Online learning

ONLINE LEARNING

Online learning algorithm

For round $t = 1, 2, \ldots, T$:

- 1. Observe data point $x_t \in \mathcal{X}$.
- 2. Choose action $a_t \in \mathcal{A}$.
- 3. Observe label $y_t \in \mathcal{Y}$.
- 4. Suffer loss $\ell(a_t, y_t)$ (e.g., $\ell(a_t, y_t) = \mathbb{1}\{a_t \neq y_t\}$ when $\mathcal{A} = \mathcal{Y}$).

Underlying (non-probabilistic) assumption

Assume there is a function class \mathcal{F} such that best-in-hindsight (average) loss $\min_{f \in \mathcal{F}} \frac{1}{T} \sum_{t=1}^{T} \ell(f(x_t), y_t)$ is not too large.

All "data" (e.g., x_t , y_t) could be controlled by an adversary!

Goal: perform (almost) as well as the best-in-hindsight $f \in \mathcal{F}$.

$$\begin{array}{lll} \text{(Average) Regret:} & \frac{1}{T}\sum_{t=1}^T\ell(a_t,y_t) & - & \min_{f\in\mathcal{F}}\frac{1}{T}\sum_{t=1}^T\ell(f(x_t),y_t) \\ & \text{your avg. loss} & \text{avg. loss of best } f\in\mathcal{F} \end{array}$$

1 / 15

EXAMPLE

 $\mathcal{X} = \mathbb{N}$, $\mathcal{A} = \mathcal{Y} = \{0, 1\}$, $\ell(a, y) := \mathbb{1}\{a \neq y\}$, $\mathcal{F} = \text{threshold functions}$.

t	1	2	3	4	5	6	7	8	9
x_t	7	8	1	9	2	6	3	1	4
a_t	0	1	1	1	1	1	1	0	1
y_t	1	1	0	1	0	1	1	0	0

(Average) Regret:
$$\frac{1}{9}\sum_{t=1}^{9}\ell(a_t,y_t) - \min_{f\in\mathcal{F}}\frac{1}{9}\sum_{t=1}^{9}\ell(f(x_t),y_t)$$
$$= \frac{4}{9}\sum_{t=1}^{9}\ell(a_t,y_t) - \frac{1}{9}\sum_{t=1}^{9}\ell(f(x_t),y_t)$$

 $(f(x) = 1{x > 2}$ makes just one mistake.)

 $\textbf{Goal} \colon \mathsf{Regret} \to 0 \text{ as } T \to \infty \text{ (i.e., "vanishing regret" or "no regret")}.$

Some easy cases

Simplifying assumptions

- $ightharpoonup N := |\mathcal{F}|$ is finite, $\mathcal{A} = \mathcal{Y} = \{0,1\}$, $\ell(a,y) = \mathbb{1}\{a \neq y\}$ (zero-one loss).
- ▶ Realizability: assume there is a $f \in \mathcal{F}$ with $y_t = f(x_t)$ for all t. So Regret is simply Average Loss (i.e., average number of mistakes):

$$\frac{1}{T} \sum_{t=1}^{T} \mathbb{1} \{ a_t \neq y_t \}.$$

Trivial algorithm: follow-the-leader

In round t, pick any $f_t \in \mathcal{F}$ that is *perfect-so-far*, and choose $a_t := f_t(x_t)$.

What's a bound on the average loss after T rounds?

A BETTER ALGORITHM

Example: failure of follow-the-leader

"Halving" algorithm

In round t,

$$a_t := \underset{y \in \{0,1\}}{\operatorname{arg max}} \left| \left\{ \mathsf{perfect\text{-}so\text{-}far } f : f(x_t) = y \right\} \right|$$

(i.e., go with majority's prediction).

What's a bound on the average loss after T rounds?

What if we drop realizability assumption?

 $A = \{0, 1\}, \ \mathcal{Y} = [0, 1], \ \ell(a, y) := |a - y| \ \text{(absolute loss)},$

t	1	2	3	4	5	6	7	8	9
$f_0(x_t)$	0	0	0	0	0	0	0	0	0
$f_1(x_t)$	1	1	1	1	1	1	1	1	1
a_t	1	1	0	1	0	1	0	1	0
y_t	2/3	0	1	0	1	0	1	0	1
$L_t(f_0)$	2/3	2/3	5/3	5/3	8/3	8/3	11/3	11/3	14/3
$L_t(f_1)$	1/3	4/3	4/3	7/3	7/3	10/3	10/3	13/3	13/3
leader	f_1	f_0	f_1	f_0	f_1	f_0	f_1	f_0	f_1

Follow-the-leader: go with the function $f \in \mathcal{F}$ that is best-so-far.

