Pregled teorije verovatnoće

- Verovatnoća
 - Definicija verovatnoće
 - Aksiomi i osobine
 - Uslovna verovatnoća
 - Bayesova teorema
- Slučajne promenljive
 - Definicija slučajne promenljive
 - Kumulativna funkcija raspodele
 - Gustina raspodele verovatnoće
 - Statistička karakterizacija slučajnih promenljivih
- Slučajni vektori
 - Vektor srednje vrednosti
 - Kovarijansna matrica
- Gaussova slučajna promenljiva

Osnovni koncepti teorije verovatnoće

- Definicije verovatnoće (neformalne)
 - Verovatnoću čine brojevi dodeljeni slučajnim događajima koji označavaju stepen izvesnosti da će se događaj desiti pri slučajnom izvođenju eksperimenta
 - Zakon verovatnoće predstavlja pravilo po kojem se dodeljuju verovatnoće događajima u slučajnom eksperimentu
 - □ Prostor uzoraka S slučajnog eksperimenta je skup svih mogućih ishoda
 - Aksiomi verovatnoće
 - $P[A_i] \ge 0$
 - P[S] = 1
 - Ako $A_i \cap A_j = \emptyset$, onda $P[A_i \cup A_j] = P[A_i] + P[A_j]$

Još neke osobine verovatnoće

OSOBINA 1:
$$P[\overline{A}] = 1 - P[A]$$

OSOBINA 2
$$P[A] \le 1$$

OSOBINA 3:
$$P[\varnothing] = 0$$

OSOBINA 4: Ako za događaje
$$\{A_1, A_2, ..., A_n\}$$
 važi

$$A_i \cap A_j = \emptyset, i \neq j$$
, onda $P[\bigcup_{k=1}^N A_k] = \sum_{k=1}^N P[A_k]$

OSOBINA 5:
$$P[A_1 \cup A_2] = P[A_1] + P[A_2] - P[A_1 \cap A_2]$$

OSOBINA 6:
$$P[\bigcup_{k=1}^{N} A_{k}] = \sum_{k=1}^{N} P[A_{k}] - \sum_{j< k}^{N} P[A_{j} \cap A_{k}] + ...$$

... +
$$(-1)^{N+1}$$
P[$A_1 \cap A_2 \cap ... \cap A_N$]

OSOBINA 7: Ako
$$A_1 \subset A_2$$
, onda $P[A_1] \leq P[A_2]$

Uslovna verovatnoća

Ako su A i B dva događaja, verovatnoća događaja A pod uslovom da se događaj B desio, definisana je sledećom relacijom:

$$P[A|B] = \frac{P[A \cap B]}{P[B]}, \text{ za } P[B] > 0$$

- Uslovna verovatnoća P[A|B] čita se kao:
 - Verovatnoća događaja A pod uslovom B
 - Verovatnoća događaja A ako je dato B

- Interpretacija
 - □ Uslov da se događaj *B* desio proizvodi sledeći efekat:
 - Celokupni uzorački prostor S svodi se na samo skup B
 - Događaj A svodi se na skup $A \cap B$
 - P[B] u imeniocu služi za renormalizaciju verovatnoće (siguran događaj sada postaje B)

Teorema totalne verovatnoće

- Neka su B₁,B₂,...,B_N međusobno isključivi događaji čija je unija jednaka ukupnom uzoračkom prostoru S. Ovakav skup događaja naziva se particija skupa S.
- Proizvoljan događaj A može se predstaviti kao:

$$A = A \cap S = A \cap (B_1 \cup B_2 \cup ... \cup B_N)$$

= $(A \cap B_1) \cup (A \cap B_2) \cup ... \cup (A \cap B_N)$

Pošto su $B_1, B_2, ..., B_N$ međusobno isključivi:

$$P[A] = P[A \cap B_1] + P[A \cap B_2] + ... + P[A \cap B_N]$$

$$= P[A \mid B_1] P[B_1] + P[A \mid B_2] P[B_2] + ... + P[A \mid B_N] P[B_N] = \sum_{k=1}^{N} P[A \mid B_k] P[B_k]$$

