Heat Transfer: Conduction

Semi-infinite body

Prof. Dr.-Ing. Reinhold Kneer

Prof. Dr.-Ing. Dr. rer. pol. Wilko Rohlfs

Learning goals

With imposed wall temperature:

- Understanding the applied boundary conditions of semi-infinite body with imposed wall temperature
- Solution of the problem with the Error Function Table

With non-negligible heat transfer resistance:

Understanding the applied boundary conditions of semi-infinite body with non-negligible heat transfer resistance

How to simplify the problem?

Temperature variation in a body depends on location and time T = T(x,y,z,t). The temperature change on the right side is negligible, so that the plate thickness is not a parameter that influences the problem.

Differential equation and initial and boundary bonditions

Differential equation:

1st order in time \rightarrow 1 IC 2^{nd} order in space $\rightarrow 2$ BC

Differential equation:

$$\frac{\partial \Theta^*}{\partial t} = a \frac{\partial^2 \Theta^*}{\partial x^2}$$

with
$$a = \frac{\lambda}{\rho c_p}$$

Dimensionless temperature difference:

$$\Theta^* = \frac{T - T_0}{T_A - T_0}$$

Initial and boundary conditions:

Initial condition:

$$\begin{cases} t = 0 \\ 0 < x < \infty \end{cases} T = T_0 \quad |\Theta^* = 0$$

Boundary condition:

$$\begin{array}{ccc}
 & t > 0 \\
 & x = 0
\end{array} \right\} T = T_A \quad |\Theta^* = 1$$

Connecting time and space coordinates by substitution

Differential equation:

$$\frac{\partial \Theta^*}{\partial t} = a \frac{\partial^2 \Theta^*}{\partial x^2} \quad \text{introduction of } \eta = \frac{x}{\sqrt{4at}}$$

$$\frac{\partial \Theta^*}{\partial t} = \frac{\partial \Theta^*}{\partial \eta} \cdot \frac{\partial \eta}{\partial t} = -\frac{x}{\sqrt{4at^3}} \frac{\partial \Theta^*}{\partial \eta}$$

$$\frac{\partial \Theta^*}{\partial t} = \frac{\partial \Theta^*}{\partial \eta} \cdot \frac{\partial \eta}{\partial t} = -\frac{x}{\sqrt{4\alpha t^3}} \frac{\partial \Theta^*}{\partial \eta}$$

$$\frac{\partial^2 \Theta^*}{\partial x^2} = \frac{\partial^2 \Theta^*}{\partial \eta^2} \left(\frac{\partial \eta}{\partial x}\right)^{\frac{1}{2\alpha t}} + \frac{\partial \Theta^*}{\partial \eta} \cdot \frac{\partial^2 \eta}{\partial x^2} \quad \text{Derivation at the end of the video}$$

Diff. equation as a function of $\eta(t, x)$:

$$-\frac{x}{\sqrt{4at^3}}\frac{\partial \Theta^*}{\partial \eta} = a\frac{\partial \hat{\mathbf{1}} \Theta \partial^2 \Theta^*}{2 \partial x t^2 \partial \eta^2}$$

$$\frac{\partial^2 \Theta^*}{\partial \eta^2} + 2\eta \frac{\partial \Theta^*}{\partial \eta} = 0$$

2. substitution to solve the diff. eq.:

$$\frac{\partial \Theta^*}{\partial \eta} = Z \quad \frac{\partial Z}{\partial \eta} = \frac{\partial^2 \Theta^*}{\partial \eta^2}$$

$$\frac{\partial Z}{\partial \eta} + 2\eta Z = 0$$

$$\frac{\partial \mathbf{Z}}{\mathbf{Z}} = -2\eta \partial \eta$$

Diff. equation as a function of $\eta(t, x)$:

$$\frac{\partial^2 \Theta^*}{\partial \eta^2} + 2\eta \frac{\partial \Theta^*}{\partial \eta} = 0$$

2. substitution to solve the diff. eq.:

$$\frac{\partial \Theta^*}{\partial \eta} = Z \quad \frac{\partial Z}{\partial \eta} = \frac{\partial^2 \Theta^*}{\partial \eta^2}$$

$$\frac{\partial \mathbf{Z}}{\partial \eta} + 2\eta \mathbf{Z} = 0$$

$$\frac{\partial \mathbf{Z}}{\mathbf{Z}} = -2\eta \partial \eta$$

Integration:

$$\ln Z = -\eta^2 + C_1$$

$$Z = \frac{\partial \Theta^*}{\partial \eta} = e^{-\eta^2 + C_1} = C_2 e^{-\eta^2}$$

$$\int_{\Theta_{1}^{*}}^{\Theta_{2}^{*}} d\Theta^{*} = C_{2} \int_{\eta_{1}}^{\eta_{2}} e^{-\eta^{2}} d\eta$$

