

Calculer l'angle demandé dans les triangles suivants :

5G31

- 1. CRM est un triangle rectangle en R et l'angle \widehat{RCM} mesure 80°. Quelle est la mesure de l'angle \widehat{RMC} ?
- 2. DFH est un triangle dont les trois angles sont égaux. Quelles sont les mesures de ses angles?
- **3.** XLJ est un triangle rectangle en L et $\widehat{LXJ} = \widehat{LJX}$. Quelle est la mesure de l'angle \widehat{LJX} ?

Calculer l'angle demandé dans les triangles suivants :

5G31

- 1. EVW est un triangle rectangle en E. L'angle \widehat{EWV} mesure le tiers de l'angle \widehat{EVW} . Quelles sont les mesures des angles \widehat{EVW} et \widehat{EWV} ?
- 2. ZGC est un triangle rectangle en Z. L'angle \widehat{ZGC} est cinq fois plus grand que l'angle \widehat{ZCG} .

Quelles sont les mesures des angles \widehat{ZGC} et \widehat{ZCG} ?

Calculer l'angle demandé dans les triangles suivants :

5G31

- 1. NJE est un triangle isocèle en N. L'angle \widehat{NJE} mesure 56°. Quelle est la mesure de l'angle \widehat{JNE} ?
- **2.** UNV est un triangle quelconque. L'angle \widehat{UNV} mesure 26° et l'angle \widehat{NUV} mesure 96°. Quelle est la mesure de l'angle \widehat{NVU} ?
- ${\bf 3.}~ADV$ est un triangle dont les trois angles sont égaux. Quelles sont les mesures de ses angles?

Calculer l'angle demandé dans les triangles suivants :

- 1. PWG est un triangle isocèle en P. L'angle \widehat{WPG} mesure 72°. Quelle est la mesure de l'angle \widehat{WGP} ?
- 2. ZVP est un triangle rectangle en Z. L'angle \widehat{ZVP} mesure le double de l'angle \widehat{ZPV} .

 Quelles sont les mesures des angles \widehat{ZVP} et \widehat{ZPV} ?

Calculer l'angle demandé dans les triangles suivants :

5G31

- 1. FXU est un triangle rectangle en X et $\widehat{XFU} = \widehat{XUF}$. Quelle est la mesure de l'angle \widehat{XUF} ?
- 2. QDB est un triangle isocèle en Q. L'angle \widehat{QDB} mesure 50°. Quelle est la mesure de l'angle \widehat{DQB} ?
- 3. VNX est un triangle quelconque. L'angle \widehat{VNX} mesure 36° et l'angle \widehat{NVX} mesure 20°. Quelle est la mesure de l'angle \widehat{NXV} ?

Calculer l'angle demandé dans les triangles suivants :

- 1. NUJ est un triangle rectangle en N. L'angle \widehat{NJU} mesure le quart de l'angle \widehat{NUJ} . Quelles sont les mesures des angles \widehat{NUJ} et \widehat{NJU} ?
- 2. ETN est un triangle rectangle en E. L'angle \widehat{ENT} mesure le tiers de l'angle \widehat{ETN} .

 Quelles sont les mesures des angles \widehat{ETN} et \widehat{ENT} ?

Calculer l'angle demandé dans les triangles suivants :

5G31

- 1. NSD est un triangle quelconque. L'angle \widehat{NSD} mesure 30° et l'angle \widehat{SND} mesure 56°. Quelle est la mesure de l'angle \widehat{SDN} ?
- **2.** WCF est un triangle rectangle en C et $\widehat{CWF} = \widehat{CFW}$. Quelle est la mesure de l'angle \widehat{CFW} ?
- **3.** WDI est un triangle rectangle en D et l'angle \widehat{DWI} mesure 66°. Quelle est la mesure de l'angle \widehat{DIW} ?

Calculer l'angle demandé dans les triangles suivants :

- 1. OFR est un triangle rectangle en O. L'angle \widehat{OFR} est cinq fois plus grand que l'angle \widehat{ORF} .
 - Quelles sont les mesures des angles \widehat{OFR} et \widehat{ORF} ?
- 2. XFT est un triangle isocèle en X. L'angle \widehat{XFT} mesure le double de l'angle \widehat{FXT} .

 Quelles sont les mesures des angles \widehat{XFT} , \widehat{XTF} et \widehat{FXT} ?

Calculer l'angle demandé dans les triangles suivants :

5G31

- 1. LDT est un triangle dont les trois angles sont égaux. Quelles sont les mesures de ses angles?
- **2.** NTK est un triangle rectangle en T et $\widehat{TNK} = \widehat{TKN}$. Quelle est la mesure de l'angle \widehat{TKN} ?
- 3. ZTA est un triangle quelconque. L'angle \widehat{ZTA} mesure 10° et l'angle \widehat{TZA} mesure 89° . Quelle est la mesure de l'angle \widehat{TAZ} ?

Calculer l'angle demandé dans les triangles suivants :

- 1. VYB est un triangle rectangle en V. L'angle \widehat{VBY} mesure le quart de l'angle \widehat{VYB} . Quelles sont les mesures des angles \widehat{VYB} et \widehat{VBY} ?
- 2. ONJ est un triangle isocèle en O. L'angle \widehat{ONJ} mesure le double de l'angle \widehat{NOJ} .

 Quelles sont les mesures des angles \widehat{ONJ} , \widehat{OJN} et \widehat{NOJ} ?

Calculer l'angle demandé dans les triangles suivants :

5G31

- 1. LAF est un triangle rectangle en A et $\widehat{ALF} = \widehat{AFL}$.

 Quelle est la mesure de l'angle \widehat{AFL} ?
- **2.** ICG est un triangle rectangle en C et l'angle \widehat{CIG} mesure 8°. Quelle est la mesure de l'angle \widehat{CGI} ?
- ${\bf 3.}\ TSQ$ est un triangle dont les trois angles sont égaux. Quelles sont les mesures de ses angles?

Calculer l'angle demandé dans les triangles suivants :

- 1. TVC est un triangle isocèle en T. L'angle \widehat{VTC} mesure 32°. Quelle est la mesure de l'angle \widehat{VCT} ?
- 2. PWV est un triangle isocèle en P. L'angle \widehat{WPV} mesure les deux tiers de l'angle \widehat{PWV} . Quelles sont les mesures des angles \widehat{PWV} , \widehat{PVW} et \widehat{WPV} ?

Calculer l'angle demandé dans les triangles suivants :

5G31

- 1. DEB est un triangle dont les trois angles sont égaux. Quelles sont les mesures de ses angles?
- **2.** NKI est un triangle rectangle en K et $\widehat{KNI} = \widehat{KIN}$. Quelle est la mesure de l'angle \widehat{KIN} ?
- 3. SHX est un triangle rectangle en H et l'angle \widehat{HSX} mesure 50°. Quelle est la mesure de l'angle \widehat{HXS} ?

Calculer l'angle demandé dans les triangles suivants :

- 1. AJG est un triangle rectangle en A. L'angle \widehat{AJG} mesure le double de l'angle \widehat{AGJ} .

 Quelles sont les mesures des angles \widehat{AJG} et \widehat{AGJ} ?
- **2.** IAG est un triangle isocèle en I. L'angle \widehat{AIG} mesure 139°. Quelle est la mesure de l'angle \widehat{AGI} ?

Calculer l'angle demandé dans les triangles suivants :

5G31

- 1. BAJ est un triangle isocèle en B. L'angle \widehat{BAJ} mesure 77°. Quelle est la mesure de l'angle \widehat{ABJ} ?
- **2.** NHC est un triangle quelconque. L'angle \widehat{NHC} mesure 37° et l'angle \widehat{HNC} mesure 36°. Quelle est la mesure de l'angle \widehat{HCN} ?
- 3. WRP est un triangle rectangle en R et $\widehat{RWP} = \widehat{RPW}$.

 Quelle est la mesure de l'angle \widehat{RPW} ?

Calculer l'angle demandé dans les triangles suivants :

- 1. ZTS est un triangle isocèle en Z. L'angle \widehat{TZS} mesure 69°. Quelle est la mesure de l'angle \widehat{TSZ} ?
- 2. NEV est un triangle rectangle en N. L'angle \widehat{NVE} mesure le quart de l'angle \widehat{NEV} . Quelles sont les mesures des angles \widehat{NEV} et \widehat{NVE} ?

Calculer l'angle demandé dans les triangles suivants :

5G31

- 1. RAT est un triangle isocèle en R. L'angle \widehat{RAT} mesure 11°. Quelle est la mesure de l'angle \widehat{ART} ?
- **2.** UZX est un triangle quelconque. L'angle \widehat{UZX} mesure 29° et l'angle \widehat{ZUX} mesure 48°. Quelle est la mesure de l'angle \widehat{ZXU} ?
- ${\bf 3.}\ KSA$ est un triangle dont les trois angles sont égaux. Quelles sont les mesures de ses angles?

Calculer l'angle demandé dans les triangles suivants :

- 1. SLU est un triangle rectangle en S. L'angle \widehat{SLU} est cinq fois plus grand que l'angle \widehat{SUL} .
 - Quelles sont les mesures des angles \widehat{SLU} et \widehat{SUL} ?
- **2.** UJW est un triangle isocèle en U. L'angle \widehat{JUW} mesure les deux tiers de l'angle \widehat{UJW} . Quelles sont les mesures des angles \widehat{UJW} , \widehat{UWJ} et \widehat{JUW} ?

Calculer l'angle demandé dans les triangles suivants :

5G31

- 1. VKB est un triangle rectangle en K et l'angle \widehat{KVB} mesure 33°. Quelle est la mesure de l'angle \widehat{KBV} ?
- $\mathbf{2.}\ IAK$ est un triangle dont les trois angles sont égaux. Quelles sont les mesures de ses angles?
- 3. EVX est un triangle rectangle en V et $\widehat{VEX} = \widehat{VXE}$.

 Quelle est la mesure de l'angle \widehat{VXE} ?

Calculer l'angle demandé dans les triangles suivants :

- 1. RMQ est un triangle rectangle en R. L'angle \widehat{RQM} mesure le quart de l'angle \widehat{RMQ} . Quelles sont les mesures des angles \widehat{RMQ} et \widehat{RQM} ?
- 2. NTS est un triangle rectangle en N. L'angle \widehat{NST} mesure le tiers de l'angle \widehat{NTS} .

 Quelles sont les mesures des angles \widehat{NTS} et \widehat{NST} ?

Calculer l'angle demandé dans les triangles suivants :

5G31

- 1. CYN est un triangle dont les trois angles sont égaux. Quelles sont les mesures de ses angles?
- 2. MER est un triangle isocèle en M. L'angle \widehat{MER} mesure 63°. Quelle est la mesure de l'angle \widehat{EMR} ?
- 3. MVB est un triangle rectangle en V et $\widehat{VMB} = \widehat{VBM}$.

 Quelle est la mesure de l'angle \widehat{VBM} ?

Calculer l'angle demandé dans les triangles suivants :

- 1. PJL est un triangle isocèle en P. L'angle \widehat{PJL} mesure le double de l'angle \widehat{JPL} . Quelles sont les mesures des angles \widehat{PJL} , \widehat{PLJ} et \widehat{JPL} ?
- 2. DYR est un triangle rectangle en D. L'angle \widehat{DRY} mesure le tiers de l'angle \widehat{DYR} .

 Quelles sont les mesures des angles \widehat{DYR} et \widehat{DRY} ?

Calculer l'angle demandé dans les triangles suivants :

5G31

- 1. GKN est un triangle rectangle en K et l'angle \widehat{KGN} mesure 55°. Quelle est la mesure de l'angle \widehat{KNG} ?
- **2.** FDS est un triangle rectangle en D et $\widehat{DFS} = \widehat{DSF}$.

 Quelle est la mesure de l'angle \widehat{DSF} ?
- 3. NTI est un triangle quelconque. L'angle \widehat{NTI} mesure 22° et l'angle \widehat{TNI} mesure 57°. Quelle est la mesure de l'angle \widehat{TIN} ?

Calculer l'angle demandé dans les triangles suivants :

- 1. RDP est un triangle isocèle en R. L'angle \widehat{RDP} mesure le double de l'angle \widehat{DRP} . Quelles sont les mesures des angles \widehat{RDP} , \widehat{RPD} et \widehat{DRP} ?
- 2. TCV est un triangle isocèle en T. L'angle \widehat{CTV} mesure les deux tiers de l'angle \widehat{TCV} . Quelles sont les mesures des angles \widehat{TCV} , \widehat{TVC} et \widehat{CTV} ?

