در این سوال ابتدا یک ارایه از std_logic_vector های 8 بیتی و یک آرایه از integer تعریف کردیم. و رودی و خروحی هر دو از نوع تایپ اول هستند. در ادامه با استفاده از تبدیل ورودی به ارایه ای از integer ، و الگوریتم بابل سورت در یک ارایه از integer اعداد سورت شده را ذخیره کردیم. بعد این اعداد را دوباره به std_logic_vector تبدیل کردیم و در خروجی قرار دادیم.

نتیجه ی تست بنچ های اول و دوم:

Signal name	Value	10 12 14 16 18 20 22 24 26 28	ns
⊞ лг inp	D8, 53, 35, 87, E0	08, 53, 35, 87, E0	^
⊞ ЛГ outp	E0, D8, 87, 53, 35	E0, D8, 87, 53, 35	
Signal name	Value	40 42 44 46 48 50 52 54 56 58	· n
•	AF, D9, 1E, 4D, 33	AF, D9, 1E, 4D, 33	_
IHIJU IND	AF. D9. IE. 4D. 33		
⊞ ЛГ inp		7E 117 p3	=
⊞ 111 unb	D9, AF, 4D, 33, 1E	7E 117 p3	
· ·		7E 117 p3	

2. در این قسمت تا زمانی که توان دوم عدد tmp که از 0 شروع میشود، از مقدار عدد ورودی کمتر یا مساوی باشد (برای سقف گیری) به tmp یکی اضافه میکنیم.

Signal name	Value	80	 160		240	•	. 3	20 .	400	•	48	9 .			560	 ,	640	•	720	•	800	· • n
∄ ЛГ input	14F		2A7		3AC		\supset		14F				500 ns	1								1
⊞ . II output	13		18		1F		\supset		13													

3. در این قسمت یک بار از 1 و یک بار از ایندکس 2 شروع میکنیم و دوتا دوتا جلو میرویم تا بشمریم تعداد 1 هارا در آخر چک میکنیم بخش پذیری را طبق صورت سوال.

Signal name	Value	. 10	Θ .	•	. 1	20		,		140	,	,	•	160	,	,	•	18	Θ.	,	•	200	,	•		22	20		•	. 2	240	,	_
⊞ ЛГ inpp	00111100000000				0011	1100	0000	0001	1			X			000	0000	9110	900	9001			$\exists X$			0	0000	0010	100	0001	.0			$\bar{\chi}$
⊞ лг outpp	2						2					X					0					\supseteq X					,	3					\supset

4. برای این قسمت داخل پراسس چک میکنیم اگر لبه بالارونده ی کلاک هستیم حالات مختلف را بررسی میکند. اگر reset مقدار 1 داشته باشد اعداد ساعت 0 میشود و اگر set_clock مقدار 1 داشته باشد اعداد ساعت را برابر ساعات وارد شده قرار میدهیم و اگر set_alarm 1 باشد سیگنال های ساعت الارم را برابر مقدار ورودی قرار میدهیم. بعد چک میکنیم اگر مقدار ساعت فعلی با اعداد ساعت آلارم یکی بود alarm_on را 1 میکنیم. در ادامه ساعت را جلو میبریم یعنی اگر ثانیه 60 بود به دقیقه یکی اضافه شده و اگر دقیقه 60 بود به ساعت یکی اضافه شده و اگر ساعت 24 بشود 0 میشود.

Signal name	Value	. 104 112 120 128 136 144 152 160 168 176 184 192
лг clk	1	
ЛГ reset	0	
лг set_clock	0	
ЛГ set_alarm	0	
J	1	
∃ лг houri1	0	0 X 2 X 1 X 0
J III houri0	6	0 X 4 X F X 6
∃ JU mini1	С	0 X 3 X 1 X C
]лг mini0	5	0 X C X 8 X 5
JII hour1	0	0
JII hour0	0	0
] ЛГ min1	0	0
∃ ЛГ min0	0	0
ЛГ alarm_on	1	