```
#!pip install geopandas

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import matplotlib.patches as mpatches
import re
import geopandas as gpd

df = pd.read_csv("netflix.csv")
ChartNumber=""
```

Welcome To Netflix CaseStudy

Defining Problem Statement and Analysing basic metrics (10 Points)

- Help Netflix in deciding which type of shows/movies to produce
- · How they can grow the business in different countries

Observations on the shape of data, data types of all the attributes, conversion of categorical attributes to 'category' (If required), missing value detection, statistical summary (10 Points)

```
print(f'The data contains {df.shape[0]} rows and {df.shape[1]} columns')
   print("\nHere are the columns it contains")
    print('\nSome columns have null values. Here are the details')
7
    for idx, value in df.isna().sum().items():
8
        if(value>0):
9
           print(f"Column: {idx}, NA Values: {value}")
The data contains 8807 rows and 12 columns
    Here are the columns it contains
    show_id
                   object
    type
                   object
    title
                    object
    director
                   object
                    object
    cast
    country
                    object
    date_added
                    object
    release_year
                    int64
    rating
                    object
    duration
                    object
    listed in
                    object
    description
                    object
    dtype: object
    Some columns have null values. Here are the details
    Column: director, NA Values: 2634
    Column: cast, NA Values: 825
    Column: country, NA Values: 831
    Column: date_added, NA Values: 10
    Column: rating, NA Values: 4
    Column: duration, NA Values: 3
```

1 df

3		show_id	type	title	director	cast	country	date_added	release_year	rating	duration	listed_in	description
	0	s1	Movie	Dick Johnson Is Dead	Kirsten Johnson	NaN	United States	September 25, 2021	2020	PG-13	90 min	Documentaries	As her father nears the end of his life, filmm
	1	s2	TV Show	Blood & Water	NaN	Ama Qamata, Khosi Ngema, Gail Mabalane, Thaban	South Africa	September 24, 2021	2021	TV-MA	2 Seasons	International TV Shows, TV Dramas, TV Mysteries	After crossing paths at a party, a Cape Town t
	2	s3	TV Show	Ganglands	Julien Leclercq	Sami Bouajila, Tracy Gotoas, Samuel Jouy, Nabi	NaN	September 24, 2021	2021	TV-MA	1 Season	Crime TV Shows, International TV Shows, TV Act	To protect his family from a powerful drug lor
4				Jailbirds				~					Feuds,

1 df.type.unique()

```
⇒ array(['Movie', 'TV Show'], dtype=object)
```

• There are two type of shows - Movies and TV Show

```
1 df.rating.unique()
```

```
array(['PG-13', 'TV-MA', 'PG', 'TV-14', 'TV-PG', 'TV-Y', 'TV-Y7', 'R', 'TV-G', 'G', 'NC-17', '74 min', '84 min', '66 min', 'NR', nan, 'TV-Y7-FV', 'UR'], dtype=object)
```

- There are 14 Ratings 'PG-13', 'TV-MA', 'PG', 'TV-14', 'TV-PG', 'TV-Y', 'TV-Y7', 'R', 'TV-G', 'G', 'NC-17', 'NR', 'TV-Y7-FV', 'UR'
- TV-MA is the most common rating for both movies and TV Show

```
1 df.type.value_counts()
```

```
type
Movie 6131
TV Show 2676
Name: count, dtype: int64
```

- There are 6131 movies and 2676 TV Shows
- Each TV show could be having 12 episodes, each lasting 40 minutes.

Lets clean NA values

```
1 df.isna().sum()
```

\overline{z}	show_id	0
	type	0
	title	0
	director	2634
	cast	825
	country	831
	date_added	10
	release_year	0
	rating	4
	duration	3
	listed_in	0
	description	0
	dtype: int64	

We have a total of 8807 rows.

Following columns have null values director 2634 cast 825 country 831 date_added 10 rating 4 duration 3

From the above analysis, we see that

1. country has 831 Null values

- o so 10% of rows dont have country.
- Country is a important parameter and we would like to fill these NA values probably.
- 2. There are 2634 entries with no director info, 825 with no cast.
 - o These two columns are not that important for immedate analysis, and we would probably work without these columns.
- 3. date_added
 - is a relatively important field for us. So we would like to impute.
 - As we have all values in release year field, we can use it to fill date_added
- 4. Rating
 - only 4 rows having null
 - can be given avg value of 3
- 5. Duration
 - only 3 rows having null
 - on further analysis, it was found that the duration values have gone to the rating column for these rows.
- 6. Director, cast we will fill "other"

• TV-MA is the most common rating for both movies and TV Show

3		show_id	type	title	director	cast	country	date_added	release_year	rating	duration	listed_in	description	con
60	066	s6067	TV Show	A Young Doctor's Notebook and Other Stories	NaN	Daniel Radcliffe, Jon Hamm, Adam Godley, Chris	United Kingdom	NaN	2013	TV-MA	2 Seasons	British TV Shows, TV Comedies, TV Dramas	Set during the Russian Revolution, this comic	
61	174	s6175	TV Show	Anthony Bourdain: Parts Unknown	NaN	Anthony Bourdain	United States	NaN	2018	TV-PG	5 Seasons	Docuseries	This CNN original series has chef Anthony Bour	
67	795	s6796	TV	Frasier	NaN	Kelsey Grammer, Jane	United	NaN	2003	TV-PG	11	Classic &	Frasier Crane is a snooty but	>

```
1 #Fix invalid dates by using release_year
2 for r in invalid_dates.iterrows():
    print(r[0])
4
     #print(r[1]['release_year'])
     df.loc[r[0],'converted_date'] = pd.to_datetime(str(r[1]['release_year']) + '-12-01')
5
6
€ 6066
    6174
    6795
    6806
    6901
    7196
    7254
    7406
    7847
    8182
1 #verify we no longer have any na values in the converted_date column
2 df['converted_date'].isna().sum()
3
<del>_</del> 0
1 #date_added can be replaced with converted_date, which can then be dropped.
2 df['date_added'] = df['converted_date']
3 df.drop(columns='converted_date', inplace=True)
4 df
```

	show_id	type	title	director	cast	country	date_added	release_year	rating	duration	listed_in	description
0	s1	Movie	Dick Johnson Is Dead	Kirsten Johnson	NaN	United States	2021-09-25	2020	PG-13	90 min	Documentaries	As her father nears the end of his life, filmm
1	s2	TV Show	Blood & Water	NaN	Ama Qamata, Khosi Ngema, Gail Mabalane, Thaban	South Africa	2021-09-24	2021	TV-MA	2 Seasons	International TV Shows, TV Dramas, TV Mysteries	After crossing paths at a party, a Cape Town t
2	s3	TV Show	Ganglands	Julien Leclercq	Sami Bouajila, Tracy Gotoas, Samuel Jouy, Nabi	ALL	2021-09-24	2021	TV-MA	1 Season	Crime TV Shows, International TV Shows, TV Act	To protect his family from a powerful drug lor
4		-	Jailbirds									Feuds,

 $[\]ensuremath{\text{\textbf{1}}}\xspace$ #Fill director and cast columns

² df.director= df.director.fillna('other')

