Name:

Exam 1 - MAT513

Warning! I can (eh ... do) make mistakes, if you think I have something wrong here, please ask.

Part I: True/False

Each problem is points for a total of 40 points. (10 problems 4 points each; 2 points for correct T/F; 2 points for correct, but brief, explanation.)

Problem 1. Decide if each of the following is true or false. For each, provide an example, counter-example, or argument as required. You may refer to a theorem if one applies.

a) False If H < G, the set of cosets $G/H = \{gH \mid g \in G\}$ form a group under the operation aH + bH = abH.

This is a basic fact that we have learned. For G/H to be a group as described, H must be normal. As an example, consider $H = \{e, f\}$ where f is a reflection in D_n and r a non-trivial rotation, then $rHrH = \{r, rf\}\{r, rf\} = \{r^2, r^2f, rfr, rfrf\} = \{e, f, r^2, r^2f\} \neq r^2H = \{r^2, r^2f\}$.

b) True $Z(G) = \bigcap_{g \in G} C(g)$.

This is just unpacking the definitions

$$x \in Z(G) \iff \text{ for all } g \in G, xg = gx$$

$$\iff \text{ for all } g \in G, x \in G(g)$$

$$\iff x \in \bigcap_{g \in G} C(g)$$

c) True For $c \in \mathbb{R}$ and $c \neq 0$, $\phi : \mathbb{R} \to \mathbb{R}$ given by $\phi(x) = cx$ is an automorphism of $(\mathbb{R}, +)$.

This is homomorphism since $\phi(a+b) = c(a+b) = ca+cb = \phi(a)+\phi(b)$ and $\phi(0) = 0$. ker $(\phi) = \{0\}$, that is, $ca = 0 \iff a = 0$. So ϕ is 1-1. Since $\phi(a/c) = a$ we see ϕ is onto.

d) True Let $\phi: G \to H$ be a homomorphism,

$$\ker(\phi) = \{e_G\} \iff \phi \text{ is 1-1}$$

If $\phi(x) = \phi(y)$ and $\ker(\phi) = \{e_G\}$, then $e_H = \phi(x)\phi(y)^{-1} = \phi(x)\phi(y^{-1}) = \phi(xy^{-1})$ so $xy^{-1} = e_G$ and thus x = y, so ϕ is 1-1.

Conversely, suppose ϕ is 1-1 and $\phi(x) = e_H$, then since $\phi(e_G) = e_H$ we have $x = e_G$, so $\ker(\phi) = \{e\}$.

- e) False S_9 has an element of order 11. $|S_9| = 9!$ and $11 \nmid 9!$ so no element of order 11.
- f) False There are finite groups that are not isomorphic to a subgroup of S_n for some n.

Cayley's theorem.

g) False There is a finite group of order n and a prime p such that $p \mid n$, but no element of G has order p.

Cauchy's Theorem.

- h) False There is a group G and non-normal subgroup H < G so that $|H| \nmid |G|$. Langrange's Theorem.
- i) <u>True</u> In S_8 , (135)(456)(567) is even. (135)(456)(567)=(1354)(67)
- j) True $[S_4 : D_4] = 3$. $|S_4|/|D_4| = 4!/8 = 3$.

Part II: Short Answer

Each problem is 8 points for a total of 40 points. (5 problems, 8 points each)

Problem 2 (8 points). Let ϕ be a homomorphism from G to H. What is the relationship between G, $\ker(\phi)$, $\operatorname{Img}(\phi) = \phi(G)$, and H. If G and H are finite, what is the relationship between |G|, $|\ker(\phi)|$, $\operatorname{Img}(\phi)$, and |H|?

$$G/\ker(\phi) \simeq \operatorname{Img}(\phi) < H$$

$$|G| = |\ker(\phi)||\operatorname{Img}(\phi)|$$
 and $|\operatorname{Img}(\phi)| |H|$

Problem 3 (8 points). List the abelian groups of order 12 up to isomorphism.

$$\mathbb{Z}_4 \times \mathbb{Z}_3 \simeq \mathbb{Z}_{12}$$
, and $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \simeq \mathbb{Z}_2 \times \mathbb{Z}_6$

Problem 4 (8 points). What is $Aut(\mathbb{Z}_{45})$ up to isomorphism, in terms of products of \mathbb{Z}_n 's. (Explain or show "computation.")

$$\operatorname{Aut}(\mathbb{Z}_{45}) = U(45) = U(3^3 \cdot 5) = U(3^3) \times U(5) = \mathbb{Z}_{3^2(2)} \times \mathbb{Z}_4$$

Problem 5 (8 points). Show that D_4 is not a normal subgroup of S_4 .

Use

$$\begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$$

So that D_4 is generated by the rotation R = (1234) and the horizontal reflection H = (12)(34).

We just need to see that $\sigma D_8 \sigma^{-1} \neq D_8$ for some σ . Take $\sigma = (12)$ (or (123) or basically any $\sigma \in S_4 - D_8$, then

$$(12)(1234)(12) = (1342)$$

this would correspond to labeling like

and this cannot be achieved in D_8 since adjacent labels must stay adjacent.

Note This is a good example to keep in mind. We know that if [G:H]=2, then H is normal in G. We might guess that if [G:H] is prime, the same holds. This example shows that this is false. It is true that if p is the smallest prime such that $p \mid G$ and [G:H]=p, then H is normal.

Problem 6 (8 points). What is the largest cyclic subgroup of $G = \mathbb{Z}_6 \times \mathbb{Z}_{20} \times \mathbb{Z}_{24} \times \mathbb{Z}_{45}$?

 $6 = 2 \cdot 3$, $20 = 2^2 \cdot 5$, $24 = 2^3 \cdot 3$, and $45 = 3^3 \cdot 5$. So $lcm(6, 20, 24, 45) = 2^3 3^3 5 = 360$. In fact (1, 1, 1, 1) has this order and for any $g \in G$, $|g| = lcm(|g_1|, |g_2|, |g_3|, |g_4|) | | lcm(6, 20, 24, 45)$ since $|g_1| |6, |g_2| |20, |g_3| |24$, and $|g_4| |45$.