8/30/2022

- STATEMENTS

- OPERATORS

- TRUTH TABLES

+ CONDITIONALS

STATEMENTS

The first topic we're going to cover is statements, this is fundamental.

Definitions are important;

A statement is any declaritive sentence with a truth-value.

To clarify, statements are ...

- either only true or only false Grass is green North America

statements are not ..

- opinions
Pulp Fiction is the greatest movie of all time

-> meaningless

Purple clouds make time bougie

writing out statements is men and never all about abstraction and agneralization, so me represent statements (propositions, truth-value) with lower-case letters, also known as variables.

T = 120me is in North America g = Grass is green

There are fairly verless by themselves, so we manipulate I them via operators.

OPERATORS

There are 3 fundamental operators in propositional logic from which all others are derived:

Negation: 7 : "not"

Conjunction: n: "and"

Disjunction: V : "or"

We utilize these operators with statements to create compound - statements which are themselves statements.

The truth-values of these compound statements are dependent on the truth-values of their component statements. Negation and Conjunction are pretty intuitive but he clarify about Disjunction:

In discrete-mathematics, "or" is not exclusive

PRACTICE

P = Paul likes dogs

Q = Cliff likes legos

r = charlie is cute

7 P: Paul does not like doos

9 ^ T: Cliff likes legos and Charlie is cute

PVT: Paul likes dogs or Charlie is cute

P 17: Paul likes dogs and charlie is not cute

TRUTHTABLES

one way to think about compound-statements is as a boolean function with a number of inputs. We can explore the domain of this function via truth tables.

Consider the compound-statement: 7(PAQ) V F

The idea here is to view the output of our function for every possible input. In this class, we'll use I to represent true and o for false.

Some things worth noting:

- The number of rows in your truth-table will be 2^n where n is the number of component statements
- when setting up your truth-table, be consistent with the example above i.e counting in binary

when filling out truth-tables you may come across a scenago where the entire column of a compound-statement is the same truth-value :.e all I or all O. We have termhology for this:

Contradiction: 0 : always false

Tautology: 1: always true

PRACTICE

P	P	קיוק	PV7P	
0	(0	١	Pnp=0
١	0	0	ı	P V 7P = 1

	g	קר	74	PIG	7(019)	7p V79
^			79			
0		'	0			'
0	١	ı	٥	0	(l
1	6	0	\	0	•	ı
1	1	0	0		0	0

P	9	٢	qvr	pnq	PAC	PN(qxr)	(pag) v (par)
0	0	0	0	0	٥	0	6
0	0	١	١	0	0	0	0
0	•	0	ı	0	0	0	0
0	1	١	·	0	0	0	0
l	0	٥	٥	٥	٥	0	0
ı	0	•	•	0	١	1	1
l	•	0	ı	1	٥	1	ı
1	1	1		((ı	ı

Observe that some compound-statements output the same truth-values. This means that they are logically equivalent. This will come up later.