אלגברה ב – חבורות חופשיות

נושאים:

- 1. בניית החבורה החופשית
- 2. התכונה האוניברסלית של החבורה החופשית
 - 3. דוגמה מעשית

בניית החבורה החופשית

נזכר בבנייה של החבורה החופשית:

תהי $X=\{x_i\}_{i\in I}$ קבוצה כלשהי (נקרא לאבריה אותיות). **מילה** הינה רצף של הגדרה: תהי $S=\{x_i\}_{i\in I}$ קבוצה כלשהי (נקרא לאבריה אותיות). מילה $\varepsilon_j\in\{1,-1\}$ הנראית באופן כללי כך: $w=x_{i_1}^{\epsilon_i}...x_{i_k}^{\epsilon_k}$ כאשר $S=\{i,-1\}$ לכל $S=\{i,-1\}$ הנראית אם לכל $S=\{i,-1\}$ מתקיים ש $S=\{i,-1\}$ או $S=\{i,-1\}$ וואסף המילים המצומצמות (ז"א, במילה $S=\{i,-1\}$ ליום מהצורה $S=\{i,-1\}$ או $S=\{i,-1\}$ וואסף המילים המצומצמות מסומן ב

המילה w_1 עבור w_1 $w_2 \in W_1$ מילים מצומצמות, שרשור של w_1 ו - w_1 הוא המילה המצומצמת המתקבלת מכתיבת האותיות של w_1 אחריהן האותיות של w_2 וביצוע כל הצמצומים האפשריים.

דוגמה: נניח $X=\{a,b\}$ יש למשל את שתי המילים המצומצמות $x=\{a,b\}$ יש למשל את שתי נניח $w_1w_2=aaba^{-1}babba$ הוא $w_1w_2=aaba^{-1}babba$ השרשור של $w_1w_2=aaba^{-1}babba$ יש למשל את שתי המילים המצומצמות

למשל האות x^n - כ x מספר שלם. למשל הערה: לטובת קיצור, נוטים לסמן רצפים של האות האות x^n - כ x^n מספר שלם. למשל המילה $w_1 = a^2ba^{-1}b^2$ - מהדוגמה לעיל מסומנת בצורה מקוצרת כ

טענה: הקבוצה F(X) עם פעולת השרשור היא חבורה. איבר היחידה הוא המילה הריקה. F(X) עם פעולת השרשור היא חבורה. איבר היחידה הוא מעבור $w=x_{i_1}^{\epsilon_i}...x_{i_k}^{\epsilon_k}$ עבור $w=x_{i_1}^{\epsilon_i}...x_{i_k}^{\epsilon_k}$ מו כן, לכל קבוצה $w=x_{i_1}^{\epsilon_i}...x_{i_k}^{\epsilon_k}$ עבור החופשית $w=x_{i_1}^{\epsilon_i}...x_{i_k}^{\epsilon_k}$

."X עם השרשור נקראת "החבורה החופשית הנוצרת ע"י F(X)

:טענה

- Z-איזומורפית לF(X) , $X=\{a\}$ 1.
- . עבור F(X) חבורה לא אבלית. X חבורה לא אבלית.

הוכחה: הטענה הראשונה ברורה, האיזומורפיזם שנגדיר הוא $\phi(a^n)=n$ ל $aba^{-1}b^{-1}$ מספר שלם. $aba^{-1}b^{-1}$ אז המילה $aba^{-1}b^{-1}$ הטענה השנייה גם ברורה, כי אם ב $Aba^{-1}b^{-1}$ שתי אותיות למשל ab=ba מחייב ab=ba היא מילה מצומצמת שאינה המילה הריקה, אבל

התכונה האוניברסלית של החבורה החופשית

תהא X קבוצה ונסמן בF(X) את ההעתקה הקבוצתית ששולחת את האות X קבוצה ונסמן בw=a בw=a בw=a למילה המצומצמת w=a בw=a באותיות גדולות בעוד את המופעים במילים בw=a נסמן באותיות קטנות. ז"א עבור באותיות גדולות בעוד את המופעים במילה בw=a נסמן באותיות קטנות. ז"א עבור w=a באותיות גדיר w=a המופעים במילה בw=a המורכבת מהאות w=a החבורה החופשית מקיימת את התכונה הבאה:

 $\phi\colon\! F(X)\!\to\! G$ יחיד יחיד הומומורפיזם קיים העתקה קבוצתית, אז קיים העתקה $f\colon\! \dot X\!\to\! G$ יחיד יחיד היים Gעבורו $\phi\circ i=f$

תמונה a_{i_i} - ל) $w=a_{i_1}^{\epsilon_1}...a_{i_k}^{\epsilon_k}$ הוכחה: נראה שקיימת ϕ כנדרש. עבור מילה מצומצמת

, $\varphi(a_{i_1}^{\epsilon_1}...a_{i_k}^{\epsilon_k})=f(A_{i_1})^{\epsilon_1}\cdot...\cdot f(A_{i_k})^{\epsilon_k}$, נגדיר $(\epsilon_j\in\{1,-1\}-\epsilon_j)$, $(\epsilon_j\in\{1,-1\}-\epsilon_j)$

אינה $w_1w_2 - \omega_1w_2$. $\varphi(w_1)\varphi(w_2) = f(A_{i_l})^{\epsilon_1} \cdot ... \cdot f(A_{i_k})^{\epsilon_k} \cdot f(B_{j_l})^{\delta_1} \cdot ... \cdot f(B_{j_m})^{\delta_m} = \varphi(w_1w_2)$ $a_i^{\epsilon_l}, b_p^{\delta_p}$ אז לכל זוג $w_1 - \omega_1w_1$ $a_i^{\epsilon_l}, b_p^{\delta_p}$ אז לכל זוג $w_1 - \omega_1w_1$ $a_i^{\epsilon_l}, b_p^{\delta_p}$ $a_i^{\delta_p}, b$

 $w=a_{i_1}^{\epsilon_1}...a_{i_k}^{\epsilon_k}$ נקבל: $w=a_{i_1}^{\epsilon_1}...a_{i_k}^{\epsilon_k}$ נקבל: $\psi=\psi(a_{i_k})^{\epsilon_1}....\psi(a_{i_k})^{\epsilon_k}=\phi(a_{i_k})^{\epsilon_1}....\psi(a_{i_k})^{\epsilon_k}=\phi(a_{i_k})^{\epsilon_1}....\psi(a_{i_k})^{\epsilon_k}=\phi(a_{i_k})^{\epsilon_$

: במקרה המילים ב F(X) הם מהצורה: גמקרה מהנותה: גמקרה המילים ב . $X=\{A,B\}$ הם מהצורה: $k\geq 2$ - $a^{n_1}b^{m_1}\dots a^{n_k}b^{m_k}$. A .

נסתכל על $f^3=1$). (ז"א חבורה כפלית עם 3 אברים, כאשר $G=\{1,t,t^2\}$). נסתכל על למשל למשל מתאימות ל $f:X\to G$ מתאימות להעתקות הקבוצתיות $f:X\to G$ מתאימות הקבוצתיות . $f(A)=t,f(B)=t^2$

: נסתכל על התמונה של המילים לפי הקבוצות לעיל: $g:F(X) \to G$ המתאימה ל $g:F(X) \to G$ המתאימה ל $g:F(X) \to G$ המראים. $g(b^{3k})=1, g(b^{3k+1})=t^2, g(b^{3k+2})=t$. ב. $g(a^{3k})=1, g(a^{3k+1})=t, g(a^{3k+2})=t^2$. א.

.
$$r = \sum_{i=1}^{k-1} (n_i + 2m_i) + n_k \mod 3$$
 עבור $g(a^{n_1}b^{m_1}...a^{n_k}) = t^r$.

.
$$r = \sum_{i=1}^{k} (n_i + 2m_i) \mod 3$$
 עבור $g(a^{n_1}b^{m_1}...a^{n_k}b^{m_k}) = t^r$.T

.
$$r = \sum_{i=1}^{k-1} (n_i + 2m_i) + 2m_k \mod 3$$
 עבור $g(b^{m_1}a^{n_1}...b^{m_k}) = t^r$ ה.

.
$$r = \sum_{i=1}^{k} (n_i + 2m_i) \mod 3$$
 עבור $g(b^{m_1}a^{n_1}...b^{m_k}a^{n_k}) = t^r$.1