

Low power dual operational amplifier

Features

- Internally frequency compensated
- Large DC voltage gain: 100dB
- Wide bandwidth (unity gain): 1.1MHz (temperature compensated)
- Very low supply current/op (500µA) essentially independent of supply voltage
- Low input bias current: 20nA (temperature compensated)
- Low input offset current: 2nA
- Input common-mode voltage range includes negative rail
- Differential input voltage range equal to the power supply voltage
- Large output voltage swing 0V to (V_{CC}⁺ 1.5V)

Description

This circuit consists of two independent, high gain, internally frequency compensated operational amplifiers which were designed specifically for automotive and industrial control system. It operates from a single power supply over a wide range of voltages. The low power supply drain is independent of the magnitude of the power supply voltage.

Application areas include transducer amplifiers, DC gain blocks and all the conventional op-amp circuits which now can be more easily implemented in single power supply systems. For example, these circuits can be directly supplied from the standard +5V which is used in logic systems and will easily provide the required interface electronics without requiring any additional power supply.

In the linear mode the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from a single power supply.

Schematic diagram LM2904

1 Schematic diagram

2 Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings (AMR)

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage ⁽¹⁾	±16 or 32	V
V _{id}	Differential input voltage ⁽²⁾	±32	V
V _{in}	Input voltage	-0.3 to 32	V
	Output short-circuit duration (3)	Infinite	S
l _{in}	Input current (4)	50	mA
T _{oper}	Operating free-air temperature range	-40 to +125	°C
T _{stg}	Storage temperature range	-65 to +150	°C
Tj	Maximum junction temperature	150	°C
R _{thja}	Thermal resistance junction to ambient ⁽⁵⁾ SO-8 TSSOP8 DIP8 MiniSO-8	125 120 85 190	°C/W
R _{thjc}	Thermal resistance junction to case ⁽⁵⁾ SO-8 TSSOP8 DIP8 MiniSO-8	40 37 41 39	°C/W
	HBM: human body model ⁽⁶⁾	300	V
ESD	MM: machine model ⁽⁷⁾	200	V
	CDM: charged device model ⁽⁸⁾	1.5	kV

- 1. All voltage values, except differential voltage are with respect to network ground terminal.
- 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
- Short-circuits from the output to V_{CC} can cause excessive heating if Vcc⁺ > 15V. The maximum output current is approximately 40mA, independent of the magnitude of V_{CC}.
 Destructive dissipation can result from simultaneous short-circuits on all amplifiers.
- 4. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward biased and thereby acting as input diodes clamps. In addition to this diode action, there is also NPN parasitic action on the IC chip. This transistor action can cause the output voltages of the op-amps to go to the V_{CC} voltage level (or to ground for a large overdrive) for the time duration than an input is driven negative. This is not destructive and normal output will set up again for input voltage higher than -0.3V.
- 5. Short-circuits can cause excessive heating and destructive dissipation. Values are typical.
- 6. Human body model: A 100pF capacitor is charged to the specified voltage, then discharged through a $1.5 k\Omega$ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
- 7. Machine model: A 200pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor $< 5\Omega$). This is done for all couples of connected pin combinations while the other pins are floating.
- 8. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins.

Table 2. Operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	3 to 30	V
V _{icm}	Common mode input voltage range	V _{CC} ⁺ - 1.5	V
T _{oper}	Operating free-air temperature range	-40 to +125	°C

