GC content correlation

Modesto Redrejo Rodríguez

2022-02-21

1. Read files and plot data

GC content was analyzed with Picard (see Evernote ELN).

```
#load all the files as a list of dataframes
gc_picard=c("ctrl_gc_bias_coli", "ctrl_gc_bias_subtilis", "ctrl_gc_bias_PAE", "ctrl_gc_bias_kocuria",
            "ctrl2_gc_bias_coli", "ctrl2_gc_bias_subtilis", "ctrl2_gc_bias_PAE", "ctrl2_gc_bias_kocuria",
            "N4_gc_bias_coli", "N4_gc_bias_subtilis", "N4_gc_bias_PAE", "N4_gc_bias_kocuria",
            "D3_gc_bias_coli", "D3_gc_bias_subtilis", "D3_gc_bias_PAE", "D3_gc_bias_kocuria",
            "C3_gc_bias_coli", "C3_gc_bias_subtilis", "C3_gc_bias_PAE", "C3_gc_bias_kocuria",
            "N1_gc_bias_coli", "N1_gc_bias_subtilis", "N1_gc_bias_PAE", "N1_gc_bias_kocuria",
            "F2_gc_bias_coli", "F2_gc_bias_subtilis", "F2_gc_bias_PAE", "F2_gc_bias_kocuria",
            "N2_gc_bias_coli", "N2_gc_bias_subtilis", "N2_gc_bias_PAE", "N2_gc_bias_kocuria",
            "B2 gc bias coli", "B2 gc bias subtilis", "B2 gc bias PAE", "B2 gc bias kocuria",
            "N6_gc_bias_coli", "N6_gc_bias_subtilis", "N6_gc_bias_PAE", "N6_gc_bias_kocuria",
            "A2_gc_bias_coli", "A2_gc_bias_subtilis", "A2_gc_bias_PAE", "A2_gc_bias_kocuria")
gc <- lapply(gc_picard, function(x) read.csv2(paste(x,".txt",sep=""), skip=6,header=TRUE,sep="\t", colC
#plot all the samples using a loop
library(ggplot2)
library(ggpubr)
cor_matrix <- data.frame(44,3)</pre>
colors <- c("Mean quality"="grey", "Normalized coverage"="firebrick", "GC"="steelblue")</pre>
samples <- c("NA","NA2","RepliG","RepliG2","TruePrime","piPolB","piPolB+D","piMDA","piMDA2","piMDA+D","</pre>
templates <- c("E. coli", "B. subtilis 110NA", "P. aeruginosa PAER4", "K. rhizophila")
genomas <- merge(templates, samples ,all=TRUE)</pre>
plot_list <- list()</pre>
for (i in 1:length(gc)){
  p \leftarrow ggplot(\frac{data}{gc[[i]]}, aes(x=gc[[i]]) GC, y=gc[[i]] WINDOWS)) +
    geom_bar(stat="identity",fill="steelblue")+
    geom_line(aes(y=gc[[i]]$MEAN_BASE_QUALITY*7000,color="Mean quality"))+
    geom_point(aes(y=gc[[i]]$NORMALIZED_COVERAGE*200000,color="Normalized coverage"))+
    scale_y_continuous("Frequency at GC", sec.axis=sec_axis(~./200000,name="Normalized coverage"))+
    scale_color_manual(name="",values=colors)+
    xlab("GC content") +
    ggtitle(paste(genomas[i,1],"de la muestra",genomas[i,2])) +
    theme_bw(base_size=14)
 print(p)
```


