

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

ÚSTAV MIKROELEKTRONIKY

DEPARTMENT OF MICROELECTRONICS

AUTOMATICKÉ HERNÍ STANOVIŠTĚ

XX

SEMESTRÁLNÍ PRÁCE

SEMESTRAL THESIS

AUTOR PRÁCE

Tomáš Vavrinec

AUTHOR

VEDOUCÍ PRÁCE

doc. Ing. Pavel Šteffan, Ph.D.

SUPERVISOR

BRNO 2023

Semestrální práce

bakalářský studijní program Mikroelektronika a technologie

Ústav mikroelektroniky

Student: Tomáš Vavrinec ID: 240893

Ročník: 3 Akademický rok: 2023/24

NÁZEV TÉMATU:

Automatické herní stanoviště

POKYNY PRO VYPRACOVÁNÍ:

V rámci semestrálního projektu navrhněte automatické herní stanoviště pro outdoorové hry.

Stanoviště navrhněte tak, aby bylo schopné komunikovat na krátkou (jednotky metrů) i dlouhou vzdálenost s ostatními zařízeními které se hry zúčastní. Ovládání zařízení musí být použitelné ve venkovním prostředí s optickou i zvukovou zpětnou vazbou.

Termín zadání: 18.9.2023 Termín odevzdání: 15.12.2023

Vedoucí práce: doc. Ing. Pavel Šteffan, Ph.D.

doc. Ing. Pavel Šteffan, Ph.D. předseda rady studijního programu

UPOZORNĚNÍ:

Autor semestrální práce nesmí při vytváření semestrální práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č.40/2009 Sb.

ABSTRAKT

Cílem práce je navrhnout elektronické zařízení pro využití v outdorových hrách. Primárně jde o návrh automatického herního stanoviště, ale došlo i k návrhu jednoduchého osobního zařízení. Tato práce se zabývá teoretickým návrhem elektroniky. Je kladen důraz na výběr vhodných systémů k aplikaci ve hrách a z nich vychází návrh elektroniky. Návrh je rozdělen do několika skupin, návrh osobního zařízení a návrh herního stanoviště, který se dále dělí na návrh jádra a jeho modulů.

KLÍČOVÁ SLOVA

mikrokontrolér, ESP32, ESP32-C3-MINI-1, ESP32-S3, ESP32-S3-WROOM, outdoorové hry, herní stanoviště, herní zařízení

ABSTRACT

The aim of this thesis is to design an electronic device for use in outdoor games. Primarily the design of an automatic gaming station, but there has also been a design of a simple personal device. This thesis deals with the selection and rough design of the electronics. Emphasis is placed on the selection of appropriate systems for application in games and the design of electronics based on these. The design is divided into several groupings, the personal device design and the game station design which is further divided into the design of the core and its modules.

KEYWORDS

microcontroller, ESP32, ESP32-C3-MINI-1, ESP32-S3, ESP32-S3-WROOM, outdoor games, gaming stations, gaming facilities

Vysázeno pomocí balíčku thesis verze 4.09; https://latex.fekt.vut.cz/

Prohlášení autora o původnosti díla

Tomáš Vavrinec

VUT ID autora:	240893			
Typ práce:	Semestrální práce			
Akademický rok:	2023/24			
Téma závěrečné práce:	Automatické herní stanoviště			
Prohlašuji, že svou závěrečnou práci jsem vypracoval samostatně pod vedením vedoucí/ho závěrečné práce a s použitím odborné literatury a dalších informačních zdrojů, které jsou všechny citovány v práci a uvedeny v seznamu literatury na konci práce. Jako autor uvedené závěrečné práce dále prohlašuji, že v souvislosti s vytvořením této závěrečné práce jsem neporušil autorská práva třetích osob, zejména jsem nezasáh nedovoleným způsobem do cizích autorských práv osobnostních a/nebo majetkových a jsem si plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., o právu autorském, o právech souvisejících s právem autorským				
možných trestněprávních důsledků vypl Trestního zákoníku č. 40/2009 Sb.	ývajících z ustanovení části druhé, hlavy VI. díl 4			
Brno				
	podpis autora*			

Jméno a příjmení autora:

^{*}Autor podepisuje pouze v tištěné verzi.

Obsah

1	Dův	ody e	lektronizace zážitkových her	19	
	1.1	Hra K	Sing of the Hill	19	
	1.2	Hra Š	piónské sítě	20	
	1.3	Hra N	lež se čas naplní	21	
	1.4	Hra d	uchové	22	
1.5 Požadavky na zařízení					
		1.5.1	Dynamická zařízení	23	
		1.5.2	Statická zařízení	23	
		1.5.3	Využití telefonu	25	
	1.6	Modu	ly	26	
		1.6.1	Modul dvířka	26	
		1.6.2	Zvukový modul	27	
		1.6.3	Komunikační modul	27	
		1.6.4	Výběr bezdrátové komunikace dlouhého dosahu	28	
2	Náv	rh dy	namického zařízení	29	
3	Náv	rh sta	tického zařízení	31	
	3.1	Strukt	tura elektroniky základní jednotky	33	
		3.1.1	LED deska	33	
		3.1.2	Mini UI	33	
		3.1.3	Hlavní deska	34	
		3.1.4	Výběr mikrokontroleru	35	
		3.1.5	Propojení hlavní desky a LED desky	36	
		3.1.6	Modulový konektor	37	
		3.1.7	Konektor programátor	39	
		3.1.8	USB-C	40	
		3.1.9	Konektor komunikačního modulu	40	
Zá	ávěr			41	
	3.2	Použi	té zdroje	42	
Se	eznan	n sym	bolů a zkratek	47	
Se	eznar	n přílo	oh	49	

Seznam obrázků

1.1	Úvodní blokové schéma zařízení	24
1.2	Základní blokové schéma zařízení	25
1.3	Blokové schéma modulu dvířka	27
3.1	Návrh vzhledu zařízení	3
3.2	Dostupné vyhovující mikrokontrolery	35
3.3	Moduly s mikrokontrolery	36
3.4	Programovací konektor	39

Úvod

Pravděpodobně si každý z nás dokáže vybavit nějakou hru, která se odehrává venku, někde v lese nebo na louce. Podobné hry bývají typické pro letní tábory nebo třeba skauty. Často se jedná o hru s jasnými pravidly na přesně vymezeném hřišti jako je třeba fotbal nebo možná hravější vlajkovaná, kde je cílem přenést vlajku soupeře na své území. Často jde ale o hry, které se odehrávají v širém okolí a průběh se neskládá z jen jednoho cíle, jako dát gól, ale spíš z řady samostatných úkolů, které na sebe navazují. Tyto hry také mívají méně či více výrazný příběh, který hráčům vysvětluje, proč právě dělají to co dělají a takové hry budu označovat jako outdoorové hry.

Outdoorové hry bývají často složeny ze stanovišť, na kterých mají hráči plnit různé úkoly. Aby bylo možné tyto úkoly zadat a vyhodnotit jejich výsledek, je většinou nutné, aby na stanovišti byl nějaký organizátor a stanoviště obsluhoval. Tyto úkoly jsou ale často poměrně prosté a není tak problém je automatizovat, což může organizátory uvolnit k jiné činnosti. Outdoorové hry by navíc znatelně oživila aktivní komunikace mezi stanovištěmi, která by mohla i vytvořit prostor pro nové herní mechaniky.

Řada outdoorových her využívá různá podomácku vyrobená zařízení, které někdo z organizátorů postavil za účelem konkrétní hry. Taková zařízení ale autora stojí velké množství času, protože jej musí celé od základu navrhnout, vyrobit a pak je jej schopen obsluhovat jen on. Navíc je pak takové zařízení typicky použito jen u jedné nebo dvou her, po kterých jej autor buď rozebere, nebo bezpečně uloží někam, kde si jej náhodou všimne o deset let později při úklidu. V neposlední řadě bývají jakýmsi zlatým hřebem celé akce např. týdenního tábora a jejich kouzlo je především v odlišnosti od zbytku akce.

Z těchto důvodů padlo rozhodnutí na vývoj univerzálního automatického herního stanoviště, které by se dalo opakovaně použít na různé hry i ve větším počtu. Podstatnou součástí je pochopitelně i pokud možno co nejintuitivnější ovládání, aby uživatele nezdržovalo od zábavy.

