第1章e: 行列式的几何意义

数学系 梁卓滨

2019-2020 学年 I

平行四边形的面积等于行列式

$$\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}$$
 的 **绝对值**

平行四边形的面积等于行列式

$$\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}$$
 的 **绝对值**

$$\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1$$

平行四边形的面积等于行列式

$$\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}$$
 的 **绝对值**

$$\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1$$

$$|\overrightarrow{a}||\overrightarrow{b}|\sin\alpha = S_{\overrightarrow{a}\overrightarrow{b}}$$

平行四边形的面积等于行列式

$$\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}$$
 的 **绝对值**

$$\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = a_1b_2 - a_2b_1 = (a_1, a_2) \cdot (b_2, -b_1)$$

$$|\overrightarrow{a}||\overrightarrow{b}|\sin \alpha = S_{\overrightarrow{a}\overrightarrow{b}}$$

平行四边形的面积等于行列式

$$\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}$$
 的 **绝对值**

$$\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1 = (a_1, a_2) \cdot (b_2, -b_1)$$
$$= \overrightarrow{a} \cdot \overrightarrow{b'} \qquad |\overrightarrow{a}| |\overrightarrow{b}| \sin \alpha = S_{\square \overrightarrow{a} \overrightarrow{b}}$$

平行四边形的面积等于行列式

$$\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}$$
 的 **绝对值**

$$\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = a_1b_2 - a_2b_1 = (a_1, a_2) \cdot (b_2, -b_1)$$
$$= \overrightarrow{a} \cdot \overrightarrow{b'} \qquad |\overrightarrow{a}| |\overrightarrow{b}|$$

$$|\overrightarrow{a}||\overrightarrow{b}|\sin \alpha = S_{\overrightarrow{a}\overrightarrow{b}}$$

$$S_{\Box \overrightarrow{a} \overleftarrow{b}}$$

平行四边形的面积等于行列式

$$\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}$$
 的 **绝对值**

$$\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1 = (a_1, a_2) \cdot (b_2, -b_1)$$
$$= \overrightarrow{a} \cdot \overrightarrow{b'} = |\overrightarrow{a}| |\overrightarrow{b'}| \cos \theta \qquad |\overrightarrow{a}| |\overrightarrow{b}| \sin \alpha = S_{\square \overrightarrow{a} \overrightarrow{b}}$$

平行四边形的面积等于行列式

$$\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}$$
 的 **绝对值**

验证:

$$\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1 = (a_1, a_2) \cdot (b_2, -b_1)$$
$$= \overrightarrow{a} \cdot \overrightarrow{b'} = |\overrightarrow{a}| |\overrightarrow{b'}| \cos \theta = \pm |\overrightarrow{a}| |\overrightarrow{b}| \sin \alpha = S_{\square \overrightarrow{a} \overrightarrow{b}}$$

行列式几何意义

平行四边形的面积等于行列式

$$\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}$$
 的 **绝对值**

验证:

$$\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1 = (a_1, a_2) \cdot (b_2, -b_1)$$
$$= \overrightarrow{a} \cdot \overrightarrow{b'} = |\overrightarrow{a}| |\overrightarrow{b'}| \cos \theta = \pm |\overrightarrow{a}| |\overrightarrow{b}| \sin \alpha = \pm S_{\square \overrightarrow{a} \overrightarrow{b}}$$

行列式几何意义

$$\mathbf{R}$$
 平行四边形面积为 2 阶行列式 $\begin{vmatrix} 3 & 1 \\ 1 & 2 \end{vmatrix} = 5$ 的绝对值,即面积为 5。

$$\mathbf{R}$$
 平行四边形面积为 2 阶行列式 $\begin{vmatrix} 3 & 1 \\ 1 & 2 \end{vmatrix} = 5$ 的绝对值,即面积为 5。

性质 向量
$$\overrightarrow{a} = (a_1, a_2), \overrightarrow{b} = (b_1, b_2)$$
 不平行的充分必要条件是:

行列式几何意义

$$\mathbf{R}$$
 平行四边形面积为 2 阶行列式 $\begin{vmatrix} 3 & 1 \\ 1 & 2 \end{vmatrix} = 5$ 的绝对值,即面积为 5。

性质 向量
$$\overrightarrow{a} = (a_1, a_2), \overrightarrow{b} = (b_1, b_2)$$
 不平行的充分必要条件是:

$$\left|\begin{array}{cc} a_1 & a_2 \\ b_1 & b_2 \end{array}\right| \neq 0$$

 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 张成平行六面体的体积

=

$$= \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$
的绝对值

$$= \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$
的绝对值

$$= \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$
的绝对值

六面体的体积 =
$$S_{\square \overrightarrow{q} \overrightarrow{b}} \cdot h$$

$$= \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$
的绝对值

六面体的体积 =
$$S_{\overrightarrow{a}\overrightarrow{b}} \cdot h = |\overrightarrow{a} \times \overrightarrow{b}|$$

$$= \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$
的绝对值

六面体的体积 =
$$S_{\overrightarrow{a}\overrightarrow{b}} \cdot h = |\overrightarrow{a} \times \overrightarrow{b}|$$

$$= \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$
的绝对值

六面体的体积 =
$$S_{\overrightarrow{a}\overrightarrow{b}} \cdot h = |\overrightarrow{a} \times \overrightarrow{b}|$$

$$= \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$
的绝对值

六面体的体积 =
$$S_{\overrightarrow{a}\overrightarrow{b}} \cdot h = |\overrightarrow{a} \times \overrightarrow{b}| \cdot |\overrightarrow{n} \cdot \overrightarrow{c}|$$

$$= \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$
的绝对值

六面体的体积 =
$$S_{\overrightarrow{a}\overrightarrow{b}} \cdot h = |\overrightarrow{a} \times \overrightarrow{b}| \cdot |\overrightarrow{n} \cdot \overrightarrow{c}| = ||\overrightarrow{a} \times \overrightarrow{b}| \overrightarrow{n} \cdot \overrightarrow{c}|$$

$$= \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$
的绝对值

六面体的体积 =
$$S_{\overrightarrow{a}\overrightarrow{b}} \cdot h = |\overrightarrow{a} \times \overrightarrow{b}| \cdot |\overrightarrow{n} \cdot \overrightarrow{c}| = ||\overrightarrow{a} \times \overrightarrow{b}| \overrightarrow{n} \cdot \overrightarrow{c}|$$

+ $\overrightarrow{a} \times \overrightarrow{b}$

$$= \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$
的绝对值

六面体的体积 =
$$S_{\overrightarrow{a}\overrightarrow{b}} \cdot h = |\overrightarrow{a} \times \overrightarrow{b}| \cdot |\overrightarrow{n} \cdot \overrightarrow{c}| = ||\overrightarrow{a} \times \overrightarrow{b}| \overrightarrow{n} \cdot \overrightarrow{c}|$$

= $|(\pm \overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c}|$

$$= \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$
的绝对值

六面体的体积 =
$$S_{\overrightarrow{a}\overrightarrow{b}} \cdot h = |\overrightarrow{a} \times \overrightarrow{b}| \cdot |\overrightarrow{n} \cdot \overrightarrow{c}| = ||\overrightarrow{a} \times \overrightarrow{b}| \overrightarrow{n} \cdot \overrightarrow{c}|$$

= $|(\pm \overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c}| = |(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c}|$

$$= \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$
的绝对值

六面体的体积 =
$$S_{\overrightarrow{a}\overrightarrow{b}} \cdot h = |\overrightarrow{a} \times \overrightarrow{b}| \cdot |\overrightarrow{n} \cdot \overrightarrow{c}| = ||\overrightarrow{a} \times \overrightarrow{b}| \overrightarrow{n} \cdot \overrightarrow{c}|$$

= $|(\pm \overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c}| = |(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c}|$
= $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$ 的绝对值

性质 向量 $\vec{a} = (a_1, a_2, a_3), \vec{b} = (b_1, b_2, b_3), \vec{c} = (c_1, c_2, c_3)$ 不

共面的充分必要条件是:

性质 向量 $\overrightarrow{a} = (a_1, a_2, a_3), \overrightarrow{b} = (b_1, b_2, b_3), \overrightarrow{c} = (c_1, c_2, c_3)$ 不

共面的充分必要条件是:

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} \neq 0$$

性质 向量 $\overrightarrow{a} = (a_1, a_2, a_3), \overrightarrow{b} = (b_1, b_2, b_3), \overrightarrow{c} = (c_1, c_2, c_3)$ 不共面的充分必要条件是:

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} \neq 0$$

定义 假设
$$\overrightarrow{a} = (a_x, a_y, a_z), \overrightarrow{b} = (b_x, b_y, b_z), \overrightarrow{c} = (c_x, c_y, c_z)$$
 不共面,若

$$\begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix} > 0,$$

性质 向量 $\overrightarrow{a} = (a_1, a_2, a_3), \overrightarrow{b} = (b_1, b_2, b_3), \overrightarrow{c} = (c_1, c_2, c_3)$ 不共面的充分必要条件是:

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} \neq 0$$

定义 假设
$$\overrightarrow{a} = (a_x, a_y, a_z), \overrightarrow{b} = (b_x, b_y, b_z), \overrightarrow{c} = (c_x, c_y, c_z)$$
 不共面,若

•
$$\begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix} > 0$$
,则称有序向量组 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 符合**右手规则**;
• $\begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix} < 0$,

性质 向量 $\overrightarrow{a} = (a_1, a_2, a_3), \overrightarrow{b} = (b_1, b_2, b_3), \overrightarrow{c} = (c_1, c_2, c_3)$ 不共面的充分必要条件是:

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} \neq 0$$

定义 假设
$$\overrightarrow{a} = (a_x, a_y, a_z), \overrightarrow{b} = (b_x, b_y, b_z), \overrightarrow{c} = (c_x, c_y, c_z)$$
 不共面,若

•
$$\begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix} > 0$$
,则称有序向量组 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 符合**右手规则**;

•
$$\begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$$
 < 0,则称有序向量组 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 符合**左手规则**;

符合右手规则的 3 个向量,在空间中的大致位置关系:

