2024-01-19

Simple Open Data Measures of Public Transit Service Availability

Usecases for Closeness Centrality and Isochrones

Emily C. Wilke

35xxxxxxx emilycwilke@gmail.com Ruprecht-Karls-Universität Heidelberg xxxxxxx

Contents

1 Introduction	3
1.1 Transit Accesibility Equity and Equality	3
1.1.1 Terminology	3
1.1.2 Motivation	3
1.1.3 Research Question	3
1.2 Related Work	3
1.3 Methodological Approach	3
1.3.1 Data Acquisition	3
1.3.2 origins	3
1.3.3 Data Processing	3
1.4 Geographic Case Studies	4
2 Closeness or Reachability	5
2.1 Closeness Centrality	5
2.2 Reach	5
2.2.1 Isochrones as a Measure of Reach	5
2.3 Comparison Use Cases	5
2.4 Methods	5
2.4.1 Available Data	5
2.4.2 Processing	5
2.5 Results	5
3 Comparisons with Non-Schedule-Based Modes	6
3.1 Cycling	6
3.1.1 Methods	6
3.1.2 Results	6
3.2 Cars	6
3.2.1 Methods	6
3.2.2 Results	6
3.3 Temporal Discrepancies with Scheduled Transit	6
3.4 Limitations	6
4 Distinguishing Transit Footprints	7
4.1 Historical Urban Blueprints	7
4.2 Radial and Tangential Services	
4.3 Methods	7
4.3.1 Visual Differences	7
4.3.2 Inequality Measures	7
4.4 Results	7
4.5 Hub and Spoke Transit Planning	7
5 Recap of Results	
6 Discussion	
6.1 General Limitations	9
Bibliography	10

1 Introduction

In recent years, but for decades by now, the demand for a paradigm shift in transportation infrastructure and service has become louder and louder. While calls for a shift away from car centric mobility are nothing new and were a well established part of German Academic discourse in the 1990s already [1], it has become part of a widespread political discourse around the so called *Verkehrswende* [2]. With increased awareness and concrete experiences of climate change this discourse has reached states of heated debate. Benefits of

1.1 Transit Accesibility Equity and Equality

1.1.1 Terminology

1.1.2 Motivation

- Traditional transport planning centering on men?
 - German Transport Planning post world war 2?
- Transit planning and identifying demand in public transit networks is a complicated process, that takes into account a plethora of data that's hard to access or acquire [3].
 - statistical routing data based on conveyal engine [4]

1.1.3 Research Question

· How can an easy closenes centrality measure help asses transit service availability and equality

1.2 Related Work

- Network Centrality Measures
 - · road networks
 - public transit networks
 - bipartite networks
- Transit Equity Studies
 - US
 - Network Planning [3]

1.3 Methodological Approach

1.3.1 Data Acquisition

explorative data analysis

1.3.2 origins

• hexgrids from h3pandas

1.3.2.1 Transport Data

- osm files from geofabrik [5]
- gtfs files from various transit companies [6]-[8] vrs

1.3.2.2 Destinations

- Usage of openly available data, preferably from osm .. extracted with pyrosm [9]
- specific data if necessary, eg secondary school data not mapped in osm [10]

1.3.3 Data Processing

- Isochrones
 - available from openrouteservice [11], as used in [12], not used because:
- travel time matrices
 - enough for basic reach analyses, isochrone itself not important
 - calculated with r5py [13] as used in [14], based on the conveyal engine [4], [15]

1.4 Geographic Case Studies

• Selected based on data availability, personal familiarity.

2 Closeness or Reachability

- 2.1 Closeness Centrality
- 2.2 Reach
- 2.2.1 Isochrones as a Measure of Reach
- 2.3 Comparison Use Cases
- 2.4 Methods
- 2.4.1 Available Data
- school data from [10]
- sports data from osm
- 2.4.2 Processing
- 2.5 Results

3 Comparisons with Non-Schedule-Based Modes

- 3.1 Cycling
- 3.1.1 Methods
- 3.1.2 Results
- 3.2 Cars
- 3.2.1 Methods
- added parking times
- 3.2.2 Results

3.3 Temporal Discrepancies with Scheduled Transit

3.4 Limitations

- limitations to car traffic estimations
- limitations to parking times

4 Distinguishing Transit Footprints

- 4.1 Historical Urban Blueprints
- 4.2 Radial and Tangential Services
- 4.3 Methods
- 4.3.1 Visual Differences
- **4.3.2 Inequality Measures**
- Lorenz Curves and Gini Coefficients being silly sometimes [16]
- 4.4 Results
- 4.5 Hub and Spoke Transit Planning

5 Recap of Results

6 Discussion

6.1 General Limitations

- Lack of real world measures as Comparisons
- Focuses solely on door to door travel times and neglects
 - reliability Data
 - delay data both for cars and public transit
 - public transit fare structures [17]
- *inequality* being silly at times [16].

