Contents

1	Cor	ncetti Introduttivi	2
	1.1	Anelli, Moduli e Campi	2
	1.2	Insiemi Algebrici	6
		1.2.1 Caso Affine	6
		1.2.2 Caso Proiettivo	7
	1.3	Curve Algebriche Piane	10
		1.3.1 Caso Affine	10
		1.3.2 Caso Proiettivo	11
	1.4	Varietà, Morfismi e Mappe Razionali	13
	1.5	Esplosione di punti affini e proiettivi, Trasformazioni quadratiche	
		e Modello non-singolare	18
2	Div	isori e lo Spazio L(D)	26
	2.1	Divisori	26
	2.2	Lo spazio vettoriale $L(D)$	29
	2.3	Il Teorema di Riemann	31

Chapter 1

Concetti Introduttivi

1.1 Anelli, Moduli e Campi

Un anello è una terna ordinata $(R,+,\cdot)$, tale che R è un insieme non vuoto, (R,+) è un gruppo abeliano, la moltiplicazione è associativa su R e valgono le seguenti leggi distributive: a(b+c)=ab+ac, (b+c)a=ba+ca per ogni $a,b,c\in R$. Se anche la moltiplicazione è commutativa diremo che l'anello è commutativo. Infine se esiste un elemento $e\in R$ tale che per ogni $a\in R$, vale che ae=ea=a, tale elemento è detto identità, è unico e l'anello è detto con identità.

Definizione 1.1. Un anello R in cui ogni ideale è finitamente generato è detto noetheriano.

D'ora in poi verranno considearti solo anelli commutativi con identità e, con abuso di nomenclatura, mi riferirò a questi come anelli.

Esercizio 1.2. Sia R un anello noetheriano, e sia $\{r_i\}_{i\in\mathbb{N}}\subseteq R$ una successione di elementi di R tali che $(r_i)\subseteq (r_{i+1})$ per ogni i. Allora esiste $n\in\mathbb{N}$ tale che $(r_n)=(r_j)$ per ogni $j\geq n$.

Proof. Considero l'ideale $I=(r_i:i\in\mathbb{N})$; siccome R è noetheriano, esiste $n\in\mathbb{N}$ tale che $I=(r_0,\ldots,r_n)$. Affermo che $(r_n)=(r_j)$ per ogni $j\geq n$. Sia dunque $j\geq n$ fissato.

L'inclusione $(r_n) \subseteq (r_j)$ è data per ipotesi. Viceversa siccome $r_j \in I = (r_0, \ldots, r_n)$, esistono $a_0, \ldots, a_n \in R$ tali che $r_j = \sum_{i=0}^n a_i r_i$, ma siccome $r_i \in (r_n) \, \forall i \leq n$, si ha che $r_j = \sum_{i=0}^n a_i r_i \in (r_n)$.

Lemma 1.3. Sia R un anello. Le seguenti affermazioni sono equivalenti:

- a L'insieme degli elementi non invertibili in R ha la struttura di ideale
- b R ha un unico ideale massimale che contiene tutti gli altri ideali propri di R.

Un anello che rispetta una (e quindi entrambe) delle condizioni del Lemma 1.3 è detto anello locale.

Lemma 1.4. Sia R un dominio che non è un campo. Allora sono equivalenti le seguenti affermazioni:

- a R è noetheriano, locale e tale che l'ideale massimale sia principale.
- b R è tale che esiste un elemento irriducibile $t \in R$ tale che per ogni altro elemento non nullo di $r \in R$, esistono unici un invertibile $u \in R$ e $n \in \mathbb{N}$ tali che $r = ut^n$.

Proof. Sia R noetheriano, locale e con ideale massimale principale. Sia M tale ideale e sia $t \in R$ un suo generatore.

Dimostro che, per ogni $r \in R, r \neq 0$, esistono u, n come nella seconda condizione: sia $r \in R, r \neq 0$ fissato.

Se r è un invertibile, basta scegliere u=r, n=0 e si conclude. Sia quindi r un non invertibile: allora, $r \in M$, ed esiste $r_0 \in R$ tale che $r=r_0t$; se r_0 è un invertibile ho concluso, altrimenti $r_0 \in M$, ed esiste $r_1 \in R$ tale che $r_0=r_1t$. Itero l'argomento.

Affermo che entro un numero finito di passi trovo un r_i che è un invertibile. Se per assurdo così non fosse, costruisco una successione $\{r_i\}_{i\in\mathbb{N}}\subseteq R$ di elementi non invertibili tali che $(r_i)\subseteq (r_{i+1})$ per ogni i. Per l'Esercizio 1.2 esiste un elemento massimale nella catena degli ideali principali, ovvero, esiste $n\in\mathbb{N}$ tale che $(r_n)=(r_j)\,\forall j\geq n$, in particolare $(r_n)=(r_{n+1})$, ma allora, esiste $s\in R$ tale che $r_{n+1}=sr_n$, perciò:

$$r_n = r_{n+1}t = sr_nt = str_n \Longrightarrow st = 1$$

Ma questo è assurdo perché t non è invertibile.

Dimostro l'unicità della scrittura: sia $r \in R$, e siano $u, v \in R$ invertibili ed $m, n \in \mathbb{N}$ tali che $r = ut^m = vt^n$. Ne segue che $ut^{m-n} = v$ dunque m = n e di conseguenza u = v.

Viceversa, sia R tale che esiste un elemento irriducibile t, tale che per ogni altro elemento $r \in R, r \neq 0$, esistono unici $u \in R$ invertibile e $n \in \mathbb{N}$ tali che $r = ut^n$.

Chiaramente M=(t) è un ideale massimale, e se $r \in R$ non è invertibile,

per ipotesi è in M; viceversa se in M ci fosse un invertibile, allora M=R, ma questo è assurdo perché t è irriducibile. Ne segue che M contiene tutti e soli i non invertibili. Questo dimostra che R è locale.

Inoltre, essendo M l'unico ideale massimale, è principale perché generato da t.

Sia ora $I \subseteq R$ non banale e diverso da M. Essendo R locale, $I \subseteq M$. Sia $r \in I$, allora esiste $u \in R$ invertibile tale che $r = ut^n$ per un opportuno naturale n. Sia $m = \min\{n \in \mathbb{N} : r = ut^n, r \in I\}$. Dimostro che $I = (t^m)$. Sia $r \in I$, allora $r = ut^n$ per opportuni $u \in R$ invertibile, $n \in \mathbb{N}, n \geq m$, dunque $r = ut^{n-m}t^m \in (t^m)$.

Viceversa, esiste $r \in I$ tale che $r = ut^m$, per un opportuno invertibile u, allora $t^m = u^{-1}r \in I$.

Un anello che rispetta una (e quindi entrambe) delle condizioni del Lemma 1.4 è detto anello di valutazione discreta e si scrive che è un DVR. Un elemento $t \in R$ come nella seconda condizione è detto parametro uniformizzante. Parametri uniformizzanti distinti sono tra loro associati.

Sia ora K il campo dei quozienti di R e sia t un parametro uniformizzante fissato: si osserva semplicemente che ogni elemento non nullo $z \in K$ ammette un'unica scrittura nella forma $z = ut^n$, dove u è un'invertibile in R e $n \in \mathbb{Z}$. L'esponente n è detto ordine di z e si scrive $n = \operatorname{ord}(z)$. Si pone $\operatorname{ord}(0) = \infty$.

L'ordine di un elemento di K è ben definito, ovvero, non dipende dalla scelta del parametro uniformizzante.

Proof. Siano $t, s \in R$ due parametri uniformizzanti e sia $u \in R$ invertibile tale che t = us. Sia ora $z \in K$ (con le stesse notazioni di sopra), e siano n_t, n_s gli ordini di z calcolati a partire da t e da s rispettivamente. Allora, per un opportuno invertibile $v \in R$:

$$z = vt^{n_t} = v(us)^{n_t} = vu^{n_t}s^{n_t}$$

e per l'unicità della scrittura con il parametro uniformizzante, $n_t = n_s$. \square

Osservazione 1.5. Vale che $R=\{z\in K:\operatorname{ord}(z)\geq 0\}$ e $M=\{z\in K:\operatorname{ord}(z)>0\}.$

Definizione 1.6. Sia R un anello ed M un insieme non vuoto, allora M si dice R-modulo se M è dotato di una operazione + rispetto alla quale è un gruppo abeliano ed esiste un'azione di R su M, indicata come $\cdot: R \times M \to M$ tale che :

- $(a+b)m = am + bm, \forall a, b \in R, m \in M;$
- $a(m+n) = am + an, \forall a \in R, m, n \in M$;
- $(ab)m = a(bm), \forall a, b \in R, m \in M;$
- $1_R m = m, \forall m \in M$.

Se $N\subseteq M$ è non vuoto, chiuso rispetto alla somma ed al prodotto per scalare, allora N è detto sotto-R-modulo di M. Il sotto-R-modulo generato da $S\subseteq M$ è l'insieme $M(S)=\{\sum_{i=0}^k r_is_i: r_i\in R, s_i\in S\ \forall i\leq k, k\in \mathbb{N}\}$. Sia ora X un insieme qualsiasi e considero l'insieme $M_X=\{\varphi:X\to R\}$, con la somma definita puntualmente ed il prodotto per scalare definito anch'esso puntualmente. Allora M_X è un R-modulo, ed è detto R-modulo libero su X. Sia ora $x\in X$ e sia $\varphi_x\in M_X$ definita come $\varphi_x(y)=0$, se $x\neq y$ e $\varphi_x(x)=1$, allora $X\subseteq M_X$.

Siano $K \leq L$ campi. Indico l'estensione di campi con $\frac{L}{K}$

Definizione 1.7. Un elemento $x \in L$ si dice algebrico su K, se esiste un polinomio $F \in K[X]$, tale che F(x) = 0, trascendente altrimenti. Allora K[x] è il più piccolo anello che contiene sia K che x. Il suo campo dei quozienti è K(x) ed è il più piccolo campo contenete sia K che x. L'estensione $\frac{L}{K}$ si dice algebrica se ogni $x \in L$ è algebrico su K.

Osservo ora che L ha una struttura di spazio vettoriale su K; allora, si dice che l'estensione $\frac{L}{K}$ è finita se $[L:K] = \dim_K L$ è finita.

Esercizio 1.8. Siano $K \leq L$ campi e sia L un modulo finitamente generato su K. Allora per ogni anello $K \leq R \leq L$, R è un campo.

Proof. Sia $r \in R, r \neq 0$ un elemento algebrico su K, allora esiste un polinomio monico $F \in K[X]$ tale che F(r) = 0, sia $F(X) = \sum_{i=0}^{n} a_i r^i$. Considero il polinomio $G(X) = \sum_{i=0}^{n} a_i r^{n-i}$; allora $G(r^{-1}) = 0$, moltiplicando per r^{1-n} e riordinando si trova che r^{-1} è combinazione di elementi di R, dunque è in R. Se r non è algerbico su K, il più piccolo modulo su K che contiene K[r] non è finitamente generato, ma L contiene tale modulo ed L è finitamente generato per ipotesi. Dunque un tale elemento non può esistere. Ne segue che R è un campo.

Teorema 1.9 (Dell'elemento primitivo). Sia K un campo di caratteristica 0, e sia $\frac{L}{K}$ un'estensione algerbica finita. Allora, esiste $\alpha \in L$, tale che $L = K(\alpha)$.

