$\Pi\Lambda H20$

ΕΝΟΤΗΤΑ 0: ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ

Μάθημα 0.3: Σχέσεις και Συναρτήσεις

Δημήτρης Ψούνης

ΠΕΡΙΕΧΟΜΕΝΑ

Α. Θεωρία

- 1. Συναρτήσεις
 - 1. Συνάρτηση «1-1»
 - 2. Συνάρτηση «επί»
 - 3. Συνάρτηση «αντιστοιχία»
- 2. Μαθηματικές Σχέσεις
 - 1. Ανακλαστική Σχέση
 - 2. Συμμετρική Σχέση
 - 3. Αντισυμμετρική Σχέση
 - 4. Μεταβατική Σχέση
 - 5. Σχέση Ισοδυναμίας
- 3. Σχέση Συναρτήσεων με Μαθηματικές Σχέσεις

Β.Ασκήσεις

<u>Β. Θεωρία</u>

1. Συναρτήσεις

- Μία μαθηματική συνάρτηση f από το σύνολο A στο σύνολο B είναι ένας κανόνας που αντιστοιχεί σε κάθε στοιχείο του A ένα μοναδικό στοιχείο του B.
- Γράφουμε:

$$f: A \to B$$

για να δηλώσουμε ότι η f είναι μια συνάρτηση από το A στο B.

- > Το σύνολο Α λέγεται <u>πεδίο ορισμού</u> της f.
- ightharpoonup Για κάθε $a \in A$ το $f(a) \in B$ είναι το μοναδικό στοιχείο του B που αντιστοιχεί στο a και λέγεται εικόνα του a.
- > Το σύνολο των εικόνων στο B λέγεται σύνολο τιμών της f.

1. Συναρτήσεις

Στα παρακάτω παραδείγματα θεωρούμε ότι Α είναι το σύνολο των ανθρώπων:

- $\triangleright f \colon \mathbb{N} \to \mathbb{N} \ \mu \varepsilon \ f(x) = x^2 + 1$
- $> f: A \rightarrow \mathbb{N}$ με f(x) = ηλικία του x
- $> f: A \rightarrow A$ με f(x) = πατέρας του x
- $\triangleright f \colon \mathbb{N} \to \mathbb{R} \text{ µs } f(x) = \sqrt{x}$
- $ightharpoonup f\colon \mathbb{R} o \mathbb{R} \ \mu\epsilon \ f(x) = \sqrt{x}$

Σημαντικό! Σε μια συναρτηση $f: A \rightarrow B$

- > Σε κάθε στοιχείο του Α αντιστοιχίζεται ένα στοιχείο του Β.
- Μπορεί περισσότερα από ένα στοιχεία του Α να αντιστοιχίζονται στο ίδιο στοιχείο του Β.
- Μπορεί να υπάρχουν στοιχεία του Β στα οποία δεν απεικονίζονται στοιχεία του Α.

1. Συναρτήσεις

Η συνάρτηση $f: A \to B$ μπορεί να απεικονιστεί μέσω των αντίστοιχων συνόλων:

ightharpoonup Παράδειγμα Συνάρτησης $f: \mathbb{Z} \to \mathbb{N}$ με $f(x) = x^2$

- 1. Συναρτήσεις
- 1. Συνάρτηση «1-1»

Μία συνάρτηση $f: A \to B$ θα είναι «1-1» αν για κάθε $a, b \in A$ με $a \neq b$ ισχύει $f(a) \neq f(b)$

• Δηλαδή ποτέ δύο (ή περισσότερα) στοιχεία του Α δεν δείχνουν στο ίδιο στοιχείο του Β

ightharpoonup Παράδειγμα Συνάρτησης 1-1 με $f(x)=x^3$

- 1. Συναρτήσεις
- 2. Συνάρτηση «επί»

Μία συνάρτηση $f: A \to B$ θα είναι «επί» αν κάθε στοιχείο του B είναι εικόνα κάποιου στοιχείου του A. Με άλλα λόγια πρέπει να καλύπτεται ΟΛΟ το B

ightharpoonup Παράδειγμα Συνάρτησης επί f(x) = x, f(x) = 1 - x

- 1. Συναρτήσεις
- 3. Συνάρτηση «αντοιστοιχία»

