Supervised Machine Learning Week 2

Patrick J.F. Groenen

2020-2021

Table of Contents

- 1. Ridge Regression
- 2. Ridge Regression and SVD
- 3. Choosing Penalty Strength λ
- 4. K-Fold Cross Validation
- 5. Thursday Meeting
- 6. LASSO
- 7. Other Penalties
- 8. An MM Algorithm for the Elastic Net
- 9. Summary and Assignment

Summary

Summary:

Week	Topics	Material
1	Introduction; Introduction to R; Linear methods	3.1, 3.2, 3.3
	for regression, model selection, and assessment	
2	Regularized regression and k -fold cross validation	3.4.1-3.4.3, 3.8.4, 7.10
3	Basis function expansions, kernels, bias-variance	5.1-5.2.1, 5.8, 7.3
	trade-off	
4	Support vector machines	Groenen, Nalbantov, Bioch
		(2009); 12.1-12.3
5	Classification and regression trees, random	7.11, 9.2, 15
	forests, bootstrap	
6	Boosting	10

2 afrighe 3 of 94

Introduction

Material this week:

Topic		To read
1.	Ridge regression	3.4.1
2.	Lasso	3.4.2
3.	Grouped Lasso	3.8.4
4.	K-fold and leave-one-out cross validation	7.10

2 afrighde 4 of 94

Table of Contents

1. Ridge Regression

- 2. Ridge Regression and SVD
- 3. Choosing Penalty Strength λ
- 4. K-Fold Cross Validation
- 5. Thursday Meeting
- 6. LASSC
- 7. Other Penalties
- 8. An MM Algorithm for the Elastic Ne
- 9. Summary and Assignment

Main properties of ridge regression:

- 1. Adaptation of multiple regression.
- 2. Penalizes the size of the coefficients.
- 3. Very useful under multicollinearity of predictors.
- 4. Very useful with many predictors.
- 5. Also called: penalty or regularization approach.
- 6. Assumption: *y* is in deviation of its mean (so no need to estimate the intercept).
- 7. All weights β_i are equally penalized.

2 afug Sfide 6 of 94

Loss function ridge regression:

$$L(\beta) = (\mathbf{y} - \mathbf{X}\beta)^{\top}(\mathbf{y} - \mathbf{X}\beta) + \lambda \beta^{\top}\beta$$

$$\uparrow \qquad \uparrow$$
Regression term
Penalty term

with

- β : unknown $p \times 1$ vector of regression weights
- **X**: $n \times p$ matrix with elements x_{ij} of predictor variables
- **y**: $n \times 1$ vector with response variable
- λ : positive (given) penalty strength parameter

Mathematically the following two definitions of ridge regression are the same:

$$\begin{array}{lcl} L_{\mathsf{ridge1}}(\boldsymbol{\beta}) & = & (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^\top (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) + \lambda \boldsymbol{\beta}^\top \boldsymbol{\beta} \\ L_{\mathsf{ridge2}}(\boldsymbol{\beta}) & = & (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^\top (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) \text{ subject to } \boldsymbol{\beta}^\top \boldsymbol{\beta} \leq \gamma \text{ for } 0 < \gamma \leq \boldsymbol{\beta}_{\mathsf{OLS}}^\top \boldsymbol{\beta}_{\mathsf{OLS}} \end{array}$$

- $\beta^{\top}\beta \leq \gamma$ says that β must be in a circle (hyperball) with radius smaller than (or equal to) γ .
- For each λ there is a corresponding γ (and vice versa).
- Why is $L_{\text{ridge1}}(\beta)$ equivalent to $L_{\text{ridge2}}(\beta)$?

Ridge Regression: Example

Example ridge regression: Credit data

R> ## Show Credit data
R> load("Credit.RData")

Median: 460

• Goal: predict Balance out of other variables

```
R> summary(Credit)
    Income
          Limit
                              Rating
                                      Cards
                                                       Age
Min. : 10.4 Min. : 855
                           Min. : 93 Min. :1.00
                                                   Min.
                                                         :23.0
1st Qu.: 21.0 1st Qu.: 3088 1st Qu.:247 1st Qu.:2.00
                                                  1st Qu.:41.8
Median: 33.1 Median: 4622
                          Median:344 Median:3.00
                                                   Median:56.0
Mean : 45.2 Mean : 4736 Mean : 355 Mean : 2.96
                                                  Mean :55.7
3rd Qu.: 57.5 3rd Qu.: 5873 3rd Qu.:437 3rd Qu.:4.00 3rd Qu.:70.0
Max. :186.6
            Max. :13913 Max. :982 Max. :9.00
                                                  Max. :98.0
  Education Gender Student Married
                                                 Ethnicity
Min. : 5.0 Male :193 No :360 No :155 African American: 99
1st Qu.:11.0 Female:207 Yes: 40 Yes:245 Asian
                                                     :102
Median:14.0
                                        Caucasian :199
Mean :13.4
3rd Qu.:16.0
Max. :20.0
   Balance
Min. : 0
1st Qu.: 69
```

Ridge Regression: Example

Example ridge regression: Credit data

```
R> ## Ridge regression
R> Credit <- na.omit(Credit)
                                                     # Remove rows with missings (NA)
R> v <- as.vector(Credit$Balance)</pre>
                                                     # y variable
R> # Credit contains some nominal variable
R> # Create a numeric matrix of dataframe Credit without last column (Balance) and intercept
R> X <- model.matrix(Balance ~ . , data = Credit) # Predictor variables (as a matrix, not da
R > X[, 2:7] < - scale(X[, 2:7])
                                                     # Make columns z-scores of nonfactors
R > X \leftarrow X[, -1]
                                                     # Remove intercept column (is fitted by al
R> library(glmnet, quietly = TRUE)
R> result <- glmnet(X, y, alpha = 0, lambda = 10^seq(-2, 6, length.out = 50),
                      standardize = FALSE)
                                                      # Ridge regression (alpha must be 0 for r
```

