Sistemas de Gestión

Pronósticos de Series Temporales

UTN - FRC Sistemas de Gestión - Esp. Ing. M. Gualpa, 2013

1

Pronósticos

Ejemplo tomado y adaptado de "Investigación de Operaciones – Algoritmos y Aplicaciones" de Wayne Winston. Pag. 1276

Mes	Ventas de Lowland Appliance Co.								
ivies	TV	Repro CD	Aire Acond						
1	30	40	13						
2	32	47	7						
3	30	50	23						
4	39	49	32						
5	33	56	58						
6	34	53	60						
7	34	55	90						
8	38	63	93						
9	36	68	63						
10	39	65	39						
11	30	72	37						

Mes	Ver	Ventas de Lowland Appliance Co.							
wes	TV	Repro CD	Aire Acond.						
13	38	79	36						
14	30	82	21						
15	35	80	47						
16	30	85	81						
17	34	94	112						
18	40	89	139						
19	36	96	230						
20	32	100	201						
21	40	100	122						
22	36	105	84						
23	40	108	74						
24	34	110	62						

UTN - FRC Sistemas de Gestión - Esp. Ing. M. Gualpa, 2013

Pronósticos

Método de Medias Móviles

UTN - FRC Sistemas de Gestión - Esp. Ing. M. Gualpa, 2013

VENTAS DE TV - PRONÓSTICOS MEDIA MÓVIL									
t	Xt		N=3		N=4		N=5		
	Α.	f _{t,1}	p para t	e t	p para t	Ε,	p para t	Θ,	
1	30								
2	32								
3	30	30,67							
4	39	33,67	30,67	8,33					
5	33	34,00	33,67	0,67	32,75	0,25			
6	34	35,33	34,00	0,00	33,50	0,50	32,80	1,20	
7	34	33,67	35,33	1,33	34,00	0,00	33,60	0,40	
8	38	35,33	33,67	4,33	35,00	3,00	34,00	4,00	
9	36	36,00	35,33	0,67	34,75	1,25	35,60	0,40	
10	39	37,67	36,00	3,00	35,50	3,50	35,00	4,00	
11	30	35,00	37,67	7,67	36,75	6,75	36,20	6,20	
12	36	35,00	35,00	1,00	35,75	0,25	35,40	0,60	
13	38	34,67	35,00	3,00	35,25	2,75	35,80	2,20	
14	30	34,67	34,67	4,67	35,75	5,75	35,80	5,80	
15	35	34,33	34,67	0,33	33,50	1,50	34,60	0,40	
16	30	31,67	34,33	4,33	34,75	4,75	33,80	3,80	
17	34	33,00	31,67	2,33	33,25	0,75	33,80	0,20	
18	40	34,67	33,00	7,00	32,25	7,75	33,40	6,60	
19	36	36,67	34,67	1,33	34,75	1,25	33,80	2,20	
20	32	36,00	36,67	4,67	35,00	3,00	35,00	3,00	
21	40	36,00	36,00	4,00	35,50	4,50	34,40	5,60	
22	36	36,00	36,00	0,00	37,00	1,00	36,40	0,40	
23		38,67	36,00	4,00	36,00	4,00	36,80	3,20	
24	40 34	36,67	38,67	4,67	37,00	3,00	36,80	2,80	

