

A QoS-Aware Broker for Multi-Provider Serverless Applications

Andrea Graziani

m. 0273395

Supervisor: Valeria Cardellini

Tutor: Gabriele Russo Russo

May 23, 2022

Serverless Computing: Overview

My thesis is focused on "serverless computing".

It is a development paradigm according to which:

- The provider takes care of all aspects of server management.
- Cloud application are abstracted as a group of so-called serverless functions, which are computation units implementing a business functionality.

Serverless Computing: Overview

A serverless function is executed inside a containerized environment: the so-called **function instance**.

The FaaS platform automatically scales the number of function instances.

FaaS platforms impose a **limit** on the number of function instances runnable at the **same time** called **concurrency limit**.

A delay is observed when a new function instance is started by the provider: this event is called **cold start**.

Serverless Computing: Overview

To invoke a serverless function, users have to specify a so-called serverless function configuration.

• Generally, the amount of memory allocated to a serverless function.

Configuration parameters **significantly** affect the **cost** and **response time** of serverless functions.

Serverless Computing: Problems

- Lack of support for applications whose functions are hosted on multiple providers.
- Lack of support for serverless function implementations abstraction, that is, for the so-called **concrete functions**.
- Fulfillment of non-functional requirements concerning the quality of service (QoS) levels that should be guaranteed for multi-provider serverless applications.
- Fulfillment of functional requirements concerning the orchestration of multi-provider applications.

Thesis Goals

Goal #1

To guarantee the **satisfaction of QoS levels** for multi-provider serverless applications.

It was necessary to develop:

- An analytical model to evaluate aforementioned class of applications.
- A methodological way to find the "best" configuration to satisfy QoS constraints.

Thesis Goals

Goal #2

The orchestration for multi-provider serverless applications.

To achieve it, I had to build:

- A software framework.
- An extension to an already existent representation scheme to define a serverless application workflow.
 - Based on an existing language called abstract function choreography language (AFCL).

System Model

Serverless applications are abstracted to a weakly connected weighted directed graph.

Application Configuration

AWS **Lambda**

 $f_{\mathbf{x}}$ Concrete Function 1

 $f_{\mathbf{x}}$ Concrete Function 2

fx Concrete Function 3

 f_{x} Concrete Function 1

 $f_{\mathbf{x}}$ Concrete Function 2

System Model

- Estimations of average response time and cost under any possible configuration of all concrete functions is done using exponential moving average approach.
- An estimation of the probability according to which a request follows a cold start is required.
 - This is done using Erlang-B formula by modeling FaaS platform providers by sets of M/G/K(t)/K(t) queueing systems.
 - K(t): the number of function instances at time t.
- Performance estimations of the application depend on its workflow properties.

Optimization Problem

- To achieve our goal consisting in finding the best configuration to guarantee QoS constraints, we have to solve an optimization problem.
 - It is based on multi-dimensional multi-choice knapsack problem formulation (MMKP).

$$max \sum_{i=1}^{|\mathcal{F}_{\mathcal{E}}(\mathcal{C})|} \sum_{j=1}^{|\mathbf{F}_{\phi_{i}} \times \mathbb{N}|} y_{\phi_{i_{j}}} \cdot p_{\phi_{i_{j}}}(t)$$

$$\text{subject to} \sum_{i=1}^{|\mathcal{F}_{\mathcal{E}}(\mathcal{C})|} \sum_{j=1}^{|\mathbf{F}_{\phi_{i}} \times \mathbb{N}|} y_{\phi_{i_{j}}} \cdot c_{\phi_{i_{j}}}(t) \leq C$$

$$\sum_{\phi_{i} \in \mathcal{F}_{\mathcal{E}}(\mathcal{C}) \setminus \mathcal{F}_{\mathcal{E}}(\tilde{\mathcal{P}})} \sum_{j=1}^{|\mathbf{F}_{\phi_{i}} \times \mathbb{N}|} y_{\phi_{i_{j}}} \cdot rt_{\phi_{i_{j}}}(t) +$$

$$+ \sum_{\phi_{h} \in \mathcal{S}_{\mathcal{C}}} \sum_{j=1}^{|\mathbf{F}_{\phi_{h}} \times \mathbb{N}|} y_{\phi_{h_{j}}} \cdot rt_{\phi_{h_{j}}}(t) \leq RT$$