Zafus Side 11 of 94

Ridge Regression: Example

Example ridge regression profile plot of weights β_j against λ :

```
R> plot(result, xvar = "lambda", label = TRUE, las = 1)
R> legend("bottomright", lwd = 1, col = 1:6, bg = "white",
              legend = pasteCols(t(cbind(1:ncol(X), " ",colnames(X)))), cex = .7)
                 11
                                    11
                                                        11
                                                                           11
          400
          300
                                                                              1 Income
          200
      Coefficients
                                                                              2 Limit
                                                                              3 Rating
          100
                                                                               4 Cards
                                                                              5 Age
             0
                                                                              6 Education
                                                                              7 GenderFemale
         -100
                                                                              8 StudentYes
                                                                              9 MarriedYes
         -200
                                                                              10 EthnicityAsian
                                                                              11 EthnicityCaucasian
         -300
                 -5
                                                        5
                                                                           10
```

Log Lambda

Zafuside 12 of 94

Ridge Regression: Properties

Properties:

- As $\lambda \to 0$ then $eta^{\sf ridge} \to eta^{\sf OLS}$ (OLS = Ordinary Least Squares = standard multiple regression)
- ullet As $\lambda o \infty$ then ${oldsymbol{eta}}^{\sf ridge} o {oldsymbol{0}}$
- If predictor variables in **X** are uncorrelated $((n-1)^{-1}\mathbf{X}^{\top}\mathbf{X} = \mathbf{I})$ and standardized to z-scores:

$$eta_j^{\mathsf{ridge}} = rac{1}{1+\lambda}eta_j^{\mathsf{OLS}}$$

- The $\lambda > 0$ results in shrinkage of the β .
- ullet Even in the case of multicollinarity, eta^{ridge} always exists.

Ridge Regression: Computation

Solution ridge regression: solve for zero gradient (for fixed λ):

$$\begin{split} \frac{\partial L_{\mathsf{ridge1}}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} &= 2(\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I})\boldsymbol{\beta} - 2\mathbf{X}^{\top}\mathbf{y} = \mathbf{0} \\ (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I})\boldsymbol{\beta} &= \mathbf{X}^{\top}\mathbf{y} \\ \hat{\boldsymbol{\beta}} &= (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\top}\mathbf{y} \end{split}$$

Ridge Regression: Effect of standardization

What is the effect of different variances of the columns of X?

- In OLS: none Let β_j^* be the optimal OLS weight for variable j. If variable X_j is replaced by aX_j , then the optimal OLS regression weight is β_j^*/a .
- In ridge regression there is an effect.
 Solution: Standardize columns to z-score (mean 0, variance 1).

2 afrig

Ridge Regression: Usage

Summary properties of ridge regression:

- Ridge regression shrinks the β_i s towards zero.
- The tuning parameter λ controls strength of shrinkage.
- Choosing good value of λ by k-fold cross validation (discussed later).
- Ridge regression performs not so well if a subset of true coefficients is small or zero.
- Ridge regression performs well if all true β_i s are moderately large.
- Often outperforms linear regression in a small range of λ s.
- Standardization of predictors to z-scores is important.

Ridge Regression: GLMNET

Standardisation of **X** and **y** in glmnet():

- Standardisation to z-scores of predictors X is vital so that all weights are equally penalized.
- standardize = TRUE option:
 - ▶ makes standardizes internally both predictors **X** and response **y** to *z*-scores.
 - ▶ all results are computed back to original mean and standard deviation.

Cafus Side 17 of 94

Table of Contents

- 1. Ridge Regression
- 2. Ridge Regression and SVD
- 3. Choosing Penalty Strength λ
- 4. K-Fold Cross Validation
- 5. Thursday Meeting
- 6. LASSC
- 7. Other Penalties
- 8. An MM Algorithm for the Elastic Net
- 9. Summary and Assignment

Definition singular value decomposition (SVD) for an $n \times p$ matrix **X**:

$$X = UDV^{\top}$$

with

- the $n \times p$ orthonormal matrix **U** of left singular vectors with $\mathbf{U}^{\top}\mathbf{U} = \mathbf{I}$,
- the $p \times p$ diagonal matrix **D** of singular values with $d_{ii} \geq 0$,
- the $p \times p$ orthonormal matrix **V** of right singular vectors with $\mathbf{V}^{\top}\mathbf{V} = \mathbf{V}\mathbf{V}^{\top} = \mathbf{I}$.

Interpretation SVD $\mathbf{X} = \mathbf{UDV}^{\top}$:

- **UD** = **Z** are the principal components
- V is the matrix that rotates X to principal components Z.
- First column of $\mathbf{z}_1 = d_{11}\mathbf{u}_1$ has most variance equal to d_{11}^2 .
- Example with p = 3:

Zafuside 20 of 94

```
R> ## Example SVD in R
R > X \leftarrow matrix(c(3, 5, 1, 2, 3, 2), 3, 2) # Make a matrix
R> print(X, digits = 0)
                         # Print a matrix
 [,1] [,2]
[1,] 3 2
[2,] 5 3
[3,] 1 2
R> tt <- svd(X)
                                         # Compute an SVD: X = UDV'
R> print(tt$u, digits = 3)
                                         # Print left singular vectors U
       [,1] [,2]
[1,] -0.506 -0.0344
[2,] -0.818 -0.2987
[3,] -0.274 0.9537
R> print(tt$d, digits = 3)
                                        # Print singular values D
[1] 7.12 1.14
R> print(tt$v, digits = 3)
                                         # Print right singular vectors V
      [,1] [,2]
[1,] -0.826 -0.564
[2,] -0.564 0.826
R> tt$u %*% diag(tt$d) %*% t(tt$v) # Reconstruct matrix X through UDV'
     [,1] [,2]
[1,] 3 2
[2,] 5 3
[3,] 1 2
```

Cafus Side 21 of 94

Properties **SVD**:

- The SVD exists for every rectangular matrix.
- X can be of every size (not necessarily square).
- The result always gives real elements (no imaginary numbers).
- The singular values d_{ii} are ordered decreasingly.
- In PCA: the squared singular value d_{ss}^2 is equal to the eigenvalue.