Regret of follow-the-leader is 1 - O(1/T).

Can any learner do much better?

5 / 15

COVER'S IMPOSSIBILITY THEOREM

Let $\mathcal{A} = \mathcal{Y} := \{0, 1\}$, and $\mathcal{F} := \{f_0 \text{ (always } 0), f_1 \text{ (always } 1)\}$. Let $\ell(a, y) := \mathbb{1}\{a \neq y\}$ (zero-one loss).

Two observations:

1. For any $(y_1, y_2, \dots, y_T) \in \{0, 1\}^T$,

$$\min_{f \in \mathcal{F}} \frac{1}{T} \sum_{t=1}^{T} \ell(f(x_t), y_t) \leq \frac{1}{2}.$$

(One of f_0 and f_1 has average loss $\leq 1/2$.)

2. For any learner, there exists $(y_1, y_2, \dots, y_T) \in \{0, 1\}^T$ such that

$$\frac{1}{T} \sum_{t=1}^{T} \ell(a_t, y_t) = 1.$$

(Think of a_t as a function of $x_1, y_1, x_2, y_2, \ldots, x_{t-1}, y_{t-1}, x_t$.)

Conclusion: No learner can do better than regret 1/2.

However:

If the learner can be <u>randomized</u>, then can make regret $\to 0$ as $T \to \infty$.

USING RANDOMNESS

Assume $N := |\mathcal{F}|$ is finite, and $\ell(y', y) \in [0, 1]$.

Let $L_t(f) := \sum_{\tau=1}^t \ell(f(x_\tau), y_\tau)$ be cumulative loss of f after t rounds.

Randomized Weighted Majority (Littlestone and Warmuth, 1994)

In round t, randomly pick f_t from distribution $oldsymbol{w}_t$ on ${\mathcal F}$ given by

$$w_t(f) \propto \exp(-\eta \cdot L_{t-1}(f));$$

predict $a_t := f_t(x_t)$.

Expected regret after T rounds:

$$\mathbb{E}\left[\frac{1}{T}\sum_{t=1}^{T}\ell(a_t,y_t) - \min_{f \in \mathcal{F}} \frac{1}{T}\sum_{t=1}^{T}\ell(f(x_t),y_t)\right] \leq \frac{1}{\eta} \cdot \frac{\ln(N)}{T} + \eta \cdot \frac{1}{2}.$$

Optimize bound with $\eta \vcentcolon= \sqrt{\frac{2\ln(N)}{T}}$ to get regret bound $\sqrt{\frac{2\ln(N)}{T}}.$

Could also use $\eta_t \coloneqq \sqrt{\frac{2\ln(N)}{t}}$ in round t.

EXAMPLE: RWM

$A = \{0, 1\}, \ \mathcal{Y} = [0, 1], \ \ell(a, y) := |a - y| \ \text{(absolute loss)}, \ |\mathcal{F}| = 2.$

t	1	2	3	4	5	6	7	8	9
$f_0(x_t)$	0	0	0	0	0	0	0	0	0
$f_1(x_t)$	1	1	1	1	1	1	1	1	1
$w_t(f_1)$.500	.569	.389	.549	.413	.540	.426	.535	.435
y_t	2/3	0	1	0	1	0	1	0	1
$L_t(f_0)$	2/3	2/3	5/3	5/3	8/3	8/3	11/3	11/3	14/3
$L_t(f_1)$	1/3	4/3	4/3	7/3	7/3	10/3	10/3	13/3	13/3
leader	f_1	f_0	f_1	f_0	f_1	f_0	f_1	f_0	f_1

Expected regret of RWM is $O(1/\sqrt{T})$.

WHY RWM WORKS

ightharpoonup Randomization lets us precisely "hedge" over functions in \mathcal{F} .

(A generalization of RWM called "Hedge" is due to Freund and Schapire; proposed in in same paper as AdaBoost.)

