Question 1

Consider using this encoder-decoder model for machine translation.

$\chi^{<1>}$ $\chi^{}$
This model is a "conditional language model" in the sense that the encoder portion (shown in green) is modeling the probability of the input sentence xx .
1 / 1 point
c
<u>False</u>
C
True
Correct
2.
Question 2
In beam search, if you increase the beam width ${\bf B}{\it B}$, which of the following would you expect to be true? Check all that apply.
1 / 1 point
Beam search will run more slowly.
Correct
Beam search will use up more memory.
Correct

Beam search will generally find better solutions (i.e. do a better job maximizing $P(y \mid x)P(y \mid x)$)

Correct
Beam search will converge after fewer steps.
3.
Question 3
In machine translation, if we carry out beam search without using sentence normalization, the algorithm will tend to output overly short translations.
1 / 1 point
C

<u>True</u>

 \circ

False

Correct

4.

Question 4

Suppose you are building a speech recognition system, which uses an RNN model to map from audio clip xx to a text transcript yy. Your algorithm uses beam search to try to find the value of yy that maximizes $P(y \mid x) P(y \mid x)$.

On a dev set example, given an input audio clip, your algorithm outputs the transcript $\text{hat}\{y\}=y^*=\text{"I'm building an A Eye system in Silly con Valley."}$, whereas a human gives a much superior transcript $y^*=y_*=\text{"I'm building an AI system in Silicon Valley."}$

According to your model,

$$P(\hat{y} \mid x) = 1.09*10^{-7}P(y^{|x})=1.09*10^{-7}$$

$$P(y^* \mid x) = 7.21*10^-8P(y*\mid x) = 7.21*10-8$$

Would you expect increasing the beam width B to help correct this example?

1 / 1 point

C
Yes, because $P(y^* \mid x) \mid P(\mid x) \mid x) P(y_* \mid x) \leq P(y^* \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.
C
Yes, because $P(y^* \mid x) \mid P(\mid x) \mid x) P(y^* \mid x) \leq P(y^* \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.
C
No, because $P(y^* \mid x) \mid P(\mid x) \mid x) P(y_* \mid x) \leq P(y^* \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.
C
No, because $P(y^* \mid x) \leq P(\sqrt{x} \mid x) \leq P(y^* \mid x) \leq P(y^* \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.
Correct
5.
Question 5
Continuing the example from Q4, suppose you work on your algorithm for a few more weeks, and now find that for the vast majority of examples on which your algorithm makes a mistake, $P(y^* \mid x) > P(\mid x) > P(y^\mid x) > P(y^\mid x)$. This suggests you should focus your attention on improving the search algorithm.
1 / 1 point
C
False.
C
<u>True</u> .
Correct
6.
Question 6
Consider the attention model for machine translation.

Further, here is the formula for $\alpha \sinh \alpha < t,t'> \alpha < t,t'>$.

$$\alpha^{< t, t'>} = \frac{\exp(e^{< t, t'>})}{\sum_{t'=1}^{T_{x}} \exp(e^{< t, t'>})}$$

Which of the following statements about $\alpha ha^{< t,t'>} \alpha < t,t'>$ are true? Check all that apply.

1 / 1 point

We expect $\alpha^{<< t,t'>} a< t,t'>$ to be generally larger for values of $a^{<< t>} a< t>$ that are highly relevant to the value the network should output for $y^{<< t'>} y< t'>$. (Note the indices in the superscripts.)

We expect $\alpha^{<}\{<\!t,t'>\}\alpha<\!t,t'>\$ to be generally larger for values of $a^{<}\{<\!t'>\}\alpha<\!t'>\$ that are highly relevant to the value the network should output for $y^{<}\{<\!t>\}y<\!t>$. (Note the indices in the superscripts.)

Correct

 $\label{eq:continuity} $$\sum_{t' \alpha < t, t' > 1 \le t' \alpha < t, t' > 1 (Note the summation is over t't'.)$$

Correct

$\sum_{t'} \alpha_{t,t'} = 1 \sum_{t'} \alpha_{t,t'} = 1$ (Note the summation is over t .)
7.
Question 7
The network learns where to "pay attention" by learning the values $e^{\{< t, t'>\}}e^{< t, t'>}$, which are computed using a small neural network:
We can't replace $s^{}s$ with $s^{}s$ as an input to this neural network. This is because $s^{}s$ depends on $alpha^{}\alpha$ which in turn depends on $e^{}e$; so at the time we need to evaluate this network, we haven't computed $s^{}s$ yet.
1 / 1 point
C
False
C
<u>True</u>
Correct
8.
Question 8
Compared to the encoder-decoder model shown in Question 1 of this quiz (which does not use an attention mechanism), we expect the attention model to have the greatest advantage when:
1 / 1 point
C
The input sequence length T_xT_x is small.
C
The input sequence length $T_x T_x$ is large.
Correct
9.
Question 9

Under the CTC model, identical repeated characters not separated by the "blank" character (_) are collapsed. Under the CTC model, what does the following string collapse to?
c_oo_o_kkb_oooooookkk
1 / 1 point
C
<u>cokbok</u>
C
cookbook
C
coookkbooooookkk
C
cook book
Correct
10.
Question 10
In trigger word detection, $x^{<}\{< t>\}x< t>$ is:
1 / 1 point
C
Features of the audio (such as spectrogram features) at time tt.
C
Whether the trigger word is being said at time $\mathrm{t}t.$
C
Whether someone has just finished saying the trigger word at time tt .
C
The $t\bar{t}$ -th input word, represented as either a one-hot vector or a word embedding.

Correct