Calculer l'angle demandé dans les triangles suivants :

5G31

- 1. NTP est un triangle isocèle en N. L'angle \widehat{NTP} mesure 34°. Quelle est la mesure de l'angle \widehat{TNP} ?
- **2.** SKW est un triangle quelconque. L'angle \widehat{SKW} mesure 13° et l'angle \widehat{KSW} mesure 80°. Quelle est la mesure de l'angle \widehat{KWS} ?
- **3.** DBI est un triangle rectangle en B et $\widehat{BDI} = \widehat{BID}$. Quelle est la mesure de l'angle \widehat{BID} ?

Calculer l'angle demandé dans les triangles suivants :

- 1. WTI est un triangle rectangle en W. L'angle \widehat{WIT} mesure le quart de l'angle \widehat{WTI} . Quelles sont les mesures des angles \widehat{WTI} et \widehat{WIT} ?
- 2. EQD est un triangle rectangle en E. L'angle \widehat{EQD} mesure le double de l'angle \widehat{EDQ} .

 Quelles sont les mesures des angles \widehat{EQD} et \widehat{EDQ} ?

Calculer l'angle demandé dans les triangles suivants :

5G31

- 1. MCN est un triangle rectangle en C et $\widehat{CMN} = \widehat{CNM}$.

 Quelle est la mesure de l'angle \widehat{CNM} ?
- 2. UKW est un triangle quelconque. L'angle \widehat{UKW} mesure 19° et l'angle \widehat{KUW} mesure 25°. Quelle est la mesure de l'angle \widehat{KWU} ?
- 3. UZD est un triangle rectangle en Z et l'angle \widehat{ZUD} mesure 12°. Quelle est la mesure de l'angle \widehat{ZDU} ?

Calculer l'angle demandé dans les triangles suivants :

5G31

- 1. FJO est un triangle isocèle en F. L'angle \widehat{JFO} mesure 107°. Quelle est la mesure de l'angle \widehat{JOF} ?
- 2. TWR est un triangle rectangle en T. L'angle \widehat{TWR} est cinq fois plus grand que l'angle \widehat{TRW} .

Quelles sont les mesures des angles \widehat{TWR} et \widehat{TRW} ?

Calculer l'angle demandé dans les triangles suivants :

5G31

- 1. EGQ est un triangle rectangle en G et $\widehat{GEQ} = \widehat{GQE}$.

 Quelle est la mesure de l'angle \widehat{GQE} ?
- **2.** EVI est un triangle isocèle en E. L'angle \widehat{EVI} mesure 32°. Quelle est la mesure de l'angle \widehat{VEI} ?
- 3. ATC est un triangle quelconque. L'angle \widehat{ATC} mesure 18° et l'angle \widehat{TAC} mesure 68°. Quelle est la mesure de l'angle \widehat{TCA} ?

Calculer l'angle demandé dans les triangles suivants :

5G31

1. MIU est un triangle rectangle en M. L'angle \widehat{MIU} est cinq fois plus grand que l'angle \widehat{MUI} .

Quelles sont les mesures des angles \widehat{MIU} et \widehat{MUI} ?

2. DUJ est un triangle rectangle en D. L'angle \widehat{DJU} mesure le quart de l'angle \widehat{DUJ} . Quelles sont les mesures des angles \widehat{DUJ} et \widehat{DJU} ?

Calculer l'angle demandé dans les triangles suivants :

5G31

- 1. TQA est un triangle quelconque. L'angle \widehat{TQA} mesure 30° et l'angle \widehat{QTA} mesure 22°. Quelle est la mesure de l'angle \widehat{QAT} ?
- 2. XTF est un triangle isocèle en X. L'angle \widehat{XTF} mesure 56°. Quelle est la mesure de l'angle \widehat{TXF} ?
- $\bf 3.~\it ECX$ est un triangle dont les trois angles sont égaux. Quelles sont les mesures de ses angles?

Calculer l'angle demandé dans les triangles suivants :

- 1. EJD est un triangle rectangle en E. L'angle \widehat{EJD} est cinq fois plus grand que l'angle \widehat{EDJ} .
 - Quelles sont les mesures des angles \widehat{EJD} et \widehat{EDJ} ?
- **2.** AKV est un triangle rectangle en A. L'angle \widehat{AVK} mesure le quart de l'angle \widehat{AKV} .

 Quelles sont les mesures des angles \widehat{AKV} et \widehat{AVK} ?

Calculer l'angle demandé dans les triangles suivants :

5G31

- ${\bf 1.}\ LNE$ est un triangle dont les trois angles sont égaux. Quelles sont les mesures de ses angles?
- **2.** FPJ est un triangle rectangle en P et l'angle \widehat{PFJ} mesure 67°. Quelle est la mesure de l'angle \widehat{PJF} ?
- **3.** TBE est un triangle rectangle en B et $\widehat{BTE} = \widehat{BET}$.

 Quelle est la mesure de l'angle \widehat{BET} ?

Calculer l'angle demandé dans les triangles suivants :

5G31

- 1. ZKQ est un triangle rectangle en Z. L'angle \widehat{ZQK} mesure le tiers de l'angle \widehat{ZKQ} . Quelles sont les mesures des angles \widehat{ZKQ} et \widehat{ZQK} ?
- 2. LRS est un triangle rectangle en L. L'angle \widehat{LRS} est cinq fois plus grand que l'angle \widehat{LSR} .

Quelles sont les mesures des angles \widehat{LRS} et \widehat{LSR} ?

Calculer l'angle demandé dans les triangles suivants :

5G31

- 1. FVS est un triangle quelconque. L'angle \widehat{FVS} mesure 13° et l'angle \widehat{VFS} mesure 98°. Quelle est la mesure de l'angle \widehat{VSF} ?
- **2.** JWO est un triangle rectangle en W et l'angle \widehat{WJO} mesure 41°. Quelle est la mesure de l'angle \widehat{WOJ} ?
- **3.** UZM est un triangle rectangle en Z et $\widehat{ZUM} = \widehat{ZMU}$.

 Quelle est la mesure de l'angle \widehat{ZMU} ?

Calculer l'angle demandé dans les triangles suivants :

5G31

- 1. GAT est un triangle isocèle en G. L'angle \widehat{AGT} mesure 106°. Quelle est la mesure de l'angle \widehat{ATG} ?
- 2. TZD est un triangle rectangle en T. L'angle \widehat{TZD} est cinq fois plus grand que l'angle \widehat{TDZ} .

Quelles sont les mesures des angles \widehat{TZD} et \widehat{TDZ} ?

Calculer l'angle demandé dans les triangles suivants :

5G31

- 1. VNL est un triangle quelconque. L'angle \widehat{VNL} mesure 29° et l'angle \widehat{NVL} mesure 61°. Quelle est la mesure de l'angle \widehat{NLV} ?
- **2.** RQT est un triangle rectangle en Q et $\widehat{QRT} = \widehat{QTR}$.

 Quelle est la mesure de l'angle \widehat{QTR} ?
- 3. EMU est un triangle isocèle en E. L'angle \widehat{EMU} mesure 28°. Quelle est la mesure de l'angle \widehat{MEU} ?

Calculer l'angle demandé dans les triangles suivants :

- 1. SNX est un triangle rectangle en S. L'angle \widehat{SNX} mesure le double de l'angle \widehat{SXN} .

 Quelles sont les mesures des angles \widehat{SNX} et \widehat{SXN} ?
- 2. FXW est un triangle rectangle en F. L'angle \widehat{FWX} mesure le tiers de l'angle \widehat{FXW} .

 Quelles sont les mesures des angles \widehat{FXW} et \widehat{FWX} ?

Calculer l'angle demandé dans les triangles suivants :

5G31

- 1. HRC est un triangle rectangle en R et l'angle \widehat{RHC} mesure 18°. Quelle est la mesure de l'angle \widehat{RCH} ?
- 2. UTM est un triangle isocèle en U. L'angle \widehat{UTM} mesure 52°. Quelle est la mesure de l'angle \widehat{TUM} ?
- ${\bf 3.}\ IVK$ est un triangle dont les trois angles sont égaux. Quelles sont les mesures de ses angles?

Calculer l'angle demandé dans les triangles suivants :

- 1. QPD est un triangle rectangle en Q. L'angle \widehat{QDP} mesure le quart de l'angle \widehat{QPD} . Quelles sont les mesures des angles \widehat{QPD} et \widehat{QDP} ?
- 2. LMR est un triangle isocèle en L. L'angle \widehat{MLR} mesure 12°. Quelle est la mesure de l'angle \widehat{MRL} ?

Calculer l'angle demandé dans les triangles suivants :

5G31

- 1. TOF est un triangle quelconque. L'angle \widehat{TOF} mesure 23° et l'angle \widehat{OTF} mesure 96°. Quelle est la mesure de l'angle \widehat{OFT} ?
- 2. FEP est un triangle isocèle en F. L'angle \widehat{FEP} mesure 60°. Quelle est la mesure de l'angle \widehat{EFP} ?
- **3.** WOB est un triangle rectangle en O et l'angle \widehat{OWB} mesure 18°. Quelle est la mesure de l'angle \widehat{OBW} ?

Calculer l'angle demandé dans les triangles suivants :

5G31

1. SZX est un triangle rectangle en S. L'angle \widehat{SZX} est cinq fois plus grand que l'angle \widehat{SXZ} .

Quelles sont les mesures des angles \widehat{SZX} et \widehat{SXZ} ?

2. MFO est un triangle isocèle en M. L'angle \widehat{FMO} mesure 72°.

Quelle est la mesure de l'angle \widehat{FOM} ?

Calculer l'angle demandé dans les triangles suivants :

5G31

- 1. OAT est un triangle dont les trois angles sont égaux. Quelles sont les mesures de ses angles?
- 2. IRE est un triangle quelconque. L'angle \widehat{IRE} mesure 37° et l'angle \widehat{RIE} mesure 100°. Quelle est la mesure de l'angle \widehat{REI} ?
- **3.** RSI est un triangle isocèle en R. L'angle \widehat{RSI} mesure 44°. Quelle est la mesure de l'angle \widehat{SRI} ?

Calculer l'angle demandé dans les triangles suivants :

5G31

- 1. RUW est un triangle rectangle en R. L'angle \widehat{RWU} mesure le tiers de l'angle \widehat{RUW} . Quelles sont les mesures des angles \widehat{RUW} et \widehat{RWU} ?
- 2. CKU est un triangle rectangle en C. L'angle \widehat{CKU} est cinq fois plus grand que l'angle \widehat{CUK} .

Quelles sont les mesures des angles \widehat{CKU} et \widehat{CUK} ?

Calculer l'angle demandé dans les triangles suivants :

5G31

- 1. NXS est un triangle quelconque. L'angle \widehat{NXS} mesure 15° et l'angle \widehat{XNS} mesure 49°. Quelle est la mesure de l'angle \widehat{XSN} ?
- 2. NMJ est un triangle rectangle en M et l'angle \widehat{MNJ} mesure 37°. Quelle est la mesure de l'angle \widehat{MJN} ?
- 3. BXQ est un triangle rectangle en X et $\widehat{XBQ} = \widehat{XQB}$.

 Quelle est la mesure de l'angle \widehat{XQB} ?

Calculer l'angle demandé dans les triangles suivants :

- 1. JVS est un triangle rectangle en J. L'angle \widehat{JVS} mesure le double de l'angle \widehat{JSV} . Quelles sont les mesures des angles \widehat{JVS} et \widehat{JSV} ?
- 2. ILS est un triangle isocèle en I. L'angle \widehat{ILS} mesure le double de l'angle \widehat{LIS} .

 Quelles sont les mesures des angles \widehat{ILS} , \widehat{ISL} et \widehat{LIS} ?

Calculer l'angle demandé dans les triangles suivants :

5G31

- 1. UTM est un triangle quelconque. L'angle \widehat{UTM} mesure 16° et l'angle \widehat{TUM} mesure 20°. Quelle est la mesure de l'angle \widehat{TMU} ?
- **2.** VXR est un triangle rectangle en X et l'angle \widehat{XVR} mesure 51°. Quelle est la mesure de l'angle \widehat{XRV} ?
- **3.** QRL est un triangle rectangle en R et $\widehat{RQL} = \widehat{RLQ}$. Quelle est la mesure de l'angle \widehat{RLQ} ?

Calculer l'angle demandé dans les triangles suivants :

5G31

- 1. QEA est un triangle rectangle en Q. L'angle \widehat{QAE} mesure le tiers de l'angle \widehat{QEA} .

 Quelles sont les mesures des angles \widehat{QEA} et \widehat{QAE} ?
- 2. VPX est un triangle rectangle en V. L'angle \widehat{VPX} est cinq fois plus grand que l'angle \widehat{VXP} .

Quelles sont les mesures des angles \widehat{VPX} et \widehat{VXP} ?

