INFSCI 2595

Fall 2019

Information Sciences Building: Room 403

Lecture 06

In lecture 05, we made use of the Multivariate Normal (MVN) distribution

• In this lecture, we will introduce fitting the MVN.

 Afterwards, we will continue working with multivariate distributions, but introduce the multivariate analog to the binomial distribution -> the Multinomial distribution.

 We will conclude by discussing non-parametric density estimation methods.

FSCI 2595: 06

MVN density for D variables, $\mathbf{x} = \{x_1, ..., x_D\}$

$$p(\mathbf{x}|\mathbf{\mu}, \mathbf{\Sigma}) = \mathcal{N}(\mathbf{x}|\mathbf{\mu}, \mathbf{\Sigma})$$

The likelihood function for a single observation of the D variables is proportional to:

$$\mathcal{N}(\mathbf{x}|\mathbf{\mu}, \mathbf{\Sigma}) \propto |\mathbf{\Sigma}|^{-1/2} \cdot \exp\left\{-\frac{1}{2}(\mathbf{x} - \mathbf{\mu})^T \mathbf{\Sigma}^{-1}(\mathbf{x} - \mathbf{\mu})\right\}$$

NFSCI 2595: 06

How do we write the likelihood for N observations?

• When we were considering a single variable, x, we denoted the N observations as a vector $\mathbf{x} = \{x_1, \dots, x_n, \dots x_N\}$.

• Build off of this idea to organize the D elements of our multivariate vector $\mathbf{x} = \{x_1, ..., x_d, ..., x_D\}$.

FSCI 2595: 06

Consider the D variables separately...

We can write out a vector of N observations for each the D variables.

• The n-th observation of the d-th variable: $\mathcal{X}_{n,d}$

• The N element vectors for the separate variables can be written as:

$$\mathbf{x}_{:,1} = \{x_{1,1}, x_{2,1}, \dots, x_{n,1}, \dots, x_{N,1}\}$$

FSCI 2595: 06

Consider the D variables separately...

We can write out a vector of N observations for each the D variables.

• The n-th observation of the d-th variable: $\mathcal{X}_{n,d}$

• The N element vectors for the separate variables can be written as:

$$\mathbf{x}_{:,d} = \{x_{1,d}, x_{2,d}, \dots, x_{n,d}, \dots, x_{N,d}\}$$

In general, for the d-th variable.

NFSCI 2595: 06

Consider the D variables separately...

We can write out a vector of N observations for each the D variables.

• The n-th observation of the d-th variable: $\mathcal{X}_{n,d}$

• The N element vectors for the separate variables can be written as:

$$\mathbf{x}_{:,d} = \{x_{1,d}, x_{2,d}, \dots, x_{n,d}, \dots, x_{N,d}\}$$

MATLAB-like notation to represent **ALL** of the observations

In general, for the d-th variable.

IFSCI 2595: 06

Alternatively, consider the N observations separately...

Write a vector of D variables for each of the N observations.

• Continue to use the notation: $x_{n,d}$

• The D element vector for each observation:

$$\mathbf{x}_{1,:} = \{x_{1,1}, x_{1,2}, \dots, x_{1,d}, \dots, x_{1,D}\}$$

FSCI 2595: 06

Alternatively, consider the N observations separately...

Write a vector of D variables for each of the N observations.

• Continue to use the notation: $x_{n,d}$

• The D element vector for each observation:

$$\mathbf{x}_{n,:} = \{x_{n,1}, x_{n,2}, \dots, x_{n,d}, \dots, x_{n,D}\}$$

In general, for the n-th observation.

NFSCI 2595: 06

Regardless of how we write out the variables, we can organize all observations together into a matrix

• Thus, the $N \times D$ matrix **X** can be viewed two different ways.

• "Stacking" the N row-vectors on top of each other.

"Binding" the D column-vectors side-by-side.

The two styles are equivalent!