1 Důvody elektronizace zážitkových her

Outdoorové hry mají často příběh, který se dá vyprávět konkrétními úkoly na stanovištích. Na některých stanovištích proto musí být lidská obsluha, na jiných ale může být lidská obsluha z příběhového pohledu nežádoucí. Když má hráč například vyřadit automatický bezpečnostní systém je lidská obsluha stanoviště poslední možnost. Podobná stanoviště proto bývají realizovány pomocí různých papírků a provázků. To určitě má své kouzlo, ale i tak je u podobného stanoviště vhodné mít obsluhu. Elektronické řešení podobných stanovišť by ale mohlo otevřít úplně nový svět možností.

Abych mohl vytvořit univerzální automatické herní stanoviště, je potřeba si nejprve ujasnit, jaké vlastnosti by takové zařízení mělo mít. Za tímto účelem popíši několik her, které jsou většinou navrženy bez použití elektroniky a zkusím domyslet, jak by se tyto hry mohly použitím elektroniky změnit.

1.1 Hra King of the Hill

Tato hra je převzata z portálu hranostaj.cz [1].

Nejlépe se hraje se dvěma týmy, může se ale hrát i s více. Uprostřed hracího pole je kruh, ideálně na vyvýšeném místě, o který se bude bojovat. Oba týmy mají svou základnu, ze které na počátku hry vyráží. Základny jsou na opačných stranách kruhu a zhruba stejně vzdáleny. Bojuje se šiškami nebo koulemi. Když je někdo vybit, jde zpátky k základně, aby se oživil. V základnách jsou všichni nesmrtelní a ti kdo do ní nepatří, do ní nevstupují. Hraje se většinou na 3 kola. V jednom kole zazní 3 signály.

- 1. týmy se rozeběhnou k prostřednímu kruhu.
- 2. kruh je dostupný k obsazení.(asi půl minuty po signálu 1)
- 3. konec kola, hráči se vrátí na základnu. (týmy si můžou základny proměňovat, aby to bylo víc fér)

Prostřední kruh se obsadí tak, že je v něm pouze jeden tým, nebo alespoň jeden z týmu. Potom z něj můžou odejít, ale riskují tak, že ho obsadí někdo jiný. Všichni můžou vstupovat do kruhu. U prostředního kruhu je vedoucí, který má několik stopek. Měří všem týmům kolik času strávili v kruhu. Konec kola je tehdy, když stráví jeden tým v kruhu daný čas (obvykle 10-20 minut). Kdo vyhraje kolo dvakrát nebo třikrát (podle toho kolik je týmů a jak má hra být dlouhá), vyhrává.

V této hře by se elektronika dala vhodně využít na měření času, který měl každý tým nadvládu nad územím. Zároveň by se zjednodušilo vyhodnocení hry, protože by se všechny časy jednoduše vyhodnotily automaticky. I časování jednotlivých kol by se tak dalo jednoduše automatizovat. Hra by se také dala rozšířit o další herní

prvky, například o možnost získat nějaké bonusy, když tým obsadí území v určitém čase. Také by mohly přibýt další obsaditelná území, aby týmy musely bojovat na více frontách a pro výhru by musely zabrat více území naráz.

1.2 Hra Špiónské sítě

Tato hra je převzata z portálu hranostaj.cz [2] a je určena k hraní na pozadí jiné akce, typicky letního tábora.

Každý správný filmový špión, který má navázat kontakt s neznámým kolegou, mu musí nejprve nonšalatně položit nenápadnou otázku "Máme to ale chladný večer, že?" a teprve pokud mu neznámý kolega odpoví správnou odpovědí "Ano, v Paříži je v této roční době nezvykle chladno.", tak bude vědět, že mu může plně důvěřovat. Hráči se tedy podobně jako špion ocitnou v nebezpečné době, plné agentů a tajných organizací a oni musí rozklíčovat, kdo je s nimi a kdo proti nim. Hraje se delší dobu, kdy hra probíhá "na pozadí". Podle počtu hráčů nebo příběhu se určí kolik bude tajných organizací. Každá organizace má jednu kódovou otázku s navazující odpovědí. Jednotlivé otázky spolu s odpovědí se napíší na lístečky a ty se náhodně rozdají hráčům tak, aby tajné organizace měli přibližně stejný počet členů (vždy alespoň 2).

Otázky a odpovědi mohou být

- Co jsi včera dělal?
- Jezdil jsem na kole, ale rozbila se mi přehazovačka.
- Dneska je docela teplo, co?
- To jo, jestli to takhle půjde dál, tak nám vyschne studna.
- Jdeš příští týden na výpravu?
- Bohužel ne, musím být doma a učit se zlomky.

Z logiky věci musí být otázka nenápadná, tak aby případný dotázaný špión z jiné organizace nepojal podezření. Pokud bude mít podezření, může dotyčného (nenápadně) nahlásit vedoucímu hry i spolu s podezřelou otázkou, a pokud uhodne, dostane plusový bod. Odpověď by také měla být nenápadná, ale dosti specifická, aby ji špión z jiné organizace omylem neodpověděl. Cílem je ptát se lidí nenápadně a při nalezení spoluagenta z organizace postupovat dále systematicky a neptat se zbytečně stejného člověka dvakrát na stejnou otázku. Hra končí po časovém limitu, nebo pokud každá organizace najde své členy. Na konci se sečtou body za každý navázaný kontakt a body za každého správně nahlášeného podezřelého agenta. Hru může hrát i jen několik agentů, kteří se musí najít v "davu civilistů", kteří hru nehrají.

V této hře by se elektronika dala využít např. na úschovu a předávání důležitého předmětu, třeba klíče nebo tajných fotografií. Každý hráč by tak dostal předmět, který by musel předat někomu jinému. Za tímto účelem by každý hráč měl svoji

zamykatelnou přihrádku, která by se dala otevřít jen po zadání hráčem nastaveného hesla. Protože jsou ale všichni špioni a navzájem se neznají, hráč přímo neví komu má předmět předat. Má pouze jeho popis a musí tedy zjistit kdo to je. Body by pak šlo získat dvěma způsoby, úspěšným předáním objektu a odcizením cizího objektu. Hráči tedy mají motivaci tvářit se jako osoba, které má jiný hráč předat svůj objekt, aby se tak dozvěděli heslo k jeho přihrádce a mohli mu jeho předmět odcizit. Je faktem, že po úspěšném předání zůstává přihrádce stejné heslo jako předtím, pokud jej tedy dotyčný sám nezmění. Pokud tak neučiní, riskuje, že mu jeho předchozí kolega předmět odcizí, protože už toto heslo zná.

1.3 Hra Než se čas naplní

Tato hra je převzata z portálu hranostaj.cz [3].

Legenda

Blíží se vteřina zkázy, teroristé schovali bombu a teď se jen třesou nedočkáním, až tlaková vlna smete z povrchu zemského nenáviděnou lokaci. Tuto škodolibou radost jim poněkud překazily mírové jednotky OSN odhodlané výbuchu zamezit. Jak to dopadne? Vše je v rukách hráčů.

Příprava

Poté, co skupinka vedoucích připraví a následně do herního pole (velkého klidně přes celou obec) rozmístí tři papíry s šiframi a jeden s nápisem "BOMBA" (který je o to zajímavější, že na něj jsou přicvaknuté tři gumičky), nastane chvíle zasvěcení hráčů do legendy a pravidel hry. Aby věděli, na které straně stojí, vylosují si svou roli-totiž: voják, pyrotechnik (ti jediní své role odhalí) a terorista.

Doporučený počet postav:

3*pyrotechnik 4 a víc * voják počet vojáků/2 * terorista

Hra

Ve stejném okamžiku, kdy začíná hra, spouští se budík odpočítávající hodinu zbývající do výbuchu bomby. V této době musí vojáci nalézt papír s nápisem "BOMBA" a sehnat pyrotechniky na její deaktivaci. Stačí když každý pyrotechnik roztrhne jednu z přicvaknutých gumiček, což výbušninu zneškodní. Jediný pyrotechnik smí s bombou manipulovat, nehrozí tedy, že by ji teroristé přenášeli z místa na místo. Jelikož je herní pole rozlehlé, nabízí se zde berličky pro hledající a to v podobě stop, neboli šifer. Když vojáci dešifrují zprávu, dozví se něco víc o místě, kde bombu hledat. V tom tkví také první příležitost pro teroristy. Vytvářením falešných šifer se dají hledači solidně zmást. Avšak hlavním posláním teroristů není ani tak mystifikace

jako eliminace. Stačí, aby se některý octnul s vojákem, ba co hůř s pyrotechnikem, o samotě a odhalením své role může ukončit účast dotyčného na hře. Důležitá je však ta samota, je-li na dohled jakýkoliv neterorista, vražda neplatí a vyřazení ze hry postihne útočníka. Pokud se mírové misi podaří bombu do hodiny zneškodnit, vítězí. Jsou-li však hledači příliš pomalí, nebo je zabit pyrotechnik, vítězí teroristé.