Corrections '

1. Dans un triangle, la somme des angles est égale à 180°.

Comme l'angle \widehat{CRM} est droit, les angles \widehat{RMC} et \widehat{RCM} sont complémentaires.

On a donc :
$$\widehat{RMC} + \widehat{RCM} = 90^{\circ}$$

D'où
$$\widehat{RMC} = 90^{\circ} - 80^{\circ} = 10^{\circ}$$

L'angle \widehat{RMC} mesure 10°.

 $\mathbf{2.}$ Dans un triangle, la somme des angles est égale à $180^{\circ}.$

De plus,
$$\widehat{DFH} = \widehat{DHF} = \widehat{FDH}$$

D'où
$$3 \times \widehat{DFH} = 180^{\circ}$$
.

D'où :
$$\widehat{DFH} = 180^{\circ} \div 3 = 60^{\circ}$$
.

On a donc
$$\widehat{DFH} = \widehat{DHF} = \widehat{FDH} = 60^{\circ}$$
.

Le triangle DFH est un triangle équilatéral.

3. Dans un triangle, la somme des angles est égale à 180°.

Comme
$$\widehat{LXJ} = \widehat{LJX}$$
,

on a :
$$2 \times \widehat{LXJ} + 90^{\circ} = 180^{\circ}$$
.

D'où
$$2 \times \widehat{LXJ} = 180^{\circ} - 90^{\circ} = 90^{\circ}$$
.

D'où
$$\widehat{LXJ} = 90^{\circ} \div 2 = 45^{\circ}$$
.

L'angle \widehat{LXJ} mesure 45°.

1. Dans un triangle, la somme des angles est égale à 180°.

Comme
$$\widehat{EVW} = \frac{\widehat{EWV}}{3}$$
, on a $\widehat{EWV} = 3 \times \widehat{EVW}$.

De plus
$$\widehat{E}V\widehat{W}$$
 et $\widehat{E}W\widehat{V}$ sont complémentaires.

D'où :
$$3 \times \widehat{EVW} + \widehat{EVW} = 90^{\circ}$$
.

D'où $4 \times \widehat{EVW} = 90^{\circ}$.

D'où
$$\widehat{EVW} = 90^{\circ} \div 4 = 22, 5^{\circ}$$
.

$$\widehat{EWV} = 3 \times \widehat{EVW} = 3 \times 22,5^{\circ} = 67,5^{\circ}$$

L'angle \widehat{EWV} mesure 67,5° et l'angle \widehat{EVW} mesure 22,5°.

2. Dans un triangle, la somme des angles est égale à 180°.

$$\widehat{ZGC} = 5 \times \widehat{ZCG}$$
 et comme \widehat{ZGC} et \widehat{ZCG} sont complémentaires,

on a :
$$5 \times \widehat{ZCG} + \widehat{ZCG} = 90^{\circ}$$
.

D'où
$$6 \times \widehat{ZCG} = 90^{\circ}$$
.

D'où
$$\widehat{ZCG} = 90^{\circ} \div 6 = 15^{\circ}$$

$$\widehat{ZGC} = 5 \times \widehat{ZCG} = 5 \times 15^{\circ} = 75^{\circ}$$

L'angle \widehat{ZCG} mesure 15° et l'angle \widehat{ZGC} mesure 75°.

Corrections

1. Dans un triangle, la somme des angles est égale à 180°.

Les deux angles à la base d'un triangle isocèle sont égaux.

Donc
$$\widehat{NJE} = \widehat{JEN} = 56^{\circ}$$
.

D'où
$$\widehat{JNE} = 180^{\circ} - 2 \times 56^{\circ} = 180^{\circ} - 112^{\circ} = 68^{\circ}$$
.

L'angle \widehat{JNE} mesure 68°.

2. Dans un triangle, la somme des angles est égale à 180°.

$$\widehat{UNV} + \widehat{NVU} + \widehat{NUV} = 180^{\circ}$$

Donc
$$\widehat{NVU} = 180 - (\widehat{UNV} + \widehat{NUV}).$$

D'où
$$\widehat{NVU}$$
= 180° - (26° + 96°) = 180° - 122° = 58°.

L'angle \widehat{NVU} mesure 58°.

3. Dans un triangle, la somme des angles est égale à 180°.

De plus,
$$\widehat{ADV} = \widehat{AVD} = \widehat{DAV}$$

D'où
$$3 \times \widehat{ADV} = 180^{\circ}$$
.

D'où :
$$\widehat{ADV} = 180^{\circ} \div 3 = 60^{\circ}$$
.

On a donc
$$\widehat{ADV} = \widehat{AVD} = \widehat{DAV} = 60^{\circ}$$
.

Le triangle ADV est un triangle équilatéral.

 $\bf 1.$ Dans un triangle, la somme des angles est égale à $180^{\circ}.$

Les angles à la base d'un triangle isocèle sont de même mesure.

D'où
$$\widehat{PWG} = \widehat{WGP}$$
.

On a donc :
$$\widehat{WPG} + 2 \times \widehat{WGP} = 180^{\circ}$$
.

Soit
$$72^{\circ} + 2 \times \widehat{WGP} = 180^{\circ}$$
.

D'où
$$2 \times \widehat{WGP} = 180^{\circ} - 72^{\circ}$$
.

D'où
$$\widehat{WGP} = (180^{\circ} - 72^{\circ}) \div 2 = 108^{\circ} \div 2 = 54^{\circ}$$

L'angle \widehat{WGP} mesure 54°.

2. Dans un triangle, la somme des angles est égale à 180°.

Comme $\widehat{ZVP} = 2 \times \widehat{ZPV}$ et comme \widehat{ZVP} et \widehat{ZPV} sont complémentaires,

on a :
$$2 \times \widehat{ZPV} + \widehat{ZPV} = 90^{\circ}$$
.

D'où
$$3 \times \widehat{ZPV} = 90^{\circ}$$
.

D'où
$$\widehat{ZPV} = 90^{\circ} \div 3 = 30^{\circ}$$
.

$$\widehat{ZVP} = 2 \times \widehat{ZPV} = 2 \times 30^{\circ} = 60^{\circ}$$

L'angle \widehat{ZPV} mesure 30° et l'angle \widehat{ZVP} mesure 60°.

Corrections '

1. Dans un triangle, la somme des angles est égale à 180°.

Comme
$$\widehat{XFU} = \widehat{XUF}$$
,

on a :
$$2 \times \widehat{XFU} + 90^{\circ} = 180^{\circ}$$
.

D'où
$$2 \times \widehat{XFU} = 180^{\circ} - 90^{\circ} = 90^{\circ}$$
.

D'où
$$\widehat{XFU} = 90^{\circ} \div 2 = 45^{\circ}$$
.

L'angle \widehat{XFU} mesure 45°.

2. Dans un triangle, la somme des angles est égale à 180°.

Les deux angles à la base d'un triangle isocèle sont égaux.

Donc
$$\widehat{QDB} = \widehat{DBQ} = 50^{\circ}$$
.

D'où
$$\widehat{DQB} = 180^{\circ} - 2 \times 50^{\circ} = 180^{\circ} - 100^{\circ} = 80^{\circ}$$
.

L'angle \widehat{DQB} mesure 80°.

3. Dans un triangle, la somme des angles est égale à 180°.

$$\widehat{VNX} + \widehat{NXV} + \widehat{NVX} = 180^{\circ}$$

Donc
$$\widehat{NXV} = 180 - (\widehat{VNX} + \widehat{NVX}).$$

D'où
$$\widehat{NXV} = 180^{\circ} - (36^{\circ} + 20^{\circ}) = 180^{\circ} - 56^{\circ} = 124^{\circ}.$$

L'angle \widehat{NXV} mesure 124°.

1. Dans un triangle, la somme des angles est égale à 180° .

Comme
$$\widehat{NUJ} = \frac{\widehat{NJU}}{4}$$
, on a $\widehat{NJU} = 4 \times \widehat{NUJ}$.

De plus \widehat{NUJ} et \widehat{NJU} sont complémentaires.

D'où :
$$4 \times \widehat{NUJ} + \widehat{NUJ} = 90^{\circ}$$
.

D'où
$$5 \times \widehat{NUJ} = 90^{\circ}$$
.

D'où
$$\widehat{NUJ} = 90^{\circ} \div 5 = 18^{\circ}$$
.

$$\widehat{NJU} = 4 \times \widehat{NUJ} = 4 \times 18^{\circ} = 72^{\circ}.$$

L'angle \widehat{NJU} mesure 72° et l'angle \widehat{NUJ} mesure 18°.

2. Dans un triangle, la somme des angles est égale à 180°.

Comme
$$\widehat{ETN} = \frac{\widehat{ENT}}{3}$$
, on a $\widehat{ENT} = 3 \times \widehat{ETN}$.

De plus \widehat{ETN} et \widehat{ENT} sont complémentaires.

D'où :
$$3 \times \widehat{ETN} + \widehat{ETN} = 90^{\circ}$$
.

D'où
$$4 \times \widehat{ETN} = 90^{\circ}$$
.

D'où
$$\widehat{ETN} = 90^{\circ} \div 4 = 22, 5^{\circ}$$
.

$$\widehat{ENT} = 3 \times \widehat{ETN} = 3 \times 22, 5^{\circ} = 67, 5^{\circ}$$

L'angle \widehat{ENT} mesure 67,5° et l'angle \widehat{ETN} mesure 22,5°.

Corrections '

1. Dans un triangle, la somme des angles est égale à 180°.

$$\widehat{NSD} + \widehat{SDN} + \widehat{SND} = 180^{\circ}$$

Donc
$$\widehat{SDN} = 180 - \left(\widehat{NSD} + \widehat{SND}\right)$$
.

D'où
$$\widehat{SDN} = 180^{\circ} - (30^{\circ} + 56^{\circ}) = 180^{\circ} - 86^{\circ} = 94^{\circ}.$$

L'angle \widehat{SDN} mesure 94°.

 ${\bf 2.}$ Dans un triangle, la somme des angles est égale à $180^{\circ}.$

Comme
$$\widehat{CWF} = \widehat{CFW}$$
,

on a :
$$2 \times \widehat{CWF} + 90^{\circ} = 180^{\circ}$$
.

D'où
$$2 \times \widehat{CWF} = 180^{\circ} - 90^{\circ} = 90^{\circ}$$
.

D'où
$$\widehat{CWF} = 90^{\circ} \div 2 = 45^{\circ}$$
.

L'angle \widehat{CWF} mesure 45°.

3. Dans un triangle, la somme des angles est égale à 180°.

Comme l'angle \widehat{WDI} est droit, les angles \widehat{DIW} et \widehat{DWI} sont complémentaires.

On a donc :
$$\widehat{DIW} + \widehat{DWI} = 90^{\circ}$$

D'où
$$\widehat{DIW} = 90^{\circ} - 66^{\circ} = 24^{\circ}$$

L'angle \widehat{DIW} mesure 24°.

 $\bf 1.$ Dans un triangle, la somme des angles est égale à $180^{\circ}.$

 $\widehat{OFR} = 5 \times \widehat{ORF}$ et comme \widehat{OFR} et \widehat{ORF} sont complémentaires,

on a :
$$5 \times \widehat{ORF} + \widehat{ORF} = 90^{\circ}$$
.

D'où
$$6 \times \widehat{ORF} = 90^{\circ}$$
.

D'où
$$\widehat{ORF} = 90^{\circ} \div 6 = 15^{\circ}$$

$$\widehat{OFR} = 5 \times \widehat{ORF} = 5 \times 15^{\circ} = 75^{\circ}$$

L'angle \widehat{ORF} mesure 15° et l'angle \widehat{OFR} mesure 75°.

2. Dans un triangle, la somme des angles est égale à 180°.

On a
$$\widehat{XFT} = 2 \times \widehat{FXT}$$
.

De plus \widehat{XTF} et \widehat{XFT} sont égaux, alors $\widehat{XTF} = 2 \times \widehat{FXT}$.

D'où :
$$2 \times \widehat{FXT} \times 2 + \widehat{FXT} = 180^{\circ}$$
.

D'où :
$$4 \times \widehat{FXT} + \widehat{FXT} = 180^{\circ}$$
.

D'où
$$5 \times \widehat{FXT} = 180^{\circ}$$
.

D'où
$$\widehat{FXT} = 180^{\circ} \div 5 = 36^{\circ}$$
.

$$\widehat{XTF} = 2 \times \widehat{FXT} = 2 \times 36^{\circ} = 72^{\circ}$$

L'angle \widehat{XTF} mesure 72°, l'angle \widehat{XFT} mesure 72° et l'angle \widehat{FXT} mesure 36°

1. Dans un triangle, la somme des angles est égale à 180°.

De plus,
$$\widehat{LDT} = \widehat{LTD} = \widehat{DLT}$$

D'où
$$3 \times \widehat{LDT} = 180^{\circ}$$
.

