Zestaw 1

Zadanie 1. Pokaż, że zmienne losowe X, Y są niezależne wtedy i tylko wtedy, gdy niezależne są sigma ciała $\sigma(X)$ i $\sigma(Y)$.

Zadanie 2. Niech $\mathbb{P}(B) \neq 0$. Pokaż, że zdarzenia A i B są niezależne wtedy i tylko wtedy, $gdy \mathbb{P}(A|B) = \mathbb{P}(A)$.

Zadanie 3. Wykazać, że jeżeli $(X_a)_{a\in A}$) jest ciągiem zmiennych losowych, A jest zbiorem nieprzeliczalnym, to $\sup_A X_a$ nie musi być zmienną losową.

Zadanie 4. Niech μ będzie rozkładem prawdopodobieństwa o dystrybuancie F, gdzie F jest dana wzorem

$$F(x) = (0.1 + x)\mathbf{1}_{x \in [0;0.5)} + (0.4 + x)\mathbf{1}_{x \in [0.5;0.55)} + \mathbf{1}_{x \in [0.55;\infty]}.$$

Znajdź $\mu(\{0.5\}), \mu([0;0.5]), \mu((0;0.55)).$

Zadanie 5. Niech μ będzie rozkładem prawdopodobieństwa na \mathbb{R} . Pokaż, że $x_0 \in \mathbb{R}$ jest punktem skoku rozkładu μ wtedy i tylko wtedy, gdy dystrybuantu rozkładu μ jest nieciągła w x_0 .

Zadanie 6. Pokazać, że dowolny rozkład prawdopodobieństwa μ może mieć co najwyżej przeliczalną liczbę punktów skoku.

Zadanie 7. Niech X będzie zmienną losową o rozkładzie wykładniczym z parametrem α . Wyznacz rozkład zmiennej losowej Y zdanej jako Y=3X-5.

Zadanie 8. Niech zmienna losowa U ma rozkład jednostajny na odcinku [0,2]. Wyznacz rozkład zmiennych $Y=\min(X,X^2)$ i $Z=\max(1,X)$.

Zadanie 9. Niech zmienna losowa X ma standardowy rozkład normalny. Wyznacz dystrybuantę i gęstośc zmiennych losowych $Y = \exp X$ i $Z = X^2$.

Zadanie 10. Niech X będzie nieujemną zminną losową. Udowodnij, że $\mathbb{E}X = \int_0^\infty \mathbb{P}(X \geq t) dt$

Zadanie 11. Niech X będzie zmienną losową o nośniku na liczbach dodatnich całkowitych. Wykaż, że $\mathbb{E}X = \sum_{n=1}^{\infty} \mathbb{P}(X \geq n)$.

Zadanie 12. Oblicz wartość oczekiwaną zmiennej losowej o rozkładzie geometrycznym z parametrem p.