Theoretische Informatik III (T3INF2002)

Formale Sprachen und Automaten | Einführung Compilerbau

Vorlesung im Wintersemester 2022/23

Formale Sprachen und Automaten

- Kontextfreie Sprachen
- Chomsky-Normalform
- Backus-Naur-Form

Kontextfreie Sprachen

Definitionen und Eigenschaften

- —Kontextfreie Grammatiken sind eine Erweiterung der regulären Grammatiken
- —In beiden sind die Produktionen so aufgebaut, dass auf der linken Seite nur ein einzelnes Nonterminal steht
- —Im Gegensatz zu regulären Grammatiken, die die Form der rechten Seite einschränken, kann diese in kontextfreien Grammatiken aus einer beliebigen Sequenz von Terminal- und Nonterminalzeichen bestehen
- -> Eine Grammatik ist genau dann kontextfrei, wenn jede Produktion die Form $l \rightarrow r$ mit $l \in V$ und $r \in (\Sigma \cup V)^*$ besitzt.

Grammatik zur Erzeugung der Sprache {aⁿbⁿ | n ∈ N⁺}

- —Pumping-Lemma zeigt, dass die Sprache {aⁿbⁿ | n ∈ N⁺} nicht regulär ist und von keiner regulären Grammatik erzeugt werden kann
- Kontextfreie Sprachen sind hingegen ausdrucksstark genug, um die Sprache zu beschreiben

 $G := (\{S\}, \{a,b\}, P,S)$

Produktionsmenge P: $S \rightarrow aSb \mid ab$

Beispiel: Ableitung des Worts aaaabbbb

Grammatik zur Erzeugung der Sprache $\{a^ib^ja^k \mid i \in N^+, j, k \in N\}$

—Ebenfalls eine kontextfreie Sprache ist {aibjak | i ∈ N+, j , k ∈ N}, da die linken Seiten der Produktionen nur aus Variablen bestehen

$$G := (\{S,A,B\},\{a,b\},P,S)$$

Produktionsmenge P:

 $S \rightarrow AB \mid ABA$

 $A \rightarrow aA \mid a$

 $B \rightarrow Bb \mid \varepsilon$

Beispiel: Ableitung des Worts aabbaa

- —Es gibt Situationen in denen es erforderlich ist, dass die kontextfreie Grammatik in einer speziellen Form - der Chomsky-Normalform – vorliegt
- —**Beispiel:** für das Cocke-Younger-Kasami (CYK)-Parsing-Verfahren oder für den Beweis des Pumping-Lemmas für kontextfreie Sprachen
- —Zu jeder kontextfreien Grammatik gibt es eine äquivalente kontextfreie Grammatik in Chomsky-Normalform

—Eine Grammatik G=(V, Σ, P, S) liegt in Chomsky-Normalform vor, wenn alle Produktionen die Form

 $A \rightarrow \sigma$ oder $A \rightarrow BC$

besitzen mit $A \in V$, B, $C \in V \setminus \{S\}$ und $\sigma \in \Sigma$.

—Als Ausnahme ist die Produktion S -> ε erlaubt, wobei dann das Startsymbol S nicht rekursiv sein darf

Produktionen:

$$S \rightarrow \varepsilon$$
,
 $A \rightarrow \sigma$ oder $A \rightarrow BC$

- —Auf der rechten Seite jeder Produktion stehen entweder genau zwei Variablen oder genau ein Terminalzeichen
- —Obwohl die Form der Produktionen stark eingeschränkt ist, lassen sich mit Grammatiken in Chomsky-Normalform die kontextfreien Sprachen erzeugen

Um eine kontextfreie Grammatik G mit ε ∉ L (G) in die Chomsky- Normalform zu überführen, sind drei Schritte auszuführen:

Schritt 1: Basis-Normalisierung

Schritt 2: Terminalzeichen überbrücken

Schritt 3: Produktionen aufspalten

Schritt 1: Basis-Normalisierung

Definition:

Sei G = (V, T, P, S) eine kontextfreie Grammatik. Man bezeichnet die Grammatik als basisnormalisiert, wenn sie *keine nutzlosen* Variablen, *kein rekursives* Startsymbol, *keine Epsilon-Produktionen* außer S -> ɛ und *keine Kettenproduktionen* enthält.