D'où :
$$\widehat{LDT} = 180^{\circ} \div 3 = 60^{\circ}$$
.

On a donc
$$\widehat{LDT} = \widehat{LTD} = \widehat{DLT} = 60^{\circ}$$
.

Le triangle LDT est un triangle équilatéral.

2. Dans un triangle, la somme des angles est égale à 180°.

Comme
$$\widehat{TNK} = \widehat{TKN}$$
,

on a :
$$2 \times \widehat{TNK} + 90^{\circ} = 180^{\circ}$$
.

D'où
$$2 \times \widehat{TNK} = 180^{\circ} - 90^{\circ} = 90^{\circ}$$
.

D'où
$$\widehat{TNK} = 90^{\circ} \div 2 = 45^{\circ}$$
.

L'angle \widehat{TNK} mesure 45°.

3. Dans un triangle, la somme des angles est égale à 180°.

$$\widehat{ZTA} + \widehat{TAZ} + \widehat{TZA} = 180^{\circ}$$

Donc
$$\widehat{TAZ} = 180 - \left(\widehat{ZTA} + \widehat{TZA}\right)$$
.

D'où
$$\widehat{TAZ}$$
= $180^{\circ} - (10^{\circ} + 89^{\circ}) = 180^{\circ} - 99^{\circ} = 81^{\circ}$.

L'angle \widehat{TAZ} mesure 81°.

1. Dans un triangle, la somme des angles est égale à 180°.

Comme
$$\widehat{VYB} = \frac{\widehat{VBY}}{4}$$
, on a $\widehat{VBY} = 4 \times \widehat{VYB}$.

De plus \widehat{VYB} et \widehat{VBY} sont complémentaires.

D'où :
$$4 \times \widehat{VYB} + \widehat{VYB} = 90^{\circ}$$
.

D'où $5 \times \widehat{VYB} = 90^{\circ}$.

D'où
$$\widehat{VYB} = 90^{\circ} \div 5 = 18^{\circ}$$
.

$$\widehat{VBY} = 4 \times \widehat{VYB} = 4 \times 18^{\circ} = 72^{\circ}.$$

L'angle \widehat{VBY} mesure 72° et l'angle \widehat{VYB} mesure 18°.

2. Dans un triangle, la somme des angles est égale à 180°.

On a
$$\widehat{ONJ} = 2 \times \widehat{NOJ}$$
.

De plus \widehat{OJN} et \widehat{ONJ} sont égaux, alors $\widehat{OJN} = 2 \times \widehat{NOJ}$.

D'où :
$$2 \times \widehat{NOJ} \times 2 + \widehat{NOJ} = 180^{\circ}$$
.

D'où :
$$4 \times \widehat{NOJ} + \widehat{NOJ} = 180^{\circ}$$
.

D'où
$$5 \times \widehat{NOJ} = 180^{\circ}$$
.

D'où
$$\widehat{NOJ} = 180^{\circ} \div 5 = 36^{\circ}$$
.

$$\widehat{OJN} = 2 \times \widehat{NOJ} = 2 \times 36^{\circ} = 72^{\circ}$$

L'angle \widehat{OJN} mesure 72°, l'angle \widehat{ONJ} mesure 72° et l'angle \widehat{NOJ} mesure 36°

1. Dans un triangle, la somme des angles est égale à 180°.

Comme
$$\widehat{ALF} = \widehat{AFL}$$
,

on a :
$$2 \times \widehat{ALF} + 90^{\circ} = 180^{\circ}$$
.

D'où
$$2 \times \widehat{ALF} = 180^{\circ} - 90^{\circ} = 90^{\circ}$$
.

D'où
$$\widehat{ALF} = 90^{\circ} \div 2 = 45^{\circ}$$
.

L'angle \widehat{ALF} mesure 45°.

2. Dans un triangle, la somme des angles est égale à 180°.

Comme l'angle \widehat{ICG} est droit, les angles \widehat{CGI} et \widehat{CIG} sont complémentaires.

On a donc :
$$\widehat{CGI} + \widehat{CIG} = 90^{\circ}$$

D'où
$$\widehat{CGI} = 90^{\circ} - 8^{\circ} = 82^{\circ}$$

L'angle \widehat{CGI} mesure 82°.

3. Dans un triangle, la somme des angles est égale à 180°.

De plus,
$$\widehat{TSQ} = \widehat{TQS} = \widehat{STQ}$$

D'où
$$3 \times \widehat{TSQ} = 180^{\circ}$$
.

D'où :
$$\widehat{TSQ} = 180^{\circ} \div 3 = 60^{\circ}$$
.

On a donc
$$\widehat{TSQ} = \widehat{TQS} = \widehat{STQ} = 60^{\circ}$$
.

Le triangle TSQ est un triangle équilatéral.

 $\bf 1.$ Dans un triangle, la somme des angles est égale à $180^{\circ}.$

Les angles à la base d'un triangle isocèle sont de même mesure.

D'où
$$\widehat{TVC} = \widehat{VCT}$$
.

On a donc :
$$\widehat{VTC} + 2 \times \widehat{VCT} = 180^{\circ}$$
.

Soit
$$32^{\circ} + 2 \times \widehat{VCT} = 180^{\circ}$$
.

D'où
$$2 \times \widehat{VCT} = 180^{\circ} - 32^{\circ}$$
.

D'où
$$\widehat{VCT} = (180^{\circ} - 32^{\circ}) \div 2 = 148^{\circ} \div 2 = 74^{\circ}$$

L'angle \widehat{VCT} mesure 74°.

2. Dans un triangle, la somme des angles est égale à 180°.

Comme
$$\widehat{WPV} = \frac{2 \times \widehat{PVW}}{3}$$
, on a $\widehat{PVW} = \frac{3 \times \widehat{WPV}}{2}$.

De plus \widehat{PVW} et \widehat{PWV} sont égaux, alors $\widehat{PWV} = \frac{3 \times \widehat{WPV}}{2}$.

D'où :
$$\frac{3 \times \widehat{WPV}}{2} \times 2 + \widehat{WPV} = 180^{\circ}$$
.

D'où :
$$3 \times \widehat{\widehat{WPV}} + \widehat{WPV} = 180^{\circ}$$
.

D'où
$$4 \times \widehat{WPV} = 180^{\circ}$$
.

D'où
$$\widehat{WPV} = \underline{1}80^{\circ} \div 4 = 45^{\circ}$$
.

D'où
$$\widehat{WPV} = 180^{\circ} \div 4 = 45^{\circ}$$
.
 $\widehat{PVW} = \frac{3 \times \widehat{WPV}}{2} = \frac{3 \times 45^{\circ}}{2} = \frac{135^{\circ}}{2} = 67,5^{\circ}$

L'angle \widehat{PVW} mesure 67,5°, l'angle \widehat{PWV} mesure 67,5° et l'angle \widehat{WPV} mesure 45°

1. Dans un triangle, la somme des angles est égale à 180°.

De plus,
$$\widehat{DEB} = \widehat{DBE} = \widehat{EDB}$$

D'où
$$3 \times \widehat{DEB} = 180^{\circ}$$
.

D'où :
$$\widehat{DEB} = 180^{\circ} \div 3 = 60^{\circ}$$
.

On a donc
$$\widehat{DEB} = \widehat{DBE} = \widehat{EDB} = 60^{\circ}$$
.

Le triangle DEB est un triangle équilatéral.

 $\mathbf{2.}$ Dans un triangle, la somme des angles est égale à $180^{\circ}.$

Comme
$$\widehat{KNI} = \widehat{KIN}$$
,

on a :
$$2 \times \widehat{KNI} + 90^{\circ} = 180^{\circ}$$
.

D'où
$$2 \times \widehat{KNI} = 180^{\circ} - 90^{\circ} = 90^{\circ}$$
.

D'où
$$\widehat{KNI} = 90^{\circ} \div 2 = 45^{\circ}$$
.

L'angle \widehat{KNI} mesure 45°.

3. Dans un triangle, la somme des angles est égale à 180°.

Comme l'angle \widehat{SHX} est droit, les angles \widehat{HXS} et \widehat{HSX} sont complémentaires.

On a donc :
$$\widehat{HXS} + \widehat{HSX} = 90^{\circ}$$

D'où
$$\widehat{HXS} = 90^{\circ} - 50^{\circ} = 40^{\circ}$$

L'angle \widehat{HXS} mesure 40°.

1. Dans un triangle, la somme des angles est égale à 180°.

Comme $\widehat{AJG} = 2 \times \widehat{AGJ}$ et comme \widehat{AJG} et \widehat{AGJ} sont complémentaires,

on a :
$$2 \times \widehat{AGJ} + \widehat{AGJ} = 90^{\circ}$$
.

D'où
$$3 \times \widehat{AGJ} = 90^{\circ}$$
.

D'où
$$\widehat{AGJ} = 90^{\circ} \div 3 = 30^{\circ}$$
.

$$\widehat{AJG} = 2 \times \widehat{AGJ} = 2 \times 30^{\circ} = 60^{\circ}$$

L'angle \widehat{AGJ} mesure 30° et l'angle \widehat{AJG} mesure 60°.

2. Dans un triangle, la somme des angles est égale à 180°.

Les angles à la base d'un triangle isocèle sont de même mesure.

D'où
$$\widehat{IAG} = \widehat{AGI}$$
.

On a donc :
$$\widehat{AIG} + 2 \times \widehat{AGI} = 180^{\circ}$$
.

Soit
$$139^{\circ} + 2 \times \widehat{AGI} = 180^{\circ}$$
.

D'où
$$2 \times \widehat{AGI} = 180^{\circ} - 139^{\circ}$$
.

D'où
$$\widehat{AGI} = (180^{\circ} - 139^{\circ}) \div 2 = 41^{\circ} \div 2 = 20,5^{\circ}$$

L'angle \widehat{AGI} mesure 20,5°.

1. Dans un triangle, la somme des angles est égale à 180°.

Les deux angles à la base d'un triangle isocèle sont égaux.

Donc
$$\widehat{BAJ} = \widehat{AJB} = 77^{\circ}$$
.

D'où
$$\widehat{ABJ} = 180^{\circ} - 2 \times 77^{\circ} = 180^{\circ} - 154^{\circ} = 26^{\circ}$$
.

L'angle \widehat{ABJ} mesure 26°.

 ${\bf 2.}$ Dans un triangle, la somme des angles est égale à $180^{\circ}.$

$$\widehat{NHC} + \widehat{HCN} + \widehat{HNC} = 180^{\circ}$$

Donc
$$\widehat{HCN} = 180 - (\widehat{NHC} + \widehat{HNC}).$$

D'où
$$\widehat{HCN} = 180^{\circ} - (37^{\circ} + 36^{\circ}) = 180^{\circ} - 73^{\circ} = 107^{\circ}.$$

L'angle \widehat{HCN} mesure 107°.

3. Dans un triangle, la somme des angles est égale à 180°.

Comme
$$\widehat{RWP} = \widehat{RPW}$$
,

on a :
$$2 \times \widehat{RWP} + 90^{\circ} = 180^{\circ}$$
.

D'où
$$2 \times \widehat{RWP} = 180^{\circ} - 90^{\circ} = 90^{\circ}$$
.

D'où
$$\widehat{RWP} = 90^{\circ} \div 2 = 45^{\circ}$$
.

L'angle \widehat{RWP} mesure 45°.

 $\bf 1.$ Dans un triangle, la somme des angles est égale à $180^{\circ}.$

Les angles à la base d'un triangle isocèle sont de même mesure.

D'où
$$\widehat{ZTS} = \widehat{TSZ}$$
.

On a donc :
$$\widehat{TZS} + 2 \times \widehat{TSZ} = 180^{\circ}$$
.

Soit
$$69^{\circ} + 2 \times \widehat{TSZ} = 180^{\circ}$$
.

D'où
$$2 \times \widehat{TSZ} = 180^{\circ} - 69^{\circ}$$
.

D'où
$$\widehat{TSZ} = (180^{\circ} - 69^{\circ}) \div 2 = 111^{\circ} \div 2 = 55,5^{\circ}$$

L'angle \widehat{TSZ} mesure 55,5°.

2. Dans un triangle, la somme des angles est égale à 180°.

Comme
$$\widehat{NEV} = \frac{\widehat{NVE}}{4}$$
, on a $\widehat{NVE} = 4 \times \widehat{NEV}$.

De plus \widehat{NEV} et \widehat{NVE} sont complémentaires.

D'où :
$$4 \times \widehat{NEV} + \widehat{NEV} = 90^{\circ}$$
.

D'où
$$5 \times \widehat{NEV} = 90^{\circ}$$
.

