Graph of a Polynomial Function

End Behavior: the behavior of the graph of a function at the far left or the far right

Turning Point: a point where the graph of a function changes direction from increasing to decreasing or vice versa

The graph of a polynomial function of degree n has, at most, n-1 turning points.

Leading Coefficient Test: as *x* increases or decreases without bound, the graph of the polynomial function

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x + a_0$$

eventually rises or falls.

Case	Leading	Degree	End B	ehav
	Coefficient		Left-hand	Righ
1	Positive	Odd	Falling	Ri
2	Negative	Odd	Rising	Fa
3	Positive	Even	Rising	$\mathbf{R}_{\mathbf{i}}$
4	Negative	Even	Falling	Fa

Steps in Graphing Polynomial Functions

- 1. Write the function in factored form.
- 2. Find the end behavior of the graph using the Leading Coefficient test.
- 3. Find the zeros of the polynomial function and their multiplicity.

Multiplicity of Zero (c)	Graph
Even	touches the x-axis at a
Odd	crosses the <i>x</i> -axis at <i>c</i>

- 4. Make a table of values of *x* and *y*.
- 5. Plot the points and connect them with a smooth continuous curve.
- 6. Make sure the graph follows the end behavior.