Theoretische Informatik HS24

Nicolas Wehrli Übungsstunde 06 29. Oktober 2024

ETH Zürich nwehrl@ethz.ch

Heute

- 1 Feedback zur Serie
- 2 Recap: Turing Maschinen
- 3 Nichtdeterministische Turingmaschinen
- 4 Einstieg BerechnenbarkeitDiagonalisierung
- **5** Reduktion

Feedback zur Serie

Feedback

- Justification beim Widerspruch im Pumping Lemma
- Davon abgesehen, relativ gut gelöst

Recap: Turing Maschinen

Informell

Eine Turingmaschine besteht aus

- (i) einer endlichen Kontrolle, die das Programm enthält,
- (ii) einem unendlichen Band, das als Eingabeband, aber auch als Speicher (Arbeitsband) zur Verfügung steht, und
- (iii) einem Lese-/Schreibkopf, der sich in beiden Richtungen auf dem Band bewegen kann.

Für formale Beschreibung siehe Buch.

Abbildung 1: Abb. 4.1 vom Buch

Elementare Operation einer TM - Informell

Input

- Zustand der Maschine (der Kontrolle)
- Symbol auf dem Feld unter dem Lese-/Schreibkopf

Aktion

- (i) ändert Zustand
- (ii) schreibt auf das Feld unter dem Lese-/Schreibkopf
- (iii) bewegt den Lese-/Schreibkopf nach links, rechts oder gar nicht. Ausser wenn ¢, dann ist links nicht möglich.

Eine **Konfiguration** C von M ist ein Element aus

Konf(M) =
$$\{ c \} \cdot \Gamma^* \cdot Q \cdot \Gamma^+ \cup Q \cdot \{ c \} \cdot \Gamma^*$$

- Eine Konfiguration $\phi w_1 q a w_2$ mit $w_1, w_2 \in \Gamma^*$, $a \in \Gamma$ und $q \in Q$ sagt uns: M im Zustand q, Inhalt des Bandes $\phi w_1 a w_2$, Kopf an Position $|w_1| + 1$ und liest gerade a.
- Eine Konfiguration $p \Leftrightarrow w$ mit $p \in Q$, $w \in \Gamma^*$: Inhalt des Bandes $\Leftrightarrow w$..., Zustand p und Kopf an Position 0.

Bmk: Im Buch haben sie in der Definition von Konf Γ^+ anstatt Γ^* an "letzter Stelle".

Es gibt wieder eine Schrittrelation $\frac{1}{M} \subseteq \text{Konf}(M) \times \text{Konf}(M)$.

Abbildung 2: Diagramm von Adeline

Berechnung von M, Berechnung von M auf einer Eingabe x etc. durch $\frac{1}{M}$ definiert.

Die Berechnung von *M* auf *x* heisst

- **akzeptierend**, falls sie in einer akzeptierenden Konfiguration $w_1q_{\text{accept}}w_2$ endet (wobei φ in w_1 enthalten ist).
- **verwerfend**, wenn sie in in einer verwerfenden Konfiguration $w_1q_{\text{reject}}w_2$ endet.
- nicht-akzeptierend, wenn sie entweder eine verwerfende oder unendliche Berechnung ist.

Die von der Turingmaschine M akzeptierte Sprache ist
$$\mathbf{L}(\mathbf{M}) = \{w \in \Sigma^* \mid q_0 \Diamond w \, \Big|_{\overline{M}}^* \, y q_{\mathrm{accept}} z, \text{ für irgendwelche } y, z \in \Gamma^* \}$$

Wichtige Klassen

Reguläre Sprachen

$$\mathcal{L}_{EA} = \{ L(A) \mid A \text{ ist ein EA} \} = \mathcal{L}_{NEA}$$

Rekursiv aufzählbare Sprachen

Eien Sprache $L\subseteq \Sigma^*$ heisst **rekursiv aufzählbar**, falls eine TM M existiert, so dass L=L(M).

$$\mathcal{L}_{RE} = \{ L(M) \mid M \text{ ist eine TM} \}$$

ist die Klasse aller rekursiv aufzählbaren Sprachen.

Wichtige Klassen

Halten

Wir sagen das *M* immer hält, wenn für alle Eingaben $x \in \Sigma^*$

- (i) $q_0 \diamond x \mid_{\overline{M}}^* y q_{\text{accept}} z, y, z \in \Gamma^*$, falls $x \in L$ und (ii) $q_0 \diamond x \mid_{\overline{M}}^* u q_{\text{reject}} v, u, v \in \Gamma^*$, falls $x \notin L$.