D'où
$$\widehat{NEV} = 90^{\circ} \div 5 = 18^{\circ}$$
.

$$\widehat{NVE} = 4 \times \widehat{NEV} = 4 \times 18^{\circ} = 72^{\circ}.$$

L'angle \widehat{NVE} mesure 72° et l'angle \widehat{NEV} mesure 18°.

1. Dans un triangle, la somme des angles est égale à 180°.

Les deux angles à la base d'un triangle isocèle sont égaux.

Donc
$$\widehat{RAT} = \widehat{ATR} = 11^{\circ}$$
.

D'où
$$\widehat{ART} = 180^{\circ} - 2 \times 11^{\circ} = 180^{\circ} - 22^{\circ} = 158^{\circ}.$$

L'angle \widehat{ART} mesure 158°.

2. Dans un triangle, la somme des angles est égale à 180°.

$$\widehat{UZX} + \widehat{ZXU} + \widehat{ZUX} = 180^{\circ}$$

Donc
$$\widehat{ZXU} = 180 - (\widehat{UZX} + \widehat{ZUX}).$$

D'où
$$\widehat{ZXU} = 180^{\circ} - (29^{\circ} + 48^{\circ}) = 180^{\circ} - 77^{\circ} = 103^{\circ}.$$

L'angle \widehat{ZXU} mesure 103°.

3. Dans un triangle, la somme des angles est égale à 180°.

De plus,
$$\widehat{KSA} = \widehat{KAS} = \widehat{SKA}$$

D'où
$$3 \times \widehat{KSA} = 180^{\circ}$$
.

D'où :
$$\widehat{KSA} = 180^{\circ} \div 3 = 60^{\circ}$$
.

On a donc
$$\widehat{KSA} = \widehat{KAS} = \widehat{SKA} = 60^{\circ}$$
.

Le triangle KSA est un triangle équilatéral.

 $\bf 1.$ Dans un triangle, la somme des angles est égale à $180^{\circ}.$

 $\widehat{SLU} = 5 \times \widehat{SUL}$ et comme \widehat{SLU} et \widehat{SUL} sont complémentaires,

on a :
$$5 \times \widehat{SUL} + \widehat{SUL} = 90^{\circ}$$
.

D'où
$$6 \times \widehat{SUL} = 90^{\circ}$$
.

D'où
$$\widehat{SUL} = 90^{\circ} \div 6 = 15^{\circ}$$

$$\widehat{SLU} = 5 \times \widehat{SUL} = 5 \times 15^{\circ} = 75^{\circ}$$

L'angle \widehat{SUL} mesure 15° et l'angle \widehat{SLU} mesure 75°.

2. Dans un triangle, la somme des angles est égale à 180°.

Comme
$$\widehat{JUW} = \frac{2 \times \widehat{UWJ}}{3}$$
, on a $\widehat{UWJ} = \frac{3 \times \widehat{JUW}}{2}$.

De plus \widehat{UWJ} et \widehat{UJW} sont égaux, alors $\widehat{UJW} = \frac{3 \times \widehat{JUW}}{2}$.

D'où :
$$\frac{3 \times \widehat{JUW}}{2} \times 2 + \widehat{JUW} = 180^{\circ}$$
.

D'où :
$$3 \times \widehat{\overline{JUW}} + \widehat{JUW} = 180^{\circ}$$
.

D'où
$$4 \times \widehat{JUW} = 180^{\circ}$$
.

D'où
$$\widehat{JUW} = 180^{\circ} \div 4 = 45^{\circ}$$
.

D'où
$$\widehat{JUW} = 180^{\circ} \div 4 = 45^{\circ}$$
.
 $\widehat{UWJ} = \frac{3 \times \widehat{JUW}}{2} = \frac{3 \times 45^{\circ}}{2} = \frac{135^{\circ}}{2} = 67,5^{\circ}$

L'angle \widehat{UWJ} mesure 67,5°, l'angle \widehat{UJW} mesure 67,5° et l'angle \widehat{JUW} mesure 45°

1. Dans un triangle, la somme des angles est égale à 180°.

Comme l'angle \widehat{VKB} est droit, les angles \widehat{KBV} et \widehat{KVB} sont complémentaires.

On a donc :
$$\widehat{KBV} + \widehat{KVB} = 90^{\circ}$$

D'où
$$\widehat{KBV} = 90^{\circ} - 33^{\circ} = 57^{\circ}$$

L'angle \widehat{KBV} mesure 57°.

2. Dans un triangle, la somme des angles est égale à 180°.

De plus,
$$\widehat{IAK} = \widehat{IKA} = \widehat{AIK}$$

D'où
$$3 \times \widehat{IAK} = 180^{\circ}$$
.

D'où :
$$\widehat{IAK} = 180^{\circ} \div 3 = 60^{\circ}$$
.

On a donc
$$\widehat{IAK} = \widehat{IKA} = \widehat{AIK} = 60^{\circ}$$
.

Le triangle IAK est un triangle équilatéral.

3. Dans un triangle, la somme des angles est égale à 180°.

Comme
$$\widehat{VEX} = \widehat{VXE}$$
,

on a :
$$2 \times \widehat{VEX} + 90^{\circ} = 180^{\circ}$$
.

D'où
$$2 \times \widehat{VEX} = 180^{\circ} - 90^{\circ} = 90^{\circ}$$
.

D'où
$$\widehat{VEX} = 90^{\circ} \div 2 = 45^{\circ}$$
.

L'angle \widehat{VEX} mesure 45°.

1. Dans un triangle, la somme des angles est égale à 180°.

Comme
$$\widehat{RMQ} = \frac{\widehat{RQM}}{4}$$
, on a $\widehat{RQM} = 4 \times \widehat{RMQ}$.

De plus \widehat{RMQ} et \widehat{RQM} sont complémentaires.

D'où : $4 \times \widehat{RMQ} + \widehat{RMQ} = 90^{\circ}$.

D'où $5 \times \widehat{RMQ} = 90^{\circ}$.

D'où $\widehat{RMQ} = 90^{\circ} \div 5 = 18^{\circ}$.

 $\widehat{RQM} = 4 \times \widehat{RMQ} = 4 \times 18^{\circ} = 72^{\circ}.$

L'angle \widehat{RQM} mesure 72° et l'angle \widehat{RMQ} mesure 18°.

2. Dans un triangle, la somme des angles est égale à 180°.

Comme $\widehat{NTS} = \frac{\widehat{NST}}{3}$, on a $\widehat{NST} = 3 \times \widehat{NTS}$.

De plus \widehat{NTS} et \widehat{NST} sont complémentaires.

D'où : $3 \times \widehat{NTS} + \widehat{NTS} = 90^{\circ}$.

D'où $4 \times \widehat{NTS} = 90^{\circ}$.

D'où $\widehat{NTS} = 90^{\circ} \div 4 = 22, 5^{\circ}$.

 $\widehat{NST} = 3 \times \widehat{NTS} = 3 \times 22, 5^{\circ} = 67, 5^{\circ}$

L'angle \widehat{NST} mesure 67,5° et l'angle \widehat{NTS} mesure 22,5°.

1. Dans un triangle, la somme des angles est égale à 180°.

De plus,
$$\widehat{CYN} = \widehat{CNY} = \widehat{YCN}$$

D'où
$$3 \times \widehat{CYN} = 180^{\circ}$$
.

D'où :
$$\widehat{CYN} = 180^{\circ} \div 3 = 60^{\circ}$$
.

On a donc
$$\widehat{CYN} = \widehat{CNY} = \widehat{YCN} = 60^{\circ}$$
.

Le triangle CYN est un triangle équilatéral.

2. Dans un triangle, la somme des angles est égale à 180°.

Les deux angles à la base d'un triangle isocèle sont égaux.

Donc
$$\widehat{MER} = \widehat{ERM} = 63^{\circ}$$
.

D'où
$$\widehat{EMR} = 180^{\circ} - 2 \times 63^{\circ} = 180^{\circ} - 126^{\circ} = 54^{\circ}.$$

L'angle \widehat{EMR} mesure 54°.

3. Dans un triangle, la somme des angles est égale à 180°.

Comme
$$\widehat{VMB} = \widehat{VBM}$$
,

on a :
$$2 \times \widehat{VMB} + 90^{\circ} = 180^{\circ}$$
.

D'où
$$2 \times \widehat{VMB} = 180^{\circ} - 90^{\circ} = 90^{\circ}$$
.

D'où
$$\widehat{VMB} = 90^{\circ} \div 2 = 45^{\circ}$$
.

L'angle \widehat{VMB} mesure 45°.

1. Dans un triangle, la somme des angles est égale à 180°.

On a
$$\widehat{PJL} = 2 \times \widehat{JPL}$$
.

De plus
$$\widehat{PLJ}$$
 et \widehat{PJL} sont égaux, alors $\widehat{PLJ} = 2 \times \widehat{JPL}$.

D'où :
$$2 \times \widehat{JPL} \times 2 + \widehat{JPL} = 180^{\circ}$$
.

D'où : $4 \times \widehat{JPL} + \widehat{JPL} = 180^{\circ}$.

D'où
$$5 \times \widehat{JPL} = 180^{\circ}$$
.

D'où
$$\widehat{JPL} = 180^{\circ} \div 5 = 36^{\circ}$$
.

$$\widehat{PLJ} = 2 \times \widehat{JPL} = 2 \times 36^{\circ} = 72^{\circ}$$

L'angle \widehat{PLJ} mesure 72°, l'angle \widehat{PJL} mesure 72° et l'angle \widehat{JPL} mesure 36°

2. Dans un triangle, la somme des angles est égale à 180°.

Comme
$$\widehat{DYR} = \frac{\widehat{DRY}}{3}$$
, on a $\widehat{DRY} = 3 \times \widehat{DYR}$.

De plus \widehat{DYR} et \widehat{DRY} sont complémentaires.

D'où :
$$3 \times \widehat{DYR} + \widehat{DYR} = 90^{\circ}$$
.

D'où
$$4 \times \widehat{DYR} = 90^{\circ}$$
.

D'où
$$\widehat{DYR} = 90^{\circ} \div 4 = 22, 5^{\circ}$$
.

$$\widehat{DRY} = 3 \times \widehat{DYR} = 3 \times 22, 5^{\circ} = 67, 5^{\circ}$$

L'angle \widehat{DRY} mesure 67,5° et l'angle \widehat{DYR} mesure 22,5°.

1. Dans un triangle, la somme des angles est égale à 180°.

Comme l'angle \widehat{GKN} est droit, les angles \widehat{KNG} et \widehat{KGN} sont complémentaires.

On a donc :
$$\widehat{KNG} + \widehat{KGN} = 90^{\circ}$$

D'où
$$\widehat{KNG} = 90^{\circ} - 55^{\circ} = 35^{\circ}$$

L'angle \widehat{KNG} mesure 35°.

2. Dans un triangle, la somme des angles est égale à 180°.

Comme
$$\widehat{DFS} = \widehat{DSF}$$
,

on a :
$$2 \times \widehat{DFS} + 90^{\circ} = 180^{\circ}$$
.

D'où
$$2 \times \widehat{DFS} = 180^{\circ} - 90^{\circ} = 90^{\circ}$$
.

D'où
$$\widehat{DFS} = 90^{\circ} \div 2 = 45^{\circ}$$
.

L'angle \widehat{DFS} mesure 45°.

3. Dans un triangle, la somme des angles est égale à 180°.

$$\widehat{NTI} + \widehat{TIN} + \widehat{TNI} = 180^{\circ}$$

Donc
$$\widehat{TIN} = 180 - (\widehat{NTI} + \widehat{TNI}).$$

D'où
$$\widehat{TIN}$$
= $180^{\circ} - (22^{\circ} + 57^{\circ}) = 180^{\circ} - 79^{\circ} = 101^{\circ}$.

L'angle \widehat{TIN} mesure 101°.

1. Dans un triangle, la somme des angles est égale à 180°.

On a
$$\widehat{RDP} = 2 \times \widehat{DRP}$$
.

De plus
$$\widehat{RPD}$$
 et \widehat{RDP} sont égaux, alors $\widehat{RPD} = 2 \times \widehat{DRP}$.

D'où :
$$2 \times \widehat{DRP} \times 2 + \widehat{DRP} = 180^{\circ}$$
.

D'où :
$$4 \times \widehat{DRP} + \widehat{DRP} = 180^{\circ}$$
.

D'où $5 \times \widehat{DRP} = 180^{\circ}$.

D'où
$$\widehat{DRP} = 180^{\circ} \div 5 = 36^{\circ}$$
.

$$\widehat{RPD} = 2 \times \widehat{DRP} = 2 \times 36^{\circ} = 72^{\circ}$$

L'angle \widehat{RPD} mesure 72°, l'angle \widehat{RDP} mesure 72° et l'angle \widehat{DRP} mesure 36°

2. Dans un triangle, la somme des angles est égale à 180°.

Comme
$$\widehat{CTV} = \frac{2 \times \widehat{TVC}}{3}$$
, on a $\widehat{TVC} = \frac{3 \times \widehat{CTV}}{2}$.

