

Electrotecnia

Trabajo Práctico Nº 4 Medición de Potencia Trifásica Método de Aarón

2021

Objetivos:

- Medir la potencia trifásica mediante el método de los dos vatímetros (Método de Aarón).
- Determinar las potencias trifásicas para cargas equilibradas y desequilibradas.-
- Realizar Informe del Ensayo.-

Consignas:

- El alumno debe presentar el trabajo impreso de la siguiente manera:
- o Carátula con los datos del alumno y del grupo.
- Informe del Ensayo con los siguientes puntos:
 - a. Objetivo de la Práctica.
 - b. Fundamento Teórico.
 - c. Circuito utilizado.
 - d. Perspectiva del circuito con los instrumentos empleados.
 - e. Características de los instrumentos y/o elementos.
 - f. Maniobra Operativa.
 - g. Tabla de Valores Obtenidos.
 - h. Representación gráfica de los valores obtenidos.
 - i. Aplicaciones.
 - j. Precauciones a tener en cuenta.
 - k. Normas a consultar.
 - I. Síntesis y Conclusiones.

APELLIDO Y NOMBRE:
APROBACIÓN:
FIRMA:
FECHA:

ELECTROTECNIATrabajo Práctico N° 4: *Medición de Potencia Trifásica. Método de Aarón*

Laboratorio Experimental 2021
Alumno:
Comisión:
Grupo:

ASI	GNATURA:	SO:	SEMESTRE:							
ELEC	CTROTECNIA			3°		5°				
)		NOMBRE Y APELLIDO:								
ALUMNO										
	FOTO	Legajo N°:	ESPECIALIDAD:		AÑO:	GRUPO N°:				
A			ING. INDUSTRIAL		2021					
	Prof. Tit.	Ing. Alejandr	o FARA		<u>l</u>					
S	J.T.P.	Ing. José COF	RBACHO							
DOCENTES	J.T.P.	Ing. Orlando	ROMERO							
CEI	J.T.P.	Ing. David M								
oa	Ayte Ad Honorem									
			DENO	MINACI	ÓN DEL PRÁ	СТІСО:				
	BAJO PRÁCTICO DE	4	Medición de Potencia Trifásica Método de Aarón							
L	ABORATORIO N°	7	OBJETIVOS:							
			Ver carátula							
	FECHA DE ENTRE	EGA.	REVISIÓN N°	FE	СНА	FIRMA				
	FECHA DE ENTRE	.GA	1°:	/						
	/ /		2 ^a :							
			APROBACIÓN/_/_							
		INTEGRA	NTES DE LA CO	MISIO	N					
1			6							
2			7							
3			8							
4			9							
5			10							
	0	BSERVACIONE	S		FIRMA DOCENTE					
••••										
					REV. 0	12/09/14				
					REV. 1	20/02/15				
					REV. 2	25/02/16				
					REV. 3	24/02/20				

Laboratorio Experimental 2021 Alumno:.....

Comisión:.....

Grupo:.....

Medición de Potencia Trifásica. Método de Aarón

1. Medida de la Potencia

Trabajo Práctico Nº 4:

La potencia demandada por una carga trifásica es igual a la suma de las potencias suministradas por cada una de las fases. Esto se cumple para cualquier tipo de conexión de la carga y características de ésta. Luego, la potencia del sistema trifásico puede medirse con tres vatímetros monofásicos conectados en la forma indicada en el esquema. Obsérvese que esto requiere tener acceso al punto neutro del sistema.

El vatímetro 1 indicará:

$$P_R = U_R . I_R . \cos \varphi_R = \overrightarrow{U_R} . \overrightarrow{I}_R$$

