CMSE 820 Homework 10. Due 8 December, 2020.

The following facts from basic probability theory can be used freely in this assignment.

Proposition 1. If $\xi := (\xi_1, \dots, \xi_n)$ is a random vector with probability density function $p_{\xi}(x)$ and $g : \mathbb{R}^N \to \mathbb{R}$ is a continuous function, then $g(\xi)$ is a random variable and

$$\mathbb{E}(g(\xi)) = \int_{\mathbb{R}^n} g(x) p_{\xi}(x) dx.$$

Corollary 1: If $g \geq 0$ everywhere, then $\mathbb{E}(g(\xi)) \geq 0$ since we always have $p_{\xi} \geq 0$.

Corollary 2: If we take $g(x) := c_1x_1 + \cdots + c_nx_n$ where c_1, \ldots, c_n are constants, then

$$E(c_1\xi_1 + \dots + c_n\xi_n) = \int_{\mathbb{R}^n} (c_1x_1 + \dots + c_nx_n)p_{\xi}(x)dx$$
$$= c_1 \int_{\mathbb{R}^n} x_1p_{\xi}(x)dx + \dots + c_n \int_{\mathbb{R}^n} x_np_{\xi}(x)dx = c_1\mathbb{E}(\xi_1) + \dots + c_n\mathbb{E}(\xi_n)$$

where $\mathbb{E}(\xi_1)$ is the expectation of the marginal distribution of ξ_1 . This shows taking expectations of random variables is a linear operation.

I. Let $\xi := (\xi_1, \dots, \xi_n)^T$ be a random vector. Prove the following statements using the definition of expectation and covariance matrix. (Caution: corollary 2 only shows taking expectations of random variables is a linear operation; it does not show taking expectations of random vectors is a linear operation. This is what you need to prove.)

(a) If $c \in \mathbb{R}^n$ is a constant vector, prove that

$$\mathbb{E}(\xi + c) = \mathbb{E}(\xi) + c,$$

$$Cov(\xi + c) = Cov(\xi).$$

Solution. Let ξ be a random vector and $c = (c_1, \ldots, c_n)^T$ be a constant vector both in \mathbb{R}^n . Let $y = \xi + c = (\xi_1 + c_1, \ldots, \xi_n + c_n)^T$. It follows that since ξ is a random vector, y is also a random vector. To take the expectation of y, we take the expectation elementwise,

$$\mathbb{E}(y) = (\mathbb{E}(y_1), \dots, \mathbb{E}(y_n))^T.$$

Let $\mathbb{E}(y_i)$ be the expectation value of the *i*th element of y. Since $y_i = \xi_i + c_i$ and we know the expectation for random variables is a linear operation, it follows that $\mathbb{E}(y_i) = \mathbb{E}(\xi_i) + \mathbb{E}(c_i)$. c_i is a constant, and thus $\mathbb{E}(c_i) = c_i$. Therefore, $\mathbb{E}(y_i) = \mathbb{E}(\xi_i) + c_i$. From this,

$$\mathbb{E}(y) = (\mathbb{E}(\xi_1) + c_1, \dots, \mathbb{E}(\xi_n) + c_n)^T.$$

Separating this into vector addition,

$$\mathbb{E}(y) = (\mathbb{E}(\xi_1), \dots, \mathbb{E}(\xi_n))^T + (c_1, \dots, c_n)^T,$$

thus,

$$\mathbb{E}(y) = \mathbb{E}(\xi + c) = \mathbb{E}(\xi) + c. \blacksquare$$

Consider now $Cov(\xi + c) = Cov(y)$. From the definition of covariance,

$$Cov(y) = \mathbb{E}\left[(y - \mathbb{E}(y))(y - \mathbb{E}(y))^T \right].$$

Using the above proof that $\mathbb{E}(y) = \mathbb{E}(\xi) + c$ and substituting back $y = \xi + c$, we can rewrite this as

$$Cov(y) = \mathbb{E}\left[(\xi + c - (\mathbb{E}(\xi) + c))(\xi + c - (\mathbb{E}(\xi) + c))^T \right].$$

Simplifying, we see

$$Cov(y) = \mathbb{E}\left[(\xi - \mathbb{E}(\xi))(\xi - \mathbb{E}(\xi))^T \right] = Cov(\xi).$$

Hence, $Cov(\xi + c) = Cov(\xi)$.

