

UNIVERSIDADE FEDERAL DA FRONTEIRA SUL CAMPUS CHAPECÓ CIÊNCIA DA COMPUTAÇÃO

IGOR LUIZ GONÇALVES TOMAZ FABIO ANTÔNIO RIBEIRO DOS SANTOS DANIEL BRUM

CIRCUITOS DIGITAIS

BATALHA NAVAL - RELATÓRIO AULA PRÁTICA

CHAPECÓ 2016

RESUMO

Seguindo as regras do jogo "Batalha Naval" e utilizando 6 possíveis entradas, sendo 3 disponibilizadas para cada um dos jogadores. Faz-se necessário a criação de 2 módulos, onde as 3 primeiras entradas que pertencerá ao jogador J1 dará inicio ao jogo no primeiro módulo e posteriormente as 3 entradas do jogador J2 que adentrará o segundo módulo. Para o primeiro módulo foi construído a tabela verdade utilizando as entrada A, B, C, dando origem a 8 possíveis resultados, onde serão utilizadas apenas 6 saídas. Destas 6 saídas, utilizando a codificação escolhida pelos desenvolvedores foram geradas 3 resultados, para cada uma, gerando assim, as saídas S1, S2 e S3 onde serão as 3 primeiras entradas do segundo módulo.

O segundo módulo é composto por 6 entradas, sendo as 3 primeiras S1, S2 e S3, saídas resultantes do primeiro módulo e as 3 jogadas do segundo jogador, no caso A2, B2 e C2. Este segundo módulo utiliza de um circuito comparador, que através de portas XNOR realiza a comparação com as 3 primeiras jogadas e caso sejam iguais, o jogador 2 terá ganhado aquela rodada.

SUMÁRIO

RESUMO	2
LISTA DE FIGURAS	4
LISTA DE TABELAS	5
OBJETIVO	6
INTRODUÇÃO	7
MATERIAIS	8
METODOLOGIA	9
CODIFICAÇÃO DE ENTRADAS E SAIDAS	9
ELABORAÇÃO DA TABELA VERDADE	10
CONSTRUÇÃO DO CIRCUITO LÓGICO NO LOGISIM A PARTIR DA	TABELA
VERDADE	11
SIMPLIFICAÇÃO DAS EXPRESSÕES ALGÉBRICAS	15
UTILIZANDO NETLIST PARA IMPLANTAÇÃO NA BREADBORD	17
CÁLCULO DO CAMINHO CRITICO	19
UTILIZAÇÃO DO SOFTWARE PARA SIMULAÇÃO DA BREADBORD	20
RESULTADO	22
DISCUSSÃO	23
CONCLUSÃO	24
REFERÊNCIAS	25

LISTA DE FIGURAS

FIGURA 1	11
FIGURA 2	12
FIGURA 3	14
FIGURA 4	15
FIGURA 5	16
FIGURA 6	16
FIGURA 7	16
FIGURA 8	
FIGURA 9	
FIGURA 10	
FIGURA 11	
FIGURA 12	
FIGURA 13	
FIGURA 14	

LISTA DE TABELAS

TABELA 1	
TABELA 2	10
TABELA 3	10
TABELA 4	13
TABELA 5	14

OBJETIVO

Utilizando o conhecimento adquirido em aula e extra classe, construir um circuito digital simulador do jogo "Batalha Naval", onde a partir das regras do jogo, dê origem a um possível vencedor.

INTRODUÇÃO

Este relatório, por meio de exemplos, demonstra o processo da construção de um circuito lógico baseado no jogo Batalha Naval, utilizando ci's como interpretador das entradas, aplicando as regras do jogo e por meio da simplificação das expressões algébricas e o mapa de Karnaugh, determinar as saídas e posteriormente os circuitos. Após esta etapa, será realizado os testes no programa Logisim, que demonstrará se o mesmo apresenta-se correto e então implementado na protoboard.

MATERIAIS

Para a construção do circuito foi necessário os seguintes itens:

```
Fios de cobre;

1 Breadboard;

1 LED;

1 Resistor 1k;

6 Pushbuttons;

Circuitos Integrados utilizados:

1 74LS04 - Portas NOT;

1 74LS08 - Portas AND;

1 74LS32 - Portas OR;
```

1 74LS86 - Portas XOR;

Fonte de alimentação simétrica digital SKILL-TEC 0-32V (SKFA-03D) para alimentação do circuito;

Logisim para ilustração e simulação do circuito digital;

Autodesk circuits para a simulação da breadboard e do circuito pré-implantado.