V této hře by se elektronika dala využít na měření času, který zbývá do výbuchu bomby a identifikaci jednotlivých povolání. Úspěšným vyluštěním jedné z šifer by tak hráči mohli získat nějaký předmět, který by jim poskytl výhodu. Teroristi by tak mohli získat třeba zbraň, co by jim umožnila zabít víc jak jednoho člověka naráz a vojáci naopak dejme tomu neprůstřelnou vestu, která by je mohla ochránit před utokem teroristy. Při deaktivaci bomby by také mohlo být se správným vybavením možné, aby pyrotechnik na dálku naváděl vojáka při zneškodňování bomby.

1.4 Hra duchové

Tato hra počítá už v základu s elektronikou a je na ní založena.

Ve hře jsou tři typy zařízení, nabíječka, artefakt a lucernička. Hráči mají za úkol nabít pět artefaktů na určených místech. K tomu jim slouží lucernička, kterou má každý hráč svoji a nosí ji s sebou, dále nabíječka, která je společná pro všechny a během hry se nepohybuje. Každá lucerna je schopna uchovat až desetinu energie k nabití artefaktu. Na nabití artefaktu je tak třeba více nabitých lucerniček. Lucernička se nabíjí přiblížením k nabíječce a stiskem tlačítka, stejně tak se nabíjí i artefakt z lucerničky. Jak lucernička tak artefakt se časem sama lehce vybíjí a když hráč stiskne tlačítko ve chvíli, kdy není v dosahu artefaktu ani nabíječky, vybije se dvakrát rychleji. Při stisku tlačítka se ale také lucernička rozsvítí, svítí tak hráči na cestu a odpuzuje duchy. Když se duch dotkne hráče, hráč na pět minut vypadává ze hry. Hlavní nebezpečí duchů ale spočívá v tom, že mohou vybíjet artefakty i lucerničky a to velmi rychle. Hráči si tedy musí dát pozor, aby jim duchové nevybili artefakt během jejich cesty k nabíječce a zpět.

V případě, že by duchy hrál druhý tým hráčů a ne organizátoři, měli by mít nějaký regulační mechanizmus. Například by potřebovali ke své činnosti jiný druh energie, který by při své činnosti spotřebovávali. Zároveň by ztráceli energii, když na ně protihráč posvítí, aby měli důvod se tomu vyhýbat.

Tuto hru je vhodné hrát v co největší tmě, aby hráči potřebovali světlo svých lucerniček. Za světla to nebude mít tu správnou atmosféru.

1.5 Požadavky na zařízení

Z potřeb popsaných her vyplývají požadavky na zařízení. Tato zařízení lze rozdělit na statická a dynamická, podle toho, zda je má hráč nosit všude s sebou nebo s nimi jen interaguje na nehybném stanovišti. V obou dvou případech je vhodné mít co možná nejjednodušší metodu vytváření her. Není tedy vhodné program pro každou hru psát v samostatném projektu v jazyce C. Proto je potřeba mít nějakou metodu, která umožní vytvářet hry v nějakém jednodušším jazyce např. v Pythonu a nebo JavaScriptu.

1.5.1 Dynamická zařízení

Dynamická zařízení jsou ta, která má hráč nosit s sebou. Tato zařízení by tedy měla být co nejmenší a nejlehčí, aby hráči nepřekáželo při pohybu. Zároveň by měla být co nejlevnější, aby se dalo nasadit v dostatečném množství. Potřebuje také světelný výstup pro zobrazování herních stavů a jednoduchý vstup pro ovládání.

1.5.2 Statická zařízení

Statická zařízení jsou ta, u nichž nepředpokládám, že je bude hráč nosit s sebou. To ovšem neznamená, že mohou být libovolně velká a těžká, pořád je potřeba, aby bylo snadné je přesunout z místa na místo. Stejně jako dynamická zařízení potřebují světelný výstup, aby bylo možno signalizovat herní stav a reagovat na hráče. Také je potřeba vstup, na což většinou stačí obyčejná tlačítka. Problém je ale určit jaké a kolik jich bude potřeba. Některé hry vyžadují třeba jen jedno, ale takové, aby se do něj dalo co nejpohodlněji praštit v běhu, protože je zrovna cílem ke stanovišti co nejrychleji doběhnout jako u třeba u hry King of the hill viz: 1.1. Jiná hra může vyžadovat tlačítek víc, ale už není potřeba, aby byly tak velké, protože hráč při jejich používání nebude tak akční, ale bude třeba zadávat heslo, jako u hry Špionská sít viz: 1.2. Univerzálnější je tedy nepoužívat tlačítka, ale nějaký systém, který se dá softwarově přizpůsobit. Příkladem může být dotyková plocha, která se dá softwarově rozdělit na různé oblasti sloužící jako tlačítka a i během hry se tak dá počet tlačítek měnit. Další důležitou vlastností je možnost komunikace s ostatními zařízeními, která do hry přináší novou možnost jak stanoviště propojit a také pohodlnou metodu jak stanoviště nastavit přes telefon. V neposlední řadě je vhodné mít zvukový výstup, který může být použit např. jako potvrzení zadaného hesla, nebo odezva na prostý klik na dotykovou plochu.

Aby ale bylo možné zařízení použít v různých hrách, je potřeba aby bylo možné ho přizpůsobit konkrétním potřebám. Z toho důvodu považuji za vhodné k základnímu zařízení moci připojit modul pro konkrétní herní mechaniky. Z toho tedy plyne diagram 1.1.

Obr. 1.1: Úvodní blokové schéma zařízení

Co se světelného výstupu týče, na signalizaci různých stavů je vhodné používat různé barvy světel. Jak je vysvětleno v následující části 1.5.3, není potřebné suplovat grafický display, za tímto účelem se dá použít propojení s telefonem. Informace, kterou zařízení bude často poskytovat, je čas a směr, např. čas do konce kola nebo směr k dalšímu úkolu. Podobné informace se dají elegantně zobrazit na kruhu. Je vhodné zobrazování rozdělit na dva režimy, čtení na dálku a čtení na blízko. Pro čtení na blízko je cílem přímá interakce se zařízením, např. u zadávání hesla. Čtení na dálku je naopak určeno pro předávání informací hráči, když právě přímo neinteraguje se stanovištěm, např. který tým má zrovna povolený přístup do zařízení. Proto je vhodné mít kruhů více, aby bylo možné zobrazovat tyto informace na různých kruzích, které mohou navíc být svému účelu přizpůsobeny. Jeden kruh tak může svítit jen jedním směrem, aby ho hráč viděl celý najednou pro blízkou interakci, zatímco druhý kruh může svítit do všech stran, aby byl vidět z co nejvíce míst.

Potřeba propojení s telefonem nám omezuje možnosti co se týče typu bezdrátové komunikace, protože telefony jsou většinou vybaveny Bluetooth a WiFi. Také se v telefonech rozšiřuje NFC, to je však pro tuto aplikaci z důvodu krátkého dosahu nevhodné.

Posledním systémem, který je třeba zmínit, je zvukový výstup. Protože většinou stačí jen jednoduchá zvuková odezva, není potřeba plnohodnotný zvukový systém. Pro hry, které budou potřebovat přehrávat libovolnou nahrávku, může být použit samostatný zvukový modul, případně je možnost nahrávku přehrát přes uživatelův telefon. V základním zařízení je proto potřeba jen jednoduchý bzučák, například

jako odezva na kliknutí. Můžeme tedy diagram upravit na 1.2.

Obr. 1.2: Základní blokové schéma zařízení

Celé zařízení by také mělo být alespoň částečně voděodolné, aby se dalo použít třeba i za deště.

