1. Introduction

- mathematical optimization
- least-squares and linear programming
- convex optimization
- example
- course goals and topics
- nonlinear optimization
- brief history of convex optimization

Mathematical optimization

- $f_0: \mathbb{R}^n \to \mathbb{R}$: objective function
- $f_i: \mathbf{R}^n \to \mathbf{R}$, $i=1,\ldots,m$: constraint functions

solution or **optimal point** x^* has smallest value of f_0 among all vectors that satisfy the constraints

Examples

portfolio optimization

- variables: amounts invested in different assets
- constraints: budget, max./min. investment per asset, minimum return
- objective: overall risk or return variance

device sizing in electronic circuits

- variables: device widths and lengths
- constraints: manufacturing limits, timing requirements, maximum area
- objective: power consumption

data fitting

- variables: model parameters
- constraints: prior information, parameter limits
- objective: measure of misfit or prediction error, plus regularization term

Solving optimization problems

general optimization problem

- very difficult to solve
 methods involve some compromise, e.g., very long computation time, or not always finding the solution (which may not matter in practice)

exceptions: certain problem classes can be solved efficiently and reliably

Local

- least-squares problems
- linear programming problems
- convex optimization problems

Least-squares

minimize $||Ax - b||_2^2$

solving least-squares problems

- analytical solution: $x^* = (A^T A)^{-1} A^T b$
- reliable and efficient algorithms and software
- computation time proportional to n^2k ($A \in \mathbf{R}^{k \times n}$); less if structured
- a mature technology

using least-squares

- least-squares problems are easy to recognize
- \bullet a few standard techniques increase flexibility (e.g., including weights, adding regularization terms)

Linear programming

minimize
$$c^Tx$$
 subject to $a_i^Tx \leq b_i$, $i=1,\ldots,\underline{m}$ solving linear programs

- no analytical formula for solution
- reliable and efficient algorithms and software
- computation time proportional to n^2m if $m \ge n$; less with structure
- a mature technology

using linear programming

- not as easy to recognize as least-squares problems
- a few standard tricks used to convert problems into linear programs (e.g., problems involving ℓ_1 or ℓ_∞ -norms, piecewise-linear functions)

Convex optimization problem

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq b_i, \quad i = 1, \dots, m$

$$f_i(\alpha x + \beta y) \le \alpha f_i(x) + \beta f_i(y)$$

if
$$\alpha + \beta = 1$$
, $\alpha \ge 0$, $\beta \ge 0$

• includes least-squares problems and linear programs as special cases

solving convex optimization problems

- no analytical solution
- reliable and efficient algorithms interior point method.
- computation time (roughly) proportional to $\max\{n^3, n^2m(F)\}$, where F is cost of evaluating f_i 's and their first and second derivatives
- almost a technology

using convex optimization

- often difficult to recognize
- many tricks for transforming problems into convex form
- surprisingly many problems can be solved via convex optimization

Example

m lamps illuminating n (small, flat) patches

intensity I_k at patch k depends linearly on lamp powers p_j :

$$I_k = \sum_{j=1}^m a_{kj} p_j, \qquad \underline{a_{kj}} = \underline{r_{kj}^{-2}} \max\{\cos \theta_{kj}, 0\}$$

problem: achieve desired illumination I_{des} with bounded lamp powers

minimize
$$\max_{k=1,...,n} |\log I_k - \log I_{\text{des}}|$$
 subject to $0 \le p_j \le p_{\text{max}}, \quad j=1,\ldots,m$

how to solve?

- 1. use uniform power: $p_j = p$, vary p
- 2. use least-squares:

minimize
$$\sum_{k=1}^{n} (I_k - I_{des})^2$$

round p_j if $p_j > p_{\text{max}}$ or $p_j < 0$

3. use weighted least-squares:

minimize
$$\sum_{k=1}^{n} (I_k - I_{\text{des}})^2 + \sum_{j=1}^{m} w_j (p_j - p_{\text{max}}/2)^2$$

iteratively adjust weights w_j until $0 \le p_j \le p_{\text{max}}$

4. use linear programming:

$$\begin{array}{ll} \text{minimize} & \max_{k=1,\ldots,n} |I_k - I_{\text{des}}| \\ \text{subject to} & 0 \leq p_j \leq p_{\text{max}}, \quad j=1,\ldots,m \end{array}$$

which can be solved via linear programming of course these are approximate (suboptimal) 'solutions'

5. use convex optimization: problem is equivalent to

minimize
$$f_0(p) = \max_{k=1,...,n} \underline{h(I_k/I_{\text{des}})}$$
 subject to $0 \le p_j \le p_{\text{max}}, \quad j = 1,...,m$

with $h(u) = \max\{u, 1/u\}$

 f_0 is convex because maximum of convex functions is convex

 \mathbf{exact} solution obtained with effort pprox modest factor imes least-squares effort

additional constraints: does adding 1 or 2 below complicate the problem?

