New way using trig:	
We start with linear fits	0+ HZ XZ & YZ
Projections:	
$Z = A \times + B$	
y = Cz + D	
We want to calculate	the 2 points at the
end of the linear fits	w/ approx. linear segment length.
	007 Office 177700 3 E grade 17 1001978.
barycen tar	$L_{XZ} = OX^2 + OZ^2$
X	·
0x	$(3_{+}, \chi_{+})$
	$(3-, \times)$ $tan\theta = \frac{\Delta x}{\Delta z}$
DZ Just Abous	$(3-, X) + an\theta = \frac{\Delta x}{\Delta z}$ $z \sin \theta = \frac{x_{+} - x_{avy}}{exz/z}$
on linear	$X_{+} = X_{q_{q_{q}}} + \frac{1}{2} \cdot Sin(tan^{-1}(\frac{\partial X}{\partial X}))$
	$X_{-} = X_{avg} - \frac{l_{xz}}{2} Sin(tan'(\frac{\delta X}{\Delta z}))$
	$Z_{+} = A \cdot \lambda_{+} + B$
	7-=A. L. +B
	$y_+ = c \cdot z_+ + 0$
	$y_{+} = c \cdot z_{+} + 0$ $y_{-} = c \cdot z_{-} + 0$

