	See General guidance – but no power of x is to decrease.
M1	For substituting in their values correctly AND subtract the two integrals.
	Explicit substitution must be seen if the final area is incorrect, or the limits are
	incorrect. A final correct area which follows correct integration is adequate evidence.
A1	For the correct area

Question	Scheme	Marks
6	$\frac{\mathrm{d}V}{\mathrm{d}t} = 12$	B1
	$\frac{\mathrm{d}V}{\mathrm{d}h} = 9h^2$	B1
	$1536 = 3h^3 \Rightarrow h = \sqrt[3]{\frac{1536}{3}} = 8$	M1A1
	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}t} \times \frac{1}{\mathrm{d}V} = 12 \times \frac{1}{9h^2} = 12 \times \frac{1}{9 \times 8^2} = \frac{1}{48} \text{ (cm/s) oe}$	M1dM1A1
	$\frac{\mathrm{d}t}{\mathrm{d}h} = \frac{\mathrm{d}v}{\mathrm{d}h} = \frac{9h}{9 \times 8} = \frac{48}{48}$	[7]
	Τ	Total 7 marks

Mark	Notes
B1	For stating $\frac{dV}{dt} = 12$
	u_i
	This must be clearly labelled $\frac{dV}{dt}$
B1	For differentiating the given expression for the volume.
	This must be clearly labelled $\frac{dV}{dh}$
	It must be correct for this mark.
M1	For using the given formula, rearranged correctly to find the height of oil when the volume = 1536
	That is, unless you see $h = 8$, you must see this expression. $h = \sqrt[3]{\frac{1536}{3}}$
A1	For the correct value of $h = 8$
	Sight of $h = 8$ without working is M1A1
M1	For sight of a correct chain rule involving $\frac{dh}{dt}$, $\frac{dV}{dh}$ and $\frac{dV}{dt}$ only.
	Accept in any order.
	For example, accept $\frac{dh}{dt} \times \frac{dV}{dh} = \frac{dV}{dt}$ that is, $\frac{dh}{dt}$ does not need to be the subject.
	This mark can be implied by a correct next step.
dM1	For substituting in their values/expressions with their value of h into a correct chain
	rule.
	Note, this mark is dependent on the previous M mark.
A1	For the correct rate of increase. This question asks for an exact value. Do not accept a
	decimal estimate or accept 0.02083 unless you see a recurring sign.