Unit 1 - Neurocomputing & Neuroscience

- 1. Historical notes
- 2. Human brain
- 3. Neuron models
- 4. Knowledge representation
- 5. Al and NN
- 6. Learning process: Supervised and Unsupervised
- 7. Error correction learning
- 8. Competitive learning
 - Adaptive Resonance Theory
 - o Self-organising map and SOM algorithm

Unit 2 - Data Processing Scaling

- 1. Normalisation
- 2. Principle Component Analysis
- 3. Regression
- 4. Eigven values and eigen vectors
- 5. Basic models of artificial neurons
- 6. Activation functions
- 7. Multilayer perceptron
- 8. LMS algorithm
- 9. Delta learning rule & Gradient descent rule
- 10. Nonlinearly seperable problems in NN

Unit 3 - Multilayered Network Architecture

- 1. Backpropagation algorithm
- 2. Approximation properties of RBF networks
- 3. Comparison of RBF network with multilayer perceptron
- 4. Adaline network
- 5. Madeline network

Unit 4 - RNN & Temporal Feedforward Network

- 1. Independent component analysis
- 2. Associative memory
 - Hetero-associative
 - Auto-associative
- 3. Hopfield network

Unit 5 - Complex valued NN & Complex valued BP

- 1. Soft computing
- 2. Fuzzy logic
- 3. Genetic algorithm

Combined notes:

- Link 1
- Link 2

Separate notes:

Unit 1 - Neurocomputing & Neuroscience

Topic Name	Links
Human brain	Link 1
Neuron models	Link 1
Knowledge representation	Link 1
Learning process: Supervised and Unsupervised	Link 1
Error correction learning	Link 1
Competitive learning	Link 1 Link 2 Link 3

Unit 2 - Data Processing Scaling

Topic Name	Links
Principle Component Analysis	Link 1
Regression	Link 1
Eigven values and eigen vectors	Link 1
Basic models of artificial neurons	Link 1
Activation functions	Link 1
Multilayer perceptron	Link 1
LMS algorithm	Link 1

Topic Name	Links
Delta learning rule &	Link 1
Gradient descent rule	Link 2

Unit 3 - Multilayered Network Architecture

Topic Name	Links
Backpropagation algorithm	Link 1
Approximation properties of RBF networks	Link 1
Comparison of RBF network with multilayer perceptron	Link 1
Adaline network	Link 1 Link 2
Madeline network	Link 1 Link 2

Unit 4 - RNN & Temporal Feedforward Network

Topic Name	Links
Independent component analysis	Link 1 Link 2
Associative memory	Link 1
Hopfield network	Link 1 Link 2

Unit 5 - Complex valued NN & Complex valued BP

Topic Name	Links
Soft computing	Link 1
Fuzzy logic	Link 1
Genetic algorithm	Link 1
	Link 2