Schritt 1: Basis-Normalisierung

- Nutzlose Variablen entfernen
- Rekursives Startsymbol entfernen
- Epsilon-Produktionen entfernen
- Kettenproduktionen entfernen

Normalisierung von kontextfreien Grammatiken

- Bei kontextfreien Grammatiken bestehen die linken Seiten aller Produktionen jeweils aus einer einzigen Variablen.
 - Für rechten Seiten der Produktionen bestehen keine Einschränkungen.
- Bestimmte Form der rechten Seite manchmal wünschenswert -> Durch Umformung der Grammatik ist es möglich, die rechten Seiten der Produktionen in bestimmte Form zu bringen, ohne dass sich die von der Grammatik erzeugte Sprache ändert.
- Beispielsweise lassen sich bei Bedarf alle Kettenproduktionen (Produktionen der Form X -> Y) beseitigen.
- Prozess wird als Normalisierung bezeichnet:
 - Zunächst führt man die Basis-Normalisierung durch
 - Nach weiteren Normalisierungsschritten steht am Ende die Chomsky-Normalform für kontextfreie Grammatiken

Äquivalenz von Grammatiken

Definition: Zwei Grammatiken G und G' werden als äquivalent bezeichnet, wenn sie dieselbe Sprache erzeugen, d.h. wenn gilt L(G) = L(G')

Beispiel: Grammatik G₀ mit den Produktionen

$$S \rightarrow aSb \mid \epsilon$$

und die Grammatik G₁ mit den Produktionen

S -> C

C -> D

E -> ab

 $D \rightarrow S \mid aSb \mid aF \mid \epsilon$

sind äquivalent, denn beide erzeugen die Sprache { anbn | n Element natürliche Zahlen0 }.

Nutzlose Variablen

Definition: Sei G = (V, T, P, S) eine kontextfreie Grammatik und sei A = V \cup T. Eine Variable X \in V heißt

- erreichbar, wenn S Ableitung uXv mit u, v ∈ A* gilt,
- produktiv, wenn X Ableitung w mit w ∈ T* gilt,
- nutzlos, wenn X nicht erreichbar oder nicht produktiv ist.

-> Zu jeder kontextfreien Grammatik G = (V, T, P, S) gibt es eine äquivalente kontextfreie Grammatik G' = (V', T, P', S) ohne nutzlose Variablen.

Nutzlose Variablen

Beweis: Sei w ein Wort mit $w \in L(G)$, dann gibt es eine Ableitungsfolge S -> w. Jede Variable, die in den Ableitungsschritten auftritt, ist erreichbar und produktiv. In keiner Ableitungsfolge kann eine nutzlose Variable vorkommen.

G' geht aus G hervor, indem *aus V alle nutzlosen Variablen entfernt* werden und *aus P alle Produktionen, in denen nutzlose Variablen vorkommen*.

Beispiel: In Grammatik G₁ ist die Variable E nicht erreichbar und die Variable F nicht produktiv, beide Variablen sind nutzlos. Diese Variablen und die zugehörigen Produktionen werden entfernt. Es verbleibt die Grammatik G₂:

S -> C

C -> D

 $D \rightarrow S \mid aSb \mid \epsilon$

Rekursives Startsymbol

Definition: Sei G = (V, T, P, S) eine Grammatik und sei A = V \cup T. Eine Variable X \in V heißt rekursiv, wenn

$$X \rightarrow uXv$$
 mit $u, v \in A^*$ gilt.

Beispiel: In Grammatik G₃ des Beispiels ist das Startsymbol S rekursiv.

-> Zu jeder Grammatik G = (V, T, P, S) gibt es eine äquivalente Grammatik G' = (V', T, P', S'), deren Startsymbol S' nicht rekursiv ist.

Rekursives Startsymbol

Beweis: Grammatik G' geht aus der Grammatik G hervor, indem ein neues Startsymbol S' zur Menge der Variablen V hinzugefügt wird und die neue Produktion S' -> S zur Menge der Produktionen P hinzugefügt wird.

