

Figure 1: Circuit for Simulation 2

The  $I_D$  versus  $V_{DS}$  characteristics of the n-channel MOSFET are analyzed. For MOSFETs with channel-length modulation,  $r_o = \frac{1}{\lambda I_D'}$  by definition, where  $I_D' = \frac{k_n}{2} V_{ov}^2$  is the saturation current without channel-length modulation effects. Here,  $V_{ov}$  is the transistor's overdrive voltage, and  $k_n$  is the MOSFET's transconductance parameter. The small-signal drain-to-source conductance  $g_{ds}$  is to be defined as  $g_{ds} = \frac{1}{r_o} = \lambda I_D'$ . However,  $I_D'$  is difficult to acquire from realistic simulations.

To a first-order approximation,  $I_D = \frac{k_n}{2} V_{ov}^2 (1 + \lambda V_{DS}) = I_D' (1 + \lambda V_{DS})$  in saturation mode. So,  $\frac{\partial I_D}{\partial V_{DS}} = \lambda I_D' = g_{ds}$ . Thus, by analyzing the derivative of  $I_D$  with respect to  $V_{DS}$  at a particular value of  $V_{DS}$ ,  $g_{ds}$  can be determined from simulation.

First, a simulation is run with  $V_{GS} = 0$ V.



Figure 2: NMOS  $I_D$  versus  $V_{DS}$  when  $V_{GS} = 0$ V

Here,  $I_S = 0$  and  $I_D = -I_B \neq 0$ . Because the transistor is in cutoff mode, no channel between the source and drain forms. However, the drain's doped n-region forms a pn-junction with the p-type body of the NMOS. Thermally-generated carriers in the depletion layer become accelerated by the potential difference of the junction's depletion layer. Thus, a "leakage" current occurs from the drain to the body. As the drain voltage increases, thermally-generated carriers become accelerated by a larger potential difference, thereby increasing the current. This relationship can be somewhat accurately modeled by the ideal (or Shockley) diode equation:

$$I_{DB} = I_S(e^{\frac{V_{DB}}{V_T}} - 1) \tag{1}$$

Here,  $I_{DB}$  is the current that flows from the drain to the body of the MOSFET.  $I_S$  is the reverse saturation current, which is approximately 10fA.  $V_{DB}$  is the voltage between the drain and the body.  $V_T = \frac{k_B T}{q}$  is the diode's thermal voltage. For  $V_{DB} << -V_T$ ,  $I_{DB} \approx -I_S$ , which explains why the curve is constant for large  $V_{DS}$ . Note that  $V_{DS} = V_D - V_S = V_D - V_B = V_{DB}$ .

The definition of  $g_{ds}$  requires that the transistor be in saturation. However, if a small signal is to be applied at the MOSFET's gate, one would expect  $g_{ds} = 0$  since the channel cannot conduct any current. Plotting  $\frac{\partial I_D}{\partial V_{DS}}$ , labeled  $g_{ds}$  in figure (2),  $g_{ds} = 0$  at  $V_{DS} = 3.5$ V, the particular voltage of interest, consistent with intuition.

 $V_{GS}$  is now increased to 2.5V. In the triode region,  $I_D$  depends on  $-V_{DS}^2$  because  $I_D = k_n(V_{ov} - 0.5V_{DS})V_{DS}$ . So,  $\frac{\partial I_D}{\partial V_{DS}}$  depends linearly on  $-V_{DS}$ . In the saturation region,  $\frac{\partial I_D}{\partial V_{DS}}$  is constant with  $V_{DS}$ . Therefore, the transition point between a linear curve and a constant curve marks the transition from saturation to triode, whose intervals are labeled in figure (3).



Figure 3: NMOS  $I_D$  versus  $V_{DS}$  when  $V_{GS}=2.5\mathrm{V}$ 

Here,  $g_{ds}$  can be properly evaluated since the transistor is analyzed at  $V_{DS} = 3.5$ V, which occurs in the saturation region.



Figure 4: NMOS  $I_D$  versus  $V_{DS}$  when  $V_{GS}=5.0\mathrm{V}$ 

The simulation results for  $V_{GS}=5.0\mathrm{V}$  are shown in figure (4). The transistor operates in the triode region at  $V_{DS}=3.5\mathrm{V}$ , but the same definition is applied nonetheless. The final results are tabulated in table (1).

Table 1: Simulation 2 Results

| V  | gs [ V ] | gds from Simulation Curves [ uA / V ] | gds from DC Operating Point Simulation [ $mA / V$ ] |
|----|----------|---------------------------------------|-----------------------------------------------------|
| 0  |          | 0                                     | 0                                                   |
| 2. | .5       | 1.88                                  | 1.88                                                |
| 5. | .0       | 111.67                                | 81.19                                               |