

A Little Recap

Business Problem: Customers are churning. We'd like to reduce it!

Business understanding:

Action: If a customer, send promotional offer? **Decision logic considerations:**

- Consider costs of offers
- People who're most likely to leave will leave no matter what
- Customers have different values, etc.

Deriving the decision logic

• The expected value framework

Action:

If I have a customer:

We could predict this too, or let's assume it's the current plan price

Send offer $E[profit| send offer] = Pr(stay| send offer)^*(Value of customer - offer cost)$ $<math>+Pr(churn|send offer)^*(0 - offer cost)$ Let's assume it's = 1 - Pr(stay| send offer) decided already.

= 1 - Pr(churn| no offer)

Don't send offer E[profit| Not send offer] = Pr(stay| no offer)*(Value of customer - 0)

Pr(churn|no offer)*(0 - 0)

So, the unknown quantities to predict (target variables)?

Decision logic:

E[profit | send offer] - E[profit | no offer] > a threshold, send offer. How to decide the threshold: Could be 0, could be based on the budget limit, etc.

A Little Recap

Business Problem: Customers are churning. We'd like to reduce it!

A Little Recap

Business Problem: Customers are churning. We'd like to reduce it!

 We need enough info that're predictive of the target variable.

Having the right data is important!

If I have a taco cart and past sales data of tacos. And I want to sell merchandise, like baseball caps. Can I predict the sales of baseball cap sales?

About having the right data

If I have a taco cart and past sales data of tacos. And I want to sell merchandise, like baseball caps. Can I predict the sales of baseball cap sales on a weekday?

Not really if you've never sold caps before, cuz you don't have any training data!

Could try sales of tacos as proxies, but won't perform that well.

Having the right data is important!

Pr(churn|no offer)

Pr(stay|send offer)

—> If you've sent similar offers before / randomly send offers to a small number of customers

The Data Science Process

Technical tools

- Supervised / Unsupervised
- The models (ML algorithms)
- The training
- The evaluation (Metrics / Overfitting)

Supervised v.s. Unsupervised Learning

Supervised v.s. Unsupervised Learning

Are LLMs supervised or unsupervised?

The cat likes to sleep in the ____ \rightarrow What word comes next?

We can create vast amounts of sequences for training a language model

- Linear Regression: Predict a numeric variable from one or multiple other variables.
 - Simple Linear Regression
 - Only one explanatory variable (attribute)
 - Multiple Linear Regression
 - Multiple explanatory variables (attributes)

- Linear Regression: Predict a numeric variable from one or multiple other variables.
 - Simple Linear Regression
 - Only one explanatory variable (attribute)
 - Multiple Linear Regression
 - Multiple explanatory variables (attributes)

 Any line is mathematically expressed as an equation with a slope and an intercept (you may have seen y=mx+b in algebra)

$$Y = \beta_0 + \beta_1 X$$

- Example of a trained linear regression model:
 - Target variable Y = House Price \$
 - Explanatory variable: X = Num of bedrooms
 - Regression line: Y = 300k + 20k*X

 Any line is mathematically expressed as an equation with a slope and an intercept (you may have seen y=mx+b in algebra)

$$Y = \beta_0 + \beta_1 X$$

- Example of a trained linear regression model:
 - Target variable Y = House Price \$
 - Explanatory variable: X = Num of bedrooms
 - Regression line: Y = 300k + 20k*X

 Any line is mathematically expressed as an equation with a slope and an intercept (you may have seen y=mx+b in algebra)

$$Y = \beta_0 + \beta_1 X$$

- Example of a trained linear regression model:
 - Target variable Y = House Price \$
 - Explanatory variable: X = Num of bedrooms
 - Regression line: Y = 300k + 20k*X

– Inference: A house has 3 bedrooms, what price does the model predict?

The Predictive Analytics Flow

Model

Decision

Logic

The Predictive Analytics Flow

 Any line is mathematically expressed as an equation with a slope and an intercept (you may have seen y=mx+b in algebra)

$$Y = \beta_0 + \beta_1 X$$

- Example of a trained linear regression model:
 - Target variable Y = House Price \$
 - Explanatory variable: X = Num of bedrooms
 - Regression line: Y = 300k + 20k*X

- Inference: A house has 3 bedrooms, what price does the model predict?

How do we train the model?

Machine Learning:

- How do we find this line that fits the data the best?
 - Or, how do we find the parameters (the intercept and the slope?)

$$Y=\beta_0{+}\beta_1 X$$

- Changing the parameters, the line moves.
- We need a measure of 'goodness of fit'
 How good or bad the predictions are.