³ df.cast= df.cast.fillna('other')

```
1 df.isna().sum()
⇒ show_id
    type
    title
    director
    cast
    country
    date_added
    release_year
                    0
    rating
    duration
    listed in
                    0
    description
                    0
    dtype: int64
    #Duration column is next.
1
 2
    invalid_duration = df[df['duration'].isna()]
 3
    #The rows that have nan duration actually have wrong values in rating
1
    #Duration values have gone into rating column !
2
3
    #IF we had only one column to update we could have used this, but we need to update two columns
4
    #df['durationN'].fillna(df['rating'], inplace=True)
5
6
7
    for r in invalid_duration.iterrows():
8
        print('Updating index : ',r[0])
9
         #print(r[1]['release_year'])
        df.loc[r[0], 'duration'] = r[1]['rating']
10
        df.loc[r[0],'rating'] = 'TV-MA' ##fill the most common rating
11
    Updating index : 5541
    Updating index : 5794
    Updating index : 5813
    #Verify we dont have any invalid duration
1
    invalid_duration = df[df['duration'].isna()]
3
    invalid duration
       show_id type title director cast country date_added release_year rating duration listed_in description
Data has been cleaned!
1 #We now got a clean dataframe, lets save it
2 df cleaned = df.copy(deep=True)
 3 df_cleaned.to_csv("df_cleaned.csv",mode='w')
1 #Lets add a new duration column, durationN, standing for duration Normalized, to have only minutes based data.
2 #we will assume a season has 12 shows of 40 minutes each.
3
4 def normalizeDuration(x):
5
      #print(x)
6
      try:
7
          val = int(re.search(r'\d+',x).group())
8
      except:
          print("**********")
9
      if("Season" in x):
10
11
         val*=40*12
12
      #print(val)
13
      return val
14 dfWithDuration = df.copy(deep=True)
15 dfWithDuration['durationN'] = dfWithDuration['duration'].apply(normalizeDuration)
16
    plot=sns.countplot(data=dfWithDuration, x='type')
2 ChartNumber="Type.1"
    plt.title(f'{ChartNumber}: Types of shows on Netflix')
    totalNumShows = dfWithDuration.shape[0]
   for p in plot.patches:
     plot.annotate('\{:\}\%(\{:\})'.format(round(p.get\_height()*100/totalNumShows,1),round(p.get\_height())), (p.get\_x()+0.25, p.get\_height()+50))
    plt.show()
```

∓

```
Type.1: Types of shows on Netflix

69.6%(6131)

5000 - 4000 - 2000 - 2000 - 1000 - Movie

Type.1: Types of shows on Netflix

69.6%(6131)

30.4%(2676)

Type.1: Types of shows on Netflix

Type.1: Types of shows on Netflix

Type.1: Types of shows on Netflix
```

```
1
2 #Lets find total duration for each type
3 durationData = dfWithDuration.groupby('type').durationN.sum()
4 sns.barplot(data= durationData)
5 ChartNumber="Duration.1"
6 plt.title(f'{ChartNumber}: Total Duration in million minutes using BarPlot')
7 plt.text(0,2000000,f'{round(durationData.iloc[1]/durationData.iloc[0],1)} times')
```

→ Text(0, 2000000, '3.7 times')

Duration.1: Total Duration in million minutes using BarPlot


```
1 #plt.hexbin(x=df.show_id, y=df.durationN)
2 sns.displot(dfWithDuration.durationN)
3
4 # Set x-axis limits
5 #plt.xlim(0, 500)
6 ChartNumber="Duration.5"
7 plt.title(f'{ChartNumber}: Distribution of Duration')
```

→ Text(0.5, 1.0, 'Duration.5: Distribution of Duration')

- 1 sns.pointplot(data= dfWithDuration, x='type', y='durationN')
- 2 ChartNumber="Duration.2"
- 3 plt.title(f'{ChartNumber}: Mean values for Duration for Movie and TV Shows using PointPlot')
- Text(0.5, 1.0, 'Duration.2: Mean values for Duration for Movie and TV Shows using PointPlot')

- 1 sns.stripplot(data= dfWithDuration, x='type', y='durationN')
- 2 ChartNumber="Duration.3"
- $\hbox{3 plt.title} (\texttt{f'\{ChartNumber}\}: \ \texttt{Distribution of Duration values for Movie and TV Shows using Stripplot'}) \\$

9 plt.show()

Fy Text(0.5, 1.0, 'Duration.3: Distribution of Duration values for Movie and TV Shows using Stripplot')

Interpretation - Assuming that each season has 12 episodes and each episode is 40 min on avg, we see that while number of TV shows are less than half of movies, they contain 3.7 times more 'viewing minutes' compared to movies. In other words, out of every 10 minutes of material on Netflix, 8 minutes is TV Show

Recommendation: Netflix should focus more on TV Shows

```
{\bf 1} #Lets find out how many total tv shows have been there and how many lasted more than a season
 2 countMoreThan1Show = dfWithDuration.loc[(dfWithDuration['durationN']>480) & (dfWithDuration['type']=='TV Show')].type.count()
 3 countTotalShows = dfWithDuration.loc[(dfWithDuration['type']=='TV Show')].type.count()
 4 countTotalShows
 5 ratio = countMoreThan1Show/countTotalShows
 6 ratio
    0.3299701046337818
• 32 percent of TV Shows went on to create more than one season.
• A show will only go for a new season if it was successful in the first one.
 1 #Lets plot the duration of all TV Shows in ascending manner to uncover its trend.
 4 tvshowDuration_df = dfWithDuration.loc[df['type']=='TV Show'].groupby('durationN', as_index=False).type.count()
 5 #Create a new column called Season, that finds the number of seasons. As we assumed each season to be 480min,
 6 # we now divide duration to get back the number of seasons
 7 tvshowDuration_df['season']= (tvshowDuration_df.durationN/480).astype(int)
 8 tvshowDuration_df.rename(columns={'type':'Number of Shows'}, inplace=True)
10
 1
 2 plot = sns.barplot(data= tvshowDuration_df,x='season', y='Number of Shows')
 3 ChartNumber="Duration.4"
 4 plt.title(f'{ChartNumber}: Number of TV shows with 1 or more seasons')
 5 total = tvshowDuration_df['Number of Shows'].sum()
 7 for p in plot.patches:
```

 $8 \quad \texttt{plot.annotate('\{:\}'.format(round(p.get_height()*100/total,1)), (p.get_x()+0.25, p.get_height()+0.01)) }$

4

3

- The plot reveals that 33 percent of shows go on to make a new season after season 1.
- It can be construed that 33 percent of shows are successful

Recommendation: Netflix should encourage producers of TV Shows that have done more than one season to do more seasons

1 dfWithDuration['date_added_year'] = dfWithDuration.date_added.dt.year
2 dfWithDuration

→ ▼		show_id	type	title	director	cast	country	date_added	release_year	rating	duration	listed_in	description	du
	0	s1	Movie	Dick Johnson Is Dead	Kirsten Johnson	other	United States	2021-09-25	2020	PG-13	90 min	Documentaries	As her father nears the end of his life, filmm	_
	1	s2	TV Show	Blood & Water	other	Ama Qamata, Khosi Ngema, Gail Mabalane, Thaban	South Africa	2021-09-24	2021	TV-MA	2 Seasons	International TV Shows, TV Dramas, TV Mysteries	After crossing paths at a party, a Cape Town t	
	2	s3	TV Show	Ganglands	Julien Leclercq	Sami Bouajila, Tracy Gotoas, Samuel Jouy, Nabi	ALL	2021-09-24	2021	TV-MA	1 Season	Crime TV Shows, International TV Shows, TV Act	To protect his family from a powerful drug lor	
	4													•

```
1 #Lets see if we have any insights to uncover by looking at the date_added for each type of show
2 dateAdded_df = dfWithDuration.groupby(['date_added_year','type'], as_index=False).show_id.count()
3 sns.barplot(data=dateAdded_df, x='date_added_year', y= 'show_id', hue='type')
4 plt.xticks(rotation=45)
5 plt.xlabel('Year Released on Netflix')
6 plt.ylabel('Number of Shows')
7 ChartNumber="Year.1"
8 plt.title(f'{ChartNumber}: Number of Shows released on Netfix per Year')
9 plt.show()
```


Year.1: Number of Shows released on Netfix per Year

1 #Lets see if we have any insights to uncover by looking at the date_added for each type of show

