Texas Tech University Department of Economics Spring 2018

Eco 4306: Economic and Business Forecasting

Final Exam

ID:
Short questions (40 points)
Q1. 4 points
Q2. 4 points
Q3. 4 points
Q4. 4 points
Q5. 4 points
Q6. 4 points
Q7. 4 points
Q8. 4 points
Q9. 4 points
Q10. 4 points
Applied problems (64 points)
Q11. 8 points
Q12. 8 points
Q13. 8 points
Q14. 8 points
Q15. 8 points
Q16. 8 points
Q17. 8 points
Q18. 8 points

Name:

Good luck!

Question 1. (4 points)

What is Granger causality and how do we test it?

Question 2. (4 points)

Explain what spurious regression problem is and give an example.

 $\left(\mathrm{EWMA}\right)$ models of the conditional variance.

Write the equation for the autoregressive conditional heteroscedasticity ARCH(1) model. Explain the intuition behind this model.

Question 8. (4 points)

What are some weaknesses of ARCH models, and which alternative models have been developed to address them?

Explain what 1% VaR is and draw a diagram to illustrate this.

Question 10. (4 points)

Consider a GARCH(1,1) model for daily S&P 500 returns from 1/2/1998 to 7/25/2008 sample. With normal innovations, the number of violations $r_t < r_t^{VaR(0.01)}$ is 42 which represents 1.58% of observations. With innovations from Student-t distribution the number of violations $r_t < r_t^{VaR(0.01)}$ is 30 or 1.13% of the sample. Which of these two models would be more suitable for risk management purposes and why?

Question 11 (8 points)

Figure below shows the time series for the S&P500 Index, the log transformed S&P500 Index, and also their first differences. Explain which of the four series are nonstationary, first order weakly stationary, second order weakly stationary.

Question 12 (8 points)

Consider the one quarter ahead Fed's forecast for inflation during the 1979Q4-1987Q3 period.

Suppose that we want to test whether the Fed's forecast are optimal under the symmetric quadratic loss function, which would imply that $E(y_{t+1}) = f_{t,1}$ and thus the forecast error $e_{t,1} = y_{t+1} - f_{t,1}$ would have to satisfy $E(e_{t,1}) = 0$, and in the regression $e_{t,1} = \beta_0 + e_t$ coefficient β_0 should be zero. Figure below shows that time series plot for the forecast errors, and the results of that regression.

Interpret these results; what can we say about Fed's loss function during 1979Q4-1987Q3 based on them?

Dependent Variable: GPGDP_E1 Method: Least Squares Date: 02/24/17 Time: 19:34 Sample (adjusted): 1980Q1 1987Q3 Included observations: 31 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-1.017073	0.202722	-5.017080	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.000000 0.000000 1.128708 38.21948 -47.23215 1.562466	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin	ent var iterion rion	-1.017073 1.128708 3.111751 3.158009 3.126830

Question 13 (8 points)

Consider the data for monthly changes in U.S. residential construction for the period January 2002-January 2011 shown below. Discuss what kind of model would you would estimate for this time series, write its equation, and explain why you would choose this model.

Question 14 (8 points)

Consider two candidate models for change in monthly private residential construction spending, AR(1) and AR(2)+SAR(1), the results for which are below. Evaluate the adequacy of these models based on the correlograms of residuals, AIC and BIC, and statistical significance of coefficients.

Dependent Variable: DCONST Method: ARMA Maximum Likelihood (BFGS) Date: 04/11/18 Time: 16:28 Sample: 1993M02 2013M12 Included observations: 251 Convergence achieved after 3 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	34.02301	284.5681	0.119560	0.9049
AR(1)	0.503787	0.082472	6.108569	0.0000
SIGMASQ	4263658.	311155.6	13.70266	0.0000
R-squared	0.254386	Mean depend	ent var	49.44223
Adjusted R-squared	0.248373	S.D. depende	nt var	2396.078
S.E. of regression	2077.314	Akaike info cri	terion	18.12859
Sum squared resid	1.07E+09	Schwarz criter	rion	18.17072
Log likelihood	-2272.138	Hannan-Quin	n criter.	18.14554
F-statistic	42.30579	Durbin-Watso	n stat	2.030264
Prob(F-statistic)	0.000000			