1.5.3 Využití telefonu

Podstatný fakt je, že prakticky všichni u sebe dnes mají chytrý telefon, čehož mohu využít. Nemá proto velký význam, aby statické nebo dynamické zařízení suplovalo funkce telefonu. Např. grafický výstup typu display proto v podobném zařízení není potřeba, a v tomto směru už odvádí telefon naprosto dostatečnou práci. Pokud by tedy v rámci hry bylo potřeba například předat hráči text nebo obrázek, může jej zařízení poslat uživateli na telefon. Telefon by se tedy dal zařadit mezi dynamická zařízení. Možnost propojení s telefonem je také velmi významná při nastavování hry. Díky telefonu totiž zařízení nepotřebuje uživatelské rozhraní přizpůsobené k nastavování, ale prostě se vše nastaví z telefonu.

Někdy by se mohlo zdát, že herní stanoviště vlastně ani není potřeba a stačila by mobilní aplikace. Ale přestože je mobil ve hrách dobře využitelný, jsou aplikace, na které jednoduše vhodný není. Pokud má hráč například ze stanoviště získat fyzický objekt, mobil neposlouží. Pro hráče ani organizátory také nemusí být zrovna komfortní před hrou zařizovat, aby měli všichni nainstalovaný správný software. V neposlední řadě jde také o jistý "cool efekt", který běžné zařízení jako mobil nebo třeba tablet neposkytne.

1.6 Moduly

Základní řídící jednotka je tedy schopná poskytnout základní funkce, které jsou potřeba pro většinu her. Některé hry ale mohou vyžadovat nějakou specifickou funkci, kterou základní zařízení nedokáže poskytnout. Proto je vhodné, aby bylo možné k základnímu zařízení připojit externí moduly, bez kterých by se konkrétní hry neobešly.

1.6.1 Modul dvířka

Asi nejzákladnější modul jsou dvířka. Dvířka přidávají uzamykatelné přihrádky. Do stanoviště se tak dá uzamknout předmět potřebný ke splnění úkolu, který hráči získají například po zadání hesla nebo vyřešení zadaného úkolu. Přihrádky pak mohou sloužit pro více týmů nebo třeba uchovávat více objektů do různých částí hry.

Pro jednoduchost jsou dvířka zamykána magneticky. Vrátka jsou uchycena na kloubu ve své horní části a v dolní části se nachází magnet. Pod dnem přihrádky se pak nachází servomotor vybavený druhým magnetem, který tak může dvířka přitáhnout nebo odpudit. Toto řešení neposkytuje bezpečné uzamčení přihrádky, vrátka se dají vypáčit někdy i nehtem, ale pro účely her je to dostačující řešení. Aby bylo možné ověřit, zda se vrátka dovřela, je vedle serva i spínač, který se sepne při dovření vrátek. Z tohoto řešení vyplynula další možnost jak modul dvířek využít. Vrátka se při odemčení pootevřou, a protože jsou v tu chvíli jen odpuzována magnetem, je možné je stlačit zpět a sepnout tak spínač. Tento fakt se ukázal být užitečný, protože tak vznikla velká pohodlná tlačítka. Struktura tohoto modulu je vidět na diagramu 1.3 ve verzi se čtyřmi přihrádkami.

Jednoduchá hra, která vyžaduje modul dvířka, je např. hra Maják. V této hře jsou hráči rozděleni do týmů a každý tým má svou barvu, od které je odvozena konkrétní přihrádka. Týmy mají za úkol získat co nejvíc sad kartiček. Na hřišti je několik automatických stanovišť s modulem dvířka a v každém z nich je nějaký typ kartičky. Každé stanoviště během hry umožňuje přístup vždy právě jednomu z týmů, který v pravidelném intervalu mění, a čas do změny reprezentuje na jednom z kruhů. Při startu hry si každé stanoviště náhodně vybere tým, kterým začne, a následně se už drží konstantního pořadí. Když někdo dorazí ke stanovišti ve chvíli, kdy je stanoviště zpřístupněné jeho týmu, a klepne na tlakovou plochu, stanoviště mu vydá kartičku. Stanoviště se týmu zpřístupní jen v čase daného týmu a navíc jen jednou za kolo. Hráčům cíleně není představen celý mechanizmus výdeje kartiček, je jim řečeno jen, že se přihrádka otevírá klepnutím do tlakové plochy a že je zajímají jen kartičky jejich barvy. Tým tedy musí spolupracovat nejprve na odhalení mechanizmu

Obr. 1.3: Blokové schéma modulu dvířka

a následně myslet jak zvítězit.

Podobná hra se buď dá hrát samostatně nebo může jít například jen o metodu, jak získávat suroviny v nějaké komplexnější hře.

1.6.2 Zvukový modul

Další plánovaný modul, který se dá připojit, je zvukový modul. Hra, která vyžaduje zvukový modul, je například hra s názvem Ticho. Tato hra vyžaduje zároveň i modul dvířka. V této hře stanoviště sleduje intenzitu zvuku v okolí a v momentě, kdy hluk klesne pod stanovenou úroveň, stanoviště otevře dvířka. Stanoviště je hráčům představeno jako "magická krabička" za čárou, ke které se nesmí proplížit, ale můžou ji ovlivnit z dálky. Úkolem hráčů tak je přijít na to, jak krabička funguje a jak ji přesvědčí, aby se otevřela.

V rámci zvukového modulu je i možnost nahrávku přehrát. Tato část zvukového modulu umožňuje intenzivnější vtažení hráče do hry s příběhem. Může jít například o únikovou hru, při které se hráč ocitne v oblasti neznámého bludiště a jeho úkolem je najít cestu ven. Při hledání může narazit na různá stanoviště, která mu nejprve přehrají nějakou část příběhu a následně mu dají úkol nebo radu jak postupovat dál.

1.6.3 Komunikační modul

Podstatným modulem je také komunikační modul, který umožňuje připojení k mobilní síti a tím i komunikaci s ostatními zařízeními na velkou vzdálenost. Tento modul je potřeba například pro hru Boj o kopce.

V této hře se na hřišti o velké rozloze nachází několik automatických stanovišť. Hráči jsou rozděleni do týmů a každý tým má svou barvu a své tlačítko na stanovišťi označené barvou týmu. V hře je hlavním cílem získávat body pro svůj tým ovládnutím a udržením stanovišť na rozsáhlém hřišti. Axiální světelný kruh zobrazuje rozdělení tlakové plochy na jednotlivá tlačítka týmů podle jejich barvy. Zabrání stanoviště pak mohou hráči provést stiskem příslušného tlačítka. Získávání bodů se odehrává dvěma způsoby, ovládnutím stanoviště a následným držením stanoviště pod kontrolou. Týmy mohou přebírat stanoviště od soupeřů, což přidává hře strategický rozměr. Výhodou je kontrolovat více stanovišť najednou, což umožňuje rychlejší získávání bodů a zvyšuje šanci na vítězství. Komunikační modul je tu potřebný pro vyhodnocování hry. Stanoviště totiž musí být schopné komunikovat s centrálním serverem, který vyhodnocuje hru a zobrazuje její průběh. Tato hra je původně navržena pro airsoftové hráče na hřiště v Mokrá-Horákov o rozloze 6.7[ha] [4]. V takovém prostředí tedy komunikace pomocí WiFi či Bluetooth nedostačuje, protože stanoviště mohou být i několik set metrů od sebe.

1.6.4 Výběr bezdrátové komunikace dlouhého dosahu

Pro komunikaci na vzdálenosti v řádu jednotek kilometrů se nabízí asi jen dvě základní možnosti, LoRa a mobilní sít. Ještě počátkem roku 2023 by byla i třetí možnost, Sigfox, ale jeho sít byla v ČR vypnuta [5].

LoRa je technologie určená pro komunikaci na dlouhé vzdálenosti s malou spotřebou a datovou propustností. Pracuje v bezlicenčním pásmu a není tedy třeba platit za provoz. Její dosah je i v zastavěné oblasti v řádu kilometrů [6], a za ideálních podmínek na přímou viditelnost i přes sto kilometrů [7]. Nevýhoda LoRy je ale malá datová propustnost ještě snížená omezením času provozu na 1%[7].

Mobilní síť má v porovnání s LoRou výrazně větší datovou propustnost, ale na druhou stranu je třeba platit za provoz a je méně energeticky úsporná. Například NB-IoT je energeticky asi o třetinu náročnější než LoRa. Přesto je dostatečně úsporná, aby bylo zařízení, které tuto technologii využívá, schopno běžet na baterii přes deset let [8]. Energetická náročnost tedy není problém a vyšší datová propustnost společně s připojením na internet je významnější výhoda než bezplatný provoz u LoRy. Další výhodou LoRy by mohla být nezávislost na pokrytí mobilních sítí, ale vzhledem k tomu, že pokrytí NB-IoT sítě je v ČR údajně 100%[9], není tento fakt důležitý.