"Stacking" rows together

"Binding" columns together

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_{1,:} \\ \mathbf{x}_{2,:} \\ \vdots \\ \mathbf{x}_{N,:} \end{bmatrix}$$

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_{:,1} & \mathbf{x}_{:,2} & \cdots & \mathbf{x}_{:,D} \end{bmatrix}$$

Now, for N observations of the D variables

• Assume the observations are conditionally independent given the MVN parameters μ and Σ .

• We can factor the "complete" joint distribution into the product of *N* separate multivariate likelihoods.

$$p(\mathbf{X}|\mathbf{\mu}, \mathbf{\Sigma}) = \prod_{n=1}^{N} \{p(\mathbf{x}_{n,:}|\mathbf{\mu}, \mathbf{\Sigma})\}$$

IFSCI 2595: 06

The likelihood is proportional to:

$$p(\mathbf{X}|\mathbf{\mu}, \mathbf{\Sigma}) \propto |\mathbf{\Sigma}|^{-N/2} \cdot \exp \left\{ -\frac{1}{2} \sum_{n=1}^{N} \left[\left(\mathbf{x}_{n,:}^{T} - \mathbf{\mu} \right)^{T} \mathbf{\Sigma}^{-1} \left(\mathbf{x}_{n,:}^{T} - \mathbf{\mu} \right) \right] \right\}$$

The likelihood is proportional to:

$$p(\mathbf{X}|\mathbf{\mu}, \mathbf{\Sigma}) \propto |\mathbf{\Sigma}|^{-N/2} \cdot \exp \left\{ -\frac{1}{2} \sum_{n=1}^{N} \left[(\mathbf{x}_{n,:}^{T} - \mathbf{\mu})^{T} \mathbf{\Sigma}^{-1} (\mathbf{x}_{n,:}^{T} - \mathbf{\mu}) \right] \right\}$$

 μ is structured as a column-vector.

Since we specified $\mathbf{x}_{n,:}$ as a row-vector, needed to transpose it to have the correct format above.

Be careful about the dataset structure across textbooks!!!!!

How can we fit the MVN given X?

• We will focus on the case where the covariance matrix, Σ , is known.

 This is analogous to the fitting the univariate normal model with unknown mean and known variance!

Proceed with a Bayesian formulation.

• In the univariate case, we saw that the conjugate prior to the normal likelihood is a normal distribution.

The same holds for the multivariate case!

• The conjugate prior for μ with a multivariate likelihood is a multivariate normal!

Conjugate prior

• The multivariate normal prior distribution on μ will be specified as:

$$p(\boldsymbol{\mu}|\boldsymbol{\mu}_0,\boldsymbol{\Lambda}_0) = \mathcal{N}(\boldsymbol{\mu}|\boldsymbol{\mu}_0,\boldsymbol{\Lambda}_0)$$

• The hyperparameter μ_0 is the D-dimensional vector of prior means.

• The hyperparameter Λ_0 is a $D \times D$ prior covariance matrix.

Joint posterior on all \boldsymbol{D} unknown means

$$p(\boldsymbol{\mu}|\mathbf{X},\boldsymbol{\Sigma}) \propto p(\mathbf{X}|\boldsymbol{\mu},\boldsymbol{\Sigma})p(\boldsymbol{\mu}|\boldsymbol{\mu}_0,\boldsymbol{\Lambda}_0)$$

INFSCI 2595: 06

Joint posterior on all D unknown means

$$p(\boldsymbol{\mu}|\mathbf{X},\boldsymbol{\Sigma}) \propto p(\mathbf{X}|\boldsymbol{\mu},\boldsymbol{\Sigma})p(\boldsymbol{\mu}|\boldsymbol{\mu}_0,\boldsymbol{\Lambda}_0)$$

$$p(\mathbf{\mu}|\mathbf{X}, \mathbf{\Sigma}) \propto \prod_{n=1}^{N} \{\mathcal{N}(\mathbf{x}_{n,:}|\mathbf{\mu}, \mathbf{\Sigma})\} \mathcal{N}(\mathbf{\mu}|\mathbf{\mu}_{0}, \mathbf{\Lambda}_{0})$$

