Einfluss von Propofol auf Verweildauer und Sterblichkeit auf der Intensivstation

Prof. Dr. Wolfgang Hartl

Cong Hung Eißrig, Martin Kandlinger, Ramish Raseen, Iman Saffari, Lukas Stank 2024-12-05

Agenda

- 1. Einleitung
- 2. Datenüberblick
- 3. Methodik
- 4. Ergebnisse
- 5. Fazit

Datenüberblick

- Datengröße:
 - Ursprünglich: ca. 182.000 Beobachtungen und 51 Variablen => 17.000 Patienten mit jeweils 11 Beobachtungstagen.
 - Aktuell: ca. 12.000 Beobachtungen und 27 Variablen (12.000 Patienten).
- Patienten von Interesse:
 - Alter von mindestens 18 Jahren.
 - BMI über 13 kg/m².
 - Aufenthaltsdauer auf der Intensivstation von mindestens 7 Tagen.
 - Nur Propofol-Einnahme innerhalb der ersten 7 Tage nach Aufnahme wird analysiert.

Verwendete Confounder

- Alter
- BMI
- APACHE-II-Score
- Zufälliger Effekt für Intensivstation
- Geschlecht
- Jahr der Behandlung (kategorial)
- admission category (kategorial)
- leading admission diagnosis (kategorial)
- Anzahl der Tage (0-7) mit mechanischer Beatmung
- Tage mit oral intake (Nahrungsaufnahme)
- Tage mit parenteral nutrition
- Tage mit protein intake

Confounders

Figure 1: Verteilung der Confounders

Methodik

- Datenvorverarbeitung:
 - 1. Zusammenführung der Datensätze.
 - 2. Umgang mit fehlenden Werten.
 - 3. Berechnung wichtiger Metriken:
 - Kumulative Propofol-Dosis.
 - Tage mit Propofol-Einnahme.
- Statistische Modelle:

$Cox\hbox{-} Proportional\hbox{-} Hazards\hbox{-} Modell$

Verwendung für:

- Tod und Entlassung als konkurrierende Risiken.
- Anpassungen für Störvariablen
- Alter, BMI, Apache II-Score usw.

Cox Modell

Hazard Function

Das Cox-Modell definiert die Hazard-Funktion h(t|X), welche das unmittelbare Risiko eines Ereignisses zum Zeitpunkt t für eine Person mit Kovariaten X darstellt:

$$h(t|X) = h_0(t) \cdot \exp(\beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p)$$

- Dabei gilt:
 - -h(t|X): Hazard-Funktion für eine Person mit Kovariaten X.
 - $-h_0(t)$: Basis-Hazard-Funktion, das Risiko, wenn alle Kovariaten null sind.
 - $-\beta_i$: Koeffizienten für die *i*-te Kovariate.
 - $-X_i$: Wert der *i*-ten Kovariate für eine Person.

Merkmale des Cox-Modells

1. Proportional-Hazards-Annahme:

• Das Verhältnis der Hazards für zwei Individuen ist konstant über die Zeit und hängt nur von den Kovariaten ab:

$$\frac{h(t|X_1)}{h(t|X_2)} = \exp\big(\beta_1(X_{1,1} - X_{2,1}) + \dots + \beta_p(X_{1,p} - X_{2,p})\big)$$

2. Semi-parametrische Natur:

- Die Basis-Hazard-Funktion $h_0(t)$ bleibt unbestimmt, was das Modell flexibel und robust macht.
- Nur die relativen Effekte (über β) werden geschätzt, nicht $h_0(t)$.

Merkmale des Cox-Modells

3. Zensierung:

• Unterstützt rechts-zensierte Daten, bei denen der genaue Zeitpunkt eines Ereignisses unbekannt ist, aber nach einer bestimmten Beobachtungszeit liegt.

4. Interpretation:

• Hazard Ratio (HR):

$$HR = \exp(\beta)$$

- Repräsentiert das relative Risiko eines Ereignisses bei einer Einheitserhöhung der Kovariate X_i .
- -HR > 1: Erhöhtes Risiko.
- -HR < 1: Verringertes Risiko.

Ergebnisse

- Hazard Ratios:
 - Signifikante Kovariaten:
 - * Tage mit Propofol: Erhöht die Wahrscheinlichkeit der Entlassung (HR > 1).
 - * Tage mit mechanischer Beatmung: Reduziert die Wahrscheinlichkeit der Entlassung (HR < 1).
 - * Parenterale Ernährung: Verlangsamt die Entlassung (HR < 1).
 - Nicht signifikant:
 - * **Alter** und **APACHE-II-Score** zeigen keinen Einfluss (HR ≈ 1).