Zafuside 22 of 94

SVD as sum of rank 1 matrices:

$$\mathbf{X} = \mathbf{U} \mathbf{D} \mathbf{V}^{\top} = d_{11} \mathbf{u}_1 \mathbf{v}_1^{\top} + d_{22} \mathbf{u}_2 \mathbf{v}_2^{\top} + \ldots + d_{pp} \mathbf{u}_p \mathbf{v}_p^{\top}$$

Example for 3×2 matrix **X**

$$\begin{aligned} \mathbf{X} &= \mathbf{U} \mathbf{D} \mathbf{V}^{\top} \\ &= d_{11} \mathbf{u}_{1} \mathbf{v}_{1}^{\top} \\ &= 7.12 \begin{bmatrix} -0.506 \\ -0.818 \\ -0.274 \end{bmatrix} \begin{bmatrix} -0.826 & -0.564 \end{bmatrix} + 1.14 \begin{bmatrix} -0.034 \\ -0.299 \\ 0.954 \end{bmatrix} \begin{bmatrix} -0.564 & 0.826 \end{bmatrix} \\ &= \begin{bmatrix} 2.978 & 2.032 \\ 4.818 & 3.282 \\ 1.613 & 1.101 \end{bmatrix} + \begin{bmatrix} 0.022 & -0.033 \\ 0.192 & -0.282 \\ -0.613 & 0.899 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 5 & 3 \\ 1 & 2 \end{bmatrix} \end{aligned}$$

Ridge Regression and SVD:

- Rewrite $\mathbf{X}\boldsymbol{\beta} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top}\boldsymbol{\beta}$
- Let $\gamma = \mathbf{V}^{\top} \boldsymbol{\beta}$. Then

$$egin{array}{lll} oldsymbol{\gamma} & = & oldsymbol{V}^{ op}oldsymbol{eta} \ oldsymbol{V}oldsymbol{\gamma} & = & oldsymbol{V}oldsymbol{V}^{ op}oldsymbol{eta} = oldsymbol{eta} \ oldsymbol{X}oldsymbol{eta} & = & oldsymbol{U}oldsymbol{D}oldsymbol{V}^{ op}oldsymbol{eta} = oldsymbol{V}oldsymbol{U}oldsymbol{V}^{ op}oldsymbol{A}$$

Effect on regression part:

$$(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\top} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) = (\mathbf{y} - \mathbf{U}\mathbf{D}\mathbf{V}^{\top}\boldsymbol{\beta})^{\top} (\mathbf{y} - \mathbf{U}\mathbf{D}\mathbf{V}^{\top}\boldsymbol{\beta})$$

$$= (\mathbf{y} - \mathbf{U}\mathbf{D}\boldsymbol{\gamma})^{\top} (\mathbf{y} - \mathbf{U}\mathbf{D}\boldsymbol{\gamma})$$

Effect on penalty part:

$$\lambda \boldsymbol{\beta}^{\mathsf{T}} \boldsymbol{\beta} = \lambda \boldsymbol{\gamma}^{\mathsf{T}} \mathbf{V}^{\mathsf{T}} \mathbf{V} \boldsymbol{\gamma} = \lambda \boldsymbol{\gamma}^{\mathsf{T}} \boldsymbol{\gamma}$$

Ridge Regression and SVD:

Ridge loss function as with principal components UD of X as predictors:

$$L_{\text{ridge1}}(\boldsymbol{\beta}) = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\top}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) + \lambda \boldsymbol{\beta}^{\top}\boldsymbol{\beta}$$
$$= (\mathbf{y} - \mathbf{U}\mathbf{D}\boldsymbol{\gamma})^{\top}(\mathbf{y} - \mathbf{U}\mathbf{D}\boldsymbol{\gamma}) + \lambda \boldsymbol{\gamma}^{\top}\boldsymbol{\gamma}$$

ullet Alternatively, let $oldsymbol{\delta} = \mathbf{D} oldsymbol{\gamma} = \mathbf{D} oldsymbol{V}^ op oldsymbol{eta}$, then $\mathbf{D}^{-1} oldsymbol{\delta} = oldsymbol{\gamma}$ and

$$L_{\mathsf{ridge1}}(\boldsymbol{\delta}) = (\mathbf{y} - \mathbf{U}\boldsymbol{\delta})^{\top}(\mathbf{y} - \mathbf{U}\boldsymbol{\delta}) + \lambda \boldsymbol{\delta}^{\top} \mathbf{D}^{-2} \boldsymbol{\delta}$$

with
$$\lambda oldsymbol{\delta}^{ op} \mathbf{D}^{-2} oldsymbol{\delta} = \sum_{j=1}^p d_{jj}^{-2} \delta_j^2$$

- Thus, ridge regression gives
 - ▶ the smallest penalty to the weight δ_1 corresponding to \mathbf{u}_1 , the largest principal component and
 - ▶ the highest penalty to the weight δ_p corresponding to \mathbf{u}_p , the smallest principal component.

Cafus Side 25 of 94

Table of Contents

- 1. Ridge Regression
- 2. Ridge Regression and SVD
- 3. Choosing Penalty Strength λ
- 4. K-Fold Cross Validation
- 5. Thursday Meeting
- 6. LASSO
- 7. Other Penalties
- 8. An MM Algorithm for the Elastic Net
- 9. Summary and Assignment

Choosing Penalty Strength λ

Loss function ridge regression:

$$L(\beta_1, \dots \beta_m) = \sum_{i=1}^n \left(y_i - \sum_{j=1}^m x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^m \beta_j^2$$

$$\uparrow \qquad \qquad \uparrow$$
Regression term
Penalty term

with

- β_i : unknown regression weights for variable j = 1, ..., m
- X: with elements x_{ij} the $n \times m$ matrix of predictor variables
- y_i : value of dependent variable for object i = 1, ..., n
- λ : positive (given) penalty parameter

Choosing Penalty Strength λ

Degrees of freedom

- Degrees of freedom (df) in OLS: number of parameters β_i , thus df= m.
- Effective degrees of freedom (df_{eff}) in ridge regression:

$$\mathsf{df}_{\mathsf{eff}} = \mathsf{tr} \mathbf{X} (\mathbf{X}^{\top} \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^{\top} = \sum_{i=1}^{n} \mathbf{x}_{i}^{\top} (\mathbf{X}^{\top} \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{x}_{i}$$

with
$$tr\mathbf{A} = \sum_{i=1}^{n} a_{ii}$$
.

• df_{eff} is equivalent to the effective number of parameters

$$\mathrm{df}_{\mathrm{eff}} o m \qquad \mathrm{for} \ \lambda \downarrow 0 \ \mathrm{df}_{\mathrm{eff}} o 0 \qquad \mathrm{for} \ \lambda o \infty$$

Choosing Penalty Strength λ

How to select λ ?