4

	date added	tvpe	show id
			2
U	2003-12-01	1 v 5110W	2
1	2008-01-01	Movie	1
2	2008-02-04	TV Show	1
3	2008-12-01	TV Show	1
4	2009-05-05	Movie	1
2545	2021-09-23	Movie	1
2546	2021-09-23	TV Show	1
2547	2021-09-24	Movie	3
2548	2021-09-24	TV Show	7
2549	2021-09-25	Movie	1
2550 rd	ows × 3 column	IS	
	2 3 4 2545 2546 2547 2548 2549	0 2003-12-01 1 2008-01-01 2 2008-02-04 3 2008-12-01 4 2009-05-05 2545 2021-09-23 2546 2021-09-23 2547 2021-09-24 2548 2021-09-24 2549 2021-09-25 2550 rows × 3 column	1 2008-01-01 Movie 2 2008-02-04 TV Show 3 2008-12-01 TV Show 4 2009-05-05 Movie 2545 2021-09-23 Movie 2546 2021-09-23 TV Show 2547 2021-09-24 Movie 2548 2021-09-24 TV Show 2549 2021-09-25 Movie 2550 rows × 3 columns

1 released_df = dfWithDuration.groupby('release_year').size().reset_index(name='show_count')

2 released_df

3

4 5

6

7

² dateAdded_df = dfWithDuration.groupby(['date_added','type'], as_index=False).show_id.count()

³ dateAdded_df

	release_year	show_count
0	1925	1
1	1942	2
2	1943	3
3	1944	3
4	1945	4
69	2017	1032
70	2018	1147
71	2019	1030
72	2020	953
73	2021	592
74 rc	ows × 2 columns	

```
1 sns.barplot(data=released_df, x='release_year', y='show_count')
2
3 plt.xlabel('Production Year')
4 plt.ylabel('Number of Shows')
5 ChartNumber="Year.2"
6 plt.title(f'{ChartNumber}: Production timeline of Shows available on Netflix ')
7
8
9 # Calculate the desired xticks
10 tick_positions = range(0, len(released_df), 10)
11 tick_labels = [released_df['release_year'][i] for i in tick_positions]
12
13 # Set xticks to show only every 10th tick
14 plt.xticks(ticks=tick_positions, labels=tick_labels)
15 plt.show()
```


- Maximum number of shows were added to Netflix in 2019
- Netflix has a movie as old as 1925.

```
1 #We want to find ages
2 # 1. how many shows are 1 yr or less
3 # 2. how many shows are 2 yr to 1 yr
4 # 3. how many shows are 5 yr to 2 yr
5 # 4. how many shows are 5+ yrs
6 released_df['age'] = released_df.release_year.max()-released_df.release_year+1
```

```
1 sns.barplot(released_df,x='age',y='show_count')
2 sns.lineplot(data=released_df, x='age', y='show_count')
3 # Calculate the desired xticks
4 tick_positions = range(0,len(released_df),3)
5 tick_labels = [released_df['age'][len(released_df)-i-1] for i in tick_positions]
6
7 # Set xticks to show only every 10th tick
8 plt.xticks(ticks=tick_positions, labels=tick_labels)
9 ChartNumber="Year.3"
10 plt.title(f'{ChartNumber}: Age of shows on Netflix')
11 plt.xlabel('Age(in years)')
12 plt.ylabel('Number of Shows')
13 plt.show()
```


- Most shows on Netflix are not more than 10 yrs old
- Max number of shows are 4 yrs old.

1 released_df

$\overline{\Rightarrow}$		release_year	show_count	age
	0	1925	1	97
	1	1942	2	80
	2	1943	3	79
	3	1944	3	78
	4	1945	4	77
	69	2017	1032	5
	70	2018	1147	4
	71	2019	1030	3
	72	2020	953	2
	73	2021	592	1
	74 rc	ws × 3 columns		

```
1 # Sort the data by production year in descending order
2 released_df_sorted = released_df.sort_values(by='release_year', ascending=False)
3
4 # Calculate the cumulative sum of the number of shows
5 released_df_sorted['cumulative_shows'] = released_df_sorted['show_count'].cumsum()
6
7 # Calculate the cumulative percentage of the number of shows
8 released_df_sorted['cumulative_percentage'] = 100 * released_df_sorted['cumulative_shows'] / released_df_sorted['show_count'].sum()
```

10 11

```
1 # Plot the data
2 plt.figure(figsize=(10, 6))
3 plt.plot(released_df_sorted['release_year'], released_df_sorted['cumulative_percentage'], marker='o')
4 plt.xlabel('Production Year')
5 plt.ylabel('Cumulative Percentage of Shows')
6 ChartNumber="Year.4"
7 plt.title(f'{ChartNumber}: Cumulative Percentage of Shows by Production Year')
8 plt.gca().invert_xaxis() # Invert the x-axis to show the latest year first
9 plt.grid(True)
10 plt.show()
```



```
1 pd.set_option('display.max_rows', None)
2 print(released_df_sorted)
3 pd.reset_option('display.max_rows')
```

release_year show_count age cumulative_shows cumulative_percents; 73	156
72 2020 953 2 1545 17.542t 71 2019 1030 3 2575 29.238t 70 2018 1147 4 3722 42.261t 69 2017 1032 5 4754 53.979t 68 2016 902 6 5656 64.221t 67 2015 560 7 6216 70.580t 66 2014 352 8 6568 74.577t 65 2013 288 9 6856 77.847t	
71 2019 1030 3 2575 29.238: 70 2018 1147 4 3722 42.261: 69 2017 1032 5 4754 53.979: 68 2016 902 6 5656 64.221: 67 2015 560 7 6216 70.580: 66 2014 352 8 6568 74.5770 65 2013 288 9 6856 77.847:	
70 2018 1147 4 3722 42.261 69 2017 1032 5 4754 53.979 68 2016 902 6 5656 64.221 67 2015 560 7 6216 70.580 66 2014 352 8 6568 74.577 65 2013 288 9 6856 77.847	
69 2017 1032 5 4754 53.9793 68 2016 902 6 5656 64.2216 67 2015 560 7 6216 70.5803 66 2014 352 8 6568 74.5776 65 2013 288 9 6856 77.8473	
68 2016 902 6 5656 64.2210 67 2015 560 7 6216 70.5800 66 2014 352 8 6568 74.5770 65 2013 288 9 6856 77.8470	
67 2015 560 7 6216 70.580 66 2014 352 8 6568 74.577 65 2013 288 9 6856 77.847	
66 2014 352 8 6568 74.5776 65 2013 288 9 6856 77.8473	
64 2012 237 10 7093 80.538:	.67
	208
63 2011 185 11 7278 82.6388	10
62 2010 194 12 7472 84.8410	03
61 2009 152 13 7624 86.567	03
60 2008 136 14 7760 88.111	29
59 2007 88 15 7848 89.1109	134
58 2006 96 16 7944 90.2009	76
57 2005 80 17 8024 91.1093	45
56 2004 64 18 8088 91.8366	140
55 2003 61 19 8149 92.5286	70
54 2002 51 20 8200 93.107	'55
53 2001 45 21 8245 93.618	12
52 2000 37 22 8282 94.0388	33
51 1999 39 23 8321 94.4810	62
50 1998 36 24 8357 94.8904	28
49 1997 38 25 8395 95.321	
48 1996 24 26 8419 95.594	14
47 1995 25 27 8444 95 . 8782	:79