Date: 04/11/18 Time: 16:30 Sample: 1993M01 2013M12 Included observations: 251

Q-statistic probabilities adjusted for 1 ARMA term

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
10	l di	1	-0.016	-0.016	0.0654	
· 🗀		2	0.196	0.196	9.8361	0.002
<u> </u>	 	3	-0.156	-0.156	16.045	0.000
□ !	 	4	-0.152	-0.202	21.954	0.000
₁ ₫ •	1 1	5	-0.073	-0.014	23.343	0.000
- ·	-	6	-0.437		72.819	0.000
' I I'	! □ '	7	-0.077		74.368	0.000
■ '	<u>'</u>	8	-0.167		81.652	0.000
□ !		9	-0.141		86.868	0.000
' !=	ļ ' ['	10		-0.055	94.847	0.000
1 1	! ■ '	11	-0.004		94.852	0.000
1	'	12	0.928	0.873	323.74	0.000
· · · · · · · · · · · · · · · · · · ·	' '	13	-0.022	0.004	323.87	0.000
· 📜	ļ "	14		-0.179	333.60	0.000
<u> </u>	' ['		-0.170		341.37	0.000
- <u>- </u>	' '		-0.138	0.000	346.48	0.000
' " '	'['		-0.073		347.93	0.000
- ·	' '	:	-0.426	0.036	397.29	0.000
' [] '	ļ ' ļ '		-0.074	0.040	398.77	0.000
<u> </u>	' ['		-0.181		407.75	0.000
- ¶•	' 	21	-0.107	0.110	410.89	0.000
' P	ļ ' Q '	22		-0.070	416.75	0.000
111	ļ ' ! '	23		-0.017	416.81	0.000
	' '	24		-0.003	623.42	0.000
<u>년</u>	' '	25	-0.023	0.005	623.56	0.000
<u>_</u>	']'	26		-0.009	633.38	0.000
<u>"</u>	<u> </u> ' <u> </u> '	:	-0.183		642.88	0.000
9'	'¶'		-0.128		647.55	0.000
<u>"</u> "	<u> </u> '['	i	-0.074		649.09	0.000
<u> </u>	'] '		-0.408	0.052	696.98	0.000
<u>"</u> "	<u> </u> ' <u>'</u> '	31			698.38	0.000
<u>"</u> '	ļ ┩'		-0.203		710.36	0.000
'만	' '	33	-0.069	0.028	711.77	0.000
'.₽	']'	34		-0.001	715.82	0.000
' !!	<u> </u> '	35		-0.014	716.18	0.000
1	Q '	36	0.783	-0.102	897.23	0.000

Dependent Variable: DCONST Method: ARMA Maximum Likelihood (BFGS) Date: 04/11/18 Time: 16:26 Sample: 1993M02 2013M12 Included observations: 251 Convergence achieved after 7 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(1) AR(2) SAR(12) SIGMASQ	214.4219 0.497140 0.116143 0.944592 373960.6	1374.109 0.054595 0.052147 0.013249 26485.07	0.156044 9.105947 2.227211 71.29646 14.11968	0.8761 0.0000 0.0268 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.934603 0.933540 617.7066 93864109 -1980.137 878.9103 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	49.44223 2396.078 15.81783 15.88805 15.84609 1.975678