- Try various $\lambda = \{0.001, 0.01, \dots, 100, 1000\}.$
- Use one of the following selection criteria:
 - 1. Choose lowest AIC: $AIC = n \log \left(\sum_i (y_i \hat{y}_i)^2\right) + 2 df_{\text{eff}} \log(n)$ 2. Choose lowest BIC: $BIC = n \log \left(\sum_i (y_i \hat{y}_i)^2\right) + 2 df_{\text{eff}}$

 - Choose lowest K-fold cross validated error.

Table of Contents

- 1. Ridge Regression
- 2. Ridge Regression and SVD
- 3. Choosing Penalty Strength λ
- 4. K-Fold Cross Validation
- 5. Thursday Meeting
- 6. LASSC
- 7. Other Penalties
- 8. An MM Algorithm for the Elastic Net
- 9. Summary and Assignment

K-fold cross validation

K-fold cross validation

• Usual measure of error mean squared error for fold k:

$$\mathsf{MSE}_k = \frac{1}{n_k} (\mathbf{y}_{\mathsf{test}(k)} - \hat{\mathbf{y}}_{\mathsf{test}(k)})^\top (\mathbf{y}_{\mathsf{test}(k)} - \hat{\mathbf{y}}_{\mathsf{test}(k)})$$

with
$$\hat{\mathbf{y}}_{\mathsf{test}_k} = \mathbf{X}_{\mathsf{test}_k} \hat{oldsymbol{eta}}_{\mathsf{train}_k}$$

• Easier to interpret is the root mean squared error (RMSE) over the folds:

$$\mathsf{RMSE} = \sqrt{\frac{1}{K} \sum_{k=1}^{K} \mathsf{MSE}_k}$$

- Sums the error of predicted out-of-sample values
- Is a good approximation of error in the population.

K-fold cross validation

- 1. Nonparametric approach.
- 2. Split the data into two parts X_{train} and X_{test} :
- 3. Use the training part $\mathbf{X}_{\mathsf{train}}$ to estimate weights $\hat{eta}_{\mathsf{train}}$
- 4. Estimate $\hat{\mathbf{y}}_{\text{test}} = \mathbf{X}_{\text{test}} \hat{\boldsymbol{\beta}}_{\text{train}}$
- 5. Repeat Steps 3 and 4 for each of the K folds.
- 6. Repeat for all λ values.

Example ridge regression: Credit data

• Goal: predict Balance out of other variables

10-fold cross validated RMSE against λ : β_i against λ :

```
R> ## To plot Root Mean Squared Error (RMSE) to be on the same scale as y:
R> result.cv$cvm <- result.cv$cvm^0.5
R> result.cv$cvup <- result.cv$cvup^0.5
R> result.cv$cvlo <- result.cv$cvlo^0.5
R> plot(result.cv, ylab = "Root Mean-Squared Error")
11 11 11 11 11 11 11 11 11
```


Cafus 35 of 94

Final run with best cross validated λ : :

```
R> print(result.cv$lambda.min) # Best cross validated lambda
[1] 0.01
R> # Final run with hest cross validated lambda
R> result <- glmnet(X, y, alpha = 0, lambda = result.cv$lambda.min,
                  intercept = TRUE)
R> result$beta
11 x 1 sparse Matrix of class "dgCMatrix"
                     s0
                -275.06
Income
Limit.
                 472.64
Rating
                143.90
                 25.68
Cards
Age
               -10.56
               -3.60
Education
GenderFemale -10.65
StudentYes
               426.41
MarriedYes
                 -8.06
EthnicityAsian 16.44
EthnicityCaucasian 10.07
```

2 afrig

Ridge Regression: Example 2

- Ridge regression makes sense if there are many predictor variables ($p \approx n$)
- If you only have a few predictors you can use several tricks:
 - ► Replace each predictor by its polynomial basis (poly())
 - ► Model interaction effects
- The benefit is better prediction.
- The cost is that interpretation of the parameters becomes difficult or impossible.

Ridge Regression: Example 2

```
R> ## Ridge regression example with p close to n
R> deg <- 5
R> X.poly <- model.matrix(~ 0 + poly(X[, 1], degree = deg)) # Using only the five numerical

+ poly(X[, 2], degree = deg) # predictors and generate for each poly(X[, 3], degree = deg) # a fifth degree polynomial basis  
+ poly(X[, 4], degree = deg) # (that is, 5 columns per varial  
+ poly(X[, 5], degree = deg), data = as.data.frame(X[, 2:7]))
R> X.inter.action <- model.matrix(~ .^2, data = as.data.frame(X.poly)) # Make interactions
R> dim(X.inter.action) # Size of matrix X.inter.action
[1] 400 326
```

2 afus 38 of 94

```
R> # 10-fold cross validation for ridge regression
R> result.cv <- cv.glmnet(X.inter.action, y, alpha = 0,
                          lambda = 10^seq(-2, 10, length.out = 50), nfolds = 10)
R> print(result.cv$lambda.min)  # Best cross validated lambda
[1] 82.9
R> print(result.cv$lambda.1se) # Conservative est. of best lambda (1 stdev)
Γ1] 146
R> plot(result.cv$lambda, result.cv$cvm^.5, log = "x", col = "red", type = "p", pch = 20,
         xlab = expression(lambda), ylab = "RMSE", las = 1)
                   800
               RMSE
                   600
                   400
                   200
                        1e-02
                                   1e+01
                                              1e+04
                                                         1e+07
                                                                    1e + 10
```

λ

Ridge regression Analysis Steps:

- 1. Choose a grid of λ values, e.g., $\{0.01, 0.1, 1, \dots, 100, 1000\}$.
- 2. Determine through K-fold cross validation the out-of-sample RMSE for each λ .
- 3. Find λ_{min} with the smallest out-of-sample residual sum of squares.
- 4. Run ridge regression on all data using λ_{\min} and interpret the β_i s.

