p-value: то, что вы всегда хотели узнать, но боялись спросить

Мария Лысюк

Аннотация. Аннотация должна передавать краткое содержание работы. Она должна быть ясной, содержательной, релевантной и короткой (не более 150 слов). Аннотация должна содержать информацию, необходимую для поиска по базам научных работ. В аннотации не должно быть математических формул.

Ключевые слова: p-value, уровень значимости, гипотезы, интерпретация.

С завидным постоянством хотя бы раз в жизни студент, слушающий курс статистики, сталкивается с вопросом экзаменатора (который обычно ещё надеется, что вопрос очевиден и «вытягивает» с помощью него студента): «Мистер X, что показывает p-value?»

И тут для многих наступает этот неловкий момент, и лицо выглядит примерно вот так (Эдвард Мунк, видимо, тоже не знал):

Рис. 1. Лицо обычного человека, у которого спросили, что такое p-value

Для того чтобы осознать сие, безусловно, великое понятие, мы должны, как Будда, пройти 7 ступеней познания. Как водится, примеры красноречивее всего доносят нужную информацию до мозга, так что поговорим сегодня про машинки.

Вкратце *о ходе эксперимента*. Мы будем узнавать, существует ли какаялибо зависимость между штрафом за лихачество водителя и цветом его машины. Гипотеза \mathcal{H}_0 будет выглядеть следующим образом.

НИУ ВШЭ, Москва.

2 М. Лысюк

- \mathcal{H}_0 : Выдача штрафа не зависит от цвета машины.
- Н₁: Водители с красными машинами чаще получают штрафы за превышение скорости по сравнению с синими машинами.

Итак, в добрый путь!

1 Семь ступеней познания p-value

Ступень 1. Выберите уровень значимости. Начнём со знакомого до боли. Строго говоря, уровень значимости — это мера, которая отражает наше предпочтение точности результатов: низкие уровни значимости говорят о маленькой вероятности того, что полученные экспериментальным путём результаты случайны, и наоборот. Согласно негласной конвенции, обычно используется 5%-й уровень значимости. Это означает, что вероятность того, что наши результаты случайны, равна 0,05, а вероятность того, что мы сами повлияли на результат, равна 0,95.

• Пример. Возьмём и мы уровень значимости в 5%.

Ступень 2. Определите ожидаемые результаты эксперимента. Как правило, учёные, проводя эксперимент и наблюдая впоследствии результаты, имеют представление о том, какие результаты являются «типичными» до начала эксперимента. Это может быть основано на результатах из прошлых исследований, достоверных источников, научной литературы и т. д. Для вашего эксперимента определите ваши ожидаемые результаты любым из способов.

• Пример. Пусть предыдущие исследования показали, что штрафы за превышение скорости чаще получают водители красных машин по сравнению с синими. Также пусть результаты по всей стране показывают превышение красными в отношении 2:1 по сравнению с синими. Мы же хотим узнать, применимы ли результаты, характерные для всей страны, к нашему городу. Если мы возьмём случайную выборку из 150 машинок, которым выписали штрафы, мы будем ожидать, что 100 машин будут красными, а 50—синими, если наша полиция выписывает штрафы согласно национальной тенденции.

Красная машинка	Синяя машинка			
100	50			

Рис. 2. Ожидаемые значения количества штрафов

Ступень 3. Определите наблюдаемые результаты эксперимента. После того как мы определили ожидаемые результаты, проводим реальный

эксперимент и получаем наблюдаемые результаты. Если мы каким-либо образом повлияли и наблюдаемые результаты отличаются от ожидаемых, возможна одна из двух ситуаций:

- 1. Это произошло случайно.
- 2. Те условия, в которых мы проводили эксперимент, повлияли на исход.

Как правило, цель нахождения *p*-value — определить, правда ли, что наблюдаемые результаты отличаются от ожидаемых настолько, что мы не можем отвергнуть нулевую гипотезу (гипотезу о том, что нет связи между переменными и наблюдаемым результатом).

 $\mathit{\Pi pum.~ped.}~$ Что значит «определить наблюдаемые результаты»? Это как?

• Пример. Пусть в нашем городе мы произвольно выбрали 150 красных и синих машин нарушителей. Оказалось, что 90 штрафов выписали красным машинам, а 60—синим. Это отличается от ожидаемых 100 и 50 соответственно. Правда ли, что те условия, в которых мы проводили эксперимент (в нашем случае смена источника данных с национальных на местные) послужила причиной изменения результатов, или действия городской полиции так же смещены, как и предсказывает национальная средняя оценка, и мы просто наблюдаем случайную вариацию? рзначение спешит на помощь!

Красная машинка	Синяя машинка			
90	60			

Рис. 3. Наблюдаемые количества штрафов

Ступень 4. Определите степени свободы в вашем эксперименте. Степени свободы отражают меру изменчивости, характерную для исследования, которая определяется количеством переменных, которые вы изучаете. Степени свободы определяются как n-1, где n- это количество переменных, используемых в эксперименте.

Прим. ред. Что это за misdirection? Степени свободы чего? В регрессии для Residual S. S. это, например, количество наблюдений минус количество параметров. Не лучше ли дать более общее и понятное определение?

• *Пример.* У нас есть две переменные: количество красных машин и количество синих машин. Поэтому степеней свободы всего 2-1=1, т. е. одна.

