Figgie

Grant Stenger

May 21, 2019

Goal

We want to know what the starting probability that a specified suit is the common suit given that we are dealt n cards of that suit initially.

Notation

C = "Suit is common" (12 of 40 cards are of the common suit)

n = "Initially dealt n of this suit" (of the 10 cards dealt, n are of this suit)

Solution

Bayes' Theorem

$$p(C \mid n) = \frac{p(n|C)p(C)}{p(n|C)p(C) + p(n|C')p(C')}$$

Task 1: $p(n \mid C)$

Restated: Given that a suit is common, what's the probability that we would draw exactly n of them initially?

draw exactly
$$n$$
 of them initially?
$$p(n \mid C) = \frac{\binom{10}{n} \frac{12!}{(12-n)!} \frac{(40-12)!}{((40-12)-(10-n))!}}{\frac{40!}{10!}}$$

n	$p(\text{dealt } n \mid C \text{ "suit is common"})$
0	1.55%
1	9.78%
2	24.20%
3	30.73%
4	22.00%
5	9.18%
6	2.22%
7	0.31%
8	0.02%
9	0.00%
10	0.00%

Task 2: p(C) = 25%

Task 3: $p(n \mid C')$

Restated: Given that a suit is not the common suit, what's the probability that we would draw exactly n of them initially?

we would draw exactly
$$n$$
 of them initially?
$$p(n \mid C') = \frac{\binom{10}{n} \frac{10!}{(10-n)!} \frac{(40-10)!}{((40-10)-(10-n))!}}{\frac{40!}{10!}}$$

n	$p(\text{dealt } n \mid C$ ' "suit is not common")
0	3.54%
1	16.89%
2	31.07%
3	28.82%
4	14.71%
5	4.24%
6	0.68%
7	0.06%
8	0.00%
9	0.00%
10	0.00%

Task 4: p(C') = 75%

Putting It All Together

$$p(C \mid n) = \frac{p(n|C)p(C)}{p(n|C)p(C) + p(n|C')p(C')} = \frac{\frac{\binom{10}{n} \frac{12!}{(12-n)!} \frac{(40-12)!}{((40-12)!} \frac{(40-12)!}{(40-12)-(10-n)!}}{\frac{40!}{(10!} \frac{12!}{(40-12)!} \frac{(40-12)!}{(40-12)!} \frac{1}{4} + \binom{10}{n} \frac{10!}{(10-n)!} \frac{(40-10)!}{\frac{40!}{10!}}}{\frac{40!}{10!}}$$

n	p(C is the common suit n are dealt)
0	12.5%
1	16.1%
2	20.6%
3	26.2%
4	33.3%
5	41.9%
6	52.3%
7	63.9%
8	76.1%
9	87.3%
10	95.7%