Exercise 2. What is the order of the pole of

$$f(z) = \frac{1}{(2\cos z - 2 + z^2)^2}$$

at z = 0?

Consider

$$\frac{1}{f(z)} = (2\cos z - 2 + z^2)^2.$$

Since

$$\cos(z) = 1 - \frac{1}{2}z^2 + \frac{1}{24}z^4 - \dots,$$

we have

$$\frac{1}{f(z)} = \left(2\left(1 - \frac{1}{2}z^2 + \frac{1}{24}z^4 - \dots\right) - 2 + z^2\right)^2$$
$$= \left(\frac{1}{12}z^4 - \frac{2}{6!}z^6 + \dots\right)^2$$
$$= z^8 \left(\frac{1}{12^2} - \frac{2^2}{(6!)^2}z^4 + \dots\right).$$

Let $g(z) = \frac{1}{1/12^2 - 2^2/(6!)^2 + \dots}$, which as analytic around z = 0. Then

$$f(z) = \frac{g(z)}{z^8}$$

and since $g(0) \neq 0$, by Lemma 7 z = 0 is a pole of order 8.

Exercise 12. Prove that if f(z) has a pole of order m at z_0 , then g(z) := f'(z)/f(z) has a simple pole at z_0 . What is the coefficient of $(z - z_0)^{-1}$ in the Laurent expansion for g(z)?

Proof. Becuase f(z) has a pole of order m at z_0 , by Lemma 7 we can write

$$f(z) = \frac{h(z)}{(z - z_0)^m}$$

where h(z) is analytic on the punctured neighborhood of z_0 and $h(z_0) \neq 0$. Then

$$g(z) = \frac{f'(z)}{f(z)} = \frac{(z - z_0)^m h'(z) - m(z - z_0)^{m-1} h(z)}{(z - z_0)^{2m}} \cdot \frac{(z - z_0)^m}{h(z)}$$

$$= \frac{(z - z_0)^{m-1} ((z - z_0) h'(z) - mh(z))}{h(z)(z - z_0)^m}$$

$$= \frac{(z - z_0) h'(z) - mh(z)}{h(z)(z - z_0)}.$$

Let

$$l(z) = \frac{(z - z_0)h'(z) - mh(z)}{h(z)}$$

SO

$$g(z) = \frac{l(z)}{z - z_0}.$$

Clearly l(z) is analytic around z_0 , and $l(z_0) = -m \neq 0$. Therefore z_0 is a simple pole of g(z) and the coefficient of $(z - z_0)^{-1}$ in the laurent expansion for g(z) is -m.