טענה $\mathcal{P}(A)$ טרנזיטיבית אם אם טרנזיטיבית A היא סרנזיטיבית.

, אמתקיים, בו שנבחין שנבחין ער טרנזיטיבית. הדבר ש $\mathcal{P}(A)$ יש שמתקיים, נויח את הכיוון ההפוך, נניח ש $\mathcal{P}(A)$

$$x \in \mathcal{P}(A) \iff x \subseteq A, \quad x \in y \in \mathcal{P}(A) \implies x \in \mathcal{P}(A)$$

הטענה הראשונה היא הגדרת קבוצת החזקה, השנייה היא הגדרה שקולה לטרנזיטיביות, לבסוף נכתוב את ההגדרה עצמה,

$$x \in \mathcal{P}(A) \implies x \subseteq \mathcal{P}(A)$$

 $x\in A$ נניח ש־ $x\in y\in A$, ונרצה להראות ש־

נתון כי $y \in A$ ולכן לטרנזיטיביות אבל אבל $\{y\} \subseteq A \iff \{y\} \in \mathcal{P}(A)$ נתון כי $y \in A$ ולכן

$$y \in \{y\} \in \mathcal{P}(A) \implies y \in \mathcal{P}(A)$$

. בדיוק כפי שרצינו, $x \in A$ שלכן נקבל $x \in y \subseteq A$ אבל חזקה. אבל אבל מהגדרת מהגדרת מהגדרת מהגדרת אבל אבל מהגדרת מהגדרת מהגדרת אבל אבל אבל מהגדרת המהגדרת מהגדרת אבל אבל מהגדרת המהגדרת המהגדת

תרגיל 2.0 נניח ש־ $\langle A, \leq
angle$ סדר קווי כלשהו. הוכיחו כי $\min_2:A^2 o A$ היא פונקציה, כלומר הראו כי היא קבוצה המקיימת את תכונת הפונקציה. $\min_F:A^2 o A$ השתמשו במשפט הרקורסיה כדי להראות שקיימת פונקציה $\min_F:A^2 o A$

$$\forall n < \omega, \min_F(n) = \min_2$$

. המינימום שלהם. של טבעיים ומחזירה את המינימום הוחירה min : $\mathcal{P}^{<\omega}(A) o A$ המינימום ומחזירה הראו הראו הראו הראו המינימום שלהם.

, אנו יודעים כי \mathbb{N}^3 קיימת וכן נגדיר,

$$P(x, y, z) = (z = x \lor z = y) \land (z \le x \land z \le y)$$

אז מהפרדה,

$$f = \{(x, y, z) \in \mathbb{N}^3 \mid P(x, y, z)\}$$

היא קבוצה. נותר להראות שהיא פונקציה.