EXAMEN DE ESTRUCTURAS ALGEBRAICAS

Ingeniero en Informática – 1 de julio de 2011

Duración: 3 horas

NOMBRE Y APELLIDOS:

GRUPO:

- 1. [1.5 puntos] Un turista dispone de 1000 reales y quiere cambiar ese dinero en un número a de coronas y un número b de liras. En la oficina de cambio le venden la corona a 18 reales y la lira a 13 reales, pero no disponen de fracciones de ninguna moneda. Halla las distintas posibilidades para hacer el cambio de moneda.
- 2. [1.5 puntos] Sea (G, \cdot) un grupo.
 - a) Prueba que $Z:=\{a\in G\mid ab=ba,\ \forall b\in G\}$ es un subgrupo de G, que se llama el centro de G.
 - b) Prueba que el centro de G es un subgrupo normal.
 - c) Halla el centro del grupo diédrico D_4 .
- 3. [1'5 puntos] Sea G el grupo abeliano finitamente generado por a, b, c, d y con relaciones:

$$4a + 6b = 0$$
, $8a = 0$, $10c + 22d = 0$.

- a) Determina los factores invariantes, los divisores elementales y el rango.
- b) ¿Tiene G algún elemento de orden 12? ¿Tiene G algún elemento de orden infinito? ¿Puede ser G isomorfo a $\mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_{16} \times \mathbb{Z}$?
- 4. [1'30 puntos] Consideramos el homomorfismo evaluación $ev_{\sqrt{2}}: \mathbb{Q}[x] \to \mathbb{R}, p(x) \mapsto p(\sqrt{2}).$
 - a) Prueba que todo elemento del núcleo del homomorfismo $ev_{\sqrt{2}}$ es divisible por $g = x^2 2$.
 - b) Deduce que la imagen de $ev_{\sqrt{2}}$ es el conjunto $A = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$. Explica razonadamente si A es subanillo, ideal o subcuerpo de \mathbb{R} .
- 5. [3 puntos] Sean $f = x^5 + x^2 + 1$ y $g = x^2 + x + 1$ en $\mathbb{Z}_2[x]$. Se pide:
 - a) Calcular el máximo común divisor de f y g, y una identidad de Bezout.
 - b) Indica los elementos del anillo cociente $K = \mathbb{Z}_2[x]/(f)$ en función de $\alpha = [x] \mod f$. Prueba que K es un cuerpo.
 - c) Halla un elemento $\beta \in K$ tal que $(\alpha^2 + \alpha + 1)\beta = 1 + \alpha$.
 - d) Indica los órdenes posibles de los elementos del grupo de unidades K^* de K. Determina, sin calcular las potencias, cúal es el orden de α en K^* .
- 6. [1,20 puntos] Determina razonadamente si son irreducibles sobre $\mathbb{Q}[x]$ los polinomios:

a)
$$f = 2x^5 - 10$$
, b) $g = 2x^3 + 3x^2 + 2x + 3$, c) $g = x^5 + 3x^2 + 5$.