

Design of a diagnosis and follow-up platform for patients with chronic headaches

Kiani Lannoye & Gilles Vandewiele

Faculty of Engineering and Architecture

Intro

Current process UH Ghent

Platform requirements

Mobile application

Backend and data exposure

Machine learning

Doctor dashboard

Conclusion & future work

2 / 48

Headaches

Headaches

(Headaches)

ARCHITECTURE

Headaches

Headaches
Primary headaches

ARCHITECTURE

Headaches

Headaches

Headaches

Current process UH Ghent

Current process at UH Ghent is:

- ► Not digital
- **▶** cumbersome
- ► long-lasting

So there is need for a better (digital) alternative! This alternative has to:

- ▶ capture at least the same information as current solution
- ▶ be more efficient.
- provide a second opinion for the doctors (auto-diagnose)

Intro

Platform requirements

Mobile application

Backend and data exposure

Machine learning

Doctor dashboard

Conclusion & future work

Platform requirements 7 / 48

Platform requirements

Our proposed alternative consists of:

- ► Headache journal: mobile app
- ► Doctor Dashboard: web application
- ► Machine learning module: decision support

Solution non-functional requirements:

- ► Security
- ► Availability
- ► Performance & learning curve

► Usability

Platform requirements 8 / 48

Platform requirements

Platform requirements 9 / 48

Intro

Platform requirements

Mobile application Chronicals

Backend and data exposure

Machine learning

Doctor dashboard

Conclusion & future work

Mobile application 10 / 48

Mobile Application

Mobile application 11 / 48

ARCHITECTURE

Mobile Application

Mobile application 11 / 48

Mobile Application

Why create a new application?

Competition

- ► Migraine Buddy
- ► Headache Diary
- ► Pfizer headache journal

Mobile application 12 / 48

Mobile Application

Why create a new application?

Competition

- ► Migraine Buddy
- ► Headache Diary
- ► Pfizer headache journal

All good, but:

Mobile application 12 / 48

Mobile Application

Why create a new application?

Competition

- ► Migraine Buddy
- ► Headache Diary
- ► Pfizer headache journal

All good, but:

- ▶ none captures all data needed
- ▶ none offers usable data export

Mobile application 12 / 48

Cross platform vs Native

	Native	Cross-platform
+	+ Native UX	+ 1 language
	+ device-specific features	+ Write once, run everywhere
	+ Better performance	+ Less maintenance
-		- Slower (lower performance)
	- Multiple languages	- Less device specific
	- Time consuming	features
	(development)	- Harder to release online
		(Play Store/App Store)

Mobile application 13 / 48

Cross platform vs Native

	Native	Cross-platform
	+ Native UX	+ 1 language
+	+ device-specific features	+ Write once, run everywhere
	+ Better performance	+ Less maintenance
-		- Slower (lower performance)
	- Multiple languages	- Less device specific
	- Time consuming	features
	(development)	- Harder to release online
		(Play Store/App Store)

Mobile application 13 / 48

ARCHITECTURE

Chronicals

ARCHITECTURE

Chronicals

Chronicals

ARCHITECTURE

Chronicals

Intro

Platform requirements

Mobile application

Backend and data exposure

Machine learning

Doctor dashboard

Conclusion & future work

ARCHITECTURE

Backend and data exposure

Backend and data exposure

Backend and data exposure

Components

- ► Database
- ► Connection to App
- ► Connection to Docter Dashboard
- ► Connection Machine learning module

System

System

ARCHITECTURE

Intro

Platform requirements

Mobile application

Backend and data exposure

Machine learning

Doctor dashboard

Conclusion & future work

Machine learning 20 / 48

Machine learning

Machine learning 21 / 48

Machine learning

ARCHITECTURE

Machine learning 21 / 48

Genetic merging of DT's

C4.5 (C5.0)

CART

QUEST

→ Which tree is the most beautiful?

Machine learning Introduction 22 / 48

Current ensembles lack interpretability

Boosting, bagging, random forests, etc. require majority voting (classification) or mean calculation (regression) to obtain prediction

Machine learning Introduction 23 / 48

Current ensembles lack interpretability

The final decision tree obtained by **stacking** contains uninterpretable internal nodes

Machine learning Introduction 24 / 48

Decision tree \rightarrow decision space

Converting decision trees to decision spaces

We can define a one-to-one mapping between a decision tree and a set of k-dimensional hyperplanes (k = # features), called **decision space**. Each node in the decision tree corresponds to a hyperplane in the decision space.

Machine learning Merging different DT's 25 / 48

Decision tree \rightarrow decision space

Machine learning Merging different DT's 26 / 48

FACULTY OF ENGINEERING AND
ARCHITECTURE

Merging decision spaces

FACULTY OF **ENGINEERING AND ARCHITECTURE**

Merging decision spaces

FACULTY OF ENGINEERING AND ARCHITECTURE

Pruning decision spaces

Decision space \rightarrow decision tree

Converting decision spaces to decision trees

One-to-one mapping from decision tree to space is lost during conversion because the order is lost. Therefore, a **heuristic** approach must be taken, identifying **hyperplane candidates** and calculating a metric to choose the 'best' plane.

