VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

Fakulta elektrotechniky a komunikačních technologií

SEMESTRÁLNÍ PRÁCE

Brno, 2022

Bc. Renata Zemanová

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

ÚSTAV MIKROELEKTRONIKY

DEPARTMENT OF MICROELECTRONICS

SEMAFOR - TECHNOLOGICKÝ EKVIVALENT FÁBORKU

XX

SEMESTRÁLNÍ PRÁCE

SEMESTRAL THESIS

AUTOR PRÁCE

Bc. Renata Zemanová

AUTHOR

VEDOUCÍ PRÁCE

doc. Ing. Pavel Šteffan, Ph.D.

SUPERVISOR

BRNO 2022

Semestrální práce

magisterský navazující studijní program Mikroelektronika

Ústav mikroelektroniky

Studentka: Bc. Renata Zemanová ID: 211251

Ročník: 2 Akademický rok: 2022/23

NÁZEV TÉMATU:

Semafor - technologický ekvivalent fáborku

POKYNY PRO VYPRACOVÁNÍ:

V rámci semestrální práce navrhněte univerzální zařízení – Semafor TEF, schopné plnit různorodé funkce definované v samostatných programech a pozitivně tak ovlivňovat jejich klíčové aspekty. Těmi jsou zejména atraktivita aktivity (a její vliv na motivaci účastníků hry), organizační možnosti (tzn. zejména rozšíření o jinak nemyslitelná pravidla) a také budování vztahu účastníků programů k technologiím a technice obecně.

Termín zadání: 19.9.2022 Termín odevzdání: 16.12.2022

Vedoucí práce: doc. Ing. Pavel Šteffan, Ph.D.

doc. Ing. Lukáš Fujcik, Ph.D. předseda rady studijního programu

UPOZORNĚNÍ:

Autor semestrální práce nesmí při vytváření semestrální práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č.40/2009 Sb.

ABSTRAKT

Abstrakt práce v originálním jazyce

KLÍČOVÁ SLOVA

Klíčová slova v originálním jazyce

ABSTRACT

Překlad abstraktu (v angličtině, pokud je originálním jazykem čeština či slovenština; v češtině či slovenštině, pokud je originálním jazykem angličtina)

KEYWORDS

Překlad klíčových slov (v angličtině, pokud je originálním jazykem čeština či slovenština; v češtině či slovenštině, pokud je originálním jazykem angličtina)

Vysázeno pomocí balíčku thesis verze 4.07; http://latex.feec.vutbr.cz

Prohlášení autora o původnosti díla

211251

Bc. Renata Zemanová

Typ práce:	Semestrální práce
Akademický rok:	2022/23
Téma závěrečné práce:	Semafor - technologický ekvivalent fá- borku
cí/ho závěrečné práce a s použitím o které jsou všechny citovány v práci a u Jako autorka uvedené závěrečné práce závěrečné práce jsem neporušila autor nedovoleným způsobem do cizích aut a jsem si plně vědoma následků poru zákona č. 121/2000 Sb., o právu autors a o změně některých zákonů (autorsk	sem vypracovala samostatně pod vedením vedoudborné literatury a dalších informačních zdrojů, ivedeny v seznamu literatury na konci práce. dále prohlašuji, že v souvislosti s vytvořením této rská práva třetích osob, zejména jsem nezasáhla torských práv osobnostních a/nebo majetkových ušení ustanovení § 11 a následujících autorského ském, o právech souvisejících s právem autorským ký zákon), ve znění pozdějších předpisů, včetně lývajících z ustanovení části druhé, hlavy VI. díl 4
Brno	podpis autorky*

Jméno a příjmení autora:

VUT ID autora:

^{*}Autor podepisuje pouze v tištěné verzi.

PODĚKOVÁNÍ	
PODEKOVANI Rád bych poděkoval vedoucímu diplomové práce panu Ing. XXX YYY, Ph.D. z vedení, konzultace, trpělivost a podnětné návrhy k práci.	za odborné

Obsah

Ú	vod		15
Cí	le pr	áce	17
1	Poža	adavky	19
2	Z ák	adní návrh	21
	2.1	Bezdrátová komunikace	21
		2.1.1 WiFi	21
		2.1.2 Bluetooth	21
		2.1.3 NFC	22
		2.1.4 ZigBee	22
	2.2	Mikrokontrolér	23
	2.3	LED	23
	2.4	Tlačítka	24
		2.4.1 Princip kapacitních dotykových tlačítek	26
		2.4.2 Návrh kapacitního dotykového tlačítka	26
	2.5	Vibrační motor	26
	2.6	Převodník pro kapacitní tlačítka	27
	2.7	Baterie	28
	2.8	Nabíjecí obvod	
		2.8.1 Zapojení nabíjecího obvodu	
	2.9	Zvyšovač napětí pro LED	
		Konektor	30
3	Náv	rh elektroniky	33
4	Náv	rh DPS	35
	4.1	Kapacitní tlačítka	35
5	Výs	ledky studentské práce	37
	5.1	Programové řešení	37
	5.2	Výsledky měření	37
		5.2.1 Etiam quis quam	37
Zá	ivěr		41
Li	terat	ura	43

Seznam symbolů a zkratek	51
Seznam příloh	53
A Některé příkazy balíčku thesis A.1 Příkazy pro sazbu veličin a jednotek	
B Druhá příloha	57
C Příklad sazby zdrojových kódů C.1 Balíček listings	59 59
D Obsah elektronické přílohy	63

Úvod

Úvod studentské práce, např...

Nečíslovaná kapitola Úvod obsahuje "seznámení" čtenáře s problematikou práce. Typicky se zde uvádí: (a) do jaké tematické oblasti práce spadá, (b) co jsou hlavní cíle celé práce a (c) jakým způsobem jich bylo dosaženo. Úvod zpravidla nepřesahuje jednu stranu. Poslední odstavec Úvodu standardně představuje základní strukturu celého dokumentu.

Tato práce se věnuje oblasti DSP (číslicové zpracování signálů – Digital Signal Processing), zejména jevům, které nastanou při nedodržení Nyquistovy podmínky pro vzorkovací kmitočet (f_{vz}) .¹

Šablona je nastavena na *dvoustranný tisk*. Nebuďte překvapeni, že ve vzniklém PDF jsou volné stránky. Je to proto, aby důležité stránky jako např. začátky kapitol začínaly po vytisknutí a svázání vždy na pravé straně. Pokud máte nějaký závažný důvod sázet (a zejména tisknout) jednostranně, nezapomeňte si přepnout volbu twoside na oneside!

¹Tato věta je pouze ukázkou použití příkazů pro sazbu zkratek.

Cíle práce

Konkrétní specifikace cílů, které má autor v práci vyřešit. Tato kapitola je $voliteln\acute{a}$ – pokud váš studijní program nevyžaduje zvláštní kapitolu s cíli, cíle specifikujte v rámci Úvodu.

1 Požadavky

voděodolnost

2 Základní návrh

2.1 Bezdrátová komunikace

Použití na táborech a outdoorových akcích vyřadilo z výběru drátovou komunikaci. K DPS by muselo být ještě velké množství kabelů o délce několika stovek metrů minimálně. Bezdrátová komunikace je z tohoto hlediska velmi praktická. Je to také moderní řešení náležící dnešní době.

