given by $x \mapsto (x, f(x))$. Hence $(\Gamma(F), \pi_1 \upharpoonright_{\Gamma} (F))$ is a smooth atlas on $\Gamma(F)$.

(2) For each $i \in \{1, 2, ..., n+1\}$, let $U_i^+ := \{\vec{x} \in \mathbb{R}^{n+1} : x_i > 0\}$. Define U_i^- similarly, so that the U_i^{\pm} cover the *n*-sphere

$$\mathbb{S}^n := \{ \vec{x} \in \mathbb{R}^{n+1} : |\vec{x}| = 1 \}.$$

Define the map $f: B_1(0) \subset \mathbb{R}^n \to \mathbb{R}$ by $f(\vec{u}) = \sqrt{1 - |\vec{u}|^2}$. Define $x_i: B_1(0) \to \mathbb{R}$ by $f(x_1, \dots, \hat{x}_i, \dots x_n)$. Then $\Gamma(x_i) = U_i^+ \cap \mathbb{S}^n$, and $\Gamma(-x_i) = U_i^- \cap \mathbb{S}^n$. Thanks to (1), these graphs with their corresponding projections form a smooth structure on \mathbb{S}^n .

(3) Let $f: U_{\text{open}} \subset \mathbb{R}^m \to \mathbb{R}$ be smooth. For each $c \in \mathbb{R}$, let $M_c := f^{-1}(c)$. Assume that the total derivative $\nabla f(a)$ is nonzero for each $a \in M_c$. Then $f_{x_i}(a) \neq 0$ for some $1 \leq i \leq m$. By the implicit function theorem, there is some smooth function $F: \mathbb{R}^{m-1} \to \mathbb{R}$ given by $x_i = F(x_1, \dots, \hat{x}_i, \dots, x_m)$ on some neighborhood $U_a \subset \mathbb{R}^m$ of a such that $f^{-1}(c) \cap U_a$ equals the graph of F. This means that the open sets $f^{-1}(c) \cap U_a$ together with their graph coordinates define a smooth atlas on M_c .

Example 1.2.5 (Real projective space). For each $i \in \{1, 2, ..., n+1\}$, let $\tilde{U}_i := \{\vec{x} \in \mathbb{R}^{n+1} : x_i \neq 0\}$. Let $\pi : \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{RP}^n$ be the quotient map and $U_i := \pi\left(\tilde{U}_i\right)$. Since \tilde{U}_i is saturated and open, we know that $\pi \upharpoonright_{\tilde{U}_i}$ is a quotient map. Define $f_i : U_i \to \mathbb{R}^n$ by

$$[x_1, \dots, x_{n+1}] \mapsto \left(\frac{x_1}{x_i}, \dots, \frac{x^{i-1}}{x_i}, \frac{x^{i+1}}{x_i}, \dots, \frac{x_{n+1}}{x_i}\right),$$

whose inverse if given by $(x_1, \ldots, x_n) \mapsto [x_1, \ldots, x_{i-1}, 1, x_{i+1}, \ldots x_n]$. Since $f_i \circ \pi$ is continuous, so is f_i . Hence f_i is a homeomorphism. It's easy to check that each transition $f_i \circ f_j^{-1}$ is smooth. Thus, (U_i, f_i) defines a smooth atlas on \mathbb{RP}^n .

Exercise 1.2.6. Show that \mathbb{RP}^n is second countable and Hausdorff.

Proof. Recall that $\mathbb{S}^n/_{\sim} \cong \mathbb{RP}^n$ where $x \sim y$ if y = -x. Thus it suffices to show these properties are true of $P^n := \mathbb{S}^n/_{\sim}$.

To this end, let $\mathcal{B} := \{V_n\}$ denote the usual countable basis of \mathbb{S}^n inherited from \mathbb{R}^{n+1} . If $p \in U \subset P^n$ is open, then $\pi^{-1}(U)$ is a neighborhood of $\pi^{-1}(p)$, which equals $\{a, -a\}$ for some point a on the sphere. There exist $q \in \mathbb{Q}$ and $r \in \mathbb{Q}^{n+1}$ such that $\mathcal{B} \ni B_q(r) \cap \mathbb{S}^n \ni a$. In this case, $\mathcal{B} \ni B_q(-r) \cap \mathbb{S}^n \ni -a$. Note that the union of these two balls is contained in $\pi^{-1}(U)$ and is saturated, hence is mapped to a neighborhood $N \subset U$ of p. Thus $\{\pi(V_n)\}_{n \in \mathbb{N}}$ is a countable basis of P^n .

Proving that \mathbb{RP}^n is Hausdorff is quite similar.

Example 1.2.7 (Product manifold). Let $M_1 \times \cdots \times M_k$ be a product of n_i -dimensional smooth manifolds. Then this is a smooth manifold of dimension $n_1 + \cdots + n_k$.

Lemma 1.2.8 (Smooth manifold construction). Let M be a set and let $\{U_{\alpha}\}$ be a collection of subsets equipped with injections $\varphi_{\alpha}: U_{\alpha} \to \mathbb{R}^n$ such that

- (i) countably many U_{α} cover M,
- (ii) each $\varphi_{\alpha}(U_{\alpha})$ is open,

¹Munkres, James. *Topology*. Theorem 22.1.

²Ibid. Theorem 22.2.

- (iii) any set of the form $\varphi_{\alpha}(U_{\alpha} \cap U_{\beta})$ or $\varphi_{\beta}(U_{\alpha} \cap U_{\beta})$ is open,
- (iv) if $U_{\alpha} \cap U_{\beta} \neq \emptyset$, then $\varphi_{\alpha} \circ \varphi_{\beta}^{-1}$ is smooth, and
- (v) if $p, q \in M$ with $p \neq q$, then either both are in U_{α} for some α or they can be separated by sets in $\{U_{\alpha}\}$.

Then M has a unique smooth manifold structure with $(U_{\alpha}, \varphi_{\alpha})$ as charts.

Notation. The expression M^n means that M is an n-dimensional manifold.

Definition 1.2.9. If $f: M^n \to \mathbb{R}$ is a function with M smooth, we say that f is differentiable at p if there is some chart $(U_\alpha, \varphi_\alpha)$ such that the coordinate representation $f \circ \varphi_\alpha^{-1} : \varphi(U_\alpha) \to \mathbb{R}$ is differentiable at p.

We must ensure that Definition 1.2.9 is coordinate-independent.

Lemma 1.2.10. If $f \circ \varphi^{-1}$ is differentiable at $\varphi(p)$ and $\psi : V \to \mathbb{R}^n$ is another coordinate neighborhood of $p \in M^n$, then $f \circ \psi^{-1} : \varphi(V) \to \mathbb{R}$ is also differentiable at $\varphi(p)$.

Proof. This holds because

commutes. \Box

2 Smooth maps

2.1 Lecture 3

Definition 2.1.1. Let M^n and N^k be smooth manifolds. We say that $F: M \to N$ is smooth at $p \in M$ if there are charts $(V, \varphi) \ni p$ and $(V', \psi) \ni F(p)$ with $F(V) \subset V'$ such that the coordinate representation $\psi \circ F \circ \varphi^{-1}$ is smooth.

$$V \xrightarrow{F} V'$$

$$\varphi \downarrow \qquad \qquad \downarrow \psi$$

$$\varphi(V) \xrightarrow[\psi \circ F \circ \omega^{-1}]{} \psi(V')$$

This definition is independent of coordinates. Indeed, if $(U, \bar{\varphi})$ and $(U', \bar{\psi})$ are other charts around p and F(p), respectively, then

$$\bar{\psi} \circ F \circ \varphi^{-1} = (\bar{\psi} \circ \psi^{-1}) \circ (\psi \circ F \circ \varphi^{-1})$$
$$\psi \circ F \circ \bar{\varphi}^{-1} = (\psi \circ F \circ \varphi^{-1}) \circ (\varphi \circ \bar{\varphi}^{-1}),$$

which are smooth as composites of smooth maps.

Lemma 2.1.2. Smoothness implies continuity.

Proof. Using notation as in Definition 2.1.1, we see that for each $p \in M$, there is a neighborhood V of p such that $F \upharpoonright_V = \psi^{-1} \circ \psi \circ F \circ \varphi^{-1} \circ \varphi$ is a composite of continuous maps (as we know smoothness implies continuity for maps between Euclidean spaces) and thus itself continuous. We can glue these restrictions together to conclude that F is continuous.

Note 2.1.3. Being smooth is a local property of maps.

- 1. Given $F: M \to N$, if every $p \in M$ has a neighborhood U_p so that $F \upharpoonright_{U_p}$ is smooth, then F is smooth.
- 2. Conversely, the restriction of any smooth map to an open subset is smooth.

Example 2.1.4. The natural projection $\pi: \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{RP}^n$ is smooth. Let $v \in (\mathbb{R}^{n+1} \setminus \{0\}, \mathrm{id})$. Let $(U_i, \varphi_i) \in A_n$ be a neighborhood of $\pi(p)$. Since π is continuous, $S := \pi^{-1}(U_i) \cap (\mathbb{R}^{n+1} \setminus \{0\})$ is a neighborhood of v. Further, $\varphi_i \circ \pi \circ \mathrm{id} : S \to \varphi_i(U_i)$ is given by $x \mapsto \frac{(x_1, \dots, \hat{x}_i, \dots, x_{n+1})}{x_i}$, which is smooth.

Definition 2.1.5. A smooth map with a smooth inverse is a diffeomorphism.

This defines an equivalence relation \approx between smooth manifolds. Thanks to Lemma 2.1.2, any diffeomorphism is a homeomorphism, which gives us the following result.

Theorem 2.1.6. If $M^n \approx N^k$, then n = k.

Example 2.1.7.

- 1. $(\mathbb{R}, \mathrm{id}) \approx (\mathbb{R}, x \mapsto x^{\frac{1}{3}})$ via the mapping $x \mapsto x^3$.
- 2. $F: \mathbb{B}^n \to \mathbb{R}^n$ given by $F(x) = \frac{x}{\sqrt{1-|x|^2}}$ is a diffeomorphism with inverse $G(y) = \frac{y}{\sqrt{1+|y|^2}}$.
- 3. $\mathbb{S}^n/_{\sim} \approx \mathbb{RP}^n$.
- 4. If M is a smooth manifold and (U,φ) is a chart, then $\varphi:U\to\varphi(U)$ is a diffeomorphism.

At this point, we want to develop tools with which we can glue together already locally defined smooth functions $U_{\alpha} \to \mathbb{R}$ to obtain a globally defined smooth function $M \to \mathbb{R}$.

Definition 2.1.8. If M is any space and $f: M \to \mathbb{R}^n$ is continuous, then the support of f is

$$\operatorname{supp} f \coloneqq \operatorname{cl}\left(\left\{x \in M : f(x) \neq 0\right\}\right).$$

Lemma 2.1.9. Given any $0 < r_1 < r_2$, there is some smooth function $H : \mathbb{R}^n \to \mathbb{R}$ such that

- H = 1 on $\bar{B}_{r_1}(0)$,
- 0 < H < 1 on $B_{r_2}(0) \setminus \bar{B}_{r_1}(0)$, and
- H = 1 elsewhere.

Proof. We construct such an H. First recall that $f: \mathbb{R} \to \mathbb{R}$ given by

$$f(t) = \begin{cases} e^{-\frac{1}{t}} & t > 0\\ 0 & \text{otherwise} \end{cases}$$

is smooth. Now define $h: \mathbb{R} \to \mathbb{R}$ by $h(t) = \frac{f(r_2 - t)}{f(r_2 - t) + f(t - r_1)}$. Finally, define $H: \mathbb{R}^n \to \mathbb{R}$ by H(x) = h(|x|).

2.2 Lecture 4

Definition 2.2.1. Let \mathcal{U} and \mathcal{V} be open covers of a space X.

- 1. V is a refinement of U if for every $V \in V$, there is some $U \in U$ such that $V \subset U$.
- 2. \mathcal{U} is locally finite if each $x \in X$ has some neighborhood that intersects only finitely many $U \in \mathcal{U}$.
- 3. X is paracompact if every open cover of X admits a locally finite refinement.

We are now ready to define our main tool for patching together local functions to obtain a global one.

Definition 2.2.2. Let M be a space and $\mathcal{X} := (X_{\alpha})_{\alpha \in A}$ be an open cover. A partition of unity subordinate to \mathcal{X} is a family $(\psi_{\alpha})_{\alpha \in A}$ of continuous functions $\psi_{\alpha} : M \to \mathbb{R}$ with the following properties.

- (a) $0 \le \psi_{\alpha}(x) \le 1$ for each α and x.
- (b) supp $\psi_{\alpha} \subset X_{\alpha}$ for each α .
- (c) The family (supp ψ_{α}) is locally finite, in the sense that every point $p \in M$ has a neighborhood V_p such that $V_p \cap \text{supp } \psi_{\alpha} \neq \emptyset$ for at most finitely many α . In particular, M is paracompact.
- (d) $\sum_{\alpha \in A} \psi_{\alpha}(x) \equiv \sup \left\{ \sum_{\alpha \in F} \psi(x) : F_{\text{finite}} \subset A \right\} = 1 \text{ for each } x.$

Lemma 2.2.3. Every topological manifold M is paracompact.

Before proving this, let us recall that a subspace is *precompact* if its closure is compact.

Proof. Since M has a countable atlas, it has a countable basis $\{B_n\}$ of precompact coordinate balls. (The continuous image of a precompact set into a Hausdorff space is also precompact.)

Step 1: By induction, we can build a countable covering $\{U_n\}$ of precompact sets such that $\operatorname{cl}(U_{n-1}) \subset U_n$ and $B_n \subset U_n$ for each n.

Step 2: We build a countable locally finite open cover $\{V_n\}$. Let

$$V_n = \begin{cases} \operatorname{cl}(U_n) \setminus U_{n-2} & n > 2 \\ V_n = U_n & \text{otherwise} \end{cases}.$$

Note that every V_n intersects only finitely many other V_i , hence $\{V_n\}$ is locally finite.

Step 3: Let $\{X_{\alpha}\}$ be any open cover. For any $p \in M$, there is some α with $p \in X_{\alpha}$ as well as some neighborhood W_p that intersects V_j for only finitely many $j \in \mathbb{N}$. Set $\widetilde{W}_p = W_p \cap X_{\alpha}$. Then the \widetilde{W}_p cover M. Since each V_j is precompact by construction, we know that V_j has a finite subcover $\widetilde{W}_{p_{j_{k_1}}}, \ldots, \widetilde{W}_{p_{j_{k_j}}}$. Then

$$V_j = \left(V_j \cap \widetilde{W}_{p_{j_{k_1}}}\right) \cup \cdots \cup \left(V_j \cap \widetilde{W}_{p_{j_{k_i}}}\right),$$

and thus $\left\{\left(V_j\cap \widetilde{W}_{p_{j_{k_1}}}\right),\ldots,\left(V_j\cap \widetilde{W}_{p_{j_{k_j}}}\right)\right\}_{j\in\mathbb{N}}$ is a locally finite refinement of $\{X_\alpha\}$, as desired. \square

Remark 2.2.4. If X is connected, then X is paracompact if and only if it is second-countable.

Theorem 2.2.5 (Existence of partition of unity). If M is a smooth manifold, then any open cover $\mathcal{X} := \{X_{\alpha}\}_{{\alpha} \in A}$ of M admits a partition of unity.

Proof. For each $\alpha \in A$, we can find a countable basis \mathcal{C}_{α} of precompact coordinate balls centered at 0 for X_{α} . Then $\mathcal{C} := \bigcup_{\alpha} \mathcal{C}_{\alpha}$ is a basis for M. Since M is paracompact, \mathcal{X} admits a locally finite refinement $\{C_i\}_{i\in\mathbb{I}}$ consisting of elements of \mathcal{C} . Note that the cover $\{\operatorname{cl}(B_i)\}$ is also locally finite. There are coordinate balls $C'_i \subset X_{\alpha_i}$ such that $C'_i \supset \operatorname{cl}(C_i)$. For each $i \in \mathbb{I}$, let $\varphi_i : C'_i \to \mathbb{R}^n$ be a smooth coordinate map so that $\varphi_i(C'_i) \supset \varphi(C_i)$ and $\varphi(\operatorname{cl}(C_i)) = \operatorname{cl}(\varphi(C_i))$. Define $f_i : M \to \mathbb{R}$ by

$$f_i(x) = \begin{cases} H_i \circ \varphi_i & x \in C_i' \\ 0 & x \in M \setminus \operatorname{cl}(C_i) \end{cases}$$

where $H_i: \mathbb{R}^n \to \mathbb{R}$ is as in Lemma 2.1.9: a smooth function that is positive on $\varphi_i(C_i)$ and zero elsewhere. Note that f_i is well-defined because $f_i = 0$ on $C'_i \setminus \operatorname{cl}(C_i)$. Also, it is smooth by the point-set gluing lemma for open sets.

Define $f: M \to \mathbb{R}$ by $f(x) = \sum_i f_i(x)$, which is a finite sum and hence well-defined. We see that f is a smooth function and that f(x) > 0 for each $x \in M$. Then $g_i(x) \equiv \frac{f_i(x)}{f(x)}$ defines a smooth function $M \to \mathbb{R}$ for each i, so that $\sum_i g_i(x) = 1$ and $0 \le g_i(x) \le 1$ for each $x \in M$. Note that $\sup(g_i) = \operatorname{cl}(C_i)$.

For each $\alpha \in A$, define $\psi_{\alpha} : M \to \mathbb{R}$ by

$$\psi_{\alpha}(x) = \sum_{\substack{i \\ \alpha_i = \alpha}} g_i(x).$$

Interpret this as the zero function when there are no i such that $\alpha_i = \alpha$. Note that each ψ_{α} is smooth as a finite sum of smooth functions and satisfies $0 \le \psi_{\alpha} \le 1$. Moreover, we have that

$$\operatorname{supp}(\psi_{\alpha}) = \operatorname{cl}\left(\bigcup_{\substack{i \\ \alpha_i = \alpha}} C_i\right) = \bigcup_{\substack{i \\ \alpha_i = \alpha}} \operatorname{cl}(C_i).$$

Since $\{\operatorname{cl}(C_i)\}$ is locally finite, so is $\{\operatorname{supp}(\psi_\alpha)\}_{\alpha\in A}$. Finally, the fact that $\alpha_i\in A$ implies that

$$\sum_{\alpha} \psi_{\alpha}(x) = \sum_{i} g_{i}(x) = 1$$

for each $x \in M$. Therefore, we may take $\{\psi_{\alpha}\}$ as our desired partition of unity.

Corollary 2.2.6 (Bump function). If $A \subset U \subset M$ with A closed and U open in M, then there is a smooth function $f: M \to \mathbb{R}$ such that f(x) = 1 for each $x \in A$ and f(x) = 0 outside a neighborhood of A.

Proof. Since $\{U, M \setminus A\}$ is an open cover of M, there is a partition of unity φ_1, φ_2 such that supp $\varphi_1 \subset U$, supp $\varphi_2 \subset M \setminus A$, and $\varphi_1 + \varphi_2 = 1$. Hence $\varphi_1 \upharpoonright_A = 1 - 0 = 1$, and $\varphi_1 \upharpoonright_{M \setminus U} = 0$.

