Open Neuromorphic

Fabrizio Ottati

fabriziottati@gmail.com

Open-source and AI research

- Deep Learning and Machine Learning open-source software are extremely popular (e.g. PyTorch, TensorFlow).
- Thanks to open-source, the ML research field has grown tremendously.
- Can we do the same for neuromorphic computing?

Neuromorphic Computing

What it is and why you should care about it

Spiking Neural Networks

Training SNNs using lessons from Deep Learning, J.K. Eshraghian et al., 2022

Inference energy consumption – Imagenet

Compute and Energy Consumption Trends in Deep Learning Inference, Desislavov et al., 2021

What to do?

Paradigm shift:

- algorithms: global v.s. local error.
- models: synchronous v.s. asynchronous.
- data: clocked v.s. information-driven.
- hardware: Von Neumann v.s. Beyond Von Neumann.

Spiking Neural Networks Training

Open-source frameworks for Machine Learning tasks and Neuroscience

Open-source frameworks for ML

Open-source frameworks for neuroscience

Some of the SNN frameworks available are focused on **neuron model customizability**, to allow **neuroscientist** to try out different models.

Open-source frameworks for ML and neuroscience

Other frameworks provide solutions for **both neuroscience and machine learning** applications, in order to give the researcher all the tools in **one place**.

Event-Based Sensing

Changing the way we sense the world

Event-based sensing

New ways to **sense** the world:

- silicon retina.
- silicon cochlea.
- silicon skin.
- silicon olfactory sensor.

The Silicon Retina

Misha Mahowald (circa 1992) in the Carverland laboratory at Caltech, testing her stereo correspondence chip. Photo credit: Rodney Douglas. https://lenzgregor.com/posts/event-cameras/ Towards the end of the '80s, **Misha Mahowald** developed a **new stereo vision system**.

Taking inspiration from the **human visual system**, she built the first **silicon retina** in the early '90s.

The pixels **emit spikes** independently and **asynchronously** depending on the **contrast pattern observed**.

From frames to events

Event-Based Software

Open-source software to deal with event-based cameras

Open-source software for event cameras

☐ neuromorphicsystems / aedat

Al algorithms need data, but also data-handling software pipelines.

- Tonic: event-based datasets and transformations.
- Expelliarmus: fast and easy reading of Prophesee cameras data.
- aedat: fast and easy reading of Inivation cameras data.

Hardware

Open-source hardware for neuromorphic applications

Why new hardware?

Current hardware (e.g. GPUs) is made for **dense** data and models (e.g. ANNs).

Brain-inspired data and models need brain-inspired hardware.

- Mixed-signal hardware to emulate the brain (also Beyond-CMOS) and achieve maximum efficiency.
- Digital hardware to simulate the brain and allow platform reusability and programmability for design exploration.

Open-source digital hardware

Releasing the HDL code for digital designs allows the community to **build** on previous effort.

It provides as many people as possible the ability to **construct**, **remix** and **share their knowledge** of hardware design and function.

A 0.086-mm² 12.7 pJ/SOP 64k-Synapse 256-Neuron **O**nline-Learning **Di**gital Spiking **N**euromorphic Processor in 28nm CMOS, C. Frenkel et al.

Mixed-signal hardware

Self-organization of an inhomogeneous memristive hardware for sequence learning, M. Payvand et al., 2022

Open Neuromorphic

httsp://github.com/open-neuromorphic

Thanks everyone!

Leaving the floor to the **speakers**.

Hoping you will enjoy it.

