HomeActivity: Recognizing home activities using sensor data

Stephen Lee, Patrick Pagus and Dong Chen ML Final Project

December 18, 2015

1 Abstract:

In this project, we user sensors deployed in homes to identify activities. The actuation of sensors provides a unique set of feature representation that allows us to identity the type of activity being undertaken by the user. The goal of our project is to use these sensor information to infer activities under different methodologies and analyze their performance. We use datasets from three different houses that are annotated manually to get the 'ground truth'. To capture the underlying model, we use different feature representations from the sensors. We present our results and discuss our findings.

2 Introduction

According to a recent study, it is estimated that almost 25+ billion Internet of Things (IoT) devices will be deployed across homes. Moreover, around 50 trillion GBs of data will be collected using these sensors. The information collected can be used to enrich the interaction between users and the physical devices. For example, NEST thermostat, an intelligent programmable thermostat, learns the occupancy of humans in a home using sensors to automatically turn on/off heating or air conditioning and save energy costs. These sensor information can be used to learn other information such as monitoring the activities of a person (e.g. elderly home) and being able to detect anomalies in behavior over time. In this project, we focus on recognizing the activities of a person using the sensor information available. i.e. We study different techniques to identify when the person is sleeping, eating etc.

Activity recognition has been a widely studied area and provides a set of challenges in itself. First, ambiguity exists if there are more than one activity happening concurrently at any given time, such as watching TV and eating a snack. Also, this muddles the distinction between the start and end of an activity. Second, activation of a sensor may represent doing a similar activity. For example, opening the fridge could represent 'getting a snack' activity or 'cooking' activity'. Third, the information could be noisy e.g. with misfiring sensors

or a mistakes made by humans such as unintentionally opening a cupboard or entering a room. Fourth, recognizing activities has class imbalance as certain activity labels tend to be longer than others. For example, lying on bed or couch, staying idle, or 'not at home' could easily represent the dominant classes in these datasets.

Clearly, activity recognition is a challenging problem. Thus, we chose a dataset wherein the homes was occupied by a single user. We construct features using the binary sensors installed in these homes that we will describe later in section. In fact, we construct multiple feature representations to study the problem and follow closely the approaches studied by Kasteren [3] among others. In the following section, we will be describing our approach, and discuss its performance and lessons learned from undertaking this project.

To further our knowledge of machine learning, we will conduct a comprehensive empirical analysis of proposed methods in this domain. These methods include Hidden Markov Models(HMM), Conditional Random Fields(CRF), Support Vector Machines(SVM), and Structured Support Vector Machines(SSVM) and Naive Bayes (NB). We implemented the models in Python and apply these methods to Kasteren-a real world dataset. By applying these techniques to real-world datasets and explaining the differences and similarities in their performances, we will gain a deeper understanding of machine learning. Furthermore, Our evaluation results could be used as a baseline for other pattern recognizing area rather than home activity recognizing.

3 Related Works

The probabilistic models discussed in our project represent the state of the art models used in activity recognition. Tapia et al. used the naive Bayes model in combination with the raw feature representation on two real world datasets recorded using a wireless sensor network [1]. HMMs were used in work by Patterson et al. and were applied to data obtained from a wearable RFID reader in a house where many objects are equipped with RFID tags [2]. In work by van Kasteren et al. the performance of HMMs and CRFs in activity recognition was compared on a realworld dataset recorded using a wireless sensor network [3]. Duong et al. compared the performance of HSMMs and HMMs in activity recognition using a laboratory setup in which four cameras captured the location of a person in a kitchen setup [4]. One type of model that we have not included in our comparison are hierarchical models. They have been successfully applied to activity recognition from video data [5], in an office environment using cameras, microphones and keyboard input [6] and on data obtained from a wearable sensing system [7]. The related works show part of the models in their work, respectively. It is hard to compare across different works. Instead, we implemented a set of models and ran the experiments on the same real word dataset. The evaluation results could be used as the baseline for future research.

4 Problem definition

Inferring and recongizing occupant activities using sensors home deployed sensors requires us to solve the following issues.

First, the start and end time of a performed activity is unknown. When activities are performed around the house there is no clear indication when one activity ends and another one starts.

Second, there is ambiguity in the observed sensor data with respect to which activity is taking place. For example, cooking and getting a drink both involve opening the fridge. Sensors can measure that the fridge is opened, but not which item is taken from the fridge.