METODOLOGIA

CODIFICAÇÃO DE ENTRADAS E SAIDAS

Baseado nas regras do jogo, junto ao conhecimento sobre a construção de circuitos lógicos, foi definido que cada jogador entraria com 3 valores binários, dando assim origem a cada rodada. Sendo nomeados como J1 e J2, cada jogador terá de entrar com o valor binário referente a sua jogada seguindo a tabela abaixo:

Entrada	Jogada Equivalente
000	
010	
011	
101	
110	
111	

rapeia 1. Counicação das entradas do circuito.

Esta codificação foi escolhida, devido a testes realizados com outras possíveis entradas e encontrando nesta, a possibilidade de uma maior simplificação do circuito, ocasionando um menor custo para o circuito.

Através destas entradas, acontece o processamento no circuito lógico, dando origem a duas possíveis saídas (0 ou 1), informando se o jogador J2, acertou ou não a jogada.

ELABORAÇÃO DA TABELA VERDADE

Para a construção do circuito do primeiro módulo, foi montada a tabela verdade e a partir da codificação das entradas, criou-se três saídas, nomeadas como **S1**, **S2** e **S3** a partir dos maxitermos. Assim como ilustrado na tabela verdade abaixo:

	Entrada			Saídas		
Α	В	С	S1			
0	0	0	0	0	1	
0	0	1	X	X	X	
0	1	0	0	1	0	
0	1	1	1	0	0	
1	0	0	X	X	X	
1	0	1	0	1	1	
1	1	0	1	1	0	
1	1	1	1	0	1	

Tabela 2: Tabela verdade com as saídas codificadas

O segundo módulo trata-se de um circuito comparador, das saídas do primeiro com as 3 entradas diretamente no circuito, resultando nas possíveis saídas:

Saídas	do primeiro	módulo	Entradas	no segund	o módulo	São Iç	guais?
S1	S2	S3	A2	B2	C2	Sim	Não
0	0	1	0	0	1	1	0
0	1	0	0	1	0	1	0
1	0	0	1	0	0	1	0
0	1	1	0	1	1	1	0
1	1	0	1	1	0	1	0
1	0	1	1	0	1	1	0

Tabela 3: Tabela verdade com as possíveis jogadas do jogador J2 e resultados

CONSTRUÇÃO DO CIRCUITO LÓGICO NO LOGISIM A PARTIR DA TABELA VERDADE

O Logisim é uma ferramenta educacional utilizada para a concepção e a simulação digital de circuitos lógicos e por meio desta, utilizando a tabela verdade, construímos o seguinte circuito:

Figura 1: Circuito lógico completo obtido a partir da tabela verdade

O primeiro módulo consiste no seguinte circuito:

Figura 2: Circuito lógico do primeiro módulo

Cada número neste circuito representa uma expressão algébrica ou variável, assim como demonstrado na tabela a seguir:

Número	Valor algébrico
1	Α
2	С
3	В
4	В
5	С
6	A
7	С
8	B!
9	A+C
10	B⊕C
11	A. C
12	(A + C) . B
13	B! . (A . C)

Tabela 4: Expressões algébricas referente a cada entrada/saída do módulo 1

O segundo módulo foi criado com a ideia de realizar uma comparação entre as 3 saídas do primeiro módulo e as 3 entradas representadas por A2, B2 e C2, assim como representado na figura abaixo:

Figura 3: Circuito lógico do segundo módulo

Assim como no primeiro circuito, cada um destes números representam uma expressão algébrica, de acordo com a tabela a seguir:

Número	Valor algébrico
12	S1
13	S3
14	A2
15	S2
16	B2
17	C2
18	(S1⊕A2)!
19	(S2⊕B2)!
20	(S3⊕C2)!
21	(S1⊕A2)! . (S2⊕B2)! . (S3⊕C2)!

Tabela 5: Expressões algébricas referente a cada entrada/saída do módulo 2

A partir da tabela verdade e da construção desse primeiro circuito, obtivemos as seguintes expressões algébricas de acordo com os maxitermos:

- S1 = (A+B+C).(A+B'+C).(A'+B+C')
- S2 = (A+B+C).(A+B'+C').(A'+B'+C')
- S3 = (A+B'+C).(A+B'+C').(A'+B'+C)

O segundo circuito gerou deu origem a seguinte expressão:

• (S1⊕A2)! . (S2⊕B2)! . (S3⊕C2)!

SIMPLIFICAÇÃO DAS EXPRESSÕES ALGÉBRICAS

Para realizar a simplificação das expressões algébricas, foi utilizado o mapa de Karnaugh, um método gráfico e eficiente, facilitando o processo de simplificação e diminuindo o uso de circuitos integrados.

