# Definability, continuous embeddings and learning classes of algebraic structures

Stefan Vatev<sup>1</sup>

Sofia University

CSTI 2024 Vienna

¹joint with Bazhenov, Fokina, Rossegger, A. Soskova → ⟨♂ → ⟨ ≧ → ⟨ ≧ → ⟨ ≧ → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → ⟨ 2 → | 2 → | 2 → | 2 → | 2 → | 2 → | 2 → | 2 → | 2 → | 2 → | 2 → | 2 → | 2 → | 2 → | 2 → | 2 → | 2 → | 2 → | 2 → | 2 → | 2 → | 2 → | 2 → | 2 → | 2 → | 2 → | 2 → | 2 → | 2 → | 2 → | 2 → | 2 → | 2 → | 2 → | 2 → | 2 → | 2 → | 2 → | 2 → | 2 → | 2 →

#### Introduction

- ► Classical algorithmic learning theory deals with classes of languages (i.e. c.e. sets).
- ► Two of the main notions **Inf**-learning and **Txt**-learning.
- We want to explore lerning theory in the context of computable structure theory.
- ▶ Inf-learning for structures already established notion.
- Txt-learning for structures new work.

#### Basic notions

- We work with countable structures with domains  $\subseteq \omega$ .
- ▶ D(A) the diagram of A, consisting of positive and negative atomic sentences true in A.
- An **informant** for the structure  $\mathcal{A}$  is a surjective function  $\mathbb{I}_{\mathcal{A}}:\omega\to D(\mathcal{A}).$
- ▶  $D_+(A)$  the positive diagram of A, consisting only of positive atomic sentences true in A.
- A **text** for the structure  $\mathcal{A}$  is a surjective function  $\mathbb{T}_{\mathcal{A}}: \omega \to D_+(\mathcal{A})$ .
- Let Atm(L) denote the set of (the Gödel numbers) of all positive and negative atomic sentences in the language  $L \cup \omega$ .
- ▶  $Atm_+(L)$  only the positive.

Let  $\mathfrak{K} \subseteq Mod(L)$  be a family with countably many nonisomorphic structures for a fixed language L including = and  $\neq$ , closed under isomorphism.

▶ The *learning domain* (LD) is the collection of all copies S of the structures from  $\Re$  such that  $dom(S) \subseteq \omega$ , i.e.,

$$\mathrm{LD}(\mathfrak{K}) = \bigcup_{i \in \omega} \{ \mathcal{S} \in \mathit{Mod}(\mathit{L}) : \mathcal{S} \cong \mathcal{A}_i \}.$$

The *hypothesis space* (HS) contains the indices i for  $A_i \in \Re$  (an index is viewed as a conjecture about the isomorphism type of an input structure S) and a question mark symbol:

$$HS(\mathfrak{K}) = \omega \cup \{?\}.$$

A learner M sees, stage by stage, **positive and negative** or **only positive** data about a given structure from  $LD(\mathfrak{K})$ . The learner M is required to output conjectures from  $HS(\mathfrak{K})$ .

# Inf-learning

A learner is a function  $M: Atm(L)^{<\omega} \to \mathrm{HS}(\mathfrak{K})$ .

# Definition (Bazhenov-Fokina-San Mauro)

We say that the family  $\mathfrak R$  is  $\mathbf{Inf}$ -learnable if there exists a learner M such that for any structure  $\mathcal S \in \mathrm{LD}(\mathfrak R)$  and any informant  $\mathbb I_{\mathcal S}$  for  $\mathcal S$ , the learner eventually stabilizes to a correct conjecture about the isomorphism type of  $\mathcal S$ . More formally, there exists a limit

$$\lim_{k\to\omega}M(\mathbb{I}_{\mathcal{S}}\restriction_k)=i$$

belonging to  $\omega$ , and  $A_i$  is isomorphic to S.

# Txt-learning

A learner is a function  $M: Atm_+(L)^{<\omega} \to \mathrm{HS}(\mathfrak{K})$ .