1.2 Insiemi Algebrici

Sia d'ora in poi k un campo algebricamente chiuso di caratteristica 0, e siano \mathbb{A}^n , \mathbb{P}^n lo spazio affine e lo spazio proiettivo standard di dimensione n su k.

1.2.1 Caso Affine

Definizione 1.10. Sia $S \subseteq k[X_1, ..., X_n]$, definisco l'insieme algebrico affine $V(S) = \{P = (x_1, ..., x_n) \in \mathbb{A}^n : F(P) = 0 \forall F \in S\}$. Se $I \subseteq k[X_1, ..., X_n]$ è l'ideale generato da S, vale che V(I) = V(S). Un insieme algebrico affine V è detto irriducibile se non è unione di insiemi algebrici affini strettamente contenuti in V. Un insieme algebrico affine irriducibile è detto varietà affine.

Proposizione 1.11. Unione finita di insiemi algebrici è un insieme algebrico. Intersezione arbitraria di insiemi algebrici è un insieme algebrico. \emptyset , \mathbb{P}^n sono insiemi algebrici.

Proof. La dimostrazione di questo fatto nel caso affine è analoga a quella del caso proiettivo nella proposizione 1.21

Definizione 1.12. Sia $X \subseteq \mathbb{A}^n$, definisco l'ideale associato ad X come $I(X) = \{F \in k[X_1, \dots, X_n] : F(P) = 0 \forall P \in X\}.$

Osservazione 1.13. La definizione è ben posta, ovvero I(X) è effettivamente un ideale per ogni X.

Proposizione 1.14. Un insieme algebrico V è irriducibile se e solo se I(V) è un ideale primo.

Proof. Sia V irriducibile e siano $F, G \in k[X_1, ..., X_n]$ tali che $FG \in I(V)$. Allora, considero gli insiemi $V(F) = \{P \in V : F(P) = 0\}$ e $V(G) = \{P \in V : G(P) = 0\}$. Chiaramente $V(F) \cup V(G) \subseteq V$. Inoltre siccome $FG \in I(V), F(P)G(P) = 0$, quindi per ogni $P \in V, F(P) = 0$ oppure G(P) = 0, dunque $V \subseteq V(F) \cup V(G)$.

Ma V è irriducibile, quindi V=V(F) oppure V=V(G), da cui $F\in I(V)$ oppure $G\in I(V)$.

Viceversa sia V tale che I(V) sia primo e siano $V_1, V_2 \subseteq V$ insiemi algebrici tali che $V = V_1 \cup V_2$. Se $V_1 = \emptyset$ oppure $V_2 = \emptyset$, allora l'altro è uguale a V e non c'è nulla da dimostrare. Suppongo quindi $V_1 \neq \emptyset \neq V_2$. Allora $I(V) \subseteq I(V_1), I(V_2) \subseteq I(V_1)I(V_2)$. Viceversa:

$$F \in I(V_1)I(V_2) \Longrightarrow F = GH, G \in I(V_1), H \in I(V_2)$$

Ma per $P \in V = V_1 \cup V_2$, deve valere G(P) = 0 oppure H(P) = 0, dunque F(P) = 0. Ovvero $F \in I(V)$.

Vale che $I(V) = I(V_1)I(V_2)$, ed essendo I(V) primo e $I(V_1)$, $I(V_2)$ non banali in $k[X_1, \ldots, X_n]$, segue che $I(V) = I(V_1) = I(V_2)$, da cui $V = V_1 = V_2$. \square

Sia dunque $V \subseteq \mathbb{A}^n$ un insieme algebrico irriducibile e sia I(V) il suo ideale primo associato. Allora considero l'anello $\Gamma(V) = \frac{k[X_1, \dots, X_n]}{I(V)}$. Siccome I(V) è primo, $\Gamma(V)$ è un dominio ed è detto anello coordinato associato a V.

Siccome $\Gamma(V)$ è dominio, allora è ben definito il suo campo dei quozienti. Sia k(V). Tale campo è detto campo delle funzioni razionali su V. Siano ora $P \in V, z \in k(V)$ fissati; si dice che z è definita in P, se esistono $f, g \in \Gamma(V)$, tali che $z = \frac{f}{g}$ e $g(P) \neq 0$. Si definisce a questo punto $\mathcal{O}_P(V) = \{z \in k(V) : z \text{ è definita in } P\}$. $\mathcal{O}_P(V)$ è un anello locale, con ideale massimale $M_P(V) = \{z \in \mathcal{O}_P(V) : z(P) = 0\}$.

1.2.2 Caso Proiettivo

Definizione 1.15. Un punto $P \in \mathbb{P}^n$ si dice zero del polinomio $F \in k[X_1, \ldots, X_{n+1}]$ se per ogni scelta $[x_1, \ldots, x_{n+1}]$ di coordinate omogenee per P, vale che $F(x_1, \ldots, x_{n+1}) = 0$, e si scrive F(P) = 0.

Vale il seguente:

Lemma 1.16. Sia $F \in k[X_1, ..., X_{n+1}]$ un polinomio di grado d, e siano $F_0, ..., F_d \in k[X_1, ..., X_{n+1}]$ polinomi omogenei tali che $F = \sum_{i=0}^d F_i$ e F_i ha grado i. Allora un punto $P \in \mathbb{P}^n$ è zero di F se e solo se è zero di F_i per ogni i.

Sia ora $S \subseteq k[X_1, \ldots, X_{n+1}]$, allora definisco $V(S) = \{P \in \mathbb{P}^n : F(P) = 0 \forall F \in S\}$. Chiaramente se I è l'ideale generato da S, vale che: V(I) = V(S). Un tale insieme è detto *insieme algebrico proiettivo*.

Osservo ora che siccome $k[X_1, \ldots, X_{n+1}]$ è noetheriano, I è finitamente generato, ovvero $I = (F^1, \ldots, F^r)$. Ciascuno degli $(F^i)_{i=1}^r$ può essere scritto come somma di polinomi omogenei nella forma $F^i = \sum_{j=0}^{d_i} F^i_j$, con d_i grado di F_i e F^i_j polinomio omogeneo di grado j. Dunque $V(I) = V(F^1, \ldots, F^r) = V(F^i_j: j \in \{0, \ldots, d_i\}, i \in \{1, \ldots, r\})$.

Definizione 1.17. Un ideale $I \leq k[X_1, \ldots, X_{n+1}]$ si dice *omogeneo* se per ogni $F \in I, F = \sum_{i=0}^{d} F_i$, dove d è il grado di F e F_i è un polinomio omogeneo di grado i per ogni i, allora $F_i \in I$ per ogni i.

Definizione 1.18. Sia $X \subseteq \mathbb{P}^n$ pongo $I(X) = \{F \in k[X_1, \dots, X_{n+1}] : F(P) = 0 \forall P \in X\}$ l'ideale associato ad X.

Osservazione 1.19. I(X) è omogeneo per ogni $X \subseteq \mathbb{P}^n$.

Proposizione 1.20. Un ideale $I \leq k[X_1, ..., X_{n+1}]$ è omogeneo se e solo se è generato da un numero finito di polinomi omogenei

Proposizione 1.21. Unione finita di insiemi algebrici è un insieme algebrico. Intersezione arbitraria di insiemi algebrici è un insieme algebrico. \emptyset , \mathbb{P}^n sono insiemi algebrici.

Proof. Siano $S_1, S_2 \in k[X_1, \dots, X_{n+1}]$, dimostro che $V(S_1) \cup V(S_2) = V(S_1S_2)$: Sia $P \in V(S_1) \cup V(S_2)$, allora $P \in V(S_1)$ oppure $P \in V(S_2)$, cioè $F(P) = 0 \forall F \in S_1$ oppure $G(P) = 0 \forall G \in S_2$. Ne segue che $\forall F \in S_1 \forall G \in S_2FG(P) = F(P)G(P) = 0$, dunque $V(S_1) \cup V(S_2) \subseteq V(S_1S_2)$.

Viceversa sia $P \in V(S_1S_2)$ e suppongo per assurdo che $P \notin V(S_1) \cup V(S_2)$, ovvero che esistano $F \in S_1, G \in S_2$ tali che $F(P) \neq 0 \neq G(P)$, allora 0 = FG(P) = F(P)G(P), entrambi non nulli. Assurdo.

Per induzione segue il risultato per famiglie finite.

Sia ora $(S_{\alpha})_{\alpha \in A}$, con A insieme arbitrario, tali che $S_{\alpha} \subseteq k[X_1, \ldots, X_{n+1}] \forall \alpha \in A$. Allora, $\bigcap_{\alpha \in A} V(S_{\alpha})$ è un insieme algebrico: chiaramente,

$$\bigcap_{\alpha \in A} V(S_{\alpha}) = V(\bigcup_{\alpha \in A} S_{\alpha})$$

e quest'ultimo è algebrico. Per dimostrare tale uguaglianza:

$$P \in big \cap_{\alpha \in A} V(S_{\alpha}) \Longrightarrow \forall \alpha \in A \forall F \in S_{\alpha} F(P) = 0 \Longrightarrow \forall F \in \bigcup_{\alpha \in A} F(P) = 0$$

. Viceversa:

$$P \in V(\bigcup_{\alpha \in A} S_{\alpha}) \Longrightarrow \forall F \in \bigcup_{\alpha \in A} S_{\alpha}F(P) = 0 \Longrightarrow \forall \alpha \in A \forall F \in S_{\alpha}F(P) = 0$$

$$\emptyset = \{ P \in \mathbb{P}^n : 1 = 0 \} = V(1) \in \mathbb{P}^n = \{ P \in \mathbb{P}^n : 0 = 0 \} = V(0).$$

Osservazione 1.22. Gli insiemi algebrici, sia affini che proiettivi, sono dei chiusi per una topologia.

Osservo ora che se $F \in k[X_1, \ldots, X_{n+1}]$ è un polinomio omogeneo, è ben definito, per ogni $i \leq n+1$ un polinomio in n indeterminate, detto affinizzato di F rispetto alla i-esima coordinata omogenea: $F_i(X_1, \ldots, \hat{X}_i, \ldots, X_{n+1}) = F(X_1, \ldots, X_{i-1}, 1, X_{i+1}, \ldots, X_n)$. $V = V(F), V_i = V(F_i) \forall i \leq n+1$, sono

insiemi algebrici proiettivo e affini tali che $\forall i \leq n+1 \varphi_i(V \cap U_i) = V_i$. Un insieme algebrico proiettivo $V = V(S) \subseteq \mathbb{P}^n, S \subseteq k[X_1, \dots, X_{n+1}]$ si dice *irriducibile* se non è unione di insiemi algebrici più piccoli. Un insieme algebrico irriducibile è detto *varietà*. Vale anche in questo caso che V è irriducibile se e solo se I(V) è primo.

Sia dunque V un insieme algebrico irriducibile proiettivo e sia I(V) il suo ideale primo associato. Allora considero l'anello $\Gamma_h(V) = \frac{k[X_1,...,X_{n+1}]}{I(V)}$. Siccome I(V) è primo, $\Gamma_h(V)$ è un dominio ed è detto anello omogeneo associato a V.