Jedním ze základních požadavků bylo, že jednotlivé DPS mezi sebou musí být schopny komunikovat. Vzhledem k použití na táborech musel být vybrán komunikační protokol a následně k němu přizpůsoben hardware.

Práce tedy započala tím, že byla udělána rešerše existujících bezdrátových komunikačních protokolů a následně byly tyto protokoly mezi sebou porovnány. Vzhledem k použití na outdoorových akcí byl kladem důraz na komunikační vzdálenost a náročnost na výkon, jelikož zařízení je napájeno z baterií.

2.1.1 WiFi

Komunikace pomocí WiFi sítě je jednou z nejznámějších a nejpoužívanějších bezdrátových komunikací užívaných širokou veřejností. WiFi je dnes na každém pracovišti, na veřejných místech i v každé domácnosti. Využívána je především k připojení k internetu. Přes WiFi lze přenášet velké objemy dat vysokou rychlostí. Pracuje v pásmech v okolí frekvencí 2,4 GHz a 5,0 GHz s dosahem desítek až nižších stovek metrů [18].

Výhody bezdrátové technologie WiFi jsou [18]:

- pracuje v bezlicenčním pásmu,
- levná,
- velmi rozšířená.

Nevýhody jsou [18]:

- omezený výkon (není možné pokrýt rozáhlejší oblasti),
- vyšší spotřeba energie.

2.1.2 Bluetooth

Bluetooth je také velmi rozšířenou technologií bezdrátové komunikace. V dnešní době rozšířené WiFi komunikace je ale na ústupu. Používá se na přenos dat na krátké vzdálenosti. Běžně se využívala pro přenos fotografií z jednoho zařízení do druhého apod. V dnešní době se spíše využívá pro připojení bezdrátových periferií jako jsou bezdrátová sluchátka, myši a klávesnice. Tato technologie je zaměřena

především na nízkou spotřebu, i proto je komunikační vzdálenost maximálně 100 metrů [18]. V praxi jde ale o nižsí desítky metrů. Bluetooth je také technologií pro propojení pouze 2 zařízení, kde jedno je tzv. master a druhý tzv. slave [18]. Jedno zařízení je tedy nadřazeno druhému. V případě telefonu a sluchátek je telefon nadřazený sluchátkům.

Výhody bezdrátové technologie Bluetooth jsou [18]:

• nízká spotřeba.

Nevýhody jsou [18]:

- krátký dosah,
- možnost propojení pouze 2 zařízení.

2.1.3 NFC

NFC je jedna z novějších technologií, která se používá převážně při platbě kartou. Jde tedy o přenos malých objemů dat na velmi krátkou vzdálenost, tj. do desítek centimetrů [18]. NFC je technologií, kde stačí, aby pouze jedno zařízení mělo zdroj elektrické energie [18]. Druhé zařízení se chová jako anténa, ze které je možné vyčíst informace [18]. Například při platbě kartou v sobě karta nemá žádný zdroj energie, ale při přiložení k terminálu je pomocí elektromagnetické indukce vyčteno identifikační číslo karty. Díky tomu je možné zaplatit.

Výhody bezdrátové technologie NFC jsou [18]:

- rychlost,
- možnost interakce se zařízeními bez vlastního zdroje elektrické energie.

Nevýhody jsou [18]:

- velmi krátká komunikační vzdálenost,
- možnost komunikace pouze mezi dvěma zařízeními,
- nízká rychlost přenosu,
- malý objem přenášených dat.

2.1.4 ZigBee

ZigBee technologie je používána pro vytvoření malých sítí, kde může signál snadno přeskakovat z jednoho zařízení na druhé [19]. Není přitom zapotřebí, aby bylo každé zařízení připojeno k internetu pomocí WiFi [19]. Pro komunikaci je ale zapotřebí centrální rozbočovač, kterž zajištuje komunikaci mezi zařízeními [19]. Tato technologie je určena pro tvorbu rozsáhlejších bezdrátových sítí s přenosem menšího objemu dat [19]. Jedná se o spolehlivou technologii s nenáročnou implementací a nízkou spotřebou elektrické energie [19]. Díky ZigBee může mít uživatel v jedné aplikaci zařízení od různých značek a výrobců, protože právě ZigBee zajišťuje jejich vzájemnou komunikaci [19].

Technologie ZigBee je určeno primárně pro senzorové sítě v průmyslových aplikacích [18]. Není vhodný pro práce s velkými objemy dat [18]. Pracuje v bezlicenčním frekvenčním pásmu [18].

Výhody bezdrátové technologie ZigBee jsou [19]:

- nízká spotřeba elektrické energie,
- spolehlivost,
- nenáročná implementace,
- pracuje v bezlicenčním frekvenčním pásmu.

Nevýhody jsou [19]:

• nutnost centrálního rozbočovače.

2.2 Mikrokontrolér

Faktory ovlivňující výběr řídicího mikrokonroléru:

- dostatečný počet GPIO pinů,
- dostatek paměti,
- WiFi,
- ADC,
- cena,
- periferie pro připojení Lora modulu.

Dostatečný počet GPIO Dostatek paměti WiFi ADC Cena Periferie pro připojení pro LoRa modul

Nice to have: USB rozhraní (nemusel by být použit převodník) Možnost režimu spánku

Jedním z požadavků na mikrokonrolér byla zabudování WiFi. Asi nejznámnějšími mikrokonroléry s WiFi jsou ESP32 od firmy Espressif. Mikrokontroléry ESP32 jsou dostupné v různých variantách, ale všechny mají WiFi a dělají se i ve variantách se zabudovanou anténou.

Rozsah napájecího napětí je 3 až 3,6 V [11].

2.3 **LED**

Jendím z nejdůležitějších požadavků na Semafor je, aby mohl svítit. Čím více možností, jak svítit, tím bude využití při hrách a táborových programech větší. K tomu jsou použity LED. Obyčejné LED mají pouze jednu barvu, kterou mohou svítit. Existují také RBG LED, ale ty mají 4 vývody a každá LED tak zabírá 3 GPIO piny mikrokontroléru - jeden pin pro jednu barvu. K tomu by byl zapotřebí mikrokonrolér

s velkým množství GPIO pinů a jeho programování by se tím značně komplikovalo. Ani to není žádoucí, a proto byly použity programovatelné LED typu WS2812C.

Tyto programovatelné LED WS2812C lze spojovat za sebe, takže datový výstup jedné LED je připojen k datovému vstupu další LED [17]. Takto lze spojit nekonečné množství těchto programovatelných LED a připojit je na jeden GPIO pin MCU. Každá LED má pin pro vstupní napětí, GND, vstupní datový pin a výstupní datový pin.

Napájecí napětí těchto LED by se mělo pohybovat v rozmezí 4,5 až 5,5 V [17]. Kondenzátor u každé LED slouží pro filtraci napájecího napětí.

