Построение доверительных интервалов*

Общий вид закона распр. ген. сов. X	Параметры	Центральная статистика и ее закон распределения
	μ – неизв., σ – изв. Оценить μ .	$\frac{\mu - \overline{X}}{\sqrt{n}} \sqrt{n} \sim N(0, 1)$
	μ – изв., σ – неизв. Оценить σ .	
$N(\mu, \sigma^2)$	μ – неизв., σ – неизв. Оценить μ .	$\frac{\mu - \bar{X}}{S(\bar{X}_n)} \sqrt{n} \sim \operatorname{St}(n-1)$
	μ – неизв., σ – неизв. Оценить σ .	$\frac{S^2(\vec{X}_n)}{\sigma^2}(n-1) \sim \chi^2(n-1)$
$\operatorname{Exp}(\lambda)$	λ – неизв. Оценить λ .	$2\lambda n\overline{X} \sim \chi^2(2n)$

Проверка статистических гипотез* для нормально распределенной генеральной совокупности $X \sim \mathrm{N}(\mu, \sigma^2)$

	Основная гипотеза H_0	Конкур. гипотеза H_1	Статистика $T(\vec{X}_{\scriptscriptstyle n})$ и ее закон распределения при $H_{\scriptscriptstyle 0}$	Условие, определяющее критическую область W
$\mu=\mu_0$		$\mu < \mu_0$	$\frac{\mu_0 - \overline{X}}{\sigma} \sqrt{n} \sim N(0, 1)$	$T(\vec{X}_n) \geqslant u_{1-\alpha}$
	$\mu = \mu_0$	$\mu > \mu_0$		$T(\vec{X}_n) \leqslant -u_{1-\alpha}$
		$\mu \neq \mu_0$		$\left T(\vec{X}_n)\right \geqslant u_{1-\alpha/2}$
$\mu=\mu_0$ $\mu=\mu_0$	$\mu < \mu_0$	\overline{V}	$T(\vec{X}_n) \geqslant t_{1-\alpha}$	
	$\mu = \mu_0$	$\mu > \mu_0$	$\frac{\mu_0 - X}{S(\vec{X}_n)} \sqrt{n} \sim \operatorname{St}(n-1)$	$T(\vec{X}_n) \leqslant -t_{1-\alpha}$
		$\mu \neq \mu_0$		$\left T(\vec{X}_n)\right \geqslant t_{1-\alpha/2}$
$\mu_1 = \mu$ $\alpha_2 \mu_3 = \mu$ $\mu_1 = \mu$	<i>u</i> – <i>u</i>	$\mu_1 > \mu_2$	$T(ec{X}_{n_1},ec{Y}_{n_2}) = rac{\overline{V}}{V}$	$T(\vec{X}_{n_1}, \vec{Y}_{n_2}) \geqslant u_{1-\alpha}$
	$\mu_1 = \mu_2$	$\mu_1 \neq \mu_2$	$= \frac{X - Y}{\sqrt{\sigma_1^2 / n_1 + \sigma_2^2 / n_2}} \sim N(0, 1)$	$\left T(\vec{X}_{n_1}, \vec{Y}_{n_2})\right \geqslant u_{1-\alpha/2}$
IV. o1=62 $\mu_1=\mu_2$ $\mu_1=\mu_2$		$\mu_1 > \mu_2$	$T(\vec{X}_{n_1}, \vec{Y}_{n_2}) = \frac{\overline{X} - \overline{Y}}{\sqrt{1/n_1 + 1/n_2}} \times$	$T(\vec{X}_{n_1}, \vec{Y}_{n_2}) \geqslant t_{1-lpha}$
		$\times \frac{\sqrt{n_1 + n_2 - 2}}{\sqrt{(n_1 - 1)S^2(\vec{X}_{n_1}) + (n_2 - 1)S^2(\vec{Y}_{n_2})}}$		
		$\mu_1 \neq \mu_2$	$\sqrt{(n_1 - 1)S^2(X_{n_1}) + (n_2 - 1)S^2(Y_{n_2})}$ $\sim St(n_1 + n_2 - 2)$	$\left T(\vec{X}_{n_1}, \vec{Y}_{n_2})\right \geqslant t_{1-\alpha/2}$
V.	$\sigma = \sigma_0$	$\sigma > \sigma_0$	$\frac{S^2(\vec{X}_n)}{\sigma_0^2}(n-1) \sim \chi^2(n-1)$	$T(\vec{X}_n) \geqslant h_{1-\alpha}$
		$\sigma < \sigma_0$		$T(\vec{X}_n) \leqslant h_{\alpha/2}$
		$\sigma \neq \sigma_0$		$[T \leqslant h_{\alpha/2}] \vee [T \geqslant h_{1-\alpha/2}]$
VI.	$\sigma_1 = \sigma_2$	$\sigma_1 > \sigma_2$	$T(\vec{X}_{n_1}, \vec{Y}_{n_2}) = \frac{S^2(\vec{X}_{n_1})}{S^2(\vec{Y}_{n_2})} \sim F(n_1 - 1, n_2 - 1)$	$T(\vec{X}_{n_1}, \vec{Y}_{n_2}) \geqslant F_{1-\alpha}(n_1 - 1, n_2 - 1)$
		$\sigma_1 < \sigma_2$		
		$\sigma_1 \neq \sigma_2$		$ [T \geqslant F_{1-\alpha/2}(n_1 - 1, n_2 - 1)] \lor \lor [T \geqslant 1 / F_{1-\alpha/2}(n_2 - 1, n_1 - 1)] $

^{*} \overline{X} — выборочное среднее, S^2 — исправленная выборочная дисперсия, α — уровень значимости критерия, u_q , t_q , h_q , F_q — квантили уровня q соответствующих распределений.