De plus \widehat{TVC} et \widehat{TCV} sont égaux, alors $\widehat{TCV} = \frac{3 \times \widehat{CTV}}{2}$.

D'où :
$$\frac{3 \times \widehat{CTV}}{2} \times 2 + \widehat{CTV} = 180^{\circ}$$
.

D'où :
$$3 \times \widehat{CTV} + \widehat{CTV} = 180^{\circ}$$
.

D'où
$$4 \times \widehat{CTV} = 180^{\circ}$$
.

D'où
$$\widehat{CTV} = 180^{\circ} \div 4 = 45^{\circ}$$
.

$$\widehat{TVC} = \frac{3 \times \widehat{CTV}}{2} = \frac{3 \times 45^{\circ}}{2} = \frac{135^{\circ}}{2} = 67, 5^{\circ}$$

L'angle \widehat{TVC} mesure 67,5°, l'angle \widehat{TCV} mesure 67,5° et l'angle \widehat{CTV} mesure 45°

1. Dans un triangle, la somme des angles est égale à 180°.

Les deux angles à la base d'un triangle isocèle sont égaux.

Donc
$$\widehat{NTP} = \widehat{TPN} = 34^{\circ}$$
.

D'où
$$\widehat{TNP} = 180^{\circ} - 2 \times 34^{\circ} = 180^{\circ} - 68^{\circ} = 112^{\circ}$$
.

L'angle \widehat{TNP} mesure 112°.

 $\mathbf{2.}$ Dans un triangle, la somme des angles est égale à $180^{\circ}.$

$$\widehat{SKW} + \widehat{KWS} + \widehat{KSW} = 180^{\circ}$$

Donc
$$\widehat{KWS} = 180 - \left(\widehat{SKW} + \widehat{KSW}\right)$$
.

D'où
$$\widehat{KWS}$$
= $180^{\circ} - (13^{\circ} + 80^{\circ}) = 180^{\circ} - 93^{\circ} = 87^{\circ}$.

L'angle \widehat{KWS} mesure 87°.

3. Dans un triangle, la somme des angles est égale à 180°.

Comme
$$\widehat{BDI} = \widehat{BID}$$
,

on a :
$$2 \times \widehat{BDI} + 90^{\circ} = 180^{\circ}$$
.

D'où
$$2 \times \widehat{BDI} = 180^{\circ} - 90^{\circ} = 90^{\circ}$$
.

D'où
$$\widehat{BDI} = 90^{\circ} \div 2 = 45^{\circ}$$
.

L'angle \widehat{BDI} mesure 45°.

1. Dans un triangle, la somme des angles est égale à 180° .

Comme
$$\widehat{WTI} = \frac{WIT}{4}$$
, on a $\widehat{WIT} = 4 \times \widehat{WTI}$.

De plus
$$\widehat{WTI}$$
 et \widehat{WIT} sont complémentaires.

D'où :
$$4 \times \widehat{WTI} + \widehat{WTI} = 90^{\circ}$$
.

D'où
$$5 \times \widehat{WTI} = 90^{\circ}$$
.

D'où
$$\widehat{WTI} = 90^{\circ} \div 5 = 18^{\circ}$$
.

$$\widehat{WIT} = 4 \times \widehat{WTI} = 4 \times 18^{\circ} = 72^{\circ}.$$

L'angle \widehat{WIT} mesure 72° et l'angle \widehat{WTI} mesure 18°.

2. Dans un triangle, la somme des angles est égale à 180°.

Comme $\widehat{EQD} = 2 \times \widehat{EDQ}$ et comme \widehat{EQD} et \widehat{EDQ} sont complémentaires,

on a :
$$2 \times \widehat{EDQ} + \widehat{EDQ} = 90^{\circ}$$
.

D'où
$$3 \times \widehat{EDQ} = 90^{\circ}$$
.

D'où
$$\widehat{EDQ} = 90^{\circ} \div 3 = 30^{\circ}$$
.

$$\widehat{EQD} = 2 \times \widehat{EDQ} = 2 \times 30^{\circ} = 60^{\circ}$$

L'angle \widehat{EDQ} mesure 30° et l'angle \widehat{EQD} mesure 60°.

1. Dans un triangle, la somme des angles est égale à 180°.

Comme
$$\widehat{CMN} = \widehat{CNM}$$
,

on a :
$$2 \times \widehat{CMN} + 90^{\circ} = 180^{\circ}$$
.

D'où
$$2 \times \widehat{CMN} = 180^{\circ} - 90^{\circ} = 90^{\circ}$$
.

D'où
$$\widehat{CMN} = 90^{\circ} \div 2 = 45^{\circ}$$
.

L'angle \widehat{CMN} mesure 45°.

 $\mathbf{2.}$ Dans un triangle, la somme des angles est égale à $180^{\circ}.$

$$\widehat{UKW} + \widehat{KWU} + \widehat{KUW} = 180^{\circ}$$

Donc
$$\widehat{KWU} = 180 - \left(\widehat{UKW} + \widehat{KUW}\right)$$
.

D'où
$$\widehat{KWU} = 180^{\circ} - (19^{\circ} + 25^{\circ}) = 180^{\circ} - 44^{\circ} = 136^{\circ}.$$

L'angle \widehat{KWU} mesure 136°.

3. Dans un triangle, la somme des angles est égale à 180°.

Comme l'angle \widehat{UZD} est droit, les angles \widehat{ZDU} et \widehat{ZUD} sont complémentaires.

On a donc :
$$\widehat{ZDU} + \widehat{ZUD} = 90^{\circ}$$

D'où
$$\widehat{ZDU} = 90^{\circ} - 12^{\circ} = 78^{\circ}$$

L'angle \widehat{ZDU} mesure 78°.

 $\bf 1.$ Dans un triangle, la somme des angles est égale à $180^{\circ}.$

Les angles à la base d'un triangle isocèle sont de même mesure.

D'où
$$\widehat{FJO} = \widehat{JOF}$$
.

On a donc :
$$\widehat{JFO} + 2 \times \widehat{JOF} = 180^{\circ}$$
.

Soit
$$107^{\circ} + 2 \times \widehat{JOF} = 180^{\circ}$$
.

D'où
$$2 \times \widehat{JOF} = 180^{\circ} - 107^{\circ}$$
.

D'où
$$\widehat{JOF} = (180^{\circ} - 107^{\circ}) \div 2 = 73^{\circ} \div 2 = 36,5^{\circ}$$

L'angle \widehat{JOF} mesure 36,5°.

2. Dans un triangle, la somme des angles est égale à 180°.

$$\widehat{TWR} = 5 \times \widehat{TRW}$$
 et comme \widehat{TWR} et \widehat{TRW} sont complémentaires,

on a :
$$5 \times \widehat{TRW} + \widehat{TRW} = 90^{\circ}$$
.

D'où
$$6 \times \widehat{TRW} = 90^{\circ}$$
.

D'où
$$\widehat{TRW} = 90^{\circ} \div 6 = 15^{\circ}$$

$$\widehat{TWR} = 5 \times \widehat{TRW} = 5 \times 15^{\circ} = 75^{\circ}$$

L'angle \widehat{TRW} mesure 15° et l'angle \widehat{TWR} mesure 75°.

1. Dans un triangle, la somme des angles est égale à 180°.

Comme
$$\widehat{GEQ} = \widehat{GQE}$$
,

on a :
$$2 \times \widehat{GEQ} + 90^{\circ} = 180^{\circ}$$
.

D'où
$$2 \times \widehat{GEQ} = 180^{\circ} - 90^{\circ} = 90^{\circ}$$
.

D'où
$$\widehat{GEQ} = 90^{\circ} \div 2 = 45^{\circ}$$
.

L'angle \widehat{GEQ} mesure 45°.

2. Dans un triangle, la somme des angles est égale à 180°.

Les deux angles à la base d'un triangle isocèle sont égaux.

Donc
$$\widehat{EVI} = \widehat{VIE} = 32^{\circ}$$
.

D'où
$$\widehat{VEI} = 180^{\circ} - 2 \times 32^{\circ} = 180^{\circ} - 64^{\circ} = 116^{\circ}.$$

L'angle \widehat{VEI} mesure 116°.

3. Dans un triangle, la somme des angles est égale à 180°.

$$\widehat{ATC} + \widehat{TCA} + \widehat{TAC} = 180^{\circ}$$

Donc
$$\widehat{TCA} = 180 - \left(\widehat{ATC} + \widehat{TAC}\right)$$
.

D'où
$$\widehat{TCA}$$
= $180^{\circ} - (18^{\circ} + 68^{\circ}) = 180^{\circ} - 86^{\circ} = 94^{\circ}$.

L'angle \widehat{TCA} mesure 94°.

 $\bf 1.$ Dans un triangle, la somme des angles est égale à $180^{\circ}.$

 $\widehat{MIU} = 5 \times \widehat{MUI}$ et comme \widehat{MIU} et \widehat{MUI} sont complémentaires,

on a :
$$5 \times \widehat{MUI} + \widehat{MUI} = 90^{\circ}$$
.

D'où
$$6 \times \widehat{MUI} = 90^{\circ}$$
.

D'où
$$\widehat{MUI} = 90^{\circ} \div 6 = 15^{\circ}$$

$$\widehat{MIU} = 5 \times \widehat{MUI} = 5 \times 15^{\circ} = 75^{\circ}$$

L'angle \widehat{MUI} mesure 15° et l'angle \widehat{MIU} mesure 75°.

2. Dans un triangle, la somme des angles est égale à 180°.

Comme
$$\widehat{DUJ} = \frac{\widehat{DJU}}{4}$$
, on a $\widehat{DJU} = 4 \times \widehat{DUJ}$.

De plus \widehat{DUJ} et \widehat{DJU} sont complémentaires.

D'où :
$$4 \times \widehat{DUJ} + \widehat{DUJ} = 90^{\circ}$$
.

D'où
$$5 \times \widehat{DUJ} = 90^{\circ}$$
.

D'où
$$\widehat{DUJ} = 90^{\circ} \div 5 = 18^{\circ}$$
.

$$\widehat{DJU} = 4 \times \widehat{DUJ} = 4 \times 18^{\circ} = 72^{\circ}.$$

L'angle \widehat{DJU} mesure 72° et l'angle \widehat{DUJ} mesure 18°.

1. Dans un triangle, la somme des angles est égale à 180°.

$$\widehat{TQA} + \widehat{QAT} + \widehat{QTA} = 180^{\circ}$$

Donc
$$\widehat{QAT} = 180 - \left(\widehat{TQA} + \widehat{QTA}\right)$$
.

D'où
$$\widehat{QAT}$$
= $180^{\circ} - (30^{\circ} + 22^{\circ}) = 180^{\circ} - 52^{\circ} = 128^{\circ}$.

L'angle \widehat{QAT} mesure 128°.

2. Dans un triangle, la somme des angles est égale à 180°.

Les deux angles à la base d'un triangle isocèle sont égaux.

Donc
$$\widehat{XTF} = \widehat{TFX} = 56^{\circ}$$
.

D'où
$$\widehat{TXF} = 180^{\circ} - 2 \times 56^{\circ} = 180^{\circ} - 112^{\circ} = 68^{\circ}$$
.

L'angle \widehat{TXF} mesure 68°.

3. Dans un triangle, la somme des angles est égale à 180°.

De plus,
$$\widehat{ECX} = \widehat{EXC} = \widehat{CEX}$$

D'où
$$3 \times \widehat{ECX} = 180^{\circ}$$
.

D'où :
$$\widehat{ECX} = 180^{\circ} \div 3 = 60^{\circ}$$
.

On a donc
$$\widehat{ECX} = \widehat{EXC} = \widehat{CEX} = 60^{\circ}$$
.

Le triangle ECX est un triangle équilatéral.

 $\bf 1.$ Dans un triangle, la somme des angles est égale à $180^{\circ}.$

$$\widehat{EJD} = 5 \times \widehat{EDJ}$$
 et comme \widehat{EJD} et \widehat{EDJ} sont complémentaires,

on a :
$$5 \times \widehat{EDJ} + \widehat{EDJ} = 90^{\circ}$$
.

D'où
$$6 \times \widehat{EDJ} = 90^{\circ}$$
.

D'où
$$\widehat{EDJ} = 90^{\circ} \div 6 = 15^{\circ}$$

$$\widehat{EJD} = 5 \times \widehat{EDJ} = 5 \times 15^{\circ} = 75^{\circ}$$

L'angle \widehat{EDJ} mesure 15° et l'angle \widehat{EJD} mesure 75°.

