Projective Plane and Homogeneous Coordinates

Definition 1. Given a set X, a relation $R \subset X \times X$ is called **equivalence** (and denoted with $x \sim y$ for $(x,y) \in R$) if it is reflexive $(x \sim x)$, symmetric $(x \sim y \Rightarrow y \sim x)$, and transitive $(x \sim y, y \sim z \Rightarrow x \sim z)$.

An equivalence class with representative $a \in X$ is the subset of all elements of X which are equivalent to a.

Definition 2. Two elements of $\mathbb{R}^3 \setminus \{(0,0,0)\}$ are projectively equivalent

$$\begin{pmatrix} u \\ v \\ w \end{pmatrix} \sim \begin{pmatrix} u' \\ v' \\ w' \end{pmatrix} \quad \text{if} \quad \exists \lambda \in \mathbb{R} \setminus \{0\} : \begin{pmatrix} u \\ v \\ w \end{pmatrix} = \lambda \begin{pmatrix} u' \\ v' \\ w' \end{pmatrix}$$

Definition 3. The projective plane \mathbb{P}^2 is the set of all projective equivalence classes of $\mathbb{R}^3 \setminus \{(0,0,0)\}$.

Example: Points in \mathbb{R}^3 lying in the same line through the origin are projectively equivalent. A line through the origin is then an equivalence class. Its representative can be for example the pair of antipodal intersections with the unit sphere.

Injection of \mathbb{R}^2 in \mathbb{P}^2 :

- A point $(x', y') \in \mathbb{R}^2$ is injected in \mathbb{P}^2 with the addition of the homogeneous coordinate 1: $(x', y', 1) \in \mathbb{P}^2$.
- Only the points (x,y,w) of \mathbb{P}^2 with $w \neq 0$ can be mapped to \mathbb{R}^2 as (x/w,y/w). If projective equivalence can be visualized as lines through the origin in \mathbb{R}^3 , then \mathbb{R}^2 is injected as the plane w=1.

Projective Transformation

Definition 4. A projective transformation is any invertible matrix transformation $\mathbb{P}^2 \to \mathbb{P}^2$.

• A projective transformation A maps p to $p' \sim Ap$. This means that $\det(A) \neq 0$ and that there exists $\lambda \neq 0$ such that $\lambda p' = Ap$. Observe that we will write either $p' \sim Ap$ or $\lambda p' = Ap$.

- If A maps a point to Ap, then A maps a line l to $l' = A^{-T}l$. This can be shown starting from the line equation $l^Tp = 0$ and replacing p with $A^{-1}p'$.
- A projective transformation λA is the same as A since they map to projectively equivalent points. Hence, we will be able to determine a projective transformation only up to a scale factor.

- A projective transformation preserves incidence.
- Three collinear points are mapped to three collinear points and three concurrent lines are mapped to three concurrent lines.
- The latter might involve the case that the point of intersection is mapped to a point at infinity.
- Because of the incidence preservation, projective transformations are also called collineations.

How many points suffice to determine a projective transformation?

Assume that a mapping A maps the three points (1,0,0), (0,1,0), and (0,0,1) to the non-collinear points a,b and c. Since $a\sim \alpha a$, $b\sim \beta b$, and $c\sim \gamma c$ we can write:

It is obvious that for each choice of $\alpha, \beta, \gamma \neq 0$ we can build a matrix A mapping the points (1,0,0), (0,1,0), and (0,0,1) to a,b and c. Let us assume that the same A maps (1,1,1) to the point d. Then, the following should hold:

$$\lambda d = \left(\begin{array}{ccc} \alpha a & \beta b & \gamma c \end{array} \right) \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right),$$

hence

$$\lambda d = \alpha a + \beta b + \gamma c.$$

There always exist such $\lambda, \alpha, \beta, \gamma$ because four elements of $\mathbb{R}^3 \setminus \{(0,0,0)\}$ are always linearly dependent. Because a,b,c are not collinear, there exist unique $\alpha/\lambda, \beta/\lambda, \gamma/\lambda$ for writing this linear combination. Since A is the same as A/λ we solve for α, β, γ such that $d = \alpha a + \beta b + \gamma c$, which can be written as a linear system

$$\left(\begin{array}{ccc} a & b & c \end{array}\right) \left(\begin{array}{c} \alpha \\ \beta \\ \gamma \end{array}\right) = d.$$

Since a,b,c are not collinear we can always find a unique triple α,β,γ . The resulting projective transformation is $A=\left(\begin{array}{cc} \alpha a & \beta b & \gamma c \end{array}\right)$.

Proposition 1. Four points not three of them collinear suffice to recover unambiguously a projective transformation.

Find projective transformation mapping

$$(a,b,c,d) \rightarrow (a',b',c',d')$$
:

To determine this mapping we go through the four points used in the paragraph above. We find the mapping from (1,0,0), etc to (a,b,c,d) and we call it $T: a \sim T(1,0,0)^T, etc$. We find the mapping from (1,0,0), etc to (a',b',c',d') and we call it $T': a' \sim T'(1,0,0)^T, etc$. Then, back-substituing $(1,0,0)^T \sim T^{-1}a, etc$ we obtain that $a' = T'T^{-1}a, etc$. Thus, the required mapping is $T'T^{-1}$.