# Definition (following Fokina-Kötzing-San Mauro)

We say that the family  $\mathfrak R$  is **Txt**-learnable if there exists a learner M such that for any structure  $\mathcal S \in \mathrm{LD}(\mathfrak R)$  and any text  $\mathbb T_{\mathcal S}$  for  $\mathcal S$ , the learner eventually stabilizes to a correct conjecture about the isomorphism type of  $\mathcal S$ . More formally, there exists a limit

$$\lim_{k\to\omega}M(\mathbb{T}_{\mathcal{S}}\restriction_k)=i$$

belonging to  $\omega$ , and  $A_i$  is isomorphic to S.

We use the notation  $[\alpha_1 : \beta_1, \ldots, \alpha_n : \beta_n]$ , where  $\alpha_i, \beta_i \leq \omega$ , to denote the equivalence structure with  $\beta_i$  number of equivalence classes of size  $\alpha_i$ , for all  $i = 1, \ldots, n$ .

- ▶ The class  $\{[\omega:1], [\omega:2]\}$  is **Inf**-learnable, but not **Txt**-learnable.
- ▶ The class  $\{[3:\omega,2:1],[3:\omega]\}$  is not **Inf**-learnable.

For linear orderings,

- $\blacktriangleright$   $\{\omega,\zeta\}$  is not **Inf**-learnable.
- $\blacktriangleright$   $\{\omega, \omega^*\}$  is **Inf**-learnable.
- $\{1+\eta, \eta+1\}$  is **Inf**-learnable.

# Turing computable embeddings

# Definition (Knight-Miller-Vanden Boom)

The class  $\mathfrak K$  is Turing computably embeddable in  $\mathfrak K'$ ,

$$\mathfrak{K} \leq_{tc} \mathfrak{K}',$$

if there is a Turing operator  $\Phi_e$  such that

- ▶ for each  $A \in \mathfrak{K}$ ,  $\varphi_e^{D(A)} = \chi_{D(B)}$ , where  $B \in \mathfrak{K}'$ ;
- Let  $\mathcal{A}_1, \mathcal{A}_2 \in \mathfrak{K}$ ,  $\varphi_e^{D(\mathcal{A}_1)} = \chi_{D(\mathcal{B}_1)}$  and  $\varphi_e^{D(\mathcal{A}_2)} = \chi_{D(\mathcal{B}_2)}$ . Then  $\mathcal{A}_1 \cong \mathcal{A}_2$  iff  $\mathcal{B}_1 \cong \mathcal{B}_2$ .

# Turing computable embeddings

## Definition (Knight-Miller-Vanden Boom)

The class  $\mathfrak{K}$  is **Turing computably embeddable** in  $\mathfrak{K}'$ ,

$$\mathfrak{K} \leq_{tc} \mathfrak{K}',$$

if there is a Turing operator  $\Phi_e$  such that

- ▶ for each  $A \in \mathfrak{K}$ ,  $\varphi_e^{D(A)} = \chi_{D(B)}$ , where  $B \in \mathfrak{K}'$ ;
- ▶ Let  $\mathcal{A}_1, \mathcal{A}_2 \in \mathfrak{K}$ ,  $\varphi_e^{D(\mathcal{A}_1)} = \chi_{D(\mathcal{B}_1)}$  and  $\varphi_e^{D(\mathcal{A}_2)} = \chi_{D(\mathcal{B}_2)}$ . Then  $\mathcal{A}_1 \cong \mathcal{A}_2$  iff  $\mathcal{B}_1 \cong \mathcal{B}_2$ .

In general,  $\Psi: 2^\omega \to 2^\omega$  is Cantor-continuous iff there exists a Turing operator  $\Phi_e$  and a set X such that  $\Psi(A) = \Phi_e(A \oplus X)$ . Then we write  $\mathfrak{K} \leq_{\mathsf{Cantor}} \mathfrak{K}'$ .

#### The Pullback Theorem

A main tool in the syntactic characterization of Inf-learning.