Un elemento di $\Gamma_h(V)$ è detto omogeneo se è immagine, tramite la proiezione, di un polinomio omogeneo in $k[X_1,\ldots,X_{n+1}]$. Indico la proiezione con π_V . Siccome $\Gamma_h(V)$ è dominio, allora è ben definito il suo campo dei quozienti. Sia $k_h(V)$. Osservo ora che se $f,g\in\Gamma_h(V)$ sono omogenei dello stesso grado, il rapporto $\frac{f}{g}$ induce una funzione sui punti di V sui quali g non si annulla, infatti, fissato un punto $P\in V$ tale che $g(P)\neq 0$, fissate delle coordinate omogenee \bar{x} per P, e detto d il comune grado di f e g, per ogni $\lambda\in k\setminus\{0\}$, quindi per ogni altra scelta di coordinate omogenee per P:

$$\frac{f(\lambda x)}{g(\lambda x)} = \frac{\lambda^d f(x)}{\lambda^d g(x)} = \frac{f(x)}{g(x)}$$

Queste osservazioni portano a dare la seguente:

Definizione 1.23. Il campo delle funzioni su V è $k(V) = \{z \in k_h(V) : z = \frac{f}{g}, f, g \text{ omogenei di stesso grado}\}$. Gli elementi di k(V) sono detti funzioni razionali su V.

k(V) è un sottocampo di $k_h(V)$.

Siano ora $P \in V, z \in k(V)$ fissati; si dice che z è definita in P, se esiste una coppia di omogenei dello stesso grado f, g, tali che $z = \frac{f}{g}$ e $g(P) \neq 0$. Si definisce a questo punto $\mathcal{O}_P(V) = \{z \in k(V) : z$ è definita in $P\}$. $\mathcal{O}_P(V)$ è un anello locale, con ideale massimale $M_P(V) = \{z \in \mathcal{O}_P(V) : z(P) = 0\}$. Considero ora brevemente il caso di un multispazio, ovvero uno spazio del tipo $\mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_r} = X$, per opportuni $n_1, \ldots, n_r \in \mathbb{N}$.

Definizione 1.24. Un polinomio $F \in k[X_{1,1}, \ldots, X_{n_1,1}, \ldots, X_{1,r}, \ldots, X_{n_r,r}] = Y$ si dice omogeneo se è omogeneo rispetto ad ogni famiglia di indeterminate. Un insieme algebrico in $X \in V(S)$, per un opportuno $S \subseteq Y$.

Valgono risultati e definizioni analoghi a quelli visti nel caso di insiemi affini e proiettivi.

1.3 Curve Algebriche Piane

1.3.1 Caso Affine

Siano $F, G \in k[X, Y]$, tali polinomi si dicono equivalenti se esiste $\lambda \in k, \lambda \neq 0$ tale che $F = \lambda G$. Questa relazione è un'equivalenza su k[X, Y].

Definisco una curva piana affine una classe di equivalenza di polinomi non costanti rispetto a tale equivalenza. Dunque posso definire il grado di una curva come il grado di un polinomio (e quindi di tutti i polinomi) della classe di equivalenza.

Sia quindi una curva fissata ed F un rappresentante. Se $F = \prod F_i^{e_i}$, con gli F_i non costanti, irriducibili ed a due a due non associati, allora, si dice che F_i è una componente della curva F di molteplicità e_i . Se invece, F è irriducibile, allora V(F) è una varietà affine, dunque sono ben definiti $\Gamma(V(F)), k(V(F)), \mathcal{O}_P(V(F))$, e si indicano con $\Gamma(F), k(F), \mathcal{O}_P(F)$.

Sia ora F una curva e P un suo punto. Si dice che P è un punto semplice per F se $F_X(P) \neq 0$ o $F_Y(P) \neq 0$, dove F_X, F_Y sono le derivate parziali di F. In tal caso, la retta $F_X(P)(X - x_P) + F_Y(P)(Y - y_P) = 0$, è detta retta tangente ad F in P.

Suppongo ora che, a meno di una traslazione, P = (0,0); allora $F = F_m + \cdots + F_n$, dove $n = \deg(F), F_i$ è polinomio omogeneo di grado i in k[X,Y], per ogni i ed $F_m \neq 0$. Si definisce la molteplicità della curva F nel punto P come m e si scrive $m_P(F) = m$. Infine siccome, F_m è omogeno in due variabili, può essere scritto nella forma $F_m = \prod_{i=1}^s L_i^{r_i}$, dove gli L_i sono fattori lineari a due a due non associati. Gli L_i sono le rette tangenti a F in P e ciascuna ha molteplicità r_i .

Osservazione 1.25. $P \in F \iff m_P(F) > 0$. Se P è semplice $m_P(F) = 1$. Se $m_P(F) > 1$, P è detto punto multiplo.

Il linguaggio degli anelli coordinati e degli anelli locali offre una diversa, ma equivalente caratterizzazione dei punti semplici e della molteplicità di una curva in un suo punto. Userò la seguente notazione: per $G \in k[X,Y], g$ è la sua immagine in $\Gamma(F) = \frac{k[X,Y]}{(F)}$.

Proposizione 1.26. Un punto $P \in F$ è semplice se e solo se $\mathcal{O}_P(F)$ è un DVR. Inoltre se L è una retta per P che non è tangente in P a F, allora $\ell \in \mathcal{O}_P(F)$ è un parametro uniformizzante.

Proposizione 1.27. Sia $P \in F$, F irriducibile. Allora $m_P(F) = dim_k \frac{M_P(F)^n}{M_P(F)^{n+1}}$ per n sufficientemente grande.

In particolare, da questo segue che la molteplicità di un punto dipende solo dal suo anello locale. Inoltre se P è semplice, allora $\mathcal{O}_P(F)$ è un DVR; sia ord $_P^F$ la funzione ordine indotta su k(F).

Siano ora F,G curve piane e $P \in \mathbb{A}^2$. Si definisce la molteplicità di intersezione di F e G in P come $I(P,F\cap G)=\dim_k(\frac{\mathcal{O}_P(\mathbb{A}^2)}{(F,G)})$. La moltepilicità di intersezione gode delle seguenti proprietà:

- $I(P, F \cap G)$ esiste per ogni coppia di curve e per ogni punto;
- $I(P, F \cap G) \in \mathbb{N}$ se F, G non hanno componenti comuni passanti per P, altrimenti, se F, G hanno componenti comuni passanti per $P, I(P, F \cap G) = \infty$;
- $I(P, F \cap G) = 0 \iff P \notin F \cap G$, e $I(P, F \cap G)$ dipende solo dalle componenti di F e G passanti per P;
- Se T è un cambio di coordinate affini, e T(Q) = P, allora $I(Q, F \cap G) = I(P, F^T \cap G^T)$;
- $I(P, F \cap G) = I(P, G \cap F)$;
- $I(P, F \cap G) \ge m_P(F)m_P(G)$ e vale l'uguaglianza se e solo se F, G non hanno tangenti in P in comune;
- Se $F=\prod_{i=1}^p F_i^{r_i}, G=\prod_{j=1}^q G_j^{s_j}$, allora $I(P,F\cap G)=\sum_{i,j} r_i s_j I(P,F_i\cap G_j)$;
- $I(P, F \cap G) = I(P, F \cap (G + AF)), \forall A \in k[X, Y];$
- Se P è un punto semplice di F, allora, $I(P, F \cap G) = \operatorname{ord}_{P}^{F}(G)$;
- Se F, G non hanno componenti comuni $\sum_{P \in \mathbb{A}^2} I(P, F \cap G) = \dim_k(\frac{k[X,Y]}{(F,G)})$.

1.3.2 Caso Proiettivo

Siano $F,G \in k[X,Y,Z]$ due polinomi omogenei non-costanti. Allora, F,G si dicono equivalenti se esiste $\lambda \in k, \lambda \neq 0$, tale che $F = \lambda G$. Questa è un'equivalenza tra i polinomi omogenei. Si definisce una curva piana proiettiva come una classe di equivalenza. Il grado di una tale curva è il grado di un polinomiale che la definisce.

Osservo ora che se F è una curva proiettiva e P = [x, y, 1] è un suo punto, allora, $(x, y) \in \mathbb{A}^2$ è un punto della curva affine F_* , definita come $F_*(X, Y) = F(X, Y, 1)$, ovvero F_* è *l'affinizzato* di F. In particolare $\mathcal{O}_P(F)$ è isomorfo

a $\mathcal{O}_{(x,y)}(F_*)$, dunque se $P \in U_3$ (o simmetricamente in U_1 o U_2), risulta ben definita la molteplicità in P di F, grazie alla teoria delle curve affini.

In generale, dati dei punti $P_1, \ldots, P_n \in \mathbb{P}^2$, esiste una retta L che non contiene alcuno di questi punti. Allora, a meno di un cambio di coordinate, posso supporre che questa retta sia la retta Z, quindi i P_i hanno coordinate $[x_i, y_i, 1]$.

Siccome c'è questa corrispondenza fra curve proiettive ed affini, risulta definita anche la molteplicità di intersezione di due curve proiettive in un punto. Una retta L è detta tangente ad una curva F in un punto P se $I(P, L \cap F) \geq m_P(F)$. Un punto multiplo è detto ordinario se ammette $m_P(F)$ tangenti distinte.

Enuncio ora due teoremi che saranno molto importanti nel seguito.

Teorema 1.28 (di Bezout). Siano F, G curve piane proiettive prive di componenti comuni. Sia $n = \deg(F), m = \deg(G)$. Allora $\sum_{P \in \mathbb{P}^2} I(P, F \cap G) = mn$.

Definizione 1.29. Siano F, G due curve passanti per P prive di componenti comuni per P e sia H un'altra curva. Allora, si dice che le condizioni di Noether sono soddisfate in P rispettivamente a F, G, H se $H_* \in (F_*, G_*)$.

Teorema 1.30 (Fondamentale di Noether). Siano F, G, H curve piane proiettive. Suppongo che F, G non abbiano componenti comuni. Allora esistono $A, B \in k[X, Y, Z]$ omogenei tali che H = AF + BG se e solo se le condizioni di Noether sono soddisfatte in P, per ogni $P \in F \cap G$.

1.4 Varietà, Morfismi e Mappe Razionali

A questo punto risulta utile definire una topologia su $\mathbb{P}^n(e \text{ su } \mathbb{A}^n)$: la topologia di Zariski, definita per ogni $U \subseteq \mathbb{P}^n$, come U è un aperto se e solo se $\mathbb{P}^n \setminus U$ è un insieme algebrico. Per l'Osservazione 1.22, quella definita è effettivamente una topologia. Sia ora V un insieme algebrico irriducibile, e considero su V la topologia indotta dalla topologia di Zariski. Siano $U_1, U_2 \subseteq V$ due aperti, allora, $U_1 \cap U_2 \neq \emptyset$ perché altrimenti, $V = (V \setminus U_1) \cup (V \setminus U_2)$, sarebbe riducibile. Ne segue che per ogni coppia di punti distinti $P, Q \in V$ i loro intorni non sono mai disgiunti. Ne segue che \mathbb{P}^n con la topologia di Zariski non è uno spazio Hausdorff.

La topologia di Zariski è ben definita anche nei multispazi.

Definizione 1.31. Sia $V \subseteq \mathbb{P}^n$ un insieme algebrico irriducibile, e sia $X \subseteq V$ un aperto. X è detto varietà. Analogamente risultano definite le varietà per insiemi affini ed in mutlispazi.

Analogamente a quanto visto per gli insiemi algebrici, possiamo definire le funzioni razionali su X varietà, come $k(X) = \{f_{\upharpoonright X} : f \in k(V)\}$, ed analogamente, per $P \in X$, $\mathcal{O}_P(X) = \{f \in k(X) : f \text{ è definita in } P\}$.