- How do we find this line that fits the data the best?
 - Or, how do we find the parameters (the intercept and the slope?)

$$Y=\beta_0{+}\beta_1X$$

- Changing the parameters, the line moves.
- We need a measure of 'goodness of fit'
 How good or bad the predictions are.
- Use 'residuals'
 - Residuals are the <u>errors</u> from the model fit ¹⁰⁰⁰⁰⁰
 - Residual = predicted value actual value

- How do we find this line that fits the data the best?
 - Or, how do we find the parameters (the intercept and the slope?)

$$Y = \beta_0 + \beta_1 X$$

- Changing the parameters, the line moves.
- We need a measure of 'goodness of fit'.
 How good or bad the predictions are.
- Use 'residuals'
 - Residuals are the errors from the model fit
 - Residual = predicted value actual value

$$e_i = \hat{Y} - Y$$

 The least squares regression line is the line that minimizes the sum of the squared residuals.

$$e_1^2 + e_2^2 + \ldots + e_n^2$$

- After /n: Mean Squared Error
 - We call this the loss function of linear regression.
 - Why squared?

^{*} Link to my chatgpt history that produced the graphs and interaction html

^{*} Link to the interactive html

- All ML algorithms, including Neural Networks, have loss functions.
- Training: Minimizing the loss function (errors)
 - There're optimization algorithms that could do this minimizing procedure efficiently.

Multiple Linear Regression

What if I have more features?

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \dots$$

```
Trained model: House Price = 300K + 20k* Num bedrooms + 1k* Num bathrooms + 100k* If renovated + 100 * SQFT + ...
```

Add some non-linearity

But still linear regressions!

$$Y = eta_0 + eta 1_X 1 + eta_2 log(X2) + eta_3 X_3^2 + \dots$$

Trained model: House Price = 300K + 20k* Num bedrooms

- + 1k* log(Num bathrooms)
- + 100k* If renovated
- + 100 * SQFT
- 3*SQFT^2

Add some non-linearity

English premier soccer players; Value ~ age

• But if you calculate a variable that's quadratic age, so the x-axis is for quadratic age, the line is still straight.

- Actually a technique for a Classification problem.
 - With a binary/ categorical target variable. (e.g. a customer, churn or not?)

- If a customer will purchase a product?
- If a stock is going up or down tomorrow?
- If I'd like to hire someone, is he/she going to accept?
- If my company want to enter a new market, will it succeed?
- There're a bunch of potential clients, who do I reach out first?

- Actually a technique for a Classification problem.
 - With a binary/ categorical target variable. (e.g. a customer, churn or not?)
 - E.g. Credit approval. Need to decide if an applicant will repay/default based on credit score.

- Actually a technique for a Classification problem.
 - Typically with a binary target variable. (e.g. a customer, churn or not?)
 - E.g. Credit approval. Need to decide if an applicant will repay/default based on credit score.
- Let's try the linear regression

$$\hat{y} = -1.12 + +0.002 \cdot \text{CreditScore}$$

- It outputs real numbers, not binary
- It can predict something <0 or >1
- Doesn't make sense for classification

- Actually a technique for a Classification problem.
 - Typically with a binary target variable. (e.g. a customer, churn or not?)
 - E.g. Credit approval. Need to decide if an applicant will repay/default based on credit score.
- So, logistic regression model:

$$egin{aligned} \eta(x) &= eta_0 + eta_1 x \ Pr(Y=1|X) &= Sigmoid(\eta(x)) \ &= rac{1}{1+e^{-\eta(x)}} \end{aligned}$$

- The sigmoid function: map any number to a value between 0 and 1
- So we could interpret the output as probabilities!

For someone with a credit score of 800, chance of repaid loan?

For someone with a credit score of 500, chance of repaid loan?

For someone with a credit score of 595, chance of repaid loan?

1785

- So, how do we find this logistic regression line?
 - What're the errors -> loss function?

Cross entropy!

$$\mathcal{L}(eta_0,oldsymbol{eta}) = -\sum_{i=1}^n \left[\, y_i \log p_i \, + \, (1-y_i) \, \log (1-p_i) \,
ight]$$

 Cross-entropy heavily punishes confident wrong predictions.

$$egin{aligned} \eta(x) &= eta_0 + eta_1 x \ Pr(Y=1|X) &= Sigmoid(\eta(x)) \ &= rac{1}{1+e^{-\eta(x)}} \end{aligned}$$

Need to choose a cutoff/ threshold:

• If predicted Pr(repay) > threshold, approve loan

Need to choose a cutoff/ threshold:

If predicted Pr(repay) > threshold, approve loan
 = 0.6

Customer	Credit Score	Predicted Pr(Repay)	ecision (Threshold=0.6
А	520	0.42	
В	580	0.59	
С	640	0.72	0.00
D	710	0.81	
Е	820	0.93	2000

Need to choose a cutoff/ threshold:

If predicted Pr(repay) > threshold, approve loan
 = 0.8

Customer	Credit Score	Predicted Pr(Repay) [ecision (Threshold=0.6
А	520	0.42	No
В	580	0.59	No
С	640	0.72	Approve
D	710	0.81	Approve
Е	820	0.93	Approve

Need to choose a cutoff/ threshold:

If predicted Pr(repay) > threshold, approve loan
 = 0.5

Customer	Credit Score	Predicted Pr(Repay) [ecision (Threshold=0.6
А	520	0.42	No
В	580	0.59	No No
С	640	0.72	Approve
D	710	0.81	Approve
E	820	0.93	Approve

 Moving down the threshold -> Giving out more loans, but more likely to default.