El vatímetro 2 indicará:

$$P_S = U_S I_S . \cos \varphi_S = \vec{U}_S . \vec{I}_S$$

El vatímetro 3 indicará:

$$P_T = U_T I_T . \cos \varphi_T = \vec{U}_T . \vec{I}_T$$

La potencia total instantánea será: $P = P_R + P_S + P_T$

Para demostrar el método de Aaron partimos de la consideración de que la potencia activa, con los vatímetros W1 conectado entre las fases R y T y el vatímetro 2 entre las fases S y T y además en el sistema eliminamos el neutro, tenemos que las lecturas de los vatímetros será:

$$P = W_{RT} \pm W_{ST}$$

$$W_{RT} = U_{RT}.I_{R}.\cos(U_{RT}I_{R})$$

$$W_{ST} = U_{ST}I_S.\cos(U_{ST}I_S)$$

La suma de las corrientes por la primera ley de Kirchhoff, valen:

$$\bar{I}_{\scriptscriptstyle R} + \bar{I}_{\scriptscriptstyle S} + \bar{I}_{\scriptscriptstyle T} = 0 \Longrightarrow \bar{I}_{\scriptscriptstyle T} = -(\bar{I}_{\scriptscriptstyle R} + \bar{I}_{\scriptscriptstyle S})$$

Que reemplazamos en la expresión de la potencia, entonces:

$$P = \bar{U}_R . \bar{I}_R + \bar{U}_S . \bar{I}_S + \bar{U}_T . (-\bar{I}_R - \bar{I}_S) = \bar{I}_R . (\bar{U}_R - \bar{U}_T) + \bar{I}_S . (\bar{U}_S - \bar{U}_T)$$

Y las tensiones compuestas o de línea:

$$\bar{U}_{RT} = \bar{U}_R - \bar{U}_T$$

$$\bar{U}_{ST} = \bar{U}_S - \bar{U}_T$$

$$P = \bar{U}_{RT} . \bar{I}_R + \bar{U}_{ST} . \bar{I}_S \qquad \boxed{1}$$

De donde se demuestra que la potencia activa trifásica, es igual a la suma de las lecturas de los dos vatímetros:

 $P = W_{RT} + W_{ST}$ Esta expresión general, nos permite concluir que el método de Aron o Aarón se aplicará a todo sistema equilibrado o no, simétrico o no, pero sin neutro accesible.

NACIONAL DE LA CONTRACTION DEL CONTRACTION DE LA CONTRACTION DE LA

ELECTROTECNIA

Trabajo Práctico Nº 4:

Medición de Potencia Trifásica. Método de Aarón

Laboratorio Experimental 2021
Alumno:
Comisión:
Grupo:

1.1 Cargas equilibradas y simétricas

En los sistemas trifilares la medida de la potencia se realiza conectando los elementos en la forma indicada en el esquema (conexión Aaron). Los vatímetros monofásicos quedan conectados a una tensión $\sqrt{3}$ Uf, desfasadas a 30° y para cargas *equilibradas y simétricas*; podemos considerar los vatímetros monofásicos en forma independiente para estudiar su comportamiento y medida que permite el cálculo de la potencia total.

De esta forma, desarrollando la expresión 1:

$$P = U_{RT} I_R . \cos(\varphi - 30^\circ) + U_{ST} I_S . \cos(\varphi + 30^\circ)$$

Como:

$$U_{RT} = U_{ST} = U_L$$
$$I_R = I_S = I_L$$

$$P = U_L I_L (\cos\varphi.\cos 30^{\circ} + sen\varphi.sen 30^{\circ} + \cos\varphi.\cos 30^{\circ} - sen\varphi.sen 30^{\circ}) = U_L I_L . 2.\frac{\sqrt{3}}{2}\cos\varphi$$

$$P = \sqrt{3}.U_L.I_L.\cos\varphi$$

Es decir la potencia activa trifásica se obtiene como la suma de las lecturas de los dos vatímetros, que para cargas equilibradas la designamos como:

$$P = W_1 + W_2$$

De la misma manera se puede analizar para la obtención de la potencia reactiva trifásica, a partir de la siguiente consideración, que parte de la diferencia de la lectura de los dos vatímetros:

$$Q = W_1 - W_2 \quad \left(\underline{2}\right)$$

$$Q = U_{RT} I_R . \cos(\varphi - 30^\circ) - U_{ST} I_S . \cos(\varphi + 30^\circ)$$

Igual que antes, desarrollamos la expresión, como sigue:

$$Q = U_L I_L (\cos\varphi.\cos 30^{\circ} + sen\varphi.sen 30^{\circ} - \cos\varphi.\cos 30^{\circ} + sen\varphi.sen 30^{\circ}) = U_L I_L .2.\frac{1}{2}.sen\varphi$$

$$Q = U_L I_L . sen \varphi$$

Para que la última expresión nos permita calcular la potencia reactiva en un sistema trifásico equilibrado, a la expresión 2, le agregamos el factor $\sqrt{3}$

$$Q = \sqrt{3}.U_L.I_L.sen\varphi$$

De esta forma la expresión **2** quedaría:

 $Q = \sqrt{3} \cdot (W_1 - W_2)$ Esta expresión debemos recordar sólo será aplicable a aquellos casos en los que carga sea *equilibrada*.