2 Návrh dynamického zařízení

Uživatelským požadavkem je dynamické zařízení sloužící například jako identifikátor hráče, nebo jako herní nástroj. Mělo by ale být schopno zastat i roli statického zařízení, pro případy her na delších výletech, kde by bylo nepraktické nosit s sebou velké zařízení. Vyžaduje tedy dostatečnou mobilitu, aby uživateli nepřekáželo v pohybu. Zároveň by zařízení mělo být co nejlevnější pro možnost nasazení ve velkém počtu. Z toho plynou požadavky na výslednou konstrukci a velikost zařízení.

Zařízení by mělo být schopno komunikovat s ostatními zařízeními, at už statickými nebo dynamickými. Potřebuje také světelný výstup pro zobrazování herních stavů a jednoduchý vstup pro ovládání.

Vstup bude realizován pomocí dvou tlačítek.

Světelný výstup bude realizován pomocí pěti inteligentních RGB LED. Číslo pět bylo zvoleno jako maximální množství, které se pohodlně vleze vedle sebe na desku plošných spojů o šířce mikrokontroleru ESP32-C3-MINI-1 [10]. ESP32-C3-MINI-1 byl vybrán jakožto nejlevnější mikrokontroler z rodiny ESP32, který má zároveň Wi-Fi a Bluetooth.

Abych se vyhnul elektronice řešící baterii, je napájení zajištěno pomocí USB-A konektoru a powerbanky.

ESP32-C3-MINI-1 má stejně jako ESP32-S3 USB periferii, která se dá využít na programování zařízení. I tady je ale problém, že se tato metoda dá softwarově rozbít a zařízení je proto vybaveno stejným programovacím konektorem jako ESP32-S3 na AHS.

3 Návrh statického zařízení

Uživatelským požadavkem je statické zařízení sloužící jako herní stanoviště. Vyžaduje tedy mobilitu jen v rámci transportu na místo hry a zpět, nikoliv v rámci samotné hry. Z toho plynou požadavky na velikost výsledného zařízení.

Zařízení bude mít dva světelné kruhy složené z 60 inteligentních RGB LED. Číslo 60 jsem zvolil, protože se jedná o dostatečně jemné dělení, aby se daly dělat plynulé efekty. Zároveň jde o číslo, které koresponduje s hodinovým ciferníkem a stupnicí na kompasu. Jeden z kruhů bude radiální a druhý axiální. Axiální je na horní straně zařízení a slouží primárně jako odezva pro hráče na malou vzdálenost, např. při zadávání hesla. Radiální kruh je pak také v horní části zařízení a slouží naopak pro signalizaci na delší vzdálenost, takový maják.

Uvnitř axiálního světelného kruhu se bude nacházet tzv. tlaková plocha. Jedná se o ovládací prvek podobný dotykové ploše, s tím rozdílem, že je schopen měřit i sílu, která na něj působí. Tento prvek je založen na měření rezonanční frekvence snímacích LC článků, nad kterými se nachází tlaková plocha. Tlaková plocha je vodivý objekt, ve kterém se cívkou LC článků indukují vířivé proudy a následně se jimi indukují proudy zpět v cívce LC článků. Tím plocha ovlivňuje indukčnost cívky a tedy i rezonanční frekvenci LC článků. Ovlivnění indukčnosti je závislé na vzdálenosti plochy od cívky a tedy i na síle, která na plochu působí. Velikost síly, která na plochu působí, totiž ovlivňuje její průhyb a tedy i vzdálenost od cívky. Díky velkému rozlišení použitého čipu LDC1614 [11] (28 bitů) je možné měřit změny vzdálenosti v řádu jednotek mikrometrů [12]. Tato metoda je tedy schopna měřit vzdálenost plochy od jednotlivých cívek, ty jsou čtyři, a plochu tak snímají na čtyřech místech. Následně je z těchto hodnot možno dopočítat, jak je plocha nakloněna a tím určit, kde se jí uživatel dotýká.

Aby bylo stanoviště reálně použitelné při hře, musí celou hru vydržet na baterii. Není ojedinělé, aby měla outdoorová hra čtyři až pět hodin bez přestávky. Plus je nutná časová rezerva a čas na nastavování. Čas, který zařízení zvládne běžet z baterie, silně závisí na činnosti, ale nebylo by zrovna ideální, kdyby byla baterka, výrazně omezujícím faktorem. Výdrž na jedno nabití by tedy měla být alespoň pět hodin.

Vzhledem k plánu připojovat moduly je nutné navrhnout mechanizmus připojení. Bylo by ideální, kdyby si mohl uživatel říct co bude hrát za hru a podle toho si sám připojil moduly, které potřebuje. Tomuto určitě nechci bránit, ale přímo to podporovat nese řadu problémů, jak ze strany konektoru a mechaniky, tak ze strany softwaru. Konektor by totiž musel být ideálně beznástrojově rozpojitelný a opětovně spojitelný a přitom dostatečně pevný, aby se zařízení mechanicky chovalo jako jeden celek. Takový konektor je ale poměrně složité udělat, tak aby byl spolehlivý, a tak jde

v tuto chvíli jen o možnost dalšího vývoje. Ze softwarového pohledu jde pak o problém jak detekovat konkrétní modul a hlavně o otázku jak se chovat k modulům, které jsou potenciálně záměnné. Dejme tomu, že máme modul klávesnici a modul dvířka. Dvířka jsou původně navržena primárně jako úložný prostor, díky detekci zavření je lze ale použít i jako velmi pohodlná tlačítka a v některých hrách se proto používají jen jako tlačítka. Potenciální modul klávesnice je ovšem jen suma tlačítek. Při vytváření konkrétní hry na míru modulům, které herní návrhář má zrovna k dispozici, je tento problém nepodstatný, protože sám návrhář rozhodne, co má jak být. Ale ve chvíli, kdy jde o hru navrženou pro jinou kombinaci modulů, nastává problém jak rozhodnout, zda se dají dvířka použít místo klávesnice nebo ne. Abych se všem těmto problémům alespoň prozatím vyhnul, rozhodl jsme se, že doplnění či výměna modulu, půjde jen při servisním zásahu. Problém záměny modulů pak budu řešit tím, že každá hra bude vytvořena jen pro konkrétní sadu modulů.

Některé hry vyžadují tak velké herní území, že by na komunikaci mezi stanovištěmi už nestačila WiFi ani Bluetooth, které AHS jinak využívá ke komunikaci (viz: 1.6.4). Proto bude mít AHS možnost připojení k mobilní síti a tedy připojení k internetu (výběr viz: 1.6.4). Tím se rozšíří dosah AHS všude, kde je mobilní pokrytí a také přibude další metoda jak se stanovištěm komunikovat. V rámci tohoto komunikačního modulu bude možné používat navíc i GNSS ¹. Vzhledem k faktu, že se přece jen nejedná o systém, který by využila většina her a zároveň je poměrně drahý, došel jsem k rozhodnutí mít jej jen jako doplnitelný modul. Protože se ale jedná o modul, který zprostředkovává komunikaci se světem, je pravděpodobné, že bude potřebovat převádět výrazně větší množství dat než běžný modul. Primárně z tohoto důvodu je tento modul připojen na samostatném konektoru, přímo uvnitř základního zařízení. Potřebné antény budou už v základním zařízení, ale samotný modul spadá do doplňkové výbavy.

V řadě případů je užitečné mít možnost zvukové zpětné vazby. Ideální by bylo moci přehrávat libovolnou nahrávku, většinou ale stačí jednoduchý tón, řekněme jako potvrzení zadaného hesla. Možnost přehrávat plnohodnotnou nahrávku proto odsouvám na samostatný modul a v základní jednotce pro jednoduchost postačí piezoměnič.

Z požadavků mi vyplynulo zařízení, jehož vzhled je nastíněn na obrázku 3.1.

¹Global Navigation Satellite System

Obr. 3.1: Návrh vzhledu zařízení

3.1 Struktura elektroniky základní jednotky

Elektronika je rozdělena na tři samostatné PCB. Jde o hlavní desku, na které je většina elektroniky, o desku s hlavním uživatelským rozhraním (LED deska) a o obslužnou desku s minimalistickým uživatelským rozhraním pro neherní obsluhu (Mini UI).

