Math 71: Algebra Fall 2022

PSET 4 — 2022-11-11

Prof. Voight Student: Amittai Siavava

Credit Statement

I worked on these problems alone, with reference to class notes and the following books:

- (a) Abstract Algebra by David S. Dummit & Richard M. Foote.
- (b) Algebra by Jacob K. Goldhaber & Gertrude Ehrlich

Problems

- **1.** Let $H := \{\epsilon, (12)(34), (13)(24), (14)(23)\} \subset S_4$.
 - (a) Show that H is a subgroup of S_4 and that H is isomorphic to $D_4 = \{1, r, s, sr\}$.

Let's name the components of H, such that $a = \epsilon$, $b = (1\ 2)(3\ 4)$, $c = (1\ 3)(2\ 4)$, and $d = (1\ 4)(2\ 3)$. For H to be a subgroup, it needs to:

(a) Contain the identity element.

This is trivial to prove, since ϵ is in H.

(b) Be closed under inversion.

All members of H aside from the identity have cycles of order 2. This makes each element its own inverse, since applying a two-cycle twice is the identity.

(c) Be closed under composition.

$$bc = (1\ 2)(3\ 4) \circ (1\ 3)(2\ 4) = (1\ 4)(2\ 3) = d$$

$$bd = (1\ 2)(3\ 4) \circ (1\ 4)(2\ 3) = (1\ 3)(2\ 4) = c$$

$$cb = (1\ 3)(2\ 4) \circ (1\ 2)(3\ 4) = (1\ 4)(2\ 3) = d$$

$$cd = (1\ 3)(2\ 4) \circ (1\ 4)(2\ 3) = (1\ 2)(3\ 4) = b$$

$$db = (1\ 4)(2\ 3) \circ (1\ 2)(3\ 4) = (1\ 3)(2\ 4) = c$$

$$dc = (1\ 4)(2\ 3) \circ (1\ 3)(2\ 4) = (1\ 2)(3\ 4) = b$$

Cayley Table:

Now, we need to show that H is isomorphic to D_4 . First, H and D_4 have the same order, since $|H| = |D_4| = 4$. Looking at H under composition, we see that every element is its own inverse, and $H = \{\epsilon, b, c, cb\}$ where $b = (1\ 2)(3\ 4), c = (1\ 3)(2\ 4)$, and $bc = d = (1\ 4)(2\ 3)$.

Possible isomorphism:

$$\phi: H \to D_4$$

$$\epsilon \mapsto 1$$

$$b \mapsto r$$

$$c \mapsto s$$

Then,
$$\phi(cb) = \phi(c) \cdot \phi(b) = s \cdot r = sr = \phi(d)$$
.

(b) What are the left cosets of H in S_4 ? How many are there, and how many elements are in each coset? Write each coset in the form xH for some $x \in S_4$.

 $|H|=4 \text{ and } |S_4|=4!=24. \text{ Therefore, } H \text{ has a total of 5 left cosets in } S_4. \text{ Each coset has 4 elements.}$ $\epsilon \circ H=H=\{\epsilon,(1\,2)(3\,4),(1\,3)(2\,4),(1\,4)(2\,3)\}$ $(1\,2)\circ H=\{(1\,2),(3\,4),(1\,3\,2\,4),(1\,4\,2\,3)\}$ $(1\,3)\circ H=\{(1\,3),(1\,2\,3\,4),(2\,4),(1\,4\,3\,2)\}$ $(1\,4)\circ H=\{(1\,4),(1\,2\,4\,3),(1\,3\,4\,2),(2\,3)\}$ $(1\,2\,3)\circ H=\{(1\,2\,3),(1\,3\,4),(2\,4\,3),(1\,4\,2)\}$ $(1\,2\,4)\circ H=\{(1\,2\,4),(1\,4\,3),(1\,3\,2),(2\,3\,4)\}$

(c) Show that $H \subseteq S_4$ is normal. [Hint: the cycle type is preserved under conjugation!]

For H to be normal, It must hold that $hxh^{-1} = x$ for all $x \in S_4$ and $h \in H$. This condition is valid for all elements that have cycles of even order. Since all elements in H have cycles of order 2, this condition is valid for all elements in H, and H is normal.

