

SAVEETHA SCHOOL OF ENGINEERING SIMATS MLA03 REINFORCEMENT LEARNING

LIST OF EXPERIMENTS

S. No	Title	СО
1	Induce a Mouse-pile of cheese strategy to get maximum rewards for the mouse in 3	CO1
	X 4 grid using Bellman Equation using python in a reinforcement Learning environment.	CO6
2	A Fire of value -1 and Maximum Reward of Value 1 placed on the (1,4) and (2,4)	CO1
	place of matrix and you are placed on the initial block of (1,1) on the matrix, through	CO6
	Reinforcement learning Strategy. Write a program to obtain the maximum reward using python.	
3	Demonstrate the functions behind state and policies in Reinforcement Learning using	CO1
	Python through a 2 X 2 grid.	CO6
4	Demonstrate Bell-man equation functionality in Reinforcement Learning using	CO1
	Python through 3 X 3 grid.	CO6
5	Write a python program using Neural Networks for demonstrating Reinforcement	CO1
	Agent, Environment and Reward.	CO6
6	Demonstrate the value when exploitation mechanism is implemented into the input	CO1
7	matrix of 6 X 4. Display and visualiza the difference in Learning of Exploitation and Expectation	CO6 CO1
'	Display and visualize the difference in Learning of Exploitation and Expectation mechanisms by an agent in a Reinforcement Learning Environment using Python	CO1 CO6
	Programming.	CO0
8	Using Tensor flow RL library create an environment, agent and demonstrate Rewards	CO1
	and Punishments within the Reinforcement learning environment	CO6
9	Using Monte carlo method, induce a reinforcement Learning Environment for getting	CO1
	Maximum reward.	CO6
10	Consider a news recommendation System has been handled to you, an requirement	CO1
	of making the efficient news to be recommended is taken as the reward, through	CO6
	python implement how you obtain the maximum reward through TD(0) mechanism.	
11	Induce the concept of dynamic programming and explain the efficiency in terms of	CO1
	computational complexity for reinforcement Learning environment using Python Programming	CO6
12	Consider you are playing a game of X and O, The System is getting constantly	CO1
	defeated by you. The System decides to enhance SARSA technique to enhance its	CO6
10	game play strategies. Write a program for the system to plan with the help of python.	
13	A Mario game is played by Agent, the agent keeps on moving over, The System	CO2
	decides to tough the levels, how can a system induce Q-Learning technique to	CO7
14	enhance its game play strategies and the compiler used for the game is python. You are given a 3D realistic environment in a traveler game. With a help of python	CO1
14	interpreter and inducing temporal difference strategies, write a program to optimize	CO1
	the selection strategy and attain maximal travel using python program.	230
15	Consider three trains running on respective tracks. Each of the train is based on	CO1
	various algorithms of temporal difference learning say, Train A is induced with TD(0)	CO6
	algorithm, Train B is powered by SARSA algorithm and Train C with Q- Learning.	
	Using a python script reveal which train outperforms the other in terms of efficiency	
	by attaining maximal reward at less number of computational steps.	
16	Consider you are playing a game of Tic-Tac-Toe, The System is getting constantly	CO1
	defeated by you. The System decides to enhance its reward maximization technique	CO6
	to enhance its game play strategies. Write a program to system for planning a	
	Temporal difference strategy it will choose with the help of python programming.	