Zafus 40 of 94

Leave-one-out cross validation (LOO-CV) = K-fold CV with K = n

- LOO is good when n is really small (say n < 100).
- LOO is used to retain sufficient information in the training data.
- Alternative names: Jack-knife (in Dutch: het jaapmes), Lachenburch's method

Table of Contents

- 1. Ridge Regression
- 2. Ridge Regression and SVD
- 3. Choosing Penalty Strength λ
- 4. K-Fold Cross Validation
- 5. Thursday Meeting
- 6. LASSO
- 7. Other Penalties
- 8. An MM Algorithm for the Elastic Net
- 9. Summary and Assignment

Thursday Meeting

- One team presents (1) highlights of the methods, (2) results and interpretation (7-10 min).
- One team reflect on methods, one team on results and interpretation (7-10 min each including discussion).
- One team presents code 5-7 min (you can use R-Studio).
 This team sends their code to the two code reflecting teams immediately after Tuesday's lecture.
- Two other teams reflect code (5-7 min each including discussion).
- Reflections should discuss three items:
 - what you think was good;
 - possibly address issues that were unclear to you;
 - suggestions of issues that you think could be improved.

2 afus side 43 of 94

Thursday Meeting

Schedule for Thursday November 5, 2020:

	Team					
Team Task	1	2	3	5	6	7
Presentation methods, results and interpretation	+					
Discussion methods, results and interpretation		+				
Discussion results and interpretation			+			
Presentation code				+		
Discussion code					+	
Discussion code						+

Table of Contents

- 1. Ridge Regression
- 2. Ridge Regression and SVD
- 3. Choosing Penalty Strength λ
- 4. K-Fold Cross Validation
- 5. Thursday Meeting
- 6. LASSO
- 7. Other Penalties
- 8. An MM Algorithm for the Elastic Ne
- 9. Summary and Assignment

Main properties of LASSO regression (Least Absolute Shrinkage and Selection Operator):

- Adds penalty for nonzero coefficients.
- Penalty is the sum of absolute value of the β_j s.
- Effect: for large λ many $\beta_j = 0$.
- Thus, the lasso does variable selection.

Loss function lasso regression:

with

- β : unknown $p \times 1$ vector of regression weights
- X: $n \times p$ matrix of predictor variables with elements x_{ii}
- **y**: $n \times 1$ vector of dependent variable for object $i = 1, \dots, n$
- λ : positive (given) penalty parameter
- $L_1(\beta) = \|\beta\|_1 = \sum_{i=1}^m |\beta_i|$ is called the ℓ_1 -distance.

As with ridge regression, mathematically the following two definitions of lasso regression are the same:

$$L_{\text{LASSO1}}(\beta) = (\mathbf{y} - \mathbf{X}\beta)^{\top}(\mathbf{y} - \mathbf{X}\beta) + \lambda \|\beta\|_{1}$$

$$L_{\text{LASSO2}}(\beta) = (\mathbf{y} - \mathbf{X}\beta)^{\top}(\mathbf{y} - \mathbf{X}\beta) \text{ subject to } \|\beta\|_{1} \leq \gamma \text{ for } 0 < \gamma \leq \beta_{\text{OLS}}^{\top}\beta_{\text{OLS}}$$

- $\sum_{j=1}^{m} |\beta_j| \le \gamma$ says that the vector of β_j must be in a diamond shape having ℓ_1 -distance $\le \gamma$.
- For each λ there is a corresponding γ (and vice versa).

Example LASSO regression: Credit data

```
R> ## LASSO regression (alpha must be 1 for LASSO)
R> result <- glmnet(X, y, alpha = 1, lambda = 10^seq(-2, 6, length.out = 50))
```


Example LASSO regression profile plot of weights β_i against λ :

```
R> plot(result, xvar = "lambda", label = TRUE)
R> legend("bottomright", lwd = 1, col = 1:6, bg = "white",
              legend = pasteCols(t(cbind(1:ncol(X), " ",colnames(X)))), cex = .7)
                 11
                                      11
            300
                                                                                 1 Income
      Coefficients
                                                                                 2 Limit
            100
                                                                                 3 Rating
                                                                                 4 Cards
                                                                                 5 Age
                                                                                 6 Education
            -100
                                                                                 7 GenderFemale
                                                                                 8 StudentYes
                                                                                 9 MarriedYes
                                                                                 10 EthnicitvAsian
            300
                                                                                 11 EthnicityCaucasian
                 -5
                                                          5
                                                                              10
```

Log Lambda

Zafuside 52 of 94

10-fold cross validation for LASSO regression:

[1] 7.2

10-fold cross validated RMSE against λ : β_j against λ :

```
R> # To plot Root Mean Squared Error (RMSE) to be on the same scale as y:
R> result.lasso.cv$cvm <- result.lasso.cv$cvm^0.5
R> result.lasso.cv$cvup <- result.lasso.cv$cvup^0.5
R> result.lasso.cv$cvlo <- result.lasso.cv$cvlo^0.5
R> plot(result.lasso.cv, ylab = "Root Mean-Squared Error")
```


2 afrighte 54 of 94

Final run with best cross validated λ :

```
R> # Final run with best cross validated lambda
R> result.lasso.cv$lambda.min
[1] 0.01
R> result.lasso.best <- glmnet(X, y, alpha = 1,
                                lambda = result.lasso.cv$lambda.1se)
R> round(result.lasso.best$beta, digits = 2)
11 x 1 sparse Matrix of class "dgCMatrix"
                        s0
Income
                   -241.70
Limit.
                    394.46
Rating
                   187.83
Cards
                    17.48
                     -5.92
Age
Education
GenderFemale
StudentYes
                    398.36
MarriedYes
EthnicityAsian
EthnicityCaucasian
```

2 afus Side 55 of 94

LASSO-Ridge Comparison: Example

Compare LASSO with ridge:

```
R> # Compare Ridge and LASSO results
R> result.ridge.cv <- cv.glmnet(X, y, alpha = 0, nfolds = 10,
                              lambda = 10^seq(-2, 5, length.out = 50)) # Do R
R> # Final run ridge
R> result.ridge.best <- glmnet(X, y, alpha = 0, lambda = result.ridge.cv$lambda.1
R> round(cbind(result.ridge.best$beta, result.lasso.best$beta), digits = 3)
11 x 2 sparse Matrix of class "dgCMatrix"
                      s0
                             s0
Income
                -236.38 -241.71
Limit.
                  299.40 394.46
Rating
                 278.20 187.83
Cards
                 20.44 17.48
Age
                -13.39 -5.92
Education
                 -2.25
GenderFemale
            -8.23 .
StudentYes
               407.35 398.36
MarriedYes
           -11.17
EthnicityAsian 16.08
EthnicityCaucasian 9.87
```

2 afing side 56 of 94

LASSO-Ridge Comparison: Example

Comparison ridge and LASSO:

- Often neither ridge nor LASSO is overall better.
- We expect that the LASSO does well if there are a small number of large nonzero β_j and the others close to zero.
- Ridge works well with many β_i s large and of about the same value.
- In practice, we cannot know a priori what the β_j s are: use cross validation to find out what fits best.