Date: 04/11/18 Time: 16:26 Sample: 1993M01 2013M12 Included observations: 251

Q-statistic probabilities adjusted for 3 ARMA terms

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
1)1	1)1	1	0.011	0.011	0.0322	
. ≱ .	<u> </u> -	2	0.054	0.054	0.7743	
i ₫ i	141	3	-0.054	-0.056	1.5282	
(1		4	-0.032	-0.034	1.7972	0.180
۱)	<u> </u> -	5	0.042	0.049	2.2539	0.324
ı d ı	<u> </u>	6	-0.091	-0.092	4.3953	0.222
ı ₫ ı	•¶ ·	7	-0.081	-0.089	6.1091	0.191
· þ		8	0.112	0.132	9.3965	0.094
₁₫ י	'Щ'		-0.073		10.799	0.095
' i i'	ļ 'Ū'	10	-0.031		11.048	0.137
· I I ·	10	11	-0.041	-0.009	11.501	0.175
1 1	1 1		-0.005		11.507	0.243
' ! !'	ļ 'Ū'	13	-0.013		11.553	0.316
1 1	1 11	14	-0.007	0.014	11.565	0.397
1 1	1 11	15	0.006	0.021	11.575	0.480
' ['	'[t	16		-0.024	11.670	0.555
۱) ۱	יון י	17	0.040	0.045	12.109	0.598
· I I ·		18	-0.095	-0.096	14.580	0.482
' [[-	ļ ' <u>l</u> l'	19	0.042	0.037	15.068	0.520
'] I'	<u> </u>	20	0.070	0.082	16.416	0.495
' ['¶'	21	-0.041	-0.061	16.875	0.532
- 1)1	'['	22		-0.006	16.904	0.596
낻	' <u> </u> <u>'</u>	23	-0.005	0.036	16.912	0.659
' P	! ',₽	24	0.158	0.146	23.933	0.296
']'	<u>'</u>	25		-0.038	23.952	0.350
'∰ '	' ! '		-0.075		25.527	0.324
' ['	'['		-0.033		25.837	0.362
']'	<u>'</u> !'	28	0.024	0.018	25.999	0.408
' ! '	<u> </u>		-0.044		26.564	0.432
'¶'	' '	30	-0.043		27.097	0.459
'[['	'['	31	-0.037		27.498	0.491
' þ i	<u> </u>	32	0.064	0.024	28.673	0.482
' <u>[</u> '	<u>' [</u>]'	33	0.022	0.028	28.816	0.527
10	<u> </u>	34	0.044	0.058	29.388	0.549
']'	ļ <u>'</u>]'		-0.016		29.459	0.596
<u></u>	l = '	36	-0.071	-0.119	30.955	0.569

Question 15 (8 points)

Consider two models for U.S. real GDP, used to construct forecast for the period 2010Q1-2016Q4:

- model A: deterministic trend model for which the sequence of 1-step ahead forecasts has RMSE=103.45 and the multistep forecast has RMSE=1649.06
- model B: stochastic trend model for which the sequence of 1-step ahead forecasts has RMSE=77.32 and the multistep forecast has RMSE=905.18.

The 1-step ahead forecasts are then used to perform the test of equal predictive ability be estimating

$$\Delta L_{t+j,1} = \beta_0 + u_{t+j}$$
 with $j = 0, 1, 2, \dots, T - t - 1$

where $\Delta L_{t+j,1} = (e_{t+j,1}^A)^2 - (e_{t+j,1}^B)^2$, and $e_{t+j,1}^k$ is the one step ahead forecast error for forecast from model k in period t+j. Explain the idea behind this test and interpret its results below. Discuss how we would use it together with above RMSE values in model selection process.

Dependent Variable: DL_TREND
Method: Least Squares
Date: 04/09/17 Time: 18:34
Sample (adjusted): 2010Q1 2016Q4
Included observations: 28 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	5454.311	1293.939	4.215275	0.0002
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.000000 0.000000 6846.884 1.27E+09 -286.5045 2.683486	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin	nt var terion ion	5454.311 6846.884 20.53604 20.58361 20.55058

Question 16. (8 points)

Interpret the results of the Granger causality test for a VAR with three variables: $y_{1,t} = 400\Delta \log GDP_t$ is the growth rate of the U.S. real GDP and $y_{2,t} = 400(\Delta \log SP500_t - \Delta \log p_t^{GDP})$ is the inflation adjusted return of S&P 500, and y_{3t} is the Leading Index for the United States.

Explain what these Granger causality imply about the usefulness of each of the threes variables when it comes to predicting the other ones. Is there any economic intuition behind these results?

