Generalizing the Matrix Normal Distribution

- An application to spatio-temporal data

Karl Oskar Ekvall September 30, 2016

University of Minnesota

Outline

1. A motivating example

2. The matrix normal distribution

3. A generalization

4. Some (very) preliminary results

US Geological Survey

"Providing the scientific information needed by managers, decision makers, and the public to protect, enhance, and restore the ecosystems in the Upper Mississippi River Basin, the Midwest, and worldwide."

[Source: www.umesc.usgs.gov]

A motivating example

Data

- \bullet Average water temperature measurements from ~ 20 locations on the Mississippi river
- ullet Sampled quarterly for \sim 20 years

Spatial structure¹

¹Picture from USGS

Temporal structure

3 Seasons
$$Y_t = \begin{pmatrix} y_{1,1} & y_{1,2} & y_{1,3} \\ \vdots & \vdots & \vdots \\ y_{18,1} & y_{18,2} & y_{18,3} \end{pmatrix}, t = 1, \dots, 20$$

Data Excerpt

```
## # A tibble: 1,080 <U+00D7> 5
##
     location year season temp
                                 n
      <fctr> <int> <fctr> <dbl> <int>
##
## 1
         1:1 1994
                    SP 10.12000
                                 25
## 2
         1:2 1994
                     SP 10.62333 30
## 3
         1:3 1994 SP 12.32600 50
## 4
       1:4 1994
                    SP 11.08333 30
                                  25
## 5
       2:1 1994
                     SP 12.18000
## 6
         2:2 1994
                     SP 11.82333
                                  30
         2:3 1994
                     SP 12.95500
                                  60
## 7
         2:5 1994
## 8
                     SP 11.69600
                                  25
## 9
         2:6 1994
                     SP 15.41000
                                  10
## 10
         3:1 1994
                     SP 15.85000
                                 30
## # ... with 1,070 more rows
```

Based on communication with scientists:

• May assume data from different years are independent

- May assume data from different years are independent
- Within years, data from different seasons may or may not be independent

- May assume data from different years are independent
- Within years, data from different seasons may or may not be independent
- Strong dependence between measurements from different sampling locations taken within the same year

- May assume data from different years are independent
- Within years, data from different seasons may or may not be independent
- Strong dependence between measurements from different sampling locations taken within the same year
- Quiz:

- May assume data from different years are independent
- Within years, data from different seasons may or may not be independent
- Strong dependence between measurements from different sampling locations taken within the same year
- Quiz: Why may winter be less interesting than other seasons to model?

The matrix normal distribution

$$\mathbf{\textit{y}}_t := \text{vec}(\mathbf{\textit{Y}}_t) \stackrel{\textit{iid}}{\sim} \mathrm{N}_{54}(\text{vec}(\mathbf{\textit{M}}), \mathbf{\textit{V}} \otimes \mathbf{\textit{U}})$$

$$\mathbf{\textit{y}}_t := \text{vec}(\mathbf{\textit{Y}}_t) \stackrel{\textit{iid}}{\sim} \mathrm{N}_{54}(\text{vec}(\mathbf{\textit{M}}), \mathbf{\textit{V}} \otimes \mathbf{\textit{U}})$$

• Restriction: $cov(y_{i,j}, y_{i',j'}) = U_{i,i'} V_{j,j'}$

$$oldsymbol{y}_t := extsf{vec}(oldsymbol{Y}_t) \stackrel{\textit{iid}}{\sim} extsf{N}_{54}(extsf{vec}(oldsymbol{M}), oldsymbol{V} \otimes oldsymbol{U})$$

- Restriction: $cov(y_{i,j},y_{i',j'}) = \boldsymbol{U}_{i,i'}\boldsymbol{V}_{j,j'}$
- Gain: 3(3+1)/2 + 18(18+1)/2 = 176 instead of 18(18+1)/2 = 1485 parameters

$$oldsymbol{y}_t := extsf{vec}(oldsymbol{Y}_t) \stackrel{\textit{iid}}{\sim} extsf{N}_{54}(extsf{vec}(oldsymbol{M}), oldsymbol{V} \otimes oldsymbol{U})$$

- Restriction: $cov(y_{i,j}, y_{i',j'}) = \boldsymbol{U}_{i,i'} \boldsymbol{V}_{j,j'}$
- Gain: 3(3+1)/2 + 18(18+1)/2 = 176 instead of 18(18+1)/2 = 1485 parameters
- MLE: Everything is fine as long as $n \ge 18/3 + 3/18 + 1 \approx 8$ [Soloveychik and Trushin, 2016]

Assumptions: All locations the same?

Assumptions: All seasons the same?

