R | Basic Text Analysis Presented by Aviv Lo

Table of Contents

What exactly is R?

- 1. Developed by Ross Ihaka and Robert Gentleman in 1991
- 2. Hence the name "R"
- 3. Maintained by The R Foundation for Statistical Computing
- 4. Difficult for beginners + Steep learning curve
- 5. Rich and powerful visualization libraries
- 6. Support matrix / vectorized operations
- 7. It's born for stats

```
🚫 🖨 📵 example.R (/tmp) - VIM
numbers <- 1:3
                                                       .GlobalEnv | Libraries
words <- c("word1", "word2", "word3")
categories <- as.factor(words)</pre>
                                                         categories A factor vector
dtfrm <- data.frame(numbers, words)</pre>
                                                         dtfrm
                                                           numbers
attr(numbers, "label")
                           <- "A numeric vector"
                                                          ∟ words
attr(words, "label")
                           <- "A character vector"
                                                          list2
                                                          ⊢ list1
attr(categories, "label") <- "A factor vector"
                                                               dtfrm
list1 <- list(dtfrm = dtfrm, y = numbers)</pre>
                                                                     numbers
list2 <- list(list1 = list1, abc = words)</pre>
                                                                     words
list2$`name with space` <- 1:10
                                                                     A numeric vector
list2$`2` <- c("one", "two")
                                                                     A character vector
list3 <- list(abc = categories, list1 = list1)</pre>
                                                            name with space
rm(list1)
example.R [+]
                                                  All Object_Browser
                                                                        8,1
                                                                                      Top
> list1 <- list(dtfrm = dtfrm, y = numbers)</pre>
> list2 <- list(list1 = list1, abc = words)
> list2$`name with space` <- 1:10
> list2$`2` <- c("one", "two")
> list3 <- list(abc = categories, list1 = list1)</pre>
> rm(list1)
> source('/home/jakson/src/Vim-R-plugin/r-plugin/vimbrowser.R') ; .vim.browser()
```

RStudio

R vs. Python

	Python	R
General	Python is a general-purpose programming lanuage for data analysis and scientific computing.	R is a functional programming enviornment and language for statstical computing and graphics.
Objective	Data Science, Web Developoment, Embedded Systems	Data Science & Statistical Modeling
IDE	iPython, Pycharm, Jupyter Notebook, Spyder	Rstudio, R GUI, R KWARD
Data Collection	Supports CSV files, SQL, JSON, and webscraping with BeautifulSoup.	Can also import csv files with built-in readr library. R's library RCurl provides a simple way to make API requests, similar to Python's requests package.
Data Analysis	Orgnaize dataframes with Pandas filtering, sorting. Python takes a more streamlined approach for data science projects.	Complex data visualizaiton tools make the exploratory data analysis (EDA) process much more complex than Python.
Essential Packages & Libraries	Numpy, Pandas, matplotlib, scipy, scikit-learn, TensorFlow	caret, stringr, ggplot2, knitr, tldyverse, markdown, shiny, forcats, haven
Database Handling Capacity	Can easily handle large data because there are less constraints for memory usage	R computes everything in memory, so its capabilities are limited by RAM size. A major downfall of R is the inability to handle massive amounts of data
Data Visualization	Despite the capabilities of data visualization tools like MatplotIb and Seaborn , Python fails to measure up to data visualization features of R.	Developed by and for statisticians, R has complex data visualzatioon features.
Syntax	The 'zen of python' is that there's a proper way to write code.	R doesn't have this set of rules. Also indexing starts at 1, which can be considered unconventional for general programmers.
Learning Curve	Simple and readable code structure makes it easier for beginners to learn. It also allows for object-oriented programing. It also offers a wide range of data structures that you wouldn't expect from a general-purpose language.	R's functional syntax isn't easy for beginners, but not too challenging for those well versed in programming. It also offers a few data structures, but fails to handle large amounts of data.

AI/ML/NLP Explained

Al Domains

Machine Learning Family Tree

Machine Learning Family Tree

Types of NLP

Text Analysis

Process & Techniques

Process & Techniques

Goals

KEY DIFFERENCE BETWEEN TEXT ANALYSIS & NLP? THEIR GOALS.

TEXT ANALYSIS GOAL

Derive insights solely from the text itself, without consideration of the semantics.

NLP GOAL

Understand the linguistic use and context behind text, with consideration of semantics and grammatical structures.

Example: Word Cloud & Word Frequency

Example: Word Frequency

Example: Tweet Sentiment

Examples: Covid Sentiment Map

R

R Basics

R Basics

Data Types

Character & Double & Integer & Logical & Complex

Data Structures

- Matrix & Data Frame
- List & Vector
- Factor

Variable Assignment

- x ← 1
- y ← c("apple", "orange")
- o car_speeds <- read.csv(file = './car-speeds.csv')</pre>

Accessing Data Frame

- Data_Frame[row, col]
- Data_Frame\$Column_Name

R Basics: Data Structure Examples

List

```
> X
[[1]]
[1] 1
[[2]]
[1] "a"
[[3]]
[1] TRUE
[[4]]
[1] 1+4i
```

Vector

```
> z
[1] "Sarah" "Tracy" "Jon"
> y
[1] 1 2 3
> |
```

Data Frame

```
> df
id x y
1 a 1 11
2 b 2 12
3 c 3 13
4 d 4 14
5 e 5 15
6 f 6 16
7 g 7 17
8 h 8 18
9 i 9 19
10 j 10 20
>
```

Matrix

```
> m

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 11 12 13

>
```

R Basics: Exploring Your Data

nrow() & ncol()

- Gives you the number of rows of the dataset
- Gives you the number of columns of the data set

head() & tail()

- Gives you the top 6 rows of the data set
- Gives you the bottom 6 rows of the data set

• str()

- Gives you the structure of the data set
- dim()
 - Gives you the dimension (row, col) of the data set

• summary()

- Gives you a summary of your data set
- Ex: min, max, mean, IQR, number of categorical variables ...etc.

Let's Code

