Image Processing INT3404 20 Week 8:

Color Image Processing

Lecturer: Nguyen Thi Ngoc Diep, Ph.D.

Email: ngocdiep@vnu.edu.vn

Slide & code: https://github.com/chupibk/INT3404_20

Schedule

Week Content	Homework
1 Introduction	Set up environments: Python 3, OpenCV 3, Numpy, Jupyter Notebook
Digital image – Point operations Contrast adjust – Combining images	HW1: adjust gamma to find the best contrast
3 Histogram - Histogram equalization – Histogram-based image classification	Self-study
Spatial filtering - Template matching	Self-study
Feature extraction Edge, Line, and Texture	Self-study
Morphological operations	HW2: Barcode detection → Require submission as mid-term test
Filtering in the Frequency domain Announcement of Final project topics	Final project registration
8 Color image processing	HW3: Conversion between color spaces, color image segmentation
9 Geometric transformations	Self-study
Noise and restoration	Self-study
Compression	Self-study
Final project presentation	Self-study
Final project presentation Class summarization	Self-study

Recall week 7: Frequency domain Fourier transform

Fourier Transform references

- Great reference links:
- Euler's formula: https://www.mathsisfun.com/algebra/eulers-formula.html
- Interactive Fourier transforms: http://www.jezzamon.com/fourier/
- Intuitive Fourier transforms: https://sites.northwestern.edu/elannesscohn/2019/07/30/developing-an-intuition-for-fourier-transforms/
- Explanation video: https://www.youtube.com/watch?v=spUNpyF58BY

Low frequency, High frequency?

800px X 100px grayscale image Generated using $I(x) = \sin(2\pi fx)$ where f = 10repetitions/800px = 0.0125 repetitions/px

Smooth

increase the frequency by a factor of 10, so that n = 100 repetitions f = 100/800 = 1/8 = 0.125 repetitions/px

Finer details, many edge

Low frequency, High frequency?

Low frequency, High frequency?

Low frequency

High frequency

Low pass filter

High pass filter

Filtering in Frequency domain

- Ideal low/high pass
- Butterworth low/high pass
- Gaussian low/high pass

Color image processing

- What is color
- How to create color
- How to encode color
- Color spaces

Colors

 Color exists only in light, but light itself seems colorless to the human eyes

• What is color and how we perceive colors?

Color IQ: How well do you see color

- Do you know
 - 1 out of 255 women and 1 out of 12 men have some form of color vision deficiency?
- Color vision test examples:
 - Farnsworth Munsell 100 Hue Test (1949)
 - http://goo.gl/Nj6mBi
 - Farnsworth D15 arrangement test (1947)
 - http://goo.gl/OL1k6o

Farnsworth Munsell 100 Hue Test (1949)

Farnsworth Munsell 100 Hue test result

Farnsworth D15 arrangement test (1947)

Farnsworth D15 arrangement results

The thick line describes your order of the test plates. People with normal color vision order them in a circle (P, 1, 2, ..., 15). Crossings indicate some form of color blindness.

Paralleslism of crossings to a confusion line (protan, deutan, tritan) is a clue for the type of your color blindness.

Give me more detailed Results

Color IQ: it is not just for fun

- Color vision can indicate certain medical conditions
- In industries, where color decisions are critical
 - E.g., Product sales, Design, Cosmetics
- In art

Applications

Seeing colors

Electromagnetic spectrum

Electromagnetic spectrum is the range of all possible frequencies of electromagnetic radiation

Image credit: wikipedia.org nasa.gov

Source: National Library of Medicine, photos8.com

Human spectral sensitivity to color

Three types of cone cells: (named after their sensitivity at wavelengths)

- Long (L)
- Medium (M)
- Short (S)

In principle, three parameters, corresponding to levels of stimulus to the three types of cone cells, can describe any color sensation

Color blindness

One or more cone types are defective

Image credit: www.cudo.jp

Example of color vision deficiency

Image credit: flickr.com

Color creation

Colors

Newton 1666-72

Additive color

Subtractive color

Subtractive color with filter

Additive vs Subtractive color creation

Your add light to make the color brighter

You subtract the light from the paper by adding more color

Color matching

The amount of three colors: tristimulus values

Color matching

Note: color is in your mind

But...

Color matching RGB

Color matching RGB

Unmatch-able examples using RGB

How is it matched?

Color space: R-G-B

Color space RGB

Unit plane

Negative red?