Komunikační napětová úroveň logické jedničky těchto LED by měla být alespoň na úrovni 70 % napájecího napětí [17]. Protože použitý mikrokonrolér ESP32-C3 má komunikační napětovou úroveň logické jedničky jeho napájecí napětí, což je 3 až 3,6 V, tak je zapotřebí využít převodník napětové úrovně [11]. Komunikace je v tomto případě pouze jednosměrná, to znamená, že MCU posílá data do LED, ale LED neposílají žádná data do MCU. Převodník je realizován unipolárním tranzistorem a jedním pullup rezistorem. Rezistor je připojen pro k napájecímu napětí inteligentních LED WS2812C. Tranzistor Q1 má gate připojený k napájecímu napětí MCU. Pokud bude mikrokonrolér do LED posílat logickou jedničku, tak bude rozdíl mezi gate a source 0 V. Tím pádem bude tranzistor uzavřený a tím se přes rezistor R4 připojí k LED jejich napájecí napětí. Toto napětí je pro inteligentní LED logickou jedničkou. Pokud bude MCU posílat logickou nulu, tedy 0 V, tak je rozdíl napětí mezi gate a source napájecí napětí mikrokontroléru. Tranzistor je tedy otevřený a tím se napětí 0 V dostane k inteligentním LED a na rezistoru se objeví úbytek napětí o velikosti napájecího napětí inteligentních LED. Napětí 0 V je logickou nulou i pro inteligentní LED. Tento převodník je určen pouze pro komunikaci jedním směrem.

Tyto programovatelné LED mají maximální spotřebu 5 mA na jeden kanál. Při zapnutí všech kanálů (svícení bílou) je maximální spotřeba jedné LED 15 mA [17]. Pokud LED nesvítí, tak je její maximální klidový proud 0,3 mA [17]. Při použití 12 LED je tedy maximální odběr všech LED 180 mA.

2.4 Tlačítka

Tlačítka jsou nezbytnými prvky pro ovládání Semaforu. Mohou sloužit pro přepínání módů, ovládání Semaforu jako takového nebo jako herní součást. Ve hře mohou plnit úlohu přepínače režimů hry, zadávání kódů, určování směru apod.

Tlačítka mohou být realizována dvěma základními způsoby, mohou být elektromechanická, nebo kapacitní dotyková.

Dotyková plocha mechanického tlačítka je nevodivá, často plastová.

Mechanické prvky jsou častým zdrojem problémů. Je tím omezena i životnost celého výrobku. Mechanická tlačítka zároveň generují zákmity, které je nutno filtrovat nebo tvarovat do použitelné podoby. Nejjednodušším řešením je přidání kondenzátoru. Mechanická konstrukce tlačítek je složitá a finančně nákladná. Kapacitní tlačítka jsou bez veškerých mechanických prvků, zároveň jsou jednoduchá a mají téměř neomezenou životnost. Jejich výstupní signál je bez jakýchkoli zákmitů nebo rušení. Kapacitní tlačítka lze snadno použít v mnoha aplikacích.

Výhody kapacitních tlačítek jsou:

- kompaktnost,
- vysoká spolehlivost,
- odolnost vůči šumu,
- možnost kompenzace rušivých elementů,
- cena.

Mechanické tlačítko typu NO:

Po zmáčknutí mechanického tlačítka jsou 2 kovové části tlačítka spojeny, tím dochází ke spojení elektrického obvodu a odpor smyčky je v ideálním případě nulový. Tlačítko je tedy sepnuto. Když je tlačítko rozpojeno, tak je elektrický obvod přerušen a odpor smyčky je v ideálním případě nekonečný.

Mechanické tlačítko typu NC:

U tlačítka NC je to přesně naopak.

Kapacitní tlačítka jsou tvořena měděnou vrstvou a nejsou nijak mechanicky namáhána. Tlačítko může být zmáčknuto i přes obal krabičky, a proto může být celé zařízení mechanicky odolné i voděodolné.

Nevýhodou kapacitních tlačítek je, že nemají žádnou odezvu na dotyk. U mechanických tlačítek je odezvou samotný fyzický stisk tlačítka. U kapacitních tlačítek lze tento fakt vyřešit například rozsvícením LED nebo vibrační odezvou. Vibrační odezva může být realizována pomocí vibračního motoru. Některé MCU včetně vybraného mikrokontroléru ESP32-C3 nemají kapacitní vstupy, to znamená, že tlačítko nelze připojit přímo k pinu MCU. Buď musí být vybrán mikrokonrolér, který kapacitní vstupy má, nebo může být použit převodník, který má kapacitní vstupy a jeho výstupy poté mohou být připojeny k MCU.

V návrhu Semaforu byla zvolena kapacitní dotyková tlačítka. Pro možnost použití uvnitř i venku jsou díky možnosti voděodolnosti vhodnějším řešením. Také označení tlačítka může být variabilní, protože může být na DPS v místě tlačítka vyznačeno barevně, nebo např. samolepkou. Odezva na dotyk se realizuje pomocí vibračního motoru. Ke čtení dotykových tlačítek je využit převodník.

2.4.1 Princip kapacitních dotykových tlačítek

Základní princip je založen na měření změny kapacity. Měď, ze které je tlačítko vytvořeno má nějakou vlastní kapacitu (kapacita samotné nosné desky) a po přiložení prstu je kapacita zvýšena o paralelně připojenou kapacitu přechodu tlačítka a prstu díky obsahu železa v krvi a vodivosti kůže [10]. Prst se tedy chová jako druhá uzemněná elektroda [10].

Kapacita snímače se tedy volí co nejmenší, aby přiložený prst vyvolal co nejvetší změnu kapacity. Ve snímači se vyskytuje RC článek, kterého se mění doba nabíjení kondenzátoru a tím je možné detekovat stisk tlačítka [10].

2.4.2 Návrh kapacitního dotykového tlačítka

Tvar tlačítka nemá vliv na schopnost detekce dotyku [10]. Naopak velký vliv má plocha tlačítka, tlouštka izolační vrstvy, a také vzdálenost jednotlivých tlačítek od sebe [10].

Čím větší je plocha tlačítka, tím je větší změna kapacity při dotyku a díky tomu je vytvořena lepší schopnost detekce dotyku [10]. S rostoucí tlouštkou izolační vrstvy se naopak schopnost detekce dotyku snižuje [10].

Pokud jsou tlačítka příliš blízko u sebe, tak může docházet k jejich vzájemnému ovlivňování. Kvůli tomu pak může docházet k detekci dotyku špatného tlačítka, nebo k falešné detekci dotyku. Z doporučení plyne, že pro dotyk prstu je vhodná velikost snímací plochu pro prst 13×13 mm a jejich vzdálenost alespoň 5 mm od sebe [10]. Proti vzájemnému ovlivňování tlačítek se používají uzemňovací meziplošky [10].

U kapacitních dotykových tlačítek je zapotřebí dbát na správné připojení k MCU. U vícevrstvých DPS nesmí pod tlačítky, ani pod přívody k MCU, vést jiné dráhy, ani se zde nesmí vyskytovat jiné součástky [10]. Součástky nesmí být ani z vrchní, ani ze spodní strany DPS [10]. Přívody kapacitních tlačítek k MCU by měly být odstíněny pomocí GND signálu.

Voda a další nečistoty mění vlastní kapacitu tlačítka a může tak docházet k falešným stiskům tlačítka. Tento problém lze řešit softwarově. Lze využít faktu, že nečistoty působí dlouhodobě, ale stisk je krátkodobý [10]. Hodnotu vlastní kapacity tlačítka je tedy možné softwarově upravovat v závislosti na aktuálních dlouhodobějších stavech a detekovat tak přesněji krátkodobý stisk tlačítka.

Pro odlišení tlačítek je místo označeno barevným potiskem.

