Problem 2

a)
$$Z = \sum_{n} e^{-E_n/kT}$$
 (8 points)

b)
$$P_{i} = e^{-\Delta/kT}$$
 (10 points)
$$(1 + e^{-\Delta/kT} + e^{-5\Delta/kT})$$

$$P_{2} = \frac{e^{-5\Delta/kT}}{(1 + e^{-\Delta/kT} + e^{-5\Delta/kT})}$$

i) So at low temperature P + P, are zero, while at high temperature P = P, = 1 all states are equally likely. The P, curve reaches its high temperature limit sooner

· We can estimate what high temperature means.
We woint
5 BD → D
So
$\frac{P}{2} = \frac{1}{(1+1+1)} \approx \frac{1}{3}$
(1+1+1) 3
So the high temperature limit is when
$5\beta \cup \langle \langle \rangle $ or $5\Delta \langle \langle \rangle $ or $T \gg 5\Delta$ $k_B T \qquad k_Q$
K ^B I K ^B
Substituting
T >> 5. (0.1eV) or T >> 6000°K
(0.025eV)