Rekusive Sprachen

Eine Sprache $L \subseteq \Sigma^*$ heisst **rekursiv** (entscheidbar), falls L = L(M) für eine TM M, die immer hält.

$$\mathcal{L}_{\mathbf{R}} = \{ L(M) \mid M \text{ ist eine TM, die immer hält} \}$$

ist die Klasse der rekursiven (algorithmisch erkennbaren) Sprachen.

Mehrband-Turingmaschine

Mehrband-TM - Informelle Beschreibung

Für $k \in \mathbb{N} \setminus \{0\}$ hat eine k-Band Turingmaschine

- eine endliche Kontrolle
- ein endliches Band mit einem Lesekopf (Eingabeband)
- *k* Arbeitsbänder, jedes mit eigenem Lese-/Schreibkopf (nach rechts unendlich)

Insbesondere gilt 1-Band TM \neq "normale" TM

Am Anfang der Berechnung einer MTM M auf w

- Arbeitsbänder "leer" und die *k* Lese-/Schreibköpfe auf Position 0.
- Inhalt des Eingabebands ¢w\$ und Lesekopf auf Position 0.
- Endliche Kontrolle im Zustand q_0 .

Äguivalenz von Maschinen (TM, MTM)

Seien A und B zwei Maschinen mit **gleichem** Σ .

Wir sagen, dass **A äquivalent zu B ist**, wenn für jede Eingabe $x \in \Sigma^*$

- (i) A akzeptiert $x \iff B$ akzeptiert x(ii) A verwirft $x \iff B$ verwirft x
- (iii) A arbeitet unendlich lange auf $x \iff B$ arbeitet unendlich lange auf x

Wir haben

$$A$$
 und B äquivalent $\implies L(A) = L(B)$

aber

$$L(A) = L(B) \implies A \text{ und } B \text{ äquivalent}$$

da A auf x unendlich lange arbeiten könnte, während B x verwirft.

Äquivalenz von 1-Band TM zu TM

Lemma 4.1

Zu jeder TM A existiert eine zu Aäquivalente 1-Band-TM B

Beweisidee

B kopiert die Eingabe zuerst aufs Arbeitsband und simuliert dann *A*.

Äquivalenz von TM zu k-Band-TM

Lemma 4.2

Zu jeder Mehrband-TM A existiert eine zu A äquivalente TM B

Beweisidee

Vergrösserung des Alphabets, jedes Zeichen enthält jetzt 2(k+1) Zeichen.

B simuliert A einen Schritt von A indem es den ganzen Inhalt liest und dann durch die endliche Kontrolle von A jede Schreib und Bewegungsoperation einzeln ausführt.

Dies verwendet immer nur **endlich** viele Schritte um einen Schritt von *A* zu simulieren.

Äquivalenz Folgerung

Aus Lemma 4.1 und 4.2 folgt direkt

Satz 4.1

Die Maschinenmodelle von Turingmaschinen und Mehrband-Turingmaschinen sind äquivalent.

Note:

"Äquivalenz" für Maschinenmodelle wird in Definition 4.2 definiert.

Maschinenmodelle sind Klassen von Maschinen (i.e. Mengen von Maschinen mit gewissen Eigenschaften).

Nichtdeterministische

Turingmaschinen

Definition von NTM

Eine **nichtdeterministische Turingmaschine (NTM)** ist ein 7-Tupel $M=(Q,\Sigma,\Gamma,\delta,q_0,q_{\rm accept},q_{\rm reject})$, wobei (i) $Q,\Sigma,\Gamma,q_{\rm accept},q_{\rm reject}$ die gleiche Bedeutung wie bei einer TM haben, und

- (ii) $\delta: (Q \setminus \{q_{\text{accept}}, q_{\text{reject}}\}) \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{L, R, N\})$ die Übergangsfunktion von *M* ist und die folgende Eigenschaft hat:

$$\delta(p, c) \subseteq \{(q, c, X) \mid q \in Q, X \in \{R, N\}\}$$

für alle $p \in O$

Konfiguration ähnlich wie bei TMs.