			VENTAS DE C	D - PRONÓSTICO	OS MEDIA MÓVIL				
t	Xt _		N=3		N=4		N=5		
,	Α.	f t,t	p para t	e t	p para t	Θ,	p para t	e t	
1	40								
2	47								
3	50	45,67							
4	49	48,67	45,67	3,33					
5	56	51,67	48,67	7,33	46,50	9,50			
6	53	52,67	51,67	1,33	50,50	2,50	48,40	4,60	
7	55	54,67	52,67	2,33	52,00	3,00	51,00	4,00	
8	63	57,00	54,67	8,33	53,25	9,75	52,60	10,40	
9	68	62,00	57,00	11,00	56,75	11,25	55,20	12,80	
10	65	65,33	62,00	3,00	59,75	5,25	59,00	6,00	
11	72	68,33	65,33	6,67	62,75	9,25	60,80	11,20	
12	69	68,67	68,33	0,67	67,00	2,00	64,60	4,40	
13	79	73,33	68,67	10,33	68,50	10,50	67,40	11,60	
14	82	76,67	73,33	8,67	71,25	10,75	70,60	11,40	
15	80	80,33	76,67	3,33	75,50	4,50	73,40	6,60	
16	85	82,33	80,33	4,67	77,50	7,50	76,40	8,60	
17	94	86,33	82,33	11,67	81,50	12,50	79,00	15,00	
18	89	89,33	86,33	2,67	85,25	3,75	84,00	5,00	
19	96	93,00	89,33	6,67	87,00	9,00	86,00	10,00	
20	100	95,00	93,00	7,00	91,00	9,00	88,80	11,20	
21	100	98,67	95,00	5,00	94,75	5,25	92,80	7,20	
22	105	101,67	98,67	6,33	96,25	8,75	95,80	9,20	
23	108	104,33	101,67	6,33	100,25	7,75	98,00	10,00	
24	110	107,67	104,33	5,67	103,25	6,75	101,80	8,20	
		Desviacio	on Absoluta Media:	5,83		7,43		8,81	
								6	

	V4	N=3			N=4		N=5		
t	Xt	f _{t,1}	p para t	Θ,	p para t	e _t	p para t	e t	
1	13								
2	7								
3	23	14,33							
4	32	20,67	14,33	17,67					
5	58	37,67	20,67	37,33	18,75	39,25			
6	60	50,00	37,67	22,33	30,00	30,00	26,60	33,40	
7	90	69,33	50,00	40,00	43,25	46,75	36,00	54,00	
8	93	81,00	69,33	23,67	60,00	33,00	52,60	40,40	
9	63	82,00	81,00	18,00	75,25	12,25	66,60	3,60	
10	39	65,00	82,00	43,00	76,50	37,50	72,80	33,80	
11	37	46,33	65,00	28,00	71,25	34,25	69,00	32,00	
12	29	35,00	46,33	17,33	58,00	29,00	64,40	35,40	
13	36	34,00	35,00	1,00	42,00	6,00	52,20	16,20	
14	21	28,67	34,00	13,00	35,25	14,25	40,80	19,80	
15	47	34,67	28,67	18,33	30,75	16,25	32,40	14,60	
16	81	49,67	34,67	46,33	33,25	47,75	34,00	47,00	
17	112	80,00	49,67	62,33	46,25	65,75	42,80	69,20	
18	139	110,67	80,00	59,00	65,25	73,75	59,40	79,60	
19	230	160,33	110,67	119,33	94,75	135,25	80,00	150,00	
20	201	190,00	160,33	40,67	140,50	60,50	121,80	79,20	
21	122	184,33	190,00	68,00	170,50	48,50	152,60	30,60	
22	84	135,67	184,33	100,33	173,00	89,00	160,80	76,80	
23	74	93,33	135,67	61,67	159,25	85,25	155,20	81,20	
24	74 62	73,33	93,33	31,33	120,25	58,25	142,20	80,20	
	<u> </u>	Desviació	n Absoluta Media:	41,37		48,13		51,42	
								8	

Pronósticos: S. Exponencial

SUAVIZAMIENTO EXPONENCIAL SIMPLE

$$A_t = \alpha x_t + (1 - \alpha) A_{t-1}$$
 $0 < \alpha < 1$
 $A_t = f_{t,k}$
 $e_t = x_t - f_{t-1,1} = x_t - A_{t-1}$