 Need to choose a cutoff/ threshold (Well this should've been the first thing to do before model building. This is the busines understanding part!):

Customer	Credit Score	Predicted Pr(Repay) I	Decision (Threshol േ⊭യ ൾ	d Truth (Repay=1, Defau
Α	520	0.42	No	0
В	580	0.59	No	1
С	640	0.72	Approve	0
D	710	0.81	Approve	1
E	820	0.93	Approve	1

• Business understanding:

If approve, but defaulted, loss = Loan value;

Repaid, profit = interest.

If not approve, no gain no loss

Decision logic: E[profit|approve] = Pr(repaid)*interest - Pr(default)*loan value > 0

Classification task

Is LLM modeling a classification task?

Classification task

Is LLM modeling a classification task?

Word	Probability
ability	0.002
bag	0.071
box	0.085
zebra	0.001
	_

Output

Evaluation

- Why do we need to evaluate model performances?
 - Necessary for ensuring that the models can make accurate predictions on new, unseen data!
- Overfitting happens when a model learns the training data too well (learning the random noises and quirks)
 - it performs great on the training set but **poorly on new, unseen data**.

Evaluation

- More complexity allows us more freedom and flexibility to fit the messy realities
 - Models always get better (as measured on training set) with more data or more complexity. BUT higher complexity runs the risk of **overfitting** data.
- So we need holdout data to optimize generalizability.
 - Basically, we break our dataset into a training set, and a validation set.
 - And evaluate the performance on the validation set.

Evaluation

- More complexity allows us more freedom and flexibility to fit the messy realities
 - Models always get better (as measured on training set) with more data or more complexity. BUT higher complexity runs the risk of **overfitting** data.
- So we need holdout data to optimize generalizability.
 - Basically, we break our dataset into a training set, and a validation set.
 - And evaluate the performance on the validation set.

Complexity in Linear/ Logistic Regressions

- For regressions models, complexity comes in multiple forms often called the "dimensionality" of the model.
 - More attributes means more complex relationships
 - Categorical variables can explode dimensionality.

Adding attributes might make our model better!

But now we've added complexity and might be overfitting

There are real-world scenarios where we may want to explore hundreds, thousands, even MILLIONS of attributes

Financial models with time based attributes

Overfitting

Does overfitting happen with LLMs too?

Yeah! But, wait a few weeks.

Evaluation Metrics

- For regression models:
 - What did we want to minimize? The errors! Mean Squared Error (MSE)!
- For classification tasks:
 - What did we want to minimize?
 - Cross entropy
 - Prediction accuracy
 - Payoffs (Cost of wrongly classified points have costs? [More on this on Thursday])

The evaluation workflow

• **Define the model:** What does the model look like?

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \dots$$

- Training: How do we find the model that's best fit to data (on the training set)?
 - Find the parameters that minimizes the mean squared error.

$$oxed{e_1^2+e_2^2+\ldots++e_n^2} oxed{e_i=\hat{Y}-Y}$$

- Evaluation: How do we know if the model performs well on new data?
 - We have the trained model parameters, just plug in feature values to make predictions on the validation set, and measure the MSE.
 - Check if the model fit is significantly worse than on the training set.

Define the model:

Sigmoid(linear) – What're the features?

• Training:

- Loss function to minimize: Cross entropy
- So the model optimize for that and find the parameters.

Evaluation:

- We have the trained model parameters, just plug in feature values to make predictions on the validation set, and measure the metric.
- Check he prediction accuracy.
- When it involves decision making, calculate the overall costs/benefits.

Lists of Machine Learning Algorithms

Supervised Learning	Unsupervised Learning	
Linear Regression	K-Means Clustering	
Logistic Regression	Hierarchical Clustering	
Decision Trees	DBSCAN	
Random Forest	Principal Component Analysis (PCA)	The ML course will
Support Vector Machines (SVM)	(t-SNE)	walk you through
k-Nearest Neighbors (kNN)		these algorithms.
Neural Networks		

^{*} Asked chatgpt for a list of supervised/unsupervised ML algorithms and give me a .png

The Data Science Process

Great! We're well equipped to learn about Neural Networks!

More Evaluation Metrics for Binary Classification Tasks aside from cross entropy

Confusion Matrix

For a chosen threshold, you could calculate a confusion matrix.

predictions

true

	Churned	Nope
Churned	True positive %	False negative %
Nope	False positive%	True negative%

 People who actually churn, how good the model is to detect them. People who didn't churn, how wrong the model is?
 E.g., You're healthy, the model says you got cancer.

ROC Curve

- 1785
- For all threshold, we could calculate a confusion matrix.

 So let's put the true positive % on the y-axis, and false positive % on the x-axis
 - ROC curve: If I move the threshold up and down, how well does the model keep positives ranked above negatives?

Catching real positive

Raising false alarms

ROC Curve

- Plot a line for each model. Closer to the y-axis, the better.
 - The model is good at rank true positives at the top (larger probabilities)
 - The model is good at separating people who churned v.s. not.

 Same amount of mistakes, more likely to get things right.

AUC

- Area under the ROC curve.
 - Larger, the better.

 Same amount of mistakes, more likely to get things right.