最优化上机作业

数学强基 22 DBQDSS 学号: 1145141919

2024年4月29日

目录

1		·道上机题目																2
	1.1	题目描述																2
	1.2	迭代格式																2
		运行结果																
	1.4	程序源码																2
		**																
2		.道上机题目																5
2		道上机题目 题目描述				•										•		
2	2.1																	5
2	2.1 2.2	题目描述																5 5

程序说明

执行平台	PyCharm
代码语言	Python
执行环境	Anaconda 自定义环境
所用库	Numpy
Python 版本	Python 3.11.8

1 第一道上机题目

1.1 题目描述

分别用最速下降法、牛顿法极小化 Rosenbrock 函数

$$f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2, x^{(0)} = (-1.2, 1), x^* = (1, 1), f(x^*) = 0$$

1.2 迭代格式

最速下降法

$$x_{k+1} = x_k - \alpha_k g_k$$

其中, g_k 是目标函数在 x_k 处的梯度, α_k 是第 k 步的步长因子

牛顿法

$$x_{k+1} = x_k - G_k^{-1} g_k$$

其中, g_k 是目标函数在 x_k 处的梯度, G_k 是目标函数在 x_k 处的 Hesse 矩阵

1.3 运行结果

	最速下降法	牛顿法
目标函数最优解	[1. 1.]	[1. 1.]
目标函数最小值	1.5073383385145568e-19	0.0
迭代次数	1692	7

1.4 程序源码

最速下降法

import numpy as np

..

目标函数

```
def f(x):
      return 100 * (x[1] - x[0] ** 2) ** 2 + (1 - x[0]) ** 2
   # 目标函数的梯度
   def grad_f(x):
      return np.array([- 400 * (x[1] - x[0] ** 2) * x[0] - 2 * (1 - x[0]),
           200 * (x[1] - x[0] ** 2)])
   # Armijo算法
11
   def armijo(x, dk, c1=0.2, beta=0.5):
      alpha = 1
13
      while f(x + alpha * dk) > f(x) + c1 * alpha * np.dot(grad_f(x), dk):
14
          alpha *= beta
15
      return alpha
16
   # 最速下降法
   def gradient_descent(x0, max_iter=10000, tol=1e-12):
19
20
      x0: 初始点
      max_iter: 最大迭代次数
      tol: 精度
23
      0.000
      x = x0
      k = 0 # 计数: 迭代次数
26
      while k < max_iter:</pre>
          g = grad_f(x)
          d = -g
29
          # 求步长因子alpha
30
          alpha = armijo(x, d)
31
          x_new = x + alpha * d
32
          if np.linalg.norm(x_new - x) < tol:</pre>
             break
          x = x_new # 更新点
35
          k += 1 # 更新迭代次数
36
      return x, f(x), k
37
38
   # 初始点
39
x0 = np.array([-1.2, 1])
x_star, f_min, k = gradient_descent(x0)
```

```
      42
      print("目标函数最优解: ", x_star)

      43
      print("目标函数最小值: ", f_min)

      44
      print("迭代次数: ", k)
```

牛顿法

```
import numpy as np
   # 目标函数
   def f(x):
      return 100 * (x[1] - x[0] ** 2) ** 2 + (1 - x[0]) ** 2
   # 目标函数的梯度
   def grad_f(x):
      return np.array([- 400 * (x[1] - x[0] ** 2) * x[0] - 2 * (1 - x[0]),
           200 * (x[1] - x[0] ** 2)])
10
   #海森矩阵
11
   def hessian(x):
      x1 = x[0]
13
      x2 = x[1]
14
      return np.array([[ - 400 * (x2 - 3 * x1 ** 2) + 2, - 400 * x1],
                    [-400 * x1, 200]])
   # 牛顿法
   def newton(x0, max_iter=10000, tol=1e-10):
18
19
      x0: 初始点
20
      max_iter: 最大迭代次数
21
      tol: 精度
22
       0.00
24
      k = 0 # 计数: 迭代次数
25
      while k < max_iter:</pre>
          g = grad_f(x)
27
          G = hessian(x) # 海森阵
28
          x_new = x - np.squeeze(np.linalg.inv(G) @ g)
          if np.linalg.norm(g) < tol:</pre>
30
             break
```

```
      32
      x = x_new # 更新点

      33
      k += 1 # 更新迭代次数

      34
      return x, f(x), k

      35
      # 初始点

      36
      # 初始点

      37
      x0 = np.array([-1.2, 1])

      38
      x_star, f_min, k = newton(x0)

      39
      print("目标函数最优解: ", x_star)

      40
      print("目标函数最小值: ", f_min)

      41
      print("迭代次数: ", k)
```

2 第二道上机题目

2.1 题目描述

分别用共轭梯度法和拟牛顿法极小化 Powell 奇异函数

$$f(x) = (x_1 + 10x_2)^2 + 5(x_3 - x_4)^2 + (x_2 - 2x_3)^4 + 10(x_1 - x_4)^4$$

初始点 $x^{(0)} = (3, -1, 0, 1)$,解为 $x^* = (0, 0, 0, 0), f(x^*) = 0$.