$$\forall \delta_{\mathcal{C}} \in \Delta_{\mathcal{C}}$$

$$(5.12)$$

$$\sum_{i=1}^{|\mathcal{F}_{\mathcal{E}}(\mathcal{C})|} \sum_{j=1}^{|\mathbf{F}_{\phi_{i}} \times \mathbb{N}|} y_{\phi_{i_{j}}} \cdot a_{(\phi_{i_{j}}, \omega_{P}^{(l)})} \leq l - R(\mathbf{Q}_{\omega_{P}^{(l)}}, t)$$

$$\forall \omega_{P}^{(l)} \in \widetilde{\mathbf{S}}_{\mathcal{C}}$$

$$(5.13)$$

$$\sum_{i=1}^{|\mathbf{F}_{\phi_i} \times \mathbb{N}|} y_{\phi_{i_j}} = 1$$

 $\forall i \in \mathbb{N} \cap [1, |\mathcal{F}_{\mathcal{E}}|]$

(5.14)

 $y_{\phi_{i_j}} \in \{0, 1\}$

 $\forall i \in \mathbb{N} \cap [1, |\mathcal{F}_{\mathcal{E}}|]$ $\forall i \in \mathbb{N} \cap [1, |\mathbf{F}_{\phi_i} \times \mathbb{N}|]$

$$\max \sum_{i=1}^{|\mathcal{F}_{\mathcal{E}}(\mathcal{C})|} \sum_{j=1}^{|\mathbf{F}_{\phi_{i}} \times \mathbb{N}|} y_{\phi_{i_{j}}} \cdot p_{\phi_{i_{j}}}(t)$$

$$\text{subject to} \sum_{i=1}^{|\mathcal{F}_{\mathcal{E}}(\mathcal{C})|} \sum_{j=1}^{|\mathbf{F}_{\phi_{i}} \times \mathbb{N}|} y_{\phi_{i_{j}}} \cdot c_{\phi_{i_{j}}}(t) \leq C$$

$$\sum_{\phi_{i} \in \mathcal{F}_{\mathcal{E}}(\mathcal{C}) \setminus \mathcal{F}_{\mathcal{E}}(\tilde{\mathcal{P}})} \sum_{j=1}^{|\mathbf{F}_{\phi_{i}} \times \mathbb{N}|} y_{\phi_{i_{j}}} \cdot rt_{\phi_{i_{j}}}(t) + \text{Cost Constraint}$$

$$+ \sum_{\phi_{i} \in \mathcal{S}_{\mathcal{E}}} \sum_{j=1}^{|\mathbf{F}_{\phi_{h}} \times \mathbb{N}|} y_{\phi_{h_{j}}} \cdot rt_{\phi_{h_{j}}}(t) \leq RT \qquad \forall \delta_{\mathcal{C}} \in \Delta_{\mathcal{C}}$$

$$+\sum_{\phi_h \in \delta_C} \sum_{j=1}^{\phi_h} y_{\phi_{h_j}} \cdot rt_{\phi_{h_j}}(t) \le RT \qquad \forall \delta_C \in \Delta_C$$

$$(5.12)$$

$$\sum_{i=1}^{|\mathcal{F}_{\mathcal{E}}(\mathcal{C})|} \sum_{j=1}^{|\mathbf{F}_{\phi_i} \times \mathbb{N}|} y_{\phi_{i_j}} \cdot a_{(\phi_{i_j}, \omega_P^{(l)})} \le l - R(\mathbf{Q}_{\omega_P^{(l)}}, t)$$

$$\forall \omega_P^{(l)} \in \widetilde{\mathbf{S}}_{\mathcal{C}}$$

$$(5.13)$$

$$\sum_{j=1}^{|\mathbf{F}_{\phi_i} \times \mathbb{N}|} y_{\phi_{i_j}} = 1 \qquad \qquad \forall i \in \mathbb{N} \cap [1, |\mathcal{F}_{\mathcal{E}}|]$$

 $\forall i \in \mathbb{N} \cap [1, |\mathcal{F}_{\mathcal{E}}|]$ $y_{\phi_{i_i}} \in \{0, 1\}$ $\forall j \in \mathbb{N} \cap [1, |\mathbf{F}_{\phi_i} \times \mathbb{N}|]$

Andrea Graziani (m. 0273395)

