PAUTA CONTROL I - MICROECONOMÍA II

PROFESOR: JUAN PABLO TORRES MARTÍNEZ SEMESTRE PRIMAVERA - 2023

[1] Sea \mathcal{E} una economía de intercambio estática con m mercancías perfectamente divisibles y n consumidores, donde $m \geq 2$ y $n \geq 2$. Cada consumidor $i \in \{1, \ldots, n\}$ tiene preferencias representables por una función de utilidad $u^i : \mathbb{R}_+^m \to \mathbb{R}$ continua, estrictamente cuasi-cóncava y sin máximos locales en \mathbb{R}_+^m . Además, cada $i \in \{1, \ldots, n\}$ tiene una asignación inicial de recursos $w^i \in \mathbb{R}_{++}^m$.

(i) Dado un equilibrio Walrasiano $(\overline{p},(\overline{x}^i)_{i\in\{1,...,n\}})$, demuestre que $(\overline{x}^i)_{i\in\{1,...,n\}}$ está en el núcleo. Sea $(\overline{p},(\overline{x}^i)_{i\in\{1,...,n\}})$ un equilibrio Walrasiano. Suponga que existe una coalición $C\subseteq\{1,\ldots,n\}$

Sea $(p, (x^i)_{i \in \{1, ..., n\}})$ un equinorio wairasiano. Suponga que existe una coanción $C \subseteq \{1, ..., n\}$ y una distribución de recursos $(y^i)_{i \in C} \in (\mathbb{R}^m_+)^{|C|}$ tal que

$$\sum_{i \in C} y^i \le \sum_{i \in C} w^i, \qquad (u^i(y^i))_{i \in C} > (u^i(\overline{x}^i))_{i \in C}.$$

Dado $i \in C$, como u^i no tiene máximos locales en \mathbb{R}^m_+ , sabemos que el consumidor i se gasta todos sus recursos al demandar \overline{x}^i . Esto es, $\overline{p}\overline{x}^i = \overline{p}w^i$. Además, como \overline{x}^i es la demanda Marshalliana del agente i a precios \overline{p} , tenemos que $u^i(y^i) \geq u^i(\overline{x}^i)$ implica que $\overline{p}y^i \geq \overline{p}\overline{x}^i$ y $u^i(y^i) > u^i(\overline{x}^i)$ implica que $\overline{p}y^i > \overline{p}x^i$. Por lo tanto, como $(u^i(y^i))_{i \in C} > (u^i(\overline{x}^i))_{i \in C}$, concluimos que

$$\overline{p} \sum_{i \in C} \overline{y}^i > \overline{p} \sum_{i \in C} \overline{x}^i = \overline{p} \sum_{i \in C} w^i \geq \overline{p} \sum_{i \in C} \overline{y}^i,$$

lo cual es una contradicción. Por lo tanto, $(\bar{x}^i)_{i \in \{1,\dots,n\}}$ está en el núcleo.

(ii) Para el caso n=m=2, dé un ejemplo numérico que muestre que existen distribuciones de recursos en el núcleo que no se pueden obtener como un equilibrio Walrasiano de \mathcal{E} .

Asuma que las funciones de utilidad y las asignaciones iniciales cumplen $u^1(x_1, x_2) = u^2(x_1, x_2) = \sqrt{x_1 x_2}$, $w^1 = (4, 1)$ y $w^2 = (1, 4)$. En este contexto, normalizando el precio de la primera mercancía de tal forma que $p_1 = 1$, las demandas Marshallianas vienen dadas por

$$\overline{x}_1^1 = \frac{1}{2}(4+p_2), \qquad \overline{x}_2^1 = \frac{4+p_2}{2p_2}, \qquad \overline{x}_1^2 = \frac{1}{2}(1+4p_2), \qquad \overline{x}_2^2 = \frac{1+4p_2}{2p_2}.$$

Igualando la demanda por la primera mercancía con su oferta, tenemos que $5 = 5(1 + p_2)/2$, lo cual implica que $p_2 = 1$. Por lo tanto, salvo normalización de precios, el único equilibrio Walrasiano queda caracterizado por

$$((\overline{p}_1,\overline{p}_2),\overline{x}^1,\overline{x}^2) = \left((1,1),\left(\frac{5}{2},\frac{5}{2}\right),\left(\frac{5}{2},\frac{5}{2}\right)\right).$$

Por otro lado, el conjunto de distribuciones de recursos Pareto eficientes e interiores tienen la forma $((x_1, x_2), (5 - x_1, 5 - x_2))$, con $x_1, x_2 \in (0, 5)$, y quedan caracterizadas por la igualdad de las tasas marginales de sustitución de los agentes: $\frac{x_2}{x_1} = \frac{5 - x_2}{5 - x_1}$. Lo anterior implica que $x_1 = x_2$.

Como hay dos agentes, una distribución de recursos $((x_1, x_2), (5 - x_1, 5 - x_2))$ está en el núcleo si y solamente si es Pareto eficiente e individualmente racional. Lo cual es equivalente a pedir que $x_1 = x_2, \sqrt{x_1x_2} \ge 2, \sqrt{(5-x_1)(5-x_2)} \ge 2$. Concluimos que toda distribución de recursos de la forma ((a, a), (5 - a, 5 - a)) con $a \in [2, 3]$ está en el núcleo. Por ejemplo, ((2, 2), (3, 3)) está en el núcleo y es diferente a la distribución de recursos que se obtiene en el equilibrio Walrasiano.