# Theorem (Knight-Miller-Vanden Boom)

Suppose that  $\mathfrak{K}_1 \leq_{Cantor} \mathfrak{K}_2$  via continuous  $\Phi: 2^\omega \to 2^\omega$ . Then for any infinitary sentence  $\psi_2$  in the language of  $\mathfrak{K}_2$ , one can find an infinitary sentence  $\psi_1$  in the language of  $\mathfrak{K}_1$  such that for all  $\mathcal{A} \in \mathfrak{K}_1$ , we have

$$\mathcal{A} \models \psi_1 \leftrightarrow \Phi(\mathcal{A}) \models \psi_2.$$

Moreover, for a non-zero  $\alpha < \omega_1^{CK}$ , if  $\psi_2$  is a  $\Sigma_{\alpha}^{inf}$  sentence, then so is  $\psi_2$ .

It can be effectivized relative to some oracle X.

# Characterization of Inf-learning.

Consider the class  $\mathfrak{K}_{univ} = \{A_i : i \in \omega\}$ , where  $A_i = [\omega : 1, i + 1 : 1]$ .

Theorem (Bazhenov-Fokina-San Mauro 2020)

Let  $\mathfrak{K} = \{A_i \mid i \in \omega\}$ . The following are equivalent:

- ▶ ℜ is Inf-learnable;
- $ightharpoonup \Re \leq_{Cantor} \Re_{univ};$
- There are  $\Sigma_2^{inf}$  sentences  $\psi_i$  such that

$$\mathcal{A}_i \models \psi_j \leftrightarrow i = j.$$

# Continuous operators on $\mathcal{P}(\omega)$

- ► The Scott topology on  $\mathcal{P}(\omega)$  is formed by taking  $U_{\nu} = \{A \subseteq \omega \mid D_{\nu} \subseteq A\}$  as the basic open sets.
- ▶ We say that  $\Gamma : \mathcal{P}(\omega) \to \mathcal{P}(\omega)$  is an **enumeration operator** if there exists a c.e. set *W* such that

$$\Gamma(A) = \{x \mid (\exists v)[\langle x, v \rangle \in W \& D_v \subseteq A]\}.$$

- ▶  $A \leq_e B$  iff there exists an enumeration operator Γ such that  $A = \Gamma(B)$ .
- ▶ We say that  $\Gamma : \mathcal{P}(\omega) \to \mathcal{P}(\omega)$  is a *generalized* enumeration operator if there exists a set B such that

$$\Gamma(A) = \{x \mid (\exists v)[\langle x, v \rangle \in B \& D_v \subseteq A]\}.$$

▶ It is well-known that  $\Gamma : \mathcal{P}(\omega) \to \mathcal{P}(\omega)$  is Scott-continuous iff  $\Gamma$  is a generalized enumeration operator.



# Scott-Continuous Embeddings

A mapping  $\Gamma: \mathcal{P}(\omega) \to \mathcal{P}(\omega)$  is Scott-continuous if and only if  $\Gamma$  is

- (a) monotone, i.e.,  $A \subseteq B$  implies  $\Gamma(A) \subseteq \Gamma(B)$ , and
- (b) compact, i.e.,  $x \in \Gamma(A)$  if and only if  $x \in \Gamma(D)$  for some finite  $D \subseteq A$ .

#### Definition

A mapping  $\Gamma$  is a **Scott-continuous embedding** of  $\mathfrak{K}_0$  into  $\mathfrak{K}_1$ , denoted by  $\Gamma \colon \mathfrak{K}_0 \leq_{\mathsf{Scott}} \mathfrak{K}_1$ , if  $\Gamma$  is Scott-continuous and satisfies the following:

- 1. For any  $A \in \mathfrak{K}_0$ ,  $\Gamma(\mathcal{D}_+(A))$  is the positive atomic diagram of a structure from  $\mathfrak{K}_1$ .
- 2. For any  $\mathcal{A}, \mathcal{B} \in \mathfrak{K}_0$ , we have  $\mathcal{A} \cong \mathcal{B}$  if and only if  $\Gamma(\mathcal{A}) \cong \Gamma(\mathcal{B})$ .

