LYCEE FABERT - MPSI1

Devoir de Mathématiques nº9 - DH7 - à rendre le lu ndi 26/11/07

Exercice 1: deux paraboles

Dans le plan affine euclidien, on considère des deux paraboles d'équations $y^2 = 2px$ et $x^2 = 2qy$; montrer qu'il existe une infinité de triangles inscrits dans l'une et circonscrits à l'autre.

Exercice 2: sous groupes additifs de R

Un sous groupe (additif) de (R,+) est une ensemble de nombres réels contenant 0 et stable pour l'addition et la symétrisation . Ainsi, une partie G de R est un sous groupe si

- (1) 0∈ G
- (2) $\forall (x,y) \in G^2, x+y \in G$
- (3) $\forall x \in G. -x \in G$

Soient A et B deux parties de R . On dit que A est dense dans B lorsque pour tout x dans B et tout ϵ strictement positif, $b-\epsilon$ $A \neq \emptyset$

L'objet de cet exercice est d'étudier les sous groupes additifs de R. Dans toute la suite, G désigne un tel sous groupe 1)Formuler une proposition traduisant que G n'est pas discret. Montrer que si G n'est pas discret $\forall x \in \mathbb{R}, \forall \alpha > 0, G \cap [x, x + \alpha] \neq \emptyset$

2)Dans cette question, on suppose que G est discret. Il existe donc un réel strictement positif α tel que $G \cap]0,\alpha[$ soit vide. On suppose aussi que G contient un élément non nul.

a)Soit I un intervalle de longueur α/2. Montrer que G∩I contient au plus un élément. Que peut-on en déduire pour l'intersection de G avec un intervalle quelconque de longueur finie ?

b)Montrer que G∩R^{+*} admet un plus petit élément que l'on notera m

c)Montrer que G={km, k∈ Z}. Un tel ensemble sera noté Zm

3)Soit x et y deux réels strictement positifs ; on pose :

 $X = Zx = \{kx, k \in Z\}, Y = Zy = \{ky, k \in Z\}, S = \{mx+ny, (m,n) \in Z^2\}$

a) Vérifier que X,Y et S sont des sous groupes de (R,+). On dira que S est le sous groupe engendré par x et y.

b)Montrer que S est discret si et seulement si x/y est élément de Q

49On suppose ici que x/y est irrationnel, soit

 $A = \{kx, k \in Z^*\}$

 $B = \{ky, k \in Z^*\}$

a)Montrer que $A \cap B = \emptyset$ b)Montrer que

 $\inf\{|a-b|,(a,b)\in AxB\}=0$

5°)En considérant un certain sous-groupe additif, m ontrer que

 $\{\cos(n), n \in \mathbb{Z}\}$ est dense dans [-1,1]

Exercice 3: fractions continues et densité de Q dans R

On considère un irrationnel positif x et on lui associe la suite (x_n) définie par $x_0=x$ et $x_{n+1}=1/(x_n-[x_n])$ ([a] est la partie entière

a)Etablir par récurrence que les réels x_n sont irrationnels, et supérieurs à 1 pour n au moins égal à 1

On définit deux suites de nombres entiers par $p_0=1$, $p_1=[x]$ et $q_0=0$, $q_1=1$ et :

$$p_{n+1} = p_n[x_n] + p_{n-1}$$

et
$$q_{n+1} = q_n[x_n] + q_{n-1}$$

b)Etudier le sens de variation et les limites des deux suites d'entiers p_n et q_n

c)Calculer par récurrence $p_{n-1}q_n - p_nq_{n-1}$, et en déduire que p_n/q_n est irréductible

d)Etablir par récurrence la relation suivante pour n au moins égal à 1 : $x = (p_n x_n + p_{n-1})/(q_n x_n + q_{n-1})$

e)Calculer $x - (p_n/q_n)$ et comparer selon la parité de n les nombres réels (p_{n-1}/q_{n-1}) , x, (p_n/q_n)

f)Montrer que la suite ($\left|x - \frac{p_n}{q_n}\right|$) et décroissante , et montrer que : $\left|x - \frac{p_n}{q_n}\right| \le \frac{1}{q_n^2}$. En déduire que la suite de rationnels (p_n/q_n)

converge vers x

g)Montrer que si p/q est telle que $\left|x-\frac{p}{q}\right| < \left|x-\frac{p_n}{q_n}\right|$ avec p>p_n et q>q_n

On pourra établir ceci en remarquant qu'alors p/q est compris entre p_{n-1}/q_{n-1} et p_n/q_n

(les rationnels p_n/q_n sont les meilleurs approximations de x, car tout autre rationnel donnant une meilleure approximation a un numérateur et un dénominateur plus grands)