Univerzita Tomáše Bati ve Zlíně

Ústav elektrotechniky a měření

Základní pojmy elektroniky

Přednáška č. 1

Milan Adámek

<u>adamek@ft.utb.cz</u> **U5 A711** +420576035251

Model atomu

průměr atomu 10⁻¹⁰m

Atom neutrální: počet protonů = počet elektronů

Nukleonové (hmotnostní) číslo A – udává počet protonů a neutronů

Protonové (pořadové) číslo Z – udává počet protonů (i elektronů)

Slupky (vrstvy):

- elektrony se vyskytují jen v určitých vrstvách (slupkách)
- nejblíže k jádru je slupka K (max. 2 elektrony, slupka L 8 elektronů, M 16 elektronů, nevzdálenější je N s 32 elektrony

Podslupky (hladiny):

• slupky se dělí na hladiny označované písmeny s, p, d, f...

Valenční vrstva a valenční elektrony:

- nejvyšší obsazená vrstva
- je důležitá pro chemické a elektrické vlastnosti látek

Druhy chemických vazeb

druh vazby	iontová vazba	kovaler nepolarizovaná	ntní vazba polarizovaná	kovová vazba
skupiny prvků vázané daným druhem vazeb	kovy s nekovy, většinou alkalické kovy ze skupiny I.A s halogeny ze skupi- ny VII.A (F, CI, Br, I)			kovy a slitiny kovů
vznik vazby	přechod elektronu z alkalického kovu k atomu halogenu	vznik společných elektronových párů mezi atomy		husté uspořádání předání valenčního elektronu
vzniklé struktury	anionty a kationty v roztoku nebo krystaly	elektricky neutrální většinou polarizované molekuly typu dipól		kovová struktura s volnými elektrony
příklady	Na ⁺ + Cl [−] → NaCl	H· + H· → H:H	H· + ·Ċİ: → H:Ċİ:	Cu

Iontová vazba

- založena na přitažlivé síle opačně nabitých iontů
- zpravidla mezi kovem a nekovem
- atom kovu předá valenční elektron (vznikne z něho anion) nekovu (vznikne něho kation)
- vytvořený kation a anion se přitahují

Kovalentní vazba

 dochází při této vazbě k průniku valenčních pásů a valenční elektrony jsou přitahovány oběma jádry

Kovová vazba

- na vazbě se podílí elektrony z vnitřních slupek
- valenční elektrony se uvolní a mohou se pohybovat mimo dosah jádra

Vodivé materiály

vodič	vlastnosti	použití
měď Cu	Hustota 8,9 kg/dm³, elektrická vodivost 56 m/(Ωmm²), tj. rezistivita 0,0178 Ωmm²/m, bod tání 1085°C, bod varu 2595°C, druhý nejlepší vodič elektrického proudu i tepla, lehce tvárná (válcováním i tažením), špatně třískově obrobitelná (maže se), po tváření zastudena křehká, po vyžíhání opět měkká. Ve vlhkém prostředí se pokrývá vlivem vzdušného CO₂ zelenou měděnkou, což je zásaditý uhličitan měďnatý CuCO₃ · Cu (OH)₂. Měděnka chrání měď proti další korozi. Proti působení síry z pryžové izolace je nutno měď chránit pocínováním. Sloučeniny mědi jsou většinou jedovaté.	Elektrotechnická měď je materiálem pro vodiče vedení, vinutí cívek a plošných spojů. Používá se pro vodiče a sběrnice v rozvodnách, pro chladiče odvádějící teplo polovodičových součástek, pro pajedla a chladicí trubky. Používá se na lamely komutátorů komutátorových elektrických strojů a do slitin.
hliník Al	Hustota 2,7 kg/dm³, elektrická vodivost 36 m/(Ωmm²), bod tání 658°C, dobrý vodič elektřiny i tepla, na vzduchu se pokrývá elektricky špatně vodivou a kompaktní ochrannou vrstvou oxidu Al ₂ O ₃ . Malá mechanická pevnost, malá odolnost proti louhům.	Vodiče kabelů a integrovaných obvodů. Pouzdra kondenzátorů a polovodičových součástek, chladiče, antény, stínící kryty, fólie kondenzátorů, brzdy vířivými proudy.
stříbro Ag	Hustota 10,5 kg/dm³, elektrická vodivost 60 m/(Ωmm²). Bod tání 960°C, nejlepší vodič elektřiny i tepla, odolné proti korozi, měkká, vrstva oxidu je vodivá, působením SO₂ se pokrývá tmavým Ag₂S (černá). Příměsemi Cu, Pt, Ir, Pd nebo Cd získá dobré vlastnosti, např. tvrdé stříbro (3% Cu) je odolné proti elektrickému oblouku a je pevné, palladiové stříbro (30% Pd) je tvrdé a odolné proti síře.	Vodiče pro vf techniku (vf lanka). Kontakty relé a stykačů. Kontaktní bimetal pro spínání směrových světel.

