Medicinal Chemistry

Subscriber access provided by US PATENT & TRADEMARK OFFICE

3-Substituted 1,4-benzodiazepin-2-ones

Stanley C. Bell, Ronald J. McCaully, Carl Gochman, Scott J. Childress, and Melvyn I. Gluckman *J. Med. Chem.*, **1968**, 11 (3), 457-461• DOI: 10.1021/jm00309a010 • Publication Date (Web): 01 May 2002

Downloaded from http://pubs.acs.org on April 22, 2009

More About This Article

The permalink http://dx.doi.org/10.1021/jm00309a010 provides access to:

- · Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

3-Substituted 1,4-Benzodiazepin-2-ones

STANLEY C. BELL, ^{1a} RONALD J. McCaully, ^{1a} Carl Gochman, ^{1a} Scott J. Childress, ^{1a} AND Melvyn I. Gluckman ^{1b}

Research Division, Wyeth Laboratories, Inc., Radnor, Pennsylvania 19087

Received November 18, 1967

The preparation of a number of 1,4-benzodiazepines substituted in the 3 position is described. The rearrangement of 7-chloro-1,3-dihydro-5-phenyl-2H-1,4-benzodiazepin-2-one 4-oxide with diacetyl sulfide yields largely the 3-acetylthic compound. Amines, ethers, and sulfides were prepared through the chloro intermediate. A 3-carbethoxybenzodiazepine was prepared and converted into oxazepam. The pharmacological test data of new and previously published compounds are given.

The possession of depressant activity in the central nervous system is a common property of 1,4-benzodiaze-pin-2-ones despite diverse substitution.² We have devoted most of our work with this system to 3-substituted benzodiazepines as exemplified by oxazepam (I) and report here syntheses of further compounds and biological test data of significance in this area.

In addition to the hydroxy group, halogens, ethers, amines, and variously substituted esters have been introduced into the 3 position. The new compounds have been prepared by the methods cited in Table I or as discussed below.

3-Acetoxy-7-chloro-1,3-dihydro-3-methyl-5-phenyl-2H-1,4-benzodiazepin-2-one (XI) was obtained as expected upon treatment of 7-chloro-1,3-dihydro-3-methyl-5-phenyl-2H-1,4-benzodiazepin-2-one 4-oxide³ with acetic anhydride, but attempted hydrolysis to the 3-hydroxy analog using strong base or acid resulted in a facile rearrangement to 2-acetyl-6-chloro-4-phenyl-quinazoline (Scheme I). A similar rearrangement in acid of the more stable I has been described.⁴ Milder treatment of XI with diethylamine caused neither rearrangement nor hydrolysis but resulted in displacement of the acetoxy group to yield 7-chloro-3-diethylamino-1,3-dihydro-3-methyl-5-phenyl-2H-1,4-benzodiazepin-2-one (XLII).

SCHEME I

NH

CH₃

NaOH

OCOCH₃

$$C_6H_5$$

XI

 C_6H_5
 C_6H_5
 C_6H_5
 C_6H_5

XLII

7-Chloro-5-o-chlorophenyl-1,3-dihydro-1-methyl-2H-1,4-benzodiazepin-2-one 4-oxide and related compounds have been reported to undergo a Polonovski reaction upon treatment with diacetyl sulfide to afford 3-acetoxy-7-chloro-5-o-chlorophenyl-1,3-dihydro-1-

methyl-2H-1,4-benzodiazepin-2-one.⁵ We have found, however, that treatment of 7-chloro-1,3-dihydro-5-phenyl-2H-1,4-benzodiazepin-2-one 4-oxide with diacetyl sulfide gives a mixture of the 3-acetoxy (VII) and the 3-acetylthio (XXXIV) compounds with the latter predominating. The presence of thioacetic acid greatly increased the proportion of XXXIV (Scheme II). It was also found possible to replace the acetoxy group of VII by the acetylthio group to afford XXXIV by heating with thioacetic acid. In consonance with its mild acetylating power, thioacetic acid alone caused rearrangement of the 4-oxide and yielded XXXIV.

3-Halobenzodiazepin-2-ones were principally employed as intermediates in the production of 3-amines, 3-ethers, and 3-sulfides and the displacements proceeded unexceptionally.

The 3-carbethoxy compound LIII was prepared directly from 2-amino-5-chlorobenzophenone and aminomalonic ester. Compound LIII was readily brominated in the 3 position and the resulting labile substituent was easily displaced by hydroxy and methoxy groups to afford LIV and LV (Scheme III). The benzodiazepine ring of LIV was unstable when treated with base. In contrast, LV was hydrolyzed by base and the product was decarboxylated upon acidification to give the 3-methoxybenzodiazepine XXII. Compound XXII was converted into I by reaction with boron tribromide followed by treatment with water.