11

UTN - FRC Sistemas de Gestión - Esp. Ing. M. Gualpa, 2013

VENTAS DE TV - PRONÓSTICOS SUAVIZAMIENTO EXPONENCIAL SIMPLE α= 0,3 31,82 31,80 31,60 0,20 0,40 0,60 31,64 31,82 1,82 31,68 1,68 31,58 1,58 32,37 31,64 7,36 31,34 7,66 31,11 7,89 32,37 32,88 0,67 1,56 1,41 0,47 32,73 5,27 33,30 4,70 33,67 33,26 4,33 33 53 33 26 2,74 34 24 1,76 34 97 1,03 10 33,53 3,72 13 34,70 34,32 33,91 4,09 3,30 34,93 3,07 14 33,88 34,32 4,32 35,36 5,36 35,85 5,85 15 34.00 33.88 1,12 34.29 0,71 34.10 0,90 16 33,60 4,37 18 34,27 33,64 6,36 33,64 6,36 33,34 6,66 19 34,45 34,27 34,91 1,73 1,09 35,34 0,66 20 34.20 34.45 2.45 35.13 3,13 35.54 3,54 21 34,20 5,80 34,50 5,50 34.48 5,52 22 35,60 36,13 23 34,90 5,10 4,32 3,91 37,27 35,27 35,41 2,54 3,27 120 UTN - FRC Sistemas de Gestión - Esp. Ing. M. Gualpa, 2013

		α=	0,1		α= 0,2			α= 0,3		
t	Xt	f _{t,1}	p para t	Θ,	p para t	θ,	p para t	е,		
		32	•		•					
1	40	32,80	32,00	8,00	32,00	8,00	32,00	8,		
2	47	34,22	32,80	14,20	33,60	13,40	34,40	12,		
3	50	35,80	34,22	15,78	36,28	13,72	38,18	11,		
4	49	37,12	35,80	13,20	39,02	9,98	41,73	7,		
5	56	39,01	37,12	18,88	41,02	14,98	43,91	12,		
6	53	40,41	39,01	13,99	44,02	8,98	47,54	5,		
7	55	41,87	40,41	14,59	45,81	9,19	49,18	5,		
8	63	43,98	41,87	21,13	47,65	15,35	50,92	12,		
9	68	46,38	43,98	24,02	50,72	17,28	54,55	13,		
10	65	48,24	46,38	18,62	54,18	10,82	58,58	6,		
11	72	50,62	48,24	23,76	56,34	15,66	60,51	11,		
12	69	52,46	50,62	18,38	59,47	9,53	63,96	5,		
13	79	55,11	52,46	26,54	61,38	17,62	65,47	13,		
14	82	57,80	55,11	26,89	64,90	17,10	69,53	12,		
15	80	60,02	57,80	22,20	68,32	11,68	73,27	6,		
16	85	62,52	60,02	24,98	70,66	14,34	75,29	9,		
17	94	65,67	62,52	31,48	73,53	20,47	78,20	15,		
18	89	68,00	65,67	23,33	77,62	11,38	82,94	6,		
19	96	70,80	68,00	28,00	79,90	16,10	84,76	11,		
20	100	73,72	70,80	29,20	83,12	16,88	88,13	11,		
21	100	76,35	73,72	26,28	86,49	13,51	91,69	8,		
22	105	79,21	76,35	28,65	89,20	15,80	94,18	10,		
23	108	82,09	79,21	28,79	92,36	15,64	97,43	10,		
24	110	84,88	82,09	27,91	95,48	14,52	100,60	9,		
•		Desviació	n Absoluta Media:	22,03		13,83		9, 14		