Boundary conditions:

Integration:

$$\ln Z = -\eta^2 + C_1$$

$$Z = \frac{\partial \Theta^*}{\partial \eta} = e^{-\eta^2 + C_1} = C_2 e^{-\eta^2}$$

$$\int_{\Theta_1^*}^{\Theta_2^*} d\Theta^* = C_2 \int_{\eta_1}^{\eta_2} e^{-\eta^2} d\eta$$

→ X 0 **Plate**

Boundary conditions:

Solution:

$$C_2 = -\frac{2}{\sqrt{\pi}}$$

$$\Theta^*(\eta) = 1 - \frac{2}{\sqrt{\pi}} \int_{0}^{\eta} e^{-\xi^2} d\xi$$

Description of the error function

Formulary Appendix B

Tabelle 8: Auswertung der Fehlerfunktion

_				
1	η	$\operatorname{erf}(\eta)$	$\mathrm{erfc}(\eta)$	$^2\!/\!\sqrt{\pi}\exp(-\eta^2)$
(0	0	1	1,128
(0,05	0,056	0,944	1,126
(0,1	0,112	0,888	1,117
(0.15	0,168	0,832	1,103
(0,2	0,223	0,777	1,084
(0,25	0,276	0,724	1,060
(0,3	0,329	0,671	1,031
(0,35	0,379	0,621	0,998
(0,4	0,428	0,572	0,962
(0,45	0,475	0,525	0,922
(0,5	0,520	0,480	0,879
(0,55	0,563	0,437	0,834
(0,6	0,604	0,396	0,787
(0,65	0,642	0,378	0,740
	0,7	0,678	0,322	0,691
(0,75	0,711	0,289	0,643
(0,8	0,742	0,258	0,595
(0,85	0,771	0,229	0,548
(0,9	0,797	0,203	0,502
(0,95	0,821	0,179	0,458
	1	0,843	0,157	0,415
	1,1	0,880	0,120	0,337
	1,2	0,910	0,090	0,267
	1,3	0,934	0,066	0,208
	1,4	0,952	0,048	0,159
	1,5	0,966	0,034	0,119
	1,6	0,976	0,024	0,087
	1,7	0,984	0,016	0,063
	1,8	0,989	0,011	0,044
	1,9	0,993	0,007	0,030
	2	0,995	0,005	0,021

Error function $erf(\eta)$:

$$\Theta^*(\eta) = 1 - \frac{2}{\sqrt{\pi}} \int_{0}^{\eta} e^{-\xi^2} d\xi$$

or: $\Theta^*(\eta) = 1 - \operatorname{erf}(\eta)$

Example: Comparison of the thermal penetration depth of different materials

At which position x is $\Theta^*(\eta) = 0.01$ reached after t = 10s?

$$\Theta^*(\eta) = 0.01 = 1 - \text{erf}(\eta) \rightarrow \text{erf}(\eta) = 1 - 0.01 = 0.99$$
 $\rightarrow \eta = 1.8$

$$\eta = \frac{x}{\sqrt{4at}} \qquad \to x = 2 \cdot \eta \cdot \sqrt{at}$$

a) Copper with $a = 117 \cdot 10^{-6} \frac{m^2}{s}$:

$$x = 2 \cdot 1.8 \cdot \sqrt{117 \cdot 10^{-6} \frac{m^2}{s} \cdot 10s}$$
$$x_{\text{Cu}} = 0.123 \, m$$

b) Paper with $a = 0.14 \cdot 10^{-6} \frac{m^2}{s}$:

$$x = 2 \cdot 1.8 \cdot \sqrt{0.14 \cdot 10^{-6} \frac{m^2}{s} \cdot 10s}$$

$$x_P = 0.0043 m$$

Comparison of both penetration depths:

$$28 \cdot x_{\text{Cu}} \approx x_P$$

The thermal diffusivity *a* determines the speed with which a temperature information propagates in a body!

