Attention & Transformer

Minjong Lee

POSTECH CSE

minjong.lee@postech.ac.kr

목차

- Attention
- Transformer

Attention? Transformer?

- 최근 화제인 ChatGPT와 같은 Transformer-based model이 좋은 성능을 보여주고 있다
 - Transformer의 구조는 attention으로 이루어져 있다

Attention

• 데이터 측면에서 봤을 때는 여러 데이터들 중 어떤 데이터에 집중해야 할 지 사용된다!

▶특히 자연어 데이터에서 많이 사용되며, 요즘은 비전이나 딥러닝이 활용되는 많은 분야에 적용됨. 데이터의 길이 등에 영향을 받지 않고 굉장히 Flexible한 구조를 디자인 할 수 있는 구조!

Sequence-to-Sequence: the Bottleneck Problem

Attention

• Seq2Seq에 사용되는 attention 기법 중 Dot-Product Attention에 대해 알아보자

• 어텐션 스코어(Attention Score)를 구한다

$$score(s_t, h_i) = s_t^T h_i$$

$$e^t = [s_t^T h_1, \dots, s_t^T h_N]$$

- Attention distribution을 계산한다
 - softmax 함수를 사용한다

• Attention value $a_t = \sum_{i=1}^N \alpha_i^t h_i$ 를 계산한다

• 디코더의 hidden state와 Attention value a_t 를 연결하고, FC layer를 통과시킨다 (예측값 출력)

- $v_t = [a_t, s_t]$
- output = $FC(v_t)$
 - Task에 따라 출력에 softmax 등을 취할 수 있다

Score function 종류

이름	스코어 함수	Defined by
dot	$score(s_t,\ h_i) = s_t^T h_i$	Luong et al. (2015)
$scaled\ dot$	$score(s_t,\ h_i) = rac{s_t^T h_i}{\sqrt{n}}$	Vaswani et al. (2017)
general	$score(s_t,\ h_i) = s_t^T W_a h_i \ //\ ext{단},\ W_a$ 는 학습 가능한 가중치 행렬	Luong et al. (2015)
concat	$score(s_t,\ h_i) = W_a^T\ tanh(W_b[s_t;h_i]), score(s_t,\ h_i) = W_a^T\ tanh(W_bs_t + W_ch_i)$	Bahdanau et al. (2015)
location-base	$lpha_t = softmax(W_a s_t)$ // $lpha_t$ 산출 시에 s_t 만 사용하는 방법.	Luong et al. (2015)

Attention

• Attention의 구성 요소! (맥락의 정보를 흡수!!)

Attention 종류

- Self Attention
 - 스스로의 관계를 파악

- Cross Attention
 - 다른것과의 관계를 파악 (ex 번역)

목차

- Attention
- Transformer

Transformer

• 기존의 모델 → Attention + RNN

- Transformer
 - Attention만으로 구성된 모델
 - 현재 가장 널리 사용되는 구조 중 하나 (RNN은 요즘 잘 사용되지 않음)

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com

Llion Jones* Google Research llion@google.com Noam Shazeer*
Google Brain
noam@google.com

Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Aidan N. Gomez* †
University of Toronto
aidan@cs.toronto.edu

Lukasz Kaiser*
Google Brain
lukaszkaiser@google.com

Attention is all you need

A Vaswani, N Shazeer, N Parmar... - Advances in neural ..., 2017 - proceedings.neurips.cc ... the number of **attention** heads and the **attention** key and value dimensions, keeping the amount of computation constant, as described in Section 3.2.2. While single-head **attention** is 0.9 ... ☆ 저장 切 인용 35887회 인용 관련 학술자로 전체 35개의 버전 ≫

Transformer

- Encoder + Decoder
 - 각 모델 내에서 self attention을 수행하며
 - Encoder와 Decoder 사이에서 Cross attention을 수행한다

Transformer

Transformer: Multi Head Attention