		α= 0,1			α=	0,3	α= 0,5		
т	Xt	f _{t,1}	p para t	e t	p para t	е,	p para t	Θ,	
		32	<u>'</u>				<u> </u>		
1	13	30,10	32,00	19,00	32,00	19,00	32,00	19,0	
2	7	27,79	30,10	23,10	26,30	19,30	22,50	15,5	
3	23	27,31	27,79	4,79	20,51	2,49	14,75	8,2	
4	32	27,78	27,31	4,69	21,26	10,74	18,88	13,1	
5	58	30,80	27,78	30,22	24,48	33,52	25,44	32,5	
6	60	33,72	30,80	29,20	34,54	25,46	41,72	18,2	
7	90	39,35	33,72	56,28	42,18	47,82	50,86	39,1	
8	93	44,71	39,35	53,65	56,52	36,48	70,43	22,5	
9	63	46,54	44,71	18,29	67,47	4,47	81,71	18,7	
10	39	45,79	46,54	7,54	66,13	27,13	72,36	33,3	
11	37	44,91	45,79	8,79	57,99	20,99	55,68	18,6	
12	29	43,32	44,91	15,91	51,69	22,69	46,34	17,3	
13	36	42,59	43,32	7,32	44,88	8,88	37,67	1,6	
14	21	40,43	42,59	21,59	42,22	21,22	36,83	15,8	
15	47	41,09	40,43	6,57	35,85	11,15	28,92	18,0	
16	81	45,08	41,09	39,91	39,20	41,80	37,96	43,0	
17	112	51,77	45,08	66,92	51,74	60,26	59,48	52,5	
18	139	60,49	51,77	87,23	69,82	69,18	85,74	53,2	
19	230	77,44	60,49	169,51	90,57	139,43	112,37	117,6	
20	201	89,80	77,44	123,56	132,40	68,60	171,18	29,8	
21	122	93,02	89,80	32,20	152,98	30,98	186,09	64,0	
22	84	92,12	93,02	9,02	143,69	59,69	154,05	70,0	
23	74	90,31	92,12	18,12	125,78	51,78	119,02	45,0	
24	62	87,47	90,31	28,31	110,25	48,25	96,51	34,5	
•		Desviación	n Absoluta Media:	36,74	_	36,72		^{33,4}	

Pronósticos: Holt

PRIMER PASO:

Estimamos los valores iniciales de L₀ y T₀ para obtener el primer pronóstico.

UTN - FRC Sistemas de Gestión - Esp. Ing. M. Gualpa, 2013

19

Pronósticos: Holt

SEGUNDO PASO:

Calculamos el valor de pronóstico que corresponde a L_0 y T_0 . Este es el pronostico para el siguiente valor en la serie.

UTN - FRC Sistemas de Gestión - Esp. Ing. M. Gualpa, 2013

Pronósticos: Holt

TERCER PASO:

Con los valores calculados y el nuevo valor real, calculamos el pronóstico para el siguiente valor pronosticado de la serie.