2.3 Lecture 5

Corollary 2.3.1 (Whitney). Let M be a smooth manifold and $K \subset M$ be closed. Then there exists a non-negative smooth function $f: M \to \mathbb{R}$ such that $f^{-1}(0) = K$.

This means that closed subsets of smooth manifolds are completely characterized as the 0-level sets of smooth maps. Being the 0-level set of analytic maps, such as polynomials, is much more special. Any object with such a property is called an *analytic submanifold* and is studied in algebraic geometry.

Proof. First assume that $M = \mathbb{R}^n$. We have that $M \setminus K$ is open, which is thus the union of countably many balls $B_{r_i}(x_i)$ with $r_i \leq 1$. Construct, as in Lemma 2.1.9, a smooth bump function $h : \mathbb{R}^n \to \mathbb{R}$ such that h(x) = 1 on $\bar{B}_{\frac{1}{2}}(0)$ and h is supported in $B_1(0)$. By our construction of h, we can verify that for each $i \in \mathbb{N}$, there is some $C_i \geq 1$ that bounds any of the partials of h up through order i.

Define $f: \mathbb{R}^n \to \mathbb{R}$ by

$$\sum_{i=1}^{\infty} \frac{r_i^i}{2^i C_i} h\left(\frac{x - x_i}{r_i}\right).$$

Each *i*-th term is bounded by $\frac{1}{2^i}$. Thanks to the Weierstrass M-test, f is well-defined and continuous. Since h is zero outside $B_1(0)$, we see that $f^{-1}(0) = K$.

To see that f is smooth, assume by induction that f is C^{k-1} for a given $k \geq 1$. By the chain rule and induction, we can write any k-th partial D_k of the i-th term of the series defining f as $\frac{(r_i)^{i-k}}{2^iC_i}D_kh(\frac{x-x_i}{r_i})$. As h is smooth, this expression is C^1 . And since $r_i \leq 1$ and C_i bounds all partials up to order i, it is eventually bounded by $\frac{1}{2^i}$. Hence the series of these expressions converges uniformly to a continuous function. By Theorem C.31 (Lee), it follows that $D_k f$ exists and is continuous, thereby completing our induction.

Now, assume that M is arbitrary. Find a cover (B_{α}) of smooth coordinate balls for M. Let $\{\varphi_{\alpha}\}$ be a partition of unity subordinate to this cover. Note that each B_{α} is diffeomorphic to \mathbb{R}^n . Since the property of admitting a non-negative smooth function $f: M \to \mathbb{R}$ with $f^{-1}(0) = K$ can be stated in the language of smooth manifolds, it is invariant under diffeomorphism. Thus, there is some non-negative smooth function $f_{\alpha}: B_{\alpha} \to \mathbb{R}$ where $f^{-1}(0) = K \cap B_{\alpha}$ for each α . Then it's straightforward to check that $g \equiv \sum_{\alpha} \varphi_{\alpha} f_{\alpha}$ is as desired.

Corollary 2.3.2. Let M be a smooth manifold and $K \subset M$ be closed. Let c > 0. Then there exists a non-negative smooth function $f: M \to \mathbb{R}$ such that $f^{-1}(c) = K$.

Exercise 2.3.3. Prove that the restriction of a smooth map on \mathbb{R}^{n+1} to \mathbb{S}^n is smooth.

3 Tangent vectors

3.1 Lecture 6

We can view the tangent space $T_p\mathbb{S}^n$ of \mathbb{S}^n at a point p as all of the directions from p with respect to which you can find the rate of change of a smooth map f provided that you're only allowed to roam through \mathbb{S}^n . We want to generalize our notion of a tangent space to arbitrary manifolds in order to do first-order calculus on them.

Notation. We shall denote the space of smooth functions $M \to \mathbb{R}$ by $C^{\infty}(M)$.

Definition 3.1.1. Given $a \in \mathbb{R}^n$, a map $\omega : C^{\infty}(\mathbb{R}^n) \to \mathbb{R}$ is called a *derivation at a* if it

(i) is linear over \mathbb{R} and

(ii) satisfies the *Leibniz rule*:

$$\omega(fg) = f(a)\omega(g) + g(a)\omega(f)$$

for any $f, g \in C^{\infty}(\mathbb{R}^n)$.

Let $T_a\mathbb{R}^n$ denote the vector space of derivations at a.

Note 3.1.2. If f is constant, then $\omega f = 0$ for any derivation ω .

Example 3.1.3. For any $u \in \mathbb{R}^n$, recall that the directional derivative of $f \in C^{\infty}(\mathbb{R}^n)$ in the direction u at a is

$$D_u f(a) \equiv \lim_{h \to 0} \frac{1}{h} (f(a+hu) - f(a)) = \frac{d}{dh} \Big|_{h=0} f(a+hu).$$

Then this is a derivation of f at a.

Notation. For any $a \in \mathbb{R}^n$, let \mathbb{R}^n_a denote the (real) vector space $\{(a, v) \mid v \in \mathbb{R}^n\}$.

Theorem 3.1.4. For each $a \in \mathbb{R}^n$, define $L_a : \mathbb{R}^n_a \to T_a \mathbb{R}^n$ by $v_a \mapsto D_v|_a$. This is an isomorphism.

Proof. It is clear that L_a is linear. It remains to show that it is both injective and surjective.

Suppose that $u, v \in \mathbb{R}_a^n$ and $L_a(u) = L_a(v)$. Then by linearity $L_a(u-v) = 0$, yielding

$$\frac{d}{dt}\big|_{t=0}f(a+t(u-v)) = 0$$

for any smooth function f. But if $u - v \neq 0$, then this says that for any f, the directional derivative of f at a in the direction of a certain nonzero vector vanishes, which is clearly false. Hence u = v, and L_a is injective.

Next, suppose that $\omega \in T_a \mathbb{R}^n$ and consider the coordinate projection $x^i : \mathbb{R}^n \to \mathbb{R}$ for each i = 1, ..., n. Set $v_i = \omega(x^i)$ and write $v = v_i e_i$. We claim that $L_a(v) = D_v \big|_a = \omega$. By Taylor's theorem, any $f \in C^{\infty}(\mathbb{R}^n)$ has an expansion

$$f(x) = f(a) + \sum_{i=1}^{n} f_{x_i}(a)(x_i - a_i) + c \sum_{i,j=1}^{n} (x_i - a_i)(x_j - a_j) \int_0^1 (1 - t) \frac{\partial^2 f}{\partial x_i \partial x_j} (a + t(x - a)) dt$$

for some c > 0. Each term of the second sum is the product of two smooth functions vanishing at a. We can apply the product rule along with linearity of ω to conclude that

$$\omega f = \omega \left(\sum_{i=1}^{n} f_{x_i}(a)(x_i - a_i) \right)$$

$$= \sum_{i=1}^{n} \omega (f_{x_i}(a)(x_i - a_i))$$

$$= \sum_{i=1}^{n} f_{x_i}(a)(\omega(x_i) - \omega(a_i))$$

$$= \sum_{i=1}^{n} f_{x_i}(a)v_i$$

$$= D_v|_{a} f.$$

Corollary 3.1.5. We have $\dim(T_a\mathbb{R}^n) = n$, and the partial derivatives $\left\{\frac{\partial}{\partial x_i}\Big|_a\right\}_{1 \leq i \leq n}$ form a basis of $T_a\mathbb{R}^n$.

Definition 3.1.6. Let M be a smooth manifold and let $p \in M$.

1. An \mathbb{R} -linear map $v: C^{\infty}(M) \to \mathbb{R}$ is called a derivation at p if

$$v(fg) = f(p)v(g) + v(f)g(p)$$

for any f and g.

2. The tangent space of M at p is the vector space

$$T_pM \equiv \{\omega : C^{\infty}(M) \to \mathbb{R} : \omega \text{ is a derivation of } M \text{ at } p\}.$$

Any element of this space is called a *tangent vector*.

Definition 3.1.7 (Differential of a smooth map). Given smooth manifolds M and N, a smooth map $F: M \to N$, and $p \in M$, we define the differential of F at p as the map $dF_p: T_pM \to T_{F(p)}N$ given by

$$dF_p(v)(f) = v(f \circ F).$$

Terminology. We call $dF_p(v)$ the pushforward of v by dF.

Proposition 3.1.8. Let M, N, and P be smooth manifolds, $F: M \to N$ and $G: N \to P$ be smooth maps, and $p \in M$.

- 1. $dF_p: T_pM \to T_{F(p)}N$ is linear.
- 2. $d(G \circ F)_p = dG_{F(p)} \circ dF_p : T_pM \to T_{G(F(p))}P$.
- 3. $d(\mathrm{id}_M)_n = \mathrm{id} : T_n M \to T_n M$.
- 4. If F is a diffeomorphism, then dF_p is an isomorphism with inverse $d(F^{-1})_{F(p)}$.

Aside. This shows that mapping (M, p) to T_pM and $F: (M, p) \to (N, F(p))$ to dF_p defines a functor from \mathbf{Diff}_* to $\mathbf{Vec}_{\mathbb{R}}$, known as the tangent space functor.

Lemma 3.1.9. Let $v \in T_pM$ and $f, g \in C^{\infty}(M)$. Then if f and g agree on a neighborhood N_p of p, then vg = vf.

Proof. Set h = f - g, so that h vanishes on N_p . We can find a smooth bump function $\varphi : M \to \mathbb{R}$ such that $\varphi \equiv 1$ on $\operatorname{supp}(h)$ and $\operatorname{supp}(\varphi) \subset M \setminus \{p\}$. Then $\varphi h(x) = h(x)$ for any $x \in M$. Since both φ and h vanish at p, it follows that $vf - vg = vh = v(\varphi h) = 0$.

Proposition 3.1.10. If M is an n-dimensional smooth manifold, then $\dim(T_pM) = n$ for every $p \in M$.

In particular, we identify the standard basis $\{e_1, \ldots, e_n\}$ for \mathbb{R}^n by $e_i \leftrightarrow (0, \ldots, 0, \frac{\partial}{\partial x_i}|_p, 0, \ldots, 0)$.

3.2 Lecture 7

Given a point $p \in M$, find a chart $(U, \varphi) \ni p$. Then $d\varphi_p : T_pM \cong T_pU \to T_{\varphi(p)}\varphi(U) \cong T_p\mathbb{R}^n$ is an isomorphism. This choice of chart yields a natural choice of basis for T_pM :

$$\left\{ \frac{\partial}{\partial x_i} \Big|_p \right\}_{1 \le i \le n}$$

where

$$\frac{\partial}{\partial x_i}\big|_p \coloneqq (d\varphi_p)^{-1} \left(\frac{\partial}{\partial x_i}\big|_{\varphi(p)}\right) = \left(d\varphi^{-1}\right)_{\varphi(p)} \left(\frac{\partial}{\partial x_i}\big|_{\varphi(p)}\right). \tag{*}$$

Let $F: M \to N$ be smooth with $M \subset \mathbb{R}^n$ and $N \subset \mathbb{R}^m$ open. Then by the chain rule we get

$$dF_{p}\left(\frac{\partial}{\partial x_{i}}\Big|_{p}\right)f = \frac{\partial}{\partial x_{i}}\Big|_{p}(f \circ F)$$

$$= \frac{\partial}{\partial x_{i}}\Big|_{p}(f(F_{1}, \dots, F_{m}))$$

$$= \sum_{j=1}^{m} \frac{\partial f}{\partial F_{j}}(F(p))\frac{\partial F_{j}}{\partial x_{i}}(p)$$

$$= \sum_{j=1}^{m} \frac{\partial F_{j}}{\partial x_{i}}(p)\left(\frac{\partial}{\partial y_{j}}\Big|_{F(p)}\right)f.$$

Therefore, dF_p can be represented by the familiar $m \times n$ Jacobian matrix of F at p,

$$DF(p) := \begin{bmatrix} \vdots & & \vdots \\ \frac{\partial F_j}{\partial x_1}(p) & \cdots & \frac{\partial F_j}{\partial x_n}(p) \\ \vdots & & \vdots \end{bmatrix},$$

which acts on $\mathbb{R}^n \cong T_pM$.

Now consider the general case $F:M\to N$ smooth between manifolds. For any $p\in M$, choose charts $(U,\varphi)\ni p$ and $(V,\psi)\ni F(p)$. Then the Euclidean map $\widehat{F}:=\psi\circ F\circ \varphi^{-1}:\varphi(F^{-1}(V)\cap U)\to \psi(V)$ is smooth. If $\widehat{p}:=\varphi(p)$, it follows from (*) that $d\widehat{F}_{\widehat{p}}$ is represented by the Jacobian of \widehat{F} at \widehat{p} . Noting that $F\circ \varphi^{-1}=\psi^{-1}\circ \widehat{F}$, we compute

$$dF_{p}\left(\frac{\partial}{\partial x_{i}}\big|_{p}\right) = dF_{p}\left(d(\varphi^{-1})\big|_{\hat{p}}\left(\frac{\partial}{\partial x_{i}}\big|_{\hat{p}}\right)\right)$$

$$= d(\psi^{-1})\big|_{\widehat{F}(\hat{p})}\left(d\widehat{F}\big|_{\hat{p}}\left(\frac{\partial}{\partial x_{i}}\big|_{\hat{p}}\right)\right)$$

$$= d(\psi^{-1})\big|_{\widehat{F}(\hat{p})}\left(\sum_{j=1}^{m} \frac{\partial \widehat{F}_{j}}{\partial x_{i}}(\hat{p})\frac{\partial}{\partial y_{j}}\big|_{\widehat{F}(\hat{p})}\right)$$

$$= \sum_{j=1}^{m} \frac{\partial \widehat{F}_{j}}{\partial x_{i}}(\hat{p})\frac{\partial}{\partial y_{j}}\big|_{F(p)}.$$

Therefore, dF_p can be represented by the Jacobian matrix of \hat{F} at \hat{p} .

Given any two pairs of coordinates for p and F(p), the respective Jacobian matrices are related by the familiar change-of-basis matrix. In particular, they are similar.

Given a smooth manifold M, we define a notion of a smoothly varying tangent space as follows.

Definition 3.2.1. The tangent bundle of M is the set

$$TM \equiv \coprod_{p \in M} T_p M$$

endowed with a certain natural topology induced by the projection $\pi: TM \to M$, $(\varphi, p) \mapsto p$.

Example 3.2.2. As \mathbb{R}^n_a is canonically isomorphic to \mathbb{R}^n , we have $T\mathbb{R}^n \cong \coprod_{a \in \mathbb{R}^n} \{a\} \times \mathbb{R}^n \cong \mathbb{R}^n \times \mathbb{R}^n$.

3.3 Lecture 8

Lemma 3.3.1. For any smooth n-dimensional manifold M, the tangent bundle TM has a natural topology and smooth structure such that

- TM is a 2n-dimensional smooth manifold and
- the projection $\pi: TM \to M$ is smooth.

Proof. Given a chart (U, φ) , define $\tilde{\varphi} : \pi^{-1}(U) \to \mathbb{R}^n$ by

$$v_i \frac{\partial}{\partial x_i} \Big|_p \mapsto \left(x^1(p), \dots, x^n(p), v_1, \dots, v_n\right)$$

where $\varphi = (x^1, \ldots, x^n)$. This is continuous with $\operatorname{Im} \tilde{\varphi} = \varphi(U) \times \mathbb{R}^n$, which is open. Further, $\tilde{\varphi}^{-1}$ is given by $(x_1, \ldots, x_n, v_1, \ldots, v_n) \mapsto v_i \frac{\partial}{\partial x_i} \big|_{\varphi^{-1}(x)}$ on $\varphi(U) \times \mathbb{R}^n$. Take $\{(\pi^{-1}(U), \tilde{\varphi})\}$ to be charts on TM. Given two such charts $(\pi^{-1}(U), \tilde{\varphi})$ and $(\pi^{-1}(V), \tilde{\psi})$, it's straightforward to check that $\tilde{\psi} \circ \tilde{\varphi}^{-1} : \varphi(U \cap V) \times \mathbb{R}^n \to \psi(U \cap V) \times \mathbb{R}^n$ is smooth.

Next, notice that if we take a countable cover $\{U_i\}$ of M by smooth coordinate domains, then $\{\pi^{-1}(U_i)\}$ satisfies the conditions of Lemma 1.2.8.

Finally, to see that $\pi: TM \to M$ is smooth, notice that its coordinate representation at every point is given by the projection $\pi: \mathbb{R}^{2n} \to \mathbb{R}^n$, $(x, v) \mapsto x$.

Terminology. We call the $\tilde{\varphi}((f,p))$ the natural coordinates on TM.

Given $F: M \to N$ is smooth, define the global differential $dF: TM \to TN$ of F by $dF(\varphi, p) = dF_p(\varphi)$.

Proposition 3.3.2. The global differential $dF: TM \to TN$ is smooth.

Aside. This shows that mapping M to TM and F to dF defines a functor from **Diff** to itself, known as the tangent functor.

Note 3.3.3. If F is a diffeomorphism, then so is dF with $d(F^{-1}) = (df)^{-1}$.

Definition 3.3.4. Given a smooth curve $\gamma: J \to M$ and $t_0 \in J$, the velocity of γ at t_0 is

$$\gamma'(t_0) \equiv d\gamma \left(\frac{d}{dt}\big|_{t_0}\right) \in T_{\gamma(t_0)}M.$$

³The expression $v_i \frac{\partial}{\partial x_i}|_p$ is secretly a summation, in accordance with the Einstein summation convention.

Note 3.3.5. Let $(U,\varphi) \ni \gamma(t_0)$ be a chart on M. Then $\gamma'(t_0) = \frac{d\gamma^i}{dt} \frac{\partial}{\partial x_i} \Big|_{\gamma(t_0)}$.

Lemma 3.3.6. Every $v \in T_pM$ is the velocity of some smooth curve $\gamma: J \to M$ at 0 such that $\gamma(0) = p$.

Proof. Let (U, φ) be a chart centered at p. Write $v = v_i \frac{\partial}{\partial x_i} \Big|_p$. For any $\epsilon > 0$ small, define $\gamma : (-\epsilon, \epsilon) \to U$ by $\gamma(t) = \varphi^{-1}(tv_1, \dots, tv_n)$. Note 3.3.5 implies that $\gamma'(0) = v$.

Proposition 3.3.7. Let $v \in T_pM$. Then $dF_p(v) = (F \circ \gamma)'(0)$ for any smooth map $\gamma : J \to M$ satisfying $\gamma(0) = p$ and $\gamma'(0) = v$.

Aside. A smooth function element on M is a pair (f,U) with $U \subset M$ open and $f:M \to \mathbb{R}$ smooth. Say that $(f,U) \sim (g,V)$ if $p \in U \cap V$ and f=g on some neighborhood of p. The equivalence class $[f]_p := [(f,U)]$ is called the *germ of* f at p. The set of such classes is denoted by $C_p^{\infty}(M)$. This is an associative algebra over \mathbb{R} .

Define a derivation of $C_p^{\infty}(M)$ as a linear map $v: C_p^{\infty}(M) \to \mathbb{R}$ satisfying $v[fg]_p = f(p)v[g]_p + g(p)v[f]_p$. The tangent space $\mathcal{D}_p M$ of such derivations serves as an equivalent (in the sense of isomorphism) definition of the tangent space of M at p.

