

Supervised: Ingredients

Outline

What's a good model?

Bias and Variance

Metrics

Model Tuning

A good model

A good fit vs a good model

A good fit vs a good model

A good fit vs a good model

What's the problem?

How can we solve it?

Good fit vs Good Prediction

How can check the prediction power of a model?

In-sample vs out sample error

Bias vs Variance

Bias and Variance

Which one do we care more about?

What do they depend on?

How can we reduce them?

Bias and Variance: more detail

$$\mathcal{L}(Y, \overline{Y}) = \sum_{i} \left(Y^{i} - f_{w}(X^{i}) \right)^{2}$$

This depends on the Data.

$$\mathcal{L}_{D_i}(Y, \overline{Y})$$

$$\mathbb{E}_D[\mathcal{L}(Y, \overline{Y})]$$

Mehta, Pankaj, et al. "A high-bias, low-variance introduction to machine learning for physicists." Physics Reports (2019).

Bias and Variance: more detail

$$\mathbb{E}_D[\mathcal{L}(Y, \overline{Y})]$$

$$=\sum_{i}\mathbb{E}_{D}\left(Y^{i}\right)$$

$$= \left[\sum_{i} \left(Y^{i} - \mathbb{E}_{D} \left(f_{w}(X^{i}) \right) \right)^{2} \right] + \frac{1}{2}$$
Bias^2

$$-f_w(X^i)$$

$$= \underbrace{\sum_{i} \left(Y^{i} - \mathbb{E}_{D} \left(f_{w}(X^{i}) \right) \right)^{2}}_{i} + \underbrace{\sum_{i} \mathbb{E}_{D} \left(\mathbb{E}_{D} \left(f_{w}(X^{i}) \right) - f_{w}(X^{i}) \right)^{2}}_{Variance}$$

Mehta, Pankaj, et al. "A high-bias, low-variance introduction to machine learning for physicists." Physics Reports (2019).

For a good model

$$\mathbb{E}_D[\mathcal{L}(Y, \overline{Y})]$$

$$= \underbrace{\sum_{i} \left(Y^{i} - \mathbb{E}_{D} \left(f_{w}(X^{i}) \right) \right)^{2}}_{\text{Bias}^{2}} + \underbrace{\sum_{i} \mathbb{E}_{D} \left(\mathbb{E}_{D} \left(f_{w}(X^{i}) \right) - f_{w}(X^{i}) \right)^{2}}_{\text{Variance}}$$

Overfitting and Underfitting

Overfitting and Underfitting

Higher order

High-variance Overfitting How can we reduce bias?

How can we reduce variance?

Training Data

In-sample error

Out-sample error

Check the code!

Validation curve

How much complexity?

How much data?

Do we have enough data?

Learning curve

Regularization

Regularization

$$\mathcal{L}(Y,\bar{Y}) = \sum_{i} \left(Y^{i} - f_{w}(X^{i}) \right)^{2} + \alpha \| \boldsymbol{w} \|_{\boldsymbol{l}}$$

L2:
$$||w||_2 = \sum_i w_i^2$$

L1:
$$||w||_1 = \sum_i |w_i|$$

See the code!

Model Selection and Model tuning

Objectives

Primary objectives

- Not over-fitting
- Not under-fitting

Secondary objectives

- Fast enough
- Robustness
- ...

Different models

Validation data

Cross-Validation (Only train and test)

Cross-Validation:

How can we do it with train, val and test?

Data

Hyper-parameter tuning: grid search

Hyper-parameter tuning: Random search

Hyper-parameter tuning: Using a secondary model

Metrics

Metric for model evaluation

Metrics could be different from the loss function.

Example: Regression

$$\mathcal{L}(Y, \overline{Y}) = \sum_{i} (Y^{i} - \overline{Y^{i}})^{2}$$

$$M(Y, \overline{Y}) = \frac{\sum_{i} (Y^{i} - \overline{Y^{i}})^{2}}{\operatorname{Var}(Y)}$$

Metric often should reflect our objective.

Classification

Accuracy

Example: Asymmetric Classification

- Difference in population (imbalanced data)
 - Example: 100 to 1=> A const. clf would give 99% accuracy

- Difference in importance
 - Example: Covid positive cases, entangled states

Example: Asymmetric Classification

Let's set * as the reference class.

high precision: Great confidence in our classification

High accuracy

High sensitivity (recall) Captures all the cases, although not precise.

Confusion Matrix

Positive (e.g. has covid, is entangled)

Negative

	Predicted Label		
		Positive	Negative
Real label	Positive		
	Negative		

Confusion Matrix

Positive (e.g. has covid, is entangled)

Negative

	Predicted Label		
		Positive	Negative
Real label	Positive	True Pos	False Neg
	Negative	False Pos	True Neg

Precision & Recall

	Predicted Label		
		Positive	Negative
Real label	Positive	True Pos	False Neg
	Negative	False Pos	True Neg

Precision:
$$\frac{TP}{TP+FP}$$

Precision & Recall

	Predicted Label		
		Positive	Negative
Real label	Positive	True Pos	False Neg
	Negative	False Pos	True Neg

Precision:
$$\frac{TP}{TP+FP}$$

Recall:
$$\frac{TP}{TP+FN}$$

$$F_1$$
 Score: $\frac{2 \text{ Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$

Tuning the Threshold of decision function

Tuning the Threshold of decision function

Tuning the Threshold of decision function

How can we tune/improve these metrics?

• Imbalanced data (see the example in the code)

Recap

Supervised: Ingredients

Code


```
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X , Y, random_state=0)
```

Code


```
from sklearn.linear_model import SGDClassifier

clf = SGDClassifier()
clf.fit(X_train, Y_train)
```

```
y_predict = clf.predict(X_test)
error = np.abs(Y_test - y_predict).sum() / len(Y_test)
```

Code: full pipeline

```
from sklearn.model selection import train test split
X train, X test, Y train, Y test = train test split(X , Y, random state=0)
from sklearn.linear model import SGDClassifier
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler, PolynomialFeatures
### Training the model
clf pipeline= Pipeline([('scaler', StandardScaler() ),
                        ('p transformer', PolynomialFeatures(degree = 3)),
                        ('clf', SGDClassifier())])
clf pipeline.fit(X train, Y train)
### Testing the model
y predict = clf pipeline.predict(X test)
out error = np.abs(Y test - y predict).sum() / len(Y test)
in error = np.abs(Y train - clf pipeline.predict(X train) ).sum() / len(Y train)
```