Konfiguration akzeptierend \iff enthält q_{accept} Konfiguration verwerfend \iff enthält q_{reject}

Die üblichen Sachen

- Schrittrelation $\frac{1}{M}$ "verbindet zwei Konfigurationen, wenn man von der einen in die andere kommen kann"
- Reflexive und transitive Hülle ist $\frac{*}{M}$.
- Berechnung von M ist eine Folge von Konfigurationen $C_1, C_2, ...$, so dass $C_i \mid_{\overline{M}} C_{i+1}$.
- Eine Berechnung von M auf x ist beginnt in $q_0 cx$ und endet entweder unendlich oder endet in $\{q_{\text{accept}}, q_{\text{reject}}\}$.

Akzeptierte Sprache

$$L(M) = \{ w \in \Sigma^* \mid q_0 \lozenge w \, \textstyle{\big|\frac{*}{M}} \, y q_{\mathsf{accept}} z \text{ für irgendwelche } y, z \in \Gamma^* \}$$

Berechnungsbaum

Sei $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$ eine NTM und sei x ein Wort über dem Eingabealphabet Σ von M. Ein **Berechnungsbaum** $T_{M,x}$ von M auf x ist ein (potentiell unendlicher) gerichteter Baum mit einer Wurzel, der wie folgt definiert wird.

- (i) Jeder Knoten von $T_{M,x}$ ist mit einer Konfiguration beschriftet.
- (ii) Die Wurzel ist der einzige Knoten von $T_{M,x}$ mit dem Eingangsgrad 0 und ist mit der Startkonfiguration $q_0 \phi x$ beschriftet.
- (iii) Jeder Knoten des Baumes, der mit einer Konfiguration *C* beschriftet ist, hat genauso viele Kinder wie *C* Nachfolgekonfigurationen hat, und diese Kinder sind mit diesen Nachfolgekonfigurationen *C* markiert.

Äquivalenz NTM und TM

Satz 4.2

Sei M eine NTM. Dann existiert eine TM A, so dass

- (i) L(M) = L(A) und
- (ii) falls M keine unendlichen Berechnungen auf Wörtern aus $L(M)^{\complement}$ hat, dann hält A immer.

Beweisidee:

"BFS im Berechnungsbaum", i.e. wir simulieren einzelne Schritte der verschiedenen Berechnungsstränge.

Einstieg Berechnenbarkeit

Bijektion, Injektion, Schreibweise

Seien A und B zwei Mengen.

Wir sagen, dass

- i. $|\mathbf{A}| \leq |\mathbf{B}|$, falls eine injektive Funktion $f: A \to B$ existiert. ii. $|\mathbf{A}| = |\mathbf{B}|$, falls $|A| \leq |B|$ und $|B| \leq |A|$. iii. $|\mathbf{A}| < |\mathbf{B}|$, falls $|A| \leq |B|$ und keine injektive Abbildung von B nach A existiert.

Zur Erinnerung:

$$f: A \to B \text{ injektiv} \iff \forall x, y \in A, x \neq y. f(x) \neq f(y)$$

Eine Menge A heisst **abzählbar**, falls A endlich ist oder $|A| = |\mathbb{N}|$.

Lemma 5.1

Sei Σ ein beliebiges Alphabet. Dann ist Σ^* abzählbar.

Beweisidee

kanonische Ordnung gibt uns eine Bijektion zwischen $\mathbb N$ und Σ^* .

Satz 5.1

Die Menge KodTM der Turingmaschinenkodierungen ist abzählbar.

Beweisidee

 $\mathsf{KodTM} \subseteq (\Sigma_\mathsf{bool})^*$ und Lemma 5.1

Lemma 5.2 $(\mathbb{N}\setminus\{0\})\times(\mathbb{N}\setminus\{0\}) \text{ ist abz\"{a}hlbar}.$

Beweisidee

Unendliche 2-dimensionale Tabelle, so dass an der i-ten Zeile und j-ten Spalte, sich das Element $(i, j) \in (\mathbb{N} \setminus \{0\}) \times (\mathbb{N} \setminus \{0\})$ befindet.

Formal definiert man dabei die lineare Ordnung

$$(a,b) < (c,d) \iff a+b < c+d \text{ oder } (a+b=c+d \text{ und } b < d)$$

Abbildung 3: Abbildung 5.3 im Buch

Die *i*-te Diagonale hat *i* Elemente. Ein beliebiges Element $(a,b) \in (\mathbb{N} \setminus \{0\}) \times (\mathbb{N} \setminus \{0\})$ ist das *b*-te Element auf der (a+b-1)-ten Diagonale.

