Formulario

Analisi dei dati 2022/23

Integrazione per parti

• $\int f'(x)g(x)dx = f(x)g(x) - \int f(x)g'(x)dx$

Valore atteso e varianza

- E(aX + bY + c) = aE(X) + bE(Y) + c
- $Var(X) = E(X^2) E(X)^2$
- $Var(aX + bY + c) = a^2Var(X) + b^2Var(Y) + 2abCov(X, Y)$

Distribuzioni

- Bernoulli $X \sim \text{Ber}(p)$
 - $Pr(X = x) = p^x (1 p)^{1-x}, x = 0, 1$
 - E(X) = p Var(X) = p(1-p)
 - R: dbinom(size = 1, prob = p)
 - R: pbinom(q, size = 1, prob = p)
 - R: qbinom(p, size = 1, prob = p)
- Binomiale $X \sim \text{Binom}(n, p)$
 - $\Pr(X = x) = \binom{n}{x} p^x (1-p)^{1-x}, \ x = 0, 1, \dots, n$
 - E(X) = np Var(X) = np(1-p)
 - \mathbf{R} : dbinom(x, size = n, prob = p)
 - R: pbinom(q, size = n, prob = p)
 - R: qbinom(p, size = n, prob = p)
- Poisson $X \sim Poi(\lambda)$
 - $Pr(X = x) = \frac{\lambda^x e^{-\lambda}}{x!}, x = 0, 1, ...$
 - $E(X) = \lambda \quad Var(X) = \lambda$
 - R: dpois(x, lambda)
 - R: ppois(q, lambda)
 - R: qpois(p, lambda)
- Normale $X \sim N(\mu, \sigma^2)$
 - $-f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}, x \in \mathbb{R}$
 - $E(X) = \mu$ $Var(X) = \sigma^2$
 - R: dnorm(x, mean = mu, sd = sigma)
 - R: pnorm(q, mean = mu, sd = sigma)
 - R: qnorm(p, mean = mu, sd = sigma)

• Uniforme $X \sim U(a, b)$

$$- f(x) = \frac{1}{b-a}, x \in [a,b]$$

-
$$E(X) = (a+b)/2$$
 $Var(X) = (b-a)^2/12$

$$-R$$
: dunif(x, min = a, max = b)

$$R: punif(q, min = a, max = b)$$

$$R: qunif(p, min = a, max = b)$$

• Esponenziale $X \sim \text{Exp}(\lambda)$

-
$$f(x) = \lambda e^{-\lambda x}$$
, $x \ge 0$

-
$$E(X) = 1/\lambda$$
 $Var(X) = 1/\lambda^2$

Momenti

• Momenti semplici:

– popolazione
$$\mu_k = E(X^k)$$

- campione
$$M_k = \frac{1}{n} \sum_{i=1}^n X_i^k$$

• Momenti centrali:

– popolazione
$$\mu_k' = \mathrm{E}(X - \mu)^k$$

- campione
$$M'_{k} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \bar{X})^{k}$$

Principali momenti campionari

• Media campionaria: $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$

• Varianza campionaria:
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2 = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_i^2 - n \, \bar{X}^2 \right)$$

• Covarianza campionaria:
$$S_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y}) = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_i Y_i - n \, \bar{X} \, \bar{Y} \right)$$

• Correlazione campionaria:
$$R_{xy} = \frac{S_{xy}}{S_x S_y}$$

Scarto interquartile

• Scarto interquantile: $IQR = Q_3 - Q_1$

• Valori anomali: osservazioni superiori a $\widehat{Q}_3+1.5\widehat{IQR}$ o inferiori a $\widehat{Q}_1-1.5\widehat{IQR}$

2

Teoremi limite

• Legge dei grandi numeri: $\bar{X} \xrightarrow{p} \mu$, per $n \to \infty$

• Teorema del limite centrale: \bar{X} ha distribuzione limite $N(\mu,\sigma^2/n)$

Transformazioni

• $E\{g(X)\} \neq g\{E(X)\}$, l'uguaglianza vale se $g(\cdot)$ è una funzione lineare

• $X \xrightarrow{p} \theta$ allora $g(X) \xrightarrow{p} g(\theta)$, se $g(\cdot)$ è una funzione continua

• $X \xrightarrow{d} N(\mu, \sigma^2)$ allora $g(X) \xrightarrow{d} N(g(\mu), g'(\mu)^2 \sigma^2)$, se $g'(\mu)$ esiste e non è nulla, ovvero:

- $E\{g(X)\} \approx g(\mu)$

- Var $\{g(X)\} \approx g'(\mu)^2 \sigma^2$

Proprietà degli stimatori

• Distorsione: $Bias(\hat{\theta}) = E(\hat{\theta}) - \theta$

• Errore quadratico medio: $MSE(\hat{\theta}) = Bias(\hat{\theta})^2 + Var(\hat{\theta})$

• Se $\operatorname{Bias}(\hat{\theta}) \to 0$ e $\operatorname{Var}(\hat{\theta}) \to 0$, allora $\hat{\theta} \xrightarrow{p} \theta$

Stimatore di massima verosimiglianza

• Verosimiglianza:

- caso discreto $L(\theta) \propto \prod_{i=1}^{n} \Pr(X_i = x_i; \theta)$

- caso continuo $L(\theta) \propto \prod_{i=1}^{n} f(x_i; \theta)$

– log-verosimiglianza $\ell(\theta) = \log L(\theta)$

• Informazione osservata: $J(\theta) = -\frac{\partial^2 \ell(\theta)}{\partial \theta^2}$

• Informazione attesa: $I(\theta) = \mathrm{E}\left\{-\frac{\partial^2\ell(\theta)}{\partial\theta^2}\right\}$

• Errore standard: $SE(\hat{\theta}) \approx I(\theta)^{-1/2}$ oppure $SE(\hat{\theta}) \approx J(\theta)^{-1/2}$

Intervalli di confidenza

Intervalli basati sulla statistica Z

• caso generico: $\hat{\theta} \pm z_{\alpha/2} \, \widehat{\text{SE}}(\hat{\theta})$

– $z_{\alpha/2}$ quantile normale standard di posizione $1 - \alpha/2$

- \mathbf{R} : qnorm(1 - alpha / 2)

• media con varianza nota: $\bar{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$

• media con varianza ignota e dimensione campionaria grande: $\bar{X}\pm z_{\alpha/2}\frac{S}{\sqrt{n}}$

• differenza di due medie con varianze note: $(\bar{X} - \bar{Y}) \pm z_{\alpha/2} \sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}$

• differenza di due medie con varianze ignote e dimensioni campionarie grandi: $(\bar{X} - \bar{Y}) \pm z_{\alpha/2} \sqrt{\frac{S_X^2}{n} + \frac{S_Y^2}{m}}$

3

• dimensione campionaria per stimare la media con una data precisione: $n \geq \left(\frac{z_{\alpha/2}\,\sigma}{\Lambda}\right)^2$

- proporzione con dimensione campionaria grande: $\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
- differenza di due proporzioni con dimensioni campionarie grandi: $\hat{p}_X \hat{p}_Y \pm z_{\alpha/2} \sqrt{\frac{\hat{p}_X(1-\hat{p}_X)}{n} + \frac{\hat{p}_Y(1-\hat{p}_Y)}{m}}$
- dimensione campionaria per stimare una proporzione con una data precisione: $n \ge 0.25 \left(\frac{z_{\alpha/2}}{\Delta}\right)^2$

Intervalli basati sulla statistica T

- media con varianza ignota: $\bar{X} \pm t_{\alpha/2} \, \frac{S}{\sqrt{n}}$
 - $t_{\alpha/2}$ quantile distribuzione T di Student con n-1 gradi di libertà di posizione $1-\alpha/2$
 - R: qt(1 alpha / 2, df = n 1)
- differenza di due medie con varianze ignote ma uguali: $(\bar{X} \bar{Y}) \pm t_{\alpha/2} S_p \sqrt{\frac{1}{n} + \frac{1}{m}}$
 - $t_{\alpha/2}$ quantile distribuzione T di Student con n+m-2 gradi di libertà
 - varianza 'pooled' $S_p^2 = \frac{1}{n+m-2} \left\{ \sum_{i=1}^n (X_i \bar{X})^2 + \sum_{i=1}^m (Y_i \bar{Y})^2 \right\}$
- differenza di due medie con varianze ignote non uguali: $(\bar{X} \bar{Y}) \pm t_{\alpha/2} \sqrt{\frac{S_X^2}{n} + \frac{S_Y^2}{m}}$
 - $t_{\alpha/2}$ quantile distribuzione T di Student con ν gradi di libertà
 - gradi di libertà (formula di Satterthwaite)

$$\nu = \frac{\left(\frac{S_X^2}{n} + \frac{S_Y^2}{m}\right)^2}{\frac{S_X^4}{n^2(n-1)} + \frac{S_Y^4}{m^2(m-1)}}$$