3 Electrical characteristics

Table 3. $V_{CC}^+ = 5V$, $V_{CC}^- = Ground$, $V_O = 1.4V$, $T_{amb} = 25^{\circ}C$ (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{io}	Input offset voltage $^{(1)}$ $T_{amb} = 25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$		2	7 9	mV
DV _{io}	Input offset voltage drift		7	30	μV/°C
I _{io}	Input offset current $T_{amb} = 25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$		2	30 40	nA
DI _{io}	Input offset current drift		10	300	pA/°C
I _{ib}	Input bias current $^{(2)}$ $T_{amb} = 25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$		20	150 200	nA
A _{vd}	Large signal voltage gain $\begin{aligned} &V_{CC}^{+}=+15\text{V}, R_{L}=2k\Omega V_{o}=1.4\text{V to }11.4\text{V}\\ &T_{amb}=25^{\circ}\text{C}\\ &T_{min}\leq T_{amb}\leq T_{max} \end{aligned}$	50 25	100		V/mV
SVR	Supply voltage rejection ratio ($R_S \le 10 k\Omega$) $T_{amb} = 25 ^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$	65 65	100		dB
I _{CC}	Supply current, all amp, no load $T_{amb} = 25^{\circ}\text{C}, \ V_{CC}^{+} = +5\text{V}$ $T_{min} \le T_{amb} \le T_{max}, \ V_{CC}^{+} = +30\text{V}$		0.7	1.2 2	mA
V _{icm}	Input common mode voltage range $(V_{CC}^+= +30V)^{(3)}$ $T_{amb} = 25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$	0		V _{CC} ⁺ -1.5 V _{CC} ⁺ -2	٧
CMR	Common-mode rejection ratio ($R_S = 10k\Omega$) $T_{amb} = 25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$	70 60	85		dB
I _{source}	Output short-circuit current V_{CC}^+ = +15V, V_o = +2V, V_{id} = +1V	20	40	60	mA
I _{sink}	Output sink current $V_O = 2V$, $V_{CC}^+ = +5V$ $V_O = +0.2V$, $V_{CC}^+ = +15V$	10 12	20 50		mΑ μΑ
V _{OH}	High level output voltage (V_{CC}^+ = + 30V) T_{amb} = +25°C, R_L = 2k Ω $T_{min} \le T_{amb} \le T_{max}$ T_{amb} = +25°C, R_L = 10k Ω $T_{min} \le T_{amb} \le T_{max}$	26 26 27 27	27 28		V
V _{OL}	Low level output voltage ($R_L = 10$ kΩ) $T_{amb} = +25$ °C $T_{min} \le T_{amb} \le T_{max}$		5	20 20	mV

Electrical characteristics LM2904

Table 3. $V_{CC}^+ = 5V$, $V_{CC}^- = Ground$, $V_O = 1.4V$, $T_{amb} = 25^{\circ}C$ (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit
SR	Slew rate $\begin{split} &V_{CC}^{+}=15\text{V},V_{in}=0.5\text{ to 3V},R_{L}=2k\OmegaC_{L}=100\text{pF},\\ &\text{unity gain}\\ &T_{min}\leq T_{amb}\leq T_{max} \end{split}$	0.3 0.2	0.6		V/µs
GBP	Gain bandwidth product f = 100kHz V_{CC}^+ = 30V, V_{in} = 10mV, R_L = 2k Ω , C_L = 100pF	0.7	1.1		MHz
THD	Total harmonic distortion $f = 1 \text{kHz}, \ A_V = 20 \text{dB}, \ R_L = 2 \text{k}\Omega, \ V_o = 2 \text{V}_{pp}, \\ C_L = 100 \text{pF}, \ V_{CC}{}^+ = 30 \text{V}$		0.02		%
e _n	Equivalent input noise voltage $f = 1 \text{kHz}$, $R_S = 100 \Omega$, $V_{CC}^+ = 30 \text{V}$		55		nV/√Hz
V _{O1} /V _{O2}	Channel separation ⁽⁴⁾ 1kHz ≤f ≤ 20kHz		120		dB

^{1.} $V_O = 1.4V$, $R_S = 0\Omega$, $5V < V_{CC}^+ < 30V$, $0V < V_{ic} < V_{CC}^+ - 1.5V$.

^{2.} The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output, so there is no change in the loading charge on the input lines.

The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V. The
upper end of the common-mode voltage range is V_{CC}⁺-1.5V, but either or both inputs can go to +32V without damage.

^{4.} Due to the proximity of external components ensure that stray capacitance does not cause coupling between these external parts. This typically can be detected at higher frequencies because this type of capacitance increases.

Figure 2. Open loop frequency response

Figure 3. Large signal frequency response

Figure 4. Voltage follower pulse response

Figure 5. Output characteristics

Figure 6. Voltage follower pulse response

Figure 7. Output characteristics

Electrical characteristics LM2904

Figure 8. Input current versus temperature

V_{CC} = +30 V

V_{CC} = +15 V

TEMPERATURE (°C)

90

80

70

60

50

40

30

20

10

INPUT CURRENT (mA)

ture Fig

V_I = 0 V

Figure 9. Current limiting

Figure 10. Input voltage range

5 25 45 65

Figure 11. Supply current

Figure 12. Voltage gain

Figure 13. Input current versus supply voltage

LM2904 Electrical characteristics

Figure 14. Gain bandwidth product

Figure 15. Power supply rejection ratio

Figure 16. Common mode rejection ratio

Figure 17. Phase margin vs capacitive load

Electrical characteristics LM2904

Typical single-supply applications

Figure 18. AC coupled inverting amplifier

Figure 19. AC coupled non-inverting amplifier

Figure 20. Non-inverting DC gain

Figure 21. DC summing amplifier

Figure 22. High input Z, DC differential amplifier

Figure 23. Using symmetrical amplifiers to reduce input current

Figure 24. Low drift peak detector

Figure 25. Active bandpass filter

Macromodel LM2904

4 Macromodel

4.1 Important note concerning this macromodel

Please consider the following remarks before using this macromodel.

