Spectral Factorization For Stationary Gaussian Processes and RKHS Expansions

BY STEPHEN CROWLEY

December 9, 2024

Theorem 1

[Spectral Factorization] Let K(t,s) be a positive definite stationary kernel. Then there exists a spectral density $S(\omega)$ and spectral factor:

$$h(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \sqrt{S(\omega)} e^{i\omega t} d\omega \tag{1}$$

such that:

$$K(t,s) = \int_{-\infty}^{\infty} h(t+\tau) \overline{h(s+\tau)} d\tau$$
 (2)

[1]

Proof. 1. By Bochner's theorem, since K is positive definite and stationary:

$$K(t-s) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S(\omega) e^{i\omega(t-s)} d\omega$$
 (3)

where $S(\omega) \ge 0$ is the spectral density.

2. Define h(t) as stated. Then:

$$\int_{-\infty}^{\infty} h(t+\tau) \overline{h(s+\tau)} d\tau = \int_{-\infty}^{\infty} \frac{1}{2\pi} \int_{-\infty}^{\infty} \sqrt{S(\omega_1)} e^{i\omega_1(t+\tau)} d\omega_1 \cdot \frac{1}{2\pi} \int_{-\infty}^{\infty} \sqrt{S(\omega_2)} e^{-i\omega_2(s+\tau)} d\omega_2 d\tau$$

$$(4)$$

3. Rearranging integrals (justified by Fubini's theorem since $S(\omega) \ge 0$):

$$= \frac{1}{4\pi^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sqrt{S(\omega_1) S(\omega_2)} e^{i\omega_1 t} e^{-i\omega_2 s} \int_{-\infty}^{\infty} e^{i(\omega_1 - \omega_2)\tau} d\tau d\omega_1 d\omega_2$$
 (5)

4. The inner integral gives $2 \pi \delta (\omega_1 - \omega_2)$:

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} S(\omega) e^{i\omega(t-s)} d\omega = K(t-s)$$
 (6)

Lemma 2

[Convolution Properties] For any orthonormal basis $\{e_i\}$ of $L^2(\mathbb{R})$, define:

$$h_i(t) = \int_{-\infty}^{\infty} h(t+\tau) \overline{e_i(\tau)} d\tau$$
 (7)

Then:

$$\langle h_i, h_j \rangle = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} K(\tau_1 - \tau_2) \overline{e_i(\tau_1)} e_j(\tau_2) d\tau_1 d\tau_2$$
 (8)

Proof. 1. Expand the inner product:

$$\langle h_i, h_j \rangle = \int_{-\infty}^{\infty} h_i(t) \overline{h_j(t)} dt$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(t + \tau_1) \overline{h(t + \tau_2)} \overline{e_i(\tau_1)} e_j(\tau_2) d\tau_1 d\tau_2 dt$$
(9)

2. Change variables $u = t + \tau_1$:

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(u) \overline{h(u - \tau_1 + \tau_2)} \overline{e_i(\tau_1)} e_j(\tau_2) d\tau_1 d\tau_2 du$$
 (10)

3. The inner integral gives $K(\tau_1 - \tau_2)$ by definition of h:

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} K(\tau_1 - \tau_2) \overline{e_i(\tau_1)} e_j(\tau_2) d\tau_1 d\tau_2 \qquad \Box$$

Proposition 3

[Orthonormal Basis Construction] The normalized functions:

$$\psi_i(t) = \frac{h_i(t)}{\sqrt{|h_i|^2}} \tag{11}$$

form an orthonormal basis for the RKHS \mathcal{H} .

Proof. 1. First verify orthonormality. For any i, j:

$$\langle \psi_i, \psi_j \rangle = \left\langle \frac{h_i}{\sqrt{|h_i|^2}}, \frac{h_j}{\sqrt{|h_j|^2}} \right\rangle$$

$$= \frac{1}{\sqrt{|h_i|^2 |h_j|^2}} \int_{-\infty}^{\infty} h_i(t) \overline{h_j(t)} dt$$

$$= \frac{\langle h_i, h_j \rangle}{\sqrt{|h_i|^2 |h_j|^2}} = \delta_{ij}$$
(12)

2. For completeness, show any $f \in \mathcal{H}$ can be expanded:

$$f(t) = \sum_{i} \langle f, \psi_i \rangle \, \psi_i(t) \tag{13}$$

3. This follows from completeness of $\{e_i\}$ in L^2 and the fact that h maps L^2 to \mathcal{H} .

Theorem 4

[Kernel Expansion] The kernel has the expansion:

$$K(t,s) = \sum_{i} h_i(t) h_i(s)$$
(14)

which converges in the RKHS norm.

Proof. 1. Start with normalized basis expansion:

$$K(t,s) = \sum_{i} |h_{i}|^{2} \psi_{i}(t) \psi_{i}(s)$$
(15)

2. Substitute normalized basis functions:

$$= \sum_{i} |h_{i}|^{2} \frac{h_{i}(t)}{\sqrt{|h_{i}|^{2}}} \frac{h_{i}(s)}{\sqrt{|h_{i}|^{2}}}$$

$$= \sum_{i} h_{i}(t) h_{i}(s)$$
(16)

3. Expand using convolution definition:

$$= \sum_{i} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(t+\tau_1) h(s+\tau_2) \overline{e_i(\tau_1)} e_i(\tau_2) d\tau_1 d\tau_2$$

$$(17)$$

4. By completeness of $\{e_i\}$:

$$= \int_{-\infty}^{\infty} h(t+\tau) \overline{h(s+\tau)} d\tau = K(t,s)$$

Corollary 5

[Basis Independence] The kernel expansion is independent of the choice of orthonormal basis $\{e_i\}$.

Proof. Let $\{e_i\}$ and $\{f_i\}$ be two orthonormal bases of $L^2(\mathbb{R})$. The expansions:

$$K(t,s) = \sum_{i} h_{i}^{e}(t) h_{i}^{e}(s)$$

$$K(t,s) = \sum_{i} h_{i}^{f}(t) h_{i}^{f}(s)$$
(18)

where superscripts indicate the basis used, must be equal as they both equal:

$$\int_{-\infty}^{\infty} h(t+\tau) \overline{h(s+\tau)} d\tau \tag{19}$$

by the Kernel Expansion Theorem, 4.

Bibliography

[1] Harald Cramér. A contribution to the theory of stochastic processes. *Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability*, 2:329–339, 1951.