Foram construídos 3 mapas de Karnaugh, um para cada saída codificada, assim como nas imagens abaixo:

	MAPA	DE KARNAU	IGH	
S1	ВС	BC'	B'C'	B'C
Α	0	Х	1	0
A'	Х	0	1	1
		945 Q		
S2	BC	BC'	B'C'	B'C
Α	0	Х	0	1
A'	Х	1	0	1
8		100		
S3	BC	BC'	B'C'	B'C
Α	1	Х	0	0
A'	X	1	1	0

Figura 4: Mapa de Karnaugh das saídas S1, S2 e S3.

Esses três mapas resultaram nas seguintes simplificações:

	Saidas simplificadas
S1	B.(A + C)
S2	(B+C).(B'+C')
S3	B' + A.C

Figura 5: Saídas simplificadas

Afim de minimizar o máximo possível o circuito, concluímos que ainda sim existia possibilidade de simplificação, a saída S2 consistem em: (B+C).(B'+C'), porém, se aplicarmos o teorema de De Morgan teremos a seguinte expressão: (B'.C')+(B.C), se olhar pelo postulado de equivalência, percebemos que essa expressão é equivalente a (B⊕C)!, logo aplicaremos novamente o teorema de De Morgan obtendo a expressão: (B⊕C), as expressões finais:

	Saidas simplificadas
S1	B.(A + C)
S2	в⊕с
\$3	B' + A.C

Figura 6: Saídas simplificadas após o teorema de De Morgan

O circuito final, realizado com a junção dos dois módulos, foi construído a partir da expressão algébrica gerada de acordo com a junção destas saídas simplificadas e as expressões algébricas referentes ao módulo dois, resultando na seguinte expressão:

Expressão Algébrica do Circuito
$\overline{((B.(A+C)) \bigoplus A2).} \overline{((B \bigoplus C) \bigoplus B2).} \overline{((B'+A.C) \bigoplus C2)}$

Figura 7: Expressão algébrica do jogo Batalha Naval

UTILIZANDO NETLIST PARA IMPLANTAÇÃO NA BREADBORD

A Netlist é um arquivo gerado por um programa simulador de circuitos lógicos, onde contém as informações das situações de entrada e saída dos circuitos integrados. Abaixo é demonstrado uma sequência de tabelas onde foi registrado cada entrada e saída de seus respectivos circuitos integrados a fim de auxiliar na implantação da breadbord:

Netlist				
CI - 74LS04 - NOT				
Porta	Entrada/Saida	Valor		
1	Entrada	(B.(A+C))⊕A2		
2	Saida	~((B.(A+C))⊕A2)		
3	Entrada			
4	Saida			
5	Entrada			
6	Saida			
7	GND	GND		
8	Saida	~((B⊕C)⊕B2)		
9	Entrada	(B⊕C)⊕B2		
10	Saida	~((B'.(A.C))⊕C2)		
11	Entrada	(B'.(A.C))⊕C2		
12	Saida	B'		
13	Entrada	В		
14	vcc	vcc		

Figura 8: Netlist referente ao CI - 74LS04

Netlist CI - 74LS08 - AND					
1	Entrada	(A+C)			
2	Entrada	В			
3	Saida	B.(A+C)			
4	Entrada	~((B.(A+C))⊕A2)			
5	Entrada	~((B⊕C)⊕B2).~((B'.(A.C))⊕C2)			
6	Saida	~((B⊕C)⊕B2).~((B'.(A.C))⊕C2).~((B.(A+C))⊕A2)			
7	GND	GND			
8	Saida	~((B⊕C)⊕B2).~((B'.(A.C))⊕C2)			
9	Entrada	~((B⊕C)⊕B2)			
10	Entrada	~((B'.(A.C))⊕C2)			
11	Saida	(A.C)			
12	Entrada	С			
13	Entrada	A			
14	vcc	vcc			

Figura 9: Netlist referente ao CI - 74LS08

Netlist CI - 74LS32 - OR				
1	Entrada	А		
2	Entrada	С		
3	Saida	(A+C)		
1 2 3 4 5 6 7 8	Entrada			
5	Entrada	60		
6	Saida			
7	GND	GND		
8	Saida			
9	Entrada	60		
10	Entrada			
11	Saida	B'+(A.C)		
12	Entrada	B'		
13	Entrada	(A.C)		
14	vcc	vcc		

Figura 10: Netlist referente ao CI - 74LS32

Netlist				
CI - 74LS86 - XOR				
Porta	Entrada/Saida	Valor		
1	Entrada	B.(A+C)		
2	Entrada	A2		
3	Saida	(B.(A+C))⊕A2		
4	Entrada	В		
5	Entrada	С		
6	Saida	в⊕с		
7	GND	GND		
8	Saida	(B⊕C)⊕B2		
9	Entrada	B2		
10	Entrada	в⊕с		
11	Saida	(B'+(A.C))⊕C2		
12	Entrada	C2		
13	Entrada	B'+(A.C)		
14	vcc	VCC		