3.4 Lecture 9

Theorem 3.4.1 (Inverse function). If $F: M \to N$ is smooth and dF_p is invertible, then there are connected neighborhoods U_0 of p and V_0 of F(p) such that $F \upharpoonright_{U_0} : U_0 \to V_0$ is a diffeomorphism.

Proof. Notice that M and N have equal dimension (say n) because dF_p is invertible. Choose charts (U, f) centered at p and (V, g) centered at F(p) such that $F(U) \subset V$. Then $\widehat{F} := g \circ F \circ f^{-1}$ is smooth map from $f(U) \subset \mathbb{R}^n$ to $g(V) \subset \mathbb{R}^n$ with $\widehat{F}(0) = 0$. Now $d\widehat{F}_0$ is invertible as the composite of three invertible maps. The inverse function theorem for Euclidean space implies that there are open balls $B_r(0)$ and $B_s(0)$ such that $\widehat{F}: B_r(0) \to B_s(0)$ is a diffeomorphism. Thus, we can take $F: f^{-1}(B_r(0)) \to g^{-1}(B_s(0))$ as our desired diffeomorphism .

Corollary 3.4.2. If dF_p is nonsingular at each $p \in M$, then F is a local diffeomorphism.

Proposition 3.4.3.

- 1. The finite product of local diffeomorphisms is a local diffeomorphism.
- 2. The composite of two local diffeomorphisms is a local diffeomorphism.
- 3. Any bijective local diffeomorphism is a diffeomorphism.
- 4. A map F is a local diffeomorphism if and only if each point in dom(F) has a neighborhood where F's coordinate representation is a local diffeomorphism.

Definition 3.4.4. The rank of a smooth map F at a point p is the rank of dF_p . If the rank of F is the same at each point, then we say F has constant rank.

Theorem 3.4.5 (Constant rank). Let $F: M^m \to N^n$ be smooth with constant rank $r \leq m, n$. Then for each $p \in M$, there are charts (U, f) centered at p and (V, g) centered at F(p) such that $F(U) \subset V$ and the coordinate representation of F is given by

$$\widehat{F}(x_1, \dots, x_r, x_{r+1}, \dots x_m) = (x_1, \dots, x_r, 0, \dots, 0).$$

Before proving this, we should mention a couple of things:

- If m = n = r, then this follows immediately from the inverse function theorem.
- The global condition on the rank of F cannot be weakened, as the space of $n \times m$ matrices of rank r need not be open. For example, consider the map $A(t) \equiv \begin{bmatrix} 1 & t \\ 1 & 1 \end{bmatrix}$, which has rank 2 when $t \neq 1$ and rank 1 otherwise.

Proof. Since our statement is local, we may assume that $M \subset \mathbb{R}^m$ and $N \subset \mathbb{R}^n$ are open subsets. Since DF(p) has rank r, it has some invertible $r \times r$ sub-matrix, which we may assume is the upper left sub-matrix $\left(\frac{\partial F^i}{\partial x^j}\right)_{i,j\in[r]}$. Write $(x,y)=\left(x^1,\ldots,x^r,y^1,\ldots,y^{m-r}\right)$ and $(v,w)=\left(v^1,\ldots,v^r,w^1,\ldots,w^{n-r}\right)$ for the standard coordinates on \mathbb{R}^m and \mathbb{R}^n , respectively. By applying suitable translations, we may assume that p=(0,0) and F(p)=(0,0). We have F(x,y)=(Q(x,y),R(x,y)) for some smooth map $Q:M\to\mathbb{R}^r$ and $R:M\to\mathbb{R}^{n-r}$. Then the Jacobian matrix $\left(\frac{\partial Q^i}{\partial x^j}\right)$ is invertible at (0,0) by hypothesis.

Define $f: M \to \mathbb{R}^m$ by $(x,y) \mapsto (Q(x,y),y)$. Define the Kronecker delta symbol δ_i^j by

$$\delta_i^j = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}.$$

Then

$$D[f]\left(0,0\right)\begin{bmatrix}\frac{\partial Q^{i}}{\partial x^{j}}\left(0,0\right) & \frac{\partial Q^{i}}{\partial y^{j}}\left(0,0\right)\\ 0 & \delta^{i}_{j}\end{bmatrix}.$$

Since

$$\det(D[f]\left(0,0\right)) = \det\left(\frac{\partial Q^{i}}{\partial x^{j}}\left(0,0\right)\right) \cdot \det(\delta^{i}_{j}) = \det\left(\frac{\partial Q^{i}}{\partial x^{j}}\left(0,0\right)\right) \neq 0,$$

it follows that D[f] is invertible at (0,0).

Thus, we can apply the inverse function theorem to get a connected open set $U_0 \ni (0,0)$ and an open cube $\widetilde{U}_0 \ni f(0,0) = (0,0)$ such that $f: U_0 \to \widetilde{U}_0$ is a diffeomorphism. Let $f^{-1}(x,y) = (A(x,y),B(x,y))$. Then (x,y) = f(A(x,y),B(x,y)) = (Q(A(x,y),B(x,y)),B(x,y)), so that y = B(x,y). Hence

$$f^{-1}(x,y) = (A(x,y),y).$$

Additionally, Q(A(x,y),y)=x since $f\circ f^{-1}=\mathrm{id}_{\widetilde{U}_0}.$ If $\widetilde{R}:\widetilde{U}_0\to\mathbb{R}^{n-r}$ is defined by $(x,y)\mapsto R(A(x,y),y),$ then

$$F \circ f^{-1}(x,y) = \left(x, \widetilde{R}(x,y)\right).$$

Therefore,

$$D[F \circ f^{-1}](x,y) = \begin{bmatrix} \delta^i_j & 0\\ \frac{\partial \widetilde{R}^i}{\partial x^j}(x,y) & \frac{\partial \widetilde{R}^i}{\partial y^j}(x,y) \end{bmatrix}$$

for any $(x,y) \in \widetilde{U}_0$. It's clear that the first r columns of this matrix are linearly independent. But since f^{-1} is a diffeomorphism, it has rank r on \widetilde{U}_0 . It follows that $\frac{\partial \widetilde{R}^i}{\partial y^j}(x,y) = 0$ for each $(x,y) \in \widetilde{U}_0$. But \widetilde{U}_0 was chosen to be an open cube, so that $\widetilde{R}(x,y) = \widetilde{R}(x,0)$. If $S(x) := \widetilde{R}(x,0)$, then $F \circ f^{-1}(x,y) = (x,S(x))$.

Now, let

$$V_0 = \{(v, w) \in N \mid (v, 0) \in \widetilde{U}_0\},\$$

which is a neighborhood of (0,0) in N. Since \widetilde{U}_0 is a cube, we see that $F \circ f^{-1}(\widetilde{U}_0) \subset V_0$. Hence $F(U_0) \subset V_0$. Define $g: V_0 \to \mathbb{R}^n$ by $(v, w) \mapsto (v, w - S(v))$, which is smooth with inverse $g^{-1}(s, t) = (s, t + S(s))$. Then

$$\widehat{F}(x,y) = g \circ F \circ f^{-1}(x,y) = (x, S(x) - S(x)) = (x,0),$$

as desired. \Box

3.5 Lecture 10

Definition 3.5.1. Consider a smooth map $F: M \to N$.

- 1. It is a (smooth) submersion if it has constant rank equal to $\dim(N)$.
- 2. It is a (smooth) immersion if it has constant rank equal to $\dim(M)$.

Definition 3.5.2. A topological embedding is a continuous map $F: M \to N$ which is a homeomorphism onto F(M).

Example 3.5.3.

- 1. The map $\gamma : \mathbb{R} \to \mathbb{R}^2$ defined by $t \mapsto (t^3, 0)$ is a smooth topological embedding but not an immersion, since $\gamma'(0) = 0$.
- 2. The curve $f:(-\pi,\pi)\to\mathbb{R}^2$ defined by $f(t)=(\sin 2t,\sin t)$ is known as a *lemniscate*, describing a figure-eight curve. This is not a topological embedding, because the figure-eight is compact whereas $(-\pi,\pi)$ is not. But it is a smooth immersion as f' never vanishes.

Definition 3.5.4. A map is a *smooth embedding* if it both a topological embedding and a smooth immersion.

Example 3.5.5.

- 1. There is a smooth embedding of \mathbb{RP}^2 into \mathbb{R}^4 but not into \mathbb{R}^3
- 2. If $U \subset M$ is open, then the inclusion $U \hookrightarrow M$ is a smooth embedding.

Definition 3.5.6. A manifold $S \subset M$ in the subspace topology is an *embedded submanifold* if it has a smooth structure such that the inclusion $S \hookrightarrow M$ is a smooth embedding.

Note 3.5.7. The image of a smooth embedding is an embedded submanifold.

Terminology. If $S \subset M$ is an embedded submanifold, then $\dim(M) - \dim(S)$ is called the *codimension of* S in M.

Proposition 3.5.8. Let $U \subset M^m$ be open and $f: U \to N$ be smooth. The graph $\Gamma(f)$ of f is an embedded m-dimensional submanifold of $M \times N$.

Proof. Define $\gamma_f(x): U \to M \times N$ by $\gamma_f(x) = (x, f(x))$. It's easy to check this is a smooth embedding. \square

Our next notion is a local version of the standard embedding $\mathbb{R}^k \hookrightarrow \mathbb{R}^n$ where $k \leq n$ but works for any submanifold.

Definition 3.5.9. We say that a subset $S \subset M$ has the *local k-slice condition* if for each $p \in S$, there is a chart $(U, \varphi) \ni p$ for M such that

$$\varphi(U \cap S) = \underbrace{\left\{ x \in \varphi(U) : x^{k+1} = \dots = x^n = 0 \right\}}_{k\text{-slice of } \varphi(U)}, \quad n \equiv \dim(M)$$

Figure 1: Copied from Lee (102) $k\text{-slice condition with }V\equiv U\cap S$

Theorem 3.5.10. Let M^n be a smooth manifold. Let $S \subset M$. If S is an embedded manifold with $\dim(S) = k$, then S has the local k-slice condition.

Conversely, if S has the local k-slice condition, then S is a smooth manifold in the subspace topology and has a smooth structure making it an embedded submanifold of dimension k.

Proof.

 (\Longrightarrow)

Let $p \in S$. In particular, the inclusion $i: S \hookrightarrow M$ is a smooth immersion and thus has constant rank k. By the constant rank theorem, we can find charts (U, φ) and (V, ψ) centered at p for S and M, respectively, for which i has coordinate representation

$$(x^1, \dots, x^k) \mapsto (x^1, \dots, x^k, 0, \dots, 0).$$

This means that i(U) is a k-slice for S in V. We have that $U = W \cap S$ for some open set W in M. Let $V' = W \cap V$, which is neighborhood of p in M. Then $(V', \psi \upharpoonright_{V'})$ is a chart on M such that $V' \cap S = i(U)$, so that V' is slice for S in M.

 (\Longleftrightarrow)

See Theorem 5.8 (Lee).

Example 3.5.11. For any n, $\mathbb{S}^n \subset \mathbb{R}^{n+1}$ is an embedded hypersurface because it is locally the graph of smooth map and thus has the local n-slice condition.

Theorem 3.5.12. Let $F: M^m \to N^n$ be smooth with constant rank r. Each level set of F is an embedded submanifold of codimension r in M.

Proof. Set k = m - r. Let $c \in N$ and $p \in F^{-1}(c)$. By the constant rank theorem, there are charts (U, f) centered at p and (V, g) centered at F(p) = c for which F has coordinate representation given by

$$(x_1,\ldots,x_r,x_{r+1},\ldots,x_m) \mapsto (x_1,\ldots,x_r,0,\ldots,0)$$

which must send each point in $f(F^{-1}(c) \cap U)$ to 0. Thus, $f(F^{-1}(c) \cap U)$ equals the k-slice

$$\{x \in \mathbb{R}^m : x_1 = \dots = x_r = 0\}.$$

By Theorem 3.5.10, S is an embedded submanifold of dimension k.

3.6 Lecture 11

Question. Can M^n with $n \ge 1$ be homeo-/diffeomorphic to $M \setminus \{p\}$?

Remark 3.6.1. We can generalize Theorem 3.5.12 to maps that are not necessarily of constant rank.

Definition 3.6.2. Let $\varphi: M \to N$ be smooth. We say that $p \in M$ is

- a regular point of φ if $d\varphi_p$ is surjective and
- a critical point of φ otherwise.

Definition 3.6.3. Let $\varphi: M \to N$ be smooth. We say that $c \in N$ is

- a regular value of φ if each point in $\varphi^{-1}(c)$ is regular and
- a critical value of φ otherwise.

We say that $S \subset M$ is a regular level set of φ if it has the form $\varphi^{-1}(c)$ with c a regular value.

Theorem 3.6.4. Every regular level set S of a smooth map $F: M^m \to N^n$ is an embedded submanifold of codimension n.

Proof. Let $S = F^{-1}(c)$. Note that the subspace of full-rank matrices is open due to continuity of the det. As a result, the set U of points $p \in M$ where dF_p is surjective is open in M. Hence $F \upharpoonright_U: U \to N$ is a smooth submersion. In particular, it has constant rank n. Thanks to Theorem 3.5.12, it follows that $F^{-1}(c)$ is an embedded submanifold of U with codimension n, where U itself is an open submanifold of M.

Example 3.6.5. \mathbb{S}^n is a regular level set of the smooth function $\vec{x} \mapsto |\vec{x}|^2$.

Theorem 3.6.6 (Sard). If $F: M \to N$ is smooth, then the set of all critical values of F has measure zero in N.

Proposition 3.6.7. Suppose M is smooth and $S \subset M$ is embedded. Then for any $f \in C^{\infty}(S)$, there is some neighborhood U of S in M along with some $\hat{f} \in C^{\infty}(U)$ such that $\hat{f} \upharpoonright_S = f$.

Proposition 3.6.8. The tangent space of a submanifold $S \subset M$ at $p \in S$ is precisely the image of the injective canonical map $di_p: T_pS \to T_pM$ where i denotes inclusion, i.e.,

$$A := \{ \gamma'(0) \in T_pM : \gamma : (-\epsilon, \epsilon) \to S \text{ and } \gamma(0) = p \}.$$

Proof. Let $v \in T_pS$. We know that $v = \gamma'(0)$ for some curve γ in S. Then $i \circ \gamma$ is a curve in M with $(i \circ \gamma)' = di_p(v)$.

Conversely, let $v := w'(0) \in A$. We have $w = j \circ w$ where $j : i(S) \to S$ is the reverse inclusion. Since $(j \circ w)'(0) = dj_p(v) \in T_pS$, it follows that $d_i((j \circ w)'(0)) = v$.

At this point, we begin developing the theory of differential forms. Let $F: \mathbb{R}^n \to \mathbb{R}$ be smooth. The gradient ∇F has two main properties.

1. It is orthogonal to the level sets of F.

2.
$$dF_p(v) = \langle \nabla F_p, v \rangle$$
.

But given a smooth manifold M, we don't necessarily have an inner product on M unless M is a Riemannian manifold, which by definition has a smoothly varying inner product. Instead, we shall view dF_p as a so-called 1-form.

3.7 Lecture 12

Recall that if $\pi: M \to N$ is a continuous map, then a section of π is a continuous right inverse of π .

Definition 3.7.1. A (smooth) vector field X is a smooth section of the projection map $\pi : TM \to M$, i.e., $X_p := F(p) \in T_pM$ for each $p \in M$.

Notation. Let $\mathscr{X}(M)$ denote the vector space of all smooth vector fields in M.

Note that $\mathscr{X}(M)$ is a module over $C^{\infty}(M)$ under the action $f \cdot X \equiv (p \mapsto f(p)X_p)$.

Given a chart U on M^n , if $p \in U$, then we can write $X_p = \sum_{i=1}^n r_i \frac{\partial}{\partial x_i} \Big|_p$ for some unique real coefficients r_i . Define $X^i : U \to \mathbb{R}$ by $X_i(p) = r_i$ for each $i = 1, \ldots, n$. Then

$$X_p = \sum_{i} X_i(p) \frac{\partial}{\partial x_i} \Big|_p.$$

We call such X_i the component functions of X for the chart U.

Proposition 3.7.2. A vector field X is smooth if and only if each component function in any given chart is smooth.

Lemma 3.7.3. If S is a closed subset of M and X a smooth vector field along S, then there is an extension of X to a smooth vector field on M.

Definition 3.7.4. Let $U \subset M^n$ be open and $X_1, \ldots, X_k \in \mathcal{X}(M)$.

- 1. X_1, \ldots, X_k are linearly independent if for any $p \in U$, we have that $\{X_1(p), \ldots, X_k(p)\}$ is linearly independent in T_pM .
- 2. If k = n and X_1, \ldots, X_k are linearly independent, then $\{X_1, \ldots, X_k\}$ is a local frame in U.

Example 3.7.5. The basis vectors $p \mapsto \frac{\partial}{\partial x_i}|_p$ form a local frame for a given chart U around p, called the coordinate frame.

Definition 3.7.6. A local frame for U is called a *global frame* if U = M. If such a frame exists, then M is called *parallelizable*.

Example 3.7.7. \mathbb{R}^n is parallelizable via the standard coordinate vector fields.

Lemma 3.7.8. M is parallelizable if and only if $TM \approx M \times \mathbb{R}^n$, i.e., its tangent bundle is trivial.

Theorem 3.7.9 (Kervaire). \mathbb{S}^n is parallelizable if and only if $n \in \{0, 1, 3, 7\}$.

Definition 3.7.10 (Lie group). A *Lie group* is a group G equipped with a smooth structure such that both $\times : G \times G \to G$ and $(-)^{-1} : G \to G$ are smooth maps.

Example 3.7.11. Any Lie group is parallelizable.

Note that $\mathscr{X}(M)$ acts on $C^{\infty}(U)$ for any $U \subset M$ with the action $X \cdot f \equiv (p \mapsto X_p(f))$. Given $X \in \mathscr{X}(M)$, this induces a linear map $X : C^{\infty}(U) \to C^{\infty}(U)$ satisfying the product rule

$$X(fg) = fXg + gXf.$$

We call such a map a derivation of $C^{\infty}(U)$.

Moreover, if $F: M \to N$ is smooth, then $dF_pX(p) \in T_{F(p)}N$ for each $p \in M$. Yet, this may not define a vector field on N, since F may not be surjective.

Example 3.7.12. Let $X, Y \in \mathcal{X}(M)$. Then X(Yf) need *not* be a derivation. Indeed, let $M = \mathbb{R}^2$, $X = \frac{\partial}{\partial x}$, and $Y = x \frac{\partial}{\partial y}$. If f(x, y) = x and g(x, y) = y, then XY(fg) = 2x whereas fXY(g) + gXY(f) = x, so that XY(f) is not a derivation.

Definition 3.7.13. Let $X,Y \in \mathcal{X}(M)$. The Lie bracket of X and Y is

$$[X,Y] \equiv XY - YX : C^{\infty}(M) \to C^{\infty}(M).$$

Proposition 3.7.14 (Clairaut). If $X_i = \frac{\partial}{\partial x_i} \in \mathcal{X}(M)$, then $[X_i, X_j] = 0$ for any $1 \le i, j \le n$.