Se analizan ahora diferentes tipos de carga:

a- Carga
$$Z_R = Z_S = Z_T = R$$
 $\varphi_R = \varphi_S = \varphi_T = 0^{\circ}$

Del diagrama vectorial se deduce que el vatímetro 1 y el vatímetro 2 miden:

Laboratorio Experimental 2021

Trabajo Práctico Nº 4:

Medición de Potencia Trifásica. Método de Aarón

Alumno:..... Comisión:.... Grupo:.....

$$W_1 = U_{RT}.I_R.\cos 30^{\circ}$$

$$W_2 = U_{ST}.I_S.\cos 30^\circ$$

Considerando que:
$$U_{RT} = U_{ST} = U$$
; $I_{RT} = I_{ST} = I$; $\cos 30^\circ = \frac{\sqrt{3}}{2}$

 $P = W_1 + W_2 = \sqrt{3}$. UI lo que significa cos $\varphi = 1$ valor éste que, de La potencia total, resulta: acuerdo al tipo de carga considerado es correcto.

b- Carga
$$Z_R = Z_S = Z_T = R + j X$$
;

$$\frac{X}{R} = arctg30^{\circ}$$

Del diagrama vectorial se deduce que el vatímetro 1 y el vatímetro 2 miden:

$$W_1 = U_{RT}.I_R.\cos 0^\circ = U.I$$

$$W_2 = U_{ST}.I_S.\cos 60^{\circ} = 0.5.U.I$$

La potencia total, resulta: $P = W_1 + W_2 = 1, 5. U.I$

c- Carga
$$Z_R = Z_S = Z_T = R + j X;$$

$$\frac{X}{R} = arctg60^{\circ}$$

$$\frac{X}{R} = arctg60^{\circ}$$

Del diagrama vectorial se deduce que el vatímetro 1 y el vatímetro 2 miden:

$$W_1 = U_{RT}.I_R.\cos 30^\circ = \frac{\sqrt{3}}{2}U.I$$

$$W_2 = U_{ST} I_{S} \cdot \cos 90^{\circ} = 0$$

El vatímetro 2 permanecerá en la posición cero y la potencia total, será: $P = W_I$; $\varphi = 90^\circ$

NACIONAL DE LA CONTRACTION DEL CONTRACTION DE LA CONTRACTION DE LA

ELECTROTECNIA

Laboratorio Experimental 2021

Trabajo Práctico Nº 4:

Medición de Potencia Trifásica. Método de Aarón

d- Carga
$$Z_R = Z_S = Z_T = i X$$
;

$$\varphi = 90^{\circ}$$

Del diagrama vectorial se deduce que el vatímetro 1 y el vatímetro 2 miden:

$$W_1 = U_{RT}.I_R.\cos 60^{\circ} = 0.5.U.I$$

$$W_2 = U_{ST}.I_S.\cos 120^\circ = -0.5.U.I$$

El resultado negativo nos indica que el vatímetro 2 tenderá a señalar la medida con movimiento de la aguja en sentido contrario al normal. Para lograr la medida, se invierte la conexión de intensidad.

