Rapport projet

d=100, n_train = 300, n_test = 300, N = 30 \rightarrow 600 nb_iterations = 10000, batch_size = 30, learning_rate1 = 0, learning_rate2 = 0.01 Moyenne sur 3 itérations Relu

Sigmoid

Tanh

LeakyRelu (multiplie par 0.01 pour les négatifs)

Linear

d=100, n_train = 300, n_test = 300, N = 30 \rightarrow 600 Relu, nb_iterations = 10000, batch_size = 30, learning_rate2 = 0.01 Moyenne sur 3 itérations

learning_rate1 = 10**(-8)

learning_rate2 = 10**(-5)

learning_rate2 = 10**(-4)

Utiliser Linear pour l'hidden layer et Relu pour l'output layer \rightarrow stagne à 0.5 learning_rate1 = 0.01, learning_rate2 = 0 \rightarrow stagne à 0.2 Les deux en même temps \rightarrow stagne à 0.5