Some basic derivatives:

f(x)	f'(x)	f(x)	f'(x)
$ x^n $	nx^{n-1}	e^x	e^x
$\ln(x)$	1/x	$\sin(x)$	$\cos(x)$
$\cos(x)$	$-\sin(x)$	$\tan(x)$	$\sec^2(x)$
$\cot(x)$	$-\csc^2(x)$	sec(x)	$\sec(x)\tan(x)$
$ \csc(x)$	$-\csc(x)\cot(x)$	$\tan^{-1}(x)$	$1/(1+x^2)$
$\sin^{-1}(x)$	$1/\sqrt{1-x^2} \text{ for } x <1$	$\cos^{-1}(x)$	$-1/\sqrt{1-x^2} \text{ for } x <1$
$\ \sinh(x) \ $	$\cosh(x)$	$\cosh(x)$	$\sinh(x)$
$\ \tanh(x) \ $	$\operatorname{sech}^2(x)$	$\coth(x)$	$-\operatorname{cosech}^2(x)$
$\operatorname{sech}(x)$	$-\mathrm{sech}(x)\tanh(x)$	$\operatorname{cosech}(x)$	$-\operatorname{cosech}(x)\operatorname{coth}(x)$
$\ \sinh^{-1}(x) \ $	$1/\sqrt{x^2+1}$	$\cosh^{-1}(x)$	$1/\sqrt{x^2-1} \text{ for } x>1$
	$1/(1-x^2) \text{ for } x < 1$	$\coth^{-1}(x)$	$-1/(x^2-1)$ for $ x >1$

Basic rules for differentiation and integration:

• $\frac{\mathrm{d}}{\mathrm{d}x}\left(f(x) + g(x)\right) = \frac{\mathrm{d}}{\mathrm{d}x}f(x) + \frac{\mathrm{d}}{\mathrm{d}x}g(x) = f'(x) + g'(x)$

derivative of a sum

• $\frac{\mathrm{d}}{\mathrm{d}x}\left(cf(x)\right) = c\frac{\mathrm{d}}{\mathrm{d}x}f(x) = cf'(x)$

derivative with a constant factor

- $\frac{\mathrm{d}}{\mathrm{d}x}\left(f(x)g(x)\right) = f(x)g'(x) + f'(x)g(x)$ derivative of a product "first times derivative of second plus second times derivative of first"
- $\frac{\mathrm{d}}{\mathrm{d}x} \frac{f(x)}{g(x)} = \frac{g(x)f'(x) f(x)g'(x)}{g^2(x)}$

 $derivative\ of\ a\ quotient$

"bottom times derivative of top minus top times derivative of bottom, over bottom squared"

- $\frac{\mathrm{d}}{\mathrm{d}x} f \big(g(x) \big) = f' \big(g(x) \big) g'(x)$ chain rule, or function of a function rule "derivative of the outer function times derivative of the inner function"
- $\frac{\mathrm{d}}{\mathrm{d}x} f(ax+b) = af'(ax+b)$

special case of the chain rule

• $\int f'(ax+b) dx = \frac{1}{a}f(ax+b) + C$

integral of a function of a linear function

• $\int f'(g(x))g'(x) dx = f(g(x)) + C$

integral of a chain-rule derivative

• $\int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx$

integral of a sum

• $\int cf(x) dx = c \int f(x) dx$

integral with a constant factor

• $\int f(x)g'(x) dx = f(x)g(x) - \int f'(x)g(x) dx$

integration by parts

"one part times integral of other, minus integral of derivative of the one times integral of other"

Some basic integrals:

f(x)	$\int f(x) \mathrm{d}x$
e^x	$e^x + C$
x^n for $n \neq -1$	$\frac{x^{n+1}}{n+1} + C$
$1/x$ for $x \neq 0$	$\ln x + C$
a^x or $e^{x \ln(a)}$ for $a \neq 1$, $a > 0$	$\frac{a^x}{\ln(a)} + C$
e^{ax} for $a \neq 0$	$\frac{e^{ax}}{a} + C$
$\cos(ax) \text{for } a \neq 0$	$\frac{1}{a}\sin(ax) + C$
$\sin(ax) \text{for } a \neq 0$	$-\frac{1}{a}\cos(ax) + C$
$\frac{1}{x^2 + a^2} \text{for } a \neq 0$	$\frac{1}{a}\tan^{-1}(x/a) + C$
$\frac{1}{a^2 - x^2}$ for $ x < a $, $a \neq 0$	$\frac{1}{a}\tanh^{-1}(x/a) + C$
$\frac{1}{x^2 - a^2}$ for $ x > a $, $a \neq 0$	$-\frac{1}{a}\coth^{-1}(x/a) + C$
$\frac{1}{x^2 - a^2} \text{ for } x \neq a , \ a \neq 0$	$\left \frac{1}{2a} \ln \left \frac{x-a}{x+a} \right + C \right $
$\frac{1}{\sqrt{x^2 + a^2}} \text{ for } a \neq 0$	$\sinh^{-1}(x/a) + C$
$\frac{1}{\sqrt{a^2 - x^2}}$ for $ x < a, a > 0$	$\sin^{-1}(x/a) + C$
$\frac{1}{\sqrt{x^2 - a^2}}$ for $x > a$, $a > 0$	$\cosh^{-1}(x/a) + C$
$\frac{1}{\sqrt{x^2 - a^2}}$ for $x < -a$, $a > 0$	$-\cosh^{-1}(-x/a) + C$

substitution:

$$\int f(x) dx = \int f(x(u)) \frac{dx}{du} du$$

$$\int_{a}^{b} f(x) dx = \int_{u(a)}^{u(b)} f(x(u)) \frac{dx}{du} du$$
indefinite integral
$$definite integral$$

integration by parts:

$$\int f(x)g'(x) dx = f(x)g(x) - \int f'(x)g(x) dx$$
 indefinite integral
$$\int_a^b f(x)g'(x) dx = \left[f(x)g(x)\right]_a^b - \int_a^b f'(x)g(x) dx$$
 definite integral