Tabelle 8: Auswertung der Fehlerfunktion

$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0,35 0,379 0,621 0,998 0,4 0,428 0,572 0,962 0,45 0,475 0,525 0,922 0,5 0,520 0,480 0,879 0,55 0,563 0,437 0,834 0,6 0,604 0,396 0,787 0,65 0,642 0,378 0,740 0,7 0,678 0,322 0,691 0,75 0,711 0,289 0,643
0,4 0,428 0,572 0,962 0,45 0,475 0,525 0,922 0,5 0,520 0,480 0,879 0,55 0,563 0,437 0,834 0,6 0,604 0,396 0,787 0,65 0,642 0,378 0,740 0,7 0,678 0,322 0,691 0,75 0,711 0,289 0,643
0,45 0,475 0,525 0,922 0,5 0,520 0,480 0,879 0,55 0,563 0,437 0,834 0,6 0,604 0,396 0,787 0,65 0,642 0,378 0,740 0,7 0,678 0,322 0,691 0,75 0,711 0,289 0,643
0,5 0,520 0,480 0,879 0,55 0,563 0,437 0,834 0,6 0,604 0,396 0,787 0,65 0,642 0,378 0,740 0,7 0,678 0,322 0,691 0,75 0,711 0,289 0,643
0,55 0,563 0,437 0,834 0,6 0,604 0,396 0,787 0,65 0,642 0,378 0,740 0,7 0,678 0,322 0,691 0,75 0,711 0,289 0,643
0,6 0,604 0,396 0,787 0,65 0,642 0,378 0,740 0,7 0,678 0,322 0,691 0,75 0,711 0,289 0,643
0,65 0,642 0,378 0,740 0,7 0,678 0,322 0,691 0,75 0,711 0,289 0,643
0,7 0,678 0,322 0,691 0,75 0,711 0,289 0,643
0,75 $0,711$ $0,289$ $0,643$
0.8 0.742 0.258 0.505
0,0 0,142 0,200 0,000
0.85 0.771 0.229 0.548
0,9 $0,797$ $0,203$ $0,502$
0,95 $0,821$ $0,179$ $0,458$
$1 \qquad 0.843 0.157 0.415$
1,1 $0,880$ $0,120$ $0,337$
1,2 $0,910$ $0,090$ $0,267$
1,3 0,934 0,066 0,208
1,4 $0,952$ $0,048$ $0,159$
1,5 0,966 0,034 0,119
1,6 0,976 0,024 0,087
1,7 $0,984$ $0,016$ $0,063$
1,8 0,989 0,011 0,044
1,9 0,993 0,007 0,030
$2 \qquad 0.995 0.005 0.021$

How can the problem be simplified?

External heat transfer resistance is **not** negligible.

→ X t = 00 Plate

Differential equation:

$$\frac{\partial \Theta^*}{\partial t} = a \frac{\partial^2 \Theta^*}{\partial x^2} \quad \text{with} \quad a = \frac{\lambda}{\rho c_p}$$

Dimensionless temperature difference:

$$\Theta^* = \frac{T - T_0}{T_A - T_0}$$

External heat transfer resistance is **not** negligible.

→ X t > 0Convection outside $\dot{q}_{\rm conv}^{"}$ 0 Plate

Differential equation:

$$\frac{\partial \Theta^*}{\partial t} = a \frac{\partial^2 \Theta^*}{\partial x^2} \quad \text{with} \quad a = \frac{\lambda}{\rho c_p}$$

Dimensionless temperature difference:

$$\Theta^* = \frac{T - T_0}{T_A - T_0}$$

External heat transfer resistance is **not** negligible.

→ X t > 0Convection outside $\dot{q}_{conv}^{"}$ 0 Plate

Differential equation:

$$\frac{\partial \Theta^*}{\partial t} = a \frac{\partial^2 \Theta^*}{\partial x^2} \quad \text{with} \quad a = \frac{\lambda}{\rho c_p}$$

Dimensionless temperature difference:

$$\Theta^* = \frac{T - T_0}{T_A - T_0}$$

Heat transfer resistance is **not** negligible.

Boundary condition:

Boundary condition:

$$\begin{array}{ccc}
1 & & t > 0 \\
x = 0
\end{array}$$

$$\underbrace{\alpha(T_A - T_{x=0})}_{\dot{q}''_{conv}} = -\lambda \frac{\partial T}{\partial x}\Big|_{x=0} \rightarrow \frac{\partial T}{\partial x}\Big|_{x=0} = \frac{\alpha}{\lambda} (T_{x=0} - T_A)$$

Heat transfer resistance is **not** negligible.

