Jan Laštovička

https://www.inf.upol.cz/lide/jan-lastovicka jan.lastovicka@upol.cz 17. listopadu 12, 771 46 Olomouc

Databáze o poznámky k přednášce

5. Relační algebra

verze z 15. října 2023

1 Operace s relacemi

Nejprve si zopakujeme operace s relacemi a ukážeme si vztahy mezi nimi.

1.1 Množinové operace

Vezměme dvě relace \mathcal{D}_1 a \mathcal{D}_2 nad relačním schématem R.

Sjednocení \mathcal{D}_1 a \mathcal{D}_2 je množina

$$\mathcal{D}_1 \cup \mathcal{D}_2 = \{r \mid r \in \mathcal{D}_1 \text{ nebo } r \in \mathcal{D}_2\}.$$

Věta 1. Sjednocení $\mathcal{D}_1 \cup \mathcal{D}_2$ je relace nad R.

 $D\mathring{u}kaz$. Konečnost $\mathcal{D}_1 \cup \mathcal{D}_2$ plyne z konečnosti \mathcal{D}_1 a \mathcal{D}_2 . Dále musíme ukázat, že každý prvek $r \in \mathcal{D}_1 \cup \mathcal{D}_2$ je n-tice nad R. Vezměme libovolný $r \in \mathcal{D}_1 \cup \mathcal{D}_2$. Víme, že $r \in \mathcal{D}_1$ nebo $r \in \mathcal{D}_2$. Předpokládejme, že $r \in \mathcal{D}_1$. Protože \mathcal{D}_1 je relace nad R musí být $r \in \mathcal{D}_1$ n-ticí nad R. Podobně pro $r \in \mathcal{D}_2$.

Musí být sjednocení dvou relací vždy relace?

Věta 2. Pokud je \mathcal{D} relace nad R, pak libovolná její podmnožina je opět relace nad R.

 $D\mathring{u}kaz$. Necht $\mathcal{D}_2 \subseteq \mathcal{D}$. Podmnožina konečné množiny musí být konečná. Tedy \mathcal{D}_2 je konečná množina. Zvolme libovolné $r \in \mathcal{D}_2$. Protože $\mathcal{D}_2 \subseteq \mathcal{D}$, platí $r \in \mathcal{D}$. Tedy r je n-tice nad R. Ukázali jsme, že každý prvek \mathcal{D}_2 je n-tice nad R.

Průnik \mathcal{D}_1 a \mathcal{D}_2 je množina

$$\mathcal{D}_1 \cap \mathcal{D}_2 = \{t \mid t \in \mathcal{D}_1 \text{ a } t \in \mathcal{D}_2\}.$$

Věta 3. Množina $\mathcal{D}_1 \cap \mathcal{D}_2$ je relace nad R.

 $D\mathring{u}kaz$. Tvrzení plyne z Věty 2 a $\mathcal{D}_1 \cap \mathcal{D}_2 \subseteq \mathcal{D}_1$ (a také z $\mathcal{D}_1 \cap \mathcal{D}_2 \subseteq \mathcal{D}_2$).

Co je výsledkem průniku dvou relací nad různými schématy? Rozdíl \mathcal{D}_1 a \mathcal{D}_2 je množina

$$\mathcal{D}_1 - \mathcal{D}_2 = \{r \mid r \in \mathcal{D}_1 \text{ a } r \notin \mathcal{D}_2\}.$$

Věta 4. Rozdíl $\mathcal{D}_1 - \mathcal{D}_2$ je relace nad R.

$$D\mathring{u}kaz$$
. Opět plyne z Věty 2 a $\mathcal{D}_1 - \mathcal{D}_2 \subseteq \mathcal{D}_1$.

Co vznikne rozdílem dvou relací nad různými schématy?

Je pro relaci \mathcal{D} nad R množina $\text{Tupl}(R) - \mathcal{D}$ vždy relace nad R?

Věta 5. Pro množiny A, B platí $A - (A - B) = A \cap B$.

 $D\mathring{u}kaz$. Zvolme libovolné x. Máme $x \in A - (A - B)$, právě když $x \in A$ a $x \notin A - B$, právě když $x \in A$ a $(x \notin A \text{ nebo } x \in B)$, právě když $(x \in A \text{ a } x \notin A) \text{ nebo } (x \in A \text{ a } x \in B)$, právě když $x \in A$ a $x \in B$, právě když $x \in A \cap B$.