Figura 11: Netlist

referente ao CI - 74LS86

CÁLCULO DO CAMINHO CRITICO

O caminho crítico do circuito passa por:

1x CI 74LS04, cujo TpHL é igual a 15

1x Cl 74LS08, cujo TpHL é igual a 18

1x CI 74LS32, cujo TpHL é igual a 15

1x CI 74LS86, cujo TpHL é igual a 23

Assim, a fórmula para o tempo de atraso do circuito pode ser definida por:

$$T = (15 * 2) + 18 + 23$$

Logo,

T = 71ns.

Para calcularmos a frequência, utilizamos a fórmula:

f = 1/2T

2 * 71 = **142**ns.

Para o cálculo de frequência, o tempo deve ser dado em segundos, assim:

142ns = 142 * 10^-7 = 0,000000142s

Então,

f = 1 / 0,000000142 é aproximadamente **7042253,53 Hz** = **7,04225353 MHz**

UTILIZAÇÃO DO SOFTWARE PARA SIMULAÇÃO DA BREADBORD

Utilizando o web app Autodesk Circuits e a Netlist previamente apresentada, simulamos a implantação na breadbord a fim de nos orientar sobre como poderia ser implantado na breadbord, abaixo o resultado de como ficou a implantação no software:

Figura 12: Breadbord simulada no Autodesk Circuits

Para termos uma melhor organização foi reservado as utilizando uma breadboard onde a parte de baixo acontece o processamento das entradas e a parte de cima ocorre as entradas (via botões) e é demonstrado se o jogador J2 acertou ou não sua jogada.

A fim de evitarmos também fios cruzados na diagonal, foram reservados também 6 colunas referentes as entradas do jogador J1 e três para o jogador J2 assim como nas duas figuras a seguir:

Figura 13: Caminhos reservados para as 6 entradas

Legenda de cores:

VCC Entrada C e C2 (C2 = J2)

GND

Entrada A e A2 (A2 = J2)

Entrada B e B2 (B2 = J2)

RESULTADO

As expressões algébricas unificadas e simplificadas foram adaptadas de acordo com os ci's e apresentam-se da seguinte forma:

$$\overline{((B.(A+C)) \oplus A2)}.\overline{((B \oplus C) \oplus B2)}.\overline{((B'+A.C) \oplus C2)}$$

Após a implantação na breadboard foi colocada a led para demonstração do resultado do jogo assim como demonstrado na imagem abaixo:

DISCUSSÃO

Com o principal objetivo de se desenvolver um trabalho de boa qualidade, desde o principio foi discutido qual abordagem era realmente necessária para chegar o resultado esperado, desde qual codificação utilizar para as entradas e como ficariam as saídas, as modificações das portas e qual programa para realizar os testes. Os pontos de maior atenção foram:

- Uma forma de se registrar cada entrada e saída dos circuitos integrados, a
 fim de que houvesse uma forma de não se perder ao operar na
 breadboard. Dentre os meios que pensamos, percebemos que a netlist é a
 melhor forma para se registrar o mesmo.
- É de extrema importância que houve uma forma de que os fios não se cruzassem, então foi pensado a questão de reservar as primeiras colunas da breadboard para cada entrada, distanciando e deixando evidente cada entrada.
- Optamos por utilizar a breadboard ao invés da protoboard por conta de um maior espaço e uma melhor organização. Também foi utilizado um arduíno mega como alimentação para testes em casa.

CONCLUSÃO

O circuito lógico demonstrou os resultados de acordo com o esperado, sendo capaz de reproduzir o proposto inicialmente. Não houve necessidade de se fazer qualquer mudança significativa na estrutura do trabalho. A utilização de botões proporcionou uma melhor entrada das tensões, evitando a troca de fios e eventuais problemas com a fiação.

Conclui-se também que a dimensão de expansão deste circuito é imensurável, como por exemplo, utilizar de outras peças e equipamentos para tratar a saída de forma que não interferisse o conceito em si, podendo desde utilizar speakers até um servidor de resposta para que recebesse a mensagem do vencedor. Estes tipos de implementações podem sempre acarretar um aumento de conhecimento de todos os integrantes do grupo.

REFERÊNCIAS

- 1. **Autodesk Circuits** https://circuits.io/> Acessado todos os dias durante a construção deste trabalho.
- 2. **Futurlec -** http://www.futurlec.com/> Acessado todos os dias durante a construção deste trabalho.