Vodivé materiály

zlato Au	Hustota 19,3 kg/dm³, elektrická vodivost 46 m/(Ωmm²), bod tání 1063°C, chemicky stálé, měkké.	Pozlacení kontaktů, přívodní drátky v integrovaných obvodech.
mosazi, slitiny Ms: Cu – Zn	Hustota kolem 8,6 kg/dm³, elektrická vodivost kolem 15 m/(Ωmm²), větší pevnost než měď, obsah Zn je 5–37%. Např. slitina Ms63 obsahuje 63% Cu, 37% Zn a je velmi houževnatá. Mosazi je možno pájet měkkou i tvrdou pájkou. Rozlišují se dobře slévatelné mosazi a tvárné mosazi.	Osy, šrouby, svorky, nýty, objímky, kontakty ve spínačích. Profily, armatury, plechy.
cínový bronz slitina Cu – Sn	Hustota kolem 8,8 kg/dm³, elektrická vodivost kolem 10 m/(Ωmm²), bod tání kolem 1000°C, velká houževnatost. Příklady: CuSn8 (92% Cu, 8% Sn), CuSn6 (6% Sn) jsou pružné a mají dobré kluzné vlastnosti.	Pérové kontakty, membrány, kluzné vodivé dráhy.
hliníkové slitiny	Používají se tvářené hliníkové slitiny (válcované, tažené i kované) s malými příměsemi Mg, Cu, Mn, Si, Zn, Ni, Cr aj., čímž se všeobecně zlepšuje jejich pevnost (Mg,Mn), třísková obrobitelnost (Mg), tvrdost (Cu), slévatelnost (Si). Příklady: aldrey E-AlMgSi,dural AlCu4Mg, AlMg3, AlMg2Mn. Určité hliníkové slitiny, např. AlCuMg,AlCuNi se vytvrzují tepelným postupem (žíhání, rychlé chlazení, stárnutí).	Vzdušná (venkovní) vedení, dráty, sběrnice v rozvodnách, šrouby, pouzdra a kryty, klecové rotory asynchronních motorů. Kotouč nesoucí hlavy videorekordéru.

Vodiče a kabely

Tabulka 1: Systém značení rozvodných kabelů a vodičů do 1 kV podle ČSN 34 7409 (idt HD 361) : 🗆 🖂 🖂 🖂 🖂 🖂 🖂 🖂 🖂 🖂 🖂 🖂 🖂 🖂						
□ označení předpisu	□□ jmenovité napětí	□ – izolace – kovové krytí	□ materiál pláště	□□ vlastnosti pro montáž	druh vodiče	□□□ – počet žil – ochranný vodič – průřez vodiče
H: harmoni- zovaný předpis A: uznávaný národní typ	03: 300/300 V 05: 300/500 V 07: 450/750 V	V: PVC V2: PVC do 90°C R: přírodní nebo syntetický kaučuk S: silikonový kaučuk E7: polypro- pylen Q: polyuretan, další viz elektro- technické tabulky	V: PVC R: přírodní nebo syntetický kaučuk S: silikonový kaučuk N: chlorpre- nový kaučuk J: skelné vlákno T: textilní vlákno	H: ploché rozdělitelné vedení H2: ploché nerozděli- telné vedení Bez značky: kabel kruho- vého průřezu H8: spirálový přívod, další viz elektrotech- nické tabulky	U: jeden drát R: vícedrátový K: z tenkých drátů pro pevné uložení F: z tenkých drátů pro pohyblivé uložení H: z jemných drátů Y: slaněný	1, 2, 3, 4, 5 X: bez ochranného vodiče G: s ochranným zelenožlutým vodiče čem číslo: jmenovitý průřez jádra v mm² Y: leonské jádro

H07RN-F 2 × 1,5 označuje harmonizovaný kabel pro napětí do 450 V proti zemi a do 750 V mezi fázemi s pryžovou izolací žil i pryžovým pláštěm, kruhového průřezu s 2 lanky průřezu 1,5 mm².