Degrees of freedom

- Degrees of freedom (df) in OLS: number of parameters β_j , thus df= m.
- Effective degrees of freedom (df_{eff}) in LASSO regression: the number of nonzero β_i .

LASSO Regression Wrap-up

Important properties of LASSO regression:

- LASSO regression shrinks the β_i s towards zero.
- The tuning parameter λ controls strength of shrinkage.
- Automatic variable selection: the ℓ_1 penalty of the LASSO causes some β_j to be zero for large λ .
- As with ridge regression choose λ by k-fold cross validation.
- Estimates are biased but have good mean squared error.
- Big advantage LASSO for interpretation: some β_j are automatically zero.

2 afrigade 60 of 94

Table of Contents

- 1. Ridge Regression
- 2. Ridge Regression and SVD
- 3. Choosing Penalty Strength λ
- 4. K-Fold Cross Validation
- 5. Thursday Meeting
- 6. LASSO

7. Other Penalties

- 8. An MM Algorithm for the Elastic Net
- 9. Summary and Assignment

Other penalties (nonexhaustive):

- 1. Elastic net
- 2. Smoothed Clipped Absolute Deviation (SCAD)
- 3. Generalized Double Pareto (GDP)
- 4. Adaptive LASSO
- 5. Grouped LASSO

Elastic net:

- Critique on LASSO: variable selection can be too dependent on selected data (not stable).
- Elastic net solution: combine ridge and LASSO penalties

Loss function elastic net regression:

$$L(\boldsymbol{\beta}) = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\top}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) + \lambda \left(\alpha \|\boldsymbol{\beta}\|_{1} + (1 - \alpha)\boldsymbol{\beta}^{\top}\boldsymbol{\beta}\right)$$

$$\uparrow \qquad \qquad \uparrow$$
Regression term
Penalty term

with

- β : unknown $p \times 1$ vector of regression weights
- X: $n \times p$ matrix of predictor variables with elements x_{ij}
- **y**: $n \times 1$ vector of dependent variable for object i = 1, ..., n
- λ : positive (given) penalty parameter
- $0 \le \alpha \le 1$: (given) mixing parameter between ridge and LASSO

Properties elastic net regression:

- More flexibility in value of nonzero β_i s.
- Flexibility depends on α :
 - ightharpoonup $\alpha = 1$: LASSO
 - ightharpoonup $\alpha = 0$: ridge
 - ightharpoonup lpha = 1/2: variable selection of LASSO combined with flexibility of ridge
- For large λ more β_i s will be zero

Consider simple regression situation and a general penalty function $P(\beta)$:

$$L(\beta) = (\mathbf{y} - \mathbf{x}\beta)^{\mathsf{T}} (\mathbf{y} - \mathbf{x}\beta) + \lambda P(\beta)$$

with

$$P(\beta) \ = \ \begin{cases} \beta^2 & \text{for ridge regression} \\ |\beta| & \text{for LASSO} \\ \alpha|\beta| + (1-\alpha)\beta^2 & \text{elastic net} \\ \dots & \text{for } \dots \end{cases}$$

- Let the OLS solution be $\beta_{OLS} = \mathbf{y}^{\top} \mathbf{x} / \mathbf{x}^{\top} \mathbf{x}$.
- The effect of $\lambda P(\beta)$ on the bias is shown by the thresholding function.

Penalty and thresholding plots: Penalty

Thresholding Function

Penalties that do feature (variable) selection:

- Lasso: $P(\beta) = |\beta|$
- Smoothed Clipped Absolute Deviation SCAD (Fan & Li, 2001)
- Generalized Double Pareto GDP: $P(\beta) = \log(1 + |\beta|)$

Properties different penalties with feature selection:

Penalty	Advantage	Disadvantage	
Lasso	Convex in $oldsymbol{eta}$	Biased $oldsymbol{eta}$	
SCAD	Nonconvex in $oldsymbol{eta}$	Unbiased for large β_i	
GDP	Nonconvex in $oldsymbol{eta}$	Unbiased for large eta_j	

Adaptive Lasso

Only a brief discussion of the adaptive Lasso

- Disadvantage Lasso: bias and no guarantee of finding true nonzero population weights.
- The adaptive Lasso solves this problem
- Uses additional fixed weights for each predictor in the penalty.
- Weights can come from OLS regression.

Adaptive Lasso

Loss function adaptive Lasso regression:

$$L(\beta) = (\mathbf{y} - \mathbf{X}\beta)^{\top}(\mathbf{y} - \mathbf{X}\beta) + \lambda \sum_{j=1}^{m} w_{j} |\beta_{j}|$$

$$\uparrow \qquad \qquad \uparrow$$
Regression term Penalty term

with

• w_i : a (given) weight for predictor variable j.

Adaptive Lasso

Properties and choices adaptive Lasso

• Choose weights w_j as a function of the absolute value of the OLS (standard regression) weights β_i^{OLS} :

$$w_j = \frac{1}{|\beta_j^{\mathsf{OLS}}|}$$

- w_i corrects the penalty term for size of the β_i .
- Under some conditions, the adaptive Lasso has oracle properties: for large enough n, the true nonzero β_i will be found.
- The adaptive Lasso estimates of β_j are also consistent (so that for large n the true population values are found).
- In glmnet, the adaptive Lasso is switched on setting penalty.factor to the vector fixed weights w_i .

Only a brief discussion of the Grouped Lasso

- The Lasso does variable selection.
- Sometimes we want the β_j s of a group of predictors to be either 0 or not zero.
- Example: a categorical predictor (factor in R) is represented by a set of dummy variables.
- The Grouped Lasso uses the same idea as the Lasso, but now on the length of the vector of weights.