- 1. no more than half of total power is in any 10 lamps
- 2. no more than half of the lamps are on $(p_i > 0)$
- answer: with (1), still easy to solve; with (2), extremely difficult
- moral: (untrained) intuition doesn't always work; without the proper background very easy problems can appear quite similar to very difficult problems

Course goals and topics

goals

- 1. recognize/formulate problems (such as the illumination problem) as convex optimization problems
- 2. develop code for problems of moderate size (1000 lamps, 5000 patches)
- 3. characterize optimal solution (optimal power distribution), give limits of performance, etc.

topics

- 1. convex sets, functions, optimization problems
- 2. examples and applications
- 3. algorithms

Nonlinear optimization

traditional techniques for general nonconvex problems involve compromises local optimization methods (nonlinear programming)

- ullet find a point that minimizes f_0 among feasible points near it
- fast, can handle large problems
- require initial guess
- provide no information about distance to (global) optimum

global optimization methods

- find the (global) solution
- worst-case complexity grows exponentially with problem size

these algorithms are often based on solving convex subproblems

Brief history of convex optimization

theory (convex analysis): 1900–1970

algorithms

- 1947: simplex algorithm for linear programming (Dantzig)
- 1970s: ellipsoid method and other subgradient methods
- 1980s & 90s: polynomial-time interior-point methods for convex optimization (Karmarkar 1984, Nesterov & Nemirovski 1994)
- since 2000s: many methods for large-scale convex optimization

applications

- before 1990: mostly in operations research, a few in engineering
- since 1990: many applications in engineering (control, signal processing, communications, circuit design, . . .)
- since 2000s: machine learning and statistics

2. Convex sets

- affine and convex sets
- some important examples
- operations that preserve convexity
- generalized inequalities
- separating and supporting hyperplanes
- dual cones and generalized inequalities

Affine set

line through x_1 , x_2 : all points

affine set: contains the line through any two distinct points in the set

example: solution set of linear equations $\{x \mid \underline{Ax} = b\}$

(conversely, every affine set can be expressed as solution set of system of

$$X_1, X_2 \in C$$
, $X = \emptyset X_1 + (1-1)X_2$

$$0 \times (1-1) \times (1-1) \times (1-1)$$

$$0 \times (1-1) \times (1-1) \times (1-1)$$

$$0 \times (1-1) \times (1-1)$$

$$\triangle x = b$$
, $\triangle x = b$

$$\triangle (A \times b) + (b = 0)$$

$$\triangle x = b$$

$$\triangle (A \times b) + (b = 0)$$

$$\triangle (A \times b) + (b = 0)$$

$$\triangle (A \times b) + (b = 0)$$

Convex sets

Convex set

line segment between x_1 and x_2 : all points

$$x = \theta x_1 + (1 - \theta)x_2$$

$$\text{with } 0 \le \theta \le 1$$

convex set: contains line segment between any two points in the set

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \quad \Longrightarrow$$

 $x_1, x_2 \in C, \quad 0 \le \theta \le 1 \implies \underbrace{\theta x_1 + (1-\theta) x_2 \in C}_{\left\{ \times \middle| x_1, x_2 \in \mathcal{C} \right\}}$ **examples** (one convex, two nonconvex sets)

Convex combination and convex hull

convex combination of x_1, \ldots, x_k : any point x of the form

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$$

X) X2 X2 X3

with
$$\theta_1 + \cdots + \theta_k = 1$$
, $\theta_i \ge 0$

convex hull $(\mathbf{conv}\,S)$ set of all convex combinations of points in S

Convex cone

conic (nonnegative) combination of x_1 and x_2 : any point of the form

$$x = \theta_1 x_1 + \theta_2 x_2$$

with $\theta_1 \ge 0$, $\theta_2 \ge 0$

convex cone: set that contains all conic combinations of points in the set

Simust 70055 through the origin O

Affine Set, Convex Set, Convex Conic Set

 $(x_1, x_2 \in C, \theta, x_1 + \theta_2 x_2 \in C)$

Al-Stine	Conevex	Convex cone	
$\Theta_{1}+\Theta_{2}=1$	017 02= 1 01,02 20.	Q1, A220	
Tom (2) com	ine => c	onvex	
(9)	nex 🗱 a		
(4) con	nuex 200		

