UrTraining ML System Design

Overview

The ML system consists of two core components:

- Recommendation System: Delivers personalized course recommendations to users
- Image-to-Tracker: Converts exercise images into structured tracking programs

Recommendation System

Current Approach

Due to limited initial data, the system employs synthetic data generation for the first iteration model training.

Data Generation Pipeline

User Data Structure

- Profile Data: Registration form responses (weight, fitness goals, experience level, etc.)
- Interaction Metadata: User engagement metrics (completed courses, retention rates, activity patterns)

Synthetic Data Generation Process

1. User Profile Generation

- Multiple LLMs (DeepSeek, Gemma, LLaMA) generate diverse user profiles
- Prompt engineering with seed phrases ensures profile diversity
- Metadata generation aligned with corresponding user profiles
- Target: 1,000 training examples for baseline model

2. Course Data Generation

- Multiple LLMs generate the main content of exercises (for gym, swimming or other)
- For each course type (gym, swimming, others) we generate separate training program
- Finally, we align generated courses with coach-provided metadata forms (also generated by LLMs)

3. Dataset Assembly

 For each user profile + metadata, DeepSeek R1 rearranges the courses (generates optimal course-user pairings for training data)

4. Model Training

The training process utilizes a bi-encoder architecture to learn meaningful representations of users and courses. It aims to maximize similarity between compatible user-course pairs while minimizing similarity for incompatible ones, enabling effective personalized recommendations through vector similarity search.

Architecture:

- Bi-encoder models (e5, bge-m3, or similar embeddings models)
- Separate encoding for user profiles and course descriptions
- Vector generation for both user queries and course documents

Training Objective:

- Contrastive learning approach using triplet, margin, or contrastive loss functions
- Optimize embeddings to place similar user-course pairs closer in vector space

Image-to-Tracker System

Current Implementation

The system utilizes open-source visual language models (VLM) to extract structured data from exercise images.

Process Flow:

- 1. Image Processing: Vision-language model analyzes input images
- 2. **Text Extraction**: Converts visual content to structured JSON format:

3. Tracker Mapping: Each JSON object maps to a dedicated tracker page

Future Development (won't be included in MVP)

Data Collection Strategy:

- Use images from real coaches to build the dataset
- Annotate those images by DeepSeek or assessors
- Training pair generation: (image) → (structured_tracker_json)