Week Three: Discrete Distributions

• • •

CS 217

Random Variables

- **Random Variable**: A variable whose possible values are outcomes of a 'random' phenomenon
- Throwing a dice or flipping a coin is inherently random but the probable outcomes of each result are not random
- A probability distribution is a mathematical distribution that provides the probabilities of occurrence of different outcomes of an experiment

- In probability there is a clearly defined experiment.
 - We will toss exactly four die.
- There is also a clearly defined **sample space**, or range of possible outcomes.
 - \circ If we toss four die, they can add add up to anywhere from 4 (1 * 4) to 24 (6 * 4)
- There may be an **event** that we're looking for.
 - The event that we are looking for here is that our four die add up to exactly 7.
- There is a **probability function**, or a probability of each outcome in our **sample space** occurring.
 - Each of the possible events in our sample space has a predefined probability of occuring.
- There is a probability distribution, or a mathematical function that provides the probabilities of occurrence of different possible outcomes in an experiment

• Let's flip a coin.

- Let's flip a coin.
- What is our experiment?

- Let's flip a coin.
- What is our experiment?
 - We flip a single coin.

- Let's flip a coin.
- What is our experiment?
 - We flip a single coin.
- What is our sample space?

- Let's flip a coin.
- What is our experiment?
 - We flip a single coin.
- What is our sample space?
 - Heads and tails.

- Let's flip a coin.
- What is our experiment?
 - We flip a single coin.
- What is our sample space?
 - Heads and tails.
- What is the event we're looking for?

- Let's flip a coin.
- What is our experiment?
 - We flip a single coin.
- What is our sample space?
 - Heads and tails.
- What is the event we're looking for?
 - We land on heads.

- Let's flip a coin.
- What is our experiment?
 - We flip a single coin.
- What is our sample space?
 - Heads and tails.
- What is the event we're looking for?
 - We land on heads.
- What is the probability function of our event occurring?

- Let's flip a coin.
- What is our experiment?
 - We flip a single coin.
- What is our sample space?
 - Heads and tails.
- What is the event we're looking for?
 - We land on heads.
- What is the probability function of our event occurring?
 - 0.5

- Let's flip a coin.
- What is our experiment?
 - We flip a single coin.
- What is our sample space?
 - Heads and tails.
- What is the event we're looking for?
 - We land on heads.
- What is the probability function of our event occurring?
 - 0.5
- What is the probability function of our event *not* occurring?

- Let's flip a coin.
- What is our experiment?
 - We flip a single coin.
- What is our sample space?
 - Heads and tails.
- What is the event we're looking for?
 - We land on heads.
- What is the probability function of our event occurring?
 - 0.5
- What is the probability function of our event *not* occurring?

Bernoulli Distribution

- Flipping a single coin is an example of a **Bernoulli distribution**, where there is a probability of an event occurring in a single trial
- It has one input *p*, or the probability of the event occurring.
- The *expected value* for a given Bernoulli experiment is p.

• Let's flip three coins.

- Let's flip three coins.
- What is our experiment?

- Let's flip three coins.
- What is our experiment?
 - We flip three coins.

- Let's flip three coins.
- What is our experiment?
 - We flip three coins.
- What is our sample space?

- Let's flip three coins.
- What is our experiment?
 - We flip three coins.
- What is our sample space?
 - The eight possibilities to our right.

ННН	ННТ
HTH	THH
THT	HTT
TTH	TTT

- Let's flip three coins.
- What is our experiment?
 - We flip three coins.
- What is our sample space?
 - The eight possibilities to our right.
- What is the event we're looking for?

ННН	ННТ
HTH	THH
THT	HTT
TTH	TTT

- Let's flip three coins.
- What is our experiment?
 - We flip three coins.
- What is our sample space?
 - The eight possibilities to our right.
- What is the event we're looking for?
 - We land on heads.

ННН	ННТ
HTH	THH
THT	HTT
TTH	TTT

- Let's flip three coins.
- What is our experiment?
 - We flip three coins.
- What is our sample space?
 - The eight possibilities to our right.
- What is the event we're looking for?
 - We land on heads.
- What is the probability function of our event occurring?