Lemma 3.7.15. A map $D: C^{\infty}(M) \to C^{\infty}(M)$ is a derivation if and only if there is some $X \in \mathcal{X}(M)$ such that Df = Xf for any f.

Proof. We have established the (\iff) direction. Conversely, assume that D is a derivation. Define $X: M \to TM$ by $X_p(f) = (Df)(p)$. Since Df = Xf is smooth for each X, it follows that X is smooth thanks to Proposition 8.14 (Lee).

Lemma 3.7.16. Any Lie bracket [X,Y] is a smooth vector field.

Proof. By Lemma 3.7.15, it suffices to show that [X, Y] is a derivation. Let f, g be smooth functions on M. Then

$$\begin{split} [X,Y] \, (fg) &= X(Y(fg)) - Y(X(fg)) \\ &= X(fYg + gYf) - Y(fXg + gXf) \\ &= XfYg + XgYf - YfXg - YgXf \\ &= fXYg + YgXf + gXYf + YfXg \\ &- fYXg - XgYf - gYXf - XfYg \\ &= fXYg + gXYf - fYXg - gYXf \\ &= f \, [X,Y] \, g + g \, [X,Y] \, f. \end{split}$$

22

3.8 Lecture 13

Consider two smooth vector fields X and Y on M. Define $[X,Y]: M \to TM$ by $p \mapsto (f \mapsto X_p(Yf) - Y_p(Xf))$.

Proposition 3.8.1. Write $X = X^i \frac{\partial}{\partial x_i}$ and $Y = Y^j \frac{\partial}{\partial x_j}$ in local coordinates. Then

$$[X,Y] = \sum_{i,j} \left(X^i \frac{\partial Y^j}{\partial x_i} - Y^i \frac{\partial X^j}{\partial x_i} \right) \frac{\partial}{\partial x_j}.$$

Proof. Since [X,Y] is a vector field, we see that $([X,Y]f) \upharpoonright_U = [X,Y](f \upharpoonright_U)$ for any open subset $U \subset M$. Therefore, we may compute, say, Xf in a local coordinate expression for X. To this end, let us apply the product rule together with Clairaut's theorem to get

$$\begin{split} \left[X,Y\right]f &= X^{i}\frac{\partial}{\partial x_{i}}\left(Y^{j}\frac{\partial f}{\partial y_{j}}\right) - Y^{j}\frac{\partial}{\partial x_{j}}\left(X^{i}\frac{\partial f}{\partial x_{i}}\right) \\ &= X^{i}\frac{\partial Y^{j}}{\partial x_{i}}\frac{\partial f}{\partial x_{j}} + X^{i}Y^{j}\frac{\partial^{2}f}{\partial x_{i}x_{j}} - Y^{j}\frac{\partial X^{i}}{\partial x_{j}}\frac{\partial f}{\partial x_{i}} - Y^{j}X^{i}\frac{\partial^{2}f}{\partial x_{j}x_{i}} \\ &= X^{i}\frac{\partial Y^{j}}{\partial x_{i}}\frac{\partial f}{\partial x_{j}} - Y^{j}\frac{\partial X^{i}}{\partial x_{j}}\frac{\partial f}{\partial x_{i}} \\ &= \sum_{i,j}\left(X^{i}\frac{\partial Y^{j}}{\partial x_{i}} - Y^{i}\frac{\partial X^{j}}{\partial x_{i}}\right)\frac{\partial}{\partial x_{j}}. \end{split}$$

Remark 3.8.2. If $X_1, \ldots, X_n \in \mathscr{X}(U)$ satisfy $[X_i, X_j] = 0$, then there are local coordinates $x^i : V \to \mathbb{R}$ such that $X_i = \frac{\partial}{\partial x^i}$. This is a converse of Clairaut's theorem.

Proposition 3.8.3.

1. (Bilinearity) For any $a, b \in \mathbb{R}$,

$$[aX + bY, Z] = a[X, Z] + b[Y, Z]$$

 $[Z, aX + bY] = a[Z, X] + b[Z, Y].$

2. (Antisymmetry)

$$[X,Y] = -[Y,X].$$

3. (Jacobi Identity)

$$[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0.$$

4. For any $f, g \in C^{\infty}(M)$,

$$[fX, qY] = fq[X, Y] + (fXq)Y - (qYf)X,$$

where fX denotes the module action $f \cdot X$.

Now, let $X \in \mathcal{X}(M)$ and $Y \in \mathcal{X}(N)$. Let $F : M \to N$ be a diffeomorphism. The pushforward of X by F, denoted by F_*X , is the vector field on N given by

$$q \mapsto dF_{F^{-1}(q)}\left(X_{F^{-1}(q)}\right)$$
.

We say X and Y are F-related if $Y = F_*X$.

4 VECTOR BUNDLES 23

Note 3.8.4. $X(f \circ F) = (Yf) \circ F$ if and only if X and Y are F-related.

Theorem 3.8.5 (Naturality of the Lie bracket). $F_*[X,Y] = [F_*X, F_*Y]$.

Proof. Let $f \in C^{\infty}(M)$. By Note 3.8.4, we see that $XY(f \circ F) = X(F_*Yf \circ F) = F_*X(F_*Yf) \circ F$, and likewise $YX(f \circ F) = F_*Y(F_*Xf) \circ F$. Thus,

$$[X,Y](f \circ F) = F_*X(F_*Yf) \circ F - F_*Y(F_*Xf) \circ F = ([F_*X,F_*Y]f) \circ F.$$

We conclude by again applying Note 3.8.4.

Corollary 3.8.6. Let $S \subset M$ be a submanifold. If $X, Y \in \mathcal{X}(M)$ satisfy $X_p, Y_p \in T_p(S)$ for each $p \in S$, then $[X,Y]_p \in T_p(S)$ as well.

Proof. Let $i: S \to M$ denote inclusion. Then there are $X', Y' \in \mathscr{X}(S)$ with X' *i*-related to $X \upharpoonright_S$ and Y' *i*-related to $Y \upharpoonright_S$. This implies that [X', Y'] is *i*-related to $[X, Y] \upharpoonright_S$, which in turn implies that $[X, Y]_p \in T_p(S)$ for any $p \in S$.

4 Vector bundles

Definition 4.0.1. Let M be a space. A *(real) vector bundle of rank* k *over* M is a space E endowed with the following structure.

- (I) A surjective continuous map $\pi: E \to M$.
- (II) For each $p \in M$, $E_p := \pi^{-1}(p)$ is a k-dimensional vector space.
- (III) For each $p \in M$, there is a neighborhood U_p in M together with a homeomorphism $\varphi : \pi^{-1}(U) \to U \times \mathbb{R}^k$ (called a *local trivialization*) such that
 - (a) $\pi_U \circ \varphi = \pi \upharpoonright_{\pi^{-1}(U)}$, where $\pi_U : U \times \mathbb{R}^k \to U$ denotes the projection and
 - (b) for each $q \in U$, $\varphi \upharpoonright_{E_q}$ is a linear isomorphism $E_q \xrightarrow{\cong} \{q\} \times \mathbb{R}^k \cong \mathbb{R}^k$.

If M and E are smooth manifolds and each local trivialization is smooth, then E is called a *smooth vector bundle*.

Example 4.0.2. The Möbius strip and $\mathbb{S}^1 \times \mathbb{R}$ are distinct vector bundles of rank 1 over \mathbb{S}^1 .

Figure 2: Möbius strip

We can always construct a global section of a smooth vector bundle by using partitions of unity. But we cannot always ensure that it is non-vanishing, as shown by the hairy ball theorem (Corollary 7.3.6) for bundles over \mathbb{S}^2 .

4 VECTOR BUNDLES 24

4.1 Lecture 14

Lemma 4.1.1 (Vector bundle construction). Let M^n be a smooth manifold and suppose that for any $p \in M$, there is some vector space E_p of dimension k. Let $E := \coprod_{p \in M} E_p$ and $\pi : E \to M$ be the projection map. Further, suppose we have the following data:

- (a) an open cover $\{U_{\alpha}\}$,
- (b) for each α , a bijection $\varphi_{\alpha}: \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^k$ whose restriction to each E_p is a linear isomorphism to $\{p\} \times \mathbb{R}^k$, and
- (c) for each $U_{\alpha} \cap U_{\beta} \neq \emptyset$, a smooth map $\tau_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \to \operatorname{GL}(k,\mathbb{R})$ such that $\varphi_{\alpha} \circ \varphi_{\beta}^{-1}(p,v) = (p,\tau_{\alpha\beta}(p)v)$.

Then E has a unique topology and smooth structure making it into a smooth vector bundle of rank k over M.

The matrices $\tau_{\alpha\beta}(p)$ are called the *transition functions* of the vector bundle E. They satisfy the so-called cocycle condition:

$$\tau_{\alpha\alpha}(p) = I_k \qquad \tau_{\alpha\beta}(p)\tau_{\beta\gamma}(p)\tau_{\gamma\alpha}(p) = I_k.$$

Definition 4.1.2 (Bundle map). Let $p_1: E_1 \to M_1$ and $p_2: E_2 \to M_2$ be two vector bundles of rank k. A homomorphism $p_1 \to p_2$ is a commutative square

$$E_1 \xrightarrow{f} E_2$$

$$\downarrow^{p_1} \qquad \qquad \downarrow^{p_2}$$

$$M_1 \xrightarrow{g} M_2$$

in the category of spaces such that each map $f \upharpoonright_{p_1^{-1}(x)}$ is linear.

Note that g is uniquely determined by f because p_1 is surjective.

Let us now explore a specific kind of vector bundle. To this end, consider any vector space V as well as its $dual\ space$

$$V^* \equiv \operatorname{Hom}(V, \mathbb{R}),$$

which consists of all linear maps $V \to \mathbb{R}$, known as covectors on V. If $A: V \to W$ is linear, then let A^* denote the linear map $W^* \to V^*$ defined by $w \mapsto (v \mapsto w(Av))$, called the dual map of A.

Let $\{v_1, \ldots, v_n\}$ be a basis for V. The *dual basis* (or *cobasis*) consists of those linear functionals $\varphi_i : V \to \mathbb{R}$ given by

$$\varphi_i(v_j) = \begin{cases} 1 & i = j \\ 0 & \text{otherwise} \end{cases}.$$

for each $i = 1, \ldots, n$.

Proposition 4.1.3.

(1) If $\dim(V) = n$, then $\dim(V^*) = n$.

4 VECTOR BUNDLES 25

Proof. Pick a basis b_1, \ldots, b_n for V. Consider its dual basis $\{b^1, \ldots, b^n\}$. It is easy to check that this is linearly independent. Further, for any $T \in V^*$, we see that

$$T = T_1 b^1 + \dots + T_n b^n$$
, $T_i \equiv T(b_i)$.

This means that the b^i span $\text{Hom}(V, \mathbb{R})$ as well.

Remark 4.1.4. The induced isomorphism $V \to V^*$ is not unique, for it depends on our chosen basis of V.

(2) The mapping $v \mapsto \underbrace{(\varphi \mapsto \varphi(v))}_{\text{ev.}}$ defines a canonical isomorphism

$$V \xrightarrow{\cong} (V^*)^* = \operatorname{Hom}(V^*, \mathbb{R}).$$

Definition 4.1.5. Let M^n be a smooth manifold.

- 1. Define the cotangent space at p as T_p^*M .
- 2. Define the cotangent bundle of M as $T^*M \equiv \coprod_n T_p^*M$.

Lemma 4.1.6. T^*M is a smooth n-vector bundle over M.

Proof. Let (U, φ) be a smooth chart on M. Define $\varphi : \pi^{-1}(U) \to U \times \mathbb{R}^n$ by $a_i \lambda^i \big|_p \mapsto (p, a_1, \dots, a_n)$ where $\left\{ \lambda^i \big|_p \right\}$ is a chosen dual basis for $T_p M$. Now we apply the vector bundle construction lemma. See Proposition 11.9 (*Lee*).

Let (U, x^i) be smooth coordinates for M^n . Then the map $\psi : a_i \lambda^i|_p \mapsto (x^1(p), \dots, x^n(p), a_1, \dots, a_n)$ makes $(\pi^{-1}(U), \psi)$ a chart on T^*M .

A smooth section of T^*M is called a *covector field* (or *(differential/smooth) 1-form)* on M. The vector space of such sections will be denoted by $\Gamma(T^*M)$.

Moreover, if U is a chart on M, then a tuple $(\epsilon^1, \ldots, \epsilon^k)$ of covector fields on M is a local coframe if $\{\epsilon^1|_p, \ldots, \epsilon^k|_p\}$ is a basis of T_p^*U for each $p \in U$.

Aside. Let $\pi: E \to M$ be a smooth vector bundle. The jet bundle $J^kE \to M$ of order k is the smooth vector bundle whose fiber at $p \in M$ consists of all order-k jets of smooth sections of π , i.e., equivalence classes of smooth sections of π where two sections are declared equivalent if their first k partial derivatives agree on a neighborhood of p. Note that a germ is precisely an order-1 jet.

We have a sequence of maps

$$\cdots J^3E \twoheadrightarrow J^2E \twoheadrightarrow J^1E \twoheadrightarrow E$$
,

whose limit is called the *infinite jet bundle* $J^{\infty}E$.

5 Differential forms

5.1 Lecture 15

Definition 5.1.1 (Differential of a smooth function). Define $C^{\infty}(M) \to \Gamma(T^*M)$ by $f \mapsto (p \mapsto df_p)$ where

$$df_p(v) \equiv vf$$

for every $v \in T_pM$. We call df the differential of f.

Let (U, x^i) be local coordinates for M. Let (dx^i) denote the corresponding coordinate coframe. We have $df_p = A_i(p)dx^i|_p$ for some functions $A_i: U \to \mathbb{R}$. Then

$$A_{i}(p) = df_{p} \left(\frac{\partial}{\partial x^{i}} \Big|_{p} \right) = \frac{\partial f}{\partial x^{i}}(p)$$

$$\downarrow \downarrow$$

$$df_{p} = \frac{\partial f}{\partial x^{i}}(p) dx^{i} \Big|_{p}.$$

In this way, the differential of f generalizes the gradient of a smooth function on \mathbb{R}^n .

Proposition 5.1.2. If M is connected, then f is constant if and only if df = 0.

Proof. Since vf=0 for any derivation v and constant function f, the forward direction is clear. Conversely, suppose that df=0 and let $p\in M$. Set $C=\{q\in M: f(q)=f(p)\}$. We must show that C=M. Provided that M is connected, it suffices to show that C is clopen. For any $q\in C$, choose a coordinate ball $U\ni p$. Then since $0=df=\frac{\partial f}{\partial x^i}dx^i$, it follows that $\frac{\partial f}{\partial x^i}=0$ for each i. Elementary calculus reveals that f must be constant on U. Hence C is open. Since $C=f^{-1}(p)$, it is also closed.

Note 5.1.3 (Transition functions for changing coordinates). Let $p \in M$ and suppose that $(x^i)_{1 \le i \le n}$ and $(y^i)_{1 \le i \le n}$ are two coordinate charts around p. The chain rule for partial derivatives states that

$$\frac{\partial}{\partial x^j}\Big|_p = \sum_k \frac{\partial y^k}{\partial x^j}(\hat{p}) \frac{\partial}{\partial y^k}\Big|_p$$

where $\hat{p} := (x^1(p), \dots, x^n(p))$. Dually, for each $i \in \{1, \dots, n\}$, we have that

$$dx^i\big|_p = \sum_{\ell} A^i_{\ell} dy^{\ell}\big|_p$$

for some $A_{\ell}^{i} \in \mathbb{R}$, $l = 1, \dots, n$. It follows that

$$\begin{split} \delta_i^j &= dx^i \big|_p \left(\frac{\partial}{\partial x^j} \big|_p \right) \\ &= dx^i \big|_p \left(\sum_k \frac{\partial y^k}{\partial x^j} \frac{\partial}{\partial y^k} \big|_p \right) \\ &= \sum_k \frac{\partial y^k}{\partial x^j} dx^i \big|_p \left(\frac{\partial}{\partial y^k} \big|_p \right) \\ &= \sum_k \frac{\partial y^k}{\partial x^j} \sum_\ell A_\ell^i dy^\ell \big|_p \left(\frac{\partial}{\partial y^k} \big|_p \right) \\ &= \sum_k \frac{\partial y^k}{\partial x^j} \sum_\ell A_\ell^i \delta_\ell^k \\ &= \sum_k A_k^i \frac{\partial y^k}{\partial x^j}. \end{split}$$

Therefore, if A denotes the $n \times n$ matrix (A_{ℓ}^i) and J denotes the Jacobian of (y^1, \dots, y^n) at \hat{p} , then $I_n = JA$, i.e., $A = J^{-1}$.

Definition 5.1.4. Let $F: M \to N$ be smooth. Let $\omega \in \Gamma(T^*N)$. Define the *pullback* $F^*\omega$ of ω as the element of $\Gamma(T^*M)$ given by

$$F^*\omega|_p\left(X|_p\right) \equiv \omega|_{F(p)}\left(F_*|_pX_p\right).$$

Note that, unlike the pushforward, the pullback requires merely that F be smooth.

Lemma 5.1.5. Let $F: M \to N$ be smooth, $\alpha, \beta \in \Gamma(T^*N)$ and $f, g \in C^{\infty}(N)$. Then

$$F^*(f\alpha + q\beta) = (f \circ F)F^*\alpha + (q \circ F)F^*\beta.$$

Proof. Let $X \in \mathcal{X}(M)$. We have that

$$\begin{split} F^*(f\alpha+g\beta)\big|_p(X_p) &= (f\alpha+g\beta)\big|_{F(p)} \left(F_*\big|_p X_p\right) \\ &= f\left(F(p)\right) \alpha_{F(p)} \left(F_*\big|_p X_p\right) + g\left(F(p)\right) \beta_{F(p)} \left(F_*\big|_p X_p\right) \\ &= \left[(f\circ F)F^*\alpha\right]_p (X_p) + \left[(g\circ F)F^*\beta\right]_p (X_p). \end{split}$$

Let $\gamma: J \subset \mathbb{R} \to M$ be a smooth curve in M. Note that $\Gamma(T^*\mathbb{R}) = \{f(t)dt \mid f: T \to \mathbb{R}\}$. Then

$$\omega \in \Gamma(T^*M) \implies \gamma^*\omega \in \Gamma(T^*\mathbb{R}) \implies \gamma^*\omega = f(t)dt$$

for some curve f along J. This enables us to modestly generalize our notion of integration.

Definition 5.1.6. The integral of ω along γ is

$$\int_{\gamma} \omega \equiv \int_{I} \gamma^* \omega.$$

Proposition 5.1.7. Suppose that φ is a positive reparameterization of γ (i.e., one with positive derivative) . Then $\int_{\gamma} \omega = \int_{\gamma \circ \varphi} \omega$.

Definition 5.1.8. A differential 1-form ω on a smooth manifold M is closed if the equation

$$\frac{\partial \omega_i}{\partial x^j} - \frac{\partial \omega_j}{\partial x^i} = 0$$

holds for any i, j in any chart on M.

Exercise 5.1.9. Show that being closed is a well-defined property.

Example 5.1.10. By Clairaut's theorem, df is closed for any $f \in C^{\infty}(M)$.

