175 HW1

Zongyi Han

2022-09-28

```
Data1 <- read.table("vets.txt")</pre>
colnames(Data1) <- c("Vet.time","Vet.cns")</pre>
library(survival)
vet.Surv <- Surv(Data1$Vet.time)</pre>
print(vet.Surv)
          72 411 228 126 118 10 82 110 314 100
                                                     42
                                                           8 144
                                                                  25
                                                                           30 384
     [1]
                                                                       11
##
    [19]
          54
              13 123 97 153
                                59 117
                                        16 151
                                                 22
                                                     56
                                                          21
                                                             18 139
                                                                       20
                                                                           31
##
    [37]
          18
             51 122
                       27 54
                                 7 63 392
                                            10
                                                  8
                                                     92
                                                          35 117 132
                                                                       12 162
                                                                                3
                                                                                    95
##
    [55] 177 162 216 553 278
                               12 260 200 156 182 143 105 103 250 100 999 112
                                                                                    87
    [73] 231 242 991 111
                             1 587 389
                                         33
                                             25 357 467 201
                                                                                    25
                                                               1
                                                                       44 283
  [91] 103
              21
                   13
                       87
                             2
                               20
                                     7
                                         24
                                             99
                                                  8
                                                     99
                                                          61
                                                              25
                                                                  95
                                                                       80
                                                                           51
                                                                               29
                                                                                    24
                       51 90 52
                                                      7 140 186
                                                                                    52
## [109]
         18
              83
                   31
                                   73
                                         8
                                             36
                                                 48
                                                                  84
                                                                       19
                                                                           45
                                                                               80
## [127] 164
             19 53
                      15 43 340 133 111 231 378
mean(Data1[,1])# Vet.surv == Vet.time
## [1] 121.6277
b/c data may be censored
sum(Data1$Vet.cns)
## [1] 128
sum(Data1$Vet.time*Data1$Vet.cns)
## [1] 15632
mean(vet.Surv)
## [1] 61.31387
it shows total amount of time that people did finish the study aka not-censored
Surv function is to help distinguish the use of 0/1 or 1/2 of event occurrence.
retire <- read.table("retire.txt", header=TRUE, skip=2)</pre>
library(survival)
ret.surv <- Surv(retire$time)</pre>
sfit <- survfit(ret.surv ~ 1)</pre>
plot(sfit,xlab = "time",ylab = "Survival probablity")
```


summary(sfit)

```
Call: survfit(formula = ret.surv ~ 1)
##
##
    time n.risk n.event survival std.err lower 95% CI upper 95% CI
##
       0
             462
                              0.991 0.00431
                                                     0.983
                                                                    1.000
                        4
##
       1
             458
                        1
                              0.989 0.00481
                                                     0.980
                                                                    0.999
##
       2
             457
                        5
                              0.978 0.00677
                                                     0.965
                                                                    0.992
       3
##
             452
                        5
                              0.968 0.00825
                                                     0.952
                                                                    0.984
                              0.957 0.00947
             447
##
       4
                        5
                                                     0.938
                                                                    0.975
                        2
##
       5
             442
                              0.952 0.00991
                                                     0.933
                                                                    0.972
                        2
##
       6
             440
                              0.948 0.01032
                                                     0.928
                                                                    0.969
       7
##
             438
                        4
                              0.939 0.01110
                                                     0.918
                                                                    0.961
##
       8
             434
                        7
                              0.924 0.01231
                                                     0.900
                                                                    0.949
##
       9
             427
                        3
                              0.918 0.01278
                                                     0.893
                                                                    0.943
                                                                    0.941
##
      10
             424
                        1
                              0.916 0.01293
                                                     0.891
##
      11
             423
                        3
                              0.909 0.01337
                                                     0.883
                                                                    0.936
##
      12
             420
                        5
                              0.898 0.01406
                                                     0.871
                                                                    0.926
##
      13
             415
                        3
                              0.892 0.01445
                                                     0.864
                                                                    0.921
##
             412
                        1
                              0.890 0.01458
                                                     0.861
                                                                    0.919
      14
##
      15
             411
                        3
                              0.883 0.01495
                                                     0.854
                                                                    0.913
             408
                        2
##
      16
                              0.879 0.01518
                                                     0.850
                                                                    0.909
##
      17
             406
                        2
                              0.874 0.01541
                                                     0.845
                                                                    0.905
##
      18
             404
                        5
                              0.864 0.01597
                                                     0.833
                                                                    0.896
##
      19
             399
                        5
                              0.853 0.01648
                                                     0.821
                                                                    0.886
##
      20
             394
                        1
                              0.851 0.01658
                                                     0.819
                                                                    0.884
```