Minimizer of cumulative loss L_{t-1} can change in every round. But the distribution given by

$$w_t(f) \propto \exp(-\eta \cdot L_{t-1}(f))$$

(as in RWM) changes relatively slowly when η is small.

9 / 15

A CLOSER LOOK AT RWM

Let $\lambda_t(f) := \ell(f(x_t), y_t)$, so expected loss of RWM in round t is

$$\sum_{f \in \mathcal{F}} \lambda_t(f) \cdot w_t(f) = \langle \boldsymbol{\lambda}_t, \boldsymbol{w}_t \rangle.$$

Interpretation: w_t is solution to a convex optimization problem

$$m{w}_t \; := \; rg \min_{m{w} \in \Delta_{\mathcal{F}}} \sum_{i=1}^{t-1} \langle m{\lambda}_i, m{w}
angle - rac{1}{\eta} H(m{w}) \, ,$$

where $\Delta_{\mathcal{F}}$ is the set of probability distributions over \mathcal{F} , and H is Shannon's entropy function.

Without the " $-(1/\eta)H(\boldsymbol{w})$ ", optimization problem is

$$\underset{\boldsymbol{w} \in \Delta_{\mathcal{F}}}{\arg\min} \sum_{i=1}^{t-1} \langle \boldsymbol{\lambda}_i, \boldsymbol{w} \rangle = \underset{f \in \mathcal{F}}{\arg\min} \sum_{t=1}^{t-1} \lambda_{\tau}(f) = \underset{f \in \mathcal{F}}{\arg\min} L_{t-1}(f),$$

which is "follow-the-leader"—i.e., go with $f \in \mathcal{F}$ that's doing best-so-far. Doesn't guarantee vanishing regret!

RWM is regularized follow-the-leader (with negative entropy regularization).

Some form of "regularization" is crucial for vanishing regret.

APPLICATION TO LEARNING DECISION TREES

Usual approach

Split training data S into two parts, S' and S'':

- lacktriangle Use first part S' to grow tree ${\mathcal T}$ until all leaves are pure.
- ▶ Use second part S'' to choose a good pruning of tree \mathcal{T} .

Alternative approach (Helmbold and Schapire, 1995)

Split training data S into two parts, S' and S'':

- lacktriangle Use first part S' to grow tree ${\mathcal T}$ until all leaves are pure.
- ▶ Use second part S'' to learn weighting over all prunings of tree \mathcal{T} : Let $\mathcal{F} = \text{all prunings of } \mathcal{T}$, and run RWM using S''.

Problem: $|\mathcal{F}|$ is exponentially large!

11/15

DYNAMIC PROGRAMMING

$x_3 > 4$ $x_2 < 7$ $x_6 > 1$ $x_5 < 3$ $x_7 > 4$ $x_1 > 2$ $x_9 < 2$ $x_1 < 5$ $x_8 > 1$ $x_4 < 3$ $x_9 > 2$ $x_5 < 4$ $x_1 < 2$

- ▶ Each $f \in \mathcal{F}$ corresponds to a pruning of the tree \mathcal{T} .
- ▶ $L_t(f)$ depends on prediction error statistics at leaves of f; weight of f is just $\exp(-\eta L_t(f))$.
- ▶ Maintain error statistics for all nodes in *T*.
- \blacktriangleright Can use dynamic programming to combine weights of all $f\in\mathcal{F}$ to make weighted prediction.
- ► See (Helmbold & Schapire, 1995) for details.

OTHER EXAMPLES

- **Perceptron algorithm**: online learning algorithm for $\mathcal{F} =$ linear classifiers.
- ▶ Winnow algorithm: much like Perceptron, but works better when there is a linear separator that uses only a few features.
- ▶ Online gradient descent: cosmetically similar to stochastic gradient descent, for online convex optimization problem (i.e., in each round, there is a different convex cost function).

/ 15

13 / 15

More on online learning

Many problems and algorithms in online learning:

- ► Partial feedback ("multi-armed bandit")
- ► Bayesian inference
- ▶ Online convex optimization
- ► Tracking / filtering

Many connections between online learning and other subjects:

- ► Game theory, calibration, boosting
- ► Stochastic optimization
- ► Compression, coding theory
- •

14 / 15