Numerical Computation

Wen Shen

1. C	Computer	Arithmetic
------	----------	------------

1. Introduction to Numerical Computation	5. Loss of significance
2. Repre. of numbers in different bases	6. More examples on lost of significant digits
3. Floating point representation	7. Review of Taylor Series
4. Introduction to Matlab	8. Finite Difference Approximation
2. Polynomial Interpolation	

1. Poly. inter., Van der Monde matrix	9. Examples for Error Theorem
2. Polynomial interpolation, Lagrange form	10. Uniform Grid
3. Barycentric forms of Lagrange polynomials	11. Chebyshev nodes
4. Poly. inter., Newton's divided diff. 1	12. Matlab simulation for VdM matrix
5. Poly. inter., Newton's divided diff. 2	13. Matlab Simulation for Chebyshev nodes
6. Poly. inter., Newton's divided diff. 3	14. Matlab simulation with uniform grid
7. Poly. inter., existence and uniqueness Thm	15. Aitken-Neville Interpolation
8. Error Thm for Polynomial Interpolation	16. Hermite interpolation

3. Piecewise Polynomial Interpolation: Splines

1. Splines	7. Smoothness Thm for Natural Cubic Spline
2. Examples of Spline Functions	8. Matlab Simulation
3. Linear Splines	O Other Types of PCs for Cubic Splines
4. Quadratic Splines	9. Other Types of BCs for Cubic Splines
5. Natural cubic spline	10. Cubic Hermite Spline
6. Natural Cubic Splines, Derivation of Algo.	11. Bézier curves

4. Numerical Integration

- 1. Numerical integration: Trapezoid Rule
- 2. Example and sample codes for TR
- 3. Error estimate for trapezoid rule
- 4. Simpson's rule, derivation
- 5. Ex. and sample code for Simpson's rule
- 6. Error estimate for Simpson's Rule
- 7. Recursive trapezoid, composite schemes
- 8. Richardson extrapolation
- 9. Romberg algorithm

- 10. Adaptive Simpson's Quadrature
- 11. Gaussian quadrature 1
- 12. Gaussian quadrature 2
- 13. Matlab
- 14. Numerical integration rules in a more abstract setting
- 15. Integrals over Infinite Intervals, Gauss Laguerre, Gauss Hermite
- 16. Monte Carlo Integration

5. Numerical Solutions of Non-linear equations

- 1. Numerical Solutions of nonlinear equations
- 2. Bisection method
- 3. Fixed point iteration, algorithm
- 4. Fixed Point iteration, convergence
- 5. Fixed point iteration, error analysis
- 6. Newton's iteration
- 7. Newton's iteration, convergence

- 8. Newton's iteration, example, code
- 9. Secant method
- 10. Aitken Method and Acceleration
- 11. Halley's Method: an improved version of Newton's method
- 12. Roots of Polynomials, Horner's Algorithm
- 13. Continuation Method

6. Direct Methods for Systems of Linear Equations

- 1. System of linear eq.: Gaussian Elimination
- 2. LU-Factorization
- 3. Cholesky Factorization
- 4. Vector Norms

- 5. Matrix norms
- 6. Condition number of a matrix
- 7. Overdetermined Systems and QR fact.
- 8. SVD and Image compression

7. Fixed Point Iterative Solvers for Linear and Non-linear Systems

- 1. Iterative Solvers: Jacobi Iterations
- 2. Example
- 3. Gauss-Seidal iterations
- 4. SOR iterations
- 5. Linear Fixed Point Iteration for systems

- 6. Convergence Analysis
- 7. Matlab
- 8. Systems of Non-linear Equations, Fixed Point iterations
- 9. Systems of Non-linear Equations, Newton iterations

8. The Method of Least Squares

- 1. Least Squares Method: Linear Regression
- 2. Linear Least Squares with three functions
- 3. General Linear Squares Method
- 4. Nonlinear Least Squares Method

- 5. Least Squares Method for continuous functions
- 6. Examples of orthogonal basis functions
- 7. Matlab Examples on Least Squares Method

9. Numerical Solutions for ODEs

- 1. Numerical solutions for ODEs
- 2. Taylor series methods for ODEs
- 3. Examples of Taylor Series Method
- 4. Error analysis for Taylor Series Methods
- 5. RK Methods, Euler step and Heun step
- 6. The classical 4th order RK method
- 7. Numerical Simulations of RK methods
- 8. Adaptive RKF method
- 9. Explicit AB method for ODEs
- 10. Examples of explicit AB methods

- 11. Implicit ABM methods
- 12. Multistep ABM methods for ODEs
- 13. First order systems of ODEs
- 14. Higher order ODEs and systems
- 15. Stiffness of ODEs, Scalar ODEs
- 16. Systems of ODEs
- 17. Stiff system, Implicit method
- 18. Geometric Int.: Symplectic, Hamiltonian preserving method

10. Numerical Methods for Two-point Boundary Value Problems

- 1. Two-point Boundary value problems
- 2. Shooting method
- 3. Linear Shooting method, extensions
- 4. Nonlinear shooting method

- 5. FDM for two-point BVP
- 6. Finite Difference Methods in 1D
- 7. Neumann BC, Poisson's equation
- 8. Robin BC for Poisson Equation

11. Finite Difference Methods for Some Partial Differential Equations

- 1. FDM for Laplace Equation in 2D
- 2. System of Linear Equations for Discrete Laplace Equation with FDM
- 3. Laplace equation with non-homogeneous Dirichlet BCs
- 4. Poisson equation on a unit square
- 5. Laplace equation with Neumann BC

- 6. Heat equation in 1D, forward Euler method
- 7. Heat equation, CFL stability condition for explicit forward Euler method
- 8. Heat equation, implicit backward Euler step, unconditionally stable
- 9. Heat equation, Crank-Nicholson scheme
- 10. Heat equation with Neumann BC

June 23, 2025