2. Dans un triangle, la somme des angles est égale à 180°.

Comme
$$\widehat{AKV} = \frac{\widehat{AVK}}{4}$$
, on a $\widehat{AVK} = 4 \times \widehat{AKV}$.

De plus \widehat{AKV} et $\widehat{\widehat{AVK}}$ sont complémentaires.

D'où :
$$4 \times \widehat{AKV} + \widehat{AKV} = 90^{\circ}$$
.

D'où
$$5 \times \widehat{AKV} = 90^{\circ}$$
.

D'où
$$\widehat{AKV} = 90^{\circ} \div 5 = 18^{\circ}$$
.

$$\widehat{AVK} = 4 \times \widehat{AKV} = 4 \times 18^{\circ} = 72^{\circ}.$$

L'angle \widehat{AVK} mesure 72° et l'angle \widehat{AKV} mesure 18°.

1. Dans un triangle, la somme des angles est égale à 180°.

De plus,
$$\widehat{LNE} = \widehat{LEN} = \widehat{NLE}$$

D'où
$$3 \times \widehat{LNE} = 180^{\circ}$$
.

D'où :
$$\widehat{LNE} = 180^{\circ} \div 3 = 60^{\circ}$$
.

On a donc
$$\widehat{LNE} = \widehat{LEN} = \widehat{NLE} = 60^{\circ}$$
.

Le triangle LNE est un triangle équilatéral.

2. Dans un triangle, la somme des angles est égale à 180°.

Comme l'angle \widehat{FPJ} est droit, les angles \widehat{PJF} et \widehat{PFJ} sont complémentaires.

On a donc :
$$\widehat{PJF} + \widehat{PFJ} = 90^{\circ}$$

D'où
$$\widehat{PJF} = 90^{\circ} - 67^{\circ} = 23^{\circ}$$

L'angle \widehat{PJF} mesure 23°.

3. Dans un triangle, la somme des angles est égale à 180°.

Comme
$$\widehat{BTE} = \widehat{BET}$$
,

on a :
$$2 \times \widehat{BTE} + 90^{\circ} = 180^{\circ}$$
.

D'où
$$2 \times \widehat{BTE} = 180^{\circ} - 90^{\circ} = 90^{\circ}$$
.

D'où
$$\widehat{BTE} = 90^{\circ} \div 2 = 45^{\circ}$$
.

L'angle \widehat{BTE} mesure 45°.

1. Dans un triangle, la somme des angles est égale à 180°.

Comme
$$\widehat{ZKQ} = \frac{\widehat{ZQK}}{3}$$
, on a $\widehat{ZQK} = 3 \times \widehat{ZKQ}$.

De plus \widehat{ZKQ} et \widehat{ZQK} sont complémentaires.

D'où : $3 \times \widehat{ZKQ} + \widehat{ZKQ} = 90^{\circ}$.

D'où
$$4 \times \widehat{ZKQ} = 90^{\circ}$$
.

D'où
$$\widehat{ZKQ} = 90^{\circ} \div 4 = 22, 5^{\circ}$$
.

$$\widehat{ZQK} = 3 \times \widehat{ZKQ} = 3 \times 22, 5^\circ = 67, 5^\circ$$

L'angle \widehat{ZQK} mesure 67,5° et l'angle \widehat{ZKQ} mesure 22,5°.

2. Dans un triangle, la somme des angles est égale à 180°.

 $\widehat{LRS} = 5 \times \widehat{LSR}$ et comme \widehat{LRS} et \widehat{LSR} sont complémentaires,

on a :
$$5 \times \widehat{LSR} + \widehat{LSR} = 90^{\circ}$$
.

D'où
$$6 \times \widehat{LSR} = 90^{\circ}$$
.

D'où
$$\widehat{LSR} = 90^{\circ} \div 6 = 15^{\circ}$$

$$\widehat{LRS} = 5 \times \widehat{LSR} = 5 \times 15^{\circ} = 75^{\circ}$$

L'angle \widehat{LSR} mesure 15° et l'angle \widehat{LRS} mesure 75°.

Corrections '

1. Dans un triangle, la somme des angles est égale à 180°.

$$\widehat{FVS} + \widehat{VSF} + \widehat{VFS} = 180^{\circ}$$

Donc
$$\widehat{VSF} = 180 - (\widehat{FVS} + \widehat{VFS}).$$

D'où
$$\widehat{VSF}$$
= $180^{\circ} - (13^{\circ} + 98^{\circ}) = 180^{\circ} - 111^{\circ} = 69^{\circ}$.

L'angle \widehat{VSF} mesure 69°.

2. Dans un triangle, la somme des angles est égale à 180°.

Comme l'angle \widehat{JWO} est droit, les angles \widehat{WOJ} et \widehat{WJO} sont complémentaires.

On a donc :
$$\widehat{WOJ} + \widehat{WJO} = 90^{\circ}$$

D'où
$$\widehat{WOJ} = 90^{\circ} - 41^{\circ} = 49^{\circ}$$

L'angle \widehat{WOJ} mesure 49°.

3. Dans un triangle, la somme des angles est égale à 180°.

Comme
$$\widehat{ZUM} = \widehat{ZMU}$$
,

on a :
$$2 \times \widehat{ZUM} + 90^{\circ} = 180^{\circ}$$
.

D'où
$$2 \times \widehat{ZUM} = 180^{\circ} - 90^{\circ} = 90^{\circ}$$
.

D'où
$$\widehat{ZUM} = 90^{\circ} \div 2 = 45^{\circ}$$
.

L'angle \widehat{ZUM} mesure 45°.

 $\bf 1.$ Dans un triangle, la somme des angles est égale à $180^{\circ}.$

Les angles à la base d'un triangle isocèle sont de même mesure.

D'où
$$\widehat{GAT} = \widehat{ATG}$$
.

On a donc :
$$\widehat{AGT} + 2 \times \widehat{ATG} = 180^{\circ}$$
.

Soit
$$106^{\circ} + 2 \times \widehat{ATG} = 180^{\circ}$$
.

D'où
$$2 \times \widehat{ATG} = 180^{\circ} - 106^{\circ}$$
.

D'où
$$\widehat{ATG} = (180^{\circ} - 106^{\circ}) \div 2 = 74^{\circ} \div 2 = 37^{\circ}$$

L'angle \widehat{ATG} mesure 37°.

2. Dans un triangle, la somme des angles est égale à 180°.

$$\widehat{TZD} = 5 \times \widehat{TDZ}$$
 et comme \widehat{TZD} et \widehat{TDZ} sont complémentaires,

on a :
$$5 \times \widehat{TDZ} + \widehat{TDZ} = 90^{\circ}$$
.

D'où
$$6 \times \widehat{TDZ} = 90^{\circ}$$
.

D'où
$$\widehat{TDZ} = 90^{\circ} \div 6 = 15^{\circ}$$

$$\widehat{TZD} = 5 \times \widehat{TDZ} = 5 \times 15^{\circ} = 75^{\circ}$$

L'angle \widehat{TDZ} mesure 15° et l'angle \widehat{TZD} mesure 75°.

Corrections '

1. Dans un triangle, la somme des angles est égale à 180°.

$$\widehat{VNL} + \widehat{NLV} + \widehat{NVL} = 180^{\circ}$$

$$\mathrm{Donc} \ \widehat{NLV} = 180 - \Big(\widehat{VNL} + \widehat{NVL}\Big).$$

D'où
$$\widehat{NLV} = 180^{\circ} - (29^{\circ} + 61^{\circ}) = 180^{\circ} - 90^{\circ} = 90^{\circ}.$$

L'angle \widehat{NLV} mesure 90°.

 ${\bf 2.}$ Dans un triangle, la somme des angles est égale à $180^{\circ}.$

Comme
$$\widehat{QRT} = \widehat{QTR}$$
,

on a :
$$2 \times \widehat{QRT} + 90^{\circ} = 180^{\circ}$$
.

D'où
$$2 \times \widehat{QRT} = 180^{\circ} - 90^{\circ} = 90^{\circ}$$
.

D'où
$$\widehat{QRT} = 90^{\circ} \div 2 = 45^{\circ}$$
.

L'angle \widehat{QRT} mesure 45°.

3. Dans un triangle, la somme des angles est égale à 180°.

Les deux angles à la base d'un triangle isocèle sont égaux.

Donc
$$\widehat{EMU} = \widehat{MUE} = 28^{\circ}$$
.

D'où
$$\widehat{MEU} = 180^{\circ} - 2 \times 28^{\circ} = 180^{\circ} - 56^{\circ} = 124^{\circ}$$
.

L'angle \widehat{MEU} mesure 124°.

 $\bf 1.$ Dans un triangle, la somme des angles est égale à $180^\circ.$

Comme $\widehat{SNX} = 2 \times \widehat{SXN}$ et comme \widehat{SNX} et \widehat{SXN} sont complémentaires,

on a :
$$2 \times \widehat{SXN} + \widehat{SXN} = 90^{\circ}$$
.

D'où
$$3 \times \widehat{SXN} = 90^{\circ}$$
.

D'où
$$\widehat{SXN} = 90^{\circ} \div 3 = 30^{\circ}$$
.

$$\widehat{SNX} = 2 \times \widehat{SXN} = 2 \times 30^{\circ} = 60^{\circ}$$

L'angle \widehat{SXN} mesure 30° et l'angle \widehat{SNX} mesure 60°.

2. Dans un triangle, la somme des angles est égale à 180°.

Comme
$$\widehat{FXW} = \frac{\widehat{FWX}}{3}$$
, on a $\widehat{FWX} = 3 \times \widehat{FXW}$.

De plus \widehat{FXW} et \widehat{FWX} sont complémentaires.

D'où :
$$3 \times \widehat{FXW} + \widehat{FXW} = 90^{\circ}$$
.

D'où
$$4 \times \widehat{FXW} = 90^{\circ}$$
.

D'où
$$\widehat{FXW} = 90^{\circ} \div 4 = 22, 5^{\circ}$$
.

$$\widehat{FWX} = 3 \times \widehat{FXW} = 3 \times 22, 5^\circ = 67, 5^\circ$$

L'angle \widehat{FWX} mesure 67,5° et l'angle \widehat{FXW} mesure 22,5°.

Corrections •

1. Dans un triangle, la somme des angles est égale à 180°.

Comme l'angle \widehat{HRC} est droit, les angles \widehat{RCH} et \widehat{RHC} sont complémentaires.

On a donc :
$$\widehat{RCH} + \widehat{RHC} = 90^{\circ}$$

D'où
$$\widehat{RCH} = 90^{\circ} - 18^{\circ} = 72^{\circ}$$

L'angle \widehat{RCH} mesure 72°.

2. Dans un triangle, la somme des angles est égale à 180°.

Les deux angles à la base d'un triangle isocèle sont égaux.

Donc
$$\widehat{UTM} = \widehat{TMU} = 52^{\circ}$$
.

D'où
$$\widehat{TUM} = 180^{\circ} - 2 \times 52^{\circ} = 180^{\circ} - 104^{\circ} = 76^{\circ}$$
.

L'angle \widehat{TUM} mesure 76°.

3. Dans un triangle, la somme des angles est égale à 180°.

De plus,
$$\widehat{IVK} = \widehat{IKV} = \widehat{VIK}$$

D'où
$$3 \times \widehat{IVK} = 180^{\circ}$$
.

D'où :
$$\widehat{IVK} = 180^{\circ} \div 3 = 60^{\circ}$$
.

On a donc
$$\widehat{IVK} = \widehat{IKV} = \widehat{VIK} = 60^{\circ}$$
.

Le triangle IVK est un triangle équilatéral.

1. Dans un triangle, la somme des angles est égale à 180° .

Comme
$$\widehat{QPD} = \frac{\widehat{QDP}}{4}$$
, on a $\widehat{QDP} = 4 \times \widehat{QPD}$.

De plus \widehat{QPD} et \widehat{QDP} sont complémentaires.

D'où :
$$4 \times \widehat{QPD} + \widehat{QPD} = 90^{\circ}$$
.

D'où $5 \times \widehat{QPD} = 90^{\circ}$.

D'où
$$\widehat{QPD} = 90^{\circ} \div 5 = 18^{\circ}$$
.

$$\widehat{QDP} = 4 \times \widehat{QPD} = 4 \times 18^{\circ} = 72^{\circ}.$$

L'angle \widehat{QDP} mesure 72° et l'angle \widehat{QPD} mesure 18°.

2. Dans un triangle, la somme des angles est égale à 180°.

Les angles à la base d'un triangle isocèle sont de même mesure.

D'où
$$\widehat{LMR} = \widehat{MRL}$$
.

