1 Hardware

1.1 Main componenents

1.1.1 Memory

Description Used to store the data related to running softwares. Can be described by:

- 1. Capacity (GB): amount of stored data
- 2. Frequency (MHz) / generation: transfer speed
- 3. Format: tower/laptop
- 4. ...

Figure 1: RAM modules: DDR5 - laptop

Photos

1.1.2 CPU

Description Performs base operations (sum, division, etc...) using data stored in memory. Can be described by:

- 1. Number of cores
- 2. Operating frequency, generation, engraving width, supported instructions
- 3. *TDP* (W)
- 4. Cached memory
- 5. ...

Multithreading Idea: perform many tasks simulatneously on a same physical cores Chez Intel: Hyper-Threading.

$$\# logical\ cores = \# physical\ cores \times \frac{\# threads}{\# physical\ core}$$

Photos

Figure 2: CPU components

1.1.3 Storage

Description Save data on the long term. Can be described by:

- 1. Capacity (GB)
- 2. Reading/Writing speed, latency
- 3. Type
- 4. ...

Figure 3: Stockage

SSD (new technology)

Photos

1.1.4 GPU

Description Similar to GPU. Performs graphical operations and produces an image to display More broadly, performs some highly parallelizable tasks. Can be described by:

- 1. Memory: capacity (GB) and generation (i.e.: frequency)
- 2. External connectors

GPU and graphic card The word "GPU" describes the computation unit only (not the fans, memory, ...).

Integrated GPU For computers having small graphics needs, the GPU is a small unit dedicated to graphics integrated into the CPU.

Figure 4: Graphic card

Photos

1.2 Typical configurations

Component	Typical hardware properties	
	Personnal computer	Shared working station
Memory	8 GB	64-256 GB
CPU	4-8 logical cores	16-128 logical cores
	$2\mathrm{GHz}$	$2-4~\mathrm{GHz}$
Disk	SSD 500 GB	HDD 10 TB
		SSD 1 TB
GPU	Integrated	2-8 GB memory

1.3 Howto: compare two computers

Before any comparison, first ask yourself about the software you want to run:

- Can it be parallelizable?
- Is it eunning on GPU or CPU?
- Does it need to write or read a lot of data from the disk?

Two computers can be compared using one of these two methods:

- Compare the date they were bought together with the price at that times
- Compare main characteristics:
 - 1. CPU: number of logical cores (if a GPU exists: generation, memory capacity)

- 2. CPU: frequency
- 3. RAM: capacity

Some websites host a component comparator; typical result is an averaged score built from differents categorical scores (ex: number of cores for a CPU).

2 Software

2.1 Operating systems (OS)

An operating system is a software that makes hardware ressources available through interfaces. We usually make a distinction between low-level component of the OS (e.g.: kernel, handles the hardware) and those that provide applications the user can interact with.

2.1.1 Many OS

Main OS are:

- Windows (Microsoft)
- OS X (Apple)
- Linux

2.1.2 GUI and CLI

GUI : Graphic User Interface

Interface that describes software components using drawings. One can interact with a GUI mainly using a mouse.

CLI : Command Line Interface

Interface that describes software components using text. One can interact with a CLI using a keyboard.

```
nerotb@Latitude-3510: ~
Fichier Édition Affichage Rechercher Terminal Aide
nerotb@Latitude-3510:~$ ls -lh
total 52K
drwxr-xr-x 10 nerotb nerotb 4,0K oct.
                                       20 10:43 Bureau
drwxr-xr-x 10 nerotb nerotb 4,0K sept.
                                       26 17:10 Documents
drwxr-xr-x 2 nerotb nerotb 4,0K oct.
                                       16 11:56 Images
drwxr-xr-x
            2 nerotb nerotb 4,0K
                                 mars
                                           2023
drwxr-xr-x
             nerotb nerotb 4,0K
                                           2023 Musique
             nerotb nerotb 4,0K mars
                                           2023 Public
drwxr-xr-x
                                                Téléchargements
drwxr-xr-x 10 nerotb nerotb 20K oct.
                                          15:49
drwxrwxr-x 4 nerotb nerotb 4,0K mai
drwxr-xr-x 2 nerotb nerotb 4,0K mars
                                           2023 Vidéos
nerotb@Latitude-3510:~$
```

Figure 5: Linux console (CLI)

GUI is built on the top of **CLI** The visual aspect rendered by a GUI is often a simplified version of what can be achieved using the CLI. In the background, most of GUI-related actions are translated to CLI commands at run time.

2.2 Processes

A process is a set of instructions processed by the hardware as asked by a running software. Some processes create several threads that use all the available logical cores. Processes are identified using a *PID* (Process IDentifier).

Figure 6: Simplified running scheme of a software (source: Hooman Mallahzadeh, CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0, via Wikimedia Commons)

2.3 Programing language

[...] A programming language is a system of notation for writing computer programs. A programming language is described by its syntax (form) and semantics (meaning). It gets its basis from formal languages. source: Wikipedia

2.3.1 Compiled vs interpretated

Compiled language A software written using a compiled language is directly translated into something the OS can handle. Examples of compiled languages: Fortran, C++

interpretated language A software written using an interpreted language is split into pieces that make a sense for a master language which handles the execution Examples of interpretaed languages: Python, Matlab