(d) Show that $S_4/H \simeq S_3$. [Hint: choose good representatives of the cosets.]

Choosing the coset representatives ϵ , $(1\,2)$, $(1\,3)$, $(2\,3)$, $(1\,2\,3)$, $(1\,3\,2)$, We can interpret S_4/H as the set of permutations of S_4 that fix the element 4, i.e the stabilizers of 4. This is homomorphic to S_3 (if we disconsidered the element 4 altogether).

$$S_3 = \{\epsilon, (1\ 2), (1\ 3), (2\ 3), (1\ 2\ 3), (1\ 3\ 2)\}$$

$$S_4/H = \{\epsilon, (1\,2), (1\,3), (2\,3), (1\,2\,3), (1\,3\,2)\}$$

The group H is denoted V_4 and called the *Klein four-group* (*Vierergruppe* in German, hence the label).

2. (DF 3.2.6-3.2.16)

(a) Prove that if $H, K \leq G$ are finite subgroups of a group G whose orders are relatively prime, then $H \cap K = \{1\}$.

Since H and K are finite subgroups of G, $H\cap K$ is also a finite subgroup of G, H, and K. By the Lagrange theorem, we know that $|H\cap K|$ divides |H| and $|H\cap K|$ divides |K|. Since |H|, |K| are relatively prime, $|H\cap K|$ must equal 1, and $H\cap K$ must be the trivial subgroup.

(b) Let $n \in \mathbb{Z}_{\geq 1}$. Use Lagrange's theorem applied to the group $(\mathbb{Z}/n\mathbb{Z})^{\times}$ to prove *Euler's theorem*: $a^{\phi(n)} \equiv 1 \pmod{n}$ for all $a \in \mathbb{Z}$ with $\gcd(a, n) = 1$. Conclude *Fermat's little theorem*: if p is a prime, then $a^{p-1} \equiv 1 \pmod{p}$ for all $a \in \mathbb{Z}$ with $\gcd(a, p) = 1$.

We know $|(\mathbb{Z}/n\mathbb{Z})^{\times}| = \phi(n)$.

Let $a \in (\mathbb{Z}/n\mathbb{Z})$. Given $a \in (\mathbb{Z}/n\mathbb{Z})^{\times}$, we know that $\mathbf{gcd}(a, n) = 1$.

If we consider the subgroup $\langle a \rangle$ generated by a, Lagrange's theorem tells us that its order must divide the order of $(\mathbb{Z}/n\mathbb{Z})^{\times}$, which is equal to $\phi(n)$.

Thus, |a| divides $\phi(n)$, and we can write $\phi(n)$ as x|a| for some $x \in \mathbb{Z}$. We also know that $a^{|a|} \equiv 1 \pmod{n}$. Using this, we can simplify $a^{\phi(n)}$:

$$a^{\phi(n)} = a^{x|a|}$$

$$= (a^{|a|})^x$$

$$= 1^x \pmod{n}$$

$$= 1 \pmod{n}$$

Suppose p is prime number, we have the special case that $\phi(p)=p-1$, in which case $a^{p-1}\equiv 1\pmod p$ for all numbers coprime with p — which is every other number in $\mathbb Z$ that is not p.

3. (DF 3.1.36)

Let G be a group.

(a) Show that the center Z(G) is a normal subgroup of G.

Since Z(G) is the center of G, every member $z \in Z(G)$ commutes with every other element of G. Let's pick one element $g \in G$ and write $gZ(G) = \{gz: z \in Z(G)\}$ and $Z(G)g = \{zg: z \in Z(G)\}$. Since every member of Z(G) commutes with every member of G, gZ(G) = Z(G)g, and the subgroup Z(G) is normal.

(b) Show that if G/Z(G) is cyclic, then G is abelian. [Hint: if $G/Z(G) = \langle xZ(G) \rangle$, show that every element of G can be written in the form $x^r z$ for some $r \in \mathbb{Z}$ and some $z \in Z(G)$.]