Vodiče a kabely

Tabulka 2:	Barvy žil ohebnýc	h kabelů a šňůr	
	vodiče a kabely (vedení)		
počet žil	s ochranným vodičem	bez ochranného vodiče	
1	zežl, mod, čer, hn a další barvy		
2	zežl–čer ¹	čer-mod (hn-mod) ²	
3	zežl–čer–mod zežl–hn–mod²	čer–mod–hn	
4	zežl-čer-mod-hn	čer–mod–hn–čer	
5	zežl-čer-mod-hn-čer	čer-mod-hn-čer-čer	
6 a více	zežl–černé	černé	
	s natištěnými čísly	s natištěnými čísly	
	1, 2, 3,	1, 2, 3,	

¹ jen pro pevná uložení při průřezu jádra > 10 mm² Cu
² pro ohebná vedení a šňůry
zežl = zelenožlutá, čer = černá, mod = modrá, hn = hnědá
podle IEC 757: čer = BK (black), mod = BU (blue),
žl = YE (yellow), hn = BN (brown)

Vodiče a kabely

Tabulka 1: Instalační vodiče a kabely do 1 kV (příklady)			
typ, označení	vyobrazení	použití	
instalační jednožilový vodič H 07V – U H 07V – R H 07V – K	H 07 V - R H 07 V - K	Vedení v instalačních trubkách v rozváděčích, v přístrojích, spotřebičích, v elektrickém nářadí, ve strojích a ve svítidlech.	
úložný kabel CYKY 2 až 5 žil 1,5 až 4 mm ² Cu	PVC pryžová výplň PVC - plášť	Pro pevný rozvod elektrické energie v budovách na omítku i pod omítku, ve ztížených podmínkách, na lávkách, v kolektorech i šachtách.	
silové ploché vedení CYND (měkčí PVC) CYNY (tvrdší PVC) 2 nebo 3 žíly 1,5 nebo 2 mm² Cu	PVC PVC	Na rozvod v budovách, na instalaci ve zdech přímo pod omítkou. Může být uložen také přímo na hořlavý podklad.	
ohebný kabel v těžkém provedení H 07RN – F (dříve CGSG) 1 až 5 žil 1,5 až 300 mm² Cu		Nechráněné a pohyblivé přívody ke spotřebičům s velkým příkonem, ke strojům v průmyslových provozech a na stavbách, v suchém i vlhkém prostředí.	

Pájky a tavidla

Pájka – vodivý spoj s nižší teplotou tavení než teplota tavení spojovaných kovů *Měkká pájka* – teplota tavení nižší než 450°C *Tvrdá pájka* – teplota tavení vyšší jak 450°C

Pozn. zpravidla pájka ve formě dutého drátu s kalafunovým tavidlem uvnitř dutiny

Tabulka 2: Důležité měkké a tvrdé pájky					
název	značka	složení	bod tání	použití	
měkká pájka	L-Sn60Pb	60% Sn, 40% Pb	183-190°C	pocínování a pájení drátů	
měkká pájka	L-Sn60PbCu2	60% Sn, 38% Pb, 2% Cu	183-190°C	pájení spojů a součástek	
měkká pájka	L-Sn60PbAg	60% Cn, Pb, 3-4% Ag	178-180°C	pájení elektronických součástek	
stříbrná pájka (tvrdá pájka)	L-Ag40Cd	40% Ag, 20% Cd, 19% Cu, 21% Zn	610°C	pájení mědi, oceli, niklu a jejich slitin	
mosazná pájka (tvrdá pájka)	L-Ms60	60% Cu, 40% Zn	900°C	pájení mědi a oceli	

Olovo a jeho sloučeniny jedovaté – snaha o bezolovnaté pájení

Izolanty

Izolační odpor – dán délkou, průřezem a rezistivitou materiálu Průrazné napětí – efektivní hodnota sinusového napětí, při kterém dojde k průrazu materiálu

	název	vlastnosti	použití
(nezměněné)	slída (muskovit) Al ₃ KH ₂ (SiO ₄) ₃	$U_{p} \approx 30$ až 70 kV/mm; $\rho \approx 10^{6}~\Omega$ cm; $\epsilon_{r} \approx 6$ až 8; tg $\delta \approx 0{,}0005$; nerost štípatelný po plátcích, elastický, průhledný, žáruvzdorný, není hydroskopický.	Dielektrikum kondenzátorů. Izolační podložky pod výkonové polovodičové součástky, okénka pro radioaktivní záření. Podložky pro topné vodiče.
zeu)	křemen SiO ₂	$ ho \approx 10^{13}$ až $10^{20}~\Omega$ cm; dobrý tepelný vodič. Oxidací lze vyrobit na povrchu Si vrstvičku SiO ₂ .	Písek v tavných pojistkách pro zhášení jisker, izolační vrstvy v integrovaných obvodech.
látky ané	sklo Na ₂ CaSiO ₄	$ ho \approx 10^8$ až $10^{15}~\Omega$ cm, $\epsilon_r \approx 5$ až 16; tg $\delta \approx 0,001$; vyrábí se tavením křemenného písku s vápnem a sodou, je tvrdé, křehké, není hydroskopické.	Baňky žárovek, elektronek, výbojek, obrazovek,magnetronů, zářivek. Světlovodná vlákna, skelná tkanina laminátových desek plošných spojů.
přepracované	keramika např. porcelán steatit, oxidová keramika	U _p ≈ 40 kV/mm, dobrý izolant, odolná proti elektrickému oblouku, není hydroskopická, je teplotně a chemicky stabilní, odolná proti stárnutí.	Izolátory, pouzdra výkonových polovodičových součástek, podložky vrstvových obvodů a odporů, dielektrikum kondenzátorů,vložky do zásuvek, vypínačů. Tělesa pojistek, objímky žárovek.