Intervalli basati sullo stimatore di massima verosimiglianza con dimensioni campionarie grandi

- $\hat{\theta} \pm z_{\alpha/2} I(\hat{\theta})^{-1/2}$
- $\hat{\theta} \pm z_{\alpha/2} J(\hat{\theta})^{-1/2}$

Verifica delle ipotesi

Statistiche test Z

- caso generico $\{H_0: \theta = \theta_0\}: Z = \frac{\hat{\theta} \theta_0}{SE(\hat{\theta})}$
- media con varianza nota $\{H_0: \mu=\mu_0\}: Z=rac{\sqrt{n}(\bar{X}-\mu_0)}{\sigma}$
- media con varianza ignota e dimensione campionaria grande $\{H_0: \mu=\mu_0\}: Z=\frac{\sqrt{n}(\bar{X}-\mu_0)}{S}$
- proporzione con dimensione campionaria grande $\{H_0: p=p_0\}: Z=\frac{\sqrt{n}(\hat{p}-p_0)}{\sqrt{p_0(1-p_0)}}$
- differenza di due medie con varianze note $\{H_0: \mu_X \mu_Y = D\}$:

$$Z = \frac{\bar{X} - \bar{Y} - D}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}}$$

• differenza di due medie con varianze ignote $\{H_0: \mu_X - \mu_Y = D\}$:

$$Z = \frac{\bar{X} - \bar{Y} - D}{\sqrt{\frac{S_X^2}{n} + \frac{S_Y^2}{m}}}$$

• differenza di due proporzioni con dimensioni campionarie grandi $\{H_0: p_X - p_Y = D\}$:

- se
$$D \neq 0$$

$$Z = \frac{\hat{p}_X - \hat{p}_Y - D}{\sqrt{\frac{\hat{p}_X(1 - \hat{p}_X)}{n} + \frac{\hat{p}_Y(1 - \hat{p}_Y)}{m}}}$$

$$- se D = 0$$

$$Z = \frac{\hat{p}_X - \hat{p}_Y - D}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n} + \frac{1}{m}\right)}}, \quad \text{con} \quad \hat{p} = \frac{n\hat{p}_X + m\hat{p}_Y}{n+m}$$

• livello di significatività osservato

- alternativa bilaterale $p = 2\{1 - \Pr(Z \le |z|)\}$

 \mathbf{R} : p = 2 * (1 - pnorm(abs(z)))

R: p = 2 * pnorm(abs(z), lower.tail = FALSE) (maggiore precisione numerica)

- alternativa unilaterale destra $p = 1 - Pr(Z \le z)$

 \mathbf{R} : p = 1 - pnorm(z)

R: p = pnorm(z, lower.tail = FALSE) (maggiore precisione numerica)

- alternativa unilaterale sinistra $p = Pr(Z \le z)$

R: p = pnorm(z)

Statistiche test T

• media con varianza ignota $\{H_0: \mu=\mu_0\}: T=\frac{\sqrt{n}(\bar{X}-\mu_0)}{S}$

- T distribuito come T di Student con n-1 gradi di libertà sotto H_0

• differenza di due medie con varianze ignote ma uguali $\{H_0: \mu_X - \mu_Y = D\}: T = \frac{\bar{X} - \bar{Y} - D}{S_p \sqrt{\frac{1}{n} + \frac{1}{m}}}$

- T distribuito come T di Student con n+m-2 gradi di libertà sotto H_0

$$-S_p^2 = \frac{1}{n+m-2} \left\{ \sum_{i=1}^n (X_i - \bar{X})^2 + \sum_{i=1}^m (Y_i - \bar{Y})^2 \right\}$$

• differenza di due medie con varianze ignote non uguali $\{H_0: \mu_X - \mu_Y = D\}$:

$$T = \frac{\bar{X} - \bar{Y} - D}{\sqrt{\frac{S_X^2}{n} + \frac{S_Y^2}{m}}}$$

– T approssimativamente distribuito come T di Student con con ν gradi di libertà sotto H_0

- gradi di libertà (formula di Satterthwaite)

$$\nu = \frac{\left(\frac{S_X^2}{n} + \frac{S_Y^2}{m}\right)^2}{\frac{S_X^4}{n^2(n-1)} + \frac{S_Y^4}{m^2(m-1)}}$$

