Seminar 6

1.1 expresii regulare

- 1. Precizati daca secventele ce urmeaza sint elemente ale multimilor regulare reprezentate de expresiile regulare alaturate:
- 2. Sa se construiasca AF care accepta limbajele specificate prin expresiile regulare:
 - a) (01+1)* 00 (0+1)*
 - b) (1*0)*+ 0*11
- 3. Construiti expresia regulara care descrie limbajul acceptat de urmatorul automat

4. Construiti expresia regulara care descrie limbajul acceptat de urmatorul automat

Sugestii si rezolvari

Determinarea expresiilor regulare ce descriu limbajul acceptat de un AF

Metoda 1: (bazata pe multimi)

Fie M=(Q, Σ , δ , q₁,F)

si
$$Q = \{q_1,q_2,...,q_n\}$$
 (**obs**.: q_1 - starea initiala)

• notam: R_{ij}^{k} – multimea tuturor secventelor care duc automatul din starea i in starea j, folosind ca stari intermediare starile $q_1, q_2, ..., q_k$ (sau poate trece direct sau automatul este deja in starea j)

$$\begin{array}{ll} \bullet & R_{ij}^{0} = \{a \in \Sigma \mid q_j \in \delta(q_i,\!a) \;\} \cup \begin{cases} \{\epsilon\} & \quad daca \; q_i \!\!=\!\! q_j \\ \Phi & \quad daca \; q_i \!\!<\!\! > \!\! q_j \end{cases} \\ R_{ij}^{k} = R_{ij}^{k-1} \; \cup \; R_{ik}^{k-1} \, (R_{kk}^{k-1})^* \, R_{kj}^{k-1} \end{array}$$

$$L(M) = \bigcup _{qj} \in {_F}\,{R_{1j}}^n$$

Metoda 2: (sistem de ecuatii)

Fie M=(Q, Σ , δ , q₁,F) fara stari inaccesibile

• Notam: X_i – expr. regulara coresp. trecerii automatului din starea initiala q₁ in

$$L(M_i)$$
: $M_i = (Q, \Sigma, \delta, q_1, \{q_i\})$

starea
$$q_i$$

$$L(M_i): \ \ M_i = (\ Q, \ \Sigma, \ \delta, \ q_1, \{q_i\})$$

$$\bullet \ \ X_i = X_1 \ \alpha_1^{\ i} + \ldots + X_n \ \alpha_n^{\ i} + \beta_i \quad \beta_i = \begin{cases} \epsilon & \text{daca } i = 1 \\ \Phi & \text{altfel} \end{cases}$$

=> ~ sistem de n ecuatii liniare cu n necunoscute (operatii: concatenare & reuniune)

 $X=X\alpha+\beta$ are ca sol. $X=\beta\alpha^*$ (unica atunci cand ε ∉α)

Expresia regulara ce descrie L(M) este: $X_{i1}+X_{i2}+...+X_{ik}$, unde $F=\{q_{i1}, q_{i2},..., q_{ik}\}$