Pharmacological Activity.—Results from two behavioral observation tests and three antagonism tests are recorded in Table I. The dose causing a motor activity decrease affords an estimate of the quieting effect and the dose producing ataxia is not only a measure of an undesirable side effect but may also give an indication of muscle relaxation. The antimorphine test detects both major and minor tranquilizers. The antipentylenetetrazole and antielectroshock tests are usually considered to be anticonvulsant tests. We have found the antipentylenetetrazole test particularly useful in forecasting responses to benzodiazepines in more sophisticated behavioral studies. A more detailed description of these tests has been given by Gluckman.⁷

The general requirements for good activity in the 1,4-benzodiazepines are with few exceptions met in the base structures employed here for study of the effects of varying substitution in the 3 position. Except for

^{(1) (}a) Medicinal Chemistry Section. (b) Pharmacology Section.

⁽²⁾ S. J. Childress and M. I. Gluckman, J. Pharm. Sci., 53, 577 (1964).

⁽³⁾ S. C. Bell, T. S. Sulkowski, C. Gochman, and S. J. Childress, J. Org. Chem., 27, 562 (1962).

⁽⁴⁾ S. C. Bell and S. J. Childress, ibid., 29, 506 (1964).

⁽⁵⁾ E. Reeder, A. Stempel, and L. H. Sternbach, U. S. Patent 3,340,253 (1967).

⁽⁶⁾ Cf. J. Schmitt, South African Patent 65/3049 (1966); Derwent Farmdoc 19574.

⁽⁷⁾ M. I. Gluckman, Current Therap. Res., Clin. Exptl., 7, 721 (1965).

