Modèles Linéaires Appliqués

Arthur Charpentier

Automne 2020

OLS #10 (diagnostique)

A partir d'un modèle linéaire: $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$, deux étapes sont importantes

- ▶ d'estimation et d'inférence: supposé que X est de plein rang (\mathcal{H}_1) et estimé le paramètre β par MCO (sous l'hypothèse \mathcal{H}_2) ou par MV (sous l'hypothèse \mathcal{H}_2 Gauss). Grâce à ces hyp.
 - ightharpoonup obtention de propriétés statistiques pour $\hat{\beta}$.
 - ▶ IC . RC . tests, intervalle de prédiction
- de validation:
 - ▶ H₁ fausse ou "pas loin", estimation ridge (ou lasso)
 - ▶ il faut valider les autres hypothèses qui permettent de valider l'utilisation des outils d'inférence.
 - Validation d'un individu.
 - Validation du modèle global, linéarité des régresseurs.
 - Choix ou non d'inclure un régresseur.

- ▶ Par définition: $\hat{\boldsymbol{\varepsilon}} = \mathbf{Y} \hat{\mathbf{Y}} = \mathbf{Y} \mathbf{X}\hat{\boldsymbol{\beta}}$.
- ▶ On souhaite utiliser le fait que $\varepsilon \approx \hat{\varepsilon}$ pour vérifier des hypothèses faites sur ε .
- ▶ Rappel: $\mathbb{E}(\varepsilon) = \mathbf{0}$ et $Var(\varepsilon) = \sigma^2 \mathbb{I}_n$ (d'après \mathcal{H}_2) et

$$\mathbb{E}(\hat{\boldsymbol{\varepsilon}}) = \boldsymbol{0} \quad \text{ et } \quad \operatorname{Var}(\hat{\boldsymbol{\varepsilon}}) = \sigma^2(\mathbb{I}_n - \boldsymbol{\mathcal{P}}_{\boldsymbol{X}}) = \sigma^2(\mathbb{I}_n - \boldsymbol{H})$$

Naturellement, on peut définir une version normalisée:

$$t_i = \frac{\hat{\varepsilon}_i}{\hat{\sigma}\sqrt{1-h_{ii}}}, \quad i = 1, \ldots, n.$$

- **Problème**: même sous \mathcal{H}_2 Gauss, la loi de t_i n'est pas connu: $\hat{\varepsilon}_i$ et $\hat{\sigma}$ ne sont pas indépendantes.
- **Solution**: estimer σ^2 indépendandamment de $\hat{\varepsilon}_i$.

Pour i = 1, ..., n, on définit:

- \triangleright $X_{(i)}$: la matrice de design X sans la *i*ème ligne.
- $ightharpoonup \hat{m{eta}}_{(i)}$ et $\hat{\sigma}^2_{(i)}$: les estimateurs de $m{eta}$ et σ^2 basés sur toutes les observations hormis celle du *i*ème individu.
- on note $\hat{\varepsilon}_i^{(i)} = Y_i \hat{Y}_{(i)} = Y_i \mathbf{X}_{(i)}\hat{\boldsymbol{\beta}}_{(i)} = \text{erreur de prédiction}$ de la i-ème variable Y_i sans utiliser l'information du i-ème individu.
- ▶ Une alternative au t_i est de définir $\hat{\varepsilon}_i^{(i)} / \sqrt{\hat{\mathrm{Var}}(\hat{\varepsilon}_i^{(i)})}$

On peut démontrer sous \mathcal{H}_1 et si la suppression de la *i*ème ligne ne modifie pas le rang de X, que

$$\hat{\varepsilon}_{i}^{(i)} = \frac{\hat{\varepsilon}_{i}}{1 - h_{ii}}.$$

Donc en particulier,

- ▶ très intéressant car calculer $\hat{\varepsilon}_i^{(i)}$ n'est pas coûteux.
- $\operatorname{Var}(\hat{\varepsilon}_{i}^{(i)}) = \sigma^{2}/(1 h_{ii}).$
- L'idée est de définir un estimateur de σ^2 qui ne dépende pas de ε_i (et donc de $\hat{\varepsilon}_i^{(i)}$). En particulier

$$\hat{\sigma}_{(i)}^{2} = \left\{ \frac{1}{n-p-1} \sum_{j=1, j \neq i}^{n} \left(Y_{j} - (\mathbf{X}_{(i)} \hat{\boldsymbol{\beta}}_{(i)})_{j} \right)^{2} \right\} / (1 - h_{ii})$$

Sous \mathcal{H}_1 et si la suppression de la *i*ème ligne ne modifie pas le rang de X, on définit

$$t_{(i)} = \frac{\hat{\varepsilon}_i}{\hat{\sigma}_{(i)} \sqrt{1 - h_{ii}}}.$$

Sous \mathcal{H}_2 Gauss, $t_{(i)} \sim Std_{n-p-1}$.

- ▶ Il est préférable d'utiliser $t_{(i)}$ aux t_i car les variances sont plus homogènes.
- $\hat{\sigma}_{(i)}$ n'est pas influencé par des erreurs grossières sur la *i*ème observation.
- ▶ Même si H₂ Gauss n'est pas vérifiée (ou pas vérifiable), la définition reste pertinente. En revanche, il faut espérer que n soit grand ou pouvoir estimer la loi des t_i par bootstrap.
- On peut montrer que

$$t_{(i)} = t_i \sqrt{\frac{n-p-1}{n-p-t_i^2}}$$

Une donnée (c'est-à-dire un couple (\mathbf{x}'_i, y_i)) est considérée comme aberrante si $t_{(i)}$ est anormalement élevée, c'est-à-dire sous \mathcal{H}_2 Gauss si $|t_{(i)}| > t_{1-\alpha/2,n-1-p}$.