Μία συνάρτηση $f: A \to B$ θα είναι «αντιστοιχία» αν είναι 1-1 και επί.

ightharpoonup Παράδειγμα Συνάρτησης αντιστοιχία με f(x) = x

2.Μαθηματικές Σχέσεις

Μία μαθηματική σχέση έχει παρόμοιο συντακτικό με την συνάρτηση, αλλά με μία ουσιαστική διαφορά:

- Μία μαθηματική συνάρτηση δέχεται ορίσματα και επιστρέφει ακριβώς μία τιμή.
- Μία μαθηματική σχέση δέχεται ορίσματα και επιστρέφει Αληθές ή Ψευδές

Παραδείγματα:

- ightharpoonup Η συνάρτηση $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{N}$ με f(x,y) = x + y
 - ► f(5,7) επιστρέφει 12
 - ► f(9,6) επιστρέφει 15
- ightharpoonup Η σχέση lessThan $\subseteq \mathbb{Z} \times \mathbb{Z}$ με lessThan(x, y) αληθεύει αν x<y
 - > P(5,7) επιστρέφει Αληθές
 - ≻ P(9,6) επιστρέφει Ψευδές

<u>Β. Θεωρία</u>

2.Μαθηματικές Σχέσεις

Ανάλογα με το πλήθος των ορισμάτων που δέχεται η σχέση χαρακτηρίζεται

- Μονομελής, αν δέχεται ένα όρισμα
- Διμελής, αν δέχεται δύο ορίσματα
- Τριμελής, αν δέχεται τρία ορίσματα.
- **≻** K.O.K.

Για να οριστεί τυπικά μία μαθηματική σχέση

- Ορίζουμε από ποιο σύνολο παίρνει τιμή κάθε όρισμα.
- > Η σχέση θα είναι ένα υποσύνολο του καρτεσιανού γινομένου των συνόλων.
- Διατυπώνουμε με λόγια πότε αληθεύει η σχέση.

Παραδείγματα:

- ightharpoonup Η σχέση lessThan $\subseteq \mathbb{Z} \times \mathbb{Z}$ με lessThan(x, y) αληθεύει αν x<y
- ightharpoonup Η σχέση likes \subseteq A \times A με likes(x, y) αληθεύει αν ο x συμπαθεί τον y
- ightharpoonup Η σχέση subset \subseteq $P({1,2,3}) \times P({1,2,3})$ με subset(x,y) αληθεύει αν το σύνολο x είναι υποσύνολο του y

2.Μαθηματικές Σχέσεις

Με βάση τον τυπικό ορισμό μιας μαθηματικής (διμελούς) σχέσης:

Το διατεταγμένο ζεύγος που αντιστοιχεί στα ορίσματα θα λέμε ότι ανήκει στην σχέση ανν η σχέση αληθεύει με τον συγκεκριμένο συνδυασμό ορισμάτων.

Παραδείγματα:

- ightharpoonup Για την σχέση lessThan $\subseteq \mathbb{Z} \times \mathbb{Z}$ με lessThan(x, y) αληθεύει αν x<y
 - \triangleright Το ζεύγος (1,2) \in lessThan αφού lessThan(1,2) είναι αληθές.
 - To ζεύγος (3,2) ∉ lessThan αφού lessThan(3,2) είναι ψευδές.
- \triangleright Για την σχέση likes \subseteq A \times A με likes(x, y) αληθεύει αν ο x συμπαθεί τον y
 - \triangleright Το ζεύγος $(\Gamma, \Delta) \in likes$ αν ο Γ συμπαθεί τον Δ
 - \triangleright Το ζεύγος (A, B) ∉ likes αν ο A δεν συμπαθεί τον B.

Τα παραπάνω γενικεύονται και για σχέσεις με περισσότερα ορίσματα.