Table I Sherituted 1,4-Benzobiazepin-2-ones

		1) E/I	, تاتا	"V	IC	C (A	L (i)	1111	1,	CH)()	H M	A.IN	٠, '	∪ M	1111	IJК	הענ	,ر،	AB	N 17	(I)	i i C	CK	. W. /	1:1											r ();		1 1
	Ataxia	at I hr	ED_{50}	ıc	ю	91	÷6	11	135	<u> </u>	#	4.4	98		7.7	53	x	9	340	16	10	91	27	10		≎1	2	_	96	9		2	<u>:1</u>	<u>;;</u>		=	920			ક
ma/ka ora/	ms/ ns ora	Anti- morphine	ED_{50}	2.2	1.5	? ; C	?; ⊝	, 0 , 0	16	977	23	55	0.1	>127	12	+		9.6	Ê	≎1 ≎1	:: -:	7. 10	?! ©	<u>;;</u>	57. 57.	≎1 1-	? ; e	ee: •	5	-	>127	>40	0.1	:: · C	1 ∵‡	† †	()	150	>400	2.5
(anion) ati	Antimax	elec shock	ED_{50}	33.1	5.6	0.5 0.0	4 .	::	1.2	æ.	2.3	.;; ;;	2.00		×40	22	10,12	∞ ?!	127	<u>- 1</u>	5,7	X.	75 21	-10		6.0	51 51	7.0		5°.6		91 À	3.0	1.1		55	100			22
-Biodomica pertivity (miss) mass and and	Anti-	pentylene- tetrazole	$\mathrm{ED}_{\mathrm{So}}$	9.0	0.7	0.07	0.09	6.2	31	2.6	8.4	4.5	0.3	127	1.2	5.0	0.8	o.s	98	1.1	0.05	6.0	† .0	0.9	0.8	0.4	0,5	F.0	5.7	0 .ũ	>127	75	0.2	0.2	0.2	7	<u>::</u>	90+	>400	ος ι~
-	Motor	act. decrease	MED^c	1.6	ee :-	0.1	0.4	0.4	40	1.6	≘	4.0	1.0	>400	6.3	4.0	1.3	0.4	400	4.0		4.0	1.3	40	22		0.1	0.1	25	t.()	40	40	0.4	0.1	0.4	=======================================	40	1 00	90+	9
			Analyses			Ę,	C, H, CJ, N	ಕ				C, H, Cl, N	П,	C, H, Cl, N				II, CI,	Ξ, Ω,		H, CJ,		C, II, CI, N	C, H, N	Ξ,	H, CI	Ξ,	C, II, Cl		C, H, Cl, N	н, Сі,	П, СЛ,		C, H, N	C, H, N	C, H, Cl, N	C, H, Cl, N	H, N, S; C;	C, H, Cl, N	
R,			Formula	$C_{15}H_{11}CIN_2O_2$	C ₁₆ H ₁₃ ClN ₂ O ₂	$C_{15}H_{10}Cl_2N_2O_2$	CleHt2Cl2N2O2	C19H17CIN2O2	C17H14N2O3	CrH raClN2O3	C ₁₈ H ₁₅ CiN ₂ O ₃	C21 H19CIN2O3	$C_{17}H_{12}Cl_2N_2O_3$	C ₁₈ H ₁₆ ClN ₂ O ₃	C22H16CIN2O3	$C_{17}H_{12}Cl_2N_2O_3$	C21 H20 CIN 3 O4	$C_{22}\Pi_{17}C1_2N_3O_3\cdot H_2O$	CaaHzaClN2O.	CuHuCIN2Os. II2O	$C_{19}H_{14}Cl_2N_2O_6\cdot C_2H_5OH\cdot 0.5H_2O$	C19H15CIN2O4	C19H14Cl2N2O4	$C_{19}H_{14}Cl_2N_2O_4$	$C_{16}H_{13}C!N_2O_2$	C17H16ClN2O2	$C_{16}H_{12}Cl_2N_2O_2$	$C_{17}H_{14}Cl_2N_2O_2$	$C_{i7}H_{16}CIN_2O_2$	$C_{17}H_{14}C_{12}N_2O_2$	$C_{19}H_{17}CIN_2O_4$	C17H13CIN2O4	C1sH10Cl2N2O	$C_{15}H_9Cl_2N_2O$	Cl6H11Cl3N2O	C ₁₈ H _{II} CIN ₂ OS·0.5C ₂ H ₅ OH	C ₁₇ H ₁₈ ClN ₂ O ₂ S	CnH4ClN,OS-IICI	CisHiACIN3OS2	C ₁₅ H ₁₂ ClN ₃ O
			$Method^b$	<	A	$Cf. \Lambda$	$Cf. \Lambda$	Cf. A		V	A	Cf. A	Cf. A	~	¥.	V	V	Cf. A	('J. A	2	<i>Cf.</i> B	೮	CJ. C	33	8	C.J. B	Cf. B	Cf. B	V	C.J. B	æ	~	<	Cf. A	Cf. A	æ	В	~	æ	a
			Mp, °C			166 - 168	205-207	159-161				194 - 196	260 - 262	179 - 180				176 - 178	198-200	110-112	123 - 125		171-173	195 - 197	256 - 258	145-146	222 - 224	142144		181 - 183	148 - 149	205-207		211-213	215-217	140-141	508 - 508	255-260	213 - 215	
			\mathbb{R}_7	Ö	ರ		<u>ರ</u>	ಶ	=	ರ	Ü	೦	ひ	ひ	_ల ్	ರ	ಶ	5	ت ت	5	IJ	ວ	5	IJ	ಶ	೮	ರ	ರ	<u>ರ</u>	<u></u> 5	5	J	ت ت	\Box	J	ご	ರ	ರ	U	5
			R_b	C_6H_5	C_6H_b	$o ext{-CIC}_b ext{H}_4$	$o ext{-CIC}_6\Pi_4$	C_6H_5	C_6H_5	C_6H_5	C_6H_5	C_6H_5	$o ext{-CIC}_6 \Pi_4$	C_6H_5	C_6H_5	C_6H_5	C_6H_5	C_6H_s	C_6H_5	C_6H_5	$o ext{-CIC}_6\Pi_4$	C_6H_5	$o ext{-} ext{ClC}_6 ext{H}_1$	C_6H_b	C_6H_5	C_6H_5	$o ext{-CIC}_6 ext{H}_1$	$\rho ext{-CIC}_6 ext{H}_4$	C_6H_5	$o ext{-}\mathrm{ClC_6H_4}$	$C_6\Pi_5$	C_6H_5	C_6H_5	$o ext{-}\mathrm{CIC}_6\mathrm{H}_4$	$o ext{-CIC}_b \Pi_4$	C_6H_5	C_6H_5	C_6H_5	$C_6\Pi_5$	C_6H_5
			R_{3}'	H	Н	Ξ	Ξ	Ξ	Ξ	Ξ	Н	Н	Ξ	CII_3	Η	П	Ξ	Ξ	П	Ξ	Н	П	П	=	Ξ	Ξ	Π	Ξ	Ξ	Ξ	Η	Ξ	=	Ξ	Η	Ξ	Н	Ξ	=	#***** ******
			R_3	HO	OH	НО	0.0	HO	OCOCH3	OCOCH ₃	OCOCH ₃	_	OCOCH ₃	OCOCH;	OCOC,H,	OCOCII2CI	OCOCH ₂ C ₄ H ₅ ON ^d	OCOCII, NC, H, CI	$OCOCH_2CH_2C_5H_{9^{-C}}$	OCOCH2CH5CO2H	ОСОСН,СП,СО,Н	OCOCH,	OCOCH,	OCOCH ₃	OCH ₃	OCH3	OCH ₃	OCII,	$OC_2\Pi_5$	$0C_2\Pi_b$	$\mathrm{OCH}_2\mathrm{CO}_2\mathrm{C}_2\mathrm{H}_5$	$0\mathrm{CH}_2\mathrm{CO}_2\mathrm{H}$	C	C	C	SII	SCOCII	$SCH_2CH_2N(C_2H_5)_2$	SC,II,NS	NH_2
			Rı	Н	CH_3	Н	CII_3	$e ext{-}C_3\Pi_sC\Pi_2$	П	Н	CII3	e-CallaCII.	П	H	H	П	H	Н	H	Н	H	COCH	$COCH_3$	COCHIC	H	CH.	П	CH_3	Н	H	Π	H	Н	П	CIII3	H	H	II	Н	Ξ
			No.	I	11	111	IV	Λ	VI	VII	VIII	IX	×	XI	XII	XIII	XIV	XV	XVI	XVII	XVIII	XIX	XX	XXI	XXII	XXIII	XXIV	XXV	XXVI	XXVII	XXVIII	XXXX	XXX	XXXI	XXXII	XXXIII	XXXIV	XXXV	XXXVI	XXXVII