Vidíme, že průnik relací můžeme vyjádřit pomocí rozdílu.

1.2 Restrikce relace

Je dáno schéma R. Podmínka θ nad R je definována následovně.

- jsou-li $y \in R$ a $v \in D_y$, pak (y = v), (v = y) jsou podmínky nad R,
- jsou-li $y_1, y_2 \in R$ a $D_{y_1} = D_{y_2}$, pak $(y_1 = y_2)$ je podmínka nad R,
- jsou-li θ_1 a θ_2 podmínky nad R, pak $(\theta_1 \wedge \theta_2), (\theta_1 \vee \theta_2), \neg \theta_1$ jsou také podmínky nad R.

Nejvíce vnější závorky kolem podmínek budeme vynechávat. n-tice t nad R splňuje podmínku θ nad R, jestliže:

- θ je tvaru (y = v) nebo (v = y) a přitom platí t(y) = v,
- θ je tvaru $(y_1 = y_2)$ a $t(y_1) = t(y_2)$,
- θ je tvaru $(\theta_1 \wedge \theta_2)$ a přitom t splňuje obě podmínky θ_1 a θ_2 ,
- θ je tvaru $(\theta_1 \vee \theta_2)$ a přitom t splňuje θ_1 nebo θ_2 ,
- θ je tvaru $\neg \theta_1$ a přitom t nesplňuje podmínku θ_1 .

Restrikce realce \mathcal{D} nad schématem R podle podmínky θ nad R je množina

$$\sigma_{\theta}(\mathcal{D}) = \{ t \in \mathcal{D} \mid t \text{ splňuje podmínku } \theta \}.$$

Jistě $\sigma_{\theta}(\mathcal{D}) \subseteq \mathcal{D}$ a proto podle Věty 2 je $\sigma_{\theta}(\mathcal{D})$ relací na R.

Věta 6. Pro relaci \mathcal{D} nad schématem R a podmínky θ_1 a θ_2 nad R platí:

- 1. $\sigma_{\theta_1 \wedge \theta_2}(\mathcal{D}) = \sigma_{\theta_1}(\mathcal{D}) \cap \sigma_{\theta_2}(\mathcal{D}),$
- 2. $\sigma_{\theta_1 \vee \theta_2}(\mathcal{D}) = \sigma_{\theta_1}(\mathcal{D}) \cup \sigma_{\theta_2}(\mathcal{D}),$
- 3. $\sigma_{\neg \theta_1}(\mathcal{D}) = \mathcal{D} \sigma_{\theta_1}(\mathcal{D})$.

 $D\mathring{u}kaz$. Zvolme libovolnou n-tici t nad R.

- 1. $r \in \sigma_{\theta_1 \wedge \theta_2}(\mathcal{D})$, právě když $r \in \mathcal{D}$ a r splňuje $\theta_1 \wedge \theta_2$, právě když $r \in \mathcal{D}$ a r splňuje θ_1 a r splňuje θ_2 , právě když $r \in \sigma_{\theta_1}(\mathcal{D})$ a $r \in \sigma_{\theta_2}(\mathcal{D})$, právě když $r \in \sigma_{\theta_1}(\mathcal{D}) \cap \sigma_{\theta_2}(\mathcal{D})$,
- 2. podobně $r \in \sigma_{\theta_1 \vee \theta_2}(\mathcal{D})$, právě když $r \in \mathcal{D}$ a $(r \text{ splňuje } \theta_1 \text{ nebo } r \text{ splňuje } \theta_2)$, právě když $r \in \sigma_{\theta_1}(\mathcal{D}) \cup \sigma_{\theta_2}(\mathcal{D})$,
- 3. nakonec $r \in \sigma_{\neg \theta_1}(\mathcal{D})$, právě když $r \in \mathcal{D}$ a r nesplňuje θ_1 , právě když $r \in \mathcal{D} \sigma_{\theta_1}(\mathcal{D})$.

1.3 Projekce relace

Pro n-tici r nad schématem R a $S \subseteq R$ se n-tice $r(S) = \{\langle y, r(y) \rangle \mid y \in S\}$ nad schématem S nazývá projekce n-tice r na S.