(5.14)

$$max \sum_{i=1}^{|\mathcal{F}_{\mathcal{E}}(\mathcal{C})|} \sum_{j=1}^{|\mathbf{F}_{\phi_i} \times \mathbb{N}|} y_{\phi_{i_j}} \cdot p_{\phi_{i_j}}(t)$$
 (5.10)

subject to
$$\sum_{i=1}^{|\mathcal{F}_{\mathcal{E}}(C)|} \sum_{i=1}^{|\mathbf{F}_{\phi_i} \times \mathbb{N}|} y_{\phi_{i_j}} \cdot c_{\phi_{i_j}}(t) \le C$$
 (5.11)

$$\sum_{\phi_{i} \in \mathcal{F}_{\mathcal{E}}(\mathcal{C}) \backslash \mathcal{F}_{\mathcal{E}}(\widetilde{\mathcal{P}})} \sum_{j=1}^{|\mathbf{F}_{\phi_{i}} \times \mathbb{N}|} y_{\phi_{i_{j}}} \cdot rt_{\phi_{i_{j}}}(t) + \\ + \sum_{\phi_{i} \in \delta_{\mathcal{E}}} \sum_{j=1}^{|\mathbf{F}_{\phi_{k}} \times \mathbb{N}|} y_{\phi_{h_{j}}} \cdot rt_{\phi_{h_{j}}}(t) \leq RT \qquad \forall \delta_{\mathcal{C}} \in \Delta_{\mathcal{C}}$$

$$\sum_{i=1}^{|\mathcal{F}_{\mathcal{E}}(\mathcal{C})|} \sum_{j=1}^{|\mathbf{F}_{\phi_i} \times \mathbb{N}|} y_{\phi_{i_j}} \cdot a_{(\phi_{i_j}, \omega_P^{(l)})} \le l - R(\mathbf{Q}_{\omega_P^{(l)}}, t)$$

$$\forall \omega_P^{(l)} \in \widetilde{\mathbf{S}}_{\mathcal{C}}$$

$$(5.13)$$

(5.12)

(5.14)

12/23

$$\sum_{j=1}^{|\mathbf{F}_{\phi_i} \times \mathbb{N}|} y_{\phi_{i_j}} = 1 \qquad \qquad \forall i \in \mathbb{N} \cap [1, |\mathcal{F}_{\mathcal{E}}|]$$

$$y_{\phi_{i_j}} \in \{0, 1\}$$

$$\forall i \in \mathbb{N} \cap [1, |\mathcal{F}_{\mathcal{E}}|]$$

$$\forall j \in \mathbb{N} \cap [1, |\mathbf{F}_{\phi_i} \times \mathbb{N}|]$$

$$\max \sum_{i=1}^{|\mathcal{F}_{\mathcal{E}}(\mathcal{C})|} \sum_{j=1}^{|\mathbf{F}_{\phi_i} \times \mathbb{N}|} y_{\phi_{i_j}} \cdot p_{\phi_{i_j}}(t)$$

$$(5.10)$$

subject to
$$\sum_{i=1}^{|\mathcal{F}_{\mathcal{E}}(C)|} \sum_{j=1}^{|\mathcal{F}_{\phi_{i}} \times \mathbb{N}|} y_{\phi_{i_{j}}} \cdot c_{\phi_{i_{j}}}(t) \leq C$$
 (5.11)

$$\sum_{\phi_i \in \mathcal{F}_{\mathcal{E}}(\mathcal{C}) \backslash \mathcal{F}_{\mathcal{E}}(\widetilde{\mathcal{P}})} \sum_{j=1}^{|\mathbf{F}_{\phi_i} \times \mathbb{N}|} y_{\phi_{i_j}} \cdot rt_{\phi_{i_j}}(t) +$$

$$+\sum_{\phi_{h}\in\delta_{C}}\sum_{j=1}^{|\mathbf{F}\phi_{h}\times\mathbb{N}|}y_{\phi_{h_{j}}}\cdot rt_{\phi_{h_{j}}}(t)\leq RT$$

 $\forall \delta_{\mathcal{C}} \in \Delta_{\mathcal{C}}$ (5.12)

$$\sum_{i=1}^{|\mathcal{F}_{\mathcal{E}}(\mathcal{C})|} \sum_{j=1}^{|\mathbf{F}_{\phi_i} \times \mathbb{N}|} y_{\phi_{i_j}} \cdot a_{(\phi_{i_j}, \omega_P^{(l)})} \leq l - R(\mathbf{Q}_{\omega_P^{(l)}}, t)$$

