L'analyse des contrastes

2 juillet 2016

Données de l'exemple

On veut étudier l'effet de la prise d'un barbiturique sur la performance à un test de rapidité. Pour cela on utilise trois groupes de 10 sujets et les résultats notés sur /20 sont les suivants :

Groupe	Témoin	Placebo	Barbiturique
m _i	13,2	12,4	8,3
σ_i	2,09	2,76	1,27

lci on veut opposer Barbiturique/(Témoin, Placébo), c'est à dire que l'on fixe a priori la comparaison que l'on veut réaliser.

Réalisation de l'ANOVA

	ddl	SCE	Variance
Fact.	2	$SCE_{Fact} = 138, 2$	$s_{R\acute{e}sid}^2 = 69, 1$
Résid.	27	$SCE_{Résid} = 135,986$	$s_{R\acute{e}sid}^2 = 5,04$
TOTAL	29	$SCE_{Total} = 274,186$	F = 13,72

p < .001 donc il y a bien un effet significatif du type de médicament pris sur la performance au test. Par contre on ne peut pas en l'état répondre à la question posée

Analyse à priori : les contrastes

• De ce fait on va scinder les groupes G_1, G_2, \ldots, G_J en deux sous ensembles et on va comparer ces deux sous ensembles. On va déterminer quel contraste existe entre ces deux sous groupes

Analyse à priori : les contrastes

- De ce fait on va scinder les groupes G_1, G_2, \ldots, G_J en deux sous ensembles et on va comparer ces deux sous ensembles. On va déterminer quel contraste existe entre ces deux sous groupes
- Les contrastes sont des tests à priori (c'est à dire que l'on fait indépendemment de l'ANOVA) par opposition aux tests groupes à groupes (ex TUKEY) qui se font après l'ANOVA.

Définition d'un contraste

Définition

Un contraste ψ entre les groupes G_1, G_2, \ldots, G_J est défini par

$$\psi = \mathsf{a}_1 \mathsf{m}_1 + \mathsf{a}_2 \mathsf{m}_2 + \ldots + \mathsf{a}_J \mathsf{m}_J$$

où m_i est la moyenne du groupe G_i et les coefficients a_i sont tels que :

- Si G_i et G_j appartiennent au même sous ensemble dans le contraste alors on a : $a_i = a_i$
- 2 $a_1 + a_2 + \ldots + a_J = 0$

• $\psi = m_1 + m_2 - 2m_3$ est un contraste correspondant à la comparaison Temoin, Placebo / Barbiturique.

- $\psi=m_1+m_2-2m_3$ est un contraste correspondant à la comparaison Temoin, Placebo / Barbiturique.
- ② Si on a cinq groupes G_1, G_2, \ldots, G_5 tels que :

m	n_1 n	n_3	m ₅	m_2	m_4
	}	4	6	10	11

- $\psi=m_1+m_2-2m_3$ est un contraste correspondant à la comparaison Temoin, Placebo / Barbiturique.
- ② Si on a cinq groupes G_1, G_2, \ldots, G_5 tels que :

• Si on veut étudier le contraste G_1 , G_3/G_2 , G_4 , G_5 alors il suffit de poser $\psi_1 = 3m_1 + 3m_3 - 2m_2 - 2m_4 - 2m_5$.

- $\psi=m_1+m_2-2m_3$ est un contraste correspondant à la comparaison Temoin, Placebo / Barbiturique.
- ② Si on a cinq groupes G_1, G_2, \ldots, G_5 tels que :

n	n_1 n	n_3 n	1 ₅	m_2	m_4
	} .	1 (5	10	11

- Si on veut étudier le contraste G_1 , G_3/G_2 , G_4 , G_5 alors il suffit de poser $\psi_1 = 3m_1 + 3m_3 2m_2 2m_4 2m_5$.
- ② Si on veut aussi comparer G_1 , G_3/G_2 , G_4 alors il suffit de poser $\psi_2 = m_1 + m_3 m_2 m_4$. (G_5 n'intervenant pas dans la comparaison on lui affecte un coefficient 0).