2.5 Vibrační motor

Vibrační motory jsou založeny na principu kmitání. Motor je připevněn k zařízení, které je kmitáním rozvibrováno. Vibrační motory jsou dnes nedílnou součástí mnoha

elektronických zařízení včetně mobilního telefonu nebo dětských hraček.

Dioda slouží jako ochrana proti přepětí, protože motor je indukční zátěž, takže vytváří napětové špičky. Díky diodě je mikrokonrolér chráněn proti špičkovému napětí, které by se na něj mohlo dostat. Kondenzátor slouží k tomu, aby napětové špičky eliminovat, nebo alespoň zmenšoval.

Vibrační motor je připojen k mikrokontroléru přes tranzistor, protože maximální výstupní proud z pinu MCU není dostatečně velký na to, aby motor roztočil. Tranzistor je tedy připojen na gate tranzistoru, který se při logické jedničce na pinu sepne a motorem protéká proud, který nedodává MCU, ale zdroj 3.3 V (v tomto případě baterie LiFePO4). Baterie tak dokáže dodat dostatek proudu, aby se motor roztočil.

Pro Semafor byl vybrán vibrační motor LCM1020A2945F. Tento motor má maximální požadovaný proud 120 mA [15]. Maximální proud, který lze odebírat z pinu mikrokontroléru ESP32-C3, je 40 mA [11]. Vibrační motor lze pouze spínat, nebo je možné jej připojit k pinu, který dokáže generovat PWM a lze tím regulovat jeho otáčky.

Vibrační motor slouží jako odezva na dotyk kapacitního tlačítka.

2.6 Převodník pro kapacitní tlačítka

Vybraný mikrokonrolér ESP32-C3 nemá kapacitní vstupy, proto je zapotřebí kapacitní dotyková tlačítka připojit přes převodník. Je zapotřebí připojit 5 tlačítek.

Použitý převodník AT42QT1070 dokáže pracovat ve 2 režimech. V prvním režimu může být zapojeno maximálně 5 kapacitních tlačítek, která jsou připojena k pinům KEY0 až KEY4. Jako výstup se používají piny OUT0 až OUT4. Každé tlačítko má tedy svůj výstup, který může být připojen k GPIO pinům MCU nebo k nim mohou být připojeny např. LED [16].

Druhý režim je využitelný pouze v případě, je-li převodník připojen k MCU. Vtomto případě může být k převodníku připojeno až 7 kapacitních tlačítek, která jsou připojena na pinech KEY0 až KEY6. Převodník poté komunikuje s MCU pomocí komunikační sběrnice I2C [16]. Z registru převodníku lze poté vyčíst stavy daných kapacitních dotykových tlačítek.

Jelikož je v tomto návrhu Semaforu využit mikrokontrolér, který podporuje komunikaci po sběrnici I2C, tak bylo využito právě zapojení s komunikací přes I2C. Díky tomu budou využity pouze 2 GPIO piny mikrokonroléru ESP32-C3 a ne 5 GPIO pinů, které by byly zapotřebí při zapojení bez komunikace pro sběrnici I2C.

Převodník má kondenzátory C3 a C4 připojeny na napájecím pinu vůči zemi, aby nebyly případné proudové špičky přivedeny na napájení převodníku. Rezistory

R17 a R18 slouží jako pullup rezistory při komunikaci pomocí sběrnice I2C s mikrokonrolérem EP32-C3. Na piny KEY0 až KEY4 jsou připojena kapacitní dotyková tlačítka.

2.7 Baterie

Ve výběru baterií hraje velkou roli kapacita, napětí, velikost a cena. Požadavkem je také možnost nabíjení, protože není žádoucí, aby si uživatel baterie měnil. Při použití na táboře by také musely být stále nové baterie v balení a musely by se neustále doplňovat a udržovat.)

Vybraný mikrokonrolér má napájecí napětí v rozsahu 3 až 3,6 V [11].

Z nabíjecích baterií je možno vybírat z nabíjecích tužkových baterií (Ni-MH), Li-Ion, Li-Pol a LiFePO4 baterií. Baterie Ni-MH mají jmenovité napětí 1,25 V. Proto by bylo zapotřebí alespoň 3 článků spojených sériově, u kterých by navíc musel být stabilizátor na 3,3 V pro napájení mikrokontroléru.

LiFePO4 baterie mají jmenovité napětí v rozsahu

2.8 Nabíjecí obvod

Nabíjecí obvody jsou závislé na konkrétním typu baterií, které budou nabíjeny. Vzhledem k vybranému typu baterií LiFePO4 byly uvažovány pouze komerčně dostupné integrované obvody, které jsou určeny pro nabíjení tohoto typu baterií.

Vybraný typ baterií LiFePO4 lze nabíjet pomocí obvodu CN3058E [12].

Nabíjecí obvod CN3058E je určen pro nabíjení pouze LiFePO4 baterií a lze jím napájet právě 1 článek těchto baterií [12]. Napájecí napětí tohoto nabíjecího čipu se pohybuje mezi 3,8 až 6 V [12]. Díky tomu lze přímo použít napětí z USB konektoru.

Tento nabíjecí obvod se vyrábí ve standardizovaném pouzdře SOP8 [12].

2.8.1 Zapojení nabíjecího obvodu

Rezistor připojený k pinu ISET slouží pro nastavení hodnoty nabíjecího proudu [12]. V tomto zapojení byl počítán pro nabíjecí proud 1 A dle rovnice:

$$I_{CH} = \frac{U_{ISET}}{R_8} \cdot 1011.$$
 [12]

Velikost rezistoru R8 byla počítána na velikost nabíjecího proudu 1 A dle následující rovnice:

$$R_8 = \frac{U_{ISET}}{I_{CH}} \cdot 1011 = \frac{1}{1} \cdot 1011 = XXX \ k\Omega.$$
 [12]

Z výpočtu vyplývá, že rezistor by měl mít hodnotu 1218 Ω . Nejbližší hodnota z rezistorové řady E12 je hodnota 1,2 k Ω , proto byl také zvolen rezistor o této hodnotě [13]. Odpovídá tomu nabíjecí proud 1015 mA, který nebude mít vliv na životnost baterií.

Vstupní a výstupní kondenzátory slouží pro filtaci zákmitů napájecího napětí a také napětí, kterým je nabíjena baterie. Hodnoty kondenzátorů byly převzaty z doporučení z datasheetu.

Kladný pól nabíjené baterie je připojen na pinu BAT, záporný pól je připojen ke GND. Pin BAT poskytuje nabíjecí proud do baterie a zároveň poskytuje konstantní nabíjecí napětí. V režimu spánku je svodový proud tohoto pinu 3 μ A [12].

Pin VIN slouží pro napájení vnitřního obvodu CN3058E. Je na něj přikládáno napájecí napětí z USB, tedy 5 V. Pokud napájecí napětí klesne na napětí o 10 mV nižší, než je napětí na pinu BAT, tak vnitřní obvod přechází do režimu spánku [12]. V tomto režimu klesá proud pinu BAT na méně než 3 μ A [12].

Tento nabíjecí obvod má možnost indikace nabíjení baterií a dokončení nabíjení. Tato indikace je realizována pomocí 2 LED připojených přes pullup rezistor. Hodnota pullup rezistoru byla převzata z doporučení z datasheetu. Červená LED indikuje nabíjení baterií a je připojena na pin /CHRG a zelená LED indikuje dokončené nabíjení a je připojena na pin /DONE. Obě LED jsou k pinům nabíjecího čipu připojeny katodou.

