SISTEMAS EMBARCADOS I - ELE 8575 - 2020/1 - DEL - CT - UFES

CARGA HOR. SEMESTRAL: 75hs TEORIA: 45hs EXERCÍCIO: 0 LABORATÓRIO: 30hs CARGA HOR. SEMANAL: 5hs CRÉDITOS: 04 – Prof: Evandro.

OBJETIVO GERAL E EMENTA

Compreender o funcionamento dos microprocessadores, desenvolver a programação em linguagem de máquina, projetar circuitos usando microprocessadores e aplicá-los ao controle de sistemas diversos tais como, girassóis, elevadores, impressoras, robôs, display do tipo LCD, Dias Jr., Wilson Alonso; Microprocessadores 8086/8088 Hardware, software, aplicações e projetos, McGraw memória SRAM. Arquitetura de microprocessadores; Conjunto de instruções; Componentes periféricos; Organização de memória; Barramento; Controladores de DMA; Interface de E/S; Organização de um sistema mínimo; Sistemas operacionais; Aplicações.

PROGRAMA

1 Turne de e 2	0.21	
1. Introdução	03hs 12hs	
2. Arquitetura dos Microprocessadores 8086/8088		
Máquinas CISC \times RISC, μ P \times μ C, Unidade de execução e unidade de controle de		
barramento, Conjunto de Registros, Segmentação de memória e registros de		
segmentos, Execução de instruções, Pilhas e ponteiro de pilha, Modos de		
endereçamento e organização de memória, Conjunto de instruções. Estudo de casos:		
Controle ON-OFF de uma planta térmica, Acionamento de Motor CA monofásico		
3. Hardware dos Processadores 8086 e 8088	07hs	
Modos mínimo e máximo, Ciclo de barramento no modo mínimo, Endereçamento		
de memória e entrada e saída, O circuito 8288 e o ciclo de barramento no modo		
máximo. Estudo de caso: Motor de Passo e Controle de um posicionador: Girassol		
4. Interrupções	06hs	
Vetores de interrupção e tabela de interrupção, Ciclo de atendimento de		
interrupções. O circuito 8259 – controlador programável de interrupções.		
5. Estudo de casos	09hs	
Capacímetro digital por HDL e µProcessado (comparativo entre as soluções),		
Controle de uma planta térmica por PID: ADC/(DAC ou PWM), filtragem digital.		
6. Memórias Estáticas e Dinâmicas (SRAM, DRAM, SDRAM e DDRx)	03hs	
7. Interfaces de Comunicação de Dados		
Interfaces seriais síncronas e assíncronas: UART e USART, SPI, I ² C		
8. Prova em sala de aula	03hs	

LABORATÓRIOS

Lab 01: Utilização do programa DEBUG do DOS.

Lab 02: Codificação básica das instruções dos microprocessadores 8086/8088 e os seus modos de enderecamento da memória.

Lab 03: Operações básicas de montagem de programas utilizando o montador NASM e criando um programa executável com o ligador FREELINK.

Lab 04: Funções em Assembly.

Lab 05: Programas Assembly – Animação modo gráfico.

Lab 06: Controle Robô de um eixo.

Lab 07: Controle de um Girassol.

Lab 08: Acionamento de um Display do tipo LCD.

Lab 09: Barramento de microprocessador multiplexado (Dados e endereços: usando SRAM). Lab 10: Preparação para Projeto Final. Depois do Lab10 o laboratório fica reservado para os alunos concluírem o Projeto de Laboratório (PL).

BIBLIOGRAFIA (Senha do AVA/Moodle (ava.ufes.br): sistembufes)

MCS-86 – Manual da Intel /Manuais do NASM e FREELINK

Morgan C.L.; Waite M., 8086/8088–16 Bit Microprocessor Primer, McGraw Hill, 1982

Hill, 1990.

Brey, B. B. Intel Microprocessors 8086/8088, 80186/80188, 80286, 80386, 80486, Pentium, Prentium Proprocessor, Pentium II, III, IV, Prentice Hall, 2003.

Triebel, W. A.; Singh, A. The 8088 and 8086 microprocessors: programming, interfacing, software, hardware, and applications. 4th ed. Prentice Hall, 2003.

AVALIAÇÃO

A nota parcial (NP) será obtida da média aritmética de 01 (uma) prova escrita (P1) e uma nota de laboratório (NL). A Nota de laboratório será formada pela soma da avaliação de um projeto de Laboratório (PL), valendo no máximo 8,0 e de um exercício de programação (EP), valendo no máximo 2,0. NL= PL+EP, para 0≤PL≤8 e 0≤EP≤2. Assim, a nota parcial é calculada da seguinte forma: NP=(P1+NL)/2. Se a nota parcial for igual ou superior a sete, a nota final é igual à nota parcial. Se a nota parcial for inferior a sete, a nota final será dada pela média aritmética da nota parcial e da prova final, ou seja: NF=(NP+Prova Final)/2. Se o aluno tiver mais do que 25% da carga horária (≥19 horas) de faltas, somando-se laboratório e teoria, ele estará reprovado por falta, independentemente de qualquer nota obtida. A Tabela 1 mostra os dias de aulas de laboratório por turma e professor e a Tabela 2 os dias de aulas teóricas.

Tabela 1: Dias e horários de aulas de Laboratório

Turma →	5	6	1	2
Horário →	07-09	07-09	09-11	11-13
$Professor \rightarrow$	Evandro	Evandro	Evandro	Evandro
Dia →	Segundas	Quartas	Sextas	Sextas
Lab. 1	09/03	04/03	06/03	06/03
Lab. 2	16/03	11/03	13/03	13/03
Lab. 3	23/03	18/03	20/03	20/03
Lab. 4	30/03	25/03	27/03	27/03
Lab. 5	06/04	01/04	03/04	03/04
Lab. 6	13/04	08/04	17/04	17/04
Lab. 7	27/04	15/04	08/05	08/05
Lab. 8	04/05	29/04	15/05	15/05
Lab. 9	11/05	06/05	22/05	22/05
Lab. 10	18/05	13/05	29/05	29/05
	Após a 10 ^a experiência, o lab fica			
	reservado para a realização do PL			

Tabela 2: dias de aulas Teóricas

Março	02, 09, 16, 23, 30
Abril	06, 13, <mark>27</mark>
Maio	04, 11, 18, <mark>25</mark>
Junho	01 , 08, 15 , 22, 29
Julho	06, <mark>13</mark>

Datas Importantes:

EP→ Divulgação: 27/04 EP→ Entrega: até 25/05 PL→ Divulgação: 01/06 $P1 \rightarrow 15/06$ $PL \rightarrow até 06/07$ $PF \rightarrow 13/07$

Regras do Laboratório (veja, por favor, as regras gerais postas no AVA):

Obrigatório o uso de calçado fechado.

Tolerância máxima de até 5 minutos após o horário de início da aula.