3.NetflixAmitFinal.ipynb - Colab

46	1994	22	28	8466	96.128080
45	1993	28	29	8494	96.446009
44	1992	23	30	8517	96.707165
43	1991	17	31	8534	96.900193
42	1990	22	32	8556	97.149994
41	1989	16	33	8572	97.331668
40	1988	18	34	8590	97.536051
39	1987	8	35	8598	97.626888
38	1986	13	36	8611	97.774498
37	1985	10	37	8621	97.888044
36	1984	12	38	8633	98.024299
35	1983	11	39	8644	98.149200
34	1982	17	40	8661	98.342228
33	1981	13	41	8674	98.489838
32	1980	11	42	8685	98.614738
31	1979	11	43	8696	98.739639
30	1978	7	44	8703	98.819121
29	1977	7	45	8710	98.898603
28	1976	9	46	8719	99.000795
27	1975	7	47	8726	99.080277
26	1974	7	48	8733	99.159759
25	1973	10	49	8743	99.273305
24	1972	5	50	8748	99.330078
23	1971	5	51	8753	99.386851
22	1970	2	52	8755	99.409561
21	1969	2	53	8757	99.432270
20	1968	3	54	8760	99.466334
19	1967	5	55	8765	99.523107
18	1966	1	56	8766	99.534461
		_			

- 1 # Find the year before which 80% of the shows are present
- 2 year_80 = released_df_sorted[released_df_sorted['cumulative_percentage'] <= 80]['release_year'].max()
- 3 year_80

4

→ 2021

- 50% of shows are 5yr or less old
- 80% are 9 yr old or less
- Interpretation: It confirms that most shows are of recent production and customers prefer not to see very old movies or shows. Maybe only hit or classic shows will make it to Netflix which are more than 10 yrs old.

1 released_df

$\overrightarrow{\exists}$		release_year	show_count	age
_	0	1925	1	97
	1	1942	2	80
	2	1943	3	79
	3	1944	3	78
	4	1945	4	77
	69	2017	1032	5
	70	2018	1147	4
	71	2019	1030	3
	72	2020	953	2
	73	2021	592	1
7	74 ro	ws × 3 columns		

1 sns.violinplot(data=released_df, y='release_year')

```
<Axes: ylabel='release_year'>
```


1 sns.histplot(data=released_df, x='release_year')

```
<Axes: xlabel='release_year', ylabel='Count'>
```

1 means = released_df.release_year.mode()

2 means


```
0
           1925
           1942
           1943
           1944
           1945
    69
           2017
    70
           2018
    71
           2019
    72
           2020
    73
    Name: release_year, Length: 74, dtype: int64
1 month_df = df[['date_added']].copy()
2 month_df['month_name'] = month_df.date_added.dt.month_name()
3 month_df['month_num'] = month_df.date_added.dt.month
4 plot = sns.countplot(data=month_df.sort_values(by='month_num'), y='month_name')
5 plt.grid(True)
6 ChartNumber="Year.6"
7 plt.title(f'{ChartNumber}: Distribution of Release months')
8 for patch in plot.patches:
      plt.text(patch.get_width() + 25, patch.get_y() + patch.get_height() / 2,
```

f'{patch.get_width():.0f}', ha = 'center', va = 'center')

10

11

- . Max number of shows are released in July and December. July is the start of the season maybe due to US independence day.
- · Feb has the least number of releases
- 1 sns.stripplot(data=df, x='type', y='release_year')
- 2 ChartNumber="Year.7"
- 3 plt.title(f'{ChartNumber}: Distribution of Show Types over the years')

Text(0.5, 1.0, 'Year.7: Distribution of Show Types over the years')

- Very few TV shows of timeline older than 1980 are present when compared to movies.
- 1 Start coding or generate with AI.
- 1 listedin_df = df_cleaned[["show_id","type","listed_in","date_added"]]
- 2 listedin_df

```
listed_in date_added
                    type
  0
            s1
                   Movie
                                                           Documentaries
                                                                            2021-09-25
  1
            s2 TV Show
                            International TV Shows, TV Dramas, TV Mysteries
                                                                            2021-09-24
  2
                 TV Show
                           Crime TV Shows, International TV Shows, TV Act...
                                                                            2021-09-24
  3
                 TV Show
                                                    Docuseries, Reality TV
                                                                            2021-09-24
  4
                 TV Show
                           International TV Shows, Romantic TV Shows, TV ...
                                                                            2021-09-24
8802
         s8803
                   Movie
                                              Cult Movies, Dramas, Thrillers
                                                                            2019-11-20
8803
         s8804 TV Show
                                   Kids' TV, Korean TV Shows, TV Comedies
                                                                            2019-07-01
8804
         s8805
                                                  Comedies, Horror Movies
                                                                            2019-11-01
                   Movie
8805
         s8806
                                        Children & Family Movies, Comedies
                                                                            2020-01-11
                   Movie
         s8807
8806
                   Movie
                              Dramas, International Movies, Music & Musicals
                                                                            2019-03-02
8807 rows × 4 columns
```

```
1 #Reusable function
2 def splitAndExplode(xdf, columnName):
3  # Split the CSV values into lists
4  xdf[columnName] = xdf[columnName].str.split(',')
5  # Use explode to create separate rows for each value
6  exploded_df = xdf.explode(columnName)
7  # Trim spaces after exploding
8  exploded_df[columnName] = exploded_df[columnName].str.strip()
9  return exploded_df
10 listedin_df = splitAndExplode(listedin_df.copy(deep=True), 'listed_in')
11
12
13
14
```

1 listedin_df

$\overline{\Rightarrow}$		show_id	type	listed_in	date_added
	0	s1	Movie	Documentaries	2021-09-25
	1	s2	TV Show	International TV Shows	2021-09-24
	1	s2	TV Show	TV Dramas	2021-09-24
	1	s2	TV Show	TV Mysteries	2021-09-24
	2	s3	TV Show	Crime TV Shows	2021-09-24
	8805	s8806	Movie	Children & Family Movies	2020-01-11
	8805	s8806	Movie	Comedies	2020-01-11
	8806	s8807	Movie	Dramas	2019-03-02
	8806	s8807	Movie	International Movies	2019-03-02
	8806	s8807	Movie	Music & Musicals	2019-03-02
	19323	rows × 4 co	olumns		
	4				

1 listedin_df

2

_					
		show_id	type	listed_in	date_added
	0	s1	Movie	Documentaries	2021-09-25
	1	s2	TV Show	International TV Shows	2021-09-24
	1	s2	TV Show	TV Dramas	2021-09-24
	1	s2	TV Show	TV Mysteries	2021-09-24
	2	s3	TV Show	Crime TV Shows	2021-09-24
8	8805	s8806	Movie	Children & Family Movies	2020-01-11
8	8805	s8806	Movie	Comedies	2020-01-11
1	8806	s8807	Movie	Dramas	2019-03-02
1	8806	s8807	Movie	International Movies	2019-03-02
8	8806	s8807	Movie	Music & Musicals	2019-03-02
		ows × 4 co	lumns		
4					

^{1 #}Sort

² listedin_sorted_df = listedin_df.groupby(['listed_in','type'], as_index=False).size().sort_values(by='size',ascending=False)

³ listedin_sorted_df

^{4 #} category_counts = ['listed_in'].value_counts().sort_values(ascending=False).reset_index()