Obvod CN3058E může také měřit teplotu na nabíjené baterii. Slouží k tomu vstupní pin TEMP. Měření probíhá pomocí odporového děliče, jehož střed je připojen na snímač teploty. Tento snímač je připojen na baterii. Pokud je napětí na pinu TEMP nižší než 45 % nebo vyšší než 80 % úrovně napájecího napětí, tak je indikována moc nízká nebo moc vysoká teplota baterie a nabíjení je zastaveno [12]. Jinak nabíjení pokračuje. Uzemněním pinu TEMP je funkce měření teploty deaktivována [12]. V této práci není měření teploty baterií využíváno, a proto je pin TEMP připojen ke GND.

Pokud není baterie nabíjena, tak by svodový proud pinu BAT nabíjecího obvodu CN3058E vybíjel baterii. Svodový proud tohoto pinu je 3 μ A [12]. Aby se baterie zbytečné navybíjela, tak je do obvodu připojen tranzistor Q2, který detekuje připojené napětí k nabíjecímu obvodu. Pokud je napětí připojeno, tak je tranzistor otevřen a baterie je nabíjena. Pokud napětí připojeno není, tak je tranzistor uzavřen a baterie je díky tomu odpojena od nabíjecího obodu. Díky tomu není vybíjena svodovým proudem pinu BAT.

2.9 Zvyšovač napětí pro LED

Pro napájení vybraných inteligentních LED je zapotřebí napětí v rozsahu 4,5 až 5,5 V [17]. Použité baterie LiFePO4 mají napětí pouze 3,2 V, proto je zapotřebí použít zvyšovač napětí.

Z komerčně dostupných integrovaných obvodů byl hledán zvyšovač napětí, který vytváří z napětí 3,3 V napětí 5 V a dodávat přitom do výstupu proud alespoň 200 mA. Maximální odběr všech 12ti potřebných inteligentní LED má maximální odběr 180 mA. S rezervou je tedy zapotřebí proud alespoň 200 mA. Nalezené obvody, které vyhovují těmto parametrům jsou LT1930 a MCP1640.

Obvod LT1930 v doporučeném zapojení při vstupním napětí 3,3V vytváří výstupní napětí o hodnotě 5 V s maximálním odběrem proudu 480 mA [14]. Napájecí napětí tohoto obvodu je v rozsahu 2,45 V až 16 V, což vyhovuje napájecímu napětí z baterií LiFePO4 [14].

Pin /SHDN slouží k zapínání a vypínání obvodu. Pomocí přiloženého napětí 2,4 V a více na tento pin je obvod zapnut [14]. Pin SW slouží pro připojení cívky, případně diody, aby se snížilo elektromagnetické rušení [14].

Pin FB slouží pro zapojení zpětné vazby napětí na baterii. Jeho referenční napětí musí být nastaveno v rozmezí 1,240 V až 1,270 V, typická hodnota je však 1,255 V [14]. Pro výstupní napětí 5 V byl zvolen rezistor R10 o hodnotě 13 k Ω z rezistorové řady E24 [13]. Řada E24 byla zvolena kvůli požadované přesnosti napětí na pinu FB obvodu LT1930. Napětí na rezistoru R10 musí být tedy 1.255 V. Na rezistoru R9 je tedy úbytek napětí 3,745 V. Pomocí trojčlenky byla dopočítána hodnota rezistoru R9 dle rovnice:

$$R_9 = \frac{R_{10} \cdot U_{R9}}{U_{R10}} = \frac{13 \cdot 3,745}{1,255} = 38,79 \ k\Omega.$$
 (2.3)

Nejbližší hodnota rezistoru z rezistorové řady E24 je 39 k Ω [13]. Reálná hodnota napětí na rezistoru R10, tj. napětí na pinu FB byla dopočítána dle rovnice:

$$U_{R10} = \frac{U_{OUT}}{R_9 + R_{10}} \cdot R_{10} = \frac{5}{39 + 13} \cdot 13 = 1,25 V.$$
 (2.4)

Napětí 1,25 V je v povoleném rozmezí napětí na pinu FB.

Přesné výstupní napětí se spočítá podle vzorce:

$$U_{OUT} = U_{FB} \cdot (1 + \frac{R_9}{R_{10}}) = 1,25 \cdot (1 + \frac{39}{13}) = 5 V.$$
 [14] (2.5)

2.10 Konektor

Jako nabíjecí a zároveň programovací konektor byl zvolen konektor USB typu C.

Tento konektor je v dnešní době velmi rozšířený a jeho použití se v následující době stále rozšiřuje.

Není využíváno žádných výhod konektoru USB-C, jako je např. možnost power delivery apod. Je využíván pouze jako standardní a dostupný konektor, který je mezi běžnou populací rozšířený a v následujících letech se bude rozšiřovat stále více. Je využito standardního jmenovitého napětí 5 V pro nabíjení baterií a nadále pinů D+ a D-, které jsou využity pro komunikaci při programování.

Konektor USB-C je robustní a oboustranný, díky čemuž nebude docházet k tak častému poškození, jak by mohlo být např. u konektoru Micro USB. Při používání běžnou veřejností se jedná o vítaný bonus. čš

Vybraný mikrokonrolér ESP32-C3 umožňuje komunikaci přímo po USB protokolu a není díky tomu zapotřebí žádného převodníku pro komunikaci [11].

3 Návrh elektroniky

4 Návrh DPS

4.1 Kapacitní tlačítka

Byl požadavek na 5 tlačítek. Jedno tlačítko je uprostřed a slouží jako hlavní tlačítko. U her bude používáno např. jako registrace průchodu místem apod. Bude tedy nejčastěji používáno a zároveň může být stisknuto, když hráč běží, takže by mělo být co nejjednodušeji stisknutelné. Proto bylo navrženo větší než zbylá tlačítka. Konkrétně má 5×5 cm. Ostatní tlačítka slouží například jako směrovky, nebo pro vyklikávání nějakého kódu, aby získali nějakou informaci. Slouží tedy primárně, když účastník u sebaforu stojí, nebo sedí, a vyklikává. Díky tomu mohou být tlačítka menší než hlavní tlačítko, konkrétně mají 2×2 cm. Tato tlačítka jsou proto umístěna po stranách hlavního tlačítka a jsou popsána BTN_ENTER, BTN_UP, BTN_DOWN, BTN_RIGHT a BTN_LEFT.

5 Výsledky studentské práce

Praktická část a výsledky studentské práce vhodně rozdělené do částí.

5.1 Programové řešení

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Nulla pulvinar eleifend sem. Integer in sapien. Etiam sapien elit, consequat eget, tristique non, venenatis quis, ante. In laoreet, magna id viverra tincidunt, sem odio bibendum justo, vel imperdiet sapien wisi sed libero. Phasellus enim erat, vestibulum vel, aliquam a, posuere eu, velit. Aliquam erat volutpat. Nullam faucibus mi quis velit [1].

