Game theory

a course for the

MSc in ICT for Internet and multimedia

Leonardo Badia

leonardo.badia @gmail.com

Minimax

Optimization approach to game theory

Maximin

- □ Consider a "two-"player game (i vs -i)
- $s_i^* = \arg \max_{s_i \in S_i} f_i(s_i)$ is a **security strategy** (maximinimizer) for i (may not be unique)
- □ We say that $w_i = \max_{s_i \in S_i} \min_{s_{-i} \in S_{-i}} u_i(s_i, s_{-i})$ is the **maximin** or the security payoff of i
- A security strategy is a conservative approach allowing *i* to achieve the highest payoff in case of the worst move by -*i*

Minimax

- □ Similarly, $F_i: S_{-i} \to \mathbb{R}$ as $F_i(s_{-i}) = \max_{s_i \in S_i} u_i(s_i, s_{-i})$
- $z_i = \min_{s_{-i} \in S_{-i}} F_i(s_{-i}) = \min_{s_{-i} \in S_{-i}} \max_{s_i \in S_i} u_i(s_i, s_{-i})$ is called the **minimax** for player *i*
- □ If *i* could move after -*i*, the minimax would be the minimum payoff which is guaranteed to player *i*
 - so, if player i can perfectly predict the move of the other players (it is not known yet, but player i just knows that it will be possible to predict it), minimax = what can be expected

Example

- maximin_A = 3: player A can secure this payoff by playing the security strategy T
- minimax_A = 4: knowing with certainty what B
 will play guarantees at least this payoff to A

Minimax, maximin, NE

- We can prove:
- (1) For every player i, maximin, \leq minimax,
- (2) If joint strategy s is a Nash equilibrium, then for every player i, minimax $_i \le u_i(s)$
- The first relationship is obvious
- The second <u>follows</u> from <u>every player not</u> <u>desiring to deviate from the NE</u>

Example

		player B		
4		L	C	R
er A	Т	5, 6	3, 2	4, 1
player	D	2,0	6,8	1,2

- □ As previously observed, maximin_A < minimax_A
- Moreover, there are two Nash equilibria:
 - \Box (T,L) where $u_A = 5 > minimax_A$
 - \square (D,C) where $u_A = 6 > \min_{A}$
- Check for B!

Another example

□ Here, there is one NE (D, L). For both players, maximin = payoff at the NE, so it must be: $\max_i = u_i$ (NE)

And yet another example

- In general, the <u>Lemma does not guarantee a NE</u>
- □ Here, $maximin_i = minimax_i$ for each player i

And yet another example

However, there is no NE in pure strategies

Zero-sum games

A special class of games, easier to solve

Zero-sum

□ We speak of **zero-sum game** if $u_i(s) = -u_{-i}(s)$

Odds&Evens, rock/paper/scissors, chess...
 are all zero-sum games

Competitive/adversarial games

- A more general class of games where two players i and -i (adversaries) have utilities s.t. $u_i \nearrow u_{-i} \searrow$
 - zero-sum games are a special category of this
- If the utilities have just ordinal meaning and/or they can be rescaled by constant terms, easy connection with zero-sum games
 - □ Chess: +1 to winner, +0.5 if tie \rightarrow like zero-sum
 - Serie A: +3 to winner, +1 if tie \rightarrow not exactly

Minimax Theorem (1)

- □ G = zero-sum game with finitely many strategies
- (1) G has a NE iff maximin_i = minimax_i for each i
- (2) All NEs yield the same payoff (= maximin,)
- (3) NEs have form (s_i^*, s_{-i}^*) , with $s_i^* =$ security strategy

		player B		
∀	т	-9 , 9	8, -8	K
layer A				-5, 5
play	M	-2,2	6, -6	2, -2
	D	-1, 1	3, -3	4, -4

for player A:

- \square maximin = -1
- \square minimax = -1
- \Box (L,D) is a NE, $u_A = -1$

Remarks

- Since the game is zero-sum, it is sufficient to
 check maximin = minimax for one player only
- ☐ It also holds
 ☐ It also

```
    \text{maximin}_{i} = - \text{minimax}_{-i}

    \text{minimax}_{i} = - \text{maximin}_{-i}
```