	., 9			22											38	110		<u>,</u>	9	m., 10.
40	<u>V</u>			>127												Π		>127	>40	gous co rg. Che rpholir
				>127	ß	>127		06	>400	Ω	>40	>127	>400	>400	Ξ	37		>127	>40	ely analog Wei, $J. O$ N = mo
9. 10.	>40	>400	>400	>127											23	98		>127	>40	ons of clos P. H. L. ' C4H ₈ (62.79.
3°.0	>40		54		>127	38	200	>400	>400	>127	>40	>127	>400	>400	2.4	6.2		40	40	Preparatic Bell and ctive dose.
40	400	127	40	127	40	400	127	>400	>400	>400	>400	400	>400	>400	4.0	127		13	127	mployed.; C: S. C inimal effe calcd, 63.3
C, H, Cl, N	C, H, Cl, N	C, II, Cl, N	C, H, Cl, N	C, H, Cl, N	C, II, CI, N	C, H, Cl, N		C, H, N	H, Cl, N; Ci	C, II, Cl, N	С, Н, СІ	C, H, N		C, H, Cl	C, H, Cl, N	C, H, Cl, N		C, H, CI, N	C, H, Cl, N	e wherein Cf. is employed. Preparations of closely analogous combection, this paper; C. S. C. Bell and P. H. L. Wei, J. Org. Chem. B3). • MED = minimal effective dose. • C ₄ H ₅ ON = morpholino ine. • Anal. C: calcd, 63.31; found, 62.79.
$C_{15}H_{11}Cl_2N_3O\cdot HCl\cdot H_2O$	C16H14CIN3O·HCI·C2H5OH	C ₁₉ H ₁₈ ClN ₃ O ₂	$C_{19}H_{21}CIN_4O$	C20H22CIN,O	C20H15Cl2N3O	$C_{16}H_{12}CIN_3O_2$	$C_{17}H_{14}CIN_3O_2$	C ₁₇ H ₁₃ Cl ₂ N ₃ O ₂	C ₁₈ H ₁₆ CIN ₃ O ₂	C24 H20CIN3O2	C22 H16CIN3O2	$\mathrm{C_{12}H_{13}N_3O_2}$	C ₁₈ H ₁₆ CIN ₈ O ₃	$C_{21}H_{20}CIN_3O_5$	C ₁₈ H ₁₆ CIN ₂ O ₃	$C_{13}H_{15}CIN_2O_4$		C ₁₉ H ₁₇ ClN ₂ O ₄	$C_{20}H_{19}C!N_2O_4 \cdot 0.5C_2H_5OH$	^a For descriptions of the biological tests see ref 2 and 7. ^b Methods of preparation are given in the citations excepting those wherein Cf. is employed. Preparations of closely analogous communds are described in those instances. A: S. C. Bell and S. J. Childress, J. Org. Chem., 27, 1691 (1962); B: Experimental Section, this paper; C: S. C. Bell and P. H. L. Wei, J. Org. Chem., 33, 3576 (1965); D: S. C. Bell, R. J. McCaully, and S. J. Childress, ibid., 33, 216 (1968); E: S. C. Bell, ibid., 33, 828 (1968). • MED = minimal effective dose. ^a C ₄ H ₅ ON = morpholino. NC ₅ H ₅ Cl = pyridinium chloride. ^f Anal. C: calcd, 57.53; found, 57.02. ^a S = synergistic. ^h SC ₅ H ₄ NS = 2-thiothiazoline. ⁱ Anal. C: calcd, 63.31; found, 62.79.
Ç.D	Cf. B	Cf. B	В	В	В	Cf. D	_	Cf. D	C_f . D	Cf. D	Cf. D	Cf. D	田	В	В	В		В	Cf. B	org. Chem., 27, 1691 216 (1968); E: S. g S = synergistic.
217-218	227-230	211-213	182 - 183	178-179	250 - 251	243-245		286-287	265-267	230 - 232	238 - 240	231 - 233		190 - 192	227-228	180-	181.5	168 - 170	164 - 166	oreparation $J. Org. Ch$ 33 , 216 (1) 2. σ S =
ರ	ರ	ರ	ぢ	ರ	ರ	ರ	ت ت	೮	_ರ	ರ	ゔ	Н	ご	ರ	ರ			ರ	ಶ	ods of jildress, ibid.,
o-ClC ₆ H4	C_6H_5	$C_{f e}H_{f b}$	C_6H_5	C_6H_s	$C_{\mathfrak{t}}H_{\mathfrak{s}}$	C_6H_s	C_6H_5	o-ClC ₆ H ₄	C_6H_5	C_6H_5	C_6H_b	CH_s	C_6H_5	C_6H_5	C_6H_5	C_6H_5		C_6H_5	C_6H_5	7. b Methand S. J. Childress 57.53; four
Ξ	H	Ш	Н	CH_3	H	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	ОН		$0CH_3$	OC_2H_b	ref 2 and S. C. Bell ly, and S. C.
$ m NH_2$	$NHCH_3$	$NC_4H_8O^d$	NHCH2CH2N(CH3)2	$N(C_2H_b)_2$	NC,H,CI	NHCHO	NHCOCH,	NHCOCH3	N(CH ₃)COCH ₃	NHCOCH2CH2C6H5	NHCOC,II,	NHCOCH,	$ m NHCO_2C_2H_6$	$ m NHCO_2C_2H_5$	$\mathrm{CO_2C_2H_5}$	$\mathrm{CO_2C_2H_5}$		$CO_2C_2H_b$	$\mathrm{CO_2C_2H_5}$	^a For descriptions of the biological tests see ref 2 and 7. ^b Methods of prepounds are described in those instances. A: S. C. Bell and S. J. Childress, J. 30 , 3576 (1965); D: S. C. Bell, R. J. McCaully, and S. J. Childress, <i>ibid.</i> , 33 , ^s NC ₅ H ₅ Cl = pyridinium chloride. ^f Anal. C: calcd, 57.53; found, 57.02.
H 1	Н	Н	H	Н	Н	Н	Н	H	H	H	П	Н	Н	$\mathrm{CO_2C_2II_5}$	Н	н		Н	Н	e describtions of e described in 1965); D: E = pyridiniu
XXXVIII	XXXXIX	XL	XLI	XLII	XLIII	XLIV	XLV	XLVI	XLVII	XLVIII	XLIX	Г	ΓΊ	11.11	IIII	LIV		LV	LVI	* For de pounds ar 30, 3576 (* NC ₅ H ₅ C)

