SHRI RAMDEOBABA COLLEGE OF ENGINEERING & MANAGEMENT, NAGPUR

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

ASSESSMENT OF THE PROJECT 2017-18

Title of the	Device Automation and Control using ESP8266
Project	
Student Names	1. Akshay Chopra
	2. Ankita Singh
	3. Piyush Keswani
	4. Isha Bahendwar
	5. Rishabh Gupta
	6. Ruchit Bhardwaj
Semester &	V (Shift-1)
Shift	
Guide Name	Prof. Rashmi Welekar

Criteria

1. Classification and Technology

Automation using Internet Of Things

Software used: MySQL, HTML5, CSS3, JavaScript, PHP, WAMP Server Hardware Used: Arduino Uno, Application Board, ESP8266, LM35 Temperature Sensor, DC Motor, Amazon's Alexa Voice Assistant.

2. Project Objectives

The aim of the project is to collect data from sensors (in this case, LM35 Temperature sensor) and store that data on a hosted server. Also, the module allows to control the state of a device from the server itself.

3. Methodology and Implementation

The module was integrated using Arduino Uno acting as an interface between ESP8266 that provided Wi-Fi functionality to the model and the sensors along with the DC Motors. Real time temperature data is collected and stored into a database which is then hosted to our server. Also, the device state can also be controlled from the server which in this case is a DC Motor, the speed of which is controlled from the server itself. Alexa is controlling a light bulb which provides a 'smart' feature to the project as a whole.

4. Project Outcome

- Recording Real Time Temperature Readings and displaying them in a graphical format.
- Controlling the speed of a DC motor from a server
- Retrieving the last recorded temperature from a voice command.
- Controlling a light bulb using Alexa
- Generating a tweet if the temperature exceeds a particular value.

5. Success of the project and Industry Involvement

The project was successfully built and completed and can serve as successfully contribute towards making 'smart' devices and appliances.

PROJECT SCREENSHOTS

Screenshot 1: Sign Up Page

Screenshot 5: Enter Details (For Log In)

Screenshot 2: Enter Details (For Sign Up)

Screenshot 6: Successful Log In

Screenshot 3: Successful Sign Up

Screenshot 7: Temperature Analysis

Screenshot 4: Log In Page

Screenshot 8: Motor Speed Control

Screenshot 9: Profile Details

Screenshot 12: Device Information

Screenshot 10: Edit Profile

Screenshot 13: Device Information

Screenshot 11: Instructions

Screenshot 14: Contact Us Page