(b) If $A \in \mathbb{R}^{m \times n}$ is a constant matrix, prove that

$$\mathbb{E}(A\xi) = A\mathbb{E}(\xi),$$

$$Cov(A\xi) = ACov(\xi)A^T.$$

Solution. Let

$$A = \begin{pmatrix} a_1 \\ \vdots \\ a_m \end{pmatrix} \in \mathbb{R}^{m \times n}$$

be a matrix made of row vectors a_1, \ldots, a_m . Let $y = A\xi \in \mathbb{R}^m$. Since ξ is a random vector, y must also be a random vector. Let $y_i = a_i \xi$ be the ith element of y calculated as the ith row of A times the column vector ξ . We can write

$$y_i = a_{i1}\xi_1 + \cdots + a_{in}\xi_n$$

where a_{ij} is the jth element of the ith row of A. Taking the expectation of y_i ,

$$\mathbb{E}(y_i) = \mathbb{E}(a_{i1}\xi_1 + \dots + a_{in}\xi_n).$$

Since the expectation of random variables is a linear operation, we can rewrite this as

$$\mathbb{E}(y_i) = \mathbb{E}(a_{i1}\xi_1) + \dots + \mathbb{E}(a_{in}\xi_n).$$

 a_{ij} is a constant value, and it thus follows that

$$\mathbb{E}(y_i) = a_{i1}\mathbb{E}(\xi_1) + \dots + a_{in}\mathbb{E}(\xi_n) = a_i\mathbb{E}(\xi).$$

Therefore,

$$\mathbb{E}(y) = \begin{pmatrix} \mathbb{E}(y_1) \\ \vdots \\ \mathbb{E}(y_m) \end{pmatrix} = \begin{pmatrix} a_1 \mathbb{E}(\xi) \\ \vdots \\ a_m \mathbb{E}(\xi) \end{pmatrix} = A \mathbb{E}(\xi). \blacksquare$$

Consider now Cov(y). From the definition of covariance,

$$Cov(y) = \mathbb{E}\left[(y - \mathbb{E}(y))(y - \mathbb{E}(y))^T\right].$$

Using the above result that $\mathbb{E}(y) = A\mathbb{E}(\xi)$,

$$Cov(y) = \mathbb{E} [(y - A\mathbb{E}(\xi))(y - A\mathbb{E}(\xi))^T].$$

Multiplying the expression out,

$$Cov(y) = \mathbb{E}\left[yy^T - A\mathbb{E}(\xi)y^T - y(A\mathbb{E}(\xi))^T + A\mathbb{E}(\xi)(A\mathbb{E}(\xi))^T\right].$$

Substituting $y = A\xi$ back in,

$$Cov(y) = \mathbb{E}\left[A\xi\xi^T A^T - A\mathbb{E}(\xi)\xi^T A^T - A\xi(A\mathbb{E}(\xi))^T + A\mathbb{E}(\xi)(A\mathbb{E}(\xi))^T\right].$$

Simplifying,

$$\begin{aligned} \operatorname{Cov}(y) &= \mathbb{E}\left[A\xi\xi^T A^T - A\mathbb{E}(\xi)\xi^T A^T - A\xi(A\mathbb{E}(\xi))^T + A\mathbb{E}(\xi)(A\mathbb{E}(\xi))^T \right] \\ &= \mathbb{E}\left[A\xi\xi^T A^T - A\mathbb{E}(\xi)\xi^T A^T - A\xi\mathbb{E}(\xi)^T A^T + A\mathbb{E}(\xi)\mathbb{E}(\xi)^T A^T \right] \\ &= \mathbb{E}\left[A(\xi\xi^T - \mathbb{E}(\xi)\xi^T - \xi\mathbb{E}(\xi)^T + \mathbb{E}(\xi)\mathbb{E}(\xi)^T)A^T \right] \\ &= \mathbb{E}\left[A(\xi - \mathbb{E}(\xi))(\xi - \mathbb{E}(\xi))^T A^T \right]. \end{aligned}$$