Example of grouped Lasso penalty with β_1 and β_2 forming Group 1 and β_3 equals Group 2

grouped Lasso penalty =
$$\sqrt{\beta_1^2 + \beta_2^2} + |\beta_3|$$

- $\sqrt{\beta_1^2 + \beta_2^2}$ is the length of the vector (β_1, β_2) .
- ullet If a group has a single predictor: $\sqrt{eta_3^2}=|eta_3|$

Example of the 3D figure corresponding to $\sqrt{\beta_1^2 + \beta_2^2} + |\beta_3| \leq gamma$

Loss function Grouped Lasso regression:

$$L(\beta) = (\mathbf{y} - \mathbf{X}\beta)^{\top}(\mathbf{y} - \mathbf{X}\beta) + \lambda \sum_{k=1}^{K} \sqrt{\sum_{j \in G_k} \beta_j^2}$$

$$\uparrow \qquad \qquad \uparrow$$
Regression term
Penalty term

with

- G_k the set of indexes j of predictors belonging to group k.
- *K* is the total number of groups.

Properties and choices grouped Lasso

- Effect of grouped Lasso penalty: per set of predictor variables G_k the corresponding weights are all zero or they are all nonzero.
- The higher λ , the more sets will have zero β_i s.
- As the Lasso but for sets of weights β_j .
- Within a set G_k , there is only a shrinkage effect on all β_j s of the set (as with ridge).

Table of Contents

- 1. Ridge Regression
- 2. Ridge Regression and SVD
- 3. Choosing Penalty Strength λ
- 4. K-Fold Cross Validation
- 5. Thursday Meeting
- 6. LASSC
- 7. Other Penalties
- 8. An MM Algorithm for the Elastic Net
- 9. Summary and Assignment

Finding majorizing algorithm for the elastic net:

• Find new quadratic majorization function

$$g(\mathbf{x}, \mathbf{y}) = \mathbf{x}^{\top} \mathbf{A} \mathbf{x} - 2 \mathbf{x}^{\top} \mathbf{b} + c$$

• Set gradient to zero for update:

$$\begin{array}{ccc} \frac{\partial g(\mathbf{x},\mathbf{y})}{\partial \mathbf{x}} & = & 2\mathbf{A}\mathbf{x} - 2\mathbf{b} = \mathbf{0} \\ \mathbf{A}\mathbf{x} & = & \mathbf{b} \\ \hat{\mathbf{x}} & = & \mathbf{A}^{-1}\mathbf{b} \end{array}$$

• Finding a majorizating function for the elastic net:

$$L(\boldsymbol{\beta}) = (2n)^{-1}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\top}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) + \lambda \left((1 - \alpha)/2\boldsymbol{\beta}^{\top}\boldsymbol{\beta} + \alpha \|\boldsymbol{\beta}\|_{1} \right)$$

• Difficult part lies in $|\beta_j|$. Majorize $|\beta_j|$ by

$$0 \leq \left(\left|\beta_{j}\right| - \left|\beta_{j}^{(0)}\right|\right)^{2}$$

$$\left|\beta_{j}\right| \leq \frac{1}{2} \frac{\beta_{j}^{2}}{\left|\beta_{j}^{(0)}\right|} + \frac{1}{2} \left|\beta_{j}^{(0)}\right|$$

$$\left|\beta_{j}\right| \leq \frac{1}{2} \frac{\beta_{j}^{2}}{\max\left(\left|\beta_{j}^{(0)}\right|, \varepsilon\right)} + \frac{1}{2} \left|\beta_{j}^{(0)}\right|$$

where

- ightharpoonup \lesssim stands for "approximately smaller than"
- \sim ε is a small positive constant (for example, $\varepsilon = 10^{-8}$)

• Finding a majorizating function for the elastic net:

$$\begin{split} L(\boldsymbol{\beta}) &= \frac{\mathbf{y}^{\top}\mathbf{y} + \boldsymbol{\beta}^{\top}\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\beta} - 2\boldsymbol{\beta}^{\top}\mathbf{X}^{\top}\mathbf{y}}{2n} + \frac{\lambda(1-\alpha)}{2}\boldsymbol{\beta}^{\top}\boldsymbol{\beta} \\ &+ \lambda\alpha\sum_{j=1}^{p}|\beta_{j}| \\ &\leq \frac{\mathbf{y}^{\top}\mathbf{y} + \boldsymbol{\beta}^{\top}\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\beta} - 2\boldsymbol{\beta}^{\top}\mathbf{X}^{\top}\mathbf{y}}{2n} + \frac{\lambda(1-\alpha)}{2}\boldsymbol{\beta}^{\top}\boldsymbol{\beta} \\ &+ \alpha\sum_{j=1}^{p}\left(\frac{1}{2}\frac{\beta_{j}^{2}}{\max\left(\left|\beta_{j}^{(0)}\right|,\varepsilon\right)} + \frac{1}{2}\left|\beta_{j}^{(0)}\right|\right) \\ &= \frac{1}{2}\boldsymbol{\beta}^{\top}\left(n^{-1}\mathbf{X}^{\top}\mathbf{X} + \lambda(1-\alpha)\mathbf{I} + \lambda\alpha\mathbf{D}\right)\boldsymbol{\beta} - n^{-1}\boldsymbol{\beta}^{\top}\mathbf{X}^{\top}\mathbf{y} + c \end{split}$$

• Finding a majorizating function for the elastic net:

$$L(\boldsymbol{\beta}) = \frac{1}{2}\boldsymbol{\beta}^{\top} \left(n^{-1} \mathbf{X}^{\top} \mathbf{X} + \lambda (1 - \alpha) \mathbf{I} + \lambda \alpha \mathbf{D} \right) \boldsymbol{\beta} - n^{-1} \boldsymbol{\beta}^{\top} \mathbf{X}^{\top} \mathbf{y} + c$$

with

$$lackbox{ extbf{D}}$$
 a $p imes p$ diagonal matrix with elements $d_{jj}=1/\max\left(\left|eta_{j}^{(0)}
ight|,arepsilon
ight)$

$$ightharpoonup$$
 constant $c = (2n)^{-1} \mathbf{y}^{\top} \mathbf{y} + (1/2) \lambda \alpha \sum_{i=1}^{p} \left| \beta_{j}^{(0)} \right|$

