Ch3 Regression to Machine Learning

Contents

3	Subsection
	A.1 Statistical Learning
	A.2 How do we find 'overall pattern'? - Inference
	A.3 How do we find 'overall pattern'? - Prediction
	A.4 Polynomial Regression 1
	A.5 Problem
	A.6 Measure of Quality of Fit
	A.7 KEY CONCEPT
	A.8 Leave-some-out Fitting Procedure 1
	A.9 KEY CONCEPT
	A.10 Hyperparameter
	A.11 k-fold Cross Validation
	A.12 k-fold Cross Validation
	A.13 k-fold Cross Validation
	A.14 5-fold CV
	A.15 Training MSE vs Validation MSE
	A.16 Final Test Fit

A.17 Bias-Variance Trade-Off
A.18 Training MSE vs Validation MSE
A.19 Prediction MSE
A.20 Assessing Model Prediction Accuracy
A.21 In the Classification Setting
A.22 Trade-off in the new approach
A.23 K-Nearest Neighbor
A.24 K-NN examples

Textbook: James et al. ISLR 2ed.

3 Subsection

[ToC]

A.1 Statistical Learning

• General Model

$$Y = f(X) + \epsilon$$

- We don't want to assume that f(X) is linear function.
- Two types of motivation:
 - Model Estimation
 - Prediction
- Pattern recognition

A.2 How do we find 'overall pattern'? - Inference

- \bullet Want to understand the relationship between X and Y
- Which predictors are associated with the response?
- What is the relationship between the response and each predictor?
- Can the relationship between Y and each predictor be adequately summarized using a linear equation, or is the relationship more complicated?

A.3 How do we find 'overall pattern'? - Prediction

• Want to guess the next Y as accurate as possible

$$\hat{Y} = \hat{f}(X)$$

- f can be a black box
- reducible error and irreducible error in prediction
- Want to reduce prediction Mean Squared Error:

$$MSE = E(Y - \hat{Y})^2 = E(Y - \hat{f}(X))^2$$

A.4 Polynomial Regression 1

A.5 Problem

- More flexibility in the model is always going to result in better fit to the data.
- Better fitting model is not always inferential.
- Better fitting Leave some out and use it for 'validation' and 'testing'.
- Underlying mechanism:

$$Y = f(X) + \epsilon$$

A.6 Measure of Quality of Fit

• Training MSE (sample)

$$MSE_{tr} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2$$

• But we want minimum Prediction MSE

$$MSE = E(Y - \hat{f}(X))^2$$

• Solution: look at Test MSE (sample) as estimator

$$MSE_{test} = \frac{1}{m} \sum_{j=1}^{m} (y_j - \hat{f}(x_j))^2$$

A.7 KEY CONCEPT

- Cross Validation
- Don't use all data when you are fitting a model
- Leave some out and use it for 'validation' and 'testing'.

A.8 Leave-some-out Fitting Procedure 1

A.9 KEY CONCEPT

• Divide data into

```
[Training] vs [Testing]
[Training] vs [Validation]
[In-sample] vs [Out-sample]
```

- Fit the model using [Training] data
- See if the model actually fit [Testing] data (the model hasn't seen these observations yet)
- Has one problem:

A.10 Hyperparameter

- Hyperparameter parameter in the model that controls flexibility.
- e.g. Polynomial Regression $\rightarrow d$.
- Use Cross-Validation within the training set to tune the hyperparameter.
- Tuning Set, Training Set, Validation Set, and Testing Set

A.11 k-fold Cross Validation

- Usually k = 5 or k = 10. We use k = 5 in this class.
- Randomly assign data into k + 1 groups.
- For example, if n = 155 and k = 5,

A.12 k-fold Cross Validation

- Round 1

 [----Training Set 100----] [validation set 25]

 [fold 2][fold 3][fold 4][fold 5] [fold 1]

 [25][25][25][25]
- Round 2

 [----Training Set 100----] [validation set 25]

 [fold 1] [fold 3] [fold 4] [fold 5] [fold 2]