^{5 #} category_counts

siz	type	listed_in	
275	Movie	International Movies	16
242	Movie	Dramas	12
167	Movie	Comedies	7
135	TV Show	International TV Shows	17
869	Movie	Documentaries	10
859	Movie	Action & Adventure	0
76	TV Show	TV Dramas	34
75	Movie	Independent Movies	15
64	Movie	Children & Family Movies	4
610	Movie	Romantic Movies	24
58	TV Show	TV Comedies	33
57	Movie	Thrillers	41
47	TV Show	Crime TV Shows	8
45	TV Show	Kids' TV	18
39	TV Show	Docuseries	11
37	Movie	Music & Musicals	22
37	TV Show	Romantic TV Shows	25
35	Movie	Horror Movies	14
34	Movie	Stand-Up Comedy	30
25	TV Show	Reality TV	23
25	TV Show	British TV Shows	3
24	Movie	Sci-Fi & Fantasy	26
219	Movie	Sports Movies	29
17	TV Show	Anime Series	2
17	TV Show	Spanish-Language TV Shows	28
16	TV Show	TV Action & Adventure	32
15	TV Show	Korean TV Shows	19
11	Movie	Classic Movies	6
10:	Movie	LGBTQ Movies	20
9	TV Show	TV Mysteries	36
9:	TV Show	Science & Nature TV	27
8-	TV Show	TV Sci-Fi & Fantasy	37
7	TV Show	TV Horror	35
7	Movie	Anime Features	1
7	Movie	Cult Movies	9
69	TV Show	Teen TV Shows	40
6	Movie	Faith & Spirituality	13
5	TV Show	TV Thrillers	39
5	Movie	Movies	21
50	TV Show	Stand-Up Comedy & Talk Shows	31
28	TV Show	Classic & Cult TV	5
10	TV Show	TV Shows	38

¹ plt.figure(figsize=(25,6))

² plot = sns.barplot(listedin_sorted_df,x='listed_in', y='size', hue='type')

³ plt.xticks(rotation=45, ha='right')

⁴ plt.xlabel('Show Category')

```
5 plt.ylabel('Number of Shows')
 6 ChartNumber="ListedCategory.1"
 7 plt.title(f'{ChartNumber}: Number of Shows in various categories')
 9 nmovies = df.query('type=="Movie"').shape[0]
10 nshows=df.query('type=="TV Show"').shape[0]
11 print(f'Total movies {nmovies}')
12 print(f'Total TV Shows {nshows}')
13
14 for p in plot.patches:
      rvalue = p.get_facecolor()[0]
15
16
      #This will put the actual number
17
      plot.annotate('\{:\}'.format(round(p.get\_height())), (p.get\_x()+0.25, p.get\_height()+10))
      #For percentage, we have to put a logic as total movies is different from total TV Shows.
18
19
       #TV shows and Movies will come in different color. Based on color, we can decide how to find the percentage
      if(rvalue == 0.19460784313725488):
20
21
           plot.annotate('\{:\}\%'.format(round(p.get\_height()/nmovies*100)), (p.get\_x()+0.25, p.get\_height()-100))
22
23
          plot.annotate('\{:\}\%'.format(round(p.get\_height()/nshows*100)), (p.get\_x()+0.25, p.get\_height()-100))
24 plt.show()
```

Total movies 6131
Total TV Shows 2676

- Out of 6131 movies, 45% are international movies
- Out of 2676 TV Shows, 50% are international TV Shows
- Drama is the most popular category for both TV Shows and Movies, every 2 out of 5 movies is a drama, every 1 out of 3 TV Shows is a drama
- Every 4th movie is a comedy
- · Every 5th tv show is a comedy

Recommendation 5: International movies, Drama and Comedies are the genres that should be encouraged more.

```
1
2 listedin_df['year'] = listedin_df.date_added.dt.year
1 listedin_df
```

15

16

17

```
type
                                           listed_in date_added year
       0
                 s1
                        Movie
                                        Documentaries
                                                       2021-09-25
       1
                 s2
                     TV Show
                                 International TV Shows
                                                       2021-09-24 2021
                     TV Show
                                           TV Dramas
                                                       2021-09-24 2021
                                                       2021-09-24 2021
       1
                 s2
                     TV Show
                                          TV Mysteries
       2
                     TV Show
                                      Crime TV Shows
                                                        2021-09-24 2021
      8805
              s8806
                        Movie
                              Children & Family Movies
                                                        2020-01-11 2020
      8805
              s8806
                        Movie
                                            Comedies
                                                        2020-01-11 2020
      8806
              s8807
                                                       2019-03-02 2019
                        Movie
                                              Dramas
      8806
              s8807
                                                       2019-03-02 2019
                        Movie
                                   International Movies
      8806
              s8807
                        Movie
                                      Music & Musicals
                                                       2019-03-02 2019
     19323 rows × 5 columns
 1 #sns.barplot(data = listedin_df.groupby(), x='year',
 2 #sns.countplot(data=listedin_df, x='year', hue='listed_in')
 3 listedin_groupByYear_df = listedin_df.groupby(['year','listed_in'], as_index=False).size()
 4 listedin_groupByYear_df
<del>_</del>
           year
                        listed_in size
       0
           2003
                   Classic & Cult TV
           2003
                       TV Comedies
       2
           2008
                       Anime Series
                    Crime TV Shows
       3
           2008
       4
           2008
                            Dramas
          2021 TV Sci-Fi & Fantasy
      336
                                      20
     337
          2021
                         TV Shows
                                       5
          2021
                        TV Thrillers
                                      13
     338
     339 2021
                     Teen TV Shows
                                      18
     340 2021
                           Thrillers
                                     112
     341 rows × 3 columns
 2 plt.figure(figsize=(25,6))
 4 plt.xlabel('Show Category')
 5 plt.ylabel('Number of Shows')
 6 ChartNumber="ListedCategory.2"
 7 plt.title(f'{ChartNumber}: Number of Shows in various categories over the years')
 8 sns.lineplot(data=listedin_groupByYear_df,x='year',y='size', hue='listed_in')
 9 #Legend with 4 columns
10 plt.legend(title='Category', ncol=4)
11 plt.xlim(2016,2021)
12
13 # Add labels to the lines
14 for category in listedin_groupByYear_df['listed_in'].unique():
```

subset = listedin_groupByYear_df[listedin_groupByYear_df['listed_in'] == category]

horizontalalignment='left', size='small', color='black', weight='normal')

plt.text(subset['year'].iloc[-4], subset['size'].iloc[-3], category,

• International movies, Drama and Comedies are the three categories that saw maximum percentage rise in recent years.

```
1 ratings_df = df_cleaned.groupby('rating', as_index=False).size()
2 ratings_df
```

```
rating size
0
               41
1
      NC-17
                3
2
         NR
               80
3
         PG
               287
4
      PG-13
              490
5
          R
               799
6
       TV-14 2160
7
       TV-G
              220
      TV-MA 3214
      TV-PG
              863
10
       TV-Y
              307
11
       TV-Y7
              334
12
   TV-Y7-FV
                6
13
         UR
                3
```

```
11 xtick_labels = [tick.get_text() for tick in plot.get_xticklabels()]
12 i=0
13 for p in plot.patches:
      plot.annotate('\{:\}\%'.format(round(p.get\_height()/total\_shows*100)), (p.get\_x()+0.25, p.get\_height()+50))
14
      if(xtick_labels[i] in kid_friendly_ratings):
16
          p.set_color("green")
17
      i=i+1
18
19 # Change the color of a kid friendly ticks
20 for tick in plot.get_xticklabels():
      if tick.get_text() in kid_friendly_ratings:
21
22
          tick.set_color('green') # Change to desired color
23
24 # Add a small green color rectangle as a legend
26 green_patch = mpatches.Patch(color='green', label='Kid Friendly')
27 plt.legend(handles=[green_patch], loc='upper right')
28
```

<matplotlib.legend.Legend at 0x20820a213d0>


```
1
2
3 # List of kid-friendly ratings
4 kid_friendly_ratings = ['G', 'TV-G', 'TV-Y', 'TV-Y7-FV']
5 # Filter DataFrame for kid-friendly ratings and sum the sizes
6 total_kid_shows = ratings_df[ratings_df['rating'].isin(kid_friendly_ratings)]['size'].sum()
7
8 print("Total number of shows appropriate for kids:", total_kid_shows)
9 print(f'Percentage of total shows that are kids friendly {round(total_kid_shows/len(df)*100)}')

Total number of shows appropriate for kids: 908
Percentage of total shows that are kids friendly 10
```

- Only 10% of shows out of 8807 are kids-friendly
- 36% of shows on netflix are for mature audience, and overall 90% of shows are for adults only.

