Purely infinite C^* -algebras associated to étale groupoids

Jonathan Brown

Kansas State University Joint with L. Clark and A. Sierakowski

Nebraska-Iowa Functional Analysis Seminar

April 2014

Purely infinite simple

Let A be a simple C^* -algebra.

- For $a \in M_n(A)$, $b \in M_m(A)$ be positive, we say a is Cuntz below b, $a \lesssim b$, if there exist $x_k \in M_{m,n}(A)$ such that $x_k^* b x_k \to a$ in norm.
- $a \in A^+$ is infinite if there exists $b \in A^+$ $a \oplus b \preceq a$.
- A projection $p \in A$ is infinite if and only if it is Murray-von Neumann equivalent to a proper subprojection of itself. (KR00 Lemma 3.1)
- A is purely infinite if every $a \in A^+ \{0\}$ is infinite. (KR00 Theorem 4.16)

Theorem (Kirchberg Phillips)

Let A and B be separable nuclear, purely infinite simple C^* -algebras satisfying the Universal Coefficient Theorem (UCT). Assume A and B are both unital or both nonunital. If there exists a graded isomorphism $\alpha: K_*(A) \to K_*(B)$, which (in the unital case) satisfies $\alpha([1_A]) = [1_B]$, then there exists an isomorphism $\phi: A \to B$

Graph C*-algebras

Let $E = (E^0, E^1, r, s)$ be a directed graph.

- *E* is row-finite if $r^{-1}(v) < \infty$ $\forall v \in E^0$.
- E has no sources if $r^{-1}(v) \neq \emptyset$ $\forall v \in E^0$.
- $\alpha = \alpha_1 \alpha_2 \cdots$ is a path if $s(\alpha_i) = r(\alpha_{i+1})$: $r(\alpha) = r(\alpha_1)$.
- E^* is the set of finite paths, E^{∞} is the set of infinite paths.
- For $\alpha \in E^*$
 - $|\alpha|$ is the length α ;
 - $s(\alpha) = s(\alpha_{|\alpha|});$
 - α is a return path if $r(\alpha) = s(\alpha)$.
 - * A return path α has an *entrance* if there exists i and $e \in r^{-1}(r(\alpha_i)) \{\alpha_i\}.$

Purely infinite graph algebras

KPRR 1997 construct a C^* -algebra $C^*(E)$ from E.

Theorem (KPR 1998)

 $C^*(E)$ is purely infinite simple if and only if

- There exists a return path in E,
- 2 Every return path in E has an entrance, and
- ∀v ∈ E⁰, x = x₁x₂···∈ E[∞] ∃α ∈ E*, i ∈ ℕ such that r(α) = v, s(α) = r(x_i). (cofinal)
 - $C^*(E)$ simple iff items (2) and (3) above hold.
 - That (1)-(3) are sufficient is a result about groupoids from Anantharaman-Delaroch 97.
 - To show they are necessary, the authors show that if E satisfies (2) and (3) but not (1) then $C^*(E)$ is AF.
 - ▶ This dichotomy is particular for graphs.

If we try to generalize to k-graphs, A-D 97 still gives a sufficient condition, but no necessary condition is known.

Groupoids

A groupoid G can be defined as a small category in which every morphism is invertible.

- We identify the objects of the category with the identity morphisms and denote both by $G^{(0)}$; $G^{(0)}$ is called the unit space of G.
- Denote the range of a morphism γ by $r(\gamma)$ and its source by $s(\gamma)$; $r, s: G \to G^{(0)}$.
- We say a pair of morphisms (γ, η) is composable if and only if $s(\gamma) = r(\eta)$ and denote the composition by $\gamma\eta$.
- G acts on $G^{(0)}$ by $\gamma \cdot s(\gamma) = r(\gamma)$; for $C \subset G^{(0)}$ we denote $G \cdot C := \{r(\gamma) : s(\gamma) \in C\}.$

Topological groupoids

We say G is a topological groupoid if G has a topology in which composition and inversion of morphisms are continuous.

