

Algorithm for ancestry analysis and its performance optimization

Beilei Bian

2016.12.11@Shanghai

4

Outline

- ▶ What is ancestry analysis?
- Statistical Model
- ► Algorithms for optimization
- ▶ Performant code

What is ancestry analysis?

Tracing your ancestry

Figure 1: Humans never stop evolving

What is ancestry analysis?

▶ Estimate ancestries from large SNP genotype data

Figure 2: Ancestry result - WeGene

Statistical Model

► Genotype Matrix

g1	g2	g3
0	2	0
0	0	0
1	0	1
2	0	1
	0 0 1	0 2 0 0 1 0

► Ancestry Matrix

Individual ID	CEU	YRI	French
1	0.99998	0.00001	0.00001
2	0.00001	0.99998	0.00001
3	0.00001	0.00001	0.99998
4	Unknown	Unknown	Unknown

Statistical Model

► Frequency Matrix

Population	SNP1	SNP2	SNP3
CEU	0.9	0.2	0.1
YRI	0.5	0.4	0.2
French	0.01	0.05	0.1

Statistical Model

Binomial distribution

$$Pr(1/1 \text{ for i at SNP j}) = \left[\sum_{k} q_{ik} f_{kj}\right]^{2}$$

$$Pr(1/2 \text{ for i at SNP j}) = 2\left[\sum_{k} q_{ik} f_{kj}\right] \left[\sum_{k} q_{ik} (1 - f_{kj})\right]$$

$$Pr(2/2 \text{ for i at SNP j}) = \left[\sum_{k} q_{ik} (1 - f_{kj})\right]^{2}.$$
(1)

Figure 3: Binomial distribution

Loglikelihood function

$$L(Q, F) = \sum_{i} \sum_{j} \{g_{ij} ln[\sum_{k} q_{ik} f_{kj}] + (2 - g_{ij}) ln[\sum_{k} q_{ik} (1 - f_{kj})]\}$$

Algorithms for optimization

► EM

EM is numerically more stable, however, the stability of EM is attained at the expense of slow, linear convergence.

Block Relaxation

The general idea of is easy to understand. It minimizes a real-valued function of several variables by partitioning the variables into blocks. And we choose initial values for all blocks, and then minimize over one of the blocks, while keeping all other blocks fixed at their current values.

SQP: Sequential Quadratic Programming

Quasi-Newton Acceleration

The EM algorithm of FRAPPE updates the parameters via

$$f_{kj}^{n+1} = \frac{\sum_{i} g_{ij} a_{ijk}^{n}}{\sum_{i} g_{ij} a_{ijk}^{n} + \sum_{i} (2 - g_{ij}) b_{ijk}^{n}},$$
(3)

$$q_{ik}^{n+1} = \frac{1}{2J} \sum_{j} \left[g_{ij} a_{ijk}^{n} + (2 - g_{ij}) b_{ijk}^{n} \right], \tag{4}$$

where for convenience we define

$$a^n_{ijk} \ = \ \frac{q^n_{ik} f^n_{kj}}{\sum_m q^n_{im} f^n_{mj}}, \quad b^n_{ijk} \ = \ \frac{q^n_{ik} (1 - f^n_{kj})}{\sum_m q^n_{im} (1 - f^n_{mj})}.$$

Figure 4: EM

separately. The entries of the first differentials are

$$\begin{split} \frac{\partial L}{\partial q_{ik}} &=& \sum_{j} \left[\frac{g_{ij}f_{kj}}{\sum_{m}q_{im}f_{mj}} + \frac{(2-g_{ij})(1-f_{kj})}{\sum_{m}q_{im}(1-f_{mj})} \right], \\ \frac{\partial L}{\partial f_{kj}} &=& \sum_{i} \left[\frac{g_{ij}q_{ik}}{\sum_{m}q_{im}f_{mj}} - \frac{(2-g_{ij})q_{ik}}{\sum_{m}q_{im}(1-f_{mj})} \right]. \end{split}$$