Recommendation 3: Most people using Netflix are looking for adult content. So quality content in these genres is always going to sell

```
1 ChartNumber="Ratings.2"
2 plt.title(f'{ChartNumber}: Rating of shows over the years')
3
4 plot= sns.stripplot(data=df, x='rating', y='release_year')
5 plt.xticks(rotation=45, ha='right')
6 # Change the color of a kid friendly ticks
7 for tick in plot.get_xticklabels():
8     if tick.get_text() in kid_friendly_ratings:
9         tick.set_color('green') # Change to desired color
10 # Add a small green color rectangle as a legend
```

```
12 green_patch = mpatches.Patch(color='green', label='Kid Friendly')
13 plt.legend(handles=[green_patch], loc='lower right')
14 plt.show()
```


- TV14 and TV-PG rated shows are the most consistent over the years. It means these type of shows are "evergreen"
- Kid movies have lesser "shelf life". Maybe we can infer that nobody wants to see old kid movies. This can explain why Netflix has less number of kid friendly movies. They don't have longevity.

```
type
                                    title
                                               country date_added
                                                                                                         listed_in
                                                                                                                    duration
       0
               Movie
                      Dick Johnson Is Dead
                                          United States
                                                         2021-09-25
                                                                                                     Documentaries
       1
            TV Show
                            Blood & Water
                                            South Africa
                                                         2021-09-24
                                                                      International TV Shows, TV Dramas, TV Mysteries 2 Seasons
                                                                      Crime TV Shows, International TV Shows, TV Act...
       2
            TV Show
                                Ganglands
                                                   ALL
                                                         2021-09-24
                      Jailbirds New Orleans
       3
            TV Show
                                                   ALL
                                                         2021-09-24
                                                                                              Docuseries, Reality TV
            TV Show
                              Kota Factory
                                                          2021-09-24
                                                                     International TV Shows, Romantic TV Shows, TV ...
      8802
               Movie
                                   Zodiac United States
                                                          2019-11-20
                                                                                        Cult Movies, Dramas, Thrillers
                                                                                                                      158 min
      8803
            TV Show
                             Zombie Dumb
                                                   ALL
                                                         2019-07-01
                                                                             Kids' TV, Korean TV Shows, TV Comedies 2 Seasons
      8804
               Movie
                               Zombieland United States
                                                          2019-11-01
                                                                                            Comedies, Horror Movies
                                                                                                                       88 min
      8805
               Movie
                                    Zoom United States
                                                          2020-01-11
                                                                                  Children & Family Movies, Comedies
                                                                                                                       88 min
      8806
               Movie
                                  Zubaan
                                                  India
                                                         2019-03-02
                                                                        Dramas, International Movies, Music & Musicals
                                                                                                                       111 min
     10850 rows × 6 columns
 1 pd.set_option('display.max_rows', None)
 2
 3 #lets look at shows that have International in their listed_in column. I verified manually that these shows are specific to a country
 4 #For ex, for rows in which country has India, and listed_in has International, all are Hindi or other Indian language based shows.
 5 #Checked similar entries for South Korea to confirm that this interpretation of listed in having International means its a local language
 6 international_df = pd.DataFrame(columns=['country','tvshow','movies'])
 8
 9 for c in country_df.country.unique():
       tvshow = country_df[(country_df.country==c) & (country_df.listed_in.str.contains('International') & (country_df.type=='TV Show'))].sh
10
11
12
       movies = country_df[(country_df.country==c) & (country_df.listed_in.str.contains('International') & (country_df.type=='Movie'))].shap
13
       temp_df = pd.DataFrame({'country':[c],'tvshow':[tvshow],'movies':[movies]})
14
15
       international_df = pd.concat([international_df, temp_df])
16
17 international_df = international_df.reset_index(drop=True)
18 print(international_df)
19 pd.reset_option('display.max_rows')
<del>-</del>
                        country tvshow movies
     0
                  United States
                                     74
                                           166
                   South Africa
                                            39
     2
                            ALL
                                    223
                                            209
     3
                          India
                                     66
                                            864
                          Ghana
     5
                   Burkina Faso
                                      0
                                             1
     6
                 United Kingdom
                                    128
                                            170
                                     35
                                            94
                        Germany
     8
                       Ethiopia
                                      0
                                             1
     9
                 Czech Republic
                                      3
                                            10
     10
                         Mexico
                                     43
                                            70
                                     30
                                             80
     11
                         Turkey
                                     31
                                            30
     12
                      Australia
     13
                         France
                                     43
                                            207
     14
                        Finland
                                     2
                                             6
     15
                          China
                                     40
                                             71
                                     25
     16
                         Canada
                                            60
     17
                          Japan
                                    151
                                            72
     18
                        Nigeria
                                      9
     19
                                            140
                                     54
                          Spain
     20
                        Belgium
                                     11
                                            58
     21
                    South Korea
                                    152
     22
                                     19
                                            14
                      Singapore
     23
                          Italv
                                     13
                                            52
     24
                        Romania
                                     0
                                            11
     25
                      Argentina
                                     16
                                             58
     26
                                      0
                      Venezuela
                                             3
     27
                      Hong Kong
                                      5
                                            82
     28
                         Russia
                                     10
                                             6
     29
                                      1
     30
                        Ireland
                                      3
                                            12
     31
                          Nepal
                                      0
                                             2
     32
                    New Zealand
                                              9
     33
                                            43
                         Brazil
                                     26
     34
                         Greece
                                      1
                                             1
                         Jordan
```

```
36
                  Colombia .
                                31
                                       15
               Switzerland
37
                                1
                                       14
                    Israel
                                8
                                       14
39
                    Taiwan
                                70
                                       17
40
                  Bulgaria
                                0
                                        4
41
                   Algeria
                                 0
42
                                9
                    Poland
                                       26
             Saudi Arabia
43
                                3
                                        9
44
                  Thailand
                                24
                                       40
45
                 Indonesia
                                       80
46
                                15
                                       99
                     Egypt
                   Denmark
47
                                10
                                       23
48
                    Kuwait
                                3
49
              Netherlands
                                5
                                       37
50
                  Malaysia
                                4
                                       17
51
                   Vietnam
                                0
                                        7
52
                   Hungary
53
                                10
                                       19
                    Sweden
54
                                       22
                   Lebanon
55
                     Syria
              Philippines
```

```
{\tt 1} \verb| international_df['total'] = international_df.movies + international_df.tvshow|\\
```

2 international_df

1 #For the purpose of this analysis of comparing shows in International languages, I want to exclude the shows where we have ALL. There is

^{3 #} Get the index of rows where 'country' column has the value 'ALL'

⁴ all_index = international_df[international_df['country'] == 'ALL'].index

⁵ print(all_index)

 $^{6\ \#\ {\}hbox{Drop}}$ the rows using the index

⁷ international_df = international_df.drop(all_index)

⁸ international_df

```
Index([2], dtype='int64')
```

	country	tvshow	movies	total					
0	United States	74	166	240					
1	South Africa	9	39	48					
3	India	66	864	930					
4	Ghana	0	5	5					
5	Burkina Faso	0	1	1					
119	Sudan	0	0	0					
120	Panama	0	0	0					
121	Uganda	0	0	0					
122	East Germany	0	0	0					
123	Montenegro	0	1	1					
123 rc	ows × 4 columns								
4	4								

1 international_df.sort_values(by='total', ascending=False, inplace=True)

```
                country tyshow movies total
      3
                   India
                              66
                                     864
                                            930
      6
          United Kingdom
                             128
                                     170
                                            298
      13
                  France
                              43
                                     207
                                            250
      0
            United States
                                     166
                                            240
      17
                  Japan
                             151
                                      72
                                            223
      98
                Bermuda
                               0
                                       0
                                              0
      87
                  Malawi
                               0
                                       0
                                              0
     107
               Nicaragua
                               0
                                       0
                                              0
          Cayman Islands
                               0
                                       0
                                              0
      72
     110
                  Samoa
                               0
                                       0
                                              0
    123 rows × 4 columns
```

```
1 plt.figure(figsize=(25,10))
```