5

- livello di significatività osservato:
 - alternativa bilaterale $p = 2\{1 \Pr(T \le |t|)\}$

$$R: p = 2 * (1 - pt(abs(t), df = gradi.liberta))$$

- alternativa unilaterale destra $p = 1 Pr(T \le t)$
 - R: p = 1 pt(t, df = gradi.liberta)

- alternativa unilaterale sinistra $p = Pr(T \le t)$

Statistiche test basate sullo stimatore di massima verosimiglianza con dimensioni campionarie grandi $\{H_0: \theta = \theta_0\}$:

- $Z = I(\theta_0)^{1/2}(\hat{\theta} \theta_0)$
- $Z = I(\theta_0)^{1/2}(\hat{\theta} \theta_0)$

Statistica test χ^2 {H₀ : $O_{ij} = E_{ij}$, per ogni scelta di $i \in j$ }:

•
$$\chi^2 = \sum_{i=1}^k \sum_{j=1}^m \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

- χ^2 distribuito come variabile casuale χ^2 con (k-1)(m-1) gradi di libertà
- tabelle contingenza
 - frequenze osservate $O_{ij} = n_{ij}$
 - frequenze attese stimate $\widehat{E}_{ij} = \frac{n_i \cdot n_{.j}}{n_i}$
 - R:

tabella <- as.table(matrix(frequenze.osservate, nrow = numero.righe))</pre>

margin1 <- margin.table(tabella, margin = 1) (n_i)

margin2 <- margin.table(tabella, margin = 2) $(n_{.j})$

outer(margin1, margin2) / sum(tabella) (frequenze attese stimate)

summary(tabella) (test χ^2 d'indipendenza)

Regressione lineare

- Retta di regressione: $y_i = \beta_0 + \beta_1 x_i + \epsilon$
- Stime ai minimi quadrati: $\hat{\beta}_0 = \bar{y} \hat{\beta}_1 \bar{x}$ $\hat{\beta}_1 = \frac{s_{xy}}{s_x^2}$
- Residui: $e_i = y_i \widehat{y}_i$
- Regressione e correlazione: $\hat{\beta}_1 = r_{xy} \frac{s_y}{s_x}$
- - somma dei quadrati totale SQ $_{\text{tot}} = \sum_{i=1}^{n} (y_i \bar{y})^2 = (n-1)s_y^2$
 - somma dei quadrati spiegata S $Q_{\text{reg}} = \sum_{i=1}^{n} (\hat{y}_i \bar{y})^2$
 - somma dei quadrati residua S $\mathbf{Q}_{\mathrm{res}} = \sum_{i=1}^n (y_i \hat{y}_i)^2$
- Coefficiente di determinazione $R^2 = \frac{SQ_{reg}}{SQ_{tot}}$
 - retta di regressione $R^2 = r_{xy}^2$
- Distribuzione limite $\widehat{\beta}_1$: $N\{\beta_1, \text{var}(\beta_1)\}$

$$- \operatorname{var}(\widehat{\beta}_1) = \frac{\sigma^2}{(n-1)s_x^2}$$

$$-\widehat{\text{var}}(\widehat{\beta}_1) = \frac{s_e^2}{(n-1)s_x^2}$$
$$-s_e^2 = \frac{1}{n-2} \sum_{i=1}^n e_i^2 = \frac{1}{n-2} \sum_{i=1}^n (y_i - \widehat{y}_i)^2$$

- Intervallo di confidenza per β_1 : $\widehat{\beta}_1 \pm t_{\alpha/2} \frac{s_e}{s_x \sqrt{n-1}}$
- Test sul predittore $\{H_0: \beta_1 = \beta_1^0\}$: $T = \frac{s_x \sqrt{n-1}}{s_e} \left(\widehat{\beta}_1 \beta_1^0\right)$
 - T distribuito come T di Student con n-2 gradi di libertà
- Previsione $\hat{y}_p = \hat{\beta}_0 + \hat{\beta}_1 x_p$
 - varianza stimata $\widehat{\mathrm{Var}}(\widehat{y}_p) = s_e^2 \left(1 + \frac{1}{n} + \frac{(x_p \bar{x})^2}{(n-1)s_x^2} \right)$
 - intervallo di previsione $\widehat{y}_p \pm t_{\alpha/2} \widehat{\mathrm{Var}}(\widehat{y}_p)^{1/2}$
 - $t_{\alpha/2}$ quantile distribuzione T di Student con n-2 gradi di libertà di posizione $1-\alpha/2$