$$L_{t} = \alpha x_{t} + (1 - \alpha) (L_{t-1} + T_{t-1})$$

$$T_{t} = \beta (L_{t} - L_{t-1}) + (1 - \beta) T_{t-1}$$

$$f_{t,k} = L_{t} + k T_{t}$$

UTN - FRC Sistemas de Gestión - Esp. Ing. M. Gualpa, 2013

V	ENTAS D		ONOSTIC	OS CON			
t	Xt	α =	0,4		β=	0,4	
,	Λι	Dif	Lt	T _t	f _{t,1}	f _{t-1,1}	e _t
1	4						
2	6 8	2 2 2					
3	10	2					
5	14	4					
6	18	4					
7		2					
8	20 22 24 28	2 2 2 4					
9	24	2					
10	28						
11	31	3_					
12	34	3	34	2,73		←Valores	
1	40		38,04	3,25	41,29	36,73	3,27
2	47		43,57	4,16	47,74	41,29	5,71
3	50		48,64	4,53	53,17	47,74	2,26
4	49		51,50	3,86	55,36	53,17	4,17
5	56 53		55,62 56,95	3,96 2,91	59,58 59,86	55,36 59,58	0,64 6,58
6	55		57,91	2,13	60,05	59,86	4,86
8	63		61,23	2,60	63,83	60,05	2,95
9	68		65,50	3,27	68,77	63,83	4,17
10	65		67,26	2,67	69,93	68,77	3,77
11	72		70,76	3,00	73,76	69,93	2,07
12	69		71,85	2,24	74 09	73,76	4,76
13	79		76,06	3,02	79 D8	74,09	4,91
14	82		80,25	3,49	83,74	79,08	2,92
15	80		82,24	2,89	85 ,14	83,74	3,74
16	85		85,08	2,87	87,95	85,14	0,14
17	94		90,37	3,84	94,21	87,95	6,05
18	89 96		92,13	3,00	95,13	94,21	5,21
19 20	100		95,48 99,17	3,14 3,36	98,62 102,54	95,13 98,62	0,87 1,38
20	100		101,52	2,96	102,54	102,54	2,54
22	105		104,69	3,04	107.73	104,48	0,52
23	108		107,84	3,08	110,92	107,73	0,27
24	110		110,55	2,94	113,49	110,92	0,92
	i	Desviació	n Absoluta	Media:			3,11
	Fam 1.	M	2	2042			
iestión -	⊏sp. II	ig. W. (Juaipa,	2013			

Precisión UTN - FRC Sistemas de Gestión - Esp. Ing. M. Gualpa, 2013 27

Pronósticos

Suavizamiento Exponencial con Tendencia y Estacionalidad: Método de Winter

UTN - FRC Sistemas de Gestión - Esp. Ing. M. Gualpa, 2013

Pronósticos: Winter

SUAVIZAMIENTO EXPONENCIAL CON TENDENCIA Y ESTACIONALIDAD

$$L_{t} = \alpha \frac{x_{t}}{s_{t-c}} + (1-\alpha)(L_{t-1} + T_{t-1})$$

$$T_t = \beta (L_t - L_{t-1}) + (1 - \beta) T_{t-1}$$

$$s_t = \gamma \frac{x_t}{L_t} + (1 - \gamma) s_{t-c}$$

$$f_{t,k} = (L_t + k T_t) s_{t+k-c}$$

UTN - FRC Sistemas de Gestión - Esp. Ing. M. Gualpa, 2013

33

Pronósticos: Winter

1er Paso:

Definir los valores para los coeficientes de suavizamiento $\alpha,\,\beta$ y $\gamma.$

UTN - FRC Sistemas de Gestión - Esp. Ing. M. Gualpa, 2013

- Se busca predecir el valor de una variable a partir del valor de otra.
- · Variable dependiente vs. Variable independiente.
- · Ejemplos:

 V. Dependiente
 V. Independiente

 Producción científica
 Presupuesto invertido

 Ventes gutamávillas
 Tagas de interés.

Ventas automóviles Tasas de interés

Matrícula estudiantil Inversión social en planes de ayuda
Casos de enfermedad Tiempo de exposición / Distancia a / Grms. sustancia

Costo de producción total Cantidad de unidades de producir

- · No siempre existe correlación entre las variables.
- · Regresión Simple vs. Regresión Múltiple
- · Regresión Lineal vs. No lineales

UTN - FRC Sistemas de Gestión - Esp. Ing. M. Gualpa, 2013

41

Pronósticos: Regresión Lineal

· Dada una serie X-Y, se busca una función lineal:

· Recta de Regresión de Mínimos Cuadrados.

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

 $\boldsymbol{\hat{y}}_i = \boldsymbol{\hat{\beta}}_0 + \boldsymbol{\hat{\beta}}_1 \ \boldsymbol{x}_i$

- · Propiedades:
 - Pasa por el punto (m(x), m(y)).
 - Σ e_i = 0

UTN - FRC Sistemas de Gestión - Esp. Ing. M. Gualpa, 2013

• Dada una serie X-Y, se busca una función lineal:

· Recta de Regresión de Mínimos Cuadrados.

