Data Structures and Algorithms

Course Title: Data Structures and Algorithms

Full Marks: 60 + 20 + 20Course No: CSC206

Pass Marks: 24 + 8 + 8

Nature of the Course: Theory + Lab Credit Hrs: 3

Semester: III

Course Description:

This course includes the basic foundations in of data structures and algorithms. This course covers concepts of various data structures like stack, queue, list, tree and graph. Additionally, the course includes idea of sorting and searching.

Course Objectives:

- To introduce data abstraction and data representation in memory
- To describe, design and use of elementary data structures such as stack, queue, linked list, tree and graph
- To discuss decomposition of complex programming problems into manageable subproblems
- To introduce algorithms and their complexity

Detail Syllabus:

Unit 1	Introduction to Data Structures & Algorithms	Teaching Hours (4)
Data types, Data structure and Abstract date type	Concept of data type. Basic and user defined data types. Concept of data structure and its uses. Definition and use of ADT. Benefits of using ADTs.	1 hr
Dynamic memory allocation in C	Concept of dynamic memory allocation.	1 hr
Introduction to Algorithms	Definition of algorithm. What is a good algorithm? Different structures used in algorithms.	1 hr
Asymptotic notations and common functions	Time and space complexity. Big Oh (O) notation.	1 hr
Unit 2	Stack	Teaching Hours (4)
Basic Concept of Stack, Stack as an ADT, Stack Operations, Stack Applications	Concept and example of stack. Stack ADT. Stack operations. Different applications: Bracket matching.	2 hr
Conversion from infix to postfix/prefix expression, Evaluation of postfix/prefix expressions	Basic definitions and examples of prefix, infix, and postfix expressions. Conversion from one expression to another. Using stack to convert an infix expression to postfix/prefix. Using stack to evaluate postfix/prefix expression	2 hr
Unit 3	Queue	Teaching Hours (4)
Basic Concept of Queue, Queue as an	Concept of queue. Sequential representation. Queue as and ADT. Different operations.	2 hrs

ADT, Primitive		
Operations in Queue		
Linear Queue, Circular	Circular queue. Linear vs. Circular queue. Priority	2 hrs
Queue, Priority Queue,	queue. Queue applications: print server, operating	2 1113
Queue Applications	system scheduler etc.	
Unit 4	Recursion	Teaching
		Hours (3)
Principle of Recursion,	Recursion definition. Recursive vs. Iterative	1 hr
Comparison between	algorithm. Definition and example of tail recursion	
Recursion and		
Iteration, Tail		
Recursion		
Factorial, Fibonacci	Example of recursive algorithms (factorial,	2 hrs
Sequence, GCD,	Fibonacci Sequence, GCD, and Tower of Hanoi	
Tower of Hanoi(TOH)	algorithms).	
Applications and	Applications of recursion. Finding efficiency of	
Efficiency of Recursion	recursive algorithms.	
Unit 5	Lists	Teaching
		Hours (8)
Basic Concept, List and	List concepts. List as an ADT. List operations.	2 hrs
ADT, Array	Array implementation of lists. Linked list concepts	
Implementation of		
Lists, Linked List		
Types of Linked List:	Singly and doubly linked lists. Circular linked list.	2 hrs
Singly Linked List,		
Doubly Linked List,		
Circular Linked List.	T (1.1.1 (1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	2.1
Basic operations in	Inserting and deleting nodes at different positions in	3 hrs
Linked List: Node Creation, Node	a singly and doubly linked list.	
Insertion and Deletion		
from Beginning, End		
and Specified Position		
Stack and Queue as	Linked implementation of stack and queue.	1 hr
Linked List	Efficient of stack and queue.	1 111
Unit 6	Sorting	Teaching
S V	377	Hours (8)
Introduction and Types	Concept of sorting. Internal vs. External sort.	4 hrs
of sorting: Internal and		
External sort		
Comparison Sorting	Concept of bubble, selection, insertion, and shell	
Algorithms: Bubble,	sorts	
Selection and Insertion		
Sort, Shell Sort		
Divide and Conquer	Concept of divide and conquer algorithms. Concept	4 hrs
Sorting: Merge, Quick	of merge, quick, and heap sort	
and Heap Sort		
Efficiency of Sorting	Efficiency of all above sorting algorithms.	
Algorithms		

