# Understanding the Difference Between SPI and I2C Protocols in STM32 Microcontrollers.

## **SPI Serial Communication Protocol:**

**SPI (Serial Peripheral Interface)** is a synchronous, full-duplex communication protocol commonly used for short-distance communication. It operates using a master-slave architecture and employs four lines for communication: MOSI (Master Out Slave In), MISO (Master In Slave Out), SCLK (Serial Clock), and SS/CS (Slave Select/Chip Select). SPI allows for fast data transmission with low protocol overhead, making it suitable for applications requiring high-speed data exchange.

### **I2C Serial Communication Protocol:**

**I2C (Inter-Integrated Circuit)** is a synchronous, half-duplex communication protocol designed for communication between integrated circuits on a single board. It uses a simpler two-wire interface: SDA (Serial Data Line) and SCL (Serial Clock Line). I2C supports multiple devices on the same bus through unique addresses and includes built-in acknowledgment and error-checking mechanisms, ensuring reliable data transfer.

#### Differences Between SPI and I2C in STM32 Microcontrollers:

#### > Structure and Pins:

- **SPI** uses four wires (MOSI, MISO, SCLK, SS/CS) and supports full-duplex communication.
- **I2C** uses two wires (SDA, SCL) and supports half-duplex communication with built-in addressing and acknowledgment features.

# > Speed:

- **SPI** generally operates at higher speeds, suitable for applications needing fast data transfers.
- **I2C** supports multiple speed modes, from Standard (100 kbit/s) to High-Speed (3.4 Mbit/s), but typically operates slower than SPI due to protocol overhead.



| Parameters                         | I2C – Inter Integrated Circuit Bus {Philips-1982}                                          | SPI – Serial Peripheral Interface Bus (Motorola-1979)                                                                                                          |
|------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Numbers of Wires                   | <ul> <li>Only Two wires:</li> <li>SDA – Serial Data</li> <li>SCL – Serial Clock</li> </ul> | <ol> <li>Four Wire:</li> <li>MOSI – Master Out Slave In</li> <li>MISO – Master In Slave Out</li> <li>SCLK – Serial Clock</li> <li>SS – Slave Select</li> </ol> |
| Communication                      | ❖ Half Duplex                                                                              | ❖ Half Duplex / Full Duplex                                                                                                                                    |
| Configuration                      | Suitable for Multiple Master Multiple Slave                                                | Suitable for Single Master Multiple Slave                                                                                                                      |
| Speed                              | ❖ Slower {400Kbps Majority}                                                                | ❖ Faster {10Mbps Majority}                                                                                                                                     |
| Start & Stop bits                  | ❖ Required                                                                                 | ❖ Not required                                                                                                                                                 |
| Acknowledgment after data transfer | ❖ Required                                                                                 | ❖ Not required                                                                                                                                                 |
| Redundant data                     | ❖ Required {Start + Stop + Address}                                                        | ❖ Not required                                                                                                                                                 |
| Cost                               | ❖ Low cost {Only two wire configuration}                                                   | * Costly (Minimum Four wire configuration)                                                                                                                     |
| IO Constraint                      | ❖ Pull Resistor                                                                            | ❖ Not required                                                                                                                                                 |
| Addressing                         | ❖ 7 bits addressing                                                                        | ❖ Chip Select                                                                                                                                                  |
| Power consumption                  | ❖ Bit high {Pull Up resistor}                                                              | <b>♦</b> Low                                                                                                                                                   |
| Plug & Play                        | <b>❖</b> Yes                                                                               | * No                                                                                                                                                           |

# **Complexity and Scalability:**

- > **SPI** is simpler in terms of protocol but requires more pins and dedicated lines for each slave device.
- ➤ I2C is more complex due to its addressing and acknowledgment mechanisms but requires fewer pins and supports multiple devices on the same bus.

# **Advantages and Disadvantages:**

## SPI:

# > Advantages:

- High-speed data rates.
- Simpler protocol with lower overhead.

# Disadvantages:

- Requires more pins.
- No built-in acknowledgment, which can affect data integrity.

#### **12C:**

# > Advantages:

- Uses fewer pins.
- Supports multiple devices with unique addresses.

## Disadvantages:

- Slower due to protocol overhead.
- More complex protocol.

# **Applications:**

# **SPI Applications:**

- High-speed data communication with ADCs, DACs, SD cards, and displays.
- ➤ Applications requiring quick, continuous data streams and individual slave management.

# **I2C Applications:**

- Sensor interfacing, EEPROMs, RTCs, and other low-speed peripherals.
- ➤ Applications needing a shared bus for multiple devices, such as system management buses.

### **Preferred Protocol:**

- > **SPI** is preferred for high-speed applications where fast data transfer is crucial, and pin count is not a limitation.
- ➤ **I2C** is preferred for applications with multiple devices on the same bus, especially where pin count is a constraint.

#### **Conclusion:**

When choosing between SPI and I2C for STM32 microcontrollers, it is crucial to consider the specific requirements of your application. **SPI** offers high-speed communication with simpler protocol handling, making it ideal for applications demanding quick data transfers. On the other hand, **I2C** provides a versatile, multi-device communication platform with built-in data integrity checks, suitable for lower-speed peripherals and complex systems with multiple sensors.