5.2 Výsledky měření

Fusce tellus odio, dapibus id fermentum quis, suscipit id erat. Fusce tellus. Morbi scelerisque luctus velit. In laoreet, magna id viverra tincidunt, sem odio bibendum justo, vel imperdiet sapien wisi sed libero. Quisque porta. Fusce suscipit libero eget elit. Nulla non lectus sed nisl molestie malesuada. Phasellus faucibus molestie nisl. Integer vulputate sem a nibh rutrum consequat. Proin mattis lacinia justo. Phasellus et lorem id felis nonummy placerat. Etiam ligula pede, sagittis quis, interdum ultricies, scelerisque eu. Cras elementum. Aenean placerat. Donec ipsum massa, ullamcorper in, auctor et, scelerisque sed, est. Aliquam ante. Integer imperdiet lectus quis justo. Vivamus ac leo pretium faucibus. Nullam faucibus mi quis velit.

5.2.1 Etiam quis quam

Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci velit, sed quia non numquam eius modi tempora incidunt ut labore et dolore magnam aliquam quaerat voluptatem. Aliquam erat volutpat. Lorem ipsum dolor sit amet, consectetuer adipiscing elit [1, 6]. Nunc auctor. Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci velit, sed quia non numquam eius modi tempora incidunt ut labore et dolore magnam aliquam quaerat voluptatem. Maecenas lorem. Maecenas libero. In laoreet, magna id viverra tincidunt, sem odio bibendum justo, vel imperdiet sapien wisi sed libero. Nullam rhoncus aliquam metus.

Integer rutrum orci vestibulum

Integer rutrum, orci vestibulum ullamcorper ultricies, lacus quam ultricies odio, vitae placerat pede sem sit amet enim. Ut enim ad minim veniam, quis nostrud

exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Fusce tellus odio, dapibus id fermentum quis, suscipit id erat. Nullam eget nisl. Nunc auctor. Etiam dui sem, fermentum vitae, sagittis id, malesuada in, quam. Fusce dui leo, imperdiet in, aliquam sit amet, feugiat eu, orci. Curabitur vitae diam non enim vestibulum interdum. Aliquam erat volutpat. Pellentesque sapien. Phasellus enim erat, vestibulum vel, aliquam a, posuere eu, velit.

Eger rutrum orci westibulum

Fusce dui leo, imperdiet in, aliquam sit amet, feugiat eu, orci. Maecenas aliquet accumsan leo. Aliquam ornare wisi eu metus. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam erat volutpat. Donec iaculis gravida nulla. Sed elit dui, pellentesque a, faucibus vel, interdum nec, diam. Temporibus autem quibusdam et aut officiis debitis aut rerum necessitatibus saepe eveniet ut et voluptates repudiandae sint et molestiae non recusandae. Nulla non arcu lacinia neque faucibus fringilla. Phasellus enim erat, vestibulum vel, aliquam a, posuere eu, velit. Praesent vitae arcu tempor neque lacinia pretium [7, 8, 9].

Aliquam erat volutpat. Quisque porta. Integer imperdiet lectus quis justo. Nullam justo enim, consectetuer nec, ullamcorper ac, vestibulum in, elit. Nullam faucibus mi quis velit. Fusce tellus. Fusce consectetuer risus a nunc. Cras pede libero, dapibus nec, pretium sit amet, tempor quis. Morbi imperdiet, mauris ac auctor dictum, nisl ligula egestas nulla, et sollicitudin sem purus in lacus [2, 3, 4]. Mauris elementum mauris vitae tortor. Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci velit, sed quia non numquam eius modi tempora incidunt ut labore et dolore magnam aliquam quaerat voluptatem. Quisque porta. Integer vulputate sem a nibh rutrum consequat. Nulla pulvinar eleifend sem. Praesent id justo in neque elementum ultrices [5].

Fusce suscipit libero eget elit. Integer vulputate sem a nibh rutrum consequat. Aliquam erat volutpat. Etiam neque. Nulla turpis magna, cursus sit amet, suscipit a, interdum id, felis. Nullam rhoncus aliquam metus. Etiam dui sem, fermentum vitae, sagittis id, malesuada in, quam. Nunc auctor. Nunc dapibus tortor vel mi dapibus sollicitudin. Praesent in mauris eu tortor porttitor accumsan. Nulla non arcu lacinia neque faucibus fringilla. Nullam lectus justo, vulputate eget mollis sed, tempor sed magna. Maecenas lorem. Aenean placerat. Donec vitae arcu. Maecenas lorem. Donec iaculis gravida nulla. Nulla non lectus sed nisl molestie malesuada.

Duis pulvinar. Nulla est. Duis condimentum augue id magna semper rutrum. Integer pellentesque quam vel velit. Aliquam ante. Nulla quis diam. Proin mattis lacinia justo. Aenean fermentum risus id tortor. Nunc auctor. Nullam justo enim, consectetuer nec, ullamcorper ac, vestibulum in, elit. In dapibus augue non sapien.

Etiam bibendum elit eget erat. In sem justo, commodo ut, suscipit at, pharetra vitae, orci. Maecenas libero.

Nulla non lectus sed nisl molestie malesuada. Donec vitae arcu. Aenean fermentum risus id tortor. Praesent in mauris eu tortor porttitor accumsan. Nulla pulvinar eleifend sem. Duis viverra diam non justo. Integer imperdiet lectus quis justo. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. In rutrum. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. Nulla non lectus sed nisl molestie malesuada. Aliquam erat volutpat. Mauris tincidunt sem sed arcu. Duis bibendum, lectus ut viverra rhoncus, dolor nunc faucibus libero, eget facilisis enim ipsum id lacus. Fusce tellus odio, dapibus id fermentum quis, suscipit id erat. In enim a arcu imperdiet malesuada. Nulla non lectus sed nisl molestie malesuada. Proin mattis lacinia justo.

Aliquam in lorem sit amet leo accumsan lacinia. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Duis sapien nunc, commodo et, interdum suscipit, sollicitudin et, dolor. Suspendisse sagittis ultrices augue. Nullam lectus justo, vulputate eget mollis sed, tempor sed magna. In convallis. Praesent id justo in neque elementum ultrices. Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci velit, sed quia non numquam eius modi tempora incidunt ut labore et dolore magnam aliquam quaerat voluptatem.

Pellentesque pretium lectus id turpis. Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores eos qui ratione voluptatem sequi nesciunt. Curabitur ligula sapien, pulvinar a vestibulum quis, facilisis vel sapien. Praesent dapibus. Sed elit dui, pellentesque a, faucibus vel, interdum nec, diam. Duis viverra diam non justo. Duis ante orci, molestie vitae vehicula venenatis, tincidunt ac pede. Phasellus rhoncus. Maecenas fermentum, sem in pharetra pellentesque, velit turpis volutpat ante, in pharetra metus odio a lectus. Proin pede metus, vulputate nec, fermentum fringilla, vehicula vitae, justo. Fusce aliquam vestibulum ipsum. Nullam at arcu a est sollicitudin euismod.

Závěr

Shrnutí studentské práce.