All entries of the second differentials vanish except for

$$\begin{split} \frac{\partial^2 L}{\partial q_{ik}q_{il}} &= -\sum_j \left\{ \frac{g_{ij}f_{kj}f_{lj}}{\left(\sum_m q_{im}f_{mj}\right)^2} + \frac{(2-g_{ij})(1-f_{kj})(1-f_{lj})}{\left[\sum_m q_{im}(1-f_{mj})\right]^2} \right\}, \\ \frac{\partial^2 L}{\partial f_{kj}\partial f_{lj}} &= -\sum_i \left\{ \frac{g_{ij}q_{ik}q_{il}}{\left(\sum_m q_{im}f_{mj}\right)^2} + \frac{(2-g_{ij})q_{ik}q_{il}}{\left[\sum_m q_{im}(1-f_{mj})\right]^2} \right\}, \end{split}$$

Figure 5: differentials

Version 1 (EM)

```
updatef1 <- function(g, q, f) {
    f1 <- matrix(NA, ncol(q), ncol(f)); a <- rep(NA, nrow(q))
    b \leftarrow rep(NA, nrow(q))
    for(k in 1:ncol(q)){
        for(j in 1:ncol(f)){
             for(i in 1:nrow(q)){
                 a[i] \leftarrow g[i, j] * q[i, k] * f[k, j] /
                          a[i, ] %*% f[, i]
                 b[i] \leftarrow (2 - g[i, j]) * q[i, k] * (1 - f[k, j])
                          q[i, ] %*% (1 - f[, i])
             f1[k, j] \leftarrow sum(a) / (sum(a) + sum(b))
        }
    return(f1)
```

Version 1 (second differential)

```
loglikhessf <- function(g, q, f, s) {</pre>
  hessf <- rep(NA, n); K <- ncol(q)
  loglikhessvaluef <- matrix(NA, K, K)
  for(k in 1:K){
    for(l in 1:K){
      for(i in 1:n){
        hessf[i] \leftarrow -(g[i, s] * q[i, k] * q[i, 1] /
                           (q[i, ] %*% f[, s])^2) +
                     ((2 - g[i, s]) * q[i, k] * q[i, 1]) /
             (q[i, ] %*% (1 - f[, s]))^2
      }
      loglikhessvaluef[k, 1] <- sum(hessf)</pre>
  return(loglikhessvaluef)
```

How to evaluate and opimize the programs?

Performant code

- Steps
 - 1. Try to find the slowest part of the code. Measuring performance
 - 2. Improving performance

How to measure the performance of the code?

First, you need a profiler. R uses a sampling profiler which is simple and lightweight.

Tool: Profvis

Figure 6: Profvis

Tool: Profvis

Figure 7: flame graph

horizontal direction: time

vertical direction: call stack

- Advantages:
 - interactive
 - memory & time
- ► Limitations:
 - cannot show up internal R functions and code implemented by other languages(C, C++, Fortran)

Other tools for profiling R code

- package
 - microbenchmark
 - proftools
 - GUIProfiler
 - aprof
- function
 - system.time()
- Advanced profiling
 - pbdPAPI: hardware performance counters like cache misses, flops pbdR: programming with big data in R

Improving performance

```
updatef1 <- function(g, q, f) {
    f1 <- matrix(NA, ncol(q), ncol(f)); a <- rep(NA, nrow(q))
    b \leftarrow rep(NA, nrow(q))
    for(k in 1:ncol(q)){
        for(j in 1:ncol(f)){
             for(i in 1:nrow(q)){
                 a[i] \leftarrow g[i, j] * q[i, k] * f[k, j] /
                          q[i, ] %*% f[, j]
                 b[i] \leftarrow (2 - g[i, j]) * q[i, k] * (1 - f[k, j])
                          q[i, ] %*% (1 - f[, i])
             f1[k, j] \leftarrow sum(a) / (sum(a) + sum(b))
        }
    return(f1)
```

