

Lecture 13: Principal components analysis (PCA)

Lecturer: Jie Fu

High-Dimensional Data

• High-Dimensions = Lot of Features

Surveys Netflix

	movie 1	movie 2	movie 3	movie 4	movie 5	movie 6
Tom	5	?	?	1	3	?
George	?	?	3	1	2	5
Susan	4	3	1	?	5	1
Beth	4	3	?	2	4	2

Food preference

	kale	taco bell	sashimi	pop tarts
Alice	10	1	2	7
Bob	7	2	1	10
Carolyn	2	9	7	3
Dave	3	6	10	2

- PCA: Unsupervised learning techniques to extract hidden dimensional structure from high dimensional dataset
 - Visualization
 - Efficient use of resources.
 - Statistical: lower dimension --> better generalization.
 - Further processing for other machine learning algorithm.

Motivating problem

- Friends' preferences of four different food choice.
- Dimension of data points: 4
- Number of data points: 4

Can we visualize the data in less than 4 dimension?

	kale	taco bell	sashimi	pop tarts
Alice	10	1	2	7
Bob	7	2	1	10
Carolyn	2	9	7	3
Dave	3	6	10	2

Table 1: Your friends' ratings of four different foods.

Motivating problem

Each row of the data can be expressed approximately:

	kale	taco bell	sashimi	pop tarts
Alice	10	1	2	7
Bob	7	2	1	10
Carolyn	2	9	7	3
Dave	3	6	10	2

Table 1: Your friends' ratings of four different foods.

$$\bar{\mathbf{x}} + a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2$$

where

$$\bar{\mathbf{x}} = (5.5, 4.5, 5, 5.5)$$

is the average of the data points,

$$\mathbf{v}_1 = (3, -3, -3, 3),$$

$$\mathbf{v}_2 = (1, -1, 1, -1),$$

 $egin{array}{c|cccc} {\bf Name} & (a_1,a_2) & \\ {\bf Alice} & (1,\ 1) & \\ {\bf Bob} & (1,\ -1) & \\ {\bf Carolyn} & (-1,\ -1) & \\ {\bf Dave} & (-1,\ 1) & \\ \end{array}$

Table 1: Values of (a_1, a_2) for each person

The role of PCA

- Reduce the dimensionality of data points (eg. 4 to 2):
- Given a list of m n-dimensional vectors (data points),

$$x_1, x_2, \ldots, x_m \in \mathbb{R}^n$$

For each vector x_i , express it as linear combinations of k n-dimensional vectors $v_1, \ldots, v_n \in \mathbb{R}^n$ such that

$$x_i \approx \sum_{j \in 1}^k a_{ij} v_j$$

Dimension reduction: $n \rightarrow k$, which is smaller than n.

PCA

PCA is an orthogonal projection or transformation of the data into a
possible lower dimensional subspace so that the variance of the
projected data is maximized.

Only one relevant feature

Both features are relevant, but

PCA

Does the data mostly lie in a subspace? If so, what is its dimensionality?

 The goal is to identify the axes or subspace the highdimensional data should be projected into.

Maximize the variance

Why maximize the variance of the projected data?

Variance tells us how much information or "spread" a dataset has. In PCA, we assume directions with higher variance are more informative.

Maximize the variance

Which of the two projections maximize the variance?

Figures from Andrew Ng (CS229 Lecture Notes)

Maximize the variance

We want to find new axes (directions) to project our data such that:

- The projected data has maximum variance.
- The new features (called principal components) are uncorrelated.

	kale	taco bell	sashimi	pop tarts
Alice	10	1	2	7
Bob	7	2	1	10
Carolyn	2	9	7	3
Dave	3	6	10	2

Table 1: Your friends' ratings of four different foods.

Step 1: center the data matrix

Step 2: compute the covariance matrix of the centered data

Step 3: select top k principal components/features

Step 1 and step 2

Center the data

$$X_c = X - \bar{X}$$

Example:

Consider the following dataset with 5 samples and 3 features:

 $X = \begin{bmatrix} 2 & 3 & 1 \\ 4 & 2 & 4 \\ 4 & 4 & 3 \\ 0 & 6 & 7 \\ 1 & 7 & 8 \end{bmatrix}$ where $X = \begin{bmatrix} 2 & 3 & 1 \\ 4 & 2 & 4 \\ 4 & 4 & 3 \\ 0 & 6 & 7 \\ 1 & 7 & 8 \end{bmatrix}$

3D Scatter Plot

Mean of each feature

Centered data matrix

$$X_c = \begin{bmatrix} -0.2 & -1.4 & -3.6 \\ 1.8 & -2.4 & -0.6 \\ 1.8 & -0.4 & -1.6 \\ -2.2 & 1.6 & 2.4 \\ -1.2 & 2.6 & 3.4 \end{bmatrix}$$

Step 2: compute the covariance matrix of the centered data (use the transposed.)

np.cov(M_c.T)

The covariance matrix K is given by:

$$K = \frac{1}{n-1} X_{c}^{\top} X_{c}$$

$$\text{Cov}(X_{i})$$

$$\text{Cov}(X_{2}, X_{i})$$

$$\begin{bmatrix} 3.2 & -2.85 & -3.15 \\ -2.85 & 4.3 & 4.95 \\ -3.15 & 4.95 & 8.3 \end{bmatrix}$$

Eigenvalue and eigenvectors of a matrix

Let A be a $n \times n$ matrix.