[2] Considere una economía de intercambio estática con dos mercancías perfectamente divisibles y 100 consumidores. Cada consumidor $i \in \{1, \dots, 100\}$ tiene preferencias representables por una función de utilidad $u^i : \mathbb{R}^2_+ \to \mathbb{R}$ continua, estrictamente cuasi-cóncava y estrictamente creciente. Sea $(\overline{x}^i)_{i \in \{1,\dots,100\}} \gg 0$ una distribución de recursos Pareto eficiente tal que $\overline{x}^1 = (a,b)$. Si existe $\alpha \in (0,1)$ tal que $u^1(x_1,x_2) = x_1^{\alpha}x_2^{1-\alpha}$, encuentre precios que implementen $(\overline{x}^i)_{i \in \{1,\dots,100\}}$ como un Equilibrio Walrasiano con Transferencias.

La demostración del Segundo Teorema del Bienestar Social nos asegura que los precios que implementan $(\overline{x}^i)_{i\in\{1,\dots,100\}}$ como un Equilibrio Walrasiano con Transferencias coinciden con aquellos que aseguran que, para cada agente i, \overline{x}^i es la demanda Marshalliana cuando las asignaciones iniciales son dadas por \overline{x}^i .

Como el agente i=1 tiene una función de utilidad Coob-Douglas, su demanda Marshalliana a precios $(p_1, p_2) \gg 0$ cuando sus asignaciones iniciales son (a, b) viene dada por

$$x_1^1 = \alpha \frac{ap_1 + bp_2}{p_1},$$
 $x_2^1 = (1 - \alpha) \frac{ap_1 + bp_2}{p_2}.$

Normalizando los precios de tal forma que $p_1 + p_2 = 1$, concluimos que $(x_1^1, x_2^1) = (a, b)$ si y solamente si $ap_1 = \alpha ap_1 + \alpha b(1 - p_1)$. Por lo tanto, los precios

$$(\overline{p}_1, \overline{p}_2) = \left(\frac{\alpha b}{(1-\alpha)a + \alpha b}, \frac{(1-\alpha)a}{(1-\alpha)a + \alpha b}\right)$$

implementan $(\overline{x}^i)_{i \in \{1,\dots,100\}}$ como un Equilibrio Walrasiano con Transferencias

[3] Considere una economía de intercambio estática con m mercancías perfectamente divisibles y n consumidores. Cada consumidor $i \in \{1, \ldots, n\}$ tiene preferencias representables por una función de utilidad $u^i : \mathbb{R}^m_+ \to \mathbb{R}$ continua, fuertemente cuasi-cóncava y sin máximos locales en \mathbb{R}^m_+ . Además, cada $i \in \{1, \ldots, n\}$ tiene una asignación inicial $w^i \in \mathbb{R}^m_+$ tal que $w^i \neq (0, \ldots, 0)$ y $\sum_{k=1}^n w^k \gg 0$.

Suponga que, previo al intercambio de mercancías, un planificador central redistribuye renta cobrando una tasa de impuesto $\lambda \in [0,1)$ sobre el valor de mercado de las asignaciones iniciales y transfiriendo a cada consumidor el promedio de lo recaudado.

(i) Demuestre que siempre existe un equilibrio Walrasiano cuando $\lambda > 0$.

Los equilibrios Walrasianos de esta economía coinciden con los equilibrios de una economía de intercambio sin intervenciones de un planificador central en la cual cada $i \in \{1, \ldots, n\}$ tiene asignación inicial $w_{\lambda}^i := (1 - \lambda)w^i + \lambda \sum_{k=1}^n w^k/n$.

Cuando $\lambda > 0$, tenemos que $(w_{\lambda}^i)_{i \in \{1,\dots,n\}} \gg 0$. Por lo tanto, la existencia de un equilibrio es una consecuencia directa del Teorema de Existencia visto en clases, pues las funciones de utilidad son continuas, fuertemente cuasi-cóncavas y no tienen máximos locales en \mathbb{R}^m_+ .

(ii) Demuestre que puede no existir equilibrio cuando $\lambda = 0$.

Cuando $\lambda=0$, tenemos una economía de intercambio "clásica", sin intervenciones del planificador central, en la cual las asignaciones iniciales no son necesariamente interiores y las funciones de utilidad no son necesariamente estrictamente crecientes. Para demostrar que en este contexto puede no existir equilibrio, asuma que $u^1(x,y)=\sqrt{xy},\,u^2(x,y)=y,\,w^1=(1,0)$ y $w^2=(0,1)$ (note que estas utilidades y asignaciones iniciales cumplen las hipótesis del enunciado). Sigue que los precios de equilibrio—caso existan—deberán ser estrictamente positivos, pues i=1 tiene preferencias estrictamente monótonas. Esto implica que en equilibrio el consumidor i=1 tendrá recursos y usará parte de ellos para demandar la segunda mercancía (por causa de la Condición de Inada que cumple su utilidad). Por otro lado, como i=2 solo se interesa por la segunda mercancía, siempre demandará la canasta w^2 . Por lo tanto, caso existieran precios de equilibrio, habría exceso de demanda por la primera mercancía. Una contradicción.