Ergebnisse II

- Interpretation der Martingale-Residual-Plots:
 - Alter, BMI, APACHE-II-Score: Lineare Beziehung akzeptabel.

- Tage mit Propofol: Keine Transformation erforderlich.
- Mechanische Beatmung: Hinweise auf nicht-lineare Effekte.
 Parenterale Ernährung: Mögliche nicht-lineare Trends.

Überlebensanalyse

Subgruppenanalyse: Alter

Ergebnisse

Subgruppenanalyse: Alter

- Subgruppen:
 - Patienten (≤ 65) Jahre und (>65) Jahre.
- Ergebnisse:
 - Jüngere Patienten (≤ 65):
 - * Signifikante Kovariaten: Tage mit Propofol (HR > 1), mechanische Beatmung (HR < 1).
 - * Höhere Entlassungswahrscheinlichkeit als ältere Patienten.
 - Ältere Patienten (> 65):
 - * Keine signifikanten Kovariaten für Entlassungswahrscheinlichkeit.
 - * Mechanische Beatmung hat stärkeren negativen Effekt.
- Interpretation:
 - Alter beeinflusst die Entlassung indirekt durch Interaktionen mit anderen Kovariaten.

Subgruppenanalyse: Geschlecht

Ergebnisse

Subgruppenanalyse: Geschlecht

- Subgruppe: Weibliche Patienten.
- Ergebnisse:
 - Signifikante Kovariaten:
 - * Tage mit Propofol (HR > 1): Erhöht die Wahrscheinlichkeit der Entlassung.
 - * Tage mit parenteraler Ernährung (HR < 1): Verlangsamt die Entlassung.
 - Mechanische Beatmung (HR < 1) hat vergleichbare Effekte wie in der Gesamtgruppe.

• Interpretation:

- Weibliche Patienten zeigen ähnliche Muster wie die Gesamtgruppe.
- Kein signifikanter Geschlechtsunterschied festgestellt.

Modell-Diagnostik

- Proportional-Hazards-Annahme:
 - Schoenfeld-Residuen:
 - * Kein Hinweis auf Verletzung der Annahme für signifikante Kovariaten.
 - * Plots zeigen flache Trends (p > 0.05).
- Linearität:
 - Martingale-Residuen:
 - * Kovariaten wie Alter und BMI zeigen keine deutliche Nichtlinearität.
 - * Transformationen nicht erforderlich.
- Modellgüte:
 - Concordance Index: 0.714.
 - * Gute Vorhersagefähigkeit des Modells.
 - **Log-Rank-Test**: (p < 2e-16) Modell signifikant.

Penalized Regression

Diskussion

- Stärken des Modells:
 - Verwendung des Cox-Modells zur Schätzung relativer Risiken.
 - Integration wichtiger klinischer Kovariaten (z. B. Propofol, mechanische Beatmung).
- Schwächen:
 - 3223 Beobachtungen aufgrund von fehlenden Werten ausgeschlossen.
 - Effekte von Zeit-abhängigen Kovariaten nicht vollständig modelliert.
- Klinische Relevanz:
 - Identifiziert Propofol-Dauer als positiven Faktor für Entlassung.
 - Mechanische Beatmung zeigt signifikant negative Effekte auf die Entlassungswahrscheinlichkeit.

• Zukünftige Arbeiten:

- Erweitern der Analyse auf zusätzliche Subgruppen (z. B. Diagnose-spezifisch).
- Verwendung von zeitabhängigen Kovariaten in erweiterten Modellen.

Literatur

- [1] Bender, Ralf, Thomas Augustin, and Maria Blettner. "Generating survival times to simulate Cox proportional hazards models." Statistics in medicine 24.11 (2005): 1713-1723.
- [2] Kauermann, Göran. "Penalized spline smoothing in multivariable survival models with varying coefficients." Computational statistics & data analysis 49.1 (2005): 169-186.
- [3] Kotani, Yuki, et al. "Propofol and survival: an updated meta-analysis of randomized clinical trials." Critical care 27.1 (2023): 139.
- [4] Vanlersberghe, C., and Frederic Camu. "Propofol." Modern Anesthetics (2008): 227-252.