从四个旋翼的升力测试结果可以看出,四个旋翼之间的特性差异比较大,总体来说前后电机所产生的升力较大,左右电机产生的升力较小,后电机效率最高,右电机效率最低。同样在 5.0V 的情况下,前电机产生 157.4 克的升力,后电机产生 155.5 克的升力,左电机产生 141.5 克的升力,右电机产生 137.0 克的升力。

特性的差异,不仅需要通过软件对其进行初始补偿,而且也需要通过安装角度传感器和角速率陀螺对其进行自动修正,才能提高飞行器的飞行稳定性。

2.7 PWM 频率与旋翼所产生的升力和效率之间的关系

由于旋翼通过 PWM 控制,因此必须考虑到 PWM 频率的选择。频率越高, 电机转速越平稳,越有利于飞行器的飞行稳定性,但同时开关元件的开关频率也 高,能量消耗大,效率低,因此需要选择一个合适的频率。

为了测得旋翼的最优工作频率,设计了一个遥控可变频程序。程序循环输出 8 种不同频率的脉冲,每种输出一分钟之后自动转换为输出另一频率的脉冲,在 这一分钟内,可以通过遥控器调节脉冲的占空比,以满足需要。

本实验的内容和思想是:

- ① 为具可比性,因此测试时通过调节输出占空比,保证在各种不同频率下 旋翼所产生的升力大体一致;
- ② 旋翼所加电压为 7.5V:
- ③ 记录不同频率下的升力振动幅度、升力大小、电流大小、及占空比。下表为所测量得到的数据:

频率 Hz		1						
	第一次	第二次	第三次	第四次	平均值	振幅	电流 A	占空比
91.58	113.0	108.0	104.5	117.0	110.6	-6.1~6.4	2.8	54%
183.2	112.0	109.0	114.5	103.0	109.6	-6.6~4.9	2.6	59%
366.3	106.0	105.0	102.5	110.0	105.9	-3.4~4.1	2.5	64%
732.6	107.0	111.0	104.0	109.0	107.8	-3.8~3.2	2.4	70%
1.466k	107.5	103.5	105.5	110.5	106.8	-3.3~3.7	2.2	75%
2.933k	113.0	107.0	109.0	111.0	110.0	-3.0~3.0	2.1	81%
5.868k	115.5	117.5	111.0	118.5	115.6	-4.6~2.9	2.3	86%
11.74k	112.0	114.5	111.0	117.0	113.6	-2.6~3.4	2.6	90%

由测得的数据可以计算得出不同频率下频率与功率消耗之间的关系。

91.58	183.2	366.3	732.6	1.466k	2.933k	5.868k	11.74k
110.6	109.6	105.9	107.8	106.8	110.0	115.6	113.6
10.50	10.73	11.63	12.60	12.40	12.76	14.84	17.55
	110.6	110.6 109.6	110.6 109.6 105.9	110.6 109.6 105.9 107.8	110.6 109.6 105.9 107.8 106.8	110.6 109.6 105.9 107.8 106.8 110.0	110.6 109.6 105.9 107.8 106.8 110.0 115.6

图 2-19 脉冲输出频率与旋翼振动之间的关系曲线

图 2-20 输出脉冲频率与旋翼消耗功率之间的关系曲线

从图 2-19 可以看出,当频率高于 732.6Hz 以后,旋翼升力振幅随着频率的变化仅有少量的变化;从图 2-20 可以看出,在频率低于 2.933kHz 时,虽然功率消耗随着频率升高逐渐增加,但幅度较小,只有在 5.868k 开始功率存在骤然增加的趋势。

从多方面考虑,最终决定采用 2.933kHz 作为电机工作频率。

2.8 设计载重的确定

从对四个旋翼的升力测试结果可以得出,在 5.0V 电压条件下,四个旋翼所产生的升力分别为: 157.4g、155.5g、141.5g、137.0g。

四桨碟形飞行器旋翼电机的设计平均电压为 5.0V, 暂不考虑地面状况对旋翼升力的影响, 因此飞行器的最大产生升力约为 137.0×4=548g。