Para el tipo de carga considerada la potencia total será: $P = W_1 + (-W_2) = 0$. En general, cuando uno de los vatímetros (en este caso el 2), tiende a señalar en sentido contrario (lo que ocurre para $\varphi > 60^{\circ}$), se invierte la conexión de uno de sus circuitos y la potencia total se obtiene por diferencia: $P = W_1 - W_2$

Trabajo Práctico Nº 4:

Medición de Potencia Trifásica. Método de Aarón

Laboratorio Experimental 2021
Alumno:
Comisión:
Crupor

ENSAYO

- 1) Objetivo de la práctica:
- 1.1 Medir de la potencia de una carga trifásica equilibrada inductiva (Motor eléctrico trifásico).
- 1.2 Determinar de la Potencia reactiva.
- 1.3 Obtener el factor de potencia.
- 2) Enumerar los instrumentos e identificar las características de los instrumentos y/o elementos utilizados, indicando, para cada uno:

Instrumentos:

 → Magnitud que mide
Posición de trabajo→ Tensión de prueba
 ✔ Clase de exactitud ✔ Otras características especiales ✔ Dibujar los símbolos correspondientes
Elementos:
ŷ Denominación
ŷ Tensión de salida
A D. C

3) Armar el circuito eléctrico siguiente:

Debido a los alcances de los vatímetros que son de 400W y de 2000W y a que nuestra medición es de relativa poca potencia, incorporamos en el circuito un transformador de medida de intensidad para obtener una mejor medición y adaptar la escala amperométrica a los requerimientos de la carga. El circuito utilizado es el siguiente:

NACIONAL PROPERTY OF THE PROPE

ELECTROTECNIA

Trabajo Práctico Nº 4:

Medición de Potencia Trifásica. Método de Aarón

Laboratorio Experimental 2021
Alumno:
Comisión:
Grupo:

La constante de escala de los vatímetros será:

$$K_W = \frac{Alc. A. K_{T.I.}. Alc. V.}{n^{\circ} div.}$$

- 4) Maniobra operativa
- 5) Tomar las lecturas.
 - 5.1 De los vatímetros W₁ y W₂
 - 5.2 Del voltímetro y amperímetro
- 6) Valores obtenidos

a. Carga equilibrada

Vatímetro 1 W₁	Vatímetro 2 W ₂	Potencia Activa [W]	Potencia Reactiva [VAR]	Potencia Aparente [VA]	cosφ	Voltímetro [V]	Amperimetro [A]	Valor conocido de las cargas	Error relativo porcentual

$$P = W_1 \pm W_2$$
; $Q = \sqrt{3} \cdot (W_1 \mp W_2)$; $S = \sqrt{P^2 + Q^2}$ $\cos \varphi = \cos \left[arctg \frac{Q}{P} \right]$

b. Carga desequilibrada

Vatímetro 1	2	Potencia Activa [W]	Potencia Aparente	cosφ	Voltímetro [V]	Amperímetro [A]		etro	Valor conocido de las cargas	Error relativo
W _{RT}	W _{ST}		[VA]			I _R	Is	I _T		porcentual

Laboratorio Experimental 2021

Trabajo Práctico Nº 4:

Medición de Potencia Trifásica. Método de Aarón

Alumno:
Comisión:
Grupo:

$$P = W_{RT} \pm W_{ST} \quad ; \quad Q = \sqrt{3} \cdot \left(W_{RT} \mp W_{ST}\right) \quad ; S = \sqrt{P^2 + Q^2} \quad \cos \varphi = \cos \left[arctg \frac{Q}{P} \right]$$

c. En el caso de carga desequilibrada medir las tensiones:

	V _{NO} [V]	V _{RO} [V]	Vso[V]	V TO[V]
Tensión				

- d. Construir en papel milimetrado el triángulo de tensiones correspondientes suponiendo una secuencia directa RST e indicar en escala conveniente el vector representativo de la tensión de neutro flotante, tensiones simples con respecto al neutro y al neutro flotante y las tensiones compuestas.
- 7) Precauciones a tener en cuenta
- ⇒ Seleccionar adecuadamente los rangos de tensión y de corriente de los vatímetros.
- ⇒ Verificar el sentido de deflexión de las agujas de los vatímetros, y en caso de ser contrario al normal, intercambiar la polaridad en la entrada de la bobina amperométrica.
- ⇒ Respetar el esquema circuital presentado de los vatímetros y la carga.
 - 8) Aplicaciones: En todos los casos que se desee medir potencia trifásica en sistemas simétricos o no y equilibrados o no pero que sean *trifilares*, es decir sin neutro.-

9)	Conclusione	es v comenta	rios:			
- /		- ,				
		•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	