# An important remark

- ▶ When the operator Γ is an enumeration operator, then we write  $≤_{pc}$  instead of  $≤_{Scott}$ .
- ▶ The relation  $\leq_{pc}$  is **different** from  $\leq_{c}$  as defined in [Knight-Miller-Vanden Boom], which is like  $\leq_{tc}$  where Turing operator is replaced by enumeration operator.
- ▶ The reason for this is the same as for  $K \oplus \overline{K} \nleq_e K$ .

- ▶ When  $\mathfrak{K}_0 \leq_{pc} \mathfrak{K}_1$ , then **any** enumeration of a copy of the given input structure must always produce an enumeration of **the same** copy of the output structure.
- ▶ In other words, the construction must not depend on the enumeration of the input.

- ▶ When  $\mathfrak{K}_0 \leq_{pc} \mathfrak{K}_1$ , then **any** enumeration of a copy of the given input structure must always produce an enumeration of **the same** copy of the output structure.
- ▶ In other words, the construction must not depend on the enumeration of the input.
- ▶ By monotonicity,  $\{1,2\} \leq_{tc} \{\omega,\omega^*\}$ , but  $\{1,2\} \nleq_{pc} \{\omega,\omega^*\}$ .

# Characterization of the *tc*-class of $\{\omega, \omega^*\}$

#### **Theorem**

Let A and B be non-isomorphic L-structures. T.F.A.E.

- (1)  $\{\omega,\omega^{\star}\}\equiv_{tc}\{\mathcal{A},\mathcal{B}\};$
- (2)  $\mathcal{A}$  and  $\mathcal{B}$  have computable copies, they have the same finite substructures, and they differ by  $\Sigma_c^c$  sentences.

# Characterization of the *tc*-class of $\{\omega, \omega^*\}$

#### **Theorem**

Let A and B be non-isomorphic L-structures. T.F.A.E.

- (1)  $\{\omega,\omega^{\star}\}\equiv_{tc}\{\mathcal{A},\mathcal{B}\};$
- (2) A and B have computable copies, they have the same finite substructures, and they differ by  $\Sigma_2^c$  sentences.

It follows that all pairs of the form  $\{\omega \cdot k, \omega^* \cdot k\}$ , for any k>0 are equivalent under Turing computable embeddings.

What about computable embeddings (enumeration operators)?

# The top pair among linear orderings

As a first step, we would like to study the pairs of linear orderings inside the tc-degree of  $\{\omega,\omega^{\star}\}$  relative to  $\leq_{pc}$ . It turns out that we have a top pair.

#### **Theorem**

For any pair  $\{\mathcal{A},\mathcal{B}\}\equiv_{tc}\{\omega,\omega^{\star}\}$ , we have that

$$\{\mathcal{A},\mathcal{B}\} \leq_{\textit{pc}} \{1+\eta,\eta+1\},$$

where  $\eta$  is the order type of the rationals.

# The top pair among linear orderings

As a first step, we would like to study the pairs of linear orderings inside the tc-degree of  $\{\omega, \omega^{\star}\}$  relative to  $\leq_{pc}$ . It turns out that we have a top pair.

#### **Theorem**

For any pair  $\{\mathcal{A},\mathcal{B}\}\equiv_{tc}\{\omega,\omega^{\star}\}$ , we have that

$$\{\mathcal{A},\mathcal{B}\} \leq_{\textit{pc}} \{1+\eta,\eta+1\},$$

where  $\eta$  is the order type of the rationals.

#### Corollary

For any natural number k > 0,

$$\{\omega \cdot k, \omega^{\star} \cdot k\} <_{pc} \{1 + \eta, \eta + 1\}.$$

(The strictness comes from monotonicity.)