Joint posterior on all D unknown means

Substitute in the quadratic terms within the exponential

$$\propto \exp\left\{-\frac{1}{2}\left(\sum_{n=1}^{N}\left[\left(\mathbf{x}_{n,:}^{T}-\boldsymbol{\mu}\right)^{T}\boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{n,:}^{T}-\boldsymbol{\mu}\right)\right]+(\boldsymbol{\mu}-\boldsymbol{\mu}_{0})^{T}\boldsymbol{\Lambda}_{0}^{-1}(\boldsymbol{\mu}-\boldsymbol{\mu}_{0})\right)\right\}$$

This should look familiar...

• The posterior distribution on μ is a MVN distribution.

$$p(\mathbf{\mu}|\mathbf{X},\mathbf{\Sigma}) = \mathcal{N}(\mathbf{\mu}|\mathbf{\mu}_N,\mathbf{\Lambda}_N)$$

 As with the univariate case the posterior mean is a precision weighted average between the prior mean and the sample average.

The precision is now represented by the precision matrix

The precision matrix is the inverse of the covariance matrix.

$$\Lambda_N^{-1} = \Lambda_0^{-1} + N\Sigma^{-1}$$

 The posterior precision is still the sum of the prior and the data precision!

To calculate the posterior mean, we need multivariate sample average.

 Each variable's sample average can be computed without regard to the other variables.

$$\bar{x}_d = \frac{1}{N} \sum_{n=1}^{N} x_{n,d}$$

• The D-dimensional sample average vector is then: $\overline{\mathbf{x}}$

Posterior mean μ_N

The multivariate precision weighted average:

$$\mu_N = [\Lambda_0^{-1} + N\Sigma^{-1}]^{-1} [\Lambda_0^{-1}\mu_0 + N\Sigma^{-1}\bar{\mathbf{x}}]$$

The asymptotic trends we discussed for the univariate case are still valid!

• In the limit of infinite prior uncertainty, $\left|\Lambda_0^{-1}\right| \to 0$, the posterior distribution on the unknown means converges to:

$$\mu | \mathbf{X}, \mathbf{\Sigma} \sim \mathcal{N} \left(\overline{\mathbf{x}}, \frac{1}{N} \mathbf{\Sigma} \right)$$

With one important caveat: $N \ge D$!!!

What about when Σ is also unknown?

• Even the conjugate analysis is rather involved.

• Introduces the Inverse-Wishart distribution as the conjugate prior on the covariance matrix.

We will not go through this analysis presently.

• Please see PRML Section 2.3.4 for the MLE derivation and discussion.

Side note...what about the standard normal?

We had seen how in the univariate case a general Gaussian:

$$x \mid \mu, \sigma \sim \text{normal}(x \mid \mu, \sigma)$$

• Can be equivalently defined through the reparameterization:

$$z \sim \text{normal}(z|0,1)$$

 $x = \sigma \cdot z + \mu$

We can equivalently define a general MVN distribution through independent standard normals!

Need to make use of the following reparameterization:

$$\mathbf{x}_{n,:}^T = \mathbf{L}\mathbf{z}_{n,:}^T + \mathbf{\mu}$$

$$z_{n,d}$$
~normal $(z_{n,d}|0,1), d = 1, ..., D$

$$\mathbf{L}\mathbf{L}^T = \mathbf{\Sigma}$$

We can equivalently define a general MVN distribution through independent standard normals!

