	TP1 Pression - Lothmann	Pt	АВС	D Note
ı	Préparation du travail			
1	Compléter le schéma TI avec l'instrumentation et les liaisons nécessaires à la conception de la boucle de régulation.	2	С	0,7
2	Quel est le nom de la grandeur réglée ?	1	A	0,5
3	Quel est le principe utilisé pour mesurer la grandeur réglée ?	1	С	0,175
4	Quelle est la grandeur réglante ?	1	D	0,025
5	Donner une grandeur perturbatrice.	1	D	0,025
6 II.	Etablir le schéma de câblage complet en tenant compte de la nature des signaux utilisés. Prévoir les convertisseurs, alimentations, générateurs nécessaires. Faire apparaître les polarités. Etude du procédé	1	А	1
1	Paramétrer les entrées-sorties de votre régulateur en fonction de la nature des signaux utilisés.	1	Χ	0
2	Tracer la caractéristique statique de votre procédé. On prendra au moins 6 mesures (3 pour les régulations de température et niveau).	1	С	0,35
3	En déduire le gain statique du procédé autour du point de fonctionnement.	1	В	0,75
4	En déduire le sens d'action à régler sur le régulateur.	1	С	0,35
5	Déterminer le modèle de Broïda du procédé, en faisant un échelon de 10% autour du point de fonctionnement.	3	С	1,05
III.	Etude du régulateur			
1	Déterminer la structure interne (parallèle, série ou mixte) du correcteur PID utilisé par Lintools.	2	D	0,075
2	En déduire le réglage du régulateur en utilisant le tableau de réglage fourni dans le cours.	2	Χ	0
IV.	Performances et optimisation			
1	Programmer votre régulateur pour assurer le fonctionnement de la régulation.	1	Χ	0
2	Mesurer les performances de votre régulation en réponse à un échelon de consigne de 10%. On mesurera le temps de réponse à 10%, la valeur du premier dépassement et la précision relative.	2	X	0
3	Améliorer votre réglage pour réduire au maximum la valeur du temps de réponse. On donnera le nom et la valeur des paramètres modifiés.	1	X	0
4	Mesurer à nouveau les performances de votre régulation, comparer les avec celles obtenues à la question précédente.	2	Χ	0
			Note sur : 2	0 5,0

TP1 Régulation de Pression

1) Préparation du travail

1-

- 2- la grandeur réglée est la pression dans le réservoir
- 3-le principe utilisé pour mesurer la grandeur réglée est un transmetteur de pression PT
- 4-la grandeur réglante est lé débit d'entrée QE
- 5-la grandeur perturbatrice est le débit de sortie QS

6-

2) <u>Étude du procédé</u>

2-

10	12
50	35
100	85

Courbe ?

3- Le calcul se fait autour du point de fonctionnement K=DELTA S/DELTA E=100/85=1,17

4le sens du régulateur doit être en inverse car le procédé est direct , la mesure augmente en fonction de la consigne
5-

3) Étude du régulateur