Beispiel: Indem die Vorgehensweise auf die Grammatik G_2 angewendet wird, ergibt sich die Grammatik G_3 , deren Startsymbol S' nicht rekursiv ist:

S' -> S

S -> C

C -> D

 $D \rightarrow S \mid aSb \mid \epsilon$

Epsilon-Produktionen

Definition: Sei G = (V, T, P, S) eine kontextfreie Grammatik. Eine Produktion der Form X -> ϵ mit X \in V wird als Epsilon-Produktion bezeichnet.

-> Zu jeder kontextfreien Grammatik G = (V, T, P, S) gibt es eine äquivalente kontextfreie Grammatik G' = (V, T, P', S')

- ohne Epsilon-Produktionen, falls ε ∉ L(G)
- mit S' -> ϵ als einziger Epsilon-Produktion, falls $\epsilon \in L(G)$

Epsilon-Produktionen

Beweis: Die kontextfreie Grammatik G wird wie folgt in die Grammatik G' umgeformt:

- 1. führe die Produktion S' -> S ein, damit das Startsymbol nicht rekursiv ist
- 2. bestimme alle Variablen X, aus denen sich das leere Wort ε ableiten lässt:

$$V_{\varepsilon} = \{ X \in V \mid X \rightarrow \varepsilon \}$$

- 3. entferne alle Epsilon-Produktionen aus der Grammatik
- 4. wiederhole solange Y -> uXv mit X \in V $_{\epsilon}$ und $|uv| \ge 1$ eine Produktion ist, aber Y -> uv noch keine Produktion ist:

führe die Produktion Y -> uv zusätzlich ein

5. wenn S' $\in V_{\epsilon}$ dann

führe die Produktion S' -> ϵ ein

Epsilon-Produktionen

Beispiel: In Grammatik G₃ wurde *Schritt 1* des Verfahrens bereits durchgeführt.

In *Schritt 2* bestimmt man $V_{\varepsilon} = \{ S', S, C, D \}$.

In Schritt 3 entfernt man die Produktion D -> ϵ .

In Schritt 4 findet man D -> aSb als einzige Produktion mit der dort angegebenen Eigenschaft und führt die Produktion D -> ab neu ein.

In Schritt 5 führt man die Produktion S' -> ϵ ein, da S' \in V $_{\epsilon}$.

Ergebnis ist die Grammatik G₄:

S' -> S | ε

S -> C

C -> D

D -> S | aSb | ab

Kettenproduktionen

Definition: Sei G = (V, T, P, S) eine kontextfreie Grammatik. Eine Produktion der Form $X \rightarrow Y$ mit $X, Y \in V$ wird als Kettenproduktion bezeichnet.

-> Zu jeder kontextfreien Grammatik G = (V, T, P, S) gibt es eine äquivalente kontextfreie Grammatik G' = (V', T, P', S) ohne Kettenproduktionen.

Kettenproduktionen entfernen:

Jede Kettenproduktion X -> Y wird so umgeformt, dass für Y die aus Y direkt ableitbaren rechten Seiten eingesetzt werden, so lange, bis keine Kettenproduktionen mehr vorhanden sind.

Kettenproduktionen

Beispiel: In Grammatik G_4 ist $S \rightarrow C$, $C \rightarrow D$, $D \rightarrow S$ ein Zyklus von Kettenproduktionen. Man entfernt die Produktionen des Zyklus und ersetzen alle weiteren Vorkommen von S und D durch C. Das Ergebnis ist die Grammatik G_5 :

Kettenproduktion S' -> C entfernen, indem man für die rechte Seite C die aus C direkt ableitbaren Wörter einsetzt. Es ergibt sich die Grammatik G_6 :

$$S' \rightarrow aCb \mid ab \mid \epsilon$$

Schritt 1: Basis-Normalisierung

Sprache: $\{a^nb^n \mid n \in \mathbb{N}_0\}$

Das Ergebnis der Basis-Normalisierung für die Grammatik S \to C, C \to aSb | ϵ ist die Grammatik

 $S' \rightarrow aSb \mid ab \mid \epsilon$ -> S' ist neues Startsymbol

 $S \rightarrow aSb \mid ab$

Schritt 2: Terminalzeichen überbrücken

- Im zweiten Schritt wird für jedes Terminalzeichen eine neue Variable eingeführt
- Alle Vorkommen von Terminalzeichen in den Produktionen werden durch die entsprechenden neuen Variablen ersetzt
- Abschließend werden neue Produktionen, in denen die neuen Variablen wieder in Terminalzeichen überführt werden, hinzugefügt