- \bullet This implies r and s are continuous.
- We assume this topology is second countable locally compact and Hausdorff.
- G is étale if it is a topological groupoid such that r and s are local homeomorphisms.
 - G étale implies $G^{(0)}$ is open and closed in G.
 - we call open sets B such that r, s are homeomorphisms on B bisections.
- *G* is topologically principal if $\{u \in G^{(0)} : r^{-1}(u) \cap s^{-1}(u) = \{u\}\}$ is dense in $G^{(0)}$.
- G is minimal if $G \cdot U \subset U$ and U open implies $U \in \{\emptyset, G^{(0)}\}$.
 - ▶ Minimal implies: for $x \in G^{(0)}$, U open there exists an open bisection B such that $x \in B \cdot U$.

The groupoid of a directed graph

Let be a row-finite directed graph with no sources. Define:

$$G_E := \{(x, k, y) \in E^{\infty} \times \mathbb{Z} \times E^{\infty} : \exists N \text{ with } x_{i+k} = y_i \text{ for } i \geq N\}.$$

- If $\alpha = x_1x_2 \cdots x_{N+k}$, $\beta = y_1y_2 \cdots y_N$ and $z = y_{N+1}y_{N+2} \cdots$, then $(x, k, y) = (\alpha z, |\alpha| |\beta|, \beta z)$.
- G_E is a groupoid with unit space E^{∞} :
 - (x, k, y) is a morphism from y to x,
 - composition is given by $(x, k, y)(y, \ell, z) = (x, k + \ell, z)$,
 - $(x, k, y)^{-1} = (y, -k, x).$
- The sets

$$Z(\alpha,\beta) := \{(\alpha x, |\alpha| - |\beta|, \beta x) : r(x) = s(\alpha) = s(\beta)\} \quad \text{for } \alpha, \beta \in E^*$$

form a basis for a locally compact Hausdorff topology on G_E :

- $Z(\alpha, \beta)$ is compact.
- ullet G_E topologically principal iff every return path in E has an entrance
- G_E minimal iff E cofinal.

Groupoid C*-algebras

For an étale groupoid G we define a convolution algebra structure on $\mathcal{C}_c(G)$ by

$$f * g(\gamma) = \sum_{r(\eta) = r(\gamma)} f(\eta)g(\eta^{-1}\gamma) \quad f^*(\gamma) = \overline{f(\gamma^{-1})}.$$

We define the regular representation of $C_c(G)$ at $u \in G^{(0)}$ on $\ell^2(Gu)$ by

$$\pi_u(f)\delta_{\gamma} = \sum_{s(\eta)=r(\gamma)} f(\eta)\delta_{\gamma\eta}$$

• $C_r^*(G)$ is the completion of $C_c(G)$ in the norm

$$||f||_r = \sup_{u \in G^{(0)}} ||\pi_u(f)||.$$

 $C_r^*(G)$ is simple if G is topologically principal and minimal (Renault 1980).

Conditional expectation

Let G be an étale groupoid.

- $G^{(0)}$ is open and closed in G.
- ullet $f\in \mathcal{C}_c(\mathcal{G}^{(0)})$ the $f\in\mathcal{C}_c(\mathcal{G})$ (extend by 0)
 - ▶ This extends to an embedding of $C_0(G^{(0)})$ into $C_r^*(G)$.
- $f \in C_c(G) \implies f|_{G^{(0)}} \in C_0(G^{(0)}).$
 - $f\mapsto f|_{G^{(0)}}$ extends to a faithful conditional expectation

$$E: C_r^*(G) \to C_0(G^{(0)}).$$

- ► That is:
 - * $E(ba) = bE(a) \ \forall \ b \in C_0(G^{(0)}), \ a \in C_r^*(G)$
 - \star $E(a) \in C_0(G^{(0)})^+ \forall a \in C_r^*(G)^+$
 - \star $E(a^*a) = 0 \implies a = 0.$

Purely infinite simple étale groupoids

Given
$$a \in C_r^*(G)^+$$
, $E(a) \in C_0(G^{(0)})^+$.

Take

$$h'' = max{E(a/||a||) - 1/2, 0}$$

- Then $h \lesssim a$ by Lemma 2.2 of Kirchberg Rørdam 2000.
- So if h is infinite then so is a.
- Thus if every element in $C_0(G^{(0)})^+$ is infinite then every element $C_r^*(G)^+$ is.

Theorem (B., Clark, Sierakowski)

If G is a locally compact étale groupoid that is topologically principal and minimal then $C_r^*(G)$ is purely infinite if and only if every element of $C_0(G^{(0)})^+$ is infinite (in $C_r^*(G)$).

Purely infinite ample groupoids

A groupoid is ample if it has a basis of compact open bisections.