Bayesova teorema

- Neka je data particija $\{B_1, B_2, ..., B_N\}$ uzoračkog prostora S. Pod uslovom da se desio događaj A, koja je verovatnoća da se desio događaj B_i ?
 - Koristeći definiciju uslovne verovatnoće i teoremu totalne verovatnoće, dobija se:

$$P[B_{j} | A] = \frac{P[A \cap B_{j}]}{P[A]} = \frac{P[A | B_{j}]P[B_{j}]}{\sum_{k=1}^{N} P[A | B_{k}]P[B_{k}]}$$

- Ovaj izraz poznat je kao Bayesova teorema (pravilo) i spada u najvažnije relacije u verovatnoći i statistici
 - Bayesova teorema je od fundamentalnog značaja za statističke metode mašinskog učenja

- Medicinski problem u kom treba doneti odluku da li pacijent boluje od određene bolesti ili ne, a na osnovu nesavršenog testa
 - □ Postoje dve moguće vrste greške lažni pozitivan i lažni negativan rezultat

Mere uspešnosti testa

		REZULTAT TESTA						
		– (negativan)	+ (pozitivan)					
STVARNO STANJE	+ (bolestan)	FN	TP					
STVARNC	- (zdrav)	TN 0000	FP $\mathring{\mathbb{Q}}$					

□ Stopa lažnih pozitiva
$$FPR = \frac{FP}{TN + FP} = P[pozitivan|zdrav]$$

Specifičnost
$$SPC = \frac{TN}{TN + FP} = 1 - FPR = P[\text{negativan} | \text{zdrav}]$$

$$PREC = \frac{TP}{TP + FP} = P[bolestan|pozitivan]$$

□ Tačnost
$$ACC = \frac{TP + TN}{TP + TN + FP + FN} = P[ispravno klasifikovan]$$

- Medicinski problem u kom treba doneti odluku da li pacijent boluje od određene bolesti ili ne, a na osnovu nesavršenog testa
 - □ Postoje dve moguće vrste greške lažni pozitivan i lažni negativan rezultat

Mere uspešnosti testa

Pretpostavke:

- populacija broji 10000 ljudi, gde 1 na svakih 100 boluje od određene bolesti
- medicinski test kojim se ta bolest otkriva ima specifičnost 98% i osetljivost 90%

Pitanje:

Ako je neka osoba pozitivna na tom testu, koja je verovatnoća da je zaista i bolesna?

		REZULTA	AT TESTA			
		- (negativan) + (pozitivan)		- (negativan) + (pozitivan)		
STVARNO STANJE	+ (bolestan)		TP	ukupno bolesnih		
STVARNO	- (zdrav)	TN	FP	ukupno zdravih		
		ukupno negativnih	ukupno pozitivnih	ukupno u populaciji 10000		

Pretpostavke:

- populacija broji 10000 ljudi, gde 1 na svakih 100 boluje od određene bolesti
- medicinski test kojim se ta bolest otkriva ima specifičnost 98% i osetljivost 90%

Pitanje:

Ako je neka osoba pozitivna na tom testu, koja je verovatnoća da je zaista i bolesna?

Odgovor:

 Ako je 1 na svakih 100 bolestan, bolesnih ima 100 a zdravih 9900

				1
		REZULT <i>A</i>	AT TESTA	
		– (negativan)	+ (pozitivan)	
STVARNO STANJE	TN FP		TP	ukupno bolesnih 100
STVARNO			FP	ukupno zdravih 9900
		ukupno negativnih	ukupno pozitivnih	ukupno u populaciji 10000

Pretpostavke:

- populacija broji 10000 ljudi, gde 1 na svakih 100 boluje od određene bolesti
- medicinski test kojim se ta bolest otkriva ima specifičnost 98% i osetljivost 90%

Pitanje:

Ako je neka osoba pozitivna na tom testu, koja je verovatnoća da je zaista i bolesna?