VI and L all of the compounds have a 7-chloro substituent and carry a phenyl or o-chlorophenyl substituent at the 5 position. Most of the compounds are unsubstituted in the 1 position. By comparing the data for unalkylated and 1-alkylated pairs, e.g., I and II, it can be seen that no tremendous difference arises in the antagonism tests by alkylation. It should be noted, however, that 1-methylation does result in considerable muscle relaxant activity as measured by suppression of the linguomandibular reflex in cats.⁷ Compounds II and IV have, respectively, twentyfold and twice the potency of their unmethylated analogs, I $(ED_{50} = 4.2 \text{ mg/kg}) \text{ and III } (ED_{50} = 0.65 \text{ mg/kg}), \text{ in}$ this test. Acyl groups in the 1 position also appear to have little effect, possibly because of ready hydrolysis in vivo.

Turning to the varying 3 substituents it can be seen that the usual pattern of benzodiazepine activity is preserved; that is, a compound active in one of these tests is active in all. There are, however, quantitative differences; the most potent compound in one test is not necessarily the most potent in the others.

Placement of a hydroxyl group in the 3 position results in compounds (I-V) having the highest potency in the antipentylenetetrazole test, which can be considered as representative of the total effect. The comparisons that follow are based on this test. Although acylation of the 3-hydroxy group (VI-XXI) lowers potency there is reason to believe that hydrolysis is an important process in the metabolic fate of some of these compounds.8

A 3-alkoxy group gives compounds (XXII-XXVII) with high potency. Conversion in vivo into 3-hydroxybenzodiazepines seems much less likely than is the case with the 3-acyloxy compounds. In two compounds (XXVIII and XXIX) bearing substituted alkoxy groups, potency is low. The 3-chloro compounds (XXX-XXXII) resemble the 3-alkoxy compounds in

Sulfur-containing substituents result in lowered potency in relation to their oxy analogs (XXXIII vs. I, XXXIV vs. VII). The effect of amino substituents is dependent upon the nature of the amine, but only XXXVII and XXXVIII have high potency. Acylation of 3-amines reduces activity (XLIV and XLV vs. XXXVII). A 3-carbethoxy substituent results in an effective compound (LIII).

