

Data Science Toolkit – Linux, Git, Bash, and SQL Data Science with R – Data Analytics – Part I

- Linux system
 - o Introduce Linux environment
 - Learn Linux commands
 - o IO redirection and Pipe
 - o Introduce server-side Linux usage
- Git
 - o Introduce modern source code management
 - Learn common git operations
 - Setup github and personal portfolio page
- Other server related topics
 - Text editors and IDEs
 - o ssh: how to communicate with a remote server
 - Linux environment variables
- SQL
 - o Introduction to relational database
 - Introduction to structured query language
 - SQL major commands and examples
- · Programming foundation in R I
 - \circ Syntax
 - o Data object: Vectors, Matrices, Data Frames, and Lists
 - Common functions
 - o Rstudio environment and package management
 - Local data input/output
 - Introduction to R data visualization
- Programming foundation in R II
 - o Data sorting and merging
 - o String manipulation
 - Dates and times
 - Connecting to an external database

Week 2

Data Science with R - Data Analytics - Part II

- Data manipulation with "dplyr"
 - o Tables in R
 - o Join
 - o Subset
 - o Advanced manipulations with dplyr
- Data Visualization with "ggplot2"

- o Histogram
- Point graphics
- Columnar graphics
- Line charts
- Pie charts
- Box plots
- Scatter plots
- Visualizing multivariate data
- Matrix-based visualizations
- o Maps
- Introduction to Shiny
 - Shiny introduction
 - Design the User-interface
 - Control widgets
 - Build reactive output
 - Use data table in Shiny Apps
 - Use R scripts, data and packages
 - UI and server for the App
 - Make Shiny perform quickly
 - Matrix-based visualizations
 - Use reactive expressions
 - Share and deploy Shiny apps
- Lab: Moneyball

Project 1 Due: Exploratory Data Visualization

Week 3

Data Science with Python - Data Analytics - Part I

- Python Programming Language I
 - Simple Values and Expressions
 - o Functions
 - Lists
 - Conditionals
 - Functional programming: map, filter and reduce
- Python Programming Language II
 - String operations
 - File input/output and searching
 - Data Structures:
 - Mutating operations on Lists
 - Tuples, sets and dictionaries
- Python Programming Language III
 - Control flows

- Errors and exceptions
- Object-oriented programming
- Web scraping
 - Regular expression
 - o HTML, beautiful soup and scrapy
 - NoSQL and MongoDB

Data Science with Python – Data Analytics – Part II

- Numpy and Scipy
 - Basic data structure and operations
 - o Matrices and linear algebra
 - Stats module
 - o Random Sampling
- Pandas
 - Series and data frame
 - I/O of pandas data frame
 - Concatenation and merge
 - Arithmetic, drop, apply and describe
 - Selection and filter
 - Missing values
 - Grouping and aggregation
 - Time series
 - Interacting with data base
- Matplotlib and Seaborn
 - Basic plots
 - Statistical plots:
 - Scatter plots
 - Histogram
 - Boxplot
 - Barchart
 - Multiple figures
 - Advanced plots with seaborn
- Python lab: linear regression from scratch

Project 2 Due: R Shiny Interactive Applications

Week 5

Data Science with R - Machine Learning - Part I

- Foundations of Statistics
 - Descriptive Statistics

- Measures of Centrality
- Measures of Variability
- Frequency, Proportion & Contingency Tables
- Correlation
- Hypothesis Testing
 - One Sample t-test
 - Two Sample t-test
 - F-test
 - One-way ANOVA
 - X2 Test of Independence
- Introduction to Machine Learning
 - Supervised Learning
 - Regression
 - Classification
 - Unsupervised Learning
 - Clustering
 - Dimension Reduction
- Missingness & Imputation
 - Types of Missingness
 - MCAR
 - MAR
 - MNAR
 - Basic Methods of Imputation
 - Mean Value Imputation
 - Simple Random Imputation
 - Regression Prediction
 - K-Nearest Neighbors
 - Voronoi Tessellations
 - KNN for Classification
 - KNN for Regression
 - Distance Measures
- Linear Regression I
 - Simple Linear Regression
 - From a Mathematical Standpoint
 - Accuracy of the Coefficient Estimates
 - Performing Hypothesis Tests
 - Constructing Confidence Intervals
 - Assumptions & Diagnostics
 - o Transformations
 - Power Transformation
 - Box-Cox Transformation