2.Μαθηματικές Σχέσεις

Μία διμελής σχέση μπορεί να απεικονιστεί με ένα πινακακι που σημειώνουμε με «τικ» όταν το ζεύγος που αντιστοιχεί στην γραμμή και στην στήλη ανήκει στην σχέση.

Για παράδειγμα η σχέση $lessEqual \subseteq \mathbb{N} \times \mathbb{N}$ με lessEqual(x,y) αληθεύει αν $x \le y$

			Σ ορίσμα					
	_							
	_		0	1	2	3	4	•••
1º όρισμα —		О	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$			
		1		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	
		2			$\sqrt{}$			
		3						
		4					\checkmark	
		:						

2.Μαθηματικές Σχέσεις

Μία διμελής σχέση $P \subseteq A \times A$ (και τα δύο ορίσματα στο ίδιο σύνολο):

- Εφόσον <u>για κάθε $x \in A$ </u>: ισχύει $(x, x) \in P$, θα χαρακτηρίζεται <u>ανακλαστική</u>
- Εφόσον <u>για κάθε x, y ∈ A : Όταν (x, y) ∈ P έπεται (y, x) ∈ P</u> θα χαρακτηρίζεται <u>συμμετρική</u>.
- Εφόσον <u>για κάθε x, y ∈ A : Όταν (x, y) ∈ P έπεται (y, x) ∉ P</u> θα χαρακτηρίζεται <u>αντισυμμετρική</u>.
- Εφόσον <u>για κάθε x, y, z ∈ A : Όταν (x, y) ∈ P και (y, z) ∈ P έπεται (x, z) ∈ P</u> θα χαρακτηρίζεται <u>μεταβατική</u>.
- Εφόσον είναι ανακλαστική, συμμετρική και μεταβατική, θα χαρακτηρίζεται ισοδυναμία.

3. Σχέση Συναρτήσεων με Μαθηματικές Σχέσεις

Εκτός της ουσιαστικής διαφοράς που έχουμε δει ήδη:

- Η μαθηματική συνάρτηση δέχεται ορίσματα και επιστρέφει μία τιμή
- Η μαθηματική σχέση δέχεται ορίσματα και επιστρέφει αληθές/ψευδές Μπορούμε να θεωρήσουμε και την απεικόνιση μιας συνάρτησης μέσω ενός συνόλου:
- Για παράδειγμα η συνάρτηση: $f(x) = x^2$ ορισμένη ως: $f: \mathbb{N} \to \mathbb{N}$ μπορεί να ειδωθεί ως το σύνολο διατεταγμένων ζευγών με πρώτο στοιχείο την τιμή του f(x). Άρα η παραπάνω συνάρτηση είναι το σύνολο: $\{(0,0),(1,1),(2,4),(3,9),...\}$
- Με τον συμβολισμό αυτό,
 - Το σύνολο ζευγών της συνάρτησης έχει την ιδιότητα ότι σε κάθε χ αντιστοιχούμε ακριβώς ένα y για να κατασκευάσουμε το ζεύγος (x,y) της σχέσης.
 - Αντίθετα στην μαθηματική σχέση δεν τίθεται αυτός ο περιορισμός.
- Υπό την έννοια αυτή η σχέση είναι η γενίκευση της συνάρτησης!

<u>Δ. Ασκήσεις</u> Εφαρμογή 1

- Σίνονται οι σχέσει P,Q ως υποσύνολα του A × A με A={1,2,3,4}
 - \triangleright P={(1,1),(2,2),(2,3),(2,4),(3,1),(3,3),(4,4)}
 - $ightharpoonup Q = \{(1,1),(1,2),(1,3),(1,4),(2,1),(3,1),(3,3),(4,1)\}$
- Εξετάστε αν οι παραπάνω σχέσεις είναι ανακλαστικές, συμμετρικές, αντισυμμετρικές, μεταβατικές ή σχέσεις ισοδυναμίας.

Δ. Ασκήσεις Εφαρμογή 2

Εξετάστε αν οι σχέσεις των φυσικών αριθμών: =,>,<, ≤, ≥ είναι ανακλαστικές, συμμετρικές, αντισυμμετρικές, μεταβατικές ή σχέσεις ισοδυναμίας.