Given that $G/Z(G) = \langle xZ(G) \rangle$ for some $x \in G$. Since the left cosets of Z(G) partition G, then every $g \in G$ can be written as a product of an element of Z(G) and an element of $G/Z(G) = \langle xZ(G) \rangle$. Taking $x^r z_1$ as the coset representative with $r \in \mathbb{Z}$, and the corresponding $z_2 \in Z(G)$ we can write $g = (x^r z_1)z_2$. However, since Z(G) is a closed group, $z_1z_2 = z \in Z(G)$, so $g = x^r z$ for some $z \in Z(G)$.

4. (sorta DF 3.1.40-41)

Let G be a group and $N \subseteq G$ be a normal subgroup.

(a) Show that if G is abelian, then G/N is abelian.

We know each element of G/N is a coset gN for some $g \in G$. Let's take two such elements, xN and yN. Then we can see that $xN \cdot yN = yN \cdot xN$, and G/N is abelian:

$$xN \cdot yN = xy \cdot N$$

= $yx \cdot N$ (Since G is Abelian)
= $yN \cdot xN$

(b) Show that G/N is abelian if and only if $aba^{-1}b^{-1} \in N$ for all $a, b \in G$. An element of G of the form $aba^{-1}b^{-1}$ is called a *commutator*.

If G/N is abelian, then G is abelian. Let's take two elements $a, b \in G$.

Suppose $aba^{-1}b^{-1} \notin N$. Then:

$$aba^{-1}b^{-1} = a \cdot (ba^{-1}) \cdot b^{-1}$$

$$= a \cdot (a^{-1}b) \cdot b^{-1} \qquad \text{(Since G is Abelian)}$$

$$= aa^{-1} \cdot bb^{-1}$$

$$= 1 \cdot 1$$

$$= 1 \in N$$

This clearly contradicts the assumption that $aba^{-1}b^{-1} \notin N$. Therefore, if G/N is abelian, then $aba^{-1}b^{-1} \in N$ for all $a,b \in G$.

(c) Let $H := \langle aba^{-1}b^{-1} : a,b \in G \rangle$ be the subgroup of G generated by commutators, called the *commutator* subgroup of G. Show that $H \subseteq G$ is a normal subgroup of G and that G/H is abelian. [Hint: it is enough to check that the conjugate of a commutator is a commutator.]

Let $h \in H$. Then $h = aba^{-1}b^{-1}$ for some $a, b \in G$. Let $g \in G$. Then:

$$ghg^{-1} = g \cdot h \cdot g^{-1}$$
$$= (h \cdot h^{-1}) \cdot g \cdot h \cdot g^{-1}$$
$$= h \cdot (h^{-1}ghg^{-1})$$

It is straightforward to see that $h^{-1}ghg^{-1}$ is a commutator. Since we took h from the commutator subgroup, the product of h and $h^{-1}ghg^{-1}$ must also be in the commutator subgroup. Therefore, $ghg^{-1} \in H$ for all $h \in H$, $g \in G$, and G/H is abelian.

5. (DF 3.2.13–14)

(a) Fix any labelling of the vertices of a square. Use this to identify D_8 as a subgroup of S_4 via its action on vertices. Prove that the elements of D_8 and $\langle (1\,2\,3) \rangle$ do not commute in S_4 .

$$D_8 = \{1, r, r^2, r^3, s, sr, sr^2, sr^3\}$$

Let's fix the edges of the square to be labelled 1, 2, 3, 4 clockwise from the top-left corner. Then, we can identify D_8 as a subgroup of S_4 via its action on vertices.

$$D_8 := \{ \epsilon, (1432), (13)(24), (1234), (14)(23), (24), (12)(34), (13) \}$$

(b) Prove that S_4 does not have a normal subgroup of order 8.

Suppose there exists a normal subgroup $N \leq S_4$ of order 8. Then, the quotient group $S_4/N \cong C_3$ is abelian, which implies that N contains the commutator subgroup of S_4 , which is A_4 . So, $A_4 \in N$. However, $|A_4| = 12$ and |N| = 8, so $A_4 \notin N$. This contradiction shows that there cannot exist a normal subgroup of order 8 in S_4 .