In three examples (LIV-LVI) in which two functional groups are placed in the 3 position, potency remains high only in LIV. Two compounds (XI and XLII) illustrate the harmful effect upon potency of a 3-methyl substituent added to an existing 3 substituent.

Experimental Section

The capillary melting points were determined in an oil bath and are not corrected. Compounds whose elemental analyses are indicated only by symbols showed values within 0.4% of the theoretical values.

3-Acetoxy-7-chloro-1,3-dihydro-3-methyl-5-phenyl-2H-1,4benzodiazepin-2-one (XI).—To a suspension of 4.0 g of 7-chloro-1,3-dihydro-3-methyl-5-phenyl-2H-1,4-benzodiazepin-2-oneoxide³ in 40 ml of AcOH was added with stirring 20 ml of Ac₂O. The solution was heated on the steam bath for 15 min and concentrated in vacuo. Recrystallization of the residue from ethanol gave 1.8 g of XI.

⁽⁸⁾ S. S. Walkenstein, R. Wiser, C. H. Gudmundsen, H. B. Kimmel, and R. A. Corradino, J. Pharm. Sci., 53, 1181 (1964).

7-Chloro-3-diethylamino-1,3-dihydro-3-methyl-5-phenyl-2H-1,4-benzodiazepin-2-one (XLII).—Compound XI (1.3 g) was dissolved in 25 ml of Et₂NH and allowed to stand at room temperature for 1 hr. The solvent was removed *in vacuo* and the residue was recrystallized twice from EtOH giving 0.6 g of XLII.

2-Acetyl-6-chloro-4-phenylquinazoline.—To a suspension of 2 g of XI in EtOH was added a slight excess of 6 N HCl with stirring. A complete solution resulted. The solvent was removed in vacuo and the residue was recrystallized several times from EtOH affording 0.35 g of product, mp 132–134°. Anal. ($C_{16}H_{11}ClN_2O$) C, H, N, Cl.

7-Chloro-1,3-dihydro-5-phenyl-3-succinoxy-2H-1,4-benzo-diazepin-2-one (XVII).—To 75 ml of pyridine was added with stirring a mixture of 37 g of I and 37 g of succinic anhydride. In a few minutes the reaction mixture solidified. After heating on the steam bath for 80 min, the reaction mixture was cooled and diluted with 50 ml of EtOH. Addition of H₂O precipitated 57 g of XVII pyridinium salt, mp 139–141°. Recrystallization from EtOAc did not change the melting point. *Anal.* (C₂₄H₂₀ClN₃O₅) N.

A solution of 15 g of the pyridinium salt was dissolved in 200 ml of 50% EtOH and acidified with HCl. There was obtained 13.2 g of solid, mp 102-104°. Recrystallization from 50% EtOH-H₂O gave 9.8 g of XVII hydrate, mp 110-112°.

To 57 g of the pyridinium salt suspended in 1 l. of EtOH was added dropwise with stirring 1 equiv of 10% NaOH in 50% aqueous EtOH. During this time the starting compound dissolved and then the sodium salt precipitated out. Recrystallization from EtOH-H₂O gave 42 g of the hydrated sodium salt of NVII

3-Acetoxy-1-chloroacetyl-1,3-dihydro-5-phenyl-2H-1,4-benzo-diazepin-2-one (XXI).—A mixture of 3 g of VII and 10 g of chloroacetic anhydride was heated on the steam bath for several hours. After the reaction mixture became cool, AcOH was added, and 1.6 g of product was obtained which was recrystallized from a mixture of EtOAc and hexane.

Ethyl (7-Chloro-2,3-dihydro-2-oxo-5-phenyl-1H-1,4-benzo-diazepin-3-yloxy)acetate (XXVIII).—Compound I (5 g) was gradually added to 55 ml of $SOCl_2$ and the mixture was heated at reflux for 1 hr. Excess $SOCl_2$ was evaporated on a rotary evaporator and trace quantities were removed by codistillation with toluene. The residue (XXX) was warmed on a steam bath with 16.2 g of ethyl glycolate until the solid dissolved (10-20 min). Upon standing for 2 days the oil partially crystallized and was filtered affording 2.9 g of crude product, mp 140–144°. Recrystallization from MeCN gave 1.6 g of XXVIII.

(7-Chloro-2,3-dihydro-2-oxo-5-phenyl-1H-1,4-benzodiazepin-3-yloxy)acetic Acid (XXIX).—Compound XXVIII (1.55 g) was dissolved in 15 ml of EtOH and 10 ml of 0.8 N NaOH and the solution was warmed on a steam bath for 10 min. The alcohol was removed on a rotary evaporator and the remaining yellow solution was diluted with 20 ml of $\rm H_2O$ and treated dropwise with stirring with 9 ml of 1.2 N HCl. The crude precipitate (mp 110-112°) was recrystallized from MeCN to afford 1 g of XXIX, mp 120°, then resolidified and melted at 205–207°.