Machine learning Merging different DT's 28 / 48

ARCHITECTURE

Decision space \rightarrow decision tree

Machine learning Merging different DT's 29 / 48

FACULTY OF ENGINEERING AND ARCHITECTURE

${\sf Decision \ space} \to {\sf decision \ tree}$

Machine learning Merging different DT's 29 / 48

Decision space \rightarrow decision tree

Finding 'best' candidate hyperplane

Apply metric function to each plane, these include:

- ▶ information gain and Gini
- ▶ pick plane from most correlated feature
- ▶ pick plane that divide space in two most equal subspaces
- combination

FACULTY OF ENGINEERING AND ARCHITECTURE

ACULTY OF ENGINEERING AND ARCHITECTURE

Splitting the data

Generate different decision trees

Machine learning Genetic algorithm 33 / 48

ARCHITECTURE

Generate different decision trees

Machine learning Genetic algorithm 34 / 48

Genetic merging

PopulationRanker

Fitness function

A high accuracy is the most important property of a decision tree, followed by its' size (\rightarrow comprehensibility). Genetic algorithms are well suited for **multi-objective optimization**.

Machine learning Genetic algorithm 36 / 48

Final iteration

ARCHITECTURE

Headache dataset

Data collection could only start in March:

- ▶ the mobile application had to be finished first
- ▶ an ethical committee had to approve our application

 \rightarrow too few samples for machine learning

Machine learning Genetic algorithm 38 / 48

Evaluating our algorithm

5 datasets from UCI optimal parameters, feature selection when needed and k-fold CV

Name	#Samples	#Disc	#Cont	#Class	Imbalance rate
Heart	270	7	6	2	0.058
Car	1728	6	0	4	0.225
Iris	150	0	4	3	0
Shuttle	14500	0	9	7	0.18308
Nursery	12960	8	0	5	0.1498

Machine learning Genetic algorithm 40 / 48

ARCHITECTURE

Dataset	Folds	C4.5	CART	QUEST	Genetic
Heart disease	5	0.8067	0.7844	0.7844	0.8067
Heart disease	10	0.8104	0.7732	0.7881	0.7993
Iris	3	0.9533	0.9467	0.9467	0.96
ITIS	5	0.9467	0.9333	0.9467	0.9533
	3	0.9722	0.9693	0.9229	0.9693
Cars	5	0.9711	0.9682	0.9241	<u>0.9786</u>
	10	0.9756	0.9751	0.9265	<u>0.9803</u>
	3	0.9987	0.9983	0.9964	0.9988
Shuttle	5	0.9986	0.9981	0.9962	0.9988
	10	0.9990	0.9987	0.9941	0.9992
	3	0.9890	0.9431	0.9147	0.9914
Nursery	5	0.9918	0.9498	0.9251	<u>0.9958</u>
	10	0.9937	0.9568	0.9259	0.9954

ARCHITECTURE

Accuracy on nursery dataset using 10 folds

Intro

Platform requirements

Mobile application

Backend and data exposure

Machine learning

Doctor dashboard

Conclusion & future work

Doctor dashboard 42 / 48

FACULTY OF ENGINEERING AND
ARCHITECTURE

Doctor dashboard

Doctor dashboard 43 / 48

ARCHITECTURE

Doctor dashboard

Doctor dashboard 43 / 48

Doctor Dashboard

- ► Web application in order for the doctors to access the data exposed by our REST API
- ► Preferably in the form of visualizations, which allow to process a lot of data in a small amount of time
- ► Developed by Maarten Vanden Berghe

Doctor dashboard 44 / 48

Intro

Platform requirements

Mobile application

Backend and data exposure

Machine learning

Doctor dashboard

Conclusion & future work

Conclusion

▶ It is shown that the current process in the UH of Ghent can be completely digitized. Our solution can significantly improve the efficiency and reduce the frequency of consults, leading to a reduction in health care costs.

► The foundations for a diagnosis support system are built, using a genetic approach to merge different induced decision trees to obtain a single decision tree with enhanced accuracy.

Conclusion & future work 46 / 48

Future work

- ▶ Develop native applications for iOS and Android to enhance look-&-feel
- ► Re-evaluate our machine learning models on a larger headache dataset
- ► Implement more induction algorithms and ensemble techniques to create a more diverse initial population
- ► Experiment with other selection techniques and fitness functions
- ► Optimize the heuristic approach to convert decision spaces to decision trees

Conclusion & future work 47 / 48

Thank you for your attention!

Intro

Platform requirements

Mobile application

Backend and data exposure

Machine learning

Doctor dashboard

Conclusion & future work