

Esercitazione 6 (10-28)

6.1 Lunghezza media

- · Leggere per intero un file
- · Calcolare la lunghezza media delle parole, raggruppate in base alla loro prima lettera
- · Ad esempio:
 - Le parole che iniziano con a hanno lunghezza media 4.6
 - Le parole che iniziano con b hanno lunghezza media 5.4 ...

```
import re
txt = txt.lower() # make all lowercase
txt = re.sub(r"[^a-z]+", " ", txt) # keep only letters
```


6.2 Valori in file CSV

- Leggere una matrice di interi da un file testuale CSV
 - Comma Separated Values: in ogni riga, valori separati da virgola
 - Usare una lista semplice di dimensione rows×cols
 - Num. righe del file; num. valori nella prima riga
- · Riscrivere in un altro file tutti i valori della matrice
 - Raddoppiare però i valori sulla diagonale che parte dall'angolo in basso a destra (cols - x == rows - y)

```
5,7,2,11
1,3,12,9
4,6,10,8
```

Nell'esempio, i valori da raddoppiare in scrittura sono i seguenti: 8, 12, 7

6.3 Configurazioni

- · Generare tutte le configurazioni di simboli
 - Parametro: numero di ruote
 - Parametro: **str** contenente i possibili simboli
 - Risultato: una lista di stringhe
- · Algoritmo:
 - Zero ruote: l'unica configurazione è la stringa vuota:
 ['']
 - Altrimenti: per ogni elemento della prima ruota...
 - Concatenarlo con tutte le configurazioni sulle ruote rimanenti (ricorsione)

Saranno accettate esclusivamente le soluzioni ricorsive

6.4 Profondità albero

- · Partire dall'esempio del file system (es. 4.5 del 2014)
- · Aggiungere a tutti i *nodi* un metodo **depth**, che riporta la profondità della struttura
- · Astratto nella classe base
- · Per un documento: 0
- · Per una cartella: 1 + profondità massima dei sottonodi
- · Rispetto alla struttura raffigurata a fianco
 - Calcolare la profondità della cartella radice (chiamare il metodo depth)

https://github.com/tomamic/fondinfo/blob/master/examples/p4_tree_nodes.py

6.5 Moon Patrol, alieni

- · Le navi aliene sono avversari che si muovono casualmente nel cielo
- · Sparano priettili verso il basso, che possono distruggere il rover
- · Alcuni proiettili alieni possono generare delle buche
- · I proiettili del rover distruggono le navi aliene

6.6 Hitori, regole

- · Regole
 - Color cells so no number appears more than once in a row or column
 - The sides of black cells never touch
 - White cells form a continuous network
- · Ad ogni mossa, l'utente può:
 - Annerire un numero, oppure
 - Cerchiarlo

http://www.nikoli.com/en/puzzles/hitori

4		1			2	l	
3	6	7	2	1	6	5	4
2	3	4	8	2	8	6	1
4	1	6	5	7	7	3	5
7	2	3	1	8	5	1	2
3	5	6	7	3	1	8	4
6	4	2	3	5	4	7	8
8	7	1	4	2	3	5	6

6.7 Hitori, inizio

- · Classe che incapsula lo stato del gioco in due matrici
 - Matrice con numeri iniziali
 - Matrice con annotazioni dell'utente: CLEAR, BLACK, CIRCLE
- · Implementare l'interfaccia BoardGame
 - Metodo play_at per annerire una cella
 - Metodo flag_at per cerchiare una cella
 - Metodo value_at per conoscere il contenuto di una cella

(p.es., mostrare un # dopo i numeri anneriti, un ! dopo i numeri cerchiati)