7-Chloro-1,3-dihydro-3-mercapto-5-phenyl-2H-1,4-benzodiazepin-2-one (XXXIII).—To a stirred slurry of 1.4 g of XXXIV in 30 ml of EtOH was added 1.8 ml of 4 N NaOH. The white solid which separated after 5 min was dissolved by addition of 10 ml of H₂O and the solution was stirred an additional 5 min. The addition of 3 ml of AcOH diluted in 10 ml of H₂O caused the separation of 1.3 g of crystalline product, mp 138-139°. Recrystallization from EtOH afforded an analytical sample of XXXIII, hemiethanolate.

3-Acetylthio-7-chloro-1,3-dihydro-5-phenyl-2H-1,4-benzo-diazepin-2-one (XXXIV).—7-Chloro-1,3-dihydro-5-phenyl-2H-1,4-benzo-diazepin-2-one 4-oxide (7.5 g) in 35 g of thioacetic acid was treated with 7.6 g of acetyl sulfide and the mixture was heated on the steam bath for 30 min. Evaporation of the excess reagents in vacuo afforded an oil which crystallized spontaneously upon treatment with EtOH to give 5.1 g of product, mp 205–206°. Recrystallization from EtOH gave an analytical sample of XXXIV, mp 208–209°.

In the absence of thioacetic acid a 4:6 (determined by nmr comparison of CH_3CO_2 absorptions) solid mixture of VII and XXXIV was obtained. Fractional crystallization of the solid mixture from EtOH afforded VII, mp 240–242°. The ir spectrum of the product was identical with that of an authentic sample of VII.

In the absence of thioacetic anhydride, a solution of 7-chloro-1,3-dihydro-5-phenyl-2H-1,4-benzodiazepin-2-one 4-oxide in thioacetic acid heated for 2 hr on the steam bath afforded a small quantity of XXXIV.

Compound XXXIV from VII.—Compound VII (1.1 g) was heated in 5 g of thioacetic acid on a steam bath for 50 min. The excess thioacetic acid was evaporated *in vacuo* leaving an oily residue. Treatment of the residue with EtOH afforded 0.7 g of XXXIV, mp 206–208°. The ir spectrum of the product was identical with that of XXXIV.

7-Chloro-3-(2-diethylaminoethylthio)-1,3-dihydro-5-phenyl-2H-1,4-benzodiazepin-2-one (XXXV).—To a mixture of 12.7 g of diethylaminoethanethiol hydrochloride and 10.0 g of $\rm Et_2N$

in C_6H_6 was gradually added with stirring and cooling 7.6 g of XXX. After stirring for 3 hr, the reaction mixture was filtered from impurities, washed (H_2O), and concentrated in vacuo. To the residue was added petroleum ether (bp 30–60°) and 5.1 g of free base was collected and converted in C_6H_6 to the hydrochloride salt. Recrystallization from EtOH gave XXXV·HCl.

7-Chloro-1,3-dihydro-5-phenyl-3-(2-thiazolin-2-ylthio)-2H-1,4-benzodiazepin-2-one (XXXVI).—To a stirred suspension of 6.1 g of XXX and 3.5 g of 2-mercaptothiazoline in 50 ml of dioxane was added 3 g of Et₈N with cooling. The solution was stirred at room temperature for 1 hr. After filtration, the solution was concentrated at reduced pressure. The residue was washed (Et₂O, Me₂CO) and recrystallized from DMF to afford XXXVI.

7-Chloro-1,3-dihydro-3-(2-dimethylaminoethylamino)-5-phenyl-2H-1,4-benzodiazepin-2-one (XLI).—Crude XXX was prepared from 5 g of I as in the preparation of XXVIII and dissolved in 50 ml of dimethoxyethane. The solution was added with stirring to a mixture of 10 ml of 2-dimethylaminoethylamine in 150 ml of 1,2-dimethoxyethane. After 20 min, the solvent was removed in vacuo and the residue was washed (H₂O) and recrystallized from EtOH giving 2.7 g of XLI.

7-Chloro-2,3-dihydro-2-oxo-5-phenyl-1H-1,4-benzodiazepin-3-ylpyridinium Chloride (XLIII).—A mixture of 3 g of XXX, 1.1 g of pyridine, and 100 ml of acetone was heated under reflux for 1 hr. After the solution was cooled, 1.3 g of white solid was collected and recrystallized from MeCN to give XLIII.