Odgovor:

- Ako je 1 na svakih 100 bolestan, bolesnih ima 100 a zdravih 9900
- Ako je osetljivost testa (TPR) 90%, od 100 bolesnih, 90 će biti otkriveno

$$TPR = \frac{TP}{TP + FN} = P[pozitivan | bolestan]$$

		REZULT <i>A</i>	AT TESTA	
		- (negativan)	+ (pozitivan)	
E	+ (bolestan)	FN	TP	ukupno bolesnih
STAN.	lod) +	10	90	100
STVARNO STANJE	– (zdrav)	TN	FP	ukupno zdravih 9900
		ukupno negativnih	ukupno pozitivnih	ukupno u populaciji 10000

Pretpostavke:

- populacija broji 10000 ljudi, gde 1 na svakih 100 boluje od određene bolesti
- medicinski test kojim se ta bolest otkriva ima specifičnost 98% i osetljivost 90%

Pitanje:

Ako je neka osoba pozitivna na tom testu, koja je verovatnoća da je zaista i bolesna?

Odgovor:

- Ako je 1 na svakih 100 bolestan, bolesnih ima 100 a zdravih 9900
- Ako je osetljivost testa (TPR) 90%, od 100 bolesnih, 90 će biti otkriveno

$$TPR = \frac{TP}{TP + FN} = P[pozitivan | bolestan]$$

Ako je specifičnost testa 98%, od 9900
 zdravih 9702 će biti proglašeno za zdrave,
 a preostalih 198 za bolesne

$$SPC = \frac{TN}{TN + FP} = P[negativan | zdrav]$$

		REZULTA	AT TESTA	
		- (negativan)	+ (pozitivan)	
Щ	estan)	FN	TP	ukupno bolesnih
STAN	+ (bolestan)	10	90	100
STVARNO STANJE	(zdrav)	TN	FP	ukupno zdravih
S)z) –	9702	198	9900
		ukupno negativnih	ukupno pozitivnih	ukupno u populaciji
				10000

Pretpostavke:

- populacija broji 10000 ljudi, gde 1 na svakih 100 boluje od određene bolesti
- medicinski test kojim se ta bolest otkriva ima specifičnost 98% i osetljivost 90%

Pitanje:

Ako je neka osoba pozitivna na tom testu, koja je verovatnoća da je zaista i bolesna?

Odgovor:

- Ako je 1 na svakih 100 bolestan, bolesnih ima 100 a zdravih 9900
- Ako je osetljivost testa (TPR) 90%, od 100 bolesnih, 90 će biti otkriveno

$$TPR = \frac{TP}{TP + FN} = P[pozitivan | bolestan]$$

Ako je specifičnost testa 98%, od 9900
 zdravih 9702 će biti proglašeno za zdrave,
 a preostalih 198 za bolesne

$$SPC = \frac{TN}{TN + FP} = P[negativan | zdrav]$$

□ Tražena verovatnoća je 90/288 = **31,25**%

		REZULT <i>A</i>	AT TESTA	
		- (negativan)	+ (pozitivan)	
Щ	+ (bolestan)	FN	TP	ukupno bolesnih
STAN	lod) +	10	90	100
STVARNO STANJE	(zdrav)	TN	FP	ukupno zdravih
S)z) –	9702	198	9900
		ukupno negativnih	ukupno pozitivnih	ukupno u populaciji
		9712	288	10000

- Pretpostavke:
 - populacija broji 10000 ljudi, gde 1 na svakih 100 boluje od određene bolesti
 - medicinski test kojim se ta bolest otkriva ima specifičnost 98% i osetljivost 90%
- Pitanje:
 - Ako je neka osoba pozitivna na tom testu, koja je verovatnoća da je zaista i bolesna?
- Odgovor (na osnovu Bayesove formule):

$$P[B_{j} | A] = \frac{P[A \cap B_{j}]}{P[A]} = \frac{P[A | B_{j}]P[B_{j}]}{\sum_{k=1}^{N} P[A | B_{k}]P[B_{k}]}$$

$$P[bolestan | pozitivan] = \frac{P[bolestan | pozitivan]}{P[pozitivan]}$$

$$= \frac{P[pozitivan | bolestan]P[bolestan]}{P[pozitivan | bolestan]P[bolestan] + P[pozitivan | zdrav]P[zdrav]}$$