Auf den ersten a + b - 2 Diagonalen gibt es

$$\sum_{i=1}^{a+b-2} i = \frac{(a+b-2) \cdot ((a+b-2)+1)}{2} = \binom{a+b-1}{2}$$

Elemente.

Folglich ist

$$f((a,b)) = \binom{a+b-1}{2} + b$$

eine Bijektion von $(\mathbb{N} \setminus \{0\}) \times (\mathbb{N} \setminus \{0\})$ nach $\mathbb{N} \setminus \{0\}$.

Satz 5.3

[0, 1] ist nicht abzählbar.

Beweisidee

Klassisches Diagonalisierungsargument. Aufpassen auf 0 und 9. I.e. $1 = 0.\overline{99}$.

$\overline{f(x)}$	$x \in [0,1]$							
1	0.	a_{11}	a_{12}	a_{13}	a_{14}			
2	0.	a_{21}	a_{22}	a_{23}	a_{24}			
3	0.	a_{31}	a_{32}	a_{33}	a_{34}			
4	0.	a_{41}	a_{42}	a_{43}	a_{44}			
:	:	:	:	:				
i	0.	a_{i1}	a_{i2}	a_{i3}	a_{i4}		$oxed{a_{ii}}$	
<u>:</u>	:							

Abbildung 5.5

 $\mathcal{P}((\Sigma_{\mathrm{bool}})^*)$ ist nicht abzählbar.

Beweis:

Wir definieren eine injektive Funktion von $f:[0,1]\to \mathcal{P}((\Sigma_{hool})^*)$ und beweisen so $|\mathcal{P}((\Sigma_{hool})^*)| > |[0,1]|.$

Sei $a \in [0, 1]$ beliebig. Wir können a wie folgt binär darstellen:

Nummer(a) =
$$0.a_1a_2a_3a_4...$$
 mit $a = \sum_{i=1}^{\infty} a_i \cdot 2^{-i}$.

Hier ist zu beachten, dass wir für eine Zahl a immer die lexikographisch letzte Darstellung wählen.

Dies tun wir, weil eine reelle Zahl 2 verschiedene Binärdarstellungen haben kann. Beispiel: $\frac{1}{2}=0.1\overline{0}=0.0\overline{1}$.

Für jedes a definieren wir:

$$f(a) = \{a_1, a_2a_3, a_4a_5a_6, ..., a_{\binom{n}{2}+1}a_{\binom{n}{2}+2}...a_{\binom{n+1}{2}}, ...\}$$

 $\operatorname{Da} f(a) \subseteq (\Sigma_{bool})^* \operatorname{gilt} f(a) \in \mathcal{P}((\Sigma_{bool})^*).$

Wir haben für alle $n \in \mathbb{N} \setminus \{0\}$, dass f(a) **genau** ein Wort dieser Länge enthält. Nun können wir daraus folgendes schliessen:

Weil die Binärdarstellung zweier unterschiedlichen reellen Zahlen an mindestens einer Stelle unterschiedlich ist, gilt $b \neq c \implies f(b) \neq f(c), \forall b, c \in [0, 1].$

 $\text{Folglich ist} f \text{ injektiv und wir haben } |\mathcal{P}((\Sigma_{bool})^*)| \geq |[0,1]|.$

Da $\left[0,1\right]$ nicht abzählbar ist, folgt daraus:

 $\mathcal{P}((\Sigma_{bool})^*)$ ist nicht abzählbar.

Zur Erinnerung:

Rekursiv aufzählbare Sprachen

Eien Sprache $L \subseteq \Sigma^*$ heisst **rekursiv aufzählbar**, falls eine TM M existiert, so dass L = L(M).

$$\mathcal{L}_{RE} = \{ L(M) \mid M \text{ ist eine TM} \}$$

ist die Klasse aller rekursiv aufzählbaren Sprachen.

Wir zeigen jetzt per Diagonalisierung, die Existenz einer Sprache die nicht rekursiv aufzählbar ist.

Sei $w_1,w_2,...$ die kanonische Ordnung aller Wörter über $\Sigma_{\rm bool}$ und sei $M_1,M_2,M_3,...$ die Folge aller Turingmaschinen.

