Insper

SuperComputação

Aula 12 - Introdução a GPGPU

2019 - Engenharia

Igor Montagner, Luciano Soares <igorsm1@insper.edu.br>

Módulos passados

- Paralelismo de dados usando OpenMP
- Paralelismo com instruções vetoriais (SIMD)

Objetivos de aprendizagem

- Diferenciar dispositivos de latência (CPUs) e de throughput (GPU)
- Compreender layout de memória e transferência de dados em sistemas heterogêneos CPU-GPU
- Compilar primeiros programas na GPU

Desempenho em GFLOPS

Desempenho em GB/s

CPU minimiza latência

- ALU pontente minimiza latência das operações
- Cache grande:
 - Acelera operações lentas de acesso a RAM
- Controle sofisticado:
 - Branch prediction
 - Data forwarding

GPU minimiza throughput

- ALU simples
 - Eficiente energeticamente
 - Alta taxa de transferência
- Cache pequeno
 - Acesso contínuo a RAM
- Controle simples
- Número massivo de threads

CPU vs GPU

- CPUs para partes sequenciais onde uma latência mínima é importante
 - CPUs podem ser 10X mais rápidas que GPUs para código sequencial

- GPUs para partes paralelas onde a taxa de transferência(throughput) bate a latência menor.
 - GPUs podem ser 10X mais rápidas que as CPUs para código paralelo

Como usar GPU

Aplicações

Bibliotecas

Diretivas de Compilação Linguagens de Programação

Fácil de Usar Alto Desempenho Simples de Usar Portabilidade de Código Maior Desempenho Maior Flexibilidade

Bibliotecas aceleradas por GPU

Álgebra Linear FFT, BLAS, SPARSE, Matrix

Numéricas/Math RAND, Estatísticas

Estrutura de Dados/IA Sort, Scan, Zero Sum

Processamento Visual Imagem & Video

Bibliotecas aceleradas por GPU

Facilidade de uso: O uso de bibliotecas permite a aceleração da GPU sem conhecimento aprofundado da programação da GPU

Simplicidade: Muitas bibliotecas aceleradas por GPU seguem APIs padrão, permitindo aceleração com mudanças mínimas de código

Qualidade: As bibliotecas oferecem implementações de alta qualidade de funções encontradas em uma ampla variedade de aplicativos

Linguagens de programação

Linguagens de programação

Desempenho: o programador tem o melhor controle de paralelismo e movimentação de dados

Flexível: a computação não precisa se encaixar em um conjunto limitado de padrões de biblioteca ou tipos de diretiva

Detalhado: O programador geralmente precisa expressar mais detalhes

Programando para GPU

- Compilador especial: <u>nvcc</u>
- Endereçamento de memória separado
 - Dados precisam ser copiados de/para GPU
 - Isto leva tempo
- Funções especiais (kernels) para rodar na GPU

Memória em GPU

Código da GPU (device) pode:

- Cada thread ler e escrever nos registradores
- Ler e escrever na memória global

Código da CPU (host) pode:

 Transferir dados de e para memória global

Fluxo de um programa

Parte 1: copia dados CPU → GPU

Parte 2: processa dados na GPU

Parte 3: copia resultados GPU → CPU

Programando para GPU - hoje

Nvidia Thrust: API simplificada em C++

Nvidia Thrust

Vantagens:

- Simplifica transferências de memória
- Duas operações customizáveis (reduce, transform)
- Suporta OpenMP e CUDA

<u>Desvantagens:</u>

- Limitado: menos recursos e desempenho que CUDA C
- Só tem dois tipos de operações
- Baseado em templates difícil de debugar erros de compilação

Nvidia Thrust – tipos de dados

Apenas dois tipos

```
thrust::device vector<T>
```

- Vetor genérico de dados na GPU
- Automaticamente alocado e desalocado
- Cópia é feita usando atribuição

```
thrust::host vector<T>
```

- Vetor genérico de dados na CPU
- Pode ser substituído em vários lugares por contâniers da STL ou ponteiros "normais"

Misturar os dois tipos na mesma chamada gera erro de compilação!

Nvidia Thrust – tipos de dados

```
thrust::host_vector<double> vec_cpu(10); // alocado na CPU

vec1[0] = 20;
vec2[1] = 30;

thrust::host_vector<double> vec_gpu (10); // alocado na GPU

vec_gpu = vec_cpu; // copia o conteúdo da CPU para GPU

thrust::device_vector<double> vec2_gpu (vec_cpu); // também transfere para GPU
```

Alocação e cópias usando thrust

Nvidia Thrust – iteradores

Funcionam igual aos iteradores de std::vector

```
v.begin()  // primeiro elemento

v.end()  // último elemento

v.begin()+2  // v[2]

i = v.begin() + 3; *i = 4;  // v[3] = 4
```

Nvidia Thrust – iteradores

```
thrust::device_vector<int> v(5, 0); // vetor de 5 posições zerado // v = \{0, 0, 0, 0, 0\} thrust::sequence(v.begin(), v.end()); // inicializa com 0, 1, 2, .... // v = \{0, 1, 2, 3, 4\} thrust::fill(v.begin(), v.begin()+2, 13); // dois primeiros elementos = 3 // v = \{13, 13, 2, 3, 4\}
```

Nvidia Thrust – redução

Resume o vetor para um escalar

Soma todos elementos

Máximo/mínimo do vetor

Contagens

 Suporta iteradores, o que torna a operação bastante flexível.

Nvidia Thrust – redução

```
val = thrust::reduce(iter_comeco, iter_fim, inicial, op);
// iter_comeco: iterador para o começo dos dados
// iter_fim: iterador para o fim dos dados
// inicial: valor inicial
// op: operação a ser feita.
```

Nvidia Thrust – transformação

Operações elemento a elemento entre pares de vetores ou um só vetor.

- Aritmética ponto a ponto
- Permite criação de operações customizadas
- Suporta iteradores de entrada e saída
- Funciona também para operações locais (imagens)

Nvidia Thrust – transformação

Atividade prática

Implementação de algoritmos simples usando thrust

Insper

www.insper.edu.br