### Iterative linear solvers and random matrices

New bounds for the block Gaussian sketch-and-project method

Liza Rebrova

Department of Mathematics UCLA

SOCAMS, Caltech, April 2019

Joint work with Deanna Needell



## Model: overdetermined linear system

A is a tall  $m \times n$  matrix  $(m \gg n)$  assumed to have full column rank. Notations:  $A_i$  - rows of  $A_i$ 

$$\sigma_{\textit{min}}^2 = \textit{eig}_{\textit{min}}(\textit{A}^T\textit{A}) = 1/\|\textit{A}^{-1}\|^2_{\textit{L}_2 \rightarrow \textit{L}_2}$$

#### Randomized Kaczmarz method

Starting at some  $x_0 \in \mathbb{R}^n$ :

- 1. Choose  $i = i(k) \in [m]$  with probability  $||A_i||_2^2/||A||_F^2$
- 2. Define  $x_k := x_{k-1} + \frac{b_i A_i^T x_{k-1}}{||A_i||^2} A_i$
- 3. Repeat until  $||Ax_k b||_2 < \varepsilon$  (some threshold)



#### Convegence theorem (Strohmer - Vershynin 2009)

The randomized Kaczmarz converges to  $x_*$  linearly in expectation:

$$|\mathbb{E}||x_k - x_*||_2^2 \le \left(1 - \frac{\sigma_{min}^2(A)}{||A||_F^2}\right)^k ||x_0 - x_*||_2^2.$$

#### Block Kaczmarz Method

#### Starting at $x_0 \in \mathbb{R}^n$ :

- 1. Choose  $A_{\tau}$  a block row subset at random,  $\tau = \tau(k) \subset [m], |\tau| = s$
- 2. Define  $x_k := x_{k-1} + (A_{\tau})^{\dagger} (b_{\tau} A_{\tau} x_k)$
- 3. Repeat until  $||Ax_k b||_2 < \varepsilon$



#### Convegence theorem (Needell - Tropp 2012)

The block Kaczmarz converges to  $x_*$  in expectation with accelerated rate

$$\mathbb{E}||x_k - x_*||_2^2 \le \left(1 - c \frac{\sigma_{min}^2(A)}{||A||^2 \log m}\right)^k ||x_0 - x_*||_2^2,$$

if all blocks are well-conditioned: for some  $\delta \in (0,1)$ , number of blocks  $\cdot \max_{\tau} ||A_{\tau}||_2^2 \lesssim ||A||_2^2 \log(m) \frac{1}{\delta^2} \cdot (1+\delta)$ .



# Sketch-and-project methods

Gower - Richtárik (2015):

instead of Ax = b, solve  $S^T Ax = S^T b$ 

S=m imes s sketch matrix, if  $s \ll m$  (sketched system is easier) Iteration:

$$x_{k} := x_{k-1} + (S^{T}A)^{\dagger} (S^{T}b - S^{T}Ax_{k})$$
  
=  $(\text{Id} - (S^{T}A)^{\dagger}S^{T}A)x_{k} + (S^{T}A)^{\dagger}S^{T}b.$ 



#### Discrete random sketches and Kaczmarz methods

$$A_{i} = (0, \dots, 0, 1, 0, \dots, 0) \cdot A$$

$$A_{\tau} = \begin{bmatrix} 0 & | \operatorname{Id} & | & 0 \end{bmatrix} \cdot A = S^{T}A; \quad b_{\tau} = S^{T}b$$

$$S = \begin{bmatrix} 0 & | & 0 & | & 0 \end{bmatrix} \cdot A = S^{T}A$$

Sketch-and-project methods with S = (randomly placed identity completed by zeroes) are randomized Kaczmarz methods

## Gaussian sketching

$$A_{\xi} := \xi^T \cdot A$$
, where  $\xi \sim N(0, \mathrm{Id})$ 

 $A_S := S^T \cdot A$ , where S is  $m \times s$  gaussian random matrix

$$A_S$$
  $:=$   $N(0,1) \text{ i.i.d.}$   $A$ 

Gaussian sketch-and-project method takes gaussian random matrices S with i.i.d. entries as sketches.

### Results 1: convergence rate

#### Convegence theorem (R - Needell 2019)

The gaussian block Kaczmarz method converges to  $x_*$  with the rate

$$\mathbb{E}||x_k - x_*||_2^2 \le \left(1 - \frac{s\sigma_{min}^2(A)}{(9\sqrt{s}||A|| + C||A||_F)^2}\right)^k ||x_0 - x_*||_2^2,$$

where  $1 \le s \le m$  is the dimension of the gaussian sketch S.