5.2 Lecture 16

Recall that a map $T: V_1 \times \cdots \times V_k \to W$ of vector spaces is multilinear if it is linear in each argument, i.e.,

$$T(v_1, ..., ax + by, ..., v_k) = aT(v_1, ..., x, ..., v_k) + bT(v_1, ..., y, ..., v_k)$$

for any $a, b \in \mathbb{R}$.

Theorem 5.2.1 (Universal property of the tensor product). Let V_1, \ldots, V_k be vector spaces. There exists a vector space $V_1 \otimes \cdots \otimes V_k$ together with a map $: \otimes : V_1 \times \cdots \times V_k$ so that for any multilinear map $T: V_1 \times \cdots \times V_k \to W$, there is some unique linear map $\widetilde{T}: V \otimes \cdots \otimes V_k \to W$ such that

$$V_1 \times \cdots \times V_k \xrightarrow{T} W$$

$$\otimes \downarrow \qquad \qquad \widetilde{T}$$

$$V_1 \otimes \cdots \otimes V_k$$

commutes.

Terminology. $V_1 \otimes \cdots \otimes V_k$ is called the tensor product of the V_i .

Proof. Let us just prove this when k=2, for then we're done by induction. Let $\mathbb{R} \langle V_1 \times V_2 \rangle$ denote the free vector space on $V_1 \times V_2$, which consists of all finite formal linear combinations of $V_1 \times V_2$. Let

$$G = \langle (av_1, v_2) - a(v_1, v_2), (v_1, av_2) - a(v_1, v_2), (v_1 + w_1, v_2) - (v_1, v_2) - (w_1, v_2), (v_1, w_2 + v_2) - (v_1, w_2) - (v_1, v_2) \rangle.$$

Given a multilinear map $T: V_1 \times V_2 \to W$, define $\widetilde{T}: \mathbb{R} \langle V_1 \times V_2 \rangle \to W$ by

$$\sum a_{(v_1,v_2)}(v_1,v_2) \mapsto \sum a_{(v_1,v_2)}T(v_1,v_2).$$

Since T is multilinear, $G \subset \ker \widetilde{T}$. Therefore, the vector space $V_1 \otimes V_2 := \mathbb{R} \langle V_1 \times V_2 \rangle_{G}$ fits in a commutative triangle

$$\mathbb{R} \langle V_1 \times V_2 \rangle \xrightarrow{\tilde{T}} W$$

$$\downarrow \qquad \qquad \tilde{T}$$

$$V_1 \otimes V_2 \qquad .$$

⁴Proposition 11.31 (Lee).

Thus, if $i: V_1 \times V_2 \to \mathbb{R} \langle V_1 \times V_2 \rangle$ denotes inclusion, then $\widetilde{T} \circ \pi \circ i = \widetilde{T} \circ i$, which induces our desired diagram. We see that \widetilde{T} is unique because it is uniquely determined by elements of the form

$$v_1 \otimes v_2 \coloneqq [(v_1, v_2)]$$

under T and every element of $V_1 \otimes V_2$ can be written as some linear combination of such elements.

A basic property of the tensor product is that its generic elements are bilinear in the following sense.

Proposition 5.2.2. If $a, b \in \mathbb{R}$, then $(av_1 + bw_1) \otimes v_2 = a(v_1 \otimes v_2) + b(w_1 \otimes v_2)$.

Proposition 5.2.3.

- 1. (Vect_{\mathbb{R}}, \oplus , \otimes) is a semiring.
- 2. $V \otimes W \cong W \otimes V$.
- 3. $V \otimes \mathbb{R} \cong V$.
- 4. $(V \otimes W)^* \cong V^* \otimes W^*$.

Let B(V, W) denote the space of bilinear maps $V \times W \to \mathbb{R}$.

Lemma 5.2.4. There is a canonical isomorphism $V^* \otimes W^* \cong B(V, W)$.

Proof. Define $\Phi: V^* \times W^* \to B(V, W)$ by $(\omega, \eta) \mapsto ((v, w) \mapsto \omega(v)\eta(w))$. This is linear and hence induces a commutative diagram

$$\begin{array}{ccc} V^* \times W^* & \stackrel{\Phi}{\longrightarrow} B(V,W) \\ \downarrow & & \downarrow & \\ V^* \otimes W^* & & \end{array}.$$

To see that $\tilde{\Phi}$ is an isomorphism, pick bases $\{f_1, \ldots, f_n\}$ and $\{g_1, \ldots, g_n\}$ for V and W, respectively. Consider their respective dual bases $\{\xi\}$ and $\{\eta\}$. Then $\{\xi^i \otimes \eta^j : 1 \leq i, j \leq n\}$ is a basis for $V^* \otimes W^*$. Define the linear map $\Psi : B(V, W) \to V^* \otimes W^*$ by

$$b \mapsto \sum_{i,j} b(f_i, g_j) \xi^i \otimes \eta^j.$$

It is straightforward to check that Ψ is the inverse of $\tilde{\Phi}$.

We can generalize Theorem 7.2.3 to obtain an isomorphism

$$V_1^* \otimes \cdots \otimes V_k^* \cong L(V_1, \ldots, V_k; \mathbb{R}).$$

Definition 5.2.5 (Tensor type). We say that an element of

$$V_{\ell}^{k} := \underbrace{V^{*} \otimes \cdots \otimes V^{*}}_{k \text{ copies}} \otimes \underbrace{V \otimes \cdots \otimes V}_{\ell \text{ copies}}$$

is a (k, ℓ) -tensor.

Terminology.

- 1. A (k, 0)-tensor is called *covariant*.
- 2. A $(0, \ell)$ -tensor is called *contravariant*.

Let M be a smooth manifold. Define the (k, ℓ) -tensor bundle as

$$T_{\ell}^{k}M \equiv \coprod_{p \in M} (T_{p})_{\ell}^{k} M.$$

In particular, $T^1M = T^*M$, and $T_1M = TM$.

Exercise 5.2.6. Find the dimension of $T_{\ell}^{k}M$.

Let us examine the form of a generic (k,0)-tensor. Suppose that (x^i) and (y^i) are two local coordinate systems around a point $p \in M$. Then

$$dx^{i_1} \otimes dx^{i_2} \otimes \cdots \otimes dx^{i_k} = \left(\frac{\partial x^{i_1}}{\partial y^{\ell_1}} dy^{p_1}\right) \otimes \cdots \otimes \left(\frac{\partial x^{i_k}}{\partial y^{\ell_k}} dy^{p_k}\right)$$
$$= \sum_{p_1, \dots, p_k} \frac{\partial x^{i_1}}{\partial y^{\ell_1}} \cdots \frac{\partial x^{i_k}}{\partial y^{\ell_k}} \otimes dy^{p_1} \otimes \cdots \otimes dy^{p_k}.$$

Definition 5.2.7. A (k, ℓ) -tensor field is a (smooth) section of $T_{\ell}^k M$.

Let $\mathcal{T}_{\ell}^k(M)$ denote the space $\Gamma(T_{\ell}^kM)$ of all such sections.

5.3 Lecture 17

Let (U, x^i) be local coordinates for M. Then any $A \in \mathcal{T}_k^{\ell}(M)$ can be written in U as

$$A\big|_p = A^{j_1 \dots j_\ell}_{i_1 \dots i_k} dx^{i_1}\big|_p \otimes \dots \otimes dx^{i_k}\big|_p \otimes \frac{\partial}{\partial x^{j_1}}\big|_p \otimes \dots \otimes \frac{\partial}{\partial x^{j_\ell}}\big|_p,$$

summed over $n^k n^\ell$ many tensors.

Example 5.3.1. Let $\sigma = \delta^i_j dx^j \otimes \frac{\partial}{\partial x^i}$, $X = X^k \frac{\partial}{\partial x^k}$, and $w = w_\ell dx^\ell$. Then

$$\sigma(X, w) = \delta_j^i dx^j \otimes \frac{\partial}{\partial x^i} \left(X^k \frac{\partial}{\partial x^k}, w_\ell dx^\ell \right)$$

$$= \delta_j^i dx^j \left(X^k \frac{\partial}{\partial x^k} \right) \frac{\partial}{\partial x^i} w_\ell dx^\ell$$

$$= \delta_j^i \delta_k^j X^k w_\ell \delta_i^\ell$$

$$= w_k X^k$$

$$= w(X).$$

We say that σ is *invariant* in this case.

Example 5.3.2. Show that the tensor $\delta_i^j dx^i \otimes dx^j$ is *not* invariant.

Proposition 5.3.3.

1. Any $\sigma \in \mathcal{T}_{\ell}^k(M)$ induces a $C^{\infty}(M)$ -multilinear map

$$\hat{\sigma}: \underbrace{\mathscr{X}(M) \times \cdots \times \mathscr{X}(M)}_{k \text{ copies}} \times \underbrace{\mathscr{X}^*(M) \times \cdots \times \mathscr{X}^*(M)}_{\ell \text{ copies}} \longrightarrow C^{\infty}(M)
(X_1, \dots, X_k, w_1, \dots, w_{\ell}) \mapsto \left(p \mapsto \sigma\left(X_1\big|_p, \dots, X_k\big|_p, w_1\big|_p, \dots, w_{\ell}\big|_p\right)\right).$$
(*)

2. Any multilinear map over $C^{\infty}(M)$ is of the form (1) for some (k,ℓ) -tensor field.

Notice that the smooth function $\hat{\sigma}_p$ induced by σ of Example 5.3.1 is determined completely by the values $X_1(p), \ldots, X_k(p), w_1(p), \ldots, w_\ell(p)$.

Note 5.3.4. The Lie bracket is *not* multilinear over $C^{\infty}(M)$, for

$$[fX + gY, Z] = f[X, Y] + g[Y, Z] - Z(f)X - Z(g)Y.$$

Definition 5.3.5. A covariant k-tensor T is alternating if for any vectors Y, X_1, \ldots, X_{k-1} , it follows that

$$T(X_1, X_2, \dots, Y, \dots, Y, \dots, X_{k-1}) = 0.$$

In this case, T is also called an *exterior form*.

Example 5.3.6. If σ is a 0-tensor or a 1-tensor, then it is alternating.

Proposition 5.3.7. TFAE.

- 1. T is alternating.
- 2. $T(X_1, ..., X_k) = 0$ whenever $\{X_1, ..., X_k\}$ is linearly dependent.
- 3. $T(X_1, \ldots, X_i, X_{i+1}, \ldots, X_k) = -T(X_1, \ldots, X_{i+1}, X_i, \ldots, X_k)$.

Notation. The expression $\bigwedge^k(V)$ will denote the subspace of $T^k(V)$ consisting of alternating covariant k-tensors.

Definition 5.3.8. Given $T \in T^k(V)$, the alternation Alt(T) of T is the multilinear map defined by

$$(V_1, \dots, V_k) \mapsto \frac{1}{k!} \sum_{\sigma \in S_k} \operatorname{sgn}(\sigma) T(V_{\sigma(1)}, \dots, V_{\sigma(k)}).$$

Example 5.3.9.

- 1. Alt $(T)(X,Y) = \frac{1}{2}(T(X,Y) T(Y,X)).$
- 2. $Alt(T)(X,Y,Z) = \frac{1}{6}(T(X,Y,Z) + T(Y,Z,X) + T(Z,X,Y) T(Y,X,Z) T(Z,Y,X) T(X,Z,Y)).$

Example 5.3.10. Suppose that $\{w^1, \ldots, w^n\}$ is the cobasis of the standard basis $\{e_1, \ldots, e_n\}$ for the vector space V. Then

$$\operatorname{Alt}(w^{1} \otimes \cdots \otimes w^{n})(e_{1}, \dots, e_{n})$$

$$= \frac{1}{n!} \sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) w^{1} \otimes \cdots \otimes w^{n} \left(e_{\sigma(1)}, \dots, e_{\sigma(n)} \right)$$

$$= \frac{1}{n!} \operatorname{sgn} \left(\operatorname{id}_{n} \right) w^{1} \otimes \cdots \otimes w^{n} \left(e_{1}, \dots, e_{n} \right)$$

$$= \frac{1}{n!}.$$

Proposition 5.3.11.

- 1. Alt $(T) \in \bigwedge^k(V)$.
- 2. Alt $(T) = T \iff T \in \bigwedge^k(V)$.
- 3. The induced map $Alt: T^k(V) \to \bigwedge^k(V)$ is linear.

5.4 Lecture 18

Lemma 5.4.1. Let V be a vector space of dimension $k < \infty$. Let $\{w^1, \ldots, w^n\}$ be a cobasis for V. Let $k \le n$. Then

$$A := \left\{ \operatorname{Alt}(\omega^{i_1} \otimes \cdots \otimes \omega^{i_k}) : 1 \leq i_1 < \cdots < i_k \leq n \right\}$$

is a basis for $\bigwedge^k(V)$.

Proof. It's clear from Proposition 5.3.11 that A spans $\bigwedge^k(V)$. It remains to show that A is linearly independent.

Claim.

- (a) If the integers i_1, \ldots, i_k are not pairwise distinct, then $Alt(\omega^{i_1} \otimes \cdots \otimes \omega^{i_k}) = 0$.
- (b) $\operatorname{Alt}(\omega^{i_1} \otimes \cdots \otimes \omega^{i_j} \otimes \omega^{i_{j+1}} \otimes \cdots \otimes \omega^{i_k}) = -\operatorname{Alt}(\omega^{i_1} \otimes \cdots \otimes \omega^{i_{j+1}} \otimes \omega^{i_j} \otimes \cdots \otimes \omega^{i_k}).$

As a consequence, span $(A) = \text{span} \{ \text{Alt}(\omega^{i_1} \otimes \cdots \otimes \omega^{i_k}) : 1 \leq i_1 \leq \cdots \leq i_k \leq n \}.$

Exercise 5.4.2. Show that this implies that A is linearly independent.

Corollary 5.4.3. If $\dim(V) = n$, then $\dim\left(\bigwedge^k(V)\right) = \binom{n}{k} = \frac{n!}{k!(n-k)!}$.

Definition 5.4.4. Define the wedge product as the map

$$\wedge: \bigwedge^k(V) \times \bigwedge^\ell(V) \to \bigwedge^{k+\ell}(V) \qquad (w,q) \mapsto w \wedge q \equiv \frac{(k+\ell)!}{k!\ell!} \operatorname{Alt}(w \otimes q).$$

This is like the tensor product.

Example 5.4.5. With notation as in Example 5.3.10, we have that $\omega^1 \wedge \cdots \wedge \omega^n(e_1, \dots, e_n) = 1$.

Lemma 5.4.6. The set $\{\omega^{i_1} \wedge \cdots \wedge \omega^{i_k} : 1 \leq i_1 < \cdots < i_k \leq n\}$ is a basis for $\bigwedge^k(V)$.

Proof sketch. For each k-tuple (i_1, \ldots, i_k) , one can show that $\omega^{i_1} \wedge \cdots \wedge \omega^{i_k}$ and $Alt(\omega^{i_1} \otimes \cdots \otimes \omega^{i_k})$ differ precisely by a real factor. This is enough thanks to Lemma 5.4.1.

Consider the standard basis $B := \{e_1, \dots, e_n\}$ for V. Note that $\det_B \in \bigwedge^n(V)$ by Proposition 5.3.11. But $\bigwedge^n(V) = 1$, so that $\det_B = c(\omega^1 \wedge \dots \wedge \omega^n)$. But evaluating both sides at (e_1, \dots, e_n) yields the equation 1 = c(1) = c. Thus,

$$\det_{\mathcal{D}} = \omega^1 \wedge \cdots \wedge \omega^n.$$

Proposition 5.4.7. Suppose that ω , ω , η , and η' are exterior forms. The following are properties of the wedge product.

(1) (Bilinearity) If $a, a' \in \mathbb{R}$, then

$$(a\omega + a'\omega') \wedge \eta = a(\omega \wedge \eta) + a'(\omega' \wedge \eta)$$
$$\eta \wedge (a\omega + a'\omega') = a(\eta \wedge \omega) + a'(\eta \wedge \omega').$$

(2) (Associativity)

$$(\eta \wedge \omega) \wedge \omega' = \eta \wedge (\omega \wedge \omega').$$

(3) (Anticommutativity) If $\omega \in \bigwedge^k(V)$ and $\eta \in \bigwedge^\ell(V)$, then

$$\omega \wedge \eta = (-1)^{kl} \, \eta \wedge \omega.$$

Corollary 5.4.8. If ω is a 1-form, then $\omega \wedge \omega = 0$.

(4) If $\omega^1, \ldots, \omega^k \in \bigwedge^1(V)$, then

$$\omega^1 \wedge \cdots \wedge \omega^k(v_1, \dots, v_k) = \det(\omega^j(v_i)).$$

Definition 5.4.9. Let M^n be a smooth manifold. Define the alternating bundle of rank k as

$$\bigwedge^{k}(M) \equiv \coprod_{p \in M} \bigwedge^{k}(T_{p}M).$$

A smooth section of $\bigwedge^k(M)$ is called a *(differential) k-form.*

Let both $\Omega^k(M)$ and $\mathcal{A}^k(M)$ stand for the infinite-dimensional vector space of differential k-forms on the manifold M. We also have a graded associative algebra $(\Omega^*(M), \wedge)$ over \mathbb{R} .

In local coordinates we have a basis $\left\{\frac{\partial}{\partial x^i}\Big|_p\right\}_{1\leq i\leq n}$ for T_pM as well as a corresponding dual basis $\left\{dx^i\right\}$. Then for any $\omega\in\bigwedge^k(M)$, we can write

$$\omega = \sum_{1 \le i_1 < \dots < i_k \le n} \omega_{i_1, \dots, i_k} dx^{i_1} \wedge \dots \wedge dx^{i_k}$$
(1)

locally at p. Let $I = \{i_1 < \dots < i_k\}$. Since

$$dx^{i_1} \wedge \dots \wedge dx^{i_\ell} \left(\frac{\partial}{\partial x^{j_1}}, \dots, \frac{\partial}{\partial x^{j_k}} \right) = \delta^I_J$$

where $\delta_J^I = 1$ if and only if I = J as sets, it follows that

$$\omega_{i_1,\dots,i_k} = \omega\left(\frac{\partial}{\partial x^{i_1}},\dots,\frac{\partial}{\partial x^{i_k}}\right).$$
 (2)

We abbreviate (1) by writing

$$\omega = \omega_I dx^I,$$

where we tacitly sum over the I. In this case, for any other ordered set of indices $J := \{j_1 < \cdots < j_k\}$, we have

$$\omega\left(\frac{\partial}{\partial x^{j_1}}, \dots, \frac{\partial}{\partial x^{j_k}}\right) = \omega_I dx^I \left(\frac{\partial}{\partial x^{j_1}}, \dots, \frac{\partial}{\partial x^{j_k}}\right) = \omega_I \delta_J^I.$$

Note 5.4.10. Let $w = w_I dx^I$ and $w = \tilde{w}_J d\tilde{x}^J$ be two coordinate representations of w. Observe that

$$\tilde{\omega}_{J} = \omega \left(\frac{\partial}{\partial \tilde{x}^{j_{1}}}, \dots, \frac{\partial}{\partial \tilde{x}^{j_{k}}} \right) \tag{(2)}$$

$$= \omega \left(\sum_{t} \frac{\partial x^{i_{t}}}{\partial \tilde{x}^{j_{1}}} \frac{\partial}{\partial x^{i_{t}}}, \dots, \sum_{t} \frac{\partial x^{i_{t}}}{\partial \tilde{x}^{j_{k}}} \frac{\partial}{\partial x^{i_{t}}} \right) \tag{chain rule}$$

$$= \sum_{\sigma \in S_{k}} \operatorname{sgn}(\sigma) \frac{\partial x^{i_{1}}}{\partial \tilde{x}^{j_{1}}} \dots \frac{\partial x^{i_{k}}}{\partial \tilde{x}^{j_{k}}} \omega \left(\frac{\partial}{\partial \tilde{x}^{\sigma(i_{1})}}, \dots, \frac{\partial}{\partial \tilde{x}^{\sigma(i_{k})}} \right) \tag{multilinearity of } \omega$$

$$= \det \left(k \times k \text{ minor of } \frac{\partial x}{\partial \tilde{x}} \text{ relative to } i_{1}, \dots, i_{k} \text{ and } j_{1}, \dots, j_{k} \right). \tag{Proposition 5.4.7(4)}$$

5.5 Lecture 19

The following notion generalizes Definition 5.1.4 to differential forms of arbitrary degree.