Wir definieren eine unendliche (bool'sche) Matrix $A = [d_{ij}]_{i,j=1,2,...}$ mit

$$d_{ij} = 1 \iff M_i \text{ akzeptiert } w_j.$$

Wir definieren

$$L_{\mathrm{diag}} = \{ w \mid w = w_i \text{ und } M_i \text{ akzeptiert } w_i \text{ nicht für ein } i \in \mathbb{N} \setminus \{0\} \}$$

Satz 5.5

$$L_{\mathrm{diag}} \notin \mathcal{L}_{\mathrm{RE}}$$

Beweis:

Wir haben

$$L_{\text{diag}} = \{ w \mid w = w_i \text{ und } M_i \text{ akzeptiert } w_i \text{ nicht für ein } i \in \mathbb{N} \setminus \{0\} \}$$

Widerspruchsbeweis:

Sei $L_{\mathrm{diag}} \in \mathcal{L}_{\mathrm{RE}}$. Dann existiert eine TM M, so dass $L(M) = L_{\mathrm{diag}}$. Da diese TM eine TM in der Nummerierung aller TM ist, existiert ein $i \in \mathbb{N}$, so dass $M_i = M$.

Wir betrachten nun das Wort w_i für diese $i \in \mathbb{N}$. Per Definition von L_{diag} , gilt:

$$w_i \in L_{\text{diag}} \iff w_i \notin L(M_i)$$

Da aber $L(M_i) = L_{\text{diag}}$, haben wir folgenden Widerspruch:

$$w_i \in L_{\text{diag}} \iff w_i \notin L_{\text{diag}}$$

Folglich gilt $L_{\text{diag}} \notin \mathcal{L}_{\text{RE}}$.

36

Klassifizierung verschiedener Sprachen

Begrifflichkeiten

Für eine Sprache *L* gilt folgendes

$$L$$
 regulär $\iff L \in \mathcal{L}_{EA} \iff \exists EA \ A \ mit \ L(A) = L$
 L rekursiv $\iff L \in \mathcal{L}_{R} \iff \exists Alg. \ A \ mit \ L(A) = L$
 L rekursiv aufzählbar $\iff L \in \mathcal{L}_{RE} \iff \exists TM \ M. \ L(M) = L$

"Algorithmus" = TM, die immer hält.

L rekursiv = L entscheidbar

L rekursiv aufzählbar = L erkennbar

Reduktion

Things

Reduktionen sind klassische Aufgaben an dem Endterm. Ein bisschen wie Nichtregularitätsbeweise.

Ist aber auch nicht so schlimm.

R-Reduktion

Definition 5.3

Seien $L_1 \subseteq \Sigma_1^*$ und $L_2 \subseteq \Sigma_2^*$ zwei Sprachen. Wir sagen, dass L_1 auf L_2 rekursiv reduzierbar ist, $L_1 \leq_R L_2$, falls

$$L_2 \in \mathcal{L}_R \implies L_1 \in \mathcal{L}_R$$

Bemerkung:

Intuitiv bedeutet das " L_2 mindestens so schwer wie L_1 " (bzgl. algorithmischen Lösbarkeit).

EE-Reduktion

Definition 5.4

Seien $L_1 \subseteq \Sigma_1^*$ und $L_2 \subseteq \Sigma_2^*$ zwei Sprachen. Wir sagen, dass $\mathbf{L_1}$ auf $\mathbf{L_2}$ EE-reduzierbar ist, $\mathbf{L_1} \leq_{\mathsf{EE}} \mathbf{L_2}$, wenn eine TM M existiert, die eine Abbildung f_M : $\Sigma_1^* \to \Sigma_2^*$ mit der Eigenschaft

$$x \in L_1 \iff f_M(x) \in L_2$$

für alle $x \in \Sigma_1^*$ berechnet. Wir sagen auch, dass die TM M die Sprache L_1 auf die Sprache L_2 reduziert.

EE-Reduktion

Wir sagen, dass M eine Funktion $F: \Sigma^* \to \Gamma^*$ berechnet, falls für alle $x \in \Sigma^*$: $q_0 x \mid_{M}^* q_{\text{accept}} x \mid_{N}^* F(x)$.