 [25][25][25][25] [25]
- Round 3 [----Training Set 100-----] [validation set 25]

```
[ 25 ][ 25 ][ 25 ] [ 25 ]

• Round 4
```

[fold 1] [fold 2] [fold 4] [fold 5] [fold 3]

[-----Training Set 100-----] [validation set 25]
[fold 1][fold 2][fold 3][fold 5] [fold 4]
[25][25][25][25] [25]

```
• Round 5
[----Training Set 100----] [validation set 25]
[fold 1][fold 2][fold 3][fold 4] [fold 5]
[ 25 ][ 25 ][ 25 ][ 25 ] [ 25 ]
```

A.13 k-fold Cross Validation

- Take [Tuning Set], and use 5-fold CV and fit 5 times using 5 different [Training Set] and [Validation Set]
- Use average validation MSE to decide on the best value of the hyperpamameter.
- Now use the chosen hyperparameter, and fit entire [Tuning Set]. Then test it on [Test Set].
- Test Set should be used only once per method.
- Test MSE is the measure of performance for the method.

A.14 5-fold CV

A.15 Training MSE vs Validation MSE

A.16 Final Test Fit

A.17 Bias-Variance Trade-Off

Prediction MSE can be decomposed as

$$E(Y - \hat{f}(X))^{2} = E(f(X) + \epsilon - \hat{f}(X))^{2}$$

$$= E\left(f(X) - E(\hat{f}(X)) + E(\hat{f}(X)) - \hat{f}(X) + \epsilon\right)^{2}$$

$$= E\left(f(X) - E(\hat{f}(X))\right)^{2} + E\left(E(\hat{f}(X)) - \hat{f}(X)\right)^{2} + E\left(\epsilon^{2}\right)$$

$$= \left(f(X) - E(\hat{f}(X))\right)^2 + E\left(E(\hat{f}(X)) - \hat{f}(X)\right)^2 + E\left(\epsilon^2\right)$$

$$= \left[Bias(\hat{f}(X)) \right]^2 + Var(\hat{f}(X)) + Var(\epsilon)$$

A.18 Prediction MSE

$$E(Y - \hat{f}(X))^{2} = Var(\hat{f}(X)) + Bias(\hat{f}(X))^{2} + Var(\epsilon)$$

- can't have low variance and low bias
- has lower bound

A.19 Assessing Model Prediction Accuracy

• If the model is fitting well, your

[Av. Training MSE]
[AV. Validation MSE]
[Test MSE]

should be all comparable.

• Your [Test MSE] is the best estimate for the true Prediction MSE.

A.20 In the Classification Setting

• Instead of MSE, work with Errror Rate:

$$ER = \frac{1}{n} \sum_{i=1}^{n} I(y_i \neq \hat{y}_i)$$

A.21 Trade-off in the new approach

• Classical Statistics (Probabilistic Model)

$$Y = f(X) + \epsilon$$

- Assume parametric model for $f(\cdot)$ and ϵ .
- Sampling Probability of (y_1, \dots, y_n) , which are realizations of r.v. Y.
- Esimate parameters for $f(\cdot)$ and ϵ .
- Because the model distinguish the mechanism $f(\cdot)$ vs noise ϵ , looking at insample fit was enough (if the assumption is correct).
- Predict future Y using the estimated model.

- Pros and Cons
 - Model is interpretable.
 - Future effect of the model is easier to calculate.
 - No need for out-sample validation (test set), if assumption is correct.
 - Popular models are mathematically optimized already, to save the computational task.
 - Theory on prediction interval. Based on the assumption, often distribution on the prediction error is available.

A.22 K-Nearest Neighbor

- One of elementary supervised learning model.
- Pick a point x_0 , find K nearest observations.
- $f(x_0)$ is estimated by the average of all K neighbors:

$$\hat{f}(x_0) = \frac{1}{K} \sum y_i.$$

- *K* is the hyperparameter.
- Can be used for Regression or Classification

K=1 (left) and K=9 (right)

A.23 K-NN examples

KNN: K=1 KNN: K=100