Need to make use of the following reparameterization:

$$\mathbf{x}_{n,:}^T = \mathbf{L}\mathbf{z}_{n,:}^T + \mathbf{\mu}$$

$$z_{n,d} \sim \text{normal}(z_{n,d}|0,1), d = 1, ..., D$$

The matrix **L** a lower triangular matrix and is known as the **Cholesky decomposition**...and represents a "matrix square root"

$$\mathbf{L}\mathbf{L}^T = \mathbf{\Sigma}$$

Multinomial distribution

The multivariate normal extends the Gaussian to higher dimensions

• Analogously, the <u>Multinomial distribution</u> extends the Binomial distribution to higher dimensions!

 But, how does the dimensionality increase for a discrete variable?

Number of states

The Binomial distribution is associated with <u>BINARY</u> outcomes.

• The variable can take 2 possible states, $x \in \{0,1\}$

• With a multinomial distribution, we are dealing with a random variable that can take on **MORE** than 2 states!

Number of states

 With a multinomial distribution, we are dealing with a random variable that can take on MORE than 2 states!

- Examples:
 - Canonical example rolling a 6 sided die
 - Voting with more than 2 political parties

1-of-*K* encoding

• Denote the total number of states as K.

• The random variable is represented as a K-dimensional vector.

$$\mathbf{x} = \{x_1, x_2, ..., x_k, ..., x_K\}$$

- The observed state is then assigned a value of 1: $x_k = 1$
- All other states are set to 0

For example, if we roll a 4 from a 6 sided die

• The 6 possible states (1 through 6) are encoded as:

$$\mathbf{x} = \{x_1, x_2, x_3, x_4, x_5, x_6\}$$

If we observe a 4 the elements in the vector take on the values:

$$\mathbf{x} = \{x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 1, x_5 = 0, x_6 = 0\}$$

For example, if we roll a 4 from a 6 sided die

• The 6 possible states (1 through 6) are encoded as:

$$\mathbf{x} = \{x_1, x_2, x_3, x_4, x_5, x_6\}$$

If we observe a 4 the elements in the vector take on the values:

$$\mathbf{x} = \{0, 0, 0, 1, 0, 0\}$$

Define the probability $x_k=1$ as μ_k

• The distribution of x is therefore:

$$p(\mathbf{x}|\mathbf{\mu}) = \prod_{k=1}^{K} \mu_k^{x_k}$$

• Where $\mathbf{\mu} = \{\mu_1, \mu_2, \dots, \mu_k, \dots, \mu_K\}$ is the vector of probabilities for each state.

Now consider observing *N* <u>independent</u> observations of the random variable

• Similar to the Multivariate normal we can organize the observation of the K states in a matrix, X.

• The n-th observation of the k-th state, $x_{n,k}$, will be 0 or 1.

NFSCI 2595: 06

The likelihood of \boldsymbol{X} given $\boldsymbol{\mu}$ can be factored into the product of N separate likelihoods

$$p(\mathbf{X}|\mathbf{\mu}) = \prod_{n=1}^{N} \{p(\mathbf{x}_{n,:}^{T}|\mathbf{\mu})\} = \prod_{n=1}^{N} \left\{\prod_{k=1}^{K} \mu_{k}^{x_{n,k}}\right\}$$

The likelihood can be rearranged as

$$\prod_{n=1}^{N} \left\{ \prod_{k=1}^{K} \mu_{k}^{x_{n,k}} \right\} = \prod_{k=1}^{K} \mu_{k}^{x_{1,k}} \times \mu_{k}^{x_{2,k}} \times \dots \times \mu_{k}^{x_{n,k}} \times \dots \times \mu_{k}^{x_{N,k}}$$

The likelihood can be rearranged as

$$\prod_{n=1}^{N} \left\{ \prod_{k=1}^{K} \mu_{k}^{x_{n,k}} \right\} = \prod_{k=1}^{K} \mu_{k}^{x_{1,k}} \times \mu_{k}^{x_{2,k}} \times \dots \times \mu_{k}^{x_{n,k}} \times \dots \times \mu_{k}^{x_{N,k}}$$

$$\prod_{n=1}^{N} \left\{ \prod_{k=1}^{K} \mu_k^{x_{n,k}} \right\} = \prod_{k=1}^{K} \mu_k^{(\sum_{n=1}^{N} x_{n,k})}$$

Sufficient statistics...are just counting!

