

Dada la función $f: \mathbb{R} \to \mathbb{R}/f(x) = x^2 + x$ Completemos:

x tiende a 1 por la izquierda

x tiende a 1 por la derecha

X	0	0,5	0,8	0,99	1	1,01	1,2	1,5	1,8	2
f(x)	0	0,75	1,44	1,97		2,03	2,64	3,75	5,04	6

f(x) tiende a

f(x) tiende a

$\lim_{x\to 1}(x^2+x)=2$

Sea la función
$$f(x) = \frac{3x^2 - 3}{x - 1}$$
 cuyo dominio es:
 $D = \{x/x \in \mathbb{R} \land x \neq 1\}$

¿A qué valores se acerca f(x) cuando x se aproxima a 1?

$$f(x) = \frac{3x^2 - 3}{x - 1}$$

x < 1

Х	f(x)
0,9	5,7
0,95	5,85
0,99	5,97
0,995	5,985
0,999	5,997

x > 1

х	f(x)		
1,1	6,3		
1,05	6,15		
1,01	6,03		
1,005	6,015		
1,001	6,003		

$$\lim_{x \to 1} \frac{3x^2 - 3}{x - 1} = 6$$

Sea la función:
$$f: \mathbb{R} \to \mathbb{R}/f(x) = \begin{cases} -1 & si & x < 0 \\ 0 & si & x = 0 \\ 1 & si & x > 0 \end{cases}$$

$$\lim_{x\to 0^+} f(x) = 1$$

$$\lim_{x\to 0^-} f(x) = -1$$

$$\Rightarrow \lim_{x\to 0} f(x) = No \ existe$$

Ejemplo 2:

Sea la función :
$$f: \mathbb{R} - \{2\} \rightarrow \mathbb{R}/f(x) = \begin{cases} x - 1 & \text{si } x < 2 \\ 3 - x & \text{si } x > 2 \end{cases}$$

$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} (3 - x) = 1$$

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} (x - 1) = 1$$

$$\implies \lim_{x \to 2} f(x) = 1$$

Ejemplo. Sea la función $h: R \to R \ / \ h(x) = \begin{cases} 1-x^2 & \text{si} \quad x < 1 \\ 3 & \text{si} \quad x = 1 \text{. Grafique la} \\ 2x-2 & \text{si} \quad x > 1 \end{cases}$

función y determine la imagen del 1 y los límites cuando $x \to 1^+$ y $x \to 1^-$.

Ejemplo. Sea la función m : R \rightarrow R / m(x) = $\begin{cases} 2+x & \text{si} & x \leq 3 \\ 5 & \text{si} & x > 3 \end{cases}$. Grafique la función y halle la imagen del 3 y los límites cuando $x \rightarrow 3^+$ y $x \rightarrow 3^-$.

EJERCICIO

Observe las funciones definidas gráficamente y calcule, si existen, los límites pedidos para cada una:

b)

c)

$$\lim_{x \to \infty} f(x)$$

$$x\rightarrow 2^+$$

$$x\rightarrow 2^{-}$$

$$\lim_{x\to 2} f(x)$$

$$\lim_{x \to a} g(x)$$

$$x\rightarrow 1^+$$

$$x\rightarrow 1^{-}$$

$$\lim_{x\to 1} g(x)$$

$$x\rightarrow -3^+$$

$$x \rightarrow -3^-$$

$$\lim_{x\to -3} h(x)$$

$$\label{eq:energy} \textit{Ejemplo}. \mbox{ Sea la función } f: R \rightarrow R \ / \ x \rightarrow \begin{cases} 1-2x & \text{si} \quad x \leq 1 \\ x-2 & \text{si} \quad 1 < x \leq 3 \ . \ \text{Calcule los} \\ 4 & \text{si} \quad x > 3 \end{cases}$$

siguientes límites y compruebe gráficamente:

a)
$$\lim_{x \to 1^{-}} f(x)$$
 b) $\lim_{x \to 1^{+}} f(x)$ **c)** $\lim_{x \to 1} f(x)$

d)
$$\lim_{x \to 3^{-}} f(x)$$
 e) $\lim_{x \to 3^{+}} f(x)$ **f)** $\lim_{x \to 3} f(x)$

e)
$$\lim_{x \to 0} f(x)$$

f)
$$\lim_{x\to 3} f(x)$$

Sea la función
$$f(x) = \begin{cases} x+2 & \text{si } x < 0 \\ x^3 & \text{si } x \ge 0 \end{cases}$$
, calcule, si existe:

a)
$$\lim_{x \to 0^+} f(x)$$
 b) $\lim_{x \to 0^-} f(x)$ **c)** $\lim_{x \to 0} f(x)$

b)
$$\lim_{x\to 0^-} f(x)$$

c)
$$\lim_{x\to 0} f(x)$$

Sea g(x) =
$$\begin{cases} x^3 - 3x^2 + 2 & \text{si } x \neq 2 \\ 8 & \text{si } x = 2 \end{cases}$$
, encuentre, si existe:

a)
$$\lim_{x\to 2^+} g(x)$$

b)
$$\lim_{x\to 2^-} g(x)$$

c)
$$\lim_{x\to 2} g(x)$$

Para cada una de las siguientes gráficas de funciones, determine si existe o no el límite para x tendiendo a 2. Justifique la respuesta. En caso de existir, halle el valor.

Dada la función $f: R \to R / f(x) = \begin{cases} -x-1 & \text{si } x < 0 \\ x-1 & \text{si } 0 \le x < 3 \end{cases}$ grafique y determine: $2x+1 & \text{si } x \ge 3$

a) $\lim_{x\to 0^-} f(x)$

b) $\lim_{x\to 0^+} f(x)$

c) $\lim_{x\to 0} f(x)$

d) $\lim_{x\to 3^-} f(x)$

e) $\lim_{x \to 3^{+}} f(x)$

f) $\lim_{x\to 3} f(x)$