

B.Sc. Honours Degree Program Faculty of Applied Sciences University of Sri Jayewardenepura

Course Title	Data Visualisation
Course Code	ASP 460 2.0
Credit Value	02
Status	Optional
Year/ Level	Year 4
Semester	1
Theory: Practical: Independent Learning	30:00:70
Other: Pre-requisite course/s	STA 113 2.0 Descriptive Statistics, STA 124 2.0 Data
	Analysis I, STA 226 1.0 Data Analysis II, STA 326 2.0
	Programming and Data Analysis with R

Aims of the Course:

- To introduce data visualisation principles, theories, and techniques.
- To introduce how to better understand your data, present findings, and tell engaging data stories that clearly depict the points you want to make all through data graphics.

Intended Learning Outcomes:

On the successful completion of this course, the student should be able to:

- 1. Define principles of good visualisation design.
- 2. Identify appropriate data visualisation techniques.
- 3. Create data graphics using the ggplot2 package.
- 4. Design and create data visualisations for your target audience and task.
- 5. Develop dynamic visualisations that allow others to interact with data.
- 6. Critique existing visualisations based on data visualisation theory and principles and revise data visualisations using appropriate design principles.

Course Content:

- 1. Introduction to data visualisation
 - 1.1. History of data visualisation
 - 1.2. Design principles
 - 1.3. Visualisation design process
- 2. Scientific design choices in data visualisation
 - 2.1. Encoding and decoding
 - 2.2. Encoding objects
 - 2.3. Value-encoding attributes
- 3. The grammar of graphics
 - 3.1. Data, Aesthetics, Geometrics, Facets, Statistics, Coordinates, Theme, Scale

- 4. Higher-dimensional displays and special structures
 - 4.1. Scatterplot matrices
 - 4.2. Parallel coordinates
 - 4.3. Mosaic plots
 - 4.4. Small multiples and trellis displays
 - 4.5. Networks and trees
- 5. Visualisation of high-dimensional data
 - 5.1. Techniques for reducing the dimensionality
 - 5.2. Principal component analysis
- 6. Visualisation of multivariate data, time series data and spatial data
 - 6.1. Time series graphics
 - 6.2. Choropleth map, Heat map, Hexagonal binning, Dot map, Cluster map Bubble map, Cartogram map
 - 6.3. Visualising maps, Faceting, Small multiples
- 7. Linked data views for visual exploration

Scope and Schedule of Teaching - Learning Activities:

Topic No.	Topic/Sub Topic	No. of Hrs			Teaching	Assessment ILO	
		T	P	IL	$oxed{\mathrm{Method}}^{ar{}}$	Criteria	Alignment
1	Introduction to data visuali-	2	0	4	Lecture/ Handout	10% of Final	1
	sation: History of data visu-				FA1: Individual as-	Marks	
	alisation, Design principles,				signment		
	Visualisation design process						
2	Scientific design choices in	2	0	4	Lecture/ Practice ques-		1, 2
	data visualisation: Encod-				tions		
	ing and decoding, Encoding						
	objects, Value-encoding at-						
	tributes						
3	The grammar of graphics: In-	2	0	4	Lecture/ Virtual Dis-		1,2
	troduction to the grammar of				cussion Forum/ Flipped		
	graphics				classroom		
4	The grammar of graphics ex-	2	0	4	Lecture/ Virtual Discus-		2, 3
	tensions				sion Forum/ Practice		
					questions		
5	Introduction to the ggplot2	2	0	4	Lecture/ Virtual Discus-		3
	package				sion Forum		
6	Coordinate systems and axes	2	0	5	Lecture/ Virtual Discus-		3
					sion Forum/ Practice		
					questions		
7	Creating different types of	2	0	5	Lecture/ Virtual Discus-		3
	static graphic				sion Forum/ Practice		
					questions		

cont.

Scope and Schedule of Teaching - Learning Activities (cont.):

Topic	Topic/Sub Topic	No. of Hrs			Teaching	Assessment	ILO
No.		\mathbf{T}	P	IL	Method	Criteria	Alignment
8	Higher-dimensional displays and special structures: Scat- terplot matrices, Parallel coordinates, Mosaic plots, Small multiples and trellis displays	2	0	5	Lecture/ Virtual Discussion Forum FA2: Quiz	10% of Final Marks	4
9	Visualisation of high- dimensional data: Tech- niques for reducing the dimensionality, Principal component analysis	2	0	5	Lecture/ Virtual Discussion Forum		4
10	Visualisation of multivariate data, time series data and spatial data: Visualisation of multivariate data	2	0	5	Lecture/ Practice questions/ Virtual Discussion Forum		4
11	Visualisation of multivariate data, time series data and spatial data: Visualisation of time series data	2	0	5	Lecture/ Virtual Discussion Forum/ Analysis case study		4
12	Visualisation of multivariate data, time series data and spatial data: Visualisation of spatial data	2	0	5	Lecture/ Virtual Discussion Forum/ Practice questions FA3: Individual Project	20% of Final Marks	4
13	Linked data views for visual exploration: Linked data views for visual exploration	2	0	5	Lecture/Practice questions/ Virtual Discussion Forum		5, 6
14	Linked data views for visual exploration: Dashboards, in- teractive and animated dis- plays	2	0	5	Lecture/ Virtual discussion forum		5, 6
15	A recapitulation	2	0	5	Lecture/ Practice questions/ Virtual Discussion Forum		6
	Total	30	00	70			

Linking Program Outcomes with ILOs:

Program Outcomes: B.Sc. Honours degree

- 1. Demonstrate competency in theoretical knowledge and practical and/or technical skills in the respective field of specialization (statistics).
- 2. Communicate efficiently and effectively in the respective field of specialization using written, oral, visual and/or electronic forms.
- 3. Facilitate and participate as an empathetic and emotionally intelligent team player with leadership qualities, in a group, diverse team or organization.
- 4. Apply subject-specific knowledge and skills creatively to solve real-world problems by making context-specific operational decisions while adapting to changing environments.
- 5. Integrate creativity, innovation, and entrepreneurial and managerial proficiencies to build values.

- 6. Implement subject-based solutions in keeping with ethical, societal and environmental norms and need for sustainable development.
- 7. Secure life goals through lifelong learning with the aim of scholarly advancement and/or strengthening professional skills, and ensuring the betterment of the community.

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7
ILO 1	***	*		*	*		*
ILO 2	***	**		**	*		*
ILO 3	**	**			**		*
ILO 4	***	***		***	**		***
ILO 5	***	***		***	***		***
ILO 6	***	***	***	***	***	***	***

*** - Strongly linked; ** - Medium linked; * - Weekly linked

Mode of Assessment:

Formative Assessment (FA): Maximum of $\{FA1, FA2\}$ 10% + FA3 20% = 30% of

total marks

Summative Assessment (SA): End of Semester Examination: 2 hours paper covering

Structured/Essay type questions = 70% of the total

marks

References:

- Talagala, T. S. (2024). Course website: STA 492 2.0/ASP 460 2.0 Data Visualisation, Course website. https://thiyangt.github.io/datavisualisation/
- Chen, C. H., Hardle, W. K., & Unwin, A. (2007). *Handbook of data visualization*. Springer Science & Business Media.
- Wickham, H., & Grolemund, G. (2019). R for data science: import, tidy, transform, visualize, and model data. O'Reilly Media, Inc.
- Grolemund, G., & Wickham, H. (2014). A cognitive interpretation of data analysis. *International Statistical Review*, 82(2), 184-204.