Lecture 22: Volume Rendering

Nov 28, 2024
Won-Ki Jeong
(wkjeong@korea.ac.kr)

Outline

- Volume visualization methods
- Volume rendering integral

Volume Visualization

- Volume is a 3D discretely sampled data set
- Volume visualization is a 2D projection of a 3D volume
- Structured volume
 - Rectilinear grid
- Unstructured volume
 - Tetmesh, etc..

Image courtesy LBNL

Volume Visualization Methods

Isosurface Rendering

- Extract geometry of isosurface
 - Marching cubes, isocontours, etc
- Limitation
 - Hard to find good isovalues, may need to see entire volume
 - Example : CFD, gaseous pheonomenon

Direct Volume Rendering (DVR)

- A rendering process mapping from volume data to an image without introducing binary distinctions/intermediate geometry
- Data considered as semi-transparent, lightemitting medium, with spatially varying color/opacity
- Rendering approaches are based on the laws of physics(emission, absorption, scattering)

Direct Volume Rendering Example

DVR: Maximum Intensity Projection

DVR: Ray Casting with Alpha-Blending

Direct Volume Rendering

- Main idea (Ray casting)
 - See through the 3D data
 - Each voxel has user-defined optical properties
 - color (R,G,B) and alpha (A) values
 - Ray function combine color & alpha values along a ray

Ray Function

 How to combine colors & transparency sampled along a given ray

$$I(p) = F(s(t)), \quad t \in [0, 1]$$

First-hit Intensity

- Isosurface
 - Stop at isovalue

Average Intensity

X-ray like rendering

$$I(P) = \frac{1}{T} \int_{t=0}^{T} F(s(t)) dt$$

Maximum Intensity Projection

Emphasize high intensity value

$$I(P) = \max_{t \in [0,T]} (F(s(t)))$$

Alpha-blending

Color accumulation

Physical Model for Volume Rendering

- Radiative transfer
 - Each voxel can either emit or absorb energy
 - Integrate energy along each viewing ray

Increase

Decrease

$$I(s) = I(s_0)e^{-\tau(s^0, s)} + \int_{s_0}^{s} q(\tilde{s})e^{-\tau(\tilde{s}, s)} d\tilde{s}$$
$$\tau(s_1, s_2) = \int_{s_1}^{s_2} \kappa(s) ds$$

$$I(s) = I(s_0)e^{-\tau(s^0,s)} + \int_{s_0}^s q(\tilde{s})e^{-\tau(\tilde{s},s)} d\tilde{s}$$

$$\tau(s_1,s_2) = \int_{s_1}^{s_2} \kappa(s) ds$$
initial intensity at s_0

$$I(s_0)$$

$$viewing ray$$

Volume rendering integral for emission and absorption model

$$I(s) = I(s_0)e^{-\tau(s^0,s)} + \int_{s_0}^s q(\tilde{s})e^{-\tau(\tilde{s},s)} d\tilde{s}$$
$$\tau(s_1,s_2) = \int_{s_1}^{s_2} \kappa(s) ds$$

without considering absorption

Volume rendering integral for emission and absorption model

$$I(s) = I(s_0)e^{-\tau(s^0,s)} + \int_{s_0}^{s} q(\tilde{s})e^{-\tau(\tilde{s},s)} d\tilde{s}$$

$$\tau(s_1, s_2) = \int_{s_1}^{s_2} \kappa(s) \, ds$$

Every point \tilde{s} along the viewing ray emits radiant energy

Numerical solution

Optical depth:
$$au(0,t) = \int_0^t \kappa(\hat{t}) \, d\hat{t}$$

Numerical solution

Optical depth:
$$au(0,t) = \int_0^t \kappa(\hat{t}) \, d\hat{t}$$

Approximate Integral by Riemann sum:

$$\tau(0,t) \approx \sum_{i=0}^{\lfloor t/\Delta t \rfloor} \kappa(i \cdot \Delta t) \, \Delta t$$

Numerical solution

Numerical solution

Numerical solution

Now we introduce opacity:

$$A_i = 1 - e^{-\kappa(i\cdot\Delta t)\,\Delta t}$$

alpha 0: transparent(optical depth is small)
1: opaque(optical depth is big)

Numerical solution

Now we introduce opacity:

$$1 - A_i = e^{-\kappa(i \cdot \Delta t) \, \Delta t}$$

Numerical solution

Now we introduce opacity:

$$1 - A_i = e^{-\kappa(i \cdot \Delta t) \, \Delta t}$$

Numerical solution

Numerical solution

Numerical solution

can be computed recursively/iteratively!

Numerical solution

- Back to front
 - Simple to compute
 - Need to accumulate all points

$$C'_{i} = C_{i} + (1 - A_{i}) C'_{i-1}$$

- Front to back
 - Can terminate early when $A'_i \square 1$
 - Need to update A in every iteration

$$C'_{i+1} = C'_{i} + (1 - A'_{i})C_{i+1}$$

$$C'_{i+1}, A'_{i+1}$$

$$A'_{i+1} = A'_{i} + (1 - A'_{i})A_{i+1}$$

$$C'_{i+1}, A'_{i+1}$$

Opacity Correction

- Simple compositing only works as far as the opacity values are correct
 - Depend on the sample distance
- Opacity correction formula

$$\tilde{\alpha} = 1 - (1 - \alpha)^{\left(\frac{\Delta \tilde{x}}{\Delta x}\right)}$$

Classification

- User defines look of the data by
 - Change per-voxel color and transparency
 - How? : transfer function

Transfer Function

Assign color and opacity to locally measurable data properties

1D Transfer Function Example

Questions?

Image courtesy of Siemens Healthineers AG.

