

中国人民解放军战略支援部队信息工程大学—曹一冰讲师

PLA Strategic Support Force Information Engineering University——Lecturer. Yibing Cao

● 主要研究方向: 地理空间建模、地理信息系统平 台及应用技术研究。

▶ 获省部级科技进步二等奖1项、三等奖1项。获第 五届全国高校GIS青年教师讲课比赛一等奖,指导 第九届全国大学生GIS应用技能大赛获特等奖。

● 近五年来,主持国家重点研发计划项目子课题2项,发表学术论文10篇,受理国家发明专利9项,获得计算机软件著作权7项。

凸包

在一个实数向量空间V中,对于给定集合X,所有包含X的凸集的交集S被称为X的凸包。

X的凸包可以用X内所有点 $(X_1, \dots X_n)$ 的凸组合来构造。

凸包

最外层的点连接起来构成的 凸多边形,其中凸多边形包 含所有离散点。

1 凸包生成 2 凸包剖分 3 离散点内插

(1) 求出点集中满足min(x)、min(y)、max(x)、max(y)的四个点,并按逆时针方向存储于凸包数组中;

1 凸包生成 2 凸包剖分 3 离散点内插

(2) 顺序取凸包数组中的点,如 P_1 、 P_2 ,计算有向线段 P_1P_2 右侧所有离散点到 P_1P_2 的距离,并求出距离最大的点,记为P;

1 凸包生成 2 凸包剖分 3 离散点内插

(3) 将P点插入到凸包数组 P_1P_2 之间,并将P赋给 P_2 ;

1 凸包生成 2 凸包剖分 3 离散点内插

(4) 重复以上步骤,直到线段 P_1P_2 右侧没有离散点为止;

1 凸包生成 2 凸包剖分 3 离散点内插

(5) 取凸包数组中的下一条边,重复以上步骤;

 P_{7}

1 凸包生成 2 凸包剖分 3 离散点内插

(6) 当凸包数组中任意相临两点连线右侧不存在离散点时,凸包生成完毕。

三、逐点插入法构建Delaunay三角网

1 凸包生成 2 凸包部分 3 离散点内插

(1) 在凸包数组中依次取出相邻两条凸包边,构成三角形;如果该三角形外接圆内不包含凸包上的任何其它点,则记录该三角形,并将剩余部分作为新的凸包。

三、逐点插入法构建Delaunay三角网

1 凸包生成 2 凸包部分 3 离散点内插

(2) 重复上述过程,直到凸包数组中只剩下三个离散点为止;将最后三个离散点构成一个三角形,凸包剖分结束。

1 凸包生成 2 凸包剖分 3 离散点内插

(1) 从剩余离散数据中取出一个点,找出外接圆包含该离散点的所有三角形,构成插入区;

1 凸包生成 2 凸包剖分 3 离散点内插

(2) 删除插入区内的三角形公共边,形成该插入点的待插入多边形;

1 凸包生成 2 凸包剖分 3 离散点内插

(3) 将插入点与待插入多边形所有顶点相连,构成新的Delaunay三角形;

1 凸包生成 2 凸包剖分 3 离散点内插

(4) 重复以上步骤,直到所有离散点插入完,算法结束。

如何在计算机中存储TIN?

- 1、结点
- 2、边
- 3、三角面

结点列表

标识码	X	Y	Z
$\mathbf{P_1}$		>	
P_2			
P ₃ P ₄	T.		
P_4		\sim	
P_5			
$\mathbf{P_6}$			
P_7		×	
P ₈			
P	100		
P_{10}			

	P_4 D	3
D d	P_8	P_2
P_5	F K	
G	P_{g}	P_{10} A
P_6	H • • • • • • • • • • • • • • • • • • •	P_1

三角形列表

1、记录每个三角形的三个结点

2、记录每个三角形相邻的三个 三角形

03 TIN的存储方法 TIN Storage Method

三角形列表

标识码	结点列表	相邻三角形
A	P_1, P_{10}, P_2	J,B,0
В	P_2, P_{10}, P_8	A,K,C
C	P_2, P_8, P_3	B,D,0
D	P_3, P_8, P_4	C,E,0
E	P_4, P_8, P_5	D,F,0
I	P_7, P_9, P_{10}	H,K,J
J	P_1, P_7, P_{10}	0,I,A
K	P_9, P_8, P_{10}	F,B,I

不规则三角网TIN

Triangulated Irregular Network

构建TIN

Delauny三角网

目标

直接采用地形特征 点表达地形表面 过程

逐点插入法

不规则三角网TIN

Triangulated Irregular Network

作业题

构建Delaunay三角网的算法:

- □ 逐点插入法
- □ 分治算法
- □ 三角网生长算法