Improving performance

Vectorize

```
updatef2 <- function(g, q, f) {
    f1 <- matrix(NA, ncol(q), ncol(f))
    for(k in 1:ncol(q)) {
         for(j in 1:ncol(f)) {
             a \leftarrow (g[, j] * q[, k] * f[k, j]) /
                   (a \% * \% f[, i])
             b \leftarrow ((2 - g[, j]) * q[, k] * (1 - f[k, j])) /
                   (q \% \% (1 - f[, j]))
             f1[k, j] \leftarrow sum(a) / (sum(a) + sum(b))
    return(f1)
```

microbenchmark

```
library(microbenchmark)
microbenchmark(
   uf1 <- updatef1(g3, q3, f3),
   uf2 <- updatef2(g3, q3, f3),
   times = 3
#> Unit: milliseconds
#>
                       expr min lq mean
#> uf1 <- updatef1(q3, q3, f3) 16901.4165 17107.2004 17387.713 1
#> uf2 <- updatef2(q3, q3, f3) 591.9372 598.6475 604.927
#> max neval
#>17948.7376 3
#> 617.4861
```

► R'C Interface

Suppose you've done everything you can in R, but your code still isn't fast enough.

- ▶ Why is R slow?
 - Interpreted language
 - Extreme dynamism, but complicate the implementor's task
 - **.** . . .
- ▶ Use compiled language: R'C API/Rcpp
 - fast execution
 - editing and debugging is slower than interpreted language

.Call()

Example

```
// calculate sum of first 100 natural number
// include the header files
# include <R.h>
# include <Rinternals.h>
# include <Rmath.h>
SEXP hello(SEXP vec) {
    int n = length(vec);
    double *vec1, *a;
    vec1 = REAL(vec);
    SEXP out = PROTECT(allocVector(REALSXP, 1));
    a = REAL(out);
    for(int i = 0; i < n; i++) {</pre>
        a[0] += vec1[i]:
    }
    UNPROTECT(1);
    return(out);
```

Comparison

```
microbenchmark(
    uf1 <- updatef1(g3, q3, f3),
   uf2 \leftarrow updatef2(g3, q3, f3),
   uf3 <- .Call("updatef", nrow(q3), ncol(g3), ncol(q3),
                 q3, f3, g3),
   times = 3
#>
                          expr
#> uf1 <- updatef1(q3, q3, f3)
#> uf2 <- updatef2(q3, q3, f3)
\# uf3 <- .Call("updatef", nrow(q3), ncol(q3), ncol(q3),
#>
                q3, f3, q3)
#>
           mean neval.
#> 16862.84830 3
#> 549.80406 3
#> 26.00166 3
```

Other tricks for matrix calculation

▶ crossprod(x, y)

```
## Unit: milliseconds
                        expr min
##
                                            lq
                                                    mean
                                                            m
        t1 <- t(g32) %*% q32 1310.0065 1322.1729 1645.5548 1332
##
   t2 <- crossprod(g32, q32) 477.9439 504.1984 509.2398 516
##
##
                  max neval
          uq
   1358.4614 2904.9669
##
   520.4295 527.1612
##
```

► rowSums, colSums

```
library(radmixture)
lfun1 <- function(g, q, f) {</pre>
    11 < -g * log(q % * % f)
    12 \leftarrow (2 - g) * log(q %*% (1 - f))
    1 < -11 + 12
    suml <- sum(rowSums(1))</pre>
    return(suml)
lfun2 <- function(g, q, f) {</pre>
    11 < -g * log(q % * % f)
    12 \leftarrow (2 - g) * \log(q \% \% (1 - f))
    1 <- 11 + 12
    suml <- sum(apply(1, 1, FUN = sum))</pre>
    return(suml)
#> Unit:seconds
#> expr1: 2.636637
#> expr2: 6.587903
```