2.2 迭代格式

共轭梯度法

$$\begin{split} x_{k+1} &= x_k + \alpha_k d_k \\ d_k &= -g_k + \beta_{k-1} d_{k-1} \\ d_0 &= -g_0 \\ \beta_{k-1} &= \frac{g_k^T g_k}{g_{k-1}^T g_{k-1}} \quad \text{(Fletcher-Reeves 公式)} \end{split}$$

其中, g_k 是目标函数在 x_k 处的梯度, α_k 是第 k 步的步长因子

拟牛顿法

$$x_{k+1} = x_k - \alpha_k B_k^{-1} g_k$$

其中, g_k 是目标函数在 x_k 处的梯度, α_k 是第 k 步的步长因子, B_k 为 Hesse 矩阵的第 k 步近似

2.3 运行结果

	共轭梯度法
目标函数最优解	$[-9.75925474e-08,\ 9.75925474e-09,\ -4.30262309e-08,\ -4.30262309e-08]$
目标函数最小值	1.7292433324185916e-28
迭代次数	2682

	拟牛顿法
目标函数最优解	$[\ 3.51691746e-08,\ -3.51691746e-09,\ -6.78848416e-08,\ -6.78848416e-08]$
目标函数最小值	1.43379954e-27
迭代次数	374

2.4 程序源码

共轭梯度法

```
import numpy as np

# 目标函数

def powell(x):

return ((x[0] + 10 * x[1]) ** 2 + 5 * (x[2] - x[3]) ** 2

+ (x[1] - 2 * x[2]) ** 4 + 10 * (x[0] - x[3]) ** 4)

# 目标函数的梯度

def grad_powell(x):

return np.array([2 * (x[0] + 10 * x[1]) + 40 * (x[0] - x[3]) ** 3,

20 * (x[0] + 10 * x[1]) + 4 * (x[1] - 2 * x[2]) ** 3,

10 * (x[2] - x[3]) - 8 * (x[1] - 2 * x[2]) ** 3,

10 * (x[2] - x[3]) - 40 * (x[0] - x[3]) ** 3])

# Armijo算法

def armijo(x, dk, c1=0.2, beta=0.5):
```

2 第二道上机题目

```
alpha = 1
17
       while powell(x + alpha * dk) > powell(x) + c1 * alpha *
18
           np.dot(grad_powell(x), dk):
          alpha *= beta
19
       return alpha
20
   # FR-CG算法
   def FRCG(x0, max_iter=10000, tol=1e-19):
23
24
       x0: 初始点
       max_iter: 最大迭代次数
26
       tol: 精度
27
       0.00
28
       x = x0
       k = 0
30
       d = - grad_powell(x)
31
32
       while k < max_iter:</pre>
33
          if np.linalg.norm(d) < tol:</pre>
              return x, powell(x), k
35
36
          # 求步长因子
37
          alpha = armijo(x, d)
38
39
          # 计算下一个迭代点
40
41
          x_new = x + alpha * d
          beta = (grad_powell(x_new).T @ grad_powell(x_new)) /
42
               (grad_powell(x).T @ grad_powell(x))
          d = -grad_powell(x_new) + beta * d
43
44
          # 更新点
45
          x = x_new
          k += 1 # 更新迭代次数
47
       return x, powell(x), k
48
   # 初始点
50
   x0 = np.array([3.0, -1, 0, 1])
   x_star, f_min, k = FRCG(x0)
   print("目标函数最优解: ", x_star)
```

```
54 print("目标函数最小值: ", f_min)
55 print("迭代次数: ", k)
```

拟牛顿法

```
import numpy as np
   def powell(x):
       return ((x[0] + 10 * x[1]) ** 2 + 5 * (x[2] - x[3]) ** 2
             + (x[1] - 2 * x[2]) ** 4 + 10 * (x[0] - x[3]) ** 4)
   def grad_powell(x):
       return np.array([2 * (x[0] + 10 * x[1]) + 40 * (x[0] - x[3]) **3,
                     2 * (x[0] + 10 * x[1]) + 4 * (x[1] - 2 * x[2]) **3,
                     10 * (x[2] - x[3]) - 8 * (x[1] - 2 * x[2]) **3,
10
                     -10 * (x[2] - x[3]) - 40 * (x[0] - x[3])
                         **3]).reshape(1,-1).T
12
   # BFGS算法
13
   def bfgs_update(B, s, y):
14
       return B + (y @ y.T) / (y.T @ s) - (B @ s @ s.T @ B) / (s.T @ B @ s)
15
16
   # Armijo算法
   def armijo(x, dk, c1=0.2, beta=0.5):
       alpha = 1
19
       while powell(x + alpha * dk) > powell(x) + c1 * alpha *
20
           np.dot(grad_powell(x).T, dk):
          alpha *= beta
21
       return alpha
22
   def quasi_newton_method(x0, max_iter=10000, tol=1e-19):
24
25
       x0: 初始点
       tol: 收敛阈值
27
       max_iter: 最大迭代次数
28
       0.00
29
       # 转为列向量
30
       x = x0.reshape(1,-1).T
```

```
B = np.eye(4) # 初始海森矩阵近似为单位矩阵
32
      g = grad_powell(x)
33
34
      k = 0 # 计数
35
      while k < max_iter:</pre>
36
         # 检查收敛性
         if np.linalg.norm(g) < tol:</pre>
38
             break
         # 计算搜索方向
         d = - np.linalg.inv(B) @ g
42
43
         # 求步长因子 alpha
44
         alpha = armijo(x, d)
45
         x_new = x + alpha * d
46
         g_new = grad_powell(x_new)
         # 计算s和y
49
         s = x_new - x
         y = g_new - g
51
52
         # BFGS校正更新B
         B = bfgs_update(B, s, y)
54
         # 更新x和g
         x = x_new
         g = g_new
58
         k += 1
      return x, powell(x), k
61
62
   # 初始点
   x0 = np.array([3,-1,0,1])
   # 使用拟牛顿法求解
x_star, f_min, k= quasi_newton_method(x0)
67 # 转为行向量
x_star = x_star.T.reshape(4)
69 print("目标函数最优解: ", x_star)
  print("目标函数最小值: ", f_min)
```

print("迭代次数: ", k)