- Let $\mathbf{A} = n^{-1}\mathbf{X}^{\top}\mathbf{X} + \lambda(1-\alpha)\mathbf{I} + \lambda\alpha\mathbf{D}$.
- ullet Then the MM update becomes: $oldsymbol{eta}^* = \emph{n}^{-1} \mathbf{A}^{-1} \mathbf{X}^{ op} \mathbf{y}$

• An MM algorithm for the elastic net:

```
Choose with some initial \beta^{(0)} \in \mathbb{R}^p
Compute L(\beta^{(0)})
Set k \leftarrow 1
while k = 1 or \left(L(\beta^{(k-1)}) - L(\beta^{(k)})\right) / L(\beta^{(k-1)}) > \epsilon do
      k \leftarrow k + 1
      Compute D with elements d_{jj} = 1/\max\left(\left|\beta_{j}^{(k-1)}\right|, \varepsilon\right)
      Compute \mathbf{A} = n^{-1}\mathbf{X}^{\top}\mathbf{X} + \lambda(1-\alpha)\mathbf{I} + \lambda\alpha\mathbf{D}
      The update \beta^{(k)} is the solution of the linear system
        \mathbf{A}\boldsymbol{\beta} = n^{-1}\mathbf{X}^{\top}\mathbf{y}
      As a check, print k, L(\beta^{(k)}), and L(\beta^{(k-1)}) - L(\beta^{(k)})
end
```


Table of Contents

- 1. Ridge Regression
- 2. Ridge Regression and SVD
- 3. Choosing Penalty Strength λ
- 4. K-Fold Cross Validation
- 5. Thursday Meeting
- 6. LASSO
- 7. Other Penalties
- 8. An MM Algorithm for the Elastic Ne
- 9. Summary and Assignment

Summary and Assignment

Summary:

Week	Topics	Material
1	Introduction; Introduction to R; Linear methods	3.1, 3.2, 3.3, Xiong (2014)
	for regression, model selection, and assessment	
2	Regularized regression and k -fold cross validation	3.4.1-3.4.3, 3.8.4, 7.10
3	Basis function expansions, kernels, bias-variance	5.1-5.2.1, 5.8, 7.3
	trade-off	
4	Support vector machines	Groenen, Nalbantov, Bioch
		(2009); 12.1-12.3
5	Classification and regression trees, random	7.11, 9.2, 15
	forests, bootstrap	
6	Boosting	10

Zafuside 85 of 94

To Do for Next Time:

- Try to predict grocery_sum of the file supermarket1996.RData through the elastic net using the demographic variables as predictors.
- Omit the variables store, city, ZIP, groccoup_sum, and shpindx as predictors.
- Write your own R-function for the elastic net using the MM-algorithm provided in the slides.
- Write your own R-function for determining the hyper parameters (such as λ) through K-fold crossvalidation.
- Provide a comparison of the results of your functions with those of glmnet() and explain briefly whether or not they are the same and why this is so.
- Write a small 4-page report about the case according to the template.

Zafuside 86 of 94

Supermarket data:

- The supermarket1996.RData data contains yearly turnover, the sum of redeemed grocery coupons, and demographics data of 77 supermarkets in the Chicago area from 1996.
- The demographic data originally comes from U.S. government (1990) census data for the Chicago metropolitan area.
- The table below gives a brief descriptions of the variables in the file.
- The data have been downloaded from https: //www.chicagobooth.edu/research/kilts/datasets/dominicks in 2014.

Variables supermarket data:

variables supermarker data.			
\$)			
ted)			
,			

Variables supermarket data:

variables saperin	
Variable Name	Description
hsize1	% of households with 1 person
hsize2	% of households with 2 persons
hsize34	% of households with 3 or 4 persons
hsize567	% of households with 5 or more persons
hh3plus	% of households with 3 or more persons
hh4plus	% of households with 4 or more persons
hhsingle	% Detached Houses
hhlarge	% of households with 5 or more persons
workwom	% Working Women with full-time jobs
sinhouse	% of households with 1 person
density	Trading Area in Sq Miles per Capita
hval150	% of Households with Value over \$150,000
hval200	% of Households with Value over \$200,000
hvalmean	Mean Household Value (Approximated)
single	% of Singles
retired	% of Retired

Cafus Side 89 of 94

Variables supermarket data:

Variable Name	Description
unemp	% of Unemployed
wrkch5	% of working women with children under 5
wrkch17	% of working women with children 6 - 17
nwrkch5	% of non-working women with children under 5
nwrkch17	% of non-working women with children 6 - 17
wrkch	% of working women with children
nwrkch	% of non-working women with children
wrkwch	% of working women with children under 5
wrkwnch	% of working women with no children
telephn	% of households with telephones
mortgage	% of households with mortgages
nwhite	% of population that is non-white
poverty	% of population with income under \$15,000

Zafus Side 90 of 94

Variables supermarket data:

y House)
y House)

References I

- Borg and P. J. F. Groenen. Modern multidimensional scaling. Springer, New York, 2. edition. 2005.
- J. De Leeuw. Fitting distances by least squares. Technical Report 130, Interdivisional Program in Statistics, UCLA, Los Angeles, CA, 1993.
- Willem J. Heiser. Convergent computation by iterative majorization: Theory and applications in multidimensional data analysis. In W. J. Krzanowski, editor, Recent advances in descriptive multivariate analysis, pages 157–189, Oxford, 1995. Oxford University Press.
- D. R. Hunter and K. Lange. A tutorial on MM algorithms. The American Statistician, 39: 30–37, 2004.
- Henk A. L. Kiers. Setting up alternating least squares and iterative majorization algorithms for solving various matrix optimization problems. Computational Statistics and Data Analysis, 41:157–170, 2002.
- K. Lange, D. R. Hunter, and I. Yang. Optimization transfer using surrogate objective functions. Journal of Computational and Graphical Statistics, 9:1–20, 2000.
- H. Voss and U. Eckhardt. Linear convergence of generalized Weiszfeld's method. Computing, 25(3):243–251, 1980.
- Alan L Yuille and Anand Rangarajan. The concave-convex procedure. Neural computation, 15 (4):915–936, 2003.

Zafuside 92 of 94

Acknowledgement

Some of the figures in this presentation are taken from "An Introduction to Statistical Learning, with applications in R" (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani

