

Elasticité

Exercice d'entrainement

Soit un milieu qui occupe dans sa configuration non déformée le domaine parallélépipèdique $0 \le X_1 \le L_1$, $0 \le X_2 \le L_2$, $0 \le X_3 \le L_3$ rapporté au repère orthonomé $(0, \underline{e}_1, \underline{e}_2, \underline{e}_3)$. Le matériau constitutif est élastique linéaire, homogène et isotrope de coefficients de Lamé λ et μ . Le solide est encastré dans un bâti rigide fixe (vecteur déplacement nul) sur toutes ses faces excepté la face $X_3 = L_3$. Cette surface est soumise à un effort de pression réparti $-p\underline{e}_3$. Les efforts volumiques sont négligés. Sous ce chargement, la pièce est en équilibre et l'hypothèse des petites transformations est supposée satisfaite. On recherche le champ de déplacement sous la forme $\xi(\underline{X}) = \xi(X_3)\underline{e}_3$.

- Justifier la forme du champ de déplacement proposée pour ce problème.
- Montrer que la fonction $\xi(X_3)$ vérifie nécessairement la condition aux limites $\xi(X_3=0)=0$ pour conduire à une solution du problème.
- Etablir l'équation différentielle que doit nécessairement satisfaire la fonction $\xi(X_3)$ pour que le champ de déplacement proposé puisse être solution du problème.
 - En déduire que la fonction $\xi(X_3)$ est nécessairement une fonction linéaire de X_3 .
 - Calculer le tenseur des contraintes $\underline{\sigma}(\underline{X})$ en tout point \underline{X} du milieu associé à ce champ de déplacement.
 - Traduire les conditions aux limites en efforts sur la face $X_3 = L_3$.
 - En déduire l'expression du champ de déplacement solution $\xi(\underline{X}) = -p/(\lambda + 2\mu) X_3 \underline{e}_3$.
- Calculer les densités d'efforts surfaciques exercées sur les faces $X_1 = 0$, $X_1 = L_1$ et $X_2 = 0$, $X_2 = L_2$. Interpréter la nature de ces efforts et les représenter

Extraction d'un bouchon

Un bouchon (\mathcal{D}) cylindrique de révolution, d'axe $O\vec{e}_z$, de rayon intérieur a, de rayon extérieur b (b > a), de longueur ℓ , limité par deux sections droites S_- et S_+ d'équations respectives $z = -\ell/2$ et $z = +\ell/2$, est constitué d'un matériau élastique linéaire, homogène et isotrope de coefficients de Lamé λ et μ .

Ce bouchon est collé sur la surface S_b d'équation r = b à un tube rigide fixe. Les sections droites S_- et S_+ sont soumises à des densités d'efforts surfaciques telles que le torseur des efforts sur chacune des deux couronnes soit nul.

On cherche à extraire le bouchon en exerçant sur la surface latérale intérieure S_a d'équation r=a une densité surfacique d'effort $\frac{\mathcal{F}}{2\pi a\ell}$ \vec{e}_z où \mathcal{F} est une constante positive donnée. Les forces volumiques sont négligées.

- 1. Écrire les équations et conditions aux limites du problème d'équilibre du bouchon.
- 2. On recherche un champ de déplacements solution de ce problème de la forme $\underline{\xi}(r,\theta,z) = \xi(r)\underline{e}_z$. Expliciter l'équation différentielle que doit satisfaire la fonction $\xi(r)$. Intégrer cette équation.
- 3. Déterminer un couple $(\xi, \underline{\sigma})$ solution du problème.
- 4. En quels points du bouchon la contrainte tangentielle maximale τ_{max} atteint-elle sa plus grande valeur?
- 5. On suppose que la condition d'adhésion le long de S_b est vérifiée tant que :

$$\tau_{max} < \tau^*$$
 en $r = b$ avec τ^* constante positive donnée,

(Le bouchon glisse le long de cette paroi dès que l'égalité est atteinte).

Calculer alors l'effort minimum \mathcal{F}_{min} que l'on doit exercer pour pouvoir extraire le bouchon.