A Book of Abstract Algebra (2nd Edition)

Chapter 17, Problem 1EF

Bookmark

Show all steps: ON

ON

Problem

Let G be an abelian group in additive notation. An *endomorphism* of G is a homomorphism from G to G. Let End(G) denote the set of all the endomorphisms of G, and define addition and multiplication of endomorphisms as follows:

$$[f+g](x) = f(x) + g(x)$$
 for every x in G
 $fg = f \circ g$ the composite of f and g

Prove that End(G) with these operations is a ring with unity.

Step-by-step solution

Step 1 of 5

Suppose that G is an abelian additive group. Let $\operatorname{End}(G)$ is the set of all the endomorphisms of G, that is, all the homomorphism from G to G. Consider the following addition and multiplication of endomorphisms:

$$[f+g](x) = f(x)+g(x),$$

$$(fg)(x) = f \circ g(x)$$

$$= f(g(x))$$

for every x in G.

Objective is to show that $\operatorname{End}(G)$ satisfies all the axioms to be a ring with unity.

Comment

Step 2 of 5

First show that $(\operatorname{End}(G), +)$ is an abelian group.

(1) Since sum of two real valued function is again a real function, therefore sum is closed in $\operatorname{End}(G)$.

(2) Associative: Let $f, g, h \in \text{End}(G)$. Then

$$[(f+g)+h](x) = [f+(g+h)](x)$$

$$(f+g)(x)+h(x) = f(x)+(g+h)(x)$$

$$f(x)+g(x)+h(x) = f(x)+g(x)+h(x)$$

Since both the sides are equals, so addition is associative in End(G).

(3) Since addition is commutative in real numbers, so

$$(f+g)(x) = f(x)+g(x)$$
$$= g(x)+f(x)$$
$$= (g+f)(x).$$

(4) Additive identity or zero element:

$$(f+g)(x)=f(x)$$

Consider the zero function g(x) = 0 for all real number x. Then

$$(f+g)(x) = f(x) + g(x)$$
$$= f(x) + 0$$
$$= f(x).$$

Thus, zero function will be the zero element of End(G).

(5) Since

$$(f + (-f))(x) = f(x) + (-f)(x)$$

= $f(x) - f(x)$
= 0

Therefore, negative of any $f \in \text{End}(G)$ will be -f.

And from here it conclude that, End(G) is an abelian group.

Comment

Step 3 of 5

Now, show that product of two function is associative. Let $f, g, h \in \text{End}(G)$. Then

$$[(fg)h] = (fg) \circ h$$

$$= f \circ g \circ h$$

$$[f(gh)] = f \circ (gh)$$

$$= f \circ g \circ h.$$

Since both the sides are equals, so multiplication is associative in $\operatorname{End}(G)$.

Next is distributive law:

$$\begin{split} & [f(g+h)](x) = [f \circ (g+h)](x) \\ & = f(x) \circ (g+h)(x) \\ & = f(x) \circ (g(x) + h(x)) \\ & = f \circ g(x) + f \circ h(x). \end{split}$$
 Thus, $[f(g+h)](x) = fg(x) + fh(x)$. Similarly, $[(g+h)f](x) = gf(x) + hf(x)$.

Step 4 of 5	
The ur	nity in $\operatorname{End}(G)$ will be:
	(x) = f(x)
	f(x) = f(x) $f(x) = f(x)$
- 1- 1	f(x) = f(x) st equality will hold when $g(x) = x$ for all real number x . Thus, this g will work as a unity $f(x) = x$
	The $g(x) = x$ for all real number x . Thus, this g will work as a unity C and C .
Comm	ent
	Step 5 of 5
	, $\operatorname{End}(G)$ is a ring with unity.
Hence	
Hence	
Hence	ent
	ent