- All models are a trade-off between accuracy and complexity (i.e. simulation time).
- Macromodels are not a substitute to breadboarding; rather, they confirm the validity of a design approach and help to select surrounding component values.
- A macromodel emulates the nominal performance of a typical device within specified operating conditions (temperature, supply voltage, for example). Thus the macromodel is often not as exhaustive as the datasheet, its purpose is to illustrate the main parameters of the product.

Data derived from macromodels used outside of the specified conditions (V_{CC}, temperature, for example) or even worse, outside of the device operating conditions (V_{CC}, V_{icm}, for example), is not reliable in any way.

4.2 Macromodel code

```
** Standard Linear Ics Macromodels, 1993.
** CONNECTIONS :
* 1 INVERTING INPUT
* 2 NON-INVERTING INPUT
* 3 OUTPUT
* 4 POSITIVE POWER SUPPLY
* 5 NEGATIVE POWER SUPPLY
.SUBCKT LM2904 1 2 3 4 5
********
.MODEL MDTH D IS=1E-8 KF=3.104131E-15 CJO=10F
* INPUT STAGE
CIP 2 5 1.000000E-12
CIN 1 5 1.000000E-12
EIP 10 5 2 5 1
EIN 16 5 1 5 1
RIP 10 11 2.600000E+01
RIN 15 16 2.600000E+01
RIS 11 15 2.003862E+02
DIP 11 12 MDTH 400E-12
DIN 15 14 MDTH 400E-12
VOFP 12 13 DC 0
VOFN 13 14 DC 0
IPOL 13 5 1.000000E-05
CPS 11 15 3.783376E-09
DINN 17 13 MDTH 400E-12
VIN 17 5 0.000000e+00
DINR 15 18 MDTH 400E-12
VIP 4 18 2.000000E+00
FCP 4 5 VOFP 3.400000E+01
FCN 5 4 VOFN 3.400000E+01
FIBP 2 5 VOFN 2.000000E-03
```

LM2904 Package information

```
FIBN 5 1 VOFP 2.000000E-03
* AMPLIFYING STAGE
FIP 5 19 VOFP 3.600000E+02
FIN 5 19 VOFN 3.600000E+02
RG1 19 5 3.652997E+06
RG2 19 4 3.652997E+06
CC 19 5 6.00000E-09
DOPM 19 22 MDTH 400E-12
DONM 21 19 MDTH 400E-12
HOPM 22 28 VOUT 7.500000E+03
VIPM 28 4 1.500000E+02
HONM 21 27 VOUT 7.500000E+03
VINM 5 27 1.500000E+02
EOUT 26 23 19 5 1
VOUT 23 5 0
ROUT 26 3 20
COUT 3 5 1.000000E-12
DOP 19 25 MDTH 400E-12
VOP 4 25 2.242230E+00
DON 24 19 MDTH 400E-12
VON 24 5 7.922301E-01
.ENDS
```

5 Package information

In order to meet environmental requirements, STMicroelectronics offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics trademark. ECOPACK specifications are available at: www.st.com.

Package information LM2904

5.1 DIP8 package information

Figure 26. DIP8 package mechanical drawing

Table 4. DIP8 package mechanical data

	Dimensions						
Ref.	Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А			5.33			0.210	
A1	0.38			0.015			
A2	2.92	3.30	4.95	0.115	0.130	0.195	
b	0.36	0.46	0.56	0.014	0.018	0.022	
b2	1.14	1.52	1.78	0.045	0.060	0.070	
С	0.20	0.25	0.36	0.008	0.010	0.014	
D	9.02	9.27	10.16	0.355	0.365	0.400	
E	7.62	7.87	8.26	0.300	0.310	0.325	
E1	6.10	6.35	7.11	0.240	0.250	0.280	
е		2.54			0.100		
eA		7.62			0.300		
eB			10.92			0.430	
L	2.92	3.30	3.81	0.115	0.130	0.150	

LM2904 Package information

5.2 SO-8 package information

Figure 27. SO-8 package mechanical drawing

Table 5. SO-8 package mechanical data

	Dimensions						
Ref.		Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α			1.75			0.069	
A1	0.10		0.25	0.004		0.010	
A2	1.25			0.049			
b	0.28		0.48	0.011		0.019	
С	0.17		0.23	0.007		0.010	
D	4.80	4.90	5.00	0.189	0.193	0.197	
Н	5.80	6.00	6.20	0.228	0.236	0.244	
E1	3.80	3.90	4.00	0.150	0.154	0.157	
е		1.27			0.050		
h	0.25		0.50	0.010		0.020	
L	0.40		1.27	0.016		0.050	
k	1°		8°	1°		8°	
ccc			0.10			0.004	