Ступень 5. Сравните наблюдаемые результаты с ожидаемыми с помощью распределения χ^2 . χ^2 — статистика, численно измеряющая

4 М. Лысюк

разницу между ожидаемыми и наблюдаемыми результатами. Уравнение:

$$\chi^2 = \sum_{i=0}^{n} \frac{(h_i - e_i)^2}{e_i},$$

где h— значение наблюдаемой переменной, а e— ожидаемой.

• Пример. Мы должны просуммировать значения для всех возможных переменных, то есть в нашем случае для синих и красных машинок:

$$\chi^2 = \sum_{i=0}^{1} \frac{(h_i - e_i)^2}{e_i} = \frac{(90 - 100)^2}{100} + \frac{(60 - 50)^2}{50} = \frac{(-10)^2}{100} + \frac{10^2}{50} = 1 + 2 = \boxed{3}.$$

Ступень 6. Используем таблицу $\chi 2$ -распределения, чтобы аппроксимировать p-value. Скрестила пальцы: надеюсь, что все умеют пользоваться таблицами распределений.

• Пример. Наше значение статистики χ^2 равно 3. Далее пользуемся таблицей 1 для нахождения p-значения. У нас одна степень свободы (degree of freedom), поэтому берём первую строку и ищем там первое значение, превышающее значение нашего $\chi^2=3$. Оно равно 3,84. Соответствующее p-значение равно 0,05. Это означает, что наше p-value располагается между 0,05 и 0,1.

	p-value								
df	20%	10%	5%	2,5%	1%	$0,\!5\%$	$0{,}25\%$	$0,\!1\%$	$0,\!05\%$
1	1,64	2,71	3,84	5,02	6,63	7,88	9,14	10,83	12,12
2	3,22	4,61	5,99	7,38	9,21	10,60	11,98	13,82	15,20
3	4,64	6,25	7,81	$9,\!35$	11,34	12,84	14,32	$16,\!27$	17,73
4	5,99	7,78	9,49	11,14	13,28	14,86	16,42	18,47	20,00
5	7,29	9,24	11,07	12,83	15,09	16,75	18,39	20,52	22,11
10	13,44	15,99	18,31	20,48	23,21	25,19	27,11	29,59	31,42
20	25,04	28,41	31,41	34,17	37,57	40,00	42,34	45,31	47,50
30	36,25	40,26	43,77	46,98	50,89	$53,\!67$	56,33	59,70	62,16
40	47,27	51,81	55,76	59,34	63,69	66,77	69,70	73,40	76,09
50	58,16	63,17	67,50	71,42	76,15	79,49	82,66	86,66	89,56

Таблица 1. Критические статистики для распределения χ^2

Ступень 7. Вот мы и добрались до конца! Осталось решить, отвергается или нет нулевая гипотеза. Если p-value меньше, чем уровень значимости, то мои поздравления, можете отсылать вашу работу в топовые журналы! Вы доказали, что высока вероятность того, что есть значимая корреляция между переменными, которыми вы манипулируете, и наблюдаемыми результатами. Если ли же p-значение больше выбранного уровня значимости, вы не можете с точностью сказать, случайны ли полученные вами результаты, или они являются результатом ваших действий.

• Пример. Наше р-значение находится в границах от 0,05 до 0,1. Это определённо меньше, чем выбранный уровень значимости, равный 0,05, поэтому, к сожалению, мы не можем отвергнуть нулевую гипотезу. Другими словами, мы не достигли желаемого уровня в 95%, чтобы с точностью сказать, что в нашем городе полиция выдаёт штрафы красным и синим машинам в пропорции, значительно отличающейся от национального уровня. Иначе говоря, есть вероятность 5–10% того, что изменения в выдаче штрафов красным и синим машинам связаны не со сменой локации, а с чистой случайностью. Ввиду того что мы ищем вероятность, меньшую, чем 0,05, мы не можем быть уверены, что полиция нашего города более склонна выдавать штрафы красным машинам: есть маленькая, но статистически значимая вероятность того, что это не так.

А теперь, после того как мы проделали такой до-олгий путь к нирване, ввёдем, наконец, определение.

p-значение — это вероятность того, что случайная величина с данным распределением (распределением тестовой статистики при нулевой гипотезе) примет значение, не меньшее, чем фактическое значение тестовой статистики.

И напоследок. Господин Гудман (Goodman, 2008) написал чудную статью о недопонимании *p*-value и о тех ошибках в интерпретации, которые обычно допускают студенты. **Не делайте так! Опасно для жизни!** Помните:

- p=0.05 не означает, что есть 5%-я вероятность того, что нулевая гипотеза верна.
- p = 0.05 не означает, что есть 5%-я вероятность ошибки первого рода.
- p = 0.05 не означает, что есть 95%-я вероятность того, что результаты будут такими же при повторении эксперимента.
- p > 0.05 не означает, что нет разницы между наблюдаемыми переменными.
- p < 0.05 не означает, что нулевая гипотеза не отвергается.

Список литературы

Goodman S. A Dirty Dozen: Twelve P-Value Misconceptions // Seminars in hematology. T. 45. — Elsevier. 2008. — C. 135—140.

How to Calculate P Value. — 1 нояб. 2014. — URL: http://www.wikihow.com/Calculate-P-Value.

Statistics for Experimental Biologists. — 17 окт. 2014. — URL: http://labstats.net/articles/pvalue.html.