Se $U\subseteq X$ è aperto, allora U è aperto in V, dunque è una varietà ed è detto sottovarietà aperta di X.

Sia ora $Y\subseteq X$ un chiuso, allora, Y si dice irriducibile se non è unione di due suoi sottoinsiemi propri e chiusi in X. Se Y è irriducibile, allora, detta \bar{Y} la sua chiusura in V, $Y=\bar{Y}\cap X$ è un aperto di \bar{Y} , quindi è una varietà di \bar{Y} , ed è detta sottovarietà chiusa di X. Analoghe definizioni valgono nel caso affine.

Sia ora $U\subseteq X$ un aperto non vuoto; definisco $\Gamma(U)=\{f\in k(X): f \text{ è definita in ogni punto } P\in U\}=\cap_{P\in U}\mathcal{O}_P(X).$

Considero dunque l'anello $\mathcal{I}(U,k)$ delle mappe da U a k.

Lemma 1.32. Sia X una varietà proiettiva e sia U un suo sottoinsieme aperto. Sia $z \in \Gamma(U)$ tale che z(P) = 0 per ogni $P \in U$. Allora z = 0.

Proof. Sia $z \in \Gamma(U)$, allora $z \in k(X)$ e z è definita in ogni punto di U; cioè $z = \frac{f}{g}, f, g \in \Gamma_h(X)$ omogenei dello stesso grado, con $g(p) \neq 0 \forall P \in U$. Allora $f(P) = 0 \forall P \in U$.

Dimostro ora che $z = \frac{f}{g}: U \to k$ è una funzione continua se considero su U la topologia indotta dalla topologia di Zariski e su k la topologia di Zariski, una volta identificato $k = \mathbb{A}^1(k) = \mathbb{A}^1$. Sia un chiuso $A \subseteq \mathbb{A}^1$ un chiuso, allora, è un insieme finito. Dunque siccome le antiimmagini commutano con

le unioni è sufficiente dimostrare che $z^{-1}(a)$ è un chiuso per ogni $a \in \mathbb{A}^1 = k$.

$$z^{-1}(a) = \{P \in U : z(P) = a\} = \{P \in U : f(P) - ag(P) = 0\} = \{P \in U : F(P) - aG(P) = 0\} = V(F - aG) \cap U$$

dove F, G sono polinomi omogenei che vengono mappati in f, g nel quoziente $\Gamma_h(X)$. In particolare, $z^{-1}(a)$ è algebrico quindi chiuso.

Infine essendo quindi z continua, ed essendo U denso per la topologia di Zariski, $z(X) = z(\bar{U}) \subseteq \bar{0} = 0$. Ne segue z = 0.

Siccome quindi la mappa $\Gamma(U) \to \mathcal{I}(U,k)$ è una mappa iniettiva, posso identificare $\Gamma(U)$ con la sua immagine.

D'ora in poi con varietà intenderò sia insiemi algebrici proiettivi (o affini) irriducibili, sia quelle che ho chiamato sottovarietà (aperte e chiuse) sia affini che proiettive. Siano quindi X,Y varietà e sia $\varphi:X\to Y$ una mappa insiemistica. Allora è ben definito l'omomorfismo d'anelli, $\tilde{\varphi}:\mathcal{I}(Y,k)\to \mathcal{I}(X,k)$ definito per ogni funzione $f\in\mathcal{I}(Y,k)$ da $\tilde{\varphi}(f)=f\circ\varphi$.

Definizione 1.33. Una mappa $\varphi: X \to Y$, con X, Y varietà è detta morfismo, se:

- 1. φ è continua rispetto alle topologie di Zariski su X e Y;
- 2. per ogni aperto $U \subseteq Y$ e per ogni $f \in \Gamma(U)$, allora $f \circ \varphi \in \Gamma(\varphi^{-1}(U))$.

Un isomorfismo è un morfismo φ che è invertibile e φ^{-1} è un morfismo.

Definizione 1.34. Siano $V \subseteq \mathbb{A}^n, W \subseteq \mathbb{A}^m$; una mappa $p: V \to W$ è una mappa polinomiale se $p = (p_1, \dots, p_m)$ e $p_i \in k[X_1, \dots, X_n] \forall i$.

D'ora in poi mi userò la seguente nomenclatura: dirò che una varietà è affine se è isomorfa ad una varietà in uno spazio affine.

Proposizione 1.35. Siano X,Y varietà affini. Allora esiste una corrispondenza iniettiva fra morfismi $\varphi: X \to Y$ ed omomorfismi $\tilde{\varphi}: \Gamma(Y) \to \Gamma(X)$. In particolare, un morfismo di $X \subseteq \mathbb{A}^n$ in $Y \subseteq \mathbb{A}^m$ è equivalente ad una mappa polinomiale.

Esempio 1.36. Fissato $V \subseteq \mathbb{P}^n$, una varietà, $U_i, \varphi_i, i\{1, \ldots, n+1\}$ gli aperti e le mappe canoniche che mettono in biiezione \mathbb{A}^n con gli $U_i \subseteq \mathbb{P}^n$. Siano inoltre $V_i = V \cap U_i, \tilde{V}_i = \varphi_i(V_i)$, allora $\varphi_i : V_i \to \tilde{V}_i$ è isomorfismo per ogni i, quindi ogni varietà proiettiva è unione di sottovarietà aperte isomorfe a varietà affini.

Definizione 1.37. Sia K un'estensione di k generata aggiungendo a k un numero finito di elementi. Si dice grado di trascendenza di K su k, e si denota con $\operatorname{tr.deg}_k K$, il più piccolo intero n, tale che esistono $x_1, \ldots, x_n \in K$, tali che K è algebrico su $k(x_1, \ldots, x_n)$. In tal caso si dice che K è un campo di funzioni algebriche in n variabili su k.

Proposizione 1.38. Sia K un campo di funzioni algebriche in una variabile su k, tale che per ogni $t \in K$, tale che K è algebrico su k(t), allora l'estensione $\frac{K}{k(t)}$ è finita e sia $x \in K \setminus k$. Allora:

- 1. $K \ e \ algebrico \ su \ k(x);$
- 2. Esiste un elemento $y \in K$ tale che K = k(x, y).

Proof. Sia $t \in K$ tale che K è estensione algebrica di k(t); allora esiste un polinomio $F \in k(t)[X]$ tale che F(t,x) = 0. In particolare, siccome x non è algebrico su k, perché k è algebricamente chiuso, allora t compare in F(t,x). Allora, moltiplicando gli eventuali denominatori, posso concludere che esiste $G \in k(x)[T]$ tale che G(x,t) = 0, da cui t è algebrico su k(x), ma allora k(x,t) è algebrico su k(x) e di conseguenza lo è K.

Siccome K è algebrico su k(x), allora l'estensione è algebrica e finita, quindi ammette elemento primitivo, ovvero esiste $y \in K$ tale che K = k(x, y). \square

Se X è una varietà, allora, k(X) è un'estensione di k finitamente generata. Si definisce allora $\dim(X) = \operatorname{tr.deg}_k k(X)$. Una varietà di dimensione 1 è detta curva.

Osservazione 1.39. Una curva secondo questa definizione è irriducibile, mentre una curva piana definita come in 1.3 può essere riducibile.

Proposizione 1.40. 1. Se U è una sottovarietà aperta di X, allora dim(U) = dim(X);

- 2. Se V è la chiusura proiettiva di una varietà affine V', allora dim(V) = dim(V');
- 3. Una varietà ha dimensione zero se e solo se è un punto;

Proof. I primi due punti discendono dal fatto che i campi di funzioni coincidono.

Sia ora V una varietà di dimensione zero: per i primi due punti possiamo supporre sia affine; allora siccome k(V) è algebrico su k, ma k è algebricamente chiuso, segue che k(V) = k. In particolare $\Gamma(V) = k$, quindi i resti modulo I(V) sono solo costanti, quindi I(V) è generato da n polinomi di

primo grado linearmente indipendenti su k, che si annullano in V, ma quindi V è un unico punto in \mathbb{A}^n . Il viceversa è ovvio.

Definizione 1.41. Siano X, Y varietà, due morfismi $f_1: U_1 \to Y, f_2: U_2 \to Y$, con $U_1, U_2 \subseteq X$ aperti, si dicono equivalenti se le loro restrizioni a $U_1 \cap U_2$ coincidono.

Siccome $U_1 \cap U_2$ è denso in X, f_1 , f_2 sono determinati dalle loro restrizioni su $U_1 \cap U_2$. Questa relazione è effettivamente una relazione di equivalenza fra i morfismi. Una classe di equivalenza di morfismi è una coppia (U, f) dove $U \subseteq X, U = \cup_{\alpha} U_{\alpha}, U_{\alpha}$ dominio di un singolo morfismo, $f: U \to Y$ definita da $P \in U \Longrightarrow P \in U_{\alpha} \exists \alpha, f(P) = f_{\alpha}(P)$, con f_{α} morfismo di dominio U_{α} . Siccome morfismi equivalenti coincidono sulle intersezioni dei rispettivi domini, la definizione di f è ben posta. f è detta mappa razionale ed U è il suo dominio.

Definizione 1.42. Una mappa razionale $f: U \to Y, U \subseteq X$ è detta dominante se f(U) è denso in Y.

Siano A, B anelli locali tali che $A \leq B$; si dice che B domina A, se l'ideale massimale di B contiene l'ideale massimale di A.

Proposizione 1.43. Siano X,Y varietà e sia $F:X\to Y$ una mappa razionale dominante. Siano $U\subseteq X,V\subseteq Y$ aperti tali che $f:U\to V$ è un morfismo che rappresenta F. Allora:

- 1. l'omomorfismo indotto $\tilde{f}: \Gamma(V) \to \Gamma(U)$ è iniettivo, quindi si estende unicamente ad un omomorfismo di k(V) = k(Y) in k(U) = k(V); inoltre è indipendente dalla scelta di f, quindi si denota con \tilde{F} ;
- 2. se P è nel dominio di F, F(P) = Q, allora $\mathcal{O}_P(X)$ domina $\tilde{F}(O_Q(Y))$; viceversa se $\mathcal{O}_P(X)$ domina $\tilde{F}(\mathcal{O}_Q(Y))$ per oppurtuni $P \in X, Q \in Y$, allora P è nel dominio di F e F(P) = Q;
- 3. ogni omomorfismo di k(Y) in k(X) è indotto da un un'unica mappa razionale dominante di X in Y.

Una mappa razionale di X in Y è detta birazionale se esistono degli aperti $U\subseteq X, V\subseteq Y$ ed un isomorfismo $f:U\to V$ che rappresenta F. Due varietà tra cui esiste una mappa birazionale, si dicono birazionalmente equivalenti. Ad esempio ogni varietà è birazionalmente equivalente ad ogni sua sottovarietà aperta.

Proposizione 1.44. Due varietà sono birazionalmente equivalenti se e solo se i loro campi di funzioni sono isomorfi

Proof. Che due varietà birazionalmente equivalenti abbiano campi di funzioni isomorfi è ovvio.

