Departamento de Matemática da Universidade de Aveiro

Cálculo II - Agrupamento 4

Ano letivo 2016/2017 (2º Semestre)

Folha 3: Derivadas, gradientes e diferenciais - parte 1

- 1. Supondo que existe a derivada direcional $f'_{\vec{a}}(P_0)$ da função $f: D \subset \mathbb{R}^n \to \mathbb{R}$ segundo $\vec{a} \in \mathbb{R}^n$ em $P_0 \in \text{int}D$, mostre que $f'_{-\vec{a}}(P_0)$ também existe e que $f'_{-\vec{a}}(P_0) = -f'_{\vec{a}}(P_0)$.
- 2. Após garantir a diferenciabilidade das seguintes funções f nos seus domínios de definição, determine a expressão geral das derivadas direcionais nas direções e sentidos indicados:
 - (a) $f(x,y) = \ln(\sqrt{x^2 + y^2})$ na direção e sentido do vetor (1,1);
 - (b) $f(x,y) = x^2 4y$ na direção e sentido do vetor (1,3);
 - (c) $f(x,y) = \frac{1}{x^2 + y^2}$ na direção e sentido do vetor (1,1);
 - (d) $f(x,y) = x^2y^3$ na direção e sentido do vetor $(\frac{3}{5}, -\frac{4}{5})$;
 - (e) f(x, y, z) = xyz na direção e sentido do vetor (1, 2, 2);
 - (f) $f(x,y,z) = e^x + yz$ na direção e sentido do vetor (-1,5,-2);
 - (g) $f(x, y, z) = \cos(xy) + \sin(yz)$ na direção e sentido do vetor $\left(-\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)$.
- 3. Determine a expressão geral das derivadas direcionais da função $f(x,y) = x^2 3xy$ na direção e sentido de um vetor de coordenadas positivas que seja diretor da reta tangente à parábola de equação $y = x^2 x + 2$ no ponto (1,2).
- 4. Determine a derivada direcional de $f(x,y) = 3ye^x$ no ponto (1,2) e na direção e sentido de um vetor do 1.º quadrante que faça com o eixo das abcissas um ângulo de 60° .
- 5. Suponha que o potencial elétrico numa lâmina plana é dado por

$$V(x,y) = 80 - 20xe^{-\frac{x^2 + y^2}{20}}$$

em volts, com x e y em cm.

(a) Determine a expressão geral da taxa de variação do potencial na direção e sentido do eixo dos xx.

1

- (b) Determine a expressão geral da taxa de variação do potencial na direção e sentido do eixo dos yy.
- (c) Determine a expressão geral da taxa de variação do potencial na direção e sentido do vetor (1,1).
- 6. Após garantir a diferenciabilidade da função no respetivo ponto do domínio, determine a equação do plano tangente ao gráfico de z = f(x, y) no ponto P_0 indicado:
 - (a) $z = 2x^2 + y^2$ (paraboloide); $P_0 = (1, 1, 3)$.
 - (b) $z = \sqrt{x y}$; $P_0 = (5, 1, 2)$.
 - (c) $z = \ln(2x + y)$; $P_0 = (-1, 3, 0)$.
 - (d) $z = \sin(xy)$; $P_0 = (1, \pi, 0)$.
 - (e) $z = \frac{x^2 + 4y^2}{5}$; $P_0 = (3, -2, 5)$.
 - (f) $z = \frac{4 xy}{x + y}$; $P_0 = (2, 2, f(2, 2))$.
 - (g) $z = xe^{x^2-y^2}$; P = (2, 2, f(2, 2)).
- 7. Seja $f(x,y) = x 6y^2$. Determine:
 - (a) equações para os planos tangentes ao gráfico de $z=x-6y^2$ nos pontos (1,1,f(1,1)) e (-1,-1,f(-1,-1));
 - (b) equações para as retas perpendiculares ao gráfico de f nos pontos (1,1,f(1,1)) e (-1,-1,f(-1,-1)).
- 8. Determine a equação do plano tangente ao gráfico de z=xy que passa pelos pontos $(1,\,1,\,2)$ e $(-1,\,1,\,1)$.
- 9. Determine a equação do plano tangente ao gráfico de $z=x^2+y^2$ que seja paralelo ao plano z-2x-y=0.
- 10. Determine a equação do plano tangente à esfera de centro na origem e raio unitário no ponto $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$.
- 11. Justifique as seguintes afirmações:
 - (a) As funções polinomiais em n variáveis são diferenciáveis em todos os pontos de \mathbb{R}^n .
 - (b) A função $f(x,y) = \sqrt{x^2 + y^2}$ é diferenciável em $\mathbb{R}^2 \setminus \{(0,0)\}$.
 - (c) A função $f(x,y) = xy^2 + \frac{y}{x^2 + y^2 + 1}$ é diferenciável em todo o \mathbb{R}^2 .

- (d) A função $f(x,y)=e^y+\ln x$ é diferenciável para todo o $(x,y)\in]0,+\infty[\times\mathbb{R}.$
- 12. Para funções f(x,y,z) e g(x,y,z) cujas derivadas parciais de primeira ordem existam num dado ponto, prove que $\nabla(fg)=f\nabla g+g\nabla f$ em tal ponto.