Literatura

- [1] VUT v Brně: Úprava, odevzdávání a zveřejňování vysokoškolských kvalifikačních prací na VUT v Brně [online]. Směrnice rektora č. 2/2009. Brno: 2009, poslední aktualizace 24. 3. 2009 [cit. 23. 10. 2015]. Dostupné z URL: https://www.vutbr.cz/uredni-deska/vnitrni-predpisy-a-dokumenty/smernice-rektora-f34920/.
- [2] ČSN ISO 690 (01 0197) Informace a dokumentace Pravidla pro bibliografické odkazy a citace informačních zdrojů. 40 stran. Praha: Český normalizační institut, 2011.
- [3] ČSN ISO 7144 (010161) Dokumentace Formální úprava disertací a podobných dokumentů. 24 stran. Praha: Český normalizační institut, 1997.
- [4] ČSN ISO 31-11 Veličiny a jednotky část 11: Matematické znaky a značky používané ve fyzikálních vědách a v technice. Praha: Český normalizační institut, 1999.
- [5] BIERNÁTOVÁ, O., SKŮPA, J.: Bibliografické odkazy a citace dokumentů dle ČSN ISO 690 (01 0197) platné od 1. dubna 2011 [online]. 2011, poslední aktualizace 2. 9. 2011 [cit. 19. 10. 2011]. Dostupné z URL: http://www.citace.com/CSN-ISO-690.pdf
- [6] Pravidla českého pravopisu. Zpracoval kolektiv autorů. 1. vydání. Olomouc: FIN PUBLISHING, 1998. 575 s. ISBN 80-86002-40-3.
- [7] WALTER, G. G.; SHEN, X. Wavelets and Other Orthogonal Systems. 2. vyd. Boca Raton: Chapman & Hall/CRC, 2000. 392 s. ISBN 1-58488-227-1
- [8] SVAČINA, J. Dispersion Characteristics of Multilayered Slotlines a Simple Approach. *IEEE Transactions on Microwave Theory and Techniques*, 1999, vol. 47, no. 9, s. 1826–1829. ISSN 0018-9480.
- [9] RAJMIC, P.; SYSEL, P. Wavelet Spectrum Thresholding Rules. In Proceedings of the International Conference Research in Telecommunication Technology, Žilina: Žilina University, 2002. s. 60–63. ISBN 80-7100-991-1.
- [10] VOJÁČEK, A.: Pravidla pro konstrukci kapacitních dotykových tlačítek mTouch [online]. 2008, poslední aktualizace 13.12.2008 [cit. 26.10.2022]. Dostupné z URL: https://automatizace.hw.cz/ pravidla-pro-konstrukci-kapacitnich-dotykovych-tlacitek-mtouch>

- [11] Espressif Systems: ESP32-C3-MINI-1 [online]. 2022, poslední aktualizace 2022 [cit. 31.10.2022]. Dostupné z URL: https://www.espressif.com/sites/default/files/documentation/esp32-c3-mini-1_datasheet_en.pdf
- [12] CONSONANCE: 1A LiFePO4 Battery Charger CN3058E [online]. 2022, poslední aktualizace 2022 [cit. 31.10.2022]. Dostupné z URL: http://www.consonance-elec.com/en/static/upload/file/20220425/1650867856106004.pdf
- [13] Radioklub OK1KVK: Elektrotechnické řady hodnotE3, E6, 2011, aktualizace E12, [online]. poslední 25.05.2011 cit. 31. 10. 2022]. Dostupné URL: <https://ok1kvk.cz/clanek/2011/</pre> elektrotechnicke-rady-hodnot-e3-e6-e12-e24/>
- [14] LINEAR TECHNOLOGY: LT1930/LT1930A [online]. 2001, poslední aktualizace 2001 [cit. 5.11.2022]. Dostupné z URL: https://www.analog.com/media/en/technical-documentation/data-sheets/1930f.pdf
- [15] LEADER: PRODUCT SPECIFICATION LCM1020A2945F [online]. 2021, poslední aktualizace 20.08.2021 [cit. 9.11.2022]. Dostupné z URL: https://datasheet.lcsc.com/lcsc/2109230030_LEADER-LCM1020A2945F_C2891560.pdf
- [16] Atmel: Atmel AT42QT1070 [online]. 2013, poslední aktualizace 05.2013 [cit. 9.11.2022]. Dostupné z URL: https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-9596-AT42-QTouch-BSW-AT42QT1070 Datasheet.pdf>
- [17] Worldsemi: WS2812C Intelligent control LED [online]. 2007, poslední aktualizace 2007 [cit. 10.11.2022]. Dostupné z URL: https://datasheet.lcsc.com/lcsc/1810231210_Worldsemi-WS2812C_C114587.pdf
- [18] RNDr. Michal Černý, Ph.D.: Bezdrátové protokoly základní přehled [online]. 2014, poslední aktualizace 16.01.2014 [cit. 12.11.2022]. Dostupné z URL: https://is.muni.cz/el/1421/jaro2013/VIKMB15/um/Bezdratove_protokoly.pdf
- [19] Smart-switch: ZIGBEE VS WIFI, CO JE LEPŠÍ? [online]. 2021, poslední aktualizace 10.03.2021 [cit. 13.11.2022]. Dostupné z URL: https://www.smart-switch.cz/blog/zigbee-vs-wifi-co-je-lepsi/

Seznam obrázků

R 1	Alenčino zrcadlo	`																5	7
D.1	Alencino zicadio) .																· U	, 1

Seznam tabulek

4.1 F	Přehled příkazů	l.																														5	L
-------	-----------------	----	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---

Seznam výpisů

C.1	Ukázka sazby zkratek	59
C.2	Příklad Schur-Cohnova testu stability v prostředí Matlab	60
C.3	Příklad implementace první kanonické formy v jazyce C	61

Seznam symbolů a zkratek

Šířka levého sloupce Seznamu symbolů a zkratek je určena šířkou parametru prostředí **acronym** (viz řádek 1 výpisu zdrojáku na str. 59)

KolikMista pouze ukázka vyhrazeného místa

DSP číslicové zpracování signálů – Digital Signal Processing

 $f_{\rm vz}$ vzorkovací kmitočet

Seznam příloh

A	Některé příkazy balíčku thesis	55
	A.1 Příkazy pro sazbu veličin a jednotek	55
	A.2 Příkazy pro sazbu symbolů	55
В	Druhá příloha	57
\mathbf{C}	Příklad sazby zdrojových kódů	5 9
	C.1 Balíček listings	59
D	Obsah elektronické přílohy	63

A Některé příkazy balíčku thesis

A.1 Příkazy pro sazbu veličin a jednotek

Tab. A.1: Přehled příkazů pro matematické prostředí

Příkaz	Příklad	Zdroj příkladu	Význam
	β_{\max}	<pre>\$\beta_\textind{max}\$</pre>	textový index
	$\mathrm{U_{in}}$	<pre>\$\const{U}_\textind{in}\$</pre>	konstantní veličina
	$u_{ m in}$	<pre>\$\var{u}_\textind{in}\$</pre>	proměnná veličina
	$oldsymbol{u}_{ m in}$	<pre>\$\complex{u}_\textind{in}\$</pre>	komplexní veličina
	y	\$\vect{y}\$	vektor
	Z	\$\mat{Z}\$	matice
	kV	$\$ \unit{kV}\ \cdot \unit{kV}	jednotka

A.2 Příkazy pro sazbu symbolů

- \E, \eul sazba Eulerova čísla: e,
- \J, \jmag, \I, \imag sazba imaginární jednotky: j, i,
- \dif sazba diferenciálu: d,
- \sinc sazba funkce: sinc,
- \mikro sazba symbolu mikro stojatým písmem¹: μ,
- \uppi sazba symbolu π (stojaté řecké pí, na rozdíl od \pi, což sází π).

