UNIVERSITÉ D'ORLÉANS M1 Info

Programmation Parallèle Année 2019 - 2020

Série de Travaux Dirigés : 2 - MPI - Distribution et Réduction

Exercice 1. Calcul du max et de sa position dans un tableau

A partir du squelette fourni dans TD2.tgz complétez le code pour

- Distribuer le tableau généré sur le processeur root à l'ensemble des processeurs et sans faire d'hypothèse sur la taille du tableau.
- Calculer le max en local en utilisant la structure max_loc afin de fournir également la position du max.
- Finir le programme principal avec un MPI_Reduce afin d'obtenir sur le processeur root le résultat final.

Le programme principal proposé dans max.cpp prend 2 arguments la taille du tableau global et le processeur root.

Exercice 2. Suite de Syracuse

Une suite de Syracuse est une suite telle que $U_0 = x$ avec x > 0 et

$$U_{i} = \begin{vmatrix} \frac{U_{i-1}}{2} & si \ U_{i-1} \ est \ pair \\ 3U_{i-1} + 1 & sinon \end{vmatrix}$$

On souhaite vérifier si un tableau d'entiers de taille n correspond à une suite de Syracuse alors que ce tableau est initialement sur le processeur root.

- 1. Décrivez la parallélisation que vous envisagez sachant qu'on souhaite le cas général lorsque n n'est pas divisible par root.
- 2. Explicitez les fonctions de communications MPI que vous allez utiliser et pourquoi.
- 3. Proposez une implémentation à partir du squelette disponible sous Celene sachant que le programme prend 4 arguments en ligne de commande
 - la taille du tableau global,
 - le processeur root,
 - la graine pour la génération aléatoire
 - le type de génération (0 : complétement aléatoire, 1 : partiellement syracuse et 2 : syracuse).

Exercice 3. Parallélisation du tri par induction

Soit l'algorithme suivant qui réalise un tri appelé tri par induction

Ainsi si E est un tableau d'entiers tous distincts, on souhaite paralléliser la première boucle for (indice i) en répartissant le calcul des positions p sur les processeurs. Initialement le tableau E est généré par un processeur root et distribué aux autres. A la fin du tri, on souhaite que le tableau résultat reste réparti sur les nprocs processeurs.

P0 (root)															
0 6 2 4 1 20 8 3 6 9 7 5 11 10															
initialement															
	P0				P1				P2			P3			
E	0	6	2	4	1	20	8	3	5	9	7	15	11	10	
									1					apı	rés la distribution
					! !										
					!				1						
T	0	1	2	3	4	5	6	7	8	9	10	11	15	20	
									1					à la	a fin de l'exécution

- 1. Définissez les étapes de la parallélisation sa chant que le tableau E est initialement généré par le processeur root.
- 2. Par rapport à ces étapes, explicitez les fonctions de communications MPI que vous allez utiliser.
- 3. A partir du squelette disponible sous Celene complétez l'implémentation avec toujours 2 arguments pour le programme principal, la taille du tableau global et le processeur root.