- recovers "standard rate"  $\sigma_{min}^2(A)/\|A\|_F^2$  for s=1
- per iteration performance improves with increasing s
- actually, cputime performance also improves with increasing s

## Better convergence for bigger sketch size





Left: time(s) vs relative error for the varying sketch size s=1,10,100,500; right: block size vs average time until relative error 1e-4

#### Proof ideas: random matrices

- 1. We need to estimate  $\mathbb{E}\|(S^TA)^{\dagger}\cdot S^TAx\|_2^2$  from below a product of two (dependent!) random matrices
- 2. S is  $m \times s$  standard normal i.i.d. matrix.

$$\mathbb{E}\|S^{T}Ax\|_{2}^{2} = s\|Ax\|_{2}^{2} \ge s\sigma_{min}^{2}(A)$$

But we need a high probability statement for any  $s \ge 1$ :

$$\mathbb{P}(\|S^Tv\|_2^2 > \|v\|^2 s/10) \ge 0.5$$

for any  $v \in \mathbb{R}^m$  and  $s \ge 1$  - Cramér's concentration theorem.

$$\mathbb{E}\sup_{\mathbf{x}\in\mathcal{S}^{n-1}}\|\mathbf{S}^T\mathbf{A}\mathbf{x}\|_2\leq \sqrt{m}\|\mathbf{A}\|_2$$

Can we get a better estimate? Yes!

$$\mathbb{E} \sup_{x \in S^{n-1}} \|S^T A x\|_2 = \mathbb{E} \sup_{w \in AS^{n-1}} \|S^T w\|_2 \le \sqrt{s} \|A\| + C \|A\|_F.$$

To show 3.: apply matrix deviation inequality:

$$\mathbb{E} \sup_{w \in U} \|S^{T}w\|_{2} \leq \sqrt{s} \sup_{w \in U} \|w\|_{2} + C\gamma(U),$$

to the ellipse  $U := AS^{n-1}$ . Here,  $\gamma(U)$  is gaussian complexity of the set U:

$$\gamma(U) := \mathbb{E} \sup_{w \in U} |\langle \xi, w \rangle|$$
, where  $\xi \sim \mathit{N}(0, \mathit{I}_n)$ 

# Results 2: sampling sketches from finite collection

We could select sketches from the pre-sampled collection of gaussian random matrices

### Theorem (R - Needell)

Let  $S = \{S_1, \ldots, S_N\}$  be a set of  $m \times s$  random matrices with i.i.d. standard normal entries,  $m^{2.5} \leq N \leq e^{m/3}$ . Then, with probability at least 1-3/m, for any initial estimate  $x_0$ , finite block gaussian Kaczmarz method converges with the rate

$$\mathbb{E}||x_k - x_*||_2^2 \le \left(1 - \frac{s}{36m\kappa^2(A)}\right)^k ||x_0 - x_*||_2^2.$$

In practice, the collection  ${\cal S}$  can be much smaller, about  $|{\cal S}| \sim m/s$ 

# Results 3: Solving noisy systems

If the system is inconsistent, we can search for least-squares problem solution with gaussian block Kaczmarz method:

$$x_* = \operatorname{argmin}_x \|Ax - b\|_2^2$$

and the error (noise)  $e := Ax_* - b$ .

### Theorem (R - Needell)

The gaussian block Kaczmarz method converges to  $x_*$  with the rate:

$$\mathbb{E}||x_k - x_*||_2^2 \le r^k ||x_0 - x_*||_2^2 + \frac{||e||_2^2}{s_{min}^4(A)} \cdot \left[ \frac{(9\sqrt{s}||A|| + C||A||_F)^2}{(\sqrt{n} - \sqrt{s})^2} \right]$$

Structurally differs from the noiseless case: diverges when  $s \sim n$ 



## Dependence on the block size in the noisy case

$$A = 50000 \times 500$$
 i.i.d. gaussian matrix,  $e = \text{random gaussian noise}$ , normalized:  $||e||_2 = 0.05 * ||b||_2$ 



Left: iteration vs relative error for the sketch size s=1,10,100,490; right: block size vs average time until relative error 1e-2; 70 sec is max allowed time

### Is gaussian sketching practical?

 $A = 50000 \times 500 \text{ i.i.d. matrix:} \\ \textit{N(0,1)} \text{ model (thin) and } \textit{Unif}[0.8,1] \text{ model (bold lines)}$ 



Left: s = 1, right: s = 223; blue = with gaussian sketching, red = without it

Gaussian sketching improves regular Kaczmarz for highly coherent systems when s=1, but loses the advantage on bigger block sizes



## Gaussian sketching reduces variance

 $A = 50000 \times 500$  i.i.d. matrix, e = spiky noise, 10 random spikes of size 50.





Iteration vs relative error (median and range over 10 runs). Left: gaussian model, right: coherent model; blue = with gaussian sketching, red = without it.

# Thanks for your attention!



Thanks for the pictures: Jamie Haddock, Gower&Richtarik "Randomized iterative methods ...", Matlab 2018b