Dall	No.
KOII	No.:

National Institute of Technology, Delhi

Name of the Examination: B.Tech.

Re-Mid Semester Examination (Autumn, 2023)

Branch

: ECE

Semester

: 111

Title of the Course

ourse Code : ECLB202

Time: 1 Hour 30 Minutes

Maximum Marks: 25

Note: All questions are compulsory.

COURSE OUTCOMES		COGNITIVE LEVELS	
CO1	To understand the various laws and theorems related to electric networks.	Knowledge/Comprehension	
	networks.	(Level I/ II)	
CO2	To apply the graph theory and network theorems in circuit	Application	
	analysis.	(Level III)	
	To analyze and evaluate the networks in transformed domain.	Analysis/Evaluation	
CO3		(Level IV/VI)	
CO4	To analyze and synthesize the two next network functions	Analysis/Synthesis	
	To analyze and synthesize the two port network functions.	(Level IV/VI)	

Course	CO1	CO2
Outcomes (CO's)		
Questions No.	Q1, Q2	Q3, Q4, Q5 & Q6

Answer the following questions.

Q1. State Norton's theorem and Milman's theorem. Also, give an example circuit in each case showing that it follows the theorem.

Q2. For the circuit shown in Fig. 1, find V_{Th} and I_N across the terminal A and B. [3 Marks]

Q3. Determine the voltage Vx and power supplied by the 1A source in the circuit shown in [4 Marks] Fig. 2.

The linear network as shown in Fig. 3 has only resistors. If $I_1 = 8A$ and $I_2 = 12$ A; V is found to be 80V. V=0 when $I_1 = -8A$ and $I_2=4A$. What is the value of V when $I_1=I_2=10A$?

Fig. 3

- Q5. (a) In a network, the resistance R1 is in series with the transform impedance 1/Cs. [5 Marks] Find the transfer function.
 - (b) Define transfer function. What are the restrictions on the location of poles and zeros of transfer function for output/input?
- Q6. Calculate the power absorbed by the 15Ω resistor in the circuit shown in Fig.3. [5 Marks]

2