Задача вторая

У Mr. F есть **n** положительных целых чисел, $\mathbf{a_1}, \mathbf{a_2}, ..., \mathbf{a_n}$.

Он считает, что наибольший общий делитель этих чисел слишком маленький, и хочет увеличить его, удалив некоторые из чисел.

Но эта задача показалась ему слишком простой, поэтому он не хочет решать ее сам. Если вы ему поможете, он даст вам несколько баллов в качестве вознаграждения.

Ваша задача найти минимальное количество чисел, удалив которые, **НОД** оставшихся будет строго больше, чем **НОД** всех исходных чисел. Вы не можете удалить все числа.

Некоторые условия

Входные данные:

В первой строке входного файла записано единственное целое число $\mathbf{n} \ (\mathbf{2} \le \mathbf{n} \le \mathbf{3} * \mathbf{105})$ — количество чисел у Mr. F.

Во второй строке записаны \mathbf{n} целых чисел $\mathbf{a_1}, \mathbf{a_2}, ..., \mathbf{a_n}$ ($1 \le \mathbf{a_i} \le 1.5 * 107$).

Выходные данные:

Выведите натуральное число — минимальное количество чисел, удалив которые, $\mathbf{HO}\mathbf{Д}$ оставшихся будет строго больше, чем $\mathbf{HO}\mathbf{Д}$ всех исходных чисел.

Если решения не существует, выведите -1.

Ограничения: 1 секунда, 256 мегабайт.

Разбор

Чтобы решить данную задачу, необходимо найти простое число, являющееся минимальным делителем наибольшего количества чисел из заданного набора, деленных на их **НОД**.

НОД увеличиться только тогда, когда у чисел появится новый простой делитель.

Таким образом, мы получим максимального размера набор, обладающий большим **НОД**, чем исходный: **НОД** просто умножится на этот делитель.

Получившийся набор невозможно расширить, так как НОД сократится до исходного.

Увеличить НОД невозможно, если только все введенные числа равны НОД.

На практике

Для начала сократим все числа на их **НОД**, найденный алгоритмом Евклида, так как нас будут интересовать остальные делители чисел.

Чтобы найти этот делитель можно составить список простых чисел, используя решето Эратосфена, а затем для каждого числа ($\mathbf{1} \leq \mathbf{a_i} \leq \mathbf{1.5 \cdot 10^7}$) сопоставить его наименьший простой делитель.

После этого, перебирая все сокращенные числа, считаем для каждого простого числа, сколько раз оно являлось делителем, обращаясь к построенному соответствию, и находим самое часто встречающееся.

В итоге для получения ответа нужно будет вычесть из количества введенных чисел размер полученного набора или вывести -1, если этот размер равен нулю.

Пример

Ввод

6, 9, 15, 30

Сокращение на НОД

HOД = 3

2, 3, 5, 10

Подсчет простых делителей

2: 2 раза; 3: 1 раз; 5: 2 раза

Итог

Можно удалить минимум 2 числа (4 - 2 = 2)