Somme des carrés d'un contraste

Définition

Soit $\psi = a_1 m_1 + a_2 m_2 + \ldots + a_J m_J$ un contraste entre J groupes, alors la somme des carrés de ψ notée SC_{ψ} est définie par :

$$SC_{\psi} = \frac{\psi^2}{\sum_{i=1}^{J} \left(\frac{a_i^2}{n_i}\right)}$$

formule équivalente à $SC_{\psi}=rac{n imes\psi^2}{\displaystyle\sum_{J}\left(a_i^2
ight)}$ lorsque tous les groupes sont de

même taille n

Les deux exemples

 Dans l'exemple Temoin, Placebo, Barbiturique on a donc :

Les deux exemples

• Dans l'exemple Temoin, Placebo, Barbiturique on a donc : $\psi=13.2+12.4-2\times 8.3=9$ donc $SC_{\psi}=\frac{10\times 9^2}{(1^2+1^2+2^2)}=135.$

Les deux exemples

- Dans l'exemple Temoin, Placebo, Barbiturique on a donc : $\psi=13.2+12.4-2\times 8.3=9$ donc $SC_{\psi}=\frac{10\times 9^2}{\left(1^2+1^2+2^2\right)}=135.$
- ullet Dans l'exemple 2 : $\psi_1=$

$$SC_{c_1} = 273.8$$
, $SC_{c_2} = 25$, $SC_{c_3} = 3$, $SC_{c_4} = 3$.

Les tests de contraste

Théorème

Soit $\psi = a_1 m_1 + a_2 m_2 + \ldots + a_p m_p$ un contraste dans les groupes G_1, G_2, \ldots, G_J .

On considère H_0 le contraste considéré n'est pas significatif contre H_1 le contraste est significatif.

On calcule :

$$F = \frac{SC_{\psi}}{s_{R\acute{e}sid}^2}$$

La statistique F suit une loi de Fisher-Snédécor F(1;N-J) , au risque α le contraste sera significatif lorsque $p<\alpha$.

Système de contrastes

Retour sur l'exemple :Revenons à notre exemple Temoin, Placebo, Barbiturique : il faut 2 contrastes pour avoir un système de comparaison complet. Pour rappel :

Représentons cette situation sur un graphique :

Système de contrastes

Retour sur l'exemple :Revenons à notre exemple Temoin, Placebo, Barbiturique : il faut 2 contrastes pour avoir un système de comparaison complet. Pour rappel :

Représentons cette situation sur un graphique :

ma

	3 "	12	- '''	1
8.	3 12	.4	13	.2

Les deux groupes apparaissent clairement sur le graphique Temoin, Placebo / Barbiturique. Ensuite il reste à comparer Temoin et Placebo.

ma

Système de contrastes

Retour sur l'exemple :Revenons à notre exemple Temoin, Placebo, Barbiturique : il faut 2 contrastes pour avoir un système de comparaison complet. Pour rappel:

Représentons cette situation sur un graphique :

n	3	m	2	m	1
8.	3	12	.4	13	.2

Les deux groupes apparaissent clairement sur le graphique Temoin, Placebo / Barbiturique. Ensuite il reste à comparer Temoin et Placebo. Donc le système complet de contrastes orthogonaux est :

$$\begin{cases} \psi_1 = m_1 + m_2 - 2m_3 \\ \psi_2 = m_1 - m_2 \end{cases}$$

Calculs sur l'exemple

On a déjà calculé $SC_{\psi_1}=135$ et on peut calculer

$$SC_{\psi_2} = rac{10 imes (12.4 - 13.2)^2}{(1^2 + 1^2)} = 3.2.$$
 Et on obtient :

$$SCE_{Fact} = SC_{\psi_1} + SC_{\psi_2}$$
.

Ceci sera toujours le cas à condition que les contrastes considérés soient orthogonaux.

Contrastes orthogonaux

Définition

Deux contrastes $\psi = a_1 m_1 + a_2 m_2 + \ldots + a_p m_p$ et $\psi' = a'_1 m_1 + a'_2 m_2 + \ldots + a'_p m_p$ sont dits orthogonaux si on a $a_1 \times a'_1 + a_2 \times a'_2 + \ldots + a_p \times a'_p = 0$ (c'est à dire que la somme des produits de leurs coefficients est nulle), en fait ceci exprime l'indépendance des contrastes ψ et ψ' .

Exemple

 $\psi_1=m_1+m_2-2m_3$ et $\psi_2=m_1-m_2$ sont orthogonaux, par contre $\psi_1=m_1+m_2-2m_3$ et $\psi_2=m_1-m_3$ ne le sont pas.

