

CONCRETO DOSADO EM CENTRAL (CDC)

Pontos importantes

Eng.º Arcindo Vaquero y Mayor Consultor técnico

PRINCIPAIS PONTOS

- 1. Especifique o concreto corretamente
- 2. Cuidado a trabalhabilidade do concreto
- 3. Escolha a concreteira
- 4. Contrate um bom laboratório de controle tecnológico
- 5. Receba corretamente o concreto na obra
- 6. Ajuste a trabalhabilidade do concreto
- 7. Descarregue os caminhões imediatamente após sua chegada
- 8. Amostre o concreto adequadamente
- 9. Saiba exatamente onde o concreto foi aplicado: carga a carga
- 10. Não use concreto de duas ou mais empresas na mesma obra

1 - Especifique o concreto corretamente

- O projetista tem todas as informações para fazer uma correta especificação. É importante estabelecer idades de controle e os seus limites de resistência aceitáveis.
- Use as resistências da NBR 8953, conforme tabela 1.
- Informe uma das quatro classes de agressividade ambiental do local onde a obra está situada, conforme a NBR 12655 (tabela 2).
- Em função da classe de agressividade ambiental e dos dados de projeto, incluindo a informação se o concreto é armado (CA) ou protendido (CP), especifique: o fator a/c, a classe do concreto e consumo mínimo de cimento conforme tabela 3.

Tabela 1 - Classes de resistência de concretos			
Estruturais			
Grupo I			
Classe de	Resistência característica à		
resistência	compressão (Mpa)		
C20	20		
C25	21		
C30	22		
C35	23		
C40	24		
C45	25		
C50	26		
	Grupo II		
Classe de	Resistência característica à		
resistência	compressão (Mpa)		
C55	55		
C60	60		
C70	70		
C80	80		
C90	90		
C100	100		

^{*} Para os concretos do grupo II permite-se, na ausência de Norma Brasileira em vigor, adotar os critérios de projeto estrutural de Normas Internacionais.

Não estruturais			
Classe de	Resistência característica à		
resistência	compressão (Mpa)		
C10	10		
C15	15		

Tabela 2 - Classes de agressividade ambiental

Classe de agressividade	Agressividade	Classificação geral do tipo de	Risco de deterioração da	
ambiental	Agressividade	ambiente para efeito de	estrutura	
I	Fraca	Rural; Submersa	Insignificante	
li li	Moderada	Urbana ^{1 2} ; Marinha ¹	Pequeno	
III	Forte	Industrial ¹²³	Grande	
IV	Muito forte	Respingos de maré	Elevado	

¹ Pode-se admitir ummicroclima com uma classe de agressividade mais branda (um nível acima) para ambientes internos secos (salas, domitórios, banheiros, cozinhas e áreas de serviço de apartamentos residênciais e conjuntos residênciais ou ambientes com concreto revestido com argamassa e printura).

Tabela 3 - Correspondência entre classe de agressividade e qualidade do concreto.

Concreto	Tipo	Classe de agressividade (Tabela 1)			
Concreto		- 1	II	III	IV
	CA	≤ 0,65	≤ 0,60	≤ 0,55	≤ 0,45
Relação água/cimento em massa	CP	≤ 0,60	≤ 0,55	≤ 0,50	≤ 0,45
Classe de concreto (ABNT NBR	CA	≥ 0,20	≥ 0,25	≥ 0,30	≥ 0,40
8953)	CP	≥ 0,25	≥ 0,30	≥ 0,35	≥ 0,40
Consumo de cimento por m³ de concreto (kg/m³)	CA e CP	≥ 260	≥ 280	≥ 320	≥ 360

Nota CA: Componentes e elementos estruturais de concreto armado.

CP: Componentes e elementos estruturais de concreto protendido.

² Pode-se admitir uma classe de agressividade mais branda (um nivel acima) em obras em regiões de clima seco, com umidade relativa do ar menor ou igual a 65%, partes da estrutura protegidas de chuva emambientes predominantemente seco, ou regiões onde chove raramente.

³ Ambientes quimicamente agressivos, tanques industriais, galvano plastia, branqueamento em indústrias de celulose e papel, armazéns de fertilizantes e indústrias químicas.