 $\omega_P^{(l)} \in \widetilde{\mathbf{S}}_{\mathcal{C}}$

E 19

$$\sum_{j=1}^{|\mathbf{F}_{\phi_i} \times \mathbb{N}|} y_{\phi_{i_j}} = 1$$

Capacity Constraint

 $\forall i \in \mathbb{N} \cap [1, |\mathcal{F}_{\mathcal{E}}|]$

(5.14)

 $\forall i \in \mathbb{N} \cap [1, |\mathcal{F}_{\mathcal{E}}|]$ $\forall i \in \mathbb{N} \cap [1, |\mathbf{F}_{\phi_i} \times \mathbb{N}|]$

$$y_{\phi_{i_j}} \in \{0,1\}$$

Heuristic Algorithm

I develop a custom heuristic algorithm based on **ant colony optimization** (ACO).

- It is based on a set of computational agents, called artificial ants, which iteratively construct a solution.
- At each iteration, each agent moves from a solution to another, applying a series of stochastic local decisions whose policy is based on following parameters:
 - Attractiveness.
 - Pheromone trail.

Heuristic Algorithm

Pheromone trails are updated during every iteration.

Pheromone trails are used to decide which solutions should be preferred during **next iterations**.

Broker Prototype

Main features of our software framework:

- Client-server architecture.
- Cloud-native application.
- Includes a set of adapters to interact with following FaaS providers:
 - AWS Lambda.
 - Apache OpenWhisk.
- REST architectural style.

Validation Test

We validate our model through several experiments using an image-processing serverless application.

- Firstly, we check the respect of user specified QoS constraints in a static way thorough several sequential invocations.
- Then, we test the model in a dynamically way thorough several concurrent and parallel invocations.
 - That experiment aimed to run out of capacity on one FaaS provider and so force our prototype to schedule the concrete functions on the other.

Validation Test

 Application configuration produced by our system before Provider 1 runs out of capacity...

Validation Test

• ...and after, when Provider 1 runs out of capacity.

Heuristic Algorithm Evaluation

• We compared **execution time** of our heuristic algorithm with that of optimal algorithm through several experiments.

Heuristic Algorithm Evaluation

• According to my results, accuracy is above 98%.

Conclusions

- I presented an analytical model to evaluate the performance of multi-provider serverless application.
- I defined an optimization problem formulation to address the problem of finding a suitable configuration in order to meet user defined QoS constraints.
- I developed a heuristic algorithm to efficiently solve it.
- I validated proposed solution through test and experimental evaluations using my prototype.

Thanks for your attention! Questions?

Warm Pool having capacity n

Pheromone Trail Update

$$\tau(o_{i_a}, o_{j_b})_k = \tau(o_{i_a}, o_{j_b})_{k-1} \cdot \rho + \Delta \tau(o_{i_a}, o_{j_b})_k$$

where:

$$\Delta \tau(o_{i_a}, o_{j_b})_k \stackrel{\text{def}}{=} \sum_{l=1}^m \tau(o_{i_a}, o_{j_b})_k^{(l)}$$
 (1)

and:

$$\tau(o_{i_j},o_{a_b})_k^{(l)} \stackrel{\mathsf{def}}{=} \left\{ \begin{array}{ll} 0 & \text{if} & S_{k_l} = \varnothing \\ \frac{1}{1 + \operatorname{profit}(S_{best}) - \operatorname{profit}(S_{k_l})} & \text{if} & {}^{S_{k_l} \neq \varnothing} \\ \end{array} \right. \tag{2}$$

Transition Probability

$$P(o_{i_j}, \mathbf{S}_{k_l}^{(z)}, \pi_{k_l}^{(z)}) \stackrel{\mathsf{def}}{=} \frac{\left[\tau(o_{i_j}, \pi_{k_l}^{(z)})\right]^{\alpha} \cdot \left[\eta(o_{i_j}, \mathbf{S}_{k_l}^{(z)})\right]^{\beta}}{\sum_{o_{i_j} \in \mathscr{C}(\mathbf{G}_i, \mathbf{S}_{k_l}^{(z)})} \left[\tau(o_{i_j}, \pi_{k_l}^{(z)})\right]^{\alpha} \cdot \left[\eta(o_{i_j}, \mathbf{S}_{k_l}^{(z)})\right]^{\beta}}$$
(3)