$$= \frac{TPR \cdot P[bolestan]}{TPR \cdot P[bolestan] + FPR \cdot P[zdrav]}$$

$$= \frac{0.9 \cdot 0.01}{0.9 \cdot 0.01 + (1 - 0.98) \cdot 0.99}$$

$$= 31,25\%$$

Slučajne promenljive

- Pri izvođenju nekog eksperimenta, obično nas interesuju neka numerička svojstva ishoda
 - Pri ispitivanju populacije, može nas zanimati npr. težina čoveka
 - Pri utvrđivanju bolesti, trebaju nam laboratorijski rezultati
- Svi ovi primeri upućuju na koncept slučajne promenljive
 - Slučajna promenljiva X je funkcija koja dodeljuje realan broj X(ζ) svakom ishodu ζ iz uzoračkog prostora slučajnog eksperimenta, a praktično se može zamisliti kao broj čija vrednost ne mora uvek biti ista već zavisi od ishoda nekog slučajnog događaja (ili nekih slučajnih događaja)
 - Slučajne promenljive mogu biti
 - diskretne (npr. broj dobijen bacanjem kocke)
 - kontinualne (npr. telesna težina određene osobe)
 - mešovitog tipa (npr. iznos poreza na imovinu koji plaća slučajno odabrana osoba, i koji je s određenom konačnom verovatnoćom jednak 0, a inače je kontinualnog tipa)

Kumulativna funkcija raspodele

Kumulativna funkcija raspodele $F_x(x)$ slučajne promenljive X predstavlja verovatnoću događaja $\{X \le x\}$

$$F_X(x) = P[X \le x], x \in \mathbf{R}$$

Osobine funkcije raspodele

$$0 \le F_{x}(x) \le 1$$

$$\Box \lim_{x\to-\infty}F_{\chi}(x)=0$$

$$a \leq b \Rightarrow F_{\chi}(a) \leq F_{\chi}(b)$$

$$F_X(x) = \lim_{h \to 0+} F_X(x+h) = F_X(x^+)$$

telesne težine

funkcija raspodele kod bacanja kockice

Gustina raspodele verovatnoće

• Gustina raspodele verovatnoće kontinualne slučajne promenljive X predstavlja izvod funkcije raspodele $F_X(x)$

$$f_{X}(x) = \frac{dF_{X}(x)}{dx}$$

 Za diskretne slučajne promenljive umesto gustine raspodele definiše se zakon raspodele (nad prebrojivim skupom ishoda)

$$f_X(x) = P[X = x]$$

- Osobine gustine raspodele verovatnoće
 - $\Box f_X(x) \ge 0$

 - $\Box F_X(x) = \int_{-\infty}^x f_X(x) dx$

gustina raspodele verovatnoće telesne težine

zakon raspodele verovatnoće kod bacanja kockice

Gustina raspodele verovatnoće

• Čak i u slučaju diskretne slučajne promenljive može se govoriti o gustini raspodele verovatnoće, iako se u tom slučaju ona opisuje preko δ -impulsa

$$\delta(x) = \begin{cases} \infty, & x = 0 \\ 0, & x \neq 0 \end{cases}, \quad \int_{-\infty}^{\infty} \delta(x) dx = 1$$

Statistička karakterizacija slučajne promenljive

- Funkcija raspodele ili gustina raspodele verovatnoće u potpunosti opisuju slučajnu promenljivu
- Slučajna promenljiva može delom biti opisana i sledećim veličinama:
 - Matematičko očekivanje

$$E[X] = \mu = \int_{-\infty}^{+\infty} x f_X(x) dx$$

- Očekivanje predstavlja težište gustine raspodele verovatnoće
- Varijansa i standardna devijacija

$$VAR[X] = \sigma^2 = E[(X - E[X])^2] = \int_{-\infty}^{\infty} (x - \mu)^2 f_X(x) dx \quad \text{(pri čemu važi } \sigma^2 = E[X^2] - E^2[X])$$