17	Demonstrate the need for Deep - Q- Learning as your autonomous vehicle's detecting	CO2
10	efficiency is declining with a help of a program.	CO7
18	In a game of chess, your opponent wants to carry over mate as soon as possible but	CO2
	you enhance the way of deep - Q- learning method of handling the game, explain why	CO7
	and how will you win through a Python Program?	
19	Consider you are the manager of a Finance Company; the target of the month has not	CO2
	been achieved and you are in trouble. You come to know that your Q Learning System	CO7
	not performing well as the numbers of customers have increased, the correction	
	decision would be increasing the layers of the DQN. Write a program to enhance	
	DQN and transform it into DDQN	
20	You are given a 3D realistic environment in a traveller game. With a help of python	CO2
	intrepreter and inducing temporal difference strategies, explain the increase in	CO7
	performance difference between a DQN and DDQN through python.	
21	In a maze game, the agent keeps on moving over, The System decides to tough the	CO2
	levels, how can a system induce a Duel DQN to enhance its game play strategies. The	CO7
	compiler used for the game is python.	
22	You run Book my Show application, a requirement of making the efficient mapping	CO2
	of user interests to be recommended is the need of the hour, Your higher officials	CO7
	suggest to increase the depth of the Q- Network but you defend them by saying	
	Duelling would help. Prove them by providing the code of lines using python.	~~-
23	Consider two robots are running on respective tracks. Each of the robots is built with	CO2
	the various Q-learning models say, Robot 1 is induced with DQN, and Robot 2 is	CO7
	powered by DDQN and Robot 3 with DDDQN. On using a python script reveal which	
	Robot would outperforms the other in terms of efficiency by attaining maximal	
2:	reward at less number of computational steps.	
24	Consider we are playing a game of Mice and Cheese. The Mice is getting only single	CO1
	pile of cheese instead of the group of cheese. The System decides to enhance its	CO6
25	reward maximization technique to enhance its game play strategies. Enhance a Q-	
	table and train the mice to get the Big pile of cheese.	CO2
25	Consider you are playing a game of Mice and Cheese. The Mice is located next to the	CO2
	poison block. The System wrongly detects Minimum reward and instructs the mouse	CO7
	to move over to the minimal Reward block. What will save the mouse by inducing	
26	the Duelling DQN network strategy to enhance and maximize its reward	
	maximization technique to enhance its game play strategies? Enhance a Q-table and	
	train the mice to get the Big pile of cheese.	CO1
26	You are Mario in the given game and the main task is to guide the queen to castle,	CO1
	you have been instructed to use the Prioritised Experience Replay Strategy to guide	CO6
	the queen from obstacles and reach castle at the earliest move, Write the code for the solution.	
27	A Scientist in a product development company which produces a stick which helps	CO1
	Visually Challenged People, the company wants to optimize the cost of the stick as	CO1 CO6
	the rule-based instructions make them higher time complexity, so they ask the	200
	Scientist to develop a stick based on the learning strategy for the model which is to	
	be based on the previous experiences present in the video recordings of the dataset.	
	Help the scientist to successfully tweak the code and induce the strategy.	
28	A Scientist in a Autonomous Car development company which produces self-drive	CO2
20	cars. But some obstacles are shown wrongly leading do driving complexity, so they	CO7
	ask the Scientist to develop a Robust Learning algorithm with the help of deep Q	207
	learning strategies. You advise the Scientist to decide whether its DQN or DDQN or	
	Dueling DQN strategy to overcome this problem addressed with the help of python	
	code.	
29	Consider a line following robot are running on a line. The robot's efficiency is very	CO1
	less so enhance the robot's steps by trial and error method by inducing a Vanilla	CO6
	Policy Gradient mechanism.	230
30	You are a Stock Market advisor, now there is a need to develop a learning engine	CO2
30	which will advice you get maximum Profit investment through Probabilistic values	CO7
	of the historical data processing, Use Vanilla Policy Gradient for structuring the	
	recording the	

	highest return Policies.	
31	A robot dog you are building that is to be running on a zig zag lines. The robot's	CO3
	efficiency is very less as it needs to enhance both actions simultaneously and	CO6
	asynchronously, propose a method how you will induce an algorithm to make it work	
	efficiently using Actor-critic method.	
32	We are instructed by your mentor to build a stop clock which will be running	CO3
	asynchronously showing variation of different timing around the world. Now, we	CO6
	need to find which of two methods will be suitable for the development whether A2C	
	or A3C through experimentation in python.	
33	We are instructed by your mentor to build a stop clock which will be running	CO3
	asynchronously showing variation of different timing around the world. Implement	CO6
	A2C or A3C and give the Optimal policy designing framework.	
34	We are a Stock Market advisor, now there is a need to develop a learning engine	CO1
	which will advice you get maximum Profit investment through Probabilistic values	CO6
	of the historical data processing, where Vanilla Policy Gradient is returning Lower	
	values, so move onto the Advance Gradient policy Methods and decide which gives	
	us the best output.	
35	We run Google Maps, a discrepancy of less quality policies are returning to customers	CO4
	which makes them to choose low optimal strategies, CEO advises you to choose PPO	CO6
	for inducing optimality. Prove it through python coding.	
36	We are running a Money lending company, now there is a need to develop a learning	CO2
	engine which will advise we get maximum Profit investment through Probabilistic	CO7
	values of the historical data processing of the Customers, where Vanilla Policy	
	Gradient is returning Lower values, so move onto the Advance Gradient policy	
	Methods and decide which gives you the best output.	
37	In a maze game is, the agent keeps on moving over, but still not retained an Optimal	CO4
	Policy. As we are the developer of the Game keep an update to Policy options through	CO6
	DDPG algorithm	
38	We are driving a bus in Simulation environment, a discrepancy of less quality policies	CO3
	are returning you a low value points in your simulation Quality which makes them to	CO6
	choose low optimal strategies, based on the necessity we decide to choose DDPG for inducing optimality. Prove it through python code.	