# Theorem (Bazhenov-Ganchev-V 2021)

$$\{\omega \cdot \mathbf{n}, \omega^{\star} \cdot \mathbf{n}\} \leq_{\mathit{pc}} \{\omega \cdot \mathbf{k}, \omega^{\star} \cdot \mathbf{k}\} \ \leftrightarrow \ \mathbf{n} \ | \ \mathbf{k}.$$

## Theorem (Bazhenov-Ganchev-V 2021)

$$\{\omega \cdot \mathbf{n}, \omega^{\star} \cdot \mathbf{n}\} \leq_{\mathit{pc}} \{\omega \cdot \mathbf{k}, \omega^{\star} \cdot \mathbf{k}\} \ \leftrightarrow \ \mathbf{n} \ | \ \mathbf{k}.$$

Easy to see that for all n, k,

$$\{\omega \cdot \mathbf{n}, \omega^{\star} \cdot \mathbf{n}\} \equiv_{tc} \{\omega \cdot \mathbf{k}, \omega^{\star} \cdot \mathbf{k}\}.$$

More sample results:

- $\{\omega.2, \omega^*.2\} \leq_{pc} \{\omega^2, (\omega^2)^*\}.$
- ▶ But  $\{\omega.n, \omega^*.n\} \not\leq_{pc} \{\omega^2, (\omega^2)^*\}$  for  $n \geq 3$ .

We lack good intuition what happens in general.

For a **strict** linear order L, by  $\tilde{L}$  we denote the preorder such that:

- $\blacktriangleright$  every equivalence class of the induced equivalence relation  $\sim$  is countably infinite;
- ▶ the quotient poset  $L/_{\sim}$  is isomorphic to L.

It is clear that

$$\{\omega,\omega^{\star}\}\equiv_{tc}\{\tilde{\omega},\tilde{\omega}^{\star}\},$$

For a **strict** linear order L, by  $\tilde{L}$  we denote the preorder such that:

- $\blacktriangleright$  every equivalence class of the induced equivalence relation  $\sim$  is countably infinite;
- ▶ the quotient poset  $L/_{\sim}$  is isomorphic to L.

It is clear that

$$\{\omega,\omega^{\star}\}\equiv_{tc}\{\tilde{\omega},\tilde{\omega}^{\star}\},$$

The following is also clear:

$$\{\omega,\omega^{\star}\}\leq_{pc}\{\tilde{\omega},\tilde{\omega}^{\star}\}.$$

#### Question (Kalimullin)

Is the following true:

$$\{\tilde{\omega}, \tilde{\omega}^{\star}\} \leq_{pc} \{\omega, \omega^{\star}\}$$
?



For a linear ordering L, let  $L_S$  be the enrichment of L with the successor relation.

Theorem (Ganchev-Kalimullin-V 2018)

$$\{\tilde{\omega}_{\mathcal{S}}, \tilde{\omega}_{\mathcal{S}}^{\star}\} \not\leq_{pc} \{\omega_{\mathcal{S}}, \omega_{\mathcal{S}}^{\star}\}.$$

The original question is still open, as far as I know.

For a linear ordering L, let  $L_S$  be the enrichment of L with the successor relation.

Theorem (Ganchev-Kalimullin-V 2018)

$$\{\tilde{\omega}_{S}, \tilde{\omega}_{S}^{\star}\} \not\leq_{pc} \{\omega_{S}, \omega_{S}^{\star}\}.$$

The original question is still open, as far as I know. If you consider  $\omega$  and  $\omega^*$  as **non-strict** linear orderings, then we have the following:

Proposition (B-F-R-S-V 2024)

$$\{\tilde{\omega}, \tilde{\omega}^{\star}\} \not\leq_{pc} \{\omega, \omega^{\star}\}.$$

For a linear ordering L, let  $L_S$  be the enrichment of L with the successor relation.

