1

NCERT: 10/5/3/18

EE23BTECH11040 - Manoj Kumar Ambatipudi*

QUESTION: A spiral is made up of successive semi circles, with centres alternatively at A and B, Starting with center at A, of radii 0.5 cm, 1.0cm, 1.5cm, 2.0cm,... What is the length of such a spiral ,made of 13 consecutive semicircles.(Use $\pi = \frac{22}{7}$) **SOLUTION:**

Variable	Description	Value
x(0)	First term	0.5
d	common difference	0.5
y(n)	Sum of $n + 1$ terms	-
Cn	Length of n th semicircle	$\pi x(n)$

TABLE 1 Variables Used

General Term can be written as

$$x(n) = x(0) + nd \tag{1}$$

Sum upto n + 1 terms is given by

$$y(n) = x(n) * u(n)$$
 (2)

The corresponding Z-Transform is given by (??). Referring to Table 1, substituting the values in (??),

$$Y(z) = \frac{0.5}{(1 - z^{-1})^2} + \frac{0.5z^{-1}}{(1 - z^{-1})^3} \quad ROC(|z| > 1) \quad (3)$$

Finding y(n) by Contour Integration,

$$y(n) = \frac{1}{2\pi j} \oint_C \left(\frac{0.5z^{n-1}}{(1-z^{-1})^2} + \frac{0.5z^{n-2}}{(1-z^{-1})^3} \right) dz$$
 (4)

Using Residue Theorem to evaluate the integral, let

$$Y(z) = S_1 + S_2 (5)$$

 S_1 has 2 poles,

$$S_1 = \frac{1}{(1)!} \lim_{z \to 1} \frac{d}{dz} \left((z - 1)^2 \frac{0.5z^{n+1}}{(z - 1)^2} \right)$$
 (6)

$$S_1 = 0.5 (n+1) \lim_{z \to 1} (z^n)$$
 (7)

$$S_1 = 0.5(n+1) \tag{8}$$

Similarly, S_2 has 3 poles,

$$S_2 = \frac{1}{(2)!} \lim_{z \to 1} \frac{d^2}{dz^2} \left((z - 1)^3 \frac{0.5 z^{n+1}}{(z - 1)^3} \right)$$
(9)

$$= \frac{0.5(n+1)}{2} \lim_{z \to 1} \frac{d}{dz} (z^n)$$
 (10)

$$= \frac{0.5(n+1)(n)}{2} \lim_{z \to 1} \left(z^{n-1}\right) \tag{11}$$

$$=\frac{0.5(n)(n+1)}{2}\tag{12}$$

Finally,

$$y(n) = 0.5(n+1) + \frac{0.5(n)(n+1)}{2}$$
 (13)

The y(n) gives the sum of all the radii. Let C_n be the length of $(n + 1)^{th}$ curve.

$$C_n = \pi x(n) \tag{14}$$

$$\sum_{0}^{n} C_{n} = \pi \sum_{0}^{n} x(n)$$
 (15)

$$= \pi \left(0.5 (n+1) + \frac{0.5 (n) (n+1)}{2} \right)$$
 (16)

Substituting n = 12,

$$\sum_{0}^{13} C_n = \pi (45.5) \tag{18}$$

$$= \frac{22}{7} \times 45.5 \tag{19}$$

$$= 143$$
 (20)

Fig. 1. Plot of general term taken from Python3

Fig. 2. Plot of Sum of n terms taken from Python3