- The common value of maximin₁ = minimax₁ is called the value of the game
 - Some games with infinitely many strategies are "without value" (theorem does not hold)
- A joint security strategy (if any), i.e., a NE, is called a saddle point of the game

Remarks

- The bi-matrix for this special kind of games can be represented with a regular matrix (utility of player -i is implicit)
- The proof of the theorem is due to von Neumann (1928) and makes use of linear programming (constrained optimization)
- The criterion of minimaximizing the utility has been widely employed in artificial intelligence applications: e.g., chess, which is a zero-sum (although sequential) game

Mixed maximin/minimax

the extensions to mixed strategies

Mixed security strategy

- □ Consider a "two-"player game (i vs -i), and take f_i : $\Delta S_i \rightarrow \mathbb{R}$ as $f_i(m_i) = \min_{m_{-i} \in \Delta S_{-i}} u_i(m_i, m_{-i})$
- □ Any mixed strategy m_i^* maximizing $f_i(m_i)$ is a **mixed security strategy** for i
- This max, i.e. $\max_{m_i \in \Delta S_i} \min_{m_{-i} \in \Delta S_{-i}} u_i(m_i, m_{-i})$ is the maximin or the **mixed security payoff** of i
- A mixed security strategy is the conservative mixed strategy guaranteeing the highest payoff for *i* in case of the worst mixed strategy by -*i*

Mixed minimax

- Also if $F_i: \Delta S_{-i} \to \mathbb{R}$ is $F_i(m_{-i}) = \max_{m_i \in \Delta S_i} u_i(m_i, m_{-i})$ $\min_{m_{-i} \in \Delta S_{-i}} F_i(m_{-i}) = \min_{m_{-i} \in \Delta S_{-i}} \max_{m_i \in \Delta S_i} u_i(m_i, m_{-i})$ is the **minimax** for i in mixed strategy, minimax i
- If i could move after -i, there is a mixed strategy which guarantees i to achieve at least minimax, m
- **Note 1.** $f_i(m_i)$ can be found minimizing $u_i(m_i,s_i)$, i.e., using pure strategies only. $F_i(m_i)$ can be defined maximizing $u_i(s_i,m_i)$
- Note 2. \max_{i}^{m} and \min_{i}^{m} always exist and are equal, as payoff $u_{i}(m_{i}, m_{-i})$ is continuous

maximin^m vs minimax^m

□ From pure minimax:

If joint mixed strategy m is a Nash equilibrium, then for every player i, minimax_i^m $\leq u_i(m)$

		S Jo	e C
im.	Т	3,-	0,-
	M	1,-	2,-

(only Jim's payoffs are shown)

- □ Jim: maximin = 1, minimax = 2
- □ Jim can increase his maximin if he plays $\frac{1}{4}$ T + $\frac{3}{4}$ M. maximin^m = 1.5
- □ For Jim, the worst strategy Joe can play is $\frac{1}{3}$ S + $\frac{2}{3}$ C, minimax^m = 1.5

maximin^m vs minimax^m

- $lue{}$ Art's mixed strategies are uniquely described by $oldsymbol{q}$
- $f_{A}(q) = \min_{s_{B} \in \{F,G\}} u_{A}(q,s_{B}) = \min \{ u_{A}(q,F), u_{A}(q,G) \} =$ $= \min \{ 6q + 2(1-q), 4(1-q) \} = \min \{ 2+4q, 4-4q \}$

maximin^m vs minimax^m

- □ Check yourself that minimax_A^m is also 3
- □ So it is verified that $\max_{i} \leq \min_{i} \leq \min_{i} \max_{i} m$
- □ Note that we found a Nash equilibrium at $(\frac{5}{8}, \frac{1}{2})$, so Art's payoff at NE is also 3
- □ As an exercise, do the same check for Bea, her maximin_i^m = minimax_i^m = $u_B(NE) = 2.5$

back to Example 5

You can have more NEs (e.g. Battle of Sexes)

- □ You can check that the maximin = 0, minimax = 1 for both players. But maximin^m = minimax^m = $\frac{2}{3}$
- □ You have three NEs whose payoffs are 1, 2, 1.67

back to Example 3

- Also for this game (which is zero-sum)
- $maximin = -4 < maximin_i^m = minimax_i^m = 0 < minimax = 4$
- 0 was the payoff at the (mixed) NE

Minimax Theorem (2)

- □ G = zero-sum game with finitely many strategies
- (1) For every player i, maximin, m = minimax, $m \rightarrow minimax$, thus, $m \rightarrow minimax$ must have a Nash equilibrium! (this is actually how to find it)
- (2) All Nash equilibria in mixed strategies are security strategies for player i and yield a payoff to player i equal to maximin,m
- □ **Note**. In zero-sum games maximin₁ m = -minimax₂ m
- All Nash equilibria are "equivalent" (same payoff)
- \square maxmin₁ is called the value of the game.