Viceversa, se $\varphi: k(Y) \to k(X)$ è un isomorfismo, allora, per la dimostrazione della Proposizione 1.43 $\varphi(\Gamma(X)) \subseteq \Gamma(Y_b)$ per un opportuno $b \in \Gamma(Y)$ e $\varphi^{-1}(\Gamma(Y)) \subseteq \Gamma(X_d)$ per un opportuno $d \in \Gamma(X)$. Allora φ si restringe ad un isomorfismo tra $\Gamma((Y_b)_{\varphi^{-1}(d)})$ e $\Gamma((X_d)_{\varphi(b)})$, che è generato da un unico morfismo $f: (X_d)_{\varphi(b)} \to (Y_b)_{\varphi^{-1}(d)}$.

Corollario 1.45. Ogni curva è birazionalmente equivalente ad una curva piana.

Proof. Sia V una curva allora, per la proposizione 1.38, esistono $x,y\in k(V)$ tali che k(V)=k(x,y). Considero perciò il naturale omomorfismo d'anelli da k[X;Y] in k[x,y], e sia I il suo nucleo. In particolare, essendo V irriducibile, I è primo, dunque $V'=V(I)\subseteq \mathbb{A}^2$ è una varietà. Inoltre, $\Gamma(V')=\frac{k[X,Y]}{I}$ è isomorfo a k[x,y], quindi k(V') è isomorfo, a k(V), quindi per la proposizione precedente le due varietà sono birazionalmente equivalenti. Per vedere che V' è una curva è sufficiente osservare che essendo k(V), k(V') isomorfi, $\dim V'=\dim V=1$.

Esercizio 1.46. Siano C, C' curve e sia F una mappa razionale tra C e C'. Allora F è dominante oppure è costante. Inoltre se F è dominante, k(C) è un'estensione algebrica finita di $\tilde{F}(k(C'))$.

Proof. Se F è dominante allora non c'è niente da dimostrare.

Sia quindi F non dominante, e sia $f:U\to V$ morfismo che rappresenta F. Allora, siccome F non è dominante, f(U) è non vuoto e non è denso in C'. Esiste perciò $\emptyset\neq V\subseteq C'$ aperto tale che $f(U)\cap V=\emptyset\Longrightarrow f(U)\subseteq C'\setminus V$ che è algebrico, quindi è una sottovarietà chiusa di C' e siccome $f(U)\neq\emptyset$ è non banale ovvero è un punto. Ne segue $f(U)=\{P\}$ per un opportuno $P\in C'$. Essendo U denso in C segue la tesi.

Sia ora F dominante allora \tilde{F} è un omomorfismo non banale di campi, dunque $L = \tilde{F}(k(C'))$ è isomorfo a k(C'). Sia L che k(C) sono campi di funzione in una variabile su k. Dunque per la proposizione 1.38 esistono $x, y \in k(C), t, s \in L$, nessuno dei quattro in k tali che k(C) = k(x, y), L = k(t, s). Sempre per la Proposizione 1.38 k(C) è estensione algebrica finita di L: basta aggiungere x, y, quando non già presenti.

1.5 Esplosione di punti affini e proiettivi, Trasformazioni quadratiche e Modello non-singolare

Sia C una curva arbitraria e sia P un suo punto. P è detto punto semplice se $\mathcal{O}_P(C)$ è un DVR.

Sia quindi ord_P^C la funzione d'ordine su k(C) associata a $\mathcal{O}_P(C)$. Se ogni punto di C è semplice, la curva è detta non-singolare.

Definizione 1.47. Siano $k \leq K$ campi; un sottoanello A di K è detto anello locale di K, se A è un anello locale, K è il campo dei quozienti di A e $k \leq A$. Analogamente si dice che A è un anello di valutazione discreta di K se A è un anello locale di K ed è un DVR.

Proposizione 1.48. Sia C una curva proiettiva e sia K = k(C). Sia inoltre L un campo contenete K ed R un DVR di L che non contiene K. Allora esiste un unico punto $P \in C$ tale che R domina $\mathcal{O}_P(C)$.

Corollario 1.49. Sia F una mappa razionale da una curva C ad una curva proiettiva C'; allora i punti semplici di C sono nel dominio di F.

Proof. Se F non è domininante allora è costante (Esercizio 1.46), quindi è definita su ogni punto di C.

Sia quindi F dominante e $P \in C$ un punto semplice. Allora, posto $R = \mathcal{O}_P(C), L = \tilde{F}(k(C'))$, per la Proposizione 1.43, se R domina $\tilde{F}(\mathcal{O}_Q(C'))$ per un $Q \in C'$, allora P è nel dominio di F. Ma siccome F è dominante \tilde{F} è isomorfismo tra k(C') ed L, quindi R domina $\tilde{F}(\mathcal{O}_Q(C'))$ per un oppurtuno Q se $L \not\subseteq R$.

Se per assurdo fosse $L \subseteq R \subseteq k(C)$, essendo $\frac{k(C)}{L}$ algebrica finita per l'Esercizio 1.46, segue che R è un campo per 1.8. Ma questo è assurdo perché un DVR non è un campo.

Corollario 1.50. Sia C una curva proiettiva non-singolare, K = k(C). Allora i DVR di K sono tutti e soli gli $\mathcal{O}_P(C)$.

Proof. Che i $\mathcal{O}_P(C)$ siano DVR di K è ovvio. Viceversa se R è un DVR di K, allora per la Proposizione 1.48 R domina un unico $\mathcal{O}_P(C)$. Quindi siamo nella situazione di due DVR con uno che domina l'altro inclusi nello stesso campo, che per entrambi è il campo dei quozienti. Ne segue $R = \mathcal{O}_P(C)$. L'inclusione non banale si dimostra così: $r \in R \subseteq K \implies r = \frac{g_1}{g_2}, g_2 \neq 0, g_1, g_2 \in \mathcal{O}_P(C)$; se g_2 è invertibile in $\mathcal{O}_P(C)$, allora $r \in \mathcal{O}_P(C)$, altrimenti, se g_2 non è ivi invertibile, allora, neanche in R lo è, quindi $r \notin R$, assurdo. \square

Con "risolvere le singolarità" di una curva proiettiva C si intende trovare una curva proiettiva non-singolare X ed una mappa birazionale $f:X\to C$. Per fare questo si parte dalle curve piane, infatti, se si riesce a dimostrare che per ogni curva piana esiste una tale curva non-singolare, allora, siccome tutte le curve proiettive sono birazionalmente equivalenti ad una curva piana, seguirà che ogni curva è birazionalmente equivalente ad una non-singolare. L'idea fondamentale è quella dell' "esplosione dei punti singolari di una curva", che ad un livello intuitivo può essere descritto nel seguente modo: sai $C\subseteq \mathbb{P}^2$ una curva e P un suo punto multiplo. Si rimuove il punto P dal piano e lo si sostituisce con una retta proiettiva r. I punti di r corrispondono alle direzioni tangenti a C in P. Tutto questo si può fare in modo che il "piano esploso", ovvero $B=\mathbb{P}^2\setminus\{P\}\cup r$ sia ancora una varietà. In tal modo si può costruire una cuva $C'\subseteq B$ birazionalmente equivalente a C, ma con singolarità "migliori".

Studierò prima cosa avviene nel caso affine e poi in quello proiettivo.

Sia $P=(0,0)\in\mathbb{A}^2$ e sia $U=\{(x,y)\in\mathbb{A}^2:x\neq 0\}$. Considero ora il morfismo $f:U\to\mathbb{A}^1=k$ definito per ogni $(x,y)\in U$ da $f(x,y)=\frac{y}{x}$. Allora, $G\subseteq\mathbb{A}^1\times\mathbb{A}^2=\mathbb{A}^3, G=\{P=(x,y,z)\in\mathbb{A}^3:y=xz,x\neq 0\}$, è il grafico di f.

Sia ora $B = \{P = (x, y, z) : y = xz\}$; siccome $Y - XZ \in k[X, Y, Z]$ è irriducibile, B è varietà. Sia inoltre $\pi : B \to \mathbb{A}^2$, la restrizione a B della proiezione da \mathbb{A}^3 sulle prime due coordinate: π è un morfismo. Valgono le seguenti:

- $\pi(B) = U \cup \{P\};$
- $\pi^{-1}(P) = L = \{(0,0,z) : z \in k\} \in \pi^{-1}(U) = G$

Ne segue che π è un isomorfismo fra G ed U, da cui G è sottovarietà aperta di B, e B è la chiusura di G in \mathbb{A}^3 . Infine L è sottovarietà chiusa di B.

Sia $\varphi: \mathbb{A}^2 \to B$ definita per ogni $(x,z) \in \mathbb{A}^2$ da $\varphi(x,z) = (x,xz,z)$: è un isomorfismo con inversa la proiezione sulla prima e terza coordinata. Considero quindi $\psi: \mathbb{A}^2 \to \mathbb{A}^2$, definita come $\psi = \pi \circ \varphi$; è morfismo perché composta di morfismi.

Sia $E = \psi^{-1}(P) = \varphi^{-1}(L) = \{(x,z) \in \mathbb{A}^2 : x = 0\}$. Ne deduco che $\psi : \mathbb{A}^2 \setminus E \to U$ è isomorfismo.

Sia ora C una curva irriducibile del piano affine e sia $C_0 = C \cap U$ unaa sottovarietà aperta di C. Sia $C_0' = \psi^{-1}(C_0)$ e sia C' la chiusura di C_0' in \mathbb{A}^2 . Sia infine $f: C' \to C$ la restrizione di ψ a C'. Siccome $C_0 \subseteq U, f$ è un isomorfismo. Dunque tramite \tilde{f} possiamo identificare k(C) = k(x, y) con k(C') = k(x, z), y = xz.

Valgono i seguenti fatti:

• Sia C = V(F), $F = F_r + \cdots + F_n$, F_i polinomio omogeneo di grado i in k[X,Y], e siano $r = m_P(C)$, $n = \deg(C)$. Allora, C' = V(F'), $F'(X,Z) = F_r(1,Z) + XF_{r+1}(1,Z) + \cdots + X^{n-r}F_n(1,Z)$.

Proof. $F(X,XZ)=\sum_{i=r}^n X^i F_i(1,Z)=X^r F'(X,Z)$. Ma siccome $F_r(1,Z)\neq 0$, allora, X non divide F'. Se per assurdo F'=GH, tali che

$$F = X^r F'(X,Z) = X^r F'(X,\frac{Y}{X}) = XrG(X,\frac{Y}{X})H(X,\frac{Y}{X})$$

, ma allora F è riducibile, che è assurdo. Ne segue che anche F' è irriducibile, ne segue che V(F') è un chiuso che contiene C_0' . Quindi $C'\subseteq V(F')$.

Viceversa

$$F'(P) = 0 \Longrightarrow F(\psi(P)) = 0 \Longrightarrow \psi(P) \in C \Longrightarrow P \in C'$$

• Supposto che la retta X non sia tangente a C in P, posso supporre che $F_r(X,Y) = \prod_{i=1}^s (Y - \alpha_i X)^{r_i}$. Allora $f^{-1}(P) = \{P-1,\ldots,P_s\}$, con $P_i = (0,\alpha_i)$ e vale che $m_{P_i}(C') \leq I(P,C \cap E) = r_i$. In particolare, se P è un punto multiplo ordinario, P_i è un punto semplice di C' e ord $P_i(x) = 1$.