$$STD[X] = \sigma = \sqrt{VAR[X]}$$

- Varijansa predstavlja meru rasipanja oko srednje vrednosti (očekivanja)
- Standardna devijacija takođe predstavlja meru rasipanja oko srednje vrednosti,
 a ima istu dimenziju (jedinicu) kao i sama slučajna promenljiva
- N-ti moment

$$E[X^N] = \int_{-\infty}^{\infty} x^N f_X(x) dx$$

Zavisnosti između više slučajnih promenljivih

- Dve slučajne promenljive X_1 i X_2 određene su:
 - Združenom funkcijom raspodele

$$F_{X_1,X_2}(x_1,x_2) = P[\{X_1 \le x_1\} \cap \{X_2 \le x_2\}]$$

Združenom gustinom raspodele verovatnoće

$$f_{X_1,X_2}(x_1,x_2) = \frac{\partial^2 F_{X_1,X_2}(x_1,x_2)}{\partial x_1 \partial x_2}$$

čime je opisano ponašanje ne samo svake od njih pojedinačno, već i zavisnost koja između njih u opštem slučaju postoji (i zapremina ispod $f_{X_1,X_2}(x_1,x_2)$ jednaka je 1)

Dve slučajne promenljive su međusobno nezavisne ako važi:

$$f_{X_1,X_2}(X_1,X_2) = f_{X_1}(X_1)f_{X_2}(X_2)$$

- Dve slučajne promenljive su međusobno *nekorelisane* ako važi: $E[X_i X_k] = E[X_i] E[X_k]$
- Ako su dve slučajne promenljive međusobno nezavisne, tada su i nekorelisane
 - Obrnuto u opštem slučaju ne važi
- Marginalna gustina raspodele verovatnoće predstavlja gustinu raspodele verovatnoće jedne od dve promenljive, ne vodeći računa o drugoj, npr:

$$f_{X_1}(x_1) = \int_{-\infty}^{\infty} f_{X_1, X_2}(x_1, x_2) dx_2$$

Slučajni vektori

- Pojam slučajnog vektora je uopštenje pojma slučajne promenljive
 - \Box Vektorska slučajna promenljiva (slučajan vektor) **X** predstavlja funkciju koja dodeljuje realan vektor svakom ishodu ζ iz uzoračkog prostora **S**
 - Slučajan vektor može se zamisliti kao niz brojeva čije vrednosti zavise od ishoda nekih slučajnih događaja, pri čemu između njih mogu postojati i određene statističke zavisnosti
 - Podrazumevaće se da je slučajan vektor dat kao vektor kolona
- Za slučajni vektor $\mathbf{X} = [X_1, X_2, ..., X_N]^T$ definišu se:
 - Združena funkcija raspodele

$$F_{\mathbf{X}}(\mathbf{X}) = F_{\mathbf{X}}(x_1, x_2, ..., x_N) = P[\{X_1 \le x_1\} \cap \{X_2 \le x_2\} \cap ... \cap \{X_N \le x_N\}]$$

Združena gustina raspodele verovatnoće

$$f_{\mathbf{X}}(\mathbf{X}) = \frac{\partial^{N} F_{\mathbf{X}}(\mathbf{X})}{\partial x_{1} \partial x_{2} ... \partial x_{N}}$$

- Marginalna gustina raspodele verovatnoće predstavlja gustinu raspodele verovatnoće na određenom podskupu promenljivih (dimenzija) slučajnog vektora
 - Dobija se integracijom po preostalim promenljivama (dimenzijama), kao i u slučaju dve slučajne promenljive

Statistička karakterizacija slučajnih vektora

- Slučajni vektor je u potpunosti određen svojom združenom funkcijom raspodele ili združenom gustinom raspodele verovatnoće
- Slučajni vektor se može delimično opisati veličinama sličnim onima koje se koriste kod skalarnih slučajnih promenljivih
 - Vektor srednjih vrednosti

$$E[\mathbf{X}] = [E[X_1] E[X_2] \dots E[X_N]]^{\mathsf{T}} = [\mu_1 \ \mu_2 \dots \mu_N]^{\mathsf{T}} = \mathbf{\mu}$$