3.1.1 LED deska

Na LED desce se nacházejí oba světelné kruhy a elektronika pro snímání tlakové plochy, tedy LDC1614 [11] a jeho snímací LC články. Právě snímaní tlakové plochy je jeden z podstatných důvodů oddělení této elektroniky na samostatnou desku, zabere totiž docela dost prostoru.

- Axiální LED kruh z 60 RGB LED WS2812
- Radiální LED kruh z 60 RGB LED WS2812
- LDC1614 nebo LDC1314 se čtyřmi snímacími LC články pro snímání tlakové plochy
- konektor na propojení s hlavní deskou

3.1.2 Mini UI

Kvůli aktuální představě mechanické konstrukce není úplně dobře možné mít toto minimalistické uživatelské rozhraní na hlavní desce. Proto jsem se rozhodl jej oddělit na samostatnou desku, na které bude jen pár tlačítek a dvě signalizační LEDky.

• RESET tlačítka

- BOOT tlačítka
- zapínací tlačítko
- dvě uživatelská tlačítka
- dvě uživatelské LEDky

3.1.3 Hlavní deska

Na hlavní desce je většina systému základního zařízení.

Řídící mikrokontroler AHS je ESP32-S3 (výběr viz 3.1.4).

Zdroj AHS je tvořen dvěma LiIon články 18650 v paralelním uspořádání. Paralelní uspořádání jsem zvolil tak, aby nebylo nutné řešit balancování článků.

Aby nebylo možné softwarově baterii podvybít, má AHS ochranu podvybitím, která celé zařízení vypne v případě, že dojde k vybití baterie pod 2.8V. Pochopitelně software by měl vybitou baterii zaznamenat mnohem dřív a chovat se podle toho, např. neumožnit spustit hru s baterií při napětí 3.0V.

Na hlavní desce je i nabíjecí elektronika. Navíc, aby se minimalizoval čas nabíjení, zařízení podporuje standard Power Delivery a to až do napětí 21V.

Protože různé periferie vyžadují různá napájecí a komunikační napětí, je na hlavní desce hned pět napájecích větví.

- VCC, napětí baterie sloužící jako zdroj pro ostatní napájecí větve a pro napájení komunikačního modulu.
- Napětí 3.3[V] na napájení logické části celého základního zařízení.
- Napětí 5.0[V] pro LED desku a externí moduly
- Napětí 1.8[V] pro napájení napěťových převodníků sloužících na komunikaci s komunikačním modulem
- V-USB, napětí 5-21[V] z USB-C konektoru pro nabíjení a programování Napětí větví 3.3[V] a 1.8[V] je tvořeno pomocí LDO. Na vytvoření větve 5[V] je ale potřeba spínaný zdroj a to primárně ze dvou důvodů. Za prvé protože napětí baterie, ze které se tato větev napájí, má nižší napětí a je jej tedy třeba vyspínat na napětí vyšší. Za druhé tento zdroj poskytuje do systému mnohem větší proudy než druhé dvě větve a bylo by tedy vhodné použít spínaný zdroj i v případě použití sériového řazení článků.

Na hlavní desce je také řada konektorů sloužící pro připojení ostatních systémů. Jde o konektory na:

- propojení s LED deskou
- připojení Mini UI
- komunikační modul (M2 Konektor umožňuje použít různé moduly)
- externí moduly
- USB-C (nabíjení a programování AHS)
- programátor

Do konektorů by se dal zařadit i držák na dva LiIon články 18650.

Jako jednoduchý zvukový výstup je na desce také piezoměnič.

3.1.4 Výběr mikrokontroleru

Požadavky na mikrokontroler jsou:

- WiFi
- Bluetooth
- alespoň 3 UARTy
- alespoň 30 GPIO pinů
- I2C
- dostatečný výpočetní výkon pro hladký chod interpretru JavaScriptu nebo Pythonu

Dostupné možnosti jsou: Při procházení stránek výrobců jsem nenašel jiný mi-

Mikrokontroler	Procesor	Počet GPIO pinů	Počet UARTů	Počet I2C	Wi-Fi a Bluetooth
ESP32 [13]	2x Xtensa LX6	34	3	2	✓
ESP32-S3 [14]	2x Xtensa LX7	45	3	2	✓
ESP32-C6 [15]	1x RISC-V	34	3	2	✓
PIC32MZ-W1 [16]	DS60001192	62	3	2	✓

Obr. 3.2: Dostupné vyhovující mikrokontrolery

krokontroler, který by splňoval všechny požadavky [17]. Většina mikrokontrolerů s integrovaným bezdrátovým rozhraním nemá WiFi a Bluetooth dohromady, a ty, co mají, mají zase nedostatek GPIO pinů. Například nRF7000 [18] má pouze 13 GPIO pinů, RTL8710 má 17 GPIO pinů [19], RTL8721 [20] má GPIO pinů také 17. STM32WB55 [21] nebo MSP430BT5190 [22] zase nemají Wi-Fi.

ESP32 by bylo použito na modulu ESP32-wrover [23], který řeší anténu a flash pamět. Počet GPIO pinů mu tak klesne na 32, z čehož je 6 pinů připojeno na flash pamět a jejich použití by tak bylo problematické, mikrokontroler proto z výběru vyřazuji.

Stejně jako ESP32 by i ESP32-C6 bylo použito na modulu ESP32C6-WROOM [24], který řeší anténu a flash pamět. Počet GPIO pinů mu tak klesne na 23, mikrokontroler proto z výběru vyřazuji.

I ESP32-S3 by bylo použito na modulu ESP32-S3-WROOM [25], který řeší anténu a flash pamět. Počet GPIO pinů mu tak klesne na 36, což je pořád dostatečné množství.

PIC32MZ-W1 by bylo použito na modulu WFI32E01PC [26], který řeší anténu a flash paměť. Počet GPIO pinů mu tak klesne na 37, což je pořád dostatečné množství.

Mikrokontroler	Počet GPIO pinů	vyhovuje?
ESP32-WROOM [13]	26	×
ESP32-S3-WROOM [14]	36	✓
ESP32-C6-WROOM [15]	23	×
WFI32E01PC [16]	37	√

Obr. 3.3: Moduly s mikrokontrolery

Jedním z požadavků na zařízení je dostatečný výpočetní výkon pro hladký chod interpretru JavaScriptu nebo Pythonu. Výpočetní výkon se porovnává poněkud složitěji, protože se nejedná tak úplně o jeden parametr. V tomto případě je ale vhodné prozkoumat i dostupnost interpretru pro daný mikrokontroler. Pro ESP32-S3 je dostupný JavaScriptový interpreter Jaculus [27] i interpretr jazyka Python MicroPython [28]. Pro PIC32MZ-W1 je dostupný interpreter jazyka Python MicroPython [29], interpretter JavaScriptu jsem nenašel. ESP32-S3 mi tak poskytuje výhodu v možnosti volby skriptovacího jazyka.

Další výhodou ESP32-S3 je jeho cena, která se pohybuje okolo 4\$ [30]. PIC32MZ-W1 je u JLCPCB za 13.65\$ [31]. Navíc u JLCPCB je PIC32MZ-W1 sice v nabídce, ale není na skladě [31], zatímco u ESP32-S3 je aktuálně dostupných 19 variant [30].

V mém případě má ESP32-S3 ještě jednu podstatnou výhodu, a tou je fakt, že s rodinou mikrokontrolerů ESP32 mám dlouholeté zkušenosti. Z těchto důvodu jsem se rozhodl pro ESP32-S3.

3.1.5 Propojení hlavní desky a LED desky

Mezi hlavní deskou a LED deskou je třeba převést napájení a několik signálů. LED deska vyžaduje na konektoru přítomnost dvou napájecích větví 5[V] pro světelné kruhy a 3.3[v] pro snímání tlakové plochy. Protože do LEDek může téct proud až 5A a může být zároveň i docela rychle spínaný, považuji za rozumné oddělit napájecím větvím zem. Oddělení je tedy provedeno už na konektoru hlavní desky.

Na samotné propojení jsem se rozhodl použít FFC kabel s roztečí 0.5[mm]. Jedním vodičem takovéhoto kabelu lze vést proud maximálně 0.4[A] [32]. Protože ale potřebuji dodat proud až 5A, použiji 13 vodičů vedle sebe jakožto nejmenší počet, který přenese požadovaný proud v rámci daných mezí.