▶ La matrice $\mathcal{P}_{\mathbf{X}} = \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}$ joue un rôle important, e.g.

$$\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathcal{P}_{\mathbf{X}}\mathbf{Y}; \quad \hat{\boldsymbol{\beta}} - \boldsymbol{\beta} = \mathcal{P}_{\mathbf{X}}\boldsymbol{\varepsilon}.$$

▶ En général, on note $\mathbf{H} = \mathcal{P}_{\mathbf{X}}$, et on a:

$$\hat{Y}_i = \sum_{j=1}^n h_{ij} Y_j = h_{ii} Y_i + \sum_{j \neq i} h_{ij} Y_j.$$

- Le terme h_{ii} est appéle "poids" de l'observation i sur sa propre estimation.
- ▶ Rappels: $h_{ii} \in [0, 1], h_{ii} \in [-1/2, 1/2]$ pour $i \neq i$ et si $h_{ii} \in \{0,1\}$ alors $h_{ii} = 0$ pour $i \neq i$; $\operatorname{tr}(\mathbf{H}) = \sum h_{ii} = p$
- - ightharpoonup si $h_{ii}=1$, \hat{Y}_i est entièrement déterminé par Y_i .
 - ightharpoonup si $h_{ii}=0$, Y_i n'a pas d'influence sur \hat{Y}_i .
 - \triangleright plus h_{ii} est grand et plus Y_i participe à sa propre prédiction.

Un point i est un point levier si la valeur de la matrice de projection dépasse les valeurs suivantes

- ▶ $h_{ii} > \frac{2p}{n}$ selon Hoaglin and Welsch, 1978.
- $h_{ii} > \frac{n}{3p} \text{ pour } p > 6 \text{ et } n p > 12 \text{ selon Velleman and}$ Welsch, 1981.
- ▶ $h_{ii} > \frac{1}{2}$ selon Huber, 1981.

La distance de Cook, calculée pour tout individu, est définie pour i = 1, ..., n par

$$C_i = rac{1}{p\hat{\sigma}^2}ig(\hat{oldsymbol{eta}}_{(i)} - \hat{oldsymbol{eta}}ig)^{\! op} \left(\mathbf{X}^{\! op}\mathbf{X}
ight)ig(\hat{oldsymbol{eta}}_{(i)} - \hat{oldsymbol{eta}}ig)$$

où $\hat{\pmb{\beta}}_{(i)}$ est l'estimation par MCO obtenue sur le jeu de données privé du ième individu. On peut montrer que

$$C_i = \frac{h_{ii}}{p(1-h_{ii})}t_i^2 = \frac{h_{ii}}{p(1-h_{ii})^2}\frac{\hat{\varepsilon}_i^2}{\hat{\sigma}^2}, \quad \text{ où } t_i \approx t_{(i)}.$$

compromis entre point levier (fort h_{ii}) et point aberrant (fort $t_{(i)}$).


```
data(anscombe)
   summary(lm(y1~x1,data=anscombe))
3
  Coefficients:
     Estimate
                Std
                      t value Pr(>|t|)
  (Int)
                 1.1247
                          2.667
         3.00
                                  0.025
         0.50
                 0.1179
                          4.241
                                  0.002
 x1
8
  Residual standard error: 1.237
  Multiple R-squared: 0.6665
  Adjusted R-squared: 0.6295
 F-statistic: 17.99 on 1 and 9 DF
13 p-value: 0.00217
```



```
data(anscombe)
   summary(lm(y2~x2,data=anscombe))
3
  Coefficients:
     Estimate
                    t value Pr(>|t|)
                Std
  (Int)
                1.125
                          2.667
         3.00
                                 0.025
                0.118
 x2
         0.50
                          4.239
                                 0.002
8
  Residual standard error: 1.237
  Multiple R-squared: 0.6662
  Adjusted R-squared: 0.6292
 F-statistic: 17.97 on 1 and 9 DF
13 p-value: 0.00218
```



```
data(anscombe)
   summary(lm(y3~x3,data=anscombe))
3
  Coefficients:
     Estimate
                Std t value Pr(>|t|)
  (Int)
                1.1245
                          2.667
                                 0.025
         3.00
 x3
         0.50
                0.1179
                          4.239
                                 0.002
8
  Residual standard error: 1.236
  Multiple R-squared: 0.6663
  Adjusted R-squared: 0.6292
 F-statistic: 17.97 on 1 and 9 DF
13 p-value: 0.00218
```



```
data(anscombe)
  > summary(lm(y4~x4,data=anscombe))
3
  Coefficients:
     Estimate Std t value Pr(>|t|)
  (Int)
        3.00
               1.1239
                      2.671
                                0.025
 x3
         0.49
               0.1178
                      4.243
                                0.002
8
  Residual standard error: 1.236
  Multiple R-squared: 0.6663
  Adjusted R-squared: 0.6297
 F-statistic: 17.97 on 1 and 9 DF
13 p-value: 0.00218
```