La décomposition du SCE_{Fact}

Théorème

On étudie un facteur A sur une VD, ce facteur qualitatif ayant permis la constitution de J groupes différents de **même taille** . On considère J-1 contrastes orthogonaux $\psi_1, \psi_2, \ldots, \psi_{J-1}$ réalisés à partir des moyennes de ces groupes. Alors on a :

$$SCE_A = \sum_{i=1}^{J-1} SC_{\psi_j}$$

Anova 2 facteurs et contrastes

On revient sur l'exercice 8 on va justifier l'anova sur les effets simples :

Tests univariés

Variable dépendante: Situa correcte

Tâche		Somme des carrés	ddl	Moyenne des carrés	D	Sig.
Reco. Forme	Contraste	2,178	2	1,089	,010	,990
	Erreur	13587,200	126	107,835		
Simulation de conduite	Contraste	437,644	2	218,822	2,029	,136
	Erreur	13587,200	126	107,835		
Tâche cognitive	Contraste	2643,378	2	1321,689	12,257	,000
	Erreur	13587,200	126	107,835		

Le F teste l'effet de Groupe. Ce test est basé sur les comparaisons de paires linéairement indépendantes parmi les moyennes marginales estimées. Ces tests sont basés sur les comparaisons par paire linéairement indépendantes dans les movennes marginales estimées.

On va par exemple montrer que l'effet du tabagisme sur le score de la Tâche cognitive on a SCE = 2643.378

Construction du système de contrastes

On a les 3 moyennes : FA=47.533 (m_1) , FP=39.933 (m_2) et NF=28.867 (m_3)

Construction du système de contrastes

On a les 3 moyennes : FA=47.533 (m_1) , FP=39.933 (m_2) et NF=28.867 (m_3) on peut proposer les contrastes suivants (il nous en faut 2) $\psi_1=2m_3-m_1-m_2$ et $\psi_2=m_1-m_2$. Ils sont orthogonaux donc $SCE_{\mathsf{Tabagisme sur T.C.}}=SC_{\psi_1}+SC_{\psi_2}=2209.98+433.2=2643.18$ (petite différence avec la valeur du tableau due aux arrondis)

Poids d'un contraste

Lorsque tous les groupes sont de même taille et que $\{\psi_1,\psi_2,\ldots,\psi_{J-1}\}$ est un système complet de contraste pour analyser l'hétérogénéité de ces groupes, alors on a :

$$SCE_{Fact} = \sum_{j=1}^{J-1} SC_{\psi_j}$$

Définition

Le poids du contraste ψ dans une analyse (donné en général sous forme de %) est donné par la formule :

$$P_{\psi} = \frac{SC_{\psi}}{SC_{Fact}}$$

Contrastes et mesures répétées

Reprenons l'exemple de l'effet de la réflexologie sur la durée hebdomadaire des maux de tête, on veut opposer S1,S2 Versus S3,S4,S5:

$$m_1 = 22,333$$
; $m_2 = 22$; $m_3 = 9.333$; $m_4 = 5.778$ et $m_5 = 6.778$.

Contrastes et mesures répétées

Reprenons l'exemple de l'effet de la réflexologie sur la durée hebdomadaire des maux de tête, on veut opposer \$1,\$2 Versus \$3,\$4,\$5 :

$$m_1 = 22,333; m_2 = 22; m_3 = 9.333; m_4 = 5.778 \text{ et } m_5 = 6.778.$$

$$\psi_1 = 3m_1 + 3m_2 - 2m_3 - 2m_4 - 2m_5$$

Contrastes et mesures répétées

Reprenons l'exemple de l'effet de la réflexologie sur la durée hebdomadaire des maux de tête, on veut opposer \$1,\$2 Versus \$3,\$4,\$5 :

$$m_1 = 22,333; m_2 = 22; m_3 = 9.333; m_4 = 5.778 \text{ et } m_5 = 6.778.$$

$$\psi_1 = 3m_1 + 3m_2 - 2m_3 - 2m_4 - 2m_5$$

et donc $SC_{\psi_1}=2388.18$ ce qui donne $F=rac{2388.18}{230.4}=10.4$ et donc p=.003.

Remarque

Si vous construisez un système de 4 contrastes orthogonaux vous obtenez la décomposition de la *SCE* du facteur étudié :

Remarque

Si vous construisez un système de 4 contrastes orthogonaux vous obtenez la décomposition de la SCE du facteur étudié :

$$\begin{cases} \psi_1 &= 3m_1 + 3m_2 - 2m_3 - 2m_4 - 2m_5 \\ \psi_2 &= m_1 - m_2 \\ \psi_3 &= 2m_3 - m_4 - m_5 \\ \psi_4 &= m_4 - m_5 \end{cases}$$