Definition 5.5.1 (Pullback). Let $F: M \to N$ be smooth and $\omega \in \bigwedge^k(N)$. The pullback $F^*\omega$ of ω by F is the differential k-form on M given pointwise by

$$F^*\omega\big|_p(v_1,\ldots,v_k)=\omega_{F(p)}\left(dF_p(v_1),\ldots,dF_p(v_k)\right).$$

Note that $F^*(-)$ is a linear map $\Omega^k(N) \to \Omega^k(M)$ over \mathbb{R} .

Lemma 5.5.2 (Naturality of the pullback). $F^*(\omega \wedge \eta) = F^*(\omega) \wedge F^*(\eta)$

Proof. This is easily seen from Definition 5.5.1 together with Definition 5.4.4.

Lemma 5.5.3. In any local coordinates, we have that

$$F^*\left(\sum_I \omega_I dy^{i_1} \wedge \dots \wedge dy^{i_k}\right) = \sum_I \left(\omega_I \circ F\right) d\left(y^{i_1} \circ F\right) \wedge \dots \wedge d\left(y^{i_k} \circ F\right).$$

Proof. It is easy to check that $F^*\omega(X_1,\ldots,X_k)=\sum_I w_I\circ Fdy^I(F_*X_1,\ldots,F_*X_k)$. Hence it suffices to show that

$$d\left(y^{i_{1}}\circ F\right)\wedge\cdots\wedge d\left(y^{i_{k}}\circ F\right)\left(X_{1},\ldots,X_{k}\right)=dy^{I}\left(F_{*}X_{1},\ldots,F_{*}X_{k}\right).$$

For this, it suffices to show that $d(y^i \circ F)(X) = dy^i(F_*X)$ for each $i \in \{i_1, \dots, i_k\}$. Let (x^i) denote local coordinates on M. On the one hand, thanks to Definition 5.1.1, we see that

$$d\left(y^{i}\circ F\right)\left(X\right)=X\left(y^{i}\circ F\right)=X^{j}\frac{\partial F^{i}}{\partial x^{j}}.$$

On the other hand, we see that

$$dy^{i}(F_{*}X) = dy^{i}\left(X^{j}\frac{\partial F^{r}}{\partial x^{j}}\frac{\partial}{\partial y^{r}}\right)$$
$$= X^{j}\frac{\partial F^{i}}{\partial x^{j}}.$$

Example 5.5.4. Consider the change of variables to polar coordinates $\mathbb{R}^2 \to \mathbb{R}^2$:

$$(r, \theta) \mapsto (r \cos \theta, r \sin \theta)$$
.

Locally, this is precisely the identity map with the domain endowed with one atlas and the codomain endowed with another. Lemma 5.5.3 together with certain computational properties of \land yields

$$dx \wedge dy = d(r\cos\theta) \wedge d(r\sin\theta)$$

$$= (\cos\theta dr - r\sin\theta d\theta) \wedge (\sin\theta dr + r\cos\theta d\theta)$$

$$= (\cos\theta dr - r\sin\theta d\theta) \wedge \sin\theta dr + (\cos\theta dr - r\sin\theta d\theta) \wedge r\cos\theta d\theta$$

$$= (\cos\theta dr \wedge \sin\theta dr) - (r\sin\theta d\theta \wedge \sin\theta dr) + (\cos\theta dr \wedge r\cos\theta d\theta) - (r\sin\theta d\theta \wedge r\cos\theta d\theta)$$

$$= -(r\sin\theta d\theta \wedge \sin\theta dr) + (\cos\theta dr \wedge r\cos\theta d\theta)$$

$$= r\sin^2\theta (dr \wedge d\theta) + r\cos^2\theta (dr \wedge d\theta)$$

$$= rdr \wedge d\theta.$$

Now, let us begin defining a differential operator on smooth forms that generalizes Definition 5.1.1. Let ω be a 1-form on a smooth manifold M. For this to arise as the differential of a smooth function df, each component function ω_i must have the form $\frac{\partial f}{\partial x^i}$. By Clairaut's theorem, this means that ω is closed in the sense of Definition 5.1.8, i.e.,

$$\frac{\partial \omega_i}{\partial x^j} - \frac{\partial \omega_j}{\partial x^i} = 0 \tag{*}$$

in any chart on M. This is property is actually coordinate-independent by Lee (Proposition 11.45). Therefore, we want to express (*) as the ij-component of a 2-form, namely

$$d\omega \equiv \sum_{j < i} \left(\frac{\partial \omega_i}{\partial x^j} - \frac{\partial \omega_j}{\partial x^i} \right) dx^j \wedge dx^i.$$

Notice that ω is closed if and only if $d\omega = 0$ in any chart on M.

5.6 Lecture 20

Let $\omega \in \mathcal{A}^k(M)$ with local coordinate representation $\omega_I dx^I$. The exterior derivative of ω is the (k+1)-form

$$d\omega \equiv d\omega_I \wedge dx^I$$
.

We refer to the operation $d: \mathcal{A}^k(M) \to \mathcal{A}^{k+1}(M)$ as exterior differentiation.

Note 5.6.1.
$$d\omega = \sum_{I} \sum_{j} \frac{\partial}{\partial x^{j}} \omega_{I} dx^{j} \wedge dx^{I}$$
.

Aside. If we view $\Omega^k : \mathbf{Diff}^{\mathrm{op}} \to \mathbf{Vec}_{\mathbb{R}}$ as the functor sending each smooth map f to the pullback f^* , then the exterior derivative becomes a natural transformation $\Omega^k \Rightarrow \Omega^{k+1}$.

Definition 5.6.2. Let $\omega \in \mathcal{A}^k(M)$.

- 1. We say that ω is closed if $d\omega = 0$.
- 2. We say that ω is exact if $\omega = d\eta$ for some $\eta \in \mathcal{A}^{k-1}(M)$.

Lemma 5.6.3. Suppose that $M = \mathbb{R}^n$, equivalently, that M has a global chart.

- (1) d is linear over \mathbb{R} .
- (2) $d(F^*\omega) = F^*(d\omega)$.
- (3) $d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^k \omega \wedge d\eta$.
- (4) $d \circ d = 0$.

Proof. Statement (1) is obvious. For (2), by linearity, it suffices to consider the case where $\omega = udx^I$. Using Lemma 5.5.3, we compute

$$F^* \left(d \left(u dx^{i_1} \wedge \dots \wedge dx^{i_k} \right) \right) = F^* \left(du \wedge dx^{i_1} \wedge \dots \wedge dx^{i_k} \right)$$
$$= d(u \circ F) \wedge d \left(x^{i_1} \circ F \right) \wedge \dots \wedge d \left(x^{i_k} \circ F \right)$$

$$d\left(F^*\left(udx^{i_1}\wedge\cdots\wedge dx^{i_k}\right)\right) = d\left((u\circ F)d\left(x^{i_1}\circ F\right)\wedge\cdots\wedge d\left(x^{i_k}\circ F\right)\right)$$
$$= d(u\circ F)\wedge d\left(x^{i_1}\circ F\right)\wedge\cdots\wedge d\left(x^{i_k}\circ F\right)$$

For (3), let $\eta = vdx^J$. Again, by linearity, it suffices to compute $d(udx^I \wedge vdx^J)$.

$$d(udx^{I} \wedge vdx^{J}) = d(uvdx^{I} \wedge dx^{J})$$

$$= (vdu + udv) \wedge dx^{I} \wedge dx^{J}$$

$$= (du \wedge dx^{I}) \wedge (vdx^{J}) \wedge (dv \wedge udx^{I}) \wedge dx^{J}$$

$$= (du \wedge dx^{I}) \wedge (vdx^{J}) \wedge (-1)^{k} (udx^{I}) \wedge (dv \wedge dx^{J})$$

$$= d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^{k} \omega \wedge d\eta.$$

To prove (4), first observe that so long as k=1 and $\omega=\omega_i dx^j$, we have that

$$d\omega = \sum_{i,j} \frac{\partial \omega_j}{\partial x^i} dx^i \wedge dx^j$$

$$= \sum_{i < j} \frac{\partial \omega_j}{\partial x^i} dx^i \wedge dx^j + \sum_{i > j} \frac{\partial \omega_j}{\partial x^i} dx^i \wedge dx^j$$

$$= \sum_{i < j} \left(\frac{\partial \omega_j}{\partial x^i} - \frac{\partial \omega_i}{\partial x^j} \right) dx^i \wedge dx^j.$$

This together with Clairaut's theorem implies that

$$d(du) = \frac{\partial^2 u}{\partial x^i \partial x^j} dx^i \wedge dx^j = \sum_{i < j} \left(\frac{\partial^2 u}{\partial x^i \partial x^j} - \frac{\partial^2 u}{\partial x^j \partial x^i} \right) dx^i \wedge dx^j = 0.$$

Now, drop the assumption that k = 1. Then expanding $d(d\omega)$ yields a sum of two summations of wedge products. One of which contains the term $d(d\omega_J)$, and the other contains the term $d(dx^{j_i})$. These both equal zero, and thus the entire expression $d(d\omega)$ vanishes.

Corollary 5.6.4 (Naturality of the exterior derivative). If F is a smooth map, then

$$d(F^*\omega) = F^*(d\omega).$$

Corollary 5.6.5. The exterior derivative is well-defined.

Proof. Let (U,φ) be a chart on M. Notice that

$$d\omega = \varphi^* d\left(\varphi^{-1}{}^*\omega\right)$$

on U. Let (V, ψ) be another chart. Then

$$(\varphi \circ \psi^{-1})^* d(\varphi^{-1})^* \omega = d((\varphi \circ \psi^{-1})^* \varphi^{-1})^* \omega.$$

Since $(\varphi \circ \psi^{-1})^* = \psi^{-1}^* \circ \varphi^*$ and $F^* \circ F^{-1}^* = \text{id}$ for any diffeomorphism F, it follows that

$$\psi^{-1*} \circ \varphi^* d \left(\varphi^{-1*} \omega \right) = d \left(\psi^{-1*} \omega \right).$$

$$\downarrow \qquad \qquad \qquad \qquad \downarrow$$

$$\varphi^* d \left(\varphi^{-1*} \omega \right) = \psi^* d \left(\psi^{-1*} \omega \right).$$

Corollary 5.6.6. Any exact form is closed.

It is not the case, however, that any closed form is exact. Let $M = \mathbb{R}^2 \setminus \{0\}$. Define the 1-form $\omega: M \to T^*M$ by

$$(x,y)\mapsto \frac{xdy-ydx}{x^2+y^2}.$$

On the one hand, a straightforward computation shows that $d\omega = 0$. On the other hand, recall from basic calculus that ω is exact on a connected open subset $\omega \subset M$ if and only if $\int_c \omega = 0$ for any closed curve $c \subset \omega$. But if $\gamma : [0, 2\pi] \to M$ is given by $(\cos \theta, \sin \theta)$, then

$$\int_{\gamma} \omega = \int_{0}^{2\pi} d\theta = 2\pi \neq 0,\tag{\dagger}$$

which means that ω is not exact.

Theorem 5.6.7 (Unique differentiation). The exterior derivative is the unique linear map $\bar{d}: \mathcal{A}^k(M) \to \mathcal{A}^{k+1}$ such that

- (i) $\bar{d}(\omega \wedge \eta) = \bar{d}\omega \wedge \eta + (-1)^k \omega \wedge \bar{d}\eta$,
- (ii) $\bar{d}f(X) = Xf$ for any $f \in C^{\infty}(M)$, and
- (iii) $\bar{d} \circ \bar{d} = 0$.

For example, consider the linear map $\bar{d}: \mathcal{A}^k(M) \to \mathcal{A}^{k+1}(M)$ given by

$$\bar{d}\omega(X_1,\dots,X_{k+1}) = \sum_{i=1}^{n+1} (-1)^{k+1} X_i \left(w \left(X_1,\dots, \widehat{X}_i,\dots, X_{k+1} \right) \right) - \sum_{i,j} (-1)^{i+j} w \left(\left[X_i, X_j \right], X_1,\dots, \widehat{X}_i,\dots, \widehat{X}_j,\dots, X_{k+1} \right).$$

This satisfies conditions (i), (ii), and (iii) of Theorem 5.6.7, and thus $\bar{d} = d$.

To conclude this lecture, let's look at a particular dual operation to exterior differentiation, which will be useful for our discussion of orientation.

Let V be a finite-dimensional vector space. For each vector $v \in V$, define interior multiplication by v as the linear map $i_v : \bigwedge^k(V) \to \bigwedge^{k-1}(V)$ given by

$$i_v \omega(w_1, \dots, w_{k-1}) = \omega(v, w_1, \dots, w_{k-1}).$$

Let $v \perp \omega := i_v \omega$.

Extend interior multiplication as follows. For each $X \in \mathcal{X}(M)$ and $\omega \in \mathcal{A}^k(M)$, define the (k-1)-form $X \perp \omega$ by $p \mapsto X_p \perp \omega_p$.

5.7 Lecture 21

Definition 5.7.1. Let V be a finite-dimensional vector space. Suppose that E and E' are two bases for V. We say that E and E' are co-oriented if the change-of-basis matrix from E to E' has positive determinant.

This notion provides us with exactly two equivalence classes of bases for V, which we call the *orientations* for V. If $[E_1, \ldots, E_n]$ is a chosen orientation for V, then we call any basis in it (positively) oriented and any basis not in it negatively oriented.

Definition 5.7.2 (Orientation). An orientation on a smooth manifold M is a continuous choice of orientation for T_pM as p varies over M.

Equivalently, if $\{(U_{\alpha}, \varphi_{\alpha})\}_{\alpha \in A}$ denotes the smooth structure on M, we say that M is orientable if the Jacobian $D\left[\varphi_{\beta} \circ \varphi_{\alpha}^{-1}\right]$ has positive determinant on $\varphi_{\alpha}(U_{\alpha} \cap U_{\beta})$ for any $\alpha, \beta \in A$.

Example 5.7.3. \mathbb{S}^n is orientable for any $n \geq 1$. For each $p \in \mathbb{S}^n$, say that (v_1, \ldots, v_n) is positively oriented on $T_p\mathbb{S}^n$ if (p, v_1, \ldots, v_n) is positively oriented on \mathbb{R}^{n+1} , i.e., is co-oriented with the standard basis for \mathbb{R}^{n+1} .

Lemma 5.7.4. Let $\pi: E \to M$ be a smooth vector bundle and $V \subset E$ be open. If V_p is a convex subspace of E_p for every $p \in M$, then there is some $\sigma \in \Gamma(E)$ such that $\sigma_p \in V_p$ for every p.

Proof. Find a cover of E by local trivializations U_{α} over M along with smooth sections σ_{α} of them. There is some partition of unity ψ_{α} subordinate to (U_{α}) . Define $\sigma: M \to E$ as $\sum_{\alpha} \psi_{\alpha} \sigma_{\alpha}$, so that $\sigma \in \Gamma(E)$. Then σ_p belongs to V_p by convexity.

Proposition 5.7.5. Suppose that M is a smooth n-manifold. Any nowhere vanishing n-form on M gives rise to a unique orientation on M.

Conversely, any orientation on M gives rise to a nowhere vanishing n-form on M.

Proof.

 (\Longrightarrow)

Let $\omega \in \mathcal{A}^n(M)$ be nowhere vanishing. For each $p \in M$, we see that ω_p defines an orientation O_M^p on M by declaring that $[e_1, \ldots, e_n] \in O_M^p$ if and only if $\omega_p(e_1, \ldots, e_n) > 0$. It remains to show that if $p \in M$, then we can find some chart U_p around p and some local frame $(E_1, \ldots, E_n)_p$ on U_p such that $\omega_q(E_1|_{\sigma}, \ldots, E_n|_{\sigma}) > 0$

for every $q \in U_p$. To see this, pick any U_p and local frame $(E_1, \ldots, E_n)_p$ on U_p . Write $\omega = f dE^1 \wedge \cdots \wedge dE^n$ locally for some smooth function $f: U_p \to \mathbb{R}$. Since ω is nowhere vanishing, it follows that

$$\omega(E_1,\ldots,E_n)=f\neq 0.$$

Since f is continuous and M connected, we see that f > 0 or f < 0. We may assume that f > 0 for otherwise we can choose $(-E_1, \ldots, -E_n)_p$ instead.

$$(\longleftarrow)$$

Given $p \in M$ and an orientation O_M^p on T_pM , say that $w \in \bigwedge^n(T_pM)$ is positively oriented if and only if $w(e_1, \ldots, e_n) > 0$ for any $[e_1, \ldots, e_n] \in O_M^p$. Then the subspace $\bigwedge_{+}^n(T_pM)$ is open and convex. By Lemma 5.7.4, we are done.

Definition 5.7.6. A diffeomorphism $F: M \to N$ between two oriented manifolds is *orientation-preserving* if the isomorphism dF_p maps positively oriented bases for T_pM to positively oriented bases for $T_{F(p)}N$ for each $p \in M$. It is *orientation-reversing* if it maps positively oriented bases to negatively oriented ones.

We see that

F is orientation-preserving $\iff \det(dF_p) > 0$ for each $p \in M$ $\iff F^*\omega$ is positively oriented for any positively oriented form ω .

Lemma 5.7.7. The antipodal map $\alpha: \mathbb{S}^n \to \mathbb{S}^n$ is orientation-preserving if and only if n is odd.

Proof. Consider the commutative diagram

$$\mathbb{S}^{n} \xrightarrow{\alpha} \mathbb{S}^{n}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{R}^{n+1} \xrightarrow{\hat{\alpha}} \mathbb{R}^{n+1}$$

where $\hat{\alpha}(\vec{x}) \equiv -\vec{x}$. Note that the Jacobian of $\hat{\alpha}$ is precisely the identity matrix I_{n+1} . Since $\det(I_{n+1}) = (-1)^{n+1}$, we see that $\hat{\alpha}$ is orientation-preserving if and only if n is odd. Thus, the restriction α of $\hat{\alpha}$ to \mathbb{S}^n has the same property.

Corollary 5.7.8. \mathbb{RP}^n is not orientable when n is even.