Vezměme relaci \mathcal{D} na schématu R a zvolme $S \subseteq R$, pak se množina

$$\pi_S(\mathcal{D}) = \{ r(S) \mid r \in \mathcal{D} \}$$

nazývá se projekce relace \mathcal{D} na S.

Věta 7. Projece $\pi_S(\mathcal{D})$ relace \mathcal{D} na S je relací na S.

 $D\mathring{u}kaz$. $\pi_S(\mathcal{D})$ je tvořena projekcemi n-tic $r \in \mathcal{D}$ na S, které jsou n-ticemi nad S. Konečnost $\pi_S(\mathcal{D})$ plyne z konečnosti \mathcal{D} .

1.4 Spojení relací

Pro relaci \mathcal{D}_1 nad schématem R a relaci \mathcal{D}_2 nad schématem S se množina

$$\mathcal{D}_1 \bowtie \mathcal{D}_2 = \{ t \in \text{Tupl}(R \cup S) \mid t(R) \in \mathcal{D}_1 \text{ a } t(S) \in \mathcal{D}_2 \}$$

nazývá (přirozené) spojení relací \mathcal{D}_1 a \mathcal{D}_2 .

Věta 8. Spojení $\mathcal{D}_1 \bowtie \mathcal{D}_2$ relací \mathcal{D}_1 a \mathcal{D}_2 je relace nad $R \cup S$.

 $D\mathring{u}kaz$. Z konstrukce vyplývá, že $\mathcal{D}_1 \bowtie \mathcal{D}_2$ tvoří n-tice nad $R \cup S$. Konečnost $\mathcal{D}_1 \bowtie \mathcal{D}_2$ je důsledkem konečností \mathcal{D}_1 i \mathcal{D}_2 .

Vezměme dvě n-tice $r \in \text{Tupl}(R)$ a $s \in \text{Tupl}(S)$. Pokud $r(R \cap S) = s(R \cap S)$, pak n-tice r a s nazýváme spojitelné a $r \cup s$ je n-tice nad $R \cup S$ nazývaná spojení n-tic r a s, které značíme rs.

Věta 9. Platí $\mathcal{D}_1 \bowtie \mathcal{D}_2 = \{rs \mid r \in \mathcal{D}_1 \ a \ s \in \mathcal{D}_2 \ a \ r \ a \ s \ jsou \ spojitelné\}$

 $D\mathring{u}kaz$. Vezměme libovolnou n-tici t nad $R \cup S$. Dostáváme, že $t \in \mathcal{D}_1 \bowtie \mathcal{D}_2 = \{t \in \operatorname{Tupl}(R \cup S) \mid t(R) \in \mathcal{D}_1 \text{ a } t(S) \in \mathcal{D}_2\}$, přávě když $t \in \operatorname{Tupl}(R \cup S) \text{ a } t(R) \in \mathcal{D}_1 \text{ a } t(S) \in \mathcal{D}_2$, právě když $t \in \operatorname{Tupl}(R \cup S) \text{ a } t(R) \in \mathcal{D}_1 \text{ a } t(S) \in \mathcal{D}_2 \text{ a existují } r, s \text{ tak, že } r = t(R)$ a s = t(R) a rs = t a $r(R \cap S) = s(R \cap S)$, právě když existují $r \in \mathcal{D}_1$ a $s \in \mathcal{D}_2$ tak, že t = rs a r a s jsou spojitelné, právě když $t \in \{rs \mid r \in \mathcal{D}_1 \text{ a } s \in \mathcal{D}_2 \text{ a } r \text{ a } s \text{ jsou spojitelné}\}$

Spojení relací, kde R a S jsou disjunktní, se nazývá (kartézským) součinem a značíme jej též $\mathcal{D}_1 \times \mathcal{D}_2$.

Věta 10. Pokud R = S, pak $\mathcal{D}_1 \bowtie \mathcal{D}_2 = \mathcal{D}_1 \cap \mathcal{D}_2$.

 $D\mathring{u}kaz$. Z R = S plyne, že \mathcal{D}_2 je relace nad R a i $\mathcal{D}_1 \bowtie \mathcal{D}_2$ je relace nad R.