A generalization

$${\color{red} \Sigma}_{54 imes54} = {\color{red} C}_{54 imes54} ({\color{red} A} \otimes {\color{red} B}_{18 imes18})_{54 imes54} {\color{red} C}$$

where $\boldsymbol{C} = \text{diag}(1/\theta_1, \dots, 1/\theta_{54})$ and $\boldsymbol{A}, \boldsymbol{B}$ are correlation matrices.

$$\mathop{\boldsymbol{\varSigma}}_{54\times54} = \mathop{\boldsymbol{C}}_{54\times54} (\mathop{\boldsymbol{A}}_{3\times3} \otimes \mathop{\boldsymbol{B}}_{18\times18}) \mathop{\boldsymbol{C}}_{54\times54}$$

where $\boldsymbol{C} = \text{diag}(1/\theta_1, \dots, 1/\theta_{54})$ and $\boldsymbol{A}, \boldsymbol{B}$ are correlation matrices.

Properties:

Complete variance heterogeneity

$${\color{red} \Sigma}_{54 imes54} = {\color{red} C}_{54 imes54} ({\color{red} A} \otimes {\color{red} B}_{18 imes18})_{54 imes54} {\color{red} C}$$

where $\boldsymbol{C} = \text{diag}(1/\theta_1, \dots, 1/\theta_{54})$ and $\boldsymbol{A}, \boldsymbol{B}$ are correlation matrices.

Properties:

- Complete variance heterogeneity
- Same correlation structure as matrix normal

$${\color{red} \Sigma}_{54 imes54} = {\color{red} C}_{54 imes54} ({\color{red} A} \otimes {\color{red} B}_{18 imes18})_{54 imes54} {\color{red} C}$$

where $\boldsymbol{C} = \text{diag}(1/\theta_1, \dots, 1/\theta_{54})$ and $\boldsymbol{A}, \boldsymbol{B}$ are correlation matrices.

Properties:

- Complete variance heterogeneity
- Same correlation structure as matrix normal
- Requires rc r c + 1 = 54 18 3 + 1 = 34 more parameters

$${\color{red} \Sigma}_{54 imes54} = {\color{red} C}_{54 imes54} ({\color{red} A} \otimes {\color{red} B}_{18 imes18})_{54 imes54} {\color{red} C}$$

where $\boldsymbol{C} = \text{diag}(1/\theta_1, \dots, 1/\theta_{54})$ and $\boldsymbol{A}, \boldsymbol{B}$ are correlation matrices.

Properties:

- Complete variance heterogeneity
- Same correlation structure as matrix normal
- Requires rc r c + 1 = 54 18 3 + 1 = 34 more parameters
- Still $\mathcal{O}(r^2+c^2)$, as $(r,c) \to (\infty,\infty)$, compared to $\mathcal{O}(r^2c^2)$ for a general structure

 The likelihood is not convex in general but could still have unique global maximum

- The likelihood is not convex in general but could still have unique global maximum
- The negative log likelihood for the matrix normal is geodesically convex; it's not obvious whether this is also true for our model

- The likelihood is not convex in general but could still have unique global maximum
- The negative log likelihood for the matrix normal is geodesically convex; it's not obvious whether this is also true for our model
- We propose a blockwise coordinate descent algorithm

- The likelihood is not convex in general but could still have unique global maximum
- The negative log likelihood for the matrix normal is geodesically convex; it's not obvious whether this is also true for our model
- We propose a blockwise coordinate descent algorithm
- Every update is convex and in closed form

Algorithm

```
1: Initialize A^0, B^0, C^0, k = 0
  2: repeat
             Set \mathbf{A}^{k+1} to the solution of \nabla_{\mathbf{A}^{-1}}\ell(\mathbf{A},\mathbf{B}^k,\mathbf{C}^k)=0
 3:
             Set \mathbf{B}^{k+1} to the solution of \nabla_{\mathbf{R}^{-1}}\ell(\mathbf{A}^{k+1},\mathbf{B},\mathbf{C}^k)=0
  4:
            Rescale \mathbf{A}^{k+1}, \mathbf{B}^{k+1} and \mathbf{C}^k to satisfy constraints
 5:
       for i = 1, \ldots, m do
 6:
                   Set \theta_i to the solution of
       \nabla_{\theta_i} \ell(\mathbf{A}^{k+1}, \mathbf{B}^{k+1}, \theta_1^{k+1}, \dots, \theta_{i-1}^{k+1}, \theta_i, \theta_{i+1}^k, \dots, \theta_m^k) = 0
             end for
  8:
 9: k \leftarrow k + 1
10: until |\ell^{k} - \ell^{k-1}| < \epsilon
```

Some (very) preliminary results

Estimates: Both methods the same?

Estimates: Both methods the same?

Some observations and things to do

• LRT rejects the Matrix Normal in our example $(p \approx 10^{-5})$

Some observations and things to do

- LRT rejects the Matrix Normal in our example $(p \approx 10^{-5})$
- Simulations indicate LRT has correct size for $n \approx 50$

Some observations and things to do

- ullet LRT rejects the Matrix Normal in our example $(p pprox 10^{-5})$
- Simulations indicate LRT has correct size for $n \approx 50$
- It is unknown when MLE of Σ exists and is unique $(n > r^2c^2 + p \text{ suffices})$

Thank You!

References

Soloveychik, I. and Trushin, D. (2016).

Gaussian and robust Kronecker product covariance estimation: Existence and uniqueness.

Journal of Multivariate Analysis, 149:92 – 113.