Appunti di Logica

Sul corso di Logica Matematica del Prof. Giunchiglia, Università degli Studi di Trento

A.A. 2018/2019

 ${\it Giacomo}\ {\it Fabris}$

PL - Introduzione

La logica delle proposizioni (Propositional Logics - \mathbf{PL}) si compone di **simboli logici** e **variabili proposizionali**. Una proposizione (formula) è composta quindi di variabili proposizionali uniti da simboli logici. La formula può essere vera o falsa a seconda dell'assegnazione delle singole variabili.

Definizione 1 (Linguaggio della PL)

Logical symbols: $(1) \neg (2) \land (3) \lor (4) \supset (5) \equiv$

PL formulas and sub-formulas

- every logical variable $P \in P$ is an atomic formula
- every atomic formula is a formula
- if A and B are formulas, then $\neg A, A \land B, A \lor B, A \supset B, A \equiv B$ are formulas

Una funzione di interpretazione $I: P \to \{\top, \bot\}$ assegna un valore vero o falso a ciascuna variabile $P \in P$.

Una funzione di interpretazione è detta **modello** di una funzione φ se le sue assegnazioni rendono il valore della funzione vero. In simboli: $I \models \varphi$.

SAT, UNSAT, VAL

- Una formula A è soddisfacibile (**SAT**) se $\exists I$ funzione di interpretazione t.c. $I \models A$.
- Una formula A è insoddisfacibile (SAT) se ∄I funzione di interpretazione t.c. I ⊨ A.
- Una formula A è valida (**VALID**) se $\forall I, I \models A$

Osservazione:

Se A è **VALID**, \neg A è **UNSAT**.

Se A è **SAT**, ¬A non è valida.

Se A non è valida, $\neg A$ è **SAT**.

Se A è UNSAT, \neg A è VALID.

Conseguenza e equivalenza logica

- Una formula A è una **conseguenza logica** di un insieme di formule Γ , in simboli $\Gamma \models A$ sse per ogni funzione di interpretazione I che soddisfa tutte le formule di Γ , I soddisfa A.
- Due formule A, B sono **equivalenti**, in simboli A \equiv B sse per ogni funzione di interpretazione I, I(A) = I(B).

Procedure di decisione

Model checking (I, φ) : $I \stackrel{?}{\models} \varphi$ $(I \text{ soddisfa } \varphi?)$ Satisfiability (φ) : $\exists I | I \models \varphi$ (Esiste un modello che soddisfi $\varphi?$)
Validity (φ) : $\models \varphi$ $(\varphi \text{ è soddisfatta da qualsiasi modello?})$

Logical consequence (Γ, φ) : $\Gamma \stackrel{?}{\models} \varphi$ (Ogni modello che soddisfa Γ soddisfa anche φ ?)

Formalizzazione del linguaggio naturale

- A: "It is the case that A"
- $\neg A$: "It is not the case that A"
- $A \wedge B$: "A and B", "A but B", "Although A, B", "Both A and B"
- $A \vee B$: "A or B", "Either A or B"
- $A \to B$: "If A, then B", "B if A"
- $\neg (A \lor B)$: "Neither A nor B"
- $\neg (A \land B)$: "It is not the case that both A and B"

\$-2-\$ PL - CNF & DPLL

— 3 —

PL - Tableaux

 α rules

 $\neg\neg$ elimination

$$\begin{array}{ccc} \frac{\phi \wedge \psi}{\phi} & \frac{\phi \vee \psi}{\neg \phi} & \frac{\neg (\phi \supset \psi)}{\phi} \\ \psi & \neg \psi & \neg \psi \end{array}$$

$$\frac{\neg\neg\phi}{\phi}$$

 β rules

$$\begin{array}{c|c} \phi \lor \psi & \neg (\phi \land \psi) \\ \hline \phi \mid \psi & \neg \phi \mid \neg \psi & \neg \phi \mid \psi \end{array}$$

Branch closure

$$\frac{\phi}{\neg \phi}$$

L'equivalenza può essere riscritta come doppia implicazione.

$$\phi \equiv \psi \iff (\phi \supset \psi) \land (\psi \supset \phi)$$