Pro libovolnou n-tici r nad R máme $r \in \mathcal{D}_1 \bowtie \mathcal{D}_2$, právě když $r(R) \in \mathcal{D}_1$ a $t(R) \in \mathcal{D}_2$, právě když, $r \in \mathcal{D}_1$ a $r \in \mathcal{D}_2$, právě když $r \in \mathcal{D}_1 \cap \mathcal{D}_2$.

1.5 Přejmenování atributů

Uvažujme bijektivní zobrazení $h: R \to S$ mezi schématy R, S takové, že $D_y = D_{h(y)}$ pro každé $y \in R$. Zobrazení h nazýváme přejmenování atributů.

Pro n-tici r nad R se n-tice

$$\rho_h(r) = \{ \langle h(y), v \rangle \mid \langle y, v \rangle \in r \}$$

nad S nazývá *přejmenování* n-tice t podle h.

Pro relaci \mathcal{D} nad R se množina

$$\rho_h(\mathcal{D}) = \{ \rho_h(t) \mid t \in \mathcal{D} \}$$

nazývá přejmenování \mathcal{D} podle h.

Věta 11. Přejmenování $\rho_h(\mathcal{D})$ relace \mathcal{D} podle h je relace nad S.

 $D\mathring{u}kaz$. Kardinalita množiny $\rho_h(\mathcal{D})$ je stejná jako \mathcal{D} . Pro každé $r \in \mathcal{D}$ je $\rho_h(r)$ n-tice nad S.

Předpokládejme, že $R = \{y_1, \ldots, y_n, s_1, \ldots, s_m\}$, kde $h(s_i) = s_i$ pro každé $1 \le i \le m$. Pak $\rho_h(\mathcal{D})$ můžeme značit $\rho_{h(y_1) \leftarrow y_1, \ldots, h(y_n) \leftarrow y_n}$.

2 Relační algebra

Relační algebra je tvořena operacemi:

- 1. sjednocení (∪)
- 2. průnik (\cap)
- 3. $\operatorname{rozd}(1)$
- 4. restrikce (σ)
- 5. projekce (π)
- 6. spojení (⋈)
- 7. přejmenování atributů (ρ)

Relační model dat představil E. F. Codd v roce 1970. Navrhl relační algebru jako základ dotazovacích jazyků. V originální relační algebře chybí přejmenování atributů (atributy v relaci měly pevně dané pořadí) a navíc zde byl kartézský součin a relační dělení. Víme, že kartézský součin je speciální případ spojení. Relačnímu dělení je věnována část níže.

SQL vychází z relačního modelu, ale některé jeho principy porušuje. Například neumožňuje pracovat s relacemi s nad prázdným schématem. Jak víme tabulky přinášení závažnější prohřešky proti relačnímu modelu (můžou obsahovat null hodnoty, duplicitní řádky a názvy sloupců nemusí být jedinečné).

Christopher J. Date a Hugh Darwen navrhli v třetím manifestu (The Third Manifesto) publikovaném v roce 1995 požadavky na jazyk respektující relační model. Jejich specifikace jazyka se nazývá D. Manifest konkrétněji popisuje jazyk Tutorial D, který specifikacím D vyhovuje. Známá implementace jazyka Tutorial D se jmenuje Rel.

Relační kalkul je dotazovací jazyk, který vychází z predikátové logiky. Dotaz formulujeme pomocí relačních symbolů (odpovídají relačním proměnným), logických spojek (disjunkce, implikace,...) a kvantifikátorů (existenční a obecný). Relační kalkul pracuje s vnitřními strukturami relací. Dělíme jej na dva typy podle možných hodnot objektových proměnných. Za prvé n-ticový relační kalkul, kde objektové proměnné nabývají hodnot n-tic. Za druhé doménový relační kalkul. Zde hodnoty objektových proměnných jsou přímo domén atributů. Oba relační kalkuly a relační algebra mají stejnou vyjadřovací sílu. Tím se rozumí, že libovolný dotaz v jednom jazyku jsme schopni přeformulovat do ostatních jazyků tak, že výsledky všech dotazů jsou vždy stejné.