Unit 7	Searching and Hashing	Teaching Hours (6)
Introduction to	Concept of searching. Concept of sequential and	3 hrs
Searching, Search	binary search	
Algorithms: Sequential	•	
Search, Binary Search		
Efficiency of Search	Efficiency of sequential and binary search	
Algorithms	algorithms.	
Hashing : Hash	Concept of hashing, hash function, and hash table.	
Function and Hash	Concept of hash collision. Choosing a hash	3 hrs
Tables, Collision	function. Concept of rehashing and chaining.	
Resolution Techniques	Inserting and deleting items in a hash table.	
Unit 8	Trees and Graphs	Teaching
		Hours (8)
Concept and	Concept of binary tree. Strictly binary tree. Level	1 hr.
Definitions, Basic	and depth. Complete and almost complete binary	
Operations in Binary	tree. Operations on binary trees. Binary tree	
Tree, Tree Height,	traversal.	
Level and Depth		
Binary Search Tree,	Concept of binary search tree. Insertion, deletion,	2 hr.
Insertion, Deletion,	and search in binary search tree.	
Traversals, Search in		
BST		
AVL tree and	Concept and example of balanced binary tree.	2 hr.
Balancing algorithm,	Balancing algorithm. Tree applications: expression	
Applications of Trees	tree and game tree.	
Definition and	Concept of graph. Types of graph. Graph	3 hr.
Representation of	representations: adjacency matrix representation	
Graphs, Graph	and linked representation. Depth-first and breadth-	
Traversal, Minimum	first traversal. Concept of spanning and minimum	
Spanning Trees:	spanning trees. Kruskal's and Prim's algorithms for	
Kruskal and Prims	finding minimum spanning tree.	
Algorithm		
Shortest Path	Concept of shortest path. Using Dijkstra's	1 hr
Algorithms: Dijksrtra	algorithm for finding shortest path.	
Algorithm		

Laboratory Works:

After completing this course, students should have practical knowledge of data structures, algorithms, and ADTs. The laboratory work includes.

- Writing programs with dynamic memory allocation and de-allocation.
- Writing programs to implement stack operations.
- Writing programs using stack to convert infix expression to postfix/prefix expression and to evaluate postfix/prefix expression.
- Writing programs to implement queue operations for linear, circular, and priority queue.
- Writing recursive programs to implement factorial, Fibonacci sequence, GCD, and Tower of Hanoi algorithms.
- Writing programs to implement list using array and linked list.

- Writing programs for linked list implementation of stack and queue.
- Writing programs to implement sorting, searching and hashing algorithms.
- Writing programs to implement Binary Search Trees and AVL Tress.
- Writing programs to implement searching, spanning tree and shortest path.

Text Books:

1. Y Langsam , MJ Augenstein and A.M , Tanenbaum Data Structures using C and C++ , Prentice Hall India, Second Edition 2015

Reference Books:

- 1. Leen Ammeral, Programmes and Data Structures in C, Wiley Professional Computting
- 2. G.W Rowe, Introduction to Data Structure and Algroithms with C and C++ , prentice Hall India
- 3. R.L Kruse, B.P. Leung, C.L. Tondo, Data Structure and Program Design in C Prentice-Hall India

Model Questions

Course Title: Data Structure and AlgorithmsFull Marks: 60Course No: CSC206Pass Marks: 24Semester: IIICredit Hrs: 3

Section A

Attempt any two questions. $(2 \times 10 = 20)$

- 1. Define stack. How is it different from queue? Write a program to implement circular queue.
- 2. What is linked list? Explain different types of linked lists. Discuss algorithms for inserting and deleting a node at front position of the linked list.
- 3. Define graph. Discuss Dijkastra's algorithm for finding shortest path in a graph.

Section B

Attempt any eight questions. $(8 \times 5 = 40)$

- 4. What is ADT? How is it different from data type? What are benefits of using ADT?
- 5. How can you use stack to evaluate a postfix expression? Discuss.
- 6. Define recursive algorithm. How do you implement recursive GCD algorithm?
- 7. Hand-test selection-sort algorithm with the data given below: 56, 23, 14, 20, 65, 7, 8, 14, 15, 25
- 8. Discuss binary search algorithm. What is time complexity of this algorithm?
- 9. What are benefits of using hashing? How do you choose a hash function?
- 10. How do you balance a binary tree? Discus.
- 11. Discuss depth-first search in a graph with example.
- 12. Write short notes on: $(2 \times 2.5 = 5)$
 - a. Big O notation
 - b. Spanning tree