In [2]: al

A data.frame: 4 × 3

y gender faith

<dbl></dbl>	<fct></fct>	<fct></fct>
435	F	1
147	F	0
375	М	1
134	М	0

In [4]: model.matrix(mod.0)

A matrix: 4×3 of type dbl

	(Intercept)	genderM	faith1
1	1	0	1
2	1	0	0
3	1	1	1
4	1	1	0

In [5]: mod.0

Call: $glm(formula = y \sim gender + faith, family = poisson, data = al)$

Coefficients:

(Intercept) genderM faith1 5.010 -0.134 1.059

Degrees of Freedom: 3 Total (i.e. Null); 1 Residual

Null Deviance: 272.7

Residual Deviance: 0.162 AIC: 35.41

In [6]: fitted(mod.0)

1: 432.098991750688 **2:** 149.901008249313 **3:** 377.901008249313 **4:** 131.098991750688

El ajuste parece ser bastante cercano, y sería algo sorprendente si un modelo con interacciones entre creencia y género tuviera resultados significativamente mejores.

Sin embargo, tal modelo podría ser:

$$\eta_i = log(\mu_i) = ilde{n} + ilde{\gamma}_k + ilde{lpha}_j + ilde{\zeta}_{kj}$$

Si y_i es la observacion asociada al genero k y creencia j, donde $\tilde{\zeta}_{kj}$ es el parametro de interaccion.

El modelo completo se ve de la siguient forma:

$$\begin{pmatrix} \eta_1 \\ \eta_2 \\ \eta_3 \\ \eta_4 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \hat{\eta} \\ \hat{\gamma}_1 \\ \hat{\gamma}_2 \\ \hat{\alpha}_1 \\ \hat{\alpha}_2 \\ \tilde{\zeta}_{11} \\ \tilde{\zeta}_{12} \\ \tilde{\zeta}_{21} \\ \tilde{\zeta}_{22} \end{pmatrix}$$

Reduciendose a un modelo identificable

$$\begin{pmatrix} \eta_1 \\ \eta_2 \\ \eta_3 \\ \eta_4 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} \hat{\eta} \\ \hat{\gamma}_1 \\ \hat{\gamma}_2 \\ \hat{\alpha}_1 \\ \hat{\alpha}_2 \\ \tilde{\zeta}_{22} \end{pmatrix}$$

In [8]: model.matrix(mod.1)

A matrix: 4 × 4 of type dbl

	(Intercept)	genderM	faith1	genderM:faith1
1	1	0	1	0
2	1	0	0	0
3	1	1	1	1
4	1	1	0	0

```
Call: glm(formula = y \sim gender * faith, family = poisson, data = al)
```

Coefficients:

(Intercept) genderM faith1 genderM:faith1 4.99043 -0.09259 1.08491 -0.05583

Degrees of Freedom: 3 Total (i.e. Null); 0 Residual

Null Deviance: 272.7

Residual Deviance: 1.51e-14 AIC: 37.25

Para probar si existe evidencia de una interacción entre género y creencia, la hipótesis nula de que mod.0 es correcto se compara con la alternativa más general de que mod.1 es correcto, utilizando un análisis de devianza

A anova: 2 × 5

	Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	1	1.619951e-01	NA	NA	NA
2	0	1.509903e-14	1	0.1619951	0.6873263

Un valor p de 0,69 sugiere que no hay evidencia para rechazar el modelo 0 y la hipótesis de no asociación entre género y creencia en el más allá.

Finalmente, observe que los valores ajustados para mod.0 tenían la extraña propiedad de que, aunque los valores ajustados y los datos originales son diferentes, el número total de hombres y mujeres se conserva entre los datos y los valores ajustados, al igual que el número total de creyentes y no creyentes.

Esto se debe al hecho de que el enlace logarítmico es canónico para la distribución de Poisson, por lo que $X^Ty=X^T\mu$