Sparse Communication for Federated Learning

Kundjanasith Thonglek¹, Keichi Takahashi², Kohei Ichikawa¹, Chawanat Nakasan³, Pattara Leelaprute⁴, and Hajimu Iida¹

¹ Nara Institute of Science and Technology, Nara, Japan ² Tohoku University, Sendai, Japan ³ Kanazawa University, Ishikawa, Japan ⁴ Kasetsart University, Bangkok, Thailand

Deployment approaches for Al applications

Cloud-based AI

Pros

Model is trained using data from all edge devices

Cons

- Longer response time
- Poor data privacy

Edge-based AI

Pros

- Shorter response time
- Better data privacy

Cons

Edge devices cannot share their data with other devices

Federated learning

Federated averaging (FedAVG)

w is the weights of the global model on the server v is the weights of the local model on the client

The number of selected clients in each round is $R = C \times N, 0 < C \le 1$, where **C** is the fraction of selected clients and **N** is the total number of clients.

Downside #1: Whole models are exchanged

Since the whole models are exchanged between the server and clients, transferring unupdated parameters wastes the network bandwidth.

Downside #2: Only a subset of clients participate

Since only a subset of clients participate in one round, the server misses local updates that could have been obtained from the excluded clients.

Model sparsification

Model sparsification **omits some parameters** in the dense model to build a sparse model while keeping the same model architecture

The proposed method exchanges the most updated parameters of model between server and clients

Parameters that are significantly changed after training are expected to have large impact on the model performance

Basic idea behind the proposed method

Sparsify the models exchanged between the server and clients in both directions

Overview of the proposed method (Uplink)

Overview of the proposed method (Downlink)

Model update

8

Updates a dense model using sparse updates sent from the server or clients

5

10

6

Local model sparsification

Extracts the most updated parameters to construct sparse local model

Global model sparsification

Reuse local model mask to construct sparse global model because the parameters in the mask are still not converged yet at client-side and then those parameters have to be updated to converge

Proposed method vs Conventional method

Downlink communication is the main difference between the proposed and conventional methods

Experimental environment

Models:

1. \	/GG16	(553.43 MB)
------	-------	-------------

- 2. ResNet152 (243.21 MB)
- 3. DenseNet201 (89.92 MB)
- 4. MobileNet (17.02 MB)

Experimental Setup

Configuration	Value
# of communication rounds (R)	10
# of clients (N)	10
# of local epochs (E)	5
Local batch size (B)	8

> Datasets:

- 1. CIFAR-10
- 2. CIFAR-100
- MNIST
- 4. FMNIST

Although large models can generally achieve higher accuracy than small models, not all edge devices can deploy large models due to **resource constraints**. Thus, we evaluated the proposed method using models with different scales

Comparison to conventional method

Since the conventional method sends the same global model to all clients, it is unable to build highly accurate local models, which also leads to a decrease in the accuracy of the global model

Existing methods and their hyperparameters

Method name	Hyperparameter	Description
FedAVG	С	Fraction of clients selected in each communication round
FedPSO	N/A	Does not have a hyperparameter to control communication cost
FedMMD	λ	Coefficient of MMD loss between the global and local models
Low rank approximation	К	Rank of the low-rank matrix to be converted
Random mask	M	Size of random mask to generate a random pattern
Quantization	В	Quantized bits used for bit-quantization

Comparison to the existing methods

The proposed method outperforms the existing methods in terms of both the communication cost and the accuracy of the global model

Results for different models

- The reduction of the communication cost from FedPSO, FedMMD, Low rank approximation, Random mask, and Quantization are almost identical for all model architecture
- The reductions of communication cost in FedAVG and Proposed method depend on the size of each model architecture (larger models are more compressed than smaller models)

Results for different datasets

The proposed method is evaluated over four image classification datasets

Q is varied from 0.1 to 0.9 at intervals of 0.1, and from 0.91 to 0.99 at intervals of 0.01

- The proposed method produces consistent results for all datasets
 - It is able to reduce the amount of data transfer for larger models than for smaller models without a significant loss of accuracy

Why are larger models amenable to compression?

Frequency of updated values per communication round on a client

- In larger models (e.g., VGG16), small parameter updates are more frequent than in smaller models (e.g., MobileNet)
 - Small parameter updates have a smaller impact on the model performance
- Large models receive more low-impact updates than small models
 - The proposed method drops those low-impact updates in large models without a significant loss of accuracy

Conclusion

- ➤ We proposed a novel method to reduce the communication cost for federated learning by sparsifying local and global models on both uplink and downlink communication
- The proposed method utilizes exchanging the most updated parameters of neural network models
- Diverse models and datasets are used to evaluate the proposed method in terms of model accuracy and communication cost
 - \circ The proposed method achieved a reduction in the communication costs approximately 90%

Future work

- Architecture of other neural network models should be investigated to improve reducing the required communication cost
- Updating the parameters in other neural network models should be observed during the local training procedure
- Large number of edge devices should be used to evaluate the efficiency of the proposed method

Q & A

Thank you for your attention

Email: thonglek.kundjanasith.ti7@is.naist.jp