RGBA color space

RGB color model supplemented with a fourth alpha channel. Alpha indicates how opaque each pixel is and allows an image to be combined over others using alpha compositing, with transparent areas and antialiasing of the edges of opaque regions.

Example of an RGBA image with translucent and transparent portions, composited over a checkerboard background

RGB to XYZ

Color space X-Y-Z

Green-ish Series of tristimulus vectors map out the chromaticity diagram Blue-ish

Color space X-Y-Z

Series of tristimulus vectors **Spectral Locus** map out the chromaticity = colors of the spectrum diagram

Chromaticity Diagram

CIE chromaticity diagram (1931)

By the International Commission on Illumination

(French name: "Commission internationale de l'éclairage")

White

Traffic lights: green color

Figure 2c – Color Regions for Green Traffic Lights

CIE color mix

CIE color compliments

CIE color gamut

Red: 700.0 nm Green: 546.1 nm

Blue: 435.8

All colors can be made using those primary colors are in the triangle

Some color gamuts

How to match color outside the triangle?

Many whites

CIE Standard Illuminants

Color model

Color model

- A mathematical way to map wavelengths to certain colors
- A color model describes a coordinate system where each color is represented by a single point
- Each color model is used for different purpose
- For example:
 - RGB: computer graphics, image processing, image storage
 - HSV, HSL: human visual perception, human vision, computer vision
 - Y'CbCa: image compression
 - CMYK: printing
 - YIQ: television broadcasting systems and video systems

RGB color space

A lot of color spaces

HSV color model

- Hue: wavelength of color
 - Is presented by an angle from 0 to 360
- Value: value of brightness
 - Ranging in [0, 1]
 - $V=0 \rightarrow black$
- Saturation: purity of color
 - Ranging in [0, 1]

Quiz: Hue difference

If hue values range in [0, 360], what is the absolute difference between the following pairs of hues?

225 and 75

45 and 315

HCL color space

Like a squared double cone?

Color space conversion

- Linear transformation
 - Transformation matrix
 - E.g.: XYZ <-> RGB

$$\begin{vmatrix} X \\ Y \\ Z \end{vmatrix} = \begin{vmatrix} X_r & X_g & X_b \\ Y_r & Y_g & Y_b \\ Z_r & Z_g & Z_b \end{vmatrix} * \begin{vmatrix} R \\ G \\ B \end{vmatrix}$$

$$\begin{vmatrix} X \\ Y \\ Z \end{vmatrix} = \begin{vmatrix} X_r & X_g & X_b \\ Y_r & Y_g & Y_b \\ Z_r & Z_g & Z_b \end{vmatrix} * \begin{vmatrix} R \\ G \\ B \end{vmatrix} = \begin{vmatrix} X_r & X_g & X_b \\ Y_r & Y_g & Y_b \\ Z_r & Z_g & Z_b \end{vmatrix} (-1) \begin{vmatrix} X \\ Y \\ Z \end{vmatrix}$$

- Non-linear transformation
 - RGB <-> CMYK
 - RGB <-> HSV
 - RGB <-> Munsell

Color image processing

Color distribution

Example: Red filter

Filter: $R \in [0,255]$, $G \in [0,100]$, $B \in [0,100]$

Example: Red filter - more red!

Filter: $R \in [0,255]$, $G \in [0,50]$, $B \in [0,50]$

How intensity affects color values

Just different shades of green, but all 3 values change!

YUV color model

Y: luma component (the brightness)

U: blue projection

V: red projection

Quiz: UV filter

What UV limits should we use to Filter: extract red regio

Filter:

$$Y \in [0,255]$$
 $U \in [0,255]$
 $V \in [0,255]$

UV filter

Filter: $Y \in [0,255]$, $U \in [130,200]$, $V \in [100,130]$

YUV filter

Filter: $Y \in [0,150]$, $U \in [130,200]$, $V \in [100,130]$

Comparing RGB and YUV filters

Filter: $R \in [0,255]$, $G \in [0,50]$, $B \in [0,50]$

Filter: $Y \in [0,150]$, $U \in [130,200]$, $V \in [100,130]$

Intuition: Why YUV?

- Easier clustering of pixels
- Efficient encoding by chroma subsampling
 - Recall, human vision is more sensitive to intensity changes
 - Y channel can now use more bits
- E.g., YUV422 to represent 2 image pixels, it uses 2 bytes for Y, and 1 byte each for U and V

References

- Youtube: Craig Blackwell channel
 - "Color vision" series
- Udacity: "Introduction to computer vision" course