Mimo napájení je tímto propojením veden i signál s daty pro světelné kruhy a I2C sběrnice s interruptem pro připojení čipu LDC1614 [11].

Vzhledem k počtu potřebných vodičů (konkrétně 32) jsem se rozhodl použít běžný FFC konektor se 40 kontakty s tím, že zbylé kontakty se mohou hodit v budoucnu.

3.1.6 Modulový konektor

Modulovým konektorem je vedeno 5[V] jako napájení pro moduly a UART s interruptem pro komunikaci. Nad volbou komunikační sběrnice jsem strávil poměrně dost času přemýšlením. Původně jsem uvažoval o využití RS485 jakožto odolné sběrnice, u které by v případě potřeby nemusel být problém ani delší kabel. RS485 má ale nevýhodu v tom, že potřebuje dodatečný hardware, kterému bych se hlavně na modulech rád vyhnul. Stejný problém nastal u CANu a USB, které by navíc mělo výhodu kompatibility s velkým množstvím hotových zařízení.

V první úvaze o UARTu jsem jej nejprve zavrhl kvůli potenciální náročnosti na přeposílání dat mezi moduly. Při standardním použití bych totiž moduly řadil za sebe. Prvnímu modulu by tak chodili data pro všechny ostatní moduly a musel by je přeposílat dál, což by mohlo stát nezanedbatelné množství procesorového času. V jisté chvíli jsem ale narazil na nestandardní komunikaci pomocí UARTu implementované v projektu Servio [33]. Tato implementace používá UART jako sběrnici. Namísto standardního použití pro komunikace jeden s jedním tak může komunikovat jeden s více. Na tomto řešení je výhodné, že nevyžaduje žádný dodatečný hardware a prakticky každý dnešní mikrokontroler je možné k této sběrnici velmi snadno připojit. Ve srovnání s RS485 je sice mnohem méně odolná proti rušení, ale uvnitř zařízení nebude linka vedena na víc než malé desítky centimetrů. Komunikace na delším kabelu je pak jednoduše nahraditelná bezdrátovou komunikací a není tak potřebné, aby to nativně umožňovala tato sběrnice. Každopádně v případě potřeby delšího kabelu je možné navrhnout externí modul, který s této sběrnice velmi jednoduše udělá RS485 pro externí využití. Alternativně by se pro komunikaci na delším kabelu dalo použít USB, které je společně s nabíjením přivedeno na USB-C.

Všechny moduly jsou tedy připojeny na jeden RX pin AHS. Proto musí firmware AHS zajistit, aby dva moduly nevysílaly současně. Aby se zabránilo možným zkratům, jako ochranu má každý modul své piny UARTu připojeny přes rezistor $180[\Omega]$. Interrupt pin modulů se naopak chová jako open-collector a na straně hlav-

ního zařízení je na něj tedy připojen pull-up rezistor. Abych alespoň trochu zvýšil odolnost linky proti rušení, přidám na přijímací stranu pull-up rezistor. Cílem je zvýšení komunikačního proudu, aby se případný proud vyvolaný rušením neprojevil. V neposlední řadě mají všechny piny na konektoru ESD ochranu.

3.1.7 Konektor programátor

Zařízení se dá jednoduše programovat přes USB-C, tento kanál se ale dá softwarově narušit a pro takové případy je tu konektor na programátor. Jde o šest plošek, na které se programátor připojuje pomocí pogo-pinů. Programátor sice obsahuje jen jednoduchou elektroniku, která by mohla být i přímo v elektronice AHS, ale ve většině případů by byla zbytečná. Ve chvíli, kdy by byla potřeba, je stejně nutná odborná obsluha a pro tu není problém použít programátor.

Obr. 3.4: Programovací konektor

Aby bylo možné zařízení programovat přes dedikovaný programovací konektor, je na konektoru i 5[V] napájení. To ale způsobuje problém ve chvíli, kdy je zařízení zároveň připojeno přes USB-C, protože se v tu chvíli tyto zdroje zkratují. Proto je toto napájení přivedeno přes diodu, která v případě připojení USB-C odpojí napájení z programátoru. Zapojení konektoru je vidět na obrázku 3.4.

3.1.8 USB-C

Jako napájecí a programovací konektor je použito USB-C. Díky němu je možné podporovat standard Power Delivery využitý pro zrychlení nabíjení. Konektor je ale použit i na pohodlnější programování zařízení, bez potřeby programátoru.

3.1.9 Konektor komunikačního modulu

Pro připojení komunikačního modulu jsem zvolil konektor M2 typ-B jakožto standard pro tyto moduly. Díky tomuto konektoru mohu jednoduše připojit různé LTE a GNSS moduly.

Závěr

V práci je popsáno několik Outdoorových her, které nevyužívají elektroniku a následně je rozebrána možnost jejich rozšíření o elektroniku. Navíc je popsána i jedna hra, která od základu s elektronikou počítá. Na základě těchto her jsou odvozeny požadavky, které jsou na elektronická zařízení v hrách kladeny. Následně byla provedena první fáze návrhu dvou zařízení, která tyto požadavky plní a je tak možné je v outdoorových hrách nasadit.

Jedno se zařízení je určeno k tomu, aby jej hráč nosil sebou, a je dostatečně malé a levné, aby jej bylo možné používat při hrách ve velkém počtu.

Druhé zařízení je určeno k tomu, aby zastoupilo organizátora na stanovišti a umožnilo mu tak zapojení do hry jiným způsobem. Toto zařízení tedy už nemusí bý tak malé ani levné, protože se nepředpokládá nasazení v tak velkém počtu a je potřeba, aby bylo dobře viditelné. Zařízení je rozděleno na základní řídící jednotku a moduly, které jsou k základní jednotce připojeny pomocí UARTu. Nestandardně je UART použit pro komunikaci jeden s více, namísto standardního jeden s jedním (viz podkapitola 3.1.6). To umožňuje připojení více modulů k jedné základní jednotce bez potřeby přeposílání zpráv skrz moduly. Potenciálně zajímavou částí základní jednotky je také tlaková plocha (viz kapitola 3), která umožňuje hráčům interagovat se základním zařízením pomocí doteku a tlaku.

Předpokládaný další vývoj je konkrétní návrh elektroniky obou zařízení a alespoň modulu dvířka. Také je zapotřebí navrhnout mechanickou stránku obou zařízení a modulu. Následně bude třeba vše vyrobit, zprovoznit a otestovat v nějaké reálné hře.

3.2 Použité zdroje

Online články a dokumenty

- 1. ON. King of the Hill. 2023-12-11. Dostupné také z: https://www.hranostaj.cz/hra4170.
- 2. T, M O. *Špiónské sítě*. 2023-12-11. Dostupné také z: https://www.hranostaj.cz/hra5099.
- 3. HOBIT. Než se čas naplní. 2023-12-11. Dostupné také z: https://www.hranostaj.cz/hra4257.
- 4. HORÁKOV, VZA BUNKR Veřejný zábavní areál. Veřejný zábavní areál Bunkr... 2022-07. Dostupné také z: https://www.facebook.com/photo/?fbid=479921317466390&set=a.479921297466392. Příspěvek na Facebooku.
- 5. LUPA.CZ. Sigfox se v Česku odmlčel. Zda je to konec této sítě internetu věcí, její provozovatelé nekomentují. 2023-04. Dostupné také z: https://www.lupa.cz/aktuality/sigfox-se-v-cesku-odmlcel-zda-je-to-konec-teto-site-internetu-veci-jeji-provozovatele-nekomentuji/. 2023-12-8.
- 6. SEMTECH. LoRaTM Modulation Basics. 2015-04. Dostupné také z: https://web.archive.org/web/20190718200516/https://www.semtech.com/uploads/documents/an1200.22.pdf. 2023-12-8.
- 7. PECH, Jiří. IOT TECHNOLOGIE: LORA A LORAWAN (3/5). 2019-02. Dostupné také z: https://www.eman.cz/blog/iot-technologie-lora-a-lorawan-3-5/. 2023-12-8.
- 8. ALLIANCE, LoRa. What Are The Differences Between LoRaWAN And NB-IoT? 2023-04. Dostupné také z: https://blog.velosiot.com/difference-between-lorawan-nbiot#:~:text=One%20of%20the%20key%20differences, to%20access%20NB-IoT%20solutions. 2023-12-8.
- 9. VODAFONE. Sítě NB-IoT a Cat-M pro efektivnější podnikání. 2023-12-9. Dostupné také z: https://www.vodafone.cz/podnikatele/internet-veci/iot-site/.
- 17. SEMICONDUCTOR, Nordic. Our Wi-Fi companion IC. 2023-12-10. Dostupné také z: https://www.nordicsemi.com/Products/Wireless/WiFi/Products? lang=en#infotabs.
- 20. CORP., Realtek Semiconductor. *RTL8721DM*. 2023-12-10. Dostupné také z: https://www.realtek.com/en/products/communications-network-ics/item/rt18721dm.

