

Statistical learning framework

Seongok Ryu KAIST Chemistry

Contents

- Motivation
- Statistical modeling and inference
- Likelihood function
- Maximum likelihood estimation
- Bayes' theorem and Bayesian inference
- Generative methods vs Discriminvative methods
- Beyond likelihoodism

Motivation

Our group has devoted to develop the computational tools based on quantum chemistry theory, *ACE-Molecule*. This package aims to calculate interesting physical properties by solving physics equations, such as Schrodinger equation.

Such physics principle-based computations have been regarded as a standard tool in physics/chemistry research communities.

Motivation

In recent two years, our group also has studied statistical modeling frameworks, which find a hypothesis that best explains given phenomena.

Motivation

Physics theory based simulation	Statistical modeling
Constructing models with basic physics equationSchrodinger equationNewton's equation	Developing hypotheses from observations (data)
Pros)Very accurate for some systemsTheoretically guaranteed	Pros)High scalabilityAble to learn patterns inherent in a complex system
 Cons) Difficult to calculate large systems, e.g. proteins Not easily applicable to very complex systems, e.g. strongly correlated materials 	Cons)Necessitate sufficient amount of dataNot easy to generalize obtained hypothesis

Viewpoints on machine learning

Statistical learning theory

- What hypothesis do we want to obtain?
- What can we learn and not?
- Learning algorithms including prediction models, generative models, data-efficient learning approaches

2. Model architecture

- Efficient parameterization of hypothesis
- So-called inductive biases (we will investigate very detail later)

3. Generalization

- To avoid over-fitting problems
- Regularization: to reduce number of parameters consisting a hypothesis

Statistical modeling and inference

In this presentation, we concentrate on supervised learning algorithms which are usually used for prediction models.

- Statistical modeling aims to obtain a hypothesis with training samples (observations) $\{X, Y\}$, where we consider that samples are independent and identically distributed (i.i.d.) random variables sampled from the joint distribution p(X, Y).
- Statistical inference is a procedure of inferring a new output y^* of a new input x^* by using the obtained hypothesis.

Statistical modeling and inference

In this presentation, we concentrate on supervised learning algorithms which are usually used for prediction models.

- Statistical modeling aims to obtain a hypothesis with training samples (observations) $\{X, Y\}$, where we consider that samples are independent and identically distributed (i.i.d.) random variables sampled from the joint distribution p(X, Y).
- Statistical inference is a procedure of inferring infer the new output y^* of the new input x^* by using the obtained hypothesis.

Likelihood function

"In statistics, a *likelihood* function $\mathcal{L}(\theta, D)$ is a function of parameters θ within the parameter space Θ that describes the probability of obtaining the data D." – Wikipedia, Likelihood function.

• For the random variables sampled from a discrete probability distribution, the function

$$\mathcal{L}(\theta|x) = p_{\theta}(x) = P_{\theta}(X = x)$$

is the likelihood of θ , given the outcome of the x of the random variable X.

• For the random variables following an *absolutely continuous probability distribution* with *density function* f depending on parameter θ ,

$$\mathcal{L}(\theta|x) = f_{\theta}(x)$$

is the likelihood function of θ , given the outcome of x of the random variable X.

Note that a likelihood function is defined under assuming the existence of a density function, which is not ensured for the high-dimensional probability distribution function.

Likelihood function

"In statistics, a *likelihood* function $\mathcal{L}(\theta, D)$ is a function of parameters θ within the parameter space Θ that describes the probability of obtaining the data D." – Wikipedia, Likelihood function.

https://slideplayer.com/slide/4663314/

The Likelihood Function

How good is a particular θ?
 It depends on how likely it is to generate the observed data

$$L_D(\theta) = P(D | \theta) = \prod_{m} P(x[m] | \theta)$$

◆ The likelihood for the sequence H,T, T, H, H is

Maximum likelihood estimation

Maximum Likelihood Estimation (MLE or ML-estimation)

: Choose $\hat{\theta}_{ML} = \operatorname{argmax}_{\theta \in \Theta} \mathcal{L}(\theta, D)$ which maximizes a likelihood function $\mathcal{L}(\theta, D)$.

In practice, a *log-likelihood* function $l(\theta, D) = \log \mathcal{L}(\theta, D)$ is more conveniently used, since logarithmic function is strictly increasing function.

Bayes' theorem and Bayesian inference

"Bayesian inference is a method of statistical inference in which Bayes' theorem is used to update the probability for a hypothesis as more evidence or information becomes available."

Bayes' theorem:

Likelihood Prior
$$p(\theta|D) = \frac{p(D|\theta) \cdot p(\theta)}{p(D)}$$
 Posterior Evidence

Bayes' theorem and Bayesian inference

Maximum-a-posteriori estimation

: $\widehat{\mathbf{w}} = \operatorname{argmax}_{\mathbf{w}} p(x|X,Y)$

→ point-estimation

Bayesian inference of model parameter

- → aiming to compute a posterior distribution
- → however, computation is usually intractable

Beyond Likelihoodism

Recall the definition of likelihood

• For the random variables following an *absolutely continuous probability distribution* with *density function* f depending on parameter θ ,

$$\mathcal{L}(\theta|x) = f_{\theta}(x)$$

is the likelihood function of θ , given the outcome of x of the random variable X.

Note that a likelihood function is defined under assuming the existence of a density function, which is not ensured for the high-dimensional probability distribution function.

For a high-dimensional distribution space, the existence of a likelihood function is not ensured.

This leads to ambiguity in defining the measure between the two distribution, such as the divergence between a data distribution and a predictive distribution.

Beyond Likelihoodism

Therefore, another framework is needed to interpret learning procedures.

- Empirical risk minimization (ERM) principle defines a family of learning algorithms and gives theoretical bounds on model performance.
- We assume that there is a joint probability distribution P(x,y) over X and Y, and that the training dataset consists of n instances $(x_1,y_1),...,(x_n,y_n)$ drawn i.i.d. from P(x,y). We also assume that we are given a non-negative loss function $L(\hat{y},y)$ which measures difference between the prediction \hat{y} of the hypothesis and true outcome y.
- The risk associated with hypothesis h(x) is then defined as the expectation of the loss function:

$$R(h) = \mathbb{E}[L(h(x), y)] = \int L(h(x), y) dP(x, y)$$

• The ultimate goal of a learning framework is to find the optimal hypothesis h^* among a fixed class of functions \mathcal{H} for which the risk R(h) is minimal:

$$h^* = \underset{h \in \mathcal{H}}{\operatorname{argmin}} R(h)$$

Beyond Likelihoodism

Therefore, another framework is needed to interpret learning procedures.

• In general, the risk cannot be computed because the (true) distribution P(x, y) is unknown to the learning algorithm. However, we can compute an approximation, so-called the empirical risk, by averaging the loss function on the training set:

$$R_{emp}(h) = \frac{1}{n} \sum_{i=1}^{n} L(h(x_i), y_i)$$

• The ERM principle states that the learning algorithm should choose a hypothesis \hat{h} which minimizes the empirical risk:

$$\hat{h} = \operatorname*{argmin}_{h \in \mathcal{H}} R_{emp}(h)$$