3 Relace nad prázdným schématem

Prázdná množina atributů \emptyset je také relační schéma. Existuje jen jediná n-tice $t_0 \in \text{Tupl}(\emptyset)$ nad \emptyset a to prázdná množina \emptyset . Existují dvě relace nad schématem \emptyset :

Obrázek 1: Tweedledum a Tweedledee (česky dvojčata Tydliták a Tydlitek) z knihy Through the Looking-Glass (česky Za zrcadlem a co tam Alenka našla) od Lewise Carrolla.

prázdná relace \emptyset a množina obsahující pouze n-tici t_0 tedy množina $\{t_0\} = \{\emptyset\}$. První se jmenuje DUM a druhá DEE. Jména relací vychází z anglických jmen postav Tweedledum a Tweedledee (česky dvojčata Tydliták a Tydlitek) z knihy Za zrcadlem a co tam Alenka našla od Lewise Carrolla. Postavy jsou zachyceny na Obrázku 1. Relace DUM reprezentuje nepravdu a relace DEE pravdu.

Uvažujme například relaci \mathcal{D} nad R a podmínku θ nad R. Chceme zjistit, zda existuje n-tice $r \in \mathcal{D}$, která splňuje podmínku θ . Můžeme nejprve provést restrikci relace \mathcal{D} vzhledem k θ a poté udělat projekci na prázdnou množinu atributů, tedy zjistit hodnotu výrazu $\pi_{\emptyset}(\sigma_{\theta}(\mathcal{D}))$. Pokud výsledkem je relace DEE, pak odpověď je ano a pokud DUM, pak je odpověď ne.

V SQL neexistují relace nad prázdným schématem. Zde tedy nenajdeme ani relaci DUM ani relaci DEE. Musíme se spokojit s tím, že každá prázdná relace reprezentuje nepravdu a každá neprázdná relace reprezentuje pravdu.

4 Relační dělení

Uvažujme dvě schémata R a S, která jsou disjunktní. Pro relaci \mathcal{D}_1 na $R \cup S$ a relaci \mathcal{D}_2 na S se relace

$$\mathcal{D}_1 \div \mathcal{D}_2 = \{ r \in \pi_R(\mathcal{D}_1) \mid \text{pro každ\'e } s \in \mathcal{D}_2 \text{ plat\'i, že } rs \in \mathcal{D}_1 \}$$
 (1)

nad R nazývá podíl \mathcal{D}_1 a \mathcal{D}_2 .

Věta 12. Platí, že
$$\mathcal{D}_1 \div \mathcal{D}_2 = \pi_R(D_1) - \pi_R((\pi_R(\mathcal{D}_1) \times \mathcal{D}_2) - \mathcal{D}_1).$$

$$D\mathring{u}kaz$$
. Zvolme libovolné $r \in \text{Tupl}(R)$. Máme $r \in \pi_R(D_1) - \pi_R((\pi_R(\mathcal{D}_1) \times \mathcal{D}_2) - \mathcal{D}_1)$,

```
právě když r \in \pi_R(D_1) a r \notin \pi_R((\pi_R(\mathcal{D}_1) \times \mathcal{D}_2) - \mathcal{D}_1), právě když r \in \pi_R(D_1) a pro každé s \in \text{Tupl}(S) platí, že rs \notin (\pi_R(\mathcal{D}_1) \times \mathcal{D}_2) - \mathcal{D}_1, právě když r \in \pi_R(D_1) a pro každé s \in \text{Tupl}(S) platí, že rs \notin \pi_R(\mathcal{D}_1) \times \mathcal{D}_2 nebo rs \in \mathcal{D}_1, právě když r \in \pi_R(D_1) a pro každé s \in \text{Tupl}(S) platí, že r \notin \pi_R(\mathcal{D}_1) nebo s \notin \mathcal{D}_2 nebo rs \in \mathcal{D}_1, právě když r \in \pi_R(D_1) a pro každé s \in \text{Tupl}(S) platí, že r \in \pi_R(\mathcal{D}_1) a s \in \mathcal{D}_2 implikuje rs \in \mathcal{D}_1, právě když r \in \pi_R(D_1) a pro každé s \in \text{Tupl}(S) platí, že s \in \mathcal{D}_2 implikuje rs \in \mathcal{D}_1 právě když r \in \pi_R(D_1) a pro každé s \in \text{Tupl}(S) platí, že rs \in \mathcal{D}_1 právě když r \in \pi_R(D_1) a pro každé s \in \mathcal{D}_2 platí, že rs \in \mathcal{D}_1
```

Relační dělení umíme vyjádřit v SQL. Uvažujme například relační proměnné

```
# TABLE liked;
person |
             movie
 Anna
        | Blue Velvet
 Anna
       Eraserhead
Bert
        | Blue Velvet
Bert
        | The Matrix
Cyril | Blue Velvet
Cyril
       Eraserhead
Cyril
       | The Matrix
(7 rows)
# TABLE lynch movies;
    movie
Blue Velvet
Eraserhead
(2 rows)
```

Relační proměnná liked má charakteristickou vlastnost "Osoba jménem person má ráda film movie". Omezujeme se na určitou množinu lidí a filmů a pro jednoduchost předpokládáme, že každý film je jednoznačně určen jménem. Relační proměnná lynch_movies má charakteristickou vlastnost "Film movie režíroval David Lynch." Relačním podílem liked a lynch_movies získáme relaci:

```
person
-----
Anna
Cyril
(2 rows)
```

která má charakteristickou vlastnost "Osoba **person** má ráda všechny Lynchovy filmy."

5 Klauzule SELECT výrazu

Příkazy v SQL se skládají z částí, které se nazývají *klauzule*. Klauzule se většinou jmenují podle klíčového slova, které klauzuli uvozuje. Například výraz SELECT může mít tuto formu:

```
( SELECT DISTINCT attributes FROM relations WHERE condition )
```

a skládá se z klauzulí: SELECT, DISTINCT, FROM a WHERE.

Klauzule SELECT má tvar:

SELECT attributes

Klauzule DISTINCT se vkládá do klauzule SELECT.

Klauzule FROM má tvar

FROM relations

Klauzule WHERE má tvar

WHERE condition

6 SELECT jako relační výraz

Uvažujme obecný SELECT výraz:

```
( SELECT DISTINCT y_1 AS z_1, ..., y_n AS z_n FROM expr1 AS relation1, ..., exprm AS relationm WHERE condition )
```

Kde pro $1 \le i \le m$ jsou

- expri relační výrazy,
- relationi jsou po dvou různé dočasné relační proměnné,
- R_i je pro typ expri s prefixem relationi,
- $R = R_1 \cup \ldots \cup R_m$
- condition je podmínka nad R,
- $y_1,\ldots,y_n\in R$,
- z_1, \ldots, z_n jsou po dvou různé atributy
- $D_{y_j} = D_{z_j}$ pro každé $1 \le j \le n$.

Hodnotu výrazu můžeme spočítat pomocí relačních operací následovně:

- 1. Získáme hodnoty výrazů $expr1, \ldots, exprm$, které si označíme $\mathcal{D}_1, \ldots, \mathcal{D}_m$.
- 2. Přejmenujeme každý atribut y relace \mathcal{D}_i na relationi.y. Tím získáme relace $\mathcal{D}_1^R = \rho_{h_1}(\mathcal{D}_1), \dots \mathcal{D}_m^R = \rho_{h_m}(\mathcal{D}_m)$, kde h_1, \dots, h_m označují jednotlivá přejmenování.
- 3. Spočítáme kartézský součin $\mathcal{D}_1^R,\dots,\mathcal{D}_m^R$. Získáme relaci $\mathcal{D}_1^S=\mathcal{D}_1^R\times\dots\times\mathcal{D}_m^R$.
- 4. Dále se provede restrikce relace \mathcal{D}_2^S vzhledem k podmínce **condition**. Jako výsledek obdržíme relaci $\mathcal{D}_3^S = \sigma_{\theta}(\mathcal{D}_2^S)$, kde θ je zkrásený zápis podmínky **condition**.
- 5. Následuje projekce relace \mathcal{D}_S^3 na $\{y_1,\ldots,y_n\}=R$. Obdržíme relaci $\mathcal{D}_4^S=\pi_R(\mathcal{D}_3^S)$.
- 6. Nakonec se provede přejmenování \mathcal{D}_4^S podle h, kde $h(y_1) = z_1, \ldots, h(y_n) = z_n$. Získáme výstupní relaci $\mathcal{D}_5^S = \rho_h(\mathcal{D}_4^S)$ nad S, kde $S = \{y_1, \ldots, y_n\}$.