Let $X = (\xi - \mathbb{E}(\xi))(\xi - \mathbb{E}(\xi))^T \in \mathbb{R}^{n \times n}$ such that $Cov(y) = \mathbb{E}\left[AXA^T\right]$. Let $W = AXA^T$. We can write the i, j element of W as $W_{ij} = (\sum_{k=1}^n a_{ik} x_{kj}) a_{ji}$, where a_{ij} is the i, j element of A and x_{ij} is the i, j element of X. From this, $\mathbb{E}(W_{ij}) = \mathbb{E}((\sum_{k=1}^n a_{ik} x_{kj}) a_{ji})$. Since the expectation is a linear operation for random variables and A is a matrix of constant values, it follows that $\mathbb{E}(W_{ij}) = (\sum_{k=1}^n a_{ik} \mathbb{E}(x_{kj})) a_{ji}$. Therefore, $\mathbb{E}(W) = A\mathbb{E}(X)A^T$. Hence,

$$Cov(y) = Cov(A\xi) = A\mathbb{E}(X)A^T = A\mathbb{E}\left[(\xi - \mathbb{E}(\xi))(\xi - \mathbb{E}(\xi))^T\right]A^T = ACov(\xi)A^T. \blacksquare$$

(c) Prove that

$$Cov(\xi) = \mathbb{E}(\xi \xi^T) - \mathbb{E}(\xi)\mathbb{E}(\xi)^T.$$

Solution.

$$Cov(\xi) = \mathbb{E}\left[(\xi - \mathbb{E}(\xi))(\xi - \mathbb{E}(\xi))^{T}\right]$$

$$= \mathbb{E}\left[\xi\xi^{T} - \mathbb{E}(\xi)\xi^{T} - \xi\mathbb{E}(\xi)^{T} + \mathbb{E}(\xi)\mathbb{E}(\xi)^{T}\right]$$

$$= \mathbb{E}[\xi\xi^{T}] - \mathbb{E}[\mathbb{E}(\xi)\xi^{T}] - \mathbb{E}[\xi\mathbb{E}(\xi)^{T}] + \mathbb{E}[\mathbb{E}(\xi)\mathbb{E}(\xi)^{T}]$$

$$= \mathbb{E}[\xi\xi^{T}] - 2\mathbb{E}(\xi)\mathbb{E}(\xi)^{T} + \mathbb{E}(\xi)\mathbb{E}(\xi)^{T},$$

where in the last step we utilize the fact that $\mathbb{E}(\mathbb{E}(\xi)) = \mathbb{E}(\xi)$ since the expectation of a random matrix is deterministic and thus no longer a random variable. Thus,

$$Cov(\xi) = \mathbb{E}[\xi \xi^T] - \mathbb{E}(\xi)\mathbb{E}(\xi)^T.$$

Name: Nathaniel Hawkins

(d) If ξ_1, \ldots, ξ_n are independent random variables, prove that

$$\mathbb{E}(\xi_1 \dots \xi_n) = \mathbb{E}(\xi_1) \dots \mathbb{E}(\xi_n),$$

 $Cov(\xi)$ is a diagonal matrix.

Remark: the first equality says if ξ_1, \ldots, ξ_n are independent, then the expectation of the product is the same as the product of the expectations.

