代数幾何まとめノート

Fefr

2024年5月22日

目次

第1章	Scheme	5
1.1	Zariski Topology	5
1.2	Algebraic Sets	5
1.3	Sheaves	5

Scheme

第1章

1.1 Zariski Topology

atodekakuyo

1.2 Algebraic Sets

atodekakuyo

1.3 Sheaves

Definition 1.3.1. X を位相空間とする。X 上の (Pーベル群の) **前層** (presheaf) F とは 次のデータ

- Uを任意のXの開集合に対して $\mathcal{F}(U)$ はアーベル群。
- 制限写像 (restriction map) と言われる群準同型 $\rho_{U,V}:\mathcal{F}(U)\to\mathcal{F}(V)$ が任意の開集合 $V\subset U$ に対して存在する。

そして次の条件を満たす。

- $(1) \mathcal{F}(\varnothing) = 0$
- (2) $\rho_{U,U} = \mathrm{id}_{\mathcal{F}(U)}$
- (3) 任意の開集合 $W \subset V \subset U$ に対して $\rho_{U,W} = \rho_{V,W} \circ \rho_{U,V}$ となる。

6 第 1. SCHEME

 $s \in \mathcal{F}(U)$ を U 上の \mathcal{F} の切断 (section) という。また、 $\rho_{U,V}(s) \in \mathcal{F}(V)$ を $s|_V$ と書いて s の V への制限という。

Definition 1.3.2. 前層 \mathcal{F} が層 (sheaf) とは次の条件を満たすことをいう。

- (4) (Uniqueness) U を X の開集合とし $\{U_i\}_i$ をその開被覆とする。 $s \in \mathcal{F}(U)$ が任意 の i に対して $s|_{U_i}=0$ ならば s=0
- (5) (Glueing local sections) 上の状況で、 $s_i \in \mathcal{F}(U_i)$ が $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$ を満たすならば、 $s|_{U_i} = s_i$ を満たす $s \in \mathcal{F}(U)$ が存在する。

Remark . \mathcal{B} を位相空間 X の開基で有限交叉で閉じているものとする。(つまり任意の $U, V \in \mathcal{B}$ に対して $U \cap V \in \mathcal{B}$. e.g. Spec A の開基 $\{D(f)\}_f$) このとき \mathcal{B} -前層 (\mathcal{B} -presheaf) \mathcal{F}_0 とは

- $U \in \mathcal{B}$ に対して $\mathcal{F}_0(U)$ はアーベル群。
- $V \subset U \in \mathcal{B}$ に対して群準同型 $\rho_{U,V} : \mathcal{F}_0(U) \to \mathcal{F}_0(V)$ が定まる。

としたもの。

 \mathcal{B} -層 (\mathcal{B} -sheaf) \mathcal{F}_0 から X 上の層 \mathcal{F} を作ることができる。

位相空間 X の任意の開集合 U をとり、 $\{U_i\}_i$ をその開被覆とする。 $(U_i \in \mathcal{B})$

$$\mathcal{F}(U) := \left\{ (s_i)_i \in \prod_i \mathcal{F}_0(U_i) \mid$$
 任意の i, j に対して $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j} \right\}$

と定義する。するとこれは開被覆によらない。実際 $\mathcal{F}(U)_{U_i}$ を開被覆 $\{U_i\}_i$ による $\mathcal{F}(U)$ とし、 $\{V_j\}_j$ を別の開被覆とすると、 $\{U_i\cap V_j\}_{i,j}$ はこれら 2 つの細分である。 $\mathcal{F}(U)_{U_i}\to \mathcal{F}(U)_{U_i\cap V_j}$ なる群準同型を $(s_i)_i\mapsto (s_i|_{U_i\cap V_j})_{i,j}$ で定義できる。実際

$$\begin{aligned} s_{i}|_{U_{i}\cap V_{j}}\Big|_{(U_{i}\cap V_{j})\cap(U_{i'}\cap V_{j'})} &= s_{i}\Big|_{(U_{i}\cap V_{j})\cap(U_{i'}\cap V_{j'})} \\ &= s_{i}|_{U_{i}\cap U_{i'}}\Big|_{(U_{i}\cap V_{j})\cap(U_{i'}\cap V_{j'})} \\ &= s_{i'}|_{U_{i}\cap U_{i'}}\Big|_{(U_{i}\cap V_{j})\cap(U_{i'}\cap V_{j'})} & (\because (s_{i})_{i} \in \mathcal{F}(U)_{U_{i}}) \\ &= s_{i'}\Big|_{(U_{i}\cap V_{j})\cap(U_{i'}\cap V_{j'})} \\ &= s_{i'}|_{U_{i'}\cap V_{j'}}\Big|_{(U_{i}\cap V_{j})\cap(U_{i'}\cap V_{j'})} \end{aligned}$$

より $(s_i|_{U_i\cap V_i})_{i,j}\in\mathcal{F}(U)_{U_i\cap V_i}$

また、 $(s_{ij})_{ij} \in \mathcal{F}(U)_{U_i \cap V_j}$ を取ると、 $(s_{ij})_{ij} = (s_i|_{U_i \cap V_j})$ と出来るので全射 (?????) Kernel を計算すると

$$\begin{aligned} s_i|_{U_i \cap V_j} &= 0 \quad (\forall i, j) \\ s_i|_{U_i} &= s_i = 0 \quad (\forall i) \quad (\because (4)) \end{aligned}$$

よって Kernel が自明なので単射。