Hyperplanes and halfspaces

hyperplane: set of the form $\{x \mid a^Tx = b\}$ $(a \neq 0)$

halfspace: set of the form $\{x \mid a^Tx \leq b\}$ $(a \neq 0)$

- ullet a is the normal vector
- hyperplanes are affine and convex; halfspaces are convex.

Euclidean balls and ellipsoids

$$B(x_c,r) = \{x \mid \|x-x_c\|_2 \leq \underline{r}\} = \{x_c + ru \mid \|u\|_2 \leq 1\}$$

ellipsoid: set of the form

$$\{x \mid (x - x_c)^T P^{-1} (x - x_c) \le 1\}$$

with $P \in \mathbf{S}_{++}^n$ (i.e., P symmetric positive definite)

$$\frac{||X+Y|| \leq ||X|| + ||X||}{||X+Y|| \leq ||X|| + ||X||}$$

$$X, y: ||X|| \leq 1$$

$$Z = \Theta \times + (1 - \Theta)(1) \cdot (0 = 0)$$

other representation: $\{\underline{x_c + Au} \mid \|u\|_2 \le 1\}$ with A square and nonsingular

$$\leq 0+|-0=|$$

1.) is the norm in RNorm balls and norm cones

norm: a function $\|\cdot\|$ that satisfies

- $||x|| \ge 0$; ||x|| = 0 if and only if x = 0
- ||tx|| = |t| ||x|| for $t \in \mathbf{R}$
- $||x + y|| \le ||x|| + ||y||$

norm ball with center x_c and radius r: $\{x \mid |x - x_c| \le r\}$

Euclidean norm cone is called secondorder cone (ice-cream cone)

norm balls and cones are convex

la-nom li-nom

$$\begin{array}{c} \chi \in \mathbb{R}^n \\ L_p - nnm : \\ ||\chi||_p = \left(\begin{array}{c} \frac{h}{j=1} |\chi_j|^p \end{array} \right)^{\frac{1}{p}} \end{array}$$

Polyhedra

solution set of finitely many linear inequalities and equalities

 $(A \in \mathbf{R}^{m \times n}, C \in \mathbf{R}^{p \times n}, \preceq \text{ is componentwise inequality})$

polyhedron is intersection of finite number of halfspaces and hyperplanes

Positive semidefinite cone

notation:

XEPSI)

- \mathbf{S}^n is set of symmetric $n \times n$ matrices
- $S_+^n = \{X \in S^n \mid X \succeq 0\}$: positive semidefinite $n \times n$ matrices

$$X \in \mathbf{S}^n_+ \iff \underline{z^T X z \ge 0} \text{ for all } z$$

 \mathbf{S}_{+}^{n} is a convex cone positive definite

• $S_{++}^n = \{X \in S^n \mid X \succ 0\}$: positive definite $n \times n$ matrices

Positive semidefinite cone is Convex cone

Griven:
$$X, Y \in S_{+}^{n} \Rightarrow z^{T} \times z \geq 0$$
, $z^{T} \neq z \geq 0$, $\forall z \neq 0$
whether: $\Theta_{1} \times A + G_{2} \times A$, $(\Theta_{1}, \Theta_{2} \geq 0)$ belongs to S_{+}^{n}

Proof:
$$Z^{7}(P_{1}X+Q_{2}Y)Z$$

$$= Q_{1}Z^{7}XZ + Q_{2}Z^{7}YZ$$

$$= Q_{0}Z^{7}XZ + Q_{2}Z^{7}YZ$$

$$= Q_{0}Z^{7}XZ + Q_{2}Z^{7}Z$$

$$= Q_{0}Z^{7}XZ + Q_{2}Z^{7}Z$$

$$\Rightarrow QX + Q_2Y = 0 \Rightarrow Q_1X + Q_2Y \in S_1^n$$

Operations that preserve convexity

practical methods for establishing convexity of a set C

1. apply definition

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \quad \Longrightarrow \quad \theta x_1 + (1 - \theta) x_2 \in C$$