P. aeruginosa PAER4 de la muestra NA

GC content B. subtilis 110NA de la muestra NA2

P. aeruginosa PAER4 de la muestra NA2

GC content B. subtilis 110NA de la muestra RepliG

P. aeruginosa PAER4 de la muestra RepliG

GC content B. subtilis 110NA de la muestra RepliG2

P. aeruginosa PAER4 de la muestra RepliG2

GC content K. rhizophila de la muestra RepliG2

E. coli de la muestra TruePrime

GC content B. subtilis 110NA de la muestra TruePrime

P. aeruginosa PAER4 de la muestra TruePrime

GC content K. rhizophila de la muestra TruePrime

GC content
B. subtilis 110NA de la muestra piPolB

P. aeruginosa PAER4 de la muestra piPolB

P. aeruginosa PAER4 de la muestra piPolB+D

GC content

K. rhizophila de la muestra piPolB+D

P. aeruginosa PAER4 de la muestra piMDA

0.0

GC content

GC content
B. subtilis 110NA de la muestra piMDA2

P. aeruginosa PAER4 de la muestra piMDA2

GC content K. rhizophila de la muestra piMDA2

GC content
B. subtilis 110NA de la muestra piMDA+D

P. aeruginosa PAER4 de la muestra piMDA+D

GC content K. rhizophila de la muestra piMDA+D

GC content
B. subtilis 110NA de la muestra piMDA+D2

P. aeruginosa PAER4 de la muestra piMDA+D2

GC content
K. rhizophila de la muestra piMDA+D2

Correlations 1: GC content vs. Normalized Coverage

```
cor_matrix <- data.frame(44,3)</pre>
for (i in 1:length(gc)){
  gc[[i]] <- gc[[i]][gc[[i]]$WINDOWS>5,] #remove 0 values
  cor_matrix[i,1] <- gc_picard[i]</pre>
  tmp <- cor.test(gc[[i]]$GC,gc[[i]]$NORMALIZED_COVERAGE)</pre>
  cor_matrix[i,2] <-tmp$estimate</pre>
  cor_matrix[i,3] <-tmp$p.value</pre>
}
corr frame <- data.frame(matrix(ncol = 11, nrow = 4))</pre>
#split the data to genome vs sample
#GC vs Normalized Coverage
for (i in 1:ncol(corr_frame)){
  if (i==1){
    corr_frame[1:4,i] <- cor_matrix[1:4,2]</pre>
  }else{
    corr_frame[1:4,i] <- cor_matrix[(4*i)-3:4*i,2]</pre>
  }
}
corr_frame <- sapply(corr_frame, as.numeric)</pre>
colnames(corr_frame) <- c("NA","NA2","RepliG","RepliG2","TruePrime","piPolB","piPolB+D","piMDA","piMDA2
row.names(corr_frame) <- c("E. coli", "B. subtilis 110NA", "P. aeruginosa PAER4", "K. rhizophila")
#plot
library(corrplot)
## corrplot 0.92 loaded
corrplot(as.matrix(corr frame), tl.col="black", addCoef.col = 1, number.cex = 1)
                                                                                          piMDA+D2
                                                              piPolB+D
                                                                            piMDA2
                                  RepliG
                    Ϋ́
                                                                                                      1
                                                                                                     0.8
                                 -0.54
            E. coli
                          -0.18
                                        -0.88
                                                      0.47
                                                             -0.02
                                                                                                     0.6
                                                                                                     0.4
   B. subtilis 110NA
                          -0.18
                                 -0.54
                                                      0.47
                   -0.18
                                         -0.88
                                                -0.9
                                                             -0.02
                                                                                                     0.2
                                                                                                      0
                                                                                                     -0.2
P. aeruginosa PAER4
                   -0.54
                          -0.18
                                 -0.54
                                                      0.47
                                         -0.88
                                                -0.9
                                                             -0.02
                                                                                                     -0.4
                                                                                                     -0.6
       K. rhizophila
                   -0.88
                          -0.18
                                 -0.54
                                         -0.88
                                                -0.9
                                                      0.47
                                                             -0.02
                                                                                                     -0.8
#include the p-values
corr_frame2 <- data.frame(matrix(ncol = 11, nrow = 4))</pre>
for (i in 1:ncol(corr_frame2)){
  if (i==1){
    corr_frame2[1:4,i] <- cor_matrix[1:4,3]</pre>
    corr_frame2[1:4,i] <- cor_matrix[(4*i)-3:4*i,3]</pre>
```

```
}
corr_frame2 <- sapply(corr_frame2, as.numeric)</pre>
colnames(corr_frame2) <- colnames(corr_frame)</pre>
row.names(corr_frame2) <- row.names(corr_frame)</pre>
#plot
corrplot(as.matrix(corr_frame), tl.col="black", p.mat=corr_frame2, addCoef.col = 1,
         number.cex = 1)
                                                                                      piMDA+D2
                          NA2
                   ≶
                                                                                                 1
                                                                                                 0.8
                                -0.54
                                                    0.47
                                       -0.88
                                                                                                 0.6
                                                                                                 0.4
   B. subtilis 110NA
                                -0.54
                                       -0.88
                                                    0.47
                                                                                                 0.2
                                                                                                 0
                                                                                                -0.2
P. aeruginosa PAER4
                                -0.54
                                       -0.88
                                                    0.47
                                                                                                -0.4
                                                                                                -0.6
       K. rhizophila
                                -0.54
                                                                                                 -0.8
library(gdata)
## gdata: read.xls support for 'XLS' (Excel 97-2004) files ENABLED.
##
## gdata: read.xls support for 'XLSX' (Excel 2007+) files ENABLED.
##
## Attaching package: 'gdata'
## The following object is masked from 'package:stats':
##
##
       nobs
## The following object is masked from 'package:utils':
##
##
       object.size
## The following object is masked from 'package:base':
##
##
       startsWith
#multiple correlation
cor_matrix2 <- gc[[1]]$NORMALIZED_COVERAGE</pre>
for (i in 2:length(gc)){
  gc[[i]] <- gc[[i]][gc[[i]]$WINDOWS!=0,] #remove 0 values</pre>
  cor_matrix2 <-cbindX(as.data.frame(cor_matrix2),as.data.frame(gc[[i]]$NORMALIZED_COVERAGE))</pre>
}
colnames(cor_matrix2) <-paste0(genomas[,2],"-",genomas[,1])</pre>
testRes = cor.mtest(cor_matrix2, conf.level = 0.95)
corrplot(cor(cor_matrix2, use="complete.obs"), tl.col="black", p.mat = testRes$p)
```