Function Configuration

$$x_{\phi} = (f_{\phi}, m) \in f_{\phi} \times \mathbf{M}_{f_{\phi}} \subseteq \mathbf{F}_{\phi} \times \mathbb{N}$$
 (4)

Choreography Configuration

$$\mathbf{x}_{\mathscr{C}} \stackrel{\text{def}}{=} \left\{ x_{\phi_{1}}, \dots, x_{\phi_{k}} \right\}$$

$$\in \left\{ \left\{ \bigcup_{j=1}^{|\mathbf{F}_{\phi_{1}}|} f_{\phi_{1_{j}}} \times \mathbf{M}_{f_{\phi_{1_{j}}}} \right\} \times \dots \times \left\{ \bigcup_{j=1}^{|\mathbf{F}_{\phi_{k}}|} f_{\phi_{k_{j}}} \times \mathbf{M}_{f_{\phi_{k_{j}}}} \right\} \right\}$$

$$= \left\{ \left\{ \bigcup_{j=1}^{k} f_{\phi_{i_{j}}} \times \mathbf{M}_{f_{\phi_{i_{j}}}} \right\}$$

$$\subseteq \left\{ \left\{ \mathbf{F}_{\phi_{i}} \times \mathbb{N} \right\} = \mathbf{X}_{\mathscr{C}} \right\}$$
(5)

40 > 40 > 42 > 42 > 2 9 9 9

Figure 4.2: Conditional loop structure in a serverless workflow.

Perfromance Evaluation Loop Structure

$$RT(\mathcal{L}, \mathbf{x}_{\mathcal{C}}, t) \stackrel{\mathsf{def}}{=} E[I_{\theta}(t)] \cdot RT(\theta_i, \mathbf{x}_{\mathcal{C}}, t) \tag{6}$$

$$C(\mathcal{L}, \mathbf{x}_{\mathcal{C}}, t) \stackrel{\text{def}}{=} E[I_{\theta}(t)] \cdot C(\theta_i, \mathbf{x}_{\mathcal{C}}, t)$$
 (7)

$$p = P(\phi_x, \phi_y, t) = 1 - P(\phi_x, \alpha(\theta), t)$$
(8)

$$P(I_{\theta} = k) = p \cdot (1 - p)^{k-1}$$

$$= pq^{k-1}$$

$$= \left[1 - P(\phi_{x}, \alpha(\theta), t)\right] \cdot \left[P(\phi_{x}, \alpha(\theta), t)\right]^{k-1}$$
(9)

$$E[I_{\theta}(t)] = \sum_{k=1}^{\infty} (k-1)pq^{k-1}$$

$$= \frac{P(\phi_x, \alpha(\theta), t)}{1 - P(\phi_x, \alpha(\theta), t)}$$
(10)

SLA definition

$$SLA \stackrel{\mathsf{def}}{=} \langle (RT, w_{RT}), (C, w_C) \rangle$$

Function configuration score

$$p_{\phi_{i_j}}(t) \stackrel{\text{def}}{=} w_{RT} \cdot p_{\phi_{i_j}}(t)^{(rt)} + w_C \cdot p_{\phi_{i_j}}(t)^{(c)}$$

$$p_{\phi_{i_j}}(t)^{(rt)} \stackrel{\text{def}}{=} \begin{cases} 1 & \text{if} \quad rt_{\phi_{i_{\mathsf{MAX}}}}(t) = rt_{\phi_{i_{\mathsf{MIN}}}}(t) \\ \frac{rt_{\phi_{i_{\mathsf{MAX}}}}(t) - rt_{\phi_{i_j}}(t)}{rt_{\phi_{i_{\mathsf{MAX}}}}(t) - rt_{\phi_{i_{\mathsf{MAX}}}}(t)} & otherwise \end{cases}$$
(11)

