Obliczenia naukowe

Michał Liebner

Lista 2 - Sprawozdanie

1 Zadanie 1

1.1 Opis zadania

Zadanie polega na powtórzeniu zadania 5 z listy 1, ale ze zmienionymi danymi oraz na zaobserwowaniu zmian w wynikach.

1.2 Rozwiazanie

Do wykonania zadania usunałem ostatnia 9 z x_4 i ostatnia 7 z x_5 .

1.3 Wyniki

algorytm	Float32	Float64
a	-0.4999443	-0.004296342739891585
b	-0.4543457	-0.004296342998713953
С	-0.5	-0.004296342842280865
d	-0.5	-0.004296342842280865

1.4 Wnioski

W arytmetyce Float64 algorytmy zwróciły wyraźnie inne wyniki w porównaniu do poprzedniej listy. Arytmetyka Float32 jest na tyle nieprecyzyjna, że zmiany nie miały wpływu na wynik niezależnie od algorytmu. Wnioskujac można stwierdzić, że zadanie jest źle sformułowane.

2 Zadanie 2

2.1 Opis zadania

Zadanie polega na przedstawieniu graficznie wykresu funkcji $f(x) = e^x ln(1+e^{-x})$ w dwóch programach do wizualizacji, i porównianie rezultatu z granica funkcji.

2.2 Rozwiazanie

Do wykonania zadania wykorzystałem programy wolframalpha oraz gnuplot.

2.3 Wyniki

Granica funkcji wynosi $\lim_{x\to\infty}e^xln(1+e^{-x})=1$

Rysunek 1: f(x) przy użyciu WolframAlpha

Rysunek 2: f(x) przy użyciu WolframAlpha

2.4 Wnioski

Jak widać wyniki dla wartości powyżej 30 odbiegaja od oczekiwanej wartości, nastepnie spadaja do zera. Problemem jest wyrażenie $ln(1+e^{-x})$, które wraz ze wzrostem x jest bliższe 0, i dochodzi przez to do mnożenia liczby dużej z bardzo mała, przez co wystepuje redukcja cyfr znaczacych.

3 Zadanie 3

3.1 Opis zadania

Zadanie polega na rozwiazaniu układu równań liniowych Ax=b dla danej macierzy i wektora prawych stron. Macierz A ma być generowana w dwa sposoby, za pomoca macierzy Hilberta stopnia n oraz losowa macierz stopnia n z zadanym wskaźnikiem uwarunkowania c.

3.2 Rozwiazanie

Do wykonania zadania usunałem ostatnia 9 z x_4 i ostatnia 7 z x_5 .

3.3 Wyniki

Hilberta

n	rzad	wskaźnik	gauss	inv
1	1	1.0	0.0	0.0
3	3	524.0567775860644	0.0	8.022593772267726e-15
5	5	476607.2502422687	3.3544360584359632e-12	1.6828426299227195e-12
7	7	4.753673565951153e8	4.713280397232037e-9	1.2606867224171548e-8
9	9	4.931537515809997e11	4.541268303176643e-6	3.8751634185032475e-6
11	10	5.2226804749116575e14	0.007618304284315809	0.00015827808158590435
13	11	3.34217248639341e18	5.331275639426837	$0.11039\overline{70}1117868264$
15	12	3.6743929593002394e17	7.344641453111494	4.696668350857427
17	12	8.071201600898528e17	10.516942378369349	13.707236683836307
19	13	5.262951478041029e18	12.233761393757726	9.720589712655698
21	13	3.290040173498695e18	43.4753048667801	56.40267595616145
23	13	6.063817864183405e17	13.803784630487236	12.483655076018373
25	13	$1.3792345109002952\mathrm{e}{18}$	16.93987792970947	10.15919484338797
27	14	4.2868617158836316e18	28.105714901589447	30.802979621424512
29	14	8.277464412337125e18	267.9428700307017	17.744955787688642

3.4 Wnioski

Jak widać wyniki dla wartości powyżej 30 odbiegaja od oczekiwanej wartości, nastepnie spadaja do zera. Problemem jest wyrażenie $ln(1+e^{-x})$, które wraz ze wzrostem x jest bliższe 0, i dochodzi przez to do mnożenia liczby dużej z bardzo mała, przez co wystepuje redukcja cyfr znaczacych.