Kovarijansna matrica

$$COV[\mathbf{X}] = \mathbf{\Sigma} = E[(\mathbf{X} - \mathbf{\mu})(\mathbf{X} - \mathbf{\mu})^{\mathsf{T}}]$$

$$= \begin{bmatrix} E[(X_{1} - \mu_{1})(X_{1} - \mu_{1})] & E[(X_{1} - \mu_{1})(X_{2} - \mu_{2})] & \cdots & E[(X_{1} - \mu_{1})(X_{N} - \mu_{N})] \\ E[(X_{2} - \mu_{2})(X_{1} - \mu_{1})] & E[(X_{2} - \mu_{2})(X_{2} - \mu_{2})] & \cdots & E[(X_{2} - \mu_{2})(X_{N} - \mu_{N})] \\ \vdots & \vdots & \ddots & \vdots \\ E[(X_{N} - \mu_{N})(X_{1} - \mu_{1})] & E[(X_{N} - \mu_{N})(X_{2} - \mu_{2})] & \cdots & E[(X_{N} - \mu_{N})(X_{N} - \mu_{N})] \end{bmatrix}$$

$$= \begin{bmatrix} \sigma_{1}^{2} & c_{12} & \cdots & c_{1N} \\ c_{21} & \sigma_{2}^{2} & \cdots & c_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ c_{N1} & c_{N2} & \cdots & \sigma_{N}^{2} \end{bmatrix}$$
Kovarijansa pokazuje zajedničku tendenciju promene određenog para obeležja

Kovarijansna matrica

- Svojstva kovarijanse:
 - \Box Ako X_i i X_k imaju tendenciju zajedničkog rasta i opadanja, onda je $c_{ik} > 0$
 - □ Ako X_i ima tendenciju opadanja kad X_k raste i obratno, onda je c_{ik} < 0
 - □ Ako su X_i i X_k nekorelisani, onda je c_{ik} = 0
 - $|c_{ik}| \le \sigma_i \sigma_k$, gde je σ_i standardna devijacija X_i , a σ_k standardna devijacija X_k
 - $c_{ii} = \sigma_i^2 = VAR[X_i]$
- Za $i \neq k$, kovarijansni članovi mogu se izraziti kao $c_{ik} = \rho_{ik}\sigma_i\sigma_k$, gde ρ_{ik} predstavlja koeficijent korelacije

$$c_{ik} = -\sigma_i \sigma_k$$
$$\rho_{ik} = -1$$

$$c_{ik} = -0.5\sigma_i\sigma_k$$
$$\rho_{ik} = -0.5$$

$$c_{ik} = 0$$

$$\rho_{ik} = 0$$

$$c_{ik} = 0.5\sigma_i\sigma_k$$

$$\rho_{ik}$$
 = 0,5

$$c_{ik} = \sigma_i \sigma_k$$

$$\rho_{ik}$$
 = 1

Kovarijansna matrica

Kovarijansna matrica se može predstaviti u obliku:

$$\mathbf{\Sigma} = E[(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})^{\mathsf{T}}] = E[\mathbf{X}\mathbf{X}^{\mathsf{T}}] - \boldsymbol{\mu}\boldsymbol{\mu}^{\mathsf{T}} = \mathbf{S} - \boldsymbol{\mu}\boldsymbol{\mu}^{\mathsf{T}}$$

$$\mathbf{S} = E[\mathbf{X}\mathbf{X}^{\mathsf{T}}] = \begin{bmatrix} E[X_1X_1] & E[X_1X_2] & \cdots & E[X_1X_N] \\ E[X_2X_1] & E[X_2X_2] & \cdots & E[X_2X_N] \\ \vdots & \vdots & \ddots & \vdots \\ E[X_NX_1] & E[X_NX_2] & \cdots & E[X_NX_N] \end{bmatrix}$$

