ОТЧЕТ

Владислав Морозов, 408 гр.

Задание 2 (осенний семестр 2023/2024 учебного года)

1 Постановка задачи

Для заданной функции $f(x,y) \in L_2(\Omega)$ требуется найти ее наилучшее приближение линейной комбинацией $\sum_{j=1}^n c_j g_j(x,y)$ линейно независимых элементов $g_1,\ldots,g_n \in L_2(\Omega)$, то есть найти набор коэффициентов c_j^0 такой, что

$$\Delta = \|f - \sum_{j=1}^{n} c_j^0 g_j\| = \inf_{c_1, \dots, c_n} \|f - \sum_{j=1}^{n} c_j g_j\|.$$

Здесь $\|\varphi\|^2=(\varphi,\varphi),$ где $(\varphi,\psi)=\int_{\Omega} \varphi\overline{\psi}\,dx\,dy.$

Линейно независимые элементы $g_j(x,y)$ строятся как базисные функции в методе конечных элементов для заданного способа разбиения области Ω и заданного набора узлов на конечном элементе.

Известно, что решение этой задачи существует, единственно и сводится к решению системы линейных алгебраических уравнений вида A c = b, где A – матрица Грама с элементами $a_{ij} = (g_i, g_j)$, b – вектор проекций заданной функции на базис, т.е. $b_j = (f, g_j)$, а c – искомый вектор коэффициентов наилучшего приближения.

Конкретная постановка задачи определяется:

- 1) формой области KTE 2 трапеция с вершинами (0,0), (0,1), (1,0), (2,1);
- 2) способом разбиения на конечные элементы равнобедренные прямоугольные треугольники c катетом h;
- 3) выбором вершин треугольников в качестве узлов для построения функций форм;
- 4) методом решения системы линейных уравнений Algorithm 2 (Conjugate Gradient).

2 Локальная матрица Грама

Найдем вид функций формы:

$$\begin{array}{ll} \Phi_1=1+\frac{x-y}{h}, & \Phi_2=-\frac{x}{h}, & \Phi_3=\frac{y}{h}, \\ \tilde{\Phi}_1=1+\frac{y-x}{h}, & \tilde{\Phi}_2=\frac{x}{h}, & \tilde{\Phi}_3=-\frac{y}{h} \end{array}$$

Базисные функции (φ_{ij}) и формулы элементов вектора правой части (b_j) можно найти в отчете к упражнению 2-2.

Зная функции формы (их аналитические формулы), можем найти элементы локальной матрицы Грама по формуле $h_{ij}=\int_{\Delta}\Phi_{i}\Phi_{j}\,dx\,dy$. В нашем случае эта матрица имеет следующий вид:

$$H_{3\times3} = \frac{h^2}{24} \begin{pmatrix} 2 & 1 & 1\\ 1 & 2 & 1\\ 1 & 1 & 2 \end{pmatrix}.$$

1

3 Глобальная матрица Грама

Зададим нумерацию базисных элементов. Рассмотрим пример для $n=3, h=\frac{1}{3}$:

Элементы глобальной матрицы Грама находятся по формуле $a_{ij}=\int_{\Omega}g_{i}g_{j}\,dx\,dy$. Для данного примера эти элементы легко ищутся с помощью локальной матрицы Грама и приведенного выше рисунка. Явный вид глобальной матрицы Грама $A_{22\times22}$, а также явный вид матрицы $A_{(\frac{3}{2}n^2+\frac{5}{2}n+1)\times(\frac{3}{2}n^2+\frac{5}{2}n+1)}$, полученной обобщением рассмотренного примера, можно найти в отчете к упражнению 2-3.

4 Метод решения системы линейных уравнений

Algorithm 2 (Conjugate Gradient):

- 1. Compute $r_0 := b A c_0$, $p_0 := r_0$
- 2. For $j = 0, 1, \ldots$ until convergence Do:
- $\alpha_j \coloneqq (r_j, r_j)/(A p_j, p_j)$
- 4.
- $c_{j+1} \coloneqq c_j + \alpha_j p_j$ $r_{j+1} \coloneqq r_j \alpha_j A p_j$ $\beta_j \coloneqq (r_{j+1}, r_{j+1})/(r_j, r_j)$ $p_{j+1} \coloneqq r_{j+1} + \beta_j p_j$
- 7.
- 8. EndDo

5 Таблицы результатов счета

Рассматриваемые функции и соответствующие нормы в квадрате:

$$f_1 = d_1, (f_1, f_1) = \frac{3d_1^2}{2};$$

$$f_2 = d_1 x + d_2 y, (f_2, f_2) = \frac{15d_1^2 + 17d_1d_2 + 7d_2^2}{12};$$

$$f_3 = d_1 x^2 + d_2 y^2 + d_3 x y, (f_3, f_3) = \frac{126d_1^2 + 74d_1d_2 + 22d_2^2 + 129d_1d_3 + 49d_2d_3 + 37d_3^2}{60}.$$

Приведенные ниже таблицы содержат величины Δ , посчитанные по формуле

$$\Delta = \sqrt{(f, f) - 2(b, c) + (Ac, c)},$$

а также соответствующие количества итераций используемого метода.

h	f_1	f_2	f_3
1/8	1.590e-04	2.495e-04	5.099e-03
	12	12	12
$\frac{1}{16}$	1.430e-04	1.686e-04	1.299e-03
	12	12	12
$\frac{1}{32}$	1.676e-04	2.016e-04	4.604e-04
	11	11	11
$\frac{1}{64}$	2.016e-04	2.393e-04	4.280e-04
	10	10	10

Таблица результатов счета 1 ($\varepsilon = 10^{-4}$)

h	f_1	f_2	f_3
1/8	1.621e-06	1.768e-06	5.086e-03
	17	18	18
$\frac{1}{16}$	9.870e-07	1.677e-06	1.273e-03
	18	18	18
$\frac{1}{32}$	1.547e-06	2.403e-06	3.183e-04
	17	17	18
$\frac{1}{64}$	1.004e-06	1.513e-06	7.962e-05
	17	17	17

Таблица результатов счета 2 ($\varepsilon = 10^{-6}$)