ННН	ННТ
HTH	THH
THT	HTT
TTH	TTT

• 0 heads - 1/8

ННН	ННТ
HTH	THH
THT	HTT
TTH	TTT

- 0 heads 1/8
- 1 head 3/8

ННН	ННТ
HTH	THH
THT	HTT
TTH	TTT

- 0 heads 1/8
- 1 head 3/8
- $\frac{1}{2}$ heads $\frac{1}{2}$

ННН	ННТ
HTH	THH
THT	HTT
TTH	TTT

- 0 heads 1/8
- 1 head 3/8
- 2 heads 3/8
- 3 heads 1/8

ННН	HHT
HTH	THH
THT	HTT
TTH	TTT

- 0 heads $-\frac{1}{8}$
- 1 head 3/8
- 2 heads 3/8
- 3 heads 1/8
- The probability that a given result occurs in a **discrete distribution** is called the **probability mass function**.

ННН	ННТ
HTH	THH
THT	HTT
TTH	TTT

- 0 heads 1/8
- 1 head 3/8
- 2 heads 3/8
- 3 heads 1/8
- The probability that a given result occurs in a discrete distribution is called the probability mass function.

- The probability that less than or equal
 to a given event occurs is called the
 cumulative distribution function.
- The cumulative distribution function is simply the aggregate of all of the probability mass functions up to and including a given value.
- It can be found by adding up all of the probability mass functions up to and including a given value.

Heads	PMF	CDF
0	1/8	1/8
1	3/8	4/8
2	3/8	7/8
3	1/8	1

Heads	PMF	CDF
0	1/2	1/2
1	1/2	2/2

of Heads

Heads	PMF	CDF
0	1/2	1/2
1	1/2	2/2

- The cumulative distribution function is simply the aggregate of all of the probability mass functions up to and including a given value.
- It can be found by adding up all of the probability mass functions up to and including a given value.
- Of course we can use 1 minus this
 value to find the probability of getting
 a result *greater* than a given value.
 This is called the **inverse CDF**.

Heads	PMF	CDF	Inverse CDF
0	1/8	1/8	7/8
1	3/8	4/8	3/8
2	3/8	7/8	1/8
3	1/8	1	0

Binomial Distribution

- Flipping multiple coins is an example of a Binomial distribution, where multiple independent Bernoulli trials occur.
- It has two inputs p, or the probability of the event occurring in a single trial, and n, the number of trials held.
- The *expected value* for a given binomial distribution is n * p.
 - What is the expected value for three coin flips?

Binomial Distribution

- Note that the trials must be independent from each other or the Binomial distribution doesn't hold!
- If getting a heads on this coin flip somehow influences whether I get heads on the next coin flip, this is not a binomial distribution.

Bernoulli Distribution

- Now let's look at Aaron Judge in a single at-bat.
- Say that success is constituted by a hit, and a 'failure' is constituted by not a hit (we don't care about any other outcomes).
- Aaron Judge has a batting average of 0.275

Bernoulli Distribution

- Aaron Judge is up to bat.
- What is our experiment?
 - A single at-bat from Aaron Judge.
- What is our sample space?
 - A hit and not a hit.
- What is the event we're looking for?
 - o A hit.
- What is the probability function of our event occurring?
 - 0.275
- What is the probability function of our event *not* occurring?
 - 0.725

Hits	PMF	CDF
0	0.725	0.725
1	0.275	1

PMFs for 1 At-Bat

Hits	PMF	CDF
0	0.725	0.725
1	0.275	1

Example

- What if Aaron Judge gets up to bat five times in a game?
- This is an example of a binomial distribution with p=0.275 and N=5
- The *expected value* is 5 * 0.275, or 1.375 hits.
- What are the odds that he gets 0, 1, 2,3, 4, and 5 hits?

Hits	PMF	CDF
0	0.2	0.2
1	0.38	0.58
2	0.29	0.87
3	0.11	0.98
4	0.02	1
5	0.00	1

PMFs for 5 At-Bats

Hits	PMF	CDF
0	0.2	0.2
1	0.38	0.58
2	0.29	0.87
3	0.11	0.98
4	0.02	1
5	0.00	1

Expected Value

- We saw earlier that the *expected value* is 5 * 0.275, or 1.375 hits.
- This is the formula for the expected value for the binomial distribution.
- We can also find this value for any
 distribution by adding the sums of all
 values times their respective PMFs
- The EV values to the right are the number of hits times their respective PMFs.
- Add up all of these values and we get
 1.37 (slightly lower due to rounding error)

Hits	PMF EV	
0	0.2	0
1	0.38	0.38
2	0.29	0.58
3	0.11	0.33
4	0.02	0.08
5	0.00	0.00

Example

- How many at-bats will it take for Aaron Judge to get his first hit?
- This is an example of the *geometric* distribution.
- The geometric distribution only has one input p, which again here is 0.275.
- The *expected value* is 1/p, or 3.6