Boundary condition:

Boundary condition:

$$\underbrace{\alpha(T_A - T_{x=0})}_{\dot{q}''_{conv}} = \underbrace{-\lambda \frac{\partial T}{\partial x}\Big|_{x=0}}_{\dot{q}''_{cond}} \rightarrow \underbrace{\frac{\partial T}{\partial x}\Big|_{x=0}}_{x=0} = \frac{\alpha}{\lambda}(T_{x=0} - T_A)$$

Initial condition:

$$\begin{cases} t > 0 \\ 0 < x < \infty \end{cases} T = T_0 \mid \Theta^* = 0$$

Determination of the temperature gradient on the wall for BC $\dot{q}''_{\rm conv}$

Solution:

$$\underbrace{\alpha(T_A - T_{x=0})}_{\dot{q}''_{conv}} = -\lambda \frac{\partial T}{\partial x} \Big|_{x=0}$$

$$\left. \frac{\partial T}{\partial x} \right|_{x=0} = \boxed{\frac{\alpha}{\lambda}} \left(T_{x=0} - T_A \right)$$

 $\frac{\lambda}{\alpha}$ is the spatial distance between T_A and $T_{\rm Surface}$

UNIVERSITY

Heat transfer resistance is **not** negligible.

Boundary condition:

Boundary condition:

$$\underbrace{\alpha(T_A - T_{x=0})}_{\dot{q}''_{conv}} = \underbrace{-\lambda \frac{\partial T}{\partial x}\Big|_{x=0}}_{\dot{q}''_{cond}} \rightarrow \underbrace{\frac{\partial T}{\partial x}\Big|_{x=0}}_{x=0} = \frac{\alpha}{\lambda}(T_{x=0} - T_A)$$

Initial condition:

$$\begin{cases} t > 0 \\ 0 \le x \le \infty \end{cases} \mathbf{T} = T_0 \mid \Theta^* = 0$$

Review $\alpha = \infty$:

$$\Theta^*(\eta) = 1 - \operatorname{erf}(\eta) = 1 - \operatorname{erf}\left(\frac{x}{\sqrt{4at}}\right)$$

$$\Theta^*(\eta) = 1 - \operatorname{erf}\left(\frac{1}{\sqrt{4Fo}}\right)$$

Review $\alpha \neq \infty$:

$$\Theta^*(\eta) = 1 - \operatorname{erf}\left(\frac{1}{\sqrt{4Fo}}\right)$$

$$-e^{Bi+FoBi^2}\left[1-\operatorname{erf}\left(\frac{1}{\sqrt{4Fo}}+\sqrt{Fo}\cdot Bi\right)\right]$$

with:

$$Fo = \frac{\alpha t}{L^2} \qquad Bi = \frac{\alpha x}{\lambda}$$

$$Bi = \frac{\alpha x}{\lambda}$$

Example: Thermal penetration with convective resistance

At which position x is $\Theta^*(\eta) = 0.2$ reached after $t = 10 \, s$? (for copper)

$$a_{\rm K} = 117 \cdot 10^{-6} \frac{m^2}{s}$$
; $\lambda_{K} = 401 \frac{W}{m \cdot K}$:

$$\sqrt{Fo} \cdot Bi = \frac{\alpha \sqrt{a \cdot t}}{\lambda} = \frac{\alpha \sqrt{117 \cdot 10^{-6} \frac{m^2}{s} \cdot 10s}}{401 \frac{W}{m \cdot K}} = \alpha \cdot 8.53 \cdot 10^{-5} \frac{m^2 \cdot K}{W}$$

Considering different cases:

A) $\alpha \rightarrow \infty$ - imposed wall temperature:

$$\sqrt{Fo} \cdot Bi = \frac{\alpha \sqrt{a \cdot t}}{\lambda} = \infty \to \eta \approx 0.85$$

$$x = \eta \sqrt{4at} = 0.85 \sqrt{4 \cdot 117 \cdot 10^{-6} \frac{m^2}{s} \cdot 10s} = \mathbf{0.058m}$$

B) Thermal resistance ($\sqrt{Fo} \cdot Bi = 0.3$)

$$\sqrt{Fo} \cdot Bi = \frac{\alpha \sqrt{a \cdot t}}{\lambda} = 0.3 \rightarrow \alpha \approx 3517 \frac{W}{m^2 K} \rightarrow \eta \approx 0.2$$

$$x = \eta \sqrt{4at} = 0.2\sqrt{4 \cdot 117 \cdot 10^{-6} \frac{m^2}{s} \cdot 10s} = \mathbf{0.0136m}$$