Solution. If ξ_1, \ldots, ξ_n are independent random variables, it follows that their cumulative distribution function is

$$F_{\xi}(x_1, \dots, x_n) = \prod_{i=1}^n F_{\xi_i}(x_i)$$

for constant x_1, \ldots, x_n . Therefore,

$$p_{\xi}(x) = \prod_{i=1}^{n} p_{\xi_i}(x_i) = \prod_{i=1}^{n} \frac{\partial F_{\xi_i}(x_i)}{\partial x_i}.$$

Therefore,

$$\mathbb{E}(\xi_1 \dots \xi_n) = \int_{\mathbb{R}^n} \xi_1 \dots \xi_n \prod_{i=1}^n \frac{\partial F_{\xi_i}(x_i)}{\partial x_i} dx = \prod_{i=1}^n \int_{-\infty}^{\infty} \xi_i \frac{\partial F_{\xi_i}(x_i)}{\partial x_i} dx_i = \prod_{i=1}^n \mathbb{E}(\xi_i). \blacksquare$$

Consider $Cov(\xi_i, \xi_j)$ as the i, j element of the covariance matrix $Cov(\xi)$.

$$Cov(\xi_i, \xi_j) = \mathbb{E} \left[(\xi_i - \mathbb{E}(\xi_i))(\xi_j - \mathbb{E}(\xi_j)) \right]$$

= $\mathbb{E}(\xi_i \xi_j) - 2\mathbb{E}(\xi_i)\mathbb{E}(\xi_j) + \mathbb{E}(\xi_i)\mathbb{E}(\xi_j)$
= $\mathbb{E}(\xi_i \xi_j) - \mathbb{E}(\xi_i)\mathbb{E}(\xi_j)$.

If $i \neq j$, then for independent ξ_i, ξ_j ,

$$Cov(\xi_i, \xi_j) = \mathbb{E}(\xi_i)\mathbb{E}(\xi_j) - \mathbb{E}(\xi_i)\mathbb{E}(\xi_j) = 0.$$

If i = j, then,

$$Cov(\xi_i, \xi_i) = \mathbb{E}(\xi_i^2) - \mathbb{E}(\xi_i)^2 = Var(\xi_i).$$

Thus, $Cov(\xi)$ is a diagonal matrix where the diagonal elements are the variance of ξ_1, \dots, ξ_n .

II. Given a random vector $\xi := (\xi_1, \dots, \xi_n)^T$, we say a deterministic vector $d \in \mathbb{R}^n$ is a realization of ξ if d is a possible outcome of ξ . We say ξ is an n-dimensional Gaussian random vector denoted by $\xi \sim N(\mu, C)$ if its probability density function is

$$p_{\xi}(x;\mu,C) = \frac{1}{\sqrt{(2\pi)^n \det(C)}} e^{-\frac{1}{2}(x-\mu)^T C^{-1}(x-\mu)}, x \in \mathbb{R}^n.$$

Here, $\mu \in \mathbb{R}^n$ is a vector, $C \in \mathbb{R}^{n \times n}$ is a symmetric positive definite matrix, $\det(C)$ denotes the determinant of C, and C^{-1} is the matrix inverse of C. It is easy to verify that $\mathbb{E}(\xi) = \mu$ and $\operatorname{Cov}(\xi) = C$.

Suppose $\xi \sim N(\mu, C)$ and we know C but not μ . We can compute an estimator for μ , known as the maximum likelihood estimator (MLE) μ^{mle} , from a single realization d of ξ . Here, μ^{mle} is defined by

$$\mu^{mle} := \arg\max_{\mu} p_{\xi}(d; \mu, C).$$

If $p_{\xi} > 0$ everywhere, this definition is equivalent to

$$\mu^{mle} := \arg\min_{\mu} - \log p_{\xi}(d; \mu, C).$$

Compute μ^{mle} in terms of d.