Schritt 2: Terminalzeichen überbrücken

- Beispiel: neue Variablen A und B werden eingeführt und lassen diese an die Stelle der Terminalzeichen a und b treten
- Zudem werden entsprechende neue Produktionen hinzugefügt, um wieder die Terminalzeichen a und b zu erzeugen:

26

$$S' \rightarrow ASB \mid AB \mid \epsilon$$

$$S \rightarrow ASB \mid AB$$

$$A \rightarrow a$$

$$B \rightarrow b$$

Schritt 3: Produktionen aufspalten

— Schließlich werden die Produktionen S´ \rightarrow ASB und S \rightarrow ASB, die auf der rechten Seite mehr als zwei Variablen enthalten aufgespalten, indem neue Variablen, hier D und E eingeführt werden:

Übung: Schrittweise Erzeugung der Chomsky-Normalform

 $G := (\{S,A,B\},\{a,b\},P,S)$

 $S \rightarrow AB \mid ABA$

 $A \rightarrow aA \mid a$

 $B \rightarrow Bb \mid \varepsilon$

- Spezielle Struktur einer Grammatik in Chomsky-Normalform wirkt sich auf das Erscheinungsbild der entstehenden Syntaxbäume aus
- Da jedes Nonterminal entweder durch ein Terminalzeichen oder durch zwei weitere Nonterminale ersetzt wird, entsteht im Inneren die Struktur eines Binärbaums
- Ist ein Binärbaum B vollständig, d. h., besitzen alle Blätter die gleiche Tiefe h, so besitzt der Baum exakt 2^h Blätter
- Ist der Binärbaum nicht vollständig, so gilt die Beziehung |B| < 2h.

Übung: Originalgrammatik Syntaxbaum

$$G := (\{S,A,B\},\{a,b\},P,S)$$

 $S \rightarrow AB \mid ABA$

 $A \rightarrow aA \mid a$

 $B \rightarrow Bb \mid \varepsilon$

Ableitung des Worts aabbaa

Übung: Chomsky-Normalform Syntaxbaum

- Kontextfreie Sprachen sind ausdrucksstark genug, um die Syntax der meisten Programmiersprachen zu beschreiben
- —Bereits Anfang der Sechzigerjahre verwendete der amerikanische Computerpionier John Backus eine kontextfreie Grammatik, um die Syntax der Programmiersprache Algol60 formal zu spezifizieren
- —Die von Backus eingeführte Notation wird als Backus-Naur-Form bezeichnet und hat sich zum De-facto-Standard für die Beschreibung von Programmiersprachen entwickelt

- Auf den ersten Blick unterscheidet sich die Backus-Naur-Form von der Produktionensyntax vor allem in der Verwendung des Ableitungssymbols ::= anstelle von →
- Backus führte Spezialkonstrukte ein, mit denen sich die Produktionen kontextfreier Grammatiken übersichtlich beschreiben lassen
- Hierzu gehört unter anderem die *Strichnotation*, um Produktionen mit gleicher linker Seite zu einer einzigen Regel zusammenzufassen

Auszug aus der Algol60-Syntax

- In der erweiterten Backus-Naur-Form können Wortfragmente zusätzlich in eckige und geschweifte Klammerpaare eingeschlossen werden
- So besagt der Ausdruck

$$A ::= r_1[r_2]r_3$$

dass zwischen r₁ und r₃ optional das Wort r₂ eingefügt werden darf

— Der Ausdruck

$$A ::= r_1\{r_2\}r_3$$

bedeutet, dass sich das optionale Wortfragment r₂ beliebig oft wiederholen kann

- Keines der Konstrukte führt zu einer Erweiterung der Ausdrucksstärke; beide lassen sich, auf eine gewöhnliche Produktionenmenge zurückführen
- Bei der Backus-Naur-Form handelt es sich um eine alternative Beschreibungsform für kontextfreie Grammatiken

Reduktion der Backus- Naur-Form auf normale Produktionen