$$p_{\phi_{i_j}}(t)^{(c)} \stackrel{\text{def}}{=} \begin{cases} 1 & \text{if} \quad c_{\phi_{i_{\text{MAX}}}}(t) = c_{\phi_{i_{\text{MIN}}}}(t) \\ \frac{c_{\phi_{i_{\text{MAX}}}}(t) - c_{\phi_{i_j}}(t)}{c_{\phi_{i_{\text{MAX}}}}(t) - c_{\phi_{i_{\text{MIN}}}}(t)} & \text{otherwise} \end{cases}$$

$$(12)$$

MKP Formulation

$$max \qquad \sum_{i}^{|\mathbf{X}_{C}|} x_{i} \cdot S(\mathbf{x}_{C_{i}}, t) \tag{5.1}$$

subject to

$$\sum_{i=1}^{|\mathbf{x}_{\mathcal{C}}|} x_i \cdot C(\mathcal{C}, \mathbf{x}_{\mathcal{C}_i}, t) \le C \tag{5.2}$$

$$\sum_{i=1}^{|\mathbf{X}_{\mathcal{C}}|} x_i \cdot RT(\mathcal{C}, \mathbf{x}_{\mathcal{C}}, t) \le RT$$
(5.3)

$$\sum_{i=1}^{|\mathbf{X}_C|} x_i \cdot N(C, \mathbf{x}_C, \omega_P^{(l)}) \le l - R(\mathbf{Q}_{\omega_P^{(l)}}, t) \qquad \forall \omega_P^{(l)} \in \widetilde{\mathbf{S}}_C \quad (5.4)$$

$$\sum_{i=1}^{|\mathbf{X}_{\mathcal{C}}|} x_i = 1 \tag{5.5}$$

$$x_i \in \{0, 1\}$$
 $\forall i \in \mathbb{N} \cap [1, |\Omega|]$ (5.6)

Concrete Function Average Response Time

$$RT(x_{\phi}, t) \stackrel{\text{def}}{=} RT(f_{\phi}, m, t)$$

$$= RT_{avg}^{(c)}(f_{\phi}, m, t) \cdot \mathbf{P}_{\omega_{P_{R}}^{(l)}}(t) +$$

$$RT_{avg}^{(w)}(f_{\phi}, m, t) \cdot \left(1 - \mathbf{P}_{\omega_{P_{R}}^{(l)}}(t)\right)$$
(13)

where:

$$RT_{avg}^{(c)}(f_{\phi}, m, t) \stackrel{\text{def}}{=} \begin{cases} Y_o & \text{if } t = 0\\ \alpha \cdot Y_t + (1 - \alpha) \cdot RT_{avg}^{(c)}(f_{\phi}, m, t - 1) & \text{if } t > 0 \end{cases}$$
(14)

| ロ ト 4 団 ト 4 重 ト 4 重 ト 9 Q (^)

Listing 3.1: Definition of a base function in AFCL

```
function: {
            name: "name".
            type: "type".
 3
            dataIns: [
                             name: "name", type: "type",
                             source: "source"?, value: "value"?,
                             properties: [{name: "name", value: "value"}+]?
9
                             constraints: [{name: "name", value: "value"}+]?
                    7+
10
            ]?.
11
            properties: [{name: "name", value: "value"}+]?
12
            constraints: [{name: "name", value: "value"}+]?
1.3
            dataOuts: [
14
1.5
                             name: "name", type: "type",
16
                             source: "source"?, value: "value"?,
17
                             properties: [{name: "name", value: "value"}+]?
18
                             constraints: [{name: "name", value: "value"}+]?
19
                    7+
20
            ]?.
21
22
```

Listing 3.2: Definition of a serverless function according to our custom AFCL.

```
function: {
1
                     name: "name",
2
                     "implementations":[
3
                              -{
\pi
                                       providerName: "providerName",
                                       concreteFunctionName: "concreteFunctionName"
                                       host: "host"?
                              }+
                     ].
                     "profilingPayloads": [
10
                              {...}+
12
                     dataIns: [
13
1.4
                                       name: "name", type: "type",
15
                                       source: "source"
16
                              }+
                     ].
18
                     dataOuts: [
                                       name: "name", type: "type",
21
                                       source: "source"
22
                              7+
23
                     ]?,
24
            }
25
```

Algorithm 2: Generic algorithmic skeleton for ACO algorithms

- Initialization pheromone trails;
- 2 while Termination conditions not met do
- 3 ConstructSolutions;
- ApplyLocalSearch;
- UpdatePheromoneTrails;
- 6 end