On a donc : $\widehat{MLR} + 2 \times \widehat{MRL} = 180^{\circ}$.

Soit
$$12^{\circ} + 2 \times \widehat{MRL} = 180^{\circ}$$
.

D'où
$$2 \times \widehat{MRL} = 180^{\circ} - 12^{\circ}$$
.

D'où
$$\widehat{MRL} = (180^{\circ} - 12^{\circ}) \div 2 = 168^{\circ} \div 2 = 84^{\circ}$$

L'angle \widehat{MRL} mesure 84°.

Corrections '

1. Dans un triangle, la somme des angles est égale à 180°.

$$\widehat{TOF} + \widehat{OFT} + \widehat{OTF} = 180^{\circ}$$

Donc
$$\widehat{OFT} = 180 - \left(\widehat{TOF} + \widehat{OTF}\right)$$
.

D'où
$$\widehat{OFT}$$
= $180^{\circ} - (23^{\circ} + 96^{\circ}) = 180^{\circ} - 119^{\circ} = 61^{\circ}$.

L'angle \widehat{OFT} mesure 61°.

2. Dans un triangle, la somme des angles est égale à 180°.

Les deux angles à la base d'un triangle isocèle sont égaux.

Donc
$$\widehat{FEP} = \widehat{EPF} = 60^{\circ}$$
.

D'où
$$\widehat{EFP} = 180^{\circ} - 2 \times 60^{\circ} = 180^{\circ} - 120^{\circ} = 60^{\circ}$$
.

L'angle \widehat{EFP} mesure 60° .

3. Dans un triangle, la somme des angles est égale à 180°.

Comme l'angle \widehat{WOB} est droit, les angles \widehat{OBW} et \widehat{OWB} sont complémentaires.

On a donc :
$$\widehat{OBW} + \widehat{OWB} = 90^{\circ}$$

D'où
$$\widehat{OBW} = 90^{\circ} - 18^{\circ} = 72^{\circ}$$

L'angle \widehat{OBW} mesure 72°.

 $\bf 1.$ Dans un triangle, la somme des angles est égale à $180^{\circ}.$

 $\widehat{SZX} = 5 \times \widehat{SXZ}$ et comme \widehat{SZX} et \widehat{SXZ} sont complémentaires,

on a :
$$5 \times \widehat{SXZ} + \widehat{SXZ} = 90^{\circ}$$
.

D'où
$$6 \times \widehat{SXZ} = 90^{\circ}$$
.

D'où
$$\widehat{SXZ} = 90^{\circ} \div 6 = 15^{\circ}$$

$$\widehat{SZX} = 5 \times \widehat{SXZ} = 5 \times 15^{\circ} = 75^{\circ}$$

L'angle \widehat{SXZ} mesure 15° et l'angle \widehat{SZX} mesure 75°.

2. Dans un triangle, la somme des angles est égale à 180°.

Les angles à la base d'un triangle isocèle sont de même mesure.

D'où
$$\widehat{MFO} = \widehat{FOM}$$
.

On a donc : $\widehat{FMO} + 2 \times \widehat{FOM} = 180^{\circ}$.

Soit $72^{\circ} + 2 \times \widehat{FOM} = 180^{\circ}$.

D'où $2 \times \widehat{FOM} = 180^{\circ} - 72^{\circ}$.

D'où $\widehat{FOM} = (180^{\circ} - 72^{\circ}) \div 2 = 108^{\circ} \div 2 = 54^{\circ}$

L'angle \widehat{FOM} mesure 54°.

Corrections •

1. Dans un triangle, la somme des angles est égale à 180°.

De plus,
$$\widehat{OAT} = \widehat{OTA} = \widehat{AOT}$$

D'où
$$3 \times \widehat{OAT} = 180^{\circ}$$
.

D'où :
$$\widehat{OAT} = 180^{\circ} \div 3 = 60^{\circ}$$
.

On a donc
$$\widehat{OAT} = \widehat{OTA} = \widehat{AOT} = 60^{\circ}$$
.

Le triangle OAT est un triangle équilatéral.

2. Dans un triangle, la somme des angles est égale à 180°.

$$\widehat{IRE} + \widehat{REI} + \widehat{RIE} = 180^{\circ}$$

Donc
$$\widehat{REI} = 180 - \left(\widehat{IRE} + \widehat{RIE}\right)$$
.

D'où
$$\widehat{REI}$$
 = $180^{\circ} - (37^{\circ} + 100^{\circ}) = 180^{\circ} - 137^{\circ} = 43^{\circ}$.

L'angle \widehat{REI} mesure 43°.

3. Dans un triangle, la somme des angles est égale à 180°.

Les deux angles à la base d'un triangle isocèle sont égaux.

Donc
$$\widehat{RSI} = \widehat{SIR} = 44^{\circ}$$
.

D'où
$$\widehat{SRI} = 180^{\circ} - 2 \times 44^{\circ} = 180^{\circ} - 88^{\circ} = 92^{\circ}$$
.

L'angle \widehat{SRI} mesure 92°.

1. Dans un triangle, la somme des angles est égale à 180°.

Comme
$$\widehat{RUW} = \frac{\widehat{RWU}}{3}$$
, on a $\widehat{RWU} = 3 \times \widehat{RUW}$.

De plus \widehat{RUW} et \widehat{RWU} sont complémentaires.

D'où :
$$3 \times \widehat{RUW} + \widehat{RUW} = 90^{\circ}$$
.

D'où
$$4 \times \widehat{RUW} = 90^{\circ}$$
.

D'où $\widehat{RUW} = 90^{\circ} \div 4 = 22, 5^{\circ}$.

$$\widehat{RWU} = 3 \times \widehat{RUW} = 3 \times 22,5^{\circ} = 67,5^{\circ}$$

L'angle \widehat{RWU} mesure 67,5° et l'angle \widehat{RUW} mesure 22,5°.

2. Dans un triangle, la somme des angles est égale à 180°.

$$\widehat{CKU} = 5 \times \widehat{CUK}$$
 et comme \widehat{CKU} et \widehat{CUK} sont complémentaires,

on a :
$$5 \times \widehat{CUK} + \widehat{CUK} = 90^{\circ}$$
.

D'où
$$6 \times \widehat{CUK} = 90^{\circ}$$
.

D'où
$$\widehat{CUK} = 90^{\circ} \div 6 = 15^{\circ}$$

$$\widehat{CKU} = 5 \times \widehat{CUK} = 5 \times 15^{\circ} = 75^{\circ}$$

L'angle \widehat{CUK} mesure 15° et l'angle \widehat{CKU} mesure 75°.

Corrections

1. Dans un triangle, la somme des angles est égale à 180°.

$$\widehat{NXS} + \widehat{XSN} + \widehat{XNS} = 180^{\circ}$$

Donc
$$\widehat{XSN} = 180 - (\widehat{NXS} + \widehat{XNS}).$$

D'où
$$\widehat{XSN} = 180^{\circ} - (15^{\circ} + 49^{\circ}) = 180^{\circ} - 64^{\circ} = 116^{\circ}.$$

L'angle \widehat{XSN} mesure 116°.

2. Dans un triangle, la somme des angles est égale à 180°.

Comme l'angle \widehat{NMJ} est droit, les angles \widehat{MJN} et \widehat{MNJ} sont complémentaires.

On a donc :
$$\widehat{MJN} + \widehat{MNJ} = 90^{\circ}$$

D'où
$$\widehat{MJN} = 90^{\circ} - 37^{\circ} = 53^{\circ}$$

L'angle \widehat{MJN} mesure 53°.

3. Dans un triangle, la somme des angles est égale à 180°.

Comme
$$\widehat{XBQ} = \widehat{XQB}$$
,

on a :
$$2 \times \widehat{XBQ} + 90^{\circ} = 180^{\circ}$$
.

D'où
$$2 \times \widehat{XBQ} = 180^{\circ} - 90^{\circ} = 90^{\circ}$$
.

D'où
$$\widehat{XBQ} = 90^{\circ} \div 2 = 45^{\circ}$$
.

L'angle \widehat{XBQ} mesure 45°.

 $\bf 1.$ Dans un triangle, la somme des angles est égale à $180^\circ.$

Comme $\widehat{JVS} = 2 \times \widehat{JSV}$ et comme \widehat{JVS} et \widehat{JSV} sont complémentaires,

on a :
$$2 \times \widehat{JSV} + \widehat{JSV} = 90^{\circ}$$
.

D'où
$$3 \times \widehat{JSV} = 90^{\circ}$$
.

D'où
$$\widehat{JSV} = 90^{\circ} \div 3 = 30^{\circ}$$
.

$$\widehat{JVS} = 2 \times \widehat{JSV} = 2 \times 30^{\circ} = 60^{\circ}$$

L'angle \widehat{JSV} mesure 30° et l'angle \widehat{JVS} mesure 60°.

2. Dans un triangle, la somme des angles est égale à 180°.

On a
$$\widehat{ILS} = 2 \times \widehat{LIS}$$
.

De plus \widehat{ISL} et \widehat{ILS} sont égaux, alors $\widehat{ISL} = 2 \times \widehat{LIS}$.

D'où : $2 \times \widehat{LIS} \times 2 + \widehat{LIS} = 180^{\circ}$.

D'où : $4 \times \widehat{LIS} + \widehat{LIS} = 180^{\circ}$.

D'où $5 \times \widehat{LIS} = 180^{\circ}$.

D'où $\widehat{LIS} = 180^{\circ} \div 5 = 36^{\circ}$.

$$\widehat{ISL} = 2 \times \widehat{LIS} = 2 \times 36^{\circ} = 72^{\circ}$$

L'angle \widehat{ISL} mesure 72°, l'angle \widehat{ILS} mesure 72° et l'angle \widehat{LIS} mesure 36°

Corrections -

1. Dans un triangle, la somme des angles est égale à 180°.

$$\widehat{UTM} + \widehat{TMU} + \widehat{TUM} = 180^{\circ}$$

Donc
$$\widehat{TMU} = 180 - (\widehat{UTM} + \widehat{TUM}).$$

D'où
$$\widehat{TMU} = 180^{\circ} - (16^{\circ} + 20^{\circ}) = 180^{\circ} - 36^{\circ} = 144^{\circ}.$$

L'angle \widehat{TMU} mesure 144°.

2. Dans un triangle, la somme des angles est égale à 180°.

Comme l'angle \widehat{VXR} est droit, les angles \widehat{XRV} et \widehat{XVR} sont complémentaires.

On a donc :
$$\widehat{XRV} + \widehat{XVR} = 90^{\circ}$$

D'où
$$\widehat{XRV} = 90^{\circ} - 51^{\circ} = 39^{\circ}$$

L'angle \widehat{XRV} mesure 39°.

3. Dans un triangle, la somme des angles est égale à 180°.

Comme
$$\widehat{RQL} = \widehat{RLQ}$$
,

on a :
$$2 \times \widehat{RQL} + 90^{\circ} = 180^{\circ}$$
.

D'où
$$2 \times \widehat{RQL} = 180^{\circ} - 90^{\circ} = 90^{\circ}$$
.

D'où
$$\widehat{RQL} = 90^{\circ} \div 2 = 45^{\circ}$$
.

L'angle \widehat{RQL} mesure 45°.

1. Dans un triangle, la somme des angles est égale à 180° .

Comme
$$\widehat{QEA} = \frac{\widehat{QAE}}{3}$$
, on a $\widehat{QAE} = 3 \times \widehat{QEA}$.

De plus \widehat{QEA} et \widehat{QAE} sont complémentaires.

D'où :
$$3 \times \widehat{QEA} + \widehat{QEA} = 90^{\circ}$$
.

D'où $4 \times \widehat{QEA} = 90^{\circ}$.

D'où
$$\widehat{QEA} = 90^{\circ} \div 4 = 22, 5^{\circ}$$
.

$$\widehat{QAE} = 3 \times \widehat{QEA} = 3 \times 22, 5^{\circ} = 67, 5^{\circ}$$

L'angle \widehat{QAE} mesure 67,5° et l'angle \widehat{QEA} mesure 22,5°.

2. Dans un triangle, la somme des angles est égale à 180°.

$$\widehat{VPX} = 5 \times \widehat{VXP}$$
 et comme \widehat{VPX} et \widehat{VXP} sont complémentaires,

on a :
$$5 \times \widehat{VXP} + \widehat{VXP} = 90^{\circ}$$
.

D'où
$$6 \times \widehat{VXP} = 90^{\circ}$$
.

D'où
$$\widehat{VXP} = 90^{\circ} \div 6 = 15^{\circ}$$

$$\widehat{VPX} = 5 \times \widehat{VXP} = 5 \times 15^{\circ} = 75^{\circ}$$

L'angle \widehat{VXP} mesure 15° et l'angle \widehat{VPX} mesure 75°.