Không gian vec tơ con của \mathbb{R}^n ; cơ sở và sự độc lập tuyến tính

Dr. Nguyen Van Hoi University of Information Technology

Ngày 9 tháng 9 năm 2023

KGVT con của \mathbb{R}^n

Với $W\subset \mathbb{R}^n$, ta nói W là KGVT con của \mathbb{R}^n nếu và chỉ nếu

- $0 \in W$,
- Với mọi $v,u\in W$, thì $v+u\in W$ và $kv\in W$ với mọi $k\in \mathbb{R}.$
- $m{\pi}\ W\Big\{egin{bmatrix}x\\y\end{bmatrix}\in\mathbb{R}^2:x\geq0,y\geq0\Big\}$ là KGVT con của \mathbb{R}^2 ?
- $oldsymbol{\Xi}$ W là tập nghiệm của phương trình $x_1+2x_2+3x_3=0$ là KGVT con của \mathbb{R}^3 .
- $oldsymbol{ au}$ Tập ảnh của $T:\mathbb{R}^2 o\mathbb{R}^3, v\mapsto Av$ là KGVT con \mathbb{R}^3 với

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix}$$

Tập sinh

Cho họ vec tơ $v_1, v_2, ..., v_m$ trong \mathbb{R}^n . Tập sinh:

$$span(v_1, v_2, ..., v_m) = \{c_1v_1 + c_2v_2 + \cdots + c_mv_m : c_1, \cdots, c_m \in \mathbb{R}\}.$$

- $m \mathring{O}$ đây $c_1v_1+\cdots+c_mv_m$ là tổ hợp tuyến tính của v_1,\cdots,v_m .
- **r** span $(v_1, v_2, ..., v_m)$ là KGVT con của \mathbb{R}^n ?
- ☎ Cho họ các vec tơ sau

$$v_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}, \quad v_3 = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}, \quad v_4 = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}.$$

CM $W = \text{span}(v_1, v_2, v_3, v_4) = \text{span}(v_1, v_3)$?

 \bullet (v_1, v_3) là họ sinh tốt hơn (v_1, v_2, v_3, v_4) cho W. Nhưng nó có phải là họ sinh tốt nhất và nó có duy nhất?

Độc lập tuyến tính

Họ vec tơ $v_1, v_2, ..., v_m$ in \mathbb{R}^n là ĐỘC LẬP tuyến tính nếu phương trình

$$c_1v_1 + c_2v_2 + \cdots + c_mv_m = 0$$
 (Ac = 0)

có duy nhất nghiệm $c_1=c_2=\cdots=c_m=0$. Tương đương

$$\ker\begin{bmatrix} | & & | \\ v_1 & \cdots & v_m \\ | & & | \end{bmatrix} = \{0\} \quad \text{hoặc} \quad \operatorname{\textit{rank}} \begin{bmatrix} | & & | \\ v_1 & \cdots & v_m \\ | & & | \end{bmatrix} = m.$$

NGƯỢC LẠI, chúng được gọi là phụ thuộc tuyến tính.

7

$$v_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}, \quad v_3 = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}, \quad v_4 = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}.$$

CM $\{v_1, v_2, v_3, v_4\}$ độc lập tuyến tính, trong khi đó $\{v_1, v_3\}$ phụ thuộc tuyến tính.

☎ Cho họ vec tơ

$$u_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \quad u_2 = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}, \quad u_3 = \begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix}.$$

CM $\{u_1, u_2, u_3\}$ phụ tuyến tính; $\{u_1, u_2\}$ độc lập tuyến tính?

Cơ sở

Tập sinh tố nhất của W

Họ $w_1, w_2, ..., w_r$ trong KVTC con W của \mathbb{R}^n là cơ sở của W nếu chúng độc lập tuyến tính và $W = \operatorname{span}(w_1, w_2, ..., w_r)$.

 \square Tìm cơ sở: giả sử $W=\operatorname{span}(v_1,\cdots,v_m)$. Lập ma trận cột:

$$\begin{bmatrix} | & & | \\ v_1 & \cdots & v_m \\ | & & | \end{bmatrix},$$

loại v_i là tổ hợp tuyến tính của v_1, \cdots, v_{i-1} khỏi danh sách này.

$$v_{1} = \begin{bmatrix} 7 \\ 0 \\ 4 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \quad v_{2} = \begin{bmatrix} 6 \\ 0 \\ 7 \\ (1) \\ 4 \\ 0 \end{bmatrix}, \quad v_{3} = \begin{bmatrix} 5 \\ 0 \\ 6 \\ 2 \\ 3 \\ (7) \end{bmatrix}, \quad v_{4} = \begin{bmatrix} 4 \\ (5) \\ 3 \\ 3 \\ 2 \\ 4 \end{bmatrix}$$

☐ Làm thế nào để tìm thấy chúng một cách hiệu quả?

$$M = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix} \quad \text{dua vè} \quad rref(M) = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 3 \end{bmatrix}$$

which shows that v_1, v_2 are linearly independent and

$$v_3 = -v_1 + 2v_2.$$

Tọa độ và chiều của KGVT con

Các họ $B=\{v_1,v_2,...,v_m\}$ trong không gian con W của \mathbb{R}^n tạo thành một cơ sở của W nếu mọi vectơ $v\in W$ có thể được biểu diễn DUY NHẤT dưới dạng sự kết hợp tuyến tính

$$v = c_1 v_1 + \dots + c_m v_m$$

$$\begin{bmatrix} | & & | \\ v_1 & \dots & v_m \\ | & & | \end{bmatrix} \begin{bmatrix} c_1 \\ \vdots \\ c_m \end{bmatrix} = 0$$

Ta gọi $c_1,...,c_m$ tọa độ v ứng với cơ sở $v_1,v_2,...,v_m$, ký hiệu, $[v]_B=[c_1,...,c_m]^T$.

 \square Xét không gian con W của \mathbb{R}^n . Số vectơ trong một cơ sở của W được gọi là số chiều của V, ký hiệu là $\dim(W)$.

☎ Ví du 1:

$$v_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \ v_2 = \begin{bmatrix} -4/5 \\ 0 \\ 3/5 \end{bmatrix}, \ v_3 = \begin{bmatrix} 3/5 \\ 0 \\ 4/5 \end{bmatrix}$$

CMR chúng là cơ sở của \mathbb{R}^3 . Tìm tọa độ của $u=\begin{bmatrix}2\\-1\\4\end{bmatrix}$ trong cở sở đó.

Thank you for listening!

Nguyen Van Hoi

hoinv@uit.edu.vn