Dependent	variable:	GRGDP
Doponaom	ranabio.	011001

Excluded	Chi-sq	df	Prob.
RRSP500 LI	3.689833 22.08652	1 1	0.0547 0.0000
All	27.70217	2	0.0000

Dependent variable: RRSP500

Excluded	Chi-sq	df	Prob.
GRGDP LI	0.021518 0.206983	1 1	0.8834 0.6491
All	0.673715	2	0.7140

Dependent variable: LI

Excluded	Chi-sq	df	Prob.
GRGDP RRSP500	2.487304 9.320140	1 1	0.1148 0.0023
All	12.78463	2	0.0017

Question 17. (8 points)

Consider a bivariate VEC

$$\begin{split} \Delta \log p_{t}^{GAS} &= \gamma_{1} z_{t-1} + \kappa_{11} \Delta \log p_{t-1}^{GAS} + \kappa_{12} \Delta \log p_{t-2}^{GAS} + \phi_{11} \Delta \log p_{t-1}^{OIL} + \phi_{12} \Delta \log p_{t-2}^{OIL} + \varepsilon_{1,t} \\ \Delta \log p_{t}^{OIL} &= \gamma_{2} z_{t-1} + \kappa_{21} \Delta \log p_{t-1}^{GAS} + \kappa_{22} \Delta \log p_{t-2}^{GAS} + \phi_{21} \Delta \log p_{t-1}^{OIL} + \phi_{22} \Delta \log p_{t-2}^{OIL} + \varepsilon_{2,t} \end{split}$$

where $z_{t-1} = \log p_{t-1}^{GAS} - \beta_1 \log p_{t-1}^{OIL} - \beta_0$ is the error terms period t-1.

Is the coefficient β_1 statistically significant? Interpret what the estimated value for β_1 means.

Are γ_1 and γ_2 statistically significant? Are the signs of γ_1 and γ_2 in the estimated VEC model consistent with error correction mechanism that moves the system back to the long run equilibrium, whenever there is a disruption and $z_{t-1} \neq 0$?

Sample (adjusted): 1995M04 2010M12 Included observations: 189 after adjustments Standard errors in () & t-statistics in []

Cointegrating Eq:	CointEq1	
LOG(PGAS(-1))	1.000000	
LOG(POIL(-1))	-0.631247 (0.01394) [-45.2872]	
С	1.738756 (0.05040) [34.4992]	
Error Correction:	D(LOG(PGAS))	D(LOG(POIL))
CointEq1	-0.334163 (0.07765) [-4.30353]	-0.029007 (0.12377) [-0.23435]
D(LOG(PGAS(-1)))	0.353684 (0.09534) [3.70974]	-0.138917 (0.15197) [-0.91409]
D(LOG(PGAS(-2)))	-0.143176 (0.09105) [-1.57241]	-0.057373 (0.14514) [-0.39529]
D(LOG(POIL(-1)))	0.135581 (0.06819) [1.98830]	0.275317 (0.10870) [2.53293]
D(LOG(POIL(-2)))	0.017021 (0.06806) [0.25011]	0.170246 (0.10848) [1.56934]

Question 18. (8 points)

Consider the GARCH(1,1) model for the S&P 500 daily returns.

Dependent Variable: R Method: ML - ARCH (BHHH) - Normal distribution Sample: 5815 8471 Included observations: 2657 Convergence achieved after 10 iterations Bollerslev-Wooldrige robust standard errors & covariance Variance backcast: ON $GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1)$ Coefficient Std. Error z-Statistic 0.036267 \mathbf{C} 0.017439 2.079665 0.0376 Variance Equation C 0.010421 0.005245 1.987099 0.0469 0.011338 RESID(-1)^2 0.065649 5.790038 0.0000 GARCH(-1) 0.927400 0.011045 83.96233 0.0000 0.009761 R-squared -0.000534 Mean dependent var Adjusted R-squared -0.001666 S.D. dependent var 1.146761 S.E. of regression 1.147716 Akaike info criterion 2.888638 Sum squared resid 3494.671 Schwarz criterion 2.897498 -3833.556 Log likelihood Durbin-Watson stat 2.079139

Write the equations for the estimated GARCH(1,1) model, with estimated parameter values plugged into these equations.

On April 2, 2008, the 1-day-ahead conditional mean is $\mu_{t|t-1} = 0.036$, the 1-day-ahead conditional standard deviation $\sigma_{t|t-1} = 1.785$. Calculate the 1% VaR and 5% VaR, given that $\Phi^{-1}(0.05) = -1.645$ and $\Phi^{-1}(0.01) = -2.326$. Interpret these numbers, given a portfolio worth 1 million dollars.