Comparison – solution with error function and with diagram

At which position x is $\Theta^*(\eta) = 0.2$ reached after t = 10s? (for copper):

$$\Theta^*(\eta) = 0.2 = 1 - \text{erf}(\eta) \rightarrow \text{erf}(\eta) = 1 - 0.2 = 0.8$$
 $\rightarrow \eta = 0.9$

$$\eta = \frac{x}{\sqrt{4at}} \qquad \to x = 2 \cdot \eta \cdot \sqrt{at}$$

With table of error function:

$$x = 2 \cdot 0.9 \cdot \sqrt{117 \cdot 10^{-6} \frac{m^2}{s} \cdot 10s}$$
$$x_{\text{Cu,e}} = 0.0615 \, m$$

From graph:

$$x = 0.85 \sqrt{4 \cdot 117 \cdot 10^{-6} \frac{m^2}{s} \cdot 10s}$$
$$x_{\text{Cu,d}} = 0.058 \, m$$

Difference is due to reading inaccuracy, since the equations for negligible thermal resistance are identical.

Tabelle 8: Auswertung der Fehlerfunktion

η	$\operatorname{erf}(\eta)$	$\mathrm{erfc}(\eta)$	$^2\!/\sqrt{\pi}\exp(-\eta^2)$
0	0	1	1,128
0,05	0,056	0,944	1,126
0,1	0,112	0,888	1,117
0.15	0,168	0,832	1,103
0,2	0,223	0,777	1,084
$0,\!25$	$0,\!276$	0,724	1,060
0,3	0,329	0,671	1,031
$0,\!35$	0,379	0,621	0,998
0,4	0,428	0,572	0,962
$0,\!45$	0,475	0,525	0,922
0,5	0,520	0,480	0,879
0,55	$0,\!563$	0,437	0,834
0,6	0,604	0,396	0,787
0,65	0,642	0,378	0,740
0,7	0,678	0,322	0,691
0,75	0,711	0,289	0,643
0,8	0,742	$0,\!258$	0,595
0,85	0,771	0,229	0.548
0,9	0,797	0,203	0,502
0,95	$0,\!821$	$0,\!179$	$0,\!458$
1	0,843	$0,\!157$	0,415
1,1	0,880	$0,\!120$	0,337
1,2	0,910	0,090	$0,\!267$
1,3	0,934	0,066	0,208
1,4	0,952	0,048	0,159
1,5	0,966	0,034	0,119
1,6	0,976	0,024	0,087
1,7	0,984	0,016	0,063
1,8	0,989	0,011	0,044
1,9	0,993	0,007	0,030
2	0,995	0,005	0,021

Comprehension questions

What is meant by a semi-infinite body and how is it defined?

Which two dimensionless numbers describe the transient temperature profile within a (semi-infinite) body with relevant convective resistance?

What is meant by the thermal penetration depth?

Mathematical explanation

Derivation:

$$\frac{\partial^{2} \Theta^{*}}{\partial x^{2}} = \frac{\partial^{2} \Theta^{*}}{\partial \eta^{2}} \left(\frac{\partial \eta}{\partial x} \right)^{2} + \frac{\partial \Theta^{*}}{\partial \eta} \cdot \frac{\partial^{2} \eta}{\partial x^{2}}$$

$$\frac{\partial^{2} \Theta^{*}}{\partial x^{2}} = \frac{\partial}{\partial x} \left(\frac{\partial \Theta^{*}}{\partial x} \right)$$

$$= \frac{\partial}{\partial x} \left(\frac{\partial \Theta^{*}}{\partial \eta} \cdot \frac{\partial \eta}{\partial x} \right) \xrightarrow{\text{chain rule}} u'v + v'u$$

$$u \quad v$$

$$= \frac{\partial \eta}{\partial x} \cdot \left[\frac{\partial}{\partial \eta} \left(\frac{\partial \Theta^{*}}{\partial \eta} \right) \cdot \frac{\partial \eta}{\partial x} \right] + \frac{\partial \Theta^{*}}{\partial \eta} \cdot \frac{\partial^{2} \eta}{\partial x^{2}}$$

$$v \quad u' \quad v'$$

$$= \frac{\partial \Theta^{*}}{\partial \eta^{2}} \left(\frac{\partial \eta}{\partial x} \right)^{2} + \frac{\partial \Theta^{*}}{\partial \eta} \cdot \frac{\partial^{2} \eta}{\partial x^{2}}$$