² international_df

² plot=sns.barplot(data=international_df, x='country', y='total')

³ plt.xticks(rotation=45,ha='right')

⁴ plt.ylabel('Number of Local Language Shows')

⁵ ChartNumber="ListedIn.1"

⁶ plt.title(f'{ChartNumber}: Local language Shows per country')

⁷ for p in plot.patches:

⁸ plot.annotate($'\{:\}'.format(round(p.get_height())), (p.get_x()+0.25, p.get_height()+0.25))$

⁹ plt.legend()

¹⁰ plt.show()

C:\Users\Admin\AppData\Local\Temp\ipykernel_29808\1959597973.py:9: UserWarning: No artists with labels found to put in legend. Note that
 plt.legend()


```
1 plt.figure(figsize=(25,10))
2 plot=sns.barplot(data=international_df.iloc[:20], x='country', y='total')
3 plt.xticks(rotation=45,ha='right')
4 plt.ylabel('Number of Local Language Shows')
5 ChartNumber="ListedIn.1"
6 plt.title(f'{ChartNumber}: Local language Shows per country')
7 for p in plot.patches:
8     plot.annotate('{:}'.format(round(p.get_height())), (p.get_x()+0.25, p.get_height()+0.25))
9 plt.legend()
10 plt.show()
```

C:\Users\Admin\AppData\Local\Temp\ipykernel_29808\2599052266.py:9: UserWarning: No artists with labels found to put in legend. Note that plt.legend()

ElistedIn 1: Local language Shows per country

800
900
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
2

country

- India has the maximum number of internation shows listed
- Japan and South Korea are Asian countries with more shows than China, despite having significantly less population than China
- 1 allCountries_df= pd.read_csv("allCountries_df.csv")
 2 allCountries_df

```
Unnamed: 0
                        name Population
 0
               0 Afghanistan
                                34.169723
                      Albania
                                 2.881823
  2
               2
                      Algeria
                                39.917696
  3
               3
                      Andorra
                                 0.000001
  4
               4
                      Angola
                                28.607677
197
             197
                    Venezuela
                                 0.000001
             198
                                92.635828
198
                     Vietnam
199
             199
                      Yemen
                                 0.000001
200
             200
                      Zambia
                                16.491819
201
             201
                    Zimbabwe
                                14.295536
202 rows × 3 columns
```

```
1 international_df = international_df.merge(allCountries_df, how='left',left_on='country', right_on='name')
2 international_df.drop(columns=['Unnamed: 0','name'], inplace=True)
3
1 plt.figure(figsize=(25,10))
2 international_df.plot.bar(x='country',y=['total','Population'], figsize=(25,10))
3 ChartNumber="ListedIn.2"
4 plt.title(f'{ChartNumber}: Local language Shows and Population per country')
5 plt.xticks(rotation=45,ha='right',fontsize=6)
6 plt.show()
```

→ <Figure size 2500x1000 with 0 Axes>

- Largest number of local language movies are released in India
- While India has a fair ratio in terms of shows and population, some other countries dont. Lets findout

7	country	tvshow	movies	total	Population	pop_show_ratio
0	India	66	864	930	1330.290669	14.30000
1	United Kingdom	128	170	298	65.428953	2.20000
2	France	43	207	250	63.897092	2.60000
3	United States	74	166	240	325.826238	13.60000
4	Japan	151	72	223	127.128592	5.70000
118	Bermuda	0	0	0	0.000001	0.00001
119	Malawi	0	0	0	17.158173	171.58173
120	Nicaragua	0	0	0	6.341277	63.41277
121	Cayman Islands	0	0	0	0.000001	0.00001
122	Samoa	0	0	0	0.204476	2.04476
123 r	ows × 6 columns					

¹ plt.figure(figsize=(25,10))

² international_df.sort_values(by='pop_show_ratio', ascending=False).iloc[:20].plot.bar(x='country',y=['total','pop_show_ratio'], figsize=(

³ plt.xticks(rotation=45,ha='right',fontsize=14)

⁴ ChartNumber="ListedIn.3"

⁵ plt.title(f'{ChartNumber}: Local language Shows and Population/Number of shows per country')

⁶ plt.legend(['Number of Shows','Ration of Population To Number of Shows'])

⁷ plt.show()

→ <Figure size 2500x1000 with 0 Axes>

• On basis of ratio of population to number of local language show, Ethiopia, Bangladesh, Sudan and Uganda are countries to target.

Need more data: As this needs more analysis in terms of per capita income. How many people can even afford Netflix in these countries.

Recommendation 6: Netflix can look into how to reach out to some of the populous countries in Africa like Ethiopia, Sudan and Uganda, and Bangladesh.

Double-click (or enter) to edit

1 country_df[country_df.country=='India']

	type	title	country	date_added	listed_in	duration
4	TV Show	Kota Factory	India	2021-09-24	International TV Shows, Romantic TV Shows, TV	2 Seasons
24	Movie	Jeans	India	2021-09-21	Comedies, International Movies, Romantic Movies	166 min
29	Movie	Paranoia	India	2021-09-19	Thrillers	106 min
39	TV Show	Chhota Bheem	India	2021-09-16	Kids' TV	3 Seasons
50	TV Show	Dharmakshetra	India	2021-09-15	International TV Shows, TV Dramas, TV Sci-Fi &	1 Season
8773	Movie	Yanda Kartavya Aahe	India	2018-01-01	Comedies, Dramas, International Movies	151 min
8775	TV Show	Yeh Meri Family	India	2018-08-31	International TV Shows, TV Comedies	1 Season
8798	Movie	Zed Plus	India	2019-12-31	Comedies, Dramas, International Movies	131 min
8799	Movie	Zenda	India	2018-02-15	Dramas, International Movies	120 min
8806	Movie	Zubaan	India	2019-03-02	Dramas, International Movies, Music & Musicals	111 min
1046 rd	ows × 6 colu	ımns				
,						

¹ plt.figure(figsize=(25,10))

² sns.countplot(data=country_df, x='country',hue='type') 3 plt.xticks(rotation=45,ha='right',fontsize=6)

⁴ ChartNumber="Countries.1"

⁵ plt.title(f'{ChartNumber}: Movies and TV Shows per country')

Text(0.5, 1.0, 'Countries.1: Movies and TV Shows per country')


```
1 data = country_df[['type','country']]
2 data = data.groupby(['country','type'], as_index=False).size()
3 data = data.pivot(index='country',columns='type', values='size')
4 data
```

```
<del>_</del>
               type Movie TV Show
            country
                        6.0
                                  1.0
           ALL
                      440.0
                                391.0
       Afghanistan
                        1.0
                                 NaN
         Albania
                        1.0
                                 NaN
         Algeria
                        3.0
                                 NaN
       Vatican City
                        1.0
                                 NaN
        Venezuela
                        4.0
                                 NaN
         Vietnam
                        7.0
                                 NaN
     West Germany
                        3.0
                                  2.0
        Zimbabwe
                        3.0
                                 NaN
     124 rows × 2 columns
```

```
1 data['TV Show'] =data['TV Show'].fillna(0)
2 data['Movie']=data['Movie'].fillna(0)
3 data['total']=data['TV Show']+data.Movie
4 data.sort_values(by='total', ascending=False, inplace=True)
5

1 plot = data.iloc[:10].plot.bar(stacked =True, y=['Movie','TV Show'])
2 ChartNumber="Countries.2"
3 plt.title(f'{ChartNumber}: Breakup of movie and tv show per country')
4
5 plt.show()
```