Correlations 1: Windows vs. Normalized Coverage

```
cor_matrix <- data.frame(44,3)
for (i in 1:length(gc)){
   gc[[i]] <- gc[[i]][gc[[i]]$WINDOWS>5,] #remove 0 values
   cor_matrix[i,1] <- gc_picard[i]
   tmp <- cor.test(gc[[i]]$WINDOWS,gc[[i]]$NORMALIZED_COVERAGE)
   cor_matrix[i,2] <-tmp$estimate
   cor_matrix[i,3] <-tmp$p.value
}

corr_frame <- data.frame(matrix(ncol = 11, nrow = 4))

#split the data to genome vs sample
#GC vs Normalized Coverage
for (i in 1:ncol(corr_frame)){</pre>
```

```
if (i==1){
    corr_frame[1:4,i] <- cor_matrix[1:4,2]</pre>
    corr_frame[1:4,i] <- cor_matrix[(4*i)-3:4*i,2]</pre>
  }
corr_frame <- sapply(corr_frame, as.numeric)</pre>
colnames(corr_frame) <- c("NA","NA2","Replig","Replig2","TruePrime","piPolB","piPolB+D","piMDA","piMDA2
row.names(corr_frame) <- c("E. coli", "B. subtilis 110NA", "P. aeruginosa PAER4", "K. rhizophila")
#plot
library(corrplot)
corrplot(as.matrix(corr_frame), tl.col="black", addCoef.col = 1, number.cex = 1)
                                                                                           piMDA+D2
                                                               piPolB+D
                                  RepliG
                           NA2
                    ₹
                                                                                                       1
                                                                                                      8.0
            E. coli
                   -0.24
                           0.14
                                  0.04
                                        -0.32
                                               -0.33
                                                       -0.32
                                                                                   0.32
                                                                                          -0.47
                                                              0.1
                                                                     -0.27
                                                                            -0.19
                                                                                                      0.6
                                                                                                      0.4
   B. subtilis 110NA
                   0.14
                           0.14
                                  0.04
                                        -0.32
                                               -0.33
                                                       -0.32
                                                                     -0.27
                                                                            -0.19
                                                                                   0.32
                                                                                          -0.47
                                                              0.1
                                                                                                      0.2
                                                                                                       0
                                                                                                      -0.2
P. aeruginosa PAER4
                   0.04
                           0.14
                                  0.04
                                        -0.32
                                               -0.33
                                                       -0.32
                                                              0.1
                                                                     -0.27
                                                                            -0.19
                                                                                   0.32
                                                                                          -0.47
                                                                                                      -0.4
                                                                                                      -0.6
       K. rhizophila
                   -0.32
                           0.14
                                  0.04
                                        -0.32
                                               -0.33
                                                       -0.32
                                                              0.1
                                                                     -0.27
                                                                            -0.19
                                                                                   0.32
                                                                                          -0.47
                                                                                                      -0.8
#include the p-values
corr_frame2 <- data.frame(matrix(ncol = 11, nrow = 4))</pre>
for (i in 1:ncol(corr_frame2)){
  if (i==1){
    corr_frame2[1:4,i] <- cor_matrix[1:4,3]</pre>
  }else{
    corr_frame2[1:4,i] <- cor_matrix[(4*i)-3:4*i,3]</pre>
  }
}
corr_frame2 <- sapply(corr_frame2, as.numeric)</pre>
colnames(corr_frame2) <- colnames(corr_frame)</pre>
row.names(corr frame2) <- row.names(corr frame)</pre>
#plot
corrplot(as.matrix(corr_frame), tl.col="black", p.mat=corr_frame2, addCoef.col = 1,
          number.cex = 1)
```



```
library(gdata)
#multiple correlation
cor_matrix2 <- gc[[1]]$NORMALIZED_COVERAGE
for (i in 2:length(gc)){
   gc[[i]] <- gc[[i]][gc[[i]]$WINDOWS!=0,] #remove 0 values
   cor_matrix2 <-cbindX(as.data.frame(cor_matrix2),as.data.frame(gc[[i]]$NORMALIZED_COVERAGE))
}

testRes = cor.mtest(cor_matrix2, conf.level = 0.95)
colnames(cor_matrix2) <-paste0(genomas[,2],"-",genomas[,1])

corrplot(cor(cor_matrix2, use="complete.obs"),tl.col="black", p.mat = testRes$p)</pre>
```