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

- · Propiedades:
 - Pasa por el punto (m(x), m(y)).
 - Σ $e_i = 0$

UTN - FRC Sistemas de Gestión - Esp. Ing. M. Gualpa, 2013

43

Pronósticos: Regresión Lineal

Ejemplo tomado y adaptado de "Investigación de Operaciones – Algoritmos y Aplicaciones" de Wayne Winston. Pag. 1302

Semana	Trenes fabricados	Costo de producción total
1	10	257,40
2 3	20	601,60
3	30	782,00
4	40	765,40
5 6	45	895,50
6	50	1.133,00
7	60	1.152,80
8	55	1.132,70
9	70	1.459,20
10	40	970,10

UTN - FRC Sistemas de Gestión - Esp. Ing. M. Gualpa, 2013

COMO LOGRAR UN BUEN AJUSTE

- SST: suma del total de cuadrados
 - · Variación total de Yi respecto a la media
 - SST = $\Sigma (y_i m(y))^2$
- SSE: suma de errores cuadráticos
 - SSE = $\Sigma (y_i \hat{y}_i)^2 = \Sigma e_i^2$
 - Si la recta pasa por todos los puntos dato, SSR = 0
 - Un SSE chico indica un buen ajuste
- · SSR: suma de los cuadrados de la regresión
 - SSR = $\Sigma (\hat{y}i m(y))^2$
 - Se puede demostrar que SST = SSR + SSE
- R²: coeficiente de determinación
 - R² = SSR / SST % en que la variable X explica a la variable Y
 - 1 R² = SSE / SST % de variación en Y no explicado por X
- rxy: correlación lineal de la muestra
 - $\sqrt{R^2}$ + o según β_1
- · Se: error estándar de la estimación
 - Se = $\sqrt{SSE / (n-2)}$

UTN - FRC Sistemas de Gestión - Esp. Ing. M. Gualpa, 2013

51

Pronósticos: Regresión Lineal

x _i	Уi	ŷ	$(y_i - m(y))^2$	$(y_i - \hat{y}_i)^2$	$(\hat{y}_i\text{-m}(y))^2$
10	257,40	343,5	432398,30	7408,26	326610,81
20	601,60	522,1	98200,76	6325,88	154374,64
30	782,00	7,00,7	17681,02	6616,53	45929,64
40	765,40	879,3	22371,18	12962,13	1275,82
45	895,50	968,5	379,08	5336,01	2870,60
50	1133,00	1057,8	47537,08	5648,32	20413,18
60	1152,80	1236,4	56563,11	6995,32	103341,70
55	1132,70	1147,1	47406,35	208,55	53903,54
70	1459,20	1415,0	296186,29	1950,87	250061,40
40	970,10	879,3	3039,32	8253,48	1275,82
		CHMA	1001700.00	C170E 24	0000007.40

$$\mathsf{SST} = \Sigma \; (\mathsf{yi} - \mathsf{med}(\mathsf{y}))^2$$

SSE =
$$\Sigma (y_i - \hat{y}_i)^2 = \Sigma e_i^2$$

$$SSR = \sum (\hat{y}i - m(y))^2$$

$$R^2 = SSR / SST$$

$$1 - R^2 = SSE / SST$$

$$S_e = \sqrt{(SSE/(n-2))}$$

0,06

87,82

1021762,50

61705,34

960057,16

UTN - FRC Sistemas de Gestión - Esp. Ing. M. Gualpa, 2013

SUPUESTOS

- Se deben cumplir ciertos supuestos
 - La varianza del término del error no debe depender del valor de la variable independiente.
 - · Homocedasticidad vs Heterocedasticidad.
 - · Ver gráfico Error respecto a X
 - · Los errores tienen distribución normal.
 - · Los errores deben ser independientes.
 - · Ver gráfico Error respecto al Tiempo.

OTRAS MODELOS

- Diferentes curvas de regresión: lineal, exponencial, logarítmica, etc.
- Mas de una variable independiente: Regresión múltiple

UTN - FRC Sistemas de Gestión - Esp. Ing. M. Gualpa, 2013