- S se naziva korelaciona matrica i sadrži istu količinu informacija o slučajnom vektoru X kao i kovarijansna matrica
- Kovarijansna matrica se može izraziti i u obliku:

$$\mathbf{\Sigma} = \mathbf{\Gamma} \mathbf{R} \mathbf{\Gamma} = \begin{bmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_N \end{bmatrix} \cdot \begin{bmatrix} 1 & \rho_{12} & \cdots & \rho_{1N} \\ \rho_{21} & 1 & \cdots & \rho_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{N1} & \rho_{N2} & \cdots & 1 \end{bmatrix} \cdot \begin{bmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_N \end{bmatrix}$$

 Ovaj oblik je naročito pogodan jer Γ nosi informaciju o razmeri svih obeležja, dok R nosi informaciju o njihovim međuzavisnostima

Primer (korelisanost i kovarijansna matrica)

- Na osnovu 4 uzorka iz 3-dimenzionalne raspodele verovatnoće data u tabeli
 - formirati uzoračku kovarijansnu matricu
 - formirati dijagrame rasejanja po parovima obeležja
 - ispitati veze između njih

UZORCI	OBELEŽJA					
UZUKCI	<i>X</i> ₁	<i>X</i> ₂	X 3			
1	2	2	4			
2	3	4	6			
3	5	4	2			
4	6	6	4			

Primer (korelisanost i kovarijansna matrica)

- Na osnovu 4 uzorka iz 3-dimenzionalne raspodele verovatnoće data u tabeli
 - formirati uzoračku kovarijansnu matricu
 - formirati dijagrame rasejanja po parovima obeležja
 - ispitati veze između njih

UZORCI	OBELEŽJA				
UZUKCI	<i>X</i> ₁	<i>X</i> ₂	X 3		
1	2	2	4		
2	3	4	6		
3	5	4	2		
4	6	6	4		

$$\mathbf{\Sigma} = \begin{bmatrix} E[(X_1 - \mu_1)(X_1 - \mu_1)] & E[(X_1 - \mu_1)(X_2 - \mu_2)] & \cdots & E[(X_1 - \mu_1)(X_N - \mu_N)] \\ E[(X_2 - \mu_2)(X_1 - \mu_1)] & E[(X_2 - \mu_2)(X_2 - \mu_2)] & \cdots & E[(X_2 - \mu_2)(X_N - \mu_N)] \\ \vdots & \vdots & \ddots & \vdots \\ E[(X_N - \mu_N)(X_1 - \mu_1)] & E[(X_N - \mu_N)(X_2 - \mu_2)] & \cdots & E[(X_N - \mu_N)(X_N - \mu_N)] \end{bmatrix}$$

$$\hat{\mathbf{\Sigma}} = \begin{bmatrix} \frac{1}{N} \sum_{k=1}^{N} (x_1^{(k)} - \hat{\mu}_1) (x_1^{(k)} - \hat{\mu}_1) & \frac{1}{N} \sum_{k=1}^{N} (x_1^{(k)} - \hat{\mu}_1) (x_2^{(k)} - \hat{\mu}_2) & \cdots & \frac{1}{N} \sum_{k=1}^{N} (x_1^{(k)} - \hat{\mu}_1) (x_N^{(k)} - \hat{\mu}_N) \\ \frac{1}{N} \sum_{k=1}^{N} (x_2^{(k)} - \hat{\mu}_2) (x_1^{(k)} - \hat{\mu}_1) & \frac{1}{N} \sum_{k=1}^{N} (x_2^{(k)} - \hat{\mu}_2) (x_2^{(k)} - \hat{\mu}_2) & \cdots & \frac{1}{N} \sum_{k=1}^{N} (x_2^{(k)} - \hat{\mu}_2) (x_N^{(k)} - \hat{\mu}_N) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{N} \sum_{k=1}^{N} (x_N^{(k)} - \hat{\mu}_N) (x_1^{(k)} - \hat{\mu}_1) & \frac{1}{N} \sum_{k=1}^{N} (x_N^{(k)} - \hat{\mu}_N) (x_2^{(k)} - \hat{\mu}_2) & \cdots & \frac{1}{N} \sum_{k=1}^{N} (x_N^{(k)} - \hat{\mu}_N) (x_N^{(k)} - \hat{\mu}_N) \end{bmatrix}$$

