Lab. - Speech Analysis & Feature Extraction

Yuan-Fu Liao

National Taipei University of Technology

Python library for Speech Analysis, Feature Extraction & Data Augmentation

- Speech Analysis & Feature Extraction
 - Librosa Python library for audio and music analysis
 - https://github.com/librosa/librosa
 - Parselmouth Praat in Python, the Pythonic way
 - https://github.com/YannickJadoul/Parselmouth
- Data Augmentation
 - Rubberband An audio time-stretching and pitch-shifting library and utility program
 - https://github.com/breakfastquay/rubberband

Speech Production

Speech vocoding

Spectrogram

- x = librosa.stft(audio, n_fft=2048, hop_length=480)
- librosa.display.specshow(librosa.amplitude_to_db(np.abs(x)), sr=sr)

Pitch Tracking

- pitches, magnitudes = librosa.piptrack(y=audio, sr=sr)
- plt.imshow(pitches[:, :], aspect="auto", interpolation="nearest", origin="bottom")

Resampling

audio = librosa.resample(audio, orig_sr=sr, target_sr=target_sr)

NarrowBand and WideBand Spectrogram

- x = librosa.stft(audio, n_fft=2048, hop_length=80)
- x = librosa.stft(audio, n_fft=128, hop_length=80)

Pitch Detection Algorithms

Normalized Cross Correlation Function (NCCF)

$$NCCF(m) = \frac{\sum_{n=0}^{N-m-1} x(n) \cdot x(n+m)}{\sqrt{\sum_{n=0}^{N-m-1} x^{2}(n) \cdot \sum_{n=0}^{N-m-1} x^{2}(n+m)}}, \quad 0 \le m \le M_{0}$$

Harmonic Product Spectrum

HPS

Pitch Contour Extraction

- snd = parselmouth.Sound(human_sound_file)
- snd.resample(new_frequency=16000)
- pitch = snd.to_pitch()

Mel-Scaled Spectogram

audio = librosa.resample(audio, orig_sr=sr, target_sr=target_sr)

MFCCs

mfcc = librosa.feature.mfcc(S=log_S, n = _mfcc=13)

-10 dB

-20 dB

-30 dB

-40 dB

-50 dB

-60 dB

-70 dB

Audio Time-Stretching and Pitch-Shifting

Audio Time-Stretching and Pitch-Shifting

- time = 2.0
- pitch = 8.0
- !rubberband -t \$time -p \$pitch \$human_sound_file output.wav

