Welcome!

What we are about in this class...

Class Logistics

- 10 weeks = 8 weeks of lectures + 1 free week + final exam
- Videos every week
 - 2-3 hours in total
- 8 Problem Sets (i.e., homework assignments)
 - 8 weeks of video material → 8 assignments
 - Leave Week-9 open for you to finish stuff
- 4 Programming Assignments (i.e., you write some code/scripts)
 - Some conventional coding
 - Some 'scripts' run thru CAD-centric tools running on our servers

 $_{r}$

Class Grading: Two Tracks

- **Basic Track**
 - **8** Problem Sets = **75%**
 - Single submission; late submission allowed after deadline for 50% of credit
 - 1 Final exam = 25%
 - Single submission.
- Idea: Do this is you don't have time to do the code

- Advanced Track
 - **8** Problem Sets = **40%**
 - Same single submit policy
 - 4 Program Assignments = 40%
 - Multiple submissions ok; late submission allowed after deadline for 50% of credit
 - 1 Final exam = 20%
 - Same single submission
- Idea: Do this for deepest understanding of course

Other Important Stuff

Honor code

- OK to talk with and work with other people in the class
- BUT what you submit must be your own work, for homework and for any code
- AND please do NOT post solutions to any assignments on Coursera site, or share these solutions face to face, in email, via the web, with others in this course

Use Coursera interaction mechanisms

- Coursera supports discussion forums to ask questions, etc.
- We will make use of these to help connect you to us (and to each other)

What Background Do You Need?

Computer science

- Basic programming skills
- Data structures

Computer engineering

- Basic digital design (gates, flip flops, Boolean algebra, Kmaps)
- Combinational and sequential design (finite state machines)

Mathematics

- Discrete: Basic sets, functions, careful notation
- Exposure to graph theory is nice but not essential
- Continuous: Basic calculus, derivatives, integrals, matrices

Basic VLSI knowledge

Some chip layout exposure is nice, but not essential

So What is the Course All About...?

CAD for semi-custom ASICs

- **ASIC** = application-specific integrated circuit
- Semi-custom = try to design reusing some already designed parts
- CAD = flow through a sequence of design steps and software tools

Some Useful Acronyms

Semi-custom ASIC

- Application-specific IC design a chip for a specific task, using mostly semicustom techniques
- Do not expect to make a zillion of them, so cannot afford full custom
- Not quite as dense (transistors / area) or as fast (GHz) as full custom
- Semi-custom vs. full-custom

- Semi-custom: designs mostly from pre-existing parts (gates, memories)
- Full-custom: designs right down at the individual transistor level
- Today, only things like microprocessors are "full custom" VS Share TOU Y
- And in fact, even these chips have huge semi-custom parts on them

One More: CAD vs. EDA

- CAD: Computer-Aided Design
 - What we all used to call this world of tools for chip design
 - Problem: other people do "CAD" too, like mechanical engineers, architects, etc.

EDA: Electronic Design Automation

- What most "insider" chip folks call it. More accurate, more descriptive name
- Problem: people outside the business not always clear what it means.
- So, I called this class "VLSI CAD," but it's really "VLSI EDA"

More Acronyms: System-on-a-Chip ASIC

- 50C) Integrates many blocks of function on one big chip
 - Most common: row-based standard cells = gates + flops in rows; and big SRAM memories; and perhaps pre-designed blocks like CPUs

Example: Small SOC Controller Design

Look at blocks

Memories

Random control logic

CPU core

Analog interface to external world

Another Important Term: CAD Flow

- How to attack big designs like these?
- Big idea: Levels of abstraction

 - Each step renders design a little more real
- Synthesis steps:
 - Go forward in design: Make new stuff
- Verification steps:
 - Look backward: Check that it worked
- Complete set of steps called: A Flow

Complete set of steps called

© 2013, R.A. Rutenbar

Our Class CAD Tool Flow

Logic Synthesis **Logic Verification Layout Synthesis Timing Verification**

- **Start with some Boolean / logic** design description...
- ...end with gates+wires, located at (x,y) coordinates on chip
- **Note: very over-simplified**
- Big goal(s) for class
 - Explain the critical algorithms, data structures & modeling assumptions used in each of these big steps