Ethyl 7-Chloro-1-(ethoxycarbonyl)-2,3-dihydro-2-oxo-5-phenyl-1H-1,4-benzodiazepine-3-carbamate (LII).—To a solution of 2 g of XXXVII·HCl in 35 ml of pyridine was added dropwise 4 ml of ethyl chloroformate. After stirring for 25 min the mixture was chilled and diluted with H₂O. LII (2.2 g) was collected and recrystallized from MeCN.

Ethyl 7-Chloro-2,3-dihydro-2-oxo-5-phenyl-1H-1,4-benzodiazepine-3-carboxylate (LIII).—2-Amino-5-chlorobenzophenone (44 g) and 20 g of diethyl aminomalonate hydrochloride in 140 ml of pyridine were heated in an oil bath (150°) for 1 hr. An additional 30 g of diethyl aminomalonate hydrochloride in 60 ml of pyridine was added in three portions at 0.5-hr intervals. A constant volume of solvent was maintained by distillation of pyridine from the reaction mixture during the addition period. After a total reaction time of 4.75 hr, the pyridine was removed in vacuo and the viscous residue was taken up in benzene and washed (three times) with H₂O. The solution was dried (Mg₂-SO₄) and concentrated in vacuo to a viscous oil. Treatment of the oil with 140 ml of MeCN gave 8.6 g of LIII. The ester was recrystallized from MeCN before analysis.

Ethyl 7-Chloro-2,3-dihydro-3-hydroxy-2-oxo-5-phenyl-1H-1,4-benzodiazepine-3-carboxylate (LIV).—Compound LIII (5 g)

in 200 ml of $\rm CH_2Cl_2$ was treated gradually with 2.8 g of $\rm Br_2$ in 50 ml of $\rm CH_2Cl_2$. The solution was treated with 75 mg of dibenzoyl peroxide and stirred at 27° for 16 hr. The solvent and excess $\rm Br_2$ were removed in vacuo and the residue was dissolved in 50 ml of 1,2-dimethoxyethane and 20 ml of $\rm H_2O$. The mixture was adjusted to pH 8 with 4 N NaOH and stirred for 35 min at 27°. The volatile solvents were removed in vacuo and the mixture was treated with 17 ml of 4 N NaOH thereby causing 5.7 g of a yellow solid to separate. The solid was dissolved in aqueous EtOH, the solution was filtered from impurities, and the filtrate was acidified with HCl to precipitate 1.6 g of product, mp 174–178°. Recrystallization from MeCN gave LIV.

Ethyl 7-Chloro-2,3-dihydro-3-methoxy-2-oxo-1H-1,4-benzo-diazepine-3-carboxylate (LV).—Compound LIII (2 g) dissolved in 100 ml of CH₂Cl₂ was treated with a solution of 1.1 g of Br₂ in 5 ml of CH₂Cl₂. The mixture was stirred with 50 mg of dibenzoyl peroxide for 16 hr at 26°, treated with 2 ml of MeOH, and stirred for an additional 40 hr at 26°. The NH₄Br that separated was removed and the filtrate was evaporated in vacuo to an orange oil. Treatment of the oil with EtOAc caused 1.8 g of LV·HBr to separate, mp 190–191° dec. This salt was slurried in CHCl₃ and washed with NaHCO₃ solution. The CHCl₃ layer was dried (Mg₂SO₄) and evaporated in vacuo to an oil that crystallized on treatment with aqueous EtOH to give 1.3 g of product, mp 167–168°. Recrystallization from aqueous EtOH afforded an analytical sample of LV.

7-Chloro-1,3-dihydro-3-methoxy-5-phenyl-2H-1,4-benzodiazepin-2-one (XXII). A.—Compound LV (200 mg) dissolved in 6 ml of 1,2-dimethoxyethane and 6 ml of $\rm H_2O$ containing 0.8 ml of 4 N was heated at 95° for 16 hr. The solution was allowed to cool to 40° and was treated with 0.54 ml of 6 N HCl. The oily residue that remained after evaporation of the solvent was dissolved in CH₂Cl₂, and the solution was washed with NaHCO₃ solution and water and dried by passage through cotton. Evaporation of the solvent gave an oily residue that crystallized spontaneously on treatment with MeCN to afford 12 mg of XXII, mp 251–253°. A mixture melting point was undepressed. The ir spectrum of the product was identical with that of the material obtained from reaction of XXX and MeOH.

B.—Compound I (10 g) was added in portions over 25 min to 50 ml of concentrated $\rm H_2SO_4$. The yellow solution was added with stirring to 400 ml of an ice—water slurry whereupon 10.6 g of a salt separated, mp 130–131° dec. A 2-g portion of the salt was heated in 15 ml of MeOH for 20 min on the steam bath until the material dissolved. On cooling 1.2 g of product (mp 248–254°) separated from the solution. Recrystallization from MeCN gave XXII.