► use OpenBLAS/MKL

Ubuntu: sudo apt-get libopenblas-base

sudo update-alternatives -config libblas.so.3

Selection	Path	Priority	Status
* 0	/usr/lib/openblas-base/libblas.so.3	40	auto mode
1	/usr/lib/libblas/libblas.so.3	10	manual mode
2	/usr/lib/openblas-base/libblas.so.3	40	manual mode

Figure 8: update the link

▶ use OpenBLAS

libblas

```
> microbenchmark(lfun(g32,q32,f32),times=5)
Unit: seconds
expr min lq mean median uq max neva
l
lfun(g32, q32, f32) 11.57285 11.60384 12.17303 11.7427 11.76221 14.18355
5_
```

Figure 9: blas

openblas-base

Figure 10: openblas

Parallelise

task-parallelism and data-parallelism

- parallel
- foreach

```
library(foreach)
library(doMC)
registerDoMC(cores = 10)
flongvec <- foreach(j = 1:ncol(f), .combine = cbind,
                     .packages = c("radmixture", "quadprog"))
            %dopar% {
                bvec <-c(-f[, j], f[, j] - 1)
                flongvec[, j] \leftarrow f[, j] +
                                 solve.QP(-diff.f(g, q, f, s = j)
                                 diff.f(g, q, f, s = j)$Jaco,
                                 t(Amatf), bvec)$solution
```

Other techniques

Avoid copy :R makes a copy of f to a new location

```
library(pryr)
c(address(f), refs(f))
f[, j] \leftarrow f[, j] + solve.QP(-diff.f(g, q, f, s = j))Hess,
                           diff.f(g, q, f, s = j)$Jaco,
                           t(Amatf), bvec)$solution
f < -1.10
ff < -f
c(address(f), address(ff), refs(ff))
#> [1] "0x129a56000" "0x129a56000" "2"
f[5] < -10
c(address(f), address(ff))
#> [1] "0x11294ea08" "0x129a56000"
```

Avoid copy

expr1: 2857000ms expr2: 316470ms

Figure 11: slowness because of modifying a copy

Byte code compilation compiler

```
## Unit: seconds
##
                          expr min lq
                                                    mean
                                                           me
##
     111 <- lfun(g32, q32, f32) 2.635201 2.745057 2.818596 2.85
   112 <- lfun_c(g32, q32, f32) 2.591420 2.604328 2.856135 2.61
##
##
        max neval
   2.965672
##
   3.359748
                3
##
```

But in this example, byte code compilation doesn't help at all.

In DISCRIPTION: ByteCompile: true

In python, you can use Cython.

- ▶ file I/O
 - read.table() slow

```
system.time(f <- read.table(file = "/Users/bianbeilei/f.txt"
#> user system elapsed
#> 7.830 0.063 7.919
```

fread() and fwrite() – fast

```
library(data.table)
system.time(f <- fread("/Users/bianbeilei/f.txt"))
#> user system elapsed
#> 0.269 0.002 0.271
```

readLines() - fastest(string type)

```
system.time(f <- readLines("/Users/bianbeilei/f.txt"))
#> user system elapsed
#> 0.049 0.001 0.049
```

- ► Alternative R implementations: qpR, Renjin, FastR
- ▶ Use GPU
- ▶ bookdown.org: Efficient R programming

References

- [1] D.H. Alexander, J. Novembre, and K. Lange. Fast model-based estimation of ancestry in unrelated individuals. Genome Research, 19:1655–1664, 2009.
- [2] H. Zhou, D. H. Alexander, and K. Lange. A quasi-Newton method for accelerating the convergence of iterative optimization algorithms. Statistics and Computing, 2009.
- [3] Advanced R by Hadley Wickham
- [4] Lim A, Tjhi W. R High Performance Programming[M].

Contact me: bblzuiaimessi@gmail.com/bianbeilei@wegene.com