Proof. Chiaramente:

$$f^{-1}(P) = C' \cap E = \{(0, \alpha) : F_r(1, \alpha) = 0\}.$$

Inoltre $m_{P_i}(C) \leq I(P_i, F' \cap X) = I(P_i, \prod_{i=1}^r (Z - \alpha_i) \cap X) = r_i$. La parte di enunciato riguardo l'ordine in P_i della funzione x è ovvia. \square

• Esiste un intorno affine W di P in C tale che $W' = f^{-1}(W)$ sia una sottovarietà aperta affine di C'. Inoltre $\Gamma(W')$ è un modulo finitamente generato su $\Gamma(W)$ e $x^{r-1}\Gamma(W') \subseteq \Gamma(W)$.

Proof. Sia $F(X,Y)=\sum_{i+\geq r}a_{ij}X^iY^j$ e sia $H(Y)=\sum_{j\geq r}a_{0j}Y^{j-r}$, ovvero $F(X,Y)=Y^rH(Y)+XG(X,Y)$. Sia infine h l'immagine in

 $\Gamma(C)$ di H.

Chiaramente $H(0) \neq 0$, quindi $W = C_h = \{Q \in C : h(Q) \neq 0\}$ è un intorno aperto affine di P in C. Dimostro che $W = (C_h \cap U) \cup \{P\}$; un'inclusione (\supseteq) è ovvia.

Viceversa,

$$Q \in W \Longrightarrow F(Q) = 0, H(Q) \neq 0 \Longrightarrow x_Q = 0 = y_Q \text{oppure} x_Q \neq 0 \Longrightarrow Q \in (C_h \cap U) \cup \{P\}$$

Infine osservo che

$$F'(X, Z) = \sum_{i+j \ge r} a_{ij} X^{i+j-r} Z^j = \sum_{i < r} a_{ij} X^{i+j-r} Z^{r-i} + \sum_{i \ge r} a_{ij} X^{i-r} Y^j$$

Ma questo prova che z^r è una combinazione della forma $\sum_i b_i z^{r-i}$, da cui $\Gamma(W')$ è un modulo finitamente generato su $\Gamma(W)$. Inoltre per $i \leq r-1$:

$$x^{r-1}z^i = x^{r-1}\frac{y^i}{x^i} \in \Gamma(W)$$

Siano ora $P-1,\ldots,P_t\in\mathbb{P}^2$, e per semplicità nella trattazione suppongo che $P_i\in U_3$ per ogni i, quindi $P_i=[a_{i1},a_{i2},1]$. Sia $U=\mathbb{P}^2\setminus\{P_1,\ldots,P_t\}$. Definisco i morfismi $f_i:U\to\mathbb{P}^1, f_i(X_1,X_2,X_3)=[X_1-a_{i1}X_3,X_2-a_{i2}X_3]$ e sia $f=(f_1,\ldots,f_t):U\to\mathbb{P}^1\times\cdots\times\mathbb{P}^1$ la mappa prodotto. Sia infine $G\subseteq U\times\mathbb{P}^1\times\cdots\times\mathbb{P}^1$ il grafico di f.

Fissate quindi le coordinate omogenee X_1, X_2, X_3 per \mathbb{P}^2 e Y_{i1}, Y_{i2} per la iesima copia di \mathbb{P}^1 , considero $B = V(Y_{i2}(X_1 - a_{i1}X_3) - Y_{i1}(X_2 - a_{i2}X_3) : i \in \{1, \dots, t\})$.
Chiaramente $G \subseteq B$. Sia $\pi : B \to \mathbb{P}^2$ la restrizione della proiezione e sia,
per ogni $i, E_i = \pi^{-1}(P_i)$. Valgono i seguenti fatti:

- 1. $E_i = \{P_i\} \times \{f_1(P_i)\} \times \cdots \times \mathbb{P}^1 \times \cdots \times \{f_t(P_i)\}, \text{ con } \mathbb{P}^1 \text{ nell'} i\text{-esimal posizione; quindi } E_i \text{ è isomorfo a } \mathbb{P}^1.$
- 2. $B \setminus \bigcup_{i=1}^t E_i = B \cap (U \times \mathbb{P}^1 \times \cdots \times \mathbb{P}^1) = G$, perciò π si restringe ad un isomorfismo tra $B \setminus \bigcup_{i=1}^t E_i$ e U.
- 3. Se T è un cambio di coordinate proiettive di \mathbb{P}^2 , con $T(P_i) = P_i'$, e le mappe $f_i' : \mathbb{P}^2 \setminus \{P_1', \dots, P_t'\} \to \mathbb{P}^1$ sono definite come le f_i , ma con i P_i' al posto dei P_i , allora esiste un unico cambio di coordinate proiettive T_i di \mathbb{P}^1 tale che $T_i \circ f_i = f_i' \circ T$, dunque $(T_1, \dots, T_t) \circ f = f' \circ T$. Infine (T, T_1, \dots, T_t) mappa isomorficamente G, B, E_i nei corrispondenti G', B', E_i' definiti a partire da f'.

- 4. Se T_i è un cambio di coordinate in \mathbb{P}^1 per un i fissato, esiste un cambio di coordinate T di \mathbb{P}^2 , tale che $T(P_i) = P_i$ e $T_i \circ f_i = f_i \circ T$.
- 5. Siano $i \in \{1, \ldots, t\}, Q \in E_i$ fissati; per gli ultimi due punti posso supporre che $P_1 = [0, 0, 1], Q = [\lambda, 1], \exists \lambda \in k$. Sia $\varphi_3 : \mathbb{A}^2 \to U_3$ il morfismo canonico. Siano $V = U_3 \setminus \{P_j : j \neq i\}, W = \varphi_3^{-1}(V), \psi$ la mappa definita nel caso affine e $W' = \psi^{-1}(W)$. A questo punto considero $\varphi : W' \to \mathbb{P}^2 \times \mathbb{P}^1 \times \cdots \times \mathbb{P}^1$ definita da

$$\varphi(x,z) = ((x,xz,1), f_1(x,xz,1), \dots, f_{i-1}(x,xz,1), (z,1), f_{i+1}(x,xz,1), \dots, f_t(x,xz,1))$$

- . φ è un morfismo, ed è tale che $\pi \circ \varphi = \varphi_3 \circ \psi$. Posto $V' = \varphi(W') = B \setminus (\bigcup_{j \neq i} E_j \cup V(X_3) \cup V(Y_{i2})), V'$ è intorno aperto di Q in B.
- 6. B è la chiusura di G: se S è un chiuso che contiene G, allora $\varphi^{-1}(S)$ è un chiuso di W' che contiene $\varphi^{-1}(G) = W' \setminus V(X)$, che è aperto quindi denso, ne segue che $\varphi^{-1}(S) = W'$, da cui $Q \in S$. Data l'arbitrarietà di Q in $B \setminus G$, segue che B è la chiusura di G.
- 7. Il morfismo definito su $\mathbb{P}^2 \times \mathbb{P}^1 \times \cdots \times \mathbb{P}^1 \setminus V(X_3Y_{i2})$ verso \mathbb{A}^2 che mappa un elemento del suo dominio in $(\frac{x_1}{x_3}, \frac{y_{i1}}{y_{i2}})$ è, se ristretto a V', l'inversa di φ . Allora abbiamo il seguente diagramma commutativo:

$$\mathbb{A}^{2} \longleftrightarrow W' \xrightarrow{\varphi} V' \longleftrightarrow B
\downarrow^{\psi} \qquad \downarrow \qquad \downarrow^{\pi}
\mathbb{A}^{2} \longleftrightarrow W \xrightarrow{\varphi_{3}} V \longleftrightarrow \mathbb{P}^{2}$$

Quindi π , attorno a Q si comporta analogamente alla mappa ψ , dunque valgono per π tutte le proprietà di ψ .

8. Sia C una curva irriducibile in \mathbb{P}^2 . Sia $C_0 = C \cap U$, $C'_0 = \pi^{-1}(C_0) \subseteq G$ e C' la chiusura di C'_0 in B. Allora $f: C' \to C$ si restringe ad un isomorfismo tra C'_0 e C_0 . Per quanto visto nel punto precedente, tale isomorfismo ha la stessa forma del caso affine.

Vale quindi la seguente:

Proposizione 1.51. Sia C una curva proiettiva piana irriducibile, e suppongo che tutti i suoi punti multipli, siano ordinari. Allora esiste una curva non-singolare C' ed una mappa birazionale da C' a C.

Per quanto visto quindi, se C è una curva piana proiettiva i cui punti multipli sono ordinari, allora C è birazionalmente equivalente ad una curva non singolare. Adesso dimostro che ogni curva piana è birazionalmente equivalente ad una curva i cui punti multipli sono ordinari.

Siano $P = [0,0,1], P' = [0,1,0], P'' = [1,0,0] \in \mathbb{P}^2$; tali punti sono detti fondamentali. Siano L = V(Z), L' = V(Y), L'' = V(X) e queste rette sono dette eccezionali. Sia infine $U = \mathbb{P}^2 \setminus V(XYZ)$.

Definisco $Q: \mathbb{P}^2 \setminus \{P, P', P''\} \to U \cup \{P, P', P''\}, Q(x, y, z) = [yz, xz, xy].$ Q è un morfismo ed è tale che $Q^{-1}(P) = L \setminus \{P', P''\}$ (e simmetricamente per P', P'').

Osservo ora che se $[x, y, z] \in U$:

$$Q^{2}(x,y,z) = Q(yz,xz,xy) = [xxyz,yxyz,zxyz] = [x,y,z]$$

Quindi su $U,Q=Q^{-1}$, quindi Q è un isomorfismo di U con se stesso. In particolare induce una mappa birazionale di \mathbb{P}^2 con se stesso. La mappa Q è detta trasformazione quadratica standard.

Sia C una curva irriducibile in \mathbb{P}^2 , e suppongo non sia una retta eccezionale. Allora $C \cap U$ è una curva chiusa in U. Sia C' la chiusura di $Q(C \cap U) = Q^{-1}(C \cap U)$ in \mathbb{P}^2 ; Q si restringe ad un morfismo tra $C' \setminus \{P, P', P''\}$ e C. Inoltre (C')' = C perché $Q^2 = \mathrm{id}_U$.

Sia $F \in k[X, Y, Z]$, tale che $C = V(F), n = \deg(F)$ definisco la trasformata algebrica di F come: $F^Q = F(YZ, XZ, XY)$. Tale polinomio è omogeneo di grado 2n.

Valgono i seguenti fatti:

1. Se $m_P(C) = r$, allora, Z^r è la più alta potenza di Z che divide F^Q , e simmetricamente in P', P''.

Se $F^Q = X^{r''}Y^{r'}Z^rF'$, il polinomio omogeneo F' è detto trasformata propria di F.

2.
$$\deg(F') = 2n - r - r' - r'', (F')' = F, V(F') = C'.$$

3.
$$m_P(C') = n - r' - r''$$
, e simmetricamente per P', P'' .

Suppongo ora che nessuna retta eccezionale sia tangente a C in un punto fondamentale. Una tale curva si dice essere in buona posizione.

4. Se C è in buona posizione, allora, anche C' lo è.

Sia C in buona posizione e che $P \in C$; sia $C_0 = (C \cap U) \cup \{P\}, C_0' = C' \setminus V(XY)$. Allora $f: C_0' \to C_0$ è la restrizione di Q Considero ora il polinomio affinizzato $F_* = F(X,Y,1)$, e la curva affinizzata $C_* = V(F_*) \subseteq \mathbb{A}^2$; definisco $(F_*)' = F(X,XZ,1)X^{-r}C_*' = V(F_*') \subseteq \mathbb{A}^2$ ed $f_*: C_*' \to C_*, f_*(x,z) = (x,xz)$.