Izolanty

Termoplasty – lze za tepla vstřikovat svařovat Duroplasty – nelze ani za tepla tvarovat

umělé hmoty (plasty) duroplasty termoplasty		polyvinylchlorid PVC	$U_{p}\approx 20$ až 50 kV/mm, $\rho=10^{6}~\Omega cm;$ tg $\delta\approx 0,02;$ odolávání louhům, solím a slabým kyselinám, olejům i benzínu, špatně hořlavý. Samotný tvrdý, ale změkčitelný a elastický pomocí přísad.	Izolace vodičů a kabelů, izolační a instalační trubky, lepicí pásky. Při hoření uvolňuje chlorovodík a toxické dioxiny.
	noplasty	polystyren PS	$U_{\rm p}\approx$ 50 kV/mm; ρ = 10 ⁶ Ω cm, sklovitě průhledný, křehký, hořlavý, hustota 1,1 kg/dm ³ .	Kostry vf cívek, svorkovnice izolace vodičů, izolační fólie. Pěnový polystyren – výplně přepravních obalů
	ten	polyetylen PE	$U_{\rm p}\approx 60$ až 150 kV/mm; $\rho\approx 10^{15}\Omega$ cm; tg $\delta\approx 0,0004$; elektrické vlastnosti téměř nezávislé na kmitočtu a teplotě, chemicky stálý, odpuzuje vodu, dobře hořlavý, svařitelný, nelepitelný; hustota 0,92 kg/dm³.	Dielektrikum a izolace anténních koaxiálních svodů, balicí fólie. Instalační trubky, pláště kabelů.
	duroplasty	epoxidová pryskyřice EP	Pevná, chemicky stálá, velmi dobré elektrické vlastnosti, tepelně odolná.	Epoxidová lepidla, laky, zalévací tmely, izolace vodičů. K zalévání cívek a transformátorů. Se zpevňující tkaninou desky plošných spojů, kostry cívek. Krabice a další díly spínačů a rozvodných krabic.

Elektrický proud v pevných látkách

Potenciální energie elektronu roste se vzdáleností od jádra.

Ve *valenčním pásu* jsou elektrony vázány k jádru atomu.

Ve *vodivém pásu* jsou elektrony volně pohyblivé.

Elektrický proud v polovodičích

7¹⁴Si

Kovalentní vazby mezi atomy křemíku

- má 4 valenční elektrony ve valenčním pásu, je čtyřvazný
- každý atom křemíku je vázán 4 kovalentními vazbami na 4 sousední atomy

Elektrický proud v polovodičích

Vznik páru nosičů nábojů elektron – díra

Vlastní vodivost v polovodičích

- elektron přeskočí z valenčního do vodivého pásu získáním energie
- vznikne díra jde o generaci páru elektron díra
- dochází k zaplnění díry elektronem jde o rekombinaci

Nevlastní vodivost v polovodičích

Polovodič typu N

- přidána pětimocná příměs jde o dárce elektronu tzv. donor
- prvky 5. hlavní skupiny (Sb, As, P)
- nosiči náboje v polovodiči typu N jsou volné elektrony

Nevlastní vodivost v polovodičích

Polovodič typu P

- přidána třímocná příměs jde o příjemce elektronu tzv. akceptor
- prvky 3. hlavní skupiny (In, B, Al, Ga)
- nosiči náboje jsou kladné díry

Poruchová vodivost v polovodiči

Polovodičové diody

Hraniční vrstva=závěrná vrstva

Přechod PN bez připojeného napětí

Pozn. v hraniční vrstvě dochází k difúzi napětí přenos náboje je v hraniční vrstvě uzavřen –závěrná vrstva

Polovodičové diody

Závěrný směr diody

Propustný směr diody

Měření VA charky diody