Solution.

$$\begin{split} -\log p_{\xi}(d;\mu,C) &= -\log \left(\frac{1}{\sqrt{(2\pi)^n \text{det}(C)}} e^{-\frac{1}{2}(d-\mu)^T C^{-1}(d-\mu)}\right) \\ &= -\log \left(\frac{1}{\sqrt{(2\pi)^n \text{det}(C)}}\right) + \frac{1}{2}(d-\mu)^T C^{-1}(d-\mu). \end{split}$$

In order to minimize this expression, it suffices to solve

$$\frac{\partial}{\partial \mu}(-\log p_{\xi}(d;\mu,C)) = 0.$$

The first term is a constant that does not depend on μ . Therefore, we need only consider

$$\frac{\partial}{\partial \mu} \left(\frac{1}{2} (d - \mu)^T C^{-1} (d - \mu) \right) = 0.$$

$$\begin{split} \frac{\partial}{\partial \mu} \left(\frac{1}{2} (d - \mu)^T C^{-1} (d - \mu) \right) &= 0 \\ \frac{\partial}{\partial \mu} \left(\frac{1}{2} (d^T - \mu^T) (C^{-1} d - C^{-1} \mu) \right) &= 0 \\ \frac{\partial}{\partial \mu} \left(\frac{1}{2} (d^T C^{-1} d + \mu^T C^{-1} \mu - \mu^T C^{-1} d - d^T C^{-1} \mu) \right) &= 0 \\ \frac{1}{2} \left(0 + 2 C^{-1} \mu - C^{-1} d - C^{-1} d \right) &= 0 \\ C^{-1} \mu - C^{-1} d &= 0 \\ \mu &= d. \end{split}$$

Taking a second derivative, we see

$$\frac{\partial^2}{\partial \mu^2}(-\log p_{\xi}(d;\mu,C)) = C^{-1}.$$

Since C is symmetric positive definite, then C^{-1} is also positive definite. This implies that $\mu = d$ is a minimum.

Therefore, the μ that minimizes $-\log p_{\xi}(d;\mu,C)$ is when $\mu=d$, and thus $\mu^{mle}=d$.

III. Consider the linear model with noise

$$\eta := X^T \beta^* + \epsilon$$

where $X \in \mathbb{R}^{p \times n}$ is a deterministic sample matrix, $\beta^* \in \mathbb{R}^p$ is an unknown deterministic parameter, $\epsilon = (\epsilon_1, \dots, \epsilon_n)^T$ is a random vector with $\epsilon \sim N(0, \sigma^2 I_n)$, where I_n is the $n \times n$ identity matrix and $\sigma > 0$ is a constant (see Problem #2 for the definition of $N(0, \sigma^2 I_n)$).

(a) Prove that

$$\eta \sim N(X^T \beta^*, \sigma^2 I_n).$$

Solution.

$$\mathbb{E}(\eta) = \mathbb{E}(X^T \beta^* + \epsilon)$$

$$= \mathbb{E}(X^T \beta^*) + \mathbb{E}(\epsilon)$$

$$= X^T \beta^* + 0$$

$$= X^T \beta^*.$$

$$Cov(\eta) = \mathbb{E}\left[(X^T \beta^* + \epsilon - \mathbb{E}(X^T \beta^* + \epsilon))(X^T \beta^* + \epsilon - \mathbb{E}(X^T \beta^* + \epsilon))^T \right]$$

$$= \mathbb{E}\left[\epsilon \epsilon^T \right]$$

$$= \mathbb{E}\left[(\epsilon - 0)(\epsilon - 0)^T \right]$$

$$= \mathbb{E}\left[(\epsilon - \mathbb{E}(\epsilon))(\epsilon - \mathbb{E}(\epsilon))^T \right]$$

$$= Cov(\epsilon) = \sigma^2 I_n.$$

Therefore, η is a random variable with mean $X^T\beta^*$ and covariance σ^2I_n . Since ϵ is a normally distributed random vector and X and β are deterministic, it follows that η is also a normally distributed random vector. Thus, $\eta \sim N(X^T\beta^*, \sigma^2I_n)$.

(b) Suppose $\sigma > 0$ is known yet β^* is unknown. Given a realization y of η , the maximum likelihood estimate β^{mle} is defined by

$$\beta^{mle} := \arg\min_{\beta} - \log p_{\eta}(y; X^{T}\beta, \sigma^{2}I_{n}).$$

Prove that β^{mle} is exactly the least square estimator β^{ls} which we discussed before for the linear model with noise $y = X^T \beta^* + \epsilon$. Remark: this result gives another characterization of the least square estimator from the statistical point of view.