##	21	393	1	0.848 0.01668	0.816	0.882
##	22	392	6	0.835 0.01725	0.802	0.870
##	23	386	2	0.831 0.01743	0.798	0.866
##	24	384	4	0.823 0.01778	0.788	0.858
##	26	380	5	0.812 0.01819	0.777	0.848
##	27	375	4	0.803 0.01850	0.768	0.840
##	28	371	2	0.799 0.01865	0.763	0.836
##	29	369	1	0.797 0.01873	0.761	0.834
##	30	368	1	0.794 0.01880	0.758	0.832
##	31	367	5	0.784 0.01916	0.747	0.822
##	32	362	3	0.777 0.01936	0.740	0.816
##	33	359	3	0.771 0.01956	0.733	0.810
			5		0.722	
##	34	356		0.760 0.01988		0.800
##	35	351	8	0.742 0.02034	0.704	0.783
##	36	343	6	0.729 0.02067	0.690	0.771
##	37	337	4	0.721 0.02087	0.681	0.763
##	38	333	3	0.714 0.02102	0.674	0.757
##	39	330	3	0.708 0.02116	0.668	0.751
##	40	327	3	0.701 0.02129	0.661	0.744
##	41	324	5	0.690 0.02151	0.650	0.734
##	42	319	2	0.686 0.02159	0.645	0.730
##	43	317	2	0.682 0.02167	0.641	0.726
##	44	315	3	0.675 0.02179	0.634	0.719
##	45	312	2	0.671 0.02186	0.629	0.715
##	46	310	3	0.665 0.02197	0.623	0.709
##	47	307	1	0.662 0.02200	0.621	0.707
##	48	306	1	0.660 0.02204	0.618	0.705
##	49	305	1	0.658 0.02207	0.616	0.703
##	50	304	2	0.654 0.02214	0.612	0.699
##	51	302	1	0.652 0.02217	0.609	0.696
##	52	301	3	0.645 0.02226	0.603	0.690
##	53	298	2	0.641 0.02232	0.598	0.686
##	54	296	2	0.636 0.02238	0.594	0.682
			3			0.675
##	56	294		0.630 0.02246	0.587	
##	57 50	291	4	0.621 0.02257	0.579	0.667
##	58	287	4	0.613 0.02267	0.570	0.659
##	59	283	3	0.606 0.02273	0.563	0.652
##	60	280	3	0.600 0.02280	0.557	0.646
##	61	277	3	0.593 0.02286	0.550	0.640
##	62	274	1	0.591 0.02287	0.548	0.637
##	63	273	2	0.587 0.02291	0.543	0.633
##	64	271	1	0.584 0.02293	0.541	0.631
##	65	270	4	0.576 0.02299	0.532	0.623
##	66	266	1	0.574 0.02301	0.530	0.621
##	67	265	4	0.565 0.02307	0.521	0.612
##	68	261	3	0.558 0.02310	0.515	0.606
##	69	258	2	0.554 0.02313	0.511	0.601
##	70	256	2	0.550 0.02315	0.506	0.597
##	71	254	4	0.541 0.02318	0.498	0.589
##	72	250	3	0.535 0.02321	0.491	0.582
##	73	247	3	0.528 0.02323	0.485	0.576
##	74	244	6	0.515 0.02325	0.472	0.563
##	76	238	1	0.513 0.02325	0.469	0.561
##	77	237	1	0.511 0.02326	0.467	0.559
			-		J. 20.	0.000