Primer (korelisanost i kovarijansna matrica)

- Na osnovu 4 uzorka iz 3-dimenzionalne raspodele verovatnoće data u tabeli
 - formirati uzoračku kovarijansnu matricu
 - formirati dijagrame rasejanja po parovima obeležja
 - ispitati veze između njih

UZORCI	OBELEŽJA				
OZONCI	<i>X</i> ₁	<i>X</i> ₂	X 3		
1	2	2	4		
2	3	4	6		
3	5	4	2		
4	6	6	4		

UZORCI	X_1	X ₂	<i>X</i> ₃	x_1 – μ_1	X ₂ -μ ₂	$x_3-\mu_3$	$(x_1-\mu_1)^2$	$(x_2-\mu_2)^2$	$(x_3-\mu_3)^2$	$(x_1-\mu_1)(x_2-\mu_2)$	$(x_1-\mu_1)(x_3-\mu_3)$	$(x_2-\mu_2)(x_3-\mu_3)$
1	2	2	4	-2	-2	0	4	4	0	4	0	0
2	3	4	6	-1	0	2	1	0	4	0	-2	0
3	5	4	2	1	0	-2	1	0	4	0	-2	0
4	6	6	4	2	2	0	4	4	0	4	0	0
PROSEK	4	4	4	0	0	0	2,5	2	2	2	-1	0

$$\mathbf{\Sigma} = \begin{bmatrix} \sigma_1^2 & c_{12} & c_{13} \\ c_{21} & \sigma_2^2 & c_{23} \\ c_{31} & c_{32} & \sigma_3^2 \end{bmatrix} = \begin{bmatrix} 2,5 & 2 & -1 \\ 2 & 2 & 0 \\ -1 & 0 & 2 \end{bmatrix}$$

Normalna (Gaussova) raspodela

Normalna (Gaussova) raspodela nad skalarnom slučajnom promenljivom $\mathcal{N}(\mu, \sigma^2)$ data je izrazom:

$$f_{X}(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}}$$

dok za vektorsku slučajnu promenljivu ima oblik:

$$f_{\mathbf{x}}(\mathbf{x}) = \frac{1}{(2\pi)^{N/2} |\mathbf{\Sigma}|^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \mathbf{\mu})^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{\mu})}$$

- Svojstva Gaussove raspodele:
 - Jedinstveno je opisana parametrima μ i Σ
 - Ako su obeležja međusobno nekorelisana ($c_{ik} = 0$), ona su takođe i *nezavisna*
 - Kovarijansna matrica je tada dijagonalna
 - Marginalne i uslovne raspodele su takođe normalne
 - □ Linearna transformacija **y** = **Ax** Gaussovog slučajnog vektora **y** takođe predstavlja Gaussov slučajni vektor

$$f_{\mathbf{Y}}(\mathbf{y}) = \frac{f_{\mathbf{X}}(\mathbf{A}^{-1}\mathbf{y})}{|\mathbf{A}|}$$

Centralna granična teorema

- Za proizvoljnu raspodelu sa srednjom vrednošću μ i varijansom σ^2 , raspodela uzoračke srednje vrednosti teži normalnoj raspodeli sa srednjom vrednošću μ i varijansom σ^2/N kada veličina uzorka N raste
 - Oblik polazne raspodele nije bitan

Centralna granična teorema

- Za proizvoljnu raspodelu sa srednjom vrednošću μ i varijansom σ^2 , raspodela uzoračke srednje vrednosti teži normalnoj raspodeli sa srednjom vrednošću μ i varijansom σ^2/N kada veličina uzorka N raste
 - Oblik polazne raspodele nije bitan
- Primer
 - Iz uniformne raspodele izvlači se N uzoraka, beleži se njihova srednja vrednost i ovaj postupak se ponavlja 500 puta
 - Za N = 1 histogram ima oblik uniformne raspodele
 - Kako N raste, histogram poprima zvonast oblik