Solution. Let $C = \sigma^2 I_n$. We write the probability density function of η as

$$p_{\eta}(y; X^{T}\beta, C) = \frac{1}{\sqrt{(2\pi)^{n} \det(C)}} e^{-\frac{1}{2}(y - X^{T}\beta)^{T}C^{-1}(y - X^{T}\beta)}.$$

To solve for β^{mle} , it suffices to solve

$$\frac{\partial}{\partial \beta} \left(-\log p_{\eta}(y; X^T \beta, \sigma^2 I_n) \right) = 0.$$

$$\frac{\partial}{\partial \beta} \left(-\log p_{\eta}(y; X^{T}\beta, \sigma^{2} I_{n}) \right) = 0$$

$$\frac{\partial}{\partial \beta} \left(-\log \left(\frac{1}{\sqrt{(2\pi)^{n} \det(C)}} \right) + \frac{1}{2} (y - X^{T}\beta)^{T} C^{-1} (y - X^{T}\beta) \right) = 0.$$

The first term carries no dependency on β , therefore,

$$\frac{\partial}{\partial \beta} \left(\frac{1}{2} (y - X^T \beta)^T C^{-1} (y - X^T \beta) \right) = 0.$$

Expanding and taking the derivative

$$\frac{\partial}{\partial \beta} \left(\frac{1}{2} (y^T C^{-1} y - \beta^T X C^{-1} y - y^T C^{-1} X^T \beta + \beta^T X C^{-1} X^T \beta) \right) = 0$$

$$-X C^{-1} y + X C^{-1} X^T \beta = 0$$

$$-X (\sigma^2 I_n)^{-1} y + X (\sigma^2 I_n)^{-1} X^T \beta = 0$$

$$-X y + X X^T \beta = 0$$

$$(X X^T)^{-1} X y = \beta.$$

The β that minimizes $-\log p_{\eta}(y; X^T \beta, \sigma^2 I_n)$ is thus $\beta^* = (XX^T)^{-1}Xy$, which is exactly the least square solution we discussed from before.

IV. Consider the linear model with noise

$$\eta = X^T \beta + \epsilon.$$

Here $X \in \mathbb{R}^{p \times n}$ is a deterministic sample matrix, $\beta \sim N(0, C_{\beta})$ is a p-dimensional Gaussian random vector with symmetric positive definite $C_{\beta} \in \mathbb{R}^{p \times p}$, $\epsilon \sim N(0, C_{\epsilon})$ is an n-dimensional Gaussian random vector with symmetric positive definite $C_{\epsilon} \in \mathbb{R}^{n \times n}$, β and ϵ are independent.

In the lectures, we derived the maximum a posteriori estimator (MAP) β^{map} for β under the assumption that $C_{\beta} = \sigma_{\beta}^{2} I_{p}$ and $C_{\epsilon} = \sigma_{\epsilon}^{2} I_{n}$ for some $\sigma_{\beta} > 0$, $\sigma_{\epsilon} > 0$. In this problem, we extend the result to the general positive definite C_{β} and C_{ϵ} . Recall tat β^{map} is defined as

$$\beta^{map} := \arg \max_{t} p_{\beta|\eta}(t|s).$$

Prove that

$$\beta^{map} = (XC_{\epsilon}^{-1}X^{T} + C_{\beta}^{-1})^{-1}XC_{\epsilon}^{-1}\eta.$$

Solution. Suppose

$$p_{\beta}(t; 0, C_{\beta}) = \frac{1}{\sqrt{(2\pi)^{p} \det(C_{\beta})}} e^{-\frac{1}{2}t^{T}C_{\beta}^{-1}t}$$

and

$$p_{\epsilon}(r; 0, C_{\epsilon}) = \frac{1}{\sqrt{(2\pi)^n \det(C_{\epsilon})}} e^{-\frac{1}{2}r^T C_{\epsilon}^{-1} r}.$$