• Define the number of times $x_k = 1$ as:

$$m_k = \sum_{n=1}^N x_{n,k}$$

The likelihood of the observations given the state probabilities is therefore:

$$p(\mathbf{X}|\mathbf{\mu}) = \prod_{n=1}^{N} \{p(\mathbf{x}_{n,:}^{T}|\mathbf{\mu})\} = \prod_{k=1}^{K} \mu_k^{m_k}$$

What are we still missing...remember how we went from the Bernoulli to the Binomial for the binary outcome case?

• Just as we saw with the binary outcome situation, there are multiple potential sequences for observing exactly m_k counts out of N trials.

• Therefore, we need to account for the number of ways of partitioning N objects into K groups of size m_1, m_2, \ldots, m_K .

The multinomial distribution

$$p(m_1, m_2, ..., m_K | \boldsymbol{\mu}, N) = {N \choose m_1 m_2 \cdots m_K} \prod_{k=1}^{N} \mu_k^{m_k}$$

Without deriving the MLE on μ can you guess what it is?

HINT: The basic definition of probability...

The MLE on the vector probabilities per state

$$\hat{\mathbf{\mu}} = \{\hat{\mu}_1, \hat{\mu}_2, \dots, \hat{\mu}_K\} = \{\frac{m_1}{N}, \frac{m_2}{N}, \dots, \frac{m_K}{N}\}$$

Bayesian formulation – prior specification

 We saw in the Binary case, that the conjugate prior for the Binomial likelihood is the Beta distribution.

 Since the Multinomial is a multivariate generalization of the Binomial, we can expect that the corresponding conjugate prior is a multivariate generalization of the Beta...

NFSCI 2595: 06

Bayesian formulation – prior specification

 We saw in the Binary case, that the conjugate prior for the Binomial likelihood is the Beta distribution.

 Since the Multinomial is a multivariate generalization of the Binomial, we can expect that the corresponding conjugate prior is a multivariate generalization of the Beta...

Dirichlet distribution

The Dirichlet distribution

$$p(\mathbf{\mu}|\mathbf{\alpha}) = \text{Dir}(\mathbf{\mu}|\mathbf{\alpha}) \propto \prod_{k=1}^{K} \mu_k^{\alpha_k - 1}$$

The Dirichlet distribution...is confined to a <u>simplex</u>

$$p(\mathbf{\mu}|\mathbf{\alpha}) = \text{Dir}(\mathbf{\mu}|\mathbf{\alpha}) \propto \prod_{k=1}^{\kappa} \mu_k^{\alpha_k - 1}$$

The simplex results from the summation constraint on the state probabilities: $\sum_k \mu_k = 1$

The posterior distribution on μ is...

The posterior distribution on μ is...a Dirichlet!

• Define the vector $\mathbf{m} = \{m_1, m_2, ..., m_K\}$

$$p(\mathbf{\mu}|\mathbf{m}, N, \mathbf{\alpha}) = \text{Dir}(\mathbf{\mu}|\mathbf{\alpha} + \mathbf{m}) \propto \prod_{k=1}^{n} \mu_k^{\alpha_k + m_k - 1}$$

Interpretation of the lpha hyperparameter

• Each α_k is added to the number of times we saw $x_k = 1$, m_k .

• Thus, each α_k is the a-priori effective number of times we saw each state!

Non-parametric density estimation

Histograms

How many bins should we use?

https://shiny.rstudio.com/gallery/faithful.html

Try out different numbers of bins...does our interpretation change?

Kernel density estimation

Can we smooth out bumps or discontinuities?

Kernel smoothing!

Try out the kernel density estimate on the faithful histogram app.

In class example