Abbildung 4: Abbildung 5.7 vom Buch

Verhältnis von EE-Reduktion und R-Reduktion

Lemma 5.3

Seien $L_1 \subseteq \Sigma_1^*$ und $L_2 \subseteq \Sigma_2^*$ zwei Sprachen.

$$L_1 \leq_{\mathsf{EE}} L_2 \implies L_1 \leq_{\mathsf{R}} L_2$$

Beweis:

$$L_1 \leq_{\text{EE}} L_2 \implies \exists \text{TM } M. \ x \in L_1 \iff M(x) \in L_2$$

Wir zeigen nun $L_1 \leq_R L_2$, i.e. $L_2 \in \mathcal{L}_R \implies L_1 \in \mathcal{L}_R$.

Sei $L_2 \in \mathcal{L}_R$. Dann existiert ein Algorithmus A (TM, die immer hält), der L_2 entscheidet.

Verhältnis von EE-Reduktion und R-Reduktion

Wir konstruieren eine TM B (die immer hält) mit $L(B) = L_1$

Für eine Eingabe $x \in \Sigma_1^*$ arbeitet B wie folgt:

- (i) B simuliert die Arbeit von M auf x, bis auf dem Band das Wort M(x) steht.
- (ii) B simuliert die Arbeit von A auf M(x).
 Wenn A das Wort M(x) akzeptiert, dann akzeptiert B das Wort x.
 Wenn A das Wort M(x) verwirft, dann verwirft B das Wort x.

A hält immer $\implies B$ hält immer und somit gilt $L_1 \in \mathcal{L}_R$

L und L^{\complement}

Lemma 5.4

Sei Σ ein Alphabet. Für jede Sprache $L\subseteq \Sigma^*$ gilt:

$$L \leq_{\mathbf{R}} L^{\mathbf{C}}$$
 und $L^{\mathbf{C}} \leq_{\mathbf{R}} L$

Beweis:

Es reicht $L^{\complement} \leq_{\mathbb{R}} L$ zu zeigen, da $(L^{\complement})^{\complement} = L$ und somit dann $(L^{\complement})^{\complement} = L \leq_{\mathbb{R}} L^{\complement}$.

Sei M' ein Algorithmus für L, der immer hält ($L \in \mathcal{L}_R$). Dann beschreiben wir einen Algorithmus B, der L^{\complement} entscheidet.

B übernimmt die Eingaben und gibt sie an M' weiter und invertiert dann die Entscheidung von M'. Weil M' immer hält, hält auch B immer und wir haben offensichtlich L(B) = L.

Anwendung vom Lemma 5.4

Korollar 5.2

$$(L_{\mathrm{diag}})^{\complement} \notin \mathcal{L}_{\mathrm{R}}$$

Beweis:

Aus Lemma 5.4 haben wir $L_{\text{diag}} \leq_{\mathbb{R}} (L_{\text{diag}})^{\complement}$. Daraus folgt $L_{\text{diag}} \notin \mathcal{L}_{\mathbb{R}} \implies (L_{\text{diag}})^{\complement} \notin \mathcal{L}_{\mathbb{R}}$. Da $L_{\text{diag}} \notin \mathcal{L}_{\text{RE}}$ gilt auch $L_{\text{diag}} \notin \mathcal{L}_{\mathbb{R}}$. Folglich gilt $(L_{\text{diag}})^{\complement} \notin \mathcal{L}_{\mathbb{R}}$.

46

Beweise

$$L_H \leq_{\rm EE} L_U$$

wobei

$$L_H = \{ \operatorname{Kod}(M) \# w \mid M \text{ h\"alt auf } w \wedge w \in (\Sigma_{\operatorname{bool}})^* \}$$

und

$$L_U = \{ \operatorname{Kod}(M) \# w \mid M \text{ akzeptiert } w \wedge w \in (\Sigma_{\operatorname{bool}})^* \}$$

Wir wollen $L_H \leq_{\rm EE} L_U$ zeigen. Wir geben die Reduktion zuerst als Zeichnung an.

Abbildung 5: EE-Reduktion von L_H auf L_U

Wir definieren eine Funktion M(x) für ein $x \in \{0, 1, \#\}^*$, so dass

$$x \in L_H \iff M(x) \in L_U$$
 (1)

Falls x nicht die richtige Form hat, ist $M(x) = \lambda$, sonst ist $M(x) = \operatorname{Kod}(M') \# w$ wobei M' gleich aufgebaut ist wie M, ausser dass alle Transitionen zu q_{reject} zu q_{accept} umgeleitet werden. Wir sehen, dass M' genau dann w akzeptiert, wenn M auf w hält.