Linear Programming

- The search of minimax solutions (i.e., NEs) of a zero-sum game is a nice application of LP
- □ Player 1 has pure strategies $\{A_1, A_2, ..., A_L\}$
- □ A mixed strategy $\mathbf{a} = \{a_j\}$ is a linear combination $a_1 A_1 + \dots + a_L A_L$
- □ Player 2 has pure strategies $\{B_1, B_2, \dots, B_M\}$
- □ A mixed strategy $\mathbf{b} = \{b_j\}$ is a linear combination $b_1 B_1 + ... + b_M B_M$
- □ **Note.** We only need $u = u_1$ as $u_2 = -u_1$

Linear Programming

W must be maximized.
W cannot be increased,
when some constraints
become active. These
constraint describe the
support of player 2's **b**.

The $\underline{a_i}$ s are a probability distribution

M constraints

Arategie que di B

The payoff of (a, B,). We check a against M pure strategies only

 In general, find a mixed minimax strategy for player 1

Linear Programming

□ Since $\max_{i} \min_{i} = \min_{i} \max_{i} m$

- $b_i \geq 0, \sum_i b_i = 1$
- $\square \sum_{j} b_{j} u(A_{k} B_{j}) \leq W \quad (\forall k)$
- **min**imize *W*

maximin version

- The two problems <u>yield</u> the same solution
- Note. This formulation can be made for every problem, but solution is not always guaranteed
- \square Zero-sum games are special in that $u_2 = -u_1$

How to solve minimax

- LP problems can be solved via optimization
- Polynomial-time techniques exist
- Simplex method is widely used (CPLEX, lpsolve):
 (worst-case) exponential, often fast in practice
- Meta-heuristic techniques (Genetic Algorithms, Tabu search): sometimes even faster, but they do not guarantee to find the solution

Stackelberg games

From static to sequential games

Stackelberg games

- Proposed by von Stackelberg (1934) to model incumbent vs. outsider competition
- It is a sequential version of a static game (analogous to the sequential Battle of Sexes)
- Players move alternately
 - □ First player 1 (leader), then player 2 (follower)
- Can be represented again with a bi-matrix
- The backward induction outcome is called the Stackelberg equilibrium

Stackelberg games

		Brian R S	
Ann	R	2, 1	0,0
K	S	0,0	1,2

- If Ann is leader, Stackelberg equilibrium is (R,R)
 Brian achieves his minimax=1

- Stackelberg eq = same as NE, i.e., both players choose 50/50
- Both achieve minimax=0.

Example 12

- (R,F) is a pure Nash equilibrium
- If Carl is leader, he knows Joe's best responses
- Stackelberg equilibrium with Carl leader = (T,G)
- Joe obtains payoff 3, his minimax was 2

Example 12

- If Joe is leader, we need other information to solve
 - •We assume that Carl solves ties with the choice which is best for Joe (generous follower)
 - Also assume Joe solves ties with what is best for the follower (generous leader)
- Stackelberg equilibrium with Joe leader = (S,H)
- Carl obtains payoff 6, his minimax was 2

Comments on Stackelberg

- The leader has "first-move advantage"
 - His/her payoff ≥ that in Nash equilibrium
 - See that if Ann leads, she has a guaranteed payoff greater than in any of the NEs
- The follower is not necessarily worse off in the Stackelberg setup
 - His/her payoff ≥ minimax

2, 1	0,0
0,0	1,2

Comments on Stackelberg

- □ For adversarial/competitive setups, more specifically for zero-sum games, however:
 - the leader being better off means that the follower is worse off
- Strange: the follower has more information!
 - \square but more information \rightarrow lower payoff
 - □ in classic optimization, knowledge is power
 - in game theory, ignorance is bliss
 - it is a consequence of rationality: player 2 has more information but player 1 can anticipate this