Tutorien-Übungsblatt 2

Aufgabe 1

Gegeben sei der folgende endliche Automat:

 $\mathcal{M} = (\mathcal{Q}, \Sigma, \delta, s_0, \mathcal{F})$ mit $\mathcal{Q} = \{s_0, s_1, s_2, s_3, s_4\}, \Sigma = \{0, 1\}, \mathcal{F} = \{s_4\}$ und δ gegeben durch:

- 1. Ist der gegebene endliche Automat deterministisch?
- 2. Zeichnen Sie den Äquivalenzklassenautomaten!
- 3. Geben Sie die Äquivalenzklassen der Zustände vom entstandenen Automaten an!

Aufgabe 2

Gegeben sei ein nichtdeterministischer endlicher Automat (NEA):

 $\mathcal{M} = (\mathcal{Q}, \Sigma, \delta, q_0, \mathcal{F})$ mit $\mathcal{Q} = \{q_0, q_1, q_2\}, \Sigma = \{a, b\}, \mathcal{F} = \{q_2\}$ und δ gegeben durch:

- 1. Geben Sie einen entsprechenden deterministischen endlichen Automaten (DEA) an, der die gleiche Sprache akzeptiert! Benutzen Sie hierbei das Potenzmengenkonstruktionsverfahren!
- 2. Ist der entstandene Automat vollständig? Wenn nicht, wie kann man den Automaten vervollständigen? Welche Mengen stellen bei dem Potenzmengenkonstruktionsverfahren einen Fehlerzustand dar?

Aufgabe 3

Gegeben sei der folgende deterministische endliche Automat:

 $\mathcal{M} = (\mathcal{Q}, \Sigma, \delta, q_0, \mathcal{F}) \text{ mit } \mathcal{Q} = \{q_0, q_1, q_2, q_3, q_4, q_5\}, \Sigma = \{0, 1\}, \mathcal{F} = \{q_3, q_5\} \text{ und } \delta \text{ gegeben durch: } \mathcal{M} = \{q_3, q_5\}$

- 1. Vervollständigen Sie den Automaten, d.h. führen Sie einen Fehlerzustand ein!
- 2. Minimieren Sie den vervollständigten Automaten!

Aufgabe 4

Gegeben seien die folgenden beiden nichtdeterministischen endlichen Automaten:

 $\label{thm:constructions} Wandeln\ Sie\ diese\ mittels\ des\ Potenzmengenkonstruktionsverfahrens\ in\ deterministische\ endliche\ Automaten\ um!$

Lösung zu Aufgabe 1

- 1. Ja!
- 2. Der minimale Automat:

3. Die Äquivalenzklassen der Zustände vom minimalen Automaten:

$$\begin{split} [\varepsilon] &= \{w \in \{0,1\}^* \mid w \text{ enthält nicht } 00 \text{ und endet nicht mit } 0\} \\ [0] &= \{w \in \{0,1\}^* \mid w \text{ enthält nicht } 00 \text{ und endet mit } 0\} \end{split}$$

 $[00] = \{w \in \{0,1\}^* \mid w \text{ enthält } 00\}$

Lösung zu Aufgabe 2

1.		a	b
	$\{q_0\}$	$\{q_1\}$	Ø
	$\{q_1\}$	$\{q_1\}$	$\{q_1,q_2\}$
	Ø	Ø	Ø
	$\{q_1,q_2\}$	$\{q_1\}$	$\{q_1,q_2\}$

Der DEA sieht folgendermaßen aus:

Hierbei sind die neuen Zustände durch die Potenzmengenkonstruktion (PMK): $s_0 = \{q_0\}, s_1 = \{q_1\}, s_2 = \emptyset, s_3 = \{q_1, q_2\}$

2. Beim Potenzmengenkonstruktionsverfahren stellt zunächst die leere Menge, aber auch jede Menge, die nur Fehlerzustände des ursprünglichen Automaten enthält, im neuen Automaten einen Fehlerzustand dar.

Lösung zu Aufgabe 3

1. Der vervollständigte Automat:

 $\mathcal{M} = (\mathcal{Q}, \Sigma, \delta, q_0, \mathcal{F}) \text{ mit } \mathcal{Q} = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6\}, \Sigma = \{0, 1\}, \mathcal{F} = \{q_3, q_5\} \text{ und } \delta \text{ gegeben durch: } \mathcal{M} = \{q_3, q_5\} \mathcal{M} = \{q_5, q_5\} \mathcal{M} = \{q$

2. Die Minimierung:

q_0	X	X	X	X	X	X	X
q_1		X	X	X	X	X	X
q_2	1	1	X	X	X	X	X
q_3	0	0	0	X	X	X	X
q_4	1	1		0	X	X	X
q_5	0	0	0		0	X	X
q_6	2	2	1	0	1	0	X
	q_0	q_1	q_2	q_3	q_4	q_5	q_6

Der minimierte Automat:

 $\mathcal{M}=(\mathcal{Q},\Sigma,\delta,s_0,\mathcal{F}) \text{ mit } \mathcal{Q}=\{s_0,s_1,s_2,s_3\}, \Sigma=\{0,1\}, \mathcal{F}=\{s_2\} \text{ und } \delta \text{ gegeben durch: } \mathcal{S}=\{s_1,s_2,s_3\}, \mathcal{S}=\{s_2,s_3\}, \mathcal{S}=\{s_2,s_3\}, \mathcal{S}=\{s_2,s_3\}, \mathcal{S}=\{s_3,s_3\}, \mathcal{S}=\{s_3,s$

Hierbei ersetzen die neuen Zustände durch die Minimierung die alten Zustände wie folgt:

- s_0 ersetzt q_0,q_1
- s_1 ersetzt q_2, q_4
- s_2 ersetzt q_3, q_5
- s_3 ersetzt q_6

Lösung zu Aufgabe 4

	a	b
$r_1 := \{q_1\}$	$\{q_1, q_2\}$	$\{q_2\}$
$r_2 := \{q_1, q_2\}$	$\{q_1, q_2\}$	$\{q_1,q_2\}$
$r_3 := \{q_2\}$	Ø	$\{q_1\}$
$r_4 := \varnothing$	Ø	Ø

Der 1. DEA sieht folgendermaßen aus:

	a	b
$z_1 := \{s_1, s_2\}$	$\{s_1, s_2, s_3\}$	Ø
$z_2 := \{s_1, s_2, s_3\}$	$\{s_1, s_2, s_3\}$	$\{s_2, s_3\}$
$z_3 := \varnothing$	Ø	Ø
$z_4 := \{s_2, s_3\}$	$\{s_1, s_2\}$	$\{s_2, s_3\}$

Der 2. DEA sieht folgendermaßen aus:

