Aluno: Leonardo Naime Lima

RA: 2515660

IRIS

- a) Identificar a espécie de íris com base em medidas morfológicas das pétalas e sépalas.
- **b)** 4. Comprimento da sépala (cm), Largura da sépala (cm) ,Comprimento da pétala (cm), Largura da pétala (cm)
- c) 50 amostras para cada classe (total 150).
- d) 3. setosa, versicolor e virginica

Padronização da Escala	Métrica de Distância	К	Acurácia
NÃO	Euclidiana	1	0.97
NÃO	Euclidiana	3	0.97
NÃO	Euclidiana	5	0.97
NÃO	Euclidiana	9	0.97
NÃO	Manhattan	1	0.97
NÃO	Manhattan	3	0.97
NÃO	Manhattan	5	0.97
NÃO	Manhattan	9	0.97
SIM	Euclidiana	1	0.93
SIM	Euclidiana	3	0.93
SIM	Euclidiana	5	0.97
SIM	Euclidiana	9	0.97
SIM	Manhattan	1	0.93
SIM	Manhattan	3	0.93
SIM	Manhattan	5	0.97
SIM	Manhattan	9	0.97

- **a)** 0.97
- b) Os com padronização ativada tendem a ser menores
- c) Foram iguais
- d) Ganhou precisão

DIGITS

- a) Reconhecer dígitos manuscritos de 0 a 9 a partir de imagens em escala de cinza.
- b) 64. Intensidade de pixels em imagens 8x8 (valores de 0 a 16).
- c) Aproximadamente 180 amostras por classe (total 1797).
- **d)** 10. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Padronização da Escala	Métrica de Distância	К	Acurácia
NÃO	Euclidiana	1	0.98
NÃO	Euclidiana	3	0.98
NÃO	Euclidiana	5	0.98
NÃO	Euclidiana	9	0.97
NÃO	Manhattan	1	0.98
NÃO	Manhattan	3	0.98
NÃO	Manhattan	5	0.98
NÃO	Manhattan	9	0.97
SIM	Euclidiana	1	0.97
SIM	Euclidiana	3	0.97
SIM	Euclidiana	5	0.97
SIM	Euclidiana	9	0.97
SIM	Manhattan	1	0.97
SIM	Manhattan	3	0.98
SIM	Manhattan	5	0.97
SIM	Manhattan	9	0.97

- **a)** 0.98
- b) Os com padronização ativada tendem a ser menores
- c) Manhattan foi um pouco maior
- d) Perde precisão

WINE

- a) Classificar vinhos em 3 tipos com base em análises químicas.
- b) 13. Atributos químicos (álcool, ácido málico, magnésio, fenóis, cor intensidade, etc.).
- c) 59 amostras (classe 0), 71 amostras (classe 1), 48 amostras (classe 2) (total 178).
- **d)** 3. class_0, class_1, class_2

Padronização da Escala	Métrica de Distância	К	Acurácia
NÃO	Euclidiana	1	0.78
NÃO	Euclidiana	3	0.69
NÃO	Euclidiana	5	0.69
NÃO	Euclidiana	9	0.69
NÃO	Manhattan	1	0.81
NÃO	Manhattan	3	0.75
NÃO	Manhattan	5	0.72
NÃO	Manhattan	9	0.75
SIM	Euclidiana	1	0.97
SIM	Euclidiana	3	0.97
SIM	Euclidiana	5	0.92
SIM	Euclidiana	9	0.94
SIM	Manhattan	1	0.97
SIM	Manhattan	3	0.97
SIM	Manhattan	5	0.97
SIM	Manhattan	9	1.00

- **a)** 1.00
- b) Os com padronização ativada tendem a ser maiores
- c) Manhattan foi maior
- d) Quase sempre perde precisão, menos de 5 -> 9

BREAST

- **a)** Diagnosticar tumores de mama como malignos ou benignos com base em características de núcleos celulares.
- b) 30. Métricas de núcleos celulares (raio, textura, perímetro, área, suavidade, concavidade, etc.).
- c) 212 amostras (maligno/0), 357 amostras (benigno/1) (total 569).
- **d)** 2. maligno (0) e benigno (1)

Padronização da Escala	Métrica de Distância	к	Acurácia
NÃO	Euclidiana	1	0.89
NÃO	Euclidiana	3	0.89
NÃO	Euclidiana	5	0.90
NÃO	Euclidiana	9	0.90
NÃO	Manhattan	1	0.91
NÃO	Manhattan	3	0.92
NÃO	Manhattan	5	0.92
NÃO	Manhattan	9	0.91
SIM	Euclidiana	1	0.95
SIM	Euclidiana	3	0.95
SIM	Euclidiana	5	0.94
SIM	Euclidiana	9	0.95
SIM	Manhattan	1	0.95
SIM	Manhattan	3	0.96
SIM	Manhattan	5	0.96
SIM	Manhattan	9	0.95

- 5)
- **a)** 0.96
- b) Os com padronização ativada tendem a ser maiores
- c) Manhattan foi maior
- d) Não