- 5. Esiste un intorno W di (0,0) in C_* e isomorfismi $\varphi:W\to C_0, \varphi'0:$ $W'=f_*^{-1}(W)\to C_0'$ tali che $\varphi\circ f_*=\varphi'\circ f$.
- 6. Se C è in buona posizione e P_1, \ldots, P_s sono punti non-fondamentali su $C' \cap L$, allora, $m_{P_i}(C') \leq I(P_i, C' \cap L)$.

Si dice che la curva C è in posizione eccellente se interseca L trasversalmente in n punti non-fondamentali distinti, ed interseca trasversalmente L', L'' ciascuna in n-r punti non-fondamentali distinti.

7. Se C è in posizione eccellente, allora gli unici punti multipli di C' sono quelli in $C' \cap U$ che corrispondono a quelli in $C \cap U$ e questa corrispondenza rispetta la molteplicità dei punti e se questi sono ordinari o meno; P, P', P'' che sono ordinari di molteplicità n, n-r, n-r rispettivamente e dei punti P_1, \ldots, P_s non fondamentali su $C' \cap L$, di molteplicità tali che $m_{P_i}(C') \leq I(P_i, C' \cap L), \sum_{i=1}^s I(P_i, C' \cap L) = r$.

Per C curva piana proiettiva irriducibile, di grado n si definisce $g_*(C) = \frac{(n-1)(n-2)}{2} - \sum_{P \in C} \frac{r_P(r_P-1)}{2}$, dove $r_P = m_P(C)$.

8. Se C è in posizione eccellente allora, $g_*(C') = g_*(C) - \sum_{i=1}^s \frac{r_i(r_i-1)}{2}$, dove $r_i = m_{P_i}(C')$ e P_1, \ldots, P_s sono i punti non fondamentali di $C' \cap L$.

Abbandono ora le notazioni per punti fondamentali e rette eccezionali che ho usato fino ad ora.

Lemma 1.52. Sia F una curva piana proiettiva irriducibile e P un suo punto, allora esiste un cambio di coordinate T, tale che F^T è in posizione eccellente e T(0,0,1)=P.

Se T è un cambio di coordinate omogenee, allora, $Q \circ T$ è detta trasforazione quadratica e $(F^T)'$ è detto trasformata quadratica di F. Se F^T è in posizione eccellente e T(0,0,1)=P, allora si dice che la trasformata è centrata in P. Se $F=F_1,\ldots,F_n=G$ sono curve e F_i è trasformata quadratica di F_{i-1} , allora, si dice che F è trasformata in G da una sequenza finita di trasformazioni quadratiche.

Proposizione 1.53. Tramite un numero finito di trasformazioni quadratiche, ogni curva piana proiettiva irriducibile può essere trasformata in una curva i cui punti multipli sono ordinari.

Teorema 1.54. Sia C una curva proiettiva. Allora esiste una curva proiettiva non-singolare X ed una mappa birazionale f da X a C. Se $f': X' \to C$ sono un'altra mappa birazionale ed un altra curva non-singolare, allora esiste un unico isomorfismo $g: X \to X'$ tale che $f' \circ g = f$.

Corollario 1.55. Esiste un corrispondenza biiettiva fra curve proiettive nonsingolari e campi di funzioni in una variabile. Se X, X' sono due tali curve, i morfismi dominanti da X a X' corrispondono agli omomorfismi da k(X')a k(X).

Sia C una curva proiettiva. $f: X \to C$ come nel Teorema 1.54. Si dice che X è il modello non-singolare di C o di K = k(C). Si identifica k(X) con k(C) tramite \tilde{f} . I punti di X sono detti posti di C ed un posto $Q \in X$ si dice centrato in $P \in C$ se F(Q) = P.

Suppongo ora che C sia piana, $Q \in X$, $f(Q) = P \in C$. Per ogni altra curva piana G, eventualmente riducibile, sia $G_* \in \mathcal{O}_P(\mathbb{P}^2)$ e sia g l'immagine di G_* in $\mathcal{O}_P(C) \subseteq k(C) = k(X)$. Definisco $\operatorname{ord}_Q(G) = \operatorname{ord}_Q(g)$.

Proposizione 1.56. Sia C una curva piana proiettiva irriducibile, $P \in C, f : X \to C$ come sopra. Sia G un'altra curva piana, eventualmente riducibile. Allora: $I(P, C \cap G) = \sum_{Q \in f^{-1}(P)} \operatorname{ord}_Q(G)$.

Lemma 1.57. Se P è un punto multiplo ordinario su C di molteplicità r e sia $f^{-1}(P) = \{P_1, \ldots, P_r\}$. Se $z \in k(C)$ e $ord_{P_i}(z) \geq r - 1$, allora $z \in \mathcal{O}_P(C)$.

Proposizione 1.58. Siano F una curva piana proiettiva irriducibile e P un suo punto multiplo ordinario di molteplicità r e siano P_1, \ldots, P_r i posti di F centrati in P. Siano inoltre G, H altre due curve piane, eventualmente riducibili. Allora P soddisfa le condizioni di Noether rispetto a F, G, H se e solo se $\forall i \in \{1, \ldots, r\}$ ord $P_i(H) \geq ord_{P_i}(G) + r - 1$.

Chapter 2

Divisori e lo Spazio L(D)

Per tutto il capitolo C sarà una curva proiettiva irriducibile(tranne dove specificato). X il suo modello non singolare e $f: X \to C$ la mappa birazionale. Inoltre K = k(C) = k(X) è il campo delle funzioni razionali su C. I punti di X sono detti posti di C e ord $_P$ la funzione ordine su K.

2.1 Divisori

Un divisore su X è una somma formale $\sum_{P\in X} n_P P$, dove $P\in X.n_P\in \mathbb{Z}$ e $n_P=0$ per tutti tranne un numero finito di elementi di X. Analogamente, si definisce l'insieme dei divisori su X come il gruppo abeliano libero generato da X e si denota con $\mathrm{Div}(X)$.

Su $\operatorname{Div}(X)$ è definita la mappa deg : $\operatorname{Div}(X) \to \mathbb{Z}$, che associa ad un divisore $D = \sum_{P \in X} n_P P$, $\operatorname{deg}(D) = \sum_{P \in X} n_P$. L'immagine di un divisore D è detta grado del divisore. La mappa grado è un omomomrfismo di gruppi.

Su $\operatorname{Div}(X)$ è definito un ordine parziale \succ , definito come: $D = \sum_{P \in X} n_P P, D' = \sum_{P \in X} m_P P, D \succ D' \iff n_P \geq m_P \, \forall P \in X$. Un divisore D è detto effettivo se $D \succ 0$.

Sia C una curva piana proiettiva irriducibile di grado n e sia G un'altra curva di grado m, eventualmente riducibile, che non contiene C come componente, allora è ben definito il divisore di G, come $\operatorname{div}(G) = \sum_{P \in X} \operatorname{ord}_P(G)P$. Per la Proposizione 1.56, e per il Teorema di Bezout, $\operatorname{deg}(\operatorname{div}(G)) = mn$.

Sia ora $z \in K, z \neq 0$. Allora è ben definito il divisore di z come div $(z) = \sum_{P \in X} \operatorname{ord}_P(z)P$, siccome z ha un numero finito di zeri e poli, allora div(z) è ben definito.

Siano inoltre, $(z)_0 = \sum_{\text{ord}_P(z)>0} \text{ord}_P(z) P$ e $(z)_\infty = \sum_{\text{ord}_P(z)<0} -\text{ord}_P(z) P$. Allora $\text{div}(z) = (z)_0 - (z)_\infty$. Inoltre div(zz') = div(z) + div(z'), $\text{div}(z^{-1}) = \text{div}(z)$ $-\operatorname{div}(z)$. Ovvero $\operatorname{div}: K\setminus\{0\}\to\operatorname{Div}(X)$ è un omomomrfismo di gruppi.

Proposizione 2.1. Se $z \in K$ è non nullo allora deg(div(z)) = 0.

Proof. Se $z \in K \setminus \{0\}$, allora esistono degli omogenei dello stesso grado $g, h \in \Gamma_h(C)$ tali che $z = \frac{g}{h}$, ma allora g, h sono immagini di polinomi omogenei dello stesso grado $G, H \in k[X, Y, Z]$, dunque $\operatorname{div}(z) = \operatorname{div}(G) - \operatorname{div}(H)$, da cui segue la tesi perché avendo G, H lo stesso grado anche i loro divisori hanno grado uguale.

Corollario 2.2. Sia $z \in K, zneq0$. Le seguenti affermazioni sono equivalenti:

- $a \ div(z) \succ 0;$
- $b \ z \in k;$
- $c \ div(z) = 0.$

Corollario 2.3. Siano $z, z' \in K$ entrambi non-nulli. Allora $div(z) = div(z') \iff z = \lambda z' \exists \lambda \in k, \lambda \neq 0$.

Definizione 2.4. Siano $D, D' \in \text{Div}(X)$. D, D' si dicono linearmente equivalenti, e si scrive $D \equiv D'$ se e solo se esiste $z \in K$ tale che D = D' + div(z).

Proposizione 2.5. Valgono i sequenti fatti:

- 1. La relazione di equivalenza lineare è un'equivalenza su Div(X);
- 2. $D \equiv 0 \iff D = div(z) \text{ per un'opportuna } z \in K$:
- 3. Se $D \equiv D'$ allora, deg(D) = deg(D');
- 4. $D \equiv D', E \equiv E' \Longrightarrow D + E \equiv D' + E'$:
- 5. Se C è una curva piana, allora $D \equiv D'$ se e solo se esistono due curve G, G' dello stesso grado tali che D + div(G) = D' + div(G')

Proof. Che la lineare equivalenza sia un'equivalenza è ovvio. Sia $D \in \text{Div}(X)$ tale che $D \equiv 0$, allora, esiste $z \in K$ tale che D = div(z). Viceversa, se D = div(z) per un'opportuna $z \in K$, allora $D \equiv 0$.

Se $D \equiv D'$, allora, esiste $z \in K$ tale che $D = D' + \operatorname{div}(z)$; calcolando il grado: $\deg(D) = \deg(D') + \deg(\operatorname{div}(z)) = \deg(D')$.

Siano $z, w \in K$, tali che $D = D' + \operatorname{div}(z), E = E' + \operatorname{div}(w)$, allora, $D + E = D' + E' + \operatorname{div}(zw)$.

Sia ora C piana, e siano $D = D' + \operatorname{div}(z)$, ma $z = \frac{G'}{G}$, con G, G' polinomi omogenei dello stesso grado, dunque $D + \operatorname{div}(G') = D' + \operatorname{div}(G')$. Il viceversa è analogo.

Sia ora il caso di una curva piana proiettiva irriducibile, i cui punti multipli sono tutti ordinari; per ciascun posto Q delle curva, definisco $r_Q = m_{f(Q)}(C)$. Sia il divisore $E = \sum_{Q \in X} (r_Q - 1)Q$. E è un divisore effettivo di grado $\sum_{Q \in X} r_Q(r_Q - 1)$.

Una curva piana proiettiva G tale che $\operatorname{div}(G) \succ E$, è detta aggiunta di C.

Teorema 2.6 (del Residuo). Siano C, E come sopra. Siano D, D' divisori effettivi di X linearmente equivalenti. Sia G una aggiunta di C di grado m tale che div(G) = D + E + A, per un opportuno divisore effettivo A. Allora esiste un'altra aggiunta G' di C di grado m tale che div(G') = D' + E + A.