##	78	236	1	0.509 0.02326	0.465	0.556
##	79	235	1	0.506 0.02326	0.463	0.554
##	80	234	2	0.502 0.02326	0.459	0.550
##	81	232	1	0.500 0.02326	0.456	0.548
##	82	231	2	0.496 0.02326	0.452	0.543
##	83	229	3	0.489 0.02326	0.446	0.537
##	85	226	2	0.485 0.02325	0.441	0.533
##	86	224	2	0.481 0.02324	0.437	0.528
##	87	222	3	0.474 0.02323	0.431	0.522
##	88	219	1	0.472 0.02323	0.428	0.520
##	89	218	3	0.465 0.02321	0.422	0.513
##	90	215	3	0.459 0.02318	0.416	0.507
##	91	212	1	0.457 0.02317	0.413	0.504
##	92	211	1	0.455 0.02317	0.411	0.502
##	93	210	1	0.452 0.02316	0.409	0.500
##	94	209	1	0.450 0.02315	0.407	0.498
##	95	208	2	0.446 0.02313	0.403	0.494
##	96	206	2	0.442 0.02310	0.399	0.489
##	97	204	1	0.439 0.02309	0.396	0.487
##	98	203	3	0.433 0.02305	0.390	0.481
##	99	200	1	0.431 0.02304	0.388	0.478
##	100	199	4	0.422 0.02298	0.379	0.470
##	101	195	2	0.418 0.02295	0.375	0.465
##	102	193	1	0.416 0.02293	0.373	0.463
##	103	192	3	0.409 0.02287	0.367	0.456
##	104	189	1	0.407 0.02286	0.365	0.454
##	105	188	2	0.403 0.02282	0.360	0.450
##	106	186	2	0.398 0.02278	0.356	0.446
##	107	184	1	0.396 0.02275	0.354	0.443
##	108	183	4	0.387 0.02267	0.345	0.435
##	109	179	1	0.385 0.02264	0.343	0.432
##	110	178	4	0.377 0.02254	0.335	0.424
##	111	174	4	0.368 0.02244	0.327	0.415
##	112	170	2	0.364 0.02238	0.322	0.410
##	113	168	3	0.357 0.02229	0.316	0.404
##	114	165	1	0.355 0.02226	0.314	0.401
##	115	164	4	0.346 0.02214	0.306	0.393
##	116	160	1	0.344 0.02210	0.303	0.390
##	117	159	2	0.340 0.02204	0.299	0.386
##	118	157	3	0.333 0.02193	0.293	0.379
##	119	154	2	0.329 0.02186	0.289	0.375
##	120	152	3	0.323 0.02175	0.283	0.368
##	122	149	2	0.318 0.02167	0.278	0.364
##	123	147	4	0.310 0.02151	0.270	0.355
##	124	143	1	0.307 0.02147	0.268	0.352
##	125	142	1	0.305 0.02142	0.266	0.350
##	126	141	1	0.303 0.02138	0.264	0.348
##	127	140	3	0.297 0.02125	0.258	0.341
##	128	137	2	0.292 0.02116	0.254	0.337
##	129	135	2	0.288 0.02106	0.249	0.332
##	130	133	1	0.286 0.02102	0.247	0.330
##	132	132	2	0.281 0.02092	0.243	0.326
##	133	130	1	0.279 0.02087	0.241	0.323
##	135	129	3	0.273 0.02072	0.235	0.317

136 126 2 0.268 0.02062 0.231 0.312 ## 137 124 124 0.000 NaN NA NA

In first 50 month , survival probability is pretty high, at least greater than 65% But the probability is steadlly decreasing