Automatic detection of focal cortical dysplasia for sparse data representation

Student: Olga Grebenkova

Research Advisor: *Evgeny Burnaev*

Introduction

The general problem is detection of focal cortical dysplasia - most common cause of medically refractory epilepsy in the pediatric population and the second/third most common etiology of medically intractable seizures in adults.

FCD - drug-resistant epileptogenic lesion

Epilepsy affects 50 million people worldwide

50 new cases per year per 100,000 population

50%

90%

Success of surgical treatment without detection of an epileptogenic focus.

Success of surgical treatment with detection of an epileptogenic focus.

Introduction

Professional radiologist detect FCD via intent visual MRI inspection, peering multiple sequences along each projection.

1,500

2

brain 2D scans

hours per patient

subjectiveness

General problem

Features of FCD:

A - cortical thickening

B - alteration of gray matter signal

C - loss of differentiation between

gray and white matter

D - alteration of white matter signal

General problem

FCD cases remains uncaught by radiologist

diagnose head and neck cancer on an earlier image

of missed opportunities to cancer on an earlier imaging exam.*

^{*} Lu F, Lysack JT. Lessons Learned From Commonly Missed Head and Neck Cancers on Cross-Sectional Imaging. Canadian Association of Radiologists Journal. 2022;

General problem

Brain with tumor

Brains with FCD

From report from the International League Against Epilepsy: Computer-aided methods for 3D MR image analysis should be developed

Aim of the EpiDetect project

Build a system for doctors to detect FCD on 3D MR data.

Aim of thesis

Thesis goal is to built an NN model for this system for sparse data

Dataset

204 subjects diagnosed with pharmacoresistant epilepsy.

3 MR images and label per subject

Preprocessing:

- The non-brain tissues are striped
- The bias field is corrected
- Aligned with a standard atlas

10 features were added

National Medical and Surgical Center named after N.I. Pirogov" of the Ministry of Healthcare of the Russian Federation

2 sites:

Skoltech

Research center for obstetrics, gynecology and perinatology named after V.I. Kulakov

Olga Grebenkova. Automatic detection of focal cortical dysplasia for sparse data representation.

T1

T2

Flair

Point Cloud

Point Clouds

Objectives

- Build architecture for sparse representation and training pipeline for it.
- Train and evaluate this model.
- Make possible improvements.
- Compare results with SOTA model.

Pre-processing and post-processing pipelines

Architecture and methods

Training, evaluation and comparison

Pipeline

Minkowski Engine

PyTorch extension that provides an extensive set of neural network layers for sparse tensors.

Features:

- Unlimited high-dimensional sparse tensor support
- All standard neural network layers (Convolution, Pooling, Broadcast, etc.)
- Dynamic computation graph
- Custom kernel shapes
- Highly-optimized GPU kernels

Dense tensor

Sparse tensor

Architecture

- MinkUnet34C
- MinkUNet14C
- MinkUNet34C with attention

Losses

$$L_{WeightedBCE}(y, \hat{y}) = -\frac{1}{N} \sum_{i}^{N} w_{i} y_{i} log(\hat{y}_{i}) + w_{0} (1 - y_{i}) log(1 - \hat{y}_{i})$$

$$L_{UnifiedFocal} = \lambda L_{Focal} + (1 - \lambda) L_{Tversky}$$

Metrics

We both want to precisely segment FCD area malformation for pre-surgical planning and detect FCD for decision support system

- 1) object segmentation dice
- 2) classification + localization recall

dice=0.374

recall = 0.89

Prediction is divided into intersecting crops of defined size **C**. The average confidence is calculated for each such crop.

Crops are sorted with respect to the average confidence.

Intersection with FCD area is calculated for top **N** crops with respect to the average confidence.

Example of prediction

- Mask of FCD
- Prediction of MinkUNet14C
- Prediction of state-of-the-art model (Gill, R. S., Lee, H. M., Caldairou, B., Hong, S. J., Barba, C., Deleo, F., ... & Bernasconi, A. (2021). Multicenter validation of a deep learning detection algorithm for focal cortical dysplasia. *Neurology*, *97*(16), e1571-e1582.)

Example of prediction

- 0
 - Mask of FCD
- 0
- Prediction of MinkUNet14C

Skoltech

Prediction of SOTA model

Example of subject with low dice

- - Mask of FCD
- Prediction of MinkUNet14C
- Prediction of SOTA model

Example of failed prediction

- Mask of FCD
- Prediction of MinkUNet14C
- Prediction of SOTA model

Results

- 37 out of 90 brains detected in terms of dice metric
- Recall for our model 0.51 ± 0.2
- Recall for SOTA model 0.52 ± 0.2

Plans

- End all experiments on big dataset.
- Interpret results in terms of vital features.
- Make more precise statistical analysis of the results.
- Add new results to the draft and prepare final text.

Acknowledgements

- Evgeny Burnaev Head of Skoltech Applied Al Center, Full Professor
- Alexandr Bernshtein Full Professor
- Maxim Sharaev Head of the research group
- Vyacheslav Yarkin Research Engineer
- Nadezhda Alsahanova Research Engineer
- Egor Syrkashev Radiologist
- Aleksei Marinets Radiologist

Thank you for your attention!

Additional slides

Conclusions

- Approach with sparse representation proved its consistency.
- 60% of successful predictions.
- The sets of non-detected subjects differed between proposed approach and the state-of-the-art one, suggesting that an ensemble of these models could be used to obtain more reliable predictions.
- Outcome: this model will be inserted in the pipeline of EpiDetect project.

Scientific novelty

It has been shown for the first time that:

- Neural networks for point clouds segmentation can be used for the MRI analysis. Their usefulness is proved.
- Additional features like blurring, curvature, thickness of grey matter, concentration rate, variance and entropy were added to the pipeline.

State-of-art-model

Gill, R. S., Lee, H. M., Caldairou, B., Hong, S. J., Barba, C., Deleo, F., ... & Bernasconi, A. (2021). Multicenter validation of a deep learning detection algorithm for focal cortical dysplasia. *Neurology*, 97(16), e1571-e1582.