Lecture 12

Model Evaluation 5: Performance Metrics

STAT 479: Machine Learning, Fall 2018
Sebastian Raschka
http://stat.wisc.edu/~sraschka/teaching/stat479-fs2018/

Recap

Recap

Source: Python Machine Learning, 2nd Edition

2x2 Confusion Matrix

Predicted class

$$\begin{array}{c|c} P & N \\ \hline True & False \\ Positives & (FN) \\ \hline \textbf{Actual} & \hline \\ \textbf{Class} & \hline \\ N & Positives & True \\ N & Positives & (FP) & Negatives \\ \hline (TN) & Negatives \\ \hline \end{array}$$

$$ERR = \frac{FP + FN}{FP + FN + TP + TN} = 1 - ACC \tag{1}$$

$$ACC = \frac{TP + TN}{FP + FN + TP + TN} = 1 - ERR \tag{2}$$

Confusion Matrix for Multi-Class Settings

Predicted Labels

Confusions matrices are traditionally for binary class problems but we can easily generalize it to multi-class settings

False Positive Rate and False Negative Rate

$$FPR = \frac{FP}{N} = \frac{FP}{FP + TN} \tag{3}$$

$$TPR = \frac{TP}{P} = \frac{TP}{FN + TP} \tag{4}$$

 Think of it in a spam classification problem (what are true positives, and if you had to pick one at the expense of the other: would you rather decrease the FPR or increase the TPR?)

False Positive Rate and False Negative Rate

Precision, Recall, and F1 Score

$$PRE = \frac{TP}{TP + FP} \tag{5}$$

$$REC = TPR = \frac{TP}{P} = \frac{TP}{FN + TP} \tag{6}$$

$$F_1 = 2 \cdot \frac{PRE \cdot REC}{PRE + REC} \tag{7}$$

- Terms that are more popular in Information Technology
- Recall is actually just another term for True Positive Rate (or "sensitivity")

Precision and Recall

https://en.wikipedia.org/wiki/Precision_and_recall

Sensitivity and Specificity

$$SEN = TPR = REC = \frac{TP}{P} = \frac{TP}{FN + TP}$$
 (8)

$$SPC = TNR = \frac{TN}{N} = \frac{TN}{FP + TN} \tag{9}$$

Sensitivity measures the recovery rate of the Positives and complimentary, the Specificity measures the recovery rate of the Negatives.

Matthew's Correlation Coefficient

- Matthews correlation coefficient (MCC) was first formulated by Brian W. Matthews [1] in 1975 to assess the performance of protein secondary structure predictions
- The MCC can be understood as a specific case of a linear correlation coefficient (Pearson r) for a binary classification setting
- Considered as especially useful in unbalanced class settings.
- The previous metrics take values in the range between 0 (worst) and 1 (best)
- The MCC is bounded between the range 1 (perfect correlation between ground truth and predicted outcome) and -1 (inverse or negative correlation) — a value of 0 denotes a random prediction.

$$MCC = \frac{TP \cdot TN - FP \cdot FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$$
(10)

[1] Brian W Matthews. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA)- Protein Structure, 405(2):442–451, 1975.

11

FS 2018

Balanced Accuracy / Average Per-Class Accuracy

Predicted Labels

	Class 0	Class 1	Class 2
Class 0	T(0,0)		
Class 1		T(1,1)	
Class 2			T(2,2)

$$ACC = \frac{T}{n}$$

True Labels

Predicted Labels

		Class 0	Class 1	Class 2
Labais สม	Class 0	3	0	0
ם ב ב	Class 1	7	50	12
	Class 2	0	0	18

$$ACC = \frac{3 + 50 + 18}{90} \approx 0.79$$

$$APCACC = \frac{83/90 + 71/90 + 78/90}{3} \approx 0.86$$

Balanced Accuracy / Average Per-Class Accuracy

Predicted Labels

True Labels

	Class 0	Neg Class
Class 0	3	0
Neg Class	7	80

Predicted Labels

True Labels

	Class 1	Neg Class
Class 1	50	19
Neg Class	0	21

Predicted Labels

True Labels

	Class 2	Neg Class
Class 2	18	0
Neg Class	12	60

Predicted Labels

		Class 0	Class 1	Class 2
abels	Class 0	3	0	0
True Labels	Class 1	7	50	12
	Class 2	0	0	18

 $APCACC = \frac{83/90 + 71/90 + 78/90}{3} \approx 0.86$

Receiver Operating Characteristic curve (ROC curve)

- Trade-off between True Positive Rate and False Positive Rate
- ROC can be plotted by changing the prediction threshold
- ROC term comes from "Radar Receiver Operators"
 (analysis of radar [RAdio Direction And Ranging] images)

Receiver Operating Characteristic curve (ROC curve)

- ?.? = Perfect Prediction
- ?.? = Random Prediction

ROC Area Under the Curve (AUC)

ROC and k-Fold Cross-Validation

Binary Classifiers and One-vs-Rest (OvR) / One-vs-All (OvA)

Big O: O(?)

Choose the class with the highest confidence score

Binary Classifiers and One-vs-One (OvO) / All-vs-All (AvA)

Select the class by majority vote (and use confidence score in case of ties)

Macro and Micro Averaging

$$PRE_{micro} = \frac{TP_1 + \dots + TP_c}{TP_1 + \dots + TP_c + FP_1 + \dots + FP_c}$$

$$PRE_{macro} = \frac{PRE_1 + \dots + PRE_c}{c}$$

Micro-averaging is useful if we want to weight each instance or prediction equally, whereas macro-averaging weights all classes equally to evaluate the overall performance of a classifier with regard to the most frequent class labels.

Dealing with Class Imbalance

User Guide

- 1. Introduction
 - 1.1. API's of imbalanced-learn samplers
 - 1.2. Problem statement regarding imbalanced data sets
- 2. Over-sampling
 - 2.1. A practical guide
 - 2.1.1. Naive random over-sampling
 - 2.1.2. From random over-sampling to SMOTE and ADASYN
 - 2.1.3. Ill-posed examples
 - 2.1.4. SMOTE variants
 - 2.2. Mathematical formulation
 - 2.2.1. Sample generation
 - 2.2.2. Multi-class management
- 3. Under-sampling
 - 3.1. Prototype generation
 - 3.2. Prototype selection
 - 3.2.1. Controlled under-sampling techniques
 - 3.2.1.1. Mathematical formulation
 - 3.2.2. Cleaning under-sampling techniques
 - 3.2.2.1. Tomek's links
 - 3.2.2.2. Edited data set using nearest neighbours
 - 3.2.2.3. Condensed nearest neighbors and derived algorithms
 - 3.2.2.4. Instance hardness threshold
- 4. Combination of over- and under-sampling

https://imbalanced-learn.readthedocs.io/en/stable/user_guide.html

Reading Assignment

• Python Machine Learning, 2nd Edition
Chapter 6: Learning Best Practices for Model Evaluation and Hyperparameter Tuning