Proof. Per la Proposizione 2.1 esistono H, H' curve dello stesso grado tali che $D + \operatorname{div}(H) = D' + \operatorname{div}(H')$. Allora:

$$\operatorname{div}(GH) = D' + \operatorname{div}(H') + E + A \succ \operatorname{div}(H') + E$$

Per la Proposizione 1.58 le condizioni di Noether rispetto a F, H', GH sono soddisfatte in ogni $P \in X$, quindi, esistono $F', G' \in k[X, Y, Z]$ omogenei tali che GH = F'F + G'H'. Per il Teorema di Noether $\deg(G') = m$. Inoltre:

$$\operatorname{div}(G') = \operatorname{div}(GH) - \operatorname{div}(H') = D' + E + A$$

2.2 Lo spazio vettoriale L(D)

Sia $D = \sum_{P \in X} n_P P$ un divisore di X fissato, allora considero l'insieme $L(D) = \{ f \in K : \operatorname{ord}_P(f) \geq -n_P \, \forall P \in X \} \cup \{ 0 \} = \{ f \in K : \operatorname{div}(f) + D \succ 0 \} \cup \{ 0 \}.$

Con le usuali operazioni di somma e prodotto per scalare è uno spazio vettoriale sul campo k. Denoto la dimensione di L(D) con $\ell(D)$.

Proposizione 2.7. Valgono i seguenti fatti:

- 1. Se $D \prec D'$, allora L(D) è sottospazio di L(D') e $dim_k(\frac{L(D')}{L(D)}) \leq \deg(D'-D)$;
- 2. L(0) = k, L(D) = 0 se deg(D) < 0;
- 3. L(D) è di dimensione finita per ogni D e se $\deg(D) \geq 0$, allora $\ell(D) \leq \deg(D) + 1$;
- 4. Se $D \equiv D'$, allora $\ell(D) = \ell(D')$.

Proof. Siccome $D' = D + P_1 + \ldots + P_s$, è sufficiente dimostrare il primo enunciato per D' = D + P.

Sia $t \in \mathcal{O}_P(X)$ un parametro uniformizzante e sia $r = n_P$, il coefficiente in D di P.

Definisco $\varphi:L(D+P)\to k$, come $\varphi(f)=(t^{r+1}f)(P)$; chiaramente φ è lineare, e $\ker(\varphi)=L(D)$, dunque $\bar{\varphi}:\frac{L(D+P)}{L(D)}\to k$ è iniettiva, dunque $\dim_k(\frac{L(D+P)}{L(D)})\le 1$.

 $L(0) = \{f \in K : \operatorname{div}(f) \succ 0\} = k; \text{ Sia } D \text{ di grado negativo, allora, una funzione in } L(D) \text{ ha } \operatorname{div}(f) \succ 0 \text{ e ha degli zeri, dunque } f = 0.$

Sia D fissato e sia $\deg(D)=n$. Allora D'=D-(n+1)P, per $P\in X$ fissato è tale che L(D')=0, da cui $\dim_k(L(D))=\dim_k(\frac{L(D)}{L(D')})\leq n+1$.

Sia $g \in K$, tale che $D = D' + \operatorname{div}(g)$, allora la mappa $\psi : L(D) \to L(D')$ definita come $\psi(f) = fg$ è lineare ed è un isomorfismo. Segue $\ell(D) = \ell(D')$.

Sia ora $S \subseteq X$ arbitrario, allora si definisce $L^S(D) = \{f \in K : \operatorname{ord}_P(f) \ge -n_P \, \forall P \in S\}$. e $\deg^S(D) = \sum_{P_S} n_P$.

Lemma 2.8. Se $D \prec D'$, allora $L^S(D) \subseteq L^S(D')$. Inoltre, se S è finito, $dim_k(\frac{L^S(D)}{L^S(D')}) = \deg^S(D)$.

Proposizione 2.9. Sia $x \in K \setminus k$, $(x)_0$ il suo divisore degli zeri e sia n = [K:k(x)]. Allora:

- 1. $(x)_0$ è un divisore effettivo di grado n;
- 2. Esiste una costante τ tale che $\ell(r(x)_0) \geq rn \tau$ per ogni r.

Proof. Sia $Z=(x)_0=\sum_{P\in X}n_PP$ e sia $m=\deg(Z)$. Dimostro che $m\leq n$. Sia $S=\{P\in X:n_P>0\}$. Siano $v_1,\ldots,v_m\in L^S(0)$ tali che $\bar{v_1},\ldots,\bar{v_m}$ siano una base per $\frac{L^S(0)}{L^S(-Z)}.$ v_1,\ldots,v_m sono linearmente indipendenti su k(x). Sia per assurdo una combinazione $\sum_{i=1}^m g_iv_i=0, g_i=\lambda_i+xh_i,xh_i\in L^S(-Z)$ $\forall i$. con i λ_i non tutti nulli (posso sempre ricondurmi a questa forma a meno di moltiplicare per denominatori e potenze di x).

Ma allora $\sum_{i=1}^{m} \lambda_i v_i = -x \sum_{i=1}^{m} h_i v_i \in L^S(-Z)$, quindi $\sum_{i=1}^{m} \lambda_i \bar{v}_i = 0$, con i λ_i non tutti nulli. Assurdo. Ciò prova che $m \leq n$.

Dimostro ora la disuguaglianza in 2.

Sia w_1, \ldots, w_n una base di K su k(x). Allora per ogni i esiste un polinomio $F_i \in k(x)[T]$ tale che $F_i(w_i) = 0$; sia a_{ij} il j-esimo coefficiente di F_i . Allora $a_{ij} \in k[x^{-1}]$.

Allora $\operatorname{ord}_P(a_{ij}) \geq 0$ se $P \notin S$. Inoltre, se $\operatorname{ord}_P(w_i) < 0, P \notin S$, allora $\operatorname{ord}_P(w_i) < \operatorname{ord}_P(a_{ij}w_i^{n_i-j})$, ma questo è in contraddizione col fatto che $F_i(w_i) = 0$.

Allora esiste t > 0, tale che $\operatorname{div}(w_i) + tZ > 0, i \in \{1, ..., n\}$. Allora, $w_i x^{-j} \in L^S((r+t)Z), \forall i \in \{1, ..., n\}, j \in \{0, ..., r\}$.

Siccome i w_i sono indipendenti su k(x) e $1, \ldots, x^{-r}$ lo sono su k, $\{w_i x^{-j} : i \in \{1, \ldots, n\}, j \in \{0, \ldots, r\}\}$ è un insieme indipendente su k, dunque $\ell((r+t)Z) \ge n(r+1)$, ma d'altro canto $\ell((r+t)Z) = \ell(rZ) + \dim_k(\frac{L((r+t)Z)}{L^S(Z)}) \le \ell(rZ) + tm$.

Riordinando, segue la tesi in 2. Osservo ora però che:

$$rn - \tau \le \ell(rZ) \le rm + 1 \Longrightarrow \ell(rZ) \le r(m - n) + c$$

E la quantità a secondo membro è non-negativa per ogni $r \in \mathbb{N}$, ne segue $n \leq m$.

2.3 Il Teorema di Riemann

Teorema 2.10 (di Riemann). Esiste una costante g tale che $\ell(D) \ge \deg(D) + 1 - g$, per ogni divisore D.

Proof. Sia, per ogni $D, S(D) = \deg(D) + 1 - \ell(D);$ cerco $g \geq S(D)$ per ogniD.

Siccome S(0) = 0, g, se esiste, è non-negativo. Inoltre dalle proprietà della lineare equivalenza, $D \equiv D' \Longrightarrow S(D) = S(D')$. Infine se $D \prec D'$, allora $\ell(D') - \ell(D) \leq \deg(D') - \deg(D) \Longrightarrow S(D) \leq S(D')$.

Siano $x \in K \setminus k, Z = (x)_0$ e τ il più piccolo intero che soddisfa la relazione della Proposizione 2.9. Siccome dalla stessa Proposizione, $S(rZ) \le \tau + 1 \,\forall r$, allora, deifnitivamente deve essere $S(rZ) = \tau + 1$. Pongo $g = \tau + 1$.

Per completare la dimostrazione, è sufficiente dimostrare che per ogni divisore D, esiste D' linearmente equivalente a D tale che $D' \prec rZ$, deifnitivamente in r: siano $Z = \sum_{P \in X} n_P P, D = \sum_{P \in X} m_P P$, e cerco f razionale tale che $m_P - \operatorname{ord}_P(f) \leq n_P, \forall P \in X$.

Sia $y = x^{-1}$ e considero l'insieme $T = \{P \in X : m_P > 0 \text{ e ord}_P(y) \ge 0\}$. Definisco $f = \prod_{P \in T} (y - y(P))^{m_P}$.

Se $\operatorname{ord}_P(y) \geq 0$, allora $m_P - \operatorname{ord}_P(f) \leq 0 \leq n_P$; altrimenti, se $\operatorname{ord}_P(y) < 0$, per r sufficientemente grande $m_P - \operatorname{ord}_P(f) \leq rn_P$, da cui la tesi. \square

Definizione 2.11. Il più piccolo g che soddisfa la relazione del teorema di Riemann è detto il genere della curva C

Corollario 2.12. Se $\ell(D_0) = \deg(D_0) + 1 - g$ e $D \equiv D' \succ D_0$, allora $\ell(D) = \deg(D) + 1 - g$.

Corollario 2.13. Sia $x \in K \setminus k$, allora $g = \deg(r(x)_0) + 1 - \ell(r(x)_0)$ per r sufficientemente grande.

Corollario 2.14. Esiste un intero N tale che ogni divisore di grado superiore ad N è tale che $\ell(D) = \deg(d) + 1 - g$.

Proof. Sia D_0 tale che $\ell(D_0) = \deg(D_0) + 1 - g$ e sia $N = \deg(D_0) + g$. Allora $\deg(D - D_0) + 1 - g > 0$, da cui $\ell(D - D_0) > 0$.

Esiste f razionale tale che $D - D_0 + \operatorname{div}(f) \succ 0 \Longrightarrow D \equiv D + \operatorname{div}(f) \succ D_0$, quindi si conclude per il primo corollario.

Proposizione 2.15. Sia C una curva piana proiettiva i cui punti multipli sono tutti ordinari. Siano n il grado di C, e $r_P = m_P(C)$. Allora il genere di C è $g = \frac{(n-1)(n-2)}{2} - \sum_{P \in C} \frac{r_P(r_P-1)}{2}$.

Corollario 2.16. Sia C una curva piana proiettiva. Allora $g \leq \frac{(n-1)(n-2)}{2} - \sum_{P \in C} \frac{r_P(r_P-1)}{2}$.

Considero ora di nuovo C piana proiettiva i cui punti multipli sono ordinari. Siano P_1,\ldots,P_n i punti di intersezione tra C e la retta Z. Pongo $E_m=m\sum_{i=1}^n P_i-E$, per ogni $m\in\mathbb{N}$, dove E è il divisore definito nel Paragrafo 2.1.

Proposizione 2.17. Ogni $h \in L(E_m)$ si può scrivere nella forma $h = \frac{H}{Z^m}$ dove H è un'aggiunta di C di grado m. Inoltre, se m = n - 3, allora, $\deg(E_m) = 2g - 2$, $\ell(E_m) \geq g$.