By Bayes' Theorem,

$$p_{\beta|\eta}(t|s) = \frac{p_{\eta|\beta}(s|t)p_{\beta}(t)}{p_{\eta}(s)},$$

and thus

$$\log p_{\beta|\eta}(t|s) = \log p_{\eta|\beta}(s|t) + \log p_{\beta}(t) - \log p_{\eta}(s).$$

In order to maximize $p_{\beta|\eta}(t|s)$, it suffices to minimize $-\log p_{\beta|\eta}(t|s)$ by solving

$$\frac{\partial}{\partial t}(-\log p_{\beta|\eta}(t|s)) = 0.$$

We showed previously that $\eta \sim N(X^T\beta, \sigma_{\epsilon}^2 I_n)$. It follows for the more general case that $\eta \sim N(X^T\beta, C_{\epsilon})$. If $\beta = t$, then

$$p_{\eta|\beta}(s|t) = \frac{1}{\sqrt{(2\pi)^n} \det(C_{\epsilon})} e^{-\frac{1}{2}(s-X^T t)^T C_{\epsilon}^{-1}(s-X^T t)}.$$

 $p_{\eta}(s)$ has no dependence on t, and thus it will go to 0 in the derivative. Therefore,

$$\frac{\partial}{\partial t}(-\log p_{\beta|\eta}(t|s)) = 0$$

$$\frac{\partial}{\partial t}\left(-\log\left(\frac{1}{\sqrt{(2\pi)^{p}}\det(C_{\epsilon})}\right) + \frac{1}{2}(s - X^{T}t)^{T}C_{\epsilon}^{-1}(s - X^{T}t) - \log\left(\frac{1}{\sqrt{(2\pi)^{p}}\det(C_{\beta})}\right) + \frac{1}{2}t^{T}C_{\beta}^{-1}t\right) = 0$$

$$\frac{\partial}{\partial t}\left(\frac{1}{2}(s - X^{T}t)^{T}C_{\epsilon}^{-1}(s - X^{T}t) + \frac{1}{2}t^{T}C_{\beta}^{-1}t\right) = 0$$

$$\frac{\partial}{\partial t}\left(\frac{1}{2}(s - X^{T}t)^{T}(C_{\epsilon}^{-1}s - C_{\epsilon}^{-1}X^{T}t) + \frac{1}{2}t^{T}C_{\beta}^{-1}t\right) = 0$$

$$\frac{\partial}{\partial t}\left(\frac{1}{2}(s^{T} - t^{T}X)(C_{\epsilon}^{-1}s - C_{\epsilon}^{-1}X^{T}t) + \frac{1}{2}t^{T}C_{\beta}^{-1}t\right) = 0$$

$$\frac{\partial}{\partial t}\left(\frac{1}{2}(s^{T}C_{\epsilon}^{-1}s - t^{T}XC_{\epsilon}^{-1}s - s^{T}C_{\epsilon}^{-1}X^{T}t + t^{T}XC_{\epsilon}^{-1}X^{T}t) + \frac{1}{2}t^{T}C_{\beta}^{-1}t\right) = 0$$

$$-XC_{\epsilon}^{-1}s + XC_{\epsilon}^{-1}X^{T}t + C_{\beta}^{-1}t = 0$$

$$(XC_{\epsilon}^{-1}X^{T} + C_{\beta}^{-1})t - XC_{\epsilon}^{-1}s = 0.$$

Therefore, the t that minimizes $-\log p_{\beta|\eta}(t|s)$ is $t^* = (XC_{\epsilon}^{-1}X^T + C_{\beta}^{-1})^{-1}XC_{\epsilon}^{-1}s$. The general maximum likelihood a posteriori estimate of β is therefore $\beta^{map} = (XC_{\epsilon}^{-1}X^T + C_{\beta}^{-1})^{-1}XC_{\epsilon}^{-1}\eta$.