- 2. show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm balls, . . .) by operations that preserve convexity
 - intersection
 - affine functions
 - perspective function
 - linear-fractional functions

Intersection

the intersection of (any number of) convex sets is convex

example:

$$S = \{x \in \mathbf{R}^m \mid |p(t)| \le 1 \text{ for } |t| \le \pi/3\}$$

where $p(t) = x_1 \cos t + x_2 \cos 2t + \dots + x_m \cos mt$

for m=2:

Affine function

suppose $f: \mathbb{R}^n \to \mathbb{R}^m$ is affine $(f(x) = Ax + b \text{ with } A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m)$

ullet the image of a convex set under f is convex

$$S \subseteq \mathbf{R}^n \text{ convex} \implies f(S) = \{f(x) \mid x \in S\} \text{ convex}$$

ullet the inverse image $f^{-1}(C)$ of a convex set under f is convex

$$C \subseteq \mathbf{R}^m \text{ convex} \implies f^{-1}(C) = \{x \in \mathbf{R}^n \mid f(x) \in C\} \text{ convex}$$

examples

- scaling, translation, projection
- solution set of linear matrix inequality $\{x \mid x_1A_1 + \cdots + x_mA_m \leq B\}$ (with $A_i, B \in \mathbf{S}^p$)
- hyperbolic cone $\{x \mid x^T P x \leq (c^T x)^2, c^T x \geq 0\}$ (with $P \in \mathbf{S}^n_+$)

Perspective and linear-fractional function

perspective function $P: \mathbb{R}^{n+1} \to \mathbb{R}^n$:

$$P(x,t) = x/t,$$
 dom $P = \{(x,t) \mid t > 0\}$

images and inverse images of convex sets under perspective are convex

linear-fractional function $f: \mathbb{R}^n \to \mathbb{R}^m$:

$$f(x) = \frac{Ax + b}{c^T x + d},$$
 $\mathbf{dom} f = \{x \mid c^T x + d > 0\}$

images and inverse images of convex sets under linear-fractional functions are convex

example of a linear-fractional function

$$f(x) = \frac{1}{x_1 + x_2 + 1}x$$

Generalized inequalities

a convex cone $K \subseteq \mathbf{R}^n$ is a **proper cone** if

- K is closed (contains its boundary)
- *K* is solid (has nonempty interior)
- *K* is pointed (contains no line)

examples

- nonnegative orthant $K = \mathbf{R}^n_+ = \{x \in \mathbf{R}^n \mid x_i \ge 0, i = 1, \dots, n\}$
- positive semidefinite cone $K = \mathbf{S}_{+}^{n}$
- nonnegative polynomials on [0,1]:

$$K = \{ x \in \mathbf{R}^n \mid x_1 + x_2t + x_3t^2 + \dots + x_nt^{n-1} \ge 0 \text{ for } t \in [0, 1] \}$$

generalized inequality defined by a proper cone K:

$$x \leq_K y \iff y - x \in K, \qquad x \prec_K y \iff y - x \in \mathbf{int} K$$

examples

• componentwise inequality $(K = \mathbf{R}_{+}^{n})$

$$x \preceq_{\mathbf{R}^n_+} y \iff x_i \leq y_i, \quad i = 1, \dots, n$$

• matrix inequality $(K = \mathbf{S}_{+}^{n})$

$$X \preceq_{\mathbf{S}^n_+} Y \quad \Longleftrightarrow \quad Y - X \text{ positive semidefinite}$$

these two types are so common that we drop the subscript in \leq_K properties: many properties of \leq_K are similar to \leq on \mathbf{R} , e.g.,

$$x \leq_K y, \quad u \leq_K v \implies x + u \leq_K y + v$$

Minimum and minimal elements

 \preceq_K is not in general a *linear ordering*: we can have $x \npreceq_K y$ and $y \npreceq_K x$ $x \in S$ is **the minimum element** of S with respect to \preceq_K if

$$y \in S \implies x \leq_K y$$

 $x \in S$ is a minimal element of S with respect to \leq_K if

$$y \in S$$
, $y \leq_K x \implies y = x$

example $(K = \mathbf{R}_+^2)$

 x_1 is the minimum element of S_1 x_2 is a minimal element of S_2

