$$N_{-} = 4$$

 $M_{-} = 3$

Pressures: the array for the pressures has dimension N_*M_

0,2 // 8	1,2 // 9	2,2 // 10	3,2 // 11
0,1 // 4	1,1 // 5	2,1 // 6	3,1 // 7
0,0 // 0	1,0 // 1	2,0 // 2	3,0 // 3

$$p(i,j) = *(ppressures_+ N_*j + i)$$

Velocities u: the array for the u-velocities has dimension (N_+1)*M_

0,2	// <mark>10</mark> 1,2 //	11 2,2	// <mark>12</mark> 3,2 /	/ 13 4,2// 14
0,1 /	/ 5 1,1 //	6 2,1	/ <mark>7</mark> 3,1 /	/ <mark>8</mark> 4,1 // 9
0,0	// <mark>0</mark> 1,0 /	// 1 2,0 /	/ <mark>2</mark> 3,0 /	/ 3 4,0 // 4

$$u(i,j) = *(pu_+ (N_+1)*j + i)$$

Velocities v: the array for the v-velocities has dimension $N_*(M_+1)$

0,3 // 12	1,3 // 13	2,3// 14	3,3 // 15
0,2 // 8	1,2 // 9	2,2 // 10	3,2 // 11
0,1 // 4	1,1 // 5	2,1 // 6	3,1 // 7
0,0 // 0	1,0 // 1	2,0 // 2	3,0 // 3

$$v(i,j) = *(pv_+ N_*j + i)$$