2 - Cuidando a trabalhabilidade do concreto

- Use a NBR 8953 que classifica os concretos em 6 classes de consistência (tabela 4).
- Atenção para concretos usados em estruturas convencionais, use concretos plásticos ou fluidos, evitando o uso de concretos de secos, que exigem intensa vibração.

Tabela 4 - Classes de consistência

Classe	Abatimento (mm)	Aplicações típicas
S10	10 ≤ A < 50	Concreto extrudado, vibroprensado oucentrifugado.
S50	50 ≤ A< 100	Alguns tipos de pavimentos, de elementos de fundações e de elementos pré-moldados ou pré- frabricados.
S100	100 ≤ A < 160	Elementos estruturais correntes como lajes, vigas, pilares, tirantes, pisos, com lançamentos convencional do concreto.
\$160	160 ≤ A < 220	Elementos estruturais correntes como lajes, vigas, pilares, tirantes, pisos, paredes diafragmas, com concreto lançado por bombeamento, estacas escavadas por meio de caçambas.
S220	> 220	Estruturas e elementos estruturais esbeltos ou com alta densidade de armaduras comconcreto lançado por bombeamento, lajes de grandes dimensões, elementos pré-moldados ou pré-fabricados de concreto, estacas escavadas lançadas por meio de caçambas.

Nota 1 - De comum acordo entre as partes, podem ser criadas classes especiais de consistência explicitando a respectiva faixa de variação do abatimento

Nota 2 - Os exemplos desta tabela são ilustrações e não abrangem to dos os tipos de aplicações

3 – Escolha a concreteira

- Considere sua experiência (curriculum);
- Localização.
- Visite as instalações da central dosadora que vai atender a obra: converse com os funcionários; observe o estado de limpeza das instalações e da frota; n conheça o laboratório da central e veja se os equipamentos estão calibrados.
- Se possível, leve o projetista e faça muitas perguntas!.

4 – Contrate um bom laboratório de controle tecnológico

- Um laboratório que tenha um bom tecnologista do concreto. Ele trabalhará em conjunto com o projetista e a concreteira para otimizar o concreto e consequentemente a estrutura. Visite o laboratório; converse com seus funcionários; observe o estado e limpeza das instalações; Veja se os equipamentos estão calibrados e a quanto tempo.
- O tecnologista de concreto poderá acompanhar dosagem, planos de concretagem, análise de resultados, eficiência do laboratório etc.
- Para executar os ensaios, a qualidade da mão de obra é muito importante e, para isso, o IBRACON certifica técnicos habilitados em fazer os ensaios adequadamente.
- O laboratório deve informar os resultados dos corpos de prova nas idades de controle e calcular o fck estimado de cada lote o mais rápido possível.
- Dê preferencia a laboratórios que façam parte da Rede Brasileira de Laboratórios de Ensaio – RBLE, que é o conjunto de laboratórios acreditados pelo INMETRO para a execução de serviços de ensaio.

5 – Receba corretamente o concreto na obra

- Confira a nota fiscal e quebre o lacre da "bica"
- Não descarregue o concreto se houverem divergências com o que foi contratado!!!

6 – Ajuste a trabalhabilidade do concreto

 Repondo a água que foi retida na central e colocando o aditivo para possíveis ajustes, conforme a NBR 7212. isso tem ser feito uma única vez!!!!

7 – Descarregue os caminhões imediatamente

- A trabalhabilidade e a resistência caem ao longo do tempo em que o concreto está dentro da betoneira.
- Atenção: não adicione nenhum material ao concreto que não tenha sido previamente acertado com a concreteira!!

8 – Amostre o concreto adequadamente

- Meça a trabalhabilidade antes do início da descarga e molde os corpos de prova no terço médio da betoneira.
- O método de moldagem dos corpos de prova está relacionado com a trabalhabilidade do concreto e com o tamanho dos corpos de prova.

9 – Saiba exatamente onde o concreto foi aplicado: carga a carga

- Conheça os resultados dos corpos de prova moldados pela concreteira e compare com os seus resultados
- Caso tenha alguma divergência de valores, comunique o projetista e a concreteira imediatamente.

10 – Não use concreto de duas ou mais empresas na mesma obra

 Certamente aplicando os pontos acima vamos obter estruturas mais seguras e mais duráveis.

FIM