- Ample groupoids are étale and locally compact.
 - ▶ So the previous theorem applies to them.
- Ample groupoids have lots of projections:
 - ▶ If U compact open bisection then χ_U is continuous.
 - ► For U, V compact open bisections $\chi_U * \chi_V = \chi_{UV}$ so if $U \subset G^{(0)}$ we have

$$\chi_U \in C_0(G^{(0)})$$
 and $\chi_U^2 = \chi_U$.

- If $h \in C_0(G^{(0)})^+$, then there exists U and $s \in \mathbb{R}_{>0}$ such that $h|_U \ge s$.
- Therefore $h \ge s\chi_U$ and so $\chi_U \lesssim h$.
- Thus if χ_U is infinite then h is infinite.

Theorem (B., Clark, Sierakowski)

If G is a locally compact ample groupoid that is topological principal and minimal and \mathcal{B} is a basis of compact open sets for $G^{(0)}$ then $C_r^*(G)$ is purely infinite if and only if χ_U is infinite for all $U \in \mathcal{B}$.

More fun with ample groupoids

Theorem (B., Clark, Sierakowski)

If G is a locally compact ample groupoid that is topological principal and minimal and \mathcal{B} is a basis of compact open sets for $G^{(0)}$ then $C_r^*(G)$ is purely infinite if and only if χ_U is infinite for all $U \in \mathcal{B}$.

Now G is minimal.

- So if $x \in G^{(0)}$ and $U \in \mathcal{B}$ there exists a compact open bisection such that $x \in r(B)$ and $s(B) \subset U$.
- Since $\chi_B^* \chi_B \leq \chi_U$ and $\chi_B \chi_B^* = \chi_{r(B)}$, we have χ_U infinite if $\chi_{r(B)}$ infinite.

Thus

Corollary (B., Clark, Sierakowski)

 $C^*(G)$ is purely infinite if and only if χ_V is infinite for all $V \in \mathcal{N}$ where \mathcal{N} is a neighborhood basis at some point $x \in G^{(0)}$ of compact open sets.

k-graphs

A k-graph Λ is a generalization of a graph where paths have "shape" given by elements of \mathbb{N}^k .

- $C^*(\Lambda)$ is the universal C^* -algebra generated by a Cuntz-Krieger Λ -family $\{s_{\lambda}: \lambda \in \Lambda\}$;
 - in particular $s_{\lambda}^* s_{\lambda} = s_{s(\lambda)}$.

Define

$$G_{\Lambda} := \{(x, n, y) \in \Lambda^{\infty} \times \mathbb{Z}^k \times \Lambda^{\infty} : \sigma^l(x) = \sigma^m(y), n = l - m\}$$

where σ is the shift map and x and y are infinite paths.

• The unit space of G_{Λ} is Λ^{∞} the set of infinite paths.

For $\lambda, \mu \in \Lambda$ with $s(\lambda) = s(\mu)$, the sets

$$Z(\lambda,\mu):=\{(\lambda z,d(\lambda)-d(\mu),\mu z):z\in\Lambda^{\infty}(s(\lambda))\}.$$

give a basis of a second countable locally compact Hausdorff topology of compact open sets.

• $\phi: C^*(\Lambda) \to C^*(G_{\Lambda})$ $s_{\lambda} \mapsto \chi_{Z(\lambda,s(\lambda))}$ is an isomorphism.

Purely infinite *k*-graphs

- For $x \in \Lambda^{\infty}$ the sets $Z(\lambda, \lambda)$ where λ ranges over initial segments of X is a neighborhood basis at x.
- $s_{\lambda}s_{\lambda}^{*}$ is infinite iff $\phi(s_{\lambda}s_{\lambda}^{*})=\chi_{Z(\lambda,\lambda)}$ is infinite.
- $s_{s(\lambda)} = s_{\lambda} s_{\lambda}^*$ is equivalent to $s_{\lambda} s_{\lambda}^*$.
- So $s_{\lambda}s_{\lambda}^{*}$ is infinite if and only if $s_{s(\lambda)}$ is.

Theorem (B., Clark, Sierakowski)

Let Λ be a row-finite k-graph with no sources then $C^*(\Lambda)$ is purely infinite if and only if there exists $x \in \Lambda^{\infty}$ such that s_v is infinite for all vertices v in x.

GPOTS 2014 Kansas State University May 27-31