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 5 & 0 \\ 0 & 10 \end{bmatrix}$$

$$? \quad A \overrightarrow{x} = \lambda \cdot \overrightarrow{x}$$

$$\begin{bmatrix} 5 & 0 \\ 0 & 10 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0 \end{bmatrix} = 5 \cdot \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

• $\vec{x} \neq 0$ is an eigenvector of A if there is a scalar λ such that

$$A\vec{x} = \lambda \vec{x}$$

- the corresponding λ is called the *eigenvalue*.
- Example: find the eigenvalue and eigenvector of A.

$$A = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}$$

$$\begin{cases} 5 \times_{1} + 0. \times_{2} = \lambda \times_{1} \\ 0. \times_{1} + 10. \times_{2} = \lambda \times_{2} \\ \lambda = 5: \quad 10 \times_{2} = 5 \times_{2} \\ \times_{2} = 0 \\ \lambda = 10: \quad \times_{1} = 0 \\ \begin{bmatrix} 0 \\ C_{2} \end{bmatrix}$$

Eigenvalue and eigenvectors of a matrix

$$A \times = \lambda \times \Rightarrow (A - \lambda I) \times = 0$$

$$\lambda \text{ be seletted such that}$$

$$\det (A - \lambda I) = 0$$

Eigenvalue and eigenvectors of a matrix

Diagonalizable Matrices

A $n \times n$ matrix with n linearly independent eigenvectors is said to be **diag-onalizable**.

In matrix form:

$$A(u_1 \dots u_n) = (\lambda_1 u_1 \dots \lambda_n u_n) = (u_1 \dots u_n) \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_n \end{pmatrix}$$
This corresponds to a similarity transformation

$$AU = UD \iff A = UDU^{-1}$$

PCA and eigen-decomposition of covariance matrix.

Covariance matrix:

e matrix:

$$\begin{cases}
\chi_{j,j} = 00V(\chi_{i} - \chi_{i}, \chi_{j} - \chi_{j})
\end{cases}$$

covariance matrix:

 $K = U \wedge U$

Property of covariance matrix:

It is symmetric → for symmetric matrix, eigenvectors for distinct any i,j vi, vj are orthogonal. So svi eigenvalues are orthogonal. $V = \int V_1 V_2 \cdots V_n$ $\theta = \frac{1}{2} \frac{3}{2} : V_{i} \cdot V_{i} = V_{i}^{T} V_{j} = 0$

2. It is real: -> All eigenvalues of a real symmetric matrix are real.

| linalge eig (A) orthonormal vettors eg.
$$V_i = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 $V_z = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 $V_i = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

PCA and eigen-decomposition of covariance matrix.

Eigen-decomposition of covariance matrix

$$K = U\Lambda U^{-1}$$
 (a) The coordinate than stronger of K .

• Diagonal matrix Λ are eigenvalues of K, ordered in the order of eigenvectors.

$$\Lambda = diag(\lambda_1, \lambda_2, \dots, \lambda_n)$$

- We order these eigenvectors in an order of the values of eigenvalues and called these: 1st principal component, 2nd principal component, etc.
- Where does dimensionality reduction come from?

• Can ignore the components of lesser significance.

eigenvalues, eigenvectors = LA.eig(K)

$$\begin{bmatrix} 13.38070762 & 1.82004592 & 0.59924646 \end{bmatrix}$$

$$\begin{bmatrix} -0.38263617 & 0.77297413 & -0.50606379 \\ 0.53188845 & -0.26357343 & -0.80475072 \\ 0.75543646 & 0.57709622 & 0.31028329 \end{bmatrix}$$

If we want 2D dimension, project each centered data point into the first two

-0.50606379

$$X = \frac{n}{2} \text{ ai Vi}$$

$$N - \text{features}$$

$$X - X = \frac{n}{2} \text{ ai Vi}$$

$$X = \frac{K}{2} \text{ ai Vi}$$

$$K < n$$

$$\overset{\checkmark}{\times} = \frac{\overset{\checkmark}{\times}}{\overset{\checkmark}{\triangleright}=1} \overset{\checkmark}{\alpha_i} \overset{\checkmark}{V_i}$$