Proof. Let n be even. Suppose, toward a contradiction, that \mathbb{RP}^n admits an orientation. Apply Proposition 5.7.5 to obtain a nowhere vanishing n-form ω on \mathbb{RP}^n . If $\pi: \mathbb{S}^n \to \mathbb{RP}^n$ denotes the natural projection, then we also obtain the nowhere vanishing n-form $\pi^*\omega$ on \mathbb{S}^n . Applying Proposition 5.7.5 again shows that this determines the usual orientation on \mathbb{S}^n .

Note that $\pi \circ \alpha = \pi$, so that $\alpha^* \pi^* \mathbb{S}^n = \pi^* \mathbb{S}^n$. But this implies that α preserves the orientation of \mathbb{S}^n , contrary to Lemma 5.7.7.

The converse of Corollary 5.7.8 is also true, although we omit a proof of it.

Before moving to integration, we should look at a modest variant of our notion of manifold. Consider the intersection of \mathbb{R}^n with a half-plane

$$\mathbb{H}^n := \left\{ \left(x^1, \dots, x^n \right) \in \mathbb{R}^n : x^n \ge 0 \right\}.$$

Definition 5.7.9 (Manifold with boundary).

1. An *n*-dimensional manifold with boundary M is a second-countable Hausdorff space that is locally homeomorphic to either an open Euclidean ball or an open subset of \mathbb{H}^n .

- 2. Any point $p \in M$ is an interior point if it belongs to a chart homeomorphic to an open ball.
- 3. The point p is a boundary point if it belongs to a chart that sends p to a point in $\partial \mathbb{H}^n$.

Note that every point in M is either an interior or a boundary point, but not both.

Proposition 5.7.10. The set of boundary points ∂M is an (n-1)-dimensional embedded submanifold of M.

Moreover, ∂M inherits an orientation from M when M is oriented. This is called the *induced* or *Stokes orientation*. Indeed, we may construct a smooth outward-pointing vector field N along ∂M , which is nowhere tangent to ∂M . Therefore, if ω denotes the orientation form for M, then the form $i_{\partial M}^*(N \sqcup \omega)$ is an orientation form for ∂M .

Example 5.7.11. \mathbb{S}^n is orientable as the boundary of the closed unit ball.

6 Integration

6.1 Lecture 22

Definition 6.1.1. Let $A_0^k(\mathbb{R}^k)$ denote the space of k-forms with compact support. Let $\omega \in A_0^k(\mathbb{R}^k)$ and $\omega = f dx^1 \wedge \cdots \wedge dx^k$. Define

$$\int_{\mathbb{D}^k} \omega = \int_{\mathbb{D}^k} f(x^1, \dots, x^k) dx^1 \cdots dx^k.$$

Exercise 6.1.2. Given another coordinate representation $\omega = gy^1 \wedge \cdots \wedge y^k$ with $\det\left(\frac{\partial x}{\partial y}\right) > 0$, show that

$$\int_{\mathbb{R}^k} f(x^1, \dots, x^k) dx^1 \cdots dx^k = \int_{\mathbb{R}^k} g(x^1, \dots, x^k) dy^1 \cdots dy^k.$$

In other words, Definition 6.1.1 makes sense.

A singular k-cell on M^n is a smooth map $\sigma: [0,1]^k \to M$. Note that 0-cells are precisely points in M and 1-cells are precisely smooth curves in M. Let $\omega \in \mathcal{A}^k(M)$ and σ be a singular k-cell on M. Define

$$\int_{\sigma} \omega = \int_{[0,1]^k} \sigma^* \omega.$$

Proposition 6.1.3. Let $p:[0,1]^k \to [0,1]^k$ be a diffeomorphism.

- 1. If p is orientation-preserving, then $\int_{\sigma} \omega = \int_{\sigma \circ p} \omega$.
- 2. If p is orientation-reversing, then $\int_{\sigma} \omega = -\int_{\sigma \circ p} \omega$.

Definition 6.1.4.

1. A singular k-chain on M is a formal finite \mathbb{R} -combination $\sigma = \sum_{i=1}^{N} a_i \sigma_i$ of singular k-cells on M. Define

$$\int_{\sigma} \omega = \sum_{i=1}^{N} a_i \int_{\sigma_i} \omega.$$

2. Let σ be a singular k-cell on M. Let $i=1,\ldots,2k$ and $\alpha=0,1$. Define the (i,α) -face of σ as the smooth map $\sigma_{(i,\alpha)}$ given by

$$\sigma_{(i,\alpha)}(x^1,\ldots,x^k) = \sigma(x^1,\ldots,x^{i-1},\alpha,x^i,\ldots,x^k).$$

Moreover, define the boundary of σ as the (k-1)-chain

$$\partial \sigma \equiv \sum_{i=1}^{k} (-1)^{i+1} (\sigma_{(i,1)} - \sigma_{(i,0)}).$$

3. If $\sigma := \sum_{i=1}^{N} a_i \sigma_i$ is a singular k-chain, then define the boundary of σ as the (k-1)-chain

$$\partial \sigma \equiv \sum_{i=1}^{N} a_i \partial \sigma_i.$$

Note that $\int_{\partial \sigma} \omega = \sum_{i=1}^{N} a_i \int_{\partial \sigma_i} \omega$.

Definition 6.1.5. A singular k-chain σ is a closed if $\partial \sigma = 0$.

Exercise 6.1.6. Show that if σ is any singular k-chain, then $\partial \sigma$ is closed.

Theorem 6.1.7 (Stokes's theorem for chains). Let σ be a k-chain and $\omega \in \mathcal{A}^{k-1}(M)$. Then

$$\int_{\sigma} d\omega = \int_{\partial \sigma} \omega.$$

Proof. For now, assume that $M = \mathbb{R}^k$ and $\sigma = I^k$. As the smooth structure on \mathbb{R}^k is global, we may write $\omega = f dx^1 \wedge \cdots \wedge \widehat{dx^i} \wedge \cdots \wedge dx^k$ for some distinguished $1 \leq i \leq k$ and some smooth function $f : \mathbb{R}^k \to \mathbb{R}$. We compute

$$d\omega = df \wedge dx^{1} \wedge \dots \wedge \widehat{dx^{i}} \wedge \dots \wedge dx^{k}$$

$$= \left(\sum_{j=1}^{k} \frac{\partial f}{\partial x^{j}} dx^{j}\right) \wedge dx^{1} \wedge \dots \wedge \widehat{dx^{i}} \wedge \dots \wedge dx^{k}$$

$$= (-1)^{i-1} \frac{\partial f}{\partial x^{i}} dx^{1} \wedge \dots \wedge dx^{k}.$$

Now, apply Fubini's theorem together with the fundamental theorem of calculus (FTC) to obtain

$$\begin{split} \int_{\sigma} d\omega &= (-1)^{i-1} \int_{[0,1]^k} \frac{\partial f}{\partial x^i} dx^1 \wedge \dots \wedge dx^k \\ &= (-1)^{i-1} \int_0^1 \dots \int_0^1 \left(\int_0^1 \frac{\partial f}{\partial x^i} dx^i \right) dx^1 \dots \widehat{dx^i} \dots dx^k \\ &= (-1)^{i-1} \int_0^1 \dots \int_0^1 (f(x^1,\dots,\underbrace{1}_{i\text{-th position}},\dots,x^k) - f(x^1,\dots,\underbrace{0}_{i\text{-th position}},\dots,x^k)) dx^1 \dots \widehat{dx^i} \dots dx^k \\ &= (-1)^{i-1} \left(\int_{[0,1]^{k-1}} f(x^1,\dots,1,\dots,x^k) dx^1 \dots \widehat{dx^i} \dots dx^k - \int_{[0,1]^{k-1}} f(x^1,\dots,0,\dots,x^k) dx^1 \dots \widehat{dx^i} \dots dx^k \right) \\ &= (-1)^{i-1} \left(\int_{\sigma_{(i,1)}} \omega - \int_{\sigma_{(i,0)}} \omega \right). \end{split}$$

Moreover, we compute

$$\int_{\partial \sigma} \omega = \sum_{j=1}^{k} (-1)^{j-1} \left(\int_{\sigma_{(j,1)}} \omega - \int_{\sigma_{(j,0)}} \omega \right).$$

Since x^j is constant along the (j,α) -face for each $\alpha=0,1,$ it follows that $dx^j=0.$ Therefore,

$$\int_{\partial \sigma} \omega = (-1)^{i-1} \left(\int_{\sigma_{(i,1)}} \omega - \int_{\sigma_{(i,0)}} \omega \right) = \int_{\sigma} d\omega.$$

Finally, assume that M is arbitrary and σ is an arbitrary k-cell on M. By the special case just proved, we have that

$$\int_{\sigma} d\omega = \int_{[0,1]^k} \sigma^*(d\omega) = \int_{[0,1]^k} d(\sigma^*\omega) = \int_{\partial [0,1]^k} \sigma^*\omega = \int_{\partial \sigma} \omega.$$

This clearly remains true if σ is a k-chain on M.

The FTC occurs precisely when $\sigma = I^1$ and $\omega = f$. This shows that Theorem 6.1.7 is equivalent to the FTC.

6.2 Lecture 23

Let M be an orientable manifold. Let $\omega \in \mathcal{A}^n(M)$. Let σ_1 and σ_2 be singular n-cells on M that can be extended to diffeomorphisms on (open) neighborhoods of $[0,1]^n$. Suppose that both are orientation-preserving.

Lemma 6.2.1. If supp $\omega \subset \sigma_1([0,1]^n) \cap \sigma_2([0,1]^n)$, then $\int_{\sigma_1} \omega = \int_{\sigma_2} \omega$.

Proof. Since supp $\omega \subset \sigma_1([0,1]^n) \cap \sigma_2([0,1]^n)$, Proposition 6.1.3 implies that

$$\int_{\sigma_1} \omega = \int_{\sigma_2 \circ (\sigma_2^{-1} \circ \sigma_1)} \omega = \int_{\sigma_2} \omega.$$

Let $\omega \in \mathcal{A}^n(M)$. Let σ be an orientation-preserving singular n-cell on M. If supp $\omega \subset \sigma([0,1]^n)$, then Lemma 6.2.1 allows us to define

$$\int_{M} \omega = \int_{\sigma} \omega.$$

In general, there exists an open cover (U_{α}) of M such that $U_{\alpha} \subset \sigma_{\alpha}([0,1]^n)$ for each α where σ_{α} is some orientation-preserving singular n-cell on M. Find a partition of unity (φ_{α}) subordinate to this cover. Note that each $\varphi_{\alpha}\omega$ belongs to $\mathcal{A}^n(M)$ and is supported in U_{α} . If ω is compactly supported, then supp ω intersects at most finitely many supp φ_{α} . In this case, we define

$$\int_{M} \omega = \sum_{\alpha} \int_{M} \varphi_{\alpha} \omega,$$

which is finite. It remains to check that this definition makes sense.

Lemma 6.2.2. If $(V_{\beta}, \psi_{\beta})$ is another such partition of unity, then $\sum_{\beta} \int_{M} \psi_{\beta} \omega = \sum_{\alpha} \int_{M} \varphi_{\alpha} \omega$.

Proof.

$$\sum_{\alpha} \int_{M} \varphi_{\alpha} \omega = \sum_{\alpha} \int_{M} \varphi_{\alpha} \sum_{\beta} \psi_{\beta} \omega$$

$$= \sum_{\alpha} \sum_{\beta} \int_{M} \varphi_{\alpha} \psi_{\beta} \omega$$

$$= \sum_{\beta} \sum_{\alpha} \int_{M} \psi_{\beta} \varphi_{\alpha} \omega$$

$$= \sum_{\beta} \int_{M} \psi_{\beta} \sum_{\alpha} \varphi_{\alpha} \omega$$

$$= \sum_{\beta} \int_{M} \psi_{\beta} \omega.$$

Note 6.2.3. If ω is not assumed to be compact, then $\int_M \omega$ may be infinite but is still well-defined.

Theorem 6.2.4 (Stokes). Let M be an oriented compact n-manifold with boundary. If $\omega \in \mathcal{A}^{n-1}(M)$, then

$$\int_{M} d\omega = \int_{\partial M} \omega.$$

Proof. There are three cases to consider.

<u>Case 1:</u> Suppose that there is some orientation-preserving n-cell σ on M such that supp $\omega \subset \operatorname{Int}(\operatorname{im} \sigma)$ and $\operatorname{im} \sigma \cap \partial M = \emptyset$. By Theorem 6.1.7, it follows that

$$\int_{M} d\omega = \int_{\sigma} d\omega = \int_{\partial \sigma} \omega = 0 = \int_{\partial M} \omega.$$

<u>Case 2:</u> Suppose that there is some orientation-preserving n-cell σ on M such that $\operatorname{supp} \omega \subset \operatorname{im} \sigma$, $\operatorname{im} \sigma \cap \partial M = \sigma_{(n,0)}\left([0,1]^{n-1}\right)$, and $\operatorname{supp} \omega \cap \operatorname{im} \partial \sigma \subset \sigma_{(n,0)}$. By Theorem 6.1.7, it follows that

$$\int_{M} d\omega = \int_{\sigma} d\omega = \int_{\partial \sigma} \omega = (-1)^{n} \int_{\sigma_{(n,0)}} \omega.$$

Note that if μ denotes the usual orientation on \mathbb{H}^n , then the induced orientation on the boundary $\partial \mathbb{H}^n$ is equal to $(-1)^n \mu$. Therefore, $\sigma_{(n,0)} : [0,1]^{n-1} \to \partial M$ is orientation-preserving if and only if n is even. In either situation, we have that

$$(-1)^n \int_{\sigma_{(n,0)}} \omega = \int_{\partial M} \omega,$$

which completes our present case.

<u>Case 3:</u> In general, there exist an open cover (U_{α}) of M and a partition of unity (φ_{α}) subordinate to it such that each $\varphi_{\alpha}\omega$ is an (n-1)-form of the kind in Case 1 or Case 2. Since $\sum_{\alpha}\varphi_{\alpha}$ is constant, we see that

$$0 = d\left(\sum_{\alpha} \varphi_{\alpha}\right) = \sum_{\alpha} d\varphi_{\alpha}.$$

Hence $\sum_{\alpha} d\varphi_{\alpha} \wedge \omega = 0$, so that $\sum_{\alpha} \int_{M} d\varphi_{\alpha} \wedge \omega = 0$. From this we compute

$$\int_{M} d\omega = \int_{M} \sum_{\alpha} \varphi_{\alpha} d\omega$$

$$= \sum_{\alpha} \int_{M} \varphi_{\alpha} d\omega$$

$$= \sum_{\alpha} \int_{M} d\varphi_{\alpha} \wedge \omega + \varphi_{\alpha} d\omega$$

$$= \sum_{\alpha} \int_{M} d(\varphi_{\alpha} \omega)$$

$$= \sum_{\alpha} \int_{\partial M} \varphi_{\alpha} \omega$$

$$= \int_{\partial M} \omega.$$

7 De Rham cohomology

7.1 Lecture 24

Given a smooth manifold M^n and integer $k \geq 1$, consider the vector spaces

$$Z^{k}(M) := \left\{ \omega \in \mathcal{A}^{k}(M) : d\omega = 0 \right\}$$
$$B^{k}(M) := \left\{ d\eta : \eta \in \mathcal{A}^{k-1}(M) \right\}.$$

Since $B^k(M) \subset Z^k(M)$, we may form the quotient space

$$H^k_{\mathrm{dR}}(M) := Z^k(M)/B^k(M),$$

called the k-th de Rham cohomology group of M.

Remark 7.1.1. This is the same as the singular cohomology group over \mathbb{R} .

 $H_{\mathrm{dR}}^k(M)$ can be thought of as a quantitative measure of the number of submanifolds of M over which we can't integrate certain closed forms to find a potentials for them. In this sense, the failure of a closed form to be exact indicates holes in M.

Theorem 7.1.2. If M and N are continuously homotopy equivalent, then $H^k_{dR}(M) \cong H^k_{dR}(N)$ for each $k \geq 1$.

Recall that a space X is *contractible* if id_X is smoothly homotopic to the constant map at some point in X.

Lemma 7.1.3 (Poincaré). If M is contractible, then $H_{dR}^k(M) = 0$ for each $k \geq 1$.

Proof. For simplicity, assume that k = 1. For each $t \in [0,1]$, define $\iota_t : M \to M \times [0,1]$ by $p \mapsto (p,t)$.

Claim. If ω is any closed 1-form on $M \times [0,1]$, then $\iota_1^*\omega - \iota_0^*\omega$ is exact.

Proof. If $\pi_M: M \times [0,1] \to M$ denotes the projection and (U,x^i) denotes local coordinates on M, then $(\pi_M^{-1}(U),(\bar{x}^i,t))$ is a coordinate chart on $M \times [0,1]$ where $\bar{x}^i := x^i \circ \pi_M$. We thus have that $\omega = w_i d\bar{x}^i + f dt$. For each $\alpha \in \{0,1\}$, we see that

$$\iota_{\alpha}^* \omega = \iota_{\alpha}^* (w_i d\bar{x}^i + f dt) = w_i(-, \alpha) dx^i + 0.$$

Moreover,

$$0 = d\omega$$

$$= dw_i \wedge d\bar{x}^i + df \wedge dt$$

$$= (\text{terms not involving } dt)$$

$$+ \frac{\partial w_i}{\partial t} dt \wedge d\bar{x}^i + \frac{\partial f}{\partial \bar{x}^i} d\bar{x}^i \wedge dt.$$

This implies that $\frac{\partial w_i}{\partial t} = \frac{\partial f}{\partial \bar{x}^i}$ for each i. For each $p \in U$, we compute the sum

$$w_i(p,1) - w_i(p,0) = \int_0^1 \frac{\partial w_i}{\partial t}(p,t)dt = \int_0^1 \frac{\partial f}{\partial \bar{x}^i}(p,t)dt.$$

As a result,

$$\iota_1^*\omega - \iota_0^*\omega = \left(\int_0^1 \frac{\partial f}{\partial \bar{x}^i}(p,t)dt\right)dx^i.$$

Now, define $g: U \to \mathbb{R}$ by $\int_0^1 f(p,t)dt$, so that

$$\frac{\partial g}{\partial x^i} = \int_0^1 \frac{\partial f}{\partial \bar{x}^i}(p, t) dt.$$

It follows that $\iota_1^*\omega - \iota_0^*\omega = \frac{\partial g}{\partial x^i}dx^i = dg$. Since the pullback is coordinate-independent, g must be as well. This completes our proof.

By assumption, there is some smooth map $H: M \times [0,1] \to M$ such that $H \circ \iota_1 = \mathrm{id}_M$ and $H \circ \iota_0 = e_{p_0}$ where $p_0 \in M$. Let ω be a closed 1-form on M. Then $H^*\omega$ is closed since pullbacks commute with exterior derivatives. Recall that the pullback is a contravariant functor, giving us

$$\iota_k^* H^* \omega = (H \circ \iota_k)^* \omega$$

for each k = 0, 1. By our claim, it follows that

$$\iota_1^* H^* \omega - \iota_0^* H^* \omega = \omega - 0 = \omega$$

is closed. \Box

The generalization of this result to any positive integer k proceeds as follows.