Celý výpočet (kromě prvního kroku) můžeme zapsat výrazem:

$$\rho_h(\pi_R(\sigma_\theta(\rho_{h_1}(\mathcal{D}_1)\times\cdots\times\rho_{h_m}(\mathcal{D}_m))))$$

7 Konstantní relace

Pro atribut y a prvek $d \in \mathcal{D}_y$ je

$$[y:d] = \{\{\langle y, d \rangle\}\}\$$

relací nad $\{y\}$ nazývanou singleton.

Jak následující věta ukazuje, lze restrikci relace \mathcal{D} nad R podle podmínky tvaru y=d vyjádřit pomocí restricke podle podmínky $y=y_2$, kde $y_2\notin R$.

```
Věta 13. Platí \sigma_{y=d}(\mathcal{D}) = \pi_R(\sigma_{y=y_2}(\mathcal{D} \times [y_2:d])).
```

```
D\mathring{u}kaz. Pro libovolné r \in \text{Tupl}(R) dostáváme, že r \in \pi_R(\sigma_{y=y_2}(\mathcal{D} \times [y_2:d])), právě když existuje r_2 \in \text{Tupl}(R \cup \{y_2\}) tak, že r_2(R) = r a r_2 \in \mathcal{D} \times [y_2:d] a r_2(y) = r_2(y_2), právě když existuje r_2 \in \text{Tupl}(R \cup \{y_2\}) tak, že r_2(R) = r a r_2(R) \in \mathcal{D} a r_2(y_2) = d a r_2(y) = r_2(y_2), právě když r \in \mathcal{D} a r(y) = d, právě když r \in \mathcal{D} a r(y) = d.
```

Z vět 6 a 13 vyplývá, že se lze omezit na restrikce podle podmínek tvaru $y_1 = y_2$. Necht $R = \{r_1, \dots, r_m\}$ je relace nad $R = \{y_1, \dots, y_n\}$

Následující výraz lze použít k určení relace \mathcal{D} jménem relation ve FROM klauzuli SELECT výrazu.

```
( VALUES ( r_1(y_1) , ..., r_1(y_n) ),  ( r_m(y_1), \ \ldots, \ r_m(y_n) )  AS relation ( y_1 , ..., y_n )
```

Například:

person		movie
Anna		Blue Velvet
Anna		Eraserhead
Bert		Blue Velvet
Bert		The Matrix
Cyril		Blue Velvet
Cyril		Eraserhead
Cyril		The Matrix

Uvažujme relační proměnnou likend

```
# TABLE liked;
person |
            movie
 Anna | Blue Velvet
 Anna | Eraserhead
Bert | Blue Velvet
Bert | The Matrix
Cyril | Blue Velvet
Cyril | Eraserhead
Cyril | The Matrix
(7 rows)
s charakteristickou vlastností "Osoba person má ráda film movie". Pak relace
# SELECT *
 FROM
        liked,
       ( VALUES ( 'Blue Velvet' ) )
       AS const ( movie_blue_velvet );
person |
            movie
                     | movie_blue_velvet
-----
 Anna | Blue Velvet | Blue Velvet
Anna | Eraserhead | Blue Velvet
Bert | Blue Velvet | Blue Velvet
Bert | The Matrix | Blue Velvet
Cyril | Blue Velvet | Blue Velvet
Cyril | Eraserhead | Blue Velvet
Cyril | The Matrix | Blue Velvet
(7 rows)
má charakteristickou vlastnost "Osoba person má ráda film movie a movie_blue_velvet
je film Blue Velvet." Následující dvě relace jsou podle věty 13 totožné.
# SELECT person
 FROM
        liked,
       ( VALUES ( 'Blue Velvet' ) )
        AS const ( movie blue velvet )
  WHERE movie = movie_blue_velvet;
person
_____
 Anna
Bert
 Cyril
```

(3 rows)

```
# SELECT person
  FROM liked
  WHERE movie = 'Blue Velvet';

person
-----
Anna
Bert
Cyril
(3 rows)
```