Third, activities can be performed in a large number of ways, making it difficult to create a general description of an activity.

Fourth, observed sensor data is noisy. Noise can either be caused by a human making a mistake, for example opening a wrong cupboard, or by the sensor system which fails to transmit a sensor reading due to a network glitch.

These issues make activity recognition a very challenging task.

Many different models have been proposed for activity recognition, but no common benchmark for evaluating the performance of these models exists. In this project we implement the state of the art probabilistic models used in activity recognition and show their performance on several real world datasets. Our results can be used as a baseline for comparing the performance of other pattern recognition methods (both probabilistic and non-probabilistic).

5 Recognizing Methods

We explore and implement the following techniques:

1. HMM - Hidden Markov Modes (HMM) are a ubiquitous tool for modeling time series data and a generative probabilistic model consisting of a hidden variable and an observable variable at each time step. HMM can be used as black-box density models on sequences. They have the advantage over Markov models in that they can represent long-range dependencies between observations, mediated via the latent variables. In our project the hidden variable is the activity performed, and the observable variable is the vector of sensor readings. There are two dependency assumptions: The hidden variable at time t, namely y_t , depends only on the previous hidden variable y_{t-1} . The observable variable at time t, namely x_t , depends only on the hidden variable y_t at that time slice. Then, we can specify an HMM using three probability distributions: the distribution over initial states $p(y_1)$; the transition distribution $p(y_t \mid y_{t-1})$ representing the probability of going from one state to the next; and the observation distribution $p(x_t \mid y_t)$ indicating the probability that the state y_t would generate

observation x_t . Learning the parameters of these distributions corresponds to maximizing the joint probability p(x, y) of the paired observation and label sequences in the training data. We can factorize the joint distribution in terms of the three distributions described above as follows:

$$P(x,y) = \prod_{t=1}^{T} p(y_t \mid y_{t-1}) p(x_t \mid y_t), p(y_1) = p(y_1 \mid y_0)$$
 (1)

The parameters that maximize this joint probability are found by frequency counting. Because in our case we are dealing with discrete data, we can simply count the number of occurrences of transitions, observations and states [1].

2. CRF - A CRF using the first-order Markov assumption is called a linear-chain CRF and most closely resembles the HMM in terms of structure. We define the linear-chain CRF as a discriminative analog of the previously defined HMM, so that the conditional distribution is defined as

$$p(y \mid x) = \frac{1}{Z(x)} exp \left[\sum_{k=1}^{K} \lambda_k f_k(y_t, y_{t-1}, x_t) \right]$$
 (2)

where K is the number of feature functions used to parameterize the distribution, λ_k is the weight parameter and $f_k(y_t, y_{t-1}, x_t)$ is the feather function. The product of the parameters and the feature function $\lambda_k f_k(y_t, y_{t-1}, x_t)$ is called energy function, while the exponential representation is the potential function. The partition function Z(x) is normalization term in order to make the distribution sums up to one and obtains a probabilistic interpretation.

$$Z(x) = \sum_{y} exp \left[\sum_{k=1}^{K} \lambda_k f_k(y_t, y_{t-1}, x_t) \right]$$
(3)

- 3. SVM The implementation used in this experiment comes from SVM
- 4. SSVM -
- 5. Naive Bayes. The naive Bayes model is one of the most simplistic probabilistic models. Unlike the other models, the naive Bayes model assumes all data points are independently and identically distributed (i.i.d.), that is it does not take into account any temporal relations between datapoints. The model factorizes the joint probability over the datapoints as follows,

$$p(y_{1:T}, x_{1:T}) = \prod_{t=1}^{T} p(x_t \mid y_t) p(y_t)$$
(4)

Type	House A	House B	House C
Age	26	28	27
Gender	M	M	M
Setting	Apartment	Apartment	House
Room	3	2	6
Duration(days)	25	14	19
Sensors	14	23	21
Activities	10	13	16
Annotation	Bluetooth	Diary	Bluetooh

Table 1: Dataset recording details

we apply the naive Bayes assumption, which means we model each sensor reading separately, requiring only N parameters for each activity. The observation distribution therefore factorizes as

$$p(x_t \mid y_t = i) = \prod_{n=1}^{N} p(x_t^n \mid y_t = i)$$
 (5)

where each sensor observation is modeled as an independent Bernoulli distribution, given by

$$p(x_t^n \mid y_t = i) = \mu_{ni}^{x_t^n} (1 - \mu_{ni})^{1 - x_t^n}$$
(6)

6 Experimental Evaluation

6.1 Datasets

The Kasteren dataset is recording a 26-year-old man. He lives alone in a three-room apartment where 14 state-change sensors were installed. Locations of sensors include doors, cup-boards, refrigerator and a toilet flush sensor. Sensors were left unattended, collecting data for 28 days in the apartment. This resulted in 2120 sensor events and 245 activity instances.

