Anand Brahmbhatt

Princeton University

★ Homepage

Gordon Y.S. Wu Fellow

EDUCATION

Princeton University

PhD student in Computer Science and Engineering

Advisor: Prof. Elad Hazan

Research Focus: Dynamical Systems — Control for robotics and learning for LLM design.

Indian Institute of Technology Delhi

B. Tech in Computer Science and Engineering Advisors: Prof. Parag Singla & Prof. Mausam 2018 - 2022

 $\begin{array}{c} \text{GPA: } 9.685/10 \\ \text{Department Rank 5} \end{array}$

Jul 2022 - Jul 2024

Aug 2024 - present

GPA: 3.925/4.0

Work Experience $_$

Google DeepMind

Pre-Doctoral Researcher

Advisors: Dr. Rishi Saket & Dr. Aravindan Raghuveer

Research Focus: Aggregated Data – Learning Algorithms, Privacy Quantification, Benchmark Development.

Adobe Research

May 2021 - Aug 2021

 $Research\ Intern$

Advisors: Dr. Shiv Saini & Dr. Atanu R Sinha

Research Focus: Designing fair and efficient Cloud Resource Allocation mechanisms.

Research Projects _

Efficient Learning and Control of Dynamical Systems

Advisors: Prof. Elad Hazan

Princeton University
Jan 2025 - ongoing

May 2025 - Aug 2025

❖ Spectral Learning of Non-linear Dynamical Systems

- Modeled **next-token prediction** as learning non-linear language dynamics to inspire provable **LLM design**.
- Utilized a spectral learning algorithm independent of hidden dimension to learn non-linear dynamical systems.
- Achieved the first theoretical result for universally learning of non-linear dynamics, extending beyond local approximations used in prior work.
- Efficient Online Adversarial Control of Linear Dynamical Systems (LDSs)

❖ Learning from Label Proportions (LLP) with Linear Thresholds (LTFs)

Jan 2025 - May 2025

- Developed algorithms for controlling LDSs that adapt to **adversarial** noise in **real time**, with applications to robotics.
- Achieved optimal regret (performance) with exponentially faster runtime in the full observation setting. [P.2]
- Extended results to the more challenging partial observation setting; accepted to NeurIPS 2025. [C.1]

Algorithms for Aggregated Data

Advisors: Dr. Rishi Saket & Dr. Aravindan Raghuveer

Google Research India

Sep 2022 - Feb 2023

- Studied the NP-Hard LLP with LTF problem after imposing realistic distributional assumptions.
- Proposed a Principal Component Analysis based algorithm that PAC learns LTFs with polynomial samples.
- Work presented as Spotlight paper (top 3% of all submissions) at NeurIPS 2023.

[C.2]

❖ Aggregation algorithms for Differential Privacy

Feb 2023 - Sep 2023

- Studied the implications of random aggregation to attain label differential privacy (label DP).
- Suggested two aggregation methods for label DP: one without noise, the other with minimal additive noise.
- Established the dependence of privacy and utility on bag size and number of bags for both mechanisms. [P.3]

♦ Benchmark for Learning from Label Proportions (LLP)

Jul 2022 - May 2023

- Created a benchmark of LLP datasets by Criteo CTR prediction dataset using different realistic techniques.
- Introduced metrics to assess LLP dataset learnability and demonstrated benchmark diversity using these metrics.
- Evaluated 9 SOTA LLP techniques on our benchmark and provided insights to aid future exploration. [C.3]

Fairer Cloud Resource Allocation

Advisors: Dr. Shiv Saini & Dr. Atanu R Sinha

Adobe Research May 2021 - Aug 2021

• Designed a Shapley-Value based approach for fairer cloud resource allocation using historic meter (usage metrics) data.

- Presented a fresh method for pinpointing the **most suitable meters** for resource allocation.
- Identified resource under-utilization by modelling ideal utilization on internal Adobe usage data.

[Pat.1]

Quantifying Closeness to Cordiality of Graphs

Advisor: Prof. Amitabha Tripathi

Summer Research Project, IIT Delhi Apr 2020 - Jul 2020

- Proposed two measures of **distance from cordiality** for graphs.
- Computed these measures or bounds on these measures for general classes of graphs.
- Proved an overarching theorem of bound on these measures under graph join operations.

[J.1]

[C.1]

PUBLICATIONS & PATENTS

Conference and Journal Publications

* - equal contribution, # - alphabetical

- 1. Efficient Spectral Control of Partially Observed Linear Dynamical Systems Anand Brahmbhatt[#], G. Buzaglo[#], S. Druchyna[#] and E. Hazan[#]. NeurIPS, 2025.
 - 925.
- 2. PAC Learning Linear Thresholds from Label Proportions
 Anand Brahmbhatt*, R. Saket* and A. Raghuveer. Spotlight @ NeurIPS, 2023.

- [C.2]
- 3. LLP-Bench: A Large Scale Tabular Benchmark for Learning from Label Proportions

Anand Brahmbhatt*, M. Pokala*, R. Saket and A. Raghuveer. CIKM, 2024.

[C.3]

4. Measures of Closeness to Cordiality for Graphs

[J.1]

Anand Brahmbhatt[#], K. Rai[#] and A. Tripathi[#]. Discrete Applied Mathematics Vol 370, Pages 157-166, 2025.

Preprints

1. Universal Learning of Nonlinear Dynamics

[P.1]

- E. Dogariu, Anand Brahmbhatt and E. Hazan. arXiv:2508.11990, 2025.
- 2. A New Approach to Controlling Linear Dynamical Systems

[P.2]

- Anand Brahmbhatt[#], G. Buzaglo[#], S. Druchyna[#] and E. Hazan[#]. arXiv:2504.03952, 2025.
- [P.3]

3. Label Differential Privacy via Aggregation

Anand Brahmbhatt, R. Saket, S. Havaldar, A. Nasery and A. Raghuveer. arXiv:2310.10092, 2023.

Patents

1. Cloud-Based Resource Allocation Using Meters

[Pat.1]

A. Sinha, S. Saini, S. Nair, S. Marathe, M. Gupta, Anand Brahmbhatt, A. Chauhan. US Patent 20230259403, 2023.

Awards and Honors —

- Awarded the Gordon Y.S. Wu Fellowship for incoming graduate students at Princeton University. 2024
- Department Rank 5 amongst 90+ students in the CSE Department at IIT Delhi.

2018 - 2022

• All India Rank 917 in JEE Advanced (IIT-JEE) 2018 among 150,000 candidates.

2018

• Awarded KVPY Fellowship from Government of India - All India Rank 514.

2018

Relevant Courses

Machine Learning Theoretical Machine Learning, Convex Optimization, Natural Language Processing,

Machine Learning, Artificial Intelligence

Theoretical Computer Science Advanced Algorithm Design, Complexity Theory, Discrete Mathematical Structures,

Data Structures & Algorithms

Systems Operating Systems, Computer Networks, Database Management Systems, Computer

Architecture, Digital Logic & System Design

Mathematics Real & Complex Analysis, Probability Theory, Linear Algebra, Differential Equations

SKILLS ___

- ML & Theory: Dynamical Systems, LLMs, Spectral Methods, Online Learning, Differential Privacy
- Programming: Python, JAX, PyTorch, TensorFlow, NumPy, SciPy, scikit-learn, C++