Dieses M(x) übergeben wir dem Algorithmus für L_U .

Wir beweisen nun $x \in L_H \iff M(x) \in L_U$:

(i) $x \in L_H$ Dann ist x = Kod(M) # w von der richtigen Form, und M hält auf w. Das heisst die Simulation von M auf w endet entweder in q_{reject} oder in q_{accept} . Folglich wird M' w immer akzeptieren, da alle Transitionen zu q_{reject} zu q_{accept} umgeleitet wurden.

$$x \in L_H \implies M(x) \in L_U$$

(ii) $x \notin L_H$

Dann unterscheiden wir zwischen zwei Fällen:

(a) x hat nicht die richtige Form, i.e. $x \neq \text{Kod}(M) \# w$. Dann ist $M(x) = \lambda$ und da es keine Kodierung einer Turingmaschine M gibt, so dass $\text{Kod}(M) = \lambda$, gilt $\lambda \notin L_U$.

- (i) $x \in L_H$ done above.
- (ii) $x \notin L_H$
 - (a) **falsche Form** *done above.*
 - (b) x = Kod(M) # w hat die richtige Form. Dann haben wir M(x) = Kod(M') # w.

Da aber $x \notin L_H$, hält M nicht auf w. Da M nicht auf w hält, erreicht es nie q_{reject} oder q_{accept} in M und so wird w von M' nicht akzeptiert.

$$\implies M(x) \notin L_U$$

So haben wir mit diesen Fällen (a) und (b) $x \notin L_H \implies M(x) \notin L_U$ bewiesen.

Aus indirekter Implikation folgt $M(x) \in L_U \implies x \in L_H$

Aus (i) und (ii) folgt

$$x \in L_H \iff M(x) \in L_U$$
 (1)

Somit ist die Reduktion korrekt.

52

Sei

$$L_{\text{infinite}} = \{ \text{Kod}(M) \mid M \text{ hält auf keiner Eingabe} \}$$

Zeige
$$(L_{infinite})^C \notin \mathcal{L}_R$$

Wir zeigen, dass $(L_{\text{infinite}})^{C} \notin \mathcal{L}_{R}$ mit einer geeigneten Reduktion.

Wir beweisen $L_H \leq_{\mathbb{R}} (L_{\text{infinite}})^C$

Um dies zu zeigen nehmen wir an, dass wir einen Algorithmus A haben, der $(L_{\text{infinite}})^C$ entscheidet. Wir konstruieren einen Algorithmus B, der mit Hilfe von A, die Sprache L_H entscheidet.

Wir betrachten folgende Abbildung:

Abbildung 6: R-Reduktion von L_H auf $(L_{infinite})^C$

- I. Für eine Eingabe $x \in \{0, 1, \#\}^*$ berechnet das Teilprogramm C, ob x die richtige Form hat(i.e. ob x = Kod(M) # w für eine TM M).
- II. Falls nicht, verwirft *B* die Eingabe *x*.
- III. Ansonsten, konstruiert C eine Turingmaschine M', die Eingaben ignoriert und immer M auf w simuliert. Wir sehen, dass M' genau dann hält, wenn M auf w hält.
- IV. Folglich hält M' entweder für jede Eingabe (M hält auf w) oder für keine (M hält nicht auf w).
- V. Da A genau dann akzeptiert, wenn die Eingabe keine gültige Kodierung ist(ausgeschlossen, da C das herausfiltert) oder wenn die Eingabe $M(x) = \operatorname{Kod}(M')$ und M' für mindestens eine Eingabe hält, akzeptiert A M(x) genau dann, wenn $x = \operatorname{Kod}(M) \# w$ die richtige Form hat und M auf w hält.

Folglich gilt

$$x \in L_H \iff M(x) \in (L_{\text{infinite}})^C$$

$$\implies L_H \leq_R (L_{\text{infinite}})^C$$

Also folgt die Aussage

$$(L_{\text{infinite}})^C \in \mathcal{L}_R \implies L_H \in \mathcal{L}_R$$

Da wir $L_H \notin \mathcal{L}_R$ (**Satz 5.8**), folgt per indirekter Implikation:

$$(L_{\text{infinite}})^C \notin \mathcal{L}_R$$