• Among countries where Netflix has 400+ shows, South korea has highest ratio of TV Show versus Movies. There are many more TV shows released in S Korea as compared to Movies

1 data

_	type	Movie	TV Show	total
	country			
	United States	2752.0	938.0	3690.0
	India	962.0	84.0	1046.0
	ALL	440.0	391.0	831.0
	United Kingdom	534.0	272.0	806.0
	Canada	319.0	126.0	445.0
	Slovakia	1.0	0.0	1.0
	Ethiopia	1.0	0.0	1.0
	Nicaragua	1.0	0.0	1.0
	Ecuador	1.0	0.0	1.0
	Liechtenstein	1.0	0.0	1.0
	124 rows × 3 colum	ns		

```
1 plot=sns.barplot(data =data.iloc[:20], x='country', y='total')
2 plt.xticks(rotation=45, ha='right')
3 ChartNumber="Countries.3"
4 plt.title(f'{ChartNumber}: Total shows per country')
5 plt.ylabel("Number of Shows")
6 for p in plot.patches:
7     plot.annotate('{:}%'.format(round(p.get_height()/total_shows*100)), (p.get_x()+0.25, p.get_height()+50))
8 plt.show()
```


1 total_shows

₹ 8807

- Out of total 8807 shows, 42% were released in United States. Next biggest country in terms of shows is India, UK and Canada.
- 9% of shows are not marked with country, so we can assume they were released in all countries.

Double-click (or enter) to edit

```
1 country_unique = country_df.country.unique()
2 # for c in allCountries_df.iterrows():
3 # if(c[1]['name'] not in country_unique):
```

```
4 #
         print (c[1]['name'], c[1]['Population'])
7 missingCountries.head(10)
Unnamed: 0
                      name Population
    179
             179
                    Tanzania
                            53.410312
    124
              124
                   Myanmar
                            51.677032
    194
                  Uzbekistan
                            31.188341
    107
              107
                  Madagascar
                            25.155487
    131
              131
                      Niger
                            20.498079
    111
              111
                       Mali
                            18.385580
    200
             200
                     Zambia
                            16.491819
    35
              35
                      Chad
                            14.348908
    151
              151
                    Rwanda
                             11.776857
    72
              72
                     Guinea
                            11.768478
1 #Fix country names
2 data = data.rename(index={'United States': 'United States of America'})
3 data
4
\overline{z}
                  type Movie TV Show total
```

country			
United States of America	2752.0	938.0	3690.0
India	962.0	84.0	1046.0
ALL	440.0	391.0	831.0
United Kingdom	534.0	272.0	806.0
Canada	319.0	126.0	445.0
Slovakia	1.0	0.0	1.0
Ethiopia	1.0	0.0	1.0
Nicaragua	1.0	0.0	1.0
Ecuador	1.0	0.0	1.0
Liechtenstein	1.0	0.0	1.0

1 country_df

124 rows × 3 columns

	type	title	country	date_added	listed_in	duration
0	Movie	Dick Johnson Is Dead	United States	2021-09-25	Documentaries	90 min
1	TV Show	Blood & Water	South Africa	2021-09-24	International TV Shows, TV Dramas, TV Mysteries	2 Seasons
2	TV Show	Ganglands	ALL	2021-09-24	Crime TV Shows, International TV Shows, TV Act	1 Season
3	TV Show	Jailbirds New Orleans	ALL	2021-09-24	Docuseries, Reality TV	1 Season
4	TV Show	Kota Factory	India	2021-09-24	International TV Shows, Romantic TV Shows, TV	2 Seasons
8802	Movie	Zodiac	United States	2019-11-20	Cult Movies, Dramas, Thrillers	158 min
8803	TV Show	Zombie Dumb	ALL	2019-07-01	Kids' TV, Korean TV Shows, TV Comedies	2 Seasons
8804	Movie	Zombieland	United States	2019-11-01	Comedies, Horror Movies	88 min
8805	Movie	Zoom	United States	2020-01-11	Children & Family Movies, Comedies	88 min
8806	Movie	Zubaan	India	2019-03-02	Dramas, International Movies, Music & Musicals	111 min
10850	rows × 6 co	lumns				

```
1
 2 df = data
4 # Load the world map data from the local file
 5 world = gpd.read_file('ne_110m_admin_0_countries/ne_110m_admin_0_countries.shp')
7 # Merge your data with the world data
 8 world = world.merge(df, how='left', left_on='NAME', right_on='country')
10 # Plot the map
11 fig, ax = plt.subplots(1, 1, figsize=(15, 10))
12 world.boundary.plot(ax=ax)
13 world.plot(column='total', ax=ax, legend=True, cmap='Blues', missing_kwds={"color": "lightgrey"})
15 # Customize the plot
16 plt.title('Number of Shows by Country')
17 plt.xlabel('Longitude')
18 plt.ylabel('Latitude')
19
20 # Show the plot
21 plt.show()
```


• Netflix is not yet present in quite a few countries in the African continent

```
1 Start coding or generate with AI.

1 df = df_cleaned.copy(deep=True)

1 director_df = df[['show_id', 'type','director','rating', 'duration','listed_in','country']].copy(deep=True)
2 director_df = splitAndExplode(director_df, 'director')
3 director_df
4
5
```

3500

3	show_id	type	director	rating	duration	listed_in	country
0	s1	Movie	Kirsten Johnson	PG-13	90 min	Documentaries	United States
1	s2	TV Show	other	TV-MA	2 Seasons	International TV Shows, TV Dramas, TV Mysteries	South Africa
2	s3	TV Show	Julien Leclercq	TV-MA	1 Season	Crime TV Shows, International TV Shows, TV Act	ALL
3	s4	TV Show	other	TV-MA	1 Season	Docuseries, Reality TV	ALL
4	s5	TV Show	other	TV-MA	2 Seasons	International TV Shows, Romantic TV Shows, TV	India
8802	s8803	Movie	David Fincher	R	158 min	Cult Movies, Dramas, Thrillers	United States
8803	s8804	TV Show	other	TV-Y7	2 Seasons	Kids' TV, Korean TV Shows, TV Comedies	ALL
8804	s8805	Movie	Ruben Fleischer	R	88 min	Comedies, Horror Movies	United States
8805	s8806	Movie	Peter Hewitt	PG	88 min	Children & Family Movies, Comedies	United States
8806	s8807	Movie	Mozez Singh	TV-14	111 min	Dramas, International Movies, Music & Musicals	India
9612	rows × 7 col	umns					

1 director_count_df = director_df.groupby(['type','director'], as_index=False).size().sort_values(by='size', ascending=False)
2 director_count_df

3 director_count_df

₹		type	director	size
	5077	TV Show	other	2446
	4762	Movie	other	188
	3582	Movie	Rajiv Chilaka	22
	1817	Movie	Jan Suter	21
	3633	Movie	Raúl Campos	19
	2300	Movie	Kasper Barfoed	1
	2301	Movie	Kasper Collin	1
	2302	Movie	Kasra Farahani	1
	2303	Movie	Katarina Launing	1
	458	Movie	Aurora Guerrero	1
	5078 rd	ws × 3 colu	imns	

1 sns.barplot(director_count_df[director_count_df.type=='Movie'].iloc[:20].loc[director_count_df.director!='other'], x='director', y='size'

² plt.xticks(rotation=45,ha='right',fontsize=6)

³ ChartNumber="Director.1"

⁴ plt.ylabel("Number of Movies")

⁵ plt.title(f'{ChartNumber}: Top 20 Movie Directors')

→ Text(0.5, 1.0, 'Director.1: Top 20 Movie Directors')

Director.1: Top 20 Movie Directors

Recommendation 10: Top 10 movie directors with more than 10 titles to their names have been identified. Any movie by these directors should be prioritized