- 26. INC., Microchip Technology. Standalone and Fully-Certified Wi-Fi Module Designed for Industrial IoT Applications. 2023-12-10. Dostupné také z: https://www.microchip.com/en-us/product/WFI32E01PC#sampling-options.
- 27. KUBICA, Petr. Jaculus JavaScript runtime for embedded devices. 2023. Dostupné také z: https://jaculus.org.
- 28. MUSSARED, Jim. *MicroPython ESP32-S3*. 2023-12-13. Dostupné také z: https://github.com/micropython/micropython/tree/master/ports/esp32/boards/ESP32_GENERIC_S3.
- 29. BENPOON-MICROCHIP. *MicroPython on PIC32MZW1*. 2023-12-13. Dostupné také z: https://github.com/MicrochipTech/PIC32MZW1_MicroPython.
- 30. JLCPCB. *Vyhledávání hesla "ESP32-S3"*. 2023-12-10. Dostupné také z: https://jlcpcb.com/parts/componentSearch?searchTxt=ESP32-S3.
- 31. JLCPCB. *Vyhledávání hesla "WFI32"*. 2023-12-10. Dostupné také z: https://jlcpcb.com/parts/componentSearch?searchTxt=WFI32.
- 33. KONIARIK, Jan. Servio. 2023. Dostupné také z: https://github.com/emsro/servio/tree/main.
- 37. CORPORATION, Panasonic. OVERCHARGE/OVERDISCHARGE/OVER-CURRENT SAFETY CIRCUITS. 2007. Dostupné také z: https://web.archive.org/web/20101122230718/https://www.panasonic.com/industrial/includes/pdf/Panasonic_LiIon_Charging.pdf.

Katalogové listy důležitých součástek

- 10. COPYRIGHT, Espressif Systems. ESP32-C3-MINI-1 ESP32-C3-MINI-1U. 2023. Dostupné také z: https://www.espressif.com/sites/default/files/russianDocumentation/esp32-c3-mini-1_datasheet_en.pdf.
- 11. INCORPORATED, Texas Instruments. LDC1612, LDC1614 Multi-Channel 28-Bit Inductance to Digital Converter (LDC) for Inductive Sensing. 2018. Dostupné také z: https://lurl.cz/rudLI.
- 12. INCORPORATED, Texas Instruments. LDC1612/LDC1614 Linear Position Sensing. 2015. Dostupné také z: https://www.ti.com/lit/an/snoa931a/snoa931a.pdf?ts=1702491346939&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FLDC1614.
- 13. COPYRIGHT, Espressif Systems. ESP32 Series. 2023. Dostupné také z: https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf.

- 14. COPYRIGHT, Espressif Systems. *ESP32-S3 Series*. 2023. Dostupné také z: https://www.espressif.com/sites/default/files/documentation/esp32-s3_datasheet_en.pdf.
- 15. COPYRIGHT, Espressif Systems. *ESP32-C6 Series*. 2023. Dostupné také z: https://www.espressif.com/sites/default/files/documentation/esp32-c6_datasheet_en.pdf.
- 16. INC., Microchip Technology. PIC32MZ1025W104 MCU and WFI32E01 Module with Wi-Fi® and Hardware-Based Security Accelerator Data Sheet. 2023. Dostupné také z: https://ww1.microchip.com/downloads/aemDocuments/documents/WSG/ProductDocuments/DataSheets/PIC32MZ-W1-and-WFI32E01-Family-Data-Sheet-DS70005425.pdf.
- 18. SEMICONDUCTOR, Nordic. nRF7000. 2023. Dostupné také z: https://infocenter.nordicsemi.com/pdf/nRF7000_PS_v1.0.pdf.
- SEMICONDUCTOR, Nordic. RTL8710 WiFi Module. 2017. Dostupné také z: https://media.digikey.com/pdf/data%20sheets/seeed%20technology/ 113990294_web.pdf.
- 21. STMICROELECTRONICS. Multiprotocol wireless 32-bit MCU Arm®-based Cortex®-M4 with FPU, Bluetooth® 5.4 and 802.15.4 radio solution. 2023. Dostupné také z: https://www.st.com/resource/en/datasheet/stm32wb55cc.pdf.
- 22. INCORPORATED, Texas Instruments. MSP430BT5190 Mixed-Signal Microcontroller. 2020. Dostupné také z: https://www.ti.com/lit/ds/symlink/msp430bt5190.pdf?ts=1702232109620&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FMSP430BT5190.
- 23. COPYRIGHT, Espressif Systems. ESP32-WROOM-32 (ESP-WROOM-32) Datasheet. 2018. Dostupné také z: https://www.mouser.com/datasheet/2/891/esp-wroom-32_datasheet_en-1223836.pdf.
- 24. COPYRIGHT, Espressif Systems. ESP32-C6-WROOM-1 ESP32-C6-WROOM-1U. 2023. Dostupné také z: https://www.espressif.com/sites/default/files/documentation/esp32-c6-wroom-1_wroom-1u_datasheet_en.pdf.
- 25. COPYRIGHT, Espressif Systems. ESP32-S3-WROOM-1 ESP32-S3-WROOM-1U. 2023. Dostupné také z: https://www.espressif.com/sites/default/files/documentation/esp32-s3-wroom-1 wroom-1u datasheet en.pdf.
- 32. JUSHUC. 2304231848 JUSHUO-AFC07-S32FCC-00 C11061. 2004. Dostupné také z: https://manual.lcsc.com/lcsc/2304231848_JUSHUO-AFC07-S32FCC-00_C11061.pdf. FFC konektor.

- 34. Úprava, odevzdávání a zveřejňování vysokoškolských kvalifikačních prací na VUT v Brně. Brno, 2009. Dostupné také z: https://www.vutbr.cz/urednideska/vnitrni-predpisy-a-dokumenty/smernice-rektora-f34920/. Směrnice rektora č. 2/2009.
- 38. INCORPORATED, Texas Instruments. BQ24179 I2C Controlled, 1- to 4-Cell, 5-A Buck-Boost Battery Charger with Dual-Input Selector. 2022. Dostupné také z: https://www.ti.com/lit/ds/symlink/bq24179.pdf?ts=1698854511988&ref_url=https%253A%252F%252Fwww.ti.com%252Fpower-management%252Fbattery-management%252Fcharger-ics%252Fproducts.html.
- 39. INCORPORATED, Texas Instruments. BQ298xyz Voltage, Current, Temperature Protectors with an Integrated High-Side NFET Driver for Fast/Flash Charging Single-Cell Li-Ion and Li-Polymer Batteries. 2022. Dostupné také z: https://www.ti.com/lit/ds/symlink/bq2980.pdf?ts=1701078971409&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FBQ2980.
- 40. INCORPORATED, Texas Instruments. TPS61088 10-A Fully-Integrated Synchronous Boost Converter. 2021. Dostupné také z: https://www.ti.com/lit/ds/symlink/tps61088.pdf?ts=1698858563376&ref_url=https%253A%252F%252Fwww.google.com%252F.
- 41. INCORPORATED, Diodes. HIGH-PERFORMANCE USB PD SINK CONTROLLER. 2023. Dostupné také z: https://www.diodes.com/assets/manuals/AP33772.pdf.
- 42. SOLUTIONSLIMITED, SIMCom Wireless. SIM7600X-M2HardwareDesign. 2020. Dostupné také z: https://files.waveshare.com/upload/0/02/SIM7600X-M2_Hardware_Design_V1.01.pdf.

Seznam symbolů a zkratek

AHS Automatické Herní Stanoviště

LDO Low-dropout regulator - regulátor napětí s nízkým úbytkem

FFC Flexible flat cable - plochý ohební kabel

GNSS Global Navigation Satellite System - ne jen GPS (Global Positioning

System)

LTE 3GPP Long Term Evolution - dlouhodobý vývoj 3GPP

PCB Printed Circuit Board - deska plošných spojů

Seznam příloh