As shown in the table, for Kasteren dataset we have three houses with 14, 23, 21 sensors, respectively.

The tableis an example of referenced LATEX elements.

6.2 Experimental Setup

We use http://scikit-learn.org packages to present the models.

6.3 Feather Representation

Raw: the raw sensor representation uses the sensor data directly as it was received from the sensors. It gives a 1 when the sensor is firing and a 0 otherwise

Change: The change point representation indicates when a sensor event takes place. That is, it indicates when a sensor changes value. More formally, it gives a 1 when a sensor changes state (i.e. goes from zero to one or vice versa) and a 0 otherwise.

Last: The last-fired sensor representation indicates which sensor fired last. The sensor that changed state last continues to give 1 and changes to 0 when another sensor changes state

5 fold cross validation

Divide the dataset into smaller subsequences of 2 hours

6.4 Comparative Analysis Metrics

$$Precision = \frac{TP}{TP + FP} \tag{7}$$

$$Recall = \frac{TP}{TP + FN} \tag{8}$$

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN} \tag{9}$$

$$F - Measure = \frac{2 \cdot Precision \cdot Recall}{Precision + Recall}$$
 (10)

The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary (two-class) classifications, introduced by biochemist Brian W. Matthews in 1975. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient between the observed and predicted binary classifications; it returns a value between 1 and +1. A coefficient of +1 represents a perfect prediction, 0 no better than random prediction and 1 indicates total disagreement between prediction and observation.

$$MCC = \frac{TP \cdot TN - FP \cdot FN}{\sqrt{(TP + FP) \cdot (TP + FN) \cdot (TN + FP) \cdot (TN + FN)}}$$
(11)

6.5 Experiments

=1

Figure 1: House A

7 Discussion and Future Work

8 Reference

References

- [1] E. M. Tapia, S. S. Intille, and K. Larson. *Activity recognition in the home using simple and ubiquitous sensors*. In Pervasive Computing, Second International Conference, PERVASIVE 2004, pp. 158175, Vienna, Austria (April, 2004).
- [2] D. J. Patterson, D. Fox, H. A. Kautz, and M. Philipose. Fine-grained activity recognition by aggregating abstract object usage. ${\rm In}$ ISWC, 4451.IEEEComputer Society, (2005).ISBN 0-7695-2419-2.URL http://doi.ieeecomputersociety.org/10.1109/ISWC.2005.22.

Figure 2: House B

- [3] T. van Kasteren, A. Noulas, G. Englebienne, and B. Kro se. Accurate activity recognition in a home setting. In UbiComp 08: Proceedings of the 10th international conference on Ubiquitous computing, pp. 19, New York, NY, USA, (2008). ACM. ISBN 978-1-60558-136-1. doi: http://doi.acm.org/10.1145/1409635.1409637.
- [4] T. Duong, D. Phung, H. Bui, and S. Venkatesh, Efficient duration and hierarchical modeling for human activity recognition, Artif. Intell. 173(7-8), 830856, (2009). ISSN 0004-3702. doi: http://dx.doi.org/10.1016/j.artint.2008.12.005.
- [5] S. Luhr, H. H. Bui, S. Venkatesh, and G. A. West, Recognition of human activity through hierarchical stochastic learning, percom. 00, 416, (2003). doi: http://doi.ieeecomputersociety.org/10.1109/PERCOM.2003.1192766.
- [6] N. Oliver, A. Garg, and E. Horvitz, Layered representations for learning and inferring office activity from multiple sensory channels, Comput. Vis. Image Underst. 96(2), 163180, (2004). ISSN 1077-3142. doi: http://dx.doi.org/10.1016/j.cviu.2004.02.004.

Figure 3: House C

[7] A. Subramanya, A. Raj, J. Bilmes, and D. Fox. Hierarchical models for activity recognition. In IEEE Multimedia Signal Processing (MMSP) Conference, Victoria, CA (October, 2006).