We have the decomposition

$$T_{(p,t)}M \times [0,1] = \ker d\pi \big|_{(p,t)} \oplus \ker d\pi_M \big|_{(p,t)}$$

where $\pi: M \times [0,1] \to [0,1]$ denotes projection. Then any 1-form ω on $M \times [0,1]$ may be written uniquely as $\omega = \omega_1 + \omega_2$ such that $\omega_i(v_1 + v_2) = \omega(v_i)$ for each i = 1, 2. Hence there is some unique map $f: M \times [0,1] \to \mathbb{R}$

such that $\omega_2 = fdt$. In general, one can show that if ω is a k-form on $M \times [0, 1]$, then we can write ω uniquely as

$$\omega = \omega_1 + (dt \wedge \eta)$$

where $\omega_1(v_1,\ldots,v_k)=0$ if some v_i belongs to $\ker d\pi_M\big|_{(p,t)}$ and η is a (k-1)-form with the analogous property.

Lemma 7.1.4. Define the (k-1)-form $I\omega$ on M by

$$I\omega\big|_{p}(v_{1},\ldots,v_{k-1}) = \int_{0}^{1} \eta(p,t) \left(d\iota_{t}\big|_{(p,t)}(v_{1}),\ldots,d\iota_{t}\big|_{(p,t)}(v_{k-1})\right) dt.$$

Then $\iota_1^*\omega - \iota_0^*\omega = d(I\omega) + I(d\omega)$. In particular, $\iota_1^*\omega - \iota_0^*\omega$ is exact whenever $d\omega = 0$.

Proof. For an argument similar to our case where k=1, see Theorem 7.17 (Spivak). In particular, $I\omega$ and η correspond to our g and f, respectively.

Corollary 7.1.5. Recalling (\dagger) , we see that $\mathbb{R}^2 \setminus \{0\}$ is not contractible.

This proves that $\mathbb{R}^2 \setminus \{0\} \not\approx \mathbb{R}^2$.

7.2 Lecture 25

Corollary 7.2.1. If M is closed (i.e., compact without boundary) and orientable, then M is not contractible.

Proof. There is some positively oriented orientation form ω on M. Then $d\omega=0$, and $\int_M\omega>0$. But if $\omega=d\eta$ for some form η , then $\int_M\omega=\int_{\partial M}\eta=0$ thanks to Theorem 6.2.4, a contradiction. Hence $H^n(M)\neq 0$.

Example 7.2.2. \mathbb{S}^n is not contractible.

Theorem 7.2.3. If M is a (connected) orientable n-manifold, then we have an isomorphism

$$\underbrace{H^n_c(M)}_{compactly\ supported} \stackrel{\cong}{\longrightarrow} \mathbb{R}, \quad \ [\omega] \mapsto \int_M \omega.$$

Proof. Assume that this statement holds when $M=\mathbb{R}^n$. There is some compactly supported orientation form ω on M such that $\int_M \omega \neq 0$ and $\sup \omega \subset U \subset M$. Let ω' be a compactly supported n-form on M. Pick a partition of unity (φ_α) on M. Then $\omega' = \varphi_1 \omega' + \cdots + \varphi_k \omega'$, Thus, we may assume that $\sup \omega' \subset V$ where $V \approx \mathbb{R}^n$. We want to show that $\omega' = c\omega + d\eta$ for some $c \in \mathbb{R}$ and some $\eta \in \mathcal{A}^{n-1}(M)$. Since M is connected, there is some sequence

$$U = V_1, V_2, \dots, V_r = V$$

of open sets such that $V_i \approx \mathbb{R}^n$ and $V_i \cap V_{i+1} \neq \emptyset$ for each $i = 1, \dots, r-1$. We can find a family $\{\omega_i\}_{1 \leq i \leq r-1}$ of forms on M such $\int_M \omega_i \neq 0$ and supp $\omega_i \subset V_i \cap V_{i+1}$. It follows that

$$\omega_1 = c_1 \omega + d\eta_1$$

$$\omega_2 = c_2 \omega_1 + d\eta_2$$

$$\vdots$$

$$\omega' = c_r \omega_{r-1} + d\eta_r,$$

as desired.

If M and N are closed orientable n-manifolds and $f: M \to N$ is smooth, then the pullback f^* induces a linear map $f^*: H^n_{\mathrm{dR}}(N) \to H^n_{\mathrm{dR}}(M)$. In light of Theorem 7.2.3, we get a linear map $f^*: \mathbb{R} \to \mathbb{R}$, which shows that there is a unique real number a such that

$$\int_{M} f^* \omega = a \int_{N} \omega$$

for every $\omega \in H^n_{\mathrm{dR}}(N)$. The scalar a is called the degree of f.

7.3 Lecture 26

Let M and N be closed orientable n-manifolds and $f: M \to N$ be smooth. By Theorem 3.6.6, find some regular value q of f. For each $p \in f^{-1}(q)$, let

$$\operatorname{sgn}_p f = \begin{cases} 1 & df_p \text{ orientation-preserving} \\ -1 & df_p \text{ orientation-reversing} \end{cases}.$$

Theorem 7.3.1.

$$\deg f = \sum_{p \in f^{-1}(q)} \operatorname{sgn}_p f$$

where deg $f \equiv 0$ if $f^{-1}(q) = \emptyset$. In particular, deg f is always an integer.

Proof. Since f has constant rank n and $\{q\} \subset N$ is compact, we see that $f^{-1}(q)$ is a compact 0-dimensional submanifold of M by Theorem 3.6.4 and thus must be finite. Let $f^{-1}(q) = \{p_1, \ldots, p_k\}$. Find charts U_1, \ldots, U_k which are pairwise disjoint so that each $u_i \in U_i$ is a regular point of f. Find a chart (V, y^i) around q such that the components of $f^{-1}(V)$ are precisely the U_i . Let $\omega = gdy^1 \wedge \cdots \wedge dy^n$ where g is nonnegative and compactly supported in V. This implies that $f^*\omega \subset f^{-1}(V) = U_1 \sqcup \cdots \sqcup U_k$. Therefore,

$$\int_{M} f^* \omega = \sum_{i=1}^{k} \int_{U_i} f^* \omega.$$

Since each $f \upharpoonright_{U_i} : U_i \to V$ is a diffeomorphism, we have that

$$\int_{U_i} f^*\omega = \begin{cases} \int_V \omega & f \upharpoonright_{U_i} \text{ orientation-preserving} \\ -\int_V \omega & f \upharpoonright_{U_i} \text{ orientation-reversing} \end{cases}.$$

As a result,

$$\int_{M} f^* \omega = \left(\sum_{p \in f^{-1}(q)} \operatorname{sgn}_{p} f \right) \int_{V} \omega = \left(\sum_{p \in f^{-1}(q)} \operatorname{sgn}_{p} f \right) \int_{M} \omega.$$

Example 7.3.2. Let $A_n : \mathbb{S}^n \to \mathbb{S}^n$ denote the antipodal map. Choose $p_0 \in \mathbb{S}^n$, which is a regular value of A_n . Hence deg $A_n = (-1)^{n-1}$.

Theorem 7.3.3. Suppose that f and g are smoothly homotopic maps $M \to N$. Then $f^* = g^*$ as linear maps.

Proof. By assumption, there exists a smooth map $H: M \times [0,1] \to M$ such that $H \circ \iota_0 = f$ and $H \circ \iota_1 = g$. Let $\omega \in Z^k(N)$. We apply Lemma 7.1.4 (including its notation) to compute

$$g^*\omega - f^*\omega$$

$$= (H \circ \iota_1)^* \omega - (H \circ \iota_0)^* \omega$$

$$= \iota_1^* (H^*\omega) - \iota_0^* (H^*\omega)$$

$$= d(IH^*\omega) + I(dH^*\omega) = d(IH^*\omega).$$

This implies that $f^*([\omega]) = g^*([\omega])$, as desired.

Corollary 7.3.4. If f and g are smoothly homotopic, then $\int_M f^*\omega = \int_M g^*\omega$ for any closed n-form ω .

Proof. By Theorem 7.3.3, $f^*\omega = g^*\omega + d\eta$ for some (n-1)-form η . Since M is closed by hypothesis, applying \int to both sides and then invoking Stokes's theorem finishes our proof.

Corollary 7.3.5. If f and g are smoothly homotopic, then deg $f = \deg g$.

Corollary 7.3.6 (Hairy ball). If $n \in \mathbb{N}$ is even, then there is no non-vanishing vector field on \mathbb{S}^n .

Proof. The identity map $\mathrm{id}_{\mathbb{S}^n}$ has degree 1 and thus is not homotopic to the antipodal map A_n . Suppose, toward a contradiction, that there is some non-vanishing $X \in \mathscr{X}(\mathbb{S}^n)$. For each $p \in \mathbb{S}^n$, there is a unique great semicircle γ_p traveling from p to A(p) whose tangent vector at p equals cX_p for some $c \in \mathbb{R}$. The smooth map $H(p,t) \equiv \gamma_p(t)$ defines a homotopy between $\mathrm{id}_{\mathbb{S}^n}$ and A_n , a contradiction.

8 Integral curves and flows

8.1 Lecture 27

Definition 8.1.1. Let M be a smooth manifold and $X \in \mathcal{X}(M)$. We say that a differentiable curve $\gamma: J \to M$ is an integral curve for X if $\gamma'(t) = X_{\gamma(t)}$ for any $t \in J$.

Terminology. If $0 \in J$, then $\gamma(0)$ is called the starting point of γ .

Example 8.1.2. Let $M = \mathbb{R}^2$, $X = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$, and $\gamma(t) = (x(t), y(t))$. Then $\gamma'(t) = x'(t) \frac{\partial}{\partial x} + y'(t) \frac{\partial}{\partial y}$. The system

$$\begin{cases} x(t) = x'(t) \\ y(t) = y'(t) \end{cases}$$

determines that $\gamma(t) = e^t(x(0), y(0))$.

In general, define the vector field $x^i \frac{\partial}{\partial x^i}$ on a chart (U, x^i) for the *n*-manifold M. Then given an integral curve $\gamma(t) = (\gamma^1(t), \dots, \gamma^n(t))$ for X where $\gamma^i = \gamma \circ x^i$, we obtain the system

$$\gamma^{\prime i}(t) = X^i \left(\gamma^1(t), \dots, \gamma^n(t) \right).$$

Given that $\gamma(0) = p$, we have an initial value problem, to which we can always find a local solution.

Theorem 8.1.3 (Fundamental theorem for autonomous ODEs). Let $U \subset \mathbb{R}^n$ be open and $X : U \to \mathbb{R}^n$ be a smooth vector field. Consider the initial value problem

$$\begin{cases}
 \gamma'^{i}(t) = X^{i} \left(\gamma^{1}(t), \dots, \gamma^{n}(t) \right) \\
 \gamma(t_{0}) = (c^{1}, \dots, c^{n})
\end{cases}$$
(1)

- (a) (Existence) Let $t_0 \in \mathbb{R}$ and $x_0 \in U$. There exist some interval $J_0 \ni t_0$ and open subset $U_0 \subset U$ such that for each $c \in U_0$, there is some C^1 curve $\gamma : J_0 \to U_0$ that solves Eq. (1).
- (b) (Uniqueness) Any two differentiable solutions to Eq. (1) agree on their common domain.
- (c) (Smoothness) Let J_0 and U_0 be as in (a). Define $\theta: J_0 \times U_0 \to U$ by $(t, x) \mapsto \gamma_x(t)$ where $\gamma_x: J_0 \to U$ uniquely solves Eq. (1) with initial condition $\gamma(t_0) = x$. Then θ is smooth.

Example 8.1.4. For any compact manifold M, we may stipulate that the U_0 form a finite cover $\{U_1, \ldots, U_k\}$ of M. Make J_0 smaller than any of the corresponding intervals J_1, \ldots, J_k . This yields a smooth map $\theta: J \times \mathbb{S}^n \to \mathbb{S}^n$ defined by $(t, p) \mapsto \gamma_p^i(t)$.

Corollary 8.1.5. Let X be a smooth vector field on M and $p \in M$. There is some $\epsilon > 0$ along with a smooth curve $\gamma : (-\epsilon, \epsilon) \to M$ such that $\gamma(0) = p$ and γ is an integral curve for X.

Definition 8.1.6. Let $\theta: \mathbb{R} \times M \to M$ be a group action on M.

- 1. We call θ a global flow on M if it is smooth, i.e., $\theta^p(t) := \theta(t,p) : \mathbb{R} \to M$ is smooth for every $p \in M$.
- 2. We call the vector field $p \mapsto (\theta^p)'(0)$ the infinitesimal generator of θ .

Question. When is a smooth vector field an infinitesimal generator of a global flow?

Example 8.1.7. Define $X = x^3 \frac{\partial}{\partial x}$ on \mathbb{R}^2 . Then any integral curve $\gamma(t) = (x(t), y(t))$ for X must satisfy

$$\frac{dx}{dt} = x^3 \implies dx = x^3 dt$$

$$\implies -\frac{1}{2x^2} = t + c$$

$$\implies x(t) = \frac{1}{\sqrt{c - 2t}},$$

which is not smooth on \mathbb{R} . Hence X fails to generate a global flow.

Lemma 8.1.8 (Escape). Let $X \in \mathcal{X}(M)$ and γ be an integral curve for X. If the domain of γ is not equal to \mathbb{R} , then im γ is not contained in any compact set.

Remark 8.1.9. If M is compact, then every smooth vector field on M generates a global flow.

Definition 8.1.10. A *flow domain* for M is an open subset $D \subset \mathbb{R} \times M$ such that for every $p \in M$, the set $\{t \in \mathbb{R} \mid (t,p) \in D\}$ is an open interval containing 0

Theorem 8.1.11 (Fundamental theorem on flows). Let M be a smooth manifold and $X \in \mathcal{X}(M)$. There exist some unique maximal flow domain $\mathcal{D} \subset \mathbb{R} \times M$ and unique flow $\varphi : \mathcal{D} \to M$ such that X generates φ .

Terminology. We call φ the flow of X.

Corollary 8.1.12. If M is a closed manifold, then $\mathcal{D} = \mathbb{R} \times M$.

8.2 Lecture 28

Let M be a smooth manifold without boundary. Let $V \in \mathcal{X}(M)$ and let θ denote the flow of V. For any $W \in \mathcal{X}(M)$, define the section of TM by

$$\left(\mathcal{L}_{V}W\right)_{p} \equiv \lim_{t \to 0} \frac{d(\theta_{-t})_{\theta_{t}(p)} \left(W_{\theta_{t}(p)}\right) - W_{p}}{t},$$

which always exists. This is called the $Lie\ derivative\ of\ W$ with respect to V.

Proposition 8.2.1. $\mathcal{L}_V W \in \mathscr{X}(M)$.

We can view the Lie derivative at a point p as the rate of change of W along the tangent vector $V|_{p}$.

Theorem 8.2.2. If $V, W \in \mathcal{X}(M)$, then $\mathcal{L}_V W = [V, W]$.

Proof. Let $\mathcal{R}(M)$ denote the set of points $p \in M$ such that $V_p \neq 0$. Note that $\operatorname{cl}(\mathcal{R}(M)) = \operatorname{supp} V$. Let $p \in M$. We have three cases to consider.

(i) Suppose that $p \in \mathcal{R}(M)$. We can find smooth coordinates (U, u^i) near p such that $V = \frac{\partial}{\partial u^1}$. In these coordinates we thus have that $\theta_t(u) = (u^1 + t, u^2, \dots, u^n)$. The Jacobian of θ_{-t} at each t equals the identity. For any $u \in U$, it follows that

$$d(\theta_{-t})_{\theta_t(u)} (W_{\theta_t(u)})$$

$$= d(\theta_{-t})_{\theta_t(x)} \left(W^j(u^1 + t, u^2, \dots, u^n) \frac{\partial}{\partial u^j} \Big|_{\theta_t(u)} \right)$$

$$= W^j(u^1 + t, u^2, \dots, u^n) \frac{\partial}{\partial u^j} \Big|_{u}.$$

From this we compute

$$(\mathcal{L}_V W)_p = \frac{d}{dt} \Big|_{t=0} W^j (u^1 + t, u^2, \dots, u^n) \frac{\partial}{\partial u^j} \Big|_u$$
$$= \frac{\partial}{\partial u^1} W^j (u^1, u^2, \dots, u^n) \frac{\partial}{\partial u^j} \Big|_u$$
$$= [V, W]_u.$$

- (ii) Suppose that $p \in \text{supp } V \setminus \mathcal{R}(M)$. Since supp V is dense in M and TM is Hausdorff, it follows that $(\mathcal{L}_V W)_p = [V, W]_p$.
- (iii) If $p \in M \setminus \text{supp } V$, then V vanishes on some neighborhood H of p. This implies that $\theta_t = \text{id}_H$, so that $d(\theta_{-t})_{\theta_t(p)} (W_{\theta_t(p)}) = W_p$. Hence $(\mathcal{L}_V W)_p = 0 = [V, W]_p$.

Definition 8.2.3. A smooth local frame $(X_1, ..., X_n)$ is called a *commuting* or *holonomic frame* if $[X_i, X_j] = 0$ for any $1 \le i, j \le n$.

Theorem 8.2.4. Let M be a smooth n-manifold. Let (X_1, \ldots, X_k) be a linearly independent k-tuple of smooth commuting vector fields defined on an open set $W \subset M$. For any $p \in W$, there is some chart (U, x^i) around p such that

$$X_i = \frac{\partial}{\partial x^i}$$

on U for each i = 1, ..., k.

9 DISTRIBUTIONS 51

Proof sketch. As this statement is local, we may assume that $M = \mathbb{R}^n$ and p = 0. Since the X_i are linearly independent, we can find coordinates (V, t^i) around 0 such that $X_i|_0 = \frac{\partial}{\partial t^i}|_0$ for each i. Let θ^i denote the flow of X_i . By making V a sufficiently small neighborhood of 0 in $\mathbb{R}^k \times \mathbb{R}^{n-k} \approx \mathbb{R}^n$, define $\Psi: V \to \mathbb{R}^n$ by

$$\Psi(t^1,\ldots,t^n) = \theta_{t^1}^1 \circ \cdots \circ \theta_{t^k}^k \left(0,\ldots,0,t^{k+1},\ldots,t^n\right).$$

Since the X_i are commuting, one can show that

$$d\Psi_0 = \begin{cases} X_i \big|_0 & i = 1, \dots, k \\ \frac{\partial}{\partial t^i} \big|_0 & i = k + 1, \dots, n. \end{cases}$$

This is invertible, and thus Ψ is a local diffeomorphism by the inverse function theorem. This gives us our desired local coordinates.

9 Distributions

Definition 9.0.1. Let M be a smooth manifold. A k-distribution on M is a rank-k smooth subbundle of TM.

In particular, 1-distributions are precisely vector fields.

Definition 9.0.2. Let $N \subset M$ be a nonempty submanifold and

$$D \coloneqq \coprod_{p \in M} D_p$$

be a distribution on M. Then N is called an *integral manifold of* D if $D_p = T_p N$ for each $p \in N$. Moreover, we say that D is *integrable* if each $p \in M$ is contained in an integrable manifold of D.

Definition 9.0.3. We say that a distribution D is *involutive* if $[X,Y] \in D$ whenever $X,Y \in D$.

Proposition 9.0.4. If D is integrable, then it is involutive.

Theorem 9.0.5 (Frobenius). If D is involutive, then it is integrable.