- The Coefficient of Determination R²
- Linear Regression II
 - Multiple Linear Regression
 - From a Mathematical Standpoint
 - Assumptions & Diagnostics
 - o Potential Problems
 - Research Questions
 - Variable Selection
 - Factors
 - Interactions
 - Higher-Order Terms

Data Science with R - Machine Learning - Part II

- Lab: Building Bridges
- Generalized Linear Models
 - Logistic Regression
- The Curse of Dimensionality
 - Ridge Regression
 - Lasso Regression
 - Cross-Validation
 - Bias/Variance Tradeoff
 - Density
 - Principal Component Analysis
- The Curse of Dimensionality
 - Density
 - o Principal Components Analysis
- Guest Lecture: Dataiku Part I

Project 3 Due: Python Web Scraping

Week 7

Data Science with R - Machine Learning - Part III

- Classification
 - o Feature Selection
 - Support Vector Machines
 - Decision Trees
 - Pruning/Purity/Entropy/GINI
 - Random Forests
 - Bagging
 - Boosting
- Cluster Analysis

- K-Means Clustering
- Agglomerative Clustering
- Hierarchical Clustering
- Neural Networks

Data Science with R - Machine Learning - Part IV Introduction to Natural Language Processing

- Case Study: Spam Detection
- Association Rules
 - Market Basket Analysis
- Naïve Bayes Analysis
- Introduction to Natural Language Processing
 - Creating corpus: stemming and lemmatization
 - POS tag and chunking
 - Text classification
- Time Series Analysis
 - Smoothing
 - Seasonal Decomposition
 - o ARIMA
- Guest Lecture: Dataiku Part II

Week 9

Data Science with Python - Machine Learning

- Machine Learning Recap / Linear Regression
 - o Introduction to scikit learn
 - Simple linear regression
 - o Multiple linear regression
 - Stats module
- Classification part I
 - Logistic regression
 - Discriminant analysis
 - Naïve Bayes
- Model Selection
 - Cross-validation
 - Bootstrap
 - Feature selection
 - Regularization
 - Grid search
- Classification part II

- Support vector machine
- Decision tree
- Random forest
- Unsupervised learning
 - Principal Components Analysis
 - Kmeans and Hierarchical Clustering

Project 4 Due: Machine Learning Project (It can be a Kaggle competition, a hiring partner project or a non-profit project from our partners)

Week 10

Big Data

- Parallel processing: Introduction to Hadoop and MapReduce
 - o HDFS
 - o MapReduce
 - Conceptual framework
 - Streaming and Python
 - Examples and lab work
- MapReduce design pattern
 - Filtering patterns
 - Simple filtering
 - Top N
 - Summarization patterns
 - Numerical summarizations
 - Inverted Index summarizations
- Apache Hive:
 - Databases for Hadoop
 - Hive
 - Select
 - Joins
 - Compiling HiveQL to MapReduce
 - Technical aspects of Hive
 - Extending Hive with TRANSFORM
- Spark
 - Basics concepts
 - RDDs, transformations and actions
 - PairRDDs
 - Examples
 - Wordcount
 - Mean and variance

Big Data and Algorithms

- Spark MLlib
- Amazon Web Service
- Introduction to Algorithms
 - Analysis of algorithms: big-O notation
- Sorting
 - Elementary sorts
 - Merge sorts
 - Quick sorts
- Searching
 - Linear search
 - o Binary search
 - o Hash tables
- Machine Learning Theory Defense Practice

Week 12

Capstone Project Presentations and Review

- Machine learning theory defense practice
- SQL code review
- R code review
- Python code review
- From the beginning of Bootcamp, you will work on hands-on projects. Now your Capstone Project lets you create your own data product that showcases your interests and talents. Students are free to use anything covered in class on this project.

Project 5 Due: Capstone Project