Všechny symboly jsou určeny pro matematický mód, vyjma \mikro, jenž je použitelný rovněž v textovém módu.

¹znak pochází z balíčku textcomp

B Druhá příloha

Obr. B.1: Zlepšené Wilsonovo proudové zrcadlo.

Pro sazbu vektorových obrázků přímo v ĽTĘXu je možné doporučit balíček TikZ. Příklady sazby je možné najít na TĘXample. Pro vyzkoušení je možné použít programy QTikz nebo TikzEdt.

C Příklad sazby zdrojových kódů

C.1 Balíček listings

Pro vysázení zdrojových souborů je možné použít balíček listings. Balíček zavádí nové prostředí lstlisting pro sazbu zdrojových kódů, jako například:

```
\section{Balíček lstlistings}
Pro vysázení zdrojových souborů je možné použít
 balíček \href{https://www.ctan.org/pkg/listings}%
 {\texttt{listings}}.
Balíček zavádí nové prostředí \texttt{lstlisting} pro
 sazbu zdrojových kódů.
```

Podporuje množství programovacích jazyků. Kód k vysázení může být načítán přímo ze zdrojových souborů. Umožňuje vkládat čísla řádků nebo vypisovat jen vybrané úseky kódu. Např.:

Zkratky jsou sázeny v prostředí acronym:

6 \begin{acronym}[KolikMista]

Sířka textu volitelného parametru KolikMista udává šířku prvního sloupce se zkratkami. Proto by měla být zadávána nejdelší zkratka nebo symbol. Příklad definice zkratky f_{vz} je na výpisu C.1.

Výpis C.1: Ukázka sazby zkratek

```
21 \acro{symfvz}  % název
22 [\ensuremath{f_\textind{vz}}]  % symbol
23 {vzorkovací kmitočet}  % popis
```

Ukončení seznamu je provedeno ukončením prostředí:

26 \end{acronym}

Poznámka k výpisům s použitím volby jazyka czech nebo slovak:

Pokud Váš zdrojový kód obsahuje znak spojovníku -, pak překlad může skončit chybou. Ta je způsobená tím, že znak - je v českém nebo slovenském nastavení balíčku babel tzv. aktivním znakem. Přepněte znak - na neaktivní příkazem \shorthandoff{-} těsně před výpisem a hned za ním jej vratte na aktivní příkazem \shorthandon{-}. Podobně jako to je ukázáno ve zdrojovém kódu šablony.

Výpis C.2: Příklad Schur-Cohnova testu stability v prostředí Matlab.

```
%% Priklad testovani stability filtru
1
2
  % koeficienty polynomu ve jmenovateli
4 \mid a = [5, 11.2, 5.44, -0.384, -2.3552, -1.2288];
  disp( 'Polynom:'); disp(poly2str( a, 'z'))
7 | disp('Kontrola pomoci korenu polynomu:');
  zx = roots( a);
  if ( all( abs( zx) < 1))
      disp('System i je i stabilni')
10
  else
11
      disp('Systemujeunestabilniunebounaumeziustability');
12
  end
13
14
15 disp('u'); disp('KontrolaupomociuSchur-Cohn:');
16 ma = zeros( length(a)-1,length(a));
17 \mid ma(1,:) = a/a(1);
  for(k = 1:length(a)-2)
18
      aa = ma(k, 1: end - k + 1);
19
      bb = fliplr( aa);
20
      ma(k+1,1:end-k+1) = (aa-aa(end)*bb)/(1-aa(end)^2);
21
  end
22
23
  if( all( abs( diag( ma.'))))
24
      disp('System _ je _ stabilni')
25
26
  else
      disp('System je nestabilni nebo na mezi stability');
27
  end
28
```

Výpis C.3: Příklad implementace první kanonické formy v jazyce C.

```
// první kanonická forma
                                                                    1
                                                                    2
short fxdf2t( short coef[][5], short sample)
                                                                    3
{
  static int v1[SECTIONS] = {0,0}, v2[SECTIONS] = {0,0};
                                                                    4
  int x, y, accu;
                                                                    5
                                                                    6
  short k;
                                                                    7
  x = sample;
                                                                    8
  \underline{for}(k = 0; k < SECTIONS; k++){
                                                                    9
    accu = v1[k] >> 1;
                                                                    10
    y = _sadd(accu, _smpy(coef[k][0], x));
                                                                    11
    y = _sshl(y, 1) >> 16;
                                                                    12
                                                                    13
    accu = v2[k] >> 1;
                                                                    14
    accu = _sadd( accu, _smpy( coef[k][1], x));
                                                                    15
    accu = _sadd( accu, _smpy( coef[k][2], y));
                                                                    16
    v1[k] = _sshl( accu, 1);
                                                                    17
                                                                    18
    accu = \_smpy(coef[k][3], x);
                                                                    19
    accu = _sadd( accu, _smpy( coef[k][4], y));
                                                                    20
    v2[k] = _sshl(accu, 1);
                                                                    21
                                                                    22
                                                                    23
    x = y;
                                                                    24
                                                                    25
  return( y);
                                                                    26
}
```

D Obsah elektronické přílohy

Elektronická příloha je často nedílnou součástí semestrální nebo závěrečné práce. Vkládá se do informačního systému VUT v Brně ve vhodném formátu (ZIP, PDF...).

Nezapomeňte uvést, co čtenář v této příloze najde. Je vhodné okomentovat obsah každého adresáře, specifikovat, který soubor obsahuje důležitá nastavení, který soubor je určen ke spuštění, uvést nastavení kompilátoru atd. Také je dobře napsat, v jaké verzi software byl kód testován (např. Matlab 2018b). Pokud bylo cílem práce vytvořit hardwarové zařízení, musí elektronická příloha obsahovat veškeré podklady pro výrobu (např. soubory s návrhem DPS v Eagle).

Pokud je souborů hodně a jsou organizovány ve více složkách, je možné pro výpis adresářové struktury použít balíček dirtree.

ر ا	kořenový adresář přiloženého archivu
Ì	logo
	BUT_abbreviation_color_PANTONE_EN.pdf
	BUT_color_PANTONE_EN.pdf
	FEEC_abbreviation_color_PANTONE_EN.pdf
	FEKT_zkratka_barevne_PANTONE_CZ.pdf
	UTKO_color_PANTONE_CZ.pdf
	UTKO_color_PANTONE_EN.pdf
	VUT_barevne_PANTONE_CZ.pdf
	VUT_symbol_barevne_PANTONE_CZ.pdf
	VUT_zkratka_barevne_PANTONE_CZ.pdf
1	obrazkyostatní obrázky
	soucastky.png
	spoje.png
	ZlepseneWilsonovoZrcadloNPN.png
	ZlepseneWilsonovoZrcadloPNP.png
	pdfpdf stránky generované informačním systémem
	student-desky.pdf
	student-titulka.pdf
	student-zadani.pdf
	<u>text</u> zdrojové textové soubory
	literatura.tex
	prilohy.tex
	reseni.tex
	uvod.tex
	vysledky.tex
	zaver.tex
	zkratky.tex
-	sablona-obhaj.texhlavní soubor pro sazbu prezentace k obhajobě
-	sablona-prace.texhlavní soubor pro sazbu kvalifikační práce
	thesis.stybalíček pro sazbu kvalifikačních prací