Package information LM2904

5.3 TSSOP8 package information

Figure 28. TSSOP8 package mechanical drawing

Table 6. TSSOP8 package mechanical data

	Dimensions					
Ref.	Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			1.2			0.047
A1	0.05		0.15	0.002		0.006
A2	0.80	1.00	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
С	0.09		0.20	0.004		0.008
D	2.90	3.00	3.10	0.114	0.118	0.122
Е	6.20	6.40	6.60	0.244	0.252	0.260
E1	4.30	4.40	4.50	0.169	0.173	0.177
е		0.65			0.0256	
k	0°		8°	0°		8°
L	0.45	0.60	0.75	0.018	0.024	0.030
L1		1			0.039	
aaa		0.1			0.004	

LM2904 Package information

5.4 MiniSO-8 package information

Figure 29. MiniSO-8 package mechanical drawing

Table 7. MiniSO-8 package mechanical data

		Dimensions						
Ref.		Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.		
А			1.1			0.043		
A1	0		0.15	0		0.006		
A2	0.75	0.85	0.95	0.030	0.033	0.037		
b	0.22		0.40	0.009		0.016		
С	0.08		0.23	0.003		0.009		
D	2.80	3.00	3.20	0.11	0.118	0.126		
E	4.65	4.90	5.15	0.183	0.193	0.203		
E1	2.80	3.00	3.10	0.11	0.118	0.122		
е		0.65			0.026			
L	0.40	0.60	0.80	0.016	0.024	0.031		
L1		0.95			0.037			
L2		0.25			0.010			
k	0°		8°	0°		8°		
ccc			0.10			0.004		

Ordering information LM2904

6 Ordering information

Table 8. Order codes

Order code	Temperature range	Package	Packing	Marking
LM2904N		DIP8	Tube	LM2904N
LM2904D/DT		SO-8	Tube or tape & reel	2904
LM2904PT		TSSOP8 (Thin shrink outline package)	Tape & reel	2904
LM2904ST	-40°C to +125°C	MiniSO-8	Tape & reel	K403
LM2904YD ⁽¹⁾ LM2904YDT ⁽¹⁾	-40 C t0 +123 C	SO-8 (Automotive grade level)	Tube or tape & reel	2904Y
LM2904YPT ⁽²⁾		TSSOP8 (Automotive grade level)	Tape & reel	29041
LM2904YST ⁽²⁾		MiniSO-8 (Automotive grade level)	Tape & reel	K409

Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent.

Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent are on-going.

LM2904 Revision history

7 Revision history

Table 9. Document revision history

Date	Revision	Changes
2-Jan-2002	1	Initial release.
20-Jun-2005	2	PPAP references inserted in the datasheet ,see <i>Table 8 on page 18</i> . ESD protection inserted in <i>Table 1 on page 3</i> .
10-Oct-2005	3	PPAP part numbers added in table Table 8 on page 18.
12-Dec-2005	4	Pin connections identification added on cover page figure. Thermal resistance junction to case information added see <i>Table 1 on page 3</i> .
1-Feb-2006	5	Maximum junction temperature parameter added in <i>Table 1 on page 3</i> .
2-May-2006	6	Minimum slew rate parameter in temperature <i>Table 3 on</i> page 5.
13-Jul- 2006	7	Modified ESD values and added explanation on V _{CC} , V _{id} in <i>Table 1 on page 3.</i> Added macromodel information.
28-Feb-2007	8	Modified ESD/HBM values in <i>Table 1 on page 3</i> . Updated miniSO-8 package information. Added note relative to automotive grade level part numbers in <i>Table 8 on page 18</i> .
18-Jun-2007	9	Power dissipation value corrected in <i>Table 1: Absolute maximum ratings (AMR)</i> . <i>Table 2: Operating conditions</i> added. Equivalent input noise voltage parameter added in <i>Table 3</i> . Electrical characteristics curves updated. <i>Figure 17: Phase margin vs capacitive load</i> added. <i>Section 5: Package information</i> updated.
18-Dec-2007	10	Removed power dissipation parameter from <i>Table 1: Absolute maximum ratings (AMR)</i> . Removed V _{opp} from electrical characteristics in <i>Table 3</i> . Corrected MiniSO-8 package mechanical data in <i>Section 5.4: MiniSO-8 package information</i> .

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com