Theorem (Ganchev-Kalimullin-V 2018)

$$\{\tilde{\omega}_{\mathcal{S}}, \tilde{\omega}_{\mathcal{S}}^{\star}\} \not\leq_{pc} \{\omega_{\mathcal{S}}, \omega_{\mathcal{S}}^{\star}\}.$$

The original question is still open, as far as I know. If you consider  $\omega$  and  $\omega^*$  as **non-strict** linear orderings, then we have the following:

Proposition (B-F-R-S-V 2024)

$$\{\tilde{\omega}, \tilde{\omega}^{\star}\} \not\leq_{pc} \{\omega, \omega^{\star}\}.$$

Intuition: With  $x \le y$ , it may later turn out that  $x \sim y$ . With x < y, it implies that  $x \not\sim y$ .



# Towards a characterization of Txt-learning

We introduce *positive infinitary formulas* in a fashion similar to Ivan Soskov's works:

- A  $\Sigma_0^p$ -formula is a finite conjunction of atomic  $\tau$ -formulas.
- A  $\Pi_0^p$ -formula is a finite disjunction of negations of atomic  $\tau$ -formulas.
- A  $\Sigma_1^p$ -formula is a formula of the form:

$$\bigvee_{i\in I}\exists \bar{y}_i\psi_i(\bar{x},\bar{y}_i),$$

where each  $\psi_i$  is a  $\Sigma_0^p$ -formula.

• A  $\Pi_1^p$ -formula is a formula of the form:

$$\bigwedge_{i\in I} \forall \bar{y}_i \psi_i(\bar{x}, \bar{y}_i),$$

where each  $\psi_i$  is a  $\Pi_0^p$ -formula.

• A  $\sum_{n=2}^{p}$ -formula is a countable disjunction

$$\bigvee_{i\in I}\exists \bar{y}_i(\psi_i(\bar{x},\bar{y}_i)\&\xi_i(\bar{x},\bar{y}_i)),$$

where  $\psi_i$  is a  $\Sigma_{n+1}^p$ -formula and  $\xi_i$  is a  $\Pi_{n+1}^p$ -formula.

• A  $\sum_{n=2}^{p}$ -formula is a countable disjunction

$$\bigvee_{i\in I} \exists \bar{y}_i(\psi_i(\bar{x},\bar{y}_i) \& \xi_i(\bar{x},\bar{y}_i)),$$

where  $\psi_i$  is a  $\Sigma_{n+1}^p$ -formula and  $\xi_i$  is a  $\Pi_{n+1}^p$ -formula.

• A  $\Pi_{n+2}^p$ -formula is a countable conjunction

$$\bigwedge_{i\in I} \forall \bar{y}_i(\psi_i(\bar{x},\bar{y}_i) \vee \xi_i(\bar{x},\bar{y}_i)),$$

where  $\psi_i$  is a  $\Sigma_{n+1}^p$ -formula and  $\xi_i$  is a  $\Pi_{n+1}^p$ -formula.

In a similar way, one could define  $\Sigma^p_\alpha$ -formulas for every countable ordinal  $\alpha$ .

# Relatively intrisically relations

▶ Recall that a relation R on  $\mathcal{A}$  is relatively intrisically  $\Sigma_{\alpha}^{0}$  if in any copy  $\mathcal{B}$  of  $\mathcal{A}$ ,  $R^{\mathcal{B}}$  is c.e. in  $D(\mathcal{A})^{(\alpha)}$ .

## Theorem (AKMS-C)

A relation R on  $\mathcal A$  is relatively intrisically  $\Sigma^0_\alpha$  iff R is definable in  $\mathcal A$  by a  $\Sigma^c_\alpha$ .

# Relatively intrisically relations

▶ Recall that a relation R on  $\mathcal{A}$  is relatively intrisically  $\Sigma_{\alpha}^{0}$  if in any copy  $\mathcal{B}$  of  $\mathcal{A}$ ,  $R^{\mathcal{B}}$  is c.e. in  $D(\mathcal{A})^{(\alpha)}$ .

# Theorem (AKMS-C)

A relation R on A is relatively intrisically  $\Sigma_{\alpha}^{0}$  iff R is definable in A by a  $\Sigma_{\alpha}^{c}$ .

- ▶ For a set A, define  $K_A = \{e \mid e \in \Gamma_e(A)\}$ , where  $\Gamma_e$  is an enumeration operator.
- ▶ Then the enumeration jump of A,  $J_e(A) = K_A \oplus \overline{K}_A$ .
- ▶ A relation R on  $\mathcal{A}$  is relatively  $\alpha$ -intrinsically reducible to  $\mathcal{A}$  if in any copy  $\mathcal{B}$  of  $\mathcal{A}$ ,  $R^{\mathcal{B}} \leq_{e} J_{e}^{(\alpha)}(D_{+}(\mathcal{A}))$ .

# Theorem (Soskov)

A relation R on A is relatively  $\alpha$ -intrinsically reducible to A iff R is  $\Sigma_{\alpha}^{pc}$ -definable in A.



# A Borel hierarchy

Let  $\mathcal{X}$  be an **arbitrary** topological space.

#### Definition (Selivanov, De Brecht)

- The class  $\Sigma_1^0$  contains precisely the open sets in  $\mathcal{X}$ .
- ullet For a countable lpha>1, the class  $oldsymbol{\Sigma}_{lpha}^0$  contains the sets  $A\subseteq\mathcal{X}$  which can be expressed in the form

$$A=\bigcup_{i\in\omega}(B_i\setminus C_i),$$

where  $B_i$  and  $C_i$  belong to  $\Sigma_{\beta_i}^0$  for some  $\beta_i < \alpha$ .

• As usual, a set A belongs to  $\Pi^0_{\alpha}$  if its complement  $\overline{A}$  lies in  $\Sigma^0_{\alpha}$ .

For Polish spaces, this definition is equivalent to the classical one.  $P(\omega)$  is not Polish, but quasi-Polish (after de Brecht).

Recall the following classical result which connects  $L_{\omega_1,\omega}$ -formulas with Borel compexity:

### Theorem (Lopez-Escobar; Vaught)

Let  $\mathcal K$  be a subclass of Mod(L) which is closed under isomorphisms. Let  $\alpha>0$  be a countable ordinal. Then  $\mathcal K$  is  $\mathbf \Sigma_{\alpha}^0$  in Mod(L) if and only if  $\mathcal K$  is axiomatizable by a  $\Sigma_{\alpha}^{inf}$ -sentence.

Recall the following classical result which connects  $L_{\omega_1,\omega}$ -formulas with Borel compexity:

### Theorem (Lopez-Escobar; Vaught)

Let  $\mathcal K$  be a subclass of Mod(L) which is closed under isomorphisms. Let  $\alpha>0$  be a countable ordinal. Then  $\mathcal K$  is  $\mathbf \Sigma_{\alpha}^0$  in Mod(L) if and only if  $\mathcal K$  is axiomatizable by a  $\mathbf \Sigma_{\alpha}^{inf}$ -sentence.

We prove a new version of this result:

# Theorem (B-F-R-S-V 2024)

Let  $\mathcal K$  be a subclass of  $Mod_p(L)$  which is closed under isomorphisms. Let  $\alpha>0$  be a countable ordinal. Then  $\mathcal K$  is  $\mathbf \Sigma^0_\alpha$  in the space  $Mod_p(L)$  if and only if  $\mathcal K$  is axiomatizable by a  $\mathbf \Sigma^p_\alpha$ -sentence.

#### A New version of the Pullback Theorem

A main tool in the syntactic characterization of Txt-learning.

Suppose that  $\mathfrak{K}_1 \leq_{Scott} \mathfrak{K}_2$  via continuous  $\Phi : \mathcal{P}(\omega) \to \mathcal{P}(\omega)$ . Then for any **positive** infinitary sentence  $\psi_2$  in the language of  $\mathfrak{K}_2$ , one can find an **positive** infinitary sentence  $\psi_1$  in the language of  $\mathfrak{K}_1$  such that for all  $A \in \mathfrak{K}_1$ , we have

$$\mathcal{A} \models \psi_1 \leftrightarrow \Phi(\mathcal{A}) \models \psi_2.$$

Moreover, for a non-zero  $\alpha<\omega_1^{\it CK}$ , if  $\psi_2$  is a  $\Sigma_{\alpha}^{\it p}$  sentence, then so is  $\psi_2$ .



# Characterization of Txt-learning

### Theorem (B-F-R-S-V CiE2024)

Let  $\mathfrak{K} = \{A_i \mid i \in \omega\}$ . The following are equivalent:

- ▶ ℜ is **Txt**-learnable;
- ▶  $\Re \leq_{Scott} \Re_{univ}$ ;
- There are  $\Sigma_2^p$  sentences  $\psi_i$  such that

$$\mathcal{A}_i \models \psi_j \leftrightarrow i = j.$$

# Characterization of Txt-learning

### Theorem (B-F-R-S-V CiE2024)

Let  $\mathfrak{K} = \{A_i \mid i \in \omega\}$ . The following are equivalent:

- ▶ ℜ is **Txt**-learnable;
- ▶  $\Re \leq_{Scott} \Re_{univ}$ ;
- There are  $\Sigma_2^p$  sentences  $\psi_i$  such that

$$\mathcal{A}_i \models \psi_j \leftrightarrow i = j.$$

Interestingly, it turns out that the syntactical characterization was obtained by Eric Martin and Daniel Osherson (2000) who work in Algorithmic Learning Theory.

# Towards a descriptive set-theoretic characterization for **Txt**-learnability?

For any two  $\alpha, \beta \in 2^{\omega}$ ,

$$\alpha E_0 \beta \Leftrightarrow (\exists n)(\forall m \geq n)(\alpha(m) = \beta(m)).$$

Theorem (Bazhenov-Cipriani-San Mauro)

Let  $K = \{A_i : i \in \omega\}$ . T.F.A.E.

- (a) The family K is Inf-learnable.
- (b) There is a continuous function  $\Phi \colon 2^{\omega} \to 2^{\omega}$  such that for all  $\mathcal{A}, \mathcal{B} \in \mathrm{LD}(\mathcal{K})$ , we have:

$$\mathcal{A} \cong \mathcal{B} \; \Leftrightarrow \; \Phi(\mathcal{A}) \, E_0 \, \Phi(\mathcal{B}).$$

#### Towards a descriptive set-theoretic characterization for Txt-learnability?

For  $X \in P(\omega)$  and  $m \in \omega$ , by  $X^{[m]}$  we denote the m-th column of X— i.e.,  $\{y : \langle m, y \rangle \in X\}$ .

The equivalence relation  $E_{set}$  is defined as follows:

$$X E_{\text{set}} Y \Leftrightarrow \{X^{[m]} : m \in \omega\} = \{Y^{[m]} : m \in \omega\}.$$

#### Towards a descriptive set-theoretic characterization for Txt-learnability?

For  $X \in P(\omega)$  and  $m \in \omega$ , by  $X^{[m]}$  we denote the m-th column of X— i.e.,  $\{y : \langle m, y \rangle \in X\}$ .

The equivalence relation  $E_{set}$  is defined as follows:

$$X E_{\text{set}} Y \Leftrightarrow \{X^{[m]} : m \in \omega\} = \{Y^{[m]} : m \in \omega\}.$$

### Proposition (B-F-R-S-V unpublished)

Let  $K = \{A_i : i \in \omega\}$  be a family of countable structures. Then the following conditions are equivalent:

- (a) The family K is **Txt**-learnable.
- (b) There is a continuous function  $\Gamma \colon P(\omega) \to P(\omega)$  such that for all  $\mathcal{A}, \mathcal{B} \in \mathrm{LD}(\mathcal{K})$ :
  - (b.1)  $A \cong \mathcal{B} \Leftrightarrow \Gamma(A) E_{set} \Gamma(\mathcal{B});$
  - (b.2) for each  $i \in \omega$ , we have  $\{\Gamma(A_i)^{[m]} : m \in \omega\} = \{\omega, \{i\}\}.$

## The end

Thank you for your attention!