6. Mocninné funkce s celočíselnými exponenty

Úloha 1. Jaký je definiční obor funkce $f: y = x^0$? Jak vypadá její graf?

Úloha 2. Přiřaďte funkcím předpisy $y = x^1, x^2,$ $x^5, x^6, x^9.$

Úloha 3. V této úloze uvažujeme jen mocninné funkce s kladným celočíselným exponentem. Rozhodněte:

- (a) Pro která $n \in \mathbb{N}$ je funkce s předpisem $y = x^n$ (shora/zdola) omezená?
- (b) Pro která $n \in \mathbb{N}$ je funkce s předpisem $y = x^n$ rostoucí/klesající? Pokud není, je rostoucí/klesající alespoň na nějakých intervalech?
- (c) Jaké má funkce $y = x^n$ extrémy (v závislosti na $n \in \mathbb{N}$)?
- (d) Jaký má funkce $y = x^n$ obor hodnot (v závislosti na $n \in \mathbb{N}$)?

Úloha 4. Načrtněte grafy funkcí (a) $y = x^3 + 1$ (b) $y = (x+1)^3$ (c) $y = (x+1)^3 + 1$ (d) $y = 2x^3$ (e) $y = 2(x+1)^3$ (f) $y = 2(x+1)^3 - 1$ (g) $y = -\frac{1}{2}x^3$ (h) $y = |x^3 - 1|$

Úloha 5. Jaký definiční obor bude mít funkce $f: y = x^n$, jestliže n je celé **záporné** číslo? Jaký obor hodnot?

Úloha 6. Přiřaďte funkcím předpisy $y = x^{-1}, x^{-2}, x^{-5}, x^{-6}, x^{-9}$.

- 1. $D(f) = \mathbb{R} \setminus \{0\}$, graf je konstantí jednička, ale pro x = 0 je to nedefinované (tj. "prázdné kolečko")
- **2.** $f(x) = x^6$, $g(x) = x^9$, $h(x) = x^2$, $i(x) = x^1$, $j(x) = x^5$
- 3. (a) pro sudá n je zdola omezená, pro lichá ani shora ani zdola (b) pro lichá n je rostoucí, pro sudá n je klesající na $(-\infty; 0)$ a rostoucí na $(0; \infty)$ (c) pro lichá n žádné, pro sudá n má ostré globální minimum v x = 0 (d) pro lichá n je to celé \mathbb{R} , pro sudá n to je $(0, \infty)$
- **5.** $D(f) = \mathbb{R} \setminus \{0\}$, pro sudá n je $H(f) = (0, \infty)$, pro lichá n pak $H(f) = \mathbb{R} \setminus \{0\}$
- **6.** $f(x) = x^{-6}$, $g(x) = x^{-9}$, $h(x) = x^{-2}$, $i(x) = x^{-1}$, $j(x) = x^{-5}$