At-Bats	PMF	CDF
1	0.28	0.28
2	0.20	0.48
3	0.14	0.62
4	0.10	0.72
5	0.08	0.80

PMFs for # of At-Bats Until First Hit

At-Bats	PMF	CDF
1	0.28	0.28
2	0.20	0.48
3	0.14	0.62
4	0.10	0.72
5	0.08	0.80

- What are the odds someone has the same birthday as you?
- How many people do you have to meet, on average, to find someone with the same birthday as you?
- What is the probability of the 100th person you meet being the first to share the same birthday as you?
- What is the probability that one of the first 100 people you meet with share the same birthday as you?

- What are the odds someone has the same birthday as you?
 - o 1/365
- How many people do you have to meet, on average, to find someone with the same birthday as you?
- What is the probability of the 100th person you meet being the first to share the same birthday as you?
- What is the probability that one of the first 100 people you meet with share the same birthday as you?

- What are the odds someone has the same birthday as you?
 - o 1/365
- How many people do you have to meet, on average, to find someone with the same birthday as you?
 - o 365
- What is the probability of the 100th person you meet being the first to share the same birthday as you?
- What is the probability that one of the first 100 people you meet with share the same birthday as you?

- What are the odds someone has the same birthday as you?
 - o 1/365
- How many people do you have to meet, on average, to find someone with the same birthday as you?
 - 0 365
- What is the probability of the 100th person you meet being the first to share the same birthday as you?
 - That the first 99 people *don't* share the same birthday as you and the 100th does, or $(364/365) ^ 99 * (1/365) = 0.0002$
- What is the probability that one of the first 100 people you meet with share the same birthday as you?

- What are the odds someone has the same birthday as you?
 - o 1/365
- How many people do you have to meet, on average, to find someone with the same birthday as you?
 - o 365
- What is the probability of the 100th person you meet being the first to share the same birthday as you?
 - That the first 99 people *don't* share the same birthday as you and the 100th does, or $(364/365) ^ 99 * (1/365) = 0.0002$
- What is the probability that one of the first 100 people you meet with share the same birthday as you?
 - \circ This is the CDF value of 100, or 1 (364/365) $^{\land}$ 100 = 0.24

- Of course a discrete event can occur that doesn't follow a common distribution.
- In that case we can use the traditional measures for mean, PMF, and CDF, and expected value.

• Say we roll two dice. Below is the sample space of all possible outcomes.

	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

• We can obtain our metrics via **counting**.

Outcome	PMF	CDF
2	1/36	1/36
3	2/36	3/36
4	3/36	6/36
5	4/36	10/36
6	5/36	15/36
7	6/36	21/36

Outcome	PMF	CDF
8	5/36	26/36
9	4/36	30/36
10	3/36	33/36
11	2/36	35/36
12	1/36	16/36

• Like we did earlier, we can find the **expected value** by adding the value of each outcome multiplied by its respective PDF.

Outcome	PMF	CDF	EV
2	1/36	1/36	2/36
3	2/36	3/36	6/36
4	3/36	6/36	12/36
5	4/36	10/36	20/36
6	5/36	15/36	30/36
7	6/36	21/36	42/36

Outcome	PMF	CDF	EV
8	5/36	26/36	40/36
9	4/36	30/36	36/36
10	3/36	33/36	30/36
11	2/36	35/36	22/36
12	1/36	16/36	12/36

• The expected value here is 7 (try it yourself!)

Outcome	PMF	CDF	EV
2	1/36	1/36	2/36
3	2/36	3/36	6/36
4	3/36	6/36	12/36
5	4/36	10/36	20/36
6	5/36	15/36	30/36
7	6/36	21/36	42/36

Outcome	PMF	CDF	EV
8	5/36	26/36	40/36
9	4/36	30/36	36/36
10	3/36	33/36	30/36
11	2/36	35/36	22/36
12	1/36	16/36	12/36

Expected Value

• Say we win \$500 if we get seven from rolling a pair of dice, but lose \$100 otherwise. Should we take this bet?

Expected Value

- Say we win \$600 if we get seven from rolling a pair of dice, but lose \$100 otherwise. Should we take this bet?
- Yes!

Event	Odds	Payout	Total Value
Hit 7	1/6	600	\$100
Anything Else	5/6	-100	\$-83.33
Net Value			\$16.67