Bibliography

- [1] H. Holzapfel, "Hat das Auto in der Stadt noch etwas zu suchen?", *Strategien gegen den Verkehrsinfarkt*. in Deutsche-Bank-Research. Schäffer-Poeschel, Stuttgart, pp. 63–80, 1993.
- [2] H. Holzapfel, *Urbanismus und Verkehr: Beitrag zu einem Paradigmenwechsel in der Mobilitätsorganisation*. Wiesbaden: Springer Fachmedien Wiesbaden, 2020. doi: 10.1007/978-3-658-29587-5.
- [3] F. Pieper, "Der Kreislauf der Aufgaben Leistungsplanung und Leistungserstellung im Betrieb", *Grundwissen Personenverkehr und Mobilität*. GRT Global Rail Academy and Media GmbH, Leverkusen, pp. 234–283, 2021.
- [4] M. W. Conway, A. Byrd, and M. van der Linden, "Evidence-Based Transit and Land Use Sketch Planning Using Interactive Accessibility Methods on Combined Schedule and Headway-Based Networks", *Transportation Research Record*, vol. 2653, no. 1, pp. 45–53, 2017, doi: 10.3141/2653-06.
- [5] Geofabrik GmbH, "Geofabrik Download Server". Accessed: Dec. 17, 2023. [Online]. Available: http://download.geofabrik.de/
- [6] VVS, "Soll-Fahrplandaten VVS 2024 Jahresfahrplan". Accessed: Dec. 17, 2023. [Online]. Available: https://www.opendata-oepnv.de/ht/de/organisation/verkehrsverbuende/vvs/startseite?tx_vrrkit_view%5Baction%5D=details&tx_vrrkit_view%5Bcontroller%5D=View&tx_vrrkit_view%5Bdataset_formats%5D%5B0%5D=ZIP&tx_vrrkit_view%5Bdataset_name%5D=soll-fahrplandaten-vvs&cHash=77fbc8e1cfc3643518ca99625acb8ff1
- [7] Rhein-Neckar-Verkehr GmbH, "Aktueller GTFS". Accessed: Nov. 27, 2023. [Online]. Available: https://www.opendata-oepnv.de/ht/de/organisation/verkehrsunternehmen/rnv/openrnv/datensaetze?id=1405&tx_vrrkit_view[dataset_name]=soll-fahrplandaten-rnv&tx_vrrkit_view[action]=details&tx_vrrkit_view[controller]=View
- [8] DELFI, "Deutschlandweite Sollfahrplandaten (GTFS)". Accessed: Dec. 20, 2023. [Online]. Available: https://www.opendata-oepnv.de/ht/de/organisation/delfi/startseite? tx_vrrkit_view%5Baction%5D=details&tx_vrrkit_view%5Bcontroller%5D=View&tx_vrrkit_view%5Bdataset_formats%5D%5B0%5D=ZIP&tx_vrrkit_view%5Bdataset_name%5D=deutsch landweite-sollfahrplandaten-gtfs&cHash=01414d5793fcd0abb0f3a2e35176752c
- [9] H. Tenkanen, "pyrosm". Accessed: Jan. 18, 2024. [Online]. Available: https://pyrosm. readthedocs.io/en/latest/index.html
- [10] Ministerium für Schule und Bildung NRW, "Grunddaten der Schulen und Schulaufsicht in NRW". Accessed: Jan. 04, 2024. [Online]. Available: https://www.schulministerium.nrw.de/BiPo/OpenData/Schuldaten/schuldaten.csv
- [11] HeiGIT, "Openrouteservice API". Accessed: Jul. 01, 2023. [Online]. Available: https://openrouteservice.org/
- [12] L. Prayogi, A. W. Purwantiasning, D. Hantono, and Y. Sari, "Openrouteservice Pedestrian Reach Analysis on Road Networks Around Metro Stations", *International Conference on Engineering, Construction, Renewable Energy, and Advanced Materials*, no. 0, Nov. 2022, Accessed:

- Jun. 25, 2023. [Online]. Available: https://jurnal.umj.ac.id/index.php/icecream/article/view/ 14720
- [13] C. Fink, W. Klumpenhouwer, M. Saraiva, R. Pereira, and H. Tenkanen, "r5py: Rapid Realistic Routing with R5 in Python". Accessed: Jan. 18, 2024. [Online]. Available: https://zenodo.org/records/7060438
- [14] H. Tenkanen and T. Toivonen, "Longitudinal spatial dataset on travel times and distances by different travel modes in Helsinki Region", *Scientific Data*, vol. 7, no. 1, p. 77, Mar. 2020, doi: 10.1038/s41597-020-0413-y.
- [15] M. W. Conway, A. Byrd, and M. van Eggermond, "Accounting for uncertainty and variation in accessibility metrics for public transport sketch planning", *Journal of Transport and Land Use*, vol. 11, no. 1, Jul. 2018, doi: 10.5198/jtlu.2018.1074.
- [16] D. Graeber and D. Wengrow, *The Dawn of Everything. A New History of Humanity*. Dublin: Penguin Books, 2022.
- [17] M. W. Conway and A. F. Stewart, "Getting Charlie off the MTA: a multiobjective optimization method to account for cost constraints in public transit accessibility metrics", *International Journal of Geographical Information Science*, vol. 33, no. 9, pp. 1759–1787, 2019, doi: 10.1080/13658816.2019.1605075.